Text Editing as Imitation Game

Ning Shi, Bin Tang, Bo Yuan, Longtao Huang, Yewen Pu, Jie Fu, Zhouhan Lin

ning.shi@ualberta.ca, {tangbin.tang,qiufu.yb,kaiyang.hlt}@alibaba-inc.com, yewen.pu@autodesk.com, fujie@baai.ac.cn, lin.zhouhan@gmail.com

Introduction

Text editing, such as grammatical error correction, arises naturally from imperfect textual data.

Two primary methods to solve text editing:

- End-to-end
- Sequence tagging (token-level action generation

End-to-end

Pros - the advantage of simplicity by giving direct input-output pairs Cons - can struggle in carrying out localized, specific fixes while keeping the rest of the sequence intact

Sequence Tagging

Pros - appropriate when outputs highly overlap with inputs by assigning no-op (e.g., KEEP)

Cons - action space is limited to token-level, such as deletion or insertion after a token

Imitation Game

Our Markov Decision Process (MDP) is defined as follows.

State S - a set of text sequences

Action A - a set of action sequences

Transition matrix P - the probability that a_t leads s_t to s_{t+1}

Environment &- to update state by $s_{t+1} = \mathcal{E}(s_t, a_t)$

Reward function R - to calculate a reward for each action The formulation turns out to be a simplified M_{BC} =(S, A, \mathcal{E}).

Our Contributions are summarized as follows.

- Frame text editing into an imitation game formally defined as an MDP, allowing the highest degrees of flexibility to design actions at the sequence level
- Involve Trajectory Generation (TG) to translate input-output data to state-action demonstrations for imitation learning
- Propose a corresponding Trajectory Augmentation (TA) technique to mitigate the distribution shift issue imitation learning often suffers from
- Introduce Dual Decoders (D2), a novel non-autoregressive decoder to boost imitation learning in terms of accuracy, efficiency, and robustness.
- The source code and datasets have been released to the public (please scan the QR codes at the bottom).

Trajectory Generation (TG)

sequence-to-sequence data into state-to-action demonstrations?

A: dynamic programming (DP) to calculate the minimum edit distance given the edit metric and back trace the editing operation after that.

Experimental Results

Tok. Acc. %

88.08

84.46

83.64

 82.32 ± 0.56

 $\mathbf{82.61} \pm \mathbf{0.53}$

 82.29 ± 0.39

 80.28 ± 0.76

 81.82 ± 0.68

 $\mathbf{83.94} \pm \mathbf{0.42} *$

 83.39 ± 0.74

 81.36 ± 0.40

 82.70 ± 0.42

AEC (N = 10, L = 5, D = 10K)

Seq. Acc. %

57.27

46.93

57.47

 41.72 ± 0.74

 45.81 ± 0.36

 45.99 ± 0.49

 44.91 ± 1.71

 $\textbf{45.97} \pm \textbf{1.07}$

 49.36 ± 1.23

 48.95 ± 0.65

 48.01 ± 1.07

 $\mathbf{49.64} \pm \mathbf{0.59}^*$

Trajectory Augmentation (TA)

Q: imitation learning often suffers Algorithm 2 Trajectory Augmentation (TA) from distribution shift and error accumulation. How to handle this?

A: expand the training set by actively exposing shifted states via TA that utilizes the divide-andconquer technique to drop out actions from demonstrations.

Input: States S, state s_t , expert states S^* , actions A, and environment \mathcal{E} . Output: Augmented states S. 1: **if** |A| > 1 **then** $\mathbf{a}_t \leftarrow \mathbf{A}.\mathrm{pop}(0)$ $\mathbf{s}_{t+1} \leftarrow \mathcal{E}(\mathbf{s}_t, \mathbf{a}_t)$ $\mathbf{S} \leftarrow \mathbf{S} \cup \mathrm{TA}(\mathbf{S}, \mathbf{s}_{t+1}, \mathbf{S}^*, \mathbf{A}, \mathcal{E})$ $\mathbf{A} \leftarrow \text{Update}(\mathbf{A}, \mathbf{s}_t, \mathbf{s}_{t+1})$ $\mathbf{S} \leftarrow \mathbf{S} \cup \mathrm{TA}(\mathbf{S}, \mathbf{s}_t, \mathbf{S}^*, \mathbf{A}, \mathcal{E})$ Skip action 7: else if $s_t \notin S^*$ then $\mathbf{S} \leftarrow \mathbf{S} \cup [\mathbf{s}_t]$ ▶ Merge shifted state 9: **end if** 10: return S

Dual Decoders (D2)

The conventional autoregressive decoder (a) compared with the proposed non-autoregressive D2 (b) in which the linear layer aligns the sequence length dimension for the subsequent parallel decoding.

Tok. Acc. %

84.60

87.00

98.63

 79.82 ± 0.37

 88.12 ± 2.37

 99.27 ± 0.32

 83.87 ± 1.60

 $\mathbf{99.51} \pm \mathbf{0.13}$

 88.05 ± 1.20

 99.44 ± 0.27

 90.38 ± 2.21

 $\mathbf{99.58} \pm \mathbf{0.15}^*$

AES (N = 100, L = 5, D = 10K)

Eq. Acc. %

25.20

36.67

87.73

 22.28 ± 0.52

 37.05 ± 6.57

 93.57 ± 2.91

 29.49 ± 2.51

 $\mathbf{95.67} \pm \mathbf{0.93}$

 38.39 ± 3.45

 95.24 ± 2.38

 47.91 ± 8.18

 $\mathbf{96.44} \pm \mathbf{1.29}^*$

Arithmetic Equation (AE) Benchmarks

Arithmetic Operators Restoration (AOR), Arithmetic Equation Simplification (AES), and Arithmetic Equation Correction (AEC)

