PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-085063

(43) Date of publication of application: 30.03.2001

(51)Int.CI.

H01M 10/40 H01G 9/058

(21)Application number: 11-259012

(71)Applicant: NGK INSULATORS LTD

(22)Date of filing: 13.09.1999

(72)Inventor: ARAI YUSUKE

KATSUKAWA HIROYUKI

(54) ELECTROCHEMICAL CAPACITOR

(57)Abstract:

PROBLEM TO BE SOLVED: To obtain high capacitance with pseudo-capacitance, and to inexpensively make up an electrochemical capacitor by using a product material generated by electrochemically reacting a partially oxidized material of a carbon material having microcrystal carbon similar to graphite in an organic electrolyte as an active material of a polarizable electrode.

SOLUTION: A carbon material is desirably formed by heat treating an easily graphitizable carbon raw material at 500° C to 1000° C in an inert gas atmosphere. A partial oxidizing method is a desirable method for heat treating the carbon material at a temperature or more for generating alkaline metal vapor in an inactive atmosphere in the presence of at least one kind of alkaline metal and alkaline metal compound including oxygen or a method for soaking the carbon material in an oxidizing agent capable of forming a graphite acid when soaking graphite or a method for heat treating the carbon material at a temperature lower than a heat treatment temperature of the easily graphitizable carbon raw material in an oxidizing atmosphere including oxidizing gas.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C): 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2001-85063 (P2001-85063A)

(43)公開日 平成13年3月30日(2001.3.30)

(51) Int.Cl.7

識別記号

FΙ

テーマコード(参考)

H 0 1 M 10/40 H01G 9/058 H01M 10/40

Z 5H029

H01G 9/00

301A

審査請求 未請求 請求項の数7 OL (全 6 頁)

(21)出願番号

特顯平11-259012

(71)出願人 000004064

日本碍子株式会社

(22)出願日

平成11年9月13日(1999.9.13)

愛知県名古屋市瑞穂区須田町2番56号

(72)発明者 新居 裕介

愛知県名古屋市瑞穂区須田町2番56号 日

本碍子株式会社内

(72)発明者 勝川 裕幸

愛知県名古屋市瑞穂区須田町2番56号 日

本碍子株式会社内

(74)代理人 100088616

弁理士 渡邉 一平

最終頁に続く

(54) 【発明の名称】 電気化学キャパシタ

(57)【要約】

【課題】 分極性電極材料として黒鉛類似の微結晶炭素 を有する炭素材料を用い、活物質として電気化学反応に よる生成物を用いることにより、疑似容量に基づく高い 静電容量密度を示す電気化学キャパシタを提供する。

【解決手段】 分極性電極が有機電解液中に浸漬されて なる電気化学キャバシタである。分極性電極の活物質と して、黒鉛類似の微結晶炭素94を有する炭素材料90 を部分酸化したものを、有機電解液中で電気化学反応さ せて生ずる生成物を用いた。

【特許請求の範囲】

【請求項1】 分極性電極が有機電解液中に浸漬されて なる電気化学キャパシタであって、

黒鉛類似の微結晶炭素を有する炭素材料を部分酸化した ものを当該有機電解液中で電気化学反応させて生ずる生 成物を、当該分極性電極の活物質に用いてなることを特 徴とする電気化学キャパシタ。

【請求項2】 前記炭素材料が、易黒鉛化炭素原料を不 活性ガス雰囲気中、500℃~1000℃で熱処理して なるものであることを特徴とする請求項1記載の電気化 10 学キャパシタ。

【請求項3】 前記部分酸化の方法が、前記炭素材料 を、アルカリ金属及び酸素を含むアルカリ金属化合物の 少なくとも1種の存在下、不活性雰囲気中、アルカリ金 属蒸気が発生する温度以上で熱処理する方法であること を特徴とする請求項1又は2記載の電気化学キャパシ タ。

【請求項4】 前記部分酸化の方法が、前記炭素材料 を、黒鉛を浸漬すると石墨酸が形成できる酸化剤に浸漬 電気化学キャパシタ。

【請求項5】 前記部分酸化の方法が、前記炭素材料 を、酸化性ガスを含む酸化雰囲気中において、前記易黒 鉛化炭素原料の熱処理温度よりも低い温度で熱処理する 方法であることを特徴とする請求項1又は2記載の電気 化学キャパシタ。

