WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

(11) International Publication Number:

WO 97/08330

C12N 15/86, 5/10, 15/67

A1 (43) International Publication Date:

6 March 1997 (06.03.97)

(21) International Application Number:

PCT/GB96/02061

(22) International Filing Date:

23 August 1996 (23.08.96)

(30) Priority Data:

9517263.1

23 August 1995 (23.08.95)

GB

(71) Applicant (for all designated States except US): CANCER RESEARCH CAMPAIGN TECHNOLOGY LIMITED [GB/GB]; Cambridge House, 6-10 Cambridge Terrace, Regent's Park, London NW1 4JL (GB).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): COLLINS, Mary, Katharine, Levinge [GB/GB]: Flat 4, Philips House, 52 Goodge Street, London WIP IFP (GB). WEISS, Robin, Anthony [GB/GB]; 25 Cypus Avenue, London N3 ISS (GB). TAKEUCHI, Yasuhiro [JP/GB]; 141 Elborough Street, London SW18 5DS (GB). COSSET, François-Lois [FR/FR]; 32, rue L.-Thévenet, F-69004 Lyon (FR).
- (74) Agents: CALDERBANK, T., R. et al.; Mewburn Ellis, York House, 23 Kingsway, London WC2B 6HP (GB).

(81) Designated States: AL, AM, AT, AU, AZ, BB, BG, BR, BY, ČA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PI, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published .

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: EXPRESSION SYSTEMS

pol gene... TCT AGA CTG ACA TG G CGC GTT CAA CGC TCT CAA AAC CCC TTA AAA ATA AGG TTA ACC CGC GAG GCC CCC TAA

tececttaattettetgalgeteagaggggteagtae tocttcocccagetccagtocageccagecagecacc ATC AAA ACA TIT AAC ATT TCT...bsr gene

Schematic structure of CeB expression vector

(57) Abstract

The invention relates to new expression systems and in particular to an expression system in which a gene of interest is expressed at an optimal level. The invention provides a recombinant expression vector comprising a gene of interest and a selectable marker gene, wherein the selectable marker gene is arranged downstream of the gene of interest and a stop codon associated with the gene of interest is spaced from a start codon of said selectable marker gene at a distance which is sufficient to ensure that translation reinitiation is required before said selectable marker protein is expressed from the corresponding MRNA. Examples of such expression systems are vector viral packaging cell lines and a number of preferred cell lines have been identified.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Annenia	GB	United Kingdom	MW	Malawi
ΑT	Austria	GE	Georgia	MX	Mexico
AU	. Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	ΙE	Ireland	NZ	New Zealand
BG	Bulgaria	IТ	Italy	PL	Poland
ВJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KР	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	L	Licchtenstein	SK	Slovakia.
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	SZ	Swaziland
CS	Czechoslovakia	LT	Lithuania	TD	Chad
CZ	Czech Republic	LU	Luxembourg	TG	Togo
DE	Germany	LV	Latvia ·	TJ	Tajikistan
DK	Denmark	MC	Monaco	TT	Trinidad and Tobago
EE	Estonia	MD	Republic of Moldova	UA	Ukraine
ES ·	Spain	MG	Madagascar	UG	Uganda
FI	Finland	ML	Mali	US	United States of America
FR	France	MN	Mongolia	UZ	Uzbekistan
GA	Gabon	MR	Mauritania	VN	Viet Nam

7

Expression systems

The present invention relates to new expressions systems, and in particular to expression systems in which a gene of interest is expressed at an optimal level. Particular examples of such expression systems are retroviral packaging cell lines and a number of preferred cell lines have been identified.

10

15

20

25

30

35

5

The ability of eukaryotic and prokaryotic ribosomes to reinitiate translation at an internal start codon within an mRNA sequence has previously been recognised. Studies have been reported in which the efficiency of the process, which is generally regarded as being low, has been connected with the length of the intercistronic sequence (Kozak (1987) Mol. Cell Biol. 7, 3438-3445). Selection of this sequence or spacer as 70bp in length, and containing no other start codons, has been previously reported as being optimal for reinitiation in a eukaryotic cell line (Cosset F-L., Virology (1991) 185, 862).

The applicants have found a way in which the inefficiency associated with the translation reinitiation process can be used to good effect.

According to the present invention there is provided a recombinant expression vector comprising a gene of interest and a selectable marker gene, wherein the selectable marker gene is arranged downstream of the gene of interest and a stop codon associated with the gene of interest is spaced from a start codon of said selectable marker gene at a distance which is sufficient to ensure that translation reinitiation is required before said selectable marker protein is expressed from the corresponding mRNA.

PCT/GB96/02061

5

10

15

20

25

30

35

The invention further provides a process for producing cell lines in which a gene of interest is expressed, which process comprises transforming host cells with an expression vector comprising said gene of interest and a selectable marker gene, wherein the selectable marker gene is arranged downstream of the gene of interest and a stop codon associated with the gene of interest is spaced from a start codon of said selectable marker gene at a distance which is sufficient to ensure that translation re-initiation is required before said selectable marker protein is expressed from the corresponding mRNA, and selecting those cells where expression of the selectable marker gene may be detected.

Since re-initiation of translation is a relatively inefficient process, this means that the selectable marker protein will be expressed at lower levels than the product of the gene of interest. When the marker protein is expressed at detectable levels, the gene of interest will be expressed at higher levels. This will ensure that during the subsequent selection procedure, only those cell clones which express the gene of interest at higher or optimal levels will survive. Low expressing clones will be eliminated by the selection process.

Cells transformed with the above-described expression vectors form a further aspect of the invention.

The host cells are suitably eukaryotic or prokaryotic host cells, preferably eukaryotic host cells.

The number of nucleotides in the space between the stop codon of the gene of interest and the start codon of the selectable marker will suitably be in the range of from 20-200 nucleotides, preferably from 60-80 nucleotides, even more preferably 70-80 nucleotides.

3

The vectors used in the process of the invention may be any of the known types, for example expression plasmids or viral vectors.

Selected cells may be cultured and if required, the protein product of the gene of interest isolated from the culture using conventional techniques. Alternatively, expression of the gene of interest may result in other desired effects, for example, where the gene of interest is included as part of a viral packaging construct.

Some experimental and clinical gene transfer protocols require the design of gene transfer vectors suitable for in vivo gene delivery (Miller, A.D. 1992. Nature 357:455-460). Retroviral vectors are attractive candidates for such applications, because they can provide stable gene transfer and expression (Samarut J. et al., Meth. Enzymol. in press) and because packaging cells have been designed which produce non-replication competent viruses (Miller A.D (1990) Hum Gene Ther. 1 5-14). However currently available recombinant retroviruses suffer from a number of drawbacks.

15

20

25

30

35

Packaging cell lines provide <u>in trans</u> the retroviral proteins encoded by the <u>gag</u>, <u>pol</u>, and <u>env</u> genes required to obtain infectious retroviral particles. The <u>gag</u> and <u>pol</u> products are respectively the structural components of the virion cores and the replication machinery (enzymes) of the retroviral particles whereas the <u>env</u> products are envelope proteins responsible for the host-range of the virions and for the initiation of infection and for sensitivity to humoral factors. An ideal packaging cell line should produce retroviruses that only contain the retroviral vector genome, and absolutely no replication-competent genomes or defective genomes encoding some of the viral structural genes.

4

A number of packaging cell lines designed for human gene transfer have been designed in the past by introducing plasmid DNAs which contain "helper genomes" encoding gag, pol and/or env genes into cells.

5

10

15

20

25

30

35

Retroviral packaging cell lines are cells that have been engineered to provide in trans all the functions required to express infectious retroviral vectors. A helper genome (or construct or unit), is herein also referred to as "retroviral packaging construct (or unit)" or "packaging-deficient construct (or genome unit)" or "gag-pol/env expression plasmids".

Much efforts has been made to design strategies to optimize the helper-genomes in order (i) to get the highest production of retroviral packaging functions (which correlates which infection titers of retroviral particles) and (ii) to minimise the chance that the helper genome can be transmitted via the viral particles (which may lead to emergence of unwanted retroviral forms).

The first of these packaging cell lines used full length retroviral genomes as helper genomes that had been crippled for important cis-regulated replicative functions (reviewed in Miller, Hum. Gene. Ther. 1:5-14 1990). In order to reduce the possibility of occurrence of replication-competent viruses and of transfer of virus structural genes, a second generation of safer packaging cell lines has been designed by using two separate and complementary helper genomes which express either gag-pol or env and are packaging-deficient (Miller supra).

The cells into which these helper genomes were introduced were isolated by cotransfecting them with plasmids encoding selectable markers. However, as no selection was applied on

30

the packaging-deficient retroviral genome itself, the helper functions can be lost during the passages of the cells in culture and the current packaging systems provide limited titers of infectious retroviral vectors, usually only of the order of 10⁵-10⁶ infectious units i.u/ml. Indeed the cotransfection with a plasmid encoding a selectable marker does not directly select the best gag-pol-env-expressing cells.

10 The invention further provides a retroviral packaging cell line comprising a host cell transformed with (i) a packaging deficient construct which expresses a viral gag-pol gene and a first selectable marker gene, and/or (ii) a packaging-deficient construct which expresses a viral env gene and a second selectable marker gene; wherein a start codon of the first and second selectable markers are spaced from the stop codons of the viral gag-pol gene and the viral env gene respectively by a distance which ensures that reinitiation of mRNA translation is required for expression of marker protein product of said first and/or second selectable marker gene.

The retroviral packaging cell line may be obtained by the above described process which will involve selecting transfected cells which express said first and/or second marker genes.

By using helper constructs which are directly selectable and which provide for high expression of the viral gene, high titre retroviral vectors may be obtained.

Helper constructs for use in the process form a further aspect of the invention.

35 The retroviral vectors prepared from the conventional

6

packaging cell lines are usually not contaminated by replication-competent retroviruses (RCRs). However, recombinant amphotropic murine retroviruses have been shown to arise spontaneously from certain packaging cell lines. The generation of such RCRs involves recombination at least between gag-pol/env packaging sequence and vector sequences (Cosset et al., Virology, (1993) 193:385-395).

5

25

30

35

Recombinant RCRs have been associated with the development of lymphomas in some severely immunosuppressed monkeys 10 (Donahue et al., J. Exp Med (1992) 176: 1125-1135). In addition, retroviral vector preparations may also contain, at low frequencies, retroviruses coding for functional envelope glycoproteins (Kozak and Kabat, 1990, J. Virol. 64: 3500-3508) or for gag-pol proteins. Although the 15 pathogenicity of these gag-pol or env recombinant retroviruses is probably low, more evolved recombinant retroviruses with higher pathogenic potential may occur when injected in vivo, by recombination and/or complementation of 20 the initial recombinant viruses with some endogenous retroviruses.

In a preferred embodiment of the retroviral packaging cell lines of the invention, the overlapping sequences between the genomes of the retroviral vector and the helper construct are reduced, for example as compared to constructs such as CRIPenv and CRIPAMgag (Danos et al., Proc. Natl. Acad. Sci USA 85: 6460-6464). In particular, the viral sequences in the helper construct are reduced, for example, not only the packaging sequence but also the 3' Long Terminal Repeat(LTR), the 3' non-coding sequence and/or the 5'LTR may be eliminated.

The possibility of generation of such RCRs and recombinant retroviruses can be reduced by reducing the overlapping

WO 97/08330

7

sequences between the genomes of both the retroviral vector and the helper construct.

Conventional retroviral vectors are strongly inactivated by human serum which makes them of limited or no use for in situ gene transfer in gene therapy applications. It has previously been shown that inactivation by complement in human serum is controlled by the cell line used to produce the virions and by viral envelope determinants (Takeuchi et al., J. Virol (1994) 68:8001-8007). In particular, inactivation is caused by some properties of the cell lines that have been used to construct the packaging cells (NIH-3T3) and also by viral determinants located in the retroviral envelope as shown (Takeuchi et al., J. Virol (1994) 68:8001-8007). In vivo gene delivery is an important goal for a number of human gene therapy strategies.

The applicants have found that certain cell lines form preferred packaging cell lines.

20

25

30

5

10

15

Particularly preferred packaging cell lines are the HT1080 line, the TE671 line, the 3T3 line, the 293 line and the Mv-1-Lu line. One example of retroviral packaging cells that will produce complement-resistant virus comprise human HT1080 cells and express RD114 envelope. Such cells form a preferred aspect of the invention.

Packaging cell lines according to the invention provide 50-100 fold increased titers of retroviral vectors as compared to conventional packaging cell lines. Retroviral vectors provided by these new cells are safe, in terms of generation of RCRs, and considerably more resistant to inactivation by human complement.

Packaging cell lines according to the invention may be able

PCT/GB96/02061

to transduce helper-free, human complement-resistant retroviral vectors at titers consistently higher than 10' i.u./ml.

Suitable semi-packaging cell lines in accordance with the invention are those which express only the gag-pol genes.

Such cell lines may suitably be derived from TE671, MINK Mv-1-Lu, HT1080, 293 or NIH-3T3 cells by introduction of plasmid CeB (the MoMLV gag-pol expression unit).

10

Particularly preferred expression vectors in accordance with the invention for use in retroviral packaging cell lines are those which include MLV gag and pol genes such as CeB. Other plasmids may include gag and pol genes from other retroviruses or chimeric or mutated gag and pol genes.

15

20

Various viral and retroviral envelope genes may be included in the plasmids such as MLV-A envelope, GALV envelope, VSV-G protein, BaEV envelope, RD114 envelope and chimeric or mutated envelopes. Plasmids which include the RD114 env gene such as FBdelPRDSAF as illustrated hereinafter, provide one example of suitable constructs.

25

The novel retroviral packaging cells described hereinafter, have been designated FLY cells, and may be designed for in vivo gene delivery.

Considerable variations were found between the various cell lines screened for their ability to release type C mammalian retroviruses. In addition, few cell lines were able to produce retroviruses completely resistant to human complement. Based on these two criteria, human fibrosarcoma HT1080 and rhabdomyosarcoma TE671 cells were selected for optimum construction of packaging cells.

35

9

Other studies have shown the importance of endogenous retrovirus expression in the generation of recombinant retroviruses from retroviral packaging lines (Ronfort et al., Virology, (1995), 207, 271-275, Vanin, E.F.et al., J Virol (1994) 68:4241-4250.). The co-packaging of an endogenous genome and a vector can lead to emergence of recombinant retroviruses (Vanin et al., supra). Recombination involves template switching during reverse transcription of such hybrid retroviruses (Hu et al., Science, (1990) 250:1227) and homologies between the two genomes considerably enhance the frequency of reverse transcriptase jumps (Zhang et al., J. Virol. (1994) 68: 2409-2414). Therefore an ideal packaging cell line should not express endogenous MLV-like (or type C retrovirus-like) retroviral genomes which can be packaged by type C gag proteins (Scadden et al., J. Virol. (1990) 64: 424-427, Torrent et al., J. Mol. Biol. (1994) 240 434-444).

5

10

15

30

35

Packaging of human endogenous retroviral RNA was not

detected in TELCeB and FLY packaging cells when virion
associated RNA was analysed by RT-PCR using generic primers.

HT1080- and TE671 derived packaging cell lines may be safer
in this respect than those generated from NIH3T3 cells, such
as GP+EAM12 cells, which are known to express and package

sequences related to type C retroviruses (Scadden et al.
supra).

To generate the FLY packaging cell lines, HT1080 cells were transfected with gag-pol and env expression plasmids designed to optimise viral protein expression. Direct selection for viral gene expression was achieved in accordance with the invention by expression of a selectable marker gene by re-initiation of translation of the mRNA expressing the viral proteins. This strategy resulted in packaging cell lines capable of producing extremely high

titer viruses. Furthermore, long-term expression of packaging functions can be maintained in these cells. Many unnecessary viral sequences were eliminated from the packaging constructs to reduce the risk of helper virus generation; indeed the final packaging cells did not produce helper virus, in that no replication competent virus (RCR) could be detected per 10° vector particles.

The FLY packaging cells described herein are safer than, for example, psiCRIP cells, at least for generation of env recombinant retroviruses as is illustrated in Table 4 hereinafter, probably because less retroviral sequences overlapping with the vector were present in the present envexpression plasmid. Few reports have addressed the question of the characterization of recombinant retroviruses (RVs) (Cosset, F.L., et al., Virology (1993) 193:385-395). It is possible that such RVs could not be detected in previous packaging cell lines due to lower overall titers. RVs are defective in normal cell culture conditions but are likely to evolve to replication competent viruses if they are allowed to replicate in cells complementing their expression like co-cultivated packaging cells (Bestwick et al., Proc. Natl Acad Sci USA, (1988) 85: 5404-5408, Cosset et al., (1993) supra).

25

5

10

15

20

In preferred retroviral packaging systems according to the invention, RVs are eradicated for example by removal of viral LTRs from the packaging construct.

Consistent with our previous studies (Takeuchi, Y., et al., J Virol (1994) 68:8001-8007), LacZ(RD114) and lacZ(MLV-A) pseudotypes produced from HT1080 and TE671cells were more resistant to human complement than LacZ(RD114) or LacZ(MLV-A) pseudotypes produced by 3T3 of dog cells. It was therefore decided to use RD114 and MLV-A env genes to

11

generate recombinant virions with MoMLV cores.

10

15

20

25

30

35

The sequence of RD114 env gene was determined and is shown in Figure 4. It was found to be very close to BaEV (baboon endogenous virus) a type C retrovirus (Benveniste, R.E.et al., Proc. Natl. Acad. Sci. USA (1973) 70:3316-3320; Kato. S.et al., Japan. J. Genet. (1987) 62:127-137) with an envelope gene displaying similarities to the external part of type D simian retroviruses (SRVs). RD114 uses the SRV receptor on human cells (Sommerfelt & Weiss, Virology (1990) 176:58-69; Sommerfelt, M.A. et al., J Virol (1990) 64:6214-6220) making the FLY packaging cells with RD114 envelope capable of generating virions with different tropism. Retroviral vectors prepared so far for human gene therapy have used either MLV-A or GALV (gibbon ape leukemia virus) envelopes which display some similarities (Battini, J.L., et al., J Virol. (1992) 66:1468-1475) and which use two related cell surface receptors for infection (Miller, D.G. et al., J Virol (1994) 68:8270-8276). Differences in tissuespecific expression of MLV-A or GALV receptors have been reported (Kavanaugh et al., Proc Natl Acad Sci USA (1994) 91:7071-7075).

The invention will now be particularly described by way of example with reference to the accompanying drawings in which:

Figure 1.illustrates the structure and expression of CeB. The env gene (Xbal-Clal) of plasmid pCRIP was removed and was replaced by coinsertion of the two fragments Xbal-Sfil (restriction sites underlined) from pOXEnv and a Sfil-Clal PCR product containing the <u>bsr</u> selectable marker. This results in positioning the <u>bsr</u> start codon (shadowed) 74 bp downstream to the <u>pol</u> stop codon (bold).

12

Open triangle are start codons (gag and bsr), black triangles are stop codons (pol and bsr). The shadowed triangle is the start codon of env, in the same reading frame with that of bsr. SD and SA are the splice donnor and splice acceptor sites.

Figure 2 illustrates the structure and expression of FbdelPASAF.

5

15

20

25

leader of FB29 LTR.

Immediately after the stop codon of env (bold) was inserted a non retroviral Kasl-Ncol (restriction sites underlined) linker which positions the phleo start codon (shadowed) 76 bp downstream.

Open triangle are start codons (env and phleo), black triangles are stop codons (env and phleo). SD and SA are the splice donnor and splice acceptor sites.

Figure 3 illustrates plasmids for expression of Ampho, Eco, RD114, Xeno, 10A1, GALV, VSV-G and FeLVB envelopes.

All genes are expressed in the same backbone as detailed in fig. 2. The BglII sites for ecotropic (MoMLV strain), 10A1, xenotropic (NZB.1.V6 strain) and amphotropic (4070A strain), the Ndel site of RD114 (SC3C strain, the BamHl site for both FeLVB and GALV were used as 5' ends, and linked to Mscl site immediately after the splice donor site in the

Figure 4 shows the sequence of the RD114 env gene (SEQ ID No 1).

Figure 5 shows the genetic structure of gag-pol constructs.

Initiation ⋈ and termination (▼) codons are shown. The thick dotted line below each construct shows MLV-derived sequences. Nucleotide positions of MLV-derived sequences are shown according to: Shinnick et al. (1981) (from nt 1 to nt 6000 with deletion of the packaging signal (DY) from Ball

15

20

(nt 215) to PstI (nt 568), and with some further MoMLV sequences in both CeB and CeB DS- from nt 7676 to nt 7938. gag-pol and bsr genes were expressed from the same transcription unit using the either a retroviral promoter (Mo LTR) or a non retroviral promoter (hCMV) and non retroviral polyadenylation sequence (polyA). Splice donor (SD) and acceptor (SA) sites are indicated. The thin line denotes retroviral non coding sequences. The thick line shows the rabbit beta-1 globin intron B. The position of some restriction sites is indicated.

The nucleic acid sequences of portions of constructs (as shown in Figure 5 (boxed areas)) are displayed for CeB (SEQ ID No 2, Figure 6), hCMV+intron (SEQ ID No 3, Figure 7) and hCMV+intronkaSD (SEQ ID No 4, Figure 8).

The nucleic acid sequences of portions of constructs (as shown in Figure 3 (boxed areas)) are displayed for FbdelPASAF (SEQ ID No 5, Figure 9), FbdelPMOSAF (SEQ ID No 6, Figure 10), FbdelPGASAF (SEQ ID No 7, Figure 11), FbdelPRDSAF (SEQ ID No8, Figure 12) and CMV10A1 (SEQ ID No 9, Figure 13) are shown.

The components of the viral particles are produced by two independent expression plasmids (gag-pol or env) which also contain selectable markers (bsr or phleo) expressed from the same transcriptional units as gag-pol or env (figs. 1& 2). The selectable markers are located downstream to gag-pol or env genes and there is an optimal distance between the stop codon of the upstream reading frames and the start codon of the selectable genes that should allow re-initiation of translation (Kozak, Mol Cell Biol. (1987) 7,:3438-3445). Because there is no "Kozak" sequence (Kozak, Cell, (1986) 44: 283-292) required for a normal initiation of translation for

10

the marker gene, they can only be expressed by re-initiation of translation after the upstream viral gene has been successfully expressed. Consequently and also because re-initiation of translation is a poorly efficient process, after transfection of these plasmids, cells resistant to the drugs corresponding to those selectable genes express high levels of the viral proteins.

To avoid viral transmission of these "helper" genomes the constructs used suitably have the classical deletions of both the packaging sequence located in the leader region and of the 3'LTR, the latter being replaced by SV40 polyadenylation sequences (Figs 1 & 2).

15 Plasmid CeB is the MoMLV gag-pol-expression unit. It derives from pCRIP, a plasmid used to generate the constructs introduced in the CRIP and CRE packaging cell lines (Danos and Mulligan, 1988). As shown in fig. 1 for generation of plasmid CeB the env gene of pCRIP has been deleted mostly and the bsr selectable marker, -encoding a 20 protein conferring resistance to blasticidin (Izumi et al., Experimental Cell Research (1991) 197, 229-233) - has been inserted downstream to pol gene. There are exactly 74 bp with no ATG triplets between the stop codon of pol and the 25 start codon of bsr, this allows its expression by reinitiation of translation on the gag-pol mRNA, after translation of the gag-pol reading frame.

FbdelPASAF is a plasmid expressing the amphotropic env gene
and the <u>phleo</u> selectable marker conferring resistance to
phleomycin (Gatignol et al., FEBS Letters (1988) 230:171175). By using a PCR-mediated mutagenesis strategy which
modifies the end of <u>env</u> gene (see fig. 2), a 76 bp linker
was inserted between the stop codon of <u>env</u> and the start
codon of <u>phleo</u>. This allows expression of <u>phleo</u> from the

PCT/GB96/02061

env mRNA by re-initiation of translation. In addition compared to known env-expressing constructs, this strategy of construction has reduced the length of sequences overlapping with the ends of conventional retroviral vectors. The env genes of Mo-MLV, FeLVB, NZB.1V6, 10A1, GALV and RD114 are expressed by plasmids FBdelPMoSAF, FBdelPBSAF, FBdelXSAF, FBdelpGSAF, FBdelp10A1SALF and FBdelPRDSAF, respectively, by using the same backbone as FBdelPASAF (fig. 3). Retroviral vectors produced with the RD114 envelope will be useful for in vivo gene delivery as comparatively to MLV ecotropic or amphotropic envelopes, virions pseudotyped with RD114 envelopes are not inactivated by human complement when they are produced by Mink Mv-1-Lu cells or by some human cells (Table 1).

15

20

25

10

The HT1080 cell line, isolated from a human fibrosarcoma (ATCC CCL121). The TE671 cell line isolated from a human rhabdomyosarcoma (ATCC CRL 8805) (purchased from ATCC, and tested for absence of usual cell culture contaminants by ECACC), has been used for the definitive construction of packaging cell lines. HT1080 line was chosen among a panel of primate and human lines because MLV-A and RD114 efficiently rescued retroviral vectors from these cells and also because RD114 pseudotypes produced by this cell line were stable when incubated in human serum. In a standard assay (Takeuchi et al., J Virol (1994), 68, 8001-8007), these latter viruses were found more than 500 fold more stable than similar pseudotypes produced in 3T3 cells.

