Analysis I

October 2, 2023

Lecture Notes

Class will not have dedicated lecture notes. Many are available already. Undergraduate notes are available on Canvas. Lecture 1 overview available on Canvas (lecture1.pdf).

Tentative Office Hours

Mondays 2-3pm and Tuesday 1-2pm.

Homework

Nominally due at beginning of class; ask for leeway if needed. First week homework will be review of undergraduate proofs. First homework due Wednesday, October 11.

Notation

Natural Numbers: $\mathbb{N} = \{1, 2, 3, ...\}$ Non Negative Integers: $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$ Integers: $\mathbb{Z} = \{0, \pm 1, \pm 2, \pm 3, ...\}$ Rationals: $\mathbb{Q} = \left\{\frac{p}{q}, \ p \in \mathbb{Z}, \ q \in \mathbb{Z}\right\} = \mathbb{Z} \times \mathbb{N}/\infty$

• Equivalent representation of rationals: $(p_1,q_1) \sim (p_2,q_2)$ iff $p_1q_2=p_2q_1$

Sequence of Rationals: $\{u_n\}_{n\in\mathbb{N}}, u_n\in\mathbb{Q}, \ \forall n.$

Properties of the Rationals

 $(\mathbb{Q}, +, \cdot)$ is a (ii) totally ordered (i) field satisfying the (iii) Archimedean property.

(i) Field

- 1. + is associative: (a + b) + c = a + (b + c)
- 2. + is commutative: a + b = b + a

- 3. is associative and commutative.
- 4. $\exists 0 \in \mathbb{Q}$ such that $\forall a \in \mathbb{Q}$, 0 + a = a + 0
- 5. $\exists 1 \in \mathbb{Q} \setminus \{0\}$ such that $\forall a \in \mathbb{Q}, 1 \cdot a = a \cdot 1 = a$
- 6. $\forall a \in \mathbb{Q} \setminus \{0\} \exists b \in \mathbb{Q}, a \cdot b = b \cdot a = 1$
 - $b = a^{-1} = \frac{1}{a}$

(ii) Totally Ordered

 \exists a set $\mathbb{Q}_+ \subseteq Q$ of "Positive Numbers" stable under + and \cdot such that $\forall A \in \mathbb{Q}$ either a > 0 ($a \in \mathbb{Q}_+$), -a > 0 (also a < 0) or a = 0.

- Ordering: $\forall a, b \in \mathbb{Q}$, a < b if and only if b a > -0.
- Trichotomy: $\forall a, b \in \mathbb{Q}$ either a < b, a > b, or a = b.
- $\max(a,b) = \begin{cases} a & \text{if } a > b \\ b & \text{otherwise} \end{cases}$
- $|a| = \max(a, -a)$ (helps measure distance in \mathbb{Q}).
- $\operatorname{dist}(a,b) := |b-a|$
- Triangle Inequality: $|u \pm v| \le |u| + |v|$
- Observe also: $||u| |v|| \le |u \pm v|$. The triangle inequality may be used to prove this.
- Proof of Triangle Inequality $-|u| \le u \le |u|$ and $-|v| \le v \le |v|$, therefore $-|u| |v| \le u + v \le |u| + |v|$. Therefore $u + v \le |u| + |v|$ and $-(u + v) \le |u| + |v|$ implies $|u + v| \le |u| + |v|$.

2

(iii) Archimedian Property:

$$\forall \epsilon > 0, \ \exists N, \ \forall n \ge N, \ \frac{1}{n} < \epsilon.$$

Bounded Sequence of Rationals

 $\{u_n\}_{n\in\mathbb{N}}$ is bounded if $\exists m\in\mathbb{Q}_+$ such that $|u_n|\leq M,\ \forall n.$ $\{u_n\}_{n\in\mathbb{N}}$ converges to $a\in\mathbb{Q}$ ($\lim_{n\to\infty}u_n=a$) if $\forall \epsilon>0, \exists N, \forall n\geq N, |u_n-a|<\epsilon.$

Famous Limits

Decaying Rational

1.
$$\lim_{n\to\infty}\frac{1}{n}=0$$

•
$$\forall \epsilon \in \mathbb{Q}_+, \ \exists n \in \mathbb{N}, \ 0 < \frac{1}{n} < \epsilon$$

•
$$\forall n \in \mathbb{N}, \exists n \in \mathbb{N}, n \ge N$$

- b. and c. are equivalent.

Decaying Exponential Rational

 $r \in \mathbb{Q}, \ 0 < r < 1, \lim_{n \to \infty} r^n = 0.$

• Proof: Write $r = \frac{1}{1+k}$ for some k > 0. Then $r^n = \frac{1}{(1+k)^n} \stackrel{\text{Bernoulli}}{\leq} \frac{1}{1+nk}$.

Geometric

1.
$$r \in \mathbb{Q}$$
, $0 < r < 1$, $u_n = 1 + r + \dots + r^n = \frac{1 - r^{n+1}}{1 - r} \to \frac{1}{1 - r}$

Features of Limits

Limits are Unique

If the limit of a sequence exists, it is unique.

