MODULE 1 Analyzing Network Protocols With Wireshark

Packet that Matters:

Best way to begin capturing network traffic is collecting our analysis on a span mirror port on a switch near the client.

This will help to keep the traffic flowing and to avoid the traffic being captured by the switch hence making it smaller and easier to analyze.

Another way to create a smaller haystack is to filter the captured traffic to only the traffic that is relevant to the analysis.

We create custom columns, protocols, and custom filters to help us analyze the traffic.

Also saving protocol filterings as button for the quick access to those filters.

Core Protocols

Under the application data there are:

- UDP
- TCP
- IPV4
- IPV6
- ARP
- ICMP
- DNS
- TLS

Custom Profiles

Right click on down right on profile and select "New" and then create the custom profile.

After creating a new profile: go to edit and preferences to start customizing the profile.

Right of the bat: adding Delta time to the profile as title delta and type Delta time displayed to show the time difference between the packets.

Another way is to right click on any value down and click add as column to add the value as a column.

Creating and Saving buttons.

There are some filters that you keep using but you dont want to keep writing them. For example tcp.flags.syn==1 which is the syn=1 flag where the communication starts.

in order to add it as button, I write this on the filter box and click on + to add it as a button.

it is also important to colorize the packets in order to create the visibility. view==>colouring rules, then write the filter you want to filter (like regex) and then do not forget to enable it. Also change the importance level by dragging up and down in the list.

PROTOCOLS IN DETAIL

1- ARP

NOTE THAT ARP does not resolve IPV6 addresses. Meaning IPv6 does not use ARP. IPV6 uses NDP(Neighbor Discovery Protocol) to resolve the addresses which replaces ARP.

Address Resolution Protocol (ARP) is a protocol used to resolve the MAC address of a host. meaning, it bridges the gap between layer 2 and layer 3.

ARP ne ise yarar nasil calisir?

Bir packet gonderecegin zaman, header olusturmak icin destination IP ve MAC address ihtiyacin var. sen baslangicta kendi IP ve mac adresini biliyorsun, bir de serverinkini.

Target'in MAC adresini bulmak icin ARP kullanilir. ilk once local arp cache'e bakar. eger varsa direkt cevap verir. eger yoksa arp request gonderir. Networke bunu broadcast olarak gonderir.

Bu broadcast domain icindeki devices will take this up, will check the IP address that is being resolved and will build and send a reply with its own mac address as the source mac address.

Yani aslida soyle:

18 numarali bilet kimde ogrenmek istiyorsun. Elindeki listede varsa zaten sorun yok, yoksa ortaliga bagiriyorsun 18 numarali bilet kimdee yani what is the mac address for this IP address?

Herkes biletine bakip benimki x, benimki Y diye cevap veriyor.

Sen de sonunda ogrenmis oluyorsun ve header'i yaratip gonderiyorsun.

==> Arp requests are broadcasted to the network but responses are unicasted to the sender.

You check the ARP protocol if you see:

- Problems connecting to an application
- · intermittent connectivity.
- Unicast flooding.

If the destination is visible (like Apple or Google,) it means that the destionation was on the Arp Cache already so it is not broadcasted but unicasted.

Hands on Demo:

**Lets disect a ARP request: **

```
Address Resolution Protocol (request)
Hardware type: Ethernet (1)
Protocol type: IPv4 (0x0800)
Hardware size: 6
Protocol size: 4
Opcode: request (1)
Sender MAC address: BelkinIn_9d:02:73 (94:10:3e:9d:02:73)
Sender IP address: 192.168.10.1
Target MAC address: 00:00:00_00:00:00 (00:00:00:00:00:00)
Target IP address: 192.168.10.108
```

- Hardware type = Ethernet
- Protocol type = IPv4 Meaanign trying to resolve a mac address to IP address.
- Opcode = 1 meaning request
- Target MAC address: 00:00:00_00:00:00 (00:00:00:00:00) so this is the information that is missing and being looked for. 00:00:00... means that the target mac address is not known.
- Target IP address: 192.168.10.108 is the IP address that is being looked for.

Now lets look at the ARP Response to this request:

```
Address Resolution Protocol (reply)

Hardware type: Ethernet (1)

Protocol type: IPv4 (0x0800)

Hardware size: 6

Protocol size: 4

Opcode: reply (2)

Sender MAC address: Apple_e7:ce:6d (a4:5e:60:e7:ce:6d)

Sender IP address: 192.168.10.108

Target MAC address: BelkinIn_9d:02:73 (94:10:3e:9d:02:73)

Target IP address: 192.168.10.1
```

- Opcode = 2 meaning reply
- Sender MAC address: Apple_e7:ce:6d (a4:5e:60:e7:ce:6d) so this is the mac address of the sender which was missing.
- Sender IP address: 192.168.10.108

As you can see, sender and target IP addresses match, so the ARP reply is valid and MAC address is resolved.

