

为什么要掌握电磁兼容技术

因为:

- ■电子电路日益复杂,调试越来越难
- ■电磁兼容标准强制实施
- ■市场竞争日益激烈,开发周期越来越短

实践电磁兼容技术

课程特点:

- 注重物理概念和应用背景,避免空洞理论和 复杂公式
- 内容实用,立竿见影
- 培养解决电磁干扰的综合能力(基本理论、 分析方法、问题解决能力等)

课程发展过程

- " 电磁屏蔽技术 " , 半天课程, 屏蔽技术 • 1996年,
- 1997年, "如何满足 GJB-151", 一天课程, 屏蔽、滤 波
- 1998年, "实践电磁技术",两天,屏蔽、滤波、接地 、电缆
- 1999年, " 实践电磁技术 " 两天,屏蔽、滤波、接地 、电缆、

线路板(减少了屏蔽内容)

"实践<u>电磁技术"</u> 2002年4月 两天,目前教材内容 •2001年

课程内容

- 电磁兼容要求(标准)与试验方法
- 地线造成的干扰问题与解决方法
- 电磁屏蔽与搭接
- 电磁干扰滤波技术
- 线路板设计
- 电缆设计
- 瞬态抑制技术
- 电磁干扰问题诊断

通过学习本课程要达到:

- 对电磁兼容技术有全面的了解
- 掌握常见干扰问题的诊断和解决方法 (会 自制简单的试验设备)
- 掌握接地、滤波、屏蔽等关键技术
- 在产品电磁兼容设计方面有明确的思路
- 使产品顺利通过电磁兼容试验
- 具备进一步学习的能力 杨继深 2002年4月

第一章 基本概念

- ■电磁干扰现象
- ■电磁兼容标准
- ■电磁兼容试验设备
- ■频域与时域
- ■分贝的概念

特殊的电磁兼容问题

TEMPEST 现象

产生电磁干扰的条件

- 1. 突然变化的电压或电流,即 dV/dt 或 dI/dt 很大
- 2. 辐射天线或传导导体

设计中,遇到电压、电流的突然变化,需要考虑潜在的电磁干扰问题

常见干扰源

基本天线结构

环天线 缝隙天线

偶极天线

偶极天线的演变

传输线

辐射很小

单极天线

辐射同偶极

辐射高于单极

常见的等效天线

标准编号的识别

国家或组 织	制订单位	标 准 编 号
IEC	CISPR	CISPR Pub. ××
IEC	TC77	$IEC \times \times \times \times \times$
欧共 体	CENELEC	$EN \times \times \times \times$
美国	FCC, DO	FCC Part ××, MIL-STD. ××
十	VCCI	VCCI
杨继深 曲	2002年4月 	

典型电磁兼容试验项目

- 辐射发射(电场、磁场)
- 辐射抗扰度(电场、磁场)
- 传导发射(射频发射、电源谐波)
- 传导抗扰度(射频、电快速脉冲、浪涌)
- 静电放电(直接、感应)

电磁兼容试验场地

电磁发射试验

开阔场(民用标准)

屏蔽暗室(半无反射 室)

敏感度或抗扰度试验

可在普通环境中,但 是注意对周围设备的 影响

辐射发射测试

开阔场地要求

不同的天线在 1~4 米高度内变化,找出各种极化方向下的最强辐射值

开阔场实景

开阔场实景

电磁屏蔽室

ZUUZ 十4万 侧地体

电磁兼容试验室的结构

半无反射室实景

测量电磁干扰的天线

天线系数

进行电压与场强之间的转换:

AF = E / V

E = 电场强度,单位 V/m

V = 天线端口的电压

表征了天线的在电压与场强之间的转换效率。不要与表征天线方向性的参数:天线增益相混 %%% 2002年4月

抗扰度试验

抗扰度的其它测试方法

磁场发射测试

磁场敏感度试验

杨继深 2002年4月

传导发射测试

LISN 或 AMN

LISN的电路

2002年4月 杨继深

浪涌(模拟雷电干扰)试验波形

杨继深 2002年4月

浪涌试验装置

浪涌试验内容

电快速脉冲(EFT或FTB)试验

干扰注入方式

信号线注

耦合钳,或在电缆上绕金属箔,长度1米,产生大约100pf电容

电快脉冲试验

脉冲群 信号源

群 EUT与发生器 或卡钳之间的电 源线或信号线长 杨继溪小于2092年4月

参考地平面的每个边 要超出 EUT100mm 并与大地相连 EUT 与参考地平面 之间的距离大于 100mm

静电放电

静电枪电原理路

人体模型电路

静电放电试验装置

电源谐波

非线性电流

谐波限制

电源谐波测量

2002年4月 物继米

谐波测量仪

杨维木 ZUUZ 十4月

自制谐波测量仪

分贝(dB)的概念

分贝的定义:分贝数 = $\frac{P_2}{P_1}$ 10lg

P₁、 P₂ 是两个功率数值,对于电流或电压,定义如下:

电压增益的分贝数 =
$$\frac{V_2}{V_1}$$
 20lg 电流增益的分贝数 = $\frac{I_2}{I_1}$ 20lg

用分贝表示的物理量

电压: 用 1V 、 1mV 、 1μV 为参考(例如: 1μV = 0dBμV)

则单位为: dBV、dBmV、dBµV等,

电流: 用 1A、 1mA、 1μA 为参考,则:

dBA, dBmA, dB\u03c4A

场强: 用 1V/m 、 1μV/m 为参考,则:

dBV/m 、 dBμV/m 等,

功率:用1W、1mW 为参考,则:dBW、dBm等,

频域分析

EMC 分析更多是在频域中进行,并且不考虑相位因素。

脉冲信号的频谱

电磁兼容的工程方法

第二章 地线干扰与接地技术

- 为什么要地线
- ■地环路问题与解决方法
- 公共阻抗耦合问题与解决方法
- 各种接地方法
- ■电缆屏蔽层的接地

安全地

信号地

定义: 信号电流流回信号源的低阻抗路径

地线引发干扰问题的原因

电流走最 小阻抗路 径 我们并不知 道地电流的 确切路径

地电流 失去控 制

地线电位示意图

导线的阻抗

导线的阻抗

频率	d = 0.6	5cm	d = 0.27cm		d = 0.06cm		d= 0.04cm	
Hz	10cm	1m	10cm	1m	10cm	1m	10cm	1m
10Hz	51.4μ	517μ	327μ	3.28m	5.29m	52.9m	13.3m	133m
1k	429μ	7.14 m	632μ	8.91m	5.34m	53.9m	14m	144m
100k	42.6m	712m	54m	828m	71.6m	1.0	90.3m	1.07
1M	426m	7.12	540m	8.28	714m	10	783m	10.6
5M	2.13	35.5	2.7	41.3	3.57	50	3.86	53
10M	4.26	71.2	5.4	82.8	7.14	100	7.7	106
50M	21.3	356	27	414	35.7	500	38.5	530
100M	42.6		54		71.4		77	
150M	63.9		81	,	107		115	

隔离变压器

光隔离器

共模扼流圈的作用

平衡电路对地环路干扰的抑制

地线问题一公共阻抗耦合

串联单点接地

优点:简单

缺点:公共阻抗耦合

杨继深 2002年4月

并联单点接地

优点:无公共阻抗耦

合

缺点:接地线过多

串联单点、并联单点混合接地

长地线的阻抗

多点接地

混合接地

放大器屏蔽壳的接地

接地位置不当造成的干扰

第三章 电磁屏蔽技术

- 屏蔽材料的选择
- 实际屏蔽体的设计

电磁屏蔽

对电磁波产生衰减的作用就是电磁屏蔽,电磁屏蔽作用的大小用屏蔽效能度量:

$$SE = 20 lg (E_1/E_2)$$
 dB 2002 年4月

杨继深

实心材料屏蔽效能的计算

波阻抗的概念

1

吸收损耗的计算

$$A = 20 \lg (E0 / E1) = 20 \lg (e^{t/\delta})$$
 dB

$$A = 8.69 (t/\delta)$$
 dB

$$A = 3.34 \text{ t} \sqrt{f \mu_r \sigma_r}$$
 2002年4月

dB

杨继深

趋肤深度举例

反射损耗

$$Z_{\rm S} = 3.68 \times 10^{-7} \sqrt{f \mu_{\rm r}/\sigma_{\rm r}}$$
 同一种材料的阻抗随频率变

反射损耗与波阻抗有关,波阻抗越高,则反射损耗越大。

不同电磁波的反射损耗

远场:
$$R = 20 \frac{377}{4 Zs}$$

电场:
$$R = 20 \frac{4500}{D f Zs}$$

磁场:
$$R = 20 \frac{2 D f}{Z S}$$

Zs = 屏蔽体阻抗, D = 屏蔽体到源的距离(m)

影响反射损耗的因素

综合屏蔽效能 (0.5mm 铝板)

多次反射修正因子的计算

电磁波在屏蔽体内多次反射,会引起附加的电磁泄漏,因此要对前面的计算进行修正。

$$B = 20 \lg (1 - e^{-2t/\delta})$$

说明:

- · B 为负值, 其作用是减小屏蔽效能
- 当趋肤深度与屏蔽体的厚度相当时,可以忽略

杨继泽于鬼杨波4月可以忽略

怎样屏蔽低频磁场?

高导磁率材料的磁旁路效果

低频磁场屏蔽产品

磁屏蔽材料的频率特性

磁导率随场强的变化

磁场强度

强磁场的屏蔽

低导磁率材料: 屏效不够 高导磁率材料:饱和 高导磁率材料 杨继深

2002年4月

杨继深

良好电磁屏蔽的关键因素

屏蔽体 异电连 续

不要忘记:

选择适当的屏蔽材料

你知道吗:

与屏蔽体接地与否无关

屏蔽效能高的屏蔽体

实际屏蔽体的问题

实际机箱上有许多泄漏源:不同部分结合处的缝隙通风口、显示窗、按键、指示灯、电缆线、电源线等

远场区孔洞的屏蔽效能

$$SE = 100 - 20 lgL - 20 lg f + 20 lg (1 + 2.3 lg(L/H))$$

= 0 dB 若 L $\geq \lambda / 2$

孔洞在近场区的屏蔽效能

若 $Z_{c} > (7.9/Df): (说明是电场源)$

$$SE = 48 + 20lg Z_C - 20lg L f$$

+20lg(1+2.3lg(L/H))

若 $Z_C < (7.9/Df)$: (说明是磁场源)

 $SE = 20lg (\pi D/L) + 20lg (1 + 2.3lg (L/H))$

(注意:对于磁场源,屏效与频率无

缝隙的泄漏

缝隙的处理

电磁密封衬垫的种类

- 金属丝网衬垫(带橡胶芯的和空心的)
- •导电橡胶(不同导电填充物的)
- •指形簧片(不同表面涂覆层的)
- •螺旋管衬垫(不锈钢的和镀锡铍铜的)
- •导电布

指形簧片

螺旋管电磁密封衬垫

电磁密封衬垫的主要参数

- > 屏蔽效能 (关系到总体屏蔽效能)
- ▶ 回弹力(关系到盖板的刚度和螺钉间距)
- ▶ 最小密封压力(关系到最小压缩量)
- ▶最大形变量(关系到最大压缩量)
- ➤ 压缩永久形变(关系到允许盖板开关次数)
- ▶ 杨繼和学舺零性(关系到屏蔽效能的稳定

