

Player Evaluation using wRC+

And writing a new model to compare MLB batters

Taylor Stacey Dr. Rajarshi Dey August 10, 2021

Emporia University

Table of contents

- 1. Research Question
- 2. Definitions
- 3. Player Evaluation Metrics
- 4. A New wRC+ Model Using Using 1871 to 2021 Career Data
- 5. Appendix
- 6. Sources

Research Question

Research Question

 The objective is to find a model using Major League Baseball career data for players dating back to 1871 to explain variation in career wRC+

Definitions

Statcast

- It is a tracking technology system that provides collection and analysis for large amounts of baseball data.
- Each MLB stadium has 13 Hawk-Eye camera systems, five for pitch tracking and seven for tracking players and batted balls.
- The data obtained is useful for front offices, broadcasters, and baseball fans to find a new level of understanding about the skills of players on the field.
- Some measurements observed by statcast include: pitcher spin rate, direction, and movement, batter exit velocity, launch angle, barrel percentage, and batted ball distance, and fielding arm strength, catch probability, and catcher pop time.

Statcast

Figure 1 below illustrates some data provided by Statcast which leads to new measures.

layer	Year	wOBA	xwOBA	woba - xwoba	Avg EV (MPH)	Avg LA (°)	Sweet Spot %	Barrel%	Solid Contact %
Perez, Salvador	2021	.356	.367	-0.011	92.8	14.8	34.9	14.4	9.6
Baez, Javier	2021	.310	.297	.013	90.1	12.1	29.3	13.6	8.2
🐧 Iglesias, Jose	2021	.290	.291	-0.001	86.2	9.3	32.3	4.2	3.1

Figure 1: Statcast Example

Some Statcast Measurements

- · Spin Rate
 - · How much spin, in revolutions per minute, a pitch was thrown with.
- · Launch Angle
 - · How high, in degrees, a ball was hit by a batter.
- · Exit Velocity
 - · How fast, in miles per hour, a ball was hit by a batter.

Some Statcast Metrics

Barrels

• A batted ball with the perfect combination of exit velocity and launch angle, or the most high-value batted balls. (A barrel has a minimum Expected Batting Average of .500.)

· Catch Probability

The likelihood, in percent, that an outfielder will be able to make a
catch on an individual batted ball. Catch Probability accounts for
distance needed, time available, direction, and proximity to the
wall, compared to how often the same opportunity is caught by
Major League outfielders.

· Sprint Speed

• A measurement of a player's top running speed, expressed in "feet per second in a player's fastest one-second window."

Player Evaluation Metrics

. IFANGRAPHS

Weighted Runs Created Plus (wRC+) is a rate statistic which attempts to credit a hitter for the value of each outcome (single, double, etc) rather than treating all hits or times on base equally, while also controlling for park effects and the current run environment. wRC+ is scaled so that league average is 100 each year and every point above or below 100 is equal to one percentage point better or worse than league average. This makes wRC+ a better representation of offensive value than batting average, RBI, OPS, or wOBA.

$$wRC + = \frac{(wRAA/P\ A + LgR/P\ A) + (LgR/P\ A - (P\ ark\ F\ actor\ \times\ LgR/P\ A))}{(AL\ or\ NL\ wRC/P\ A\ excluding\ pitchers)} \times 100$$

Figure 2: WRC+ explained by Fangraphs

wRC+ Formula Explained

$$WRC+ = \frac{\left(\frac{wRAA}{PA} + \frac{LgR}{PA}\right) + \left(\frac{LgR}{PA} - \left(Park Factor* \frac{LgR}{PA}\right)\right)}{\left(AL \text{ or } NL \frac{wRC}{PA} \text{ excluding pitchers}\right)} * 100$$

- wRAA weighted runs above average, measures the number of offensive runs a player contributes to their team compared to the average player.
- PA plate appearances.
- · LgR league runs.
- Park Factor ballpark factors, this measures how the rate of difficulty at ballparks varies depending on the environment and landscape of the individual ballpark.
- wRC weighted runs created, a measure to quantify a player's complete offensive value in runs scored.

