Title

Contents

1	Wednesday, October 21		
	1.1	Strong Linkage	2
	1.2	Translation Functors	
		1.2.1 Blocks	þ

1 Wednesday, October 21

1.1 Strong Linkage

Let G be a semisimple algebraic group and $k = \overline{\mathbb{F}_p}$. We found that the affine Weyl group W_p played an important role here.

Theorem $1.1.1(Strong\ Linkage\ I)$.

Suppose we have a nonzero composition factor in the induced/Weyl module. Then

$$[H^0\lambda : L(\mu)] \neq 0] \implies \mu \uparrow \lambda.$$

In other words, there's a series of reflections sending μ to λ which doesn't increase it's value in the ordering.

Theorem 1.1.2(Strong Linkage II).

Let $\lambda \in X(T)$ with $\langle \lambda + \rho, \alpha^{\vee} \rangle \geq 0$ for all $\alpha \in \Delta$. Suppose $\mu \in X(T)_+$.

$$[H^i w \cdot \lambda : L(\mu)] \neq 0$$
 for some $i \geq 0 \implies \mu \uparrow \lambda$.

Remark 1.1.1.

Note that this is tells us slightly more than Bott-Borel-Weil.

Remark 1.1.2.

There is some history here:

- 1. Verma conjectured the first theorem in 1971.
- 2. Humphreys (1971) proved it for $Z_r(\lambda) = \operatorname{Ind}_{B_r}^{G_r} \lambda$.
- 3. Strong Linkage II proved by Andersen in 1980.
- 4. Jantzen proved strong linkage for Z_r , which implies strong linkage for $V(\lambda)$.
- 5. Doty (1987) proved strong linkage for $Z_r(\lambda)$ as a G_rT -modules, which implies strong linkage for $V(\lambda)$.

Remark 1.1.3.

One application is the following: let $\lambda, \mu \in X(T)_+$, then $\operatorname{Ext}_G^n(L(\lambda), L(\mu)) \neq 0$ for some $n \geq 0$. This implies that $\lambda \in W_p \cdot \mu$. We can consider some cases

- If n = 0, we're reduced to previous situations.
- If n=1, we can conclude that $L(\lambda)$ is in the second socle layer of $H^0\mu$, or vice-versa. In either case, $\lambda \in W_p \cdot \mu$.

We can compute this ext by considering an minimal injective resolution

$$0 \to L(\mu) \to I_0 = I(\mu) \to I_1 \to \cdots$$
.

We can conclude that

$$[I(\mu): H^0(\sigma)] = [H^0(\sigma): L(\mu)] \neq 0.$$

by Brauer-Humphreys reciprocity, so $\sigma \in W_p \cdot \mu$. Similarly $[I(\mu) : L(\gamma)] \neq 0$ implies that $\gamma \in W_p \cdot \mu$, and continuing in this way we can write

$$I_1 = \bigoplus_{j=1}^t I(\gamma_j)$$
 with each $\gamma_j \in W_p \cdot \mu$.

So all of these weights are strongly linked to μ .

But then we know $\operatorname{Ext}_G^n(L(\lambda), L(\mu)) \neq 0$ is a subquotient of $\operatorname{hom}_G(L(\lambda), I_n)$, which thus can not be zero. So $\lambda \in W_p \cdot \mu$

1.2 Translation Functors

Consider the case from category \mathcal{O} , e.g. by taking $\mathfrak{g} = \mathfrak{sl}_3(\mathbb{C})$:

Figure 1: Image

For λ a regular weight, the principal block \mathcal{B}_0 is Morita-equivalent to \mathcal{B}_{λ} . If μ is a singular weight, then by Jantzen there are translation functors

$$T^{\mu}_{\lambda}:\mathcal{B}_{\lambda}\to\mathcal{B}_{\mu}$$

 $T^{\lambda}_{\mu}:\mathcal{B}_{\mu}\to\mathcal{B}_{\lambda}.$

In the case where G is a semisimple algebraic group and $k = \overline{\mathbb{F}}_p$, we have the following picture instead:

Figure 2: Image

1.2.1 Blocks

Two simple modules S, T are in the same block if we have a sequence T_1, \dots, T_n such that $S = T_1$ and $T_n = T$ where $\operatorname{Ext}^1(T_i, T_{i+1}) \neq 0$.

