陳昭璋

Project ID: C22-M001-03906 Report No.: AA-22-07878 ONC

Date Reported: Jan 06, 2023

PATIENT	
Identifier: 陳昭境	Patient ID: 22077696
Date of Birth: Jul 18, 1966	Gender: Female
Diagnosis: R/O GIST	
ORDERING PHYSICIAN	
Name: 顏厥全醫師	Tel: 886-228712121
Facility: 臺北榮總	
Address: 臺北市北投區石牌路二段 201 號	
SPECIMEN	
Specimen ID: S11147716C Collection site: Mesentery	Type: FFPE tissue
Date received: Dec 26, 2022 Lab ID: AA-22-07878	D/ID: NA

The test is a next-generation sequencing (NGS)-based assay developed for efficient and comprehensive genomic profiling of cancers. This test interrogates coding regions of 440 genes associated with cancer treatment, prognosis and diagnosis. Genetic mutations detected by this test include small-scale mutations like single nucleotide variants (SNVs), small insertions and deletions (InDels) (≤ 15 nucleotides) and large-scale genomic alterations like copy number alterations (CNAs). The test also includes an RNA test, detecting fusion transcripts of 13 genes.

SUMMARY FOR ACTIONABLE VARIANTS VARIANTS/BIOMARKERS WITH EVIDENCE OF CLINICAL SIGNIFICANCE

Genomic	Probable Effects in Patient's Cancer Type Probable Sensitive in Other		
Alterations/Biomarkers	Sensitive	Resistant	Cancer Types
	Not de	tected	

VARIANTS/BIOMARKERS WITH POTENTIAL CLINICAL SIGNIFICANCE

Genomic Alterations/Biomarkers	Possibly Sensitive	Possibly Resistant
CTNNB1 T41A	Imatinib	Cetuximab

Note:

- The above summary tables present genomic variants and biomarkers based on the three-tiered approach proposed by US FDA for reporting tumor profiling NGS testing. "Variants/biomarkers with evidence of clinical significance" refers to mutations that are widely recognized as standard-of-care biomarkers (FDA level 2/AMP tier 1). "Variants/biomarkers with potential clinical significance" refers to mutations that are not included in the standard of care but are informational for clinicians, which are commonly biomarkers used as inclusion criterial for clinical trials (FDA level 3/AMP tier 2).
- The therapeutic agents and possible effects to a given drug are based on mapping the variants/biomarkers with ACT Genomics clinical knowledge database. The mapping results only provide information for reference, but not medical recommendation.
- Please refer to corresponding sections for more detailed information about genomic alteration and clinical relevance listed above

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 1 of 17

Project ID: C22-M001-03906 Report No.: AA-22-07878_ONC Date Reported: Jan 06, 2023

ACTOnco® + Report

TESTING RESULTS

VARIANT(S) WITH CLINICAL RELEVANCE

- Single Nucleotide and Small InDel Variants

Gene	Amino Acid Change	Allele Frequency
CTNNB1	T41A	38.2%

- Copy Number Alterations

Chromosome	Gene	Variation	Copy Number
	Not	detected	

- Fusions

Fusion Gene & Exon	Transcript ID
	No fusion gene detected in this sample

- Immune Checkpoint Inhibitor (ICI) Related Biomarkers

Biomarker	Results
Tumor Mutational Burden (TMB)	< 1 muts/Mb
Microsatellite Instability (MSI)	Microsatellite stable (MSS)

Note:

- Loss of heterozygosity (LOH) information was used to infer tumor cellularity. Copy number alteration in the tumor was determined based on 90% tumor purity.
- TMB was calculated by using the sequenced regions of ACTOnco®+ to estimate the number of somatic nonsynonymous mutations per megabase of all protein-coding genes (whole exome). The threshold for high mutation load is set at ≥ 7.5 mutations per megabase. TMB, microsatellite status and gene copy number deletion cannot be determined if calculated tumor purity is < 30%.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **2** of **17**

Project ID: C22-M001-03906

Report No.: AA-22-07878_ONC Date Reported: Jan 06, 2023

ACTOnco® + Report

THERAPEUTIC IMPLICATIONS

TARGETED THERAPIES

Genomic Alterations	Therapies	Effect
Level 4		
CTNNB1 T41A	Imatinib	sensitive
CTNNB1 T41A	Cetuximab	resistant

Therapies associated with benefit or lack of benefit are based on biomarkers detected in this tumor and published evidence in professional guidelines or peer-reviewed journals.

