Модуль подсистемы "Специальные" <FLibComplex1>

Модуль:	FLibComplex1		
Имя:	Библиотека функций совместимости со SCADA Complex1.		
Tun:	Специальные		
Источник:	spec_FLibComplex1.so		
Версия:	1.1.0		
Автор:	Роман Савоченко		
Описание:	Предоставляет библиотеку функций совместимости со SCADA Complex1 фирмы НИП "DIYA".		
Лицензия:	GPL		

Оглавление

Модуль подсистемы "Специальные" <flibcomplex1></flibcomplex1>	
Введение	2
	3
2. Условие '<' (cond It) <239>	
3. Условие '>' (cond gt) <240>	
4. Полное условие (cond_full) <513>	
<u>5. Дискретный блок (digitBlock) <252></u>	
6. Деление (div) <526>	_
7. Экспонента (ехр) <476>	
8. Расход (flow) <235>	
9. Итератор (increment) <181>	
10. Задержка (lag) <121>	
12. Умножение+деление(multDiv) <468>	
13. ПИД регулятор (pid) <745>	
14. Степень (pow) <564>	_
<u>15. Выбор (select) <156></u>	_
16. Простой сумматор (sum) <404>	6
17. Сумма с делением (sum div) <518>	
18. Сумма с умножением (sum_mult) <483>	
19. API пользовательского программирования	6

Введение

Специальный модуль FLibComplex1 предоставляет в систему OpenSCADA статическую библиотеку функций совместимости со SCADA Complex1 фирмы НИП "DIYA". Эти функции использовались в SCADA системе Complex1 в виде алгоблоков для создания внутрисистемных вычислений на основе виртуального контроллера. Предоставление библиотеки этих функций позволяет выполнять перенос вычислительных алгоритмов из системы Complex 1.

Для адресации к функциям этой библиотеки можно использовать статический адрес вызова "Special.FLibComplex1.{Func}()" или динамический "SYS.Special.FLibComplex1["{Func}"].call()", "SYS.Special.FLibComplex1.{Func}()". Где {Func} — идентификатор функции в библиотеке.

Ниже приведено описание каждой функции библиотеки. Для каждой функции производилась оценка времени исполнения. Измерение производилось на системе со следующими параметрами: Athlon 64 3000+ (ALTLinux 3.0(32бит)) путём замера общего времени исполнения функции при вызове её 1000 раз. Выборка производилась по наименьшему значению из пяти вычислений. Время заключается в угловые скобки и измеряется в микросекундах.

1. Сигнал (alarm) <111>

Описание: Установка признака сигнализации в случае выхода значения переменной за указанную границу.

```
Формула:
   out = if(val>max || val<min) true;</pre>
          else false;
```

2. Условие '<' (cond lt) <239>

Описание: Операция ветвления в соответствии с условием "<".

```
Формула:
```

```
out = if(in1<(in2 1*in2 2*in2 3*in2 4)) in3 1*in3 2*in3 3*in3 4;
      else in4 1*in4 2*in4 3*in4 4;
```

3. Условие '>' (cond gt) <240>

Описание: Операция ветвления в соответствии с условием ">".

```
Формула:
```

```
out = if(in1>(in2 1*in2 2*in2 3*in2 4)) in3 1*in3 2*in3 3*in3 4;
     else in4 1*in4 2*in4 3*in4 4;
```

4. Полное условие (cond full) <513>

Описание: Полная проверка условия, включая больше, меньше и равно.

```
Формула:
```

```
out = if(in1<(in2_1*in2_2*in2_3*in2_4)) in3_1*in3_2*in3_3*in3_4;</pre>
      else if( in1>(in4_1*in4_2*in4_3*in4_4) in5_1*in5_2*in5_3*in5_4;
      else in6 1*in6 2*in6 3*in6 4;
```

5. Дискретный блок (digitBlock) <252>

Описание: Функция содержит алгоритм управления сборками дискретных сигналов для задвижек и насосов, содержащих: признаки "Open", "Close" и команды "Open", "Close", "Stop". Функция поддерживает работу с импульсными командами, т.е. может снимать сигнал через указанный промежуток времени.

Параметры:

ID	Параметр	Тип	Режим
cmdOpen	Команда «Открыть»	Bool	Выход
cmdClose	Команда «Закрыть»	Bool	Выход
cmdStop	Команда «Стоп»	Bool	Выход
stOpen	Сотояние «Открыт»	Bool	Вход
stClose	Состояние «Закрыт»	Bool	Вход
tCmd	Command hold time (s)	Целый	Вход
frq	Период обсчёта (мс)	Целый	Вход

6. Деление (div) <526>

Описание: Производит деление сборок переменных.

```
Формула:
```

```
out = (in1 1*in1 2*in1 3*in1 4*in1 5 + in2 1*in2 2*in2 3*in2 4*in2 5 + in3) /
      (in4_1*in4_2*in4_3*in4_4*in4_5 + in5_1*in5_2*in5_3*in5_4*in5_5 + in6);
```

7. Экспонента (ехр) <476>

Описание: Вычисление экспоненты над группой переменных.

```
Формула:
```

```
out = exp (in1 1*in1 2*in1 3*in1 4*in1 5 +
                 (in2_1*in2_2*in2_3*in2_4*in2_5+in3) / (in4_1*in4_2*in4_3*in4_4*in4_5+in5) )
```

8. Pacxoд (flow) <235>

Описание: Вычисление расхода газа.

```
Формула:
```

```
f = K1*((K3+K4*x)^K2);
```

