Morning

Properties of Regular Languages

1. Pumping lemma

Every regular language satisfies the pumping lemma. If somebody presents you with fake regular language, use the pumping lemma to show a contradiction.

2. Closure properties

Building automata from components through operations.

The Pigeonhole Principle

4 pigeons

3 pigeonholes

A pigeonhole must contains at least two pigeons

The Pigeonhole Principle

m pigeons

n pigeonholes

m > n

There is a pigeonhole with at least 2 pigeons

The DFA Principle

m symbols

$$w = a_1 a_2 \cdot \cdot \cdot \cdot \cdot a_m$$

n states

$$a_n \cdot \cdot \cdot \cdot \cdot a_m$$
?

$$m \ge n$$

Property of regular languages

L is a regular language $\Rightarrow \exists DFA \ A : L(A) = L$

Let
$$A = (Q, \Sigma, \delta, q_0, F)$$
, and $n = |Q|$

Get $w \in L$, and suppose $w = a_1 a_2 \cdots a_m, m \ge n$

Let
$$q_i = \overline{\delta}(q_0, a_1 a_2 \cdots a_i)$$

$$\Rightarrow \exists 0 < i < j \leq n : q_i = q_j$$

Property of regular languages

Property of regular languages

$$\Rightarrow w = x y z \begin{cases} |xy| \le n \\ |y| \ge 1 \text{ or } y \ne \varepsilon \\ xy^k z \in L, \text{ for any } k \ge 0 \end{cases}$$

Pumping Lemma

Pumping lemma for regular languages.

Let L be regular. Then

 $\exists n, \forall w \in L : |w| \ge n \Rightarrow w = xyz \text{ such that}$

- **y** ≠ ε
- $|xy| \le n$
- $\forall k \geq 0$, $xy^k z \in L$

Example 6.1 Let $L = \{ 0^n1^n \mid n \ge 0 \}$, is it regular?

Suppose \mathcal{L} is regular. Get $w=0^n1^n\in\mathcal{L}$.

By pumping lemma w=xyz, $|xy| \le n$, $y \ne \varepsilon$, and $xy^kz \in \mathcal{L}$.

Let k=0, then $xz \in L$.

But xz has fewer 0's than 1's, that $xz \notin L$.

It derived a contradiction.

So L is not regular.

Example 6.2 Prove $L=\{vv^R | v \in (a,b)^*\}$ is not regular.

Suppose L is regular.

Get $w=a^nb^nb^na^n \in \mathcal{L}$.

for k=0, $xz=a^{n-|y|}b^nb^na^n \in \mathcal{L}$.

Example 6.3 Prove $L = \{a^n b^l c^{n+l} \mid n, l \ge 0\}$ is not regular.

Suppose L is regular.

Get $w=a^nb^nc^{2n}\in \mathcal{L}$.

for k=0, $xz=a^{n-|y|}b^nc^{2n} \in \mathcal{L}$.

Let L and M be regular.

Then the following languages are all regular:

- > Union: ∠∪ M
- > Concatenation : LM
- > Closure : L*
- > Difference: L M

> Union : $L \cup M$

Suppose
$$L(A)=L$$
, $L(B)=M$

Let
$$A = (Q_1, \Sigma_1, \delta_1, q_1, F_1), B = (Q_2, \Sigma_2, \delta_2, q_2, F_2)$$

$$C = (Q_1 \cup Q_2 \cup \{q_0\}, \Sigma_1 \cup \Sigma_2, \delta, q_0, F_1 \cup F_2)$$

$$\delta \colon \delta (q_0, \varepsilon) = \{q_1, q_2\}$$

$$\delta(q, a) = \delta_1(q, a), \forall (q, a) \in Q_1 \times \Sigma_1$$

$$\delta(q, a) = \delta_2(q, a), \forall (q, a) \in Q_2 \times \Sigma_2$$

Then
$$L(C) = L \cup M$$

> Reversal $L^R = \{ w^R \mid w \in L \}$

Convert A(L) into $A(L^R)$ by:

- Reverse all the arcs of A(L)
- Convert start state of A(L) to accepting state of $A(L^R)$
- Create a new state as start state of $A(L^R)$ with ε -transitions to all the accepting states of A(L)

> Complement

$$\overline{L} = \{ w \mid w \in \Sigma^* \text{ and } w \notin L \}$$

Let DFA $A=(Q, \Sigma, \delta, q_0, F)$, and L(A)=L

Let DFA $B=(Q, \Sigma, \delta, q_0, S)$, and S=Q-F

Then L(B)=
$$\overline{L}$$

 \triangleright Intersection : $L \cap M$

Suppose
$$L(A)=L$$
, $L(B)=M$

Let
$$A = (Q_1, \Sigma, \delta_1, q_1, F_1), B = (Q_2, \Sigma, \delta_2, q_2, F_2)$$

$$C = (Q_1 \times Q_2, \Sigma, \delta, (q_1, q_2), F_1 \times F_2)$$

$$\delta : (Q_1 \times Q_2) \times \Sigma \to Q_1 \times Q_2$$

$$\delta ((p, q), a) = (\delta_1(p, a), \delta_2(q, a))$$

Then
$$L(C) = L \cap M$$

Homomorphism

$$\begin{array}{ll} h: \ \Sigma^* \to \Gamma^* \\ \\ \text{Let $w = a_1 a_2} a_n \in \Sigma^*, \ \text{then} \\ \\ h(w) = h(a_1)h(a_2).....h(a_n) \\ \\ \text{Let $\Sigma = \{ \ 0, \ 1 \ \}, \ \Gamma = \{ \ a, \ b \ \}, \ h(0) = ab, \ h(1) = \epsilon} \\ \\ h(0110) = h(0)h(1)h(1)h(0) = ab\epsilon\epsilon ab = abab} \\ h(L) = \{ \ h(w) \ | \ w \ \text{is in L } \} \end{array}$$

> Homomorphism

Regular language is closed under homomorphism.

Assume r is a regular expression.

For any symbol a of r, h(a) is a regular expression So is h(r).

It says that L(h(r)) is regular.

> Inverse Homomorphism

 $h: \Sigma^* \to \Gamma^*$ $h^{-1}(L)=\{ w \mid h(w) \text{ is in } L \}$

$$\forall w \in L \Rightarrow h(w) \in h(L)$$

$$\forall v \in h(L)$$

$$\Rightarrow \exists w \in L:h(w)=v$$

$$\Sigma^*$$
 $h^{-1}(L)$ $h \rightarrow$ L

$$\forall w \in h^{-1}(L) \Rightarrow h(w) \in L$$

$$\forall v \in L \Rightarrow$$

$$\exists w \in h^{-1}(L) : h(w) = v ?$$

Example 6.4

Let Σ ={ a, b }, Γ ={ 0, 1 }, h(a)=01, h(b)=10 Let L=L((00+1)*) then $h^{-1}(L)=L((ba)*)$

 $h^{-1}(L)=\{ba\}^*, h(h^{-1}(L))=\{1001\}^*\subset L=\{00,1\}^*$

> Inverse Homomorphism

RL is closed under inverse homomorphism.

$$A = (Q, T, \delta, q_0, F), \quad B = (Q, \Sigma, \gamma, q_0, F)$$
 where $\gamma(q, a) = \hat{\delta}(q, h(a))$

Good good study day up.