Level	Description
1	FDA-recognized biomarkers predictive of response or resistance to FDA approved drugs in this indication
2	Standard care biomarkers (recommended by the NCCN guideline) predictive of response or resistance to FDA approved drugs in this indication
ЗА	Biomarkers predictive of response or resistance to therapies approved by the FDA or NCCN guideline in a different cancer type
3B	Biomarkers that serve as inclusion criteria for clinical trials (minimal supportive data required)
4	Biomarkers that show plausible therapeutic significance based on small studies, few case reports, or preclinical studies

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **3** of **17**

Project ID: C22-M001-03906 Report No.: AA-22-07878_ONC Date Reported: Jan 06, 2023

ACTOnco® + Report

IMMUNE CHECKPOINT INHIBITORS (ICIs)

No genomic alterations detected to confer sensitivity or lack of benefit to immune checkpoint therapies.

- Other Biomarkers with Potential Clinical Effects for ICIs

Genomic Alterations	Potential Clinical Effects
	Not detected

Note: Tumor non-genomic factors, such as patient germline genetics, PDL1 expression, tumor microenvironment, epigenetic alterations or other factors not provided by this test may affect ICI response.

CHEMOTHERAPIES

No genomic alterations detected in this tumor predicted to confer sensitivity or lack of benefit to chemotherapies.

HORMONAL THERAPIES

No genomic alterations detected in this tumor predicted to confer sensitivity or lack of benefit to hormonal therapies.

OTHERS

Pharmacogenomic implication

Gene	Detection Site	Genotype	Drug Impact	Level of Evidence*
UGT1A1	rs4148323	AG	Irinotecan-based regimens	Level 1B

Clinical Interpretation:

Patients with the AG genotype and cancer who are treated with irinotecan-based regimens may have an increased risk of diarrhea and neutropenia as compared to patients with the GG genotype, or a decreased risk of diarrhea and neutropenia compared to patients with the AA genotype. Other genetic and clinical factors may also influence a patient's risk of diarrhea and neutropenia.

Level 1A: Clinical annotations describe variant-drug combinations that have variant-specific prescribing guidance available in a current clinical guideline annotation or an FDA-approved drug label annotation.

Level 1B: Clinical annotations describe variant-drug combinations with a high level of evidence supporting the association but no variant-specific prescribing guidance in an annotated clinical guideline or FDA drug label.

Level 2A: Variants in Level 2A clinical annotations are found in PharmGKB's Tier 1 Very Important Pharmacogenes (VIPs). These variants are in known pharmacogenes, implying causation of drug phenotype is more likely.

Note:

Therapeutic implications provided in the test are based solely on the panel of 440 genes sequenced. Therefore, alterations in genes not covered in this panel, epigenetic and post-transcriptional and post-translational factors may also determine a patient's response to therapies. In addition, several other patient-associated clinical factors, including but not limited to, prior lines of therapies received, dosage and combinations with other therapeutic agents, patient's cancer types, sub-types, and/or stages, may also determine the patient's clinical response to therapies.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 4 of 17

^{*} Level of evidence was defined by PharmGKB (https://www.pharmgkb.org/page/clinAnnLevels)

陳昭璋

Project ID: C22-M001-03906 Report No.: AA-22-07878 ONC

Date Reported: Jan 06, 2023

ACTOnco® + Report

VARIANT INTERPRETATION

CTNNB1 T41A

Biological Impact

The CTNNB1 gene encodes for the β-catenin, a transcriptional activator involves in the canonical Wnt signaling pathway[1][2], β-catenin also regulates cyclin D1 and MYC expression, which play important roles in cancer development^{[3][4]}. Mutations of CTNNB1 are common in a wide range of solid tumors, including liver, endometrial, colorectal, and lung cancer [5][6][7][8][9][10]. CTNNB1 mutations are more frequently found in hepatocellular carcinomas (HCCs) patients without hepatitis B virus (HBV) infection, which is mostly developed on the well-differentiated, noncirrhotic liver, and displayed cholestasis[11][12][13][14]. Of note, the majority of CTNNB1 alterations identified in cancers are missense mutations and all of which localize in the hotspot exon 3 at S33, S37, S45, T41, D32, and G34^{[15][16]}.

CTNNB1 T41A is a gain-of-function (GOF) mutation which has been shown to increase CTNNB1-dependent transcription[17][18].

