

|          |      |          |
|----------|------|----------|
| APPROVED | O    | FIG.     |
| BY       | CLAS | SUBCLASS |
| SEARCHED |      |          |

2005 T0 " TACGCGGTT

Figure 1A

|            |             |             |             |             |             |     |
|------------|-------------|-------------|-------------|-------------|-------------|-----|
| ATGTCGAAAA | TTGAACCTAA  | ACAACTATACT | TTTGCCCTATG | ATAATCAAGA  | AGTATTGCTT  | 60  |
| TTTGATCAGG | CAAATATCAC  | GATGGATAACC | AATTGGAAT   | TAGGATTGAT  | TGGCCGCAAT  | 120 |
| GGCCGGGGAA | AAACAAACCTT | ATTAAGATTG  | TTACAAAAAC  | AGTTGGATTA  | CCAAGGAGAG  | 180 |
| ATTCTTCATC | AAGTCGATT   | CGTCTTATT   | CCACAAACAG  | TTGCAGAAAGA | ACAACAGCTC  | 240 |
| ACTTATTATG | TCTTACAAGA  | GGTGAACTTCT | TTTGAACAGT  | GGGAATTAGA  | ACGAGAATTAA | 300 |
| ACGCTTTAA  | ACGTTGATCC  | TGAAGTTTA   | TGGCGGCCCT  | TTCTCTCTT   | ATCAGGGGCC  | 360 |
| GAAAGACGA  | AAGTTTATT   | AGGTCTTAGCT | TTTATTGAAG  | AAAATGCCCT  | TCCTTAATT   | 420 |
| GACGGCCAA  | CAAATCATT   | AGATCTTAGCT | GGCAGACAAC  | AAAGTGGCTGA | ATATTGAAAG  | 480 |
| AAAAGAAC   | ACGGGTTTAT  | TTTAGTCAGC  | CACGATCGGG  | CATTGTTGA   | TGAAGTGGTT  | 540 |
| GATCATATT  | TGGCGATTGA  | AAAAGTCAA   | TTGACGGCTGT | ATCAAGGGAA  | TTTTTCTATT  | 600 |
| TATGAAGAGC | AAAAAAATT   | AAGAGATGCT  | TTTGAACTAG  | CAGAAAATGA  | AAAATCAAA   | 660 |
| AAAGAAGTCA | ATCGCTTGAA  | AGAAACCGCT  | CGTAAAAAAG  | CGGAATGGTC  | GATGAACCGT  | 720 |
| GAAGGGATA  | AGTACGGCAA  | CGCTAAGGAA  | AAAGGGAGCG  | GGGGGATTTT  | TGATACAGGA  | 780 |
| GCCATTGGTG | CCGGGCAGC   | GGCGTAAATG  | AAGCGCTCGA  | AACACATTCA  | ACAACGGGCC  | 840 |
| GAAACACAAT | TAGCAGAAA   | AGAAAAACTA  | TTAAAAGATC  | TGAGGTATAT  | TGATCCTTTG  | 900 |
| TCAATGGATT | ATCAGCCAAC  | GCATCACAAA  | ACATTATTGA  | CGGTGGAAGA  | GCTTCGTCTA  | 960 |

|                |                |
|----------------|----------------|
| APPROVED<br>BY | O. FIG.        |
|                | CLASS SUBCLASS |
| DRAFTS 1111    |                |

2010 FEB 11 T 25 1000 1000

Figure 1B

GGCTACGAGA AAAATTGGCT ATTTGGCCA CTTTCTTTTT CAATAAACGC GGGAGAAATT 1020  
GTTGGAATAA CAGGGAAAAA TGGCTCAGGA AAATCGAGCT TAATTCAAGTA TTTATTGGAT 1080  
AATTCTCTG GGGATTCAAGA AGGGAAAGCC ACTTTGGCTC ACCAATTAAAC CATTCTTAT 1140  
GTGCGCCAAG ATTATGAAGA CAATCAAGGA ACTTTATCCG AATTGGCAGA GAAAATCAG 1200  
TTAGATTACA CTCAAATTAACTTA CGAAAACCTTG GGATGGAGCG CGCCGTTTC 1260  
ACTAATCGAA TTGAAACAAAT GAGTATGGGG CAACGGAAAA AAGTCAAGT AGCCAAATCA 1320  
TTGTCTCAAT CAGCTGAACT TTATATTGG GATGAAACCCC TTAATTACTT GGATGTATT 1380  
ATCATCAAC AATTAGAAGC GCTAATCTTA TCTGTGAAGC CTGCAATGCT AGTGATTGAG 1440  
CATGATGCAC ATTTCATGAA GAAAATAACA GATAAAAAA TTGTCTTGAA ATCATAA ATCATAA 1497

|           |                |
|-----------|----------------|
| APPROVED  | O. FIG.        |
| BY        | CLASS SUBCLASS |
| CRAFTSMAN |                |

