6.2

6.2.1

	X_1	X_2	Y
1	2	6	23
2	8	9	83
3	6	8	63
4	10	10	103

 X_1, X_2 1 .(

 $|XX| = 0 \left(\hat{\beta} = (X'X)^{-1}X'\underline{y} \right) .$

.

 $\hat{Y} = -87 + X_1 + 18X_2 \; , \quad \hat{Y} = -7 + 9X_1 + 2X_2 \label{eq:Y}$ $7 \nmid \qquad \qquad . \label{eq:Y}$

가 .

7\ () $|XX| \approx 0$. ($|XX| \approx 0$:

가 . 가 가 . $(X_k \approx aX_j)$

0 .) $(X'X)^{-1} = \frac{1}{|X'X|} adj(X'X)$

가

 $(XX)^{-1}$?\\dagger\dagger\dagger\beta\dagger\beta\dagger\dagge

 $s_{\hat{\beta}}^2 = MSE(X'X)^{-1} \qquad 7$

가) Ft-

6.2.2

X

가

가 . (1)

PIQ 가 (VIQ, PIQ . (2) 가 2 $(X_k = a_1 X_i + a_2 X_l + a_3 X_m + ...)$ (VIF) (condition index) (Variation Index Factor) $VIF_k = \frac{1}{(1-R_{\perp}^2)}$ R_k^2 $X_k = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_{k-1} X_{k-1} + \dots + \beta_{k+1} X_{k+1} + \beta_p X_p + e$ (X_k , (VIF) VIF_k 가 X_k 가 가 가 10 (condition index) $Condition_k = \sqrt{\frac{\lambda_{\max}}{\lambda_k}}$ 1 (XX): correlation transformation) 가 (eigen value) (가 (가 10 가) 가 가 100 가 가 (characteristic equation) $|A_{n\times n} - \lambda I_n| = \underline{0}$ $\lambda_1, \lambda_2, ..., \lambda_n$ (eigen value, characteristic value, latent value) $A\underline{e}_i = \lambda_i \underline{e}_i$ (eigen vector) Α $A\underline{e}_i=\lambda_i\underline{e}_i$ XX,

가 가 (Diagnosable).
$$A = U^{-1}DU$$
 D 가 A U

orthogonal . $e_i e_j = 0 \text{ for } i \neq j$

0

0

가

full-

rank가

$$\underline{\mu} = \begin{bmatrix} 10 \\ 5 \end{bmatrix},$$

$$\Sigma = \begin{bmatrix} 9 & 2 \\ 2 & 4 \end{bmatrix}$$

$$\Sigma = \begin{bmatrix} 9 & 2 \\ 2 & 4 \end{bmatrix}$$

$$\lambda_1 = 9.7$$
, $\lambda_2 = 3.2$

$$\underline{a}_1 = \begin{bmatrix} 0.94 \\ 0.33 \end{bmatrix}, \quad \underline{a}_2 = \begin{bmatrix} -0.33 \\ 0.94 \end{bmatrix}$$

EXAMPLE 6-1

(VIQ, PIQ, MRI)

.

MRI_IQ.txt

□PROC REG DATA=MRI; MODEL FSIQ=PIQ VIQ MRI/VIF COLLIN; RUN:

			Paramet	er Estimates			
Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > [t]	Variance Inflation
Intercept PIQ VIQ MRI	Intercept PIQ VIQ MRI	1 1 1 1	-3,26299 0,54290 0,57462 -0,00000889	3,48702 0,01995 0,01908 0,0000411	-0.94 27.21 30.12 -2.16	0.3560 <.0001 <.0001 0.0375	0 2.66837 2.51425 1.16665
VIF							
			Collinea	rity Diagnost	ics		
Number	Figenya Iue			P	roportion (of Variation-	 MI

```
Number
                       Eigenvalue
                                                      Index
                                                                     Intercept
                                                                                                    PIŲ
                                                1.00000
11.25746
21.26036
36.62942
                                                                   0.00038561
0.05650
0.00520
0.93792
                                                                                         0.00091212
0.10702
0.83883
0.05324
                                                                                                                0.00098204
0.13381
0.85393
0.01127
                            3.95707
0.03122
0.00875
0.00295
                                                                                                                                      0.00033642
               1
2
3
4
                                                                                                                                           0.03595
0.00264
                                                                                                                                           0.96107
                                               가 10
                                                                                                          가
                                                    1-2
                                   가
                                                                             (
                                                                                                 1
                                                                                                           100%)
   가
                                                                                                                   가
                              가
                                                                                      가
     MRI
                                               (96\%)
                                                                                                       . 3
                                                                                                                         (
                                                                                                                                     )
                                                                                    PIQ
                                                                                                                                                 가
PIQ, VIQ
                                           83%, 85%
                                                                                                VIQ
```

