Introdução Lista Encadeada em C ++

Linked list ou lista encadeada e um tipo de estrutura de dados que contém um grupo de nos interligados através de ponteiros, onde o ponteiro dentro da estrutura aponta para o próximo nó até que o ponteiro seja NULL indicando assim o fim da lista.

Estrutura de uma Lista Encadeada em C++

Uma lista encadeada (= linked list = lista ligada) é uma sequência de células; cada célula contém um objeto (todos os objetos são do mesmo tipo) e o endereço da célula seguinte. suporemos que os objetos armazenados nas células são do tipo int. Cada célula é um registro que pode ser definido assim:

```
struct reg {
  int conteudo;
  struct reg *prox;
};
```


Estrutura de uma Lista Encadeada em C++

É conveniente tratar as células como um novo tipo-de-dados e atribuir um nome a esse novo tipo:

typedef struct reg celula; // célula

Uma célula c e um ponteiro p para uma célula podem ser declarados assim:

celula c;

celula *p;

Se c é uma célula então c.conteudo é o conteúdo da célula e c.prox é o endereço da próxima célula. Se p é o endereço de uma célula, então p->conteudo é o conteúdo da célula e p->prox é o endereço da próxima célula. Se p é o endereço da última célula da lista então p->prox vale NULL.

(A figura pode dar a falsa impressão de que as células da lista ocupam posições consecutivas na memória. Na realidade, as células estão tipicamente espalhadas pela memória de maneira imprevisível.)

Estrutura de uma Lista Encadeada em C++

Para inserir dados ou remover dados é necessário ter um ponteiro que aponte para o 1º elemento e outro que aponte para o fim, porque se queremos inserir ou apagar dados que estão nessas posições, a operação é rapidamente executada. Caso seja necessário editar um nó que esteja no meio da lista haverá uma busca pela posição desejada.

Vantagens Lista Encadeada em C++

- A inserção ou remoção de um elemento na lista não implica a mudança de lugar de outros elementos;
- Não é necessário definir, no momento da criação da lista, o número máximo de elementos que esta poderá ter. Ou seja, é possível alocar memória "dinamicamente", apenas para o número de nós necessários.

Desvantagem Lista Encadeada em C++

- A manipulação torna-se mais "perigosa" uma vez que, se o encadeamento (ligação) entre elementos da lista for mal feito, toda a lista pode ser perdida;

Para aceder ao elemento na posição n da lista, deve-se percorrer os n - 1 anteriores.

Vamos aprender? Lista Encadeada em C++

- Inserir Valor
- Deletar um Valor em especifico
- Deletar todos os Valores
- Exibir Valores
- Buscar um Valor

Hora de Praticar Lista Encadeada em C ++

