7.7 The Projection Theorem and Its Implications

Orthogonal projection onto lines in $\ensuremath{\mathbb{R}}^2$

Orthogonal projection onto lines in \mathbb{R}^n

Theorem

If **a** is a nonzero vector in \mathbb{R}^n , then every vector **x** in \mathbb{R}^n can be expressed in exactly one way as

$$\mathbf{x} = \mathbf{x}_1 + \mathbf{x}_2$$

where \mathbf{x}_1 is a scalar multiple of \mathbf{a} and \mathbf{x}_2 is orthogonal to \mathbf{a} . The vectors \mathbf{x}_1 and \mathbf{x}_2 are given by

$$\mathbf{x}_1 = \frac{\mathbf{x} \cdot \mathbf{a}}{\|\mathbf{a}\|^2} \mathbf{a}, \qquad \mathbf{x}_2 = \mathbf{x} - \mathbf{x}_1 = \mathbf{x} - \frac{\mathbf{x} \cdot \mathbf{a}}{\|\mathbf{a}\|^2} \mathbf{a}$$

Orthogonal projection onto lines in \mathbb{R}^n

Definition

If **a** is a nonzero vector in \mathbb{R}^n , and if **x** is any vector in \mathbb{R}^n , then the orthogonal projection of **x** onto span $\{a\}$ is denoted by $\operatorname{proj}_a \mathbf{x}$ and is defined as

$$\mathsf{proj}_{\mathbf{a}}\mathbf{x} = \frac{\mathbf{x} \cdot \mathbf{a}}{\|\mathbf{a}\|^2}\mathbf{a}$$

The vector $\operatorname{proj}_{\mathbf{a}}\mathbf{x}$ is called the vector component of \mathbf{x} along \mathbf{a} , and $\mathbf{x} - \operatorname{proj}_{\mathbf{a}}\mathbf{x}$ is called the vector component of \mathbf{x} orthogonal to \mathbf{a} .

Orthogonal projection onto lines in \mathbb{R}^n

Example

Let $\mathbf{x}=(2,-1,3)$ and $\mathbf{a}=(4,-1,2).$ Find the vector components of \mathbf{x} along \mathbf{a} and orthogonal to \mathbf{a} .

Projection operators on \mathbb{R}^n

Definition

Define an operator $T: \mathbb{R}^n \to \mathbb{R}^n$ by

$$T(\mathbf{x}) = \frac{\mathbf{x} \cdot \mathbf{a}}{\|\mathbf{a}\|^2} \mathbf{a}$$

This is called the orthogonal projection of \mathbb{R}^n onto span $\{a\}$.

Projection operators on \mathbb{R}^n

Theorem

If **a** is a nonzero vector in \mathbb{R}^n , and if **a** is expressed in column form, then the standard matrix for the linear operator $T(\mathbf{x}) = \operatorname{proj}_{\mathbf{a}} \mathbf{x}$ is

$$P = \frac{1}{\mathbf{a}^T \mathbf{a}} \mathbf{a} \mathbf{a}^T$$

This matrix is symmetric and has rank 1.

Orthogonal projections onto general subspaces

Theorem (Projection theorem for subspaces)

If W is a subspace of \mathbb{R}^n , then every vector \mathbf{x} in \mathbb{R}^n can be expressed exactly one way as

$$\mathbf{x} = \mathbf{x}_1 + \mathbf{x}_2$$

where \mathbf{x}_1 is in W and \mathbf{x}_2 is in W^{\perp} .

Orthogonal projections onto general subspaces

Definition

If $\mathbf{x} = \mathbf{x}_1 + \mathbf{x}_2$ where \mathbf{x}_1 is in W and \mathbf{x}_2 is in W^\perp , \mathbf{x}_1 is called the orthogonal projection of \mathbf{x} on W, and \mathbf{x}_2 is called the orthogonal projection of \mathbf{x} on W^\perp . They are denoted by $\operatorname{proj}_W \mathbf{x}$ and $\operatorname{proj}_{W^\perp} \mathbf{x}$, respectively.

Theorem

If W is a nonzero subspace of \mathbb{R}^n , and if M is any matrix whose column vectors form a basis for W, then

$$proj_{W}\mathbf{x} = M(M^{T}M)^{-1}M^{T}\mathbf{x}$$

for every column vector \mathbf{x} in \mathbb{R}^n

Orthogonal projections onto general subspaces

Example

- (a) Find the standard matrix P for the orthogonal projection of \mathbb{R}^3 onto the plane x 4y + 2z = 0.
- (b) Use the matrix P to find the orthogonal projection of the vector x = (1,0,4) onto the plane.