

User's Guide

VELAS version 1.0

July 11, 2022

Description

The VELAS User's Guide describes how to run and use various features of the visualization and analysis of elastic anisotropy program VELAS. This guide demonstrates the capabilities of the program, how to use them, and the necessary input files and formats.

VELAS License

VELAS is distributed, used and modified under the GNU General Public License v3.0. Users of VELAS should abide by the relevant license terms and conditions of the license.

Contact Information

Zheng Ran

Email: ranzheng@outlook.com

Please don't hesitate to contact us if you have any questions about using VELAS or suggestions for improving VELAS.

If you use VELAS in your research, please cite:

Zheng Ran e.t. al. VELAS: An open-source toolbox for visualization and analysis of elastic anisotropy. Submitted to computer physics communication (2022)

Update information

You can download the latest version of VELAS through the following link. GitHub: https://github.com/ranzhengcode/VELAS

1. Introduction

VELAS is a user-friendly open-source toolbox for the visualization and analysis of elastic anisotropy written in **GNU Octave** that can be used for any crystal symmetry.

1.1 Meaning of VELAS

VELAS is derived from the combination of the letters **V**, **ELA** and **S** in "**V**isualization and analysis of **ELA**stic ani**S**otropy" and has no connection or relationship to any known trademarks, places or people that might be called "VELAS".

1.2 Why VELAS?

As far as we know, there are already several excellent tools for visualising and analysing elastic anisotropy, such as EIAM, ELATE and ELATools, so why do we need to redevelop a similar tool? First of all, VELAS is not just a tool for visualising and analysing elastic anisotropy, we want to integrate more practical features in future developments, such as the calculation of second, third and higher order elastic constants, the visualisation and analysis of stresses and strains, the analysis of various physical properties based on derivatives of third and higher order elastic constants, a deep learning framework for material property prediction and evaluation. Secondly, VELAS offers a more user-friendly graphical user interface than the known EIAM, ELATE and ELATools, allowing the user to perform calculations and plots directly only through the GUI without having to concern themselves with complex keywords. Furthermore, the programming language used is GNU Octave, whose syntax is highly compatible with the commercial software MATLAB, allowing users with access to MATLAB to use VELAS directly without any modifications.

2. VELAS Program

VELAS is an easy to use, flexible and user-friendly open source toolbox with an interactive graphical interface (GUI), written in GNU octave for visualising and analysing elastic anisotropy. VELAS supports running via both pure script and GUI. The GUI for VELAS is shown in **Fig. 1**.

€ VELAS ver.1.0.0 — □ >	<				
VELAS					
Elastic constant matrix Cij (GPa) / Sij (GPa^-1):					
Full filename:					
☐ Compliance matrix Sij Crystal System: none	▼				
Materials Project API [Material ID/Formula]:					
X-API-KEY: O LegacyAPI Query					
Basic parameters					
Plane for 2D: Calculation Mode: 3D Pressure (GPa): 0 Sph Rad					
3D mesh number of $[\theta, \phi, \gamma]$: 200 400 360 1 0 0					
2D mesh number of [θ]: 400 0 1 0					
Precision control, teps: 1e-10					
Properties	_				
	0				
○ Bulk ○ Pugh Ratio Vickers Hardness (GPa): none ▼					
Fracture Toughness (KIC, MPa*m^(1/2))					
V0: gEFr: Material Type: none	-				
m: n: '	_				
XA: KIC Model: none	•				
O Do you want to output the average value? (DFLT: No)					
Plot setting					
Colormap: jet Set Fonts O Plot Directly					
O 3D Unit Spherical or not? (DFLT: No)					
● Map Projection or not? (DFLT: Yes) Gall-Peters Dash					
O Print figure or not? (DFLT: No) DPI: 600					
Import file Run Plot Save config Exit					

Fig. 1 VELAS GUI.

2.1 Program features

The VELAS code is divided into six sections: the Basic module, the Properties module, the GUI module, the Drawing module, the MPapi module, and the Doc module. The detailed code structure of the six sections is shown in **Fig. 2**.

Fig. 2. The code structure of VELAS.

2.2 How to download VELAS

Any user can download any version of VELAS using the following link.

Download links: https://github.com/ranzhengcode/VELAS

If GitHub is not accessible in your country, or you do not have easy access to GitHub, you can request the source code directly from the author via email, which must include the purpose of use.

Author Email: ranzheng@outlook.com

2.3 How to install VELAS

Installing VELAS is a very easy task, provided that you have GNU Octave 5.2.0 and higher or MATLAB 2010 and higher installed on your computer. The installation of VELAS on different operating systems (e.g. Windows, macOS, Linux ans BSD) is not very different, so GNU Octave 6.1.0 on Ubuntu 18.04 is used as a demonstration case.

- (1) Unzip the downloaded VELAS archive into any available path.
- (2) Start GNU Octave 6.1.0 and click on the **Edit** option in the menu bar as shown in the image below.