Another advantage for the use of non murine cells to derive packaging lines is the absence of MLV-related endogenous retroviral-like sequences (like VL30 in 3T3 cells) that can cross-package with MLV-derived retroviral vectors (Torrent et al., 1994) and generate potentially harmful recombinant retroviruses.

16

The helper constructs were introduced into other cell lines (HT1080 (table 2) Mink Mv-1-Lu (table 2), 3T3 (not shown), TE671 (table 2)) for the purpose of comparisons of the efficiency of the constructs.

5

10

15

20

As illustrated hereinafter (Table 2), the reverse transcriptase (RT) activity (provided by expression of the pol gene) in cells transfected with CeB is significantly higher than that of the same cells transfected by the parental plasmid pCRIP or that of cells chronically infected by MLV. This enhancement of viral gene expression is correlated with the titers of lacZ retroviral vectors when an envelope is provided in CeB-lacZ cells after comparison with titers of lacZ pseudotypes of either replication-competent viruses or other helper-free packaging systems.

For the generation of final packaging cell lines, the best clonal env transfectants have been selected. Packaging systems obtained in this way will be able to produce helper-free retroviral vectors at titers greater than 10⁸ infectious particles per ml, which would be 10-100 fold higher to helper-free preparations of others.

25

30

35

Because of the way the selectable markers are expressed (see above), growing the packaging cells in phleomycin and blasticidin selective pressure increase and stabilize the expression of the retroviral components and particularly the envelopes, as it is possible that env glycoproteins have toxic effects for the producer cells in the long term which may lead to a decrease of expression.

Such an enhancement of viral production observed with the packaging systems described herein might increase the emergence of unwanted retroviruses having recombined between the genomes of both the retroviral vector and either of the

two packaging-deficient constructs. However, the constructs have been designed in such a way that it reduces the probability of emergence of recombinant viruses compared to the parental constructs. To check their safety, attempts have been made to detect the presence of replication-competent retroviruses by a mobilisation assay of a lacZ provirus. No RC viruses have been found in all retroviral vector preparations tested so far.

10 The following Examples illustrate the invention.

Example 1

Preparation of Cell lines and viruses.

- The following cell lines were used:
 A204 (ATCC HTB 82), HeLa (ATCC CCL2), HT1080 (ATCC CCL121),
 MRC5 (ATCC CCL171), T24 (ATCC HTB 4), VERO (ATCC CCL81) and
 D17 (ATCC CCL183) were purchased from ATCC.
- HOS, TE671 and Mv-1-Lu cells and their clones harboring MFGnlslacZ retroviral vector as described by Takeuchi et al., J Virol (1994), 68, 8001-8007.
- The above cell lines were grown in DMEM (Gibco-BRL, U.K.) supplemented with 10% fetal calf serum.

EB8 (Battini et al., J. Virol (1992) 66: 1468-1475); psiCRE, psiCRELLZ and psiCRIP (Danos et al., Proc. Natl. Acad. Sci USA (1988) 85: 6460-6464);

Cells GP+EAM12 (Markowitz et al., Virology (1988), 167, 400-406); and
NIH-3T3 murine fibroblasts.

These cell lines were grown in DMEM (GIBCO-BRL, U.K.)
supplemented with 10% new-born calf serum.

Mv-1-Lu, TE671 and HT1080 cells were transfected using calcium-phosphate precipitation method (Sambrook et., "Molecular Cloning" 1989, Cold Spring Harbour Laboratory Press: New York) as described elsewhere (Battini et al., CeB-transfected Mv-1-Lu, TE671 and HT1080 cells were selected with 3, 6-8 and 4 μ g/ml of blasticidin S (ICN. UK), respectively, and blasticidin-resistant colonies were isolated 2-3 weeks later. Cells transfected with the various env-expression plasmids were selected with phleomycin (CAYLA, France): 50 μg/ml (for FBASALF-transfected cells) or 10 μg/ml (for FBASAF-, FbdelPASAF-, FbdelPMOSAF, FBdelPIOAISAF or FBdelPRDSAF-transfected cells). Phleomycinresistant colonies were isolated 2-3 weeks later.

15 Production of lacZ pseudotypes using replication competent viruses, amphotropic murine leukemia virus (MLV-A) 1504 strain and cat endogenous virus RD114, was carried out as described previously (Takeuchi et al., J Virol (1994), 68,

8001-8007). 20

25

5

10

Example 2

Preparation of Plasmids.

The env gene of pCRIP (Danos et al., supra) was excised by HpaI/ClaI digestion. A 500 bp PCR-generated DNA fragment was obtained using pSV2-bsr (Izumi et al., Experimental Cell Research (1991), 197, 299-233) as template and a pair of oligonucleotides:

(5'>CGGAATTCGGATCCGAGCTCGGCCCAGCCGCCACCATGAAAACATTTAACATTTC TC) (SEQ ID NO 2) at 5' end and 30 (5'>GATCCATCGATAAGCTTGGTGGTAAAACTTTT) (SEQ ID No 3) at 3' end, with SfiI and ClaI sites, respectively. This fragment was inserted in HpaI/ClaI sites of pCRIP by co-ligation with a 85 bp HpaI/SfiI DNA fragment isolated from pOXEnv (Russell 35 et al., Nucleic Acids Research (1993), 21, 1081-1085) which

19

provides the end of the Moloney murine leukemia virus (MoMLV) pol gene. The resulting plasmid named CeB (Fig. 1) could express the MoMLV gag-pol gene as well as the bsr selectable marker conferring resistance to blasticidin S, both driven by the MoMLV 5'LTR promoter.

A series of env-expression plasmids was generated using the 4070A MLV (amphotropic) env gene (Ott et al., J Virol (1990), 64, 757-766) and the FB29 Friend MLV promoter 10 (Perryman et al., Nucleic Acid Res (1991), 19, 6950). In FBASALF (Fig. 1) a BglII/ClaI fragment containing the env gene was cloned in BamHI/ClaI sites of plasmid FB3LPh which also contained the C57 Friend MLV LTR driving the expression of the phleo selection marker. A 136 bp env fragment was 15 generated by PCR using plasmid FB3 (Heard et al., J Virol (1991), 65, 4026-4032) as template and a pair of oligonucleotides: (5'>GCTCTTCGGACCCTGCATTC) (SEQ ID NO 4) at 5' end (before ClaI site) and (5'>TAGCATGGCGCCCTATGGCTCGTACTCTATAGGC)(SEQ ID NO 5)at 3' 20 end, providing a KasI restriction site immediately after the env stop codon. This PCR fragment was digested using ClaI and KasI. A DNA fragment containing the FB29 LTR and the MLV-A env gene was obtained by NdeI/ClaI digestion of FBASALF. The fragments were co-ligated in NdeI/KasI digested 25 pUT626 (kindly provided by Daniel Drocourt, CAYLA labs, France). In the resulting plasmid, named FBASAF (Fig. 1), the phleo selectable marker was expressed from the same mRNA as the env gene. A BglII restriction site was created after the MscI site at position 214 in the FB29 leader by using a 30 commercial linker (Biolabs, France). A NdeI/BglII fragment containing the FB29 LTR was co-inserted with the BglII/ClaI env fragment in NdeI/ClaI-digested FBASAF plasmid DNA, resulting in plasmid FBdelPASAF (Fig. 1). Compared to FBASAF, FBdelPASAF has a 100bp larger deletion in the leader 35 region.

10

15

20

30

35

20

Example 3

Cloning and Sequencing of the RD114 env gene The RD114 env gene was first sub-cloned in plasmid Bluescript KS+ (Stratagene) as a 3 Kb HindIII insert isolated from SC3C, an RD114 infectious DNA clone (Reeves et al., J. Virol (1984), 52, 164-171). A 2.7 kb Scal-Hind III fragment of this subclone containing the RD114 env gene was sequenced (Figure 4 (SEQ ID NO 1) - EMBL accession number; X87829). The 5' non-coding sequence upstream of an NdeI site was deleted by an EcoRI/NdeI digestion followed by fillingin with Klenow enzyme and self-ligation. From this plasmid, two DNA fragments were obtained: a BamHI/NcoI 2.5 Kb fragment and a 63 bp PCR-generated DNA fragment using (5'>CGCCTCATGGCCTTCATTAA) (SEQ OD NO 6) at 5' end (before NotI site) and (5'>TAGCATGCCCCCAATCCTGAGCTTCTTCC) (SEQ ID NO 7) at 3' end, providing a KasI restriction site just after RD114 env gene stop codon. The PCR fragment was digested with NcoI and KasI. Both fragments were coinserted between BglII and KasI sites of FBdelPASAF and the resulting plasmid was named FBdelPRDSAF (Fig. 1). Plasmid pCRIPAMgag- (Danos, O. et al., Proc Natl Acad

Sci USA (1988) 85:6460-6464) was used for transfection.

Example 4 25

Infection assays.

Target cells were seeded in 24-multiwell plates (4x104 cells per well) and were incubated overnight. Infections were then carried out at 37°C by plating 1 ml dilutions of viral supernatants in the presence of 4 μ g/ml polybrene (Sigma) on target cells. 3h later virus-containing medium was replaced by fresh medium and infected cells were incubated for two days before X-gal staining, performed as previously described (Tailor et al., J Virol (1993), 67, 6737-6741,

21

Takeuchi et al., J Virol (1994), 68, 8001-8007). Viral titers were determined by counting lacZ-positive colonies as previously described (Cosset et al., J. Virol. (1990) 64: 1070-1078). Stability of lacZ pseudotypes in fresh human serum was examined by titrating surviving virus after incubation in 1:1 mixture of virus harvest in serum-free medium and fresh human serum for 1 h at 37°C as described before (Takeuchi et al. supra).

10 Example 5

5

15

25

30

35

Reverse transcriptase (RT) assay.

RT assays were performed either as described previously (Takeuchi et al. supra) or using an RT assay kit (Boehringer Mannheim, U.K.) following the manufacturer's instruction but using MnCl₂ (2 mM) instead of MgCl₂.

Example 6

20 Screening producer cell lines.

Viral particles generated with RD114 envelopes have been found to be more stable in human serum than virions with MLV-A envelopes and that the producer cell line also controls sensitivity (Takeuchi et al. supra). A panel of cell lines was screened for their ability to produce high titer viruses and for the sensitivity of these virions to human serum. To do this, cells were infected at high multiplicity with lacZ pseudotypes of either MLV-A or RD114 and cells producing helper-positive lacZ pseudotypes were established. Human HT1080 and TE671 and mink Mv-1-Lu cells were found to release high titer lacZ(RD114) and lacZ(MLV-A) viruses. LacZ(MLV-A) pseudotypes produced by HT1080 cells were more resistant to human serum than those produced by other cells. The titer of these viruses was only four-fold less following a 1 hr incubation with human serum than a

control incubation (Table 1). LacZ(RD114) pseudotypes produced by human cells or mink Mv-1-Lu cells were in general stable in human serum (Table 1). These results suggested that HT1080, TE671 and Mv-1-Lu cells provided the best combination of high lacZ titers and resistance to human serum and they were therefore used for the generation of retroviral packaging cells.

Table 1. Titer and stability of lacZ pseudotypes.

Producer	LacZ (MLV-A)		LacZ(RD114) .		
cell .	Titer ^a	Stabilityb	Titera	Stabilityb	
A204	650	<3	1,200	105	
HeLa	9 .	nd	2,000	115	
HOS	4,500	6	23,000	86	
HT1080	2,000,000	26	400,000	129	
MRC-5	450	10	1,000	nd	
T24	350	nđ	1,200	nd	
TE671	15,000	2	90,000	38	
VERO	. 260	nd	90	nd	
D17	900	<1	200,000	1	
Mv-1-Lu	80,000	1	200,000	120	

a: titration on TE671 cells as lacZ i.u./ml

Example 7

30

35

Construction of an improved gag-pol expression vector.

A MoMLV gag-pol expression plasmid, CeB (Fig. 1), was

b: % of infectivity of human serum-treated viruses compared to fetal calf serum-treated viruses

23

derived from pCRIP (Danos et al., Proc. Natl. Acad Aci USA (1988) 85: 6460-6464). Approximately 2 Kb of env sequence were removed from pCRIP and the bsr selectable marker. conferring resistance to blasticidin S (Izumi et al., Experimental Cell Research (1991) 197:229-233), was inserted 5 74 nts downstream of the gag-pol gene. This 74 nts interval had no ATG triplets and was thought to provide an optimal distance between the stop codon of the pol reading frame and the start codon of the bsr gene to allow re-initiation of translation (Kozak Mol Cell Biol., 1987, 7: 3438-3445). 10 There was no "Kozak" consensus sequence (Kozak Cell, (1986) 44: 283-292) at the 5' end of the marker gene. Therefore, bsr could only be expressed by re-initiation of translation after the upstream gag-pol gene had been expressed. 15 Consequently, after transfection of CeB in Mv-1-Lu/MFGnlsLacZ (ML), TE671/MFGnlsLacZ (TEL) or HT1080 cells, blasticidin S-resistant bulk populations and most cell clones expressed high levels of gag-pol proteins assessed by the reverse-transcriptase (RT) activity found in cell supernatants (Table 2). Considerably higher RT activities 20 were found in bulk populations of CeB-transfected ML cells compared to bulk population of ML cells stably transfected with the parental pCRIP construct. Similarly the RT activities of two packaging cell lines generated using 25 pCRIPenv- construct, psiCRE cells (Danos et al., supra) and EB8 cells (Battini supra.) were less than that of CeB transfected clones (Table 2). Finally, RT activity in CeB transfected cell supernatants was higher than that of cells chronically infected by replication-competent MLV-A (Table

Table 2. Secreted reverse transcriptase expression

Cella	RT activity ^b	Lac2 Titer ^c
4011	ner acceptely	Dacz liter

30

35

2).

	ML/MLV-A	1	8x104
	MLSvB	0.1	. <1
	MLCRIP (bulk)	0.15	nd
	MLCeB (bulk)	1.7	nd
5	MLCeB1	4.2	1x106
	MLCeB4	1.6	1x10 ⁶
	TEL/MLV-A	3.6	2x10°
	TELCeB6	5.2	4x107
	HT1080/MLV-A	1.1	1x106
10	HTCeB6	1.9	1x106
	HTCeB18	2.7	2x106
	HTCeB22 (FLY)	6.9	5x106
	HTCeB48	5.5	3x10 ⁶
	EB8	0.22	1x104
15	psiCRE-LLZ	1.2	1x10 ^{5d}

a: ML, Mv-1-Lu cells harboring a MFGnlslacZ provirus; TEL, TE671 cells harboring a MFGnlslacZ provirus; /MLV-A, cells chronically infected with MLV-A 1504 strain; MLSvB, ML cells transfected with a plasmid pSV2bsr alone; MLCRIP, ML cells co-transfected with pCRIP and pSV2bsr.

To rescue infectious lacZ viruses, MLCeB and TELCeB clones
were transfected with FBASALF DNA, a plasmid designed to
express the MLV-A env gene (Fig. 1). Bulk populations of
stable FBASALF transfectants were isolated and supernatants
were titrated using TE671 cells as targets. Titers of lacZ
viruses were higher than either MLV-A infected ML or TEL

cells, or FBASALF-transfected EB8 cells (Table 2). These
data suggested that CeB was an extremely efficient MLV gagpol expression vector in mink Mv-1-Lu and TE671 cells. CeB

b: Average of arbitrary units relative to ML/MLV-A RT activity of at least two independent experiments was shown. The standard errors did not exceed 20 % of the values.

c: titration on TE671 cells as lacZ i.u./ml. After polyclonal transfection of a plasmid which expresses MLV-A env in MLCeB clones, TELCeB clones, HTCeB clones and EB8 cells; nd. not done.

d: titration on NIH3T3 cells

25

was therefore used to derive packaging cells by transfection of HT1080 cells. 41/49 blasticidin S-resistant colonies had detectable levels of RT; 9 had RT activity higher than that of control MLV-A-infected HT1080 cells (data not shown). Expression of gag precursor was confirmed in cell lysates and supernatants of these 9 HTCeB clones by immunoblotting using antibodies against p30-CA (data not shown). The 4 clones with the highest expression of gag proteins (clones 6,18,22 and 48) were infected at high-multiplicity with helper free, lacZ pseudotypes bearing MLV-A envelopes (MFGnlslacZ(A)) produced by TELCeB6/FBASALF (Table 3) and then transfected with FBASALF. Supernatants of bulk, phleomycin-resistant transfectants were assessed for RT activity and lacZ titer (Table 2). Clone HTCeB22, named FLY, was found to be the best gag-pol producer clone and was used to introduce env expression vectors for the generation of packaging cell lines.

10

15

Table 3. Titer following env construct transfection

5	Producer cell	Env source	Titer*
•	psiCRIP lacZ 5	pCRIPAMgag-	6x10 ^{4b}
	GP+EAM12 lacZ 25	envAM	3x10 ^{5b}
10	TELCeB6	FBASALF° FBASAF° FbdelPASAF°	5x10 ⁷ 2x10 ⁷ 2x10 ⁷
15	TELCeB6	FBdelPASAF 1 FbdelPASAF 4 FbdelPASAF 6 FbdelPASAF 7	3x10 ⁷ 2x10 ⁷ 1x10 ⁷ 5x10 ⁷
20		FbdelPASAF .8 FbdelPRDSAF 2 FbdelPRDSAF 4 FbdelPRDSAF 7 FbdelPRDSAF 8	1x10 ⁷ 1x10 ⁶ 3x10 ⁵ 1x10 ⁷ 2x10 ⁶
25	FLYª	FBdelPASAF 1 FbdelPASAF 4 FbdelPASAF 5 FbdelPASAF 7	1x10 ¹ 1.5x10 ⁶ 1x10 ⁶ 1x10 ⁶
30		FbdelPASAF 13 FbdelPASAF 14 FbdelPASAF 15 FbdelPASAF 16 FbdelPASAF 17	7x10 ⁶ 4x10 ⁶ 1x10 ⁶ 5x10 ⁶ 6x10 ⁶
35	FLYA4 lacZ 3	FBdelPASAF 4	2x10 ^{7b}
40	FLY⁴	FBdelPRDSAF 1 FbdelPRDSAF 2 FbdelPRDSAF 6 FbdelPRDSAF 10 FbdelPRDSAF 11 FbdelPRDSAF 13	2.5x10 ⁶ 1x10 ⁷ 5x10 ⁶ 2x10 ⁶ 3x10 ⁶ 1x10 ⁶
45		FbdelPRDSAF 17 FbdelPRDSAF 18 FbdelPRDSAF 19	5x10 ⁶ 3x10 ⁷ 6x10 ⁶

Average titers of at least three independent experiments were shown. The standard errors did not exceed 30 % of the titer values.

50

a: titrated on TE671 cells as lacZ i.u./ml

b: results of best MFGnlslacZ producer clones.

27

- c: bulk populations of env-transfectants in TELCeB6 cells.
- d: titration after bulk infection with helper-free MFGnlslacZ.

5 Example 8

10

15

20

25

30

35

Construction of env expression vectors.

A series of MLV-A env expression plasmids were then generated (Fig. 1). In FBASALF, the env gene was inserted between two Friend-MLV. LTRs, its expression driven by the FB29 MLV LTR (Perryman et al., supra). Most of the packaging signal located in the leader region was deleted. This plasmid also expressed the phleo selectable marker (Gatignol et al., supra) driven by the 3' LTR. FBASAF and FBdelPASAF were then designed following the same strategy used for CeB. These two vectors differed only by the extent of deletion of the packaging signal, FBdelPASAF having virtually no leader sequence. Compared to pCRIPAMgag- and pCRIPgag-2 env plasmids expressed in psiCRIP or psiCRE packaging cells (Danos et al., supra) about 5 Kb of gag-pol sequences was removed. In addition the 258 bp retroviral sequence containing the end of env gene and the begining of U3 found in pCRIPAMgag- and pCRIPgag-2 was also removed. For both FBASAF and FBdelPASAF plasmids, the phleo selectable marker was inserted downstream of the env gene by positioning a 76 nts linker with no ATG codons between the two open-reading frames. Phleo could therefore only be expressed by reinitiation of translation by the same ribosomal unit that had expressed the upstream env open reading frame. FBdelPASAF was also used to generate FBdelPRDSAF, an RD114 envelope expression plasmid (Fig. 1).

After transfection of the env plasmids into TELCeB6 cells (Table 2), bulk populations of phleomycin-resistant colonies were isolated and their production of lacZ virus measured

28

(Table 3). FBASALF gave a titer of 5x10' lacZ-i.u./ml, whilst titers with either FBASAF or FBdelPASAF were 2x10' lacZ-i.u./ml (Table 3). Titers of 5x10' or 10' lacZ-i.u./ml could be obtained with some FBdelPASAF cell clones or FBdelPRDSAF clones, respectively.

5

10

15

20

25

30

35

As FBdelPASAF has minimal virus-derived sequences and was shown to be the safest construct (see below and Table 4), it and FBdelPRDSAF were used to generate packaging lines from FLY cells (clone HTCeB22, Table 2). Envelope expression of these clones was assayed by interference to challenge with MFGnlslacZ(A) or MFGnlslacZ(RD) pseudotypes produced by TELCeB6/FBdelPASAF-7 or TELCeB6/FBdelPRDSAF-7, respectively (Table 3). The cell lines showing most interference were cross-infected at high multiplicity with these pseudotypes to provide MFGnlslacZ proviruses, and supernatants were then titrated on TE671 cells (Table 3). FLY-FBdelPASAF-13 (FLYA13 packaging line) and FLY-FBdelPRDSAF-18 (FLYRD18 packaging line) gave the highest productions of lacZ viruses, around 10' lacZ-i.u./ml. The best MFGnlslacZ producer clones derived from either psiCRIP cells (Danos et al., supra) or GP+EAM12 cells (Markowitz et al., supra) gave approximately 50 fold lower titers (Table 3). The lacZ titers of the FLY-derived lines shown in Table 3 are lower than the best TELCeB6derived lines after transfection of either FBdelPASAF or FBdelPRDSAF (Table 3). However it should be noted that the lacZ provirus expressed in TELCeB6 cells was obtained after clonal selection but was introduced polyclonally in FLYderived env-transfected cell clones. When FLY-FBdelPASAF-4 cells (FLYA4 packaging line), infected with helper-free MFGnlslacZ(RD), were cloned by limiting dilution the best clones (eg. FLYA4lacZ3) were found to produce 20 times more infectious viruses than the bulk population, reaching the range of titers obtained with the best TELCeB6-FBdelPASAF clones (Table 3).

29

Example 9

5

10

15

20

25

30

35

Assays for transfer of gag-pol or env functions.

To assay for replication-competent viruses, supernatants were used to infect TEL cells (a clone of TE671 cells harboring an MFGnlslacZ provirus). Infected cells were passaged for 6 days or longer and their supernatants were used for infection of fresh TE671 cells. No transmission of lacZ viruses could be detected (Table 4), demonstrating that the supernatants of pCRIPAMgag--, FBASALF-, FBASAF-, or FBdelPASAF-transfected TELCeB6 cells were helper-free. Similar absence of replication competent recombinant retroviruses was demonstrated using supernatant from a clone of psiCRIP-MFGnlslacZ cells or from two clones of FLYA-MFGnlslacZ cells (Table 4).

There have been reports that helper-free retroviral vector stocks may nevertheless contain recombinant retroviruses (replication incompetent) carrying either gag-pol or env genes (Bestwick et al., Proc Natl Acad Sci USA (1988), 85, 5404-5408, Cosset et al., Virology (1993), 193, 385-395, Girod et al., Virology (1995), in press). To assay for such recombinant retroviruses, mobilisation of an MFGnlslacZ provirus from two indicator cell lines which could crosscomplement potential recombinant viruses carrying either gag-pol or env functional genes was attempted. The TELCeB6 line (Table 2) expressing gag-pol proteins was used as indicator cell line to test for the presence of env recombinant (ER) viruses. The TELMOSAF indicator line expressing MoMLV env glycoproteins (obtained by transfection of FBMOSAF, a plasmid expressing the MoMLV env gene using FBASAF backbone, in TEL cells) was used to detect the presence of gag-pol recombinant retroviruses (GPR viruses). After passaging 4-8 days, the supernatants of the infected indicator cells were used to infect either human TE671 cells

30

or murine NIH3T3 cells.

TELCeB6 cells transfected with various env-expressing constructs, pCRIPAMgag-, FBASAF and FBdelPASAF were compared. Although the supernatants of TELCeB6-FBdelPASAF 5 cells were devoid of replication-competent retroviruses, they were found sporadically to transfer gag-pol genomes (Table 4). No GPR viruses could be detected when less than 2x105 virions were used to infect the indicator cells. 10 Similarly TELCeB6 indicator cells infected with various helper-free viruses were shown sporadically to release lacZ virions (Table 4). The number depended both on the envexpression vector used and on the virus input quantity. Compared to lacZ viruses generated using pCRIPAMgagplasmid, the frequency of detection of the env-recombinant 1.5 viruses was lower for supernatants generated by using FBASAF and FBdelPASAF constructs (Table 4). For FBdelPASAF construct when less than 5x105 MFGnlslacZ(A) helper-free virions were used to infect the indicator cells, no ER retroviruses could be detected. From these experiments, it 20 could be estimated that a supernatant, produced from TELCeB6-FBdelPASAF cells, containing 1x107 infectious units of MFGnlslacZ retroviral vector contained no replicationcompetent virus, and about 100 gag-pol and 100 env 25 recombinant retroviruses.

