《计算模型导引》习题

李煦阳 DZ21330015

1 递归函数

1.1 证明:对于固定的 k,一元数论函数 $x + k \in \mathcal{BF}$

Proof. 借助恒等函数 P_1^1 与后继函数 S,对任意 k,可组合构造 $f_k(x) = x + k$.

$$f(x) = \begin{cases} P_1^1(x) & k = 0\\ \underbrace{S \circ \cdots \circ S}_{k-1} \circ P_1^1(x) & k > 0 \end{cases}$$

由于 $f_k(x) = x + k$ 可由基本函数 P_1^1 与 S 构造, 所以 $x + k \in \mathcal{BF}$.

1.2 证明: 对于任意 $k \in \mathbb{N}^+$, $f : \mathbb{N}^k \to \mathbb{N}$, 若 $f \in \mathcal{BF}$, 则存在 h 使得 $f(\vec{x}) < ||\vec{x}|| + h$

Proof. 对 f 的构造长度 l 进行归纳, 当 l = 0 时, 我们有 $f \in \mathcal{IF}$, 此时 取 h = 2, 不等式显然恒成立.

对于 l=n+1 的情况,我们有归纳假设:存在 h_n ,对于构造长度小于等于 n 的函数,使得 $f(\vec{x})<||\vec{x}||+h_n$ 成立.假设构造序列为 f_1,\ldots,f_n,f . 若 $f\in\mathcal{IF}$,显然 $f(\vec{x})<||\vec{x}||+h_n+1$.若 $f=\operatorname{Comp}_k^m[f_{i_0},\ldots,f_{i_k}]$,根据归纳假设有 $f(\vec{x})<\max\{f_{i_j}(\vec{x})\}+h_n<||\vec{x}||+2h_n$,此时我们找到了 $h_{n+1}=2h_n$.

1.3 证明: $f(x,y) = x + y \notin \mathcal{BF}$

Proof. 使用反证法,假设 $f(x,y) = x+y \in \mathcal{BF}$,构造 f'(x) = f(x,x) = 2x, 易证 $f' \in \mathcal{BF}$. 根据1.2可知, $\exists h \forall x, f(x) = 2x < x + h$,该式显然不成立,反证成立.

1.4 证明: $f(x,y) = x \div y \notin \mathcal{BF}$

Proof. 只需说明 $\operatorname{pred}(x) = x - 1 \notin \mathcal{BF}$ 即可,因为 pred 可由 x - y 与基本函数构造出.

假设 pred $\in \mathcal{BF}$, 在其最短构造序列上做分解证明. 首先, pred \notin $\{S, Z, P\}$, 于是可设该构造序列为 f_0, \ldots, f_n .

首先说明该序列中不存在对 P 的使用: 若存在,设为 $f_i(\vec{x}) = P_i(g_1(\vec{x}), \dots, g_k(\vec{x}))$,我们可以直接找到一个更简单的构造 $f_i(\vec{x}) = g_i(\vec{x})$ 使得序列更短.

此时思考如何使用 $\{S,Z\}$ 构造 pred. 由于两者都是一元函数,其组合可写为 $F_0 \circ \cdots \circ F_m(F_i \in \{S,Z\})$,易知 $Z \circ \cdots = Z$,根据最短序列的假设,pred = $S^c \circ Z$ 或 pred = S^c ,其中 c 为某个常数.

- 1. $S^c \circ Z = c$, 为常数, 不满足需求.
- 2. $S^c = +_c$,只会增加,不会递减,不满足需求.

综上, $x - y \notin \mathcal{BF}$

1.5 说明 $pg(x,y) = 2^x(2y+1) \div 1$ 为配对函数

Proof. 令 $K(z) = \exp_0(z+1), L(z) = \frac{1}{2} \cdot (\frac{z+1}{2^{\exp_0(z+1)}} \div 1)$. 我们注意到, $2^x(2y+1) > 0$ 恒成立,所以计算 pg 时 ÷ 可理解为 -; 2^x 为偶数,2y+1 为奇数.

K(pg(x,y)) 取 $2^{x}(2y+1)$ 的 2 的指数, 即 x.

$$L(pg(x,y)) = \frac{2y}{2} = y.$$

$$\operatorname{pg}(K(z),L(z)) = 2^{\operatorname{ep}_0(z+1)} \cdot (2 \cdot \frac{1}{2} \cdot (\frac{z+1}{2^{\operatorname{ep}_0(z+1)}} \div 1) + 1) - 1 = z + 1 - 1 = z$$

注: $2_i^{\text{ep}}(n)$ 必然被 n 整除. 为了使配对函数组满足双射,需要避免计算出现不确定性,如取整.

