3.3.1 Lema de iteración (o de bombeo) para LIC

3.3 Propiedades de LIC

Lema de iteración (o de bombeo)

- Resultado útil para demostrar que algunos lenguajes no son independientes del contexto
 - Como en el caso de los regulares con la versión que ya conocemos (para REG)
- Interesa tener presentes todas las observaciones y recomendaciones hechas para la aplicación de la versión anterior
 - La versión para REG era más sencilla...

Enunciado

Lema de iteración para LICs

- Sea L un LIC. Entonces:
 - Existe una constante n ≥ 1 tal que
 - Para toda cadena z ∈ L con |z| ≥ n
 - Existen cadenas u, v, w, x, $y \in \Sigma^*$ tales que
 - 1. z = uvwxy
 - 2. $|vwx| \le n$
 - 3. $|vx| \ge 1$ $(vx \ne \varepsilon)$
 - 4. Para todo i ≥ 0: uviwxiy ∈ L
 - ¡Se itera en dos sitios a la vez!

- L₁ no es un LIC
 - Lo demostraremos probando que no cumple la propiedad que todos los LIC cumplen
 - Es decir, demostraremos que cumple su negación
 - ∀ n ≥ 1
 - $\exists z \in L_1 \text{ con } |z| \ge n$
 - \forall u, v, w, x, $y \in \Sigma^*$ $(z = uvwxy \land 1 \le |vx| \le |vwx| \le n \rightarrow \exists i \ge 0: uv^iwx^iy \notin L_1)$
 - Y concluiremos así que L₁ ∉ LIC

U

- L₁ no es un LIC
 - ∀ n ≥ 1
 - $\exists z \in L_1 \text{ con } |z| \ge n$
 - $z = a^n b^n c^n$
 - \forall u, v, w, x, y \in Σ *: z = uvwxy \land 1 \leq |vx| \leq |vwx| \leq n
 - v, x no pueden contener apariciones de los 3 símbolos
 - Máximo de 2 símbolos consecutivos (a's y c's no puede ser)
 - Esto garantiza que uno de los 3 grupos nunca se va a alterar
 - $\exists i \geq 0$: $uv^iwx^iy \notin L_1$
 - Entonces $L_1 \notin LIC$

- $z = a^n b^n c^n$
- \blacksquare \forall u, v, w, x, y ∈ Σ*: z = uvwxy ∧ 1 ≤ |vx| ≤ |vwx| ≤ n
 - 1. vx tiene apariciones de un único símbolo
 - 2. vx tiene apariciones de dos símbolos (más es imposible)
- $\exists i \geq 0$: $uv^iwx^iy \notin L_1$

Distinción de casos

- i = 0
 - 1. $uv^0wx^0y = uwy \notin L_1$ pues tienen menos apariciones de uno de los grupos de símbolos que de los otros dos
 - 2. $uv^0wx^0y = uwy \notin L_1$ pues tienen menos apariciones de dos de los grupos de símbolos que del otro
- **Entonces** $L_1 \notin LIC$ Nada obliga a elegir la misma iteración para cada caso

Ejemplo 1: cadenas iteradas

- $z = a^n b^n c^n$
- 1. vx tiene apariciones de un único símbolo
 - Sea |vx| = j (sabemos que $1 \le j \le n$)
- i = 0
 - 1. $uv^0wx^0y = uwy \notin L_1$
 - $a^{n-j}b^nc^n \notin L_1$
 - $a^n b^{n-j} c^n \notin L_1$
 - \Rightarrow aⁿ bⁿ c^{n-j} \notin L₁

Pinta de las cadenas iteradas (en cada caso)

pues tienen menos apariciones de uno de los grupos de símbolos que de los otros dos

Ejemplo 1: cadenas iteradas

- $z = a^n b^n c^n$
- 2. vx tiene apariciones de dos símbolos (más es imposible)
 - Sean $|vx|_a = s_a$, $|vx|_b = s_b$, $|vx|_c = s_c$
 - Sabemos que:
 - \rightarrow O bien $s_c = 0$ y $1 \le s_a$, $s_b < n$
 - » o bien $s_a = 0$ y $1 \le s_b$, $s_c < n$

