1 未定義の用語

1.1 次数

定義 1.1.1 (近傍). グラフGの頂点集合Uに対して、

$$N(U) = \{ x \in V(G \setminus U) | \exists y \in U \text{ s.t. } xy \in E(G) \}$$

をグラフGにおけるUの近傍という. 特にU=uのとき, N(u) はu に隣接する頂点全体である.

定義 1.1.2 (次数). グラフGの頂点vに対して, $d(v) = |E(v)| = |\{vx \in E(G)|^{\exists}x \in V(G)\}|$ をグラフGにおけるxの次数という.

つまり, 次数とはx に接続している辺の本数である. 単純グラフの場合, 頂点v に対して, 接続する辺の数と隣接する頂点の数は等しいため, d(v) = |N(v)| が成り立つ. multi グラフでは, $d(v) \geq |N(v)|$ である.

1.2 連結度

定義 1.2.1 (連結). グラフGが連結であるとは, Gの任意の2頂点 x,y に対してその 2点を結ぶG上の path が存在することである. すなわち, $\forall x,y \in G$, $\exists P \subset G$: path s.t. $P = x \cdots y$ である.

セミナーでは $\forall x,y \in G$, $\exists P \subset G$: path s.t. $x,y \in P$ としていたが、やはり上の定義の方がよい気がしたので戻した. 同値であるため議論に支障はない.

定義 1.2.2. G をグラフとする. G の空でない極大な連結部分グラフを G の連結成分という. すなわち, 各連結成分は共通部分を持たない.

定義 1.2.3 (k-連結). $k \in \mathbb{N}, |G| > k$ で, |X| < k である任意のグラフ X に対して G - X が連結であるとき, グラフ G は k-連結であるという.

X は任意だが、仮にG の部分グラフではないA を取ったとしても |G| > k, |A| < k より $G \cap A \subset B \subset G$, |B| < k となる B が取れ, $G - A \supset G - B$ である.そのため, $X \subset G$ としても問題はない. グラフが 1-連結であることは,定義よりグラフが連結であることである.また定義より $n, m \in \mathbb{N}, n < m$ のとき,グラフG が m-連結ならば G は n-連結である.グラフG が k-連結になる最大整数 k を連結度といい, $\kappa(G)$ で表す.

1.3 縮約 (Contraction)

定義 1.3.1. グラフG = (V, E) とその辺 $xy \in E$ に対して, $v_{xy} \notin V$ として

 $(\{V\setminus\{x,y\}\cup\{v_{xy}\}\},\{vw\in E|\{x,y\}\cap\{v,w\}=\emptyset\}\cup\{v_{xy}w|w\in V\setminus\{x,y\}\ s.t\ xw\in E\vee yw\in E\})$ すなわち

$$G - \{x, y\} \cup \{v_{xy}\} + \{v_{xy}w | w \in V \setminus \{x, y\} \ s.t \ xw \in E \lor yw \in E\}$$

で与えられるグラフを G/xy で表す.

ここからすぐに次のことがわかる. $N(\{x,y\}) = N(v_{xy}) G - \{x,y\} = G/e - v_{xy}$

2 3-連結グラフについて

2.1 準備

補題 2.1.1. G: グラフ, $e = xy \in G$, G: 連結 $\Leftrightarrow G/e$: 連結

Proof. G: 連結とすると, $\forall a,b \in G$, $\exists P:a$ と b を結ぶ G 上の path . ここで $\{a,b\} \cap \{x,y\} = \emptyset$, $P' = G/e[P \cup \{v_{xy}\}]$ とすると,

- (i) $P \cap \{x,y\} = \emptyset$ のとき, $P \subset G \{x,y\} = G/e v_e \subset G/e$.
- (ii) $P \cap \{x,y\} = \{x\}$ (or $\{y\}$) のとき, P: 連結と $P \ni x$ (or y) より P' は連結であり, $a,b \in P' \subset G/e$.
- (iii) $P \cap \{x,y\} = \{x,y\}$ のとき, P: 連結と $P \ni x,y$ より P' は連結であり, $a,b \in P' \subset G/e$.

であるから, a と b を結ぶ G/e 上の path が存在することがわかる. また, $\{a,b\} \cap \{x,y\} = \{x(\text{or y})\}$ の場合は (ii) の最後を v_{xy} , $b(\text{or a},v_{xy}) \in P' \subset G/e$ とすればよい. $\{a,b\} \cap \{x,y\} = \{x,y\}$ の場合は a,b は G/e 上で一点 $v_{x,y}$ になる. よって G/e: 連結である. 逆も同様に示せる.

