Question 1

Soit la fonction $f: \mathbb{R} \longrightarrow \mathbb{R}: x \longrightarrow \ln(e^{2x} - e^x + 1)$

1. - Domaines

f est définie, continue et dérivable sur $\mathbb R$ comme composée de fonctions qui le sont.

- limites et asymptotes

 $\lim_{x\to-\infty}f(x)=0$ donc \mathcal{C}_f admet une asymptote horizontale d'équation y=0 pour $x\to-\infty$.

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \ln e^{2x} (1 - e^{-x} + e^{-2x}) = +\infty$$

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{\ln e^{2x} (1 - e^{-x} + e^{-2x})}{x} = \lim_{x \to +\infty} \frac{\ln e^{2x} + \ln(1 - e^{-x} + e^{-2x})}{x} = \lim_{x \to +\infty} \frac{\ln e^{2x} + \ln(1 - e^{-x} + e^{-2x})}{x} = 2$$

donc C_f admet une asymptote oblique d'équation y = 2x pour $x \to +\infty$.

- dérivée et signe

$$\forall x \in \mathbb{R} f'(x) = \frac{e^x(2e^x - 1)}{e^{2x} - e^x + 1}$$

$$sign(f'(x)) = sign(2e^x - 1)$$

$$2e^x - 1 > 0 \Leftrightarrow e^x > \frac{1}{2} \Leftrightarrow x > -\ln 2$$

$$sign(f'(x)) = sign(2e^x - 1)$$

$$2e^x - 1 > 0 \Leftrightarrow e^x > \frac{1}{2} \Leftrightarrow x > -\ln 2$$

- dérivée seconde

$$f'(x) = \frac{e^x(2e^x - 1)}{e^{2x} - e^x + 1} = \frac{u}{v}$$

$$v^2 f''(x) = -e^x(e^{2x} - 4e^x + 1)$$

$$sign(f''(x)) = sign(-e^{2x} + 4e^x - 1)$$
Airrif f''(x) > 0 \to 0 < 2 \to \sqrt{2} \ e^x

$$v^2 f''(x) = -e^x (e^{2x} - 4e^x + 1)$$

$$sign(f''(x)) = sign(-e^{2x} + 4e^x - 1)$$

Ainsi
$$f''(x) > 0 \Leftrightarrow 0 < 2 - \sqrt{3} < e^x < 2 + \sqrt{3} \Leftrightarrow) < x < \ln(2 + \sqrt{3})$$

Par conséquent la courbe est convexe (concave vers le haut) pour $x \in \mathbb{R} \setminus [\ln(2-\sqrt{3}), \ln(2+\sqrt{3})]$ et concave (vers le bas) pour $x \in [\ln(2 - \sqrt{3}), \ln(2 + \sqrt{3})]$

- tableau de variation et points d'inflexion

\boldsymbol{x}	-∞		$\ln(2-\sqrt{3})$		$-\ln 2$		$\ln(2-\sqrt{3})$		+∞
f'(x)		-		-	0	+		+	
f''(x)			0	+		+	0	-	
f(x)	0		>		min		1		+∞
f(x)		concave	I	convexe		convexe	J	concave	

Les points d'inflexion $I(\ln(2-\sqrt{3}), f(\ln(2-\sqrt{3})) \approx (-1, 3; -0, 2) \text{ et } J(\ln(2+\sqrt{3}), f(\ln(2+\sqrt{3})) \approx (1, 3; 2, 4))$

2. Représentation graphique Cf.

3.

$$f(x) = m \Leftrightarrow \ln(e^{2x} - e^x + 1) = m \Leftrightarrow e^{2x} - e^x + 1 = e^m e^{2x} - e^x + 1 - e^m = 0$$

Posons $e^x = y$ $\Delta = 4e^m - 3 = 0 \Leftrightarrow m = \ln \frac{3}{4}$ et soient α et β les racines du trinôme $y^2 - y + 1 - e^m$ si elles existent. $\alpha\beta = 1 - e^m$ et $\alpha + \beta = 1$

m	Δ	$\alpha\beta$ $\alpha+\beta$		solutions		
$]-\infty, \ln \frac{3}{4}[$	< 0			0		
	= 0			1 solution $x = -\ln 2$		
$] \ln \frac{3}{4}, 0[$	> 0	> 0	> 0	2 solutions		
0	> 0	0	> 0	1 solution $x = 0$		
]0,+∞[> 0	< 0	> 0	1 solution		

12+2+5=19 points

Question 2

1. - Domaines

f est définie, continue et dérivable sur $\mathbb R$ comme produit de fonctions qui le sont.

