CONTENTS / 003

딥러닝 개요

[[답러닝의 태동

- 인공신경망(1943)
 - 인간의 뇌를 수학적으로 모델링 할 수 있을 것이라는 아이디어에서 시작
 - 인간의 뇌를 수학 모델이 복잡하게 연결된 네트워크로 표현할 수 있다고 제안

[딥러닝의 태동

- 퍼셉트론(1957)
 - 뇌의 기본 단위인 뉴런을 모방
 - 입력 신호에 따라 0 또는 1 값을 출력

l 뉴런과 퍼셉트론

• 입력 신호에 따라 0 또는 1 값을 출력

┃퍼셉트론

- 퍼셉트론의 등장은 큰 주목을 받음
- · 뉴욕타임즈기사
 - "걷고, 말하고, 보고, 쓰고, 스스로 인지하는 컴퓨터 가 등장할 것"

NEW NAVY DEVICE LEARNS BY DOING

Psychologist Shows Embryo of Computer Designed to Read and Grow Wiser

WASHINGTON, July 7 (UPI)
—The Navy revealed the embryo of an electronic computer
today that it expects will be
able to walk, talk, see, write,
reproduce itself and be conscious of its existence.

Titoatham

인공신경망

• 사람의 뇌 : 뉴런들의 다층연결

뉴론 → 신경망 → 지능

• 인공신경망 : 퍼셉트론의 다층 연결

퍼셉트론 → 인공신경망 → 인공지능

- 인공신경망을 많은 층으로 깊게 쌓은 모델이 DNN(Deep Neural Network)
- DNN 모델을 마케팅 용어로 만든 것이 딥러닝(Deep learning)

| 퍼셉트론과 선형분류 문제

• 퍼셉트론은 y = ax + b 수식으로 모델링 된 선형 분류기

- 퍼셉트론은 선형 분류기로써 AND, OR 연산에 대한 학습이 가능
 - AND 논리 연산

Input_A	Input_B	Output
0	0	0
1	0	0
0	1	0
1	1	1

- 퍼셉트론은 선형 분류기로써 AND, OR 연산에 대한 학습이 가능
 - OR 논리 연산

Input_A	Input_B	Output
0	0	0
1	0	1
0	1	1
1	1	1

- 그러나 선형분류기는 XOR 문제를 해결하지 못함
 - XOR 논리연산

Input_A	Input_B	Output
0	0	1
1	0	0
0	1	0
1	1	1

- 퍼셉트론은 선형 분류기로써 AND, OR 연산에 대한 학습이 가능
- 그러나 선형분류기는 XOR 문제를 해결하지 못함

L 딥러닝의 첫 번째 빙하기

- 1969년 MIT AI Lab의 설립자 Minsky는 논문(Perceptrons)에서 단층 퍼셉트론 으로 XOR 문제를 해결이 불가능 함 을 증명
- 그 이후 신경망에 대한 관심이 급속도로 줄어들며 빙하기 시작

[딥러닝의 첫 번째 빙하기

- 그럼, 다층 퍼셉트론 으로 해결할 수 없나?
 - · 퍼셉트론은 적절한 기울기(a)와 편향(b) 를 찾아 문제를 해결
 - AND 논리 연산 : 기울기(a_3), 편향(b_3)

[딥러닝의 첫 번째 빙하기

- 그럼, 다층 퍼셉트론 으로 해결할 수 없나?
 - 수많은 가중치 값과 편향 값을 찾을 수 있는 적절한 수학적 방법이 없었음

L오차역전파 (Backpropagation)

- Paul Werbos는 1974년 딥러닝 역사에 한 획을 그을 만한 역전파법을 고안
 - 복잡한 수식의 미분을 쉽게 할 수 있는 수학 기법
 - 수많은 가중치 값과 편향 값으로 이루어져 있는 다층 퍼셉트론에 적합
 - 딥러닝 기술에 대한 관심이 적어 역전파가 적용되지 못함

오차역전파 (Backpropagation)

- 1986년 Geoffrey Hinton 교수가 다층 퍼셉트론의 학습에 역전파를 적용
- 이 방법이 다층 퍼셉트론을 이용해 XOR 문제를 학습할 수 있음을 보임

[딥러닝의 두 번째 빙하기

- 두 가지 문제에 부딪히며 두 번째 빙하기를 맞음
 - 네트워크의 깊이가 깊어질수록 학습이 잘 되지 않음
 - 뉴럴 네트워크의 초기 값에 대한 이론적 근거가 부족

[딥러닝의 두 번째 빙하기

• SVM 등 <mark>단순</mark>하면서 성능이 뛰어난 머신러닝 알고리즘 등장

#PROFESSIONAL IT EDU-PLATFORM

- 1969년 부터 약 50년간 1, 2차 딥러닝 기술의 빙하기 도래
- 연구자들과 기업 모두 인공신경망 기술을 외면

[[딥러닝의 빙하기

- 1969년 부터 약 50년간 1, 2차 딥러닝 기술의 빙하기 도래
- 연구자들과 기업 모두 인공신경망 기술을 외면

PROFESSIONAL QUE ? ATFORM

|사람들의 높은 기대 수준

• 여러분이 상상하는 영화속의 인공지능의 모습은?

|사람들의 높은 기대 수준

• 여러분이 상상하는 영화속의 인공지능의 모습은?

|사람들의 높은 기대 수준

• 여러분이 상상하는 영화속의 인공지능의 모습은?

사람들의 높은 기대 수준

- 사람들은 당장 사람을 대체할 수 있는 인공지능 기대
- 2021년 Google도 사람을 대체 할 수 있는 인공지능 불가

|학습 데이터 양의 부족

• 인공신경망은 학습 데이터의 양이 성능을 좌우

#PROFESSIONAL IT EDU-PLATFORM

|학습 데이터 양의 부족

• 인공신경망 학습에 필요한 양의 데이터 처리 기술 부족

l컴퓨팅 성능의 부족

• 인공신경망의 학습을 위해 많은 연산이 필요

EDU-PLATFORM

nesso()

플롭스(FLoating point Operations Per Second):

- ▸ <u>컴퓨터</u>의 성능을 수치로 나타낼 때 주로 사용되는 <u>단위</u>.
- **초당** <u>부동소수점</u> 연산이라는 의미로 컴퓨터가 1초동안 수행할 수 있는 부동소수점 연산의 횟수

|컴퓨팅 성능의 부족

• 2010년 이전까지는 컴퓨팅 파워(연산)의 발전이 늦음

- 데이터가 폭발적으로 늘어남
- GPU 등 컴퓨팅 파워의 고속화
- 딥러닝 알고리즘의 발전
 - 기울기 소실(Vanishing Gradient) 문제의 해결책 발견
 - Relu Function, Batch Normalization
 - 경사하강법 등 최적화 알고리즘의 발견