A Closer Look at Park Factor

Season	Team	Basic (5yr)
2020	Angels	99
2020	Orioles	100
2020	Red Sox	104
2020	White Sox	99
2020	Indians	103
2020	Tigers	102
2020	Royals	102
2020	Twins	101
2020	Yankees	100
2020	Athletics	96
2020	Mariners	96
2020	Rays	96
2020	Rangers	100
2020	Blue Jays	103
2020	Diamondbacks	101
2020	Braves	101
2020	Cubs	99
2020	Reds	102
2020	Rockies	114
2020	Marlins	95
2020	Astros	96
2020	Dodgers	95
2020	Brewers	100
2020	Nationals	102
2020	Mets	95
2020	Phillies	100
2020	Pirates	99
2020	Cardinals	96
2020	Padres	97
2020	Giants	97

Figure 3: WRC+ Comparison by Fangraphs (Statistics for 2021 season as of 6/28)

wRC+ Scale

Ratings	wRC	wRC+
Excellent	105	160
Great	90	140
Above Average	75	115
Average	65	100
Below Average	60	80
Poor	50	75
Awful	40	60

Figure 4: WRC+ Scale by Fangraphs

wRC+ Player Comparison

# Name	Team	wRC+
1 Jake Cronenworth	SDP	131
2 Kyle Seager	SEA	93
3 J.P. Crawford	SEA	110
4 Matt Chapman	OAK	105
5 Isiah Kiner-Falefa	TEX	91
6 Cedric Mullins II	BAL	151
7 Nate Lowe	TEX	116
8 Dansby Swanson	ATL	94
9 Elvis Andrus	OAK	59
10 Vladimir Guerrero Jr.	TOR	200

Figure 5: WRC+ Comparison by Fangraphs (Statistics for 2021 season as of 6/28)

wRC+ Explained by Statcast Variables

```
wRC+=-106.881+2.954 * Speed Score + 183.283 * Line Drive% + 1.805 * Exit Velocity+448.981 * Barrel%+166.706 * Walk%-224.558 * Strikeout%
```

- Data analysis done by Ryan Kupeic in his paper "Can Statcast variables explain the variation in weighted runs created plus?"
- Data set included 406 players from the 2019 MLB Season. (Last full season)
- Each regressor is significant in the model at the 0.05 level.
- Adjusted R-Squared is 0.679 and Residual Standard Error is 15.63.

wRC+ Explained by Statcast Variables

wRC+=-106.881+2.954 * Speed Score + 183.283 * Line Drive% + 1.805 * Exit Velocity+448.981 * Barrel%+166.706 * Walk%-224.558 * Strikeout%

- The original model by Kupeic contained 11 variables with two variables not significant (opposite field percentage and Speed Score) and two variables with high Variance Inflation Factors (Flyball percentage and Launch angle).
- To find best model, stepwise procedures are used, which includes forward selection, backward elimination, and stepwise regression.
- The goal is to find the highest adjusted R-Squared and lowest mallow's CP and AIC with no multicollinearity and fewest variables possible.
- Finally, before we accept our best model, we need to check our model assumptions by looking at residual plots and QQ-plot.

.XIFANGRAPHS

Weighted On-Base Average (wOBA) is a rate statistic which attempts to credit a hitter for the value of each outcome (single, double, etc) rather than treating all hits or times on base equally. wOBA is on the same scale as On-Base Percentage (OBP) and is a better representation of offensive value than batting average, RBI, or OPS. The weights change slightly with the run environment, but the general formula is:

$$wOBA = \frac{.69 \times uBB + .72 \times HBP + .89 \times 1B + 1.27 \times 2B + 1.62 \times 3B + 2.10 \times HR}{AB + BB - IBB + SF + HBP}$$

Figure 6: wOBA explained by Fangraphs

A New wRC+ Model Using Using

1871 to 2021 Career Data

Data Set Used For Model

Figure 7: Data set used provided by Fangraphs

Description of Predictors In The Model

- Games
 - · Number of games played in which the player has appeared.
- · Plate Appearances
 - · Number of times the player has come to the plate.
- · Home Runs
 - · Number of home runs.
- · Runs
 - · Number of runs scored.

