Data Science com Python

Análise Exploratória de Dados

Prof.: Lucas Roberto Correa

LEMBRETE: Fazer o import dos datasets usados no ambiente do colab antes de executar os comandos.

Import de pacotes

```
!pip install sweetviz
```

Collecting sweetviz

```
Downloading sweetviz-2.1.3-py3-none-any.whl (15.1 MB)
```

Requirement already satisfied: scipy>=1.3.2 in /usr/local/lib/python3.7/dist-packages Requirement already satisfied: numpy>=1.16.0 in /usr/local/lib/python3.7/dist-package Requirement already satisfied: matplotlib>=3.1.3 in /usr/local/lib/python3.7/dist-pac Requirement already satisfied: pandas!=1.0.0,!=1.0.1,!=1.0.2,>=0.25.3 in /usr/local/] Requirement already satisfied: tqdm>=4.43.0 in /usr/local/lib/python3.7/dist-packages Requirement already satisfied: jinja2>=2.11.1 in /usr/local/lib/python3.7/dist-packas Requirement already satisfied: importlib-resources>=1.2.0 in /usr/local/lib/python3.7 Requirement already satisfied: zipp>=3.1.0 in /usr/local/lib/python3.7/dist-packages Requirement already satisfied: MarkupSafe>=0.23 in /usr/local/lib/python3.7/dist-pack Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.7/dist-packages Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.7/dist-pac Requirement already satisfied: python-dateutil>=2.1 in /usr/local/lib/python3.7/dist-Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local Requirement already satisfied: typing-extensions in /usr/local/lib/python3.7/dist-pac Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.7/dist-packages Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.7/dist-packages (fr Installing collected packages: sweetviz Successfully installed sweetviz-2.1.3

```
import sweetviz as sv
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from IPython import display
pd.set_option('display.max_rows', 500)
pd.set_option('display.max_columns', 500)
pd.set_option('display.max_colwidth', 10000)
```

▼ Import da base

Fonte dos dados: https://www.kaggle.com/rashmiranu/banking-dataset-classification?select=new_train.csv

```
metadata = pd.read_excel('metadata.xlsx')
```

metadata

	Feature_Type	Feature	
	numeric	age	0
type of job ('admin.','blue-collar','entrepreneur','l employed','services','stude	Categorical,nominal	job	1
marital status ('divorced','married','single','unknown'; note:	categorical,nominal	marital	2
('basic.4y','basic.6y','basic.9y','high.school','illiterate','professionate	categorical,nominal	education	3
ha	categorical,nominal	default	4
	categorical,nominal	housing	5
h	categorical,nominal	loan	6
contact co	categorical,nominal	contact	7
last contact month	categorical,ordinal	month	8
last contact da	categorical,ordinal	dayofweek	9
last contact duration, in seconds . Important note: this attribute	numeric	duration	10
number of contacts performed during this campaign a	numeric	campaign	11
number of days that passed by after the client was last co mea	numeric	pdays	12
number of contacts performed	numeric	previous	13
·			4

```
df = pd.read_csv('new_train.csv', sep=',')
df.head()
```

	age	job	marital	education	default	housing	loan	contact	month
() 49	blue-collar	married	basic.9y	unknown	no	no	cellular	nov

Explorar o output da biblioteca sweetviz em uma outra janela, com análise descritiva e g
report = sv.analyze(df)
report.show_html('Analise.html')

Done! Use 'show' commands to display/save.

Report Analise.html was generated! NOTEBOOK/COLAB USERS: the web browser MAY not pop

▼ Estatísticas básicas

Método 'info' retorna diversas informações relacionadas ao Dataframe, dentre elas número df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 32950 entries, 0 to 32949
Data columns (total 16 columns):

#	Column	Non-Null Count	Dtype
0	age	32950 non-null	int64
1	job	32950 non-null	object
2	marital	32950 non-null	object
3	education	32950 non-null	object
4	default	32950 non-null	object
5	housing	32950 non-null	object
6	loan	32950 non-null	object
7	contact	32950 non-null	object
8	month	32950 non-null	object
9	day_of_week	32950 non-null	object
10	duration	32950 non-null	int64
11	campaign	32950 non-null	int64
12	pdays	32950 non-null	int64
13	previous	32950 non-null	int64
14	poutcome	32950 non-null	object
15	У	32950 non-null	object
dtyp	es: int64(5),	object(11)	

Número de linhas e colunas do Dataframe

memory usage: 4.0+ MB

df.shape

(32950, 16)

Função len (length) para Dataframes retorna o número de linhas len(df) 32950

```
# Método nunique retorna os valores únicos para cada variável (análogo ao "remover duplica df.nunique()
```

```
75
age
                  12
job
marital
                   4
education
                   8
default
                   3
housing
                   3
loan
                   3
contact
                   2
month
                  10
day_of_week
                   5
duration
                1467
campaign
                  40
                  27
pdays
previous
                   8
                   3
poutcome
                   2
dtype: int64
```

