

## **LOONGSON**

# 龙芯3A3000/3B3000 处理器 用户手册 上册

多核处理器架构、寄存器描述与系统软件编程指南 V1.3

2017年4月

龙芯中科技术有限公司

LOONGSON



#### 版权声明

本文档版权归龙芯中科技术有限公司所有,并保留一切权利。未经书面许可,任何公司和个 人不得将此文档中的任何部分公开、转载或以其他方式散发给第三方。否则,必将追究其法 律责任。

#### 免责声明

本文档仅提供阶段性信息,所含内容可根据产品的实际情况随时更新,恕不另行通知。如因文档使用不当造成的直接或间接损失,本公司不承担任何责任。

#### 龙芯中科技术有限公司

Loongson Technology Corporation Limited

地址:北京市海淀区中关村环保科技示范园龙芯产业园2号楼

Building No.2, Loongson Industrial Park,

Zhongguancun Environmental Protection Park, Haidian District, Beijing

电话(Tel): 010-62546668

传真(Fax): 010-62600826



#### 阅读指南

《龙芯 3A3000/3B3000 处理器用户手册》分为上册和下册。

《龙芯 3A3000/3B3000 处理器用户手册》上册分为两部分,第一部分介绍龙芯 3A3000/3B3000 多核处理器架构与寄存器描述,对芯片系统架构、主要模块的功能与配置、寄存器列表及位域进行详细说明。

《龙芯 3A3000/3B3000 处理器用户手册》下册,从系统软件开发者角度详细介绍龙芯 3A3000/3B3000 所采用的 GS464e 高性能处理器核。



## 修订历史

| 文档更新记录 | 文档名:  | 龙芯 3A3000/3B3000 处理器用户手册<br>——上册 |
|--------|-------|----------------------------------|
|        | 版本号   | V1.3                             |
|        | 创建人:  | 芯片研发部                            |
|        | 创建日期: | 2017-04-13                       |

#### 更新历史

| 序号 | 更新日期       | 版本号   | 更新内容                       |  |
|----|------------|-------|----------------------------|--|
| 1  | 2016-06-14 | V1.0  | 初始版本                       |  |
| 2  | 2016-09-14 | V1. 1 | 更新部分 PLL 配置寄存器说明,更新软硬件改动说明 |  |
| 3  | 2016-11-25 | V1.2  | 增加 BBGEN 部分的寄存器说明          |  |
| 4  | 2017-04-13 | V1.3  | 增加 SPI 地址空间说明              |  |

手册信息反馈: service@loongson.cn

也可通过问题反馈网站 http://bugs.loongnix.org/ 向我司提交芯片产品使用过程中的问题,并获取技术支持。



I

## 目 录

| 1 | 概述11                       |
|---|----------------------------|
|   | 1.1 龙芯系列处理器介绍11            |
|   | 1. 2 龙芯 3A3000/3B3000 简介12 |
| 2 | 系统配置与控制15                  |
|   | 2. 1 芯片工作模式15              |
|   | 2. 2 控制引脚说明15              |
|   | 2. 3 Cache 一致性             |
|   | 2.4 系统节点级的物理地址空间分布17       |
|   | 2.5 地址路由分布与配置19            |
|   | 2. 6 芯片配置及采样寄存器25          |
| 3 | GS464e 处理器核30              |
| 4 | 共享 Cache(SCache)32         |
| 5 | 矩阵处理加速器34                  |
| 6 | 处理器核间中断与通信37               |
| 7 | 1/0 中断40                   |
| 8 | 温度传感器                      |
|   | 8.1 实时温度采样                 |
|   | 8.2 高低温中断触发                |
|   | 8.3 高温自动降频设置44             |
| 9 | DDR2/3 SDRAM 控制器配置         |
|   | 9.1 DDR2/3 SDRAM 控制器功能概述   |
|   | 9. 2 DDR2/3 SDRAM 读操作协议    |
|   | 9.3 DDR2/3 SDRAM 写操作协议47   |
|   | 9.4 DDR2/3 SDRAM 参数配置格式47  |
|   | 9.5 软件编程指南51               |
|   | 9.5.1 初始化操作51              |
|   | 9.5.2 复位引脚的控制51            |
|   | 9.5.3 Leveling             |
|   | 9.5.3.1 Write Leveling53   |



#### 龙芯 3A3000/3B3000 处理器用户手册 目录

| 9.5.3.2 Gate Leveling                       | 54 |
|---------------------------------------------|----|
| 9.5.4 单独发起 MRS 命令                           | 55 |
| 9.5.5 任意操作控制总线                              | 56 |
| 9.5.6 自循环测试模式控制                             | 56 |
| 9.5.7 ECC 功能使用控制                            | 57 |
| 10 HyperTransport 控制器                       | 58 |
| 10.1 HyperTransport 硬件设置及初始化                | 58 |
| 10. 2 HyperTransport 协议支持                   | 61 |
| 10.3 HyperTransport 中断支持                    | 62 |
| 10. 4 HyperTransport 地址窗口                   | 62 |
| 10.4.1 HyperTransport 空间                    | 62 |
| 10. 4. 2 HyperTransport 控制器内部窗口配置           | 63 |
| 10.5 配置寄存器                                  | 64 |
| 10.5.1 Bridge Control                       | 66 |
| 10.5.2 Capability Registers                 | 66 |
| 10.5.3 自定义寄存器                               | 69 |
| 10.5.4 接收诊断寄存器                              | 71 |
| 10.5.5 中断路由方式选择寄存器                          | 71 |
| 10.5.6 接收缓冲区初始寄存器                           | 71 |
| 10.5.7 接收地址窗口配置寄存器                          | 72 |
| 10.5.8 中断向量寄存器                              | 75 |
| 10.5.9 中断使能寄存器                              | 78 |
| 10.5.10 Interrupt Discovery & Configuration | 81 |
| 10. 5. 11 POST 地址窗口配置寄存器                    | 82 |
| 10.5.12 可预取地址窗口配置寄存器                        | 83 |
| 10. 5. 13 UNCACHE 地址窗口配置寄存器                 | 84 |
| 10. 5. 14 P2P 地址窗口配置寄存器                     | 87 |
| 10.5.15 命令发送缓存大小寄存器                         | 89 |
| 10.5.16 数据发送缓存大小寄存器                         | 89 |
| 10.5.17 发送缓存调试寄存器                           | 89 |
| 10.5.18 PHY 阻抗匹配控制寄存器                       | 90 |

#### 龙芯 3A3000/3B3000 处理器用户手册 目录

| 10.5.19 Revision ID 寄存器          | 91  |
|----------------------------------|-----|
| 10.5.20 Error Retry 控制寄存器        | 91  |
| 10.5.21 Retry Count 寄存器          | 92  |
| 10.5.22 Link Train 寄存器           | 92  |
| 10.5.23 Training 0 超时短计时寄存器      | 93  |
| 10.5.24 Training 0 超时长计时寄存器      | 94  |
| 10.5.25 Training 1 计数寄存器         | 94  |
| 10.5.26 Training 2 计数寄存器         | 94  |
| 10.5.27 Training 3 计数寄存器         | 94  |
| 10. 5. 28 软件频率配置寄存器              | 95  |
| 10.5.29 PHY 配置寄存器                | 96  |
| 10.5.30 链路初始化调试寄存器               | 97  |
| 10. 5. 31 LDT 调试寄存器              | 97  |
| 10. 6 HyperTransport 总线配置空间的访问方法 | 98  |
| 10.7 HyperTransport 多处理器支持       |     |
| 11 低速 IO 控制器配置                   | 101 |
| 11.1 PCI 控制器                     | 101 |
| 11.2 LPC 控制器                     | 106 |
| 11.3 UART 控制器                    | 107 |
| 11.3.1 数据寄存器(DAT)                |     |
| 11.3.2 中断使能寄存器(IER)              | 108 |
| 11.3.3 中断标识寄存器(IIR)              |     |
| 11.3.4 FIFO 控制寄存器(FCR)           |     |
| 11.3.5 线路控制寄存器(LCR)              | 109 |
| 11.3.6 MODEM 控制寄存器(MCR)          | 111 |
| 11.3.7 线路状态寄存器(LSR)              |     |
| 11.3.8 MODEM 状态寄存器 (MSR)         |     |
| 11.3.9 分频锁存器                     | 113 |
| 11.4 SPI 控制器                     |     |
| 11.4.1 控制寄存器(SPCR)               |     |
| 11.4.2 状态寄存器(SPSR)               | 115 |



#### 龙芯 3A3000/3B3000 处理器用户手册 目录

| 11.4.3 数据寄存器(TxFIFO)       | 115 |
|----------------------------|-----|
| 11.4.4 外部寄存器(SPER)         | 115 |
| 11.4.5 参数控制寄存器(SFC_PARAM)  | 116 |
| 11.4.6 片选控制寄存器(SFC_SOFTCS) | 116 |
| 11.4.7 时序控制寄存器(SFC_TIMING) | 117 |
| 11.5 I0 控制器配置              | 118 |
| 12 芯片配置寄存器列表               | 122 |
| 13 软硬件设计指南                 | 162 |
| 13.1 硬件改动指南                | 162 |
| 13.2 频率设置说明                | 163 |
| 13.3 PMON 改动指南             | 163 |
| 13.4 内核改动指南                | 164 |



## 图目录

| 图 1-1 龙芯 3 号系统结构                     | 11  |
|--------------------------------------|-----|
| 图 1-2 龙芯 3 号节点结构                     | 12  |
| 图 1-3 龙芯 3A3000/3B3000 芯片结构          | 13  |
| 图 3-1 GS464e 结构图                     | 31  |
| 图 7-1 龙芯 3A3000/3B3000 处理器中断路由示意图    | 40  |
| 图 9-1 DDR2 SDRAM 读操作协议               | 47  |
| 图 9-2 DDR2 SDRAM 写操作协议               | 47  |
| 图 10-1 龙芯 3A3000/3B3000 中 HT 协议的配置访问 | 98  |
| 图 10-2 四片龙芯 3 号互联结构                  | 99  |
| 图 10-3 两片龙芯 3 号 8 位互联结构              | 100 |
| 图 10-4 两片龙芯 3 号 16 位互联结构             | 100 |
| 图 11-1 配置诗写真线抽扯生成                    | 105 |



### 表目录

| 表 2-1 控制引脚说明                                  | 15 |
|-----------------------------------------------|----|
| 表 2-2 节点级的系统全局地址分布                            | 17 |
| 表 2-3 节点内的地址分布                                | 18 |
| 表 2-4 节点内的地址分布                                | 18 |
| 表 2-5 MMAP 字段对应的该空间访问属性                       | 19 |
| 表 2-6 一级交叉开关地址窗口寄存器表                          | 19 |
| 表 2-7 二级 XBAR 处,从设备号与所述模块的对应关系                | 22 |
| 表 2-8 MMAP 字段对应的该空间访问属性                       | 22 |
| 表 2-9 二级 XBAR 地址窗口转换寄存器表                      | 22 |
| 表 2-10 二级 XBAR 缺省地址配置                         | 25 |
| 表 2-11 芯片配置寄存器(物理地址 0x1fe00180)               | 25 |
| 表 2-12 芯片采样寄存器(物理地址 0x1fe00190)               | 25 |
| 表 2-13 芯片结点和处理器核软件倍频设置寄存器(物理地址 0x1fe001b0)2   | 27 |
| 表 2-14 芯片内存和 HT 时钟软件倍频设置寄存器(物理地址 0x1fe001c0)2 | 28 |
| 表 2-15 芯片处理器核软件分频设置寄存器(物理地址 0x1fe001d0)       | 28 |
| 表 4-1 共享 Cache 锁窗口寄存器配置                       | 33 |
| 表 5-1 矩阵处理编程接口说明                              | 34 |
| 表 5-2 矩阵处理寄存器地址说明                             | 35 |
| 表 5-3 trans_ctrl 寄存器说明                        | 35 |
| 表 5-4 trans_status 寄存器说明                      | 36 |
| 表 6-1 处理器核间中断相关的寄存器及其功能描述                     | 37 |
| 表 6-20 号处理器核核间中断与通信寄存器列表                      | 37 |
| 表 6-31号处理器核的核间中断与通信寄存器列表                      | 38 |
| 表 6-42 号处理器核的核间中断与通信寄存器列表                     | 38 |
| 表 6-53 号处理器核的核间中断与通信寄存器列表                     | 38 |
| 表 7-1 中断控制寄存器                                 | 41 |
| 表 7-2 IO 控制寄存器地址                              | 41 |
| 表 7-3 中断路由寄存器的说明                              | 42 |
| 表 7-4 中断路由寄存器地址                               | 42 |



#### 龙芯 3A3000/3B3000 处理器用户手册 表目录

| 表 8-1 温度采样寄存器说明                                              | 43   |
|--------------------------------------------------------------|------|
| 表 8-2 高低温中断寄存器说明                                             | 44   |
| 表 8-3 高温降频控制寄存器说明                                            | 45   |
| 表 10-1 HyperTransport 总线相关引脚信号                               | 58   |
| 表 10-2 HyperTransport 接收端可接收的命令                              | 61   |
| 表 10-3 两种模式下会向外发送的命令                                         | 61   |
| 表 10-4 默认的 4 个 HyperTransport 接口的地址窗口分布                      | 62   |
| 表 10-5 龙芯 3 号处理器 HyperTransport 接口内部的地址窗口分布                  | 63   |
| 表 10-6 龙芯 3A3000/3B3000 处理器 HyperTransport 接口中提供的地址包         | ॹ□63 |
| 表 10-7 软件可见寄存器列表                                             | 64   |
| 表 10-8 Bus Reset Control 寄存器定义                               | 66   |
| 表 10-9 Command, Capabilities Pointer, Capability ID 寄存器定义    | 66   |
| 表 10-10 Link Config,Link Control 寄存器定义                       | 67   |
| 表 10-11 Revision ID,Link Freq,Link Error,Link Freq Cap 寄存器定义 | 68   |
| 表 10-12 Feature Capability 寄存器定义                             |      |
| 表 10-13 MISC 寄存器定义                                           | 69   |
| 表 10-14 接收诊断寄存器                                              | 71   |
| 表 10-15 中断路由方式选择寄存器                                          | 71   |
| 表 10-16 接收缓冲区初始寄存器                                           | 71   |
| 表 10-17 HT 总线接收地址窗口 0 使能(外部访问)寄存器定义                          | 72   |
| 表 10-18 HT 总线接收地址窗口 0 基址(外部访问)寄存器定义                          | 72   |
| 表 10-19 HT 总线接收地址窗口 1 使能(外部访问)寄存器定义                          | 73   |
| 表 10-20 HT 总线接收地址窗口 1 基址(外部访问)寄存器定义                          | 73   |
| 表 10-21 HT 总线接收地址窗口 2 使能(外部访问)寄存器定义                          | 73   |
| 表 10-22 HT 总线接收地址窗口 2 基址(外部访问)寄存器定义                          | 74   |
| 表 10-23 HT 总线接收地址窗口 3 使能(外部访问)寄存器定义                          | 74   |
| 表 10-24 HT 总线接收地址窗口 3 基址(外部访问)寄存器定义                          | 74   |
| 表 10-25 HT 总线接收地址窗口 4 使能(外部访问)寄存器定义                          | 75   |
| 表 10-26 HT 总线接收地址窗口 4 基址(外部访问)寄存器定义                          | 75   |
| 表 10-27 HT 总线中断向量寄存器定义(1)                                    | 76   |
| 表 10-28 HT 总线中断向量寄存器定义(2)                                    | 76   |



#### 龙芯 3A3000/3B3000 处理器用户手册 表目录

| 表 | 10-29 | HT 总线中断向量寄存器定义(3)             | . 77 |
|---|-------|-------------------------------|------|
| 表 | 10-30 | HT 总线中断向量寄存器定义(4)             | . 77 |
| 表 | 10-31 | HT 总线中断向量寄存器定义(6)             | . 77 |
| 表 | 10-32 | HT 总线中断向量寄存器定义(7)             | . 77 |
| 表 | 10-33 | HT 总线中断向量寄存器定义(8)             | . 78 |
| 表 | 10-34 | HT 总线中断使能寄存器定义(1)             | . 79 |
| 表 | 10-35 | HT 总线中断使能寄存器定义(2)             | . 79 |
| 表 | 10-36 | HT 总线中断使能寄存器定义(3)             | . 79 |
| 表 | 10-37 | HT 总线中断使能寄存器定义(4)             | . 79 |
| 表 | 10-38 | HT 总线中断使能寄存器定义(5)             | . 80 |
| 表 | 10-39 | HT 总线中断使能寄存器定义(6)             | . 80 |
| 表 | 10-40 | HT 总线中断使能寄存器定义(7)             | . 80 |
| 表 | 10-41 | HT 总线中断使能寄存器定义(8)             | . 80 |
| 表 | 10-42 | Interrupt Capability 寄存器定义    | . 81 |
| 表 | 10-43 | Dataport 寄存器定义                | .81  |
| 表 | 10-44 | IntrInfo 寄存器定义(1)             | . 81 |
| 表 | 10-45 | IntrInfo 寄存器定义(2)             | . 81 |
| 表 | 10-46 | HT 总线 POST 地址窗口 0 使能(内部访问)    | 82   |
| 表 | 10-47 | HT 总线 POST 地址窗口 0 基址(内部访问)    | 82   |
| 表 | 10-48 | HT 总线 POST 地址窗口 1 使能(内部访问)    | 83   |
| 表 | 10-49 | HT 总线 POST 地址窗口 1 基址(内部访问)    | 83   |
| 表 | 10-50 | HT 总线可预取地址窗口 0 使能(内部访问)       | . 83 |
| 表 | 10-51 | HT 总线可预取地址窗口 0 基址 (内部访问)      | . 84 |
| 表 | 10-52 | HT 总线可预取地址窗口 1 使能(内部访问)       | . 84 |
| 表 | 10-53 | HT 总线可预取地址窗口 1 基址(内部访问)       | . 84 |
| 表 | 10-54 | HT 总线 Uncache 地址窗口 0 使能(内部访问) | . 85 |
| 表 | 10-55 | HT 总线 Uncache 地址窗口 0 基址(内部访问) | . 85 |
| 表 | 10-56 | HT 总线 Uncache 地址窗口 1 使能(内部访问) | . 85 |
| 表 | 10-57 | HT 总线 Uncache 地址窗口 1 基址(内部访问) | . 86 |
| 表 | 10-58 | HT 总线 Uncache 地址窗口 2 使能(内部访问) | . 86 |
| 表 | 10-59 | HT 总线 Uncache 地址窗口 2 基址(内部访问) | . 86 |



#### 龙芯 3A3000/3B3000 处理器用户手册 表目录

| 表 10-60 HT 总线 Uncache 地址窗口 3 使能(内部访问)  | 87  |
|----------------------------------------|-----|
| 表 10-61 HT 总线 Uncache 地址窗口 3 基址(内部访问)  | 87  |
| 表 10-62 HT 总线 P2P 地址窗口 0 使能(外部访问)寄存器定义 | 87  |
| 表 10-63 HT 总线 P2P 地址窗口 0 基址(外部访问)寄存器定义 | 88  |
| 表 10-64 HT 总线 P2P 地址窗口 1 使能(外部访问)寄存器定义 | 88  |
| 表 10-65 HT 总线 P2P 地址窗口 1 基址(外部访问)寄存器定义 | 88  |
| 表 10-66 命令发送缓存大小寄存器                    | 89  |
| 表 10-67 数据发送缓存大小寄存器                    | 89  |
| 表 10-68 发送缓存调试寄存器                      | 90  |
| 表 10-69 阻抗匹配控制寄存器                      | 91  |
| 表 10-70 Revision ID 寄存器                | 91  |
| 表 10-71 Error Retry 控制寄存器              | 91  |
| 表 10-72 Retry Count 寄存器                | 92  |
| 表 10-73 Link Train 寄存器                 | 92  |
| 表 10-74 Training 0 超时短计时寄存器            | 93  |
| 表 10-75 Training 0 超时长计数寄存器            | 94  |
| 表 10-76 Training 1 计数寄存器               | 94  |
| 表 10-77 Training 2 计数寄存器               | 94  |
| 表 10-78 Training 3 计数寄存器               | 95  |
| 表 10-79 软件频率配置寄存器                      | 95  |
| 表 10-80 PHY 配置寄存器                      | 96  |
| 表 10-81 链路初始化调试寄存器                     | 97  |
| 表 10-82 LDT 调试寄存器                      | 98  |
| 表 11-1 PCI 控制器配置头                      | 101 |
| 表 11-2 PCI 控制寄存器                       | 102 |
| 表 11-3 PCI/PCIX 总线请求与应答线分配             | 105 |
| 表 11-4 LPC 控制器地址空间分布                   | 106 |
| 表 11-5 LPC 配置寄存器含义                     | 106 |
| 表 11-6 SPI 控制器地址空间分布                   | 114 |
| 表 11-7 IO 控制寄存器                        | 118 |
| 表 11-8 寄存器详细描述                         | 119 |





#### 1 概述

#### 1.1 龙芯系列处理器介绍

龙芯处理器主要包括三个系列。龙芯1号处理器及其IP系列主要面向嵌入式应用,龙芯2号超标量处理器及其IP系列主要面向桌面应用,龙芯3号多核处理器系列主要面向服务器和高性能机应用。根据应用的需要,其中部分龙芯2号也可以面向部分高端嵌入式应用,部分低端龙芯3号也可以面向部分桌面应用。上述三个系列将并行地发展。

龙芯 3 号多核系列处理器基于可伸缩的多核互连架构设计,在单个芯片上集成多个高性能处理器核以及大量的 2 级 Cache,还通过高速 I/0 接口实现多芯片的互连以组成更大规模的系统。

龙芯 3 号采用的可伸缩互连结构如下图 1-1 所示。龙芯 3 号片内及多片系统均采用二维 mesh 互连结构,其中每个结点由 8\*8 的交叉开关组成,每个交叉开关连接四个处理器核以及四个共享 Cache,并与东(E)南(N)西(W)北(N)四个方向的其他结点互连。因此,2\*2 的 mesh 可以连接 16 个处理器核, 4\*4 的 mesh 可以连接 64 个处理器核。



图 1-1 龙芯 3 号系统结构

龙芯 3 号的结点结构如下图 1-2 所示。每个结点有两级 AXI 交叉开关连接处理器、共享

4\*4 的 mesh 网络连接 64 个处理器。



Cache、内存控制器以及 IO 控制器。其中第一级 AXI 交叉开关(称为 X1 Switch,简称 X1)连接处理器和共享 Cache。第二级交叉开关(称为 X2 Switch,简称 X2)连接共享 Cache 和内存控制器。



图 1-2 龙芯 3 号节点结构

在每个结点中,最多 8\*8 的 X1 交叉开关通过四个 Master 端口连接四个 GS464 处理器核(图中 P0、P1、P2、P3),通过四个 Slave 端口连接统一编址的四个 interleave 共享 Cache 块(图中 S0、S1、S2、S3),通过四对 Master/Slave 端口连接东、南、西、北四个方向的其他结点或 IO 结点(图中 EM/ES、SM/SS、WM/WS、NM/NS)。

X2 交叉开关通过四个 Master 端口连接四个共享 Cache, 至少一个 Slave 端口连接一个内存控制器,至少一个 Slave 端口连接一个交叉开关的配置模块(Xconf)用于配置本结点的 X1 和 X2 的地址窗口等。还可以根据需要连接更多的内存控制器和 I0 端口等。

#### 1.2 龙芯 3A3000/3B3000 简介

龙芯 3A3000/3B3000 是龙芯 3A2000/3B2000 四核处理器的工艺升级版本,封装引脚与龙芯 3A1000 相比, PLL\_AVDD 由 2.5V 改为 1.8V, 与龙芯 3A2000/3B2000 相比, 多使用了PLL\_AVDD。龙芯 3A3000/3B3000 是一个配置为单节点 4 核的处理器,采用 28nm 工艺制造,工作主频为 1.2GHz-1.5GHz,主要技术特征如下:



- 片内集成 4 个 64 位的四发射超标量 GS464e 高性能处理器核;
- 片内集成 8MB 的分体共享三级 Cache (由 4 个体模块组成,每个体模块容量为 2MB);
- 通过目录协议维护多核及 I/O DMA 访问的 Cache 一致性;
- 片内集成2个64位带ECC,667MHz的DDR2/3控制器;
- 3B3000 片内集成 2 个 16 位 1.6GHz 的 HyperTransport 控制器 (以下简称 HT);
- 3A3000 片内 HT1 为 16 位 1.6GHz 的 HT 控制器, HT0 不可用;
- 每个 16 位的 HT 端口拆分成两个 8 路的 HT 端口使用。
- 片内集成 32 位 33MHz PCI;
- 片内集成1个LPC、2个UART、1个SPI、16路GPI0接口。
   相比龙芯 3A2000/3B2000, 其主要改进如下:
- 处理器核微结构升级;
- 内存控制器结构、频率升级;
- HT 控制器结构、频率升级;
- 全芯片的性能优化提升。

龙芯 3A3000/3B3000 芯片整体架构基于两级互连实现,结构如下图 1-3 所示。



图 1-3 龙芯 3A3000/3B3000 芯片结构

第一级互连采用 6x6 的交叉开关,用于连接四个 GS464e 核(作为主设备)、四个共享 Cache 模块(作为从设备)、以及两个 IO 端口(每个端口使用一个 Master 和一个 Slave)。



一级互连开关连接的每个 IO 端口连接一个 16 位的 HT 控制器,每个 16 位的 HT 端口还可以作为两个 8 位的 HT 端口使用。HT 控制器通过一个 DMA 控制器和一级互联开关相连,DMA 控制器负责 IO 的 DMA 控制并负责片间一致性的维护。龙芯 3 号的 DMA 控制器还可以通过配置实现预取和矩阵转置或搬移。

第二级互连采用 5x4 的交叉开关,连接 4 个共享 Cache 模块(作为主设备),两个 DDR2/3 内存控制器、低速高速 I/0 (包括 PCI、LPC、SPI 等)以及芯片内部的配置寄存器模块。

上述两级互连开关都采用读写分离的数据通道,数据通道宽度为 128bit,工作在与处理器核相同的频率,用以提供高速的片上数据传输。



#### 2 系统配置与控制

#### 2.1 芯片工作模式

根据组成系统的结构, 龙芯 3A3000/3B3000 主要包括三种工作模式:

- 单芯片模式。系统只包含1片龙芯3A3000/3B3000,是一个对称多处理器系统(SMP);
- 多芯片互连模式。系统中包含 2 片或 4 片龙芯 3A3000/3B3000,通过龙芯 3A3000/3B3000 的 HT 端口进行互连,是一个非均匀访存多处理器系统(CC-NUMA);
- 大规模互连模式。通过专用扩展桥片进行多芯片大规模扩展互连,构成大规模非均匀访存多处理器系统(CC-NUMA)。

#### 2.2 控制引脚说明

主要控制引脚包括 DO\_TEST、ICCC\_EN、NODE\_ID[1:0]、CLKSEL[15:0]、PCI\_CONFIG。

表 2-1 控制引脚说明

| 1次 Z- 1 计工作计划 10分 |                 |                                   |                                        |  |
|-------------------|-----------------|-----------------------------------|----------------------------------------|--|
| 信号                | 上下拉             | 作用                                |                                        |  |
| DO_TEST           | 上拉              | 1'b1 表示功能模式<br>1'b0 表示测试模式        |                                        |  |
| ICCC_EN           | 下拉              | 1'b1 表示多芯片一致性互联模式<br>1'b0 表示单芯片模式 |                                        |  |
| NODE_ID[1:0]      |                 | 在多芯片一致性互连模式下表示处理器号                |                                        |  |
| CLKSEL[15:0]      | 信号<br>CLKSEL[15 |                                   | ### ### ### ### ### ### ### ### ### ## |  |

#### 龙芯 3A3000/3B3000 处理器用户手册 • 上册

| T                                                                    |                               |                                           |  |  |
|----------------------------------------------------------------------|-------------------------------|-------------------------------------------|--|--|
|                                                                      |                               | 2'b00 表示 HT 控制器时钟为 PHY 时钟 8 分频            |  |  |
|                                                                      | OLKSEL [44,40]                | 2'b01 表示 HT 控制器时钟为 PHY 时钟 4 分频            |  |  |
|                                                                      | CLKSEL[11:10]                 | 2'b10表示 HT 控制器时钟为 PHY 时钟 2 分频             |  |  |
|                                                                      |                               | 2'b11 表示 HT 控制器时钟为 SYSCLOCK               |  |  |
|                                                                      | 注: CLKSEL[13:10]:             | == 4'b1111 时,HT 控制器时钟为 bypass 模式,直接使用     |  |  |
|                                                                      | 外部输入 100MHz 参                 | 外部输入 100MHz 参考时钟                          |  |  |
|                                                                      |                               | MEM 时钟控制                                  |  |  |
|                                                                      | 信号                            | 作用                                        |  |  |
|                                                                      |                               | 5'b11111 表示 MEM 时钟直接采用 memclk             |  |  |
|                                                                      |                               | 5'b01111 表示 MEM 时钟采用软件设置,设置方法见            |  |  |
|                                                                      |                               | 2.6 节说明                                   |  |  |
|                                                                      |                               | 其它情况下 MEM 时钟为                             |  |  |
|                                                                      | CLKSEL[9:5]                   | memclk*(clksel[8:5]+30)/(clksel[9]+3)     |  |  |
|                                                                      |                               | 注:                                        |  |  |
|                                                                      |                               | memclk*(clksel[8:5]+30)必须为 1.2GHz~3.2GHz  |  |  |
|                                                                      |                               | memclk 为输入参考时钟,必须为 20~40MHz               |  |  |
|                                                                      |                               | CORE 时钟控制                                 |  |  |
|                                                                      | 信号                            | 作用                                        |  |  |
|                                                                      |                               | 5'b11111 表示 CORE 时钟直接采用 sysclk            |  |  |
|                                                                      |                               | 5'b011xx 表示 CORE 时钟采用软件设置,设置方法见           |  |  |
|                                                                      |                               | 2.6 节说明。                                  |  |  |
|                                                                      |                               | 5'b01111 为正常工作模式,其它情况为调试模式                |  |  |
|                                                                      |                               | 5'b0110x 表示处理器接口为异步模式                     |  |  |
|                                                                      | CLKSEL[4:0]                   | 5'b011x0 表示延迟调试控制模式                       |  |  |
|                                                                      |                               | 其它情况下 CORE 时钟为                            |  |  |
|                                                                      |                               | sysclk*(clksel[3:0]+30)/(clksel[4]+1)     |  |  |
|                                                                      |                               | 注:                                        |  |  |
|                                                                      |                               | sysclk*(clksel[3:0]+30) 必须为 1.2GHz~3.2GHz |  |  |
|                                                                      |                               | sysclk 为输入参考时钟,必须为 20~40MHz               |  |  |
|                                                                      | IO 配置控制                       | 型型以及 4.0 样子                               |  |  |
| 7     HT 总线冷启动强制设为 1.0 模式       PCI_CONFIG[7:0]     6:4     需设置为 000 |                               |                                           |  |  |
|                                                                      | <ol> <li>PCI 主设备模式</li> </ol> |                                           |  |  |
|                                                                      |                               |                                           |  |  |



|  | 2 | 需设置为0       |
|--|---|-------------|
|  | 1 | 使用外部 PCI 仲裁 |
|  | 0 | 使用 SPI 启动功能 |

#### 2.3 Cache — 致性

龙芯 3A3000/3B3000 由硬件维护处理器、以及通过 HT 端口接入的 I/O 之间的 Cache 一致性,但硬件不维护通过 PCI 接入到系统中的 I/O 设备的 Cache 一致性。在驱动程序开发时,对通过 PCI 接入的设备进行 DMA(Direct Memory Access)传输时,需要由软件进行 Cache 一致性维护。

#### 2.4 系统节点级的物理地址空间分布

龙芯 3 号系列处理器的系统物理地址分布采用全局可访问的层次化寻址设计,以保证系统开发的扩展兼容。整个系统的物理地址宽度为 48 位。按照地址的高 4 位,整个地址空间被均匀分布到 16 个结点上,即每个结点分配 44 位地址空间。

龙芯 3A3000/3B3000 处理器可以直接采用 4 芯片直连构建 CC-NUMA 系统,每个芯片的处理器号由引脚 NODEID 决定,每个芯片的地址空间分布如下:

| 芯片节点号(NODEID) | 地址[47:44]位 | 起始地址             | 结束地址             |
|---------------|------------|------------------|------------------|
| 0             | 0          | 0x0000_0000_0000 | 0x0FFF_FFFF_FFF  |
| 1             | 1          | 0x1000_0000_0000 | 0x1FFF_FFFF_FFF  |
| 2             | 2          | 0x2000_0000_0000 | 0x2FFF_FFFF_FFFF |
| 3             | 3          | 0x3000_0000_0000 | 0x3FFF_FFFF_FFF  |

表 2-2 节点级的系统全局地址分布

龙芯 3A3000/3B3000 采用单节点 4 核配置,因此龙芯 3A3000/3B3000 芯片集成的 DDR 内存控制器、HT 总线、PCI 总线的对应地址都包含在从 0x0 (含)至 0x1000\_0000\_0000 (不含)的 44 位地在每个节点的内部,44 位地址空间又进一步均匀分布给结点内连接的可能最多 8 个设备。其中低 43 位地址由 4 个共享 Cache 模块所拥有,高 43 位地址则进一步按地址的[43:42]位分布给连接在 4 个方向端口的设备上。根据芯片和系统结构配置的不同,如果某端口上没有连接从设备,则对应的地址空间是保留地址空间,不允许访问。



龙芯 3A3000/3B3000 芯片内部一级交叉开关的地址空间对应的各个从设备端如下:

| 设备       | 地址[43:41]位 | 节点内起始地址         | 节点结束地址          |
|----------|------------|-----------------|-----------------|
| 共享 Cache | 0,1,2,3    | 0x000_0000_0000 | 0x7FF_FFFF_FFFF |
| HT0 控制器  | 6          | 0xC00_0000_0000 | 0xDFF_FFFF_FFF  |
| HT1 控制器  | 7          | 0xE00_0000_0000 | 0xFFF_FFFF_FFF  |

表 2-3 节点内的地址分布

不同于方向端口的映射关系, 龙芯 3A3000/3B3000 可以根据实际应用的访问行为, 来决定共享 Cache 的交叉寻址方式。节点内的 4 个共享 Cache 模块一共对应 43 位地址空间,而每个模块所对应的地址空间根据地址位的某两位选择位确定,并可以通过软件进行动态配置修改。系统中设置了名为 SCID\_SEL 的配置寄存器来确定地址选择位,如下表所示。在缺省情况下采用[7:6]地位散列的方式进行分布,即地址[7:6]两位决定对应的共享 Cache 编号。该寄存器地址 0x3FF00400。

| SCID_SEL | 地址位选择 | SCID_SEL | 地址位选择 |
|----------|-------|----------|-------|
| 4'h0     | 7: 6  | 4'h8     | 23:22 |
| 4'h1     | 9: 8  | 4'h9     | 25:24 |
| 4'h2     | 11:10 | 4'ha     | 27:26 |
| 4'h3     | 13:12 | 4'hb     | 29:28 |
| 4'h4     | 15:14 | 4'hc     | 31:30 |
| 4'h5     | 17:16 | 4'hd     | 33:32 |
| 4'h6     | 19:18 | 4'he     | 35:34 |
| 4'h7     | 21:20 | 4'hf     | 37:36 |

表 2-4 节点内的地址分布

#### 2.5 节点内的物理地址空间分布

龙芯 3A3000/3B3000 处理器每个节点的内部 44 位物理地址的默认分布如下表所示:

 起始地址
 结束地址
 名称
 说明

 0x0000\_0000\_0000
 0x0000\_0FFF\_FFFF
 内存
 需要使用二级交叉开关进行映射

 0x0000\_1000\_0000
 0x0000\_1FFF\_FFFF
 低速 IO
 需要使用二级交叉开关进行映射

表 2-2 节点内 44 位物理地址分布



| 0x2000_0000_0000 | 0x2FFF_FFFF_FFFF | 2 | 2 |
|------------------|------------------|---|---|
| 0x3000_0000_0000 | 0x3FFF_FFFF_FFFF | 3 | 3 |

龙芯 3A3000/3B3000 采用单节点 4 核配置,因此龙芯 3A3000/3B3000 芯片集成的 DDR

#### 2.6 地址路由分布与配置

龙芯 3A3000/3B3000 的路由主要通过系统的两级交叉开关实现。一级交叉开关可以对每个 Master 端口接收到的请求进行路由配置,每个 Master 端口都拥有 8 个地址窗口,可以完成 8 个地址窗口的目标路由选择。每个地址窗口由 BASE、MASK 和 MMAP 三个 64 位寄存器组成,BASE 以 K 字节对齐;MASK 采用类似网络掩码高位为 1 的格式;MMAP 的低三位表示对应目标 S1ave 端口的编号,MMAP[4]表示允许取指,MMAP [5]表示允许块读,MMAP [6]表示允许对 Scache 的交错访问使能,MMAP [7]表示窗口使能。

表 2-5 MMAP 字段对应的该空间访问属性

| [7]  | [6]                                    | [5]  | [4]  |
|------|----------------------------------------|------|------|
| 窗口使能 | 允许对 SCACHE 进行交错访问,当 Slave 号为 0 时有效,按照上 | 允许块读 | 允许取指 |
|      | 一节 SCID_SEL 的配置对命中窗口地址的请求进行路由          |      |      |

窗口命中公式: (IN ADDR & MASK) == BASE

由于龙芯 3 号缺省采用固定路由,在上电启动时,配置窗口都处于关闭状态,使用时需要系统软件对其进行使能配置。

地址窗口转换寄存器如下表所示。

表 2-6 一级交叉开关地址窗口寄存器表

| 地址          | 寄存器             | 地址          | 寄存器             |
|-------------|-----------------|-------------|-----------------|
| 0x3ff0_2000 | CORE0_WIN0_BASE | 0x3ff0_2100 | CORE1_WIN0_BASE |
| 0x3ff0_2008 | CORE0_WIN1_BASE | 0x3ff0_2108 | CORE1_WIN1_BASE |
| 0x3ff0_2010 | CORE0_WIN2_BASE | 0x3ff0_2110 | CORE1_WIN2_BASE |
| 0x3ff0_2018 | CORE0_WIN3_BASE | 0x3ff0_2118 | CORE1_WIN3_BASE |
| 0x3ff0_2020 | CORE0_WIN4_BASE | 0x3ff0_2120 | CORE1_WIN4_BASE |
| 0x3ff0_2028 | CORE0_WIN5_BASE | 0x3ff0_2128 | CORE1_WIN5_BASE |
| 0x3ff0_2030 | CORE0_WIN6_BASE | 0x3ff0_2130 | CORE1_WIN6_BASE |
| 0x3ff0_2038 | CORE0_WIN7_BASE | 0x3ff0_2138 | CORE1_WIN7_BASE |
| 0x3ff0_2040 | CORE0_WIN0_MASK | 0x3ff0_2140 | CORE1_WIN0_MASK |
| 0x3ff0_2048 | CORE0_WIN1_MASK | 0x3ff0_2148 | CORE1_WIN1_MASK |



| 0x3ff0_2050 | CORE0_WIN2_MASK | 0x3ff0_2150 | CORE1_WIN2_MASK |
|-------------|-----------------|-------------|-----------------|
| 0x3ff0_2058 | CORE0_WIN3_MASK | 0x3ff0_2158 | CORE1_WIN3_MASK |
| 0x3ff0_2060 | CORE0_WIN4_MASK | 0x3ff0_2160 | CORE1_WIN4_MASK |
| 0x3ff0_2068 | CORE0_WIN5_MASK | 0x3ff0_2168 | CORE1_WIN5_MASK |
| 0x3ff0_2070 | CORE0_WIN6_MASK | 0x3ff0_2170 | CORE1_WIN6_MASK |
| 0x3ff0_2078 | CORE0_WIN7_MASK | 0x3ff0_2178 | CORE1_WIN7_MASK |
| 0x3ff0_2080 | CORE0_WIN0_MMAP | 0x3ff0_2180 | CORE1_WIN0_MMAP |
| 0x3ff0_2088 | CORE0_WIN1_MMAP | 0x3ff0_2188 | CORE1_WIN1_MMAP |
| 0x3ff0_2090 | CORE0_WIN2_MMAP | 0x3ff0_2190 | CORE1_WIN2_MMAP |
| 0x3ff0_2098 | CORE0_WIN3_MMAP | 0x3ff0_2198 | CORE1_WIN3_MMAP |
| 0x3ff0_20a0 | CORE0_WIN4_MMAP | 0x3ff0_21a0 | CORE1_WIN4_MMAP |
| 0x3ff0_20a8 | CORE0_WIN5_MMAP | 0x3ff0_21a8 | CORE1_WIN5_MMAP |
| 0x3ff0_20b0 | CORE0_WIN6_MMAP | 0x3ff0_21b0 | CORE1_WIN6_MMAP |
| 0x3ff0_20b8 | CORE0_WIN7_MMAP | 0x3ff0_21b8 | CORE1_WIN7_MMAP |
|             |                 |             |                 |
| 0x3ff0_2200 | CORE2_WIN0_BASE | 0x3ff0_2300 | CORE3_WIN0_BASE |
| 0x3ff0_2208 | CORE2_WIN1_BASE | 0x3ff0_2308 | CORE3_WIN1_BASE |
| 0x3ff0_2210 | CORE2_WIN2_BASE | 0x3ff0_2310 | CORE3_WIN2_BASE |
| 0x3ff0_2218 | CORE2_WIN3_BASE | 0x3ff0_2318 | CORE3_WIN3_BASE |
| 0x3ff0_2220 | CORE2_WIN4_BASE | 0x3ff0_2320 | CORE3_WIN4_BASE |
| 0x3ff0_2228 | CORE2_WIN5_BASE | 0x3ff0_2328 | CORE3_WIN5_BASE |
| 0x3ff0_2230 | CORE2_WIN6_BASE | 0x3ff0_2330 | CORE3_WIN6_BASE |
| 0x3ff0_2238 | CORE2_WIN7_BASE | 0x3ff0_2338 | CORE3_WIN7_BASE |
| 0x3ff0_2240 | CORE2_WIN0_MASK | 0x3ff0_2340 | CORE3_WIN0_MASK |
| 0x3ff0_2248 | CORE2_WIN1_MASK | 0x3ff0_2348 | CORE3_WIN1_MASK |
| 0x3ff0_2250 | CORE2_WIN2_MASK | 0x3ff0_2350 | CORE3_WIN2_MASK |
| 0x3ff0_2258 | CORE2_WIN3_MASK | 0x3ff0_2358 | CORE3_WIN3_MASK |
| 0x3ff0_2260 | CORE2_WIN4_MASK | 0x3ff0_2360 | CORE3_WIN4_MASK |
| 0x3ff0_2268 | CORE2_WIN5_MASK | 0x3ff0_2368 | CORE3_WIN5_MASK |
| 0x3ff0_2270 | CORE2_WIN6_MASK | 0x3ff0_2370 | CORE3_WIN6_MASK |
| 0x3ff0_2278 | CORE2_WIN7_MASK | 0x3ff0_2378 | CORE3_WIN7_MASK |
| 0x3ff0_2280 | CORE2_WIN0_MMAP | 0x3ff0_2380 | CORE3_WIN0_MMAP |



| 0x3ff0_2288 | CORE2_WIN1_MMAP | 0x3ff0_2388 | CORE3_WIN1_MMAP |
|-------------|-----------------|-------------|-----------------|
| 0x3ff0_2290 | CORE2_WIN2_MMAP | 0x3ff0_2390 | CORE3_WIN2_MMAP |
| 0x3ff0_2298 | CORE2_WIN3_MMAP | 0x3ff0_2398 | CORE3_WIN3_MMAP |
| 0x3ff0_22a0 | CORE2_WIN4_MMAP | 0x3ff0_23a0 | CORE3_WIN4_MMAP |
| 0x3ff0_22a8 | CORE2_WIN5_MMAP | 0x3ff0_23a8 | CORE3_WIN5_MMAP |
| 0x3ff0_22b0 | CORE2_WIN6_MMAP | 0x3ff0_23b0 | CORE3_WIN6_MMAP |
| 0x3ff0_22b8 | CORE2_WIN7_MMAP | 0x3ff0_23b8 | CORE3_WIN7_MMAP |
|             |                 |             |                 |
| 0x3ff0_2600 | HT0_WIN0_BASE   | 0x3ff0_2700 | HT1_WIN0_BASE   |
| 0x3ff0_2608 | HT0_WIN1_BASE   | 0x3ff0_2708 | HT1_WIN1_BASE   |
| 0x3ff0_2610 | HT0_WIN2_BASE   | 0x3ff0_2710 | HT1_WIN2_BASE   |
| 0x3ff0_2618 | HT0_WIN3_BASE   | 0x3ff0_2718 | HT1_WIN3_BASE   |
| 0x3ff0_2620 | HT0_WIN4_BASE   | 0x3ff0_2720 | HT1_WIN4_BASE   |
| 0x3ff0_2628 | HT0_WIN5_BASE   | 0x3ff0_2728 | HT1_WIN5_BASE   |
| 0x3ff0_2630 | HT0_WIN6_BASE   | 0x3ff0_2730 | HT1_WIN6_BASE   |
| 0x3ff0_2638 | HT0_WIN7_BASE   | 0x3ff0_2738 | HT1_WIN7_BASE   |
| 0x3ff0_2640 | HT0_WIN0_MASK   | 0x3ff0_2740 | HT1_WIN0_MASK   |
| 0x3ff0_2648 | HT0_WIN1_MASK   | 0x3ff0_2748 | HT1_WIN1_MASK   |
| 0x3ff0_2650 | HT0_WIN2_MASK   | 0x3ff0_2750 | HT1_WIN2_MASK   |
| 0x3ff0_2658 | HT0_WIN3_MASK   | 0x3ff0_2758 | HT1_WIN3_MASK   |
| 0x3ff0_2660 | HT0_WIN4_MASK   | 0x3ff0_2760 | HT1_WIN4_MASK   |
| 0x3ff0_2668 | HT0_WIN5_MASK   | 0x3ff0_2768 | HT1_WIN5_MASK   |
| 0x3ff0_2670 | HT0_WIN6_MASK   | 0x3ff0_2770 | HT1_WIN6_MASK   |
| 0x3ff0_2678 | HT0_WIN7_MASK   | 0x3ff0_2778 | HT1_WIN7_MASK   |
| 0x3ff0_2680 | HT0_WIN0_MMAP   | 0x3ff0_2780 | HT1_WIN0_MMAP   |
| 0x3ff0_2688 | HT0_WIN1_MMAP   | 0x3ff0_2788 | HT1_WIN1_MMAP   |
| 0x3ff0_2690 | HT0_WIN2_MMAP   | 0x3ff0_2790 | HT1_WIN2_MMAP   |
| 0x3ff0_2698 | HT0_WIN3_MMAP   | 0x3ff0_2798 | HT1_WIN3_MMAP   |
| 0x3ff0_26a0 | HT0_WIN4_MMAP   | 0x3ff0_27a0 | HT1_WIN4_MMAP   |
| 0x3ff0_26a8 | HT0_WIN5_MMAP   | 0x3ff0_27a8 | HT1_WIN5_MMAP   |
| 0x3ff0_26b0 | HT0_WIN6_MMAP   | 0x3ff0_27b0 | HT1_WIN6_MMAP   |
| 0x3ff0_26b8 | HT0_WIN7_MMAP   | 0x3ff0_27b8 | HT1_WIN7_MMAP   |



