

Práctica 2

Apartado 1

Apartado 2

Apartado 3

Apartado 4

Apartado 1

Variables:

ullet Número de Airbus : A

ullet Número de Boeings : B

Función objetivo:

Maximizar el beneficio:

25354A + 22215B

Minimizar el consumo:

9.715A + 6.21B

Restricciones:

• $225A + 180B \le 1350$

• $2A + 3B \ge 10$

• $A \geq 2$

• $A,B \in \mathbb{N} - \{0\}$

Beneficio:

$$(537.3 - 460) \cdot 50 \cdot A + (275.4 - 200) \cdot 285 \cdot A + (537.3 - 336) \cdot 30 \cdot B + (275.4 - 208) \cdot 240 \cdot B =$$

$$= 3865A + 21489A + 6039B - 16176B = 25354A + 22215B$$

Consumo:

$$2.9 \cdot \frac{335}{100} \cdot A + 2.3 \cdot \frac{270}{100} \cdot B = \mathbf{9.715A} + \mathbf{6.21B}$$

Apartado 2

Función objetivo de los beneficios:

Gráfica

Punto	Coordenada X (X1)	Coordenada Y (X2)	Valor de la función objetivo (Z)
0	0	0	0
A	0	7.5	166.6125
В	6	0	152.124
C	2	5	161.783
D	0	3.3333333333333	74.05
E	5	0	126.77
F	2	2	95.138
G	2	0	50.708

Tabla de valores

MAXIMIZAR: $Z = 25.354 X_1 + 22.215 X_2$	
$225 X_1 + 180 X_2 \le 1350$ $2 X_1 + 3 X_2 \ge 10$ $1 X_1 + 0 X_2 \ge 2$	
$X_1,X_2 \geq 0$	

Resultado

Función objetivo del **consumo**:

Gráfica

Punto	Coordenada X (X1)	Coordenada Y (X2)	Valor de la función objetivo (Z)
0	0	0	0
A	0	7.5	46.575
В	6	0	58.29
C	2	5	50.48
D	0	3.3333333333333	20.7
E	5	0	48.575
F	2	2	31.85
G	2	0	19.43

MAXIMIZAR: $Z = 9.715 X_1 + 6.21 X_2$
$225 X_1 + 180 X_2 \le 1350$
$2 X_1 + 3 X_2 \ge 10$ $1 X_1 + 0 X_2 \ge 2$
$X_1,X_2\geq 0$
$X_1, X_2 \ge 0$

Resultado

Tabla de valores

Ambas gráficas son iguales, distinguiendo únicamente los puntos utilizados.

Apartado 3

Juntando ambos objetivos, resulta:

Maximizar $\lambda(25345A + 22215B) + (1 - \lambda)(-9.715 - 6.21B)$

Cambiando el valor de λ se obtienen distintos valores.

$$\lambda = 0$$

```
sol$solution sol$objval
[1] 2 2 [1] -31.85
```

```
\lambda=0,25
```

sol\$solution [1] 2 5

sol\$objval [1] 40407.89

 $\lambda = 0,50$

sol\$solution
[1] 2 5

sol\$objval [1] 80886.26

 $\lambda=0,75$

sol\$solution
[1] 2 5

sol\$objval [1] 121324.6

 $\lambda = 1$

sol\$solution
[1] 2 5

sol\$objval [1] 16132.87

Apartado 4

```
# Solución
sol <- lp('min', coefs, A, dir, B)</pre>
```

sol\$solution [1] 2.000000 4.019446 0.000000 3.689238 0.000000 sol\$objval [1] 0