แบบเสนอโครงการ เพื่อขอรับการสนับสนุนจากกองทุนเพื่อการวิจัย ประเภทโครงการส่งเสริมสิ่งประดิษฐ์และนวัตกรรมเพื่อคนรุ่นใหม่ ประจำปังบประมาณ พ.ศ. 2568 คณะ วิทยาศาสตร์และเทคโนโลยี

ก. ชื่อโครงการ (ภาษาไทย) ระบบคาดการณ์การปลูกพืชตามปัจจัยสภาพแวดล้อม
 (ภาษาอังกฤษ) Crop prediction system based on environmental factors

ข. ส่วนประกอบโครงการ

1. ผู้รับผิดชอบ และหน้าที่ของบุคลากรที่เข้าร่วมโครงการ

ชื่อ-สกุล	ตำแหน่งในโครงการ	ภาระความรับผิดชอบในโครงการ
(นาย, นาง, นางสาว)		
นายธนภัทร ชาญชาตรีรัตน์	หัวหน้าโครงการ	พัฒนาแอพ / ออกแบบ
นายวรวิทย์ เกิดสุข	ผู้ร่วมโครงการ	ศึกษาข้อมูล / ออกแบบ
นายพชระ ป้อมป้องภัย	ผู้ร่วมโครงการ	ศึกษาข้อมูล / รายงานนำเสนอ
นางสาวณิชมน ทิมทอง	ผู้ร่วมโครงการ	ศึกษาข้อมูล / ออกแบบ
นางสาวฐานิดา สุขใส	ผู้ร่วมโครงการ	ศึกษาข้อมูล / รายงานนำเสนอ
นางสาวสุภิสรา ช่อไม้ทอง	ผู้ร่วมโครงการ	ศึกษาข้อมูล / รายงานนำเสนอ

2. ความสำคัญและที่มาของปัญหาที่ทำการวิจัย

การเกษตรเป็นปัจจัยสำคัญต่อเศรษฐกิจและความมั่นคงทางอาหารของประเทศ ปัจจัยสภาพแวดล้อม เช่น อุณหภูมิ ปริมาณน้ำฝน ความชื้นในดิน และสภาพอากาศที่เปลี่ยนแปลงไปตามฤดูกาล มีผลกระทบ โดยตรงต่อการเจริญเติบโตของพืช หากเกษตรกรไม่มีข้อมูลที่เพียงพอในการวางแผนเพาะปลูก อาจส่งผลให้ ผลผลิตลดลง ต้นทุนเพิ่มขึ้น และความสูญเสียทางเศรษฐกิจ งานวิจัยนี้จึงมุ่งพัฒนาระบบคาดการณ์การปลูก พืชโดยใช้ข้อมูลจากปัจจัยสภาพแวดล้อมต่างๆ เพื่อนำเสนอแนวทางที่เหมาะสมสำหรับการเพาะปลูกพืชในแต่ ละพื้นที่ ระบบดังกล่าวจะช่วยเพิ่มโอกาสในการผลิตที่มีประสิทธิภาพ ลดความเสี่ยงจากภัยธรรมชาติ และช่วย ให้เกษตรกรสามารถปรับตัวต่อการเปลี่ยนแปลงของสภาพอากาศและสภาวะแวดล้อมได้ดียิ่งขึ้น นอกจากนี้ยัง ช่วยสร้างความยั่งยืนให้กับภาคการเกษตรในระยะยาว

3. วัตถุประสงค์โครงการ

- 3.1 เพื่อสามารถสร้างความสะดวกให้แก่ชาวเกษตรกรในการศึกษาข้อมูลของพืชผลต่างๆ
- 3.2 พัฒนาเครื่องมือหรือแพลตฟอร์มที่ใช้งานง่าย เพื่อให้เกษตรกรสามารถเข้าถึงข้อมูล คำแนะนำ เกี่ยวกับการปลูกพืชได้สะดวกผ่านเว็บไซต์หรือแอปพลิเคชัน

- 3.3 ลดความเสี่ยง โดยใช้เทคโนโลยีการวิเคราะห์ข้อมูลและปัญญาประดิษฐ์ (AI) เพื่อช่วยให้การ ตัดสินใจเกี่ยวกับการปลูกพืชมีประสิทธิภาพมากขึ้น
- 3.4 ส่งเสริมแนวคิดเกษตรอัจฉริยะ เพื่อให้เกษตรกรสามารถปรับตัวให้เข้ากับการเปลี่ยนแปลงของ สภาพภูมิอากาศ

