Erweiterte Higgs Sektoren

Seminarvortrag - Emilia Welte

8. Juli 2021

Gliederung

Wiederholung SM

Wiederholung Eichbosonensektor Wiederholung Fermionsektor Wiederholung Higgssektor

Erweiterung des SM Higgs Sektors am Beispiel des 2HDM

Goldsone Bosonen
Eichbosonen Massenerzeugung
Fermionen Massenerzeugung und FCNCs

Zu klärende Fragen

- ► Was sind erweiterte Higgs Sektoren ?
- ▶ Warum braucht man erweiterte Higgs Sektoren ?

SM Wiederholung- Eichsektor

- Dynamik der Eichbosonen steckt in Form von Feldstärketensoren in der Lagrangedichte \(\mathcal{L}_{Eich} \)
- Die Wechselwirkung der Eichbosonen mit Fermionen/Skalaren steht in der kovarianten Ableitung \mathcal{D}_{μ}

SM Eichstruktur

$$SU(3)_C \times SU(2)_L \times U(1)_Y$$

► Massenterme: quadratische Ordnung der Felder → ungebrochene Eichsymmetrie führt zu masselosen Eichbosonen

SM Wiederholung - Fermionsektor

➤ SM: 3 Generationen von händigen Fermionen (Händigkeit besitzt jeweils unterschiedliche Transformationseigenschaften)

Allg. Fermionen Feld Lagrange

$$\mathscr{L}_{\mathsf{Fermion}} = \overline{\Psi} i \partial_{\mu} \gamma^{\mu} \Psi - \mathsf{m} \overline{\Psi} \Psi$$

erster Term: kinetischen Anteil

zweiter Term: Massenanteil, γ^{μ} : Dirac-Matrizen¹

¹Logan, "TASI 2013 lectures on Higgs physics within and beyond the Standard Model".

- Nutzung der Projektionsoperatoren für links- und rechtshändige Fermionen $(1 = P_R^2 + P_L^2)$
 - ightarrow Trennung händiger Fermionen im kinetischen Term (bleibt eichinvariant)

kinetischer Anteil

$$\overline{\Psi} i \partial_{\mu} \gamma^{\mu} \Psi \rightarrow \overline{\Psi}_{L} i \partial_{\mu} \gamma^{\mu} \Psi_{L} + \overline{\Psi}_{R} i \partial_{\mu} \gamma^{\mu} \Psi_{R}$$

- ▶ Analoge Vorgehensweise→ Mischen von händigen Zuständ
 - \rightarrow Mischen von händigen Zuständen im Massenterm (Eichinvarianz verletzt)

Massen Term

$$m\overline{\Psi}\Psi \rightarrow m\overline{\Psi}_R\Psi_I + m\overline{\Psi}_I\Psi_R$$

Zusammenfassung

- ▶ Der Eichbosonen Massenterm ist nicht Eichinvariant
 → Ohne Symmetriebrechung sind Eichbosonen masselos
- ▶ Der Fermion Massenterm ist nicht Eichinvariant
 - $\rightarrow \mbox{Ohne Symmetriebrechung sind Fermionen masselos}$

- Neuer Bestandteil der experimentell bestätigten Bosonen-/Fermionenmassen erklärt
 → Einführung eines skalaren SU(2)_L-Dublett Feldes was durch Higgs Mechanismus zu spontaner SU(2)_L × U(1)_Y
 Symmetriebrechung führt
- ▶ Dublett hat Hypercharge $Y = \frac{1}{2}$ und ist ein Farbsinglett

Higgs Dublett

$$\Phi = \begin{pmatrix} \Phi^+ \\ \Phi^0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} \Phi_1 + i\Phi_2 \\ \Phi_3 + i\Phi_4 \end{pmatrix}$$

 Φ_j : normierte reelle Felder mit $j \in [1, 4]$.²

 $^{^2}$ Logan, "TASI 2013 lectures on Higgs physics within and beyond the Standard Model".

SM Higgs Lagrangedichte

$$\mathscr{L}_{\Phi} = (\mathscr{D}_{\mu}\Phi)^{\dagger}(\mathscr{D}^{\mu}\Phi) - \mathsf{V}(\Phi) + \mathscr{L}_{\mathsf{Yukawa}}$$

Allgemeine Form eines Higgs Potentials könnte wie folgt aussehen³):

$$V(\Phi) = -\mu^2 \Phi^{\dagger} \Phi + \lambda (\Phi^{\dagger} \Phi)^2$$

- ▶ ist $-\mu^2$ < 0 und $\lambda > 0$ → Minimum des Potentials weg von $|\Phi| = 0 \rightarrow Vakuums-/Minimumsenergie nicht mehr invariant$ unter Eichsymmetrie → Eichsymmetrie ist spontan gebrochen
- sind beide größen positiv hat das Potential sein minimum bei $|\Phi| = 0 \rightarrow \text{elektroschwache Symmetrie ungebrochen}$
- ightharpoonup im Falle $\lambda < 0$ ist das Potential ungebunden und es gibt keinen stabilen Vakuumszustand

³Logan, "TASI 2013 lectures on Higgs physics within and beyond the Standard Model".

