Chapter III

Fourier Series Representation of Periodic Signals

- A Historical Perspective
- The Response of LTI Systems to Complex Exponentials
- Fourier Series Representation of Continuous-Time Periodic Signals
- Convergence of the Fourier Series
- Properties of Continuous-Time Fourier Series
- Fourier Series Representation of Discrete-Time Periodic Signals
- Properties of Discrete-Time Fourier Series
- Fourier Series & LTI Systems
- Filtering & Examples of CT & DT Filters

L. Euler's study on the motion of a vibrating string in 1748

 Position along the string

Vertical detection (Rb.)

Vertical detection (Rb.)

- L. Euler showed (in 1748)
 - The configuration of a vibrating string at some point in time is a linear combination of these normal modes
- D. Bernoulli argued (in 1753)
 - All physical motions of a string could be represented by linear combinations of normal modes
 - But, he did not pursue this mathematically
- J.L. Lagrange strongly criticized (in 1759)
 - The use of trigonometric series in examination of vibrating strings
 - Impossible to represent signals with corners using trigonometric series

- Submitted a paper of using trigonometric series to represent "any" periodic signal
- It is examined by
- S.F. Lacroix, G. Monge, P.S. de Laplace, and J.L. Lagrange,
- But Lagrange rejected it!
- In 1822, Fourier published a book "Theorie analytique de la chaleur"
- "The Analytical Theory of Heat"

Impact from Fourier's work:

- Theory of integration, point-set topology, eigenfunction expansions, etc.
- Motion of planets, periodic behavior of the earth's climate, wave in the ocean, radio & television stations
- Harmonic time series in the 18th & 19th centuries
- > Gauss etc. on discrete-time signals and systems
- Faster Fourier transform (FFT) in the mid-1960s
 - > Cooley & Tukey in 1965 discovered independently
 - > Can be found in Gauss's notebooks

· Fourier's main contributions:

- Studied vibration, heat diffusion, etc.
- Found series of harmonically related sinusoids to be useful in representing the temperature distribution through a body
- Claimed that "any" periodic signal could be represented by such a series (i.e., Fourier series discussed in Chap 3)
- Obtained a representation for aperiodic signals
 (i.e., Fourier integral or transform discussed in Chap 4 & 5)
- (Fourier did not actually contribute to the mathematical theory of Fourier series)

A Historical Perspective

- The Response of LTI Systems to Complex Exponentials
- Fourier Series Representation of Continuous-Time Periodic Signals
- Convergence of the Fourier Series
- Properties of Continuous-Time Fourier Series
- Fourier Series Representation of Discrete-Time Periodic Signals
- Properties of Discrete-Time Fourier Series
- Fourier Series & LTI Systems
- Filtering & Examples of CT & DT Filters

Basic Idea:

 To represent signals as linear combinations of basic signals

Key Properties:

- The set of basic signals can be used to construct a broad and useful class of signals
- 2. The response of an LTI system to each signal should be simple enough in structure to provide us with a convenient representation for the response of the system to any signals constructed as linear combination of basic signals

· The set of complex exponential signals

$$\begin{cases} \text{ signals of form } e^{st} \text{ in CT} \\ \text{ signals of form } z^n \text{ in DT} \end{cases}$$

The Response of an LTI System:

Let
$$x(t) = e^{st}$$
 Let $x[n] = z^n$

$$y(t) = \int_{-\infty}^{+\infty} h(\tau)x(t-\tau)d\tau \qquad y[n] = \sum_{k=-\infty}^{+\infty} h[k]x[n-k]$$

$$= \int_{-\infty}^{+\infty} h(\tau)e^{s(t-\tau)}d\tau \qquad = \sum_{k=-\infty}^{+\infty} h[k]z^{n-k}$$

$$= e^{st} \int_{-\infty}^{+\infty} h(\tau)e^{-s\tau}d\tau \qquad = z^n \sum_{k=-\infty}^{+\infty} h[k]z^{-k}$$

$$\Rightarrow y(t) = H(s)x(t) = H(s)e^{st} \qquad \Rightarrow y[n] = H(z)x[n] = H(z)z^n$$

$$H(s) = \int_{-\infty}^{+\infty} h(\tau)e^{-s\tau}d\tau \qquad H(z) = \sum_{k=-\infty}^{+\infty} h[k]z^{-k}$$

$$a_1e^{s_1t} \longrightarrow a_1H(s_1)e^{s_1t}$$

$$a_2e^{s_2t} \longrightarrow a_2H(s_2)e^{s_2t}$$

$$a_3e^{s_3t} \longrightarrow a_3H(s_3)e^{s_3t}$$

$$x(t) = a_1 e^{s_1t} + a_2 e^{s_2t} + a_3 e^{s_3t}$$

$$y(t) = a_1 H(s_1) e^{s_1t} + a_2 H(s_2) e^{s_2t} + a_3 H(s_3) e^{s_3t}$$

$$\Rightarrow x(t) = \sum_k a_k e^{s_kt} \longrightarrow y(t) = \sum_k a_k H(s_k) e^{s_kt}$$

$$\Rightarrow x[n] = \sum_k a_k z_k^n \longrightarrow y[n] = \sum_k a_k H(z_k) z_k^n$$

- A Historical Perspective
- The Response of LTI Systems to Complex Exponentials
- Fourier Series Representation of Continuous-Time Periodic Signals
- Convergence of the Fourier Series
- Properties of Continuous-Time Fourier Series
- Fourier Series Representation of Discrete-Time Periodic Signals
- Properties of Discrete-Time Fourier Series
- Fourier Series & LTI Systems
- Filtering & Examples of CT & DT Filters

Harmonically related complex exponentials

$$\phi_k(t)=e^{jkw_0t}=e^{jk\left(rac{2\pi}{T}
ight)t}, \qquad k=0,\pm 1,\pm 2,...$$

• The Fourier Series Representation:

$$x(t) = \sum_{k=-\infty}^{+\infty} a_k \, \phi_k(t) = \sum_{k=-\infty}^{+\infty} a_k \, e^{jkw_0 t} = \sum_{k=-\infty}^{+\infty} a_k \, e^{jk \left(\frac{2\pi}{T}\right) t}$$

k = +1, -1: the first harmonic components or, the fundamental components

k = +2, -2: the second harmonic components

··· etc.