4. ขอบเขตของโครงการ

- 4.1 ระบบใช้ Machine Learning (ML) หรือ AI ในการคาดการณ์พืชที่เหมาะสมกับสภาพแวดล้อม
- 4.2 พัฒนาเป็นเว็บแอปพลิเคชันหรือแอปพลิเคชันมือถือ เพื่อให้เกษตรกรสามารถเข้าถึงได้ง่าย
- 4.3 ระบบต้องสามารถประมวลผลและแสดงผลข้อมูลในรูปแบบที่เข้าใจง่าย เช่น กราฟ แผนที่ หรือ คำแนะนำ
 - 4.4 กลุ่มเป้าหมายหลักคือ เกษตรกรและผู้ที่ต้องการวางแผนเพาะปลูก
 - 4.5 รองรับผู้ใช้ทั่วไปที่สนใจด้านการเกษตรและต้องการข้อมูลเกี่ยวกับการปลูกพืช

5. การทบทวนวรรณกรรมที่เกี่ยวข้อง

5.1 **Decision Tree** เป็นอัลกอริธึมที่ใช้สำหรับการเรียนรู้ของเครื่อง (Machine Learning) โดยเป็น โครงสร้างลำดับชั้นที่ใช้หลักการของการแยกข้อมูล (Splitting) ออกเป็นกลุ่มย่อย ๆ เพื่อทำการ ตัดสินใจที่ดีที่สุด

องค์ประกอบของ Decision Tree

- Root Node (โหนดราก)เป็นโหนดแรกสุดของต้นไม้ ใช้เป็นจุดเริ่มต้นในการแบ่งข้อมูล
- Internal Nodes (โหนดภายใน)เป็นโหนดที่ใช้เกณฑ์ (Criteria) ในการแบ่งข้อมูล ออกเป็นกลุ่มย่อย ๆ
- Branches (กิ่ง)แสดงเงื่อนไขที่ใช้ในการแบ่งข้อมูลจากโหนดหนึ่งไปยังโหนดถัดไป
- Leaf Nodes (โหนดใบไม้) เป็นโหนดปลายสุดที่ให้ผลลัพธ์ของการตัดสินใจ เช่น การจัด ประเภท (Classification) หรือ ค่าที่คาดการณ์ (Regression)

การทำงานของ Decision Tree

- เลือก Feature และเงื่อนไขที่ดีที่สุดใช้วิธีการวัดค่า เช่น Gini Impurity หรือ Entropy สำหรับปัญหาจำแนกประเภท (Classification), Mean Squared Error (MSE) สำหรับ ปัญหาพยากรณ์ค่า (Regression)
- แบ่งข้อมูลตามเงื่อนไขที่เลือก แยกข้อมูลออกเป็น 2 หรือมากกว่าสองกลุ่มตามเงื่อนไข
- ทำซ้ำกระบวนการนี้จนกว่าจะถึงเงื่อนไขหยุด เช่น ไม่มีข้อมูลให้แบ่งอีก หรือ ต้นไม้ลึก เกินไป
- 5.2 **Python** เป็นภาษาการเขียนโปรแกรมที่ใช้อย่างแพร่หลายในเว็บแอปพลิเคชัน การพัฒนา ซอฟต์แวร์ วิทยาศาสตร์ข้อมูล และแมชชีนเลิร์นนิง (ML) นักพัฒนาใช้ Python เนื่องจากมี ประสิทธิภาพ เรียนรู้ง่าย และสามารถทำงานบนแพลตฟอร์มต่างๆ ได้มากมาย ทั้งนี้ซอฟต์แวร์

Python สามารถดาวน์โหลดได้ฟรี ผสานการทำงานร่วมกับระบบทุกประเภท และเพิ่มความเร็วใน การพัฒนา

