

式中 α 称为温差电系数,对于不同金属组成的热电偶, α 是不同的,其数值上等于两接点温度差为1°C时 所产生的电动势。

为了测量温差电动势,就需要在图 2 的回路中接入电位差计。根据伏打定律,即在 A 、 B 两种金属之间插入第三种金属 C 时,若它与 A 、 B 的两连接点处于同一温度 t_0 (图 3),则该闭合回路的温差电动势

与上述只有 A 、 B 两种金属组成回路时的数值完全相同。所以,我们把 A 、 B 两根不同化学成份的金属丝的一端焊在一起,构成热电偶的热端(工作端)。将另两端各与铜引线(即第三种金属 C)焊接,构成两个同温度(t_0)的冷端(自由端)。铜引线与电位差计相连,这样就组成一个热电偶温度计。如图 4 所示。将冷端置于保温杯内的冰水混合物中,保持 t_0 = 0°C,将热端置于待测温度处,即可测得相应的温差电动势,再根据事先校正好的曲线或数据来求出温度 t_0 。

二、实验内容

(一) 实验方案概述:

- 1、测量 MF53-1 热敏电阻(负温度系数)在不同温度下的电阻值变化,并将所测的对应数据作出 $R_{\tau} \sim t$ 曲线。指数拟合/取对数(转化为热力学温度),对比分析
- 2、测量 MZ11A 热敏电阻(正温度系数)在不同温度下的电阻值变化,并将所测的对应数据作出 $\mathbf{R}_{\scriptscriptstyle \mathrm{T}}\sim \mathbf{t}$ 曲线。
 - 3、测量 Cu50 铜电阻在不同温度下的电阻值变化,并将所测的对应数据作出 $R_{\tau} \sim t$ 曲线。直线
 - 4、测量 Pt100 铂电阻在不同温度下的电阻值变化,并将所测的对应数据作出 $R_{\tau} \sim t$ 曲线。
 - 5、热电偶温差电动势的测量。0.0428mV/摄氏度。

(二) 数据处理与误差计算

1. 测量热敏电阻、铜电阻、铂电阻

		记录	表表 1.	MF53-:	1 负温	度系数	【热敏	电阻数	据记录	ζ	室温		17.9		°C	
序	号	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
温度	E(°C)	23.0	28.0	33.0	38.0	43.0	48.0	53.0	58.0	63.0	68.0	73.0	78.0	83.0	88.0	93.0
电阻	(kΩ)	3.125	2.607	2.170	1.822	1.529	1.296	1.099	0.934	0.795	0.681	0.587	0.507	0.440	0.3845	0.3350

