Vector Space **向量空间**用三原色给向量空间涂颜色

数学,是神灵创造宇宙的语言。

Mathematics is the language in which God has written the universe.

—— 伽利略·伽利莱 (Galilei Galileo) | 意大利物理学家、数学家及哲学家 | 1564 ~ 1642

■ numpy.linalg.matrix_rank() 计算矩阵的秩

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

成权归有平人字面版在所有,有勿向用,引用有压切面处。 代码及 PDF 文件下载: https://github.com/Visualize-ML 本书配套徽课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466 欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

/. 向量空间: 从直角坐标系说起

▲ 注意,本节很长,可能有点枯燥!但是,请坚持看完这一节,色彩斑斓的内容在本节之 后。

从笛卡尔坐标系说起

向量空间 (vector space) 是笛卡尔坐标系的自然延伸。图 1 给出二维和三维直角坐标系, 在向 量空间中,它俩就是最基本的欧几里得向量空间 \mathbb{R}^n (n=2,3)。

在这两个向量空间中,我们可以完成向量加减、标量乘法等一系列运算。

在平面 \mathbb{R}^2 上,坐标点 (x_1, x_2) 无死角全面覆盖平面上所有点。这就是说,从向量角度来讲, $x_1e_1 + x_2e_2$ 代表平面 \mathbb{R}^2 上所有的向量。

类似地,在三维空间 \mathbb{R}^3 中, $x_1e_1 + x_2e_2 + x_3e_3$ 代表三维空间中所有的向量。

图 1. 二维和三维直角坐标系

向量空间

我们下面看一下向量空间的确切定义。

给定域 F, F 上的向量空间 V 是一个集合。集合 V 非空,且对于加法和标量乘法运算封闭。 这意味着,对于 V 中的每一对元素 u 和 v,可以唯一对应 V 中的一个元素 u+v;而且,对于 V 中 的每一个元素 v 和任意一个标量 k,可以唯一对应 V 中元素 kv。

如果V连同上述加法运算和标量乘法运算满足如下公理,则称V为向量空间。

公理 1: **向量加法交换律** (commutativity of vector addition); 对于 V 中任何 u 和 v, 满足:

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。 版权归清华大学出版社所有,请勿商用,引用请注明出处。 代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

$$u + v = v + u \tag{1}$$

公理 2: **向量加法结合律** (associativity of vector addition); 对于 V 中任何 u、v 和 w, 满足:

$$(u+v)+w=u+(v+w)$$
 (2)

公理 3: **向量加法恒等元** (addictive identity); V 中存在零向量 θ , 使得对于任意 V 中元素 ν , 下式成立:

$$v + 0 = v \tag{3}$$

公理 4: **存在向量加法逆元素** (existence of additive inverse); 对于每一个 V 中元素 ν , 选在 V 中的另外一个元素 ν , 满足:

$$\mathbf{v} + \left(-\mathbf{v}\right) = \mathbf{0} \tag{4}$$

公理 5: **标量乘法对向量加法的分配率** (distributivity of vector sums); 对于任意标量 k, V中元素 u 和 v 满足:

$$k\left(\mathbf{u}+\mathbf{v}\right) = k\mathbf{u} + k\mathbf{v} \tag{5}$$

公理 6: **标量乘法对域加法的分配率** (distributivity of scalar sum); 对于任意标量 k 和 t, 以及 V 中任意元素 v, 满足:

$$(k+t)\mathbf{v} = k\mathbf{v} + t\mathbf{v} \tag{6}$$

公理 7: **标量乘法与标量的域乘法相容** (associativity of scalar multiplication); 对于任意标量 k 和 t,以及 V 中任意元素 v,满足:

$$(kt)\mathbf{v} = k(t\mathbf{v}) \tag{7}$$

公理 8: 标量乘法的单位元 (scalar multiplication identity); V中任意元素 v, 满足:

$$1 \cdot \mathbf{v} = \mathbf{v} \tag{8}$$

注意. 以上公理不需要大家格外记忆!

线性组合

令 v_1 、 v_2 ... v_D 为向量空间 V 中的向量。下式被称作向量 v_1 、 v_2 ... v_D 的**线性组合** (linear combination)。

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_D \mathbf{v}_D \tag{9}$$

其中, α_1 、 α_2 ... α_D 均为实数。图 2 可视化 (9) 对应的线性组合过程。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在B站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 2. 线性组合

张成

 v_1 、 v_2 … v_D 所有线性组合的集合称作 v_1 、 v_2 … v_D 的张成 (span),记做 span(v_1 , v_2 … v_D)。

线性相关和线性无关

给定向量组 $V = [v_1, v_2, ..., v_D]$,如果存在不全为零 $\alpha_1 \times \alpha_2 \times ... \times \alpha_D$ 使得下式成立。

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \alpha_3 \mathbf{v}_3 + \dots + \alpha_D \mathbf{v}_D = \mathbf{0}$$
 (10)