Description of Predictors In The Model

- Runs Batted In (RBI)
 - Number of times a run scores as a result of a batter's plate appearance, not counting situations in which an error caused the run to score or the batter hit into a double play.
- Batting Average on Balls In Play (BABIP)
 - The rate at which the batter gets a hit when he puts the ball in play, calculated as (H-HR)/(AB-K-HR+SF).
- On-Base Percentage (OBP)
 - Rate at which the batter reaches base, calculated as (H+BB+HBP)/(AB+BB+HBP+SF).

Description of Predictors In The Model

- Weighted On Base Average (wOBA)
 - Combines all the different aspects of hitting into one metric, weighting each of them in proportion to their actual run value.
 While batting average, on-base percentage, and slugging percentage fall short in accuracy and scope, wOBA measures and captures offensive value more accurately and comprehensively.
- Wins Above Replacement
 - A comprehensive statistic that estimates the number of wins a player has been worth to his team compared to a freely available player such as a minor league free agent.
- · Offensive Runs Above Average (Off)
 - Number of runs above or below average a player has been worth offensively, combining Batting Runs and BsR.

Original Predictors Used For Model

Games, Plate Appearances, Home Runs, Runs, RBI, BABIP, On-base Percentage, wOBA, WAR, Off

wRC+ =
$$\beta_0$$
 + β_1 G + β_2 PA + β_3 HR + β_4 R + β_5 RBI + β_6 BABIP + β_7 OBP + β_8 wOBA + β_9 WAR + β_{10} Off

 A few variables were removed initially because they were not significant at the 0.05 level -> SB, ISO, AVG, SLG

Use of CrPlots

Figure 8: Second order variables for OBP and WAR

WRC+ =
$$\beta_0 + \beta_1 G + \beta_2 PA + \beta_3 HR + \beta_4 R + \beta_5 RBI + \beta_6 BABIP + \beta_7 OBP + \beta_8 WOBA + \beta_9 WAR + \beta_{10} Off + \beta_{11} I (OBP^2) + \beta_{12} I (WAR^2)$$

Some Information on our Model So Far

```
call:
lm(formula = wRCplus ~ G + PA + HR + R + RBI + BABIP + OBP +
    WOBA + WAR + Off + I(OBP^2) + I(WAR^2)
Residuals:
    Min
            10 Median 30
-24.881 -4.160 -0.151 3.531 33.462
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.458e+02 4.768e+00 -30.583 < 2e-16
           -8.014e-03 1.188e-03 -6.745 1.75e-11
G
ΡΔ
           6.307e-03 4.545e-04 13.875 < 2e-16
HR
           1.872e-02 2.635e-03
                                  7 105 1 42e-12
           -1.968e-02 1.757e-03 -11.206 < 2e-16
RRT
           -2.474e-02 1.538e-03 -16.088 < 2e-16 ***
RARTP
           4.266e+00 4.760e+00 0.896
ORP
           6.946e+02 3.521e+01 19.726 < 2e-16 ***
WAR 2.639e-01 2.489e-02 10.599 < 2e-16 ***
Off 9.376a-02 2.73e-02 10.599 < 2e-16 ***
I(OBP^2) -1.208e+03 5.264e+01 -22.955 < 2e-16 ***
I(WAR^2) -3.707e-03 1.688e-04 -21.961 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 6.841 on 3964 degrees of freedom
  (120 observations deleted due to missingness)
Multiple R-squared: 0.9145, Adjusted R-squared: 0.9142
F-statistic: 3531 on 12 and 3964 DF, p-value: < 2.2e-16
```

Figure 9: Summary output for Model using R.

· We want to reduce the number of variables.

		S	election Sum	mary		
Step	Variable Entered	R-Square	Adj. R-Square	C(p)	AIC	RMSE
1 2 3 4 5 6 7 8 9 10	HR R RBI OBP WOBA WAR Off I(OBP^2) I(WAR^2) PA G	0.8951 0.9093 0.9136 0.9148 NA NA NA NA	0.8948 0.9091 0.9134 0.9146 NA NA NA NA	904.8617 230.6120 26.3159 -28.0463 NA NA NA NA NA	28205.8850 27610.4549 27411.3913 27356.6980 NA NA NA NA NA	7.5533 7.0230 6.8536 6.8072 NA NA NA NA

Figure 10: ols step forward p using R.