Table 4. Transfer of packaging function

Producer cell	Indicator cell	Input virus	Detection .			
		(lacZ-i.u.)	++	+	-	
Replication competent virus						
psiCRIP lacZ 5	TEL	2x10⁴ .	0/4	0/4	.4/4	
TELCeB6-pCRIPAMgag-	TEL	5x10 ⁶	0/4	0/4	4/4	
TELCeB6-FBASAF	TEL	5x10 ⁶	0/4	0/4	4/4	
TELCeB6-FBdelPASAF	TEL	5x10 ⁶	0/4	0/4	4/4	
FLYA4 lacZ 3	TEL	1x10 ⁷	0/4	0/4	4/4	
FLYA4 lacZ 7	TEL	1x10 ⁷	0/4	0/4	4/4	
Gag-pol recombinant						
TELCeB6-FBdelPASAF 7	TELMOSAF	$2x10^7$	0/4	1/4	3/4	
TELCeB6-FBdelPASAF 7	TELMOSAF	2x10 ⁶	0/4	2/4	2/4	
TELCeB6-FBdelPASAF 7	TELMOSAF	2x10 ⁵	0/4	2/4	2/4	
TELCeB6-FBdelPASAF 7	TELMOSAF	2x10 ⁴	0/4	0/4	4/4	
		combinent				
TELCeB6-pCRIPAMgag-	TELCeB6	5x10 ⁶	2/4	1/4	1/4	
TELCeB6-pCRIPAMgag-	TELCeB6	5x10 ^s	1/4	1/4	2/4	
TELCeB6-pCRIPAMgag-	TELCeB6	5x10 ⁴ ·	0/4	2/4	2/4	
TELCeB6-FBASAF	TELCeB6	5x10 ⁶	0/4	2/4	2/4	
TELCeB6-FBASAF	TELCeB6	5x10 ⁵	0/4	1/4	3/4	
TELCeB6-FBASAF	TELCeB6	5x10 ⁴	0/4	1/4	3/4	
TELCeB6-FBdelPASAF	TELCeB6	5x10 ⁶	0/4	1/4	3/4	
TELCeB6-FBdelPASAF	TELCeB6	5x10 ⁵	1/4	3/4	0/4	
TELCeB6-FBdelPASAF	TELCeB6	5x10⁴	0/4	0/4	4/4	

a: number of lacZ i.u. used to infect indicator cells
b: number of incidence cut of four experiments. The ranges of la

Titers were determined on TE671 cells for replication competent virus and env recombinant and NIH3T3 cells for

b: number of incidence out of four experiments. The ranges of lacZ titers rescued from infected indicator cells are shown for each virus input: >100 lacZ i.u./ml (++), 1-100 lacZ i.u./ml (+) and <1 lacZ i.u./ml (-).

32

gag-pol recombinant.

Example 10

5

10

15

In order to confirm resistance to complement and absence of replication competent virus in our best packaging lines, MFGnlslacZ(A) and (RD) harvested from FLYA13 and FLYRD18, respectively, after polyclonal transduction of MFGnlslacZ (Table 3 above) were tested for stability in fresh human serum and generation of replication competent virus. Titers of MFGnlslacZ(RD) from FLYRD18 after 1 hr incubation with 3 independent samples of fresh human serum were 80 to 120 % of control incubations, while titers of MFGnlslacZ(A) from FLYA13 were 50 to 90 % of controls (data not shown). No replication competent virus was detected in the same assay described above (Table 4) when 1 x 107 i.u. each of MFGnlslacZ(A) and (RD) were tested.

EXAMPLE 11.

- 20 Generation of plasmids.
 - CeB plasmid (Fig. 5) expressing MoMLV gag-pol gene, was further modified to remove the splice donor site located in the leader region. A 272 bp fragment was PCR-generated by using OUSD- (5'-TCTCGCTTCTGTTCGCGCGC) and OLSD-
- 25 (5'-TCGATCAAGCTTGCGGCCGCGGTGGTGGGTCGGTGGTCC) as primers and further digested with BssHII and HindIII. A 1008 bp HindIII-XhoI fragment isolated from CeB (encompassing a part of leader sequence and beginning MoMLV gag) and the PCR fragment were co-inserted into pCeB from which the 1275 bp
- BssHII-XhoI fragment (encompassing R-U5-leader-gag) had been removed. The resulting plasmid, named pCeB DS- (Fig. 5), beared the deletion of splice donor (SD) site and a NotI restriction site created just downstream to the lost SD site.

35

10

15

20

25

30

A series of gag-pol expression plasmids in which the MoMLV LTR promoter was replaced by the human cytomegalovirus immediate early promoter (hCMV promoter) was derived from both CeB DS- and hCMV-G (Yee et al., 1994 PNAS, 91: 9564-9568), a plasmid used as a source for the hCMV promoter. A NotI-filled/EcoRI 7260 bp fragment was isolated from CeB DS-and cloned into hCMV-G which had been opened with SalI (further rendered blunt-ended) and EcoRI to remove the VSV-G gene. The resulting plasmid was cutted with ClaI and EcoRI to remove a 1155 bp fragment encompassing sequence derived from 3'-LTR and SV40 polyA sequence and self-ligated after filling both protruding DNA ends. The resulting plasmid, named phCMV-intron (Fig. 5), had gag-pol and bsr ORFs inserted between the CMV promoter and rabbit beta-globin polyA post-transcriptional regulatory sequences.

An intermediate plasmid was generated by sub-cloning a 7260 bp EcoRI fragment (isolated from CeB DS-) into hCMVG opened with EcoRI. A 1155 bp fragment (encompassing sequence derived from 3'-LTR and SV40 polyA sequence) was removed from this intermediate plasmid which was then re-circularized by self ligation after filling both ends. The resulting plasmid, named phCMV+intron 2P (Fig. 5), was digested with NotI and the vector was treated with klenow enzyme. A 1440 bp fragment (encompassing hCMV promoter and rabbit beta-1 globin intron B (Rohrbaugh et al., 1985 Mol. Cell Biol, 5: 147-160)) was isolated from phCMV+intron 2P by NotI/EcoRI digestion. This fragment was further treated with klenow enzyme and ligated back into the vector. The resulting plasmid, named hCMV+intron (Fig. 5), could express gag-pol and bsr genes driven by the hCMV promoter and beared an intron sequence derived from rabbit beta-1 globin intron B having both SD and SA (splice acceptable) sites.

35 A 2450 bp fragment was removed from phCMV+intron 2P by

34

NotI/XhoI digestion. The resulting vector fragment was then used to co-ligate a 1330 bp fragment (containing hCMV promoter + 5' end of rabbit beta-1 globin intron B (with SD site)) isolated from phCMVG by ApaI-filled/NotI digestion and a 1 kb fragment isolated from phCMV+intron 2P by NotI-filled/XhoI digestion. Compared to phCMV+intron 2P, the resulting plasmid, named hCMV+SD intron (Fig. 5), had the deletion of the 3' end of the rabbit beta-1 globin intron B and thus no SA site in the leader region.

10

5

Construct phCMV+leader (Fig. 5) has been described elsewhere (Savard et al., unpublished). This plasmid, in which gag-pol and bsr genes were driven by the hCMV promoter, had the MoMLV SD site in the leader region.

15

20

25

30

35

Gag-pol expression.

The different constructs, including the parental CeB plasmid, were analysed comparatively in a complementation assay after transfection in TEL-FBdelPASAF cells expressing 4070A-MLV (amphotropic) envelope and harboring a MFGnlslacZ provirus. The transient production of lacZ retroviruses as well as the stable production of lacZ retroviral vectors after selection with blasticidin S were determined (Table 5). All the constructs were able to rescue infectious lacZ retroviruses indicating the expression of gag-pol proteins after transient transfection. Most likely due to the efficient hCMV and rabbit beta-1 globin intron B (post)-transcriptional regulatory sequences, hCMV+intron was particularly potent in transient retroviral vector production. However, 10 times less blasticidin-resistant colonies were obtained with hCMV+intron comparatively to CeB, and stable lacZ virus production from hCMV+intron was about 5-10 times lower than that of CeB. Clonal examination of lacZ retrovirus production from blasticidin-resistant colonies indicated that 80-90% of colonies could express

5

25

30

high levels of gag-pol proteins for both hCMV+intron and CeB plasmids. In contrast, despite variation in their ability to form blasticidin-resistant colonies after transfection and despite their ability to express gag-pol proteins from transient transfectants, all other constructs had a weak capacity for rescuing lacZ retroviral vectors from stable transfectants (Table 5).

Table 5. Comparative study of gag-pol-bsr plasmids.

10	gag-pol-bsr	Transient	no clones	Stable	% gag-pol
	plasmid	(lacZ	bsr*	(lacZ	/bsr
		i.u./ml)		i.u./ml	
	Ceb	300/ml	50	10°	90%
	Ceb DS-	144/ml	5	10 ⁵	50%
	hCMV+intron	ND	20	10 ⁶	50%
15	2P				
	hCMV-intron	812/ml	0	-	-
	hCMV+SD	150/ml	1000	10 ²	nd .
	intron				
	hCMV+leader	328/ml	1000	10 ² -10 ³	nd
20	hCMV+intron	12000/ml	5	106-107	80%

Northern blot analyses were performed on stable transfectants (blasticidin-resistant) obtained with some of the gag-pol-bsr plasmids. As expected, the results (not shown) displayed a correlation between expression of gag-pol mRNAs and gag-pol protein expression detected by rescue analysis (Table 5). CeB construct was found to produce 2-3 fold more gag-pol mRNAs compared to hCMV+intron.

Interestingly, an unexpected 2.45 kb RNA band was found for hCMV+intron construct at a ratio of 2:1 compared to the abundancy of the gag-pol mRNA band (at 5.95 kb). Further

PCT/GB96/02061 WO 97/08330

36

investigations by using other probes revealed that a cryptic splice donnor (SD) site located in the gag gene (right in the middle of the CA coding region at position 1596-1597 -numbering according to Shinnick et al., 1981 Nature (London) 293: 543-548) was activated in this latter construct. The 2.45 RNA species, lacking the 3' half of the gag gene and most of the pol gene, is unlikely to give rise to any useful translational product. It is therefore interesting to notice that hCMV+intron construct was able to give rise to slightly more transcripts (gag-pol 5.95 mRNA + 2.45 alternative RNA band) compared to gag-pol mRNA expressed from CeB construct. Therefore we decided to inactivate the cryptic SD site in the hCMV+intron construct in order to increase the ratio of gag-pol mRNAs.

15

20

25

10

5

Assays for transfer of gag-pol functions. Although the supernatants of pacakaging cell lines generated with CeB gag-pol expression contruct were devoid of replication-competent retroviruses, they were found sporadically to transfer gag-pol genomes (example 9, Table 4) (Cosset et al., 1995 J. Virol 69: 7430-7436). Because gag-pol-bsr constructs generated here by using the hCMV promoter had much less retroviral sequences homologous to the retroviral vector than the parental CeB construct (Fig. 5), they are less likely to give rise to gag-pol recombinant (GPR) viruses. Therefore, the most efficient gag-pol-bsr plasmids, hCMV+intron and CeB, were further analysed for emergence of GPR viruses. To assay for such recombinant retroviruses, we attempted to mobilise an lacZ provirus from an indicator cell lines which could cross-complement 30 potential recombinant viruses carrying gag-pol functional genes. Results displayed in Table 6 showed that consistently with data reported previously (example 9, Table 4) (Cosset et al., 1995 Supra), lacZ retrovirus vectors generated by using 35 CeB gag-pol construct were contaminated with GPR viruses. In contrast lacZ retrovirus vectors generated by using hCMV+intron construct were completely devoid of such GPR viruses, suggesting that this construct was improved compared to CeB with respects with emergence of recombinant viruses.

Table 6. Comparative study of gag-pol-bsr plasmids.

plasmid	input virus (lacZ i.u.) ^a	ì	expering titres	ì
Сев	5x10 ⁶	5	3	0
	5x10 ⁵	2	4	2
	5x10 ⁴	0	1	7
hCMV+intron	5×10 ⁶	0	0	8
	5x10 ⁵	0	0	8
	5x104	0	0	8

15

20

10

5

4x10E4 cells of TEL/MOSAF in 24 wells were challenged with lacZ(A) of i.u. indicated in the table (a), and incubated at 37°C for 3 days. Cells were trypsinized and transferred into small flasks. Cell sup was harvested on day 5 after lacZ(A) challenge and plated on either TES71 (not shown) and 3T3 cells (b). No lacZ was mobilized into TE671 at all. LacZ(A) from CMV-int 10 again did not rescue lacZ from TEL/MOSAF.

Example 12

Generic primers to detect D-type (Medstrand and Blomberg J.Virol. (1993) 67:6778-6787), C-type (Shih et al., J Virol. (1989) 63:64-75), human endogenous virus RTVL-H (Wilkinson et al., J.Virol. (1993) 67:2981-2989), by RT-PCR were employed (Patience et al., supra). Primers to detect mouse endogenous VL30 element (Adams et al Mol.Cel.Biol. (1988) 8:2989-2998), and MFGnlslacZ RNA were designed and synthesized (TABLE X). Overnight supernatants (in 4ml of culture medium) from 106 cells of GP+EAM12lacZ25, FLYA4lacZ3

5

10

and TELCeB6FBASALF cells (Table 3) were harvested and centrifuged in sucrose gradient as described previously (Patience et al., J.Virol., 70:2654-2657). Fractions containing retrovirus particles were collected, and RNA extracted. One twentieth of the RNA preparation or dilution's thereof were applied to RT-PCR as described previously (Table X). A 1/200 of RNA harvested from GP+EAM12lacZ25 cells was positive for VL30 RNA. MFGnlslacZ RNA was found from 1/20 of RNA from GP+EAM12lacZ and TELCeB6FBASALF cells and 1/200 of RNA from FLYA4lacZ3 cells. The primer combinations for RTVL-H, C- and D-type RNA did not give detectable PCR product.

Table 7. RT-PCR detection of endogenous retrovirus RNA associated with virus particles.

			rt-per of	virion assoc	iated RNA from	•
20	RNA primer (5'-3') forward(F)/reverse(R)		GP+EAM12 lacZ25	FLYA4 lacZ3	TELCeB6F BASALF	
25	MFGnls lacZ	F) CTCTGGCTCACAGTACGACG R) CCATCAATCCGGTAGGTTTT		++	+	
30	C-type	F) CARRGKTTCAARAACWSYCC R) AGYARVGTAGCNGGGTTHAG		· -	-	
	D-type	F) TCCCCTTGGAATACTCCTGT R) CATTCCTTGTGGTAAAACTT		-	-	
35	RTVL-H	F) CCTCACCCTGATCACRYTTG R) GAATTATGTCTGACAGAAGG		-	· <u>-</u>	
	AF30	F) GTTGACATCTGCAGAGAAAG R) TCTGAGGTCTGTACACAAA		NT	NT	

PCT/GB96/02061

WO 97/08330

a:-, not detected; + detected in 1/20 RNA preparation; ++ detected in 1/200 RNA preparation; NT, not tested because the cells do not possess the corresponding

39

genes.

5

15

20

25

30

EXAMPLE 13.

Generation of gag-pol pre-packaging cells by using TE671 cells.

CeB, a plasmid designed to over-express MoMLV gag and pol 10 proteins was introduced in TE671 human rhabdomyosarcoma cells (ATCC CRL8805). After selection with blasticidin, 50 bsr-positive colonies were isolated and the RT (reverse transcriptase) activity was analysed in their supernatants.

12 TE671-CeB (TECeB) clones with high RT activity were selected for further analysis. The best TECeB clone, clone #15, had a RT activity roughly equivalent to that TELCeB6 cells (Cosset et al., J. Virol. 69:7430-7436 (1995); see also Example 7, Table 6 in this patent application) but

displayed 2-3 fold more gag-precursors into cells as demonstrated in immunoblots by using anti-CA antibodies. The biological activity of gag-pol proteins expressed in the six best TECeB clones was further confirmed by their ability to produce infectious retroviruses in a complementation assay.

A lacZ provirus was introduced into each of the TECeB clones by polyclonal cross-infection by using lacZ(RD114) helperfree retrovirus vectors. FBMOSALF, a MoMLV env expression plasmid (Cosset et al., J. Virol. 69:6314-6322), was then transfected in each of the TECeB-lacZ lines and in the TELCeB6 cell line for comparison. After selection with phleomycin, the titer of lacZ retrovirus vectors was

determined in the supernantant of pools of phleomycinresistant colonies for each TECEB-lacZ-FBMOSALF lines. A good correlation was found between gag-pol expression into the TE-CeB clones (as determined by RT-assays and anti-gag immunoblots) and their ability to release infectious lacZ particles. TE-CeB15 cells could release approximately the same number of lac2 particles when compared to TELCeB6 cells although TELCeB6 cells had the advantage of being selected for lacZ expression (Cosset et al., J. Virol. 69:7430-7436 (1995)). TE-CeB15 cells were therefore used to derive retroviral packaging cell lines.

10

15

20

25

30

5

Construction of env-expression plasmids.

A series of plasmid (Fig. 3) was designed to allow expression of different retroviral envelope genes (isolated from MoMLV, GALV -Gibbon Ape Leukemia Virus-, and MLV-10Al). FBdelPMOSAF (Fig. 3, nucleotide sequence in Fig. 10) and FBdelP10AlSAF, expressing ecotropic MoMLV or MLV-10A1 envelopes, were generated by replacing the BglII/ClaI fragment from FBdelPASAF (Cosset et al., J. Virol. 69:7430-. 7436 (1995); see also Example 7, Fig. 2 and nucleotide sequence in Fig. 9) encompassing most of the env gene and splice acceptor site with that of MoMLV (position 5407 to 7679, Shinnik et al., 1981) or with that of MLV-10A1 (Ott et al., J. Virol. 64:757-766 (1990)). Nucleotides 7514-7516 of GALV (Delassus et al., Virology to create a ClaI site (AAG to CGA), thereby introducing a

173:205-213 (1989)) were mutated by PCR-mediated mutagenesis conservative modification (a lysine (amino-acid 665 of GALV env precursor) to an arginine). The BamHI/ClaI fragment (nts 4994 (Delassus et al. Virology 173:205-213 (1989)) to 7517) was then sub-cloned into FBdelPASAF in which the BglII/ClaI encompassing most of the env gene and splice acceptor site had been removed. The resulting plasmid, expressing GALV

5

10

15

20

25

30

envelope glycoproteins, was named FBdelPGASAF (Fig. 3, nucleotide sequence in Fig. 11).

CMV10A1 was generated by inserting a Klenow enzyme-filled EagI/SalI fragment from FBdelP10A1SAF (encompassing 10A1 MLV env gene and phleo selectable marker) into hCMV-G digested with BamHI and filled with Klenow enzyme. The resulting plasmid, CMV10A1 (Fig. 3 and nucleotide sequence in Fig. 13) could express 10A1 envelopes under control of the hCMV promoter and the phleo selectable marker by translation reinitiation.

Generation of a multi-tropic set of TE671-based retroviral packaging lines.

FBdelPRDSAF (Fig. 3, nucleotide sequence in Fig. 12),
FBdelPASAF, FBdelPGASAF, FBdelPMOSAF and FBdelP10A1SAF were
independently introduced into cells of the TE-CeB15 prepackaging line, expressing MoMLV gag-pol proteins.
Transfected cells were phleomycin-selected and 15-20 phleoresistant colonies were isolated for each env-expression
plasmid transfected.

Individual colonies were then analysed for expression of envelope glycoproteins by immunoblots on cell lysates by using antibodies against RD114 SU glycoproteins or against Rausher leukemia virus SU (to screen MoMLV, MLV-4070A and MLV-10A1 env-producer clones) or against GALV. The best env-producer colonies as determined in this assay were further analysed by a complementation assay after introducing a lacZ retroviral vector. LacZ pseudotypes released from the different packaging cell lines were titrated by using NIH 3T3 cells or TE671 cells as target. Titers higher than 1x107 lacZ i.u./ml were obtained for the best clones. Depending on the envelope specificities expressed in these cells, the new

10

15

20

30

TE671-based retroviral packaging cell lines were named TE-FLYE, TE-FLYA, TE-FLYRD, TE-FLY10A1, and TE-FLYGA and could express the MoMLV, MLV-4070A, RD114, MLV-10A1, and GALV env genes, respectively.

Assays for detecting replication-competent retroviruses (RCRs) were performed in the supernatants of these cells and were negative (less than 1/ml).

TE671 cells are very potent for transient expression resulting in more than 95% of cells expressing transgene three days after plasmid transfection (Hatziioannou and Cosset, unpublished data, (1996)). The ability of retroviral packaging cell lines to transiently produce retroviral vectors is of crucial importance for gene therapy where vectors carrying toxic gene have to be prepared. Transient expression of retroviral vectors was comparatively determined from cells of the TE-FLYA line and from the BING line (Pear et al., Proc Natl Acad Sci U S A 90, 8392-6 (1993)), a retroviral packaging cell line designed to transiently express retroviral vectors. Results (Table 8) showed that TE-FLYA cells were more efficient for transient expression of a lacZ retroviral vector hence resulting in higher titers.

Table 8. Comparative study of transient production of lacZ vectors.

packaging cell line	cell number	% transfected cells ^b	transient titer ^c
BING	281	5.3	2x10 ²
TE-FLYA	117	35	1.3x10 ³

Cells were transfected by MFGnlslac2 retroviral vectors with calcium phosphate precipitation method and titers of of lac2 vectors (c) released in cell

supernatant were determined as lacZ i.u./ml at day 3 following transfection. The relative number of cells (a) (average per microscope field) and the % of transfected cells (b) determined after X-gal staining are shown.

Retroviral vectors prepared from TE671-based packaging cell lines were analysed for their sensitivity to human-complement mediated inactivation. Experiments were conducted as previously described (Cosset et al., J. Virol. 69:7430-7436 (1995); see also Example 10 in this patent application) by using three human sera of individual donnors (Table 9). As expected MLV-A prepared from mouse 3T3 cells were highly sensitive to inactivation after 1 hr incubation with sera. In contrast, titers of lacZ vectors produced from TE-FLYRD cells were 17 to 55% of control incubations, while titers of lacZ vectors from TE-FLYA cells were 1 to 30% of controls.

Table 9. Human serum sensitivity of viruses produced from TE671-based packaging cell lines.

Virus from:	hu56*	hu57*	BTS*
3T3/A	<0.2, <0.2	<0.2, <0.2	<0.2, <0.2
TE-FLYE .	15, 7.8	16, 11	48, 60
TE-FLYA	1, 0.6	2.2, 7.1	28, 19
TE-FLYRD	17, 22	30, 44	54, 63

Three human fresh serum samples were tested in duplicate; hu56 (A+), hu57(AB+), BTS(AB+). (a) % control (average for FCS and opti-MEM treatment) is shown.

20

25

5

10

15

WO 97/08330 PCT/GB96/02061

44

CLAIMS:

1. A recombinant expression vector comprising a gene of interest and a selectable marker gene, wherein the selectable marker gene is arranged downstream of the gene of interest and a stop codon associated with the gene of interest is spaced from a start codon of said selectable marker gene at a distance which is sufficient to ensure that said selectable marker protein is expressed from the corresponding mRNA as a result of translation reinitiation.

- 2. A recombinant expression vector according to claim 1 wherein the vector is a viral vector.
- 3. A recombinant expression vector according to claim 2 wherein the vector is a retroviral vector.
- 4. A recombinant expression vector according to any one of claims 1 to 3 wherein the gene of interest is included as part of a viral packaging construct.
- 5. A recombinant expression vector according to any one of the preceding claims wherein the number of nucleotides in the space between the stop codon of the gene of interest and the start codon of the selectable marker is in the range of from 20 to 200 nucleotides.
- 6. A recombinant expression vector according to claim 5 wherein the number of nucleotides in the space between the stop codon of the gene of interest and the start codon of the selectable marker is in the range of from 60 to 80 nucleotides.
- 7. A process for producing a cell line in which a gene of interest is expressed, which process comprises: transforming host cells with an expression vector

WO 97/08330

45

according to any one of the claims 1 to 6; and selectable those cells where expression of the selection marker gene may be detected.

- A process according to claim 7 wherein the host cell 8. is a eukaryotic cell.
- A host cell transformed with a recombinant expression vector according to any one of the claims 1 to 6.
- A retroviral packaging cell line comprising a host 10. cell transformed with a first and a second recombinant expression vector, said first recombinant expression having a packaging-deficient construct comprising a viral gag-pol gene and a first selectable marker gene downstream thereof, and said second recombinant expression vector having a packagingdeficient construct comprising a viral env gene and a second selectable marker gene downstream thereof; . wherein the start codon of the first and second selectable markers are spaced from the stop codons of the viral gag-pol gene and the viral env gene respectively by a distance which ensures that said selectable marker protein is expressed from the corresponding mRNA as a result of translation reinitiation.
- A retroviral packaging cell line according to claim 10 11. wherein the first selectable marker is a bsr selectable marker and the second selectable marker is a phleo selectable marker.
- 12. A retroviral packaging cell line according to any one of claims 10 or 11 wherein the packaging-deficient construct comprising the viral gag-pol gene and first selectable marker is the CeB (SEQ ID No 2) expression construct.