■ Example 3.2: $a_0 = 1$ $x(t) = \sum_{k=-3}^{+3} a_k e^{jk(2\pi)t}$ $a_1 = a_{-1} = \frac{1}{4}$ $a_2 = a_{-2} = \frac{1}{2}$ $a_3 = a_{-3} = \frac{1}{3}$ $\Rightarrow x(t) = 1 + \frac{1}{4} (e^{j2\pi t} + e^{-j2\pi t}) + \frac{1}{2} (e^{j4\pi t} + e^{-j4\pi t})$ $+ \frac{1}{3} (e^{j6\pi t} + e^{-j6\pi t})$ $\Rightarrow x(t) = 1 + \frac{1}{2} \cos 2\pi t + \cos 4\pi t + \frac{2}{3} \cos 6\pi t$ $e^{j\theta} = \cos(\theta) + i\sin(\theta)$ $\cos(\theta) = \frac{1}{2} (e^{j\theta} + e^{-j\theta})$ $\sin(\theta) = \frac{1}{2} (e^{j\theta} - e^{-j\theta})$

• Procedure of Determining the Coefficients: $w_0 = \frac{2\pi}{T}$

$$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jkw_0 t}$$

$$x(t)e^{-jnw_0t} = \sum_{k=-\infty}^{+\infty} a_k e^{jkw_0t} e^{-jnw_0t}$$

$$\int_0^T x(t)e^{-jnw_0t}dt = \int_0^T \sum_{k=-\infty}^{+\infty} a_k e^{jkw_0t}e^{-jnw_0t}dt$$

$$= \sum_{k=-\infty}^{+\infty} a_k \left[\int_0^T e^{j(k-n)w_0 t} dt \right]$$

$$\int_{0}^{T} e^{j(k-n)w_{0}t} dt = \int_{0}^{T} \cos\left((k-n)w_{0}t\right) dt + j \int_{0}^{T} \sin\left((k-n)w_{0}t\right) dt$$

Procedure of Determining the Coefficients:

$$\int_0^T e^{j(k-n)w_0 t} dt = \int_0^T \cos\left((k-n)w_0 t\right) dt + j \int_0^T \sin\left((k-n)w_0 t\right) dt$$

$$= \begin{cases} T, & k = n \\ 0, & k \neq n \end{cases}$$

$$\Rightarrow \int_0^T x(t)e^{-jnw_0t}dt = a_nT \qquad \Rightarrow a_n = \frac{1}{T} \int_0^T x(t)e^{-jnw_0t}dt$$

$$\Rightarrow a_k = \frac{1}{T} \int_0^T x(t) e^{-jkw_0 t} dt$$

• Furthermore,

$$\int_{T} e^{j(k-n)w_0 t} dt = \begin{cases} T, & k=n \\ 0, & k \neq n \end{cases} \Rightarrow a_k = \frac{1}{T} \int_{T} x(t) e^{-jkw_0 t} dt$$

In Summary:

• The synthesis equation:

$$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jkw_0 t} = \sum_{k=-\infty}^{+\infty} a_k e^{jk(2\pi/T)t}$$

• The analysis equation:

$$a_k = \frac{1}{T} \int_T x(t) e^{-jkw_0 t} dt = \frac{1}{T} \int_T x(t) e^{-jk(2\pi/T)t} dt$$

- $x(t) \stackrel{\mathcal{FS}}{\longleftrightarrow} a_k$: CT Fouries series pair
- $\{a_k\}$: the Fourier series coefficients or the spectral coefficients of x(t)
- $a_0 = \frac{1}{T} \int_T x(t) dt$, the dc or constant component of x(t)

• Fourier Series of Real Periodic Signals:

• If x(t) is real, then $x^*(t) = x(t)$

$$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk\mathbf{w_0}t}$$

$$\Rightarrow x(t) = x(t)^* = \left(\sum_{k=-\infty}^{+\infty} a_k e^{jkw_0 t}\right)^*$$

$$= \sum_{k=-\infty}^{+\infty} a_k^* e^{-jkw_0 t} = \sum_{k=-\infty}^{+\infty} a_{-k}^* e^{jkw_0 t}$$

$$\Rightarrow a_{-k}^* = a_k$$
 or, $a_k^* = a_{-k}$

Alternative Forms of the Fourier Series:

$$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jkw_0 t}$$

$$\Rightarrow x(t) = a_0 + \sum_{k=1}^{\infty} \left[a_k e^{jkw_0 t} + a_{-k} e^{-jkw_0 t} \right]$$

$$= a_0 + \sum_{k=1}^{\infty} \left[a_k e^{jkw_0 t} + a_k^* e^{-jkw_0 t} \right]$$

$$= a_0 + \sum_{k=1}^{\infty} 2 \operatorname{Re} \left\{ a_k e^{jkw_0 t} \right\}$$

■ Alternative Forms of the Fourier Series:
• If
$$a_k = A_k e^{j\theta_k}$$

$$\Rightarrow x(t) = a_0 + \sum_{k=1}^{\infty} 2 \operatorname{Re} \left\{ A_k e^{j\theta_k} e^{jkw_0 t} \right\}$$

$$= a_0 + \sum_{k=1}^{\infty} 2 \operatorname{Re} \left\{ A_k e^{j(kw_0 t + \theta_k)} \right\}$$

$$= a_0 + 2 \sum_{k=1}^{\infty} A_k \cos(kw_0 t + \theta_k)$$

 $\Rightarrow x(t) = a_0 + \sum_{k=0}^{\infty} 2 \operatorname{Re} \left\{ \left(\frac{B_k + j C_k}{B_k} \right) e^{jkw_0 t} \right\}$

 $= a_0 + 2\sum_{k=0}^{\infty} \left[\frac{B_k \cos(kw_0 t) - C_k \sin(kw_0 t)}{B_k \cos(kw_0 t)} \right]$