In some cases we see some weird ARP requests that sends requests for entire network. like couple hundred or maybe more limited or less limited numbers of ARP requests.

This could be and indicator to an attack.

The first thing to do is to check the IP origin of the ARP request. For that end, I will create a ARP profile in the wireshark.

as a new coulumn, I will add the opcode field which will filter requests and responds. that would be interesting in this case to see if there is any active subnets and actualy any response.

Here is the filter: arp.opcode==2 This will show all the packets that responded to the requests.

Another very interesting filter is arp.isgratuitous which means that we are looking for arps that are gratuitous either as requests or replies. Grattuitous means that the sender and target mac addresses are the same. Meaning sending its own IP and Mac address which means advertising itself.

Once we know that all is fine, we can remove any protocol that is not needed in the trace. For a protocol to be removed we use !{protocolName} like !arp.

2- IPv4, IPv6 ve ICMP

Unlike ethernet, IP is a end to end protocol not a point to point protocol.

192.168.1.8 is an IP address, 255.255.0 is a subnet.

IP header holds the information about the packet like version, header length, DSCP(Differentiated Services Code Point), ECN(Explicit Congestion Notification), total length and so forth. Many of the times we will be dealing with DSCP part of it to troubleshoot where markings for the packet prioritizing is made.

Another important part is total length whici is the total amount of encapsulated packet including the header itself.

Next is the identification field which is used to identify the packet, it is either randomized or sequential which is used to uniquely id a packet from a station.

Helps figure out whether a packet is duplicated or not, and also help track application traffic behind a load balancer.

flags field helps to understand whether the packet is a fragment or not. or fragmentation is allowed or not.

Time to Live layer helps to see how many routers/or layer 3 switches a packet has hopped through on its way to destination.

Protocol field shows which protocol is coming next in the data payload. It could be TCP, ICMP, or other.

IP Fragmentation

Sometimes there is so much data that it is not possible to send it in a single packet.

Lets assume you are sending a data of 1500 bytes. But VPN tunnel has MTU 1400 bytes and rest is reserved for encapsulation. As long as the data is less than MTU, it can be sent in a single packet but if it is greater than that, flags field will be checked. If the flags are set to MF then it means that the packet is fragmented and needs to be sent in multiple packets(called fragments). Each fragment then holds in their header field on how to reassamble the packet.

Sometimes, like in encrypted traffic, the packet does not want to be intercepted or dissected.

If packet size is big and MTU is lower than that, and also do not fragment is set, then router will send an ICMP error message to the sender saying it cannot pass the packet.

TTL

For example when you ping to someplace, it gives you the TTL number.(like 51)

TTL is not a function of time, it is a decrementing counter!!. As the packet travels through the network, each router decrements the counter by 1. If the number is reduced to 0, meaning the packet has reached the destination, it will be dropped and ICMP error message will be sent back to the sender.

This works in both directions in the same manner. This way, we can estimate how many routers are there in the network.

These days TTL starts either at 255(cisco/solaris), or 128(windows), or 64(linux)

Understanding IP TTL

Questions based on a Pcap file(IP TTL)

1. How many unique IP stations are transmitting in this trace file?

go to statistics==>endpoints tab and do not count them manually!

• 2. How many unique IP conversations are there in this trace file?

go to statistics ==> converstaions and do not count them manually!

• 3. What conversation is the busiest? (By bytes)

in statistics ==> conversations, sort them by bytes. (104.17.208.240=192.168.10.108) was the busiest.

• 4.Set a filter for the conversations including address 104.19.162.127. How many packets match that filter?

set the filter ip. addr==104.19.162.127 and on the lower right side is the visible.

5 What side of the conversation was this trace file captured on? Client or server? How can you tell?

we loook at the info column, source and destination columns.

they generally give an idea based on the ports (lets say destination port is 80, then it is a client side conversation)

A robust check would be to check the first packet, and take a look at the IP TTL. in my case, it is 64. The reason for picking the FIRST packet is to capture the iunitial value of TTL becasue a random packet with TTL 64 or say 50 could belong to any possible TTLs of 255,128,64 but the first packet's ttl will give the initial counter number.

Then I check a packet on the opposite direction(source,destionation places are changed.) then I see TTL is 51. This tells me that the SERVER is 13 HOPS AWAY!! `

because initial counter - current number = 13.

