

DATA STRUCTURES AND ALGORITHMS

Algorithms Fundamentals

Data Structures and Algorithms

- Algorithm
 Outline, the essence of a computational procedure, step-by-step instructions
- Program an implementation of an algorithm in some programming language
- Data structure
 Organization of data needed to solve the problem

What is Algorithm?

- A finite set of instructions which accomplish a particular task
- A method or process to solve a problem
- Transforms input of a problem to output
- Algorithm = Input + Process + Output
- Algorithm development is an art it needs practice, practice and only practice!

What is a good algorithm?

- It must be correct
- It must be finite (in terms of time and size)
- It must terminate
- It must be unambiguous Which step is next?
- It must be space and time efficient
- A program is an instance of an algorithm, written in some specific programming language

A simple algorithm

- Problem: Find maximum of a, b, c
- Algorithm
 - ✓ Input = a, b, c
 - ✓ Output = max
 - Process

```
Let max = a
```

If b > max then

max = b

If c > max then

max = c

Display max

Order is very important!!!

Efficiency

Data Structure and

Algorithm Design Goals

Robustness

Reusability

Adaptability

Overall Picture (2)

- This course is not about:
 - ✓ Programming languages
 - ✓ Computer architecture
 - ✓ Software architecture
 - ✓ Software design and implementation principles
 - ✓ Issues concerning small and large scale programming
- We will only touch upon the theory of complexity and computability

Algorithmic problem

Specification of output as a function of input

Infinite number of input *instances* satisfying the specification.

For example:

- A sorted, non-decreasing sequence of natural numbers. The sequence is of non-zero, finite length:
 - 1, 20, 908, 909, 100000, 1000000000.

Input instance, adhering to the specification

Output related to the input as required

- ✓ Algorithm describes actions on the input instance
- ✓ Infinitely many correct algorithms for the same algorithmic problem

INPUT

sequence of numbers

a permutation of the sequence of numbers

For any given input the algorithm halts with the output:

- b1 < b2 < b3 < < bn
- b1, b2, b3,, bn is a permutation of a1, a2, a3,....,an

Running time

Depends on

- number of elements (n)
- how (partially) sorted they are
- algorithm

Insertion Sort

Strategy

- Start "empty handed"
- Insert a card in the right position of the already sorted hand
- Continue until all cards are inserted/sorted

```
for j=2 to length(A)
  do key=A[j]
  "insert A[j] into the
  sorted sequence A[1..j-1]"
    i=j-1
    while i>0 and A[i]>key
        do A[i+1]=A[i]
        i--
        A[i+1]:=key
```


Analysis of Algorithms

- Efficiency:
 - ✓ Running time
 - ✓ Space used
- Efficiency as a function of input size:
 - ✓ Number of data elements (numbers, points)
 - ✓ A number of bits in an input number

The RAM model

- Very important to choose the level of detail.
- The RAM model:
 - ✓ Instructions (each taking constant time):
 - ✓ Arithmetic (add, subtract, multiply, etc.)
 - ✓ Data movement (assign)
 - ✓ Control (branch, subroutine call, return)
 - ✓ Data types integers and floats

Analysis of Insertion Sort

Time to compute the **running time** as a function of the **input size**

	cost	times
for j=2 to length(A)	$\mathtt{c}_{\mathtt{1}}$	n
do key=A[j]	C ₂	n-1
"insert A[j] into the	0	n-1
sorted sequence A[1j-1]"		
i=j-1	C ₃	$\lfloor n^{-1} \rfloor$
while i>0 and A[i]>key	\mathtt{C}_4	$\left \sum_{j=2}^{j} t_{j}\right $
do A[i+1]=A[i]	C ₅	$\left \sum_{j=2}^{n}(t_{j}-1)\right $
i	C ₆	$\sum_{j=2}^{h=2} (t_j - 1)$ $\sum_{j=2}^{h=2} (t_j - 1)$
A[i+1]:=key	C ₇	$\begin{bmatrix} -1 \\ n-1 \end{bmatrix}$

Best/Worst/Average Case

- Best case: elements already sorted ® tj=1, running time = f(n), i.e., linear time.
- Worst case: elements are sorted in inverse order
 ® tj=j, running time = f(n2), i.e., quadratic time
- Average case: tj=j/2, running time = f(n2), i.e., quadratic time

Best/Worst/Average Case (2)

For a specific size of input n, investigate running times for different input instances:

Best/Worst/Average Case (3)

For inputs of all sizes:

Best/Worst/Average Case (4)

Worst case is usually used:

- It is an upper-bound and in certain application domains (e.g., air traffic control, surgery) knowing the worst-case time complexity is of crucial importance
- For some algorithms worst case occurs fairly often
- The average case is often as bad as the worst case
- Finding the average case can be very difficult

That's it?

