MATH 710 HW # 10

MARIO L. GUTIERREZ ABED PROF. A. BASMAJIAN

Exercise 1. Let V be an n-dimensional real vector space. Find a basis for $\Lambda^k(V)$ and show that $\dim \Lambda^k(V) = \binom{n}{k}$.

Proof. Given bases (E_i) for V and their dual counterparts (φ^i) for V^* , our basis for $\Lambda^k(V)$ is given by the set

$$\mathcal{B} = \{ \varphi^{i_1} \wedge \cdots \wedge \varphi^{i_k} \mid 1 \leq i_1 < i_2 < \cdots < i_k \leq n \}.$$

Let $\omega \in \Lambda^k(V) \subset T^k(V)$, so we can write

$$\omega = \sum_{\{I: i_1 < \dots < i_k\}} \alpha_{i_1, \dots, i_k} \varphi^{i_1} \otimes \dots \otimes \varphi^{i_k}.$$

But then,

$$\omega = \operatorname{Alt}(\omega) = \sum_{\{I: i_1 < \dots < i_k\}} \alpha_{i_1, \dots, i_k} \operatorname{Alt}(\varphi^{i_1} \otimes \dots \otimes \varphi^{i_k}).$$

Then since each $Alt(\varphi^{i_1} \otimes \cdots \otimes \varphi^{i_k})$ is a constant times one of the $\varphi^{i_1} \wedge \cdots \wedge \varphi^{i_k}$, these elements span $\Lambda^k(V)$.

Now to show linear independence of \mathcal{B} , suppose that the identity $\sum_{\{I: i_1 < \dots < i_k\}} \alpha_{i_1,\dots,i_k} \varphi^{i_1} \wedge \dots \wedge \varphi^{i_k} = 0$ holds for some coefficients α_{i_1,\dots,i_k} . Let $J = \{j_i \mid 1 \leq j_1 < j_2 < \dots < j_k \leq n\}$ be any other increasing multi-index. Since the result of evaluating $\varphi^{i_1} \wedge \dots \wedge \varphi^{i_k}$ on a sequence of basis vectors is $\varphi^{i_1} \wedge \dots \wedge \varphi^{i_k}(E_{j_1},\dots,E_{j_k}) = \delta^I_J$, by applying both sides of the identity to the vectors (E_{j_1},\dots,E_{j_k}) we get

$$0 = \sum_{\{I: i_1 < \dots < i_k\}} \alpha_{i_1,\dots,i_k} \varphi^{i_1} \wedge \dots \wedge \varphi^{i_k}(E_{j_1},\dots,E_{j_k}) = \alpha_{j_1,\dots,j_k}.$$

Thus each coefficient α_{j_1,\ldots,j_k} is zero, and we are done. Note that a strictly ascending multi-index $I=(i_1<\cdots< i_k)$ is obtained by choosing a subset of k letters from $1,\ldots,n$, and this can be done in $\binom{n}{k}$ ways; hence we have the desired dimension for $\Lambda^k(V)$.

1

Exercise 2. Prove the following properties of the wedge product:

- i) Bilinearity. $(\alpha\omega + \alpha'\omega') \wedge \eta = \alpha(\omega \wedge \eta) + \alpha'(\omega' \wedge \eta)$.
- ii) Associativity. If $\omega \in \Lambda^k(V)$, $\eta \in \Lambda^\ell(V)$, and $\theta \in \Lambda^m(V)$, then $(\omega \wedge \eta) \wedge \theta = \omega \wedge (\eta \wedge \theta).$
- iii) Anticommutativity. If $\omega \in \Lambda^k(V)$ and $\eta \in \Lambda^\ell(V)$, then $\omega \wedge \eta = (-1)^{k\ell} \eta \wedge \omega.$

Solution of i). This follows rather trivially from the definition of the wedge product. Recall that

$$\omega \wedge \eta = \frac{(k+\ell)!}{k!\,\ell!} \operatorname{Alt}(\omega \otimes \eta).$$

Thus, since the tensor product is bilinear and Alt is linear, the bilinearity of the wedge product must hold as well. \Box