1.6 设 $f: \mathbb{N} \to \mathbb{N}$, 证明: f 可以作为配对函数的左函数当且仅当 $\forall i \in \mathbb{N}, |\{z \in \mathbb{N}: f(z) = i\}| = \aleph_0$

Proof. 设 $Z_{x=i} = \{z \in \mathbb{N} : f(z) = i\}$. 若存在配对函数,设为 pg(x,y),右函数设为 g(z).

⇒ 根据可数选择公理,只需证明 $\forall i, Z_{x=i}$ 是无限的。 假设对于某个 $i, Z_{x=i}$ 有限,取 $Y_{x=i} = \{j | g(z) = j \land z \in Z_{x=i}\}$,可知 $Y_{x=i}$ 也是有限的。 取任意 $y \in \mathbb{N} - Y_{x=i}$,根据配对函数定义, f(pg(i,y)) = i,这意味着 $pg(i,y) = z \in Z_{x=i}$,这意味着 $y \in Y_{x=i}$,矛盾。

 \leftarrow 此时,对于任意的 i, $Z_{x=i}$ 可以与 \mathbb{N} 建立一个双射 $h_{x=i}: \mathbb{N} \to Z_{x=i}$,其逆为 $h_{x=i}^{-1}$. 此时定义 g 如下:

$$g(z) = \begin{cases} h_{x=i}^{-1}(z) & z \in Z_{x=i}, \\ 0 & \text{otherwise.} \end{cases}$$

令 $pg(x,y)=h_{x=x}(y)$, 显然, $\forall x,y.$ $f(pg(x,y))=x \land g(pg(x,y))=y$, 满足配对函数定义.

1.7 证明: 所有的初等函数, 都可以由本原函数与复合和算子 $\prod_{i=n}^{m} [\cdot]$ 生成, 其中,

$$\prod_{i=n}^{m} [f(i)] = \begin{cases} f(n) \cdot f(n+1) \cdot \dots \cdot f(m) & m \ge n, \\ 1 & m < n \end{cases}$$

Proof. 乘法不能直接退化为加法. 我们尝试放大 $\prod_{i=n}^{m}[\cdot]$ 的分支计算能力,构造以下函数. 其中,0 可理解为布尔运算的 true,1 理解为 false,N 可以理解为 \neg .

$$\operatorname{pow}(x,k) = \prod_{i=1}^{k} x$$

$$N(x) = \prod_{i=1}^{x} Z(i)$$

$$\operatorname{leq}(x,y) = \prod_{i=x}^{y} Z(i)$$

$$\operatorname{geq}(x,y) = \prod_{i=y}^{x} Z(i)$$

$$\operatorname{and}(x,y) = \operatorname{pow}(x,N(y)) \quad (x,y \in \{0,1\})$$

$$\operatorname{eq}(x,y) = \operatorname{and}(\operatorname{leq}(x,y),\operatorname{geq}(x,y))$$

利用 eq 可以构造求解某范围内函数所有零点的积的函数 h (若没有零点,返回 1). 若我们准确知道函数 f 具有唯一零点,那么 h 便可以准确求得该零点.

$$h(n)[f(x)] = \prod_{i=0}^{n} i^{N(eq(f(i),0))}$$

令 $f(i) = 2^i - n$,取 $\log(x) = \prod_{i=0}^n i^{N(eq(2^i - n, 0))}$,由于 $\log(x)$ 若存在解,该解一定在 [0, x] 间,所以该定义可以准确求解 2^k 得对数. 现在可利用该函数将乘法退化为加法.

$$\sum_{i=n}^m f(i, \vec{x}) = \log(\prod_{i=n}^m 2^{f(i, \vec{x})})$$

于是可以构造其他基本初等函数 (注意到 $\sum_{i=m}^{n} [\cdot] = 0$ if m > n):

$$x \times y = \sum_{i=1}^{x} y$$

$$x + y = \log(2^{x} \times 2^{y})$$

$$x \stackrel{\cdot}{\cdot} y = \left(\sum_{i=x+1}^{y} 1 + \sum_{i=y+1}^{x} 1\right)$$

1.8 设

$$M(x) = \begin{cases} M(M(x+11)) & x \le 100, \\ x - 10 & x > 100. \end{cases}$$

试证明:

$$M(x) = \begin{cases} 91 & x \le 100, \\ x - 10 & x > 100. \end{cases}$$

Proof. 分类情况讨论, 首先可知 M(101) = 91.

$$90 \le x \le 100$$
 $M(x) = M(x+1) = \dots = M(101) = 91.$

 $0 \le x \le 90$ $\exists k, n.$ $91 \le x + 11k \le 101 \land M(x) = M^n \circ M(x + 11k) = M^n(91) = 91$ (注: 易证 $\forall n.$ $M^n(91) = 91.$) .