Squeezing Lemma

If $\{a_n\}$, $\{b_n\}$ are such that $0 \le a_n \le b_n$, and $b_n \to 0$ as $n \to \infty$, then $a_n \to 0$.

Limits Preserve Order

If $a_n \leq b_n \ \forall n \text{ and } a_n \text{ and } b_n \text{ converge, then } \lim_{n \to \infty} a_n \leq \lim_{n \to \infty} b_n$.

Limit Algebraic Rules

 $\lim_{n\to\infty} a_n + \lim_{n\to\infty} b_n = \lim_{n\to\infty} (a_n + b_n)$ when a_n and b_n converge. If $\lim_{n\to\infty} b_n \neq 0$, then $\frac{a_n}{b_n} \to \frac{\lim a_n}{\lim b_n}$.

Peculiarity of the Rationals

Q lacks completeness.

Examples

Consider $u_1 = 1$ and $u_{n+1} = \frac{1}{2}(u_n + \frac{2}{u_n})$.

Then $u_n \in \mathbb{Q}, \ \forall n \in \mathbb{N}$.

It can further be proven, by induction, that $u_n \ge 1$, $\forall n$. $\left(u_{n+1} - 1 = \frac{1}{2}(u_n + \frac{1}{u_n}) - 1 = \frac{1}{2u_n}((u_n - 1)^2 + 1)\right)$. $\lim_{n \to \infty} u_n^2 = 2$.

$$u_{n+1}^{2} - 2 = \left(\frac{1}{2}(u_{n} + \frac{2}{u_{n}})\right)^{2} - 2$$

$$= \left(1\frac{1}{2u_{n}}(u_{n}^{2} + 2)^{2} - 4u_{n}\right)$$

$$= 1\frac{4}{u_{n}^{2}}(u_{n}^{2} - 2)^{2}$$

$$\leq \frac{1}{4}(u_{n}^{2} - 2)^{2}$$

If u_n converged in \mathbb{Q} to L, by algebraic limit rules, $2 = \lim u_n^2 = (\lim u_n)^2 = L^2$, yet $\sqrt{2} \notin \mathbb{Q}$.

Cauchy Criterion

A sequence $\{u_n\}_{n\in\mathbb{N}}$ of rationals is Cauchy if $\forall \epsilon>0,\ \exists n\in\mathbb{N},\ \forall p,q\geq n,\ |u_p-u_q|<\epsilon.$

Visual Justification

Example 1

The sequence from before is Cauchy.

$$|u_p - u_q| = \frac{|u_p^2 - u_q^2|}{|u_p + u_q|} \le \frac{1}{2} |u_p^2 - u_q^2|$$

Example 2

$$u_n = \sum_{k=0}^n \frac{1}{k!} \in \mathbb{Q}.$$

- This is increasing.
- It is bounded above by 3:

$$\begin{aligned} 1+1+\frac{1}{2}+\frac{1}{2\cdot 3}+\frac{1}{2\cdot 3\cdot 4}+\cdots+\frac{1}{2\cdots n} &\leq 1+1+\cdots\frac{1}{2^{n-1}}\\ &\leq 1+\frac{1-2^{-n}}{1-\frac{1}{2}}\\ &\leq 3 \end{aligned}$$

4

Convergence, Cauchy and Boundedness.

Given a sequence $\{u_n\}_{n\in\mathbb{N}}$, $\{u_n\}$ converges \Longrightarrow $\{u_n\}$ is Cauchy \Longrightarrow $\{u_n\}$ is bounded. Note that in \mathbb{Q} none of these implications may be reversed.

Construction of the Real Numbers

Short version: If the limit of a sequence isn't in the set, then define the limit as the sequence itself. Let $C_{\mathbb{Q}} = \{\text{Cauchy sequences of rationals.}\}$.

Two Operations

- Termwise Addition $\{u_n\}_n + \{v_n\}_n := \{u_n + v_n\}_{n \in \mathbb{N}}$
- Termwise Multiplication $\{u_n\}_n \cdot \{v_n\}_n := \{u_n \cdot v_n\}_{n \in \mathbb{N}}$

Closure of Cauchy Sequence

If $\{u_n\}_n$, $\{v_n\}_n \in C_{\mathbb{Q}}$, then $\{u_n\}_n + \{v_n\}_n \in C_n$ and $\{u_n\}_n \cdot \{v_n\}_n \in C_n$.

Example

Infinite decimal expansion.

Fix $N \in \mathbb{Z}$, $a_1 \cdots a_n \in \{0, \dots, 9\}$.

Then let $u_n = N + \sum_{k=1}^n a_k (10)^{-k}$ (that is the number $N.a_1 a_2 \dots a_n$).

This is always increasing and bounded above by $N + \sum_{k=1}^{n} 9 \cdot (10)^{-k} = N + \frac{9}{10} \cdot \sum_{k=1}^{n} (10)^{-(k+1)} \le N + 1$. Hence, it is Cauchy.

Increasing and Bounded Above Implies Cauchy

By contrapositive, increasing and not Cauchy implies not bounded.

By the negation of Cauchy and letting $p \ge q$ without loss of generality, we can force $u_p > u_q + \epsilon$.

