Towards multi-parameter resource selection for HPC platforms

Master Research Thesis

Dineshkumar RAJAGOPAL (PDES - MoSIG)

advised by

Yiannis GEORGIOU

Big Data and Security(BDS) lab, BULL-SAS September 1, 2015

- Introduction & Motivation
- Background

- Related Works
- SLURM Architecture
- LAYOUTS Framework
- Resource Selection
 - LAYOUTS based consumable resource selection
 - Multi-parameter resource selection
- 4 Experiments & Performance Evaluation
 - Cons_res_layout vs Cons_res Analysis
 - Multi-parameter vs Cons_res Analysis
- Conclusion & FW
 - Conclusion
 - Future Work

HPC System Software Stack

- Supercomputer is a HPC Cluster
- Usage: Computationally intensive tasks in Scientific Experiments (Quantum mechanics, Weather Prediction, etc)

Image credit: Yiannis georgiou, BULL

What is RJMS?

Introduction & Motivation

0000

- The goal of a Resource and Job Management System (RJMS) is to satisfy users demands for computation and assign resources to user jobs with an efficient manner
- Q RJMS knows the complete details about the Jobs and Resources of HPC system

Image credit: Yiannis

Motivation of Resource Selection

- Resource selection is an internal operation of scheduling
- ② Due to the the evolution of HPC platform and internal nodes architecture, Resource Management is dynamic and complex
- Improper resource management hides resources information to lose global view of resources
- Power wall problem and the increasing number of nodes in HPC systems, energy efficiency is the important criteria
- Multi-parameter resource selection to satisfy different criteria to allocate resources perfectly

Feature	OAR	SLURM	FLUX
Programming	Perl, MySQL	C, autoconf	C, autoconf
Tools			
Puropse	Scalable & Flexible	Scalable, Flexible &	Scalable, Flexible &
		Performance	Distributed resource
			& job management
Resource Man-	Flat Hierarchical	Linear & Managed in	Dynamic & Flat
agement	& managed in the	its own data struc-	hierarchical re-
	Databse	ture(bitmap & list)	source management
			framework
Resource Selec-	Best-fit for Intel	Best-fit for different	Next generation
tion	cluster architecture,	cluster architecture,	RJMS, only frame-
	SQL querry to	custom implementa-	work core function-
	perform selection	tion of algorithm	ality developed
Topology Aware-	Yes	Yes	Not Yet imple-
ness			mented
Internal Resource	Yes	Yes	Not Yet imple-
Consumption			mented

- 2 Background
 - Related Works
 - SLURM Architecture
 - LAYOUTS Framework
- - LAYOUTS based consumable resource selection
 - Multi-parameter resource selection
- - Cons_res_layout vs Cons_res Analysis
 - Multi-parameter vs Cons_res Analysis
- - Conclusion
 - Future Work

SLURM Architecture

Background

Introduction & Motivation

SLURM is an open source RJMS for Supercomputer

Conclusion & FW

Batch Scheduling

- Scheduling behaviour depends on the Job scheduler and Resource selector behaviour
- Resource Selection is an internal operation of scheduling

Resource Selection Cycle

- Select and Topology plugin work together to allocate topology aware resources
- Topology plugin has information of Switch and Node relationship in bitmap, so comparison of two nodes list is very fast and scalable with less memory foot-print

- 2 Background

- Related Works
- SLURM Architecture
- LAYOUTS Framework
- - LAYOUTS based consumable resource selection
 - Multi-parameter resource selection
- - Cons_res_layout vs Cons_res Analysis
 - Multi-parameter vs Cons_res Analysis
- - Conclusion
 - Future Work

LAYOUTS Framework

- LAYOUTS is the new resource management framework in **SLURM v15.08**
- Any type of entities can be manageable
- Entities relation is tree (Inspiration of OAR resource management)
- Entity attribute is called in LAYOUTS key, stored in the hash key-value format
- 6 Keeping consistency among attributes values across entities based on keys inheritance relations
- © Entities information is available in the different level of resource hierarchy to reveal hidden information of resources

LAYOUTS Entity Keys and Key Relation

If all the cores are allocated in the node, then the node is allocated

LAYOUTS Entity Keys and Key Relation(ctd...)

If all the cores are allocated in the node, then the node is allocated

LAYOUTS Basic APIs

- layouts_entity_get_kv() get key value
- layouts_entity_set_kv() set key value
- layouts_entity_pull_get_kv() update key relation value and get key value
- ayouts_entity_set_push_kv() set key value and update key
 relation

- Related Works
- SLURM Architecture
- LAYOUTS Framework
- Resource Selection
 - I AYOUTS based consumable resource selection
 - Multi-parameter resource selection
- - Cons_res_layout vs Cons_res Analysis
 - Multi-parameter vs Cons_res Analysis
- - Conclusion
 - Future Work

Cons_res_layout Implementation

- Ocons_res is the consumable resource selection plugin
 - Best-fit to select minimum satisfiable resources than maximum satisfiable resources
 - Topology aware to increase the user application performance
 - Cons_res consumes internal resources of nodes(cores, memory, etc)
 - Algorithm 1 in the section 4.1 of the report discussed the algorithm step by step
 - Cons_res used list and bitmap to keep resource information

Conclusion & FW

Cons_res_layout Implementation

- Ocons_res is the consumable resource selection plugin
 - Best-fit to select minimum satisfiable resources than maximum satisfiable resources
 - Topology aware to increase the user application performance
 - Cons_res consumes internal resources of nodes(cores, memory, etc)
 - Algorithm 1 in the section 4.1 of the report discussed the algorithm step by step
 - Cons_res used list and bitmap to keep resource information
- Cons_res_layout is the new consumable resource selection plugin based on LAYOUTS
 - Naive implementation of cons_res_layout plugin performance was 25 times slower
 - Second version of the cons_res_layout code used a combination of bitmaps, layouts to reach the performance of default cons res code

Layouts Interrelation

Entity Global View

- Related Works
- SLURM Architecture
- LAYOUTS Framework
- Resource Selection
 - LAYOUTS based consumable resource selection
 - Multi-parameter resource selection
- - Cons_res_layout vs Cons_res Analysis
 - Multi-parameter vs Cons_res Analysis
- - Conclusion
 - Future Work

Multi-parameter Resource Selection Algorithm

- Bestfit energy efficiency to reduce energy consumption in the Heterogeneous power consuming cluster
 - Minimum power consuming allocated nodes
 - Already allocated nodes than idle nodes
 - Minimum power consuming idle nodes
- Topology aware to increase the user application performance
- Algorithm 2 in the section 4.2 of the report discussed the algorithm step by step
- Advantage: Multi-parameter(Cons_res_power) resource selection supports user's performance and server's energy criterias

Layouts Interrelation

Layouts Interrelation(Ctd...)

Entity Global View

- Related Works
- SLURM Architecture
- LAYOUTS Framework
- - LAYOUTS based consumable resource selection
 - Multi-parameter resource selection
- Experiments & Performance Evaluation
 - Cons_res_layout vs Cons_res Analysis
 - Multi-parameter vs Cons_res Analysis
- - Conclusion
 - Future Work

Experiment Environment

- Emulate real HPC environment using —enable-multiple-slurmd option
- Synthetic workload of Enhanced System Performance(ESP) Benchmark
- Use sleep, hostname like simple application
- Standard Workload Format(SWF) to store workload
- BULL CUZCO cluster 17 nodes to emulate 5040 nodes HPC cluster
- Each node configured as 2 sockets, 16 cores and 32GB of memory, more details are in Appendix C.1

Topology Experiment Environment

- Momogeneous cluster environment
- Simple tree topology to have 4 leaf switches and 3 levels

