LTE 기반 IoT Network (eMTC, NB-IoT) 기술의 이해

SK Telecom, N/W기술원 Access Network Lab 2017. 7

1. LPWA 개요 (1/2)

• 저전력 IoT 소물 인터넷(Internet of Small Things) 망의 배경

- IoT는 스마트폰을 잇는 ICT 산업의 새로운 성장동력
- 사물 인터넷으로 출시되는 제품들 중 다수가 소물(Small Things)
 - ※ 소물(Small Things) : 온도, 습도, 각도, 무게, 위치 등 단순정보를 측정하는 소형기기
- 소물 인터넷 세상을 위해 소형배터리, 저성능 컴퓨터 사물을 위한 전용망 필요
 - ※ 소물 인터넷: 저성능 컴퓨팅 파워 기반의 소물들의 연결 환경. 소물에서 감지한 데이터 저장/분석
- 소물을 위한 전용망은 저전력으로 저렴하게 많은 기기를 수용할 수 있는 서비스 지향

【 무거운 연결 】

- 사람과 스마트 기기 중심
- 스크린 위주
- 고성능 대용량 컨텐츠
- 융합/집적화
- 고속 N/W 필요

【 가벼운 연결 】

- 사물 중심
- 스크린 필요 없음
- 소량의 메세지
- 전문 영역별 다변화
- 저속/저가의 N/W

1. LPWA 개요 (2/2)

• LPWAN (Low-Power Wide Area Network) 기술

①넓은 커버리지 ②낮은 Chip가격 ③낮은 소비 전력

2. LPWA 기술 비교

7 H	C: 1		ND T T	ITE 6 (1841			
구분	Sigfox	LoRa	NB-IoT	LTE Cat.M1			
표준화	• ETSI	• LoRa Alliance	• 3GPP	• 3GPP			
Eco- system	• Sigfox社 E2E 통합 솔루션 - 통신모듈,기지국, Core Cloud 등	 LoRa 모뎀칩: Semtech 단말, 기지국, N/W Server 솔루션 누구나 개발 가능 	• 기존 LTE Eco-system 기 반	• 기존 LTE Eco-system 기 반			
주파수	• 비면허 Sub GHz 대역 (800~900MHz)	• 비면허 Sub GHz 대역 (800~900MHz)	• 면허 LTE 대역 (In-band, Guard-band)	• 면허 LTE 대역 (In-band)			
RF B/W	• DL: 200KHz, UL: 200kHz (단말당 UL B/W는 100Hz)	• DL+UL: 7.8~500kHz, <u>125kHz*8채널</u> 로 사용이 Main	• DL,UL: 180kHz (1RB)	• DL,UL: 180kHz*6 (6RB)			
최대 전송 속도	DL/UL: 600/100bpsData Size: ~12Bytes	 DL/UL: 18~37,500bps <u>300~5,400bps</u>@125kHz Data Size: ~240Bytes 	Half DuplexDL/UL 27/63kbpsFull DuplexDL/UL 250kbps	Half DuplexDL/UL 300/375kbpsFull DuplexDL/UL 1Mbps			
기지국당 커버리지	• LTE 대비 20dB 확장 수준	• LTE 대비 20dB 확장 수준	• LTE 대비 20dB 확장 수준	• LTE 대비 20dB 확장 수준			
단말 통신 모듈 가격	• \$5~\$10 수준	• \$5~\$10 수준	• \$10 예상	• \$10 예상			

3. LTE 기반 LPWA 진화

• 용어 정리: NB-IoT, Cat.M1, LTE-M, eMTC, Cat.NB1...

일반적 명칭	표준상 기술명	표준상 단말 규격명		
	eMTC	Cat.M1 Rel.13		
Cat.M1, LTE-M	FeMTC	Cat.M1 Rel.14 Cat.M2 Rel.14		
NB-IoT	NB-IoT	Cat.NB1 Rel.13/14 Cat.NB2 Rel.14		
(국내만) LTE-M	-	Cat.1		

3. LTE 기반 LPWA 진화

• LTE 기술은 Rel.8 Cat. $1\sim5$ 를 시작으로 한쪽으로는 대용량 데이터 전송을 위한 Gbps급 Cat.16까지, 반대쪽으로는 IoT를 위한 수십kbps급 Cat.NB1까지 진화

