A few comments about "Topology" by Munkres

Pierre-Yves Gaillard¹

As the title indicates, we make a comments about the book **Topology** by James R. Munkres. This is a work in progress.

• **Definition of** \mathbb{R} **p. 31.** The object \mathbb{R} is defined by assuming that there exists a set \mathbb{R} having certain properties. We take this assumption for granted. Then it is easy to see that there are several sets having these properties. So, let \mathbb{R}' be a set having the same properties as \mathbb{R} . Let $\mathbb{Z}'_+, \mathbb{Z}'$ and \mathbb{Q}' be to \mathbb{R}' what \mathbb{Z}_+, \mathbb{Z} and \mathbb{Q} are to \mathbb{R} .

Theorem 1. There is a unique morphism of fields from $f : \mathbb{R} \to \mathbb{R}'$. This morphism is an isomorphism of ordered fields, and it induces isomorphisms $\mathbb{Z}_+ \to \mathbb{Z}'_+, \mathbb{Z} \to \mathbb{Z}'$ and $\mathbb{Q} \to \mathbb{Q}'$.

Lemma 2. There is a unique map $g: \mathbb{Z}_+ \to \mathbb{Z}'_+$ such that g(0) = 0 and g(n+1) = g(n) + 1 for all n in \mathbb{Z}_+ . Similarly, there is a unique map $h: \mathbb{Z}'_+ \to \mathbb{Z}_+$ such that h(0) = 0 and h(n+1) = h(n) + 1 for all n in \mathbb{Z}'_+ .

Proof. For $i \in \mathbb{Z}_+$ and $\varphi : \{1, \ldots, i\} \to \mathbb{Z}'_+$ define $\rho(\varphi) \in \mathbb{Z}'_+$ by $\rho(\varphi) := \varphi(i) + 1$. Then the first statement follows from the Principle of Recursive Definition (Theorem 3 p. 2). The proof of the second statement is similar.

Proof of Theorem 1. In the notation of Lemma 2, set $u := h \circ g$. Then $u : \mathbb{Z}_+ \to \mathbb{Z}_+$ satisfies u(0) = 0 and u(n+1) = u(n) + 1 for all n in \mathbb{Z}_+ . One can easily prove that u(n) = n by induction. The same argument works for $g \circ h$. This shows that $g : \mathbb{Z}_+ \to \mathbb{Z}'_+$ and $h : \mathbb{Z}'_+ \to \mathbb{Z}_+$ are inverse isomorphisms. Then we extend g to morphisms $\mathbb{Z} \to \mathbb{Z}'$ and $\mathbb{Q} \to \mathbb{Q}'$, and similarly for h, and, arguing as before, we show that these morphisms are isomorphisms. More precisely, we see that there is a unique morphism $\mathbb{Z} \to \mathbb{Z}'$ extending g, and that this morphism is an isomorphism, and similarly for the morphism $\mathbb{Q} \to \mathbb{Q}'$. So we can make the identifications $\mathbb{Z}_+ = \mathbb{Z}'_+, \mathbb{Z} = \mathbb{Z}', \mathbb{Q} = \mathbb{Q}'$. To show that there is a unique morphism of fields $\mathbb{R} \to \mathbb{R}'$, and that this morphism is an isomorphism (inducing the identity of \mathbb{Q}), we argue as in Section Appendix to Chapter 1 in A few comments about "Principles of Mathematical Analysis" by Rudin, available at https://zenodo.org/records/13955297.

- Exercise 7.6. p. 51. We say that two sets A and B have the same cardinality if there is a bijection of A with B.
 - (a) Show that if $B \subset A$ and if there is an injection

$$f:A\to B$$
,

 $^{^{1}} ORCID\ https://orcid.org/0000-0002-7960-1698$

then A and B have the same cardinality. [Hint: Define $A_1 = A, B_1 = B$, and for n > 1, $A_n = f(A_{n-1})$ and $B_n = f(B_{n-1})$. (Recursive definition again!) Note that $A_1 \supset B_1 \supset A_2 \supset B_2 \supset A_3 \supset \cdots$ Define a bijection $h: A \to B$ by the rule

$$h(x) = \begin{cases} f(x) & \text{if } x \in A_n \setminus B_n \text{ for some } n, \\ x & \text{otherwise.} \end{cases}$$

(b) Theorem (Schroeder-Bernstein theorem). If there are injections $f: A \to C$ and $g: C \to A$, then A and C have the same cardinality.