· Variables to keep in Model: HR, R, RBI, OBP.

Selection Summary

WOBA 29503.561 1901068.074 321235.038 0.85545 0.8 BABIP 28633.054 1857253.897 311157.962 0.85650 0.85 Off 28022.992 1901638.270 266773.589 0.87697 0.87						
BABIP 28633.054 1857253.897 311157.962 0.85650 0.85 Off 28022.992 1901638.270 266773.589 0.87697 0.87	Variable	AIC	Sum Sq	RSS	R-Sq	Adj. R-Sq
WAR 2753,715 1931569.038 236842.822 0.89078 0.86 I(OBP^2) 27499.214 1934910.046 233301.814 0.89232 0.86 OBP 26978.088 1963690.069 204721.791 0.90559 0.90 RBI 26860.811 1969738.875 198672.985 0.90838 0.90 PA 26792.269 1973231.729 195180.131 0.90999 0.90 R 26675.741 1978962.941 189448.919 0.91263 0.91	BABIP Off I(WAR^2) WAR I(OBP^2) OBP RBI PA R	28633.054 28022.992 27715.410 27553.715 27499.214 26978.088 26860.811 26792.269 26675.741	1857253.897 1901638.270 1921617.099 1931569.038 1934910.046 1963690.069 1969738.875 1973231.729 1978962.941	311157.962 266773.589 246794.761 236842.822 233501.814 204721.791 198672.985 195180.131 189448.919	0.85650 0.87697 0.88619 0.89078 0.89232 0.90559 0.90838 0.90999 0.91263	0.85541 0.85643 0.87688 0.88607 0.89064 0.89215 0.90542 0.90819 0.90979 0.91241

Figure 11: ols step forward aic using R.

· Variables to keep in Model: All.

Elimination Summary							
Step	variable Removed	R-Square	Adj. R-Square	C(p)	AIC	RMSE	
1	BABIP	0.9148	0.9146	-28.0463	27356.6980	6.8072	

Figure 12: ols step backward p using R.

· Variables to remove in Model: BABIP.

[1] "No variables have been removed from the model."

Figure 13: ols step backward aic using R.

· Variables to remove in Model: None.

	an and a set					
Variable	Method	AIC	RSS	Sum Sq	R-Sq	Adj. R-So
WOBA	addition	29503.561	321235.038	1901068.074	0.85545	0.85541
BABIP	addition	28633.054	311157.962	1857253.897	0.85650	0.8564
off	addition	28022.992	266773.589	1901638.270	0.87697	0.87688
I(WAR^2)	addition	27715.410	246794.761	1921617.099	0.88619	0.88607
WAR	addition	27553.715	236842.822	1931569.038	0.89078	0.89064
I(OBP^2)	addition	27499.214	233501.814	1934910.046	0.89232	0.89215
OBP	addition	26978.088	204721.791	1963690.069	0.90559	0.90542
RBI	addition	26860.811	198672.985	1969738.875	0.90838	0.90819
PA	addition	26792.269	195180.131	1973231.729	0.90999	0.90979
R	addition	26675.741	189448.919	1978962.941	0.91263	0.91241
HR	addition	26639.402	187631.357	1980780.503	0.91347	0.91323
G	addition	26596.014	185502.153	1982909.706	0.91445	0.91419

Figure 14: ols step both aic using R.

· Variables to add in Model: All.

	Stepwise Selection Summary									
Step	variable	Added/ Removed	R-Square	Adj. R-Square	C(p)	AIC	RMSE			
1	HR	addition	0.895	0.895	904.8620	28205.8850	7.5533			
2	R	addition	0.909	0.909	230.6120	27610.4549	7.0230			
3	RBI	addition	0.914	0.913	26.3160	27411.3913	6.8536			
4	OBP	addition	0.915	0.915	-28.0460	27356.6980	6.8072			

Figure 15: ols step both p using R.

· Variables to add in Model: HR, R, RBI, OBP.

