

RAJARATA UNIVERSITY OF SRI LANKA FACULTY OF APPLIED SCIENCES

B.Sc. (General) Degree in Applied Sciences
Third Year - Semester I Examination – September/October 2019

BIO 3206 - EXPERIMENTAL DESIGN AND NONPARAMETRIC METHODS IN STATISTICS

Time: Two (02) hours

Answer ALL questions

1. An experiment was conducted to study the effect of three (3) chemicals (C1, C2, C3) on the removal of hardness in water. Twelve homogeneous (12) water samples were obtained and each chemical was added to four (4) randomly selected water samples. At the end of the experimental period, hardness of each sample was measured (ppm) and is given in the table below.

Chemical	1111111111	Hard	ness (ppm)	
C1	105	102	110	106
C2	67	68	65	70
C3	88	85	90	86

a) Conduct an appropriate statistical test to find out whether the effects of the chemicals on reducing hardness of water ($\alpha = 0.05$).

Note: Clearly indicate your null hypothesis, alternative hypothesis and conclusions.

(20 marks)

b) If chemicals are significantly different, conduct mean separation using LSD test and recommend the best chemical.

(10 marks)

2. An experiment was conducted to evaluate the effect of three (3) types of organic matter (OM1, OM2 and OM3) on solubility of rock phosphate. The experiment was conducted in three locations (L1, L2 and L3) with three (3) replicates. The experimental layout and the phosphorus availability in each replicate are given below.

0.3

Location				
¥.4	OM2	OM1	OM3	
L1	90	56	65	
	OM1	OM2	ОМ3	
L2	50	95	68	
	OM2	ОМ3	OM1	
L3	87	70	52	

Conduct an appropriate statistical test to find out whether there is a significant difference in organic matter type on solubility of rock phosphate ($\alpha = 0.05$).

Note: Clearly indicate your null hypothesis, alternative hypothesis and conclusions. (20 marks)

3. A laboratory experiment was conducted to evaluate the effect of **fermentation organism** (F) and **temperature** (T) on alcohol production. Two types of organisms (F1 and F2) and three temperature levels (T1, T2 and T3) were used in this study. At the end of experimental period the alcohol content of each experimental units (vat) was measured. Experimental layout and the alcohol content (%) of each experimental unit is given below.

F2-T1	F1-T2	F1-T1	F1-T3
12	18	15	10
F2-T2	F2-T3	F2-T2	F2-T3
15	9	14	10
F1-T2	F1-T3	F2-T1	F1-T1
18.5	11	12.5	16

Conduct an appropriate statistical test to find out effect of each factors (fermentation organism and temperature) and their interaction ($\alpha = 0.05$)

Note: Clearly indicate your null hypothesis, alternative hypothesis and conclusions.

(30 marks)

4. An experiment was conducted to evaluate behavior of four animal species (S1, S2, S3 and S4). Three researchers observed the movement of each animal species and assigned movement scores on a scale of 0 to 100. The data was analyzed using Minitab software and output is presented below.

Friedman Test: Scores versus Species blocked by Researcher

$$S = 9.00 DF = 3 P = 0.029$$

		Est Su	m of
Species	N	Median	Ranks
S1	3	95.00	12.0
S2	3	65.00	6.0
s3	3	85.00	9.0
S4	3	55.00	3.0

Grand median = 75.00

- a) Interpret the results using $\alpha = 0.05$. Clearly indicate your null hypothesis, alternative hypothesis and conclusions. (10 marks)
- b) Explain the next step of this analysis to find out the most active species. (10 marks)

Table 8:

Students' distribution

Example: For 15 degrees of freedom, the t value that corresponds to an area of 0.05 in both tails combined is 2.131

