Arthur Sorrentino Ferreira Higor David Oliveira Tulio Brunoro de Souza

Primeiro Trabalho Prático

Trabalho acadêmico desenvolvido como obtenção parcial de nota na disciplina de Algoritmos Numéricos I do Curso de Graduação em Engenharia Elétrica da Universidade Federal do Espírito Santo

Sumário

1	INTRODUÇÃO	3
2	OBJETIVOS	4
3	METODOLOGIA	5
4	RESULTADOS E AVALIAÇÃO	8
	REFERÊNCIAS	17

1 Introdução

Na matemática, equações diferenciais ordinárias são equações que envolvem derivadas em relação a uma variável de uma função desconhecida. Como exemplo, pode-se citar o decaimento radioativo, dado pela equação 1.1, onde y é a quantidade de um dado elemento. (WIKIPEDIA, 2020a)

$$\frac{d}{dt}y(t) = ky(t) \tag{1.1}$$

Para resolver tais equações, podem-se usar métodos analíticos, bem como métodos numéricos. Nota-se que aqueles podem se tornar bastante custosos, tendo em vista a complexidade da equação. Para tal, valem-se de métodos numéricos, aproximações lineares da função analítica.

Ademais, precisa-se resolver o P.V.I., problema do valor inicial. Esse problema consiste de parâmetros iniciais para que possa ser determinada a constante c que surge com o teorema fundamental do cálculo. (VALLE, 2020)'

Diversos matemáticos abordaram esse problema, sendo notórias as contribuições de Leonhard Euler, Carl Runge, Martin Wilhelm Kutta e Karl Heun, como poderão ser vistas no decorrer deste documento. O método fundamental utilizado é o de Euler, responsável por fazer uma aproximação linear de partes da função analítica. Entretanto, todos os métodos aqui abordados são aplicações de um algoritmo geral, o de Runge-Kutta.

2 Objetivos

Este trabalho tem como objetivo, demonstrar as aplicações teóricas e práticas dos métodos numéricos de solução de equações diferenciais ordinárias. Sendo assim, poderá ser visto a diferença entre resultados analíticos e numéricos, bem como a comparação entre os diversos métodos existentes.

3 Metodologia

Para a realização deste trabalho, foi utilizado o software GNU Octave, um software livre empregado para a solução de problemas numéricos, simulações e outras diversas capacidades. Tais objetivos são alcançados fazendo-se uso de uma linguagem de programação científica dotado de diversos algoritmos matemáticos, bem como funções para visualização de tais resultados.

Para a resolução dos problemas propostos, foram utilizados diferentes métodos numéricos e assim comparou-se a diferença de resultados entre eles por meio do valor encontrado e da diferença entre o valor encontrado e o valor da solução analítica (erro).

Os métodos usados foram: Euler simples, Euler Melhorado, Euler Modificado, Método de Runge-Kutta Genérico de 2° ordem com alfa = 1/3, Método de Runge-Kutta Genérico de 2° ordem com alfa = 1/4, Dormand-Prince com passo fixo, Dormand-Prince com passo adaptativo.

Todos os métodos utilizados são variações de métodos de Runge-Kutta. Em geral, um método de Runge-Kutta é qualquer método que pode ser escrito na forma (WIKIPEDIA, 2020b):

$$y_{n+1} = y_n + h \sum_{i=1}^{s} b_i k_i \tag{3.1}$$

onde

$$k_i = f(t_n + c_i h, y_n + h \sum_{j=1}^s a_{ij} k_j)$$
 (3.2)

Sendo que os métodos podem ser generalizados por sua matriz de Butcher, conforme Figura 1.

Figura 1 – Matriz de Butcher

O método de Euler simples pode ser representado pela equação 3.3 a seguir e é o método mais simples para gerar a sequência de estimativas y_n .

$$y_{n+1} = y_n + h f(x_n, y_n) (3.3)$$

Para o método Euler Melhorado tem-se a equação 3.4:

$$y_{n+1} = y_n + \frac{h}{2} [f(x_n, y_n) + f(x_n + h, y_n + hf(x_n, y_n))]$$
(3.4)

E para o método Euler Modificado tem-se a equação 3.5:

$$y_{n+1} = y_n + hf(x_n + \frac{h}{2}, y_n + \frac{h}{2}f(x_n, y_n))$$
(3.5)

O método de Euler Simples é um método de Runge-Kutta de 1° estágio ou 1^a ordem. Enquanto os métodos de Euler Melhorado e Modificado são de 2° estágio ou 2^a ordem.

