Precision medicine: NGS variant analysis and interpretation for translational research

Selecting the most relevant variants: How to filter

Fátima Al-Shahrour ● Javier Perales ● Elena Piñeiro

November 15, 2017

Additional annotations

chromosome	PolyPhen score	VEP's COSMIC ID	
location	Condel effect	other IDs	
mutation	Condel score	variation type	
gene	SIFT effect	HGVS cDNA	
feature	SIFT score	HGVS protein	
feature type	gene HGNC	GMAF 1000 genomes	
consequence	protein position	GMAF 1000 genomes percentage	
	amino acids	gnomAD percentage	
PolyPhen effect	dbSNP ID	gnomAD NFE percentage	

Annotations from VEP

Additional annotations

chromosome	PolyPhen score	VEP's COSMIC ID	COSMIC original ID
location	Condel effect	other IDs	Pfam
mutation	Condel score	variation type	Uniprot
gene	SIFT effect	HGVS cDNA	Interpro
feature	SIFT score	HGVS protein	
feature type	gene HGNC	GMAF 1000 genomes	
consequence	protein position	GMAF 1000 genomes percentage	
APPRIS category	amino acids	gnomAD percentage	
PolyPhen effect	dbSNP ID	gnomAD NFE percentage	

Annotations from VEP

Enrichment of VEP annotations

Additional annotations

chromosome	PolyPhen score	VEP's COSMIC ID	COSMIC original ID	ClinVar disease
location	Condel effect	other IDs	Pfam	ClinVar clinical significance
mutation	Condel score	variation type	Uniprot	Homopolymer
gene	SIFT effect	HGVS cDNA	Interpro	Repeats
feature	SIFT score	HGVS protein	TumorPortal	CCLE gene
feature type	gene HGNC	GMAF 1000 genomes	Role of the gene in tumorgenesis	Frequency of gene in COSMIC
consequence	protein position	GMAF 1000 genomes percentage	KEGG data	Frequency of mutation in COSMIC
APPRIS category	amino acids	gnomAD percentage	KEGG path ID	Consensual role
PolyPhen effect	dbSNP ID	gnomAD NFE percentage	ClinVar ID	VSCORE

Annotations from VEP

Enrichment of VEP annotations

Annotations from other sources

Pathways

- Implication of genes in biological process
- Interaction among proteins -> Therapeutic implications

Resources

- Reactome
- KEGG (Kyoto Encyclopedia of Genes and Genomes)

KEGG pathways

http://www.genome.jp/kegg/pathway.html

KEGG PATHWAY Database

Wiring diagrams of molecular interactions, reactions, and relations

- 1. Metabolism
- 2. Genetic Information Processing
- 3. Environmental Information Processing
- 4. Cellular Processes
- 5. OrganismalSystems
- 6. Human diseases
- 7. Drug development (structural relations between compounds)

Clinical Implications: ClinVar

http://www.ncbi.nlm.nih.gov/clinvar/

	Variation Location	Gene(s)	Condition(s)	Frequency	Clinical significance (Last reviewed)	Review status
19.	NM_001005862.2(ERBB2):c.1376C>T (p.Pro459Leu) GRCh37: Chr17:37872145 GRCh38: Chr17:39715892	ERBB2	not specified	GMAF:0.00040(T)	(Sep 19, 2013)	no assertion provided
20.	NM_001005862.2(ERBB2):c.1703C>A (p.Ala568Asp) GRCh37: Chr17:37873628 GRCh38: Chr17:39717375	ERBB2	not specified		(Sep 19, 2013)	no assertion provided
21.	NM_001005862.2(ERBB2):c.1870A>G (p.lle624Val) GRCh37: Chr17:37879585 GRCh38: Chr17:39723332	ERBB2		GO-ESP:0.00707(G GMAF:0.00260(G)	(Feb 1, 1993)	no assertion criteria provided
22.	NM_001005862.2(ERBB2):c.1873A>G (p.lle625Val) GRCh37: Chr17:37879588 GRCh38: Chr17:39723335	ERBB2		GO-ESP:0.16854(G GMAF:0.12140(G)	(Feb 1, 1993)	no assertion criteria provided
23.	NM_001005862.2(ERBB2):c.2173_2174 delTTinsCC (p.Leu725Pro) GRCh37: Chr17:37880219-37880220 GRCh38: Chr17:39723966-39723967	ERBB2	Adenocarcinoma of lung		(Sep 30, 2004)	no assertion criteria provided

