CSCI4333 Database Design & Implement

Lecture Twenty-five: Normalization 3

Instructor: Dr. Yifeng Gao

Normalization

- Consider relation obtained
 - Hourly_Emps(<u>ssn</u>, name, lot, rating, hrly_wage, hrs_worked)
 - call it SNLRHW
- What if we *know* rating (R) determines hrly_wage (W)?

S	N	L	R	W	Н
123-22-3666	Attishoo	48	8	10	40
231-31-5368	Smiley	22	8	10	30
131-24-3650	Smethurst	35	5	7	30
434-26-3751	Guldu	35	5	7	32
612-67-4134	Madayan	35	8	10	40

Redundancy exists because of the existence of *integrity constraints* (e.g., $FD: R \rightarrow W$).

What do we do? Decomposition

S	N	L	R	W	Н
123-22-3666	Attishoo	48	8	10	40
231-31-5368	Smiley	22	8	10	30
131-24-3650	Smethurst	35	5	7	30
434-26-3751	Guldu	35	5	7	32
612-67-4134	Madayan	35	8	10	40

S	N	L	R	Н
123-22-3666	Attishoo	48	8	40
231-31-5368	Smiley	22	8	30
131-24-3650	Smethurst	35	5	30
434-26-3751	Guldu	35	5	32
612-67-4134	Madayan	35	8	40

R	W
8	10
5	7

- Decomposition of R into R_1 and R_2
 - To enforce FD constraint
 - Reduce Redundancy

• Decomposition of R into R_1 and R_2

S	N	L	R	W	Н
123-22-3666	Attishoo	48	8	10	40
231-31-5368	Smiley	22	8	10	30
131-24-3650	Smethurst	35	5	7	30
434-26-3751	Guldu	35	5	7	32
612-67-4134	Madayan	35	8	10	40

S	N	L	R	Н
123-22-3666	Attishoo	48	8	40
231-31-5368	Smiley	22	8	30
131-24-3650	Smethurst	35	5	30
434-26-3751	Guldu	35	5	32
612-67-4134	Madayan	35	8	40

 R_1

R	W
8	10
5	7

 R_2

• Decomposition of R into R_1 and R_2

How to formally describe this operation in

Relational Algebra?

S	N	L	R	W	Н
123-22-3666	Attishoo	48	8	10	40
231-31-5368	Smiley	22	8	10	30
131-24-3650	Smethurst	35	5	7	30
434-26-3751	Guldu	35	5	7	32
612-67-4134	Madayan	35	8	10	40

R

S	N	L	R	Н
123-22-3666	Attishoo	48	8	40
231-31-5368	Smiley	22	8	30
131-24-3650	Smethurst	35	5	30
434-26-3751	Guldu	35	5	32
612-67-4134	Madayan	35	8	40

R	W
8	10
5	7

• Decomposition of R into R_1 and R_2

How to formally describe this operation in

Relational Algebra?

S	N	L	R	W	Н
123-22-3666	Attishoo	48	8	10	40
231-31-5368	Smiley	22	8	10	30
131-24-3650	Smethurst	35	5	7	30
434-26-3751	Guldu	35	5	7	32
612-67-4134	Madayan	35	8	10	40

S	N	L	R	Н
123-22-3666	Attishoo	48	8	40
231-31-5368	Smiley	22	8	30
131-24-3650	Smethurst	35	5	30
434-26-3751	Guldu	35	5	32
612-67-4134	Madayan	35	8	40

 R_1

R	W
8	10
5	7

 R_2

R

• Decomposition of R into R_1 and R_2

S	N	L	R	W	Н
123-22-3666	Attishoo	48	8	10	40
231-31-5368	Smiley	22	8	10	30
131-24-3650	Smethurst	35	5	7	30
434-26-3751	Guldu	35	5	7	32
612-67-4134	Madayan	35	8	10	40

R

S	N	L	R	Н
123-22-3666	Attishoo	48	8	40
231-31-5368	Smiley	22	8	30
131-24-3650	Smethurst	35	5	30
434-26-3751	Guldu	35	5	32
612-67-4134	Madayan	35	8	40

 $R_1 = \pi_{S,N,L,R,H}(R)$

R	W
8	10
5	7

 R_2

• Decomposition of R into R_1 and R_2

S	N	L	R	W	Н
123-22-3666	Attishoo	48	8	10	40
231-31-5368	Smiley	22	8	10	30
131-24-3650	Smethurst	35	5	7	30
434-26-3751	Guldu	35	5	7	32
612-67-4134	Madayan	35	8	10	40