Therapeutic and prognostic relevance

In a retrospective study, patients with desmoid fibromatosis harboring CTNNB1 activating mutations such as S45F/N/P or T41A demonstrated a greater progression arrest rate (PAR) at 6 months compared to patients with wild-type CTNNB1 when treated with imatinib, a multi-target inhibitor of c-KIT, PDGFR, and BCR-ABL[19].

Results from a Phase II study of temsirolimus-containing regiments in advanced endometrial cancer (EC) showed that CTNNB1 exon 3 mutations were associated with longer PFS on temsirolimus^[20]. Besides, three patients with recurrent endometrial carcinoma harboring CTNNB1 mutations on exon 3 (one is D32V, another is S37Y, and the other is both H36Y and S37C) also responded well to everolimus and letrozole, based on the results of a Phase II study[21].

Low expression of CTNNB1 has been reported to associate with longer overall survival in low-grade endometrioid endometrial carcinoma (EEC)[22].

In a preclinical study, transformed cells expressing CTNNB1 T41A were resistant to cetuximab treatment in vitro[23].

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 5 of 17

Project ID: C22-M001-03906

Report No.: AA-22-07878_ONC Date Reported: Jan 06, 2023

US FDA-APPROVED DRUG(S)

Imatinib (GLEEVEC)

Imatinib is an oral, small molecule inhibitor of tyrosine kinase enzymes, namely, the Abelson proto-oncogene (ABL), c-KIT, and platelet-derived growth factor receptor (PDGFR). Imatinib is developed and marketed by Novartis under the trade name GLEEVEC.

- FDA Approval Summary of Imatinib (GLEEVEC)

[24]	Acute lymphocytic leukemia (Approved on 2013/01/25)
NCT00022737	-
140100022707	Imatinib [EFS(%): 70]
	Gastrointestinal stromal tumor (Approved on 2012/01/31)
	KIT positive
	Imatinib [RFS(%): 42 (imatinib for 12) 25 (imatinib for 36)]
	Gastrointestinal stromal tumor (Approved on 2009/02/10)
	KIT+
	Imatinib vs. Placebo [RFS(%): 21 vs. 28]
	Myelodysplastic myeloproliferative cancer (Approved on 2006/10/19)
	-
	Imatinib [MCyR(%): 39, CHR(%): 45]
[25]	Acute lymphocytic leukemia (Approved on 2006/10/19)
[]	Ph+
	Imatinib [MCyR(%): 35, CHR(%): 19]
	Dermatofibrosarcoma protuberans (Approved on 2006/10/19)
	Imatinib [ORR(%): 83.0]
	Systemic mastocytosis (Approved on 2006/10/19)
	Imatinib [CHR(%): 29]
	Chronic eosinophilic leukemia (Approved on 2006/10/19)
	-
	Imatinib [CHR(%): 61]
[26]	Chronic myeloid leukemia (Approved on 2003/05/20)
	Ph+
NCT00471497	Imatinib vs. Nilotinib [MMR(%): 22 vs. 44]
[27]	Chronic myeloid leukemia (Approved on 2003/04/18)
	-
NCT00333840	Imatinib vs. Interferon-α+ cytarabine [PFS(%): 81.2 vs. 60.6]
[28]	Gastrointestinal stromal tumor (Approved on 2002/02/01)
	-
NCT00009906	Imatinib [PFS(M): 18.9 (imatinib 400 mg)] 23.2 (imatinib 800 mg)]

D=day; W=week; M=month

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **6** of **17**

Project ID: C22-M001-03906 Report No.: AA-22-07878_ONC Date Reported: Jan 06, 2023

ACTOnco® + Report

ONGOING CLINICAL TRIALS

Trials were searched by applying filters: study status, patient's diagnosis, intervention, location and/or biomarker(s). Please visit https://clinicaltrials.gov to search and view for a complete list of open available and updated matched trials.

No trial has been found.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 7 of 17

Project ID: C22-M001-03906 Report No.: AA-22-07878 ONC Date Reported: Jan 06, 2023

ACTOnco® + Report

SUPPLEMENTARY INFORMATION OF TESTING RESULTS DETAILED INFORMATION OF VARIANTS WITH CLINICAL RELEVANCE

- Single Nucleotide and Small InDel Variants

Gene	Amino Acid Change	Exon	cDNA Change	Accession Number	COSMIC ID	Allele Frequency	Coverage
CTNNB1	T41A	3	c.121A>G	NM_001904	COSM5664	38.2%	1396

- Copy Number Alterations

Observed copy number (CN) for each evaluated position is shown on the y-axis. Regions referred to as amplification or deletion are shown in color. Regions without significant changes are represented in gray.

