UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE

INSTITUTO METRÓPOLE DIGITAL

Soluções de Exercícios de Matemática Elementar

Nome: Andriel Fernandes

Capítulo 01 - Exercício de Conjuntos

1. "De que outras formas podemos representar o conjunto vazio utilizando as duas notações de definição de conjuntos que conhecemos?"

Primeira: Seja $\emptyset = \{\}.$

Segunda: Seja o conjunto A o conjunto dos inteiros, e A^C o seu complementar. Temos, portanto, que $A \cap A^C = \emptyset$.

- 2. "Decida quais das afirmações a seguir estão corretas. Justifique suas respostas."
 - (a) $\emptyset \in \emptyset$;
 - Proposição falsa: se $\emptyset \in \emptyset$, significa que \emptyset tem ao menos um elemento, o que vai contra sua definição e nos leva a um absurdo.
 - (b) $\emptyset \subseteq \emptyset$;
 - Proposição verdadeira: suponha que $\emptyset \nsubseteq \emptyset$. Logo, há um elemento $x \in \emptyset$ que não pertence a \emptyset . Isso gera um absurdo pois, por definição, o conjunto vazio não contém elementos. Logo, a proposição é verdadeira.
 - (c) $\emptyset \in \{\emptyset\};$

- **Proposição verdadeira**: tomado o conjunto $A = \{\emptyset\}$, suponha que $\emptyset \notin \{\emptyset\}$. No entanto, sabendo que o conjunto A tem \emptyset como elemento, chegamos a uma contradição. Logo, a proposição é verdadeira.
- (d) $\emptyset \subseteq \{\emptyset\}$.
 - Proposição verdadeira: tome o conjunto $A = \{\emptyset\}$. De acordo com a Inclusão Universal do \emptyset , para todo conjunto A, vale $\emptyset \subseteq A$. Desse modo, a proposição é verdadeira.
- 3. Não fiz.
- 4. "Considere $A = \{x \in \mathbb{Z}_+; x < 3\}$. Calcule $\mathbb{P}(A)$." Temos que $\mathbb{P}(A)$ é o conjunto das partes de A. Logo, temos $\mathbb{P}(A) = \{\emptyset, \{0\}, \{1\}, \{2\}, \{0, 1\}, \{1, 2\}, \{0, 2\}, A\}$.
- 5. "Dê exemplos de conjuntos A, B, C, justificando com os cálculos, que satisfaçam:"
 - (a) " $A \cup (B \cap C) \neq (A \cup B) \cap C$. Qual o conjunto que será sempre igual a $A \cup (B \cap C)$?" Sejam $A = \{2,4,6\}, B = \{3,6,9\}, C = \{4,9,14\}$. Assim, temos:

$$A \cup (B \cap C) \neq (A \cup B) \cap C$$

$$\implies \{2,4,6\} \cup (\{3,6,9\} \cap \{4,9,14\}) \neq (\{2,4,6\} \cup \{3,6,9\}) \cap \{4,9,14\}$$

$$\implies \{2,4,6\} \cup \{9\} \neq \{2,3,4,6,9\} \cap \{4,9,14\}$$

$$\implies \{2,4,6,9\} \neq \{4,9\}$$

De acordo com a propriedade distributiva, podemos afirmar

que $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$. Vejamos:

$$(A \cup B) \cap (A \cup C)$$

$$= (\{2, 4, 6\} \cup \{3, 6, 9\}) \cap (\{2, 4, 6\} \cup \{4, 9, 14\}))$$

$$= \{2, 3, 4, 6, 9\} \cap \{2, 4, 6, 9, 14\}$$

$$= \{2, 4, 6, 9\}$$

Portanto, concluímos que os conjuntos são iguais.

(b) " $A\subseteq B$, mas $A^C\not\subseteq B^C$. Qual inclusão é sempre válida envolvendo A^C e B^C ?" Sejam $A=\{4,6\}, B=\{2,4,6,8\}, C=\{5\}, \mathbb{U}=A\cup B\cup C$. Logo, temos que:

$$A \subseteq B = \{4, 6\} \subseteq \{2, 4, 6, 8\}$$

é verdadeiro, assim como

$$A^C \nsubseteq B^C = \{2, 5, 8\} \nsubseteq \{5\}$$

Logo, $A^C \nsubseteq B^C$. Contudo, de acordo com uma das propriedades do complementar, "se $A \subseteq B$, então $B^C \subseteq A^C$ ". Logo, vejamos se é de fato:

$$B^C \subseteq A^C \implies \{5\} \subseteq \{2, 5, 8\}$$

Portanto, a inclusão de B^{C} em A^{C} é válida.

