קורס: 20416 "תורת ההסתברות"

(87 / 6א מועד - 20015 (סמסטר 20.7.2015 - מועד א6

חומר העזר המותר: מחשבון מדעי וספר הקורס בלבד.

מדריך הלמידה או כל חומר כתוב אחר – אסורים לשימוש!

עליכם לענות על **ארבע** מתוך חמש השאלות הבאות.

כל השאלות זהות במשקלן.

בכל תשובותיכם חשבו את התוצאה הסופית (כמובן, במידת האפשר).

לבחינה מצורפת: טבלת ערכים של פונקציית ההתפלגות המצטברת הנורמלית סטנדרטית

שאלה 1 (25 נקודות)

 $(\lambda > 0)$ אוני משתנים מקריים מעריכיים בלתי-תלויים, שלכל אחד מהם הפרמטר $(\lambda > 0)$ שני משתנים מקריים מעריכיים בלתי-תלויים, שלכל אחד מהם הפרמטר אוני

- $\{X>Y\}$ א. מצא את פונקציית הצפיפות המותנית של א בהינתן מצא את פונקציית הצפיפות את את פונקציית הצפיפות את את פונקציית הצפיפות המותנית של
 - $E[X | X > Y] = \frac{3}{2\lambda}$ ב. הראה כי
 - E[X | X < Y] את למצוא את המותנית, כדי למצוא המוחלת המוחלת או 8)

הערה: שים לב לכיוון סימן אי-השוויון בכל אחד מן הסעיפים.

שאלה 2 (25 נקודות)

 $f_X(x)=cx^2e^{-x^2/2}$, x>0 : נתון משתנה מקרי רציף , X שפונקציית הצפיפות שלו משתנה מקרי X=x היא אחידה רציפה ונתון כי לכל X=x , ההתפלגות המותנית של המשתנה המקרי X=x היא אחידה רציפה על הקטע (0, x).

- $f_y(y) = ce^{-y^2/2}$, y > 0 : א. הראה כי
 - . c נקי) ב. מצא את 8
 - $P\{Y \le 1.82\}$ ג. חשב את .

שאלה 3 (25 נקודות)

תייר מגיע לאזור שיש בו 4 כפרים.

בכל יום התייר בוחר באקראי אחד מארבעת הכפרים כדי ללון בו (בלי תלות בבחירות אחרות). התייר מחליט לעזוב את האזור מייד לאחר שיזדמן לו ללון בכל אחד מהכפרים.

- (8 נקי) א. מהי ההסתברות שהתייר ישהה באזור יותר מ-4 ימים!
- (9 נקי) ב. מהי ההסתברות שהתייר יעזוב לאחר 15 ימים לכל היותר:
 - (8 נקי) ג. מהי שונות משך ביקורו באזור (בימים)!

שאלה 4 (25 נקודות)

.3 בסניף דואר .3 אשנבים: אשנב .3 אשנב .3 אשנב .3

כל לקוח שנכנס לסניף הדואר פונה באקראי לאחד משלושת האשנבים.

מספר הלקוחות הנכנסים לסניף הדואר ב- 15 דקות הוא משתנה מקרי פואסוני עם הפרמטר 6. בשעה 8:00 סניף הדואר ריק.

נתבונן על פרק הזמן שבין 8:00 לבין 8:15, וביחס אליו נגדיר את המשתנים המקריים הבאים:

- ; מספר הלקוחות שנכנסים לסניף הדואר = N
- , אחד לקוח לקוח אחד שפונה אליהם לפחות לקוח אחד X
 - 1 מספר הלקוחות שפונים לאשנב Y
- .j=0,1,...,n ו- n=0,1,... לכל הכל , $P\{Y=j,N=n\}$ לכל מתאים ביטוי מתאים ל- $P\{Y=j,N=n\}$
 - . n=1,2,... לכל , $P\{X=1,N=n\}$ לכל מתאים ל- , רשום ביטוי מתאים ל-

שאלה 5 (25 נקודות)

, א. יהיו X ו-Y משתנים מקריים בינומיים בלתי-תלויים, א. יהיו

.0.5 -ו 2n שלכל אחד מהם הפרמטרים

- $P\{X-Y\geq n\}\leq \frac{1}{2n}$.1
- . $\{X-Y\geq \sqrt{n}\}$ בהנחה ש- n גדול, מצא קירוב להסתברות המאורע .2
 - $(\lambda > 0)$ ב. יהי X משתנה מקרי פואסוני עם הפרמטר X

$$Eiggl[rac{1}{X+1}iggr] = rac{1}{\lambda+1}$$
 יוכח או הפרך:

בהצלחה!

$\Phi(z)$ ערכים של פונקציית ההתפלגות המצטברת הנורמלית סטנדרטית,

$$\Phi(z) = P\{Z \le z\} = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt \qquad ; \qquad \Phi(-z) = 1 - \Phi(z) \qquad ; \qquad Z \sim N(0,1)$$

$$\Phi(z)pprox \Phi(z_1) + rac{z-z_1}{z_2-z_1} [\Phi(z_2) - \Phi(z_1)]$$
 : נוסחת האינטרפולציה

Z	0.0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.0	0.5398	0.5438	0.5478	0.5120	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.1	0.5793	0.5832	0.5478	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.5755
0.2	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.3	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.1	0.0331	0.0371	0.0020	0.0001	0.0700	0.0750	0.0772	0.0000	0.0011	0.0077
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.0029	0.0040	0.9941	0.9943	0.0045	0.0046	0.0049	0.0040	0.0051	0.0053
2.5	0.9938	0.9940			0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971 0.9979	0.9972	0.9973	0.9974
2.8 2.9	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978		0.9979	0.9980	0.9981 0.9986
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9980
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998

$\Phi(z)$	0.50	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90
Z	0.0	0.126	0.253	0.385	0.524	0.674	0.842	1.036	1.282
$\Phi(z)$	0.91	0.92	0.93	0.94	0.95	0.96	0.97	0.98	0.99
z	1.341	1.405	1.476	1.555	1.645	1.751	1.881	2.054	2.326