HAHN-BANACH THEOREM

1. Introduction

In these notes we study geometric and analytic versions of Hahn-Banach theorem. For this we introduce topological vector spaces and study their properties over arbitrary fields with absolute value. Next we prove that all one-dimensional Hausdorff topological spaces are isomorphic. This result is used in the characterization of finite dimensional Hausdorff topological vector spaces over a complete field and it is one of the crucial ingredients of Mazur's separation theorem (also called geometric version of Hahn-Banach). Next we intoduce locally convex topological vector spaces and prove separation of convex sets for this spaces. Finally we use Mazur's theorem to deduce analytic version of Hahn-Banach theorem.

Throughout the notes \mathbb{K} is a field with absolute value |-|. The closed disc in \mathbb{K} centered in the origin and with unit radius is denoted by \mathbb{D} .

Definition 1.1. Suppose that every Cauchy sequence in \mathbb{K} with respect to |-| is convergent, then \mathbb{K} is *a complete field*.

2. Preliminaries on topological vector spaces

In this section we introduce topological vector spaces and study their basic properties.

Definition 2.1. Let \mathfrak{X} be a vector space over \mathbb{K} together with a topology such that the multiplication by scalars $\cdot_{\mathfrak{X}} : \mathbb{K} \times \mathfrak{X} \to \mathfrak{X}$ and the addition $+_{\mathfrak{X}} : \mathfrak{X} \times \mathfrak{X} \to \mathfrak{X}$ are continuous. Then \mathfrak{X} is a topological vector space over \mathbb{K} .

Fact 2.2. Let \mathfrak{X} be a topological vector space over \mathbb{K} and let \mathfrak{Z} be its \mathbb{K} -subspace. Then \mathfrak{Z} with subspace topology is a topological vector space over \mathbb{K} .

П

Proof. Left for the reader as an exercise.

Recall that \mathbb{D} is the unit disc in \mathbb{K} centered in the origin.

Fact 2.3. Let \mathfrak{X} be a topological vector space over \mathbb{K} and let U be an open neighborhood of zero in \mathfrak{X} . Then there exists an open neighborhood W of zero in \mathfrak{X} such that $W \subseteq U$ and $W = \mathbb{D} \cdot W$.

Proof. Since the multiplication by scalars $\mathbb{K} \times \mathfrak{X} \to \mathfrak{X}$ is continuous, there exists an open neighborhood V of zero in \mathfrak{X} and a positive real number r such that

$$W = \bigcup_{\alpha \in \mathbb{K}, \, |\alpha| \le r} \alpha \cdot V \subseteq U$$

Then *W* is an open neighborhood of zero in \mathfrak{X} , $W \subseteq U$ and $W = \mathbb{D} \cdot W$.

Definition 2.4. Let $\mathfrak{X},\mathfrak{Y}$ are topological vector spaces over \mathbb{K} . A map $f:\mathfrak{X}\to\mathfrak{Y}$ which is both continuous and \mathbb{K} -linear is a morphism of topological vector spaces over \mathbb{K} .

Theorem 2.5. Let \mathfrak{X} be a topological vector space over \mathbb{K} and let \mathfrak{U} be its \mathbb{K} -subspace. Consider the quotient map $q:\mathfrak{X} \twoheadrightarrow \mathfrak{X}/\mathfrak{U}$ in the category of vector spaces over \mathbb{K} and equip $\mathfrak{X}/\mathfrak{U}$ with the quotient topology of \mathfrak{X} . Then the following assertions holds.

(1) q is an open map.

(2) $\mathfrak{X}/\mathfrak{U}$ is a topological vector space over \mathbb{K} and \mathfrak{q} is a morphism of topological vector spaces.

1

(3) For every morphism $f: \mathfrak{X} \to \mathfrak{Y}$ of topological vector spaces over \mathbb{K} such that $f(\mathfrak{U}) = 0$ there exists a unique morphism $p: \mathfrak{X}/\mathfrak{U} \to \mathfrak{Y}$ of topological vector spaces over \mathbb{K} which makes the triangle

commutative.

