Si vous manquez de place pour répondre à une question, poursuivez à la fin de la copie.

Nom, Prénom et Groupe:

Question	Points	Note
Preuve syntaxique par 0-Résolution	4	
Unification	6	
Résolution	8	
Entiers Relatifs	3	
Flottants	4	
Total:	25	

$$Hypotheses: [A \Rightarrow (\neg B \vee C)] \wedge [B \Rightarrow (A \wedge \neg C)]$$

 $Conclusion: \neg B$

(a) 2 points Quelles sont les clauses à partir desquelles on doit trouver une contradiction?

Solution:	Les hypothèses	deviennent
Solution	Les ity pourceses	ac vicinicit

 $-C_1: \neg A \lor \neg B \lor C$

 $-C_2: \neg B \lor A$

 $-C_3: \neg B \lor \neg C$

– et on ajoute la négation de la conclusion C_4 : B

b)	2 points Faites la preuve (par 0-résolution obligatoirement)
	Solution: Le raisonement est valide, en effet on peut obtenir la clause vide :
	$-C_4; C_1 \vDash C_5 : \neg A \lor C$
	$-C_2; C_4 \vDash C_6 : A -C_5; C_6 : \vDash C_7 : C$
	$-C_3C_4 :\models C_8 : \neg C$
	– et l'on obtient la clause vide a partir de C_7 et C_8

Question 2: Unification.....

Calculez, si il existe un unificateur le plus général des paires d'atomes (A_1,A_2) . En cas d'échec indiquez pourquoi les atomes ne sont pas unifiables. Dans cet exercice, p est un prédicat, u,v,w,x,y,z sont des variables, f et g sont des fonctions, a et b sont des constantes.

(a) 2 points

$$- A_1 = p(f(g(x,y)), g(v,w), y)$$

$$- A_2 = p(f(z), x, f(x))$$

Solution:

$$- \sigma_1[z|g(x,y)] A'_1 = p(f(g(x,y)), g(v,w), y) A'_2 = p(f(g(x,y)), x, f(x))$$

$$- \sigma_2[x|g(v,w)] A_1 = p(f(g(g(v,w),y)),g(v,w),y) A_2 = p(f(g(g(v,w),y)),g(v,w),f(g(v,w)))$$

$$-\sigma_{3}[y|f(g(v,w))]A"'_{1} = p(f(g(g(v,w),f(g(v,w)))),g(v,w),f(g(v,w)))$$

 $A''_{2} = p(f(g(g(v,w),f(g(v,w))),g(v,w),f(g(v,w))))$

 A_1 et A_2 sont donc unifiables, un unificateur le plus général est $\sigma=\sigma_3\circ\sigma_2\circ\sigma_1$

(b) 2 points

$$-A_1 = p(x, f(u, x))$$

$$- A_2 = p(f(y,a), f(z, f(b,z)))$$

Solution:

$$- \sigma_1[x|f(y,a)] A'_1 = p(f(y,a),f(u,f(y,a))) A'_2 = p(f(y,a),f(z,f(b,z)))$$

-
$$\sigma_2[u|z] A_1 = p(f(y,a), f(z,f(y,a)))$$

$$A_{2}^{"} = p(f(y,a), f(z, f(b,z))$$

-
$$\sigma_3[y|b] A'''_1 = p(f(b,a), f(z, f(b,a)))$$

$$A'''_2 = p(f(b,a), f(z, f(b,z)))$$

$$- \sigma_4[z|a] A'''_1 = p(f(b,a), f(a, f(b,a)))$$
$$A'''_2 = p(f(b,a), f(a, f(b,a))$$

 A_1 et A_2 sont donc unifiables, un unificateur le plus général est $\sigma=\sigma_4\circ\sigma_3\circ\sigma_2\circ\sigma_1$

(c) 2 points

$$-A_1 = p(f(u,x),y)$$

$$- A_2 = p(f(y,a),g(u))$$

Solution: $-\sigma_1[y u;x a] \ A_1' = p(f(u,a),u) \ A_2' = p(f(u,a),g(u))$ - Et on ne peut pas unifier u et g(u), échec.	
A_1 et A_2 ne sont donc pas unifiables.	
	_
	_
	_
	_
	_
	_
	_
	_
	_

Le but de cet exercice est d'utiliser la méthode de résolution pour montrer que l'ensemble des trois formules suivantes est inconsistant.

- $-F_1: \exists z[(q(f(z)) \land s(f(z),a))]$
- $F_2 : \forall x \forall y [\neg \exists z [p(x,y) \land s(x,z)]]$
- $F_3: \forall x [(q(x) \land \exists w [s(x,w)]) \Rightarrow (\exists y [r(y) \land p(x,y)])]$

où

- f est une fonction
- p,q,r,s sont des prédicats
- w,x,y,z sont des variables
- (a) 2 points Mettre les trois formules sous forme prénexe

Solution:

- F_1 : $\exists z[(q(f(z)) \land s(f(z),a))]$ est déjà sous forme de prénexe
- $F_2: \forall x \forall y [\neg \exists z [p(x,y) \land s(x,z)]]$ ne l'est pas ,on peut transformer en $F_2': \forall x \forall y \forall z [\neg p(x,y) \lor \neg s(x,z)]$
- $-F_3$ n'est pas sous forme prénexe Plusieurs formes prénexes possibles dont :
 - $-\ F_3^{'1}: \forall x \exists y \forall w \ [(q(x) \land s(x,w)) \Rightarrow (r(y) \land p(x,y))]$
 - $-\ F_3^{'2}: \forall x \exists y \forall w [\neg (q(x) \vee \neg s(x,w)) \vee (r(y) \wedge p(x,y))]$
 - $-\ F_3^{'3}: \forall x \forall w \exists y [\neg (q(x) \vee \neg s(x,w)) \vee (r(y) \wedge p(x,y))]$
- (b) 2 points Skolémisez les formules prénexes que vous venez d'établir

Solution:

- Pour F_1 on introduit une constante z_0 : et l'on obtient $(q(f(z_0)) \land s(f(z_0), a))$
- $-F_2'$ est déjà sous forme de Skolem
- F_3' n'est pas sous forme de Skolem, on introduit une fonction g d'arité 1 (pour $F_3'^1$ et $F_3'^2$) ou 2 (pour $F_3'^3$) et l'on obtient
 - $-\ F_3^{"1}: \forall x \forall w [(q(x) \land s(x,w)) \Rightarrow (r(g(x)) \land p(x,g(x)))]$
 - $-F_3^{"2}: \forall x \forall w [\neg (q(x) \vee \neg s(x,w)) \vee (r(g(x)) \wedge p(x,g(x)))]$
 - $\ F_3^{"3} : \forall x \forall w [\neg (q(x) \vee \neg s(x,w)) \vee (r(g(x,z)) \wedge p(x,g(x,z))]$

(c) 2 points | Transformez maintenant vos formules en un système de Clauses **Solution:** $- C_1: q(f(z_0))$ $- C_2 : s(f(z_0,a))$ $-C_3: \neg p(x,y) \vee \neg s(x,z)$ $-C_4: \neg q(x) \vee \neg s(x,w) \vee r(g(x))$ $-C_5: \neg q(x) \vee \neg s(x,w) \vee p(x,g(x))$ ou avec des g(x,z) (d) 2 points Il reste à utiliser la méthode de résolution pour dériver la clause vide **Solution:** - C_1 et C_5 et substitution : $\sigma[x|f(z_0)]$ $C_6: \neg s(f(z_0), w)) \lor p(f(z_0), g(f(z_0))$ - C_2 et C_6 et substitution $\sigma[w|a]$ $C_7: p(f(z_0), g(f(z_0)))$ - C_3 et C_7 et substitution $\sigma[x|f(z_0);y|g(f(z_0)]$ $C_8: \neg s(f(z_0),z)$ - C_8 et C_2 et substitution $\sigma[z|a]$ - et l'on obtient la clause vide

Question 4:	Entiers Relatifs
Question 1.	Entiteto Relatito

On suppose dans cette question qu'on représente les entiers relatifs en base deux sur seize bits

Pour faciliter l'écriture et la lecture il vous est recommandé d'utiliser la notation 0^k (ou 1^k) pour noter le mot composé de k 0 dans cette question et la question suivante

(a) 1 point Représenter dans le tableau ci-dessous l'entier dont l'écriture en base dix est 153 selon les trois méthodes signe, grandeur, complément à un, complément à deux

signe grandeur

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Solution:															
0	0	0	0	0	0	0	0	1	0	0	1	1	0	0	1
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

complement à un

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Solu	tion	:													
0	0	0	0	0	0	0	0	1	0	0	1	1	0	0	1
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

complément à deux

15	5 14	1	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Solu	tion	:													
0	0	0	0	0	0	0	0	1	0	0	1	1	0	0	1
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

(b) 1 point Représenter dans le tableau ci-dessous l'entier dont l'écriture en base dix est -127 selon les trois méthodes signe, grandeur, complément à un, complément à deux

signe grandeur

						l	l								
						l	l								
						l	l								
15	11	10	10	11	10			_		_	4		_	1	_
115	14	13	1 17		10	9	X	7	6	5	1 4	- 3	· '		()
10	17	10	14	1 1 1	1 10			•	U		_ T	J .		4	U
			1		l		l .			l	l		l .		

Solution:

1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

complement à un

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Solu	ıtion	:													
1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

complément à deux

				1												
ĺ	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

(c) 1 point Donnez un exemple où l'addition n'est plus associative dans le cas de la représentation en complément à deux.

Solution:

a et b positifs, c negatif a+b trop grand mais pas a+b+c

	10	est	13,02	5. ECI	rire x ϵ	et <i>y</i> er	n base	e aei	лх. 									
	_																	
	5	Solu	tion:					x =	10	11,01	_							
							y =	110	1,00	0{00)11}	k						
(b)	de	ux c	uels	sont	1 z s'éd leur c ne, 5 b	odage	e dan	s un	e re	prés	senta	atio	n e	n vi	irgu	le fl	ottar	nte av
	z:	15	14	13		11 10		8	7		5 4	Ī		2 1			111611	11556
	t:	15	14	13	12 1	.1 10) 9	8	7	6 !	5 4	3	2	2 1	0			
	9	So <u>lu</u>	tion:															
	2	$z: \frac{1}{1}$	$\begin{array}{c c} 0 & 1 \\ \hline 5 & 1 \end{array}$. 0 4 13	0 12	1 11		0 1 9 8			5	1 4	1 3	2	0	0		
	t	:: 1	1 5 14	0 13	0 12	0 11	0 1 10 9		0	6	5	0 4	0 3	0 2	0	0		