Übungen zur Vorlesung

Analysis für Informatiker und Lehramt

Abgabe: Mi. 28.10.2015 (direkt im Anschluss an die Vorlesung oder davor bis 8:40 Uhr, Zimmer A 514, Postfach Radl)

Mathematisches Institut Universität Leipzig Agnes Radl

Blatt 2

Aufgabe 1

Zeigen Sie mit Hilfe vollständiger Induktion:

Für jedes $n \in \mathbb{N}$ gilt

$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}.$$

Aufgabe 2

Zeigen Sie folgende Behauptungen mit Hilfe vollständiger Induktion:

(a) Für jedes $n \in \mathbb{N}$ gilt

$$2^n \ge n + 1$$
.

(b) Sei x eine reelle Zahl und $x \neq 1$. Dann gilt für jedes $n \in \mathbb{N}_0$

$$\sum_{k=0}^{n} x^k = \frac{1 - x^{n+1}}{1 - x}.$$

Aufgabe 3 (Bernoullische Ungleichung)

Sei x eine reelle Zahl. Zeigen Sie mit Hilfe vollständiger Induktion: Falls $x \ge -1$ ist, dann gilt für jedes $n \in \mathbb{N}$ die Ungleichung

$$(1+x)^n \ge 1 + nx.$$

An welcher Stelle haben Sie die Voraussetzung $x \ge -1$ verwendet?

Aufgabe 4

Der Betrag einer reellen Zahl x ist definiert durch

$$|x| := \begin{cases} x, & \text{falls } x \ge 0, \\ -x, & \text{sonst.} \end{cases}$$

Zeigen Sie nachfolgende Aussagen.

- (a) Für jedes $x \in \mathbb{R}$ gilt $x \leq |x|$.
- (b) Für jedes $x \in \mathbb{R}$ gilt |-x| = |x|.