Bibliography

UniProtKB - P00533 (EGFR_HUMAN)

Protein | Epidermal growth factor receptor

Gene | EGFR

Organism | Homo sapiens (Human)

Status | Reviewed - Annotation score:

©©©©© - Experimental evidence at protein level i

http://www.uniprot.org

PTM / Processing

Specific phenotype information

- Relevance of the gene in disease
 - TumorPortal
 - CCLE (Carcinogenesis)
 - COSMIC
- Frequency of the variant/gene in disease
 - COSMIC (Carcinogenesis)
- Role of the gene in carcinogenesis (Oncogene or Tumor Suppressor)
 - COSMIC (Carcinogenesis)
 - oncodriveROLE

TumorPortal

http://www.tumorportal.org/

Explore dataset by Genes

Click on a gene name to see what tumor types it is significantly mutated in (and other details).

TumorPortal

Lawrence et al. Nature 2014

CCLE

Cancer Cell Line Encyclopedia (CCLE)

The Cancer Cell Line Encyclopedia (CCLE) project is an effort to conduct a detailed genetic characterization of a large panel of human cancer cell lines. The CCLE provides public access analysis and visualization of DNA copy number, mRNA expression, mutation data and more, for 1000 cancer cell lines.

Contact: ccle-help@broadinstitute.org

Data Info:

URL: http://www.broadinstitute.org/ccle

Description:

A link to the CCLE portal

Publication Info:

URL: http://www.nature.com/nature/journal/v483/n7391/full/nature11003.html

Date: 3/29/2012

Notes:

Barretina, Caponigro, Stransky et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2012 Mar 28;483(7391):603-7. doi: 10.1038/nature11003.

COSMIC additional information

Variant / gene frequency in COSMIC

Variant / gene frequency in COSMIC

Role of the gene as ONC or TSG

How frequencies can be interpreted? How genes can be actioned for therapy?

Role of the gene as ONC or TSG

http://cancer.sanger.ac.uk/census/

OncodriveROLE

Classifying cancer driver genes into Loss of Function and Activating roles.

We developed the machine-learning based approach OncodriveROLE to classify cancer driver genes into to Activating or Loss of Function roles for cancer gene development. Here you can download the code of the method, and browse the results of applying OncodriveROLE to two recently published list of driver genes (HCDs and Cancer5000) in the respective tabs Plots, Gene classification and performance. You may adjust the cut-offs with the sliders to the left, download the results according to the selected cut-offs or directly download the classifier to use with your own data. For further information please refer to the manuscript.

Remove artifacts

Quality filters

Possible artifacts

Table 1 | Main characteristics of current NGS technologies

Technology	gy Run type		Maximum read		Quality	Error	Refs
	Single end	Paired end	Mate pair	length	scores	rates	
Illumina	Yes	Yes	Yes	300 bp	>30	0.0034-1%	59
SOLiD	Yes	Yes	Yes	75 bp	>30	0.01-1%	60
IonTorrent	Yes	Yes	No	400 bp	~20	1.78%	22
454	Yes	Yes	No	~700 bp (up to 1 kb)	>20	1.07-1.7%	53,61
Nanopore	Yes	No	No	5.4–10kb	NA	10-40%	62-66
PacBio	Yes	No	No	~15 kb (up to 40 kb)	<10	5-10%	22,67–69

454, 454 pyrosequencing (Roche); NA, not applicable; Nanopore, Oxford Nanopore Technologies; NGS, next-generation sequencing; PacBio, Pacific Biosciences; SOLiD, sequencing by oligonucleotide ligation and detection (Thermo Fisher).

