

Marked up Version of SEQUENCE LISTING section

SEQUENCE LISTING

<110> HUANG, QIHONG
REED, JOHN C.
DEVERAUX, QUINN L.
MAEDA, SUSUMU

<120> INHIBITOR OF APOPTOSIS PROTEINS AND NUCLEIC ACIDS AND
METHODS FOR MAKING AND USING THEM

<130> 087102/027 2537

<140> 10/041,859
<141> 2002-01-07

<150> 60/260,478
<151> 2001-01-08

<160> 27

<170> PatentIn Ver. 3.3

<210> 1
<211> 3773
<212> DNA
<213> Bombyx mori

<220>
<221> CDS
<222> (2733)..(3770)

<400> 1
cattattaaa ctcacttcac ttcggtagtg tgaatgttaa cgtgaaactc cgcgctttc 60
tttagttgct actcggttct gtctggctgc gttgacgtt tgaaacttca tactattttg 120
ttcttgcaag acgagtgtca gtgattaaac aaaaacataa gaatagacgt tttatgcgtt 180
actaaaaaaaaa aggaaaaata taccaatgga gttgacgaaa gttgctaaaa atggagctgc 240
cgccacgttg gtgatgttaa aaaatgcgcg ggatgcaaaa atgcgaccct tcattggtcc 300
gctcatgtta tcctcgttg agtcttcaac gacatccaca ctccgtcac ctgcgtcgtc 360
agctgataaa acggataatc acgacacatt caacttcctt cctgatatgc ccgacatgctg 420
tcgtgaagag gaacgtctga aaacatttga tcagtggccc gttacgttt tgacgccgga 480
acaattggcc cgcaacggat tctactacct cggtcgccggc gacgaagtgt gctgtgctt 540
ctgtaaggta gaaattatga ggtgggtcga aggcgacgat cctgcccggc atcatcgag 600
atggcgccc cagtgtccct ttgtacgaaa acaaatgtat gccaacgctg ggggagaggc 660
gaccgctgtc ggtagagacg aatgtggggc cagtgcggcc acgcagcctc cccgcatgcc 720
cgccccgtg cacgcgcggc actccaccga ggccgcgcgg ctcgcaccc tcaaggactg 780
gccgagacgt atgcgccaaa aacccgagga actggcagag gccggattct tctatacagg 840
ccaaggtgac aaaacgaaat gcttctattg cgacggaggg ctaaaagatt gggaaagcga 900

tgacgttccg tggAACAGC acGCCAGATG gttcgaccgc tgCGCGTACG tgcaatttgt 960
gaaaggacgt gactacattc agaaggtgaa gtcggaggcc actgcgatat ctgctagcga 1020
agaagaacag gccGCCACCA atgattcgac taagaacgtc gCCCAAGAGG gcGAGAAACA 1080
tttggatgac tctaaaatat gtAAAATATG ttattccgag gagcgtAACG tgtgcttcgt 1140
gccgtgcggc cacgtggtgg cgtgcGCCAA gtgcgcgCTG tcgacggaca agtgcCcCAt 1200
gtgtcgCagg acgttcacga atgcggtgCg gctctacttc tcgtgaaagg accCtcCtcg 1260
cgagctgtat actaatcact tcaccggcg gCcCtggAgc gtgctgAAAC caccCttcga 1320
acgaaaccgc gtatCctgtg attttacat taaataaatt tacAAATTGA tagcggtggg 1380
gcaatgtata ggaactcgTC agaactcgCg agttgacgtg caggaaggag tttagtgattt 1440
gtAAACTTGT aaactgatgt tgAAATGATT ttatttatta tttaAAATTc taatgacAAA 1500
gtgtAAGTAA atAAATgtac atattattt agattatcag tttgtcccac cgacAAAGt 1560
gaaatgtaca taggtgtttt catacactt caacagtCga agacCttCtt tttgaatttA 1620
aggatata tttatacata taaattaaaa tttaacgag acatcaatAt aaAtggtttA 1680
acaacttatt tatacactga aatcaagtga agtgtAACAt ggtctgAAgA atgtttact 1740
gatttcactt cccctgttga agtataaaaa ttctaatgtA aatccagagt ttAAAtgtcg 1800
tcataattAA tataagAAAC aagtttacg cttttttgc ttgAAAAAtc ttataattgtA 1860
ttcaggaatt atttaatgtg actatattt gttcctgtAA ataacataat atatactatt 1920
tattgattAA ttctgacata atttatggca attccgtAAG atacaatCCA atacttattt 1980
catgtAACTC acttcaAAAt agttGAATgt gtgggtgtgAt tataatgttA aatgtctAA 2040
tttataattAA attgagcAAA gttgcatttA atgtatgAAAt actaatttattt gttttaacAA 2100
aacatttAAAG tataatctgc tctgtgattt taatgttatCA agAAATAACC ccaacacCtt 2160
aattgaagtt ttacattgt tgctgataAA AAAAAtcata tcaattacat ttacaagtca 2220
attttAAttG ttcaGAAACC aaacacaatt ttgttagtga ctcctgCtt acgaagttagt 2280
atgacAAACC agtgtttCgt tgattgcatt aatttagttg taaccaatAt ttacactcaa 2340
cattttAAGA tgcattgag gaattctgtA taaaaatgg gaatttattt attgggttat 2400
aatacaatCC cgcacaAGCC atttgcaAGt ttctacacAA ctaAAACgtA ttgtatccat 2460
tatctatacg tcatacatt aatataact tgctttagca aacatatatt cacgaataAC 2520
ttcacaatAt attttgtAA atcaacatAt taatggtaat taacgaatcg cacggtaacAA 2580
atagtgataA ctgctgagtg cactaaatAG taagagaatt tatttAAACA gtCAAATTt 2640
gtttcataAG tagttatttC atactgttga atgttattca ttAAAACAAA tgTTAAAGCA 2700

