Math 69: Logic Winter '23

Homework assigned February 03, 2023

Prof. Marcia Groszek Student: Amittai Siavava

Problem 6.

Show that the formula θ is valid iff $\forall x \theta$ is valid.

 \longrightarrow

Suppose θ is valid, we show that $\forall x \theta$ is also valid.

Let $\mathfrak A$ be a structure and $s:V\to |\mathfrak A|$ be an assignment function. Since θ is valid, $\models_{\mathfrak A}\theta[s]$.

Then for all $a \in |\mathfrak{A}|$, we have that $\models_{\mathfrak{A}} \forall x \theta[s(x|a)]$.

Since s and $\mathfrak A$ are arbitrary, it must be that $\vDash \forall x \theta$, meaning $\forall x \theta$ is valid.

 \leftarrow

Suppose $\forall x\theta$ is valid, we show that θ is also valid.

Let $\mathfrak A$ be a structure and $s:V\to |\mathfrak A|$ be an assignment function. Since $\forall x\theta$ is valid, we have that $\models_{\mathfrak A} \forall x\theta[s]$.

Then $\vDash_{\mathfrak{A}} \theta[s(x|s(x))].$

But s(x|s(x)) = s, so $\models_{\mathfrak{A}} \theta[s]$, meaning θ is valid.

Amittai, S Math 69: Logic

Problem 10.

Show that

$$\models_{\mathfrak{A}} \forall v_2 \ Qv_1v_2\llbracket c^{\mathfrak{A}} \rrbracket \quad \text{iff} \quad \models_{\mathfrak{A}} \forall v_2 Qcv_2.$$

Here, ${\cal Q}$ is a two-place predicate symbol and c is a constant symbol.

Let \mathfrak{A} be a structure and $s:V\to |\mathfrak{A}|$ be an assignment function such that $\vDash_{\mathfrak{A}} \forall v_2 \ Qv_1v_2\llbracket c^{\mathfrak{A}} \rrbracket.$ $\vDash_{\mathfrak{A}} \forall v_2 \ Qv_1v_2\llbracket c^{\mathfrak{A}} \rrbracket \iff \vDash_{\mathfrak{A}} \ Qv_1v_2[s(v_1|c^{\mathfrak{A}},v_2|a)] \text{ for all } a\in \mathfrak{A} \tag{10.1}$ $\iff \text{A deduction } \left(c^{\mathfrak{A}},a\right) \text{ exists in } \mathfrak{A} \text{ for all } a\in |\mathfrak{A}| \tag{10.2}$ $\iff \vDash_{\mathfrak{A}} \ Qcv_2[s(v_2|a)] \tag{10.3}$ $\iff \vDash_{\mathfrak{A}} \ \forall v_2 Qcv_2 \text{ (since } \mathfrak{A} \text{ and } s \text{ are arbitrary)} \tag{10.4}$