S	N	L	R	Н
123-22-3666	Attishoo	48	8	40
231-31-5368	Smiley	22	8	30
131-24-3650	Smethurst	35	5	30
434-26-3751	Guldu	35	5	32
612-67-4134	Madayan	35	8	40

$$R_1 = \pi_{S,N,L,R,H}(R)$$

R	W
8	10
5	7

$$R_2 = \pi_{R,W}(R)$$

- Decomposition of R into R_1 and R_2
 - To enforce FD constraint
 - Reduce Redundancy
- Reconstruction from R_1 and R_2
 - Check whether the information is unintentionally modified

Reconstruction

• Formally Describe Reconstruction in Relational Algebra

$$R' = R_1 \bowtie R_2$$

Reconstruct Table

Not So Good Situation: $R \neq R'$

Student_ID	Name	Dcode	Cno	Grade
123-22-3666	Attishoo	INFS	501	A
231-31-5368	Guldu	CS	102	В
131-24-3650	Smethurst	INFS	614	В
434-26-3751	Guldu	INFS	614	A
434-26-3751	Guldu	INFS	612	C

Name	Dcode	Cno	Grade
Attishoo	INFS	501	A
Guldu	CS	102	В
Smethurst	INFS	614	В
Guldu	INFS	614	A
Guldu	INFS	612	C

Student_ID	Name
123-22-3666	Attishoo
231-31-5368	Guldu
131-24-3650	Smethurst
434-26-3751	Guldu

Observation

• Given instances of the decomposed relations, we may **not be able to** reconstruct the corresponding instance of the original relation!

Example A

π	AB	(1	•)

A	В
1	2
4	5
7	2

$$\pi_{AB}(r) \triangleright \triangleleft \pi_{BC}(r)$$

	В	C
π (v)	2	3
$\pi_{BC}(r)$	5	6

A	В	C
1	2	3
4	5	6
7	2	3

Example B

	A	В	\mathbf{C}
r	1	2	3
	4	5	6
	7	2	8

Example B

Conclusion

• What Different between Example A and Example B? Hint: Consider FD

A	В	C
1	2	3
4	5	6
7	2	3

Example A

A	В	C
1	2	3
4	5	6
7	2	8

Example B

Conclusion

 What Different between Example A and Example B? Hint: Consider FD

A	В	C
1	2	3
4	5	6
7	2	3

Example A

A	В	C
1	2	3
4	5	6
7	2	8

Example B

 $B \rightarrow BC$ holds in Example A, but not holds in Example B

Conclusion

• In which condition R' = R?

$$R = \pi_{A1,A2,...,An}(R)$$

$$R_1 = \pi_{A1,A2,...,An}(R)$$

$$R' = R_1 \bowtie R_2$$

$$R_1 = \pi_{B1,B2,...,Bn}(R)$$

Lossless Join Decomposition

• Formally: The decomposition of R into R₁ and R₂ is lossless-join wrt F if and only if F⁺ contains:

$$-R_1 \cap R_2 \rightarrow R_1$$
, or

$$-R_1 \cap R_2 \rightarrow R_2$$

A more useful variation

• Suppose we have $U = R_1 \cap R_2$

• The decomposition of R into R_1 and R_2 is lossless-join wrt F if and only if:

$$- \stackrel{U}{\longrightarrow} \stackrel{R_1}{\longrightarrow} \stackrel{U}{\longrightarrow} or$$

$$- \stackrel{U}{\longrightarrow} \stackrel{R_2}{\longrightarrow} U$$

holds in R

Lossless Join Decompositions

• If decomposition of R into R_1 and R_2 is lossless-join, then we have: R' = R

Boyce-Codd Normal Form (BCNF)

We know what is Lossless Join Decomposition.

But how can we always have Lossless Join Decomposition? BCNF Decomposition

Superkey and F⁺

• Given $F=\{A \rightarrow B, B \rightarrow C\}$. Compute F^+ (with attributes A, B, C).

