Ch 14 - Problem Set 1

Calculus 3

Section 1: Functions of Several Variables

- **3.** Let $g(x,y) = x^2 \ln(x+y)$
- (a) Evaluate g(3,1).
- (b) Find and sketch the domain of g.
- (c) Find the range of g.

Solution

- $a) 9 \ln 4$
- b) $D: \{(x,y) \mid y > -x\}$

Domain of g

 $c) \mathbb{R}$

7 - 15 (odd)

Find and sketch the domain of the function.

7.
$$f(x,y) = \sqrt{x-2} + \sqrt{y-1}$$

$$D: \{(x,y) \mid x \ge 2, y \ge 1\}$$

9.
$$q(x,y) = \sqrt{x} + \sqrt{4 - 4x^2 - y^2}$$

Solution

$$D: \{(x,y) \mid x^2 + \frac{1}{4}y^2 \le 1, x \ge 0\}$$

11.
$$g(x,y) = \frac{x-y}{x+y}$$

Solution

$$D: \{(x,y) \mid y \neq -x\}$$

13.
$$p(x,y) = \frac{\sqrt{xy}}{x+1}$$

 $D: \{(x,y) \mid x \neq 0, xy \geq 0\}$

15.
$$f(x,y,z) = \sqrt{4-x^2} + \sqrt{9-y^2} + \sqrt{1-z^2}$$

Solution

$$D: \{(x, y, z) \mid -2 \le x \le 2, -3 \le y \le 3, -1 \le z \le 1\}$$

17. A model for the surface area of a human body is given by the function

$$S = f(w, h) = 0.1091w^{0.425}h^{0.725}$$

where w is the weight (in pounds), h is the height (in inches), and S is measured in square feet.

- (a) Find f(160,70) and interpret it.
- (b) What is your own surface area?

a)

$$f(160,70) = 0.1091(160^{0.425})(70^{0.725}) \approx 20.5$$

The surface area of a human body that weighs 160 pounds and is 70 inches tall is about 20.5 square feet.

23 - 31 (odd)

Sketch the graph of the function

23.
$$f(x,y) = y$$

Solution

This is an equation of the plane that goes through the origin and is parallel to the x-axis.

25.
$$f(x,y) = 10 - 4x - 5y$$

Solution

Let
$$x=y=0$$
 \Rightarrow $z=10$, $x=z=0$ \Rightarrow $y=2$, $y=z=0$ \Rightarrow $x=2.5$

This is an equation of a plane that goes through the points (0,0,10), (0,2,0), (2.5,0,0) [imagine it is shaded in].

27.
$$f(x,y) = \sin x$$

Solution

This is an equation of a cylinder that goes through the origin and is parallel to the x-axis

29.
$$f(x,y) = x^2 + 4y^2 + 1$$

Solution

This is an equation of an elliptic paraboloid that goes through the origin and is parallel to the z-axis.

31.
$$f(x,y) = \sqrt{4-4x^2-y^2}$$

32. Match the function with its graph (labeled I-VI). Give reasons for your choices.

(a)
$$f(x,y) = \frac{1}{1+x^2+y^2}$$
 (b) $f(x,y) = \frac{1}{1+x^2y^2}$

(**b**)
$$f(x,y) = \frac{1}{1 + x^2 y^2}$$

(c)
$$f(x,y) = \ln(x^2 + y^2)$$

(c)
$$f(x,y) = \ln(x^2 + y^2)$$
 (d) $f(x,y) = \cos\sqrt{x^2 + y^2}$

(e)
$$f(x,y) = |xy|$$

$$(f) f(x,y) = \cos(xy)$$

Solution

a)

The graph of
$$f(x,y) = \frac{1}{1 + x^2 + y^2}$$
 is III

When $x = y = 0 \implies z = 1$ so the graph intersects the z-axis at (0, 0, 1).

If we solve for the zx and zy planes we get $z = \frac{1}{1+x^2}$ and $z = \frac{1}{1+y^2}$ respectively.

b)

The graph of
$$f(x,y) = \frac{1}{1 + x^2 y^2}$$
 is I

When $x = y = 0 \implies z = 1$ so the graph intersects the z-axis at (0,0,1).

c)

The graph of $f(x,y) = \ln(x^2 + y^2)$ is IV

When $x = y = 0 \implies z = 0$ so the graph intersects the z-axis at (0,0,0).

- d)
- e)
- f)

33. A contour map for a function f is shown. Use it to estimate the values of f(-3,3) and f(3,-2). What can you say about the shape of the graph?

Solution

45, 47 & 51

Draw a contour map of the function showing several level curves.

45. $f(x,y) = x^2 + y^2$

Solution

47. $f(x,y) = x^2 + y^2$

Solution

51. $f(x,y) = x^2 + y^2$

Solution

53. Sketch both a contour map and a graph of the given function and compare them.

$$f(x,y) = x^2 + 9y^2$$

Solution

61 - 66

Match the function (a) with its graph (labeled A–F below) and (b) with its contour map (labeled I–VI). Give reasons for your choices.

