IN THE CLAIMS

(Currently Amended) A method for isolating a channel of interest from a set of channels

Please amend the claims as follows, substituting any amended claim(s) for the corresponding pending claim(s):

1 1.

4

5

the channel of interest

- 2 from a plurality of multimedia sources that include a video network and a local media player, in a multimedia system that includes a multimedia server that is coupled to the plurality of 3 multimedia sources, wherein at least one of the set of channels includes data from the local 4 media player, the method comprises: 5 6 receiving the set of channels as a single time division multiplexed stream of data packets 7 via a communication path from the multimedia server; 8 interpreting segments of the stream of data packets to identify data of the channel of interest by identifying data packets corresponding to the channel of interest from the single 9 10 stream of data packets; 11 interpreting the data of the channel of interest to determine type of the data; 12 processing the data of the channel of interest based on the type of data to produce processed data including: 13 14 when the type of data is video data, converting the data of the channel of 15 interest into at least one of: YUV data and RGB data; and storing the at least one of the YUV data and the RGB data in a frame 16 17 buffer to produce the processed data: and 18 providing the processed data for display. (Currently Amended) The method of claim 1 further comprises; receiving the stream of 1 2. data in packets that wherein the data packets include a header portion and a payload portion; 3 and wherein identifying the data packets corresponding to the channel of interest includes:
- 1 3. (Original) The method of claim 2, wherein the interpreting the data to determine the type
 2 of data further comprises:

interpreting the header portion to determine which of the data packets contain the data of

to determine the type of data. 4 1 2. 4. (Cancelled) 1 5. (Previously Presented) The method of claim 1, wherein the providing the processed data further comprises: 2 retrieving the at least one of the YUV data and the RGB data from the frame buffer at a 3 4 display rate to produce retrieved display data; and rendering the retrieved display data for display. 5 1 6. (Previously Presented) The method of claim 1 further comprises: 2 Huffman decoding the video data to produce Huffman decoded data; de-zigzagging the Huffman decoded data to produce de-ZZ data: 3 4 de-quantizing the de-ZZ data to produce de-Q data; 5 performing an inverse discrete cosine transform function upon the de-O data to produce IDCT data: and 6 7 performing at least one of motion compensation and scaling upon the IDCT data to 8 produce the YUV data. 7. 1 (Original) The method of claim 6 further comprises: 2 converting the YUV data into the RGB data; and 3 storing the at least one of the YUV data and the RGB data. 1 8. (Original) The method of claim 3, wherein the processing the data further comprises: 2 when the type of data is audio data, converting the data of the channel of interest into pulse code modulation (PCM) data; and 3 4 storing the PCM data in a frame buffer to produce the processed data. 1

interpreting at least one of: the header portion and a header section of the payload portion

3

2 9. (Original) The method of claim 8, wherein the providing the processed data further 3 comprises: retrieving the PCM data from the frame buffer at a display rate to produce retrieved 4 5 display data; and 6 providing the retrieved display data to at least one speaker assembly. 1 10. (Original) The method of claim 3, wherein the processing the data further comprises: 2 when the type of data is application data, storing the application data in memory to produce the processed data. 3 1 11. (Original) The method of claim 10, wherein the providing the processed data further 2 comprises: 3 retrieving the processed data from memory; 4 providing the processed data to a processor: 5 generating, by the processor, video data from the processed data; and providing the video data to a display. 6 2 12. (Cancelled) 13. 1 (Original) The method of claim 1 further comprises: transmitting a channel selection request, wherein the channel selection request identifies 2 3 the channel of interest. 1 14. (Original) The method of claim 1, wherein the receiving the stream of data further 2 comprises: 3 decoding the stream of data to recapture data of a channel of interest. 1 15. (Original) The method of claim 14, wherein the decoding further comprises at least one 2. of: 3 multilevel decoding of the stream of data; 4 non return to zero (NRZ) decoding of the stream of data; 5 Manchester decoding of the stream of data: 6 block decoding of the stream of data; and

7 nB/mB decoding of the stream of data, where n < m.