则称向量组 **V线性相关** (linear dependence,形容词组为 linearly dependent); 否则,**V线性无关** (linear independence,形容词为 linearly independent)。

图 3 在平面上解释了线性相关和线性无关。

图 3. 平面上解释线性相关与线性无关

极大无关组、秩

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

一个矩阵 X 的**列**秩 (column rank) 是 X 的线性无关的列向量数量最大值。类似地,**行**秩 (row rank) 是 X 的线性无关的行向量数量最大值。

以列秩为例,矩阵 X 可以写成一组列向量:

$$\boldsymbol{X}_{n \times D} = \begin{bmatrix} \boldsymbol{x}_1 & \boldsymbol{x}_2 & \cdots & \boldsymbol{x}_D \end{bmatrix} \tag{11}$$

对于 $V = \{x_1, x_2, \dots, x_D\}$,如果这些列向量线性相关,就总可以找出一个冗余向量,把它剔 除。如此往复,不断剔除冗余向量,直到不再有冗余向量为止,得到 $S = \{x_1, x_2, \dots, x_r\}$ 线性无 关。则称 $S = \{x_1, x_2, \dots, x_r\}$ 为 $F = \{x_1, x_2, \dots, x_D\}$ 的极大线性无关组 (maximal linearly independent subset)

▲注意,极大线性无关组不唯一。

极大线性无关组的元素数量 r 为 $V = \{x_1, x_2, \dots, x_D\}$ 的秩,也称为 V 的维数或维度。

矩阵的列秩和行秩总是相等的,因此就叫它们为矩阵 X 的秩 (rank),记做 rank(X)。rank(X) 小 于等于 $\min(D, n)$,即 $\operatorname{rank}(X) \leq \min(D, n)$,对于"细高型"数据矩阵, $\operatorname{rank}(X) \leq D$ 。

图 4 所示为当 rank(X) 的秩取不同值时,span(X) 所代表的空间。当然,向量空间沿着子图中 给定的直线、平面、空间无限延伸。

特别地,若矩阵 X 的列数为 D,当 rank(X) = D 时,矩阵 X 列满秩,列向量 x_1, x_2, \ldots, x_D 线性 无关。

图 4. rank(X) 的秩和 span(X) 的空间

此外,不要被矩阵的形状迷惑,如下四个矩阵的秩都是1。

$$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}_{10x1}, \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 2 & 3 & 4 \end{bmatrix}_{10x4}, [1 & 2 & 3 & 4]$$

$$(12)$$

numpy.linalg.matrix rank() 计算矩阵的秩。

如果乘积AB存在,AB的秩满足:

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。 版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站-—生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

$$rank(AB) \le min(rank(A), rank(B))$$
(13)

▲请大家注意,仅当方阵A_{D×D}满秩,即 rank(A) = D, A 可逆。

对于实数矩阵 X, 以下几个矩阵的秩相等:

$$\operatorname{rank}(\boldsymbol{X}^{T}\boldsymbol{X}) = \operatorname{rank}(\boldsymbol{X}\boldsymbol{X}^{T}) = \operatorname{rank}(\boldsymbol{X}) = \operatorname{rank}(\boldsymbol{X}^{T})$$
(14)

基底、基底向量

一个向量空间 V 的基底向量 (basis vector) 指 V 中线性无关的 v_1 、 v_2 … v_D ,它们**张成** (span) 向量空间 V,即 $V = \text{span}(v_1, v_2, ..., v_D)$ 。

而 [v_1 , v_2 , ..., v_D] 叫做 V 的基底 (vector basis 或 basis)。向量空间 V 中的每一个向量都可以唯一地表示成基底 [v_1 , v_2 , ..., v_D] 中基底向量的线性组合。

白话说,基底就像是地图上的经度和纬度,起到定位作用。有了经纬度之后,地面上的任意 一点都有唯一坐标。

这就是本节最开始说的, $\{e_1, e_2\}$ 就是平面 \mathbb{R}^2 一组基底,平面 \mathbb{R}^2 上每一个向量都可以唯一地表达成 $x_1e_1+x_2e_2$ 。而 (x_1, x_2) 就是在基底 $[e_1, e_2]$ 下的坐标。

▲ 注意区别 $\{e_1, e_2\}$ 和 $[e_1, e_2]$ 。本书会用 $[e_1, e_2]$ 表达有序基,也就是向量基底元素按"先 e_1 后 e_2 "顺序排列。而 $\{e_1, e_2\}$ 代表集合,集合中基底向量不存在顺序。此外,有序基 $[e_1, e_2]$ 构造得到矩阵 E。不做特殊说明,本书中基底都默认是有序基。

