

Facultad de Ciencia Y Tenología

Base de Datos Avanzadas

BASES DE DATOS GEOGRÁFICAS OGC

"Lo más grande es el espacio, porque lo encierra todo"

Tales de Mileto

Docentes: Ing. Fernando Sato

A.S. Sebastian Trossero

RESUMEN

Introducción a las Ciencias de Información Geográfica:

- Conceptos sobre GIS (Sist.Inf.Geog.)
- Conceptos de BD Geograficas
- Elementos Básicos de Análisis Espacial
- Elementos de cartografía temática
- Extensiones Espaciales de Servidores Comerciales
- Ejercicio Propuesto

Bases de Datos Geográficas Motivación y Requisitos Funcionales

El propósito de un SIG es la gestión integrada de datos espaciales y temáticos. Las bases de datos relacionales deben sumar requisitos adicionales tales como:

- Representación de datos espaciales: Todas forma datos espacial relevante para la aplicación debe ser almacenable en el sistema, ej. Límites de un edificio.
- Consultas espaciales: El sistema de información debe soportar querys con contexto o referencia espacial. ej. ¿Qué propiedades se encuentran al lado de una carretera principal?
- Integración con datos temáticos: los usuarios deben tener la capacidad de combinar datos temáticos y espaciales en una forma adecuada.
- ej. Asociar los límites de propiedad con el propietario, las características de construcción, impuestos, etc.

Bases de Datos Geográficas Intento de Solución

Diseño de base de datos para un SIG, las estructuras de datos espaciales pueden ser modeladas como estructuras de datos temáticos (no espaciales):

Ejemplo: modelado de un tipo para polígonos con gestión de punto no redundante.

Opinión: ¿Parece razonable?

La solución parece factible técnicamente, pero operativamente?:

- ¿Será tan eficiente como tener un soporte "nativo"?
- ¿Hay posibilidad de usar índices para querys espaciales?
- iLas operaciones y los predicados deben evaluarse fuera del SGBD!
- Violación de la independencia de datos: la reorganización de la estructura de almacenamiento requiere cambios en los programas de aplicación.

Todo lleva a pensar que una mejora significativa sería usar tipos de datos espaciales específicos, que se implementan como los llamados tipos de datos abstractos (**TDA**) dentro del DBMS.

- Uso en analogía a tipos de datos SQL primitivos
- Es posible utilizar estructuras de índices espaciales dentro del proceso de consulta.
- Los operadores espaciales y predicados pueden ser evaluados utilizando algoritmos especiales dentro del SGBD.

Un tipo de datos abstracto (TDA) es una representación independiente de la implementación de un conjunto de dominios de valor y operaciones para formar una unidad.

En nuestro contexto, las TDA tienen las siguientes características deseables:

- Los tipos de datos complejos son más fáciles de usar: por ejemplo, un tipo de polígono puede usarse para especificar el dominio de valor para una columna en un esquema relacional
- Encapsulación: La estructura de datos interna está oculta al usuario
- Interfaz: El acceso desde el exterior se limita a operaciones predefinidas
- La interfaz y la implementación están **separadas** (a nivel conceptual). *Ideal para no violar la independencia de datos.*

cities							
name	residents	geometry					
Paunzhausen	8500						
	•••						

La estructura de datos real del tipo de datos abstractos POLYGON se oculta al exterior.

Consulta: ¿Puede ser posible una solución propietaria?

Motivación → Requisitos Funcionales:

- Representación de datos espaciales.
- Consultas espaciales.
- Integración con datos temáticos.

Requisitos NO Funcionales:

Eficiencia y Perfomance.

Nota: Imaginemos operaciones complejas del tipo de la sig, con restricciones de miles de objetos.

Asociar los límites de propiedad con el propietario, las características de construcción, impuestos, etc.

Solución: Extender SQL con funcionalidad espacial → Mas Standard

Bases de Datos Geográficas Open Geospatial Consortium

El **Open Geospatial Consortium** (OGC) es un consorcio internacional que agrupa:

- Empresas
- Universidades
- Organismos Estatales

Con las siguientes metas fundamentales:

- Proveer de estándares abiertos, gratuitos y públicos.
- Liderar la creación de estándares que permitan que el contenido y los servicios GeoEspaciales se integren a procesos cívicos y de negocios.
- Facilitar la adopción de arquitecturas de referencia abiertas en materia de información espacial.