1.9 证明: $\min x \le n.[f(x, \vec{y})] = n - \max x \le n.[f(n - x, \vec{y})].$

Proof. 若 $f(x, \vec{y})$ 关于 x 在范围内不存在零点,等式 n = n - 0 显然成立. 若 $f(x, \vec{y})$ 存在零点,我们设最小零点为 m,最大零点为 M. 可知对于任意 a < m, $f(a, \vec{y}) \neq 0$. 我们尝试说明 x = n - m 是 $f(n - x, \vec{y})$ 的最大零点.

- 1. 由于 $f(n-(n-m), \vec{y}) = f(m,y) = 0$, x = n-m 是零点.
- 2. 假设 x = (n-m) 不是最大零点, 那么 $\exists k > 0$. $x' = n-m+k \land f(n-x',\vec{y}) = 0$. 化简得 $f(n-x',\vec{y}) = f(n-n+m-k,\vec{y}) = f(m-k,\vec{y}) = 0$.
 - (a) 若 m=0, 则与 n-m 为不是最大零点矛盾
 - (b) 若 m > 0, 则 $\exists m' = m k, m' < m \land f(m, \vec{y}) = 0$, 与 m 为最小零点矛盾.

综上, 得证. 对称形式用相似方法亦可证.

1.10 证明: *EF* 对有界 max-算子封闭

Proof.

$$\sum_{i=0}^{n} [N(\prod_{j=0}^{i} [N^{2}(f(n-j,\vec{y}))])] = \begin{cases} \max x \le n.[f(x,\vec{y})] + 1 & \exists x. \ f(x,\vec{y}) = 0, \\ 0 & \text{otherwise.} \end{cases}$$

$$\max x \le n.[f(x, \vec{y})] = \sum_{i=0}^{n} [N(\prod_{j=0}^{i} [N^2(f(n-j, \vec{y}))])] \dot{} 1$$

于是对于任意 $f \in \mathcal{EF}$, $\max x \leq n.[f(x,\vec{y})] \in \mathcal{EF}$, 所以 \mathcal{EF} 对该算子封闭.

1.11 Euler 函数 $\varphi: \mathbb{N} \to \mathbb{N}$ 定义为

$$\varphi(n) = |\{x \mid 0 < x \le n \land \gcd(x, n) = 1\}|,$$

证明 $\varphi \in \mathcal{EF}$.

Proof.

$$\varphi(n) = \sum_{m=1}^{n} \prod_{j=0}^{n} (N(ep(j, n) = 0 \lor ep(j, m) = 0))$$

Proof.

$$h(x) = \max n \le x. [ep(n, x) \ne 0].$$

1.13 对于斐波那契函数 f, 证明 (1) $f \in \mathcal{PRF}$ (2) $f \in \mathcal{EF}$.

Proof. 寻找原始递归的构造时,需要借助配对函数,使返回值可以包含多个值,用以传递前两层的结果。

我们令 $\{pg, K, L\}$ 为 \mathcal{PRF} 的一个配对函数,构造 F:

$$F(0) = pg(1,0)$$

$$F(x+1) = pg(K(F(x)) + L(F(x)), K(F(x)))$$

此时, f(x) = K(F(x)), f(x - 1) = L(F(x)). 因而 $f \in \mathcal{PRF}$.

了解到斐波那契递归对应的原始问题: f(x) 计算了长度为 x-1 的不包含连续 1 的二进制串数量. (两个子问题: 串首位为 0 或首位为 10).

该问题可以用初等函数以遍历形式表达,以说明 $f \in \mathcal{EF}$:

$$f(n) = \sum_{i=0}^{2^{n-1}-1} N \left[\sum_{i=0}^{n-2} \text{neq}\left(\frac{\text{rs}(i, 2^j)}{2^{j-1}}\right) \text{neq}\left(\frac{\text{rs}(i, 2^{j+1})}{2^j}\right) \right]$$

该函数对范围内满足检查的自然数进行计数:检查每个自然数的每相邻两位不存在同时等于 1 的情况. □

1.14 证明 $Q(x, y, z, v) \equiv p(\langle x, y, z \rangle) \mid v$ 是初等函数.