维数

向量空间的维数 (dimension) 是基底中基底向量的个数,本书采用的维数记号为 dim()。

显然, 零向量 θ 的张成的空间 $span(\theta)$ 维数为 0。

图 1 (a) 中 $\mathbb{R}^2 = \operatorname{span}(\boldsymbol{e}_1, \boldsymbol{e}_2)$,即 \mathbb{R}^2 维数 dim(\mathbb{R}^2) = 2,而 [$\boldsymbol{e}_1, \boldsymbol{e}_2$] 的秩也是 2。

图 1 (b) 中 $\mathbb{R}^3 = \text{span}(\boldsymbol{e}_1, \boldsymbol{e}_2, \boldsymbol{e}_3)$,即 \mathbb{R}^3 维数 dim(\mathbb{R}^3) = 3,[$\boldsymbol{e}_1, \boldsymbol{e}_2, \boldsymbol{e}_3$] 的秩为 3。

下面,为了理解维数这个概念,我们多看几组例子。

图 5 所示为 6 个维数为 1 的向量空间。从几何角度来看,这些向量空间都是直线。请大家特别注意,这些直线都经过原点 θ 。也就是说 θ 分别在这些向量空间中。

图 5. 维数为 1 的向量空间

图 6 所示为线性无关的向量张起的维数为 2 的向量空间。也就是说,图 6 每幅子图中的两个向量分别是该空间的基底向量。再次强调,基底中的基底向量必须线性无关。

从集合角度来看, $span(e_1) \subset span(e_1, e_2)$, $span(e_2) \subset span(e_1, e_2)$ 。

图 6. 维数为 2 的向量空间,张成空间的基底向量线性无关

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图7所示为线性相关的向量张起的维数为2的空间。

举个例子, $span(e_1, e_2, e_1 + e_2)$ 张起的空间维数为 2, 显然 $[e_1, e_2, e_1 + e_2]$ 中向量线性相关, 因此 $[e_1, e_2, e_1 + e_2]$ 不能叫做基底。进一步分析可以知道 $[e_1, e_2, e_1 + e_2]$ 的秩为 2。

基底中的基底向量必须线性无关。剔除掉冗余向量后, $[e_1, e_2]$ 、 $[e_1, e_1 + e_2]$ 、 $[e_2, e_1 + e_2]$ 三组中的任意一组向量都线性无关,因此它们三者都可以选做 $span(e_1, e_2, e_1 + e_2)$ 空间的基底。

不同的是, $[e_1, e_2]$ 中基底向量正交, 但是 $[e_1, e_1 + e_2]$ 、 $[e_2, e_1 + e_2]$ 这两个基底中的向量并非正交。也就是构成向量空间的基底向量可以正交,也可以非正交,这是下文马上要探讨的内容。

相信大家已经很清楚,基底中的向量之间必须线性无关,而用 span() 张成空间的向量可以线性相关,比如 span(e_1 , e_2) = span(e_1 , e_2 , e_1 + e_2) = span (e_1 , e_2 , e_1 + e_2) = span (e_1 , e_2 , e_1 + e_2) .

图 7. 维数为 2 的向量空间, 张成空间的向量线性相关

图 8 所示为线性无关的向量张起维数为 3 的空间。注意这些空间都和 \mathbb{R}^3 等价。

图 8. 维数为 3 的向量空间

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在B站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

过原点、仿射空间

"过原点"这一点对于向量空间极为重要。图 5 所示的几个一维空间 (直线) 显然过原点; 也就是说, 原点 θ 在向量空间中。几何角度来看, 图 6、图 7 所示的维数为 2 的空间是平面, 这些平面都过原点。原点 θ 也在图 8 所示的维数为 3 的空间中。

向量空间平移后得到的空间叫做仿射空间 (affine space),如图 9 所示的三个例子。图 9 所示的三个仿射空间显然都不过原点。下一章,我们将介绍几何变换,大家会接触到仿射变换 (affine transformation)。

图 9. 向量空间平移得到仿射空间

基底选择并不唯一

 $[e_1, e_2]$ 只是平面 \mathbb{R}^2 无数基底中的一个。大家还记得本书前文给出图 10 的这幅图吗?

 $[e_1, e_2]$ 、 $[v_1, v_2]$ 、 $[w_1, w_2]$ 都是平面 \mathbb{R}^2 基底! 也就是说 $\mathbb{R}^2 = \text{span}(e_1, e_2) = \text{span}(v_1, v_2) = \text{span}(w_1, w_2)$ 。

如图 10 所示,平面 \mathbb{R}^2 上的向量 x 在 $[e_1, e_2]$ 、 $[v_1, v_2]$ 、 $[w_1, w_2]$ 这三组基底中都有各自的唯一坐标。

图 10. 向量 x 在三个不同的正交直角坐标系中位置

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在B站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

正交基、规范正交基、标准正交基

大家可能早已注意到图 10 中, $[e_1, e_2]$ 、 $[v_1, v_2]$ 、 $[w_1, w_2]$ 的每个基底向量都是单位向量,即 $\|e_1$ $|| = || \boldsymbol{e}_2 || = || \boldsymbol{v}_1 || = || \boldsymbol{v}_2 || = || \boldsymbol{w}_1 || = || \boldsymbol{w}_2 || = 1_{\circ}$

