Spring 2011

信號與系統 Signals and Systems

Chapter SS-8
Communication Systems

Feng-Li Lian NTU-EE Feb11 – Jun11

Figures and images used in these lecture notes are adopted from "Signals & Systems" by Alan V. Oppenheim and Alan S. Willsky, 1997

Introduction

(Chap 1)

LTI & Convolution

(Chap 2)

Bounded/Convergent

Periodic

FS -CT -DT

(Chap 3)

Aperiodic

T - CT

(Chap 5)

(Chap 4)

Unbounded/Non-convergent

Time-Frequency (Chap 6)

CT-DT (Chap 7)

Communication (Chap 8)

Control (Chap 11)

Digital Signal Processing

(dsp-8)

Modulation & Demodulation:

- M: Embedding an information-bearing signal into a second signal
- D: Extracting the information-bearing signal
- Methods:
 - > Amplitude Modulation (AM)
 - > Frequency Modulation (FM)

Multiplexing & Demultiplexing:

 Simultaneous transmission of more than one signal with overlapping spectra over the same channel

- Methods:
 - > Time-Division Multiplexing (TDM)
 - > Frequency-Division Multiplexing (FDM)

- Complex <u>Exponential</u> & <u>Sinusoidal</u>
 Amplitude Modulation & Demodulation
- Frequency-Division Multiplexing
- Single-Sideband Sinusoidal Amplitude Modulation
- Amplitude Modulation with a Pulse-Train Carrier
- Pulse-Amplitude Modulation
- Sinusoidal Frequency Modulation
- Discrete-Time Modulation

Signal Frequency Characteristics:

Communication Satellite

Microwave Link

802.11 & Bluetooth

modulated signal: y(t) = x(t) c(t)

Complex Exponential & Sinusoidal Amplitude Modulation & Demontalian © 2010

AM with a Complex Exponential Carrier:

$$e^{j(w_ct+ heta_c)}$$

 w_c : carrier frequency

$$c(t) = e^{j(\mathbf{w_c}t + \theta_c)}$$

$$y(t) = x(t) c(t) = x(t) e^{jw_c t}$$

$$\theta_c = 0$$

$$C(jw)$$
 ω_{M} ω

$$C(jw) = 2\pi \ \delta(w - w_c)$$

$$Y(jw) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\theta) C(j(w-\theta)) d\theta$$

$$Y(jw) = X\left(j(w-w_c)\right)$$

Complex Exponential & Sinusoidal Amplitude Modulation & Democial Light © 2010 Complex Exponential & Sinusoidal Amplitude Modulation & Democial & Sinusoidal & Sinusoidal Amplitude Modulation & Democial & Sinusoidal & Sinusoidal Amplitude Modulation & Democial & Sinusoidal & S

AM with a Complex Exponential Carrier:

Complex Exponential & Sinusoidal Amplitude Modulation & Demontal & Sinusoidal Amplitude Modulation & Demontal & Sinusoidal Amplitude

AM with a Complex Exponential Carrier:

Complex Exponential & Sinusoidal Amplitude Modulation & Democial Sinusoidal Sinusoidal Amplitude Modulation & Democial Sinusoidal Sinusoidal Amplitude Modulation & Democial Sinusoidal Sinusoida Sinusoidal Sinusoidal Sinusoidal Sinusoidal Sinusoidal Sinusoida S

AM with Sinusoidal Carriers:

$$c(t) = e^{jw_ct} = \cos(w_ct) + j\sin(w_ct)$$

$$\Rightarrow y(t) = x(t) \cos(w_c t) + j x(t) \sin(w_c t)$$

phase difference of $c_1(\cdot), c_2(\cdot)$?