Stepwise Regression Results

$$\label{eq:wrc+} \begin{split} \text{wRC+} &= \beta_0 + \beta_1 \text{G} + \beta_2 \text{PA} + \beta_3 \text{HR} + \beta_4 \text{R} + \beta_5 \text{RBI} + \beta_6 \text{BABIP} + \beta_7 \text{OBP} + \\ &\beta_8 \text{wOBA} + \beta_9 \text{WAR} + \beta_{10} \text{Off} + \beta_{11} \text{I} (\text{OBP}^2) + \beta_{12} \text{I} (\text{WAR}^2) \end{split}$$

• The stepwise regression techniques left us with the same model, containing the same variables.

Best Subsets Regression

					Subsets Regr	ession Summary					
Model	R-Square	Adj. R-Square	Pred R-Square	C(p)	AIC	SBIC	SBC	MSEP	FPE	HSP	APC
1 2 3 4 5 6 7 8	0.8554 0.8763 0.8859 0.8924 0.9005 0.9053 0.9054 0.9105	0.8554 0.8762 0.8858 0.8923 0.9004 0.9052 0.9083 0.9103	0.8553 0.8759 0.8855 0.892 0.9001 0.9045 0.9076 0.9098	2771.4793 1783.2159 1328.9487 1021.9454 638.9046 412.3026 266.8348 173.3684	29503.5606 28867.2989 28538.0346 28299.4413 27980.4114 27779.1891 27644.5336 27555.5725	17874.8406 17238.5182 16909.1829 16670.5998 16352.0013 16151.1506 16016.8215	29522.5147 28892.5709 28569.6247 28337.3494 28024.6375 27829.7332 27701.3957 27618.7526	321391.9290 275095.4251 253789.9782 239374.0068 221387.4585 210725.4696 203862.5027 199435.0312	78.4840 67.1947 62.0058 58.4979 54.1156 51.5220 49.8561 48.7852	0.0192 0.0164 0.0151 0.0143 0.0132 0.0126 0.0122 0.0119	0.1447 0.1239 0.1143 0.1078 0.0998 0.0950 0.0919 0.0899
9 10 11 12	0.9129 0.9138 0.9148 0.9145	0.9127 0.9136 0.9146 0.9142	0.9121 0.9129 0.9139 0.9135	57.5246 16.4888 -28.0463 13.0000	27442.4315 27401.5628 27356.6980 26596.0136	15815.4675 15774.8101 15730.2241 15309.8618	27511.9296 27477.3789 27438.8321 26684.0496	193955.6465 191983.7692 189846.6898 186110.6406	47.4564 46.9854 46.4737 46.9497	0.0116 0.0115 0.0113 0.0118	0.0875 0.0866 0.0857 0.0861

Figure 16: Subsets Regression using R.

- Model 11 and 12 have high R-Squared and low c(p) and AIC, but they have too many variables.
- Model 6 still has high R-Squared and relatively low c(p) and AIC.

Best Subsets Regression

	Best Subsets Regression
Model Index	Predictors
1	WOBA
2	wOBA Off
3	woba off I(war^2)
4	OBP WOBA Off I(OBP^2)
5	OBP WOBA Off I(OBP^2) I(WAR^2)
6	OBP WOBA WAR Off I(OBP^2) I(WAR^2)
7	RBI OBP WOBA WAR Off I(OBP^2) I(WAR^2)
8	PA R RBI OBP WOBA Off I(OBP^2) I(WAR^2)
9	PA R RBI OBP WOBA WAR OFF I(OBP^2) I(WAR^2)
10	G PA R RBI OBP WOBA WAR OFF I(OBP^2) I(WAR^2)
11	G PA HR R RBI OBP WOBA WAR OFF I(OBP^2) I(WAR^2)
12	G PA HR R RBI BABIP OBP WOBA WAR OFF I(OBP^2) I(WAR^2)

Figure 17: Best Subsets Model using R.

- · Model 6 is the model we will check further.
- It contains the following variables: OBP, wOBA, WAR, Off, $I(OBP^2)$, $I(WAR^2)$.

Updated Model

wRC+ =
$$\beta_0$$
 + β_1 OBP + β_2 wOBA + β_3 WAR + β_4 Off + β_5 I(OBP²)+ β_6 I(WAR²)

 Above is our updated model. Now we must check to see if multicollinearity exists in the model by checking the Variance Inflation Factors (VIFs).

