EA773 - Laboratório de Circuitos Lógicos Relatório Roteiro 4

Autor: Mateus Henrique Silva Araújo

RA: 184940

Data: 20/10/2022

1. Projeto 1: Decodificador de display de 7 segmentos

1.1. Escopo:

Projeto de um circuito combinacional o qual implemente um decodificador para display de 7 segmentos, ou seja, o qual, dada uma entrada binária, converta-a na representação desse número em hexadecimal para exibição em um display de 7 segmentos.

1.2. Especificação de alto-nível:

Entrada:

 $x \in \{0,1,2,3,...,15\};$

Saída:

 $z \in \{0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F\}.$

Função:

z = representação em hexadecimal de x no display de 7 segmentos.

1.3. Especificação binária:

Entrada:

$$\underline{x} = (x_3, x_2, x_1, x_0) \text{ com } x_i \in \{0,1\} \text{ e } i = 0, \dots, 3.$$

Saída:

$$\underline{z} = (z_6, z_5, z_4, z_3, z_2, z_1, z_0) \text{ com } x_i \in \{0,1\} \text{ e } i = 0, \dots, 6.$$

Função: Tabela verdade

x_3	x_2	x_1	x_0	Z_6	Z_5	Z_4	Z_3	Z_2	z_1	z_0
0	0	0	0	1	0	0	0	0	0	0
0	0	0	1	1	1	1	1	0	0	1
0	0	1	0	0	1	0	0	1	0	0
0	0	1	1	0	1	1	0	0	0	0
0	1	0	0	0	0	1	1	0	0	1
0	1	0	1	0	0	1	0	0	1	0
0	1	1	0	0	0	0	0	0	1	0
0	1	1	1	1	1	1	1	0	0	0

1	0	0	0	0	0	0	0	0	0	0
1	0	0	1	0	0	1	1	0	0	0
1	0	1	0	0	0	0	1	0	0	0
1	0	1	1	0	0	0	0	0	1	1
1	1	0	0	1	0	0	0	1	1	0
1	1	0	1	0	1	0	0	0	0	1
1	1	1	0	0	0	0	0	1	1	0
1	1	1	1	0	0	0	1	1	1	0

1.4. Minimizações:

<i>z</i> ₆ :	$x_1'x_0'$	$x_1'x_0$	x_1x_0	x_1x_0'
$x_3'x_2'$	1	1	0	0
$x_3'x_2$	0	0		0
x_3x_2	1	0	0	0
x_3x_2'	0	0	0	0

$$z_6 = x_3' x_2' x_1' + x_3 x_2 x_1' x_0' + x_3' x_2 x_1 x_0$$

Z_4 :	$x_1'x_0'$	$x_1'x_0$	x_1x_0	x_1x_0'
$x_3'x_2'$	0	(1)	1	0
$x_3'x_2$	1	1	1	0
x_3x_2	0	0	0	0
x_3x_2'	0	\bigcap	0	0

$$z_4 = x_3' x_2 x_1' + x_2' x_1' x_0 + x_3' x_0$$

<i>z</i> ₂ :	$x_1'x_0'$	$x_1'x_0$	x_1x_0	x_1x_0'
$x_3'x_2'$	0	0	0	1
$x_3'x_2$	0	0	0	0
x_3x_2	Ŋ	0	Ы	
x_3x_2'	0	0	0	0

$$z_2 = x_3' x_2' x_1 x_0' + x_3 x_2 x_1 + x_3 x_2 x_0'$$

<i>z</i> ₀ :	$x_1'x_0'$	$x_1'x_0$	x_1x_0	x_1x_0'
$x_3'x_2'$	0	1	0	0
$x_3'x_2$		6	0	0
x_3x_2	0		0	0
x_3x_2'	0	0	(1)	0

<i>z</i> ₅ :	$x_1'x_0'$	$x_1'x_0$	x_1x_0	x_1x_0'
$x_3'x_2'$	0	1		1
$x_3'x_2$	0	0	1	0
x_3x_2	0		0	0
x_3x_2'	0	0	0	0

$$z_5 = x_3 x_2 x_1' x_0 + x_3' x_2' x_0 + x_3' x_1 x_0 + x_3' x_2' x_1$$

<i>z</i> ₃ :	$x_1'x_0'$	$x_1'x_0$	x_1x_0	x_1x_0'
$x_3'x_2'$	0	1	0	0
$x_3'x_2$	1	0	1	0
x_3x_2	0	0	1	0
x_3x_2'	0		0	

$$z_3 = x_3' x_2 x_1' x_0' + x_3 x_2' x_1 x_0' + x_2' x_1' x_0 + x_2 x_1 x_0$$

z_1 :	$x_1'x_0'$	$x_1'x_0$	x_1x_0	x_1x_0'
$x_3'x_2'$	0	0	0	0
$x_3'x_2$	0	1	0	1
x_3x_2	h	0	1	1
x_3x_2'	0	0	1	0

$$z_1 = x_3' x_2 x_1' x_0 + x_3 x_2 x_0' + x_3 x_1 x_0 + x_2 x_1 x_0'$$

$$z_0 = x_3' x_2 x_1' x_0' + x_3' x_2' x_1' x_0 + x_3 x_2 x_1' x_0 + x_3 x_2' x_1 x_0$$

