

Comprehensive Analysis of Freebase and Dataset Creation for Robust Evaluation of Knowledge Graph Link Prediction Models

Nasim Shirvani-Mahdavi, Farahnaz Akrami, Mohammed Samiul Saeef, Xiao Shi, and Chengkai Li

ISWC 2023 Resource Track

Lack of Completeness Hinders Applications of Knowledge Graphs

Machine Learning Models for Link Prediction

Evaluation of Embedding Models

Evaluation metrics

- MR, FMR ♣
- MRR, FMRR **↑**
- Hits@k, FHits@k ↑

Benchmark datasets

Freebase, Wikidata, WordNet, YAGO, NELL, DBpedia, ...

Model	Year	Citation
TransE	2013	7373
DistMult	2015	2887
TransR	2015	1777
ComplEx	2016	2675
RotatE	2019	1722
• • •	• • •	• • •

How Do These Models Perform on Large Scale Datasets?

	340M triples	16M triples	500M triples
Model	Freebase86m	ogbl-wikikg2	WikiKG90M-LSC
TransE	.72	.52	.88
DistMult	.83	.37	.86
RotatE	.82	.49	.88
	Includes non-subject matter triples	No multiary relationships	No multiary relationships

Large Realistic Datasets are Missing from Link Prediction Studies

Year 2022, 53 CSRankings publications on knowledge graph completion

- ➤ 48 publications used datasets from Freebase; only 3 used large-scale ones (Freebase86m)
- > 8 publications used datasets from Wikidata; 5 used large-scale versions
- All benchmark datasets either are problematic or small, or do not capture real-world data modeling idiosyncrasies

Model Performance Differ Drastically by Varying Dataset Size

Model	FB15K	FB15K-237	FB15K-237	FB-CVT-REV
	(DGL-KE)	(DGL-KE)	(LibKGE)	(Large, DGL-KE)
TransE	.63	.24	.31	.67
DistMult	.68	.24	.34	.70
TransR	.66	.57	_	.66
ComplEx	.74	.23	.34	.71
RotatE	.68	.24	.33	.80

Contributions of Our Paper

Reported link prediction models' **true** performance on full-size Freebase datasets

- Reported how their performance is affected by various data modeling idiosyncrasies
 - Reverse triples
 - Multiary relationships Mediator nodes
 - > Type system
- Made available thoroughly prepared full-size Freebase datasets

Mixing Non-Subject Matter Triples with Other Triples Degenerates Performance

31% of the Freebase86m triples fall under non-subject matter domain. E.g., /dataworld/ and /freebase/, two implementation domains

Reverse Triples in Freebase

Reverse Triples Make LP Unrealistically Trivial

Complex Multiary Relationships Are Often Simplified to Binary Relations

Converting Multiary Relation to Binary Makes LP Easier

Converting Multiary Relation to Binary Makes LP Easier

Model	binary	concatenated	all	binary	multiary	all
TransE	.60	.90	. 67	.57	.96	.57
DistMult	.64	.89	.70	.61	.77	.61
TransR	.58	.92	.66	.63	.87	.64
ComplEx	.66	.90	.71	.62	.80	.62
RotatE	.76	.92	.80	.73	.88	.73

Freebase Type System

 $P (o \in /film/actor) = 0.99$ $P (o \in /tv/tv_actor) = 0.10$ $P (o \in /music/artist) = 0.04$ $P (o \in /award/award_winner) = 0.03$ $P (o \in /people/person) = 0.99$

*P is the probability of the object end of /film/film/performance belonging to type t

Freebase Type System

Object o belongs to types

```
P \text{ (o ∈/film/actor ) = 0.99}
P \text{ (o ∈/tv/tv\_actor ) = 0.10}
P \text{ (o ∈/music/artist ) = 0.04}
P \text{ (o ∈/award/award\_winner ) = 0.03}
P \text{ (o ∈/people/person) = 0.99}
```

*P is the probability of the object end of /film/film/performance belonging to type t

Freebase Type System


```
/people/person
P (o \in /film/actor \mid o \in /people/person) = 0.13
```

✓ /film/actor $P (o \in /people/person | o \in /film/actor) = 0.99$

Most specific

Usefulness of Freebase Type System in Creating Negative Samples

Task: Triple classification

Creating negative samples: Random triple corruption vs. Using type system

	consistent h		inconsistent h		consistent t		inconsistent t	
Model	accuracy	F1 score	accuracy	F1 score	accuracy	F1 score	accuracy	F1 score
TransE	.52	.55	.76	.74	.57	.56	.86	.86
DistMult	.53	.52	.91	.90	.58	.57	.92	.92
RotatE	.52	.52	.87	.86	.58	.53	.83	.82

Datasets Produced in This Work

Dataset	CVT	Reverse	#Entities	#Rels	#Triples
FB-CVT-REV	No	No	46M	3K	125M
FB-CVT+REV	No	Yes	46M	5K	238M
FB+CVT-REV	Yes	No	59M	2.6K	134M
FB+CVT+REV	Yes	Yes	59M	4.4K	244M

Take-Home: Contributions of Our Paper

Reported link prediction models' true performance on full-size Freebase datasets

- Reported how their performance is affected by various data modeling idiosyncrasies
 - reverse triples
 - > multiary relationships
 - > type system
- Made available thoroughly prepared full-size Freebase datasets 21

Our Earlier Work and Resources

This is a follow-up of our SIGMOD 2020 paper "Realistic re-evaluation of knowledge graph completion methods: An experimental study"

GitHub repository of all source codes, datasets, and results

https://github.com/idirlab/freebases

