; 3.6 线性变换及其矩阵表示

- 一、映射
- 二、线性变换的概念
- 三、线性变换的矩阵表示
- 四、线性变换的特征值(自看)

一、映射

定义3.6.1 设A、B是两个集合,若有一个确定的法则,使对A中每个元素x,都有B中唯一确定的元素v与之对应,则称这个法则是A到B的一个<mark>映射</mark>。

如果 σ 是A到B的映射,则记为 $\sigma: A \to B$ 如果 $x \in A$ 通过 σ 对应 $y \in B$,则记为

 $\sigma: x \to y \ \text{if} \ \sigma(x) = y$

此时称y为x在 σ 下的\$,称x为y在 σ 下的\$。

例3.6.1 设A = B = R, $\sigma(x) = x^2$, 则 σ 是A到B的映射。

例3.6.2 在解析几何中,设A表示空间中所有点的集合, $B = R^3$,则在建立空间直角坐标系后,存在A到B的一个映射。

例3.6.3 设 $A = R^{m \times n}, B = N, 取 M \in A, 定义$ $\sigma(M) = r(M),$

则 σ 是 $R^{m\times n}$ 到N的一个映射

由上面三个例子可知:

- (1) A与B可以是相同的集合,也可以是不同的集合:
- (2) 对A中每个元素x,需要B中一个唯一确定的元素与它对应:
- (3) 一般来说,B的元素不一定都是A中元素的象。

设 $\sigma: A \to B$, 记 $\sigma(A) = {\sigma(x), x \in A}$, 称之为 A在映射 σ 下的**象集**合。显然 $\sigma(A) \subset B$ 。

定义3.6.2 设 σ 是A到B的映射,若 $\sigma(A)=B$ 则称 σ 为满射;若 $\forall a,b \in A,a \neq b$,均有 $\sigma(a)\neq\sigma(b)$ 则称 σ 为单射;若 σ 既是单射又是满射,则称 σ 为 σ 为 σ 为 σ

定义3.6.3 设 σ , τ 是A到B的两个映射,若 $\forall a \in A$ 都有 $\sigma(a) = \tau(a)$,则称 σ 与 τ 相等,记为 $\sigma = \tau$.

定理 $\mathbf{3.6.1}$ 设 σ 是集合 \mathbf{A} 到 \mathbf{B} 的映射, τ 是集合 \mathbf{B} 到 \mathbf{C} 的映射,则

 $\tau(\sigma(a)), \forall a \in A$ 复合运算

确定集合A到C的一个映射,称之为 τ 与 σ 的乘积,记为 $\tau\sigma$,即 $\tau\sigma(a) = \tau(\sigma(a)), a \in A$

注意: τσ ≠ στ

 $(\tau\sigma)\rho = \tau(\sigma\rho)$

一个集合 S 到自身的映射称为 S 的变换。

变换 $\sigma: S \to S$

二、线性变换的概念

在解析几何中,常需要把空间中的点向某一固定平面作投影,例如向xoy面投影。在线性代数中,这实际上是实数域R上的3维向量空间 R^3 到自身的一个映射 ρ :

$$\begin{split} &\rho\left(x,y,z\right) = \left(x,y,0\right), \; \left(x,y,z\right) \in R^{3} \\ & \overline{\mathcal{B}} \, \mathbb{L} \colon \; \forall \; (x_{1},y_{1},z_{1}), (x_{2},y_{2},z_{2}) \in R^{3}, \; \; \forall k \in R \\ &\rho\left[\left(x_{1},y_{1},z_{1}\right) + \left(x_{2},y_{2},z_{2}\right)\right] = \rho\left(x_{1},y_{1},z_{1}\right) + \rho\left(x_{2},y_{2},z_{2}\right) \\ &\rho\left[k\left(x_{1},y_{1},z_{1}\right)\right] = k \, \rho\left(x_{1},y_{1},z_{1}\right) \end{split}$$

 ρ 保持了 R^3 中线性运算的线性性不变。称 ρ 是线性的.

