

Wichtige Konstanten e 1.602 · 10⁻¹⁹ C e 8.854 · 10⁻¹² As Mo 4A · 10⁻⁷ NA⁻² c 299 792 458 ms⁻¹

Shaluproduht $\vec{A} \cdot \vec{B} = \sum_{i} a_{i} b_{i}$ $\vec{A} \cdot \vec{B} = |\vec{A}| |\vec{B}| \cdot \cos \phi$

 $|\overrightarrow{A} \times \overrightarrow{B}| = \begin{pmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{pmatrix}$ $|\overrightarrow{A} \times \overrightarrow{B}| = |\overrightarrow{A}||\overrightarrow{B}| \text{ Sin } (\angle(\overrightarrow{A}, \overrightarrow{B}))$ | Körper

Kugel

U = Z·ベ·۲

0=4.602 V=4.602

I=== .W.L2

Dünner Stab

L horperachse.

Ende I tierperadise.

I= 4 w. /2

Krausproduht

Cotiolishratt Newton sche Ax

NHH:

2 Ahthous prinzip: Fres = 0

2 Ahthous prinzip: a ~ F, a ~ m

3. Acho-Reacho Ar: F, -> ← F2

Sth:

Zylinder:

11=294r.h

0 = 54612+54ch

۸=۷۰۰۰

Körperachse:

1=2 W. F2

Scheibe

I===mr2

I= 4 Mr2

T korberachse.

I=+mr2++ ww

Kugelschale

I= 3 m r2

Quader:

1 Ober fläche:

I= 12 M (02+p2)

 $\begin{array}{l} \rho q \cdot \text{Formel} \\ \chi_{12} = -(\frac{\rho}{2}) \pm \sqrt{(\frac{\rho}{2})^2} - q \\ \text{Milternacutatormel} \\ \chi_{12} = -\frac{b \pm \sqrt{k^2 + 4ac}}{2\alpha} \end{array}$ $\begin{array}{l} \text{Frde} \\ \text{Radius.} \quad 6.371 \text{ km} \\ \text{Rotation.} \quad 1670 \text{ km/m} \\ \text{V}_F = 4.0000 \text{ km/m} \end{array}$

Hohlzylinder

Korperaduse.

I= 1 M (L1+L5)

Zylinder mantel:

körperochse:

I= W. L2

1 korperachse

I- 2mr2+ 12mh2

Einheiten:

	-
Vorsatz	
Tera	10,5
Giga	100
Mega	106
Kilo	103
Dezi	10-1
zenti	10,5
Milli	10-3
Mikro	10-6
Nano	10-8
Piko	10-12

 $\begin{array}{ll} \text{Umrechating:} \\ \text{I km } h^{1} = \frac{1}{3.6} \text{ M s}^{-1} \\ \text{I ha } = 10000 \text{ m}^{2} \\ \text{I cm}^{3} = \frac{1}{10000000} \text{ m}^{3} \\ \text{I l } = 10000 \text{ m}^{2} \\ \end{array}$

 $1 cm^{3} = \frac{1}{1000000} m^{3}$ $1 L = 1000 cm^{3} = \frac{1}{100} m^{3}$ $1 \frac{a}{cm^{3}} = 1000 \frac{ka}{m^{3}}$ 1 cal = 4.194 7

Kraft: | N = | kg·m s⁻² Arbet: | J = | Nm = | hg·m²·s⁻² Leistung: | W = | hg·m²·s⁻³ Energic: | J = | kg·m²·s⁻²

| $N_{\text{Loc}} = N_{\text{Loc}} = N$

Dehnung: 1 mm⁻¹ Elasti Modul. 1 W/m² = 1 hg·s²·m¹ Vishositet: 1 Pa/s = 1 hg·m¹·s¹

Drehmoment: | Non: kg. m². s². Trägheitsmament: | lag.m².
Trägheitsmament: | lag.m².
Drehim Puls: | lag.m². s².
Wärmehapazität: | 13.1 k² = | lag.m². s². k².
sp. Wärmehap: | 13/(10.1k): | m². s². k².
mal Wärmehap: | 13/(10.1k): | m². s². k².

Dichtetabelle. 3.cm | kg m3 <u>Eis</u> 920 ୦.ଏ୧ 552 5520 Erde gold 19.3 19300 wasser 1000 Luft 0.001293 1.293 બુજ 2.4-2.8 2400-280 Holz 0.6 -0.9 600-900 Knochen 1.7 - 20 1700-2000 Bogenmaß/Grad Grad BON. 0 17/6 o° 30° 45° 17/4 17/3 60° 11/2 *9*0° 1800 34 2700 260°

Trigonomel	irisch	e Fu	∧h+i	on.										
sin a =	gegen Hy po	hathe tenus	<u>k</u> e	ω	sq	= .	4v 4y F	<u>nhathele</u> sotenuse	-	tana	=	gegev Anh	hathe athet	<u>k</u> e
Ableitung:			100	45°	90	l35°	180'	L						
Sin(x).	Z	sin	0	뒫	١	打て	0	Γ						
-cos(x)	cos(x)	<u> 20</u> 0	ı	1/2	0	년	-1							
? -sin(x) e		tou	0	1	1									
			•	•		•	•							
× 100 =	× · 18	80 F 4	rad											

Widerstände

Material	spezifischer	Temperatur-
	Widerstand	koeffizient
	$\rho_{20} [\Omega m]$	α [K ⁻¹]
Silber	1,6 · 10-8	
Kupfer	1,7 · 10-8	
Aluminium	2,8 · 10-8	
Wolfram	5,5·10 ⁻⁸	$4,5 \cdot 10^{-3}$
Eisen	10 · 10 ⁻⁸	
Blei	22 · 10 ⁻⁸	
Quecksilber	96 · 10 ⁻⁸	
Chrom-Nickel-Stahl	100 ⋅10 ⁻⁸	
Kohlenstoff	3500 · 10 ⁻⁸	
Germanium	0,45	$-4.8 \cdot 10^{-2}$
Silizium	640	$-7,5 \cdot 10^{-2}$
Holz	10^810^{14}	
Glas	$10^{10}10^{14}$	
Hartgummi	$10^{13}10^{16}$	
Bernstein	5 · 10 ¹⁴	
Schwefel	1 · 10 ¹⁵	

Brechsahl

Material		
Glas	1,5	42°
Wasser	1,33	49°
Diamant	2,42	24°