AA-22-07878

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 8 of 17

Project ID: C22-M001-03906 Report No.: AA-22-07878_ONC Date Reported: Jan 06, 2023

ACTOnco® + Report

OTHER DETECTED VARIANTS

Gene	Amino Acid Change	Exon	cDNA Change	Accession Number	COSMIC ID	Allele Frequency	Coverage
HSPA4	V56I	3	c.166G>A	NM_002154	-	38.0%	300
KMT2C	N4686S	54	c.14057A>G	NM_170606	-	49.1%	1710
MAP3K1	I1216T	14	c.3647T>C	NM_005921	-	50.4%	871
MITF	V13A	1	c.38T>C	NM_198159	-	49.2%	2231
MSH6	R1024W	4	c.3070C>T	NM_000179	-	51.7%	2419
NOTCH3	P995L	18	c.2984C>T	NM_000435	COSM1189919	51.0%	968
PMS1	T814A	11	c.2440A>G	NM_000534	-	48.8%	997
POLE	R1679C	38	c.5035C>T	NM_006231	-	51.1%	1889
POLE	G1535S	36	c.4603G>A	NM_006231	-	47.0%	549
RNF43	V627G	9	c.1880T>G	NM_017763	-	47.2%	1396

Note:

- This table enlists variants detected by the panel other than those with clinical relevance (reported in Testing Result section).

The clinical impact of a genetic variant is determined according to ACT Genomics in-house clinical knowledge database. A negative result does not necessarily indicate absence of biological effect on the tumor. Some variants listed here may possibly have preclinical data or may show potential clinical relevance in the future.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **9** of **17**

Project ID: C22-M001-03906 Report No.: AA-22-07878_ONC Date Reported: Jan 06, 2023

ACTOnco® + Report

TEST DETAILS

SPECIMEN RECEIVED AND PATHOLOGY REVIEW

Collection date: Nov 17, 2022

Facility retrieved: 臺北榮總

H&E-stained section No.: S11147716C

- Collection site: Mesentery

Examined by: Dr. Yeh-Han Wang

- 1. The percentage of viable tumor cells in total cells in the whole slide (%): 90%
- 2. The percentage of viable tumor cells in total cells in the encircled areas in the whole slide (%): 90%
- 3. The percentage of necrotic cells (including necrotic tumor cells) in total cells in the whole slide (%): 0%
- 4. The percentage of necrotic cells (including necrotic tumor cells) in total cells in the encircled areas in the whole slide (%): 0%
- 5. Additional comment: NA
- Manual macrodissection: Not performed
- The outline highlights the area of malignant neoplasm annotated by a pathologist.

RUN QC

Panel: ACTOnco®+

DNA test

- Mean Depth: 1224x

Target Base Coverage at 100x: 96%

RNA test

Average unique RNA Start Sites per control GSP2: 132

LIMITATIONS

- This test does not provide information of variant causality and does not detect variants in non-coding regions that could affect gene expression. This report does not report polymorphisms and we do not classify whether a mutation is germline or somatic.
 Variants identified by this assay were not subject to validation by Sanger or other technologies.
- 2. The possibility cannot be excluded that certain pathogenic variants detected by other sequencing tools may not be reported in the test because of technical limitation of bioinformatics algorithm or the NGS sequencing platform, e.g. low coverage.
- 3. This test has been designed to detect fusions in 13 genes sequenced. Therefore, fusion in genes not covered by this test would not be reported. For novel fusions detected in this test, Sanger sequencing confirmation is recommended if residue specimen is available.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 10 of 17

陳昭璋

Project ID: C22-M001-03906 Report No.: AA-22-07878 ONC

Date Reported: Jan 06, 2023

NEXT-GENERATION SEQUENCING (NGS) METHODS

DNA test

Extracted genomic DNA was amplified using primers targeting coding exons of analyzed genes and subjected to library construction. Barcoded libraries were subsequently conjugated with sequencing beads by emulsion PCR and enriched using Ion Chef system. Sequencing was performed according to Ion Proton or Ion S5 sequencer protocol (Thermo Fisher Scientific).

Raw reads generated by the sequencer were mapped to the hg19 reference genome using the Ion Torrent Suite. Coverage depth was calculated using Torrent Coverage Analysis plug-in. Single nucleotide variants (SNVs) and short insertions/deletions (InDels) were identified using the Torrent Variant Caller plug-in. VEP (Variant Effect Predictor) was used to annotate every variant using databases from Clinvar, COSMIC and Genome Aggregation database. Variants with coverage ≥ 20, allele frequency ≥ 5% and actionable variants with allele frequency ≥ 2% were retained. This test provides uniform coverage of the targeted regions, enabling target base coverage at 100x ≥ 85% with a mean coverage ≥ 500x.

