System Design Document - Yellow Project

William Diedrichsen Marstrand, Dennis Thinh Tan Nguyen, Jacob Mullit Møiniche, Thor Valentin Olesen

November 10, 2015

1 Introduction

1.1 Purpose of the System

In AUTOSYS, the main client is the SystemReviewClient who needs to set up a STUDY consisting of one or several PHASES. A PHASE will consist of one or more TASKS which need to be completed before moving on to the next PHASE. The StudyParticipants can work in different ROLES which we anticipate will be either as REVIEWER or VALIDATOR. Also the StudyParticipants will be working together on a STUDY in TEAMS, but multiple teams will not be working on the same STUDY. Furthermore TEAMS working on the same STUDY will be considered as one big TEAM.

1.2 Design Goals

• Ease of use:

Goal: It should be relatively easy to setup a study configuration because it makes up the foundation that all study work processes rely on.

The end user may have a low level of computer expertise potentially resulting in the wrong setup of a study. This can happen because the user cannot find or access the resources required for setting up a study or they become frustrated if they have to go through many windows. However, these usability traits should not compromise with the system functionalities. The system must still be sufficiently complex in order to provide a variety of ways to setup the study configuration. A primary focus on usability traits has been chosen due to the scope and time span of the project. Functionalities might be sacrificed to achieve this. This design goal is a refinement of the non-functional requirement usability in Requirement Analysis Document (section 3.3.1).

• High Reliability:

Goal: The server and study configuration ui must be reliable, handle system failures and wrong user input.

The server should handle system failures (e.g. exceptions or network failures). Due to the client-server architecture, it is important that the server can automatically reboot upon system failures. As a result, other clients can continuously access the server. Also, the server should ensure that incomplete data transfers are resumed in case of network failures. Further, the Study Configuration UI should handle invalid user input and ensure the input is only sent to the server when correct. These decisions ensure that the work of the end user is handled properly and the server is available when needed. Speed might be sacrificed to achieve this. This design goal is a refinement of the non-functional requirement "high reliability" in Requirement Analysis Document (section 3.3.2).

• Scalability:

Goal: The response time of the system must not degrade dramatically with the number of users and concurrent studies.

The system is used by multiple teams with several users working on different studies. The work carried out by these users could be done concurrently and so the system will have a big workload when multiple requests are sent to the server. Since the users need study data quickly to conduct their research, it will be cumbersome if the users have to wait for a long time to get the data. Thus, the server should support quick data access for users. However, the system must do this in a way which takes memory into account to avoid an extensive resource consumption.

• High performance:

Goal: to ensure a quick and responsive user interface by using a database, which facilitates fast data processing.

To achieve this, one could implement an entity framework database, which utilizes Microsoft's .NET framework to optimize database queries. This takes advantage of optimized queries and features implemented by Microsoft database experts. Furthermore, a future feature may be implemented to cache the result of large queries for quick access. This allows the server to respond hastily to large queries, which have previously been used. This will only be implemented for queries on data that is less likely to change. As a result, a memory trade-off may occur, which can be negated by using limits on how much memory and how many queries are cached. By way of example, the last x number of query results to the server could be cached for repeated use. The design goal is a refinement of the non-functional requirement "high performance" in the Requirement Analysis Document (section 3.3.3)

2 Proposed Software Architecture

2.1 Subsystem Decomposition

Figure 1: Autosys subsystem decomposition (UML Component Diagram, layers shown as UML packages)

The subsystems are identified from the functional requirements of the Autosys RAD document. A three-tier architectural style has been used for the decomposition of the system where a **StudyConfigurationClient** provides a front end for users to initiate all use cases related to setting up or configuring a Study. Also a StudyReviewClient will provide the front end for users to manage teams, and work with review tasks. The AutosysServer will be managing access control, concurrency control, and delegates to nested subsystems for the application logic. The UserManagement component is holding the responsibility for handling all CRUD operations regarding teams and individual users. The processing of all Study related CRUD operations are carried out by the StudyManagement component. The StudyManagement also manages Study Tasks, Study Criteria and Classifications, Study Phases and he other parts included in a study. The PaperManagement runs the filtering mechanisms on the research papers and does import/export of research papers according to the Study Criteria and Classifications. The IStorage interface is used for a Bridge Pattern to decouple the storage abstraction from the application logic so that the two can vary independently. At the bottom tier the AutosysStorage represents the subsystem for storing the user data, study data, and research papers.