(4) $\mathfrak U$ is a closed in $\mathfrak X$ if and ony if $\mathfrak X/\mathfrak U$ is a Hausdorff topological space.

For the proof we need the following result.

Lemma 2.5.1. Let \mathfrak{X} be a topological vector space over \mathbb{K} . Then \mathfrak{X} is Hausdorff if and only if zero subspace of \mathfrak{X} is closed.

Proof of the lemma. If \mathfrak{X} is Hausdorff, then each singleton subset of \mathfrak{X} is closed. Hence zero subspace of \mathfrak{X} is closed.

Conversely, assume that the singleton of zero in \mathfrak{X} is closed. Pick two distinct points $x_1, x_2 \in \mathfrak{X}$. There exists an open neighborhood U of zero in \mathfrak{X} such that $x_1 - x_2 \notin U$. Since the addition $\mathfrak{X} \times \mathfrak{X} \to \mathfrak{X}$ is continuous, there exists an open neighborhood W of zero in \mathfrak{X} such that $W + W \subseteq U$. Define V to be $W \cap (-W)$. Then V is an open neighborhood of zero such that $V + V \subseteq U$ and V = -V. If

$$z \in (x_1 + V) \cap (x_2 + V)$$

then $z = x_1 + z_1$ and $z = x_2 + z_2$ for some $z_1, z_2 \in V$. Hence

$$x_1 - x_2 = (z_2 - z_1) \in V + (-V) = V + V \subseteq U$$

This is a contradiction with $x_1 - x_2 \notin U$. Thus

$$\emptyset = (x_1 + V) \cap (x_2 + V)$$

and \mathfrak{X} is Hausdorff.

Proof of the theorem. Fix an open subset U of \mathfrak{X} , then the set

$$q^{-1}\left(q\left(U\right)\right)=\bigcup_{u\in\mathfrak{U}}\left(u+U\right)$$

is open. According to the fact that $q: \mathfrak{X} \twoheadrightarrow \mathfrak{X}/\mathfrak{U}$ is a quotient topological map, we infer that q(U)is open in $\mathfrak{X}/\mathfrak{U}$. Hence q is an open map and the proof of (1) is completed. Since *q* is open, we derive that $1_{\mathbb{K}} \times q$ and $q \times q$ are open. Since squares

$$\mathbb{K} \times \mathfrak{X} \xrightarrow{\cdot_{\mathfrak{X}}} \mathfrak{X}$$

$$\downarrow_{1_{\mathbb{K}} \times q} \qquad \qquad \downarrow_{q}$$

$$\mathbb{K} \times \mathfrak{X}/\mathfrak{U} \xrightarrow{\cdot_{\mathfrak{X}/\mathfrak{U}}} \mathfrak{X}/\mathfrak{L}$$

are commutative, we deduce that the addition $+_{\mathfrak{X}/\mathfrak{U}}:\mathfrak{X}/\mathfrak{U} \times \mathfrak{X}/\mathfrak{U} \to \mathfrak{X}/\mathfrak{U}$ and the multiplication of scalars $\cdot_{\mathfrak{X}/\mathfrak{U}}: \mathbb{K} \times \mathfrak{X}/\mathfrak{U} \to \mathfrak{X}/\mathfrak{U}$ are continuous. Therefore, $\mathfrak{X}/\mathfrak{U}$ is a topological vector space over \mathbb{K} . It follows that q is a morphism of topological vector spaces over \mathbb{K} and hence (2) holds.

The assertion (3) describes the universal property which follows easily from definition and (2). For (4) observe that

 \mathfrak{U} is closed subset of $\mathfrak{X} \Leftrightarrow \text{zero subspace of } \mathfrak{X}/\mathfrak{U}$ is closed

Thus it suffices to prove that

zero subspace of $\mathfrak{X}/\mathfrak{U}$ is closed $\Leftrightarrow \mathfrak{X}/\mathfrak{U}$ is a Hausdorff topological space

but this is a consequence of Lemma 2.5.1.

