# **Deep Learning and Practice**

# Lab3: Temporal Difference Learning

310605009 吳公耀

# A. A plot shows episode scores of at least 100,000 training episodes

下圖為訓練到100,000 episodes時呈現的結果,且透過圖表來看成長幅度,橫軸為episodes,縱軸為每1000個episodes的平均分數以及最大分數。

Winrate為中間的趴數,即表示可以達到這個分數的機率 最後面的趴數則為最後到這個分數的趴數

| 99000  | moan - | 500/11  | $\max = 241668$ |
|--------|--------|---------|-----------------|
| 99000  | mean = |         |                 |
|        | 64     | 100%    | (0.2%)          |
|        | 128    | 99.8%   | (0.3%)          |
|        | 256    | 99.5%   | (1.1%)          |
|        | 512    | 98.4%   | (3.2%)          |
|        | 1024   | 95.2%   | (16.7%)         |
|        | 2048   | 78.5%   | (33.2%)         |
|        | 4096   | 45.3%   | (38.5%)         |
|        | 8192   | 6.8%    | (6.7%)          |
|        | 16384  | 0.1%    | (0.1%)          |
| 100000 | mean = | 51349.1 | max = 176240    |
|        | 128    | 100%    | (0.4%)          |
|        | 256    | 99.6%   | (1.3%)          |
|        | 512    | 98.3%   | (3%)            |
|        | 1024   | 95.3%   | (18.1%)         |
|        | 2048   | 77.2%   | (30.8%)         |
|        | 4096   | 46.4%   | (40.4%)         |
|        | 8192   | 6%      | (6%)            |



### B. Describe the implementation and usage of n-tuple network

TD Learning 中,相較於紀錄全部共  $17^{16}$  (大約  $10^{20}$ ) 可能的盤面,會因耗用記憶體過大而無法評估所有的 value 值,所以透過使用 n-tuple network 除了可以大幅降低需要用於紀錄的記憶體空間,也可以製作出大量有用的 features,以一條 4-tuple 為例,只需要紀錄  $16^4$  種可能,即使考慮所有的 isomorphisms (包含旋轉和鏡射),也只需紀錄  $8x16^4$  種可能。

實作的部分主要是參考助教提供的 sample code,只需要實做出feature 的添加提取等過程,且考慮所有的 isomorphisms,我們只需依照N-tuple 對應到的 tile 去計算他們的 index,得到對應的 index 就可以進行 feature 中的 estimate 還有 update 來偵測這個 tuple 的值以及更新這些 index 對應 weight 的值。使用的 tuple 為助教 sample code 上的範例,並且一些助教 PPT 上顯示的範例,將會在下面附上實驗解果以及使用的 tuple。



## C. Explain the mechanism of TD(0)

TD(0)會在每一步函數取得的值都更新為下一個狀態的值之後,並一路獲得 r ,這種觀察到的 r 在足夠數量的採樣後收斂的關鍵因素。TD(0)會從這個 episode 所走過的所有路經中的倒數第二個 action 開始計算出這個 action 和下一個 action 的 before state 的 error ,並且以這個 error 來更新對應的 state 的期望值,然後再算出 TD target,也就是 exact 來讓上一個 move 可以繼續更新。

```
void update_episode(std::vector<state>& path, float alpha = 0.1) const {
    // TODO
    float exact = 0;
    for (path.pop_back() /* terminal state */; path.size(); path.pop_back()) {
        state& move = path.back();
        float error = exact - (move.value() - move.reward());
        debug << "update error = " << error << " for after state" << std::endl << move.after_state();
        exact = move.reward() + update(move.after_state(), alpha * error);
}</pre>
```

# **D.** Explain the TD-backup diagram of V(after-state)



在 after state 的方式下,會以每個 action 的 after state 作為 value function,所以會以下一個 action 的 R 加上 after state 的期望值作為 TD target 來更新現在這個 action 的 after state 的期望值。更新的方法為已知 S'跟 S",所以讓 S"去找出最好的 action,得到 Snext',再來去計算 V(S')跟 rnext 加上 V(Snext')的誤差,對 V(S')進行更新,希望 V(S')跟 V(Snext')越來越接近

### E. Explain the action selection of V(after-state) in a diagram.

將下一 move 的 before state 視為一個固定的節點,而下一個 move 在選 action 也是一樣的看法,所以只要對 4 個方向所產生的 s'分別去計算分別 去計算 reward 加上 V(s'),選擇結果最大的 action 進行移動。

# F. Explain the TD-backup diagram of V(state).



TD-backup 主要就是想找出目前 V(St)的分數跟現在這個 state 所做出的預測,找出可能得到最高分數的動作後,實際得到的結果(r+V(St+1)),兩個應該要相同,那如果不相同的話不是 V(St) 太低就是 V(St+1) 太高,則須將 V(St) 進行更新,更新的方式就是把 V(St) 跟(r+V(St+1))的誤差以 alpha 對 V(St) 進行調整,希望 V(St) 跟 V(St+1) 要越來越接近。

