CS 581

Advanced Artificial Intelligence

April 15, 2024

Announcements / Reminders

Please follow the Week 13 To Do List instructions (if you haven't already)

Programming Assignment #03: OPTIONAL/NOT FOR CREDIT

- FINAL EXAM is on Monday (04/22/2024) in RE 104!
 - different room!!!
 - IGNORE Registrar's FINAL EXAM date
 - Section 02: contact Mr. Charles Scott (scott@iit.edu) to make arrangements

Plan for Today

- Reinforcement Learning: Introduction
- Q-Learning

Refresher

MDPs

- Value function V, action-value function Q, policy π
- Bellman equations
- Value iteration
- Policy iteration
- Multi-armed bandits
 - Exploration vs exploitation trade-off
 - ϵ -greedy approach

Markov Decision Process

- An MDP is defined by:
 - A set of states s ∈ S
 - A set of actions a ∈ A
 - A transition function T(s,a,s')
 - Prob that a from s leads to s'
 - i.e., P(s' | s,a)
 - Also called the model
 - A reward function R(s, a, s')
 - Sometimes just R(s) or R(s')
 - A start state (or distribution)
 - Maybe a terminal state

Markov Decision Process

- An MDP is defined by:
 - A set of states s ∈ S
 - A set of actions a ∈ A
 - A transition function T(s,a,s')
 - Prob that a from s leads to s'
 - i.e., P(s' | s,a)
 - Also called the model

Model :

- A reward function R(s, a, s')
 - Sometimes just R(s) or R(s')
- A start state (or distribution)
- Maybe a terminal state

Markov Decision Process

Solving MDPs

- Offline algorithms:
 - Value iteration
 - Policy iteration
 - Linear programming
- Online algorithms:
 - Approximation algorithms such as Monte Carlo planning

The utility of a state is the <u>expected</u> reward for the next transition plus the <u>discounted</u> utility of the next state, assuming that the agent chooses the optimal action:

$$U(s) = \max_{a \in A(s)} \sum_{s'} P(s'|s,a) * [R(s,a,s') + \gamma * U(s')]$$

The utility of a state is the <u>expected</u> reward for the next transition plus the <u>discounted</u> utility of the next state, assuming that the agent chooses the optimal action:

$$U(s) = \max_{a \in A(s)} \sum_{s'} P(s'|s,a) * [R(s,a,s') + \gamma * U(s')]$$

Utility / value of current state s

The utility of a state is the <u>expected</u> reward for the next transition plus the <u>discounted</u> utility of the next state, assuming that the agent chooses the optimal action:

$$U(s) = \max_{a \in A(s)} \sum_{s'} P(s'|s,a) * [R(s,a,s') + \gamma * U(s')]$$

Expected "long-term" utility / value after applying ONE specific action a [Need Environment Model!]

The utility of a state is the <u>expected</u> reward for the next transition plus the <u>discounted</u> utility of the next state, assuming that the agent chooses the optimal action:

$$U(s) = \max_{a \in A(s)} \sum_{s'} P(s'|s,a) * [R(s,a,s') + \gamma * U(s')]$$

Probability of transitioning FROM current state s TO future state s' after applying action a [Need Environment Model!]

The utility of a state is the <u>expected</u> reward for the next transition plus the <u>discounted</u> utility of the next state, assuming that the agent chooses the optimal action:

$$U(s) = \max_{a \in A(s)} \sum_{s'} P(s'|s,a) * [R(s,a,s') + \gamma * U(s')]$$

Reward after transitioning FROM current state s TO future state s' after applying action a [Need Environment Model!]

The utility of a state is the <u>expected</u> reward for the next transition plus the <u>discounted</u> utility of the next state, assuming that the agent chooses the optimal action:

$$U(s) = \max_{a \in A(s)} \sum_{s'} P(s'|s,a) * [R(s,a,s') + \gamma * U(s')]$$

CURRENT / SINGLE transition reward[Need Environment Model!]

