Поиск остовного дерева с заданным числом листьев

Шмаков Александр группа 22.Б11-мм

Постановка задачи и актуальность

- Дано: Неориентированный связный граф G и число k.
- Найти: Остовное дерево Т графа G с k листьями.
- Актуальность:
 - Проектирование сетей (магистрали vs клиенты)
 - о Биоинформатика (филогенетические деревья)
 - Схемотехника (VLSI design)

Сложность и подходы к решению

- Сложность: NP-полная (Garey & Johnson, 1979).
- Следствие: Не существует быстрого (полиномиального) точного алгоритма.
- Обзор подходов:
 - Аппроксимационные (быстро, но неточно).
 - Параметризованные (FPT) (сложно, эффективно при малом k).
 - Точные экспоненциальные (Backtracking) наш фокус.

Выбранные алгоритмы

- Алгоритм 1: Baseline (Backtracking по рёбрам)
 - Принцип: "Слепой" перебор. Рекурсивно решает: "добавить это ребро или нет?".
 - **Недостаток:** Не использует информацию о цели (k) до самого конца.
- Алгоритм 2: Improved (Backtracking по ролям вершин)
 - **Принцип:** Интеллектуальный поиск. Рекурсивно решает: "сделать эту вершину листом или внутренним узлом?".
 - Ключевые эвристики (в чем "интеллект"):
 - i. Приоритет важным вершинам: Первыми рассматриваются вершины с наибольшим числом связей.
 - ii. **Раннее отсечение:** Мгновенно отбрасывает ветки, где цель k уже недостижима.
 - ііі. Структурная проверка: Не строит бессвязные части дерева.

Асимптотическая сложность

- Baseline: O(2^E * poly(V, E))
 - Экспонента зависит от числа рёбер Е.
- Improved: O(c^(V-k) * poly(V, E))
 - Экспонента зависит от числа внутренних вершин V-k.
- Теоретический прогноз:
 - Improved должен быть значительно быстрее.
 - Производительность Improved зависит от k, a Baseline нет.

Методология эксперимента

- Эксперимент "Лестница сложности": Сравнение на графах возрастающей сложности.
- **Гипотеза:** С ростом размера графа разрыв в производительности между Baseline и Improved будет расти экспоненциально.
- Параметры:
 - ∘ **k**: Для чистоты эксперимента k всегда выбирается как N / 2.
 - Запуски: 3 запуска для каждого теста для получения среднего и стандартного отклонения.
 - о Таймаут для Baseline: 15 секунд.

Результаты: Эксперимент 1 ('Лестница сложности')

Название теста	N	k	Время (Baseline, µs)	Время (Improved, µs)	Ускорение
Решетка 3х3	9	4	23 ± 5	3 ± 1	8.6x
Решетка 4х4	16	8	2724 ± 181	22 ± 3	123.8x
Решетка 5х5	25	12	532690 ± 1724	171 ± 7	3115.1x
Karate Club	34	17	Timeout (>15s)	38 ± 5	>> 1000x

Анализ результатов эксперимента 1

- **Экспоненциальный разрыв:** Ускорение растет от ~9x на N=9 до ~3100x на N=25.
- "Стена" для Baseline: При N=34 наивный подход становится непрактичным.
- **Стабильность Improved:** Низкое стандартное отклонение говорит о предсказуемой производительности.
- Вывод: Гипотеза полностью подтверждена. Интеллектуальный поиск на порядки эффективнее.

Результаты: Эксперимент 2 (Масштабируемость Improved)

Название теста	N	k	N - k	Время (Improved, µs)
Dolphins	62	31	31	965 ± 15
Dolphins (k \rightarrow N)	62	55	7	275989 ± 1886
Football	115	57	58	762 ± 10
Football (k → N)	115	100	15	Timeout (>30s)

Анализ результатов эксперимента 2

- Практическая применимость: Improved легко решает "средние" задачи (k ≈ N/2) для графов до 115 вершин менее чем за миллисекунду.
- Влияние N-k и плотности:
 - На разреженном графе Dolphins задача с малым N-k=7 решается, но дольше, чем задача со средним N-k=31.
 - На плотном графе Football задача с малым N-k=15 оказалась слишком сложной и ушла в таймаут.
- Вывод: Производительность Improved— это сложный баланс между
 N-k и плотностью графа.

Итоги

- Improved на порядки превосходит Baseline. Это доказано экспериментально.
- **Теория подтверждена практикой.** Результаты согласуются с асимптотическим анализом сложности.
- **Ключ к успеху** интеллектуальное сокращение пространства поиска.
- Даже Improved имеет пределы. Его эффективность зависит не только от N-k, но и от плотности графа, что может сделать даже теоретически "легкую" задачу нерешаемой на практике.

Source code

Реализацию алгоритмов и код экспериментов можно найти на

GitHub: https://github.com/AlexShmak/golang-graphs