Solution of ii). Unwinding the definition of the wedge product, we have

$$(\omega \wedge \eta) \wedge \theta = \frac{(k+\ell+m)!}{(k+\ell)! \, m!} \operatorname{Alt}((\omega \wedge \eta) \otimes \theta)$$

$$= \frac{(k+\ell+m)!}{(k+\ell)! \, m!} \operatorname{Alt}\left(\frac{(k+\ell)!}{k! \, \ell!} \operatorname{Alt}(\omega \otimes \eta) \otimes \theta\right)$$

$$= \frac{(k+\ell+m)!}{(k+\ell)! \, m!} \frac{(k+\ell)!}{k! \, \ell!} \operatorname{Alt}(\omega \otimes \eta \otimes \theta)$$

$$= \frac{(k+\ell+m)!}{k! \, \ell! \, m!} \operatorname{Alt}(\omega \otimes \eta \otimes \theta).$$

Similarly,

$$\omega \wedge (\eta \wedge \theta) = \frac{(k+\ell+m)!}{k! (\ell+m)!} \operatorname{Alt}(\omega \otimes (\eta \wedge \theta))$$

$$= \frac{(k+\ell+m)!}{(k+\ell)! m!} \operatorname{Alt}\left(\omega \otimes \left(\frac{(\ell+m)!}{\ell! m!} \operatorname{Alt}(\eta \otimes \theta)\right)\right)$$

$$= \frac{(k+\ell+m)!}{k! (\ell+m)!} \frac{(\ell+m)!}{\ell! m!} \operatorname{Alt}(\omega \otimes \eta \otimes \theta)$$

$$= \frac{(k+\ell+m)!}{k! \ell! m!} \operatorname{Alt}(\omega \otimes \eta \otimes \theta).$$

Note that (\dagger) and (\dagger') hold because of the property of the alternating map:

$$Alt(Alt(\omega \otimes \eta) \otimes \theta) = Alt(\omega \otimes \eta \otimes \theta)$$
$$= Alt(\omega \otimes Alt(\eta \otimes \theta)),$$

which can be easily checked with a quick computation.

Solution of iii). Define $\tau \in S_{k+\ell}$ to be the permutation

$$\tau = \begin{bmatrix} 1 & \cdots & \ell & \ell+1 & \cdots & \ell+k \\ k+1 & \cdots & k+\ell & 1 & \cdots & k \end{bmatrix}.$$

This is pretty standard notation for permutations. It means that

$$\tau(1) = k + 1, \dots, \quad \tau(\ell) = k + \ell, \quad \tau(\ell + 1) = 1, \dots, \quad \tau(\ell + k) = k.$$

It is not hard to show that $sgn(\tau) = (-1)^{k\ell}$. Now we have

$$\sigma(1) = \sigma\tau(\ell+1), \dots, \sigma(k) = \sigma\tau(\ell+k),$$

$$\sigma(k+1) = \sigma\tau(1), \dots, \sigma(k+\ell) = \sigma\tau(\ell).$$

Then, for any $v_1, \ldots, v_{k+\ell} \in V$, we have

$$\operatorname{Alt}(\omega \otimes \eta)(v_{1}, \dots, v_{k+\ell}) = \frac{1}{(k+\ell)!} \sum_{\sigma \in S_{k+\ell}} (\operatorname{sgn} \sigma) \, \omega(v_{\sigma(1)}, \dots, v_{\sigma(k)}) \, \eta(v_{\sigma(k+1)}, \dots, v_{\sigma(k+\ell)})$$

$$= \frac{1}{(k+\ell)!} \sum_{\sigma \in S_{k+\ell}} (\operatorname{sgn} \sigma) \, \omega(v_{\sigma\tau(\ell+1)}, \dots, v_{\sigma\tau(\ell+k)}) \, \eta(v_{\sigma\tau(1)}, \dots, v_{\sigma\tau(\ell)})$$

$$= (\operatorname{sgn} \tau) \, \frac{1}{(k+\ell)!} \sum_{\sigma \in S_{k+\ell}} (\operatorname{sgn} \sigma \tau) \, \eta(v_{\sigma\tau(1)}, \dots, v_{\sigma\tau(\ell)}) \, \omega(v_{\sigma\tau(\ell+1)}, \dots, v_{\sigma\tau(\ell+k)})$$

$$= (\operatorname{sgn} \tau) \, \operatorname{Alt}(\eta \otimes \omega)(v_{1}, \dots, v_{k+\ell}).$$

The last equality follows from the fact that as σ runs through all permutations in $S_{k+\ell}$, so does $\sigma\tau$. Thus we have proven that

$$Alt(\omega \otimes \eta) = (\operatorname{sgn} \tau) Alt(\eta \otimes \omega).$$

Thus multiplying both sides by $\frac{(k+\ell)!}{k!\ell!}$, we get

$$\omega \wedge \eta = (\operatorname{sgn} \tau) \, \eta \wedge \omega$$
$$= (-1)^{k\ell} \eta \wedge \omega. \qquad \Box$$

