



### **Benjamin Bach**

May 2022 http://benjbach.me https://datavis-online.github.io

-- Not for external use --

### **Outline**

Which processes are involved around understanding and creating visualizations?

- 1. The visualization pipeline
- 2. Design Thinking
- 3. Defining a visualization challenge
- 4. Exploratory data analysis





### Benjamin Bach

May 2022 http://benjbach.me https://datavis-online.github.io



### **Data**

Numbers, relations, records, text, analysis, ...



# Action Decisions Emotions, Knowledge





### Data

Numbers, relations, records, text, analysis, ...

### Visualization

visual representation



### **Action Decisions** Emotions, Knowledge









Data

Numbers, relations, records, text, analysis, ... Visualization

visual representation

Information

Insights, Facts **Action** 

Decisions Emotions, Knowledge





# **Encoding:** designer **Decoding:** user View

**Decoding:** user

1 Data

What is my data?

Which data type?
Ordinal / numerical / categorical?

2 Visual Mapping

3 Rendering

Comprehending

5 Interpreting

4 Perceiving

# **Decoding:** user

1 Data

What is my data?
Which data type?
Ordinal / numerical / categorical?

2 Visual Mapping

What is my visual representation? Which visual variables am I using? How am I encoding my data?

3 Rendering

6 Comprehending

5 Interpreting

4 Perceiving

# **Decoding:** user

1 Data

What is my data?

Which data type?
Ordinal / numerical / categorical?

2 Visual Mapping

What is my visual representation?

Which visual variables am I using? How am I encoding my data?

3 Rendering

What is my medium?

monoscopic/stereoscopic?
Tangiblity?
Print / digital?

Comprend

5 Interpreting

4 Perceiving

# **Decoding:** user

1 Data

What is my data?

Which data type?
Ordinal / numerical / categorical?

2 Visual Mapping

What is my visual representation? Which visual variables am I using? How am I encoding my data?

3 Rendering

What is my medium? monoscopic/stereoscopic? Tangiblity? Print / digital?

**View** 

Comprehending

5 Interpreting

4 Perceiving

What does it show?

Where is big, medium, small? How do things compare? What relationships exist?

# **Decoding:** user

1 Data
What is my data?
Which data type?

2 Visual Mapping

What is my visual representation? Which visual variables am I using? How am I encoding my data?

Ordinal / numerical / categorical?

5 Interpreting

What does it mean?
What does color mean?
What does 'up 'mean?
What do these patterns show?

3 Rendering

What is my medium? monoscopic/stereoscopic? Tangiblity? Print / digital? 4 Perceiving
What does it show?

Where is big, medium, small? How do things compare? What relationships exist?

Data

What is my data?

Which data type? Ordinal / numerical / categorical?

2 Visual Mapping

What is my visual representation?

Which visual variables am I using? How am I encoding my data?

Rendering

What is my medium?

monoscopic/stereoscopic? Tangiblity? Print / digital?

View

### **Decoding:** user

Comprehending

What does it mean for me?

What shall I do now? Is this all true? What do I learn?

Interpreting 5

What does it mean?

What does color mean? What does 'up 'mean? What do these patterns show?

Perceiving

What does it show?

Where is big, medium, small? How do things compare? What relationships exist?

