

Lecture 2.3: Example: Initial value problems in SHM

University of Calgary

Dr. Christopher Cully

Example

A mass m=20.0 kg is attached to a spring with constant k=3000 N/m.

At t=0, x=+20 cm (measured from equilibrium) and v=-8 m/s.

Find: ω , ϕ_0 , A

Find: ω .

Use $\omega^2 = k/m$.

$$\omega = \sqrt{\frac{k}{M}} = \sqrt{\frac{3000 \, N/m}{20 \, kg}} = 12.247 \, \text{rad/s} \qquad x = 0$$
 $x(t=0) = 20 \, \text{cm}$

Find: ϕ_0

Start with basic equations for y,v:

$$\begin{cases} x(t) = A\cos(\omega t + \phi_0) \\ v(t) = -A\omega\sin(\omega t + \phi_0) \end{cases}$$

Use the initial condition at t=0:

$$\begin{cases} x(0) = A\cos(\phi_0) \\ v(0) = -A\omega\sin(\phi_0) \end{cases}$$

v(t=0) = -8 m/s

k=3000 N/m

Divide the two equations to get:

$$\frac{-A\omega\sin\phi_0}{A\cos\phi_0} = \frac{v(0)}{x(0)} = \frac{-8 \, m/s}{20 \, cm}$$

$$\omega\tan\phi_0 = 40 \, s^{-1}$$

$$\phi_0 = \tan^{-1}\left[\frac{40 s^{-1}}{12.247 \, s^{-1}}\right]$$

$$\phi_0 = \tan^{-1}(3.27)$$

$$\phi_0 = \tan^{-1}(3.27)$$

But **BE CAREFUL HERE**:

$$\tan^{-1}(3.27) = 1.27 + n\pi$$

How to choose n?

Only one solution fits the signs on the initial conditions. We want:

$$x(0) = A \cos(\phi_0) = +20 \text{ cm}$$

BUT

$$cos(1.27) = 0.296$$

 $cos(1.27 \pm \pi) = -0.296$

The initial position should be positive, so choose:

$$\phi_0 = 1.27 \text{ rad} = 73^\circ$$

Find: *A*.

Back-substitute

$$x(0) = A\cos(\phi_0)$$

 $A = \frac{x(0)}{\cos(\phi_0)} = \frac{20 cm}{\cos(1.27)}$

A = 68 cm