Há ainda o método de segunda ordem genérico, onde ele é parametrizado com um parâmetro α . Que neste trabalho assumirá o valor de 1/3 e 1/4.

Por fim também foi utilizado o Método de Dormand-Prince, que é um método de Runge-Kutta de 4^a ordem com passo fixo ou variável.(MESQUITA, 2020)

Para atingir os objetivos deste trabalho, vamos determinar as soluções analíticas dos PVI's apresentados a seguir. Assim como as aproximações dessa solução utilizando os métodos numéricos já mencionados. Gráficos e tabelas serão recursos utilizados para uma melhor visualização e comparação dos dados em questão.

Problemas de Valor Inicial:

a)
$$y' = -y$$
, $y(x_0) = y_0$, com $x_0 = 0$ e $y_0 = 1$

b)
$$y' = \frac{x+y+1}{2x}$$
, $y(x_0) = y_0$, com $x_0 = 2$ e $y_0 = 4$

c)
$$y' = y(x^2 - 1)$$
, $y(x_0) = y_0$, com $x_0 = 0$ e $y_0 = 1$

Depois, para complementar os objetivos do trabalho, foi aplicado os métodos de solução descritos para um problema prático, no qual, por meio de equações diferenciais calcula-se o volume de líquido de um reservatório em instantes discretos. Sendo a equação que define o sistema como:

$$\dot{V} = \frac{dV}{dt} = \sum_{i=1}^{p} Q_i^+ - \sum_{j=1}^{q} Q_j^-.$$
(3.6)

Assim, com o objetivo de obter as soluções, os gráficos e as tabelas dos problemas acima, foram escritos vários códigos em Octave presentes nos apêndices. Sendo Solve2A.m,

Solve2B.m, Solve2C.m e Solve3.m os principais apêndices de solução e plots das soluções. Os apêndices eta.m, influx.m, outflux.m, vazamento.m são as funções que descrevem entradas e saídas de fluídos do sistema prático descrito acima; O apêndice printTabA.m é o auxiliar de print dos valores em tabela. E por fim, o apêndice main.m, que roda os códigos na devida ordem e inclui os pacotes necessários. Além deses códigos, foi usado um conjunto de códigos já implementados na disciplina deste trabalho, que serão citados ao longo da explicação.

Começando a explicação pelos códigos Solve2A.m, Solve2B.m e Solve2C.m, temos os códigos bem similares, no qual, resumidamente, temos: definição da EDO, solução, cálculo dos erros e por fim, plots das tabelas e das figuras.

Na parte da definição são definidos dentro do programa as funções que descrevem o sistema, junto de seu PVI, e em seguida resolvida a EDO com o PVI usando a função dsolve, da biblioteca de funções Symbolic. Uma vez obtida a solução do sistema, convertese a solução encontrada pela biblioteca em questão para o sistema padrão do Octave, matlabFunction, e a usa para fazer o plot da solução analítica.

Para encontrar as soluções usando os métodos de Euler, Euler Melhorado e os outros descritos neste trabalho, são usadas as funções prontas dos códigos já implementados na disciplina, entre elas, as funções Euler, EulerMelhorado, EulerModificado, RungeKuttaGenéricoSegundaOrdem e RungeKuttaDormandPrinceode45.

Por fim, para os sistemas de a,b e c os plots dos gráficos são feitos usado as funções plot() e semilogy(), enquanto os plots das tabelas são feitos usando printTabA;

Já para a solução do sistema prático, de forma similar, temos: as definições das funções de entrada e saída de fluídos, calculo da função da EDO, aplicação do método de Euler para encontrar a solução e, por fim, os plots.

Como dito anteriormente, as funções de entrada e saída de fluídos são definidos por cada um de seus funções. O cálculo da função da EDO é feito calculando os valores de cada ponto para o intervalo definido de t0=0 até tf=100.