Variance Inflation Factors for our Model

```
Variables Tolerance VIF
1 OBP 0.007845019 127.469417
2 WOBA 0.092240720 10.841199
3 WAR 0.171229677 5.840109
4 Off 0.167569571 5.967671
5 I(OBP^2) 0.008473337 118.017255
6 I(WAR^2) 0.194977525 5.128796
```

Figure 18: VIFs using R.

- We should not have a variable with a VIF above 10, and we have three.
- We will remove OBP from the model to see how it now affects the VIFs.

Variance Inflation Factors for our New Model

```
Variables Tolerance VIF

1 WOBA 0.1144321 8.738807

2 WAR 0.171230 5.840030

3 Off 0.1907936 5.241266

4 I(OBP^2) 0.1345046 7.434692

5 I(WAR^2) 0.1951357 5.124638
```

Figure 19: VIFs using R.

- We fixed our issue of multicollinearity and created a new model with five variables.
- · All we did was remove OBP from the model.

• wRC+ =
$$\beta_0$$
 + β_1 wOBA + β_2 WAR + β_3 Off + β_4 I(OBP²)+ β_5 I(WAR²)

What our "current" model looks like.

```
call:
lm(formula = wRCplus ~ wOBA + WAR + Off + I(OBP^2) + I(WAR^2))
Residuals:
   Min
           10 Median
-28.898 -4.272 0.396 4.566 35.269
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) -4.549e+01 1.863e+00 -24.424 < 2e-16
           4.658e+02 9.129e+00 51.030 < 2e-16 ***
WORΔ
          2.173e-01 1.620e-02 13.411 < 2e-16 ***
WAR
off
          6.493e-02 2.181e-03 29.778 < 2e-16 ***
I(OBP^2) -1.071e+02 1.417e+01 -7.564 4.82e-14 ***
I(WAR^2) -4.079e-03 1.796e-04 -22.706 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 7.665 on 4091 degrees of freedom
Multiple R-squared: 0.8919. Adjusted R-squared: 0.8917
F-statistic: 6748 on 5 and 4091 DF. p-value: < 2.2e-16
```

Figure 20: Summary output for Model using R.

• wRC+ = $-45.494 + 465.834*wOBA + 0.217318*WAR + 0.06493*Off - 107.138*I(OBP²)<math>-0.00408*I(WAR^{2})$

- · 0.) The model is correct.
- 1.) The estimated error is 0 (automatic if least square technique used).
- · 2.) The error variance is constant.
- · 3.) The errors are normally distributed.
- · 4.) The observations are independent.

Figure 21: Residuals vs. Fitted plot using R.

- This plot checks assumption 0 and 2.
- There is a clear issue with assumption 0.

Figure 22: Normal Q-Q plot using R.

- This plot checks assumption 3.
- · Not exactly a straight line, but we will accept normality.

Figure 23: Scale-Location plot using R.

- This plot also checks assumption 2.
- · We have an issue with non constant variance.

Figure 24: Residuals vs. Leverage plot using R.

- This plot checks for outliers and influential points.
- · Some outliers are a few of the best offensive players to play.

Introduction of Interaction Effects

An interaction effect exists between the drink and pill, resulting in increased weight loss when taken together.

Figure 25: Example of Interaction Effects for weight loss.

- We clearly need to fix our model so we will look at interaction effects.
- An interaction effect happens when one explanatory variable interacts with another explanatory variable on a response variable.

New Model with Interaction Effects

$$\begin{split} \text{wRC+} &= \beta_0 + \beta_1 \text{OBP} + \beta_2 \text{wOBA} + \beta_3 \text{WAR} + \beta_4 \text{Off} + \\ \beta_5 \text{I}(\text{OBP}^2) + \beta_6 \text{I}(\text{WAR}^2) + \beta_7 \text{OBP*wOBA} + \beta_8 \text{OBP*WAR} + \beta_9 \text{OBP*Off} + \\ \beta_{10} \text{wOBA*WAR} + \beta_{11} \text{wOBA*Off} + \beta_{12} \text{WAR*Off} \end{split}$$

• Above is our new model with interaction effects. Now we will run through best subset regression again to find a smaller model.