• If $a_k = B_k + j C_k$

■ Example 3.4:
$$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jkw_0 t} = \sum_{k=-\infty}^{+\infty} a_k e^{jk(2\pi/T)t}$$

$$x(t) = 1 + \sin w_0 t + 2\cos w_0 t + \cos\left(2w_0 t + \frac{\pi}{4}\right)$$

$$\Rightarrow x(t) = 1 + \frac{1}{2j} \left[e^{jw_0 t} - e^{-jw_0 t} \right] + \left[e^{jw_0 t} + e^{-jw_0 t} \right]$$

$$+ \frac{1}{2} \left[e^{j(2w_0 t + \pi/4)} + e^{-j(2w_0 t + \pi/4)} \right]$$

$$\Rightarrow x(t) = 1 + \left(1 + \frac{1}{2j}\right) e^{jw_0 t} + \left(1 - \frac{1}{2j}\right) e^{-jw_0 t}$$

$$+ \left(\frac{1}{2} e^{j(\pi/4)}\right) e^{j2w_0 t} + \left(\frac{1}{2} e^{-j(\pi/4)}\right) e^{-j2w_0 t}$$

$$\frac{e^{j\theta} = \cos(\theta) + j\sin(\theta); \quad \cos(\theta) = \frac{1}{2} (e^{j\theta} + e^{-j\theta}); \quad \sin(\theta) = \frac{1}{2j} (e^{j\theta} - e^{-j\theta})$$

 $\begin{array}{ll} \bullet & \underline{\text{Example 3.5:}} \quad a_k = \frac{1}{T} \int_T x(t) e^{-jk w_0 t} dt = \frac{1}{T} \int_T x(t) e^{-jk (2\pi/T) t} dt \\ & \dots & x(t) = \left\{ \begin{array}{ll} 1, & |t| < T_1 \\ 0, & T_1 < |t| < T/2 \end{array} \right. \\ & a_0 = \frac{1}{T} \int_{-T_1}^{T_1} dt = \frac{2T_1}{T} \\ & a_k = \frac{1}{T} \int_{-T_1}^{T_1} e^{-jk w_0 t} dt = -\frac{1}{jk w_0 T} e^{-jk w_0 t} \bigg|_{-T_1}^{T_1} \\ & = \frac{2}{k w_0 T} \left[\frac{e^{jk w_0 T_1} - e^{-jk w_0 T_1}}{2j} \right] \qquad w_0 = \frac{2\pi}{T} \\ & = \frac{2 \sin(k w_0 T_1)}{k w_0 T} = \frac{\sin(k w_0 T_1)}{k \pi} = \frac{\sin(k (2\pi/T) T_1)}{k \pi}, \quad k \neq 0 \end{array}$

- A Historical Perspective
- The Response of LTI Systems to Complex Exponentials
- Fourier Series Representation of Continuous-Time Periodic Signals
- Convergence of the Fourier Series
- Properties of Continuous-Time Fourier Series
- Fourier Series Representation of Discrete-Time Periodic Signals
- Properties of Discrete-Time Fourier Series
- Fourier Series & LTI Systems
- Filtering & Examples of CT & DT Filters

- Fourier maintained that "any" periodic signal could be represented by a Fourier series
- The truth is that
 Fourier series can be used to represent
 an extremely large class of periodic signals
- The question is that when a periodic signal x(t) does in fact have a Fourier series representation?

$$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk(2\pi/T)t} \qquad a_k = \frac{1}{T} \int_T x(t) e^{-jk(2\pi/T)t} dt$$

- One class of periodic signals:
 - · Which have finite energy over a single period:

$$\int_T |x(t)|^2 \, dt < \infty \qquad \Rightarrow \quad a_k = \frac{1}{T} \int_T x(t) e^{-jkw_0 t} \, dt < \infty$$
$$x_N(t) = \sum_{k=-N}^{+N} a_k e^{jkw_0 t}$$

$$e_N(t) = x(t) - x_N(t)$$

$$e(t) = x(t) - \sum_{k=-\infty}^{+\infty} a_k e^{jkw_0 t}$$

$$E_N(t) = \int_T |e_N(t)|^2 dt$$

$$E(t) = \int_T |e(t)|^2 dt = 0$$

$$ightarrow$$
 0 as N $ightarrow$ ∞ $x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jkw_0 t}, \quad \forall t$?

- The other class of periodic signals:
- · Which satisfy Dirichlet conditions:
- Condition 1:
 - Over any period, x(t) must be absolutely integrable, i.e.,

$$\int_T |x(t)| \, dt < \infty \qquad \Rightarrow \quad |a_k| \ \le \ \frac{1}{T} \! \int_T \left| x(t) e^{-jkw_0 t} \right| \, dt$$

 $= \frac{1}{T} \int_{T} \left| x(t) \right| \frac{dt}{dt} < \infty$

 $x(t) = \frac{1}{t}, \quad 0 < t \le 1$

- The other class of periodic signals:
 - Which satisfy Dirichlet conditions:
 - Condition 2:
 - In any finite interval, x(t) is of bounded variation; i.e.,
 - There are no more than a finite number of maxima and minima during any single period of the signal

- The other class of periodic signals:
- Which satisfy Dirichlet conditions:
- Condition 3:
- In any finite interval,
 x(t) has only finite number of discontinuities.
- Furthermore, each of these discontinuities is finite

- How the Fourier series converges for a periodic signal with discontinuities
 - In 1898,
 Albert Michelson (an American physicist)
 used his harmonic analyzer
 to compute the truncated Fourier series approximation for the square wave
 x_v(0)

$$x_N(t) = \sum_{k=-N}^{+N} a_k e^{jk\mathbf{w_0}t}$$

$$x_1(t) = a_{-1}e^{-j\cdot 1\cdot w_0t} + a_0 + a_1e^{j\cdot 1\cdot w_0t}$$

- A Historical Perspective
- The Response of LTI Systems to Complex Exponentials
- Fourier Series Representation of Continuous-Time Periodic Signals
- Convergence of the Fourier Series
- Properties of Continuous-Time Fourier Series
- Fourier Series Representation of Discrete-Time Periodic Signals
- Properties of Discrete-Time Fourier Series
- Fourier Series & LTI Systems
- Filtering & Examples of CT & DT Filters

- CT Fourier Series Representation:
 - The synthesis equation:

The analysis equation:

$$a_k = \frac{1}{T} \int_T x(t) e^{-jkw_0 t} dt = \frac{1}{T} \int_T x(t) e^{-jk(2\pi/T)t} dt$$

