Network-on-chip (NOC)

Topologies

Topology & Physical Constraints

- between physical constraints and topology It is important to model the relationships
- -> And the resulting impact on performance
 - Network optimization is the process of utilizing these models
- -> For selecting topologies that best match the physical constraints of the implementation
- physical constraints determine architectural For a given implementation technology, features
- → Channel widths
- Impact on zero-load latency

Bisection Width/Bandwidth

- One of the physical constraints facing the implementation of interconnection networks is the available wiring area
- The available wiring area is determined by the packaging technology
- → Whether the network resides on a chip, multichip module, or printed circuit board
- VLSI systems are generally wire limited
- interconnect area, and the performance is limited by the delay of → The silicon area required by these systems is determined by the these interconnections
- The choice of network dimension is influenced by how well the resulting topology makes use of the available wiring area
- → One such performance measure is the bisection width

Cuts

- that partitions the set of all nodes into two disjoint A cut of a network, $C(N_1, N_2)$, is a set of channels sets, N_1 and N_2
- \rightarrow Each element in $C(N_1, N_2)$ is a channel with a source in N_1 and destination in N_2 or vice versa

24

Bandwidth of the Cut

■ Total bandwidth of the cut C(N₁,N₂)

$$B(N_1, N_2) = \sum_{c \in C(N_1, N_2)} b_c$$

- The bisection is a cut that partitions the entire network nearly in half
- The channel bisection of a network, B_c , is the minimum channel count over all bisections

$$B_C = \min_{\text{bisections}} |C(N_1, N_2)|$$

The *bisection bandwidth* of a network, B_B, is the minimum bandwidth over all bisections

$$B_B = \min_{\text{bisections}} |B(N_1, N_2)|$$

Bisection Examples

Diameter

The *diameter* of a network, H_{max} , is the largest, minimal hop count over all pairs of terminal nodes

$$H_{\max} = \max_{\mathbf{x}, \mathbf{y} \in N} |H(\mathbf{x}, \mathbf{y})|$$

For a fully connected network with N terminals built from switches with out degree δ_0 , H_{max} is bounded by

$$H_{\text{max}} \ge \log_{\delta_O} N \tag{1}$$

Each terminal can reach at most δ_0 other terminals after one hop

At most δ_0^2 after two hops, and at most δ_0^H after H hops

If we set $\delta_{o}^{H} = N$ and solve for H, we get (1)

∞

Average Minimum Hop count

network, H_{min}, is defined as the average hop The average minimum hop count of a count over all sources and destinations

$$H_{\min} = \frac{1}{N^2} \sum_{x, y \in N} H(x, y)$$

Physical Distance and Delay

The physical distance of a path is

$$D(P) = \sum_{c \in P} l_c$$

■ The delay of a path is

$$t(P) = D(P)/\nu$$

Performance

Throughput

- → Data rate in bits/s that the network accepts per input port
- It is a property of the entire network
- → It depends on
- Routing
- Flow control
- Topology

Ideal Throughput

- Ideal throughput of a topology
- perfect flow control (no contention) and routing Throughput that the network could carry with (load balanced over alternative paths)
- Maximum throughput
- It occurs when some channel in the network becomes saturated
- We suppose for semplicity that all the channel bandwidths are b

Channel Load

We define the *load of a channel c*, γ_c , as

- Equivalently
- → Amount of traffic that must cross c if each input injects one unit of traffic
- Of course, it depends on the traffic pattern considered
- → We will assume uniform traffic

33

Maximum Channel Load

traffic (the bottleneck channel) determines channel that carries the largest fraction of the maximum channel load ymax of the Under a particular traffic pattern, the topology

$$\gamma_{\max} = \max_{c \in C} \gamma_c$$

Ideal Throughput

- load on the bottleneck channel will be equal to the channel bandwidth When the offered traffic reaches the throughput of the network, the
- Any additional traffic would overload this channel
- The *ideal throughput* Θ_{ideal} is the input bandwidth that saturates the bottleneck channel

$$\gamma_c = \frac{\text{bandwidth demanded from channel } c}{\text{bandwidth of the input ports}}$$

$$\gamma_c = \gamma_{\text{max}} = \frac{b}{\Theta_{\text{ideal}}}$$

$$\Theta_{\rm ideal} = \frac{b}{\gamma_{\rm max}}$$

Bounds for ymax

- y is very hard to compute for the general
 - case (arbitrary topology and arbitrary traffic pattern)
- For uniform traffic some upper and lower bounds can be computed with much less effort

