Recitation 21

Thursday November 21, 2024

1 Recap

1.1 Convex Set

A set C is *convex* if for all $x_1, x_2 \in C$ and all $t \in [0, 1]$,

$$tx_1 + (1-t)x_2 \in C.$$

In other words, C contains the line segment between any two points in C.

The projection of a point y onto a set C is given by the closest point in the set to y

$$\operatorname{Proj}_C(y) = \arg\min_{z \in C} \|z - y\|.$$

For example, if C is a box given by $[0,1]^2$ and y = (1.5,0.5), then $\text{Proj}_C(y) = (1,0.5)$.

1.2 Convex Function

Let $X \subseteq \mathbb{R}^n$ be a convex set. A function $f: X \to \mathbb{R}$ is *convex* if for any pair of points $x_1, x_2 \in X$ and any $t \in [0, 1]$, we have

$$f(tx_1 + (1-t)x_2) \le tf(x_1) + (1-t)f(x_2),$$

i.e., the graph of f(x) lies below the line segment connecting $f(x_1)$ and $f(x_2)$.

1.3 Taylor Expansion for Differentiable Functions

For a differentiable function $f: \mathbb{R}^n \to \mathbb{R}$, the **first-order Taylor expansion** around a point x_k is:

$$f(x) \approx f(x_k) + \nabla f(x_k)^T (x - x_k).$$

This linear approximation estimates the function value near x_k . If f is twice differentiable, the **second-order Taylor expansion** includes the Hessian matrix $\nabla^2 f(x_k)$:

$$f(x) \approx f(x_k) + \nabla f(x_k)^T (x - x_k) + \frac{1}{2} (x - x_k)^T \nabla^2 f(x_k) (x - x_k).$$

This quadratic approximation provides a more accurate estimate near x_k and is used in methods like Newton's method.

1.4 Projected Gradient Descent

We can extend the quadratic minimization framework to constrained optimization by projecting the gradient step back into a feasible set C. When minimizing g(x) subject to $x \in C$, we have:

$$\min_{x \in C} \left[f(x_k) + \nabla f(x_k)^T (x - x_k) + \frac{1}{2\alpha} ||x - x_k||^2 \right].$$

This is equivalent to:

- 1. Taking an unconstrained gradient step: $y = x_k \alpha \nabla f(x_k)$.
- 2. Projecting y back onto C: $x_{k+1} = \operatorname{Proj}_C(y) = \arg\min_{z \in C} ||z y||$.

Thus, the update rule for projected gradient descent is:

$$x_{k+1} = \operatorname{Proj}_C(x_k - \alpha \nabla f(x_k)).$$

2 Exercises

1. **Projection onto Convex Sets** Given the following sets, find an expression for $Proj_C(y)$ for any point y in the same space:

- (a) **Box**: $C = [0, 1]^3$
- (b) **Linear Subspace**: $C = \{x \in \mathbb{R}^3 \mid x_1 + x_2 + x_3 = 0\}$
- (c) Affine Plane: $C = \{x \in \mathbb{R}^3 \mid x_1 + x_2 + x_3 = -1\}$
- (d) **Half-Space**: $C = \{x \in \mathbb{R}^2 \mid x_1 + x_2 \le 4\}$
- (e) **Ball**: $C = \{x \in \mathbb{R}^2 \mid ||x||_2 \le 2\}$
- 2. In this problem, we are going to express Gradient Descent as a quadratic minimization. We want to minimize a quadratic approximation (a first-order Taylor expansion plus a quadratic penalty term). Consider a differentiable function f(x):

$$g(x) = \nabla f(x_k)^T (x - x_k) + \frac{1}{2\alpha} ||x - x_k||^2.$$

- (a) Show that minimizing the function g(x) with respect to x yields the gradient descent update $x_{k+1} = x_k \alpha \nabla f(x_k)$.
- (b) Show that this minimization is equivalent to solving the unconstrained quadratic minimization problem:

$$\min_{x} \left[\frac{1}{2} x^T A x + b^T x \right],$$

where
$$A = \frac{1}{\alpha}I$$
 and $b = -\frac{1}{\alpha}x_k - \nabla f(x_k)$.