1.5. Esquemático do circuito:

Seguindo as equações de minimização mostradas acima, o circuito do decodificador para display de 7 segmentos foi montado e seu diagrama esquemático está disposto na figura 1. É válido ressaltar que, com o intuito de deixar o circuito final o mais semelhante possível ao apresentado no roteiro da atividade, a saída z teve seu nome alterado para seg.

Figura 1: Diagrama esquemático do circuito do decodificador para display de 7 segmentos. Esse circuito será utilizado no circuito final dessa atividade, por isso ele foi encapsulado em um módulo e nomeado como "decodificador-7seg".

1.6. Simulações:

Como todos os circuitos desse projeto estão submetidos a clocks manuais, somente simulações funcionais foram efetuadas. O circuito do decodificador passou por uma simulação na qual todos as combinações possíveis de entrada foram consideradas. O resultado dela está disposto na figura 2.

Figura 2: Simulação funcional do circuito do decodificador para display de sete segmentos. Nela é possível notar que o circuito funciona de acordo com o previsto pela tabela verdade apresentada anteriormente, ou seja, a saída do circuito é a representação no display da conversão para hexadecimal da entrada binária.

2. Projeto 2: Módulo "bus_tristate"

2.1. Escopo:

Projeto de um circuito combinacional que implemente um barramento de 4 bit, controlado por meio de buffers tri-state ligado a um único sinal de controle. Este barramento deve apresentar o valor de sua entrada caso o sinal de controle esteja ativo, ficando em estado de alta impedância, caso contrário.

2.2. Especificação de alto-nível:

Entrada:

$$\underline{in} = (in_3, in_2, in_1, in_0), \text{ com } in_k \in \{0,1\} \text{ e } k = 0, \dots, 3;$$

 $e \in \{0,1\} \text{ (entrada de controle)}.$

Saída:

$$\underline{out} = (out_3, out_2, out_1, out_0), \text{ com } out_k \in \{0,1\} \text{ e } k = 0, \dots, 3.$$

Função:

$$out_k = \begin{cases} in_k & \text{,se } e = 1 \\ Z & \text{,caso contrário} \end{cases}$$
, com $k = 0, \dots, 3$ e Z sendo o estado de alta impedância.

2.3. Especificação binária:

Como o circuito é muito simples e o estado de alta impedância não apresenta representação binária adequada, a especificação binária acaba sendo a mesma que a especificação de alto nível.

2.4. Minimizações:

A única forma de implementar o circuito que descreve a função apresentada na especificação é por meio do uso de buffers tri-state. Como cada bit do a barramento é independente dos demais, basta ligar cada um deles a um buffer desse tipo e associar o sinal de controle dele ao sinal de enable do barramento. Dessa forma, nenhuma minimização será necessária.

2.5. Esquemático do circuito:

Seguindo o apresentado acima, o circuito do módulo foi implementado e seu esquemático está disposto na figura 3.

Figura 3: Diagrama esquemático do módulo "bus_tristate". Este módulo também será utilizado no circuito final desta atividade.

2.6. Simulações:

O circuito deste módulo passou por uma simulação funcional simples, a qual buscou comprovar a capacidade dele de descrever o comportamento de três estados desejado. O resultado dessa simulação está disposto na figura 4.

Figura 4: Simulação funcional do módulo "bus_tristate". Nela é possível notar que o barramento disponibiliza os sinais de sua entrada somente se o valor da entrada de controle é 1, ficando em alta impedância (Z) caso ele seja igual a zero. Tal comportamento é exatamente o descrito pela especificação do circuito

3. Projeto 1: ULA Estendida

3.1. Escopo:

Projeto de um circuito sequencial capaz de implementar uma unidade lógicoaritmética com capacidade tanto de armazenar seus operandos e resultados em registradores, quanto de exibi-los em displays de 7 segmentos. Esse circuito utilizará não só dos dois módulos desenvolvidos nessa atividade, mas também dos módulos "ULA" e "registrador 4 bits" construídos em atividades anteriores.