| 1  |                    | mpg  | cyl | disp  | hp  | drat | wt    | qsec  |
|----|--------------------|------|-----|-------|-----|------|-------|-------|
| 2  | Mazda RX4          | 21   | 6   | 160   | 110 | 3.9  | 2.62  | 16.46 |
| 3  | Mazda RX4 Wag      | 21   | 6   | 160   | 110 | 3.9  | 2.875 | 17.02 |
| 4  | Datsun 710         | 22.8 | 4   | 108   | 93  | 3.85 | 2.32  | 18.61 |
| 5  | Hornet 4 Drive     | 21.4 | 6   | 258   | 110 | 3.08 | 3.215 | 19.44 |
| 6  | Hornet Sportabout  | 18.7 | 8   | 360   | 175 | 3.15 | 3.44  | 17.02 |
| 7  | Valiant            | 18.1 | 6   | 225   | 105 | 2.76 | 3.46  | 20.22 |
| 8  | Duster 360         | 14.3 | 8   | 360   | 245 | 3.21 | 3.57  | 15.84 |
| 9  | Merc 240D          | 24.4 | 4   | 146.7 | 62  | 3.69 | 3.19  | 20    |
| 10 | Merc 230           | 22.8 | 4   | 140.8 | 95  | 3.92 | 3.15  | 22.9  |
| 11 | Merc 280           | 19.2 | 6   | 167.6 | 123 | 3.92 | 3.44  | 18.3  |
| 12 | Merc 280C          | 17.8 | 6   | 167.6 | 123 | 3.92 | 3.44  | 18.9  |
| 13 | Merc 450SE         | 16.4 | 8   | 275.8 | 180 | 3.07 | 4.07  | 17.4  |
| 14 | Merc 450SL         | 17.3 | 8   | 275.8 | 180 | 3.07 | 3.73  | 17.6  |
| 15 | Merc 450SLC        | 15.2 | 8   | 275.8 | 180 | 3.07 | 3.78  | 18    |
| 16 | Cadillac Fleetwood | 10.4 | 8   | 472   | 205 | 2.93 | 5.25  | 17.98 |

|      | 1  |                    | mpg  | cyl | disp  | hp  | drat | wt    | qsec  |
|------|----|--------------------|------|-----|-------|-----|------|-------|-------|
| _    | 2  | Mazda RX4          | 21   | 6   | 160   | 110 | 3.9  | 2.62  | 16.46 |
| Item | 3  | Mazda RX4 Wag      | 21   | 6   | 160   | 110 | 3.9  | 2.875 | 17.02 |
|      | 4  | Datsun 710         | 22.8 | 4   | 108   | 93  | 3.85 | 2.32  | 18.61 |
|      | 5  | Hornet 4 Drive     | 21.4 | 6   | 258   | 110 | 3.08 | 3.215 | 19.44 |
|      | 6  | Hornet Sportabout  | 18.7 | 8   | 360   | 175 | 3.15 | 3.44  | 17.02 |
|      | 7  | Valiant            | 18.1 | 6   | 225   | 105 | 2.76 | 3.46  | 20.22 |
|      | 8  | Duster 360         | 14.3 | 8   | 360   | 245 | 3.21 | 3.57  | 15.84 |
|      | 9  | Merc 240D          | 24.4 | 4   | 146.7 | 62  | 3.69 | 3.19  | 20    |
|      | 10 | Merc 230           | 22.8 | 4   | 140.8 | 95  | 3.92 | 3.15  | 22.9  |
|      | 11 | Merc 280           | 19.2 | 6   | 167.6 | 123 | 3.92 | 3.44  | 18.3  |
|      | 12 | Merc 280C          | 17.8 | 6   | 167.6 | 123 | 3.92 | 3.44  | 18.9  |
|      | 13 | Merc 450SE         | 16.4 | 8   | 275.8 | 180 | 3.07 | 4.07  | 17.4  |
|      | 14 | Merc 450SL         | 17.3 | 8   | 275.8 | 180 | 3.07 | 3.73  | 17.6  |
|      | 15 | Merc 450SLC        | 15.2 | 8   | 275.8 | 180 | 3.07 | 3.78  | 18    |
|      | 16 | Cadillac Fleetwood | 10.4 | 8   | 472   | 205 | 2.93 | 5.25  | 17.98 |

