WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

(11) International Publication Number:

WO 97/11217

D06L 3/02, C11D 3/386

A1

(43) International Publication Date:

27 March 1997 (27.03.97)

(21) International Application Number:

PCT/DK96/00390

(22) International Filing Date:

13 September 1996 (13.09.96)

(30) Priority Data:

1042/95 1317/95

DK 19 September 1995 (19.09.95)

DK 23 November 1995 (23.11.95)

(71) Applicant (for all designated States except US): NOVO NORDISK A/S [DK/DK]; Novo Allé, DK-2880 Bagsværd (DK).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): DAMHUS, Ture [DK/DK]; Novo Nordisk a/s, Novo Allé, DK-2880 Bagsværd (DK). SCHNEIDER, Palle [DK/DK]; Novo Nordisk a/s, Novo Allé, DK-2880 Bagsværd (DK). CON-RAD, Lars, Sparre [DK/DK]; Novo Nordisk a/s, Novo Allé, DK-2880 Bagsværd (DK). EBDRUP, Søren [DK/DK]; Novo Nordisk a/s, Novo Allé, DK-2880 Bagsværd (DK). SPILE, Nickie, Inger [DK/DK]; Novo Nordisk a/s, Novo Allé, DK-2880 Bagsværd (DK).
- (74) Common Representative: NOVO NORDISK A/S; Corporate Patents, Novo Allé, DK-2880 Bagsværd (DK).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, Cl, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: STAIN BLEACHING

(57) Abstract

The invention relates to a process for bleaching stains present on fabric, comprising contacting, in an aqueous medium, the fabric with a phenol oxidizing enzyme system and a mediator for a sufficient period of time.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
СН	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	u	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	SZ	Swaziland
CS	Czechoslovakia	LT	Lithuania	TD	Chad
CZ	Czech Republic	LU	Luxembourg	TG	Togo
DE	Germany	LV	Larvia	TJ	Tajikistan
DK	Denmark	MC	Monaco	TT	Trinidad and Tobago
EE	Estonia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda
FI	Finland	ML	Mali	US	United States of Americ
FR	France	MN	Mongolia	UZ.	Uzbekistan
GA	Gabon	MR	Mauritania	VN	Viet Nam

STAIN BLEACHING

FIELD OF INVENTION

The present invention relates to a process for removing coloured stains present on fabric at low washing temperatures.

BACKGROUND ART

10

15

20

25

30

When washing clothes and other types of fabric there are some coloured stains which are problematic to remove: These stains typically originate from red wine, fruit such as black currant, cherry, strawberry and tomato (in particular ketchup and spaghetti sauce), vegetables such as carrots and beetroot, tea, coffee, spices such as curry and paprika, grass, or ball pens/ink.

normally include detergents Commercial agents to solve the above mentioned problem. Traditionally, bleaching agents incorporated in detergent compositions are compounds which are precursors of hydrogen peroxide; hydrogen peroxide is then formed in the course of the washing procedure. Perborates and percarbonates are the most important examples of such hydrogen peroxide precursors. Perborate and percarbonate may also be combined with a peracid-forming bleach activator NOBS (tetraacetylethylenediamine) or TAED such as (nonanoyloxybenzenesulfonate).

These traditional bleaching systems function quite satisfactorily at high temperatures, the optimum operation temperature of these systems being typically above 60°C.

An important challenge during the last years has been to provide efficient bleaching systems which function at low temperatures (10°C - 50°C).

In WO 89/09813 it is suggested to remove stains by using peroxidase. The process has an effect but a more efficient

stain bleaching system useful at low temperatures is still needed.

SUMMARY OF THE INVENTION

5

10

It has now surprisingly been found possible to create a stain bleaching process which effectively removes stains at low temperatures, said process comprising contacting, in an aqueous medium, the fabric with a phenol oxidizing enzyme system and a mediator for a sufficient period of time, wherein said mediator can be described by one of the following formulas:

I:

20

25

15

in which formula A is a group such as -CO-X, -CH=CH-X, -CH=CH-CH=CH-X, -CH=CH-CO-X, -SO₂-X, -PO-XZ, in which X and Z may be identical or different and selected from the group consisting of -H, -OH, -C_nH_{2n+1}, -OC_nH_{2n+1} and -N-EF, in which E and F may be identical or different and selected from the group consisting of -H and C_nH_{2n+1}; $1 \le n \le 5$; and B and C may be the same or different and selected from C_mH_{2m+1}; $1 \le m \le 5$; or

II:

30

35

in which formula X represents (-O-) or (-S-), and the

15

20

25

30

35

substituent groups R^1-R^9 , which may be identical or different, independently represents any of the following radicals: hydrogen, halogen, hydroxy, formyl, carboxy, and esters and salts hereof, carbamoyl, sulfo, and esters and salts hereof, sulfamoyl, nitro, amino, phenyl, C_1-C_1-1 alkyl, C_1-C_5-1 alkoxy, carbonyl- C_1-C_5-1 alkyl, aryl- C_1-C_5-1 which carbamoyl, sulfamoyl, and amino groups may furthermore be unsubstituted or substituted once or twice with a substituent group R^{10} ; and which phenyl may furthermore be unsubstituted or substituted with one or more substituent groups R^{10} ; and which C_1-C_1-1 alkyl, C_1-1 alkoxy, carbonyl- C_1-1 alkyl, and aryl- C_1-1 alkyl groups may be saturated or unsaturated, branched or unbranched, and may furthermore be unsubstituted or substituted with one or more substituent groups R^{10} ;

which substituent group R^{10} represents any of the following radicals: halogen, hydroxy, formyl, carboxy and esters and salts hereof, carbamoyl, sulfo and esters and salts hereof, piperidino, phenyl, aminoalkyl, amino, sulfamoyl, nitro, $C_1-C_5-alkoxy;$ pyrrolidino, C₁-C₅-alkyl, piperazinyl, carbamoyl, sulfamoyl, and amino groups may furthermore be unsubstituted or substituted once or twice with hydroxy, $C_1\text{--}C_5\text{--}$ alkyl, C₁-C₅-alkoxy; and which phenyl may furthermore be substituted with one or more of the following radicals: halogen, hydroxy, amino, formyl, carboxy and esters and salts hereof, carbamoyl, sulfo and esters and salts hereof, and sulfamoyl; and which C_1-C_5 -alkyl, and C_1-C_5 -alkoxy groups may furthermore be saturated or unsaturated, branched or unbranched, and may furthermore be substituted once or twice with any of the following radicals: halogen, hydroxy, amino, formyl, carboxy and esters and salts hereof, carbamoyl, sulfo and esters and salts hereof, and sulfamoyl;

or in which general formula two of the substituent groups R^1-R^9 may together form a group -B-, in which B represents any of the following the groups: $(-CHR^{10}-N=N-)$, $(-CH=CH-)_n$, $(-CH=CH-)_n$ or $(-N=CR^{10}-NR^{11}-)$, in which groups n represents an integer of from 1 to 3, R^{10} is a substituent group as defined

20

25

30

35

above and R^{11} is defined as R^{10} .

DETAILED DESCRIPTION OF THE INVENTION

According to the present invention it may be possible to remove coloured stains present on fabric at low washing temperatures, in particular at washing temperatures of from 5°C to 50°C, preferably at washing temperatures of from 10°C to 40°C, more preferably at temperatures of from 10°C to 30°C, even more preferably at temperatures of from 10°C to 20°C, by using a bleaching process comprising contacting, in an aqueous medium, the fabric with a phenol oxidizing enzyme and a mediator for a sufficient period of time.

Stains which may be removed according to the present invention typically originate from for example spices such as curry and paprika or vegetables/fruits, e.g., carrots.

The bleaching time for removing the stain(s) may vary; the fabric may be soaked for one or two days or the bleaching may be performed within a shorter period, typically for a period of 1 to 90 minutes, preferably for a period of 1 to 30 minutes.

Phenol Oxidizing Enzymes

By the term "a phenol oxidizing enzyme" is meant an enzyme, which by using hydrogen peroxide or molecular oxygen, is capable of oxidizing organic compounds containing phenolic groups. Examples of such enzymes are peroxidases and oxidases.

If the phenol oxidizing enzyme requires a source of hydrogen peroxide, the source may be hydrogen peroxide or a hydrogen peroxide precursor for in situ production of hydrogen peroxide, e.g., percarbonate or perborate, or a hydrogen peroxide generating enzyme system, e.g., an oxidase and a substrate for the oxidase, or an amino acid oxidase and a suitable amino acid, or a peroxycarboxylic acid or a salt thereof. Hydrogen peroxide may be added at the beginning of or during the process, e.g., in a concentration corresponding to

 $0.001-25 \text{ mM } H_2O_2.$

If the phenol oxidizing enzyme requires molecular oxygen, molecular oxygen from the atmosphere will usually be present in sufficient quantity.

In the context of the present invention the enzyme of the phenol oxidizing enzyme may be an enzyme possessing peroxidase activity or a laccase or a laccase related enzyme as described below.

According to the invention the concentration of the phenol oxidizing enzyme in the aqueous medium where the stain bleaching of the fabric is taking place, may be of from 0.001-100 mg of enzyme protein per liter, in particular of from 0.01-50 mg of enzyme protein per liter, even more preferably of from 0.1-10 mg of enzyme protein per liter.

15

20

25

30

35

5

Peroxidases and Compounds possessing Peroxidase Activity

An enzyme exhibiting peroxidase activity may be any peroxidase enzyme comprised by the enzyme classification (EC 1.11.1.7), or any fragment derived therefrom, exhibiting peroxidase activity, or synthetic or semisynthetic derivatives thereof (e.g. porphyrin ring systems or microperoxidases, cf. e.g. US 4,077,768, EP 537,381, WO 91/05858 and WO 92/16634).