Proof. 由于
$$p \in \mathcal{EF}$$
,且 $\langle x, y, z \rangle = 2^x \cdot 3^y \cdot 5^z \in \mathcal{EF}$, $x \mid y = \operatorname{eq}(\operatorname{rs}(y, x), 0) \in \mathcal{EF}$. 所以 $Q \in \mathcal{EF}$.

1.15 证明 $f \in \mathcal{PRF}$, f 定义为

$$f(0) = 1$$

$$f(1) = 4$$

$$f(2) = 6$$

$$f(x+3) = f(x) + (f(x+1))^{2} + (f(x+2))^{3}$$

Proof. 与1.13类似,如下定义 F:

$$F(0) = \langle 1, 4, 6 \rangle$$

$$F(x+1) = \langle \exp_1(F(x)), \exp_2(F(x)), \exp_0(F(x)) + \exp_1^2(F(x)) + \exp_2^3(F(x)) \rangle$$
于是 $f(x) = \exp_0(F(x))$.

1.16 设 $f(n) = n^{-n}$,证明 $f \in \mathcal{PRF} - \mathcal{EF}$.

Proof. 首先证 $f \in \mathcal{PRF}$. 构造递归函数 g, g(n,0) = 0, $g(n,x+1) = n^{g(n,x)}$, 显然 f(n) = g(n,n), 由于 $g \in \mathcal{PRF}$, 所以 $f \in \mathcal{PRF}$.

然后反证 $f \notin \mathcal{EF}$. 若 $f \in \mathcal{EF}$, 我们能找到 k, 使得对于任意 n, 控制函数 G(k,n) > f(n) 恒成立. 但显然, f(k+2) = (k+2) > G(k,k+2) = 2 (幂级的长度和每一个幂级的数字,前者都更大). 所以 $f \notin \mathcal{EF}$.

1.17 设 $g \in \mathcal{PRF}$,证明 $f \in \mathcal{PRF}$

$$f(x,0) = g(x)$$

$$f(x,y+1) = f(f(\dots f(f(x,y), y-1), \dots), 0)$$

Proof. 易见, $f(x,y) = g^{2^{(y-1)}}$. 此时可以构造原始递归式计算 $g^n(x)$.

$$G(x,0) = g(0)$$

$$G(x,y+1) = g(G(x,y))$$

显然 $f(x,y) \in \mathcal{PRF}$.

1.18 若 $f, g \in \mathbb{N} \to \mathbb{N}$ 只在有限作用域的函数值不同,证明 $f \in \mathcal{GRF} \iff g \in \mathcal{GRF}$.

Proof. 设这个作用域为 $S = \{s_0, s_1, ..., s_k\}$,根据题意,有 $\forall x \in \mathbb{N} - S$, f(x) = g(x).

此时可基于 f 在 \mathcal{GRF} 构造 G=g, 它在 $x\in S$ 时取 G(x)=g(x), 在 $x\in \mathbb{N}-S$ 时取 G(x)=f(x).

$$G(x) = \sum_{i=0}^{k} g(s_i) \cdot N(\operatorname{eq}(s_i, x)) + N\left(\sum_{i=0}^{k} N(\operatorname{eq}(s_i, x))\right) f(x).$$

对于前半表达式,由于 S 有限,它属于 \mathcal{GRF} . 后者保持 $f \in \mathcal{GRF}$. 所以 $F \in \mathcal{GRF}$. 对称证明类似.

1.19 证明 $\left\lfloor \left(\frac{\sqrt{5}+1}{2}\right)n \right\rfloor \in \mathcal{EF}$.

Proof.

$$f(n) = \max_{z} z \le n. [(2z - n)^2 - 5n^2]$$

显然 $f \in \mathcal{EF}$.

1.20 证明 $Ack(4, n) \in \mathcal{PRF} - \mathcal{RF}$.

Proof. f(n) = Ack(4, n),我们可以为 f 写递归式:

$$f(0) = \operatorname{Ack}(4,0) = 13$$

$$f(n+1) = Ack(4, n+1) = Ack(3, f(n)) = 2^{f(n)+3} - 3$$

所以 $f \in \mathcal{PRF}$.

假设 $f \in \mathcal{EF}$,则存在 k 使得 f(n) < G(k,n). 但 $f(n) = \underbrace{2^{k-2}}_{n+3} - 3$,增长率显然 f 一定比控制函数更快,进而 $f \notin \mathcal{EF}$.

1.21 设 $f: \mathbb{N} \to \mathbb{N}$ 是双射函数,证明 $f \in \mathcal{GRF} \Leftrightarrow f^{-1} \in \mathcal{GRF}$.

