

Thực hành

KỸ THUẬT QUY HOẠCH ĐỘNG

BÀI TOÁN TAM GIÁC SỐ $f(X) \rightarrow MAX$

Võ Huỳnh Trâm

Bài toán TAM GIÁC SỐ

Bài tập: Cho tam giác số kích thước n (ghi các số nguyên) như sau:

Một người xuất phát từ dòng đầu (dòng 1) cần sang dòng cuối cùng (dòng n) sao cho **tổng các số** trên đường đi là **lớn nhất**?

Quy tắc di chuyển: từ ô (i, j) có thể di chuyển sang các ô

$$(i+1, j-1), (i+1, j)$$
 và $(i+1, j+1)$

Bài toán TAM GIÁC SỐ

Ví dụ: Cho tam giác số A gồm 5 dòng với các số nguyên được cho như bên.

→ Hãy tìm hành trình đi từ dòng 1 sang dòng 5 theo quy tắc di chuyển sao cho tổng giá trị của các số ghi trên đường đi là lớn nhất?

$$f(X) \rightarrow Max$$

Thuật toán QUY HOẠCH ĐỘNG – Xây dựng Công thức truy hồi

(1) Tạo bảng: Xây dựng Công thức truy hồi

- Gọi F[i, j] là tổng giá trị các số trên đường đi tới ô a₁₁ đến a_{ij}
- \Rightarrow F[n, k] là tổng giá trị các số trên đường đi tới ô a_{11} đến a_{nk} (phần tử thứ k nào đó trên dòng n)
- ⇒ F[n, k] lớn nhất thì tất cả các F[i, j] phải lớn nhất
- Với i = 1 (dòng 1): Vị trí xuất phát là a_{11}

$$F[1,1] = a_{11}$$

• Với
$$i = 2$$
 (dòng 2): $F[2,1] = F[1,1] + a_{21}$

$$F[2,2] = F[1,1] + a_{22}$$

Thuật toán QUY HOẠCH ĐỘNG - Xây dựng Công thức truy hồi

- (1) Tạo bảng: Xây dựng Công thức truy hồi
- Với i > 2 (dòng 3 đến dòng n): 4 trường hợp
- Cột 1: $F[i,1] = Max(F[i-1,1], F[i-1,2]) + a_{i1}$
- Cột i: $F[i,i] = F[i-1,i-1] + a_{ii}$
- Cột i -1: $F[i,i-1] = Max(F[i-1,i-2], F[i-1,i-1]) + a_{ii-1}$
- Cột j $(j \neq 1, j \neq i 1 \text{ và } j \neq i)$

$$F[i,j] = Max(F[i-1,j-1], F[i-1,j], F[i-1,j+1]) + a_{ij}$$

5

TẠO BẢNG: Công thức truy hồi

Công thức truy hồi:

$$\mathbf{F[i,j]} = \begin{cases} \mathbf{a_{11}} & \text{n\'eu i} = 1\\ \mathbf{Max} \ (\mathbf{F[i-1,j-1]}; \ \mathbf{F[i-1,j]}; \ \mathbf{F[i-1,j+1]}) + \mathbf{a_{ij}}\\ \text{n\'eu i} > 1 & (v\'oi j = 1 ... n) \end{cases}$$

HÀM XÁC ĐỊNH CHỈ SỐ CỘT MAX

TẠO BẢNG: Xây dựng bảng F

• Tạo bảng tam giác F có 5 dòng và 5 cột. Mỗi cột chia thành 2 cột con: cột bên trái là *tổng giá trị*, cột bên phải lưu *vị trí cột max được chọn*.

• F(i, j) là tổng giá trị hành trình đến ô (i, j)

TẠO BẢNG: Xây dựng bảng F

$$F[1,1] = a_{11}$$
, $i = 1$

 $Vi \ du$: $\mathbf{F[1,1]} = A[1,1] = 7$; không có dòng được chọn trước đó.

TẠO BẢNG: Xây dựng bảng F

 $F[i,j] = Max(F[i-1,j-1], F[i-1,j], F[i-1,j+1]) + a_{ij}$ i > 1

Vi dụ: $\mathbf{F[5,3]} = \mathbf{F[4,3]} + \mathbf{a}_{53} = 29 + 5 = 34$; cột trước đó là 3.

1	7				
2	5	6			
3	8	9	7		
4	5	1	7	6	
5	8	4	5	3	7
A	1	2	3	4	5

HÀM TẠO BẢNG

```
void Tao Bang(int a[][size], int n, int F[][size]){
 int i, j;
     F[0][0] = a[0][0];
     F[1][0] = a[1][0] + F[0][0];
     F[1][1] = a[1][1] + F[0][0];
       for (i=2; i<n; i++)
        for (j=0; j<=i; j++){
            int k=CS max(F,i,j);
            F[i][j] = a[i][j] + F[i-1][k];  }
```


TRA BẢNG: TÌM PHƯƠNG ÁN

(2) Tra bảng: Tìm phương án

- Cuối cùng, chọn trên dòng n cột có giá trị F[n, i] lớn nhất và từ đó truy ngược lại để tìm hành trình.
- Xét từ dòng cuối n = 5 đến dòng đầu n = 1

TRA BẢNG: TÌM PHƯƠNG ÁN

CANTHO UNIVERSITY

$$n = 5$$
, $Max F(5,i) = 35$, cột trước đó là 1

.
$$n = 4$$
, chọn $F(4,1) = 27$, cột trước đó là 2

.
$$n = 3$$
, chọn $F(3,2) = 22$, cột trước đó là 2

.
$$n = 2$$
, chọn $F(2,2) = 13$, cột trước đó là 1

.
$$n = 1$$
, chọn $F(1,1) = 7$

1	7	0								
2	12	1	13	1						
3	21	2	22	2	20	2				
4	27	2	23	2	29	2	26	3		
5	35	1	33	3	34	3	32	3	33	4
F	1		2		3		4		5	
. Vậy ta có đường đi:										

$$(1,1) \rightarrow (2,2) \rightarrow (3,2) \rightarrow (4,1) \rightarrow (5,1)$$

Tổng giá trị = 35

HÀM XÁC ĐỊNH CỘT MAX CUỐI

```
int CS_max_dong_cuoi (int F[], int j){
    int somax = F[0];
    int maxindex = 0;
    int k;
        for (k=1; k<=j; k++)
        if (F[k] > somax) {
            somax = F[k];
            maxindex = k;
        }
        return maxindex;
    }
```

Hàm trả về chỉ số cột chứa tổng giá trị **lớn nhất ở dòng cuối** tam giác

HÀM TRA BẢNG

```
void Tra_Bang(int a[][size], int n, int F[][size], int PA[]){
    int i,j;
    j = CS_max_dong_cuoi(F[n-1], n-1);
    PA[n-1] = a[n-1][j];
    for (i=n-1; i>=1; i--){
        j = CS_max(F, i, j);
        PA[i-1] = a[i-1][j];
    }
}
```