Wissenschaftliches Schreiben am TCO

Isabel Funke und Micha Pfeiffer, August 2018

NATIONAL CENTER FOR TUMOR DISEASES PARTNER SITE DRESDEN UNIVERSITY CANCER CENTER UCC

Supported by:

German Cancer Research Center University Hospital Carl Gustav Carus Dresden Carl Gustav Carus Faculty of Medicine, TU Dresden Helmholtz-Zentrum Dresden-Rossendorf

WARNING:

Wir geben euch hier allgemeine Richtlinien an die Hand. Im Einzelfall sind Abweichungen möglich und manchmal sogar sehr sinnvoll.

Betreuer

Darum haltet immer Rücksprache mit eurem Arzt oder Apotheker.

AUFBAU EINER ABSCHLUSSARBEIT

Überblick

- 1. Kurzfassung (Abstract)
- 2. Einführung
- 3. Stand der Forschung
- 4. Grundlagen
- 5. Methoden
- 6. Evaluation
- 7. Diskussion
- Zusammenfassung und Ausblick
- 9. ggf. Anhang

Kurzfassung (Abstract)

- Komprimierte Zusammenfassung der gesamten Arbeit (ca. ½ Seite)
- Leser entscheidet anhand des Abstracts, ob die Arbeit für ihn interessant ist
- In sich abgeschlossen und verständlich
 - Keine Verweise, keine Zitate, keine speziellen Fachbegriffe
- Aufbau
 - 1. Kontext/ Motivation (Hinführung zur Forschungsfrage)
 - 2. Problem/ Forschungsfrage
 - 3. Eigener Ansatz zur Problemlösung (was wurde gemacht?)
 - 4. Zusammenfassung der Ergebnisse
 - 5. Wissenschaftlicher Beitrag der Arbeit

1. Kurzfassung (Abstract)

- 2. Einführung
- 3. Stand der Forschung
- 4. Grundlagen
- 5. Methoden
- 6. Evaluation
- 7. Diskussion
- 8. Zusammenfassung und Ausblick
- 9. ggf. Anhang

Einführung

- Motivation: Warum ist das bearbeitete Problem interessant?
 - Medizinischer Aspekt
 - Informatisch-technischer Aspekt
- Aufgabenstellung/ Forschungsfrage: Was ist das Problem?
- Kurzer Überblick über den Aufbau/ Inhalt der restlichen Arbeit (als erste Orientierung für den Leser)

- 1. Kurzfassung (Abstract)
- 2. Einführung
- 3. Stand der Forschung
- 4. Grundlagen
- 5. Methoden
- 6. Evaluation
- 7. Diskussion
- Zusammenfassung und Ausblick
- 9. ggf. Anhang

Stand der Forschung

- Verwandte Arbeiten
 - Welche Methoden zur Lösung des Problems gibt es bereits?
 Was sind die Stärken und Schwächen dieser Methoden?
 - Gibt es vergleichbare Probleme in anderen Fachbereichen?
 Welche Lösungsansätze gibt es hier?
 Unter welchen Bedingungen können diese Methoden auf das betrachtete Problem angewandt werden?
- Ziel: Herausstellen einer wissenschaftlichen Lücke (scientific gap),
 die durch die Abschlussarbeit geschlossen werden soll
- Evtl. dienen verwandte Arbeiten auch als Ausgangspunkt (baseline),
 um die selbst erarbeitete Lösung zu vergleichen

- 1. Kurzfassung (Abstract)
- 2. Einführung
- 3. Stand der Forschung
- 4. Grundlagen
- 5. Methoden
- 6. Evaluation
- 7. Diskussion
- Zusammenfassung und Ausblick
- 9. ggf. Anhang

Ergebnisse der Literaturrecherche: eure Quellen

Grundlagen

- Einführung, Definition und ggf. Erklärung von Fachbegriffen und Methoden (z.B. maschinelle Lernverfahren), die für das Verständnis der Arbeit (insb. Methodenteil) wichtig sind
- Ziel: Ein vorgebildeter Leser (z.B. Kommilitone) kann die Arbeit verstehen, ohne weitere Fachliteratur hinzuziehen zu müssen
- Angemessener Detailgrad
 - Keine ausschweifenden Erklärungen wie im Lehrbuch

- 1. Kurzfassung (Abstract)
- 2. Einführung
- 3. Stand der Forschung
- 4. Grundlagen
- 5. Methoden
- 6. Evaluation
- 7. Diskussion
- 8. Zusammenfassung und Ausblick
- 9. ggf. Anhang