Preferably, the peroxidase employed in the method of the invention is producible by plants (e.g. horseradish or soybean peroxidase) or microorganisms such as fungi or bacteria. Some preferred fungi include strains belonging to the subdivision Deuteromycotina, class Hyphomycetes, e.g. Fusarium, Humicola, Tricoderma, Myrothecium, Verticillum, Arthromyces, Caldariomyces, Ulocladium, Embellisia, Cladosporium or Dreschlera, in particular Fusarium oxysporum (DSM 2672), Humicola insolens, Trichoderma resii, Myrothecium verrucaria (IFO 6113), Verticillum alboatrum, Verticillum dahlie, Arthromyces ramosus (FERM P-7754), Caldariomyces fumago, Ulocladium chartarum, Embellisia alli or Dreschlera halodes.

Other preferred fungi include strains belonging to the subdivision Basidiomycotina, class Basidiomycetes, e.g.

15

30

35

Coprinus, Phanerochaete, Coriolus or Trametes, in particular Coprinus cinereus f. microsporus (IFO 8371), Coprinus macrorhizus, Phanerochaete chrysosporium (e.g. NA-12) or Trametes (previously called Polyporus), e.g. T. versicolor (e.g. PR4 28-A).

Further preferred fungi include strains belonging to the subdivision Zygomycotina, class Mycoraceae, e.g. Rhizopus or Mucor, in particular Mucor hiemalis.

Some preferred bacteria include strains of the order 10 Actinomycetales, e.g. Streptomyces spheroides (ATTC 23965), Streptomyces thermoviolaceus (IFO 12382) or Streptoverticillum verticillium ssp. verticillium.

Other preferred bacteria include Bacillus pumilus (ATCC 12905), Bacillus stearothermophilus, Rhodobacter sphaeroides, Rhodomonas palustri, Streptococcus lactis, Pseudomonas purrocinia (ATCC 15958) or Pseudomonas fluorescens (NRRL B-11).

Further preferred bacteria include strains belonging to Myxococcus, e.g. M. virescens.

The peroxidase may furthermore be one which is producible by a method comprising cultivating a host cell transformed with a recombinant DNA vector which carries a DNA sequence encoding said peroxidase as well as DNA sequences encoding functions permitting the expression of the DNA sequence encoding the peroxidase, in a culture medium under conditions permitting the expression of the peroxidase and recovering the peroxidase from the culture.

Particularly, a recombinantly produced peroxidase is a peroxidase derived from a *Coprinus* sp., in particular *C. macrorhizus* or *C. cinereus* according to WO 92/16634, or a variant thereof, e.g., a variant as described in WO 93/24618 and WO 95/10602.

In the context of this invention, compounds possessing peroxidase activity comprise peroxidase enzymes and peroxidase active fragments derived from cytochromes, haemoglobin or peroxidase enzymes, and synthetic or semisynthetic derivatives

10

15

20

30

35

thereof, e.g., iron porphyrins, and iron phthalocyanine and derivatives thereof.

Determination of Peroxidase Activity (PODU)

1 peroxidase unit (PODU) is the amount of enzyme that catalyzes the conversion of 1 μ mole hydrogen peroxide per minute at the following analytical conditions: 0.88 Μm 2,2'-azinobis(3-ethylbenzothiazoline-6-1.67 mM peroxide, sulfonate), 0.1 M phosphate buffer, pH 7.0, incubated at 30°C, photometrically followed at 418 nm.

Laccase and Laccase Related Enzymes

In the context of this invention, laccases and laccase related enzymes comprise any laccase enzyme comprised by the enzyme classification (EC 1.10.3.2), any catechol oxidase enzyme comprised by the enzyme classification (EC 1.10.3.1), bilirubin oxidase enzyme comprised by the enzyme classification (EC 1.3.3.5) or any monophenol monooxygenase enzyme comprised by the enzyme classification (EC 1.14.18.1).

The above mentioned enzymes may be derived bacteria or fungi (including filamentous fungi and yeasts) and suitable examples include a laccase derivable from a strain of Aspergillus, Neurospora, e.g., N. crassa, Podospora, Botrytis, Collybia, Fomes, Lentinus, Pleurotus, Trametes, e.g., T. villosa and T. versicolor, Rhizoctonia, e.g., R. solani, 25 Coprinus, e.g., C. plicatilis and C. cinereus, Psatyrella, Myceliophthora, e.g., M. thermophila, Schytalidium, Polyporus, e.g., P. pinsitus, Phlebia, e.g., P. radita (WO 92/01046), or Coriolus, e.g., C.hirsutus (JP 2-238885).

laccase related enzyme laccase or the furthermore be one which is producible by a method comprising cultivating a host cell transformed with a recombinant DNA vector which carries a DNA sequence encoding said laccase as sequences encoding functions permitting the well as DNA expression of the DNA sequence encoding the laccase, in a cul-

ture medium under conditions permitting the expression of the laccase enzyme, and recovering the laccase from the culture.

Determination of Laccase Activity (LACU)

Laccase activity is determined from the oxidation of syringaldazin under aerobic conditions. The violet colour produced is photometered at 530 nm. The analytical conditions are 19 μ M syringaldazin, 23.2 mM acetate buffer, pH 5.5, 30°C, 1 min. reaction time.

