Math 512B. Homework 5. Solutions

Problem 1. Determine whether each of the following series converges or does not converge.

- (i) $\sum_{n=1}^{\infty} \frac{\cos n\alpha}{n^2}.$
- (ii) $\sum_{n=1}^{\infty} (-1)^n \frac{\log n}{n}$
- (iii) $\sum_{n=1}^{\infty} \frac{\log n}{n}.$
- (iv) $\sum_{n=1}^{\infty} \frac{\sqrt{n+1} \sqrt{n}}{n}$
- (v) $\sum_{n=1}^{\infty} \frac{1}{(\log n)^n}.$

Solution. (i) Converges by the comparison test: $\left| \frac{\cos n\alpha}{n^2} \right| \le \frac{1}{n^2}$.

- (ii) Converges by Leibniz's Theorem: it is an alternating series and $\log n/n \ge \log(n+1)/(n+1)$ for $n \ge 3$.
 - (iii) Diverges by the comparison test: $\frac{1}{n} \le \frac{\log n}{n}$ for n > 3.
- (iv) Converges by the comparison test: $0 \le \frac{\sqrt{n+1} \sqrt{n}}{n} = \frac{1}{n(\sqrt{n+1} + \sqrt{n})} \le \frac{1}{2n^{3/2}}$.
- (v) Converges by the comparison test: $\frac{1}{(\log n)^n} \le \frac{1}{2^n}$ for $n \ge 9$.

Problem 2. (i) Suppose that f is nondecreasing on $[1, \infty)$. Prove that

$$f(1)+f(2)+\cdots+f(n-1) \le \int_1^n f \le f(2)+f(3)+\cdots+f(n).$$

(ii) Take $f = \log$ in (i) and prove that

$$e^{1-n}n^n \le n! \le e^{-n}(n+1)^{n+1}$$

(iii) Prove that

$$\lim_{n \to \infty} \frac{\sqrt[n]{n!}}{n} = \frac{1}{e}.$$

- (iv) Prove that the series $\sum_{n=1}^{\infty} \frac{a^n n!}{n^n}$ converges if a < e.
- (v) Prove that $\sum_{n=1}^{\infty} \frac{a^n n!}{n^n}$ does not converge if $a \ge e$.

Solution. (i) If f is nondecreasing, then $f(k) \leq \int_k^{k+1} f \leq f(k+1)$ for all $k \geq 1$.

- (ii) The integral $\int_1^n \log = n \log n n$. Because of the properties of \log , $\log k! = \log k + \log(k-1) + \cdots + \log 1$, so (i) implies that $\log(n-1)! \leq \log n^n n \leq \log n!$, since exp is increasing, $(n-1)! \leq n^n e^{-n} \leq n!$, which is equivalent to the stated inequality.
 - (iii) Obvious by virtue of (ii).
- (iv) and (v) follow from the ratio test because $\frac{a^{n+1}(n+1)!/(n+1)^{n+1}}{a^n n!/n^n} = a \left(\frac{n}{n+1}\right)^n \text{ converges to } a \text{ as } n \to \infty.$

Problem 3. (i) Let $a_n \geq 0$. Prove that if $\sum_{n=1}^{\infty} a_n$ does not converge, then $\sum_{n=1}^{\infty} \frac{a_n}{1+a_n}$ does not converge.

- (ii) Let $a_n \geq 0$. Prove that if b_n is a bounded sequence and $\sum_{n=1}^{\infty} a_n \text{ converges, then } \sum_{n=1}^{\infty} a_n b_n \text{ also converges.}$
- (iii) Let $a_n \geq 0$. Prove that if $\limsup_{n \to \infty} \sqrt[n]{a_n} < 1$, then $\sum_{n=1}^{\infty} a_n$ converges; and if $\limsup_{n \to \infty} \sqrt[n]{a_n} > 1$, then $\sum_{n=1}^{\infty} a_n$ does not converge.
- (iv) (Not required) Let $a_n \ge 0$. Prove that if a_n is decreasing and $\sum_{n=1}^{\infty} a_n$ converges, then $\lim_{n\to\infty} na_n = 0$.
- (v) Suppose that $\sum_{n=1}^{\infty} a_n$ converges. Let $n_1 < n_2 < n_3 < \cdots$ be an increasing sequence of natural numbers. From the sequence a_n obtain a new sequence b_n by setting