Negation of Cauchy

 $\exists \epsilon > 0, \ \forall N, \ \exists p, q \ge N, \ |u_p - u_q| > \epsilon.$

Real Numbers as Equivalence Classes of Cauchy Sequences

On $C_{\mathbb{Q}}$ define the relation $\{x_n\}_n \sim \{y_n\}_n$ if and only if $\lim_{n\to\infty} |(x_n-y_n)| = 0$.

Equivalence Relation

Reflexive: $x_n - x_n = 0$

Transitive: Uses algebraic limit rules. $x_n - z_n = x_n - y_n + y_n - z_n$.

Symmetric.

Definition of the Reals

$$\mathbb{R} := C_{\mathbb{Q}} / \sim$$
Then $x \in \mathbb{R}, \ x = [\{x_n\}_n].$

Addition and Multiplication of Reals

- Addition $x + y := [\{x_n + y_n\}_n]$.
- Multiplication $x \cdot y := [\{x_n \cdot y_n\}_n].$

Operations Do Not Depend on Choice of Representative

If
$$\{x_n\}_n \sim \{x_n'\}_n$$
 and $\{y_n\}_n \sim \{y_n'\}_n$, then $\{x_n\}_n + \{y_n\}_n \sim \{x_n'\}_n + \{y_n'\}_n$.
If $\{x_n\}_n \sim \{x_n'\}_n$ and $\{y_n\}_n \sim \{y_n'\}_n$, then $\{x_n\}_n \sim \{y_n\}_n \sim \{x_n'\}_n \sim \{y_n'\}_n$.

The Reals are a Field

There are nine properties to check, eight of which are "obvious":

Commutativity of Addition (and Other "Obvious" Features)

 $[\{x_n\}_n] + [\{y_n\}_n] = [\{x_n + y_n\}_n] = [\{y_n + x_n\}] = [\{y_n\}_n] + [\{x_n\}_n]$ That is, the Reals inherit most field features from the Rationals.

- Zero Element $0_{\mathbb{R}} = \left[\{0_{\mathbb{Q}}\}_n \right]$
- One Element $1_{\mathbb{R}} = [\{1_{\mathbb{Q}}\}_n]$

Multiplicative Inverses

How to define x^{-1} for $x \in \mathbb{R}$ where $x \neq 0$?

- Idea If $x = [\{x_n\}_n]$ choose $x^{-1} = [\{\frac{1}{x}\}_n]$. If $x \in \mathbb{R}$, $x \neq 0$ then
 - 1. $\exists \{x_n\}_n \in C_{\mathbb{Q}}$ representing x with non zero entries.
 - 2. $\{\frac{1}{x_n}\}_n$ is Cauchy.
 - Proof of 1 Pick any $\{x_n\}_n$ representing x.

*
$$x \neq 0$$
, so NOT $(\lim_{n\to\infty} x_n = 0: \exists \epsilon_0 > 0, \forall N, \exists n \geq N, |x_n| > \epsilon_0.$

*
$$\{x_n\}$$
 is Cauchy: $\forall \epsilon > 0, \exists N, \ \forall p,q \geq N, \ |x_p - x_q| < \epsilon.$

Therefore, $\exists N$ such that $\forall p,q \geq N_1, \ |x_p-x_q| < \frac{\epsilon_0}{2}$ And $\exists N_2 \geq N, \ , |x_{N_2}>\epsilon_0.$

For $q \ge N_2$, the Cauchy Criterion states that $|x_q| = |x_q - x_{N_2} + x_{N_2} \ge |x_{N_2}| - |x_{N_2} - x_q| \ge \epsilon_0 - \frac{\epsilon_0}{2} \ge \frac{\epsilon_0}{2}$. Therefore, the sought sequence is $\{x_{N_2} + k\}_{k \in \mathbb{N}}$.

- Proof of
$$2\left|\frac{1}{x_p} - \frac{1}{x_q}\right| = \frac{|x_p - x_q|}{|x_p||x_q|} \le \frac{4}{\epsilon_0^2} |x_p - x_q|$$
.

Order on the Reals

Let $x \neq 0$, $\exists \{x_n\}_{n \in \mathbb{N}}$ be a representation of x and $\epsilon_0 > 0$. Then for $|x_n| > \epsilon_0$, $\forall n \in \mathbb{N}$, there is a dichotomy:

- Either $\exists N \in \mathbb{N}, x_n > \epsilon_0, \forall n \geq N$ (in which case we write x > 0)
- Or $\exists N \in \mathbb{N}, x_n < -\epsilon_0, \forall n \geq N$ (in which case we write x < 0

Thus the Reals are totally ordered.

October 4, 2023

Overview

Completeness of \mathbb{R} .

Topology of the Real Line.

Non-zero Reals Are Either Positive or Negative

Given $x \in \mathbb{R} \setminus \{0\}$, $\exists \delta \in \mathbb{Q}_+$ such that $\forall \{x_n\}_n$ representing $x, \exists N \in \mathbb{N}$ such that $|x_n| > \delta, \forall n \geq N$. Moreover, one of the following (but not both) holds:

1.
$$\forall \{x_n\}_n \in x, \exists, x_n > \delta, \forall n \ge N \text{ (i.e. } x > 0)$$

2.
$$\forall \{x_n\}_n \in x, \ \exists, \ x_n < -\delta, \ \forall n \ge N \ (\text{i.e.} \ x < 0)$$

Recall that $x \in \mathbb{R} \setminus \{0\}$ is an equivalence class of Cauchy sequences.

