Exercise 2B

Due No due date **Points** 100 **Questions** 10 **Time Limit** 75 Minutes **Allowed Attempts** 3

Instructions

We use the conventions in Bronze-Qiskit.

The default programming language for coding is python.

You may write pieces of code during the exam.

Take the Quiz Again

Attempt History

	Attempt	Time	Score	
KEPT	Attempt 2	4 minutes	100 out of 100	
LATEST	Attempt 2	4 minutes	100 out of 100	
	Attempt 1	21 minutes	80 out of 100	

① Correct answers are hidden.

Score for this attempt: 100 out of 100

Submitted Sep 19 at 12:12pm This attempt took 4 minutes.

Question 1

10 / 10 pts

If
$$|u
angle=egin{pmatrix} rac{1}{2} \\ x \\ y \end{pmatrix}\in\mathbb{R}^3 \;\;$$
 is a quantum state, which one of the following equations is definitely wrong.

- $x^2 + y^2 = \frac{1}{2}$
- $x+y=\frac{1}{2}$
- $x + y = \frac{3}{4}$
- $x^2 + y^2 = \frac{3}{4}$
- x y = 0

Question 2

5 / 5 pts

What is H^7 , where H is the Hadamard operator?

- $\begin{pmatrix}
 \frac{1}{2} & \frac{1}{2} \\
 \frac{1}{2} & -\frac{1}{2}
 \end{pmatrix}$
- $\bigcirc \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$
- $\bigcirc \left(\begin{array}{cc} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{array} \right)$

Question 3

10 / 10 pts

We have a qubit in state $|0\rangle$, We apply the operators X,H,X,H,X in order,

where \boldsymbol{H} and \boldsymbol{X} are the Hadamard and NOT operators, respectively.

What is the final state?

- $|0\rangle$
- $\bigcirc -|0
 angle$
- $|1\rangle$
- -|1
 angle
- $|-\rangle$

Question 4

10 / 10 pts

When a qubit is in the quantum state $|u
angle = \left(-rac{3}{5}
ight)$, $\left(-rac{4}{5}
ight)$,

the Hadamard operator is applied: |u'
angle=H|u
angle

What is the probability of being in state |1
angle in the new quantum state |u'
angle?

- 0.36
- 0.64
- 0.98
- 0.02
- 0.50

Question 5

5 / 5 pts

What is XH?

$$\bigcirc \quad \left(\begin{array}{cc} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{array} \right)$$

$$\bigcirc \quad \left(\begin{array}{cc} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{array} \right)$$

$$\bigcirc \left(\begin{array}{cc} -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{array} \right)$$

$$\begin{pmatrix}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{pmatrix}$$

$$\begin{pmatrix}
-\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{pmatrix}$$

Question 6 5 / 5 pts

If $|u
angle = \left(rac{x}{3x}
ight) \in \mathbb{R}^2$ is the quantum state of a qubit,

what is the probability of being state $|0\rangle$?

- 0.90
- 0.50
- 0.75
- 0.10

0.25

Question 7	5 / 5 pts		
XHHHHXXXHHHHHX 0 angle =?			
$\bigcirc 0\rangle$			
$\bigcirc \mid + \rangle$			
\bigcirc $- 1 angle$			
$\bigcirc 1\rangle$			

375			
400			

Question 10 20 / 20 pts

If we execute the following quantum program with a single qubit and a single classical bit 1000 times,

which one of the following outcomes is more likely?

Quiz Score: 100 out of 100