

Azure Containers

Product Family Overview

Gustav Kaleta Global Black Belt App Dev GBB Microsoft gkaleta@microsoft.com

Agenda

Containers 101

Container orchestration

Azure container technology

Azure Container Service (AKS)

Azure Container Instances (ACI)

Azure Container Registry

Open Service Broker for Azure (OSBA)

Release automation tools

Customer success

stories

Open source community

Getting started

Azure container ecosystem

VM vs Container

Virtualization versus containerization

Azure Container Service (AKS)

Kubernetes without AKS -> ACS - K8s

Kubernetes with AKS

Hosted Control Plane

Why orchestration

100% Upstream Kubernetes

Getting Started with AKS

\$ az aks create -g myResourceGroup -n myCluster --generate-ssh-keys
\ Running ..

\$ az aks install-cli

Downloading client to /usr/local/bin/kubectl ..

\$ az aks get-credentials -g myResourceGroup -n myCluster
Merged "myCluster" as current context ..

\$ kubectl get nodes

NAME	STATUS	AGE	VERSION
aks-mycluster-36851231-0	Ready	4m	v1.8.1
aks-mycluster-36851231-1	Ready	4m	v1.8.1
aks-mycluster-36851231-2	Ready	4m	v1.8.1

Managing an AKS cluster

\$ az aks upgrade -g myResourceGroup -n myCluster --kubernetes-version 1.8.1
\ Running ..

\$ kubectl get nodes

```
NAME

aks-mycluster-36851231-0

aks-mycluster-36851231-1

aks-mycluster-36851231-2

Ready

Ready

M

v1.8.1

v1.8.1
```

\$ az aks scale -g myResourceGroup -n myCluster --agent-count 10
\ Running ..

AKS Roadmap (GA in Q1/Q2 CY 2018)

Feature support targeted in Q1/Q2 '18 (subject to change)

Differentiated features

Stable and reliable cluster

Terraform support

AAD + Kubernetes RBAC

Custom VNET

Windows support

AAD integration with 2FA

Service Broker integration

ACS Engine

Why ACS Engine?

- Develop in the open
 - Proving ground and incubation for new features
 - Preview for later product functionality
- Total flexibility
 - · Enables custom deployment with all the knobs and dials
- https://github.com/Azure/acs-engine

Azure Container Instances (ACI)

Azure Container Instances

- Start in seconds
- No VM management
- Custom CPU/memory
- Billed per second
- Hypervisor-level isolation
- Linux and Windows containers

Getting Started with ACI

```
$ az container create --name mycontainer --image microsoft/aci-helloworld --
resource-group myResourceGroup --ip-address public
  "ipAddress": {
    "ip": "52.168.86.133",
   "ports": [...]
  "location": "eastus",
  "name": "mycontainer",
  "osType": "Linux",
  "provisioningState": "Succeeded",
$ curl 52.168.86.133
<html>
<head>
  <title>Welcome to Azure Container Instances!</title>
</head>
```

Use Cases for ACI Today

- Lift and shift into containers
- Simple web services
- Compute intensive workloads
- Batch processing

ACI Permanent Limitations

- No support for:
 - · Zero-downtime upgrades
 - Maintain > 1 running replicas
 - Batch workflows
 - Service discovery
 - Integrated load balancing
 - Auto-scaling

If you need these features, you probably need an orchestrator

ACI Connector for Kubernetes

Azure Container Service (AKS)

Azure Container Instances (ACI)

Azure Container Registry

Open Service Broker API (OSBA)

Release Automation Tools

Azure Container Instances (ACI) PREVIEW

Bursting with the ACI Connector

How does it work?

- 1. Registers as a virtual node with unlimited capacity
- 2. Dispatches scheduled pods to ACI instead of VMs

Typical kubelets implement the pod and container operations for each node as usual.

Virtual kubelet registers itself as a "node" and allows developers to program their own behaviors for operations on pods and containers.

Open Service Broker for Azure (OSBA)

Why Open Service Broker for Azure?

- Container-based data services
 - Challenging operational characteristics
 - No SLA

- Azure data services
 - Strong operational characteristics
 - Guaranteed SLA

OSBA combines containers with Azure data services, providing the best of both worlds

Open Service Broker for Azure

- Easily connect Kubernetes apps to Azure services
 - Azure Database for MySQL
 - Azure Database for PostgreSQL
 - · Azure SQL
 - · Azure CosmosDB
 - · Azure Redis
 - Azure Container Instances
 - · Azure Service Bus
 - Azure Storage
 - · More to come...
- Built on an open standard
- Integrated with Helm

Supported Platforms

- Cloud Foundry
- OpenShift
- Kubernetes (AKS)
- Service Fabric (Coming soon)

Getting Started with OSBA on Kubernetes

- \$ helm repo add azure Azure/helm-charts
- \$ helm install azure/service-broker
- \$ helm install azure/wordpress

Kubernetes Developer Tools

Helm

The package manager for Kubernetes

Why Helm?

- Manage Complexity
- Easy Updates
- Simple Sharing
- Rollbacks

Azure Container Service (AKS)

Azure Container Instances (ACI)

Azure Container Registry

Open Service Broker API (OSBA)

Release Automation Tools

Helm

The best way to find, share, and use software built for Kubernetes

Charts can describe complex apps; provide repeatable app installs, and serve as a single point of authority

Easy updates

Take the pain out of updates with inplace upgrades and custom hooks

Simple sharing

Charts are easy to version, share, and host on public or private servers

Rollbacks

Use helm rollout to roll back to an older version of a release with ease

Azure Container Service (AKS)

Azure Container Instances (ACI)

Azure Container Registry

Open Service Broker API (OSBA)

Release Automation Tools

Helm

Helm Charts helps you define, install, and upgrade even the most complex Kubernetes application

Draft

Streamlined Kubernetes Development

Why Draft?

- Develop Faster
- Use Best Practices
- Integrate with CI

Azure Container Service (AKS)

Azure Container Instances (ACI)

Azure Container Registry

Open Service Broker API (OSBA)

Release Automation Tools

Release automation workflow

Once developers are up and running—or working on a service that is in a complex system—Draft **ALSO** helps devs ignore artifacts and focus on code

Azure Container Service (AKS)

Azure Container Instances (ACI)

Azure Container Registry

Open Service Broker API (OSBA)

Release Automation Tools

Draft

Draft in action

Thank You

Resources

- Azure Container Service (AKS)
 - https://azure.microsoft.com/en-us/services/container-service/
 - https://docs.microsoft.com/en-us/azure/aks/
- Azure Container Instances (ACI)
 - https://azure.microsoft.com/en-us/services/container-instances/
 - https://docs.microsoft.com/en-us/azure/container-instances/
- ACI Connector for Kubernetes
 - https://github.com/Azure/aci-connector-k8s
- Azure Service Broker
 - https://github.com/Azure/meta-azure-service-broker
- Kubernetes Developer Tools
 - https://helm.sh/
 - https://draft.sh/
 - https://brigade.sh/

3rd Party Container Ecosystem

TierO ISV Container Partners

Platform: Pivotal, Red Hat, Docker, Mesosphere

Helm/Monocular: Bitnami

App Dev: HashiCorp, JFrog, CloudBees

Storage: Portworx, Netapp (NFS as a Service)

Security: Twistlock, Aqua

Networking: Bouyant, Tigera, Sysdig