Pembuktian Teorema Himpunan

1. Pembuktian dengan menggunakan diagram Venn

Contoh . Misalkan A, B, dan C adalah himpunan. Buktikan $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ dengan diagram Venn.

Bukti:

Kedua digaram Venn memberikan area arsiran yang sama. Terbukti bahwa $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

- Diagram Venn hanya dapat digunakan jika himpunan yang digambarkan tidak banyak jumlahnya.
- Metode ini *mengilustrasikan* ketimbang membuktikan fakta. Diagram Venn tidak dianggap sebagai metode yang valid untuk pembuktian secara formal.

2. Pembuktikan dengan menggunakan tabel keanggotaan

Contoh. Misalkan A, B, dan C adalah himpunan. Buktikan bahwa $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Bukti:

A	В	C	$B \cup C$	$A \cap (B \cup C)$	$A \cap B$	$A \cap C$	$(A \cap B) \cup (A \cap C)$
0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	0	0	0	0

1	0	0	0	0	0	0	0
1	0	1	1	1	0	1	1
1	1	0	1	1	1	0	1
1	1	1	1	1	1	1	1

Karena kolom $A \cap (B \cup C)$ dan kolom $(A \cap B) \cup (A \cap C)$ sama, maka $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

3. Pembuktian dengan menggunakan aljabar himpunan.

Contoh. Misalkan A dan B himpunan. Buktikan bahwa $(A \cap B) \cup (A \cap \overline{B}) = A$

Bukti:

$$(A \cap B) \cup (A \cap \overline{B}) = A \cap (B \cup \overline{B})$$
 (Hukum distributif)
= $A \cap U$ (Hukum komplemen)
= A (Hukum identitas)

Contoh. Misalkan A dan B himpunan. Buktikan bahwa $A \cup (B - A) = A \cup B$

Bukti:

$$A \cup (B - A) = A \cup (B \cap \overline{A})$$
 (Definisi operasi selisih)
= $(A \cup B) \cap (A \cup \overline{A})$ (Hukum distributif)
= $(A \cup B) \cap U$ (Hukum komplemen)
= $A \cup B$ (Hukum identitas)

Contoh. Buktikan bahwa untuk sembarang himpunan A dan B, bahwa

(i)
$$A \cup (\overline{A} \cap B) = A \cup B$$
 dan
(ii) $A \cap (\overline{A} \cup B) = A \cap B$

Bukti:

(i)
$$A \cup (\overline{A} \cap B) = (A \cup \overline{A}) \cap (A \cap B)$$
 (H. distributif)
= $U \cap (A \cap B)$ (H. komplemen)
= $A \cup B$ (H. identitas)

(ii) adalah dual dari (i)

$$A \cap (\overline{A} \cup B) = (A \cap \overline{A}) \cup (A \cap B)$$
 (H. distributif)
= $\emptyset \cup (A \cap B)$ (H. komplemen)
= $A \cap B$ (H. identitas)

4. Pembuktian dengan menggunakan definisi

• Metode ini digunakan untuk membuktikan pernyataan himpunan yang tidak berbentuk kesamaan, tetapi pernyataan yang berbentuk implikasi. Biasanya di dalam implikasi tersebut terdapat notasi himpunan bagian (⊆ atau ⊂).

Contoh . Misalkan A dan B himpunan. Jika $A \cap B = \emptyset$ dan $A \subseteq (B \cup C)$ maka $A \subseteq C$. Buktikan!

Bukti:

- (i) Dari definisi himpunan bagian, $P \subseteq Q$ jika dan hanya jika setiap $x \in P$ juga $\in Q$. Misalkan $x \in A$. Karena $A \subseteq (B \cup C)$, maka dari definisi himpunan bagian, x juga $\in (B \cup C)$. Dari definisi operasi gabungan (\cup) , $x \in (B \cup C)$ berarti $x \in B$ atau $x \in C$.
- (ii) Karena $x \in A$ dan $A \cap B = \emptyset$, maka $x \notin B$

Dari (i) dan (ii), $x \in C$ harus benar. Karena $\forall x \in A$ juga berlaku $x \in C$, maka dapat disimpulkan $A \subseteq C$.

Prinsip Inklusi-Eksklusi

Untuk dua himpunan A dan B:

$$|A \cup B| = |A| + |B| - |A \cap B|$$
$$|A \oplus B| = |A| + |B| - 2|A \cap B|$$

Contoh. Berapa banyaknya bilangan bulat antara 1 dan 100 yang habis dibagi 3 atau 5?

Penyelesaian:

A = himpunan bilangan bulat yang habis dibagi 3,

B = himpunan bilangan bulat yang habis dibagi 5,

 $A \cap B$ = himpunan bilangan bulat yang habis dibagi 3 dan 5 (yaitu himpunan bilangan bulat yang habis dibagi oleh KPK – Kelipatan Persekutuan Terkecil – dari 3 dan 5, yaitu 15),

yang ditanyakan adalah $|A \cup B|$.

$$\begin{vmatrix} A \mid = \lfloor 100/3 \rfloor = 33, \\ |B| = \lfloor 100/5 \rfloor = 20, \\ |A \cap B| = \lfloor 100/15 \rfloor = 6 \end{vmatrix}$$
$$|A \cup B| = |A| + |B| - |A \cap B| = 33 + 20 - 6 = 47$$

Jadi, ada 47 buah bilangan yang habis dibagi 3 atau 5.

Untuk tiga buah himpunan A, B, dan C, berlaku

$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$$

Untuk himpunan $A_1, A_2, ..., A_r$, berlaku:

$$|A_1 \cup A_2 \cup \dots \cup A_r| = \sum_{i} |A_i| - \sum_{1 \le i \le j \le r} |A_i \cap A_j| + \sum_{1 \le i \le j \le k \le r} |A_i \cap A_j \cap A_k| + \dots + (-1)^{r-1} |A_1 \cap A_2 \cap \dots \cap A_r|$$

SOAL-SOAL YANG HARUS DIKERJAKAN DAN JAWABAN DIKIRIMKAN SEBELUM BATAS WAKTU YANG SUDAH DITENTUKAN

- 1. Buktikan dalil himpunana berikut, jika A, B, dan C sebarang himpunan;
 - a. $(AUB) \cap C = (A \cap C) \cup (B \cap C)$
 - b. Dalil De Morgan pada Himpunan
- 2. Di antara bilangan 1 sampai 300 (termasuk 1 dan 300 sendiri), berapa banyak yang tidak habis di bagi 3 dan 5.
- 3. Di antara bilangan 1 sampai 300, berapa banyak bilangan habis di bagi 3 tetapi tidak habis di bagi 5 maupun 7.