(c) " $A \subsetneq B$ " Sejam os conjuntos $A = \{1, 2, 3\}, B = \{1, 2, 3, 4, 5, 6\}.$ Temos, portanto, que, para qualquer $x \in A$, também $x \in B$; mas, tomando um $y \in B$, não é sempre verdadeiro que $y \in A$. Logo, $A \subseteq B$ e $B \nsubseteq A$, o que configura a inclusão própria, representada por $A \subsetneq B$. (d) " $(A \cap B)^C \neq A^C \cap B^C$. Qual o conjunto que será sempre igual a $(A \cap B)^C$?" Sejam os conjuntos $A = \{2, 4, 6\}, B = \{3, 6, 9\}, \mathbb{U} = A \cup B$. Assim, temos:

$$(A \cap B)^C \neq A^C \cap B^C$$

$$= (\{2, 4, 6\} \cap \{3, 6, 9\})^C \neq (\{2, 4, 6\})^C \cap (\{3, 6, 9\})^C$$

$$= (\{6\})^C \neq (\{3, 9\}) \cap (\{2, 4\})$$

$$= \{2, 3, 4, 9\} \neq \emptyset$$

De acordo com as Leis de DeMorgan, nós temos que o conjunto $(A \cap B)^C$ pode ser escrito da seguinte forma:

$$A^{C} \cup B^{C} = (\{2, 4, 6\})^{C} \cup (\{3, 6, 9\})^{C}$$

$$\implies \{3, 9\} \cup \{2, 4\} = \{2, 3, 4, 9\}$$

Assim, concluímos que os conjuntos são iguais.

- 6. "As igualdades abaixo acerca dos conjuntos A,B,C não são válidas geralmente. Em cada um dos itens, dê um exemplo que ilustre esse fato:"
 - (a) $A \setminus (B \cap C) = (A \setminus B) \cap (A \setminus C)$; Sejam $A = \{1, 4\}, B = \{1, 8\}, C = \{4, 9\}$. Temos:

$$A \setminus (B \cap C) = (A \setminus B) \cap (A \setminus C)$$

$$\implies \{1,4\} \setminus (\{1,8\} \cap \{4,9\} = (\{1,4\} \setminus \{1,8\}) \cap \{1,4\} \setminus \{4,9\})$$

$$\implies \{1,4\} \setminus \emptyset = \{4\} \cap \{1\}$$

$$\implies \{1,4\} = \emptyset$$

Chegamos em um absurdo, logo, a proposição não é válida para este caso.

(b)
$$A \setminus (B \cup C) = (A \setminus B) \cup (A \setminus C)$$
;
Sejam $A = \{1, 4\}, B = \{1, 8\}, C = \{4, 9\}$. Temos:

$$A \setminus (B \cup C) = (A \setminus B) \cup (A \setminus C)$$

$$\implies \{1, 4\} \setminus (\{1, 8\} \cup \{4, 9\} = (\{1, 4\} \setminus \{1, 8\}) \cup \{1, 4\} \setminus \{4, 9\})$$

$$\{1, 4\} \setminus \{1, 4, 8, 9\} = \{4\} \cup \{1\}$$

$$\implies \emptyset = \{1, 4\}$$

Chegamos a um absurdo. Portanto a proposição não é válida para este caso.

- 7. "Sejam A, B conjuntos quaisquer. Classifique como verdadeiro ou falso cada sentença abaixo. Justifique ou dê um contraexemplo para o caso da sentença ser falsa."
 - (a) $(A \setminus B) \subseteq B$; Falsa. Suponha, por absurdo, que a afirmação é verdadeira. Logo, existe x tal que $x \in (A \setminus B)$ e $x \in B$. Contudo, se $x \in (A \setminus B)$, então $x \in A$ e $x \notin B$, o que é um absurdo pois, anteriormente, definimos que $x \in B$. Logo, a proposição é falsa.
 - (b) $(A \backslash B) \subseteq (A \cup B)$; Verdadeira. Suponha que $(A \backslash B) \not\subseteq (A \cup B)$. Assim, por definição de diferença, existe um elemento x tal que $x \in (A \backslash B)$, ou seja, $x \in A, x \notin B$. Contudo, se $(A \backslash B) \not\subseteq (A \cup B)$, então $x \notin (A \cup B)$, o que significa que, pela definição de união, $x \notin A$ nem $x \notin B$. Isso é um notável absurdo pois $x \in A$ e $x \notin A$ simultaneamente. Logo, a proposição é verdadeira.
- 8. "Sejam A, B, C conjuntos tais que $A \cup B \cup C = \mathbb{U}$. Em cada um dos itens, use propriedades para obter um conjunto igual aos escritos abaixo somente com **uniões de conjuntos**."

(a) $A \cup (B \cap C^C) \cup (A^C \cap B^C \cap C^C) \cup C$; Resolução. Temos:

$$A \cup (B \cap C^C) \cup (A^C \cap B^C \cap C^C) \cup C$$

$$= A \cup (B \cap C^C) \cup [A^C \cap (B^C \cap C^C)] \cup C \quad \text{(Associatividade)}$$

$$= A \cup (B \cap C^C) \cup [A^C \cap (B \cup C)^C] \cup C \quad \text{(DeMorgan)}$$

$$= A \cup (B \cap C^C) \cup [A \cup B \cup C]^C \cup C \quad \text{(DeMorgan)}$$

