

PCT/GB 2003 / 003783

INVESTOR IN PEOPLE

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

The Patent Office
Concept House
Cardiff Road
Newport

South Wales REC'D 06 NOV 2003
NP10-800 WIPO PCT

I, the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation & Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before re-registration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Re-registration under the Companies Act does not constitute a new legal entity but merely subjects the company to certain additional company law rules.

Signed

Dated 28 August 2003

Patent 1977
(Ref. 16)The
Patent

1/77

Request for grant of a patent

(See the notes on the back of this form. You can also get an explanatory leaflet from the Patent Office to help you fill in this form)

The Patent Office

 Concept House
Cardiff Road
Newport

 11 OCT 02 E755004-3 D05 South Wales NP10 8QQ
P01/77V3 A,00-0223628.9

1. Your reference

AWP/61047/000

 2. Patent application number
(The Patent Office will fill in this part)

0223628.9

11 OCT 2002

 3. Full name, address and postcode of the or of each applicant (*underline all surnames*)

 Lotus Cars Limited
Hethel
Norwich
Norfolk
NR14 8EZ
United Kingdom
Patents ADP number (*if you know it*)

If the applicant is a corporate body, give the country/state of its incorporation

United Kingdom

4. Title of the invention

AN ARRANGEMENT OF AN INTERNAL COMBUSTION ENGINE POPPET VALVE AND AN ACTUATOR THEREFOR

5. Name of your agent (*if you have one*)

BOULT WADE TENNANT

 "Address for service" in the United Kingdom to which all correspondence should be sent
(including the postcode)

 VERULAM GARDENS
70 GRAY'S INN ROAD
LONDON WC1X 8BT
Patents ADP number (*if you know it*)

42001

 6. If you are declaring priority from one or more earlier patent applications, give the country and the date of filing of the or of each of these earlier applications and (*if you know it*) the or each application number

 Country Priority application number
(*if you know it*) Date of filing
(*day/month/year*)

7. If this application is divided or otherwise derived from an earlier UK application, give the number and the filing date of the earlier application

 Number of earlier application Date of filing
(*day / month / year*)

 8. Is a statement of inventorship and of right to grant of a patent required in support of this request?
(Answer 'Yes' if:
a) any applicant named in part 3 is not an inventor, or
b) there is an inventor who is not named as an applicant, or
c) any named applicant is a corporate body.
See note (d))

Patents Form 1/77

9. Enter the number of sheets for any of the following items you are filing with this form. Do not count copies of the same document

Continuation sheets of this form **NONE**

Description **7**

Claim(s) **4**

Abstract **-**

Drawing(s) **1 + 1**

10. If you are also filing any of the following, state how many against each item.

Priority documents **NONE**

Translations of priority documents **NONE**

Statement of inventorship and right to grant of a patent (*Patents Form 1/77*) **-**

Request for preliminary examination and search (*Patents Form 9/77*) **1**

Request for substantive examination (*Patents Form 10/77*) **1**

Any other documents
(Please specify) **-**

11

I/We request the grant of a patent on the basis of this application.

Date

10 October 2002

12. Name and daytime telephone number of person to contact in the United Kingdom **A. W. Pluckrose
020 7430 7500**

Warning

After an application for a patent has been filed, the Comptroller of the Patent Office will consider whether publication or communication of the invention should be prohibited or restricted under Section 22 of the Patents Act 1977. You will be informed if it is necessary to prohibit or restrict your invention in this way. Furthermore, if you live in the United Kingdom, Section 23 of the Patents Act 1977 stops you from applying for a patent abroad without first getting written permission from the Patent Office unless an application has been filed at least 6 weeks beforehand in the United Kingdom for a patent for the same invention and either no direction prohibiting publication or communication has been given, or any such direction has been revoked.

Notes

- a) If you need help to fill in this form or you have any questions, please contact the Patent Office on 01645 500505.
- b) Write your answers in capital letters using black ink or you may type them.
- c) If there is not enough space for all the relevant details on any part of this form, please continue on a separate sheet of paper and write "see continuation sheet" in the relevant part(s). Any continuation sheet should be attached to this form.
- d) If you have answered 'Yes' Patents Form 7/77 will need to be filed.
- e) Once you have filled in the form you must remember to sign and date it.
- f) For details of the fee and ways to pay please contact the Patent Office.