(2) Click on **Set Path** in the **Edit** drop-down box.

(3) Click Add Folder in the Set Path dialog box.

(4) Click on Folder with Subfolders in the Add Folder drop-down list box.

(5) In the pop-up dialog box, find the path of the **unpacked VELAS folder** in **(1)**, and select the **VELAS folder**, then click **Choose**.

(5) Click **Save** in the **Set Path** dialog box to complete the installation.

After completing the installation, the VELAS folder and its sub-files will automatically be loaded into the GNU Octave working path the next time you start GNU Octave.

2.4 How to get an API Key of the Materials Project API

(1) New API Key:

Link: https://next-gen.materialsproject.org/api

Type the above link into your browser and then click on **Login** in the browser. Login is supported using the account shown below.

(Source screenshot from profile.materialsproject.org)

Log in and click on the API Key to go to your own API.

(Source screenshot from next-gen.materialsproject.org/api)

(2) Legacy API Key:

Link: https://legacy.materialsproject.org/open

(Source screenshot from legacy.materialsproject.org/janrain/loginpage)

Type the above link into your browser and then click on **Login** in the browser. The Legacy API supports logging in using Google account or GitHub account. Or use your email address to receive a login link via email that will keep you logged in on this browser.

Once logged in, click on API in the menu bar to find the API Key.

2.5 How to run VELAS

Fig. 3. Workflow of VELAS.

Option 1: Run VELAS using velasScript.

- (1) The user has to prepare the Doc file according to Template A, Template B, Template C or Template D. A detailed explanation of the keywords in the templates is given later in **section 2.8**.
- (2) Type **velasScript** in the command window of GNU Octave and press **Enter** to run.
- (3) At the end of the run, the .log file, .mat file and .dat file will be automatically saved in the folder where the input file is located.

Option 2: Run VELAS using velasGUI.

(1) Type **velasGUI** in the command window of GNU Octave and press enter to bring up the **VELAS GUI**, as shown in the image below.

€ VELAS ver.1.0.0		- 🗆 X		
	VELAS			
Elastic constant matrix	Cij (GPa) / Sij (GPa^-1)):		
Full filename:				
☐ Compliance matrix Sij	Crystal System:	none _		
Materials Project API [Mate	rial ID/Formula]:	Online		
X-API-KEY:		Legacy API Query		
Basic parameters				
Calculation Mode: 3D	Pressure (GPa): 0	Plane for 2D: ○ Sph ○ Rad		
3D mesh number of $[\theta, \phi, \chi]$:	200 400 360	100		
2D mesh number of $[\theta]$:	400	010		
Precision control, teps:	1e-10	0 0 1		
_ Properties				
● Young ● Linear Comp	oressibility	Poisson's Ratio		
O Bulk O Pugh Ratio	Vickers Hardness (GPa): n	one 🔻		
Fracture Toughness (KIC, M	IPa*m^(1/2))			
V0: gEFr:	Material Type:	none		
m: n:				
XA: XB:	KIC Model:	none <u> </u>		
O Do you want to output the	average value? (DFLT: No)			
Plot setting				
Colormap: jet	Set Fonts	O Plot Directly		
O 3D Unit Spherical or not? (DFLT: No)				
O Print figure or not? (DFLT: No) DPI: 600				
Import file Run	Plot Save co	onfig Exit		

- (2) There are three different ways to import data in VELAS GUI:
- (a) importing via input files. The user needs to prepare the input file as required by **Option 1 (1)**;
- (b) entering and setting using GUI interface. Firstly, users need to fill in the **Full Filename** editbox with a custom filename containing the path. Secondly, in the **Elastic constants** editbox, paste either Cij or Sij, if Sij is pasted, users need to check the **Compliance matrix Sij**. Thirdly, in the **Crystal System** drop-down listbox, select the name of the corresponding crystal system. Then, set the desired options in the interactive screen later.

- (c) importing by calling Materials Project's elastic database. The online mode supports calls to both new (default) and legacy API calls, but the user needs to provide a different API Key. currently the online mode only supports queries using the material ID. When using the offline mode, users only need to provide the material ID (e.g. mp-2593) or pretty formula (e.g. SiC) to query data. Offline mode is used by default. Only Cij and crystal system types are imported from the database, other options need to be set by the user as required.
- (3) After completing the setup in step (2), click the **Run** button in the GUI to start the calculation.
- (4) Once the calculation is complete, click on the **Plot** button in the GUI to plot. If **Print figure or not** is checked, the images will be saved automatically according to the settings in the **Plot setting**.
- (5) Click on the **Save config** button to save all the settings in the current GUI. **Save config** is an optional option.
- (6) Click on the Exit button to exit VELAS.

2.6 Plot and save images

Once the calculation has been completed, users can plot and save the image using the **velasPlot** script or the **Plot** button in the VELAS GUI. Note that if users only uses the VELAS GUI to plot and save images, the **Plot Directly** radio button must be checked.

