Règles opératives

Pour chacune des propositions suivantes sur des expressions rationnelles, donner une preuve ou un contre-exemple :

1. $(e^*)^* \equiv e^*$

2. $(e_1|e_2)^* \equiv e_1^*|e_2^*|$

3. $(e_1e_2)^* \equiv e_1^*e_2^*$ 4. $(e_1|e_2)^* \equiv (e_1^*e_2^*)^*$

<u>Solution</u>:

1. Vrai.

3. Faux car $abab \in (ab)^*$ mais $abab \notin a^*b^*$.

2. Faux car $ab \in (a|b)^*$ mais $ab \notin a^* + b^*$.

4. Vrai.

\mathbf{II} Petites questions

- 1. Écrire une expression rationnelle dont le langage est l'ensemble des mots sur $\{a,b,c\}$ contenant exactement un a et un b (et un nombre quelconque de c).
- 2. Montrer que le langage sur $\{0,1\}$ des écritures en base 2 de nombres divisibles par 4 est rationnel.
- 3. Écrire une expression rationnelle dont le langage est l'ensemble des mots sur $\{a, b, c\}$ ne contenant pas de a consécutifs (aa ne doit pas apparaître).
- 4. Écrire une expression rationnelle dont le langage est l'ensemble des mots sur $\{a,b,c\}$ contenant exactement deux a et tels que tout c est précédé d'un b.
- 5. Si $x \in \mathbb{R}$, on note L(x) l'ensemble des préfixes des chiffres de x après la virgule. Par exemple, $L(\pi) = \{\varepsilon, 1, 14, 141, 1415...\}$. En sachant que $\frac{1}{6} = 0.1666...$ et $\frac{1}{7} = 0.142857142857...$, montrer que $L(\frac{1}{6})$ et $L(\frac{1}{7})$ sont rationnels.
- 6. Montrer plus généralement que L(x) est rationnel si $x \in \mathbb{Q}$ (on montrera plus tard que c'est en fait une équivalence). Solution:
 - 1. En distinguant le cas où a est avant b et le cas où b est avant a: $c^*ac^*bc^* + c^*bc^*ac^*$.
 - 2. C'est le langage de l'expression rationnelle $0+1(0+1)^*00$ (le nombre doit soit être 0, soit commencer par un 1 et finir par 00 en base 2).
 - 3. On peut donner $(a(b+c)+b+c)^*(a+\varepsilon)$ (un a doit être suivi d'un b ou d'un c).
 - 4. Soit $e = (b + bc)^*$ (décrivant tous les mots sur $\{b, c\}$ dont chaque c est précédé d'un b). Alors eaeae est une expression rationnelle qui convient.
 - 5. $\varepsilon + 16^*$ est une expression rationnelle de langage $L(\frac{1}{6})$. $(142857)^*(\varepsilon + 1 + 14 + 142 + 1428 + 14285 + 142857)$ est une expression rationnelle de langage $L(\frac{1}{2})$.
 - 6. Si $x \in \mathbb{Q}$, on peut écrire ses chiffres sous la forme $x = x_1, x_2ppp...$ Soit Pref(m) l'ensemble des préfixes d'un mot m, qui est un ensemble fini si m est fini (|Pref(m)| = |m| + 1). Alors $L(x) = Pref(x_2) + x_2p^*Pref(p)$ (un élément de L(x) est soit un préfixe de x_2 soit contient x_2 suivi d'un certain nombre de p, suivi d'une partie de p).

IIIDistance de Hamming

Si $u = u_1...u_n$ et $v = v_1...v_n$ sont deux mots de même longueur sur un alphabet Σ , leur distance de Hamming est :

$$d(u,v) = |\{i \mid u_i \neq v_i\}|$$

- 1. Montrer que la distance de Hamming est une distance sur Σ^* .
 - \blacktriangleright Soient $u = u_1...u_n, v = v_1...v_n, w = w_1...w_n$ trois mots de même taille. Si $u_i \neq w_i$ alors $u_i \neq v_i$ ou $v_i \neq w_i$ (sinon, $u_i = v_i = w_i$). D'où $d(u, v) + d(v, w) \le d(u, w)$. d(u, v) = d(v, u) et $d(u, v) = 0 \Leftrightarrow u = v$ sont facilement vérifiés.

Étant donné un langage L sur Σ , on définit son voisinage de Hamming $\mathcal{H}(L) = \{u \in \Sigma^* \mid \exists v \in L, \ d(u,v) \leq 1\}.$

- 2. Donner une expression rationnelle pour $\mathcal{H}(L(0^*1^*))$.
 - \blacktriangleright C'est l'ensemble des mots obtenus en changeant un 0 par un 1 ou inversement, c'est à dire $L(0^*10^*1^* + 0^*1^*01^*)$.
- 3. Montrer que si L est un langage rationnel alors $\mathcal{H}(L)$ est un langage rationnel.

