Azzolini Riccardo 2019-02-20

Notazioni asintotiche

1 O grande

Una funzione $f: \mathbb{N} \to \mathbb{N}$ si dice **O grande** di una funzione $g: \mathbb{N} \to \mathbb{N}$, scritto f(n) = O(g(n)), se esistono un intero n_0 e una costante c > 0 per cui

$$\forall n > n_0 \quad f(n) \le cg(n)$$

Informalmente, f "è dominata" da g.

1.1 Esempi

• n = O(2n), con $n_0 = 0$ e c = 1 (per esempio: si possono scegliere anche altre combinazioni di n_0 e c):

$$\forall n > 0 \quad n \le 2n$$

• $n = O\left(\frac{n}{2}\right)$, con $n_0 = 0$ e c = 2:

$$\forall n > 0 \quad n \le 2 \cdot \frac{1}{2}n$$

• $4n^2 + n = O(n^2)$, con $n_0 = 0$ e c = 5:

$$\forall n > 0 \quad 4n^2 + n \le 5n^2$$
$$n \le n^2$$

• $n \log n \neq O(n)$:

$$\forall n>0 \quad n\log n \leq cn$$

$$\log n \leq c \quad \text{falso}$$

2 Omega grande

Una funzione $f: \mathbb{N} \to \mathbb{N}$ si dice **omega grande** di una funzione $g: \mathbb{N} \to \mathbb{N}$, scritto $f(n) = \Omega(g(n))$, se esistono un intero n_0 e una costante c > 0 per cui

$$\forall n > n_0 \quad f(n) \ge cg(n)$$

Informalmente, f "domina" g.

2.1 Esempi

• $n = \Omega(2n)$, con $n_0 = 0$ e $c = \frac{1}{2}$:

$$\forall n > 0 \quad n \ge \frac{1}{2} \cdot 2n$$

- $\forall k > 0$ $n^{\frac{1}{k}} = \Omega(\log n)$
- $\forall k > 0 \quad (\log n)^k \neq \Omega(n)$

3 Theta grande

Una funzione $f: \mathbb{N} \to \mathbb{N}$ si dice **theta grande** di una funzione $g: \mathbb{N} \to \mathbb{N}$, scritto $f(n) = \Theta(g(n))$, se esistono un intero n_0 e due costanti c, d > 0 per cui

$$\forall n > n_0 \quad cg(n) \le f(n) \le dg(n)$$

Si dice allora che f e g hanno lo stesso ordine di grandezza.

3.1 Esempi

•
$$n^3 = \Theta(n^3 + 10n)$$
, con $c = \frac{1}{2}$, $d = 1$ e $n_0 = 4$:

$$\forall n > 4 \quad c(n^{3} + 10n) \le n^{3} \le d(n^{3} + 10n)$$

$$n^{3} \le n^{3} + 10n$$

$$\frac{1}{2}(n^{3} + 10n) \le n^{3}$$

$$\frac{1}{2}n^{3} + 5n \le n^{3}$$

$$5n \le \frac{n^{3}}{2}$$

$$10n \le n^{3}$$

$$10 < n^{2}$$

• $n \log n + n^{\frac{3}{2}} = \Theta(n^{\frac{3}{2}})$, con c = 1, d = 3 e $n_0 = 2$: in pratica è sufficiente considerare il termine che cresce più rapidamente

$4 \sim e o piccolo$

• f(n) è asintotica a g(n), scritto $f(n) \sim g(n)$, se

$$\lim_{n \to +\infty} \frac{f(n)}{g(n)} = 1$$

A differenza di Θ , \sim considera anche i coefficienti.

• f(n) è un o piccolo di g(n), scritto f(n) = o(g(n)), se

$$\lim_{n \to +\infty} \frac{f(n)}{g(n)} = 0$$

cioè, informalmente, se fè "trascurabile" rispetto a g.

4.1 Esempi

• $n^2 \sim n^2 + \frac{n}{2}$, perché

$$\frac{n^2}{n^2 + \frac{n}{2}} = \frac{1}{1 + \frac{n}{2n^2}} = \frac{1}{1 + \frac{1}{2n}}$$

e $\frac{1}{2n}$ tende a 0 per $n \to +\infty$, quindi il rapporto tende a 1.

- $3n^2 + 7n \sim 3n^2 + \log n$
- $\log\left(1+\frac{1}{n}\right)\sim\frac{1}{n}$
- $n \log n = o(n^2)$

5 Proprietà

- f(n) = O(g(n)) se e solo se $g(n) = \Omega(f(n))$.
- $f(n) = \Theta(g(n))$ se e solo se f(n) = O(g(n)) e $f(n) = \Omega(g(n))$.
- $f(n) \sim g(n)$ se e solo se |f(n) g(n)| = o(g(n)).
- $f(n) \sim g(n)$ implies $f(n) = \Theta(g(n))$, ma non viceversa.
- f(n) = o(g(n)) implica f(n) = O(g(n)), ma non viceversa.
- Queste notazioni definiscono relazioni binarie sull'insieme delle funzioni $\mathbb{N} \to \mathbb{N}$:
 - O e Ω sono riflessive e transitive;
 - $-\Theta$ e ~ sono riflessive, simmetriche e transitive, quindi definiscono delle relazioni di equivalenza (con infinite classi di equivalenza, ciascuna delle quali è a sua volta infinita).

6 Regole di calcolo

- f(n) = O(g(n)) implica $cf(n) = O(g(n)) \quad \forall c > 0$, cioè, informalmente, si possono trascurare le costanti moltiplicative: infatti, $O(2n^2)$ non è più preciso di $O(n^2)$.
- Se $f_1(n) = O(g_1(n))$ e $f_2(n) = O(g_2(n))$, allora

$$f_1(n) + f_2(n) = O(g_1(n) + g_2(n))$$

 $f_1(n) \cdot f_2(n) = O(g_1(n) \cdot g_2(n))$

$$f_1(n) - f_2(n) \neq O(g_1(n) - g_2(n))$$

Le stesse regole valgono per Ω e Θ .

ma, in generale,