$$= A \cup (B \cap C^C) \cup \emptyset \cup C \quad (\mathbb{U}^C = \emptyset)$$

$$= A \cup [(B \cap C^C) \cup C] \quad \text{(Associatividade)}$$

$$= A \cup [(B \cup C) \cap (C^C \cup C)] \quad \text{(Distributividade)}$$

$$= A \cup [(B \cup C) \cap \mathbb{U}] \quad (C^C \cup C = \mathbb{U})$$

$$= A \cup B \cup C \quad (A \cap \mathbb{U} = A)$$

$$= \mathbb{U}$$

(b) $[(A^C \cap B \cap C) \cup (A \cap B \cap C)]^C$ Resolução. Temos:

$$[(A^{C} \cap B \cap C) \cup (A \cap B \cap C)]^{C}$$

$$= (A^{C} \cap B \cap C)^{C} \cap (A \cap B \cap C)^{C} \quad \text{(DeMorgan)}$$

$$= [A \cup (B \cap C)^{C}] \cap [A^{C} \cup (B \cap C)^{C}] \quad \text{(DeMorgan)}$$

$$= (B \cap C)^{C} \cup (A \cap A^{C}) \quad \text{(Distributividade)}$$

$$= (B \cap C)^{C} \cup \emptyset$$

$$= (B \cap C)^{C}$$

$$= B^{C} \cup C^{C}$$

(c) $[(A \cup B^C \cup C) \cup (B \cup C^C)]^C$

Resolução. Temos:

$$\begin{split} &[(A \cup B^C \cup C) \cup (B \cup C^C)]^C \\ &= (A \cup B^C \cup C)^C \cap (B \cup C^C)^C \quad \text{(DeMorgan)} \\ &= [A^C \cap (B^C \cup C)^C] \cap (B \cup C^C)^C \quad \text{(DeMorgan)} \\ &= A^C \cap (B \cap C^C) \cap (B \cup C^C)^C \quad \text{(DeMorgan)} \\ &= A^C \cap (B \cap C^C) \cap (B^C \cap C) \quad \text{(DeMorgan)} \\ &= A^C \cap (B \cap B^C) \cap (C \cap C^C) \quad \text{(Comutatividade)} \\ &= (A^C \cap \emptyset) \cap \emptyset \\ &= \emptyset \end{split}$$

(d) $[(A \cup B^C \cup C) \cap (B \cap C^C)]^C$ Resolução. Temos:

$$[(A \cup B^C \cup C) \cap (B \cap C^C)]^C$$

9. "Sejam A, B, C, D conjuntos. Use propriedades do nosso material para obter um conjunto igual ao escrito abaixo somente com interseções de, no máximo, 3 conjuntos."

$$[A^C \cap B \cap (C \cup D^C)^C] \cup [A \cap (B^C \cup C)^C \cap D]$$

Resolução. Temos:

$$[A^{C} \cap B \cap (C \cup D^{C})^{C}] \cup [A \cap (B^{C} \cup C)^{C} \cap D]$$

$$= (A^{C} \cap B \cap C^{C} \cap D) \cup (A \cap B \cap C^{C} \cap D) \quad \text{(DeMorgan)}$$

$$= (B \cap C^{C} \cap D) \cup (A^{C} \cap A) \quad \text{(Distributividade)}$$

$$= (B \cap C^{C} \cap D) \cup \emptyset \quad (A^{C} \cap A = \emptyset)$$

$$= B \cap C^{C} \cap D$$

Encontramos, então, um conjunto equivalente ao inicial proposto.

10. "O Diagrama de Venn para os conjuntos X,Y,Z decompõe o plano em oito regiões. Numere essas regiões e exprima cada um dos conjuntos abaixo como reunião de algumas dessas regiões. (Por exemplo: $X \cap Y = 1 \cup 2$)"

Tome o diagrama como base:

- (a) $(X^C \cup Y)^C$ = $(\{2, 3, 6, 8\} \cup \{2, 4, 6, 7\})^C$ = $(\{2, 3, 4, 6, 7, 8\})^C$ = $\{1, 5\}$
- (b) $(X^C \cup Y) \cup Z^C$ = $(\{2, 3, 6, 8\} \cup \{2, 4, 6, 7\}) \cup \{1, 2, 4\}$ = $\{2, 3, 4, 6, 7, 8\} \cup \{1, 2, 4\}$ = $\{1, 2, 3, 4, 6, 7, 8\}$
- (c) $(X^C \cap Y) \cup (X \cap Z^C)$ = $(\{2,3,6,8\} \cap \{2,4,6,7\}) \cup (\{1,4,5,7\} \cap \{1,2,4,8\})$ = $(\{2,6\} \cup \{1,4\})$ = $\{1,2,4,6\}$
- (d) $(X \cup Y)^C \cap Z$ = $(\{1, 4, 5, 7\} \cup \{2, 4, 6, 7\})^C \cap \{3, 5, 6, 7\}$

=
$$(\{1, 2, 4, 5, 6, 7\})^C \cap \{3, 5, 6, 7\}$$

= $\{3, 8\} \cap \{3, 5, 6, 7\}$
= $\{3\}$

- 11. Não fiz.
- 12. Fiz mas falta colocar.