Proof. 双射意味着 $\forall x_1, x_2, y, \ f(x_1) = y \land f(x_2) = y \Rightarrow x_1 = x_2.$ 也即, $f^{-1}(y) = \mu x. \ [f(x) = y].$

显然命题成立.

1.22 设 p(x) 为整系数多项式,令 f(a) 定义为 p(x) - a 对于 x 的最小非负整数根,证明 $f \in \mathcal{RF}$.

Proof.

$$f(a) = \mu x. [p(x) \stackrel{..}{\cdot} a]$$

显然 $f \in \mathcal{RF}$.

1.23 设

$$f(x,y) = \begin{cases} x/y & y \neq 0 \land y \mid x, \\ \bot & \text{otherwise.} \end{cases}$$

证明 $f \in \mathcal{RF}$.

Proof. $f(x,y) = \mu z$. [(zy = x)(N(y))].

3 λ-演算

3.1 证明括号引理:对于任何 $M \in \Lambda$, M 的左右括号个数相同.

Proof. 采用结构归纳:

- 1. 对于 $x \in \nabla$, 显然左右括号数相同.
- 2. 对于 $(\Lambda_1\Lambda_2)$, 显然新增左右括号数相同,根据归纳假设, Λ_1 与 Λ_2 左右括号数相同,所以该情况满足.
- 3. 对于 $(\lambda \nabla \Lambda)$, 道理相同.

3.2 试求 SSSS 的 β -nf.

Proof. 草纸上演算得: $\lambda ab.ab(\lambda c.bc(abc))$

3.3 证明: $(\lambda x.xxx)(\lambda x.xxx)$ 没有 β -nf.

Proof. 对于 n > 1,易证 $(\lambda x.xxx)^n \to_{\beta} (\lambda x.xxx)^{n+1}$. $(\lambda x.xxx)^{n+1}$ 永远 含有一个可规约子项, 最左侧的 $(\lambda x.xxx)^2$. 所以 $(\lambda x.xxx)^2$ 没有 β -nf. \square

3.4 设 $F \in \Lambda$ 呈形 $\lambda x.M$, 证明: (1) $\lambda z.Fz =_{\beta} F$; (2) $\lambda z.yz \neq_{\beta} y$.

Proof. 1. $\lambda z.(\lambda x.M)z =_{\beta} \lambda z.M[x := z] =_{\alpha} \lambda x.M$

- 2. 显然 $\lambda z.yz \neq y$, 根据合流性, $\lambda z.yz \neq_{\beta} y$
- 3.5 证明二元不动点定理: 对于任意 $F,G \in \Lambda$, 存在 $X,Y \in \Lambda$, 满足 FXY = X, GXY = Y.

Proof. 设解向量 A = [X, Y],

等式组等价于等式 $(\lambda z.[F(z)_1^2(z)_2^2,G(z)_1^2(z)_2^2])A=A$. 等式组的解等价于 求该等式的解. 由一元不动点定理可知该等式存在不动点 A,所以等式组 也存在解 X,Y.

 \Box

3.6 证明: 对任何 $M, N \in \Lambda^{\circ}$, 方程 xN = Mx 对于 x 有解.

Proof. 令 x 呈形 $\lambda a.T$. 原式化为 $T = M(\lambda a.T) = (\lambda t.M(\lambda a.t))T$. 根据一元不动点定理,存在不动点 $T = \Theta(\lambda t.M(\lambda a.t))$. 进而 x 也有解 $\lambda a.\Theta(\lambda t.M(\lambda a.t))$.

3.7 证明:对任何 P, Q,若 $P \to_{\beta} Q$,则存在 $n \ge 0$ 以及 $P_0, \ldots, P_n \in \Lambda$,满足 (1) $P \equiv P_0$; (2) $Q \equiv P_n$; (3) 对于任何 i < n, $P_i \to_{\beta} P_{i+1}$.

Proof. 对 \rightarrow_{β} 做结构归纳:

- 1. 若 $P \equiv Q$, 显然具有单步规约序列(序列长度为 1, n = 0).
- 2. 若 $P \rightarrow_{\beta} R \land R \rightarrow_{\beta} Q$,根据归纳假设, $P \rightarrow_{\beta} R$ 具有 $n = k_1$ 的单步规约序列, $R \rightarrow_{\beta} Q$ 具有 $n = k_2$ 的单步规约序列.将两个序列合并,得到 $n = k_1 + k_2 1$ 的单步规约序列.