10 laccase unit (LACU) is the amount of enzyme that catalyses the conversion of 1.0 μ mole syringaldazin per minute at these conditions.

Mediators

According to the present invention a mediator is any compound that enhances the bleaching process. The enhancing agent will typically be an organic compound, e.g., an organic compound described by one of the following formulas:

in which formula A is a group such as -CO-X, -CH=CH-X, -CH=CH-30 CH=CH-X, -CH=CH-CO-X, -SO₂-X, -PO-XZ, in which X and Z may be identical or different and selected from the group consisting of -H, -OH, -C_nH_{2n+1}, -OC_nH_{2n+1} and -N-EF, in which E and F may be identical or different and selected from the group consisting of -H and C_nH_{2n+1}; $1 \le n \le 5$; and B and C may be the same or different and selected from C_mH_{2m+1}; $1 \le m \le 5$.

In the above mentioned formula A may be placed meta to the hydroxy group instead of being placed in the para-position as shown.

In particular embodiments, the mediator is acetosyringone, syringaldehyde, methylsyringate, syringic acid, ethylsyringate, propylsyringate, butylsyringate, hexylsyringate, octylsyringate or ethyl 3-(4-hydroxy-3,5-dimethoxyphenyl)acrylate.

The mediator used in the present invention may also be described by the following formula:

5

15

20

25

30

35

in which formula X represents (-0-) or (-S-), and the substituent groups R1-R9, which may be identical or different, radicals: following any of the independently represents hydrogen, halogen, hydroxy, formyl, carboxy, and esters and salts hereof, carbamoyl, sulfo, and esters and salts hereof, amino, phenyl, C_1-C_{14} -alkyl, C_1-C_5 -alkoxy, sulfamoyl, nitro, carbamoyl, aryl-C₁-C₅-alkyl; which carbonyl-C₁-C₅-alkyl, sulfamoyl, and amino groups may furthermore be unsubstituted or substituted once or twice with a substituent group R^{10} ; and which phenyl may furthermore be unsubstituted or substituted with one or more substituent groups R^{10} ; and which $C_1 - C_{14} - alkyl$, $C_1 - C_5 - alkyl$ alkoxy, carbonyl- C_1 - C_5 -alkyl, and aryl- C_1 - C_5 -alkyl groups may be saturated or unsaturated, branched or unbranched, and may furthermore be unsubstituted or substituted with one or more substituent groups R¹⁰;

which substituent group R^{10} represents any of the following radicals: halogen, hydroxy, formyl, carboxy and esters and salts hereof, carbamoyl, sulfo and esters and salts hereof, sulfamoyl, nitro, amino, phenyl, aminoalkyl, piperidino, piperazinyl, pyrrolidino, C_1 - C_5 -alkyl, C_1 - C_5 -alkoxy; which

carbamoyl, sulfamoyl, and amino groups may furthermore be unsubstituted or substituted once or twice with hydroxy, C_1 - C_5 -alkyl, C_1 - C_5 -alkoxy; and which phenyl may furthermore be substituted with one or more of the following radicals: halogen, hydroxy, amino, formyl, carboxy and esters and salts hereof, carbamoyl, sulfo and esters and salts hereof, and sulfamoyl; and which C_1 - C_5 -alkyl, and C_1 - C_5 -alkoxy groups may furthermore be saturated or unsaturated, branched or unbranched, and may furthermore be substituted once or twice with any of the following radicals: halogen, hydroxy, amino, formyl, carboxy and esters and salts hereof, carbamoyl, sulfo and esters and salts hereof, and sulfamoyl;

or in which general formula two of the substituent groups R^1-R^9 may together form a group -B-, in which B represents any of the following the groups: $(-CHR^{10}-N=N-)$, $(-CH=CH-)_n$, $(-CH=N-)_n$ or $(-N=CR^{10}-NR^{11}-)$, in which groups n represents an integer of from 1 to 3, R^{10} is a substituent group as defined above and R^{11} is defined as R^{10} .

In particular embodiments, the mediator is 10-methyl-20 10-phenothiazine-propionic acid, phenothiazine, N-hydroxysuccinimide-10-phenothiazine-propionate, 10-ethyl-4-phenothiazine-carboxylic acid, 10-ethylphenothiazine, phenothiazine, 10-isopropylphenothiazine, methyl-10-phenothiazinepropionate, 10-phenylphenothiazine, 10-allylpheno-25 thiazine, 10-(3-(4-methyl-1-piperazinyl)propyl)phenothiazine, 10-(2-pyrrolidinoethyl)phenothiazine, chlorpromazine, 2-chloro-10-methylphenothiazine, 2-acetyl-10-methylphenothiazine, carboxy-10-phenothiazine, 10-methylphenoxazine, phenoxazine, 10-phenoxazine-propionic acid or 4-carboxy-10-30 phenoxazine-propionic acid.