Cons_res vs Cons_res_layout system utilization

System utilization is almost same, because of following same policy

Individual Jobs Performance Comparison

• Due to large number of entity update in Cons_res_layout plugin, individual resource selection time increased twice

cons_res and cons_res_layout resource selection performance

(complete schedule-select cycle time in micro-seconds)

Waiting Time for 2 Plugins

CDF on Wait time between 2 resource selection for for Light-ESP benchmark upon a 80640 cores cluster

- Related Works
- SLURM Architecture
- LAYOUTS Framework
- - LAYOUTS based consumable resource selection
 - Multi-parameter resource selection
- Experiments & Performance Evaluation
 - Cons_res_layout vs Cons_res Analysis
 - Multi-parameter vs Cons_res Analysis
- - Conclusion
 - Future Work

Energy Experiment Environment

- Heterogeneous power consuming nodes cluster environment
- Simple tree topology to have 4 leaf switches and 3 levels
- Homogeneous power consuming nodes within leaf switches

Cons_res_power System Utilization

Layouts based cons_res_power System utilization for Light ESP synthetic workload of 230jobs and SLURM upon 5040 nodes (16cpu/node) cluster (emulation upon 16 physical nodes)

Energy Efficiency

Introduction & Motivation

Cons_res_power energy consumption is less than Cons_res by 3.8% (51252370 Joules) for same job workload

Power consumption comparison of 2 policies cons_res and cons_res_power

Individual Jobs Performance Comparison

 Cons_res_power individual job resource selection time increased thrice than cons_res

Waiting Time for 3 Plugins

CDF on Waiting time for Light–ESP benchmark upon 5040 nodes (16 cores/node) clust comparison of 3 different cons res

Introduction & Motivation

- Related Works
- SLURM Architecture
- LAYOUTS Framework
- - LAYOUTS based consumable resource selection
 - Multi-parameter resource selection
- - Cons_res_layout vs Cons_res Analysis
 - Multi-parameter vs Cons_res Analysis
- Conclusion & FW
 - Conclusion
 - Future Work

- SLURM plugin enhancement is easier using LAYOUTS resource management framework
- New Cons_res_layout resource selection plugin developed using LAYOUTS to support hierarchical resource management in SLURM

- SLURM plugin enhancement is easier using LAYOUTS resource management framework
- New Cons_res_layout resource selection plugin developed using LAYOUTS to support hierarchical resource management in SLURM
- Cons_res_layout and cons_res plugin system utilisation and throughput is almost same and minimal increase of resource selection performance overhead

- SLURM plugin enhancement is easier using LAYOUTS resource management framework
- New Cons_res_layout resource selection plugin developed using LAYOUTS to support hierarchical resource management in SLURM
- Cons_res_layout and cons_res plugin system utilisation and throughput is almost same and minimal increase of resource selection performance overhead
- Multi-parameter resource selection policy adapted in cons_res_layout plugin
- Energy consumption of multi-parameter resource selection reduced by 3.8 % and minimal increase of resource selection performance overhead

Future Work

- Support partition entities and fat-tree topology in the layouts plugins
- Adapt cons_res_power to support real energy values from RAPL or IPMI technique
- Include temperature criteria in the resource selection
- Experiment to measure
 - Perform scalability experiments with large number of nodes
 - Instantaneous job throughput
 - Instantaneous number of job types allocated
 - Cons_res_ power job waiting time is better than powercapping only approach

SLURM Entities

- **1** SLURM **resource management** entities
- 2 Job management entities are not considered

