2.2.2 函数极限的性质

前面引进的六种类型的函数极限,它们都有类似于数列极限的一些性质.这里仅以

$$\lim_{x \to x_0} f(x) = A$$

为代表叙述并证明这些性质,至于其它类型的性质与证明,只要相应作一些修改即可.

性质1 (唯一性): 若 $\lim_{x \to x_0} f(x)$ 存在,则此极限唯一.

证 不妨设 $\lim_{x\to x_0} f(x) = A$ 以及 $\lim_{x\to x_0} f(x) = B$.

由极限的定义,对于任意的正数 ε ,存在正数 δ_1,δ_2

当
$$0 < |x-x_0| < \delta_1$$
 时, $|f(x)-A| < \frac{\varepsilon}{2}$ (1)

$$\stackrel{\text{def}}{=} 0 < |x - x_0| < \delta_2 \text{ 时}, \quad |f(x) - B| < \frac{\varepsilon}{2}.$$
 (2)

令 $\delta = \min\{\delta_1, \delta_2\}$, 当 $0 < |x - x_0| < \delta$ 时,(1) 式与(2) 式均成立,所以

$$|A-B| \le |A-f(x)| + |f(x)-B| < \varepsilon$$
.

由 ε 的任意性,推得A=B. 这就证明了极限是唯一的.

性质2 (局部有界性)

若 $\lim_{x \to x_0} f(x) = A$,则存在 $U^{\circ}(x_0)$,f(x) 在 $U^{\circ}(x_0)$ 上有界.

证 取 $\varepsilon = 1$, 存在 $\delta > 0$, 当 $0 < |x - x_0| < \delta$ 时,

$$|f(x)-A|<1.$$

由此得

$$|f(x)| < |A| + 1$$
.

这就证明了f(x)在某个空心邻域 $U^{\circ}(x_0,\delta)$ 上有界.

性质3(局部保号性)若 $\lim_{x\to x_0} f(x) = A > 0$ (或 < 0),则对任何正数 r < A (或 r < -A),存在 $U^{\circ}(x_0)$,使得对一切 $x \in U^{\circ}(x_0)$,有

$$f(x) > r > 0$$
 (\vec{g} $f(x) < -r < 0$).

证 不妨设A>0. 对于任何 $r\in(0,A)$, 取 $\varepsilon=A-r$,

存在 $\delta > 0$, 当 $0 < |x - x_0| < \delta$ 时,有

$$|f(x)-A| < \varepsilon, \implies f(x) > A-\varepsilon > r > 0.$$

推论: 设 $\lim_{x \to x_0} f(x) = A$, $\lim_{x \to x_0} g(x) = B$, 且 A < B, 则 $\exists \delta > 0$, $\forall x \in U^0(x_0, \delta)$, 有 f(x) < g(x).

性质4(保不等式性) 设 $\lim_{x\to x_0} f(x)$ 与 $\lim_{x\to x_0} g(x)$

都存在,且在某邻域 $U^{\circ}(x_0)$ 内有 $f(x) \leq g(x)$,则 lim $f(x) \leq \lim_{x \to \infty} g(x)$

$$\lim_{x\to x_0} f(x) \le \lim_{x\to x_0} g(x).$$

证 设 $\lim_{x\to x_0} f(x) = A$, $\lim_{x\to x_0} g(x) = B$, 那么对于任意

 $\varepsilon > 0$,分别存在正数 δ_1, δ_2 ,使当 $0 < |x - x_0| < \delta_1$

时,有 $f(x)>A-\varepsilon$;

而当 $0 < |x - x_0| < \delta_2$ 时,有 $g(x) < B + \varepsilon$.

令 $\delta = \min\{\delta_1, \delta_2\}$,则当 $0 < |x - x_0| < \delta$ 时,满足 $A - \varepsilon < f(x) \le g(x) < B + \varepsilon,$

从而有 $A < B + 2\varepsilon$. 因为 ε 是任意正数 , 所以证得 $A \le B$.