Euer Handwerkszeug: Methoden & Werkzeuge

Methoden

- Darstellung des eigenen Lösungsansatzes
 - Theoretische Betrachtung
 - Problemanalyse
 - Erarbeitete Lösung
 - Falls relevant: Implementierungsdetails
 - Kein Quellcode!
 - Stattdessen Struktur- und Ablaufdiagramme, evtl. Pseudocode
 - Bei implementierungslastigen Arbeiten kann dies auch ein eigenes Kapitel sein

- 1. Kurzfassung (Abstract)
- 2. Einführung
- 3. Stand der Forschung
- 4. Grundlagen
- 5. Methoden
- 6. Evaluation
- 7. Diskussion
- 8. Zusammenfassung und Ausblick
- 9. ggf. Anhang

Kernstück eurer Arbeit: Der eigene Beitrag zur Wissenschaft

Anmerkung: Stand der Forschung vs Grundlagen vs Methoden

- Die Zuordnung von Inhalten ist nicht immer eindeutig
- Möglicherweise kann man die Grundlagen auch ins Methodenkapitel aufnehmen
- Ggf. ist eine andere Struktur sinnvoll
 z.B. Grundlagen an der Stelle erklären, an der sie das erste Mal verwendet werden
- Im Zweifelsfall Betreuer fragen

- 1. Kurzfassung (Abstract)
- 2. Einführung
- 3. Stand der Forschung
- 4. Grundlagen
- 5. Methoden
- 6. Evaluation
- 7. Diskussion
- 8. Zusammenfassung und Ausblick
- 9. ggf. Anhang

Evaluation

- Beschreibung der Experimente
 - Ggf. verwendete Datensätze beschreiben
- Ergebnisse der Experimente darstellen
 - Getrennt von Experimentbeschreibung
 - Objektiv und unkommentiert (Interpretation kommt später)!
 - Aussagekräftige, übersichtliche und verständliche Darstellung
 - Diagramm oder Tabelle?
 - Welche Diagrammart?
 - → Hierzu später mehr

- 1. Kurzfassung (Abstract)
- 2. Einführung
- 3. Stand der Forschung
- 4. Grundlagen
- 5. Methoden
- 6. Evaluation
- 7. Diskussion
- 8. Zusammenfassung und Ausblick
- 9. ggf. Anhang

Diskussion

- Kritische (!) Auseinandersetzung mit Ergebnissen
- Welche Schlüsse können anhand der Ergebnisse gezogen werden?
- Stärken und Schwächen des eigenen Ansatz
- Kann ggf. mit Evaluationskapitel zusammengelegt werden

- 1. Kurzfassung (Abstract)
- 2. Einführung
- 3. Stand der Forschung
- 4. Grundlagen
- 5. Methoden
- 6. Evaluation
- 7. Diskussion
- Zusammenfassung und Ausblick
- 9. ggf. Anhang

Bewertung des wissenschaftlichen Beitrags

Zusammenfassung und Ausblick

- Zusammenfassung von Methoden, Evaluation und Diskussion
- Ausblick
 - Neue Forschungsfragen
 - Verbesserungsmöglichkeiten der eigenen Lösung
 - Bezug auf kritische Bewertung in der Evaluation
- Bildet zusammen mit der Einleitung den **Rahmen** eurer Abschlussarbeit
 - Bezug auf Einleitung
 - Welcher Lösungsansatz wurde gewählt?
 - Wie gut löst dieser die Forschungsfrage?
 - Ohne die dazwischenliegenden Kapitel sind Einleitung und Zusammenfassung eine eigene Version eurer Abschlussarbeit auf weniger Seiten (hohes Abstraktionslevel)

- 1. Kurzfassung (Abstract)
- 2. Einführung
- 3. Stand der Forschung
- 4. Grundlagen
- 5. Methoden
- 6. Evaluation
- 7. Diskussion
- 8. Zusammenfassung und

Ausblick

9. ggf. Anhang

Anhang

- Falls sinnvoll und notwendig, ist hier Platz f
 ür Details
 - Detaillierte Evaluationsergebnisse
 - Ausführliche mathematische Beweise
 - Ausschnitte von Quellcode
- Nur Details, auf die auch im Haupttext verwiesen wird!
- Darüber hinaus, falls gewünscht, Dinge wie:
 - Abkürzungs- oder Symbolverzeichnis
 - Glossar (z.B. medizinische Fachbegriffe)
 - Stichwortverzeichnis

