Problem 1:

Let G be a group, and let $a, b \in G$ with |a| = m, |b| = n.

Part a:

First, if $m \mid k$, then m = lk for some $l \in \mathbb{Z}$. So $a^k = a^{lm} = (a^m)^l = e^l = e$. Next, if $m \not\mid k$, then k = lm + j for some $l \in \mathbb{Z}$, $j \in \mathbb{N}$ with 0 < j < m. So $a^k = a^{lm+j} = a^{lm}a^j = a^j \neq e$. $(a^j \neq e \text{ for any } j \text{ between } 0 \text{ and } m \text{ (exclusive)}$, because otherwise the order of a would be less than m, which is against our assumptions.)

So $m \mid k$ if and only if $a^k = e$.

Part b:

Let ab = ba, and $\langle a \rangle \cap \langle b \rangle = \{e\}$.

First, $|ab| \leq \text{lcm}(m, n)$:

Then $(ab)^{\operatorname{lcm}(m,n)} = a^{\operatorname{lcm}(m,n)}b^{\operatorname{lcm}(m,n)} = ee = e.$

So $\operatorname{lcm}(m, n)$ is a positive number with the property $(ab)^{\operatorname{lcm}(m,n)} = e$; $\operatorname{lcm}(m, n)$ is greater than or equal to the order of ab. (So $|ab| \leq \operatorname{lcm}(m, n)$).

Next, $|ab| \ge \text{lcm}(m, n)$:

Let $r \in \mathbb{N}$ be such that $(ab)^r = e$.

Then $(ab)^r = a^r b^r = e$. To rewrite this, we know that $a^r = b^{-r}$. Now, because $\langle a \rangle \cap \langle b \rangle = \{e\}$, we know that $a^s = b^t$ for any $s, t \in \mathbb{Z}$ implies that $a^s = b^t = e$. By the earlier problem, this means that $m \mid r$ and $n \mid -r$ (or equivalently, $n \mid r$).

So by elementary number theory, this means that $lcm(m, n) \mid r$. So r > lcm(m, n) if $(ab)^r = e$ and r > 1.

So by the squeeze theorem, |ab| = lcm(m, n).

Problem 2:

Consider $\delta = (1 \ 2 \dots n)$.

From theorem 4.9a, we know that the number of conjugacy classes of δ is equal to [G:C(x)].

From theorem 5.6, we know that every n-cycle is conjugate to δ . There are (n-1)! n-cycles in S_n :

We know that there are n! elements of S_n . Pick an element of S_n ...call it σ . Now, write the cycle $(\sigma(1) \ \sigma(2) \ \sigma(3) \ \ldots \sigma(n))$. This cycle is equivalent to n other cycles, each given by

$$(\sigma(2) \ \sigma(3) \ \sigma(4) \ \dots \sigma(n) \ \sigma(1))$$

$$(\sigma(3) \ \sigma(4) \ \sigma(5) \ \dots \sigma(n) \ \sigma(1) \ \sigma(2))$$

$$\dots$$

$$(\sigma(n) \ \sigma(1) \ \sigma(2) \ \dots \sigma(n-1)).$$

So there are n!/n = (n-1)! different n-cycles in S_n

So
$$[G:C(x)] = (n-1)!$$
. So $|C(x)| = n$.

Now, there are n elements of the form δ^i ; we know from class that an n-cycle has order n, so $|\{\delta^i: i \in \mathbb{Z}\}| = |\langle \delta \rangle| = n$.

Each element of the form δ^i commutes with δ trivially.

So the only elements that commute with δ are the elements of the form δ^i ; there are n of them, and there can only be n different elements that commute with δ .

Problem 3:

The following proof is constructive; it mimicks a selection sort. I attempt to illustrate the proof using crayon, as the proof is nigh-illegible otherwise.

Define
$$s = (1 \ 2)$$
 and $r = (1 \ 2 \ 3 \dots n)$. ("swap" and "rotation").