- limites

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} 5(x-1)e^{1-x} = -\infty$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} 5(x-1)e^{1-x} = \lim_{x \to +\infty} 5\frac{(x-1)}{e^{x-1}} \stackrel{\mathcal{H}}{=} \lim_{x \to +\infty} 5\frac{1}{e^{x-1}} = 0$$

- dérivée

$$f'(x) = 5(2-x)e^{1-x}$$

$$sign(f'(x)) = sign(2-x)$$

- intersection avec l'axe des x

$$f(x) = 0 \Leftrightarrow x = 1$$

- tableau de variation

x	-∞	1			2		+∞	
f'(x)		+		+	0	-		
f(x)	-∞	1	0	1	max	1	0	

2. Représentation graphique C_f .

3.
$$A(\lambda) = \int_1^{\lambda} f(x) dx = \int_1^{\lambda} 5(x-1)e^{1-x} dx$$
 une primitive
$$F(x) = \int (x-1)e^{1-x} dx = -(x-1)e^{1-x} - \int -e^{1-x} dx = -(x-1)e^{1-x} - e^{1-x} = -xe^{1-x}$$
 Donc
$$A(\lambda) = 5F(\lambda) - 5F(1) = 5 - 5\lambda e^{1-\lambda}$$

4.
$$\lim_{\lambda \to +\infty} \mathcal{A}(\lambda) = \lim_{\lambda \to +\infty} (5 - 5\lambda e^{1-\lambda}) = 5 - 5 \lim_{\lambda \to +\infty} \frac{\lambda}{e^{\lambda - 1}} \stackrel{\mathcal{H}}{=} 5 - 5 \lim_{\lambda \to +\infty} \frac{1}{e^{\lambda - 1}} = 5$$

5.
$$V(\lambda) = \pi \int_{1}^{\lambda} (f(x))^{2} dx = 25\pi \int_{1}^{\lambda} (x-1)^{2} e^{2(1-x)} dx$$
 une primitive $G(x) = \int (x-1)^{2} e^{2(1-x)} dx = -\frac{1}{2}(x-1)^{2} e^{2(1-x)} - \int -(x-1) e^{2(1-x)} dx = -\frac{1}{2}(x-1)^{2} e^{2(1-x)} - \frac{1}{2}(x-1) e^{2(1-x)} - \int -\frac{1}{4} e^{2(1-x)} dx = -\frac{1}{4} e^{2(1-x)} (2x-1)^{2} e^{2(1-x)} - \frac{1}{4} e^{2(1-x)} (2x-1)^{2} + 2(x-1) + 1 = -\frac{1}{4} e^{2(1-x)} (2x^{2} - 2x + 1)$
Donc $V(\lambda) = \pi \int_{1}^{\lambda} (f(x))^{2} dx = 25\pi [G(\lambda) - G(1)] = 25\pi (\frac{1}{4} - \frac{1}{4} e^{2(1-\lambda)}) (2\lambda^{2} - 2\lambda + 1)$

6.
$$\lim_{\lambda \to +\infty} \mathcal{V}(\lambda) \stackrel{\mathcal{HH}}{=} \frac{25\pi}{4}$$
.

6+1+3+1+3+1=15 points

Question 3

1.
$$\int_0^4 \frac{(x-1)^3}{x^2+x+1} dx = 3 \int_0^4 \frac{2x+1}{x^2+x+1} dx + \int_0^4 x - 4 dx = \left[3 \ln(x^2+x+1) + x^2 - 4x \right]_0^4 = 3 \ln 21 - 8$$

2.

$$\int_0^1 4\sqrt{1-x^2} dx = 4 \int_0^{\frac{\pi}{2}} \cos^2 \alpha d\alpha$$

Pour $-\frac{\pi}{2} < \alpha < \frac{\pi}{2}$ poser $x = \sin \alpha$ avec $0 = \sin \alpha \Leftrightarrow \alpha = \arcsin 0 = 0$ et $1 = \sin \alpha \Leftrightarrow \alpha = \arcsin 1 = \frac{\pi}{2}$ $dx = \cos \alpha d\alpha$ et $\sqrt{1 - x^2} = \sqrt{\cos^2 \alpha} = |\cos \alpha| = \cos \alpha$

$$4\int_{0}^{\frac{\pi}{2}}\cos^{2}\alpha d\alpha = 4\int_{0}^{\frac{\pi}{2}}\frac{1}{2}\cos 2\alpha + \frac{1}{2}d\alpha = 4\left[-\frac{1}{4}\sin 2\alpha + \frac{1}{2}\alpha\right]_{0}^{\frac{\pi}{2}} = 4\left[-\frac{1}{4}\sin \pi + \frac{\pi}{4} + \frac{1}{4}\sin 0 - \frac{1}{2}\cdot 0\right] = \pi$$