$$b_1 = a_1 + a_2 + \dots + a_{n_1}$$

$$b_2 = a_{n_1+1} + a_{n_1+2} + \dots + a_{n_2}$$

$$\vdots$$

$$b_k = a_{n_{k-1}+1} + a_{n_{k-1}+2} + \dots + a_{n_k}$$

Prove that $\sum_{n=1}^{\infty} b_n$ also converges and $\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} a_n$

Solution. (i) If $\sum_{n=1}^{\infty} \frac{a_n}{1+a_n}$ converges, then the sequence $\frac{a_n}{1+a_n}$ converges to 0 as $n \to \infty$. Because of this, there is N such that $a_n \le 1$ for n > N, and so $a_n \le 2\frac{a_n}{1+a_n}$ for all n > N. By the comparison test, the series $\sum_{n=N+1}^{\infty} a_n$ converges and thus the original series $\sum_{n=N+1}^{\infty} a_n$ converges.

(ii) If $|b_n| \leq M$, then $|a_n b_n| \leq M a_n$, so $\sum_{n=1}^{\infty} |a_n b_n|$ converges by the comparison test.

Problem 4. Let $b_n \neq 0$. We say that the infinite product $\prod_{n=1}^{\infty} b_n$ converges if the sequence of partial products $p_n = \prod_{k=1}^{n} b_k$ converges and $\lim_{n\to\infty} p_n \neq 0$.

- (i) Prove that if $\prod_{n=1}^{\infty} b_n$ converges, then $\lim_{n\to\infty} b_n = 1$.
- (ii) Suppose that $b_n > 0$. Prove that $\prod_{n=1}^{\infty} b_n$ converges if and only if $\sum_{n=1}^{\infty} \log b_n$ converges.
- (iii) (Not required) Suppose that $a_n \geq 0$. Prove that $\prod_{n=1}^{\infty} (1 + a_n)$ converges if and only if $\sum_{n=1}^{\infty} a_n$ converges.
- (iv) (Not required) Prove that $\prod_{n=2}^{\infty} \left(1 \frac{1}{n^{\alpha}}\right)$ converges if and only if $\alpha > 1$.
- (v) (Not required) Evaluate the infinite product $\prod_{n=2}^{\infty} \left(1 \frac{1}{n^2}\right)$

Solution. (i) and (ii) were done in class

Problem 5. Prove that each of the following series converge to the given limit.

(i)
$$\sum_{n=1}^{\infty} \frac{1}{n!} = e - 1$$

(ii)
$$\sum_{n=1}^{\infty} \frac{1}{n2^n} = \log 2$$

(iii)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{\pi^{2n}}{(2n)!} = 2$$

(iv) (Not required)
$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

(v)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{2n+1}{n^2+n} = 1$$

(vi) (Not required)
$$\sum_{n=1}^{\infty} (-1)^n \frac{(2n)!}{2^{4n} (n!)^2} = \frac{2}{\sqrt{5}} - 1.$$

Solution. (i) When studying the Taylor Reaminder for exp, we have shown that $\left| e - 1 - \sum_{n=1}^{N} \frac{1}{n!} \right| \leq \frac{1}{(N+1)!}$, so the partial sums $s_N = \sum_{n=1}^{N} \frac{1}{n!}$ converge to e-1

- (ii) Argue as in (i) using the Taylor series for $\log(1-x)$ at x=1/2.
 - (iii) (There was a typo.) Use the Taylor series for $\cos x$ at π