Total Ordering of the Reals

x > 0 produces a total ordering of \mathbb{R} where x < y if and only if y - x > 0.

$$\Rightarrow \max(x,y) = \begin{cases} x & \text{if } x > y \\ y & \text{otherwise} \end{cases}$$

 $|x| = \max(x, -x)$ (which satisfies the triangle inequality)

Lemma A

Let $x, y \in \mathbb{R}$. If $\{x_n\}_n, \{y_n\}_n$ represent x, y and satisfy $x_n < y_n, \exists N \in \mathbb{N}, \forall n \ge N$, then $x \le y$.

• Proof By contradiction, suppose x > y and $\exists \{x_n\}_n, \{y_n\}_n$ representing x, y such that $x_n \leq y_n, \ \forall n \geq N_1$. Then, by definition, $x - y > 0 \implies \exists \delta > 0, \ \exists N_2, \ x_n - y_n > \delta \text{ for } n \geq N_2$. But $x_n \leq y_n$ contradicts $x_n - y_n > \delta$.

Sequences of Reals

$$\{x_n\}_n, x_n \in \mathbb{R}$$

The definition of bounded, convergent and Cauchy sequences are the same as in \mathbb{Q} .

Injection of Rationals

$$\iota: \mathbb{Q} \to \mathbb{R}$$
 such that $r \mapsto [\{u_n = r\}_n]$
This is isometric in the sense that $|\iota(r) - \iota(s)|_{\mathbb{R}} = |r - s|_{\mathbb{Q}}$

Theorem (Completeness 1)

Let $\{x_n\}_n \in C_{\mathbb{Q}}$ and $x = [\{x_n\}_n]$, then $\{\iota(x_n)\}_n$ converges to x.

Proof

What to show: $\forall \epsilon > 0$, $\exists N$, $\forall n \geq N$, $|\iota(x_n) - x| < \epsilon$. Let $\epsilon \in \mathbb{Q}_+$. By the Cauchy criterion, $\exists N, \forall q, p \geq N, |x_p - x_q| < \epsilon$. This is equivalent to $x_q - \epsilon \leq x_p \leq x_q + \epsilon$ where p is frozen. Then by Lemma A, $x - \epsilon \leq \iota(x_p) \leq x + \epsilon$. It follows that $\forall p \geq N, |\iota(x_p) - x \leq \epsilon$.

Corollary

 $\mathbb{Q} \cong \iota(\mathbb{Q})$ is dense in \mathbb{R} . That is, $\forall \epsilon > 0$, $\forall x \in \mathbb{R}$, $\exists r \in \mathbb{Q}$, $|\iota(r) - x| < \epsilon$.

The Isometric Copy of Rationals

For brevity, the ι notation will be dropped and the \mathbb{Q} will be understood as $\iota(\mathbb{Q})$.

Completeness of the Real Numbers

A sequence of real numbers converges in \mathbb{R} if and only if it is Cauchy.

Proof

 (\Longrightarrow) This is clear.

(\Leftarrow) Take a Cauchy sequence of reals $\{x_n\}_n$. Then $\forall \epsilon > 0$, $\exists N$, $\forall p, q \geq |x_p - x_q| < \epsilon$. Using the density of \mathbb{Q} , $\forall n \in \mathbb{N}$, $\exists r_n \in \mathbb{Q}$ such that $|x_n - r_n| < \frac{1}{n}$.

Claim: $\{r_n\}_n$ is Cauchy. Indeed,

$$\begin{aligned} |r_p - r_q| &= |r_p - x_p + x_p - x_q + x_q - r_q| \\ &\leq |r_p - x_p| + |x_p - x_q| + |x_q - r_q| \\ &\leq \frac{1}{p} + |x_p - x_q| + \frac{1}{q} \end{aligned}$$

Take $\epsilon > 0$. $\{x_n\}$ cauchy implies $\exists N_1, \ \forall p,q \geq N, |x_p - x_q| \leq \frac{\epsilon}{3}$ and $\exists N_2, \ \forall p,q \geq N_2, \frac{1}{p} \leq \frac{\epsilon}{3}, \ \frac{1}{q} \leq \frac{\epsilon}{3}$ for

 $p,q \ge \max(N_1,N_2) \ |r_p-r_q| \le \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3}.$ Then, for Cauchy $\{r_n\}_n$, call $r = [\{r_n\}_n]$, then $\lim_{n\to\infty} r_n = r$ by the above theorem. Then my algebraic limit rules, $x_n(x_n-r_n) + r_n$ where $(x_n-r_n) \to 0$ and $r_n \to r$ as $n \to \infty$. So $\{x_n\}$ converges.