所以, ρ 是向量空间 R^3 的一个线性变换。 $\sigma: V \to V$

定义3.6.4 设 σ 是数域F上的线性空间V的一个变换。如果对任意的 α , $\beta \in V$, $k \in F$, 均有 $\sigma(\alpha + \beta) = \sigma(\alpha) + \sigma(\beta)$, $\sigma(k\alpha) = k\sigma(\alpha)$ (3.6.1) 那么就称 σ 是V的一个线性变换。

结论: σ 是线性变换的充要条件为 $\sigma(k\alpha + l\beta) = k\sigma(\alpha) + l\sigma(\beta)$ (3.6.2)

例3.6.4 求导变换D: $D(f(x)) = f'(x), f(x) \in R[x]$ 是 R[x]的一个线性变换。

例3.6.5 变换 $\sigma(f(x)) = \int_a^x f(t)dt, f(x) \in C[a,b]$ 是C[a,b]的一个线性变换。 证明 设 $f(x), g(x) \in C[a,b], k \in R$,则

 $\sigma[f(x)+g(x)] = \int_{a}^{x} [f(t)+g(t)]dt$ $= \int_{a}^{x} f(t)dt + \int_{a}^{x} g(t)dt$ $= \sigma[f(x)] + \sigma[g(x)]$ $\sigma[kf(x)] = \int_{a}^{x} kf(t)dt = k \int_{a}^{x} f(t)dt = k\sigma[f(x)]$ 故命题得证。

例3.6.6 取定 $k \in F$,定义V的变换 $\sigma(\alpha) = k\alpha, \alpha \in V$ 易证 $\sigma \in V$ 的一个线性变换,称之为数乘变换。

事实上,

$$\sigma(a\alpha + b\beta) = k(a\alpha + b\beta) = k(a\alpha) + k(b\beta)$$
$$= a(k\alpha) + b(k\beta) = a\sigma(\alpha) + b\sigma(\beta)$$

特别地,当 k=0 时,称此变换为零变换,记为 $\mathbf{0}^*$,即 $\mathbf{0}^*(\alpha)=\theta, \alpha\in V$ 当k=1时,称此变换为恒等变换或单位变换,记为 ε ,即 $\varepsilon(\alpha)=\alpha, \alpha\in V$

例3.6.8 设 $\sigma \in V$ 上的线性变换, $\varepsilon \in V$ 的恒等变换,则 $\sigma \varepsilon = \varepsilon \sigma = \sigma$ 。

例3.6.7 在 F[x]中,定义变换 $\sigma(f(x)) = [f(x)]^2, f(x) \in F[x]$

因 $\sigma(af(x) + bg(x)) = [af(x) + bg(x)]^2$ $= a^2 [f(x)]^2 + b^2 [g(x)]^2 + 2abf(x)g(x)$ 而 $a\sigma[f(x)] + b\sigma[g(x)] = a[f(x)]^2 + b[g(x)]^2$

所以 $\sigma[af(x)+bg(x)]\neq a\sigma[f(x)]+b\sigma[g(x)]$ 由此可知,该变换不是线性变换。

$$\sigma((x_1,x_2,x_3))=(x_1^2,x_2+x_3,0)$$

则 σ 不是 R^3 的一个线性变换.

$$\forall \alpha = (a_1, a_2, a_3), \beta = (b_1, b_2, b_3) \in \mathbb{R}^3,$$

$$\sigma(\alpha + \beta) = \sigma((a_1 + b_1, a_2 + b_2, a_3 + b_3))$$

$$= ((a_1 + b_1)^2, a_2 + a_3 + b_2 + b_3, 0)$$

(当
$$a_1b_1 \neq 0$$
时) $\neq (a_1^2, a_2 + a_3, 0) + (b_1^2, b_2 + b_3, 0)$
= $\sigma(\alpha) + \sigma(\beta)$

所以, σ不是线性变换。

性质3.6.1 设 σ 为V上的线性变换,则

- (1) $\sigma(\theta) = \theta, \sigma(-\alpha) = -\sigma(\alpha)$
- (2) σ保持线性组合与线性关系式不变
- (3) σ 把线性相关的向量组变成线性相关的向量组。

$$i\mathbb{E} \quad (1)\sigma(\theta) = \sigma(0\alpha) = 0\sigma(\alpha) = \theta$$
$$\sigma(\alpha) + \sigma(-\alpha) = \sigma[\alpha + (-\alpha)] = \sigma(\theta) = \theta$$

故 $\sigma(-\alpha) = -\sigma(\alpha)$

注 σ 也可能把非零向量变为零向量。

(2) 设 $\alpha = k_1 \alpha_1 + k_2 \alpha_2 + \dots + k_m \alpha_m$,则 $\sigma(\alpha) = k_1 \sigma(\alpha_1) + k_2 \sigma(\alpha_2) + \dots + k_m \sigma(\alpha_m)$

即线性组合的象等于象的线性组合且组合系数相同

(3)由(1)与(2)可证(3).

