工业 大学 试卷(A) 合 肥

2019~2020 学年第_一_学期 课程代码_	1400091B	课程名称_	概率论与数理统计 学分	_3 课程性质:必修	考试形式:闭卷
专业班级(教学班)	考试日期	2020.1.9	命题教师 集体	系(所或教研室)	主任审批签名

一、填空题(每小题3分,共15分)

- 1. $\[\[\] P(A) = 0.5, P(B) = 0.3, P(A|B) = 0.2 \], \[\[\] P(A\overline{B}) = 0.3 \]$
- 2. 设随机变量 $X \sim U[-1,2]$, Y = X + |1 X|. 则 $P\{Y = 1\} =$
- 3. 设随机变量 X 与 Y 相互独立,且 $X \sim P(1), Y \sim P(1)$,则 $P\{\min(X,Y) > 0\} =$
- 4. 设随机变量 X 和 Y 的相关系数为 0.8,若 Z = X + 0.4,则 Y 与 Z 的相关系数为
- 5. 设随机变量 $X \sim B(100, 0.1)$,则由中心极限定理计算得 $P\{X \le 13\} \approx$ ______. (结果用标准正 态分布的分布函数 $\Phi(x)$ 表示).

二、选择题(每小题3分,共15分)

- 1. 设随机事件 A 与 B 互不相容,则必有 ().
 - (A) $P(\overline{A}\overline{B}) = 0$ (B) P(AB) = P(A)P(B) (C) P(A) = 1 P(B) (D) $P(\overline{A} \cup \overline{B}) = 1$
- 2. 设随机变量 X 的概率密度为 $f(x) = \frac{1}{2\sqrt{2\pi}} e^{-\frac{(x-3)^2}{8}}, (-\infty < x < +\infty)$,则下列随机变量中服从标准正态

分布的是().

- (A) $\frac{X+3}{\sqrt{2}}$ (B) $\frac{X+3}{2}$ (C) $\frac{X-3}{\sqrt{2}}$ (D) $\frac{X-3}{2}$

- 3. 设 X_1, X_2, X_3, X_4 为来自总体 $N(0, \sigma^2)$ 的简单随机样本,则统计量 $\frac{X_1 X_2}{\sqrt{X_2^2 + X_2^2}}$ 服从的分布为().
 - (A) N(0,1)
- (B) t(2)
- (C) $\chi^2(2)$
- (D) F(1,2)
- 4. 设一批零件的长度服从正态分布 $N(\mu, \sigma^2)$, 其中 μ, σ^2 均未知. 现从中随机抽取 25 个零件, 测得样本 均值x=30 (cm), 样本标准差s=1 (cm), 则 μ 的置信度为 0.95 的置信区间是().

 - (A) $(30 \frac{1}{5}t_{0.025}(25), 30 + \frac{1}{5}t_{0.025}(25))$ (B) $(30 \frac{1}{5}t_{0.05}(25), 30 + \frac{1}{5}t_{0.05}(25))$
 - (C) $(30 \frac{1}{5}t_{0.025}(24), 30 + \frac{1}{5}t_{0.025}(24))$ (D) $(30 \frac{1}{5}t_{0.05}(24), 30 + \frac{1}{5}t_{0.05}(24))$
- 5. 在假设检验中,原假设为 H_0 . 则第一类错误是指(

 - (A) H_0 为真,其检验结果为拒绝 H_0 (B) H_0 为真,其检验结果为接受 H_0
 - (C) H_0 为假, 其检验结果为接受 H_0
- (D) H_0 为假, 其检验结果为拒绝 H_0

- 三、(本题满分 10 分)设有来自三个地区的各 10 名、20 名和 30 名考生的报名表,其中女生的报名表分 别为6份、12份和20份. 现随机地取一个地区的报名表, 从中任意抽出一份.
- (1) 求抽到的一份是男生的报名表的概率;
- (2) 已知抽到的一份是男生的报名表,求此表是来自第二个地区的概率.
- \mathbf{m} 、(**本题满分 12 分**) 设随机变量 X 的概率密度为

$$f(x) = \begin{cases} k x^2, & -1 < x < 1, \\ 0, & 其它. \end{cases}$$

- (1) 求常数k; (2) 求随机变量 $Y = X^2$ 的概率密度 $f_v(y)$.
- 五、(本题满分 14 分) 设随机变量 X, Y 的分布律相同, X 的分布律为

$$P{X = 0} = \frac{1}{3}, P{X = 1} = \frac{2}{3}, \quad \mathbb{H} \quad E(XY) = \frac{5}{9}.$$

- (1) 求(X,Y)的分布律; (2) 求 $P\{X+Y\leq 1|X-Y=0\}$; (3) 求 $Z=X^2+Y^2$ 的分布律.
- 六、(本题满分 14 分) 设随机变量 X 的概率密度为 $f_X(x) = \begin{cases} 2(1-x), & 0 < x < 1, \\ 0. & \text{其它.} \end{cases}$

在给定 $X = x \ (0 < x < 1)$ 的条件下 Y 的条件概率密度为 $f_{Y|X}(y|x) = \begin{cases} \frac{1}{1-x}, & x < y < 1, \\ 0, & x < y < 1, \end{cases}$

- (1) 求(X,Y)的概率密度 f(x,y); (2) 求Y的边缘概率密度 $f_v(y)$; (III) 求 $P\{Y>2X\}$.
- 七、(本题满分 14 分) 设总体 X 的概率密度为 $f(x,\theta) = \begin{cases} \frac{\theta^2}{x^3}e^{-\frac{\theta}{x}}, x>0\\ 0, & x\leq 0 \end{cases}$,其中 θ 为未知参数且大于零,

 X_1, X_2, \dots, X_n 为来自总体 X 的简单随机样本. (1) 求 θ 的矩估计量 $\hat{\theta}_M$; (2) 求 θ 的极大似然估计量 $\hat{\theta}_L$

八、(本题满分 6 分) 设 X_1, X_2, \dots, X_n 是来自总体N(0,1) 的简单随机样本. 记

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
, $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$, $T = \overline{X} - S^2$. (I) $Rac{1}{2} RT$; (II) $Rac{1}{2} RT$.