# Finite automata modelling

Antoine Grimod 2022

Outline of the course

- weighted automata
- sequential transducers
- minimization
- learning algorithm  $L^*$  and variations

## 1 Lecture 1

**Definition** (Semiring).  $(\mathbb{K}, +, \cdot, 0, 1)$  is a set  $\mathbb{K}$  equipped with a commutative monoid structure  $(\mathbb{K}, +, 0)$ , a second monoid structure  $(\mathbb{K}, \cdot, 1)$  such that the following axioms holds:

```
— \forall x, y, z, \in \mathbb{K}, x \cdot (y+z) = xy + xz and (y+z)x = yx + zx
```

 $- \forall x \in \mathbb{K}, 0 \cdot x = x \cdot 0 = 0$ 

#### Examples

- Boolean semiring  $\mathbb{B} = \{0, 1\}$
- --  $\mathbb{N}, \mathbb{Z}, \mathbb{Q}_+, \mathbb{Q}, \mathbb{R}$
- Tropical semirings:  $\mathbb{N}_{min} = (\mathbb{N} \cup \{+\infty\}, min, +, +\infty, 0)$
- if  $(M, \cdot, 1)$  is a monoid then  $(\mathcal{P}(M), \cup, \cdot, \emptyset, \{1_M\})$  is a semiring where  $\cup$  is the union for  $A, B \in \mathcal{P}(M), A \cdot B = \{a \cdot b | a \in A, b \in B\}$
- in particular  $\mathcal{P}(A^*)$  has a semiring structure  $Rat(A^*) \subseteq (A^*)$  is a subsemiring of  $\mathcal{P}(A^*)$

**Definition** (semiring morphism). A morphism between semiring  $(A, +_A, \cdot_A, 0_A, 1_A)$ ,  $(B, +_B, \cdot_B, 0_B, 1_B)$  is a function  $f: A \to B$  such that  $\forall x, y \in A$ 

```
--f(x +_A y) = f(x) +_B f(y)
```

- $f(x \cdot_A y) = f(x) \cdot_B f(y)$
- $f(1_A) = 1_B$
- $--f(0_K)=0_B$

**Definition** (Finite automaton). A finite automaton over a finite alphabet A is  $(Q, (\delta_a : Q \to Q)_{a \in A}), q_0, F)$  where Q is a finite set of states,  $q_0 \in Q$  the initial state  $F \subseteq Q$  the set of accepting states

**Definition** (Weighted automaton). over A and a semiring  $\mathbb{K}$   $(Q, (\delta_a : Q \to Q)_{a \in A}, i, f)$  where

- Q is a module over  $\mathbb{K}$
- $\delta_a$  is a linear transformation for all  $a \in A$
- $i: \mathbb{K} \to Q$  is the initial linear transformation
- $f: Q \to \mathbb{K}$  is the final linear transformation

**Definition** (Another definition of weighted automaton).  $\mathcal{A} = (S, i, f, E \subseteq S \times A \times K \times Q)$  where E is the graph of a partial function from  $S \times A \times S$  to  $\mathbb{K} \setminus \{0_K\}$ , with S finite,  $i, f \in \mathbb{K}^S$ 

#### Notations and conventions

- we do not write output arrows from a state q if f(q) = 0 and likewise for i(q) = 0
- 2 notations for the graph, either the edge are labelled by wa where w is the weight and a the letter, or by a|w
- $(q_1, a, k, q_2) \in E$  can also be written  $q_0 \xrightarrow{ka \text{ or } k|a} q_1$
- we omit writing the unit 1 in the case of the numerical semirings.

**Definition** (path). A path in the automaton  $\mathcal{A}$  is a sequence of transitions  $l_1, \ldots, l_n$  of the form  $l_i : p_i \xrightarrow{a_i \mid k_i} p_{i+1}$  The label of a path is  $a_1 \ldots a_n$ .