注 (3) 的逆不成立, σ 也可能把线性无关的向量组变成线性相关的向量组。

定义3.6.5 设 σ 是线性空间V的一个变换。 若存在V的另一个变换 τ ,使

$$\sigma\tau = \tau\sigma = \varepsilon \qquad \sigma\sigma^{-1} = \sigma^{-1}\sigma = \varepsilon$$

则称 σ 是可逆变换,称 τ 是 σ 的逆变换, 记为 $\tau = \sigma^{-1}$

若 $\sigma(\alpha) = \beta$,则有 $\sigma^{-1}(\beta) = \alpha$. 类似反函数!

注 变换 σ 可逆当且仅当 σ 是双射,并且当 σ 可逆时, σ^{-1} 唯一。

定理**3.6.2** 可逆线性变换的逆变换也是线性变换。

证 设 σ 是可逆线性变换 $,\sigma^{-1}$ 是它的逆变换。

任取 $\alpha_1, \alpha_2 \in V, k \in F$, 令

$$\sigma^{-1}(\alpha_1) = \beta_1, \qquad \sigma^{-1}(\alpha_2) = \beta_2$$

则由逆变换的定义可得

$$\sigma(\beta_1) = \alpha_1, \quad \sigma(\beta_2) = \alpha_2$$

已知 σ 是线性的, 故

$$\sigma(\beta_1 + \beta_2) = \alpha_1 + \alpha_2$$

由此得

$$\sigma^{-1}(\alpha_1 + \alpha_2) = \beta_1 + \beta_2 = \sigma^{-1}(\alpha_1) + \sigma^{-1}(\alpha_2)$$

同理, 由 $k\alpha_1 = k\sigma(\beta_1) = \sigma(k\beta_1)$, 又得

$$\sigma^{-1}(k\alpha_1) = k\beta_1 = k\sigma^{-1}(\alpha_1)$$

所以 $, σ^{-1}$ 也是线性的。

注: 当σ可逆时, σ把线性无关向量组变为 线性无关向量组.

小结

要证一个变换 σ 是线性变换,必须证 σ 保持加法和数量乘法,即

$$\sigma(\alpha+\beta)=\sigma(\alpha)+\sigma(\beta), \ \sigma(k\alpha)=k\sigma(\alpha).$$

若证一个变换 σ 不是线性变换,只须证 σ 不保持加法或数量乘法,并且只须举出一个反例即可。

三、线性变换的矩阵表示

设 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 是 n 维线性空间V的一个基。 若 σ 是V的一个线性变换,则 σ 唯一确定仍在V中的基的像

$$\sigma(\alpha_1), \sigma(\alpha_2), \cdots, \sigma(\alpha_n).$$

以 $\sigma(\alpha_j)$ 关于基 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 的坐标为第j列构造一个n阶方阵A,则A由 σ 唯一确定。

上式可形式地表示为

$$\sigma(\alpha_1, \alpha_2, \dots, \alpha_n) = [\sigma(\alpha_1), \sigma(\alpha_2), \dots, \sigma(\alpha_n)],$$

= $[\alpha_1, \alpha_2, \dots, \alpha_n]A$

其中

$$A = egin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix},$$
 n 於方阵

那么,A就称为线性变换 σ 在基 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 下的 矩阵。 **例3.6.9** 零变换 <u>0</u>*在任一组基下的矩阵都是零矩阵,恒等变换 <u>1</u>*在任一组基下的矩阵都是单位矩阵。