Solution. (a) We will freely use the following two obvious facts:

(F1) For $x \in A$ and $n \in \mathbb{Z}_+$ we have

$$x \in A_n \iff f(x) \in A_{n+1} \text{ and } x \in B_n \iff f(x) \in B_{n+1}.$$

(F2) We have $\bigcap_{n>1} A_n = \bigcap_{>1} B_n =: I$.

Setting $A'_n := A_n \setminus B_n, B'_n := B_n \setminus A_{n+1}$, we get

$$A = \left(\bigcup_{n>1} A'_n\right) \cup \left(\bigcup_{n>1} B'_n\right) \cup I,$$

and this union is disjoint. We also have

$$B = \left(\bigcup_{n \ge 2} A'_n\right) \cup \left(\bigcup_{n \ge 1} B'_n\right) \cup I.$$

The injection f induces bijections $f_n: A'_n \to A'_{n+1}$ (here we are using (F1)). To define a bijection $h: A \to B$, it suffices to define three bijections

$$u: \bigcup_{n\geq 1} A'_n \to \bigcup_{n\geq 2} A'_n, \quad v: \bigcup_{n\geq 1} B'_n \to \bigcup_{n\geq 1} B'_n, \quad w: I \to I.$$

We define u by $u(x) = f_n(x)$ if $x \in A'_n$, and take v and w to be the identity maps.

- (b) We set $B := g(C) \subset A$ and define $f' : A \to B$ by f'(a) := g(f(a)). Then $f' : A \to B$ satisfies the assumptions for $f : A \to B$ in (a).
- Exercise 8.7. p. 56. Prove Theorem 8.4 p. 54.

Solution. Recall the statement of Theorem 8.4.

Theorem 3 (Principle of Recursive Definition, Theorem 8.4 of the book). Let A be a set; let a_0 be an element of A. Suppose ρ is a function that assigns, to each function f mapping a nonempty section of the positive integers into A, an element of A. Then there exists a unique function

$$h: \mathbb{Z}^+ \to A$$

such that

$$h(1) = a_0,$$

 $h(i) = \rho(h|\{1, ..., i-1\}) \text{ for } i > 1.$
(*)

The formula (*) is called a recursion formula for h. It specifies h(1), and it expresses the value of h at i > 1 in terms of the values of h for positive integers less than i.

The book gives a detailed proof of the particular case when $\rho(h|\{1,\ldots,i-1\})$ is equal to $\min(C\setminus h(\{1,\ldots,i-1\}))$, where "min" means "minimum", and C is an infinite set. A close inspection of this proof reveals that the sole property of the element c of C defined by the equality $c:=\min(C\setminus h(\{1,\ldots,i-1\}))$ is that it depends only on the restriction $h|\{1,\ldots,i-1\}$. This implies that, if, in the proof given by the book, we replace " $\min(C\setminus h(\{1,\ldots,i-1\}))$ " with " $\rho(h|\{1,\ldots,i-1\})$ ", then we obtain a proof of Theorem 3.

• Exercise 10.7 p. 67. Let J be a well-ordered set. A subset J_0 of J is said to be **inductive** if for every $\alpha \in J$,

$$(S_{\alpha} \subset J_0) \Rightarrow \alpha \in J_0.$$

Theorem 4 (The principle of transfinite induction). If J is a well-ordered set and J_0 is an inductive subset of J, then $J_0 = J$.

Solution. If $J_0 \neq J$, let α be the least element of $J \setminus J_0$. We get $S_{\alpha} \subset J_0$, and thus $\alpha \in J_0$, contradiction.

• Exercise 10.10 p. 67. Theorem. Let J and C be well-ordered sets; assume that there is no surjective function mapping a section of J onto C. Then there exists a unique function $h: J \to C$ satisfying the equation

$$h(x) = \min(C \setminus h(S_x)) \tag{*}$$

for each $x \in J$, where S_x is the section of J by x.

Proof.

