TP RL (Reinforcement learning) Techniques of AI [INFO-H-410] Correction v1.0.0

Source files, code templates and corrections related to practical sessions can be found on the UV or on github (https://github.com/iridia-ulb/INFOH410).

Value Iteration algorithm

Question 1. Imagine a maze where there is a cookie giving you +20 reward, you want to maximize your reward by learning the policy using value iteration algorithm. There is also a cliff you might fall into which would lead to -50 reward, At any point when taking an action you might slip and go in on a side with probablity 0.05, this means, for a given action for example "forward", you could go "left" or "right" with probablity 0.05 (but not backwards). If you are next to a border any action taking you trough that border makes you stay in place. You start in the black spot with the following default policy and value function.

0	0	-50	+20
0	0	-50	0
0	0	0	0

 $\uparrow \qquad \uparrow \qquad -50 \qquad +20$ $\uparrow \qquad \uparrow \qquad -50 \qquad \uparrow$ $\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$

Value function $V^{\pi}(s)$

Policy π

- a) Is this system markov?
- b) Represent the transition model for any given action.
- c) Compute 3 iterations of value iteration using $\gamma = 1$
- d) Update the policy accordingly

Answer: (a) yes, it is observable and each action only depends on the current state

	0.9	
0.05	†	0.05

(b) the transition model is for a given action:

We are in a markovian setup and we want to compute the value function, this function boils down to $V^{\pi}(s) = Q^{\pi}(s, \pi(s))$, so we solve the problem using the bellman equation: $Q(s,a) \leftarrow \sum_{s' \in S} P^a_{ss'}(R^a_{ss'} + \gamma \max_{a'} Q(s',a'))$

(c) and (d) Iterations:

0	0	-50	+20
0	0	-50	15.5
0	0	0	0

↑	\leftarrow	-50	+20
↑	\	-50	↑
↑	↑	↓	↑

Value function $V^{\pi}(s)$

0	0	-50	+20
0	0	-50	16.27
0	0	0	13.95

†	←	-50	+20
↑	\	-50	↑
↑	↑	+	↑

Policy π

Value function $V^{\pi}(s)$

0	0	-50	+20
0	0	-50	16.3
0	0	10.1	15.34

†	←	-50	+20
↑		-50	↑
↑	↑	\rightarrow	↑

Policy π

Value function $V^{\pi}(s)$

0	0	-50	+20
0	0	-50	16.31
0	9.09	11.8	15.94

†	←	-50	+20
1		-50	↑
†	\rightarrow	\rightarrow	↑

Policy π

Value function $V^{\pi}(s)$

0	0	-50	+20
0	5.68	-50	16.32
8.18	10.42	12.43	16.08

†	←	-50	+20
1	+	-50	↑
\rightarrow	\rightarrow	\rightarrow	↑

Policy π

Value function $V^{\pi}(s)$

Policy π

0	2.61	-50	+20		↑	+	-50	+20
7.64	6.88	-50	16.32		+	↓	-50	
9.79	11.71	12.59	16.11		\rightarrow	\rightarrow	\rightarrow	†
Value function $V^{\pi}(s)$					Policy π			
7.01	3.69	-50	+20		+	↓	-50	+20
9.53	8.42	-50	16.32		+	↓	-50	↑
11.41	12.26	12.62	16.12		\rightarrow	\rightarrow	\rightarrow	↑
Value function $V^{\pi}(s)$					Policy π			

Q Learning

Question 2. Imagine you have a vertical pole that you want to balance vertically along its axis, let us use Q learning in order to learn to equilibrate this pole. We will use the "Cartpole-v1" environnement of openai gym (see https://github.com/openai/gym/wiki/CartPole-v0 and https://github.com/openai/gym/blob/master/gym/envs/classic_control/cartpole.py in the description).

Figure 1: The cartpole to balance verticaly. The cartpole can be seen as an inverted pendulum sitting on a small moving cart.

- a) Could we tackle this problem without machine learning? Do you have any idea how?
- b) Given the state vector of the cart pole, let us keep only 2 features, the angle of the pole and the cart velocity. How can you transform those continuous variables to categorical ones? Why do you need to do so?
- c) What is the reward function of this problem? What are the possible actions?

- d) Using Q Learning to solve this problem, what will be the dimensionnality of the Q table.
- e) What is the Bellman equation? Where is it used in Q learning?
- f) Using the provided template, implement you solution in python.

Answer: (a) It could be done using regular control theory (https://en.wikipedia.org/wiki/Inverted_pendulum)

- (b) Create bins of values, since Q learning uses a Qtable we need to be able to categorize so that the number of cases in the table in finite.
- (c) +1 for each timestep it still balanced
- (d) If we keep only 2 features and categorize in 20 bins, and knowing that there are 2 possibles actions, the table will be : 20x20x2
- (e) The bellman equation is used to update the approximation of the Q table at each timestep so that: $Q_{t+1}(s,a) = (1-\alpha)Q_t(s,a) + \alpha(R_{t+1}^a + \gamma \max_a Q_t(s_{t+1},a))$
- (f) see github for implementation

Found an error? Let us know: https://github.com/iridia-ulb/INFOH410/issues