注 取定数域F上的n 维线性空间V的一组基 $\alpha_1,\alpha_2,\mathbf{i}$, α_n ,则V 的线性变换 σ 在基 $\alpha_1,\alpha_2,\mathbf{i}$, α_n 下 的矩阵是数域 F 上的n 阶方阵且唯一确定。

反之,对数域F上的任-n阶方阵A,将A的每一列作为关于基 α_1 , α_2 , i , α_n 的坐标,则可以得到n个向量 β_1 , β_2 , i , β_n , 以 β_1 , β_2 , i , β_n 为 α_1 , α_2 , i , α_n 的像,可唯一确定V的一个线性变换 σ ,使其在基 α_1 , α_2 , i , α_n 下的矩阵是 A。

令 $\sigma(\alpha_j) = \beta_j = a_{1j}\alpha_1 + a_{2j}\alpha_2 + \dots + a_{nj}\alpha_n$ 方阵的本质是 $\sigma \leftrightarrow A$ (矩阵A完全刻画了线性变换 σ)一个线性变换

対
$$\forall \alpha \in V$$
 、有
$$\alpha = a_1 \alpha_1 + a_2 \alpha_2 + \dots + a_n \alpha_n$$

$$\sigma(\alpha_1) = \beta_1, \sigma(\alpha_2) = \beta_2, \dots, \sigma(\alpha_n) = \beta_n.$$

$$\sigma(\alpha) = \sigma(a_1 \alpha_1 + a_2 \alpha_2 + \dots + a_n \alpha_n)$$

$$= a_1 \sigma(\alpha_1) + a_2 \sigma(\alpha_2) + \dots + a_n \sigma(\alpha_n)$$
 規定

 $\sigma(\alpha) = a_1\beta_1 + a_2\beta_2 + \dots + a_n\beta_n, \ \alpha \in V$ 其中 a_1, a_2, \mathbf{i} , a_n 是 α 关于基 $\alpha_1, \alpha_2, \mathbf{i}$, α_n 的坐标,则 σ 就是所求的线性变换,同时, σ 是唯一的。

即,在取定基后,线性变换与其矩阵表示一一对应。

例 在3维向量空间
$$\mathbb{R}^3$$
中,构造变换 σ :
$$\sigma[(x_1,x_2,x_3)]=(x_3,0,x_2-2x_1),\quad (x_1,x_2,x_3)\in\mathbb{R}^3$$

- (1) 证明 σ 是线性变换:
- (2) 求 σ 在 \mathbb{R}^3 的自然基下的矩阵。

解 (1) 任取 $(x_1, x_2, x_3), (y_1, y_2, y_3) \in \mathbb{R}^3, k \in \mathbb{R}$,

$$\sigma[k(x_1, x_2, x_3)] = \sigma[(kx_1, kx_2, kx_3)]$$

$$= (kx_3, 0, kx_2 - 2(kx_1)) = k(x_3, 0, x_2 - 2x_1)$$

$$= k\sigma[(x_1, x_2, x_3)]$$

所以, σ是线性变换。

(2) 取R3的自然基

$$\varepsilon_1 = (1,0,0), \varepsilon_2 = (0,1,0), \varepsilon_3 = (0,0,1)$$

$$\sigma(\varepsilon_1) = \sigma[(1,0,0)] = (0,0,-2) = -2\varepsilon_3$$

$$\sigma(\epsilon_2) = \sigma[(0,1,0)] = (0,0,1) = \epsilon_3$$

$$\sigma(\epsilon_3) = \sigma[(\textbf{0}, \textbf{0}, \textbf{1})] = (\textbf{1}, \textbf{0}, \textbf{0}) = \epsilon_1$$

$$\sigma[\varepsilon_1, \varepsilon_2, \varepsilon_3] = \left[\sigma(\varepsilon_1), \sigma(\varepsilon_2), \sigma(\varepsilon_3)\right]$$
$$= \left[\varepsilon_1, \varepsilon_2, \varepsilon_3\right] \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -2 & 1 & 0 \end{pmatrix}$$

即, σ 在 \mathbb{R}^3 的自然基 $\varepsilon_1, \varepsilon_2, \varepsilon_3$ 下的矩阵为

$$\begin{pmatrix}
0 & 0 & 1 \\
0 & 0 & 0 \\
-2 & 1 & 0
\end{pmatrix}$$

例 求 $F[x]_n$ 的求导变换在自然基 $1,x,x^2,...,x^{n-1}$ 下的矩阵.