- (a) If h and k map sections of J, or all of J, into C and satisfy (*) for all x in their respective domains, show that h(x) = k(x) for all x in both domains.
- (b) If there exists a function $h: S_{\alpha} \to C$ satisfying (*), show that there exists a function $k: S_{\alpha} \cup \{\alpha\} \to C$ satisfying (*).
- (c) If $K \subset J$ and for all $\alpha \in K$ there exists a function $h_{\alpha} : S_{\alpha} \to C$ satisfying (*), show that there exists a function

$$k: \bigcup_{\alpha \in K} S_{\alpha} \to C$$

satisfying (*).

- (d) Show by transfinite induction that for every $\beta \in J$, there exists a function $h_{\beta}: S_{\beta} \to C$ satisfying (*). [Hint: If β has an immediate predecessor α , then $S_{\beta} = S_{\alpha} \cup \{\alpha\}$. If not, S_{β} is the union of all S_{α} with $\alpha < \beta$.]
- (e) Prove the theorem.

Solution.

- (a) Otherwise there would be a least x such that $h(x) \neq k(x)$, we would get $h(S_x) = k(S_x)$, and (*) would yield a contradiction.
- (b) We define k by k(x) = h(x) if $x < \alpha$ and $k(x) = \min(C \setminus h(S_x))$ if $x = \alpha$, and verify that k satisfies (*).
- (c) Set $k(x) = h_{\alpha}(x)$ if $x \in S_{\alpha}$. To show that k(x) is well defined, we must check that $\beta > \alpha$ implies $h_{\beta}(x) = h_{\alpha}(x)$. But this follows from (a).
- (d) Let I be the set of all $\beta \in J$ such that there is a map $h_{\beta}: S_{\beta} \to C$ satisfying (*). It suffices to show that I is inductive. So, assume that β is in J and that $S_{\beta} \subset I$. We must show $\beta \in I$. To do that, we use (b) if β has an immediate predecessor, and we use (c) if not.
- (e) We define h by

$$h(x) = \begin{cases} \min(C \setminus h_x(S_x)) & \text{if } x = \max(J) \\ h_{x+1}(x) & \text{if } x \neq \max(J), \end{cases}$$

where " $x \neq \max(J)$ " means " $x \neq \max(J)$ if J has a maximum", and x+1 is the least element greater than x. Let us show that h satisfies (*), that is, $h(x) = \min(C \setminus h(S_x))$. We can assume $x \neq \max(J)$ (in the above sense). We must show $h_{x+1}(x) = \min(C \setminus h(S_x))$. Since we have $h_{x+1}(x) = \min(C \setminus h_{x+1}(S_x))$ by (d) it suffices to prove $h(S_x) = h_{x+1}(S_x)$. Let y be in S_x , that is, $y \in J$ and y < x. It is enough to verify $h(y) = h_{x+1}(y)$, that is, $h_{y+1}(y) = h_{x+1}(y)$. We have y + 1 < x + 1, and thus $S_{y+1} \subset S_{x+1}$, and (a) implies $h_{x+1}|S_{y+1} = h_{y+1}$. This proves $h_{y+1}(y) = h_{x+1}(y)$, which is what we wanted.

• Supplementary Exercise 11.1 p. 72.

Theorem 5 (General principle of recursive definition). Let J be a well-ordered set; let C be a set. Let \mathcal{F} be the set of all functions mapping sections of J into C. Given a function $\rho: \mathcal{F} \to C$, there exists a unique function $h: J \to C$ such that $h(\alpha) = \rho(h|S_{\alpha})$ for each $\alpha \in J$.

[Hint: Follow the pattern outlined in Exercise 10 of §10.]

Solution. A close inspection of the solution to Exercise 10 of §10 reveals that the sole property of the element c of C defined by the equality $c := \min(C \setminus h(S_x))$ is that it depends only on the restriction $h|S_x$. This implies that, if, in the proof given by the book, we replace " $\min(C \setminus h(S_x))$ " with " $\rho(h|S_x)$ ", then we obtain a proof of Theorem 5.

• Supplementary Exercise 11.2 p. 72.

- (a) Let J and E be well-ordered sets; let $h:J\to E$. Show the following two statements are equivalent:
 - (i) h is order preserving and its image is E or a section of E.
 - (ii) $h(\alpha) = \text{smallest } [E h(S_{\alpha})] \text{ for all } \alpha.$

[Hint: Show that each of these conditions implies that $h(S_{\alpha})$ is a section of E; conclude that it must be the section by $h(\alpha)$.]