Lower Bound on Ymax

The load on the bisection channels gives a lower bound on

Ymax

- Let us assume uniform traffic
- \rightarrow On average, half of the traffic (N/2 packets) must cross the B_c bisection channels
- packets are distributed evenly across the → The best throughput occurs when these bisection channels
- → Thus, the load on each bisection channel γ_{B} is at least

Upper Bound on (H) ideal

Jpper bound

We found that

$$\Theta_{\text{ideal}} = \frac{b}{\gamma_{\text{max}}}$$

and

$$\gamma_{\text{max}} \ge \gamma_B = \frac{N}{2B_C}$$

Combining the above equations we have

$$\Theta_{\text{ideal}} \le \frac{2 b B_C}{N} = \frac{2 \mathbf{B}_B}{N}$$

Latency

- required for a packet to traverse the network The latency of a network is the time
- From the time the head of the packet arrives at the input port to the time the tail of the packet departs the output port

Components of the Latency

- We separate latency, 7, into two components
- → Head latency (T_h): time required for the head to traverse the network
- → Serialization latency (T_s): time for a packet of length L to cross a channel with bandwidth b

$$T = T_h + T_s = T_h + \frac{L}{h}$$

9

Contributions

- Like throughput, latency depends on
- → Routing
- → Flow control
- → Design of the router
- → Topology

Latency at Zero Load

- We consider latency at zero load, T₀
- Latency when no contention occurs
- T_h: sum of two factors determined by the topology
- →Router delay (7,): time spent in the routers
- → Time of flight (Tw): time spent on the wires

$$T_h = T_r + T_w = H_{\min} t_r + \frac{\mathcal{L}_{\min}}{v}$$

$$T_0 = H_{\min} t_r + \frac{D_{\min}}{v} + \frac{L}{b}$$

Latency at Zero Load

Packet Propagation

Case Study

- the available packaging technology to meet bandwidth and latency requirements of the A good topology exploits characteristics of application
- To maximize bandwidth a topology should saturate the bisection bandwidth

Bandwidth Analysis (Torus)

Assume: 256 signals @ 1Gbits/s

Bisection bandwidth 256 Gbits/s

Bandwidth Analysis (Torus)

- 16 unidirectional channels cross the midpoint of the topology
- To saturate the bisection of 256 signals
- Each channel crossing the bisection should be 256/16 = 16 signals wide
- Constraints
- Each node packaged on a IC
- Limited number of I/O pins (e.g., 128)
- $\sqrt{8}$ channels per node $\rightarrow 8x16=128$ pins \rightarrow OK

Bandwidth Analysis (Ring)

- 4 unidirectional channels cross the mid-point of the topology
- To saturate the bisection of 256 signals
- → Each channel crossing the bisection should be 256/4 = 64 signals wide
- Constraints
- Each node packaged on a IC
- ✓ Limited number of I/O pins (e.g., 128)
- 4 channels per node \rightarrow 4x64=256 pins \rightarrow INVALID
- → With identical technology constraints, the ring provides only half the bandwidth of the torus

Delay Analysis

- The application requires only 16Gbits/s
- →...but also minimum latency
- The application uses long 4,096-bit packets
- Suppose random traffic
- → Average hop count

$$\sqrt{\text{Torus}} = 2$$

$$\checkmark$$
 Ring = 4

- Channel size
- → Torus = 16 bits
- \rightarrow Ring = 32 bits

Delay Analysis

- Serialization latency (channel speed 1GHz)
- \rightarrow Torus = 4,096/16 * 1ns = 256 ns
- \rightarrow Ring = 4,096/32 * 1ns = 128 ns
- Latency assuming 20ns hop delay
- \rightarrow Torus = 256 + 20*2 = 296 ns
- \rightarrow Ring = 128 + 20*4 = 208 ns
- No one topology is optimal for all applications
- → Different topologies are appropriate for different constraints and requirements