aaaaaaaaaaa aaaaaagtcg tgactggaa aa atg gag ttg acg aaa gtt gct Met Glu Leu Thr Lys Val Ala	1 5	2753
aaa aat gga gct gcc gcc acg ttg gtg atg tta aaa aat gcg cg gat Lys Asn Gly Ala Ala Ala Thr Leu Val Met Leu Lys Asn Ala Arg Asp	10 15 20	2801
gca aaa atg cga cct ttc att ggt ccg ctc atg tta tcc tcg tgt gag Ala Lys Met Arg Pro Phe Ile Gly Pro Leu Met Leu Ser Ser Cys Glu	25 30 35	2849
tct tca acg aca tcc aca ctc ccg tca cct tcg tcg tca gct gat aaa Ser Ser Thr Thr Ser Leu Pro Ser Pro Ser Ser Ala Asp Lys	40 45 50 55	2897
acg gat aat cac gac aca ttc aac ttc ctt cct gat atg ccc gac atg Thr Asp Asn His Asp Thr Phe Asn Phe Leu Pro Asp Met Pro Asp Met	60 65 70	2945
cgt cgt gaa gag gaa cgt ctg aaa aca ttt gat cag tgg ccc gtt acg Arg Arg Glu Glu Arg Leu Lys Thr Phe Asp Gln Trp Pro Val Thr	75 80 85	2993
ttt ttg acg ccg gaa caa ttg gcc cgc aac gga ttc tac tac ctc ggt Phe Leu Thr Pro Glu Gln Leu Ala Arg Asn Gly Phe Tyr Tyr Leu Gly	90 95 100	3041
cgc ggc gac gaa gtg tgc tgt gct ttc tgt aag gta gaa att atg agg Arg Gly Asp Glu Val Cys Cys Ala Phe Cys Lys Val Glu Ile Met Arg	105 110 115	3089
tgg gtc gaa ggc gac gat cct gcc gat cat cgg aga tgg gcg ccc Trp Val Glu Gly Asp Asp Pro Ala Ala Asp His Arg Arg Trp Ala Pro	120 125 130 135	3137
cag tgt ccc ttt gta cga aaa caa atg tat gcc aac gct ggg gga gag Gln Cys Pro Phe Val Arg Lys Gln Met Tyr Ala Asn Ala Gly Gly Glu	140 145 150	3185
gcg acc gct gtc ggt aga gac gaa tgt ggg gcc agt gcg gcc acg cag Ala Thr Ala Val Gly Arg Asp Glu Cys Gly Ala Ser Ala Ala Thr Gln	155 160 165	3233
cct ccc cgc atg ccc ggc ccc gtg cac gcg cgg tac tcc acc gag gcc Pro Pro Arg Met Pro Gly Pro Val His Ala Arg Tyr Ser Thr Glu Ala	170 175 180	3281
gcg cgg ctc gcc acc ttc aag gac tgg ccg aga cgt atg cgc caa aaa Ala Arg Leu Ala Thr Phe Lys Asp Trp Pro Arg Arg Met Arg Gln Lys	185 190 195	3329
ccc gag gaa ctg gca gag gcc gga ttc ttc tat aca ggc caa ggt gac Pro Glu Glu Leu Ala Glu Ala Gly Phe Phe Tyr Thr Gly Gln Gly Asp	200 205 210 215	3377
aaa acg aaa tgc ttc tat tgc gac gga ggg cta aaa gat tgg gaa agc Lys Thr Lys Cys Phe Tyr Cys Asp Gly Gly Leu Lys Asp Trp Glu Ser	220 225 230	3425
gat gac gtt ccg tgg gaa cag cac gcc aga tgg ttc gac cgc tgc gcg		3473