The utility of a state is the <u>expected</u> reward for the next transition plus the <u>discounted</u> utility of the next state, assuming that the agent chooses the optimal action:

$$U(s) = \max_{a \in A(s)} \sum_{s'} P(s'|s,a) * [R(s,a,s') + \gamma * U(s')]$$
Discount factor

The utility of a state is the <u>expected</u> reward for the next transition plus the <u>discounted</u> utility of the next state, assuming that the agent chooses the optimal action:

$$U(s) = \max_{a \in A(s)} \sum_{s'} P(s'|s,a) * [R(s,a,s') + \gamma * U(s')]$$

Future state s' utility

[can be a rough estimate at the beginning]

The utility of a state is the <u>expected</u> reward for the next transition plus the <u>discounted</u> utility of the next state, assuming that the agent chooses the optimal action:

$$U(s) = \max_{a \in A(s)} \sum_{s'} P(s'|s,a) * [R(s,a,s') + \gamma * U(s')]$$

Discounted future state s' utility [can be a rough estimate at the beginning]

The utility of a state is the <u>expected</u> reward for the next transition plus the <u>discounted</u> utility of the next state, assuming that the agent chooses the optimal action:

$$U(s) = \max_{a \in A(s)} \sum_{s'} P(s'|s,a) * [R(s,a,s') + \gamma * U(s')]$$

BEST Expected "long-term" utility / value after applying ONE specific BEST action a [Need Environment Model!]

The utility of a state is the <u>expected</u> reward for the next transition plus the <u>discounted</u> utility of the next state, assuming that the agent chooses the optimal action:

$$U(s) = \max_{a \in A(s)} \sum_{s'} P(s'|s,a) * [R(s,a,s') + \gamma * U(s')]$$

BEST Expected "long-term" utility / value after applying ONE specific BEST action a [Need Environment Model!]

The utility of a state is the <u>expected</u> reward for the next transition plus the <u>discounted</u> utility of the next state, assuming that the agent chooses the optimal action:

$$U(s) = \max_{a \in A(s)} \sum_{s'} P(s'|s,a) * [R(s,a,s') + \gamma * U(s')]$$
Go through all possible future states s'
$$[R(s,a,s') + \gamma * U(s')]$$

Expected "long-term" utility / value after applying ONE specific action a [Need Environment Model!]

Expected Utility Given Policy π

The utility of a state is the expected reward for the next transition plus the discounted utility of the next state, assuming that the agent uses policy π :

$$U^{\pi}(s) = \sum_{s'} P(s'|s,\pi(s)) * [R(s,\pi(s),s') + \gamma * U^{\pi}(s')]$$

Bellman Optimality

The utility of a state is the expected reward for the next transition plus the discounted utility of the next state, assuming that the agent uses policy π :

$$U^{\pi}(s) = \sum_{s'} P(s'|s,\pi(s)) * [R(s,\pi(s),s') + \gamma * U^{\pi}(s')]$$

Bellman Update

Iterative utility update at i+1 iteration can be calculated with:

$$U_{i+1}(s) = \max_{a \in A(s)} \sum_{s'} P(s'|s,a) * [R(s,a,s') + \gamma * U_i(s')]$$

Bellman Equation: Example

Note: ALL non-terminal transitions have a reward r = -0.04

$$U(1,1) = -0.04 + \gamma \max[0.8U(1,2) + 0.1U(2,1) + 0.1U(1,1), \qquad (Up) \\ 0.9U(1,1) + 0.1U(1,2), \qquad (Left) \\ 0.9U(1,1) + 0.1U(2,1), \qquad (Down) \\ 0.8U(2,1) + 0.1U(1,2) + 0.1U(1,1)]. \qquad (Right)$$

Value Iteration Algorithm

```
function Value-Iteration(mdp, \epsilon) returns a utility function inputs: mdp, an MDP with states S, actions A(s), transition model P(s' \mid s, a), rewards R(s), discount \gamma
\epsilon, the maximum error allowed in the utility of any state local variables: U, U', vectors of utilities for states in S, initially zero \delta, the maximum change in the utility of any state in an iteration repeat
U \leftarrow U'; \delta \leftarrow 0
for each state s in S do
U'[s] \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s' \mid s, a) \ U[s']
```