Pinta de las cadenas iteradas (en cada caso)

- i = 0
 - 2. $uv^0wx^0y = uwy \notin L_1$
 - \Rightarrow $a^{n-s_a}b^{n-s_b}c^n \notin L_1$
 - $a^n b^{n-s_b} c^{n-s_c} \notin L_1$

pues tienen menos apariciones de dos de los grupos de símbolos que del otro

- Conclusión:
 - Al haber demostrado todos los casos: $L_1 \notin LIC$
 - Aunque los lenguajes independientes del contexto pueden emparejar 2 grupos de símbolos para establecer si son iguales o no
 - $\{a^mb^m \mid m > 0\} \subseteq LIC$
 - Los LIC no pueden emparejar tres grupos de símbolos para establecer si son iguales o no
 - $\{a^mb^m c^m \mid m > 0\} \notin LIC$

- Si tuviésemos que elegir la iteración 2, habría que afinar más en la distinción de casos para poder describir la pinta de las cadenas iteradas
 - 1. vx tiene apariciones de un único símbolo
 - » $vx \in \{a\}^+$ o $vx \in \{b\}^+$ o $vx \in \{c\}^+$
 - 2. vx tiene apariciones de dos símbolos (más es imposible)
 - 1. v contiene apariciones de un símbolo y x de otro distinto
 - » $v \in \{a\}^+, x \in \{b\}^+$ o $v \in \{b\}^+, x \in \{c\}^+$
 - una de las dos cadenas contiene apariciones de dos símbolos distintos
 - » $v \in \{a\}^+ \{b\}^+, x \in \{b\}^*$ o $v \in \{b\}^+ \{c\}^+, x \in \{c\}^*$ $x \in \{a\}^+ \{b\}^+, v \in \{a\}^*$ o $x \in \{b\}^+ \{c\}^+, v \in \{b\}^*$

- Los primeros casos son igual de fáciles:
 - 1. vx tiene apariciones de un único símbolo
 - $vx \in \{a\}^+$ o $vx \in \{b\}^+$ o $vx \in \{c\}^+$
 - » Sea |vx| = j (sabemos que 1 ≤ j ≤ n)
 - i = 2
 - 1. $uv^2wx^2y = uvvwxxy \notin L_1$
 - $a^{n+j}b^nc^n \notin L_1$
 - $a^n b^{n+j} c^n \notin L_1$
 - $a^n b^n c^{n+j} \notin L_1$

pues tienen más apariciones de uno de los grupos de símbolos que de los otros dos

- Los primeros casos son igual de fáciles:
 - 2.1. v contiene apariciones de un símbolo y x de otro distinto

»
$$v \in \{a\}^+, x \in \{b\}^+$$
 o $v \in \{b\}^+, x \in \{c\}^+$

$$v \in \{b\}^+$$
, $x \in \{c\}^+$

- Sean $|vx|_a = s_a$, $|vx|_b = s_b$, $|vx|_c = s_c$
- Sabemos que:
 - O bien $s_c = 0 \text{ y } 1 \le s_a, s_b < n$
 - o bien $s_a = 0$ y $1 \le s_b$, $s_c < n$
- $uv^2wx^2y = uvvwxxy \notin L_1$
 - \Rightarrow $a^{n+s_a}b^{n+s_b}c^n \notin L_1$
 - \Rightarrow aⁿ b^{n+sb} c^{n+sc} \notin L₁