61. $z = \sin(xy)$

Solution

62. $z = e^x \cos y$

Solution

63. $z = \sin(x - y)$

Solution

64. $z = \sin x - \sin y$

Solution

65. $z = (1 - x^2)(1 - y^2)$

Solution

66. $z = \frac{x - y}{1 + x^2 + y^2}$

Solution

67. Describe the level surfaces of the function.

$$f(x, y, z) = 2y - z + 1$$

Section 2: Limits and Continuity

5 - 11 (odd)

Find the limit

5. $\lim_{(x,y)\to(3,2)}(x^2y^3-4y^2)$

Solution

7. $\lim_{(x,y)\to(-3,1)} \frac{x^2y-xy^3}{x-y-2}$

Solution

9. $\lim_{(x,y)\to(\pi,\pi/2)} y \sin(x-y)$

Solution

11. $\lim_{(x,y)\to(1,1)} \left(\frac{x^2y^3 - x^3y^2}{x^2 - y^2} \right)$

Solution

13 - 17 (odd)

Show that the limit does not exist

13. $\lim_{(x,y)\to(0,0)} \frac{y^2}{x^2+u^2}$

Solution

15. $\lim_{(x,y)\to(0,0)} \frac{(x+y)^2}{x^2+y^2}$

Solution

17. $\lim_{(x,y)\to(0,0)} \frac{y^2 \sin^2 x}{x^4 + y^4}$

Solution

19 - 25 (odd)

Find the limit, if it exists, or show that the limit does not exist.

19. $\lim_{(x,y)\to(-1,-2)}(x^2y-xy^2+3)^3$

21. $\lim_{(x,y)\to(2,3)} \frac{3x-2y}{4x^2-\nu^2}$

Solution

Solution

23. $\lim_{(x,y)\to(0,0)} \frac{xy^2\cos y}{x^2+y^4}$

Solution

25. $\lim_{(x,y)\to(0,0)} \frac{x^2+y^2}{\sqrt{x^2+y^2+1}-1}$

Solution

31 & 33

Use the Squeeze Theorem to find the limit.

- **31.** $\lim_{(x,y)\to(0,0)} xy\sin\frac{1}{x^2+y^2}$
- Solution

33. $\lim_{(x,y)\to(0,0)} \frac{xy^4}{x^4+y^4}$

Solution

41, 43 & 45

Determine the set of points at which the function is continuous.

41. $F(x,y) = \frac{xy}{1 + e^{x-y}}$

Solution

43. $F(x,y) = \frac{1+x^2+y^2}{1-x^2-y^2}$

- Solution
- **45.** $G(x,y) = \sqrt{x} + \sqrt{1 x^2 y^2}$
- Solution

Section 3: Partial Derivatives

9 - 25 (odd)

Find the first partial derivatives of the function.

9.
$$f(x,y) = x^4 + 5xy^3$$

11.
$$g(x,y) = x^3 \sin y$$

13.
$$z = \ln(x + t^2)$$

15.
$$f(x,y) = ye^{xy}$$

17.
$$g(x,y) = y(x+x^2y)^5$$

19.
$$f(x,y) = \frac{ax + by}{cx + dy}$$

21.
$$g(u,v) = (u^2v - v^3)^5$$

23.
$$R(p,q) = \tan^{-1}(pq^2)$$

25.
$$F(x,y) = \int_{y}^{x} \cos(e^{t}) dt$$

37. Find the indicated partial derivative.

$$R(s,t) = te^{s/t}; \qquad R_t(0,1)$$

41 & 43

Use implicit differentiation to find $\partial z/\partial x$ and $\partial z/\partial y$

41.
$$x^2 + 2y^2 + 3x^2 = 1$$

43.
$$e^z = xyz$$

45. Find $\partial z/\partial x$ and $\partial z/\partial y$.

(a)
$$z = f(x) + g(y);$$
 (b) $z = f(x + y)$

47. Find all the second partial derivatives.

$$f(x,y) = x^4y - 2x^3y^2$$

Find the indicated partial derivative(s).

57.
$$f(x,y) = x^4y^2 - x^3y$$
; f_{xxx} , f_{xyx}

59.
$$f(x, y, z) = e^{xyz^2}$$
; f_{xyz}

61.
$$W = \sqrt{u + v^2}; \quad \frac{\partial^3 W}{\partial u^2 \partial v}$$

Section 4: Tangent Planes and Linear Approximations

1. The graph of a function f is shown. Find an equation of the tangent plane to the surface z = f(x, y) at the specified point

$$3 - 9 \text{ (odd)}$$

Find an equation of the tangent plane to the given surface at the specified point.

3.
$$z = 2x^2 + y^5 - 5y$$
, $(1, 2, -4)$

5.
$$z = e^{x-y}$$
, $(2, 2, 1)$

7.
$$z = 2\sqrt{y}/x$$
, $(-1, 1, -2)$

9.
$$z = x \sin(x+y)$$
, $(-1,1,0)$

15 - 19 odd

Explain why the function is differentiable at the given point. Then find the linearization L(x,y) of the function at that point.

15.
$$f(x,y) = x^3y^2$$
, $(-2,1)$

17.
$$f(x,y) = 1 + x \ln(xy - 5),$$
 (2,3)

19.
$$f(x,y) = x^2 e^y$$
, $(1,0)$