ТЕОРЕМА БАЙЕСА

УСЛОВНАЯ ПЛОТНОСТЬ РАСПРЕДЕЛЕНИЯ

$$p(y|x) = \frac{p(x,y)}{p(x)}$$
 $p(y|x)p(x) = p(x,y) = p(x|y)p(y) \Rightarrow$

Формула обращения условной плотности

$$p(x|y) = \frac{p(y|x)p(x)}{p(y)}$$

УСЛОВНАЯ ПЛОТНОСТЬ РАСПРЕДЕЛЕНИЯ

$$p(x|y) = rac{p(y|x)p(x)}{p(y)}$$
 $1 = \int p(x|y)dx = \int rac{p(y|x)p(x)}{p(y)} dx =$
 $= rac{1}{p(y)} \int p(y|x)p(x)dx$

Отсюда $p(y) = \int p(y|x)p(x)dx$ — маргинализация или правило суммирования

ТЕОРЕМА БАЙЕСА

$$p(y|x) = \frac{p(x|y)p(y)}{\int p(x|y)p(y)dy}$$

$$\mathbf{Posterior} = \frac{\mathbf{Likehood} \times \mathbf{Prior}}{\mathbf{Evidence}}$$

УСЛОВНОЕ И МАРГИНАЛЬНОЕ РАСПРЕДЕЛЕНИЯ

УСЛОВНОЕ И МАРГИНАЛЬНОЕ РАСПРЕДЕЛЕНИЯ

УСЛОВНОЕ И МАРГИНАЛЬНОЕ РАСПРЕДЕЛЕНИЯ

МЕТОД МАКСИМАЛЬНОГО ПРАВДОПОДОБИЯ

- > Пусть $X = (x_1, \ ..., x_n)$ выборка из н.о.р.с.в. $x_i \sim p(x|\theta)$
- > $p(x|\theta)$ плотность распределения, известная с точностью до параметров θ
- $lacksymbol{
 ho}$ Задача: оценить $oldsymbol{ heta}$ по выборке $oldsymbol{X}$
- Метод максимального правдоподобия:

$$egin{aligned} heta_{ML} &= rgmax \, p(X| heta) = rgmax \prod_{ heta \, i=1} p(x_i| heta) = rgmax \sum_{ heta \, i=1}^n \log p(x_i, heta) \ &= rgmax \sum_{ heta \, i=1}^n \log p(x_i, heta) \ &\qquad \qquad \bigwedge ext{ МФТИ}. \end{aligned}$$

МЕТОД МАКСИМАЛЬНОГО ПРАВДОПОДОБИЯ

Достоинства метода:

Ассимптотическая несмещённость, т.е.
 $\mathbb{E} |\theta_{ML} = \theta_*|$ при $n \gg 1$

- lacktriangle Состоятельность: $egin{aligned} heta_{ML} &
 ightarrow heta_* \end{aligned}$ при $n
 ightarrow + \infty$
- Ассимптотическая нормальность
- Эффективность

Недостаток:

Основные теоретические гарантии получены при $\frac{n}{d} \gg 1$, где
 d — размерность θ

РЕЗЮМЕ

- > Условное и безусловное распределения
- Теорема Байеса
- Метод максимального правдоподобия

БАЙЕСОВСКИЙ ПОДХОД К ТЕОРИИ ВЕРОЯТНОСТЕЙ

ЧАСТОТНЫЙ И БАЙЕСОВСКИЙ ПОДХОДЫ

	Частотный	Байесовский
Интерпертация случайности	Объективная неопределённость	Субъективное незнание
Метод вывода	Метод максимального правдоподобия	Теорема Байеса
Оценки	$ heta_{ML}$	p(heta X)
Применимость	$\frac{n}{d}\gg 1$	$\forall \; n$

ИЛЛЮСТРАТИВНЫЙ ПРИМЕР

-) Имеется несколько косвенных проявлений y_1, \dots, y_m неизвестной величины x
-) Для каждой из них существует вероятностная модель, определяющая вероятность наблюдения того или иного значения $y_j:\ p_j(y_j|x)$
- > Задача: оценить x путём объединения информации о всех y_1, \dots, y_m

ИЛЛЮСТРАТИВНЫЙ ПРИМЕР

- Фиксируем исходные представления о возможных значениях x в виде p(x)
- **)** Выполняем байесовский вывод относительно y_1 :

$$p(x|y_1) = \frac{p_1(y_1|x)p(x)}{\int p_1(y_1|x)p(x)dx}$$

ИЛЛЮСТРАТИВНЫЙ ПРИМЕР

Выполняем байесовский вывод относительно у₂, используя результат предыдущего шага в качестве нового априорного распределения:

$$p(x|y_1, y_2) = \frac{p_2(y_2|x)p(x|y_1)}{\int p_2(y_2|x)p(x|y_1)dx}$$

) ...