且每组基底内基底向量相互正交,即 e_1 垂直 e_2 , v_1 垂直 v_2 , w_1 垂直 w_2 。本书中,基底中基底 向量若两两正交,该基底叫正交基 (orthogonal basis)。

如果正交基中每个基底向量的模都为 1. 则称该基底为规范正交基 (orthonormal basis)。图 10 中 $[e_1, e_2]$ 、 $[v_1, v_2]$ 、 $[w_1, w_2]$ 三组基底都是规范正交基。

显然,张成平面 \mathbb{R}^2 的规范正交基有无数组。它们之间存在旋转关系,也就是说 $[e_1, e_2]$ 绕原 点旋转一定角度就可以得到 $[v_1, v_2]$ 或 $[w_1, w_2]$ 。

更特殊的是, $[e_1, e_2]$ 叫做平面 \mathbb{R}^2 的标准正交基 (standard orthonormal basis), 或称标准基 (standard basis)。"标准"这个字眼给了 [e_1 , e_2],是因为用这个基底表示平面 \mathbb{R}^2 最为自然。[e_1 , e_2] 也 是平面直角坐标系最普遍的参考系。

显然. $[e_1, e_2, e_3]$ 是 \mathbb{R}^3 的标准正交基. $[e_1, e_2, ..., e_D]$ 是 \mathbb{R}^D 的标准正交基。

非正交基

平面 \mathbb{R}^2 上,任何两个不平行的非零向量都可以构成平面上的一个基底。如果基底中的基底向 量之间两两并非都正交,这样的基底叫做非正交基 (non-orthogonal basis)。

图 11 所示为两组非正交基底,它们也都张起 \mathbb{R}^2 平面,即 $\mathbb{R}^2 = \operatorname{span}(\boldsymbol{a}_1, \boldsymbol{a}_2) = \operatorname{span}(\boldsymbol{b}_1, \boldsymbol{b}_2)$ 。

图 11. 二维平面的两个基底,非正交

图 12 总结了几种基底之间的关系。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。 版权归清华大学出版社所有,请勿商用,引用请注明出处。 代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在B站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 12. 几种基底之间的关系

基底转换

基底转换 (change of basis) 完成不同基底之间变换,而标准正交基是常用的桥梁。

举个例子,如图 13 所示,给定如下平面直角坐标系中的一个向量 a,将其写成 e_1 和 e_2 的线性组合:

$$\boldsymbol{a} = \begin{bmatrix} 2 \\ 2 \end{bmatrix} = 2\boldsymbol{e}_1 + 2\boldsymbol{e}_2 \tag{15}$$

(2, 2) 就是向量 a 在基底 $[e_1, e_2]$ 中的坐标。

图 13. 平面直角坐标系中的一个向量 a

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 14 给出的是不同基底中表达的同一个向量 a。

图 14. 不同基底表达同一个向量 a

在图 13 这个正交标准坐标系中,任意一个向量 x 可以写成:

$$\boldsymbol{x} = \begin{bmatrix} \boldsymbol{e}_1 & \boldsymbol{e}_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \boldsymbol{E}\boldsymbol{x} \tag{16}$$

其中, (x_1, x_2) 代表向量 x 在基底 $[e_1, e_2]$ 中的坐标值。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。 版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML 本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

假设在平面上,另外一组基底为 [v_1 , v_2],而在这个基底中向量x 的坐标为 (z_1 , z_2),x 可以写成 v_1 和 v_2 的线性组合:

$$\boldsymbol{x} = z_1 \boldsymbol{v}_1 + z_2 \boldsymbol{v}_2 = \begin{bmatrix} \boldsymbol{v}_1 & \boldsymbol{v}_2 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix}$$
 (17)

令.

$$\boldsymbol{V} = \begin{bmatrix} \boldsymbol{v}_1 & \boldsymbol{v}_2 \end{bmatrix}, \quad \boldsymbol{z} = \begin{bmatrix} z_1 \\ z_2 \end{bmatrix}$$
 (18)

(17) 可以写成:

$$x = Vz \tag{19}$$

 $z = [z_1, z_2]^T$ 可以写成:

$$z = V^{-1}x \tag{20}$$

上式中, 2×2 矩阵 V 满秩, 因此 V 可逆。

以图 14 (a) 为例, V 为:

$$\boldsymbol{V} = \begin{bmatrix} \boldsymbol{v}_1 & \boldsymbol{v}_2 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \tag{21}$$

向量 a 在图 14 (a) [v_1, v_2] 这个基底下的坐标为:

$$z = V^{-1}x = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}^{-1} \begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 (22)

