

C-3701 Dongil Techno Town, 889-1, Gwanyang 2-dong, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

TEST REPORT Part 15 Subpart C 15.247

Equipment under test 2.4 GHz Radio Control

Model name RP24RS5DX

FCC ID X6ZRP24RS5DX

Applicant Nextlink Co., Ltd.

Manufacturer Nextlink Co., Ltd.

Date of test(s) 2012.03.30 ~ 2012.04.09, 2012.04.19

Date of issue 2012.04.19

Issued to

Nextlink Co., Ltd.

701, Jungang Induspia II #144-5 Sangdaewon-dong, Jungwon-gu Seongnam-si, Gyeonggi-do

Issued by

KES Co., Ltd.

C3701 Dongil Techno Town, 889-1, Gwanyang 2-dong, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea

477-6, Hageo-ri, Yeoju-eup, Yeoju-gun, Gyeonggi-do, 469-803, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450

Test and report completed by:	Report approval by :
- The	4 designation of the second se
Jae Jun Lee	Gyu-cheol Shin
Test engineer	Technical manager

Test report No.: KES-RF-120029

Page: (1) of (27)

KES Co., Ltd.C-3701 Dongil Techno Town, 889-1, Gwanyang 2-dong, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Revision history

Revision	Date of issue	Test report No.	Description
-	2012.04.13	KES-RF-120024	Initial
1	2012.04.19	KES-RF-120029	Retest the Maximum peak output power

KES-P-5101-09 Rev.1 KES A4

KESK

KES Co., Ltd.

C-3701 Dongil Techno Town, 889-1, Gwanyang 2-dong, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

TABLE OF CONTENTS

1.0	General product description	4
1.1	Test frequency	4
1.2	Test frequency	4
1.3	Device modifications	4
1.4	Test facility	
1.5	Laboratory accreditations and listings	5
2.0	Summary of tests	6
2.1	Test data	
2.	1.1 6 dB Bandwidth	
2.	1.2 Maximum peak output power	
2.	1.3 Power spectral density	
2.	1.6 Conducted spurious emission & band edge	
2.	1.7 Radiated spurious emission & band edge	
Appen	ndix A. Test equipment used for test	
	ndix B. Test setup photo	

C-3701 Dongil Techno Town, 889-1, Gwanyang 2-dong, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

1.0 General product description

Equipment under test	2.4 GHz Radio Control
Model name	RP24RS5DX
Serial number	Prototype
Frequency Range	2 405 MHz ~ 2 480 MHz
Modulation technique	DSSS
Number of channels	76
Antenna type & gain	Connector Type(Wire antenna) / 1.83 dBi
Power source	DC 4.8 V

1.1 Test frequency

	Low channel	Middle channel	High channel
Frequency (Mz)	2 405	2 440	2 480

1.2 Model differences

N/A

1.3 Device modifications

N/A

C-3701 Dongil Techno Town, 889-1, Gwanyang 2-dong, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

1.4 Test facility

C3701 Dongil Techno Town, 889-1, Gwanyang 2-dong, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea 477-6, Hageo-ri, Yeoju-eup, Yeoju-gun, Gyeonggi-do, 469-803, Korea

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

1.5 Laboratory accreditations and listings

Country	Agency	Scope of accreditation	Logo
USA	FCC	3 & 10 meter Open Area Test Sites and one conducted site to perform FCC Part 15/18 measurements.	FC 343818
KOREA	KC	EMI (10 meter Open Area Test Site and two conducted sites) Radio (3 & 10 meter Open Area Test Sites and one conducted site)	KR0100
Canada	IC	3 & 10 meter Open Area Test Sites and one conducted site	4769B-1

KES Co., Ltd.C-3701 Dongil Techno Town, 889-1, Gwanyang 2-dong, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Summary of tests 2.0

Section in FCC Part 15	Parameter	Status
15.247(a)(2)	6 dB Bandwidth	С
15.247(b)(3)	Maximum peak output power	С
15.247(e)	Power spectral density	С
15.247(d)	Conducted spurious emission & band edge	С
15.209 15.205(a)	Radiated spurious emission & band edge	С
Note 1: C=Complies	NC=Not complies NT=Not tested NA=Not applicable	

C-3701 Dongil Techno Town, 889-1, Gwanyang 2-dong, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

2.1 Test data

2.1.1 6 dB Bandwidth

Test setup

EUT	Attenuator	Spectrum analyzer

Test procedure

- 1. Place the EUT on the table and set it in the transmitting mode
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer
- 3. Set the spectrum analyzer as RBW = 100 kHz, $VBW \ge RBW$, Span = 20 MHz, Sweep = auto.
- 4. Mark the peak frequency and -6 dB (upper and lower) frequency.
- 5. Repeat until all the rest channels are investigated

Limit

According to \$15.247(a)(2), systems using digital modulation techniques may operate in the 902 \sim 928 MHz, $2400 \sim 2483.5$ MHz, and $5725 \sim 5825$ MHz bands. The minimum of 6 dB Bandwidth shall be at least 500 kHz

Operating Mode	Frequency (Mbz)	6 dB Bandwidth (胚)	MinimumLimit (Mb)	Result
	2 405	1.664	0.5	Complies
DSSS	2 440	1.635		Complies
	2 480	1.650		Complies

C-3701 Dongil Techno Town, 889-1, Gwanyang 2-dong, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

• Low Channel

• Middle Channel

Test report No.: KES-RF-120029

Page: (8) of (27)

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd.