3. Complete topological vector spaces

We need some basic results on complete topological vector spaces. We start by defining this important notion.

Definition 3.1. Let \mathfrak{X} be a topological vector space over \mathbb{K} . Suppose that \mathcal{F} is a proper filter of subsets of \mathfrak{X} such that for every open neighborhood U of zero in \mathfrak{X} there exists $F \in \mathcal{F}$ such that

$$F - F \subseteq U$$

Then \mathcal{F} is a Cauchy filter in \mathfrak{X} .

Definition 3.2. A topological vector space \mathfrak{X} over \mathbb{K} is *complete* if every Cauchy filter in \mathfrak{X} is convergent.

Theorem 3.3. Let \mathfrak{X} be a topological vector space over \mathbb{K} and let \mathfrak{Z} be its \mathbb{K} -subspace. Consider \mathfrak{Z} as a topological vector space over \mathbb{K} with subspace topology. Then the following assertions hold.

- **(1)** If \mathfrak{X} is complete and \mathfrak{Z} is a closed in \mathfrak{X} , then \mathfrak{Z} is complete.
- **(2)** If \mathfrak{Z} is complete and \mathfrak{X} is Hausdorff, then \mathfrak{Z} is closed in \mathfrak{X} .

Proof. Consider a Cauchy filter \mathcal{F} in 3. We define

$$\tilde{\mathcal{F}} = \{ \tilde{F} \subseteq \mathfrak{X} \mid \text{ there exists } F \in \mathcal{F} \text{ such that } F \subseteq \tilde{F} \}$$

Clearly $\tilde{\mathcal{F}}$ is a Cauchy filter in \mathfrak{X} . Since \mathfrak{X} is complete, we derive that $\tilde{\mathcal{F}}$ is convergent to some x in \mathfrak{X} . This together with definition of $\tilde{\mathcal{F}}$ show that for every open neighborhood U of zero in \mathfrak{X} there exists $F \in \mathcal{F}$ such that $F \subseteq x + U$. In particular, for every open neighborhood U of zero in \mathfrak{X} intersection $(x + U) \cap \mathfrak{Z}$ is nonempty. Since \mathfrak{Z} is closed in \mathfrak{X} , it follows that $x \in \mathfrak{Z}$ and \mathcal{F} is convergent to x. Thus \mathfrak{Z} is complete.

Suppose now that \mathfrak{Z} is complete. Assume that for some point x in \mathfrak{X} and for every open neighborhood of zero U in \mathfrak{X} intersection $(x + U) \cap \mathfrak{Z}$ is nonempty. Define

$$\mathcal{F} = \{ F \subseteq \mathfrak{Z} \mid \text{ there exists open neighborhood } U \text{ of zero in } \mathfrak{X} \text{ such that } (x + U) \cap \mathfrak{Z} \subseteq F \}$$

Then \mathcal{F} is a Cauchy filter in \mathfrak{Z} . Since \mathfrak{Z} is complete, \mathcal{F} is convergent to some point z in \mathfrak{Z} . By definition of \mathcal{F} we have $z \in x + U$ for every open neighborhood U of zero x. Since \mathfrak{X} is Hausdorff, it follows that z is identical to x. This proves that \mathfrak{Z} is closed in \mathfrak{X} .

Theorem 3.4. Let \mathfrak{X} be a topological vector space over \mathbb{K} . Suppose that there exists a pseudometric $\rho: \mathfrak{X} \times \mathfrak{X} \to \mathbb{R}_+ \cup \{0\}$ which induces topology on \mathfrak{X} . Then the following assertions hold.

- (i) \mathfrak{X} is complete.
- (ii) Every Cauchy sequence with respect to ρ is convergent.

