Predicting Wage by Club & Player Attributes

Justo Garcia Miranda Heyer

James Kistner Cady Stringer

Dataset

- ☐ FIFA '19 Player Statistics
 - □ 18,000 players
 - 90 attributes

Business Use Case

- Soccer team management can use our model to predict what a player is worth *before* negotiating a contract
 - Better allocate market cap (all the money they have for player salaries) to players
 - Helps them decide when to splurge and when to save

Data Exploration

Player Age vs Wage colored by Continent

Player Wage vs Overall Skill Rating

Wage Density by Club

Top 28 Club Locations

Data Cleaning

Data Cleaning

- Remove unneeded columns.
 - Row #, ID #, Value, Release Clause, Name, Photo, Flag, Club Logo, Special, Body Type, Real Face, Jersey #, Loaned From, Joined Date
- Removed symbols/letters in numeric columns
 - Wage & weight
 - Height to inches function removes apostrophe, replaces it with decimal and changes it to inches 5'11 to 71 inches
- Factoring
 - Over 200 countries, so we changed countries to continents by a right_join
 - Factored clubs into top 28 & other

Models

Linear Regression, Linear Regression with Lasso Variable Selection, Elastic Net, Random Forest, Neural Network

Multiple Linear Regression

Linear Model Diagnostics

- Better than expected!
- ► R2: 0.66
- ► MAE: 6.4
- ► RMSE: 13.8

Heteroskedasticity

Elastic Net: Picking our Optimal Alpha

- Clubs are some of the last variables to be set to zero
- International reputation last variable set to zero

Elastic Net Model Diagnostics

► R2: 0.63

► MAE: 6.3

► RMSE: 14.5

Lasso Model

Lasso Model

- Lambda min picked 96 variables
- Lambda 1se picked 8 variables:
 - International.Reputation
 - Overall
 - Potential
 - 4 clubs and "Other" club factor

Lasso Model Diagnostics

► R2: 0.65

► MAE: 6.3

► RMSE: 14

Post Lasso Estimator

We used the variable selections from Lasso (lambda.1se) to make a linear model to see how it performs compared to one with all variables

Post Lasso Estimator

- LM with Lasso variables
 - Regular LM

- ► R2: 0.649
- ► RMSE: 14.04
- ► MAE: 6.27

- ► R2: 0.659
- ► RMSE: 12.84
- ► MAE: 6.39
- Those 8 variables do almost as well as a model using all the variables

Random Forest

- Used everything but Club because it had too many categories
- Chose 100 trees to minimize error

Top 5 variables

Overall Potential International.Reputation Reactions Position Age StandingTackle Marking Continent Volleys Finishina Stamina SlidingTackle Interceptions BallControl Strenath LongPassing Aggression Height SprintSpeed ShortPassing **GKReflexes** Composure **FKAccuracy** Acceleration Weight GKDiving Vision Dribbling Agility

Overall International.Reputation Reactions Potential **BallControl** Position ShortPassing Composure Age Dribbling StandingTackle LongShots SlidingTackle Vision Positioning Finishing Interceptions ShotPower Work.Rate **GKPositioning** Jumping Stamină Agaression **FKAccuracy GKHandling** Marking Volleys Curvé LongPassing HeadingAccuracy

Prediction of the forest for different values of Overall and Potential

Prediction of the forest for different values of Overall and International.Reputation

Random Forest Model Diagnostics

► R2: 0.79

► MAE: 4.5

► RMSE: 11.3

Neural Network

- Feed input into network
- Make prediction
- Update weights through backpropagation

Neural Network

```
import pandas as pd
import keras
import numpy as np
import matplotlib.pyplot as plt
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Dropout
x_train = pd.read_csv("datasets/fifa_xtrain.csv")
x_test = pd.read_csv("datasets/fifa xtest.csv")
y_train = pd.read_csv("datasets/fifa_ytrain.csv")
y_test = pd.read_csv("datasets/fifa_ytest.csv")
Using TensorFlow backend.
y train = (y train - y train.mean()) / y train.std()
x train = (x train - x train.mean()) / x train.std()
y_test = (y_test - y_test.mean()) / y_test.std()
x test = (x test - x test.mean()) / x test.std()
print(x_train.shape)
print(x test.shape)
(9737, 42)
(4173, 42)
model = Sequential()
model.add(Dense(42, input_dim = 42, kernel_initializer = 'normal', activation='relu'))
model.add(Dense(21, kernel_initializer='normal', activation = 'relu'))
model.add(Dense(10, kernel_initializer='normal', activation = 'relu'))
model.add(Dropout(0.5))
model.add(Dense(5, kernel_initializer='normal', activation = 'relu'))
model.add(Dense(1, kernel_initializer='normal'))
model.compile(loss='mean_squared_error', optimizer='adam', metrics = ['mape'])
history = model.fit(
    x_train, y_train, # training data to learn from
    batch_size= 107, # size of batches
    epochs= 75, # how many iterations we train for
    verbose=1.# type of logging
    validation_data=(x_test, y_test))
```

Neural Network Diagnostics

► R2: 0.74

Results

Results

- Most important variables across all models:
 - Overall skill rating
 - Potential rating
 - Club
 - International Reputation
 - Reactions
 - Position

Conclusions

Conclusion

- We learned that a few variables matter a lot, and everything else doesn't really have an impact
- Management can maximize their market cap use by hiring someone highly skilled in a low-earning position that can help the team a lot but won't cost as much
- Teams with lower international reputations can hire highly skilled players just under a rating of 80

Thank you! Questions?