Complex Exponential & Sinusoidal Amplitude Modulation & Democial idian © 2010 Modulation & Democial & Sinusoidal Amplitude Modulation & Democial & Sinusoidal & Sinusoidal Amplitude Modulation & Democial & Sinusoidal & Sinusoidal Amplitude Modulation & Democial & Sinusoidal &

AM with a Sinusoidal Carrier:

Complex Exponential & Sinusoidal Amplitude Modulation & Democial atton © 2010

AM with a Sinusoidal Carrier:

$$y(t) = x(t) \cos(w_c t)$$
 $w(t) = y(t) \cos(w_c t)$

$$\Rightarrow w(t) = x(t)\cos^2(w_c t)$$

$$= x(t) \left[\frac{1}{2} + \frac{1}{2} \cos(2w_c t) \right]$$

$$= \frac{1}{2}x(t) + \frac{1}{2}x(t)\cos(2w_ct)$$

Complex Exponential & Sinusoidal Amplitude Modulation & Democial idian © 2010 No. 13 $c(t) = e^{jw_ct} = \cos(w_ct) + j\sin(w_ct)$ $\cos(w_c t + \theta_c)$ $y(t) = x(t) \cos(w_c t) + j x(t) \sin(w_c t)$ $\rightarrow \mathcal{R}e\left\{ y(t)\right\}$ x(t) $\mathcal{I}m\left\{ y(t)\right\}$ $\sin(w_c t + \theta_c)$ ω_{M} $-\omega_{\rm c}$ $-\omega_{c}$ $(-\omega_c - \omega_M) - \omega_c (-\omega_c + \omega_M)$ $(\omega_c - \omega_M) \omega_c (\omega_c + \omega_M)$ $(\omega_c - \omega_M) \omega_c (\omega_c + \omega_M)$ $(-\omega_c{-}\omega_M)\ -\omega_c\ (-\omega_c{+}\omega_M)$ $(-\omega_c - \omega_M) - \omega_c (-\omega_c + \omega_M)$ $(\omega_c - \omega_M) \omega_c (\omega_c + \omega_M)$ $(\omega_c - \omega_M) \omega_c (\omega_c + \omega_M)$ $(-\omega_c - \omega_M)$ $-\omega_c$ $(-\omega_c + \omega_M)$ $(\omega_c - \omega_M) \ \omega_c \ (\omega_c + \omega_M)$

Overlapping of AM with a Sinusoidal Carrier:

• If $w_c < w_M$,

Complex Exponential & Sinusoidal Amplitude Modulation & Democial idian © 2010 Notes and Complex Exponential & Sinusoidal Amplitude Modulation & Democial idian © 2010

Not Synchronized in Phase:

$$y(t) = x(t) c_m(t)$$

$$= x(t) e^{j(w_c t + \theta_c)}$$

$$w(t) = y(t) c_d(t)$$

$$= y(t) e^{-j(w_c t + \phi_c)}$$

$$= x(t) e^{j(\theta_c - \phi_c)}$$

$$\Rightarrow$$
 ONLY $|x(t)| = |w(t)|$

Complex Exponential & Sinusoidal Amplitude Modulation & Demodification 2010

Not Synchronized in Phase:

$$y(t) = x(t) \cos(w_c t + \theta_c) \qquad w(t) = y(t) \cos(w_c t + \phi_c)$$

$$\Rightarrow w(t) = x(t) \cos(w_c t + \theta_c) \cos(w_c t + \phi_c)$$

$$= x(t) \left[\frac{1}{2} \cos(\theta_c - \phi_c) + \frac{1}{2} \cos(2w_c t + \theta_c + \phi_c) \right]$$

$$= \frac{1}{2} \cos(\theta_c - \phi_c) x(t) + \frac{1}{2} x(t) \cos(2w_c t + \theta_c + \phi_c)$$

Complex Exponential & Sinusoidal Amplitude Modulation & Democial idian © 2010 Notes and Complex Exponential & Sinusoidal Amplitude Modulation & Democial idian © 2010

Asynchronous Demodulation:

- $\bullet w_c >> w_M$
- x(t) > 0, $\forall t$
 - In audio transmission over a RF channel