 $ullet \ x(t) \stackrel{\mathcal{FS}}{\longleftrightarrow} \ a_k$: Fouries series pair

Section	Property		
3.5.1	Linearity		
3.5.2	Time Shifting		
	Frequency Shifting		
3.5.6	Conjugation		
3.5.3	Time Reversal		
3.5.4	Time Scaling		
	Periodic Convolution		
3.5.5	Multiplication		
	Differentiation		
	Integration		
3.5.6	Conjugate Symmetry for Real Signals		
3.5.6	Symmetry for Real and Even Signals		
3.5.6	Symmetry for Real and Odd Signals		
	Even-Odd Decomposition for Real Signals		
3.5.7	Parseval's Relation for Periodic Signals		

• Linearity:
$$a_k = \frac{1}{T} \int_T x(t) e^{-jkw_0 t} dt$$

• x(t), y(t): periodic signals with period T

$$x(t) \stackrel{\mathcal{F}S}{\longleftrightarrow} a_k \qquad x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jkw_0 t}$$

$$y(t) \stackrel{\mathcal{F}S}{\longleftrightarrow} b_{k}$$
 $y(t) = \sum_{m=-\infty}^{+\infty} b_{m} e^{jmw_{0}t}$

$$\Rightarrow z(t) = Ax(t) + By(t) \stackrel{\mathcal{FS}}{\longleftrightarrow} c_k = Aa_k + B\frac{b_k}{b_k}$$
$$z(t) = \sum_{k = -\infty}^{+\infty} c_k e^{jkw_0 t}$$

Time Shifting:

• x(t): periodic signal with period T

$$\begin{array}{ccc} x(t) & \stackrel{\mathcal{F}S}{\longleftrightarrow} & a_k \\ \\ \Rightarrow & x(t-t_0) & \stackrel{\mathcal{F}S}{\longleftrightarrow} & e^{-jkw_0t_0}a_k = e^{-jk\binom{2\pi}{T}t_0}a_k \\ \\ \text{b/c} & b_k = \frac{1}{T}\int_T x(t-t_0)e^{-jkw_0t}dt \end{array}$$

$$= \frac{1}{T} \int_{T} x(\tau) e^{-jkw_0(\tau + t_0)} d\tau$$

$$=e^{-jkw_0t_0}\frac{1}{T}\int_T x(\tau)e^{-jkw_0\tau}d\tau$$

Time Reversal:

$$x(t) \stackrel{\mathcal{F}S}{\longleftrightarrow} a_k$$

$$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk \left(\frac{2\pi}{T}\right)t}$$

$$\Rightarrow x(-t) \stackrel{\mathcal{FS}}{\longleftrightarrow} a_{-k}$$

$$\Rightarrow x(-t) \stackrel{\mathcal{FS}}{\longleftrightarrow} a_{-k} \qquad x(-t) = \sum_{k=-\infty}^{+\infty} a_k e^{-jk \left(\frac{2\pi}{T}\right)t}$$

$$=\sum_{m=-\infty}^{+\infty}a_{-m}e^{jm\left(\frac{2\pi}{T}\right)t}$$

- If x(t) is even, i.e., x(-t) = x(t)
 - $\Rightarrow a_k$ is even, i.e., $a_{-k} = a_k$
- If x(t) is odd, i.e., x(-t) = -x(t)
 - $\Rightarrow a_k$ is odd, i.e., $a_{-k} = -a_k$

Time Scaling:

- x(t): periodic signals with period Tand fundamental frequency wo
- $x(\alpha t)$: periodic signals with period $\frac{T}{\alpha}$ and fundamental frequency awo

$$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jkw_0 t} = \sum_{k=-\infty}^{+\infty} a_k e^{jk \left(\frac{2\pi}{T}\right)t}$$

$$x(\alpha t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk w_0(\alpha t)} = \sum_{k=-\infty}^{+\infty} a_k e^{jk \alpha \left(\frac{2\pi}{T}\right)t}$$
$$= \sum_{k=-\infty}^{+\infty} a_k e^{jk \left(\frac{2\pi}{\alpha}\right)t} = \sum_{k=-\infty}^{+\infty} a_k e^{jk \left(\frac{2\pi}{\alpha}\right)t}$$

• Multiplication:

$$z(t) = \sum_{k=-\infty}^{+\infty} c_k e^{jkw_0 t}$$

• x(t), y(t): periodic signals with period

$$x(t) \stackrel{\mathcal{FS}}{\longleftrightarrow} a_k$$

$$x(t) \stackrel{\mathcal{F}S}{\longleftrightarrow} a_k \qquad x(t) = \sum_{l=-\infty}^{+\infty} a_l e^{jlw_0 t}$$

$$y(t) \stackrel{\mathcal{FS}}{\longleftrightarrow} b_k$$

$$y(t) \stackrel{\mathcal{F}S}{\longleftrightarrow} b_{k}$$
 $y(t) = \sum_{m=-\infty}^{l=-\infty} b_{m}e^{jmw_{0}t}$

 $\Rightarrow x(t)y(t)$: also periodic with T

$$z(t) = x(t)y(t) \stackrel{\mathcal{FS}}{\longleftrightarrow} c_k = \sum_{l=-\infty}^{\infty} a_l b_{k-l}$$

Differentiation:

$$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk\mathbf{w}_0 t}$$

• x(t): periodic signals with period T

$$x(t) \stackrel{\mathcal{FS}}{\longleftrightarrow} a_k$$

$$\frac{d}{dt}x(t) \stackrel{\mathcal{FS}}{\longleftrightarrow} jkw_0 a_k$$

$$x(t) = \sum_{k=-\infty}^{+\infty} a_k \qquad e^{jkw_0t}$$

$$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk\mathbf{w_0}t}$$

• x(t): periodic signals with period T

$$x(t) \stackrel{\mathcal{FS}}{\longleftrightarrow} a_k$$

$$\int_{-\infty}^t x(\tau)d\tau \stackrel{\mathcal{FS}}{\longleftrightarrow} \frac{1}{jkw_0} a_k$$

$$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jkw_0t}$$

$$e^{jkw_0t}$$

- $\begin{array}{c} \bullet \; x(t) = x(t)^* \; \& \; x(-t) = x(t) \Rightarrow a_{-k} = a_k^* \; \& \; a_{-k} = a_k \\ \\ \Rightarrow a_k = a_k^* \\ \\ x(t) \; \text{is real} \; \& \; \text{even} \Rightarrow \{a_k\} \; \text{are real} \; \& \; \text{even} \end{array}$
- ullet x(t) is real & odd $\Rightarrow \{a_k\}$ are purely imaginary & odd