6.3

6.3.1

가 가 가 .

MRI_IQ (MRI, VIQ, PIQ) VIQ, PIQ
가 VIQ, PIQ 가?
. ? 가

proc corr data=mri nosimple;
 var VIQ PIQ Weight Height MRI;
 with FSIQ;
run;

```
VIQ
       PIQ
                           FSIQ
                                              가
                                                                                      ) VIQ
            PIQ
                                                                     PIQ
                                                VIQ
                                                            가
                                                                                 FSIQ
                                                      PIQ
        VIQ
                  PIQ가
                        VIQ
                                      PIQ
                                                 Weight
                                                               Height
                                                                                MRT
                                                                            0.33371
0.0406
                                               -0.05148
                                                             -0.10501
         FSIQ
                    0.94511
                                  0.93443
                     <.0001
                                   <.0001
                                                 0.7589
                                                               0.5304
PIQ
```

proc reg data=mri;
 model fsiq=viq mri;

run:

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	-10,88005	16.34802	-0.67	0.5101
VIQ	1	0,96409	0.05934	16.25	<.0001
MRİ	1	0,00001801	0.0001876	0.96	0.3437

3 가 .


```
proc reg data=mri;
  model fsiq=viq/r;
  reweight obs.=9;
  reweight obs.=13;
  reweight obs.=2;
  plot student.*p./vref=2 -2;
run;
```

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > [t]
Intercept	1	4.21595	5.11142	0.82	0.4154
VIQ		0.96195	0.04484	21.45	<.0001

```
6.3.2
```

```
(PCA, Principal Component Analysis)
            (principal components)
                                              가
                                                            . (
                                                           가 가
                                                                                         ) 가
                              2, 3, ...
                                                           X_1, X_2, ..., X_p)
      가
                             Y_i = \beta_0 + \beta_1 P_{1i} + \beta_2 P_{2i} + \dots + \beta_p P_{pi} + e_i
                                    P_{ki} = a_{k1}X_{1i} + a_{k2}X_{2i} + ... + a_{kp}X_{pi}, k = 1,2,..., p
                                                                                      가
                                     가
                                                                       (Z_k)
                                                                                                   가
                                                           . OUT
proc princomp data=mri out=prin;
      var viq piq mri;
run:
        (eigen value, \lambda_i)
                                                                (R)
                                data=mri covariance out=prin;
                                                    가
                              가
                                 Correlation Matrix
                                   VIQ
                                                               MRT
                      VIQ
PIQ
MRI
                                              0.7760
                                                                        R\underline{e}_i = \lambda_i \underline{e}_i
                                                                                               가 가
                                                 )
                                                                     (proportion)
                                                              (Cumulative)
(0.68)
```

 (e_i)

	Eigenvalues of the Correlation Matrix									
	Eigenv	alue	Differ	ence	Prop	portion	Cum	ulative		
1 2 3	2.0051 0.7756 0.2192	4674	1.2294 0.5564	7053 1076		0.6684 0.2585 0.0731		0.6684 0.9269 1.0000		
	Eigenvectors									
			Prin1	1	Prin2		Prin3			
	VIQ PIQ MRİ	0.6	28579 47337 31095	2	67488 41305 98179	-,	685450 722998 086210			
	$P_{ki} = a_k$	$_{1}X_{1i} +$	$a_{k2}X_{2i}$	++a	$_{kp}X_{pi}$	k = 1,2	,, p			

proc print data=prin; run;

FSIQ	VIQ	PIQ	Weight	Height	MRI	Prin1	Prin2	Prin3
133 139 133 137 99	132 123 129 132 90	124 150 128 134 110	118 143 172 147 146	65 73 69 65 69	816932 1038437 965353 951545 928799	0.37338 2.18754 1.28754 1.45959 -0.51391	-1.56528 1.04308 0.27724 -0.00581 0.64175 0.45430	0.08199 -0.75562 0.04070 -0.07802 -0.59217 0.18472

PRIN1, PRIN2

?

