SISTEMAS DIGITAIS DE CONTROLE DISTRIBUIDO - SDCD

Redes industriais

PEDRO URBANO B. DE ALBUQUERQUE

SDCD (Distributed Control Sistem – DCS)

Soluções anteriores

- Single-Loop Controllers
- DDC Direct Digital Controller
 - **SDCD** O melhor dos dois sistemas
 - Controle das funções independentes;
 - Monitorar e ajustar as funções centralizadamente

Exigências do mercado

- Flexibilidade
- Natureza distribuída de muitas Aplicações
- Tempo de resposta não pode ser alcançar com um único processador

7

À medida que os processos controlados se multiplicaram, surgiu a necessidade da operação e do controle se realizarem à distância, e de forma centralizada.

A centralização permite uma visão global de todo o processo e intervenção mais rápida nas operações. Mas como fazer ?

A tecnologia pneumática usa um sinal de pressão de ar (3 ~ 15 psi) como elemento de comunicação entre seus elementos.

Controle Centralizados

Single-Loop Controllers

Painéis de Controle Centralizados

À medida que os controles se tornam mais numerosos aumenta a complexidade das instalações.

SDCD (Distributed Control Sistem – DCS)

8

10.3. COMPARAÇÃO ENTRE OS SISTEMAS DE CONTROLE

10. RESUMO

10.1. HISTÓRICO DA EVOLUÇÃO DAS TECNOLOGIAS DE TRANSMISSÃO NO CHÃO DE FÁBRICA

10.2. EVOLUÇÃO DOS SISTEMAS DE CONTROLE

DDC – controle digital direto

SDCD – sistema digital de controle distribuído

FDC – controle digital fieldbus

EXEMPLO DE SISTEMA DE SUPERVISÃO UTILIZANDO CONTROLADORES SINGLE LOOP E PLC

SISTEMA DE SUPERVISÃO - A VIRTUALIZAÇÃO DOS INSTRUMENTOS

Graças aos Sistemas Supervisórios os microcomputadores são usados como interface homem/máquina configuráveis, tendendo a substituir os painéis de controle.

REDES INDUSTRIAIS

Estrutura de um CIM x SDCD

31/03/16 15

31/03/16

Sistema de Controle centralizado - Barramento paralelo tipo Master/slave

- Aplicações de alta eficiência/confiabilidade
- Multicomputadores centralizados

Sistema de Controle Arquitetura Master/slave

- Mestre(master):
 - OComunicação com os outros níveis
 - OInterpretação dos comandos
 - OSincronização do sistema
 - OCoordenação
 - OCálculos
- Escravo(Slave):
 - OAtuar em tarefas localizadas
 - OProcessamento dos sinais
 - OMedidas
 - OManipular o evento conforme o predeterminado

31/03/16 17

 Controladores com multicomputadores centralizados com hierarquias iguais.

- O Distribuição hierárquica onde a comunicação serial é usada para dialogo entre os níveis alto e baixo
 - Sistema de controle totalmente distribuído onde o controle das tarefas e o sistema físico são descentralizados.

21

O Estrutura de um SDCD com barramento duplo - Redundância

NOÇÕES DE REDES DIGITAIS - LAN

 Compartilhamento de recursos e divisão de tarefas

• Topologias:

- Estrela
- Anel
- Barra
- Árvore

23

Redes - topologias

Tipos de Topologias	Pontos Positivos	Pontos Negativos
Topologia Estrela	 É mais tolerante a falhas Fácil de instalar usuários Monitoramento centralizado Maior taxa de transmissão 	Custo de Instalação maior
Topologia Anel (Token Ring)	 Razoavelmente fácil de instalar Requer menos cabos Desempenho uniforme 	 Se uma estação para, todas param. Os problemas são difíceis de isolar.
Topologia Barramento	 Simples e fácil de instalar Requer menos cabos Fácil de entender 	 A rede fica mais lenta em períodos de uso intenso. Os problemas são difíceis de isolar.
Topologia Arvore	Herda as características de confiabilidade da Topologia em Barra	 Dados trafegando em dois sentidos tornam a transmissão mais complexa Tempo de propagação

O modelo OSI (Open System Interconnection) da ISO (International Standards Organization)

[&]quot;The user application is not defined by the OSI Model.

- Camada Física (1 Physical Layer- Electrical Interconnect) : - Especificações elétricas, mecânicas, funcionais e procedurais. Interface física entre o equipamento e o meio de transmissão.
- Camada de Enlace (2 Data Link Layer Media Access and Framing): - Detecção e correção de erros, controle do fluxo de dados, e controlar o acesso ao meio.
- O Camada de Rede (3 Network Layer- Destination Addressing): Cuida das rotas que os dados devem seguir e controlar o congestionamento dos meios de transmissão quando existirem. Cuida do tráfego e roteamento dos dados na rede.
- Camada de Transporte (4 Transport Layer- End to End Reliability): - Garantir uma transferência de dados segura e econômica entre a origem e o destino.

31/03/16 26

- Camada de Sessão (5 Session Layer- Remote Actions): -Transferência arquivos, sincronização entre máquinas para transferências de dados longas.
- Camada de Apresentação (6 Presentation Layer Data Interpretation): - Ao contrário das camadas inferiores que se preocupavam com a transferência segura dos dados a nível de bits, mas não com o conteúdo desses dados. A camada de apresentação se preocupa com a sua sintaxe. Outras funções que a camada de apresentação pode executar são a criptografia e compressão de dados.
- Camada de Aplicação (7- Application Layer- Application Compatibility): É a camada que mantém o contato com o usuário, quando houver. Essa camada pode trabalhar com protocolos genéricos ou específicos, ficando a cargo da utilização prática dessa máquina. Basicamente, as funções da camada de aplicação são aquelas necessárias à adaptação dos processos de aplicação ao ambiente de comunicação.

Comparação com TCP/IP

Camada	Protocolo	
5-Aplicação	DNS, BitTorrent,	
	SNTP,Telnet, STP, POP3,	OSI (Camadas 5 à 7)
	NNTP, IMAP, Ping, HTTP,	
	SMTP, SSH, RTP	
4-Transporte	DCCP, UDP, SCTP, TCP	OSI (Camadas 4 e 5)
3-Rede	IPSec, ARP, RARP, ICMP,	OSI (Camada 3)
	IP(IPv4, Ipv6)	(
2-Enlace	HDLC, Frame Ralay,	
	Token Ring, FDDI,	
	Ethernet, 802.11 WiFi,	
	IEEE 802.1Q, 802.11g	OSI (Camadas 1 e 2)
1-Física	USB, Modem, RDIS, RS-	
	232, EIA-422, RS-449,	
	Bluetooth	

FIM