Part III Combinatorics

Based on lectures by Prof B. Bollobás

Michaelmas 2016 University of Cambridge

Contents

1	Introduction	1
2	Sperner Systems	2

1 Introduction

Let X, Y, \ldots be sets

Definition. We call $A \subset \mathcal{P}(X)$ a set system or family of sets. A is naturally identified with a bipartite graph $G_{\mathcal{A}}(U,W)$ with $U = \mathcal{A}$, $W = \bigcup_{A \in \mathcal{A}} A$ or W = X. Indeed, $Ax \in E(G_{\mathcal{A}}) \iff x \in A$.

Definition. Given $A \in \mathcal{P}(X)$, a **set of distinct representatives** (SDR) is an injection $f : A \to X$ s.t. $f(A) \in A \ \forall A \in A$. In its bipartite graph, an SDR corresponds to a complete matching $U \to W$.

Theorem 1 (Hall, 1935). A set system \mathcal{A} has an SDR if $\forall \mathcal{A}' \subset \mathcal{A}$, $|\bigcup_{A \in \mathcal{A}'} A| \geq |\mathcal{A}|'$.

Theorem 1'. A bipartite graph G(U,W) has a complete matching $U \to W$ if $\forall S \subset U, |\Gamma(S)| \geq |S|$

Corollary 2. Suppose G(U, W) bipartite, $d(u) \ge d(w) \ \forall u \in U, \ w \in W$. Then $\exists \ a \ complete \ matching \ U \to W$.

Definition. A bipartite graph G(U, W) is (r, s)-regular if d(u) = r and $d(w) = s \ \forall u \in U, \ w \in W$.

Instant from Cor 2: if G(U, W) is (r, s)-regular then \exists a complete matching from U to W if $|U| \leq |W|$.

Corollary 3. Let $0 \le i, j \le n$, $\binom{n}{i} \le \binom{n}{j}$. Then \exists a complete matching $f: [n]^{(i)} \to [n]^{(j)}$ s.t. $f(A) \subset A$ if $j \le i$, and $f(A) \supset A$ if $i \le j$.

Theorem 4. Let G = G(U, W) be a connected (r, s)-regular graph. Then for $\emptyset \neq A \subset U$,

$$\frac{|\Gamma(A)|}{|W|} \geq \frac{|A|}{|U|}$$

Also, equality holds iff A = U.

The **cube** $Q^n \cong \mathcal{P}(n) \cong [2]^n = \text{set of all } 0, 1 \text{ sequences of length } n. Q^n \text{ is also a graph: } AB \text{ is an edge if } |A \triangle B| = 1. \text{ It is also a poset: } A < B \text{ if } A \subset B.$ $Q^n \text{ has a natural orientation: } \overrightarrow{AB} \text{ if } A = B \cup \{a\}.$

The order on $Q^n \cong \mathcal{P}(n)$ is induced by this oriented graph.

2 Sperner Systems

Definition. A set system $A \subset \mathcal{P}(n)$ is **Sperner** if $A, B \in \mathcal{A}$, $A \neq B \implies A \not\subset B$

Theorem 1 (Sperner, 1928). If $A \subset \mathcal{P}(n)$ is Sperner then

$$|\mathcal{A}| \le \binom{n}{\left\lfloor \frac{n}{2} \right\rfloor}$$

Definition. The weight w(A) of a set $A \in \mathcal{P}(n)$ is $w(A) = \frac{1}{\binom{n}{A}}$

Theorem 2. Let A be a Sperner system on X, |X| = n. Then

$$w(\mathcal{A}) = \sum_{A \in \mathcal{A}} w(A) \le 1$$

Corollary 3. If $A \in \mathcal{P}(n)$ is a Sperner system then $|A| \leq {n \choose \lfloor \frac{n}{2} \rfloor}$, with equality $\iff A$ is $X^{\lfloor n/2 \rfloor}$ or $X^{\lceil n/2 \rceil}$.

Definition. $A \in \mathcal{P}(n)$ is **k-Sperner** if it does not contain

$$A_1 \subsetneq A_2 \subsetneq \cdots \subsetneq A_{k+1}$$

Note that Sperner = 1-Sperner.

Corollary 4 (Erdős, 1945). If $A \subset \mathcal{P}(n)$ is k-Sperner then |A| is at most the sum of the k largest binomial coefficients.

Theorem 5 (Erdős, 1945). Let $x_1, \ldots, x_n \in \mathbb{R}$, $x_i \geq 1$. Then the number of sums $\sum_{i=1}^{n} \pm x_i$ in an open interval J of length 2k is at most the sum of the k largest binomial coefficients.

Definition. A chain $A_o \subset A_1 \subset \cdots \subset A_k$ is symmetric if $|A_{i+1}| = |A_i| + 1 \ \forall i$ and $|A_o| + |A_k| = n$.

Theorem 6 (Kleitman and Katona). $\mathcal{P}(n)$ has a decomposition into symmetric chains