		Prin1	Prin2	Prin3
	Prin1	1.00000	0,00000 1,0000	0.00000 1.0000
proc corr data=prin;	Prin2	0.00000 1.0000	1.00000	0.00000 1.0000
<pre>var prin1 prin2 prin3; run;</pre>	Prin3	0.00000 1.0000	0.00000 1.0000	1.00000

PRIN1, PRIN2, PRIN3)


```
(FSIQ, PRIN1, PRIN2, PRIN3)
PRIN1, PRIN2, PRIN3
PRIN1 FSIQ
가 PRIN2 PRIN3
FSIQ
PRIN1
PRIN1
FSIQ
7
FSIQ
7
FSIQ
```

? ? PRIN1 ? FSIQ , PRIN1 PRIN2가

.

 $FSIQ = \beta_0 + \beta_1 P_1 + \beta_2 P_2 + \beta_3 P_3 + e$

proc reg data=prin;

model fsiq=prin1 prin2 prin3;

run;

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept Prin1 Prin2 Prin3	1 1 1	113.55263 15.94921 -8.38416 0.10957	0.27238 0.19494 0.31343 0.58954	416.89 81.82 -26.75 0.19	<.0001 <.0001 <.0001 0.8537

PRIN3가

? PRIN1, PRIN2

가

.

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > [t]	Standardized Estimate
Intercept	1	113.55263	0.26860	422.76	<.0001	0
Prin1	1	15.94921	0.19223	82.97	<.0001	0.94831
Prin2	1	-8.38416	0.30907	-27.13	<.0001	-0.31005

FSIQ = 113.55 + 15.94 * Pr in1 - 8.38 * Pr in2

FSIQ PRIN1 (). PRIN1 PRIN2 가? 가 가 . () .

	Prin1	Prin2	Prin3
VIQ	0.628579	367488	0.685450
PIQ	0.647337	241305	722998
MRİ	0.431095	0.898179	0.086210

PRIN1 가 PRIN2 MRI가 PRIN3 VIQ PIQ()가 PRIN2 " " , PRIN3 "IQ" PRIN1 가? FSIQ

가 .

(PRIN1,

PRIN2 VIQ, PIQ, MRI)

```
proc reg data=prin;
model fsiq=prin1 prin2/p;
run;

Proc reg data=prin;
model fsiq=viq/p;
model fsiq=viq/p;
run;

R-Square 0.9954
Adj R-Sq 0.9952

Sum of Squared Residuals 95.95260
Predicted Residual SS (PRESS) 110.71009

R-Square 0.8932
Adj R-Sq 0.8903

Sum of Squared Residuals 2240.37920
Predicted Residual SS (PRESS) 2471.05084
```

6.3.3

가 (OLS)
MSE(Mean Square of Error) (biased) ((Ridge

Regression)

$$MSE(\hat{\beta}) = E(\hat{\beta} - \beta)^2 = V(\hat{\beta}) + (E(\hat{\beta}) - \beta)^2 = V(\hat{\beta}) + Bias^2$$

OLS (Bias)=0 OLS MSE . $(X^{'}X+cI)\hat{\beta}=X^{'}y: \ c=0 \qquad \text{OLS}$. $c\neq 0$ $\hat{\beta}$ $MSE(\hat{\beta})$ c $\hat{\beta}_{R}=(X^{'}X+cI)^{-1}X^{'}y \qquad . \ c \qquad \text{7+? Ridge trace}(\ c$

 $\hat{eta}_1^R, \hat{eta}_2^R, \cdots, \hat{eta}_p^R$) VIF_k .