Exercise 3. Show by an example that there exist k-alternating tensors (for some k > 1) that are not decomposable.¹

Solution. Note that, if ω is decomposable, then we must have $\omega \wedge \omega = 0$. The reason is that if we assume that ω is indeed decomposable, we should be able to express it as $\omega = \varphi^1 \wedge \cdots \wedge \varphi^k$ for some $\varphi^1, \ldots, \varphi^k \in \Lambda^1(V)$, and therefore $\omega \wedge \omega = \varphi^1 \wedge \cdots \wedge \varphi^k \wedge \varphi^1 \wedge \cdots \wedge \varphi^k = 0$. An example of a form that is not decomposable is, for instance, $\omega = \varphi^1 \wedge \varphi^2 + \varphi^3 \wedge \varphi^4 \in \Lambda^2(\mathbb{R}^4)$. In this case, we have

$$\omega \wedge \omega = 2\varphi^1 \wedge \varphi^2 \wedge \varphi^3 \wedge \varphi^4 \neq 0 \implies \omega$$
 is not decomposable.

(Note, however, that $\omega \wedge \omega = 0$ is a necessary but not sufficient condition for ω to be decomposable. For instance, if ω is any arbitrary odd alternating tensor, say of dimension 2k+1, then $\omega \wedge \omega = (-1)^{(2k+1)^2}\omega \wedge \omega = 0$.)

Exercise 4. Recall the space $\Lambda(V) = \bigoplus_{k=0}^{\infty} \Lambda^k(V)$ which, when equipped with the wedge product, becomes an anticommutative graded algebra known as the exterior algebra or Grasmann algebra. Show that dim $\Lambda(V) = 2^n$.

Proof. We already have from Exercise 1 that $\dim \Lambda^k(V) = \binom{n}{k}$. Since for $k > n = \dim V$, $\Lambda^k(V) = \emptyset$, we have

$$\Lambda(V) = \bigoplus_{k=0}^{\infty} \Lambda^k(V) = \bigoplus_{k=0}^n \Lambda^k(V).$$

¹Recall that a k-tensor $\omega \in \Lambda^k(V)$ is said to be **decomposable** if there exists $\varphi^1, \dots, \varphi^k \in \Lambda^1(V)$ such that $\omega = \varphi^1 \wedge \dots \wedge \varphi^k$.

We note that the scalars Λ^0 are one-dimensional; dim $\Lambda^0=1$. Thus the total dimension of the entire Grassmann algebra is

$$\sum_{k=0}^{n} \dim \Lambda^{k}(V) = 1 + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n}$$
$$= (1+1)^{n}$$
$$= 2^{n}.$$

Exercise 5. Prove that for any covectors $\omega^1, \ldots, \omega^k \in V^*$ and vectors $v_1, \ldots, v_k \in V$, we have $\omega^1 \wedge \cdots \wedge \omega^k(v_1, \ldots, v_k) = \det (\omega^j(v_i))_{i,j \leq k}$.

Proof. A generalization of the result from Exercise 2 part ii) above (associativity of the wedge product) shows that for $\theta^i \in \Lambda^{d_i}(V)$,

(1)
$$\theta^1 \wedge \cdots \wedge \theta^r = \frac{(d_1 + \cdots + d_r)!}{d_1! \cdots d_r!} \operatorname{Alt}(\theta^1 \otimes \cdots \otimes \theta^r).$$

Now, by equation (1), for 1-forms ω^i we have

$$\omega^{1} \wedge \cdots \wedge \omega^{k}(v_{1}, \dots, v_{k}) = \frac{(1 + \dots + 1)!}{1! \cdots 1!} \operatorname{Alt}(\omega^{1} \otimes \dots \otimes \omega^{k})(v_{1}, \dots, v_{k})$$

$$= k! \operatorname{Alt}(\omega^{1} \otimes \dots \otimes \omega^{k})(v_{1}, \dots, v_{k})$$

$$= \frac{k!}{k!} \sum_{\sigma \in S_{k}} (\operatorname{sgn} \sigma)(\omega^{1} \otimes \dots \otimes \omega^{k})(v_{\sigma(1)}, \dots, v_{\sigma(k)})$$

$$= \sum_{\sigma \in S_{k}} (\operatorname{sgn} \sigma) \omega^{1}(v_{\sigma(1)}) \cdots \omega^{k}(v_{\sigma(k)})$$

$$= \det (\omega^{j}(v_{i}))_{i,j \leq k}.$$