補題 2.1.2. G: グラフ, $e=xy\in G$, $x,y,v_{xy}\notin S$:vertices set, (G-S)/e=G/e-S

Proof.

$$V((G-S)/e) = (V(G)\backslash S)\backslash \{x,y\} \cup \{v_{xy}\}$$
$$= (V(G)\backslash \{x,y\} \cup \{v_{xy}\})\backslash S(x,y,v_{xy} \notin S \ \sharp \ \mathfrak{h})$$
$$= V(G/e-S)$$

$$E((G-S)/e) = \{vw \in E(G-S) | \{x,y\} \cap \{v,w\} = \emptyset\} \cup \{v_{xy}w|w \in V(G-S) \setminus \{x,y\} \text{ s.t } xw \in E(G-S) \vee yw \in E(G-S)\}$$

$$= \{vw \in E(G-S) | \{x,y\} \cap \{v,w\} = \emptyset\} \cup \{v_{xy}w|w \in V(G-S) \setminus \{x,y\} \text{ s.t } xw \in E(G-S) \vee yw \in E(G-S)\}$$

$$= \{vw \in E | (\{x,y\} \cup S) \cap \{v,w\} = \emptyset\} \cup \{v_{xy}w|w \in V(G-S) \setminus \{x,y\} \text{ s.t } xw \in E \vee yw \in E\}$$

$$\therefore V(G-S) = V - S,$$

$$w \in V(G-S) \wedge x, y \notin S \Rightarrow (xw(yw) \in E \Leftrightarrow xw(yw) \in E(G-S))$$

$$= \{vw \in E | (\{x,y\} \cup S) \cap \{v,w\} = \emptyset\} \cup \{v_{xy}w|w \in V \setminus \{x,y\} \text{ s.t } (xw \in E \vee yw \in E) \wedge w \notin S\}$$

$$= \{vw \in E(G/e) | \{v,w\} \cap S = \emptyset\}$$

$$= E(G/e-S)$$

補題 2.1.3. G: グラフ, $e = xy \in G$, $x, y, v_{xy} \notin S$:vertices set, (G - S): 連結 $\Leftrightarrow G/e - S$: 連結

Proof. 補題 2.1.1, 補題 2.1.2 よりわかる.

定理 2.1.4. *G*:3-連結グラフ,

 $|G| > 4 \Rightarrow^{\exists} e \in E(G) \text{ s.t. } G/e : 3-$ **連**結

Proof. そのような辺が存在しない、つまり $\forall e=xy\in G\ s.t.\ \kappa(G/e)\leq 2$ とする. すなわち $\exists S\subset G/e:$ vertices set s.t. $|S|\leq 2\land G/e-S:$ 非連結. また、e=xy によって G を縮約した際に得られる頂点を v_{xy} と書き表すこととする. 今、 $v_{xy}\notin S$ とすると、 $S\subset G/e-v_{xy}=G-\{x,y\}$ より $x,y\notin S$ である. よって補題 2.1.3 より G-S: 非連結となり、 $\kappa(G)\leq 2$ となり G:3-連結グラフに矛盾する. よって $v_{xy}\in S$ である. また |S|=1 すなわち $S=\{v_{xy}\}$ とすると、これも $G/e-S=G-\{x,y\}$ より $\kappa(G)\leq 2$ となり矛盾する. したがって $|S|=2\land v_{xy}\in S$ がわかる. S の元で v_{xy} ではないほう

の頂点を z とすると, $z \notin \{x,y\}$ より $G/e-S=G/e-\{v_{xy}\}-\{z\}=G-\{x,y,z\}$ である.