3.8 证明: 对任何 P,Q, 若 $P \rightarrow_{\beta} Q$, 则 $\lambda z.P \rightarrow_{\beta} \lambda z.Q$.

Proof. 根据合拍性,该命题是显然的.

3.9 证明: 对任何 $P,Q \in \Lambda$, 若 $P =_{\beta} Q$, 则存在 $n \in \mathbb{N}$ 以及 $P_0, \ldots, P_n \in \Lambda$, 满足 (1) $P \equiv P_0$; (2) $Q \equiv P_n$; (3) 对任何 $i < n, P_i \to_{\beta} P_{i+1}$ 或 $P_{i+1} \to_{\beta} P_i$.

Proof. 根据定理 3.20,有 $T \in \Lambda$, $P \rightarrow_{\beta} T \wedge Q \rightarrow_{\beta} T$. 根据3.7,可构造 序列 $P \rightarrow_{\beta} \cdots \rightarrow_{\beta} T \leftarrow_{\beta} \cdots \leftarrow_{\beta} Q$.

3.10 证明定理 3.12: 对于任意 $M, N \in \Lambda$,

$$M =_{\beta} N \Leftrightarrow \lambda \beta \vdash M = N$$

Proof.

- \Rightarrow 已知 $M =_{\beta} N$, 证 $\lambda \beta \vdash M = N$.
 - 1. 对于 $M \rightarrow_{\beta} N$ 条件:
 - (a) $M \to_{\beta} N$ 对应于规则 β .
 - (b) 自反性对应于公理 ρ .
 - (c) 传递性对应于规则 τ .
 - 2. 对称性对应于规则 σ .
 - 3. 合拍性对应于规则 μ, v, ξ .
- \leftarrow 已知 $\lambda\beta \vdash M = N$, 证 $M =_{\beta} N$. 规则可以显然地对应到关系中.
 - 1. 公理 α 对应于自反闭包.
 - 2. 公理 β 对应于关系 beta.
 - 3. 规则 σ 对应于对称闭包.
 - 4. 规则 τ 对应于传递闭包.
 - 5. 规则 μ, v, ξ 分别对应于合拍关系的一个条件.

3.11 证明定理 3.13: 对于任意 $M, N \in \Lambda$,

$$M =_{\beta,\eta} N \Leftrightarrow \lambda \beta \eta \vdash M = N$$

Proof. 只需要在3.10基础上说明公理 η 与 η 关系的对应即可. 而这个对应是显然的.

证明若 $M =_{\beta} N$, 则存在 T 使 $M \rightarrow_{\beta} T$ 且 $N \rightarrow_{\beta} T$.

Proof. 已知

$$(M,N) \in \bigcup_{k=0} (\rightarrow_{\beta} \cup \leftarrow_{\beta})^k.$$

我们对 k 做归纳, k=0 时 $(M \equiv N)$ 命题显然成立.

k = n + 1 时,我们有 P 满足 $(P, N) \in (\rightarrow_{\beta} \cup \leftarrow_{\beta})^n$, $M \rightarrow_{\beta} P$ 或 $M \leftarrow_{\beta} P$. 根据归纳假设,存在 T_0 使得 $P \twoheadrightarrow_{\beta} T_0 \wedge N \twoheadrightarrow_{\beta} T_0$.

- 1. $M \rightarrow_{\beta} P$. 根据传递性, T_0 也可作为 $M \subseteq N$ 的 β -规约汇点.
- 2. $M \leftarrow_{\beta} P$. 根据合流性, P 作为源点, M, T_0 作为分支点, 可以找到 T_1 满足 $M \rightarrow_{\beta} T_1 \wedge T_0 \rightarrow_{\beta} T_1$. 根据传递性, T_1 可以作为 M 与 N的 β -规约汇点.

证明若在系统 $\lambda\beta$ 中加人下述公理 (A) $\lambda xy.x = \lambda xy.y$, 则对 3.13任何 $M, N \in \Lambda, \lambda\beta + (A) \vdash M = N$.

Proof. 根据合拍规则,

$$\lambda\beta + (A) \vdash \lambda xy.x = \lambda xy.y$$

$$\Rightarrow \lambda\beta + (A) \vdash (\lambda xy.x)MN = (\lambda xy.y)MN$$

$$\Rightarrow \lambda\beta + (A) \vdash M = N$$

证明命题 3.14: 设 R 是 Λ 上的二元关系, $M \in NF_R$, 则 (1) 不存在 $N \in \Lambda$ 使得 $M \to_R N$; (2) $M \to_R N \Rightarrow M \equiv N$.