- 13. A retroviral packaging cell line according to any one of claims 10 or 11 wherein the packaging-deficient construct comprising the viral env gene and second selectable marker is the FBdelPASAF (SEQ ID No 5), the FBdelPMOSAF (SEQ ID No 6), the FbdelPGASAF (SEQ ID No 7), the FbdelPRDSAF (SEQ ID No 8), the FbdelPXSAF (Fig. 3), the FbdelPl0AlSAF (Fig. 3), or the FBdelPVSVGSAF (Fig. 3) expression construct.
- 14. A retroviral packaging cell line according to any one of claims 10 or 11 wherein the recombinant expression vector is a packaging-deficient retroviral helper construct.
- 15. A retroviral packaging cell line according to claim 14 wherein the overlapping sequences between the genomes of the retroviral vector and the packaging-deficient construct is reduced by minimizing the extent of non-coding retroviral sequences in the packaging-deficient genome.
- 16. A retroviral packaging cell line according to any one of claims 10 to 15 wherein the viral gag-pol gene and the selectable marker are expressed under the control of a non-retroviral promoter.
- 17. A retroviral packaging cell line according to claim 16 wherein the promoter is fused to rabbit beta-1 globin intron.
- 18. A retroviral packaging cell line according to claim 16 or claim 17 wherein the promoter is a hCMV promoter.
- 19. A retroviral packaging cell line according to any one of claims 16 to claim 18 wherein the viral gag-pol gene and the selectable marker is a hCMV+intron (SEQ

PCT/GB96/02061 WO 97/08330

47

ID No3) or a hCMV+intronkaSD (SEQ ID No 4) expression construct.

- A retroviral packaging cell line according to anyone of claims 10 to 15 wherein the viral env gene and the selectable marker are under the control of a nonretroviral promoter.
- 21. A retroviral packaging cell line according to claim 20 wherein the promoter is fused to rabbit beta-1 globin intron.
- 22. A retroviral packaging cell line according to claim 20 or claim 21 wherein the promoter is a hCMV promoter.
- A retroviral packaging cell line according any one of claims 20 to 22 wherein the viral env gene and the selectable marker is a CMV10A1 (SEQ ID No 9) expression construct.
- 24. A retroviral packaging cell line according to any one of claims 10 to 23 wherein the cell line is the HT1080 line, the TE671 line, the 3T3 line, the 293 line or the MV-1-lU line.
- 25. A retroviral packaging cell line according to anyone of claims 10 to 24 wherein the retroviral packaging cells comprises human HT1080 cells and express RD114 envelopes.
- 26. A retroviral packaging cell line according to anyone of claims 10 to 24 wherein the retroviral packaging cells comprises human TE671 cells and express RD114 envelopes.

WO 97/08330

48

A process for producing a retroviral packaging cell line in which a gene of interest in expressed, which process comprises:

transforming host cells with a first and a second recombinant expression vector, said first recombinant expression vector having a packaging-deficient construct comprising a viral gag-pol gene and a first selectable marker gene downstream thereof, and said second recombinant expression vector having packaging-deficient construct comprising a viral env gene and a second selectable marker gene downstream thereof; wherein the start codon of the first and second selectable markers are spaced from the stop codons of the viral gag-pol gene and the viral env gene respectively by a distance which ensures that said selectable marker protein is expressed from the corresponding mRNA as a result of translation reinitiation; and

selecting transformed cells which express said first and/or second marker genes.

- 28. A packaging deficient construct for use in a process according to claim 27, which expresses a viral gag-pol gene and a selectable marker wherein a start codon of the selectable marker is spaced from a stop codon of the viral gag-pol gene by a distance which ensures that said selectable marker protein is expressed from the corresponding mRNA as a result of translation reinitiation.
- 29. A packaging deficient construct for use in a process according to claim 27, which expresses a viral env gene and a selectable marker gene; wherein a start codon of the selectable marker is spaced from a stop codon of the viral env gene by a distance which ensures that said selectable marker protein is

WO 97/08330 PCT/GB96/02061

49

expressed from the corresponding mRNA as a result of translation reinitiation.

1/22

Figure 1. Schematic structure of CeB expression vector

Figure 2. Schematic structure of FBdelPASF expression vector

Figure 3. Schematic structure of env expression vectors
SUBSTITUTE SHEET (RULE 26)

WO 97/08330 PCT/GB96/02061

4/22

NGAGCTCAGGACAGGTAGAAAGAATGAATAGAACAATAAAAGAGACCCTTACTAAATTGA 60 CCTTAGAGACTGGCTTAAAAGATTGGAGACGCCTCCTATCTCTGGCTTTGTTAAGAGCCA 120 GAAATACGCCCAACCGTTTTCGGCTCACCCCATATGAAATCCTTTATGGGGGACCCCCC 180 CTTTGTCAACCTTGCTCAATTCCTTCTCCCCCTCCGATCCTAAGACTGATTTACAAGCCC 240 GACTAAAAGGGCTGCAAGGCGTGCAGGCCCAAATCTGGACACCCCTGGCCGAATTGTACC 300 GGCCAGGACATCCACAAACTAGCCACCCATTTCAGGTGGGAGACTCCGTGTACGTCCGGC 360 GGCACCGCTCTCAAGGATTGGAGCCTCGTTGGAAGGGACCTTACATCGTCCTGACCA 420 CGCCCACCGCCATAAAGGTTGACGGGATCGCCGCCTGGATTCACGCATCGCACGCCAAGG 480 CAGCCCCAAAAACCCCTGGACCAGAAACTCCCAAAAACCTGGAAGCTCCGCCGTTCGGAGA 540 ACCCTCTTAAGATAAGACTCTCCCGTGTCTGACTGCTAATCCACCTTGTCCCTGTACTAA 600 CCCAAAATGAAACTCCCAACAGGAATGGTCATTTTATGTAGCCTAATAATAGTTCGGGCA 660 GGGTTTGACGACCCCGCAAGGCTATCGCATTAGTACAAAAACAACATGGTAAACCATGC 720 CCAGGCAAGACGGCCTACTTAATGACCAACCAAAAATGGAAATGCAGAGTCACTCCAAAA 840 ATCTCACCTAGCGGGGGGAGAACTCCAGAACTGCCCCTGTAACACTTTCCAGGACTCGATG 900 CACAGTTCTTGTTATACTGAATACCGGCAATGCAGGCGAATTAATAAGACATACTACACG 960 GCCACCTTGCTTAAAATACGGTCTGGGAGCCTCAACGAGGTACAGATATTACAAAACCCC 1020 AATCAGCTCCTACAGTCCCCTTGTAGGGGCTCTATAAATCAGCCCGTTTGCTGGAGTGCC 1080 ACAGCCCCATCCATATCTCCGATGGTGGAGGACCCCTCGATACTAAGAGAGTGTGGACA 1140 GTCCAAAAAAGGCTAGAACAAATTCATAAGGCTATGACTCCTGAACTTCAATACCACCCC 1200 TTAGCCCTGCCCAAAGTCAGAGATGACCTTAGCCTTGATGCACGGACTTTTGATATCCTG 1260 AATACCACTTTTAGGTTACTCCAGATGTCCAATTTTAGCCTTGCCCAAGATTGTTGGCTC 1320 TGTTTAAAACTAGGTACCCCTACCCCTCTTGCGATACCCACTCCCTCTTTAACCTACTCC 1380 CTAGCAGACTCCCTAGCGAATGCCTCCTGTCAGATTATACCTCCCCTCTTGGTTCAACCG 1440 ATGCAGTTCTCCAACTCGTCCTGTTTATCTTCCCCTTTCATTAACGATACGGAACAAATA 1500 GACTTAGGTGCAGTCACCTTTACTAACTGCACCTCTGTAGCCAATGTCAGTAGTCCTTTA 1560 TGTGCCCTAAACGGGTCAGTCTTCCTCTGTGGAAATAACATGGCATACACCTATTTACCC 1620 CAAAACTGGACCAGACTTTGCGTCCAAGCCTCCTCCTCCCCGACATTGACATCAACCCG 1680 GGGGATGAGCCAGTCCCCATTCCTGCCATTGATCATTATACATAGACCTAAACGAGCT 1740 GTACAGTTCATCCCTTTACTAGCTGGACTGGGAATCACCGCAGCATTCACCACCGGAGCT 1800 ACAGGCCTAGGTGTCTCCGTCACCCAGTATACAAAATTATCCCATCAGTTAATATCTGAT 1860 GTCCAAGTCTTATCCGGTACCATACAAGATTTACAAGACCAGGTAGACTCGTTAGCTGAA 1920 GTAGTTCTCCAAAATAGGAGGGACTGGACCTACTAACGGCAGAACAAGGAGGAATTTGT 1980 TTAGCCTTACAAGAAAAATGCTGTTTTTATGCTAACAAGTCAGGAATTGTGAGAAACAAA 2040 TGGACCGGGCTGCAGGGCTTTCTTCCGTACCTCCTACCTCCTGGGACCCCTACTCACC 2160 CTCCTACTCATACTAACCATTGGGCCATGCGTTTTCAGTCGCCTCATGGCCTTCATTAAT 2220 GATAGACTTAATGTTGTACATGCCATGGTGCTGGCCCAGCAATACCAAGCACTCAAAGCT 2280 GAGGAAGAAGCTCAGGATTGAGCTTCCGGGACAAAAGCAGGGGGGGAATGAGAAGTCAGAA 2340 CCCCCCACCTTTGCTACATAAATAACCGCTTTCATTTCGCTTCTGTAAAAGGCTTATGCG 2400 CCCCACCCTAGCCGGAAAGTCCCCAGCCGCTACGCAACCCGGGCCCCGAGTTGCATCAGC 2460 CGTTCGCAACCCGGGCTCCGAGTTGCATCAGCCGAAAGAACTTCATTTCCCAAGCTT 2518

Figure 5. Genetic structure of gag-pol constructs (page 1/3)

Figure 5. Genetic structure of gag-pol constructs (page 2/3)

Figure 5. Genetic structure of gag-pol constructs (page 3/3)

Figure 6. CeB Sequence 8/22

AATGAAAGAC	CCCACCTGTA	GGTTTGGCAA	GCTAGCTTAA	GTAACGCCAT	TTTGCAAGGC	- 60
ATGGAAAAAT	ACATAACTGA	GAATAGAGAA	GTTCAGATCA	AGGTCAGGAA	CAGATGGAAC	120
AGCTGAATAT	GGGCCAAACA	GGATATCTGT	GGTAAGCAGT	TCCTGCCCCG	GCTCAGGGCC	180
AAGAACAGAT	GGAACAGCTG	AATATGGGCC	AAACAGGATA	TCTGTGGTAA	GCAGTTCCTG	240
CCCCGGCTCA	GGGCCAAGAA	CAGATGGTCC	CCAGATGCGG	TCCAGCCCTC	AGCAGTTTCT	300
AGAGAACCAT	CAGATGTTTC	CAGGGTGCCC	CAAGGACCTG	AAATGACCCT	GTGCCTTATT	360
TGAACTAACC	AATCAGTTCG	CTTCTCGCTT	CTGTTCGCGC	GCTTCTGCTC	CCCGAGCTCA	420
ATAAAAGAGC	CCACAACCCC	TCACTCGGGG	CGCCAGTCCT	CCGATTGACT	GAGTCGCCCG	480
GGTACCCGTG	TATCCAATAA	ACCCTCTTGC	AGTTGCATCC	GACTTGTGGT	CTCGCTGTTC	540
CTTGGGAGGG	TCTCCTCTGA	GTGATTGACT	ACCCGTCAGC	GGGGGTCTTT	CATTTGGGGG	600
CTCGTCCGGG	ATCGGGAGAC	CCCTGCCCAG	GGACCACCGA	CCCACCACCG	GGAGGTAAGC	660
TGGAAGCTTC	TGCAGCATCG	TTCTGTGTTG	TCTCTGTCTG	ACTGTGTTTC	TGTATTTGTC	720
TGAGAATATG	GGCCAGACTG	TTACCACTCC	CTTAAGTTTG	ACCTTAGGTC	ACTGGAAAGA	780
TGTCGAGCGG	ATCGCTCACA	ACCAGTCGGT	AGATGTCAAG	AAGAGACGTT	GGGTTACCTT	840
CTGCTCTGCA	GAATGGCCAA	CCTTTAACGT	CGGATGGCCG	CGAGACGGCA	CCTTTAACCG	900
AGACCTCATC	ACCCAGGTTA	AGATCAAGGT	CTTTTCACCT	GGCCCGCATG	GACACCCAGA	960
CCAGGTCCCC	TACATCGTGA	CCTGGGAAGC	CTTGGCTTTT	GACCCCCCTC	CCTGGGTCAA	1020
GCCCTTTGTA	CACCCTAAGC	CTCCGCCTCC	TCTTCCTCCA	TCCGCCCCGT	CTCTCCCCCT	1080
TGAACCTCCT	CGTTCGACCC	CGCCTCGATC	CTCCCTTTAT	CCAGCCCTCA	CTCCTTCTCT	1140
AGGCGCCAAA	CCTAAACCTC	AAGTTCTTTC	TGACAGTGGG	GGGCCGCTCA	TCGACCTACT	1200
TACAGAAGAC	CCCCGCCTT	ATAGGGACCC	AAGACCACCC	CCTTCCGACA	GGGACGGAAA	1260
TGGTGGAGAA	GCGACCCCTG	CGGGAGAGGC	ACCGGACCCC	TCCCCAATGG	CATCTCGCCT	1320
ACGTGGGAGA	CGGGAGCCCC	CTGTGGCCGA	CTCCACTACC	TCGCAGGCAT	TCCCCCTCCG	1380
COCAGGAGGA	AACGGACAGC	TTCAATACTG	GCCGTTCTCC	TCTTCTGACC	TTTACAACTG	1440
GAAAAATAAT MCMMCMCAMA	AACCCTTCTT	TTTCTGAAGA	TCCAGGTAAA	CTGACAGCTC	TGATCGAGTC	1500
CACCCCACA	ACCCATCAGC	CCACCTGGGA	CGACTGTCAG	CAGCTGTTGG	GGACTCTGCT	1560
TCCCCCCCCC	GAAAAACAAC	GGGTGCTCTT	AGAGGCTAGA	AAGGCGGTGC	GGGGCGATGA	1620
CTCCCATTAC	ACTUARCIGU	CCAATGAAGT	CGATGCCGCT	TTTCCCCTCG	AGCGCCCAGA	1680
ACCCCCTCTC	ACCACCCAGG	CAGGIAGGAA	CLACCTAGTC	CACTATEGEE	AGTTGCTCCT	1740
ACAAGGGCCC	CAAAACGCGG AATGAGTCTC	CCECCCCC	CACCAATITG	GCCAAGGTAA	AAGGAATAAC	1800
GTACACTCCT	TATGACCCTG	ACCACCCACC	CCIAGAGAGA	ARCHCHCHA	CCTATCGCAG	1860
TTGGCAGTCT	GCCCCAGACA	TTCCCACAAA	COMPACACACC	MAIGIGICIA	TGTCTTTCAT	1920
GACGCTTGGA	GATTTGGTTA	GAGAGGGAAA	DI INGNOMOG	1 IAGAAGATT	TAAAAAACAA	1980
AGAAAGAGAG	GAACGTATCA	GGAGAGAAAC	AGAGGAAAAA	GANGANCECC	CTACACACACA	2040
GGATGAGCAG	AAAGAGAAAG	AAAGAGATCG	TAGGAGACAT	AGAGAGATGA	CCAACCTATT	2100 2160
GGCCACTGTC	GTTAGTGGAC	AGAAACAGGA	TAGACAGGGA	GGIGIACGIA	GCAGGTCCCA	2220
ACTCGATCGC	GACCAGTGTG	CCTACTGCAA	AGAAAAGGGG	CACTGGGCTA	AAGATTCTCC	2280
CAAGAAACCA	CGAGGACCTC	GGGGACCAAG	ACCCCAGACC	TCCCTCCTGA	CCCTAGATGA	2340
CTAGGGAGGT	CAGGGTCAGG	AGCCCCCCC	TGAACCCAGG	ATAACCCTCA	AAGTCGGGGG	2400
GCAACCCGTC	ACCTTCCTGG	TAGATACTGG	GGCCCAACAC	TCCGTGCTGA	CCCAAAATCC	2460
TGGACCCCTA	AGTGATAAGT	CTGCCTGGGT	CCAAGGGGCT	ACTGGAGGAA	AGCGGTATCG	2520
CTGGACCACG	GATCGCAAAG	TACATCTAGC	TACCGGTAAG	GTCACCCACT	CTTTCCTCCA	2580
TGTACCAGAC	TGTCCCTATC	CTCTGTTAGG	AAGAGATTTG	CTGACTAAAC	TAAAAGCCCA	2640
AATCCACTTT	GAGGGATCAG	GAGCTCAGGT	TATGGGACCA	ATGGGGCAGC	CCCTGCAAGT	2700
GTTGACCCTA	AATATAGAAG	ATGAGCATCG	GCTACATGAG	ACCTCAAAAG	AGCCAGATGT	2760
TTCTCTAGGG	TCCACATGGC	TGTCTGATTT	TCCTCAGGCC	TGGGCGGAAA	CCGGGGGCAT	2820
GGGACTGGCA	GTTCGCCAAG	CTCCTCTGAT	CATACCTCTG	AAAGCAACCT	CTACCCCCGT	2880
GTCCATAAAA	CAATACCCCA	TGTCACAAGA	AGCCAGACTG	GGGATCAAGC	CCCACATACA	2940
GAGACTGTTG	GACCAGGGAA	TACTGGTACC	CTGCCAGTCC	CCCTGGAACA	CGCCCCTGCT	3000
ACCCGTTAAG	AAACCAGGGA	CTAATGATTA	TAGGCCTGTC	CAGGATCTGA	GAGAAGTCAA	3060
CAAGCGGGTG	GAAGACATCC	ACCCCACCGT	GCCCAACCCT	TACAACCTCT	TGAGCGGGCT	3120
ACTOCACCGTEC	CACCAGTGGT	ACACTGTGCT	TGATTTAAAG	GATGCCTTTT	TCTGCCTGAG	3180
CTCACCACA	ACCAGTCAGC	CTCTCTTCGC	CTTTGAGTGG	AGAGATCCAG	AGATGGGAAT	. 3240
TGATGAGGCA	CTCCACACACA	CCAGACTCCC	ACAGGGTTTC	AAAAACAGTC	CCACCCTGTT	3300
CCTACAGOCA	CTGCACAGAG	MACCIAGCAGA	CTTCCGGATC	CAGCACCCAG	ACTTGATCCT	3360
TACTCGGGCC	CTGTTACACT	TWCTGCTGGC	CCTCCCCTTCT	GAGCTAGACT	GCCAACAAGG CCAAGAAAGC	3420
CCAAATTTGC	CAGADACAGA	TCZ ACTATIONA	CCCCTATCO	CONTRACTO	GTCAGAGATG	3480 3540
GCTGACTGAG	GCCAGAAAAG	ACACTICACA TO	GGGGTATCT.I.	PUTCOUS SUS	CCCCTCGACA	3540 3600
ACTAAGGGAG	TTCCTAGGGA	CGGCAGGCTT	CTCTCCCCC	TCCATCCC	GGTTTGCAGA	3660
AATGGCAGCC	CCCTTGTACC	CTCTCACCAA	AACGGGGACT	TOGWICCIG	GGGGCCCAGA	3720
CCAACAAAAG	GCCTATCAAG	AAATCAAGCA	AGCTCTTCTA	ACTGCCCCCAC	CCCTGGGGTT	3780
GCCAGATTTG	ACTAAGCCCT	TTGAACTCTT	TGTCGACGAG	AAGCAGGGCT	ACCCCAAACC	3840
TGTCCTAACG	CAAAAACTGG	GACCTTGGCG	TCGGCCGGTG	GCCTACCTCT	CCAAAAAGCT	3900
AGACCCAGTA	GCAGCTGGGT	GGCCCCCTTG	CCTACGGATG	GTAGCAGCCA	TTCCCCTACT	3960
GACAAAGGAT	GCAGGCAAGC	TAACCATGGG	ACAGCCACTA	GTCATTCTCC	CCCCCCATGC	4020
AGTAGAGGCA	CTAGTCAAAC	AACCCCCCGA	CCGCTGGCTT	TCCAACGCCC	GGATGACTCA	4080

ř.

2

CTATCAGGCC	TTGCTTTTGG	ACACGGACCG	GGTCCAGTTC	GGACCGGTGG	TAGCCCTGAA	4140
CCCGGCTACG	CTGCTCCCAC	TGCCTGAGGA	AGGGCTGCAA	CACAACTGCC	TTGATATCCT	4200
	CACGGAACCC					4260
	ACGGATGGAA					4320
	GAGACCGAGG					
						4380
	CTGATAGCAC					4440
	GATAGCCGTT					4500
	TTGCTCACAT					4560
	GCCCTCTTTC					4620
AAAGGGACAC	AGCGCCGAGG	CTAGAGGCAA	CCGGATGGCT	GACCAAGCGG	CCCGAAAGGC	4680
AGCCATCACA	GAGACTCCAG	ACACCTCTAC	CCTCCTCATA	GAAAATTCAT	CACCCTACAC	4740
CTCAGAACAT	TTTCATTACA	CAGTGACTGA	TATAAAGGAC	CTAACCAAGT	TGGGGGCCAT	4800
TTATGATAAA	ACAAAGAAGT	ATTGGGTCTA	CCAAGGAAAA	CCTGTGATGC	CTGACCAGTT	4860
ጥልርጥጥጥጥGA A	TTATTAGACT	TTCTTCATCA	GCTGACTCAC	CTCAGCTTCT	CAAAAATGAA	4920
GGCTCTCCTA	GAGAGAAGCC	ACAGTCCCTA	CTACATGCTG	AACCGGGATC	GAACACTCAA	4980
AAATATCACT	GAGACCTGCA	AAGCTTGTGC	ACAAGTCAAC	GCCAGCAAGT	CTGCCGTTA A	5040
ACAGGGAACT	AGGGTCCGCG	GGCATCGGCC	CGGCACTCAT	TEGGAGATEG	ATTTCACCGA	5100
	GGATTGTATG					5160
	GCCTTCCCAA					5220
	TTCCCCAGGT					
						5280
	AAGGTGAGTC					5340
	AGACCCCAAA					5400
	AAATTAACGC					5460
	CGAGCCCGCA					5520
	CCCCCGCCCC					5580
	CTCCAAGCTC					5640
	GCAGCCTACC					5700
AGTCGGCGAC	ACAGTGTGGG	TCCGCCGACA	CCAGACTAAG	AACCTAGAAC	CTCGCTGGAA	5760
AGGACCTTAC	ACAGTCCTGC	TGACCACCCC	CACCGCCCTC	AAAGTAGACG	GCATCGCAGC	5820
TTGGATACAC	GCCGCCCACG	TGAAGGCTGC	CGACCCCGGG	GGTGGACCAT	CCTCTAGACT	5880
GACATGGCGC	GTTCAACGCT	CTCAAAACCC	CTTAAAAATA	AGGTTAACCC	GCGAGGCCCC	5940
CTAATCCCCT	TAATTCTTCT	GATGCTCAGA	GGGGTCAGTA	CTGCTTCGCC	CGGCTCCAGT	6000
GCGGCCCAGC	CGGCCACCAT	GAAAACATTT	AACATTTCTC	AACAAGATCT	AGAATTAGTA	6060
	CAGAGAAGAT					6120
	CGAAAACAGG					6180 -
	TTTGTGCAGA					6240
	CGATTGTAGC					6300
	GTCCTTGTGG					6360
	TAGAAATGAA					6420
	CCCGAAATTA					6480
	TATCAGTGGT					6540
	ACGAGCCATA					6600
	ACCCCACCTG					6660
	ATACATAACT					6720
	ACTTGTTTAT					6780
	ATAAAGCATT					6840
	ATCATGTCTG					6900
	TGAGAGGACA					6960
	TCACTTAACA					7020
	TTAAAATATC					7080
	CAAATGTCAA					7140
	TCATCAAGAA					7200
	CCACCTGTGT					7260
	CACTCCACTG					7320
	TGACTGTCAA					7380
	TTTGCTAACA					7440
	GACCCTTGAA					7500
	TTTAACATAG					7560
CCACATCAAA	ATATTTCCAC	AGGTTAAGTC	CTEATTTAAA	TTAGGCAAAG	GAATTC	7616

