Exploring coefficients across models

MACHINE LEARNING IN THE TIDYVERSE

Dmitriy (Dima) Gorenshteyn Lead Data Scientist, <Memorial Sloan Kettering Cancer Center

77 models

Regression coefficients

$$y = \alpha + \beta x$$

Regression coefficients

$$y = \alpha + \beta x$$

$$\frac{\text{Life}}{\text{Expectancy}} = \frac{\text{Term:}}{\text{(intercept)}} + \frac{\text{Term:}}{\text{year}} \text{ Year}$$

```
tidy(gap_models$model[[1]])
```

```
term estimate ...
1 (Intercept) -1196.5647772 ...
2 year 0.6348625 ...
```


Coefficients of multiple models

```
gap_models %>%
  mutate(coef = map(model, ~tidy(.x))) %>%
  unnest(coef)
```

```
# A tibble: 154 x 6
                                                p.value
  country
                  estimate std.error statistic
           term
                        <dbl>
                                 <dbl>
                                         <dbl>
                                                 <dbl>
  <fct>
           <chr>
           (Intercept) -1197 39.9
1 Algeria
                                         -30.0 1.32e-33
2 Algeria
                        0.635
                               0.0201
                                          31.6 1.11e-34
           year
3 Argentina
          (Intercept) - 372
                               7.91
                                         -47.0 4.66e-43
4 Argentina
                        0.223
                               0.00398
                                          56.0 8.78e-47
          year
5 Australia (Intercept) – 429
                                         -45.8 1.71e-42
                               9.37
6 Australia year
                                          53.9 5.83e-46
                        0.254
                               0.00472
```


Let's practice!

MACHINE LEARNING IN THE TIDYVERSE

Evaluating the fit of many models

MACHINE LEARNING IN THE TIDYVERSE

Dmitriy (Dima) Gorenshteyn
Lead Data Scientist, Memorial Sloan
Kettering Cancer Center

The fit of our models

$$R^2 = rac{\% \ variation \ explained \ by \ the \ model}{\% \ total \ variation \ in \ the \ data}$$

The fit of our models

Glance across your models

```
model_perf <- gap_models %>%
  mutate(coef = map(model, ~glance(.x))) %>%
  unnest(coef)
model_perf
```

```
# A tibble: 77 x 14
  country data model r.squared adj.r.squared sigma statistic
           >lis> <lis>
  <fct>
                          <dbl>
                                        <dbl> <dbl>
                                                       <dbl>
1 Algeria <tib... <S3:.
                            0.952
                                         0.951
                                                2.18
                                                        996
2 Argenti. <tib... <S3:. 0.984
                                                0.431
                                         0.984
                                                       3137
                                                               . . .
                                                0.511
3 Austral. <tib... <S3:. 0.983
                                         0.983
                                                       2905
4 Austria <tib... <S3:. 0.987
                                         0.986
                                                0.438
                                                       3702
                                                               . . .
5 Banglad. <tib... <S3:. 0.949
                                                1.83
                                         0.947
                                                        921
                                                               . . .
6 Belgium. <tib... <S3:.
                            0.990
                                         0.990
                                                0.331
                                                       5094
# ... with 71 more rows
```



```
model_perf %>%
  slice_max(r.squared, n = 2)
# A tibble: 2 x 14
  country data model r.squared adj.r.squared sigma statistic
  <fct>
       <lis> <lis>
                        <dbl>
                               <dbl> <dbl>
                                                    <dbl>
1 Canada <tib... <S3:.
                        0.995
                                     0.995 0.231
                                                   10117
2 Italy <tib... <S3:.
                                     0.997 0.226
                                                   15665
                        0.997
model_perf %>%
  slice_min(r.squared, n = 2)
# A tibble: 2 x 14
  country data model r.squared adj.r.squared sigma statistic
  <fct> <fct> <
                        <dbl>
                                     <dbl> <dbl>
                                                    <dbl>
1 Botswa~ <tib... <S3:. 0.0136 -0.00608 5.11
                                                    0.692
                                  -0.0170 5.32
2 Lesotho <tib... <S3:. 0.00296
                                                    0.148
```

Let's practice!