再举个例子,图 14(d)中 $W = [w_1, w_2]$ 具体数值为:

$$\boldsymbol{W} = \begin{bmatrix} \boldsymbol{w}_1 & \boldsymbol{w}_2 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \tag{23}$$

向量x在基底 $[w_1, w_2]$ 可以写成:

$$x = Wy \tag{24}$$

其中, y 为向量x 在中 [w_1 , w_2] 坐标。

矩阵 W也可逆,通过下式计算得到向量 x 在图 14 (d) [w_1 , w_2] 基底中的坐标:

$$\mathbf{y} = \mathbf{W}^{-1} \mathbf{x} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$$
 (25)

联立(19)和(24),得到:

$$Vz = Wy (26)$$

因此, 从坐标z到坐标y的转换, 可以通过下式完成:

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

$$y = W^{-1}Vz \tag{27}$$

代入具体值,得到:

$$\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0.5 & 0.5 \\ -0.5 & 0.5 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$$
(28)

回顾"猪引发的投影问题"

本系列丛书《数学要素》鸡兔同笼三步曲讲过向量向一个平面投影的例子。

如图 15 所示,农夫的需求 y 是 10 只兔、10 只鸡、5 只猪。 w_1 代表套餐 A —— 3 鸡 1 兔; w_2 代表套餐 B —— 1 鸡 3 兔。 w_1 和 w_2 张起 A-B 套餐"平面为 H = span(w_1 , w_2)。而 [w_1 , w_2] 便是 H 的基底。请大家自行验证基底 [w_1 , w_2] 为非正交基。

图 15 中, y 向 H 投影结果为向量 a。

图 15. 农夫的需求和小贩提供的"A-B 套餐"平面存在 5 只猪的距离,来自本系列丛书《数学要素》

在二维平面 H 内,a 可以写成 w_1 和 w_2 的线性组合:

$$\boldsymbol{a} = \alpha_1 \boldsymbol{w}_1 + \alpha_2 \boldsymbol{w}_2 \tag{29}$$

 (α_1, α_2) 则是 a 在基底 $[\mathbf{w}_1, \mathbf{w}_2]$ 中的坐标。显然,a、 \mathbf{w}_1 、 \mathbf{w}_2 线性相关。

y 明显在平面 H 之外,不能用 w_1 、 w_2 线性组合表达,从而 y、 w_1 、 w_2 线性无关。

y 中不能被 w_1 和 w_2 表达成分为 y-a, y-a 垂直于 H 平面。这一思路可以用来解释线性回归最小二乘法 (ordinary least square, OLS)。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

读完这个"巨长无比"的一节后,如果大家对于向量空间的相关概念还是云里雾里,不要怕。 下面我们给这个空间涂个颜色,来进一步帮助大家理解!

7.2 给向量空间涂颜色: RGB 色卡

向量空间的"空间"二字赋予这个线性代数概念更多的可视化的潜力。本节开始就试图给向量空间涂"颜色",让大家从色彩角度来讲解向量空间。

如图 16 所示,**三原色光模式** (RGB color mode) 将**红** (Red)、**绿** (Green)、**蓝** (Blue) 三原色的色光以不同的比例叠加合成产生各种色彩光。

强调一下,红、绿、蓝不是调色盘的涂料。RGB中,红、绿、蓝均匀调色得到白色;而在调色盘中,红、绿、蓝三色颜料均匀调色得到黑色。

图 16. 三原色模型

如图 17 所示,在三原色模型这个空间中,任意一个颜色可以视作基底 $[e_1, e_2, e_3]$ 中三个基底向量构成线性组合:

$$\alpha_1 \mathbf{e}_1 + \alpha_2 \mathbf{e}_2 + \alpha_3 \mathbf{e}_3 \tag{30}$$

其中, α_1 、 α_2 、 α_3 取值范围都是 [0, 1]。

 e_1 代表红色, e_2 代表绿色, e_3 代表蓝色:

$$\boldsymbol{e}_{1} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad \boldsymbol{e}_{2} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \quad \boldsymbol{e}_{3} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
(31)

注意, RGB 三原色可以用 8 进制表示, 这时数值为 0~255 之间整数。此外, RGB 也可以十六进制数来表达, 比如如上公式背景色用的浅蓝色对应的 16 进制数为#DEEAF6。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 17. 三原色空间

 e_1 、 e_2 和 e_3 这三个基底向量两两正交,因此它们两两内积为 0:

$$\boldsymbol{e}_{1} \cdot \boldsymbol{e}_{2} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = 0, \quad \boldsymbol{e}_{1} \cdot \boldsymbol{e}_{3} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = 0, \quad \boldsymbol{e}_{2} \cdot \boldsymbol{e}_{3} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = 0$$

$$(32)$$

而且, e_1 、 e_2 和 e_3 均为单位向量:

$$\|\mathbf{e}_1\|_2 = 1, \quad \|\mathbf{e}_2\|_2 = 1, \quad \|\mathbf{e}_3\|_2 = 1$$
 (33)

