Sujet 1 – corrigé

Caractéristiques d'un filtre

1. Quatre essais ont été réalisés en laboratoire, à quatre fréquences différentes, avec un filtre d'ordre deux. Sur les quatre oscillogrammes des figures ci-dessous, $s_2(t)$ désigne la tension de sortie du filtre et $s_1(t)$ la tension d'entrée.

Déduire de ces quatre essais la nature du filtre testé, ainsi que ses caractéristiques : sa fréquence propre et son facteur de qualité. Expliciter clairement la démarche.

Réponse:

On détermine pour les trois oscillogrammes la fréquence, le gain et la phase :

- (a) $f = 100 \,\text{Hz}, G = 1.5, \phi = 0$
- (b) $f = 5 \text{ kHz}, G = 2, \phi = 0^-$
- (c) $f = 10 \text{ kHz}, G = 8, \phi = -\pi/2$
- (d) $f = 100 \,\mathrm{kHz}, G = 0.015, \phi = -\pi$

On constate une résonance et un gain à haute fréquence qui est faible. Le filtre est soit un passe-bande, soit un passe-bas. Pour conclure, il faut déterminer la fréquence propre f_0 et comparer la fréquence $f = 100\,\mathrm{Hz}$ à f_0 pour savoir si le premier oscillogramme peut être considéré comme une étude à basse fréquence.

La phase variant de 0 à $-\pi$, la fréquence propre correspond à la phase égale à $-\pi/2$, donc $f_0 = 10 \,\mathrm{kHz}$. Comme $100 \,\mathrm{Hz} \ll f_0$, on peut dire que le gain est non nul à la limite basse fréquence. Le filtre est donc un passe-bas du second ordre.

La fonction de transfert s'écrit :

$$\underline{H}(jx) = \frac{H_0}{1 - x^2 + jx/Q}$$
 avec $x = \frac{\omega}{\omega_0}$

L'expression du gain est :

$$G(x) = \frac{G_0}{\sqrt{(1-x^2)^2 + x^2/Q^2}}$$
 avec $G_0 = 1.5$

On utilise la valeur du gain à f_0 (qui est quasiment la fréquence de résonance si le filtre peut être considéré comme fortement résonant) : $G(f_0) = G_0Q = 8$, soit Q = 5,3.