Our Final Model

$$\label{eq:wrc+} \begin{split} \text{wrc+} &= \beta_0 + \beta_1 \text{woba} + \beta_2 \text{War} + \beta_3 \text{OBP*woba} + \beta_4 \text{woba*War} + \\ &\beta_5 \text{woba*Off} + \beta_6 \text{I(OBP}^2) \end{split}$$

What our final model looks like.

```
call:
lm(formula = wRCplus ~ wOBA + WAR + OBP:wOBA + wOBA:WAR + wOBA:Off +
    I(OBP^2))
Residuals:
   Min
            10 Median
                          30
-26.789 -3.847 0.031 3.501 54.496
coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.292e+02 4.874e+00 -26.51 <2e-16 ***
WOBA
           1.008e+03 3.282e+01 30.73 <2e-16 ***
           2.354e+00 7.022e-02 33.52 <2e-16 ***
WAR
I(OBP^2)
           8.148e+02 5.597e+01 14.56 <2e-16 ***
wOBA:OBP
           -1.777e+03 1.083e+02 -16.40 <2e-16 ***
wOBA:WAR -7.076e+00 2.090e-01 -33.85 <2e-16 ***
wOBA:Off 3.157e-01 6.946e-03 45.45 <2e-16 ***
Signif, codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 6.794 on 4090 degrees of freedom
Multiple R-squared: 0.915, Adjusted R-squared: 0.9149
F-statistic: 7342 on 6 and 4090 DF, p-value: < 2.2e-16
```

Figure 26: Summary output for Model using R.

```
• WRC+ = -129.2 + 100.8*WOBA + 2.354*WAR + 814.8*I(OBP^2) - 1777 * WOBA * OBP - 7.076 * WOBA * WAR + 0.3157 * WOBA * Off
```


Figure 27: Residuals vs. Fitted plot using R.

- This plot checks assumption that the model is correct and there exists constant variance.
- The model looks clearly better. The red line is much flatter.

Figure 28: Scale-Location plot using R.

- · This plot also checks constant variance.
- The plot shows that we might not have constant variance, but we still accept the model.

Figure 29: Residuals vs. Leverage plot using R.

- This plot checks for outliers and influential points.
- We have many outliers in our plot. Babe Ruth is an influential point.

Good Examples With Our Model

Names	Actual wRC+	Model wRC+	Difference
Scott Hatteberg	104	104	0
Jay Bruce	106	106	0
Miguel Tejada	106	106	0
Ray Chapman	111	111	0
Joe Mauer	123	123	0

Bad Examples With Our Model

Names	Actual wRC+	Model wRC+	Difference
Ricky Henderson	132	159	27
Gary Sheffield	141	163	22
Ted Williams	188	153	-35
Babe Ruth	197	143	-54
Bobby Mathews	63	27	-36

Relationship of Actual wRC+ vs Model wRC+

Figure 30: Scatter plot using R.

• R^2 is 0.9150451

Appendix

```
attach(Summer_2021_Baseball_Research_Data)
```

```
mod1.lm <- lm(wRcplus ~ G + PA + HR + R + RBI + BABIP + OBP + WOBA + WAR + Off)
summary(mod1.lm)
library(car)
crplots(mod1.lm)</pre>
```