- Vakuumszustand muss im Potentialminimum liegen ightarrow Vakuumserwartungswert $v=\sqrt{rac{\mu^2}{\lambda}}$
- Wir definieren unsere Felder so, dass die Erwartungswerte wie folgt aussehen $\langle \Phi_3 \rangle = \nu$ und $\langle \Phi_1 \rangle = \langle \Phi_2 \rangle = \langle \Phi_4 \rangle = 0$
- ► Zusätzlich addieren wir zu Φ_3 ein Feld h welches einen verschwindenden Erwartungswert hat:

Diese Form des Potentials wollen wir nutzen, um sie in eine Form der Massen und Wechselwirkung des Higgsteilchens umzuschreiben:

Allgemeine Form der Massenmatrizen

$$\mathsf{V}(\Phi) = \left(egin{array}{c} \Phi_1 \ \Phi_2 \ \Phi_3 \ \Phi_4 \ \end{array}
ight)^\dagger \left(egin{array}{cccc} M_{11} & M_{12} & M_{13} & M_{14} \ M_{21} & M_{22} & M_{23} & M_{24} \ M_{31} & M_{32} & M_{33} & M_{34} \ M_{41} & M_{42} & M_{43} & M_{44} \ \end{array}
ight) \left(egin{array}{c} \Phi_1 \ \Phi_2 \ \Phi_3 \ \Phi_4 \ \end{array}
ight) + \mathsf{h.O.}$$

 Wir erhalten ausschließlich Massen für das Feld mit nichtverschwindendem Erwartungswert (in unserem Fall Φ₃)

SM Wiederholung - Eichbosonenmasse

Für die Eichbosonenmassen betrachten wir den kinetischen Term unseres Higgs-Dubletts

kinetischer Term des Higgs-Dubletts

$$\begin{split} &\mathcal{L} \supset (\mathscr{D}_{\mu}\Phi)^{\dagger}(\mathscr{D}^{\mu}\Phi) \\ &= \frac{1}{2}(\partial_{\mu}h)(\partial^{\mu}h) \\ &+ \frac{1}{8}\mathsf{g}^{2}(v+h)^{2}(\mathsf{W}_{\mu}^{1}-i\mathsf{W}_{\mu}^{2})(\mathsf{W}^{\mu1}+i\mathsf{W}^{\mu2}) \\ &+ \frac{1}{8}(v+h)^{2}(\mathsf{g}\mathsf{W}_{\mu}^{3}-\mathsf{g}'\mathscr{B}_{\mu})^{2} \end{split}$$

SM Wiederholung - Fermionenmasse

- ▶ Für die Fermionenmasse betrachten wir den Yukawa-Term
- Beispiel anhand der Quarks, um bei den Leptonen das Neutrinomassenproblem zu umgehen.
- Man verwende dabei eine unitäre Eichung gemäß $\Phi^{\dagger}Q_{L}=\left(0,\frac{v+h}{\sqrt{2}}\right)\left(\begin{array}{c}u_{L}\\d_{I}\end{array}\right)$

Yukawa Term

$$\mathscr{L}_{Yukawa}\supset -[y_d\overline{d_R}\Phi^{\dagger}Q_L+y_d^*\overline{Q_L}\Phi d_R]$$

► Damit erhalten wir für unser Beispiel (quadratischer Term gibt wieder Masse an⁴)

$$\mathscr{L}_{\mathsf{Yukawa}} \supset - rac{\mathsf{y_d} \, \mathsf{v}}{\sqrt{2}} \overline{\mathsf{d}} \mathsf{d} - rac{\mathsf{y_d}}{\sqrt{2}} \mathit{h} \overline{\mathsf{d}} \mathsf{d}$$

⁴Logan, "TASI 2013 lectures on Higgs physics within and beyond the Standard Model".