性质5(四则运算法则)若 $\lim_{x\to x_0} f(x)$, $\lim_{x\to x_0} g(x)$ 都存在,则 $f \pm g$, $f \cdot g$ 在点 x_0 的极限也存在,且

- (1) $\lim_{x\to x_0} [f(x)\pm g(x)] = \lim_{x\to x_0} f(x)\pm \lim_{x\to x_0} g(x);$
- (2) $\lim_{x \to x_0} f(x)g(x) = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} g(x)$;
- (3) 又若 $\lim_{x\to x_0} g(x) \neq 0$,则 $\frac{f}{g}$ 在点 x_0 的极限也存在,并有

$$\lim_{x\to x_0}\frac{f(x)}{g(x)}=\frac{\lim_{x\to x_0}f(x)}{\lim_{x\to x_0}g(x)}.$$

例11 求
$$\lim_{x\to 2} \frac{x^3-1}{x^2-3x+5}$$
.

解 :
$$\lim_{x \to 2} (x^2 - 3x + 5) = \lim_{x \to 2} x^2 - \lim_{x \to 2} 3x + \lim_{x \to 2} 5$$

= $(\lim_{x \to 2} x)^2 - 3\lim_{x \to 2} x + \lim_{x \to 2} 5$
= $2^2 - 3 \cdot 2 + 5 = 3 \neq 0$,

$$\therefore \lim_{x\to 2} \frac{x^3-1}{x^2-3x+5} = \frac{\lim_{x\to 2} x^3 - \lim_{x\to 2} 1}{\lim_{x\to 2} (x^2-3x+5)} = \frac{2^3-1}{3} = \frac{7}{3}.$$

注: 1. 设
$$f(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_n$$
,则有

$$\lim_{x \to x_0} f(x) = a_0 (\lim_{x \to x_0} x)^n + a_1 (\lim_{x \to x_0} x)^{n-1} + \dots + a_n$$

$$= a_0 x_0^n + a_1 x_0^{n-1} + \dots + a_n = f(x_0).$$

2. 设
$$f(x) = \frac{P(x)}{Q(x)}$$
, 且 $Q(x_0) \neq 0$, 则有

$$\lim_{x \to x_0} f(x) = \frac{\lim_{x \to x_0} P(x)}{\lim_{x \to x_0} Q(x)} = \frac{P(x_0)}{Q(x_0)} = f(x_0).$$

若 $Q(x_0) = 0$, 则商的法则不能应用.

例12. 求
$$\lim_{x\to 1} \frac{x^2-1}{x^2+2x-3}$$
.

 $x \to 1$ 时,分子,分母的极限都是零 . $(\frac{U}{0}$ 型)

先约去不为零的无穷小因子x-1后再求极限.

$$\lim_{x \to 1} \frac{x^2 - 1}{x^2 + 2x - 3} = \lim_{x \to 1} \frac{(x+1)(x-1)}{(x+3)(x-1)}$$

$$= \lim_{x \to 1} \frac{x+1}{x+3} = \frac{1}{2}.$$
 (消去零因子法)

例13. 求
$$\lim_{x\to\infty} \frac{2x^3+3x^2+5}{7x^3+4x^2-1}$$
.

 \mathbf{m} $x \to \infty$ 时,分子、分母的极限都是无穷大. ($\frac{\infty}{\infty}$ 型)

先用x3去除分子分母、分出无穷小,再求极限.

$$\lim_{x \to \infty} \frac{2x^3 + 3x^2 + 5}{7x^3 + 4x^2 - 1} = \lim_{x \to \infty} \frac{2 + \frac{3}{x} + \frac{5}{x^3}}{7 + \frac{4}{x} - \frac{1}{x^3}} = \frac{2}{7}.$$

(无穷小因子分出法)

$$\lim_{x \to \infty} \frac{a_0 x^m + a_1 x^{m-1} + \dots + a_m}{b_0 x^n + b_1 x^{n-1} + \dots + b_n} = \begin{cases} \frac{a_0}{b_0}, \stackrel{\cong}{\Rightarrow} n = m, \\ 0, \stackrel{\cong}{\Rightarrow} n > m, \\ \infty, \stackrel{\cong}{\Rightarrow} n < m, \end{cases}$$

无穷小分出法:以分母中自变量的最高次幂除分子, 分母,以分出无穷小,然后再求极限.