Análise Univariada

df['age'].sum()

```
# Retornar as 5 primeiras linhas do Dataframe (5 é o default, é possível alterar esse núme
df['age'].head()
     0
          49
     1
          37
     2
          78
     3
          36
          59
     Name: age, dtype: int64
# Retornar as 5 últimas linhas do Dataframe (mesmo default do 'head')
df['age'].tail()
     32945
              28
     32946
              52
     32947
              54
              29
     32948
     32949
              35
     Name: age, dtype: int64
# Soma de todos os valores de uma coluna (no caso, coluna "age")
```

1318465

Valor mínimo observado para determinada coluna

17

Valor médio

40.01411229135053

Valor máximo

98

Boxplot dos dados referentes à coluna "Age". É possível observar onde estão dispostos os sns.boxplot(x=df["age"])

O histograma também facilita a visualização da distribuição dos dados, fundamental na es
plt.hist(df['age'], 50, facecolor='b')
plt.show()

Medidas descritivas básicas

df.describe(include='int64')

	age	duration	campaign	pdays	previous
count	32950.000000	32950.000000	32950.000000	32950.000000	32950.000000
mean	40.014112	258.127466	2.560607	962.052413	0.174719
std	10.403636	258.975917	2.752326	187.951096	0.499025
min	17.000000	0.000000	1.000000	0.000000	0.000000
25%	32.000000	103.000000	1.000000	999.000000	0.000000
50%	38.000000	180.000000	2.000000	999.000000	0.000000
75%	47.000000	319.000000	3.000000	999.000000	0.000000
max	98.000000	4918.000000	56.000000	999.000000	7.000000

df.describe(include='object')

	job	marital	education	default	housing	loan	contact	month	day_
count	32950	32950	32950	32950	32950	32950	32950	32950	
unique	12	4	8	3	3	3	2	10	
top	admin.	married	university.degree	no	yes	no	cellular	may	
freq	8314	19953	9736	26007	17254	27131	20908	11011	

▼ Análise de missings

```
df.isnull().sum()
```

0 age 0 job marital 0 education 0 default housing 0 loan contact month 0 day_of_week 0 duration campaign 0 pdays 0 previous poutcome 0 0 dtype: int64

▼ Tabela de Frequencia

У	no	yes	All				
previous							
0	25915	2501	28416				
1	2889	784	3673				
2	324	282	606				
3	74	101	175				
4	29	31	60				
5	4	10	14				
6	2	3	5				
7	1	0	1				
All	29238	3712	32950				

job_y = pd.crosstab(index=df["job"], columns=df["y"],margins=True)
job_y

у	no	yes	All
job			
admin.	7244	1070	8314
blue-collar	6926	515	7441
entrepreneur	1060	100	1160
housemaid	769	86	855
management	2076	269	2345
retired	1018	348	1366
self-employed	980	119	1099
services	2942	254	3196
student	494	217	711
technician	4815	585	5400
unemployed	682	116	798
unknown	232	33	265
All	29238	3712	32950

→ Histograma

df.dtypes

age	int64
job	object
marital	object
education	object
default	object
housing	object
loan	object
contact	object
month	object
day_of_week	object
duration	int64
campaign	int64
pdays	int64
previous	int64
poutcome	object
У	object
dtura. abiact	

dtype: object

sns.histplot(data=df, x="pdays")

<matplotlib.axes._subplots.AxesSubplot at 0x7f9a31ea48d0>

sns.histplot(data=df, x="duration")

<matplotlib.axes._subplots.AxesSubplot at 0x7f9a31e146d0>


```
df['duration'].describe()
```

```
count
         32950.000000
mean
           258.127466
           258.975917
std
min
             0.000000
25%
           103.000000
50%
           180.000000
75%
           319.000000
max
          4918.000000
```

Name: duration, dtype: float64

```
df['duration'].median()
```

180.0

df['duration'].mode()

0 90

dtype: int64

sns.histplot(data=df, x="campaign")

<matplotlib.axes._subplots.AxesSubplot at 0x7f9a33900790>

▼ Boxplot

sns.boxplot(x=df["campaign"])

<matplotlib.axes._subplots.AxesSubplot at 0x7f9a338915d0>

df['campaign'].value_counts()

14121
8469
4300
2116
1255
773
493
329
220
187
142
92
74
52
51
45
42
27
22
20
16

.07	
22	13
24	12
23	12
27	9
25	8
26	7
31	7
29	7
28	6
30	6
35	4
33	3
43	2
32	2
42	2
34	1
37	1
40	1
56	1

Name: campaign, dtype: int64

display.Image("IQR.png")

▼ Grafico de Dispersão

df.dtypes

age	int64
job	object
marital	object
education	object
default	object
housing	object
loan	object
contact	object
month	object
day_of_week	object
duration	int64

campaign	int64
pdays	int64
previous	int64
poutcome	object
у	object

dtype: object

sns.scatterplot(data=df, x="campaign", y="duration")

<matplotlib.axes._subplots.AxesSubplot at 0x7f9a2ddfa950>

sns.scatterplot(data=df, x="pdays", y="duration")

<matplotlib.axes._subplots.AxesSubplot at 0x7f9a2dd7c110>

▼ Correlações

df.corr()

	age	duration	campaign	pdays	previous
age	1.000000	-0.001841	0.003302	-0.032011	0.020670
duration	-0.001841	1.000000	-0.075663	-0.047127	0.022538
campaign	0.003302	-0.075663	1.000000	0.053795	-0.079051
pdays	-0.032011	-0.047127	0.053795	1.000000	-0.589601
previous	0.020670	0.022538	-0.079051	-0.589601	1.000000

sns.heatmap(df.corr(), annot=True, fmt="f")

<matplotlib.axes._subplots.AxesSubplot at 0x7f9a2dd624d0>

▼ Plot de variáveis categoricas

sns.catplot(x="duration", y="y", data=df)

<seaborn.axisgrid.FacetGrid at 0x7f9a2dd82750>

sns.catplot(x="campaign", y="y", data=df)

<seaborn.axisgrid.FacetGrid at 0x7f9a2dc0b650>

sns.catplot(x="age", y="y", data=df)

<seaborn.axisgrid.FacetGrid at 0x7f9a2db7ec50>

▼ Análise Multivariada

sns.relplot(x="age", y="duration", hue="y", data=df);

5000 -

Análise de Componentes Principais - PCA no contexto de Análise Multivariada

4000

from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA

.

metadata

	Feature	Feature_Type		
(age	numeric		
1	job	Categorical,nominal	type of job ('admin.','blue-collar','entrepreneur','lemployed','services','stude	
2	narital	categorical,nominal	marital status ('divorced', 'married', 'single', 'unknown'; note:	
3	education	categorical,nominal	('basic.4y','basic.6y','basic.9y','high.school','illiterate','professiona	
4	default	categorical,nominal	ha	
ţ	housing	categorical,nominal	1	
(loan	categorical,nominal	h	
7	' contact	categorical,nominal	contact co	
8	8 month	categorical,ordinal	last contact month	
ç	dayofweek	categorical,ordinal	last contact da	
1	0 duration	numeric	last contact duration, in seconds . Important note: this attribute	
1	1 campaign	numeric	number of contacts performed during this campaign a	
1	2 pdays	numeric	number of days that passed by after the client was last co mea	
1	3 previous	numeric	number of contacts performed	
1	4 poutcome	categorical,nominal	outcome of the previous marketing ca	
<pre>df_pca = df[['age', 'duration','campaign','pdays','previous']]</pre>				
df_pca.	head()			

age duration campaign pdays previous

```
pca = PCA(n_components=2, random_state=42)
         31
                  ZUZ
                              2
                                   999
df_expl_pca = StandardScaler().fit_transform(df_pca)
                  400
df_expl_pca
     array([[ 0.86373877, -0.12019627, 0.52298128, 0.19658384, -0.35012691],
            [-0.28972159, -0.2167318, -0.20368791, 0.19658384, 1.65381294],
            [ 3.65126795, 3.43617293, -0.56702251, 0.19658384, -0.35012691],
            [1.34434725, -0.49089273, 0.52298128, 0.19658384, -0.35012691],
            [-1.05869515, -0.3596044, -0.56702251, 0.19658384, -0.35012691],
            [-0.48196498, 1.10387435, 0.15964669, 0.19658384, -0.35012691]])
result_pca = pca.fit_transform(df_expl_pca)
result pca df = pd.DataFrame(result pca,
                           columns=['component1','component2'])
result_pca_df
```

	component1	component2		
0	-0.425175	-0.509855		
1	1.005371	-0.146158		
2	0.265589	2.274575		
3	-0.421084	-0.115342		
4	-0.197363	0.194940		
32945	-0.379635	0.451884		
32946	1.095991	-0.530097		
32947	-0.433674	-0.855301		
32948	-0.384307	0.361312		
32949	-0.324058	0.829408		
32950 rows × 2 columns				

O quanto eu estou conseguindo explicar da variabilidade dos dados?

df_resp_pca = pd.concat([df['y'], result_pca_df], axis=1)
df_resp_pca

	у	component1	component2
0	no	-0.425175	-0.509855
1	no	1.005371	-0.146158
2	yes	0.265589	2.274575
3	no	-0.421084	-0.115342
4	no	-0.197363	0.194940
32945	no	-0.379635	0.451884
32946	no	1.095991	-0.530097
32947	no	-0.433674	-0.855301
32948	no	-0.384307	0.361312
32949	no	-0.324058	0.829408

32950 rows × 3 columns

×