【請求項6】 前記炭素材料を部分酸化したものを用い て作製したシート状電極とセパレータ並びに集電体を組 み合わせて有機電解液に浸漬し、キャパシタを構成した 後に通電することで、前記電気化学反応を行うことを特 30 徴とする請求項1~5のいずれか一項に記載の電気化学 キャパシタ。

【請求項7】 前記電気化学反応を行なう電解液と、キ ャパシタとして動作させる電解液に異なるものを用いた ことを特徴とする請求項6記載の電気化学キャパシタ。 【発明の詳細な説明】

[0001]

【発明の属する技術分野】 本発明は、分極性電極材料 として黒鉛類似の微結晶炭素を有する炭素材料を用い、 活物質として電気化学反応による生成物を用いることに 40 より、疑似容量に基づく高い静電容量密度を示す電気化 学キャパシタに関する。

[0002]

【従来の技術】 電気化学キャパシタ(以下、「キャパ シタ」という。)は、ファラッド級の大容量を有し、充 放電サイクル特性にも優れることから、電子機器のバッ クアップ電源や自動車を始めとした各種輸送機のバッテ リーとして用いられている他、エネルギーの有効利用の 観点からは、夜間電力の貯蔵といった用途での使用も検 討されている。

【0003】 このようなキャパシタの基本構造の1つ である単電極セル10は、図1に示されるように、一般 的には金属材料からなる集電体20・22にそれぞれ正 極側の分極性電極24と負極側の分極性電極26が形成 され、分極性電極24・26がセパレータ28によって 隔離された構造を有しており、分極性電極24・26に

は、溶媒と電解質とからなる電解液が含浸される。

【0004】 また、図2は単キャパシタセル12の構 造を示しており、複数の単電極セル10を、集電体20 ・22に形成された電極取り出し部30・32をそれぞ れ電気的に並列接続した構造を有している。自動車用等 に用いられる比較的容量の大きなキャパシタとしては、 このような単キャパシタセル12が好適に用いられる。 これら単電極セル10や単キャパシタセル12は、共に 平板型であり、髙充填、大面積化が容易である特徴を有 する。

【0005】 このような平板型のキャパシタに対し て、図3に示すような捲回型のキャパシタ70もある。 **捲回型キャパシタ70においては、集電体20に正極側** する方法であることを特徴とする請求項1又は2記載の 20 の分極性電極24が形成された正極シート72と、集電 体22に負極側の分極性電極26が形成された負極シー ト74とを、セパレータ28を介して円筒状に捲回して 作製された捲回体76が電極体として用いられ、例え ば、この捲回体76をケース78に収容して電解液を充 填し、各極シート72・74と電極端子80の各々との 導通を確保しながら、電極端子80が形成された封口板 82でケース78の開口端面を封止することで作製され る。

[0006]

【発明が解決しようとする課題】 とのようなキャパシ タ用の分極性電極材料としては、比表面積が1000m 2/g以上の活性炭を主体とするものが従来から使用さ れている。このような活性炭を用いたキャパシタにおい て発現する静電容量の主たるものは電気二重層容量であ る。この場合、静電容量密度は20F/cc程度、耐電 圧は3V程度が限界であった。

【0007】 そこで、キャパシタの更なる高性能化を 図るために、新しい高静電容量の分極性電極材料が望ま れており、酸化ルテニウム等の金属酸化物やポリピロー ル等の導電性高分子を用いたレドックス反応による疑似 容量を利用したキャパシタに注目が集まっている。

【0008】 しかし、金属酸化物を用いたキャパシタ は、ルテニウム等の高価な材料を必要とすることや、水 溶液電解液しか用いることができないために動作電圧を 高くできないということが問題となっている。また、導 電性高分子を用いた場合には、有機電解液を使用するこ とができるため、耐電圧を高くすることはできるが、化 学合成が複雑で高価であったり、厚膜化が難しく、大容 量化が困難であるという問題がある。

50 [0009]

10

30

【課題を解決するための手段】 本発明は、上述した課題に鑑みてなされたものであり、その目的とするところは、疑似容量によって高い静電容量を発現し、かつ安価に合成が可能な活物質を用いたキャバシタを提供することにある。即ち、本発明によれば、分極性電極が有機電解液中に浸漬されてなる電気化学キャバシタであって、黒鉛類似の微結晶炭素を有する炭素材料を部分酸化したものを当該有機電解液中で電気化学反応させて生ずる生成物を、当該分極性電極の活物質に用いてなることを特徴とする電気化学キャバシタ、が提供される。

