

A Study of the Kinematics and Dynamics Associated with Mesoscale Snowbands in a Midwest United States Snowstorm on 5 February 2020

Charles N. Helms, Gerald M. Heymsfield,
and Stephen D. Nicholls

NASA Goddard Space Flight Center

14 December 2021

Synoptic Overview

- WPC-analyzed stationary front over SE US
- Large precipitation shield over Midwest US
 - Target for NASA IMPACTS science flight

NASA IMPACTS Field Campaign

See Lynn McMurdie's talk earlier in this session (A23A-02)

- Ongoing field campaign focused on observing snowstorms over the Midwest and Northeast United States
- Platforms:
 - Ground assets (inc. radar, sfc obs, radiosondes)
 - P-3: Midlevel aircraft with in-situ instruments
 - ER-2: High altitude aircraft with remote sensing instruments, including several radars
 - EXRAD (X), HIWRAP (Ku/Ka), CRS (W)

ER-2 Radar Data

- EXRAD
 - ER-2 X-band radar with nadir and conically-scanning beams
 - 3D reflectivity field and horizontal wind retrievals
- VAD wind and deformation retrievals
 - Helms et al. (2020)
 - Combines data from several scans to compute horizontal wind and deformation

Helms, C. N., M. L. W. McLinden, G. M. Heymsfield, and S. R. Guimond, 2020: Reducing errors in velocity-azimuth display (VAD) wind and deformation retrievals from airborne Doppler radars in convective environments. J. Atmos. Ocean Technol., 37, 2251–2266. <https://doi.org/10.1175/JTECH-D-20-0034.1>

- Specifically, the synthetic multiscan data selection strategy

Radar Mosaic – 2028 UTC 5 Feb

- P3 and ER-2 arrive
- Convective precip. over southern Illinois
- Banding structures over Illinois, Indiana, and Michigan

Thanks to Stacy Brodzik for providing NWS radar mosaic data

Feature of Interest

- Leading end of a banding feature

What do these features look like?

A Second Pass

NEXRAD Mosaic and ER2 position :: 2118 UTC 5 February 2020

- Second leg of flight intersects the same band

A Second Pass

NEXRAD Mosaic and ER2 position :: 2123 UTC 5 February 2020

- Second leg of flight intersects the same band

A Second Pass

NEXRAD Mosaic and ER2 position :: 2128 UTC 5 February 2020

- Second leg of flight intersects the same band

A Second Pass

NEXRAD Mosaic and ER2 position :: 2133 UTC 5 February 2020

- Second leg of flight intersects the same band

A Second Pass

NEXRAD Mosaic and ER2 position :: 2138 UTC 5 February 2020

- Second leg of flight intersects the same band

A Second Pass

NEXRAD Mosaic and ER2 position :: 2143 UTC 5 February 2020

- Second leg of flight intersects the same band

A Second Pass

NEXRAD Mosaic and ER2 position :: 2148 UTC 5 February 2020

- Second leg of flight intersects the same band

A Second Pass

NEXRAD Mosaic and ER2 position :: 2153 UTC 5 February 2020

- Second leg of flight intersects the same band

What does the second pass look like?

What does the second pass look like?

Why are these bands sloped?

ISENTROPIC LIFT?

— 25 dBZ

2117 UTC 5 February 2020

2100 UTC HRRR Potential Temperature

2151 UTC 5 February 2020

2200 UTC HRRR Potential Temperature

Why are these bands sloped?

Are these gently sloped fall streaks?

What fall speed (FS) would be needed?

- 2–4-km layer-mean across-track shear: 7.9 m/s/km
- Horizontal displacement rate by shear: $\Delta D = \text{shear} * \text{thickness}$
- Slope = FS/ ΔD or
FS = slope * ΔD

Fall speed = 0.06 m/s

Very slow

Fall speed = 1.62 m/s

Reasonable

Why are these bands sloped?

Are these gently sloped fall streaks?

What fallspeed (FS) would be needed?

- 2–4-km layer-mean across-track shear:
7.8 m/s/km
- Horizontal displacement rate by shear:
 $\Delta D = \text{shear} * \text{thickness}$
- Slope = FS/ ΔD or
FS = slope * ΔD

Why are these bands where they are?

Deformation features?

First Pass

EXRAD Reflectivity Curtain :: 202002052100 - 202002052130

VAD Total Deformation

— 25 dBZ

Thin magenta contour: $2 \times 10^{-4} \text{ s}^{-1}$

Thick magenta contour: $4 \times 10^{-4} \text{ s}^{-1}$

Why are these bands where they are?

Deformation features?

Second Pass

EXRAD Reflectivity Curtain :: 202002052145 - 202002052200

VAD Total Deformation

— 25 dBZ

Thin magenta contour: $2 \times 10^{-4} \text{ s}^{-1}$

Thick magenta contour: $4 \times 10^{-4} \text{ s}^{-1}$

Why are these bands where they are?

Frontal features?

First Pass

EXRAD Reflectivity Curtain :: 202002052100 - 202002052130

21-22 UTC HRRR θ

Thanks to Peter Pantina for supplying the time-interpolated HRRR fields

Why are these bands where they are?

Frontal features?

Second Pass

EXRAD Reflectivity Curtain :: 202002052145 - 202002052200

21-22 UTC HRRR θ

Thanks to Peter Pantina for supplying the time-interpolated HRRR fields

Summary

- Looked at the structure of a mesoscale snowband over central Illinois using radar data collected during two flight legs
- Band appears to have a gradual slope
 - Does not appear to be due to isentropic flow
 - Possible relation to particle fall speed in shear?
- Band location
 - Does not appear to be tied to deformation
 - Possible connection to frontal features