Atividade AA-05 – Rafael Nunes Moreira Costa (202107855)

Nesta tarefa deve-se propor um autômato finito determinístico (DFA) resultante do produto \otimes do DFA mínimo que reconhece a linguagem \mathcal{L}_{par} (abaixo especificada) com um DFA que reconheça as cadeias da linguagem \mathcal{L} selecionada. Especifique a tupla que define o DFA resultante da operação \otimes e desenhe o correspondente diagrama de estados. (Cada aluno(a) deve consultar na descrição da atividade AA-05, na disciplina INF0333A da plataforma Turing, qual é a linguagem associada ao seu número de matrícula. A descrição da linguagem está disponível no arquivo "Lista de linguagens regulares" da Seção "Coletânea de exercícios".)

$\mathcal{L}_{par} = \{ w \in \{0, 1\}^* \mid |w| = 2 \cdot k, \ k \in \mathbb{N} \}$

• Autômato finito determinístico que reconhece as cadeias pertencentes à linguagem \mathcal{L}_{par} :

$\mathcal{L}_{13} = \{ w \in \{0,1\}^* \mid |w| \geq 3 \text{ e o terceiro e o penúltimo símbolos de w não são } 1 \}$

- \mathcal{L}_{13} deve ser a linguagem associada ao número de matrícula de cada aluno.
- Autômato finito determinístico que reconhece as cadeias da linguagem \mathcal{L}_{13} (o aconselhável é que seja o DFA mínimo):

$\mathcal{L}(M_{\mathcal{L}_{par}} \otimes M_{\mathcal{L}_{13}}) \equiv \mathcal{L}_{par} \cap \mathcal{L}_{13} \equiv \{w \mid |w| \text{ \'e par e } |w| \geq 3 \text{ e o terceiro e o penúltimo símbolos de w não são } 1\}.$

• Autômato finito determinístico que reconhece as cadeias da linguagem $\mathcal{L}(M_{\mathcal{L}_{par}} \otimes M_{\mathcal{L}_{13}})$:

$$D_{\otimes} = \langle \Sigma, S, s_0 \cdot q_0, \delta, F \rangle,$$

onde:

$$\Sigma = \{0, 1\},\,$$

$$S = \{s_0 \cdot q_0, s_1 \cdot q_1, s_2 \cdot q_0, s_3 \cdot q_0, s_4 \cdot q_1, s_4 \cdot q_0, s_5 \cdot q_0, s_5 \cdot q_1, s_6 \cdot q_0, s_6 \cdot q_1\},\$$

$$F = \{s_4 \cdot q_0, s_5 \cdot q_0\},\$$

com a função δ definida por:

δ	0	1
$s_0 \cdot q_0$	$s_1 \cdot q_1$	$s_1 \cdot q_1$
$s_1 \cdot q_1$	$s_2 \cdot q_0$	$s_3 \cdot q_0$
$s_2 \cdot q_0$	$s_4 \cdot q_1$	$s_7 \cdot q_1$
$s_3 \cdot q_0$	$s_4 \cdot q_1$	$s_7 \cdot q_1$
$s_4 \cdot q_1$	$s_4 \cdot q_0$	$s_5 \cdot q_0$
$s_4 \cdot q_0$	$s_4 \cdot q_1$	$s_5 \cdot q_1$
$s_5 \cdot q_0$	$s_4 \cdot q_1$	$s_6 \cdot q_1$
$s_5 \cdot q_1$	$s_4 \cdot q_0$	$s_6 \cdot q_0$
$s_6 \cdot q_0$	$s_4 \cdot q_1$	$s_6 \cdot q_1$
$s_6 \cdot q_1$	$s_4 \cdot q_0$	$s_6 \cdot q_0$

$\mathcal{L}(M_{\mathcal{L}_{par}} \otimes M_{\mathcal{L}_{13}}) \equiv \mathcal{L}_{par} \cap \mathcal{L}_{13} \equiv \{w \mid |w| \text{ \'e par e } |w| \geq 3 \text{ e o terceiro e o penúltimo símbolos de w não são 1}\}.$

• Diagrama de estados do autômato finito determinístico D_{\otimes} :