- Is insertion sort the best approach to sorting?
- Alternative strategy based on divide and conquer
- MergeSort
 - ✓ sorting the numbers <4, 1, 3, 9> is split into
 - ✓ sorting < 4, 1 > and < 3, 9 > and
 - ✓ merging the results
 - ✓ Running time f(n log n)

INPUT

sequence of numbers (database) a single number (query)

OUTPUT

an index of the found number or NIL

Searching (2)

```
j=1
while j<=length(A) and A[j]!=q</pre>
   do j++
if j<=length(A) then return j</pre>
else return NIL
```

- Worst-case running time: f(n), average-case: f(n/2)
- We can't do better. This is a lower bound for the problem of searching in an arbitrary sequence.

Example 3: Searching

INPUT

- sorted non-descending sequence of numbers (database)
 - a single number (query)

OUTPUT

 an index of the found number or NIL

Binary search

Idea: Divide and conquer, one of the key design techniques

```
left=1
right=length(A)
do
    j=(left+right)/2
    if A[j]==q then return j
    else if A[j]>q then right=j-1
    else left=j+1
while left<=right
return NIL</pre>
```


Binary search - analysis

- How many times the loop is executed:
 - ✓ With each execution its length is cult in half
 - ✓ How many times do you have to cut n in half to get 1?
 - ✓ lg n

- A finite set of instructions which accomplish a particular task
- A method or process to solve a problem
- Transforms input of a problem to output
- Algorithm = Input + Process + Output
- Algorithm development is an art it needs practice, practice and only practice!

What is a good algorithm?

- It must be correct
- It must be finite (in terms of time and size)
- It must terminate
- It must be unambiguous
 - ✓ Which step is next?
- It must be space and time efficient
- A program is an instance of an algorithm, written in some specific programming language

A simple algorithm

- Problem: Find maximum of a, b, c
- Algorithm
 - ✓ Input = a, b, c
 - ✓ Output = max
 - Process
 - Let max = a
 - If b > max thenmax = b
 - If c > max thenmax = c
 - Display max
- Order is very important!!!

Recursion

- The recursive function is
 - ✓ a kind of function that calls itself, or
 - ✓ a function that is part of a cycle in the sequence of function calls.

Problems Suitable for Recursive Functions

- One or more simple cases of the problem have a straightforward solution.
- The other cases can be redefined in terms of problems that are closer to the simple cases.
- The problem can be reduced entirely to simple cases by calling the recursive function.
 - ✓ If this is a simple case solve it else redefine the problem using recursion

- Assume that the problem of size 1 can be solved easily (i.e., the simple case).
- We can recursively split the problem into a problem of size 1 and another problem of size n-1.

We can implement the multiplication by addition.

```
Performs integer multiplication using + operator.
               m and n are defined and n > 0
        Post: returns m * n
    int
    multiply(int m, int n)
          int ans;
                            The simple case is "m*1=m."
          if (n == 1)
                             /* simple case */
                ans = m;
          else
                ans = m + multiply(m, n - 1); /* recursive step */
15.
16.
          return (ans);
                             The recursive step uses the following equation:
                                            "m*n = m+m*(n-1)."
```


7

Terminating Condition

- The recursive functions always contains one or more terminating conditions.
 - ✓ A condition when a recursive function is processing a simple case instead of processing recursion.
- Without the terminating condition, the recursive function may run forever.
 - ✓ e.g., in the previous multiply function, the if statement "if (n == 1) ..." is the terminating condition.

- We can count the number of occurrences of a given character in a string.
 - ✓ e.g., the number of 's' in "Mississippi" is 4.

```
Count the number of occurrences of character ch in string str
int
count(char ch, const char *str)
                                     The terminating condition.
      int ans;
      if (str[0] == '\0')
                                                       simple case */
            ans = 0;
                                /* redefine problem using recursion */
      else
           if (ch == str[0])
                               /* first character must be counted */
                 ans = 1 + count(ch, &str[1]);
           else
                                /* first character is not counted */
                 ans = count(ch, &str[1]);
     return (ans);
```


- The recursive concept can be used to reverse an input string.
 - ✓ It can also be done without recursion.

```
* Take n words as input and print them in reverse order on separate lines.
 * Pre: n > 0
void
reverse input words(int n)
     char word[WORDSIZ]; /* local variable for storing one word
                                                                              */
     if (n <= 1) { /* simple case: just one word to get and print
                                                                              */
           scanf("%s", word);
           printf("%s\n", word);
     } else { /* get this word; get and print the rest of the words in
                  reverse order; then print this word
                                                                 The scanned word will not be
           scanf("%s", word);
                                                                  printed until the recursion finishes.
           reverse input words(n - 1);
           printf("%s\n", word);
```

The first scanned word

is last printed.