The mediator of the invention may be present in concentrations of from 0.01 to 5000 μM , preferably in concentrations of from 0.1 to 1000 μM , even more preferably in concentrations of from 1 to 500 μM .

10

15

10

15

25

30

Preparation of Mediators

The mediators described in the present application may be prepared using methods well known to those skilled in the art; some of the mediators are also commercially available.

Some of the mediators may be obtained from Sigma-Aldrich, Janssen Chimica, Kodak, Tokyo Kasai Organic Chemicals, Daiichi Pure Chemicals Co. or Boehringer Mannheim.

N-methylated derivatives of phenothiazine and phenoxazine may be prepared by methylation with methyliodide as described by Cornel Bodea and Ioan Silberg in "Recent Advances in the Chemistry of Phenothiazines" (Advances in heterocyclic chemistry, 1968, Vol. 9, pp. 321-460); B. Cardillo & G. Casnati in Tetrahedron, 1967, Vol. 23, p. 3771. Phenothiazine and phenoxazine propionic acids may be prepared as described in J. Org. Chem. 15, 1950, pp. 1125-1130. Hydroxyethyl and hydroxypropyl derivatives of phenothiazine and phenoxazine may be prepared as described by G. Cauquil in Bulletin de la Society Chemique de France, 1960, p. 1049.

Methylsyringate, ethylsyringate, propylsyringate, 20 butylsyringate, hexylsyringate and octylsyringate may be produced by using the method disclosed in Chem. Ber. 67, 1934, p. 67.

Ethyl 3-(4-hydroxy-3,5-dimethoxyphenyl)acrylate was synthesised from syringaldehyde and triethyl phosphonoacetate in ethanol/sodium ethanolate. The product was after purification characterised by ¹H-NMR and ¹³C-NMR (showing spectra as expected) and the melting point was 68-70°C.

The invention is further illustrated in the following examples which are not intended to be in any way limiting to the scope of the invention as claimed.

WO 97/11217

12

EXAMPLE 1

Stain Bleaching with mediated laccase systems

To investigate the stain bleaching effect of mediated laccase systems, small-scale washing trials were carried out. Test pieces of fabric soiled with beta-carotene, curry, and paprika, respectively, were treated in beakers with magnetical stirring in borate solution with several combinations of laccases and 10 mediators.

The reference treatment in each case was a wash under the same conditions with no laccase-mediator system present.

After the wash, the test pieces of fabric were thoroughly rinsed in cold tap water and air-dried in the dark overnight. The bleaching effect of any given laccase-mediator system was then evaluated by using a Datacolor Elrepho 2000 (remission measurements at 460 nm) or by using a Minolta Chroma Meter (colourspace XYZ) using D65 as the light source.

Positive values of more than 2-3 units indicate 20 significant bleaching effects in both systems.

The mediators used are abbreviated as follows:

PPT: phenothiazine-10-propionic acid

4-carboxyphenothiazine-10-propionic acid EPC:

25 phenoxazine-10-propionic acid POP:

AS: acetosyreingone,

(4-hydroxy-3,5-dimethoxyphenyl)ethan-1-one

MS: methyl syringate,

4-hydroxy-3,5-dimethoxybenzoic acid methyl ester

30

15

Wash trial 1. Laccase from Trametes villosa.

Medium: 25 mM borate (from boric acid with NaOH), pH 7.

Temperature: 40°C, 15°C, 10°C.

35 Duration of wash: 30 min. Laccase preparation obtained in the following way:

800 ml culture broth of Trametes villosa, CBS 678.70, was filtered with filter aid to give a clear filtrate, which was concentrated and washed by ultrafiltration on a membrane with a cut-off of 6-8 kDa. One ml samples of concentrated preparation was applied onto a Q-Sepharose HP column (Pharmacia, Sweden) equilibrated with 0.1 M fosfate pH 7, and the laccase was eluted with a flat NaCl gradient around 0.25 M. Fractions with laccase activity from 10 runs were pooled and concentrated by ultrafiltration.

Laccase dossage: 1 mg/l washing liquor.

Mediator dosage: 120 μM . Mediators predissolved in ethanol.

Bleaching Results (40°C):

15

10

5

Delta (remission (%) at 460 nm)

		Betacarotene	Curry	Paprika
20	PPT	14	6	22
	EPC	7	5	20
	POP	3	2	16
	AS	5	6	15
	MS	8	7	19

25

Bleaching results (15°C):

Calculated Delta-E (colourspace XYZ)

30

Paprika*

PPT

18

Bleaching results (10°C):

Calculated Delta-E (colourspace XYZ)

5

Paprika*

PPT

21

*): The paprika test pieces of fabric were obtained from Center 10 for Test materials, WFK P (P043).

It can be seen from the results presented above that paprika is bleached very effectively even at 10-15°C.

Wash trial 2. Laccase from Coprinus cinereus.

15

Medium: 25 mM borate (from boric acid with NaOH), pH 8.5.

Temperature: 40° C.

Duration of wash: 30 min.