Property	Section	Periodic Signal	Fourier Series Coefficients
		$x(t)$ Periodic with period T and fundamental frequency $\omega_0 = 2\pi i T$	a_k b_k
Linearity Time Shifting Frequency Shifting	3.5.1 3.5.2	Ax(t) + By(t) $x(t - t_0)$ $e^{iH\omega_0t} = e^{iH(2\pi iT)}x(t)$	$Aa_k + Bb_t$ $a_k e^{-\beta i a_0 i_0} = a_k e^{-\beta i (2\pi i T) i_0}$ a_{k-N}
Conjugation	3.5.6	x*(f)	a'_ ;
Time Reversal	3.5.3	x(-t)	a-2
Time Scaling	3.5.4	$x(\alpha t)$, $\alpha > 0$ (periodic with period T/α)	a_k
Periodic Convolution		$\int_{\tau} x(\tau)y(t-\tau)d\tau$	$Ta_{\delta}b_{\delta}$
Multiplication	3.5.5	x(t)y(t)	$\sum_{\ell=-\times}^{+\times} a_{\ell}b_{\ell-\ell}$
Differentiation		$\frac{dx(t)}{dt}$	$jk\omega_0a_k = jk\frac{2\pi}{T}a_k$
Integration		$\int_{-\pi}^{\pi} x(t) dt \text{ (finite valued and periodic only if } a_0 = 0)$	$-\left(\frac{1}{jk\omega_0}\right)a_k = \left(\frac{1}{jk(2\pi/T)}\right)a_k$
Conjugate Symmetry for Real Signals	3.5.6	x(t) real	$\begin{cases} a_k = a_{-k}^* \\ \operatorname{Ge}\{a_k\} = \operatorname{Gle}\{a_{-k}\} \\ \operatorname{Sne}\{a_k\} = -\operatorname{Sne}\{a_{-k}\} \\ a_k = a_{-k} \\ \leqslant a_k = - \leqslant a_{-k} \end{cases}$
Real and Even Signals	3.5.6	x(t) real and even	az real and even
Real and Odd Signals Even-Odd Decomposition of Real Signals	3.5.6	x(t) real and odd $\begin{cases} x_{\varepsilon}(t) = \delta_{\theta}\{x(t)\} & [x(t) \text{ real}] \\ x_{\varepsilon}(t) = \delta_{\theta}\{x(t)\} & [x(t) \text{ real}] \end{cases}$	a_k purely imaginary and odd $\Re e\{a_k\}$ $i \delta m\{a_k\}$
or real organic		[X ₀ (t) = Ou(x(t)) [X(t) lead]	
	P	'arseval's Relation for Periodic Signals	
		$\frac{1}{T}\int_{T} x(t) ^{2} dt = \sum_{k=-\infty}^{+\infty} a_{k} ^{2}$	

Example 3.8:

$$\begin{split} b_k &= e^{jkw_0T_1}a_k - e^{-jkw_0T_1}a_k \\ &= \frac{1}{T}\left[e^{jkw_0T_1} - e^{-jkw_0T_1}\right] \\ &= \frac{2j\sin(kw_0T_1)}{T} \end{split}$$

$$b_k = jkw_0c_k$$

$$k \neq 0 \qquad \frac{c_k}{jkw_0} = \frac{2j\sin(kw_0T_1)}{jkw_0T} \ = \frac{\sin(kw_0T_1)}{k\pi}$$

$$k = 0 \qquad \frac{c_0}{T} = \frac{2T_1}{T}$$

- A Historical Perspective
- The Response of LTI Systems to Complex Exponentials
- Fourier Series Representation of Continuous-Time Periodic Signals
- Convergence of the Fourier Series
- Properties of Continuous-Time Fourier Series
- Fourier Series Representation of Discrete-Time Periodic Signals
- Properties of Discrete-Time Fourier Series
- Fourier Series & LTI Systems
- Filtering & Examples of CT & DT Filters

Harmonically related complex exponentials

$$\phi_k[n] = e^{jk w_0 n} = e^{jk \left(\frac{2\pi}{N}\right)n}, \quad k = 0, \pm 1, \pm 2, \dots$$

$$\phi_{k+N}[n] = e^{j(k+N)\binom{2\pi}{N}n} = e^{jk\binom{2\pi}{N}n}e^{jN\binom{2\pi}{N}n}$$

$$\Rightarrow \phi_k[n] = \phi_{k+N}[n] = \cdots = \phi_{k+rN}[n]$$

The Fourier Series Representation:

$$x[n] = \sum_{k=< N>} a_k \phi_k[n] = \sum_{k=< N>} a_k e^{jkw_0 n} = \sum_{k=< N>} a_k e^{jk \left(\frac{2\pi}{N}\right)n}$$

Procedure of Determining the Coefficients:

$$x[n] = \sum_{k = \langle N \rangle} a_k e^{jk \left(\frac{2\pi}{N}\right) n} \qquad \sum_{n = \langle N \rangle} e^{-jr \left(\frac{2\pi}{N}\right) n}$$

$$\sum_{n=< N>} x[n] e^{-jr \left(\frac{2\pi}{N}\right)n} = \sum_{n=< N> k=< N>} a_k e^{j(k-r) \left(\frac{2\pi}{N}\right)n}$$

$$\textstyle \sum_{n = < N >} x[n] e^{-jr \left(\frac{2\pi}{N}\right)n} = \sum_{k = < N >} a_k \sum_{n = < N >} e^{j(k-r) \left(\frac{2\pi}{N}\right)n}$$

$$= a_r N$$

$$\Rightarrow a_r = \frac{1}{N} \sum_{n=< N>} x[n] e^{-jr\left(\frac{2\pi}{N}\right)n}$$