Let
$$\sigma \in S_n$$
. Then for each $m \in \{1, 2, ..., n\}$:
Define $\alpha_0 = (1)$. Determine $\sigma(1)$. Consider $r^{-(\sigma(1)-1)}$.

Define $\alpha_1 = r^{-\sigma(1)-1}$. From the above diagram, it is clear that $\alpha_1(1) =$

 $\sigma(1)$. Now, determine $\alpha_1(\sigma(2))$. Define $\beta_2 = r^{-(\alpha_1(\sigma(2))-1)}$. (Look at the picture)

Define $\gamma_2 = (rs)^{\beta_2 \alpha_1 \sigma(2) - \beta_2 \alpha_1 \sigma(1)) - 1}$. (Seriously, just look at the pictures)

Now define $\alpha_2 = \gamma_2 \beta_2 \alpha_1$ Now, $\alpha_2(1) = \sigma(1)$ and $\alpha_2(2) = \sigma(2)$, as is clear from the illustrations.

We iterate to completion: for each $n \in \mathbb{N}$ we can define $\alpha_n = \gamma_n \beta_n \alpha_{n-1}$ recursively, where $\beta_n = r^{-(\alpha_{n-1}(\sigma(n))-(n-1))}$ and $\gamma_n = (rs)^{\beta_n \alpha_{n-1} \sigma(n)-\beta_n \alpha_{n-1} \sigma(n-1))-(n-1)}$. From the below illustrations, it should be clear that for each n, $\alpha_n(x) = \sigma(x)$ for all $x \leq n$.

So we have constructed $\alpha_n = \sigma$, with α_n a product of r, s, and their inverses. Thus, $\sigma \in \langle (1\ 2), (1\ 2\ 3\dots n) \rangle$ for all $\sigma \in S_n$

In other words, $S_n \subset \langle (1\ 2), (1\ 2\ 3\dots n) \rangle$, which implies that $S_n = \langle (1\ 2), (1\ 2\ 3\dots n) \rangle$ (because subgroups generated by elements are still subgroups.)

Problem 4:

Let p be a prime number and let $H < S_p$ contain a transposition and act transitively on $\{1, \ldots, p\}$.

From the earlier homework, H has an element with no fixed point (it acts transitively on a finite set).

This means that H contains a p-cycle:

By the class equation and transitivity, $p = \sum [H: H_{x_i}]$. Now, this means that there is one stabilizer of any given x_i ; if $[H: H_{x_i}] = 1$ for any given element, it is that for all elements (because p is prime). This would mean that for all x_i , $H = H_{x_i}$; that is, the entire group stablizes every element, which contradicts transitivity.

Moreover, this means that $[H:H_{x_i}]=p$, which implies that $|H|=p|H_{x_i}|$. So p|H. Thus, H has a subgroup of order p. So H has an element of order p, by Cauchy's Theorem. We know that an element of S_p of order p is a p-cycle. So H has a p-cycle.

This means that H contains a transposition and a p-cycle; by a quick adaptation of the above problem (it is a bit more than a simple relabeling...but the proof can somewhat clearly be reworked to get the desired result), this means that $H = S_p$.

Problem 5:

This is given as an exercise in Hungerford: out of a sense of honesty, I must admit that I ran across this in the book, instead of coming up with it independently.

```
Consider H = \{(1), (1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3)\}.
```

First, $H \leq G$;

We apply the subgroup criterion, and proceed by exhaustion. (In the below, I freely use the facts that 2-cycles are their own inverse and that disjoint cycles commute).