因此,在三原色模型这个向量空间 V中, $[e_1, e_2, e_3]$ 是 V的标准正交基。

特别强调一点,准确来说,RGB 三原色空间并不是本书前文所述的向量空间,原因就是 α_1 、 α_2 、 α_3 有取值范围限制。而向量空间不存在这样的取值限制。除了零向量 θ 以外,真正的向量空间都是无限延伸。

利用 $e_1([1,0,0]^T \text{ red})$ 、 $e_2([0,1,0]^T \text{ green})$ 和 $e_3([0,0,1]^T \text{ blue})$ 这三个基底向量,我们可以张成一个色彩斑斓的空间。下面我们就带大家揭秘这个彩色空间。

7.3 张成空间:线性组合红、绿、蓝三原色

本节把"张成"这个概念用到 RGB 三原色上。

单色

首先,对 e_1 、 e_2 和 e_3 对逐个研究。实数 α_1 取值范围为 [0,1], α_1 乘 e_1 得到向量 a:

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。 代码及 PDF 文件下载: https://github.com/Visualize-ML 本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

$$\boldsymbol{a} = \alpha_1 \boldsymbol{e}_1 \tag{34}$$

大家试想,在这个 RGB 三原色空间,(34) 意味着什么?

图 18 已经给出答案。标量 α_1 乘向量 e_1 ,得到不同深度的红色。 e_1 张成的空间 span(e_1) 的维数为 1。向量空间 span(e_1) 是 RGB 三原色空间 V的一个子空间。

类似地,标量 α_2 乘向量 e_2 ,得到不同深浅的绿色。标量 α_3 乘向量 e_3 ,得到不同深浅的蓝色。 图 18 的三个空间的维数都是 1 维。

图 18. 三个基底向量和标量乘积

双色合成

再进一步,图 19 所示为 e_1 和 e_2 的张成空间 span(e_1 , e_2)。图 19 平面上的颜色可以写成如下线性组合:

$$\boldsymbol{a} = \alpha_1 \boldsymbol{e}_1 + \alpha_2 \boldsymbol{e}_2 \tag{35}$$

 $span(e_1, e_2)$ 的维数为 2。基底 $[e_1, e_2]$ 的秩为 2。

如图 19 所示,这个 $span(e_1, e_2)$ 平面上,颜色在绿色和红色之间渐变。特别地, $e_1 + e_2$ 为黄色, $e_1 + e_2$ 在空间 $span(e_1, e_2)$ 中。 $span(e_1, e_2)$ 也是 RGB 三原色空间 V 子空间。

虽然 e_1 、 e_2 、 e_1 + e_2 这三个向量相关,这三个向量也可张成图 19 这个二维空间。也就是说, $span(e_1,e_2) = span(e_1,e_2,e_1+e_2)$ 。

集合 $\{e_1, e_2, e_1 + e_2\}$ 中剔除 e_2 后 $[e_1, e_1 + e_2]$ 线性无关。因此, $[e_1, e_1 + e_2]$ 也可以选做图 19 这个空间的基底。也就是说,图 19 中任意颜色可以写成绿色 (e_1) 和黄色 $(e_1 + e_2)$ 唯一的线性组合。

图 20 所示为 e_1 和 e_3 的张成 span(e_1 , e_3),颜色在蓝色和红色之间渐变。[e_1 , e_3] 是 span(e_1 , e_3) 这个"红蓝"空间的基底。特别地, $e_1 + e_3$ 为品红。

图 21 所示为 e_2 和 e_3 的张成 span(e_2 , e_3),颜色在绿色和蓝色之间渐变。[e_2 , e_3] 是 span(e_2 , e_3) 这个"蓝绿"空间的基底。注意 $e_2 + e_3$ 为青色。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在B站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 19. 基底向量 e_1 和 e_2 张成的空间

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。 版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML 本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 21. 基底向量 e_2 和 e_3 张成的空间

三色合成

 $e_1([1,0,0]^T \text{ red})$ 、 $e_2([0,1,0]^T \text{ green})$ 和 $e_3([0,0,1]^T \text{ blue})$ 这三个基底向量张的空间 span(e_1,e_2,e_3) 如图 22 所示。span(e_1,e_2,e_3) 这个空间的维数为 3。基底 [e_1,e_2,e_3] 中每个向量都是单位向量,且两两正交,因此基底 [e_1,e_2,e_3] 是标准正交基。