Laccase preparation obtained in the following way:

20 Coprinus cinereus (IFO 30116 - freely available to the public from Institute of Fermentation, Osaka (IFO) under the indicated deposit number) was inoculated from a PDA agar slant (PDA: 39 g/l potato dextrose agar) into a 100 ml shake flask containing medium A (Medium A is described below). The culture was cultivated for 6 days at 26°C and 100 rpm. A 10-liter fermentor 25 containing medium A was inoculated with the 100 ml culture broth. The fermentation ran for 6 days at 26°C and 100 rpm. The culture broth was filtrated and concentrated by ultrafiltration. Further purification was carried out using hydrophobic 30 interaction chromatography followed by anionic exchange chromatography. This process resultated in at preparation with a laccase activity of 3.6 LACU/ml. The estimated purity was >80%on a protein basis.

PCT/DK96/00390

15

Medium A:	Soja meal	30 g/l
	Maltodextrin	15 g/l
	bacto peptone	5 g/l
	pluronic	0.2 g/1

5

WO 97/11217

Laccase dosage: 1 mg/l washing liquor.

Mediator dosage: 120 μM . Mediators predissolved in ethanol.

Bleaching Results:

10

30

		Delta (remission (s) at 460 nm)
		Betacarotene	Paprika
15	PPT	16	5
	EPC	12	8
	AS	5	1
	MS	15	6

20 Wash trial 3. Laccase from Myceliophthora thermophila.

Medium: 25 mM borate (from boric acid with NaOH) pH 8.5 at 40°C; 25 mM borate (from boric acid with NaOH) pH 7 at 15°C and at 10°C.

25 Temperature: 40°C, 15°C, 10°C.

Duration of wash: 30 min.

Laccase preparation obtained as described in PCT/US95/06815.

Laccase dosage: 1 mg/l washing liquor.

Mediator dosage: 120 µM. Mediators predissolved in ethanol.

Bleaching Results (40°C):

Delta	(remission	(용)	at	460	nm)

5		Betacarotene	Paprika
	PPT	4	0
	EPC	3	3
	AS	7	4
10	MS	7	8

Bleaching results (15°C):

Calculated Delta-E (colourspace XYZ)

15

Paprika*

MS

21

20

Bleaching results (10°C):

Calculated Delta-E (colourspace XYZ)

25

35

Paprika*

PPT

17

30 *): The paprika test pieces of fabric were obtained from Center for Testmaterials, WFK P (P043).

It can be seen from the results presented above that paprika is bleached very effectively even at 10-15°C.

EXAMPLE 2

Stain bleaching with mediated peroxidase systems

To investigate the stain bleaching effect of mediated peroxidase systems, a small-scale washing trial was carried out analogously to the ones described in Example 1.

Wash trial. Peroxidase from Coprinus cinereus.

10

5

Medium: 25 mM borate (from boric acid with NaOH), pH 7.

Temperature: 40°C, 15°C, 10°C.

Duration of wash: 30 min.

Peroxidase preparation obtained as described in WO 94/12621.

Peroxidase dosage: 0.2 mg/l washing liquor.

Mediator dosage: 120 µM. Mediators predissolved in ethanol.

Hydrogen peroxide: 0.5 mM.

Bleaching Results (40°C):

20

		·						
		Betacarotene	Curry	Paprika				
25	PPT	12	9	25				
	EPC	13	8	21				
	POP	4	4	18				
	AS	0	. 8	13				
	MS	9	.9	20				

Bleaching results (15°C):

Calculated Delta-E (colourspace XYZ)

Delta (remission (%) at 460 nm)

30

WO 97/11217 PCT/DK96/00390

18

Paprika*

PPT

28

5 Bleaching Results (10°C):

Calculated Delta-E (colourspace XYZ)

10

Paprika*

MS

23

15 *): The paprika test pieces of fabric were obtained from Center for Testmaterials, WFK P (P043).

It can be seen from the results presented above that paprika is bleached very effectively even at 10-15°C.

20

EXAMPLE 3

Stain bleaching with mediated peroxidase systems

Peroxidase-mediator systems identical to or similar to the ones studied in Example 2 were subjected to a Launder-ometer wash trial to investigate the effects of having a closed system and a different mechanical treatment. The Launder-ometer is a laboratory-scale set-up for simulating conditions in a traditional front-loaded European washing machine.

30

Wash trial. Peroxidase from Coprinus cinereus.

Medium: 25 mM borate (from boric acid with NaOH), pH 7.

Temperature: 40°C.

35 Duration of wash: 5 min preheating from 35°C to 40°C, then 30

min. wash at 40°C.

Peroxidase preparation obtained as described Example 2.

Peroxidase dosage: 120 μM . Mediators predissolved in ethanol.

Hydrogen peroxide: 0.5 mM.

5

Mediators tested: the above ones (see Example 1), except AS, and additionally MPT, 10-methylpenothiazine.