电磁密封衬垫的安装方法

截止波导管

损耗

频率高的电磁波能通过波导管,频率低的电磁波损耗很大!工作在截止区的波导管叫截止波导。

截止波导管的屏效

截止波导管 屏蔽效能 — 远场区计算公式 近场区计算公式

孔洞计算屏蔽效能公

吸收损耗

圆形截止波导

•

32 t/d

矩形截止波导

:

27.2 t/1

截止波导管的损耗

截止波导管的设计步骤

显示窗/器件的处理

屏蔽体上 开小孔 屏蔽体上 栽上截止 波导管

用隔离舱 将操作器 件隔离出

通风口的处理

穿孔金属板

截止波导通风板

贯通导体的处理

屏蔽电缆穿过屏蔽机箱的方法

搭接

电子设备中,金属部件之间的低阻抗连接称为搭接。例如:

- •电缆屏蔽层与机箱之间搭接
- •屏蔽体上不同部分之间的搭接
- 滤波器与机箱之间的搭接
- 不同机箱之间的地线搭接

搭接不良的滤波器

搭接不良的机箱

航天飞行器上的搭接阻抗要小于 2.5mΩ!

搭接阻抗的测量

不同的搭接条

Figure 2F Bonding conductors

Only use bonding conductors where direct metal-to-metal bonding is not practical.

频率不同搭接方式不同

如果整个电缆沟槽和导管电气搭接,则其外部的压片也可改善电磁兼客性 物球深 ZUUZ平4月

搭接面的腐蚀

搭接点的保护

第四章 干扰滤波技术

- 干扰滤波在 EMC 设计中作用
- 差模干扰和共模干扰
- ■常用滤波电路
- 怎样制作有效的滤波器
- 正确使用滤波器

滤波器的作用

切断干扰沿信号线或电源线传播的路径,与屏蔽共同构成完善的干扰防护。

满足电源线干扰发射和抗扰度要求

满足抗扰度及设备辐射发射要求

- 1. 50Hz的奇次谐波(1、3、5、7)
- 2. 开关频率的基频和谐波(1MHz以下差模为主,1MHz以上共模为主)

干扰滤波器的种类

低通滤波器类型

确定滤波器阶数

根据阻抗选用滤波电路

源阻抗	7	电路结	负载阻
	构		抗
高	C 、	、多级	高
高		、多级	低
低	万	5 、多级	高
规律.	夕	<u> </u>	或对低阻
低	L,	多级L	低

插入损耗的估算

器件参数的确定

$$L = R / 2\pi F_{C} \qquad C = 1 / 2\pi RF_{C}$$

对于 T 形 (多级 T)和 形 (多级) 电路 , 最外边的电感或电容取 L/2 和 C/2 , 中间的不变。

实际电容器的特性

引线长 1.6mm 的陶瓷电容器

	谐振频率 (MHZ)	
1 μF	1.7	
0.1 μF	4	
0.01μF	12.6	
3300 pF	19.3	
1100 pF	33	

陶瓷电容谐振频率

表面贴装电容的阻抗特性

温度对陶瓷电容容量的影响

电压对陶瓷电容容量的影响

杨继深 2002年4月 **% 额定电压(Vdc)**

实际电感器的特性

绕在铁粉芯上的电感

电感量	谐振频率
	(MHZ)
(H)	
3.4	45
8.8	28
68	5.7
125	2.6
500	1.2

电感寄生电容的来源

每圈之间的电容 C_{TT} 导线与磁芯之间的电容 C_{TC}

磁芯为导体时, C_{TC} 为主要因素

磁芯为非导体时, C_{TT} 为主要因

杨继深 2002年4

克服电容非理想性的方法

三端电容器的原理

个磁珠滤波效果

更好

三端电容的正确使用

接地点要求:

- 1 干净地
- 2 与机箱或其它较大

杨继激金属维射频

三端电容器的不足

穿心电容更胜一筹

穿心电容的插入损耗

穿心电容、馈通滤波器

以穿心电容为基础的馈通滤波器 广泛应用于 RF 滤波

上馈通滤波器使用注意事项

- 必须安装在金属板上,并在一周接地
- 最好焊接,螺纹安装时要使用带齿垫片
- 焊接时间不能过长
- 上紧螺纹时扭矩不能过大

线路板上使用馈通滤波器

磁芯对电感寄生电容的影响

减小电感寄生电容的方法

如果磁芯是导体,首先:

用介电常数低的材料增加绕组导体与磁芯之间的距离

然

- 1. 起始端与终止端远离(夹角大于 40 度)
- 2. 尽量单层绕制,并增加匝间距离
- 3. 多层绕制时, 采用"渐进"方式绕, 不要来
- 4. 分極幾利 ②要深高时,用大电感和小电感串

共模扼流圈

共模扼流圈中的负载电流产生的磁场相互抵销,因此磁芯不会饱和。

电感磁芯的选用

铁粉磁芯:不易饱和、导磁率低,作差模扼流圈的磁

芯

超微晶: r > 10000, 做大电感量共模扼流圈的磁心

干扰抑制用铁氧体

铁氧体磁环使用方面的一些问题

低通滤波器对脉冲信号的影响

0

信号滤波器的安装位置

无屏蔽的场 合

滤波器靠近被滤 波导线的靠近器 件或线路板一端

杨继深

2002年4月

板上滤波器的注意事项

杨继深 2002年4月

线路板的干净地与金属 机箱或大金属板紧密搭

面板上滤波的简易(临时)方法

容量适当的瓷片电容或独石电容,引线尽量短 杨继深 2002年4月

电缆滤波的方法

面板安装滤波器注意事项

使用形滤波器的注意事项

电源线滤波器的基本电路

共模滤波电容受到漏电流的限制

电源线滤波器的特性

一般产品说明书上给出的数据是500条件下的测试结果。

高频滤波性能的重要性

改善滤波器高频特性的方法

注意插入增益问题

选择滤波器的保险方法

器件距离对高频性能的影响

滤波器安装在线路板的问题

机箱内干扰

线路板上滤波的改进方法

电源线滤波器的错误安装

电源线滤波器的错误安装

滤波器通过细线接地,高频效果很差!

滤波器的正确安装

这样试一试

还要注意的一个小问题

100

(a) I/0 电缆屏蔽时, 电源线的噪声电平.

(b) I/0 电缆屏蔽, 并且端接处安装铁 氧体时, 电源电缆 的噪声电平。

PCB的电磁兼容设计

脉冲信号的频谱

上升沿越陡高频越丰富

地线和电源线上的噪声

电源线、地线噪声电压波形

线路板走线的电感

M)

$$L = (L_1L_2 - M^2) / (L_1 + L_2 - 2M)$$

若:
$$L_1 = L_2$$

$$L = (L_1 + M) / 2$$

地线网格

电源线噪声的消除

尽量使电源线与地线靠 近

解耦电容的选择

$$C = \frac{dI dt}{dV}$$

各参数含义:

在时间 dt 内,电源线上出现了瞬间电流 dI, dI导致了电源线上出现电压跌落 dV。

增强解耦效果的方法

多个电容并联加强解耦效果

线路板的两种辐射机理

-10

电流环路产生的辐射

近场区内: H = IA / (4πD³)