> w_M: 15 - 20 Hz

> $w_c/2\pi$: 500kHz – 2 MHz

Complex Exponential & Sinusoidal Amplitude Modulation & Democial Library 2010 Modulation & Democial & Sinusoidal Amplitude Modulation & Democial & Sinusoidal & Sinusoidal Amplitude Modulation & Democial & Sinusoidal & Sinusoidal

Envelope Detector:

Complex Exponential & Sinusoidal Amplitude Modulation & Democial Lian © 2010 **Asynchronous Demodulation:** $\cos (\omega_c t + \theta_c)$

Complex Exponential & Sinusoidal Amplitude Modulation & Democial Sinusoidal Sinusoidal Amplitude Modulation & Democial Sinusoidal Sinusoidal Amplitude Modulation & Democial Sinusoidal Sinusoida Sinusoidal Sinusoidal Sinusoidal Sinusoidal Sinusoidal Sinusoida S

Asynchronous Demodulation:

- $\bullet w_c >> w_M$
- x(t) > 0, $\forall t$

If not,
$$x(t) \rightarrow x(t) + A > 0$$

$$A \geq K$$
, $|x(t)| \leq K$

• $\frac{K}{A}$: modulation index m, in %

Synchronous & Asynchronous Demodulation:

 $x(t) \cos(w_c t)$

 $[x(t) + A] \cos(w_c t)$

- Complex Exponential & Sinusoidal Amplitude Modulation & Demodulation
- Frequency-Division Multiplexing
- Single-Sideband Sinusoidal Amplitude Modulation
- Amplitude Modulation with a Pulse-Train Carrier
- Pulse-Amplitude Modulation
- Sinusoidal Frequency Modulation
- Discrete-Time Modulation

FDM Using Sinusoidal AM:

Demultiplexing and Demodulation:

Allocation of Frequencies in the RF Spectrum

Frequency range	Designation	Typical uses	Propagation method	Channel features
30-300 Hz	ELF (extremely low frequency)	Macrowave, submarine com- munication	Megametric waves	Penetration of conducting earth and seawater
0.3-3 kHz	VF (voice frequency)	Data terminals, telephony	Copper wire	
3–30 kHz	VLF (very low fre- quency)	Navigation, telephone, tele- graph, frequency and timing standards	Surface ducting (ground wave)	Low attenuation, little fading, extremely stable phase and frequency, large antennas
30-300 kHz	LF (low frequency)	Industrial (power line) com- munication, aeronautical and maritime long-range navigation, radio beacons	Mostly surface ducting	Slight fading, high atmo- spheric pulse
0.3–3 MHz	MF (medium frequency)	Mobile, AM broadcasting, amateur, public safety	Ducting and ionospheric reflection (sky wave)	Increased fading, but reliable
3–30 MHz	HF (high frequency)	Military communication, aero- nautical mobile, interna- tional fixed, amateur and citizen's band, industrial	Ionospheric reflecting sky wave, 50–400 km layer altitudes	Intermittent and frequency- selective fading, multipath
30–300 MHz	VHF (very high frequency)	FM and TV broadcast, land transportation (taxis, buses, railroad)	Sky wave (ionospheric and tropospheric scatter)	Fading, scattering, and multi- path
0.3–3 GHz	UHF (ultra high frequency)	UHF TV, space telemetry, radar, military	Transhorizon tropospheric scatter and line-of-sight relaying	
3–30 GHz	SHF (super high frequency)	Satellite and space commu- nication, common carrier (CC), microwave	Line-of-sight ionosphere penetration	Ionospheric penetration, extraterrestrial noise, high directly
30–300 GHz	EHF (extremely high frequency)	Experimental, government, radio astronomy	Line of sight	Water vapor and oxygen absorption
$10^3 - 10^7 \text{ GHz}$	Infrared, visible light, ultraviolet	Optical communications	Line of sight	

