Università degli Studi di Firenze

Facoltà d' Ingegneria Dipartimento di Elettronica e Telecomunicazioni

Tecniche di interconnessione digitali

Interconnessioni

Topologie

• Punto-Punto

• Bus

Le topologie ad anello o a stella si ottengono combinando più connessioni punto-punto

Seriale-parallelo

1 canale di informazioni

più di un canale di informazioni

Modello a Strati

Modello OSI (Open System Interconnession)

Problema:

Se il trasmettitore trasmette un dato livello (ad esempio alto o basso) il ricevitore deve riconoscerlo

$$V_{OH} > V_{IH}$$

$$V_{OH} > V_{IH}$$
 $NM_H = V_{OH} - V_{IH}$

$$V_{OL} < V_{IL}$$

$$V_{OL} < V_{IL}$$
 $NM_L = V_{IL} - V_{OL}$

Margini di rumore

Linea di trasmissione

$$\prod R_{IN}$$

$$v = v_1 \left(t - \frac{x}{c} \right) + v_2 \left(t + \frac{x}{c} \right)$$

$$i = \frac{v_1 \left(t - \frac{x}{c}\right) + v_2 \left(t + \frac{x}{c}\right)}{Z_0}$$

$$c = \frac{1}{\sqrt{LC}}$$

$$Z_0 = \sqrt{\frac{L}{C}}$$

$$Z_0 = 20 - 200\Omega$$

Lunghezza critica

Famiglia	Tempo di transizione (ns)	Lunghezza critica (mm)
CMOS	15	100
HCMOS	6	40
ACMOS	4	27
TTL-LS/ALS/S	3	20
TTL-AS	1.2	10
BiCMOS	0.7	5
ECL 100K	0.5	3
Logiche GaAs	0.15	1

Linea di trasmissione

$$\Gamma = \frac{R_{IN} - Z_0}{R_{IN} + Z_0}$$

Linea di trasmissione

Diagramma di Bergeron

Diagramma di Bergeron

Terminazione adatattata:

- Nessun problema di riflessioni
- Consumo (anche in condizioni statiche)

Terminazione ad alta impedenza:

- Riflessioni
- Basso consumo (nullo in condizioni statiche)

Problema:

Se il ricevitore deve leggere il segnale, quando il segnale è valido e NON durante le transizioni

Sincronizzazione

Nota: la connessione può essere parallela ma la comunicazione seriale (protocollo seriale)

Punto-Punto

 t_{K2}

Skew: $\frac{t_{K1}}{2} + \frac{t_{K2}}{2}$

Deskew al TX: inserire un ritardo tra INF e VALID Deskew al RX: inserire un ritardo dopo il segnale di VALID prima di acquisire

Punto-Punto

SINCRONO

Punto-Punto

ASINCRONO

Punto-Punto

ASINCRONO

DDR: Double Data Rate

Protocolli seriali sincroni

Ricostruzione del clock

Bit stuffing

Ogni cinque "1" è inserito un "0" (Il RX è programmato per ignorare il bit dopo 5 "1" consecutivi)

Ricostruzione del clock

Bit scrambling

MLS (Maximum Lenght Sequence) =
$$2^N - 1$$

Nota: la funzione logica della rete di reazione dipende dal numero di bit

Protocolli seriali asincroni

Protocolli seriali asincroni

Esempio: RS-232

Codici

NRZ-L (Non Return Zero – Level)

NRZI = Non Return to Zero Invert

Cambia ogni volta che trova uno zero

Codici

RZ (Return Zero)

Codici

Codici autosincronizzanti

Manchester

 TX

RX

Master

Slave

- 1) Unico master
- 2) Più master (arbitraggio)

Nota: ogni transazione è costituita da 2 indirizzi in rapida successione e quindi la transazione nel bus dati

Unico master

Bus

Più master

Protocollo di arbitraggio

Interconnessioni

PCI	comunicazione parallela	bus
Porta parallela	comunicazione parallela	porta
GPIB	comunicazione parallela	bus
VGA-DVI	comunicazione parallela	porta
SCSI	comunicazione parallela	bus
RS232	comunicazione seriale	porta
I2C	comunicazione seriale	bus
USB	comunicazione seriale	bus
FireWire	comunicazione seriale	bus
Ethernet	comunicazione seriale	bus