	A	В	C	AB	AC	BC	ABC
A	V	1	1	V	√	1	√
В		1	1			1	
С			1				
AB	V	1	1	V	V	1	√
AC	V	1	1	V	V	1	√
BC		1	1			V	
ABC	V	V	V	V	V	1	√

Attribute closure
$A^{+}=ABC$
B+=BC
$C_{+}=C$
AB ⁺ =ABC
$AC^{+}=ABC$
BC+=BC
ABC+=ABC

- An entry with $\sqrt{\text{means FD}}$ (the row) \rightarrow (the column) is in F⁺.
- An entry gets $\sqrt{\text{when (the column)}}$ is in (the row)⁺

Superkey and F⁺

• What is the super key of this table?

	A	В	С	AB	AC	BC	ABC
A	1	1	1	7	V	V	17
В						1	
С			1				
AB	V		1	√	V	V	√
ÁC	V		1	√	V	V	√
BC			1			V	
ABO	V		1	√	V	V	√

Attribute closure
$A^{+}=ABC$
$B^+=BC$
$C_{+}=C$
AB ⁺ =ABC
AC+=ABC
BC+=BC
ABC+=ABC

• A, AB, AC, ABC

Boyce-Codd Normal Form (BCNF)

- Relation R with FDs F is in BCNF if:
 - for each non-trivial FD $X \rightarrow A$ in F, X is a super key for R (i.e., $X \rightarrow R$ in F^+).
 - An FD $X \rightarrow A$ is said to be "trivial" if $A \in X$.
 - If not all XA are in R, then we don't care.
- In other words, R is in BCNF if the only non-trivial FDs that hold over R are *key constraints*.
- BCNF means no "data" in R can be predicted using FDs alone.

Boyce-Codd Normal Form (BCNF)

- Relation R with FDs F is in BCNF if all FD in F satisfies:
 - for each non-trivial FD $X \rightarrow A$ in F, X is a super key for R (i.e., $X \rightarrow R$ in F^+).
 - An FD X \rightarrow A is said to be "trivial" if A \in X.
 - If not all XA are in R, then we don't care.
- Another useful definition:
 - $-X \rightarrow Y$ in F over R violates BCNF if $X \rightarrow Y$ does not satisfy BCNF condition

BCNF Decomposition

• Given a table R, we want to decompose it into multiple BCNF tables.

• If we found a dependency in F cause violation of BCNF, we decompose it into two table.

Decomposition into BCNF

- Consider relation R with FDs F. If $X \rightarrow Y$ in F over R violates BCNF,
- Then: decompose R into R-Y and XY.

$$egin{array}{c|c} \pi_{AB}(r) \\ \hline A & B \\ \hline 1 & 2 \\ 4 & 5 \\ 7 & 2 \\ \hline \end{array}$$

$$\begin{array}{c|c}
B & C \\
\hline
2 & 3 \\
5 & 6
\end{array}$$

$$XY = BC$$

 $\pi_{BC}(r)$

R-Y = AB

31

Decomposition into BCNF

- Consider relation R with FDs F. If $X \rightarrow Y$ in F over R violates BCNF, i
- Then: decompose R into R Y and XY.
- Recursively do it until every table is BCNF

Decomposition into BCNF

 Why we want to Decomposition into BCNF

- Lossless joint decomposition
- Always terminate

BCNF Decomposition Example

- R = (A, B, C) $F = \{A \rightarrow B; B \rightarrow C\}$
- $Key = \{A\}$
- R is not in BCNF ($B \rightarrow C$ but B is not a superkey)
- Decomposition
 - $-R_1=(B, C)$
 - $-R_2=(A, B)$

BCNF Decomposition Example 2

Assume relation schema CSJDPQV:

```
Contracts(contract_id, supplier, project, dept, part, qty, value)
```

- key C ($C \rightarrow CSJDPQV$), JP \rightarrow C, SD \rightarrow P, J \rightarrow S

BCNF Decomposition Example 2

- Assume relation schema CSJDPQV:
 - Contracts(contract_id, supplier, project, dept, part, qty, value)
 - key C, JP \rightarrow C, SD \rightarrow P, J \rightarrow S
- To deal with $SD \rightarrow P$, decompose into SDP, CSJDQV.
- To deal with $J \rightarrow S$, decompose CSJDQV into JS and CJDQV
- A tree representation of the decomposition:

Question Extra

- R(A, B, C, D, E, G, H) $F=\{B \rightarrow D, AB \rightarrow C, AC \rightarrow B, BC \rightarrow A, E \rightarrow G\}$
- Answer the BCNF Decomposition of R(ABCDEGH)

Question Extra

- Same as previous
- Not in BCNF
- Decomposition:

