

Artificial Neural Networks Definition Training (BackProp) Activation Functions

Machine Learning

Lecture Machine Learning vom 22.3.2021

Lars Gabriel, Felix Becker, Mario Stanke Institut für Mathematik und Informatik Universität Greifswald

Lars Gabriel, Felix Becker, Mario Stanke

Artificial Neural Networks

Training (BackProp) Activation Functions

Artificial Neural Network

Figure created with the help of: LeNail, (2019). NN-SVG: Publication-Ready Neural Network Architecture Schematics. Journal of Open Source Software, 4(33), 747

Definition 1 (Artificial Neural Network (NN, künstliches neuronales Netz))

A feed-forward artificial neural network with $L \ge 1$ layers of sizes s_1, \ldots, s_L with $n =: s_0$ input variables $\mathbf{x} = (x_1, \ldots, x_n)^T$ and $K := s_L$ output variables $\mathbf{t} = (t_1, \ldots, t_K)^T$ is a function

$$\mathbf{t} = h_{\boldsymbol{\theta}}(\mathbf{x})$$

with parameters

$$\pmb{\theta} = (\Theta^{(0)}, \dots, \Theta^{(L-1)}) \qquad \text{, where} \quad \Theta^{(\ell)} \in \mathbb{R}^{s_{\ell+1} \times (s_{\ell}+1)},$$

defined by the following recursions

$$\mathbf{t} = \mathbf{g}(\mathbf{z}^{(L)}) \in \mathbb{R}^{K}$$

$$\mathbf{z}^{(\ell)} = \Theta^{(\ell-1)}\mathbf{a}^{(\ell-1)} \in \mathbb{R}^{s_{\ell}} \quad (1 \le \ell \le L)$$

$$\mathbf{a}^{(\ell)} = \begin{pmatrix} a_{0}^{(\ell)} \\ a_{1}^{(\ell)} \\ \vdots \\ a_{s_{\ell}}^{(\ell)} \end{pmatrix} = \begin{pmatrix} 1 \\ \sigma(z_{1}^{(\ell)}) \\ \vdots \\ \sigma(z_{s_{\ell}}^{(\ell)}) \end{pmatrix} \quad (1 \le \ell < L)$$

$$\mathbf{a}^{(0)} = \begin{pmatrix} 1 \\ x_{1} \\ \vdots \\ x_{\ell} \end{pmatrix}. \quad (1)$$

Here, σ is called an activation function and we will call $\mathbf{g}: \mathbb{R}^K \to \mathbb{R}^K$ the output activation function.

Linear regression = NN with 1 layer and 1 output variable

$$L=1$$
 layers

$$m{ heta}=(heta_0, heta_1,\dots, heta_n)$$
 parameters t_1 one output unit x_1,\dots,x_n input units output activation function $t_1=g(z_1)=z_1$

$$t_1 = \theta_0 + \sum_{j=1}^n \theta_j x_j$$

Linear regression = NN with 1 layer and 1 output variable

NN with 1 hidden layer

$$L=2$$
 layers, 1 hidden layer, $s_1=2$

$$\boldsymbol{\theta} = (\Theta^{(0)}, \Theta^{(1)})$$
 parameters

 x_1, x_2 input units, t_1 single output unit with output activation function σ

$$t_1 = \sigma \left(\theta_{10}^{(1)} + \theta_{11}^{(1)} a_1 + \theta_{12}^{(1)} a_2 \right) = \sigma \left(\theta_{10}^{(1)} + \theta_{11}^{(1)} \sigma (\theta_{10}^{(0)} + \theta_{11}^{(0)} x_1 + \theta_{12}^{(0)} x_2) + \theta_{12}^{(1)} \sigma (\theta_{20}^{(0)} + \theta_{21}^{(0)} x_1 + \theta_{22}^{(0)} x_2) \right)$$

NN with 1 hidden layer

$$L=2$$
 layers, 1 hidden layer, $s_1=2$

$$\boldsymbol{\theta} = (\Theta^{(0)}, \Theta^{(1)})$$
 parameters

 x_1, x_2 input units, t_1 single output unit with output activation function σ

$$t_1 = \sigma \left(\theta_{10}^{(1)} + \theta_{11}^{(1)} a_1 + \theta_{12}^{(1)} a_2\right) = \sigma \left(\theta_{10}^{(1)} + \theta_{11}^{(1)} \sigma(\theta_{10}^{(0)} + \theta_{11}^{(0)} x_1 + \theta_{12}^{(0)} x_2) + \theta_{12}^{(1)} \sigma(\theta_{20}^{(0)} + \theta_{21}^{(0)} x_1 + \theta_{22}^{(0)} x_2)\right)$$

NN with 1 hidden layer

input layer

hidden layer

$$L=2$$
 layers, 1 hidden layer, $s_1=2$

$$\boldsymbol{\theta} = (\Theta^{(0)}, \Theta^{(1)})$$
 parameters

 x_1, x_2 input units, t_1 single output unit with output activation function σ

$$t_1 = \sigma \left(\theta_{10}^{(1)} + \theta_{11}^{(1)} a_1 + \theta_{12}^{(1)} a_2\right) = \sigma \left(\theta_{10}^{(1)} + \theta_{11}^{(1)} \sigma(\theta_{10}^{(0)} + \theta_{11}^{(0)} x_1 + \theta_{12}^{(0)} x_2) + \theta_{12}^{(1)} \sigma(\theta_{20}^{(0)} + \theta_{21}^{(0)} x_1 + \theta_{22}^{(0)} x_2)\right)$$

Suppose a single training observation

$$\mathbf{y}=(y_1,\ldots,y_K)^T$$

for training input

$$\mathbf{x}=(x_1,\ldots,x_n)^T$$

is given.

Suppose a single training observation

$$\mathbf{y}=(y_1,\ldots,y_K)^T$$

for training input

$$\mathbf{x} = (x_1, \dots, x_n)^T$$

is given.

Consider some error function

$$D(\boldsymbol{\theta})$$

that typically depends on training data but that depends on the parameters θ only through the network output \mathbf{t} , e.g. a squared error function.

Suppose a single training observation

$$\mathbf{y}=(y_1,\ldots,y_K)^T$$

for training input

$$\mathbf{x} = (x_1, \dots, x_n)^T$$

is given.

Consider some error function

$$D(\theta)$$

that typically depends on training data but that depends on the parameters θ only through the network output \mathbf{t} , e.g. a squared error function. To minimize the $D(\theta)$ we will require to compute all partial derivatives

$$rac{\partial m{D}}{\partial heta_{ji}^{(\ell-)}}$$

for ℓ , j and i ("gradient" in TensorFlow).

Suppose a *single* training observation

$$\mathbf{y}=(y_1,\ldots,y_K)^T$$

for training input

$$\mathbf{x}=(x_1,\ldots,x_n)^T$$

is given.

Consider some error function

$$D(\theta)$$

that typically depends on training data but that depends on the parameters θ only through the network output \mathbf{t} , e.g. a squared error function. To minimize the $D(\theta)$ we will require to compute all partial derivatives

$$\frac{\partial D}{\partial \theta_{jj}^{(\ell-1)}}$$

for ℓ , j and i ("gradient" in TensorFlow).

 $D(\theta)$ may be non-convex and have local, non-global minima.

NN Training: partial derivatives backpropagate through network

From

$$z_{j}^{(\ell)} = \sum_{j} \theta_{jr}^{(\ell-1)} a_{r}^{(\ell-1)}$$

and using the multivariate chain rule that

we obain using the univariate chain rule that

$$rac{\partial D}{\partial heta_{ii}^{(\ell-1)}} = rac{\partial D}{\partial z_i^{(\ell)}} a_i^{(\ell-1)}$$

$$\frac{\partial D}{\partial z_{j}^{(\ell)}} = \begin{pmatrix} \frac{\partial D}{\partial z_{1}^{(\ell+1)}}, \cdots, \frac{\partial D}{\partial z_{s_{\ell+1}}^{(\ell+1)}} \end{pmatrix} \begin{pmatrix} \frac{1}{\partial z_{j}^{(\ell)}} \\ \vdots \\ \frac{\partial z_{j}^{(\ell+1)}}{\partial z_{j}^{(\ell)}} \\ \frac{\partial z_{j}^{(\ell+1)}}{\partial z_{j}^{(\ell)}} \end{pmatrix}$$

All derivates can be computed efficiently in one right-to-left pass ("backpropagation algorithm"). TensorFlow does backprop automatically, for general models.

