Assignment -02

Task 01: Please conduct multiple Protein-Ligand Docking and provide the top 10 results in the following table.

	Ligands	Binding Affinity	Rmsd/ub	Rmsd/ib
01	EnergyMinimized_Cleaned_2ZJ3_4970_uff_E=725.97	-8.6	0	0
02	EnergyMinimized_Cleaned_2ZJ3_493570_uff_E=317.94	-7.9	0	0
03	EnergyMinimized_Cleaned_2ZJ3_5280343_uff_E=380.43	-7.6	0	0
04	EnergyMinimized_Cleaned_2ZJ3_1130_uff_E=395.86	-6.6	0	0
05	EnergyMinimized_Cleaned_2ZJ3_10281_uff_E=62.47	-6.4	0	0
06	EnergyMinimized_Cleaned_2ZJ3_54670067_uff_E=200.65	-6.4	0	0
07	EnergyMinimized_Cleaned_2ZJ3_10248_uff_E=228.13	-6.1	0	0
08	EnergyMinimized_Cleaned_2ZJ3_5315468_uff_E=179.09	-6.1	0	0
09	EnergyMinimized_Cleaned_2ZJ3_3314_uff_E=169.59	-5.9	0	0
10	EnergyMinimized_Cleaned_2ZJ3_10364_uff_E=78.47	-5.8	0	0

Task 02: Please perform ADME analysis on the 10 compounds obtained from the Protein-Ligand Docking and provide the results in the table below.

ADME Analysis						Pharmaco kinetics		Drug likeness	Medicinal Chemistry		
Name	CID ID	Canonical SMILES	Molecu lar weight	Num. H- bond accep tors	Num. H- bond donor s	Lipophi licity (iLOGP)	Water Solubility (Log S (SILICOS-IT))	GI absorptio n	BBB perm eant	Lipinski	PAINS
Proto pine	4970	CN1CCC2=CC3=C(C=C2C(=O)CC4= C(C1)C5=C(C=C4)OCO5)OCO3	353.37 g/mol	6	0	3.19	-5.38	High	Yes	Yes; 0 violation	0 alert
Ribofl avin	4935 70	CC1=CC2=C(C=C1C)N(C3=NC(=O)N C(=O)C3=N2)C[C@@H]([C@@H]([C @@H](CO)O)O)O	376.36 g/mol	8	5	1.63	-2.62	Low	No	Yes; 0 violation	0 alert
Querc etin	5280 343	C1=CC(=C(C=C1C2=C(C(=O)C3=C(C=C(C=C3O2)O)O)O)O)O	302.24 g/mol	7	5	1.63	-3.24	High	No	Yes; 0 violation	1 alert: catechol_A
Thiam ine	1130	CC1=C(SC=[N+]1CC2=CN=C(N=C2N)C)CCO	265.35 g/mol	3	2	-1.60	-3.30	High	No	Yes; 0 violation	0 alert
Thym oquin one	1028 1	CC1=CC(=O)C(=CC1=O)C(C)C	164.20 g/mol	2	0	1.99	-2.03	High	Yes	Yes; 0 violation	1 alert: quinone_A
Ascor bic Acid	5467 0067	C([C@@H]([C@@H]1C(=C(C(=O)O1)O)O)O)O	176.12 g/mol	6	4	-0.31	1.49	High	No	Yes; 0 violation	0 alert
Elemi cin	1024 8	COC1=CC(=CC(=C1OC)OC)CC=C	208.25 g/mol	3	0	2.89	-3.64	High	Yes	Yes; 0 violation	0 alert
(E)- alpha- bisab olene	5315 468	CC1=CCC(CC1)/C(=C/CC=C(C)C)/C	204.35 g/mol	0	0	3.49	-4.92	Low	No	Yes; 1 violation	0 alert
Eugen ol	3314	COC1=C(C=CC(=C1)CC=C)O	164.20 g/mol	2	1	2.37	-2.79	High	Yes	Yes; 0 violation	0 alert
Carva crol	1036 4	CC1=C(C=C(C=C1)C(C)C)O	150.22 g/mol	1	1	2.24	-3.01	High	Yes	Yes; 0 violation	0 alert

Task 03: Perform Toxicity Prediction on the 10 compounds obtained from the Protein-Ligand Docking and provide the results in the table below.

Toxicity Prediction							
Name	CID ID	Canonical SMILES	Hepatotoxicity	Carcinog enicity	Immunotoxicity	Mutagenicit y	Cytotoxicity
Protopine	4970	CN1CCC2=CC3=C(C=C2C(=O)CC4=C(C 1)C5=C(C=C4)OCO5)OCO3	Inactive	Inactive	Inactive	Inactive	Inactive
Riboflavin	493570	CC1=CC2=C(C=C1C)N(C3=NC(=O)NC(= O)C3=N2)C[C@@H]([C@@H]([C@@H](CO)O)O)O	Inactive	Inactive	Inactive	Inactive	Inactive
Quercetin	5280343	C1=CC(=C(C=C1C2=C(C(=O)C3=C(C=C(C=C3O2)O)O)O)O)O	Inactive	Active	Inactive	Active	Inactive
Thiamine	1130	CC1=C(SC=[N+]1CC2=CN=C(N=C2N)C) CCO	Inactive	Inactive	Inactive	Inactive	Inactive
Thymoquino ne	10281	CC1=CC(=O)C(=CC1=O)C(C)C	Inactive	Inactive	Inactive	Inactive	Inactive
Ascorbic Acid	5467006 7	C([C@@H]([C@@H]1C(=C(C(=O)O1)O) O)O)O	Inactive	Inactive	Inactive	Inactive	Inactive
Elemicin	10248	COC1=CC(=CC(=C1OC)OC)CC=C	Inactive	Active	Inactive	Active	Inactive
(E)-alpha- bisabolene	5315468	CC1=CCC(CC1)/C(=C/CC=C(C)C)/C	Inactive	Inactive	Inactive	Inactive	Inactive
Eugenol	3314	COC1=C(C=CC(=C1)CC=C)O	Inactive	Inactive	Inactive	Inactive	Inactive
Carvacrol	10364	CC1=C(C=C(C=C1)C(C)C)O	Inactive	Inactive	Inactive	Inactive	Inactive

Task 04: Identify the highest-ranking Protein – ligand complex and input the corresponding figures into the table below.

Figure Name	Sample Figure	Input your Docking Figure
Figure 01	The state of the s	LEU073 ALA074 VAL677 THR425
Figure 02		118425 VAL677 AL6776

Figure 03	Control of the second	1 m 425 1 m
Figure 04	Canal	ALAGTA AL
Figure 05	All	ALEU A:677 A:677 A:677 A:677 A:677 A:677 Aisyl Pr-July I

Task 05: Identify the highest-ranking Protein – ligand complex and input the Interaction details into the table below.

Name	Distance	Category	Types
A:SER17:HN - N:UNK1:O	2.09402	Hydrogen Bond	Conventional Hydrogen Bond
N:UNK1:H - A:ASP119:OD1	2.76343	Hydrogen Bond	Conventional Hydrogen Bond
N:UNK1:H - A:SER17:OG	2.46092	Hydrogen Bond	Conventional Hydrogen Bond
A:GLY15:CA - N:UNK1:O	3.39195	Hydrogen Bond	Carbon Hydrogen Bond
A:LYS117:NZ - N:UNK1	4.76291	Electrostatic	Pi-Cation
A:LYS117:NZ - N:UNK1	4.15331	Electrostatic	Pi-Cation
A:PHE28 - N:UNK1	4.77558	Hydrophobic	Pi-Pi T-shaped
N:UNK1 - A:ALA18	4.61833	Hydrophobic	Pi-Alkyl
N:UNK1 - A:ALA18	4.27778	Hydrophobic	Pi-Alkyl
N:UNK1 - A:ALA18	5.29333	Hydrophobic	Pi-Alkyl
N:UNK1 - A:LYS117	4.1186	Hydrophobic	Pi-Alkyl
N:UNK1 - A:ALA146	4.8247	Hydrophobic	Pi-Alkyl

In the context of protein-ligand docking, the best ligand is usually determined based on the binding affinity (more negative indicates stronger binding) and RMSD values (close to 0 indicates stability in binding poses). From the task 1: Protopine has the most negative binding affinity (-8.6), indicating the strongest interaction with the target protein. It also has RMSD values of 0, showing good binding pose stability.

Based on the task 2: Proto pine appears ideal because: Lipinski has 0 violations, High GI absorption, No BBB permeability issue, 0 alerts in PAINS.

From the toxicity prediction table, Protopine stands out as the best compound as it is Inactive for All Toxicity Categories like Hepatotoxicity, Carcinogenicity, Immunotoxicity, Mutagenicity and Cytotoxicity.

And from the bonds present in the complex it is confirmed that protopine is the best one as it has several strong hydrogen bonds present.