AOR $(N = 10, L = 5, D = 10K)$			AES $(N = 100, L = 5, D = 10K)$			AEC ($N = 10$, $L = 5$, $D = 10$ K)				
Train/Valid/Te	est Train TA	Traj. Len.	Train/Valid/Test	Train TA	Traj. Len.	Train/Val	id/Test	Train TA	Traj. Len.	
7,000/1,500/1,5	00 145,176	6	7,000/1,500/1,500	65,948	6	7,000/1,50	0/1,500	19,764	4	
Term	$\mathbf{AOR}\ (N=10,$	10K) AES $(N = 100)$	AES $(N = 100, L = 5, D = 10K)$				AEC $(N = 10, L = 5, D = 10K)$			
Source x	36293		65 + (25 - 20)	65 + (25 - 20) - (64 + 32) + (83 - 24) = (-25 + 58)				- 2 * + 4 10 + 8 / 8 = 8		
Target y	- 3 - 6 / 2 + 9 =	3	65 + 5 - 96 + 5	65 + 5 - 96 + 59 = 33				-2 + 10 * 8 / 8 = 8		
State \mathbf{s}_t^*	-3-6/293		65 + 5 - (64 +	65 + 5 - (64 + 32) + (83 - 24) = (-25 + 58)				-2 + 410 + 8 / 8 = 8		
Action \mathbf{a}_t^*	$[POS_6, +]$		[POS_4, POS_	[POS_4, POS_8, 96]				[DELETE, POS_3, POS_3]		
Next State \mathbf{s}_{t+1}^*	-3-6/2+93		65 + 5 - 96 + (65 + 5 - 96 + (83 - 24) = (-25 + 58)				-2 + 10 + 8 / 8 = 8		
Shifted State \mathbf{s}_t'	- 3 - 6 / 2 9 = 3		65 + 5 - (64 + 32) + 59 = (-25 + 58)				- 2 + 4 10 * 8 / 8 = 8			

Eq. Acc. %

 93.57 ± 2.91

 $\mathbf{95.67} \pm \mathbf{0.93}$

 95.24 ± 2.38

 $f 96.44 \pm 1.29^*$

 92.35 ± 7.21

 $\mathbf{95.55} \pm \mathbf{2.28}$

 95.68 ± 2.49

 $\mathbf{95.97} \pm \mathbf{1.64}^*$

 83.79 ± 6.25

 $\mathbf{95.99} \pm \mathbf{0.81}$

 87.29 ± 3.70

 $\mathbf{96.55} \pm \mathbf{0.46}^*$

Tok. Acc. %

 99.27 ± 0.32

 $\mathbf{99.51} \pm \mathbf{0.13}$

 99.44 ± 0.27

 $\mathbf{99.58} \pm \mathbf{0.15}^*$

 99.08 ± 0.93

 $\mathbf{99.50} \pm \mathbf{0.27}$

 99.52 ± 0.29

 $\mathbf{99.54} \pm \mathbf{0.20}^*$

 98.06 ± 0.79

 $\mathbf{99.53} \pm \mathbf{0.14}$

 98.43 ± 0.49

 $\mathbf{99.61} \pm \mathbf{0.06}^*$

AR +TA 62.35 ± 0.61 32.28 ± 0.67 AR* +TA 33.01 ± 1.31 62.58 ± 0.63 NAR +TA 61.30 ± 0.86 32.04 ± 1.99 ${\bf 34.23 \pm 0.92^*}$ NAR* +TA $\mathbf{63.48} \pm \mathbf{0.38}^*$ GitHub

Tok. Acc. %

 60.30 ± 1.30

 61.85 ± 0.51

 62.51 ± 0.62

 59.72 ± 0.70

 $\mathbf{62.81} \pm \mathbf{0.89}$

Method

End2end

Tagging

AR

AR*

NAR

NAR*

Recurrence

Recurrence*

AOR (N = 10, L = 5, D = 10K)

Seq. Acc. %

 27.31 ± 1.33

 28.83 ± 1.14

 $\mathbf{30.85} \pm \mathbf{0.41}$

 24.16 ± 1.16

 30.13 ± 1.31

Eq. Acc. %

29.33

51.40

58.53

 56.73 ± 1.33

 59.09 ± 0.95

 61.35 ± 0.33

 51.64 ± 1.97

 $\mathbf{61.45} \pm \mathbf{1.61}$

 63.56 ± 1.06

 65.73 ± 1.38

 63.75 ± 2.08

 $\mathbf{67.13} \pm \mathbf{0.99}^*$

This work was supported by Shining Lab and Alibaba Group. @EMNLP2022

Design

Eq. Acc. %

57.73

47.33

58.27

 42.13 ± 0.75

 46.31 ± 0.31

 46.35 ± 0.52

 45.40 ± 1.78

 $\mathbf{46.43} \pm \mathbf{1.10}$

 49.83 ± 1.21

 49.47 ± 0.73

 48.47 ± 1.15

 $\mathbf{50.15} \pm \mathbf{0.55}^*$

Action Sequence

[Pos._L, Pos._R, Tok.]

[Pos._L, Tok., Pos._R]

[Tok., Pos._L, Pos._R]

Method

AR*

AR*

AR*

NAR*

AR* +TA

NAR* +TA

NAR*

AR* +TA

NAR* +TA

NAR*

AR* +TA

NAR* +TA

#Epochs