【0010】 このような本発明の電気化学キャバシタにおいては、炭素材料として、易黒鉛化炭素原料を不活性ガス雰囲気中、500℃~1000℃で熱処理して得られたものを用いることが好ましい。部分酸化の方法の1つとしては、炭素材料を、アルカリ金属及び酸素を含むアルカリ金属化合物の少なくとも1種の存在下、不活性雰囲気中、アルカリ金属蒸気が発生する温度以上で熱処理する方法が挙げられる。また、別の部分酸化の方法として、炭素材料を、黒鉛を浸漬すると石墨酸が形成できる酸化剤に浸漬する方法を用いることも好ましく、更20に、炭素材料を、酸化性ガスを含む酸化雰囲気中において、易黒鉛化炭素原料の炭化温度よりも低い温度で熱処理する方法を採ることもできる。

【0011】 なお、静電容量発現のための電気化学反応は、炭素材料を部分酸化したものを用いて作製したシート状電極とセバレータ並びに集電体を組み合わせて有機電解液に浸漬し、キャパシタを構成した後に通電することで行うことが好ましい。このとき、電気化学反応を行なう電解液と、キャパシタとして動作させる電解液に異なるものを用いることも可能である。

[0012]

【発明の実施の形態】 本発明の電気化学キャパシタ(キャパシタ)は、分極性電極を有機電解液中に浸漬してなるものである。分極性電極の主材料となる炭素材料を製造するにあたっては、まず、石油コークス、石炭コークス、石油ピッチ(タール)、石炭ピッチ(タール)、メソフェーズカーボン、ポリ塩化ビニル、ポリイミド等の易黒鉛化炭素原料を、熱処理して炭化する。この炭化処理は、不活性ガス雰囲気中、約500℃~1000℃の温度範囲で、好適に行われる。これらの易黒鉛 40化炭素原料は、1種類を単独で用いてもよく、また複数種の混合物として用いてもよい。不活性ガスとしては、窒素ガス、並びにアルゴンガスやヘリウムガスといった希ガスが好適に用いられる。

【0013】 こうして得られた炭素材料90の微構造の説明図を図4に示す。炭素材料90は、黒鉛類似の微結晶炭素94(微結晶炭素94の網平面は紙面に垂直)が層状に積層されてなる構造体96から主に構成されている。構造体96そのものは微結晶炭素94がほぼ平行にほば等間隔で積み重なった構造を有しているが、各構

造体96間の配列は、層平面が略平行に、但し、完全に 平行となるようには配向せずに、不規則に角度を持って 積み重なっている。

【0014】 次に、得られた炭素材料を、所定粒径を有するように粉砕することが好ましい。ここで、易黒鉛化炭素原料が粉末状である等の理由で炭素材料が粉末の形で得られる場合には、粉砕処理は必ずしも必要ではない。この粉砕処理により、次工程における部分酸化処理の反応の均一化と、処理時間の短縮を図ることができるようになる。なお、ここでの粉砕処理には、乾式・湿式を問わず、公知の種々の方法を用いることができる。

【0015】 次に、炭素材料を部分酸化する。この部分酸化の1つの方法は、炭素材料を、アルカリ金属及び酸素を含むアルカリ金属化合物(以下、「アルカリ金属化合物」という。)の少なくも1種の存在下、不活性雰囲気中、アルカリ金属蒸気が発生する温度以上で熱処理する方法である。

【0016】 CCで、アルカリ金属化合物としては、アルカリ金属元素にカリウム、ナトリウム、リチウム、ルビジウムを用いた酸化物、水酸化物、硝酸塩、硫酸塩、炭酸塩等を用いることができ、例として水酸化カリウム、水酸化ナトリウム、炭酸カリウム、炭酸ナトリウム等を挙げることができる。これらのアルカリ金属化合物は複数種を混合して用いてもよい。

【0017】 なお、アルカリ金属化合物の「存在下」とは、炭素材料をアルカリ金属化合物と直接に混合した状態や、炭素材料をアルカリ金属化合物から発生するアルカリ金属蒸気と接する環境下に置くことをいう。また、アルカリ金属蒸気が発生する温度での処理とは、炭素材料とアルカリ金属化合物の存在下、アルカリ金属の蒸気が発生する温度にまで加熱して処理することをいう。このような熱処理は不活性ガス雰囲気中で行われる

