Numerical Optimization Lab 05: Newton Method and Backtracking Strategy

Francesco Della Santa

Abstract

In this lesson, we will learn to implement the *Newton* optimization method with and without the *backtracking strategy*.

1 Exercises

Exercise 1 (Implementation of the Newton Method). Write a Matlab function *newton.m* that implements the *Newton* optimization method (see Appendix A) and that takes the following inputs and outputs. **Sugestion:** for simplicity, use direct methods for solving linear systems (i.e., the "\" symbol in Matlab).

INPUTS:

- x0: a *column vector* of *n* elements representing the starting point for the optimization method;
- **f:** a function handle variable that, for each column vector $\boldsymbol{x} \in \mathbb{R}^n$, returns the value $f(\boldsymbol{x})$, where $f: \mathbb{R}^n \to \mathbb{R}$ is the loss function that have to be minimized;
- gradf: a function handle variable that, for each column vector $\boldsymbol{x} \in \mathbb{R}^n$, returns the value $\nabla f(\boldsymbol{x})$ as a column vector, where $\nabla f : \mathbb{R}^n \to \mathbb{R}^n$ is the gradient of f;
- Hessf: a function handle variable that, for each column vector $\mathbf{x} \in \mathbb{R}^n$, returns the matrix $H_f(\mathbf{x}) \in \mathbb{R}^{n \times n}$, where H_f is the Hessian matrix of f;
- kmax: an integer scalar value characterizing the maximum number of iterations of the method;
- tolgrad: a real scalar value characterizing the tolerance with respect to the norm of the gradient in order to stop the method.

OUTPUTS:

xk: the last vector $\boldsymbol{x}_k \in \mathbb{R}^n$ computed by the optimization method before it stops;

fk: the value $f(x_k)$;

gradfk_norm: the euclidean norm of $\nabla f(x_k)$;

k: index value of the last step executed by the optimization method before stopping;

xseq: a matrix/vector in $\mathbb{R}^{n \times k}$ such that each column j is the vector j-th vector $x_j \in \mathbb{R}^n$ generated by the iterations of the method.

Once you have written the function, test it using the data inside the file test_functions2.mat. In particular, plot:

• the loss f_i (given in $test_functions2.mat$), i = 1, 2, 3, using the Matlab function contour and the sequence xseq;

• the loss f_i (given in $test_functions2.mat$), i = 1, 2, 3, using the Matlab function surf and the sequence xseq.

Exercise 2 (Backtracking Implementation for Newton). Write a Matlab function newton_bcktrck.m that implements the Newton optimization method with the backtracking strategy (see Appendix C) and that takes the following inputs and outputs. Sugestion: for simplicity, use direct methods for solving linear systems (i.e., the "\" symbol in Matlab).

INPUTS:

x0: a column vector of n elements representing the starting point for the optimization method:

f: a function handle variable that, for each column vector $\mathbf{x} \in \mathbb{R}^n$, returns the value $f(\mathbf{x})$, where $f: \mathbb{R}^n \to \mathbb{R}$ is the loss function that have to be minimized;

gradf: a function handle variable that, for each column vector $x \in \mathbb{R}^n$, returns the value $\nabla f(x)$ as a column vector, where $\nabla f : \mathbb{R}^n \to \mathbb{R}^n$ is the gradient of f;

Hessf: a function handle variable that, for each column vector $\boldsymbol{x} \in \mathbb{R}^n$, returns the matrix $H_f(\boldsymbol{x}) \in \mathbb{R}^{n \times n}$, where H_f is the Hessian matrix of f;

kmax: an integer scalar value characterizing the maximum number of iterations of the method:

tolgrad: a real scalar value characterizing the tolerance with respect to the norm of the gradient in order to stop the method.

c1: the factor c_1 for the Armijo condition that must be a scalar in (0,1);

rho: fixed factor, lesser than 1, used for reducing α_0 ;

btmax: maximum number of steps for updating α during the backtracking strategy.

OUTPUTS:

xk: the last vector $x_k \in \mathbb{R}^n$ computed by the optimization method before it stops;

fk: the value $f(x_k)$;

gradfk_norm: the euclidean norm of $\nabla f(x_k)$;

k: index value of the last step executed by the optimization method before stopping;

xseq: a matrix/vector in $\mathbb{R}^{n \times k}$ such that each column j is the vector j-th vector $x_j \in \mathbb{R}^n$ generated by the iterations of the method.

btseq: row vector in \mathbb{R}^k such that the *j*-th element is the number of backtracking iterations done at the *j*-th step of the steepest descent.

Once you have written the function, test it using the data inside the file $test_functions2.mat$ with $c1 = 10^{-4}$, rho = 0.8 and btmax = 50; then, plot together:

- the loss f_i (given in $test_functions2.mat$), i = 1, 2, 3, using the Matlab function contour and the sequence xseq;
- the loss f_i (given in $test_functions2.mat$), i = 1, 2, 3, using the Matlab function surf and the sequence xseq.
- the barplot of the values in btseq using the function bar, with respect to the functions f_i .

Exercise 3 (Direction Check for Newton). Improve the function of the previous exercise adding an extra input variable called "verbose", that must be a boolean value (i.e., true or false). If verbose is true and the direction p_k is not a descent direction, let the function returns a warning that informs the user about the problem.

Exercise 4 (Modified Newton - Homework). Create a new matlab function that implements a Modified Newton method. Suggestion: starts from the function of the previous exercise and, instead of returning a warning when p_k is an ascent direction, fix the problem computing $B_k = H_f(\mathbf{x}_k) + Correction$.

A Newton

Let the function $f: \mathbb{R}^n \to \mathbb{R}$ be given. The Newton descent method is an iterative optimization method that, starting from a given vector $\mathbf{x}_0 \in \mathbb{R}^n$, computes a sequence of vectors $\{\mathbf{x}_k\}_{k \in \mathbb{N}}$ characterized by

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \alpha \boldsymbol{p}_k \,, \quad \forall \ k \ge 0 \,, \tag{1}$$

where the descent direction \boldsymbol{p}_k is solution of the linear system

$$H_f(\boldsymbol{x}_k)\boldsymbol{p} = -\nabla f(\boldsymbol{x}_k), \qquad (2)$$

and ∇f , H_f are the gradient and the Positive Definite¹ (PD) Hessian matrix of f, respectively.

A.1 Recalling the Motivations of Newton

We can approximate f(x+p), with a Taylor expansion, as a quadratic model, i.e.:

$$f(\boldsymbol{x} + \boldsymbol{p}) \simeq f(\boldsymbol{x}) + \boldsymbol{p}^{\top} \nabla f(\boldsymbol{x}) + \frac{1}{2} \boldsymbol{p}^{\top} H_f(\boldsymbol{x}) \, \boldsymbol{p} =: m_{f,\boldsymbol{x}}(\boldsymbol{p}).$$
 (3)

Assuming that $H_f(\mathbf{x})$ is Positive Semidefinite, for each $\mathbf{p} \in \mathbb{R}^n$, we have that $\mathbf{p}^\top H_f(\mathbf{x}) \mathbf{p} \geq 0$ and, therefore, $m_{f,\mathbf{x}}(\mathbf{p})$ is $convex^2$. Then, we can compute the \mathbf{p}^* that minimizes $m_{f,\mathbf{x}}(\mathbf{p})$, i.e. the \mathbf{p}^* such that

$$\underbrace{\nabla f(\boldsymbol{x}) + H_f(\boldsymbol{x})\boldsymbol{p}^*}_{=\nabla_{\boldsymbol{p}} m_{f,\boldsymbol{x}}(\boldsymbol{p}^*)} = \mathbf{0}.$$
 (4)

In other words, p^* is solution of the linear system (2) and is a descent direction for f(x). In the end, we recall the PROs and CONs of the Newton method:

- (+) Under proper assumptions ($H_f(x_k)$ PD, $\alpha = 1$, x_0 "good" starting point) the Newton method has fast (quadratic) rate of convergence;
- (-) Computationally more expensive than Steepest Descent (computation/storage of $H_f(x_k)$ and computation of p_k solving (2));
- (-) p_k is a descent direction only if $H_f(x_k)$ is PD \Rightarrow Sometimes is useful to work with a "corrected" Hessian matrix, if $H_f(x_k)$ is non-PD; i.e., we can use a PD matrix $B_k := H_f(x_k) + Correction$ (see the *Modified Newton* method in the course slides of Prof. Pieraccini).

B The Rosenbrock and the Himmelblau Test Functions

When you have to test an optimization method, it is useful to use some "standard" test functions³. In this laboratory we use the the 2-dimensional Rosenbrock function and the Himmelblau function that are the functions f_2 and f_3 , respectively, in the file $test_functions2.mat$.

• Rosenbrock (n=2):

$$f_2(x_1, x_2) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$$

$$\nabla f_2(x_1, x_2) = \begin{bmatrix} 400x_1^3 - 400x_1x_2 + 2x_1 - 2\\ 200(x_2 - x_1^2) \end{bmatrix}$$

$$H_{f_2}(x_1, x_2) = \begin{bmatrix} 1200x_1^2 - 400x_2 + 2 & -400x_1\\ -400x_1 & 200 \end{bmatrix}$$
(5)

 $^{^{1}}A \in \mathbb{R}^{n \times n}$ is Positive/Negative Definite iff, for each $\boldsymbol{x} \in \mathbb{R}^{n}$, it holds $\boldsymbol{x}^{\top} A \boldsymbol{x} \geq 0$ (Semidefinite iff ≥ 0).