3.2. Especificação de alto-nível:

Entradas:

 $R0W1 \in \{0,1\}$ (entrada que controla o barramento de dados);

 $\underline{d} = (d_3, d_2, d_1, d_0)$, com $d_i \in \{0,1\}$ e i = 0, ..., 3 (entrada que insere valores no barramento de dados);

 LD_A , CLR_A , $G_A \in \{0,1\}$ (entradas de controle para o registrador A);

 LD_B , CLR_B , $G_B \in \{0,1\}$ (entradas de controle para o registrador B);

 LD_{AC} , CLR_{AC} , $G_{AC} \in \{0,1\}$ (entradas de controle para o registrador acumulador);

 LD_{FL} , CLR_{FL} , $G_{FL} \in \{0,1\}$ (entradas de controle para o registrador de flags);

Saídas:

 $\underline{ACM} = (ACM_3, ACM_2, ACM_1, ACM_0)$, com $ACM_i \in \{0,1\}$ e i = 0, ..., 3 (valor presente no registrador acumulador);

 $\underline{FLAGS} = (FLAGS_3, FLAGS_2, FLAGS_1, FLAGS_0), \text{ com } FLAGS_i \in \{0,1\} \text{ e } i = 0, ..., 3 \text{ (valor presente no registrador de flags)}$

 $\underline{DISP0} = (DISP0_6, DISP0_5, DISP0_4, DISP0_3, DISP0_2, DISP0_1, DISP0_0)$, com $DISP0_i \in \{0,1\}$ e i = 0, ..., 6 (saída para apresentação no display de 7 segmentos do valor presente no barramento em hexadecimal);

 $\underline{DISP1} = (DISP1_6, DISP1_5, DISP1_4, DISP1_3, DISP1_2, DISP1_1, DISP1_0),$ com $DISP1_i \in \{0,1\}$ e i = 0, ..., 6 (saída para apresentação no display de 7 segmentos do valor presente no registrador acumulador em hexadecimal);

 $\underline{DISP2} = (DISP2_6, DISP2_5, DISP2_4, DISP2_3, DISP2_2, DISP2_1, DISP2_0)$, com $DISP2_i \in \{0,1\}$ e i = 0, ..., 6 (saída para apresentação no display de 7 segmentos do valor presente no registrador B em hexadecimal);

 $\underline{DISP3} = (DISP3_6, DISP3_5, DISP3_4, DISP3_3, DISP3_2, DISP3_1, DISP3_0)$, com $DISP3_i \in \{0,1\}$ e i=0,...,6 (saída para apresentação no display de 7 segmentos do valor presente no registrador A em hexadecimal);

Função:

Como o funcionamento do circuito é complexo, ele será descrito textualmente, ao invés de usando equações, com intuito de manter a clareza e facilitar o entendimento. Dito isto, temos que:

- O sinal *R0W1* deve controlar se a ULA e os registradores A e B irão receber do barramento os dados da entrada *d* ou o do acumulador AC.
- A entrada <u>d</u> atuará tanto como fornecedora de valores para os registradores A e B, quanto para seletora das operações executadas pela ULA (caso permitida, pela entrada *R0W1*, de escrever no barramento).
- As entradas do tipo *LD* devem controlar o carregamento de dados para o seu registador correspondente. O valor armazenado do registrador só deve se alterar caso haja um pulso de clock e *LD* for igual a 1.
- As entradas do tipo *G* servirão como clocks de cada registrador. O valor armazenado no registrador correspondente só será alterado para o valor que ele recebe em sua entrada caso ocorra um pulso na entrada *G* e sua entrada *LD* seja igual a 1.
- As entradas do tipo *CLR* funcionam como sinais de limpeza síncrona para cada registrador, ou seja, o valor presente no registrador será zerado caso sua entrada *CLR* seja 1 e ocorra um pulso de clock.
- A ULA interna do circuito receberá como operandos os valores dos registradores A (ligado a entrada <u>x</u>) e B (ligado a entrada <u>y</u>) e terá sua operação (entrada <u>f</u>) selecionada pelo valor disponível no barramento. O resultado da operação ficará disponível (por meio da saída <u>s</u>) para ser armazenado no registrador acumulador, enquanto as bandeiras de status (saídas C, V, N e Z da ULA) poderão ser guardadas no registrador de flags. A ULA terá as seguintes operações disponíveis:

Código $(f_3f_2f_1f_0)$	Nome	Operação	Descrição
000x	ADD	$\underline{s} = \underline{x} + \underline{y}$	Adição de x com y
001x	ADDC	$\underline{s} = \underline{x} + \underline{y} + c_i$	Adição de x com y com carry
010x	SUB	$\underline{s} = \underline{x} - \underline{y}$	Subtração y de x
0110	INC	$\underline{s} = \underline{x} + 1$	Incremente unitário de x
0111	DEC	$\underline{s} = \underline{x} - 1$	Decremento unitário de x
1000	NEG	$\underline{s} = -\underline{x}$	Negação aritmética de x em complemento de 2

- A saída <u>ACM</u> será ligada na saída do registrador acumulador para poder apresentar diretamente, em binário, o valor armazenado no acumulador da ULA.
- A saída <u>FLAGS</u> será ligada na saída do registrador de flags para poder apresentar seu valor.
- As saídas do tipo DISP serão utilizadas para apresentar os valores dos registradores A, B e AC, bem como o valor disponível no barramento, em displays de 7 segmentos. Para isso, estes sinais primeiro são inseridos em decodificadores, os quais geram sua representação adequada, para depois serem enviados para sua saída respectiva.

3.3. Especificação binária e minimizações:

As entradas e saídas apresentadas na especificação de alto-nível já estão codificadas em binário, portanto não é necessário redefini-las na especificação binária. Quanto à forma binária da função do circuito ULA estendida e as minimizações decorrentes dela, como a descrição de seu funcionamento já é consideravelmente complexa mesmo em linguagem de alto-nível e tal circuito será quase totalmente implementado a partir de módulos já previamente especificados e minimizados, torna-se mais intuitivo implementar o circuito a partir do funcionamento descrito anteriormente, tomando como base o funcionamento binário de cada módulo, do que tentar aglutinar todos esses comportamentos em uma só descrição.

3.4. Esquemático do circuito:

O circuito da ULA estendida foi implementado seguindo as especificações descritas anteriormente, bem como o modelo disponível no roteiro da atividade. Seu diagrama esquemático está disposto na figura 5.

Figura 5: Diagrama esquemático do circuito ULA estendida. Esse circuito implementa a ULA descrita na especificação do projeto, usando, para tal, dos módulos "registrador_4_bits", "ULA", "decodificador_7seg" e "bus_tristate" implementados nesta e em outras atividades. Esse circuito também será encapsulado em um módulo, chamado de "bus_ula", para ser testado na FPGA.

3.5. Simulações:

O circuito da ULA estendida passou por simulações funcionais que testaram cada uma das operações disponíveis com diferentes operandos. Essas simulações estão dispostas nas figuras 6 e 7.

Figura 6: Simulação funcional do circuito ULA estendida. Nela são testadas as operações ADD (intervalo entre 0 μs e 3 μs), com os operandos A = 10 e B = 9; ADDC (intervalo entre 3 μs e 6 μs), com os operandos A = 3 (injetado a partir do acumulador), B = 5 e com a flag de carry da operação anterior; SUB (intervalo entre 6 μs e 8 μs), com os operandos A=4 e B=5 (mantido); e INC (intervalos entre 8 μs e 10 μs), com o operando A = −1 (injetado a partir do acumulador). Observando atentamente cada valor de saída, é possível notar que o comportamento obtido é o mesmo do que o desejado na especificação do circuito.

Figura 7: Simulação funcional do circuito ULA estendida. Nela são testadas as operações DEC (intervalo entre $0 \mu s$ a $1 \mu s$), com o operando A = 0; NEG (intervalo entre $1 \mu s$ e $3 \mu s$), com o operando A = 9; e CMPL (intervalo entre $3 \mu s$), com o operando A = 9 novamente. Observando atentamente cada valor de saída, é possível notar que o comportamento obtido é o mesmo do que o desejado na especificação do circuito.

4. Projeto 4: Circuito de teste da ULA

Este projeto é a parte final da atividade, consistindo, basicamente, em encapsular o circuito anterior em um módulo para testá-lo na FPGA, usando da associação de entradas e pinos apresentada no roteiro. Como se trata do mesmo circuito de ULA estendida, é desnecessário repetir seu escopo, especificações e simulações. Dessa forma, na figura 8 é apresentada o diagrama final do circuito de teste da ULA (circuito "bus_ula_teste"). Esse módulo foi testado com os mesmos casos apresentados nas simulações anteriores.

Figura 8: Diagrama esquemático do circuito de teste da ULA estendida. Como dito anteriormente, a ULA estendida foi encapsulada no módulo denominado de "bus_ula" e a associação de entradas e pinas para teste foi adotada de acordo com o apresentado no roteiro da atividade. Os testes aplicados na placa de desenvolvimento para esse circuito foram idênticos aos simulados para a ULA estendida e provocaram resultados análogos.