- Complex Exponential & Sinusoidal Amplitude Modulation & Demodulation
- Frequency-Division Multiplexing
- Single-Sideband Sinusoidal Amplitude Modulation
- Amplitude Modulation with a Pulse-Train Carrier
- Pulse-Amplitude Modulation
- Sinusoidal Frequency Modulation
- Discrete-Time Modulation

SSB Modulation:

upper sidebands

lower sidebands

Retain Upper Sidebands Using Ideal Highpass Filter

Retain Lower Sidebands Using Phase-Shift Network

- Retain Lower Sidebands $H(jw) = \begin{cases} -j, & w > 0 \\ +j, & w < 0 \end{cases}$
- Retain Upper Sidebands $H(jw) = \begin{cases} +j, & w > 0 \\ -j, & w < 0 \end{cases}$

- Complex Exponential & Sinusoidal Amplitude Modulation & Demodulation
- Frequency-Division Multiplexing
- Single-Sideband Sinusoidal Amplitude Modulation
- Amplitude Modulation with a Pulse-Train Carrier
- Pulse-Amplitude Modulation
- Sinusoidal Frequency Modulation
- Discrete-Time Modulation

Modulation of a Pulse-Train Carrier:

Impulse-Train Sampling:

Time-Division Multiplexing (TDM):

- Complex Exponential & Sinusoidal Amplitude Modulation & Demodulation
- Frequency-Division Multiplexing
- Single-Sideband Sinusoidal Amplitude Modulation
- Amplitude Modulation with a Pulse-Train Carrier
- Pulse-Amplitude Modulation
- Sinusoidal Frequency Modulation
- Discrete-Time Modulation

Pulse-Amplitude Modulated Signals:

TDM-PAM:

$$y(t) = \begin{cases} A x_1(t), & t = 0, \pm 3T_1, \cdots, \\ A x_2(t), & t = T_1, T_1 \pm 3T_1, \cdots, \\ A x_3(t), & t = 2T_1, 2T_1 \pm 3T_1, \cdots, \end{cases}$$

Intersymbol Interference in PAM Systems:

Avoiding Intersymbol Interference in PAM Systems:

$$p(t) = \frac{T_1 \sin(\pi \ t \ T_1)}{\pi t}$$

$$p(\pm T_1) = 0, \ p(\pm 2T_1) = 0, \ p(\pm 3T_1) = 0, \cdots$$

General Form of Band-Limited Pulses
 with Time-Domain Zero-Crossing at kT₁, k ∈ Z:

Problem 8.42

 $P_1(j\omega)$

$$P(jw) = \left\{egin{array}{ll} 1 + P_1(jw) & |w| \leq rac{\pi}{T_1} \\ P_1(jw) & rac{\pi}{T_1} < |w| \leq rac{2\pi}{T_1} \\ 0 & ext{otherwise} \end{array}
ight.$$

 $P_1(jw)$: odd symmetry around π/T_1

$$P_1\left(-jw+j\frac{\pi}{T_1}\right) = -P_1\left(jw+j\frac{\pi}{T_1}\right)$$

$$0 \le w \le \frac{\pi}{T_1}$$

 \Rightarrow p(t) has zero crossing at $\pm T_1, \pm 2T_1, \cdots$ i.e., $p(\pm kT_1) = 0$

- Complex Exponential & Sinusoidal Amplitude Modulation & Demodulation
- Frequency-Division Multiplexing
- Single-Sideband Sinusoidal Amplitude Modulation
- Amplitude Modulation with a Pulse-Train Carrier
- Pulse-Amplitude Modulation
- Sinusoidal Frequency Modulation
- Discrete-Time Modulation

Frequency Modulation (FM):

- The modulating signals is used to control the frequency of a sinusoidal carrier
- With sinusoidal AM, the peak amplitude of the envelope of the carrier
 is directly dependent on the amplitude of the modulating signal x(t),
 which can have a large dynamic range.
- With FM, the envelope of the carrier is constant
- An FM transmitter can always operate at peak power and amplitude variations introduced over a transmission channel due to additive disturbances or fading can be eliminated at the receiver
- FM generally requires greater bandwidth than does sinusoidal AM

