# $11n_{69} (K11n_{69})$



#### Ideals for irreducible components<sup>2</sup> of $X_{par}$

$$\begin{split} I_1^u &= \langle 3951u^{19} + 6529u^{18} + \dots + 2424b + 6325, \ -115811u^{19} - 169485u^{18} + \dots + 79992a - 272713, \\ u^{20} &+ 2u^{19} + \dots + 2u + 1 \rangle \\ I_2^u &= \langle u^3 + 2b - u + 1, \ -u^3 + 2u^2 + 2a - 3u + 1, \ u^4 - u^3 + u^2 + 1 \rangle \\ I_3^u &= \langle u^5 + u^4 + u^3 - u^2 + b - 2u, \ u^4 - u^3 + u^2 + a - 3u + 2, \ u^6 + 2u^4 - 3u^3 + u^2 - 3u + 1 \rangle \end{split}$$

\* 3 irreducible components of  $\dim_{\mathbb{C}} = 0$ , with total 30 representations.

<sup>&</sup>lt;sup>1</sup>The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

<sup>&</sup>lt;sup>2</sup> All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I. 
$$I_1^u = \langle 3951u^{19} + 6529u^{18} + \dots + 2424b + 6325, \ -1.16 \times 10^5u^{19} - 1.69 \times 10^5u^{18} + \dots + 8.00 \times 10^4a - 2.73 \times 10^5, \ u^{20} + 2u^{19} + \dots + 2u + 1 \rangle$$

(i) Arc colorings

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1.44778u^{19} + 2.11877u^{18} + \dots + 7.14120u + 3.40925 \\ -1.62995u^{19} - 2.69348u^{18} + \dots + 1.21988u - 2.60932 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -0.490249u^{19} - 0.377738u^{18} + \dots + 1.43684u - 0.710171 \\ 2.45375u^{19} + 3.57816u^{18} + \dots + 2.48335u + 4.64226 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.315419u^{19} + 0.424955u^{18} + \dots + 8.46688u + 1.57672 \\ -1.38148u^{19} - 2.28739u^{18} + \dots + 1.22934u - 2.03842 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.349372u^{19} - 0.474610u^{18} + \dots + 8.80089u + 0.895277 \\ -2.04627u^{19} - 3.18696u^{18} + \dots + 1.56334u - 2.71986 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 3.68497u^{19} + 5.12691u^{18} + \dots - 2.11341u + 4.48245 \\ -0.354535u^{19} - 0.633363u^{18} + \dots - 0.327633u - 1.82848 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -4.03950u^{19} - 5.76028u^{18} + \dots + 1.78578u - 5.31093 \\ -1.32933u^{19} - 1.83018u^{18} + \dots - 0.265227u - 1.45375 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{3} \\ u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{3} \\ u^{3} + u \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes = 
$$\frac{189289}{17776}u^{19} + \frac{857557}{53328}u^{18} + \dots + \frac{286735}{53328}u + \frac{706201}{53328}u^{18} + \dots$$

### (iv) u-Polynomials at the component

| Crossings       | u-Polynomials at each crossing          |
|-----------------|-----------------------------------------|
| $c_1, c_4$      | $u^{20} - 2u^{19} + \dots - 35u + 4$    |
| $c_2$           | $u^{20} + 22u^{19} + \dots + 353u + 16$ |
| $c_{3}, c_{8}$  | $u^{20} + 2u^{19} + \dots + 112u + 64$  |
| $c_5, c_6, c_9$ | $u^{20} - 2u^{19} + \dots - 2u + 1$     |
| $c_7, c_{11}$   | $u^{20} - 2u^{19} + \dots - 2u + 1$     |
| $c_{10}$        | $u^{20} + 14u^{19} + \dots + 4u + 1$    |

### (v) Riley Polynomials at the component

| Crossings       | Riley Polynomials at each crossing          |
|-----------------|---------------------------------------------|
| $c_1, c_4$      | $y^{20} - 22y^{19} + \dots - 353y + 16$     |
| $c_2$           | $y^{20} - 46y^{19} + \dots + 223775y + 256$ |
| $c_3, c_8$      | $y^{20} - 18y^{19} + \dots + 45824y + 4096$ |
| $c_5, c_6, c_9$ | $y^{20} + 14y^{19} + \dots + 4y + 1$        |
| $c_7, c_{11}$   | $y^{20} + 14y^{19} + \dots + 4y + 1$        |
| $c_{10}$        | $y^{20} - 14y^{19} + \dots + 56y + 1$       |

# (vi) Complex Volumes and Cusp Shapes

| Solutions to $I_1^u$       | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape           |
|----------------------------|---------------------------------------|----------------------|
| u = -1.131630 + 0.044257I  |                                       |                      |
| a = 0.0439473 + 0.1087160I | -4.62345 - 6.11364I                   | -7.31633 + 3.70196I  |
| b = 1.40407 + 0.37862I     |                                       |                      |
| u = -1.131630 - 0.044257I  |                                       |                      |
| a = 0.0439473 - 0.1087160I | -4.62345 + 6.11364I                   | -7.31633 - 3.70196I  |
| b = 1.40407 - 0.37862I     |                                       |                      |
| u = -0.280810 + 0.786452I  |                                       |                      |
| a = -0.395074 + 0.246972I  | -0.440396 - 1.279690I                 | -4.66436 + 4.97948I  |
| b = -0.197007 + 0.388860I  |                                       |                      |
| u = -0.280810 - 0.786452I  |                                       |                      |
| a = -0.395074 - 0.246972I  | -0.440396 + 1.279690I                 | -4.66436 - 4.97948I  |
| b = -0.197007 - 0.388860I  |                                       |                      |
| u = 0.769131 + 0.907087I   |                                       |                      |
| a = 0.304381 - 0.204058I   | 5.68828 + 2.93127I                    | 2.45037 - 0.45578I   |
| b = -0.165796 + 0.163987I  |                                       |                      |
| u = 0.769131 - 0.907087I   |                                       |                      |
| a = 0.304381 + 0.204058I   | 5.68828 - 2.93127I                    | 2.45037 + 0.45578I   |
| b = -0.165796 - 0.163987I  |                                       |                      |
| u = 0.167664 + 1.190790I   |                                       |                      |
| a = 1.75974 + 0.44692I     | -4.30761 + 1.95796I                   | -13.39097 - 1.55059I |
| b = 1.243080 - 0.457519I   |                                       |                      |
| u = 0.167664 - 1.190790I   |                                       |                      |
| a = 1.75974 - 0.44692I     | -4.30761 - 1.95796I                   | -13.39097 + 1.55059I |
| b = 1.243080 + 0.457519I   |                                       |                      |
| u = 0.050177 + 1.253190I   |                                       |                      |
| a = 0.722975 + 0.985298I   | -5.41434 + 1.81549I                   | -13.14101 - 3.54833I |
| b = 0.495740 - 0.417798I   |                                       |                      |
| u = 0.050177 - 1.253190I   |                                       |                      |
| a = 0.722975 - 0.985298I   | -5.41434 - 1.81549I                   | -13.14101 + 3.54833I |
| b = 0.495740 + 0.417798I   |                                       |                      |

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape           |
|---------------------------|---------------------------------------|----------------------|
| u = -0.261687 + 1.231270I |                                       |                      |
| a = -2.05611 + 0.13028I   | -2.03730 - 5.64317I                   | -8.76092 + 6.80873I  |
| b = -1.122580 - 0.533009I |                                       |                      |
| u = -0.261687 - 1.231270I |                                       |                      |
| a = -2.05611 - 0.13028I   | -2.03730 + 5.64317I                   | -8.76092 - 6.80873I  |
| b = -1.122580 + 0.533009I |                                       |                      |
| u = -0.553404 + 0.030516I |                                       |                      |
| a = -0.394310 + 0.673104I | 1.73140 - 2.57417I                    | -2.05095 + 4.12677I  |
| b = -0.895721 - 0.664676I |                                       |                      |
| u = -0.553404 - 0.030516I |                                       |                      |
| a = -0.394310 - 0.673104I | 1.73140 + 2.57417I                    | -2.05095 - 4.12677I  |
| b = -0.895721 + 0.664676I |                                       |                      |
| u = -0.52166 + 1.39992I   |                                       |                      |
| a = 1.63987 - 0.44598I    | -9.1950 - 11.9560I                    | -9.10352 + 6.09824I  |
| b = 1.74672 + 0.69883I    |                                       |                      |
| u = -0.52166 - 1.39992I   |                                       |                      |
| a = 1.63987 + 0.44598I    | -9.1950 + 11.9560I                    | -9.10352 - 6.09824I  |
| b = 1.74672 - 0.69883I    |                                       |                      |
| u = 0.54264 + 1.40344I    |                                       |                      |
| a = -1.38809 - 0.74127I   | -13.3225 + 5.9895I                    | -12.03384 - 3.05262I |
| b = -1.65276 + 0.37354I   |                                       |                      |
| u = 0.54264 - 1.40344I    |                                       |                      |
| a = -1.38809 + 0.74127I   | -13.3225 - 5.9895I                    | -12.03384 + 3.05262I |
| b = -1.65276 - 0.37354I   |                                       |                      |
| u = 0.219579 + 0.305083I  |                                       |                      |
| a = -0.48733 + 3.67126I   | -0.977750 + 0.984957I                 | -3.11347 + 0.07087I  |
| b = 0.894252 + 0.888486I  |                                       |                      |
| u = 0.219579 - 0.305083I  |                                       |                      |
| a = -0.48733 - 3.67126I   | -0.977750 - 0.984957I                 | -3.11347 - 0.07087I  |
| b = 0.894252 - 0.888486I  |                                       |                      |

II.  $I_2^u = \langle u^3 + 2b - u + 1, \ -u^3 + 2u^2 + 2a - 3u + 1, \ u^4 - u^3 + u^2 + 1 \rangle$ 

(i) Arc colorings

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} \frac{1}{2}u^{3} - u^{2} + \frac{3}{2}u - \frac{1}{2} \\ -\frac{1}{2}u^{3} + \frac{1}{2}u - \frac{1}{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} \frac{1}{2}u^{3} - u^{2} + \frac{3}{2}u - \frac{1}{2} \\ -\frac{1}{2}u^{3} + \frac{1}{2}u - \frac{1}{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{1}{2}u^{3} - u^{2} + \frac{5}{2}u - \frac{1}{2} \\ -\frac{1}{2}u^{3} + \frac{3}{2}u - \frac{1}{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ -u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{2} + 1 \\ -u^{3} + u^{2} + 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{3} \\ u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{3} \\ u^{3} + u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes  $= -\frac{1}{4}u^3 \frac{9}{2}u^2 + \frac{9}{4}u \frac{53}{4}$

### (iv) u-Polynomials at the component

| Crossings             | u-Polynomials at each crossing |
|-----------------------|--------------------------------|
| $c_1$                 | $(u-1)^4$                      |
| $c_2, c_4$            | $(u+1)^4$                      |
| $c_3, c_8$            | $u^4$                          |
| $c_5, c_6, c_{10}$    | $u^4 - u^3 + 3u^2 - 2u + 1$    |
| $c_7$                 | $u^4 - u^3 + u^2 + 1$          |
| <i>c</i> <sub>9</sub> | $u^4 + u^3 + 3u^2 + 2u + 1$    |
| $c_{11}$              | $u^4 + u^3 + u^2 + 1$          |

# (v) Riley Polynomials at the component

| Crossings                | Riley Polynomials at each crossing |
|--------------------------|------------------------------------|
| $c_1, c_2, c_4$          | $(y-1)^4$                          |
| $c_3,c_8$                | $y^4$                              |
| $c_5, c_6, c_9$ $c_{10}$ | $y^4 + 5y^3 + 7y^2 + 2y + 1$       |
| $c_{7}, c_{11}$          | $y^4 + y^3 + 3y^2 + 2y + 1$        |

# (vi) Complex Volumes and Cusp Shapes

| Solutions to $I_2^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape           |
|---------------------------|---------------------------------------|----------------------|
| u = -0.351808 + 0.720342I |                                       |                      |
| a = -0.38053 + 1.53420I   | -1.85594 - 1.41510I                   | -12.38954 + 3.92814I |
| b = -0.927958 + 0.413327I |                                       |                      |
| u = -0.351808 - 0.720342I |                                       |                      |
| a = -0.38053 - 1.53420I   | -1.85594 + 1.41510I                   | -12.38954 - 3.92814I |
| b = -0.927958 - 0.413327I |                                       |                      |
| u = 0.851808 + 0.911292I  |                                       |                      |
| a = 0.130534 + 0.427872I  | 5.14581 + 3.16396I                    | -10.48546 - 5.24252I |
| b = 0.677958 - 0.157780I  |                                       |                      |
| u = 0.851808 - 0.911292I  |                                       |                      |
| a = 0.130534 - 0.427872I  | 5.14581 - 3.16396I                    | -10.48546 + 5.24252I |
| b = 0.677958 + 0.157780I  |                                       |                      |

(i) Arc colorings

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{4} + u^{3} - u^{2} + 3u - 2 \\ -u^{5} - u^{4} - u^{3} + u^{2} + 2u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{4} - u^{2} + 2u - 1 \\ -u^{4} + 2u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 2u - 1 \\ u^{2} + 2u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{4} + u^{2} - 1 \\ u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{3} \\ u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{3} \\ u^{3} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = -10

### (iv) u-Polynomials at the component

| Crossings                     | u-Polynomials at each crossing              |
|-------------------------------|---------------------------------------------|
| $c_1, c_3, c_4$ $c_8$         | $(u^2 - u - 1)^3$                           |
| $c_2$                         | $(u^2 + 3u + 1)^3$                          |
| $c_5, c_6, c_7$ $c_9, c_{11}$ | $u^6 + 2u^4 + 3u^3 + u^2 + 3u + 1$          |
| $c_{10}$                      | $u^6 + 4u^5 + 6u^4 - 3u^3 - 13u^2 - 7u + 1$ |

# (v) Riley Polynomials at the component

| Crossings                     | Riley Polynomials at each crossing               |
|-------------------------------|--------------------------------------------------|
| $c_1, c_3, c_4$ $c_8$         | $(y^2 - 3y + 1)^3$                               |
| $c_2$                         | $(y^2 - 7y + 1)^3$                               |
| $c_5, c_6, c_7$ $c_9, c_{11}$ | $y^6 + 4y^5 + 6y^4 - 3y^3 - 13y^2 - 7y + 1$      |
| $c_{10}$                      | $y^6 - 4y^5 + 34y^4 - 107y^3 + 139y^2 - 75y + 1$ |

# (vi) Complex Volumes and Cusp Shapes

| Solutions to $I_3^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape |
|---------------------------|---------------------------------------|------------|
| u = -0.170987 + 1.042930I |                                       |            |
| a = -1.89470 + 1.68750I   | -0.986960                             | -10.0000   |
| b = -1.98931 + 1.11042I   |                                       |            |
| u = -0.170987 - 1.042930I |                                       |            |
| a = -1.89470 - 1.68750I   | -0.986960                             | -10.0000   |
| b = -1.98931 - 1.11042I   |                                       |            |
| u = 1.13928               |                                       |            |
| a = -0.0860817            | -8.88264                              | -10.0000   |
| b = -1.50630              |                                       |            |
| u = -0.56964 + 1.40480I   |                                       |            |
| a = 0.970092 - 0.868217I  | -8.88264                              | -10.0000   |
| b = 1.371190 + 0.120928I  |                                       |            |
| u = -0.56964 - 1.40480I   |                                       |            |
| a = 0.970092 + 0.868217I  | -8.88264                              | -10.0000   |
| b = 1.371190 - 0.120928I  |                                       |            |
| u = 0.341974              |                                       |            |
| a = -1.06471              | -0.986960                             | -10.0000   |
| b = 0.742547              |                                       |            |

IV. u-Polynomials

| Crossings  | u-Polynomials at each crossing                                                                                        |
|------------|-----------------------------------------------------------------------------------------------------------------------|
| $c_1$      | $((u-1)^4)(u^2-u-1)^3(u^{20}-2u^{19}+\cdots-35u+4)$                                                                   |
| $c_2$      | $((u+1)^4)(u^2+3u+1)^3(u^{20}+22u^{19}+\cdots+353u+16)$                                                               |
| $c_3, c_8$ | $u^4(u^2 - u - 1)^3(u^{20} + 2u^{19} + \dots + 112u + 64)$                                                            |
| C4         | $((u+1)^4)(u^2-u-1)^3(u^{20}-2u^{19}+\cdots-35u+4)$                                                                   |
| $c_5, c_6$ | $(u^4 - u^3 + 3u^2 - 2u + 1)(u^6 + 2u^4 + 3u^3 + u^2 + 3u + 1)$ $\cdot (u^{20} - 2u^{19} + \dots - 2u + 1)$           |
| $c_7$      | $ (u^4 - u^3 + u^2 + 1)(u^6 + 2u^4 + \dots + 3u + 1)(u^{20} - 2u^{19} + \dots - 2u + 1) $                             |
| <i>c</i> 9 | $(u^4 + u^3 + 3u^2 + 2u + 1)(u^6 + 2u^4 + 3u^3 + u^2 + 3u + 1)$ $\cdot (u^{20} - 2u^{19} + \dots - 2u + 1)$           |
| $c_{10}$   | $(u^4 - u^3 + 3u^2 - 2u + 1)(u^6 + 4u^5 + 6u^4 - 3u^3 - 13u^2 - 7u + 1)$ $\cdot (u^{20} + 14u^{19} + \dots + 4u + 1)$ |
| $c_{11}$   | $ (u4 + u3 + u2 + 1)(u6 + 2u4 + \dots + 3u + 1)(u20 - 2u19 + \dots - 2u + 1) $                                        |

### V. Riley Polynomials

| Crossings     | Riley Polynomials at each crossing                                                                                     |
|---------------|------------------------------------------------------------------------------------------------------------------------|
| $c_1, c_4$    | $((y-1)^4)(y^2-3y+1)^3(y^{20}-22y^{19}+\cdots-353y+16)$                                                                |
| $c_2$         | $((y-1)^4)(y^2-7y+1)^3(y^{20}-46y^{19}+\cdots+223775y+256)$                                                            |
| $c_3, c_8$    | $y^4(y^2 - 3y + 1)^3(y^{20} - 18y^{19} + \dots + 45824y + 4096)$                                                       |
| $c_5,c_6,c_9$ | $(y^4 + 5y^3 + 7y^2 + 2y + 1)(y^6 + 4y^5 + 6y^4 - 3y^3 - 13y^2 - 7y + 1)$ $\cdot (y^{20} + 14y^{19} + \dots + 4y + 1)$ |
| $c_7, c_{11}$ | $(y^4 + y^3 + 3y^2 + 2y + 1)(y^6 + 4y^5 + 6y^4 - 3y^3 - 13y^2 - 7y + 1)$ $\cdot (y^{20} + 14y^{19} + \dots + 4y + 1)$  |
| $c_{10}$      | $(y^4 + 5y^3 + 7y^2 + 2y + 1)(y^6 - 4y^5 + \dots - 75y + 1)$ $\cdot (y^{20} - 14y^{19} + \dots + 56y + 1)$             |