Proof. Assume that \mathfrak{X} is complete and $\{x_n\}_{n\in\mathbb{N}}$ is a Cauchy sequence with respect to ρ . Define

$$F_n = \{x_k \mid k \ge n\}$$

for every $n \in \mathbb{N}$ and let

$$\mathcal{F} = \left\{ F \subseteq \mathfrak{X} \,\middle|\, F_n \subseteq F \text{ for some } n \in \mathbb{N} \right\}$$

Since $\{x_n\}_{n\in\mathbb{N}}$ is a Cauchy sequence with respect to ρ and this pseudometric induces topology on \mathfrak{X} , we derive that \mathcal{F} is a Cauchy filter in \mathfrak{X} . Hence \mathcal{F} is convergent to some point of \mathfrak{X} . This proves that $\{x_n\}_{n\in\mathbb{N}}$ is convergent to some point of \mathfrak{X} . Hence $\{x_n\}_{n\in\mathbb{N}}$ is convergent with respect to ρ . This completes the proof of (i) \Rightarrow (ii).

Suppose that every Cauchy sequence with respect to ρ is convergent in \mathfrak{X} . Consider a Cauchy filter \mathcal{F} in \mathfrak{X} . Since topology of \mathfrak{X} is pseudometrizable, we derive that there exists a countable basis $\{U_n\}_{n\in\mathbb{N}}$ of open neighborhoods of zero in \mathfrak{X} . There exists a decreasing sequence $\{F_n\}$ of elements of \mathcal{F} such that

$$F_n - F_n \subseteq U_n$$

for each $n \in \mathbb{N}$. For each $n \in \mathbb{N}$ let $x_n \in F_n$. Then $\{x_n\}_{n \in \mathbb{N}}$ is a Cauchy sequence with respect to ρ . Hence it is convergent to some point x in \mathfrak{X} . Pick an open neighborhood U of zero in \mathfrak{X} . Consider open neighborhood W of zero in \mathfrak{X} such that $W + W \subseteq U$. For sufficiently large $n \in \mathbb{N}$ we have

$$F_n - F_n \subseteq W, x_n - x \in W$$

If $z \in F_n$, then

$$x-z=(x-x_n)+(x_n-z)\in W+(F_n-F_n)\subseteq W+W\subseteq U$$

Hence $F_n \subseteq x + U$. This proves that \mathcal{F} is convergent to x. The implication (ii) \Rightarrow (i) holds.

Theorem 3.5. Let $\{\mathfrak{X}_i\}_{i\in I}$ be a family of topological vector space over \mathbb{K} . Then the following assertions are equivalent.

- (i) \mathfrak{X}_i is complete for every $i \in I$.
- (ii) $\prod_{i \in I} \mathfrak{X}_i$ is complete topological vector space over \mathbb{K} .

Proof. We denote $\prod_{i \in I} \mathfrak{X}_i$ by \mathfrak{X} and let $pr_i : \mathfrak{X} \to \mathfrak{X}_i$ be canonical projection on i-th axis. Assume that \mathfrak{X}_i is complete for every $i \in I$. Suppose that \mathcal{F} is a Cauchy filter in \mathfrak{X} . Then $pr_i(\mathcal{F})$ is a Cauchy filter in \mathfrak{X}_i for each i. Since \mathfrak{X}_i is complete, we derive that $pr_i(\mathcal{F})$ is convergent to some point x_i in \mathfrak{X}_i . Define $x \in \mathfrak{X}$ by condition $pr_i(x) = x_i$ for each $i \in I$. Then \mathcal{F} is convergent to x. Thus \mathfrak{X} is a complete topological vector space over \mathbb{K} .

Suppose now that \mathfrak{X} is complete. Fix i_0 in I and consider a Cauchy filter \mathcal{F} in \mathfrak{X}_{i_0} . Define

$$\tilde{F} = \left\{ \underbrace{F}_{i_0} \times \underbrace{\{0\}}_{i \neq i_0} \subseteq \mathfrak{X} \mid F \in \mathcal{F} \right\}$$

Then $\tilde{\mathcal{F}}$ is a Cauchy filter in \mathfrak{X} . Hence $\tilde{\mathcal{F}}$ is convergent to some point x in \mathfrak{X} . Then $\mathcal{F} = pr_{i_0}(\tilde{\mathcal{F}})$ is convergent to $pr_{i_0}(x)$. Thus \mathfrak{X}_{i_0} is complete. Since i_0 is arbitrary, we derive that \mathfrak{X}_i is complete for every $i \in I$.