Example

Let $x_1 = 1$, $x_{n+1} = \frac{1}{2}(x_n + \frac{2}{x_n})$. Then $\{x_n\}_n \in C_{\mathbb{Q}}$, and it converges to $L \in \mathbb{R}$. By algebraic limit rules, $L^2(\lim x_n)^2 = \lim x_n^2 = 2$.

Subsets of the Reals, Infimum and Supremum

Notation

Subset: $S \subseteq \mathbb{R}$ Inclusion: $x \in S$

Open Interval: $(a,b) = \{x \in \mathbb{R} | a < x < b\}$ Semiclosed Interval: $(a, b] = \{x \in \mathbb{R} | a < x \le b\}$ Closed Interval: $[a, b] = \{x \in \mathbb{R} | a \le x \le b\}$

Unbounded Semiclosed Interval: $(-\infty, a] = \{x \in \mathbb{R} | x \le a\}$

Unbounded Open: $(-\infty, a) = \{x \in \mathbb{R} | x < a\}$

Suprememum

 $S \subseteq \mathbb{R}$ is bound above (respectively below) if $\exists M \in \mathbb{R}, \ \forall x \in S, \ x \leq M$ (respectively $\exists L \in \mathbb{R}, \ \forall x \in S, \ L \leq X$) S ad mits a least upper bound, LUB, suprememum or sup M if

- 1. $\forall x \in S, x \leq M$
- 2. $\forall M' \in \mathbb{R}$, upper bound of $S, M \leq M'$

If $\sup S$ exists, it is unique.

If $x \in S$ and x is an upper bound for S, then $x = \sup S$.

Example 1

$$\sup(0,1) = \sup[0,1] = 1$$

Example 2

 $S = \{x \in \mathbb{Q}, x^2 < 2\}$ does not have a greatest element in \mathbb{Q} , nor a least upper bound in \mathbb{Q} .

Theorem (Completness 2)

Every subset $S \subseteq \mathbb{R}$, nonempty and bouned above, has a supremum in \mathbb{R} .

Proof

By dichotomy.

 $S \neq \emptyset \implies \exists x_0 \in S \text{ and } S \text{ bounded above implies } \exists y_0 \in \mathbb{R}, \ \forall x \in S, \ x \leq y_0 \text{ (in particular } x_0 \leq y_0).$ If $x_0 = y_0$, done. Otherwise, consider $m_0 = \frac{x_0 + y_0}{2}$.

$$\begin{array}{c|c} & + & + & + \\ \hline x_0 \ x_1 & y_0 = y_1 \\ \hline S & \end{array}$$

Two options exist: if m_0 is an upper bound for S, set $y_1 = m_0$ and $x_1 = x_0$.

Otherwise, $\exists x_1 \in S$, such that $m_0 < x_1$ so set $y_1 = y_0$.

Repeat this process forever to construct two sequences x_n , y_n .

 $\forall n, x_n \in S, y_n \text{ is an upper bound for } S.$

- $x_n \le y_n$
- x_n is increasing and bounded above by y_0 , so it must be Cauchy and converging to x.
- y_n is decreasing and bounded below by x_0 , so it must be Cauchy and converging to y.
- $|x_{n+1} y_{n+1}| \le \frac{|x_n y_n|}{2}$ which implies $|x_n y_n| \le \frac{1}{2^n} |x_0 y_0|$ and x = y = z.

Therefore, the process may be understood as $x_0 \leq \cdots \leq x_n \leq x_{n+1} \leq y_{n+1} \leq y_n \leq \cdots \leq y_0$.

There remain two things to check: (1) z is an upper bound for S and (2) z is no larger than any other upper bound for S.

- 1. Take $x \in S$, $\forall n, x \leq y_n \xrightarrow{n \to \infty} x \leq Z$.
- 2. Take upper bound for $S, z', x_n \leq z', \forall n \xrightarrow{n \to \infty} z \leq z'$.

So $z = \sup S$.

Monotone Convergence Theorem (Completeness 3)

An increasing sequence of reals, $\{x_n\}_n$, that is bounded above, converges to $\sup X = \sup\{x_n | n \in \mathbb{N}\}$.

To prove that this converges, since it is monotone and bounded above it is Cauchy and therefore must be convergent.

Proof

Call x the limit, then $\forall n, x_n \leq x$. To see this, suppose $\exists n_0, x < x_{n_0}$ then $\forall m \geq m_0, x < x_{m_0} \leq x_m \implies |x_m - x| \geq |x_{n_0} - x| > 0$, $\forall m \geq n_0$ is a contradiction.

Let M be an upper bound of X. Then $x_n \leq M$, $\forall n \xrightarrow{n \to \infty} x \leq M \implies x = \sup X$.

Theorem (Existence of Roots)

 $\forall x \in \mathbb{R} \text{ where } x > 0, \ p \in \{2, 3, \dots, \}, \ \exists ! y > 0 \text{ such that } y^p = x.$

Proof

Left as an exercise.

Either by dichotomy or consider $S = \{y \in \mathbb{R} | y^p < x\}$, show: $S \neq 0$, bounded above and $(\sup S)^p = x$. For uniqueness, show $y_1^p = y_2^p = x \iff 0 = y_1^p - y_2^p = (y_1 - y_2)(\cdots \neq 0) \implies y_1 = y_2$.

Topological Properties

 $S \subseteq \mathbb{R}$ is open if $\forall x \in S, \exists a, b \in \mathbb{R}, x \in (a, b) \subset S$.

x is an accumulation or limit point of S if $\forall \epsilon > 0, \exists y \in S, 0 < |x - y| < \epsilon$.

 $S \subseteq \mathbb{R}$ is closed if it contains all its limit points.

A set may be both open closed, just open, just closed or neither.

Given $S \subseteq \mathbb{R}$, the interior of S is $\bigcup_{S' \text{ open} \subset S} S' = S^{\text{int}} = S^0$.

The closure is $\bigcap_{F \text{ closed} \supseteq S} F = \overline{S} \stackrel{\text{wts}}{=} S \cup \{\text{limit points of } S\}.$

Example

 $\{x\}$ is not open, but, since the limit points of x are \emptyset , it is closed.

Propositions

- 1. Arbitrary unions and finite intersections of open sets are open.
- 2. S is open if and only the complement $S^c = \mathbb{R} \setminus S$ is closed.
- 3. Arbitrary intersections and finite unions of closed sets are closed.

Bolzano-Weierstrass Theorem

A bounded sequence in \mathbb{R} ad mits a convergent (Cauchy) subsequence. $\exists M, |x_n| \leq M, \forall n$

Proof by Dichotomy

Suppose $I_0 = [a, b]$ contains the sequence. Construct a sequence of intervals by indicators: if $\left[a, \frac{a+b}{2}\right]$ contains infinitely terms of $\{x_n\}_n$, choose n such that $x_{n_1} \in \left[a, \frac{a+b}{2}\right]$ and call $I_1 = \left[a, \frac{a+b}{2}\right]$. Otherwise, $\left[\frac{a+b}{2},b\right]$ must contain infinitely many terms. Choose n in a similar fashion as above such that $I_1 = \left[\frac{a+b}{2},b\right]$.

This process may be repeated to create a sequence of intervals such that $I_k \supseteq I_{k+1} \supseteq I_{k+2}$ and $l(I_k) = \frac{b-a}{2^k}$. A subsequence $\{u_{n_k}\}_k$ such that $u_{n_k} \in I_l$ for $k \ge l$.

Exercise

Extract a Cauchy criterion out of the above.

October 9, 2023

Overview

- Topology of \mathbb{R} continued.
- Numerical series.

Next Wednesday

- Absolute and Conditional Convergence.
- Rearrangement theorem.

Last Time

Finished with Bolzano-Weierstrass.

Limits

Limit Point

We say $x \in \mathbb{R}$ is a limit point of $\{x_n\}_n$ if a subsequence of $\{x_n\}_n$ converges to x. Equivalently, $\forall \epsilon > 0$, $\forall n_0 \in \mathbb{N}$, $\exists n \geq n_0$, $|x_n - x| < \epsilon$. That is, the sequence revisits an epsilon neighborhood of x infinitely many times.

Limit Set

The limit set of $\{x_n\}_n$: LS($\{x_n\}_n$) = the set of limit points of $\{x_n\}_n$.

- Comments
 - if $\lim_{n\to\infty} \{x_n\} = x$, then LS($\{x_n\}_n$) = $\{x\}$.
 - The limit set can be as big as $\mathbb{R}!$

$$r_1$$
 r_2 r_3 r_4
 \downarrow r_1 r_2 r_3
 \downarrow r_1 r_2

- What Bolzano-Weierstrass says is that if $\{x_n\}$ is bounded, then $LS(\{x_n\}) \neq \emptyset$.
- Examples $LS(\{n\}_n) = \emptyset$. $LS(\{x_n\}_n)$ is closed (good exercise).

Limit Superior

If $\{x_n\}_n \in [a, b]$ is bounded, $\forall k \in \mathbb{N}$, $\sup\{x_j | j \ge k\}$ exists in \mathbb{R} . Because

$$a \le \sup\{x_j | j \ge k + 1\} = y_{k+1} \le \sup\{x_j | j \ge k\} = y_k$$

by the Monotone Convergence Theorem, $\{y_k\}_k$ converges. Call its limit $\limsup_n x_n = \inf_n \sup\{x_j | j \ge n\}$.

Limit Inferior

Similarly, define $\lim_n \inf x_n = \sup_n \inf \{x_j | j \ge n\}$.

Limit Superior and Limit Inferior Always Exist

What to show: $\limsup x_n$, $\liminf x_n \in LS(\{x_n\})$. Left as an exercise.

Convergence at the Limit

A bounded sequence $\{x_n\}_n$ converges if and only if $\liminf_n x_n = \limsup_n x_n$.

• Proof Technique Often it is useful to structure a proof such that

$$L < \liminf_n x_n \le \limsup_n x_n < L$$

Topology of the Reals Continued

Compactness

Let $A \subseteq \mathbb{R}$.

A is (sequentially) compact if every sequence in A has a limit point in A. A is (Heine-Borel) compact if every open cover of A has a finite subcover.

- Open Cover $\{O_{\alpha}\}_{{\alpha}\in I}$, with O_{α} open, is an open cover of A if $A\subseteq \bigcup_{{\alpha}\in I}O_{\alpha}$.
- Finite Subcover $O_1, \ldots, O_n, n \in \mathbb{N}$.

Heine-Borel Theorem

Let $A \subseteq \mathbb{R}$.

The following are equivalent

- 1. A is Heine-Borel compact.
- 2. A is closed and bounded.
- 3. A is sequentially compact.

Proof

$$(1) \Longrightarrow (2) \Longrightarrow (3) \Longrightarrow (1)$$

ullet Heine-Borel Compact Implies Closed and Bounded Suppose A satisfies the Heine-Borel property.

Consider $\{(-n,n)\}_{n\in\mathbb{N}}$. Clearly $\bigcup_n (-n,n) = \mathbb{R} \supseteq A$.

By Heine-Borel, $\exists n_0, \ldots, n_p$ such that $A \supseteq \bigcup_{j=0}^p (-n_j, n_j) = (-N, N), N = \max(n_0, \ldots, n_p)$. So A is bounded.

A is closed if $y \notin A \implies y$ is not a limit point of A.

Take $y \in A^c$, then $A \subseteq \mathbb{R} \setminus \{y\} = \bigcup_{n \in \mathbb{N}} (-\infty, y - \frac{1}{n}) \cup (y + \frac{1}{n}, \infty)$.

By the Heine-Borel property,

$$A \subseteq \bigcup_{n_0, \dots, n_p} (-\infty, y - \frac{1}{n}) \cup (y + \frac{1}{n}, \infty)$$
$$= (-\infty, y - \frac{1}{N}) \cup (y + \frac{1}{N}, \infty)$$

Which implies $A \cap [y - \frac{1}{N}, y + \frac{1}{N} = \emptyset]$ and y is not a limit point of A. That is, A contains its limit points.

ullet Closed and Bounded Implies Sequential Compactness Suppose A is both closed and bounded.

Let $\{x_n\}_n \in A$. Then $\{x_n\}_n$ is bounded. By Bolzano-Weierstrass, it has a limit point x and a subsequence $\{x_{n_k}\}_k$ converging to x.

Since A is closed, $\lim_{k\to\infty} x_{n_k} = x \in A$.

• Sequential Compactness Implies Heine-Borel Suppose $A \subseteq \mathbb{R}$ is sequentially compact.

Consider an open cover of A, $\{O_{\alpha} | \alpha \in I\}$.

First, turn it into a countable cover:

$$- \ \forall \alpha \in I, \ O_{\alpha} \subseteq \left(r_{\alpha}^{1}, r_{\alpha}^{2}\right), \ r_{\alpha}^{1}, r_{\alpha}^{2} \in \mathbb{Q}$$

Assume that $\{O_{\alpha}\}_{\alpha}$ can be made countable (O_1, \ldots, O_n)

By contradiction, suppose $\forall n \in \mathbb{N}, A \setminus \left(\bigcup_{j=1}^n O_j\right) \neq \emptyset$.

Take $x_n \in A \setminus \left(\bigcup_{j=1}^n O_j\right)$. Since A is sequentially compact, $\exists \{x_{n_k}\}_k$ subsequence of $\{x_n\}_n$ converging to

Since $A \subset \bigcup_{j \in \mathbb{N}} O_j$, $\exists j_0, \ x \in O_{j_0}$, O_{j_0} is open: $\exists \delta > 0$, $(x - \delta, x + \delta) \subseteq O_{j_0}$. Then $\exists N, \ k \geq N \implies x_{n_k} \in (x - \delta, x + \delta) \subseteq O_{j_0}$. But if k is such that $n_k > j_0$, we also have $x_{n_k} \notin O_{j_0}$ which is a contradiction!

Structure of Open and Closed Sets

A is open in \mathbb{R} if and only if it can be written as an at most countable, disjoint union of open intervals.

TODO Proof

For $x \in A$, $\exists (a,b)$, such that $x \in (a,b) \subseteq A$.

Let $I_x = \bigcup_{\text{open interval containing } x, I \subseteq A} I$. This is the maximal interval containing x in A.

Then, $A \subseteq \bigcup_{x \in A} \{x\} \subseteq \bigcup_{x \in A} I_x \subseteq A$. That is, $A = \bigcup_{x \in A} I_x \quad (*)$.

Next, if $x, y \in A$, then $\begin{cases} \text{either } I_x = I_y \\ \text{or } I_x \cap I_y = \emptyset \end{cases}$

IMAGE HERE

The union (*), as a disjoint union, is at most countable because each distinct one must contain a distinct rational and \mathbb{O} is countable.

Long Story Short

The topology of the reals avoids exotic sets. Closed sets, on the other hand, can be quite complicated.

TODO Cantor Set

 $C := \bigcap_{k \in \mathbb{N}_0} I_k$. I_{k+1} is obtained by removing the middle open third of each interval making I_k . IMAGE HERE - CANTOR

 $I_0 = [0, 1]$. One interval of length 1.

 $I_1 = [0, 1/3] \cup [2/3, 1]$. Two intervals of length 2/3.