以上をまとめると $\forall x,y \in G \ s.t. \ xy \in E(G), \ ^\exists z, \ G - \{x,y,z\}$: 非連結 が導ける. ここで, $G - \{x,y,z\}$ は非連結より 2 つ以上の連結成分を持ち, G が 3-連結であることから x,y,z はすべての連結成分と隣接していることに注意する. ここで $G - \{x,y,z\}$ の中で一番位数が小さい連結成分を C とし, |C| が最小になるように x,y を取り直す. $v \in V(C)$ s.t. $vz \in E(G)$ とすると v の存在性は明らか. また, 仮定より G/vz は 3-連結ではないため, $\exists w \in G \ s.t. \ G - \{z,v,w\}$: 非連結. x と y が隣接していることから, $G - \{z,v,w\}$ は $D \cap \{x,y\} = \emptyset$ となる連結成分 D をもつ. $u \in V(D)$ s.t. $vu \in E(G)$ とすると u の存在性は明らかであり, $v \in V(C)$ より $u \in V(C)$ i.e. $C \cap D \neq \emptyset$ がわかる. $x,y,z \notin D$ より D は $G - \{x,y,z\}$ の連結成分の部分グラフであるため, $D \subseteq C$. また $v \notin D$, $v \in C$ であるため $D \subsetneq C$ である. ゆえに C の最小性に反する.

定理 2.1.5. G が 3-連結グラフ (ただし K^3 は除く) であるための必要十分条件は、以下を満たすようなグラフの列 G_0, \dots, G_n が存在することである.

- (i) $G_0 = K^4 \wedge G_n = G$.
- (ii) $\forall i < n, \exists xy \in E(G_{i+1}), (d(x), d(y) \ge 3 \land G_i = G_{i+1}/xy).$

Proof. 必要性 (\Rightarrow):G:3-連結 \Rightarrow グラフの列 G_0, \dots, G_n が存在.

位数が 4 である 3-連結なグラフは K^4 のみであるから、定理 2.1.4 より、各 G_i : 3-連結となるようなグラフの列 $G=G_n,\cdots,G_0=K^4(^3xy\in E(G_{i+1}),G_i=G_{i+1}/xy)$ が構成することができる、また、任意のグラフ H に対し、 $\kappa(H)\leq \lambda(H)\leq \delta(H)=\min\{d(x)|x\in H\}$ であるから、この列は (ii) を満たす.

十分性 (\Leftarrow) :G:3-連結 \Leftarrow グラフの列 G_0, \cdots, G_n が存在.

(ii) のときに, G_i :3-連結 $\Rightarrow G_{i+1}$:3-連結を示す. これが示せると K^4 は 3-連結であることとグラフの列が有限であることから帰納的に $G_n=G$:3-連結が導ける.

 G_i :3-連結であり G_{i+1} が 3-連結でない、つまり $\kappa(G_{i+1}) \leq 2$ とする.すなわち $\exists S \subset G_{i+1}$: vertices set s.t. $|S| \leq 2 \wedge G_{i+1} - S$: 非連結.また、xy によって G_{i+1} を縮約した際に得られる頂点を v_{xy} と書き表すこととする.今、 $x,y \notin S$ とすると、 $S \subset G - \{x,y\} = G/xy - v_{xy}$ より $v_{xy} \notin S$ である.よって補題 2.1.3 より $G_{i+1}/xy - S$: 非連結となり、 $\kappa(G_i) \leq 2$ となり G_i :3-連結グラフに矛盾する.よって $\{x,y\} \cap S \neq \emptyset$ である.また $S \subseteq \{x,y\}$ とすると、これも $G_{i+1}/xy - \{v_{xy}\} = G_{i+1} - \{x,y\} \subset G_{i+1} - S$ より $\kappa(G_i) \leq 2$ となり矛盾する.したがって $|S| = 2 \wedge x$ (resp y、以降はxの場合で証明する) $\in S$ がわかる.S の元で x ではないほうの頂点を z とすると、 $z \notin \{x,y\}$ より $G_{i+1} - S = G_{i+1} - \{x,z\}$ である.

ここで, $G_{i+1}-\{x,z\}$ は非連結より, 各連結成分 $C_k(k\in\mathbb{N})$ に分離することが出来, 特に $y\in C_1$ とすることが出来る. このとき, C_1 に y 以外の元v が存在するとすると, $G_i-\{v_{xy},z\}=G_{i+1}-\{x,y,z\}$ であり G_i :3-連結であるため, $G_{i+1}-\{x,y,z\}$:連結である. よって C_2 -v path P が存在し, $P\subset G_{i+1}-\{x,y,z\}\subset G_{i+1}-\{x,z\}$ であるが, これは $v\in C_1$ であるため C_1 が連結成分であることに矛盾する. よって $C_1=y$ である. y は $G_{i+1}-S$ における連結成分であるから, $N(y)\subset S\cup V(C_1\backslash y)=S$ より $d(y)=|N(y)|\leq 2$ であるため, 仮定に反する.