Depois, usando a mesma função auxiliar usada para os sistemas a), b) e c), Euler.m, calcula-se a aproximação da função solução do problema.

Por fim, usa-se as funções e plot gráfico plot() e printTabXY() para obter-se o gráfico e a tabela com os valores calculados como solução.

4 Resultados e Avaliação

Como resultado da implementação e execução do código no Octave, para cada um dos PVIs definidos nos objetivos, temos a solução analítica, os gráficos das curvas parametrizadas para cada método, o gráfico do erro para cada método e as tabelas impressas no Octave com valores dos pontos usados no gráfico.

Para o primeiro PVI, os resultados obtidos estão a seguir.

A solução analítica,

$$y(x) = e^{-x}; (4.1)$$

O gráfico 2, das curvas parametrizadas da solução.

EDO: dy/dx = -y(x) - Valor inicial: y(0) = 1 - Sol: y(x) = exp(-x)

Figura 2 – Gráfico da solução do PVI 2.A.

Com os dados impressos no Octave na tabela 3 abaixo,

S.Anali.	Euler	Euler Mel.	Euler Mod.	2ord a=1/3	2ord a=1/4	Ode45 fixo	Ode45 Adap.
1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
0.90484	0.90000	[0.90500	0.90500	0.90500	0.90500	0.90484	0.93414
0.81873	0.81000	0.81903	0.81903	0.82386	0.82390	0.81873	0.84524
0.74082	0.72900	0.74122	0.74122	0.74980	0.74992	0.74082	0.76481
0.67032	0.65610	0.67080	10.67080	0.68241	0.68259	0.67032	0.69203
0.60653	0.59049	0.60708	0.60708	0.62108	0.62130	0.60653	0.62617
0.54881	0.53144	0.54940	0.54940	0.56526	0.56551	0.54881	0.56658
0.49659	0.47830	0.49721	0.49721	0.51446	0.51474	0.49659	0.51267
0.44933	0.43047	0.44998	0.44998	0.46822	0.46852	0.44933	0.46388
0.40657	0.38742	0.40723	0.40723	0.42614	0.42645	0.40657	0.41974
0.36788	0.34868	0.36854	0.36854	0.38784	0.38816	0.36788	0.37979

Figura 3 – Tabela dos dados do gráfico 2.

Assim, obtendo os erros entre os métodos e a solução analítica,

Figura 4 – Gráfico do erro entre os métodos com escala de log em y do PVI 2.A.

- 1 1					
Tabela	dos	erros	ae	cada	metodo

Euler	Euler Mel.	Euler Mod.	2ord a=1/3	2ord a=1/4	Ode45 fixo	I
0.0000000	0.0000000 0.0001626	0.0000000 0.0001626	0.0000000 0.0001626	0.0000000 0.0001626	0.0000000 0.0000000	Ţ
0.0087308	0.0002942	0.0002942	0.0051276	0.0051692	0.0000000	į
0.0118182	0.0003994	0.0003994	0.0089866	0.0091013	0.0000000	i
0.0142200	0.0004819	0.0004819	0.0120949	0.0122664	0.0000000	
0.0160407	0.0005451	0.0005451	0.0145509	0.0147682	0.0000000	1
0.0173706	0.0005919	0.0005919	0.0164489	0.0167025	0.0000000	
0.0182884	0.0006249	0.0006249	0.0178714	0.0181528	0.0000000	1
0.0188618	0.0006463	0.0006463	0.0188899	0.0191922	0.0000000	
0.0191492	0.0006579	0.0006579	0.0195671	0.0198843	0.0000000	I
0.0192010	0.0006615	0.0006615	0.0199574	0.0202844	0.0000000	

Figura 5 – Tabela dos dados do gráfico 4.

Desse primeiro caso, observa-se que os métodos se aproximam bem da solução analítica, sendo o maior erro na segunda casa decimal para o método de 2° ordem com alfa=1/4. E entre os métodos de passo fixo, é possível observar que o método de Dormand-Prince é o que possui melhor aproximação com a função solução.

Para o segundo PVI, temos os resultados,

A solução analítica,

$$y(x) = \frac{3 \cdot \sqrt{x \cdot 2}}{2} + x - 1; \tag{4.2}$$

O gráfico 2, das curvas parametrizadas da solução.