2.7 Inputs and outputs of VELAS

Users can prepare input files by modelling them on the four template input files in the **Doc** module and personalise them with the keywords listed in **section 2.7**.

The VELAS output files include .log file, .mat files and .dat files, .

2.8 List of all available keywords for VELAS

Table 1. List of all available keywords for VELAS and its explanations.

Keyword	Comments	Default
		value
cfull	Full 6×6 stiffness matrix	N/A
sfull	Full 6×6 compliance matrix	N/A
isotropic ^a	Isotropic crystal system (C ₁₁ , C ₁₂)	N/A
cubic ^a	Cubic crystal system (C ₁₁ , C ₄₄ , C ₁₂)	N/A
hexagonal ^a	Hexagonal crystal system (C ₁₁ , C ₃₃ , C ₄₄ , C ₁₂ , C ₁₃)	N/A
tetragonal ^a	Tetragonal Type I (C ₁₁ , C ₃₃ , C ₄₄ , C ₆₆ , C ₁₂ , C ₁₃)	N/A
	Tetragonal Type II (C ₁₁ , C ₃₃ , C ₄₄ , C ₆₆ , C ₁₂ , C ₁₃ , C ₁₆)	
trigonal ^a	Trigonal Type I (C ₁₁ , C ₃₃ , C ₄₄ , C ₁₂ , C ₁₃ , C ₁₄)	N/A
	Trigonal Type II (C ₁₁ , C ₃₃ , C ₄₄ , C ₁₂ , C ₁₃ , C ₁₄ , C ₁₅)	
orthorhombica	Orthorhombic crystal system (C_{11} , C_{22} , C_{33} , C_{44} , C_{55} , C_{66} , C_{12} ,	N/A

	C ₁₃ , C ₂₃)	
monoclinic ^a	Monoclinic Type I (C ₁₁ , C ₂₂ , C ₃₃ , C ₄₄ , C ₅₅ , C ₆₆ , C ₁₂ , C ₁₃ , C ₁₅ ,	N/A
	C ₂₃ , C ₂₅ , C ₃₅ , C ₄₆)	
	Monoclinic Type II (C ₁₁ , C ₂₂ , C ₃₃ , C ₄₄ , C ₅₅ , C ₆₆ , C ₁₂ , C ₁₃ , C ₁₆ ,	
	C ₂₃ , C ₂₆ , C ₃₆ , C ₄₅)	
triclinic ^a	Triclinic crystal system (C_{11} , C_{12} , C_{13} , C_{14} , C_{15} , C_{16} , C_{22} , C_{23} ,	N/A
	$C_{24}, C_{25}, C_{26}, C_{33}, C_{34}, C_{35}, C_{36}, C_{44}, C_{45}, C_{46}, C_{55}, C_{56}, C_{66})$	
nmesh2d	2D mesh number of theta(θ)	400
nmesh3d	3D mesh number of theta(θ), phi(φ), chi (χ)	200 400
		360
teps	Precision control	1.0e-6
planexy	Plane in the Cartesian coordinate system, 3 coordinates of	100
	a vector, select the plane in which a 2D cut is performed	010
		001
planesph	Plane in the spherical coordinate system	N/A
rad/radian	Indicating <i>planesph</i> command with radian values	default
ang/angle	Indicating <i>planesph</i> command with angle values	N/A
mponline	Offline mode or Online mode to call Materials Project	no
mpid	The Material ID for Materials Project	none
xapikey	The X-API-Key for Materials Project to call API	none
mpapiver	Indicating which version of API to use	new
pressure	Pressure	0.0
properties	Properties in 3D/2D space to be calculated, the first row is	111110
	3D, and the second row is 2D. 1: to be calculated, 0: not to	0 0
	be calculated.	111110
		0 0
hv/hardness	Hardness	М
KIC	Fracture Toughness	N/A
avg/average	Output the average value or not?	no
cmap/colormap	Colormap,	hot
unitsph/unitspherical	Draw the 3D unit spherical or not?	no
mapproj/mapprojection	Map projection	yes
lstyle/linestyle	Line style, '-' solid line, '' dashed line, ':' dotted line, ''	
	dash-dotted line	
print	Print or not?	no
dpi	The resolution size of the output image	600
y/yes	Logical value: true	N/A

n/no	Logical value: false	N/A
#	Comment symbols	N/A

a: Only the first four or more letters of the keywords isotropic, cubic, hexagonal, tetragonal, trigonal, orthorhombic, monoclinic, triclinic can be identified without using the full keyword.

2.9 Bug report

Users are encouraged to report issues, bugs and requests for new features, as well as any potentially useful changes or improvements you may make. Feel free to communicate with the author via GitHub or email.

GitHub Link: https://github.com/ranzhengcode/VELAS

Author Email: ranzheng@outlook.com

MANY THANKS for your approval and use of VELAS!