알고리즘의 정석

분할정복법

수강 목표

재귀함수를 복습해 봅니다

분할정복법에 대해 알아봅니다

분할정복법 대표 예제에 대해서 배워봅니다

목차

- 1. 재귀호출을 이용한 문제 해결
- 2. 분할정복법
- 3. 요약

재귀호출을 이용한 문제 해결

재귀함수의 올바른 디자인 및 해석

재귀함수를 디자인 하기 위한 세 가지 단계

- 1) 함수의 정의를 명확히 한다
- 2) 기저 조건에서 함수가 제대로 동작하게 작성한다
- 3) 함수가 제대로 동작한다고 가정하고 함수를 완성한다

[실습1] 가장 가까운 값 찾기

정렬된 n개의 숫자 중

정수 m과 가장 가까운 값 찾기

단, 1 ≤ n ≤ 100,000

입력의 예

출력의 예

1 4 6 7 10 14 16 8

7

이진탐색

 1
 4
 6
 7
 10
 14
 16
 14

이진탐색

1 4 6 7 10 14 16

5

가장 가까운 값 찾기

1 4 6 7 10 14 16

8

[실습 2] 거듭제곱 구하기

 $m^n = m \times m \times \cdots \times m$

getPower(m, n) : mⁿ 을 반환하는 함수

 $getPower(m, n) = m \times getPower(m, n-1)$

getPower(m, 0) = 1

[실습 2] 거듭제곱 구하기

 $m^n = m \times m \times \cdots \times m$

getPower(m, n) : mⁿ을 반환하는 함수

mn

(n이 짝수라면?)

(n이 홀수라면?)

[실습1] 가장 가까운 값 찾기

[실습 2] 거듭제곱구하기

문제를 소문제로 분할

각각의 소문제를 해결

소문제의 해결 결과를 이용해 전체 문제를 해결

어렵다

분할정복법으로 해결할 수 있는 대표적인 예제

수학적 문제 해결 능력이 가장 중요

키보드 대신에 노트와 펜을 들고 생각

[실습3] 합병정렬 구현

합병정렬을 구현하라

단, 1 ≤ n ≤ 100,000

입력의 예

출력의 예

1 5 6 2 3 8 4 9 7 10

1 2 3 4 5 6 7 8 9 10

합병정렬

3	5	7	2	5	9	13	11	24	11	23	1	4	5	3	2	
---	---	---	---	---	---	----	----	----	----	----	---	---	---	---	---	--

합병정렬

재귀호출을 이용한 대표적인 정렬

2	3	5	5	7	9	11	13
---	---	---	---	---	---	----	----

1	2	3	4	5	11	23	24	
---	---	---	---	---	----	----	----	--

합병정렬의 시간복잡도

합병정렬의 시간복잡도는?

n개를 정렬하는데 드는 시간 = T(n)

연속된 부분을 선택하였을 때, 그 최대 합을 출력

단, 1 ≤ n ≤ 100,000

입력의 예

출력의 예

1 2 -4 5 3 -2 9 10

25

우선 절반으로 나누어 각각을 구해보자

2 1 -2 5 -10 3 2 5 -3 7 9 -10

우선 절반으로 나누어 각각을 구해보자

우선 절반으로 나누어 각각을 구해보자

모든 경우를 고려했음

- 1) 왼쪽만 포함하는 경우,
- 2) 오른쪽만 포함하는 경우,
- 3) 자른 자리를 포함하는 경우

시간복잡도

$$T(N) = 2 * T(N/2) + O(N)$$

O(N log N)

[실습3] 합병정렬 구현

[실습4] 연속 부분 최대합(심화)

유약

요약

분할정복법은 어렵다

분할정복법으로 해결할 수 있는 대표 예제

합병정렬, 퀵정렬, 거듭제곱 구하기, 연속 부분 최대합가장 가까운 두 점 찾기, 히스토그램

코딩 능력 ≠ 문제 해결 능력

/* elice */

문의 및 연락처

academy.elice.io
contact@elice.io
facebook.com/elice.io
medium.com/elice