MACHINE LEARNING IN THE TIDYVERSE

Visually inspect the fit of your models

MACHINE LEARNING IN THE TIDYVERSE

Dmitriy (Dima) Gorenshteyn
Lead Data Scientist, Memorial Sloan
Kettering Cancer Center

Building augmented datframes

```
# A tibble: 4,004 x 10
   country life_expectancy year .fitted .se.fit .resid .hat .sigma
                    <dbl> <int>
                                  <dbl>
                                          <dbl> <dbl> <dbl>
  <fct>
                                                               <dbl>
                     47.5 1960
1 Algeria
                                          0.595 - 0.266 \ 0.0747
                                   47.8
                                                                2.20
2 Algeria
                     48.0
                           1961
                                   48.4
                                          0.578 - 0.381 \ 0.0705
                                                                2.20
3 Algeria
                     48.6 1962
                                   49.0
                                          0.561 - 0.486 \ 0.0664
                                                                2.20
                     49.1 1963
                                   49.7
 4 Algeria
                                          0.544 -0.600 0.0625
                                                                2.20
                     49.6 1964
                                   50.3
5 Algeria
                                          0.527 - 0.725 \ 0.0587
                                                                2.20
 6 Algeria
                     50.1 1965
                                   50.9
                                          0.511 - 0.850 \ 0.0551
                                                                2.20
```


Model for Italy $R^2:0.99$

```
augmented_model %>% filter(country == "Italy") %>%
  ggplot(aes(x = year, y = life_expectancy)) +
  geom_point() +
  geom_line(aes(y = .fitted), color = "red")
```


Model for Fiji $R^2:0.82$

Model for Kenya $R^2:0.42\,$

Let's practice!

MACHINE LEARNING IN THE TIDYVERSE

Improve the fit of your models

MACHINE LEARNING IN THE TIDYVERSE

Dmitriy (Dima) Gorenshteyn
Lead Data Scientist, Memorial Sloan
Kettering Cancer Center

Multiple Linear Regression model

$$y = \alpha + \beta_1 x_1 + \beta_2 x_2 + ...$$

Available Features: year, population, infant_mortality, fertility, gdpPercap

Using all features

Simple Linear Model: life_expectancy ~ year

```
gap_models <- gap_nested %>%
mutate(model = map(data, ~lm(formula = life_expectancy ~ year, data = .x)))
```

Multiple Linear Model: life_expectancy ~ year + population + ...

Multiple Linear Model: life_expectancy ~ .

```
gap_fullmodels <- gap_nested %>%
mutate(model = map(data, ~lm(formula = life_expectancy ~ ., data = .x)))
```



```
tidy(gap_fullmodels$model[[1]])
```

```
term estimate std.error statistic p.value

(Intercept) -1.830195e+03 1.502271e+02 -12.182848 5.325478e-16

year 9.814091e-01 7.800580e-02 12.581232 1.693870e-16

infant_mortality -1.603504e-01 4.021732e-03 -39.870986 2.525847e-37

fertility -2.600935e-01 1.648652e-01 -1.577614 1.215074e-01
```

augment(gap_fullmodels\$model[[1]])

```
glance(gap_fullmodels$model[[1]])
```

```
r.squared adj.r.squared sigma statistic p.value df logLik ...
1 0.9990732 0.9989724 0.3160595 9917.133 1.562325e-68 6 -10.70225 ...
```


Adjusted ${\cal R}^2$

```
glance(gap_fullmodels$model[[1]])
```

```
r.squared adj.r.squared sigma statistic p.value df logLik ...
1 0.9990732 0.9989724 0.3160595 9917.133 1.562325e-68 6 -10.70225 ...
```


Let's practice!

MACHINE LEARNING IN THE TIDYVERSE