> Считаем
$$p(x|y_1, \dots, y_m) =$$

$$= \frac{p_m(y_m|x)p(x|y_1, \dots, y_{m-1})}{\int p_m(y_m|x)p(x|y_1, \dots, y_{m-1})dx}$$

иллюстративный пример

РЕЗЮМЕ

- Байесовский подход к теории вероятностей
- Объединение нескольких вероятностных моделей в более сложную модель

БАЙЕСОВСКИЕ МОДЕЛИ В ЗАДАЧАХ МАШИННОГО ОБУЧЕНИЯ

БАЙЕСОВСКИЙ ПОДХОД

 При использовании подхода нам необходимо задать совместное распределение на все переменные, которые мы хотим предсказывать на этапах обучения или тестирования

ПРИМЕР: ЛИНЕЙНАЯ РЕГРЕССИЯ

Рассмотрим задачу линейной регрессии:

$$x \in \mathbb{R}^d$$
, $\mathbf{w} \in \mathbb{R}^d$, $t \in \mathbb{R}$

- Три группы переменных:
 - *x* признаки
 - lacktriangle t целевая переменная
 - w веса линейной регрессии
- Вероятностная модель:

$$p(t, \mathbf{w} | x) = p(t|x, \mathbf{w})p(\mathbf{w}) =$$

= $\mathcal{N}(t|\mathbf{w}^T x, \sigma^2)\mathcal{N}(\mathbf{w} | 0, I)$

ПРИМЕР: ЛИНЕЙНАЯ РЕГРЕССИЯ

Пусть задана обучающая выборка

$$(X,T) = (x_i,t_i)_{i=1}^n$$

тогда

ПРИМЕР: ЛИНЕЙНАЯ РЕГРЕССИЯ

$$\begin{aligned} \mathbf{w}_{MP} &= \operatorname*{argmax}_{\mathbf{w}} p(\mathbf{w} \mid X, T) = \operatorname*{argmax}_{\mathbf{w}} p(T \mid X, \mathbf{w}) p(\mathbf{w}) = \\ &= \operatorname*{argmax}_{\mathbf{w}} \prod_{i=1}^{n} p(t_i \mid x_i, \mathbf{w}) p(\mathbf{w}) = \\ &= \operatorname*{argmax}_{\mathbf{w}} \left[\sum_{i=1}^{n} \log p(t_i \mid x_i, \mathbf{w}) + \log p(\mathbf{w}) \right] = \\ &= \operatorname*{argmin}_{\mathbf{w}} \frac{1}{2\sigma^2} \sum_{i=1}^{n} (t_i - x_i^T \mathbf{w})^2 + \frac{1}{2} \|\mathbf{w}\|^2 = \\ &= \operatorname*{argmin}_{\mathbf{w}} \left[\sum_{i=1}^{n} (t_i - x_i^T \mathbf{w})^2 + \sigma^2 \|\mathbf{w}\|^2 \right] \end{aligned}$$

Поиск максимума апостериорной плотности эквивалентен МНК с L_2 -регуляризатором

 Возможность строить сложные модели из простых путём использования выходов (апостериорного распределения) одной модели в качестве входов (априорного распределения) в другой

 Возможность обработки последовательно поступающих данных "на лету" без необходимости повторного обучения с нуля

- Возможность вводить на настраиваемые параметры априорные распределения, которые:
 - отражают наши предпочтения о значениях параметров
 - предотвращают переобучение

 Возможность обучаться по не полностью размеченным, частично размеченным и неразмеченным обучающим выборкам

РЕЗЮМЕ

- Применение байесовского метода к линейной регрессии
-) Преимущества байесовских методов