A Recursive Function that Reverses Input Words (2/2)

- Note that the recursive function is just an alternative solution to a problem.
 - ✓ You can always solve the problem without recursion.

How C Maintains the Recursive Steps

- C keeps track of the values of variables by the stack data structure.
 - ✓ Recall that stack is a data structure where the last item added is the first item processed.
 - ✓ There are two operations (push and pop) associated with stack.

y

How C Maintains the Recursive Steps

- Each time a function is called, the execution state of the caller function (e.g., parameters, local variables, and memory address) are pushed onto the stack.
- When the execution of the called function is finished, the execution can be restored by popping up the execution state from the stack.
- This is sufficient to maintain the execution of the recursive function.
 - ✓ The execution state of each recursive step are stored and kept in order in the stack.

- The recursive function is not easy to trace and to debug.
 - ✓ If there are hundreds of recursive steps, it is not useful to set the breaking point or to trace step-by-step.
- A naïve but useful approach is inserting printing statements and then watching the output to trace the recursive steps.


```
1. /*
2. * *** Includes calls to printf to trace execution ***
3. * Performs integer multiplication using + operator.
4. * Pre: m and n are defined and n > 0
5. * Post: returns m * n
6. */
7. int
8. multiply(int m, int n)
9. {
    int ans;

11. printf("Entering multiply with m = %d, n = %d\n", m, n);
13.
    if (n == 1)
        ans = m; /* simple case */
    else
16. else
17. ans = m + multiply(m, n - 1); /* recursive step */
```


- Many mathematical functions can be defined and solved recursively.
 - ✓ The following is a function that computes n!.

Iterative factorial Function

- The previous factorial function can also be implemented by a for loop.
 - ✓ The iterative implementation is usually more efficient than recursive. implementation.

```
* Computes n!
 * Pre: n is greater than or equal to zero
int
factorial(int n)
   int i,
                    /* local variables */
       product = 1;
    /* Compute the product n x (n-1) x (n-2) x ... x 2 x 1 */
   for (i = n; i > 1; --i) {
       product = product * i;
    /* Return function result */
   return (product);
```


Recursive fibonacci Function

- In our midterm, you are required to write a fibonacci function.
 - ✓ It can be easily solved by the recursive function
 - ✓ But the recursive function is inefficient because the same fibonacci values may be computed more than once.

Recursive gcd Function

- Generally speaking, if the algorithm to a problem is defined recursively in itself, we would tend to use the recursive function.
- e.g., the greatest common divisor (GCD) of two integers m and n can be defined recursively.
 - ✓ gcd(m,n) is n if n divides m evenly;
 - ✓ gcd(m,n) is gcd(n, remainder of m divided by n) otherwise.

Recursive gcd Function (Contd.)


```
Displays the greatest common divisor of two integers
    #include <stdio.h>
        Finds the greatest common divisor of m and n
        Pre: m and n are both > 0
    int
    gcd(int m, int n)
          int ans;
          if (m % n == 0)
                ans = n;
          else
                ans = gcd(n, m % n);
20.
21.
          return (ans);
```

(continued)

- The towers of Hanoi problem involves moving a number of disks (in different sizes) from one tower (or called "peg") to another.
 - ✓ The constraint is that the larger disk can never be placed on top of a smaller disk.
 - ✓ Only one disk can be moved at each time
 - ✓ Assume there are three towers available.

This problem can be solved easily by recursion.

Algorithm:

- if n is 1 then
 move disk 1 from the source tower to the destination tower
- Else
 - 1. move n-1 disks from the source tower to the temp tower.
 - 2. move disk n from the source tower to the destination tower.
 - 3. move n-1 disks from the temp tower to the source tower.


```
Displays instructions for moving n disks from from peg to to peg using
    * aux peg as an auxiliary. Disks are numbered 1 to n (smallest to
    * largest). Instructions call for moving one disk at a time and never
    * require placing a larger disk on top of a smaller one.
    */
   void
   tower(char from peg,
                          /* input - characters naming
         char to peg,
                                the problem's
         char aux peg,
                                three pegs
                         /* input - number of disks to move
         int n)
         if (n == 1) {
               printf("Move disk 1 from peg %c to peg %c\n", from peg, to peg);
15.
         } else {
16.
               tower(from peg, aux peg, to peg, n - 1);
17.
               printf("Move disk %d from peg %c to peg %c\n", n, from peg, to peg);
18.
               tower(aux peg, to peg, from peg, n - 1);
```

The recursive step

The recursive step

• The execution result of calling Tower('A', 'B', 'C',3);

Move	disk	1	from	Α	to	С
Move	disk	2	from	A	to	В
Move	disk	1	from	С	to	В
Move	disk	3	from	Α	to	С
Move	disk	1	from	В	to	A
Move	disk	2	from	В	to	С
Move	disk	1	from	Α	to	С

Thank You!

