

- Introduction
- SpintronicsBackground
- Sensing Regimes
 - Magnotomotov
 - Electrometr
- Multimodality
 - $-\vec{B}$ and
- Summary
- Conclusion

Quantum Spintronics

Multimodal Spin Based Sensors

Conner Adlington

School of Physics and Astronomy University of Edinburgh

- Spintronics
- Background
- Sensing Regimes
 - Magnetometr
 - Electrometr
- Multimodality
 - Band
- Summary
- Conclusion

- Spintronics
- Background
- Sensing Regimes
 - Magnetometr
 - Electromet
- Multimodality
 - Band
- Summary
- Conclusion

- ► Motivation (SiC transistor (in place monitoring etc))
- ► Motivation2 : Microscope (As for diamond)

- Spintronics
- Background
- Sensing Regimes
 - Magnetometr
- Electrometr
- Multimodality
 - $-\vec{B}$ and
- Summary
- Conclusion

Spintronic Devices

spin - transport - electronics

Spintronic Devices

- Introduction
- Spintronics
- Background
- Sensing Regimes
 - Magnetometr
- Electromet
- Multimodality
 - $-\vec{B}$ and
- Summary
- Conclusion

spin - transport - electronics

Exploit spin in the same way electronics exploit charge

- Introduction
- Spintronics
- Background
- Sensing Regimes
 - Magnetometr
 - Electrometr
- Multimodality
 - B and
- Summary
- Conclusion

Background

- Introduction
- Spintronics
- Background
- Sensing Regimes
 - Magnetometry
 - Electrometr
- Multimodality
 - $-\vec{B}$ and
- Summary
- Conclusion

S = 1 Magnetometry

S = 1 Magnetometry Summary

- We can resolve two frequencies corresponding to the defect in the CW-ODMR spectra.
- 2. The ZFS parameters *D* and *E* are well known.
- 3. We can determine the magnitude using

$$B = \frac{\sqrt{\frac{1}{3}\left(f_1^2 - f_1 f_2 + f_2^2 - D^2 - 3E^2\right)}}{g\mu_B}.$$

4. We can determine the azimuthal angle using

$$\theta = \frac{\cos^{-1}(\eta/\mathit{D})}{2}.$$

- Spintronics
- Background
- Sensing Regimes
 - Magnetomet
 - Electrometry
- Multimodality
 - $-\vec{B}$ and
- Summary
- Conclusion

S = 1 Electrometry

S = 1 Electrometry Summary

- We can resolve two frequencies corresponding to the defect in the CW-ODMR spectra.
- 2. The direction and magnitude of \vec{B} and the ZFS parameters D and E are well known.
- 3. In general

$$\Delta f_{\pm} = d_{\parallel} E_z \pm \left(F(\vec{B}, \vec{E}, \vec{\sigma}) - F(\vec{B}, 0, \vec{\sigma}) \right)$$

4. With \vec{B} parallel to the defect axis we have

$$heta = an^{-1}\left(rac{\mathcal{E}_\parallel}{\mathcal{E}_\perp}
ight), \quad \mathcal{E} = \sqrt{\mathcal{E}_\perp^2 + \mathcal{E}_\parallel}.$$

- Introduction
- Spintronics
- Background
- Sensing Regimes
 - Magnetometr
 - Electrometr

Multimodality

- $-\vec{B}$ and
- Summary
- Conclusion

Multimodality

- Introduction
- Spintronics
- Background
- Sensing Regimes
 - Magnetometre
 - Electrometr
- Multimodality
- $-\vec{B}$ and T
- Summary
- Conclusion

\vec{B} and T

- Introduction
- Spintronics
- Background
- Sensing Regimes
 - Electrometro
- Multimodality
 - $-\vec{B}$ and
- Summary
- Conclusion

So what?

- Introduction
- Spintronics
- Background
- Sensing Regimes
 - Magnetometr
 - Electrometr
- Multimodality
 - Band
- Summary
- Conclusion

- Introduction
- Spintronics
- Background
- Sensing Regimes
 - Magnetometry
- Electrometr
- Multimodality
 - $-\vec{B}$ and
- Summary
- Conclusion

- ► Motivation (SiC transistor (in place monitoring etc))
- ► Motivation2 : Microscope (As for diamond)

- Introduction
- Spintronics
- Background
- Sensing Regimes
 - Flectrometr
- Multimodality
- \vec{B} and
- Summary
- Conclusion

Questions?