pues tienen más apariciones de dos de los grupos de símbolos que del otro

- El último se complica:
 - 2.2. <u>una de las dos cadenas contiene apariciones de dos símbolos distintos</u>
 - » $v \in \{a\}^+ \{b\}^+, x \in \{b\}^*$ o $v \in \{b\}^+ \{c\}^+, x \in \{c\}^*$ $x \in \{a\}^+ \{b\}^+, v \in \{a\}^*$ o $x \in \{b\}^+ \{c\}^+, v \in \{b\}^*$
 - Haremos sólo el primer caso detallado (faltaría el resto)
 - \Rightarrow Sean $v = a^{s_a} b^{s_{bv}}, x = b^{s_{bx}}$
 - » Sabemos que:
 - $1 \le s_a, s_{bv} < n y \ 0 \le s_{bx}$
 - » Entonces podemos deducir que:
 - $u = a^{n} s_a$ $w = b^{s_{bw}}$ $y = b^{n} (s_{bv} + s_{bx} + s_{bw}) c^n$
 - Con todo esto deduciremos la pinta de $uv^2wx^2y = uvvwxxy \notin L_1$

- El último se complica:
 - Recordamos:

• La pinta de $uv^2wx^2y = uvvwxxy$ es

$$uv^{2}wx^{2}y = \underbrace{a^{n-s_{a}}}_{b^{s_{bv}}} \underbrace{a^{s_{a}}}_{b^{s_{bv}}} \underbrace{b^{s_{bv}}}_{b^{s_{bw}}} \underbrace{b^{s_{bx}}}_{b^{s_{bx}}} \underbrace{b^{n-(s_{bv}+s_{bx}+s_{bw})}}_{b^{s_{bv}}} c^{n}$$

$$= a^{n} b^{s_{bv}} a^{s_{a}} b^{n+s_{bx}} c^{n} \notin L_{1} \qquad (por ser 1 \le s_{a}, s_{bv})$$

pues tienen más apariciones de dos de los grupos de símbolos que del otro (o porque aparece una 'a' tras una 'b', y eso rompe la estructura de las cadenas de L_1)

Moraleja

- Siempre que sea posible, elegiremos la iteración 0
 - Es más sencillo describir las cadenas iteradas cuando "se quita" que cuando "se pone"
 - Hay menos distinciones de casos que considerar

Otra restricción:

 Los LIC tampoco pueden emparejar dos cadenas de longitud arbitraria, si las cadenas se forman con más de un símbolo

Implicación:

 Las GICs no son un mecanismo adecuado para forzar determinadas restricciones "semánticas" en los LPs como el requisito habitual de que un identificador tenga que declararse antes de usarlo

- L₂ no es un LIC
 - ∀ n ≥ 1
 - $\exists z \in L_2 \text{ con } |z| \ge n$
 - Cadenas que puedan partirse por la mitad en 2 iguales
 - $z = 0^{n}0^{n}$
 - ¿Vale?
 - $z = (01)^{2n}$ $z = 0^{n}10^{n}1$
 - ¿Vale?
 - $z = 0^{n}10^{n}1$
 - ¿Vale?

- ¿Por qué elegir estas z no funciona?
 - $z = (01)^{2n}$ $z = 0^{n}0^{n}$
- $z = 0^{n}10^{n}1$
- Podría ocurrir que justo lo que ponemos o quitamos en la iteración i no impida la pertenencia de la cadena iterada uviwxiy a L₂
- Bastaría con que
 - $v \circ x = (01)^{2j}$ (y la otra ε)
 - Entonces $uv^iwx^iy = (01)^{2(n+(i-1)j)} \in L_2 \forall i \ge 0$
 - Por ser de la forma (01)^{2s} = (01)^s (01)^s

Ejemplo 2:
$$L_2 = \{ww \mid w \in \{0, 1\}^*\}$$

- L₂ no es un LIC
 - ∀ n ≥ 1
 - $\exists z \in L_2 \text{ con } |z| \ge n$
 - Cadenas que puedan partirse por la mitad en 2 iguales
 - $z = 0^n 1^n 0^n 1^n$
 - ¿Vale?