Variants reported in Genome Aggregation database with > 1% minor allele frequency (MAF) were considered as polymorphisms. ACT Genomics in-house database was used to determine technical errors. Clinically actionable and biologically significant variants were determined based on the published medical literature.

The copy number alterations (CNAs) were predicted as described below:

Amplicons with read counts in the lowest 5th percentile of all detectable amplicons and amplicons with a coefficient of variation ≥ 0.3 were removed. The remaining amplicons were normalized to correct the pool design bias. ONCOCNV (an established method for calculating copy number aberrations in amplicon sequencing data by Boeva et al., 2014) was applied for the normalization of total amplicon number, amplicon GC content, amplicon length, and technology-related biases, followed by segmenting the sample with a gene-aware model. The method was used as well for establishing the baseline of copy number variations.

Tumor mutational burden (TMB) was calculated by using the sequenced regions of ACTOnco®+ to estimate the number of somatic nonsynonymous mutations per megabase of all protein-coding genes (whole exome). The TMB calculation predicted somatic variants and applied a machine learning model with a cancer hotspot correction. TMB may be reported as "TMB-High", "TMB-Low" or "Cannot Be Determined". TMB-High corresponds to ≥ 7.5 mutations per megabase (Muts/Mb); TMB-Low corresponds to < 7.5 Muts/Mb. TMB is reported as "Cannot Be Determined" if the tumor purity of the sample is < 30%.

Classification of microsatellite instability (MSI) status is determined by a machine learning prediction algorithm. The change of a number of repeats of different lengths from a pooled microsatellite stable (MSS) baseline in > 400 genomic loci are used as the features for the algorithm. The final output of the results is either microsatellite Stable (MSS) or microsatellite instability high (MSI-H).

Extracted RNA was reverse-transcribed and subjected to library construction. Sequencing was performed according to Ion Proton or Ion S5 sequencer protocol (Thermo Fisher Scientific). To ensure sequencing quality for fusion variant analysis, the average unique RNA Start Sites (SS) per control Gene Specific Primer 2 (GSP 2) should be ≥ 10.

The fusion analysis pipeline aligned sequenced reads to the human reference genome, identified regions that map to noncontiguous regions of the genome, applied filters to exclude probable false-positive events and, annotated previously characterized fusion events according to Quiver Gene Fusion Database, a curated database owned and maintained by ArcherDX. In general, samples with detectable fusions need to meet the following criteria: (1) Number of unique start sites (SS) for the GSP2 ≥ 3; (2) Number of supporting reads spanning the fusion junction ≥ 5; (3) Percentage of supporting reads spanning the fusion junction ≥ 10%; (4) Fusions annotated in Quiver Gene Fusion Database.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 11 of 17

Project ID: C22-M001-03906 Report No.: AA-22-07878 ONC

Date Reported: Jan 06, 2023

ACTOnco® + Report

DATABASE USED

- Reference genome: Human genome sequence hg19
- COSMIC v.92
- Genome Aggregation database r2.1.1
- ClinVar (version 20210404)
- ACT Genomics in-house database
- Quiver Gene Fusion Database version 5.1.18

Variant Analysis:

醫檢師黃靖婷 博士 Ching-Ting Huang Ph.D. 檢字第 016511 號

CTHUANG

Sign Off

解剖病理專科醫師王業翰 Yeh-Han Wang M.D. 病解字第 000545 號

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 12 of 17

Project ID: C22-M001-03906 Report No.: AA-22-07878_ONC Date Reported: Jan 06, 2023