Corollary 3.6. Let \mathbb{K} be a complete field. Topological vector spaces \mathbb{K}^n over \mathbb{K} are complete for each $n \in \mathbb{N}$

Proof. This is a direct consequence of Theorems 3.4 and 3.5.

4. FINITE DIMENSIONAL TOPOLOGICAL VECTOR SPACES

Fact 4.1. Let \mathfrak{X} be a topological vector space over \mathbb{K} . Suppose that $f: \mathbb{K}^n \to \mathfrak{X}$ is a \mathbb{K} -linear map for some $n \in \mathbb{N}$. Then f is continuous.

Proof. Let $\{e_1,...,e_n\}$ be the canonical basis of \mathbb{K}^n . For every i let $pr_i : \mathbb{K}^n \to \mathbb{K}$ be the projection onto i-th axis and let $m_i : \mathbb{K} \to \mathfrak{X}$ be the composition of the multiplication of scalars $\mathbb{K} \times \mathfrak{X} \to \mathfrak{X}$ with the continuous embedding $\mathbb{K} \ni \alpha \mapsto (\alpha, f(e_i)) \in \mathbb{K} \times \mathfrak{X}$. Since pr_i and m_i are continuous for

each i, we derive that their compositions $m_i \cdot pr_i$ are also continuous. According to the fact that the addition $\mathfrak{X} \times \mathfrak{X} \to \mathfrak{X}$ is continuous, we infer that the sum

$$\sum_{i=1}^{n} m_i \cdot pr_i$$

is continuous. This sum is equal to f. Thus f is continuous.

Theorem 4.2. Let \mathfrak{X} be a one-dimensional topological vector space over \mathbb{K} . Then the following assertions hold.

- (1) If \mathfrak{X} is Hausdorff, then every \mathbb{K} -linear isomorphisn $\mathfrak{X} \to \mathbb{K}$ is a homeomorphism.
- **(2)** If \mathfrak{X} is not Hausdorff, then the topology on \mathfrak{X} is indiscrete.

Proof. Assume that \mathfrak{X} is Hausdorff. Let $f: \mathfrak{X} \to \mathbb{K}$ be \mathbb{K} -linear isomorphism. If the topology of \mathbb{K} is discrete, then f is a homeomorphism. Hence without loss of generality we may assume that the topology on \mathbb{K} is not discrete. In particular, for each positive real number r there exists nonzero $\gamma \in \mathbb{K}$ such that $|\gamma| < r$. Consider x_{γ} in \mathfrak{X} such that $f(x_{\gamma}) = \gamma$. It is unique element of \mathfrak{X} . Since \mathfrak{X} is Hausdorff, by Fact 2.3 there exists open neighborhood W of zero in \mathfrak{X} such that $\mathbb{D} \cdot W = W$ and $x_{\gamma} \notin W$. Then $\mathbb{D} \cdot f(W) = f(W)$ and $\gamma \notin f(W)$. This proves that f(W) is a subset of

$$\{\alpha \in \mathbb{K} \mid |\alpha| < r\}$$

Therefore, f is continuous at zero and hence f is continuous. On the other hand map $f^{-1} : \mathbb{K} \to \mathfrak{X}$ is continuous by Fact 4.1. This means that f is a homeomorphism.

Suppose now that \mathfrak{X} is not Hausdorff. Theorem 2.5 implies that zero subspace is not closed in \mathfrak{X} . Since in every topological vector space closure of a subspace is a subspace, we derive that \mathfrak{X} is the closure of its zero subspace. This shows that \mathfrak{X} is indiscrete.

