

Modèles des Systèmes à Evénement Discrets TELECOM Nancy 1ère année

TD1 sur la Théorie des Graphes

Exercice 10:

On veut colorier la carte d'Australie ci-dessous, en évitant de confondre les états voisins, donc on ne coloriant pas deux états voisins de la même couleur.

- 10.1 Donner le graphe correspondant à ce problème (TA est une île et donc sans frontière commune avec d'autres états)
- 10.2 Combien faut-il de couleur pour colorier cette carte? Justifiez votre réponse en donnant les bornes mini et maxi du nombre chromatique, puis en appliquant l'algo Welsch-Powell
- Est-il possible de trouver un chemin qui passe par toutes les frontières entre état une 10.3 et une seule fois ? A quel type de problème cela correspond-il ?

Exercice 11:

On veut organiser un examen comportant, outre les matières communes, 6 matières d'options : Français (F), Anglais (A), Mécanique (M), Dessin industriel (D), Internet (I), Sport (S); les profils des candidats à options multiples sont : I, M

F, A, M D, S I, S

1 - Quel est le nombre maximum d'épreuves qu'on peut mettre en parallèle ? Justifier

2 - Une épreuve occupe une demi-journée; quel est le temps minimal nécessaire pour ces options? Justifier

Exercice 12:

A, B, C, D, E, F, G et H désignent huit poissons ; dans le tableau ci-dessous, une croix signifie que les poissons ne peuvent cohabiter dans un même aquarium : Quel nombre minimum d'aquariums faut-il?

	Α	В	С	D	Е	F	G	Н
Α		×	×	×			×	×
В	×				×	×	×	
С	×			×		×	×	×
D	×		×		×			×
Е		×		×		×	×	
F		×	×		×			
G	×	×	×		×			
Н	×		×	×				

Modèles des Systèmes à Evénement Discrets TELECOM Nancy 1ère année

TD1 sur la Théorie des Graphes

Exercice 13:

Donner le plus court chemin entre les points E et S du graphe orienté suivant :

Exercice 14:

La compagnie Europ'Air dessert différentes villes européennes. Le tableau ci-dessous donne les durées de vol entre ces différentes villes.

Arriv. Départ	Α	В	С	D	E
Α		1h30	2h		2h15
В	1h40				3h
С	2h20			2h55	
D			3h20		1h05
Е	2h25	3h10	1h10		

- 10.1. Représenter ce tableau sous forme de graphe. Le graphe obtenu est-il orienté ? Symétrique ? Transitif ?
- 10.2. On veut déterminer le trajet le plus rapide partant de D pour arriver en B. A quel type de problème a-t-on affaire ? Donner le trajet le plus rapide et sa durée en détaillant les calculs.
 - 10.3. Sans refaire de calcul, comment peut-on obtenir le trajet le plus rapide de D vers C?

Exercice 15:

Analyser le graphe orienté suivant en utilisant la méthode de Malgrange :

Exercice 16:

Analyser les graphes orientés 1et 2 de la feuille suivante en utilisant la méthode de Malgrange.

Modèles des Systèmes à Evénement Discrets TELECOM Nancy 1^{ère} année

TD1 sur la Théorie des Graphes

Grap	he 1:													
i/j	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	0	0	0	1	0	0	0	1	0	0	0	0	0	0
2	0	0	1	0	0	0	1	0	0	0	0	0	0	0
3	0	0	0	0	1	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	1	0	0	0	0
5	1	0	0	0	0	1	0	0	1	0	1	0	0	0
6	0	0	0	1	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	1	0	0	0	0	0	0	0	1	0
8	0	1	0	0	0	0	0	0	0	0	0	0	0	1
9	0	0	0	0	0	0	0	1	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0	0	0	1	0	0
11	0	0	0	1	0	0	0	0	0	0	0	0	0	0
12	0	0	0	0	1	0	0	0	0	0	0	0	0	0
13	0	0	0	0	0	0	0	0	1	0	0	0	0	0
14	0	0	0	0	0	0	1	0	0	0	0	0	0	0

Graphe 2:

					ı	ı	ı	ı		ı			
i/j	1	2	3	4	5	6	7	8	9	10	11	12	13
1	0	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	1	0	0	0	0	0	0	0	1
3	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0	0
7	1	0	0	0	0	1	0	0	0	0	0	1	0
8	0	0	0	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	0	0	0
10	0	1	0	0	0	0	1	0	0	0	1	0	0
11	0	0	0	0	0	0	0	1	0	0	0	0	0
12	0	0	1	1	0	0	0	0	0	0	0	0	0
13	0	0	0	0	0	0	0	0	1	0	0	0	0