Nature Reviews Genetics 17,459-469(2016)doi:10.1038/nrg.2016.57

Sequencing strategies differ in different aspects as the error rates they produce and the kind of sequencing errors they introduce

Possible artifacts

- Base-calling errors
 - Indel errors: Rare in Illumina. Main source of errors in IonTorrent and 454.
 - Substitution errors: Dominant in Illumina and SOLiD platforms.

Remove artifacts

- Quality filters
- Indels in homopolymeric regions
- Repetition in same technology output
 - Repetition can indicate a polymorphism if it is present in at least a 1% of the population
 - Repetition can indicate a frequent alteration if its presence is validated in other samples of the same phenotype
 - Otherwise, it can be an artifact (especially in genes acting as tumor suppressors in cancer)

Remove artifacts

- Quality filters
- Indels in homopolymeric regions
- Repetition in same technology output
 - Repetition can indicate a polymorphism if it is present in at least a 1% of the population
 - Repetition can indicate a frequent alteration if its presence is validated in other samples of the same phenotype
 - Otherwise, it can be an artifact (especially in genes acting as tumor suppressors in cancer)
- Variants in positions with very low coverage
- Variants with very low frequency

Remove variants located in **no functional genes**: BACs, pseudogenes, ...

Remove variants affecting no relevant transcripts

Remove **polymorphisms** (if not interested in germline information):

Population frequency in 1000 Genomes project, ExAC, gnomAD... >= 1%

We can select those that seem more relevant according to a **set of criteria**.

A useful tool for the selection is the prioritization based on a **score calculation** computed from selected annotations. This provides a ranked list of variants with the most relevant at the top.

Components in the selection criteria and score calculation vary with the pathology or condition under study.

Filtering criteria

Keep variants with relevant consequences at transcriptional level:

transcript_ablation | splice_donor_variant | splice_acceptor_variant | stop_gained | frameshift_variant | stop_lost | start_lost | transcript_amplification | inframe_insertion | inframe_deletion | missense_variant | protein_altering_variant | splice_region_variant | incomplete_terminal_codon_variant | stop_retained_variant

Keep variants with predicted relevant consequence at protein level: damaging in predictors, affecting domains

Keep variants with clinical significance: pathogenic ClinVar

Keep variants relevant in the pathology: pathogenic COSMIC, gene or variant frequently mutated in cancer, ...

Score calculation: an example

Feature	Value	Weight ONC	Weight TSG
Score prediction by PolyPhen	> 0.435	0.125/3	0.125/3
Score prediction by Sift	<= 0.05	0.125/3	0.125/3
Score prediction by CONDEL	ore prediction by > 0.468		0.125/3
COSMIC	Pathogenic by FATHMM prediction	0.125/3	0.03125
Frequency of mutation in COSMIC	>= 100	0.125/3	
	< 100	(0.125 / 3) * (log(mutation frequency) / log(maximum mutation frequency))	
Frequency of gene in COSMIC	>= 100	0.125/3	0.03125
	< 100	(0.125 / 3) * (log(gene frequency) / log(maximum gene frequency))	0.03125 * (log(gene frequency) / log(maximum gene frequency))
VEP consequence	stop gain frameshift missense inframe insertion inframe deletion	0.125	0.125
GMAF	<1	0.125/2	0.125/2
EXAC	<1	0.125/2	0.125/2
DOMAINS	Listed as relevant in cancer [1] or previous last protein domain (in stop-gained or frameshift)	0.125	0.125
	Within a domain in other circumstances	0.125/2	0.125/2
CLINVAR	Pathogenic with zygosity data	0.125	0.125
	Pathogenic without zygosity data	0.250	0.3125
ZYGOSITY (when available)	Homozygous	0.125	0.1875
ESSENTIALITY SCORE		0.125 * ES	0.125 * ES

Impact

Pathogenicity

Frequencies

Impact

Frequencies

Impact

Pathogenicity

Impact