

Sciences physiques

Classe: 4ème Math et Sc. Exp

Série physique:

Le dipôle RL (1)

Prof: SAIF EDDINE FRAJ

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba / Jendouba / Sidi Bouzid / Siliana / Béja / Zaghouan

Exercice 1

(3)

On réalise un circuit électrique en série comportant un conducteur ohmique de résistance $\mathbf{R}=\mathbf{50}~\Omega$, une bobine d'inductance \mathbf{L} et de résistance interne \mathbf{r} , une diode \mathbf{D} , une lampe \mathbf{L} et un interrupteur \mathbf{K} . L'ensemble est alimenté par un générateur idéal de tension de fem $\mathbf{E}=\mathbf{6}~\mathbf{V}$ comme le montre le schéma de la **Figure 1**.

Dans une première expérience, on ferme l'interrupteur \mathbf{K} à l'instant $\mathbf{t} = \mathbf{0}$. A l'aide d'une méthode expérimentale appropriée, on suit l'évolution temporelle de l'intensité instantané i du source départe qui circule dans le circuit

instantané i du courant électrique qui circule dans le circuit. On obtient la courbe de la Figure 2.

1- Cette expérience montre que l'établissement d'un courant dans un dipôle RL n'est pas instantané.

- a- Nommer le phénomène physique mis en évidence dans cette expérience.
- b- Préciser parmi la bobine et le conducteur ohmique, le dipôle qui est responsable de ce phénomène.
- c- Représenter en le justifiant, le sens du courant électrique i circulant dans le circuit ainsi que le sens du courant induit.
- 2- Montrer que l'équation différentielle régissant l'évolution de l'intensité i du courant au cours du temps $s\text{'écrit}: \frac{di}{dt} + \frac{(R+r)i}{L} = \frac{E}{L} \,.$

- 3- La solution de l'équation différentielle précédente s'écrit sous de la forme : $i(t) = I_p(1-e^{-\frac{t}{\tau}})$. Dire ce que représentent I_p et τ et déterminer ses expressions en fonction de E, R, L et r.
- 4- Donner l'expression de la tension $u_R(t)$ aux bornes du résistor en fonction de R, I_p , τ et t.
- 5- Donner l'expression de la tension $u_B(t)$ aux bornes de la bobine en fonction de r, E, I_p , τ et t.
- 6- a- Déterminer l'expression de la tension U_{Rp} aux bornes du conducteur ohmique en régime permanent, en fonction de $E,\,R$ et r.
 - b- Déduire l'expression de la tension U_{Bp} aux bornes de la bobine en régime permanent, en fonction de $E,\,R$ et r.

- 7- Par exploitation de la courbe de la Figure 2 :
 - a- Déterminer les valeurs de I_p et τ .
 - b- Déduire les valeurs de r et L.
- 8- a- Déterminer les valeurs de U_{Rp} et U_{Bp} .
 - b- Retrouver la valeur de r.
- 9- Dans une deuxième expérience et lorsque le régime permanent est établi, on ouvre l'interrupteur **K**. On constate que la lampe **L** s'allume pendant une courte durée avant de s'éteindre.
 - a- Nommer le phénomène physique responsable de l'annulation progressive de l'intensité du courant électrique dans le circuit.
 - b- Justifier le sens du courant traversant la diode.
 - c- Représenter en le justifiant, le sens du courant induit.
 - d- Expliquer l'origine de l'énergie qui allumer la lampe.

Exercice 2

À l'aide d'un générateur idéal de tension de fem E, d'un interrupteur K, d'une bobine d'inductance L = 0,06 H et de résistance interne $r = 10 \Omega$ et d'un conducteur ohmique de résistance R_0 , montés en série, on réalise le circuit électrique schématisé sur la **figure-1**.

Un système d'acquisition, dont les branchements au montage électrique sont analogues à ceux d'un oscilloscope, permet de visualiser l'évolution, au cours du temps, de la tension $\mathbf{u}_{R_0}(\mathbf{t})$ aux bornes du résistor.

À t = 0, on ferme l'interrupteur K et on procède à l'acquisition. On obtient la courbe de la figure-2.