Bleaching results:

10

Delta (remission (%) at 460 nm)

		Betacarotene	Curry	Paprika
15	PPT	11	6	11
	EPC	10	5	10
	MPT	8	4	6
	POP	6	3	10
	MS	7	7	10

20

25

It is seen that trends are much the same as in the small-scale washing test in Example 2. (The absolute numbers obtained depend on, among other things, wash load and mechanical action on the fabrics in the wash and are not directly comparable between the two examples here.)

EXAMPLE 4

Stain bleaching with a laccase and a series of homologous alkyl syringates as mediators

To investigate the effect on stain bleaching properties of homologous alkyl syringates mediators, a series of alkyl syringates was tested in an experiment much like the one in Example 3, except that the enzyme was a laccase instead of a peroxidase.

WO 97/11217

Wash trial. Laccase from Trametes villosa.

Medium: 25 mM borate (from boric acid with NaOH), pH 7.

Temperature: 40°C.

5 Duration of wash: 5 min preheating from 35°C to 40°C, then 30 min wash at 40°C.

Laccase preparation obtained as described in Example 1.

Laccase dosage 1 mg/l washing liquor.

Mediator dosage: 120 μM . Mediators predissolved in ethanol.

10

Mediators tested: methyl, ethyl, propyl, butyl, hexyl, and octyl syringate.

Bleaching results:

15

Delta (remission (%) at 460 nm)

		Betacarotene
	methyl	13
20	ethyl	13
	propyl	32
	butyl	26
	hexyl	8
	octyl	2

25

It is seen that a marked optimum is reached at chain lengths 3 and 4 of the alkyl group. All these syringates except the octyl homologue achieve significant bleaching under the conditions given.

CLAIMS

1. A process for bleaching stains present on fabric, comprising contacting, in an aqueous medium, the fabric with a phenol oxidizing enzyme system and a mediator for a sufficient period of time, wherein said mediator can be described by one of the following formulas:

I:

10

15

in which formula A is a group such as -CO-X, -CH=CH-X, -CH=CH-CH-CH=CH-X, -CH=CH-CO-X, -SO₂-X, -PO-XZ, in which X and Z may be identical or different and selected from the group consisting of -H, -OH, -C_nH_{2n+1}, -OC_nH_{2n+1} and -N-EF, in which E and F may be identical or different and selected from the group consisting of -H and C_nH_{2n+1} ; $1 \le n \le 5$; and B and C may be the same or different and selected from C_mH_{2m+1} ; $1 \le m \le 5$; or

25 II:

30

35

in which formula X represents (-0-) or (-S-), and the substituent groups R^1-R^9 , which may be identical or different, independently represents any of the following radicals: hydrogen, halogen, hydroxy, formyl, carboxy, and esters and salts hereof, carbamoyl, sulfo, and esters and salts hereof, sulfamoyl, nitro, amino, phenyl, C_1-C_1 -alkyl, C_1-C_5 -alkoxy, carbonyl- C_1-C_5 -alkyl, aryl- C_1-C_5 -alkyl; which carbamoyl, sulfa-

moyl, and amino groups may furthermore be unsubstituted or substituted once or twice with a substituent group R^{10} ; and which phenyl may furthermore be unsubstituted or substituted with one or more substituent groups R^{10} ; and which C_1-C_{14} -alkyl, C_1-C_5 -alkoxy, carbonyl- C_1-C_5 -alkyl, and aryl- C_1-C_5 -alkyl groups may be saturated or unsaturated, branched or unbranched, and may furthermore be unsubstituted or substituted with one or more substituent groups R^{10} ;

which substituent group R10 represents any of the following radicals: halogen, hydroxy, formyl, carboxy and esters 10 and salts hereof, carbamoyl, sulfo and esters and salts hereof, sulfamoyl, nitro, amino, phenyl, aminoalkyl, piperidino, piperazinyl, pyrrolidino, C₁-C₅-alkyl, $C_1-C_5-alkoxy;$ carbamoyl, sulfamoyl, and amino groups may furthermore be 15 unsubstituted or substituted once or twice with hydroxy, C_1-C_5 alkyl, C₁-C₅-alkoxy; and which phenyl may furthermore be substituted with one or more of the following radicals: halogen, hydroxy, amino, formyl, carboxy and esters and salts hereof, carbamoyl, sulfo and esters and salts hereof, and sulfamoyl; and 20 which C_1-C_5 -alkyl, and C_1-C_5 -alkoxy groups may furthermore be saturated or unsaturated, branched or unbranched, furthermore be substituted once or twice with any of the following radicals: halogen, hydroxy, amino, formyl, carboxy and esters and salts hereof, carbamoyl, sulfo and esters and salts 25 hereof, and sulfamoyl;

or in which general formula two of the substituent groups R^1-R^9 may together form a group -B-, in which B represents any of the following the groups: $(-CHR^{10}-N=N-)$, $(-CH=CH-)_n$, $(-CH=N-)_n$ or $(-N=CR^{10}-NR^{11}-)$, in which groups n represents an integer of from 1 to 3, R^{10} is a substituent group as defined above and R^{11} is defined as R^{10} .

2. A process according to claim 1, in which the phenol oxidizing enzyme system is a peroxidase and a hydrogen peroxide source.