- 1. Kurzfassung (Abstract)
- 2. Einführung
- 3. Stand der Forschung
- 4. Grundlagen
- 5. Methoden
- 6. Evaluation
- 7. Diskussion
- Zusammenfassung und Ausblick
- 9. ggf. Anhang

Umfang (Richtwerte)

Seitenanzahl (Gesamtdokument):

• Bachelorarbeit: 35 bis 50

Master- und Diplomarbeit: 70 bis 100

Quellenanzahl:

· Bachelorarbeit: 20+

Masterarbeit: 30+

Diese Zahlen können stark variieren, je nach Inhalt und Themenfeld der Arbeit!

Daumenregel: Um eine druckreife Seite zu schreiben, benötigt man etwa **einen Arbeitstag (8h)**

Frühzeitig mit Schreiben anfangen und Feedback einholen

- Vier Wochen nach Anmeldung soll das Kapitel zum Stand der Forschung fertig sein und als
 Schriftprobe beim Betreuer abgegeben werden
- Restliche Kapitel nach und nach dem Betreuer vorlegen, bis spätestens 1-2 Wochen vor Abgabetermin (Genaueres mit Betreuer absprechen)

WWW.PHDCOMICS.COM

Tipps

- Schreibt für den Leser!
- Überlegt stets, auf welche Weise ihr Inhalte am besten vermitteln könnt
 - Grafiken, z.B. Übersichtsdiagramme
 - Anschauliche Beispiele (evtl. wiederkehrendes Beispiel?)
 - Verwendung von Formeln, Pseudocode oder anderer mathematischer Notation
- Achtet in jeglicher Hinsicht auf Konsistenz
 - Begriffe & Abkürzungen, Layout & Formatierung, Formelsymbole, Nummerierung...
- Sinnvolle Arbeitspakete beim Schreiben
 - Zuerst Stand der Forschung, Grundlagen und Methoden
 - Mit Fortschreiten der Arbeit: Evaluation und Diskussion
 - Am Ende: Einleitung und Zusammenfassung
 - Ganz zum Schluss: Abstract

STRUKTURIERUNG INNERHALB DER ARBEIT

Tipps

- Leser die Möglichkeit geben, das für ihn Interessante schnell in der Arbeit zu finden
 - Aussagekräftige Überschriften und Bildunterschriften, aussagekräftige Grafiken
- Das Inhaltskapitel spiegelt die Struktur eurer Arbeit wider
 - Überschriften sorgfältig formulieren
- Bei Unklarheiten zur Strukturierung: Abgeschlossene Absätze/Unterkapitel schreiben, die auch im Nachhinein leicht an die passende Stelle geschoben werden können

Tipps zur Strukturierung

Roter Faden

- Logischer Aufbau (wenn man die Arbeit am Stück liest)
- Einführungssätze in Kapitel, die erklären was jetzt kommt
- Inhalte nicht unnötig wiederholen
- Daran denken, dass Leser u.U. anderes Vorwissen und eine andere Erwartungshaltung hat als man selbst

Ergebnisorientiert

- keine Nacherzählung der Entwicklungsgeschiche sondern Präsentation der Lösung und Ergebnisse
- "Chronologische" Ordnung normalerweise nicht Relevant
 - Ausnahme möglicherweise: aufgrund dieses Ergebnisses wurde dann X (statt Y) gemacht

Top-down statt bottom-up

- Allgemein → Spezifisch
- So schreiben dass Leser den Ansatz bereits verstanden hat, wenn's ins Detail geht
- Also zuerst high-level Lösungsansätze vorstellen

Innerhalb der Kapitel:

- Unter jede Überschrift gehört auch Text, d.h., es sollte nicht direkt die Überschrift eines Unterabschnitts folgen
- Einen Abschnitt wie 2.1 nur, wenn es auch Abschnitt 2.2 gibt; ansonsten Unterteilung weglassen

SPRACHLICHES

Dos and Dont's (I)

- Schreibstil: Formell, sachlich, objektiv, nüchtern
- Klare Aussagen (Fakten!) formulieren
- Füllwörter vermeiden (eigentlich, irgendwie, sozusagen, ...)
- Schachtelsätze vermeiden
- Zeitform
 - Präsens: für allgemeingültige Aussagen (→ Großteil der Arbeit!)
 - Definitionen, publiziertes Wissen, Forschungsstand, verwendete Methoden, gezogene Schlüsse
 - Perfekt/ Präteritum: für vergangene Ereignisse
 - Erfindungen von Anderen, durchgeführte Experimente, erhaltene Resultate
- Anglizismen
 - Falls es etablierte deutsche Begriffe gibt, diese bevorzugt benutzen (Datei, Benutzer, Bildschirm)
 - Ansonsten die englischen Begriffe (Hidden Layer, Convolutional Neural Network, Deep Learning)
 verwenden, evtl. kursiv setzen