Lars Gabriel, Felix Becker, Mario Stanke

Artificial Neural Networks Definition

Training (BackProp)

Activation Functions

Artificial Neural Networks for Regression

Consider first a single training instance $\mathbf{x} \in R^n$ with a single output $\mathbf{y} \in R^K$.

(We simply average $D(\theta)$ over multiple training instances.)

Lars Gabriel, Felix Becker, Mario Stanke

Artificial Neural Networks Definition

Training (BackProp)

Activation Functions

Artificial Neural Networks for Regression

Consider first a single training instance $\mathbf{x} \in R^n$ with a single output $\mathbf{y} \in R^K$.

(We simply average $D(\theta)$ over multiple training instances.)

 Choose the identity function as output activation function g, i.e. t = z^(L) (unbounded).

Lars Gabriel, Felix Becker, Mario Stanke

Artificial Neural Networks

Training (BackProp)

Activation Functions

Artificial Neural Networks for Regression

Consider first a single training instance $\mathbf{x} \in R^n$ with a single output $\mathbf{y} \in R^K$.

(We simply average $D(\theta)$ over multiple training instances.)

- Choose the identity function as output activation function g, i.e. t = z^(L) (unbounded).
- Choose the squared error function

$$D(\boldsymbol{\theta}) := \|\mathbf{t} - \mathbf{y}\|_{2}^{2} = \sum_{k=1}^{K} (t_{k} - y_{k})^{2}$$

Again, consider first a single training instance. Here, let output $\mathbf{y} \in R^K$ be one-hot encoded such that

$$\mathbf{y} = \mathbf{e}_c = c$$
-th unit vector

if $\textbf{c} \in \{1, 2, \dots, K\}$ is the true class of the learning instance.

Again, consider first a single training instance. Here, let output $\mathbf{y} \in R^K$ be one-hot encoded such that

$$\mathbf{y} = \mathbf{e}_c = c$$
-th unit vector

if $c \in \{1, 2, \dots, K\}$ is the true class of the learning instance.

Choose the softmax function as output activation function g.

$$\mathbf{t} = \mathbf{g}(z_1, \dots, z_K) = \frac{1}{\sum_{k=1}^K e^{z_k}} \begin{pmatrix} e^{-t} \\ \vdots \\ e^{z_K} \end{pmatrix}$$

Again, consider first a single training instance. Here, let output $\mathbf{y} \in R^K$ be one-hot encoded such that

$$\mathbf{y} = \mathbf{e}_c = c$$
-th unit vector

if $c \in \{1, 2, \dots, K\}$ is the true class of the learning instance.

Choose the softmax function as output activation function g.

$$\mathbf{t} = \mathbf{g}(z_1, \dots, z_K) = \frac{1}{\sum_{k=1}^K e^{z_k}} \begin{pmatrix} e^{z_1} \\ \vdots \\ e^{z_K} \end{pmatrix}$$

Properties:

- $0 < t_k < 1$, $t_1 + \cdots + t_K = 1$
- if $z_i \gg z_i$ for $i \neq j$, then $t_i \approx 1$ and $t_i \approx 0$ for $i \neq j$
- softmax is a generalization of the sigmoid function to more than 2 classes
- If K=2 (binary classification), $t_1=1-t_2$ is often not stored. The same neural network function can then be achieved by setting the output size to 1 and using the logistic sigmoid function as activation.

