SK LEARN:- package should be installed.

#unwanted data should be removed first. #positive correlation "(+1)",BLUE COLOUR. #negative correlation "(-1)",BLACK COLOUR.

3STEPS:-

1)READ THE DATA. => data=pd.read_csv("____.csv") 2)DESCRIBE THE DATA. => data.describe() 3)INFO. => data.info()

RMSE:-Root Mean Square Error.

```
In [151]: import pandas as pd
In [152]: data=pd.read_csv("/home/placement/Desktop/ramaraju/fiat500.csv")
```

In [153]: data

Out[153]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	lon	price
0	1	lounge	51	882	25000	1	44.907242	8.611560	8900
1	2	pop	51	1186	32500	1	45.666359	12.241890	8800
2	3	sport	74	4658	142228	1	45.503300	11.417840	4200
3	4	lounge	51	2739	160000	1	40.633171	17.634609	6000
4	5	pop	73	3074	106880	1	41.903221	12.495650	5700
1533	1534	sport	51	3712	115280	1	45.069679	7.704920	5200
1534	1535	lounge	74	3835	112000	1	45.845692	8.666870	4600
1535	1536	pop	51	2223	60457	1	45.481541	9.413480	7500
1536	1537	lounge	51	2557	80750	1	45.000702	7.682270	5990
1537	1538	pop	51	1766	54276	1	40.323410	17.568270	7900

1538 rows × 9 columns

In [154]: data.describe()

Out[154]:

	ID	engine_power	age_in_days	km	previous_owners	lat	lon	price
count	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000
mean	769.500000	51.904421	1650.980494	53396.011704	1.123537	43.541361	11.563428	8576.003901
std	444.126671	3.988023	1289.522278	40046.830723	0.416423	2.133518	2.328190	1939.958641
min	1.000000	51.000000	366.000000	1232.000000	1.000000	36.855839	7.245400	2500.000000
25%	385.250000	51.000000	670.000000	20006.250000	1.000000	41.802990	9.505090	7122.500000
50%	769.500000	51.000000	1035.000000	39031.000000	1.000000	44.394096	11.869260	9000.000000
75%	1153.750000	51.000000	2616.000000	79667.750000	1.000000	45.467960	12.769040	10000.000000
max	1538.000000	77.000000	4658.000000	235000.000000	4.000000	46.795612	18.365520	11100.000000

```
In [155]: data.info
Out[155]: <bound method DataFrame.info of</pre>
                                                      ID
                                                            model engine_power age_in_days
                                                                                                         previous owners \
           0
                     1 lounge
                                           51
                                                         882
                                                               25000
                                           51
                                                       1186
                                                               32500
           1
                     2
                                                                                      1
                           pop
           2
                     3
                                           74
                                                       4658
                                                              142228
                                                                                      1
                         sport
           3
                        lounge
                                           51
                                                       2739
                                                              160000
                                                                                      1
                     4
           4
                     5
                                           73
                                                       3074
                                                              106880
                                                                                      1
                           pop
                           . . .
                                                         . . .
                                                                  . . .
                  . . .
                                           . . .
                                                                                    . . .
           1533
                 1534
                                           51
                                                       3712
                                                              115280
                         sport
                                                                                      1
           1534
                 1535
                        lounge
                                           74
                                                       3835
                                                              112000
                                                                                      1
           1535
                 1536
                                           51
                                                       2223
                                                               60457
                                                                                      1
                           pop
           1536
                 1537
                                           51
                                                       2557
                                                               80750
                       lounge
                                                                                      1
           1537
                 1538
                                           51
                                                       1766
                                                               54276
                                                                                      1
                           pop
                        lat
                                         price
                                    lon
                 44.907242
                              8.611560
                                          8900
           0
           1
                 45.666359
                             12.241890
                                          8800
                 45.503300
                             11.417840
                                          4200
           3
                 40.633171
                             17.634609
                                          6000
           4
                 41.903221
                             12.495650
                                          5700
                                           . . .
           . . .
           1533
                 45.069679
                              7.704920
                                          5200
           1534
                 45.845692
                              8.666870
                                          4600
           1535
                 45.481541
                              9.413480
                                          7500
           1536
                 45.000702
                              7.682270
                                          5990
           1537
                 40.323410
                             17.568270
                                          7900
           [1538 rows x 9 columns]>
```