1

2 16-41. (Cancelled)

5	the Internet, in a multimedia system that includes a multimedia server that is coupled to the
6	plurality of media sources, the apparatus comprises:
7	processing module; and
8	memory operably coupled to the processing module, wherein the memory includes
9	operational instructions that cause the processing module to:
10	receive the set of channels as a single time division multiplexed stream of data
11	packets as a stream of data from the multimedia server via a communication path;
12	interpret segments of the stream of data packets to identify data of the channel of
13	interest by identifying data packets corresponding to the channel of interest from the
14	single stream of data packets;
15	interpret the data of the channel of interest to determine type of the data;
16	process the data of the channel of interest based on the type of data to produce
17	processed data including:
18	when the type of data is audio data, converting the data of the channel of
19	interest into pulse code modulation (PCM) data; and
20	storing the PCM data in a frame buffer to produce the processed data; and
21	provide the processed data for display.
1	43. (Currently Amended) The apparatus of claim 42, wherein the memory further comprises
2	$operational\ instructions\ that\ cause\ the\ processing\ module\ to:\ receive\ the\ stream\ of\ data\ in\ packets$
3	that include a header portion and a payload portion $\hat{\tau}_a$ and wherein identifying the data packets
4	corresponding to the channel of interest includes:
5	interpret the header portion to determine which of the data packets contain the data of the
6	channel of interest.
1	44. (Original) The apparatus of claim 43, wherein the memory further comprises operational
2	instructions that cause the processing module to interpret the data to determine the type of data
3	by:
4	interpreting at least one of: the header portion and a header section of the payload portion
5	to determine the type of data.
1	

42. (Currently Amended) An apparatus for isolating a channel of interest from a set of channels from a plurality of media sources including a media network, a local media player and

3 42.

- 2 45. (Original) The apparatus of claim 44, wherein the memory further comprises operational
- 3 instructions that cause the processing module to process the data by:
- 4 when the type of data is video data, converting the data of the channel of interest into at
- 5 least one of: YUV data and RGB data; and
- 6 storing the at least one of the YUV data and the RGB data in a frame buffer to produce
- 7 the processed data.
- 1 46. (Original) The apparatus of claim 45, wherein the memory further comprises operational
- 2 instructions that cause the processing module to provide the processed data by:
- 3 retrieving the at least one of the YUV data and the RGB data from the frame buffer at a
- 4 display rate to produce retrieved display data; and
- 5 rendering the retrieved display data for display.
- 1 47. (Original) The apparatus of claim 45, wherein the memory further comprises operational
- 2 instructions that cause the processing module to:
- 3 Huffman decode the video data to produce Huffman decoded data;
- 4 de-zigzag the Huffman decoded data to produce de-ZZ data;
- 5 de-quantize the de-ZZ data to produce de-Q data;
- 6 perform an inverse discrete cosine transform function upon the de-O data to produce
- 7 IDCT data: and
- 8 perform at least one of motion compensation and scaling upon the IDCT data to produce
- 9 the YUV data.
- 1 48. (Original) The apparatus of claim 47, wherein the memory further comprises operational
- 2 instructions that cause the processing module to:
- 3 convert the YUV data into the RGB data; and
- 4 store the at least one of the YUV data and the RGB data.

1

- 2 49. (Cancelled)
- 1 50. (Previously Presented) The apparatus of claim 42, wherein the memory further comprises
- 2 operational instructions that cause the processing module to provide the processed data:
- 3 retrieving the PCM data from the frame buffer at a display rate to produce retrieved
- 4 display data; and
- 5 providing the retrieved display data to at least one speaker assembly.
- 1 51. (Original) The apparatus of claim 44, wherein the memory further comprises operational
- 2 instructions that cause the processing module to process the data by:
- 3 when the type of data is application data, storing the application data in memory to
- 4 produce the processed data.
- 1 52. (Original) The apparatus of claim 51, wherein the memory further comprises operational
- 2 instructions that cause the processing module to provide the processed data by:
- 3 retrieving the processed data from memory;
- 4 providing the processed data to a processor;
- 5 generating, by the processor, video data from the processed data; and
- 6 providing the video data to a display.
- 1
- 2 53. (Cancelled)
- 1 54. (Original) The apparatus of claim 42, wherein the memory further comprises operational
- 2 instructions that cause the processing module to:
- 3 transmit a channel selection request, wherein the channel selection request identifies the
- 4 channel of interest.
- 1 55. (Original) The apparatus of claim 42, wherein the memory further comprises operational
- 2 instructions that cause the processing module to receive the stream of data:
- 3 decoding the stream of data to recapture data of a channel of interest.
- 1 56. (Original) The apparatus of claim 55, wherein the memory further comprises operational
- 2 instructions that cause the processing module to decode by at least one of:

- 3 multilevel decoding of the stream of data;
- 4 non return to zero (NRZ) decoding of the stream of data;
- 5 Manchester decoding of the stream of data;
- 6 block decoding of the stream of data; and
- 7 nB/mB decoding of the stream of data, where n < m.

2 57 -74. (cancelled)

1