Topologie Zusammenfassung

April 23, 2024

Contents

1 Topologische Räume

2

1 Topologische Räume

Definition 1.1. Sei $X \neq \emptyset$. Eine Topologie auf X ist eine Familie $\mathcal{T} \subset \mathcal{P}(X)$ mit

- 1. $\emptyset \in \mathcal{T}, X \in \mathcal{T}$
- 2. Die Vereinigung beliebig vieler Teilmengen aus \mathcal{T} ist in \mathcal{T}
- 3. Der Durchschnitt endlich vieler Teilmengen von \mathcal{T} ist in \mathcal{T}

Das Paar (X, \mathcal{T}) heißt topologischer Raum, die Elemente aus \mathcal{T} heißen offene Mengen.

Definition 1.2. Auf $X \neq \emptyset$ seien \mathcal{T} und \mathcal{T}' zwei Topologien mit $\mathcal{T} \subset \mathcal{T}'$. Dann heißt \mathcal{T}' die feinere und \mathcal{T} die gröbere Topologie. Ist zusätzlich $\mathcal{T} \neq \mathcal{T}'$, dann heißen die Relationen strikt feiner bzw. gröber.

Definition 1.3. Sei $X \neq \emptyset$. Eine Basis für eine Topologie auf X ist eine Familie $\mathcal{B} \subset \mathcal{P}(X)$ welche die Eigenschaften erfüllt

- 1. $\forall x \in X \exists B \in \mathcal{B} \text{ sodass } x \in B$
- 2. Sind $B_1, B_2 \in \mathcal{B}$ und $x \in B_1 \cap B_2$, dann existiert $B_3 \in \mathcal{B}$ mit

$$x \in B_3 \subset B_1 \cap B_2$$

Ist eine Basis \mathcal{B} gegeben, so heißt $\mathcal{T}(\mathcal{B})$ die von \mathcal{B} erzeugte Topologie über

$$U \in \mathcal{T}(\mathcal{B}) : \Leftrightarrow \forall x \in U \exists B \in \mathcal{B} \text{ mit } x \in B \subset U$$

Theorem 1.4. Sei $X \neq \emptyset$, $\mathcal{B} \subset \mathcal{P}(X)$ eine Basis für eine Topologie auf X. Dann ist $\mathcal{T}(\mathcal{B})$ in der Tat eine Topologie.

Theorem 1.5. Sei $X \neq \emptyset$ und \mathcal{B} eine Basis für eine Topologie auf X. Dann besteht $\mathcal{T}(\mathcal{B})$ aus genau den Mengen, die sich als Vereinigung von Mengen aus \mathcal{B} schreiben lassen.

Theorem 1.6. Sei (X, \mathcal{T}) ein topologischer Raum. Sei dann $\mathcal{C} \subset \mathcal{T}$ mit der Eigenschaft

$$\forall U \in \mathcal{T} \ und \ x \in U \ \exists C \in \mathcal{C} : \ x \in C \subset U$$

Dann ist C bereits eine Basis für T.

Theorem 1.7. Seien $\mathcal{B}, \mathcal{B}'$ Basen zweier Topologien $\mathcal{T}, \mathcal{T}'$. Dann sind die folgenden beiden Aussagen äquivalent

- 1. \mathcal{T}' ist feiner als \mathcal{T}
- 2. $\forall x \in X \text{ und } \forall B \in \mathcal{B} \text{ mit } x \in B \text{ existiert } B' \in \mathcal{B}' \text{ mit } x \in B' \subset B.$

Theorem 1.8. Sei $X \neq \emptyset$. Ist dann $S \subset \mathcal{P}(X)$, so gibt es eine eindeutige gröbste Topologie, welche S enthält. Diese sei mit $\mathcal{T}(S)$ notiert.

Ist außerdem $\bigcup_{S \in \mathcal{S}} S = X$, dann ist $\mathcal{T}(\mathcal{S})$ genau die Menge beliebiger Vereinigungen von endlichen Durchschnitten von Mengen aus \mathcal{S} . \mathcal{S} heißt Subbasis von $\mathcal{T}(\mathcal{S})$.