▲注意,为了方便可视化,图22仅仅绘制了空间边缘上色彩最鲜艳的散点。实际上,空间内部还有无数散点,代表相对较深的颜色。

一种特殊情况, e_1 、 e_2 和 e_3 这三个基底向量以均匀方式混合,得到的便是灰度:

$$\alpha(\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3) \tag{36}$$

在图 22 中, 这些灰度颜色在原点 (0, 0, 0) 和 (1, 1, 1) 两点构成的线段上。

如图 23 所示, 白色和黑色分别对应如下向量:

$$1 \times (\boldsymbol{e}_1 + \boldsymbol{e}_2 + \boldsymbol{e}_3) = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \quad 0 \times (\boldsymbol{e}_1 + \boldsymbol{e}_2 + \boldsymbol{e}_3) = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
(37)

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 22. 三原色张成的彩色空间

我们用 Streamlit 制作了一个应用,其中用 Plotly 绘制类似图 22 可交互三维散点图。请大家参 考 Streamlit_Bk4_Ch7_01.py。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。 版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下載: https://github.com/Visualize-ML 本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

7.4 线性无关:红色和绿色,调不出青色

下面,我们还是用三原色做例子来谈一下线性相关和线性无关。

如图 24 所示, e_1 (红色) 和 e_2 (绿色) 张成平面 $H_1 = \text{span}(e_1, e_2)$ 。在 H_1 中,向量 \hat{a} 与 e_1 和 e_2 线性相关;因为, \hat{a} 可以用 e_1 和 e_2 线性组合来表达:

$$\hat{\boldsymbol{a}} = \alpha_1 \boldsymbol{e}_1 + \alpha_2 \boldsymbol{e}_2 \tag{38}$$

 e_3 显然垂直 H_1 , 因此 e_3 和 H_1 互为正交补 (orthogonal complement)。本书第 9 章还会深入介绍正交补这个概念。

图 24 中有一个不速之客——向量 a。向量 a 跳出平面 H_1 。向量 a 与 e_1 和 e_2 线性无关,因为 a 不能用 e_1 和 e_2 线性组合构造。从色彩角度来看,红光和绿光,调不出青色光。

代表青色的向量 a 在红绿色构成的平面 H_1 内的投影为 \hat{a} 。 $a - \hat{a}$ 垂直 H_1 。 向量 a 和 \hat{a} 差在一束蓝光 $a - \hat{a}$ 。 也就是,从光线合成角度来看,a 比 \hat{a} 多了一抹蓝光。

图 24. 基底向量 e_1 和 e_2 张成平面 H_1 ,向量 a 向 H_1 投影

图 25 所示为基底向量 e_1 和 e_3 张成平面 H_2 ,向量 b 向 H_2 投影得到 \hat{b} 。图 26 所示为基底向量 e_2 和 e_3 张成平面 H_3 ,向量 c 向 H_3 投影结果为 \hat{c} 。请大家自行分析这两幅图。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 25. 基底向量 e_1 和 e_3 张成平面 H_2

图 26. 基底向量 e_2 和 e_3 张成平面 H_3

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

成权归有平人字面版在所有,有勿向用,引用有压切面处。 代码及 PDF 文件下载: https://github.com/Visualize-ML 本书配套徽课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466 欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

7.5 非正交基底: 青色、品红、黄色

 $e_1([1,0,0]^T \text{ red})$ 、 $e_2([0,1,0]^T \text{ green})$ 和 $e_3([0,0,1]^T \text{ blue})$ 这三个基底向量任意两个组合构造三 个向量 $v_1([0, 1, 1]^T \text{ cyan})$ 、 $v_2([1, 0, 1]^T \text{ magenta})$ 和 $v_3([1, 1, 0]^T \text{ yellow})$:

$$\boldsymbol{v}_{1} = \boldsymbol{e}_{2} + \boldsymbol{e}_{3} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \quad \boldsymbol{v}_{2} = \boldsymbol{e}_{1} + \boldsymbol{e}_{3} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \quad \boldsymbol{v}_{3} = \boldsymbol{e}_{1} + \boldsymbol{e}_{2} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$
(39)

如图 27 所示, v_1 相当于 e_2 和 e_3 的线性组合, v_2 相当于 e_1 和 e_3 的线性组合, v_3 相当于 e_1 和 e_2 的线性组合。

 v_1 、 v_2 和 v_3 线性无关,因此 [v_1 , v_2 , v_3] 也可以是构造三维彩色空间的基底!

印刷四分色模式 (CMYK color model) 就是基于基底 $[v_1, v_2, v_3]$ 。CMYK 四个字母分别指的是 青色 (cyan)、品红 (magenta)、黄色 (yellow) 和黑色 (black)。本节,我们只考虑三个彩色,即青 色、品红和黄色。

