Employee Training Impact Analysis

Analysing the Impact of a New Training

Program on Employee Performance using

paired sample t-test

Hypothesis

Null Hypothesis : H_0 -> There is no significant difference between the evaluation scores before and after the training

Alternate Hypothesis : H_1 -> There is a significant difference between the evaluation scores before and after the training

Datset

	employee_id	department	region	education	gender	recruitment_channel	no_of_trainings	age	previous_year_rating	length_of_service	KPIs_met >80%	awards_won?	avg_training_score	last_evaluation_score
0	3	Operations	region_22	Master's & above	f	other	1	38	5.0	4	1	0	67	0.73
1	6	Operations	region_15	Bachelor's	f	other	1	38	3.0	10	0	0	50	0.76
2	11	Sales & Marketing	region_4	Master's & above	f	sourcing	1	39	4.0	12	1	0	72	0.58
3	13	Operations	region_17	Bachelor's	m	other	1	38	1.0	5	1	0	47	0.39
4	16	Operations	region_4	Master's & above	m	sourcing	1	40	5.0	5	0	0	53	0.58
23485	78280	Analytics	region_7	Bachelor's	m	sourcing	2	30	NaN	1	0	0	51	1.00
23486	78283	Procurement	region_12	Bachelor's	f	sourcing	1	28	3.0	4	0	0	57	0.84
23487	78284	Technology	region_22	Bachelor's	m	referred	1	33	3.0	5	1	1	82	0.62
23488	78293	Sales & Marketing	region_27	Bachelor's	f	other	1	26	3.0	3	1	0	64	0.87
23489	78295	Operations	region_14	Bachelor's	f	sourcing	1	36	3.0	5	0	0	48	0.62

Performing Z-score Normalization

We are performing Z-score normalization of *previous_year_rating* to match the scale of *last_evaluation_score*

previous_year_rating	new_
5.0	1.30
3.0	-0.27
4.0	0.51
1.0	-1.860
5.0	1.30
•••	

Variable Selection

new_prev : Performance score of the employees before the training

last_evaluation_score : Performance score of the employees after the training

Group Identification

data['department'].value_counts()

department						
Sales & Marketing	6450					
Operations	4234					
Technology	2692					
Procurement	2668					
Analytics	2057					
HR	976					
Finance	958					
Legal	397					
R&D	387					

We identify that there are 9 different
 departments in the company and all the
 employees of every department are

undergoing a training program respective of

their department

Performing t-test on Analytics Department

```
analytics=data[(data.department=="Analytics") & (data.no_of_trainings==1)]
analytics_bef=analytics['new_prev'].sample(n=29)
analytics_aft=analytics['last_evaluation_score'].sample(n=29)

tana,p_ana=stats.ttest_rel(analytics_bef,analytics_aft)

print("tstatistic value is : ",tstatistic)
print("p_value is : ",p_ana)

tstatistic value is : -3.788769516266795
p_value is : 0.07249861757831698
```

• We are selecting random 29 employees from the *Analytics* Department and performing paired sample t-test on those samples

Findings on Analytics Department

```
tstatistic value is : -3.788769516266795

p_value is : 0.07249861757831698

if p_ana<0.05:
    print("We reject the null hypothesis (i.e) There is a significant difference between the evaluation scores before and after the training")

else:
    print("We fail to reject the null hypothesis (i.e) There is no significant difference between the evaluation scores before and after the training")

We fail to reject the null hypothesis (i.e) There is no significant difference between the evaluation scores before and after the training
```

• Since the p-value is greater than the significance level 0.05, we fail to reject the null hypothesis and identify that there is no significant difference between the evaluation scores before and after the training (i.e) *The Training does not lead to higher last evaluation scores*

Performing t-test on Finance Department

```
finance=data[(data.department=="Finance") & (data.no_of_trainings==1)]
finance_bef=finance['new_prev'].sample(n=29)
finance_aft=finance['last_evaluation_score'].sample(n=29)

tstatistic,p_fin=stats.ttest_rel(finance_bef,finance_aft)

print("tstatistic value is : ",tstatistic)
print("p_value is : ",p_fin)

tstatistic value is : -3.4070411361615
p_value is : 0.002005758534820048
```

• We are selecting random 29 employees from the *Finance* Department and performing paired sample t-test on those samples

Findings on Finance Department

```
tstatistic value is : -3.4070411361615

p_value is : 0.002005758534820048

if p_fin<0.05:
    print("We reject the null hypothesis (i.e) There is a significant difference between the evaluation scores before and after the training")

else:
    print("We fail to reject the null hypothesis (i.e) There is no significant difference between the evaluation scores before and after the training")

We reject the null hypothesis (i.e) There is a significant difference between the evaluation scores before and after the training
```

• Since the p-value is less than the significance level 0.05, we are rejecting the null hypothesis and identify that there is a significant difference between the evaluation scores before and after the training (i.e) *The Training leads to higher last evaluation scores*

Similarly performing t-test on other Departments

```
tstatistic,p_leg=stats.ttest_rel(Legal_bef,Legal_aft)
tstatistic,p_ope=stats.ttest_rel(Operations_bef,Operations_aft)
tstatistic,p hr=stats.ttest rel(HR bef,HR aft)
tstatistic,p_sal=stats.ttest_rel(Sales_bef,Sales_aft)
tstatistic,p_rd=stats.ttest_rel(Rd_bef,Rd_aft)
tstatistic,p_pro=stats.ttest_rel(Procurement_bef,Procurement_aft)
tstatistic,p_tec=stats.ttest_rel(Technology_bef,Technology_aft)
```

• We are selecting random 29 employees from the each Department and performing paired sample t-test on those samples

Findings on other Departments

Department	tstatistic	p_values	significance_level
Legal	-4.648181	0.000073	0.05
Operations	-2.562763	0.016049	0.05
HR	-2.469115	0.019910	0.05
Sales & Marketing	-3.732777	0.000856	0.05
R&D	-3.495739	0.001594	0.05
Procurement	-3.533138	0.001446	0.05
Technology	-3.934058	0.000501	0.05

• Since the p-value is less than the significance level 0.05 on remaining department's t-test, we are rejecting the null hypothesis and identify that there is a significant difference between the evaluation scores before and after the training on remaining departments (i.e) *The Training leads to higher last evaluation scores*

Conclusion

	Department	tstatistic	p_values	significance_level
0	Analytics	-1.866350	0.072499	0.05
1	Finance	-4.713894	0.000061	0.05
2	Legal	-4.648181	0.000073	0.05
3	Operations	-2.562763	0.016049	0.05
4	HR	-2.469115	0.019910	0.05
5	Sales & Marketing	-3.732777	0.000856	0.05
6	R&D	-3.495739	0.001594	0.05
7	Procurement	-3.533138	0.001446	0.05
8	Technology	-3.934058	0.000501	0.05

- In conclusion, we can say that except the Analytics
 department there is a significant difference between
 the evaluation scores before and after the training
- In other words, the Training program is useful for all the departments except the Analytics department

Thank You