

EXAME NACIONAL DE SELEÇÃO 2025

PROVA DE MATEMÁTICA

2º Dia: 19/09/2024 - QUINTA-FEIRA

HORÁRIO: 9h00m às 10h30m (horário de Brasília)

EXAME NACIONAL DE SELEÇÃO 2025 PROVA DE MATEMÁTICA

2º Dia: 19/09 - QUINTA-FEIRA (Manhã)

HORÁRIO: 9h00m às 10h30m

Instruções

- 1. Este CADERNO é constituído de dez questões objetivas.
- 2. Recomenda-se, nas questões apresentadas a seguir, não marcar ao acaso: cada item cuja resposta divirja do gabarito oficial acarretará a perda de $\frac{1}{n}$ ponto, em que n é o número de itens da questão a que pertença o item, conforme consta no Manual do Candidato.
- 3. Durante as provas, o(a) candidato(a) não deverá levantar-se ou comunicar-se com outras pessoas.
- 4. A duração da prova é de **uma hora e trinta minutos**, já incluído o tempo destinado à identificação do(a) candidato(a) que será feita no decorrer da prova e ao preenchimento da **FOLHA DE RESPOSTAS**.
- 5. Durante a realização das provas **não** é permitida a utilização de calculadora, equipamentos eletrônicos ou qualquer material de consulta.
- A desobediência ao fiscal de prova ou a qualquer uma das recomendações constantes nas presentes Instruções e na FOLHA DE RESPOSTAS poderá implicar a anulação das provas do(a) candidato(a).
- 7. Só será permitida a saída de candidatos, levando o Caderno de Provas, **somente a partir de 1 hora após o início da prova** e nenhuma folha pode ser destacada.

AGENDA

- 23/09/2024 14 horas Divulgação dos gabaritos das provas objetivas, no endereço: http://www.anpec.org.br.
- 23/09 a 24/09/2024 Recursos identificados pelo autor serão aceitos até às 14h do dia 24/09 do corrente ano. Não serão aceitos recursos fora do padrão apresentado no Manual do Candidato.
- 28/10/2024 14 horas Divulgação do resultado na Internet, no site acima citado.

OBSERVAÇÕES:

- Em nenhuma hipótese a ANPEC informará resultado por telefone.
- É **proibida** a reprodução total ou parcial deste material, por qualquer meio ou processo, sem autorização expressa da ANPEC.
- Nas questões de 1 a 10 (não numéricas), marque de acordo com a instrução de cada uma delas: itens VERDADEIROS na coluna V itens FALSOS na coluna F ou deixe a resposta EM BRANCO.
- Caso a resposta seja numérica, marque o dígito da DEZENA na coluna D e o dígito da UNIDADE na coluna U, ou deixe a resposta EM BRANCO.
- Atenção: o algarismo das **DEZENAS** deve ser obrigatoriamente marcado, mesmo que seja igual a **ZERO**.

Seja $\mathbb{N} = \{1,2,3,...\}$ o conjunto dos números naturais. Para cada $n \in \mathbb{N}$, $P_n = \{1,2,...,n\}$ denota o conjunto dos n primeiros números naturais. Dado $X \subseteq \mathbb{N}$, denote por $\mathcal{S}(X)$ a coleção de todos os subconjuntos de X, ou seja, $\mathcal{S}(X) = \{A \subseteq \mathbb{N}: A \subseteq X\}$. Dado um conjunto finito X, seja $\operatorname{card}(X)$ o número de elementos de X (cardinalidade de X); por exemplo, $\operatorname{card}(P_n) = n$, $\forall n \in \mathbb{N}$. Por fim, dados dois conjuntos $X \in Y$, a diferença simétrica entre eles é $X \triangle Y = \{x \in X \cup Y: x \notin X \cap Y\}$. Julgue as seguintes afirmativas:

- **©** P_5 ⊆ P_4 ∪ {5}.
- ① Se $A, B, C \in \mathcal{S}(P_3)$ satisfazem as condições $card(A \triangle B) = 1$ e $card(B \triangle C) = 1$, então $card(A \triangle C) = 1$.
- ② Existe função sobrejetora de P_{2025} para P_{2024} .
- ③ Para todo $n \in \mathbb{N}$, é verdade que $P_n \triangle P_1 \in \mathcal{S}(P_{n+1})$.
- ④ A função $F: \mathbb{N} \to \mathcal{S}(\mathbb{N})$ definida pela regra $F(n) = P_{n+1}$ é injetora.