20060101-155000

Figure 2A

|                                                                         |     |
|-------------------------------------------------------------------------|-----|
| MetSerLysIleGluLeuLysGlnLeuSerPheAlaTyrAspAsnGlnGluValLeuLeu            | 20  |
| PheAspGlnAlaAsnIleThrMetAspThrAsnTrpLysLeuGlyLeuIleGlyArgAsn            | 40  |
| <u>GlyArgGlyLysThrThrIleLeuArgLeuGlnLysGlnLeuAspTyrGlnGlyGlu</u>        | 60  |
| IleLeuHisGlnValAspPheValTyrPheProGlnThrValAlaGluGluGlnGlnLeu            | 80  |
| ThrTyrTyrValLeuGlnGluValThrSerPheGluGlnTrpGluLeuArgGluLeu               | 100 |
| ThrLeuAsnValAspProGluValLeuTrpArgProPheSerSerLeuSerGlyGly               | 120 |
| <u>GluLysThrLysValLeuGlyLeuLeuPheIleGluGluAsnAlaPheProLeuIle</u>        | 140 |
| <u>AspGluProThrAsnHisIleLeuAspLeuAlaGlyArgGlnGlnValAlaGluTyrIleUlys</u> | 160 |
| LysLysLysGlyPheIleLeuValSerHisAspArgAlaPheValAspGluValVal               | 180 |
| AspHisIleLeuAlaIleGluLysSerGlnLeuThrLeuTyrGlnGlyAsnPheSerIle            | 200 |
| TyrGluGluGlnLysLysLeuArgAspAlaPheGluLeuAlaGluAsnGluLysIleLys            | 220 |
| LysGluValAsnArgLeuLysGluThrAlaArgLysLysAlaGluTrpSerMetAsnArg            | 240 |
| GluGlyAspLysTyrGlyAsnAlaLysGluLysGlySerGlyAlaIlePheAspThrGly            | 260 |
| AlaIleGlyAlaArgAlaArgValMetLysArgSerLysHisIleGlnGlnArgAla               | 280 |
| GlutThrGlnLeuAlaGluLysGluLysLeuLeuLysAspLeuGluTyrIleAspProLeu           | 300 |
| SerMetAspTyrGlnProThrHisHisLysThrLeuLeuThrValGluGluLeuArgLeu            | 320 |



**Figure 2B**

GlyTyrGluLysAsnTrpLeuPheAlaProLeuSerPheSerThrLeuAsnAlaGlyGluIle 340  
ValGlyIleThrGlyGlyLysAsnGlySerGlyLysSerSerLeuIleGlnTyrLeuLeuAsp 360  
AsnPheSerGlyAspSerGluglyGluAlaThrLeuAlaHisGlnLeuThrIleSerTyr 380  
ValArgGlnAspTyrGluAspAsnGlnGlyThrLeuSerGluPheAlaGluLysAsnGln 400  
LeuAspTyrThrGlnPheLeuAsnAsnLeuArgLysLeuGlyMetGluArgAlaValPhe 420  
ThrAsnArgIleGluGlnMetSerMetGlyGlnArgLysLysValGluValAlaLysSer 440  
LeuSerGlnSerAlaGluLeuTyrIleTrpAspGluProLeuAsnTyrLeuAspValPhe 460  
AsnHisGlnGlnLeuGluAlaLeuSerValIleLeuSerValIleLeuMetLeuValIleGlu 480  
HisAspAlaHisPheMetLysLysAspLysLysIleValLeuLysSer 498