Bases de Datos Geográficas OGC Simple Features Standard

- OGC define un modelo de datos para objetos espaciales conocido como Simple Features Standard (SFS) (Estandar ISO 19115).
- El estándar se divide en dos partes:
 - Arquitectura común (Modelo de Objetos datos)
 - Implementación en SQL (Permite construir bases de datos geográficas)

Bases de Datos Geográficas OGC Simple Features Standard

El Open Geospatial Consortium (OGC), entre otras cosas, ofrece la especificación de características simples para SQL:

- Describe un conjunto de tipos de datos de geometría para SQL basado en el modelo de geometría propio (OGC).
- Describe un conjunto de operaciones SQL para estos tipos.

No describe cuestiones físicas como indices, implementación interna, rangos de valores, etc.

Bases de Datos Geográficas OGC Simple Features Standard

Características Espaciales:

- Término "característica": abstracción de un fenómeno del mundo real ("geoObjeto");
 - Una característica se almacena como un dato simple o un dato complejo (conjunto de datos).
- Modelado de la geometría de objetos espaciales:
 - Mínimo 2 dimensiones espaciales, admiten también z y m (3 y 4): X, Y,Z referencian un punto en el espacio, m es otra característica asociada al punto, ejemplo: temperatura, ejemplo: área de servicios en la ruta, ejemplo: mojón km.
 - Sólo interpolación lineal entre puntos
 - No hay representación explícita de la topologia

Bases de Datos Geográficas OGC - Modelo de datos

Diagrama de Clases: Tipos agregados

Bases de Datos Geográficas OGC - Modelo de datos

Diagrama de Conceptual: Tipos mas usados

Bases de Datos Geográficas OGC – Caracteristicas de Geometry

Características Geometry:

- Es la superclase de toda la jerarquía; Es abstracto.
- Soporta diferentes operaciones en las siguientes áreas:
 - Operaciones básicas
 - Pruebas de relaciones topológicas
 - Operaciones espaciales
- A cada objeto de este tipo se le asigna un sistema de referencia espacial (class SpatialReferenceSystem).
- La subclase GeometryCollection representa conjuntos de objetos geometry simples. Tales conjuntos también pertenecen geometry.
 - Todos los elementos de una GeometryCollection deben referirse a un sistema de referencia espacial común.

Operaciones Básicas sobre Geometry – Características: La especificación OGC define las siguientes operaciones básicas (Grepresenta un geometry, una geometría).

Dimension(g): devuelve la dimensión de la geometría g

Si la geometría proporcionada está **vacía**, debe devolver el valor **-1**. Para **puntos** y **multipuntos**, la dimensión es **cero 0** (cero); para curvas y multicurvas, la dimensión es **1**; y para **polígonos** y **multipolígonos**, la dimensión es **2**. Si la geometría proporcionada es un **valor nulo**, se devuelve un valor nulo.

- GeometryType(g): devuelve el nombre del tipo geométrico de g (por ejemplo, LINESTRING, POLYGON, MULTICURVE, ...).
- SRID(g): devuelve el ID del sistema de referencia espacial de g

Operaciones Básicas sobre Geometry – Análisis:

La especificación OGC define las siguientes operaciones básicas (G representa un geometry, una geometría).

- IsEmpty(g): pruebas, si g está vacío.
- IsSimple(g): tests, si g es simple (definido en el modelo de geometría OGC).

Operaciones Básicas sobre Geometry – Análisis:

La especificación OGC define las siguientes operaciones básicas (G representa un geometry, una geometría).

Boundary(g): genera un contorno común de un objeto.

Caso particularInput 'LINESTRING(4 6, 1 1, 5 5)'
Salida Boundary: MULTIPOINT((4 6), (5 5))

- Envelope(g): genera un recuadro mínimo, rectángulo paralelo al eje alrededor de un objeto
- ("minimum bounding rectangle", MBR).

Operaciones Básicas sobre Geometry – Representación: La especificación OGC define las siguientes operaciones básicas (Grepresenta un geometry, una geometría).

AsText(g): convierte la geometría g en el "formato de texto SQL" para exportar a otras aplicaciones.

por ejemplo: **POLYGON (0 0,0 1,1 1,1 0,0 0))**

AsBinary(g): convierte g en formato binario (también especificado) para exportarlo a otras aplicaciones

Bases de Datos Geográficas OGC – Point

Elemento Básico - POINT:

- Objeto geométrico 0D (punto).
- Coordenadas x,y (z,m opcionales).
- Su limite es el conjunto vacío.
- Su envelope es el propio punto.
- Posee métodos para obtener sus coordenadas (funciones x e y)

Bases de Datos Geográficas OGC – Curve

Elemento Básico → CURVE:

- Curve (abstracto): representa la curva definida por una secuencia de puntos.
- Objeto geométrico 1D (punto).
- Métodos:
 - length: devuelve el largo.
 - Startpoint y endpoint: punto inicial y final.
 - Isclosed: devuelve 1 si startpoint = endpoint.
 - Isring: devuelve 1 si isclosed y no pasa mas de una vez por el mismo punto.
- El limite de una curva cerrada (isring) es el conjunto vacio.
- ✓ El limite de una curva abierta son el startpoint y el endpoint.