Asp	His	Arg	Arg	Trp	Ala	Pro	Gln	Cys	Pro	Phe	Val	Arg	Lys	Gln	Met
130					135							140			
Tyr	Ala	Asn	Ala	Gly	Gly	Glu	Ala	Thr	Ala	Val	Gly	Arg	Asp	Glu	Cys
145				150						155					160
Gly	Ala	Ser	Ala	Ala	Thr	Gln	Pro	Pro	Arg	Met	Pro	Gly	Pro	Val	His
				165					170					175	
Ala	Arg	Tyr	Ser	Thr	Glu	Ala	Ala	Arg	Leu	Ala	Thr	Phe	Lys	Asp	Trp
				180				185					190		
Pro	Arg	Arg	Met	Arg	Gln	Lys	Pro	Glu	Glu	Leu	Ala	Glu	Ala	Gly	Phe
			195				200					205			
Phe	Tyr	Thr	Gly	Gln	Gly	Asp	Lys	Thr	Lys	Cys	Phe	Tyr	Cys	Asp	Gly
	210				215					220					
Gly	Leu	Lys	Asp	Trp	Glu	Ser	Asp	Asp	Val	Pro	Trp	Glu	Gln	His	Ala
	225				230				235				240		
Arg	Trp	Phe	Asp	Arg	Cys	Ala	Tyr	Val	Gln	Leu	Val	Lys	Gly	Arg	Asp
			245					250				255			
Tyr	Ile	Gln	Lys	Val	Lys	Ser	Glu	Ala	Thr	Ala	Ile	Ser	Ala	Ser	Glu
			260					265				270			
Glu	Glu	Gln	Ala	Ala	Thr	Asn	Asp	Ser	Thr	Lys	Asn	Val	Ala	Gln	Glu
			275				280				285				
Gly	Glu	Lys	His	Leu	Asp	Asp	Ser	Lys	Ile	Cys	Lys	Ile	Cys	Tyr	Ser
	290				295				300						
Glu	Glu	Arg	Asn	Val	Cys	Phe	Val	Pro	Cys	Gly	His	Val	Val	Ala	Cys
	305				310				315				320		
Ala	Lys	Cys	Ala	Leu	Ser	Thr	Asp	Lys	Cys	Pro	Met	Cys	Arg	Arg	Thr
			325					330				335			
Phe	Thr	Asn	Ala	Val	Arg	Leu	Tyr	Phe	Ser						
			340					345							

<210> 3
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic primer

<220>
<221> modified_base
<222> (3)
<223> a, c, g or t

<220>
<221> modified_base
<222> (6)
<223> a, c, g or t

```
<220>
<221> modified_base
<222> (9)
<223> a, c, g or t

<220>
<221> modified_base
<222> (12)
<223> a, c, g or t

<400> 3
gcngangcng gnttytta
```

20

```
<210> 4
<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic primer

<220>
<221> modified_base
<222> (3)
<223> a, c, g or t

<220>
<221> modified_base
<222> (9)
<223> a, c, g or t

<220>
<221> modified_base
<222> (15)
<223> a, c, g or t

<400> 4
acnacrtgnc crcangg
```

17

```
<210> 5
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic primer

<400> 5
ctgttcccac ggaacgac
```

