

Projet Mécanique

Phase 2: Etude du saut de ravin

Crée par

Groupe Projet N°02

Table des matières

I.	Membres du groupe	3
II.	Objectifs de cette partie	3
III.	Schématisation de la maquette	3
IV.	Modélisation Scilab de la variation de la vitesse Vy durant la chute	. 10
٧.	Modélisation Scilab de la variation de la vitesse Vx durant la chute	. 11
VI.	Modélisation Scilab de la variation de la vitesse sans frottements	. 12
VII.	Modélisation Scilab de la variation de la vitesse avec frottements	. 13

I. Membres du groupe

- ATOUGA II Emmanuel Désiré
- DJISSOU HAPPI Franck Sean
- KUITANG Audrey Michelle
- NKOULOU Joseph Emmanuel
- OLINGA Jean Donald
- TANESSOK Larelle Sandra

II. Objectifs de cette partie

Dans cette partie du projet, nous allons étudier la dernière partie du circuit : le saut de la voiture au-dessus de ravin.

L'objectif est de déterminer la vitesse minimale nécessaire au franchissement du ravin sans encombre. La voiture devra atteindre un point donné K de coordonnées (1m; -0,18m) pour atterrir en toute sécurité.

Les calculs seront effectués sans frottements puis avec les frottements de l'air.

III. Schématisation de la maquette

IV. Résolution de la partie

Projet mécanique (partie 2)

I/ Equation de mouvement de la voiture.

* Sans frottements.

D'après la 2º loi de Newton,

$$\Sigma \vec{F}_{ext} = m \vec{a} \rightarrow \vec{P} = m \vec{a}$$

$$= \vec{P}(\vec{p}) = m \vec{a} (\vec{a})$$

sur (qq') on a: P= ma

on a denc
$$\vec{a} | a_x = 0$$
 = $\vec{V} | v_x = 0$ $v_y = gt$

$$\Rightarrow AB / x = \sqrt{t} (1) \qquad (t \in \mathbb{R})$$

$$y = \frac{9}{2} t^{2} (2)$$

(1) => $t = \frac{x}{v}$ (3)

$$-1 \quad \gamma = \frac{1}{2} g \left(\frac{x^{1}}{V_{o}} \right)$$

l'equation de la trajectoire est donc $y = \frac{1}{2V_0} gx^2$

D'après la 2º loi de Newton;

$$\sum \vec{F}_{ext} = m\vec{a} \implies \vec{P} + \vec{f} = m\vec{a}$$

$$\Rightarrow \vec{P} \mid \vec{p} + \vec{f} \mid -f_{y} = m\vec{a} \mid q_{y}$$

$$\iff m\vec{a} \begin{cases} m a_{x} = -f_{x} \\ m a_{y} = P - f_{y} \end{cases}$$

$$(\Rightarrow) \quad \vec{a} \quad \begin{cases} a_x = -\frac{f}{m} \\ a_y = g - \frac{f_y}{m} \end{cases}$$

$$\vec{V} \begin{cases} V_{\kappa} = -\frac{\kappa}{m} V^{2} \propto V_{k} = -\frac{\kappa}{m} V^{2} + 9 \end{cases}$$

- résolvons l'équation suivant la méthode d'Euler

=
$$\frac{dV_x}{dt} = XV_x^2$$
 et $\frac{dV_y}{dt} = XV_y^2 + y$

$$X = -\frac{0.5 \times 1.225 \times 3 \times 10^{-4} \times 0.04}{0.03} \simeq -2.414 \times 10^{-4}$$

Déterminons la vitesse limite.

$$V_{\infty}^{2} \lim = -\frac{y}{x}$$
 ; $V_{y} \lim = 0$

$$V_{yz} \lim_{x \to \infty} = \sqrt{-\frac{y}{x}}$$
 ; $V_{y} \lim_{x \to \infty} = 0$

$$(=) V \lim_{x \to \infty} \sqrt{V_x^2 \lim_{x \to \infty} + V_y^2 \lim_{x \to \infty}}$$

$$\Rightarrow$$
 V lim = $\sqrt{\frac{mg}{k}}$ \Rightarrow V lim \approx 200,54 m/s

résolvons l'equation.

$$\frac{dt}{dt} = X N_{s}^{4} + \lambda$$

soit dt = sule pas

on a
$$V_{n+4} = V_n + (X V_n^2 + Y) + dt$$

$$= V_{q_a} + (X V_{q_a}^2 + Y) + 4 = q_1 84 m/\Lambda$$

$$= V_{q_a} + (X V_{q_a}^2 + Y) + 4 = 4q_1 5q_1 m/\Lambda$$

résolvons l'equation

on a:
$$\frac{dV_x}{dt} = XV_x^2 ; V_{(t=0)} = V_0$$

(avec Vo la vitene initiale)

$$V_{x_4} = V_{x_6} + (XV_{x_6}^2) + 4$$
 $V_{x_4} = V + (XV_{x_6}^2) + 4$

Déterminons la vitene minimale

* Sans frottements

$$= V_0 = \chi \sqrt{-\frac{9}{84}}$$

Sachant que le ravin est traversé pour

on a AN:
$$V_0 = 1 \times \sqrt{\frac{-9,81}{2 \times (-0,18)}}$$

* Avec frottements
on a
$$\frac{1}{a}$$
 $\left(\begin{array}{c} a_x = -\frac{1}{m}f_x \\ a_y = -\frac{1}{m}f_y + g \end{array}\right)$

lorsque la voiture atteint le ravin; on a $y = -0.18 \, \text{m}$ et $x = 1 \, \text{m}$.