在龙芯 3 号的二级 XBAR 中有配置寄存器地址空间、DDR2 地址空间、以及 PCI 地址空间 共三个 IP 相关的地址空间。地址窗口是供 CPU 和 PCI-DMA 两个具有主设备功能的 IP 进行路由选择和地址转换而设置的。CPU 和 PCI-DMA 两者都拥有 8 个地址窗口,可以完成目标地址空间的选择以及从源地址空间到目标地址空间的转换。

每个地址窗口由 BASE、MASK 和 MMAP 三个 64 位寄存器组成,BASE 以 K 字节对齐,MASK 采用类似网络掩码高位为 1 的格式,MMAP 中包含转换后地址、路由选择及使能控制等位,如下表所示:

| [63: 48] | [47: 10] | [7: 4] | [3: 0] |
|----------|----------|--------|--------|
| 交错选择位    | 转换后地址    | 窗口使能   | 从设备号   |

其中,从设备号对应的设备如下表所示:

表 2-7 二级 XBAR 处,从设备号与所述模块的对应关系

| 从设备号 | 缺省值               |
|------|-------------------|
| 0    | 0 号 DDR2/3 控制器    |
| 1    | 1 号 DDR2/3 控制器    |
| 2    | 低速 I/O(PCI,LPC 等) |
| 3    | 配置寄存器             |

窗口使能位的含义如下表所示:

表 2-8 MMAP 字段对应的该空间访问属性

| [7]  | [6]                               | [5]  | [4]  |
|------|-----------------------------------|------|------|
| 窗口使能 | 允许对 DDR 进行交错访问,当从设备号为 0 时有效,按照"交错 | 允许块读 | 允许取指 |
|      | 选择位"的配置对命中窗口地址的请求进行路由。要求交错使能位     |      |      |
|      | 大于 10                             |      |      |

需要注意的是,一级 XBAR 的窗口配置不能对 Cache 一致性的请求进行地址转换,否则在 SCache 处的地址会与处理器一级 Cache 处的地址不一致,导致 Cache 一致性的维护错误。

窗口命中公式: (IN ADDR & MASK) == BASE

新地址换算公式: OUT\_ADDR = (IN\_ADDR & ~MASK) | {MMAP[63:10], 10' h0} 地址窗口转换寄存器如下表:

表 2-9 二级 XBAR 地址窗口转换寄存器表

| 地址 | 寄存器 | 描述 | 缺省值 |
|----|-----|----|-----|
|----|-----|----|-----|



| 3ff0 0000 | CPU_WIN0_BASE | CPU 窗口 0 的基地址  | 0x0                   |
|-----------|---------------|----------------|-----------------------|
| 3ff0 0008 | CPU_WIN1_BASE | CPU 窗口 1 的基地址  | 0x1000_0000           |
| 3ff0 0010 | CPU_WIN2_BASE | CPU 窗口 2 的基地址  | 0x0                   |
| 3ff0 0018 | CPU_WIN3_BASE | CPU 窗口 3 的基地址  | 0x0                   |
| 3ff0 0020 | CPU_WIN4_BASE | CPU 窗口 4 的基地址  | 0x0                   |
| 3ff0 0028 | CPU_WIN5_BASE | CPU 窗口 5 的基地址  | 0x0                   |
| 3ff0 0030 | CPU_WIN6_BASE | CPU 窗口 6 的基地址  | 0x0                   |
| 3ff0 0038 | CPU_WIN7_BASE | CPU 窗口 7 的基地址  | 0x0                   |
| 3ff0 0040 | CPU_WIN0_MASK | CPU 窗口 0 的掩码   | 0xffff_ffff_f000_0000 |
| 3ff0 0048 | CPU_WIN1_MASK | CPU 窗口 1 的掩码   | 0xffff_ffff_f000_0000 |
| 3ff0 0050 | CPU_WIN2_MASK | CPU 窗口 2 的掩码   | 0x0                   |
| 3ff0 0058 | CPU_WIN3_MASK | CPU 窗口 3 的掩码   | 0x0                   |
| 3ff0 0060 | CPU_WIN4_MASK | CPU 窗口 4 的掩码   | 0x0                   |
| 3ff0 0068 | CPU_WIN5_MASK | CPU 窗口 5 的掩码   | 0x0                   |
| 3ff0 0070 | CPU_WIN6_MASK | CPU 窗口 6 的掩码   | 0x0                   |
| 3ff0 0078 | CPU_WIN7_MASK | CPU 窗口 7 的掩码   | 0x0                   |
| 3ff0 0080 | CPU_WIN0_MMAP | CPU 窗口 0 的新基地址 | 0xf0                  |
| 3ff0 0088 | CPU_WIN1_MMAP | CPU 窗口 1 的新基地址 | 0x1000_00f2           |
| 3ff0 0090 | CPU_WIN2_MMAP | CPU 窗口 2 的新基地址 | 0                     |
| 3ff0 0098 | CPU_WIN3_MMAP | CPU 窗口 3 的新基地址 | 0                     |
| 3ff0 00a0 | CPU_WIN4_MMAP | CPU 窗口 4 的新基地址 | 0x0                   |
| 3ff0 00a8 | CPU_WIN5_MMAP | CPU 窗口 5 的新基地址 | 0x0                   |
| 3ff0 00b0 | CPU_WIN6_MMAP | CPU 窗口 6 的新基地址 | 0                     |
| 3ff0 00b8 | CPU_WIN7_MMAP | CPU 窗口 7 的新基地址 | 0                     |
| 3ff0 0100 | PCI_WIN0_BASE | PCI 窗口 0 的基地址  | 0x8000_0000           |
| 3ff0 0108 | PCI_WIN1_BASE | PCI 窗口 1 的基地址  | 0x0                   |
| 3ff0 0110 | PCI_WIN2_BASE | PCI 窗口 2 的基地址  | 0x0                   |
|           | l .           | 1              |                       |



| 3ff0 0118 | PCI_WIN3_BASE | PCI 窗口 3 的基地址  | 0x0                   |
|-----------|---------------|----------------|-----------------------|
| 3ff0 0120 | PCI_WIN4_BASE | PCI 窗口 4 的基地址  | 0x0                   |
| 3ff0 0128 | PCI_WIN5_BASE | PCI 窗口 5 的基地址  | 0x0                   |
| 3ff0 0130 | PCI_WIN6_BASE | PCI 窗口 6 的基地址  | 0x0                   |
| 3ff0 0138 | PCI_WIN7_BASE | PCI 窗口 7 的基地址  | 0x0                   |
| 3ff0 0140 | PCI_WIN0_MASK | PCI 窗口 0 的掩码   | 0xffff_ffff_8000_0000 |
| 3ff0 0148 | PCI_WIN1_MASK | PCI 窗口 1 的掩码   | 0x0                   |
| 3ff0 0150 | PCI_WIN2_MASK | PCI 窗口 2 的掩码   | 0x0                   |
| 3ff0 0158 | PCI_WIN3_MASK | PCI 窗口 3 的掩码   | 0x0                   |
| 3ff0 0160 | PCI_WIN4_MASK | PCI 窗口 4 的掩码   | 0x0                   |
| 3ff0 0168 | PCI_WIN5_MASK | PCI 窗口 5 的掩码   | 0x0                   |
| 3ff0 0170 | PCI_WIN6_MASK | PCI 窗口 6 的掩码   | 0x0                   |
| 3ff0 0178 | PCI_WIN7_MASK | PCI 窗口 7 的掩码   | 0x0                   |
| 3ff0 0180 | PCI_WIN0_MMAP | PCI 窗口 0 的新基地址 | 0xf0                  |
| 3ff0 0188 | PCI_WIN1_MMAP | PCI 窗口 1 的新基地址 | 0x0                   |
| 3ff0 0190 | PCI_WIN2_MMAP | PCI 窗口 2 的新基地址 | 0                     |
| 3ff0 0198 | PCI_WIN3_MMAP | PCI 窗口 3 的新基地址 | 0                     |
| 3ff0 01a0 | PCI_WIN4_MMAP | PCI 窗口 4 的新基地址 | 0x0                   |
| 3ff0 01a8 | PCI_WIN5_MMAP | PCI 窗口 5 的新基地址 | 0x0                   |
| 3ff0 01b0 | PCI_WIN6_MMAP | PCI 窗口 6 的新基地址 | 0                     |
| 3ff0 01b8 | PCI_WIN7_MMAP | PCI 窗口 7 的新基地址 | 0                     |

此外,当出现由于 CPU 猜测执行引起对非法地址的读访问时,8 个地址窗口都不命中,由配置寄存器模块返回全 0 的数据给 CPU,以防止 CPU 死等。



表 2-10 二级 XBAR 缺省地址配置

| 基地址                   | 高位                    | 所有者           |
|-----------------------|-----------------------|---------------|
| 0x0000_0000_0000_0000 | 0x0000_0000_0FFF_FFFF | 0号 DDR 控制器    |
| 0x0000_0000_1000_0000 | 0x0000_0000_1FFF_FFFF | 低速 I/O(PCI 等) |

#### 2.7 芯片配置及采样寄存器

龙芯 3A3000/3B3000 中的芯片配置寄存器 (Chip\_config) 及芯片采样寄存器 (Chip\_sample)提供了对芯片的配置进行读写的机制。

表 2-11 芯片配置寄存器(物理地址 0x1fe00180)

| 位域     | 字段名                        | 访问 | 复位值    | 描述                |
|--------|----------------------------|----|--------|-------------------|
| 3:0    | -                          | RW | 4'b7   | 保留                |
| 4      | MC0_disable_ddr2_confspace | RW | 1'b0   | 是否禁用 MC0 DDR 配置空间 |
| 5      | -                          | RW | 1'b0   | 保留                |
| 6      | -                          | RW | 1'b0   | 保留                |
| 7      | MC0_ddr2_resetn            | RW | 1'b1   | MC0 软件复位(低有效)     |
| 8      | MC0_clken                  | RW | 1'b1   | 是否使能 MC0          |
| 9      | MC1_disable_ddr2_confspace | RW | 1'b0   | 是否禁用 MC1 DDR 配置空间 |
| 10     | -                          | RW | 1'b0   | 保留                |
| 11     | -                          | RW | 1'b0   | 保留                |
| 12     | MC1_ddr2_resetn            | RW | 1'b1   | MC1 软件复位(低有效)     |
| 13     | MC1_clken                  | RW | 1'b1   | 是否使能 MC1          |
| 26:24  | HT0_freq_scale_ctrl        | RW | 3'b111 | HT 控制器 0 分频       |
| 27     | HT0_clken                  | RW | 1'b1   | 是否使能 HTO          |
| 30:28  | HT1_freq_scale_ctrl        | RW | 3'b111 | HT 控制器 1 分频       |
| 31     | HT1_clken                  | RW | 1'b1   | 是否使能 HT1          |
| 42:40  | Node0_freq_ ctrl           | RW | 3'b111 | 节点 0 分频           |
| 43     | -                          | RW | 1'b1   |                   |
| 46:44  | Node1_freq_ ctrl           | RW | 3'b111 | 节点 1 分频           |
| 47     | -                          | RW | 1'b1   |                   |
| 63:56  | Cpu_version                | R  | 2'h39  | CPU 版本            |
| 95:64  |                            |    |        | (空)               |
| 127:96 | Pad1v8_ctrl                | RW | 6'h780 | 1v8 pad 控制        |
| 其它     |                            | R  |        | 保留                |

表 2-12 芯片采样寄存器 (物理地址 0x1fe00190)



| 位域      | 字段名              | 访问 | 复位值                 | 描述                  |
|---------|------------------|----|---------------------|---------------------|
| 31:0    | Compcode_core    | R  |                     |                     |
| 47:32   | Sys_clkseli      | R  |                     | 板上倍频设置              |
| 55:48   | Bad_ip_core      | R  |                     | core7-core0 是否坏     |
| 57:56   | Bad_ip_ddr       | R  |                     | 2 个 DDR 控制器是否坏      |
| 61:60   | Bad_ip_ht        | R  |                     | 2 个 HT 控制器是否坏       |
| 83:80   | Compcode_ok      | R  |                     |                     |
| 88      | Thsens0_overflow | R  |                     | 温度传感器 0 上溢(超过 125℃) |
| 89      | Thsens1_overflow | R  |                     | 温度传感器 1 上溢(超过 125℃) |
|         | Thsens0_out      | R  |                     | 温度传感器 0 摄氏温度        |
| 444.00  |                  |    | 结 点 温 度 =Thens0_out |                     |
| 111:96  |                  |    |                     | *731/0x4000 - 273   |
|         |                  |    | 温度范围 -40度 - 125度    |                     |
|         | Thsens1_out      |    |                     | 温度传感器 1 摄氏温度        |
|         |                  | _  |                     | 结 点 温 度 =Thens1_out |
| 127:112 |                  | R  |                     | *731/0x4000 - 273   |
|         |                  |    |                     | 温度范围 -40度 - 125度    |
| 其它      |                  | R  |                     | 保留                  |

以下几组软件倍频设置寄存器用于设置在 CLKSEL 配置为软件控制模式(参考 2.2 节的 CLKSEL 设置方法)下,各个时钟的工作频率。其中,MEM CLOCK 配置对应内存控制器及总线时钟频率; CORE CLOCK 对应处理器核、片上网络及高速共享缓存的时钟频率; HT CLOCK 对应 HT 控制器时钟频率。

每个时钟配置一般有两个参数, DIV\_LOOPC、DIV\_OUT。最终的时钟频率为(参考时钟\* DIV LOOPC) / DIV OUT。

对于 HT CLOCK 的配置方法比较特殊,请参考 10.5.28 节的具体配置方法。

软件控制模式下,默认对应的时钟频率为外部参考时钟的频率(对于 CORE CLOCK,为引脚 SYS\_CLK 的对应频率;对于 MEM CLOCK,为引脚 MEM\_CLK 对应频率),需要在处理器启动过程中对时钟进行软件设置。各个时钟设置的过程应该按照以下方式:

- 1) 设置寄存器中除了 SEL\_PLL\_\*及 SOFT\_SET\_PLL 之外的其它寄存器,也即这两个 寄存器在设置的过程中写为 0;
- 2) 其它寄存器值不变,将 SOFT SET PLL 设为 1;
- 3) 等待寄存器中的锁定信号 LOCKED\_\*为 1;
- 4) 将 SEL PLL \*设为 1, 此时对应的时钟频率将切换为软件设置的频率。

3A3000/3B3000中,可以采用两种不同的 PLL

L1 L2

serial mode PLL



表 2-13 芯片结点和处理器核软件倍频设置寄存器(物理地址 0x1fe001b0)

| 位域      | 字段名            | 访问 | 复位值 | 描述                          |
|---------|----------------|----|-----|-----------------------------|
| 0       | SEL_PLL_NODE   | RW | 0x0 | Node 时钟非软件 bypass 整个<br>PLL |
| 1       | SEL_PLL_NODE   | RW | 0x0 | Core 时钟非软件 bypass 整个 PLL    |
| 2       | SOFT_SET_PLL   | RW | 0x0 | 允许软件设置 PLL                  |
| 3       | BYPASS_L1      | RW | 0x0 | Bypass L1 PLL               |
| 15:4    | -              | RW | 0x0 | -                           |
| 16      | LOCKED_L1      | R  | 0x0 | L1 PLL 是否锁定                 |
| 17      | LOCKED_L2      | R  | 0x0 | L2 PLL 是否锁定                 |
| 18:17   | -              | R  | 0x0 | -                           |
| 19      | PD_L1          | RW | 0x0 | 关闭 L1 PLL                   |
| 20      | PD_L2          | RW | 0x0 | 关闭 L2 PLL                   |
| 21      |                |    |     |                             |
| 22      | Serial_mode    | RW | 0x0 | 0: 选用 L1 PLL 作为主时钟          |
|         |                |    |     | 1: 选用 <b>L2</b> PLL 作为主时钟   |
| 23      | Serial_mode3   | RW | 0x0 | 0: 选用 NODE 时钟作为核时钟          |
|         |                |    |     | 1: 选用 CORE 时钟作为核时钟          |
| 25:24   | -              | RW | _   | -                           |
|         | L1_DIV_REFC    | RW | 0x1 | L1 PLL 输入参数                 |
|         | L1_DIV_LOOPC   | RW | 0x1 | L1 PLL 输入参数                 |
| 41      |                |    |     |                             |
|         | L1_DIV_OUT     | RW | 0x1 | L1 PLL 输入参数                 |
|         | L2_DIV_REFC    | RW | 0x1 | L2 PLL 输入参数                 |
| 53:51   |                |    |     |                             |
| 63:54   | L2_DIV_LOOPC   | RW | 0x1 | L2 PLL 输入参数                 |
| 69:64   | L2 DIV OUT     | RW | 0x1 | L2 PLL 输入参数                 |
|         |                |    |     | 必须且仅有一位为 1                  |
| 96      | BBGEN_enable   | RW | 0x0 | 偏压使能                        |
| 97      | BBMUX_first    | RW | 0x0 | 设置为先切换电压模式                  |
| 99:98   | BBMUX_SEL_0    | RW | 0x0 | BBMUX_SEL_0 设置值             |
|         | BBGEN_feedback | RW | 0x0 | 禁用 BBGEN 反馈信号               |
|         | _              |    |     |                             |
| 107:104 | BBGEN_vbbp_val | WO | 0x0 | Vbbp 的设置值                   |
| 111:108 | BBGEN_vbbn_val | WO | 0x0 | Vbbn 的设置值                   |
|         |                |    |     |                             |
| 123:122 | BBMUX_SEL_1    | RW | 0x0 | BBMUX_SEL_1 设置值             |
| 125:124 | BBMUX_SEL_2    | RW | 0x0 | BBMUX_SEL_2 设置值             |



| 127:126 | BBMUX_SEL_3 | RW | 0x0 | BBMUX_SEL_3 设置值 |
|---------|-------------|----|-----|-----------------|
| 其它      | -           | RW |     | 保留              |

注: PLL ouput = (clk\_ref \* div\_loopc) / div\_out。

L1 PLL 的 VCO 频率(上述式中括号内部分)必须在范围 1. 2GHz - 3. 2GHz 之内。该要求对 MEM PLL 和 HT PLL 同样适用。L2 PLL 的 VCO 频率必须在 范围 3. 2GHz - 6. 4GHz 之内。

表 2-14 芯片内存和 HT 时钟软件倍频设置寄存器 (物理地址 0x1fe001c0)

| 位域    | 字段名               | 访问  | 复位值  | 描述                         |
|-------|-------------------|-----|------|----------------------------|
| 0     | SEL _MEM_PLL      | RW  | 0x0  | MEM 时钟非软件 bypass 整个 PLL    |
| 1     | SOFT_SET_MEM_PLL  | RW  | 0x0  | 允许软件设置 MEM PLL             |
| 2     | BYPASS_MEM_PLL    | RW  | 0x0  | Bypass MEM_PLL             |
| 5:3   |                   |     |      |                            |
| 6     | LOCKED_MEM_PLL    | R   | 0x0  | MEM_PLL 是否锁定               |
| 7     | PD_MEM_PLL        | RW  | 0x0  | 关闭 MEM PLL                 |
|       |                   |     |      | MEM PLL 输入参数               |
| 13:8  | MEM_PLL_DIV_REFC  | RW  | 0x1  | 当选用 NODE 时钟(NODE_CLOCK_SEL |
|       |                   |     |      | 为 1) 时,作为分频输入              |
| 23:14 | MEM_PLL_DIV_LOOPC | RW  | 0x41 | MEM PLL 输入参数               |
| 29:24 | MEM_PLL_DIV_OUT   | RW  | 0x0  | MEM PLL 输入参数               |
| 30    | NODE_CLOCK_SEL    | RW  | 0x0  | 0:使用 MEM_PLL 作为 MEM 时钟     |
| 30    | NODE_CLOCK_SEL    | KVV | UXU  | 1: 使用 NODE_CLOCK 作为分频输入    |
| 32    | SEL_HT0_PLL       | RW  | 0x0  | HT0 非软件 bypass PLL         |
| 33    | SOFT_SET_HT0_PLL  | RW  | 0x0  | 允许软件设置 HT0 PLL             |
| 34    | BYPASS_HT0_PLL    | RW  | 0x0  | Bypass HT0_PLL             |
| 35    | LOCKEN_HT0_PLL    | RW  | 0x0  | 允许锁定 HT0 PLL               |
| 37:36 | LOCKC_HT0_PLL     | RW  | 0x0  | 判定 HT0 PLL 是否锁定是采用的相位精度    |
| 38    | LOCKED_HT0_PLL    | R   | 0x0  | HT0_PLL 是否锁定               |
| 45:40 | HT0_DIV_HTCORE    | RW  | 0x1  | HT0 Core PLL 输入参数          |
| 48    | SEL_HT1_PLL       | RW  | 0x0  | HT1 非软件 bypass PLL         |
| 49    | SOFT_SET_HT1_PLL  | RW  | 0x0  | 允许软件设置 HT1 PLL             |
| 50    | BYPASS_HT1_PLL    | RW  | 0x0  | Bypass HT1_PLL             |
| 51    | LOCKEN_HT1_PLL    | RW  | 0x0  | 允许锁定 HT1 PLL               |
| 53:52 | LOCKC_HT1_PLL     | RW  | 0x0  | 判定 HT1 PLL 是否锁定是采用的相位精度    |
| 54    | LOCKED_HT1_PLL    | R   | 0x0  | HT1_PLL 是否锁定               |
| 61:56 | HT1_DIV_HTCORE    | RW  | 0x1  | HT1 Core PLL 输入参数          |
| 其它    |                   | RW  |      | 保留                         |

表 2-15 芯片处理器核软件分频设置寄存器(物理地址 0x1fe001d0)





| 位域    | 字段名            | 访问 | 复位值 | 描述              |
|-------|----------------|----|-----|-----------------|
| 2:0   | core0_freqctrl | RW | 0x7 | 核 0 分频控制值       |
| 3     | core0_en       | RW | 0x1 | 核 0 时钟使能        |
| 6:4   | core1_freqctrl | RW | 0x7 | 核 1 分频控制值       |
| 7     | core1_en       | RW | 0x1 | 核 1 时钟使能        |
| 10:8  | core2_freqctrl | RW | 0x7 | 核 2 分频控制值       |
| 11    | core2_en       | RW | 0x1 | 核2时钟使能          |
| 14:12 | core3_freqctrl | RW | 0x7 | 核 3 分频控制值       |
| 15    | core3_en       | RW | 0x1 | 核 3 时钟使能        |
|       |                |    | 注:  | 软件分频后的时钟频率值等于原来 |
|       |                |    |     | 的(分频控制值+1)/8    |



#### 3 GS464e 处理器核

GS464e 是四发射 64 位的高性能处理器核。该处理器核既可以作为单核面向高端嵌入式应用和桌面应用,也可以作为基本的处理器核构成片内多核系统面向服务器和高性能机应用。在龙芯 3A3000/3B3000 中的多个 GS464 核通过以及共享 Cache 模块通过 AXI 互联网络形成一个分布式共享片上末级 Cache 的多核结构。GS464 的主要特点如下:

- MIPS64 兼容, 支持龙芯扩展指令集;
- 四发射超标量结构,两个定点、两个浮点、两个访存部件;
- 每个浮点部件都支持全流水 64 位/双 32 位浮点乘加运算;
- 访存部件支持 128 位存储访问,虚地址为 64 位,物理地址为 48 位;
- 支持寄存器重命名、动态调度、转移预测等乱序执行技术;
- 64 项全相联外加 8 路组相连 1024 项, 共计 1088 项 TLB, 64 项指令 TLB, 可变页大小:
- 一级指令 Cache 和数据 Cache 大小各为 64KB, 4 路组相联;
- Victim Cache 作为私有二级 Cache, 大小为 256KB, 16 路组相连;
- 支持 Non-blocking 访问及 Load-Speculation 等访存优化技术;
- 支持 Cache 一致性协议,可用于片内多核处理器;
- 指令 Cache 实现奇偶校验,数据 Cache 实现 ECC 校验;
- 支持标准的 EJTAG 调试标准, 方便软硬件调试;
- 标准的 128 位 AXI 接口。

GS464e 的结构如下图所示。GS464e 更多的详细介绍请参考 GS464e 用户手册以及 MIPS64 用户手册。





图 3-1 GS464e 结构图



#### 4 共享 Cache (SCache)

SCache 模块是龙芯 3A3000/3B3000 处理器内部所有处理器核所共享的三级 Cache。 SCache 模块的主要特征包括:

- 采用 128 位 AXI 接口。
- 16 项 Cache 访问队列。
- 关键字优先。
- 接收读失效请求到返回数据最快12拍。
- 通过目录支持 Cache 一致性协议。
- 可用于片上多核结构,也可直接和单处理器 IP 对接。
- 采用 16 路组相联结构。
- 支持 ECC 校验。
- 支持 DMA 一致性读写和预取读。
- 支持 16 种共享 Cache 散列方式。
- 支持按窗口锁共享 Cache。
- 保证读数据返回原子性。

共享 Cache 模块包括共享 Cache 管理模块 scachemanage 及共享 Cache 访问模块 scacheaccess。Scachemanage 模块负责处理器来自处理器和 DMA 的访问请求,而共享 Cache 的 TAG、目录和数据等信息存放在 scacheaccess 模块中。为降低功耗,共享 Cache 的 TAG、目录和数据可以分开访问,共享 Cache 状态位、w 位与 TAG 一起存储,TAG 存放在 TAG RAM中,目录存放在 DIR RAM中,数据存放在 DATA RAM中。失效请求访问共享 Cache,同时读出所有路的 TAG、目录,并根据 TAG 来选出目录,并根据命中情况读取数据。替换请求、重填请求和写回请求只操作一路的 TAG、目录和数据。

为提高一些特定计算任务的性能,共享 Cache 增加了锁机制。落在被锁区域中的共享 Cache 块会被锁住,因而不会被替换出共享 Cache(除非 16 路共享 Cache 中都是被锁住的块)。通过芯片配置寄存器空间可以对共享 Cache 模块内部的四组锁窗口寄存器进行动态配置,但必须保证 16 路共享 Cache 中一定有一路不被锁住。每组窗口的大小可以根据 mask 进行调整,但不能超过整个共享 Cache 大小的 3/4。此外当共享 Cache 收到 DMA 写请求时,如果被写的区域在共享 Cache 中命中且被锁住,那么 DMA 写将直接写入到共享 Cache 而不是内存。



表 4-1 共享 Cache 锁窗口寄存器配置

| 名称           | 地址         | 位域      | 描述        |
|--------------|------------|---------|-----------|
| Slock0_valid | 0x3ff00200 | [63:63] | 0 号锁窗口有效位 |
| Slock0_addr  | 0x3ff00200 | [47:0]  | 0号锁窗口锁地址  |
| Slock0_mask  | 0x3ff00240 | [47:0]  | 0号锁窗口掩码   |
| Slock1_valid | 0x3ff00208 | [63:63] | 1号锁窗口有效位  |
| Slock1_addr  | 0x3ff00208 | [47:0]  | 1号锁窗口锁地址  |
| Slock1_mask  | 0x3ff00248 | [47:0]  | 1号锁窗口掩码   |
| Slock2_valid | 0x3ff00210 | [63:63] | 2号锁窗口有效位  |
| Slock2_addr  | 0x3ff00210 | [47:0]  | 2号锁窗口锁地址  |
| Slock2_mask  | 0x3ff00250 | [47:0]  | 2号锁窗口掩码   |
| Slock3_valid | 0x3ff00218 | [63:63] | 3 号锁窗口有效位 |
| Slock3_addr  | 0x3ff00218 | [47:0]  | 3 号锁窗口锁地址 |
| Slock3_mask  | 0x3ff00258 | [47:0]  | 3 号锁窗口掩码  |

举例来说,当一个地址 addr 使得 slock0\_valid && ((addr & slock0\_mask) == (slock0\_addr & slock0\_mask) )为1时,这个地址就被锁窗口0锁住了。



## 5 矩阵处理加速器

龙芯 3A3000/3B3000 中内置了两个独立于处理器核的矩阵处理加速器,其基本功能是通过软件的配置,实现对存放在内存中矩阵进行从源矩阵到目标矩阵的行列转置或搬移功能。两个加速器分别集成在龙芯 3A3000/3B3000 的两个 HyperTransport 控制器内部,通过一级交叉开关实现对 SCache 及内存的读写。

由于转置前同一 Cache 行的元素顺序在转置后的矩阵中是分散的,为了提高读写效率,需要读入多行数据,使得这些数据可以在转置后的矩阵中以 Cache 行为单位进行写入,因此在模块中设置了一个大小为 32 行的缓存区,实现横向方式写入(从源矩阵读入到缓冲区),纵向读出(由缓冲区写入到目标矩阵)。

矩阵处理的工作过程为先读入 32 行源矩阵数据,再将该 32 行数据写入到目标矩阵,依次下去,直至完成整个矩阵的转置或搬移。矩阵处理加速器还可以根据需要,仅进行预取源矩阵而不写目标矩阵,以此方式来实现对数据进行预取到 SCache 的操作。

转置或搬移涉及的源矩阵可能是位于一个大矩阵中的一个小矩阵,因此,其矩阵地址可能不是完全连续,相邻行之间的地址会有间隔,需要实现更多的编程控制接口。下面表 5-1 到 5-4 说明了矩阵处理涉及到的编程接口。

| 地址         | 名称             | 属性 | 说明                |
|------------|----------------|----|-------------------|
| 0x3ff00600 | src_start_addr | RW | 源矩阵起始地址           |
| 0x3ff00608 | dst_start_addr | RW | 目标矩阵起始地址          |
| 0x3ff00610 | row            | RW | 源矩阵的一行元素个数        |
| 0x3ff00618 | col            | RW | 源矩阵的一列元素个数        |
| 0x3ff00620 | length         | RW | 源矩阵所在大矩阵的行跨度 (字节) |
| 0x3ff00628 | width          | RW | 目标矩阵所在大矩阵的行跨度(字节) |
| 0x3ff00630 | trans_ctrl     | RW | 转置控制寄存器           |
| 0x3ff00638 | trans_status   | RO | 转置状态寄存器           |

表 5-1 矩阵处理编程接口说明



表 5-2 矩阵处理寄存器地址说明

| 地址         | 名称                         |
|------------|----------------------------|
| 0x3ff00600 | 0 号转置模块的 src_start_addr    |
| 0x3ff00608 | 0 号转置模块的 dst_start_addr    |
| 0x3ff00610 | 0 号转置模块的 row               |
| 0x3ff00618 | 0 号转置模块的 col               |
| 0x3ff00620 | 0 号转置模块的 length            |
| 0x3ff00628 | 0 号转置模块的 width             |
| 0x3ff00630 | 0 号转置模块的 trans_ctrl        |
| 0x3ff00638 | 0 号转置模块的 trans_status      |
| 0x3ff00700 | 1 号转置模块的 src_start_addr    |
| 0x3ff00708 | 1 号转置模块的 dst_start_addr    |
| 0x3ff00710 | 1 号转置模块的 src_row_stride    |
| 0x3ff00718 | 1 号转置模块的 src_last_row_addr |
| 0x3ff00720 | 1 号转置模块的 length            |
| 0x3ff00728 | 1 号转置模块的 width             |
| 0x3ff00730 | 1 号转置模块的 trans_ctrl        |
| 0x3ff00738 | 1 号转置模块的 trans_status      |

表 5-3 trans\_ctrl 寄存器说明

| 字段   | 说明                                                              |
|------|-----------------------------------------------------------------|
| 0    | 使能位                                                             |
| 1    | 是否允许写目标矩阵。为0时,转置过程只预取源矩阵,但不写目标矩阵。                               |
| 2    | 源矩阵读取完毕后,是否有效中断。                                                |
| 3    | 目标矩阵写入完毕后,是否有效中断,                                               |
| 74   | Arcmd,读命令内部控制位。当 arcache 为 4'hf 时,必须设为 4'hc。当 arcache 为其它值时无意义。 |
| 118  | Arcache,读命令内部控制位。为 4'hf 时,使用 cache 通路,为 4'h0 时,使用 uncache 通路。其它 |
|      | 值无意义。                                                           |
| 1512 | Awcmd,写命令内部控制位。当 awcache 为 4'hf 时,必须设为 4'hb。当 awcache 为其它值时无意   |
|      | 义。                                                              |
| 1916 | Awcache,写命令内部控制位。为 4'hf 时,使用 cache 通路,为 4'h0 时,使用 uncache 通路。其它 |



|      | 值无意义。                                       |
|------|---------------------------------------------|
| 2120 | 矩阵的元素大小,00表示1个字节,01表示2个字节,10表示4个字节,11表示8个字节 |
| 22   | trans_yes,为 1 表示进行转置;为 0 表示不转置              |

表 5-4 trans\_status 寄存器说明

| 字段 | 说明       |  |  |  |
|----|----------|--|--|--|
| 0  | 源矩阵读取完毕  |  |  |  |
| 1  | 目标矩阵写入完毕 |  |  |  |



## 6 处理器核间中断与通信

龙芯 3A3000/3B3000 为每个处理器核都实现了 8 个核间中断寄存器(IPI)以支持多核 BIOS 启动和操作系统运行时在处理器核之间进行中断和通信,其说明和地址见表 6-1 到表 6-5。

名称 读写权限 描述 IPI\_Status R 32 位状态寄存器,任何一位有被置 1 且对应位使能情况下,处 理器核 INT4 中断线被置位。 IPI Enable RW 32 位使能寄存器,控制对应中断位是否有效 IPI Set W 32 位置位寄存器,往对应的位写 1,则对应的 STATUS 寄存器 位被置1 IPI\_Clear W 32 位清除寄存器,往对应的位写 1,则对应的 STATUS 寄存器 位被清0 MailBox0 RW 缓存寄存器,供启动时传递参数使用,按 64 或者 32 位的 uncache 方式进行访问。 RW 缓存寄存器,供启动时传递参数使用,按64或者32位的 MailBox01 uncache 方式进行访问。 MailBox02 RW 缓存寄存器,供启动时传递参数使用,按 64 或者 32 位的 uncache 方式进行访问。 MailBox03 RW 缓存寄存器,供启动时传递参数使用,按64或者32位的 uncache 方式进行访问。

表 6-1 处理器核间中断相关的寄存器及其功能描述

在龙芯 3A3000/3B3000 与处理器核间中断相关的寄存器及其功能描述如下:

表 6-20 号处理器核核间中断与通信寄存器列表

| 名称               | 地址         | 权限 | 描述                        |
|------------------|------------|----|---------------------------|
| Core0_IPI_Status | 0x3ff01000 | R  | 0 号处理器核的 IPI_Status 寄存器   |
| Core0_IPI_Enalbe | 0x3ff01004 | RW | 0 号处理器核的 IPI_Enalbe 寄存器   |
| Core0_IPI_Set    | 0x3ff01008 | W  | 0 号处理器核的 IPI_Set 寄存器      |
| Core0 _IPI_Clear | 0x3ff0100c | W  | 0 号处理器核的 IPI_Clear 寄存器    |
| Core0_MailBox0   | 0x3ff01020 | RW | 0 号处理器核的 IPI_MailBox0 寄存器 |
| Core0_ MailBox1  | 0x3ff01028 | RW | 0 号处理器核的 IPI_MailBox1 寄存器 |
| Core0_ MailBox2  | 0x3ff01030 | RW | 0 号处理器核的 IPI_MailBox2 寄存器 |
| Core0_ MailBox3  | 0x3ff01038 | RW | 0 号处理器核的 IPI_MailBox3 寄存器 |



| 名称               | 地址         | 权限 | 描述                        |
|------------------|------------|----|---------------------------|
| Core1_IPI_Status | 0x3ff01100 | R  | 1 号处理器核的 IPI_Status 寄存器   |
| Core1_IPI_Enalbe | 0x3ff01104 | RW | 1 号处理器核的 IPI_Enalbe 寄存器   |
| Core1_IPI_Set    | 0x3ff01108 | W  | 1 号处理器核的 IPI_Set 寄存器      |
| Core1 _IPI_Clear | 0x3ff0110c | W  | 1 号处理器核的 IPI_Clear 寄存器    |
| Core1_MailBox0   | 0x3ff01120 | R  | 1 号处理器核的 IPI_MailBox0 寄存器 |
| Core1_ MailBox1  | 0x3ff01128 | RW | 1 号处理器核的 IPI_MailBox1 寄存器 |
| Core1_ MailBox2  | 0x3ff01130 | W  | 1 号处理器核的 IPI_MailBox2 寄存器 |
| Core1_ MailBox3  | 0x3ff01138 | W  | 1 号处理器核的 IPI_MailBox3 寄存器 |

表 6-3 1 号处理器核的核间中断与通信寄存器列表

表 6-42 号处理器核的核间中断与通信寄存器列表

| 名称               | 地址         | 权限 | 描述                        |
|------------------|------------|----|---------------------------|
| Core2_IPI_Status | 0x3ff01200 | R  | 2 号处理器核的 IPI_Status 寄存器   |
| Core2_IPI_Enalbe | 0x3ff01204 | RW | 2 号处理器核的 IPI_Enalbe 寄存器   |
| Core2_IPI_Set    | 0x3ff01208 | W  | 2 号处理器核的 IPI_Set 寄存器      |
| Core2 _IPI_Clear | 0x3ff0120c | W  | 2 号处理器核的 IPI_Clear 寄存器    |
| Core2_MailBox0   | 0x3ff01220 | R  | 2 号处理器核的 IPI_MailBox0 寄存器 |
| Core2_ MailBox1  | 0x3ff01228 | RW | 2 号处理器核的 IPI_MailBox1 寄存器 |
| Core2_ MailBox2  | 0x3ff01230 | W  | 2 号处理器核的 IPI_MailBox2 寄存器 |
| Core2_ MailBox3  | 0x3ff01238 | W  | 2 号处理器核的 IPI_MailBox3 寄存器 |

表 6-53 号处理器核的核间中断与通信寄存器列表

| 名称               | 地址         | 权限 | 描述                        |
|------------------|------------|----|---------------------------|
| Core3_IPI_Status | 0x3ff01300 | R  | 3 号处理器核的 IPI_Status 寄存器   |
| Core3_IPI_Enalbe | 0x3ff01304 | RW | 3 号处理器核的 IPI_Enalbe 寄存器   |
| Core3_IPI_Set    | 0x3ff01308 | W  | 3 号处理器核的 IPI_Set 寄存器      |
| Core3 _IPI_Clear | 0x3ff0130c | W  | 3 号处理器核的 IPI_Clear 寄存器    |
| Core3_MailBox0   | 0x3ff01320 | R  | 3 号处理器核的 IPI_MailBox0 寄存器 |
| Core3_ MailBox1  | 0x3ff01328 | RW | 3 号处理器核的 IPI_MailBox1 寄存器 |
| Core3_ MailBox2  | 0x3ff01330 | W  | 3 号处理器核的 IPI_MailBox2 寄存器 |
| Core3_ MailBox3  | 0x3ff01338 | W  | 3 号处理器核的 IPI_MailBox3 寄存器 |

上面列出的是单个龙芯 3A3000/3B3000 芯片所组成的单节点多处理器系统的的核间中断相关寄存器列表。在采用多片龙芯 3A3000/3B3000 互连构成多节点 CC-NUMA 系统时,每个



芯片内的节点对应一个系统全局节点编号,节点内处理器核的 IPI 寄存器地址按上表与其所在节点的基地址成固定偏移关系。例如,0号节点0号处理器核的 IPI\_Status 地址为0x3ff01000,而1号节点的0号处理器地址则为0x10003ff01000,依次类推。



# 7 1/0 中断

龙芯 3A3000/3B3000 芯片最多支持 32 个中断源,以统一方式进行管理,如下图 7-1 所示,任意一个 I0 中断源可以被配置为是否使能、触发的方式、以及被路由的目标处理器核中断脚。



图 7-1 龙芯 3A3000/3B3000 处理器中断路由示意图

中断相关配置寄存器都是以位的形式对相应的中断线进行控制,中断控制位连接及属性配置见下表 7-1。中断使能(Enable)的配置有三个寄存器: Intenset、Intenclr 和 Intenset 设置中断使能,Intenset 寄存器写 1 的位对应的中断被使能。Intenclr 清除中断使能,Intenclr 寄存器写 1 的位对应的中断被清除。Inten 寄存器读取当前各中断使能的情



况。脉冲形式的中断信号(如 PCI\_SERR)由 Intedge 配置寄存器来选择,写 1 表示脉冲触发,写 0 表示电平触发。中断处理程序可以通过 Intenclr 的相应位来清除脉冲记录。

| 位域      |         |       | 访问属性/缺   | 省值       |             |
|---------|---------|-------|----------|----------|-------------|
|         | Intedge | Inten | Intenset | Intencir | 中断源         |
| 3:0     | RW / 0  | R/0   | W / 0    | W / 0    | Sys_int0-3  |
| 7 : 4   | RO / 0  | R/0   | RW / 0   | RW / 0   | PCI_INTn    |
| 8       | RO / 0  | R/0   | RW / 0   | RW / 0   | Matrix_int0 |
| 9       | RO / 1  | R/0   | RW / 0   | RW / 0   | Matrix_int1 |
| 10      | RO / 1  | R/0   | RW / 0   | RW / 0   | Lpc         |
| 12 : 11 | RW / 0  | 保留    | 保留       | 保留       | Mc0-1       |
| 13      | RW / 0  | R/0   | RW / 0   | RW / 0   | Barrier     |
| 14      | RW / 0  | R/0   | RW / 0   | RW / 0   | Thsens int  |
| 15      | RW / 0  | R/0   | RW / 0   | RW / 0   | Pci_perr    |
| 23 : 16 | RW / 0  | R/0   | RW / 0   | RW / 0   | HT0 int0-7  |
| 31 : 24 | RW / 0  | R/0   | RW / 0   | RW / 0   | HT1 int0-7  |

表 7-1 中断控制寄存器

表 7-2 IO 控制寄存器地址

| 名称           | 地址偏移       | 描述                   |
|--------------|------------|----------------------|
| Intisr       | 0x3ff01420 | 32 位中断状态寄存器          |
| Inten        | 0x3ff01424 | 32 位中断使能状态寄存器        |
| Intenset     | 0x3ff01428 | 32 位设置使能寄存器          |
| Intencir     | 0x3ff0142c | 32 位清除使能寄存器          |
| Intedge      | 0x3ff01438 | 32 位触发方式寄存器          |
| CORE0_INTISR | 0x3ff01440 | 路由给 CORE0 的 32 位中断状态 |
| CORE1_INTISR | 0x3ff01448 | 路由给 CORE1 的 32 位中断状态 |
| CORE2_INTISR | 0x3ff01450 | 路由给 CORE2 的 32 位中断状态 |
| CORE3_INTISR | 0x3ff01458 | 路由给 CORE3 的 32 位中断状态 |

在龙芯 3A3000/3B3000 中集成了 4 个处理器核,上述的 32 位中断源可以通过软件配置选择期望中断的目标处理器核。进一步,中断源可以选择路由到处理器核中断 INTO 到 INT3 中的任意一个,即对应 CPO\_Status 的 IP2 到 IP5。32 个 I/0 中断源中每一个都对应一个 8 位的路由控制器,其格式和地址如下表 7-3 和 7-4 所示。路由寄存器采用向量的方式进行路由选择,如 0x48 标示路由到 3 号处理器的 INT2 上。



#### 表 7-3 中断路由寄存器的说明

| 位域  | 说明             |
|-----|----------------|
| 3:0 | 路由的处理器核向量号     |
| 7:4 | 路由的处理器核中断引脚向量号 |

表 7-4 中断路由寄存器地址

| 名称      | 地址偏移       | 描述            | 名称      | 地址偏移       | 描述       |
|---------|------------|---------------|---------|------------|----------|
| Entry0  | 0x3ff01400 | Sys_int0      | Entry16 | 0x3ff01410 | HT0-int0 |
| Entry1  | 0x3ff01401 | Sys_int1      | Entry17 | 0x3ff01411 | HT0-int1 |
| Entry2  | 0x3ff01402 | Sys_int2      | Entry18 | 0x3ff01412 | HT0-int2 |
| Entry3  | 0x3ff01403 | Sys_int3      | Entry19 | 0x3ff01413 | HT0-int3 |
| Entry4  | 0x3ff01404 | Pci_int0      | Entry20 | 0x3ff01414 | HT0-int4 |
| Entry5  | 0x3ff01405 | Pci_int1      | Entry21 | 0x3ff01415 | HT0-int5 |
| Entry6  | 0x3ff01406 | Pci_int2      | Entry22 | 0x3ff01416 | HT0-int6 |
| Entry7  | 0x3ff01407 | Pci_int3      | Entry23 | 0x3ff01417 | HT0-int7 |
| Entry8  | 0x3ff01408 | Matrix int0   | Entry24 | 0x3ff01418 | HT1-int0 |
| Entry9  | 0x3ff01409 | Matrix int1   | Entry25 | 0x3ff01419 | HT1-int1 |
| Entry10 | 0x3ff0140a | Lpc int       | Entry26 | 0x3ff0141a | HT1-int2 |
| Entry11 | 0x3ff0140b | Mc0           | Entry27 | 0x3ff0141b | HT1-int3 |
| Entry12 | 0x3ff0140c | Mc1           | Entry28 | 0x3ff0141c | HT1-int4 |
| Entry13 | 0x3ff0140d | Barrier       | Entry29 | 0x3ff0141d | HT1-int5 |
| Entry14 | 0x3ff0140e | Thsens int    | Entry30 | 0x3ff0141e | HT1-int6 |
| Entry15 | 0x3ff0140f | Pci_perr/serr | Entry31 | 0x3ff0141f | HT1-int7 |



# 8 温度传感器

### 8.1 实时温度采样

龙芯 3A3000/3B3000 内部集成两个温度传感器,可以通过 0x1FE00198 开始的采样寄存器进行观测,同时,可以使用灵活的高低温中断报警或者自动调频功能进行控制。温度传感器在采样寄存器的对应位如下(基地址为 0x1FE00198):

| 位域    | 字段名              | 访问 | 复位值 | 描述                                                                              |
|-------|------------------|----|-----|---------------------------------------------------------------------------------|
| 24    | Thsens0_overflow | R  |     | 温度传感器 0 上溢(超过 125℃)                                                             |
| 25    | Thsens1_overflow | R  |     | 温度传感器 1 上溢(超过 125℃)                                                             |
| 47:32 | Thsens0_out      | R  |     | 温度传感器 0 摄氏温度<br>结 点 温 度 =Thens0_out<br>*731/0x4000 - 273<br>温度范围 -40 度 - 125 度  |
| 65:48 | Thsens1_out      | R  |     | 温度传感器 1 摄氏温度<br>结 点 温 度 =Thens1_out<br>-*731/0x4000 - 273<br>温度范围 -40 度 - 125 度 |