【0018】 さて、上述のように、アルカリ金属化合物の存在下に熱処理され、部分酸化された炭素材料は、不要なアルカリ金属化合物が炭素材料に付着等しているので、これを除去する必要がある。そこで、メタノールやエタノール等のアルコール系溶媒や蒸留水等を用いて、炭素材料に不要に付着等したアルカリ金属化合物を溶解し、炭素材料を洗浄、濾過する。こうして、分極性電極に用いられる炭素材料が得られる。

【0019】 別の炭素材料の部分酸化方法は、炭素材料を、酸化性ガスを含む酸化雰囲気中において、易黒鉛化炭素原料の炭化温度よりも低い温度で熱処理する方法である。酸化性ガスとしては、酸素、NOx、COx、水蒸気、空気等が挙げられ、その分圧と酸化処理温度を制御することにより、極度な炭素材料の酸化、即ち燃焼を抑制しつつ、部分酸化を行うことができる。

いる。構造体96そのものは微結晶炭素94がほぼ平行 【0020】 更に別の炭素材料の部分酸化方法は、黒にほぼ等間隔で積み重なった構造を有しているが、各構 50 鉛を浸漬すると石墨酸を形成して溶解させることができ

る酸化剤に、炭素材料を浸漬して酸化させる方法であ る。酸化剤としては、熱硝酸と塩素酸カリウム(KC1 O₃)の混合物、熱硝酸と過塩素酸(HClO₄)の混合 物や熱硝酸と熱硫酸の混酸等が挙げられ、温度と浸漬時 間を制御することで部分酸化を行なうことができる。

【0021】 さて、上述の通りにして作製された炭素 材料を主材料として、分極性電極が作製される。この分 極性電極の作製は、炭素材料に、有機バインダやカーボ ンブラック等の導電剤を添加した後、混合、混練等し、 われる。特に、シート状に成形して分極性電極とすると とで、キャパシタとして高い性能を得ることができる。 【0022】 なお、炭素材料は、キャパシタの構造に 関係なく分極性電極の材料として用いることができるこ とはいうまでもない。例えば、分極性電極を前述した図 1記載の単電極セル10や図2記載の単キャパシタセル 12、更には図3記載の捲回体76のような構造に形成 して、ケースに収容し、有機電解液を含浸させることで 種々の構造のキャパシタを作製することができる。

れる有機電解液には変わりはない。有機電解液の溶質、 即ち電解質としては、4級アンモニウムの4フッ化ホウ 酸(BF.-) 塩又は6フッ化リン酸(PF.-)塩、或い はテトラエチルアンモニウム (TEA*) 又はテトラブ チルアンモニウム (TBA+) のBF₄塩又はPF₆塩、 トリエチルメチルアンモニウム (TEMA+) のBF₄塩 又はPF。塩、或いは4級ホスホニウム塩のBF。塩又は PF₆塩、テトラエチルホスホニウム (TEP*) のBF 4塩又はPF。塩、或いは一般式

[0024]

【化1】

(式中、R,、R,は炭素数1~5のアル [0025] キル基であり、R1、R1は同じ基でもよいし、異なる基 でもよい。)に示されるイミダゾリウム誘導体のBF、 塩又はPF。塩、1-エチル-3-メチルイリダゾリウ ム(EMI*)のBF、塩又はPF。塩が好適に用いられ る。

【0026】 また、電解液の溶媒としては、プロピレ ンカーボネート (PC)、アーブチルラクトン (GB L)、エチレンカーボネート(EC)、スルホラン(S L)の少なくとも1種を含むものが好適に用いられる。 また、前記PC、GBL、EC、SLの少なくとも1種 を含むものを主溶媒とし、ジメチルカーボネート(DM C)、エチルメチルカーボネート(EMC)、ジエチル カーボネート (DEC) の少なくとも 1 種を含むものを 副溶媒としたものを用いることも可能である。

【0027】 ととで、主溶媒とは、その物質単独であ っても電解液溶媒として十分な性能が得られる溶媒をい い、副溶媒とは、その物質単独では電解液溶媒としての 性能は低いが、主溶媒と組み合わせて用いることで、主 溶媒単独又は副溶媒単独以上の性能が得られる溶媒をい い、副溶媒の添加量は、例えば50%以下である、とい った制限のあるものではない。

