Primitives et Équations différentielles

1. Primitives d'une fonction

Définition

F est **une** primitive de *f* sur $I \Leftrightarrow F' = f$

Théorème

- Toute fonction continue sur un intervalle I admet des primitives sur I
- Deux primitives de f sur I ne différent que d'une constante
- Soit F une primitive d'une fonction f . Toutes les autres primitives de f sont de la forme F(x) + k

Primitives de fonctions usuelles

f est définie sur I par	Une primitive F est donnée par
$f(x) = a \ (a \text{ est un r\'eel})$	F(x) = ax
f(x) = x	$F(x) = \frac{1}{2}x^2$
$f(x) = x^n$ $n \text{ entier différent de } (-1) \text{ et } 0$	$F(x) = \frac{x^{n+1}}{n+1}$
$f(x) = \frac{1}{x}$	$F(x) = \ln(x)$
$f(x) = \frac{1}{x^2}$	$F(x) = -\frac{1}{x}$
$f(x) = \frac{1}{\sqrt{x}}$	$F(x) = 2\sqrt{x}$
$f(x) = e^x$	$F(x) = e^x$
$f(x) = \ln x$ (un classique à connaître)	$F(x) = x \ln x - x$
$f(x) = \sin x$	$F(x) = -\cos x$
$f(x) = \cos x$	$F(x) = \sin x$

Linéarité des primitives

Si F et G sont des primitives respectives de f et g, et k un nombre réel, alors:

- F + G est une primitive de f + g
- kF est une primitive de kf

Primitives de fonctions composées

Il faut penser à utiliser les formules de dérivation des fonctions composées :

f de la forme	Une primitive F est donnée par
$u' e^u$	e ^u
$u'u^n$	$\frac{u^{n+1}}{n+1}$
$\frac{u'}{u^2}$	$-\frac{1}{u}$
$\frac{u'}{2\sqrt{u}}$	\sqrt{u}
$\frac{u'}{u}$	$\ln u$

Penser aussi aux fonctions de type:

 $u'\cos(u)$ dont les primitives sont de la forme $\sin(u)$ $u'\sin(u)$ dont les primitives sont de la forme $-\cos(u)$

2. Équation différentielle y'=f

Définition

Une fonction g est solution de l'équation y' = f $\Leftrightarrow g' = f$

Autrement dit, les solutions de cette équation sont les primitives de f.

3. Équation différentielle y' = ay (H)

Théorème

Les solutions de l'équation y' = ay sont les fonctions : $f(x) = Ce^{ax}$, ou C est une constante $\in \mathbb{R}$.

Autrement dit : $f' = af \Leftrightarrow f(x) = Ce^{ax}$

Démonstration:

1.(
$$\Leftarrow$$
)
Soit $f(x) = Ce^{ax}$; $f'(x) = aCe^{ax} = af(x)$ CQFD.

Soit f tel que : f' = af, on doit montrer alors que $f(x) = Ce^{ax}$

Or
$$f(x) = Ce^{ax} \iff \frac{f(x)}{e^{ax}} = f(x)e^{-ax} = C$$

Considérons la fonction $g(x) = f(x)e^{-ax}$ et montrons que g'(x) = 0

$$g'(x) = f'(x)e^{-ax} + f(x) \times -ae^{-ax}$$

Or
$$f'(x) = af(x)$$

Donc
$$g'(x) = af(x)e^{-ax} + f(x) \times -ae^{-ax} = 0$$

CQFD

4. Équation différentielle y' = ay + b (E)

Théorème

Les solutions de l'équations différentielle y' = ay + b sont

de la forme :
$$-\frac{b}{a} + Ce^{ax}$$

<u>Démonstration:</u>

On remarque que la fonction constante :

 $f_0: x \to -\frac{b}{a}$ est une solution particulière de l'équation.

f est solution de l'équation $\Leftrightarrow f' = af + b$

Or:
$$f_0' = af_0 + b$$

$$\Rightarrow (f - f_0)' = a(f - f_0)$$

 $\Rightarrow f - f_0$ est donc solution de l'équation y' = ay

$$\Rightarrow (f - f_0)(x) = Ce^{ax}$$

et donc
$$f(x) = f_0(x) + Ce^{ax} = -\frac{b}{a} + Ce^{ax}$$

5. Equation différentielle de la forme : y' = ay + f(F)

Théorème

Si on a une solution particulière g_0 de (F) : y' = ay + f,

alors les solutions de (F) sont les fonctions de la forme : $g(x) = g_0(x) + Ce^{ax}$