The weight of a path is the product in the semiring  $\mathbb{K}$ ,  $\mathfrak{w} = i(p_0) \cdot k_1 \cdot \ldots \cdot k_n \cdot f(p_{n+1})$ 

**Definition.** The language accepted by  $\mathcal{A}$  weighted over the semiring  $\mathbb{K}$  is a function  $\mathcal{L}(A): A^* \to \mathbb{K}$  computed as follow:  $\mathcal{L}(A)(w) = \sum_{d \text{ path labelled by } w} \mathfrak{w}(d)$ 

### Examples



 $\mathcal{A}_1$  over  $\ltimes_{min}$ 

 $\mathcal{L}(\mathcal{A}_1)(w) = min(|w|_a, |w|_b)$ 



 $\mathcal{A}_2$  over  $\mathbb{N}$ 

 $\mathcal{L}(\mathcal{A}_2) = |w|_a$ , all the paths have weight 1 (all weights are 1) and there is one path for every a in w.

**Exercise** Fin an automaton weighted over  $\mathbb{Z}$  such that  $\mathcal{L}(\mathcal{A}_3)(w) = |w|_a - |w|_b$ 



 $\mathcal{A}_3$  over  $\mathbb{Z}$ 

**Definition** ( $\mathbb{K}$ -series). A  $\mathbb{K}$ -series over  $A^*$  is a function  $s: A^* \to \mathbb{K}$ .

The set of  $\mathbb{K}$ -series over  $A^*$  is denoted by  $\mathbb{K}\langle\langle A^*\rangle\rangle$ .  $\mathbb{K}\langle\langle A^*\rangle\rangle$  has a  $\mathbb{K}$ -algebra structure such that we have the following operations :

Sum  $s,t \in \mathbb{K}\langle\langle A^* \rangle\rangle$ , s+t is defined by (s+t)(w)=s(w)+t(w) for  $w \in A^*$ External left and right multiplication  $\forall k \in \mathbb{K}, \forall s \in \mathbb{K}\langle\langle A^* \rangle\rangle$  we define  $(s \cdot k)(w)=s(w) \cdot k$  and  $(k \cdot s)(w)=k \cdot s(w)$ Cauchy product for  $s,t \in \mathbb{K}\langle\langle A^* \rangle\rangle$  we define  $(s \cdot t)(w)=\sum_{u,v \in A^*w=uv} s(u)t(v)$ 

We have the following properties :

$$\begin{array}{l} - \ \forall s,t,r \in \mathbb{K}\langle\langle A^* \rangle\rangle, (s+t) \cdot r = s \cdot r + t \cdot r \text{ and } r \cdot (s+t) = r \cdot s + r \cdot t \\ - \ \forall k,k' \in \mathbb{K}, s,t \in \mathbb{K}\langle\langle A^* \rangle\rangle: \\ - \ k \cdot (s+t) = k \cdot s + k \cdot t \\ - \ (s+t) \cdot k = s \cdot k + t \cdot k \\ - \ k \cdot (k' \cdot s) = (k \cdot \mathbb{K}) \cdot s \\ - \ k \cdot (s \cdot t) = (k \cdot s) \cdot t \\ - \ (s \cdot k) \cdot k' = s \cdot (k \cdot \mathbb{K})' \\ - \ (s \cdot t) \cdot k = s \cdot (t \cdot k) \end{array}$$

**Definition** (support). Given  $s \in \mathbb{K} \ll A^* >>$  the support of s is defined as  $supp(s) = \{w \in A^* | s(w) \neq 0_{\mathbb{K}}\}$ 

Given a  $\mathbb{K}$ -automaton  $\mathcal{A}$  we get a Boolean automaton by replacing every non-zero transition in  $\mathcal{A}$  with 1. Denote this automaton by  $supp(\mathcal{A})$ .

#### Exercise

- 1. show that  $supp(\mathcal{L}(\mathcal{A})) \subseteq \mathcal{L}(supp(\mathcal{A}))$
- 2. find a sufficient condition so that the equality holds