解: 求导变换 $D: \underline{D}(f(x)) = f'(x)$ 是一个线性变换

记自然基为:
$$f_1 = 1, f_2 = x, \dots, f_n = x^{n-1}$$

$$\underline{D}(f_1) = 0$$

$$\underline{D}(f_2) = 1 = f_1$$

$$\underline{D}(f_3) = 2x = 2f_2$$

.....

$$\underline{D}(f_n) = (n-1)x^{n-2} = (n-1)f_{n-1}$$

所以, $D在F[x]_n$ 的自然基 f_1, f_2 ; $,f_n$ 下的矩阵为

$$\begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 2 & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \cdots & n-1 \\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix}$$

例 在矩阵空间 $\mathbf{R^{2_i}}^2$ 上构造线性变换 σ : $\sigma(X)=AX$, $X \in \mathbf{R^{2_i}}^2$

这里

$$\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix}$$

求 σ 在 \mathbb{R}^{2} i²的自然基下的矩阵。

解取R²ⁱ2的自然基

$$I_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, I_{12} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, I_{21} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, I_{22} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

因为

$$\sigma(\mathbf{I}_{11}) = A\mathbf{I}_{11} = \begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 4 & 0 \end{pmatrix}$$
$$= \mathbf{I}_{11} + 4\mathbf{I}_{21}$$

$$\sigma(\mathbf{I}_{12}) = A\mathbf{I}_{12} = \begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 4 \end{pmatrix}$$
$$= \mathbf{I}_{12} + 4\mathbf{I}_{22}$$

$$\sigma(\mathbf{I}_{21}) = \mathbf{A}\mathbf{I}_{21} = \begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 3 & 0 \end{pmatrix}$$

$$= 2\mathbf{I}_{11} + 3\mathbf{I}_{21}$$

$$\sigma(\mathbf{I}_{22}) = \mathbf{A}\mathbf{I}_{22} = \begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 2 \\ 0 & 3 \end{pmatrix}$$

$$= 2\mathbf{I}_{12} + 3\mathbf{I}_{22}$$

$$\text{FIU.},$$

$$\sigma[\mathbf{I}_{11}, \mathbf{I}_{12}, \mathbf{I}_{21}, \mathbf{I}_{22}] = [\sigma(\mathbf{I}_{11}), \sigma(\mathbf{I}_{12}), \sigma(\mathbf{I}_{21}), \sigma(\mathbf{I}_{22})]$$

$$= [\boldsymbol{I}_{11}, \boldsymbol{I}_{12}, \boldsymbol{I}_{21}, \boldsymbol{I}_{22}] \begin{pmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 2 \\ 4 & 0 & 3 & 0 \\ 0 & 4 & 0 & 3 \end{pmatrix}$$

由此得, σ 在 $\mathbf{R}^{2\mathbf{i}}$ ²的自然基下的矩阵为
$$\begin{pmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 2 \\ 4 & 0 & 3 & 0 \\ 0 & 4 & 0 & 3 \end{pmatrix}$$

定理3.6.3 设 σ 是 n维线性空间V 的线性变换, $\alpha_1, \alpha_2, i, \alpha_n$ 是 V 的一组基, σ 在基 $\alpha_1, \alpha_2, i, \alpha_n$ 下的矩阵为A。 任取 $\alpha \in V$, 若 α 关于基 $\alpha_1, \alpha_2, i, \alpha_n$ 的坐标为 $(x_1, x_2, i, x_n)^T$ $\sigma(\alpha)$ 关于基 $\alpha_1, \alpha_2, i, \alpha_n$ 的坐标为 $(y_1, y_2, i, y_n)^T$ 则 $\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = A \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$ 方阵的本质是 一个线性变换!