SM Wiederholung - Fermionenmasse

▶ Um die Masse des up Quarks zu bekommen, muss in unitärer Eichung die Kopplung mit diesem stattfinden können → Verwendung des konjugierten Higgs Skalars in unitärer Eichung

$$\tilde{\Phi} = \begin{pmatrix} \Phi^{0*} \\ -\Phi^{+*} \end{pmatrix} = \begin{pmatrix} \frac{v+h}{\sqrt{2}} \\ 0 \end{pmatrix}$$

 Vorgehensweise gilt für die einzelnen Generationen von Quarks, SM besitzt jedoch 3 von ihnen
 → Allgemeine Form des Yukawa Anteils (Nur für Quarks, entsprechend müsste für Leptonen ein Term addiert werden)

SM Wiederholung - Fermionenmasse

Quark-Yukawa-Term

$$\mathscr{L}_{\mathsf{Yukawa}}^{\mathsf{q}} = -\sum_{i=1}^{3} \sum_{j=1}^{3} [\mathsf{y}_{ij}^{\mathsf{u}} \overline{\mathsf{u}_{\mathsf{R}i}} \tilde{\Phi}^{\dagger} \mathsf{Q}_{\mathsf{L}j} + \mathsf{y}_{ij}^{\mathsf{d}} \overline{\mathsf{d}_{\mathsf{R}i}} \Phi^{\dagger} \mathsf{Q}_{\mathsf{L}j}] + h.c.$$

 $\mathbf{y}_{ij}^{\mathbf{u}}$: Yukawa Matrix, $\mathbf{Q}_{\mathbf{L}\mathbf{j}}$, $\mathbf{u}_{\mathbf{R}\mathbf{i}}$ und $\mathbf{d}_{\mathbf{R}\mathbf{i}}$ steht für die drei Generationen wobei $j \in [1,3]$.

 Allgemeiner Quark-Yukawa-Anteil wollen wir wieder in eine Form der Massenmatrizen umschreiben

Motivation zu Erweiterten Higgs-Sektoren

- Wir haben in der Theorie alle Massen berechnet
- Aus Lagrange konnten wir auch alle theoretisch möglichen WW ablesen
- Mit diesen Größen können nun Zerfallsbreiten,
 Wirkungsquerschnitte und Verzweigungsverhältnisse berechnet werden
- ▶ Gibt es nun experimentelle Abweichungen von den Vorhersagen → Erweiterung
- ightharpoonup Erweiterung, die Randbedingung und Symmetrie des SM gehorcht, aber zusätzliche Zerfälle, WW erlauben würde ightharpoonup Bestätigung durch Experiment
- viele Modelle die offene Fragen des Sm erklären besitzen einen erweiterten Higgs-Sektor

Erweiterung des SM Higgs Sektors am Beispiel des 2HDM

- ► Eigenschaften die das SM von Grund auf hat, aber in Erweiterung nicht fehlen dürfen: minimale Flavor Verletzung sowie eine händige SU(2)_L Symmetrie
- Konsequenz der fehlenden minimalen Flavor Verletzung wird anhand vom 2HDM gezeigt

Higgs Dupletts des 2HDM Modells

$$\Phi_1 = \left(\begin{array}{c} \Phi_1^+ \\ \Phi_1^0 \end{array}\right) = \left(\begin{array}{c} \Phi_1^+ \\ \frac{h_1 + v_1 + i a_1}{\sqrt{2}} \end{array}\right); \Phi_2 = \left(\begin{array}{c} \Phi_2^+ \\ \frac{h_2 + v_2 + i a_2}{\sqrt{2}} \end{array}\right)$$

Die geladenen Komponenten entsprechen zwei komplexen Skalaren, zusätzlich gibt es zwei reelle CP-gerade Skalare h_1, h_2 sowie zwei CP-ungerade Skalare a_1, a_2 ⁵

 $^{^5}$ Altenkamp, Dittmaier und Rzehak, "Renormalization schemes for the Two-Higgs-Doublet Model and applications to h \rightarrow WW/ZZ \rightarrow 4 fermions". \equiv \sim 9.00

2HDM - Finde Goldstone-Bosonen

Angenommen unser Higgs-Potential hat folgende Form

$$V = m_{11}^{2} \Phi_{1}^{\dagger} \Phi_{1} + m_{22}^{2} \Phi_{2}^{\dagger} \Phi_{2} - m_{12}^{2} (\Phi_{1}^{\dagger} \Phi_{2} + \Phi_{1}^{\dagger} \Phi_{2})$$

$$+ \frac{1}{2} \lambda_{1} (\Phi_{1}^{\dagger} \Phi_{1})^{2} + \frac{1}{2} \lambda_{2} (\Phi_{2}^{\dagger} \Phi_{2})^{2} + \lambda_{3} (\Phi_{1}^{\dagger} \Phi_{1}) (\Phi_{2}^{\dagger} \Phi_{2})$$

$$+ \lambda_{4} (\Phi_{1}^{\dagger} \Phi_{2}) (\Phi_{2}^{\dagger} \Phi_{1}) + \frac{1}{2} \lambda_{5} [(\Phi_{1}^{\dagger} \Phi_{2})^{2} + (\Phi_{2}^{\dagger} \Phi_{1})^{2}]$$