Corollary 4.3. Let $f: \mathfrak{X} \to \mathbb{K}$ be a \mathbb{K} -linear map between topological vector spaces over \mathbb{K} . Then the following are equivalent.

- (i) f is continuous.
- (ii) ker(f) is a closed subspace of \mathfrak{X} .

Proof. Follows immediately from Theorems 2.5 and 4.2.

Theorem 4.4. Let \mathbb{K} be a complete field and let \mathfrak{X} be a topological vector space over \mathbb{K} . If \mathfrak{X} is Hausdorff and of dimension n over \mathbb{K} for some $n \in \mathbb{N}$, then \mathfrak{X} is isomorphic with \mathbb{K}^n .

Proof. The proof goes on induction by $n \in \mathbb{N}$. For n = 0 it is clear. Suppose that the result holds for $n \in \mathbb{N}$. Assume that \mathfrak{X} is a Hausdorff topological vector space over \mathbb{K} of dimension n + 1. By induction each n-dimensional subspace of \mathfrak{X} is isomorphic to \mathbb{K}^n and hence by Corollary 3.6 it is complete. Thus Theorem 3.3 asserts that all n-dimensional subspaces are closed in \mathfrak{X} . Corollary 4.3 implies that each \mathbb{K} -linear map $f:\mathfrak{X} \to \mathbb{K}$ is continuous. Therefore, every \mathbb{K} -linear map $\Phi:\mathfrak{X} \to \mathbb{K}^{n+1}$ is continuous. Next Φ^{-1} is continuous according to Fact 4.1. Therefore, \mathfrak{X} is isomorphic to \mathbb{K}^{n+1} as a topological vector space over \mathbb{K} . The proof is completed.

5. MAZUR'S THEOREM

In this section assume that $\mathbb K$ is either real numbers field $\mathbb R$ of complex numbers field $\mathbb C$.

Theorem 5.1 (Mazur). Let \mathfrak{X} be a topological vector space over \mathbb{K} and let U be an open and convex subset of \mathfrak{X} . Suppose that \mathfrak{U} is a \mathbb{K} -subspace of \mathfrak{X} such that \mathfrak{U} does not intersect with U. Then there exists a \mathbb{K} -linear continuous map $f: \mathfrak{X} \to \mathbb{K}$ such that $\mathfrak{U} \subseteq \ker(f)$ and $0 \notin f(U)$.

For the proof we need the following result.

Lemma 5.1.1. Let \mathfrak{X} be a two-dimensional Hausdorff topological vector space over \mathbb{R} and let U be an open and convex subset which does not contain zero of \mathfrak{X} . Then there exists one-dimensional subspace L of \mathfrak{X} which does not intersect U.

Proof of the lemma. Theorem 4.4 implies that we may assume that \mathfrak{X} is \mathbb{R}^2 . Consider

$$S^{1} = \left\{ (x, y) \in \mathbb{R}^{2} \, \middle| \, x^{2} + y^{2} = 1 \right\}$$

and a retraction $r: \mathbb{R}^2 \setminus \{0\} \to S^1$ given by formula

$$r(x,y) = \left(\frac{x}{\sqrt{x^2 + y^2}}, \frac{y}{\sqrt{x^2 + y^2}}\right)$$

Note that r is a continuous open map. Thus $\tilde{U} = r(U)$ is an open subset of S^1 . Let $i: S^1 \to S^1$ be a homeomorphism given by formula i(x,y) = (-x,-y). Since U is convex and does not contain zero, sets $i(\tilde{U})$ and \tilde{U} have empty intersection. According to the fact that S^1 is connected, we deduce that $i(\tilde{U}) \cup \tilde{U}$ is a proper subset of S^1 . This is the case if and only if there exists $(x,y) \in S^1$ such that $(x,y) \notin \tilde{U}$ and $(-x,-y) \notin \tilde{U}$. Then one-dimensional subspace $\mathbb{R} \cdot (x,y)$ of \mathfrak{X} does not intersect U.

