动态规划

- 动态规划
 - 。 问题索引
 - 。 线性 DP
 - 数字三角形
 - 基本
 - 变式
 - 最长上升子序列 (LIS)
 - 基本
 - 变式
 - 求可变序列与给定数同余的方案数
 - 将给定序列分段,保证每段和不超过给定数情况下,求每段中「所有数的最大值」之和的最小值
 - 。 背包
 - 基础
 - 变式
 - 体积定义为「至少」
 - 特殊化的「有依赖」背包问题
 - 一般化的「有依赖」背包背包问题
 - 求方案数与具体方案
 - 「贪心」将无限集缩小为有限集
 - 单调队列优化多重背包
 - 二维费用背包问题
 - 。 状态机 DP
 - 基础
 - 变式
 - 。 状态压缩 DP
 - 基础
 - 变式
 - 区间 DP
 - 基础
 - 变式
 - 环形问题的一般化处理思路
 - o 树形 DP
 - 基础
 - 变式
 - o 数位 DP
 - 基础
 - 。 单调队列优化

问题索引

单调队列中,只需考虑队头元素:单调队列优化多重背包

单调队列中,需要考虑所有元素:将给定序列分段,保证每段和不超过给定数情况下,求每段中「所有数的最大值」之和的最小值

线性 DP

数字三角形

基本

AcWing 1015. 摘花生

变式

AcWing 1018. 最低通行费

AcWing 1027. 方格取数

AcWing 275. 传纸条

最长上升子序列 (LIS)

基本

AcWing 895. 最长上升子序列

AcWing 896. 最长上升子序列 II

AcWing 897. 最长公共子序列

变式

AcWing 1017. 怪盗基德的滑翔翼

AcWing 1014. 登山

AcWing 482. 合唱队形

AcWing 1012. 友好城市

AcWing 1016. 最大上升子序列和

AcWing 1010. 拦截导弹

AcWing 187. 导弹防御系统

AcWing 272. 最长公共上升子序列

求可变序列与给定数同余的方案数

原题链接: AcWing 1214. 波动数列

▶ 题目

$$1, 3, 0, 2, -1, 1, -2, \ldots$$

这个数列中后一项总是比前一项增加2或者减少3,且每一项都为整数。

栋栋对这种数列很好奇,他想知道长度为 n 和为 s 而且后一项总是比前一项增加 a 或者减少 b 的整数数列可能有多少种呢?

输入格式

共一行,包含四个整数n,s,a,b,含义如前面所述。

输出格式

共一行,包含一个整数,表示满足条件的方案数。

由于这个数很大,请输出方案数除以100000007的余数。

数据范围

$$1 \le n \le 1000, -10^9 \le s \le 10^9, 1 \le a, b \le 10^6$$

输入样例

4 10 2 3

输出样例

2

样例解释:

两个满足条件的数列分别是2413和741-2。

我们设数列第一项为x,第二项为 $x+d_1$,第i 项为 $x+d_1+d_2+\cdots+d_{i-1}$,那么对于长度为n 的序列和为 $s=x+(x+d_1)+(x+d_1+d_2)+\cdots+(x+d_1+d_2+\cdots+d_{i-1})$,即:

$$s = nx + (n-1)d_1 + (n-2)d_2 + \cdots + (n-i)d_i + \cdots + d_{n-1}, \ d_i \in \{a, -b\}$$

此时问题转变成:对于给定的每个 s = n, 在 d_i 任意取值的情况下,等式成立的个数

由于 $x \in \mathbb{Z}$,并且当 d_i 全部唯一确定时, x 也会唯一确定。此时我们需要确定的是,当 d_i 取哪些值时 x 是合法的(处于整数范围内),因此有如下等式:

$$x = rac{s - [(n-1)d_1 + (n-2)d_2 + \dots + (n-i)d_i + \dots + d_{n-1}]}{n}$$

如果 x 要落在整数范围内,那么 s 与 $(x-1)d_1+(n-2)d_2+\cdots+(n-i)d_i+\cdots+d_{n-1}$ 必须**模** n **同** 余