ACTOnco® + Report

GENE LIST SNV & CNV

ABCB1*	ABCC2*	ABCG2*	ABL1	ABL2	ADAMTS1	ADAMTS13	ADAMTS15	ADAMTS16	ADAMTS18	ADAMTS6	ADAMTS9
ADAMTSL1	ADGRA2	ADH1C*	AKT1	AKT2	AKT3	ALDH1A1*	ALK	AMER1	APC	AR	ARAF
ARID1A	ARID1B	ARID2	ASXL1	ATM	ATR	ATRX	AURKA	AURKB	AXIN1	AXIN2	AXL
B2M	BAP1	BARD1	BCL10	BCL2*	BCL2L1	BCL2L2*	BCL6	BCL9	BCOR	BIRC2	BIRC3
BLM	BMPR1A	BRAF	BRCA1	BRCA2	BRD4	BRIP1	BTG1	BTG2*	ВТК	BUB1B	CALR
CANX	CARD11	CASP8	CBFB	CBL	CCNA1	CCNA	CCNB1	CCNB2	CCNB3	CCND1	CCND2
CCND3	CCNE1	CCNE2	CCNH	CD19	CD274	CD58	CD70*	CD79A	CD79B	CDC73	CDH1
CDK1	CDK12	CDK2	CDK4	CDK5	CDK6	CDK7	CDK8	CDK9	CDKN1A	CDKN1B	CDKN2A
CDKN2B	CDKN2C	CEBPA*	CHEK1	CHEK2	CIC	CREBBP	CRKL	CRLF2	CSF1R	CTCF	CTLA4
CTNNA1	CTNNB1	CUL3	CYLD	CYP1A1*	CYP2B6*	CYP2C19*	CYP2C8*	CYP2D6	CYP2E1*	CYP3A4*	CYP3A5*
DAXX	DCUN1D1	DDR2	DICER1	DNMT3A	DOT1L	DPYD	DTX1	E2F3	EGFR	EP300	EPCAM
EPHA2	ЕРНА3	EPHA5	EPHA7	EPHB1	ERBB2	ERBB3	ERBB4	ERCC1	ERCC2	ERCC3	ERCC4
ERCC5	ERG	ESR1	ESR2	ETV1	ETV4	EZH2	FAM46C	FANCA	FANCC	FANCD2	FANCE
FANCF	FANCG	FANCL	FAS	FAT1	FBXW7	FCGR2B	FGF1*	FGF10	FGF14	FGF19*	FGF23
FGF3	FGF4*	FGF6	FGFR1	FGFR2	FGFR3	FGFR4	FH	FLCN	FLT1	FLT3	FLT4
FOXL2*	FOXP1	FRG1	FUBP1	GATA1	GATA2	GATA3	GNA11	GNA13	GNAQ	GNAS	GREM1
GRIN2A	GSK3B	GSTP1*	GSTT1*	HGF	HIF1A	HIST1H1C*	HIST1H1E*	HNF1A	HR	HRAS*	HSP90AA
HSP90AB1	HSPA4	HSPA5	IDH1	IDH2	IFNL3*	IGF1	IGF1R	IGF2	IKBKB	IKBKE	IKZF1
IL6	IL7R	INPP4B	INSR	IRF4	IRS1	IRS2*	JAK1	JAK2	JAK3	JUN*	KAT6A
KDM5A	KDM5C	KDM6A	KDR	KEAP1	KIT	KMT2A	КМТ2С	KMT2D	KRAS	LCK	LIG1
LIG3	LMO1	LRP1B	LYN	MALT1	MAP2K1	MAP2K2	MAP2K4	MAP3K1	МАРЗК7	MAPK1	МАРК3
MAX	MCL1	MDM2	MDM4	MED12	MEF2B	MEN1	MET	MITF	MLH1	MPL	MRE11
MSH2	MSH6	MTHFR*	MTOR	MUC16	MUC4	MUC6	МИТҮН	MYC	MYCL	MYCN	MYD88
NAT2*	NBN	NEFH	NF1	NF2	NFE2L2	NFKB1	NFKBIA	NKX2-1*	NOTCH1	NOTCH2	<i>NOTCH3</i>
NOTCH4	NPM1	NQ01*	NRAS	NSD1	NTRK1	NTRK2	NTRK3	PAK3	PALB2	PARP1	PAX5
PAX8	PBRM1	PDCD1	PDCD1LG2	PDGFRA	PDGFRB	PDIA3	PGF	PHOX2B*	PIK3C2B	PIK3C2G	РІКЗСЗ
PIK3CA	PIK3CB	PIK3CD	PIK3CG	PIK3R1	PIK3R2	PIK3R3	PIM1	PMS1	PMS2	POLB	POLD1
POLE	PPARG	PPP2R1A	PRDM1	PRKAR1A	PRKCA	PRKCB	PRKCG	PRKCI	PRKCQ	PRKDC	PRKN
PSMB8	PSMB9	PSME1	PSME2	PSME3	PTCH1	PTEN	PTGS2	PTPN11	PTPRD	PTPRT	RAC1
RAD50	RAD51	RAD51B	RAD51C	RAD51D	RAD52	RAD54L	RAF1	RARA	RB1	RBM10	RECQL4
REL	RET	RHOA	RICTOR	RNF43	ROS1	RPPH1	RPTOR	RUNX1	RUNX1T1	RXRA	SDHA
SDHB	SDHC	SDHD	SERPINB3	SERPINB4	SETD2	SF3B1	SGK1	SH2D1A*	SLC19A1*	SLC22A2*	SLCO1B1*
SLCO1B3*	SMAD2	SMAD3	SMAD4	SMARCA4	SMARCB1	SMO	SOCS1*	SOX2*	SOX9	SPEN	SPOP
SRC	STAG2	STAT3	STK11	SUFU	SYK	SYNE1	TAF1	TAP1	TAP2	TAPBP	TBX3
TEK	TERT	TET1	TET2	TGFBR2	TMSB4X*	TNF	TNFAIP3	TNFRSF14	TNFSF11	TOP1	TP53
TPMT*	TSC1	TSC2	TSHR	TYMS	U2AF1	UBE2A*	UBE2K	UBR5	UGT1A1*	USH2A	VDR*
VEGFA	VEGFB	VHL	WT1	XIAP	XPO1	XRCC2	ZNF217				