证 因
$$\sigma[\alpha_1, \alpha_2, \dots, \alpha_n] = [\alpha_1, \alpha_2, \dots, \alpha_n] A$$
,
$$\alpha = [\alpha_1, \alpha_2, \dots, \alpha_n] \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \ \sigma(\alpha) = [\alpha_1, \alpha_2, \dots, \alpha_n] \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

$$\sigma(\alpha) = \sigma \begin{bmatrix} \alpha_1, \alpha_2, \dots, \alpha_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \sigma[\alpha_1, \alpha_2, \dots, \alpha_n] \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

$$= ([\alpha_1, \alpha_2, \cdots, \alpha_n]A) \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = [\alpha_1, \alpha_2, \cdots, \alpha_n] A \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix},$$

$$| \mathcal{F}_1 | \mathcal{F}_2 | = A \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}.$$

$$| \mathcal{F}_1 | \mathcal{F}_2 | = A \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}.$$

定理3.6.4 设线性变换 σ 在基 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 下的矩阵为A,则 σ 可逆的充要条件是矩阵A 可逆。当 σ 可逆时,它的逆变换 σ -1在基 α_1 , $\alpha_2, \cdots, \alpha_n$ 下的矩阵是A-1.

线性变换在不同基下的矩阵的关系:

定理3.6.5 在线性空间V,中取定两组基

$$\alpha_1,\alpha_2,\cdots,\alpha_n; \beta_1,\beta_2,\cdots,\beta_n,$$

由基 $\alpha_1, \alpha_2, \dots, \alpha_n$ 到基 $\beta_1, \beta_2, \dots, \beta_n$ 的过渡矩阵为**P**。 设 V_n 中的线性变换 σ 在这两个基下的矩阵依次为A和 B, 那末

$$B = P^{-1}AP \qquad A \sim B$$

V,中的线性变换 σ 在不同基下的矩阵彼此相似.

证明
$$: (\beta_1, \beta_2, \dots, \beta_n) = (\alpha_1, \alpha_2, \dots, \alpha_n)P$$

$$\sigma(\alpha_1, \alpha_2, \dots, \alpha_n) = (\alpha_1, \alpha_2, \dots, \alpha_n)A$$

$$\sigma(\beta_1, \beta_2, \dots, \beta_n) = (\beta_1, \beta_2, \dots, \beta_n)B$$
于是
$$(\beta_1, \beta_2, \dots, \beta_n)B = \sigma(\beta_1, \beta_2, \dots, \beta_n)$$

$$= \sigma[(\alpha_1, \alpha_2, \dots, \alpha_n)P]$$

$$= \sigma[(\alpha_1, \alpha_2, \dots, \alpha_n)]P$$

$$= (\alpha_1, \alpha_2, \dots, \alpha_n)AP$$

$$= (\beta_1, \beta_2, \dots, \beta_n)P^{-1}AP$$
因为 $\beta_1, \beta_2, \dots, \beta_n$ 线性无关,所以 $B = P^{-1}AP$.

例 设 V_2 中的线性变换 σ 在基 α_1 , α_2 下的矩阵为

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$
. 注意: \mathbf{x} 本 α_1 , α_2 与 求 σ 在基 α_2 , α_1 下的矩阵. \mathbf{x} 本 α_2 , α_1 是不同的!

从而σ在基α,,α,下的矩阵为:

$$B = P^{-1}AP = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}^{-1} \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} a_{22} & a_{21} \\ a_{12} & a_{22} \end{bmatrix}$$

例 设V,中的线性变换 σ 在基 α , α ,下的矩阵为

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}, \quad \sigma[\alpha_1, \alpha_2] = [\sigma(\alpha_1), \sigma(\alpha_2)]$$
$$= [\alpha_1, \alpha_2]A$$

求σ在基α,, α,下的矩阵.

解2 由已知条件,有
$$\sigma(\alpha_1) = a_{11}\alpha_1 + a_{21}\alpha_2$$
,
$$\sigma(\alpha_2) = a_{12}\alpha_1 + a_{22}\alpha_2$$
,

即:
$$\sigma(\alpha_2) = a_{22}\alpha_2 + a_{12}\alpha_1$$
, $\sigma[\alpha_2, \alpha_1] = [\sigma(\alpha_2), \sigma(\alpha_1)]$
 $\sigma(\alpha_1) = a_{21}\alpha_2 + a_{11}\alpha_1$, $= [\alpha_2, \alpha_1]B$
从而 σ 在基 α_2, α_1 下的矩阵为:

$$B = \begin{bmatrix} a_{22} & a_{21} \\ a_{12} & a_{11} \end{bmatrix}$$

例3.6.12 设R3的线性变换o把基:

$$\alpha_1 = (1,0,1), \alpha_2 = (0,1,0), \alpha_3 = (0,0,1)$$

变为基:

$$\beta_1 = (1,0,2), \beta_2 = (-1,2,-1), \beta_3 = (1,0,0)$$

求σ在基β1,β,β,下的矩阵.