Elección de la cadena:

su pertenencia al lenguaje debe depender de la coincidencia de grupos de n símbolos separados por, al menos, n símbolos

- L₂ no es un LIC
 - ∀ n ≥ 1
 - $\exists z \in L_2 \text{ con } |z| \ge n$
 - $z = 0^n 1^n 0^n 1^n$
 - \forall u, v, w, x, y \in Σ *: z = uvwxy \land 1 \leq |vx| \leq |vwx| \leq n
 - vwx, como mucho, puede solapar 2 de los 4 grupos de símbolos contiguos
 - Esto garantiza que 2 de los 4 grupos nunca se van a alterar
 - $\exists i \ge 0$: $uv^iwx^iy \notin L_2$
 - Entonces $L_2 \notin LIC$

- $z = 0^n 1^n 0^n 1^n$
- \blacksquare \forall u, v, w, x, y ∈ Σ*: z = uvwxy ∧ 1 ≤ |vx| ≤ |vwx| ≤ n
 - vx tiene apariciones de un único símbolo (de un mismo grupo)
 - vx tiene apariciones de dos símbolos (de grupos consecutivos)
- $\exists i \ge 0$: $uv^iwx^iy \notin L_2$
 - i = 0 $uv^0wx^0y = uwy \notin L_2$ pues no existe w' tal que uwy = w'w'
- Entonces $L_2 \notin LIC$

Ejemplo 2: cadenas iteradas

- $z = 0^n 1^n 0^n 1^n$
- 1. <u>vx tiene apariciones de un único símbolo</u> (del mismo grupo)
 - Sea |vx| = j (sabemos que $1 \le i \le n$)
- i = 0
 - 1. $uv^0wx^0y = uwy \notin L_2$
 - $^{\circ}$ $0^{n-j} 1^n 0^n 1^n \notin L_2$
 - $^{\circ}$ $0^{n} 1^{n-j} 0^{n} 1^{n} \notin L_{2}$
 - $^{\circ}$ $0^{n} 1^{n} 0^{n-j} 1^{n} \notin L_{2}$
 - $^{\text{n}}$ 0^{n} 1^{n} 0^{n} $1^{\text{n-j}} \notin L_2$

pues no existe w' tal que uwy = w'w' al ser j ≥ 1

Pinta de las cadenas iteradas (en cada caso)

Ejemplo 2: cadenas iteradas

- $z = 0^n 1^n 0^n 1^n$
- 2. <u>vx tiene apariciones de dos símbolos</u> (de grupos consecutivos)
 - Sean $|vx|_0 = s$, $|vx|_1 = t$ (sabemos que $1 \le s$, t < n)
- i = 0
 - 2. $uv^0wx^0y = uwy \notin L_2$
 - $^{\text{n-s}} 1^{\text{n-t}} 0^{\text{n}} 1^{\text{n}} \notin L_2$
 - $^{\circ}$ 0ⁿ 1^{n-t} 0^{n-s} 1ⁿ \notin L₂
 - $0^n 1^n 0^{n-t} 1^{n-s} \notin L_2$

pues no existe w' tal que uwy = w'w' al ser s, t ≥ 1

■ Por lo tanto $L_2 \notin LIC$ (demostrados todos los casos)

Pinta de las cadenas iteradas (en cada caso)

Lenguajes parecidos

- A L₁
 - $\{a^i b^j c^k \mid i \leq j \leq k\}$
 - $\{x \in \{a, b, c\}^* | |x|_a = |x|_b = |x|_c\}$
- A L₂
 - $\{a^i b^i a^i b^i | i \ge 0\}$
 - $\{a^i b^j a^i b^j | i, j \ge 0\}$
 - $\{wcw \mid w \in \{a, b\}^*\}$
- Más ejemplos...
 - $\{0^{k^2} \mid k \ge 0\}$
 - $\{a^i b^j c^k \mid i < j < k\}$

Últimas consideraciones

- No siempre es posible que todos los casos se traten con la misma iteración
 - Puede elegirse una distinta para cada caso
 - El objetivo es demostrar que existe al menos una iteración para cada caso
- Ejemplo de lenguaje no LIC que cumple la propiedad del LI
 - ${aⁱ b^j c^k d^l | i = 0 o j = k = l}$ $= {b^j c^k d^l | j, k, l ≥ 0} ∪ {aⁱ b^j c^j d^j | i > 0, j ≥ 0}$