 Schreibe Potential in voller Form aus um Wechselwirkungsterme und Massenmatrizen identifizieren zu können

2HDM - Finde Goldstone-Bosonen

Bringe Potential in Form der allgemeinen Massenmatrizen

Massenmatrizen Form

$$\begin{split} \mathsf{V} &= \left(\begin{array}{c} \Phi_{1}^{+} \\ \Phi_{2}^{+} \end{array} \right)^{\dagger} \left(\begin{array}{c} M_{11,\phi} & M_{12,\Phi} \\ M_{21,\phi} & M_{22,\Phi} \end{array} \right) \left(\begin{array}{c} \Phi_{1}^{+} \\ \Phi_{2}^{+} \end{array} \right) \\ &+ \frac{1}{2} \left(\begin{array}{c} a_{1} \\ a_{2} \end{array} \right)^{\dagger} \left(\begin{array}{c} M_{11,a} & M_{12,a} \\ M_{21,a} & M_{22,a} \end{array} \right) \left(\begin{array}{c} a_{1} \\ a_{2} \end{array} \right) \\ &+ \frac{1}{2} \left(\begin{array}{c} h_{1} \\ h_{2} \end{array} \right)^{\dagger} \left(\begin{array}{c} M_{11,h} & M_{12,h} \\ M_{21,h} & M_{22,h} \end{array} \right) \left(\begin{array}{c} h_{1} \\ h_{2} \end{array} \right) \\ &+ \dots \end{split}$$

2HDM - Finde Goldstone-Bosonen

 Diagonalisierung der Massenmatrizen liefert Massenquadrate und Transformationsmatrix um Masseneigenzustände zu erhalten

2HDM - Eichboson Massenerzeugung

W und Z Bosonen erhalten Massen durch beide Higgs-Dupletts im kinetischen Term des Higgs-Sektors

kinetischer Term des Higgs-Sektors

$$\begin{split} \mathscr{L}_{kin} \supset & (\mathscr{D}_{\mu} \Phi_{1})^{\dagger} (\mathscr{D}^{\mu} \Phi_{1}) + (\mathscr{D}_{\mu} \Phi_{2})^{\dagger} (\mathscr{D}^{\mu} \Phi_{2}) \\ & = \frac{1}{2} (\partial_{\mu} h_{1})^{\dagger} (\partial^{\mu} h_{1}) + \frac{1}{2} (\partial_{\mu} h_{2})^{\dagger} (\partial^{\mu} h_{2}) \\ & + \frac{1}{4} g^{2} [(v_{1} + h_{1})^{2} + (v_{2} + h_{2})^{2}] W_{\mu}^{+} W^{-\mu} \\ & + \frac{1}{8} (g^{2} + g'^{2}) [(v_{1} + h_{1})^{2} + (v_{2} + h_{2})^{2}] Z_{\mu} Z^{\mu} \end{split}$$

2HDM-Fermion-Massenerzeugung

Yukawa Kopplungen

$$\begin{split} \mathscr{L}_{\text{Yukawa}}^{\text{I,q}} &= -\sum_{i=1}^{3}\sum_{j=1}^{3} [y_{ij}^{\text{u1}} \overline{u_{\text{Ri}}} \tilde{\Phi_{1}}^{\dagger} Q_{\text{Lj}} + y_{ij}^{\text{d1}} \overline{d_{\text{Ri}}} \Phi_{1}^{\dagger} Q_{\text{Lj}} + y_{ij}^{\text{l1}} \overline{e_{\text{Ri}}} \Phi_{1}^{\dagger} L_{\text{Lj}}] + \textit{h.c.} \\ &- \sum_{i=1}^{3}\sum_{j=1}^{3} [y_{ij}^{\text{u2}} \overline{u_{\text{Ri}}} \tilde{\Phi_{2}}^{\dagger} Q_{\text{Lj}} + y_{ij}^{\text{d2}} \overline{d_{\text{Ri}}} \Phi_{2}^{\dagger} Q_{\text{Lj}} + y_{ij}^{\text{l2}} \overline{e_{\text{Ri}}} \Phi_{2}^{\dagger} L_{\text{Lj}}] + \textit{h.c.} \end{split}$$