表 8-1 温度采样寄存器说明

通过对控制寄存器的设置,可以实现超过预设温度中断、低于预设温度中断及高温自动降频功能。

# 8.2 高低温中断触发

对于高低温中断报警功能,分别有 4 组控制寄存器对其阈值进行设置。每组寄存器包含以下三个控制位:

GATE: 设置高温或低温的阈值。当输入温度高于高温阈值或低于低温阈值时,将会产生中断;

EN: 中断使能控制。置1之后该组寄存器的设置才有效;

SEL: 输入温度选择。当前 3A3000/3B3000 内部集成两个温度传感器,该寄存器用于配置选择哪个传感器的温度作为输入。可以使用 0 或者 1。

高温中断控制寄存器中包含 4 组用于控制高温中断触发的设置位;低温中断控制寄存器中包含 4 组用于控制低温中断触发的设置位。另外还有一组寄存器用于显示中断状态,分



别对应于高温中断和低温中断,对该寄存器进行任意写操作将清除中断状态。 这几个寄存器的具体描述如下:

表 8-2 高低温中断寄存器说明

| 寄存器                   | 地址         | 控制 | 说明                                    |
|-----------------------|------------|----|---------------------------------------|
|                       |            |    | [7:0]: Hi_gate0: 高温阈值 0,超过这个温度将产生中断   |
|                       |            |    | [8:8]: Hi_en0: 高温中断使能 0               |
|                       |            |    | [11:10]: Hi_Se10: 选择高温中断 0 的温度传感器输入源  |
|                       |            |    | [23:16]: Hi_gatel: 高温阈值 1,超过这个温度将产生中断 |
|                       |            |    | [24:24]: Hi_en1: 高温中断使能 1             |
|                       |            |    | [27:26]: Hi_Sel1: 选择高温中断 1 的温度传感器输入源  |
|                       |            |    | [39:32]: Hi_gate2: 高温阈值 2,超过这个温度将产生中断 |
|                       |            |    | [40:40]: Hi_en2: 高温中断使能 2             |
|                       |            |    | [43:42]: Hi_Sel2: 选择高温中断 2 的温度传感器输入源  |
|                       |            |    | [55:48]: Hi_gate3: 高温阈值 3,超过这个温度将产生中断 |
| 高温中断控制寄存器             |            |    | [56:56]: Hi_en3: 高温中断使能 3             |
| Thsens_int_ctrl_Hi    | 0x3ff01460 | RW | [59:58]: Hi_Sel3: 选择高温中断 3 的温度传感器输入源  |
|                       |            |    | [7:0]: Lo_gate0: 低温阈值 0,低于这个温度将产生中断   |
|                       |            |    | [8:8]: Lo_en0: 低温中断使能 0               |
|                       |            |    | [11:10]: Lo_Se10: 选择低温中断 0 的温度传感器输入源  |
|                       |            |    | [23:16]: Lo_gatel: 低温阈值 1,低于这个温度将产生中断 |
|                       |            |    | [24:24]: Lo_en1: 低温中断使能 1             |
|                       |            |    | [27:26]: Lo_Sell: 选择低温中断 1 的温度传感器输入源  |
|                       |            |    | [39:32]: Lo_gate2: 低温阈值 2,低于这个温度将产生中断 |
|                       |            |    | [40:40]: Lo_en2: 低温中断使能 2             |
|                       |            |    | [43:42]: Lo_Se12: 选择低温中断 2 的温度传感器输入源  |
|                       |            |    | [55:48]: Lo_gate3: 低温阈值3, 低于这个温度将产生中断 |
| 低温中断控制寄存器             |            |    | [56:56]: Lo_en3: 低温中断使能 3             |
| Thsens_int_ctrl_Lo    | 0x3ff01468 | RW | [59:58]: Lo_Se13: 选择低温中断 3 的温度传感器输入源  |
|                       |            |    | 中断状态寄存器,写任意值清除中断                      |
| 中断状态寄存器               |            |    | [0]: 高温中断触发                           |
| Thsens_int_status/clr | 0x3ff01470 | RW | [1]: 低温中断触发                           |

# 8.3 高温自动降频设置

为了在高温环境中保证芯片的运行,可以设置令高温自动降频,使得芯片在超过预设范围时主动进行时钟分频,达到降低芯片翻转率的效果。

对于高温降频功能,有4组控制寄存器对其行为进行设置。每组寄存器包含以下四个控制位:

44



GATE: 设置高温或低温的阈值。当输入温度高于高温阈值或低于低温阈值时,将触发分频操作;

EN: 中断使能控制。置1之后该组寄存器的设置才有效;

SEL:输入温度选择。当前 3A3000/3B3000 内部集成两个温度传感器,该寄存器用于配置选择哪个传感器的温度作为输入。可以使用 0 或者 1。

FREQ:分频数。当触发分频操作时,将频率调整为当前时钟频率的FREQ/8倍。

表 8-3 高温降频控制寄存器说明

| 寄存器               | 地址         | 控制 | 说明                                      |
|-------------------|------------|----|-----------------------------------------|
|                   |            |    | 四组设置优先级由高到低                             |
|                   |            |    | [7:0]: Scale_gate0: 高温阈值 0,超过这个温度将降频    |
|                   |            |    | [8:8]: Scale_en0: 高温降频使能 0              |
|                   |            |    | [11:10]: Scale_Se10: 选择高温降频 0 的温度传感器输入源 |
|                   |            |    | [14:12]: Scale_freq0: 降频时的分频值           |
|                   |            |    | [23:16]: Scale_gatel: 高温阈值 1,超过这个温度将降频  |
|                   |            |    | [24:24]: Scale_en1: 高温降频使能 1            |
|                   |            |    | [27:26]: Scale_Sell: 选择高温降频 1 的温度传感器输入源 |
|                   |            |    | [30:28]: Scale_freql: 降频时的分频值           |
|                   |            |    | [39:32]: Scale_gate2: 高温阈值 2,超过这个温度将降频  |
|                   |            |    | [40:40]: Scale_en2: 高温降频使能 2            |
|                   |            |    | [43:42]: Scale_Sel2: 选择高温降频 2 的温度传感器输入源 |
|                   |            |    | [46:44]: Scale_freq2: 降频时的分频值           |
|                   |            |    | [55:48]: Scale_gate3: 高温阈值 3,超过这个温度将降频  |
|                   |            |    | [56:56]: Scale_en3: 高温降频使能 3            |
| 高温降频控制寄存器         |            |    | [59:58]: Scale_Sel3: 选择高温降频 3 的温度传感器输入源 |
| Thsens_freq_scale | 0x3ff01480 | RW | [62:60]: Scale_freq3: 降频时的分频值           |



## 9 DDR2/3 SDRAM 控制器配置

龙芯 3 号处理器内部集成的内存控制器的设计遵守 DDR2/3 SDRAM 的行业标准(JESD79-2 和 JESD79-3)。在龙芯 3 号处理器中,所实现的所有内存读/写操作都遵守 JESD79-2B 及 JESD79-3 的规定。

### 9.1 DDR2/3 SDRAM控制器功能概述

龙芯 3 号处理器支持最大 4 个 CS (由 4 个 DDR2 SDRAM 片选信号实现,即两个双面内存条),一共含有 19 位的地址总线 (即: 16 位的行列地址总线和 3 位的逻辑 Bank 总线)。

龙芯 3 号处理器在具体选择使用不同内存芯片类型时,可以调整 DDR2/3 控制器参数设置进行支持。其中,支持的最大片选  $(CS_n)$  数为 4,行地址  $(RAS_n)$  数为 16,列地址  $(CAS_n)$  数为 15,逻辑体选择  $(BANK\ n)$  数为 3。

CPU 发送的内存请求物理地址可以根据控制器内部不同的配置进行多种不同的地址映射。

龙芯 3 号处理器所集成的内存控制电路只接受来自处理器或者外部设备的内存读/写请求,在所有的内存读/写操作中,内存控制电路处于从设备状态(Slave State)。

龙芯 3 号处理器中内存控制器具有如下特征:

- 接口上命令、读写数据全流水操作
- 内存命令合并、排序提高整体带宽
- 配置寄存器读写端口,可以修改内存设备的基本参数
- 内建动态延迟补偿电路 (DCC),用于数据的可靠发送和接收
- ECC 功能可以对数据通路上的 1 位和 2 位错误进行检测,并能对对 1 位错误进行自 动纠错
- 支持 133-667MHZ 工作频率

# 9.2 DDR2/3 SDRAM读操作协议

DDR2/3 SDRAM 读操作的协议如图 11-2 所示。在图中命令(Command, 简称 CMD)由 RAS\_n, CAS\_n 和 WE\_n, 共三个信号组成。对于读操作, RAS\_n=1, CAS\_n=0, WE\_n=1。





图 9-1 DDR2 SDRAM 读操作协议

上图中, Cas Latency (CL) = 3, Read Latency (RL) = 3, Burst Length = 8。

## 9.3 DDR2/3 SDRAM 写操作协议

DDR2/3 SDRAM 写操作的协议如图 11-3 所示。在图中命令 CMD 是由 RAS\_n, CAS\_n 和 WE\_n, 共三个信号组成的。对于写操作,RAS\_n=1,CAS\_n=0,WE\_n=0。另外,与读操作不同,写操作需要 DQM 来标识写操作的掩码,即需要写入的字节数。DQM 与图中 DQs 信号同步。



图 9-2 DDR2 SDRAM 写操作协议

上图中, Cas Latency (CL) = 3, Write Latency (WL) = Read Latency (RL) - 1 = 2, Burst Length = 4。

## 9.4 DDR2/3 SDRAM参数配置格式

内存控制器软件可见的参数列表及说明如下表:



|       | 63:56             | 55:48         | 47:40            | 39:32           | 31:24             | 23:16           | 15:8            | 7:0              |
|-------|-------------------|---------------|------------------|-----------------|-------------------|-----------------|-----------------|------------------|
| )x000 | dll_close_disable | DII_adj_cnt   | Dll_value_ck(RD) |                 | DII_init_done(RD) |                 | Version(RD)     |                  |
|       | dll_sync_disable  |               |                  |                 |                   |                 |                 |                  |
| )x008 |                   |               |                  |                 |                   |                 |                 |                  |
| )x010 |                   |               |                  |                 |                   |                 |                 |                  |
| )x018 | DII_ck_3          | DII_ck_2      | DII_ck_1         | DII_ck_0        | DII_increment     | DII_start_point | DII_bypass      | Init_start       |
| )x020 | Dq_oe_end_0       | Dq_oe_begin_0 | Dq_stop_edge_0   | Dq_start_edge_0 | Rddata_delay_0    | Rddqs_lt_half_0 | Wrdqs_lt_half_0 | Wrdq_lt_half_0   |
| )x028 | Rd_oe_end_0       | Rd_oe_begin_0 | Rd_stop_edge_0   | Rd_start_edge_0 | Dqs_oe_end_0      | Dqs_oe_begin_0  | Dqs_stop_edge_0 | Dqs_start_edge_0 |
| )x030 | Enzi_end_0        | Enzi_begin_0  | Wrclk_sel_0      | Wrdq_clkdelay_0 | Odt_oe_end_0      | Odt_oe_begin_0  | Odt_stop_edge_0 | Odt_start_edge_0 |
| )x038 | Enzi_stop_0       | Enzi_start_0  | DII_oe_shorten_0 | DII_rddqs_n_0   | DII_rddqs_p_0     | DII_wrdqs_0     | DII_wrdata_0    | DII_gate_0       |
| )x040 | Dq_oe_end_1       | Dq_oe_begin_1 | Dq_stop_edge_1   | Dq_start_edge_1 | Rddata_delay_1    | Rddqs_lt_half_1 | Wrdqs_lt_half_1 | Wrdq_lt_half_1   |
| )x048 | Rd_oe_end_1       | Rd_oe_begin_1 | Rd_stop_edge_1   | Rd_start_edge_1 | Dqs_oe_end_1      | Dqs_oe_begin_1  | Dqs_stop_edge_1 | Dqs_start_edge_1 |
| )x050 | Enzi_end_1        | Enzi_begin_1  | Wrclk_sel_1      | Wrdq_clkdelay_1 | Odt_oe_end_1      | Odt_oe_begin_1  | Odt_stop_edge_1 | Odt_start_edge_1 |
| )x058 | Enzi_stop_1       | Enzi_start_1  | DII_oe_shorten_1 | DII_rddqs_n_1   | DII_rddqs_p_1     | DII_wrdqs_1     | DII_wrdata_1    | DII_gate_1       |
| )x060 | Dq_oe_end_2       | Dq_oe_begin_2 | Dq_stop_edge_2   | Dq_start_edge_2 | Rddata_delay_2    | Rddqs_lt_half_2 | Wrdqs_lt_half_2 | Wrdq_lt_half_2   |
| )x068 | Rd_oe_end_2       | Rd_oe_begin_2 | Rd_stop_edge_2   | Rd_start_edge_2 | Dqs_oe_end_2      | Dqs_oe_begin_2  | Dqs_stop_edge_2 | Dqs_start_edge_2 |
| )x070 | Enzi_end_2        | Enzi_begin_2  | Wrclk_sel_2      | Wrdq_clkdelay_2 | Odt_oe_end_2      | Odt_oe_begin_2  | Odt_stop_edge_2 | Odt_start_edge_2 |
| )x078 | Enzi_stop_2       | Enzi_start_2  | DII_oe_shorten_2 | DII_rddqs_n_2   | DII_rddqs_p_2     | DII_wrdqs_2     | DII_wrdata_2    | DII_gate_2       |
| 0x080 | Dq_oe_end_3       | Dq_oe_begin_3 | Dq_stop_edge_3   | Dq_start_edge_3 | Rddata_delay_3    | Rddqs_lt_half_3 | Wrdqs_lt_half_3 | Wrdq_lt_half_3   |
| 0x088 | Rd_oe_end_3       | Rd_oe_begin_3 | Rd_stop_edge_3   | Rd_start_edge_3 | Dqs_oe_end_3      | Dqs_oe_begin_3  | Dqs_stop_edge_3 | Dqs_start_edge_3 |
| )x090 | Enzi_end_3        | Enzi_begin_3  | Wrclk_sel_3      | Wrdq_clkdelay_3 | Odt_oe_end_3      | Odt_oe_begin_3  | Odt_stop_edge_3 | Odt_start_edge_3 |
| )x098 | Enzi_stop_3       | Enzi_start_3  | DII_oe_shorten_3 | DII_rddqs_n_3   | DII_rddqs_p_3     | DII_wrdqs_3     | DII_wrdata_3    | DII_gate_3       |
| 0x0A0 | Dq_oe_end_4       | Dq_oe_begin_4 | Dq_stop_edge_4   | Dq_start_edge_4 | Rddata_delay_4    | Rddqs_lt_half_4 | Wrdqs_lt_half_4 | Wrdq_lt_half_4   |
| 8A0x( | Rd_oe_end_4       | Rd_oe_begin_4 | Rd_stop_edge_4   | Rd_start_edge_4 | Dqs_oe_end_4      | Dqs_oe_begin_4  | Dqs_stop_edge_4 | Dqs_start_edge_4 |
| )x0B0 | Enzi_end_4        | Enzi_begin_4  | Wrclk_sel_4      | Wrdq_clkdelay_4 | Odt_oe_end_4      | Odt_oe_begin_4  | Odt_stop_edge_4 | Odt_start_edge_4 |
| )x0B8 | Enzi_stop_4       | Enzi_start_4  | DII_oe_shorten_4 | DII_rddqs_n_4   | DII_rddqs_p_4     | DII_wrdqs_4     | DII_wrdata_4    | DII_gate_4       |
| x0C0  | Dq_oe_end_5       |               | Dq_stop_edge_5   | Dq_start_edge_5 | Rddata_delay_5    | Rddqs_lt_half_5 | Wrdqs_lt_half_5 | Wrdq_lt_half_5   |
| )x0C8 | Rd_oe_end_5       | Rd_oe_begin_5 | Rd_stop_edge_5   | Rd_start_edge_5 | Dqs_oe_end_5      | Dqs_oe_begin_5  | Dqs_stop_edge_5 | Dqs_start_edge_5 |
| )x0D0 | Enzi_end_5        | Enzi_begin_5  | Wrclk_sel_5      | Wrdq_clkdelay_5 | Odt_oe_end_5      | Odt_oe_begin_5  | Odt_stop_edge_5 | Odt_start_edge_5 |
| )x0D8 | Enzi_stop_5       | Enzi_start_5  | DII_oe_shorten_5 | DII_rddqs_n_5   | DII_rddqs_p_5     | DII_wrdqs_5     | DII_wrdata_5    | DII_gate_5       |
| )x0E0 | Dq_oe_end_6       | Dq_oe_begin_6 | Dq_stop_edge_6   | Dq_start_edge_6 | Rddata_delay_6    | Rddqs_lt_half_6 | Wrdqs_lt_half_6 | Wrdq_lt_half_6   |
| )x0E8 | Rd_oe_end_6       | Rd_oe_begin_6 | Rd_stop_edge_6   | Rd_start_edge_6 | Dqs_oe_end_6      | Dqs_oe_begin_6  | Dqs_stop_edge_6 | Dqs_start_edge_6 |
| x0F0  | Enzi_end_6        | Enzi_begin_6  | Wrclk_sel_6      | Wrdq_clkdelay_6 | Odt_oe_end_6      | Odt_oe_begin_6  | Odt_stop_edge_6 | Odt_start_edge_6 |
| x0F8  | Enzi_stop_6       | Enzi_start_6  | DII_oe_shorten_6 | DII_rddqs_n_6   | DII_rddqs_p_6     | DII_wrdqs_6     | DII_wrdata_6    | DII_gate_6       |
| )x100 | Dq_oe_end_7       | Dq_oe_begin_7 | Dq_stop_edge_7   | Dq_start_edge_7 | Rddata_delay_7    | Rddqs_lt_half_7 | Wrdqs_lt_half_7 | Wrdq_lt_half_7   |
| )x108 | Rd_oe_end_7       | Rd_oe_begin_7 | Rd_stop_edge_7   | Rd_start_edge_7 | Dqs_oe_end_7      | Dqs_oe_begin_7  | Dqs_stop_edge_7 | Dqs_start_edge_7 |
| )x110 | Enzi_end_7        | Enzi_begin_7  | Wrclk_sel_7      | Wrdq_clkdelay_7 | Odt_oe_end_7      | Odt_oe_begin_7  | Odt_stop_edge_7 | Odt_start_edge_7 |
| )x118 | Enzi_stop_7       | Enzi_start_7  | DII_oe_shorten_7 | DII_rddqs_n_7   | DII_rddqs_p_7     | DII_wrdqs_7     | DII_wrdata_7    | DII_gate_7       |
| )x120 | Dq_oe_end_8       | Dq_oe_begin_8 | Dq_stop_edge_8   | Dq_start_edge_8 | Rddata_delay_8    | Rddqs_lt_half_8 | Wrdqs_lt_half_8 | Wrdq_lt_half_8   |
| )x128 | Rd_oe_end_8       | Rd_oe_begin_8 | Rd_stop_edge_8   | Rd_start_edge_8 | Dqs_oe_end_8      | Dqs_oe_begin_8  | Dqs_stop_edge_8 | Dqs_start_edge_8 |



| )x130 | Enzi_end_8                        | Enzi_begin_8   | Wrclk_sel_8      | Wrdq_clkdelay_8  | Odt_oe_end_8                              | Odt_oe_begin_8    | Odt_stop_edge_8   | Odt_start_edge_8 |  |  |  |  |  |
|-------|-----------------------------------|----------------|------------------|------------------|-------------------------------------------|-------------------|-------------------|------------------|--|--|--|--|--|
| )x138 | Enzi_stop_8                       | Enzi_start_8   | DII_oe_shorten_8 | DII_rddqs_n_8    | DII_rddqs_p_8                             | DII_wrdqs_8       | DII_wrdata_8      | DII_gate_8       |  |  |  |  |  |
| )x140 | Pad_ocd_clk                       | Pad_ocd_ctl    | Pad_ocd_dqs      | Pad_ocd_dq       | Pad_enzi                                  | 1                 | Pad_en_ctl        | Pad_en_clk       |  |  |  |  |  |
| )x148 | Pad_adj_code_dqs                  | Pad_code_dqs   | Pad_adj_code_dq  | Pad_code_dq      |                                           | Pad_vref_internal | Pad_odt_se        | Pad_modezi1v8    |  |  |  |  |  |
| )x150 |                                   | Pad_reset_po   | Pad_adj_code_clk | Pad_code_lk      | Pad_adj_code_cmd                          | Pad_code_cmd      | Pad_adj_code_addr | Pad_code_addr    |  |  |  |  |  |
| )x158 | Pad_co                            | omp_code_o     | Pad_comp_okn     | Pad <sub>-</sub> | _comp_code_i                              | Pad_comp_mode     | Pad_comp_tm       | Pad_comp_pd      |  |  |  |  |  |
| )x160 | Rdfifo_empty(RD)                  |                | Overflow(RD)     |                  | Dram_init(RD)                             | Rdfifo_valid      | Cmd_timming       | Ddr3_mode        |  |  |  |  |  |
| )x168 | Ba_xor_row_offset                 | Addr_mirror    | Cmd_delay        | Burst_length     | Bank/Cs_resync                            | Cs_zq             | Cs_mrs            | Cs_enable        |  |  |  |  |  |
| )x170 | Odt_wr_cs_map                     |                | Odt_wr_length    | Odt_wr_delay     | Odt_rd_cs_map                             |                   | Odt_rd_length     | Odt_rd_delay     |  |  |  |  |  |
| )x178 |                                   |                |                  |                  |                                           |                   |                   |                  |  |  |  |  |  |
| )x180 | Lvl_resp_0(RD)                    | Lvl_done(RD)   | Lvl_ready(RD)    |                  | Lvl_cs                                    | tLVL_DELAY        | Lvl_req(WR)       | Lvl_mode         |  |  |  |  |  |
| )x188 | Lvl_resp_8(RD)                    | Lvl_resp_7(RD) | Lvl_resp_6(RD)   | Lvl_resp_5(RD)   | Lvl_resp_4(RD)                            | Lvl_resp_3(RD)    | Lvl_resp_2(RD)    | Lvl_resp_1(RD)   |  |  |  |  |  |
| )x190 | Cmd_a                             |                | Cmd_ba           | Cmd_cmd          | Cmd_cs                                    | Status_cmd(RD)    | Cmd_req(WR)       | Command_mode     |  |  |  |  |  |
| )x198 |                                   |                | Status_sref(RD)  | Srefresh_req     | Pre_all_done(RD)                          | Pre_all_req(RD)   | Mrs_done(RD)      | Mrs_req(WR)      |  |  |  |  |  |
| )x1A0 | Mr_3_cs_0                         |                | Mr_2_cs_0        |                  | Mr_1_cs_0                                 |                   | Mr_0_cs_0         |                  |  |  |  |  |  |
| )x1A8 | Mr_3_cs_1                         |                | Mr_2_cs_1        |                  | Mr_1_cs_1                                 |                   | Mr_0_cs_1         |                  |  |  |  |  |  |
| )x1B0 | Mr_3_cs_2                         |                | Mr_2_cs_2        |                  | Mr_1_cs_2                                 |                   | Mr_0_cs_2         |                  |  |  |  |  |  |
| )x1B8 | Mr_3_cs_3                         |                | Mr_2_cs_3        |                  | Mr_1_cs_3                                 |                   | Mr_0_cs_3         |                  |  |  |  |  |  |
| )x1C0 | tRESET                            | tCKE           | tXPR             | tMOD             | tZQCL                                     | tZQ_CMD           | tWLDQSEN          | tRDDATA          |  |  |  |  |  |
| )x1C8 | tFAW                              | tRRD           | tRCD             | tRP              | tREF                                      | tRFC              | tZQCS             | tZQperiod        |  |  |  |  |  |
| )x1D0 | tODTL                             | tXSRD          | tPHY_RDLAT       | tPHY_WRLAT       | tRAS_max                                  |                   |                   | tRAS_min         |  |  |  |  |  |
| )x1D8 | tXPDLL                            | tXP            | tWR              | tRTP             | tRL                                       | tWL               | tCCD              | tWTR             |  |  |  |  |  |
| )x1E0 | tW2R_diffCS                       | tW2W_diffCS    | tR2P_sameBA      | tW2P_sameBA      | tR2R_sameBA                               | tR2W_sameBA       | tW2R_sameBA       | tW2W_sameBA      |  |  |  |  |  |
| )x1E8 | tR2R_diffCS                       | tR2W_diffCS    | tR2P_sameCS      | tW2P_sameCS      | tR2R_sameCS                               | tR2W_sameCS       | tW2R_sameCS       | tW2W_sameCS      |  |  |  |  |  |
| x1F0  | Power_up                          | Age_step       | tCPDED           | Cs_map           | Bs_config                                 | Nc                | Pr_r2w            | Placement_en     |  |  |  |  |  |
| x1F8  | Hw_pd_3                           | Hw_pd_2        | Hw_pd_1          | Hw_pd_0          | Credit_16                                 | Credit_32         | Credit_64         | Selection_en     |  |  |  |  |  |
| )x200 | Cmdq_age_16                       |                | Cmdq_age_32      |                  | Cmdq_age_64                               |                   | tCKESR            | tRDPDEN          |  |  |  |  |  |
| )x208 | Wfifo_age                         |                | Rfifo_age        |                  | Power_stat3                               | Power_stat2       | Power_stat1       | Power_stat0      |  |  |  |  |  |
| )x210 | Active_age                        |                | Cs_place_0       | Addr_win_0       | Cs_diff_0                                 | Row_diff_0        | Ba_diff_0         | Col_diff_0       |  |  |  |  |  |
| )x218 | Fastpd_age                        |                | Cs_place_1       | Addr_win_1       | Cs_diff_1                                 | Row_diff_1        | Ba_diff_1         | Col_diff_1       |  |  |  |  |  |
| )x220 | Slowpd_age C                      |                | Cs_place_2       | Addr_win_2       | Cs_diff_2                                 | Row_diff_2        | Ba_diff_2         | Col_diff_2       |  |  |  |  |  |
| )x228 | Selfref_age Cs_place_3 Addr_win_3 |                |                  | Addr_win_3       | Cs_diff_3 Row_diff_3 Ba_diff_3 Col_diff_3 |                   |                   | Col_diff_3       |  |  |  |  |  |
| )x230 | Win_mask_0                        |                |                  |                  | Win_base_0                                |                   |                   |                  |  |  |  |  |  |
| )x238 | Win_mask_1                        |                |                  |                  | Win_base_1                                |                   |                   |                  |  |  |  |  |  |
| )x240 | Win_mask_2                        |                |                  |                  | Win_base_2                                |                   |                   |                  |  |  |  |  |  |
| )x248 | Win_mask_3                        |                |                  | Win_base_3       |                                           |                   |                   |                  |  |  |  |  |  |
| )x250 |                                   | Cmd_monitor    | Axi_monitor      |                  | Ecc_code(RD)                              | Ecc_enable        | Int_vector        | Int_enable       |  |  |  |  |  |
| )x258 |                                   |                |                  |                  |                                           |                   |                   |                  |  |  |  |  |  |
| )x260 | Ecc_addr(RD)                      |                |                  |                  |                                           |                   |                   |                  |  |  |  |  |  |
| )x268 | Ecc_data(RD)                      |                |                  |                  |                                           | _data(RD)         |                   |                  |  |  |  |  |  |



| )x270 | Lpbk_ecc_mask(RD                    | )) Prbs_init  |                  |               | Lpbk_error(RD)                    | Prbs_23          | _pbk_start   | Lpbk_en           |
|-------|-------------------------------------|---------------|------------------|---------------|-----------------------------------|------------------|--------------|-------------------|
| )x278 | Lpbk_ecc(RD)                        |               | Lpbk_data_mask(F | RD)           | Lpbk_correct(RD) Lpbk_counter(RD) |                  |              |                   |
| )x280 | Lpbk_data_r(RD)                     |               |                  |               |                                   |                  |              |                   |
| )x288 | Lpbk_data_f(RD)                     |               |                  |               |                                   |                  |              |                   |
| )x290 | Axi0_bandwidth_w                    |               |                  |               | Axi0_bandwidth_r                  |                  |              |                   |
| )x298 | Axi0_latency_w                      |               |                  |               | Axi0_latency_r                    |                  |              |                   |
| )x2A0 | Axi1_bandwidth_w                    |               |                  |               | Axi1_bandwidth_r                  |                  |              |                   |
| )x2A8 | Axi1_latency_w                      |               |                  |               | Axi1_latency_r                    |                  |              |                   |
| )x2B0 | Axi2_bandwidth_w                    |               |                  |               | Axi2_bandwidth_r                  |                  |              |                   |
| )x2B8 | Axi2_latency_w                      |               |                  |               | Axi2_latency_r                    |                  |              |                   |
| )x2C0 | Axi3_bandwidth_w                    |               |                  |               | Axi3_bandwidth_r                  |                  |              |                   |
| )x2C8 | Axi3_latency_w                      |               |                  |               | Axi3_latency_r                    |                  |              |                   |
| )x2D0 | Axi4_bandwidth_w                    |               |                  |               | Axi4_bandwidth_r                  |                  |              |                   |
| )x2D8 | Axi4_latency_w                      |               |                  |               | Axi4_latency_r                    |                  |              |                   |
| )x2E0 | Cmdq0_bandwidth_                    | w             |                  |               | Cmdq0_bandwidth_                  | r                |              |                   |
| )x2E8 | Cmdq0_latency_w                     |               |                  |               | Cmdq0_latency_r                   |                  |              |                   |
| )x2F0 | Cmdq1_bandwidth_                    | w             |                  |               | Cmdq1_bandwidth_r                 |                  |              |                   |
| )x2F8 | Cmdq1_latency_w                     |               |                  |               | Cmdq1_latency_r                   |                  |              |                   |
| )x300 | Cmdq2_bandwidth_                    | w             |                  |               | Cmdq2_bandwidth_r                 |                  |              |                   |
| )x308 | Cmdq2_latency_w                     |               |                  |               | Cmdq2_latency_r                   |                  |              |                   |
|       | Cmdq3_bandwidth_                    | W             |                  |               | Cmdq3_bandwidth_r                 |                  |              |                   |
| )x318 | Cmdq3_latency_w                     |               |                  |               | Cmdq3_latency_r                   |                  |              |                   |
| )x320 | tRESYNC_length                      | tRESYNC_shift | tRESYNC_max      | tRESYNC_min   | Pre_predict                       |                  | tXS          | tREF_low          |
| )x328 |                                     |               |                  |               |                                   |                  |              | tRESYNC_delay     |
| )x330 | Stat_en                             | Rdbuffer_max  | Retry            | Wr_pkg_num    | Rwq_rb                            | Stb_en           | Addr_new     | tRDQidle          |
| )x338 |                                     |               |                  | Rd_fifo_depth | Retry_cnt                         |                  |              |                   |
| )x340 | tREFretention                       |               |                  |               |                                   | Ref_num          | tREF_IDLE    | Ref_sch_en        |
| )x348 |                                     |               |                  |               |                                   |                  |              |                   |
| )x350 | Lpbk_data_en                        |               |                  |               |                                   |                  |              |                   |
| )x358 | 3                                   |               |                  |               |                                   | Lpbk_ecc_mask_en | Lpbk_ecc_en  | Lpbk_data_mask_en |
| )x360 | Int_ecc_cnt_fatal Int_ecc_cnt_error |               |                  |               | Ecc_cnt_cs_3                      | Ecc_cnt_cs_2     | Ecc_cnt_cs_1 | Ecc_cnt_cs_0      |
| )x368 |                                     |               |                  |               |                                   |                  |              |                   |
| )x370 | Prior_age3 Prior_age2               |               |                  |               | Prior_age1                        |                  | Prior_age_0  |                   |
| )x378 |                                     |               |                  |               |                                   |                  |              | Row_hit_place     |
| )x380 | Zq_cnt_1                            |               |                  |               | Zq_cnt_0                          |                  |              |                   |
| )x388 | Zq_cnt_3                            |               |                  |               | Zq_cnt_2                          |                  |              |                   |



### 9.5 软件编程指南

#### 9.5.1 初始化操作

初始化操作由软件向寄存器 Init\_start (0x018) 写入 1 时开始,在设置 Init\_start 信号之前,必须将其它所有寄存器设置为正确的值。

软硬件协同的 DRAM 初始化过程如下:

- (1) 软件向所有的寄存器写入正确的配置值,但是 Init\_start (0x018) 在这一过程中 必须保持为 0;
- (2) 软件将 Init start (0x018) 设置为 1, 这将导致硬件初始化的开始;
- (3) PHY 内部开始初始化操作,DLL 将尝试进行锁定操作。如果锁定成功,则可以从 Dll\_init\_done (0x000) 读出对应状态,并可以从 Dll\_value\_ck (0x000) 读写当 前锁定延迟线个数;如果锁定不成功,则初始化不会继续进行(此时可以通过设置 Dll bypass (0x018) 使得初始化继续执行);
- (4) DLL 锁定(或者 bypass 设置)之后,控制器将根据对应 DRAM 的初始化要求向 DRAM 发出相应的初始化序列,例如对应的 MRS 命令, ZQCL 命令等等;
- (5) 软件可以通过采样 Dram init (0x160) 寄存器来判断内存初始化操作是否完成。

### 9.5.2 复位引脚的控制

为了在 STR 等状态下更加简单地控制复位引脚,可以通过 reset\_ctrl (0x150) 寄存器 进行特别的复位引脚 (DDR\_RESETn) 控制,主要的控制模式有两种:

- (1) 一般模式, reset\_ctrl[1:0] == 2' b00。这种模式下,复位信号引脚的行为与一般的控制模式相兼容。主板上直接将 DDR\_RESETn 与内存槽上的对应引脚相连。引脚的行为是:
- 未上电时:引脚状态为低;
- 上电时:引脚状态为低;
- 控制器开始初始化时,引脚状态为高;
- 正常工作时,引脚状态为高。

时序如下图所示:





- (2) 反向模式, reset\_ctrl[1:0] == 2' b10。这种模式下, 复位信号引脚在进行内存实际控制的时候, 有效电平与一般的控制模式相反。所以主板上需要将 DDR\_RESETn 通过反向器与内存槽上的对应引脚相连。引脚的行为是:
- 未上电时:引脚状态为低;
- 上电时:引脚状态为低;
- 控制器开始配置时:引脚状态为高;
- 控制器开始初始化时:引脚状态为低;
- 正常工作时:引脚状态为低。

时序如下图所示:



- (3) 复位禁止模式,pm\_reset\_ctr1[1:0] == 2'b01。这种模式下,复位信号引脚在整个内存工作期间,保持低电平。所以主板上需要将 DDR\_RESETn 通过反向器与内存槽上的对应引脚相连。引脚的行为是:
- 始终为低;

时序如下图所示:





由后两种复位模式相配合,就可以直接在使用内存控制器的复位信号的情况下实现 STR 控制。当整个系统从关闭状态下启动时,使用(2)中的方法来使用内存条正常复位并开始工作。当系统从 STR 中恢复的时候,使用(3)中的方法来重新配置内存条,使得在不破坏内存条原有状态的条件上使其重新开始正常工作。

#### 9.5.3 Leveling

Leveling 操作是在 DDR3 中,用于智能配置内存控制器读写操作中各种信号间相位关系的操作。通常它包括了 Write Leveling、Read Leveling 和 Gate Leveling。在本控制器中,只实现了 Write Leveling 与 Gate Leveling,Read Leveling 没有实现,软件需要通过判断读写的正确性来实现 Read Leveling 所完成的功能。除了在 Leveling 过程中操作的 DQS 相位、GATE 相位之外,还可以根据这些最后确认的相位来计算出写 DQ 相位、读 DQ 相位的配置方法。

### 9.5.3.1 Write Leveling

- (1) Write Leveling 用于配置写 DQS 与时钟之间的相位关系,软件编程需要参照如下步骤。
- (2) 完成控制器初始化,参见上一小节内容;
- (3) 将 D11 wrdqs x (x = 0···8) 设置为 0;
- (4) 设置Lvl mode (0x180) 为 2' b01;
- (5) 采样 Lvl\_ready (0x180) 寄存器,如果为1,表示可以开始 Write Leveling 请求;
- (6) 设置Lvl req (0x180) 为1;
- (7) 采样 Lvl\_done (0x180) 寄存器,如果为 1,表示一次 Write Leveling 请求完成;



- (8) 采样 Lv1\_resp\_x(0x180、0x188)寄存器,如果为 0,则将对应的 D11\_wrdqs\_x[6:0]增加 1,并重复执行 5-7;如果为 1,则表示 Write Leveling 操作已经成功;
- (9) 此时 D11\_wrdqs\_x 的值就应该是正确的设置值。
- (10) 至此 Write Leveling 操作结束。如果这个过程中,第一次采样就发现 Lvl\_resp\_x 为 1,则这个结果是有问题的,应该检查其它的寄存器是否有错误的设置,这些寄存器可能包括 Wrdqs\_lt\_half、Dqs\_start\_edge、Dqs\_stop\_edge、Dqs\_oe\_begin、Dqs oe end。
- (11)接着根据 Dll\_wrdqs\_x 的值是否小于 0x40 来设置 Wrdqs\_lt\_half\_x;
- (12) 根据 D11\_wrdqs\_x 的值是否小于 0x20 来设置 D11\_wrdata\_x。如果 D11\_wrdqs\_x > 0x20, D11\_wrdata\_x = D11\_wrdqs\_x 0x20, 否则 D11\_wrdata\_x = D11\_wrdqs\_x + 0x60;
- (13) 根据 Dll wrdata x 的值是否小于 0x40 来设置 Wrdata lt half x;
- (14) 判断是否存在以下情况:不同的 D11\_wrdata\_x 值在 0x40 附近,且有跨越 0x40 边界的情况出现(指有的 D11\_wrdata\_x 略小于 0x40,有的 D11\_wrdata\_x 略大于 0x40)。如果出现这种情况,设置对应 Wrdata\_lt\_half\_x == 0 数据组的 Write clk delay x 为 1。再将 tPHY WRDATA 与 tRDDATA 的值减 1;
- (15)将Lvl\_mode (0x180)设置为2'b00,退出Write Leveling模式;

#### 9.5.3.2 Gate Leveling

Gate Leveling 用于配置控制器内使能采样读 DQS 窗口的时机,软件编程参照如下步骤。

- (1) 完成控制器初始化,参见上一小节内容;
- (2) 完成 Write Leveling, 参见上一小节内容;
- (3) 将 D11 gate x (x = 0···8) 设置为 0;
- (4) 设置 Lv1 mode (0x180) 为 2' b10:
- (5) 采样 Lvl ready (0x180) 寄存器,如果为1,表示可以开始 Gate Leveling 请求;
- (6) 设置 Lv1 req (0x180) 为 1;
- (7) 采样 Lvl done (0x180) 寄存器,如果为 1,表示一次 Gate Leveling 请求完成;
- (8) 采样 Lv1\_resp\_x[0] (0x180、0x188) 寄存器。如果第一次采样发现 Lv1\_resp\_x[0] 为 1,则将对应的 D11\_gate\_x[6:0] 增加 1,并重复执行 6-8,直至采样结果为 0,否则进行下一步;
- (9) 如果采样结果为 0,则将对应的 D11\_gate\_x[6:0]增加 1,并重复执行 6-9;如果为 1,则表示 Gate Leveling 操作已经成功;



- (10) 至此 Gate Leveling 操作结束,此时 Dll\_gate\_x[6:0]与 Dll\_wrdata\_x[6:0]的和实际上就是读 DQS 相对于 PHY 内部时钟的相位关系。下面根据 Leveling 的结果对各个参数进行调整。
- (11) 如果 Dll\_gate\_x[6:0] 与 Dll\_wrdata\_x[6:0] 的和小于 0x20 或者大于 0x60,那么 Dll\_rddqs\_lt\_halt 设置为 1。因为 rddqs 的相位关系实际上等于在输入的读 DQS 基础上再延迟 1/4。
- (12) 此时如果 D11\_gate\_x 的值大于 0x40,则将 D11\_gate\_x 的值减去 0x40;否则将其设为 0即可。
- (13)调整完毕后,再分别进行两次 Lvl\_req操作,观察 Lvl\_resp\_x[7:5]与 Lvl\_resp\_x[4:2]的值变化,如果各增加为 Burst\_length/2,则继续进行第 13 步操作;如果不为 4,可能需要对 Rd\_oe\_begin\_x 进行加一或减一操作,如果大于 Burst length/2,很可能需要对 Dll gate x 的值进行一些微调
- (14)将Lv1 mode (0x180) 设置为 2' b00, 退出 Gate Leveling 模式;

### 9.5.4 单独发起MRS命令

内存控制器向内存发出的 MRS 命令次序分别为:

MR2 CSO, MR2 CS1, MR2 CS2, MR2 CS3,

MR3 CSO, MR3 CS1, MR3 CS2, MR3 CS3,

MR1 CSO, MR1 CS1, MR1 CS2, MR1 CS3,

MRO CSO, MR1 CS1, MR1 CS2, MR1 CS3.

