Zang Lab Research Project

William Franz Lamberti ¹

University of Virginia

Spring 2021

¹MS Statistical Science PhD Computational Sciences and Informatics

Outline

Introduction

ChIP-seq

RNA-seq

Joint Analysis

Conclusion

Acknowledgements

Introduction

- ► Goal: Explore transcriptional regulatory function of androgen receptor (AR) since it's important for prostate cancer
- ► Solution: Developed a pipeline for the analysis (Question 5, option 2)
- ► Still learning a lot
 - Background is Statistics and Images
 - ► Please provide constructive criticism so I can improve!

ChIP-seq: Software and Parameters

- ▶ bowtie2_Build_h38_index.slurm
 - ▶ bowtie2-build: built reference genome
- fastq_to_bam.slurm via chipseq_analysis_on_input_file.sh
 - ► fastqc: initial quality control (QC)
 - ► Bowtie: creating SAM files
 - samtools: converting SAM to BAM, sorting, filtering duplicates, and creating indices
- ▶ macs.slurm
 - macs: callpeak analysis
 - ▶ q (minimum FDR cutoff): 0.01
 - g (genome size): hs = 2.7×10^9
- ▶ r_chipqc.r
 - ► ChIPQC: Produces plots and values for QC
 - ▶ This part was done locally, but code is ready for deployment

ChIP-seq: Software and Parameters References

- ► Harvard Chan Bioinformatics Core Workshop:
 - https://hbctraining.github.io/Intro-to-ChIPseq/ lessons/04_automation.html
 - https://hbctraining.github.io/Intro-to-ChIPseq/ lessons/05_peak_calling_macs.html
 - https://hbctraining.github.io/Intro-to-ChIPseq/ lessons/06_combine_chipQC_and_metrics.html
- Mostly good, but more guidance is needed for ChIPQC R package setup as it apparently only works with R Versions < 3.6
 - Rivanna Tech reportedly got this to work for newer versions of R

ChIP-seq: Quality Control (QC) Measures

ID	Reads	Dup%	ReadL	FragL	RelCC	SSD	RiP%
Rep1	2,944,159	0	36	162	9.4	0.52	2.3
Rep2	2,527,581	0	36	160	7.9	0.5	2.4

- ► High Level: Each replicate produced very similar values
- Reads in Peaks (Peak Overlap Measure)
 - ► Transcription factor considered good if > 5%
 - ► This is about half of that rule-of-thumb
- ► Duplicate Rate (Dup%)
 - ► If binding sites, occur at same location, will have large Dep%
 - We filtered these out during the analysis, which is why ours is 0%
 - Removing duplicates important when these is a small amount of starting material

ChIP-seq: fastqc Summary

- All plots produced mostly the same looking plots
- Per base sequence quality for DHT 2 was concerning
- All had concerning Kmer content plots
 - Shows if certain sequences occur too frequent
 - ► Should be all low values
 - This has some spikes in certain locations
- TLDR Fairly confident that they are good samples

RNA-seq: Software and Parameters

- rnaseq_complete.slurm
 - ▶ hisat_setup.sh
 - ▶ python 3.6.8
 - ▶ hisat2-build
 - rna_hisat2.sh
 - ▶ fastqc
 - hisat2: Mapping each sample
 - ► samtools: Convert SAM, sorting BAM
 - rna_stringtie_merge1.sh
 - ▶ stringtie: assembling
 - rna_stringtie_merge2.sh
 - ▶ mergelist_maker.sh
 - ▶ stringtie --merge
 - ▶ gffcompare
 - rna_stringtie_part3.sh
 - ▶ stringtie: output files for ballgown

RNA-seq: Software and Parameters

- ▶ rna_ballgown.slurm
 - ballgown_csv_maker.sh
 - ▶ rna_ballgown.r
 - Creates gene expression matrix
 - Differential Expression based on
 - ► FPKM
 - Used FPKM over RPKM
 - ► RPKM single end
 - ► FPKM paired end
 - https://www.rna-seqblog.com/rpkm-fpkm-and-tpm-clearly-explained/
 - ► Fold Change (FC)
 - ► *p*-value < 0.05

RNA-seq: Software and Parameters References

- Stringtie and Ballgown Paper
 - https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5032908/
 - ► Example from blog: https://davetang.org/muse/2017/10/25/getting-started-hisat-stringtie-ballgown/
 - Advice: Do not save files in multiple different locations put them all in one MESSY folder!
- ► Additional R code for plots
 - https://rstudio-pubs-static.s3.amazonaws.com/289617_cb95459057764fdfb4c42b53c69c6d3f.html
 - Provides a good baseline and example

RNA-seq: fastqc Summary

- All plots produced mostly the same looking plots
- Had many different concerning plots
 - Kmer content plots
 - Sequence duplication levels
 - Per sequence GC content
 - ▶ etc.
- TLDR Not confident that these are good samples