Procedure of Determining the Coefficients:

$$x[0] = \sum_{k = \langle N \rangle} a_k$$

$$x[1] = \sum_{k=< N>} a_k e^{jk\left(rac{2\pi}{N}
ight)}$$

$$x[2] = \sum_{k=\langle N\rangle} a_k e^{jk2\left(\frac{2\pi}{N}\right)}$$

$$x[N-1] = \sum_{k=\langle N \rangle} a_k e^{jk(N-1)\binom{2\pi}{N}}$$

and
$$\sum_{n=< N>} e^{jm\left(rac{2\pi}{N}
ight)n} = \left\{egin{array}{cc} N, & m=0,\pm N,\pm 2N, \dots \\ 0, & \mathrm{otherwise} \end{array}
ight.$$

In Summary:

• The synthesis equation:

$$x[n] = \sum_{k = \langle N \rangle} a_k e^{jkw_0 n} = \sum_{k = \langle N \rangle} a_k e^{jk \left(\frac{2\pi}{N}\right) n}$$

• The analysis equation:

$$a_k = \frac{1}{N} \sum_{n = < N >} x[n] e^{-jkw_0 n} = \frac{1}{N} \sum_{n = < N >} x[n] e^{-jk \left(\frac{2\pi}{N}\right) n}$$

$$a_k = a_{k+N}$$

- $x[n] \stackrel{\mathcal{FS}}{\longleftrightarrow} a_k$: DT Fouries series pair
- $\{a_k\}$: the Fourier series coefficients or the spectral coefficients of x[n]

$$x[n] = 1 + \sin\left(\frac{2\pi}{N}\right)n + 3\cos\left(\frac{2\pi}{N}\right)n + \cos\left(\frac{4\pi}{N}n + \frac{\pi}{2}\right)$$

$$\Rightarrow x[n] = 1 + \frac{1}{2j}\left[e^{j\left(\frac{2\pi}{N}\right)n} - e^{-j\left(\frac{2\pi}{N}\right)n}\right] + \frac{3}{2}\left[e^{j\left(\frac{2\pi}{N}\right)n} + e^{-j\left(\frac{2\pi}{N}\right)n}\right]$$

$$+ \frac{1}{2}\left[e^{j\left(\frac{4\pi}{N}n + \frac{\pi}{2}\right)} + e^{-j\left(\frac{4\pi}{N}n + \frac{\pi}{2}\right)}\right]$$

$$\Rightarrow x[n] = 1 + \left(\frac{3}{2} + \frac{1}{2j}\right)e^{j\left(\frac{2\pi}{N}\right)n} + \left(\frac{3}{2} - \frac{1}{2j}\right)e^{-j\left(\frac{2\pi}{N}\right)n}$$

$$+ \frac{1}{2}e^{j\left(\frac{\pi}{2}\right)}e^{j2\left(\frac{2\pi}{N}\right)n} + \frac{1}{2}e^{-j\left(\frac{\pi}{2}\right)}e^{-j2\left(\frac{2\pi}{N}\right)n}$$

Example 3.12:

$$a_k = \frac{1}{N} \sum_{m=0}^{2N_1} e^{-jk \left(\frac{2\pi}{N}\right)(m-N_1)} = \frac{1}{N} e^{jk \left(\frac{2\pi}{N}\right)N_1} \sum_{m=0}^{2N_1} e^{-jk \left(\frac{2\pi}{N}\right)m}$$

• Example 3.12:
$$1 - e^{-j\theta} = e^{-j\theta/2} \left(e^{j\theta/2} - e^{-j\theta/2} \right)$$
• $k \neq 0, \pm N, \pm 2N, \dots$

$$a_k = \frac{1}{N} e^{jk \binom{2\pi}{N} N_1} \left(\frac{1 - e^{-jk \binom{2\pi}{N} (2N_1 + 1)}}{1 - e^{-jk \binom{2\pi}{N}}} \right) \qquad (N_1 + \frac{1}{2})$$

$$= \frac{1}{N} \frac{e^{-jk \binom{2\pi}{2N}} \left[e^{jk \binom{2\pi}{2N} (2N_1 + 1)} - e^{-jk \binom{2\pi}{2N} (2N_1 + 1)} \right]}{e^{-jk \binom{2\pi}{2N}} \left[e^{jk \binom{2\pi}{2N}} - e^{-jk \binom{2\pi}{2N}} \right]}$$

$$= \frac{1}{N} \frac{\sin \left[\binom{2\pi}{N} k (N_1 + \frac{1}{2}) \right]}{\sin \left[\binom{\pi}{N} k \right]}$$
• $k = 0, \pm N, \pm 2N, \dots$

$$a_k = \frac{2N_1 + 1}{N}$$

Section	Property		
	Linearity		
	Time Shifting		
	Frequency Shifting		
	Conjugation		
	Time Reversal		
	Time Scaling		
	Periodic Convolution		
3.7.1	Multiplication		
3.7.2	First Difference		
	Running Sum		
	Conjugate Symmetry for Real Signals		
	Symmetry for Real and Even Signals		
	Symmetry for Real and Odd Signals		
	Even-Odd Decomposition for Real Signals		
3.7.3	Parseval's Relation for Periodic Signals		