Figure 7. hCMV+intron Sequence

AGATCTCCCG ATCCCCTATG GTCGACTCTC AGTACAATCT GCTCTGATGC CGCATAGTTA -AGCCAGTATC TGCTCCCTGC TTGTGTGTTG GAGGTCGCTG AGTAGTGCGC GAGCAAAATT TAAGCTACAA CAAGGCAAGG CTTGACCGAC AATTGCATGA AGAATCTGCT TAGGGTTAGG
CGTTTTGCGC TGCTTCGCGA TGTACGGGCC AGATATACGC GTTGACATTG ATTATTGACT
AGTTATTAAA AGTAATCAAT TACGGGGTCA TTAGTTCATA GCCCATATAT GGAGTTCCGC
GTTACATAAC TTACGGTAAA TGGCCCCCTTG
ACGTCAATAA TGACGTATAT TCCCATAGTA ACGCCAATAG GGCTTTCCCA TTGACGTCAA TGGGTGGACT ATTTACGGTA AACTGCCCAC TTGGCAGTAC ATCAAGTGTA TCATATGCCA GRIGAGIGGA TIGGETCACAA CCASTIGGTA GATERASTA ACAGAGGTIG GGTTACCTTC
TGCTCTGCAG AATGGCCAAC CTTTAACGTC GATGGCCGC GAGACAGGTCG CTTTAACCGA
GACCTCATCA CCCAGGTTAA GATCAAGGTC TTTTCACCTG GCGCCCATGG ACACCCAGAC
CCGTTTGTAC CCCAGGTTAA GATCAAGGTC TTTTCACCTG GCGCCATGG ACACCCAGAC
CCGTTTGTAC CCCAGGTTAA GATCAAGGTC TTTTCACCTG GCCCCATGC CTGGGTCAAG
CCGTTTGTAC ACCCTAAGCC TCCGCCTCCT CTTCCTCCAT
CAACCTCCTC GTTCGACCCC GCCTCCATCC TCCCTTTAATC CAGCCCCTCC CTGGGTCAAG
CCGCCCAAAC CTAAAACCTCA AGTTCTTTCT GACAGTGGGG
GCGCCAAAC CTAAAACCTCA AGTTCTTTCT GACAGTGGGG
GCGCCAAAC CTAAAACCTCA AGTTCTTTCT GACAGTGGGG
GCGCCAAAC CTAAAACCTCA AGTTCTTTCT GACAGTGGGG
CGGAGAGAC CGACCCCTC TTGGCCGAC CCGCCCCTT CCCCAATGGC
CCTGGGAGAC CGACCCCTC TTGGCCGAC ACGCCCCCC CCCCAATGGC ACCCGCCCCTT
CCTGGGAGAC CGACCCCTC TCTGGCCGAC CCGCACCCCT CCCCAATGGC ACCCGGACACCC
CCAGGAGGAAA ACGCACCCC TTGTGCCCGAC CCGACCCCT CCCCAATGGC ACCCGGACACTC
CCCGGAGAGAA ACGCACCCC TTGTGCCCGAC CCGACCCCT CCCCAATGGC ACCCGGACACTC
CCCATCAGCC CAACTACCC CAACTGCC CAACTGAAGCC CAACTGACCC CAACTGCC CAACTGCC CAACTGACC CAACTGACC CAACTGACC CAACTGACC CAACTGACC CAACTGACC CAACTGACC CAACTGACC CACCACACTCC CTGGCCCCAACTGCC CAACTGACC CAACTCC CAACTGACC CAACTCC CAACTGACC CAACTCC CAACTGACC CAACTCC CAA GTCGAGCGGA TCGCTCACAA CCAGTCGGTA GATGTCAAGA AGAGACGTTG GGTTACCTTC TGCTCTGCAG AATGGCCAAC CTTTAACGTC GGATGGCCGC GAGACGGCAC CTTTAACCGA AAGCGGGTGG AAGACATCCA CCCCACCGTG CCCAACCCTT ACAACCTCTT GAGCGGGCTC CCACCGTCCC ACCAGTGGTA CACTGTGCTT GATTTAAAGG ATGCCTTTTT CTGCCTGAGA CTCCACCCCA CCAGTCAGCC TCTCTTCGCC TTTGAGTGGA GAGATCCAGA GATGGGAATC

Figure 7. hCMV+intron Sequence

2

	TGACCTGGAC					4140)
GATGAGGCAC	TGCACAGAGA	CCTAGCAGAC	TTCCGGATCC	AGCACCCAGA	CTTGATCCTG	4200	3
CTACAGTACG	TGGATGACTT	ACTGCTGGCC	GCCACTTCTG	AGCTAGACTG	CCAACAAGGT	4260	
	TGTTACAAAC					4320	-
	AGAAACAGGT						-
						4380	
	CCAGAAAAGA					4440	_
CTAAGGGAGT	TCCTAGGGAC	GGCAGGCTTC	TGTCGCCTCT	GGATCCCTGG	GTTTGCAGAA	4500)
ATGGCAGCCC	CCTTGTACCC	TCTCACCAAA	ACGGGGACTC	TGTTTAATTG	GGGCCCAGAC	4560)
CAACAAAAGG	CCTATCAAGA	AATCAAGCAA	GCTCTTCTAA	CTGCCCCAGC	CCTGGGGTTG	4620)
CCAGATTTGA	CTAAGCCCTT	TGAACTCTTT	GTCGACGAGA	AGCAGGGCTA	CGCCAAAGGT	4680	-
	AAAAACTGGG					4740	-
	CAGCTGGGTG					4800	-
3CAAACCAMC	CAGCIGGGIG	AACCAMCCCA	CIACCOARIGO	TAGCAGCCA1	CCCCCATGCA	4000	_
ACAMAGGATG	CAGGCAAGCI	AACCATGGGA	CAGCCACTAG	TCATTCTGGC	CCCCCATGCA		
	TAGTCAAACA					4920	
	TGCTTTTGGA					4980	_
	TGCTCCCACT					5040	0
GCCGAAGCCC	ACGGAACCCG	ACCCGACCTA	ACGGACCAGC	CGCTCCCAGA	CGCCGACCAC	5100	0
ACCTGGTACA	CGGATGGAAG	CAGTCTCTTA	CAAGAGGGAC	AGCGTAAGGC	GGGAGCTGCG	5160	0
GTGACCACCG	AGACCGAGGT	AATCTGGGCT	AAAGCCCTGC	CAGCCGGGAC	ATCCGCTCAG	5220	
	TGATAGCACT					528	
	ATAGCCGTTA					5340	
							-
	TGCTCACATC					540	-
	CCCTCTTTCT					546	
	GCGCCGAGGC					552	-
GCCATCACAG	AGACTCCAGA	CACCTCTACC	CTCCTCATAG	AAAATTCATC	ACCCTACACC	558	0
TCAGAACATT	TTCATTACAC	AGTGACTGAT	ATAAAGGACC	TAACCAAGTT	GGGGGCCATT	564	0
TATGATAAAA	CAAAGAAGTA	TTGGGTCTAC	CAAGGAAAAC	CTGTGATGCC	TGACCAGTTT	570	0
ACTTTTGAAT	TATTAGACTT	TCTTCATCAG	CTGACTCACC	TCAGCTTCTC	AAAAATGAAG	576	0
	AGAGAAGCCA					582	ñ
	AGACCTGCAA					588	
	GGGTCCGCGG					594	-
	GATTGTATGG					600	-
	CCTTCCCAAC					606	-
	TCCCCAGGTT					612	
	AGGTGAGTCA					618	
	GACCCCAAAG					624	-
ACTTTAACTA	AATTAACGCT	TGCAACTGGC	TCTAGAGACT	GGGTGCTCCT	ACTCCCCTTA	630	0
GCCCTGTACC	GAGCCCGCAA	CACGCCGGGC	CCCCATGGCC	TCACCCCATA	TGAGATCTTA	636	0
TATGGGGCAC	CCCCGCCCCT	TGTAAACTTC	CCTGACCCTG	ACATGACAAG	AGTTACTAAC	642	0
AGCCCCTCTC	TCCAAGCTCA	CTTACAGGCT	CTCTACTTAG	TCCAGCACGA	AGTCTGGAGA	648	0
	CAGCCTACCA					654	0
					TCGCTGGAAA	660	
	CAGTCCTGCT					666	
	CCGCCCACGT					672	
						678	
	TTCAACGCTC						-
	AATTCTTCTG					684	
	GGCCACCATG					690	
	AGAGAAGATT					696	
CAATTCGTAC	GAAAACAGGA	GAAATCATTT	CGGCAGTACA	TATTGAAGCG	TATATAGGAC	702	0
GAGTAACTGT	TTGTGCAGAA	GCCATTGCGA	TTGGTAGTGC	AGTTTCGAAT	GGACAAAAGG	708	0
ATTTTGACAC	GATTGTAGCT	GTTAGACACC	CTTATTCTGA	CGAAGTAGAT	AGAAGTATTC	714	0
	TCCTTGTGGT					720	
	AGAAATGAAT					726	
	CCGAAATTAA					730	
			condciin	LCOMMIC			_

Figure 8. hCMV+intronkaSD Sequence

AGATCTCCCG ATCCCCTATG GTCGACTCTC AGTACAATCT GCTCTGATGC CGCATAGTTA TAAGCTACAA CAAGGCAAGG CTTGACCGAC AATTGCATGA AGAATCTGCT TAGGGTTAGG
CGTTTTTCGC TGCTTCGCGA TGTACGGGCC AGATATACGC GTTGACATTA ATTATTGACT
AGTATATAAT AGAATCAAT TACGGGGTCA TTAGTTCATA
CGTTACATAAC TTACGGTAAA TGGCCCGCCT GGCTGACCGC CCAACGACCC CCGCCCATTG
ACGTCAATAA TGACGTATGT TCCCATAGTA ACGCCAATAG GGACTTTCCA TTGACGTCAA
AGTACGCCC CTATTGACGT CAATGACGGT AAATGGCCCG CCTGGCATTA TCCCAGTAC
ATGACCTTAT GGGACTTTCC TACTTGGCAG TACATCTACG
ATGGTGATC GGTTTTGCCA GTACATCAAT GGGCTGGAT AGCGCTTTA
ATGGTGATCC GCTTTTGGCA GTACATCAAT GGGGTTTGT TTTGGCACCA AAATCAACGG
GACTTTCCAAAA AATGTCGTAA CAACTCCCCC CCATTGACCG AAATCAACGG
GACTTTCCAAA AATGTCGTAA CAACTCCCCC CCATTGACCG AAATCAACGG
GACTTTCCAAA AATGTCGTAA CAACTCCCCC CCATTGACCG AAATCAACGG
CACTTTCCAAA AATGTCGTAA CAACTCCCCC CCATTGACCG AAATCAACGG TTTCCAAGTC TCCACCCCAT TGACGTCAAT GGGAGTTTGT TTTGGCACCA AAATCAACGG
GACTTTCCAA AATGTCGTAA CAACTCCGCC CCATTGACGC AAATGGGCGG TAGGCGTGTA
CGGTGGGAGG TCTATATAAG CAGACTCTC TGGCTAACTA GAGAACCCAC TGCTTAACTG
GCTTATCGAA ATGTCGACTG AGAACTTCAG GGTGAGTTTG GGGACCCTTG ATTGTTCTTT
CTTTTTCGCT ATTGTAAAAT TCATGTTATA TGGAGGGGG AAAGTTTCA GGGTGTTGTT
TAGAATGGGA AGATGTCCCT TGTATCACCA TGGACCCTCA TGATAATTTT CTTTCATCTC
CTTTCTACTC TGTTGACAAC CATTGTCACC ACTTTTTTATTTTC TTTTCATTTT TTTTCATTTT
AGATTGTAAC TACTTTCTCT AATCACTTTT TTTTCAAGGC AATCAGGGTA TATTATATTG
TACTTCAGCA CACTTTTTAGA GAACTATTT TTTTCAAGGC AATCAGGGTA TATTATATTG
TACTTCAGCA CACTTTTTAGA GAACTATTT TTTTCAAGGC AATCAGGGTA TATTATATTG
TACTTCAGCA CACTTTTTAGA GAACTATTT TTTTCAAGGC AATCAGGGTA GAATTATTTCT AGATTGTAAG TACTTTCTCT AATCACTTTT TTTTCAAGGC AATCAGGTA TATTATATTG
TACTTCAGGA CAGTTTTAGA GAACAATTGT TATAATTAAA TGATAAGGTA GAATATTTCT
GCATATAAAAT TCTGGCTGGC GTGGAAATAT TCTTATTGGT AGAACAACT ACATCCTGGT
CATCATCCTG CCTTTCTCTT TATGGTTACA ATGATATACA CTGTTTGAGA TGAGGATAAA
ATACTCTGAG TCCAAACCGG GCCCCTCTGC TAACCATGTT CATGCCTTCT TCTTTTTCCT
ACAGCTCCTG GGCAACGTGC TGGTTGTTGT CTCTGTCTAC CATTTTGGCA AGAATTGGCC
GCAAGCTTCT GCAGCATCGT TCCTGTTGTT CTCTGTCTGA CTGTGTTTCT GTATTTGTCT
GAGAATATGG GCCAGACTGT TACCACTCCC TTAAGTTTGA CCTTAGGTCA CTGGAAAGAT GACATATAGG GCCAGACTGT TACCACTCC THAAGITTAG CCHIAGATCA CTGGAAAGAT
GTCGAGCGGA TCGCTCACAA CCAGTCGGTA GATGTCAAGA AGAGACGTTG GGTTACCTTC
TGCTCTGCAG AATGGCCAAC CTTTAACGTC GATGGCCGC GAGACGGCAC CTTTAACCGA
GACCTCATCA CCCAGGTTAA GATCAAGGTC TTTTCACCTG GCCCGGATGG ACACCCAGAC
CAGGTCCCCT ACATCGTGAC CTGGGAAGCC TTGGCTTTTG ACCCCCTTC CTGGGTCAAG
CCCTTTGTAC ACCCTAAGCC TCCGCCTCCT CTTCCTCCAT CCGCCCCGTC TCTCCCCCTT
GAACCTCCTC GTTCGACCCC GCCTCGATCC TCCCTTTATC CAGCCCTCAC TCCTTCTCTA GACCTCCTC GTTGGACCC GCCTGGATC TCCTTTATC CAGCCCTCAC TCCTTCTTA
GGCGCCAAAC CTAAACCTCA AGTTCTTCT GACAGTGGGG GGCCGCTCAT CGACCTACTT
ACAGAAGACC CCCCGCCTTA TAGGGACCCA AGACCACCCC CTTCCGACAG GGACGGAAAT
GGTGGAGAAG CGACCCCTG GGGAGAGGCA CCGGACCCCT CCCCAATGGC ATCTCGCCTA
CGTGGGAGAC GGGAGCCCC TGTGGCCGAC TCCACTACCT CGCAGGCATT CCCCCTCCGC
GCAGGAGGAA ACGGACACCT TCAATACTGG CCGTTCTCCT CTTCTGACCT TTACAACTGG
AAAATAATA ACCCTTCTTT TTCTGAAGAT CCAGGTAAAC TGACAGCTCT GATCGAGTCT
GTTCTCATCA CCCATCAGCC CACCTGGGAC GACTGTTCAGC AGCTGTTGGG GACTTCTGCT

ACCCGACAAC AAAACACC CGCCCTTCTTT GACGCTACAA AGCCCGTGCG GGCCCATGAT GTTCTCATCA CCCATCAGCC EACCTGGGAC GACTGTCAGC AGCTGTTGGG GACTCTGCTG
ACCGGAGAAG AAAAACAACG GGTGCTCTTA GAGGCTAGAA AGGCGGTGCG GGGCGATGAT
GGGCGCCCCA CTCAACTGCC CAATGAAGTC GATGCCGCTT TTCCCCTCGA GCGCCCAGAC
TGGGATTACA CCACCCAGGC AGGACGCAAC CACCTAGTCC ACTATCGCCA GTTGCTCCTA
GCGGGTCTCC AAAACGCGGG CAGAAGCCC ACCAATTTGG CCAAGGTAAA AGGAATAACA
CAAGGGCCCA ATGAGTCTC CTCGGCCTTC CTAGAGAGAC TTAAGGAAGC CTATCGCAGG
TACACTCCTT ATGACCCTGA GGACCCAGGG CAAGAAACTA ATGTGTCTAT GTCTTTCATT
TGGCAGTTC CCCCAGACAT TGGGAGAAAG TTAGAGAGGT TAGAAGATTT AAAAAACAAG
ACGCTTGGAG ATTTGGTTAA AGAGCAGAA AAGATCTTTA ATAAACGAGA AACCCCGGAA
GAAAGAGAGG AACGTATCAG GAGGAAACA GAGGACATA GAGACGCCG TAGGACAGAG
GATGAGCAGA AAGAAAGA AAGAGTTCTT AGGAGACATA GAGACGCCG TAGGACAGAG
GATGAGCAGA AAGAGAAAGA AAGAGTTCTT AGGAGACATA GAGACGCCG TAGGACAGAG
GATGAGCAGA AAGAGAAAGA AAGAGATCGT AGGAGACATA GAGAGCTGG CAACCTTTTTC GATGAGCAGA AAGAGAAAGA AAGAGATCGT AGGAGACATA GAGAGATGAG CAAGCTATTG
GCCACTGTCG TTAGTGGACA GAAACAGGAT AGACAGGGGG GAGAACGAAG GAGACCCCAA
CTCGATCGCG ACCAGTGTC CTACTGCAAA GAAAAGGGGC ACTGGGCTA AGATTGTCCC
AAGAAACCAC GAGGACCTCG GGGACCAAGA CCCCAGACCT CCCTCCTGAC CCTAGATGAC
CAACCCGTCA CCTTCCTGGT AGATACTGGG GCCCAACACCT CCGTGCTGAC CCAAAAATCCT
GGACCCCTAA GTGGATAAGTC TGCCTGGGTC CAAGGGGCTA CTGGAGGAAA GCGGGTATCGC
GTACCAGGG ATCGCAAAGT ACATCTAGCT ACCGGTAAGG TCACCCACCT TTTCCTCCAT
GTACCAGACT GTCCCTATC TCTGTTAGGA AGAGATTTGC TGACCACACAC TGCCCCACACAC
TTGACCACTTG AGGGATCAGG ACCTCAGGTT ATGGGACCAA
ATTCACCTTAG AGGGATCAGG ACCTCAGGTT ATGGGACCAA
ATCCACTTTG AGGGATCAGG TCACATGAGA CCTCAAAAAGA GCCAAATGTT
TCTCTAGGGT CCACATGGCT GTCTGATTT CCTCAGGCCT GGGCGGAAC CGGGGGCATC
GGACTGGCAG TTCGCCAAGC TCCTCTGATC ATACCTCTGA AAGCAACCTC TACCCCCGTTG
GGACTGGCAG TCCGCCAAGAA CCGGGGAAC CGGGGGCATC
GGACTGGCAG TCCCCTGATC ATACCTCTGA AAGCAACCTC TACCCCCGTTG
AGACTGTTGG ACCAGGGAAT ACTGGTACCC TGCCAGACC CCTCAAAAAC
AATACCCCAT GTCACAAGAA GCCAGACTG GGATCAACAC
CCCGTTAAGA AACCACGGGA TATGATTAT AGGCCTGCC CCTGGAACAC
CCCGTTAAGA AACCACGGGAC TAATCATTAT AGGCCTGCC AGGATCTGAG AGAACTCAAC
AAGCGGGTGG AAGACATCCA CCCCACCGTT CCCACCCCTT ACACCCTTTTT CTGCCTGAGA
AAGCCGGTCC AAGACACCTC TACCCCTGCTA
AAGCCGGTCC AAGACACCTC TACCCCTGCTA
AAGCCGGTCC AAGACCTC TACCCCTGCTC
CCCCCTTAAGA AACCACGGGAC TAATCATTAT AGGCCTGCC AGGATCTGAG AGAACTCAAC
AAGCCGGTCC AACCCTTTTT CTGCCTGAGAAC
CCCCTTAAGA AACCACGGAC TAATCATTAT AGGCCTGCC AGGATCTGAG AGAACTCAAC
CCCCCTTAAGA AACCACGGGAC TAATCATTAT AGGCCTGCC AGGATCTGAG AGAACTCAAC
CCCCCTTAAGA AACCACGGGAC TAATCATTAT AGGCCTGCC AGGATCTTT CTGCCTGAGA
AAGCCGTCCC AACACCTT ACACCGCTT ACACCGCTTC
CACCGTCCC ACCACTCT ACACCCTTTTT CTGCCTGAGA GATGAGCAGA AAGAGAAAGA AAGAGATCGT AGGAGACATA GAGAGATGAG CAAGCTATTG CCACCGTCCC ACCAGTGGTA CACTGTGCTT GATTTAAAGG ATGCCTTTTT CTGCCTGAGA CTCCACCCCA CCAGTCAGCC TCTCTTCGCC TTTGAGTGGA GAGATCCAGA GATGGGAATC Figure 8. hCMV+intronkaSD Sequence

2

TCAGGACAAT	TGACCTGGAC	CAGACTCCCA	CAGGGTTTCA	AAAACAGTCC	CACCCTGTTT	•	4140
GATGAGGCAC	TGCACAGAGA	CCTAGCAGAC	TTCCGGATCC	AGCACCCAGA	CTTGATCCTG	•	4200
CTACAGTACG	TGGATGACTT	ACTGCTGGCC	GCCACTTCTG	AGCTAGACTG	CCAACAAGGT		4260
ACTCGGGCCC	TGTTACAAAC	CCTAGGGAAC	CTCGGGTATC	GGGCCTCGGC	CAAGAAAGCC		4320
CAAATTTGCC	AGAAACAGGT	CAAGTATCTG	GGGTATCTTC	TAAAAGAGGG	TCAGAGATGG		4380
	CCAGAAAAGA						4440
CTAAGGGAGT	TCCTAGGGAC	GGCAGGCTTC	TCTCCCCTCT	GGATCCCTGG	COCTOCACAA		
ATGGCAGCCC	CCTTGTACCC	TCTCICCIIC	ACCCCCACTC	TCTTTT A TOTAL	CCCCCCACAC		4500
CARCARAGE	CCTATCAAGA	A A M C A A C C A A	ACGGGGGACTC	CECCCCCCCC	GGGCCCAGAC		4560
CCACAMANGG	CELVICATOR	MAICAAGCAA	CUCCICIAN	LIGCCCCAGC	CCTGGGGTTG		4620
CCAGATITGA	CTAAGCCCTT	1GAACTCTTT	GTCGACGAGA	AGCAGGGCTA	CGCCAAAGGT		4680
GICCIAACGC	AAAAACTGGG	ACCTTGGCGT	CGGCCGGTGG	CCTACCTGTC	CAAAAAGCTA		4740
GACCCAGTAG	CAGCTGGGTG	GCCCCCTTGC	CTACGGATGG	TAGCAGCCAT	TGCCGTACTG		4800
ACAAAGGATG	CAGGCAAGCT	AACCATGGGA	CAGCCACTAG	TCATTCTGGC	CCCCCATGCA		4860
GTAGAGGCAC	TAGTCAAACA	ACCCCCCGAC	CGCTGGCTTT	CCAACGCCCG	GATGACTCAC		4920
TATCAGGCCT	TGCTTTTGGA	CACGGACCGG	GTCCAGTTCG	GACCGGTGGT	AGCCCTGAAC		4980
CCGGCTACGC	TGCTCCCACT	GCCTGAGGAA	GGGCTGCAAC	ACAACTGCCT	TGATATCCTG		5040
GCCGAAGCCC	ACGGAACCCG	ACCCGACCTA	ACGGACCAGC	CGCTCCCAGA	CGCCGACCAC		5100
ACCTGGTACA	CGGATGGAAG	CAGTCTCTTA	CAAGAGGGAC	AGCGTAAGGC	GGGAGCTGCG		5160
GTGACCACCG	AGACCGAGGT	AATCTGGGCT	AAAGCCCTGC	CAGCCGGGAC	ATCCGCTCAG		5220
CGGGCTGAAC	TGATAGCACT	CACCCAGGCC	CTAAAGATGG	CAGAAGGTAA	GAAGCTAAAT		5280
GTTTATACTG	ATAGCCGTTA	TGCTTTTGCT	ACTGCCCATA	TCCATGGAGA	AATATACAGA		5340
AGGCGTGGGT	TGCTCACATC	AGAAGGCAAA	GAGATCAAAA	ATAAAGACGA	GATCTTGGCC		5400
CTACTAAAAG	CCCTCTTTCT	GCCCAAAAGA	CTTAGCATAA	TCCATTGTCC	AGGACATCAA		5460
AAGGGACACA	GCGCCGAGGC	TAGAGGCAAC	CGGATGGCTG	ACCAAGCGGC	CCGAAAGGCA		5520
GCCATCACAG	AGACTCCAGA	CACCTCTACC	CTCCTCATAG	AAAATTCATC	ACCCTACACC		5580
TCAGAACATT	TTCATTACAC	AGTGACTGAT	ATAAAGGACC	TAACCAAGTT	GGGGGCCATT		5640
TATGATAAAA	CAAAGAAGTA	TTGGGTCTAC	CAAGGAAAAC	CTGTGATGCC	TGACCAGTTT		5700
ACTTTTGAAT	TATTAGACTT	TCTTCATCAG	CTGACTCACC	TCAGCTTCTC	AAAAATGAAG		5760
GCTCTCCTAG	AGAGAAGCCA	CAGTCCCTAC	TACATGCTGA	ACCGGGATCG	AACACTCAAA		5820
AATATCACTG	AGACCTGCAA	AGCTTGTGCA	CAAGTCAACG	CCAGCAAGTC	TGCCCTTAAA		5880
CAGGGAACTA	GGGTCCGCGG	GCATCGGCCC	GGCACTCATT	GGGAGATCGA	TTTTCACCAC		5940
ATAAAGCCCG	GATTGTATGG	СПРАВВЕТАТ	COURCICATI	TTATACATAC	CTTTTTTCTCCCAG		6000
TGGATAGAAG	CCTTCCCAAC	CAAGAAAGAA	ACCECCANCE	TOTAGAIAC	CAACCUACUA		
GAGGAGATCT	TCCCCAGGTT	CCCCATCCCT	CACCULATO	CARCTERCAR	TCCCCCTACTA		6060
TTCGTCTCCA	AGGTGAGTCA	CACACTCCCC	CAGGIATIGG	CCAMMCAMAC	CARAMMACAM		6120
TGTGCATACA	GACCCCAAAG	CTCACCCCAC	CENCINATION	TC33T3C33C	CAMATTACAT		6180
ACTOCATACA ACTOTA ACTA	AATTAACGCT	TOTAL DECEMBER	UCMACACACAC	CCCTCCTCCT	CATCAAGGAG		6240
CCCCTCTACC	GAGCCCGCAA	CACCCCCCC	CCCCAMCCCC	GGGTGCTCCT	ACTCCCCTTA		6300
TATEGEGEAC	CCCGCCCCT	TOTAL A A CTITIC	CCCCAIGGCC	ACACCCCATA	TGAGATCTTA		6360
AGCCCCTCTC	TCCAAGCTCA	COLAMACITO	CCIGACCCIG	ACATGACAAG	AGTTACTAAC		6420
CCTCTGGCGG	CAGCCTACCA	ACARCA ACMC	CACCCACCAC	TCCAGCACGA	AGTCTGGAGA		6480
CCICIGGCGG	CAGCCTACCA	AGAACAACTG	GACCGACCGG	TGGTACCTCA	CCCTTACCGA		6540
CCACCERACA	CAGIGIGGGT	CCGCCGACAC	CAGACTAAGA	ACCTAGAACC	TCGCTGGAAA		6600
TCCATACAC	CAGTCCTGCT	GACCACCCCC	ACCGCCCTCA	AAGTAGACGG	CATCGCAGCT		6660
ACAMCCCCCC	CCGCCCACGT	GAAGGCTGCC	GACCCCGGGG	GTGGACCATC	CTCTAGACTG		6720
TA ATTCCCCTT	TTCAACGCTC	TCAAAACCCC	TTAAAAATAA	GGTTAACCCG	CGAGGCCCCC		6780
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	AATTCTTCTG	ATGCTCAGAG	GGGTCAGTAC	TGCTTCGCCC	GGCTCCAGTG		6840
AACTACCCAC	GGCCACCATG	AAAACATTTA	ACATTTCTCA	ACAAGATCTA	GAATTAGTAG		6900
CAATAGCGAC	AGAGAAGATT	ACAATGCTTT	ATGAGGATAA	TAAACATCAT	GTGGGAGCGG		6960
CUUTICGIAC	GAAAACAGGA	GAAATCATTT	CGGCAGTACA	TATTGAAGCG	. TATATAGGAC		7020
AUGUMACIGI	TTGTGCAGAA	GCCATTGCGA	TTGGTAGTGC	AGTTTCGAAT	GGACAAAAGG		7080
CACTCCTA	GATTGTAGCT	GITAGACACC	CTTATTCTGA	CGAAGTAGAT	AGAAGTATTC		7140
THOUCHOUS S	TCCTTGTGGT	ATGTGTAGGG	AGTTGATTTC	AGACTATGCA	CCAGATTGTT		7200
TIGIGITAAT	AGAAATGAAT	GCAAGTTAG	TCAAAACTAC	GATTGAAGAA	CTCATTCCAC		7260
TCAAATATAC	CCGAAATTAA	AAGTTTTACC	ACCAAGCTTA	TCGAATTC			7308