18

```
<210> 6
<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic primer
```

<400> 6
gccaccaatg attcgac

17

<210> 7
<211> 28
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
conserved motif

<220>
<221> MOD_RES
<222> (2)..(3)
<223> Variable residue

<220>
<221> MOD_RES
<222> (5)..(10)
<223> Variable residue

<220>
<221> MOD_RES
<222> (12)..(20)
<223> Variable residue

<220>
<221> MOD_RES
<222> (22)..(27)
<223> Variable residue

<400> 7
Cys Xaa Xaa Cys Xaa Xaa Xaa Xaa Xaa Xaa Trp Xaa Xaa Xaa Xaa Xaa
1 5 10 15

Xaa Xaa Xaa Xaa His Xaa Xaa Xaa Xaa Xaa Cys
20 25

<210> 8
<211> 172
<212> PRT
<213> Bombyx mori

<400> 8
Glu Glu Glu Arg Leu Lys Thr Phe Asp Gln Trp Pro Val Thr Phe Leu
1 5 10 15

Thr Pro Glu Gln Leu Ala Arg Asn Gly Phe Tyr Tyr Leu Gly Arg Gly
20 25 30

Asp Glu Val Cys Cys Ala Phe Cys Lys Val Glu Ile Met Arg Trp Val
35 40 45

Glu Gly Asp Asp Pro Ala Ala Asp His Arg Arg Trp Ala Pro Gln Cys
50 55 60

Pro Phe Val Glu Ala Ala Arg Leu Ala Thr Phe Lys Asp Trp Pro Arg

65	70	75	80
Arg Met Arg Gln Lys Pro Glu Glu Leu Ala Glu Ala Gly Phe Phe Tyr			
85		90	95
Thr Gly Gln Gly Asp Lys Thr Lys Cys Phe Tyr Cys Asp Gly Gly Leu			
100		105	110
Lys Asp Trp Glu Ser Asp Asp Val Pro Trp Glu Gln His Ala Arg Trp			
115		120	125
Phe Asp Arg Cys Ala Tyr Val Leu Cys Lys Ile Cys Tyr Ser Glu Glu			
130		135	140
Arg Asn Val Cys Phe Val Pro Cys Gly His Val Val Ala Cys Ala Lys			
145		150	155
Cys Ala Leu Ser Thr Asp Lys Cys Pro Met Cys Arg			
165		170	

<210> 9
 <211> 172
 <212> PRT
 <213> Spodoptera frugiperda

<400> 9			
Glu Asp Glu Arg Met Lys Thr Phe Glu Lys Trp Pro Val Ser Phe Leu			
1	5	10	15
Ser Gly Glu Gln Leu Ala Arg Asn Gly Phe Tyr Tyr Leu Gly Arg Arg			
20		25	30
Asp Glu Ala Arg Cys Ala Phe Cys Lys Val Glu Ile Met Arg Trp Val			
35		40	45
Glu Gly Asp Asp Pro Ala Lys Asp His Gln Arg Trp Ala Pro Gln Cys			
50		55	60
Pro Phe Val Glu Ala Ala Arg Leu Arg Ser Phe Lys Asp Trp Pro Arg			
65		70	75
80			
Cys Met Arg Gln Lys Pro Glu Glu Leu Ala Glu Ala Gly Phe Phe Tyr			
85		90	95
Thr Gly Gln Gly Asp Lys Thr Lys Cys Phe Tyr Cys Asp Gly Gly Leu			
100		105	110
Lys Asp Trp Glu Asn His Asp Val Pro Trp Glu Gln His Ala Arg Trp			
115		120	125
Phe Asp Arg Cys Ala Tyr Val Leu Cys Lys Ile Cys Tyr Ala Glu Glu			
130		135	140
Arg Asn Val Cys Phe Val Pro Cys Gly His Val Val Ala Cys Ala Lys			
145		150	155
Cys Ala Leu Ala Ala Asp Lys Cys Pro Met Cys Arg			
165		170	

<210> 10
<211> 172
<212> PRT
<213> Trichoplusia ni

<400> 10
Glu Asp Glu Arg Ile Lys Thr Phe Glu Lys Trp Pro Val Ser Phe Leu
1 5 10 15

