Branch: CSE & IT

WEEKLY TEST – 05 Subject : Discrete Mathematics

Maximum Marks 15

Q.1 to 5 Carry ONE Mark Each

1. Consider the following statements:

$$S_1: [(p \land \sim q) \rightarrow r] \rightarrow [p \rightarrow (q \lor r)]$$

$$S_2$$
: $[(p \rightarrow q) \land (r \rightarrow s) \land (p \lor r)] \rightarrow (q \lor s)$

Which of the following is true?

- (a) S_1 is valid and S_2 is not valid
- (b) S_2 is valid and S_1 is not valid
- (c) Both S_1 and S_2 are valid
- (d) Neither S_1 nor S_2 is valid
- 2. $\{(p \rightarrow \neg q) \land (r \rightarrow q) \land r\} \rightarrow p \text{ is}$
 - (a) Tautology
- (b) Contingency
- (c) Contradiction
- (d) None
- 3. $\neg (S \leftrightarrow (P \rightarrow S))$ is
 - (a) Tautology
- (b) Contingency
- (c) Contradiction
- (d) Can't be determined

- **4.** The game of logic has 2 assumptions
 - 1. Logic is difficult or not many students like logic.
 - 2. If mathematics is easy, then logic is not difficult. Which of the following is conclusion for the given assumption?
 - (a) Mathematics is not easy, if many students like logic
 - (b) Not many students like logic, if mathematics is not easy
 - (c) Mathematics is not easy or logic is difficult
 - (d) None of the above
- 5. P: $\neg (A \land B) \lor (\neg A \rightarrow B)$ is
 - (a) Tautology
- (b) Contingency
- (c) Contradiction
- (d) Can't be determined.

Q.6 to 10 Carry TWO Marks Each

- **6.** $(p \rightarrow (q \rightarrow r)) \leftrightarrow ((p \rightarrow q) \rightarrow r)$ is
 - (a) Tautology
- (b) Contingency
- (c) Contradiction
- (d) Can's be determined.
- **7.** Which of the following statements are True?
 - (a) $(P \rightarrow Q) \lor (Q \rightarrow P)$ is always True
 - (b) $(P \rightarrow Q) \lor (Q \rightarrow R)$ is always True
 - (c) $(P \rightarrow Q) \lor (\neg P \rightarrow R)$ is always True
 - (d) $(P \rightarrow Q) \lor (R \rightarrow Q)$ is always True
- **8.** Suppose $P \rightarrow \neg q$ is false.

What is number of all possible combinations of truth value of r and s for which $(\neg q \rightarrow r) \land (\neg p \lor s)$ is true?

- **9.** Which of the following is not true?
 - (a) $\exists x \exists y [(2x + y = 5) \land (x 3y = -8)]$
 - (b) $\exists x \exists y [xy = 1]$
 - (c) $\exists x \forall y [xy = 1]$
 - (d) None
- **10.** p(x): $x^2 8x + 15 = 0$
 - q(x): x is odd
 - r(x): x > 0

Which of the following is true?

- (a) $\exists x[p(x) \rightarrow q(x)]$
- (b) $\forall x[q(x)\rightarrow p(x)]$
- (c) $\exists x[r(x)\rightarrow p(x)]$
- (d) $\forall x[p(x)\rightarrow q(x)]$

Answer Key

1. (c)

2. **(b)**

3. (b)

4. (a)

5. (a)

6. (c) 7. (a, b, c)

8. (2) 9. (c) 10. (a, c)

Hints and solutions

(c) 1. both are true S_1 :

pqr	$[p \\ \rightarrow (q \\ \lor r)]$	<i>p</i> ∧ ~ <i>q</i>	$[(p \land \\ \sim q) \\ \rightarrow r]$	$[(p \land \sim q)$ $\rightarrow r] \rightarrow [p$ $\rightarrow (q \lor r)]$
TFF	F	Т	F	T

S₂: 2 times disjunctive syllogism

- 2. **(b)** $\{(p \rightarrow \neg q) \land (r \rightarrow q) \land r\} \rightarrow p$ $p = F_{\neg}$ q = -Output is dependent on q $r = T \rfloor$ $q = T \Longrightarrow o/p = T$ $q = F \Longrightarrow o/p = F$ ∴ Contingency
- **(b) 3.**

P	S	$P \rightarrow S$	$x: S \leftrightarrow P \rightarrow S$	$\neg x$
T	T	T	T	F
T	F	F	T	F
F	T	T	T	F
F	F	T	F	T

- 4. (a)
 - (a) "Mathematics is not easy, if many students like logic" can be represented mathematically as $q \rightarrow \neg r$. We note that the proposition $q \rightarrow \neg$ r is logical equivalence, thus the conclusion is valid.
- **5.** (a) $(\neg A \lor \neg B) \lor (\neg A \lor B)$ $\neg A \lor \neg B \lor \neg A \lor B$

Assume RHS = F, LHS becomes T

$$(p \to (q \to r)) \leftrightarrow ((p \to q) \to r)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$T \qquad F \qquad F \qquad T \qquad F$$

$$T \leftrightarrow F \Rightarrow F$$

- 7. (a, b, c)
 - (d) $(P \rightarrow Q) \lor (R \rightarrow Q)$ is always True $F \vee T \qquad F$ $F \vee F = F$

(a)
$$(P \rightarrow Q) \lor (Q \rightarrow P)$$
 $P = T, Q = F$

$$F \qquad T = T$$

 $(c) (P \rightarrow Q) \lor (Q \rightarrow R)$

If Q is true, $P \rightarrow Q$ can never be false If Q is false, $Q \rightarrow R$ can never be false

$$(d) (P \rightarrow Q) \lor (\neg P \rightarrow R)$$
$$\neg P \lor Q \lor P \lor R$$
$$1 \lor Q \lor R = 1$$

- 8. (2
-) $p \rightarrow \neg q$ is false p = T $\neg q = F \Rightarrow q = T$
- 9. (c) (a) x = 1 2x + y = 2 * 1 + 3 = 5True y = 3 | x - 3y = 1 * 1 - 3 * 3 = -8(b) x = 1 There exists atleast True y = 1 One value which makes xy = 1(c) False, Not valid for all

- 10. (a, c)
 - (a) $\exists x[p(x)\rightarrow q(x)] \Rightarrow x = 5, 3$
 - (b) $\forall x[q(x)\rightarrow p(x)] \Rightarrow x = 7 \Rightarrow q(x) = \text{true}, p(x) =$
 - False ∴ (b) is false
 - (c) $\exists x[r(x)\rightarrow p(x)] \Rightarrow x = 5, 3$
 - (d) $\forall x[p(x)\rightarrow q(x)$

Fo

For more questions, kindly visit the library section: Link for web: $\underline{https://smart.link/sdfez8ejd80if}$