2.2 Identifying and Storing Persistent Data

Identifying persistent objects

Autosys deals with three sets of objects that must be stored. The first set (referred as metadata storage) consists of research data such as metadata on articles which are accessed during conduction of secondary studies. The second set (referred as blue storage) consists of objects that are created and accessed by the blue part of the system(eg. Users, roles, etc). It needs to be persistent to track the progress of the study and who is involved. The third set (referred as configuration storage) consists of data for a study configuration that are created by the study configuration UI. The data defines the study configuration such as research questions, tasks, inclusion and exclusion criterias etc.

Metadata storage is well defined and will rarely change during the lifetime of Autosys. These changes may occur whenever new research data has been created or removed and thus create a need for an update of the set. Objects within blue storage are managed and defined by the blue part of the system. Hence, we decide to let the blue part decide how to manage and access these persistent object through a generic interface. Configuration storage is also well defined and will not change once the study configuration has been made.

In this scope of the Autosys system, the main focus of persistent objects is set on metadata storage and configuration storage.

Selecting a storage strategy

By selecting and defining a persistent storage, strategy enables us to deal with issues related to storage management. The main design goals of the yellow part of Autosys is to be reliable, scalable while also has high performance. It is therefore decided to implement a database management system since it allows concurrent queries and provide transaction mechanisms to ensure data integrity.

Compared to a flat file storage method, a database management system will also scale to large installations with many researchers that are to conduct studies simultaneously. However, to allow future upgrades or changes it has been decided that the storage strategy is not solely dependent on a database management system. Thus, the storage subsystem will provide an abstract interface that enables other kinds of storage to be coupled. The users of Autosys are not able to change the storage, however if an update is ever needed for the storage strategy, a system administrator are able to do so.

2.3 Providing Access Control

2.4 Designing the Global Control Flow

When selecting components for the interface and storage subsystems of Autosys, we effectively narrowed the alternatives for control flow mechanisms for the yellow part of Autosys. The autosysStorage is located in a web server. The web server awaits requests from the blue part of autosys or the studyConfigurationUI. For each request the web server receives, a new thread is made, which enable the web server to parallel handling of the requests. This results in a more responsive system. By example, the web server can process and handle a given process x while another process awaits a respond from the database. However, the stumbling block of threads is the increased complexity of the system resulting from the usage of threads. To establish a sturdy design with concurrency taken into consideration, one will define the following strategy for dealing with concurrent accesses to the shared storage:

- Boundary objects should not define any fields. Boundary objects should only hold temporary data correlated with the current request in a local variable.
- Entity objects should not provide direct access to their fields. All changes and accesses to a given object state should be done through dedicated methods.
- Methods for accessing state in entity objects should be syncronized. By using the synchronized mechanism provided by Java only one thread can be active at a time in an access method.
- Nested calls to synchronized methods should be avoided. When creating synchronized methods, one must make sure if a nested method call can lead into calling another synchronized method. The reason for this is to

avoid deadlocks and must be avoided. If nested calls are unavoidable, one should either relocate the logic among methods to or impose a strict ordering of synchronized method calls.

• Redundant state should be time-stamped The state of an object can periodically, be duplicated. By example, two researchers may create objects with the same state and can lead to conflicts. To avoid this, objects should be time-stamped or have another unique identifier.

2.5 Hardware/Software mapping

Systems

This program is inherently a documentation tool which map research articles goals and conclusions in a searchable context. This requires the program to be stable and reliable, especially in the context of data preservation.

The program is split in two components, a client and a external database server. The user will run a client on his computer which will communicate with the server which runs the application logic and storage. The user client will feature data preservation, to enable offline functionality, but only to a limited extend. This report primarily focus on the server, if any questions to the user client should occur, please refer to the according Blue SDD.

All user clients will contact the a single server. To solve this, the server will be multi threaded, which allows for multiple users interacting with the server at the same time, but At the current scope of the program, this is possible due to low amount of users, but should this system expand a new design should be conceived.

Program components

The server will be implemented in C Sharp as requested by the the client. By using C Sharp, we can utilise to Microsoft expansive database systems and interfaces especially in regards to the database. Additionally this also make the program easier to maintain, since C Sharp is a well known language and can utilise the .NET framework. As communication between the server and the clients, we plan to communicate with HTTPS request containing JSON object. This will make it easier to implement future changes and even completely replace the clients user interface with a more modern solution like a web page