Figure 3A

|            |            |             |            |             |            |     |
|------------|------------|-------------|------------|-------------|------------|-----|
| ATGAAAGAGA | TCGTAACATT | AACAAACGTT  | AGCTATGAAG | TAAAGGATCA  | AACTGTTTTT | 60  |
| AAACATGTA  | ACGCCAGTGT | TCAGCAAGGA  | GATATCATTG | GGATTATCGG  | CAAAAACGGC | 120 |
| GCTGGAAAT  | CTACGTTGCT | GCACCTCATT  | CACAATGACT | TAGCCCCTGC  | ACAGGGTCAA | 180 |
| ATCCTTCGGA | AGGATATAAA | ACTGGCTTGT  | GTTGAACAGG | AAACCCGGC   | GTATTCCCTT | 240 |
| GCGGATCAGA | CACCTGCCGA | AAAGAAGTTA  | CTGGAGAAAT | GGCATGTCGCC | TCTTCGTGAT | 300 |
| TTTCATCAGT | TAAGGGCGG  | TGAAAACGT   | AAAGGGGGC  | TGGCGAAAGG  | ACTATCAGAG | 360 |
| GATGCAGATC | TGCTGCTGTT | AGATGAACCCG | ACAAACCACC | TTGATGAAAA  | AAGCTTGCAA | 420 |
| TTTCTCATCC | AACAGCTGAA | ACATTATAAC  | GGCACTGTGA | TTCTCTTTTC  | TCACCATCGA | 480 |
| TATTTTAG   | ACGAAGCCGC | AACAAAATA   | TGGTGGCTTG | AGGATCAGAC  | GCTGATTGAA | 540 |
| TTCAAAGGA  | ATTACTCCGG | GTATATGAAG  | TTCCGGGAGA | AGAAAAGACT  | CACCCAGCAG | 600 |
| CGTGAATATG | AAAAGCAGCA | AAAATGGTT   | GAACGGATTG | AAGCACAAAT  | GAATGGGCTC | 660 |
| GCTTCTGGT  | CGGAAAAGC  | CCATGCTCAA  | TCGACGAAAA | AGGAAGGGTT  | TAAAGAATAT | 720 |
| CACCGGGTAA | AAGCGAAGCG | TACGGATGCC  | CAGATAAAAT | CCAAGCAGAA  | GCGGCTTGAA | 780 |
| AAAGAGCTTG | AAAAGCAAA  | GGGGAACCC   | GTTACCCAG  | AATATACAGT  | CCGCTTTCA  | 840 |
| ATCGATACAA | CCCACAAAC  | AGGAAAACGT  | TTTTTAGAAG | TTCAAGAATGT | AACAAAAGCG | 900 |
| TTGGAGAAA  | GGACTCTCTT | TAAAACGCA   | AACTTTACAA | TTCAAGCACGG | CGAAAAGGT  | 960 |

|                |       |          |
|----------------|-------|----------|
| APPROVED       | CC    | FIG.     |
| BY             | CL. S | SUBCLASS |
| DATE: 11/11/01 |       |          |

FIGURE 3B: FIGURE 3B

Figure 3B

|             |            |             |             |             |             |      |
|-------------|------------|-------------|-------------|-------------|-------------|------|
| GCGATCATAG  | GCCCCAATGG | CAGCGAAAA   | ACGACATTAC  | TGAACATCAT  | TCTGGGACAG  | 1020 |
| GAAACAGCGAG | AAGGAAGTGT | ATGGGTGTCG  | CCGTCGGCAA  | ACATCGGCTA  | TTAACGGCAG  | 1080 |
| GAGGTGTTG   | ATTGCGCTTT | AGAACAAACA  | CCGGAAGAGT  | TATTGAGAA   | TGAAACATTC  | 1140 |
| AAAGCAAGGG  | GGCACGTTCA | AAATCTGATG  | AGGCCACTTAG | GTTTACAGC   | CGCCCAATGG  | 1200 |
| ACTGAACCGA  | TCAAGCATAT | GAGTATGGGT  | GAGCGTGTAA  | AGATCAAAGCT | GATGGCATAT  | 1260 |
| ATTCTGGAGG  | AAAAAGACGT | GCTGATTTTA  | GATGAGCCGA  | CAAACCATCT  | CGACCTGCGCG | 1320 |
| TCACGGAAC   | AGCTGGAAGA | AACACTGTCA  | CAATACAGCG  | GCACATTGCT  | GGGGGTTCA   | 1380 |
| CATGACCGAT  | ACTTTCTCGA | AAAACAACA   | AACAGTAAC   | TCGTCAATCTC | AAACAAACGGC | 1440 |
| ATCGAAAAAGC | AGTTAACGCA | CGTTCCCTCA  | GAAAGAAATG  | AGCGGGAGGA  | GCTTCGGTTA  | 1500 |
| AAGCTTGAGA  | CAGAAAGACA | AGAAAGTGTG  | GGAAAGGCTCA | GTTCATGAC   | GCCAAATGAT  | 1560 |
| AAAGGGTATA  | AGGAGCTTGA | TCAGGGCTTTC | AATGAGCTTA  | CGAAACGAAT  | AAAAGAGCTG  | 1620 |
| GATCATCAAG  | ACAAAAAAGA | <u>CTGA</u> |             |             |             | 1644 |

