Introduction to Artificial Intelligence

DA 221

Jan - May 2023

IIT Guwahati

Instructors: Neeraj Sharma (& Arghyadip Roy)

Lecture 16 (21-Feb-22)

 A way of summarizing the uncertainty that comes from our laziness or ignorance

- It is too much work to list the complete set of rules or use all rules
- Sometimes we do not have complete theory to know all the rules
- Even if above two don't hold, often our observations are partial.

Uncertainty and rational decisions

Utility theory: every state has a degree of usefulness, or utility, to an agent and that the agent will prefer states with higher utility

Decision theory = probability theory + utility theory

Maximum expected utility: an agent is rational iff it chooses the action that yields the highest expected utility, averaged over all possible outcomes of the action

• Like logical assertions, probabilistic assertions are about possible worlds.

- Like logical assertions, probabilistic assertions are about possible worlds.
- Whereas logical assertions say which possible worlds are strictly ruled out (all those
 in which the assertion is false), probabilistic assertions talk about how probable the
 various worlds are.

- Like logical assertions, probabilistic assertions are about possible worlds.
- Whereas logical assertions say which possible worlds are strictly ruled out (all those in which the assertion is false), probabilistic assertions talk about how probable the various worlds are.
- In probability SAMPLE SPACE theory, the set of all possible worlds is called the sample space.
 - For example, if we are about to roll two (distinguishable) dice, there are 36 possible worlds to consider: (1,1), (1,2), . . ., (6,6).
- The Greek letter Ω (uppercase omega) is used to refer to the sample space, and ω (lowercase omega) refers to elements of the space, that is, particular possible worlds.

• In probability SAMPLE SPACE theory, the set of all possible worlds is called the sample space.

A fully specified probability model associates a numerical probability $P(\omega)$ with each possible world.

$$0 \leq P(\omega) \leq 1$$
 for every ω and $\sum_{\omega \in \Omega} P(\omega) = 1$

For any proposition ϕ , $P(\phi) = \sum_{\omega \in \phi} P(\omega)$

For any proposition
$$\phi$$
, $P(\phi) = \sum_{\omega \in \phi} P(\omega)$

• Conditional Probability $P(a \mid b) = \frac{P(a \land b)}{P(b)}$ $P(a \land b) = P(a \mid b)P(b)$

$$P(a \lor b) = P(a) + P(b) - P(a \land b)$$

For any proposition
$$\phi$$
, $P(\phi) = \sum_{\omega \in \phi} P(\omega)$

- Conditional Probability
- Marginal Probability
- Conditioning

	toothache		$\neg toothache$	
	catch	$\neg catch$	catch	$\neg catch$
cavity	0.108	0.012	0.072	0.008
$\neg cavity$	0.016	0.064	0.144	0.576

Figure 13.3 A full joint distribution for the *Toothache*, *Cavity*, *Catch* world.

$$P(cavity \lor toothache) = 0.108 + 0.012 + 0.072 + 0.008 + 0.016 + 0.064 = 0.28$$

$$P(cavity) = 0.108 + 0.012 + 0.072 + 0.008 = 0.2$$

$$\mathbf{P}(Cavity) = \sum_{\mathbf{z} \in \{Catch, Toothache\}} \mathbf{P}(Cavity, \mathbf{z})$$
 • Marginalization

	toothache		$\neg toothache$	
	catch	$\neg catch$	catch	$\neg catch$
cavity	0.108	0.012	0.072	0.008
$\neg cavity$	0.016	0.064	0.144	0.576

Figure 13.3 A full joint distribution for the *Toothache*, *Cavity*, *Catch* world.

$$P(cavity \mid toothache) = \frac{P(cavity \land toothache)}{P(toothache)}$$

$$= \frac{0.108 + 0.012}{0.108 + 0.012 + 0.016 + 0.064} = 0.6$$

- Conditional Probability
- Marginal Probability
- Conditioning
- Independence
- Bayes rule

- Conditional Probability
- Marginal Probability
- Conditioning
- Independence
- Bayes rule

to continue Post mid-sem ...