- 1. Suatu uji coba alat pemeriksaan malnutrisi, didapatkan informasi sebagai berikut:
 - Ada 630 subyek dewasa yang berpartisipasi
 - 325 subyek diprediksi terkena malnutrisi
 - 315 subyek diprediksi tidak terkena malnutrisi
 - Dari 436 subyek yang sebenarnya terkena malnutrisi (+), ternyata 238 subyek berasal dari kelompok yang diprediksi + dan sisanya 198 subyek dari kelompok yang diprediksi (-).

Pertanyaan:

- a. Apabila 40 orang yang tidak terkena malnutrisi diperiksa, maka berapakah rata-rata banyaknya orang yang salah diprediksi menjadi terkena malnutrisi?
- b. Jika terdapat pemeriksaan terhadap 50 orang yang terkena malnutrisi, berapakah rata-rata banyaknya orang yang benar diprediksi terkena malnutrisi?
- c. Jika 100 orang diperiksa, berapakah rata-rata banyaknya orang yang benar diprediksi sesuai dengan keadaan sebenarnya?
- d. Menurut kamu, bagaimana kebaikan prediksi dari alat pemeriksaan malnutrisi tersebut?

		Pemeriksaan		Total
		Malnutrisi	Tidak Malnutrisi	TOtal
Prediksi	Positif	238	87	325
Malnutrisi	Negatif	198	117	315
Total		436	204	640

Hasil Prediksi	Kondi	Total	
	Pos	Neg	Total
Pos	a (TP)	b (FP)	a + b
Neg	c (FN)	d (TN)	c + d
Total	a + c	b + d	a+b+c+d

Bagian a

Menghitung Spesifisitas

0,57352941

Maka rata-rata banyaknya orang yang salah diprediksi menjadi malnutrisi dari 40 orang yang tidak terkena malnutrisi adalah 17 orang

Bagian b

Menghitung Sensitifitas

0.54587156

Maka rata-rata banyaknya orang yang benar diprediksi terkena malnutrisi dari 50 orang yang terkena malnutrisi adalah 22 orang

Bagian c

Menghitung Akurasi

0,5546875

Maka rata-rata banyaknya orang yang benar diprediksi sesuai dengan keadaan sebenarnya dari 100 orang yang diperiksa

adalah

44 orang

Bagian d

Menghitung Presisi

0,73230769

Jika kita melihat pada nilai Spesifisitas, Sensitifitas, dan Akurasinya. Maka kita melihat bahwa semua nilainya dibawah 60%. Ini tidak terlalu bagus. Namun jika kita melihat nilai dari Presisi nya. Maka kita melihat bahwa nilainya ini cukup baik, yakni diatas 70%.

Jadi menurut saya, kebaikan presdiksi dari alat pemeriksaan malnutrisi nya cukup baik.

2. Tabel berikut menunjukkan sampel dari 178 pengguna kacamata dengan klasifikasi jenis kelamin dan usia ketika mereka pertama kali memakai kacamata. Apakah data menyatakan bahwa jenis kelamin dan umur ketika memakai kacamata pertama kali tidak independen? ($\alpha=0.05$)

		Jenis Kelamin		T-4-1
		Laki-laki	Perempuan	Total
Usia saat	< 15	2	8	10
memakai kacamata	15 - 19	38	93	131
	≥ 20	22	15	37
Total		62	116	178

1. Hipotesis

HO: Jenis kelamin dengan umur saling bebas.

H1: Jenis kelamin dengan umur tidak saling bebas.

2. Statistik Uji

$$\chi^2 = \sum_{i=1}^r \frac{(O_i - E_i)^2}{E_i}$$

 $E_i = np_i \qquad p_i$

		Usia saat memakai kacamata			Total
		< 15	15 - 19	>= 20	TOLAI
	Laki	2	38	22	62
Jenis	E	3,48315	45,6292135	12,88764	
Kelamin	Pr	8	93	15	116
	E	6,51685	85,3707865	24,11236	
Total		10	131	37	178

alpha	0,05
r	3

|--|

(Oi-Ei)^2/Ei					
Laki	0,63153	1,275606	6,443002		
Pr	0.33754	0.68178941	3.443674		

Keputusan

 $X^2 > X^2(r-1)$ Tolak H0

Artinya cukup bukti untuk menyatakan Jenis kelamin dengan umur **tidak** saling bebas.

- 3. Misalkan 50% semangka yang ditanam di lahan pertanian diklasifikasikan sebagai besar, 30% sedang, dan 20% kecil. Seseorang membeli lima semangka secara acak dari pertanian ini. Berapa peluang bahwa:
 - a. Dua diantaranya besar, dua sedang dan satu kecil;
 - b. Tiga diantaranya semangka berukuran sedang

P(b)	0,5
P(s)	0,3
P(k)	0,2

Bagian a

Peulang Dua diantaranya besar, dua sedang, dan satu kecil $P(2,2,1) = FACT(5) / (FACT(2) * FACT(2) * FACT(1)) * P(b)^2 * P(s)^2 * P(k)^1 0,135$

Bagian b

Peulang tiga diantaranya semangka berukuran sedang P(S=3) = FACT(5) / (FACT(3) * FACT(2)) * P(s)^3 * (1-P(s))^2 0,1323