Assignment 3: Logistic Regression Yu-Chen Su

1. Download the Bone Mass Density (BMD) patient dataset, BMD-2.csv

Import pandas to read file and show data head (by Jupyter Notebook)

```
import pandas as pd
df = pd.read_csv('BMD-2.csv')
df.head()
```

	Age	Weight_kg	Height_cm	BMD	Fracture
0	57.052768	64.0	155.5	0.8793	no fracture
1	75.741225	78.0	162.0	0.7946	no fracture
2	70.778900	73.0	170.5	0.9067	no fracture
3	78.247175	60.0	148.0	0.7112	no fracture
4	54.191877	55.0	161.0	0.7909	no fracture

- 2. Determine the data dimensionality by finding the following (5pts):
 - A. Total number of patients.

```
1  # Display the count
2  num_rows = len(df)
3  print(f"Total number of customers: {num_rows}")
4  df.count()

Total number of customers: 169
```

Age 169
Weight_kg 169
Height_cm 169
BMD 169
Fracture 169

dtype: int64

B. Number of attributes (categories).

```
1 # Display the column (categories)
2 num_column = df.shape[1]
3 print(f"Total number of categories: {num_column}")
```

Total number of categories: 5

C. Data types.

```
1 # Check data types of each column
2 print(df.dtypes)

Age         float64
Weight_kg      float64
Height_cm        float64
BMD         float64
Fracture        object
dtype: object
```

D. Missing values.

E. Number of patients in each target class.

```
# Group by 'Category' and count the occurrences
grouped_count = df.groupby('Fracture').size().reset_index(name='Count')

print(grouped_count)

Fracture Count
fracture 50
no fracture 119
```

3. Apply **Logistic Regression** using **Ridge Regulation** and explain the following (5pts):

Try to use orange in the following questions

A. **Feature(s)** considered important based on the coefficient values.

Based on the coefficients, BMD has a high value, indicating its importance in classifying the targets. In contrast, the other three features have lower coefficient values, meaning they have less impact.

B. Classification accuracy.

Achieved a classification accuracy (CA) of 0.817 through 10-fold cross-validation.

Achieved a classification accuracy (CA) of 0.790 using random sampling with 10 repeated train/test splits and a 66% training set size.

C. Number of patients misclassified for each target class.
23 fracture patients were misclassified as having no fracture, and 8 patients without fractures were misclassified as having a fracture, making a total of 31 misclassified patients.

- 4. Apply **Logistic Regression** using **Lasso Regulation** and explain the following (5pts):
 - A. **Feature(s)** considered important based on the coefficient values.

Based on the coefficients, BMD has a high value, indicating its importance in classifying the targets. In contrast, the other three features have lower coefficient values, meaning they have less impact.

B. Classification accuracy.

Achieved a classification accuracy (CA) of 0.840 through 10-fold

cross-validation.

Achieved a classification accuracy (CA) of 0.817 using random sampling with 10 repeated train/test splits and a 66% training set size.

C. Number of patients misclassified for each target class. 18 fracture patients were misclassified as having no fracture, and 9 patients without fractures were misclassified as having a fracture, making a total of 27 misclassified patients.

D. **Comparison** of classification accuracies among the regulation methods.

Using 10-fold stratified cross-validation, Lasso achieved a higher classification accuracy (0.840) compared to Ridge (0.817).

Ridge

Lasso

In the confusion matrix, out of 169 instances, Ridge misclassified 31 patients (8 + 23), while Lasso misclassified 27 patients (9 + 18). Therefore, Lasso has a higher classification accuracy than Ridge in this case.

Ridge

Lasso

I also used random sampling in the **Test & Score** widget with 10 repeated train/test splits and a 66% training set size. In this setup, Lasso achieved a higher classification accuracy (0.817) compared to Ridge (0.790).

Ridge

Lasso

I used random sampling with 10 repeated train/test splits and a 66% training set size. This means we get 580 test instances. (169 original instances x 34% test size x 10 repeats = 580 instances ($169 \times 34\%$ = 57.46, system get 58)). In the confusion matrix, Ridge misclassified 122 patients (38 + 84) out of these 580 instances, while Lasso misclassified 116 patients (39 + 67). Therefore, Lasso has a higher classification accuracy than Ridge in this case.

Ridge

Lasso

		Predicted		
		fracture	no fracture	Σ
_	fracture	103	67	170
Actua	no fracture	39	371	410
∢	Σ	142	438	580

In addition, I resampled the data to balance the classes, reducing the number of 'no fracture' instances to 50 to match the number of 'fracture' instances. I then applied the same logistic regression as described above.

The results are as follows.

Ridge

Coefficients (2)						
	name	no fracture				
1	intercept	6.30171				
2	Age	-0.0409785				
3	Weight_kg	0.0789787				
4	Height_cm	-0.0657073				
5	BMD	2.5931				

Lasso

