Feuille d'exercice n° 11 : Arithmétique

Exercice 1 ($^{\circ}$) Montrer que, pour tout $n \in \mathbb{N}$,

1)
$$17 \mid (7^{8n+1} + 10(-1)^n)$$
; 2) $11 \mid (9^{5n+2} - 4)$;

2) 11 |
$$(9^{5n+2}-4)$$
 ;

3)
$$6 \mid (10^{3n+2} - 4^{n+1}).$$

Exercice 2 (\circlearrowleft) Quel est le reste de la division euclidienne de $1234^{4321} + 4321^{1234}$ par 7 ?

Trouver le reste de la division par 13 du nombre 100^{1000} . Exercice 3

Exercice 4 Montrer que, pour tout $n \in \mathbb{N}$,

- 1) n(n+1)(n+2)(n+3) est divisible par 24;
- 2) n(n+1)(n+2)(n+3)(n+4) est divisible par 120.

Exercice 5 () Déterminer le pgcd et un couple de Bézout des couples d'entiers (a, b) suivants :

1)
$$a = 33$$
 et $b = 24$

2)
$$a = 37$$
 et $b = 27$

3)
$$a = 270$$
 et $b = 105$

Exercice 6 () Soient a, b et $c \in \mathbb{Z}$, avec $(a, b) \neq (0, 0)$. On souhaite résoudre l'équation ax + by = c, notée \star , d'inconnue $(x, y) \in \mathbb{Z}^2$.

- 1) Montrer que \star n'a pas de solution si c n'est pas un multiple de $a \wedge b$.
- 2) On suppose dans cette question que $a \wedge b$ divise c.
 - a) En considérant un couple de coefficients de Bézout de (a, b), montrer que \star possède une solution $(x_0, y_0).$
 - b) En s'appuyant sur (x_0, y_0) , résoudre complètement \star .
- 3) Résoudre les équations d'inconnue $(x,y) \in \mathbb{Z}^2$: 2x + 5y = 13, 14x 24y = 6 et 6x 14y = 9.

Le pgcd de deux nombres est 12 ; les quotients successifs obtenus dans le calcul de ce pgcd par l'algorithme d'Euclide sont 8, 2 et 7. Trouver ces deux nombres.

Exercice 8 (\mathfrak{D}) Résoudre les systèmes suivants, d'inconnues $(x,y) \in \mathbb{N}^2$.

$$1) \begin{cases} x \wedge y &= 3 \\ x + y &= 21 \end{cases}$$

$$\mathbf{2)} \begin{cases} x \wedge y &= 6 \\ x \vee y &= 72 \end{cases}$$

Exercice 9 () Montrer que deux entiers consécutifs sont toujours premiers entre eux.

Exercice 10 Montrer que, pour tout $n \in \mathbb{N}^*$, on a :

1)
$$(n^2+n) \wedge (2n+1) = 1$$
;

2)
$$(3n^2 + 2n) \wedge (n+1) = 1$$
.

Exercice 11 (\nearrow) Résoudre dans \mathbb{Z} le système $S: \left\{ \begin{array}{ccc} x & \equiv & 4 \mod 6 \\ x & \equiv & 7 \mod 9 \end{array} \right.$

Indication: on recherchera d'abord une solution particulière

Exercice 12 (\circlearrowleft) Résoudre dans \mathbb{Z} les équations suivantes, d'inconnues $(x,y) \in \mathbb{Z}^2$.

1)
$$91x - 65y = 156$$
.

2)
$$135x - 54y = 63$$
.

3)
$$72x + 35y = 13$$
.

Exercice 13 Résoudre dans \mathbb{Z}^2 l'équation : $x^2 - 5y^2 = 3$.

Exercice 14 Déterminer les entiers n vérifiant $n^2 - 3n + 6 \equiv 0 \pmod{5}$.

Exercice 15 Un coq coûte 5 pièces d'argent, une poule 3 pièces, et un lot de quatre poussins 1 pièce. Quelqu'un a acheté 100 volailles pour 100 pièces ; combien en a-t-il acheté de chaque sorte ?

Exercice 16

1) Montrer que
$$: \forall x \in \mathbb{R} \quad \lfloor x \rfloor + \lfloor -x \rfloor = \begin{cases} 0 & \text{si } x \in \mathbb{Z} \\ -1 & \text{sinon} \end{cases}$$
.

2) En déduire que, si $p, q \in \mathbb{N}^*$ sont premiers entre eux, on a

$$\sum_{k=1}^{q-1} \left\lfloor k \times \frac{p}{q} \right\rfloor = \frac{(p-1)(q-1)}{2}.$$

Exercice 17 Soient a et n deux entiers supérieurs ou égaux à 2. Montrer que si $a^n - 1$ est premier, alors a = 2 et n est premier. La réciproque est-elle vraie ? Pour tout entier naturel p supérieur ou égal à 2, l'entier $2^p - 1$ est appelé le p-ème nombre de Mersenne, souvent noté M_p .

Exercice 18 (Soit F l'application définie sur \mathbb{N} par $n \to 2^{2^n} + 1$. Si $n \in \mathbb{N}$, F(n) est appelé n^e nombre de Fermat.

- 1) Montrer que, pour tout $n \in \mathbb{N}^*$, $F(n) = \prod_{k=0}^{n-1} F(k) + 2$.
- 2) Montrer que, pour tout couple $(m,n) \in \mathbb{N}^2$ tel que $m \neq n$, F(m) et F(n) sont premiers entre eux.
- 3) Montrer que tout entier naturel n qui n'est pas de la forme 2^m possède un diviseur impair autre que 1. En déduire que, si le nombre $2^n + 1$ est premier, alors soit c'est un nombre de Fermat, soit n = 0.
- 4) Montrer que F(5) est divisible par 641.

Exercice 19 Montrer que, pour tout entier naturel n supérieur ou égal à 2, $\frac{1}{4}(n^3 + (n+2)^3)$ est un entier non premier.