此时问题转换成:对于序列 $(n-1)d_1+(n-2)d_2+\cdots+(n-i)d_i+\cdots+d_{n-1}$ 与 s 模 n 同余的个数 考虑动态规划,f[i][j] 表示对第 i 个数选择,模 n 余 j 的方案数

第 i 个数对应 d_i ,系数为 (n-i) ,因此:

- 若第i个数为a,即 $d_i=a$,有 $(n-1)d_1+(n-2)d_2+\cdots+(n-i)a$,即 $f[i-1][\mod((j-(n-i)*a),n)]$
- 同理, 若第 i 个数为 -b, 有 $f[i-1][\mod((j+(n-i)*b), n)]$

最终结果为 $f[n-1][\mod(s, n)]$

完整代码如下:

```
#include <iostream>
using namespace std;
const int N = 1e3 + 10, mod = 1e8 + 7;
int get_mod(int a, int n)
    return (a \% n + n) \% n;
}
int f[N][N];
int n, s, a, b;
int main()
    cin >> n >> s >> a >> b;
    f[0][0] = 1;
    for(int i = 1; i <= n - 1; i++)
        for(int j = 0; j < n; j++)
            f[i][j] = get_mod(f[i][j] + f[i - 1][get_mod(j - (n - i) * a, n)],
mod);
            f[i][j] = get_mod(f[i][j] + f[i - 1][get_mod(j + (n - i) * b, n)],
mod);
        }
    cout << f[n - 1][get_mod(s, n)] << endl;</pre>
    return 0;
}
```

将给定序列分段,保证每段和不超过给定数情况下,求每段中「所有数的最大值」之和的最小值

原题链接: AcWing 299. 裁剪序列

▶ 题目

给定一个长度为 N 的序列 A,要求把该序列分成若干段,在满足"每段中所有数的和"不超过 M 的前提下,让"每段中所有数的最大值"之和最小。

试计算这个最小值。

输入格式

第一行包含两个整数 N 和 M

第二行包含 N 个整数,表示完整的序列 A

输出格式

输出一个整数,表示结果

如果结果不存在,则输出-1

数据范围

 $0 \le N \le 10^5, 0 \le M \le 10^{11}$,序列A中的数非负,且不超过 10^6

输入样例:

8 17 2 2 2 8 1 8 2 1

输出样例:

12

直观考虑,一共 N 个数,之间的空位有 N-1 个,因此可以分段的选择一共有 2^{n-1} ,考虑动态规划进行优化

设 f[i] 所表示的集合为: **所有将前** i **个数划分方案的集合**,集合的属性为价值的最小值,因此 f[n] 为最终答案

以**最后一段的长度**对整个集合进行划分。对序列 f[i] 而言,设最后一段的长度为 $k(0 \le k \le i)$,此时有:

$$f[i] = \min_{0 \leq k \leq i} f[i-k] + \max_{i-k+1 \leq j \leq i} A_j$$

设 j = i - k , 上式转换为:

$$f[i] = \min_{0 \leq j \leq i} f[j] + \max_{j+1 \leq k \leq i} A_k$$

容易注意到以下性质:

• f[i] 随着 i 的增大而单调不减

证明:

假定存在两个序列 k_1 , k_2 , 长度分别为 L_1 , L_2 , 有 $L_2 > L_1$

我们将 k_2 的划分方案平移到 k_1 上,设划分段数为 len ,有: $len_2 \geq len_1$,因此对于 k_2 而言,必然有 $f[k_2] \geq f[k_1]$,即 $f[i] \leq f[i+1]$

其次,局部最优值 $f[j] + A_k$ 合法的充要条件为:

•
$$\sum_{k=i+1}^{i} A_k \leq m$$

- $\sum_{k=j}^{i} A_k \geq m$
- $A_k = \max_{j+1 < l < i} A_l$

第一条保证从 j+1 到 i 的和全部小于 m

第二条保证 j 总会取到总和小于 m 的边界

第三条保证 A_k 为 j+1 到 i 中所有数的最大值

下面我们给出第二条的证明(第一和第三可以直接从题目推出来):

考虑反证法,设存在 j' < j 此时有: $f[j'] + \max_{j < k \le i} A_k \le f[j] + \max_{j < k \le i} A_k$

由于 f[i] 随 i 增大而单调不减,即 $f[j'] \geq f[j]$

且 $\max_{j' < k \le i} A_k \ge \max_{j < k \le i} A_k$, 因此上述假设不成立

因此若 j' < j ,并且 $A_{j'} < A_{j}$,那么 j' 就是需要淘汰的策略

此时对于区间 [j,i] 而言,内部元素**单调不减**且 i,j 均具有单调性 (i,j会同步增大) 也就是「双指针」与「单调队列」

其次,由于单调队列中的**所有**值均是局部最优解,**需要全部考虑在内再取最小值**,因此我们需要额外维护一个**允许出现重复元素**的「平衡树」用于存储每个元素所对应的函数值,每次取出最小值即可

在这里我们需要注意一个边界问题,那就是只要当队列中至少存在一个元素时,才能够开始往 multiset 中插入元素

这是因为单调队列中单调不增的元素实际上表示的是**边界**,也就是 f[i] 在此处的取值,而对与第二项的最大值而言,需要至少存在两个元素才合法,因此 multiset 中的元素个数总会比单调队列中少一个

完整代码如下:

```
#include <iostream>
#include <cstring>
#include <algorithm>
#include <set>

using namespace std;

typedef long long LL;

const int N = 1e5 + 10;

int w[N], q[N];
 LL f[N];
 multiset<LL>S;
 LL n, m;

//multiset会直接将所有相同的元素全部删除, 因此需要迭代器
void remove(int x)
{
```

```
auto it = S.find(x);
   S.erase(it);
}
int main()
{
   cin >> n >> m;
   for(int i = 1; i <= n; i ++)
       cin >> w[i];
       if(w[i] > m)
           cout << "-1" << endl;</pre>
          return 0;
       }
   }
   int hh = 0, tt = -1;
   LL sum = 0;
   for(int i = 1, j = 1; i <= n; i ++)
   {
       sum += w[i];
       while(sum > m)
       {
           sum -= w[j++];
           if(hh <= tt && q[hh] < j)
              if(hh < tt) //保证队列中至少一个元素之后再去删除set中的元素
                  remove(f[q[hh]] + w[q[hh + 1]]);//此时q[hh]为边界,区间最大值需
要取后一个元素
              hh++;
          }
       }
       while(hh <= tt && w[q[tt]] <= w[i])
           if(hh < tt)</pre>
              remove(f[q[tt - 1]] + w[q[tt]]);//此时队尾元素表示局部最大值,边界需
要取前一个元素
           tt--;
       }
       q[++tt] = i;//先将元素插入到队列中,再输出队列中的元素
       if(hh < tt) //以当前队头前一个元素为边界, 当前队头认为是整个区间的最大值
         S.insert(f[q[tt - 1]] + w[q[tt]]);
       f[i] = f[j - 1] + w[q[hh]];
       if(S.size()) //当平衡树中不空时, 我们取整个的最小值
        f[i] = min(f[i], *S.begin());
   cout << f[n] << endl;</pre>
   return 0;
}
```

