Chapter 12

Vectors and the Geometry of Space

12.1 Two and Three Dimensional Space

Definition 1. Let \mathbb{R} be the collection of real numbers, let \mathbb{R}^2 be the collection of all **ordered** pairs of real numbers, and let \mathbb{R}^3 be the collection of all **ordered triples** of real numbers.

 \mathbb{R} is known as the **real line**, \mathbb{R}^2 is known as the **real plane** or the xy-**plane**, and \mathbb{R}^3 is known as **real (3D) space** or xyz-**space**.

Definition 2. The **distance** between two points $P=(x_1,y_1)$ and $Q=(x_2,y_2)$ in \mathbb{R}^2 is given by the formula

$$d(P,Q) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

The **distance** between two points $P = (x_1, y_1, z_1)$ and $Q = (x_2, y_2, z_2)$ in \mathbb{R}^3 is given by the formula

$$d(P,Q) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

Problem 3. Plot and find the distance between the following pairs of points:

- (-2,6) and (3,-6)
- (0,0,0) and (4,2,4)
- (3,7,-2) and (-1,7,1)
- (8,2,1) and (4,-2,7)

Definition 4. Simple lines in \mathbb{R}^2 are given by the relations x=a, and y=b for real numbers a,b.

Simple planes in \mathbb{R}^3 are given by the relations $x=a,\,y=b,\,z=c$ for real numbers a,b,c.

Definition 5. A circle in \mathbb{R}^2 is the set of all points a fixed distance (called its radius) from a fixed point (called its center). For a center (a, b) and radius r, the equation for a circle is

$$(x-a)^2 + (y-b)^2 = r^2$$

A **sphere** in \mathbb{R}^3 is the set of all points a fixed distance (called its **radius**) from a fixed point (called its **center**). For a center (a, b, c) and radius r, the equation for a sphere is

$$(x-a)^2 + (y-b)^2 + (z-c)^2 = r^2$$

Question 6. Sketch the following curves and surfaces.

- x = 3 in the xy-plane and xyz-space.
- y = -1 in the xy-plane and xyz-space.
- z = 0 in xyz-space.
- $(x-2)^2 + (y+1)^2 = 9$ in the xy-plane.
- $x^2 + y^2 + z^2 = 4$ in xyz-space.
- $x^2 + (y-1)^2 + z^2 = 1$ in xyz-space.

12.2. Vectors Clortz 3

12.2 Vectors

Definition 7 (Vector). A **vector** $\vec{\mathbf{v}}$ is a mathematical object that stores a **magnitude** (a nonnegative real number often thought of as length) and **direction**. Two vectors are **equal** if and only if they have the same magnitude and direction.

Definition 8. The **zero vector** $\vec{0}$ has zero magnitude and no direction. (This is the only vector without a direction.)

Definition 9. For a given point P = (a, b) in \mathbb{R}^2 , its **position vector** is given by $\overrightarrow{\mathbf{P}} = \langle a, b \rangle$: the vector from the origin (0, 0) to the point P = (a, b).

For a given point P = (a, b, c) in \mathbb{R}^3 , its **position vector** is given by $\overrightarrow{\mathbf{P}} = \langle a, b, c \rangle$: the vector from the origin (0, 0, 0) to the point P = (a, b, c).

Theorem 10. Two vectors are equal if and only if they share the same magnitude and direction as a common position vector.

Definition 11. Since all vectors are equal to some position vector $\langle a, b \rangle$ or $\langle a, b, c \rangle$, we usually define vectors by a position vector written in this **component form**. Since the component form of a vector stores the same information as a point, we will use both interchangeably, that is, $\langle a, b \rangle = (a, b) \in \mathbb{R}^2$ and $\langle a, b, c \rangle = (a, b, c) \in \mathbb{R}^3$ (although we usually sketch them differently).

Problem 12. Plot the following points and position vectors.

- (1,3) and (1,3) in the xy-plane.
- (-2,5) and $\langle -2,5\rangle$ in the xy-plane.
- (1,1,-3) and (1,1,-3) in xyz-space.
- (0,5,0) and (0,5,0) in xyz-space.

Definition 13. Let $P = (x_1, y_1, z_1)$ and $Q = (x_2, y_2, z_2)$. Then the vector with initial point P and terminal point Q is defined as

$$\overrightarrow{\mathbf{PQ}} = \langle x_2 - x_1, y_2 - y_1, z_2 - z_1 \rangle$$

Problem 14. Plot and sketch the points P, Q and the vector \overrightarrow{PQ} for each.

- P = (1,3), Q = (-3,6) in the xy-plane
- P = (3, 1), Q = (0, -2) in the xy-plane
- P = (1, 1, 1), Q = (-3, -1, 3) in xyz-space
- P = (-2, 0, 3), Q = (1, 3, -3) in xyz-space

Definition 15. The magnitude $|\vec{\mathbf{v}}|$ of a vector $\vec{\mathbf{v}}$ in \mathbb{R}^2 or \mathbb{R}^3 is the distance between its initial and terminal points.

Theorem 16. The magnitude of $\vec{\mathbf{v}} = \langle a, b \rangle$ is given by

$$|\vec{\mathbf{v}}| = \sqrt{a^2 + b^2}$$

The magnitude of $\vec{\mathbf{v}} = \langle a, b, c \rangle$ is given by

$$|\vec{\mathbf{v}}| = \sqrt{a^2 + b^2 + c^2}$$

12.2. Vectors Clontz 5

Problem 17. Evaluate the magnitude of the following vectors:

- $\bullet \langle 5, 5 \rangle$
- $\langle -4, 3 \rangle$
- $\langle 12, -5 \rangle$
- $\langle 3, 1, -2 \rangle$
- $\langle 4, -2, -4 \rangle$
- $\langle 8, 0, -6 \rangle$

12.2.1 Basic Vector Operations

Definition 18. Vector addition is defined component-wise as follows for \mathbb{R}^2 and \mathbb{R}^3

$$\vec{\mathbf{u}} + \vec{\mathbf{v}} = \langle u_1, u_2 \rangle + \langle v_1, v_2 \rangle = \langle u_1 + v_1, u_2 + v_2 \rangle$$

$$\vec{\mathbf{u}} + \vec{\mathbf{v}} = \langle u_1, u_2, u_3 \rangle + \langle v_1, v_2, v_3 \rangle = \langle u_1 + v_1, u_2 + v_2, u_3 + v_3 \rangle$$

Definition 19. A scalar is simply a real number by itself (as opposed to a vector of real numbers).

Definition 20. Scalar multiplication of a vector is defined component-wise as follows for \mathbb{R}^2 and \mathbb{R}^3 :

$$k\vec{\mathbf{u}} = k\langle u_1, u_2 \rangle = \langle ku_1, ku_2 \rangle$$

$$k\vec{\mathbf{u}} = k\langle u_1, u_2, u_3 \rangle = \langle ku_1, ku_2, ku_3 \rangle$$

Problem 21. Sketch the following vectors.

- $\vec{\mathbf{u}} = \langle 1, -3 \rangle$, $\vec{\mathbf{v}} = \langle 3, 1 \rangle$ and $\vec{\mathbf{u}} + \vec{\mathbf{v}}$ in the *xy*-plane.
- $\vec{\mathbf{u}}=\langle 2,0,1\rangle,\, \vec{\mathbf{v}}=\langle -2,4,2\rangle$ and $\vec{\mathbf{u}}+\vec{\mathbf{v}}$ in xyz-space.
- $\vec{\mathbf{u}} = \langle 8, -2 \rangle$ and $\frac{1}{2}\vec{\mathbf{u}}$ in the *xy*-plane.
- $\vec{\mathbf{u}} = \langle 5, 3, -1 \rangle$ and $3\vec{\mathbf{u}}$ in xyz-space.

Definition 22. A vector $\vec{\mathbf{v}}$ is a **unit vector** if $|\vec{\mathbf{v}}| = 1$.

Theorem 23. For any non-zero vector $\vec{\mathbf{v}}$, the vector

$$\frac{1}{|\vec{\mathbf{v}}|}\vec{\mathbf{v}} = \frac{\vec{\mathbf{v}}}{|\vec{\mathbf{v}}|}$$

is a unit vector.

Definition 24. The direction of a vector $\vec{\mathbf{v}}$ is the unit vector $\frac{\vec{\mathbf{v}}}{|\vec{\mathbf{v}}|}$.

Theorem 25. Any vector $\vec{\mathbf{v}}$ is the scalar product of its magnitude and direction:

$$ec{\mathbf{v}} = |ec{\mathbf{v}}| rac{ec{\mathbf{v}}}{|ec{\mathbf{v}}|}$$

12.2. Vectors Clontz 7

Problem 26. Write the following vectors as the scalar product of their magnitude and direction:

- $\bullet \langle 5, 5 \rangle$
- $\bullet \langle -4, 3 \rangle$
- $\langle 12, -5 \rangle$
- (3, 1, -2)
- $\langle 4, -2, -4 \rangle$
- (8, 0, -6)

Definition 27. The standard unit vectors in \mathbb{R}^2 are $\hat{\mathbf{i}} = \langle 1, 0 \rangle$ and $\hat{\mathbf{j}} = \langle 0, 1 \rangle$, and any vector in \mathbb{R}^2 can be expressed in standard unit vector form:

$$\langle a, b \rangle = a\hat{\mathbf{i}} + b\hat{\mathbf{j}}$$

The standard unit vectors in \mathbb{R}^3 are $\hat{\mathbf{i}} = \langle 1, 0, 0 \rangle$, $\hat{\mathbf{j}} = \langle 0, 1, 0 \rangle$, and $\hat{\mathbf{k}} = \langle 0, 0, 1 \rangle$, and any vector in \mathbb{R}^3 can be expressed in standard unit vector form:

$$\langle a, b, c \rangle = a\hat{\mathbf{i}} + b\hat{\mathbf{j}} + c\hat{\mathbf{k}}$$

Note 28. Since the xy-plane is the plane z=0 in xyz-space, we say the points (a,b)=(a,b,0) and vectors $\langle a,b\rangle=\langle a,b,0\rangle=a\widehat{\bf i}+b\widehat{\bf j}+0\widehat{\bf k}$ are equal.

Suggested Homework: Section 12.2 numbers 3, 5, 13, 14, 15, 19, 21, 24, 26