FINAL CODE

DATE	6 NOVEMBER 2022
TEAM ID	PNT2022TMID44114
PROJECT NAME	Smart solutions for Railways

CODE:

Import common
librariesimport numpy as
np import pandas as pd
import matplotlib.pyplot as plt

Import the PyGeohydro libaray toolsimport pygeohydro as gh from pygeohydro import SSFR, plot

Use the smart solution for railways(SSFR)ssfr = SSFR()

```
# Specify date range of interest
dates = ("2020-01-01", "2020-12-31")
# Filter stations to have only those with proper dates
stations = info box[(info box.begin date <= dates[0]) &
(info box.end date >= dates[1])].site no.tolist()
# Remove duplicates by converting to a
setstations = set(stations)
# Specify characteristics of interest
select attributes = journey time ,train announcement ,
waitingarrangement, security in the station, seat condition
# Initialize a storage matrix
nldi data = np.zeros((len(flow data.columns), len(select attributes)))
# Loop through all gages, and request NLDI data near each gage
for i, st in enumerate(flow data.columns):
  # Navigate up all flowlines from gage
  flowlines = NLDI().navigate byid(fsource = 'nwissite',
```

```
fid = f'{st}',

navigation="upstreamTributaries",

source = 'flowlines',

distance = 10)
```

Get the nearest comid

station_comid = flowlines.nhdplus_comid.to_list()[0]

Source NLDI local data

nldi_data[i,:] = NLDI().getcharacteristic_byid(station_comid, "local",
char_ids = select_attributes)