- (c) Verify that the solution to the quadratic minimization problem in part (b) is the same as the gradient descent update.
- 3. **Projected Gradient Descent.** For this problem, we are interested in minimizing the quadratic approximation as similar to problem (2):

$$g(x) = \nabla f(x_k)^T (x - x_k) + \frac{1}{2\alpha} ||x - x_k||^2.$$

However, we are looking for solutions within the set C:

$$\min_{x \in C} \left[\nabla f(x_k)^T (x - x_k) + \frac{1}{2\alpha} ||x - x_k||^2 \right].$$

(a) Show that the solution x_{k+1} to this problem is given by:

$$x_{k+1} = \operatorname{Proj}_C(x_k - \alpha \nabla f(x_k)).$$

Hint: Use the definition of projection onto a set C.

(b) Explain why this procedure can be interpreted as taking a gradient step followed by a projection onto C.

3 Solutions

1. Projection onto Different Convex Sets

(a) Box Constraint $C = [0, 1]^3$: For any $y = (y_1, y_2, y_3) \in \mathbb{R}^3$, the projection onto C is given by:

 $x_i = \min(\max(y_i, 0), 1), \quad \forall i = 1, 2, 3.$

That is, each component is clipped to the interval [0,1].

(b) Plane Constraint $C = \{x \in \mathbb{R}^3 \mid a^T x = b\}$, where a = (1, 1, 1) and b = -1: The projection onto the plane is:

$$x = y - \frac{a^T y - b}{\|a\|^2} a$$

(c) Half-Space $C = \{x \in \mathbb{R}^2 \mid a^T x \leq b\}$, where a = (1, 1) and b = 4:

The projection is:

$$x = \begin{cases} y, & \text{if } a^T y \le b, \\ y - \frac{a^T y - b}{\|a\|^2} a, & \text{if } a^T y > b. \end{cases}$$

That is, if y is already in the half-space, it remains unchanged; otherwise, it is projected onto the boundary.

(d) Ball $C = \{x \in \mathbb{R}^2 \mid ||x||_2 \le r\}$, with radius r = 2:

The projection is:

$$x = \begin{cases} y, & \text{if } ||y||_2 \le r, \\ r \frac{y}{||y||_2}, & \text{if } ||y||_2 > r. \end{cases}$$

That is, y is scaled back to lie on the boundary of the ball if it is outside.

2. Gradient Descent as Quadratic Minimization

(a) To minimize g(x), take the gradient with respect to x and set it to zero:

$$\nabla g(x) = \nabla f(x_k) + \frac{1}{\alpha}(x - x_k) = 0.$$

Solving for x:

$$x = x_k - \alpha \nabla f(x_k)$$
.

This is the gradient descent update rule.

(b) The function g(x) can be rewritten as:

$$g(x) = \frac{1}{2\alpha} ||x - x_k||^2 + \nabla f(x_k)^T (x - x_k)$$

= $\frac{1}{2\alpha} (x - x_k)^T (x - x_k) + \nabla f(x_k)^T (x - x_k).$

Expanding and rearranging terms:

$$g(x) = \frac{1}{2\alpha}x^Tx - \left(\frac{1}{\alpha}x_k + \nabla f(x_k)\right)^Tx + \text{constant.}$$

Therefore, minimizing g(x) is equivalent to solving:

$$\min_{x} \left[\frac{1}{2} x^T A x + b^T x \right],$$

where $A = \frac{1}{\alpha}I$ and $b = -\left(\frac{1}{\alpha}x_k + \nabla f(x_k)\right)$.

(c) The solution to the quadratic minimization problem is:

$$x = -A^{-1}b = -\left(\frac{1}{\alpha}I\right)^{-1}\left(-\left(\frac{1}{\alpha}x_k + \nabla f(x_k)\right)\right) = x_k - \alpha \nabla f(x_k).$$

This matches the gradient descent update.

3. Projected Gradient Descent

(a) The constrained minimization problem can be rewritten as:

$$x_{k+1} = \arg\min_{x \in C} \left[\nabla f(x_k)^T (x - x_k) + \frac{1}{2\alpha} ||x - x_k||^2 \right].$$

Completing the square and ignoring constants (since they do not affect the minimization), we have:

$$\min_{x \in C} \left[\frac{1}{2\alpha} \|x - x_k + \alpha \nabla f(x_k)\|^2 \right].$$

Therefore:

$$x_{k+1} = \arg\min_{x \in C} \|x - (x_k - \alpha \nabla f(x_k))\|^2 = \operatorname{Proj}_C (x_k - \alpha \nabla f(x_k)).$$

(b) This procedure first takes an unconstrained gradient step $y = x_k - \alpha \nabla f(x_k)$ as if there were no constraints. Then, since y might not be in C, we project y back onto C to obtain x_{k+1} . This ensures that the iterates remain feasible with respect to the constraints defined by C.