### **Attribute**

|    | 1  |                    | mpg  | cyl | disp  | hp  | drat | wt    | qsec  |
|----|----|--------------------|------|-----|-------|-----|------|-------|-------|
| _  | 2  | Mazda RX4          | 21   | 6   | 160   | 110 | 3.9  | 2.62  | 16.46 |
| em | 3  | Mazda RX4 Wag      | 21   | 6   | 160   | 110 | 3.9  | 2.875 | 17.02 |
| _  | 4  | Datsun 710         | 22.8 | 4   | 108   | 93  | 3.85 | 2.32  | 18.61 |
|    | 5  | Hornet 4 Drive     | 21.4 | 6   | 258   | 110 | 3.08 | 3.215 | 19.44 |
|    | 6  | Hornet Sportabout  | 18.7 | 8   | 360   | 175 | 3.15 | 3.44  | 17.02 |
|    | 7  | Valiant            | 18.1 | 6   | 225   | 105 | 2.76 | 3.46  | 20.22 |
|    | 8  | Duster 360         | 14.3 | 8   | 360   | 245 | 3.21 | 3.57  | 15.84 |
|    | 9  | Merc 240D          | 24.4 | 4   | 146.7 | 62  | 3.69 | 3.19  | 20    |
|    | 10 | Merc 230           | 22.8 | 4   | 140.8 | 95  | 3.92 | 3.15  | 22.9  |
|    | 11 | Merc 280           | 19.2 | 6   | 167.6 | 123 | 3.92 | 3.44  | 18.3  |
|    | 12 | Merc 280C          | 17.8 | 6   | 167.6 | 123 | 3.92 | 3.44  | 18.9  |
|    | 13 | Merc 450SE         | 16.4 | 8   | 275.8 | 180 | 3.07 | 4.07  | 17.4  |
|    | 14 | Merc 450SL         | 17.3 | 8   | 275.8 | 180 | 3.07 | 3.73  | 17.6  |
|    | 15 | Merc 450SLC        | 15.2 | 8   | 275.8 | 180 | 3.07 | 3.78  | 18    |
|    | 16 | Cadillac Fleetwood | 10.4 | 8   | 472   | 205 | 2.93 | 5.25  | 17.98 |
|    |    |                    |      |     |       |     |      |       |       |

|    | 1  |                    | mpg  | cyl | disp  | hp  | drat | wt    | qsec  |
|----|----|--------------------|------|-----|-------|-----|------|-------|-------|
| _  | 2  | Mazda RX4          | > 21 | 6   | 160   | 110 | 3.9  | 2.62  | 16.46 |
| em | 3  | Mazda RX4 Wag      | 21   | 6   | 160   | 110 | 3.9  | 2.875 | 17.02 |
| _  | 4  | Datsun 710         | 22.8 | 4   | 108   | 93  | 3.85 | 2.32  | 18.61 |
|    | 5  | Hornet 4 Drive     | 21.4 | 6   | 258   | 110 | 3.08 | 3.215 | 19.44 |
|    | 6  | Hornet Sportabout  | 18.7 | 8   | 360   | 175 | 3.15 | 3.44  | 17.02 |
|    | 7  | Valiant            | 18.1 | 6   | 225   | 105 | 2.76 | 3.46  | 20.22 |
|    | 8  | Duster 360         | 14.3 | 8   | 360   | 245 | 3.21 | 3.57  | 15.84 |
|    | 9  | Merc 240D          | 24.4 | 4   | 146.7 | 62  | 3.69 | 3.19  | 20    |
|    | 10 | Merc 230           | 22.8 | 4   | 140.8 | 95  | 3.92 | 3.15  | 22.9  |
|    | 11 | Merc 280           | 19.2 | 6   | 167.6 | 123 | 3.92 | 3.44  | 18.3  |
|    | 12 | Merc 280C          | 17.8 | 6   | 167.6 | 123 | 3.92 | 3.44  | 18.9  |
|    | 13 | Merc 450SE         | 16.4 | 8   | 275.8 | 180 | 3.07 | 4.07  | 17.4  |
|    | 14 | Merc 450SL         | 17.3 | 8   | 275.8 | 180 | 3.07 | 3.73  | 17.6  |
|    | 15 | Merc 450SLC        | 15.2 | 8   | 275.8 | 180 | 3.07 | 3.78  | 18    |
|    | 16 | Cadillac Fleetwood | 10.4 | 8   | 472   | 205 | 2.93 | 5.25  | 17.98 |
|    |    |                    |      |     |       |     |      |       |       |