序	号	16	17	18	19	20	21	22	23	24	25	26	27	2	8	29	30	
温度(°C)	93.0	88.0	83.0	78.0	73.0	68.0	63.0	58.0	53.0	48.0	43.0	38.0	.0 33.0		28.0	23.0	
电阻 (kΩ)	0.3318	0.3775	0.4327	0.496	0.573	0.668	0.781	0.918	1.086	1.283	1.518	1.805	2.1	.71 2	2.597 3	.114	
记录表 2. MZ11A 正温度系数热敏电阻数据记录 室温°C																		
序	号	1	2	3	4	5	6	7	8	9	10	11	12		13	14	15	
温度	(°C)	22.0	27.0	32.0	37.0	42.0	47.0	52.0	57.0	62.0	67.0	72.0	77.	0	82.0	87.0	92.0	
电阻	阻/(Ω) 308.5		349.8	397.4	451	517	587	672	768	876	995	1121	. 126	3	1417	1588	1776	
序	号	16	17	18	19	20	21	22	23	24	25	26	27	,	28	29	30	
温度	(°C)	92.0	87.0	82.0	77.0	72.0	67.0	62.0	57.0	52.0	47.0	42.0	37.	0	32.0	27.0	22.0	
电阻	<u>[</u> /(Ω)	1788	1605	1435	1275	5 1126	991	868	756	658	574	503	44:	1	385.6	340.3	302.8	
		记录	表 3.	铜电阻	1 CU50	的电阻	且一温,	度特性	上数据	记录	室温	·	17.9)		°C		
序	号	1	2	3	4	5	6	7	8	9	10) 1	1 :	12	13	14	15	
温度	(°C)	20.0	25.0	30.0	35.0	40.0	45.0	50.0	55.0	60.0) 65	.0 70	.0 7	5.0	80.0	85.0	90.0	
电阻	./(Ω)	54.0	55.0	56.0	57.1	58.2	59.2	60.3	61.3	62.	3 63	.4 64	.5 6	5.6	66.6	67.7	68.8	
序	号	16	17	18	19	20	21	22	23	24	2!	5 2	6 2	27	28	29	30	
温度	(°C)	90.0	85.0	80.0	75.0	70.0	65.0	60.0	55.0	50.0) 45	.0 40	.0 3	5.0	30.0	25.0	20.0	
电阻	./(Ω)	68.8	67.7	66.7	65.6	64.6	63.5	62.4	61.3	60.	3 59	.1 58	.2 5	7.0	56.0	55.0	54.0	
		记录	表 4.	铂电阻	PT10	电阻-	一温度	特性数	数据记:	录	室温	1	7.9		°(\mathbb{C}		
序	号	1	2	3	4	5	6	7	8	9	10	11	. 1	L 2	13	14	15	
温度((°C)	21.0	26.0	31.0	36.0	41.0	46.0	51.0	56.0	61.0	66.	0 71.	0 76	5.0	81.0	86.0	91.0	
电阻	/(Ω)	108.5	110.4	112.4	114.3	116.3	118.2	120.1	122.1	124.0	126	.0 127	.9 12	9.8	131.8	3 133.7	135.6	
序	号	16	17	18	19	20	21	22	23	24	25	26	5 2	27	28	29	30	
温度	(°C)	91.0	86.0	81.0	76.0	71.0	66.0	61.0	56.0	51.0	46.	0 41.	0 30	5.0	31.0	26.0	21.0	
电阻	/(Ω)	135.7	133.7	131.8	129.8	127.9	126.1	124.1	122.1	120.2	118	2 116	.3 11	4.3	112.4	110.4	108.5	

2. 铜—康铜热电偶温差电动势测量

记录表 5. 热电偶测量数据记录

	室温	17.9		°C		t_0	$=0^{\circ}$	こ (冰	水混合	·物)					
序号	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
温度 t(°C)	24.0	29.0	34.0	39.0	44.0	49.0	54.0	59.0	64.0	69.0	74.0	79.0	84.0	89.0	94.0
电动势(mV)	0.8	1.0	1.2	1.4	1.6	1.8	2.0	2.3	2.5	2.7	2.9	3.1	3.4	3.6	3.8
序号	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
温度 t(°C)	94.0	89.0	84.0	79.0	74.0	69.0	64.0	59. 0	54.0	49.0	44.0	39. 0	34.0	29. 0	24.0
电动势 _(mV)	3.8	3.5	3.3	3. 1	2.9	2.6	2. 4	2.2	2.0	1.8	1.6	1.4	1.2	1.0	0.8

图 6 MF53-1 负温度系数热敏电阻 & MZ11A 正温度系数热敏电阻

图 7 铜电阻 CU50 & 铂电阻 PT100

2. 热敏电阻 $R-\frac{1}{T}$ 图像曲线的指数拟合与 $lnR-\frac{1}{T}$ 图像的线性拟合结果对比

MF53-1 负温度系数热敏电阻

图 7

指数拟合: R² = 0.99995

线性拟合: R² = 0.99984

MZ11A 正温度系数热敏电阻

图 8

指数拟合: R² = 0.99986

线性拟合: R² = 0.99797

PTC 热敏电阻(正温度系数):温度升高时,其电阻增大。

NTC 热敏电阻电阻值在常用的工作温度范围内变化平滑、适用的温度范围广泛、具有较好的温度传感性能、易于测量和控制的特性,在很多温度控制系统中得到了广泛的应用。例如,空调、冰箱、家电设备等常常使用 NTC 热敏电阻来精确地感应环境温度并进行控制。

数据处理:测量热敏电阻的电阻阻值可以测量温度。在一定的温度范围内, 热敏电阻的电阻 R_T 和温度 T 之间有 $R_T = Ae^{B/T}$,式中 A 和 B 是与材料物理性质有 关的常数,T 为绝对温度。式中 R_T 的单位为 Ω 。

(2) 系统框图设计

系统工作过程解释

a. 温度探头模块

- 热敏电阻作为温度传感器,与一个限流电阻串联,组成一个电桥电路或者分