Intensity, loudness, and timbre

Valerio Velardo

The power of sound!

Sound power

- Rate at which energy is transferred
- Energy per unit of time emitted by a sound source in all directions
- Measured in watt (W)

Sound intensity

- Sound power per unit area
- Measured in W/m²

1 Watt

= 100 W

Threshold of hearing

Human can perceive sounds with very small intensities

Threshold of hearing

Human can perceive sounds with very small intensities

$$TOH = 10^{-12} W/m^2$$

Threshold of pain

$$TOP = 10 \cdot W/m^2$$

- Logarithmic scale
- Measured in decibels (dB)
- Ration between two intensity values
- Use an intensity of reference (TOH)

$$dB(I) = 10 \cdot log_{10}(\frac{I}{I_{TOH}})$$

$$dB(I_{TOH}) = 10 \cdot log_{10}(\frac{I_{TOH}}{I_{TOH}}) = 0$$

$$dB(I_{TOH}) = 10 \cdot \frac{log_{10}(\frac{I_{TOH}}{I_{TOH}})}{log(1) = 0} = 0$$

• Every ~3 dBs, intensity doubles

Source	Intensity	Intensity level	× ТОН
Threshold of hearing (TOH)	10 ⁻¹²	0 dB	1
Whisper	10 ⁻¹⁰	20 dB	10 ²
Pianissimo	10-8	40 dB	10 ⁴
Normal conversation	10 ⁻⁶	60 dB	10 ⁶
Fortissimo	10-2	100 dB	10 ¹⁰
Threshold of pain	10	130 dB	10 ¹³
Jet take-off	10 ²	140 dB	10 ¹⁴
Instant perforation of eardrum	10 ⁴	160 dB	10 ¹⁶

Table 1.1 from [Müller, FMP, Springer 2015]

Loudness

- Subjective perception of sound intensity
- Depends on duration / frequency of a sound
- Depends on age
- Measured in phons

Equal loudness contours

Colour of sound

- Colour of sound
- Diff between two sounds with same intensity, frequency, duration

- Colour of sound
- Diff between two sounds with same intensity, frequency, duration
- Described with words like: bright, dark, dull, harsh, warm

What are the features of timbre?

• Timbre is multidimensional

What are the features of timbre?

- Timbre is multidimensional
- Sound envelope
- Harmonic content
- Amplitude / frequency modulation

Sound envelope

Attack-Decay-Sustain-Release Model

Sound envelope

Superposition of sinusoids

- Superposition of sinusoids
- A partial is a sinusoid used to describe a sound

- Superposition of sinusoids
- A partial is a sinusoid used to describe a sound
- The lowest partial is called fundamental frequency

- Superposition of sinusoids
- A partial is a sinusoid used to describe a sound
- The lowest partial is called *fundamental frequency*
- A harmonic partial is a frequency that's a multiple of the fundamental frequency

- Superposition of sinusoids
- A partial is a sinusoid used to describe a sound
- The lowest partial is called *fundamental frequency*
- A harmonic partial is a frequency that's a multiple of the fundamental frequency

$$f_1 = 440$$

- Superposition of sinusoids
- A partial is a sinusoid used to describe a sound
- The lowest partial is called *fundamental frequency*
- A harmonic partial is a frequency that's a multiple of the fundamental frequency

$$f_1 = 440, f_2 = 2 \cdot 440 = 880$$

- Superposition of sinusoids
- A partial is a sinusoid used to describe a sound
- The lowest partial is called *fundamental frequency*
- A harmonic partial is a frequency that's a multiple of the fundamental frequency

$$f_1 = 440, f_2 = 2 \cdot 440 = 880, f_3 = 3 \cdot 440 = 1320, \dots$$

- Superposition of sinusoids
- A partial is a sinusoid used to describe a sound
- The lowest partial is called *fundamental frequency*
- A harmonic partial is a frequency that's a multiple of the fundamental frequency
- Inharmonicity indicates a deviation from a harmonic partial

Harmonic vs inharmonic instruments

Harmonic content

Frequency modulation

- AKA vibrato
- Periodic variation in frequency
- In music, used for expressive purposes

Frequency modulation

Amplitude modulation

- AKA tremolo
- Periodic variation in amplitude
- In music, used for expressive purposes

Amplitude modulation

Timbre recap

- Multifactorial sound dimension
- Amplitude envelope
- Distribution of energy across partials
- Signal modulation (frequency/amplitude)

Sound recap

- Sound is a wave
- Frequency, intensity, timbre
- Pitch, loudness, timbre

What's up next?

- Introducing audio signal
- Audio to Digital Conversion (ADC)
- Digital to Audio Conversion (DAC)

Join the community!

thesoundofai.slack.com