

Network Layer: IP Addressing

Lecture 6 | CSE421 – Computer Networks

Department of Computer Science and Engineering School of Data & Science

Objectives

- •IPv4 Address
 - •Structure
 - Subnet/Prefix Mask
- Types of IPv4 Address
- •IPv6 Address
 - •Structure

Anatomy of IPv4

Anatomy of an IPv4 Address

- Each device on a network must be uniquely identified at the Network layer.
- For IPv4, a 32 bit source and destination address is contained in each packet.

eneral		I see you have assigned me
ou can get IP settings assigned.	automatically if your network supports	an IP address
nis capability. Otherwise, you nee	d to ask your network administrator for	11000000.1010
ne appropriate IP settings.		1000.00000001.
Obtain an IP address autom	atically	00000101
 Use the following IP address 	Ε	Now other
IP address:	192 . 168 . 1 . 5	hosts can find
Subnet mask:		me!
Default gateway:		
C Obtain DNS server address	automatically	
 Use the following DNS serve 	er addresses:	
Preferred DNS server:		
Alternate DNS server:		
	Advanced	-
	OK Cancel	-

Anatomy of an IPv4 Address

The computer using this IP address is on network 192.168.10.0.

Networks and Hosts

- To identify a path or "route" through a network, the address must be composed of two parts:
 - Network portion

Network Portion

Network Portion:

Some portion of the high-order bits

A network can be defined as a group of hosts that have identical bit patterns in the

network address portion of their addresses

IP Address	192.	168.	1.	2
Binary IP Address	11000000	10101000	00000001	00000010

192.168.1.2	11000000	10101000	0000001	00000010
192.168.1.67	11000000	10101000	0000001	01000011
192.168.1.204	11000000	10101000	0000001	11001100

Network Portion

• Host Portion:

- A variable number of least significant bits that are called the **host portion** of the address.
- The number of bits used in this host portion determines the number of hosts that we

can	IP Address	192.	168.	1.	2
	Binary IP Address	11000000	10101000	00000001	00000010

192.168.1.2	11000000	10101000	0000001	00000010
192.168.1.67	11000000	10101000	0000001	01000011
192.168.1.204	11000000	10101000	0000001	11001100

Prefix Mask

- How do we or devices identify the network part or the host part?
- Answer: Using the "Prefix Mask".
- **192.168.10.2**/24
 - Means that the first 24 bits are the network portion.
 - The last 8 bits are the host portion.

eneral	
	d automatically if your network supports eed to ask your network administrator fo
Obtain an IP address autor	natically
 Use the following IP address 	ss: ———————————————————————————————————
IP address:	172 . 16 . 8 . 18
Subnet mask:	255 . 255 . 255 . 0
Default gateway:	172 . 16 . 8 . 1
Obtain DNS server address Subsetting DNS server	
Preferred DNS server:	192 . 168 . 1 . 3
Alternate DNS server:	192 . 168 . 1 . 7
	Advanced

Subnet Mask

• The Prefix Mask and the Subnet Mask are different ways of representing the same information.

• Conversion:

- Subnet mask has the same format as an IP address. Hence, it has 32 bits divided into 8 bits (octets)
- Prefix mask of /24 means, the first (MSB) 24 bits of subnet mask would be 1 and the rest will be 0
- Briany: 11755111.117551111.17551111.00000000
- Examples:

or a subnet mask of 255.255.255.0

- Prefix Mask of /24 or a subnet mask of 255.255.0.0
- Prefix Mask of /16 or a subnet mask of 255.0.0.0

Exercise

- What's the subnet mask of the following?
 - IP Address: 10.24.36.2/4
 - **IP Address:** 10.24.36.2 / 12
 - **IP Address:** 10.24.36.2 / 16
 - **IP Address:** 10.24.36.2 / 23
- What's the prefix mask of the following?
 - IP Address: 10.24.36.2; Subnet Mask: 255.255.224.0
 - IP Address: 10.24.36.2; Subnet Mask: 255.255.255.192
 - IP Address: 10.24.36.2; Subnet Mask: 255.255.255.252
 - IP Address: 10.24.36.2; Subnet Mask: 255.254.0.0

ANDing the Binaries

- Inside data network devices, digital logic is applied for their interpretation of the addresses.
- AND is used in determining the network address.
 - o AND o = o
 - 1 AND 0 = 0
 - 1 AND 1 = 1

	Decimal	Binary
IP Address	135.15.2.1	10000111 00001111 00000010 00000001
Subnet Mask	255.255.0.0	1111111 1111111 00000000 00000000
Network Address	135.15.0.0	

But Why AND?

- Routers use the ANDing process to determine the route a packet will take.
- The network number of the **destination IPv4 address** is used to find the network in the routing table.
- The router then determines the best path for the frame.

IPv4 Addresses

Network Address

Broadcast Address

Host Address

Network Address

 All hosts in the network will have the same network bits.

Cannot be assigned to a device.

Broadcast Address

- Used to send message to all hosts in the network using one single address
- Cannot be assigned to a device.
- All host bits in this adress will be one.