저용량 IoT	Category	DL 속도	MIMO	대역폭	Release Ver.	비고			
	Cat.NB1	27kbps	-	180kHz	Rel.13	LPWA			
	Cat.M1	300kbps	-	1.08MHz	Rel.13	LPWA			
최초 LTE	Cat.1	10Mbps	-	20MHz	Rel.8	'16년부터 IoT 활용			
	Cat.3	100Mbps	2	20MHz	Rel.8	최초 LTE 상용			
	Cat.4	150Mbps	2	20MHz	Rel.8	광대역 LTE			
	Cat.6	300Mbps	4	2 x 20MHz	Rel.10	최초 LTE-A			
	Cat.9	450Mbps	4	3 x 20MHz	Rel.11	3 Band LTE			
	Cat.12	600Mbps	4	4 x 20MHz	Rel.11	최초 256QAM			
대용량 영상 /데이터	Cat.16	1Gbps	4	5 x 20MHz	Rel.12	갤럭시S8			

3. LTE 기반 LPWA 진화

 LTE 기반 IoT Network은 Cat.1을 거쳐 Cat.M1/NB-IoT로 진화했으며, 이후 '18년 중반 Rel.15 규격으로 5G 진화 계획

LTE-A Pro

5G

구분	Rel.13(~'16.6)	Rel.14(~'17.3)	Rel.15(~'18.6)
eMTC (Cat.M1)	- 단말 대역폭: 1.4MHz(6RB) - 전송 속도 > Full Duplex: DL/UL 1Mbps > Half Duplex: DL 300k, UL 375kbps - 단말 Power Class: 23, 20dBm	- Cat.M1 속도 개선 - DL 1M, UL 3Mbps (Full Duplex) - Cat.M2 카테고리 추가 - 단말 대역폭 5MHz(25RB) - DL 4M, UL 7Mbps - Positioning RS기반 OTDOA 측위 추가 - SC-PTM 기반 Multicast 기능 추가 - VoLTE 개선을 위한 전송 모드 추가	- 단말 Power Class 추가 - 단말 전력소모 개선 - 송수신 Latency 개선 - 64QAM 등 속도 개선 - Load Control을 위한 Cell Barring 기능 추가
NB-IoT (Cat.NB1)	- 단말 대역폭: 180kHz(1RB) - 전송 속도 > Full Duplex: DL/UL 200kbps > Half Duplex: DL 27k, UL 63kbps - 단말 Power Class: 23dBm, 20dBm	- Cat.NB2 카테고리 추가 - 단말 대역폭 변경 없음 - DL 80k, UL 105kbps - (옵션) DL 125k, UL 140kbps - Multi-RB 운용 기능 추가 - 단말 1RB 유지, 시스템 단에서 Multi-RB 운용으로 용량 증대 - Positioning RS기반 OTDOA 측위 추가 - SC-PTM 기반 Multicast 기능 추가 - 단말 Power Class 14dBm 추가	- TDD 규격 추가 - 단말 전력소모 개선 - 송수신 Latency 개선 - Load Control을 위한 Cell Barring 기능 추가

※ eMTC, NB-IoT 속도 개선 시, 커버리지 감소 및 단말 복잡도 증가 발생

[참고] 5G Massive-MTC

• 5G(IMT-2020)는 E-MBB, M-MTC, URLLC 3개 요구사항을 기준으로 LTE Rel.15 규격을 제출 예정이며, LPWA는 M-MTC에 해당

• LTE 기술을 기반으로 ①단말 가격↓, ②배터리 소모↓, ③커버리지↑

단말 모뎀칩 단순화 (처리용량↓, 메모리↓)

단말 Sleep↑

저속 전송모드 추가 (kbps이하 전송)

- LTE: 20MHz(100RB)
- Cat.M1: →1.08MHz(6RB)
- NB-IoT: →180kHz(1RB)

2) 단말 Full Duplex → Half Duplex

단말내 동시 송수신 기능
 (Full Duplex) 삭제

3) Deep Sleep (PSM)

- 주기적 Wake Up
- 다음 Wake Up까지단말 Deep Sleep으로통신 단절

4) Wake Up 주기↑(eDRX)

- 단말 Sleep(Idle) 상태에서 Wake Up(Paging) 주기를 늘림

5) 반복전송 추가

- 최대 2048회까지 반복전송으로 커버리지↑, 속도↓

1) 단말 송수신 대역폭↓

LTE Cat.M1 **NB-IoT** (Inband) (Guardband) 20MHz 20MHz 20MHz 20MHz 사간 1.08MHz **→ 180kHz** 180kHz 18MHz 단말 대역폭: 20MHz 단말 대역폭: 1.08MHz 단말 대역폭: 180kHz