其中,对应 CS 的 MRS 命令是否有效,是由 Cs\_mrs 决定,只有 Cs\_mrs 上对应每个片选的位有效,才会真正向 DRAM 发出这个 MRS 命令。对应的每个 MR 的值由寄存器 Mr\*\_cs\*决定。这些值同时也用于初始化内存时的 MRS 命令。

#### 具体操作如下:

- (1) 将寄存器 Cs mrs (0x168)、Mr\* cs\* (0x190 0x1B8) 设置为正确的值;
- (2) 设置 Command mode (0x190) 为 1, 使控制器进入命令发送模式;
- (3) 采样 Status\_cmd (0x190),如果为 1,则表示控制器已进入命令发送模式,可以进行下一步操作,如果为 0,则需要继续等待;
- (4) 写 Mrs reg (0x198) 为 1, 向 DRAM 发送 MRS 命令;
- (5) 采样 Mrs done (0x198), 如果为 1,则表示 MRS 命令已经发送完毕,可以退出,如



果为 0,则需要继续等待;

(6) 设置 Command mode (0x190) 为 0, 使控制器退出命令发送模式。

#### 9.5.5 任意操作控制总线

内存控制器可以通过命令发送模式向 DRAM 发出任意的命令组合,软件可以设置 Cmd\_cs、Cmd\_cmd、Cmd\_ba、Cmd\_a (0x168),在命令发送模式下向 DRAM 发出。

具体操作如下:

- (1) 将寄存器 Cmd cs、Cmd cmd、Cmd ba、Cmd a (0x190) 设置为正确的值;
- (2) 设置 Command\_mode (0x190) 为 1, 使控制器进入命令发送模式;
- (3) 采样 Status\_cmd (0x190),如果为1,则表示控制器已进入命令发送模式,可以进行下一步操作,如果为0,则需要继续等待;
- (4) 写 Cmd req (0x190) 为 1, 向 DRAM 发送命令;
- (5) 设置 Command mode (0x190) 为 0, 使控制器退出命令发送模式。

#### 9.5.6 自循环测试模式控制

自循环测试模式可以分别在测试模式下或者正常功能模式下使用,为此,本内存控制器 分别实现了两套独立的控制接口,一套用于在测试模式下由测试端口直接控制,另一套用于 在正常功能模式下由寄存器配置模块进行配置使能测试。

这两套接口的复用使用端口 test\_phy 进行控制,当 test\_phy 有效时,使用控制器的 test\_\*端口进行控制,此时的自测试完全由硬件控制;当 test\_phy 无效时,使用软件编程的 pm \*的参数进行控制。使用测试端口的具体信号含义可以参考寄存器参数中的同名部分。

这两套接口从控制的参数来说基本一致,仅仅是接入点不同,在此介绍软件编程时的控制方法。具体操作如下:

- (1) 将内存控制器所有的参数全部正确设置;
- (2) 将寄存器 Lpbk en (0x270) 设为 1;
- (3) 将寄存器 Init start (0x018) 设为 1;
- (4) 采样寄存器 Dll\_init\_done (0x000), 如果这个值为 1,表示 DLL 已经锁定,可以进行下一步操作;如果这个值为 0,则需要继续等待;(当使用测试端口进行控制的时候,因为看不到这个寄存器的输出,所以不需要采样这个寄存器,而只需要在



此处等待一定的时间,以确保 DLL 锁定完成,再进行下一步操作);

- (5) 将寄存器 Lpbk\_start (0x270) 设为 1; 此时自循环测试正式开始。 到此为止自循环测试已经开始,软件需要经常检测是否有错误发生,具体操作如下:
- (6) 采样寄存器 Lpbk\_error (0x270),如果这个值为 1,表示有错误发生,此时可以通过 Lpbk\_\*等观测用寄存器 (0x270、0x278、0x280、0x280)来观测第一个出错时的错误数据和正确数据;如果这个值为 0,表示还没有出现过数据错误。

#### 9.5.7 ECC功能使用控制

ECC 功能只有在 64 位模式下可以使用。

Ecc enable 包括以下 4 个控制位:

Ecc\_enable[0]控制是否使能 ECC 功能,只有设置了这个有效位,才会使能 ECC 功能。

Ecc\_enable[1]控制是否通过处理器内部的读响应通路进行报错,以使得出现 ECC 两位错的读访问能立即导致处理器核的异常发生。

Ecc\_enable[2]控制是否通过处理器内部的写响应通路进行报错,以使得出现 ECC 两位错的写访问(读后写)能立即导致处理器核的异常发生。

Ecc\_enable[3]控制寄存器内记录出错信息的触发时机。这些出错信息在没有软件进行处理的情况下不会连续触发,只会记录第一次出错时的信息。这些信息包括 Ecc\_code,Ecc\_addr,Ecc\_data。当 Ecc\_enable[3]为 0 的情况下,只要出现了 ECC 错误(包括 1 位错与 2 位错),这个记录就会被触发,当 Ecc\_enable[3]为 1 的情况下,只有出现了 ECC 两位错,这个记录才会被触发。而这个"第一次"指的是中断向量寄存器的对应位被置位。也就是说,记录的是导致中断发生的那一次访问。

除此之外,ECC 出错还可以通过中断方式通知处理器核。这个中断通过 Int\_enable 进行控制。中断包括两个向量,Int\_vector[0]表示出现 ECC 错误(包括 1 位错与 2 位错),Int\_vector[1]表示出现 ECC 两位错。Int\_vector的清除通过向对应位写 1 实现。



## 10 HyperTransport 控制器

龙芯 3A3000/3B3000 中,HyperTransport 总线用于实现外部设备连接以及多芯片互联。用于外设连接时,可由用户程序自由选择是否支持 IO Cache 一致性(通过地址窗口 Uncache 进行设置,详见 10.5.13 节):当配置为支持 Cache 一致性模式时,IO 设备对内 DMA 的访问对于 Cache 层次透明,即由硬件自动维护其一致性,而无需软件通过程序 Cache 指令进行维护;当 HyperTransport 总线用于多芯片互联时,HTO 控制器(初始地址为0x0C00\_0000\_0000 - 0x0DFF\_FFFF\_FFFF)可通过引脚配置来支持片间 Cache 一致性传输,而HT1 控制器(初始地址为0x0E00\_0000\_0000 - 0x0FFF\_FFFF\_FFFF)可通过软件配置来支持片间 Cache 一致性维护,详见 10.7 节。

HyperTransport 控制器最高支持双向 16 位宽度以及 2.0GHz 运行频率。在系统自动初始化建立连接后,用户程序可以通过修改协议中相应的配置寄存器,实现对宽度和运行频率的更改,并重新进行初始化,具体方法见 10.1 节。

龙芯 3A3000/3B3000 HyperTransport 控制器的主要特征如下:

- 支持 HT1.0/HT3.0 协议
- 支持 200/400/800/1600/2000MHz 运行频率
- HT1.0 支持 8 位宽度
- HT3.0 支持 8/16 位宽度
- 每个 HT 控制器(HT0/HT1)可以配置为两个 8 位 HT 控制器
- 总线控制信号(包括 PowerOK, Rstn, LDT\_Stopn)方向可配置
- ◆ 外设 DMA 空间 Cache/Uncache 可配置
- 用于多片互联时可配置为 Cache 一致性模式

## 10.1 HyperTransport硬件设置及初始化

HyperTransport 总线由传输信号总线和控制信号引脚等组成,下表给出了 HyperTransport 总线相关的引脚及其功能描述。

表 10-1 HyperTransport 总线相关引脚信号

| 引脚      | 名称     | 描述                                      |
|---------|--------|-----------------------------------------|
| HT0 8x2 | 总线宽度配置 | 1:将 16位 HyperTransport 总线配置为两个独立的 8位总线, |

|                  |              | 0.011 4.01 \ 7.11\ 1.12 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1.11 \ 1. |
|------------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  |              | 分别由两个独立的控制器控制,地址空间的区分为                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                  |              | HTO_Lo: address[40] = 0;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                  |              | HT0_Hi: address[40] = 1;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                  |              | 0:将 16位 HyperTransport 总线作为一个 16位总线使用,由                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                  |              | HT0_Lo 控制,地址空间为 HT0_Lo 的地址,即 address[40]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                  |              | =0;HT0_Hi 所有信号无效。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| HT0_Lo_mode      | 主设备模式        | 1: 将 HT0_Lo 设为主设备模式,这个模式下,总线控制信号等                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                  |              | 由 HT0_Lo 驱动,这些控制信号包括 HT0_Lo_Powerok,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                  |              | HT0_Lo_Rstn,HT0_Lo_Ldt_Stopn。这个模式下,这些控                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                  |              | 制信号也可以为双向驱动。同时这个引脚决定(取反)寄存                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                  |              | 器 "Act as Slave" 的 初 始 值 , 这 个 寄 存 器 为 0 时 ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                  |              | HyperTransport 总线上的包中的 Bridge 位为 1,否则为 0。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                  |              | 另外,这个寄存器为 0 时,如果 HyperTransport 总线上的                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                  |              | 请求地址没有在控制器的接收窗口命中时,将作为 P2P 请                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                  |              | 求重新发回总线,如果这个寄存器为1时,没有命中,则作                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                  |              | 为错误请求做出响应。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                  |              | 0:将 HT0_Lo 设为从设备模式,这个模式下,总线控制信号等                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                  |              | 由对方设备驱动,这些控制信号包括 HT0_Lo_Powerok,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                  |              | HT0_Lo_Rstn,HT0_Lo_Ldt_Stopn。这个模式下,这些控                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                  |              | 制信号由对方设备驱动,如果没有被正确驱动,则 HT 总线                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                  |              | 不能正确工作。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| HT0_Lo_Powerok   | 总线 Powerok   | HyperTransport 总线 Powerok 信号,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  |              | HT0_Lo_Mode 为 1 时,由 HT0_Lo 控制;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                  |              | HT0_Lo_Mode 为 0 时,由对方设备控制。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| HT0_Lo_Rstn      | 总线 Rstn      | HyperTransport 总线 Rstn 信号,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                  |              | HT0_Lo_Mode 为 1 时,由 HT0_Lo 控制;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                  |              | HT0_Lo_Mode 为 0 时,由对方设备控制。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| HT0_Lo_Ldt_Stopn | 总线 Ldt_Stopn | HyperTransport 总线 Ldt_Stopn 信号,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                  |              | HT0_Lo_Mode 为 1 时,由 HT0_Lo 控制;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                  |              | HT0_Lo_Mode 为 0 时,由对方设备控制。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| HT0_Lo_Ldt_Reqn  | 总线 Ldt_Reqn  | HyperTransport 总线 Ldt_Reqn 信号,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| HT0_Hi_mode      | 主设备模式        | 1: 将 HT0_Hi 设为主设备模式,这个模式下,总线控制信号等                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                  |              | 由 HT0_Hi 驱动,这些控制信号包括 HT0_Hi_Powerok,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                  |              | HT0_Hi_Rstn,HT0_Hi_Ldt_Stopn。这个模式下,这些控                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                  |              | 制信号也可以为双向驱动。同时这个引脚决定(取反)寄存                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                  |              | 器 "Act as Slave"的初始值,这个寄存器为 0 时,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                  |              | HyperTransport 总线上的包中的 Bridge 位为 1,否则为 0。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                  |              | 另外,这个寄存器为 0 时,如果 HyperTransport 总线上的                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                  |              | 另外,这个寄存器为 0 时,如果 HyperTransport 总线上的请求地址没有在控制器的接收窗口命中时,将作为 P2P 请                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                  |              | • • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                  |              | 请求地址没有在控制器的接收窗口命中时,将作为 P2P 请                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                  |              | 请求地址没有在控制器的接收窗口命中时,将作为 P2P 请求重新发回总线,如果这个寄存器为 1 时,没有命中,则作                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

|                   |              | HTO_Hi_Rstn,HTO_Hi_Ldt_Stopn。这个模式下,这些控 |
|-------------------|--------------|----------------------------------------|
|                   |              | 制信号由对方设备驱动,如果没有被正确驱动,则 HT 总线           |
|                   |              | 不能正确工作。                                |
| HT0_Hi_Powerok    | 总线 Powerok   | HyperTransport 总线 Powerok 信号,          |
|                   |              | HT0_Lo_Mode 为 1 时,由 HT0_Hi 控制;         |
|                   |              | HT0_Lo_Mode 为 0 时,由对方设备控制。             |
|                   |              | HT0_8x2 为 1 时,控制高 8 位总线;               |
|                   |              | HT0_8x2 为 0 时,无效。                      |
| HT0_Hi_Rstn       | 总线 Rstn      | HyperTransport 总线 Rstn 信号,             |
|                   |              | HT0_Lo_Mode 为 1 时,由 HT0_Hi 控制;         |
|                   |              | HTO_Lo_Mode 为 0 时,由对方设备控制。             |
|                   |              | HT0_8x2 为 1 时,控制高 8 位总线;               |
|                   |              | HT0_8x2 为 0 时,无效。                      |
| HT0_Hi_Ldt_Stopn  | 总线 Ldt_Stopn | HyperTransport 总线 Ldt_Stopn 信号,        |
|                   |              | HT0_Lo_Mode 为 1 时,由 HT0_Hi 控制;         |
|                   |              | HT0_Lo_Mode 为 0 时,由对方设备控制。             |
|                   |              | HT0_8x2 为 1 时,控制高 8 位总线;               |
|                   |              | HT0_8x2 为 0 时,无效。                      |
| HT0_Hi_Ldt_Reqn   | 总线 Ldt_Reqn  | HyperTransport 总线 Ldt_Reqn 信号,         |
|                   |              | HT0_8x2 为 1 时,控制高 8 位总线;               |
|                   |              | HT0_8x2 为 0 时,无效。                      |
| HT0_Rx_CLKp[1:0]  | CLK[1:0]     | HyperTransport 总线 CLK 信号               |
| HT0_Rx_CLKn[1:0]  |              | HT0_8x2 为 1 时,CLK[1]由 HT0_Hi 控制        |
| HT0_Tx_CLKp[1:0]  |              | CLK[0]由 HT0_Lo 控制                      |
| HT0_Tx_CLKp[1:0]  |              | HT0_8x2 为 0 时,CLK[1:0]由 HT0_Lo 控制      |
| HT0_Rx_CTLp[1:0]  | CTL[1:0]     | HyperTransport 总线 CTL 信号               |
| HT0_Rx_CTLn[1:0]  |              | HT0_8x2 为 1 时,CTL[1]由 HT0_Hi 控制        |
| HT0_Tx_CTLp[1:0]  |              | CTL[0]由 HT0_Lo 控制                      |
| HT0_Tx_CTLn[1:0]  |              | HT0_8x2 为 0 时,CTL[1]无效                 |
|                   |              | CTL[0]由 HT0_Lo 控制                      |
| HT0_Rx_CADp[15:0] | CAD[15:0]    | HyperTransport 总线 CAD 信号               |
| HT0_Rx_CADn[15:0] |              | HT0_8x2 为 1 时,CAD[15:8]由 HT0_Hi 控制     |
| HT0_Tx_CADp[15:0] |              | CAD[ 7:0]由 HT0_Lo 控制                   |
| HT0_Tx_CADn[15:0] |              | HT0_8x2 为 0 时,CAD[15:0]由 HT0_Lo 控制     |

HyperTransport 的初始化在每次复位完成后自动开始,冷启动后 HyperTransport 总线将自动工作在最低频率(200MHz)与最小宽度(8bit),并尝试进行总线初始化握手。初始化是否已处于完成状态可以由寄存器"Init Complete"(见 10. 5. 2 节)读出。初始化完成后,总线的宽度可以由寄存器"Link Width Out"与"Link Width In"(见 10. 5. 2 节)读出。初始化完成后,用户可重写寄存器"Link Width Out"、"Link Width In"以及"Link Freq",同时还需要配置对方设备的相应寄存器,配置完成后需要热复位总线或者通过



"HT\_Ldt\_Stopn"信号进行重新初始化操作,以便使寄存器重写后的值生效。重新初始化完成后 HyperTransport 总线将工作在新的频率和宽度。需要注意的是,HyperTransport 两端的设备的配置需要一一对应,否则将使得 HyperTransport 接口不能正常工作。

## 10.2 HyperTransport协议支持

龙芯 3A3000/3B3000 的 HyperTransport 总线支持 1.03/3.0 版协议中的大部分命令,并且在支持多芯片互联的扩展一致性协议中加入了一些扩展指令。在以上两种模式下, HyperTransport 接收端可接收的命令如下表所示。需要注意的是, 不支持 HyperTransport 总线的原子操作命令。

编码 通道 标准模式 扩展 (一致性) 000000 NOP 空包或流控 000001 **NPC FLUSH** 无操作 NPC bit 5: 必为 1, POSTED Write bit 5: 0 - Nonposted x01xxx 1 - Posted PC bit 2: 0 – Byte bit 2: 0 - Byte 1 – Doubleword Doubleword bit 1: Don't Care bit 1: Don't Care bit 0: 必为 1 bit 0: Don't Care 01xxxx NPC Read bit 3: Don't Care bit 3: Don't Care bit 2: 0 - Byte bit 2: 0 - Byte 1 – Doubleword 1 bit 1: Don't Care Doubleword bit 1: Don't Care bit 0: 必为 1 bit 0: Don't Care 110000 R RdRespons 读操作返回 写操作返回 110011 TgtDone R 110100 PC WrCoherent 写命令扩展 110101 PC WrAddr 写地址扩展 111000 R RespCohere 读响应扩展 nt NPC RdCoherent 读命令扩展 111001 111010 PC Broadcast 无操作 NPC 读地址扩展 111011 RdAddr **FENCE** 111100 PC 保证序关系 Sync/Error 111111 Sync/Error

表 10-2 HyperTransport 接收端可接收的命令

对于发送端,在两种模式下会向外发送的命令如下表所示。

表 10-3 两种模式下会向外发送的命令

| 编码     | 通道        | 命令    | 标准模式                               | 扩展(一致性)             |
|--------|-----------|-------|------------------------------------|---------------------|
| 000000 | -         | NOP   | 空包或流控                              |                     |
| x01x0x | NPC<br>or | Write | bit 5: 0 - Nonposted<br>1 - Posted | bit 5: 必为 1, POSTED |



|        | PC  |              | bit 2: 0 – Byte   | bit 2: 0 – Byte |
|--------|-----|--------------|-------------------|-----------------|
|        |     |              | 1 – Doubleword    | 1 – Doubleword  |
|        |     |              | bit 0: 必为 0       | bit 0: 必为 1     |
|        |     |              | bit 2: 0 – Byte   | bit 2: 0 – Byte |
| 010x0x | NPC | Read         | 1 – Doubleword    | 1 – Doubleword  |
|        |     |              | bit 0: Don't Care | bit 0: 必为 1     |
| 110000 | R   | RdResponse   | 读操作返回             |                 |
| 110011 | R   | TgtDone      | 写操作返回             |                 |
| 110100 | PC  | WrCoherent   |                   | 写命令扩展           |
| 110101 | PC  | WrAddr       |                   | 写地址扩展           |
| 111000 | R   | RespCoherent |                   | 读响应扩展           |
| 111001 | NPC | RdCoherent   |                   | 读命令扩展           |
| 111011 | NPC | RdAddr       |                   | 读地址扩展           |
| 111111 | -   | Sync/Error   | 只会转发              |                 |

## 10.3 HyperTransport中断支持

HyperTransport 控制器提供了 256 个中断向量,可以支持 Fix, Arbiter 等类型的中断,但是,没有对硬件自动 EOI 提供支持。对于以上两种支持类型的中断,控制器在接收之后会自动写入中断寄存器中,并根据中断屏蔽寄存器的设置对系统中断控制器进行中断通知。具体的中断控制请见 10.5.8 节中的中断控制寄存器组。

另外,控制器对 PIC 中断做了专门的支持,以加速该类型的中断处理。

一个典型的 PIC 中断由下述步骤完成: ①PIC 控制器向系统发送 PIC 中断请求; ②系统 向 PIC 控制器发送中断向量查询; ③PIC 控制器向系统发送中断向量号; ④系统清除 PIC 控制器上的对应中断。只有上述 4 步都完成后,PIC 控制器才会对系统发出下一个中断。对于 龙芯 3A3000/3B3000 HyperTransport 控制器,将自动进行前 3 步的处理,并将 PIC 中断向量写入 256 个中断向量中的对应位置。而软件系统在处理了该中断之后,需要进行第 4 步处理,即向 PIC 控制器发出清中断。之后开始下一个中断的处理过程。

# 10.4 HyperTransport地址窗口

## 10.4.1 HyperTransport空间

龙芯 3A3000/3B3000 处理器中,默认的 4个 HyperTransport 接口的地址窗口分布如下:

表 10-4 默认的 4 个 HyperTransport 接口的地址窗口分布

| 基地址              | 结束地址             | 大小       | 定义        |
|------------------|------------------|----------|-----------|
| 0x0C00_0000_0000 | 0x0CFF_FFFF_FFFF | 1 Tbytes | HT0_LO 窗口 |



| 0x0D00_0000_0000 | 0x0DFF_FFFF_FFFF | 1 Tbytes | HT0_HI 窗口 |
|------------------|------------------|----------|-----------|
| 0x0E00_0000_0000 | 0x0EFF_FFFF_FFFF | 1 Tbytes | HT1_LO 窗口 |
| 0x0F00_0000_0000 | 0x0FFF_FFFF_FFFF | 1 Tbytes | HT1_HI 窗口 |

在默认情况下(未对系统地址窗口另行配置),软件根据上述地址空间对各个 HyperTransport 接口进行访问,此外,软件还可以通过对交叉开关上的地址窗口进行配置 实现用其它的地址空间对其进行访问(详见 2.5 节)。每个 HyperTransport 接口的内部 40 位地址空间其地址窗口分布如下表所示。

基地址 结束地址 大小 定义 0x00 0000 0000 0xFC\_FFFF\_FFFF MEM 空间 1012 Gbytes 保留 0xFD\_0000\_0000 0xFD\_F7FF\_FFFF 3968 Mbytes 16 Mbytes 0xFD\_F800\_0000 0xFD\_F8FF\_FFFF 中断 0xFD\_F900\_0000 0xFD\_F90F\_FFFF 1 Mbyte PIC 中断响应 0xFD\_F910\_0000 0xFD\_F91F\_FFFF 1 Mbyte 系统信息 0xFD\_F920\_0000 0xFD\_FAFF\_FFFF 30 Mbytes 保留 0xFD\_FB00\_0000 0xFD\_FBFF\_FFFF HT 控制器配置空间 16 Mbytes 0xFD\_FC00\_0000 I/O 空间 0xFD\_FDFF\_FFFF 32 Mbytes 0xFD\_FE00\_0000 0xFD\_FFFF\_FFFF 32 Mbytes HT 总线配置空间 0xFE\_0000\_0000 0xFF\_FFFF\_FFFF 8 Gbytes 保留

表 10-5 龙芯 3 号处理器 HyperTransport 接口内部的地址窗口分布

# 10.4.2 HyperTransport控制器内部窗口配置

龙芯 3A3000/3B3000 处理器的 HyperTransport 接口中提供了多种丰富的地址窗口供用户使用,这些地址窗口的作用和功能描述如下表所示。

表 10-6 龙芯 3A3000/3B3000 处理器 HyperTransport 接口中提供的地址窗口

| 地址窗口                            | 窗口数 | 接受总线           | 作用                                                            | 备注                                                |
|---------------------------------|-----|----------------|---------------------------------------------------------------|---------------------------------------------------|
| 接收窗口<br>(窗口配置见<br>10.5.7节)      | 3   | HyperTransport | 判 断 是 否 接 收<br>HyperTransport<br>总线上发出的访<br>问。                | 从 分 定 P2P 切 问 里 新 及 凹 到                           |
| Post 窗口<br>(窗口配置见<br>10.5.11 节) | 2   | 内部总线           | 判断是否将内部<br>总 线 对<br>HyperTransport<br>总线的写访问作<br>为 Post Write | 问将作为 Post Write。<br>Post Write: HyperTransport 协议 |



|                                    |   |                |                          | 这个写访问之后就将对处理器进<br>行写访问完成响应。                                                                                                                     |
|------------------------------------|---|----------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| 可预取窗口<br>(窗口配置见<br>10.5.12 节)      | 2 | 内部总线           | 判断是否接收内部的 Cache 访问,取指访问。 |                                                                                                                                                 |
| Uncache 窗口<br>(窗口配置见<br>10.5.13 节) | 2 | HyperTransport | HyperTransport           | 龙芯 3A3000/3B3000 处理器内部的 IO DMA 访问,在情况下将作为 Cache 方式访问经由 SCache 判断是命中,从而维护其IO一致性信息。而通过这些窗口的配置,可以使在这些窗口命中的访问以 Uncache 的方式直接访问内存,而不通过硬件维护其 IO一致性信息。 |

#### 10.5 配置寄存器

配置寄存器模块主要用于控制从 AXI SLAVE 端或是 HT RECEIVER 端到达的配置寄存器访问请求,进行外部中断处理,并保存了大量软件可见的用于控制系统各种工作方式的配置寄存器。

首先,用于控制 HT 控制器各种行为的配置寄存器的访问与存储都在本模块中,本模块的访问偏移地址在 HT 控制器端为 0xFD\_FB00\_0000 到 0xFD\_FBFF\_FFFF。HT 控制器中所有软件可见寄存器如下表所示:

偏移地址 名称 描述 0x30 0x34 0x38 0x3c **Bus Reset Control Bridge Control** 0x40 Command, Capabilities Pointer, Capability ID 0x44 Link Config, Link Control Capability Registers 0x48 Revision ID, Link Freq, Link Error, Link Freq Cap 0x4c Feature Capability MISC 0x50 自定义寄存器 0x54 接收诊断寄存器 用于诊断接收端采样的信号 0x58 中断路由方式选择寄存器 对应于3种中断路由方式 0x5c 接收缓存寄存器 0x60 HT 总线接收地址窗口 0 使能(外部访问) 接收地址窗口 0x64 配置寄存器 HT 总线接收地址窗口 0 基址(外部访问)

表 10-7 软件可见寄存器列表



| 0x68         |                       | HT 总线接收地址窗口 1 使能(外部访问)                              |
|--------------|-----------------------|-----------------------------------------------------|
| 0x6c         | -                     | HT 总线接收地址窗口 1 基址(外部访问)                              |
| 0x70         |                       | HT 总线接收地址窗口 2 使能(外部访问)                              |
| 0x74         |                       | HT 总线接收地址窗口 2 基址(外部访问)                              |
| 0x148        |                       | HT 总线接收地址窗口 3 使能(外部访问)                              |
| 0x14c        |                       | HT 总线接收地址窗口 3 基址(外部访问)                              |
| 0x150        |                       | HT 总线接收地址窗口 4 使能(外部访问)                              |
| 0x154        |                       | HT 总线接收地址窗口 4 基址(外部访问)                              |
| 0x80         |                       | HT 总线中断向量寄存器[31:0]                                  |
| 0x84         |                       | HT 总线中断向量寄存器[63:32]                                 |
| 0x88         |                       | HT 总线中断向量寄存器[95:64]                                 |
| 0x8c         |                       | HT 总线中断向量寄存器[127:96]                                |
| 0x90         | - <u>中断向量寄存器</u>      | HT 总线中断向量寄存器[159:128]                               |
| 0x94         |                       | HT 总线中断向量寄存器[191:160]                               |
| 0x98         |                       | HT 总线中断向量寄存器[223:192]                               |
| 0x9C         |                       | HT 总线中断向量寄存器[255:224]                               |
| 0x9C<br>0xA0 |                       | HT 总线中断使能寄存器[31:0]                                  |
|              |                       | HT 总线中断使能寄存器[63:32]                                 |
| 0xA4         |                       | HT 总线中断使能寄存器[95:64]                                 |
| 0xA8<br>0xAC |                       |                                                     |
| -            | →<br>- 中断使能寄存器        | HT 总线中断使能寄存器[127:96]                                |
| 0xB0         |                       | HT 总线中断使能寄存器[159:128]                               |
| 0xB4         |                       | HT 总线中断使能寄存器[191:160]                               |
| 0xB8         |                       | HT 总线中断使能寄存器[223:192]                               |
| 0xBC         |                       | HT 总线中断使能寄存器[255:224]                               |
| 0xC0         |                       | Interrupt Capability                                |
| 0xC4         | Interrupt Discovery & | DataPort                                            |
| 0xC8         | Configuration         | IntrInfo[31:0]                                      |
| 0xCC         |                       | Intrinfo[63:32]                                     |
| 0xD0         |                       | HT 总线 POST 地址窗口 0 使能(内部访问)                          |
| 0xD4         | POST地址窗口              | HT 总线 POST 地址窗口 0 基址(内部访问)                          |
| 0xD8         | 配置寄存器                 | HT 总线 POST 地址窗口 1 使能(内部访问)                          |
| 0xDC         |                       | HT 总线 POST 地址窗口 1 基址(内部访问)                          |
| 0xE0         |                       | HT 总线可预取地址窗口 0 使能(内部访问)                             |
| 0xE4         | 可预取地址窗口               | HT 总线可预取地址窗口 0 基址 (内部访问)                            |
| 0xE8         | 配置寄存器                 | HT 总线可预取地址窗口 1 使能(内部访问)                             |
| 0xEC         |                       | Ht 总线可预取地址窗口 1 基址(内部访问)                             |
| 0xF0         |                       | HT 总线 Uncache 地址窗口 0 使能(外部访问)                       |
| 0xF4         |                       | HT 总线 Uncache 地址窗口 0 基址(外部访问)                       |
| 0xF8         |                       | HT 总线 Uncache 地址窗口 1 使能(外部访问)                       |
| 0xFC         | Uncache 地址窗口          | HT 总线 Uncache 地址窗口 1 基址(外部访问)                       |
| 0x168        | 配置寄存器                 | HT 总线 Uncache 地址窗口 2 使能(外部访问)                       |
| 0x16C        |                       | HT 总线 Uncache 地址窗口 2 基址(外部访问)                       |
| 0x170        |                       | HT 总线 Uncache 地址窗口 3 使能(外部访问)                       |
| 0x174        |                       | HT 总线 Uncache 地址窗口 3 基址(外部访问)                       |
| 0x158        |                       | HT 总线 P2P 地址窗口 0 使能(外部访问)                           |
| 0x15C        |                       | HT 总线 P2P 地址窗口 0 基址(外部访问)                           |
|              |                       |                                                     |
| 0x160        | P2P 地址窗口配置寄存器         | HT 总线 P2P 地址窗口 1 使能(外部访问)                           |
|              | P2P 地址窗口配置寄存器<br>     | HT 总线 P2P 地址窗口 1 使能(外部访问) HT 总线 P2P 地址窗口 1 基址(外部访问) |



| 0x104 |                     | 发送端数据缓存大小寄存器                               |
|-------|---------------------|--------------------------------------------|
| 0x108 | 发送端缓存调试寄存器          | 用于人工设置发送端缓存的大小(调试用)                        |
| 0x10C | PHY 阻抗匹配配置寄存器       | 用于配置 PHY 发送端和接收端的阻抗匹配配置                    |
| 0x110 | Revision ID 寄存器     | 用于配置控制器版本                                  |
| 0x118 | Error Retry 控制寄存器   | Retry Count Rollover, Short Retry Attempts |
| 0x11C | Retry Count 寄存器     | 用于 HyerTransport 3.0 模式下错误重传计数             |
| 0x130 | Link Train 寄存器      | HyperTransport 3.0 链路初始化及链路训练控制            |
| 0x134 | Training 0 超时短计数寄存器 | 用于 Training 0 短计时超时阈值配置                    |
| 0x138 | Training 0 超时长计数寄存器 | 用于 Training 0 长计数超时阈值配置                    |
| 0x13C | Training 1 计数寄存器    | 用于 Training 1 计数阈值配置                       |
| 0x140 | Training 2 计数寄存器    | 用于 Training 2 计数阈值配置                       |
| 0x144 | Training 3 计数寄存器    | 用于 Training 3 计数阈值配置                       |
| 0x178 | <u>软件频率配置寄存器</u>    | 实现控制器在工作过程的频率切换                            |
| 0x17C | PHY 配置寄存器           | 用于配置 PHY 相关的物理参数                           |
| 0x180 | 链路初始化调试寄存器          | 用于忽略 PHY CDR lock 信号,并自定义等待时间              |
| 0x184 | LDT 调试寄存器           | 用于配置 LDT 信号无效到链路开始初始化的时间                   |

每个寄存存器的具体含义如下节如示:

# 10.5.1 Bridge Control

偏移量: 0x3C

复位值: 0x00000000

名称: Bus Reset Control

表 10-8 Bus Reset Control 寄存器定义

| 位域    | 位域名称     | 位宽 | 复位值     | 访问      | 描述                      |
|-------|----------|----|---------|---------|-------------------------|
| 31:23 | Reserved | 4  | 0x0     |         | 保留                      |
| 22    | Reset    | 12 | 0×0     | D/\\/   | 总线复位控制:                 |
| 22    | Neset    | 12 | 0x0 R/W | FX/ V V | 0->1: HT_RSTn 置 0,总线复位  |
|       |          |    |         |         | 1->0: HT_RSTn 置 1,总线解复位 |
| 21:0  | Reserved | 5  | 0x0     |         | 保留                      |

# 10.5.2 Capability Registers

偏移量: 0x40

复位值: 0x20010008

名称: Command, Capabilities Pointer, Capability ID

表 10-9 Command, Capabilities Pointer, Capability ID 寄存器定义

| 位域    | 位域名称     | 位宽 | 复位值 | 访问 | 描述                   |
|-------|----------|----|-----|----|----------------------|
| 31:29 | HOST/Sec | 3  | 0x1 | R  | Command 格式为 HOST/Sec |
| 28:27 | Reserved | 2  | 0x0 | R  | 保留                   |

66



| 26    | Act as Slave         | 1 | 0x0  | R/W | HOST/SLAVE 模式                  |
|-------|----------------------|---|------|-----|--------------------------------|
|       |                      |   | /0x1 |     | 初始值由引脚 HOSTMODE 决定             |
|       |                      |   |      |     | HOSTMODE 上拉: 0                 |
|       |                      |   |      |     | HOSTMODE 下拉: 1                 |
| 25    | Reserved             | 1 | 0x0  |     | 保留                             |
| 24    | Host Hide            | 1 | 0x0  | R/W | 是否禁止来自 HT 总线的寄存器访问             |
| 23    | Reserved             | 1 | 0x0  |     | 保留                             |
| 22:18 | Unit ID              | 5 | 0x0  | R/W | HOST 模式时:可用于记录使用 ID 个数         |
|       |                      |   |      |     | SLAVE 模式时:记录自身 Unit ID         |
| 17    | Double Ended         | 1 | 0x0  | R   | 不采用双 HOST 模式                   |
| 16    | Warm Reset           | 1 | 0x1  | R   | Bridge Control 中 reset 采用热复位方式 |
| 15:8  | Capabilities Pointer | 8 | 0xa0 | R   | 下一个 Cap 寄存器偏移地址                |
| 7:0   | Capability ID        | 8 | 80x0 | R   | HyperTransport capability ID   |

偏移量: 0x44

复位值: 0x00112000

名称: Link Config, Link Control

表 10-10 Link Config, Link Control 寄存器定义

| 位域    | 位域名称               | 位宽 | 复位值 | 访问  | 描述                              |
|-------|--------------------|----|-----|-----|---------------------------------|
| 31    | ht_phase_select    | 1  | 0x0 |     | 相位选择使能<br>O: 使能相位选择功能           |
|       | _disable           |    |     |     | 1: 禁用相位选择功能                     |
| 30:28 | Link Width Out     | 3  | 0x0 | R/W | 发送端宽度<br>冷复位后的值为当前连接的最大宽度, 写入此寄 |
|       |                    |    |     |     | 存器的值将会在下次热复位或是 HT               |
|       |                    |    |     |     | Disconnect 之后生效                 |
|       |                    |    |     |     | 000: 8位方式                       |
|       |                    |    |     |     | 001:16 位方式                      |
| 27    | Reserved           | 1  | 0x0 |     | 保留                              |
| 26:24 | Link Width In      | 3  | 0x0 | R/W | 接收端宽度                           |
|       |                    |    |     |     | 冷复位后的值为当前连接的最大宽度,写入此寄           |
|       |                    |    |     |     | 存器的值将会在下次热复位或是HT                |
|       |                    |    |     |     | Disconnect 之后生效                 |
| 23    | Dw Fc out          | 1  | 0x0 | R   | 发送端不支持双字流控                      |
| 22:20 | Max Link Width out | 3  | 0x1 | R   | HT 总线发送端最大宽度:16bits             |
| 19    | Dw Fc In           | 1  | 0x0 | R   | 接收端不支持双字流控                      |



| 18:16 | Max Link Width In | 3 | 0x1 | R   | HT 总线接收端最大宽度: 16bits                    |
|-------|-------------------|---|-----|-----|-----------------------------------------|
| 15:14 | Reserved          | 2 | 0x0 |     | 保留                                      |
| 13    | LDTSTOP#          | 1 | 0x1 | R/W | 当 HT 总线进入 HT Disconnect 状态时,是否关闭 HT PHY |
|       | Tristate Enable   |   |     |     | 1: 关闭                                   |
|       |                   |   |     |     | 0: 不关闭                                  |
| 12:10 | Reserved          | 3 | 0x0 |     | 保留                                      |
| 9     | CRC Error (hi)    | 1 | 0x0 | R/W | 高 8 位发生 CRC 错                           |
| 8     | CRC Error (lo)    | 1 | 0x0 | R/W | 低 8 位发生 CRC 错                           |
| 7     | Trans off         | 1 | 0x0 | R/W | HT PHY 关闭控制                             |
|       |                   |   |     |     | 处于 16 位总线工作方式时                          |
|       |                   |   |     |     | 1:关闭 高/低 8 位 HT PHY                     |
|       |                   |   |     |     | 0: 使能 低 8 位 HT PHY,                     |
|       |                   |   |     |     | 高 8 位 HT PHY 由 bit 0 控制                 |
| 6     | End of Chain      | 0 | 0x0 | R   | HT 总线末端                                 |
| 5     | Init Complete     | 1 | 0x0 | R   | HT 总线初始化是否完成                            |
| 4     | Link Fail         | 1 | 0x0 | R   | 指示连接失败                                  |
| 3:2   | Reserved          | 2 | 0x0 |     | 保留                                      |
| 1     | CRC Flood Enable  | 1 | 0x0 | R/W | 发生 CRC 错误时,是否 flood HT 总线               |
| 0     | Trans off (hi)    | 1 | 0x0 | R/W | 使用 16 位 HT 总线运行 8 位协议时,                 |
|       | , ,               |   |     |     | 高 8 位 PHY 关闭控制                          |
|       |                   |   |     |     | 1: 关闭 高 8 位 HT PHY                      |
|       |                   |   |     |     | 0: 使能 高 8 位 HT PHY                      |

偏移量: 0x48

复位值: 0x80250023

名称: Revision ID, Link Freq, Link Error, Link Freq Cap

表 10-11 Revision ID, Link Freq, Link Error, Link Freq Cap 寄存器定义

| 位域    | 位域名称            | 位宽 | 复位值    | 访问  | 描述                             |
|-------|-----------------|----|--------|-----|--------------------------------|
| 31:16 | Link Freq Cap   | 16 | 0x0025 | R   | 支持的 HT 总线频率,根据外部 PLL 的设置产生不同的值 |
| 15:14 | Reserved        | 2  | 0x0    |     | 保留                             |
| 13    | Over Flow Error | 1  | 0x0    | R   | HT 总线包溢出                       |
| 12    | Protocol Error  | 1  | 0x0    | R/W | 协议错误,<br>指 HT 总线上收到不可识别的命令     |



| 11:8 | Link Freg   | 4 | 0x0  | R/W | HT 总线工作频率             |
|------|-------------|---|------|-----|-----------------------|
|      |             |   |      |     | 写入此寄存器的值后将在下次热复位或是 HT |
|      |             |   |      |     | Disconnect 之后生效       |
|      |             |   |      |     | 0000: 200M            |
|      |             |   |      |     | 0010: 400M            |
|      |             |   |      |     | 0101: 800M            |
| 7:0  | Revision ID | 8 | 0x23 | R/W | 版本号: 1.03             |

偏移量: 0x4C

复位值: 0x00000002

名称: Feature Capability

表 10-12 Feature Capability 寄存器定义

| 位域   | 位域名称              | 位宽 | 复位值 | 访问 | 描述          |
|------|-------------------|----|-----|----|-------------|
| 31:9 | Reserved          | 25 | 0x0 |    | 保留          |
| 8    | Extended Register | 1  | 0x0 | R  | 没有          |
| 7:4  | Reserved          | 3  | 0x0 |    | 保留          |
| 3    | Extended CTL Time | 1  | 0x0 | R  | 不需要         |
| 2    | CRC Test Mode     | 1  | 0x0 | R  | 不支持         |
| 1    | LDTSTOP#          | 1  | 0x1 | R  | 支持 LDTSTOP# |
| 0    | Isochronous Mode  | 1  | 0x0 | R  | 不支持         |

# 10.5.3 自定义寄存器

偏移量: 0x50

复位值: 0x00904321

名称: MISC

表 10-13 MISC 寄存器定义

| 位域 | 位域名称         | 位宽    | 复位值 | 访问    | 描述                            |
|----|--------------|-------|-----|-------|-------------------------------|
| 31 | Reserved     | 1     | 0x0 |       | 保留                            |
| 30 | Ldt Stop Gen | 1     | 0x0 | R/W   | 使总线进入 LDT DISCONNECT 模式       |
|    |              |       |     |       | 正确的方法是: 0 -> 1                |
| 29 | Ldt Reg Gen  | 1 0x0 | 0x0 | ) R/W | 从 LDT DISCONNECT 中唤醒 HT 总线,设置 |
|    |              |       |     |       | LDT_REQ_n                     |
|    |              |       |     |       | 正确的方法是先置 0 再置 1: 0 -> 1       |
|    |              |       |     |       | 除此之外,直接向总线发出读写请求也可以自动<br>唤醒总线 |



| 28:24 | Interrupt Index | 5 | 0x0 | R/W | 将除了标准中断之外的其它中断重定向到哪个中断向量中(包括 SMI, NMI, INIT, INTA, INTB, INTC, INTD) 总共 256 个中断向量,本寄存器表示的是中断向量的高 5 位,内部中断向量如下: 000: SMI 001: NMI 010: INIT 011: Reservered 100: INTA 101: INTB 110: INTC |
|-------|-----------------|---|-----|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 23    | Dword Write     | 1 | 0x1 | R/W | 对于 32/64/128/256 位的写访问,是否采用<br>Dword Write 命令格式<br>1: 使用 Dword Write<br>0: 使用 Byte Write (带 MASK)                                                                                        |
| 22    | Coherent Mode   | 1 | 0x0 | R   | 是否是处理器一致性模式<br>由引脚 ICCC_EN 决定                                                                                                                                                            |
| 21    | Not Care Seqid  | 1 | 0x0 | R/W | 是否不关心 HT 序关系                                                                                                                                                                             |
| 20    | Not Axi2Seqid   | 1 | 0x1 | R   | 是否把 Axi 总线上的命令转换成不同的 SeqID,如果不转换,则所有的读写命令都会采用 Fixed Seqid 中的固定 ID 号 1: 不转换 0: 转换                                                                                                         |
| 19:16 | Fixed Seqid     | 4 | 0x0 | R/W | 当 Not Axi2Seqid 有效时,配置 HT 总线发出的Seqid                                                                                                                                                     |
| 15:12 | Priority Nop    | 4 | 0x4 | R/W | HT 总线 Nop 流控包优先级                                                                                                                                                                         |
| 11:8  | Priority NPC    | 4 | 0x3 | R/W | Non Post 通道读写优先级                                                                                                                                                                         |
| 7:4   | Priority RC     | 4 | 0x2 | R/W | Response 通道读写先级                                                                                                                                                                          |
| 3:0   | Priority PC     | 4 | 0x1 | R/W | Post 通道读写优先级 0x0:最高优先级 0xF:最低优先级 对于各个通道的优先级均采用根据时间变化提高的优先级策略,该组存器用于配置各个通道的初始优先级                                                                                                          |



## 10.5.4 接收诊断寄存器

偏移量: 0x54

复位值: 0x000000000 名称: 接收诊断寄存器

表 10-14 接收诊断寄存器

| 位域位     | 立域名称          | 位宽 | 复位值 | 访问  | 描述                                                                      |
|---------|---------------|----|-----|-----|-------------------------------------------------------------------------|
| 0 S     | Sample_en     | 1  | 0x0 | R/W | 使能采样输入的 cad 和 ctl<br>0x0:禁止                                             |
|         |               |    |     |     | 0x1: 使能                                                                 |
| 15:8 n  | x_ctl_catch   | 24 | 0x0 | R/W | 保存采样得到的输入 ctl<br>(0、2、4、6) 对应 CTL0 采样的四个相位<br>(1、2、5、7) 对它 CTL4 平常的四个相位 |
| 31:16 p | x cad phase 0 | 24 | 0x0 | R/W | (1、3、5、7) 对应 CTL1 采样的四个相位<br>保存采样得到的输入 CAD[15:0]的值                      |

### 10.5.5 中断路由方式选择寄存器

偏移量: 0x58

复位值: 0x00000000

名称: 中断路由方式选择寄存器

表 10-15 中断路由方式选择寄存器

| 位域  | 位域名称          | 位宽 | 复位值 | 访问  | 描述                                |
|-----|---------------|----|-----|-----|-----------------------------------|
| 9:8 | ht_int_stripe | 2  | 0x0 | R/W | 对应于 3 种中断路由方式,具体描述见 0 中断向<br>量寄存器 |
|     |               |    |     |     | 0x0: ht_int_stripe_1              |
|     |               |    |     |     | 0x1: ht_int_stripe_2              |
|     |               |    |     |     | 0x2: ht_int_stripe_4              |

# 10.5.6 接收缓冲区初始寄存器

偏移量: 0x5c

复位值: 0x07778888

名称: 接收缓冲区初始化配置寄存器

表 10-16 接收缓冲区初始寄存器

| 位域    | 位域名称               | 位宽 | 复位值 | 访问  | 描述                         |
|-------|--------------------|----|-----|-----|----------------------------|
| 27:24 | rx_buffer_r_data   | 4  | 0x0 | R/W | 接收缓冲区的读数据 buffer 初始化信息     |
| 23:20 | rx_buffer_npc_data | 4  | 0x0 | R/W | 接收缓冲区的 npc 数据 buffer 初始化信息 |



| 19:16 | rx_buffer_pc_data | 4 | 0x0 | R/W | 接收缓冲区的 pc 数据 buffer 初始化信息        |
|-------|-------------------|---|-----|-----|----------------------------------|
| 15:12 | rx_buffer_b_cmd   | 4 | 0x0 | R/W | 接收缓冲区的 bresponse 命令 buffer 初始化信息 |
| 11:8  | rx_buffer_r_cmd   | 4 | 0x0 | R/W | 接收缓冲区的读命令 buffer 初始化信息           |
| 7:4   | rx_buffer_npc_cmd | 4 | 0x0 | R/W | 接收缓冲区的 npc 命令 buffer 初始化信息       |
| 3:0   | rx_buffer_pc_cmd  | 4 | 0x0 | R/W | 接收缓冲区的 pc 命令 buffer 初始化信息        |

### 10.5.7 接收地址窗口配置寄存器

HT 控制器中的地址窗口命中公式如下:

hit = ( BASE & MASK ) == ( ADDR & MASK )

addr\_out = TRANS\_EN ? TRANS | ADDR & ~MASK : ADDR

需要说明的是,配置地址窗口寄存器时,MASK 高位应全为 1,低位应全为 0。MASK 中 0的实际位数表示的就是地址窗口的大小。

接收地址窗口的地址为 HT 总线上接收的地址。落在 P2P 窗口内的 HT 地址将作为 P2P 命令转发回 HT 总线,落在正常接收窗口内且不在 P2P 窗口内的 HT 地址将被发往 CPU 内,其它地址的命令将作为 P2P 命令被转发回 HT 总线。

偏移量: 0x60

复位值: 0x00000000

名称: HT 总线接收地址窗口 0 使能(外部访问)

表 10-17 HT 总线接收地址窗口 0 使能(外部访问)寄存器定义

| 位域   | 位域名称            | 位宽 | 复位值 | 访问  | 描述                          |
|------|-----------------|----|-----|-----|-----------------------------|
| 31   | ht_rx_image0_en | 1  | 0x0 | R/W | HT 总线接收地址窗口 0,使能信号          |
| 30   | ht_rx_image0_   | 1  | 0x0 | R/W | HT 总线接收地址窗口 0,映射使能信号        |
|      | trans_en        |    |     |     |                             |
| 29:0 | ht_rx_image0_   | 30 | 0x0 | R/W | HT 总线接收地址窗口 0,映射后地址的[53:24] |
|      | trans[53:24]    |    |     |     |                             |

偏移量: 0x64

复位值: 0x00000000

名称: HT 总线接收地址窗口 0 基址(外部访问)

表 10-18 HT 总线接收地址窗口 0 基址(外部访问)寄存器定义

位域 位域名称 位宽 复位值 访问 描述



| 位域    | 位域名称          | 位宽 | 复位值 | 访问  | 描述                         |
|-------|---------------|----|-----|-----|----------------------------|
| 31:16 | ht_rx_image0_ | 16 | 0x0 | R/W | HT 总线接收地址窗口 0,地址基址的[39:24] |
|       | base[39:24]   |    |     |     |                            |
| 15:0  | ht_rx_image0_ | 16 | 0x0 | R/W | HT 总线接收地址窗口 0,地址屏蔽的[39:24] |
|       | mask[39:24]   |    |     |     |                            |

偏移量: 0x68

复位值: 0x00000000

名称: HT 总线接收地址窗口 1 使能(外部访问)

表 10-19 HT 总线接收地址窗口 1 使能(外部访问)寄存器定义

| 位域   | 位域名称            | 位宽 | 复位值 | 访问  | 描述                          |
|------|-----------------|----|-----|-----|-----------------------------|
| 31   | ht_rx_image1_en | 1  | 0x0 | R/W | HT 总线接收地址窗口 1,使能信号          |
| 30   | ht_rx_image1_   | 1  | 0x0 | R/W | HT 总线接收地址窗口 1,映射使能信号        |
|      | trans_en        |    |     |     |                             |
| 29:0 | ht_rx_image1_   | 30 | 0x0 | R/W | HT 总线接收地址窗口 1,映射后地址的[53:24] |
|      | trans[53:24]    |    |     |     |                             |

偏移量: 0x6c

复位值: 0x00000000

名称: HT 总线接收地址窗口1基址(外部访问)

表 10-20 HT 总线接收地址窗口 1 基址(外部访问)寄存器定义

| 位域    | 位域名称          | 位宽 | 复位值 | 访问  | 描述                         |
|-------|---------------|----|-----|-----|----------------------------|
| 31:16 | ht_rx_image1_ | 16 | 0x0 | R/W | HT 总线接收地址窗口 1,地址基址的[39:24] |
|       | base[39:24]   |    |     |     |                            |
| 15:0  | ht_rx_image1_ | 16 | 0x0 | R/W | HT 总线接收地址窗口 1,地址屏蔽的[39:24] |
|       | mask[39:24]   |    |     |     |                            |

偏移量: 0x70

复位值: 0x00000000

名称: HT 总线接收地址窗口 2 使能(外部访问)

表 10-21 HT 总线接收地址窗口 2 使能(外部访问)寄存器定义

| 位域 | 位域名称            | 位宽 | 复位值 | 访问  | 描述                   |
|----|-----------------|----|-----|-----|----------------------|
| 31 | ht_rx_image2_en | 1  | 0x0 | R/W | HT 总线接收地址窗口 2,使能信号   |
| 30 | ht_rx_image2_   | 1  | 0x0 | R/W | HT 总线接收地址窗口 2,映射使能信号 |
|    | trans_en        |    |     |     |                      |



| 位域   | 位域名称          | 位宽 | 复位值 | 访问  | 描述                          |
|------|---------------|----|-----|-----|-----------------------------|
| 29:0 | ht_rx_image2_ | 16 | 0x0 | R/W | HT 总线接收地址窗口 2,转译后地址的[53:24] |
|      | trans[53:24]  |    |     |     |                             |

偏移量: 0x74

复位值: 0x00000000

名称: HT 总线接收地址窗口 2 基址(外部访问)

表 10-22 HT 总线接收地址窗口 2 基址(外部访问)寄存器定义

| 位域    | 位域名称          | 位宽 | 复位值 | 访问  | 描述                         |
|-------|---------------|----|-----|-----|----------------------------|
| 31:16 | ht_rx_image2_ | 16 | 0x0 | R/W | HT 总线接收地址窗口 2,地址基址的[39:24] |
|       | base[39:24]   |    |     |     |                            |
| 15:0  | ht_rx_image2_ | 16 | 0x0 | R/W | HT 总线接收地址窗口 2,地址屏蔽的[39:24] |
|       | mask[39:24]   |    |     |     |                            |

偏移量: 0x148

复位值: 0x00000000

名称: HT 总线接收地址窗口 3 使能(外部访问)