Figure 9. FBdelPASAF Sequence

CATATGCGGT	GTGAAATACC	CCACAGATGC	GTAAGGAGAA	AATACCCCAT	CAGGCCCCAM	. 60
		Concinentice		PILITOCCOCKI	CVGGCGCCVI	
TCGCCATTCA	GGCTGCGCAA	CTGTTGGGAA	GGGCGATCGG	TGCGGGCCTC	TTCGCTATTA	120
CGCCAGCTGG	CGAAAGGGGG	2TGTGCTGC2	ACCCCATTAA	CTTCCCTAAC	CCCACCCMEM	
	COMMOGGGG	AIGIGUIGUA	AGGCGATIAA	GIIGGGIAAC	GCCAGGGTTT	180
TCCCAGTCAC	GACGTTGTAA	AACGACGGCC	AGTGAATTCC	GATTAGTTCA	ATTTGTTAAA	240
CACACCATCE	CAGTAGTCCA	CCCMMMACMC	CTC A CTC A A C	3 3 M3 CC3 CC3	600333360	
GACAGGAICI	CVGIVGICCY	GGCTTTAGTC	CIGACICANC	WHINCONCON	GCTAAAACCA	300
CTAGAATACG	AGCCACAATA	TASAAAAAA	ጥጥጥልጥጥጥልርጥ	TTCCAGAAAA	ACCCCCCAAD	360
				T T CCITOTE TA	YOGGGGWW I	200
GAAAGACCCC	ACCAAATTGC	TTAGCCTGAT	AGCCGCAGTA	ACGCCATTTT	GCAAGGCATG	420
CARRARMACC	AAACCAAGAA	MACACA ACEM	CACAMCAACC	CCCCCTTCC		
GAAAAATACC	MANCCAAGAA	THOMOWNGIT	CHGHICHAGG	GCGGGTACAC	GAAAACAGCT	480
AACGTTGGGC	CAAACAGGAT	ATCTCCCCTC	ACCACTTTCC	GCCCCCCCCCC	CCCCCCAACA	
12100110000	CIMUICITOCITI	41000010	Mochotico	GCCCCGGCCC	ADMADJODO	540
ACAGATGGTC	ACCGCGGTTC	GGCCCCGGCC	CGGGGCCAAG	AACAGATGGT	CCCCAGATAT	600
CCCCCXXCCC	TCAGCAGTTT	COUNTRACTOR	A TOTA CA TOTAL	TCCACCCTCC	000110010	
GGCCAMCCC	ICAGCAGIII	C. IMMGMCCC	ATCAGATGT.	I CCAGGCTCC	CCCAAGGACC	660
TGAAATGACC	CTGTGCCTTA	ጥጥር አልጥጥ አል	CCAATCAGCC	からしかがしかしらし	がのとからかのとこと	720
					1101011000	
GCGCTTCTGC	TTCCCGAGCT	CTATAAAAGA	GCTCACAACC	CCTCACTCGG	CGCGCCAGTC	780
CTCCCATACA	CTGAGTCGCC	CCCCTACCCC	ጥርጥልጥርር እአጥ	A A A TO COTTO	COMOMMOON	
CICCOAIAGA	CIGNGICGCC	CGGGIACCCG	igivicovi	MARICULUIT	GCTGTTGCAT	840
CCGACTCGTG	GTCTCGCTGT	TCCTTGGGAG	GGTCTCCTCA	GAGTGATTGA	CTACCCGTCT	900
CCCCCCCCCC	TCATTTGGGG	CCMCCMCCCC	CIMORCGIOI	2000000000		
CGGGGTCTT	1 CATTIGGGG	GCTCGTCCGG	GATCTGGAGA	CUCCTGCCCA	GGGACCACCG	960
ACCCACCACC	GGGAGGTAAG	CTGGCCAAGA	ጥርጥጥልጥልጥርር	GGCACCCCC	CCCCCCCCCC	1000
1000000000	222222			GGCACCCCC	CCCCIIGIAM	1020
ACTICCCTGA	CCCTGACATG	ACCAGAGTTA	CTAACAGCCC	CTCTCTCCAA	GCTCACTTAC	1080
AGGCTCTCTA	CTTAGTCCAG	CACCAACTOR	CCACACCACT	CCCCCC3 CCB	T1.00110	
MOGCICICIA	CITAGICCAG	CACGAMGIII	GGAGACCACI	GGCGGCAGC1.	TACCAAGAAC	1140
AACTGGACCG	GCCGGTGGTG	CCTCACCCTT	ACCGGGTCGG	CGACACAGTG	TEGETCECC	1200
CACAMCANAC	CIRCINGCON	G11000000	56333366366		100010000	
GACATCAAAC	CAAGAACCTA	GAACCTCGCT	GGAAAGGACC	TTACACAGTC	CTGCTGACCA	1260
CCCCCACCGC	CCTCAAAGTA	GACGGTATCG	CACCTTCCAT	ACACGCAGCC	CACCMANACC	
22222222	oci cintato in	Cheddinied	CHOCITOGAI	ACACGCAGCC	CACGINANGG	1320
CGGCCGACAC	CGAGAGTGGA	CCATCCTCTG	GACGGACATG	GCGCGTTCAA	CGCTCTCAAA	1380
ACCCCCTCAA	GATAAGATTA	ACCCCMCCA A	CCCCMMAAMA	CMC1 Maces C		
WCCCCC TCWW	GATAAGATTA	ACCCGTGGAA	GCCCTTAATA	GTCATGGGAG	TCCTGTTAGG	1440
AGTAGGGATG	GCAGAGAGCC	CCCATCAGGT	CTTTA ATCTA	ACCTGGAGAG	mesees seem	1500
CATCA CTOCO				ACCIGGAGAG	1 CACCAACC1	1500
GATGACTGGG	CGTACCGCCA	ATGCCACCTC	CCTCCTGGGA	ACTGTACAAG	ATGCCTTCCC	1560
ጥልጥልጥጥልፈፈፈ	TTTGATCTAT	CTCATCTCCT	CCCACACCAC	TCCCACCCDD	CACACCACCA	
	TITURICIRI	GIGHTCIGGI	COGRORGE	IGGGWCCCLL	CAGACCAGGA	1620
ACCGTATGTC	GGGTATGGCT	GCAAGTACCC	CGCAGGGAGA	CAGCGGACCC	GGACTTTTGA	1680
COMPAND A COMP	TOCOCO	3 M3 CCC M3 3 3	CMCCCCCCCC	22222222		
CITTIACGIG	TGCCCTGGGC	ATACCGTAAA	01.0000101	GGGGGACCAG	GAGAGGGCTA	1740
CTGTGGTAAA	TGGGGGTGTG	AAACCACCGG	ACAGGCTTAC	TGGAAGCCCA	CATCATCCTC	1800
CCACOMAAMO	MCCCCMM11cc			TOGITAGECEN	CHICHICGIG	
GGACCTAATC	TCCCTTAAGC	GCGGTAACAC	CCCCTGGGAC	ACGGGATGCT	CTAAAGTTGC	1860
CTGTGGCCCC	TGCTACGACC	ጥርጥርር እ እ አርጥ	አምሮሮ አ አምምሮሮ	TOTO CA ACCCC	Cm3 CmCC3 CC	
	TOCIACOACC	TCTCCAAAGI	AICCAAIICC	LICCHAGGGG	CTACTCGAGG	1920
GGGCAGATGC	AACCCTCTAG	TCCTAGAATT	CACTGATGCA	GGAAAAAAGG	CTAACTGGGA	1980
CGGGCCCAAA	TCGTGGGGAC	meses emems	CCCC3 C3 CCT	101010000		
COCCCAM	regreedenc	IGAGACIGIA	CCGGACAGGA	ACAGATCCTA	TTACCATGTT	2040
CTCCCTGACC	CGGCAGGTCC	TTAATGTGGG	ACCCCGAGTC	CCCATAGGGC	CCAACCCAGT	2100
አምመአርርርርአር	CAAAGACTCC	CDBCCBCACC	1101616100		001110001	
ATTACCCGAC	CHARGACICE	CITCCICACC	WATAGWGWI.I.	GTACCGGCTC	CACAGCCACC	2160
TAGCCCCCTC	AATACCAGTT	ACCCCCCTTC	CACTACCAGT	ACACCCTCAA	CCTCCCCTXC	2220
A A CECCA A CE	000000000			MONCCCICAL	CCICCCIAC	
AAGTCCAAGT	GTCCCACAGC	CACCCCCAGG	AACTGGAGAT	AGACTACTAG	CTCTAGTCAA	2280
AGGAGCCTAT	CAGGCGCTTA	ACCTCACCAA	TOCCOMONAC	ACCCAACAAM	COMPACAMANA	-
	CAUGUGUIA	VCC 1 CVC CVV	ICCCGMCMAG	MCCCAMGAMI.	GTTGGCTGTG	2340
CTTAGTGTCG	GGACCTCCTT	ATTACGAAGG	AGTAGCGGTC	GTGGGCACTT	ATACCAATCA	2400
TTCCXCCCCT	CCGGCCAACT	CMACCCCCAAC	MMCCCC > > C > M	1100000000		
I I CCACCGCI	CCGGCCAACI	GIACGGCCAC	TTCCCAACAT	AAGCTTACCC	TATCTGAAGT	2460
GACAGGACAG	GGCCTATGCA	TGGGGGCAGT	ACCTAAAACT	CACCAGGCCT	TATCTA ACAC	2520
C1 CCC1 1 1 CC	CCCCCCCCCCC			CITCUITO CC I	INIGIAACAC	
CACCCAAAGC	GCCGGCTCAG	GATCCTACTA	CCTTGCAGCA	CCCGCCGGAA	CAATGTGGGC	2580
TTGCAGCACT	GGATTGACTC	CCTCCTTCTC	CACCACGGTG	CTC A A TCC TA A	CCACACAMMA	
WDCDCD3 CD3			Chechegoro	CICARICIAA	CCACAGATTA	2640
TIGIGIATIA	GTTGAACTCT	GGCCCAGAGT	AATTTACCAC	TCCCCCGATT	ATATGTATGG	2700
ጥር አርር ጥጥር አ አ	CAGCGTACCA	224444444	ACACCCACEA	MC3 MMC1 CCC	000000000	
i chioci i chin	CAGCGIACCA	WILLIAM	MGMGCCMGIM	TCATTGACCC	TGGCCCTTCT	2760
ACTAGGAGGA	TTAACCATGG	GAGGGATTGC	AGCTGGAATA	GGGACGGGGA	CCACTCCCTT	2820
AATTAAAACC	CAGCAGTTTG	ACCACCOMCA	mccccmx mo	CACACACACA	MO334003300	
	CAGCAGILIG	VACUACTICA	TOCCOCTATO	CHUMCAGACC	TCAACGAAGT	2880
CGAAAAGTCA	ATTACCAACC	TAGAAAAGTC	ACTGACCTCG	TTGTCTGAAG	TAGTCCTACA	2940
GAACCGCAGA	GGCCTAGATT	THE CHE WINCOM	AAACCACCCA	CCITCITCACC	~~~~~~~~~~~	
COLOCACA	GGCCIAGAII	IGCINITICET	AAAGGAGGA	GGTCTCTGCG	CAGCCCTAAA	3000
AGAAGAATGT	TGTTTTTATG	CAGACCACAC	GGGGCTAGTG	AGAGACAGCA	TCCCCAAATT	3060
2262622266	COMA AMOACA	CICIERRA	10000010101	5555515555	1000011111	
. Didition of	CTTAATCAGA	GACAAAAACI	MITTGAGACA	GGCCAAGGAT	GGTTCGAAGG	3120
GCTGTTTAAT	AGATCCCCCT	GGTTTACCAC	CTTAATCTCC	ACCATCATGG	CACCTCTAAT	3180
አርጥ አርጥርጥጠ አ	CEC3 ECEM3 O	MCMMMCC1 CC		110011100	GRCC1C17641	3200
LIGIACICITA	CIGNICITAC	TCTTTGGACC	TIGCATICIC	AATCGATTAG	TTCAATTTGT	3240
TAAAGACAGG	ATCTCAGTAG	TCCAGGCTTT	AGTCCTGACT	CAACAATACC	ACCAGCTAAA	3300
CCCMAMACAC	maccacca: ~	1000000000			13C/CLOC TUNA	2200
CCTATACAG	LACGAGCCAT	AGGGCGCCTA	GTGTTGACAA	TTAATCATCG	GCATAGTATA	3360
CGGCATAGTA	TAATACGACT	CACTATAGGA	GGGCCACCAM	GGCCA ACTION	ACCAGTGCCG	2420
		CUCTUTUON	COCCACCAT	COCCUMO I I'G	WCCWG.10CCG	3420
LICUGGIGCT	CACCGCGCGC	GACGTCGCCG	GAGCGGTCGA	GTTCTGGACC	GACCGGCTCG	3480
GCTTCTCCC	CC2 CTTTCCTC	GAGGACCACO	mccccccmcm	CCMCCCCCC	GACGTGACCC	3546
	CONCITCOIG	GAGGACGACT.	10000000101	COTHUGGGAC	GACGTGACCC	3540
TGTTCATCAG	CGCGGTCCAG	GACCAGGTGG	TGCCGGACAA	CACCCTGGCC	TGGGTGTGGG	3600
TCCCCCCCC	CCACCACCE	MACCOCCA CT			100010100	3000
- GCGCGGCCT	GGACGAGCTG	LACGCCGAGT	GGTCGGAGGT	CGTGTCCACG	AACTTCCGGG	3660
ACGCCTCCGG	GCCGGCCATG	ACCGAGATCG	GCGAGCAGCC	GTGGGGGGGGG	GAGTTCGCCC	3720 -
TOCOCO A COCO	000000011	MODOROGIC			CAG LICECCC	3140
LGCGCGACCC	GGCCGCAAC	TGCGTGCACT	TCGTGGCCGA	GGAGCAGGAC	TGANNNNCGG	3780
ACCGGTCGAC	ብተርሳጥ <u>አ</u> ጀርተጥ	C山山山 2 山山(コン)	COMMIS MIS SING	COMPANY	AAGCAATAGC	2040
300303330	MANA		GCTIWIWIG	GITACHANTA	MAGCMATAGC	3840
ATCACAAATT	TCACAAATAA	AGCATTTTTT	TCACTGCATT	CTAGTTGTGG	TTTCTCC233	3900
CTCATCAATC	ጥልጥርጥጥልጥርን	TOTO TOTO TOTO	CACAMOMOCO	CCCAMCCCCC	CGCGGATCGA	3200
	TUTCTIVICA	TOTALOGATO	CAGATUTGGG	CCCATGCGGC	CGCGGATCGA	3960
TNNNNACATG	TGAGCAAAAG	GCCAGCAAAA	GGCCAGGAAC	CGTAAAAAGG	CCGCGTTGCT	4020
CCCCTTTTTTT	CATACCOMOC	CCCCCCCCC	CCACCASTO	7177777777	GCTCAAGTCA	9020
		GULLUCUTGA	CGAGCATCAC	AAAAATCGAC	GCTCAAGTCA	4080

Figure 9. FBdelPASAF Sequence

GAGGTGGCGA	AACCCGACAG	GACTATAAAG	ATACCAGGCG	TTTCCCCCTG	GAAGCTCCCT	4140
CGTGCGCTCT	CCTGTTCCGA	CCCTGCCGCT	TACCGGATAC	CTGTCCGCCT	TTCTCCCTTC	4200
GGGAAGCGTG	GCGCTTTCTC	AATGCTCACG	CTGTAGGTAT	CTCAGTTCGG	TGTAGGTCGT	4260
TCGCTCCAAG	CTGGGCTGTG	TGCACGAACC	CCCCGTTCAG	CCCGACCGCT	GCGCCTTATC	4320
CGGTAACTAT	CGTCTTGAGT	CCAACCCGGT	AAGACACGAC	TTATCGCCAC	TGGCAGCAGC	4380
CACTGGTAAC	AGGATTAGCA	GAGCGAGGTA	TGTAGGCGGT	GCTACAGAGT	TCTTGAAGTG	4440
GTGGCCTAAC	TACGGCTACA	CTAGAAGGAC	AGTATTTGGT	ATCTGCGCTC	TGCTGAAGCC	4500
AGTTACCTTC	GGAAAAAGAG	TTGGTAGCTC	TTGATCCGGC	AAACAAACCA	CCGCTGGTAG	4560
CGGTGGTTTT	TTTGTTTGCA	AGCAGCAGAT	TACGCGCAGA	AAAAAAGGAT	CTCAAGAAGA	4620
TCCTTTGATC	TTTTCTACGG	GGTCTGACGC	TCAGTGGAAC	GAAAACTCAC	GTTAAGGGAT	4680
TTTGGTCATG	AGATTATCAA	AAAGGATCTT	CACCTAGATC	CTTTTAAATT	AAAAATGAAG	4740
TTTTAAATCA	ATCTAAAGTA	TATATGAGTA	AACTTGGTCT	GACAGTTACC	AATGCTTAAT	4800
CAGTGAGGCA	CCTATCTCAG	CGATCTGTCT	ATTTCGTTCA	TCCATAGTTG	CCTGACTCCC	4860
CGTCGTGTAG	ATAACTACGA	TACGGGAGGG	CTTACCATCT	GGCCCCAGTG	CTGCAATGAT	4920
ACCGCGAGAC	CCACGCTCAC	CGGCTCCAGA	TTTATCAGCA	ATAAACCAGC	CAGCCGGAAG	4980
GGCCGAGCGC	AGAAGTGGTC	CTGCAACTTT	ATCCGCCTCC	ATCCAGTCTA		5040
CCGGGAAGCT	AGAGTAAGTA	GTTCGCCAGT	TAATAGTTTG	CGCAACGTTG	TTGCCATTGC	5100
TACAGGCATC	GTGGTGTCAC	GCTCGTCGTT	TGGTATGGCT	TCATTCAGCT	CCGGTTCCCA	5160
ACGATCAAGG	CGAGTTACAT	GATCCCCCAT		AAAGCGGTTA	GCTCCTTCGG	5220
TCCTCCGATC	GTTGTCAGAA	GTAAGTTGGC	CGCAGTGTTA		TTATGGCAGC	5280
ACTGCATAAT	TCTCTTACTG	TCATGCCATC	CGTAAGATGC		CTGGTGAGTA	5340
CTCAACCAAG	TCATTCTGAG	AATAGTGTAT	GCGGCGACCG		GCCCGGCGTC	5400
AATACGGGAT	AATACCGCGC	CACATAGCAG				5460
TTCTTCGGGG	CGAAAACTCT	CAAGGATCTT		AGATCCAGTT	++	5520
CACTCGTGCA	CCCAACTGAT	CTTCAGCATC	TTTTACTTTC	ACCAGCGTTT		5580
AAAAACAGGA	AGGCAAAATG	CCGCAAAAAA	• • • • • • • • •		AATGTTGAAT	5640
ACTCATACTC	TTCCTTTTTC	AATATTATTG	AAGCATTTAT	CAGGGTTATT		5700
CGGATACATA	TTTGAATGTA	TTTAGAAAAA	TAAACAAATA	GGGGTTCCGC	GCACATTTCC	5760
CCGAAAAGTG	CCACCTGACG	TCTAAGAAAC	CATTATTATC		CCTATAAAAA	5820
TAGGCGTATC	ACGAGGCCCT	TTCGTCTCGC	*		AAAACCTCTG	5880
ACACATGCAG		CGGTCACAGC			GGAGCAGACA	5940
AGCCCGTCAG			CGGGTGTCGG	GGCTGGCTTA	ACTATGCGGC	6000
ATCAGAGCAG	ATTGTACTGA	GAGTGCAC				6028