if $|U'[s] - U[s]| > \delta$ then $\delta \leftarrow |U'[s] - U[s]|$

Illinois Institute of Technology

return U

until $\delta < \epsilon(1-\gamma)/\gamma$

Value Iteration Algorithm

```
function VALUE-ITERATION(mdp, \epsilon) returns a utility function
  inputs: mdp, an MDP with states S, actions A(s), transition model P(s' \mid s, a),
              rewards R(s), discount \gamma
           \epsilon, the maximum error allowed in the utility of any state
  local variables: U, U', vectors of utilities for states in S, initially zero
                    \delta, the maximum change in the utility of any state in an iteration
```

```
repeat
                                           N states: N Bellman Equations to iteratively "solve" |
      U \leftarrow U' : \delta \leftarrow 0
      for each state s in S do
           U'[s] \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s' \mid s, a) \ U[s']
          if |U'[s] - U[s]| > \delta then \delta \leftarrow |U'[s] - U[s]|
 until \delta < \epsilon(1-\gamma)/\gamma
```

return U

Value Iteration Algorithm

```
function Value-Iteration(mdp, \epsilon) returns a utility function inputs: mdp, an MDP with states S, actions A(s), transition model P(s' \mid s, a), rewards R(s), discount \gamma
\epsilon, the maximum error allowed in the utility of any state local variables: U, U', vectors of utilities for states in S, initially zero \delta, the maximum change in the utility of any state in an iteration
```

Value Iteration: Convergence

Policy Iteration:

- Start with initial policy π_0
- Policy iteration algorithm involves (alternates between) two steps
 - Policy evaluation: given a policy π_i , calculate $U_i = U^{\pi i}$, the utility of each state if π_i were to be executed
 - Policy improvement: calculate a new MEU policy π_{i+1} , using a one step look-ahead based on U_i

$$\pi^*(s) = \underset{a \in A(s)}{\operatorname{argmax}} \sum_{s'} P(s'|s,a) * [R(s,a,s') + \gamma * U(s')]$$

Bellman Update

Iterative utility update at i+1 iteration can be calculated with:

$$U_{i+1}(s) = \max_{a \in A(s)} \sum_{s'} P(s'|s,a) * [R(s,a,s') + \gamma * U_i(s')]$$

```
function POLICY-ITERATION(mdp) returns a policy
   inputs: mdp, an MDP with states S, actions A(s), transition model P(s' \mid s, a)
  local variables: U, a vector of utilities for states in S, initially zero
                       \pi, a policy vector indexed by state, initially random
  repeat
       U \leftarrow \text{POLICY-EVALUATION}(\pi, U, mdp)
       unchanged? \leftarrow true
       for each state s in S do
           if \max_{a \in A(s)} \sum_{s'} P(s' | s, a) \ U[s'] > \sum_{s'} P(s' | s, \pi[s]) \ U[s'] then do
                \pi[s] \leftarrow \underset{a \in A(s)}{\operatorname{argmax}} \sum_{s'} P(s' \mid s, a) \ U[s']
                unchanged? \leftarrow false
  until unchanged?
  return \pi
```

```
function POLICY-ITERATION(mdp) returns a policy
   inputs: mdp, an MDP with states S, actions A(s), transition model P(s' \mid s, a)
   local variables: U, a vector of utilities for states in S, initially zero
                      \pi, a policy vector indexed by state, initially random
  repeat
      U \leftarrow \text{POLICY-EVALUATION}(\pi, U, mdp)
      unchanged? \leftarrow true
                                                                      Policy evaluation
       for each state s in S do
           if \max_{a \in A(s)} \sum_{s'} P(s' | s, a) \ U[s'] > \sum_{s'} P(s' | s, \pi[s]) \ U[s'] then do
               \pi[s] \leftarrow \underset{a \in A(s)}{\operatorname{argmax}} \sum_{s'} P(s' \mid s, a) \ U[s']
                unchanged? \leftarrow false
  until unchanged?
```

