Exercise 2: E-commerce Platform Search Function

Scenario:

You are working on the search functionality of an e-commerce platform. The search needs to be optimized for fast performance.

Solution:

Asymptotic Notation Overview:

Big O Notation:

It describes the upper limit to an algorithm's execution time growth rate in relation to a problem size. It helps to compare algorithms to determine which algorithm is more efficient in the context of time and space complexities.

Best Case:

This occurs when the search target is found on the first attempt (O(1)).

Average Case:

This is the expected time for finding an element on an average case (Linear Search: O(n), Binary Search: $O(\log n)$).

Worst Case:

This is the maximum time it takes to find the element or determine that it is not in the list (Linear Search: O(n), Binary Search: $O(\log n)$).

Analysis:

Linear Search Time Complexity:

Best Case: O(1)

Average/Worst Case: O(n)

Binary Search Time Complexity:

Best Case: O(1)

Average/Worst Case: O(log n)

Conclusion:

For the platform, binary search seems to be best suited due to it's faster execution time when searching a sorted array of data. For larger product inventories, binary search can dramatically reduce the lookup times of inventory, compared to linear search.