

U.S.-Canada Center on Climate-Resilient Western Interconnected Grid

SSTDR for Fault Monitoring in Power Systems

Nathaniel Fargo, Ali Tasavvori, Cynthia Furse University of Utah

Introduction to Spread Spectrum Time Domain Reflectometry (SSTDR)

• SSTDR can detect, classify, and locate faults on dead or live wires, providing a consistent metric in critically shifting systems.

• Smith et al., "Analysis of SSTDR," IEEE Sensors J 2005.

Literature Review

- SSTDR has been used in aircraft, rail, undersea Furse et al, "Fault Diagnosis for Electrical Systems and Power Networks: A Review." IEEE Sensors J, 2021
- Coupling of SSTDR Signals onto HV Lines
 Glass et al, "Evaluation of Clamshell Current Coupler for Online
 FDR and SSTDR to Detect Anomalies in Energized Cables," 2024
- SSTDR has been used in branching networks before

 Addad et al., "Analysis and Validation of SSTDR for Simultaneous

 Distributed Diagnosis of Wire Networks," IEEE Sensors J, 2025

Research Objectives

- This work provides research into SSTDR fault detection applied to power distribution systems, initially targeting fault locating after large scale outages on de-energized cables.
- Our research explores considerations (branching, transmission) and implementation decisions that could guide future work, as well as considering other power applications SSTDR, such as solar/wind.

Signal Transmission Methodology

- To measure changes in SSTDR responses due to ground coupling, we used the setup shown.
- We varied the feeder length and separation distance to and took 95% confidence intervals for the data.

Separation Distance (d) Termination SSTDR Zoz upz Langth (I)

Main Findings

 Results demonstrate range of variability in both impedance and propagation velocity

Implications

- These findings provide useful metrics for predicting types and measure of variability present in real distribution systems.
- Uncertainty in propagation velocity and impedances reduce reliability of SSTDR.
- Additional utility is found in other power systems, such as photovoltaics and lightning protection systems, where EM coupling can vary wildly.
- LaFlamme et al., "Ground Faults in Photovoltaics: SSTDR for Characterization, Detection, and Location," ASME 2022.

Branching Networks Methodology

- We assembled BNC cable networks to simulate distribution lines. We then probed the network using SSTDR to produce a signature.
- Taking the difference between signatures via RMS quantifies the detectable change between two networks. For example, terminating a branch with open vs short.

Network N00 vs N01 SSTDR Waveform

Main Findings

• These charts point to detectable changes on cables at least 18 branches away in the network.

Implications

- These findings were more promising than expected, pointing to SSTDR as a valid approach for diagnosing branching networks as well as single conductors.
- Applications involve monitoring energized OR de-energized systems at the neighborhood level.

Data Generation for Machine Learning Methodology

- Turning SSTDR into fault location is difficult when there are multiple impedance changes and branches on the network.
- Machine Learning is a promising approach to map these domains, but requires large amounts of data and proper architecture.

Main Findings

Discrete 1.25e-08 s. powergui

 Our system randomly generates network system and provides realistic simulation with full reflection and attenuation measures included.

Implications

This simulated training set should provide an estimate of the efficacy of neural network approaches and capabilities using very clean synthetic data.

Future Work

- Using this data generation pipeline, we are entirely ready to start training a machine learning network.
- Several architectures have been considered, including 1D convolution neural networks for the SSTDR waveform, paired with graph neural networks connecting a discretized version of the network layout and impedance faults.

Disclosure

Dr. C.M. Furse is a co-founder of LiveWire Innovation/Viper Innovation which is commercializing SSTDR technology, and therefore she is disclosing a financial conflict of interest with this company.

Nathaniel Fargo nathaniel.fargo@utah.edu Dr. Furse EM Lab