Ser Gly Glu Gln Leu Ala Arg Asn Gly Phe Tyr Tyr Leu Gly Arg Gly
20 25 30

Asp Glu Val Arg Cys Ala Phe Cys Lys Val Glu Ile Met Arg Trp Val
35 40 45

Glu Gly Asp Asp Pro Ala Lys Asp His Gln Arg Trp Ala Pro Gln Cys
50 55 60

Pro Phe Val Glu Ala Ala Arg Leu Arg Ser Phe Lys Asp Trp Pro Arg
65 70 75 80

Cys Met Arg Gln Lys Pro Glu Glu Leu Ala Glu Ala Gly Phe Phe Tyr
85 90 95

Thr Gly Gln Gly Asp Lys Thr Lys Cys Phe Tyr Cys Asp Gly Gly Leu
100 105 110

Lys Asp Trp Glu Asn Asp Asp Val Pro Trp Glu Gln His Ala Arg Trp
115 120 125

Phe Asp Arg Cys Ala Tyr Val Leu Cys Lys Ile Cys Phe Ala Glu Glu
130 135 140

Arg Asn Val Cys Phe Val Pro Cys Gly His Val Val Ala Cys Ala Lys
145 150 155 160

Cys Ala Leu Ala Ala Asp Lys Cys Pro Met Cys Arg
165 170

<210> 11
<211> 172
<212> PRT
<213> Cydia pomonella granulovirus

<400> 11
Glu Asp Val Arg Leu Asn Thr Phe Glu Lys Trp Pro Val Ser Phe Leu
1 5 10 15