【0028】 さて、所定の形状に成形された分極性電 極と、セパレータ並びに集電体を組み合わせて有機電解 板状やシート状といった種々の形状に加工するととで行 10 液に浸漬し、キャパシタを構成した後は、通電による電 気化学反応を行う。ととでの「キャパシタの構成」と は、製品としてのキャパシタを作製するという意味を有 するが、このような意味に限定されるものではなく、キ ャパシタとして動作する環境にセッティングすることを も指す。従って、電気化学反応を行った後の分極性電極 は、異なる有機電解液を用いたキャパシタの分極性電極 として、製品たるキャパシタに使用することも可能であ

【0029】 との電気化学反応によって発現する静電 【0023】 キャパシタの構造は異なっても、使用さ 20 容量は、同じ炭素が主成分である活性炭を用いた場合よ りも、極めて大きいことが特徴である。従って、本発明 のキャパシタにおいては、この電気化学反応による生成 物が関与したレドックス反応に基づく疑似容量を主とし て静電容量が発現しているものと考えられる。

> 【0030】 つまり、本発明のキャパシタは、従来の 電気二重層容量の発現によるキャパシタと区別されるも のであり、分極性電極における活物質は、実際には炭素 材料ではなく、電気化学反応による生成物とみなすこと ができるものである。逆に、本発明のキャパシタは、電 30 気二重層容量も有するが、このような電気化学反応生成 物が関与した疑似容量を主と考えなければ、その静電容 量特性を説明することが困難なものである。なお、この 生成物を同定するには至っていないが、炭素材料中の部 分酸化した黒鉛類似微結晶炭素からなる構造体の表面及 び/又は構造体間の間隙部に有機電解液と部分酸化した 黒鉛類似微結晶炭素とが電気化学反応して形成されるも のと推定される。

【0031】 ところで、後述する実施例に示されるよ うに、上述した電気化学反応を一度行って、疑似容量の 発現に寄与する物質を生成させた後には、有機電解液を 他の種類のものと交換して、キャパシタを構成すること も可能である。

【0032】 なお、電気化学反応を一度行って、疑似 容量の発現に寄与する物質を生成させるのに最適な有機 電解液と、キャパシタとして最適動作の電解液は必ずし も一致しないので、疑似容量発現用とキャパシタ動作用 の電解液に別のものを用いて最適化することで、更に高 容量なキャパシタを得ることも可能である。

[0033]

【実施例】 次に、本発明の実施例について説明する 50

が、以下の実施例が本発明を限定するものでないことは いうまでもない。

[0034] (実施例1) 易黒鉛化炭素原料として石 油コークスを用い、石油コークス100gを、窒素雰囲 気中、800℃で2時間ほど熱処理し、室温まで冷却し た。なお、この時の昇温速度は100℃/時間とした。 その後、得られた炭素材料を平均粒径27μmに粉砕 し、この炭素材料の粉末50gと水酸化カリウム100 gをアルミナ坩堝に入れ、窒素ガス雰囲気中、800℃ で2時間熱処理して、冷却後に不要な水酸化カリウム等 10 を水洗して除去し、濾過により炭素材料粉末を分離、乾 燥して粉末状の炭素材料を得た。

【0035】 得られた炭素材料1gに対して、導電剤 としてのカーボンブラック0,1g、バインダとしての PTFE(ポリテトラフルオロエチレン)を添加して、 混合、混練し、更に圧延して厚み0.5mmのシート状 に成形した。こうして作製した分極性電極シートから、 直径19mmφに打ち抜いたものを正負極の分極性電極 として用い、また、集電体としてアルミニウム箔を、セー パレータとしてガラス繊維不織布を用い、更にプロピレ 20 ンカーボネート(PC)を溶媒とし、テトラエチルアン モニウム・テトラフルオロボレート (TEABF.)を 溶質として濃度1mo1/Lの電解液を作製し、図1記 載の単電極セル10と同等の構造を有するキャパシタ (実施例1)を構成した。

【0036】 ととでのキャパシタの作製は、露点80 ℃以下のアルゴンガス雰囲気のグローブボックス中で行 い、有機電解液は、電気化学反応を行った後には、その ままキャパシタ通電用として用いることとし、そのため に量的にやや多めに注入した。

【0037】 作製した実施例1のキャパシタに対し て、4Vの電圧まで5mAの定電流通電を行って電気化 学反応を行い、活物質となる物質の合成を行った。その 後、4 Vにて20分間の定電圧充電を行った後、5 m A の放電電流にて放電を行い、静電容量密度を求めた。実 施例1のキャパシタは、31F/ccと大きな静電容量 密度を示した。