No espaço vetorial \mathbb{R}^2 , cada vetor $x=(x_1,x_2)$ pode ser associado aos números reais dados pelas expressões $||x||_M=\max\{|x_1|,|x_2|\},\ ||x||_E=\sqrt{x_1^2+x_2^2},\ ||x||_S=|x_1|+|x_2|.$ Fixados $\alpha,\beta\in[0,1]$, considere a matriz $A=\begin{bmatrix}\alpha&1-\alpha\\\beta&1-\beta\end{bmatrix}$. Ainda, denote por $\langle x,y\rangle$ o produto interno canônico entre dois vetores $x,y\in\mathbb{R}^2$. Julgue as seguintes afirmativas:

- \bigcirc Se $x \in C = \{z \in \mathbb{R}^2 : ||z||_M = 1\}$, então $Ax \in C$.
- ① Se $x = (x_1, x_2) \in \mathbb{R}^2$ é tal que $|x_1| = |x_2| = 1$, então $||x||_M = ||x||_E = ||x||_S$.
- ② Se $\alpha + \beta = 1$ e $\alpha > \beta$, então A é uma matriz simétrica que cumpre $\langle x, Ax \rangle > 0$ para todo $x \in \mathbb{R}^2$ tal que $x \neq (0,0)$.
- ③ Se $0 < \alpha < 1$ e $0 < \beta < 1$, então a matriz A define uma bijeção $L: \mathbb{R}^2 \to \mathbb{R}^2$ por meio da expressão L(x) = Ax.
- ④ A função $F: \mathbb{R}^2 \to \mathbb{R}$ definida pela regra $F(x) = \langle x, Ax \rangle$ satisfaz $|F(x)| \le ||Ax||_M$ sempre que $||x||_S = 1$.

Julgue como verdadeiras ou falsas as seguintes afirmativas:

- \bigcirc Seja A uma matriz quadrada e A^t a sua transposta. Se $B=A+A^t$ e A é simétrica, então as matrizes A e B têm o mesmo núcleo.
- ① Sejam V um espaço vetorial sobre o corpo dos reais e U um subespaço vetorial de V. Suponha que U tem dimensão $N \ge 1$ e que o vetor $x \in V$ satisfaz $x \notin U$. Nesse caso, vale que o conjunto $W = \{u + tx : u \in U, t \in \mathbb{R}\}$ é um subespaço vetorial de V e W tem dimensão N+1.
- ② Seja $L: \mathbb{R}^n \to \mathbb{R}^m$ uma transformação linear tal que para qualquer $x \in \mathbb{R}^n$ vale que $L(x) = (y_1, \dots, y_m) \in \mathbb{R}^m$ satisfaz $y_i \ge 0$ para todo $i = 1, \dots, m$. Nesse caso, a matriz (relativa às bases canônicas de \mathbb{R}^n e \mathbb{R}^m) que representa L é a matriz nula.
- ③ Seja o conjunto X no \mathbb{R}^3 definido por $X = \{(10/3, -8/3, 0) + t(1,7,3): t \in \mathbb{R}\}$. Se $x^* \in \mathbb{R}^3$ minimiza a função $f(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2$ em (x_1, x_2, x_3) sujeito às restrições de igualdade $2x_1 + x_2 3x_3 = 4$ e $x_1 x_2 + 2x_3 = 6$, então $x^* \notin X$.
- ④ Considere $H: \mathbb{R}^3 \to \mathbb{R}^3$ definida por $H(x_1, x_2, x_3) = (x_1 + x_2, 4x_1 + x_2, 0)$. Então H é uma transformação linear que é diagonalizável e dois de seus autovalores também são autovalores da matriz $\begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix}$.

Uma dívida de $P_0>0$ reais, contraída no período 0, é paga a partir do período subsequente em uma quantidade de prestações dada por um número par T>0, todas de R reais, sob o sistema Price de amortização.

Assim, $P_t = (1+r)P_{t-1} - R$, $\forall t \in \{1, ..., T\}$, e $P_T = 0$; em que P_t representa o saldo devedor ao fim do período t, e r > 0 é a taxa de juros acordada entre as partes. Julgue as afirmativas abaixo quanto a sua veracidade:

- **○** Para cada $t \in \{0, 1, ..., T\}$, vale $P_t = P_0 tP_0/T$.
- ① Cada prestação é de $P_0(1+r)^T/T$ reais.
- ② Cada prestação supera os rP_0 reais.
- (3) Quanto maior r, maior será R.
- 4 Ao fim do período T/2, o saldo devedor ainda corresponde a mais da metade da dívida inicial.

Seja Δ o triângulo de vértices A=(0,-2), B=(4,0) e C=(-1,5). Julgue as afirmativas abaixo quanto a sua veracidade:

- Δ é isósceles.
- \bigcirc 1 A área de \triangle é 30.
- ② A reta $\{(x,y) \in \mathbb{R}^2 : (x-2,y+1) \cdot (2,1) = 0\}$ é a mediatriz do lado \overline{AB} de Δ .
- ③ Se M é o baricentro (encontro das medianas) de Δ e D=A-M, então D e (1,3) são linearmente dependentes.
- (4) O ângulo interno de Δ em C mede arccos (4/5) radianos.