Property	Periodic Signal	Fourier Series Coefficient
	$x[n]$ Periodic with period N and $y[n]$ fundamental frequency $\omega_0 = 2\pi/N$	$\begin{bmatrix} a_k \\ b_k \end{bmatrix}$ Periodic with period N
Linearity Time Shifting Frequency Shifting Coajugation Time Reversal Time Scaling	$A_{\lambda}[n] + B_{\lambda}[n]$ $\chi[n - m_0]$ $g^{(n)\chi(n)g_N}g_n[n]$ $\chi^{\prime}[n]$ $\chi^{\prime}[n] = \int_{0}^{1} x_n^{\prime}(n) \sin n \sin n \sin n \sin n$ $\chi^{\prime}[n] = \int_{0}^{1} x_n^{\prime}(n) \sin n \sin n \sin n \sin n \sin n$	$Aa_k + Bb_k$ $a_ke^{-j\beta/2\pi/c}n_0$ a_{k-N} a_{-k} a_{-k} a_{-k} a_{-k} (viewed as periodic) a_{-k} (with period mN)
Periodic Convolution	$\sum_{p=(N)} x[p]y[n-r]$	Na_kb_k
Multiplication	x[n]y[n]	$\sum_{j=000} a_i b_{k-\ell}$
First Difference	x[n] - x[n - 1]	$(1 - e^{-/k(2\pi iN)})a_k$
Running Sum	$\sum_{k=-n}^{n} x[k] \left(\text{finite valued and periodic only} \right)$	$\left(\frac{1}{(1-e^{-jk(2\pi/N)})}\right)a_k$
Conjugate Symmetry for Real Signals	x[n] real	$\begin{cases} a_k = a^*_{-k} \\ \operatorname{Re}\{a_k\} = \operatorname{Re}\{a_{-k}\} \\ \operatorname{Sm}\{a_k\} = -\operatorname{Sm}\{a_{-k}\} \\ a_k = a_{-k} \\ \ a_k = -\ a_{-k}\ \end{cases}$
Real and Even Signals Real and Odd Signals	x[n] real and even x[n] real and odd	a_k real and even a_k purely imaginary and odd
Even Odd Decomposition of Real Signals	$\begin{cases} x_c[n] = \delta v\{x[n]\} & [x[n] \text{ real}] \\ x_o[n] = \text{Cd}(x[n]) & [x[n] \text{ real}] \end{cases}$	$\Re e\{a_i\}$ $j \ell m\{a_i\}$
	Parseval's Relation for Periodic Signals	
	$\frac{1}{N} \sum_{n=(N)} x[n] ^2 = \sum_{k=(N)} a_k ^2$	

In Summary:

The synthesis equation:

$$x[n] = \sum_{k = \langle N \rangle} a_k e^{jkw_0 n} \qquad = \sum_{k = \langle N \rangle} a_k e^{jk \left(\frac{2\pi}{N}\right) n}$$

..., ..., ..., ..., ...,

• The analysis equation:

$$a_k = \frac{1}{N} \sum_{n=< N>} x[n] e^{-jkw_0 n} = \frac{1}{N} \sum_{n=< N>} x[n] e^{-jk\left(\frac{2\pi}{N}\right) n}$$

$$\mathbf{a}_k = a_{k+N}$$

$$a_k = a_{k+N}$$

•
$$x[n] \stackrel{\mathcal{FS}}{\longleftrightarrow} a_k$$

• $x[n] \xleftarrow{\mathcal{FS}} a_k$: DT Fouries series pair

• x[n], y[n]: periodic signals with period N

$$x[n] \stackrel{\mathcal{FS}}{\longleftrightarrow} a_k$$

$$y[n] \stackrel{\mathcal{FS}}{\longleftrightarrow} b_k$$

$$\Rightarrow z[n] = Ax[n] + By[n] \stackrel{\mathcal{F}S}{\longleftrightarrow} c_k = Aa_k + Bb_k$$

Time Shifting:

$$x[n] \stackrel{\mathcal{FS}}{\longleftrightarrow} a_k$$

$$\Rightarrow x[n-n_0] \stackrel{\mathcal{FS}}{\longleftrightarrow} e^{-jkw_0n_0}a_k = e^{-jk\left(\frac{2\pi}{N}\right)n_0}a_k$$

• Multiplication:

• x[n], y[n]: periodic signals with period N

$$x[n] \overset{\mathcal{FS}}{\longleftrightarrow} a_k$$
 $x[n] = \sum_{l = \langle N \rangle} a_l e^{jlw_0 n}$ $y[n] \overset{\mathcal{FS}}{\longleftrightarrow} b_k$ $y[n] = \sum_{m = \langle N \rangle} b_m e^{jmw_0 n}$

 $\Rightarrow x[n]y[n]$: also periodic with N

$$x[n]y[n] \overset{\mathcal{FS}}{\longleftrightarrow} d_k = \sum_{l=< N>} a_l \, b_{k-l}$$
 \Rightarrow a periodic convolution

• First Difference:
$$x[n] = \sum_{l=\langle N \rangle} a_k e^{jkw_0 n}$$

$$x[n] \stackrel{\mathcal{FS}}{\longleftrightarrow} a_k$$

$$\Rightarrow x[n-n_0] \stackrel{\mathcal{FS}}{\longleftrightarrow} e^{-jkw_0n_0}a_k = e^{-jk\left(\frac{2\pi}{N}\right)n_0}a_k$$

$$\Rightarrow x[n-1] \stackrel{\mathcal{FS}}{\longleftrightarrow} e^{-jkw_0}a_k = e^{-jk\left(\frac{2\pi}{N}\right)}a_k$$

$$x[n] - x[n-1] \overset{\mathcal{FS}}{\longleftrightarrow} \left(1 - e^{-jk\left(rac{2\pi}{N}
ight)}
ight) a_k$$

Parseval's relation for DT periodic signals:

• As shown in Problem 3.57:

$$\frac{1}{N} \sum_{k=< N>} |x[n]|^2 = \sum_{k=< N>} |a_k|^2$$

$$x[n] = \sum_{k=< N>} a_k e^{jkw_0 n}$$

$$a_k = \frac{1}{N} \sum_{n=< N>} x[n] e^{-jkw_0 n}$$

Parseval's relation states that

the total average power in a periodic signal equals

the sum of the average powers

in all of its harmonic components

(only N distinct harmonic components in DT)

Example 3.13:

CT & DT Fourier Series Representation:

$$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jkw_0 t} \qquad \qquad a_k = \frac{1}{T} \int_T x(t) e^{-jkw_0 t} dt$$

$$a_k = \frac{1}{T} \int_T x(t) e^{-jkw_0 t} dt$$

$$x(t) \leftarrow \sum_{k=-\infty}^{+\infty} a_k e^{jkw_0 t} \qquad \qquad x(t) \leftarrow \sum_{k=-\infty}^{+\infty} a_k e^{jkw_0 t} \qquad \qquad a_k = \frac{1}{N} \sum_{n=< N>} x[n] e^{-jkw_0 t}$$

$$x[n] = \sum_{k=< N>} a_k e^{jkw_0 t} \qquad \qquad a_k = \frac{1}{N} \sum_{n=< N>} x[n] e^{-jkw_0 t}$$

