

Array of eicosanoids produced depends upon cell type. Cellular response is a function of intracellular and extracellular receptors.

Figure 1

Figure 2

$$[A] \begin{array}{c} H_3C \\ H_3C$$

$$[\mathbf{B}] \qquad \qquad \underset{\mathsf{H_3C}}{\overset{\mathsf{H_2H}}{\overset{\mathsf{OH}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}$$

$$[C] \xrightarrow{H_3C} \xrightarrow{H_2} \xrightarrow{H_2} \xrightarrow{OH} \xrightarrow{$$

$$[\mathbf{D}] \xrightarrow{H_3C} \xrightarrow{H_2} \xrightarrow{H_2} \xrightarrow{H_2} \xrightarrow{H_3} \xrightarrow{H_3C} \xrightarrow$$

$$\begin{array}{c|c} & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

Figure 3

RIAA:IAA [10	00	:1]
--------------	----	-----

<u> </u>		RIAA	IAA
Fa	CI	[µg/mL]	[µg/mL]
0.02	15.805		0.000
0.05	10.414	0.00048	0.000
0.10	7.501	0.00	0.0000
0.15	6.125	0.0095	0.00009
0.20	5.258	0.022	0.00022
0.25	4.636	0.045	0.00045
0.30	4.154	0.084	0.00084
0.35	3.759	0.15	0.0015
0.40	3.424	0.25	0.0025
0.45	3.131	0.41	0.0041
0.50	2.869	0.68	0.0068
0.55	2.628	1.1	0.011
0.60	2.403	1.8	0.018
0.65	2.189	3.1	0.031
0.70	1.982	5.5	0.055
0.75	1.776	10	0.10
0.80	1.567	21	0.21
0.85	1.346	49	0.49
0.90	1.100	152	1.5
0.95	0.794	955	9.6
1.00	0.387	55655	557
AND ADDRESS			

Shaded area represents region of synergy

Figure 4A

RIAA:IAA [10:1]

I CONTRACTOR LA	<u>,</u>	RIAA	IAA
Fa	CI ([µg/mL]	[µg/mL]
	<u> </u>	[дауллы]	[49]
0.02	0.466	0.0000012	0.000000
0.05	0.566	0.000024	0.000002
0.10	0.665	0.0003	0.000025
0.15	0.737	0.0011	0.00011
0.20	0.797	0.0032	0.00032
0.25	0.851	0.0079	0.00079
0.30	0.901	0.017	0.0017
0.35	0.950	0.04	0.0036
0.40	0,999	0.07	0.0070
0.45	1.048	0.13	0.01
0.50	1.099	0.25	0.03
0.55	1.152	0.47	0.05
0.60	1.209	0.90	0.1
0.65	1.272	1.8	0.2
0.70	1.344	3.6	0.4
0.75	1.427	7.9	1
0.80	1.530	20	2
0.85	1.664	59	6
0.90	1.862	253	25
0.95	2.236	2654	265
1.00	3.358		

Shaded area represents region of synergy

Figure 4B

RIAA:IAA [3:1]		
		RIAA	IAA
Fa	CI	[µg/mL]	[µg/mL]
0.02	4558	0.0087	0.002173
0.05	896	0.030	0.007438
0.10	253	0.078	0.020
0.15	116	0.14	0.036
0.20	65	0.22	0.056
0.25	40	0.33	0.082
0.30	26	0.45	0.113
0.35	18	0.61	0.153
0.40	13	0.80	0.200
0.45	9.1	1.00	0.25
0.50	6.541	1.4	0.34
0.55	4.704	1.8	0.44
0.60	3.362	2.3	0.58
0.65	2.370	3.0	0.76
0.70	1.632	4.1	1.0
0.75	1.083	5.7	1.4
0.80	0.678	8.2	2.1
0.85	0.385	13	3.3
0.90	0.182	24	6.0
0.95	0.054	62	16
1,00	0.004	531	133

Shaded area represents region of synergy

Figure 4C

RIAA:IAA [3:2]		
		RIAA	IAA
Fa	CI	[µg/mL]	[µg/m L]
0.02	220	0.00031	0.000
0.05	78	0.0020	0.001
0.10	35	0.0087	0.003
0.15	21	0.022	0.009
0.20	15	0.043	0.017
0.25	11	0.076	0.031
0.30	8.5	0.13	0.050
0.35	6.743	0.20	0.080
0.40	5.428	0.30	0.12
0.45	4.414	0.45	0.18
0.50	3.607	0.67	0.27
0.55	2.951	1.0	0.40
0.60	2.406	1.5	0.60
0.65	1.946	2.3	0.92
0.70	1.553	3.6	1.4
0.75	1,213	5.8	2.3
0.80	0.915	10	4.0
0.85	0.652	21	8.4
0.90	0.417	51	20
0.95	0.203	223	89
1.00	0.042	5807	2323

CI for RIAA:IAA [3:2]