表 10-23 HT 总线接收地址窗口 3 使能(外部访问)寄存器定义

| 位域   | 位域名称            | 位宽 | 复位值 | 访问  | 描述                          |
|------|-----------------|----|-----|-----|-----------------------------|
| 31   | ht_rx_image3_en | 1  | 0x0 | R/W | HT 总线接收地址窗口 3,使能信号          |
| 30   | ht_rx_image3_   | 1  | 0x0 | R/W | HT 总线接收地址窗口 3,映射使能信号        |
|      | trans_en        |    |     |     |                             |
| 29:0 | ht_rx_image3_   | 16 | 0x0 | R/W | HT 总线接收地址窗口 3,转译后地址的[53:24] |
|      | trans[53:24]    |    |     |     |                             |

偏移量: 0x14C

复位值: 0x00000000

名称: HT 总线接收地址窗口 3 基址(外部访问)

表 10-24 HT 总线接收地址窗口 3 基址(外部访问)寄存器定义

| 位域    | 位域名称          | 位宽 | 复位值 | 访问  | 描述                         |
|-------|---------------|----|-----|-----|----------------------------|
| 31:16 | ht_rx_image3_ | 16 | 0x0 | R/W | HT 总线接收地址窗口 3,地址基址的[39:24] |
|       | base[39:24]   |    |     |     |                            |
| 15:0  | ht_rx_image3_ | 16 | 0x0 | R/W | HT 总线接收地址窗口 3,地址屏蔽的[39:24] |
|       | mask[39:24]   |    |     |     |                            |

偏移量: 0x150

74



复位值: 0x00000000

名称: HT 总线接收地址窗口 4 使能(外部访问)

表 10-25 HT 总线接收地址窗口 4 使能(外部访问)寄存器定义

| 位域   | 位域名称            | 位宽 | 复位值 | 访问  | 描述                          |
|------|-----------------|----|-----|-----|-----------------------------|
| 31   | ht_rx_image4_en | 1  | 0x0 | R/W | HT 总线接收地址窗口 4, 使能信号         |
| 30   | ht_rx_image4_   | 1  | 0x0 | R/W | HT 总线接收地址窗口 4,映射使能信号        |
|      | trans_en        |    |     |     |                             |
| 29:0 | ht_rx_image4_   | 16 | 0x0 | R/W | HT 总线接收地址窗口 4,转译后地址的[53:24] |
|      | trans[53:24]    |    |     |     |                             |

偏移量: 0x154

复位值: 0x00000000

名称: HT 总线接收地址窗口 4 基址(外部访问)

表 10-26 HT 总线接收地址窗口 4 基址(外部访问)寄存器定义

| 位域    | 位域名称          | 位宽 | 复位值 | 访问  | 描述                         |
|-------|---------------|----|-----|-----|----------------------------|
| 31:16 | ht_rx_image4_ | 16 | 0x0 | R/W | HT 总线接收地址窗口 4,地址基址的[39:24] |
|       | base[39:24]   |    |     |     |                            |
| 15:0  | ht_rx_image4_ | 16 | 0x0 | R/W | HT 总线接收地址窗口 4,地址屏蔽的[39:24] |
|       | mask[39:24]   |    |     |     |                            |

## 10.5.8 中断向量寄存器

中断向量寄存器共 256 个,其中除去 HT 总线上的 Fix、Arbiter 以及 PIC 中断直接映射到此 256 个中断向量之中,其它的中断,如 SMI, NMI, INIT, INTA, INTB, INTC, INTD 可以通过寄存器 0x50 的 [28:24] 映射到任意一个 8 位中断向量上去,映射的顺序为 {INTD,INTC,INTB,INTA,1'b0,INIT,NMI,SMI}。此时中断向量对应值为 {Interrupt Index,内部向量[2:0]}。

LS3A1000E 及以上版本,256 个中断向量根据中断路由方式选择寄存器配置的不同映射 到不同的中断线上,具体的映射方式为:

ht\_int\_stripe\_1:

[0, 1, 2, 3······63]对应中断线 0 /HT HI 对应中断线 4

[64, 65, 66, 67……127]对应中断线 1 /HT HI 对应中断线 5

[128, 129, 130, 131 ······191] 对应中断线 2 /HT HI 对应中断线 6



[192, 193, 194, 195 ······255] 对应中断线 3 /HT HI 对应中断线 7

ht int stripe 2:

[0, 2, 4, 6 ·····126] 对应中断线 0 /HT HI 对应中断线 4

[1, 3, 5, 7·····127]对应中断线 1 /HT HI 对应中断线 5

[128, 130, 132, 134……254]对应中断线 2 /HT HI 对应中断线 6

[129, 131, 133, 135 ······255] 对应中断线 3 /HT HI 对应中断线 7

ht\_int\_stripe\_4:

[0, 4, 8, 12 ······252] 对应中断线 0 /HT HI 对应中断线 4

[1, 5, 9, 13 ······253] 对应中断线 1 /HT HI 对应中断线 5

[2, 6, 10, 14……254]对应中断线 2 /HT HI 对应中断线 6

[3,7,11,15······255]对应中断线3/HT HI 对应中断线7

以下中断向量的描述对应于 ht\_int\_stripe\_1, 另外两种方式可由以上说明得到。

对于LS3A1000D及以下版本,只能使用ht\_int\_stripe\_1的方式。

偏移量: 0x80

复位值: 0x00000000

名称: HT 总线中断向量寄存器[31:0]

表 10-27 HT 总线中断向量寄存器定义(1)

| 位域   | 位域名称           | 位宽 | 复位值 | 访问  | 描述                     |
|------|----------------|----|-----|-----|------------------------|
| 31:0 | Interrupt_case | 32 | 0x0 | R/W | HT 总线中断向量寄存器[31:0],    |
|      | [31:0]         |    |     |     | 对应中断线 0 /HT HI 对应中断线 4 |

偏移量: 0x84

复位值: 0x00000000

名称: HT 总线中断向量寄存器[63:32]

#### 表 10-28 HT 总线中断向量寄存器定义(2)

| 位域   | 位域名称           | 位宽 | 复位值 | 访问  | 描述                     |
|------|----------------|----|-----|-----|------------------------|
| 31:0 | Interrupt_case | 32 | 0x0 | R/W | HT 总线中断向量寄存器[63:32],   |
|      | [63:32]        |    |     |     | 对应中断线 0 /HT HI 对应中断线 4 |

偏移量: 0x88

复位值: 0x00000000



名称: HT 总线中断向量寄存器[95:64]

表 10-29 HT 总线中断向量寄存器定义(3)

| 位域   | 位域名称           | 位宽 | 复位值 | 访问  | 描述                     |
|------|----------------|----|-----|-----|------------------------|
| 31:0 | Interrupt_case | 32 | 0x0 | R/W | HT 总线中断向量寄存器[95:64],   |
|      | [95:64]        |    |     |     | 对应中断线 1 /HT HI 对应中断线 5 |

偏移量: 0x8c

复位值: 0x00000000

名称: HT 总线中断向量寄存器[127:96]

#### 表 10-30 HT 总线中断向量寄存器定义(4)

| 位域   | 位域名称           | 位宽 | 复位值 | 访问  | 描述                     |
|------|----------------|----|-----|-----|------------------------|
| 31:0 | Interrupt_case | 32 | 0x0 | R/W | HT 总线中断向量寄存器[127:96],  |
|      | [127:96]       |    |     |     | 对应中断线 1 /HT HI 对应中断线 5 |

偏移量: 0x90

复位值: 0x00000000

名称: HT 总线中断向量寄存器[159:128]

### 表 10-31 HT 总线中断向量寄存器定义(5)

| 位域   | 位域名称           | 位宽 | 复位值 | 访问  | 描述                     |
|------|----------------|----|-----|-----|------------------------|
| 31:0 | Interrupt_case | 32 | 0x0 | R/W | HT 总线中断向量寄存器[159:128], |
|      | [159:128]      |    |     |     | 对应中断线 2 /HT HI 对应中断线 6 |

偏移量: 0x94

复位值: 0x00000000

名称: HT 总线中断向量寄存器[191:160]

#### 表 10-31 HT 总线中断向量寄存器定义(6)

| 位域   | 位域名称           | 位宽 | 复位值 | 访问  | 描述                     |
|------|----------------|----|-----|-----|------------------------|
| 31:0 | Interrupt_case | 32 | 0x0 | R/W | HT 总线中断向量寄存器[191:160], |
|      | [191:160]      |    |     |     | 对应中断线 2 /HT HI 对应中断线 6 |

偏移量: 0x98

复位值: 0x00000000

名称: HT 总线中断向量寄存器[223:192]

#### 表 10-32 HT 总线中断向量寄存器定义(7)

| 位域 | 位域名称 | 位宽 | 复位值 | 访问 | 描述 |
|----|------|----|-----|----|----|



| 位域   | 位域名称           | 位宽 | 复位值 | 访问  | 描述                     |
|------|----------------|----|-----|-----|------------------------|
| 31:0 | Interrupt_case | 32 | 0x0 | R/W | HT 总线中断向量寄存器[223:192], |
|      | [223:192]      |    |     |     | 对应中断线 3 /HT HI 对应中断线 7 |

偏移量: 0x9c

复位值: 0x00000000

名称: HT 总线中断向量寄存器[255:224]

表 10-33 HT 总线中断向量寄存器定义(8)

| 位域   | 位域名称           | 位宽 | 复位值 | 访问  | 描述                     |
|------|----------------|----|-----|-----|------------------------|
| 31:0 | Interrupt_case | 32 | 0x0 | R/W | HT 总线中断向量寄存器[255:224], |
|      | [255:224]      |    |     |     | 对应中断线 3 /HT HI 对应中断线 7 |

### 10.5.9 中断使能寄存器

中断使能寄存器共256个,与中断向量寄存器一一对应。 置1为对应中断打开,置0则为中断屏蔽。

256 个中断向量根据中断路由方式选择寄存器配置的不同映射到不同的中断线上,具体的映射方式为:

ht\_int\_stripe\_1:

[0, 1, 2, 3 ······63] 对应中断线 0 /HT HI 对应中断线 4

[64, 65, 66, 67……127]对应中断线 1 /HT HI 对应中断线 5

[128, 129, 130, 131······191]对应中断线 2 /HT HI 对应中断线 6

[192, 193, 194, 195 ······255] 对应中断线 3 /HT HI 对应中断线 7

ht\_int\_stripe\_2:

[0, 2, 4, 6·····126]对应中断线 0 /HT HI 对应中断线 4

[1, 3, 5, 7 ······127] 对应中断线 1 /HT HI 对应中断线 5

[128, 130, 132, 134……254] 对应中断线 2 /HT HI 对应中断线 6

[129, 131, 133, 135······255]对应中断线 3 /HT HI 对应中断线 7

ht\_int\_stripe\_4:

[0, 4, 8, 12 ······252] 对应中断线 0 /HT HI 对应中断线 4

[1, 5, 9, 13······253]对应中断线 1 /HT HI 对应中断线 5



[2, 6, 10, 14······254]对应中断线 2 /HT HI 对应中断线 6

[3,7,11,15 ······255] 对应中断线 3 /HT HI 对应中断线 7

以下中断向量的描述对应于 ht\_int\_stripe\_1,另外两种方式可由以上说明得到。

偏移量: 0xa0

复位值: 0x00000000

名称: HT 总线中断使能寄存器[31:0]

表 10-34 HT 总线中断使能寄存器定义(1)

| 位域   | 位域名称           | 位宽 | 复位值 | 访问  | 描述                     |
|------|----------------|----|-----|-----|------------------------|
| 31:0 | Interrupt_mask | 32 | 0x0 | R/W | HT 总线中断使能寄存器[31:0],    |
|      | [31:0]         |    |     |     | 对应中断线 0 /HT HI 对应中断线 4 |

偏移量: 0xa4

复位值: 0x00000000

名称: HT 总线中断使能寄存器[63:32]

#### 表 10-35 HT 总线中断使能寄存器定义(2)

| 位域   | 位域名称           | 位宽 | 复位值 | 访问  | 描述                     |
|------|----------------|----|-----|-----|------------------------|
| 31:0 | Interrupt_mask | 32 | 0x0 | R/W | HT 总线中断使能寄存器[63:32],   |
|      | [63:32]        |    |     |     | 对应中断线 0 /HT HI 对应中断线 4 |

偏移量: 0xa8

复位值: 0x00000000

名称: HT 总线中断使能寄存器[95:64]

### 表 10-36 HT 总线中断使能寄存器定义(3)

| 位域   | 位域名称           | 位宽 | 复位值 | 访问  | 描述                     |
|------|----------------|----|-----|-----|------------------------|
| 31:0 | Interrupt_mask | 32 | 0x0 | R/W | HT 总线中断使能寄存器[95:64],   |
|      | [95:64]        |    |     |     | 对应中断线 1 /HT HI 对应中断线 5 |

偏移量: 0xac

复位值: 0x00000000

名称: HT 总线中断使能寄存器[127:96]

表 10-37 HT 总线中断使能寄存器定义(4)



| 位域   | 位域名称           | 位宽 | 复位值 | 访问  | 描述                     |
|------|----------------|----|-----|-----|------------------------|
|      | Interrupt_mask |    |     |     | HT 总线中断使能寄存器[127:96],  |
| 31:0 | [127:96]       | 32 | 0x0 | R/W | 对应中断线 1 /HT HI 对应中断线 5 |

偏移量: 0xb0

复位值: 0x00000000

名称: HT 总线中断使能寄存器[159:128]

#### 表 10-38 HT 总线中断使能寄存器定义(5)

| 位域   | 位域名称           | 位宽 | 复位值 | 访问  | 描述                     |
|------|----------------|----|-----|-----|------------------------|
| 31:0 | Interrupt_mask | 32 | 0x0 | R/W | HT 总线中断使能寄存器[159:128], |
|      | [159:128]      |    |     |     | 对应中断线 2 /HT HI 对应中断线 6 |

偏移量: 0xb4

复位值: 0x00000000

名称: HT 总线中断使能寄存器[191:160]

#### 表 10-39 HT 总线中断使能寄存器定义 (6)

| 位域   | 位域名称           | 位宽 | 复位值 | 访问  | 描述                     |
|------|----------------|----|-----|-----|------------------------|
| 31:0 | Interrupt_mask | 32 | 0x0 | R/W | HT 总线中断使能寄存器[191:160], |
|      | [191:160]      |    |     |     | 对应中断线 2 /HT HI 对应中断线 6 |

偏移量: 0xb8

复位值: 0x00000000

名称: HT 总线中断使能寄存器[223:192]

#### 表 10-40 HT 总线中断使能寄存器定义 (7)

| 位域   | 位域名称           | 位宽 | 复位值 | 访问  | 描述                     |
|------|----------------|----|-----|-----|------------------------|
| 31:0 | Interrupt_mask | 32 | 0x0 | R/W | HT 总线中断使能寄存器[223:192], |
|      | [223:192]      |    |     |     | 对应中断线 3 /HT HI 对应中断线 7 |

偏移量: 0xbc

复位值: 0x00000000

名称: HT 总线中断使能寄存器[255:224]

#### 表 10-41 HT 总线中断使能寄存器定义(8)

| 位域   | 位域名称           | 位宽 | 复位值 | 访问  | 描述                     |
|------|----------------|----|-----|-----|------------------------|
| 31:0 | Interrupt_mask | 32 | 0x0 | R/W | HT 总线中断使能寄存器[255:224], |
|      | [255:224]      |    |     |     | 对应中断线 3 /HT HI 对应中断线 7 |



# 10.5.10 Interrupt Discovery & Configuration

偏移量: 0xc0

复位值: 0x80000008

名称: Interrupt Capability

表 10-42 Interrupt Capability 寄存器定义

| 位域    | 位域名称                 | 位宽 | 复位值  | 访问  | 描述                                          |
|-------|----------------------|----|------|-----|---------------------------------------------|
| 31:24 | Capabilities Pointer | 8  | 0x80 | R   | Interrupt discovery and configuration block |
| 23:16 | Index                | 8  | 0x0  | R/W | 读寄存器偏移地址                                    |
| 15:8  | Capabilities Pointer | 8  | 0x0  | R   | Capabilities Pointer                        |
| 7:0   | Capability ID        | 8  | 0x08 | R   | Hypertransport Capablity ID                 |

偏移量: 0xc4

复位值: 0x000000000 名称: Dataport

表 10-43 Dataport 寄存器定义

| 位域   | 位域名称     | 位宽 | 复位值 | 访问  | 描述                           |
|------|----------|----|-----|-----|------------------------------|
| 31:0 | Dataport | 32 | 0x0 | R/W | 当上一寄存器 Index 为 0x10 时,本寄存器读写 |
|      |          |    |     |     | 结果为 0xa8 寄存器,否则为 0xac        |

偏移量: 0xc8

复位值: 0xF8000000 名称: IntrInfo[31:0]

表 10-44 IntrInfo 寄存器定义(1)

| 位域    | 位域名称            | 位宽 | 复位值  | 访问  | 描述                                     |
|-------|-----------------|----|------|-----|----------------------------------------|
| 31:24 | IntrInfo[31:24] | 32 | 0xF8 | R   | 保留                                     |
| 23:2  | IntrInfo[23:2]  | 22 | 0x0  | R/W | IntrInfo[23:2],当发出 PIC 中断时,IntrInfo 的值 |
|       |                 |    |      |     | 用来表示中断向量                               |
| 1:0   | Reserved        | 2  | 0x0  | R   | 保留                                     |

偏移量: 0xcc

复位值: 0x000000000 名称: IntrInfo[63:32]

表 10-45 IntrInfo 寄存器定义(2)



| 位域   | 位域名称            | 位宽 | 复位值 | 访问 | 描述 |
|------|-----------------|----|-----|----|----|
| 31:0 | IntrInfo[63:32] | 32 | 0x0 | R  | 保留 |

### 10.5.11 **POST地址窗口配置寄存器**

地址窗口命中公式详见10.5.7节。

本窗口的地址是 AXI 总线上接收到的地址。落在本窗口的所有写访问将立即在 AXI B 通道返回,并以 POST WRITE 的命令格式发给 HT 总线。而不在本窗口的写请求则以 NONPOST WRITE 的方式发送到 HT 总线,并等待 HT 总线响应后再返回 AXI 总线。

偏移量: 0xd0

复位值: 0x00000000

名称: HT 总线 POST 地址窗口 0 使能(内部访问)

表 10-46 HT 总线 POST 地址窗口 0 使能(内部访问)

| 位域    | 位域名称           | 位宽 | 复位值 | 访问  | 描述                              |
|-------|----------------|----|-----|-----|---------------------------------|
| 31    | ht_post0_en    | 1  | 0x0 | R/W | HT 总线 POST 地址窗口 0,使能信号          |
| 30    | ht_depart0_en  | 1  | 0x0 | R/W | HT 访问拆包使能(对应于 CPU 核的对外          |
|       |                |    |     |     | uncache ACC 操作窗口)               |
| 29:23 | Reserved       | 14 | 0x0 |     | 保留                              |
| 15:0  | ht_post0_trans | 16 | 0x0 | R/W | HT 总线 POST 地址窗口 0,转译后地址的[39:24] |
|       | [39:24]        |    |     |     |                                 |

偏移量: 0xd4

复位值: 0x00000000

名称: HT 总线 POST 地址窗口 0 基址(内部访问)

表 10-47 HT 总线 POST 地址窗口 0 基址 (内部访问)

| 位域    | 位域名称          | 位宽 | 复位值 | 访问  | 描述                             |
|-------|---------------|----|-----|-----|--------------------------------|
| 31:16 | ht_post0_base | 16 | 0x0 | R/W | HT 总线 POST 地址窗口 0,地址基址的[39:24] |
|       | [39:24]       |    |     |     |                                |
| 15:0  | ht_post0_mask | 16 | 0x0 | R/W | HT 总线 POST 地址窗口 0,地址屏蔽的[39:24] |
|       | [39:24]       |    |     |     |                                |

偏移量: 0xd8

复位值: 0x00000000

名称: HT 总线 POST 地址窗口 1 使能(内部访问)



表 10-48 HT 总线 POST 地址窗口 1 使能(内部访问)

| 位域    | 位域名称           | 位宽 | 复位值 | 访问  | 描述                               |
|-------|----------------|----|-----|-----|----------------------------------|
| 31    | ht_post1_en    | 1  | 0x0 | R/W | HT 总线 POST 地址窗口 1,使能信号           |
| 30    | ht_depart1_en  | 1  | 0x0 | R/W | HT 访问拆包使能(对应于 CPU 核的对外           |
|       |                |    |     |     | uncache ACC 操作窗口)                |
| 29:16 | Reserved       | 14 | 0x0 |     | 保留                               |
| 15:0  | ht_post1_trans | 16 | 0x0 | R/W | HT 总线 POST 地址窗口 1, 转译后地址的[39:24] |
|       | [39:24]        |    |     |     |                                  |

偏移量: 0xdc

复位值: 0x00000000

名称: HT 总线 POST 地址窗口 1 基址 (内部访问)

表 10-49 HT 总线 POST 地址窗口 1 基址(内部访问)

| 位域    | 位域名称          | 位宽 | 复位值 | 访问  | 描述                             |
|-------|---------------|----|-----|-----|--------------------------------|
| 31:16 | ht_post1_base | 16 | 0x0 | R/W | HT 总线 POST 地址窗口 1,地址基址的[39:24] |
|       | [39:24]       |    |     |     |                                |
| 15:0  | ht_post1_mask | 16 | 0x0 | R/W | HT 总线 POST 地址窗口 1,地址屏蔽的[39:24] |
|       | [39:24]       |    |     |     |                                |

### 10.5.12 可预取地址窗口配置寄存器

地址窗口命中公式详见10.5.7节。

本窗口的地址是 AXI 总线上接收到的地址。落在本窗口的取指指令以及 CACHE 访问才会被发往 HT 总线,其它的取指或 CACHE 访问将不会被发往 HT 总线,而是立即返回,如果是读命令,则会返回相应个数的无效读数据。

偏移量: 0xe0

复位值: 0x00000000

名称: HT 总线可预取地址窗口 0 使能(内部访问)

表 10-50 HT 总线可预取地址窗口 0 使能(内部访问)

| 位域    | 位域名称            | 位宽 | 复位值 | 访问  | 描述                  |
|-------|-----------------|----|-----|-----|---------------------|
| 31    | ht_prefetch0_en | 1  | 0x0 | R/W | HT 总线可预取地址窗口 0,使能信号 |
| 30:23 | Reserved        | 15 | 0x0 |     | 保留                  |



| 15:0 | ht_prefetch0_trans | 16 | 0x0 | R/W | HT 总线可预取地址窗口 0,转译后地址的[39:24] |
|------|--------------------|----|-----|-----|------------------------------|
|      | [39:24]            |    |     |     |                              |

偏移量: 0xe4

复位值: 0x00000000

名称: HT 总线可预取地址窗口 0 基址(内部访问)

表 10-51 HT 总线可预取地址窗口 0 基址(内部访问)

| 位域    | 位域名称          | 位宽 | 复位值 | 访问  | 描述                          |
|-------|---------------|----|-----|-----|-----------------------------|
| 31:16 | ht_prefetch0_ | 16 | 0x0 | R/W | HT 总线可预取地址窗口 0,地址基址的[39:24] |
|       | base[39:24]   |    |     |     | 位地址                         |
| 15:0  | ht_prefetch0_ | 16 | 0x0 | R/W | HT 总线可预取地址窗口 0,地址屏蔽的[39:24] |
|       | mask[39:24]   |    |     |     |                             |

偏移量: 0xe8

复位值: 0x00000000

名称: HT 总线可预取地址窗口 1 使能(内部访问)

表 10-52 HT 总线可预取地址窗口 1 使能(内部访问)

| 位域    | 位域名称            | 位宽 | 复位值 | 访问  | 描述                           |
|-------|-----------------|----|-----|-----|------------------------------|
| 31    | ht_prefetch1_en | 1  | 0x0 | R/W | HT 总线可预取地址窗口 1,使能信号          |
| 30:23 | Reserved        | 15 | 0x0 |     | 保留                           |
| 15:0  | ht_prefetch1_   | 16 | 0x0 | R/W | HT 总线可预取地址窗口 1,转译后地址的[39:24] |
|       | trans[39:24]    |    |     |     | -                            |

偏移量: 0xec

复位值: 0x00000000

名称: HT 总线可预取地址窗口1基址(内部访问)

表 10-53 HT 总线可预取地址窗口 1 基址(内部访问)

| 位域    | 位域名称          | 位宽 | 复位值 | 访问  | 描述                          |
|-------|---------------|----|-----|-----|-----------------------------|
| 31:16 | ht_prefetch1_ | 16 | 0x0 | R/W | HT 总线可预取地址窗口 1,地址基址的[39:24] |
|       | base[39:24]   |    |     |     |                             |
| 15:0  | ht_prefetch1_ | 16 | 0x0 | R/W | HT 总线可预取地址窗口 1,地址屏蔽的[39:24] |
|       | mask[39:24]   |    |     |     |                             |

# 10.5.13 **UNCACHE地址窗口配置寄存器**

地址窗口命中公式详见10.5.7节。



本窗口的地址是 HT 总线上接收到的地址。落在本窗口地址的读写命令,将不会被送往 SCACHE,也不会使一级 CACHE 发生失效,而是会被直接送至内存或是其它的地址空间,也即 该地址窗口中的读写命令将不会维持 IO 的 CACHE 一致性。该窗口主要针对一些不会在 CACHE 中命中所以可以提高存间效率的操作,如显存的访问等。

偏移量: 0xf0

复位值: 0x00000000

名称: HT 总线 Uncache 地址窗口 0 使能(内部访问)

表 10-54 HT 总线 Uncache 地址窗口 0 使能(内部访问)

| 位域   | 位域名称           | 位宽 | 复位值 | 访问  | 描述                          |
|------|----------------|----|-----|-----|-----------------------------|
| 31   | ht_uncache0_en | 1  | 0x0 | R/W | HT 总线 uncache 地址窗口 0,使能信号   |
| 30   | ht_uncache0_   | 1  | 0x0 | R/W | HT 总线 uncache 地址窗口 1,映射使能信号 |
|      | trans_en       |    |     |     |                             |
| 29:0 | ht_uncache0_   | 16 | 0x0 | R/W | HT 总线 uncache 地址窗口 0,转译后地址的 |
|      | trans[53:24]   |    |     |     | [53:24]                     |

偏移量: 0xf4

复位值: 0x00000000

名称: HT 总线 Uncache 地址窗口 0 基址(内部访问)

表 10-55 HT 总线 Uncache 地址窗口 0 基址 (内部访问)

| 位域    | 位域名称         | 位宽 | 复位值 | 访问  | 描述                                  |
|-------|--------------|----|-----|-----|-------------------------------------|
| 31:16 | ht_uncache0_ | 16 | 0x0 | R/W | HT 总线 uncache 地址窗口 0 , 地址基址的[39:24] |
|       | base[39:24]  |    |     |     |                                     |
| 15:0  | ht_uncache0_ | 16 | 0x0 | R/W | HT 总线 uncache 地址窗口 0,地址屏蔽的[39:24]   |
|       | mask[39:24]  |    |     |     |                                     |

偏移量: 0xf8

复位值: 0x00000000

名称: HT 总线 Uncache 地址窗口 1 使能(内部访问)

表 10-56 HT 总线 Uncache 地址窗口 1 使能(内部访问)

| 位域 | 位域名称           | 位宽 | 复位值 | 访问  | 描述                        |
|----|----------------|----|-----|-----|---------------------------|
| 31 | ht_uncache1_en | 1  | 0x0 | R/W | HT 总线 uncache 地址窗口 1,使能信号 |



| 30   | ht_uncache1_ | 1  | 0x0 | R/W | HT 总线 uncache 地址窗口 1,映射使能信号 |
|------|--------------|----|-----|-----|-----------------------------|
|      | trans_en     |    |     |     |                             |
| 29:0 | ht_uncache1_ | 16 | 0x0 | R/W | HT 总线 uncache 地址窗口 1,转译后地址的 |
|      | trans[53:24] |    |     |     | [53:24]                     |

偏移量: 0xfc

复位值: 0x00000000

名称: HT 总线 Uncache 地址窗口 1 基址(内部访问)

表 10-57 HT 总线 Uncache 地址窗口 1 基址(内部访问)

| 位域    | 位域名称         | 位宽 | 复位值 | 访问  | 描述                                 |
|-------|--------------|----|-----|-----|------------------------------------|
| 31:16 | ht_uncache1_ | 16 | 0x0 | R/W | HT 总线 uncache 地址窗口 1, 地址基址的[39:24] |
|       | base[39:24]  |    |     |     |                                    |
| 15:0  | ht_uncache1_ | 16 | 0x0 | R/W | HT 总线 uncache 地址窗口 1, 地址屏蔽的[39:24] |
|       | mask[39:24]  |    |     |     |                                    |

偏移量: 0x168

复位值: 0x00000000

名称: HT 总线 Uncache 地址窗口 2 使能(内部访问)

表 10-58 HT 总线 Uncache 地址窗口 2 使能 (内部访问)

| 位域   | 位域名称           | 位宽 | 复位值 | 访问  | 描述                          |
|------|----------------|----|-----|-----|-----------------------------|
| 31   | ht_uncache1_en | 1  | 0x0 | R/W | HT 总线 uncache 地址窗口 2,使能信号   |
| 30   | ht_uncache1_   | 1  | 0x0 | R/W | HT 总线 uncache 地址窗口 2,映射使能信号 |
|      | trans_en       |    |     |     |                             |
| 29:0 | ht_uncache1_   | 16 | 0x0 | R/W | HT 总线 uncache 地址窗口 2,转译后地址的 |
|      | trans[53:24]   |    |     |     | [53:24]                     |

偏移量: 0x16c

复位值: 0x00000000

名称: HT 总线 Uncache 地址窗口 2 基址(内部访问)

表 10-59 HT 总线 Uncache 地址窗口 2 基址 (内部访问)

| 位域    | 位域名称         | 位宽 | 复位值 | 访问  | 描述                                |
|-------|--------------|----|-----|-----|-----------------------------------|
| 31:16 | ht_uncache1_ | 16 | 0x0 | R/W | HT 总线 uncache 地址窗口 2,地址基址的[39:24] |
|       | base[39:24]  |    |     |     |                                   |



| 位域   | 位域名称         | 位宽 | 复位值 | 访问  | 描述                                |
|------|--------------|----|-----|-----|-----------------------------------|
| 15:0 | ht_uncache1_ | 16 | 0x0 | R/W | HT 总线 uncache 地址窗口 2,地址屏蔽的[39:24] |
|      | mask[39:24]  |    |     |     |                                   |

偏移量: 0x170

复位值: 0x00000000

名称: HT 总线 Uncache 地址窗口 3 使能(内部访问)

表 10-60 HT 总线 Uncache 地址窗口 3 使能(内部访问)

| 位域   | 位域名称           | 位宽 | 复位值 | 访问  | 描述                          |
|------|----------------|----|-----|-----|-----------------------------|
| 31   | ht_uncache1_en | 1  | 0x0 | R/W | HT 总线 uncache 地址窗口 3,使能信号   |
| 30   | ht_uncache1_   | 1  | 0x0 | R/W | HT 总线 uncache 地址窗口 3,映射使能信号 |
|      | trans_en       |    |     |     |                             |
| 29:0 | ht_uncache1_   | 16 | 0x0 | R/W | HT 总线 uncache 地址窗口 3,转译后地址的 |
|      | trans[53:24]   |    |     |     | [53:24]                     |

偏移量: 0x174

复位值: 0x00000000

名称: HT 总线 Uncache 地址窗口 3 基址 (内部访问)

表 10-61 HT 总线 Uncache 地址窗口 3 基址(内部访问)

| 位域    | 位域名称         | 位宽 | 复位值 | 访问  | 描述                                 |
|-------|--------------|----|-----|-----|------------------------------------|
| 31:16 | ht_uncache1_ | 16 | 0x0 | R/W | HT 总线 uncache 地址窗口 3, 地址基址的[39:24] |
|       | base[39:24]  |    |     |     |                                    |
| 15:0  | ht_uncache1_ | 16 | 0x0 | R/W | HT 总线 uncache 地址窗口 3, 地址屏蔽的[39:24] |
|       | mask[39:24]  |    |     |     |                                    |

# 10. 5. 14 **P2P地址窗口配置寄存器**

地址窗口命中公式详见10.5.7节。

本窗口的地址是 HT 总线上接收到的地址。落在本窗口地址的读写命令,直接作为 P2P 命令转发回总线,相对于正常接收窗口和 Uncache 窗口,该窗口具有最高优先级。

偏移量: 0x158

复位值: 0x00000000

名称: HT 总线 P2P 地址窗口 0 使能(外部访问)

表 10-62 HT 总线 P2P 地址窗口 0 使能(外部访问)寄存器定义





| 位域   | 位域名称            | 位宽 | 复位值 | 访问  | 描述                             |
|------|-----------------|----|-----|-----|--------------------------------|
| 31   | ht_rx_image2_en | 1  | 0x0 | R/W | HT 总线 P2P 地址窗口 0,使能信号          |
| 30   | ht_rx_image2_   | 1  | 0x0 | R/W | HT 总线 P2P 地址窗口 0,映射使能信号        |
|      | trans_en        |    |     |     |                                |
| 29:0 | ht_rx_image2_   | 16 | 0x0 | R/W | HT 总线 P2P 地址窗口 0,转译后地址的[53:24] |
|      | trans[53:24]    |    |     |     |                                |

偏移量: 0x15c

复位值: 0x00000000

名称: HT 总线 P2P 地址窗口 0 基址 (外部访问)

表 10-63 HT 总线 P2P 地址窗口 0 基址(外部访问)寄存器定义

| 位域    | 位域名称          | 位宽 | 复位值 | 访问  | 描述                            |
|-------|---------------|----|-----|-----|-------------------------------|
| 31:16 | ht_rx_image2_ | 16 | 0x0 | R/W | HT 总线 P2P 地址窗口 1,地址基址的[39:24] |
|       | base[39:24]   |    |     |     |                               |
| 15:0  | ht_rx_image2_ | 16 | 0x0 | R/W | HT 总线 P2P 地址窗口 1,地址屏蔽的[39:24] |
|       | mask[39:24]   |    |     |     |                               |

偏移量: 0x160

复位值: 0x00000000

名称: HT 总线 P2P 地址窗口 1 使能(外部访问)

表 10-64 HT 总线 P2P 地址窗口 1 使能(外部访问)寄存器定义

| 位域   | 位域名称            | 位宽 | 复位值 | 访问  | 描述                             |
|------|-----------------|----|-----|-----|--------------------------------|
| 31   | ht_rx_image2_en | 1  | 0x0 | R/W | HT 总线 P2P 地址窗口 1,使能信号          |
| 30   | ht_rx_image2_   | 1  | 0x0 | R/W | HT 总线 P2P 地址窗口 1,映射使能信号        |
|      | trans_en        |    |     |     |                                |
| 29:0 | ht_rx_image2_   | 16 | 0x0 | R/W | HT 总线 P2P 地址窗口 1,转译后地址的[53:24] |
|      | trans[53:24]    |    |     |     |                                |

偏移量: 0x164

复位值: 0x00000000

名称: HT 总线 P2P 地址窗口 1 基址(外部访问)

表 10-65 HT 总线 P2P 地址窗口 1 基址(外部访问)寄存器定义

位域 位域名称 位宽 复位值 访问 描述



| 位域    | 位域名称          | 位宽 | 复位值 | 访问  | 描述                            |
|-------|---------------|----|-----|-----|-------------------------------|
| 31:16 | ht_rx_image2_ | 16 | 0x0 | R/W | HT 总线 P2P 地址窗口 1,地址基址的[39:24] |
|       | base[39:24]   |    |     |     |                               |
| 15:0  | ht_rx_image2_ | 16 | 0x0 | R/W | HT 总线 P2P 地址窗口 1,地址屏蔽的[39:24] |
|       | mask[39:24]   |    |     |     |                               |

### 10.5.15 命令发送缓存大小寄存器

命令发送缓存大小寄存器用于观测发送端可用各个命令通道的缓存个数。

偏移量: 0x100

复位值: 0x00000000

名称: 命令发送缓存大小寄存器

表 10-66 命令发送缓存大小寄存器

| 位域    | 位域名称             | 位宽 | 复位值 | 访问 | 描述               |
|-------|------------------|----|-----|----|------------------|
| 31:24 | B_CMD_txbuffer   | 8  | 0x0 | R  | 发送端 B 通道命令缓存个数   |
| 2316  | R_CMD_txbuffer   | 8  | 0x0 | R  | 发送端 R 通道命令缓存个数   |
| 15:8  | NPC_CMD_txbuffer | 8  | 0x0 | R  | 发送端 NPC 通道命令缓存个数 |
| 7:0   | PC_CMD_txbuffer  | 8  | 0x0 | R  | 发送端 PC 通道命令缓存个数  |

## 10.5.16 数据发送缓存大小寄存器

数据发送缓存大小寄存器用于观测发送端可用各个数据通道的缓存个数。

偏移量: 0x104

复位值: 0x00000000

名称: 数据发送缓存大小寄存器

表 10-67 数据发送缓存大小寄存器

| 位域    | 位域名称              | 位宽 | 复位值 | 访问 | 描述               |
|-------|-------------------|----|-----|----|------------------|
| 31:24 | Reserved          | 8  | 0x0 | R  | 保留               |
| 2316  | R_DATA_txbuffer   | 8  | 0x0 | R  | 发送端 R 通道数据缓存个数   |
| 15:8  | NPC_DATA_txbuffer | 8  | 0x0 | R  | 发送端 NPC 通道数据缓存个数 |
| 7:0   | PC_DATA_txbuffer  | 8  | 0x0 | R  | 发送端 PC 通道数据缓存个数  |

## 10.5.17 发送缓存调试寄存器

发送缓存调试寄存器用于人工设置 HT 控制器发送端缓冲区的个数,通过增或减的方式



对不同的发送缓存个数进行调整。

偏移量: 0x108

复位值: 0x00000000

名称: 发送缓存调试寄存器

表 10-68 发送缓存调试寄存器

| 位域名称                  | 位宽                             | 复位值                                                                                                                      | 访问                                                                                                                                                                                                                                                                                                                                                 | 描述                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reserved              | 2                              | 0x0                                                                                                                      | R                                                                                                                                                                                                                                                                                                                                                  | 保留                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Ty non                | 1                              | 0×0                                                                                                                      | DΛΛ                                                                                                                                                                                                                                                                                                                                                | 发送端缓存调试符号                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| i x_neg               | I                              | UXU                                                                                                                      | FX/VV                                                                                                                                                                                                                                                                                                                                              | 0: 增加相应个数                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                       |                                |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                    | 1:减少(相应寄存器个数+1)个                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Tx buff adi en        | 1                              | 0x0                                                                                                                      | R/W                                                                                                                                                                                                                                                                                                                                                | 发送端缓存调试使能寄存器                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                       |                                | -                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                    | 0->1: 使本寄存器的值产生一次增减效果                                                                                                                                                                                                                                                                                                                                                                                                                                |
| R_DATA_txadj          | 4                              | 0x0                                                                                                                      | R/W                                                                                                                                                                                                                                                                                                                                                | 发送端 R 通道数据缓存增减个数                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                       |                                |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                    | 当 tx_neg 为 0 时,增加 R_DATA_txadj 个;                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                       |                                |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                    | 当 tx_neg 为 1 时,减少 R_DATA_txadj+1 个                                                                                                                                                                                                                                                                                                                                                                                                                   |
| NPC DATA txadi        | 4                              | 0x0                                                                                                                      | R/W                                                                                                                                                                                                                                                                                                                                                | 发送端 NPC 通道数据缓存增减个数                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ,                     |                                |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                    | 当 tx_neg 为 0 时,增加 NPC_DATA_txadj 个;                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                       |                                |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                    | 当 tx_neg 为 1 时,减少 NPC_DATA_txadj+1 个                                                                                                                                                                                                                                                                                                                                                                                                                 |
| :16 PC DATA txadi 4 0 | 0x0                            | R/W                                                                                                                      | 发送端 PC 通道数据缓存增减个数                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| . o_b/o.aaj           |                                | OAG                                                                                                                      | . , , ,                                                                                                                                                                                                                                                                                                                                            | 当 tx_neg 为 0 时,增加 PC_DATA_txadj 个;                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                       |                                |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                    | 当 tx_neg 为 1 时,减少 PC_DATA_txadj+1 个                                                                                                                                                                                                                                                                                                                                                                                                                  |
| B CMD txadi           | 4                              | 0×0                                                                                                                      | R/W                                                                                                                                                                                                                                                                                                                                                | 发送端 B 通道命令缓存增减个数                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| B_OMB_txddj           | ľ                              | OXO                                                                                                                      | 10,00                                                                                                                                                                                                                                                                                                                                              | 当 tx_neg 为 0 时,增加 B_CMD_txadj 个;                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                       |                                |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                    | 当 tx_neg 为 1 时,减少 B_CMD_txadj+1 个                                                                                                                                                                                                                                                                                                                                                                                                                    |
| R CMD tvadi           | 1                              | 0×0                                                                                                                      | R/M                                                                                                                                                                                                                                                                                                                                                | 发送端 R 通道命令缓存增减个数                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| IN_OMD_txauj          | ľ                              | OXO                                                                                                                      | 1 (/ V V                                                                                                                                                                                                                                                                                                                                           | 当 tx_neg 为 0 时,增加 R_CMD_txadj 个;                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                       |                                |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                    | 当 tx_neg 为 1 时,减少 R_CMD_txadj+1 个                                                                                                                                                                                                                                                                                                                                                                                                                    |
| NPC CMD tyadi         | 4                              | 0×0                                                                                                                      | DΛΛ                                                                                                                                                                                                                                                                                                                                                | 发送端 NPC 通道命令/数据缓存增减个数                                                                                                                                                                                                                                                                                                                                                                                                                                |
| IVI C_CIVID_txauj     | 7                              | OXO                                                                                                                      | 17/77                                                                                                                                                                                                                                                                                                                                              | 当 tx_neg 为 0 时,增加 NPC_CMD_txadj 个;                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                       |                                |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                    | 当 tx_neg 为 1 时,减少 NPC_CMD_txadj+1 个                                                                                                                                                                                                                                                                                                                                                                                                                  |
| DC CMD tyadi          | 4                              | 0×0                                                                                                                      | DΛΛ                                                                                                                                                                                                                                                                                                                                                | 发送端 PC 通道命令缓存增减个数                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| FO_CIVID_IXAUJ        | +                              | UXU                                                                                                                      | FX/ V V                                                                                                                                                                                                                                                                                                                                            | 当 tx_neg 为 0 时,增加 PC_CMD_txadj 个;                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                       |                                |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                    | 当 tx_neg 为 1 时,减少 PC_CMD_txadj+1 个                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                       | Reserved Tx_neg Tx_buff_adj_en | Reserved 2 Tx_neg 1  Tx_buff_adj_en 1  R_DATA_txadj 4  NPC_DATA_txadj 4  PC_DATA_txadj 4  B_CMD_txadj 4  NPC_CMD_txadj 4 | Reserved       2       0x0         Tx_neg       1       0x0         Tx_buff_adj_en       1       0x0         R_DATA_txadj       4       0x0         NPC_DATA_txadj       4       0x0         PC_DATA_txadj       4       0x0         B_CMD_txadj       4       0x0         NPC_CMD_txadj       4       0x0         NPC_CMD_txadj       4       0x0 | Reserved         2         0x0         R           Tx_neg         1         0x0         R/W           Tx_buff_adj_en         1         0x0         R/W           R_DATA_txadj         4         0x0         R/W           NPC_DATA_txadj         4         0x0         R/W           B_CMD_txadj         4         0x0         R/W           R_CMD_txadj         4         0x0         R/W           NPC_CMD_txadj         4         0x0         R/W |

# 10.5.18 PHY阻抗匹配控制寄存器

用于控制 PHY 的阻抗匹配使能,发送端和接收端阻抗匹配参数设置

偏移量: 0x10C

复位值: 0x00000000



名称: PHY 阻抗匹配控制寄存器

表 10-69 阻抗匹配控制寄存器

| 位域    | 位域名称            | 位宽 | 复位值 | 访问  | 描述                |
|-------|-----------------|----|-----|-----|-------------------|
| 31    | Tx_scanin_en    | 1  | 0x0 | R/W | TX 阻抗匹配使能         |
| 30    | Rx_scanin_en    | 1  | 0x0 | R/W | RX 阻抗匹配使能         |
| 27:24 | Tx_scanin_ncode | 4  | 0x0 | R/W | TX 阻抗匹配扫描输入 ncode |
| 23:20 | Tx_scanin_pcode | 4  | 0x0 | R/W | TX 阻抗匹配扫描输入 pcode |
| 19:12 | Rx_scanin_code  | 8  | 0x0 | R/W | RX 阻抗匹配扫描输入       |

### 10.5.19 Revision ID 寄存器

用于配置控制器版本,配置成新的版本号,通过Warm Reset 生效。

偏移量: 0x110

复位值: 0x00200000

名称: RevisionID 寄存器

表 10-70 Revision ID 寄存器

| 位域    | 位域名称        | 位宽 | 复位值  | 访问  | 描述                        |
|-------|-------------|----|------|-----|---------------------------|
| 31:24 | Reserved    | 8  | 0x0  | R   | 保留                        |
| 23:16 | Revision ID | 8  | 0x20 | R/W | Revision ID 控制寄存器         |
|       |             |    |      |     | 0x20: HyperTransport 1.00 |
|       |             |    |      |     | 0x60: HyperTransport 3.00 |
| 15:0  | Reserved    | 16 | 0x0  | R   | 保留                        |

# 10.5.20 Error Retry 控制寄存器

用于 HyerTransport 3.0 模式下错误重传使能,配置 Short Retry 的最大次数,显示 Retry 计数器是否翻转。

偏移量: 0x118

复位值: 0x00000000

名称: Error Retry 控制寄存器

表 10-71 Error Retry 控制寄存器

| 位域    | 位域名称                 | 位宽 | 复位值 | 访问 | 描述            |
|-------|----------------------|----|-----|----|---------------|
| 31:10 | Reserved             | 22 | 0x0 | R  | 保留            |
| 9     | Retry Count Rollover | 1  | 0x0 | R  | Retry 计数器计数翻转 |
| 8     | Reserved             | 1  | 0x0 | R  | 保留            |



| 7:6 | Short Retry Attempts | 2 | 0x0 | R/W | 允许的最大 Short Retry 次数 |
|-----|----------------------|---|-----|-----|----------------------|
|-----|----------------------|---|-----|-----|----------------------|

# 10.5.21 Retry Count 寄存器

用于 HyerTransport 3.0 模式下错误重传计数。

偏移量: 0x11C

复位值: 0x00000000

名称: Retry Count 寄存器

表 10-72 Retry Count 寄存器

| 位域    | 位域名称           | 位宽 | 复位值 | 访问 | 描述                                                                             |
|-------|----------------|----|-----|----|--------------------------------------------------------------------------------|
| 31:20 | Reserved       | 12 | 0x0 | R  | 保留                                                                             |
| 19:16 | Rrequest delay | 4  | 0x0 |    | 用于在一致性模式下,控制 Rrequest 传输的随机延迟范围000:0 延迟001:随机延迟 0-8010:随机延迟 8-15011:随机延迟 16-31 |
|       |                |    |     |    | 100:随机延迟 32-63<br>101:随机延迟 64-127<br>110:随机延迟 128-255<br>111:0 延迟              |
| 15:0  | Retry Count    | 16 | 0x0 | R  | Retry 计数                                                                       |

