

A sofa can be seen as the intersection of rotating hallways (see the figure above). So by taking a finite number of hallways and taking the polygonal intersection S, we get an approximation of the sofa with a larger area. Let Θ be a finite set of angles such that $\{0,\pi/2\}\subseteq\Theta\subseteq[0,\pi/2]$. That is, Θ is a partition

$$0=\theta_0<\theta_1<\theta_2<\dots<\theta_n=\pi/2$$

of the interval $[0,\pi/2]$. SofaDesigner computes the set of all *monotone* hallway intersections S with the set of angles Θ and an area at least $2.2195\ldots$. Essentially, S is the polygonal intersection of the finite number of hallways of width 1 rotated by each angle of Θ , approximating a sofa from above (see the figure below).

SofaDesigner produces computer-assisted proofs of mathematical facts about an arbitrary intersection S. It generates proofs in computer files, so that the files representing the proofs can be verified separately by a verifier independent from SofaDesigner. The purpose of this is to ensure that the correctness of the proof do not depend on the correctness of the specific implementation of SofaDesigner (which consists of thousand lines of C++), and to enable cross-validation by multiple independent parties.

In particular, we have the following roles for SofaDesigner and its verifier.

SofaDesigner

1. Computes the set $\mathcal S$ of all monotone hallway intersections S with an area at least $2.2195\ldots$, and stores it as a tree structure $\mathcal T$ in a JSON format.

2. Given \mathcal{T} and an inequality I on an arbitrary intersection S in S, produces a proof in a custom JSON format.

The verifier

- 1. Verifies that the JSON-formatted tree \mathcal{T} accurately represents the set \mathcal{S} of all monotone hallway intersections S with an area at least 2.2195...
- 2. Verifies the proof that an inequality I on S from the JSON-formatted proof generated by SofaDesigner.

Definition of Monotone Hallway Intersection S

Figure [polygon-hallway-intersection]. An intersection S with five hallways (n = 4) and edge order $\mathbf{i}_K = [0, 1, 2, 3, -2, 2, -3, 1, -4, -2, 0]$.

We first provide the precise definition and shape of a monotone hallway intersection S with angle set Θ . All the details in this section is important to ensure that the verification process is correct.

 $H=\mathbb{R} imes [0,1]$ is the horizontal strip of height 1. L is the right-angled hallway of width 1, with inner corner at $\mathbf{x}=(0,0)$ and outer corner at $\mathbf{y}=(1,1)$. Mathematically, $L=(-\infty,1] imes [0,1]\cup [0,1] imes (-\infty,1]$. Let a and b be the lines x=1 and y=1 passing through the outer corner \mathbf{y} representing the outer walls of L. Let c and d be the half-lines $(-\infty,0] imes \{0\}$ and $\{0\} imes (-\infty,0]$ emanating from the inner corner \mathbf{x} representing the inner walls of L.

For all $0 \le i \le n$, let $u_i = (\cos \theta_i, \sin \theta_i)$ and $v_i = (-\sin \theta_i, \cos \theta_i)$ so that the vectors u_i and v_i form a orthogonal basis. Also, let $v_{i+n} = -u_i$ for all $0 \le i \le n$ so that v_i is defined for all indices i from 0 to 2n. For any $0 \le i \le n$, let L_i be a copy of the hallway L rotated counterclockwise by an angle of θ_i and

translated so that the inner corner is positioned at \mathbf{x}_i . Here, the set S is the intersection of the horizontal strip H and the rotated hallways L_i . Let a_i , b_i , c_i and d_i be the sides of the hallway L_i corresponding to the sides a,b,c, and d of L.

For the intersection $S = H \cap \bigcap_{i=0}^n L_i$ to be a monotone hallway intersection, we require the following conditions.

- (WLOG) Without loss of generality, by translating S horizontally we assume that $L_0=L$ so that $\mathbf{x}_0=(0,0)$. Also, we assume that \mathbf{x}_n has the y-coordinate equal to zero. Consequently, the sides a_n and c_0 are equal to the line y=1.
- (Monotonicity) The sides y=0 and y=1 of H and the outer walls a_i and c_i of L_i for any $0 \le i \le n$ should determine all the sides of a convex polygon K called the cap of S. Although we allow some edges of K to degenerate and have zero length, all the lines $a_0, a_1, \ldots, a_{n-1}, a_n = c_0, c_1, \ldots, c_n$, and y=0 should form the edges of K in counterclockwise order.

Consequently, the sides a_n and c_0 are equal to the line y=1 and determines the upper horizontal edge of K. The sides $a_0, a_1, \ldots, a_{n-1}$ forms the different edge of K on the right side in counterclockwise order, and the sides c_1, c_2, \ldots, c_n forms the different edges of K on the right side in counterclockwise order.

For any $0 < i \le n$, let A_i be the intersection of a_{i-1} and a_i . Also let A_0 be the intersection of a_0 and the line y=0. Likewise, for any $0 \le i < n$, let C_i be the intersection of c_i and c_{i+1} . Also let C_n be the intersection of a_0 and the line y=0. Then the points A_0,A_1,\ldots,A_n forms the vertices of K on the right side, and the points C_0,C_1,\ldots,C_n forms the vertices of K on the left side. For any $0 \le i \le n$, define $A_{n+1+i}=A_i$ so that the list A_0,A_1,\ldots,A_{2n+1} forms all the vertices of K in the counterclockwise order.

For any $0 \leq i \leq n$, define the support function values $p_i = A_i \cdot u_i$ and $q_i = C_i \cdot v_i$ of the cap K. Note that we also have $p_i = \mathbf{x}_i \cdot u_i + 1$ and $q_i = \mathbf{x}_i \cdot v_i + 1$. Note that as the sides a_n and c_0 are equal to the line y = 1, we have $p_n = q_0 = 1$. $0 \leq i \leq n$, define $p_{n+i} = q_i$ so that the list p_0, p_1, \ldots, p_{2n} is a

concatenation of p_0, p_1, \ldots, p_n and q_0, q_1, \ldots, q_n . For every $0 \le i \le 2n$, define the side lengths $s_i = (A_{i+1} - A_i) \cdot v_i$ of K.

Coordinate Systems of S

A monotone hallway intersection S is completely determined by its cap K. So the state of S can be described by any coordinate system representing the cap K. There are three coordinate systems we can use for K.

- For every $0 \le i \le n$, the inner corners $\mathbf{x}_i = (x_i, y_i) \in \mathbb{R}^2$ of the hallways with $\mathbf{x}_0 = (x_0, y_0) = (0, 0)$ and the y-coordinate y_n of \mathbf{x}_n equal to zero. With the constraints we have a total of 2n-1 free coordinates $x_1, \ldots, x_n, y_1, \ldots, y_{n-1}$ to determine.
- The support function values p_0, p_1, \ldots, p_n and q_0, q_1, \ldots, q_n of the right and left part of the cap, with constraints $p_0 = p_n = q_0 = 1$. In this coordinate, we have 2n-1 free values p_1, \ldots, p_{n-1} and q_1, \ldots, q_n to determine.
- The edge lengths s_0, s_1, \ldots, s_{2n} of cap K, with constraints $\sum_{i=0}^n \cos(\theta_i) s_i = 1$ and $\sum_{i=0}^n \sin(\theta_i) s_{n+i} = 1$ to ensure that the height of K is equal to 1. Using the two equalities, we can eliminate the variables $s_0 = 1 \sum_{i=1}^n \cos(\theta_i) s_i$ and $s_{2n} = 1 \sum_{i=0}^{n-1} \sin(\theta_i) s_{n+i}$ and have 2n-1 free variables $s_1, s_2, \ldots, s_{2n-1}$.

All three coordinate systems are convertible to each other. For example, the coordinates of \mathbf{x}_i determine the values $p_i = \mathbf{x}_i \cdot u_i + 1$ and so the lines $a_i = \left\{z \in \mathbb{R}^2 : z \cdot u_i = p_i\right\}$ and the intersections $A_i = a_{i-1} \cap a_i$. The side lengths are then recoverable from the formula $s_i = (A_{i+1} - A_i) \cdot v_i$. In this way, we can express the edge lengths s_0, s_1, \ldots, s_{2n} from the coordinates of $\mathbf{x}_0, \mathbf{x}_1, \ldots, \mathbf{x}_n$. We can also work the other way and get the coordinates of \mathbf{x}_i from the edge lengths s_0, s_1, \ldots, s_{2n} . Start with $A_0 = (0, 0)$, and use the formula $A_{i+1} = A_i + s_i v_i$ to retrieve all the vertices A_0, \ldots, A_{2n} of K, the support function values $p_i = A_i \cdot u_i$ and $q_i = A_{i+n} \cdot v_n$, and then $\mathbf{x}_i = (p_i - 1)u_i + (q_i - 1)v_i$. Note that all the conversions are affine-linear. So any of the three coordinate systems determine a cap K.

SofaDesigner chooses the system of support function values p_1, \ldots, p_{n-1} and q_1, \ldots, q_n . Let $\mathbf{p} = (p_1, \ldots, p_{n-1}, q_1, \ldots, q_n)$ be the list of free variables in

the given order. We also require each side length s_i to be nonnegative in order for K to be a proper cap. For any $0 \le i \le 2n$, let E_i be the inequality $s_i \ge 0$ where s_i is written in terms of \mathbf{p} . Define \mathcal{K}_Θ as the domain of 2n-1 free real variables \mathbf{p} in support function coordinates with the linear constraints E_i for all $0 \le i \le n$. Then \mathcal{K}_Θ is the space of all caps of monotone hallway intersections with angle set Θ . The goal of <code>SofaDesigner</code> is to understand the subset of \mathcal{K}_Θ where the cap gives rise to the monotone hallway intersection $S = H \cap \bigcap_{i=0}^n L_i$ of area at least 2.2195.

Area of S by its Niche $\mathcal{N}(K)$

Let $\mathcal{A}(K)$ be the area of the monotone hallway intersection S with cap $K \in \mathcal{K}_{\Theta}$. The goal of SofaDesigner is to understand the area functional $\mathcal{A}: \mathcal{K}_{\Theta} \to \mathbb{R}$ completely. Define the $niche \, \mathcal{N}(K)$ of the monotone hallway intersection S as the region bounded from below by the line y=0, and bounded from above by the upper envelope of the line y=0 and the half-lines c_i and d_i for all $0 \leq i \leq n$. For any set X, denote its area as |X|. Then the area |S| of S is equal to $\mathcal{A}(K) = |K| - \mathcal{N}(K)$ because S is the cap K subtracted by the union of inner corners $\mathcal{N}(K)$. Note that the area |K| of cap is a quadratic polynomial in terms of the coordinates of \mathcal{K}_{Θ} (one can for example use the shoelace formula). However, the area of the niche $\mathcal{N}(K)$ is much harder to understand.

If the order of edges appearing in the niche $\mathcal{N}(K)$ is determined, we can understand the area $|\mathcal{N}(K)|$ as a quadratic polynomial of the coordinates of K. For every $0 \leq i \leq n$, define the line l_i as the line extending the half-line d_i , and the line l_{-i} as the line extending the half-line b_{n-i} (note that l_0 is equal to the line y=0 in both cases). Let \mathbf{i}_K be the list of all the indices i of the lines l_i appearing in the niche $\mathcal{N}(K)$ from left to right. So \mathbf{i}_K is either a list of length one with only one zero, or a list with length at least two starting and ending with zero. If $-n \leq i, j \leq n$ are different indices, define the point $p_{i,j}$ as the intersection of the lines l_i and l_j . Then the coordinates of points $p_{i,j}$ are affine-linear with respect to the coordinates \mathbf{p} of \mathcal{K}_{Θ} . If \mathbf{i}_K is the list i_1, i_2, \ldots, i_m , then the vertices of the niche are exactly $p_{i_1,i_2}, p_{i_2,i_3}, \ldots, p_{i_{m-1},i_m}$ from left to right with the first and last vertex on the line j=0. So by using the shoelace formula, we can express the area of the niche $\mathcal{N}(K)$ in terms of the quadratic polynomials of the coordinates of j_i , and thus the coordinates \mathbf{p} of j_i .

Branch-and-bound Tree $\mathcal T$

The difficulty with the niche $\mathcal{N}(K)$ is that the order \mathbf{i}_K of the lines appearing in the niche can change drastically depending on the cap K. We need extra restrictions on the coordinates \mathbf{p} of K to ensure a niche with a fixed order \mathbf{i}_K of lines. To this end, SofaDesigner builds a custom branch-and-bound tree \mathcal{T} and stores it as a JSON-formatted file.

The tree $\mathcal T$ is a complete binary tree representing the subset of $\mathcal K_\Theta$ with $\mathcal A \geq 2.2195$. Each node N_i is equipped with a finite set I_i of affine-linear combinations of the coordinates $\mathbf p$. Each $f \in I_i$ represents the inequality $f \geq 0$, so that the node N_i represents the subset $\mathcal K_i \subseteq \mathcal K_\Theta$ where the value of f is non-negative for every $f \in I_i$. The root node N_1 of the tree $\mathcal T$ represents the whole $\mathcal K_\Theta$ with the constraints $I_i = s_0, s_1, \ldots, s_{2n}$. Every non-leaf node N_i is split into two child nodes N_j and N_k by the inequalities $g_i \geq 0$ and $-g_i \geq 0$ for some affine-linear combination g_i of the coordinates $\mathbf p$. So, the constraints I_j of node N_j is $I_j = I_i \cup \{g_i\}$, and the constraints I_k of node N_k is $I_k = I_i \cup \{-g_i\}$. This ensures that the union of the sets $\mathcal K_i$ represented by the leaf nodes N_i of $\mathcal T$ is equal to the whole space $\mathcal K_\Theta$.

The first task of a verifier is to verify that the file representing \mathcal{T} indeed adheres to the aforementioned property above.

TODO: under construction from here