Lemma 1.1(?).

Let M, M' be H-modules and $\mathcal{B}(H)$ be the blocks of H. Then

1. $M = \bigoplus_{b \in \mathcal{B}(H)} M_b$ where $M_b = \sum_{M' \leq M} M'$ the sum of all submodules such that M has composition in the block b.

2.

$$\operatorname{Ext}_H^i(M') = \prod_{b \in \mathcal{B}(H)} \operatorname{Ext}_H^i(M_b, M'_b)$$

So the question becomes, what are the blocks of H? Let $\lambda \in X(T)_+$, so we can define $L(\lambda)$, and let $b(\lambda)$ be the G-block containing $L(\lambda)$.

We have $b(\lambda) \in \mathcal{B}(G)$ and $b(\lambda) \subseteq X(T)_+ \cap W_p \cdot \lambda$, i.e. we have strong linkage.

Here we refer to $b(\lambda)$ as both the block and the weights it contains.

Theorem 1.2.1(Donkin).

Let $\lambda \in X(T)_+$ be a dominant weight and let $r \in \mathbb{Z}$ be the largest integer such that $p^r \mid \langle \lambda + \rho, \alpha^{\vee} \rangle$ for all $\alpha \in \Phi$. Then

$$b(\lambda) = W_p^{(r)} \cdot \lambda \cap X(T)_+ \text{ where } W_p^{(r)} = W \rtimes p^r \mathbb{Z}\Phi.$$

Proposition 1.2.1(?).

Let B be a G-module and $\lambda \in X(T)$. Set $\operatorname{pr}_{\lambda}V$ to be the sum of all submodules of V with composition factors of the form $L(\mu)$ where $\mu \in W_p \cdot \lambda$. Then

• $V = \bigoplus_{\lambda \in \mathbb{Z}} \operatorname{pr}_{\lambda} V$ where \mathbb{Z} are representatives of the W_p orbits, i.e. one representative from each alcove in the weight lattice.

•

$$\operatorname{Ext}_G^i(V, V') = \prod_{\lambda \in Z} \operatorname{Ext}_G^i(\operatorname{pr}_{\lambda} V, \operatorname{pr}_{\lambda} V')$$

• The projection functors $\operatorname{pr}_{\lambda}(\cdot)$ are exact. Note that this still works for singular weights, not just regular weights.

Example 1.2.1.

We can compute

$$\operatorname{pr}_{\lambda} L(\mu) = \begin{cases} 0 &= \lambda \notin W_p \cdot \mu \\ L(\mu) &= \lambda \in W_p \cdot \mu \end{cases}.$$

Similarly, by strong linkage,

$$\operatorname{pr}_{\lambda} H^{i}(\mu) = \begin{cases} 0 &= \lambda \notin W_{p} \cdot \mu \\ H^{i}(\mu) &= \lambda \in W_{p} \cdot \mu \end{cases}.$$

Recall that

$$\overline{C}_{\mathbb{Z}} := \left\{ \lambda \in X(T) \mid 0 \le \langle \lambda + \rho, \ \beta^{\vee} \rangle \le p \ \forall \beta \in \Phi^+ \right\}.$$

For every $\mu, \lambda \in \overline{C}_{\mathbb{Z}}$, consider $\mu - \lambda \in X(T)$. Then there is a way to conjugate it under the ordinary W action to land in the dominant region, i.e. some unique ν such that $\nu \in X(T)_+ \cap W(\mu - \lambda)$.

Definition 1.2.1 (Translation Functors).

Define

$$T^{\mu}_{\lambda}V = \operatorname{pr}_{\mu}(L(\nu) \otimes \operatorname{pr}_{\lambda}V).$$

So project to λ , tensor with an irreducible representation, then project to μ . This is an exact

functor

 $T^{\mu}_{\lambda}:G\text{-}\mathrm{mod}\to G\text{-}\mathrm{mod}.$

Next time: we'll show that T^{μ}_{λ} and T^{λ}_{μ} form an adjoint pair. Note that if μ, λ are in the same block, these are the exact functor which product the categorical equivalence.