The test results in the report only apply to the tested sample.

KESK

KES Co., Ltd.

C-3701 Dongil Techno Town, 889-1, Gwanyang 2-dong, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

• High Channel

C-3701 Dongil Techno Town, 889-1, Gwanyang 2-dong, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

2.1.2 Maximum peak output power

Test setup

EUT		Attenuator		Spectrum analyzer
-----	--	------------	--	-------------------

Test procedure

- 1. Place the EUT on the table and set it in the transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer
- 3. Set the Spectrum analyzer as RBW = 1 Mz, VBW = 3 Mz, Span = Auto, Channel BW = 26 dBBandwidth.

Limit

According to \$15.247(b)(3), for systems using digital modulation in the $902 \sim 928~\text{MHz}$, $2400 \sim 2483.5~\text{MHz}$, and $5725 \sim 5850~\text{MHz}$ band: 1 Watt.

As an alternative to a peak power measurement, compliance with the one watt limit can be based on a measurement of the maximum conducted output power.

Maximum Conducted output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antenna elements.

The average must not include any intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maxium conducted output power is the highest total transmit power occurring in any mode.

Test results

Operating Mode	Frequency (Mb)	Maximum peak output power (dBm)	Peak power Limit (dBm)	Result
	2 405	3.97	30	Complies
DSSS	2 440	4.26		Complies
	2 480	4.19		Complies

C-3701 Dongil Techno Town, 889-1, Gwanyang 2-dong, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

• Low Channel

• Middle Channel

Test report No.: KES-RF-120029

Page: (11) of (27)

C-3701 Dongil Techno Town, 889-1, Gwanyang 2-dong, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

• High Channel

C-3701 Dongil Techno Town, 889-1, Gwanyang 2-dong, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

2.1.3 Power spectral density

Test setup

EUT		Attenuator		Spectrum analyzer
-----	--	------------	--	-------------------

Test procedure

- 1. Place the EUT on the table and set it in transmitting mode Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 2. Set the spectrum analyzer as RBW = 3 $\,\text{kHz}$, VBW = 10 $\,\text{kHz}$, Span = 300 $\,\text{kHz}$, Sweep = 100 $\,\text{s}$
- 3. Record the max reading.
- 4. Repeat the above procedure until the measurements for all frequencies are completed.

Limit

According to §15.247(e), For digitally modulated system, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph(b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density

Test results

Operating Mode	Frequency (Mb)	Power spectral density (dBm)	Maximum Limit (dBm)	Result
	2 405	-7.86		Complies
DSSS	2 440	-7.53	8	Complies
	2 480	-7.83		Complies

C-3701 Dongil Techno Town, 889-1, Gwanyang 2-dong, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

• Low Channel

• Middle Channel

Test report No.: KES-RF-120029 Page: (14) of (27)

KESK

KES Co., Ltd.

C-3701 Dongil Techno Town, 889-1, Gwanyang 2-dong, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

• High Channel

C-3701 Dongil Techno Town, 889-1, Gwanyang 2-dong, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

2.1.6 Conducted spurious emission & band edge

Test setup

EUT		Attenuator		Spectrum analyzer
-----	--	------------	--	-------------------

Test procedure for band edge

1. Use the following spectrum analyzer setting

Center frequency: Low, middle and high channel.

Span = wide enough to capture the peak level of the emission operating on the channel closest to the band edge, as well as any modulation products which fall outside of the authorized band of operation.

RBW = 100 kHz

 $VBW = 100 \text{ kHz } (\geq RBW)$

Sweep = auto

Detector function = peak

Trace = max hold

2. Allow the trace to stabilize. Set the marker on the emission at the band edge, or on the highest modulation on product outside of the band, if this level is greater than that at the band edge. Enable the marker-delta function, then use the marker-to-peak function to move the marker to the peak of the in-band emission

Test procedure for spurious emission

1. Use the following spectrum analyzer setting

Center frequency: Low, middle and high channel.

Span = wide enough to capture the peak level of the emission operating on the channel closest to the band edge, as well as any modulation products which fall outside of the authorized band of operation.