### 2. Visual Mapping

| 1 |                    | mpg  | cyl | disp  | hp  | drat | wt    | qsec  |
|---|--------------------|------|-----|-------|-----|------|-------|-------|
| 2 | Mazda RX4          | 21   | 6   | 160   | 110 | 3.9  | 2.62  | 16.46 |
| } | Mazda RX4 Wag      | 21   | 6   | 160   | 110 | 3.9  | 2.875 | 17.02 |
| 1 | Datsun 710         | 22.8 | 4   | 108   | 93  | 3.85 | 2.32  | 18.61 |
| , | Hornet 4 Drive     | 21.4 | 6   | 258   | 110 | 3.08 | 3.215 | 19.44 |
| ) | Hornet Sportabout  | 18.7 | 8   | 360   | 175 | 3.15 | 3.44  | 17.02 |
|   | Valiant            | 18.1 | 6   | 225   | 105 | 2.76 | 3.46  | 20.22 |
|   | Duster 360         | 14.3 | 8   | 360   | 245 | 3.21 | 3.57  | 15.84 |
| ) | Merc 240D          | 24.4 | 4   | 146.7 | 62  | 3.69 | 3.19  | 20    |
| ) | Merc 230           | 22.8 | 4   | 140.8 | 95  | 3.92 | 3.15  | 22.9  |
|   | Merc 280           | 19.2 | 6   | 167.6 | 123 | 3.92 | 3.44  | 18.3  |
|   | Merc 280C          | 17.8 | 6   | 167.6 | 123 | 3.92 | 3.44  | 18.9  |
| 3 | Merc 450SE         | 16.4 | 8   | 275.8 | 180 | 3.07 | 4.07  | 17.4  |
|   | Merc 450SL         | 17.3 | 8   | 275.8 | 180 | 3.07 | 3.73  | 17.6  |
| ) | Merc 450SLC        | 15.2 | 8   | 275.8 | 180 | 3.07 | 3.78  | 18    |
| 1 | Cadillac Fleetwood | 10.4 | 8   | 472   | 205 | 2.93 | 5.25  | 17.98 |



**Data** 

Visual Representation

### 2. Visual Mapping

| 1 |                    | mpg  | cyl | disp  | hp  | drat | wt    | qsec  |
|---|--------------------|------|-----|-------|-----|------|-------|-------|
| 2 | Mazda RX4          | 21   | 6   | 160   | 110 | 3.9  | 2.62  | 16.46 |
| 3 | Mazda RX4 Wag      | 21   | 6   | 160   | 110 | 3.9  | 2.875 | 17.02 |
| 1 | Datsun 710         | 22.8 | 4   | 108   | 93  | 3.85 | 2.32  | 18.61 |
| 5 | Hornet 4 Drive     | 21.4 | 6   | 258   | 110 | 3.08 | 3.215 | 19.44 |
| 5 | Hornet Sportabout  | 18.7 | 8   | 360   | 175 | 3.15 | 3.44  | 17.02 |
| 7 | Valiant            | 18.1 | 6   | 225   | 105 | 2.76 | 3.46  | 20.22 |
| 3 | Duster 360         | 14.3 | 8   | 360   | 245 | 3.21 | 3.57  | 15.84 |
| ) | Merc 240D          | 24.4 | 4   | 146.7 | 62  | 3.69 | 3.19  | 20    |
| ) | Merc 230           | 22.8 | 4   | 140.8 | 95  | 3.92 | 3.15  | 22.9  |
| L | Merc 280           | 19.2 | 6   | 167.6 | 123 | 3.92 | 3.44  | 18.3  |
| 2 | Merc 280C          | 17.8 | 6   | 167.6 | 123 | 3.92 | 3.44  | 18.9  |
| 3 | Merc 450SE         | 16.4 | 8   | 275.8 | 180 | 3.07 | 4.07  | 17.4  |
| 1 | Merc 450SL         | 17.3 | 8   | 275.8 | 180 | 3.07 | 3.73  | 17.6  |
| 5 | Merc 450SLC        | 15.2 | 8   | 275.8 | 180 | 3.07 | 3.78  | 18    |
|   | Cadillac Fleetwood | 10.4 | 8   | 472   | 205 | 2.93 | 5.25  | 17.98 |



**Data** 

Visual Representation

# 3. Rendering



# 4. Perceiving



### 5. Interpretation







# 6. Comprehending







1 Data

What is my data?