$$(1)(1)^{-1} = (1)$$

$$(1)((1\ 2)(3\ 4))^{-1} = (3\ 4)(1\ 2) = (1\ 2)(3\ 4)$$

$$(1)((1\ 3)(2\ 4))^{-1} = (2\ 4)(1\ 3) = (1\ 3)(2\ 4)$$

$$(1)((1\ 4)(2\ 3))^{-1} = (2\ 3)(1\ 4) = (1\ 4)(2\ 3)$$

$$(1\ 2)(3\ 4)(1)^{-1} = (1\ 2)(3\ 4)$$

$$(1\ 2)(3\ 4)((1\ 2)(3\ 4))^{-1} = (1\ 2)(3\ 4)(2\ 4)(1\ 3) = (1\ 4)(2\ 3)$$

$$(1\ 2)(3\ 4)((1\ 4)(2\ 3))^{-1} = (1\ 2)(3\ 4)(2\ 3)(1\ 4) = (1\ 3)(2\ 4)$$

$$(1\ 3)(2\ 4)((1\ 2)(3\ 4))^{-1} = (1\ 3)(2\ 4)$$

$$(1\ 3)(2\ 4)((1\ 2)(3\ 4))^{-1} = (1\ 3)(2\ 4)(3\ 4)(1\ 2) = (1\ 4)(2\ 3)$$

$$(1\ 3)(2\ 4)((1\ 4)(2\ 3))^{-1} = (1\ 3)(2\ 4)(2\ 3)(1\ 4) = (1\ 2)(3\ 4)$$

$$(1\ 4)(2\ 3)((1\ 2)(3\ 4))^{-1} = (1\ 4)(2\ 3)$$

$$(1\ 4)(2\ 3)((1\ 3)(2\ 4))^{-1} = (1\ 4)(2\ 3)(2\ 4)(1\ 3) = (1\ 2)(3\ 4)$$

$$(1\ 4)(2\ 3)((1\ 3)(2\ 4))^{-1} = (1\ 4)(2\ 3)(2\ 4)(1\ 3) = (1\ 2)(3\ 4)$$

$$(1\ 4)(2\ 3)((1\ 4)(2\ 3))^{-1} = (1\ 4)(2\ 3)(2\ 4)(1\ 3) = (1\ 2)(3\ 4)$$

Next, $H \leq S_4$;

Recall that two elements of S_4 are conjugate if and only if their cycle decomposition has the same cycle type. Note that H contains all of the elements of S_4 composed of a product of two disjoint 2-cycles.

So an element is conjugate to an element of H if and only if it is in H. That is, $ghg^{-1} \in H$ for all $g \in G$, $h \in H$.

Thus, $H \subseteq S_4$. (And so, $H \subseteq A_4$).

Problem 6:

Note: I adapt the proof in Hungerford to fit my needs for this problem.

We know from class that for $n \geq 5$, A_n is simple.

Let $N \subseteq S_n$, with $n \ge 5$, with N nontrivial.

Then either N contains a 3-cycle, N contains an element σ with its cycle decomposition having a cycle of length $r \geq 4$, N contains an element σ with its cycle decomposition having at least two cycles of length 3, N contains an element σ that is a product of one 3-cycle and some 2-cycles, or every element of N is a product of disjoint 2-cycles.

Case 1: If N contains a 3-cycle, then N contains A_n ; this implies that either $N = A_n$ or $N = S_n$.

Case 2: If N contains an element σ with its cycle decomposition having a cycle of length $r \geq 4$, then $\sigma = (a_1 a_2 \dots a_r) \tau$ for some τ disjoint from the first cycle. Let $\delta = (a_1 a_2 a_3)$. Then $\sigma^{-1}(\delta \sigma \delta^{-1}) \in N$ by normality. But

$$\sigma^{-1}(\delta\sigma\delta^{-1}) = \tau^{-1}(a_1a_ra_{r-1}\dots a_2)(a_1a_2a_3)(a_1a_2a_3\dots a_r)\tau(a_1a_3a_2) = (a_1a_3a_r) \in N.$$

So N has a 3-cycle, and we regress to the first case.

Case 3: If N contains an element σ with its cycle decomposition having at least two cycles of length 3, then $\sigma = (a_1 a_2 a_3)(a_4 a_5 a_6)\tau$ with τ disjoint from the first two cycles. Let $\delta = (a_1 a_2 a_4)$. Then, as above,

$$\sigma^{-1}(\delta\sigma\delta^{-1}) = \tau^{-1}(a_4a_6a_5)(a_1a_3a_2)(a_1a_2a_4)(a_1a_2a_3)(a_4a_5a_6)\tau(a_1a_4a_2) = (a_1a_4a_2a_6a_3) \in N.$$

And so we regress to the second case.

