PSI script updates and Limitations of Bedtools

Giovanni Quinones Valdez
10/25/2018
Xiao Lab

Different approaches for splicing quantification

- Isoform based PSI estimation (e.g. MISO):
 - Estimates PSI based on local isoforms, e.g. exon inclusion.
 - Doesn't account for complex splicing events.
- Isoform quantification (e.g. Cufflinks):
 - Estimate abundance of complete isoforms. In principle, the most ideal.
 - Not always reliable because of not enough informative reads, novel isoforms, etc
- Exon Segment PSI estimation (e.g. DEXSeq):
 - Estimates PSI of unique, non-overlapping region.
 - Most unbiased, but does not provide information about the splicing type.

Alternative splicing

- There are five main types of alternative splicing.
- Most splicing software are limited to these types.
- About 20% of all alternative splicing events do not follow any of these patterns.

Issues with Bedtools

...running: command = bedtools coverage -b chr2.bam -a chr2.sub_annot.gtf -split

```
chr2 tmp annot exon 113888621 113888734 . + . partid 520
...running: command -F 0.08 18
...running: command -f 0.08 481
...running: command -F 8E-9 520
...running: command -f 8E-9 520
...running: command -s 244
Raw Manual count
        chr2 tmp_annot exon 113888621 113888734 . + . partid 520
Filtered Manual count
        chr2 tmp annot exon 113888621 113888734 . + . partid 486
```

- Different parameters will yield different coverage results.
- Current pipeline uses –F and –s options to estimate inclusion reads

Visual coverage estimation

Exon length = 114 bases Approximate coverage = 18 (100M) + 264(Junction1) + 235 (Junction2) = 517 ...running: command = bedtools coverage -b chr2.bam -a chr2.sub_annot.gtf -split chr2 tmp_annot exon 113888621 113888734 . + . partid 520

...running: command -F 0.08 18

- The –F option (minimum overlap as a fraction of B, bam file) stablishes a minimum overlap.
- For sequencing reads, bedtools considers the whole span of the read, instead of the read length.
 For example, for an overlap of at least 8 bases in out example it should be, F = 8/1100 instead of F = 8/100

...running: command = bedtools coverage -b chr2.bam -a chr2.sub_annot.gtf -split chr2 tmp_annot exon 113888621 113888734 . + . partid 520

...running: command -s 244

					PYSAM Coverage by flag			Bedtools Coverage	
CHROM	START	END	STRAND	part_id	99	147	83	163	(-s)
chr2	177040722	177040886	-	ENSG00000224189:002	276	337	0	0	337
chr2	242276797	242276848	+	ENSG00000168385:066	0	0	1077	1001	1001
chr2	55887292	55887328	-	ENSG00000138035:023	69	91	0	0	91
chr2	9547728	9548130	-	intron.ENSG00000119185:001	24	30	1	1	31

- The –s option in bedtools forces the overlaps to be strand-specific. When dealing with bam files, forward reads are "+" and reverse reads are "-" strand, which is not always the case.
- Bedtools doesn't know the strandedness of the library. This can't be directly inferred from the bam file.

Flag	Read Pair	Direction	Strand
99	Read1	Forward	-
147	Read2	Reverse	-
83	Read1	Reverse	+
163	Read2	Forward	+

New pipeline overview

Approach for efficient overlap:

- For every read, identify all features (exonic parts, intronic parts) that overlap that read
- Sorted reads and sorted features do not require any 'query search time'

- Memory usage (For a bam file with 82M reads):
 - Bedtools: 102 GB
 - Pysam: 0.6 GB
- Run time
 - Bedtools: 25 min.
 - Pysam: 32 min.

For macro-exons (length > 20 bases)

For macro-exons (length \leq 20 bases)

Comparison of delta PSI (old vs new script)

Limitations of our pipeline

PSI calculation for first exon

- First exons do not contain exclusion reads. There is no upstream exon.
- PSI ~ 1

Ambiguous/false splice junctions

Complexity of splice junctions

Min. number of reads per junction = 1

Average exon coverage ~ 10k reads

Min. number of reads per junction = 5

Min. number of reads per junction = 20

Splice-junction mapping ambiguity

Read: CCGTCCCC

REF: CCCGT-----AGGTCCCCCC

Alg1: CCGT------CCCC (4M21N4M)

Alg2: CC-----GTCCCC (2M21N6M)

Junction starts and ends are not always consistent among reads.
 Some software deal with this:

- STAR 2-round mapping
- Mainly due to mapping ambiguity.
- It's not a good decision to discard these reads, since they are not multi-mapped, spurious.