背包

基础

AcWing 2. 01背包问题

AcWing 3. 完全背包问题

AcWing 4. 多重背包问题 I

AcWing 5. 多重背包问题 II

AcWing 9. 分组背包问题

AcWing 7. 混合背包问题

变式

AcWing 423. 采药

AcWing 1024. 装箱问题

AcWing 1022. 宠物小精灵之收服

AcWing 278. 数字组合

AcWing 1019. 庆功会

AcWing 1023. 买书

AcWing 1013. 机器分配

AcWing 426. 开心的金明

AcWing 1021. 货币系统

AcWing 532. 货币系统

体积定义为「至少」

AcWing 1020. 潜水员

特殊化的「有依赖」背包问题

AcWing 487. 金明的预算方案

一般化的「有依赖」背包背包问题

AcWing 10. 有依赖的背包问题

求方案数与具体方案

AcWing 11. 背包问题求方案数

AcWing 12. 背包问题求具体方案

「贪心」将无限集缩小为有限集

AcWing 734. 能量石

单调队列优化多重背包

AcWing 6. 多重背包问题 III

二维费用背包问题

AcWing 8. 二维费用的背包问题

状态机 DP

基础

AcWing 1049. 大盗阿福

变式

AcWing 1057. 股票买卖 IV

AcWing 1058. 股票买卖 V

状态压缩 DP

基础

AcWing 1064. 小国王

变式

AcWing 327. 玉米田

AcWing 292. 炮兵阵地

AcWing 524. 愤怒的小鸟

区间 DP

基础

AcWing 282. 石子合并

变式

环形问题的一般化处理思路

AcWing 1068. 环形石子合并

AcWing 320. 能量项链

AcWing 1069. 凸多边形的划分

AcWing 479. 加分二叉树

AcWing 321. 棋盘分割

树形 DP

基础

AcWing 285. 没有上司的舞会

AcWing 1072. 树的最长路径

AcWing 1073. 树的中心

变式

AcWing 1075. 数字转换

AcWing 1074. 二叉苹果树

AcWing 323. 战略游戏

AcWing 1077. 皇宫看守

数位 DP

基础

AcWing 1081. 度的数量

单调队列优化

▶ 题目

输入一个长度为n 的整数序列,从中找出一段长度不超过m 的连续子序列,使得子序列中所有数的和最大。

注意: 子序列的长度至少是1。

输入格式

第一行输入两个整数 n, m 。

第二行输入 n 个数,代表长度为 n 的整数序列。

同一行数之间用空格隔开。

输出格式

输出一个整数,代表该序列的最大子序和。

数据范围

 $1 \le n, m \le 300000$

输入样例:

```
6 4 1 - 3 5 1 - 2 3
```

输出样例:

7

AcWing 135. 最大子序和

由于我们需要求一段连续的子序列的和,考虑用前缀和

定义 $s[i] = w[1] + w[2] + \cdots + w[i]$ 。 假设所求区间为 [l,r] ,那么区间和为 s[r] - s[l-1]

由于区间长度不超过 m ,因此实际区间为 [i-m+1,i] ,区间和为 s[i]-s[i-m]

当我们枚举 i 时,我们期望 s[i]-s[i-m] 最大,由于 s[i] 固定,因此我们需要让 s[i-m] 最小,即所有局部最优解 ans 为:

$$tmp = s[i] - \min_{0 \leq k \leq m} s[i-k]$$

全局最优解为:

$$ans = \max_{n-m+1 \leq i \leq n} ans_i$$

由于我们需要求一段区间内的最小值,因此后者可以用单调队列优化,时间复杂度变为 O(n)

单调队列内部维护元素个数为 m+1 ,所维护元素为前缀和 s[i] ,因此需要预先将 s[0] 插入进队列中

我们在对最终结果赋值时需要保证队列不空,由于我们预先给了队列一个初值,因此需要在调整队列前对 ans 赋值

完整代码:

```
for(int i = 1; i <= n; i ++)
{
        if(hh <= tt && q[hh] < i - m) hh++;//最后一个元素为 i - m
        ans = max(ans, s[i] - s[q[hh]]);
        while(hh <= tt && s[q[tt]] >= s[i]) tt--;
        q[++tt] = i;
    }
    cout << ans << endl;
    return 0;
}
```