CSMC 412

Operating Systems Prof. Ashok K Agrawala

© 2005 Ashok Agrawala

Set 10

Operating System Concepts

10.1

Silberschatz, Galvin and Gagne ©2005

File-System Interface

- File Concept
- Access Methods
- Directory Structure
- File-System Mounting
- File Sharing
- Protection

Operating System Concepts

10.2

Objectives

- To explain the function of file systems
- To describe the interfaces to file systems
- To discuss file-system design tradeoffs, including access methods, file sharing, file locking, and directory structures
- To explore file-system protection

Operating System Concepts

10.3

Silberschatz, Galvin and Gagne ©2005

File Concept

- Contiguous logical address space
- Types:
 - Data
 - numeric
 - character
 - binary
 - Program

Operating System Concepts

10.4

File Structure

- None sequence of words, bytes
- Simple record structure
 - Lines
 - Fixed length
 - Variable length
- Complex Structures
 - Formatted document
 - Relocatable load file
- Can simulate last two with first method by inserting appropriate control characters
- Who decides:
 - Operating system
 - Program

Operating System Concepts

10.5

Silberschatz, Galvin and Gagne ©2005

File Attributes

- Name only information kept in human-readable form
- Identifier unique tag (number) identifies file within file system
- **Type** needed for systems that support different types
- Location pointer to file location on device
- Size current file size
- Protection controls who can do reading, writing, executing
- Time, date, and user identification data for protection, security, and usage monitoring
- Information about files are kept in the directory structure, which is maintained on the disk

Operating System Concepts

10.6

File Operations

- File is an abstract data type
- Create
- Write
- Read
- Reposition within file
- Delete
- Truncate
- Open(F_i) search the directory structure on disk for entry F_i, and move the content of entry to memory
- Close (F_i) move the content of entry F_i in memory to directory structure on disk

Operating System Concepts

10.7

Silberschatz, Galvin and Gagne ©2005

Open Files

- Several pieces of data are needed to manage open files:
 - File pointer: pointer to last read/write location, per process that has the file open
 - File-open count: counter of number of times a file is open to allow removal of data from open-file table when last processes closes it
 - Disk location of the file: cache of data access information
 - Access rights: per-process access mode information

Operating System Concepts

10.8

Open File Locking

- Provided by some operating systems and file systems
- Mediates access to a file
- Mandatory or advisory:
 - Mandatory access is denied depending on locks held and requested
 - Advisory processes can find status of locks and decide what to do

Operating System Concepts

10.9

Silberschatz, Galvin and Gagne ©2005

File Locking Example - Java API

```
import java.io.*;
import java.nio.channels.*;
public class LockingExample {
    public static final boolean EXCLUSIVE = false;
    public static final boolean SHARED = true;
    public static void main(String arsg[]) throws IOException {
           FileLock sharedLock = null;
            FileLock exclusiveLock = null;
                       RandomAccessFile raf = new RandomAccessFile("file.txt", "rw");
                       // get the channel for the file
                       FileChannel ch = raf.getChannel();
                       // this locks the first half of the file - exclusive
                       exclusiveLock = ch.lock(0, raf.length()/2, EXCLUSIVE);
                       /** Now modify the data . . . */
                       // release the lock
                       exclusiveLock.release();
```

Operating System Concepts

10.10

File Locking Example – Java API (cont)

```
// this locks the second half of the file - shared sharedLock = ch.lock(raf.length()/2+1, raf.length(), SHARED);

/** Now read the data . . . */

// release the lock exclusiveLock.release();
} catch (java.io.lOException ioe) {
    System.err.println(ioe);
} finally {

    if (exclusiveLock != null) exclusiveLock.release();
    if (sharedLock.release();
    if (sharedLock.release();
    }
}

Operating System Concepts

// this locks the second half of the file - shared
shared lock

**This liength(),

**SHARED);

**This length(),

**This length(),
```

File Types - Name, Extension

file type	usual extension	function		
executable	exe, com, bin or none	ready-to-run machine- language program		
object	obj, o	compiled, machine language, not linked		
source code	c, cc, java, pas, asm, a	source code in various languages		
batch	bat, sh	commands to the command interpreter		
text	txt, doc	textual data, documents		
word processor	wp, tex, rtf, doc	various word-processor formats		
library	lib, a, so, dll	libraries of routines for programmers		
print or view	ps, pdf, jpg	ASCII or binary file in a format for printing or viewing		
archive	arc, zip, tar	related files grouped into one file, sometimes com- pressed, for archiving or storage		
multimedia	mpeg, mov, rm, mp3, avi	binary file containing audio or A/V information		

Operating System Concepts

10.12

Access Methods Sequential Access read next write next reset no read after last write (rewrite) ■ Direct Access read n write n position to n read next write next rewrite n n = relative block number**Operating System Concepts** 10.13 Silberschatz, Galvin and Gagne ©2005

Simulation of Sequential Access on a Direct-access File

sequential access	implementation for direct access		
reset	cp = 0;		
read next	read cp; cp = cp + 1;		
write next	write cp ; $cp = cp + 1$;		

Operating System Concepts

10.15

Directory Structure A collection of nodes containing information about all files

Files F1 F2 F3 F4 Fn

Both the directory structure and the files reside on disk Backups of these two structures are kept on tapes

Operating System Concepts

10.17

Silberschatz, Galvin and Gagne ©2005

A Typical File-system Organization

Operating System Concepts

10.18

Operations Performed on Directory

- Search for a file
- Create a file
- Delete a file
- List a directory
- Rename a file
- Traverse the file system

Operating System Concepts

10.19

Silberschatz, Galvin and Gagne ©2005

Organize the Directory (Logically) to Obtain

- Efficiency locating a file quickly
- Naming convenient to users
 - Two users can have same name for different files
 - The same file can have several different names
- Grouping logical grouping of files by properties, (e.g., all Java programs, all games, ...)