Degrees of freedom	Aı	rea in Both Tai	ls Combined	ined				
Degrees of freedom	0.10	0.05	0.02	0.01				
1	6.314	12.706	31.821	63.657				
2	2.920	4.303	6.965	9.925				
3	2.353	3.182	4.541	5.841				
4	2.132	2.776	3.747	4.604				
5	2.015	2.571	3.365	4.032				
6	1.943	2.447	3.143	3.707				
7	1.895	2.365	2.998	3.499				
8	1.860	2.306	2.896	3.355				
9	1.833	2.262	2.821	3.250				
10	1.812	2.228	2.764	3.169				
11	1.796	2.201	2.718	3.106				
12	1.782	2.179	2.681	3.055				
13	1.771	2.160	2.650	3.012				
14	1.761	2.145	2.624	2.977				
15	1.753	2.131	2.602	2.947				
16	1.746	2.120	2.583	2.921				
17	1.740	2.110	2.567	2.898				
18	1.734	2.101	2.552	2.878				
19	1.729	2.093	2.539	2.861				
20	1.725	2.086	2.528	2.845				
21	1.721	2.080	2.518	2.831				
22	1.717	2.074	2.508	2.819				
23	1.714	2.069	0.431	2.807				
24	1.711	2.064	2.492	2.797				
25	1.708	2.060	2.485	2.787				
26	1.706	2.056	2.479	2.779				
27	1.703	2.052	2.473	2.771				
28	1.701	2.048	2.467	2.763				
29	1.699	2.045	2.462	2.756				
30	1.697	2.042	2.457	2.750				
40	1.684	2.021	2.423	2.704				
60	1.671	2.000	2.390	2.660				
120	1.658	1.980	2.358	2.617				
normal distribution	1.645	1.960	2.326	2.576				

Table 2:

Upper percentage points of the F-distribution

(a) F v_1 , v_2 (0.05)