Which data type?
Ordinal / numerical / categorical?

2 Visual Mapping

What is my visual representation?

Which visual variables am I using? How am I encoding my data?

3 Rendering

What is my medium?

monoscopic/stereoscopic? Tangiblity? Print / digital?

View

### **Decoding:** user

6 Comprehending

What does it mean for me?

What shall I do now? Is this all true? What do I learn?

5 Interpreting

What does it mean?

What does color mean? What does 'up 'mean? What do these patterns show?

4 Perceiving

What does it show?

Where is big, medium, small? How do things compare? What relationships exist?





### Benjamin Bach

May 2022 http://benjbach.me https://datavis-online.github.io

-- Not for external use --

What:Create effective visualizations

What:

- Create effective visualizations
- Create efficient visualizations

### What:

- Create effective visualizations
- Create efficient visualizations
- Solve a problem

### What:

- Create effective visualizations
- Create efficient visualizations
- Solve a problem
- Design a solution

### What:

- Create effective visualizations
- Create efficient visualizations
- Solve a problem
- Design a solution

How:

Visualization can have many forms

### What:

- Create effective visualizations
- Create efficient visualizations
- Solve a problem
- Design a solution

- Visualization can have many forms
- It's not rocket science

### What:

- Create effective visualizations
- Create efficient visualizations
- Solve a problem
- Design a solution

- Visualization can have many forms
- It's not rocket science
- Everyone can design visualizations

### What:

- Create effective visualizations
- Create efficient visualizations
- Solve a problem
- Design a solution

- Visualization can have many forms
- It's not rocket science
- Everyone can design visualizations
- Everyone can **learn creating** visualizations

### What:

- Create effective visualizations
- Create efficient visualizations
- Solve a problem
- Design a solution

- Visualization can have many forms
- It's not rocket science
- Everyone can design visualizations
- Everyone can **learn creating** visualizations
- Solve your own problems

# **Visualization Design**

#### What:

- Create effective visualizations
- Create efficient visualizations
- Solve a problem
- Design a solution

#### How:

- Visualization can have many forms
- It's not rocket science
- Everyone can design visualizations
- Everyone can **learn creating** visualizations
- Solve your own problems
- There are many rules

# **Visualization Design**

#### What:

- Create effective visualizations
- Create efficient visualizations
- Solve a problem
- Design a solution

#### How:

- Visualization can have many forms
- It's not rocket science
- Everyone can design visualizations
- Everyone can **learn creating** visualizations
- Solve your own problems
- There are many rules
- There are many exceptions

Design thinking is a human-centered approach to creative problem solving.

- is about people
  - empathy, problems, context, problem

Design thinking is a human-centered approach to creative problem solving.

- is about people
  - empathy, problems, context, problem
- Highly creative
  - ideas, discussion, iteration

Design thinking is a human-centered approach to creative problem solving.

- is about people
  - empathy, problems, context, problem
- Highly creative
  - ideas, discussion, iteration
- hands-on
  - o develop, prototype, test, try, ...

•

Design thinking is a human-centered approach to creative problem solving.

- is about people
  - empathy, problems, context, problem
- Highly creative
  - ideas, discussion, iteration
- hands-on
  - develop, prototype, test, try, ...
- Show, don't tell

Design thinking is a human-centered approach to creative problem solving.

- is about people
  - empathy, problems, context, problem
- Highly creative
  - ideas, discussion, iteration
- hands-on
  - develop, prototype, test, try, ...
- Show, don't tell

Rowe, Peter G. Design thinking. MIT press, 1987.

- iterative
  - failure, progress, iterate, feedback,...

