SNP calling from RNAseq data

Steve Palumbi Lab
Hopkins Marine Station, Stanford University

Analysis of sequence information from RNA-Seq data. (workshop) SNP-calling and overview of methods to analyze the output. **Steve Palumbi lab at Stanford/Hopkins.**

Part 1: 35 minutes

Overview: from Bam files to genotypes: Steve Palumbi [3 min]

Bowtie2 and SamTools: Bryan Barney and Nathan Truelove [10]

FreeBayes: Noah Rose and Elora López [10]

vcfTools and the 0,1,2 genotype file: Beth Sheets and Megan Morikawa [3]

PCA and FST: Megan Morikawa and Bryan Barney [5]

Part 2: 30 minutes

Mentored file manipulation workshop from fastQ files to 0,1,2 genotype matrix using demo input files

Part 3: 30 minutes

Overview: using genotype data: Steve Palumbi [1 min]

NgsAdmix and linkage: Bryan Barney [7]

Outliers and environmental correlations: Luke Thomas and Nathan Truelove

[5]

Somatic mutations: Elora López [5]

dN/dS and eQTLs: Noah Rose [9]

SAM

samtools

BAM

freebayes

vcf

vcftools

012

Mapping in Bowtie2

Bowtie2 lines up reads to a reference genome or transcriptome

End-to-End: Uses all the base-pairs

Read: GACTGGGCGATCTCGACTTCG

Reference: GACTG - - CGATCTCGACATCG

Local: Base-pairs at the ends can be discarded

Read: ACGGTTGCGTTAA-TCCGCCACG

Reference: TAACTTGCGTTAAATCCGCCTGG

Alignment Score

How similar the read is to the reference

End-to-End Example:

Mismatch = -6

Read Gap = -11

Best alignment score = 0

Local Example:

Mismatch = -6

Read Gap = -11

Base that matches Reference = +2

Best Alignment Score = 2 x Read length

samtools

vcf

Minimum Alignment Score

Expressed as a Function of Read Length:

$$f(x) = 0 + -0.6 * x$$
, where x is the read length

End-to-end alignment mode default is:

For a 50 base-pair read:

$$-0.6 + -30 = -30.6$$

Default: 5 mismatches/2 read gaps/Combos

samtools

BAM

freebayes

vcftools

012

Optimize Mapping Parameters

End-to-End Example:

Mismatch = -6

Read Gap = -11

Best alignment score = 0

SAM

freebayes

vcftools

vcf

012

Optimize Mapping Parameters

BAM

--score min

 Changes the default minimum alignment score to be considered valid.

Default: L,0,-0.6 = -30.6 for 50 bp reads

Optimized for 2 mismatches/1 mismatch and 1 read gap

--score-min L,0,-0.36 = -18

Preset Mapping Parameters

Verify that the preset meets your mapping requirements

- --very-fast
- --fast
- --sensitive
- --very-sensitive

Mapping: Bowtie outputs a SAM file

SAM files contain a list of reads, each read will get a series of 'fields' associated with it that describe the mapping result

Col	Field	Type	Regexp/Range	Brief description
1	QNAME	String	[!-?A-~]{1,254}	Query template NAME
2	FLAG	\mathbf{Int}	[0,2 ¹⁶ -1]	bitwise FLAG
3	RNAME	\mathbf{String}	* [!-()+-<>-~][!-~]*	Reference sequence NAME
4	POS	${f Int}$	[0,2 ³¹ -1]	1-based leftmost mapping POSition
5	MAPQ	${f Int}$	[0,2 ⁸ -1]	MAPping Quality
6	CIGAR	\mathbf{String}	* ([0-9]+[MIDNSHPX=])+	CIGAR string
7	RNEXT	\mathbf{String}	* = [!-()+-<>-~][!-~]*	Ref. name of the mate/next read
8	PNEXT	${f Int}$	[0,2 ³¹ -1]	Position of the mate/next read
9	TLEN	\mathbf{Int}	$[-2^{31}+1,2^{31}-1]$	observed Template LENgth
10	SEQ	String	* [A-Za-z=.]+	segment SEQuence
11	QUAL	String	[!-~]+	ASCII of Phred-scaled base QUALity+33

Different mapping utilities (bowtie2, BWA, etc) will have different 'additional fields' that you might use for filtering

Mapping: Samtools converts SAM to BAM, sorts, & indexes

- SAM files are human readable plain text
- BAM files are binary versions of SAM that are smaller and easier for the computer to process

Sorting:

Groups your reads by where in the assembly they mapped

Indexing:

- Makes a table that contains information about:
 - How many reads mapped
 - Where they mapped
 - Reads that didn't map