3. $\forall x \in \mathbb{R}$

$$\int e^x \sin x dx = e^x \sin x - \int e^x \cos x dx = e^x \sin x - \left(e^x \cos x - \int -e^x \sin x dx \right) = e^x \sin x - e^x \cos x - \int e^x \sin x dx$$

$$\int e^x \sin x dx = e^x \sin x - e^x \cos x - \int e^x \sin x dx \Leftrightarrow 2 \int e^x \sin x dx = e^x \sin x - e^x \cos x$$

$$\int e^x \sin x dx = \frac{e^x \sin x - e^x \cos x}{2} + k$$

4. $\forall x \in I \subset \mathbb{R} \setminus \{k \frac{\pi}{2} | k \in \mathbb{Z}\}\$

$$\int \frac{1}{1+\sin^2 x} dx = \int \frac{\frac{1}{\cos^2 x}}{\frac{1+\sin^2 x}{\cos^2 x}} dx = \int \frac{1+\tan^2 x}{1+\tan^2 x + \tan^2 x} dx = \int \frac{1+\tan^2 x}{1+(\sqrt{2}\tan x)^2} dx$$
$$= \frac{1}{\sqrt{2}} \int \frac{\sqrt{2}(1+\tan^2 x)}{1+(\sqrt{2}\tan x)^2} dx = \frac{\sqrt{2}}{2} \arctan(\sqrt{2}\tan x) + k$$

2+3+3+3=11 points

V.
$$f: t \longmapsto a \left(e^{-bt} - e^{-t}\right)$$
 $\left(a, b \in \mathbb{R}_0^+\right)$

a) i. On a bien :
$$f(0) = 0$$
.

ii. On a :
$$(\forall t \in dom f)$$

$$f'(t) = a (e^{bt} - be^{t}) e^{(-b-1)t}$$

$$f'(2 \ln 2) = 0 \iff a = 0 \text{ ou } b = \frac{1}{2} \text{ ou } b = 1.$$

La solution a = 0 n'est pas acceptable, car a > 0 (et donnerait $f: x \mapsto 0$).

La solution b = 1 n'est pas acceptable, car, dans ce cas, f serait la fonction nulle.

Donc
$$b = \frac{1}{2}$$
.

On a:
$$f'(2 \ln 2) = 0$$
; $f'(1) > 0$ et $f'(2) < 0$.

Comme f' est continu, f' admet bien un maximum pour $t=2\ln 2$.

Prenons
$$b = \frac{1}{2}$$
.

iii. On a :
$$f(2 \ln 2) = \frac{5}{2} \Longleftrightarrow a = 10$$
.

La fonction cherchée est donc $f:t\longmapsto 10\left(e^{-\frac{t}{2}}-e^{-t}\right)$.

b) Posons :
$$g:t\longmapsto 11\left(e^{-bt}-e^{-t}\right)$$

On a :
$$g(6) = 2 \iff b = b_0 \approx 0,28187$$

et, en prenant
$$b = b_0$$
, on obtient : $g'(t) = 0 \iff t = t_0 \approx 1,763$.

A l'instant t_0 la concentration est maximale et vaut environ 4,806 ml/l.

c) i.
$$f:t\mapsto 10\left(e^{-\frac{t}{2}}-e^{-t}\right)$$
 dom $f=\mathbb{R}$, on véduit l'étude à \mathbb{R} puisque le temps t est ≥ 0 .

 $\lim_{t \to +\infty} f(t) = 0 \qquad \qquad \mathcal{C}_f \text{ admet une asymptote horizontale d'équation } y = 0.$

$$(\forall t \in \mathbb{R}) \qquad f'(t) = -5e^{-t} \left(e^{\frac{t}{2}} - 2\right)$$

$$\frac{t}{f'(\frac{1}{2})} \qquad + \infty$$

$$\frac{f'(\frac{1}{2})}{f(\frac{1}{2})} \qquad \nearrow \qquad \frac{5}{2} \qquad \searrow \qquad 0$$

$$\frac{1}{2} \qquad \qquad 0$$

ii. La concentration est de 75% de la valeur maximale quand elle est égale à $\frac{3}{4} \cdot \frac{5}{2} = \frac{15}{8}$ $f(t) = \frac{15}{8} \iff t = t_1 \approx 0,575$ ou $t = t_2 \approx 2,773$.

L'instant t_1 n'est pas la solution cherchée, car la concentration y est en augmentation $(f'(t_1) > 0)$.

A l'instant t_2 la concentration est de $\frac{15}{8}$ et est décroissante. C'est donc l'instant cherché.