[0038] (実施例2)平均粒径7μmのメソフェ ーズカーボンパウダー100gを、窒素雰囲気中、78 0℃で2時間ほど熱処理し、室温まで冷却した後、解砕 40 した。なお、熱処理における昇温速度は100℃/時間 とした。得られた炭素材料の粉末50gを空気中、50 0℃で2時間熱処理し、部分酸化を行った。

【0039】 得られた炭素材料を用い、実施例1の場 合と同様にしてキャパシタ(実施例2)を作製した。但 し、実施例2のキャパシタの作製にあたっては、まず、 テトラエチルアンモニウム・テトラフルオロボレート (TEABF₄)を溶質とし、スルホラン(SL)とジ メチルカーボネート (DMC) の4:6混合溶媒を溶媒 として、濃度1mo1/Lに調製した有機電解液を用い 50 72…正極シート、74…負極シート、76…捲回体、

て、前述した実施例1と同様の手法により電気化学反応 を行って活物質となる物質を合成し、次に、この電気化 学反応に使用した有機電解液を除去して、新たにメチル エチルピロリジニウム・テトラフルオロボレート(ME PYBF。)を溶質とし、プロピレンカーボネート(P C)を溶媒として、濃度2mol/Lに調製した有機電 解液を、キャパシタ動作用に充填しなおした。実施例1 のキャパシタと同様に、静電容量密度を測定した結果、 35 F/c cの静電容量密度が得られた。

[0040] (実施例3)ポリ塩化ビニル (PVC) 粉末500gを、窒素雰囲気中、850℃で2時間ほど 熱処理した後、室温まで冷却し、平均粒径35μmに粉 砕した。なお、との熱処理時の昇温速度は100℃/時 間とした。次に得られた炭素材料の粉末10gを硝酸、 硫酸、過塩素酸の混合溶液(体積比:1:5:5)に2 00℃、5分間浸漬後、水洗し、乾燥した。

【0041】 得られた炭素材料を用い、実施例1の場 合と同様にしてキャパシタ(実施例3)を作製した。と こで、実施例3のキャパシタにおいては、アーブチルラ クトン (GBL) を溶媒とし、トリエチルメチルアンモ ニウム・テトラフルオロボレート (TEMABF4)を 溶質として、濃度1m01/Lに調製した有機電解液を 用い、実施例1のキャパシタの作製と同様に、電気化学 反応とキャパシタ通電用の両方に用いた。作製した実施 例3のキャパシタについて、4 Vまで10 m A の定電流 通電し、充電後、5mAの放電電流で放電した結果、2 8F/ccの静電容量密度が得られた。

[0042]

【発明の効果】 以上の通り、本発明の電気化学キャバ 30 シタによれば、従来の活性炭を用いた電気二重層容量の 発現によるキャパシタと比較して、電気化学反応によっ て安価に合成できる物質を活物質として用い、その物質 による疑似容量の発現によって、格段に高い静電容量密 度を得ることができることが可能となる。こうして、本 発明は、キャパシタの小型化や軽量化、高密度化、低コ スト化といった優れた効果を奏する。

【図面の簡単な説明】

【図1】 単電極セルの構造の一例を示す斜視図であ る。

【図2】 単キャパシタセルの構造の一例を示す斜視図 である。

【図3】 捲回型電気化学キャパシタの構造の一例を示 す斜視図である。

【図4】 本発明の電気化学キャパシタに好適に用いら れる炭素材料の微構造を模式的に示した説明図である。 【符号の説明】

10…単電極セル、12…単キャパシタセル、22・2 4…集電体、26…分極性電極、28…セパレータ、3 0・32…電極取り出し部、70…捲回型キャパシタ、

9

78…ケース、80…電極端子、82…封□板、90…* *炭素材料、94…微結晶炭素、96…構造体。

フロントページの続き

Fターム(参考) 5H029 AJ03 AJ14 AK06 AK07 AL06 AL07 AM02 AM03 AM07 BJ02 BJ04 BJ06 CJ02 CJ13 CJ14 CJ28 DJ17 HJ14

78…ケース、80…電極端子、82…封口板、90…* *炭素材料、94…微結晶炭素、96…構造体。

フロントページの続き

F ターム(参考) 5H029 AJ03 AJ14 AK06 AK07 AL06 AL07 AM02 AM03 AM07 BJ02 BJ04 BJ06 CJ02 CJ13 CJ14 CJ28 DJ17 HJ14