^{*}Analysis of copy number alterations NOT available.

FUSION

ALK	BRAF	ECED	FGFR1	FGFR2	FGFR3	MET	NRG1	NTRK1	NTRK2	NTRK3	RET	ROS1		
		EGFK												

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 13 of 17

Project ID: C22-M001-03906 Report No.: AA-22-07878_ONC Date Reported: Jan 06, 2023

ACTOnco® + Report

APPENDIX

POSSIBLE THERAPEUTIC IMPLICATIONS FOR HETEROZYGOUS DELETION

Not Applicable.

SIGNALING PATHWAYS AND MOLECULAR-TARGETED AGENTS

Not Applicable.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **14** of **17**

Project ID: C22-M001-03906 Report No.: AA-22-07878_ONC Date Reported: Jan 06, 2023

ACTOnco® + Report

DISCLAIMER

法律聲明

本檢驗報告僅提供專業醫療參考,結果需經專業醫師解釋及判讀。基因突變資訊非必具備藥物或治療有效性指標,反之亦然。本檢驗報 告提供之用藥指引不聲明或保證其臨床有效性,反之亦然。本基因檢測方法係由本公司研究開發,已經過有效性測試。

本檢驗報告非經本公司許可,不得私自變造、塗改,或以任何方式作為廣告及其他宣傳之用途。

本公司於提供檢驗報告後,即已完成本次契約義務,後續之報告解釋、判讀及用藥、治療,應自行尋求相關專業醫師協助,若需將報告移件其他醫師,本人應取得該醫師同意並填寫移件申請書,主動告知行動基因,行動基因僅能配合該醫師意願與時間提供醫師解說。

醫療決策需由醫師決定

任何治療與用藥需經由醫師在考慮病患所有健康狀況相關資訊包含健檢、其他檢測報告和病患意願後,依照該地區醫療照護標準由醫師獨立判斷。醫師不應僅依據單一報告結果(例如本檢測或本報告書內容)做決策。

基因突變與用藥資訊並非依照有效性排序

本報告中列出之生物標記變異與藥物資訊並非依照潛在治療有效性排序。

證據等級

藥物潛在臨床效益(或缺乏潛在臨床效益)的實證證據是依據至少一篇臨床療效個案報告或臨床前試驗做為評估。本公司盡力提供適時及 準確之資料,但由於醫學科技之發展日新月異,本公司不就本報告提供的資料是否為準確、適宜或最新作保證。

責任

本檢驗報告僅提供專業醫療參考,本公司及其員工不對任何由使用本報告之內容引起的直接、間接、特殊、連帶或衍生的損失或損害承擔責任。

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 15 of 17

Project ID: C22-M001-03906 Report No.: AA-22-07878_ONC Date Reported: Jan 06, 2023