解: 由已知可得:
$$\sigma[\alpha_1, \alpha_2, \alpha_3] = [\beta_1, \beta_2, \beta_3]$$
 (1)

设从基 $\alpha_1,\alpha_2,\alpha_3$ 到基 β_1,β_2,β_3 的过渡矩阵为P,则有

$$[\beta_1,\beta_2,\beta_3] = [\alpha_1,\alpha_2,\alpha_3]P$$

$$P = [\alpha_1, \alpha_2, \alpha_3]^{-1} [\beta_1, \beta_2, \beta_3] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 1 & -1 & 1 \\ 0 & 2 & 0 \\ 2 & -1 & 0 \end{bmatrix}$$
$$= C_1^{-1} C_2,$$

于是
$$[\beta_1,\beta_2,\beta_3] = [\alpha_1,\alpha_2,\alpha_3]C_1^{-1}C_2$$

代入(1)式,得
$$\sigma[\alpha_1,\alpha_2,\alpha_3] = [\beta_1,\beta_2,\beta_3]$$

$$= [\alpha_1, \alpha_2, \alpha_3] C_1^{-1} C_2$$

即 σ 在基 $\alpha_1,\alpha_2,\alpha_3$ 下的矩阵为 $A=C_1^{-1}C_2$,

故σ在基β1,β2,β3下的矩阵为

$$B = P^{-1}AP = (C_1^{-1}C_2)^{-1}(C_1^{-1}C_2)(C_1^{-1}C_2)$$
$$= (C_2^{-1}C_1)(C_1^{-1}C_2)(C_1^{-1}C_2) = C_1^{-1}C_2$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 1 & -1 & 1 \\ 0 & 2 & 0 \\ 2 & -1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & -1 \end{bmatrix}$$

小结

给定了实数域R上的线性空间 V_n 的一组基后, V_n 中的线性变换与 $R^{n\times n}$ 中的矩阵形成一一对应.

因此,在线性代数中,可以用矩阵来研究变换,也可以用变换来研究矩阵.

要求

- 1. 会判断一个变换是否构成线性变换
- 2. 求线性变换在指定基下的矩阵
- 3. 知道线性变换在不同基下的矩阵之间的关系

作业 习题三(P167): 51(1)(3)(6)(7)、53、59、61、62 (51-66题均可做练习)

四、线性变换的特征值(自看)

设线性变换σ在基 α_1 , α_2 ,···, α_n 下的矩阵为对角矩阵 $diag(\lambda_1,\lambda_2,\cdots,\lambda_n)$

関
$$\sigma[\alpha_1,\alpha_2,\cdots,\alpha_n] = [\alpha_1,\alpha_2,\cdots,\alpha_n]$$
 λ_1 λ_2 ... λ_n .

于是 $\sigma[\alpha_1, \alpha_2, \dots, \alpha_n] = [\lambda_1 \alpha_1, \lambda_2 \alpha_2, \dots \lambda_n \alpha_n]$ 由此得 $\sigma(\alpha_i) = \lambda_i \alpha_i$, $(i = 1, 2, \dots, n)$ 定义3.6.7 设 σ 是数域F上的线性空间V上的一个线性变换,若对F中的一个数 λ ,存在V中一个非零向量 α ,使得

$$\sigma(\alpha) = \lambda \alpha \qquad (3.6.5)$$

则 λ 称为 σ 的特征值, α 称为 σ 属于 λ 的一个特征向量. 由定义知:

定理3.6.6 设 σ 是n维线性空间V的一个线性变换,则 σ 的矩阵可以在某一个基下为对角矩阵的充要条件为 σ 有n个线性无关的特征向量.

线性变换的特征值与特 征向量的计算依赖于矩 阵的 特征值与特征向量 .