Triangle Inequality

Miliyon T.

November 13, 2015

Abstract: **Triangle Inequality** is one of the most important inequalities in mathematics. There are four proofs presented here and each of them are proved by using different areas of mathematics.

Definition 0.1 (Triangular inequality). The sum of the lengths of any two sides of a triangle is greater than the length of the third side.

1 Geometry

Proof:

Let ABC be a triangle. We need to show that BA + AC > BC, BA + BC > AC and BC + AC > BA.

We show only BA + AC > BC. The others can be shown in similar manner. See the Figure on the right

Extend \overline{BA} to some point X on \overline{AB} such that B-A-X and $\overline{AX} \equiv \overline{AC}$. This is possible by Axiom of segment construction. Join C and X. Since $\overline{AX} \equiv \overline{AC}$ and $A\hat{X}C \equiv X\hat{C}A$. XCA < XCB by definition of angle comparison. Thus, $A\hat{X}C < X\hat{C}B$ (i.e. $B\hat{X}C < X\hat{C}B$). Now in $\triangle BCX$ we have BC < BX. But BX = BA + AX (as B, A, X are collinear and B - A - X, BX = BA + AC as $\overline{AC} \equiv \overline{AX}$. Therefore,

$$BC < BA + AC$$

Figure 1.1: 1234

2 Algebra

Theorem 2.1 (Triangle inequality). $|x + y| \le |x| + |y|$

Proof. From the definition of absolute value we have

$$x \le |x|$$
 and $-x \le |x|$
 $y \le |y|$ and $-y \le |y|$
 $x + y \le |x| + |y|$ (2.1)

And

$$-(x+y) \le |x| + |y| \tag{2.2}$$

From 2.1 and 2.2 we can conclude that

$$-(|x| + |y|) \le x + y \le (|x| + |y|)$$
$$\Rightarrow |x + y| \le |x| + |y|$$

3 Complex Analysis

Definition 3.1. Let z = x + iy be complex number with real part x (Re(z) = x) and imaginary part y (Im(z) = y), then the conjugate of z is defined by $\bar{z} = x - iy$. Norm of z is given by $|z| = \sqrt{x^2 + y^2}$.

Theorem 3.2 (Triangle inequality).

$$|z_1 + z_2| \le |z_1| + |z_2| \tag{3.1}$$

Proof.

$$|z_1 + z_2|^2 = (z_1 + z_2)\overline{(z_1 + z_2)}$$

$$\begin{split} (z_1+z_2)\overline{(z_1+z_2)} &= z_1\overline{(z_1+z_2)} + z_2\overline{(z_1+z_2)} \\ &= z_1\overline{(z_1)} + z_1\overline{(z_2)} + z_2\overline{(z_1)} + z_2\overline{(z_2)} \\ &= |z_1|^2 + \overline{z_1}\overline{z_2} + \overline{z_1}\overline{z_2} + |z_2|^2 \\ &= |z_1|^2 + 2\operatorname{Re}(z_1\overline{z_2}) + |z_2|^2, \qquad \text{since} \quad \operatorname{Re}(z) = \frac{z+\overline{z}}{2}. \\ &< |z_1|^2 + 2|z_1||z_2| + |z_2|^2 \end{split}$$

$$\Rightarrow |z_1 + z_2|^2 \le (|z_1| + |z_2|)^2$$
$$\Rightarrow |z_1 + z_2| \le |z_1| + |z_2|$$

4 VECTOR ANALYSIS

Lemma 4.1 (Cauchy-Schwartz inequality).

$$\|\vec{A} \cdot \vec{B}\| \le \|\vec{A}\| \|\vec{B}\| \tag{4.1}$$

Proof.

$$\begin{split} |\cos(\theta)| &\leq 1 \\ -|\vec{A}||\vec{B}| &\leq |\vec{A}||\vec{B}|\cos(\theta) \leq |\vec{A}||\vec{B}| \\ -|\vec{A}||\vec{B}| &\leq |\vec{A} \cdot \vec{B}| \leq |\vec{A}||\vec{B}| \\ ||\vec{A} \cdot \vec{B}|| &\leq ||\vec{A}|||\vec{B}|| \end{split}$$

Theorem 4.2 (Triangular inequality).

$$\|\vec{A} + \vec{B}\| \le \|\vec{A}\| + \|\vec{B}\| \tag{4.2}$$

Proof.

$$\|\vec{A} + \vec{B}\|^2 = (A + B)(A + B)$$

$$\begin{split} (\vec{A} + \vec{B})(\vec{A} + \vec{B}) &= \vec{A} \cdot \vec{A} + \vec{A} \cdot \vec{B} + \vec{B} \cdot \vec{A} + \vec{B} \cdot \vec{B} \\ &= \|\vec{A}\|^2 + 2\vec{A} \cdot \vec{B} + \|\vec{B}\|^2 \\ &\leq \|\vec{A}\|^2 + \|\vec{B}\|^2 + \|\vec{A} \cdot \vec{B}\| \end{split}$$

But from Cauchy-Schwartz inequality we have $\|\vec{A}\cdot\vec{B}\| \leq \|\vec{A}\| \|\vec{B}\|$ Thus,

$$\begin{split} \|\vec{A} + \vec{B}\|^2 &\leq \|\vec{A}\|^2 + \|\vec{B}\|^2 + \|\vec{A}\| \|\vec{B}\| \\ &\leq (\|\vec{A}\| + \|\vec{B}\|)^2 \\ \Rightarrow |\vec{A} + \vec{B}\| &\leq \|\vec{A}\| + \|\vec{B}\| \end{split}$$

REFERENCES

- [1] [Demmisu Gemmeda] An Introduction to Linear Algebra, AAU Press, 2000.
- [2] [Robert T. Smith and Roland B. Minton] Calculus.
- [3] [Gerard Venema] Foundations of Geometry.
- [4] [Hunduma Legesse] Introduction to Complex Analysis. AAU, 2006.