Proof of the theorem. Assume first that \mathbb{K} is \mathbb{R} . By Zorn's lemma there exists maximal \mathbb{R} -subspace 3 such that $\mathfrak{U}\subseteq \mathfrak{J}$ and 3 does not intersect U. Since U is open, we derive that $\operatorname{cl}(\mathfrak{J})$ does not intersect U. This shows that \mathfrak{J} is a closed subspace of \mathfrak{X} . Now consider the quotient map $q:\mathfrak{X}\to \mathfrak{X}/\mathfrak{J}$. By Theorem 2.5 space $\mathfrak{X}/\mathfrak{J}$ is Hausdorff and q(U) is an open set. Moreover, q(U) does not intersect zero and is convex. Suppose that there exists two-dimensional \mathbb{R} -subspace \mathfrak{Y} of $\mathfrak{X}/\mathfrak{J}$. Applying Lemma 5.1.1 to \mathfrak{Y} and $\mathfrak{Y}\cap q(U)$ we deduce that there exists one-dimensional \mathbb{R} -subspace L of $\mathfrak{X}/\mathfrak{J}$ such that L does not intersect q(U). Then $q^{-1}(L)$ is \mathbb{R} -subspace of \mathfrak{X} strictly containing \mathfrak{J} which does not intersect U. This is contradiction with maximality of \mathfrak{J} . Thus $\mathfrak{X}/\mathfrak{J}$ contains no two-dimensional subspaces and hence it is one-dimensional. According to Theorem 4.4 we have isomorphism $\phi: \mathfrak{X}/\mathfrak{J} \to \mathbb{R}$ of topological vector spaces over \mathbb{R} . The composition $f = \phi \cdot q$ satisfies the assertion of the theorem and this completes the proof for \mathbb{R} .

Next assume that \mathbb{K} is \mathbb{C} . Since \mathfrak{X} is a topological vector space over \mathbb{C} , it is also topological vector space over \mathbb{R} . Hence there exists an \mathbb{R} -linear continuous map $\tilde{f}: \mathfrak{X} \to \mathbb{R}$ such that $\mathfrak{U} \subseteq \ker(\tilde{f})$ and $0 \notin \tilde{f}(U)$. Consider $f: \mathfrak{X} \to \mathbb{C}$ given by formula

$$f(x) = \tilde{f}(x) - \sqrt{-1} \cdot \tilde{f}\left(\sqrt{-1} \cdot x\right)$$

for x in \mathfrak{X} . Then f is a \mathbb{C} -linear continuous map such that $\mathfrak{U} \subseteq \ker(f)$ and $0 \notin f(U)$.

The result above is often called geometric Hahn-Banach theorem.

6. ANALYTIC HAHN-BANACH THEOREM

Definition 6.1. Let \mathfrak{X} be a vector space over \mathbb{R} and let $p:\mathfrak{X}\to\mathbb{R}$ be a map. Suppose that

$$p(x_1 + x_2) \le p(x_1) + p(x_2)$$

for all $x_1, x_2 \in \mathfrak{X}$ and

$$p(r \cdot x) = r \cdot p(x)$$

for each $x \in \mathfrak{X}$ and each $r \in \mathbb{R}_+$. Then p is a sublinear map.

Theorem 6.2 (Hahn-Banach). Let \mathfrak{X} be a vector space over \mathbb{R} and let $p: \mathfrak{X} \to \mathbb{R}$ be a sublinear map. Suppose that \mathfrak{U} is an \mathbb{R} -subspace of \mathfrak{X} and $g: \mathfrak{U} \to \mathbb{R}$ is an \mathbb{R} -linear map such that $f(x) \leq p(x)$ for every x in \mathfrak{U} . Then there exists an \mathbb{R} -linear map $\tilde{f}: \mathfrak{X} \to \mathbb{R}$ such that $\tilde{f}(x) \leq p(x)$ and $\tilde{f}_{|\mathfrak{U}} = f$.