Figura 6 – Gráfico da solução do PVI 2.B.

Com os dados impressos no Octave na tabela 7 abaixo,

S.Anali.	Euler	Euler Mel.	Euler Mod.	2ord a=1/3	2ord a=1/4	Ode45 fixo	Ode45 Adap.
4.00000	4.00000	4.00000	4.00000	4.00000	4.00000	4.00000	4.00000
4.17409	4.17500	4.17411	4.17409	4.17408	4.17407	4.17409	4.11880
4.34643	4.34821	4.34647	4.34643	4.34846	4.34846	4.34643	4.29168
4.51714	4.51976	4.51720	4.51714	4.52116	4.52116	4.51714	4.46290
4.68634	4.68976	4.68641	4.68634	4.69228	4.69229	4.68634	4.63257
4.85410	4.85830	4.85419	4.85410	4.86192	4.86193	4.85410	4.80078
5.02053	5.02546	5.02063	5.02053	5.03016	5.03017	5.02053	4.96763
5.18569	5.19134	5.18581	5.18569	5.19710	5.19711	5.18569	5.13318
5.34965	5.35599	5.34978	5.34965	5.36279	5.36280	5.34965	5.29752
5.51248	5.51949	5.51262	5.51248	5.52731	5.52732	5.51248	5.46070
5.67423	5.68190	5.67439	5.67424	5.69071	5.69073	15.67423	15.62279

Figura 7 – Tabela dos dados do gráfico 6.

Assim, obtendo os erros entre os métodos e a solução analítica,

Figura 8 – Gráfico do erro entre os métodos com escala de log em y do PVI 2.B.

Tabela dos erros de cada metodo									
Euler	Euler Mel.	Euler Mod.	2ord a=1/3	2ord a=1/4	Ode45 fixo	I			
0.0000000 0.0009148 0.0017877 0.0026230 0.0034241 0.0041942 0.0049358 0.0056513 0.0063428 0.0070122 0.0076609	0.0000000 0.0000219 0.0000419 0.0000602 0.0000771 0.0000927 0.0001073 0.0001209 0.0001336 0.0001456	0.0000000 0.0000001 0.0000003 0.0000004 0.0000005 0.0000005 0.0000006 0.0000007 0.0000007 0.0000008	0.0000000 0.0000074 0.0020295 0.0040169 0.0059443 0.0078165 0.0096376 0.0114114 0.0131412 0.0148298 0.0164799	0.0000000 0.0000112 0.0020321 0.0040216 0.0059510 0.0078251 0.0096480 0.0114235 0.0131548 0.0148449 0.0164965	0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000				

Figura 9 – Tabela dos dados do gráfico 8.

No segundo PVI os métodos se aproximaram mais da equação analítica, como o maior erro na segunda casa decimal para o método de 2° ordem com alfa=1/4. E, se repete o comportamento no qual o método de Dormand-Prince é o que mais se aproxima da solução analítica.

Para o último PVI, temos como resultado,

A solução analítica,

$$y(x) = e^{x \cdot (\frac{x^2}{3} - 1)}; \tag{4.3}$$

O gráfico 10, das curvas parametrizadas da solução.

Figura 10 – Gráfico da solução do PVI 2.C.

Com os dados impressos no Octave na tabela 11 abaixo,

S.Anali.	Euler	Euler Mel.	Euler Mod.	2ord a=1/3	2ord a=1/4	Ode45 fixo	Ode45 Adap.
1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
0.90514	0.90000	0.90545	0.90524	0.90516	0.90512	0.90514	0.93424
0.82092	0.81090	0.82147	0.82113	0.82575	0.82574	0.82092	0.84658
0.74752	0.73305	0.74825	0.74784	0.75593	0.75600	0.74752	0.76974
0.68477	0.66635	0.68564	0.68521	0.69583	0.69597	0.68477	0.70363
0.63234	0.61037	0.63329	0.63286	0.64522	0.64541	0.63234	0.64796
0.58978	0.56459	0.59080	10.59037	10.60379	0.60404	10.58978	0.60230
0.55673	10.52846	0.55779	10.55737	0.57134	0.57163	10.55673	10.56625
0.53295	0.50151	0.53404	0.53360	0.54777	0.54808	0.53295	0.53953
0.51840	0.48345	0.51954	0.51906	0.53321	0.53354	0.51840	10.52202
0.51342	10.47427	0.51460	0.51405	10.52814	0.52847	0.51342	0.51393

Figura 11 – Tabela dos dados do gráfico 10.