Proof.

1. 根据 R 范式定义, M 不存在 R 可约子项, 所以 M 必然无法进行一 步规约.

- 2. 若 $M \neq N$, 则必然存在一个长度大于 1 的 R 规约序列, 这意味着 M 必然可以进行一步规约, 与 (1) 矛盾.
- 3.16 试找出 $A \in \Lambda^{\circ}$ 使 A λ -定义函数 f(m,n) = m + n.

Proof.

$$\lceil m+n \rceil = \lambda f x. f^m(f^n x)$$
$$= \lambda f x. ((\lambda x. f^m x)(f^n x))$$
$$= \lambda f x. ((\lceil m \rceil f)(\lceil n \rceil f x))$$

 $\mathfrak{P} A = \lambda mnfx.((mf)(nfx)).$

3.17 试找出 $F \in \Lambda^{\circ}$ 使 F λ -定义函数 f(m) = 3m.

Proof.

$$\lceil 3m \rceil = \lambda f x. f^{3m} x$$

$$= \lambda f x. ((\lambda f x. f^m x)(\lambda x. f^3 x))$$

$$= \lambda f x. (\lceil m \rceil (\lceil 3 \rceil f))$$

 $\mathbb{R} A = \lambda m f x.(m(\lceil 3 \rceil f)).$

$$DXY\lceil 0\rceil = X,$$

$$DXY\lceil n+1\rceil = Y.$$

这里 $K \equiv \lambda xy.x$, $\lceil n \rceil \equiv \lambda fx.f^nx$.

Proof. 对于一般的 m, $DXY[m] = [m](\lambda y.Y)X$.

- 1. m = 0 时, $(\lambda f x.x)(\lambda y.Y)x = X$.
- 2. m>0 时 (即 $\exists n, m=n+1$), $(\lambda fx.f^mx)(\lambda y.Y)x=(\lambda y.Y)^mx=Y$.

3.19 设 $\text{Exp} \equiv \lambda xy.yz$,

证明对于任意 $n \in \mathbb{N}, m \in \mathbb{N}^*$, $\operatorname{Exp}[n][m] = [n^m]$

Proof.

$$\lceil m \rceil \lceil n \rceil = (\lambda f x. f^m x)(\lambda f x. f^n x)$$
$$= (\lambda x. (\lambda f x. f^n x)^m x)$$
$$= (\lambda x. (\lambda f x. f^{(n^m)} x)$$
$$= \lceil n^m \rceil$$

3.20 构造 $F \in \Lambda^{\circ}$ 使得对于任意 $n \in \mathbb{N}$, $F[n] =_{\beta} [2^n]$.

Proof. 根据3.19, 可取 $F = \lambda n f x.n[2]x$.

3.21 设 $f, g: \mathbb{N} \to \mathbb{N}, f = \operatorname{Itw}[g]$,即

$$f(0) = 0,$$

$$f(n+1) = g(f(n)),$$

且 $G \in \Lambda^{\circ}$ λ -定义了函数 g. 试求 $F \in \Lambda^{\circ}$ 使得 F λ -定义函数 f.

Proof. 需要 F 满足:

$$F\lceil 0 \rceil = \lceil 0 \rceil,$$

$$F\lceil n+1 \rceil = G(F\lceil n \rceil).$$

等价于不动点方程:

$$F = \lambda n.D \ n \ \lceil 0 \rceil \ (G(F(\text{pred } n)))$$
$$= (\lambda z n.D \ n \ \lceil 0 \rceil \ (G(z(\text{pred } n))))F$$

根据不动点定理,可取 $F \equiv \Theta(\lambda z n. D \ n \ [0] \ (G(z(\text{pred } n)))).$

3.22 证明引理 3.39.

Proof.

- 1. $\forall n \in \mathbb{N}. var(n) = \#(v^{(n)}) = [0, n]$ 显然是递归函数.
- 2. $\forall M, N \in \Lambda.app(\#M, \#N) = \#(MN) = [1, [\#M, \#N]]$ 显然是递归函数.
- 3. $\forall x \in \nabla, M \in \Lambda.abs(\#x, \#M) = \#(\lambda x.M) = [2, [\#x, \#M]]$ 显然是 递归函数.
- 4. 对于 #[n], 尝试找到它的递归式:

$$\#\lceil n+1 \rceil = \#(\lambda f x. f^{n+1} x)$$

$$= [2, [\#f, \#(\lambda x. f^{n+1} x)]]$$

$$= [2, [\#f, [2, [\#x, \#f^{n+1} x]]]]$$

$$= [2, [\#f, [2, [\#x, [1, [\#f, \#f^n x]]]]]]$$

$$= [2, [\#f, [2, [\#x, [1, [\#f, (\pi_2)^4 (\#\lceil n \rceil)]]]]]]$$

取 $h(z) = [2, [\#f, [2, [\#x, [1, [\#f, (\pi_2)^4(z)]]]]]],$ 则令:

$$num(0) = \#\lceil 0 \rceil$$
$$num(n+1) = h(num(n)).$$

显然 $\operatorname{num}(n) = \#\lceil n \rceil$ 且 $\operatorname{num} \in \mathcal{PRF}$.

