Pattern Recognition

- S. S. Samant

Cluster	Enter- tainment	Financial	Foreign	Metro	National	Sports	Entropy	Purity
1	3	5	40	506	96	27	*	
2	4	7	280	29	39	2		300 800
3	1	1	1	7	4	671	- 600	-
4	10	162	3	119	73	2		·-
5	331	22	5	70	13	23		·-
6	5	358	12	212	48	13		·-
Total	354	555	341	943	273	738		

Calculate Entropy, purity, precision, recall, F-score of each of the clusters above.

Cluster	Enter- tainment	Financial	Foreign	Metro	National	Sports	Entropy	Purity
1	3	5	40	506	96	27	1.2270	0.7474
2	4	7	280	29	39	2	1.1472	0.7756
3	1	1	1	7	4	671	0.1813	0.9796
4	10	162	3	119	73	2	1.7487	0.4390
5	331	22	5	70	13	23	1.3976	0.7134
6	5	358	12	212	48	13	1.5523	0.5525
Total	354	555	341	943	273	738	1.1450	0.7203

Cluster	Enter- tainment	Financial	Foreign	Metro	National	Sports	Entropy	Purity
1	3	5	40	506	96	27	1.2270	0.7474
2	4	7	280	29	39	2	1.1472	0.7756
3	1	1	1	7	4	671	0.1813	0.9796
4	10	162	3	119	73	2	1.7487	0.4390
5	331	22	5	70	13	23	1.3976	0.7134
6	5	358	12	212	48	13	1.5523	0.5525
Total	354	555	341	943	273	738	1.1450	0.7203

What is the precision and recall of Cluster-1 wrt Metro class

Cluster	Enter- tainment	Financial	Foreign	Metro	National	Sports	Entropy	Purity
1	3	5	40	506	96	27	1.2270	0.7474
2	4	7	280	29	39	2	1.1472	0.7756
3	1	1	1	7	4	671	0.1813	0.9796
4	10	162	3	119	73	2	1.7487	0.4390
5	331	22	5	70	13	23	1.3976	0.7134
6	5	358	12	212	48	13	1.5523	0.5525
Total	354	555	341	943	273	738	1.1450	0.7203

What is the precision and recall of Cluster-1 wrt Metro class

Precision = 0.74

Recall = 0.53

- Starts with each point being a cluster, and at each step, merge the closest pair of clusters
- Displayed graphically using a dendrogram a tree like structure

- Starts with each point being a cluster, and at each step, merge the closest pair of clusters
- Displayed graphically using a dendrogram a tree like structure (dendro "tree", gramma "drawing")

- Starts with each point being a cluster, and at each step, merge the closest pair of clusters
- Can also be displayed graphically using a nested cluster diagram

Basic algorithm

- Compute the proximity matrix
- Let each data point be a cluster
- 3. Repeat
- 4. Merge the two closest clusters
- 5. Update the proximity matrix
- **6. Until** only a single cluster remains

Key operation is the computation of the proximity of two clusters

 Different approaches to defining the distance between clusters distinguish the different algorithms

Starting Situation

•Start with clusters of individual points and a proximity matrix

Intermediate Situation

After some merging steps, we have some clusters

Proximity Matrix

C3

C4 C5

Intermediate Situation

We want to merge the two closest clusters (C2 and C5)

and update the proximity matrix.

p10

p11

p12

p9

After Merging

• The question is "How do we update the proximity matrix?"

р1

p2

- MIN
- MAX
- Group Average
- Distance Between Centroids

	p1	p2	рЗ	р4	p5	<u> </u>
<u>p1</u>						
<u>p2</u>						
<u>p2</u> <u>p3</u>						_
						_
<u>p4</u> <u>p5</u>						

- MIN
- MAX
- Group Average
- Distance Between Centroids

	p1	p2	рЗ	p4	р5	<u>.</u>
p1						
p2						
<u>p2</u> <u>p3</u>						
<u>p4</u> <u>p5</u>						

- MIN
- MAX
- Group Average
- Distance Between Centroids

- MIN
- MAX
- Group Average
- Distance Between Centroids

	p1	p2	рЗ	p4	р5	<u>.</u>
<u>p1</u>						
<u>p2</u>						
<u>p2</u> <u>p3</u>						
<u>p4</u> p5						
•						

