Technische Universität Berlin

Fakultät II – Institut für Mathematik Förster, Lübbecke, Penn-Karras, Tischendorf SS 05 10.10.2005

Oktober – Klausur (Rechenteil) Analysis II für Ingenieure

Name:						
Die Lösungen sind in Reinschrift auf A4 Blättern abzugeben. Mit Bleistift geschriebene Klausuren können nicht gewertet werden.						
Dieser Teil der Klausur umfasst die Rechenaufgaben. Geben Sie immer den vollständigen Rechenweg an.						
Die Bearbeitungszeit beträgt eine Stunde.						
Die Gesamtklausur ist mit 40 von 80 Punkten bestanden, wenn in jedem der beiden Teile der Klausur mindestens 12 von 40 Punkten erreicht werden.						
Korrektur						
	1	2	3	4	5	Σ

1. Aufgabe 9 Punkte

Ermitteln Sie alle lokalen Extrema und Sattelpunkte der Funktion $f: \mathbb{R}^2 \to \mathbb{R} \ \text{mit} \ f(x,y) = xy \, e^{x-y}$.

Geben Sie auch die Art der Extrema an.

2. Aufgabe 8 Punkte

Sei B das Dreieck in der xy—Ebene mit den Eckpunkten $(0,0),\ (2,0)$ und (1,1).

Berechnen Sie
$$\iint_B xy^2 dxdy$$
.

3. Aufgabe 7 Punkte

Skizzieren Sie die 2π -periodische Fortsetzung der Funktion $f(x) = \pi - x$ für $x \in]0, 2\pi[$ und f(0) = 0.

Überprüfen Sie, ob die Funktion gerade oder ungerade ist und berechnen Sie das n—te Fourierpolynom.

4. Aufgabe 8 Punkte

Welcher Punkt auf der Parabel $y^2 = 6x$ hat minimalen Abstand zum Punkt (3,12)?

5. Aufgabe 8 Punkte

Gegeben sei die Fläche S mit der Parametrisierung

$$\vec{x}(u,v) = \begin{pmatrix} u\cos v \\ u\sin v \\ v \end{pmatrix}, \ 0 \le u \le 1, \ \ 0 \le v \le 2\pi$$

und das Vektorfeld $\vec{v} \colon \mathbb{R}^3 \to \mathbb{R}^3$ mit $\vec{v}(x,y,z) = \begin{pmatrix} y \\ -x \\ 0 \end{pmatrix}$.

Berechnen Sie das Flussintegral $\iint\limits_{S} \vec{v} \cdot d\vec{O}$