例14. 求
$$\lim_{n\to\infty} \left(\frac{1}{n^2} + \frac{2}{n^2} + \cdots + \frac{n}{n^2}\right)$$
.

解 $n \to \infty$ 时,是无限多个无穷小之和.

先变形再求极限.

$$\lim_{n\to\infty} \left(\frac{1}{n^2} + \frac{2}{n^2} + \dots + \frac{n}{n^2}\right) = \lim_{n\to\infty} \frac{1+2+\dots+n}{n^2}$$

$$= \lim_{n\to\infty} \frac{\frac{1}{2}n(n+1)}{n^2} = \lim_{n\to\infty} \frac{1}{2}(1+\frac{1}{n}) = \frac{1}{2}.$$

性质6.复合函数极限运算法则

定理:设
$$\lim_{x\to x_0} \varphi(x) = a$$
,且 x 满足 $0 < |x-x_0| < \delta_1$ 时,

$$\varphi(x) \neq a$$
,又 $\lim_{u \to a} f(u) = A$,则有

$$\lim_{x \to x_0} f[\varphi(x)] = \lim_{u \to a} f(u) = A$$
 (1)

证:
$$\lim_{u \to a} f(u) = A$$
 \Longrightarrow $\forall \varepsilon > 0, \exists \eta > 0, \text{ if } 0 < |u - a| < \eta \text{ if,}$ $f(u) - A | < \varepsilon$

取
$$\delta = \min\{\delta_1, \delta_2\}$$
,则当 $0 < |x - x_0| < \delta$ 时 $0 < |\varphi(x) - a| = |u - a| < \eta$

故
$$|f[\phi(x)]-A|=|f(u)-A|<\varepsilon$$
, 因此①式成立.

*注: 定理中,条件 $\varphi(x) \neq a$, $0 < |x - x_0| < \delta_1$ 不能少,否则结论可能不成立。例如,

$$u = \varphi(x) = x \sin \frac{1}{x}, \quad y = f(u) = \begin{cases} 0, & u = 0, \\ 1, & u \neq 0 \end{cases}$$

则有 $\lim_{x\to 0} \varphi(x) = 0$, $\lim_{u\to 0} f(u) = 1$,

$$f(\varphi(x)) = \begin{cases} 0, x = 1/(n\pi), & n \in \mathbb{N}^+ \\ 1, x \neq 1/(n\pi), & n \in \mathbb{N}^+ \end{cases}$$

但 $\lim_{x\to 0} f(\varphi(x))$ 不存在.

性质6 (复合函数的极限运算法则)

$$\begin{cases} \lim_{x \to x_0} \varphi(x) = a, u = \varphi(x) \neq a, \\ \lim_{u \to a} f(u) = A, \end{cases} \Rightarrow \lim_{x \to x_0} f[\varphi(x)] = \lim_{u \to a} f(u) = A.$$

意义:复合函数极限法则实质上是变代换法则,即

$$\lim_{x \to x_0} f[\varphi(x)] \qquad \Rightarrow u = \varphi(x) \qquad \lim_{u \to a} f(u)$$

$$a = \lim_{x \to x_0} \varphi(x)$$

例15. 试确定常数 a 使 $\lim_{x\to\infty} (\sqrt[3]{1-x^3}-ax)=0$.

$$0 = \lim_{t \to 0} \left[\sqrt[3]{1 - \frac{1}{t^3}} - \frac{a}{t} \right] = \lim_{t \to 0} \frac{\sqrt[3]{t^3 - 1 - a}}{t}$$

$$\therefore \lim_{t \to 0} \left[\sqrt[3]{t^3 - 1} - a \right] = 0$$

故
$$-1-a=0$$

因此
$$a=-1$$