SNP Calling

Haplotype-based approach

Variant Variant Region Region Ref TACCGAT **CATTGGATCA** CGATTCC...GCATTGC AAAAAA-**GACCGCA** TACCGAT CATTGGATCA CGATTCC...GCATTGC -AAAAA-**GACCGCA** ACCGAT TATTGCATCG CGATTCC...GCATTGC -AAAAAA-**GACCGCA** Reads CATTGGATCA ACCGAT CGATTCC...GCATTGC AAAAAA-A **GACCGCA** ACCGAT TATTGGATCG CGATTCC...GCATTGC -AAAAAAA **GACCGCA** CCGAT C-TTGGATCA CGATTCC...GCATTGC AAAAAAA-**GACCGCA** CATGGGATCA AAAAAAA GACCGCA CCGAT CGATTCC...GCATTGC **Observed Haplotypes** x10 **8**x $(A)_7$ **CATTGGATCA x9 x**7 $(A)_6$ TATTGGATCG x1 x1 (A)₅ **CTTGGATCA** x1x1CATGGGATCA (A) s

Freebayes pipeline (minimal)

- Start with fastq reads
- Map reads (e.g. bowtie2 or hisat2)
- If paired end libraries with PCR amplification, remove PCR duplicates (Picardtools)
- Sort, compress, and index alignments (samtools)
- Call SNPs (Freebayes) Minimal call: freebayes –f ref.fa *.bam > out.vcf
- Filter SNPs (vcffilter)

Pros and Cons of Freebayes

Pros

- Fast, sophisticated model
- Easy interface, easy to customize via command line arguments
- Good support for local multithreading (freebayesparallel) and cluster parallelization (just split a bed file of your contigs into as many jobs as you like)

Pros and Cons of Freebayes

Cons

- Relentlessly haplotype based, so it can sometimes be hard to get just, like, normal biallelic SNPs (this is a feature too)
 - Utilities like vcffilter, vcfallelicprimitives, and vcfbiallelic help
- Under rapid development, so sometimes tools change or useful features haven't been implemented or documentation is less good

GATK's HaplotypeCaller

- Defines "active regions"
- Determines haplotypes by reassembling the active region
- Determines likelihoods of the haplotypes given the read data
- Assigns sample genotypes
- Outputs VCF or gVCF file

Pros and Cons of GATK

- Pros
 - Extensively documented, lots of support
 - Clear, easy-to-interpret output

Pros and Cons of GATK

- Cons
 - Not as easily customizable, not as easy interface as Freebayes
 - Slower than Freebayes

012 SNP Matrix - format

- Variant call file (.vcf) list of alleles and their likelihoods
- Use vcftools to convert your filtered SNP file (.vcf) into a 012 matrix
- Each row is a sample, each column is a SNP
 - First column is sample number, starting at 0
- 0 : both copies of reference allele
- 1: heterozygous
- 2: both copies of alternate allele

```
ex: 00100
10002
22010
32001
```

012 SNP Matrix vs. other methods

- 012 genotype calls does not represent uncertainty about genotype
 - Ex: If we only have 2 mapped reads, both the alternate allele at the locus, this could be homozygous alternate or a heterozygote where we did not sample the other allele
- We can remove uncertainty by filtering for SNP calls that we are very confident about
- This is the strategy we are using in the pipeline today

Other methods: using genotype likelihoods

 Fewer programs use this format, examples are GPAT++, Angsd

Principle Components Analysis

Taking thousands of SNPs into account simultaneously

- Population structure
 - Detecting outliers
- An axis of variation to compare to environmental variables

Population differentiation

Transcriptome-wide, no differentiation

Clones in natural populations

11 points on PC1 & PC2 from 20 samples

Correlation to environmental variables

PC4 and correlation to environment

F_{ST} analysis

- F_{ST} as an index of genetic differentiation
 - Ranges from 0 (identical) to 1 (completely different)
- Classic measure can compare to MANY studies
- Wright (1953) F_{ST} vs Weir and Cockerham (1984) F_{ST}
- With transcriptomic levels of data, we need to look at patterns, not necessarily individual loci

F_{ST} analysis

Compare density distributions of pairwise F_{ST} between pops

Compare F_{ST} to heterozygosity to find unusually high F_{ST} loci

Tutorial

https://github.com/bethsheets/SNPcalling_tutorial

Why use transcriptomics?

