

Spatial Optics A. Desfarges & F. Reynaud

Module Title Date _

Spatio temporal analogy

MONOCHROMATIC PLANE WAVE STRUCTURE

$$MPW(t,M) = e^{j(2\pi vt - \vec{k}.\overrightarrow{\mathbf{OM}})}$$

$$MPW(t, M) = e^{j2\pi vt} \cdot e^{-j\vec{k} \cdot \overrightarrow{OM}}$$
Temporal Spatial

Applied to sport

Propagation along the Oz axis

$$MPW_{z=0}(t, x, y) = e^{j2\pi vt} \cdot e^{-j(k_x \cdot x + k_y \cdot y)}$$

variable	t	x ; y
Frequency	ν	$N_{\chi}=\frac{k_{\chi}}{2\pi}$; $N_{y}=\frac{k_{y}}{2\pi}$

2

First analogy about the propagation

Temporal

Monochromatic wave $MW_{z=0}(t) = e^{j2\pi vt}.$ $MW_{z\neq 0}(t) = e^{j2\pi vt} e^{-j\beta \cdot z}$

Spatial

Transfert function

Module Title Date 3 -

EMIMEO

Analogy about the function decomposition: Fourier analysis

Temporal

$$f(t) = \int_{-\infty}^{+\infty} \tilde{f}(\nu) \, e^{j2\pi\nu t} dt$$

$$\tilde{f}(v) = \int_{-\infty}^{+\infty} f(t) e^{-j2\pi vt} dt$$

FT⁻¹
$$f(x,y) = \int_{-\infty}^{+\infty} \tilde{f}(N_x, N_y) e^{-j(k_x \cdot x + k_y \cdot y)} dN_x dN_y$$

FT
$$\tilde{f}(N_x, N_y) = \int_{-\infty}^{+\infty} f(x, y) e^{j(k_x \cdot x + k_y \cdot y)} dx dy$$

Spatial

1D 2D

!!signs

Analogy about general skills of the data processing

Applied to linear and translation invariant systems

Module Title Date 5 -

EMIMEO

E(rasmus) Mundus on Innovative Microwave Electronics and Optics

Application to the diffraction grating formula

$$\sin(\theta) = \sin(\theta_0) + \frac{k\lambda}{a}$$

$$= \frac{\sum m \theta_0}{\sum m \theta_0} + \frac{1}{\sum m \theta_0}$$

$$= \frac{1}{\sum m \theta_0}$$