Solutions		
MATH 402	Autumn	2017

Homework 1 Oct 05, 2017

Problem 1 (1.3.1) Symmetries : $\{e, r, r^2, a, b, c\}$ Multiplication table:

Table 1: Mutiplication Table of Symmetries of an Equilateral Triangle

ion rasio of Symmotries of an						
	e	r	r^2	a	b	c
е	e	r	r^2	a	b	c
r	r	r^2	e	c	a	b
r^2	r^2	е	r	b	c	a
a	a	b	c	e	r	r^2
b	b	c	a	r^2	е	r
c	С	a	b	r	r^2	е

Problem 2 (1.3.3) (a) By the multiplication table:

$$a = a$$

$$ra = d$$

$$r^{2}a = rd = b$$

$$r^{3}a = r(r^{2}a) = rb = c$$

Thus a complete list of the symmetries if

$$\{e, r, r^2, r^3, a, ra, r^2a, r^3a\}$$

(b) By the multiplication table:

$$r(ar) = rc = a \Rightarrow ar = r^{-1}a$$

Note $r^4 = e$, we know $r^{-1} = r^3$. Therefore

$$ar = r^{-1}a = r^3a.$$

(c) First notice $ar^k = r^{-k}a$ for k = 1 by (b). Assume $ar^k = r^{-k}a$ holds for any knn. Then for k = n + 1, we know

$$ar^{k+1} = (ar^k)r = r^{-k}ar = r^{-k}r^{-1}a = r^{-(k+1)}a,$$

where the second equality is by assumption for k = n and the third equality is by (b).

(d) Since any element in the list of symmetries can be represented as $r^i a^j$ where $0 \le i \le 3$ and

 $0 \le j \le 1$ (We use the convention $a^0 = r^0 = e$ here). Then for any two elements $r^i a^j$ and $r^m a^n$ where $0 \le i, m \le 3$ and $0 \le j, n \le 1$. If j = 0:

$$(r^i a^j)(r^m a^n) = r^{i+m} a^n = r^s a^n$$

where $i + m \equiv s \mod(4)$ and $0 \le s \le 3$. If j = 1,

$$(r^{i}a^{j})(r^{m}a^{n}) = r^{i}(ar^{m})a^{n} = r^{i}r^{-m}aa^{n} = r^{i-m}a^{n+1} = r^{s}a^{t}$$

where $i - m \equiv s \mod(4)$, $0 \le s \le 3$ and $n + 1 \equiv t \mod(1)$, $0 \le t \le 1$.

Problem 3 (1.4.2) Let R_1 and R_2 be the matrix corresponding to rotation by $2\pi/3$ and $4\pi/3$ respectively. Therefore

$$R_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} \\ \frac{\sqrt{3}}{2} \\ 0 \end{bmatrix}, R_1 \begin{bmatrix} -\frac{1}{2} \\ \frac{\sqrt{3}}{2} \\ 0 \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} \\ -\frac{\sqrt{3}}{2} \\ 0 \end{bmatrix}$$

The second equality can be rewritten as

$$R_1(-\frac{1}{2} \begin{bmatrix} 1\\0\\0 \end{bmatrix} + \frac{\sqrt{3}}{2} \begin{bmatrix} 0\\1\\0 \end{bmatrix}) = \begin{bmatrix} -\frac{1}{2}\\-\frac{\sqrt{3}}{2}\\0 \end{bmatrix}$$

Since R_1 is linear transformation, we obtain

$$R_1 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -\frac{\sqrt{3}}{2} \\ -\frac{1}{2} \\ 0 \end{bmatrix}$$

Note all the transforms are done within the plane z = 0. R_1 should make the third coordinate unchanged.

$$R_1 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Hence we know

$$R_1 = R_1 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Then

$$R_2 = R_1^2 = \begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} & 0\\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0\\ 0 & 0 & 1 \end{bmatrix}$$

For A which represents the flip along the axis through $\begin{bmatrix} 1\\0\\0 \end{bmatrix}$, similarly

$$A \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, A \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix}, A \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix}$$

and we have

$$A = A \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}.$$

$$B = R_1^2 A = R_2 A = \begin{bmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

$$C = R_1 A = \begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

You can check the rest of the relations holds in the multiplication table in 1.3.1.

Problem 4 (1.4.8) Notice each symmetry of equilateral triangle can be viewed as a permution of the three vertices. Hence the total number of symmetries cannot exceed the total number of permutations of vertices, which equals to 3! = 6. On the other hand, we already find six different symmetries of equilateral triangle. Therefore the number of symmetries of an equilateral triangle is exactly 6.