Angle Modulation:

$$c(t) = A \cos(w_c t + \theta_c) = A \cos\theta(t)$$

- Phase Modulation:
 - Use the modulating signal x(t) to vary the phase θ_c

$$y(t) = A \cos(\theta(t)) = A \cos(w_c t + \theta_c(t))$$

$$\theta_c(t) = \theta_0 + k_p x(t)$$

$$\frac{d\theta(t)}{dt} = w_c + k_p \frac{dx(t)}{dt}$$

- Frequency Modulation:
 - Use the modulating signal x(t) to vary the derivative of the angle

$$y(t) = A \cos\left(\theta(t)\right)$$

$$\frac{d\theta(t)}{dt} = w_c + k_f x(t)$$

Phase & Frequency Modulation:

$$\frac{d\theta(t)}{dt} = w_c + k_p \frac{dx(t)}{dt}$$
$$\frac{d\theta(t)}{dt} = w_c + k_f x(t)$$

phase modulation

frequency modulation

frequency modulation

Instantaneous Frequency:

$$y(t) = A \cos(\theta(t)) \Rightarrow w_i = \frac{d\theta(t)}{dt}$$

If y(t) is truly sinusoidal:

$$\theta(t) = w_c t + \theta_0 \qquad w_i = w_c$$

Phase Modulation:

$$w_i = \frac{d\theta(t)}{dt} = w_c + k_p \frac{dx(t)}{dt}$$

Frequency Modulation:

$$w_i = \frac{d\theta(t)}{dt} = w_c + k_f x(t)$$

Frequency Modulation with

$$x(t) = A \cos(w_m t)$$

Instantaneous Frequency:

$$w_i(t) = \frac{d\theta(t)}{dt} = w_c + k_f A \cos(w_m t)$$

$$\Rightarrow w_c - k_f A \leq w_i(t) \leq w_c + k_f A$$

$$\Rightarrow \Delta w \stackrel{\triangle}{=} k_f A$$

$$\Rightarrow w_i(t) = w_c + \Delta w \cos(w_m t)$$

$$\frac{x(t)}{y(t)} = A \cos\left(\frac{w_m t}{t}\right)$$

$$y(t) = \cos\left(\theta(t)\right) = \cos\left(\frac{w_c t + \theta_c(t)}{t}\right)$$

$$\frac{d\theta(t)}{dt} = w_c + k_f x(t)$$

$$\Delta w \stackrel{\triangle}{=} k_f A$$

$$\Rightarrow y(t) = \cos\left(\frac{w_c t + k_f \int x(t) dt}{}\right)$$

$$= \cos\left(\frac{w_c t + \frac{\Delta w}{w_m} \sin(w_m t) + \theta_0}{}\right)$$

$$= \cos\left(\frac{w_c t + \frac{\Delta w}{w_m} \sin(w_m t)}{}\right)$$
let $\theta_0 = 0$

- Modulation Index for FM: $m \triangleq \frac{\Delta u}{w_m}$
- Which m is small ⇒ narrowband FM

$$\cos(A + B) = \cos(A)\cos(B) - \sin(A)\sin(B)$$

$$\Rightarrow y(t) = \cos\left(\frac{\mathbf{w_c}t + \mathbf{m}}{\sin(\mathbf{w_m}t)}\right)$$

or
$$y(t) = \cos(w_c t) \cos(m \sin(w_m t)) - \sin(w_c t) \sin(m \sin(w_m t))$$

• When m is sufficiently small ($<< \pi/2$)

if
$$0 < \theta << 1$$

$$\Rightarrow \frac{\cos\left(m\sin(w_mt)\right)}{\sin\left(m\sin(w_mt)\right)} \approx 1 \Rightarrow \frac{\cos\left(m\sin(w_mt)\right)}{\sin\left(m\sin(w_mt)\right)} \approx \frac{1}{m\sin(w_mt)}$$

$$\Rightarrow y(t) \approx \cos\left(\frac{\mathbf{w_c}t}{t}\right) - \frac{\mathbf{m}}{sin(w_m t)} \sin\left(\frac{\mathbf{w_c}t}{t}\right)$$