9. Итератор (increment) <181>

Описание: Итерационное вычисление с указанием приращения. Коэффициент приращения для разных направлений различный.

```
\Phiормула:
   out = if( in1 > in2 ) in2 + in3*(in1-in2); else in2 - in4*(in2-in1);
```

10. Задержка (lag) <121>

Описание: Задержка изменения переменной. Практически это фильтр без привязки ко времени.

```
Формула:
```

```
y = y - Klag*(y - x);
```

11. Простое умножение(mult) <259>

Описание: Простое умножение с делением.

```
Формула:
```

```
out=(in1 1*in1 2*in1 3*in1 4*in1 5*in1 6)/(in2 1*in2 2*in2 3*in2 4);
```

12. Умножение+деление(multDiv) <468>

Описание: Разветвленное умножение+деление.

```
\Phiормула:
```

```
out = in1_1*in1_2*in1_3*in1_4*in1_5*(in2_1*in2_2*in2_3*in2_4*in2_5+
      (in3 1*in3 2*in3 3*in3 4*in3 5)/(in4 1*in4 2*in4 3*in4 4*in4 5));
```

13. ПИД регулятор (pid) <745>

Описание: Пропорционально-интегрально-дифференциальный регулятор.

Параметры:

ID	Параметр	Тип	Режим	По умолчанию
var	Переменная	Веществен.	Вход	0
sp	Задание	Веществен.	Выход	0
max	Макс. шкалы	Веществен.	Вход	100
min	Мин. шкалы	Веществен.	Вход	0
manIn	Ручной ввод (%)	Веществен.	Вход	0
out	Выход (%)	Веществен.	Возврат	0
auto	Автомат	Логический	Вход	0
casc	Каскад	Логический	Вход	0

ID	Параметр	Тип	Режим	По умолчанию
Кр	Kp	Веществен.	Вход	1
Ti	Ти (мс)	Целый	Вход	1000
Kd	Kd	Веществен.	Вход	1
Td	Тд (мс)	Целый	Вход	0
Tzd	Т задержки производной (мс)	Целый	Вход	0
Hup	Верхняя граница выхода (%)	Веществен.	Вход	100
Hdwn	Нижняя граница выхода (%)	Веществен.	Вход	0
Zi	Нечувствительность (%)	Веществен.	Вход	1
followSp	Следить заданием за переменной в ручном.	Логический	Вход	1
K1	Коэф. входа 1	Веществен.	Вход	0
in1	Вход 1	Веществен.	Вход	0
K2	Коэф. входа 2	Веществен.	Вход	0
in2	Вход 2	Веществен.	Вход	0
K3	Коэф. входа 3	Веществен.	Вход	0
in3	Вход 3	Веществен.	Вход	0
K4	Коэф. входа 4	Веществен.	Вход	0
in4	Вход 4	Веществен.	Вход	0
f_frq	Частота вычисления (Гц)	Вещественный	Вход	1

Структура:

14. Степень (роw) <564>

Описание: Возведение в степень.

Формула:

```
(in1_1*in1_2*in1_3*in1_4*in1_5)^(in2_1*in2_2*in2_3*in2_4*in2_5 + (in3_1*in3_2*in3_3*in3_4*in3_5)/(in4_1*in4_2*in4_3*in4_4*in4_5));
out =
```

15. Выбор (select) <156>

Описание: Выбор одного из четырёх вариантов.

Формула:

```
out = if( sel = 1 ) in1_1*in1_2*in1_3*in1_4;
      if( sel = 2 ) in2_1*in2_2*in2_3*in2_4;
      if( sel = 3 ) in3 1*in3 2*in3 3*in3 4;
      if ( sel = 4 ) in4_1*in4_2*in4_3*in4_4;
```

16. Простой сумматор (sum) <404>

Описание: Простое суммирование с умножением.

Формула:

```
out = in1 1*in1 2+in2 1*in2 2+in3 1*in3 2+in4 1*in4 2+
      in5 1*in5 2+in6 1*in6 2+in7 1*in7 2+in8 1*in8 2;
```

17. Сумма с делением (sum div) <518>

Описание: Суммирование с делением группы значений.

Формула:

```
out = in1 1*in1 2*(in1 3+in1 4/in1 5) + in2 1*in2 2*(in2 3+in2 4/in2 5)+
      in3 1*in3 2*(in3 3+in3 4/in3 5) + in4 1*in4 2*(in4 3+in4 4/in4 5);
```

18. Сумма с умножением (sum mult) <483>

Описание: Суммирование с умножением группы значений.

Формула:

```
out = in1_1*in1_2*(in1_3*in1_4+in1_5) + in2_1*in2_2*(in2_3*in2_4+in2_5) + in2_1*in2_5*(in2_3*in2_4+in2_5) + in2_1*in2_5*(in2_3*in2_4+in2_5) + in2_1*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2_3*in2_5*(in2
                                                                                          in3 1*in3 2*(in3 3*in3 4+in3 5) + in4 1*in4 2*(in4 3*in4 4+in4 5);
```

19. АРІ пользовательского программирования

Некоторые объекты модуля предоставляют функции пользовательского программирования.

Объект "Библиотека функций" (SYS.Special.FLibComplex1)

• ElTp {funcID}(ElTp prm1, ...) — вызов функции библиотеки {funcID}. Возвращает результат вызываемой функции.

Объект "Пользовательская функция" (SYS.Special.FLibComplex1["funcID"])

• $ElTp\ call(ElTp\ prm1, ...)$ — вызов данной функции с параметрами $\langle prm\{N\} \rangle$. Возвращает результат вызываемой функции.