COSC 290 Discrete Structures

Lecture 12: Proof by contrapositive

Prof. Michael Hay Monday, Sep. 25, 2017

Colgate University

Direct Proofs

Plan for today

- 1. Direct Proofs
- 2. Proof by contrapositive

Direct Proof Template

- · Claim: Write the theorem/claim to be proved, "If p, then q"
- · Proof:
 - · Given: Assume that p is true
 - · Want to show: a is true
 - · Write main body of proof... show how a logically follows from p
 - · End the body with... "[restate q], which is what was to be shown." This identifies for the reader that you reached what you set out to reach.
 - · Conclusion: "Therefore, [restate theorem]."

Applying Template to Problem 4.12

- Claim 4.12(a): "For any t > 0, if the minimum distance of code C is 2t + 1, then C cannot detect 2t + 1 errors."
- Proof:
 - · Given:
 - Let t be any integer such that t > o.
 - Assume that $C \subseteq \{0,1\}^n$ has minimum distance of 2t+1.
 - (Implicit assumption) n > 2t + 1
 - Want to show: C cannot detect 2t + 1 errors.
 - · What follows must apply to any t and C matching the given conditions!

Minimum Distance

The minimum distance of code C is the smallest Hamming distance between two distinct codewords in C.

$$\min \{ \Delta(x, y) : x, y \in C \text{ and } x \neq y \}$$

Example: this C has minimum distance 1:

 $c\in \mathcal{C}$

10 01 11

10 10 10 01 01 10

01 01 11

Recall from previous class

Last time, we showed that " $\mathcal C$ cannot detect 2t + 1 errors" is logically equivalent to the claim that there exists $c \in C$ and $c' \in \{0,1\}^n$ such that $0 < \Delta(c, c') \le 2t + 1$ and has Error(c') returns False (i.e., error detection concludes that no error has occurred).

This observation is the key to our proof strategy.

Example of "proof by construction" (p. 433): We find a pair c and c' and then show the pair satisfies above condition.

Rest of proof shown on board

Common mistakes

- · Showing error detection fails for a specific t.
- · Showing error detection fails for a specific coding scheme (and a specific t).

Applying Template to Problem 4.12

- Claim 4.12(b): "For any t ≥ 0, if the minimum distance of code C is 2t + 1, then C cannot correct t + 1 errors."
- Proof:
 - · Given:
 - Let t be any integer such that t > 0.
 - Assume that C ⊆ { 0,1}ⁿ has minimum distance of 2t + 1.
 - (Implicit assumption) n ≥ 2t + 1
 - Want to show: C cannot correct t + 1 errors.
 - What follows must apply to any t and C matching the given conditions!

Proof by contrapositive

Our strategy for 4.12(b)

By the same reasoning, "C cannot correct t+1 errors" is logically equivalent to the claim that there exists $c \in C$ and $c' \in \{0,1\}^n$ such that $0 < \Delta(c,c') \le t+1$ and error correction will fail (it will "correct" c' to some codeword other than c).

Again "proof by construction" (p. 433): find a pair c and c' and then show the pair satisfies above condition. Specifically, we'll show that received codeword $c' \not\in \mathcal{C}$ will be mistakenly "corrected" to some other codeword $c'' \in \mathcal{C}$.

Rest of proof shown on board

Proof by contrapositive

To prove a proposition of the form

$$\forall x : P(x) \implies Q(x)$$

you can equivalently prove its contrapositive form

$$\forall x: \neg Q(x) \implies \neg P(x)$$

Procedure for proof by contrapositive

- Derive contrapositive form ¬q ⇒ ¬p.
- 2. Assume q is false (take it as "given").
- 3. Show that $\neg p$ logically follows.

Truth table for implication

р	q	¬q	$\neg p$	$\neg q \implies \neg p$
Т	Т	F	F	T
T	F	T	F	F
F	Т	F	T	T
F	F	T	T	T

Rule this row out!

10

Proof by Contrapositive Template

- Claim: Write the theorem/claim to be proved, "If p, then q"
- Proof: "We will prove the contrapositive: [state claim in contrapositive form]" It's important to say this! Why?
 - . Given: Assume that ¬a is true
 - · Want to show: ¬p is true
 - · Write main body of proof...
 - End the body with... "[restate ¬p], which is what was to be shown."
 - Conclusion: "Therefore by proving its contrapositive, we have shown [restate theorem]."

Example

- Claim: "Let x, y be numbers such that $x \neq 0$. Then either $x + y \neq 0$ or $x y \neq 0$.
- · Proof: "We will prove the contrapositive"
 - · Given: Assume that ...
 - Want to show: ...
 - [Proof details]
 - Conclusion: "Therefore by proving its contrapositive, we have shown ..."

11

Poll: What is given?

- Claim: "Let x, y be numbers such that $x \neq 0$. Then either $x + y \neq 0$ or $x y \neq 0$.
- Proof: "We will prove the contrapositive"
 Given: Assume that ... what goes here?
- A) $x + y \neq 0$ or $x y \neq 0$
- B) x + y = 0 or x y = 0
- C) x + y = 0 and x y = 0
- D) x = 0
- E) None of above / More than one

When to use proof by contrapositive?

Since $p \implies q$ is logically equivalent to $\neg q \implies \neg p$, it shouldn't matter whether you use direct proof or proof by contrapositive. In practice, can try both and see which one gives you a better starting place (e.g., more information).

Common use case: proving $p \iff q$

- $p \iff q \equiv (p \implies q) \land (q \implies p)$
- $q \implies p \equiv \neg p \implies \neg q$
- So prove $p \iff q$ by proving $p \implies q$ and then $\neg p \implies \neg q$. In both cases you get to start with p and work towards q.

Poll: What do we want to show?

- Claim: "Let x, y be numbers such that $x \neq 0$. Then either $x + y \neq 0$ or $x y \neq 0$.
- · Proof: "We will prove the contrapositive"
 - Given: Assume that x + y = o and x y = o.
 Want to show: ... what goes here?
- A) $x \neq 0$
- B) x = 0
- C) x = 0 and y = 0
- D) $x + y \neq 0$ or $x y \neq 0$
- E) None of above / More than one