(b) If E is a well-ordered set, show that no section of E has the order type of E, nor do two different sections of E have the same order type. [Hint: Given J, there is at most one order-preserving map of J into E whose image is E or a section of E.]

Solution.

- (a) For all $X \subset E$ set $X^c := E \setminus X$. For the sake of prudence, we change (ii) to:
- (ii') $h(S_x) \neq E$ and $h(x) = \min(h(S_x)^c)$ for all x.

We want to show that (i) and (ii') are equivalent.

- (i) implies (ii'). We prove $h(S_x) \neq E$ by noting that $h(S_x) = E$ we would entail h(x) = h(y) for some y < x, contradiction. To prove $h(x) = \min(h(S_x)^c)$, assume by contradiction that we have $h(x) \neq \min(h(S_x)^c) =: e$. If h(x) < e, then $h(x) \notin h(S_x)^c$, that is, $h(x) \in h(S_x)$, and we reach a contradiction as above. If e < h(x), then e = h(y) for some y < x, that is, $\min(h(S_x)^c) = e \in h(S_x)$, contradiction.
- (ii') implies (i). We assume (ii'), and, in particular, that h is weakly increasing. To show that h is increasing, suppose x < y and h(x) = h(y) (we cannot have h(x) > h(y) because h is weakly increasing). Since $h(x) = h(y) = \min(h(S_y)^c)$, we have $h(x) \in h(S_y)^c$, but $h(x) \in h(S_y)$, contradiction. Finally, h(J) is downward closed because $e < h(x) = \min(h(S_x)^c)$ implies $e \in h(S_x) \subset h(J)$.

In the statement of the Exercise, the condition that J is well-ordered can be changed from an assumption to a conclusion.

- (b) Let a be in E, and assume there is an isomorphism of well-ordered sets $h: S_a \to E$. It suffices to derive a contradiction. Let $i: S_a \to E$ be the inclusion. By (a) h and i satisfy the same recursion relation. By the Theorem about the General Principle of Definition by Recursion, we have h = i, and thus $a \in h(S_a) = i(S_a) = S_a$, contradiction.
- Supplementary Exercise 11.3 p. 73. Let J and E be well-ordered sets; suppose there is an order-preserving map $k: J \to E$. Using Exercises 1 and 2, show that J has the order type of E or a section of E. [Hint: Choose $e_0 \in E$. Define $h: J \to E$ by the recursion formula

$$h(\alpha) = \text{smallest } [E - h(S_{\alpha})] \text{ if } h(S_{\alpha}) \neq E,$$

and $h(\alpha) = e_0$ otherwise. Show that $h(\alpha) \le k(\alpha)$ for all α ; conclude that $h(S_\alpha) \ne E$ for all α .] **Solution.** We can assume $E \ne \emptyset$. Let e_0 be in E. Let x be in F. We define h: F as in the hint.

Claim 1: $h(x) \le k(x)$ for all x.

Claim 2: $h(y) \le k(y)$ for all y in S_x implies $h(S_x) \ne E$.

Proof of Claim 2. For all y in S_x we have $h(y) \le k(y) < k(x)$, and in particular $k(x) \ne h(y)$. This implies $k(x) \notin h(S_x)$.

Proof of Claim 1. Assume by contradiction h(x) > k(x) for some x. We can assume that x is minimum for this condition. For y < x we have $h(y) \le k(y)$, hence $h(S_x) \ne E$ by Claim 2.

Claims 1 and 2 imply $h(x) = \min(h(S_x)^c)$ for all x, hence h is increasing and h(J) is downward closed by Supplementary Exercise 11.2 above, hence J has the order type of E or a section of E.

- Supplementary Exercise 11.4 p. 73. Use Exercises 1–3 to prove the following:
 - (a) If A and B are well-ordered sets, then exactly one of the following three conditions holds: A and B have the same order type, or A has the order type of a section of B, or B has the order type of a section of A. [Hint: Form a well-ordered set containing both A and B, as in Exercise 8 of §10; then apply the preceding exercise.]
 - (b) Suppose that A and B are well-ordered sets that are uncountable, such that every section of A and of B is countable. Show A and B have the same order type.