5.3 Streamlit เป็นเครื่องมือพัฒนาเว็บแอปพลิเคชันแบบโอเพ่นซอร์สที่ทรงพลัง ซึ่งใช้ภาษา Python เพื่อให้การสร้างแอปที่เกี่ยวข้องกับข้อมูลและการเรียนรู้ของเครื่อง (Machine Learning) เป็นเรื่อง ง่าย รวดเร็ว และไม่ซับซ้อน การเรียกใช้งาน Library ต่างๆ ทำได้อย่างสะดวกสบาย โดยเฉพาะ อย่างยิ่งสำหรับนักพัฒนาหรือ Data Scientist / Analyst ที่ต้องการสร้างแอปเพื่อแสดงผลข้อมูล หรือโมเดลการวิเคราะห์ต่างๆ โดยไม่ต้องเสียเวลาไปกับการพัฒนาส่วน Frontend ที่ยุ่งยาก

6. เอกสารอ้างอิงของโครงการ

- [1] การใช้แบบจำลองการปลูกพืช DSSAT เพื่อประเมินผลิตภาพดินที่ใช้ปลูกอ้อยในจังหวัดสระแก้ว https://li01.tci-thaijo.org/index.php/ASJ/article/view/250805
- [2] การใช้ Machine Learning ในการวิเคราะห์สภาพแวดล้อมการปลูกพืช

https://www.speedyaccess.co.th/%E0%B8%A3%E0%B8%B2%E0%B8%A2%E0%B8%A5
%E0%B8%B0%E0%B9%80%E0%B8%AD%E0%B8%B5%E0%B8%A2%E0%B8%94/%E0%B8%81
%E0%B8%B2%E0%B8%A3%E0%B9%83%E0%B8%8A%E0%B9%89_Und_Machine_Und_Learni
ng_Und_%E0%B9%83%E0%B8%99%E0%B8%81%E0%B8%B2%E0%B8%A3%E0%B8%A7%E0
%B8%B4%E0%B9%80%E0%B8%84%E0%B8%A3%E0%B8%B2%E0%B8%B0%E0%B8%AB%E0
%B9%8C%E0%B8%AA%E0%B8%A0%E0%B8%B2%E0%B8%9E%E0%B9%81%E0%B8%A7%E0
%B8%94%E0%B8%A5%E0%B9%89%E0%B8%AD%E0%B8%A1%E0%B8%81%E0%B8%B2%E0
%B8%A3%E0%B8%9B%E0%B8%A5%E0%B8%B9%E0%B8%81%E0%B8%9E%E0%B8%B7%E0
%B8%A3%E0%B8%9B%E0%B8%A5%E0%B8%B9%E0%B8%81%E0%B8%9E%E0%B8%B7%E0
%B8%A3%E0%B8%9B%E0%B8%A5%E0%B8%B9%E0%B8%81%E0%B8%9E%E0%B8%B7%E0
%B8%A3%E0%B8%9B%E0%B8%A5%E0%B8%B9%E0%B8%81%E0%B8%9E%E0%B8%B7%E0
%B8%A3%E0%B8%9B%E0%B8%A5%E0%B8%B9%E0%B8%81%E0%B8%9E%E0%B8%B7%E0
%B8%A3%E0%B8%9B%E0%B8%A5%E0%B8%B9%E0%B8%81%E0%B8%9E%E0%B8%B7%E0

[3] Predictive Farming Platform แพลตฟอร์มคาดการณ์ผลผลิตทางการเกษตรไทยทั้งประเทศ https://www.nectec.or.th/news/news-article/predictive-

farming.html?utm_source=chatgpt.com

- [4] การวิเคราะห์พฤติกรรมการตัดสินใจปลูกพืชของเกษตรกร ภายใต้การเปลี่ยนแปลงสภาพภูมิอากาศ https://www.royalrain.go.th/UploadFile/09002825670618.pdf?utm_source=chatgpt.com
- [5] ระบบรายงานสภาวะแวดล้อมในแปลงเกษตรกรรมด้วยเครือข่ายเซ็นเซอร์ไร้สายแบบแอนดรอยด์ต้นทุนต่ำ http://sutir.sut.ac.th:8080/jspui/bitstream/123456789/7428/2/Fulltext.pdf

7. ประโยชน์ที่คาดว่าจะได้รับ

- 7.1 เพิ่มประสิทธิภาพในการเพาะปลูก
- 7.2 ลดต้นทุนและเพิ่มผลผลิต
- 7.3 คาดการณ์สภาพแวดล้อมและลดความเสี่ยงจากภัยธรรมชาติ
- 7.4 สนับสนุนเกษตรกรให้ใช้เทคโนโลยีในการตัดสินใจ
- 7.5 ลดผลกระทบต่อสิ่งแวดล้อม