|           |                     |
|-----------|---------------------|
| APPROVED  | O. FIG.             |
| BY        | CLASS      SUBCLASS |
| CRAFTSMAN |                     |

Figure 4A

MetLysGluIleValThrLeuThrAsnValSerTyrGluValLysAspGlnThrValPhe 20  
 LysHisValAsnAlaSerValGlnGlyAspIleIleGlyIleIleGlyLysAsnGly 40  
AlaGlyLysSerThrLeuLeuHisLeuIleHisAsnAspLeuAlaProAlaGlnGlyGln 60  
 IleLeuArgLysAspIleLysLeuAlaLeuValGluGlnGluThrAlaAlaTyrSerPhe 80  
 AlaAspGlnThrProAlaGluLysLeuLeuGluLysTrpHisValProLeuArgAsp 100  
PheHisGlnLeuSerGlyGlyGluLysLeuLysAlaArgLeuAlaLysGlyLeuSerGlu 120  
AspAlaAspLeuLeuAspGluProThrAsnHisLeuAspGluLysSerLeuGln 140  
 PheLeuIleGlnIleLeuIleTyrAsnGlyThrValIleLeuValSerHisAspArg 160  
TyrPheLeuAspGluAlaAlaThrLysIleTrpSerLeuGluAspGlnThrLeuIleGlu 180  
 PheLysGlyAsnTyrSerGlyTyrMetLysPheArgGluLysLysArgLeuThrGlnGln 200  
 ArgGluTyrGluLysGlnGlnLysMetValGluArgIleGluAlaGlnMetAsnGlyLeu 220  
 AlaSerTrpSerGluLysAlaHisAlaGlnSerThrLysLysGluGlyPheLysGluTyr 240  
 HisArgValLysAlaLysArgThrAspAlaGlnIleLysSerLysGlnLysArgLeuGlu 260  
 LysGluLeuGluLysAlaLysAlaGluProValThrProGluTyrThrValArgPheSer 280  
 IleAspThrThrHisLysThrGlyLysArgPheLeuGluValGlnAsnValThrLysAla 300  
 PheGlyGluArgThrLeuPheLysAsnAlaAsnPheThrIleGlnHisGlyGluLysVal 320

**Figure 4B**

AlaIleIleGlyProAsnGlySerGlyLysSerGlyLysThrLeuLeuAsnIleIleLeuGlyGln 340  
GluThrAlaGluGlySerValTrpValSerProSerAlaAsnIleGlyTyrLeuThrGln 360  
GluValPheAspLeuProLeuGluGlnThrProGluGluLeuPheGluAsnGluThrPhe 380  
LysAlaArgGlyHisValGlnAsnLeuMetArgHisLeuGlyPheThrAlaAlaGlnTrp 400  
ThrGluProIleLysHisMetSerMetGlyGluArgValLysIleLysLeuMetAlaTyr 420  
IleLeuGluGluLysAspValLeuIleLeuAspGluProThrAsnHisLeuAspLeuPro 440  
SerArgGluGlnLeuGluGluThrLeuSerGlnTyrSerGlyThrLeuAlaValSer 460  
HisAspArgTyrPheLeuGluLysThrAsnSerLysLeuValTyrSerAsnAsnGly 480  
IleGluLysGlnLeuAsnAspValProSerGluArgAsnGluArgGluLeuArgLeu 500  
LysLeuGluThrGluArgGlnGluValLeuGlyLysLeuSerPheMetThrProAsnAsp 520  
LysGlyTyrLysGluLeuAspGlnAlaPheAsnGluLeuThrLysArgIleLysGluLeu 540  
AspHisGlnAspLysLysAsp 547