Dos and Dont's (II)

- Fachbegriffe konsistent verwenden
 - Verwendung mehrerer Synonyme, die Ähnliches bedeuten, vermeiden
- Abkürzungen konsistent verwenden
 - Bei der ersten Erwähnung: Namen ausschreiben und die Abkürzung in Klammern dahinter
 - Bsp: "In recent years, Convolutional Neural Networks (CNNs) have been shown to outperform many traditional image processing methods in areas such as ..."
- Hervorhebungen z.B. bei Einführung von Fachbegriffen/ Abkürzungen, für Anglizismen (Latex: \emph{})
- Keine Anführungszeichen für Worthervorhebungen
 - Anführungszeichen sind für wörtliche Zitate reserviert
- Vermeidung von *ich*, *wir* (*I*, *we*)
- Fußnoten sparsam einsetzen: alles Wichtige sollte im Fließtext stehen
- Auf korrekte Rechtschreibung und Grammatik achten

ZITATE

Ziele des Zitierens

- Den Leser auf verwandte Arbeiten hinweisen
- Den Leser auf weiterführende Informationsquellen zu einem Thema verweisen (z.B. Übersichtsartikel, Standardwerke)
- Abgrenzen eigener und fremder Beiträge, Wertschätzen der Arbeit Anderer (**gute wissenschaftliche Praxis**)
- Belegen von Aussagen:

Bei Anwendungen in der virtuellen Realität können Schwindelgefühle auftreten.

Nutzerstudien zeigen, dass bei Anwendungen in der virtuellen Realität Schwindelgefühle auftreten können [5,6,7].

Daumenregel: Alle Behauptungen, die ihr nicht selbst erarbeitet habt, sollten mit einem Zitat **belegt** werden.

Ausnahmen: Allgemeinwissen

Wissen, das in Lexika gefunden werden kann

Evtl. Studieninhalte (Formeln und ähnliches aber immer mit Quellenangabe, z.B. Buch!)

Zitierstil

Direktes Zitat (wörtlich): Selten bis gar nicht einsetzen (Ausnahme z.B. bei wörtlich übernommenen Definitionen)

"Nussecken zeichnen sich durch einen besonders hohen Nussanteil aus" [9].

Indirektes Zitat (in eigenen Worten): bevorzugt verwenden

In einer Studie wird der hohe Anteil an Nüssen in Nussecken positiv hervorgehoben [9].

Quellenverweis hinter der Aussage, die gemacht wird:

Käsekuchen ist besser als Erdbeertorte [10], wird allerdings von Nussecken und russischem Zupfkuchen noch übertroffen [11].

Nachname (et al.) als Subjekt verwenden:

Pfeiffer et al. [8] haben die Bekömmlichkeit von russischem Zupfkuchen in einer Nutzerstudie untersucht und bestätigt.

DON'T: Quellenverweis als Subjekt verwenden

[8] hat gezeigt, dass russischer Zupfkuchen besser ist als Erdbeertorte.

Quellenangaben

- Quellenangabe muss alle nötigen Informationen enthalten, um die Quelle aufzufinden (Nachvollziehbarkeit)
- Quellenverzeichnis verrät viel über die Qualität eurer Abschlussarbeit
- "Gute" vs. "schlechte" Quellen:
- Wissenschaftliche Veröffentlichungen (Peer-Reviewed!)
 - Von Zeitschriften (auch wenn elektronisch verfügbar)
 - Von Conference-Proceedings
- Bei einem Verlag publizierte Bücher

- Internet-Seiten, Blogs, Wiki-Einträge
 - Meist nicht "Peer-Reviewed"
- Nicht öffentlich verfügbare Quellen
 - Master/Bachelorarbeiten

- X
- Falls Inhalte aus solchen Quellen verwendet werden, müssen diese trotzdem zitiert werden!

- Im Quellenverzeichnis dürfen nur Quellen gelistet sein, die auch im Text referenziert werden
- Quellenverzeichnis vor Abgabe auf Flüchtigkeitsfehler überprüfen! (Groß-/Kleinschreibung, Umlaute, ...)