Joint Analysis: Sub-Q1 - Differential Expression (DE)

- ► Fold Change (FC)
 - ► FC measures difference between 2 quantities
 - ▶ FC > 4
- ▶ *p*-value < 0.05
- Note: x-axis title has an error in the labeling (should be log(FC) DHT vs Veh))

Gene Name	ID	FC	p-val	q-val
TMPRSS2	MSTRG.8523	5.4402	0.0029	0.3725
NKX3-1	MSTRG.12312	4.8245	0.0004	0.3725

© William Franz Lamberti 1

Joint Analysis: Sub-Q2 - Genomic Distribution

Туре	Proportion				
N/A	> 0.00				
3 UTR	0.02				
5 UTR	> 0.00				
Exon	0.01				
Intergenic	0.42				
Introns	0.50				
non-coding	0.01				
Promoter-TSS	0.02				
TTS	0.02				

Table 1: AR-1 and AR-2

Joint Analysis: Sub-Q3 - Promoter and Enhancer Sites

Туре	Proportion
Down/Enhancer	0.41
Up/Promoter	0.59

Table 2: AR-1 and AR-2

Joint Analysis: Sub-Q4 - Comparing Sites for AR-1 and AR-2

- ► TMPRSS2
- Distribution
 - ► Intergenic: 1.00
- ► Up/Down
 - ▶ Down: 1.00
 - ► Up: 0.00
- ► NKX3-1
- Distribution
 - ► Intergenic: 2/3
 - ► Non-Coding: 1/3
- ► Up/Down
 - ▶ Down: 0.00
 - ▶ Up: 1.00
 - © William Franz Lamberti

Joint Analysis: Sub-Q5 - DAVID

- Alternative splicing: Protein for which at least two isoforms exist due to distinct pre-mRNA splicing events
- ▶ Protein binding: Interacting selectively and non-covalently with any protein or protein complex (a complex of two or more proteins that may include other nonprotein molecules).
- Polymorphism: more than one allele (variation of same gene) occupies that gene's locus within a population
- ► Sequence Variant: Sometimes called mutation or polymorphism

© William Franz Lamberti 16

Joint Analysis: Sub-Q6 - Motif Analysis via Homer

Homer <i>de novo</i> Motif Results (/scratch/tzp6pz/AR_1_peaks/)						Homer <i>de novo</i> Motif Results (/scratch/tzp6pz/ /AR_2_peaks/)							
Known Modif Enrichment Results Gene Onblooty Enrichment Fessils If Homer is having trouble matching a motif to a known motif, try copy/pasting the matrix file into S More information on motif finding results: HOMER Description of Results Tips Total target sequences = 7321 Total carget sequences = 7321 Secults Page 1041 Secults							Known Most Enrichment Results Gene Obtology enrichment Results If Homer's having trouble matching a moutf to a known motif, try copy/pasting the matrix file into STA More information on motif finding results: HOMER Description of Results Tips Total target sequences = 7200 Total target sequences = 4700 Total target sequences = 47001 Total target sequences = 47001						
Rank	Motif	P-value			% of Background	STD(Bg STD)	Ranl	Motif	P-value	log P-pvalue	% of Targets		STD(Bg STD)
1	A A A GTC TAT		-2.619e+03	37.66%	7.61%	42.0bp (67.1bp)	1	ACAFASTGTICI	1e-1067	-2.458e+03	38.31%	8.46%	42.3bp (65.9bp)
2	TEESTAAACA	1e-1047	-2.413e+03	54.08%	17.99%	48.8bp (66.3bp)	2	IGTIIAS A	1e-957	-2.204e+03	63.95%	26.81%	52.0bp (66.2bp)
3	TTTATŢĢĢ	1e-201	-4.629e+02	23.78%	11.20%	54.3bp (61.7bp)	3	<u>AAAGCACT</u>	1e-236	-5.438e+02	73.55%	54.93%	54.1bp (65.5bp)

Conclusion

- Pipeline made for each RNA-seq and CHiP-seq
- ► Combined results to perform joint analysis
- ► Github link: https://github.com/billyl320/zang_rotation_project
- Future Work
- Further improve pipeline
 - ► Combine RNA/CHiP
 - Assume less about each sample file name
- Improve plots
 - Bigger fonts
 - ► Clearer labels/acronyms

Acknowledgements

- ▶ Dr. Zhenjia Wang
- ► Dr. Gladys Andino Bautista

Any Questions?

Extra

ChIP-seq: Cross-Correlation Plot

- ▶ Two Peaks
- Fragment length
 - ► Highest correlation value
 - ▶ About 150
- ► Read length
 - ▶ "Phantom" peak
 - ▶ About 35
- ► Very similar for each replicate
- Evidence of similar quality samples