3.23 $f(n) = \underbrace{n}^{n}$,试构造 $F \in \Lambda^{\circ}$ 使 $F[n] = \lceil f(n) \rceil$ 对 $n \in \mathbb{N}^{+}$ 成立.

Proof.

$$F\lceil n\rceil = \left[\underbrace{n^{\cdot \cdot n}}_{n}\right] = \underbrace{\lceil n\rceil \dots \lceil n\rceil}_{n} \quad n > 0$$

令 $CO_n = \lambda x.\underbrace{x...x}_n$, 注意 #x 为某常数 c, 现尝试说明 $f(n) = \#CO_n \in \mathcal{PRF}$:

$$f(0) = 0$$

$$f(n+1) = [2, [\#x, \#\underbrace{x \dots x}]]$$

$$= [2, [\#x, [\#x, [\#\underbrace{x \dots x}]]]]$$

$$= [2, [\#x, [\#x, [(\pi_2)^2 (f(n))]]]]$$

显然 $f \in \mathcal{PRF}$. 根据递归函数的 λ -可定义性,有 $F'[n] = [CO_n]$. 利用枚举子,有 $E(F'[n])[n] = CO_n[n]$,取 $F = \lambda n.E(F'n)$ n 即可.

3.24 构造 $H \in \Lambda^{\circ}$,使得对于任意 $n \in \mathbb{N}, x_1, \ldots, x_n \in \Lambda$,有

$$H[n]x_1 \dots x_n =_{\beta} [x_1, \dots, x_n].$$

Proof. 1. $l(n) = \#L_n \in \mathcal{GRF}$. 如下, $h \in \mathcal{PRF}$,所以 $l \in \mathcal{PRF}$.

$$l(n) = [2, [\#3, \#zx_1 \dots x_n]] = [2, [1, h(n)]]$$

$$h(n) = \#zx_1 \dots x_n$$

$$h(1) = \#zx_1 = [1, [1, \#x_1]] = [1, [1, [0, 1]]]$$

$$h(n+1) = [2, [1, h(n), \#x_{n+1}]] = [2, [h(n), [0, n+1]]]$$

2.
$$g(n) = \#M_n = \lambda x_1 \dots x_n \cdot [x_1, \dots, x_n] \in \mathcal{PRF}.$$

let
$$f(i, y) = [2, [[0, i, y]]] \in \mathcal{PRF}$$

 $g(n) = f(1, f(2, \dots, f(n-1, f(n, l(n)) \dots))) \in \mathcal{PRF}.$

19

 $q(n) = [2, [\#x_1, [2, \dots [2, [\#x_n, l(n)] \dots]]]]$

3. 有 $G \lambda$ -定义 g. 取 $H \equiv \lambda z.E(Gz)$, 得

$$H\lceil n\rceil x_1 \dots x_n =_{\beta} \lambda z. E(Gz) x_1 \dots x_n =_{\beta} \lceil x_1, \dots, x_n \rceil.$$

3.25 证明:存在 $H_2 \in \Lambda^{\circ}$,使得对于任意 $F \in \Lambda$,有

$$H_2\lceil n\rceil =_{\beta} F\lceil H_2\lceil F\rceil\rceil.$$

Proof. 即求第二不动点组合子.

令 $W \equiv \lambda xy.Ey$ (App (App x (Num x)) (Num y)), $\Theta_2 = W\lceil W \rceil$. 其中 E 为枚举子.

$$\Theta_{2}\lceil F \rceil = W\lceil W \rceil \lceil F \rceil$$

$$= E\lceil F \rceil \text{ (App (App } \lceil W \rceil \text{ (Num} \lceil W \rceil)) \text{ (Num } \lceil F \rceil))}$$

$$= F \text{ App } \lceil W \lceil W \rceil \rceil \lceil \lceil F \rceil \rceil$$

$$= F\lceil \Theta_{2} \lceil F \rceil \rceil$$