Computer Vision Admissions

Question 1	<pre>fruits = ['apple', 'banana', 'cherry'] In the above code snippet, what is the index of 'banana' in the list fruits? 3 0 0 2 1</pre>	Time left: 39:55 QUESTIONS 1 2 3 4 5 6 7 8 9
Question 2	Select the appropriate performance metric for evaluating regression tasks in machine learning applications. Jaccard Index Cross-Entropy Loss R-squared (Coefficient of Determination) True Positive Rate	
Question 3	<pre>ntry_currencies = { 'Nigeria': 'Naira', 'China': 'Yuan', 'India': 'Rupee' } new_currency = 'Yen' country_currencies['Japan'] = new_currency In the above code snippet, which of the following is a key? 'Naira' new_currency country_currencies</pre>	
Question 4	 'Nigeria' Which of the following is an example of a clustering problem in machine learning? Calculating the most efficient shipping route across Asia Assigning a risk category to a new loan application Categorizing regional dialects in India based on linguistic features Estimating the age of a person from their photograph 	
Question 5	Which of the following is the answerType syntax for defining a method in a Python class? def method_name(parameters): outside a class	

	 def method_name(self, parameters): inside a class method_name(self, parameters): inside a class
Question 6	In a Python function call, which of the following represents an
	argument? Orectangle_area in rectangle_area(length, width)
	() in rectangle_area()
	length in rectangle_area(length, width)
	<pre>: in def rectangle_area():</pre>
Question 7	What distinguishes a development set from a hold-out set in machine learning methodologies?
	Oevelopment set is for training the initial model, while hold- out set is for ongoing development.
	A development set is used after the hold-out set to fine-tune the final model.
	A development set is for model refinement while a hold-out set evaluates the tuned model.
	Both sets are used iteratively throughout training to prevent overfitting.
Question 8	What describes overfitting in machine learning?
	Another name for highly accurate machine learning models
	Another name for highly accurate machine learning models When a model does not fit the training data closely enough
	_
	When a model does not fit the training data closely enough When a model follows training data too closely, capturing
	When a model does not fit the training data closely enough When a model follows training data too closely, capturing noise instead of the underlying pattern
Question 9	When a model does not fit the training data closely enough When a model follows training data too closely, capturing noise instead of the underlying pattern
Question 9	 When a model does not fit the training data closely enough When a model follows training data too closely, capturing noise instead of the underlying pattern A technique used to increase model accuracy How do you multiply a 1x2 matrix by a 2x2 matrix? For example, consider the following matrices: A = [1 2]
Question 9	 When a model does not fit the training data closely enough When a model follows training data too closely, capturing noise instead of the underlying pattern A technique used to increase model accuracy How do you multiply a 1x2 matrix by a 2x2 matrix? For example, consider the following matrices:
Question 9	 When a model does not fit the training data closely enough When a model follows training data too closely, capturing noise instead of the underlying pattern A technique used to increase model accuracy How do you multiply a 1x2 matrix by a 2x2 matrix? For example, consider the following matrices: A = [1 2]
Question 9	 When a model does not fit the training data closely enough When a model follows training data too closely, capturing noise instead of the underlying pattern A technique used to increase model accuracy How do you multiply a 1x2 matrix by a 2x2 matrix? For example, consider the following matrices: A = [1 2] B = [3 4] 6]
Question 9	 When a model does not fit the training data closely enough When a model follows training data too closely, capturing noise instead of the underlying pattern A technique used to increase model accuracy How do you multiply a 1x2 matrix by a 2x2 matrix? For example, consider the following matrices: A = [1 2] B = [3 4] 6] The result is a 1x2 matrix: [3, 8]

SUBMIT