En effet:

$$g$$
 solution de $y' = ay + f$
 $\Leftrightarrow g' = ag + f$
 $\Leftrightarrow g' - g'_0 = ag + f - g'_0$
 $\Leftrightarrow g' - g'_0 = ag + f - (ag_0 + f)$ car g_0 verifie aussi (F)

$$\Leftrightarrow g - g_0' = ag - ag_0$$

$$\Leftrightarrow (g - g_0)' = a(g - g_0)$$

$$\Leftrightarrow (g - g_0)(x) = Ce^{ax} \operatorname{car} g - g_0 \operatorname{solution} \operatorname{de} (H) : y' = ay$$

$$\Leftrightarrow g(x) = g_0(x) + Ce^{ax}$$

Toutes les solutions de y' = ay + f sont donc de la forme $x \to g_0(x) + Ce^{ax}$

METHODES

Comment calculer les primitives d'une fonction f

• Reconnaître une primitive de fonctions usuelles ou une combinaison linéaire de fonctions usuelles

f est définie sur I par	Une primitive F est donnée par
$f(x) = a \ (a \text{ est un r\'eel})$	F(x) = ax
f(x) = x	$F(x) = \frac{1}{2}x^2$
$f(x) = x^n$ $n \text{ entier différent de } (-1) \text{ et } 0$	$F(x) = \frac{x^{n+1}}{n+1}$
$f(x) = \frac{1}{x}$	$F(x) = \ln(x)$
$f(x) = \frac{1}{x^2}$	$F(x) = -\frac{1}{x}$
$f(x) = \frac{1}{\sqrt{x}}$	$F(x) = 2\sqrt{x}$
$f(x) = e^x$	$F(x) = e^x$
$f(x) = \ln x$ (un classique à connaître)	$F(x) = x \ln x - x$
$f(x) = \sin x$	$F(x) = -\cos x$
$f(x) = \cos x$	$F(x) = \sin x$

• Reconnaître une primitive de fonction composée

f de la forme	Une primitive F est donnée par
<i>u'</i> e <i>u</i>	e ^u
$u'u^n$	$\frac{u^{n+1}}{n+1}$
$\frac{u'}{u^2}$	$-\frac{1}{u}$
$\frac{u'}{2\sqrt{u}}$	\sqrt{u}
$\frac{u'}{u}$	$\ln u$

Comment déterminer une primitive particulière

Pour trouver **la** primitive F_0 de f tq $F(x_0) = y_0$:

- On détermine l'ensemble des primitives de f qui s'écrivent de la forme F + C
- On détermine ensuite C en écrivant que $F(x_0) + C = y_0 \Rightarrow C = y_0 F(x_0)$

Comment résoudre l'equation (H) : y' = ay

Les solutions de l'équation y' = ay sont de la forme :

$$x \to C e^{ax}$$
 , $C \in \mathbb{R}$

Comment résoudre l'équation (E) : y' = ay + b

Les solutions de l'équation y' = ay + b sont de la forme :

$$x \to -\frac{b}{a} + C e^{ax}, \quad C \in \mathbb{R}$$

Comment résoudre l'équation (F) : y' = ay + f

Soit g_0 une solution particulière de (F), donnée par l'énoncé ou déterminée au préalable.

g est solution de (F) $\Leftrightarrow (g - g_0)$ est solution l'équation Homogène (H): y' = ay

Les solutions de l'équation y' = ay + f sont donc de la forme :

$$x \to g_0(x) + C e^{ax}, C \in \mathbb{R}$$

Comment déterminer une solution particulière de forme donnée de l'équation (F) : y' = ay + f

Souvent on est amenés à chercher une solution particulière g_0 sous une forme donnée, qui dépend de paramètres m,n, etc..

pour trouver ces paramètres :

- On écrit l'expression générale de g_0 et de g_0' en fonction de m,n.
- On écrit que $g'_0 = ag + f$ et donc $g'_0 ag f = 0$
- On trouve ensuite les paramètres m, n, ... tq la fonction $g_0' ag f$ est nulle.