#Perhaps second order with OBP and WAR? Log for HR? mod2.lm <- $lm (wRcplus \sim G + PA + HR + R + RBI + BABIP + OBP + wOBA + WAR + Off + I (OBP^2) + I (WAR^2))$

```
library(olsrr)
ols step forward p(mod2.lm)
#selected variables: HR. R. RBI. OBP
ols_step_forward_aic(mod2.lm)
#selected variables: woba, BABIP, Off, I(WAR^2), WAR, I(OBP^2), OBP, RBI, PA, R, HR, G
ols step backward p(mod2.1m)
#selected variables: G + PA + HR + R + RBI + OBP + WOBA + WAR + Off + I(OBP^2) + I(WAR^2)
ols_step_backward_aic(mod2.lm)
#selected variables: G + PA + HR + R + RBI + BABIP + OBP + WOBA + WAR + Off + I(OBP^2) + I(WAR^2)
ols step both aic(mod2.lm)
#selected variables: woba, BABIP, Off, I(WARA2), WAR, I(OBPA2), OBP, RBI, PA, R, HR, G
ols_step_both_p(mod2.lm)
#selected variables: HR, R, RBI, OBP
mod2.lm <- lm(wRCplus \sim G + PA + HR + R + RBI + BABIP + OBP + wOBA + WAR + Off + I(OBP^2) + I(WAR^2))
summary(mod2.lm)
k=ols_step_best_subset(mod2.lm)
plot(k)
```

```
mod3.lm < -lm(wRcplus \sim OBP + wOBA + wAR + off + I(OBP^2) + I(wAR^2))
summary(mod3.lm)
ols_vif_tol(mod3.lm)
plot(mod3.lm)
#Too high of VIF
mod4.lm < -llm(wRCplus \sim wOBA + WAR + off + I(OBP^2) + I(WAR^2))
summary(mod4.lm)
ols_vif_tol(mod4.lm)
plot(mod4.lm)
mod5.lm <- lm(wRcplus ~ OBP + wOBA + WAR + Off + OBP:wOBA + OBP:WAR + OBP:Off
              + WOBA:WAR + WOBA:Off + WAR:Off+ I(OBP^2) + I(WAR^2))
summary(mod5.1m)
plot(mod5.lm)
k=ols_step_best_subset(mod5.lm)
plot(k)
mod6.lm <- lm(wRcplus ~ wOBA + WAR + OBP:wOBA + wOBA:WAR + wOBA:Off + I(OBP^2))
summary(mod6.lm)
plot(mod6.lm)
ols_vif_tol(mod6.lm)
```

```
#calculating leverage of all points
influence(mod6.lm)$hat
Summer_2021_Baseball_Research_Data[which(influence(mod6.lm)$hat> 2*3/25),]
#plotting leverage
plot(influence(mod6.lm)$hat)
#getting all measures of influence together
print(influence.measures(mod6.lm))
#obtaining cooks distance only
cooks.distance(mod6.lm)
#plotting cook's distance
plot(cooks.distance(mod6.lm))
```

```
#only obtaining observations with high Cook's distance values
Summer_2021_Baseball_Research_Data[which(cooks.distance(mod6.lm) > 1),]
#obtaining DFFITS
dffits(mod6.lm)
#plotting DFFITS
plot(dffits(mod6.lm))
Summer_2021_Baseball_Research_Data[which(abs(dffits(mod6.lm)) > 2*sqrt(3/25)),]
covratio(mod6.lm)
plot(covratio(mod6.lm))
Summer_2021_Baseball_Research_Data[which(abs(covratio(mod6.lm)-1) > 3*3/25),]
```

Sources

Works Cited

- 4, Rob Mains December, et al. "Comparing DRC+, OPS+, and WRC+." Baseball Prospectus, 5 Dec. 2018, www.baseballprospectus.com/news/article/45445/comparingdrc-ops-and-wrc/
- "Baseball Savant: Trending MLB Players, Statcast and Visualizations." Baseballsavant.com, baseballsavant.mlb.com/.
- "FanGraphs Baseball: Baseball Statistics and Analysis."
 FanGraphs Baseball | Baseball Statistics and Analysis, www.fangraphs.com/.
- Hochman, Benjamin. "Hochman: Esoteric but Useful, Baseball's New Superstat Is WRC+." The Denver Post, The Denver Post, 29 Apr. 2016, www.denverpost.com/2013/07/15/hochman-esoteric-but-useful-baseballs-new-superstat-is-wrc/.

Works Cited

- Kupiec, Ryan. Can Statcast Variables Explain the Variation in Weighted Runs Created plus? scholarship.depauw.edu/cgi/viewcontent.cgi?article=1003context=studentresea
- "The Official Site of Major League Baseball." MLB.com, www.mlb.com/.
- Sanford, Gavin D. What Raw Statistics Have the Greatest Effect on WRC+ in Major League Baseball in 2017?
- Sharpe, Sam. "An Introduction to Expected Weighted On-Base Average (XwOBA)." Medium, MLB Technology Blog, 24 Sept. 2019
- Stephanie. "Interaction Effect, STATISTICAL Interactions amp; Interacting Variable." Statistics How To, 12 Oct. 2017, www.statisticshowto.com/interaction-effect-interacting-variable/.