Out[156]:

	model	engine_power	age_in_days	km	previous_owners	price
0	lounge	51	882	25000	1	8900
1	pop	51	1186	32500	1	8800
2	sport	74	4658	142228	1	4200
3	lounge	51	2739	160000	1	6000
4	pop	73	3074	106880	1	5700
1533	sport	51	3712	115280	1	5200
1534	lounge	74	3835	112000	1	4600
1535	pop	51	2223	60457	1	7500
1536	lounge	51	2557	80750	1	5990
1537	pop	51	1766	54276	1	7900

1538 rows × 6 columns

In [158]: data1

\sim			0.1	
Ωı	11	1 15	۱X,	
υı	a c		, 0	

	engine_power	age_in_days	km	previous_owners	price	model_lounge	model_pop	model_sport
0	51	882	25000	1	8900	1	0	0
1	51	1186	32500	1	8800	0	1	0
2	74	4658	142228	1	4200	0	0	1
3	51	2739	160000	1	6000	1	0	0
4	73	3074	106880	1	5700	0	1	0
1533	51	3712	115280	1	5200	0	0	1
1534	74	3835	112000	1	4600	1	0	0
1535	51	2223	60457	1	7500	0	1	0
1536	51	2557	80750	1	5990	1	0	0
1537	51	1766	54276	1	7900	0	1	0

1538 rows × 8 columns

```
In [159]: y=data1['price']
x=data1.drop('price',axis=1)
```

```
In [160]: y
Out[160]: 0
                  8900
                  8800
                  4200
          2
          3
                  6000
                  5700
          4
          1533
                  5200
          1534
                  4600
          1535
                  7500
          1536
                  5990
          1537
                  7900
          Name: price, Length: 1538, dtype: int64
```

In [161]: x

\sim			-	-	
11	117	- 1	- 11	h	
U	uι	- L	т,	U.	ы,

	engine_power	age_in_days	km	previous_owners	model_lounge	model_pop	model_sport
0	51	882	25000	1	1	0	0
1	51	1186	32500	1	0	1	0
2	74	4658	142228	1	0	0	1
3	51	2739	160000	1	1	0	0
4	73	3074	106880	1	0	1	0
1533	51	3712	115280	1	0	0	1
1534	74	3835	112000	1	1	0	0
1535	51	2223	60457	1	0	1	0
1536	51	2557	80750	1	1	0	0
1537	51	1766	54276	1	0	1	0

1538 rows × 7 columns

```
In [162]: #!pip install scikit-learn
          #just now installed .so, i kept in command.no need to use again once installed.
In [163]: #calling a function to split.
          #split enter data into ->67% training, ->23% testing.
          from sklearn.model selection import train test split
          x train,x test,y train,y test=train test split(x,y,test size=0.33,random state=42)
In [164]: x train.head(5)
Out[164]:
                engine power age in days
                                        km previous owners model lounge model pop model sport
           527
                        51
                                  425 13111
                                                       1
                                                                   1
                                                                             0
                                                                                        0
           129
                        51
                                 1127 21400
                                                       1
                                                                   1
                                                                             0
                                                                                        0
                                 2039 57039
           602
                        51
                                                       1
                                                                             1
                                                                                        0
           331
                        51
                                                       1
                                                                                        0
                                 1155 40700
                                                                   1
           323
                        51
                                  425 16783
                                                       1
                                                                   1
                                                                             0
                                                                                        0
In [165]: y_train.head(5)
Out[165]: 527
                  9990
           129
                  9500
                  7590
           602
                  8750
           331
           323
                  9100
          Name: price, dtype: int64
In [166]: from sklearn.linear model import LinearRegression
          reg=LinearRegression()
          reg.fit(x_train,y_train)
Out[166]: LinearRegression()
```