A/m

$$\mathbf{E} = \mathbf{Z}_0 \mathbf{I} \mathbf{A} / (2\lambda \mathbf{D}^2)$$

V/m

$$Z_{W} = Z_{0} (2\pi D/\lambda)$$

随频率、距离增加而增加

远场区内: $H = \pi IA / (\lambda^2 D)$

A/m

$$E = Z_0 \pi IA / (\lambda^2 D)$$

V/m

杨继深 Zw2062年3月

 Ω

导线的辐射

A/m

$$\mathbf{E} = \mathbf{Z}_0 \mathbf{I} \, \mathbf{L} \, \lambda \, / \, (\mathbf{8} \, \boldsymbol{\pi}^2 \, \mathbf{D}^3) \qquad \mathbf{V/m}$$

$$\mathbf{Z}_{\mathbf{W}} = \mathbf{Z}_{\mathbf{0}} \quad (\quad /2\pi\mathbf{D})$$

随频率、距离增加而减小

远场区内:
$$H = I L / (2\lambda D)$$

A/m

$$\mathbf{E} = \mathbf{Z}_0 \mathbf{I} \mathbf{L} / (2\lambda \mathbf{D})$$

V/m

实际电路的辐射


```
近场: Z_C \ge 7.9 \, D \, f E = 7.96 \, VA \, / \, D^3 ( V/m ) Z_C \le 7.9 \, D \, f \, , \quad E = 63 \, I \, A \, f \, / \, D^2 ( V/m ) H = 7.96 \, IA \, / \, D^3 ( A/m_V) = 2000 \, / \, T \, A \, D
```


常用的差模辐射预测公式

考虑地面反射时:

 $E = 2.6 I A f^2/D$ 杨继深 2002年4月 V/m

脉冲信号差模辐射的频谱

 $E = 2.6 I A f^2/D$

 $E_{dR} = 20lg$ (2.6 I A

/D)

杨继深₆2002年4月

不同逻辑电路为了满足巨伽指标要求 新允许的酥酪面积

逻辑	上升	电流	不同时钟频率允许的面积(cm²)			
系列	时间		4MHz	10	30	100
4000B	40	6	1000	400		
74HC	6	20	50	45	18	6
74LS	6	50	20	18	7.2	2.4
74AC	3.5	80	5.5	2.2	0.75	0.25
74F	3	80	5.5	2.2	0.75	0.25
74AS	1.4	120	2	0.8	3	0.15

仅代表了一个环路的辐射情况,若有 N 个环路辐射,乘以 N。因此,可能时,分散时钟频率。 杨继深 2002年4月

电路中的强辐射信号

1 10 100 1000

所有电路加电工作

只有时钟电路加电工作

电流回路的阻抗

$$Z = R + j\omega L$$

$$L = \Phi / I \quad \Phi \propto A$$

单层或双层板如何减小环路的面积

2002年4月

随便设置的地线没有用

多层板能减小辐射

地线面上的缝隙的影响

L: $0 \sim 10$ cm

 $V_{AB}: 15 \sim 75 \text{mV}$

过孔的阻抗

与过孔之间的距离

线路板边缘的一些问题

扁平电缆的使用

最好

较好

差

较好,但端接困

难

这两处都有地线杨继深2002年4月

注意隐蔽的辐射环路

环路对消概念减小辐射

外拖电缆的共模辐射

两端设备都接地的情况

 Z_{992} $= R_{yy} + j\omega L + R_{L} + 1/j\omega C$

悬浮电缆

近场区内: $E = 1430I L / (f D^3)$ $\mu V/m$

远场区内: E = 0.63 I L f / D $\mu V/m$

考虑地面反射: E = 1.26 I L f / D

 $\mu V/m$

共模电流的测量

怎样减小典模輻射

增加共模回路的阻抗

改善量 =
$$20 \lg(E_1/E_2) = 20 \lg(I_{CM1}/I_{CM2})$$

= $20 \lg[(V_{CM}/Z_{CM1})/(V_{CM}/Z_{CM2})]$
= $20 \lg(Z_{CM2}/Z_{CM1})$

铁氧体磁环使用方面的一些问题 125 300 600 1250 30 个 100 10 1000 0.1 10 100 1000 Ω_{lack} Ω 无偏置 ½ 匝 1½ 匝 杨继深 2002年4月

滤波器电容量的选择

用屏蔽电缆抑制共模辐射

屏蔽电缆的评估

不同屏蔽层的传输阻抗

电缆屏蔽层的正确端接

D型连接器的屏蔽层搭接

圆形连接器屏蔽层搭接

接线端子上的屏蔽电缆

尽量减小小辨接法的危害

线路板上的局部屏蔽

第六部分 电缆的 EMC 设计

- 场在导线中感应的噪声
- 电缆之间的串扰

处于电磁场中的电缆

电磁场在电缆上的感应电压

平衡电路的抗干扰特性

高频时,由于寄生参数的影响,平衡性会降低 杨继深 2002年4月

提高共模干扰抑制的方法

非平衡转换为平衡

屏蔽电场

磁场对电缆的干扰

$$V_N = (d\phi / dt) = A(dB/dt)$$

当面积一定时

滅小感应回路的面积

理想同轴线的信号电流与回流等效为在几何上重合,因此电缆上的回路面积为0,整个回路面积仅有两端的部分物继深 2002年4月

屏蔽电缆减小磁场影响

只有两端接地的屏蔽层才能 屏蔽磁场

抑制磁场干扰的试验数据

抑制磁场干扰的实验数据

导线之间两种串拢机理

耦合方式的粗略判断

 $Z_{\rm S}Z_{\rm L} < 300^2$:

磁场耦合为

主

 $Z_S Z_L > 1000^2$:

电场耦合为主

 $300^2 < Z_S Z_L < 1000^2$: 取决于几何结构和频率

电容耦合模型

$$V_{N} = \frac{j \omega [C_{12} / (C_{12} + C_{2G})]}{j \omega + 1 / R (C_{12} + C_{2G})]} V_{1}$$

耦合公式化简

$$V_{N} = \frac{j \omega \left[C_{12} / (C_{12} + C_{2G}) \right]}{j \omega + 1 / R (C_{12} + C_{2G})} V_{1}$$

$$R \ll 1/[j \omega (C_{12} + C_{2G})]$$
 $R \gg 1/[j \omega (C_{12} + C_{2G})]$

 $V_N = V_1 [C_{12} / (C_{12} + C_{2G})]$

 $\mathbf{V_N} = \mathbf{j} \, \mathbf{\omega} \mathbf{R} \, \mathbf{C_{12}} \, \mathbf{V_1}$ 杨继深 2002年4月

电容耦合与频率的关系

屏蔽对电容耦合的影响一全屏蔽

屏蔽层不接地: $V_N = V_S = V_1 [C_{1S} / (C_{1S} + C_{SG})]$, 与无屏蔽相同

屏蔽层接地时: $V_N = V_S = 0$, 具有理想的屏蔽效果

部分屏蔽对电容耦合的效果

R 很大时: $V_N = V_1 [C_{12} / (C_{12} + C_{2G} + C_{2S})]$

R 很小时: V_N = jωRC₁₂ 杨继深 2002年4月

重电感定义与计算

定义: 自感
$$L = 1/I_1$$
 , 互感 $M =$

12 / I Ф₁ 是电流 I1 在回路 1 中产生的磁通,

12 是电流 I1 在回路 2 中

产生的磁通 $M = (2\pi) \ln[b^2/(b^2-a^2)]$

电感耦合

$$V_N = d\Phi_{12} / dt = d(MI_1)/dt = M dI_1 / dt$$

电感耦合与电容耦合的判别

非磁性屏蔽对电感耦合的影响

关键看互感是否由于屏蔽措施而发生了改变

双端接地屏蔽层的分析

V_{S2} 项求解

$$\mathbf{L}_{\mathrm{S}} = \mathbf{\Phi} / \mathbf{I}_{\mathrm{S}}$$
 $\mathbf{M}_{\mathrm{S2}} = \mathbf{\Phi} / \mathbf{I}_{\mathrm{S}}$ 因此: $\mathbf{L}_{\mathrm{S}} = \mathbf{M}_{\mathrm{S2}}$

