1 Question:

Prove that $\sqrt{2}$ is an irrational number.

2 Answer:

Suppose $\sqrt{2}$ is rational, so $\sqrt{2} = \frac{p}{q}$ in lowest terms. Then:

$$p^2 = 2q^2. (1)$$

Since p^2 is even, p is even, so we write p=2k. Substituting:

$$(2k)^2 = 2q^2 \Rightarrow 4k^2 = 2q^2 \Rightarrow q^2 = 2k^2.$$
 (2)

Thus, q^2 is even, meaning q is also even. This creates an infinite descent of smaller and smaller even numbers, contradicting the assumption that p and q are in lowest terms. Hence, $\sqrt{2}$ is irrational.