Introduction to the Semantic Web Technologies

Konstantin Schekotihin

Alpen-Adria-Universität Klagenfurt, Austria

Agenda

- 1 SPARQL
 - Introduction and syntax
 - Querying RDF with SPARQL

Semantic Web Technology Stack

Introduction I

SPARQL is an RDF query language that allows us to:

- Retrieve values from RDF documents
- Explore triple stores by querying for classes and properties
- Execute complex SQL-like queries on single/multiple triple stores
- Return results in form of RDF (transformations)

SPARQL uses Turtle syntax:

- namespaces @prefix ns:<URI> .
- literals "01"^^xsd:decimal, "string"@de
- triple ns:s ns:p ns:o .

4

SPARQL Recommendations

- SPARQL 1.0 (January 2008) includes
 - SPARQL 1.0 Query Language
 - SPARQL 1.0 Protocol
 - SPARQL Results XML Format
- SPARQL 1.1 (March 2013)
 - SPARQL 1.1 Query Language
 - SPARQL 1.1 Update Language
 - SPARQL 1.1 Protocol for RDF
 - SPARQL 1.1 Graph Store HTTP Protocol
 - SPARQL 1.1 Entailment Regimes
 - SPARQL 1.1 Service Description
 - SPARQL 1.1 Federated Query
 - SPARQL 1.1 Conformance Tests
 - SPARQL 1.1 Query Results JSON Format
 - SPARQL 1.1 Query Results CSV and TSV Formats
 - SPARQL Query Results XML Format

SPARQL Query Structure |

SPARQL Query Structure II

- Variable names start with ?, which can match any node of a given RDF graph
- SELECT returns a table of substitutions (resources/literals) for variables in a query
- FROM indicates the input graph
- WHERE specifies patterns to be found in the graph
- Conditions on matched subgraphs are applied by means of filters (later)
- ORDER BY specifies the order of substitutions in the resulting table

7

SPARQL Endpoints

- SPARQL queries work on subgraphs of a given RDF graph
- Endpoints are service providers: accept queries and return results
- One can differentiate between generic and specific endpoints
 - Generic use HTTP to retrieve the data from the Web
 - Specific are connected with a particular RDF dataset
- All communication with endpoints is done over HTTP
- A variety of libraries/formats can be used for communication:
 - XML results are returned in XML format using a specific predefined vocabulary
 - RDF "construction" queries require SPARQL engine to respond in RDF format (RDF/XML, Turtle, N-Triples, etc.)
 - JSON adapter for XML vocabulary which is useful in Web application
- XSLT allows to transform XML results directly to HTML

SPARQL Engines

- OpenJena's ARQ http://sparql.org/sparql.html
- Stardog http://stardog.com/
- OpenLink's Virtuoso http://demo.openlinksw.com/sparql
- Redland's Rasqal http://librdf.org/query/

Sample dataset: http://dig.csail.mit.edu/2008/webdav/timbl/foaf.rdf

Complex constraints

Exploring DBPedia 1

- DBPedia is an RDF dataset created from Wikipedia's infoboxes, categories, external links, etc.
- DBPedia 2015-04 describes "5.9M things out of which 4.3M resources have abstracts, 452K geo coordinates and 1.45M depictions. In total, 4 million resources are classified in a consistent ontology and consists of 2,06M persons, 682K places, 376K creative works, 188K organizations, 278K species and 5K diseases." ¹

Exploring DBPedia II

Use this query and DBPedia endpoint 2 to retrieve only 50 top concept names ordered alphabetically starting from 10^{th}

```
SELECT DISTINCT ?Concept
WHERE {
    [] a ?Concept .
}
# enabling ordering will considerably increase processing time
# ORDER BY ?Concept
LIMIT 50
OFFSET 10
```

²DBPedia SPARQL endpoint http://dbpedia.org/sparql

¹http://blog.dbpedia.org/?p=148

Filtering Query Results

Use boolean conditions to remove unwanted results

```
■ Logical: !, &&, ||
  ■ Math: +, -, *, /
  ■ Comparison: =, !=, >, <, ...
  ■ Build-in functions: isURI, isBlank, isLiteral, bound,
    str, lang, datatype, sameTerm, langMatches, regex
  SPARQL 1.1 extends this list!
SELECT ?place ?population ?comment
WHERE {
   ?place a dbo:Place ;
       dbo:country dbr:Austria;
       rdfs:comment ?comment;
       dbo:populationTotal ?population .
   FILTER ((?population > 500000) &&
       langMatches(lang(?comment), "ru")) .
```


Optional results

SPARQL allows to define optional constraints.

```
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX tbl: <http://www.w3.org/People/Berners-Lee/card#>
SELECT *
FROM <http://dig.csail.mit.edu/2008/webdav/timbl/foaf.rdf>
WHERE {
   tbl:i foaf:knows ?known .
   OPTIONAL { ?known foaf:homepage ?homepage }
}
```

Test the query with OpenJena's ARQ available at http://sparql.org/sparql.html

Unite alternative results

Form a disjunction of two graph patterns

- The query selects all Austrian regions and German cities with more than 10⁵ and 10⁶ inhabitants respectively.
- Test the query with DBPedia SPARQL endpoint http://dbpedia.org/sparql

Special queries

CONSTRUCT returns an RDF graph

```
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX vCard: <http://www.w3.org/2001/vcard-rdf/3.0#>
CONSTRUCT{
    ?person vCard:FN ?name .
    ?person vCard:EMAIL ?email .
}
FROM <http://dig.csail.mit.edu/2008/webdav/timbl/foaf.rdf>
WHERE {
        ?person foaf:name ?name .
        ?person foaf:mbox ?email .}
```

- ASK returns true if query pattern has any matches in the RDF graph, otherwise it returns false
- DESCRIBE returns some RDF that from the server's point of view describes a resource