# 10.5.22 Link Train 寄存器

HyperTransport 3.0 链路初始化及链路训练控制寄存器。

偏移量: 0x130

复位值: 0x00000070

名称: Link Train 寄存器

表 10-73 Link Train 寄存器

| 位域     | 位域名称                  | 位宽 | 复位值 | 访问  | 描述                                      |
|--------|-----------------------|----|-----|-----|-----------------------------------------|
| 31:23  | Reserved              | 9  | 0x0 | R   | 保留                                      |
| 22: 21 | Transmitter LS select | 2  | 0x0 | R/W | 发送端在 Disconnected 或 Inactive 状态下的 链路状态: |
|        |                       |    |     |     | 2'b00 LS1                               |



|       |                        |   |     |     | 2'b01 LS0                                                                                                     |
|-------|------------------------|---|-----|-----|---------------------------------------------------------------------------------------------------------------|
|       |                        |   |     |     | 2'b10 LS2                                                                                                     |
|       |                        |   |     |     | 2'b11 LS3                                                                                                     |
| 14    | Dsiable Cmd Throttling | 1 | 0x0 | R/W | 在 HyperTransport 3.0 模式下,默认任意 4 个 连续的 DWS 中只能出现一个 Non-info CMD; 1'b0 使能 Cmd Throttling 1'b1 禁用 Cmd Throttling |
| 13:10 | Reserved               | 4 | 0x0 | R   | 保留                                                                                                            |
| 8: 7  | Receiver LS select     | 2 | 0x0 | R/W | 接收端在 Disconnected 或 Inactive 状态下的<br>链路状态:<br>2'b00 LS1<br>2'b01 LS0<br>2'b10 LS2<br>2'b11 LS3                |
| 6:4   | Long Retry Count       | 3 | 0x7 | R/W | Long Retry 最大次数                                                                                               |
| 3     | Scrambling Enable      | 1 | 0x0 | R/W | 是否使能 Scramble<br>0: 禁用 Scramble<br>1: 使能 Scramble                                                             |
| 2     | 8B10B Enable           | 1 | 0x0 | R/W | 是否使能 8B10B<br>0: 禁用 8B10B<br>1: 使能 8B10B                                                                      |
| 1     | AC                     | 1 | 0x0 | R   | 是否检测到 AC mode<br>0: 没有检测到 AC mode<br>1: 检测到 AC mode                                                           |
| 0     | Reserved               | 1 | 0x0 | R   | 保留                                                                                                            |

# 10.5.23 Training 0 超时短计时寄存器

用于配置 HyerTransport 3.0 模式下 Training 0 短计时超时阈值,计数器时钟频率为 HyperTransport3.0 链路总线时钟频率的 1/4。

偏移量: 0x134

复位值: 0x00000080

名称: Training 0 超时短计数寄存器

表 10-74 Training 0 超时短计时寄存器

| 位域   | 位域名称    | 位宽 | 复位值 | 访问  | 描述                  |
|------|---------|----|-----|-----|---------------------|
| 31:0 | T0 time | 32 | 0x8 | R/W | Training 0 超时短计时寄存器 |



### 10.5.24 Training 0 超时长计时寄存器

用于 HyerTransport 3.0 模式下 Training 0 长计数超时阈值, 计数器时钟频率为 HyperTransport3.0 链路总线时钟频率的 1/4。

偏移量: 0x138

复位值: 0x000fffff

名称: Training 0 超时长计数寄存器

### 表 10-75 Training 0 超时长计数寄存器

| 位 | Σ域  | 位域名称    | 位宽 | 复位值     | 访问  | 描述                  |
|---|-----|---------|----|---------|-----|---------------------|
| 3 | 1:0 | T0 time | 32 | 0xfffff | R/W | Training 0 超时长计数寄存器 |

### 10.5.25 Training 1 计数寄存器

用于 HyerTransport 3.0 模式下 Training 1 计数阈值, 计数器时钟频率为 HyperTransport3.0 链路总线时钟频率的 1/4。

偏移量: 0x13C

复位值: 0x0004fffff

名称: Training 1 计数寄存器

表 10-76 Training 1 计数寄存器

| 位域   | 位域名称    | 位宽 | 复位值      | 访问  | 描述               |
|------|---------|----|----------|-----|------------------|
| 31:0 | T1 time | 32 | 0x4fffff | R/W | Training 1 计数寄存器 |

# 10.5.26 Training 2 计数寄存器

用于 HyerTransport 3.0 模式下 Training 2 计数阈值, 计数器时钟频率为 HyperTransport3.0 链路总线时钟频率的 1/4。

偏移量: 0x144

复位值: 0x0007ffffff

名称: Training 2 计数寄存器

表 10-77 Training 2 计数寄存器

| 位域   | 位域名称    | 位宽 | 复位值      | 访问  | 描述               |
|------|---------|----|----------|-----|------------------|
| 31:0 | T2 time | 32 | 0x7fffff | R/W | Training 2 计数寄存器 |

## 10.5.27 Training 3 计数寄存器

用于 HyerTransport 3.0 模式下 Training 3 计数阈值, 计数器时钟频率为



HyperTransport3.0 链路总线时钟频率的1/4。

偏移量: 0x13C

名称: Training 3 计数寄存器

表 10-78 Training 3 计数寄存器

| 位域   | 位域名称    | 位宽 | 复位值      | 访问  | 描述               |
|------|---------|----|----------|-----|------------------|
| 31:0 | T3 time | 32 | 0x7fffff | R/W | Training 3 计数寄存器 |

## 10.5.28 软件频率配置寄存器

用于实现控制器在工作过程中切换到任意协议和 PLL 支持的链路频率及控制器频率;

具体切换方法为: 在使能软件配置模式的前提下,置位软件频率配置寄存器第 1 位,并写入新的时钟相关的参数,包括决定 PLL 输出频率的 div\_refc 和 div\_loop,链路上的分频系数 phy\_hi\_div 和 phy\_lo\_div,以及控制器的分频系数 core\_div 。之后进入 warm reset 或 LDT disconnect,控制器将会自动复位 PLL,配置新的时钟参数。

时钟频率的计算公式为:

HyperTransport 1.0:

 $PHY_LINK\_CLK = 50MHz \times div_loop / div_refc / phy_div_loop / div_loop / div_loop$ 

HT\_CORE\_CLK = 100MHz × div\_loop /div\_refc /core\_div

HyperTransport 3.0:

 $PHY_LINK\_CLK = 100MHz \times div_loop/div_refc$ 

HT CORE CLK = 100MHz×div loop /div refc /core div

等待 PLL 重新锁定的时间在缺省情况下, system clk 为 33M 时约为 30us; 也可以在寄存器中写入自定义的等待计数上限;

偏移量: 0x178

复位值: 0x00000000

名称: 软件频率配置寄存器

表 10-79 软件频率配置寄存器

| 位域     | 位域名称       | 位宽 | 复位值 | 访问  | 描述  |    |     |     |     |    |      |      |       |      |
|--------|------------|----|-----|-----|-----|----|-----|-----|-----|----|------|------|-------|------|
| 31: 27 | PLL relock | 5  | 0x0 | R/W | 计数制 | 器上 | 限配置 | 置寄存 | 字器, | 当置 | 捏位 c | ount | er se | lect |
|        | counter    |    |     |     | 时   | ,  | 计   | 数   | 器   | 计  | 数    | 上    | 限     | 为    |



|        |                   |   |     |     | {PLL_relock_counter ,5'h1f} , 否则计数上限<br>为 10'3ff                |
|--------|-------------------|---|-----|-----|-----------------------------------------------------------------|
| 26     | Counter select    | 1 | 0x0 | R/W | 锁定计时器自定义使能:<br>1'b0 使用默认计数上限;<br>1'b1 由 PLL_relock_counter 计算得出 |
| 25: 22 | Soft_phy_lo_div   | 4 | 0x0 | R/W | 高位 PHY 分频系数                                                     |
| 21: 18 | Soft_phy_hi_div   | 4 | 0x0 | R/W | 低位 PHY 分频系数                                                     |
| 17: 16 | Soft_div_refc     | 2 | 0x0 | R/W | PLL 内分频系数                                                       |
| 15: 9  | Soft_div_loop     | 7 | 0x0 | R/W | PLL 内倍频系数                                                       |
| 8: 5   | Soft_core_div     | 4 | 0x0 | R/W | 控制器时钟分频系数                                                       |
| 4: 2   | Reserved          | 3 | 0x0 | R   | 保留                                                              |
| 1      | Soft cofig enable | 1 | 0x0 | R/W | 软件配置使能位<br>1'b0 禁用软件频率配置<br>1'b1 使能软件频率配置                       |
| 0      | Reserved          | 1 | 0x0 | R   | 保留                                                              |

# 10.5.29 PHY 配置寄存器

用于配置 PHY 相关的物理参数,当控制器做为两个独立的 8bit 控制器时,高位的 PHY 和低位的 PHY 分别由两个控制器独立控制;当控制器作为 1 个 16bit 的控制器时,高位和低位的 PHY 的配置参数由低位控制器统一控制;

偏移量: 0x17C

复位值: 0x83308000 名称: PHY 配置寄存器

表 10-80 PHY 配置寄存器

| 位域    | 位域名称           | 位宽 | 复位值 | 访问  | 描述                                                                |
|-------|----------------|----|-----|-----|-------------------------------------------------------------------|
| 31    | Rx_ckpll_term  | 1  | 0x1 | R/W | PLL 到 RX 端片上传输线终端阻抗                                               |
| 30    | Tx_ckpll_term  | 1  | 0x0 | R/W | PLL 到 TX 端片上传输线终端阻抗                                               |
| 29    | Rx_clk_in_sel_ | 1  | 0x0 | R/W | 时钟 PAD 供给数据 PAD 的时钟选择,HT1 模式下自动选择为 CLKPAD: 1'b0 外来时钟源 1'b1 PLL 时钟 |
| 28    | Rx_ckdll_sell  | 1  | 0x0 | R/W | 用来锁定 DLL 的时钟选择: 1'b0 PLL 时钟 1'b1 外来时钟源                            |
| 27:26 | Rx_ctle_bitc   | 2  | 0x0 | R/W | PAD EQD 高频增益                                                      |



| 25:24  | Rx_ctle_bitr   | 2  | 0x3  | R/W | PAD EQD 低频增益    |
|--------|----------------|----|------|-----|-----------------|
| 23:22  | Rx_ctle_bitlim | 2  | 0x0  | R/W | PAD EQD 补偿限制    |
| 21     | Rx en Ido      | 1  | 0x1  | R/W | LDO 控制          |
| -      | 1.01_011_100   | •  | OX I |     | 1'b0 LDO 禁用     |
|        |                |    |      |     | 1'b1 LDO 使能     |
| 20     | Rx en by       | 1  | 0x1  | R/W | BandGap 控制      |
| [      |                |    |      |     | 1'b0 BandGap 禁用 |
|        |                |    |      |     | 1'b1 BandGap 使能 |
| 19: 17 | Reserved       | 3  | 0x0  | R   | 保留              |
| 16:12  | Tx_preenmp     | 5  | 0x08 | R/W | PAD 预加重控制信号     |
| 11: 0  | Reserved       | 12 | 0x0  | R   | 保留              |

# 10.5.30 链路初始化调试寄存器

用于配置在 HyperTransport 3.0 模式下,链路初始化过程中是否使用 PHY 提供的 CDR lock 信号做为链路 CDR 完成的标志;如果忽略该锁定信号,则需要控制器计数等待一定时间后默认 CDR 完成。

偏移量: 0x180

复位值: 0x00000000

名称: 链路初始化调试寄存器

表 10-81 链路初始化调试寄存器

| 位域    | 位域名称              | 位宽 | 复位值 | 访问  | 描述                                                                               |
|-------|-------------------|----|-----|-----|----------------------------------------------------------------------------------|
| 15    | Cdr_ignore_enable | 1  | 0x0 | R/W | 链路初始化时是否忽略 CRC lock ,通过计数器计数完成等待: 1'b0 等待 CDR lock 1'b1 忽略 CDR lock 信号,通过计数器累加等待 |
| 14: 0 | Cdr_wait_counter  | 15 | 0x0 | R/W | 等待计数器计数上限,基于控制器时钟完成的技术                                                           |

# 10.5.31 **LDT调试寄存器**

软件改变控制器频率后,会导致对LDT reconnect 阶段计时不准确,需配置该计数器,作为软件配置频率后,LDT 信号无效到控制器开始链路初始化之间的时间,该计时基于控制器时钟。

偏移量: 0x184

复位值: 0x00000000



名称: LDT 调试寄存器

表 10-82 LDT 调试寄存器

| 位域    | 位域名称         | 位宽 | 复位值 | 访问  | 描述           |
|-------|--------------|----|-----|-----|--------------|
| 31:16 | Rx_wait_time | 16 | 0x0 | R/W | RX 端等待计数器的初值 |
| 15:0  | Tx_wait_time | 16 | 0x0 | R/W | TX 端等待计数器的初值 |

## 10.6 HyperTransport总线配置空间的访问方法

HyperTransport 接口软件层的协议与 PCI 协议基本一致,由于配置空间的访问直接与底层协议相关,具体访问细节略有不同。在表 10-5 中已列出,HT 总线配置空间的地址范围是  $0xFD_FE00_0000 \sim 0xFD_FFFF_FFFF$ 。对于HT 协议中的配置访问,在龙芯 3A3000/3B3000中采用如下格式实现:



图 10-1 龙芯 3A3000/3B3000 中 HT 协议的配置访问

## 10.7 HyperTransport多处理器支持

龙芯 3 号处理器使用 HyperTransport 接口进行多处理器互联,并且可以硬件自动维护 4 个芯片之间的一致性请求。下面提供两种多处理器互联方法:

#### 四片龙芯 3 号互联结构

四片 CPU 两两相联构成环状结构。每个 CPU 利用 HTO 的两个 8 位控制器与相邻两片相联,



其中 HTx LO 作为主设备,HTx HI 作为从设备连接,由此而得到下图的互联结构:



图 10-2 四片龙芯 3 号互联结构

### 龙芯 3 号互联路由

龙芯 3 号互联路由采用简单 X-Y 路由方法。即路由时,先 X 后 Y,以四片芯片为例,ID 号分别为 00,01,10,11。如果从 11 向 00 发出请求,则为 11 向 00 路由,首先走 X 方向,从 11 走到 10,再走 Y 方向,从 10 走到 00。而在请求的响应从 00 返回 11 时,路由首先走 X 方向,从 00 到 01,再走 Y 方向,从 01 到 11。可以看到,这是两个不同的路由线路。由于这个算法的特征,我们在构建两片芯片互联的时候,将采用不同的办法。

#### 两片龙芯 3号互联结构

由于固定路由算法的特性,我们在构建两片芯片互联时,有两种不同的方法。首先是采用 8 位 HT 总线互联。这种互联方式下,两个处理器之间只能采用 8 位 HT 互联。两个芯片号分别为 00 与 01,由路由算法,我们可以知道,两个芯片相互访问时都是通过与四片互联时一致的 8 位 HT 总线。如下所示:





图 10-3 两片龙芯 3号 8位互联结构

但是,我们的 HT 总线最宽可以采用 16 位模式,由此最大化带宽的连接方式应该是采用 16 位互联结构。在龙芯三号中,只要把 HTO 控制器设置为 16 位模式,所有发到 HTO 控制器 的命令都会被发往 HTO\_LO,而不是以前的按照路由表分别发至 HTO\_HI 或是 HTO\_LO,这样,我们就可以在互联时使用 16 位总线。所以,我们只需要将 CPU0 与 CPU1 的 16 位模式正确配置并将高低位总线正确连接即可使用 16 位 HT 总线互联。而这种互联结构同时也可以使用 8 位的 HT 总线协议进行相互访问。所得到的互联结构如下:



图 10-4 两片龙芯 3号 16 位互联结构



### 11 低速 I0 控制器配置

龙芯 3号 I/O 控制器包括 PCI 控制器、LPC 控制器、UART 控制器、SPI 控制器、GPIO 以及配置寄存器。这些 I/O 控制器共享一个 AXI 端口,CPU 的请求经过地址译码后发送到相应的设备。

### 11.1 PCI控制器

龙芯 3 号的 PCI 控制器既可以作为主桥控制整个系统,也可以作为普通 PC 设备工作在 PCI 总线上。它的实现符合 PCI 2.3 规范。龙芯 3 号的 PCI 控制器还内置了 PCI 仲裁器。

PCI 控制器的配置头位于 0x1FE00000 开始的 256 字节,如表 11-1 所示。

字节 3 字节 2 字节1 字节 0 地址 Device ID Vendor ID 00 Status Command 04 Class Code Revision ID 80 BIST CacheLine Size Header Type Latency Timer 0C Base Address Register 0 10 Base Address Register 1 14 Base Address Register 2 18 Base Address Register 3 1C Base Address Register 4 20 Base Address Register 5 24 28 Subsystem ID Subsystem Vendor ID 2C 30 Capabilities Pointer 34 38 Maximum Latency Minimum Grant Interrupt Pin Interrupt Line 3C Implementation Specific Register(ISR40) 40 Implementation Specific Register(ISR44) 44 Implementation Specific Register(ISR48) 48 Implementation Specific Register(ISR4C) 4C Implementation Specific Register(ISR50) 50 Implementation Specific Register(ISR54) 54 Implementation Specific Register(ISR58) 58

表 11-1 PCI 控制器配置头



| PCIX Command Register | E0 |
|-----------------------|----|
| PCIX Status Register  | E4 |

龙芯 3A3000/3B3000 的 PCIX 控制器支持三个 64 位窗口,由 {BAR1, BAR0}、{BAR3, BAR2}、 {BAR5, BAR4} 三对寄存器配置窗口 0、1、2 的基址。窗口的大小、使能以及其它细节由另外 三个对应寄存器 PCI\_Hit0\_Sel, PCI\_Hit1\_Sel, PCI\_Hit2\_Sel 控制,具体位域请参见表 2。

表 11-2 PCI 控制寄存器

| 衣 II-2 POI |                    |               |      |                                                                                                                                                                         |  |  |
|------------|--------------------|---------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 位域         | 字段名                | 访问            | 复位值  | 说明                                                                                                                                                                      |  |  |
| RE         | REG_40             |               |      |                                                                                                                                                                         |  |  |
| 31         | tar_read_io        | 读写<br>(写 1 清) | 0    | target 端收到对 IO 或者是不可预取区域的访问                                                                                                                                             |  |  |
| 30         | tar_read_discard   | 读写<br>(写 1 清) | 0    | target 端的 delay 请求被丢弃                                                                                                                                                   |  |  |
| 29         | tar_resp_delay     | 读写            | 0    | target 访问何时给出 delay/split<br>0: 超时后<br>1: 马上                                                                                                                            |  |  |
| 28         | tar_delay_retry    | 读写            | 0    | target 访问重试策略  0: 根据内部逻辑(见 29 位)  1: 马上重试                                                                                                                               |  |  |
| 27         | tar_read_abort_en  | 读写            | 0    | 若 target 对内部的读请求超时,是否让以 target-abort 回应                                                                                                                                 |  |  |
| 26:25      | Reserved           | -             | 0    |                                                                                                                                                                         |  |  |
| 24         | tar_write_abort_en | 读写            | 0    | 若 target 对内部的写请求超时,是否让以 target-abort 回应                                                                                                                                 |  |  |
| 23         | tar_master_abort   | 读写            | 0    | 是否允许 master-abort                                                                                                                                                       |  |  |
| 22:20      | tar_subseq_timeout | 读写            | 000  | target 后续延迟超时<br>000: 8 周期<br>其它: 不支持                                                                                                                                   |  |  |
| 19:16      | tar_init_timeout   | 读写            | 0000 | target 初始延迟超时 PCI 模式下 0: 16 周期 1-7: 禁用计数器 8-15: 8-15 周期 PCIX 模式下超时计数固定为 8 周期,此处配置影响最大的delay 访问数 0: 8 delay 访问 8: 1 delay 访问 9: 2 delay 访问 10: 3 delay 访问 11: 4 delay 访问 |  |  |



| 14               | err_module         | 只读           | 0    | 出错的模块                                                   |  |
|------------------|--------------------|--------------|------|---------------------------------------------------------|--|
| 15               | err_type           | 只读           | 0    | target/master 出错的命令类型<br>0:                             |  |
| 23:16            | err_seq_id         | 只读           | 00h  | target/master 错误号                                       |  |
| 26:24            | mas_read_defer_cnt | 读写           | 010  | 0:8<br>1-7:1-7<br>注: 一个双地址周期访问占两项                       |  |
|                  |                    |              |      | master 支持在外读的最大数(只对 PCI 有效)                             |  |
| 27               | mas_io_defer_cnt   | 读写           | 0    | 在外的最大 IO 请求数<br>0: 由控制<br>1: 1                          |  |
| 28               | mas_read_defer     | 读写           | 0    | 允许后续的读写越过前面未完成的读<br>(只对 PCI 有效)                         |  |
| 29               | mas_write_defer    | 读写           | 0    | 允许后续的读越过前面未完成的写<br>(只对 PCI 有效)                          |  |
| 31:30            | Reserved           | -            | -    |                                                         |  |
| RE               | G_4C               |              |      |                                                         |  |
| 31:0             | tar_pending_seq    | 读写           | 0    | target 未处理完的请求号位向量<br>对应位写 1 可清                         |  |
|                  | G_48               |              |      |                                                         |  |
|                  | Reserved           | -            | _    |                                                         |  |
| 1: 不允许<br>REG_44 |                    |              |      |                                                         |  |
| 0                | mas_lat_timeout    | 读写           | 0    | 0: 允许 master 访问超时                                       |  |
|                  |                    |              |      | 禁用 mater 访问超时                                           |  |
| 1                | tar_splitw_ctrl    | 读写           | 0    | 0: 阻挡除 Posted Memory Write 以外的访问 1: 阻挡所有访问, 直至 split 完成 |  |
|                  |                    | \+. <i>□</i> |      | target split 写控制                                        |  |
| 2                | Reserved           | -            | 0    |                                                         |  |
| 3                | tar_pref_bound_en  | 读写           | 0    | 0: 预取到设备边界<br>1: 使用 tar_pref_boundary                   |  |
|                  |                    |              |      | 使用 tar_pref_boundary 的配置                                |  |
|                  |                    |              |      | FF8: 64KB 到 128byte                                     |  |
| 15:4             | tar_pref_boundary  | 读写           | 000h | FFE: 64KB 到 32byte                                      |  |
|                  |                    |              |      | FFF: 64KB 到 16byte                                      |  |
|                  |                    |              |      | 15: 8 delay 访问<br>可预取边界配置(以 16 字节为单位)                   |  |
|                  |                    |              |      | 14: 7 delay 访问                                          |  |
|                  |                    |              |      | 13: 6 delay 访问                                          |  |
|                  |                    |              |      | 12: 5 delay 访问                                          |  |



|        |                    |    |     | 0: target                                 |  |
|--------|--------------------|----|-----|-------------------------------------------|--|
|        |                    |    |     | 1: master                                 |  |
| 13     | system_error       | 读写 | 0   | target/master 系统错(写 1 清)                  |  |
| 12     | data_parity_error  | 读写 | 0   | target/master 数据奇偶错(写 1 清)                |  |
| 11     | ctrl_parity_error  | 读写 | 0   | target/master 地址奇偶错(写 1 清)                |  |
| 10:0   | Reserved           | -  | -   |                                           |  |
| REG    | REG 50             |    |     |                                           |  |
| 0.4.0  | mas_pending_seq    | 读写 | 0   | master 未处理完的请求号位向量                        |  |
| 31:0   |                    |    |     | 对应位写 1 可清                                 |  |
| REG_54 |                    |    |     |                                           |  |
| 31:0   | mas_split_err      | 读写 | 0   | split 返回出错的请求号位向量                         |  |
| REG_58 |                    |    |     |                                           |  |
| 31:30  | Reserved           | -  | -   |                                           |  |
| 00.00  | tar_split_priority | 读写 | 0   | target split 返回优先级                        |  |
| 29:28  |                    |    |     | 0 最高, 3 最低                                |  |
| 07.00  | mas_req_priority   | 读写 | 0   | master 对外的优先级                             |  |
| 27:20  |                    |    |     | 0 最高, 3 最低                                |  |
|        | Priority_en        | 读写 | 0   | 仲裁算法(在 master 的访问和 target 的 split 返回间做仲裁) |  |
| 25     |                    |    |     | 0: 固定优先级                                  |  |
|        |                    |    |     | 1: 轮转                                     |  |
| 24:18  | 保留                 | -  | -   |                                           |  |
| 17     | mas_retry_aborted  | 读写 | 0   | master 重试取消(写 1 清)                        |  |
| 16     | mas_trdy_timeout   | 读写 | 0   | master TRDY 超时计数                          |  |
|        | mas_retry_value    | 读写 | 00h | master 重试次数                               |  |
| 15:8   |                    |    |     | 0: 无限重试                                   |  |
|        |                    |    |     | 1-255: 1-255 次                            |  |
| 7:0    | mas_trdy_count     | 读写 | 00h | master TRDY 超时计数器                         |  |
|        |                    |    |     | 0: 禁用                                     |  |
|        |                    |    |     | 1-255: 1-255 拍                            |  |

在发起配置空间读写前,应用程序应先配置好 PCIMap\_Cfg 寄存器,告诉控制器欲发起的配置操作的类型和高 16 位地址线上的值。然后对 0x1fe80000 开始的 2K 空间进行读写即可访问对应设备的配置头。设备号由根据 PCIMap\_Cfg[15:0]从低到高优先编码得到。

配置操作地址生成见图 11-1。





图 11-1 配置读写总线地址生成

PCI 仲裁器实现了两级轮转仲裁、总线停靠和损坏主设备的隔离。其配置和状态见 PXArb\_Config 和 PXArb\_Status 寄存器。PCI 总线请求与应答线分配见表 11-3。

| •••    |                   |
|--------|-------------------|
| 请求与应答线 | 描述                |
| 0      | 内部集成 PCI/PCIX 控制器 |
| 7:1    | 外部请求 6~0          |

表 11-3 PCI/PCIX 总线请求与应答线分配

基于轮转的仲裁算法提供两个级别,第二级整体作为第一级中的一员一起调度。当多个设备同时申请总线时每轮转完一次第一级设备,第二级中优先级最高的设备可以得到总线。

仲裁器被设计成任何时候只要条件允许就可以切换,对于一些不符合协议的 PCI 设备,这样做可能会使之不正常。使用强制优先级可以让这些设备通过持续请求来占有总线。

总线停靠是指当没有设备请求使用总线时是否选择其中一个给出允许信号。对于已经得到允许的设备而言,直接发起总线操作能够提高效率。内部 PCI 仲裁器提供两种停靠模式:最后一个主设备和默认主设备。如果在特殊场合下不能够停靠,可以将仲裁器设置为停靠到默认 0 号主设备(内部控制器),且依靠延迟为 0。



#### 11.2 LPC控制器

LPC 控制器具有以下特性:

- 符合 LPC1.1 规范
- 支持 LPC 访问超时计数器
- 支持 Memory Read、Memory write 访问类型
- 支持 Firmware Memory Read、Firmware Memory Write 访问类型(单字节)
- 支持 I/O read、I/O write 访问类型
- 支持 Memory 访问类型地址转换
- 支持 Serizlized IRQ 规范,提供 17 个中断源

LPC 控制器的地址空间分布见表 11-4:

地址名称 地址范围 大小

LPC Boot 0X1FC0\_0000-0X1FD0\_0000 1MByte

LPC Memory 0X1C00\_0000-0X1D00\_0000 16MByte

LPC I/O 0X1FF0\_0000-0X1FF1\_0000 64KByte

LPC Register 0X1FE0\_0200-0X1FE0\_0300 256Byte

表 11-4 LPC 控制器地址空间分布

LPC Boot 地址空间是系统启动时处理器最先访问的地址空间,当 PCI\_CONFIG[0]引脚为下拉时,0xBFC00000 的地址被自动路由至 LPC。这个地址空间支持 LPC Memory 或 Firmware Memory 访问类型。系统启动时发出哪种访问类型由 LPC\_ROM\_INTEL 引脚控制。LPC\_ROM\_INTEL 引脚上拉时发出 LPC Firmware Memory 访问,LPC\_ROM\_INTEL 引脚下拉时发出 LPC Memory 访问类型。

LPC Memory 地址空间是系统用 Memory/Firmware Memory 访问的地址空间。LPC 控制器发出哪种类型的 Memory 访问,由 LPC 控制器的配置寄存器 LPC\_MEM\_IS\_FWH 决定。处理器发往这个地址空间的地址可以进行地址转换。转换后的地址由 LPC 控制器的配置寄存器 LPC MEM TRANS 设置。

处理器发往 LPC I/0 地址空间的访问按照 LPC I/0 访问类型发往 LPC 总线。地址为地址空间低 16 位。

LPC 控制器配置寄存器共有 3 个 32 位寄存器。配置寄存器的含义见表 11-5:

表 11-5 LPC 配置寄存器含义



| 位域          | 字段名              | 访问  | 复位值 | 说明                     |  |  |  |  |  |
|-------------|------------------|-----|-----|------------------------|--|--|--|--|--|
|             | REG0             |     |     |                        |  |  |  |  |  |
| REG0[31:31] | SIRQ_EN          | 读写  | 0   | SIRQ 使能控制              |  |  |  |  |  |
| REG0[23:16] | LPC_MEM_TRANS    | 读写  | 0   | LPC Memory 空间地址转换控制    |  |  |  |  |  |
| REG0[15:0]  | LPC_SYNC_TIMEOUT | 读写  | 0   | LPC 访问超时计数器            |  |  |  |  |  |
| REG1        |                  |     |     |                        |  |  |  |  |  |
| REG1[31:31] | LPC_MEM_IS_FWH   | 读写  | 0   | LPC Memory 空间 Firmware |  |  |  |  |  |
|             |                  |     |     | Memory 访问类型设置          |  |  |  |  |  |
| REG1[17:0]  | LPC_INT_EN       | 读写  | 0   | LPC SIRQ 中断使能          |  |  |  |  |  |
|             | R                | EG2 |     |                        |  |  |  |  |  |
| REG2[17:0]  | LPC_INT_SRC      | 读写  | 0   | LPC SIRQ 中断源指示         |  |  |  |  |  |
| REG3        |                  |     |     |                        |  |  |  |  |  |
| REG3[17:0]  | LPC_INT_CLEAR    | 写   | 0   | LPC SIRQ 中断清除          |  |  |  |  |  |

# 11.3 UART控制器

UART 控制器具有以下特性

- 全双工异步数据接收/发送
- 可编程的数据格式
- 16 位可编程时钟计数器
- 支持接收超时检测
- 带仲裁的多中断系统
- 仅工作在 FIFO 方式
- 在寄存器与功能上兼容 NS16550A

芯片内部集成两个 UART 接口,功能寄存器完全一样,只是访问基址不同。

UARTO 寄存器物理地址基址为 0x1FE001E0。

UART1 寄存器物理地址基址为 0x1FE001E8。



# 11.3.1 数据寄存器(DAT)

中文名: 数据传输寄存器

寄存器位宽:[7:0]偏移量:0x00复位值:0x00

| 位域  | 位域名称    | 位宽 | 访问 | 描述      |
|-----|---------|----|----|---------|
| 7:0 | Tx FIFO | 8  | W  | 数据传输寄存器 |

# 11.3.2 中断使能寄存器 (IER)

中文名: 中断使能寄存器

寄存器位宽: [7: 0] 偏移量: 0x01复位值: 0x00

| 位域  | 位域名称     | 位宽 | 访问 | 描述                              |
|-----|----------|----|----|---------------------------------|
| 7:4 | Reserved | 4  | RW | 保留                              |
| 3   | IME      | 1  | RW | Modem 状态中断使能 '0' – 关闭 '1' – 打开  |
| 2   | ILE      | 1  | RW | 接收器线路状态中断使能 '0' – 关闭'1' – 打开    |
| 1   | ITxE     | 1  | RW | 传输保存寄存器为空中断使能 '0' – 关闭 '1' – 打开 |
| 0   | IRxE     | 1  | RW | 接收有效数据中断使能 '0' – 关闭 '1' – 打开    |

### 11.3.3 中断标识寄存器(IIR)

中文名: 中断源寄存器

寄存器位宽:[7:0]偏移量:0x02复位值:0xc1

| 位域  | 位域名称     | 位宽 | 访问 | 描述          |
|-----|----------|----|----|-------------|
| 7:4 | Reserved | 4  | R  | 保留          |
| 3:1 | II       | 3  | R  | 中断源表示位,详见下表 |
| 0   | INTp     | 1  | R  | 中断表示位       |

中断控制功能表



| Bit 3 | Bit 2 | Bit 1 | 优先级 | 中断类型     | 中断源                  | 中断复位控制       |
|-------|-------|-------|-----|----------|----------------------|--------------|
| 0     | 1     | 1     | 1st | 接收线路状态   | 奇偶、溢出或帧错误,或打         | 读 LSR        |
|       |       |       |     |          | 断中断                  |              |
| 0     | 1     | 0     | 2nd | 接收到有效数   | FIFO 的字符个数达到         | FIFO 的字符个数低  |
|       |       |       |     | 据        | trigger 的水平          | 于 trigger 的值 |
| 1     | 1     | 0     | 2nd | 接收超时     | 在 FIFO 至少有一个字符,      | 读接收 FIFO     |
|       |       |       |     |          | 但在4个字符时间内没有任         |              |
|       |       |       |     |          | 何操作,包括读和写操作          |              |
| 0     | 0     | 1     | 3rd | 传输保存寄存   | 传输保存寄存器为空            | 写数据到 THR 或者  |
|       |       |       |     | 器为空      |                      | 多 IIR        |
| 0     | 0     | 0     | 4th | Modem 状态 | CTS, DSR, RI or DCD. | 读 MSR        |

# 11.3.4 FIFO控制寄存器 (FCR)

中文名: FIFO 控制寄存器

寄存器位宽: [7: 0]偏移量: 0x02复位值: 0xc0

| 0,00     |                               |                                         |                                                    |
|----------|-------------------------------|-----------------------------------------|----------------------------------------------------|
| 位域名称     | 位宽                            | 访问                                      | 描述                                                 |
| TL       | 2                             | W                                       | 接收 FIFO 提出中断申请的 trigger 值                          |
|          |                               |                                         | '00'-1 字节'01'-4 字节                                 |
|          |                               |                                         | '10' – 8 字节 '11' – 14 字节                           |
| Reserved | 3                             | W                                       | 保留                                                 |
| Txset    | 1                             | W                                       | '1' 清除发送 FIFO 的内容,复位其逻辑                            |
| Rxset    | 1                             | W                                       | '1' 清除接收 FIFO 的内容,复位其逻辑                            |
| Reserved | 1                             | W                                       | 保留                                                 |
|          | 位域名称 TL  Reserved Txset Rxset | 位域名称 位宽 TL 2 Reserved 3 Txset 1 Rxset 1 | 位域名称 位宽 访问 TL 2 W Reserved 3 W Txset 1 W Rxset 1 W |

# 11.3.5 线路控制寄存器 (LCR)

中文名: 线路控制寄存器

寄存器位宽: [7:0]

109



偏移量: 0x03 复位值: 0x03

| 复位值: | 0x03<br>位域名称 | 位宽 | 访问 | 描述                            |
|------|--------------|----|----|-------------------------------|
| 7    | dlab         | 1  | RW | 分频锁存器访问位                      |
|      |              |    |    | '1' – 访问操作分频锁存器               |
|      |              |    |    | '0' – 访问操作正常寄存器               |
| 6    | bcb          | 1  | RW | 打断控制位                         |
|      |              |    |    | '1' – 此时串口的输出被置为 0(打断状态).     |
|      |              |    |    | '0' – 正常操作                    |
| 5    | spb          | 1  | RW | 指定奇偶校验位                       |
|      |              |    |    | '0'— 不用指定奇偶校验位                |
|      |              |    |    | '1'- 如果 LCR[4]位是 1 则传输和检查奇偶校验 |
|      |              |    |    | 位为 0。如果 LCR[4]位是 0 则传输和检查奇偶校  |
|      |              |    |    | 验位为 1。                        |
| 4    | eps          | 1  | RW | 奇偶校验位选择                       |
|      |              |    |    | '0' - 在每个字符中有奇数个 1(包括数据和奇     |
|      |              |    |    | 偶校验位)                         |
|      |              |    |    | '1' –在每个字符中有偶数个 1             |
| 3    | ре           | 1  | RW | 奇偶校验位使能                       |
|      |              |    |    | '0' – 没有奇偶校验位                 |
|      |              |    |    | '1' - 在输出时生成奇偶校验位,输入则判断奇      |
|      |              |    |    | 偶校验位                          |
| 2    | sb           | 1  | RW | 定义生成停止位的位数                    |
|      |              |    |    | '0' – 1 个停止位                  |
|      |              |    |    | '1' – 在 5 位字符长度时是 1.5 个停止位,其他 |
|      |              |    |    | 长度是2个停止位                      |
| 1:0  | bec          | 2  | RW | 设定每个字符的位数                     |
|      |              |    |    | '00'-5 位 '01'-6 位             |



|  | '10'-7 位 '11'-8 位 |
|--|-------------------|
|--|-------------------|

# 11.3.6 MODEM控制寄存器 (MCR)

中文名: Modem 控制寄存器

寄存器位宽: [7:0]偏移量: 0x04复位值: 0x00

| 位域  | 位域名称     | 位宽 | 访问 | 描述                        |
|-----|----------|----|----|---------------------------|
| 7:5 | Reserved | 3  | W  | 保留                        |
| 4   | Loop     | 1  | W  | 回环模式控制位                   |
|     |          |    |    | '0' – 正常操作                |
|     |          |    |    | '1' –回环模式。在在回环模式中,TXD 输出一 |
|     |          |    |    | 直为 1, 输出移位寄存器直接连到输入移位寄存   |
|     |          |    |    | 器中。其他连接如下。                |
|     |          |    |    | DTR → DSR                 |
|     |          |    |    | RTS → CTS                 |
|     |          |    |    | Out1 → RI                 |
|     |          |    |    | Out2 → DCD                |
| 3   | OUT2     | 1  | W  | 在回环模式中连到 DCD 输入           |
| 2   | OUT1     | 1  | W  | 在回环模式中连到 RI 输入            |
| 1   | RTSC     | 1  | W  | RTS 信号控制位                 |
| 0   | DTRC     | 1  | W  | DTR 信号控制位                 |

# 11.3.7 线路状态寄存器(LSR)

中文名: 线路状态寄存器

寄存器位宽:[7:0]偏移量:0x05复位值:0x00

|--|



| 7 | ERROR   | 1 | R   | 错误表示位                                 |
|---|---------|---|-----|---------------------------------------|
|   | Littort | · |     | '1' – 至少有奇偶校验位错误,帧错误或打断中              |
|   |         |   |     | 断的一个。                                 |
|   |         |   |     | '0' – 没有错误                            |
| 6 | TE      | 1 | R   | 传输为空表示位                               |
|   | . –     | · |     | '1' - 传输 FIFO 和传输移位寄存器都为空。给           |
|   |         |   |     | 传输 FIFO 写数据时清零                        |
|   |         |   |     | ·0' - 有数据                             |
| 5 | TFE     | 1 | R   | 传输 FIFO 位空表示位                         |
| 3 |         | ľ | IX. | '1' - 当前传输 FIFO 为空, 给传输 FIFO 写数据      |
|   |         |   |     | T = 当即役制 FIFO 为王, 纽役制 FIFO 与数据<br>时清零 |
|   |         |   |     | 10 · 有数据                              |
| 4 | DI      | 4 |     |                                       |
| 4 | BI      | 1 | R   | 打断中断表示位                               |
|   |         |   |     | '1'-接收到 起始位+数据+奇偶位+停止位都               |
|   |         |   |     | 是 0,即有打断中断                            |
| _ |         |   | _   | '0' - 没有打断                            |
| 3 | FE      | 1 | R   | 帧错误表示位                                |
|   |         |   |     | '1' – 接收的数据没有停止位                      |
|   |         |   |     | '0' - 没有错误                            |
| 2 | PE      | 1 | R   | 奇偶校验位错误表示位                            |
|   |         |   |     | '1' – 当前接收数据有奇偶错误                     |
|   |         |   |     | '0' - 没有奇偶错误                          |
| 1 | OE      | 1 | R   | 数据溢出表示位                               |
|   |         |   |     | '1' – 有数据溢出                           |
|   |         |   |     | '0'- 无溢出                              |
| 0 | DR      | 1 | R   | 接收数据有效表示位                             |
|   |         |   |     | '0' – 在 FIFO 中无数据                     |



|  | '1' – 在 FIFO 中有数据 |
|--|-------------------|
|--|-------------------|

对这个寄存器进行读操作时,LSR[4:1]和LSR[7]被清零,LSR[6:5]在给传输 FIFO 写数据时清零,LSR[0]则对接收 FIFO 进行判断。

### 11.3.8 MODEM状态寄存器 (MSR)

中文名: Modem 状态寄存器

寄存器位宽: [7: 0]偏移量: 0x06复位值: 0x00

| 久压ഥ• | 0,00 |    |    |                           |
|------|------|----|----|---------------------------|
| 位域   | 位域名称 | 位宽 | 访问 | 描述                        |
| 7    | CDCD | 1  | R  | DCD 输入值的反,或者在回环模式中连到 Out2 |
| 6    | CRI  | 1  | R  | RI 输入值的反,或者在回环模式中连到 OUT1  |
| 5    | CDSR | 1  | R  | DSR 输入值的反,或者在回环模式中连到 DTR  |
| 4    | CCTS | 1  | R  | CTS 输入值的反,或者在回环模式中连到 RTS  |
| 3    | DDCD | 1  | R  | DDCD 指示位                  |
| 2    | TERI | 1  | R  | RI 边沿检测。RI 状态从低到高变化       |
| 1    | DDSR | 1  | R  | DDSR 指示位                  |
| 0    | DCTS | 1  | R  | DCTS 指示位                  |

# 11.3.9 分频锁存器

中文名: 分频锁存器 1

寄存器位宽:[7:0]偏移量:0x00复位值:0x00

| 位域  | 位域名称 | 位宽 | 访问 | 描述          |
|-----|------|----|----|-------------|
| 7:0 | LSB  | 8  | RW | 存放分频锁存器的低8位 |

中文名: 分频锁存器 2

寄存器位宽: [7: 0]偏移量: 0x01复位值: 0x00



#### 11.4 SPI控制器

SPI 控制器具有以下特性:

- 全双工同步串口数据传输
- 支持到 4 个的变长字节传输
- 主模式支持
- 模式故障产生错误标志并发出中断请求
- 双缓冲接收器
- 极性和相位可编程的串行时钟
- 可在等待模式下对 SPI 进行控制
- 支持从 SPI 启动

SPI 控制器寄存器物理地址基址为 0x1FE00220。

 地址名称
 地址范围
 大小

 SPI Boot
 0X1FC0\_0000-0X1FD0\_0000
 1MByte

 SPI Memory
 0X1D00\_0000-0X1E00\_0000
 16MByte

 SPI Register
 0X1FE0\_0220-0X1FE0\_0230
 16Byte

表 11-6 SPI 控制器地址空间分布

SPI Boot 地址空间是系统启动时处理器最先访问的地址空间,当 PCI\_CONFIG[0]引脚为上拉时,0xBFC00000 的地址被自动路由至 SPI。

SPI Memory空间也可以通过 CPU 的读请求直接访问,其最低 1M 字节与 SPI BOOT 空间 重叠。

### 11.4.1 控制寄存器 (SPCR)

中文名: 控制寄存器 寄存器位宽: [7:0] 偏移量: 0x00 复位值: 0x10

| 位域 | 位域名称 | 位宽 | 访问 | 描述           |
|----|------|----|----|--------------|
| 7  | Spie | 1  | RW | 中断输出使能信号 高有效 |
| 6  | spe  | 1  | RW | 系统工作使能信号高有效  |



| 5   | Reserved | 1 | RW | 保留                               |
|-----|----------|---|----|----------------------------------|
| 4   | mstr     | 1 | RW | master 模式选择位,此位一直保持 1            |
| 3   | cpol     | 1 | RW | 时钟极性位                            |
| 2   | cpha     | 1 | RW | 时钟相位位 1 则相位相反,为 0 则相同            |
| 1:0 | spr      | 2 | RW | sclk_o 分频设定,需要与 sper 的 spre 一起使用 |

### 11.4.2 状态寄存器 (SPSR)

0x05

中文名: 状态寄存器 寄存器位宽: [7: 0] 偏移量: 0x01

复位值:

| 位域  | 位域名称     | 位宽 | 访问 | 描述                           |  |
|-----|----------|----|----|------------------------------|--|
| 7   | spif     | 1  | RW | 中断标志位 1 表示有中断申请,写 1 则清零      |  |
| 6   | wcol     | 1  | RW | 写寄存器溢出标志位 为 1 表示已经溢出,写 1 则清零 |  |
| 5:4 | Reserved | 2  | RW | 保留                           |  |
| 3   | wffull   | 1  | RW | 写寄存器满标志 1 表示已经满              |  |
| 2   | wfempty  | 1  | RW | 写寄存器空标志 1 表示空                |  |
| 1   | rffull   | 1  | RW | 读寄存器满标志 1 表示已经满              |  |
| 0   | rfempty  | 1  | RW | 读寄存器空标志 1 表示空                |  |

# 11.4.3 数据寄存器 (TxFIFO)

中文名: 数据传输寄存器

寄存器位宽: [7: 0]偏移量: 0x02复位值: 0x00

| 位域  | 位域名称    | 位宽 | 访问 | 描述      |
|-----|---------|----|----|---------|
| 7:0 | Tx FIFO | 8  | W  | 数据传输寄存器 |

# 11.4.4 外部寄存器 (SPER)

中文名: 外部寄存器 寄存器位宽: [7: 0]

115



偏移量: 0x03 复位值: 0x00

| 位域  | 位域名称     | 位宽 | 访问 | 描述                 |
|-----|----------|----|----|--------------------|
| 7:6 | icnt     | 2  | RW | 在传输完多少个字节后送出中断申请信号 |
|     |          |    |    | 00-1字节 01-2字节      |
|     |          |    |    | 10 - 3字节 11 - 3字节  |
| 5:2 | Reserved | 4  | RW | 保留                 |
| 1:0 | spre     | 2  | RW | 与 Spr 一起设定分频的比率    |

#### 分频系数:

| spre | 00 | 00 | 00 | 00 | 01 | 01 | 01  | 01  | 10  | 10   | 10   | 10   |
|------|----|----|----|----|----|----|-----|-----|-----|------|------|------|
| spr  | 00 | 01 | 10 | 11 | 00 | 01 | 10  | 11  | 00  | 01   | 10   | 11   |
| 分频系数 | 2  | 4  | 16 | 32 | 8  | 64 | 128 | 256 | 512 | 1024 | 2048 | 4096 |