return π

```
function POLICY-ITERATION(mdp) returns a policy
   inputs: mdp, an MDP with states S, actions A(s), transition model P(s' \mid s, a)
   local variables: U, a vector of utilities for states in S, initially zero
                       \pi, a policy vector indexed by state, initially random
   repeat
        U \leftarrow \text{POLICY-EVALUATION}(\pi, U, mdp)
       unchanged? \leftarrow true
      for each state s in S do
           \inf \ \max_{a \, \in \, A(s)} \ \sum_{s'} \ P(s' \, | \, s, a) \ U[s'] \ > \ \sum_{s'} \ P(s' \, | \, s, \pi[s]) \ U[s'] \ \text{then do}
                \pi[s] \leftarrow \underset{a \in A(s)}{\operatorname{argmax}} \sum_{s'} P(s' \mid s, a) \ U[s']
                unchanged? \leftarrow false
                                                                              Policy improvement
```

until unchanged?

return π

```
function POLICY-ITERATION(mdp) returns a policy
   inputs: mdp, an MDP with states S, actions A(s), transition model P(s' \mid s, a)
   local variables: U, a vector of utilities for states in S, initially zero
                        \pi, a policy vector indexed by state, initially random
   repeat
        U \leftarrow \text{POLICY-EVALUATION}(\pi, U, mdp)
        unchanged? \leftarrow true
      for each state s in S do
            \inf \ \max_{a \, \in \, A(s)} \ \sum_{s'} \ P(s' \, | \, s, a) \ U[s'] \ > \ \sum_{s'} \ P(s' \, | \, s, \pi[s]) \ U[s'] \ \text{then do}
                \pi[s] \leftarrow \underset{a \in A(s)}{\operatorname{argmax}} \sum_{s'} P(s' \mid s, a) \ U[s']
                 unchanged? ← false Recalculate policy (find new MEU policy) for all s
   until unchanged?
   return \pi
```

The utility of a state is the <u>expected</u> reward for the next transition plus the <u>discounted</u> utility of the next state, assuming that the agent chooses the optimal action:

$$U(s) = \max_{a \in A(s)} \sum_{s'} P(s'|s,a) * [R(s,a,s') + \gamma * U(s')]$$

Expected "long-term" utility / value after applying ONE specific action a [Need Environment Model!]

Policy Iteration Algorithm

```
function POLICY-ITERATION(mdp) returns a policy
   inputs: mdp, an MDP with states S, actions A(s), transition model P(s' \mid s, a)
   local variables: U, a vector of utilities for states in S, initially zero
                        \pi, a policy vector indexed by state, initially random
   repeat
        U \leftarrow \text{POLICY-EVALUATION}(\pi, U, mdp)
        unchanged? \leftarrow true
       for each state s in S do
           \inf_{a \in A(s)} \sum_{s'} P(s' \mid s, a) \ U[s'] > \sum_{s'} P(s' \mid s, \pi[s]) \ U[s'] \ \text{then do} Better action found
                 \pi[s] \leftarrow \underset{a \in A(s)}{\operatorname{argmax}} \sum_{s'} P(s' \mid s, a) \ U[s']
                 unchanged? \leftarrow false
   until unchanged?
   return \pi
```

Policy Iteration Algorithm

```
function POLICY-ITERATION(mdp) returns a policy
  inputs: mdp, an MDP with states S, actions A(s), transition model P(s' \mid s, a)
  local variables: U, a vector of utilities for states in S, initially zero
                      \pi, a policy vector indexed by state, initially random
  repeat
       U \leftarrow \text{POLICY-EVALUATION}(\pi, U, mdp)
       unchanged? \leftarrow true
       for each state s in S do
           if \max_{a \in A(s)} \sum_{s'} P(s' | s, a) \ U[s'] > \sum_{s'} P(s' | s, \pi[s]) \ U[s'] then do
              \pi[s] \leftarrow \operatorname*{argmax}_{a \in A(s)} \sum_{s'} P(s' \mid s, a) \ U[s'] Update policy for state s
                unchanged? \leftarrow false
  until unchanged?
```

return π

Policy Iteration Algorithm

```
function POLICY-ITERATION(mdp) returns a policy
  inputs: mdp, an MDP with states S, actions A(s), transition model P(s' \mid s, a)
  local variables: U, a vector of utilities for states in S, initially zero
                  \pi, a policy vector indexed by state, initially random
  repeat
      U \leftarrow \text{POLICY-EVALUATION}(\pi, U, mdp)
      unchanged? \leftarrow true
     for each state s in S do
         if \max_{a \in A(s)} \sum_{s'} P(s' | s, a) \ U[s'] > \sum_{s'} P(s' | s, \pi[s]) \ U[s'] then do
            until unchanged?
  return \pi
```

Reinforcement Learning

Main Machine Learning Categories

Supervised learning

Supervised learning is one of the most common techniques in machine learning. It is based on known relationship(s) and patterns within data (for example: relationship between inputs and outputs).