Cross-entropy error function for multiclass problem

Consider the true class of the training instance to be a random variable $C \in \{1, \dots, K\}$ with observation c and the output vector \mathbf{t} of the net to be the parameters of a multinomial distribution for C. Then the likelihood is

$$L(\boldsymbol{\theta}) =$$

Cross-entropy error function for multiclass problem

Consider the true class of the training instance to be a random variable $C \in \{1, \dots, K\}$ with observation c and the output vector \mathbf{t} of the net to be the parameters of a multinomial distribution for C. Then the likelihood is

$$L(\boldsymbol{\theta}) = t_c$$

Cross-entropy error function for multiclass problem

Consider the true class of the training instance to be a random variable $C \in \{1, \dots, K\}$ with observation c and the output vector \mathbf{t} of the net to be the parameters of a multinomial distribution for C. Then the likelihood is

$$L(\boldsymbol{\theta}) = t_c$$

and we seek to minimize the negative log-likelihood

$$-\ln L(\boldsymbol{\theta}) = -\ln t_c = -\sum_{k=1}^K y_k \ln t_k$$

Cross-entropy error function for multiclass problem

Consider the true class of the training instance to be a random variable $C \in \{1, ..., K\}$ with observation c and the output vector \mathbf{t} of the net to be the parameters of a multinomial distribution for C. Then the likelihood is

$$L(\boldsymbol{\theta}) = t_c$$

and we seek to minimize the negative log-likelihood

$$-\ln L(\boldsymbol{\theta}) = -\ln t_c = -\sum_{k=1}^K y_k \ln t_k$$

Define the cross-entropy error function

$$D(\boldsymbol{\theta}) = -\sum_{k=1}^K y_k \ln t_k.$$

Lars Gabriel, Felix Becker, Mario Stanke

Artificial Neural Networks Definition

Definition
Training (BackProp)

fraining (Back

Activation Functions

Artificial Neural Networks

Training set

Let

$$\mathbf{x}^{(1)},\ldots,\mathbf{x}^{(m)}$$

be training inputs and

$$\boldsymbol{y^{(1)}}, \dots, \boldsymbol{y^{(m)}}$$

be the corresponding training outputs / labels. Let

$$\mathbf{t}^{(i)} = h_{\Theta}(\mathbf{x}^{(i)}) \qquad (i = 1..m)$$

be the outputs of the NN.

Overfitting

If the model has many parameters, the training may result in a model that fits the training data 'too well', therefore does not generalize well and performs poorly on independent test data. Remedies:

- 1 Make model less complex, e.g. reduce number of parameters or change model class (e.g. lin. regresion over NN).
- Regularize the model: Penalize certain parameter values independent of the data.

Overfitting

If the model has many parameters, the training may result in a model that fits the training data 'too well', therefore does not generalize well and performs poorly on independent test data. Remedies:

- Make model less complex, e.g. reduce number of parameters or change model class (e.g. lin. regresion over NN).
- 2 Regularize the model: Penalize certain parameter values independent of the data.

Error function with regularization for neural networks

$$E(\boldsymbol{\theta}; X) = D(\boldsymbol{\theta}; X) + \lambda R(\boldsymbol{\theta})$$

Overfitting

If the model has many parameters, the training may result in a model that fits the training data 'too well', therefore does not generalize well and performs poorly on independent test data. Remedies:

- 1 Make model less complex, e.g. reduce number of parameters or change model class (e.g. lin. regresion over NN).
- Regularize the model: Penalize certain parameter values independent of the data.

Error function with regularization for neural networks

$$E(\boldsymbol{\theta}; X) = D(\boldsymbol{\theta}; X) + \lambda R(\boldsymbol{\theta})$$

An common choice for the regularization term is the (scaled) L2 norm:

$$R(\boldsymbol{\theta}) = \frac{1}{m} \sum_{\ell=0}^{L-1} \sum_{i=1}^{s_{\ell}} \sum_{i=1}^{s_{\ell+1}} \left(\theta_{ji}^{(\ell)}\right)^{2}.$$

Note that the bias terms $\theta_{i0}^{(\ell)}$ are left out (not penalized).

