$DFA = (M, \leq, S, s, F)$ $NFA = (M, \leq, \Delta, S, F)$

- AS 2* is regular if 3 DFAM s.t L(M)=A.
- For every NFA N, 3DFA M s.t L(M) = L(N) (Subset Construction)
- A S E is regular if INFAN St L(N) = A.

Pattern Motching - classify Strings.

$$L(8) = \{x \mid x \text{ matches } y\}$$

> 1s ab*.pdF Atomic Pattern Compound pattern.

2 - alphabet Set

Atomic Patterns.

Semantics: $L(8) \leq 2^{x}$. Syntax

 $L(a) = \{a\}$ $a \in \Xi$

 $L(\epsilon) = \xi \epsilon \}.$

 $L(\phi) = \phi$ - motches nothing.

L(#)=E #

L(@)= 5x @

Compound Patterns.

Syntax.	Semontics
X+B	$L(\alpha+\beta) = L(\alpha)UL(\beta)$
$\angle \cap B$	$L(\alpha \cap \beta) = L(\alpha) \cap L(\beta)$
d B	$L(\alpha\beta) = L(\alpha)L(\beta)$ = $\{xy \mid x\in L(\alpha) \text{ and } y\in L(\beta)\}.$
≪ [*]	$L(\alpha^*) = L(\alpha)^0 U L(\alpha)^1 U L(\alpha)^2 U$
=	$= \{ x_1 x_2 x_n n \ge 0; x_i \in L(\alpha), 1 \le i \le n \}$
L+	$L(\alpha^{+}) = L(\alpha)^{1} U L(\alpha)^{2} U$ $= L(\alpha)^{+}$
7 6	$L(7d) = \overline{L(d)} = 2^* - L(d)$

Some questions.

- Given a String x and a pattern x, how hard is it to determine if $x \in L(x)$.
- Conyou represent every set by some pattern?
- Patterns λ and β are equivalent if $L(\lambda) = L(\beta)$ Is it possible to check equivolence of patterns?
 - E = 7(#@)
 - @ ≡ #*
 - 2 = 22*

By De Morgan's /aw & NB = 7(7x+7B)

Regular Expression

Atomic Patterns. Compound Potterns

a \in \in \tag{\tau}

\tag{\tau}

Paterns Constructed from the above Syntax are Called Regular Expressions.

Precedence: $* > \cdot > +$ (left to right) Ex: $\angle + \beta \vartheta \longrightarrow \angle + (\beta \vartheta)$ and not $(\angle + \beta) \vartheta$ $\angle \beta^* \longrightarrow \angle (\beta^*)$ and not $(\angle \beta)^*$ Note: use parantesis.

Theorem. Let ASE. The following Statements are equivalent.

- 1. A is regular. 3 a finite automation M St L(M)=A.
- 2. A = L(X) for some patern X.
- 3. A=L(X) for some regular expression X.

Proof. $3 \Rightarrow 2$ is trivial. $2 \Rightarrow 1$

(=)3: To convert an automata M to an equivalent regular expression

Theorem. Let ASEX. The following Statements are equivalent.

- 1. A is regular. 3 a finite automation M St L(M)=A.
- 2. A = L(X) for some pattern X.
- 3. A=L(X) for some regular expression X.

Proof 2 => 1.

Atomic Pattern	Compound pattern
aez	B+8
ϵ	B+3 B∩3 •
ϕ	
, , , , , , , , , , , , , , , , , , ,	β√ β*
# 3 Redundant	B ⁺ •
@ \	ήβ
	· · · · · · · · · · · · · · · · · · ·

$$a \in \mathcal{L}(a) = \{a\}$$
 $\longrightarrow 0$ \longrightarrow

$$\beta+\gamma:$$
 $L(\beta+\gamma)=L(\beta)UL(\gamma)$ (Definition)

By IH L(B) is regular and L(8) is regular.

Regular sets are closed under union So L(B+8) is regular.

$$\beta \cap \mathcal{E}$$
: $L(\beta \cap \mathcal{E}) = L(\beta) \cap L(\mathcal{E})$ (Definition)

By IH L(B) is regular and L(8) is regular

Regular sets are Closed under intersection So L(BN7) is regular

$$\beta 8$$
: $L(\beta 8) = L(\beta)L(8)$ (Definition)

By IH, L(B) and L(8) are regular.

Regular Sets are closed under Concatenation So L(BB) is regular.

$$\beta^*$$
: $L(\beta^*) = L(\beta)^* (Def n.)$

By IH, $L(\beta)$ is regular: Regular sets are closed under *
So $L(\beta^*)$ is regular.

By IH L(B) is regular.

Regular sets are closed under complementation So L(7B) is regular.