LAYOUTS Internal Architecture

LAYOUTS Aggregate Keys

- Child aggregate functions Specific operations performed on the children key value and update the calculated value in the parent's key
 - MEYSPEC_UPDATE_CHILDREN_SUM
 - KEYSPEC_UPDATE_CHILDREN_AVG
 - KEYSPEC_UPDATE_CHILDREN_MIN
 - KEYSPEC_UPDATE_CHILDREN_MAX
 - KEYSPEC_UPDATE_CHILDREN_COUNT
 - KEYSPEC_UPDATE_CHILDREN_MASK
- Parent aggregate functions
 - MEYSPEC_UPDATE_PARENTS_SUM
 - KEYSPEC_UPDATE_PARENTS_AVG
 - KEYSPEC_UPDATE_PARENTS_MIN
 - KEYSPEC_UPDATE_PARENTS_MAX
 - KEYSPEC_UPDATE_PARENTS_FSHARE
 - KEYSPEC_UPDATE_PARENTS_MASK

LAYOUTS New APIs

New APIs developed for **new functionality** and **performance** purpose.

- layouts_entity_get_parent_name()
- layouts_multi_entity_set_kv() set entity same key
- layouts_multi_entity_get_kv()
- layouts_entity_pull_get_skv() update specific key and its
 relations
- layouts_entity_set_push_skv()

- Node and Core list is maintained in the bitmap data structure to compare and match another node list faster
- LAYOUTS to access entities keys in the different levels

- Node and Core list is maintained in the bitmap data structure to compare and match another node list faster
- LAYOUTS to access entities keys in the different levels
- layouts_multi_entity_set_kv transfer information from one layout to another

- Node and Core list is maintained in the bitmap data structure to compare and match another node list faster
- LAYOUTS to access entities keys in the different levels
- layouts_multi_entity_set_kv transfer information from one layout to another
- layouts_entity_pull_get_skv update only specific key values

- Node and Core list is maintained in the bitmap data structure to compare and match another node list faster
- LAYOUTS to access entities keys in the different levels
- layouts_multi_entity_set_kv transfer information from one layout to another
- layouts_entity_pull_get_skv update only specific key values
- Topology aware resource selection algorithm was adapted for normal tree topology

LAYOUTS Entity Data Management

- Entity and entity keys are in hash data structure and access very fast
- Entity has different layouts plugin information to view entity different perspective

Cons_res_layout Architecture

Cons_res_power Architecture

 SLURM plugin enhancement is easier using LAYOUTS resource management framework

- SLURM plugin enhancement is easier using LAYOUTS resource management framework
- Cons_res_layout resource selection plugin developed using LAYOUTS

- SLURM plugin enhancement is easier using LAYOUTS resource management framework
- Cons_res_layout resource selection plugin developed using LAYOUTS
- LAYOUTS new APIs developed to increase performance for multiple updates

- SLURM plugin enhancement is easier using LAYOUTS resource management framework
- Cons_res_layout resource selection plugin developed using LAYOUTS
- LAYOUTS new APIs developed to increase performance for multiple updates
- Ons_res_layout and cons_res plugin system utilisation and throughput is same

- SLURM plugin enhancement is easier using LAYOUTS resource management framework
- Cons_res_layout resource selection plugin developed using LAYOUTS
- LAYOUTS new APIs developed to increase performance for multiple updates
- Ons_res_layout and cons_res plugin system utilisation and throughput is same
- Ons_res_layout individual resource selection performance overhead was increased twice than cons_res plugin
- **6** Cons_res_layout job waiting time increased, due to individual performance of resource selection

 Multi-parameter resource selection policy implemented in Cons_res_power plugin

- Multi-parameter resource selection policy implemented in Cons_res_power plugin
- ② Cons_res_power plugin achieved both application performance and server energy efficiency

- Multi-parameter resource selection policy implemented in Cons_res_power plugin
- ② Cons_res_power plugin achieved both application performance and server energy efficiency
- Energy consumption of multi-parameter resource selection reduced by 3.8 %

- Multi-parameter resource selection policy implemented in Cons_res_power plugin
- ② Cons_res_power plugin achieved both application performance and server energy efficiency
- Energy consumption of multi-parameter resource selection reduced by 3.8 %
- Ons_res_power individual resource selection performance overhead was increased thrice than cons_res plugin
- Cons_res_power job waiting time increased, due to individual performance of resource selection