²A function $f: \mathbb{R}^n \to \mathbb{R}$ is convex/concave iff $f(t\boldsymbol{x}_1 + (1-t)\boldsymbol{x}_2) \leq t f(\boldsymbol{x}_1) + (1-t)f(\boldsymbol{x}_2)$, for each $\boldsymbol{x}_1, \boldsymbol{x}_2 \in \mathbb{R}^n$, for each $t \in [0, 1]$

³E.g., see https://en.wikipedia.org/wiki/Test_functions_for_optimization

• Himmelblau:

$$f_3(x_1, x_2) = (x_1^2 + x_2 - 11)^2 + (x_1 + x_2^2 - 7)^2$$

$$\nabla f_3(x_1, x_2) = \begin{bmatrix} 4x_1^3 + 4x_1x_2 - 40x_1 + 2x_2^2 - 14\\ 4x_2^3 + 4x_1x_2 - 26x_2 + 2x_1^2 - 22 \end{bmatrix}$$

$$H_{f_3}(x_1, x_2) = \begin{bmatrix} 12x_1^2 + 4x_2 - 40 & 4x_1 + 4x_2\\ 4x_1 + 4x_2 & 12x_2^2 + 4x_1 - 26 \end{bmatrix}$$
(6)

C Backtracking

Let the function $f: \mathbb{R}^n \to \mathbb{R}$ be given. The backtracking strategy for an iterative optimization method consists of looking for a value α_k satisfying the Armijo condition at each step k of the method, i.e.

$$f(\underbrace{\boldsymbol{x}_{k+1}}_{\boldsymbol{x}_k + \alpha_k \boldsymbol{p}_k}) \le f(\boldsymbol{x}_k) + c_1 \alpha_k \nabla f(\boldsymbol{x}_k)^{\top} \boldsymbol{p}_k,$$
 (7)

where $c_1 \in (0,1)$ (typically, the standard choice is $c_1 = 10^{-4}$).

We recall that the Armijo condition suggests that a "good" α_k is such that you have a sufficient decrease in f and, moreover, the function value at the new point $f(\boldsymbol{x}_{k+1}) = f(\boldsymbol{x}_k + \alpha_k \boldsymbol{p}_k)$ is under the "reduced tangent hyperplane" of f at \boldsymbol{x}_k .

The backtracking strategy is an *iterative process* that looks for this value α_k . Given an arbitrary factor $\rho \in (0,1)$ and an arbitrary starting value $\alpha_k^{(0)}$ for α_k , we decrease iteratively $\alpha_k^{(0)}$, multiplying it by ρ , until the Armijo condition is satisfied. Then $\alpha_k = \rho^{t_k} \alpha_k^{(0)}$, for a $t_k \in \mathbb{N}$, if it satisfies Armijo but $\rho^{t_k-1} \alpha_k^{(0)}$ does not.

Remark C.1 (Few things to keep in mind).

- The Armijo condition is often satisfied for very small values of α . Then, it is not enough to ensure that the algorithm makes reasonable progress; indeed, if α is too small, unacceptably short steps are taken.
- For simplicity, we consider ρ as a fixed parameter, but it can be chosen using already available information, changing with the iterations;
- Other conditions could be imposed to guarantee that not too short steps are taken (e.g., Wolfe conditions⁴), but they are not practical to be implemented.
- Practical implementations, instead of imposing a second condition, frequently use the backtraking strategy.
- The choice of $\alpha_k^{(0)}$ is problem-dependent and/or method-dependent. In particular, it is crucial to choose $\alpha_k^{(0)} = 1$ in Newton/Quasi-Newton methods for (possibly) get the second-order rate of convergence.
- In general, globalizing strategies (as the backtracking strategy) are methods specifically designed to help Newton methods when we are far from the solution. Then, they are usually designed in such a way that they work only when needed: if close enough to x^* , they are "switched off" so that Newton's works and eventually fast convergence is maintained.

⁴i.e., Armijo condition and curvature condition $\nabla f(\boldsymbol{x}_{k+1})^{\top} \boldsymbol{p}_{k} \geq c_{2} \nabla f(\boldsymbol{x}_{k})^{\top} \boldsymbol{p}_{k}, c_{2} \in (c_{1}, 1).$