

Weierstraß Institut für Angewandte Analysis und Stochastik

7. Vorlesung: Gemeinsame Verteilung

Nikolas Tapia

06. Mai 2024, Stochastik für Informatik(er)

Gemeinsame Verteilung

Definition 7.1

Seien X,Y zwei diskrete Zufallsvariablen, die auf demselben Wahrscheinlichkeitsraum definiert sind. Die **gemeinsame Verteilung** von X und Y ist gegeben durch

$$\mathbb{P}(\{X=x\}\cap\{Y=y\}):=\mathbb{P}(X=x,Y=y),\quad x,y\in X(\Omega)\times Y(\Omega).$$

Randverteilung

Definition 7.2

Seien X, Y zwei diskrete Zufallsvariablen mit gemeinsamer Verteilung $\mathbb{P}(X = x, Y = y)$. Die **Randverteilungen** von X bzw. von Y sind die Verteilungen der einzelnen Zufallsvariablen X bzw. Y. Sie sind gegeben durch

$$\mathbb{P}(X=x) := \sum_{\substack{y \in Y(\Omega) \\ -}} \mathbb{P}(X=x, Y=y), \quad x \in X(\Omega),$$

$$\mathbb{P}(Y = y) := \sum_{x \in X(\Omega)} \mathbb{P}(X = x, Y = y), \quad y \in Y(\Omega).$$

Bedingte Verteilung

Definition 7.3

Seien X, Y zwei diskrete Zufallsvariablen mit gemeinsamer Verteilung $\mathbb{P}(X = x, Y = y)$. Die **bedingte Verteilung** von X gegeben Y = y ist definiert als

$$\mathbb{P}(X=x|Y=y) := \frac{\mathbb{P}(X=x,Y=y)}{\mathbb{P}(Y=y)}, \quad x \in X(\Omega), y \in Y(\Omega).$$

2

$Y \backslash X$	2	3	4	5	6	7	8
1	1	1	2/3	1/2	0	0	0
2	0	0	1/3	1/2	2/3	0	0
3	0	0	0	0	1/3	1	0
4	0	0	0	0	0	0	1

Unabhängigkeit

Definition 7.4

Zwei diskrete Zufallsvariablen X, Y heißen **unabhängig**, falls für alle $x \in X(\Omega)$ und $y \in Y(\Omega)$ die Ereignisse $\{X = x\}$ und $\{Y = y\}$ unabängig sind, d.h.

$$\mathbb{P}(X=x, Y=y) = \mathbb{P}(X=x)\mathbb{P}(Y=y).$$

Definition 7.5

Seien X_1, \ldots, X_n diskrete Zufallsvariablen. Die heißen **unabhängig**, falls für alle x_1, \ldots, x_n die Ereignisse $\{X_1 = x_1\}, \ldots, \{X_n = x_n\}$ unabhängig sind, d.h.

$$\mathbb{P}(X_{i_1} = X_{i_1}, \dots, X_{i_k} = X_{i_k}) = \mathbb{P}(X_{i_1} = X_{i_1}) \cdots \mathbb{P}(X_{i_k} = X_{i_k})$$

für alle $k \leq n$, für alle paarweise verschiedenen $i_1, \ldots, i_k \in \{1, \ldots, n\}$, und $x_{i_1} \in X_{i_1}(\Omega), \ldots, x_{i_k} \in X_{i_k}(\Omega)$.

Ordnungsstatistik

Definition 7.6

Seien X_1, \ldots, X_n n diskrete Zufallsvariablen. Die **Ordnungsstatistik** ist die Folge $(X_{(1)}, \ldots, X_{(n)})$ der Zufallsvariablen, die durch Sortieren der Zufallsvariablen X_1, \ldots, X_n in aufsteigender Reihenfolge entsteht.

Aussage 7.1

Seien X_1, \dots, X_n n unabhängige und **identisch verteilte** Zufallsvariablen. Dann gilt

$$\mathbb{P}(X_{(1)} \leq x) = 1 - (1 - F_X(x))^n, \quad \mathbb{P}(X_{(n)} \leq x) = F_X(x)^n.$$

Poisson-Approximation

Theorem 1 (Poisson-Grenzwertsatz)

Sei $n \in \mathbb{N}$, und sei $(p_n)_{n \in \mathbb{N}}$ eine Folge von Zahle aus [0,1] mit $\lim_{n \to \infty} np_n = \lambda \in (0,\infty)$.

Sei $X_n \sim \text{Binom}(n, p_n)$ eine Folge von binomialverteilten Zufallsvariablen, und sei $X \sim \text{Poisson}(\lambda)$.

Dann gilt

$$\lim_{n\to\infty}\mathbb{P}(X_n=k)=\mathbb{P}(X=k)$$

für alle $k \in \mathbb{N}_0$.

Poisson-Approximation

Aussage 7.2

Sei $\lambda > 0$. Sei X binomialverteilt mit Parametern $n \in \mathbb{N}$ und $p = \frac{\lambda}{n}$. Dann gilt

$$\mathbb{P}(X=k) \approx \frac{\lambda^k}{k!} e^{-\lambda}, \quad k \in \{0,\ldots,n\},$$

d.h. X ist approximativ Poisson-verteilt mit Parameter $\lambda = np$. Die Approximation wird besser, je größer n bzw. kleiner p ist.

WIL

Ein Geschäft hergestellt eine große Anzahl von gleichartigen Produkten, aus denen n zufällig getestet werden. Mit Wahrscheinlichkeit $p \in (0, 1)$ ist ein Produkt defekt. Wie groß ist die Wahrscheinlichkeit, dass aus einer Stichprobe von 10 Produkten höchstens 1 defekt ist?

Funktionen von unabhängigen Zufallsvariablen

Aussage 7.3

Seien X, Y zwei unabhängige diskrete Zufallsvariablen, und seien f, g zwei Funktionen. Dann sind f(X) und g(Y) ebenfalls unabhängige Zufallsvariablen.

Faltungsformel

Aussage 7.4

Seien X, Y zwei unabhängige diskrete Zufallsvariablen. Dann hat die Zufallsvariable X+Y die Verteilung

$$\mathbb{P}(X+Y=k) = \sum_{x \in X(\Omega)} \mathbb{P}(X=x) \mathbb{P}(Y=k-x)$$

$$\text{für alle } k \in (X+Y)(\Omega) = \{m+n : m \in X(\Omega), n \in Y(\Omega)\}.$$

Summe von unabhängigen Poisson-verteilten Zufallsvariablen

Aussage 7.5

Seien X,Y unabhängige Poisson-verteilte Zufallsvariablen mit Parametern $\lambda,\mu>0$. Dann ist die Zufallsvariable X+Y Poisson-verteilt mit Parameter $\lambda+\mu$.

WI

2

Seien $X \sim \text{Poisson}(\lambda)$, $Y \sim \text{Poisson}(\mu)$.

Welche bedingte Verteilung hat X, gegeben X + Y = n?