Frequently used types: regression, and classification.

Unsupervised learning

Unsupervised learning involves finding underlying patterns within data. Typically used in clustering data points (similar customers, etc.)

Reinforcement learning

Reinforcement learning is inspired by behavioral psychology. It is based on a rewarding / punishing an algorithm.

Rewards and punishments are based on algorithm's action within its environment.

Markov Decision Process

- An MDP is defined by:
 - A set of states s ∈ S
 - A set of actions a ∈ A
 - A transition function T(s,a,s')
 - Prob that a from s leads to s'
 - i.e., P(s' | s,a)
 - Also called the model

Model :

- A reward function R(s, a, s')
 - Sometimes just R(s) or R(s')
- A start state (or distribution)
- Maybe a terminal state

Reinforcement Learning

UNKNOWN

- An MDP is defined by:
 - A set of states s ∈ S
 - A set of actions a ∈ A
 - A transition function T(s,a,s')
 - Prob that a from s leads to s'
 - i.e., P(s' | s,a)
 - Also called the model
 - A reward function R(s, a, s')
 - Sometimes just R(s) or R(s')
 - A start state (or distribution)
 - Maybe a terminal state

RL: Agents and Environments

MDPs vs. Reinforcement Learning

- MDPs are building blocks for RL
- RL has the additional complexity that the agent does not have access to the full specification of the MDP. For example:
 - Transition probabilities are often unknown
 - Reward function is often unknown

Reinforcement Learning Approaches

HJB: Hamilton-Jacobi-Bellman

RL: Prediction and Control

- Prediction
 - Given a policy, estimate the utility/value function
- Control
 - Learn the optimal policy

Model-free vs. Model-based

Model-free:

 The agent does not have and does not learn a model of the how the environment works

Model-based:

- The agent learns/improves a model of the environment
- Note: we are not talking about an approximate "model" of a state representation
 - rather, we mean model of the environment, such as transition probabilities

RL: On-Policy and Off-Policy

- On-Policy RL: the agent consistently follows its current policy while exploring the environment (even if suboptimal)
 - SARSA

- Off-Policy RL: on the other hand, allows the agent to deviate from its current policy and try different actions (even if suboptimal)
 - Q-Learning

RL: On-Policy and Off-Policy

• On-Policy RL: The behavior/experience is generated by the same policy π that we are trying to improve

• Off-Policy RL: The behavior/experience is generated by a behavior policy b and we are trying to learn/improve policy π

Passive vs. Active RL

- Passive Reinforcement Learning
 - lacktriangle agent policy π is known and fixed
 - = agent knows which action to pick NOW
 - learning state utilities U(s)
 - possibly environment model (transition function, reward function, etc.) as well
- Active Reinforcement Learning
 - agent has learn what to do as well

Approaches

Prediction

- Monte Carlo methods
- Temporal-difference learning, specifically TD(0)
- Unified view: TD(λ)

Control

- Monte Carlo methods
- Temporal-difference learning: SARSA, N-step TD, TD(λ)
- Q-learning

Approximate methods

- MC prediction
- TD prediction
- Semi-gradient SARSA control

Q - Learning

Bellman Equation

The utility of a state is the <u>expected</u> reward for the next transition plus the <u>discounted</u> utility of the next state, assuming that the agent chooses the optimal action:

$$U(s) = \max_{a \in A(s)} \sum_{s'} P(s'|s,a) * [R(s,a,s') + \gamma * U(s')]$$

BEST Expected "long-term" utility / value after applying ONE specific BEST action a [Need Environment Model!]