Assim, obtendo os erros entre os métodos e a solução analítica,

Figura 12 – Gráfico do erro entre os métodos com escala de log em y do PVI 2.C.

Tabela dos erros de cada metodo									
Euler	Euler Mel.	Euler Mod.	2ord a=1/3	2ord a=1/4	Ode45 fixo	I			
0.0000000 0.0051391 0.0100169 0.0144621 0.0184281 0.0219640 0.0251886 0.0282739 0.0314378 0.0349494 0.0391479	0.0000000 0.0003109 0.0005544 0.0007363 0.0008659 0.0009545 0.0010139 0.0010560 0.0010918 0.0011311 0.0011827	0.0000000 0.0000984 0.0002137 0.0003291 0.0004334 0.0005204 0.0005872 0.0006331 0.0006577 0.0006595 0.0006338	0.0000000 0.0000220 0.0048323 0.0084137 0.0110602 0.0128786 0.0140101 0.0146065 0.0148215 0.0148215 0.0147218	0.0000000 0.0000172 0.0048223 0.0084811 0.0111980 0.0130783 0.0142607 0.0148960 0.0151377 0.0151384 0.0150537	0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000				

Figura 13 – Tabela dos dados do gráfico 12.

De forma similar as soluções dos dois casos anteriores, que o método de Dormand-Prince é o que possui maior aproximação com a solução analítica. E entre as soluções dos PVIs, a solução onde temos o maior erro, ainda na segunda casa decimal, é pelo método de Euler.

Com os resultados encontrados acima, é possível perceber quão útil são dos métodos de resolução de EDO, dando foco para a precisão encontrada para os métodos. Podendo ser aplicado para solução de problemas reais de engenharia.

Para uma aplicação prática do métodos de resolução, foi usado o método de Euler para encontrar a solução aproximada de um sistema de calculo do nível de um tanque, problema descrito na metodologia.

Figura 14 – Gráfico dos fluxos constituintes do reservatório

Figura 15 – Tabela dos dados do gráfico 14.

Na segunda parte do trabalho, abordou-se um problema prático empregando uma

equação diferencial para definir o fluxo de água em um tanque, visto na linha azul da Figura 14. Através da solução da equação diferencial, obtém-se o volume do tanque, indicado pela linha preta no na Figura 14. Nota-se também na mesma figura os parâmetros constituintes do problema variando no tempo.

A solução desse problema se deu pelo método de Euler simples, fazendo-se iterações sucessivas na equação 4.4, que agrega a soma dos fluxos de saída e entrada, bem como um ruído na medição.

$$\dot{V} = Q_1 - Q_2 - v + \epsilon \tag{4.4}$$

Referências

MESQUITA. Métodos Numéricos para EDOs. 2020. UFMG. Disponível em: http://www.cpdee.ufmg.br/~amesquita/teaching/elt62_2012a/IntegracaoNumerica.pdf>. Acesso em: 21 mar 2020. Citado na página 6.

VALLE, M. E. Equações Diferenciais Ordinárias Lineares de Primeira Ordem – Fator Integrante. 2020. IME UNICAMP. Disponível em: http://www.ime.unicamp.br/~valle/Teaching/MA311/Aula01.pdf>. Acesso em: 21 mar 2020. Citado na página 3.

WIKIPEDIA. Equação diferencial ordinária. 2020. Wikipedia. Disponível em: https://pt.wikipedia.org/wiki/Equacao_diferencial_ordinaria. Acesso em: 21 mar 2020. Citado na página 3.

WIKIPEDIA. Equação diferencial ordinária. 2020. Wikipedia. Disponível em: https://pt.wikipedia.org/wiki/Lista_de_métodos_Runge-Kutta. Acesso em: 21 mar 2020. Citado na página 5.