Bryan Van Scoy

Miami University

Distributed optimization

minimize
$$\sum_{i=1}^{n} f_i(x_i)$$
subject to
$$x_1 = x_2 = \dots = x_n$$

Want each agent to compute the global optimizer x_\star by communicating with local neighbors and performing local computations.

1

Application: Distributed machine learning

Each agent i has

- data (x_i, y_i)
- features $\Phi(x_i)$
- prediction model $\theta_i^\mathsf{T} \Phi(\cdot)$
- error $\|y_i \theta_i^\mathsf{T} \Phi(x_i)\|$

$$\begin{array}{ll}
\underset{\theta_1, \dots, \theta_n}{\text{minimize}} & \sum_{i=1}^n \|y_i - \theta_i^\mathsf{T} \Phi(x_i)\| \\
\text{subject to} & \theta_1 = \theta_2 = \dots = \theta_n
\end{array}$$

Distributed gradient descent (DGD)

$$x_i^+ = \sum_{j=1}^n w_{ij} x_j - \alpha \nabla f_i(x_i)$$

- linear convergence to suboptimal solution with constant stepsize
- sublinear convergence to optimal solution with decaying stepsize

The optimal solution is *not* a fixed point.

Distributed inexact gradient tracking (DIGing)

$$x_{i}^{+} = \sum_{j=1}^{n} w_{ij} x_{j} - \alpha y_{i}$$
$$y_{i}^{+} = \sum_{j=1}^{n} w_{ij} y_{j} + \nabla f_{i}(x_{i}^{+}) - \nabla f_{i}(x_{i})$$

- linear convergence over time-varying networks
- · the bound grows with the number of agents
- the bound does not apply to large stepsizes

Have conservative bounds that are specific to DIGing.

Other distributed algorithms

$$x^+ = Wx - \alpha \,\nabla f(x)$$

DGD'09

$$x^{++} = (I + W) x^{+} - \frac{I + W}{2} x - \alpha (\nabla f(x^{+}) - \nabla f(x))$$

EXTRA'15

$$x^{++} = W\left(2x^{+} - Wx - \alpha W\left(\nabla f(x^{+}) - \nabla f(x)\right)\right)$$

AugDGM'15

$$x^{++} = W(2x^{+} - Wx) - \alpha(\nabla f(x^{+}) - \nabla f(x))$$

DIGing'17

$$x^{++} = (I+W)x^{+} - \frac{I+W}{2}x - \alpha\left(\nabla f\left(\frac{I+W}{2}x^{+}\right) - \nabla f\left(\frac{I+W}{2}x\right)\right)$$

ExDiff'17

$$x^{++} = (I + W) x^{+} - \frac{I + W}{2} (x + \alpha (\nabla f(x^{+}) - \nabla f(x)))$$

NIDS'19

and more...

A systematic approach

6

Main idea

$$V(x) = \underbrace{\left\|\operatorname{avg}(x) - x_{\star}\right\|_{P}^{2}}_{\text{optimality}} + \underbrace{\left\|x - \operatorname{avg}(x)\right\|_{Q}^{2}}_{\text{consensus}}$$

- search for a quadratic Lyapunov function using LMIs
- use pointwise quadratic constraints from the assumptions on the local objective functions and the communication network
- similar to Lur'e problem from robust control

7

$$\begin{bmatrix} x_i^+ \\ y_i \\ z_i \end{bmatrix} = \begin{bmatrix} A & B_u & B_v \\ C_y & D_{yu} & D_{yv} \\ C_z & D_{zu} & D_{zv} \end{bmatrix} \begin{bmatrix} x_i \\ u_i \\ v_i \end{bmatrix}$$
$$v_i = \sum_{j=1}^n w_{ij} z_j$$
$$u_i = \nabla f_i(y_i)$$
$$0 = \sum_{j=1}^n (F_x x_j + F_u u_j)$$

Many known algorithms fit in this form.

	2	state variables	3 state variables				
1 communicated variable	SVL	$\begin{bmatrix} 1-\gamma & \beta & -\alpha & -\gamma \\ -1 & 1 & 0 & -1 \\ 1-\delta & 0 & 0 & \delta \\ \hline 1 & 0 & 0 & 0 \\ \hline 0 & 1 & 0 & \end{bmatrix}$	EXTRA	$ \begin{bmatrix} 1 & -\frac{1}{2} & \alpha & -\alpha & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ \hline 1 & 0 & 0 & 0 & 0 \\ \hline 1 & -\frac{1}{2} & 0 & 0 & 0 \\ \hline 1 & -1 & \alpha & 0 & 0 \end{bmatrix} $			
	Exact Diffusion (ExDIFF)	$\begin{bmatrix} 1 & -1 & -\alpha & 1\\ \frac{1}{2} & 0 & -\alpha & \frac{1}{2}\\ 1 & 0 & -\frac{1}{2} & 0\\ 1 & 0 & 0 & 0\\ 1 & -1 & 0 & 0 \end{bmatrix}$	NIDS	$\begin{bmatrix} 1 & -\frac{1}{2} & \frac{\alpha}{2} & -\frac{\alpha}{2} & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & -\frac{1}{2} & \frac{\alpha}{2} & -\frac{\alpha}{2} & 0 \\ 1 & -1 & \alpha & 0 & 0 \end{bmatrix}$			
2 communicated variables	Unified DIGing (uDIG)	$\begin{bmatrix} 0 & -\alpha & -\alpha & 1 & 0 \\ \frac{L+m}{2} & 0 & -1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ -\frac{L+m}{2} & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & & \end{bmatrix}$	DIGing	$\begin{bmatrix} 0 & -\alpha & 0 & 0 & 1 & 0 \\ 0 & 0 & -1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ \hline 0 & -\alpha & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ \hline 0 & 1 & -1 & 0 & 0 & 0 \\ \end{bmatrix}$			
	Unified EXTRA (uEXTRA)	$\begin{bmatrix} 0 & -\alpha & -\alpha & 1 & 0 \\ 0 & 0 & -1 & L & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & -L & 0 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix}$	AugDGM	$ \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & -\alpha \\ 0 & 0 & -1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 1 & -\alpha \\ \hline 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ \hline 0 & 1 & -1 & 0 & 0 & \end{bmatrix} $			

Each local objective function f_i is L-smooth and m-strongly convex with respect to the global optimizer x_{\star} .

The condition ratio $\kappa = L/m$ characterizes the variation in curvature.

$$\begin{bmatrix} \nabla f_i(y) - \nabla f_i(y_\star) \\ y - y_\star \end{bmatrix}^\mathsf{T} \begin{bmatrix} -2mL & L + m \\ L + m & -2 \end{bmatrix} \begin{bmatrix} \nabla f_i(y) - \nabla f_i(y_\star) \\ y - y_\star \end{bmatrix} \ge 0$$

At each iteration, the gossip matrix W satisfies the sparsity pattern of the graph, is doubly stochastic, and has spectral gap σ .

The spectral gap $\sigma = \left\| \frac{1}{n} \mathbf{1} \mathbf{1}^\mathsf{T} - W \right\|_2$ characterizes network connectivity.

$$\begin{bmatrix} z - \mathsf{avg}(z) \\ Wz - \mathsf{avg}(z) \end{bmatrix}^\mathsf{T} \begin{bmatrix} \sigma^2 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} z - \mathsf{avg}(z) \\ Wz - \mathsf{avg}(z) \end{bmatrix} \geq 0$$

Optimality:

$$\Psi^{\mathsf{T}} \begin{bmatrix} A & B_{u} \\ I & 0 \\ -C_{y} & D_{yu} \\ 0 & I \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} P & 0 & 0 & 0 \\ 0 & -\rho^{2}P & 0 \\ 0 & 0 & M_{0} \end{bmatrix} \begin{bmatrix} A & B_{u} \\ I & 0 \\ -C_{y} & D_{yu} \\ 0 & I \end{bmatrix} \Psi \leq 0$$

Consensus

$$\begin{bmatrix} A & B_{u} & B_{v} \\ I & 0 & 0 \\ -\overline{C}_{y} & \overline{D}_{yu} & \overline{D}_{yv} \\ 0 & I & 0 \\ -\overline{C}_{z} & \overline{D}_{zu} & \overline{D}_{zv} \\ 0 & 0 & I \end{bmatrix} \begin{bmatrix} Q & 0 & 0 & 0 \\ 0 & -\rho^{2}Q & 0 & 0 \\ 0 & -\overline{C}_{y} & \overline{D}_{yu} & \overline{D}_{yv} \\ 0 & 0 & \overline{D}_{yv} & \overline{D}_{yv} \\ 0 & 0 & \overline{D}_{zv} \end{bmatrix} \leq 0$$

$$M_0 = \begin{bmatrix} -2\kappa & \kappa + 1 \\ \kappa + 1 & -2 \end{bmatrix} \qquad M_1 = \begin{bmatrix} \sigma^2 - 1 & 1 \\ 1 & -1 \end{bmatrix} \qquad \Psi = \operatorname{null} \begin{bmatrix} F_x & F_u \end{bmatrix}$$

Feasibility implies each agent converges to x_{\star} linearly with rate ρ .

- $\kappa = 10$ and the gradient stepsize α is optimized
- lower bound corresponds to only optimization and only consensus

Can analyze all algorithms using the same technique.

- SVL has the best worst-case convergence
- equivalent to inexact ADMM (Boyd et al., 2011)

The analysis LMIs can also be used for design.

Extensions

· optimized trade-off between communication and computation

iteration	1	2	3	4	5	6	7	8	9	
communication	✓	✓	✓	√	✓	\checkmark	√	\checkmark	\checkmark	
gradient evaluation			\checkmark			\checkmark			\checkmark	

• jointly-connected communication networks

the network is connected only when averaged over time

Akhil Sundararajan

- TCNS'20 A. Sundararajan, B. Van Scoy, and L. Lessard, "Analysis and design of first-order distributed optimization algorithms over time-varying graphs"
 - CDC'20 B. Van Scoy and L. Lessard, "Systematic analysis of distributed optimization algorithms over jointly-connected networks"
 - ACC'19 A. Sundararajan, B. Van Scoy, and L. Lessard, "A canonical form for first-order distributed optimization algorithms"
- NecSys'19 B. Van Scoy and L. Lessard, "A distributed optimization algorithm over timevarying graphs with efficient gradient evaluations"

https://vanscoy.github.io