Лабораторная работа № 4

ЧАСТОТНЫЙ МЕТОД СИНТЕЗА КОРРЕКТИРУЮЩИХ ЗВЕНЬЕВ

1.Цель работы

В данной лабораторной работе рассматривается синтез корректирующего звена для системы управления углом тангажа летательного аппарата. Углом тангажа называется угол между продольной осью летательного аппарата и горизонтальной плоскостью. Угол тангажа обозначается буквой θ . Управление величиной угла тангажа $y = \theta$ осуществляется путем изменения положения δ рулей хвостового оперения летательного аппарата (рулей высоты). Измерение угла тангажа $y = \theta$ осуществляется с помощью гироскопа, сигнал с выхода которого поступает на устройство сравнения величины угла тангажа $y=\theta$ с желаемым значением $r=\theta^d$. На рисунке 4.1 представлена структурная схема системы управления углом тангажа летательного аппарата без корректирующего звена, где сигнал величины отклонения угла тангажа от желаемого значения e = r - y (ошибка регулирования) поступает непосредственно на усилитель мощности с передаточной функцией $W_1(p) = k_1$. Сигнал u с выхода усилителя мощности поступает на привод рулей высоты. Математическая модель привода рулей высоты задана передаточной функцией $W_2(p)$. Динамическая модель летательного аппарата задана передаточной функцией $W_3(p)$.

Рис.4.1. Структурная схема системы управления углом тангажа летательного аппарата без корректирующего звена

2.Основные сведения

Первым этапом частотного метода синтеза является построение логарифмической амплитудно-частотной характеристики (ЛАЧХ) разомкнутой системы. Затем вычисляется коэффициент усиления k_k корректирующего звена в соответствии с требованием к точности в установившемся режиме и строится модифицированная ЛАЧХ разомкнутой системы

 $\overline{L}_{\partial\dot{a}c}(\omega) = L_{\partial\dot{a}c}(\omega) + 20\lg k_k$. Исходя из требований к качеству переходного процесса (t_Π и $\sigma\%$) строят среднечастотный участок желаемой ЛАЧХ, который имеет наклон минус $20\ \partial\delta/\partial e \kappa$ и пересекает ось абсцисс в точке $\lg \omega_c$, где ω_c - частота среза, $\omega_c = (0.6\ \div\ 0.9)\cdot\omega_\Pi$, ω_Π - частота положительности ВЧХ замкнутой системы. Для заданной величины перерегулирования $\sigma\%$, по номограммам (рис.4.2) определяют запас устойчивости по модулю ΔL , ограничивающий среднечастотный участок ЛАЧХ, и $\omega_\Pi = N\pi/t_\Pi$, где N- коэффициент пропорциональности, соответствующий найденному значению P_{max} .

Рис.4.2. Номограммы для определения параметров желаемой ЛАЧХ

В области высоких и низких частот желаемую ЛАЧХ разомкнутой системы сопрягают с модифицированной ЛАЧХ $\overline{L}_{\delta \dot{a} \dot{c}}(\omega)$ разомкнутой системы. Вычитая из желаемой ЛАЧХ модифицированную ЛАЧХ разомкнутой системы, получают ЛАЧХ нормированного корректирующего звена $\overline{L}_k(\omega) = L^{\alpha}_{\delta \dot{a} \dot{c}}(\omega) - \overline{L}_{\delta \dot{a} \dot{c}}(\omega)$, по которой определяют нормированную передаточную функцию корректирующего звена $\overline{W}_k(p)$. В результате получаем $W_k(p) = k_k \overline{W}_k(p)$. Структурная схема системы с учетом корректирующего звена показана на рис.4.3.

3. Методические указания

Для выполнения лабораторной работы необходимо предварительно построить ЛАЧХ и рассчитать параметры корректирующего звена в соответствии с требованиями к качеству процессов в замкнутой системе. Выбор коэффициента усиления k_k корректирующего звена в системе статиче-

ского типа обеспечивается в соответствием с требованием на относительную ошибку по входу r(t) в равновесном режиме равную 2%, а для астатических систем в соответствием с требованием на относительную скоростную ошибку по входу r(t) равную 10%. Моделирование процессов в системе управления выполняется с помощью пакета прикладных программ Matlab/Simulink.

Рис.4.3. Структурная схема системы управления углом тангажа летательного аппарата с корректирующим звеном

4.Порядок выполнения работы

- 4.1. Подготовить модель исследуемой системы (рис.4.1), параметры которой приведены в таблице 4.1. Получить графики переходных процессов для r(t), y(t), e(t), u(t), где r(t) = 1(t).
- 4.2. Построить ЛАЧХ и рассчитать параметры корректирующего звена в соответствии с требованиями к качеству процессов в замкнутой системе.

Таблина 4.1

	Помор ворноми								
Параметр	Номер варианта								_
	1	2	3	4	5	6	7	8	9
$W_2(p)$	$\frac{K_2}{p}$			$\frac{K_2}{T_{cont}}$			$\frac{K_2}{T_1}$		
	_			$T_2 p + 1$			$T_2 p + 1$		
$W_3(p)$	K_3			K_3			K_3		
	$T_3^2 p^2 + 2 d T_3 p + 1$			$p(T_3p+1)$			$T_3^2 p^2 + 2dT_3 p + 1$		
K_1	4.1	21	12	6	18	25	17	7	6
K_2	2.0	2.0	2.0	2.0	1.4	2.0	1.5	2.0	2.0
T_2	-	-	-	0.1	0.13	0.05	5.0	0.25	0.017
K_3	2.5	1.0	0.9	1.5	2.0	2.1	3.3	1.25	2.0
T_3	0.03	0.025	0.04	0.15	0.025	0.013	0.05	0.017	0.25
d	0.3	0.5	0.4	_	-	-	0.4	0.5	0.7
$t_{\Pi}[c]$	2	1	2	2	1	1	3	1	2
$\sigma\%$	10	20	20	10	20	20	20	10	20

4.3. Добавить корректирующее звено в систему управления. Получить графики переходных процессов в скорректированной системе для

- r(t), y(t), e(t), u(t), где r(t) = 1(t) и убедиться, что показатели качества переходных процессов соответствуют заданным. Путем численного моделирования проверить соответствие заданным расчетным требованиям величины ошибки в равновесном режиме (для статических систем) и величины скоростной ошибки (для астатических систем) в скорректированной системе.
- 4.4. Изменяя параметры корректирующего звена на 20 %, исследовать их влияние на показатели качества переходных процессов в системе управления. Сравнивать показатели качества переходных процессов с результатами п.4.3.

5.Содержание отчета

- 5.1. Цель работы.
- 5.2. Структурные схемы системы без коррекции и с коррекцией.
- 5.3. ЛАЧХ исходной системы, желаемая ЛАЧХ разомкнутой системы и ЛАЧХ корректирующего звена.
 - 5.4. Передаточная функция корректирующего звена.
 - 5.5. Переходные процессы по п.4.1, 4.3, 4.4.

6.Контрольные вопросы

- 6.1. Какая часть ЛАЧХ определяет свойства системы в статическом режиме?
 - 6.2. Какая часть ЛАЧХ определяет свойства системы в динамике?
- 6.3. Как по передаточной функции системы построить ее асимптотическую ЛАЧХ?
 - 6.4. Как учитываются внешние возмущения при синтезе регулятора?
- 6.5. Как связаны показатели качества замкнутой системы с видом желаемой ЛАЧХ?
- 6.6. Как по ЛАЧХ корректирующего звена восстановить его передаточную функцию?