SAP JD - 60004200132

Name - Ayush Jain Div - J

MAEER'S MIT





Find the resultant of the following non-concurrent force

system.



C (-4,-5)

$$tono = 8$$
  $tano = 3$ 

$$0 = \tan^{-1}\left(\frac{8}{4}\right) = 53.13$$
  $0 = \tan^{-1}\left(\frac{3}{4}\right) = 36.87$ 

$$Rx = \Sigma Fx = 200 \cos \theta - 50 \cos \phi$$

$$Py = 2Fy = 100 - 200 \sin \theta - 50 \sin \theta$$
  
= 100 - 200 \sin(53.13') - 50 \sin(36.87')

= -90N

$$R = \sqrt{Rx^2 + Ry^2} = \sqrt{80^2 + 90^2}$$

$$R = 120.42N, \quad x = \tan^{-1}(90) = 48.36$$



### MAEER'S MIT

: M(0,0) = -100×4 - 200(000×6 - 50 sind ×2 +200 sind ×3

= -400 - 200 (05 (53.13) x6 - 50 sin (36.87) x2 +200 sin (53.13) x3 +50 (05 (36.87) x3

= -580 Nm

: M(0,0) = 580 Nm (clockwise)

Let d be the perpendicular distance of resultant from (0,0):  $M(0,0) = 580 = R \times d$ : 580 = 120.42 d

1 214

· d = 4.816 m.

(3.599, 3.1999)







$$Ry = EFy = -400 + 25000845$$
  
= -223-22 N

$$P = \sqrt{223 \cdot 22^2 + (-223 \cdot 22)^2 + (-223 \cdot 22)^2}$$

$$R = 315 \cdot 68 \text{ N}$$





## **MAEER'S MIT**

| 7> | Determine | the | centroid | 0 | shaded | area. |
|----|-----------|-----|----------|---|--------|-------|
|    |           |     |          | V |        |       |



| Component | Area (ctn2)         | X (cm) | y (cm)   | Ax          | Ay          |
|-----------|---------------------|--------|----------|-------------|-------------|
| ,         |                     |        | consi 4  |             | ,           |
| 8 cm      | 1 ×8 × 8            | 8-8/3  | 8/3      | 170.56      | 85.44       |
| 0         | = 32                | = 5.33 | = 2.64   |             |             |
| 8cm       |                     |        | CONTE E  |             |             |
| uch (B)   | TT (4)/2            | 4      | ~4×4/3TT | 100.52      | -42.47      |
| neonde    | = 25-13             | 10 0   | = -1.69  |             |             |
| 0         | $\pi(2)^2 = -12.57$ | 4      | 0        | -50.28      | 0           |
| -27       |                     |        |          |             |             |
|           | EA = 44.56          | 0      | CONTRACT | EAX = 220.8 | EAY - 42.99 |

" Centroid of shaded area Ps (4.95, 0.96)cm.

20

t (3)





# MAEER'S MIT

| The acceleration of porticle is defined by the relation $a = 21 - 12 \times 2$ where $a = accleration in m/s^2$ and x is |
|--------------------------------------------------------------------------------------------------------------------------|
| meter. The particle starts with rest at x=0.                                                                             |
| Determine                                                                                                                |
| o) velocity when x = 1.5 m                                                                                               |
| b) The position where the velocity is again zero.                                                                        |
| c) The position where the velocity is mox.                                                                               |
| $a = 21 - 12 \times 2$                                                                                                   |
| We know that, a = vdv                                                                                                    |
| :. VdV = 21-12x2                                                                                                         |
|                                                                                                                          |
| Vdv = (21-12x2)dx                                                                                                        |
| Integrating both the sides,                                                                                              |
| $\frac{V^2}{2} = 21x - 4x^3 + C$                                                                                         |
| For X=0, Vis amis.                                                                                                       |
| 0 = 0 + 0                                                                                                                |
| ·· c=0                                                                                                                   |
| $\frac{V^2}{2} = 21 \times -4 \times \frac{3}{2}$                                                                        |
| ofor x=1.5m,                                                                                                             |
| V2 - 21 (1.5) -4 (1.5)3                                                                                                  |
|                                                                                                                          |



## **MAEER's MIT**

$$\frac{1}{2} = 18$$

$$a = dv = 0$$

.. The position where Velocity is max is \$1.322 m.



#### MAFER'S MIT

|     | MAEER'S MIT                                        |
|-----|----------------------------------------------------|
|     |                                                    |
| (0) | Three vertical poles A, B and C spaced at distance |
|     | of 100 m along a straight road. A cor storting     |
|     | from rest and accelerates uniformly passes pole A  |
|     | and takes 10 sec to reach pole B and burther       |
|     | 8 sec. to reach the pole C. Calculate:             |
|     | a) acceleration of cox.                            |
|     | b) Velocity at A and B                             |
|     | a) storting position of car.                       |
|     |                                                    |
|     | 2 (and the sea of the sea                          |
|     | < 10 Sec → < 8 Sec →                               |
|     |                                                    |
|     | O ALIOOM ->C                                       |
|     | let the starting position of cor be 0,             |
|     | Time taken by car from A to B, t1=10 sec.          |
|     | Time taken by care from B to C, t2 = 8 sec.        |
|     | a: occeleration of car                             |
|     | VA: Velocity at A                                  |
|     | VB: velocity at B:                                 |
|     | NOW,                                               |
|     | S= ut + 1 at 2                                     |
|     | 2                                                  |
|     | For care travelling from A to B                    |
|     | 100 = VA(10) + 1 a(100)                            |
|     | 100 = 10 VA + 50 a - (1)                           |
|     |                                                    |
|     |                                                    |



```
Fox car toavelling from A to Co
 200 = 18 Va + 1 a (18)2
: 200 = 18 Va + 162a - (2)
: Solving equation (1) and (2),
 a = 0.278 m/s2
VA = 8.61 m/s
For car moving from 0 to A,
   V2 = U2 +2as
  (8.61)2 = 0 + 2 (0.278) 5
  S = 133.33 M
For car travelling from B to C
 100 = 8VB + 1 (0.278)(8)2
 VB = 11.388 m/s.
.. The acceleration of or is 0.278 mls.
The velocity of cars at pole A is 8.61 m/s and at
pole B is 11.388mls and the starting position of cor is
133.33 m from pole A.
```