Bases de Datos Geográficas OGC – LineString

Elemento Básico - LINESTRING:

- Es una curva con interpolación lineal entre los puntos.
- Su envelope es un polígono, o si es una línea vertical u horizontal, es la propia línea.
- Métodos:
 - numPoints(): devuelve cantidad de puntos
 - pointN(linestring, n): devuelve el punto n
- Line
 - Es un LineString de 2 puntos (un segmento de recta)
- LinearRing
 - En un LineString simple y cerrado (un anillo)

Bases de Datos Geográficas OGC – Surface

Elemento Básico - SURFACE:

- Surface (abstracta)
- Objeto geométrico 2D que representa una superficie.
- Métodos:
 - area(): devuelve el área en el SRS correspondiente.
 - centroid(): devuelve el centroide (baricentro) de la superficie (puede ser un punto exterior)
 - pointOnSurface(): devuelve un punto cualquiera perteneciente a la superficie

Bases de Datos Geográficas OGC – Polygon

Elemento Básico - POLYGON:

- Es una superficie plana definida por un LinearRing exterior y 0 o más LinearRings interiores, para permitir polígonos con huecos.
- Los polígonos son objetos simples: no existe intersección entre sus contornos.
- Métodos:
 - exteriorRing(): devuelve el anillo exterior (linestring)
 - numInteriorRings(): devuelve la cantidad de anillos interiores.
 - interiorRingN(): devuelve el anillo interior N
- El limite de un polígono son su anillo exterior y sus anillos interiores.

Bases de Datos Geográficas OGC – Operaciones Topologicas

En un entorno SQL OGC compatible, tenemos la capacidad de evaluar relaciones topológicas.

Ejemplo:

¿Qué ciudades son atravesadas por Ríos?

```
SELECT DISTINCT Ciudades.name
FROM Ciudades JOIN Rios ON
CROSSES (Ciudades.Geom, Rios.Geom) = 1
```


Las operaciones relacionadas con las relaciones topológicas se basan en el denominado "modelo de intersección extendido de nueve dimensiones" y están directamente disponibles en consultas SQL del tipo del ejemplo.

Bases de Datos Geográficas OGC – Operaciones Topologicas

Operaciones de Relaciones Topologicas:

Los parámetros g1 y g2 son en cada caso dos geometrías, el valor de retorno es un entero: 0 false , 1 true, -1 o NULL si es desconocido, significa que uno de los argumentos contiene valor NULL:

- Equals(g1, g2): g1 y g2 son espacialmente idénticos.
- \checkmark **Disjoint (g1, g2):** \leftrightarrow si g1 yg2 son espacialmente disjuntos.
- Touches(g1, g2): Los límites de g1 y g2 se tocan pero no su interior.
- Crosses(g1,g2): La dimensión de la intersección de g1 y g2 es menor que la dimensión máxima de g1 y g2 y la intersección comprende los puntos interiores de g1 y g2.
- Within(g1, g2)/Constains(g2, g1): g1 está completamente en g2
- Overlaps(g1, g2): g1 esta superpuesto con g2 .

Bases de Datos Geográficas OGC – Operaciones Espaciales

Operadores Espaciales:

Provenientes de teoría de conjuntos.

- Intersection(g1, g2): Genera la geometría intersección.
- Union(g1,g2): Genera la geometría union entre g1 y g2.
- Difference(g1, g2): Genera la geometría diferencia entre g1 y g2.

Bases de Datos Geográficas OGC – Operaciones Espaciales

Operadores Espaciales:

SymDifference(g1, g2): Devuelve una geometría que representa las porciones de A y B que no se intersectan. Se llama diferencia simétrica porque SymDifference (A, B) = SymDifference (B, A). Uno puede pensar en

esto como:

Union (geomA, geomB)

- Intersection (A, B).

Examples

Bases de Datos Geográficas OGC – Operaciones Espaciales

Operadores Espaciales:

 Distance(g1, g2): Genera la distancia más corta entre dos geometrías en el sistema de referencia correspondiente.