8. ขั้นตอนการดำเนินงาน

- 8.1 ศึกษาและวิเคราะห์ความต้องการของระบบ
- 8.2 ออกแบบระบบและเลือกเทคโนโลยีที่ใช้สำหรับพัฒนาเว็บแอป
- 8.3 พัฒนาเว็บแอปพลิเคชัน
- 8.4 ทดสอบและปรับปรุงระบบ
- 8.5 สรุปผลและรวบรวมข้อมูลการทำโครงการ การดำเนินการ ผลการทดสอบ ขยายขอบเขตของ โครงการ

9. แผนการดำเนินงาน

กิจกรรม		ปิงบประมาณ เดือน มกราคม								
		24	25	26	27	28	29	30	31	
1. ศึกษาและวิเคราะห์ความต้องการของระบบ										
2. ออกแบบระบบและเลือกเทคโนโลยีที่ใช้										
สำหรับพัฒนาเว็บแอป										
3. พัฒนาเว็บแอปพลิเคชัน										
4. ทดสอบและปรับปรุงระบบ										
5. สรุปผลและรวบรวมข้อมูลการทำโครงการ										
การดำเนินการ ผลการทดสอบ ขยาย										
ขอบเขตของโครงการ										

10. **งบประมาณของโครงการ** แสดงรายละเอียดโดยจำแนกตามประเภท และแจกแจงรายละเอียดประเภท งบประมาณต่าง ๆ ให้ชัดเจน

รายการ	จำนวนเงิน (บาท)
1. ค่า API	ฟรี
2. ค่าไฟ	350
รวมงบประมาณที่เสนอขอ	350

11. ผลสำเร็จที่ได้

11.1 ระบบสามารถใช้ Machine Learning (ML) และ AI วิเคราะห์ข้อมูลสภาพแวดล้อม เช่น อุณหภูมิ ปริมาณน้ำฝน ความชื้น และคุณภาพดิน เพื่อแนะนำพืชที่เหมาะสมกับแต่ละพื้นที่

- 11.2 ความแม่นยำของการคาดการณ์พืชที่เหมาะสม โมเดล AI และ Deep Learning (CNN, LSTM) สามารถเรียนรู้และวิเคราะห์ข้อมูลเพื่อให้ผลการคาดการณ์ที่แม่นยำขึ้น ลดความเสี่ยงจากการปลูกพืชที่ไม่ เหมาะสมกับสภาพแวดล้อม
- 11.3 การลดต้นทุนและเพิ่มผลผลิตของเกษตรกร เกษตรกรสามารถใช้ข้อมูลจากระบบเพื่อลดการใช้ ทรัพยากรอย่างสิ้นเปลือง เช่น น้ำ ปุ๋ย และสารเคมี ลดผลกระทบทางสิ่งแวดล้อมจากการทำเกษตรแบบดั้งเดิม
- 11.4 ด้วยข้อมูลที่แม่นยำระบบช่วยลดการใช้สารเคมีที่ไม่จำเป็น ทำให้เกิดการทำเกษตรที่ยั่งยืนมาก ขึ้นลดมลพิษทางน้ำและดิน จากการใช้ปุ๋ยและยาฆ่าแมลงที่เกินความจำเป็น

12. คำชี้แจงอื่นๆ (ถ้ามี)

- ไม่มี

13. ลายมือชื่อของหัวหน้าโครงการ ผู้ร่วมโครงการ อาจารย์ที่ปรึกษา

(ลงชื่อ)	(ลงชื่อ)
()	()
หัวหน้าโครงการ	ผู้ร่วมโครงการ
วันที่เดือนพ.ศ. พ.ศ.	วันที่เดือนพ.ศ. พ.ศ.
(ลงชื่อ)	(ลงชื่อ)
()	()
ผู้ร่วมโครงการ	ผู้ร่วมโครงการ
วันที่เดือนพ.ศ. พ.ศ.	วันที่เดือนพ.ศ. พ.ศ
(ลงชื่อ)	(ลงชื่อ)
()	()
ผู้ร่วมโครงการ	ผู้ร่วมโครงการ
้ วันที่ เดือน พ.ศ	้ วันที่ เดือน พ.ศ