Tipps

- Quellen-Verwaltungssysteme erleichtern die Arbeit
 - o z.B. Referencer, Mendeley
- Bibtex
 - Oft findet man online fertige Bibtex-Einträge, die man einfach in die .bib Datei kopieren kann
 - Vorsicht: Bibtex erwartet alle Autoren mit "and" getrennt!
 - Vorsicht: Die Bibtex-Einträge, die Google Scholar generiert, können lücken- und fehlerhaft sein

GRAFIKEN, DIAGRAMME, TABELLEN

Negativbeispiel: irreführende Grafik

Quelle: U.S. Department of Education

- Suggeriert, dass die "Highschool Graduation Rate" sich verdoppelt hat, tatsächlich nur Veränderung um 7 Prozentpunkte
- Wofür steht eine Einheit (ein Buch)?
- Prozent wovon? Prozent aller Schüler?

Kleine Fehler können großen Schaden anrichten!

(Verwirrung stiften, mehr Fragen aufwerfen als beantworten, ...)

Grundlegendes

- Gute Grafiken sind extrem wertvoll in einer Abschlussarbeit!
- Gute Grafiken sind aussagekräftig und einfach verständlich, passen zum Textinhalt und helfen bei dessen Verständnis
- Auf jede Grafik und jede Tabelle im Text eingehen und verweisen
- Nicht zu viel und nicht zu wenig
 - Bei komplizierten Themen helfen Grafiken fast immer, aber auch beim Vorstellen eines Datensatzes (Beispielbilder)
 oder als Ablauf-Diagramme einer Methode
 - o Zu viele (oder zu große) Grafiken erwecken den Eindruck, dass der Autor die Arbeit künstlich verlängern will
 - Große Anhäufungen von Bildern (z.B. Vergleich vieler ähnlicher Bilder für die Evaluation) eher in den Anhang
- LaTeX positioniert Grafiken und Tabellen anhand gewisser Regeln, d.h., die Grafik taucht meistens nicht genau an der Stelle im Text auf, an der ihr sie einfügt

Grafiken erstellen

- Wenn möglich, immer Vektorgrafik verwenden
 - LaTeX versteht z.B. .ps und .pdf
 - Erstellung z.B. mit Inkscape oder PowerPoint
 - Alternativ kann mit *TikZ* direkt in LaTeX geplottet werden
- Auf angemessene Bild-/Tabellengröße achten
 - nicht zu groß, nicht zu klein
- Vorsicht: Wenn ihr sehr viele farbige Bilder in eurer Abschlussarbeit habt, kann der Druck teuer werden

Inkscape ist auf den Workstations installiert

Inkscape Logo by Andrew Michael Fitzsimon CC-BY-SA 3.0

TikZ:

- Code direkt im LaTeX-Dokument
- Kompiliert, wenn LaTeX kompiliert
- Grafiken können dadurch sozusagen perfekt in den Text passen
- Gut für Diagramme und Plots

Neighbourhood Definition by Pablo Castellanos GNU Free Document License 1.2

Bildunterschriften

- Erklärt den Inhalt, sodass die Grafik unabhängig vom Text verstanden werden kann, sofern die Konzepte im Text bereits verstanden wurden.
- Angemessene Länge:
 - Nicht zu kurz: Nicht einfach aufzählen, was in der Grafik sowieso zu sehen ist, sondern in Relation zum Inhalt des Fließtextes setzen.
 - Nicht zu lang: Nur die Grafik erklären, nicht das Konzept welches sie darstellt, nicht ganze Abschnitte des Fließtextes wiederholen
- Für Abbildungsverzeichnis kann eine Kurzform der Bildunterschrift angegeben werden:
 - \caption[Kurzform]{Komplette Bildunterschrift}
- Gilt analog für Tabellenüberschriften

Fig. 5. Maximum, median and minimum errors of the displacement fields when applying the DefNet64 to the VoxObjects dataset, plotted over the deformation of the data samples.

Fig. 5. The errors shown here are calculated during a forward pass of the VoxObjects dataset through the DefNet64 network. The VoxObjects dataset contains 5000 voxelized objects, each in a different deformation state. The DefNet64 architecture is based on UNet and the network has been trained with dropout layers activated in a first run and deactivated in a second run.

