MATH 321 PRACTICE FINAL EXAM

KENAN INCE

(1) Let

$$A = \left\{ (-1)^n + \frac{2}{n} : n = 1, 2, 3, \dots \right\} \text{ and } B = \{ x \in \mathbb{Q} : 0 < x < 1 \}.$$

Answer the following questions for each set:

- (a) What are the limit points?
- (b) Is the set open? Closed?
- (c) Does the set contain any isolated points?
- (d) Find the closure of the set.
- (2) Let (a_n) be an increasing sequence of positive numbers. Prove, using the definition of convergence, that if (a_n) converges, so does $(7a_n^2)$.
- (3) Assume K is compact and F is closed. Decide if the following sets are definitely compact, definitely closed, both, or neither.
 - (a) $K \cap F$
 - (b) $\overline{F^c \cup K^c}$
 - (c) $K \setminus F$
 - (d) $\overline{K \cap F^c}$
- (4) Which of the following statements about 1-to-1 and onto functions are true? Prove if true, and give a counterexample if false.
 - (a) If f and g are onto, then $g \circ f$ is onto.
 - (b) If f is onto and g is 1-to-1, then $g \circ f$ is onto.
 - (c) If f is onto and g is 1-to-1, then $g \circ f$ is 1-to-1.
 - (d) If f and g are 1-to-1, then $g \circ f$ is 1-to-1.
 - (e) If f and g are 1-to-1 correspondences, then $g \circ f$ is a 1-to-1 correspondence.
- (5) (Bonus) Let (a_n) be a bounded sequence and let $S = \{\lim(a_{n_k}) : (a_{n_k}) \text{ is any subsequence of } (a_n)\}$. Prove that S is closed.