30

- 3. A process according to claim 2, wherein the peroxidase is horseradish peroxidase, soybean peroxidase or a peroxidase enzyme derived from Coprinus, Bacillus or Myxococcus.
- 5 4. A process according to claim 2 or 3, wherein the hydrogen peroxide source is hydrogen peroxide or a hydrogen peroxide precursor.
- 5. A process according to claim 1, wherein the aqueous medium 10 contains H_2O_2 or a precursor for H_2O_2 in a concentration corresponding to 0.001-25 mM H_2O_2 .
- 6. A process according to claim 1, in which the phenol oxidizing enzyme system is a laccase or a laccase related enzyme together with oxygen.
 - 7. A process according to claim 6, wherein the laccase is derived from Trametes, Coprinus, or Myceliophthora.
- 8. A process according to claim 1, wherein the concentration of the phenol oxidizing enzyme corresponds to 0.001-100 mg of enzyme protein per liter of aqueous medium.
- A process according to claim 1, wherein the mediator belongs
 to the group consisting of acetosyringone, syringaldehyde,
 methylsyringate and syringic acid.
- 10. A process according to claim 1, wherein the mediator belongs to the group consisting of 10-methylphenothiazine, phenothiazine-10-propionic acid, phenoxazine-10-propionic acid, phenoxazine-10-hydroxyethyl, phenothiazine-10-ethyl-4-carboxy, promazine hydrochloride and phenothiazine-10-ethylalcohol.
- 11. A process according to claim 1, wherein the mediator in the aqueous medium is present in concentrations of from 0.01 to 5000 μM .

12. A process according to claim 1, wherein the phenol oxidizing enzyme system in the aqueous medium is present in concentrations of from 0.001--100 mg of enzyme protein per liter.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/DK 96/00390

CLASSIFICATION OF SUBJECT MATTER IPC6: D06L 3/02, C11D 3/386 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC6: D06L, C11D Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched SE,DK,FI,NO classes as above Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) WPI, IFIPAT, CA C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages Category* WO 9412621 A1 (NOVO NORDISK A/S), 9 June 1994 1-12 X (09.06.94)1-12 WO 9612845 A1 (NOVO NORDISK A/S), 2 May 1996 P,X (02.05.96)1-12 WO 9612846 A1 (NOVO NORDISK A/S), 2 May 1996 P,X (02.05.96)1-12 WO 9218683 A1 (NOVO NORDISK A/S), 29 October 1992 A (29.10.92)See patent family annex. Further documents are listed in the continuation of Box C. later document published after the international filing date or priority Special categories of cited documents: date and not in conflict with the application but cited to understand the principle or theory underlying the invention "A" document defining the general state of the art which is not considered to be of particular relevance "X" document of particular relevance: the claimed invention cannot be "E" ertier document but published on or after the international filing date considered movel or cannot be considered to involve an inventive document which may throw doubts on priority claim(s) or which is step when the document is taken alone cited to establish the publication date of another citation or other "Y" document of particular relevance: the claimed invention cannot be special reason (as specified) considered to involve an inventive step when the document is combined with one or more other such documents, such combination "O" document referring to an oral disclosure, use, exhibition or other being obvious to a person skilled in the ar document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search 1 4 -12- 1996 29 November 1996 Authorized officer Name and mailing address of the ISA/ **Swedish Patent Office** Teddy Ercegovic Box 5055, S-102 42 STOCKHOLM Telephone No. +46 8 782 25 00 Facsimile No. +46 8 666 02 86

INTERNATIONAL SEARCH REPORT

Information on patent family members

28/10/96

International application No.
PCT/DK 96/00390

Patent document cited in search report		Publication date	Patent family member(s)		Publication date	
WO-A1-	9412621	09/06/94	CA-A-	2150562	09/06/94	
			EP-A-	0679183	02/11/95	
			FI-A-	952648	28/07/95	
			JP-T-	8506009	02/07/96	
			AU-A-	7937194	22/05/95	
			CA-A-	2175047	04/05/95	
			EP-A-	0730641	11/09/96	
			WO-A-	9511964	04/05/95	
			CA-A-	2150563	09/06/94	
			EP-A-	0677102	18/10/95	
			FI-A-	952647	31/05/95	
			JP-T-	8503371	16/04/96	
			WO-A-	9412620	09/06/94	
WO-A1-	9612845	02/05/96	AU-A-	3650195	15/05/96	
√0-A1-	9612846	02/05/96	AU-A-	3650295	15/05/96	
√O-A1-	9218683	29/10/92	NONE			

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

₩ BLACK BORDERS	
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES	
☑ FADED TEXT OR DRAWING	
BLURRED OR ILLEGIBLE TEXT OR DRAWING	
SKEWED/SLANTED IMAGES	
COLOR OR BLACK AND WHITE PHOTOGRAPHS	
☐ GRAY SCALE DOCUMENTS	
☐ LINES OR MARKS ON ORIGINAL DOCUMENT	
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY	
OTHER:	

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

This Page Blank (uspto)