#### G. Explain the action selection of V(state) in a diagram

在上圖中要在 St 選出最好的 action,會認為下一 move 的 before state 就是一個固定的節點, 而下一個 move 在選 action 也是一樣的看法。選擇方式為將 St 分別對 4 個不同 action 進行評估,而移動後的 St 之可以計算的,但之後須針對隨機跳出的 2 或 4 也就是 S" 計算 V(S"),期望值,找出 reward 加上期望值最大的 action 進行移動。

#### H. Describe your implementation in detail.

大部分的實作是參考助教提供的 sample code 然後將 TODO 的部分補上。下列分別為各個缺少的部分講解實作內容。第一個是 feature 中的 estimate function ,這個函式是要將輸入的盤面依照每個 tuple 在 8 個(旋轉 4 次+鏡像) isomophic pattern 得到的 index 所對應到的 8 個 weight,在依照 index 累加,最後經過 n-tuple network 加總成 pattern 在當下盤面所代表的值

```
virtual float estimate(const board& b) const {
    // TODO
    float value = 0;
    // isomorphic
    for (int i = 0; i < iso_last; i++) {
        size_t index = indexof(isomorphic[i], b);
        // return the weight of the given pattern.
        value += operator[](index);
    }
    return value;
}</pre>
```

而下列的 update function 是將 pattern 應該修正的 error 平均分給 8 個 isomorphic pattern, 會先取得各 isomophic pattern 在當下 board 所代表的 index, 並去更新這個 index 所對應的 weight, 因為累加的時候是 4 個旋轉+鏡像, 所以在更新時有平均更新,然後也有把更新後的值累加後回傳,作為下一次更新時的 S",節省還要再去計算一次的過程。

```
virtual float update(const board& b, float u) {
    // TODO
    float u_split = u / iso_last;
    float value = 0;

    // update all isomorphic patterns |
    for (int i = 0; i < iso_last; i++) {
        size_t index = indexof(isomorphic[i], b); // tuple weight
        operator[](index) += u_split;
        value += operator[](index);
    }
    return value;
}</pre>
```

其中上面兩個 function 中所使用的的 Indexof function 就是為了實現前面兩個計算 index 的功能,是取得給定的 isomorphic pattern 在當下 board 所對應的位置還有盤面,將盤面上的這些位置依照順序進行左移(shift),最後就可以得到一個 10 進位的 index,來代表 isomorphic pattern 對應到的磚塊內容。

再來是 select\_best\_move function,所以這部分就是計算每個 action 後得到的 reward 加上所有可能產生的 s"盤面的 value 去計算期望值,找出最高的值當成這個 state 的 action。

最後一個是update\_episode function ,將這個episode所有經過的state還有alpha,從state的最後開始進行更新,計算V(s)跟S做action後得到的reward加上實際得到的 $V(S^{\prime\prime})$ ,也就是TD target之間的差異,之後將這個值乘上alpha去update,update前面有提到會回傳更新後的值,把這值加上reward就可以作為下一次的TD target,避免重複計算,可以加速執行。

```
void update_episode(std::vector<state>& path, float alpha = 0.1) const {
    // IDDO
    float exact = 0;
    for (path.pop_back() /* terminal state */; path.size(); path.pop_back()) {
        state& move = path.back();
        float error = exact - (move.value() - move.reward());
        debug << "update error = " << error << " for after state" << std::endl << move.after_state();
        exact = move.reward() + update(move.after_state(), alpha * error);
    }
}</pre>
```

## I. Other discussions or improvements

我也有試著用其他不同 n-tuple 來做訓練,可以看到第一個的效果沒有其他兩組來的好。



```
// initialize the features
tdl.add_feature(new pattern({ 0, 4, 8, 12 }));
tdl.add_feature(new pattern({ 1, 5, 9, 13 }));
tdl.add_feature(new pattern({ 1, 2, 5, 6, 9, 10 }));
tdl.add_feature(new pattern({ 2, 3, 6, 7, 10, 11 }));
```





#### 另外一種是可以看出這個效果非常好



```
// initialize the features
tdl.add_feature(new pattern({ 0, 4, 8, 9, 12, 13 }));
tdl.add_feature(new pattern({ 1, 5, 9, 10, 13, 14 }));
tdl.add_feature(new pattern({ 1, 2, 5, 6, 9, 10 }));
tdl.add_feature(new pattern({ 2, 3, 6, 7, 10, 11 }));
```

```
99000 mean = 54789 max = 177384
32 100% (0.1%)
64 99.9% (0.1%)
256 99.8% (0.9%)
512 98.9% (3.2%)
1024 95.7% (15%)
2048 80.7% (31.5%)
4096 49.2% (39.7%)
8192 9.5% (9.5%)
100000 mean = 56205.5 max = 235284
256 100% (1%)
512 99% (3.6%)
1024 95.4% (14.3%)
2048 81.1% (30.9%)
4096 50.2% (40.3%)
8192 9.9% (9.8%)
16384 0.1% (0.1%)
```



以及繼續做更多的訓練,將之前的結果存起來並每次 load 繼續做 100,000 次訓練,以下為 200,000 的結果。





以下為300,000的結果





以下為 400,000 的結果





#### 以下為 500000 的結果



可以看出隨時著 episodes 增加各個分數的 win rate 都有持續進步雖然過程有時候會有動盪。雖然過程中有時候 2048 的 win rate 有到 90% 了。