# 11.4.5 参数控制寄存器(SFC\_PARAM)

中文名: SPI Flash 参数控制寄存器

寄存器位宽: [7: 0] 偏移量: 0x04复位值: 0x21

| 位域  | 位域名称      | 位宽 | 访问 | 描述                              |
|-----|-----------|----|----|---------------------------------|
| 7:4 | clk_div   | 4  | RW | 时钟分频数选择(分频系数与{spre,spr}组合相同)    |
| 3   | dual_io   | 1  | RW | 使用双 I/O 模式,优先级高于快速读模式           |
| 2   | fast_read | 1  | RW | 使用快速读模式                         |
| 1   | burst_en  | 1  | RW | spi flash 支持连续地址读模式             |
| 0   | memory_en | 1  | RW | spi flash 读使能,无效时 csn[0]可由软件控制。 |

# 11.4.6 片选控制寄存器(SFC\_SOFTCS)

中文名: SPI Flash 片选控制寄存器

寄存器位宽: [7: 0]偏移量: 0x05复位值: 0x00

| 位域  | 位域名称 | 位宽 | 访问 | 描述                      |
|-----|------|----|----|-------------------------|
| 7:4 | csn  | 4  | RW | csn 引脚输出值               |
| 3:0 | csen | 4  | RW | 为 1 时对应位的 cs 线由 7:4 位控制 |

# 11.4.7 时序控制寄存器(SFC\_TIMING)

中文名: SPI Flash 时序控制寄存器

寄存器位宽:[7:0]偏移量:0x06复位值:0x03

| 复位值: | 0x03<br>位域名称 | 位宽 | 访问 | 描述                                  |
|------|--------------|----|----|-------------------------------------|
| 7:2  | Reserved     | 6  | RW | 保留                                  |
| 1:0  | tCSH         | 2  | RW | SPI Flash 的片选信号最短无效时间,以分频后时钟周期 T 计算 |



# 11.5 IO控制器配置

配置寄存器主要用于配置 PCI 控制器的地址窗口、仲裁器以及 GPI0 控制器。表 11-7 列出了这些寄存器,表 11-8 给出寄存器的详细说明。这部分寄存器基地址为 0x1FE00100。

表 11-7 IO 控制寄存器

| 地址 | 寄存器             | 说明                |
|----|-----------------|-------------------|
| 00 | PonCfg          | 上电配置              |
| 04 | GenCfg          | 常规配置              |
| 08 | 保留              |                   |
| 0C | 保留              |                   |
| 10 | PCIMap          | PCI 映射            |
| 14 | PCIX_Bridge_Cfg | PCI/X 桥相关配置       |
| 18 | PCIMap_Cfg      | PCI 配置读写设备地址      |
| 1C | GPIO_Data       | GPIO 数据           |
| 20 | GPIO_EN         | GPIO 方向           |
| 24 | 保留              |                   |
| 28 | 保留              |                   |
| 2C | 保留              |                   |
| 30 | 保留              |                   |
| 34 | 保留              |                   |
| 38 | 保留              |                   |
| 3C | 保留              |                   |
| 40 | Mem_Win_Base_L  | 可预取窗口基址低 32 位     |
| 44 | Mem_Win_Base_H  | 可预取窗口基址高 32 位     |
| 48 | Mem_Win_Mask_L  | 可预取窗口掩码低 32 位     |
| 4C | Mem_Win_Mask_H  | 可预取窗口掩码高 32 位     |
| 50 | PCI_Hit0_Sel_L  | PCI 窗口 0 控制低 32 位 |



| 54 | PCI_Hit0_Sel_H | PCI 窗口 0 控制高 32 位 |
|----|----------------|-------------------|
| 58 | PCI_Hit1_Sel_L | PCI 窗口 1 控制低 32 位 |
| 5C | PCI_Hit1_Sel_H | PCI 窗口 1 控制高 32 位 |
| 60 | PCI_Hit2_Sel_L | PCI 窗口 2 控制低 32 位 |
| 64 | PCI_Hit2_Sel_H | PCI 窗口 2 控制高 32 位 |
| 68 | PXArb_Config   | PCIX 仲裁器配置        |
| 6C | PXArb_Status   | PCIX 仲裁器状态        |
| 70 |                |                   |
| 74 |                |                   |
| 78 |                |                   |
| 7C |                |                   |
| 80 | Chip Config    | 芯片配置寄存器           |
| 84 |                |                   |
| 88 |                |                   |
| 8C |                |                   |
| 90 | Chip Sample    | 芯片采样寄存器           |
|    |                |                   |

#### 表 11-8 寄存器详细描述

| 位域      | 字段名             | 访问 | 复位值          | 说明                               |  |  |  |  |  |
|---------|-----------------|----|--------------|----------------------------------|--|--|--|--|--|
| CR00: I | CR00: PonCfg    |    |              |                                  |  |  |  |  |  |
| 15:0    | pcix_bus_dev    | 只读 | lio_ad[7:0]  | PCIX Agent 模式下 CPU 取指所使用的总 线、设备号 |  |  |  |  |  |
| 15:8    | 保留              | 只读 | lio_ad[15:8] |                                  |  |  |  |  |  |
| 23:16   | pon_pci_configi | 只读 | pci_configi  | PCI_Configi 引脚值                  |  |  |  |  |  |
| 31:24   | 保留              | 只读 |              |                                  |  |  |  |  |  |
| CR04:   | 保留              |    |              |                                  |  |  |  |  |  |
| 31:0    | 保留              | 只读 | 0            |                                  |  |  |  |  |  |
| CR08:   | 保留              |    |              |                                  |  |  |  |  |  |
| 31:0    | 保留              | 只读 | 0            |                                  |  |  |  |  |  |
| CR10: I | CR10: PCIMap    |    |              |                                  |  |  |  |  |  |
| 5:0     | trans_lo0       | 读写 | 0            | PCI_Mem_Lo0 窗口映射地址高 6 位          |  |  |  |  |  |
| 11:6    | trans_lo1       | 读写 | 0            | PCI_Mem_Lo1 窗口映射地址高 6 位          |  |  |  |  |  |



| 17:12   | trans_lo2                   | 读写       | 0     | PCI_Mem_Lo2 窗口映射地址高 6 位    |
|---------|-----------------------------|----------|-------|----------------------------|
| 31:18   | 保留                          | 只读       | 0     |                            |
| CR14:   | <br>PCIX_Bridge_Cfg         |          |       |                            |
| 5:0     | pcix_rgate                  | 读写       | 6'h18 | PCIX 模式下向 DDR2 发读取数门限      |
| 6       | pcix_ro_en                  | 读写       | 0     | PCIX 桥是否允许写越过读             |
| 31:18   | 保留                          | 只读       | 0     |                            |
| CR18:   | PCIMap_Cfg                  |          |       |                            |
| 15:0    | dev_addr                    | 读写       | 0     | PCI 配置读写时 AD 线高 16 位       |
| 16      | conf_type                   | 读写       | 0     | 配置读写的类型                    |
| 31:17   | 保留                          | 只读       | 0     |                            |
| CR1C:   | GPIO_Data                   |          |       |                            |
| 15:0    | gpio_out                    | 读写       | 0     | GPIO 输出数据                  |
| 31:16   | gpio_in                     | 读写       | 0     | GPIO 输入数据                  |
| CR20:   | GPIO_EN                     | <b>'</b> |       |                            |
| 15:0    | gpio_en                     | 读写       | FFFF  | 高为输入,低输出                   |
| 31:16   | 保留                          | 只读       | 0     |                            |
| CR3C:   | 保留                          | <u>'</u> |       |                            |
| 31:0    | 保留                          | 只读       | 0     | 保留                         |
| CR24,2  | C,30,34,38:保留               | '        |       |                            |
| 见表 11-3 |                             |          |       |                            |
| CR50,5  | 64/58,5C/60,64: PCI_Hit*_Se | _*       |       |                            |
| 0       | 保留                          | 只读       | 0     |                            |
| 2:1     | pci_img_size                | 读写       | 2'b11 | 00: 32 位; 10: 64 位; 其它: 无效 |
| 3       | pref_en                     | 读写       | 0     | 预取使能                       |
| 11:4    | 保留                          | 只读       | 0     |                            |
| 62:12   | bar_mask                    | 读写       | 0     | 窗口大小掩码(高位 1,低位 0)          |
| 63      | burst_cap                   | 读写       | 1     | 是否允许突发传送                   |
| CR68:F  | XArb_Config                 |          |       |                            |
| 0       | device_en                   | 读写       | 1     | 外部设备允许                     |
| 1       | disable_broken              | 读写       | 0     | 禁用损坏的主设备                   |
|         |                             |          |       | 总线停靠到默认主设备                 |
| 2       | default_mas_en              | 读写       | 1     | 0: 停靠到最后一个主设备              |
|         |                             |          |       | 1: 停靠到默认主设备                |
| 5:3     | default_master              | 读写       | 0     | 总线停靠默认主设备号                 |
|         |                             |          |       | 从没有设备请求总线开始到触发停靠默认         |
| 7:6     | park_delay                  | 读写       | 2'b11 | 设备行为的延迟                    |
|         |                             |          |       | 00: 0 周期                   |



| 10: 32 周期                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |                            |    |       | 01:8 周期                 |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------------|----|-------|-------------------------|--|--|--|
| 15:8   level   读写   8'h01   处于第一级的设备   强制优先级设备   强制优先级设备   为 1 的位对应的 PCI 设备在得到总线后可以通过持续请求来占住总线   31:13   保留   只读   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |                            |    |       | 10: 32 周期               |  |  |  |
| 23:16   rude_dev   读写   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |                            |    |       | 11: 128 周期              |  |  |  |
| 23:16   rude_dev   读写                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15:8    | level                      | 读写 | 8'h01 | 处于第一级的设备                |  |  |  |
| 以通过持续请求来占住总线                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |                            |    |       | 强制优先级设备                 |  |  |  |
| 31:13   保留                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 23:16   | rude_dev                   | 读写 | 0     | 为 1 的位对应的 PCI 设备在得到总线后可 |  |  |  |
| CR6C: PXArb_Status 7:0 broken_master 只读 0 损坏的主设备(改变禁用策略时清零) 10:8 Last_master 只读 0 最后使用总线的主设备 31:11 保留 只读 0  CR80: Chip config(见 2.6 节)  CR90: Chip Sample(见 2.6 节)  CR80: PLL config(见 2.6 节)  CRC0: PLL config(见 2.6 节)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |                            |    |       | 以通过持续请求来占住总线            |  |  |  |
| 7:0 broken_master 只读 0 损坏的主设备(改变禁用策略时清零) 10:8 Last_master 只读 0 最后使用总线的主设备 31:11 保留 只读 0  CR80: Chip config(见 2.6 节)  CR90: Chip Sample(见 2.6 节)  CRA0: Chip Sample(见 2.6 节)  CRB0: PLL config(见 2.6 节)  CRC0: PLL config(见 2.6 节)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 31:13   | 保留                         | 只读 | 0     |                         |  |  |  |
| 10:8 Last_master 只读 0 最后使用总线的主设备 31:11 保留 只读 0  CR80: Chip config (见 2.6 节)  CR90: Chip Sample (见 2.6 节)  CRA0: Chip Sample (见 2.6 节)  CRB0: PLL config (见 2.6 节)  CRC0: PLL config (见 2.6 节)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CR6C:   | PXArb_Status               |    |       |                         |  |  |  |
| 31:11 保留 只读 0  CR80: Chip config (见 2.6 节)  CR90: Chip Sample (见 2.6 节)  CRA0: Chip Sample (见 2.6 节)  CRB0: PLL config (见 2.6 节)  CRC0: PLL config (见 2.6 节)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7:0     | broken_master              | 只读 | 0     | 损坏的主设备(改变禁用策略时清零)       |  |  |  |
| CR80: Chip config(见 2.6 节) CR90: Chip Sample(见 2.6 节) CRA0: Chip Sample(见 2.6 节) CRB0: PLL config(见 2.6 节) CRC0: PLL config(见 2.6 节)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10:8    | Last_master                | 只读 | 0     | 最后使用总线的主设备              |  |  |  |
| CR90: Chip Sample(见 2.6 节) CRA0: Chip Sample(见 2.6 节) CRB0: PLL config(见 2.6 节) CRC0: PLL config(见 2.6 节)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 31:11   | 保留                         | 只读 | 0     |                         |  |  |  |
| CRA0: Chip Sample(见 2.6 节) CRB0: PLL config(见 2.6 节) CRC0: PLL config(见 2.6 节)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CR80: 0 | Chip config(见 2.6 节)       |    |       |                         |  |  |  |
| CRB0: PLL config(见 2.6 节) CRC0: PLL config(见 2.6 节)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CR90: ( | Chip Sample(见 2.6 节)       |    |       |                         |  |  |  |
| CRC0: PLL config(见 2.6 节)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CRA0:   | CRA0: Chip Sample(见 2.6 节) |    |       |                         |  |  |  |
| The state of the s | CRB0:   | CRB0: PLL config(见 2.6 节)  |    |       |                         |  |  |  |
| CRD0: Core config (见 2.6 节)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CRC0:   | CRC0: PLL config(见 2.6 节)  |    |       |                         |  |  |  |
| 3 73 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CRD0:   | Core config(见 2.6 节)       |    |       |                         |  |  |  |



# 12 芯片配置寄存器列表

| Name          | ADDR       | R/W | Description(NULL 表示没有作用) | default value         |
|---------------|------------|-----|--------------------------|-----------------------|
| CPU_WINO_BASE | 0x3ff00000 | RW  | CPU 窗口 0 的基地址            | 0x0                   |
| CPU_WIN1_BASE | 0x3ff00008 | RW  | CPU 窗口 1 的基地址            | 0x1000_0000           |
| CPU_WIN2_BASE | 0x3ff00010 | RW  | CPU 窗口 2 的基地址            | 0x1000_8000_0000      |
| CPU_WIN3_BASE | 0x3ff00018 | RW  | CPU 窗口 3 的基地址            | 0x0                   |
| CPU_WIN4_BASE | 0x3ff00020 | RW  | CPU 窗口 4 的基地址            | 0x0                   |
| CPU_WIN5_BASE | 0x3ff00028 | RW  | CPU 窗口 5 的基地址            | 0x0                   |
| CPU_WIN6_BASE | 0x3ff00030 | RW  | CPU 窗口 6 的基地址            | 0x0                   |
| CPU_WIN7_BASE | 0x3ff00038 | RW  | CPU 窗口 7 的基地址            | 0x0                   |
| CPU_WINO_MASK | 0x3ff00040 | RW  | CPU 窗口 0 的掩码             | 0xffff_ffff_f000_0000 |
| CPU_WIN1_MASK | 0x3ff00048 | RW  | CPU 窗口 1 的掩码             | 0xffff_ffff_f000_0000 |
| CPU_WIN2_MASK | 0x3ff00050 | RW  | CPU 窗口 2 的掩码             | 0xffff_ffff_f000_0000 |
| CPU_WIN3_MASK | 0x3ff00058 | RW  | CPU 窗口 3 的掩码             | 0x0                   |
| CPU_WIN4_MASK | 0x3ff00060 | RW  | CPU 窗口 4 的掩码             | 0x0                   |
| CPU_WIN5_MASK | 0x3ff00068 | RW  | CPU 窗口 5 的掩码             | 0x0                   |
| CPU_WIN6_MASK | 0x3ff00070 | RW  | CPU 窗口 6 的掩码             | 0x0                   |
| CPU_WIN7_MASK | 0x3ff00078 | RW  | CPU 窗口 7 的掩码             | 0x0                   |



| CPU_WINO_MMAP | 0x3ff00080 | RW | CPU 窗口 0 的新基地址 | 0xf0                  |
|---------------|------------|----|----------------|-----------------------|
| CPU_WIN1_MMAP | 0x3ff00088 | RW | CPU 窗口 1 的新基地址 | 0x1000_00f2           |
| CPU_WIN2_MMAP | 0x3ff00090 | RW | CPU 窗口 2 的新基地址 | 0xf0                  |
| CPU_WIN3_MMAP | 0x3ff00098 | RW | CPU 窗口 3 的新基地址 | 0x0                   |
| CPU_WIN4_MMAP | 0x3ff000a0 | RW | CPU 窗口 4 的新基地址 | 0x0                   |
| CPU_WIN5_MMAP | 0x3ff000a8 | RW | CPU 窗口 5 的新基地址 | 0x0                   |
| CPU_WIN6_MMAP | 0x3ff000b0 | RW | CPU 窗口 6 的新基地址 | 0x0                   |
| CPU_WIN7_MMAP | 0x3ff000b8 | RW | CPU 窗口 7 的新基地址 | 0x0                   |
| PCI_WINO_BASE | 0x3ff00100 | RW | PCI 窗口 0 的基地址  | 0x8000_0000           |
| PCI_WIN1_BASE | 0x3ff00108 | RW | PCI 窗口 1 的基地址  | 0x0                   |
| PCI_WIN2_BASE | 0x3ff00110 | RW | PCI 窗口 2 的基地址  | 0x0                   |
| PCI_WIN3_BASE | 0x3ff00118 | RW | PCI 窗口 3 的基地址  | 0x0                   |
| PCI_WIN4_BASE | 0x3ff00120 | RW | PCI 窗口 4 的基地址  | 0x0                   |
| PCI_WIN5_BASE | 0x3ff00128 | RW | PCI 窗口 5 的基地址  | 0x0                   |
| PCI_WIN6_BASE | 0x3ff00130 | RW | PCI 窗口 6 的基地址  | 0x0                   |
| PCI_WIN7_BASE | 0x3ff00138 | RW | PCI 窗口 7 的基地址  | 0x0                   |
| PCI_WINO_MASK | 0x3ff00140 | RW | PCI 窗口 0 的掩码   | 0xffff_ffff_8000_0000 |
| PCI_WIN1_MASK | 0x3ff00148 | RW | PCI 窗口 1 的掩码   | 0x0                   |
| PCI_WIN2_MASK | 0x3ff00150 | RW | PCI 窗口 2 的掩码   | 0x0                   |
|               |            |    |                |                       |



| PCI_WIN3_MASK | 0x3ff00158 | RW | PCI 窗口 3 的掩码                         | 0x0  |
|---------------|------------|----|--------------------------------------|------|
| PCI_WIN4_MASK | 0x3ff00160 | RW | PCI 窗口 4 的掩码                         | 0x0  |
| PCI_WIN5_MASK | 0x3ff00168 | RW | PCI 窗口 5 的掩码                         | 0x0  |
| PCI_WIN6_MASK | 0x3ff00170 | RW | PCI 窗口 6 的掩码                         | 0x0  |
| PCI_WIN7_MASK | 0x3ff00178 | RW | PCI 窗口 7 的掩码                         | 0x0  |
| PCI_WINO_MMAP | 0x3ff00180 | RW | PCI 窗口 0 的新基地址                       | 0xf0 |
| PCI_WIN1_MMAP | 0x3ff00188 | RW | PCI 窗口 1 的新基地址                       | 0x0  |
| PCI_WIN2_MMAP | 0x3ff00190 | RW | PCI 窗口 2 的新基地址                       | 0x0  |
| PCI_WIN3_MMAP | 0x3ff00198 | RW | PCI 窗口 3 的新基地址                       | 0x0  |
| PCI_WIN4_MMAP | 0x3ff001a0 | RW | PCI 窗口 4 的新基地址                       | 0x0  |
| PCI_WIN5_MMAP | 0x3ff001a8 | RW | PCI 窗口 5 的新基地址                       | 0x0  |
| PCI_WIN6_MMAP | 0x3ff001b0 | RW | PCI 窗口 6 的新基地址                       | 0x0  |
| PCI_WIN7_MMAP | 0x3ff001b8 | RW | PCI 窗口 7 的新基地址                       | 0x0  |
| Slock0_addr   | 0x3ff00200 | RW | 0 号锁窗口锁地址([63]: valid, [47:0]: addr) | 0x0  |
| Slock1_addr   | 0x3ff00208 | RW | 1号锁窗口锁地址([63]: valid, [47:0]: addr)  | 0x0  |
| Slock2_addr   | 0x3ff00210 | RW | 2 号锁窗口锁地址([63]: valid, [47:0]: addr) | 0x0  |
| Slock3_addr   | 0x3ff00218 | RW | 3 号锁窗口锁地址([63]: valid, [47:0]: addr) | 0x0  |
| Slock0_mask   | 0x3ff00240 | RW | 0号锁窗口掩码([47:0]: mask)                | 0x0  |
| Slock1_mask   | 0x3ff00248 | RW | 1号锁窗口掩码([47:0]: mask)                | 0x0  |
|               |            |    |                                      |      |



| Slock2_mask         | 0x3ff00250 | RW | 2号锁窗口掩码([47:0]: mask)              | 0x0         |
|---------------------|------------|----|------------------------------------|-------------|
| Slock3_mask         | 0x3ff00258 | RW | 3 号锁窗口掩码([47:0]: mask)             | 0x0         |
| BARRIER_SET         | 0x3ff00300 | WO | barrier 值加 1                       |             |
| BARRIER_CLR         | 0x3ff00308 | WO | barrier 值减 1                       |             |
| BARRIER_REF         | 0x3ff00310 | RW | barrier 阈值                         | 0x0         |
| BARRIER_CTRL        | 0x3ff00318 | RW | bit[0]: barrier 值加减使能/barrier 中断使能 | 0x0         |
| BARRIER_VEC         | 0x3ff00320 | RO | 当前 barrier 值                       |             |
|                     |            |    | 24: ccsd_en                        |             |
|                     |            |    | 19:16: ccsd_id                     |             |
|                     |            |    | 8: xrouter_en                      |             |
|                     |            |    | 5: x2_pci_rdinterleave             |             |
|                     |            |    | 4: x2_cpu_rdinterleave             |             |
| CONFSIGNAL_CR       | 0x3ff00400 | RW | 3:0: scid_sel                      | 0xffff_0000 |
| gs3_HPT             | 0x3ff00408 | RO | 每个时钟周期加1的计数器                       |             |
| MTXO_SRC_START_ADDR | 0x3ff00600 | RW |                                    | 0x0         |
| MTXO_DST_START_ADDR | 0x3ff00608 | RW |                                    | 0x0         |
| MTXO_ORI_LENTH      | 0x3ff00610 | RW |                                    | 0x0         |
| MTXO_ORI_WIDTH      | 0x3ff00618 | RW |                                    | 0x0         |
| MTXO_SRC_ROW_STRIDE | 0x3ff00620 | RW |                                    | 0x0         |
|                     | •          | -  |                                    |             |

| 0x3ff00628 | RW                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0x0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x3ff00630 | RW                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0x0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0x3ff00700 | RW                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0x0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0x3ff00708 | RW                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0x0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0x3ff00710 | RW                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0x0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0x3ff00718 | RW                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0x0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0x3ff00720 | RW                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0x0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0x3ff00728 | RW                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0x0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0x3ff00730 | RW                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0x0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0x3ff00800 | RW                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0x3ff00808 | RO                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0x3ff00810 | RW                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0x3ff00818 | RO                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0x3ff00820 | RW                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0x3ff00828 | RO                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0x3ff00830 | RW                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0x3ff00838 | RO                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0x3ff00900 | RW                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0x3ff00908 | RO                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|            | 0x3ff00630           0x3ff00700           0x3ff00708           0x3ff00710           0x3ff00718           0x3ff00720           0x3ff00728           0x3ff00730           0x3ff00800           0x3ff00810           0x3ff00818           0x3ff00820           0x3ff00830           0x3ff00838           0x3ff00838           0x3ff00900 | 0x3ff00630         RW           0x3ff00700         RW           0x3ff00708         RW           0x3ff00710         RW           0x3ff00718         RW           0x3ff00720         RW           0x3ff00728         RW           0x3ff00730         RW           0x3ff00800         RW           0x3ff00808         RO           0x3ff00810         RW           0x3ff00820         RW           0x3ff00828         RO           0x3ff00830         RW           0x3ff00838         RO           0x3ff00838         RO           0x3ff00900         RW | 0x3ff00630         RW           0x3ff00700         RW           0x3ff00708         RW           0x3ff00710         RW           0x3ff00718         RW           0x3ff00720         RW           0x3ff00728         RW           0x3ff00730         RW           0x3ff00800         RW           0x3ff00810         RW           0x3ff00820         RW           0x3ff00828         RO           0x3ff00838         RO           0x3ff00838         RO           0x3ff00838         RO           0x3ff00838         RO           0x3ff00900         RW |

| SCachel_perfctrl1 | 0x3ff00910 | RW |  |
|-------------------|------------|----|--|
| SCachel_perfcnt1  | 0x3ff00918 | RO |  |
| SCachel_perfctr12 | 0x3ff00920 | RW |  |
| SCachel_perfcnt2  | 0x3ff00928 | RO |  |
| SCachel_perfctr13 | 0x3ff00930 | RW |  |
| SCachel_perfcnt3  | 0x3ff00938 | RO |  |
| SCache2_perfctr10 | 0x3ff00A00 | RW |  |
| SCache2_perfcnt0  | 0x3ff00A08 | RO |  |
| SCache2_perfctrl1 | 0x3ff00A10 | RW |  |
| SCache2_perfcnt1  | 0x3ff00A18 | RO |  |
| SCache2_perfctr12 | 0x3ff00A20 | RW |  |
| SCache2_perfcnt2  | 0x3ff00A28 | RO |  |
| SCache2_perfctr13 | 0x3ff00A30 | RW |  |
| SCache2_perfcnt3  | 0x3ff00A38 | RO |  |
| SCache3_perfctr10 | 0x3ff00B00 | RW |  |
| SCache3_perfcnt0  | 0x3ff00B08 | RO |  |
| SCache3_perfctrl1 | 0x3ff00B10 | RW |  |
| SCache3_perfcnt1  | 0x3ff00B18 | RO |  |
| SCache3_perfctr12 | 0x3ff00B20 | RW |  |

| SCache3_perfcnt2   | 0x3ff00B28 | RO |                           |     |
|--------------------|------------|----|---------------------------|-----|
| SCache3_perfctr13  | 0x3ff00B30 | RW |                           |     |
| SCache3_perfcnt3   | 0x3ff00B38 | RO |                           |     |
| CoreO_IPI_Status   | 0x3ff01000 | RO | 0 号处理器核的 IPI_Status 寄存器   |     |
| CoreO_IPI_Enalbe   | 0x3ff01004 | RW | 0 号处理器核的 IPI_Enalbe 寄存器   | 0x0 |
| CoreO_IPI_Set      | 0x3ff01008 | WO | 0 号处理器核的 IPI_Set 寄存器      |     |
| CoreO_IPI_Clear    | 0x3ff0100c | WO | 0 号处理器核的 IPI_Clear 寄存器    |     |
| CoreO_MailBoxO     | 0x3ff01020 | RW | 0号处理器核的 IPI_MailBox0 寄存器  | 0x0 |
| CoreO_MailBox1     | 0x3ff01028 | RW | 0 号处理器核的 IPI_MailBoxl 寄存器 | 0x0 |
| CoreO_MailBox2     | 0x3ff01030 | RW | 0 号处理器核的 IPI_MailBox2 寄存器 | 0x0 |
| CoreO_MailBox3     | 0x3ff01038 | RW | 0 号处理器核的 IPI_MailBox3 寄存器 | 0x0 |
| CoreO_int_interval | 0x3ff01060 | RW |                           |     |
| CoreO_int_compare  | 0x3ff01068 | RW |                           |     |
| Corel_IPI_Status   | 0x3ff01100 | RO | 1号处理器核的 IPI_Status 寄存器    |     |
| Corel_IPI_Enalbe   | 0x3ff01104 | RW | 1号处理器核的 IPI_Enalbe 寄存器    | 0x0 |
| Corel_IPI_Set      | 0x3ff01108 | WO | 1号处理器核的 IPI_Set 寄存器       |     |
| Corel_IPI_Clear    | 0x3ff0110c | WO | 1号处理器核的 IPI_Clear 寄存器     |     |
| Corel_MailBox0     | 0x3ff01120 | RW | 1号处理器核的 IPI_MailBox0 寄存器  | 0x0 |
| Corel_MailBox1     | 0x3ff01128 | RW | 1号处理器核的 IPI_MailBoxl 寄存器  | 0x0 |



| Corel_MailBox2     | 0x3ff01130 | RW | 1号处理器核的 IPI_MailBox2 寄存器  | 0x0 |
|--------------------|------------|----|---------------------------|-----|
| Core1_MailBox3     | 0x3ff01138 | RW | 1号处理器核的 IPI_MailBox3 寄存器  | 0x0 |
| Corel_int_interval | 0x3ff01160 | RW |                           |     |
| Corel_int_compare  | 0x3ff01168 | RW |                           |     |
| Core2_IPI_Status   | 0x3ff01200 | RO | 2 号处理器核的 IPI_Status 寄存器   |     |
| Core2_IPI_Enalbe   | 0x3ff01204 | RW | 2 号处理器核的 IPI_Enalbe 寄存器   | 0x0 |
| Core2_IPI_Set      | 0x3ff01208 | WO | 2 号处理器核的 IPI_Set 寄存器      |     |
| Core2_IPI_Clear    | 0x3ff0120c | WO | 2 号处理器核的 IPI_Clear 寄存器    |     |
| Core2_MailBox0     | 0x3ff01220 | RW | 2号处理器核的 IPI_MailBox0 寄存器  | 0x0 |
| Core2_MailBox1     | 0x3ff01228 | RW | 2号处理器核的 IPI_MailBoxl 寄存器  | 0x0 |
| Core2_MailBox2     | 0x3ff01230 | RW | 2 号处理器核的 IPI_MailBox2 寄存器 | 0x0 |
| Core2_MailBox3     | 0x3ff01238 | RW | 2号处理器核的 IPI_MailBox3 寄存器  | 0x0 |
| Core2_int_interval | 0x3ff01260 | RW |                           |     |
| Core2_int_compare  | 0x3ff01268 | RW |                           |     |
| Core3_IPI_Status   | 0x3ff01300 | RO | 3 号处理器核的 IPI_Status 寄存器   |     |
| Core3_IPI_Enalbe   | 0x3ff01304 | RW | 3 号处理器核的 IPI_Enalbe 寄存器   | 0x0 |
| Core3_IPI_Set      | 0x3ff01308 | WO | 3 号处理器核的 IPI_Set 寄存器      |     |
| Core3_IPI_Clear    | 0x3ff0130c | WO | 3 号处理器核的 IPI_Clear 寄存器    |     |
| Core3_MailBox0     | 0x3ff01320 | RW | 3 号处理器核的 IPI_MailBox0 寄存器 | 0x0 |



| Core3_MailBox1     | 0x3ff01328 | RW | 3号处理器核的 IPI_MailBox1 寄存器      | 0x0 |
|--------------------|------------|----|-------------------------------|-----|
| Core3_MailBox2     | 0x3ff01330 | RW | 3 号处理器核的 IPI_MailBox2 寄存器     | 0x0 |
| Core3_MailBox3     | 0x3ff01338 | RW | 3号处理器核的 IPI_MailBox3 寄存器      | 0x0 |
| Core3_int_interval | 0x3ff01360 | RW |                               |     |
| Core3_int_compare  | 0x3ff01368 | RW |                               |     |
| Int Entry[031]     | 0x3ff01400 | RW | 32 个 8 位中断路由寄存器               | 0x0 |
| Intisr             | 0x3ff01420 | RO | 32 位中断状态寄存器                   |     |
| Inten              | 0x3ff01424 | RO | 32 位中断使能状态寄存器                 |     |
| Intenset           | 0x3ff01428 | WO | 32 位设置使能寄存器                   |     |
| Intenclr           | 0x3ff0142c | WO | 32 位清除使能寄存器和脉冲触发的中断           |     |
| Intpol             | 0x3ff01430 | WO | 无用                            | 0x0 |
| Intedge            | 0x3ff01434 | WO | 32 位触发方式寄存器(1: 脉冲触发: 0: 电平触发) | 0x0 |
| COREO_INTISR       | 0x3ff01440 | RO | 路由给 COREO 的 32 位中断状态          |     |
| CORE1_INTISR       | 0x3ff01448 | RO | 路由给 CORE1 的 32 位中断状态          |     |
| CORE2_INTISR       | 0x3ff01450 | RO | 路由给 CORE2 的 32 位中断状态          |     |
| CORE3_INTISR       | 0x3ff01458 | RO | 路由给 CORE3 的 32 位中断状态          |     |
|                    |            |    |                               |     |



|                    |            |    | 温度传感器高温中断控制寄存器                        |  |
|--------------------|------------|----|---------------------------------------|--|
|                    |            |    | [7:0]: Hi_gate0: 高温阈值 0,超过这个温度将产生中断   |  |
|                    |            |    | [8:8]: Hi_en0: 高温中断使能 0               |  |
|                    |            |    | [11:10]: Hi_Se10: 选择高温中断 0 的温度传感器输入源  |  |
|                    |            |    | [23:16]: Hi_gatel: 高温阈值 1,超过这个温度将产生中断 |  |
|                    |            |    | [24:24]: Hi_enl: 高温中断使能 1             |  |
|                    |            |    | [27:26]: Hi_Sel1: 选择高温中断 1 的温度传感器输入源  |  |
|                    |            |    | [39:32]: Hi_gate2: 高温阈值 2,超过这个温度将产生中断 |  |
|                    |            |    | [40:40]: Hi_en2: 高温中断使能 2             |  |
|                    |            |    | [43:42]: Hi_Sel2: 选择高温中断 2 的温度传感器输入源  |  |
|                    |            |    | [55:48]: Hi_gate3: 高温阈值 3,超过这个温度将产生中断 |  |
|                    |            |    | [56:56]: Hi_en3: 高温中断使能 3             |  |
| Thsens_int_ctrl_Hi | 0x3ff01460 | RW | [59:58]: Hi_Sel3: 选择高温中断 3 的温度传感器输入源  |  |



|                       |            |    | 温度传感器低温中断控制寄存器                         |  |
|-----------------------|------------|----|----------------------------------------|--|
|                       |            |    | [7:0]: Lo_gate0: 低温阈值 0, 低于这个温度将产生中断   |  |
|                       |            |    | [8:8]: Lo_en0: 低温中断使能 0                |  |
|                       |            |    | [11:10]: Lo_Sel0: 选择低温中断 0 的温度传感器输入源   |  |
|                       |            |    | [23:16]: Lo_gatel: 低温阈值 1, 低于这个温度将产生中断 |  |
|                       |            |    | [24:24]: Lo_en1: 低温中断使能 1              |  |
|                       |            |    | [27:26]: Lo_Sell: 选择低温中断 1 的温度传感器输入源   |  |
|                       |            |    | [39:32]: Lo_gate2: 低温阈值 2, 低于这个温度将产生中断 |  |
|                       |            |    | [40:40]: Lo_en2: 低温中断使能 2              |  |
|                       |            |    | [43:42]: Lo_Sel2: 选择低温中断 2 的温度传感器输入源   |  |
|                       |            |    | [55:48]: Lo_gate3: 低温阈值 3, 低于这个温度将产生中断 |  |
|                       |            |    | [56:56]: Lo_en3: 低温中断使能 3              |  |
| Thsens_int_ctrl_Lo    | 0x3ff01468 | RW | [59:58]: Lo_Sel3: 选择低温中断 3 的温度传感器输入源   |  |
|                       |            |    | 中断状态寄存器,写任意值清除中断                       |  |
|                       |            |    | [0]: 高温中断触发                            |  |
| Thsens_int_status/clr | 0x3ff01470 | RW | [1]: 低温中断触发                            |  |



|                   |            |    | 温度传感器高温降频控制寄存器,四组设置优先级由高到低              |  |
|-------------------|------------|----|-----------------------------------------|--|
|                   |            |    | [7:0]: Scale_gate0: 高温阈值 0,超过这个温度将降频    |  |
|                   |            |    | [8:8]: Scale_en0: 高温降频使能 0              |  |
|                   |            |    | [11:10]: Scale_Sel0: 选择高温降频 0 的温度传感器输入源 |  |
|                   |            |    | [14:12]: Scale_freq0: 降频时的分频值           |  |
|                   |            |    | [23:16]: Scale_gatel: 高温阈值 1,超过这个温度将降频  |  |
|                   |            |    | [24:24]: Scale_enl: 高温降频使能 1            |  |
|                   |            |    | [27:26]: Scale_Sel1: 选择高温降频 1 的温度传感器输入源 |  |
|                   |            |    | [30:28]: Scale_freq1: 降频时的分频值           |  |
|                   |            |    | [39:32]: Scale_gate2: 高温阈值 2,超过这个温度将降频  |  |
|                   |            |    | [40:40]: Scale_en2: 高温降频使能 2            |  |
|                   |            |    | [43:42]: Scale_Sel2: 选择高温降频 2 的温度传感器输入源 |  |
|                   |            |    | [46:44]: Scale_freq2: 降频时的分频值           |  |
|                   |            |    | [55:48]: Scale_gate3: 高温阈值 3,超过这个温度将降频  |  |
|                   |            |    | [56:56]: Scale_en3: 高温降频使能 3            |  |
|                   |            |    | [59:58]: Scale_Sel3: 选择高温降频 3 的温度传感器输入源 |  |
| Thsens_freq_scale | 0x3ff01480 | RW | [62:60]: Scale_freq3: 降频时的分频值           |  |



|               |            |    | 调试触发条件使能                                        |  |
|---------------|------------|----|-------------------------------------------------|--|
|               |            |    | [7:0]: timer, 触发延迟, 设为1表示当条件满足立即触发, 设为0表示禁止触    |  |
|               |            |    | 发,设为其它值表示条件满足后延迟触发的拍数+1                         |  |
| DDD DADAY     | 0.0001500  | DW |                                                 |  |
| DFD_PARAM     | 0x3ff01500 | RW | [15:8]: trigger_en, 触发条件使能, 对应于外部的 8 个触发事件的使能控制 |  |
|               |            |    | 软件触发,向这个地址发出写操作,会造成一个软件的触发条件,使得在 timer-1        |  |
| DFD_TRIGGER   | 0x3ff01508 | WO | 拍之后触发                                           |  |
|               |            |    | COREO 的 AXI 接口 AW 触发条件 0 设置                     |  |
|               |            |    | [15:0]: awid                                    |  |
|               |            |    | [19:16]: awlen                                  |  |
|               |            |    | [22:20]: awsize                                 |  |
|               |            |    | [24:23]: awburst                                |  |
|               |            |    | [26:25]: awlock                                 |  |
|               |            |    | [30:27]: awcache                                |  |
|               |            |    | [33:31]: awprot                                 |  |
|               |            |    | [37:34]: awcmd                                  |  |
|               |            |    | [41:38]: awdirqid                               |  |
|               |            |    | [43:42]: awstate                                |  |
|               |            |    | [47:44]: swscseti                               |  |
|               |            |    | [48]: awvalid                                   |  |
| COREO_AWCONDO | 0x3ff01800 | RW | [49]: awready                                   |  |



|               |            |    | COREO 的 AXI 接口 AW 触发使能 0 设置,最高位为 AW 通道触发使能   |  |
|---------------|------------|----|----------------------------------------------|--|
|               |            |    | [49:0]: awmask                               |  |
|               |            |    | [62]:awdata_en:同 wid 的 wdata 触发条件同时满足时,才允许触发 |  |
|               |            |    | [63]: awchannel_en: 触发条件使能                   |  |
|               |            |    | 触发条件为                                        |  |
| COREO_AWMASKO | 0x3ff01808 | RW | (AW_IN & AWMASK) == (AWCOND & AWMASK)        |  |
|               |            |    | AW 的触发条件要 CONDO 与 COND1 同时满足                 |  |
| COREO_AWCOND1 | 0x3ff01810 | RW | [47:0]: awaddr                               |  |
| COREO_AWMASK1 | 0x3ff01818 | RW |                                              |  |



|               |            |    | COREO 的 AXI 接口 AR 触发条件,与 AW 类似                 |  |
|---------------|------------|----|------------------------------------------------|--|
|               |            |    | [15:0]; arid                                   |  |
|               |            |    | [19:16]: arlen                                 |  |
|               |            |    | [22:20]: arsize                                |  |
|               |            |    | [24:23]: arburst                               |  |
|               |            |    | [26:25]: arlock                                |  |
|               |            |    | [30:27]: arcache                               |  |
|               |            |    | [33:31]: arprot                                |  |
|               |            |    | [37:34]: arcmd                                 |  |
|               |            |    | [47:38]: arcpuno                               |  |
|               |            |    | [48]: arvalid                                  |  |
| COREO_ARCONDO | 0x3ff01820 | RW | [49]: arready                                  |  |
|               |            |    | COREO 的 AXI 接口 AR 触发使能 0 设置,最高位为 AR 通道触发使能     |  |
|               |            |    | [49:0]: armask                                 |  |
|               |            |    | [62]: ardata_en: 同 rid 的 rdata 触发条件同时满足时,才允许触发 |  |
| COREO_ARMASKO | 0x3ff01828 | RW | [63]: archannel_en: 触发条件使能                     |  |
| COREO_ARCOND1 | 0x3ff01830 | RW | [47:0]: araddr                                 |  |
| COREO_ARMASK1 | 0x3ff01838 | RW |                                                |  |



|              |            |    | COREO 的 AXI 接口 W 触发条件,与 AW 类似                   |  |
|--------------|------------|----|-------------------------------------------------|--|
|              |            |    | [15:0]: wid                                     |  |
|              |            |    | [31:16]: wstrb                                  |  |
|              |            |    | [32]: wlast                                     |  |
|              |            |    | [33]: wvalid                                    |  |
| COREO_WCONDO | 0x3ff01840 | RW | [34]: wready                                    |  |
|              |            |    | COREO 的 AXI 接口 W 触发使能 O 设置,最高位为 W 通道触发使能        |  |
|              |            |    | [49:0]: wmask                                   |  |
| COREO_WMASKO | 0x3ff01848 | RW | [63]: wchannel_en: 触发条件使能, 当 awdata_en 有效时不需要设置 |  |
| COREO_WCOND1 | 0x3ff01850 | RW |                                                 |  |
| COREO_WMASK1 | 0x3ff01858 | RW |                                                 |  |
| COREO_WCOND2 | 0x3ff01860 | RW |                                                 |  |
| COREO_WMASK2 | 0x3ff01868 | RW |                                                 |  |
|              |            |    | COREO 的 AXI 接口 B 触发条件,与 AW 类似                   |  |
|              |            |    | [15:0]: bid                                     |  |
|              |            |    | [17:16]: bresp                                  |  |
|              |            |    | [18]: bvalid                                    |  |
| COREO_BCONDO | 0x3ff01870 | RW | [19]: bready                                    |  |



|              |            |    | COREO 的 AXI 接口 B 触发使能 0 设置,最高位为 B 通道触发使能 |  |
|--------------|------------|----|------------------------------------------|--|
|              |            |    |                                          |  |
|              |            |    | [19:0]: bmask                            |  |
| COREO_BMASKO | 0x3ff01878 | RW | [63]: bchannel_en                        |  |
|              |            |    | COREO 的 AXI 接口 R 触发条件,与 AW 类似            |  |
|              |            |    | [15:0]: rid                              |  |
|              |            |    | [17:16]: rresp                           |  |
|              |            |    | [18]: rlast                              |  |
|              |            |    | [19]: rrequest                           |  |
|              |            |    | [21:20]: rstate                          |  |
|              |            |    | [25:22]: rscseti                         |  |
|              |            |    | [26]: rvalid                             |  |
| COREO_RCONDO | 0x3ff01880 | RW | [27]: rready                             |  |
|              |            |    | COREO 的 AXI 接口 R 触发使能 0 设置,最高位为 R 通道触发使能 |  |
|              |            |    | [27:0]: rmask                            |  |
| COREO_RMASKO | 0x3ff01888 | RW | [63]: rchannel_en                        |  |
| COREO_RCOND1 | 0x3ff01890 | RW |                                          |  |
| COREO_RMASK1 | 0x3ff01898 | RW |                                          |  |
| COREO_RCOND2 | 0x3ff018a0 | RW |                                          |  |
| COREO_RMASK2 | 0x3ff018a8 | RW |                                          |  |
|              |            |    |                                          |  |



|               |            |    | TUDO 配置寄存器 0                |  |
|---------------|------------|----|-----------------------------|--|
|               |            |    | [47:0]: count_target        |  |
| TUDO_CONFO    | 0x3ff018e0 | RW | [55:48]: monitor_enable     |  |
|               |            |    | TUDO 配置寄存器 1                |  |
|               |            |    | [2:0]: DCDL_sel_signal      |  |
|               |            |    | [5:3]: DCDL_sel_clock       |  |
|               |            |    | [9:6]: signal_sel           |  |
|               |            |    | [13:10]: clok_sel           |  |
|               |            |    | [20:14]: reading_sel        |  |
|               |            |    | [21]: counter_clock_sel     |  |
|               |            |    | [22]: sticky                |  |
|               |            |    | [23]: reset_g               |  |
|               |            |    | [24]: stop                  |  |
|               |            |    | [25]: start                 |  |
| TUDO_CONF1    | 0x3ff018e8 | RW | [26]: cg_en                 |  |
| TUDO_RESULT   | 0x3ff018f0 | R  | TUDO 结果寄存器                  |  |
|               |            |    |                             |  |
| CORE1_AWCONDO | 0x3ff01900 | RW | CORE1 的 AXI 接口 AW 触发条件 0 设置 |  |



|               |            |    | CORE1 的 AXI 接口 AW 触发使能 0 设置,最高位为 AW 通道触发使能 |  |
|---------------|------------|----|--------------------------------------------|--|
|               |            |    |                                            |  |
|               |            |    | 触发条件为                                      |  |
| CORE1_AWMASKO | 0x3ff01908 | RW | (AW_IN & AWMASK) == (AWCOND & AWMASK)      |  |
| CORE1_AWCOND1 | 0x3ff01910 | RW | AW 的触发条件要 CONDO 与 COND1 同时满足               |  |
| CORE1_AWMASK1 | 0x3ff01918 | RW |                                            |  |
| CORE1_ARCONDO | 0x3ff01920 | RW | CORE1 的 AXI 接口 AR 触发条件,与 AW 类似             |  |
| CORE1_ARMASKO | 0x3ff01928 | RW |                                            |  |
| CORE1_ARCOND1 | 0x3ff01930 | RW |                                            |  |
| CORE1_ARMASK1 | 0x3ff01938 | RW |                                            |  |
| CORE1_WCONDO  | 0x3ff01940 | RW | CORE1 的 AXI 接口 W 触发条件,与 AW 类似              |  |
| CORE1_WMASKO  | 0x3ff01948 | RW |                                            |  |
| CORE1_WCOND1  | 0x3ff01950 | RW |                                            |  |
| CORE1_WMASK1  | 0x3ff01958 | RW |                                            |  |
| CORE1_WCOND2  | 0x3ff01960 | RW |                                            |  |
| CORE1_WMASK2  | 0x3ff01968 | RW |                                            |  |
| CORE1_BCONDO  | 0x3ff01970 | RW | CORE1 的 AXI 接口 B 触发条件,与 AW 类似              |  |
| CORE1_BMASKO  | 0x3ff01978 | RW |                                            |  |
| CORE1_RCONDO  | 0x3ff01980 | RW | CORE1 的 AXI 接口 R 触发条件,与 AW 类似              |  |
| CORE1_RMASKO  | 0x3ff01988 | RW |                                            |  |



