Dimensionality Reduction and Visualization Exercise set 11 Solutions

Md. Abdullah-Al Mamun

Part G: Neighbor Embedding Problem G1: Stochastic Neighbor Embedding and t-distributed Stochastic Neighbor Embedding

The output for "iris" dataset is shown below:

head(swiss_unique)

		У	
[1,]	-0.9925339	23.156791	-10.859162
$[2,\bar{]}$	5.1205493	2.782585	-2.714777
[3,]	9.5726879	8.819880	-7.114902
[4,]	-8.7575503	4.845060	2.602120
[5,]	4.6661283	22.004261	5.406976
[6,]	2.2773518	6.677323	-4.639909

The output for "Swissroll" dataset is shown below:

The output for "Openbox" dataset is shown below:

Index

G1

In []:

```
data1 <- read.delim(file.choose(), header = TRUE, sep="", skip=2, as.is=TRUE)</pre>
library(tsne)
library(Rtsne)
iris_unique <- unique(iris) # Remove duplicates</pre>
set.seed(100) # Sets seed for reproducibility
tsne_out <- Rtsne(as.matrix(iris_unique[,1:4])) # Run TSNE</pre>
plot(tsne_out$Y,col=iris$Species) # Plot the result
#dim(iris)
swiss_unique <- unique(swiss_data) # Remove duplicates</pre>
set.seed(111) # Sets seed for reproducibility
head(swiss unique)
tsne out swiss <- Rtsne(as.matrix(swiss data)) # Run TSNE
plot(tsne_out_swiss$Y, col="red") # Plot the result
a<- read.delim(file.choose(), header = TRUE, sep="", skip=2, as.is=TRUE)</pre>
open_unique <- unique(a) # Remove duplicates</pre>
set.seed(11) # Sets seed for reproducibility
#head(swiss_unique)
tsne out open <- Rtsne(as.matrix(open unique)) # Run TSNE
plot(tsne_out_open$Y, col="blue") # Plot the result
```