Theorem 7.3 Chebyshev Inequality

For an arbitrary random variable Y and constant c > 0,

Objine
$$P[|Y - \mu_{Y}| \ge c] \le \frac{\text{Var}[Y]}{c^{2}}.$$

$$|Y - \mu_{Y}| \ge C$$

$$= E[|Y - \mu_{Y}|^{2}]$$

$$= E[|Y - \mu_{Y}|^{2}]$$

$$= E[|Y - \mu_{Y}|^{2}]$$

$$= Var[Y]$$

$$\mu_{Y} - C \quad \mu_{Y} \quad \mu_{Y} + C$$

$$P[|Y-hy|=c] \leq \frac{Van[Y]}{c^2}$$

Elevators arrive randomly at the ground floor of an office building. Because of a large crowd, a person will wait for time W in order to board the third arriving elevator. Let X_1 denote the time (in seconds) until the first elevator arrives and let X_i denote the time between the arrival of elevator i-1 and i. Suppose X_1 , X_2 , X_3 are independent uniform (0,30) random variables. Find upper bounds to the probability W exceeds 75 seconds using

$$P[U>75] = P[W>(Fi)^2] = \frac{E[W]}{75} = \frac{45}{75}$$

The event of interest:
$$\{W-\mu_W = 30\}$$

For the Cheby inag, the event was $|W-\mu_W| \ge C$

P[U-\pm >20] \leq P[|W-\pm| > 30] \leq Van[\pm]

CT

Problem 7.2.4

In a game with two dice, the event *snake eyes* refers to both dice showing one spot. Let *R* denote the number of dice rolls needed to observe the third occurrence of *snake eyes*. Find

- (a) the upper bound to $P[R \ge 250]$ based on the Markov inequality,
- (b) the upper bound to $P[R \ge 250]$ based on the Chebyshev inequality,
- (c) the exact value of $P[R \ge 250]$.

$$R = X_1 + X_2 + X_3$$
, where $X_i \sim Geom(1/36)$ and independent $E[R] = (36) 2 = 108$.
 $Vor[R] = Vor[X_1 + X_2 + X_3]$
 $= Vor[X_1] + Vor[X_2] + Vor[X_3] = 3 Vor[X_1]$.

Point Estimates of Model Parameters

Definition 7.2 Consistent Estimator

The sequence of estimates $\hat{R}_1, \hat{R}_2, \ldots$ of the parameter r is consistent if for any $\epsilon > 0$,

$$\lim_{n\to\infty} P\left[\left|\hat{R}_n - r\right| \ge \epsilon\right] = 0.$$

Definition 7.3 Unbiased Estimator

An estimate, \hat{R} , of parameter r is unbiased if $E[\hat{R}] = r$; otherwise, \hat{R} is biased.

Asymptotically Unbiased

Definition 7.4 Estimator

The sequence of estimators \hat{R}_n of parameter r is asymptotically unbiased if

$$\lim_{n\to\infty} E[\hat{R}_n] = r.$$

Definition 7.5 Mean Square Error

The mean square error of estimator \hat{R} of parameter r is

$$e = E\left[(\hat{R} - r)^2\right].$$

Theorem 7.4

Given:

If a sequence of unbiased estimates $\hat{R}_1, \hat{R}_2, \ldots$ of parameter r has mean square error $e_n = \mathrm{Var}[\hat{R}_n]$ satisfying $\lim_{n \to \infty} e_n = 0$, then the sequence \hat{R}_n

is consistent.

Show Heat:

$$\lim_{n\to\infty} P[|R_n-g_n|>\epsilon] = 0$$

Vse He Chely ineq:

$$P[|R_n-s_1|>E] = Van[R_n]$$

$$E^2$$

$$\lim_{n\to\infty} P[|R_n-s_1|>E] \leq 0$$

Civen Flat

linen = 0

N-8