TurtleBot3 SLAM Tutorial - ROS 2 Humble

Step 0 — Setup

Install required packages:

sudo apt install ros-humble-turtlebot3-gazebo ros-humble-turtlebot3-teleop ros-humble-turtlebot3-cartographer ros-humble-nav2-bringup

Add to ~/.bashrc:

export TURTLEBOT3_MODEL=burger

Step 1 — Spawn TurtleBot3 in Gazebo

Command:

ros2 launch turtlebot3_gazebo turtlebot3_world.launch.py Expected: TurtleBot3 appears in Gazebo in turtlebot3 world.

Step 2 — Teleop Control

Command:

 ${\tt ros2}$ run turtlebot3_teleop_keyboard Control with W/A/S/D keys.

Step 3 — Start SLAM (Cartographer)

Command

ros2 launch turtlebot3_cartographer cartographer.launch.py use_sim_time:=True $\sf Drive$ around to generate a map in $\sf RViz$.

Step 4 — Save the Map

Command:

ros2 run nav2_map_server map_saver_cli -f \sim /map This creates map.pgm and map.yaml in your home directory.

Step 5 — Navigation (Optional)

Command:

ros2 launch turtlebot3_navigation2 navigation2.launch.py use_sim_time:=True
map:=~/map.yaml

Use RViz to set navigation goals for autonomous movement.

GitHub Repo Tips

- Include screenshots or gifs for each step.
- Clearly mention ROS 2 and Gazebo versions used.
- Write exact terminal commands.
- Keep steps independent for easier testing.