Ser Pro Glu Thr Met Ala Lys Asn Gly Phe Tyr Tyr Leu Gly Arg Ser
20 25 30

Asp Glu Val Arg Cys Ala Phe Cys Lys Val Glu Ile Met Arg Trp Lys
35 40 45

Glu Gly Glu Asp Pro Ala Ala Asp His Lys Lys Trp Ala Pro Gln Cys
50 55 60

Pro Phe Val Glu Ala Ala Arg Val Lys Ser Phe His Asn Trp Pro Arg
65 70 75 80

Cys Met Lys Gln Arg Pro Glu Gln Met Ala Asp Ala Gly Phe Phe Tyr
85 90 95

Thr Gly Tyr Gly Asp Asn Thr Lys Cys Phe Tyr Cys Asp Gly Gly Leu
100 105 110

Lys Asp Trp Glu Pro Glu Asp Val Pro Trp Glu Gln His Val Arg Trp
115 120 125

Phe Asp Arg Cys Ala Tyr Val Leu Cys Lys Ile Cys Tyr Val Glu Glu
130 135 140

Cys Ile Val Cys Phe Val Pro Cys Gly His Val Val Ala Cys Ala Lys
145 150 155 160

Cys Ala Leu Ser Val Asp Lys Cys Pro Met Cys Arg
165 170

<210> 12

<211> 172

<212> PRT

<213> Orgyia pseudotsugata

<400> 12

Lys Ala Ala Arg Leu Gly Thr Tyr Thr Asn Trp Pro Val Gln Phe Leu
1 5 10 15

Glu Pro Ser Arg Met Ala Ala Ser Gly Phe Tyr Tyr Leu Gly Arg Gly
20 25 30

Asp Glu Val Arg Cys Ala Phe Cys Lys Val Glu Ile Thr Asn Trp Val
35 40 45

Arg Gly Asp Asp Pro Glu Thr Asp His Lys Arg Trp Ala Pro Gln Cys
50 55 60

Pro Phe Val Glu Ala Ala Arg Leu Arg Thr Phe Ala Glu Trp Pro Arg
65 70 75 80

Gly Leu Lys Gln Arg Pro Glu Glu Leu Ala Glu Ala Gly Phe Phe Tyr
85 90 95

Thr Gly Gln Gly Asp Lys Thr Arg Cys Phe Cys Cys Asp Gly Gly Leu
100 105 110

Lys Asp Trp Glu Pro Asp Asp Ala Pro Trp Gln Gln His Ala Arg Trp
115 120 125

Tyr Asp Arg Cys Glu Tyr Val Leu Cys Lys Ile Cys Leu Gly Ala Glu
130 135 140

Lys Thr Val Cys Phe Val Pro Cys Gly His Val Val Ala Cys Gly Lys
145 150 155 160

Cys Ala Ala Gly Val Thr Thr Cys Pro Val Cys Arg
165 170

<210> 13

<211> 172

<212> PRT

<213> Drosophila melanogaster

<400> 13

Glu Glu Thr Arg Leu Lys Thr Phe Thr Asp Trp Pro Leu Asp Trp Leu
1 5 10 15

Asp Lys Arg Gln Leu Ala Gln Thr Gly Met Tyr Phe Thr His Ala Gly
20 25 30

Asp Lys Val Lys Cys Phe Phe Cys Gly Val Glu Ile Gly Cys Trp Glu
35 40 45

Gln Glu Asp Gln Pro Val Pro Glu His Gln Arg Trp Ser Pro Asn Cys
50 55 60

Pro Leu Leu Glu Thr Ala Arg Leu Arg Thr Phe Glu Ala Trp Pro Arg
65 70 75 80

Asn Leu Lys Gln Lys Pro His Gln Leu Ala Glu Ala Gly Phe Phe Tyr
85 90 95

Thr Gly Val Gly Asp Arg Val Arg Cys Phe Ser Cys Gly Gly Leu
100 105 110

Met Asp Trp Asn Asp Asn Asp Glu Pro Trp Glu Gln His Ala Leu Trp
115 120 125

Leu Ser Gln Cys Arg Phe Val Leu Cys Lys Ile Cys Tyr Gly Ala Glu
130 135 140

Tyr Asn Thr Ala Phe Leu Pro Cys Gly His Val Val Ala Cys Ala Lys
145 150 155 160

Cys Ala Ser Ser Val Thr Lys Cys Pro Leu Cys Arg
165 170

<210> 14

<211> 68

<212> PRT

<213> Bombyx mori

<400> 14

Glu Ala Ala Arg Leu Ala Thr Phe Lys Asp Trp Pro Arg Arg Met Arg
1 5 10 15

Gln Lys Pro Glu Glu Leu Ala Glu Ala Gly Phe Phe Tyr Thr Gly Gln
20 25 30

Gly Asp Lys Thr Lys Cys Phe Tyr Cys Asp Gly Gly Leu Lys Asp Trp
35 40 45

Glu Ser Asp Asp Val Pro Trp Glu Gln His Ala Arg Trp Phe Asp Arg
50 55 60

Cys Ala Tyr Val
65

<210> 15

<211> 68
<212> PRT
<213> Spodoptera frugiperda

<400> 15
Glu Ala Ala Arg Leu Arg Ser Phe Lys Asp Trp Pro Arg Cys Met Arg
1 5 10 15

Gln Lys Pro Glu Glu Leu Ala Glu Ala Gly Phe Phe Tyr Thr Gly Gln
20 25 30

Gly Asp Lys Thr Lys Cys Phe Tyr Cys Asp Gly Gly Leu Lys Asp Trp
35 40 45

Glu Asn His Asp Val Pro Trp Glu Gln His Ala Arg Trp Phe Asp Arg
50 55 60

Cys Ala Tyr Val
65

<210> 16
<211> 68
<212> PRT
<213> Trichoplusia ni

<400> 16
Glu Ala Ala Arg Leu Arg Ser Phe Lys Asp Trp Pro Arg Cys Met Arg
1 5 10 15

Gln Lys Pro Glu Glu Leu Ala Glu Ala Gly Phe Phe Tyr Thr Gly Gln
20 25 30

Gly Asp Lys Thr Lys Cys Phe Tyr Cys Asp Gly Gly Leu Lys Asp Trp
35 40 45

Glu Asn Asp Asp Val Pro Trp Glu Gln His Ala Arg Trp Phe Asp Arg
50 55 60

Cys Ala Tyr Val
65

<210> 17
<211> 68
<212> PRT
<213> Cydia pomonella granulovirus

<400> 17
Glu Ala Ala Arg Val Lys Ser Phe His Asn Trp Pro Arg Cys Met Lys
1 5 10 15