RBW = 100 kHz

VBW = 100 kHz (≥ RBW)

Sweep = auto

Detector function = peak

Trace = max hold

2. Allow the trace to stabilize. Set the marker on the peak of any spurious emission recorded.

KES-P-5101-09 Rev.1 KES A4

C-3701 Dongil Techno Town, 889-1, Gwanyang 2-dong, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Limit

According to 15.247(d), in any 100~kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20~dB below that in the 100~kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement , provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval , as permitted under paragraph(b)(3) of this section , the attenuation required under this paragraph shall be 30~dB instead of 20~dB. Attenuation below the general limits specified in section 15.209(a) is not required. In addition, radiated emission which in the restricted band, as define in section 15.205(a), must also comply the radiated emission limits specified in section 15.209(a) (see section 15.205(c))

C-3701 Dongil Techno Town, 889-1, Gwanyang 2-dong, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Test results

• Low Channel

Test report No.: KES-RF-120029

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd.

The test results in the report only apply to the tested sample.

Page: (18) of (27)

C-3701 Dongil Techno Town, 889-1, Gwanyang 2-dong, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

• Mid Channel

Test report No.: KES-RF-120029 Page: (19) of (27)

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd.

The test results in the report only apply to the tested sample.

C-3701 Dongil Techno Town, 889-1, Gwanyang 2-dong, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

• High Channel

Test report No.: KES-RF-120029 Page: (20) of (27)

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd.

The test results in the report only apply to the tested sample.

C-3701 Dongil Techno Town, 889-1, Gwanyang 2-dong, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

2.1.7 Radiated spurious emission & band edge

Test location

Testing was performed at a test distance of 3 meter Open Area Test Site

Test procedures

Radiated emissions from the EUT were measured according to the dictates of KDB55874.

[9 kHz to 30 MHz]

The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation. Then antenna is a loop antenna is fixed at one meter above the ground to determine the maximum value of the field strength. Both parallel and perpendicular of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Quasi-peak function and specified bandwidth with maximum hold mode.

The spectrum analyzer is set to:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer 200 Hz for Quasi-peak detection (QP) at frequency below 9 Hz~150 Hz.
- 2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer 9 kHz for Quasi-peak detection (QP) at frequency below 150 kHz~30 MHz.

[30 MHz to 1 GHz and 1 GHz to 24 GHz]

The height of the measuring antenna was varied between 1 to 4 m and the table was rotated a full revolution in order to obtain maximum values of the electric field intensity.

The measurement was made in both the vertical and horizontal polarization, and the maximum value is presented in the report.

The spectrum analyzer is set to:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer 120 kHz for Peak detection (PK) or Quasi-peak detection (QP) at frequency below 1 GHz.
- 2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 Mb for Peak detection at frequency above 1 Gb.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 Mz and the video bandwidth is 10 Hz for Average detection (AV) at frequency above 1 Gz.

The diagram below shows the test setup that is utilized to make the measurements for emission from 30 Mz to 1 GHz emissions.

KES-P-5101-09 Rev.1 KES A4

C-3701 Dongil Techno Town, 889-1, Gwanyang 2-dong, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

The diagram below shows the test setup that is utilized to make the measurements for emission from 9 kHz to 30 MHz Emissions.

The diagram below shows the test setup that is utilized to make the measurements for emission from 30 Mz to 1 Gz emissions.

C-3701 Dongil Techno Town, 889-1, Gwanyang 2-dong, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Limit

According to 15.209(a), for an intentional radiator devices, the general required of field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

Frequency (MHz)	Distance (Meters)	Radiated (¼V/m)
0.009 ~ 0.490	300	2400 / F(kllz)
0.490 ~ 1.705	30	24000 / F(kHz)
1.705 ~ 30.0	30	30
30 ~ 88	3	100
88 ~ 216	3	150
216 ~ 960	3	200
Above 960	3	500

KES-P-5101-09 Rev.1 KES A4

C-3701 Dongil Techno Town, 889-1, Gwanyang 2-dong, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Test results (Below 30 Mb)

The frequency spectrum from 9 kHz to 30 MHz was investigated. Emission levels are not reported much lower than the limits by over 20 dB.

Radiated 6	Radiated emissions Ant.		Correction factors			Total	Liı	nit	
Frequency (MHz)	Reading (dBµV)	Pol.	Ant. factor (dB/m)	Cable loss (dB)	F _d (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)	
	No emissions were detected at a level greater than 20 dB below limit.								

*** Remark**

- 1. All spurious emission at channels are almost the same below 30 Mz, so that <u>high channel</u> was chosen at representative in final test.
- 2. Actual = Reading + Ant. factor + Cable loss + F_d
- 3. $F_d = 40 \log(D_m / D_s)$

Where:

 F_d = Distance factor in dB

 D_m = Measurement distance in meters

 D_s = Specification distance in meters

Test results (Below 1 000 Mb)

The frequency spectrum from 30 Mz to 1 000 Mz was investigated. Emission levels are not reported much lower than the limits by over 20 dB.

Radiated 6	Radiated emissions Ant. Correction factors		Radiated emissions Ant. Correction factors		Total	Liı	mit	
Frequency (MHz)	Reading (dBµV)	Pol.	Ant. factor (dB/m)	Cable loss (dB)	F _d (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
No emissions were detected at a level greater than 20 dB below limit.								

***** Remark

- 1. All spurious emission at channels are almost the same below 1 ©z, so that <u>high channel</u> was chosen at representative in final test.
- 2. Actual = Reading + Ant. factor + Cable loss
- 3. Detector mode: Quasi peak
- 4. To get a maximum emission level from the EUT, the EUT was moved throughout the XY, XZ and YZ planes.

Test report No.: KES-RF-120029 Page: (24) of (27)

C-3701 Dongil Techno Town, 889-1, Gwanyang 2-dong, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Test results (Above 1 000 Mb)

Low channel

Rad	Radiated emissions			Correction	Correction factors		Limit	
Frequency (MHz)	Reading (dBµV)	Detector mode	Pol.	Ant. factor (dB/m)	Amp + CL (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
2390.0*	47.45	Peak	Н	28.31	-38.02	37.74	74.00	36.26
2390.0*	40.09	Average	Н	28.31	-38.02	30.38	54.00	23.62
2390.0*	43.42	Peak	V	28.31	-38.02	33.71	74.00	40.29
2390.0*	36.53	Average	V	28.31	-38.02	26.82	54.00	27.18
4811.1	52.44	Peak	Н	33.93	-34.09	52.28	74.00	21.72
4811.1	45.74	Average	Н	33.93	-34.09	45.08	54.00	8.92
4811.1	49.82	Peak	V	33.93	-34.09	49.66	74.00	24.34
4811.1	42.00	Average	V	33.93	-34.09	41.84	54.00	12.16

Middle channel

Radiated emissions		Ant.	Correction factors		Total	Limit		
Frequency (Mbz)	Reading (dBµV)	Detector mode	Pol.	Ant. factor (dB/m)	Amp + CL (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
No emissions were detected at a level greater than 20 dB below limit.								

High channel

Rad	Radiated emissions		Ant.	Correction factors		Total	Liı	mit
Frequency (MHz)	Reading (dBµV)	Detector mode	Pol.	Ant. factor (dB/m)	Amp + CL (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
2483.5*	51.57	Peak	Н	28.50	-37.81	42.26	74.00	31.74
2483.5*	36.95	Average	Н	28.50	-37.81	27.64	54.00	26.36
2483.5*	50.84	Peak	V	28.50	-37.81	41.53	74.00	32.47
2483.5*	37.07	Average	V	28.50	-37.81	27.76	54.00	26.24
Above 2483.5	No emissions were detected at a level greater than 20 dB below limit.							

***** Remark

- 1. "*" means the restricted band.
- 3. Radiated emissions measured in frequency above 1 000 Mb were made with an instrument using peak/average detector mode.
- 4. Average test would be performed if the peak result were greater than the average limit.
- 5. Actual = Reading + Ant. factor + Amp + CL (Cable loss)
- 6. To get a maximum emission level from the EUT, the EUT was moved throughout the XY, XZ and YZ planes.

Test report No.: KES-RF-120029

Page: (25) of (27)

C-3701 Dongil Techno Town, 889-1, Gwanyang 2-dong, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Appendix A. Test equipment used for test

Equipment	Manufacturer	Model	Calibration due.
Spectrum Analyzer	R&S	FSV30	2013.01.10
Vector Signal Generator	R&S	SMBV2100A	2013.01.10
DC Power Supply	Agilent	6632B	2012.05.06
Trilog-Broadband Antenna	og-Broadband Antenna SCHWARZBECK		2013.10.25
Horn Antenna	A.H. System	SAS-571	2013.03.22
Loop Antenna	R&S	HFH2-Z2.335.4711.52	2013.03.10
High Pass Filter	Wainwright Instrument	WHJS3000-10TT	2013.01.10
Attenuator	Attenuator HP		2012.05.04
Attenuator	НР	8494B	2012.05.04
Preamplifier A.H. System		PAM-0118	2012.05.04

Peripheral devices

Device	Manufacturer	Model No.	Serial No.	
Netbook	Lenovo	S10-2	2957N5K	

KES-P-5101-09 Rev.1 KES A4

KES Co., Ltd.C-3701 Dongil Techno Town, 889-1, Gwanyang 2-dong, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Appendix B. Test setup photo

Radiated field emissions

KES-P-5101-09 Rev.1 KES A4