DUPPLICATE

An Arrangement of an Internal Combustion
Engine Poppet Valve and an
Actuator therefor

5 The present invention relates to an arrangement of an internal combustion engine poppet valve and an actuator therefor.

10 The majority of internal combustion engines have poppet valves as inlet and exhaust valves controlling flow of air into the combustion chambers of the combustion engines and flow of combusted gases to exhaust. Conventionally, the poppet valves have been operated by cams on rotating camshafts. More recently, 15 puppet valves have been operated by hydraulic actuators. In large diesel engines residual pressure in the combustion chambers can be 70 bar when the exhaust valves are opened. This requires considerable force to be applied on the exhaust valves.

20 The present invention provides an arrangement of an internal combustion engine poppet valve and a hydraulic actuator therefor comprising:

25 an actuator housing;

30 spring means for biassing the poppet valve into engagement with a valve seat therefor;

35 a first piston of a first cross-sectional area slidable in a first chamber in the actuator housing, the first piston having a passage therethrough; and

40 a second piston of a second cross-sectional area smaller than the first cross-sectional area slidable in a second chamber in the actuator housing; wherein:

45 the first chamber is connectable to a pressurised hydraulic fluid supply line and to a hydraulic fluid return line; and

in order to open the poppet valve: the first chamber is connected to the pressurised hydraulic fluid supply line and then supplied pressurised hydraulic fluid acts initially on the first piston to give rise to a first magnitude force which is initially relayed via the second piston to the engine valve to open the valve; initially the first piston, the second piston and the engine valve all move together under the action of the first magnitude force until the first piston reaches an end stop; and thereafter the supplied pressurised hydraulic fluid flows from the first chamber through the passage in the first piston to act on the second piston and to thereby give rise to a second smaller magnitude force under the action of which the second piston and the valve move together until the valve is fully open; and

in order to close the previously opened poppet valve: the first chamber is connected to the hydraulic fluid return line and then the biassing force applied by the spring means to the valve forces the valve to move back towards its valve seat; initially the valve and the second piston move together with the second piston expelling fluid from the second chamber via the passage in the first piston to the hydraulic fluid return line until the second piston engages the first piston; and thereafter the first piston, the second piston and the valve all move together under the biassing force applied by the spring means with the first piston expelling hydraulic fluid from the first chamber to the hydraulic fluid return line until the poppet valve engages the valve seat therefor.

The actuator applies a large force on e.g. an exhaust valve for the first part of the engine valve motion, after which the pressure in the combustion chamber has decayed and the actuator need not apply

such a large force. Thereafter, the amount of fluid required for each millimetre of valve motion is much reduced because the operative cross-sectional area of the actuator is much less than in the first part of
5 the valve stroke.

A preferred embodiment of internal combustion engine valve actuator will now be described with reference to the accompanying figure which is a cross-
10 sectional view of the actuator.

In the figure there can be seen an actuator 100, which operates a poppet valve 101 which serves as an exhaust valve controlling flow of combusted gases from
15 a cylinder 102 to an exhaust passage 103. The valve 101 is biassed by a pair of concentric valve springs 104,105 which act between a spring seat surface 106 and a collar 107 secured to the top of the poppet valve 101. The top of the poppet valve 101 is engaged
20 by a small piston 15 slidable in a first bore in an inner actuator housing 16. The top of the small piston 15 is engageable by a large piston 1 slidable in a second bore in the inner actuator housing 16 aligned with the first bore. The actuator 100 has an
25 outer actuator housing 13 which surrounds the inner actuator housing 16.

Extending through the outer actuator housing 13 is a passage 24 for flow of hydraulic fluid. A valve
30 (not shown) will be used to control flow of hydraulic fluid through the passage 24 to and from the actuator 100.

As shown in the figure the valve 101 is biassed
35 into its valve seat by the springs 104,105. A frusto-

conical top portion 110 of the piston 15 is engaged in
a socket of matching shape and configuration in the
lower surface of the piston 1. A fluid passage 111
opens onto the socket to allow fluid flow across the
5 piston 1. As shown in the Figure, the valve springs
104,105 have biassed piston 15 into engagement with
the piston 1 and biassed both pistons 1, 15 into their
uppermost positions.

10 If the poppet valve 101 is an exhaust valve in a
large capacity diesel engine then the pressure in the
cylinder 102 can be as high as 70 bar when the
actuator 100 first opens the valve 101. In order to
apply a force on the valve 101 sufficient to open the
15 valve the piston 1 is provided in the actuator. When
pressurised fluid is introduced into the chamber 112
defined between the piston 1 and the outer actuator
housing 13 then the fluid acts to slide the piston 1
downwardly in the inner housing 16. The force applied
20 to the valve 101 is the product of pressure of the
pressurised fluid and the area of the piston 1.

The piston 1 is slid down in the bore in the
inner housing 16 until it abuts the end of the bore in
25 the inner housing 16 in which it slides. Thereafter,
the pressurised fluid acts to move the piston 15
relative to the first piston 1, the piston 15 sliding
in the inner housing 16, with hydraulic fluid flowing
through the aperture 111 in piston 1. Therefore the
30 first part of the opening motion of the valve 101 is
occasioned by motion of the pistons 1 and 15 together
and thereafter the opening motion of the valve 101 is
occasioned by the motion of the smaller piston 15
only.

The force applied by the piston 15 on the valve 101 is the product of the pressure of the fluid and the cross-sectional area of the piston 15. Since the cross-sectional area of piston 15 is much less than the cross-sectional area of piston 1 the force applied by the piston 15 on valve 101 is much less than the force applied by piston 1. On the other hand, when the valve 101 is moved under control of piston 1 then the amount of fluid needed for each millimetre of motion is the product of the distance travelled and the cross-sectional area of piston 1, whereas when the valve 101 moves under the control of piston 15 the volume of fluid for each millimetre of motion is the product of the distance travelled and the much smaller cross-section of the piston 15. The power required of a hydraulic pump pressuring the fluid supplied to the actuator is proportional to the rate of flow of fluid and thus reducing the amount of fluid needed for each millimetre of valve motion is an energy saving measure.

The pressure in the cylinder 102 quickly decays to atmosphere once the valve 101 is opened. Thus the actuator can easily move the valve 101 with the lower force applied by piston 15.

To prevent a build up of fluid between the lower face 120 of the piston 1 and the opposing face 121 of the chamber in which the piston 1 moves, leakage of fluid past the cylindrical outer surface of the piston 1 is permitted. Also a small passage 122 allows fluid to flow from between the faces 120,121 to the upper side of the piston 1 as the piston 1 moves downwardly. The fluid trapped between the faces 120,121 will have the beneficial effect of acting as a cushion for the

piston 1 to prevent the piston 1 impacting the face 121 with the consequent problems of noise and wear.

When the valve 101 is to be returned to its valve seat the chamber 112 is connected via passage 24 to a fluid return and then the valve springs 104,105 force the valve 101 and the piston 15 upwardly with fluid expelled from between the pistons 1 and 15 through the orifice 111 in the piston 1 to the passage 24. As the piston 15 moves upwardly the frusto-conical top of the piston 15 engages with and locates in the conical recess in the lower surface of piston 1, with the co-operating conical surfaces acting to centre the piston relative to the piston 1. Also as the facing surfaces of the frusto-conical top 110 of the piston 15 and the aperture 111 draw close to one another then the aperture defined therebetween narrows and thus the flow of fluid therethrough is restricted. This has a beneficial damping effect on the portion of the piston 15 which serves to soften the impact as the piston 15 comes into abutment with the piston 1. Once the piston 1 fully engages piston 15 then the two pistons 1 and 15 move together under the action of the springs 104 and 105 until the valve 101 is returned to its valve seat.

Ideally, the transverse cross-section diameter of the piston 15 is chosen to be approximately the same as the transverse cross-section of the stem of valve 101 and the transverse cross-section diameter of the piston 1 is chosen to be approximately the same as the maximum diameter of the valve head of the valve 101. The diameter of the piston 1 will be chosen to be as small as possible given that for a set pressure of supplied hydraulic fluid a certain force must be achievable to overcome residual pressure in the chamber 102. Also the diameter of the piston 15 is

chosen to be as small as possible given that the piston, with a set pressure of supplied by hydraulic fluid, must be able to apply a force sufficient to overcome the biassing forces of the springs 104, 105
5 throughout travel of fine valve 107.