Shaded area represents region of synergy

Figure 4D

IAA:IAA [RIAA	IAA
Fa	CI	[µg/mL]	[µg/mL]
0.02	0.022	2.5*10 ⁻⁸	2.5*10 ⁻⁸
0.05	0.049	-1.0*10 ⁻⁸	1.0*10 ⁻⁶
0.10	0.094	2.0*10 ⁻⁵	2.0*10 ⁻⁵
0.15	0.142	0.00012	0.00012
0.20	0.194	0.00049	0.00049
0.25	0.252	0.0015	0.0015
0,30	0,317	0.0041	0.0041
0.35	0,392	0.010	0,010
0.40	0.478	0.024	0.024
0.45	0.579	- 0.053	0.05
0.50	0,699	0.12	0.12
0.55	0.846	0.3	0.3
0.60	1.028	0.6	0.6
0.65	1.262	1.3	1.3
0.70	1.573	3	3
0.75	2.007	9	9
0.80	2.656	28	28
0.85	3.743	110	110
0.90	5.92	687	687
0.95	12.507	13152	13152
1.00	67		

Shaded area represents region of synergy

Figure 4E

RIAA:IAA [2:3]				
		RIAA	IAA	
Fa	CI	[µg/mL]	[µg/mL]	
		_	_	
0.02	56	4.7*10 ⁻⁵	7.0*10 ⁻⁵	
0.05	30	0.00049	0.00082	
0.10	18	0.0032	0.0053	
0.15	14	0.010	0.017	
0.20	11	0.024	0.040	
0.25	10	0.049	0.081	
0.30	8	0.091	0.15	
0.35	7.266	0.16	0.27	
0.40	6.436	0.27	0.45	
0.45	5.738	0.45	0.76	
0.50	5.133	0.75	1.2	
0.55	4.598	1.2	2.1	
0.60	4.114	2.0	3.4	
0.65	3.669	3.5	5.8	
0.70	3,251	6.1	10	
0.75	2.851	11	18	
0.80	2.458	23	38	
0.85	2.060	56	93	
0.90	1.636	176	293	
0.95	1.140	1127	1878	
0,99	0.531	68261	113768	

Shaded area represents region of synergy

Figure 4F

RIAA:IAA [1:10]				
		RIAA		
Fa	Cl	[µg/mL]	Įμ	

1.10]		
	RIAA	IAA
Cl	[µg/mL]	[µg/mL]
35.000	5.7*10 ⁻⁶	5.7*10 ⁻⁵
16.000	5.7*10 ⁻⁵	5.7*10 ⁻⁴
8.737	0.00034	0.0034
6.023	0.0011	0.0110
4.560	0.0025	0.0245
3.628	0.0049	0.049
2.975	0.0090	0.090
2.486	0.016	0.16
2.104	0.026	0.3
1.794	0.043	0.4
1.535	0.070	0.7
1.315	0.11	1.1
1.124	0.19	1.9
0.956	0.31	3.1
0.804	0.54	5.4
0.666	1.0	10
0.537	. 2.0	20
0.416	4.6	46
0.298	14	140
0.176	86	860
0.058	4661	46610
	35.000 16.000 8.737 6.023 4.560 3.628 2.975 2.486 2.104 1.794 1.535 1.315 1.315 1.214 0.956 0.804 0.666 0.537 0.416 0.228 0.176	RIAA [µg/mL] 35.000 5.7*10°6 16.000 5.7*10°5 8.737 0.00034 6.023 0.0011 4.560 0.0025 3.628 0.0049 2.975 0.0090 2.486 0.016 2.104 0.026 1.794 0.043 1.535 0.070 1.315 0.11 1.124 0.19 0.956 0.31 0.804 0.54 0.666 1.0 0.537 2.0 0.416 4.6 0.298 14 0.176 86

Shaded area represents region of synergy

Figure 4G

RIAA: [AA [1:100]

		RIAA	IAA
Fa	CI	[µg/mL]	[µg/mL]
			an rate in the second new ways as
0.02	0.856	1.5*10 ⁻⁸	5.7*10 ⁻⁹ %
0.05	0.903	3.4*10 ⁻⁷	6.7*10 ⁻⁷
0.10	0.943	4.1*10-6	0.00041
0.15	0.969	1.9*10-5	0.0019
0.20	0,989	6.0*10-5	0.0060
0.25	1.006	0.00016	0.016
0.30	1.022	0.00036	0.036
0.35	1.036	0.0008	80.0
0.40	1.050	0.0015	0.15
0.45	1.063	0.0030	0.30
0.50	1.076	0.0059	0.6
0.55	1.090	0.012	1.2
0.60	1.105	0.023	2.3
0.65	1.120	0.046	4.6
0.70	1.137	0.10	10
0.75	1.156	0.23	23
0.80	1.178	0.59	58.5
0.85	1.207	1.9	190
0.90	1.247	8.6	860
0.95	1.319	102	10200
1.00	1.519	24285	2428500

Figure 4H

MIA 293245-1.068911.0075