Julgue como verdadeiras ou falsas as seguintes afirmativas:

- $\bigcirc \int_{-\pi}^{\pi} [x + 2\operatorname{sen}(x)] \, dx > 0.$
- ① $\int_{-4}^{-2} (x+4)^5 dx = -\int_{2}^{0} x^5 dx.$
- ② Se $n \ge 1$ representa um número natural, e representa o número de Euler, e a sequência (y_n) é definida de modo que $y_n = \int_0^{2n\pi} \left[e^{\cos(x)} \sin(x)\right] dx$ para todo n, então $\lim_{n \to +\infty} y_n = e$.
- ③ Seja $f: \mathbb{R} \to \mathbb{R}$ uma função duas vezes continuamente diferenciável, e a>0 um número real dado. Se b^* é o maior valor de $b\in\mathbb{R}$ que faz com que a desigualdade $f(a)-b\geq f(0)$ seja verdade, então $b^*=\int_0^a f'(x)dx$.
- ④ Sejam $f,g:[a,b] \to \mathbb{R}$ duas funções, cada qual duas vezes continuamente diferenciável, em que a < b são ambos números reais. Se $g(x) = \int_a^x f(t) dt$ e $f(x) = 1 \int_a^x g(t) dt$, então f''(x) = -f(x) e g''(x) = -g(x) para todo $x \in [a,b]$.

Julgue as seguintes afirmativas como verdadeiras ou falsas:

- ① A sequência de números reais (x_n) com termo geral $x_n = 1 \left(\frac{1}{3}\right)^{2^n}$ converge para $\frac{2}{3}$.
- $(1) \lim_{n\to\infty}\cos(2025\pi n)=1.$
- ② Se (x_n) é uma sequência de números reais com a propriedade de que $x_{n+1} \le \frac{x_n + x_{n+2}}{2}$ para todo $n \ge 1$, e $x = \lim_{n \to +\infty} x_n$, então $x \le 0$.
- 3 $\sum_{n=-1}^{+\infty} 44(45)^{-n} = 2025.$
- (4) $\sum_{n=0}^{+\infty} (-1)^n \frac{(2025\pi)^{2n+1}}{(2n+1)!} = 0.$

Seja d a diferença entre o maior e o menor valor possíveis de serem atingidos pela expressão 7y + (x - y)/7, em que x e y são números reais não negativos tais que $x \le (7 - y)^3$. Calcule d.

Dados uma função derivável $f: \mathbb{R} \to (0, \infty)$ e um $t \in \mathbb{R}$ quaisquer, a taxa de crescimento de f em t é definida pela razão f'(t)/f(t), e denotamos por $\hat{f}(t)$ o resultado da seguinte razão: f'(t)/f(t). Avalie a veracidade das sentenças abaixo:

- \bigcirc Se $f,g:\mathbb{R}\to(0,\infty)$ são deriváveis e $t\in\mathbb{R}$, então $\widehat{(f+g)}(t)=\widehat{f}(t)+\widehat{g}(t)$.
- ① Se $f, g : \mathbb{R} \to (0, \infty)$ são deriváveis e $t \in \mathbb{R}$, então $\widehat{(fg)}(t) = \widehat{f}(t)\widehat{g}(t)$.
- ② Se $f: \mathbb{R} \to (0, \infty)$ é derivável e $t \in \mathbb{R}$, então $\widehat{(1/f)}(t) = -\widehat{f}(t)$.
- ③ Se $f: \mathbb{R} \to (0, \infty)$ é derivável e $t \in \mathbb{R}$, então $(\exp \circ f)(t) = (\ln \circ f)'(t)$; onde $\exp: \mathbb{R} \to (0, \infty)$ denota a função exponencial e $\ln: (0, \infty) \to \mathbb{R}$ a função logarítmica, ambos de base e (número de Euler).
- 4 Se $f: \mathbb{R} \to (0, \infty)$ é derivável e $t \in \mathbb{R}$, então $(\widehat{f \circ f})(t) = \widehat{f}(f(t))\widehat{f}(t)f(t)$.

Considere o contexto em que um investimento inicial de A>0 unidades monetárias pode ser aplicado, no período inicial t=0, em apenas um dentre dois ativos disponíveis.

O primeiro ativo remunera a uma taxa de juros r>0 e, devido a custos operacionais, deduz do saldo um valor B_t em cada período t=0,1,2,.... Ainda, dada uma aplicação inicial x_0 igual a A>0, o valor no instante t+1 satisfaz $x_{t+1}=(1+r)x_t-B_t$, onde $\forall t\geq 0$, $B_{t+1}=\left(\frac{1+r}{2}\right)B_t$ e $B_0=\frac{A}{2}$.

Com respeito ao segundo ativo, uma mesma aplicação inicial y_0 em t=0 igual a A>0 implica um valor y_{t+1} no período t+1 que satisfaz $y_{t+1}=(1+\bar{r})y_t$, onde $\bar{r}>0$.

Sabendo que $\frac{1+r}{1+\bar{r}} = V \ge 0$ e $\lim_{t\to+\infty} \frac{x_t}{v_t} = \frac{1}{2}$, determine o valor de V.