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

localhost:8888/notebooks/Desktop/ramaraju/19Monday.ipynb

```
In [167]: ypred=req.predict(x test)
In [168]: ypred
Out[168]: array([ 5867.6503378 ,
                                  7133.70142341,
                                                                   9723.28874535,
                                                   9866.35776216,
                                  9654.07582608,
                                                   9673.14563045, 10118.70728123,
                 10039.59101162,
                  9903.85952664.
                                  9351.55828437, 10434.34963575, 7732.26255693,
                                                   9662.90103518, 10373.20344286,
                  7698.67240131,
                                   6565.95240435,
                  9599.94844451,
                                  7699.34400418,
                                                   4941.33017994, 10455.2719478,
                                                   7529.06622456,
                                                                   9952.37340054,
                 10370.51555682, 10391.60424404,
                  7006.13845729,
                                  9000.1780961 ,
                                                   4798.36770637,
                                                                   6953.10376491,
                                                                   5229.18705519,
                  7810.39767825,
                                  9623.80497535,
                                                   7333.52158317,
                  5398.21541073,
                                   5157.65652129,
                                                   8948.63632836,
                                                                   5666.62365159,
                  9822.1231461 ,
                                  8258.46551788,
                                                   6279.2040404 ,
                                                                   8457.38443276,
                  9773.86444066,
                                  6767.04074749,
                                                   9182.99904787, 10210.05195479,
                                                                   8866.7826029 ,
                  8694.90545226, 10328.43369248,
                                                   9069.05761443,
                  7058.39787506,
                                  9073.33877162,
                                                   9412.68162121, 10293.69451263,
                                                   9785.95841801,
                                  6748.5794244 ,
                                                                   9354.09969973,
                 10072.49011135,
                  9507.9444386 , 10443.01608254,
                                                   9795.31884316,
                                                                   7197.84932877,
                 10108.31707235,
                                  7009.6597206 ,
                                                   9853.90699412,
                                                                   7146.87414965,
                  6417.69133992,
                                  9996.97382441,
                                                   9781.18795953,
                                                                   8515.83255277,
                                                   7768.57829985,
                                                                   6832.86406122,
                  8456.30006203,
                                  6499.76668237,
                  8347.96113362. 10439.02404036.
                                                   7356.43463051.
                                                                   8562.56562053.
In [169]: from sklearn.metrics import r2 score
          r2 score(y test,ypred)
Out[169]: 0.8415526986865394
In [170]: #RMSE
          from sklearn.metrics import mean squared error
          mean squared error(ypred,y test)
Out[170]: 581887.727391353
```

```
In [174]: Results=pd.DataFrame(columns=['price', 'predicted'])
    Results['price']=y_test
    Results['predicted']=ypred
    Reesults=Results.reset_index()
    Results['ID']=Results.index
    Results.head(15)
```

Out[174]:

	price	predicted	ID	
481	7900	5867.650338	481	
76	7900	7133.701423	76	
1502	9400	9866.357762	1502	
669	8500	9723.288745	669	
1409	9700	10039.591012	1409	
1414	9900	9654.075826	1414	
1089	9900	9673.145630	1089	
1507	9950	10118.707281	1507	
970	10700	9903.859527	970	
1198	8999	9351.558284	1198	
1088	9890	10434.349636	1088	
576	7990	7732.262557	576	
965	7380	7698.672401	965	
1488	6800	6565.952404	1488	
1432	8900	9662.901035	1432	

In [173]: #Results.plot()

In [175]: Results["predicted value"]=Results.apply(lambda row:row.price-row.predicted,axis=1)
Results

Out[175]:

	price	predicted	ID	predicted value
481	7900	5867.650338	481	2032.349662
76	7900	7133.701423	76	766.298577
1502	9400	9866.357762	1502	-466.357762
669	8500	9723.288745	669	-1223.288745
1409	9700	10039.591012	1409	-339.591012
291	10900	10032.665135	291	867.334865
596	5699	6281.536277	596	-582.536277
1489	9500	9986.327508	1489	-486.327508
1436	6990	8381.517020	1436	-1391.517020
575	10900	10371.142553	575	528.857447

508 rows × 4 columns

In []: