

Contents

Appendix

Business Problem	Trigger
	Objective
Problem Analysis	Project Flow
	Evolution of Business problem
Churn	Variable Selection - EDA
<u>Analysis</u>	Statistical Analysis
Behavioral	Approach
Analysis	Cluster Summary
Key Takeaways	

Business Problem

Current State:

- XYZ used to follow "Freemium" model for providing music to its subscribers
- Market share of XYZ has seen a dip of 12% YoY in 2017

"Business Strategies" division of "XYZ" in collaboration of "Analytics" division is responsible for providing actionable recommendations to sales and marketing team and enable them to acquire new customers and retain through active engagement ...

XYZ is able to retain their customer base with their existing model and effectively monetize it

Objective:

- Classify customers on the basis of likelihood to leave system
- Identify factors affecting customer behavior significantly
- Analyze customer behavior of most engaged customer
- Identify Potential customers and pitch relevant services to them

Trigger:

- In 2016, "On-Demand" services model was introduced with the arrival of Pandora and Youtube Red
- This has made "XYZ" to reconsider their existing business model

- Light shade in map is showing market share of year 2016
- Dark shade in map is showing reduced market share in 2017

Problem Analysis

Identify target customer:

- · Identify potential customers and prepare targeting strategy
- Pitch in same services to potential customers that was opted by customers with similar behaviour

Analyse behaviour of customer:

- Analyse behaviour of customer who are least likely to leave
- Compare behaviour across all the segments

Identify factors affecting customer behaviour:

• Perform descriptive analysis to understand the impact of different variable on the customer behaviour across all the categories

Prediction of customer attrition:

• Use predictive modelling techniques to classify customers based on likelihood to leave system

EDA - Outlier

EDA

- Imputed age with "Multivariate Normal Imputation" wherever age is missing or less than
 13
- Capped all the age above 57 with 57
- Derived columns: "Duration of Engagement", "Recency" from
- registration_init_time
- transaction date
- membership_expire_date

△ Correlations registered_via Duration of Engagement payment _method_id payment _plan_days plan_list_price actual _amount _paid is _auto_renew Recency Age_Updated 1.0000 0.5621 0.0039 -0.0159 -0.0220-0.0178-0.0055 0.2035 registered via 0.1782 Duration of Engagement 0.5621 1.0000 -0.1111 -0.00290.0160 0.0197 0.1731 -0.01710.2652 0.0039 1.0000 -0.2783-0.2525-0.24140.0230 payment_method_id -0.1111 0.2617 0.1861 1.0000 -0.0401 -0.0159 -0.27830.9591 0.9568 -0.3877-0.0277payment_plan_days -0.0029-0.0220-0.25250.9591 1.0000 0.9965 -0.3700-0.0328-0.0333plan_list_price 0.0160 actual amount paid -0.01780.0197 -0.24140.9568 0.9965 1.0000 -0.3714-0.0277-0.0309-0.3877-0.37000.1782 0.1731 0.2617 -0.37141.0000 0.0470 0.2279 is auto renew 1.0000 0.0216 Recency -0.0055-0.01710.1861 -0.0277-0.0328-0.02770.0470 Age_Updated 0.0230 -0.0401-0.0333-0.03090.2279 0.0216 1.0000 0.2035 0.2652

Model Comparison

Measures of Fit for is_churn									
Creator	.2 .4 .6 .8	Entropy RSquare	Generalized RSquare	Mean -Log p	RMSE		Misclassification Rate	N	AUC
Boosted Tree Bootstrap Forest Fit Generalized Logistic Regression Partition		0.5105 0.4375 0.3017 0.5246	0.6020 0.5292 0.3829 0.6156	0.2087 0.2591	0.2204 0.2368 0.2679 0.2173	0.0973 0.1269 0.1440 0.0946	0.0740 0.0892	478113 478113 478113 478113	0.8974 0.8346

Factors affecting Customer Behavior

Fit Details

Measure	Training	Validation	Test	Definition
Entropy RSquare	0.5235	0.5274	0.5257	1-Loglike(model)/Loglike(0)
Generalized RSquare	0.6144			(1-(L(0)/L(model))^(2/n))/(1-L(0)^(2/n))
Mean -Log p	0.1767			$\sum -\text{Log}(\rho[j])/n$
RMSE	0.2176			$\sqrt{\sum(y[j]-\rho[j])^2/n}$
Mean Abs Dev	0.0947	0.0943	0.0943	Σ[y[j]-ρ[j]]/n
Misclassification Rate	0.0597	0.0594	0.0594	$\sum (\rho[j] \neq \rho Max)/n$
N	286868		119528	

■ Confusion Matrix

_		-		_		
	ra	п	-		-	0
-	ıa	я				u
-	7.5	_		_		_

Actual	Predicted Count				
is_churn	0	1			
0	249896	1980			
1	15148	19844			

Validation

Actual	Predicted Count			
is_churn	0	1		
0	62443	473		
1	3785	5016		

Test

Actual	Predicted Count			
is_churn	0	1		
0	104122	819		
1	6285	8302		

Analyse behaviour of customer

			Category	High Value	Potential	Loyal	Moderate
		Tr etr	0	11	2	178,185	255,495
5	ation Lion Is Churn Absolute	1	5,160	7,030	11,289	20,941	
Population	Distribution	ab Ab	Total	5,171	7,032	189,474	276,436
na	Str.	%	0	0.213%	0.028%	94.042%	92.425%
٩	Ö	ls Churn%	1	99.787%	99.972%	5.958%	7.575%
		Ò	Total %	1.082%	1.471%	39.630%	57.818%
			Duration of Engagement	2,160	1,622	3,055	1,187
	20	Sa	payment_plan_days	400	175	30	31
	Clustering	Varibales	plan_list_price	\$ 1,658	\$ 711	\$ 149	\$ 147
	Ins	/ari	actual_amount_paid	\$ 1,658	\$ 710	\$ 148	\$ 146
	0 >		Recency	275	268	271	298
			Age	29	27	36	26
			city	13,5,4,15	13,5,4,15	13,5,4,15	13,5,4,15
			registered_via	9,3	9,3	9,7	9,3
	v	;	Duration of Engagement	2,160	1,622	3,055	1,187
	4		payment_method_id	32,38	32,38	39,40	39,41
	i.		payment_plan_days	400	175	30	31
	Profiling Variables		plan_list_price	\$1,658	\$711	\$149	\$147
			actual_amount_paid	\$1,658	\$710	\$148	\$146
			is_auto_renew	0.74		95.60%	83.83%
			Recency	275	268	271	298
			is_cancel	0.70		2.35%	3.30%
			Age_Updated	29	27	36	26

Findings:

- From "Potential" customers
 - > 99.9% customers are likely to move out
 - > 75% of the customers are from 27 30 years age group
- From "Loyal" customers
 - ≥ 2.35% customers are likely to move out
 - > ~75% of the customers are from 36 to 40 years age group

Insights:

- Potential customers are very similar to most engaged customers in terms of the age group, city, registration channel, and payment method
- But, they have low "Duration of Engagement" as compared to "Most Engaged"
- With migration of a "Potential" customer to "Most Engaged", company would make additional \$943 per customer
- "High Value" and "Potential" customers didn't opt for auto renewal and didn't cancel subscription

Analyse behavior of customer

Project Progress

Recommendations

Recommendations:

- We need to focus on top two categories of which more than 90% customers are like to churn. These are the categories which are generating a significant share of overall revenue
- Customers can be offered discounts and credits under a marketing campaign whenever their subscription is going to end
- Targeting of customers should be as per the level of engagement in case of limited budget
- Capture data at service level so that pre post analysis can be performed to see the impact of implemented marketing campaigns

Case 1:

Findings:

- "High Value" customers didn't opt for auto-renewal
- 99.7% of them are likely to churn out
- ~75% of the customers are from 27-30 years age group

Insights:

- These customers are premium customers who contributes most to the company revenue
- Every time their subscription ends they look for available options in market
- Age shows that these customers are highly active and updated
- Every new customer gets some initial discounts or credits in all the companies.

Recommendation:

Whenever subscriptions of "High Value" customer ends, marketing or sales team needs to follow up with them for new subscriptions and services. They must be offered discounts and extra credits. This would help to avoid migration of customers to other competitors.

Appendix

■ Specifications

Target Column: is_churn Number of training rows: 286868 Validation Column: Validation Number of validation rows: 71717 Number of Layers: 50 Number of test rows: 119528

Splits per Tree: 3 Learning Rate: 0.3 Overfit Penalty: 0.0001

■ Overall Statistics

Measure	Training	Validation	Test	Definition
Entropy RSquare	0.4931	0.4998	0.4991	1-Loglike(model)/Loglike(0)
Generalized RSquare	0.5849			(1-(L(0)/L(model))^(2/n))/(1-L(0)^(2/n))
Mean -Log p	0.1880			$\sum -Log(\rho[j])/n$
RMSE	0.2231			√ ∑(y[j]-p[j])²/n
Mean Abs Dev	0.1024	0.1016	0.1015	Σ[y[i]-ρ[i]]/n
Misclassification Rate	0.0620	0.0615	0.0609	∑(p[j]≠pMax)/n
N	286868	71717	119528	

△ Confusion Matrix

Training

Actual	Predicted Count				
is_churn	0	1			
0	249404	2472			
1	15300	19692			

Validation

Actual	Predicted Count			
is_churn	0	1		
0	62302	614		
1	3795	5006		

	rest
	Pro
Actual	(

Actual	Count		
is_churn	0	1	
0	103966	975	
1	6308	8279	

Details:

Boosted tree is used with a learning rate of 0.6 which led to a "Misclassification Rate" of 0.0601 on test data set

Misclassification Rate:

Training : 0.0609
Validation : 0.0607
Test : 0.0601

△ Specifications

Target Column: is_churn Number of training rows: 286868 Validation Column: Validation Number of validation rows: 71717 Number of Layers: 50 Number of test rows: 119528

Splits per Tree: 3 Learning Rate: 0.6 Overfit Penalty: 0.0001

■ Overall Statistics

Measure	Training	Validation	Test	Definition
Entropy RSquare	0.5047	0.5099	0.5102	1-Loglike(model)/Loglike(0)
Generalized RSquare	0.5963			(1-(L(0)/L(model))^(2/n))/(1-L(0)^(2/n))
Mean -Log p	0.1837			$\sum -Log(p[j])/n$
RMSE	0.2212	0.2204	0.2198	√ ∑(y[j]-p[j])²/n
Mean Abs Dev	0.0988			Σ[y[i]-ρ[i]]/n
Misclassification Rate		0.0607	0.0601	∑(p[j]≠pMax)/n
N	286868	71717	119528	

△ Confusion Matrix

	Predic	ted	
Actual	Count		
s_churn	0	1	
0	249293	2583	

14900

20092

Training

Actual	Predicted Count		
is_churn	0	1	
0	62277	639	
1	3717	5084	

Validation

Actual	Predicted Count		
is_churn	0	1	
0	103903	1038	
1	6143	8444	

Test

Details:

Boosted tree is used with a learning rate of 0.9 which led to a "Misclassification Rate" of 0.0605 on test data set

Misclassification Rate:

Training : 0.0615

Validation : 0.0615

Test : 0.0605

■ Specifications

Validation Column: Validation Number of training rows: 286868

Validation Column: Validation Number of validation rows: 71717

Number of Layers: 50 Number of test rows: 119528

Splits per Tree: 3 Learning Rate: 0.9 Overfit Penalty: 0.0001

■ Overall Statistics

Measure	Training	Validation	Test	Definition
Entropy RSquare	0.5083	0.5130	0.5143	1-Loglike(model)/Loglike(0)
Generalized RSquare	0.5998	0.6047	0.6056	$(1-(L(0)/L(model))^{(2/n)}/(1-L(0)^{(2/n)})$
Mean -Log p	0.1823	0.1813	0.1802	$\sum -Log(\rho[j])/n$
RMSE	0.2208	0.2204	0.2193	$\sqrt{\sum (y[j]-\rho[j])^2/n}$
Mean Abs Dev	0.0975	0.0971	0.0968	$\sum y[j]-\rho[j] /n$
Misclassification Rate	0.0615			∑(ρ[j]≠ρMax)/n
N	286868	71717	119528	n

△ Confusion Matrix

	Training		
Actual	Predicted Count		
is_churn	0	1	
0	248852	3024	
1	14622	20370	

92		Hadron			
	Actual	Predicted Count			
	is churn				
	0	62163	753 5144		

Validation

Actual	Predicted Count		
is churn	0	1	
0	103733	1208	
1	6022	8565	

Details:

Boosted tree is used with a learning rate of 0.9 which led to a "Misclassification Rate" of 0.0605 on test data set

Misclassification Rate:

Training : 0.0615
Validation : 0.0615
Test : 0.0605

Receiver Operating Characteristic on Test Data 1.00 0.90 0.80 0.70 0.60 Sensitivity 0.50 0.40 0.30 0.20 0.10 0.00 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1-Specificity

Details:

20209

14783

Bootstrap forest is used which led to a "Misclassification Rate" of 0.0733 on test data set

5064

3737

8368

6219

Misclassification Rate:

Training : 0.0736

Validation : 0.0738

Test : 0.0733

		Mo	st Likely	is_churn		
is_churn		0			1	
	Validation			Validation		
	Training	Validation	Test	Training	Validation	Test
0	248852 14622	62163 3657	103733 6022	3024 20370	753 5144	1208 8565

		Mos	st Likely is	s_churn 2		
		0			1	
is_churn	Validation			Validation		
	Training	Validation	Test	Training	Validation	Test
0	250698 18161	62633 4508	104453 7540	1178 16831	283 4293	488 7047

is_churn	Cutoff35					
	0 Validation			1 Validation		
	0	245756	61376	102469	6120	1540
1	12288	3076	5070	22704	5725	9517

is_churn	Boot_cut_off4						
	0 Validation			1 Validation			
							Training
	0	249734	62378	104070	2142	538	871
1	16164	4015	6677	18828	4786	7910	

is_churn	Cutoff4					
	0 Validation			1 Validation		
	0	247099	61710	102987	4777	1206
1	13155	3307	5435	21837	5494	9152

is_churn	Boot_cut_off35						
	0 Validation			1 Validation			
							Training
	0	246411 13380	61535 3279	102790 5529	5465 21612	1381 5522	2151 9058

0.422 0.578

0.421 0.579

0.425 0.575

Moderate