FDA Homework 2

Seokjun Choi

October 18, 2019

1 Chapter 10

1.1 Problem 2

Show that in any inner product space, the function $y \to \langle x, y \rangle$ is continuous where x is arbitary element of that inner product space.

Let \mathcal{H} be an inner product space, $\{f_n\}$ be a sequence in \mathcal{H} such that converges to $f \in \mathcal{H}$ in norm sense. For $x \in \mathcal{H}$, consider below relation.

$$|\langle x, f_n \rangle - \langle x, f \rangle|^2 = |\langle x, f_n - f \rangle|^2 \le ||x||^2 ||f_n - f||^2$$

Last inequality comes from Cauchy-Schwartz inequality. Then when $n \to \infty$, by our setting $||f_n - f|| \to 0$, so

$$\lim_{n \to \infty} |\langle x, f_n \rangle - \langle x, f \rangle|^2 \le 0$$

Then

$$\lim_{n \to \infty} \langle x, f_n \rangle - \langle x, f \rangle = 0$$

Thus, $\lim_{n\to\infty} \langle x, f_n \rangle = \langle x, f \rangle$ and the inner product operator is preserve the limit. It is equivalent statement that inner product operator is continuous.

1.2 Problem 6

Suppose $\{e_j, j >= 1\}$ is a complete orthonormal sequence in a Hilbert space. Show that if $\{f_j, j >= 1\}$ is an orthonormal sequence satisfying

$$\sum_{j=1}^{\infty} ||e_j - f_j||^2 < 1$$

then $\{f_j, j >= 1\}$ is also complete.

1.3 Problem 10

Suppose $\{e_j, j >= 1\}$ and $\{f_i, i >= 1\}$ are orthonormal bases in \mathcal{H} . Show that for any Hilbert-Schmidt operators Ψ, Φ

$$\sum_{i=1}^{\infty} <\Psi(f_i), \Phi(f_i) > = \sum_{j=1}^{\infty} <\Psi(e_j), \Phi(e_j) >$$

Firstly note that $f_i = \sum_{j=1}^{\infty} \langle f_i, e_j \rangle e_j$, and since Φ are Hilbert-Schmidt, there are adjoint operator Φ^* . Using these facts,

$$\sum_{i=1}^{\infty} <\Psi(f_i), \Phi(f_i)> = \sum_{i=1}^{\infty} <\Phi^*\Psi(f_i), f_i> = \sum_{i=1}^{\infty} <\Phi^*\Psi\sum_{j=1}^{\infty} (f_i, e_j)e_j, \sum_{k=1}^{\infty} (f_k, e_k)e_j> = \sum_{i=1}^{\infty} <\Phi^*\Psi(f_i), \Phi(f_i)> = \sum_{i=1}^{\infty} <\Phi^*\Psi(f_i)$$

then

$$=\sum_{i=1}\sum_{j=1}\sum_{k=1} < f_i, e_j> < f_i^{-}e_k> < \Phi^*\Psi(e_j), e_k> = \sum_{i=1}\sum_{j=1}\sum_{k=1} < f_i, e_j> < e_k, f_i> < \Phi^*\Psi(e_j), e_k> = \sum_{i=1}\sum_{j=1}\sum_{k=1} < f_i, e_j> < e_k, f_i> < \Phi^*\Psi(e_j), e_k> = \sum_{i=1}\sum_{j=1}\sum_{k=1} < f_i, e_j> < e_k, f_i> < \Phi^*\Psi(e_j), e_k> = \sum_{i=1}\sum_{j=1}\sum_{k=1} < f_i, e_j> < e_k, f_i> < \Phi^*\Psi(e_j), e_k> = \sum_{i=1}\sum_{j=1}\sum_{k=1} < f_i, e_j> < e_k, f_i> < \Phi^*\Psi(e_j), e_k> = \sum_{i=1}\sum_{j=1}\sum_{k=1} < f_i, e_j> < e_k, f_i> < \Phi^*\Psi(e_j), e_k> = \sum_{i=1}\sum_{j=1}\sum_{k=1} < f_i, e_j> < e_k, f_i> < \Phi^*\Psi(e_j), e_k> = \sum_{i=1}\sum_{j=1}\sum_{k=1} < f_i, e_j> < e_k, f_i> < \Phi^*\Psi(e_j), e_k> = \sum_{i=1}\sum_{j=1}\sum_{k=1} < f_i, e_j> < e_k, f_i> < \Phi^*\Psi(e_j), e_k> = \sum_{i=1}\sum_{j=1}\sum_{k=1} < f_i, e_j> < e_k, f_i> < \Phi^*\Psi(e_j), e_k> = \sum_{i=1}\sum_{j=1}\sum_{k=1} < f_i, e_j> < e_k, f_i> < \Phi^*\Psi(e_j), e_k> = \sum_{i=1}\sum_{j=1}\sum_{k=1} < f_i, e_j> < e_k, f_i> < \Phi^*\Psi(e_j), e_k> = \sum_{i=1}\sum_{j=1}\sum_{k=1} < f_i, e_j> < e_k, f_i> < e_k, f_$$

then when $j \neq k$, the term becomes 0.(why?) so, only j = k cases remain, so we rewrite above equation as

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \langle f_i, e_j \rangle \langle e_j, f_i \rangle \langle \Phi^* \Psi(e_j), e_j \rangle$$

Since the operaters are Hilbert-Schmidt, the value of absolute summation is bounded, and we can interchange the summation order. then

$$\begin{split} &= \sum_{j=1} \sum_{i=1} < f_i, e_j > < e_j, f_i > < \Phi^* \Psi(e_j), e_j > = \sum_{j=1} \sum_{i=1} | < f_i, e_j > |^2 < \Phi^* \Psi(e_j), e_j > \\ &= \sum_{j=1} < \Phi^* \Psi(e_j), e_j > = \sum_{j=1} < \Phi^* \Psi(e_j), e_j > \end{split}$$

 $\sum_{i=1} | < f_i, e_j > |^2 = 1$ since it coincide the definition of norm square, and each element is in orthornormal set.

$$= \sum_{j=1} < \Psi(e_j), \Phi(e_j) >$$

1.4 Problem 12

Show that if L is bounded then L^* is also bounded, and

$$||L^*||_{\mathcal{L}} = ||L||_{\mathcal{L}}, \quad ||L^*L||_{\mathcal{L}} = ||L||_{\mathcal{L}}^2$$