

Module 3

Infinite Impulse Response Filter Design, Part II

Overview

- Allpass filters
 - o Pole/zero constellation
 - o Transfer function properties
- Efficient structures for allpass filters
- Lowpass filter implementation using parallel allpass filters

Lowpass Filter Implementation

 Lowpass filters can be implemented as a parallel connection of allpass sections

$$H_{LP}(z) = \frac{A_N(z) + A_M(z)}{2}$$

- N+M must be odd
- We consider allpass sections with real coefficients only

Allpass Phase Response

 A stable allpass filter of order N has a phase response that decreases monotonically from 0 to -Nπ as ω varies from 0 to π

Parallel Allpass Filters

$$\begin{split} H_{LP}(e^{j\omega}) &= \frac{A_N(e^{j\omega}) + A_M(e^{j\omega})}{2} \\ &= \exp\left[\frac{j}{2}\left(\phi_M(\omega) + \phi_N(\omega)\right)\right] \cos\left[\frac{1}{2}\left(\phi_M(\omega) - \phi_N(\omega)\right)\right] \end{split}$$

- Passband when $\phi_M(\omega) \phi_N(\omega) \approx 0.2\pi, 4\pi,...$
- Stopband when $\phi_M(\omega) \phi_N(\omega) \approx \pi, 3\pi, 5\pi, ...$

Design Procedure

- Design the discrete-time filter to meet specifications. The filter order M+N must be odd.
- Choose poles for $A_M(z)$ and $A_N(z)$ according to the *pole interlace property* (see next slide).
- Select the structures for realizing each allpass section (e.g. cascade, Gray-Markel)

Pole Interlace Property for $A_M(z)$ and $A_N(z)$

Design Example (1 of 3)

- Design a lowpass elliptic filter and implement as a parallel connection of allpass sections
 - ωp=0.4π, ωs=0.45π passband/stopband edge frequencies
 - Rp=0.1dB, Rs=40dB passband/stopband attenuation
- Required filter order is 7. Take M=4, N=3.

Design Example (2 of 3)

 Poles for lowpass elliptic filter

Allpass sections

$$A_{M}(z) = \frac{0.3997 - 0.9134z^{-1} + 1.7732z^{-2} - 1.2795z^{-3} + 1.0000z^{-4}}{1.0000 - 1.2795z^{-1} + 1.7732z^{-2} - 0.9134z^{-3} + 0.3997z^{-4}}$$

$$A_{N}(z) = \frac{-0.3071 + 1.0135z^{-1} - 1.0020z^{-2} + 1.0000z^{-3}}{1.0000 - 1.0020z^{-1} + 1.0135z^{-2} - 0.3071z^{-3}}$$

-80

 0.1π

 0.2π

 0.3π

 0.4π

 0.5π

Frequency

 0.6π

 0.7π

 0.8π

 0.9π

Design Example (3 of 3)

Highpass Filter Implementation

 A highpass filter may obtained by subtracting the allpass sections rather than adding them $H_{HP}(z) = \frac{A_N(z) - A_M(z)}{2}$

• $H_{IP}(z)$ and $H_{HP}(z)$ form a *power* complementary pair

$$\left|H_{LP}\left(e^{j\omega}\right)\right|^{2} + \left|H_{HP}\left(e^{j\omega}\right)\right|^{2} = 1$$

Power Complementary Pair