- MIN
- MAX
- Group Average
- Distance Between Centroids

Cluster Similarity: MIN or Single Link

•Similarity of two clusters is based on the two closest points in the different clusters

	<u> 11 </u>	12	13	4	15
11	1.00	0.90 1.00 0.70 0.60 0.50	0.10	0.65	0.20
12	0.90	1.00	0.70	0.60	0.50
13	0.10	0.70	1.00	0.40	0.30
14	0.65	0.60	0.40	1.00	0.80
15	0.20	0.50	0.30	0.80	1.00

Cluster Similarity: MIN or Single Link

•Similarity of two clusters is based on the two closest points in the different clusters

	I 1	12	13	1 4	<u> 15</u>
11	1.00	0.90	0.10	0.65	0.20 0.50 0.30 0.80 1.00
12	0.90	1.00	0.70	0.60	0.50
13	0.10	0.70	1.00	0.40	0.30
14	0.65	0.60	0.40	1.00	0.80
15	0.20	0.50	0.30	0.80	1.00

Cluster Similarity: MAX or Complete Linkage

•Similarity of two clusters is based on the two farthest points in the different clusters

	<u> </u> 11	12	I 3	14	15
11	1.00 0.90 0.10 0.65 0.20	0.90	0.10	0.65	0.20
12	0.90	1.00	0.70	0.60	0.50
13	0.10	0.70	1.00	0.40	0.30
14	0.65	0.60	0.40	1.00	0.80
15	0.20	0.50	0.30	0.80	1.00

Cluster Similarity: MAX or Complete Linkage

•Similarity of two clusters is based on the two farthest points in the different clusters

	I 1	12	13	14	<u> 15</u>
11	1.00 0.90 0.10 0.65 0.20	0.90	0.10	0.65	0.20
12	0.90	1.00	0.70	0.60	0.50
13	0.10	0.70	1.00	0.40	0.30
14	0.65	0.60	0.40	1.00	0.80
15	0.20	0.50	0.30	0.80	1.00

Hierarchical Clustering: Comparison

Examples

	p1	p2	р3	p4	p5
p1	1.00	0.10	0.41	0.55	0.35
p2	0.10	1.00	0.64	0.47	0.98
p3	0.41	0.64	1.00	0.44	0.85
p4	0.55	0.47	0.44	1.00	0.76
p 5	0.35	0.98	0.85	0.76	1.00

Given the data above, perform single link and complete link hierarchical clustering. Draw dendrogram of your results.

Single Link:

Examples

	p1	p2	р3	p4	p_5
p1	1.00	0.10	0.41	0.55	0.35
p2	0.10	1.00	0.64	0.47	0.98
p3	0.41	0.64	1.00	0.44	0.85
p4	0.55	0.47	0.44	1.00	0.76
p5	0.35	0.98	0.85	0.76	1.00

Given the data above, perform single link and complete link hierarchical clustering. Draw dendrogram of your results.

Single Link:

Examples

	p1	p2	р3	p4	p5
p1	1.00	0.10	0.41	0.55	0.35
p2	0.10	1.00	0.64	0.47	0.98
p3	0.41	0.64	1.00	0.44	0.85
p4	0.55	0.47	0.44	1.00	0.76
p5	0.35	0.98	0.85	0.76	1.00

Given the data above, perform single link and complete link hierarchical clustering. Draw dendrogram of your results.

Example - HAC on Iris dataset

```
from sklearn import datasets
import matplotlib.pyplot as plt
from sklearn.cluster import AgglomerativeClustering
from sklearn import metrics
iris = datasets.load iris()
X = iris.data
y = iris.target
plt.scatter(X[:,0], X[:,1], c=y, cmap='rainbow', s=10)
plt.title('Actual',fontsize=15, fontweight='bold')
plt.xlabel('Sepal Length',fontsize=15)
plt.ylabel('Petal Length',fontsize=15)
plt.figure()
cls = AgglomerativeClustering(n clusters = 3, linkage='average')
cls.fit(X)
hac labels = cls.labels
print (metrics.silhouette score(X, hac labels))
plt.scatter(X[:,0], X[:,1],c=hac labels, cmap='rainbow', s=10)
plt.xlabel('Sepal Length',fontsize=15)
plt.ylabel('Petal Length',fontsize=15)
plt.title('Predicted clusters',fontsize=15, fontweight='bold')
```

Thank You!