II EXAMPLE II MRI_IQ

(VIQ, PIQ, MRI)

가

가

```
PROC REG DATA=MRI OUTVIF OUTEST=OUT1 *IDGE=0 TO 1 BY 0.05;

MODEL FSIQ=VIQ PIQ MRI;

RUN;

PROC PRINT DATA=OUT1;

RUN;

OLS ( c=0) _TYPE_="RIDGEVIF" c

VIF _TYPE_="RIDGE"

VIF c 7
```

c 가

```
n
                                                       t
      M
O
D
E
                                 RIDGE
                                                       e
                                            RMSE
                                                       ė
Ь
      L
                                                       P
s
                                        1.67907
                                                    -3.2630
    MODEL
             PARMS
12345670
             RIDGEVIF
RIDGE
                              0.00
    MODEL1
                                                                                   1.16665
                                         1.67907
                                                    -3,2630
    MODEL 1
                              0.00
                                                                                  -0.00001
            RIDGEVIF
RIDGE
                              0.05
0.05
0.10
                                                             1.76225
0.55524
1.32613
                                                                       1.84615
0.52702
1.37302
                                                                                  1.02862
-0.00000
0.91615
    MODEL 1
MODEL 1
                                                    -2:9081
                                         1.83454
             RIDGEVIE
    MODEL1
                                                    -2,2958
    MODEL 1
             RIDGE
                              Ŏ. 10
n 16
                                        2,20134
□ DATA TEMPO;
        SET OUT1;
        IF ( TYPE ="RIDGEVIF");
  RUN:
□ PROC GPLOT DATA=TEMPO;
        TITLE 'VIF PLOT';
        SYMBOL1 V=TRIANGLE I=JOIN C=RED;
        SYMBOL2 V=CIRCLE I=JOIN C=BLUE L=5;
        SYMBOL3 V=SQUARE I=JOIN C=GREEN L=10;
        PLOT (VIQ PIQ MRI) * RIDGE /OVERLAY;
  RUN:
```

VIF PLOT

MRI

가

```
□PROC GPLOT DATA=TEMP1;
                                      TITLE 'RIDGE EST. PLOT';
                                      SYMBOL1 V=TRIANGLE I=JOIN C=RED;
□ DATA TEMP1;
                                      SYMBOL2 V=CIRCLE I=JOIN C=BLUE L=5;
      SET OUT1;
                                      SYMBOL3 V=SQUARE I=JOIN C=GREEN L=10;
      IF (_TYPE_="RIDGE");
                                      PLOT (VIQ PIQ MRI) *_RIDGE_/OVERLAY;
 RUN:
                                 RUN:
                             RIDGE EST. PLOT
0.5
0.4
0.3
0.2
0.1
0.0
-0.1
                                       0.5
  0.0
         0.1
                 0.2
                        0.3
                                0.4
                                               0.6
                                                              0.8
                                                                     0.9
                                                                            1.0
                                                      0.7
                               Ridge regression control value
MRI
 VIF
                                          가
                                                          0.3
                                . OUTEST
) c = 0.3
        . OLS
PROC REG DATA=MRI RIDGE=0.3 OUTEST=OUT1;
    MODEL FSIQ=VIQ PIQ MRI;
RUN:
PROC PRINT DATA=OUT1;
RUN:
        _RIDGE_
                 _PCOMIT_
                            _RMSE_
                                    Intercept
                                                VIQ.
                                                         PIQ
                                                                        MRT
         0.3
               FSIQ = 1707 + 0.47839 * VIQ + 0.4605 * PIQ + 0.000007643 * MRI
```

```
),
                             PROC REG DATA=MRI RIDGE=0.3;
                                 MODEL FSIQ=VIQ piq mri;
 proc reg data=mri;
                                 output out=out3 p=yhat_r;
     model fsiq=viq;
                             RUN:
     output out=out1 p=yhat o;
 run;
                            _ data all;
                                merge out1 out2 out3;obs+1;
 proc reg data=prin;
                                 res o=fsiq-yhat o;
     model fsiq=prin1 prin2;
                                res_p=fsiq-yhat_p;
     output out=out2 p=yhat_p;
                                res_r=fsiq-yhat_r;
 run:
 OBS+1;
         OBS
                          1, 2, 3,...
                                                   . RES_*
 proc gplot data=all;
     goptions reset=all;
     symbol1 i=join v=circle c=black;
     symbol2 i=join v=dot c=green;
     symbol3 i=join v=triangle c=blue;
     symbol4 i=join v=square c=red;
     plot (fsiq yhat_o yhat_p yhat_r) *obs/overlay;
  run;
     가
               가
OLS
           <del>᠆</del>몆收단__ბ_₳ড়৸ঽৢ৾৾৾৴ৢঢ়৾৾৾ঢ়ঢ়৾৾৾৾৾৾৾৾৾৾৾৾৾৾৾৾৾ঢ়৾৾৾ঢ়৾৾৾
```

