Jméno a příjmení:	Login:	1	2	3	Σ

Výsledky musí být v souladu s výpočty nebo zdůvodněním na pomocném papíře, jinak je řešení neplatné.

1. Pomocí metody sémantického argumentu pro predikátovou logiku prvního řádu dokažte nebo vyvrať te platnost následující formule v teorii celých čísel $\mathcal{T}_{\mathbb{Z}}$ danou signaturou a axiomy uvedenými níže:

$$\forall s \forall t (0 \le t \rightarrow s + 0 \le s + t)$$

Teorie $\mathcal{T}_{\mathbb{Z}}$:

- Signatura: $\langle \mathcal{F} = \{0_{0}, 1_{0}, +_{2}, -_{1}\}, \mathcal{P} = \{\leq_{2}\}\rangle$
- Axiomy (postačující podmnožina):

A1:
$$\forall x \forall y ((x \le y \land y \le x) \rightarrow x = y)$$

A2:
$$\forall x \forall y \forall z ((x \leq y \land y \leq z) \rightarrow x \leq z)$$

A3:
$$\forall x \forall y (x \leq y \lor y \leq x)$$

A4:
$$\forall x \forall y \forall z ((x+y) + z = x + (y+z))$$

A5:
$$\forall x \forall y \forall z (x \leq y \rightarrow z + x \leq z + y)$$

A6:
$$\forall x(x+0=x)$$

A7:
$$\forall x(x+(-x)=0)$$

A8:
$$\forall x \forall y (x + y = y + x)$$

(4 body)

2. Převeď te následující formuli na ekvivalentní formuli v prenexní normální formě:

$$\forall x \Big(\exists y \big(R(x,y) \land \forall z (\neg S(x,z))\big) \to \neg \exists y (R(x,y))\Big)$$
(3 body)

- 3. Medvídek Pú uspořádal oslavu svých narozenin, na kterou pozval zvířátka z různých zemí. Několik dnů po oslavě se zjistilo, že všechna zvířátka byla nakažena novým virem neznámého původu. Medvídkovo vyšetřování nákazy zjistilo následující:
 - (a) Na oslavě byl právě jeden pacient nula.
 - (b) Pacient nula nebyl na oslavě nikým nakažen.
 - (c) Každé zvířátko bylo nakaženo maximálně jedním jiným zvířátkem.
 - (d) Každé zvířátko nakazilo maximálně dvě jiná zvířátka.
 - (e) Žádné zvířátko nenakazilo sama sebe.
 - (f) Zvířátka, která na oslavě pila tvrdý alkohol, nebyla nakažena jinými zvířatky, která pila tvrdý alkohol.
 - (g) Zvířátka se nenakazila v cyklu (tj. např. pokud Prasátko nakazilo Ijáčka a Ijáček nakazil Tygra, pak Tygr už nemohl nakazit Prasátko).

Formalizujte pomocí axiomů výsledky Medvídkova vyšetřování. Uvažujte jazyk \mathcal{L} predikátové logiky prvního řádu s pěti predikátovými symboly $pac_-nula_{/1}$, $nakazil_{/2}$ (nechť nakazil(x,y) značí, že x nakazil y), $pijan_{/1}$ a "vestavěným" predikátovým symbolem rovnosti $=_{/2}$, který je interpretován jako identita prvků.

Použijte základní syntaxi predikátové logiky prvního řádu.

Nápověda: ke každému z bodů (a)–(g) vytvořte jeden axiom či schéma axiomů. (6 bodů)

IAM 2020/2021 Test 1 24. 3. 20

Jméno a příjmení:	Login:	4	5	6	Σ

Část 2 — Rozhodovací procedury

4. Eliminujte kvantifikátor z formule φ níže, nad \mathbb{Z} , Cooperovým algoritmem. Je formule splnitelná (a proč)?

$$\varphi : \exists x (x < 1 \land (z = 2x \lor z > 3) \land x < z)$$

(4 bodů)

5. Demonstrujte běh automatové procedury pro rozhodování splnitelnosti Presburgerovy aritmetiky na následující formuli φ :

$$\varphi : \exists y(x - y = 2 \land \neg(x - y = 2))$$

Co procedura odpoví a proč (jak odpověď souvisí s výsledným automatem)? (5 bodů)

6. Na následující formuli φ demonstrujte algoritmus Nelson-Oppen pro kombinaci rozhodovacích procedur. Řešte nad kombinovanou teorií $\mathcal{T}_{\mathbb{Q}} \cup \mathcal{T}_{\mathsf{E}}$ (racionální čísla a rovnosti/neinterpretované funkce).

$$\varphi: 1 \le z - f(x) \land f(x) > z \land f(y) \le z \land y \le x \land x \le y$$

(3 body)