I know this is captured from client side.

REason 1: I dont have routing packets on the outbound direction. REason 2: I do see coming back packets from the server.

Another way to know is to look at the delta time.

Inbound and outbound packets for the same IP alinir. aralarindaki delta time'a bakilir ki bu bizim ornekte 0.46ms. bu kisa bir sure. Sonra 2. packet'in infosuna bakilir. infoda [SYN, ACK] yaziyor. bu da clientta oldugumuzu gosteritor.

6. Is there any prioritization in traffic coming from the server? What priority marking is used?

I pick a packet coming from the server, open the Differentiated Services Codepoint and check if any marking. in my case, there was the marking Assured Forwarding 11 so it says the packet is not going to be intercepted and dropped.

7. What IP flags are set on traffic coming from the server?

again, pick a packet coming from the server and open the Flags section. in my case it is 0×4000 which means Don't Fragment

• 8 Is the client using incrementing IP Identification numbers? or is it randomizing them? Pick 2 client packets coming one after another and check the identification in both of them. if the numbers are consecutive, then it is incrementing. if not, then it is random.

IP Fragmentation in action

I can use a filter and filter out all the packets with size 1500 and above. once filtered, in the infor section of the packet wireshark will say Fragmented IP protocol. Once I open the packet and check the **DSCP** field, it is set to 0000 00. More importantly, in the Flags segment, the flag set is more fragments meaning although the size of this packet is 1500, more packets are to follow.

Fragment offset field gives me the place of the packet in the total packet. (in my case was 0 meaning the first fragment.)

This is all possible due to do not fragment flag.

ICMP

Internet Message Control Protocol is a messaging suite used to send error messages to the sender. Used by both endpoints and infrastructire.

- outages
- network problems,
- routing problems
- port unreachable/ unavailable and more.

You send a SYN packet to server. Gateway is problematic and does not have a route to destination network. So it sends an ICMP error message (Destination Unreachable) to the sender.

Another way ICMP is used is during fragmenting a packet. Lets say ytou are sending a packet of 1500 bytes BUT flag says Do not fragment however MTU on the router is 1400 so it NEEDs to dissect the packet but it CANT. so it will reply with an ICMP error message(Destionation Unreachable Fragmentation Needed).

An ICMP packet:

```
Internet Control Message Protocol
   **Type: 8 (Echo (ping) request)**
Code: 0
Checksum: 0xe275 [correct]
[Checksum Status: Good]
Identifier (BE): 34209 (0x85a1)
Identifier (LE): 41349 (0xa185)
Sequence number (BE): 0 (0x0000)
Sequence number (LE): 0 (0x0000)
[No response seen]
Timestamp from icmp data: Oct 28, 2019 22:00:31.237036000 +03
[Timestamp from icmp data (relative): 0.000056000 seconds]
Data (1592 bytes)
```

Some ICMP types:

- 0: Echo reply
- 3: Destination unreachable
- 5: Redirect
- 8: Echo request
- 11: Time exceeded(TTL Exceeded)
- 12: Parameter problem
- 30: Traceroute

Undear each type are codes that correspond(for gfiving more detailed error.)

LEts say the types is 3, Destination Unreachable. These are the possible codes:

- 0: Network unreachable
- 1: Host unreachable
- 2: Protocol unreachable
- 3: Port unreachable
- 4: Fragmentation required/ DF set
- 9: Network administratively prohibited

Let's go over some ICMP questions:

- 1 How many ICMP packets are in this trace file? go to display filter, write icmp and check the number down the right side.
- 2 What is the Type of ICMP message?

pick the icmp packet and under ICMP, you see the type and code.

• 3 What is the code value?

CODE:3 ==> so it is 3 and Port Unreachable.

So that packet went aalll the way through the network, hit the destionation but the port was not open.

• 4 What is the source IP of the sending station of these packets?

in the Source segment of the packet, it is available.

5 Why is this(with code 3) ICMP message being sent? Is something broken? If so, what?

we go above the first error opcoded ICMP packet and see the network traffic. in my case, there were 2 requests were made in sub-milisecond to same website on different IP addresses. one was successfully resolved whereas other gave the error. since the dirst one was successful, the other one was not needed anyways and was dropped.

One another way is to look ath the returned ICMP packet itself. nice thing about ICMP is that it shows the packet that triggered the error. check below:

```
User Datagram Protocol, Src Port: 53, Dst Port: 39550
```

so this informatiuon actually says that you TRIED to reach port 39550 but it was not open so here is the error.

6. Will the user experience any application problems from this behavior?

If there wasnt a subsequent successful connection, then the user would experience a problem.

IPv6