 $V = V \lim_{n \to \infty} avec V_x \lim_{n \to \infty} am/s$ et $V_y \lim_{n \to \infty} accom/s$ donc f est constant.

ainsi, on a:
$$\vec{V}_0 \left(\frac{V_x = -\frac{1}{m} f_x t + V_0}{V_y = \left(g - \frac{f_y}{m} \right) t} \right) t \in \mathbb{R}$$

$$\Rightarrow \overrightarrow{AB} \mid x = -\frac{1}{am} f x t^2 + V_0 t$$

$$y = (g - \frac{1}{m} f y) \frac{t^2}{a}$$

Posons
$$a = g - \frac{f_y}{m}$$
 on $a = \frac{1}{a}at^2$

$$a = 9,52 \, m/s^2$$

l'equation de la trajectoire est: $y = \frac{1}{av_0^2} axe^2$

$$= V_0^2 = \frac{1}{24} \alpha x^2$$

$$= V_0 = x \sqrt{\frac{1}{24} \alpha}$$

$$A N : V_o = 1 \times \sqrt{\frac{q_1 52}{2(-o_1 12)}} = V_o = 5,14 \text{ m/s}$$

Ainsi, on a

- · V avec frottements est de 5,14 m/s
- · V sans frottements est de 5,22 m/s.

V. Modélisation Scilab de la variation de la vitesse Vy durant la chute

```
Code:
clear()
//Definition de la fonction qui represente f(t,y)
function dydt = f(t, y)
  A = -0.000245
  B = 9.81
  dydt(1) = A*y(1)^2 + B;
endfunction
// Definition des condition initiales
y0 = [0];
// Definition du vecteur des instants t où on veut évaluer la solution
ti=0;
tf=60;
t1 =ti:1:tf;
// Appel à la fonction ode pour approcher la solution numérique
y = ode(y0,ti,t1,\underline{f});
//Affichage des résultats
plot(t1,y);
xlabel('Temps (en s)');
ylabel('Vitesse (en m/s)');
legend('Variation de la vitesse Vy');
```

Courbe:

VI. Modélisation Scilab de la variation de la vitesse Vx durant la chute

```
Code:
clear()
//Definition de la fonction qui represente f(t,y)
function dydt = f(t, y)
  A = -0.000245
  B = 9.81
  dydt(1) = A*y(1)^2;
endfunction
// Definition des condition initiales
v0 = [5];
// Definition du vecteur des instants t où on veut évaluer la solution
ti=0;
tf=20;
t1 =ti:1:tf;
// Appel à la fonction ode pour approcher la solution numérique
y = ode(y0,ti,t1,\underline{f});
//Affichage des résultats
plot(t1,y);
xlabel('Temps (en s)');
ylabel('Vitesse (en m/s)');
legend('Variation de la vitesse Vx');
```

Courbe:

VII. Modélisation Scilab de la variation de la vitesse sans frottements

```
Code:
clear
//Definition de la fonction qui represente f(t,y)
function dydt = f(t, y)
  A = -0.000489;
  B = 9.81;
  dydt(1) = A*y(1)^2 + B;
endfunction
// Definition des condition initiales
y0 = [0];
// Definition du vecteur des instants t où on veut évaluer la solution
ti=0;
tf=60;
t1 =ti:1:tf;
// Appel à la fonction ode pour approcher la solution numérique
y = ode(y0,ti,t1,\underline{f});
//Affichage des résultats
plot(t1,y);
xlabel('Temps (en s)');
ylabel('Vitesse (en m/s)');
legend('Variation de la vitesse');
```

Courbe:

VIII. Modélisation Scilab de la variation de la vitesse avec frottements

```
Code:
```

```
clear()
//mouvement de chute avec frottements
g = 9.81;
//valeur de k/m pour cx=0.04
h = 0.000245;
//conditions initiales
xo=0;yo=0;vox=5.14;voy=0;
//equation differentielle
function f=Xprime(t, X)
f(1)=X(3)
f(2)=X(4)
f(3)=-h*sqrt(X(3)^2+X(4)^2)*X(3)
f(4)=-h*sqrt(X(3)^2+X(4)^2)*X(4)-g
endfunction
//valeur initiales de X et de t
Xo=[xo;yo;vox;voy];
```

```
to=0;
//intervalle d'etude et nombre de points de calculs
t=linspace(0,0.200,200);
//Resolution du systeme d'equations differentielles
X=ode(Xo,to,t,Xprime);
//creation d'une fenetre graphique et effacement de son contenu eventuel
scf(1)
clf(1)
//equation de la trajectoire parabolique correspondant aux meme conditions
initiales en ebsence de frottement
y = linspace(0, -0.1, 200)
x = sqrt((-2*y*vox^2)/g);
//Traces des deux courbes dans la fenetre
plot(X(1,:),X(2,:),x,y,'thickness',2)
xgrid()
xlabel('x en mètre','fontsize',3)
vlabel('y en mètre','fontsize',3)
title('Déplacement', 'fontsize', 4)
legend('Avec frottements','Sans frottements')
```

Courbe:

