

Lehrstuhl für Energiehandel und Finanzdienstleistungen

Prof. Dr. Rüdiger Kiesel Ya Wen

Quantitative Climate Finance

Übungsblatt 7

Aufgabe 1 (Approximative Pricing)

Auf dem Emissions-Handel-Markt sei der Spot-Preis der CO_2 -Zertifikate S_t gegeben durch $S_t = Pe^{-r(T-t)}\mathbb{P}(q_{[0,T]} > N|\mathcal{F}_t)$, wobei N die gesamten Allokationen und P die Strafe bezeichne. $q_{[0,t]}$ stehe für die kumulierten Emissionen im Zeitintervall [0,t] und sei gegeben durch

$$q_{[0,t]} = \int_0^t Q_s ds,$$

wobei Q_t die Emissionsrate bezeichne. Q_t sei eine geometrische Brownsche Bewegung:

$$Q_t = Q_0 \exp((\mu - \frac{\sigma^2}{2})t + \sigma W_t).$$

Wir approximieren die kumulierten Emissionen durch die Formel

$$q_{[t_1,t_2]} \approx Q_{t_2}(t_2-t_1).$$

Sei $\tau = T - t$, beweisen Sie folgende Formel für den Preisprozess:

$$S_t = \left\{ \begin{array}{l} Pe^{-r\tau} & \text{, if } q_{[0,t]} \geq N \\ Pe^{-r\tau} \Phi \left(\frac{-\ln(\frac{1}{\tau} \frac{N - q_{[0,t]}}{Q_t}) + (\mu - \frac{\sigma^2}{2})\tau}{\sigma \sqrt{\tau}} \right) & \text{, if } q_{[0,t]} < N \end{array} \right.,$$

wobei $\Phi(x)$ die Verteilungsfunktion der Standard-Normalverteilung ist.

Aufgabe 2 (Carmona-Hinz-Modell 1)

Sei $(a_t)_{t\in[0,T]}$ der Preisprozess der CO₂-Zertifikate. Carmona und Hinz (2011) zeigen in ihrem Artikel (siehe Vorlesungsfolien Seite 96-102), dass sich der Preisprozess unter bestimmten Voraussetzungen schreiben lässt als $a_t=\Phi(\xi_t)$, wobei $\Phi(x)$ die Verteilungsfunktion der Standardnormalverteilung bezeichne. Sei

$$\xi_t = \frac{\xi_0 + \sigma W_t}{\sigma \sqrt{T - t}}.$$

Hierbei seien $\xi_0 \in \mathbb{R}$ und $\sigma > 0$ Konstanten und W_t bezeichne die Brownsche Bewegung. Berechnen Sie da_t mit Hilfe der Itô-Formel.

Tipp: Bestimmen Sie zunächst $d\xi_t$.

Aufgabe 3 (Carmona-Hinz-Modell 2)

Auf dem Emissions-Handel-Markt sei $(A_t)_{t\in[0,T]}$ der CO₂-Future-Preisprozess auf dem Wahrscheinlichkeitsraum $(\Omega,\mathcal{F},(\mathcal{F}_t)_{t\in[0,T]},\mathbb{P}).$ (A_t) sei ein Martingal. Sei $C_s:=C_s(A_s)$ die Minderungsrate, und somit $\int_0^T C_s(A_s)ds$ das gesamte Minderungsvolumen im Zeitintervall [0,T]. Weiter seien E_T die gesamten Emissionen bis zum Zeitpunkt T, B_T die gesamten Allokationen bis zum Zeitpunkt T.

Unternehmen können entweder Emissionen durch Allokationen abdecken oder ihre Emissionen vermindern. Falls bis T alle Emissionen abgedeckt sind, ist $A_T=0$, sonst gilt $A_T=\pi$, wobei π die Strafe pro Emissionseinheit bezeichne.

- (a) Sei nun \mathcal{E}_T die Netto-Emissions-Position ohne CO_2 zu vermindern. Drücken Sie \mathcal{E}_T mit den oben genannten Variablen aus.
- (b) Wir nehmen an, dass $\mathcal{E}_t = \mathbb{E}[\mathcal{E}_T|\mathcal{F}_t]$ ein Martingal ist mit $d\mathcal{E}_t = \sigma dW_t$, wobei W_t eine Brownsche-Bewegung bezeichne. G_t sei die Netto-Emissions-Position und α sei eine deterministische Funktion mit $A_t = \alpha(t,G_t)$. Zeigen Sie, dass G_t ein Itô-Prozess ist, indem Sie dG_t berechnen.
- (c) Wenden Sie die Itô-Formel an und zeigen Sie, dass der Prozess $A_t=\alpha(t,G_t)$ die partielle Differentialgleichung

$$D_t \alpha(t,g) - C_t(\alpha(t,g)) D_x \alpha(t,g) + \frac{1}{2} \sigma^2 D_x^2 \alpha(t,g) = 0$$

erfüllt, mit Randbedingung $\alpha(T,g) = \pi \mathbf{1}_{[0,\infty]}(g)$.

Aufgabe 4 (Carbon-Revenue-Bond)

Der Preis P eines Carbon-Revenue-Bonds sei definiert durch

$$P = \sum_{i=1}^{n} \frac{C_i}{(1+r)^i} \,,$$

wobei C_i die erwartete Auszahlung zu jedem Zeitpunkt i=0,1,...,n und r die Zinsrate bezeichnen. Die Auszahlungen C_i seien in diesem Fall definiert als

$$C_i = \mathbb{E}[N_i S_i],$$

wobei N_i für die Anzahl der ausgegebenen Zertifikate und S_i für den CO2-Preis zum Zeitpunkt i stehen.

Wir nehmen an, dass der Preisprozess einer geometrischen Brawnschen Bewegung mit Drift $\mu=0$ und Anfangszustand S_0 folgt. Zusätzlich sei die Anzahl der Zertifikate zu jedem Zeitpunkt konstant, d.h.: $N_i=N$.

Berechnen Sie P.