Figure 10. FBdelPMOSAF Sequence

CATATGCGGT	GTGAAATACC	GCACAGATGC	GTAAGGAGAA	AATACCGCAT	CAGGCGCCAT	60
						_
		CTGTTGGGAA				120
CGCCAGCTGG	CGAAAGGGGG	ATGTGCTGCA	AGGCGATTAA	GTTGGGTAAC	GCCAGGGTTT	180
		AACGACGGCC				
						240
GACAGGATCT	CAGTAGTCCA	GGCTTTAGTC	CTGACTCAAC	AATACCACCA	GCTAAAACCA	. 300
CTAGAATACG	AGCCACAATA	AATAAAAGAT	ጥጥልጥጥጥልርጥ	TTCCAGAAAA	AGGGGGGAAT	
						360
GAAAGACCCC	ACCAAATTGC	TTAGCCTGAT	AGCCGCAGTA	ACGCCATTTT	GCAAGGCATG	420
CZZZZZTZCC	AAACCAAGAA	TAGAGAAGTT	CAGATCAAGG	GCGGGTACAC	GAAAACAGCT	480
		ATCTGCGGTG				540
ACAGATGGTC	ACCGCGGTTC	GGCCCCGGCC	CGGGGCCAAG	AACAGATGGT	CCCCAGATAT	600
		CTTAAGACCC				
						660
TGAAATGACC	CTGTGCCTTA	TTTGAATTAA	CCAATCAGCC	TGCTTCTCGC	TTCTGTTCGC	720
CCCCTTCTCC	TTCCCGAGCT	CTATAAAAGA	GCTCACAACC	CCTCACTCCC	CCCCCCACTC	
						780
CTCCGATAGA	CTGAGTCGCC	CGGGTACCCG	TGTATCCAAT	AAATCCTCTT	GCTGTTGCAT	840
CCGACTCGTG	GTCTCGCTGT	TCCTTGGGAG	GGTCTCCTCA	GAGTGATTGA	CTACCCGTCT	900
		GCTCGTCCGG				
						960
ACCCACCACC	GGGAGGTAAG	CTGGCCAAGA	TCTTATATGG	GGCACCCCCG	CCCCTTGTAA	1020
		ACAAGAGTTA				
						1080
AGGCTCTCTA	CTTAGTCCAG	CACGAAGTCT	GGAGACCTCT	GGCGGCAGCC	TACCAAGAAC	1140
		CCTCACCCTT				1200
GACACCAGAC	TAAGAACCTA	GAACCTCGCT	GGAAAGGACC	TTACACAGTC	CTGCTGACCA	1260
CCCCCACCGC	CCTCAAAGTA	GACGGCATCG	CAGCTTGGAT	ACACGCCGCC	CACGTGAAGG	1320
		CCATCCTCTA				1380
ACCCCTTAAA	AATAAGGTTA	ACCCGCGAGG	CCCCCTAATC	CCCTTAATTC	T	1440
		CGCCCGGCTC				
						1500
GGAGGTAACC	AATGGAGATC	GGGAGACGGT	ATGGGCAACT	TCTGGCAACC	ACCCTCTGTG	1560
GACCTGGTGG	CCTGACCTTA	CCCCAGATTT	ATCTATCTTA	GCCCACCATG	GACCATCTTA	1620
		CCCCTTTTTC				1680
GGGCAGCAGC	CCAGGCTGTT	CCAGAGACTG	CGAAGAACCT	TTAACCTCCC	TCACCCCTCG	1740
		GACTCAAGCT				1800
ATTTTATGTT	TGCCCCGGGC	CCCACCGCCC	CCGAGAATCC	AAGTCATGTG	GGGGTCCAGA	1860
CTCCTTCTAC	TGTGCCTATT	GGGGCTGTGA	GACAACCGGT	AGAGCTTACT	GGAAGCCCTC	1920
		CAGTAAACAA				
CICATCATGG	GATTTCATCA	CAGTAAACAA	CAATCTCACC	TCTGACCAGG	CTGTCCAGGT	1980
ATGCAAAGAT	AATAAGTGGT	GCAACCCCTT	AGTTATTCGG	TTTACAGACG	CCGGGAGACG	2040
		GACATTACTG				
						2100
TCCAGGGCTT	ACATTTGGGA	TCCGACTCAG	ATACCAAAAT	CTAGGACCCC	GCGTCCCAAT	2160
AGGGCCAAAC	CCCGTTCTGG	CAGACCAACA	GCCACTCTCC	AACCCCAAAC	CHCHHA ACHC	.2220
		CCAGTGGGAC				2280
GGGAACGGAA	AATAGGCTGC	TAAACTTAGT	AGACGGAGCC	TACCAAGCCC	TCAACCTCAC	2340
		AGTGCTGGTT				2400
		CCTACTCCAA				2460
GGCCTCCCAA	CACAAGTTGA	CCCTGTCCGA	AGTGACCGGA	CAGGGACTCT	GCATAGGAGC	2520
ACTOCCCAAA	ACACAMCACC	CCCTATGTAA	MACCACCÓAC	36336666	CACCOMCOMA	
						2580
TTATCTAGTT	GCCCCTACAG	GTACCATGTG	GGCTTGTAGT	ACCGGGCTTA	CTCCATGCAT	2540
CTCCACCACC	AMACTGAACC	TTACCACTGA	ውም ውም ውም ውጭ	CTTCTCCAAC	TOTACOCA AC	2700
AGTCACCTAT	CATTCCCCCA	GCTATGTTTA	CGGCCTGTTT	GAGAGATCCA	ACCGACACAA	2760
AAGAGAACCG	GTGTCGTTAA	CCCTGGCCCT	ATTATTGGGT	GGACTAACCA	TGGGGGGAAT	2820
		GGACTACTGC				2880
		ATCTCAGGGA				2940
GTCTCTCACT	TCCCTGTCTG	AAGTTGTCCT	ACAGAATCGA	AGGGGCCTAG	ልርጥጥርንጥጥልጥጥ	3000
		GTGCTGCTCT				3060
						2 2 2 2
CACAGGACTA	GTGAGAGACA	GCATGGCCAA	ATTGAGAGAG	AGGCTTAATC	AGAGACAGAA	3120
ACTGTTTGAG	TCAACTCAAG	GATGGTTTGA	GGGACTGTTT	AACAGATCCC	CTTGGTTTAC	3180
CACCOMONANA	TOTAL COLUMN	mccc3 cccom	CAMMONACOC			2240
CACCITGATA	TCTACCATTA	TGGGACCCCT	CATTGTACTC	CTAATGATTT	TGCTCTTCGG	3240
ACCCTGCATT	CTTAATCGAT	TAGTTCAATT	TGTTAAAGAC	AGGATCTCAG	TAGTCCAGGC	3300
					CATAGGGCGC	
					ACTCACTATA	
GGAGGGCCAC	CATGGCCAAG	TTGACCAGTG	CCGTTCCGGT	GCTCACCGCG	CGCGACGTCG	3480
CCCCACCCC	CCACIMCMCC	ACCCACCCC	mccccmmcmc	CCCCCTCCCC	GTGGAGGACG	3540
TOUNGCUCT	COMOTTCIGG	ACCUACCIGGC	LUGGGTTCTC	CCGGGACTTC	GIGGAGGACG	3340
ACTTCGCCGG	TGTGGTCCGG	GACGACGTGA	CCCTGTTCAT	CAGCGCGGTC	CAGGACCAGG	3600
TGGTGCCGCA	CAACACCCTC	CCCTCCTC	CCCTCCCCC	CCTCCACCAC	CTGTACGCCG	3660
1.COCCCCCCC	COMOCOCCIO	200100101	20010000	CCIGOACGAG	CIGINCULU	2000
					ATGACCGAGA	
TCGGCGAGCA	GCCGTGGGGG	CGGGAGTTCG	CCCTGCGCGA	CCCGGCCGGC	AACTGCGTGC	3780
VCDDCCGGGGG	CCACCACCAC	CACTCANADA	CCCACCCCEC	CACMMOMME	CTTGTTTATT	3840
2011001000	UAJUNUCAG	GWCIGWMNNN	COUNCIDER	GACTIGITAA	CTTGTTTATT	2040
GCAGCTTATA	ATGGTTACAA	ATAAAGCAAT	AGCATCACAA	ATTTCACAAA	TAAAGCATTT	3900
TTTTCACTGC	ATTCTAGTTG	TCCTTTCTC	AAACTCATCA	א תרשטים ערביים א	TCATGTCTGG	3960
AUCCACAMOM	CCCCCCAMCC			AMORRAL		4000
ALCCAGATCT	GGGCCCATGC	GGCCGCGAT	CGATMMNNAC	ATGTGAGCAA	AAGGCCAGCA	4020
AAAGGCCAGG	AACCGTAAAA	AGGCCGCGTT	GCTGGCGTTT	TTCCATAGGC	TCCGCCCCCC	4080

Figure 10. FBdelPMOSAF Sequence 2

			•			
TGACGAGCAT	CACAAAAATC	GACGCTCAAG	TCAGAGGTGG	CGAAACCCGA	CAGGACTATA	- 4140
AAGATACCAG	GCGTTTCCCC	CTGGAAGCTC	CCTCGTGCGC	TCTCCTGTTC	CGACCCTGCC	4200
GCTTACCGGA	TACCTGTCCG	CCTTTCTCCC	TTCGGGAAGC	GTGGCGCTTT	CTCAATGCTC	4260
ACGCTGTAGG	TATCTCAGTT	CGGTGTAGGT	CGTTCGCTCC	AAGCTGGGCT	GTGTGCACGA	4320
ACCCCCCGTT	CAGCCCGACC	GCTGCGCCTT	ATCCGGTAAC	TATCGTCTTG	AGTCCAACCC	4380
GGTAAGACAC	GACTTATCGC	CACTGGCAGC	AGCCACTGGT	AACAGGATTA	GCAGAGCGAG	4440
GTATGTAGGC	GGTGCTACAG	AGTTCTTGAA	GTGGTGGCCT	AACTACGGCT	ACACTAGAAG	4500
GACAGTATTT	GGTATCTGCG	CTCTGCTGAA	GCCAGTTACC	TTCGGAAAAA	GAGTTGGTAG	4560
CTCTTGATCC	GGCAAACAAA	CCACCGCTGG	TAGCGGTGGT	TTTTTTGTTT	GCAAGCAGCA	4620
GATTACGCGC	AGAAAAAAAG	GATCTCAAGA	AGATCCTTTG	ATCTTTTCTA	CGGGGTCTGA	4680
CGCTCAGTGG	AACGAAAACT	CACGTTAAGG	GATTTTGGTC	ATGAGATTAT	CAAAAAGGAT	4740
CTTCACCTAG	ATCCTTTTAA	ATTAAAAATG	AAGTTTTAAA	TCAATCTAAA	GTATATATGA	4800
GTAAACTTGG	TCTGACAGTT	ACCAATGCTT	AATCAGTGAG	GCACCTATCT	CAGCGATCTG	4860
TCTATTTCGT	TCATCCATAG	TTGCCTGACT	CCCCGTCGTG	TAGATAAÇTA	CGATACGGGA	4920
GGGCTTACCA	TCTGGCCCCA	GTGCTGCAAT	GATACCGCGA	GACCCACGCT	CACCGGCTCC	4980
AGATTTATCA	GCAATAAACC	AGCCAGCCGG	AAGGGCCGAG	CGCAGAAGTG	GTCCTGCAAC	5040
TTTATCCGCC	TCCATCCAGT	CTATTAATTG	TTGCCGGGAA	GCTAGAGTAA	GTAGTTCGCC	5100
AGTTAATAGT	TTGCGCAACG	TTGTTGCCAT	TGCTACAGGC	ATCGTGGTGT	CACGCTCGTC	5160
GTTTGGTATG	GCTTCATTCA	GCTCCGGTTC	CCAACGATCA	AGGCGAGTTA	CATGATCCCC	5220
CATGTTGTGC	AAAAAAGCGG	TTAGCTCCTT	CGGTCCTCCG	ATCGTTGTCA	GAAGTAAGTT	5280
GGCCGCAGTG	TTATCACTCA	TGGTTATGGC	AGCACTGCAT	AATTCTCTTA	CTGTCATGCC	5340
ATCCGTAAGA	TGCTTTTCTG	TGACTGGTGA	GTACTCAACC	AAGTCATTCT	GAGAATAGTG	5400
TATGCGGCGA	CCGAGTTGCT	CTTGCCCGGC	GTCAATACGG	GATAATACCG	CGCCACATAG	5460
CAGAACTTTA	AAAGTGCTCA	TCATTGGAAA	ACGTTCTTCG	GGGCGAAAAC	TCTCAAGGAT	5520
CTTACCGCTG	TTGAGATCCA	GTTCGATGTA	ACCCACTCGT	GCACCCAACT	GATCTTCAGC	5580
ATCTTTTACT	TTCACCAGCG	TTTCTGGGTG	AGCAAAAACA	GGAAGGCAAA	ATGCCGCAAA	5640
AAAGGGAATA	AGGGCGACAC	GGAAATGTTG			TTCAATATTA	5700
TTGAAGCATT	TATCAGGGTT	ATTGTCTCAT			GTATTTAGAA	5760
AAATAAACAA	ATAGGGGTTC		TCCCCGAAAA			5820
AACCATTATT	ATCATGACAT	•••	AAATAGGCGT			5880
CGCGCGTTTC	GGTGATGACG	•	CTGACACATG			5940
AGCTTGTCTG	TAAGCGGATG		ACAAGCCCGT			6000
TGGCGGGTGT	CGGGGCTGGC	TTAACTATGC	GGCATCAGAG	CAGATTGTAC	TGAGAGTGCA	6060
C						6061

Figure 11. FBdelPGASAF Sequence

CATATGCGGT GTGAAATACC GCACAGATGC GTAAGGAGAA AATACCGCAT CAGGCGCCAT TCGCCATTCA GGCTGCGCAA CTGTTGGGAA GGGCGATCGG TGCGGGCCTC TTCGCTATTA TCGCCATTCA GGCTGCGCAA CTGTTGGGAA GGGCGATCGG TGCGGGCTC TTCGCTATTA
CGCCAGCTGG CGAAAGGGGG ATGTGCTGCA AGGCGATTAA GTTGGGTAAC GCCAGGGTTT
TCCCAGTCAC GACGTTGTAA AACGACGGCC AGTGAATTCC GATTAGTTCA ATTTGTTAAA
GACAGGATCT CAGTAGTCCA GGCTTTAGTC CTGACTCAAC AATACCACCA GCTAAAACCA
CTAGAATACG AGCCACAATA AATAAAAGAT TTTATTTAGT TTCCAGAAAA AGGGGGGAAT
GAAAGACCCC ACCAAATTGC TTAGCCTGAT AGCCGCAGTA ACGCCATTTT GCAAGGCATG
GAAAAAACCA AAACCAAGAA TAGAGAAGTT CAGATCAAGG GCGGGTACAC GAAAACAGCT AACGTTGGGC CAAACAGGAT ATCTGCGGTG AGCAGTTTCG GCCCCGGCCC GGGGCCAAGA ACAGATGGTC ACCGCGGTTC GGCCCCGGCC CGGGGCCAAG AACAGATGGT CCCCAAGATAT GGCCCAACCC TCAGCAGTTT CTTAAGACCC ATCAGATGTT TCCAGGCTCC CCCAAGGACC ACCCACCACC GGGAGGTAAG CTGGCCAAGA TCCCTAAGGT ACTCGGGTCA GACAATGGCC CGGCCTTTGT TGCTCAGGTA AGTCAGGGAC TGGCCACTCA ACTGGGGATA AATTGGAAGT TACATTGTGC GTATAGACCC CAGAGCTCAG GTCAGGTAGA AAGAATGAAC AGAACAATTA TACATTGTCC GTATAGACCC CAGAGCTCAG GTCAGGTAGA AAGAATGAAC AGAACAATTA
AAGAGACCTT GACCAAATTA GCCTTAGAGA CCGGTGGAAA AGACTGGGTG ACCCTCCTTC
CCTTAGCGCT GCTTAGGGCC AGGAATACCC CTGGCCGGTT TGGTTTAACT CCTTATGAAA
TTCTCTATGG AGGACCACC CCCTACTTG AGTCTGGAGA AACTTTGGGT CCCGATGATA
GATTTCTCCC TGTCTTATTT ACTCACTTAA AGGCTTTAGA AATTGTAAGG ACCCAAATCT
GGGACCAGAT CAAAGAGGTG TATAAGCCTG GTACCGTAAC AATTCCCTCAC CCGTTCCAGG
TCGGGGATCA AGTGCTTGCCTG AGACCCACCAG CCCTTGAGCCT CGGTGGAAAG
GCCCATACCT GGTGTTGCCTG ACTACCCCGA CCCCCGTAAA AGTCCTTCCGT AAAAGACAGT TAGAGCGCA GAAAAGCAA AACTGGTATG AAGGATGGTT CAATAACTCC
CCTTGGTTCA CTACCCTGCT ATCAACCATC GCTGGGCCC TATTACTCCT CCTTCTGTTG
CTCATCCTCG GGCCATGCAT CATCAATCGA TTAGTTCAAT TTGTTAAAGA CAGGATCTCA
GTAGTCCAGG CTTTAGTCCT GACTCAACAA TACCACCAGC TAAAGCCTAT AGAGTACGAG
CCATAGGGCG CCTAGTGTTG ACAATTAATC ATCGGCATAG TATACGGCAT AGTATAATAC
CACTCACTAT AGAGCCCA CCTACCCCA CTACCACCAGC TAAAGCCCAT AGTATAATAC GACTCACTAT AGGAGGGCCA CCATGGCCAA GTTGACCAGT GCCGTTCCGG TGCTCACCGC GCGCGACGT GCCGGACGT GCCGGACGT CCCGGGACGT CCCGGGACGT CCCGGGACGT CCCGGGACGT CCCGGGACGT CCAGGACCAG GACTTCCGC GGACGACGT ACCCTGTTCA TCAGCGCGGT CCAGGACCAG GTGGTGCCG ACACACCCT GGCCTGGGT TGGGTGCCG GCCTGGACGA GCTGTACCGC GACTGGTCC AGGTCCTGT CACGGACGTC CCGGGACGCC CCGGGCCGGC ATCCCCGACGACGT CCCGGACGCC CCCGGCCGGC CATGACCGAG ATCGGCGAGC AGCCGTGGGG GCGGGAGTTC GCCCTGCGC ACCCGGCCGG CAACTGCGTG CACTTCGTGG CCGAGGAGCA GGACTGANNN NCGGACCGGT CGACTTGTTA

Figure 11. FBdelPGASAF Sequence

_

ACTTGTTTAT	TGCAGCTTAT	AATGGTTACA				_ 4140
ATAAAGCATT	TTTTTCACTG	CATTCTAGTT	GTGGTTTGTC	CAAACTCATC	AATGTATCTT	4200
ATCATGTCTG	GATCCAGATC	TGGGCCCATG	CGGCCGCGGA		CATGTGAGCA	4260
AAAGGCCAGC	AAAAGGCCAG	GAACCGTAAA	AAGGCCGCGT	TGCTGGCGTT	TTTCCATAGG	4320
CTCCGCCCCC	CTGACGAGCA	TCACAAAAAT				4380
	AAAGATACCA			CCCTCGTGCG	CTCTCCTGTT	4440
CCGACCCTGC	CGCTTACCGG	ATACCTGTCC	GCCTTTCTCC	CTTCGGGAAG	CGTGGCGCTT	4500
TCTCAATGCT	CACGCTGTAG		TCGGTGTAGG	TCGTTCGCTC	CAAGCTGGGC	4560
TGTGTGCACG	AACCCCCCGT	TCAGCCCGAC	CGCTGCGCCT	TATCCGGTAA	CTATCGTCTT	4620
GAGTCCAACC	CGGTAAGACA	CGACTTATCG	CCACTGGCAG	CAGCCACTGG	TAACAGGATT	4680
AGCAGAGCGA	GGTATGTAGG					4740
			GCTCTGCTGA		CTTCGGAAAA	4800
AGAGTTGGTA	GCTCTTGATC	CGGCAAACAA	ACCACCGCTG	GTAGCGGTGG	TTTTTTTGTT	4860
TGCAAGCAGC	AGATTACGCG	CAGAAAAAAA	GGATCTCAAG		GATCTTTTCT	4920
ACGGGGTCTG	ACGCTCAGTG		TCACGTTAAG		CATGAGATTA	4980
TCAAAAAGGA	TCTTCACCTA	GATCCTTTTA	TAAAAAAT		ATCAATCTAA	5040
AGTATATATG	AGTAAACTTG		TACCAATGCT		GGCACCTATC	5100
	GTCTATTTCG		GTTGCCTGAC		GTAGATAACT	5160
ACGATACGGG	AGGGCTTACC				AGACCCACGC	5220
TCACCGGCTC			CAGCCAGCCG		GCGCAGAAGT	5280
GGTCCTGCAA		CTCCATCCAG			AGCTAGAGTA	5340
AGTAGTTCGC					CATCGTGGTG	5400
TCACGCTCGT					AAGGCGAGTT	5460
ACATGATCCC			GTTAGCTCCT		GATCGTTGTC	5520
AGAAGTAAGT		4			TAATTCTCTT	5580
ACTGTCATGC		ATGCTTTTCT	• • • • • • • • •		CAAGTCATTC	5640
TGAGAATAGT					GGATAATACC	5700
	GCAGAACTTT		ATCATTGGAA			5760
	TCTTACCGCT					5820
TGATCTTCAG			GTTTCTGGGT			5880
	AAAAGGGAAT				ACTCTTCCTT	.5940
TTTCAATATT					CATATTTGAA	6000
TGTATTTAGA		AATAGGGGTT			AGTGCCACCT	6060 6120
GACGTCTAAG			• • • • • • • • • • • • • • • • • • • •		TATCACGAGG	6180
CCCTTTCGTC	TCGCGCGTTT				GCAGCTCCCG	6240
	CAGCTTGTCT				TCAGGGCGCG	6300
TCAGCGGGTG		TCGGGGCTGG	CTTAACTATG	CGGCATCAGA	GCAGATTGTA	6312
CTGAGAGTGC	AC					0312