- 1-a- Justifier que la courbe d'évolution de la tension $\mathbf{u}_{R_0}(\mathbf{t})$ aux bornes du résistor et celle de l'intensité $\mathbf{i}(\mathbf{t})$ du courant, qui parcourt le circuit, ont la même allure.
 - b- Indiquer, en le justifiant, parmi les deux portions (AB) et (BC) de la courbe, celle qui correspond au régime transitoire de l'établissement du courant.
 - c- En déduire la durée Δt au bout de laquelle le régime permanent s'établit dans le circuit.

2- a- Montrer que l'équation différentielle vérifiée par la tension u_{R_0} (t) au cours du temps s'écrit :

$$\tau \frac{du_{R_0}}{dt} + u_{R_0} = \frac{R_0}{R_0 + r} E \quad \text{avec} \quad \tau = \frac{L}{R_0 + r}.$$

- b- Déterminer graphiquement la valeur de la constante de temps τ du dipôle RL. Déduire la relation entre Δt et τ .
- c- Calculer la valeur de R₀.
- d- En exploitant l'équation différentielle en régime permanent, déterminer la valeur de E.
- e- Montrer que la résistance interne de la bobine s'écrit : $\mathbf{r} = \mathbf{R}_0 \cdot \left(\frac{\mathbf{E}}{\mathbf{U}_{\mathbf{R}_0}} 1 \right)$. Retrouver la valeur de \mathbf{r} .
- 3- Sachant que la pente de la tangente (Δ) à la courbe $u_{R_0} = f(t)$ prise à l'instant t = 0, a pour expression : $P = \left(\frac{du_{R_0}}{dt}\right)_{t=0}$,
 - a- montrer que l'inductance de la bobine s'écrit : $L = \frac{R_0 \cdot E}{P}$,
 - b- retrouver alors la valeur de L.
- 4- À l'ouverture du circuit, des étincelles de rupture apparaissent au niveau de l'interrupteur.
 - a- Donner une explication à ce phénomène.
 - **b-** Indiquer, sur un schéma, la modification qu'on doit apporter au circuit et qui permet d'éviter ce phénomène sans perturber l'établissement du courant dans le circuit considéré.

Figure 1

Exercice 3

(3)

On réalise un circuit électrique en série comportant un conducteur ohmique de résistance \mathbf{R} , une bobine \mathbf{B} d'inductance $\mathbf{L} = \mathbf{0}, \mathbf{3}$ \mathbf{H} et de résistance interne \mathbf{r} , un ampèremètre \mathbf{A} et un interrupteur \mathbf{K} . L'ensemble est alimenté par un générateur idéal de tension de fem \mathbf{E} comme le montre le schéma de la **Figure 1**.

Un oscilloscope numérique à mémoire permet de visualiser, simultanément, l'évolution au cours de temps de la tension \mathbf{u}_B aux bornes de la bobine sur la voie \mathbf{Y}_1 et la tension \mathbf{u}_R aux bornes du conducteur ohmique sur la voie \mathbf{Y}_2 .

A l'instant t = 0, on ferme l'interrupteur K. On obtient alors les chronogrammes (\mathcal{C}_1) et (\mathcal{C}_2) de la **Figure 2**.

$$\frac{du_R}{dt} + \frac{u_R}{\tau} = \frac{RE}{L}$$
; avec $\tau = \frac{L}{R+r}$.

b- Déterminer l'expression de la tension U_{R0} aux bornes du conducteur ohmique en fonction de E, R et r lorsque le régime permanent s'établit dans le circuit.

- c- Déverminer l'expression de l'intensité du courant électrique \mathbf{I}_0 en régime permanent.
- d- Déduire, qu'en régime permanent, la tension aux bornes de la bobine est : $U_{B0}=\frac{rE}{R+r}$.
- 3- Par exploitation des chronogrammes (\mathscr{C}_1) et (\mathscr{C}_2) de la **Figure 2** :
 - a- Montrer que le chronogramme (\mathscr{C}_2) correspond à $u_R(t)$.
 - b- Déterminer la valeur de la constante de temps τ . Déduire la valeur de : R + r.
 - c- Les deux voies Y₁ et Y₂ de l'oscilloscope ont la même sensibilité verticale. Montrer que : R = 4.r.

а

6

12

- d- Déterminer les valeurs de r et de R.
- 4- En régime permanent, l'ampèremètre indique une intensité du courant électrique : $I_0=0,2~A$.
 - a- Déterminer la valeur de la fem E du générateur.
 - b- Déterminer l'énergie magnétique maximale **E**_{Lmax} emmagasinée dans la bobine.

t (ms)