# **Design Thinking**—5 steps

### Stanford d.school Design Thinking Process



### **Double Diamond**



### **Double Diamond**



# **Design Decisions**

**Context:** 

- Audience knowledge
- Data complexity
- Tasks
- Display medium

**–** ...

### Visual Design:

# **Design Decisions**

#### **Context:**

- Audience knowledge
- Data complexity
- Tasks
- Display medium

**–** ...

#### **Visual Design:**

- Familiarity vs. unfamiliarity
- Clarity vs. Memorability
- Novelty vs. Tradition
- Facts vs. Uncertainty
- Reader-driven vs. Author-driven

**–** ...

**Empathize** 

- Understand your audience, interviews, observations, reading, conversation

**Define** 

Ideate

**Prototype** 

#### **Empathize**

- Understand your audience, interviews, observations, reading, conversation

#### **Define**

Create a **Data Challenge**. Set context and constraints.

#### **Ideate**

**Prototype** 

#### **Empathize**

 Understand your audience, interviews, observations, reading, conversation

#### **Define**

Create a **Data Challenge**. Set context and constraints.

#### **Ideate**

- **Sketch** design ideas
- Develop visual mapping
- Exploratory data analysis

### **Prototype**

#### **Empathize**

- Understand your audience, interviews, observations, reading, conversation

#### **Define**

Create a **Data Challenge**. Set context and constraints.

#### **Ideate**

- **Sketch** design ideas
- Develop visual mapping
- Exploratory data analysis

#### **Prototype**

- Use visualizations tools
- High-fidelity paper prototypes
- "Memento data"

#### **Empathize**

 Understand your audience, interviews, observations, reading, conversation

#### **Define**

Create a **Data Challenge**. Set context and constraints.

#### Ideate

- **Sketch** design ideas
- Develop visual mapping
- Exploratory data analysis

#### **Prototype**

- Use visualizations tools
- High-fidelity paper prototypes
- "Memento data"

#### **Test**

User-centered evaluation





### Benjamin Bach

May 2022 http://benjbach.me https://datavis-online.github.io

# Encoding: designer

1 Data
What is my data?

Which data type?
Ordinal / numerical / categorical?

2 Visual Mapping

What is my visual representation? Which visual variables am I using? How am I encoding my data?

3 Rendering

What is my medium? monoscopic/stereoscopic? Tangiblity? Print / digical?

View

### **Decoding:** user

6 Comprehending

What does it mean for me? What shall I do now? Is this all true? What do I learn?

Interpreting

What does it mean?

What does color mean? Wha does 'up 'mean? What do these patterns show?

4 Perceiving

What does it show?

Where is big, medium, small? How do things compare? What relationships exist?

| Data |  |
|------|--|
|      |  |

| Data | Message & Insights |
|------|--------------------|
|      |                    |

| Data     | Message & Insights |
|----------|--------------------|
| Audience |                    |

| Data     | Message & Insights |
|----------|--------------------|
| Audience | Context            |

### Challenge **Data**

- What is my data?
- Where is it from?
- How is it characterized?
- How complicated is my data?
- How many dimensions?
- How large?
- What data format?
- What is not part of my data?
- ...

# Challenge Messages / Insights

- What am I going to find?
- What am I interested in finding?
- Which questions do I have?
- Which tasks do I want to support?
- What am I going to tell with the visualization?

- ...

# Challenge Audience

- Who is my audience?
- How are they characterized?
- What do they know about the data / topic?
- Why are they interested in my data?
- Why should they care?
- What do they know about visualization?
- What questions might they have?

- ...

### Challenge Context

- How will people see my visualization?
- Where will this be?
- How will they be able to engage?
- Will they be able to interact?
- ...

#### **Data**

- What is my data?
- Where is it from?
- How is it characterized?

#### **Audience**

- Who is my audience?
- Why do they care?
- What do they know?

### Messages / Insights

- What am I looking for?
- What am I telling?

#### **Context**

- Where will visualization be seen?
- How do people engage?