Figure 12. FBdelPRDSAF Sequence

CATATGCGGT	GTGAAATACC	GCACAGATGC	GTAAGGAGAA	AATACCGCAT	CAGGCGCCAT	60
TOCOCO TOCA	GGCTGCGCAA	COCOOCCC	CCCCC MCCC	TO COCCO	CIIGGEGECAI	
LCGCCALICA	GGCIGCGCAA	CIGIIGGGAA	GGGCGATCGG	10000000000	TTCGCTATTA	120
CGCCAGCTGG	CGAAAGGGGG	ATGTGCTGCA	AGGCGATTAA	GTTGGGTAAC	GCCAGGGTTT	180
TO CONTROL	GACGTTGTAA	3300300000	A CONCERNO		CCAGGGIII	
TOCCAGICAC	GACGIIGIAA	MACGACGGCC	AGIGAATICC	GATTAGTTCA	ATTTGTTAAA	240
GACAGGATCT	CAGTAGTCCA	GGCTTTAGTC	CTGACTCAAC	AATACCACCA	GCTAAAACCA	300
CTACAATACC	AGCCACAATA	******	mmma mmma cm	MMCC3 C3 3 3 3 3	300000000000000000000000000000000000000	
CINGANIACG	AGCCACAATA	MATMAMAGAT	TITATTIAGE	TTCCAGAAAA	AGGGGGGAAT	360
GAAAGACCCC	ACCAAATTGC	TTAGCCTGAT	AGCCGCAGTA	ACGCCATTTT	GCAAGGCATG	420
CARARAMACC	222552252	MICICI I COM	CYCYMCYYCC	2020201111	CORRECTATE	
GAMMATACC	AAACCAAGAA	TAGAGAAGTT	CAGATCAAGG	GCGGGTACAC	GAAAACAGCT	480
AACGTTGGGC	CAAACAGGAT	ATCTGCGGTG	AGCAGTTTCG	GCCCCGCCCC	GGGGCCAAGA	
CACAMCOMO	\CCCCCCC	000000000	5555555333	22222222	COGGCCAAGA	540
ACAGATGGTC	ACCGCGGTTC	GGCCCCGGCC	CGGGGCCAAG	AACAGATGGT	CCCCAGATAT	600
GGCCCAACCC	TCAGCAGTTT	CTTAAGACCC	ATCAGATGTT	TCCAGGCTCC	CCCAAGGACC	660
mc333mc3cc	CMCMCCCMM1	DODG 3 3 DOD 3	00110000		CCCAAGGACC	000
TGAAATGACC	CTGTGCCTTA	TITGAATTAA	CCAATCAGCC	TGCTTCTCGC	TTCTGTTCGC	720
GCGCTTCTGC	TTCCCGAGCT	CTATAAAAGA	GCTCACAACC	CCTCACTCGG	CCCCCCACTC	
COCCORDACI	CTC CTCCCC		######################################		COCGCCAGIC	780
CICCGATAGA	CTGAGTCGCC	CGGGTACCCG	TGTATCCAAT	AAATCCTCTT	GCTGTTGCAT	840
CCGACTCGTG	GTCTCGCTGT	TCCTTGGGAG	GGTCTCCTCA	GAGTGATTGA	CTACCCCTCT	900
CCCCCCCCC	MC N MMMC C C C	COMOGRACOS	CIMCMCCICI	COCCULTUR	CIACCCGICI	900
CGGGGGTC11	TCATTTGGGG	GCTCGTCCGG	GATCTGGAGA	CCCCTGCCCA	GGGACCACCG	960
ACCCACCACC	GGGAGGTAAG	CTGGCCAAGA	TCCCCCGGGC	TGCAGGAATT	TATCABATCC	1020
TOTAL TOTAL) CCCCCCCCC	MMCMC1 1 COM	mccmc11mmc	7777777777	INIGNATICE	
TITATGGGGG	ACCCCCCCT	TIGICAACCT	TGCTCAATTC	CTTCTCCCCC	TCCGATCCTA	1080
AGACTGATTT	ACAAGCCCGA	CTAAAAGGGC	TGCAAGGCGT	GCAGGCCCAA	ATCTGGACAC	1140
CCCTGGCCGA	ATTGTACCGG	CCACCACAMC	CACAAACMAC	CCACCCACC	and a contract of	
cccrooccan	ALIGIACCGG	CCAGGACAIC	CACAAACIAG	CCACCCATTT	CAGGTGGGAG	1200
ACTCCGTGTA	CGTCCGGCGG	CACCGCTCTC	AAGGATTGGA	GCCTCGTTGG	AAGGGACCTT	1260
ACATCGTCCT	GCTGACCACG	CCCACCCCCA	TA A A COTTOCA	CCCCTMCCCC	CCCECCIO	
	GCTGACCACG	CCCACCGCCA	IMMGGIIGA	COGGATCGCC	GCCTGGATTC	1320
ACGCATCGCA	CGCCAAGGCA	GCCCCAAAAA	CCCCTGGACC	AGAAACTCCC	AAAACCTGGA	1380
AGCTCCGCCG	TTCGGAGAAC	CCTCTTAACA	TA ACACTORO	CCCCCCCCCC	CMCCMAA	
1.001000000	TICCOMONAC	CCICITAGA	IMMONCICIC	CCGIGICIGA	CIGCTAATCC	1440
ACCITGICCC	TGTACTAACC	CAAAATGAAA	CTCCCAACAG	GAATGGTCAT	TTTATGTAGC	1500
CTAATAATAG	TTCGGGCAGG	CTTTCACCAC	CCCCCCAACC	CTATICCCATO	3003033333	
CARCAMOOMA	11CCCCCACG	GITTGACGAC	CCCCGCAAGG	CIAICGCAIT	AGTACAAAAA	1560
CAACATGGTA	AACCATGCGA	ATGCAGCGGA	GGGCAGGTAT	CCGAGGCCCC	ACCGAACTCC	1620
ATCCAACAGG	TAACTTGCCC	AGGCAAGACG	GCCTACTTA A	TCACCAACCA	22220000222	1680
TCC3C3CTC3	COCCO	200012101100	CCCINCTIAN	TORCCARCCA	AMANIGGMAA	
IGCAGAGICA	CTCCAAAAAT	CTCACCTAGC	GGGGGAGAAC	TCCAGAACTG	CCCCTGTAAC	1740
ACTTTCCAGG	ACTCGATGCA	CAGTTCTTGT	TATACTGAAT	ACCGGCAATG	CAGGCGAATT	1800
AATAACACAT	A CTTA CA CCCC	C) CCMMCCMM	1111010101	CTCCCCC CART	CHOOCOARTI	
MIMONCAI	ACTACACGGC	CACCITGCTT	AAAATACGGT	CIGGGAGCCT	CAACGAGGTA	1860
CAGATATTAC	AAAACCCCAA	TCAGCTCCTA	CAGTCCCCTT	GTAGGGGCTC	TATAAATCAG	1920
CCCGTTTCCT	GGAGTGCCAC	ACCCCCCATC	CAMARCTCCC	AMCCMCCACC	*CCCCCCC	
300333030		AGCCCCCAIC	CALAICICCG	ALGGIGGAGG	ACCCCTCGAT.	1980
ACTAAGAGAG	TGTGGACAGT	CCAAAAAAGG	CTAGAACAAA	TTCATAAGGC	TATGACTCCT	2040
GAACTTCAAT	ACCACCCCTT	AGCCCTGCCC	AAAGTCAGAG	ATGACCTTAG	CCTTCATCCA	2100
CGG2 Cനനസന.	A TRA TICCTICES A	macca commo	3.00000	1010001110	CCITORIGCA	
COCACILITY	ATATCCTGAA	TACCACTTTT	AGGTTACTCC	AGATGTCCAA	TTTTAGCCTT	2160
GCCCAAGATT	GTTGGCTCTG	TTTAAAACTA	GGTACCCCTA	CCCCTCTTGC	GATACCCACT	2220
CCCTCTTTAA	CCTACTCCCT	AGCAGACTCC	CTACCCAATC	CCTCCTCTCX	CAMMAMAGOM	
200000000000000000000000000000000000000	CCINCICCCI	AGCAGACICC	CINGCGAAIG	CCICCIGICA	GATTATACCT	2280
CCCCTCTTGG	TTCAACCGAT	GCAGTTCTCC	AACTCGTCCT	GTTTATCTTC	CCCTTTCATT	2340
AACGATACGG	AACAAATAGA	CTTAGGTGCA	CTCACCTTTA	CTARCTCCAC	CTCTCTTTCCC	
AARCECACEA	COCCOOM	TO COLUMN	OTCACCITIA	CIAACIGCAC	CICIGIAGCC	2400
AAIGICAGIA	GTCCTTTATG	TGCCCTAAAC	GGGTCAGTCT	TCCTCTGTGG	AAATAACATG	2460
GCATACACCT	ATTTACCCCA	AAACTGGACC	AGACTTTGCG	TOTALGOOD	CCTCCTCCCC	2520
CACATICACA	TC3 3 CCCCCC	COLMONOR	ATT C C C C C C C C C C C C C C C C C C		CCICCICCC	2520
GACATIGACA	TCAACCCGGG	GGATGAGCCA	GTCCCCATTC	CTGCCATTGA	TCATTATATA	2580
CATAGACCTA	AACGAGCTGT	ACAGTTCATC	CCTTTACTAG	CTGGACTGGG	AATCACCCCA	2640
CCATTCACCA	CCGGAGCTAC	ACCCCMACCM	COCOCCOCA	666666666666666666666666666666666666666	MITCHCCGCA	
CHILICACCA	CCGGVGCTVC	WGGCCTWGGT	GICICCGICA	CCCAGTATAC	AAAATTATCC	2700
CATCAGTTAA	TATCTGATGT	CCAAGTCTTA	TCCGGTACCA	TACAAGATTT	ACAAGACCAG	2760
GTAGACTCGT	TAGCTGAAGT	ACTITICATION A	AAMACCACCC	CACECCACCE	10011010010	
Chacasa	11.00101201	AGIICICCAA	MAINGGROGG	GACIGGACCI	ACTAACGGCA	2820
CAMCAAGGAG	GAATTTGTTT	AGCCTTACAA	GAAAAATGCT	GTTTTTATGC	TAACAAGTCA	2880
GGAATTGTGA	GAAACAAAAT	AAGAACCCTA	CAAGAAGAAM	TACAAAAACC	CAGGGAAAGG	
CTGGCXXCCX	J CCCMCMCMC				CAGGGAMAGC	2940
CIGGLAACCA	ACCCTCTCTG	GACCGGGCTG	CAGGGCTTTC	TTCCGTACCT	CCTACCTCTC	3000
CTGGGACCCC	TACTCACCCT	CCTACTCATA	CTAACCATTG	GGCCATGCGT	でででくるこでくこと	3060
CTCATGGCCT	TCATTAATGA	TACACTONANO	CHACANCAGO			
71.6611.661	TCMLIANIGA	INGACTIMAL	GLIGIACAIG	CCATGGTGCT	GGCCCAGCAA	3120
TACCAAGCAC	TCAAAGCTGA	GGAAGAAGCT	CAGGATTGAG	GCGCCTAGTG	TTGACAATTA	3180
ATCATCGGCA	TAGTATACGG	CATACTATA	TACCACTOR	TATACCACCC	CCACCATGGC	3240
Chacmecacc	3.000000000	CATHOTATA	INCONCIONC	TATAGGAGGG	CCACCATGGC	3240
CURGI TONCE	MOTOCCOLLC	CGGTGCTCAC	CGCGCGCGAC	GTCGCCGGAG	CGGTCGAGTT	3300
CTGGACCGAC	CGGCTCGGGT	TCTCCCGGGA	CTTCGTGGAG	GACGACTTCG	CCGCTCTCCT	3360
CCGGGACGAC	CTCACCCTCT	TO TO TO TO TO	CCMCCICCIC	C) COMCCTTCG	CCGGIGIGGI	2200
	GIGACCCTGT	TCATCAGCGC	GGTCCAGGAC	CAGGTGGTGC	CGGACAACAC	3420
CCTGGCCTGG	GTGTGGGTGC	GCGGCCTGGA	CGAGCTGTAC	GCCGAGTGGT	CGGAGGTCGT	3480
GTCCACGAAC	TTCCCCCACC	CCTCCCCCCC	GGCCAMCACC	CACAMOCOCC	AGCAGCCGTG	3540
CCCCCCCC	TTCCCCCTCC		GGCCATGACC	GWGWTCGGCG	MGCAGCCGT'G	
GADDDDDDDD	TICGCCCTGC	GCGACCCGGC	CGGCAACTGC	GTGCACTTCG	TGGCCGAGGA	3600
GCAGGACTGA	NNNNCGGACC	GGTCGACTTC	ጥጥ አርጥጥር ጥጣ	שיים אייים איי	TATAATGGTT	3660
ACAAAMAAAC	CAAMACCACC	3033388855	TIMELIGIT	TATIOCHOCI	THINNIGGILL	3660
DANT MAKE	CAMTAGCATC	ACAAATTTCA	CAAATAAAGC	ATTTTTTCA	CTGCATTCTA	3720
GTTGTGGTTT	GTCCAAACTC	ATCAATGTAT	CTTATCATGT	CTGGATCCAG	ATCTGGGCCCC	3780
ATGCGGCCCC	CCATCCAMAN	MAIN CA MOMO		200222000		2100
7777777	GGATCGATNN	NNACATGTGA	GCAAAAGGCC	AGCAAAAGGC	CAGGAACCGT	3840
AAAAAGGCCG	CGTTGCTGGC	GTTTTTCCAT	AGGCTCCGCC	CCCCTGACGA	GCATCACAAA	3900
AATCGACGCT	CAAGTCAGAG	GTGGCGAAAG	CCCACACOCC		CCAGGCGTTT	3300
CCCCCCCCC	COMMODICACION	GIGGCGWWWC	CCGMCAGGAC	TATAAAGATA	CCAGGCGTTT	3960
CCCCCTGGAA	GCTCCCTCGT	GCGCTCTCCT	GTTCCGACCC	ጥርርርርርርጥጥልር	CCCATACCTC	4020
TCCGCCTTTC	TCCCTTCGGG	AAGCGTGGCG	Cutulicate y y m	CCTCACCCTC	my com a ware	
			CITICICAAT	GCICMCGCIG	TAGGTATCTC	4080

Figure 12. FBdelPRDSAF Sequence

AGTTCGGTGT	AGGTCGTTCG	CTCCAAGCTG	GGCTGTGTGC	ACGAACCCCC	CGTTCAGCCC	4140
GACCGCTGCG	CCTTATCCGG	TAACTATCGT	CTTGAGTCCA	ACCCGGTAAG	ACACGACTTA	4200
TCGCCACTGG	CAGCAGCCAC	TGGTAACAGG	ATTAGCAGAG	CGAGGTATGT	AGGCGGTGCT	4260
ACAGAGTTCT	TGAAGTGGTG	GCCTAACTAC	GGCTACACTA	GAAGGACAGT	ATTTGGTATC	4320
TGCGCTCTGC	TGAAGCCAGT	TACCTTCGGA	AAAAGAGTTG	GTAGCTCTTG	ATCCGGCAAA	4380
CAAACCACCG	CTGGTAGCGG	TGGTTTTTTT	GTTTGCAAGC	AGCAGATTAC	GCGCAGAAAA	4440
AAAGGATCTC	AAGAAGATCC	TTTGATCTTT	TCTACGGGGT	CTGACGCTCA	GTGGAACGAA	4500
AACTCACGTT	AAGGGATTTT	GGTCATGAGA	TTATCAAAAA	GGATCTTCAC	CTAGATCCTT	4560
TTAAATTAAA	AATGAAGTTT	TAAATCAATC	TAAAGTATAT	ATGAGTAAAC	TTGGTCTGAC	4620
AGTTACCAAT	GCTTAATCAG	TGAGGCACCT	ATCTCAGCGA	TCTGTCTATT	TCGTTCATCC	4680
ATAGTTGCCT	GACTCCCCGT	CGTGTAGATA	ACTACGATAC	GGGAGGGCTT	ACCATCTGGC	4740
CCCAGTGCTG	CAATGATACC	GCGAGACCCA	CGCTCACCGG	CTCCAGATTT	ATCAGCAATA	4800
AACCAGCCAG	CCGGAAGGGC	CGAGCGCAGA	AGTGGTCCTG	CAACTTTATC	CGCCTCCATC	4860
CAGTCTATTA	ATTGTTGCCG	GGAAGCTAGA	GTAAGTAGTT	CGCCAGTTAA	TAGTTTGCGC	4920
AACGTTGTTG	CCATTGCTAC	AGGCATCGTG	GTGTCACGCT	CGTCGTTTGG	TATGGCTTCA	4980
TTCAGCTCCG	GTTCCCAACG	ATCAAGGCGA	GTTACATGAT	CCCCCATGTT	GTGCAAAAAA	5040
GCGGTTAGCT	CCTTCGGTCC	TCCGATCGTT	GTCAGAAGTA	AGTTGGCCGC	AGTGTTATCA	5100
CTCATGGTTA	TGGCAGCACT	GCATAATTCT	CTTACTGTCA	TGCCATCCGT	AAGATGCTTT	5160
TCTGTGACTG	GTGAGTACTC	AACCAAGTCA	TTCTGAGAAT	AGTGTATGCG	GCGACCGAGT	5220
TGCTCTTGCC	CGGCGTCAAT	ACGGGATAAT	ACCGCGCCAC	ATAGCAGAAC	TTTAAAAGTG	5280
CTCATCATTG	GAAAACGTTC	TTCGGGGCGA	AAACTCTCAA	GGATCTTACC	GCTGTTGAGA	5340
TCCAGTTCGA	TGTAACCCAC	TCGTGCACCC	AACTGATCTT	CAGCATCTTT	TACTTTCACC	5400
AGCGTTTCTG	GGTGAGCAAA	AACAGGAAGG	CAAAATGCCG	CAAAAAAGGG	AATAAGGGCG	5460
ACACGGAAAT	GTTGAATACT	CATACTCTTC	CTTTTTCAAT	ATTATTGAAG	CATTTATCAG	5520
GGTTATTGTC	TCATGAGCGG	ATACATATTT	GAATGTATTT	AGAAAAATAA	ACAAATAGGG	5580
GTTCCGCGCA	CATTTCCCCG	AAAAGTGCCA	CCTGACGTCT	AAGAAACCAT	TATTATCATG	5640
ACATTAACCT	ATAAAAATAG	GCGTATCACG	AGGCCCTTTC	GTCTCGCGCG	TTTCGGTGAT	5700
GACGGTGAAA			CCGGAGACGG	TCACAGCTTG	TCTGTAAGCG	5760
	GCAGACAAGC		GCGTCAGCGG	GTGTTGGCGG	GTGTCGGGGC	5820
TGGCTTAACT	ATGCGGCATC	AGAGCAGATT	GTACTGAGAG	TGCAC		5865
						•

Figure 13. hCMV10A1 Sequence

AGATCTCCCG ATCCCCTATG GTCGACTCTC AGTACAATCT GCTCTGATGC CGCATAGTTA AGCCAGTATC TGCTCCCTGC TTGTGTGTTG GAGGTCGCTG AGTAGTGCGC GAGCAAAATT TAAGCTACAA CAAGGCAAGG CTTGACCGAC AATTGCATGA AGAATCTGCT TAGGGTTAGG CGTTTTGCGC TGCTTCGCGA TGTACGGGCC AGATATACGC GTTGACATTG ATTATTGACT AGTTATTAAA AGTAATCAAT TACGGGGTCA TTACATA GCCCATATAT GGAGTTCCGC GTTACATAAC TTACGGTAAA TGGCCCGCCT GGCTGACCGC CCAACGACCC CCGCCCATTG GTTACATAAC
TTACGGTAAA TGGCCCGCCT GGCTGACCGC CCAACGACCC CCGCCCATTG
ACGTCAATAA TGACGTATGT TCCCATAGTA ACGCCAATAG GGACTTTCCA TTGACGTCAA
AGTACGCCCC CTATTGACGT CAATGACGGT AAATGGCCC CCTGGCATTA TCCCAGTAC
ATGACCTTAT GGACTTTCCC TACTTGCCA TACATCTACG TACATCTACC
ATGACCTTAT GGACTTTCCC GTACATCAAT GGGCGTGGAT AGCGCTATTACC
ATGGTGATGC GGTTTTGCCA GTACATCAAT GGGCGTGGAT AGCGGTTTGC
TCCACCCCAT TGACGTCAAT GGGAGTTTGT TTTTGCAGGGGA
AATGTCGAA CAACTCCGCC CCATTGACGC AAATGACCGG
GCTTATCGAA ATGTCGTAA CAACTCCGCC CCATTGACGC AAATGGGCG TAGGCGTGTA
CGGTGGGAGG TCTATATAAG CAGACTCTC TGGCTAACTA GAGAACCCAC TGCTTAACTG
GCTTATCGAA ATGTCGACA AGAACTTCAG GGTGAGTTTG
TTTTTTCGCT ATTGTAAAAT TCATGTTATA TGGAGGGGGC AAAGTTTTCA GGGTGTTGTT
TAGAATGGGA GAATCCCTC TGTATCACCA TGTTAATTTC
TTTCGTTAAAC TTTAGCTTGC ATTGTTCTCT TTTTCAATTT TTTTCAATTT TTTTCAATTTT TTTTCAATTTT TTTTCAATTTT TTTTTAATTTG TTCGTTAAAC TTTAGCTTGC ATTTGTAACG AATTTTAAA TTCACTTTG TTTATTTGTC
AGATTGTAAG TACTTTCCTT AATCACTTT TTTTCAAGGC AATCAGGGTA TATTATATTG
TACTTCAGCA CAGTTTTAGA GAACAATTGT TATAAATTAAA TGATAAGGTA GAATATTCT
GCATATAAAT TCTGGCTGGC GTGGAAATAT TCTTATTGGT AGAACAACT ACATCCTGGT
CATCATCCTG CCTTTCTCTT TATGGTTACA ATGATAATACA CTGTTTGAGA TGAGGATAAA
ATACTCTGAG TCCAAACCGG GCCCCTCTGC TAACCATGTT CATGCCTTCT TCTTTTTCCT
ACAGCTCCTG GGCAACGTGC TGGTTGTTGT CAGCGTTCTC AAGACCCCTT AAGACCCCTT AAGACCCCTT
ATACCCGTG GAAGTCCTTAA ATGGTCATGG GGGCTTACTC
GCCCCCATCA GGTCTTTAAT GTAACCTGGA GAGTCACCAC
GCCCCCATCA GGTCTTTAAT GTAACCTGGA GAGTCACCAC
CCCCCATCA GGTCTTTAAT GTAACCTGGA CAGTCACCAC
CCCCCATCA GGTCTTTAAT GTAACCTGGA CAGTCACCAC
CCCCCATCA GGTCTTTAAT GTAACCTGGA CATGCCCGTACCGC GCCCCCATCA GGTCTTTAAT GTAACCTGGA GAGTCACCAA CCTGATGACT GGGCGTACCG CCCCCTCCCG ACCCGTGCAG ATCAGGCTCC CAGGCCTCC TCAGCCTCCT CCTACAGGCG CAGCCTCTAT AGTCCCTGAG ACTGCCCAC CTTCTCAACA ACCTGGGAC GGAGACAGGC TGCTAAACCT GGTAGAAGGA GCCTATCAGG CGCTTAACCT CACCAATCC GACAAGACCC AAGAATGTTG GCTGTGCTTA GTGTCGGGAC CTCCTTATTA CGAAGGAGTA GCGGTCGTGG GCACTTATAC CAATCATTCT ACCGCCCCGG CCAGCTGTAC GGCCACTTCC CAACATAAGC TTACCCTATC TGAAGTGACA GGACAGGGCC TATGCATGGG AGCACTACCT AAAACTCACC
AGGCCTTATG TAACACCACC CAAAGTGCCG GCTCAGGATC CTACTACCTT GCAGCACCG
CTGGAACAAT GTGGGCTTGT AGCACTGGAT TGACTCCCTG CTTGTCCACC ACGATGCTCA
ATCTAACCAC AGACTATTGT GTATTAGTTG AGCTCTGGCC CAGAATAATT TACCACTCC
CCGATTATAT GTATGGTCAG CTTGAACAGC GTACCAAATA TAAGAGGGGAG CCAGTATCGT TGACCOTGGC CCTTCTGCTA GGAGGATTAA CCATGGGAG GATTCAGCT GGAATAGGA CGGGGACCAC TGCCCTAATC AAAACCCAGC AGTTTGAGCA GCTTCACGCC GCTATCCAGA CAGACCTCAA CGAAGTCGAA AAATCAATTA CCAACCTAGA AAAGTCACTG ACCTCGTTGT CTGAAGTAGT CCTACAGAAC CGAAGAGGCC TAGATTTGCT CTTCCTAAAA GAGGGAGGTC TCTGCGCAGC CCTAAAAGAA GAATGTTGTT TTTATGCAGA CCACACGGGA CTAGTGAGAG CAGGACTGAN NNNCGGACCG GTCGA

•

Intern val Application No PCT/GB 96/02061

A. CLASS IPC 6	SIFICATION OF SUBJECT MATTER C12N15/86 C12N5/10 C12N15	/67	
According	to International Patent Classification (IPC) or to both national cl	assification and IPC	
	DS SEARCHED		
	documentation searched (classification system followed by classif	ication symbols)	·
Document	ation searched other than minimum documentation to the extent t	nat such documents are included in the fields s	earched
Electronic	data base consulted during the international search (name of data	base and, where practical, search terms used)	
C. DOCU	MENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the	ne relevant passages	Relevant to claim No.
А	JOURNAL OF VIROLOGY 69 (7). 199 4086-4094. ISSN: 0022-538X, July 1995, XP002023654	95.	1-29
	LUUKKONEN B G M ET AL: "Efficientiation of translation on immunodeficiency virus type 1 determined by the length of the open reading frame and by intendistance."	human nRNAs is e upstream	
A	see the whole document VIROLOGY (1995), 208(1), 215-29 VIRLAX; ISSN: 0042-6822, 1 April 1995, XP002023655 HERZOG, ETIENNE ET AL: "Trans the second gene of peanut clum 2 occurs by leaky scanning in see the whole document	lation of p virus RNA	1-29
		-/	
X Fu	orther documents are listed in the continuation of box C.	Patent family members are listed	in annex.
* Special	categories of cited documents:	"T" later document published after the in	
'E' earlie	ment defining the general state of the art which is not idered to be of particular relevance er document but published on or after the international g date	or priority date and not in conflict to cited to understand the principle or invention "X" document of particular relevance; the	theory underlying the
"L" docu whice citat	ment which may throw doubts on priority claim(s) or ch is cited to establish the publication date of another tion or other special reason (as specified)	cannot be considered novel or canninvolve an inventive step when the considered to involve an cannot be considered to involve an	locument is taken alone e claimed invention inventive step when the
P docu	iment referring to an oral disclosure, use, exhibition or it means unent published prior to the international filing date but if than the priority date claimed	document is combined with one or ments, such combination being obvi in the art. *&* document member of the same pate	ous to a person skilled
<u> </u>	he actual completion of the international search	Date of mailing of the international	
	23 January 1997	1 2. 02. 97	
Name an	d mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk	Authorized officer	
	Tel. (+31-70) 340-2040, Tx. 31 651 epo nl. Fax (+31-70) 340-3016	Hornig, H	

Form PCT/ISA/218 (second sheet) (July 1992)

Internate at Application No PCT/GB 96/02061

itegary "	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
·		
A	J. VIROL. (1993), 67(8), 4886-95 CODEN: JOVIAM;ISSN: 0022-538X, August 1993, XP000616337 FOUILLOT, NATHALIE ET AL: "Translation of the hepatitis B virus P gene by ribosomal scanning as an alternative to internal initiation" see the whole document	1-29
•	VIROLOGY, vol. 188, no. 1, May 1992, ACADEMIC PRESS, INC.,NEW YORK, US, pages 342-352, XP002023656 CG. LIN AND S.J. LO: "Evidence for involvement of a ribosomal leaky scanning mechanism in the translation of the hepatitis B virus Pol gene from the viral pregenome RNA" see the whole document	1-29
4	VIROLOGY, vol. 185, no. 2, December 1991, ACADEMIC PRESS, INC., NEW YORK, US, pages 862-866, XP000616129 FL. COSSET ET AL.: "Newcastle disease virus (NDV) vaccine based on immunization with avian cells expressing the NDV hemagglutinin-neuraminidase glycoprotein" cited in the application see the whole document	1-29
A	MOL. CELL. BIOL., vol. 7, no. 10, October 1987, ASM WASHINGTON, DC,US, pages 3438-3445, XP000616288 M. KOZAK: "Effects of intercistronic length on the efficiency of reinitiation by eucaryotic ribosomes" cited in the application see the whole document	1-29
A	EXPRIMENTAL CELL RESEARCH, vol. 197, no. 2, December 1991, ACADEMIC PRESS INC., NEW YORK, US, pages 229-233, XP000616323 M. IZUMI ET AL.: "Blasticidin S-resistance gene (bsr): a novel selectable marker for mammalian cells" cited in the application see the whole document	1-29
	-/	

1

Internal 1 Application No PCT/GB 96/02061

		PC1/GB 96/02061
	tion) DOCUMENTS CONSIDERED TO BE RELEVANT	Indowes to object No.
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	NATURE (LONDON) (1984), 309(5963), 82-5 CODEN: NATUAS;ISSN: 0028-0836, 3 May 1984, XP002023657 LIU, CHUNG CHENG ET AL: "Initiation of translation at internal AUG codons in mammalian cells" see the whole document	1-29
Α	WO,A,94 24870 (BIOTRANSPLANT INC ;GEN HOSPITAL CORP (US); LE GUERN CHRISTIAN A (U) 10 November 1994 see the whole document	1-29
A .	WO,A,93 03143 (ANDERSON W FRENCH ; MORGAN RICHARD A (US); COUTURE LARRY (US)) 18 February 1993 see the whole document	1-29
A	WO,A,94 23048 (US HEALTH ;EIDEN MARYBETH V (US); WILSON CAROLYN A (US); DEACON NI) 13 October 1994 see the whole document	1-29
A	PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, vol. 85, no. 17, 1 September 1988, pages 6460-6464, XP000569693 DANOS O ET AL: "SAFE AND EFFICIENT GENERATION OF RECOMBINANT RETROVIRUSES WITH AMPHOTROPIC AND ECOTROPIC HOST RANGES" see the whole document	1-29
P,X	J. VIROL. (1995), 69(12), 7430-6 CODEN: JOVIAM;ISSN: 0022-538X, December 1995, XP000569527 COSSET, FRANCOIS-LOIC ET AL: "High-titer packaging cells producing recombinant retroviruses resistant to human serum" see the whole document	1-29

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

	ormation on patent family mem		1	m: al Application No CT/GB 96/02061	
Patent document cited in search report	Publication date	Patent family member(s)		Publication date	
WO-A-9424870	10-11-94	CA-A- 2	230394 162056 706319	21-11-94 10-11-94 17-04-96	
WO-A-9303143	18-02-93	EP-A- 0	114416 598029 509713	18-02-93 25-05-94 02-11-94	
WO-A-9423048	13-10-94	CA-A- 2 EP-A- 0	903194 160034 699240 511156	24-10-94 13-10-94 06-03-96 26-11-96	
	• .	·			
				•	