Operating System Concepts

10.20

Tree-Structured Directories (Cont)

- Efficient searching
- Grouping Capability
- Current directory (working directory)
 - cd /spell/mail/prog
 - type list

Operating System Concepts

10.24

Tree-Structured Directories (Cont)

- Absolute or relative path name
- Creating a new file is done in current directory
- Delete a file

rm <file-name>

Creating a new subdirectory is done in current directory

mkdir <dir-name>

Example: if in current directory /mail mkdir count

Deleting "mail" ⇒ deleting the entire subtree rooted by "mail"

Operating System Concepts

10.25

Silberschatz, Galvin and Gagne ©2005

Acyclic-Graph Directories

Have shared subdirectories and files

Operating System Concepts

10.26

Acyclic-Graph Directories (Cont.)

- Two different names (aliasing)
- If dict deletes list \Rightarrow dangling pointer

Solutions:

- Backpointers, so we can delete all pointers Variable size records a problem
- Backpointers using a daisy chain organization
- Entry-hold-count solution
- New directory entry type
 - Link another name (pointer) to an existing file
 - Resolve the link follow pointer to locate the file

Operating System Concepts

10.27

General Graph Directory (Cont.)

- How do we guarantee no cycles?
 - Allow only links to file not subdirectories
 - Garbage collection
 - Every time a new link is added use a cycle detection algorithm to determine whether it is OK

Operating System Concepts

10.29

Silberschatz, Galvin and Gagne ©2005

File System Mounting

- A file system must be mounted before it can be accessed
- A unmounted file system (i.e. Fig. 11-11(b)) is mounted at a mount point

Operating System Concepts

10.30

File Sharing

- Sharing of files on multi-user systems is desirable
- Sharing may be done through a **protection** scheme
- On distributed systems, files may be shared across a network
- Network File System (NFS) is a common distributed file-sharing method

Operating System Concepts

10.33

Silberschatz, Galvin and Gagne ©2005

File Sharing - Multiple Users

- User IDs identify users, allowing permissions and protections to be per-user
- Group IDs allow users to be in groups, permitting group access rights

Operating System Concepts

10.34

File Sharing - Remote File Systems

- Uses networking to allow file system access between systems
 - Manually via programs like FTP
 - Automatically, seamlessly using distributed file systems
 - · Semi automatically via the world wide web
- Client-server model allows clients to mount remote file systems from servers
 - · Server can serve multiple clients
 - Client and user-on-client identification is insecure or complicated
 - NFS is standard UNIX client-server file sharing protocol
 - CIFS is standard Windows protocol
 - Standard operating system file calls are translated into remote calls
- Distributed Information Systems (distributed naming services) such as LDAP, DNS, NIS, Active Directory implement unified access to information needed for remote computing

Operating System Concepts

10.3

Silberschatz, Galvin and Gagne ©2005

File Sharing - Failure Modes

- Remote file systems add new failure modes, due to network failure, server failure
- Recovery from failure can involve state information about status of each remote request
- Stateless protocols such as NFS include all information in each request, allowing easy recovery but less security

Operating System Concepts

10.36

File Sharing - Consistency Semantics

- Consistency semantics specify how multiple users are to access a shared file simultaneously
 - Similar to Ch 7 process synchronization algorithms
 - Tend to be less complex due to disk I/O and network latency (for remote file systems
 - Andrew File System (AFS) implemented complex remote file sharing semantics
 - Unix file system (UFS) implements:
 - Writes to an open file visible immediately to other users of the same open file
 - Sharing file pointer to allow multiple users to read and write concurrently
 - · AFS has session semantics
 - Writes only visible to sessions starting after the file is closed

Operating System Concepts

10.37

Silberschatz, Galvin and Gagne ©2005

Protection

- File owner/creator should be able to control:
 - what can be done
 - by whom
- Types of access
 - Read
 - Write
 - Execute
 - Append
 - Delete
 - List

Operating System Concepts

10.38

A Sample UNIX Directory Listing

-rw-rw-r	1 pbg	staff	31200	Sep 3 08:30	intro.ps
drwx	5 pbg	staff		Jul 8 09.33	private/
drwxrwxr-x	2 pbg	staff		Jul 8 09:35	doc/
drwxrwx	2 pbg	student	512	Aug 3 14:13	student-proj/
-rw-rr	1 pbg	staff	9423	Feb 24 2003	program.c
-rwxr-xr-x	1 pbg	staff	20471	Feb 24 2003	program
drwxxx	4 pbg	faculty	512	Jul 31 10:31	lib/
drwx	3 pbg	staff	1024	Aug 29 06:52	mail/
drwxrwxrwx	3 pbg	staff	512	Jul 8 09:35	test/

Operating System Concepts

10 /1