#### Answers

- 1. Let  $w \in \operatorname{supp}(\mathcal{L}(\mathcal{A}))$ , then  $\operatorname{supp}(\mathcal{L}(\mathcal{A})) = \sum_{dlabelledbyw} \mathfrak{w}(d) \neq 0$ , therefore there exists a path d labelled by w in  $\mathcal{A}$  such that  $\mathfrak{w}(d) \neq 0$  and  $d : \xrightarrow{a_1 \mid k_1} p_1 \to \dots \xrightarrow{a_n \mid k_n} p_n$ , thus  $\mathfrak{w}(d) = i(p_0) \cdot k_1 \cdot \dots \cdot k_n \cdot f(p_n)$ , from which we can deduce that  $k_i \neq 0$  for all i, therefore the path is also valid in  $\operatorname{supp}(\mathcal{L}(\mathcal{A}))$  and thus  $w \in \mathcal{L}(\operatorname{supp}(\mathcal{A}))$ .
- 2. Having weights such that for 2 paths d, d' with  $\mathfrak{w}(d) \neq 0$  and  $\mathfrak{w}(d') \neq 0$ ,  $\mathfrak{w}(d) + \mathfrak{w}(d') \neq 0$  is a sufficient to have the equality

**Definition** (Matrix representation). The matrix representation of an automaton  $\mathcal{A}$  is the matrix  $\Delta$  such that for every states p and q, if there is k edges from p to q labelled by  $l_1, \ldots, l_k$ , some linear transformations, then  $\Delta_{(p,q)} = \sum_{i < k} l_i$ 

**Example** Given the following automaton:



 $\mathcal{A}$ 

its matrix representation is  $\begin{pmatrix} a+b & a \\ 0 & 2a+b \end{pmatrix}$ 

Remark. This initial map  $I:Q\to\mathbb{K}$  can be seen as a row vector and the final map  $F:Q\to\mathbb{K}$  as a column vector **Lemma.**  $(\Delta, I, F)$  the matrix representation of an automaton :

$$\mathcal{L}(A)(w) = (I \cdot \Delta^{|w|} \cdot F)(w)$$

- $\begin{array}{l} \ s \in \mathbb{K}\langle\langle A^* \rangle\rangle \ can \ also \ be \ written \ as \ \textstyle \sum_{w \in A^*} s(w) \cdot w \\ \ \Delta^n \ is \ the \ matrix \ of \ sums \ of \ "weighted \ labels" \ of \ paths \ of \ length \ n \end{array}$

$$\forall p, q \in Q, (\Delta^{n+1})_{p,q} = \sum_{s \in Q} (\Delta^n)_{p,s} \cdot \Delta_{s,q}$$

— 
$$\mathcal{L}(\mathcal{A}) = \sum_{n \in \mathbb{N}} I \cdot \Delta^n \cdot F = I \cdot (\sum_{n \in \mathbb{N}} \Delta^n) \cdot F$$

Given a semiring  $\mathbb{K}$ , we would like to define the operation  $(\cdot)^*$  by  $k^* = \sum_{n>0} k^n$ . This is not always defined.

**Definition.** A family  $(s_i)_{i\in I}$  of  $\mathbb{K}\langle\langle A^*\rangle\rangle$  is locally finite when  $\forall w\in A^*, \{i\in I|s_i(w)=0\}$  is finite.

**Theorem 1.** If  $(s_i)_{i\in I}$  is a locally finite family of series, then we can define  $\sum_{i\in I} s_i$ 

**Definition.** A series  $s \in \mathbb{K}\langle\langle A^* \rangle\rangle$  is proper if  $s(\epsilon) = 0_{\mathbb{K}}$ 

If  $s \in \mathbb{K}\langle\langle A^* \rangle\rangle$  is proper then the family  $(s^n)_{n\geq 0}$  is locally finite  $(s^n(w)=0)$  if |w|< n (Cauchy product). Thus for a proper series  $s \in \mathbb{K}\langle\langle A^* \rangle\rangle$  we can define  $s^*$ .

**Definition.** A subset of  $\mathbb{K}\langle\langle A^*\rangle\rangle$  is called rationally closed if it closed under

- left and right externe multiplication
- point wise sum
- Cauchy product
- under \*-operator when it is defined

**Definition.** A polynomial is a series of finite support

The set of of polynomials over  $A^*$  is denoted by  $\mathbb{K}\langle A^* \rangle \subseteq \mathbb{K}\langle A^* \rangle$ 

The set of rational series is the rational closure of  $\mathbb{K}\langle A^* \rangle$