- Reduced representation
- Focus on parts that matter (protein coding)
- Expression links SNPs to phenotype

Population structuring: NGSadmix

http://www.popgen.dk/software/index.php/ANGSDhttp://www.popgen.dk/software/index.php/NgsAdmix<a href="http://www.popgen.dk/software/index.php/NgsAd

NGSadmix takes genotype likelihood files and outputs a view of population membership of individuals

Linkage disequilibrium: within contig

- Arises from a lack of recombination between SNPs
- SNPs inherited as a block, not necessarily adjacent

BUT: LD may exist beyond the extent of individual transcripts, across multiple genes on the same chromosome, or across chromosomes!

Barney & Palumbi in prep

Linkage disequilibrium: whole genome

Extra data are needed for better understanding of physical linkage at the chromosomal level:

- linkage maps from pedigreed individuals
- OR (AND is better!), a well-assembled genome

Pairwise LD calculations for all SNPs throughout assembly

- Generates a matrix of r2 values for each pair of SNPs

Decision: How to cluster the SNPs, and what cutoff to use?

- single-linkage clustering (A linked to B, B to C, so A,B,C in cluster
- $r^2 > 0.75$

Linkage disequilibrium: whole genome

"Islands of divergence" or supergenes?

A GO enrichment analysis of linked region may reveal overrepresentation of genes of related function, the classical definition of a supergene

Genome wide scans for selection: identify genomic regions that exhibit signatures of diversifying selection.

- Two main approaches:
 - 1. Population differentiation (PD) approaches
 - 2. Ecological association (EA) approaches

Population differentiation (PD) approaches

 Identifying loci that show unusual allele frequency differentiation among populations

Population differentiation (PD) approaches

• Pros:

- Can be effective at identifying genes under selection without known phenotypes
- Does not require *a priori* information concerning the environmental forces that act as selective pressures.
- Can screen high number of markers to identify candidate genes for further investigation.

Cons

- Plagued by false positives and false negatives
- Candidate outlier loci often vary in pairwise population comparisons, and therefore overall divergence (global FST) may not detect candidates that are under selection in only a portion of populations.
- Limited power in detecting balancing selection and various forms of weak divergent selection.

Ecological association (EA) approaches

 Identifying loci with a strong association between allele frequencies and environmental variables

http://www.sccwrp.org

https://sites.google.com/site/nkooyers/

Ecological association (EA) approaches

• Pros:

- Uncover selected loci without knowledge of selective environment (can feed the programs lots of data and see what comes out)
- More powerful than PD approaches

Cons

- Requires detailed environmental data
- If IBD then surprisingly low power (need to account for population structure)
- High variability among runs

Genome wide scans for selection: Conclusions

- Assist in identifying loci under selection
- Be careful as can lead to numerous false-positives!
- Best used in conjunction with GWAS and linkage-mapping approaches

For reviews on the topic:

- Lotterhos and Whitlock (2015) Mol. Ecol.
- Hoban et al. (2016) Am. Nat.
- Rellstab et al. (2015) Mol. Ecol.
- Narum and Hess (2011) Mol. Ecol. Res.
- Haasl and Payseur (2016) Mol. Ecol.

Common programs:

- BayeScan
- Arlequin
- Lositan
- OutFLANK
- PCAdapt
- BAYENV2
- BAYESCENV

Custom Analyses of VCF files

Identifying somatic variants

8 of 214 somatic variants identified in a single coral colony

Green = homozygote

Yellow = heterozygote

How to link SNPs to phenotypes

- Protein coding
- eQTLs

Protein coding change

mRNA

UTR CODING SEQUENCE UTR AAAAAAA

Goal: find protein coding sequences in transcripts

Tools: OrfPredictor Blastx GMAP

Protein coding change

Tools:

mRNA

UTR AAAAAAAA UTR **CODING SEQUENCE** VCF says: Contig1 24 Goal: Find amino acid changes due to SNP A..S..M..W..G..T..Y..F..S..W..T.. variants ORF TTT Biopython TTA SnpEff A..S..M..W..G..T..Y..F..S..W..T..

A. S. M. W. G. T. Y. L. S. W. T.

Questions to ask with protein coding SNPs

- Does a protein sequence show strong differences between populations or species?
- Do non-synonymous variants fall in residues known to be important from multi-alignment conservation or crystallography?
- Are proteins evolving to be different more quickly than you would expect from genetic drift?
 - McDonald Kreitman test for multiple samples from two species
 - dN/dS (rate of non-synonymous change over rate of synonymous change) is a general index of the rate of protein evolution

How to detect eQTLs:

SNPs that are correlated with expression

eQTLs explain variation within and between species

Questions to ask with eQTL SNPs (eSNPs)

- Do interesting genes show strong differences in expression between populations or species?
- Are these genes involved in gene networks or pathways that you are interested in?
- Do many genes in the same pathway show expression changes in the same direction?