Rechtliches

Grundsätzlich sind Arbeiten anderer Leute (inklusive Bilder) urheberrechtlich geschützt. Einbindung von Grafiken aus anderen Arbeiten ist erlaubt für wissenschaftliche, nicht kommerzielle Forschung, *aber*:

- Es dürfen nur Bilder verwendet werden, die zur Erläuterung des eigenen Inhaltes dienen
- Bilder etc. dürfen nicht öffentlich zugänglich gemacht werden

Vorsicht: Soll die Arbeit veröffentlicht werden, muss die schriftliche Genehmigung der Urheber jedes zitierten Bildes etc. eingeholt werden (es sei denn, die beiliegende Lizenz sagt etwas anderes). Abgabe der BA/MA/DA zählt *nicht* als Veröffentlichung!

Vergleiche auch z.B. Urheberrechtsgesetz § 51 und § 60c

Die Quelle muss *immer* angegeben werden (meist in der Bildunterschrift)! Dies gilt auch, wenn eine eigene Grafik stark auf einer anderen basiert.

Daumenregel: Bildzitate sind in BA/MA/DA erlaubt, aber nur in Maßen. Eigene Grafiken sind oft besser (konsistenter Stil).

Fig. 6. "Copyright" by Randall Munroe [10]

[10] Randall Munroe. Copyright. Accessed online: https://xkcd.com/2023/ 23.8.2018.

Diagramme

Gute Diagramme zu entwerfen, ist eine Wissenschaft für sich

Gut überlegen, mit welcher Diagrammart die Daten am besten ausgedrückt werden können:

- Balkendiagramm?
- Liniendiagramm?
- Punktdiagramm?
- Oder doch eine Tabelle? Oder Confusion Matrix?
- Bitte keine Pie-Charts!

Wichtig:

- Alle Achsen beschriften
- Einheiten an alle Achsen
- Skalierung und Achsenabschnitt muss klar sein und darf nicht verwirren
- Legende wenn nötig

Weiterführende Links:

- Tipps zu verschiedenen Diagramm-Arten: https://www.data-to-viz.com/caveats.html
- Ten guidelines for effective data visualization in scientific publications: https://www.sciencedirect.com/science/article/pii/S1364815210003270

Was ist hier schief gegangen?

Beispiele gefunden auf: http://viz.wtf/

Tabellen

Welches Layout sieht besser aus?

	abstract	realized
shift operator	q	$T_1(x) = x$
shift operation	♦	
space mark	t_n	C_n
k-fold shift operator	$T_k(q)$	$T_k(x)$
space shift	$q \diamond t_n = \frac{1}{2}(t_{n+1} + t_{n-1})$	$x \cdot C_n = \frac{1}{2}(C_{n+1} + C_{n-1})$
signal	$\sum s_n t_n$	$\sum s_n C_n(x)$
fi lter	$\sum h_k T_k(q)$	$\sum h_k T_k(x)$

concept	abstract	realized
shift operator	q	$T_1(x) = x$
shift operation		
space mark	t_n	C_n
k-fold shift operator	$q_k = T_k(q)$	$T_k(x)$
space shift	$q \diamond t_n = \frac{1}{2}(t_{n+1} + t_{n-1})$	$x \cdot C_n = \frac{1}{2}(C_{n+1} + C_{n-1})$
signal	$\sum s_n t_n$	$\sum s_n C_n(\tilde{x})$
filter	$\sum h_k T_k(q)$	$\sum h_k T_k(x)$

Viel Erfolg!

WWW.PHDCOMICS.COM

Tipps für noch mehr Input

- Andere Korrektur lesen lassen (Kommilitonen und Fachfremde)
- Beispiel-Abschlussarbeiten ansehen (TCO-Wiki)
- (Gute!) (Journal-)Paper lesen
 - Ähnlicher Aufbau, ähnlicher Sprachgebrauch
- Weiterführende Links
 - Tipps und Regeln vom Lehrstuhl für Computergraphik und Visualisierung (TU Dresden)
 https://tu-dresden.de/ing/informatik/smt/cgv/ressourcen/dateien/materialien/howto-abschlussarbeit.pdf
 - Tilo Gockel: Form der wissenschaftlichen Ausarbeitung
 https://link.springer.com/book/10.1007%2F978-3-642-13907-9
 - Überblick Wissenschaftliches Schreiben (htw saar)
 http://swl.htwsaar.de/lehre/ss17/iidm/slides/2017-sem-iddm-kap2-wissenschaftliches-schreiben.pdf
 - Brett Mensh und Konrad Kording: Ten simple rules for structuring papers (eher für wissenschaftliche Paper)
 http://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005619&type=printable