Bellman Equation

The utility of a state is the <u>expected</u> reward for the next transition plus the <u>discounted</u> utility of the next state, assuming that the agent chooses the optimal action:

$$U(s) = \max_{a \in A(s)} \sum_{s'} P(s'|s,a) * [R(s,a,s') + \gamma * U(s')]$$

Expected "long-term" utility / value after applying ONE specific action a [Need Environment Model!]

Notation

- P(s'|s,a) Probability of arriving at state s' given we are at state s and take action a
- R(s, a, s') The reward the agent receives when it transitions from state s to state s' via action a
- $\pi(s)$ The action recommended by policy π at state s
- π* Optimal policy
- $U^{\pi}(s)$ The expected utility obtained via executing policy π starting at state s
- $U^{\pi^*}(s)$ is often abbreviated as U(s)
- Q(s,a) expected utility of taking action a at state s
- γ Discount factor [0, 1]

Bellman Equation

The utility of a state is the <u>expected</u> reward for the next transition plus the <u>discounted</u> utility of the next state, assuming that the agent chooses the optimal action:

$$U(s) = \max_{a \in A(s)} \sum_{s'} P(s'|s,a) * [R(s,a,s') + \gamma * U(s')]$$

$$Q(s,a)$$
Go through all possible future states s'
$$P(s'|s,a) * [R(s,a,s') + \gamma * U(s')]$$

Quality-function: expected utility of taking action α at state s

Utility of State and Q-Function

$$U(s) = \max_{a \in A(s)} \sum_{s'} P(s'|s,a) * [R(s,a,s') + \gamma * U(s')]$$

$$U(s) = \max_{a \in A(s)} Q(s,a)$$

Q-Function/Utility of State/Policy

$$U(s) = \max_{a \in A(s)} \sum_{s'} P(s'|s,a) * [R(s,a,s') + \gamma * U(s')]$$

$$U(s) = \max_{a \in A(s)} Q(s,a)$$

$$U(s) = \sum_{a \in A(s)} Q(s,a)$$

$$U(s) =$$

 $\pi_s^* = \operatorname{argmax} Q(s, a)$

 $a \in A(s)$

what the

next state

Q-Learning Agent

function Q-Learning-Agent(percept) returns an action

inputs: percept, a percept indicating the current state s' and reward signal r'

persistent: Q, a table of action values indexed by state and action, initially zero

 N_{sa} , a table of frequencies for state–action pairs, initially zero

s, a, r, the previous state, action, and reward, initially null

```
if TERMINAL?(s) then Q[s, None] \leftarrow r'
```

if s is not null then

increment $N_{sa}[s, a]$

$$Q[s, a] \leftarrow Q[s, a] + \alpha(N_{sa}[s, a])(r + \gamma \max_{a'} Q[s', a'] - Q[s, a])$$

 $s, a, r \leftarrow s', \operatorname{argmax}_{a'} f(Q[s', a'], N_{sa}[s', a']), r'$

return a

Initialize Q-table:

Set up and initialize (all values set to 0) a table where:

- rows represent possible states
- columns represent actions

Note that additional states can be added to the table when encountered.

Set parameters:

Set and initialize **hyperparameters** for the Q-learning process.

Hyperparemeters include:

- chance of choosing a random action: a threshold for choosing a random action over an action from the Q-table
- learning rate: a parameter that describes how quickly the algorithm should learn from rewards in different states
 - high: faster learning with erratic Q-table changes
 - low: gradual learning with possibly more iterations
- discount factor: a parameter that describes how valuable are future rewards. It tells the algorithm whether it should seek "immediate gratification" (small) or "long-term reward" (large)

Initialize simulator:

Reset the simulated environment to its initial state and place the agent in a neutral state.

Get environment state:

Report the current state of the environment. Typically a vector of values representing all relevant variables.

Is goal reached?:

Verify if the goal of the simulation has been achieved. It could be decided with the agent arriving in expected final state or by some simulation parameter.

Pick a random action?:

Decide whether next action should be picked at random or not (it will be selected based on Q-table data then).

Use the **chance of choosing a** random action hyperparameter to decide.