Gln Arg Pro Glu Gln Met Ala Asp Ala Gly Phe Phe Tyr Thr Gly Tyr
20 25 30

Gly Asp Asn Thr Lys Cys Phe Tyr Cys Asp Gly Gly Leu Lys Asp Trp
35 40 45

Glu Pro Glu Asp Val Pro Trp Glu Gln His Val Arg Trp Phe Asp Arg
50 55 60

Cys Ala Tyr Val
65

<210> 18
<211> 68
<212> PRT
<213> Orgyia pseudotsugata

<400> 18
Glu Ala Ala Arg Leu Arg Thr Phe Ala Glu Trp Pro Arg Gly Leu Lys
1 5 10 15

Gln Arg Pro Glu Glu Leu Ala Glu Ala Gly Phe Phe Tyr Thr Gly Gln
20 25 30

Gly Asp Lys Thr Arg Cys Phe Cys Cys Asp Gly Gly Leu Lys Asp Trp
35 40 45

Glu Pro Asp Asp Ala Pro Trp Gln Gln His Ala Arg Trp Tyr Asp Arg
50 55 60

Cys Glu Tyr Val
65

<210> 19
<211> 68
<212> PRT
<213> Drosophila melanogaster

<400> 19
Glu Thr Ala Arg Leu Arg Thr Phe Glu Ala Trp Pro Arg Asn Leu Lys
1 5 10 15

Gln Lys Pro His Gln Leu Ala Glu Ala Gly Phe Phe Tyr Thr Gly Val
20 25 30

Gly Asp Arg Val Arg Cys Phe Ser Cys Gly Gly Leu Met Asp Trp
35 40 45

Asn Asp Asn Asp Glu Pro Trp Glu Gln His Ala Leu Trp Leu Ser Gln
50 55 60

Cys Arg Phe Val
65

<210> 20
<211> 37
<212> PRT
<213> Bombyx mori

<400> 20
Leu Cys Lys Ile Cys Tyr Ser Glu Glu Arg Asn Val Cys Phe Val Pro
1 5 10 15

Cys Gly His Val Val Ala Cys Ala Lys Cys Ala Leu Ser Thr Asp Lys
20 25 30

Cys Pro Met Cys Arg

<210> 21
<211> 37
<212> PRT
<213> Spodoptera frugiperda

<400> 21
Leu Cys Lys Ile Cys Tyr Ala Glu Glu Arg Asn Val Cys Phe Val Pro
1 5 10 15
Cys Gly His Val Val Ala Cys Ala Lys Cys Ala Leu Ala Ala Asp Lys
20 25 30
Cys Pro Met Cys Arg
35

<210> 22
<211> 37
<212> PRT
<213> Trichoplusia ni

<400> 22
Leu Cys Lys Ile Cys Phe Ala Glu Glu Arg Asn Val Cys Phe Val Pro
1 5 10 15
Cys Gly His Val Val Ala Cys Ala Lys Cys Ala Leu Ala Ala Asp Lys
20 25 30
Cys Pro Met Cys Arg
35

<210> 23
<211> 37
<212> PRT
<213> Cydia pomonella granulovirus

<400> 23
Leu Cys Lys Ile Cys Tyr Val Glu Glu Cys Ile Val Cys Phe Val Pro
1 5 10 15
Cys Gly His Val Val Ala Cys Ala Lys Cys Ala Leu Ser Val Asp Lys
20 25 30
Cys Pro Met Cys Arg
35

<210> 24
<211> 37
<212> PRT
<213> Orgyia pseudotsugata

<400> 24
Leu Cys Lys Ile Cys Leu Gly Ala Glu Lys Thr Val Cys Phe Val Pro
1 5 10 15
Cys Gly His Val Val Ala Cys Gly Lys Cys Ala Ala Gly Val Thr Thr

20

25

30

Cys Pro Val Cys Arg
35

<210> 25
<211> 37
<212> PRT
<213> Drosophila melanogaster

<400> 25
Leu Cys Lys Ile Cys Tyr Gly Ala Glu Tyr Asn Thr Ala Phe Leu Pro
1 5 10 15

Cys Gly His Val Val Ala Cys Ala Lys Cys Ala Ser Ser Val Thr Lys
20 25 30

Cys Pro Leu Cys Arg
35

<210> 26
<211> 4
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic fluorogenic
caspase-9 substrate

<400> 26

Leu Glu His Asp
1

<210> 27
<211> 4
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic fluorogenic
caspase-3 substrate

<400> 27

Asp Glu Val Asp
1