浙江工业大学 2014 - 2015 学年第一学期 概率论与数理统计试卷

姓名:	:	号:	_班级:	_任课教师:
一. 填空题 (每空 2 分, 共 22 分)				
1.	设 $P(AB) = I$	$P(ar{A}ar{B}),\ P(A\cup$	B) = 0.8, P(A)	= 0.6,则 $P(B) =$
	°			
2.	将 4 个球随机	放入3个盒子	中,至少有一个盒	盆子没有球的概率是
	o			
	随机变量 X $\hat{\lambda} = \underline{\qquad}$	$\sim P(\lambda), Y \sim$	$e(\lambda), P(X \le 1)$	$= 3P(Y \ge 1), \mathbb{M}$
4.		$far(X) = 1$, $E(X) = 1$, $\rho(X)$		4, $E(X+Y)^2 = 8$,
5.	设 EX = 3, A	$EX^2 = 15$,则	由切比雪夫不等這	$\stackrel{\text{d}}{\to} P(0 < X < 6) \ge$
6.	100 箱货物装-	·车,由中心极降		,标准差为 5 公斤。 的总重在 3900 公斤到 (2) = 0.9773)
7.	设总体 $X \sim N$	$(0,2^2)$, $X_1,X_2,$	\cdots, X_5 是其样本,	
		$U = \frac{1}{\sqrt{\Omega}}$	$\frac{A(X_1 - X_2)}{X_3 + X_4)^2 + BX_5^2}$	
	服从 t 分布, 其	自由度为	_,常数 A =	, B =o
8.			方差均未知, X_1 , 的双侧置信下限为	X_2, \cdots, X_n 是一组样

二. 选择题 (每题 3 分, 共 18 分)

- 1. 下面的性质和 A, B 互斥等价的是 ()。
 - A) $\bar{A} \subseteq B$
- B) $A \cup \bar{B} = \bar{B}$
- C) $B\bar{A} = A$ D) $\bar{A}\bar{B} = \emptyset$

A)
$$\begin{cases} 0, & x < 0 \\ 1 - e^{-x}, & x \ge 0 \end{cases}$$

B)
$$\begin{cases} 0, & x < 0 \\ 1 - e^{-2x}, & x \ge 0 \end{cases}$$

A)
$$\begin{cases} 0, & x < 0 \\ 1 - e^{-x}, & x \ge 0 \end{cases}$$
B)
$$\begin{cases} 0, & x < 0 \\ 1 - e^{-2x}, & x \ge 0 \end{cases}$$
C)
$$\begin{cases} 0, & x < 0 \\ 1 - e^{-2x}, & x \ge 0 \end{cases}$$
D)
$$\begin{cases} 0, & x < 0 \\ \sin x, & 0 \le x \le \frac{3\pi}{2} \end{cases}$$

$$1, & 0 < x \end{cases}$$

D)
$$\begin{cases} 0, & x < 0 \\ \sin x, & 0 \le x \le \frac{3\pi}{2} \\ 1, & \frac{3\pi}{2} < x \end{cases}$$

3. 设二维连续型随机变量 (X,Y) 的联合密度函数如下(其中 C 为常数

A)
$$\begin{cases} C(x+y), & 0 < x, y < 1 \\ 0, & 其它 \end{cases}$$

B)
$$\begin{cases} Cxy, & 0 < x, y < 1 \\ 0, & 其它 \end{cases}$$

A)
$$\begin{cases} C(x+y), & 0 < x, y < 1 \\ 0, & 其它 \end{cases}$$
 B)
$$\begin{cases} Cxy, & 0 < x, y < 1 \\ 0, & \exists C \end{cases}$$
 C)
$$\begin{cases} C(x+y), & 0 < x < y < 1 \\ 0, & \exists C \end{cases}$$
 D)
$$\begin{cases} Cxy, & 0 < x < y < 1 \\ 0, & \exists C \end{cases}$$

D)
$$\begin{cases} Cxy, & 0 < x < y < 1 \\ 0, & 其它 \end{cases}$$

- 4. 设 $(X,Y) \sim N(1,2,1^2,2^2;0.5)$, Z = aX + bY, 若 EZ = 1, X,Z 独 立,则()。
- A) $a=-1,\ b=1$ B) $a=-3,\ b=2$ C) $a=1,\ b=-1$ D) $a=2,\ b=-3$
- 5. 设总体 X 的期望 μ 已知,而均值 σ^2 未知, X_1, X_2, X_3 是 X 的样本, 下列不是统计量的是()。
 - A) $X_1 + X_2 + X_3$ B) $X_1 + EX_2$ C) $X_1 \sigma^2$ D) $X_1 + \sin(X_2)$
- 6. 设 $\hat{\theta}_1, \hat{\theta}_2$ 是参数 θ 的相互独立的无偏估计, $2Var(\hat{\theta}_1) = 3Var(\hat{\theta}_2)$,要 使得 $a\hat{\theta}_1 + b\hat{\theta}_2$ 是 θ 的最有效的无偏估计,则 ()。
- A) $a = \frac{3}{5}, b = \frac{2}{5}$ B) $a = \frac{2}{5}, b = \frac{3}{5}$ C) $a = \frac{9}{13}, b = \frac{4}{13}$ D) $a = \frac{4}{13}, b = \frac{9}{13}$

三. 解答题 (共60分)

1. (8分)已知某种病菌在所有人口中的带菌率为10%。检测时,带菌者呈阳性、阴性反应的概率为0.95和0.05,而不带菌者呈阳性、阴性反应的概率为0.01和0.99。现在某人经检验为阳性,问其为带菌者的概率是多少?

2. (8分)已知离散型随机变量 X 的概率函数(分布律)为

$$P(X = -1) = 0.3, P(X = 0) = 0.3, P(X = 2) = 0.4$$

求 Y = X(X+1) 的概率函数(分布律)和 EY^2 。

3.(12分) 连续型随机变量 X 的密度函数为

$$f(x) = \begin{cases} cx, & 0 < x < 1 \\ c(3-x), & 1 \le x < 2 \\ 0, & \sharp : \end{cases}$$

- 1) 验证常数 $c = \frac{1}{2}$;
- 2) 计算 X 的期望和方差;
- 3) 求 $Y = X^2$ 的密度函数。

4. (12 分) 二维连续型随机变量 (X,Y) 的联合密度函数为

$$f(x,y) = \begin{cases} A(2x+y), & 0 < x < y < 1 \\ 0,$$
 其它

- 1) 验证 $A = \frac{3}{2}$;
- 2) 计算 P(X + Y < 1);
- 3) 求 X,Y 的边缘分布,并判断 X,Y 是否独立。

5. (10分)设X的密度函数为

$$f(x) = \begin{cases} \lambda e^{-\lambda(x-2)}, & x \ge 2\\ 0, & x < 2 \end{cases}$$

其中 $\lambda > 0$ 未知。求 λ 的矩估计和极大似然估计。

6. $(10 \, \beta)$ 某种农作物的亩产量服从正态分布 $N(900, \sigma^2)$ (单位:千克),现在使用一种新的肥料,测得 10 亩农作物产量的样本均值为 $\bar{x}=980$,样本标准差 s=50,取显著水平 $\alpha=0.05$,该种肥料是否显著地提高了农作物的产量? ($t_{0.025}(9)=2.2622, t_{0.025}(10)=2.2281, t_{0.05}(9)=1.8331, t_{0.05}(10)=1.8125$)