Reference action in Q-table:

Next action decision will be based on data from the Q-table given the current state of the environment.

Pick a random action:

Pick any of the available actions at random. Helpful with exploration of the environment.

Apply action to environment:

Apply the action to the environment to change it. Each action will have its own reward.

Update Q-table:

Update the Q-table given the reward resulting from recently applied action (feedback from the environment).

Stop:

Stop the learning process

Q – Learning: Example

Q-Learning Agent

function Q-LEARNING-AGENT(percept) returns an action

inputs: percept, a percept indicating the current state s' and reward signal r'

persistent: Q, a table of action values indexed by state and action, initially zero

 N_{sa} , a table of frequencies for state-action pairs, initially zero

s, a, r, the previous state, action, and reward, initially null

if TERMINAL?(s) then $Q[s,None] \leftarrow r'$ if s is not null then increment $N_{sa}[s,a]$ ASSUME: 1 $Q[s,a] \leftarrow Q[s,a] + \alpha(N_{sa}[s,a])(r + \gamma \max_{a'} Q[s',a'] - Q[s,a])$ $s,a,r \leftarrow s', \operatorname{argmax}_{a'} f(Q[s',a'],N_{sa}[s',a']),r'$ return a

		_			_			_	
=	=	=	=		=			=	
	+						ŧ		†
	(₩
						=	=		=
=	ŧ	ŧ			ŧ				
			=			=	=	=	
	=	=	=	ŧ		=	=	t	
			Ť	=		ŧ			
=	Ť								=
t	=		=	₽	•		=		Ť

	Q-table			Actions						
			\leftarrow	\rightarrow	\rightarrow	←				
		1	0	0	0	0				
	States	2	0	0	0	0				
	Sta		•••	•••	•••					
		n	0	0	0	0				

Rewards:

Move into car: -100

Move into pedestrian: -1000

Move into empty space: 100

Move into goal: 500

Action:

Reward:

Q-table value:

ASSUME: 1

$$Q[s, a] \leftarrow Q[s, a] + \alpha(N_{sa}[s, a])(r + \gamma \max_{a'} Q[s', a'] - Q[s, a])$$

Discount Factor γ

- The discount factor γ is a number between 0 and 1.
- The discount factor describes the preference of an agent for current rewards over future rewards.
- When γ is close to 0, rewards in the distant future are viewed as insignificant.
- When γ is 1, discounted rewards are exactly equivalent to additive rewards, so additive rewards are a special case of discounted rewards.
- Discounting appears to be a good model of both animal and human preferences over time.

=	=	=	=		=			=	
	ŧ						ŧ		ŧ
	(1)	=			(₩
						=			₩
=	ŧ	t	=		ŧ				
			=			=	=	=	
	=	=	=	ŧ		=	=	t	
			ŧ	=		Ť			
=	ŧ								=
•			=	₽	•		=		ţ

0 +	Q-table		Actions						
Q-ta	abie	\leftarrow	\longrightarrow	\rightarrow	←				
	1	0	0	0	0				
States	2	0	0	0	0				
Sta		•••							
	n	0	0	0	0				

Rewards:

Move into car: -100

Move into pedestrian: -1000

Move into empty space: 100

Move into goal: 500

Action: Reward:

Learning rate Discount
$$Q(\text{state, action}) = (1 - \text{alpha}) * Q(\text{state, action}) + \text{alpha} * (\text{reward} + \text{gamma} * Q(\text{next state, all actions}))$$

$$Current value \qquad \text{Maximum value of all actions on next state}$$

Q-table			Actions						
Q-ta	abie	\leftarrow	\rightarrow	\rightarrow	←				
	1	0	0	0	0				
tes	2	0	0	0	0				
Sta	2 2								
	n	0	0	0	0				

Rewards:

Move into car: -100

Move into pedestrian: -1000

Move into empty space: 100

Move into goal: 500

Action: Reward:

Learning rate Discount
$$Q(\text{state, action}) = (1 - \text{alpha}) * Q(\text{state, action}) + \text{alpha} * (\text{reward} + \text{gamma} * Q(\text{next state, all actions}))$$
Current value Maximum value of all actions on next state