Broadcast Address of 10.0.0.0/24 network is

10.0.0.255/24

Host Address

The unique address assigned to each device on the network.

• For a network of 10.0.0.0/24

• Addresses 10.0.0.1 through 10.0.0.254 are

• All host bits in this address will vary.

IP Address
IP Address
in Binary

IP Address

IP Address

in Binary

Say, you have a random IP address
192.168.10.193/24 or given as
192.168.10.193 255.255.255.0

Say, you have a random IP address
200.32.16.192/26 or given as
200.32.16.192 255.255.255.192

Network Prefix

• The network prefix is not always /24.

Using Different Prefixes for the 172.16.4.0 Network

	Host range	Broadcast address
172.16.4.0	172.16.4.1 - 172.16.4.254	172.16.4.255
172.16.4.0	172.16.4.1 - 172.16.4.126	172.16.4.127
172.16.4.0	172.16.4.1 - 172.16.4.62	172.16.4.63
172.16.4.0	172.16.4.1 - 172.16.4.30	172.16.4.31
	172.16.4.0 172.16.4.0	172.16.4.0 172.16.4.1 - 172.16.4.126 172.16.4.0 172.16.4.1 - 172.16.4.62

Types of IPv4 Addresses

Special Addresses

Unicast

Unicast

- A message to one host.
- Individual IPv4 addresses

Broadcast

255.255.255.255 172.16.4.1 Data

Dest IP Add Source IP Add Packet

- Limited Broadcast
 - A message to all hosts on the same physical/local network or subnet.
 - 255.255.255.255
 - Never forwarded by routers!

Broadcast

200.20.10.255 172.16.4.1 Data

Dest IP Add Source IP Add Packet

Directed Broadcast

- A message to all hosts on a different network or subnet.
- broadcastaddress of anetwork
- Example :

200.20.10.255

Multicast

Multicast Addresses

- A message addressed to a group of hosts.
- Uses an IP address starting within this range of 224 239
- Examples of Multicast Application
 - Video and audio broadcasts
 - Distribution of software
 - News feeds

Loopback

Loopback Address

- A message addressed to loop back in the device itself.
- 127.X.X.X of 127.0.0.0/8
- Not assigned to any device
- Testing and Troubleshooting purpose

127.0.0.1

172.16.4.1

Data

Dest IP Add

Source IP Add

Packet

Anatomy of IPv6 Address

Reasons for using IPv6

- Address Availability:
 - IPv4: 32 bits 4 octets
 - 2³² or 4,294,467,295 IP Addresses.

- 2^32
- 3.4 x 10[^]38 or

340,282,366,920,938,463,463,374,607,431,768,211,456 (340 undecillion) IP Addresses.

Every grain of sand on every beach on Earth could be assigned over a million unique IPv6 addresses, with plenty to spare (assuming approximately 7.5 × 10¹⁸ grains of sand globally and 2¹²⁸ IPv6 addresses).

IPv6 Address

- •128 bits
- given below is a 128 bit IPv6 address represented in binary

- Each 4 bits is converted into a Hexadecimal digit
- Each block contains 4 Hexadecimal digits

Each block is separated by ':' symbol

IPv6 Address

```
2001: 0db8: ac10: fe01:0000:0000:0000:0000
```

Called string notation

IPv6 Address

IPv6 Addressing

- IPv6 Representation Rule 1:
 - The leading zeros in any 16-bit segment do not have to be written. If any 16-bit segment has fewer than four hexadecimal digits, it is assumed that the missing digits are leading zeros.

```
      2031 : 0000 : 130F : 0000 : 0000 : 09C0 : 876A : 130B

      2031 : 0 : 130F : 0 : 0 : 0 : 9C0 : 876A : 130B

      8105 : 0000 : 0000 : 4B10 : 1000 : 0000 : 0000 : 0005

      8105 : 0 : 0 : 4B10 : 1000 : 0 : 0 : 0 : 0 : 5

      0000 : 0000 : 0000 : 0000 : 0000 : 0000 : 0000 : 0000 : 0000
```

IPv6 Addressing

- IPv6 Representation Rule 2:
 - Any single, contiguous string of one or more 16-bit segments consisting of all zeroes can be represented once with a double colon.

```
1080:0:0:0:8:800:200C:417A =

FF01:0:0:0:0:0:0:0:101 =

0:0:0:0:0:0:0:0:0:1 =
```

IPv6 Addressing

- IPv6 Representation Rule 2:
 - Any single, contiguous string of one or more 16-bit segments consisting of all zeroes can be represented once with a double colon.

Example: 1843::22::fa

Illegal because the length of the two all-zero strings is ambiguous.

1843:0000:0000:0000:0022:0000:0000:00fa

or —

1843:0000:0000:0022:0000:0000:0000:00fa

Representing IPv6 addresses

IPv4 Address

network host Prefix length

2001:0db8:85a3:0000:0000:8a2e:0370:7334/64

- IPv6 Address
- No Subnet masks in dotted decimal format in IPv6

The End