| CORE1_RCOND1 | 0x3ff01990 | RW |                         |  |
|--------------|------------|----|-------------------------|--|
| CORE1_RMASK1 | 0x3ff01998 | RW |                         |  |
| CORE1_RCOND2 | 0x3ff019a0 | RW |                         |  |
| CORE1_RMASK2 | 0x3ff019a8 | RW |                         |  |
|              |            |    |                         |  |
|              |            |    | TUD1 配置寄存器 0            |  |
|              |            |    | [47:0]: count_target    |  |
| TUD1_CONFO   | 0x3ff019e0 | RW | [55:48]: monitor_enable |  |
|              |            |    | TUDO 配置寄存器 1            |  |
|              |            |    | [2:0]: DCDL_sel_signal  |  |
|              |            |    | [5:3]: DCDL_sel_clock   |  |
|              |            |    | [9:6]: signal_sel       |  |
|              |            |    | [13:10]: clok_sel       |  |
|              |            |    | [20:14]: reading_sel    |  |
|              |            |    | [21]: counter_clock_sel |  |
|              |            |    | [22]: sticky            |  |
|              |            |    | [23]: reset_g           |  |
|              |            |    | [24]: stop              |  |
|              |            |    | [25]: start             |  |
| TUD1_CONF1   | 0x3ff019e8 | RW | [26]: cg_en             |  |

| TUD1_RESULT   | 0x3ff019f0 | R  | TUD1 结果寄存器                                 |  |
|---------------|------------|----|--------------------------------------------|--|
|               |            |    |                                            |  |
| CORE2_AWCONDO | 0x3ff01a00 | RW | CORE2 的 AXI 接口 AW 触发条件 0 设置                |  |
|               |            |    | CORE2 的 AXI 接口 AW 触发使能 0 设置,最高位为 AW 通道触发使能 |  |
|               |            |    | 触发条件为                                      |  |
| CORE2_AWMASKO | 0x3ff01a08 | RW | (AW_IN & AWMASK) == (AWCOND & AWMASK)      |  |
| CORE2_AWCOND1 | 0x3ff01a10 | RW | AW 的触发条件要 CONDO 与 COND1 同时满足               |  |
| CORE2_AWMASK1 | 0x3ff01a18 | RW |                                            |  |
| CORE2_ARCONDO | 0x3ff01a20 | RW | CORE2 的 AXI 接口 AR 触发条件,与 AW 类似             |  |
| CORE2_ARMASKO | 0x3ff01a28 | RW |                                            |  |
| CORE2_ARCOND1 | 0x3ff01a30 | RW |                                            |  |
| CORE2_ARMASK1 | 0x3ff01a38 | RW |                                            |  |
| CORE2_WCONDO  | 0x3ff01a40 | RW | CORE2 的 AXI 接口 W 触发条件,与 AW 类似              |  |
| CORE2_WMASKO  | 0x3ff01a48 | RW |                                            |  |
| CORE2_WCOND1  | 0x3ff01a50 | RW |                                            |  |
| CORE2_WMASK1  | 0x3ff01a58 | RW |                                            |  |
| CORE2_WCOND2  | 0x3ff01a60 | RW |                                            |  |
| CORE2_WMASK2  | 0x3ff01a68 | RW |                                            |  |
| CORE2_BCONDO  | 0x3ff01a70 | RW | CORE2 的 AXI 接口 B 触发条件,与 AW 类似              |  |



| CORE2_BMASKO | 0x3ff01a78 | RW |                               |  |
|--------------|------------|----|-------------------------------|--|
| CORE2_RCONDO | 0x3ff01a80 | RW | CORE2 的 AXI 接口 R 触发条件,与 AW 类似 |  |
| CORE2_RMASKO | 0x3ff01a88 | RW |                               |  |
| CORE2_RCOND1 | 0x3ff01a90 | RW |                               |  |
| CORE2_RMASK1 | 0x3ff01a98 | RW |                               |  |
| CORE2_RCOND2 | 0x3ff01aa0 | RW |                               |  |
| CORE2_RMASK2 | 0x3ff01aa8 | RW |                               |  |
|              |            |    |                               |  |
|              |            |    | TUD2 配置寄存器 0                  |  |
|              |            |    | [47:0]: count_target          |  |
| TUD2_CONFO   | 0x3ff01ae0 | RW | [55:48]: monitor_enable       |  |



|               |            |    | TUDO 配置寄存器 1                               |  |
|---------------|------------|----|--------------------------------------------|--|
|               |            |    | [2:0]: DCDL_sel_signal                     |  |
|               |            |    | [5:3]: DCDL_sel_clock                      |  |
|               |            |    | [9:6]: signal_sel                          |  |
|               |            |    | [13:10]: clok_sel                          |  |
|               |            |    | [20:14]: reading_sel                       |  |
|               |            |    | [21]: counter_clock_sel                    |  |
|               |            |    | [22]: sticky                               |  |
|               |            |    | [23]: reset_g                              |  |
|               |            |    | [24]: stop                                 |  |
|               |            |    | [25]: start                                |  |
| TUD2_CONF1    | 0x3ff01ae8 | RW | [26]: cg_en                                |  |
| TUD2_RESULT   | 0x3ff01af0 | R  | TUD2 结果寄存器                                 |  |
|               |            |    |                                            |  |
| CORE3_AWCONDO | 0x3ff01b00 | RW | CORE3 的 AXI 接口 AW 触发条件 0 设置                |  |
|               |            |    | CORE3 的 AXI 接口 AW 触发使能 0 设置,最高位为 AW 通道触发使能 |  |
|               |            |    | 触发条件为                                      |  |
| CORE3_AWMASKO | 0x3ff01b08 | RW | (AW_IN & AWMASK) == (AWCOND & AWMASK)      |  |
| CORE3_AWCOND1 | 0x3ff01b10 | RW | AW 的触发条件要 CONDO 与 COND1 同时满足               |  |
| CORE3_AWMASK1 | 0x3ff01b18 | RW |                                            |  |



| CORE3_ARCONDO | 0x3ff01b20 | RW | CORE3 的 AXI 接口 AR 触发条件,与 AW 类似 |  |
|---------------|------------|----|--------------------------------|--|
| CORE3_ARMASKO | 0x3ff01b28 | RW |                                |  |
| CORE3_ARCOND1 | 0x3ff01b30 | RW |                                |  |
| CORE3_ARMASK1 | 0x3ff01b38 | RW |                                |  |
| CORE3_WCONDO  | 0x3ff01b40 | RW | CORE3 的 AXI 接口 W 触发条件,与 AW 类似  |  |
| CORE3_WMASKO  | 0x3ff01b48 | RW |                                |  |
| CORE3_WCOND1  | 0x3ff01b50 | RW |                                |  |
| CORE3_WMASK1  | 0x3ff01b58 | RW |                                |  |
| CORE3_WCOND2  | 0x3ff01b60 | RW |                                |  |
| CORE3_WMASK2  | 0x3ff01b68 | RW |                                |  |
| CORE3_BCONDO  | 0x3ff01b70 | RW | CORE3 的 AXI 接口 B 触发条件,与 AW 类似  |  |
| CORE3_BMASKO  | 0x3ff01b78 | RW |                                |  |
| CORE3_RCONDO  | 0x3ff01b80 | RW | CORE3 的 AXI 接口 R 触发条件,与 AW 类似  |  |
| CORE3_RMASKO  | 0x3ff01b88 | RW |                                |  |
| CORE3_RCOND1  | 0x3ff01b90 | RW |                                |  |
| CORE3_RMASK1  | 0x3ff01b98 | RW |                                |  |
| CORE3_RCOND2  | 0x3ff01ba0 | RW |                                |  |
| CORE3_RMASK2  | 0x3ff01ba8 | RW |                                |  |
|               |            |    |                                |  |



|             |            |    | TUD3 配置寄存器 0            |  |
|-------------|------------|----|-------------------------|--|
|             |            |    | [47:0]: count_target    |  |
| TUD3_CONFO  | 0x3ff01be0 | RW | [55:48]: monitor_enable |  |
|             |            |    | TUDO 配置寄存器 1            |  |
|             |            |    | [2:0]: DCDL_sel_signal  |  |
|             |            |    | [5:3]: DCDL_sel_clock   |  |
|             |            |    | [9:6]: signal_sel       |  |
|             |            |    | [13:10]: clok_sel       |  |
|             |            |    | [20:14]: reading_sel    |  |
|             |            |    | [21]: counter_clock_sel |  |
|             |            |    | [22]: sticky            |  |
|             |            |    | [23]: reset_g           |  |
|             |            |    | [24]: stop              |  |
|             |            |    | [25]: start             |  |
| TUD3_CONF1  | 0x3ff01be8 | RW | [26]: cg_en             |  |
| TUD3_RESULT | 0x3ff01bf0 | R  | TUD3 结果寄存器              |  |
|             |            |    |                         |  |
|             |            |    | TUD4 配置寄存器 0            |  |
|             |            |    | [47:0]: count_target    |  |
| TUD4_CONF0  | 0x3ff01ce0 | RW | [55:48]: monitor_enable |  |



|             |            |    | TUD4 配置寄存器 1            |  |
|-------------|------------|----|-------------------------|--|
|             |            |    | [2:0]: DCDL_sel_signal  |  |
|             |            |    | [5:3]: DCDL_sel_clock   |  |
|             |            |    | [8:6]: signal_sel       |  |
|             |            |    | [11:9]: clock_sel       |  |
|             |            |    | [18:12]: reading_sel    |  |
|             |            |    | [19]: counter_clock_sel |  |
|             |            |    | [20]: sticky            |  |
|             |            |    | [21]: reset_g           |  |
|             |            |    | [22]: stop              |  |
|             |            |    | [23]: start             |  |
| TUD4_CONF1  | 0x3ff01ce8 | RW | [24]: cg_en             |  |
| TUD4_RESULT | 0x3ff01cf0 | R  | TUD4 结果寄存器              |  |
|             |            |    |                         |  |
|             |            |    | TUD5 配置寄存器 0            |  |
|             |            |    | [47:0]: count_target    |  |
| TUD5_CONFO  | 0x3ff01de0 | RW | [55:48]: monitor_enable |  |



|             |            |    | TUD5 配置寄存器 1                             |  |
|-------------|------------|----|------------------------------------------|--|
|             |            |    |                                          |  |
|             |            |    | [2:0]: DCDL_sel_signal                   |  |
|             |            |    | [5:3]: DCDL_sel_clock                    |  |
|             |            |    | [8:6]: signal_sel                        |  |
|             |            |    | [11:9]: clock_sel                        |  |
|             |            |    | [18:12]: reading_sel                     |  |
|             |            |    | [19]: counter_clock_sel                  |  |
|             |            |    | [20]: sticky                             |  |
|             |            |    | [21]: reset_g                            |  |
|             |            |    | [22]: stop                               |  |
|             |            |    | [23]: start                              |  |
| TUD5_CONF1  | 0x3ff01de8 | RW | [24]: cg_en                              |  |
| TUD5_RESULT | 0x3ff01df0 | R  | TUD5 结果寄存器                               |  |
|             |            |    |                                          |  |
| HTO_AWCONDO | 0x3ff01e00 | RW | HTO 的 AXI 接口 AW 触发条件 0 设置                |  |
|             |            |    | HTO 的 AXI 接口 AW 触发使能 0 设置,最高位为 AW 通道触发使能 |  |
|             |            |    | 触发条件为                                    |  |
| HTO_AWMASKO | 0x3ff01e08 | RW | (AW_IN & AWMASK) == (AWCOND & AWMASK)    |  |
| HTO_AWCOND1 | 0x3ff01e10 | RW | AW 的触发条件要 CONDO 与 COND1 同时满足             |  |
| HTO_AWMASK1 | 0x3ff01e18 | RW |                                          |  |



| HTO_ARCONDO | 0x3ff01e20 | RW | HTO 的 AXI 接口 AR 触发条件,与 AW 类似 |  |
|-------------|------------|----|------------------------------|--|
| HTO_ARMASKO | 0x3ff01e28 | RW |                              |  |
| HTO_ARCOND1 | 0x3ff01e30 | RW |                              |  |
| HTO_ARMASK1 | 0x3ff01e38 | RW |                              |  |
| HTO_WCONDO  | 0x3ff01e40 | RW | HTO 的 AXI 接口 W 触发条件,与 AW 类似  |  |
| HTO_WMASKO  | 0x3ff01e48 | RW |                              |  |
| HTO_WCOND1  | 0x3ff01e50 | RW |                              |  |
| HTO_WMASK1  | 0x3ff01e58 | RW |                              |  |
| HTO_WCOND2  | 0x3ff01e60 | RW |                              |  |
| HTO_WMASK2  | 0x3ff01e68 | RW |                              |  |
| HTO_BCONDO  | 0x3ff01e70 | RW | HTO 的 AXI 接口 B 触发条件,与 AW 类似  |  |
| HTO_BMASKO  | 0x3ff01e78 | RW |                              |  |
| HTO_RCONDO  | 0x3ff01e80 | RW | HTO 的 AXI 接口 R 触发条件,与 AW 类似  |  |
| HTO_RMASKO  | 0x3ff01e88 | RW |                              |  |
| HTO_RCOND1  | 0x3ff01e90 | RW |                              |  |
| HTO_RMASK1  | 0x3ff01e98 | RW |                              |  |
| HTO_RCOND2  | 0x3ff01ea0 | RW |                              |  |
| HTO_RMASK2  | 0x3ff01ea8 | RW |                              |  |
| HT1_AWCONDO | 0x3ff01f00 | RW | HT1 的 AXI 接口 AW 触发条件 0 设置    |  |

|             |            |    | HT1 的 AXI 接口 AW 触发使能 0 设置,最高位为 AW 通道触发使能 |  |
|-------------|------------|----|------------------------------------------|--|
|             |            |    | 触发条件为                                    |  |
| HT1_AWMASKO | 0x3ff01f08 | RW | (AW_IN & AWMASK) == (AWCOND & AWMASK)    |  |
| HT1_AWCOND1 | 0x3ff01f10 | RW | AW 的触发条件要 CONDO 与 COND1 同时满足             |  |
| HT1_AWMASK1 | 0x3ff01f18 | RW |                                          |  |
| HT1_ARCONDO | 0x3ff01f20 | RW | HT1 的 AXI 接口 AR 触发条件,与 AW 类似             |  |
| HT1_ARMASKO | 0x3ff01f28 | RW |                                          |  |
| HT1_ARCOND1 | 0x3ff01f30 | RW |                                          |  |
| HT1_ARMASK1 | 0x3ff01f38 | RW |                                          |  |
| HT1_WCONDO  | 0x3ff01f40 | RW | HT1 的 AXI 接口 W 触发条件,与 AW 类似              |  |
| HT1_WMASKO  | 0x3ff01f48 | RW |                                          |  |
| HT1_WCOND1  | 0x3ff01f50 | RW |                                          |  |
| HT1_WMASK1  | 0x3ff01f58 | RW |                                          |  |
| HT1_WCOND2  | 0x3ff01f60 | RW |                                          |  |
| HT1_WMASK2  | 0x3ff01f68 | RW |                                          |  |
| HT1_BCONDO  | 0x3ff01f70 | RW | HT1 的 AXI 接口 B 触发条件,与 AW 类似              |  |
| HT1_BMASKO  | 0x3ff01f78 | RW |                                          |  |
| HT1_RCONDO  | 0x3ff01f80 | RW | HT1 的 AXI 接口 R 触发条件,与 AW 类似              |  |
| HT1_RMASKO  | 0x3ff01f88 | RW |                                          |  |

| HT1_RCOND1      | 0x3ff01f90 | RW |            |     |
|-----------------|------------|----|------------|-----|
| HT1_RMASK1      | 0x3ff01f98 | RW |            |     |
| HT1_RCOND2      | 0x3ff01fa0 | RW |            |     |
| HT1_RMASK2      | 0x3ff01fa8 | RW |            |     |
| COREO_WINO_BASE | 0x3ff02000 | RW | 一级交叉开关地址窗口 | 0x0 |
| COREO_WIN1_BASE | 0x3ff02008 | RW | 一级交叉开关地址窗口 | 0x0 |
| COREO_WIN2_BASE | 0x3ff02010 | RW | 一级交叉开关地址窗口 | 0x0 |
| COREO_WIN3_BASE | 0x3ff02018 | RW | 一级交叉开关地址窗口 | 0x0 |
| COREO_WIN4_BASE | 0x3ff02020 | RW | 一级交叉开关地址窗口 | 0x0 |
| COREO_WIN5_BASE | 0x3ff02028 | RW | 一级交叉开关地址窗口 | 0x0 |
| COREO_WIN6_BASE | 0x3ff02030 | RW | 一级交叉开关地址窗口 | 0x0 |
| COREO_WIN7_BASE | 0x3ff02038 | RW | 一级交叉开关地址窗口 | 0x0 |
| COREO_WINO_MASK | 0x3ff02040 | RW | 一级交叉开关地址窗口 | 0x0 |
| COREO_WIN1_MASK | 0x3ff02048 | RW | 一级交叉开关地址窗口 | 0x0 |
| COREO_WIN2_MASK | 0x3ff02050 | RW | 一级交叉开关地址窗口 | 0x0 |
| COREO_WIN3_MASK | 0x3ff02058 | RW | 一级交叉开关地址窗口 | 0x0 |
| COREO_WIN4_MASK | 0x3ff02060 | RW | 一级交叉开关地址窗口 | 0x0 |
| COREO_WIN5_MASK | 0x3ff02068 | RW | 一级交叉开关地址窗口 | 0x0 |
| COREO_WIN6_MASK | 0x3ff02070 | RW | 一级交叉开关地址窗口 | 0x0 |
|                 |            |    |            |     |



| COREO_WIN7_MASK | 0x3ff02078 | RW | 一级交叉开关地址窗口 | 0x0 |
|-----------------|------------|----|------------|-----|
| COREO_WINO_MMAP | 0x3ff02080 | RW | 一级交叉开关地址窗口 | 0x0 |
| COREO_WIN1_MMAP | 0x3ff02088 | RW | 一级交叉开关地址窗口 | 0x0 |
| COREO_WIN2_MMAP | 0x3ff02090 | RW | 一级交叉开关地址窗口 | 0x0 |
| COREO_WIN3_MMAP | 0x3ff02098 | RW | 一级交叉开关地址窗口 | 0x0 |
| COREO_WIN4_MMAP | 0x3ff020a0 | RW | 一级交叉开关地址窗口 | 0x0 |
| COREO_WIN5_MMAP | 0x3ff020a8 | RW | 一级交叉开关地址窗口 | 0x0 |
| COREO_WIN6_MMAP | 0x3ff020b0 | RW | 一级交叉开关地址窗口 | 0x0 |
| COREO_WIN7_MMAP | 0x3ff020b8 | RW | 一级交叉开关地址窗口 | 0x0 |
| CORE1_WINO_BASE | 0x3ff02100 | RW | 一级交叉开关地址窗口 | 0x0 |
| CORE1_WIN1_BASE | 0x3ff02108 | RW | 一级交叉开关地址窗口 | 0x0 |
| CORE1_WIN2_BASE | 0x3ff02110 | RW | 一级交叉开关地址窗口 | 0x0 |
| CORE1_WIN3_BASE | 0x3ff02118 | RW | 一级交叉开关地址窗口 | 0x0 |
| CORE1_WIN4_BASE | 0x3ff02120 | RW | 一级交叉开关地址窗口 | 0x0 |
| CORE1_WIN5_BASE | 0x3ff02128 | RW | 一级交叉开关地址窗口 | 0x0 |
| CORE1_WIN6_BASE | 0x3ff02130 | RW | 一级交叉开关地址窗口 | 0x0 |
| CORE1_WIN7_BASE | 0x3ff02138 | RW | 一级交叉开关地址窗口 | 0x0 |
| CORE1_WINO_MASK | 0x3ff02140 | RW | 一级交叉开关地址窗口 | 0x0 |
| CORE1_WIN1_MASK | 0x3ff02148 | RW | 一级交叉开关地址窗口 | 0x0 |
|                 |            |    |            |     |



| CORE1_WIN2_MASK | 0x3ff02150 | RW | 一级交叉开关地址窗口 | 0x0 |
|-----------------|------------|----|------------|-----|
| CORE1_WIN3_MASK | 0x3ff02158 | RW | 一级交叉开关地址窗口 | 0x0 |
| CORE1_WIN4_MASK | 0x3ff02160 | RW | 一级交叉开关地址窗口 | 0x0 |
| CORE1_WIN5_MASK | 0x3ff02168 | RW | 一级交叉开关地址窗口 | 0x0 |
| CORE1_WIN6_MASK | 0x3ff02170 | RW | 一级交叉开关地址窗口 | 0x0 |
| CORE1_WIN7_MASK | 0x3ff02178 | RW | 一级交叉开关地址窗口 | 0x0 |
| CORE1_WINO_MMAP | 0x3ff02180 | RW | 一级交叉开关地址窗口 | 0x0 |
| CORE1_WIN1_MMAP | 0x3ff02188 | RW | 一级交叉开关地址窗口 | 0x0 |
| CORE1_WIN2_MMAP | 0x3ff02190 | RW | 一级交叉开关地址窗口 | 0x0 |
| CORE1_WIN3_MMAP | 0x3ff02198 | RW | 一级交叉开关地址窗口 | 0x0 |
| CORE1_WIN4_MMAP | 0x3ff021a0 | RW | 一级交叉开关地址窗口 | 0x0 |
| CORE1_WIN5_MMAP | 0x3ff021a8 | RW | 一级交叉开关地址窗口 | 0x0 |
| CORE1_WIN6_MMAP | 0x3ff021b0 | RW | 一级交叉开关地址窗口 | 0x0 |
| CORE1_WIN7_MMAP | 0x3ff021b8 | RW | 一级交叉开关地址窗口 | 0x0 |
| CORE2_WINO_BASE | 0x3ff02200 | RW | 一级交叉开关地址窗口 | 0x0 |
| CORE2_WIN1_BASE | 0x3ff02208 | RW | 一级交叉开关地址窗口 | 0x0 |
| CORE2_WIN2_BASE | 0x3ff02210 | RW | 一级交叉开关地址窗口 | 0x0 |
| CORE2_WIN3_BASE | 0x3ff02218 | RW | 一级交叉开关地址窗口 | 0x0 |
| CORE2_WIN4_BASE | 0x3ff02220 | RW | 一级交叉开关地址窗口 | 0x0 |
|                 |            |    |            |     |



| CORE2_WIN5_BASE | 0x3ff02228 | RW | 一级交叉开关地址窗口 | 0x0 |
|-----------------|------------|----|------------|-----|
| CORE2_WIN6_BASE | 0x3ff02230 | RW | 一级交叉开关地址窗口 | 0x0 |
| CORE2_WIN7_BASE | 0x3ff02238 | RW | 一级交叉开关地址窗口 | 0x0 |
| CORE2_WINO_MASK | 0x3ff02240 | RW | 一级交叉开关地址窗口 | 0x0 |
| CORE2_WIN1_MASK | 0x3ff02248 | RW | 一级交叉开关地址窗口 | 0x0 |
| CORE2_WIN2_MASK | 0x3ff02250 | RW | 一级交叉开关地址窗口 | 0x0 |
| CORE2_WIN3_MASK | 0x3ff02258 | RW | 一级交叉开关地址窗口 | 0x0 |
| CORE2_WIN4_MASK | 0x3ff02260 | RW | 一级交叉开关地址窗口 | 0x0 |
| CORE2_WIN5_MASK | 0x3ff02268 | RW | 一级交叉开关地址窗口 | 0x0 |
| CORE2_WIN6_MASK | 0x3ff02270 | RW | 一级交叉开关地址窗口 | 0x0 |
| CORE2_WIN7_MASK | 0x3ff02278 | RW | 一级交叉开关地址窗口 | 0x0 |
| CORE2_WINO_MMAP | 0x3ff02280 | RW | 一级交叉开关地址窗口 | 0x0 |
| CORE2_WIN1_MMAP | 0x3ff02288 | RW | 一级交叉开关地址窗口 | 0x0 |
| CORE2_WIN2_MMAP | 0x3ff02290 | RW | 一级交叉开关地址窗口 | 0x0 |
| CORE2_WIN3_MMAP | 0x3ff02298 | RW | 一级交叉开关地址窗口 | 0x0 |
| CORE2_WIN4_MMAP | 0x3ff022a0 | RW | 一级交叉开关地址窗口 | 0x0 |
| CORE2_WIN5_MMAP | 0x3ff022a8 | RW | 一级交叉开关地址窗口 | 0x0 |
| CORE2_WIN6_MMAP | 0x3ff022b0 | RW | 一级交叉开关地址窗口 | 0x0 |
| CORE2_WIN7_MMAP | 0x3ff022b8 | RW | 一级交叉开关地址窗口 | 0x0 |
|                 |            |    |            |     |



|                 | 1          |    |            |     |
|-----------------|------------|----|------------|-----|
| CORE3_WINO_BASE | 0x3ff02300 | RW | 一级交叉开关地址窗口 | 0x0 |
| CORE3_WIN1_BASE | 0x3ff02308 | RW | 一级交叉开关地址窗口 | 0x0 |
| CORE3_WIN2_BASE | 0x3ff02310 | RW | 一级交叉开关地址窗口 | 0x0 |
| CORE3_WIN3_BASE | 0x3ff02318 | RW | 一级交叉开关地址窗口 | 0x0 |
| CORE3_WIN4_BASE | 0x3ff02320 | RW | 一级交叉开关地址窗口 | 0x0 |
| CORE3_WIN5_BASE | 0x3ff02328 | RW | 一级交叉开关地址窗口 | 0x0 |
| CORE3_WIN6_BASE | 0x3ff02330 | RW | 一级交叉开关地址窗口 | 0x0 |
| CORE3_WIN7_BASE | 0x3ff02338 | RW | 一级交叉开关地址窗口 | 0x0 |
| CORE3_WINO_MASK | 0x3ff02340 | RW | 一级交叉开关地址窗口 | 0x0 |
| CORE3_WIN1_MASK | 0x3ff02348 | RW | 一级交叉开关地址窗口 | 0x0 |
| CORE3_WIN2_MASK | 0x3ff02350 | RW | 一级交叉开关地址窗口 | 0x0 |
| CORE3_WIN3_MASK | 0x3ff02358 | RW | 一级交叉开关地址窗口 | 0x0 |
| CORE3_WIN4_MASK | 0x3ff02360 | RW | 一级交叉开关地址窗口 | 0x0 |
| CORE3_WIN5_MASK | 0x3ff02368 | RW | 一级交叉开关地址窗口 | 0x0 |
| CORE3_WIN6_MASK | 0x3ff02370 | RW | 一级交叉开关地址窗口 | 0x0 |
| CORE3_WIN7_MASK | 0x3ff02378 | RW | 一级交叉开关地址窗口 | 0x0 |
| CORE3_WINO_MMAP | 0x3ff02380 | RW | 一级交叉开关地址窗口 | 0x0 |
| CORE3_WIN1_MMAP | 0x3ff02388 | RW | 一级交叉开关地址窗口 | 0x0 |
| CORE3_WIN2_MMAP | 0x3ff02390 | RW | 一级交叉开关地址窗口 | 0x0 |
|                 |            |    |            |     |



| CORE3_WIN3_MMAP | 0x3ff02398 | RW | 一级交叉开关地址窗口 | 0x0 |
|-----------------|------------|----|------------|-----|
| CORE3_WIN4_MMAP | 0x3ff023a0 | RW | 一级交叉开关地址窗口 | 0x0 |
| CORE3_WIN5_MMAP | 0x3ff023a8 | RW | 一级交叉开关地址窗口 | 0x0 |
| CORE3_WIN6_MMAP | 0x3ff023b0 | RW | 一级交叉开关地址窗口 | 0x0 |
| CORE3_WIN7_MMAP | 0x3ff023b8 | RW | 一级交叉开关地址窗口 | 0x0 |
| EAST_WINO_BASE  | 0x3ff02400 | RW | 一级交叉开关地址窗口 | 0x0 |
| EAST_WIN1_BASE  | 0x3ff02408 | RW | 一级交叉开关地址窗口 | 0x0 |
| EAST_WIN2_BASE  | 0x3ff02410 | RW | 一级交叉开关地址窗口 | 0x0 |
| EAST_WIN3_BASE  | 0x3ff02418 | RW | 一级交叉开关地址窗口 | 0x0 |
| EAST_WIN4_BASE  | 0x3ff02420 | RW | 一级交叉开关地址窗口 | 0x0 |
| EAST_WIN5_BASE  | 0x3ff02428 | RW | 一级交叉开关地址窗口 | 0x0 |
| EAST_WIN6_BASE  | 0x3ff02430 | RW | 一级交叉开关地址窗口 | 0x0 |
| EAST_WIN7_BASE  | 0x3ff02438 | RW | 一级交叉开关地址窗口 | 0x0 |
| EAST_WINO_MASK  | 0x3ff02440 | RW | 一级交叉开关地址窗口 | 0x0 |
| EAST_WIN1_MASK  | 0x3ff02448 | RW | 一级交叉开关地址窗口 | 0x0 |
| EAST_WIN2_MASK  | 0x3ff02450 | RW | 一级交叉开关地址窗口 | 0x0 |
| EAST_WIN3_MASK  | 0x3ff02458 | RW | 一级交叉开关地址窗口 | 0x0 |
| EAST_WIN4_MASK  | 0x3ff02460 | RW | 一级交叉开关地址窗口 | 0x0 |
| EAST_WIN5_MASK  | 0x3ff02468 | RW | 一级交叉开关地址窗口 | 0x0 |



| EAST_WIN6_MASK  | 0x3ff02470 | RW | 一级交叉开关地址窗口 | 0x0 |
|-----------------|------------|----|------------|-----|
| EAST_WIN7_MASK  | 0x3ff02478 | RW | 一级交叉开关地址窗口 | 0x0 |
| EAST_WINO_MMAP  | 0x3ff02480 | RW | 一级交叉开关地址窗口 | 0x0 |
| EAST_WIN1_MMAP  | 0x3ff02488 | RW | 一级交叉开关地址窗口 | 0x0 |
| EAST_WIN2_MMAP  | 0x3ff02490 | RW | 一级交叉开关地址窗口 | 0x0 |
| EAST_WIN3_MMAP  | 0x3ff02498 | RW | 一级交叉开关地址窗口 | 0x0 |
| EAST_WIN4_MMAP  | 0x3ff024a0 | RW | 一级交叉开关地址窗口 | 0x0 |
| EAST_WIN5_MMAP  | 0x3ff024a8 | RW | 一级交叉开关地址窗口 | 0x0 |
| EAST_WIN6_MMAP  | 0x3ff024b0 | RW | 一级交叉开关地址窗口 | 0x0 |
| EAST_WIN7_MMAP  | 0x3ff024b8 | RW | 一级交叉开关地址窗口 | 0x0 |
| SOUTH_WINO_BASE | 0x3ff02500 | RW | 一级交叉开关地址窗口 | 0x0 |
| SOUTH_WIN1_BASE | 0x3ff02508 | RW | 一级交叉开关地址窗口 | 0x0 |
| SOUTH_WIN2_BASE | 0x3ff02510 | RW | 一级交叉开关地址窗口 | 0x0 |
| SOUTH_WIN3_BASE | 0x3ff02518 | RW | 一级交叉开关地址窗口 | 0x0 |
| SOUTH_WIN4_BASE | 0x3ff02520 | RW | 一级交叉开关地址窗口 | 0x0 |
| SOUTH_WIN5_BASE | 0x3ff02528 | RW | 一级交叉开关地址窗口 | 0x0 |
| SOUTH_WIN6_BASE | 0x3ff02530 | RW | 一级交叉开关地址窗口 | 0x0 |
| SOUTH_WIN7_BASE | 0x3ff02538 | RW | 一级交叉开关地址窗口 | 0x0 |
| SOUTH_WINO_MASK | 0x3ff02540 | RW | 一级交叉开关地址窗口 | 0x0 |
|                 |            |    |            |     |



| SOUTH_WIN1_MASK | 0x3ff02548 | RW | 一级交叉开关地址窗口 | 0x0 |
|-----------------|------------|----|------------|-----|
| SOUTH_WIN2_MASK | 0x3ff02550 | RW | 一级交叉开关地址窗口 | 0x0 |
| SOUTH_WIN3_MASK | 0x3ff02558 | RW | 一级交叉开关地址窗口 | 0x0 |
| SOUTH_WIN4_MASK | 0x3ff02560 | RW | 一级交叉开关地址窗口 | 0x0 |
| SOUTH_WIN5_MASK | 0x3ff02568 | RW | 一级交叉开关地址窗口 | 0x0 |
| SOUTH_WIN6_MASK | 0x3ff02570 | RW | 一级交叉开关地址窗口 | 0x0 |
| SOUTH_WIN7_MASK | 0x3ff02578 | RW | 一级交叉开关地址窗口 | 0x0 |
| SOUTH_WINO_MMAP | 0x3ff02580 | RW | 一级交叉开关地址窗口 | 0x0 |
| SOUTH_WIN1_MMAP | 0x3ff02588 | RW | 一级交叉开关地址窗口 | 0x0 |
| SOUTH_WIN2_MMAP | 0x3ff02590 | RW | 一级交叉开关地址窗口 | 0x0 |
| SOUTH_WIN3_MMAP | 0x3ff02598 | RW | 一级交叉开关地址窗口 | 0x0 |
| SOUTH_WIN4_MMAP | 0x3ff025a0 | RW | 一级交叉开关地址窗口 | 0x0 |
| SOUTH_WIN5_MMAP | 0x3ff025a8 | RW | 一级交叉开关地址窗口 | 0x0 |
| SOUTH_WIN6_MMAP | 0x3ff025b0 | RW | 一级交叉开关地址窗口 | 0x0 |
| SOUTH_WIN7_MMAP | 0x3ff025b8 | RW | 一级交叉开关地址窗口 | 0x0 |
| WEST_WINO_BASE  | 0x3ff02600 | RW | 一级交叉开关地址窗口 | 0x0 |
| WEST_WIN1_BASE  | 0x3ff02608 | RW | 一级交叉开关地址窗口 | 0x0 |
| WEST_WIN2_BASE  | 0x3ff02610 | RW | 一级交叉开关地址窗口 | 0x0 |
| WEST_WIN3_BASE  | 0x3ff02618 | RW | 一级交叉开关地址窗口 | 0x0 |



| WEST_WIN4_BASE | 0x3ff02620 | RW | 一级交叉开关地址窗口 | 0x0 |
|----------------|------------|----|------------|-----|
| WEST_WIN5_BASE | 0x3ff02628 | RW | 一级交叉开关地址窗口 | 0x0 |
| WEST_WIN6_BASE | 0x3ff02630 | RW | 一级交叉开关地址窗口 | 0x0 |
| WEST_WIN7_BASE | 0x3ff02638 | RW | 一级交叉开关地址窗口 | 0x0 |
| WEST_WINO_MASK | 0x3ff02640 | RW | 一级交叉开关地址窗口 | 0x0 |
| WEST_WIN1_MASK | 0x3ff02648 | RW | 一级交叉开关地址窗口 | 0x0 |
| WEST_WIN2_MASK | 0x3ff02650 | RW | 一级交叉开关地址窗口 | 0x0 |
| WEST_WIN3_MASK | 0x3ff02658 | RW | 一级交叉开关地址窗口 | 0x0 |
| WEST_WIN4_MASK | 0x3ff02660 | RW | 一级交叉开关地址窗口 | 0x0 |
| WEST_WIN5_MASK | 0x3ff02668 | RW | 一级交叉开关地址窗口 | 0x0 |
| WEST_WIN6_MASK | 0x3ff02670 | RW | 一级交叉开关地址窗口 | 0x0 |
| WEST_WIN7_MASK | 0x3ff02678 | RW | 一级交叉开关地址窗口 | 0x0 |
| WEST_WINO_MMAP | 0x3ff02680 | RW | 一级交叉开关地址窗口 | 0x0 |
| WEST_WIN1_MMAP | 0x3ff02688 | RW | 一级交叉开关地址窗口 | 0x0 |
| WEST_WIN2_MMAP | 0x3ff02690 | RW | 一级交叉开关地址窗口 | 0x0 |
| WEST_WIN3_MMAP | 0x3ff02698 | RW | 一级交叉开关地址窗口 | 0x0 |
| WEST_WIN4_MMAP | 0x3ff026a0 | RW | 一级交叉开关地址窗口 | 0x0 |
| WEST_WIN5_MMAP | 0x3ff026a8 | RW | 一级交叉开关地址窗口 | 0x0 |
| WEST_WIN6_MMAP | 0x3ff026b0 | RW | 一级交叉开关地址窗口 | 0x0 |



| WEST_WIN7_MMAP  | 0x3ff026b8 | RW | 一级交叉开关地址窗口 | 0x0 |
|-----------------|------------|----|------------|-----|
| NORTH_WINO_BASE | 0x3ff02700 | RW | 一级交叉开关地址窗口 | 0x0 |
| NORTH_WIN1_BASE | 0x3ff02708 | RW | 一级交叉开关地址窗口 | 0x0 |
| NORTH_WIN2_BASE | 0x3ff02710 | RW | 一级交叉开关地址窗口 | 0x0 |
| NORTH_WIN3_BASE | 0x3ff02718 | RW | 一级交叉开关地址窗口 | 0x0 |
| NORTH_WIN4_BASE | 0x3ff02720 | RW | 一级交叉开关地址窗口 | 0x0 |
| NORTH_WIN5_BASE | 0x3ff02728 | RW | 一级交叉开关地址窗口 | 0x0 |
| NORTH_WIN6_BASE | 0x3ff02730 | RW | 一级交叉开关地址窗口 | 0x0 |
| NORTH_WIN7_BASE | 0x3ff02738 | RW | 一级交叉开关地址窗口 | 0x0 |
| NORTH_WINO_MASK | 0x3ff02740 | RW | 一级交叉开关地址窗口 | 0x0 |
| NORTH_WIN1_MASK | 0x3ff02748 | RW | 一级交叉开关地址窗口 | 0x0 |
| NORTH_WIN2_MASK | 0x3ff02750 | RW | 一级交叉开关地址窗口 | 0x0 |
| NORTH_WIN3_MASK | 0x3ff02758 | RW | 一级交叉开关地址窗口 | 0x0 |
| NORTH_WIN4_MASK | 0x3ff02760 | RW | 一级交叉开关地址窗口 | 0x0 |
| NORTH_WIN5_MASK | 0x3ff02768 | RW | 一级交叉开关地址窗口 | 0x0 |
| NORTH_WIN6_MASK | 0x3ff02770 | RW | 一级交叉开关地址窗口 | 0x0 |
| NORTH_WIN7_MASK | 0x3ff02778 | RW | 一级交叉开关地址窗口 | 0x0 |
| NORTH_WINO_MMAP | 0x3ff02780 | RW | 一级交叉开关地址窗口 | 0x0 |
| NORTH_WIN1_MMAP | 0x3ff02788 | RW | 一级交叉开关地址窗口 | 0x0 |



| NORTH_WIN2_MMAP | 0x3ff02790 | RW | 一级交叉开关地址窗口 | 0x0 |
|-----------------|------------|----|------------|-----|
| NORTH_WIN3_MMAP | 0x3ff02798 | RW | 一级交叉开关地址窗口 | 0x0 |
| NORTH_WIN4_MMAP | 0x3ff027a0 | RW | 一级交叉开关地址窗口 | 0x0 |
| NORTH_WIN5_MMAP | 0x3ff027a8 | RW | 一级交叉开关地址窗口 | 0x0 |
| NORTH_WIN6_MMAP | 0x3ff027b0 | RW | 一级交叉开关地址窗口 | 0x0 |
| NORTH_WIN7_MMAP | 0x3ff027b8 | RW | 一级交叉开关地址窗口 | 0x0 |



# 13 软硬件设计指南

龙芯 3A3000/3B3000 处理器引脚向下兼容龙芯 3A1000 处理器,但是相应的软硬件需要进行一些配置的变更,以使能原有的兼容模式,或者打开龙芯 3A3000/3B3000 的一些新特性,本章重点介绍与龙芯 3A1000/2000 相比,龙芯 3A3000/3B3000 处理器的使用上的软硬件设置区别。

#### 13.1 硬件改动指南

- 1. 原有 CORE\_PLL\_AVDD、DDR\_PLL\_AVDD(2.5v) 现为 1.8v。如果使用原有的 3A1000 主板,需要将这两个电源由 2.5v 改为 1.8v。而 3A2000/3B2000 上这些引脚(包括 HT0/1\_PLL\_AVDD)为 NC,如果考虑与 3A2000/3B2000 的兼容性,可以将这些电源电压修改为 1.8v,或是采用 1.8v/2.5v 可配置的设计;
- 2. 原有的 MCO/1\_COMP\_REF\_RES 改为 NC pin。如果使用原有的 3A 主板,可以不作修改; (与 3A2000 一致)
- 3. 原有的 HTO/1\_PLL\_REF 改为 NC pin。如果使用原有的 3A 主板,可以不作修改; (与 3A2000 一致)
- 4. 原有的 MCO/1\_COMP\_REF\_GND 改为 MCO/1\_A15。如果使用原有的 3A 主板,可以不作修改;但如果连接到内存条,可以支持更大容量内存;(与 3A2000 一致)
- 5. PCI\_CONFIG[0]控制的功能改为 SPI 启动使能,设置为 1 后可以从 SPI FLASH 启动。如果使用原有的 3A 主板,需要设置为 0,从 LPC FLASH 启动;如果主板已有 SPI FLASH,可以将GPIO[0]作为 SPI\_CS 连接,并将 PCI\_CONFIG[0]设置为 1,从 SPI FLASH 启动;(与 3A2000一致)
- 6. PCI\_CONFIG[7]控制的功能改为强制 HT1.0 模式,设置为 1 后 HT 直接采用 1.0 模式启动。 如果使用 3A780E 主板,目前需要将其设为 1;如果使用 3A2H 主板,无需特别设置;(与 3A2000 一致)
- 7. 针对龙芯 3A3000/3B3000A/B/C, CLKSEL[15:10]需要设置为 6'b000000 或 6'b000001, 并



在 PMON 中使用软件重新对频率进行配置;

- 8. CLKSEL[9:5] 需要设置为 5'b01111; 使用 PMON 进行内存频率设置。针对龙芯 3A3000/3B3000A/B/C, PMON 在频率配置的时候必须使用 NODE 时钟进行分频; (与 3A2000 一致)
- 9. CLKSEL[4:0]需要设置为 5'b01111;使用 PMON 进行处理器核频率设置。针对龙芯 3A3000/3B3000A/B/C, PMON 在频率配置的时候必须使用 L2 PLL 作为主时钟;(与 3A2000 一致)
- **10**. 对于 **3A2H** 主板,需要去除 **HT0/1\_powerok**、**HT0/1\_resetn** 上的上拉电阻;(原有的上拉电阻 **300** 欧姆对于 **3A** 也不合适,同样可以去除)(与 **3A2000** 一致)

#### 13.2 频率设置说明

为了与龙芯 3A1000 的频率配置基本兼容,龙芯 3A3000/3B3000 的硬件频率配置范围较窄,为了获得更宽的频率范围和更好的时钟质量,在龙芯 3A3000/3B3000 中主要使用在 PMON 中进行软件配置的方法,配置方法与龙芯 3B1500 相同。具体配置方法请参考 PMON 源代码。

- 1. 频率设置完全由软件设置,改变频率时不用修改 CLKSEL;
- 2. 1.25V 核心电压的稳定工作频率:处理器核频率设为 1400MHz,内存频率设为 700MHz,HT 控制器设置为 800MHz,HT 总线 800MHz/1600MHz;
- 3. 针对龙芯 3A3000/3B3000A/B/C, NODE CLOCK 必须使用 L2 PLL 作为主时钟, DDR CLOCK 必须使用 NODE 时钟进行分频;

# 13.3 PMON改动指南

以下的 PMON 改动与 3A2000/3B2000 处理器基本一致。



因为从处理器核、内存控制器、HT 控制器到各级交叉开关都进行了不同程度的升级, 因此相比龙芯 3A1000, PMON 需要进行一些改动,主要包括以下必须部分:

- 1. 去除上电后 L1 Dcache, L1 Icache, Vcache, L2 Cache 的初始化操作(硬件完成);
- 2. 在 CPU 刚上电后,关闭所有核的 Store Fill Buffer;
- 3. 在 CPU 刚上电后,关闭所有核的字写合并功能;
- 4. 如果需要保持对 3A5 的兼容,设置所有核的 CPO Diag 寄存器中的 PRID 隐藏位;
- 5. 将所有汇编代码中 jr rx, rx 不为 31 号寄存器的语句修改为 jr \$31;
- 6. 使用与 3B1500 类似的配置处理器核、内存与节点 PLL 的代码;
- 7. 使用与 3B1500 类似的内存控制器配置与参数训练的代码;
- 8. 如果 HT 工作在 1.0 的模式下, HT 只能工作在 8 位模式;
- 9. 如果使用到 SPI 控制器,基地址由 0xBFE001F0 修改为 0xBFE00220;

除了这些必须的改动,还可以进行以下的改动以增强 PMON 功能:

- 1. 修改蜂鸣器的 delay 延迟,确保用户能听到蜂鸣声;
- 2. 添加关闭有缺陷核时钟的支持:
- 3. 去掉代码中 3A5 对 2h 桥片 HT 控制器的部分 workaround (仍保留部分 workaround);

# 13.4 内核改动指南

以下的内核改动与 3A2000/3B2000 基本一致,但需要在内核中对应的部分添加对164



3A3000/3B3000 处理器的支持。

- 1. 修改内核中的 Cache 描述结构, VCache 与 SCache 都使用 16 路组相连: (与 3A2000 一致)
- 2. 修改温度传感器的计算方式,算法为:结点温度=Thens\_out \*731/0x4000 273;
- 3. 修改关核时的配置寄存器地址; (与 3A2000 一致)
- 4. 将刷 ICache/DCache 的操作改为刷 ICache/DCache/VCache;(与 3A2000 一致)
- 5. 如果使用到 SPI 控制器,基地址由 0xBFE001F0 修改为 0xBFE00220; (与 3A2000 一致)
- 6. 必须使用 Uncache DMA,采用软件维护 Cache 的数据一致性;(与 3A2000 一致)
- 7. 增加 store fill buffer 支持: 一是需要在所有的 Uncache 请求之前增加一条 SYNC,以保证在 Uncache 请求发生时,store fill buffer 里的内容已经全部写回 Cache; 二是需要将所有的在不同核间共享的同步操作中的解锁操作使用 LL/SC 指令实现。(与 3A2000 一致)
- 8. 不使用设备的 MSI 功能。当必须使用 MSI 功能时,需要将 HT 控制器的 POST 通道的数据 接收缓冲区个数设置为 1,并重连 HT 总线;(与 3A2000 一致)
- 9. 对于硬件自动维护一致性的 DMA 区域不能使用锁 Cache 操作。(与 3A2000 一致) 还可以采用的用于提升性能的修改有:
- 1. 增加对 FTLB 的支持; (与 3A2000 一致)
- 2. 增加对 TLB 快速重填的支持; (与 3A2000 一致)
- 3. 增加 wait 指令支持; (与 3A2000 一致)
- 4. 增加预取指令支持; (与 3A2000 一致)



5. 使用 DI/EI 实现中断返回。但需要注意的是 EI 指令返回的[31:4]为随机值,与 MIPS 规定有差异。(与 3A2000 一致)