Error function with regularization for regression

$$E(\theta) = \frac{1}{m} \left\{ \sum_{i=1}^{m} \sum_{k=1}^{K} \left(t_k^{(i)} - y_k^{(i)} \right)^2 + \lambda \sum_{\ell=0}^{L-1} \sum_{i=1}^{s_{\ell}} \sum_{i=1}^{s_{\ell+1}} \left(\theta_{ji}^{(\ell)} \right)^2 \right\}$$
(2)

Error function with regularization for regression

$$E(\boldsymbol{\theta}) = \frac{1}{m} \left\{ \sum_{i=1}^{m} \sum_{k=1}^{K} \left(t_k^{(i)} - y_k^{(i)} \right)^2 + \lambda \sum_{\ell=0}^{L-1} \sum_{i=1}^{s_{\ell}} \sum_{j=1}^{s_{\ell+1}} \left(\theta_{ji}^{(\ell)} \right)^2 \right\}$$

Error function with regularization for classification

$$E(\boldsymbol{\theta}) = \frac{1}{m} \left\{ -\sum_{i=1}^{m} \sum_{k=1}^{K} y_k^{(i)} \ln t_k^{(i)} + \lambda \sum_{\ell=0}^{L-1} \sum_{i=1}^{s_{\ell}} \sum_{i=1}^{s_{\ell+1}} \left(\theta_{ji}^{(\ell)} \right)^2 \right\}$$

Lars Gabriel, Felix Becker, Mario Stanke

Artificial Neural Networks

Definition
Training (BackProp)

Activation Functions

1 hidden layer of size 5, $\lambda = 0$ (no regularization)

Lars Gabriel, Felix Becker, Mario Stanke

Artificial Neural Networks

Definition
Training (BackProp)

Activation Functions

2 hidden layers of size 8 each, $\lambda=0$ (no regularization)

Lars Gabriel, Felix Becker, Mario Stanke

Artificial Neural Networks

Definition
Training (BackProp)

Activation Functions

2 hidden layers of size 20 each, $\lambda=0$ (no regularization)

Lars Gabriel, Felix Becker, Mario Stanke

Artificial Neural Networks

Definition Training (BackProp)

Activation Functions

2 hidden layers of size **20** each, $\lambda = 0.1$ (with regularization)

Lars Gabriel, Felix Becker, Mario Stanke

Artificial Neural Networks

Definition
Training (BackProp)

Activation Functions

Posterior probability of class (theoretical optimum if distr. was known)

Artificial Neural Networks Definition Training (BackProp) Activation Functions

Activation Functions

Logistic sigmoid, tf.nn.sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$
$$\sigma' = \sigma(1 - \sigma)$$

Tangens hyperbolicus

$$tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$
$$= 2\sigma(2x) - 1$$
$$tanh'(x) = 1 - (tanh(x))^2$$

Lars Gabriel, Felix Becker, Mario Stanke

Artificial Neural Networks Definition Training (BackProp) Activation Functions

Rectified linear unit (ReLU), tf.nn.relu

$$\mathsf{relu}(x) = x^+ = \max\{0, x\}$$

$$relu'(x) = \begin{cases} 1 & , \text{if } x > 0 \\ 0 & , \text{if } x < 0 \end{cases}$$

$$relu'(0) := 1$$
 (arbitrary)

Leaky rectified linear unit (Leaky ReLU), tf.nn.leaky_relu

$$\mathsf{Irelu}(x) = \max\{\alpha x, x\}$$

$$Irelu'(x) = \begin{cases} 1, & \text{if } x > 0 \\ \alpha, & \text{if } x < 0 \end{cases}$$

$$Irelu'(0) := 1$$
 (arbitrary)

$$\alpha = 0.01$$

Lars Gabriel, Felix Becker, Mario Stanke

Networks Definition Training (BackProp)

Activation Functions

Activation Functions

Vanishing gradients

- vanishing gradient problem:
 - during backprop in each layer, a derivative of the activation function is multiplied
 - for NNs with many layers (deep networks) this can result in gradients that are practically zero ("vanishing"), in particular for the sigmoid function
- ReLU
 - most frequently chosen
 - introduced in 2010

(Nair and Hinton, "Rectified linear units improve restricted Boltzmann machines", Proc. ICML, 2010)

The derivative is either 0 or 1. Can lead to sparse gradients.