动态规划解题总览

问题	状态	最优值(计数)	状态转移方程	初始化	最终所求
	(i,j): 考察 X 串			c(0,j)=0,	
最长公共子	的 i-前缀 X _i 与	$c(i,j)$: $X_i = Y_j$	$c(i, j) = \begin{cases} c(i-1, j-1) + 1 & x_i = y_j \\ \max\{c(i-1, j), c(i, j-1)\} & x_i \neq y_j \end{cases}$	j=0,, n	c(m,n)
序列(LCS)	Y 串的 j-前缀	的 LCS 长度	$\max\{c(i-1,j),c(i,j-1)\} x_i \neq y_j$	c(i,0)=0,	C(III,II)
	Y_j			i=0,, m	
	(i,j): 考察 X 串			d(0,j)=j,	
编辑距离	的 i-前缀 X _i 与	$d(i,j): X_i = Y_j$	$d(i,j) = \begin{cases} d(i-1,j-1) & x_i = y_j \\ \min\{d(i-1,j), d(i,j-1), d(i-1,j-1)\} & x_i \neq y_j \end{cases}$	j=0,, n	d(m,n)
	Y 串的 j-前缀	的编辑距离	$\min\{d(i-1,j),d(i,j-1),d(i-1,j-1)\} x_i \neq y_j$	d(i,0)=i,	
	Y_j			i=0,, m	
整数划分数	(i,m): 限制划	q(i,m): 元素不	a(i, m) = a(i, m, 1) + a(i, m, m)	a(i 1)=1	
一一问题	分元素不超过	超过 m 的划分	q(i,m)=q(i,m-1)+q(i-m,m) $q(i,m)=q(i,i) (m>i)$	q(i,1)=1 q(0,m)=1	q(n,n)
内区	m	数	$q(1,m)-q(1,1) \qquad (m-1)$	q(0,111)=1	
	(i,j): 第1行有				
	i 个数字,第2				
标准二维表	行有 j 个数字,	p(i,j): 局部表的	$p(i,j) = \begin{cases} p(i,j-1) + p(i-1,j) & j < i \\ p(i,j-1) & j = i \end{cases}$	p(i,0)=1	n(n,n)
(方法1)	包含数字	个数	$\int p(i,j-1) \qquad \qquad j=i$	p(i,0)=1	p(n,n)
	1~(i+j)的局部				
	表				

问题	状态	最优值(计数)	状态转移方程	初始化	最终所求
标准二维表 (方法 2)	(i,j): 第1行有 i 个数字,第2 行比第1行少j 个数字的局部 表	a(i,j): 把局部表填满的方式数	$a(i,j) = \begin{cases} a(i+1,j+1) + a(i,j-1) & j > 0 \\ a(i+1,j+1) & j = 0 \end{cases}$	a(n,j)=1, j=0,1,,n	a(0,0)或 a(1,1)
防卫导弹	i: 首攻第 i 个 导弹	M[i]: 首攻第 i 个导弹时的最 多攻击数	$M[i] = \max_{j>i, h[j] \le h[i]} \{M[j] + 1\}$	M[n]=1	$\max\{M[i]\}$
连续邮资问题(方法1)	(i,v): 至多 i 张 邮票,邮资额 为 v	b[i][v]: 至多 i 张邮票是否可 得邮资金额为 v 的逻辑值	$b[i][v] = \sum_{\substack{k=1,\dots,m\\x_k \le v}} \{b[i-1][v-x_k]\}$	b[0][v]=0, (v>0) b[0][0]=1	首个 <i>b</i> [<i>n</i>][<i>v</i>]为假的 金额 <i>v</i> 减 1
连续邮资问题(方法2)	v: 邮资额	p[v]:邮资额为 v时所需最少邮 票数	$p[v] = \min_{x_k \le v} \{ p[v - x_k] + 1 \}$	p[0]=0	首个 <i>p</i> [v]> <i>n</i> 的金额 v 減 1
最大子段和	j: 考察 a[1n] 的 <i>j</i> -前缀	b[j]: <i>j</i> -前缀的最 大后缀和	$b[j] = \max\{b[j-1] + a[j], a[j]\}, \qquad 1 \le j \le n$	b[0]=0	$\max_{1 \le j \le n} b[j]$
独立任务最 优调度问题 (方法1)	(i,t): 安排前 <i>i</i> 个作业,机器 A 的处理时间不 超过 <i>t</i>	F[i][t]: 安排前 i 个作业,机器 A 的处理时间不 超过 t 时机器 B 的最短处理时 间	$F[i][t] = \min\{F[i-1][t-a_i], F[i-1][t] + b_i\} (i > 0, t > 0)$ $0 \le i \le n, 0 \le t \le \min(\Sigma a_k, \Sigma b_k)$	$F[i][0] = \sum_{k=1}^{i} b_k$ $F[0][t] = 0$	$\min_{t} \{ \max(t, F[n][t]) \}$