Operadores Espaciales que generan geometrías:

Buffer(g, d):Genera una geometría (Polygon) con una distancia d a cada punto del exterior de g.

ConvexHull (g): Genera la geometría que es el casco convexo de g.

Bases de Datos Geográficas Tipos Geometricos y Formatos: WKT

OGC proporciona un formato de texto, denominado ""Well-known text representation (**WKT** representación de texto bien conocido)" para el intercambio de datos y para la construcción de objetos geométricos. Dicho de otra forma, **WKT** es una descripción textual de la geometría de un objeto, por Ej:

Geometric type	WKT	Detalle				
Point	POINT(10 10)	Un punto				
LineString	LINESTRING(10 10,20 20,30 40)	Un LineString con 3 puntos				
Polygon	POLYGON((10 10,10 20, 20 20,20 15,10 10))	Un Polígono				
Multipoint	MULTIPOINT(10 10, 20 20)	Un MultiPoint con 2 puntos				
MultiLineString	MULTILINESTRING((10 10, 20 20),(15 15 ,30 15))	A MultiLineString with 2 LineStrings				
Geometry Collection	GEOMETRYCOLLECTION (POINT(10 10), POINT(30 30), LINESTRING(15 15, 20 20))	Una GeometryCollection compuesto por 2 puntos y un LineString				

Bases de Datos Geográficas Tipos Geometricos y Formatos: WKB

WKB es una descripción binaria de la geometría un objeto. Este formato requiere menos memoria.

Características:

- Se procesa mas rápido.
- Es apto para el almacenamiento y procesamiento.
- No es legible por el ser humano.
- Fj:

```
select st_asewkb(st_GEOMFromtext('POINT (1 0)'))
```

	st_asewkb bytea
1	\001\001\000\000\000\000\000\000\000\00

Bases de Datos Geográficas Tipos Geometricos y Formatos de Texto

Como vimos la función **AsText** permite ver la representación WKT de los objetos gráficos.

Por Ejemplo: Si realizamos el siguiente query.

CREATE TABLE Cities
(Name VARCHAR(30),
Residents INTEGER,
Geometry POLYGON)

SELECT Nombre, ASTEXT (Geom) as Geometry **FROM** Ciudades **WHERE** Nombre = "Paunzhausen"

Resultado:

Cities							
Name	Residents	Geometry					
Paunzhausen	8500	(No.					

Name	Geometry										
Paunzhausen	POLYGON	((10	10,	10	20,	20	20,	20	15,	10	10))

Bases de Datos Geográficas Tipos Geometricos y Formatos de Texto

También especifica una función GeoFromText, que recibe como argumento una especificación WKT y genera el tipo especifico descripto.

Sintaxis:

```
geometry GeomFromText(text WKT)
geometry GeomFromText(text WKT, integer srid)
```

Hay dos variantes de la función ST_GeomFromText. El primero no toma SRID y devuelve una geometría sin sistema de referencia espacial definido (SRID = 0). El segundo toma un SRID como el segundo argumento y devuelve una geometría que incluye este SRID como parte de sus metadatos.

Ejemplo:

```
GeomFromText('TRIANGLE((0 0, 10 0, 0 10, 0 0))')
Genera un objeto Triangle.
```

Nota: También especifica constructores equivalentes para tipos concretos, ej: PolygonFromText, etc.

Bases de Datos Geográficas Consultas Típicas

Uno de los tipos de consulta más importantes en bases de datos son los join o reunión. Una reunión espacial es una combinación "general", que comprende un predicado espacial dentro de la condición de consulta.

Ejemplo:

¿Que ríos pasan por ciudades?

SELECT Cities.Name, Rivers.Name **FROM** Cities **JOIN** Rivers **ON crosses**(Cities.Geometry,Rivers.Geometry)=1

Espacio de discusión:

¿Que diferencia una reunión espacial con una sql92?

Bases de Datos Geográficas Consultas Típicas

Otro Ejemplo:

Ejemplo:

¿Qué Ríos se encuentran (completamente) en argentina?

SELECT Rivers.*
FROM Rivers JOIN Countrys ON
 Countrys.Name='Argentina'
AND WITHIN(Rivers.Geometry, Country.Geometry)=1

Espacio de discusión:

¿Que devuelve la consulta?

Bases de Datos Geográficas Fuentes

En general:

http://www.opengeospatial.org

En particular:

http://www.opengeospatial.org/standards/sfs