We need the following result.

Lemma 6.2.1. Let \mathfrak{X} be a vector space over \mathbb{R} and let $p:\mathfrak{X}\to\mathbb{R}$ be a sublinear map. Consider $q:\mathfrak{X}\to\mathbb{R}$ given by formula

$$q(x) = \max\{p(x), p(-x)\}\$$

for $x \in \mathfrak{X}$. Then q is a seminorm on \mathfrak{X} and p is continuous with respect to q.

Proof of the lemma. Note that *q* is a sublinear map. Since

$$0 \le p(x) + p(-x)$$

for $x \in \mathfrak{X}$, we derive that the image of q is $\mathbb{R}_+ \cup \{0\}$. Moreover, q(x) = q(-x) for each x in \mathfrak{X} . Therefore, q is a seminorm on \mathfrak{X} . Observe that

$$|p(x_1) - p(x_2)| \le q(x_1 - x_2)$$

and hence p is continuous with respect to topology induced by q on \mathfrak{X} .

Proof of the theorem. By Lemma 6.2.1 we may assume that \mathfrak{X} is a topological vector space over \mathbb{R} and p is continuous map. Define

$$U = \{(x,r) \in \mathfrak{X} \times \mathbb{R} \mid p(x) < r\}, \, \mathfrak{Z} = \{(x,f(x)) \in \mathfrak{X} \times \mathbb{R} \mid x \in \mathfrak{U}\}$$

It follows that U is a convex open subset of $\mathfrak{X} \times \mathbb{R}$ and \mathfrak{Z} is an \mathbb{R} -subspace of $\mathfrak{X} \times \mathbb{R}$ such that $U \cap \mathfrak{Z} = \emptyset$. By Theorem 5.1 there exists an \mathbb{R} -linear continuous map $\tilde{g} : \mathfrak{X} \times \mathbb{R} \to \mathbb{R}$ such that $\mathfrak{Z} \subseteq \ker(\tilde{g})$ and $0 \notin \tilde{f}(U)$. Since U is convex, without loss of generality we may assume that $\tilde{g}(U) \subseteq \mathbb{R}_+$. There exists $u \in \mathbb{R}$ and \mathbb{R} -linear map $g : \mathfrak{X} \to \mathbb{R}$ such that

$$\tilde{g}(x,r) = g(x) + u \cdot r$$

for every $x \in \mathfrak{X}$ and $r \in \mathbb{R}$. Suppose now that $u \leq 0$. We have

$$g(x) + u \cdot r = \tilde{g}(x,r) > 0$$

for each $(x,r) \in U$. Hence $g(x) > (-u) \cdot r$ for every $(x,r) \in U$. Fix now $x \in \mathfrak{X}$ and pick $r \in \mathbb{R}_+$ such that r > p(x). Then

$$g(x) > (-u) \cdot r \ge 0$$

and this shows that g(x) > 0 for $x \in \mathfrak{X}$ and this contradicts the fact that g is an \mathbb{R} -linear map. Thus u > 0. We define $\tilde{f} : \mathfrak{X} \to \mathbb{R}$ by formula $\tilde{f}(x) = -\frac{1}{u} \cdot g(x)$. Then f is an \mathbb{R} -linear map and

$$\tilde{g}(x,r) = u \cdot (r - \tilde{f}(x))$$

for every $(x, r) \in \mathfrak{X} \times \mathbb{R}$. For each $x \in \mathfrak{U}$ we have

$$0 = \tilde{g}(x, f(x)) = u \cdot (f(x) - \tilde{f}(x))$$

Hence $\tilde{f}_{|\Omega} = f$. Moreover, for $(x, r) \in U$ we have

$$u \cdot (r - \tilde{f}(x)) = \tilde{g}(x, r) > 0$$

and hence

$$r > \tilde{f}(x)$$

for every $(x, r) \in U$. We deduce that $\tilde{f}(x) \leq p(x)$ for all $x \in \mathfrak{X}$.