$$V_{S2} = j\omega M_{S2} I_{S}$$

$$= j\omega M_{S2} (V_{S}/Z_{S})$$

$$= j\omega L_{S} [V_{S}/(j\omega L_{S}+R_{S})]$$

$$= V_{S} [j\omega/(j\omega+R_{S}/L_{S})]$$

屏蔽后的耦合电压

$$V_{N} = V_{12} + V_{S2}$$

$$V_{12} = j\omega M_{12}I_{1} \qquad V_{S} = j\omega M_{1S}I_{1}$$
 因为: $M_{12} = M_{1S}$ 所以: $V_{S} = j\omega M_{12}I_{1}$ [$j\omega$ /($j\omega$ + R_{S} / L_{S})]
$$V_{N} = V_{12} - V_{12}[j\omega$$
/($j\omega$ + R_{S} / L_{S})]
$$V_{N} = V_{12} - V_{12}[j\omega$$
/($j\omega$ + k_{S} / k_{S})] 杨继深 2002年4月

屏蔽层的磁场耦合屏蔽效果

长线上的耦合电压

第七部分 瞬态脉冲干扰的抑制

瞬态干扰对设备的威胁

感性负载断开时产生的干扰

对应的 EMC 实验: EFT

特点:脉冲串

两种触点击穿导通机理

浪涌产生的原因

静电放电现象

对应 EMC 实验: ESD

特点:频率范围

瞬态干扰的频谱

消除感性负载干扰

阻尼电路参数确定

C: 由于没有弧光, L 中的能量全部进入 C , $V_{\rm C}$ = I $\frac{(L/C)^{1/2}}{2}$ 为了防止发生辉光, $V_{\rm C}$ < $\frac{300}{2}$ $(I/300)^2$ L

为了防止发生弧光, 电容充电速率要小于 1V/μs,

 $C > 10^{-6} I$

过零开关消除干扰

瞬态干扰抑制原理

低通滤波器: 截止频率小于 1/πτ

低通滤波器对瞬态干扰的作用

Fco $> 1 / \pi \tau$

$$V_{OUT} = V_P(f) f_1 = 2V_{IN} \tau / \pi \tau = 2V_{IN} / \pi$$

输出脉冲的幅度略有降低

Fco $< 1 / \pi \tau$

Parseval 定律: 时域中的能量等于频域中的

能量:

$$V^{2}(f)df = V^{2}(t)dt$$

$$0 = 1/\pi$$

$$fco$$

$$(2V_{IN}\tau)^{2}df = V^{2}_{OUT}dt$$

$$0 = V^{2}_{OUT}dt$$

$$(2V_{IN}\tau)^{2}fco = V^{2}_{OUT}/\pi fco$$

$$V/V_{OUT} = 2\sqrt{\pi} fco \tau$$

低通滤波器对瞬态干扰的抑制

瞬态干扰抑制器件

2002年4月

气体放电管的跟随电流

放电管与压敏电阻组合

作用在开关电源上的浪涌

浪涌抑制器件的保护作用

TVS增容问题

多级浪涌抑制电路

 V_1 、 V_2 = 额定工作电压

I,= 第二级额定峰值电流

V₂ ≥ V₀ + 电压偏差 2

V₁≥V₂+ 电压偏差 1+ 电压偏差 2

$$\Delta V = V_{1MAX} - V_{2MIN}$$

 $Z \ge \Delta V / I_{2P}$

地线反弹与对策

若电流为 5kA, 地线阻抗为 0.5Ω,则反弹电压达到 2500V!

静电放电现象

ESD对电路工作影响的机理

ESD产生的电磁场

2002年4月

静电试验的方法

ESD常见问题与改进

ESD常见问题与改进

电缆上的 ESD 防护

错误