 \blacktriangleright

- 1. f(0) = 1, f(1) = 0
- 2. $f(e_1e_2) = f(e_1)e_2 + e_1H(e_2)$: modifier une lettre de $u = u_1u_2 \in L(e_1e_2)$ revient à modifier une lettre de u_1 ou un lettre de u_2 .
- 3. $f(e_1 + e_2) = f(e_1) + f(e_2)$.
- 4. Si $e = e_1^*$: $f(e_1^*) = e_1^* f(e_1) e_1^*$.
- 4. Écrire une fonction f : 'a regexp -> 'a regexp renvoyant une expression rationnelle pour le voisinage de Hamming d'un langage, en utilisant le type suivant :

```
type 'a regexp =
| Vide | Epsilon | L of 'a (* L a est la lettre a *)
| Union of 'a regexp * 'a regexp
| Concat of 'a regexp * 'a regexp
| Etoile of 'a regexp
```

IV Hauteur d'étoile

La hauteur d'étoile h d'une expression régulière est définie récursivement de la manière suivante :

- h(e) = 0 si e est \emptyset , ε ou une lettre.
- $h(e_1 + e_2) = \max(h(e_1), h(e_2)).$
- $h(e_1e_2) = \max(h(e_1), h(e_2)).$
- $h(e^*) = h(e) + 1$.
- 1. Quelle est la hauteur d'étoile de $(ba^*b)^*$?
 - ▶ $h((ba^*b)^*) = h(ba^*b) + 1 = \max(h(b), h(a^*b)) + 1$. Or $h(a^*b) = \max(h(a^*), h(b)) = \max(h(a) + 1, 0) = 1$. Donc $h((ba^*b)^*) = \max(0, 1) + 1 = 2$.

En lisant la définition, on comprend que h(e) est le nombre maximum d'étoiles imbriquées dans e.

2. Écrire la fonction h: 'a regexp \rightarrow int en OCaml.

>

La hauteur d'étoile d'un langage L est la plus petite hauteur d'étoile d'une expression rationnelle e de langage L.

- 3. Que peut-on dire des langages de hauteur d'étoile 0?
 - ► Ce sont exactement les langages finis.

V Clôture par sous-mot (oral ENS info)

On fixe un alphabet Σ . Étant donné deux mots $w, w' \in \Sigma^*$, on dit que w' est un sur-mot de w, noté $w \preccurlyeq w'$, s'il existe une fonction strictement croissante ϕ de $\{1, \ldots, |w'|\}$ dans $\{1, \ldots, |w'|\}$ telle que $w_i = w'_{\phi(i)}$ pour tout $1 \le i \le |w|$, où |w| dénote la longueur de w et w_i dénote la i-ème lettre de w. Étant donné un langage L, on note \overline{L} le langage des sur-mots de mots de L, c'est-à-dire $\overline{L} := \{w' \in \Sigma^* \mid \exists w \in L, w \preccurlyeq w'\}$.

1. On pose L_0 le langage défini par l'expression rationnelle ab^*a , et L_1 le langage défini par l'expression rationnelle $(ab)^*$. Donner une expression rationnelle pour $\overline{L_0}$ et pour $\overline{L_1}$.

- 2. Montrer que, pour tout langage L, on a $\overline{\overline{L}} = \overline{L}$.
- 3. Existe-t-il des langages L' pour lesquels il n'existe aucun langage L tel que $\overline{L} = L'$?
- 4. Montrer que, pour tout langage régulier L, le langage \overline{L} est également régulier.
- 5. On admettra pour cette question le résultat suivant : pour toute suite $(w_n)_{n\in\mathbb{N}}$ de mots de Σ^* , il existe i < j tels que $w_i \leq w_j$.
 - Montrer que, pour tout langage L (non nécessairement régulier), il existe un langage fini $F \subseteq L$ tel que $\overline{F} = \overline{L}$.
- 6. Un langage L est clos par sur-mots si, pour tout $u \in L$ et $v \in \Sigma^*$ tel que $u \leq v$, on a $v \in L$. Déduire de la question précédente que tout langage clos par sur-mots est régulier.
- 7. On considère un langage L arbitraire, non nécessairement régulier, et on souhaite construire effectivement un automate pour reconnaitre \overline{L} . Comment peut-on procéder, et de quelles opérations sur L a-t-on besoin? Discuter de l'efficacité de cette procédure.
- 8. Un langage L est clos par sous-mots si, pour tout $u \in L$ et $v \in \Sigma^*$ tel que $v \preccurlyeq u$, on a $v \in L$. Montrer que tout langage clos par sous-mots est régulier.
- 9. Démontrer le résultat admis à la question 5.