问题	状态	最优值(计数)	状态转移方程	初始化	最终所求
独立任务最 优调度问题 (方法 2*)	(<i>i</i> , <i>t</i> ₁ , <i>t</i> ₂): 考察机器 A 已被占用时间 <i>t</i> ₁ , 机器 B 已被占用时间 <i>t</i> ₂ 时,安排前 <i>i</i> 个作业	$G[i][t_1][t_2]$: 机器 A已被占用时间 t_1 , 机器 B 已被 占用时间 t_2 时, 安排前 i 个作业 的最短处理时 间	$G[i][t_1][t_2] = \begin{cases} \min\{G[i-1][t_1 + a_i][t_2], G[i-1][t_1][t_2 + b_i]\} & (i > 0) \\ t_2 + G[i][t_1 - t_2][0] & (t_1 \ge t_2) \\ t_1 + G[i][t_2 - t_1][0] & (t_1 \le t_2) \end{cases}$	$G[0][0][t_2] = t_2$ $G[0][t_1][0] = t_1$	G[n][0][0]
分石子问题	(<i>i,j</i>): 装前 <i>i</i> 个石子到 <i>j</i> 个 筐,i=1,,N; j=1,,K	f(i,j): 装前 i 个 石子到 j 个筐的 最优值	$f(i,j) = \min_{j-1 \le p \le i-1} \{ \max(f(p,j-1), \sum_{k=p+1}^{i} Q_k) \} $ $i = 1,,N; j = 1,,K$	$f(i,1) = \sum_{k=1}^{i} Q_k$	f(N,K)
错位排列	i: 排列的阶	D _i : i 阶错位排 列数	$D_{i} = (i-1)(D_{i-1} + D_{i-2})$ $(i > 2)$ 设第 i 位数字为 j,对数字 n 所在位置是否为 j 分情况讨论	$D_1 = 0$ $D_2 = 1$	D_n
The triangle(poj1 163)	(i,j): 考察第 i 行第 j 个数开 始的下行路径 (1<=i<=n, 1<=j<=i)	S(i,j): 从第 i 行 第 j 个数开始的 所有下行路径 的最小和	$S(i, j) = a(i, j) + \min\{S(i+1, j), S(i+1, j+1)\}$ $(i = n-1,, 1; j = 1,, n)$	S(n,j)=a(n,j) (1<=j<=n)	S(1,1)
World cup noise(poj195 3)	i: 长度为i	S(i): 长度为 i 的序列种数	S(i) = S(i-1) + S(i-2) $(i = 2,,n)$	S(0)=1 S(1)=2	S(n)

问题	状态	最优值(计数)	状态转移方程	初始化	最终所求
Post office(poj116 0)	(v,p): 考察前 v 个村,限设 p 个邮局	F(v,p): 前 v 个 村限设 p 个邮局 的最小总距离	$F(v,p) = \min_{1 \le k \le v - p + 1} \{ F(v - k, p - 1) + G(p - k + 1, p) \} $ $(v > p)$ $G(p_1,p_2)$ 为在 $p_1 \sim p_2$ 村仅设一个邮局的最小总距离	F(v,v)=0 F(v,1)=G(1,v)	F(V, P)
Alphacode(p oj2033)	k: k-前缀 k=0,1,,n	C(k): k-前缀的 译码种数	$C(k) = ('1' \le x_k \le '9')?C(k-1):0$ $+ ("10" \le x_{k-1}x_k \le "26")?C(k-2):0 \qquad (k \ge 2)$	C(1)=1 C(0)=1	C(n)
滑雪 (poj1088)	(r,c): 坐标	L(r,c): 从(r,c)开 始的最长滑道 长度	$L(r,c) = \max_{\substack{(r',c') \notin (r,c) \text{的邻点} \\ \exists h(r',c') < h(r,c)}} \{L(r',c')\} + 1$ 按h从小到大的顺序计算	L(r ₀ ,c ₀)=1 (h(r ₀ ,c ₀)最小)	$\max L(r,c)$
Palindrome (poj1159)	n: 考察子串 X _{ij} =x _i x _j	c(i,j): 子串 X _{ij} 需插入的最小 字符数	$c(i,j) = \begin{cases} c(i+1,j-1) & x_i = x_j \\ \min\{c(i+1,j), c(i,j-1)\} + 1 & x_i \neq x_j \end{cases} $ (i <j)< td=""><td>c(i,i)=0 c(i,i-1)=0(空串)</td><td>c(1,N)</td></j)<>	c(i,i)=0 c(i,i-1)=0(空串)	c(1,N)
A decorative fence (poj1037)					