The engine valve 101 will typically have a total stroke of 15 mm of which only the initial 1 to 1.5 mm will be occasioned by motion of the large piston 1 and
10 the remainder of which will be occasioned by the smaller piston 15.

CLAIMS

1. An arrangement of an internal combustion engine poppet valve and a hydraulic actuator therefor comprising:
 - 5 an actuator housing;
 - spring means for biassing the poppet valve into engagement with a valve seat therefor;
 - 10 a first piston of a first cross-sectional area slidable in a first chamber in the actuator housing, the first piston having a passage therethrough; and
 - 15 a second piston of a second cross-sectional area smaller than the first cross-sectional area slidable in a second chamber in the actuator housing; wherein:
 - the first chamber is connectable to a pressurised hydraulic fluid supply line and to a hydraulic fluid return line; and
 - in order to open the poppet valve: the first chamber is connected to the pressurised hydraulic fluid supply line and then supplied pressurised hydraulic fluid acts initially on the first piston to give rise to a first magnitude force which is initially relayed via the second piston to the engine valve to open the valve; initially the first piston, 25 the second piston and the engine valve all move together under the action of the first magnitude force until the first piston reaches an end stop; and thereafter the supplied pressurised hydraulic fluid flows from the first chamber through the passage in.
 - 30 the first piston to act on the second piston and to thereby give rise to a second smaller magnitude force under the action of which the second piston and the valve move together until the valve is fully open; and
 - 35 in order to close the previously opened poppet valve: the first chamber is connected to the hydraulic

fluid return line and then the biassing force applied by the spring means to the valve forces the valve to move back towards its valve seat; initially the valve and the second piston move together with the second piston expelling fluid from the second chamber via the passage in the first piston to the hydraulic fluid return line until the second piston engages the first piston; and thereafter the first piston, the second piston and the valve all move together under the biassing force applied by the spring means with the first piston expelling hydraulic fluid from the first chamber to the hydraulic fluid return line until the poppet valve engages the valve seat therefor.

2. An arrangement of an internal combustion engine poppet valve and a hydraulic actuator therefor as claimed in claim 1 wherein the second piston directly abuts the top of a valve stem of the poppet valve.

3. An arrangement of an internal combustion engine poppet valve and a hydraulic actuator therefor as claimed in claim 1 or claim 2 wherein the first and second pistons directly abut each other when moving together.

4. An arrangement of an internal combustion engine poppet valve and a hydraulic actuator as claimed in any one of the preceding claims wherein the first chamber is formed in the actuator housing by a first diameter drilling and the second chamber is formed in the actuator housing by a second diameter drilling aligned with the first diameter drilling, the second diameter drilling opening on to the first diameter drilling.

5. An arrangement of an internal combustion engine

5 poppet valve and an actuator therefor as claimed in
any one of the preceding claims wherein: the first
piston has a surface facing the second piston and the
passage through the first piston has an opening on to
said surface, the said opening being at least
partially defined by a conical abutment surface; and
wherein the facing surface of the second piston has a
matching conical abutment surface and the matched
conical surfaces abut each other whilst the first and
10 second pistons move together and by abutment seal the
passage through the first piston.

15 6. An arrangement of an internal combustion engine
poppet valve and an actuator therefor as claimed in
claim 5 wherein the matched conical surfaces together
act to restrict flow of fluid through the passage in
the first piston as the second piston comes into
abutment with the first piston and thereby soften
abutment of the first and second pistons.

20 7. An arrangement of an internal combustion engine
poppet valve and an actuator therefor as claimed in
any one of the preceding claims comprising a passage
through the actuator through which hydraulic fluid
25 trapped between one side of first piston and the
surface of the first chamber as the first piston
approaches the end stop therefor can be relayed to the
first chamber on the other side of the first piston.

30 8. An arrangement of an internal combustion engine
poppet valve and an actuator therefor as claimed in
any one of the preceding claims wherein the spring
means comprises one or more valve springs acting
between a collar attached to the poppet valve and a
35 surface provided on the engine cylinder head.

9. An arrangement of an internal combustion engine poppet valve and an actuator therefor substantially as hereinbefore described with reference to and as shown in the accompanying drawing.

5

: 397229: 12 August 2002

PCT Application
GB0303783