: LTE 단말A : Cat.M1/NB-IoT 단말A

LTE 영향도:

Cat.M1 트래픽량에

따라 LTE 영향

: LTE 단말B : Cat.M1/NB-IoT 단말B

LTE 영향도:

(Inband) NB 지정대역 LTE 손실

(Guardband) LTE 영향 없음

[참고] Cat.M1, NB-IoT 자원 할당

[참고] Cat.M1, NB-IoT 단말 복잡도 감소

2) Half Duplex

- 단말에 동시 송수신(Full Duplex)을 위한 RF 회로를 제거하여 비용 감소

[참고] Cat.M1/NB-IoT 최대속도 어떤 자료에는 1M/200k, 어떤 자료에는 300k/26k... 어떤 수치가 맞는지?

Cat.M1 Half Duplex 예제

1ms에 1000bit 전송 (1Mbps) 10ms에 3000bit 전송 (300kbps) 1ms에 1000bit 전송 (1Mbps) 8ms에 300bit 전송 (375kbps)

[참고] NB-IoT 최대 속도

DL Peak Rate Calculation Subframe Count 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Grant DL Data#1 NPDSCH to DL Data#1 NPDSCH N1 1 2 3 4 680 DL Data#1 NPDSCH to NPUSCH ACK#1 680 1 2 3 4 5 6 7 8 9 10 11 12 A/N A/N Switch

NPDSCH: 680 TBS across 3 SF

680

A/N across 2 SF (15 kHz, single tone)

Switch A/N A/N 1 2 3 Gr

DCI: Aggregation Layer = 1 (best condition for peak rate, 69 encoded bits, 14 OFDM symbols and 6 SC sufficient)
DCI: Repetitions = 1 (best condition for peak rate, no repetitions needed)

DL peak data rate for NB-IoT 27.2 kbps

NPUSCH ACK#1 to NPDCCH

UL Peak Rate Calculation

Subframe Count	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Grant UL Data#1 NPDCCH to UL Data#1 NPUSCH		1	2	3	4	5	6	7	8	1000		Switch					
UL Data#1 NPUSCH to NPDCCH									Switch		10	00		1	2	3	Gr

NPUSCH: 1000 TBS across 4 SF

DCI: Aggregation Layer = 1 (best condition for peak rate, 69 encoded bits, 14 OFDM symbols and 6 SC sufficient)

DCI: Repetitions = 1 (best condition for peak rate, no repetitions needed)

UL peak data rate for NB-IoT 62.5 kbps

3/4) Power Saving Mode (PSM), enhanced Discontinuous Reception (eDRX)

- **PSM:** 단말이 일정 시간 송수신이 없으면, Paging도 보지 않는 Deep Sleep 모드인 PSM 상태로 진입하고, 주기적으로(최대 13일) 깨어나서 Paging 확인
- eDRX: 단말이 Idle 상태에서 Paging 최대 주기를 기존 2.56초→3시간 확장
- LTE, Cat.1, Cat.M1, NB-IoT에 모두 적용 가능한 범용 기술
- 당사 LTE 상용망에 기적용되어 있음

5) 커버리지 확장을 위한 반복전송

- LTE 대비 +20dB(3~4배 거리) 커버리지 확장 시, Cat.M1/NB-IoT 모두 셀 경계 최저속도 300bps 수준 (LoRa SF12 모드와 커버리지/속도 유사)
 - > Cat.M1 예제: 392bit/1ms * 1536 Repetition → 392bit/1.5s
 - > NB-IoT 예제: 680bit/2ms * 1024 Repetition → 680bit/2s
 - > NB-IoT 경우 Subcarrier(15kHz) 단위 UL 기능이 추가됨
- LTE 커버리지 이내에서는 대부분 최대 속도로 송수신 가능 예상

6) IoT 전용 Core (C-SGN)

- Control Plan Optimization (CP Opt)
 - > 단말의 접속 절차를 소량의 데이터 전송에 적합하도록 단순화
 - > 기존에는 접속 절차에서 Data Bearer Setup 과정을 생략하고, Signaling Bearer로 Data 송수신(Data over NAS)하여 절차 내 약 9회 송수신 중 약 4회 감소하여 단말 배터리 수명 증대
- CP Opt 기능은 NB-IoT에 Mandatory, Cat.M1에 Optional
- CP Opt 기능은 MME에 기능 추가도 가능하나, 용량 대비 비용 효율 고려하여 IoT 전용 Core인 C-SGN으로 도입 추세
- C-SGN은 MME+SGW+PGW를 모두 포함

감사합니다