图 27. 正交基底到非正交基底

非正交基底

 v_1 、 v_2 和 v_3 并非两两正交。经过计算可以发现 v_1 、 v_2 和 v_3 两两夹角均为 60° 1

$$\cos \theta_{\nu_{1},\nu_{2}} = \frac{\nu_{1} \cdot \nu_{2}}{\|\nu_{1}\| \|\nu_{2}\|} = \frac{1}{\sqrt{2} \times \sqrt{2}} = \frac{1}{2}$$

$$\cos \theta_{\nu_{1},\nu_{3}} = \frac{\nu_{1} \cdot \nu_{3}}{\|\nu_{1}\| \|\nu_{3}\|} = \frac{1}{\sqrt{2} \times \sqrt{2}} = \frac{1}{2}$$

$$\cos \theta_{\nu_{2},\nu_{3}} = \frac{\nu_{2} \cdot \nu_{3}}{\|\nu_{2}\| \|\nu_{3}\|} = \frac{1}{\sqrt{2} \times \sqrt{2}} = \frac{1}{2}$$
(40)

也就是说, $[v_1, v_2, v_3]$ 为非正交基底。

单色

图 28 所示为 ν_1 、 ν_2 和 ν_3 各自张成的空间 $span(\nu_1)$ 、 $span(\nu_2)$ 、 $span(\nu_3)$ 。这三个空间的维数均 为1。

观察图 28 颜色变化,可以发现 $span(v_1)$ 、 $span(v_2)$ 、 $span(v_3)$ 分别代表着青色、品红和黄色颜 色深浅变化。

双色合成

图 29~图 31分别所示为 v_1 、 v_2 和 v_3 两两张成的三个空间 span(v_1 , v_2)、span(v_1 , v_3)、span(v_2 , ν_2)。这三个空间的维数都是 2,它们也都是三色空间的子空间。

图 29. 基底向量 v_1 和 v_2 张成的子空间

图 30. 基底向量 v_1 和 v_3 张成的子空间

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。 版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML本书配套微课视频均发布在 B 站——生姜 DrGinger: ht —_生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 31. 基底向量 v_2 和 v_3 张成的子空间

7.6 基底转换:从红、绿、蓝,到青色、品红、黄色

RGB 色卡中, $[e_1, e_2, e_3]$ 是色彩空间的标准正交基。CMYK 色卡中, $[v_1, v_2, v_3]$ 是色彩空间的非正交基。我们可以用**基底转换** (change of basis) 完成 RGB 模式向 CMYK 模式转换。

下式中,通过矩阵 A,基底向量 $[e_1, e_2, e_3]$ 转化为基底向量 $[v_1, v_2, v_3]$:

$$\begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \end{bmatrix} = \mathbf{A} \begin{bmatrix} \mathbf{e}_1 & \mathbf{e}_2 & \mathbf{e}_3 \end{bmatrix} \tag{41}$$

A 常被称作过渡矩阵,或转移矩阵 (transition matrix)。

将具体数值代入(41),得到:

$$\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} = A \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 (42)

即矩阵 A 为:

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在B站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} \tag{43}$$

从基底 $[v_1, v_2, v_3]$ 向基底 $[e_1, e_2, e_3]$ 转换,可以通过 A^{-1} 完成:

$$\mathbf{A}^{-1} \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \end{bmatrix} = \begin{bmatrix} \mathbf{e}_1 & \mathbf{e}_2 & \mathbf{e}_3 \end{bmatrix} \tag{44}$$

通过计算可得到 A^{-1} :

$$A^{-1} = \begin{bmatrix} -0.5 & 0.5 & 0.5 \\ 0.5 & -0.5 & 0.5 \\ 0.5 & 0.5 & -0.5 \end{bmatrix}$$
 (45)

图 32 所示为基底 [e_1 , e_2 , e_3] 和基底 [v_1 , v_2 , v_3] 之间相互转换关系。

图 32. 基底 $[e_1, e_2, e_3]$ 和基底 $[v_1, v_2, v_3]$ 相互转换

线性方程组

"纯红色"在基底 $[v_1, v_2, v_3]$ 的坐标可以通过求解下列线性方程组得到:

$$\mathbf{A}\mathbf{x} = \mathbf{b} \quad \Rightarrow \quad \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
 (46)

而这线性方程组本身就是一个线性组合:

$$\begin{bmatrix} \boldsymbol{v}_1 & \boldsymbol{v}_2 & \boldsymbol{v}_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = x_1 \boldsymbol{v}_1 + x_2 \boldsymbol{v}_2 + x_3 \boldsymbol{v}_3 = \boldsymbol{b}$$

$$(47)$$

请大家自己计算"纯绿色"、"纯蓝色"在基底 $[v_1, v_2, v_3]$ 中的坐标。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。 版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

本章讲解的线性代数概念很多,必须承认它们都很难理解。为了帮助大家理清思路,我们用 RGB 三原色作例子,给向量空间涂颜色!

选出以下四副图片总结本章主要内容。所有的基底向量中,标准正交基和规范正交基这两个概念最常用。在后续章节学习时,请大家注意规范正交基、正交矩阵、旋转这三个概念的联系。平面上,线性相关和线性无关就是看向量是否重合。此外,正交投影是本书非常重要的几何概念,我们会在本书后续内容反复用到。

图 33. 总结本章重要内容的四副图