Solution. (a) For any element x of any ordered set X, let $X_{< x}$ denote the corresponding section, and let us set $X_{<\infty} := X$. Let C be the well-ordered set containing both A and B, described in Exercise 8 of §10, and let $k: A \to C$ and $\ell: B \to C$ be the natural increasing maps. By the previous Exercise, we have isomorphisms $A \simeq C_{< x}$ and $B \simeq C_{< y}$ for some x and y in $C \cup \{\infty\}$. We can assume $x \leq y$. Then x = y implies $A \simeq B$. If x < y, we get

$$A \simeq C_{\leq x} = (C_{\leq y})_{\leq x} \subsetneq C_{\leq y} \simeq B.$$

This implies $A \simeq B_{< b}$ for some b in B. The fact that the various cases are exclusive follows from Supplementary Exercise 11.2b.

(b) Follows from (a).

Here is an important consequence of (a):

Theorem 6 (Comparability Theorem). If A and B are sets, then exactly one of the following three conditions holds:

- (i) there is a bijection $A \to B$,
- (ii) there is an injection $A \to B$ and a surjection $B \to A$,
- (iii) there is an injection $B \to A$ and a surjection $A \to B$.
- Supplementary Exercise 11.5 p. 73. Let X be a set; let \mathcal{A} be the collection of all pairs (A, <), where A is a subset of X and < is a well-ordering of A. Define

$$(A,<) \prec (A',<')$$

if (A, <) equals a section of (A', <').

- (a) Show that \prec is a strict partial order on A.
- (b) Let \mathcal{B} be a subcollection of A that is simply ordered by \prec . Define B' to be the union of the sets B, for all $(B, <) \in \mathcal{B}$; and define <' to be the union of the relations <, for all $(B, <) \in \mathcal{B}$. Show that (B', <') is a well-ordered set.

• Supplementary Exercise 11.6 p. 73. Use Exercises 1 and 5 to prove the following:

Theorem. The maximum principle is equivalent to the well-ordering theorem.

Solution. The fact that the well-ordering theorem implies the maximum principle is proved on p. 70 of the book. Let us prove the converse. In the setting of Supplementary Exercise 11.5b, take \mathcal{B} maximal. Then it suffices to show that B' = X. If it was not so, we could add to B' a new element x and make it the largest element of $B' \cup \{x\}$, which would then be a well-ordered set larger than B', contradiction.

• Supplementary Exercise 11.7 p. 73. Use Exercises 1–5 to prove the following:

Theorem. The choice axiom is equivalent to the well-ordering theorem.

Proof. Let X be a set; let c be a fixed choice function for the nonempty subsets of X. If T is a subset of X and c is a relation on T, we say that (T, c) is a tower in C is a well-ordering of C and if for each C is a vell-ordering of C and if for each C is a vell-ordering of C and if for each C is a vell-ordering of C and if for each C is a vell-ordering of C in C is a vell-ordering of C is a vell-ordering of C in C is a vell-ordering of C in C in C is a vell-ordering of C in C in C in C in C in C is a vell-ordering of C in C in

$$x = c(X - S_x(T)),$$

where $S_x(T)$ is the section of T by x.

- (a) Let $(T_1, <_1)$ and $(T_2, <_2)$ be two towers in X. Show that either these two ordered sets are the same, or one equals a section of the other. [Hint: Switching indices if necessary, we can assume that $h: T_1 \to T_2$ is order preserving and $h(T_1)$ equals either T_2 or a section of T_2 . Use Exercise 2 to show that h(x) = x for all x.]
- (b) If (T, <) is a tower in X and $T \neq X$, show there is a tower in X of which (T, <) is a section.
- (c) Let $\{(T_k, <_k) | k \in K\}$ be the collection of all towers in X. Let

$$T = \bigcup_{k \in K} T_k \text{ and } < = \bigcup_{k \in K} (<_k).$$

Show that (T, <) is a tower in X. Conclude that T = X.