8	120	60	40	30	29	28	17	2 1	26	25	24	23	22	21	20	19	18	17	16	15	- h	14	2 13		11	10	9	∞	7	6	S	4	w	2	-	12	/
																																				/	5
7.07	3.92	4.00	4.08	4.17	4.18	4.20	4.21	۵ i	4.23	4.24	4.26	4.28	4.30	4.32	4.35	4.38	4.41	4.45	4.49	4.54	2	4.60	4.67	4.75	4.84	4.96	5.12	5.32	5.59	5.99	6.61	7.71	10.13	18.51	161.4		-
0.00	3.07	3.15	3,23	3.32	3.33	3.34	0.00	2 25	3.37	3.39	3.40	3.42	3.44	3.47	3.49	3.52	3.55	3.59	3.63	3.68	3 60	3.74	3.81	3,89	3.98	4.10	4.26	4.46	4.74	5.14	5.79	6.94	9.6	19.0	199.5		2
1000	2.68	2.76	2.84	2.92	2.93	2.95	2.30	7 96	2.98	2.99	3.01	3.03	3.05	3.07	3.10	3.13	3.16	3.20	3.24	3.29	2 30	3.34	3.41	3.49	3.59	3.71	3.86	4.07	4.35	4.76	5.41	6.59	9.3	19.2	215.7		Ų.
li c	2.42	2.53	2.61	2.69	2.70	2.71	0 1 7	273	2.74	2.76	2.78	2.80	2.82	2.84	2.87	2.90	2.93	2,96	3.01	3,00	3 06	3.11	3.18	3.26	3.36	3.48	3.63	3.84	4.12	4.53	5.19	6.39	9.1	19.2	224.6		4
	2.29	2.37	2.45	2.53	2.55	2.56	0 10	2 57	2.59	2.60	2.62	2.64	2.00	2.08	2.71	2.74	2.77	2.81	2.85	2.90	3 00	2,96	3.03	3.11	3.20	3.33	3,48	3.69	3.97	4.39	5.05	6.26	9.0	19.3	230.2		U
1	2.17	2.25	2.34	2.42	2.43	2.43	2 1	2.46	2.47	2.49	2.51	2.53	2.33	7.3/	2.60	2.63	2.66	2.70	2.74	2.19	2 79	2.85	2.92	3.00	3.09	3.22	3.37	3.58	3.87	4.28	4.95	6.16	8.9	19.3	234.0		0
	2.09	2.1/	2.23	2.33	2.35	2.30	2 10	2.37	2.39	2.40	2.42	2.44	2.40	2.49	2.51	2.54	2.58	2.61	2,60	2.71	271	2.76	2.83	2.91	3.01	3.14	3.29	3.50	3.79	4.21	4.88	6.09	8.9	19.4	236.8		,
	1.94	2.10	2.18	2.27	2.28	2.29	200	2.31	2.32	2.34	2.36	2.37	2.40	2.42	2.45	2.48	2.31	2.33	2.39	2 60	2 64	2.70	2.77	2.85	2.95	3.07	3.23	3,44	3.73	4.15	4.82	6.04	00	19,4	238.9		0
	1.88	1.04	2.12	2.21	2.22	2.24) i	2.25	2.27	2.28	2.30	2.32	10.7	2.37	2.39	2.42	2.40	24.49	2.34	2 5 2	2.59	2.65	2.71	2.80	2.90	3.02	3.18	3.39	3.68	4.10	4.77	6.00	.00	19.4	240.5	CT.	3
	1.83	1.01	2.06	2.16	2.18	2.19	2 10	2.20	2.22	2.24	2.25	2.27	2.30	2 30	2.35	230	2.41	2,43	24.4	2 40	2.54	2.60	2.67	2.75	2.85	2.98	3.14	3.35	3.64	4.06	4.74	5.96	000	19.4	241.9		TO.
	1.75	1.92	2.00	2.09	2.10	2.12	2 13	2.13	2.15	2.16	2.18	2.20	2 2 2 2	20.2	2.28	2,31	2.34	2.00	74.4	2 1 1 2	2.48	2.53	2.60	2.69	2.79	2.91	3.07	3.28	3.57	4.00	4.68	5.91	8.7	19.4	243.9		1.6
	1.67	1 75	1.92	2.01	2,03	202	204	2.06	2.07	2.09	2.11	2.13	2 12	2.10	2.20	2 6.2.3	17.7	2.51	2.33	2 1 0	2.40	2.46	2.53	2.62	2.72	2.85	3.01	3.22	3.51	3.94	4.62	5.86	8.7	19.4	245.9		1.0
	1.57	1 66	175	1.93	1.94	1.50	1 06	1.97	1.99	2.01	2.03) N.O.	205	2.10	2.12	2,10	2.15	2 10	27.7	300	2.33	2.39	2.46	2.54	2.65	2.77	2.94	3.15	3.44	3.87	4.56	5.80	8.7	19.4	248.0		200
	1.51	1.70	1 30	1.89	1.90	1.91	1 01	1.93	1.95	1.96	1.98	1.01	2.00	2.03	2.08	2 1) 11)	215	2.24	2 2 7	2.29	2.35	2.42	2.51	2.61	2.74	2.90	3.12	3.41	3.84	4.53	5.77	. ×.0	19.5	249.1		27
	1.46	1.00	1 65	1.84	1,60	1 05	1 87	1,88	1,90	1.92	1.94	1.70	1 06	1 98	2.04	0 1:0	2.11	2 11	217	2.10	2.25	2.31	2.38	2.47	2.57	2.70	2.86	3.08	133 000	3.81	4.50	5.75	0.0	19.5	250.1		00
	1.39	1.50	1.60	1.79	1.6.1	1 01	1 87	1.84	1.85	1.87	1.89	1.01	101	1 94	1.99	1 10	2.00	206	2.10	2 1 5	2.20	2.27	2.34	2.43	2.53	2.66	2.83	3.04	3,34	3.77	4.46	5.72	8.6	19.5	251.1		100
	1.32	1 43	1 52	1.74	1./3	1 75	1 77	1.79	1.80	1.82	1.04	1.00	1 06	1 80	1.93		1 00	2.00	206	2 11	2.16	2.22	2.30	2.38	2.49	2.62	2.79	3.01	3.30	3.74	4.43	5.69	8.0	19.5	252.2		00
	1.22	1 2 1	1 47	1.68	1.70	1 70	1 71	1.73	1.75	1.77	1.79	1.70	1 81	1.84	1.90	100	1 03	1 97	2.00	2.06	2.11	2.18	2.25	2.34	2.45	2.58	2,/3	2.97	3.27	3.70	4.40	3.00	8.00	19.49	253.25		140
	1.00	136	1 30	1.62	1,04	1 64	1.65	1.67	1.69	1,71	1.73	1 72	1.76	1.78	1.04	1 0	1.88	1 00	1 96	201	2.07	2.13	2.21	2.30	2.40	2.54	2./1	2.93	3.23	3.67	4.37	0.02	1 O.U.	19.50	254.31		