Università degli Studi Roma Tre Anno Accademico 2008/2009 AL1 - Algebra 1

Esercitazione 8

Giovedì 27 Novembre 2008 domande/osservazioni: dibiagio@mat.uniroma1.it

1. Dimostrare che se $n, m \in \mathbb{N}$ si scrivono come somma di due quadrati, allora nm si scrive come somma di due quadrati.

Per ipotesi $\exists a,b,c,d \in \mathbb{N}$ tali che $n=a^2+b^2$ e $m=c^2+d^2$. Allora $nm=a^2c^2+a^2d^2+b^2c^2+b^2d^2=(ac-bd)^2+(ad+bc)^2$. Si noti come tale uguaglianza risulti naturale usando i numeri complessi: $n=a^2+b^2=|a+ib|^2, m=c^2+d^2=|c+id|^2$; ma allora $nm=|a+ib|^2|c+id|^2=|(a+ib)(c+id)|^2=|(ac-bd)+i(ad+bc)|^2=(ac-bd)^2+(ad+bc)^2$.

2. Dimostrare che se $z \in \mathbb{C}$ è radice di un polinomio a coefficienti in \mathbb{R} allora anche \overline{z} ne è radice.

Per ipotesi $\exists a_0, \ldots, a_n \in \mathbb{R}$ tali che $a_0 + a_1 z + a_2 z^2 + \ldots + a_n z^n = 0$. Ma allora $\overline{a_0 + a_1 z + a_2 z^2 + \ldots + a_n z^n} = \overline{0} = 0$, dove $\overline{a_0 + a_1 z + a_2 z^2 + \ldots + a_n z^n} = \overline{a_0 + \overline{a_1 z} + \ldots + \overline{a_n} z^n} = a_0 + a_1 \overline{z} + \ldots + a_n \overline{z}^n$ dato che gli a_i sono reali; segue la tesi.

- 3. Trovare tutte le soluzioni complesse dell'equazione $(z-1)^4=z^4$.
- 4. Trovare tutte le soluzioni complesse dell'equazione $\operatorname{Im}\left(z\overline{z}+\frac{1}{z}+z+\overline{z}\right)=0.$

 $\operatorname{Im} \left(z\overline{z} + \tfrac{1}{z} + z + \overline{z} \right) = \operatorname{Im} \left(z\overline{z} \right) + \operatorname{Im} \left(\tfrac{1}{z} \right) + \operatorname{Im} \left(z + \overline{z} \right) = \operatorname{Im} \left(\tfrac{1}{z} \right) = \operatorname{Im} \left(\tfrac{\overline{z}}{|z|^2} \right) = \frac{1}{|z|^2} \operatorname{Im}(\overline{z}).$ Scrivendo $z = x + iy, z \neq 0$ l'equazione è ridotta a: y = 0. Perciò l'insieme delle soluzioni dell'equazione è $\mathbb{R} \setminus \{0\}$.

5. Siano $a, b, h \in \mathbb{Z}$, con $(a, b) \neq (0, 0)$ e $h \neq 0$. Usando la definizione di massimo comun divisore, dimostrare che MCD(ah, bh) = |h|MCD(a, b).

$$\begin{split} |h|MCD(a,b) \mid ah & \in |h|MCD(a,b) \mid bh \text{ perciò } |h|MCD(a,b) \mid MCD(ah,bh), \\ \text{da cui } \exists k \in \mathbb{N} \text{ t.c. } |h|kMCD(a,b) = MCD(ah,bh). \text{ Quindi } |h|kMCD(a,b) \mid \\ ah & \Rightarrow kMCD(a,b) \mid a \in |h|kMCD(a,b) \mid bh \Rightarrow kMCD(a,b) \mid b, \text{ Perciò } \\ kMCD(a,b) \mid MCD(a,b) \text{ da cui } k = 1 \text{ e la dimostrazione è conclusa.} \end{split}$$

6. Utilizzare l'esercizio precedente per dimostrare il lemma di Euclide: "Siano $a,b,c\in\mathbb{Z}$, tali che c|ab e tali che a e c siano coprimi; allora c|b".

Dato che c|ab allora $\exists k \in \mathbb{Z}$ tale che ck=ab. $MCD(a,c)=1 \Rightarrow |b|=MCD(ab,cb)$ per l'esercizio precedente. Quindi |b|=MCD(ck,cb)=|c|MCD(k,b) da cui c|b.

7. Trovare MCD(142, 96) e MCD(212, 176) e scriverne delle identità di Bézout.

1

8. Siano $a,b \in \mathbb{Z}, (a,b) \neq (0,0)$. Sia d = MCD(a,b) e $d = \alpha a + \beta b$ un'identità di Bézout. Dimostrare che tutte e sole le identità di Bézout per a,b sono del tipo $d = \left(\alpha + n \frac{b}{MCD(a,b)}\right)a + \left(\beta - n \frac{a}{MCD(a,b)}\right)b$ al variare di $n \in \mathbb{Z}$.

Basta far vedere che se $d=\alpha'a+\beta'b$ allora $\frac{b}{MCD(a,b)}\mid(\alpha-\alpha')$ e $\frac{a}{MCD(a,b)}\mid(\beta'-\beta)$: infatti se così è $\exists h,k\in\mathbb{Z}$ tali che $\alpha'=\alpha+k\frac{b}{MCD(a,b)}$ e $\beta'=\beta+h\frac{a}{MCD(a,b)}$. Dato che $(\alpha-\alpha')a=(\beta-\beta')b$ allora h=-k e abbiamo concluso.

Mostriamo allora che $\frac{b}{MCD(a,b)} \mid (\alpha - \alpha')$: $\frac{b}{MCD(a,b)} \mid \frac{b}{MCD(a,b)} (\beta' - \beta) \Rightarrow \frac{b}{MCD(a,b)} \mid \frac{(\alpha - \alpha')a}{MCD(a,b)} \Rightarrow \frac{b}{MCD(a,b)} \mid \frac{a}{MCD(a,b)} (\alpha - \alpha')$. Per il lemma di Euclide si conclude.

9. Si supponga di avere due grandi contenitori non graduati, il primo di 2873 litri, il secondo di 2380 litri e una vasta cisterna vuota. Avendo a disposizione una fontana d'acqua e usando i contenitori è possibile fare in modo che la cisterna alla fine contenga un solo litro d'acqua? Se sì, come? Se no, qual è il minimo numero positivo di litri che la cisterna dovrà necessariamente contenere?