- A Historical Perspective
- The Response of LTI Systems to Complex Exponentials
- Fourier Series Representation of Continuous-Time Periodic Signals
- Convergence of the Fourier Series
- Properties of Continuous-Time Fourier Series
- Fourier Series Representation of Discrete-Time Periodic Signals
- Properties of Discrete-Time Fourier Series
- Fourier Series & LTI Systems
- Filtering & Examples of CT & DT Filters

• The Response of an LTI System:

$$in \rightarrow \begin{array}{|c|c|c|} \hline & in \rightarrow \\ \hline & DT: & z^n \rightarrow \\ \hline & DT: & z^n \rightarrow \\ \hline & H(s) = \int_{-\infty}^{+\infty} h(t)e^{-st}dt & \Rightarrow \text{ the impulse response} \\ \hline & H(z) = \sum_{k=-\infty}^{+\infty} h[k]z^{-k} & \Rightarrow \text{ the system functions} \\ \hline \bullet & \text{ If } s = jw \text{ or } z = e^{jw}: \\ \hline & H(jw) = \int_{-\infty}^{+\infty} h(t)e^{-jwt}dt & \Rightarrow \\ \hline & H(e^{jw}) = \sum_{n=-\infty}^{+\infty} h[n]e^{-jwn} \\ \hline \end{array}$$

In Summary: $a = |a|e^{j\frac{\pi}{2}a}$ $H = |H|e^{j\frac{\pi}{2}H}$ $(s_i = jw_i \text{ or } z_i = e^{jw_i})$ $CT: e^{s_i t} \longrightarrow H(s_i)e^{s_i t}$ $DT: z_i^n \longrightarrow H(z_i)z_i^n$ $x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jkw_0 t} \longrightarrow y(t) = \sum_{k=-\infty}^{+\infty} a_k H(jkw_0) e^{jkw_0 t}$ $x[n] = \sum_{k=< N>} a_k e^{jk(\frac{2\pi}{N})n} \longrightarrow y[n] = \sum_{k=< N>} a_k H(e^{j(\frac{2\pi}{N})k}) e^{jk(\frac{2\pi}{N})n}$

- A Historical Perspective
- The Response of LTI Systems to Complex Exponentials
- Fourier Series Representation of Continuous-Time Periodic Signals
- Convergence of the Fourier Series
- Properties of Continuous-Time Fourier Series
- Fourier Series Representation of Discrete-Time Periodic Signals
- Properties of Discrete-Time Fourier Series
- Fourier Series & LTI Systems
- Filtering & Examples of CT & DT Filters

Filtering: in → filter → out
 Change the relative amplitudes of the frequency components in a signal, - Frequency-shaping filters
 OR, significantly attenuate or eliminate some frequency components entirely - Frequency-selective filters

Frequency-Shaping Filters:

• A simple DT filter: Two-point average

$$y[n] = \frac{1}{2} \left(x[n] + x[n-1] \right)$$

$$y[n] = H(e^{jw}) x[n]$$

$$\Rightarrow \frac{\textit{\textbf{H}}(\textit{\textbf{e}}^{\textit{jw}})}{2} = \frac{1}{2} \left[1 + e^{-\textit{jw}} \right] = \frac{1}{2} e^{-\textit{j}\left(\frac{\textit{w}}{2}\right)} \left[e^{\textit{j}\left(\frac{\textit{w}}{2}\right)} + e^{-\textit{j}\left(\frac{\textit{w}}{2}\right)} \right]$$

· Select some bands of frequencies and reject others

$$H(jw) = \begin{cases} 0, & |w| < w_c \\ 1, & |w| \ge w_c \end{cases}$$

CT ideal bandpass filter

$$H(jw) = \left\{ egin{array}{ll} 1, & w_{c1} \leq |w| \leq w_{c2} \ 0, & ext{otherwise} \end{array}
ight.$$

- A Historical Perspective
- The Response of LTI Systems to Complex Exponentials
- Fourier Series Representation of Continuous-Time Periodic Signals
- Convergence of the Fourier Series
- Properties of Continuous-Time Fourier Series
- Fourier Series Representation of Discrete-Time Periodic Signals
- Properties of Discrete-Time Fourier Series
- Fourier Series & LTI Systems
- Filtering & Examples of CT & DT Filters

• First-Order Recursive DT Filters:

$$y[n] - ay[n-1] = x[n]$$

• If $x[n] = e^{jwn}$, then $y[n] = H(e^{jw})e^{jwn}$

where $H(e^{jw})$: the frequency response

$$\Rightarrow H(e^{jw}) e^{jwn} - a H(e^{jw}) e^{jw(n-1)} = e^{jwn}$$

$$\Rightarrow \left[1 - a e^{-jw}\right] H(e^{jw}) e^{jwn} = e^{jwn}$$

$$\Rightarrow H(e^{jw}) = \frac{1}{1 - a e^{-jw}}$$

$$y[n] = ay[n-1] + x[n]$$

- Nonrecursive DT Filters:
 - An FIR nonrecursive difference equation:

$$y[n] = \sum_{k=-N}^{M} b_k x[n-k]$$

Nonrecursive DT Filters:

• Three-point moving average (lowpass) filter:

$$y[n] = \frac{1}{3} (x[n+1] + x[n] + x[n-1])$$

$$\Rightarrow h[n] = \frac{1}{3} \left(\delta[n+1] + \delta[n] + \delta[n-1] \right)$$

$$\Rightarrow \frac{H(e^{jw})}{1} = \frac{1}{3} \left(e^{jw} + 1 + e^{-jw} \right) = \frac{1}{3} \left(1 + 2\cos w \right)$$

Nonrecursive DT Filters:

N+M+1 moving average (lowpass) filter:

$$y[n] = \frac{1}{N+M+1} \sum_{k=-N}^{M} x[n-k]$$

$$\Rightarrow H(e^{jw}) = \frac{1}{N+M+1} \sum_{k=-N}^{M} e^{-jwk}$$

$$\Rightarrow H(e^{jw}) = \frac{1}{N+M+1} e^{jw \left(\frac{N-M}{2}\right)} \frac{\sin w \left(\frac{M+N+1}{2}\right)}{\sin \left(\frac{w}{2}\right)}$$