151

VIF .

: $Y_t = \alpha + \beta_1 * A_t + \beta_2 * A_{t-1} + \beta_3 * P_t + \beta_4 * P_{t-1} + \beta_5 * E_t$ SAS

SPSS

" " . 147 SAS .

계수집

		비표준화 계수		표준화 계 수			공선성	통계량
모형		В	표준오차	베타	t	유의확률	공차한계	VIF
1	(상수)	-3, 263	3,487		-, 936	,356		
	VIQ	.575	.019	,553	30,116	,000	,398	2,514
	PIQ	.543	.020	,515	27, 208	.000	,375	2,668
	MRI	-8,89E-06	,000	-, 027	-2,165	,038	,857	1,167

공선성 진단

				분산비율				
모형	차원	고유값	상태지수	(상수)	VIQ	PIQ	MRI	
1	1	3,957	1,000	,00	,00	,00	.00	
	2	,031	11,257	.06	,13	,11	.04	
1	3	.009	21,260	.01	.85	.84	.00	
	4	.003	36,629	.94	.01	.05	.96	

RMSE 6.288 AIC 131.57

```
가
                                 가
             가?
                 (adjusted determin):
                                                가 가
                                     가
                                                 가
                   . R_a^2 = 1 - \frac{SSE/(n-p-1)}{SST/(n-1)},
                                                                           가
                                                    가
                                                            가?
                                                                       3가
                                                                            가
  AIC(Akaike Information Criteria)= n \ln(SSE/n) + 2(p-1)
                                                                                    가
  SBC(Schwarz's Bayesian criterion)= n \ln(SSE/n) + (p-1)\ln(n)
  PRESS: \frac{r_i}{1-h_i}(h_i)
                         Hat
SAS
            가
                     . AIC, SBC
                                     PLOT
                                                     , PRESS
                                                                  MODEL
                           MODEL
proc reg data=mri;
       model fsiq=viq mri/r;
       reweight obs.=9;
       reweight obs.=13;
        reweight obs.=2;
        plot student.*p./vref=2 -2 aic sbc;
run:
 38
        1.0000
                 89,0000
                            92.2347
                                           1.6306
                                                    -3.2347
                                                                 6.073
                                                                          -0.533
                                                                                    *
                             Sum of Residuals
Sum of Squared Residuals
Predicted Residual SS (PRESS)
                                                                  35
```

?

가

$$Y_i^* = \frac{Y_i - \overline{Y}}{s_Y}$$
, $X_{ki}^* = \frac{X_{ki} - \overline{X}_k}{s_{X_k}}$, $(i = 1, 2, ..., n, k = 1, 2, ..., p)$

$$y_{i}^{*} = \beta_{0} + \beta_{1} X_{1i}^{*} + \beta_{2} X_{2i}^{*} + ... + \beta_{p} X_{pi}^{*} + e_{i}$$

SAS . SPSS

.

□ PROC REG DATA=MRI;

MODEL FSIQ=MRI VIQ PIQ/STB;

RUN:

Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Standardized Estimate
Intercept	Intercept	1	-3,26299	3,48702	-0.94	0.3560	0
MRI	MRI	1	-0,00000889	0,00000411	-2.16	0.0375	-0.02710
VIQ	VIQ	1	0,57462	0,01908	30.12	<.0001	0.55349
PIQ	PIQ	1	0,54290	0,01995	27.21	<.0001	0.51515