Approximate spectrum for narrowband FM

$$y(t) \approx \cos\left(\frac{\mathbf{w}_c t}{\mathbf{c}}\right) - \frac{\mathbf{m}}{\mathbf{m}}\sin(\mathbf{w}_m t)\sin\left(\frac{\mathbf{w}_c t}{\mathbf{c}}\right)$$

$$y_2(t) = \cos(w_c t) + m\cos(w_m t)\cos(w_c t)$$

Narrowband FM

AM-Double Sideband/with carrier

Wideband FM:

When m is large

$$y(t) = \cos\left(\frac{w_c t}{c}\right) \cos\left(\frac{m \sin(w_m t)}{c}\right) - \sin\left(\frac{w_c t}{c}\right) \sin\left(\frac{m \sin(w_m t)}{c}\right)$$

Periodic signals with fundamental frequency ω_{m}

Magnitude of Spectrum of Wideband FM:

$$\Delta w \stackrel{\triangle}{=} k_f A$$

$$\cos\left(\frac{\mathbf{w}_{c}t}{\mathbf{c}}\right)\cos\left(\frac{\mathbf{m}}{\mathbf{sin}(w_{m}t)}\right)$$

$$y(t) = \cos\left(\frac{w_c t + m \sin(w_m t)}{m \sin(w_m t)}\right) + \frac{1}{m \sin(w_m t)} + \frac$$

$$\Rightarrow B \approx 2 m w_m = 2 k_f A = 2 \Delta w$$

Periodic Square-Wave Modulating Signal:

$$\Delta w \stackrel{\triangle}{=} k_f A$$

$$m \triangleq \frac{\Delta w}{w_m}$$

$$w_i(t) = w_c + k_f x(t)$$
 $k_f = 1 \Rightarrow \Delta w = A$

$$k_f = 1 \Rightarrow \Delta w = A$$

- When x(t) > 0, $w_i(t) = w_c + \Delta w$
- When x(t) < 0, $w_i(t) = w_c \Delta w$

$$\Rightarrow y(t) = r(t) \cos\left((w_c + \Delta w)t\right) + r\left(t - \frac{T}{2}\right) \cos\left((w_c - \Delta w)t\right)$$

$$\Rightarrow Y(jw) = \frac{1}{2} \left[R \left(jw + jw_c + j\Delta w \right) + R \left(jw - jw_c - j\Delta w \right) \right]$$

$$+ \frac{1}{2} \left[R_T \left(jw + jw_c - j\Delta w \right) + R_T \left(jw - jw_c + j\Delta w \right) \right]$$

$$\frac{R\left(jw\right)}{R\left(jw\right)} = \sum_{k=-\infty}^{\infty} \frac{2}{2k+1} (-1)^k \delta\left(w - \frac{2\pi(2k+1)}{T}\right) + \pi\delta(w)$$

$$R_T\left(jw\right) = R\left(jw\right)e^{-jwT/2}$$

- Complex Exponential & Sinusoidal Amplitude Modulation & Demodulation
- Frequency-Division Multiplexing
- Single-Sideband Sinusoidal Amplitude Modulation
- Amplitude Modulation with a Pulse-Train Carrier
- Pulse-Amplitude Modulation
- Sinusoidal Frequency Modulation
- Discrete-Time Modulation

DT Sinusoidal AM:

- Transmodulation or Transmultiplexing:
 - TDM to FDM

Higher Equivalent Sampling Rate: Up-sampling