ACTOnco® + Report

REFERENCE

- 1. PMID: 22682243; 2012, Cell;149(6):1192-205 Wnt/ β -catenin signaling and disease.
- 2. PMID: 22617422; 2012, EMBO J;31(12):2714-36 The many faces and functions of β -catenin.
- PMID: 10201372; 1999, Nature;398(6726):422-6
 Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells.
- PMID: 9727977; 1998, Science; 281(5382):1509-12
 Identification of c-MYC as a target of the APC pathway.
- PMID: 23788652; 2013, Genome Res;23(9):1422-33
 Whole-genome sequencing identifies recurrent mutations in hepatocellular carcinoma.
- PMID: 22634756; 2012, Nat Genet;44(7):760-4
 Whole-genome sequencing of liver cancers identifies etiological influences on mutation patterns and recurrent mutations in chromatin regulators
- PMID: 23636398; 2013, Nature;497(7447):67-73
 Integrated genomic characterization of endometrial carcinoma
- PMID: 22810696; 2012, Nature;487(7407):330-7
 Comprehensive molecular characterization of human colon and rectal cancer.
- PMID: 25079552; 2014, Nature;511(7511):543-50
 Comprehensive molecular profiling of lung adenocarcinoma.
- PMID: 22980975; 2012, Cell;150(6):1107-20
 Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing.
- PMID: 17187432; 2007, Hepatology;45(1):42-52
 Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets.
- PMID: 17487939; 2007, J Pathol;212(3):345-52
 Cholestasis is a marker for hepatocellular carcinomas displaying beta-catenin mutations.
- PMID: 19101982; 2009, Hepatology;49(3):821-31
 Unique phenotype of hepatocellular cancers with exon-3 mutations in beta-catenin gene.
- PMID: 26171210; 2015, Mol Clin Oncol;3(4):936-940
 β-catenin mutation is correlated with a favorable prognosis in patients with hepatocellular carcinoma.
- PMID: 11957146; 2002, Hum Pathol;33(2):206-12
 CTNNB1 mutations and beta-catenin expression in endometrial carcinomas.
- PMID: 11955436; 2002, Cell;108(6):837-47
 Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism.
- PMID: 10698519; 2000, Oncogene;19(4):498-504
 Activation of beta-catenin in epithelial and mesenchymal hepatoblastomas.
- PMID: 12200448; 2002, J Biol Chem;277(44):42386-93
 Transcriptional activation of interleukin-8 by beta-catenin-Tcf4.
- PMID: 26861905; 2016, Ann Surg Oncol;23(6):1924-7
 Correlation of CTNNB1 Mutation Status with Progression Arrest Rate in RECIST Progressive Desmoid-Type Fibromatosis Treated with

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 16 of 17

Project ID: C22-M001-03906 Report No.: AA-22-07878_ONC Date Reported: Jan 06, 2023

ACTOnco® + Report

Imatinib: Translational Research Results from a Phase 2 Study of the German Interdisciplinary Sarcoma Group (GISG-01).

- 20. PMID: 27016228; 2016, Gynecol Oncol;141(1):43-8 Tumor mutational analysis of GOG248, a phase II study of temsirolimus or temsirolimus and alternating megestrol acetate and tamoxifen for advanced endometrial cancer (EC): An NRG Oncology/Gynecologic Oncology Group study.
- PMID: 25624430; 2015, J Clin Oncol;33(8):930-6
 Phase II study of everolimus and letrozole in patients with recurrent endometrial carcinoma.
- PMID: 25214561; 2014, J Natl Cancer Inst;106(9):
 Clinical significance of CTNNB1 mutation and Wnt pathway activation in endometrioid endometrial carcinoma.
- 23. PMID: 33574948; 2021, Oncol Lett;21(3):209 Identification of AKT1/β-catenin mutations conferring cetuximab and chemotherapeutic drug resistance in colorectal cancer treatment.
- 24. PMID: 19805687; 2009, J Clin Oncol;27(31):5175-81 Improved early event-free survival with imatinib in Philadelphia chromosome-positive acute lymphoblastic leukemia: a children's oncology group study.
- 25. PMID: 12200353; 2002, Blood;100(6):1965-71
 A phase 2 study of imatinib in patients with relapsed or refractory Philadelphia chromosome-positive acute lymphoid leukemias.
- 26. PMID: 21856226; 2011, Lancet Oncol;12(9):841-51
 Nilotinib versus imatinib for the treatment of patients with newly diagnosed chronic phase, Philadelphia chromosome-positive, chronic myeloid leukaemia: 24-month minimum follow-up of the phase 3 randomised ENESTnd trial.
- 27. PMID: 18256322; 2008, Blood;111(8):4022-8
 Imatinib pharmacokinetics and its correlation with response and safety in chronic-phase chronic myeloid leukemia: a subanalysis of the IRIS study.
- PMID: 28196207; 2017, JAMA Oncol;3(7):944-952
 Correlation of Long-term Results of Imatinib in Advanced Gastrointestinal Stromal Tumors With Next-Generation Sequencing Results: Analysis of Phase 3 SWOG Intergroup Trial S0033.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 17 of 17