### Benjamin Bach

May 2022 http://benjbach.me https://datavis-online.github.io

-- Not for external use --

### John W. Tukey

# EXPLORATORY DATA ANALYSIS







#### How -to:

- Grand tour: create as many views as possible
- Obtain as many different perspectives as possible
- Use multiple views
- Generate hypotheses
- Play with data and visualization
- Use simple visualizations first, then become complex

- Understand your data
- Generate insights
- Inform your visualization design

#### How -to:

- Grand tour: create as many views as possible
- Obtain as many different perspectives as possible
- Use multiple views
- Generate hypotheses
- Play with data and visualization
- Use simple visualizations first, then become complex

- Understand your data
- Generate insights
- Inform your visualization design

#### How -to:

- Grand tour: create as many views as possible
- Obtain as many different perspectives as possible
- Use multiple views
- Generate hypotheses
- Play with data and visualization
- Use simple visualizations first, then become complex

- Understand your data
- Generate insights
- Inform your visualization design

#### How -to:

- Grand tour: create as many views as possible
- Obtain as many different perspectives as possible
- Use multiple views
- Generate hypotheses
- Play with data and visualization
- Use simple visualizations first, then become complex

- Understand your data
- Generate insights
- Inform your visualization design

#### How -to:

- Grand tour: create as many views as possible
- Obtain as many different perspectives as possible
- Use multiple views
- Generate hypotheses
- Play with data and visualization
- Use simple visualizations first, then become complex

- Understand your data
- Generate insights
- Inform your visualization design

#### How -to:

- Grand tour: create as many views as possible
- Obtain as many different perspectives as possible
- Use multiple views
- Generate hypotheses
- Play with data and visualization
- Use simple visualizations first, then become complex

- Understand your data
- Generate insights
- Inform your visualization design

#### How -to:

- Grand tour: create as many views as possible
- Obtain as many different perspectives as possible
- Use multiple views
- Generate hypotheses
- Play with data and visualization
- Use simple visualizations first, then become complex

- Understand your data
- Generate insights
- Inform your visualization design

#### How -to:

- Grand tour: create as many views as possible
- Obtain as many different perspectives as possible
- Use multiple views
- Generate hypotheses
- Play with data and visualization
- Use simple visualizations first, then become complex

- Understand your data
- Generate insights
- Inform your visualization design

#### How -to:

- Grand tour: create as many views as possible
- Obtain as many different perspectives as possible
- Use multiple views
- Generate hypotheses
- Play with data and visualization
- Use simple visualizations first, then become complex

- Understand your data
- Generate insights
- Inform your visualization design





### Benjamin Bach

May 2022 http://benjbach.me https://datavis-online.github.io

-- Not for external use --

- Visualizing data and creating effective visualizations includes many steps.
- 2. Many **processes** you will use visualization:
- Creator, user, reader, analyst, ...
- 3. **Design Thinking** is essential for creating effective and efficient visualizations
- Formulating a visualization challenge helps you focusing and start your design thinking process
- 5. **Exploratory data analysis** helps you knowing your data and informing a design process.

- Visualizing data and creating effective visualizations includes many steps.
- 2. Many processes you will use visualization:
  - Creator, user, reader, analyst, ...
- 3. **Design Thinking** is essential for creating effective and efficient visualizations
- Formulating a visualization challenge helps you focusing and start your design thinking process
- 5. **Exploratory data analysis** helps you knowing your data and informing a design process.

- Visualizing data and creating effective visualizations includes many steps.
- 2. Many **processes** you will use visualization:
- Creator, user, reader, analyst, ...
- Design Thinking is essential for creating effective and efficient visualizations
- 4. Formulating a **visualization challenge** helps you focusing and start your design thinking process
- 5. **Exploratory data analysis** helps you knowing your data and informing a design process.

- Visualizing data and creating effective visualizations includes many steps.
- 2. Many **processes** you will use visualization:
- Creator, user, reader, analyst, ...
- 3. **Design Thinking** is essential for creating effective and efficient visualizations
- Formulating a visualization challenge helps you focusing and start your design thinking process
- 5. **Exploratory data analysis** helps you knowing your data and informing a design process.

- Visualizing data and creating effective visualizations includes many steps.
- 2. Many **processes** you will use visualization:
- Creator, user, reader, analyst, ...
- 3. **Design Thinking** is essential for creating effective and efficient visualizations
- Formulating a visualization challenge helps you focusing and start your design thinking process
- Exploratory data analysis helps you knowing your data and informing a design process.