Case 4: If N contains an element σ that is a product of one 3-cycle and some 2-cycles, then $\sigma = (a_1 a_2 a_3)\tau$ where τ is disjoint from the first cycle and is a product of disjoint 2-cycles. Then $\sigma^2 \in N$ and so,

$$\sigma^2 = (a_1 a_2 a_3) \tau (a_1 a_2 a_3) \tau = (a_1 a_3 a_2) \tau^2 = (a_1 a_3 a_2)$$

So we regress to the first case.

Case 5: If every element of N is a product of disjoint 2-cycles, then consider any $\sigma \in N$. If some σ is a 2-cycle, then $N = S_n$, by normality of N and the fact that the 2-cycles generate S_n . If not, then let $\sigma = (a_1a_2)(a_3a_4)\tau$ where τ is disjoint from the first two cycles. Then let $\delta = (a_1a_2a_3)$. Then as above:

$$\sigma^{-1}(\delta\sigma\delta^{-1}) = \tau^{-1}(a_3a_4)(a_1a_2)(a_1a_2a_3)(a_1a_2)(a_3a_4)\tau(a_1a_3a_2) = (a_1a_3)(a_2a_4) \in \mathbb{N}$$

Define the above permutation to be γ . There's an element, a_5 , distinct from each of $a_1 \dots a_4$. Consider $\lambda = (a_1 a_3 a_5)$. Now, we know that

$$\gamma^{-1}(\lambda\gamma\lambda^{-1}) = (a_1a_3)(a_2a_4)(a_1a_3a_5)(a_1a_3)(a_2a_4)(a_1a_5a_3) = (a_1a_3a_5) \in \mathbb{N}$$

So we regress to the first case.

That is, in all cases, we have that a nontrivial subgroup of S_n is either A_n or S_n . This satisfies the problem.

Problem 7:

Define $\phi: \operatorname{Aut}(A_4) \to S_4$ as follows:

Define $a = (1 \ 2 \ 3), b = (1 \ 2 \ 4), c = (1 \ 3 \ 4), and d = (2 \ 3 \ 4).$

Define $F: \{a, b, c, d\} \to \{1, 2, 3, 4\}$ by F(a) = 1, F(b) = 2, F(c) = 3, and F(d) = 4. (This is done primarily for convenience. It is rather clear that F is bijective.)

Then $\phi(\psi)$ is the transposition naturally given by the way that ψ permutes these elements. That is,

$$\phi(\psi)(1) = F(\psi(F^{-1}(1))$$

$$\phi(\psi)(2) = F(\psi(F^{-1}(2)))$$

$$\phi(\psi)(3) = F(\psi(F^{-1}(3)))$$

$$\phi(\psi)(4) = F(\psi(F^{-1}(4)))$$

First: ϕ is well defined:

If $\psi \in \text{Aut}(A_4)$, then ψ is one-to-one. So each of the expressions in the definition of ϕ is distinct from each other; that is, $\phi(\psi)$ is a permutation of $\{1, 2, 3, 4\}$. That is, ϕ is well-defined.

Next, ϕ is a homomorphism:

Let $\psi, \chi \in \text{Aut}(A_4)$. Then:

$$\phi(\psi\chi)(n) = F(\psi\chi(F^{-1}(n)))$$

$$= F(\psi(\chi(F^{-1}(n))))$$

$$= F(\psi(F^{-1}(F(\chi(F^{-1}(n))))))$$

$$= \phi(\psi)\phi(\chi)(n)$$

Last, ϕ is bijective:

First, ϕ is injective:

Let $\psi, \chi \in \text{Aut}(A_4)$, with $\phi(\psi) = \phi(\chi)$.

Next, ϕ is surjective: