Algorithm project

This project includes two tasks related to the sorting and graph algorithms. The goal of the project is to modify and re-implement the Kruskal's algorithm in more efficient way if we assume that the edge weights in the input graphs are integer numbers in the range 0 to j, for some integer j <= n where n is the number of edges. In addition, you need to compare the time complexity of Kruskal's algorithm before and after the modification. Note: based on the above assumption, apply only one modification on the Kruskal's algorithm presented in the lecture.

Part 1:

```
Kruskal's before:
       Kruskal(G):
              for each vertex:
                      makeSet(v)
       sort each edge in non decreasing order by weight using merge sort #O(ElogE)
       for each edge (u,v):
              if findSet(u) != findSet(v):
              MST = MST + edge(u,v)
              union(u,v)
analysis:
       Line 2-3: makeSet() is V
       Line 4: sort the edges is O(ElogE)
       Line 5: for loop is O(E)
       Line 6-8: find and union is O(log V)
there for complexity is O(ElogE + ElogV)
So, complexity will be O(ElogE) or O(ElogV)
Kruskal's after:
       Kruskal(G):
              for each vertex:
                      makeSet(v)
       sort each edge in non decreasing order by weight using counting sort #O(E)
       for each edge (u,v):
              if findSet(u) != findSet(v):
              MST = MST + edge(u,v)
              union(u,v)
analysis:
       Line 2-3: makeSet() is V
       Line 4: sort the edges is O(E)
```

```
Line 5: for loop is O(E)
Line 6-8: find and union is O(log V)
there for complexity is O(E + ElogV)
So, complexity will be O(ElogV) more efficient then O(ElogE)
```

Algorithms:

makeSet(x){creates a new set whose only members is x} Union(x,y){units the set containing x with the set containing y} findSet(x){returns a pointer to set containing x}

Part 2:

Kruskal before:

Kruskal after:

```
def kruskal_counting(self):
    i,e = 0,0
    ds = dis.disjointset(self.nodes)
    self.graph = counting.counting_sort(self.graph)
    while e<self.V-1:
        w,d,s = self.graph[i]
        i+=1
        x = ds.find(s)
        y= ds.find(d)
        if x!= y:
        e += 1
        self.MST.append([w,d,s])
        ds.union(x,y)
        self.display(s,d,w)</pre>
```

Table A:

For each algorithm (Kruskal_before and Kruskal_after) and each size (50, 100, 150, and 200) of the edges, provide the average running time performed by the algorithm.

Algorithm	E=50	E=100	E=150	E=200	E=1000
	(seconds)	(seconds)	(seconds)	(seconds)	(seconds)
Kruskal	0.003808577	0.004401286	0.005856355	0.006313800	0.055845657
before	85542806	443074544	03133138	811767578	98441569
Kruskal after	0.003293991	0.004252751	0.005573272	0.005383332	0.054981470
	0888671875	6682942705	705078125	57039388	10803223

Table B:

For each algorithm (Kruskal_before and Kruskal_after) and each size (50, 100, 150, and 200) of the edges, provide the best case of the algorithm (case where the minimum running time by the algorithm is reached).

Algorithm	E=50	E=100	E=150	E=200	E=1000
-----------	------	-------	-------	-------	--------

	(seconds)	(seconds)	(seconds)	(seconds)	(seconds)
Kruskal	0.003472805	0.004062891	0.005456924	0.005738019	0.055026292
before	0231933594	0064697266	4384765625	943237305	80090332
Kruskal after	0.002917051	0.003901004	0.005280971	0.005159854	0.054368019
	315307617	7912597656	527099609	888916016	104003906

Table C:

For each algorithm (Kruskal_before and Kruskal_after) and each size (50, 100, 150, and 200) of the edges, provide the worst case of the algorithm (case where the maximum running time by the algorithm is reached).

Algorithm	E=50	E=100	E=150	E=200	E=1000
	(seconds)	(seconds)	(seconds)	(seconds)	(seconds)
Kruskal	0.003996849	0.004923105	0.006061077	0.006947278	0.056998014
before	060058594	239868164	117919922	97644043	45007324
Kruskal after	0.003728151	0.004890203	0.005903005	0.005815029	0.055659055
	321411133	4759521484	599975586	144287109	70983887

Results analysis:

Table A:

Table B:

Table C:

Overall:

As we can see from the Big-O in the theoretical section and the results of the algorithm's testing, storing the data in tables, and analyzing them there to find the improved Kruskal is more efficient