Solution. (a) The map h in the hint exists by Supplementary Exercise 4a. Let us show h(x) = x for all x thanks to Supplementary Exercise 2. Assume by contradiction that we have $h(x) \neq x$ for some x in T_1 , which we can suppose to be minimum for this condition. The map h induces an isomorphism $T_1 \simeq h(T_1)$, implying $h(T_{1,< y}) = T_{2,h(y)}$ for all y in T_1 . By the choice of x we get $T_{1,< x} = T_{2,< h(x)}$. Since T_1 and T_2 are towers, this entails

$$h(x) = c(X \setminus T_{2, < h(x)}) = c(X \setminus T_{1, < x}) = x,$$

contradiction. The fact that h(x) = x for all x in T_1 implies, by Supplementary Exercise 11.2a, that T_1 is contained and downward closed in T_2 .

- (b) Add $c(X \setminus T)$ to T, and make it the largest element.
- (c) Left to the reader.

This shows that the choice axiom implies the well-ordering theorem. The converse is clear.

• Solution to Exercise 13.6 p. 83. We must show that the topologies \mathcal{T}_{ℓ} and \mathcal{T}_{K} are incomparable.

Claim: $[2,3) \notin \mathcal{T}_K$. Proof. If not we would have $2 \in (a,b) \setminus K \subset [2,3)$ for some a and b, hence a < 2 and $a \le 2$, contradiction.

Claim: $(-1,1) \setminus K \notin \mathcal{T}_{\ell}$. Proof. If not we would have $0 \in [a,b) \subset (-1,1) \setminus K \subset [2,3)$ for some a and b, hence $a \leq 0 < b$, hence $a < \frac{1}{n} < b$ for some n, contradiction.

• Solution to Exercise 13.7 p. 83. Let us use the following notation:

 $\mathcal{T}_s := \text{standard topology},$

 $\mathcal{T}_K := \text{topology of } \mathbb{R}_K,$

 $\mathcal{T}_{fc} := \text{finite complement topology},$

 $\mathcal{T}_u := \text{upper limit topology (having the sets } (a, b] \text{ as basis)},$

 $\mathcal{T}_{\infty} := \text{topology having the sets } (-\infty, a) \text{ as basis.}$

We denote the corresponding topological spaces by \mathbb{R}_s , \mathbb{R}_K , \mathbb{R}_{fc} , \mathbb{R}_u and \mathbb{R}_{∞} . Finally we write \mathcal{B}_s , \mathcal{B}_K , \mathcal{B}_u and \mathcal{B}_{∞} for the obvious bases.

The inclusions between these five topologies on $\mathbb R$ can be summarized by the diagram

$$\begin{array}{ccc}
 & u \\
 & K \\
 & s \\
 & fc & \infty
\end{array}$$

where "i below j" means " $\mathcal{T}_i \subsetneq \mathcal{T}_j$ ", and "i and j on the same level" means " \mathcal{T}_i and \mathcal{T}_j are incomparable".

Preliminary comments: It is easy to see that the elements of \mathcal{T}_{∞} are \emptyset , the intervals $(-\infty, a)$, and \mathbb{R} , and to observe that $\mathcal{T}_{\infty} \cap \mathcal{T}_{fc} = \{\emptyset, \mathbb{R}\}$. It is also easy to compare the standard topology \mathcal{T}_s to the others: the elements of \mathcal{T}_{fc} and \mathcal{T}_{∞} are clearly open in \mathbb{R}_s , and it is plain that the intervals (a, b) (which are the elements on \mathcal{B}_s) are open in \mathbb{R}_K and in \mathbb{R}_{∞} (note that $(a, b) = \bigcup_{d < b} (a, d]$). Clearly, $(-1, 1) \setminus K \in \mathcal{T}_K$ and $(a, b] \in \mathcal{T}_u$ are not open in \mathbb{R}_s . Moreover (2, 3] is in \mathcal{T}_u but not in \mathcal{T}_K . So, it only remains to prove $\mathcal{T}_K \subset \mathcal{T}_u$.

Let x be in $(a,b) \setminus K$. It suffices to show that there is a c such that $x \in (c,x] \subset (a,b) \setminus K$. If $x \leq 0$ we set c := a. If $\frac{1}{n+1} < x < \frac{1}{n}$ we set $c := \frac{1}{n+1}$. If x > 1 we set $c := \max(1,a)$.

 $^{^2}$ I denote inclusion by \subset and proper inclusion by \subsetneq . I know that, in some sense, it would be more coherent to use \subseteq for inclusion, but I prefer to do it that way, and hope the reader will not be confused.