2HDM-Fermion-Massenerzeugung

Wir haben jetzt 6 komplexe Yukawa-Matrizen und nicht mehr 3 wie im SM

Massenmatrizen-Quarks

$$\begin{split} \mathscr{L}_{\text{Yukawa}}^{\text{I,q}} \supset \mathscr{L}_{\text{Yukawa}}^{\text{down}} &= - \left(y_{ij}^{\text{d1}} \Phi_{1}^{\dagger} + y_{ij}^{\text{d2}} \Phi_{2}^{\dagger} \right) \overline{d_{\text{Ri}}} Q_{\text{Lj}} + \textit{h.c.} \\ &\rightarrow - \left(y_{ij}^{\text{d1}} \frac{\textit{v}_{1}}{\sqrt{2}} + y_{ij}^{\text{d2}} \frac{\textit{v}_{2}}{\sqrt{2}} \right) \overline{d_{\text{Ri}}} d_{\text{Lj}} + \textit{h.c.} \end{split}$$

► Man kann wie im SM die down-Typ-Massenmatrix direkt ablesen und diagonalisieren, aber der Unterschied ist jetzt, dass die Diagonalisierung der Massenmatrix im Allgemeinen nicht mehr die Yukawa Matrizen diagonalisiert

2HDM -Fermion Massenerzeugung

- Warum ist das ein Problem?
- Es gibt zwei Lösungsansätze um die FCNCs im 2HDM zu verhindern in dem man minimale Flavor Verletzung wiedereinführt
- Natürliche Flavor Erhaltung
- Yukawa Ausgleich

Zusammenfassung

- Erweiterte Higgs Sektoren können sowohl aus experimenteller als auch aus theoretischer Sicht sinnvoll sein
- ▶ Bei Erweiterungen sind Randbedingungen durch experimentelle Erkenntnisse gegeben

Quellen

Altenkamp, Lukas, Stefan Dittmaier und Heidi Rzehak. "Renormalization schemes for the Two-Higgs-Doublet Model and applications to h → WW/ZZ → 4 fermions". In: Journal of High Energy Physics 2017.9 (09/2017). DOI: 10.1007/jhep09(2017)134. URL: https://doi.org/10.1007/2Fjhep09%282017%29134.

Englert, F. und R. Brout. "Broken Symmetry and the Mass of Gauge Vector Mesons". In: Phys. Rev. Lett. 13 (1964). Hrsg. von J. C. Taylor, S. 321–323. DOI: 10.1103/PhysRevLett.13.321.

Gunion, John F. "Extended Higgs Sectors". In: (2002). eprint: hep-ph/0212150. URL: https://arxiv.org/pdf/hep-ph/0212150.pdf.

Gupta, Rick S., Heidi Rzehak und James D. Wells. "How well do we need to measure Higgs boson couplings?" In: Physical Review D 86.9 (11/2012). DOI: 10.1103/physrevd.86.095001. URL: https://doi.org/10.1103%2Fphysrevd.86.095001.

Guralnik, G. S., C. R. Hagen und T. W. B. Kibble. "Global Conservation Laws and Massless Particles". In: Phys. Rev. Lett. 13 (1964). Hrsg. von J. C. Taylor, S. 585–587. DOI: 10.1103/PhysRevLett.13.585.

Higgs, Peter W. "Broken Symmetries and the Masses of Gauge Bosons". In: Phys. Rev. Lett. 13 (1964). Hrsg. von J. C. Taylor, S. 508–509. DOI: 10.1103/PhysRevLett.13.508.

Isidori, Gino und David M. Straub. "Minimal flavour violation and beyond". In: The European Physical Journal C 72.8 (08/2012). DOI: 10.1140/epjc/s10052-012-2103-1. URL: https://doi.org/10.1140%2Fepjc%2Fs10052-012-2103-1.

Lee, T. D. "A Theory of Spontaneous T Violation". In: Phys. Rev. D 8 (1973). Hrsg. von G. Feinberg, S. 1226–1239. DOI: 10.1103/PhysRevD.8.1226.

Logan, Heather E. "TASI 2013 lectures on Higgs physics within and beyond the Standard Model". In: (06/2014). eprint: 1406.1786. URL: https://arxiv.org/pdf/1406.1786.pdf.

Steggemann, Jan. "Extended Scalar Sectors". In: Annual Review of Nuclear and Particle Science 70.1 (10/2020), S. 197-223. DOI: 10.1146/annurev-nucl-032620-043846. URL: https://doi.org/10.1146%2Fannurev-nucl-032620-043846.

