MATH5.1EL Quiz 2

Inequalities in One Unknown

Time Limit: (30 minutes)

T Yeung

Answer the questions in the spaces provided on the question sheets. If you do not know how to answer a certain question, write down where you get stuck. Answers can be corrected to 3 significant figures if necessary.

	Tame, class, class no.:				
1.	(4 marks) If the quadratic curve $y = x^2 + kx + 8$ intersects the straight line $y = 4x - 1$ at two distinct points, find the range of possible values of k .				

2.	(4 marks) If $x^2 + k + kx = 3$ is always positive for all real values of k , find the range of possible values of k .
3.	(3 marks) Solve $(2x-3)(3x+1) \ge 4x(2x-3)$

4.	(10 marks) α and β are the roots of the quadratic equation $x^2 + (p+1)x + (p-1) = 0$, where p is real.						
	(a) (3 marks) Show that α and β are real and distinct.						
	(b) (3 marks) Show that $(\alpha - 2)(\beta - 2) = 3p + 5$.						
	(c) (4 marks) Given that $\beta < 2 < \alpha$, i. Using the result of (b), show that $p < -\frac{5}{3}$.						
	ii. If $(\alpha - \beta)^2 < 24$, find the range of possible values of p. Hence write down all possible integral						
	value(s) of p .						

(a) (3 ma	Given $x^2 - 2(1+a)x + (3a^2 + 4ab + 4b^2 + 2) = 0$, where a and b are real. rks) Show that the discriminant of the equation is $-4[(a-1)^2 + (a-2b)^2]$	
(b) (3 ma	rks) Find a and b if the equation has equal real roots.	