	Q-table			Actions						
				\rightarrow	\rightarrow					
		1	0	0	0	0				
	States	2	0	0	0	0				
	Sta	•••	•••	•••		•••				
	n		0	0	0	0				

Rewards:

Move into car: -100

Move into pedestrian: -1000

Move into empty space: 100

Move into goal: 500

Action: Reward:

Learning rate Discount
$$Q(\text{state, action}) = (1 - \text{alpha}) * Q(\text{state, action}) + \text{alpha} * (\text{reward} + \text{gamma} * Q(\text{next state, all actions}))$$

$$Current \ \text{value} \qquad \text{Maximum value of all actions on next state}$$

= -	→ 🚘	₩	₩		=			=	
	Ť						Ť		÷
	=	((1)				=
						=	=		=
	t	ŧ			ŧ				
			=			=	=	=	
	=	=	=	ŧ		=	=	t	
			Ť	=		Ť			
=	Ť								=
Ť	=			=	•		=		ţ

	Q-table			Actions						
_				\rightarrow	\rightarrow	\				
		1	0	0	0	0				
	States	2	0	0	0	0				
	Sta	•••	•••	•••						
		n	0	0	0	0				

Rewards:

Move into car: -100

Move into pedestrian: -1000

Move into empty space: 100

Move into goal: 500

Action: \rightarrow Reward: $\rightleftharpoons = -100$

Q-table value:

Q(1, east) = (1 - 0.1) * 0 + 0.1 * (-100 + 0.6 * max of Q(2, all actions))

= -	→ 🚘	₩	=		₩			₩	
	Ť						ŧ		Ť
		((=
							(=
	ŧ	ŧ			•				
			=			=			
	=	=	=	ŧ		=	=	ŧ	
			ŧ	=		Ť			
=	Ť								=
Ť	=		=	=	•				t

0	O table			Actions					
	Q-table			\rightarrow	\rightarrow	\			
		1	0	0	-10	0			
States)	2	0	0	0	0			
Sta	5	•••	•••	•••	•••	•••			
		n	0	0	0	0			

Rewards:

Move into car: -100

Move into pedestrian: -1000

Move into empty space: 100

Move into goal: 500

Action: \rightarrow Reward: $\rightleftharpoons = -100$

$$Q(1, east) = (1 - 0.1) * 0 + 0.1 * (-100 + 0.6 * 0) = -10$$

	=	₩	₩		=			₩	
	¥						ŧ		÷
	(((₩
						=	=		=
	+	•			ŧ				
						=	=		
	=	=	=	Ť		=		Ť	
			ŧ	=		ŧ			
=	t								=
ŧ	₩			=	•		=		t

O table			Actions						
Q-ta	Q-table		\rightarrow	\rightarrow	←				
	1	0	0	-10	0				
States	2	0	0	0	0				
Sta	••	•••	•••	•••					
	n	0	0	0	0				

Rewards:

Move into car: -100

Move into pedestrian: -1000

Move into empty space: 100

Move into goal: 500

Action: \rightarrow Reward: $\rightleftharpoons \dagger$ -1000

Q-table value:

Q(2, south) = (1 - 0.1) * 0 + 0.1 * (-1000 + 0.6 * max of Q(3, all actions))

	=	₩	₽		₩			=	
	>=						ŧ		÷
	1	(()				₩
							(₩
	•	•			•				
			=			=			
			=	ŧ		=	=	ŧ	
			ŧ	=		ŧ			
=	+								=
†	•		=	=	•				t

Q-table			Actions						
			\uparrow	\longrightarrow	\rightarrow	←			
		1	0	0	-10	0			
States		2	0	-100	0	0			
Sta		•••	•••	•••	••	•••			
		n	0	0	0	0			

Rewards:

Move into car: -100

Move into pedestrian: -1000

Move into empty space: 100

Move into goal: 500

Action: \rightarrow Reward: $\rightleftharpoons \dagger$ -1000

$$Q(2, south) = (1 - 0.1) * 0 + 0.1 * (-1000 + 0.6 * 0) = -100$$

Deep Q-Learning

Source: https://www.youtube.com/watch?v=TmPfTpjtdgg