 $I_2 = [0, 1/9] \cup [2/9, 1/3] \cup [2/3, 7/9]$. Four intervals of $(2/3)^2$ I_k is 2^k intervals of length $(2/3)^k$.

 $I_{k+1} \subseteq I_k \implies C \subseteq I_k, \ \forall k \implies l(C) \le l(I_k) = (2/3)^k \implies l(C) = 0.$

TODO Triadic Expansions

Goal:

- 1. C is perfect (i.e. every point in C is a limit point of C).
- 2. C contains no open intervals.

Property 2 is easy because $C \subseteq I_k$, which does contain interval of length greater than $(1/3)^k$.

1. C is uncountable.

Every $x \in [0,1]$ can be written in the form $x = \sum_{k=1}^{\infty} \frac{a_k}{3^k}$, $a_k \in \{0,1,2\}$. That is, $x = 0.a_1a_2...$ in base 3. This is not always unique (e.g. 1/3 = 0.100... = 0.022...).

IMAGE HERE - THIRDS OF INTERVAL

Note that the Cantor set is removing all decimal expansions with leading 1s. That is, $x \in C$ if and only if it has a triadic expansion only made of 0s and 2s.

- Proof of 1 If $x \in C$, $x = \sum_{k \ge 1} \frac{a_k}{3^k} = \lim_{n \to \infty} \sum_{k=1}^n \frac{a_k}{3^k}$, then $x_n \in C$, $\forall n$ and $x_n = 0.a_1 \dots a_n 0000 \dots$ where $a_1, a_n \in \{0, 2\}$. Unique representation can be maintained by forcing the behavior of the n + 1th digit.
- Proof of 3 Every point in [0,1] can also be written as $x = \sum_{n=1}^{\infty} = \frac{b_n}{2^n}, b_n \in \{0,1\}$ (i.e. a binary expansion). Then $C \mapsto [0,1]$ gives $x = \sum \frac{a_k}{3^k} \mapsto \sum \frac{b_k}{2^k}$, $b_k = \frac{a_k}{2}$ for $a_k \in \{0,2\}$ is a bijection!

October 11, 2023

Overview: Numeric Series

- Series with non-negative terms.
- Series with general terms.
- Convergence criteria.
- Algebraic rules.
- Rearrangements.

General Notation

Sequence $\{x_n\}_{n\geq n_0}$ (often $n_0\in\{0,1\}$)

Definition: Partial Sum

$$\begin{split} S_n &= \sum_{k=n_0}^n x_k \ (x_n = S_n - S_{n-1}) \\ \text{We say } \sum_n x_n \text{ converges if } \lim_{n \to \infty} S_n \text{ exists.} \\ \text{We denote } \sum_{k=n_0}^\infty x_k = \lim_{n \to \infty} S_n \end{split}$$

• Example: Geometric Series $\sum_{k=0}^{n} r^k = S_n, r \in (0,1)$ $\frac{1-r^{n-1}}{1-r} \to \frac{1}{1-r}$

• Example: P Series $\sum_{k=1}^{n} \frac{1}{k^p}$, p > 0

• Example: Exponential $\sum_{k=0}^{n} \frac{1}{k!}$

Series without Non-negative Terms

The series has non-negative terms if $x_n \ge 0$, $\forall n$.

Obvious Algebraic Limit Rules

If $\sum_{n\geq n_0} a_n$ and $\sum_{n\geq n_0} b_n$ converge and $\alpha\in\mathbb{R}$, then $\sum_{n\geq n_0} (a_n+\alpha b_n)$ converges to

$$\sum_{n=n_0}^{\infty} a_n + \alpha \sum_{n=n_0}^{\infty} b_n = \sum_{n=n_0} (a_n + \alpha b_n)$$

• Proof (Sketch) Reason on the partial sums; use algebraic limit rules on sequences.

Proposition

If $\sum_{n} x_n$ converges in \mathbb{R} , then $\lim_{n\to\infty} x_n = 0$.

• Proof $x_n = S_n - S_{n-1} \xrightarrow{n \to \infty} S - S = 0$ Since $S_n \xrightarrow{n \to \infty} S$ and $S_{n-1} \xrightarrow{n \to \infty} S = \sum_{n=n_0}^{\infty} x_n$.

Series with Non-negative Terms

If $x_n \ge 0$, $\forall n$, $S_n = \sum_{k=n_0}^n x_k$ is non-decreasing. By monotone convergence theorem, S_n is either bouned, and therefore converges, or unbounded from above where

$$\forall m > 0, \exists n_0 \in \mathbb{N}, \forall n \ge n_0, S_n \ge M$$

This is "diverging to $+\infty$."

Theorem: Convergence Criteria

- Term Test If $0 \le a_n \le b_n$, $\forall n \ge n_0$ and $\sum_n b_n$ converges, then $\sum_n a_n$ converges.
 - Proof Suppose $0 \le a_n \le b_n$, and $t_n = \sum_{k=n_0}^n b_k$ converges and, therefore, is bounded above by $B = \sum_{k=n_0}^{\infty} b_k$. Then $\forall n, \sum_{k=n_0}^n a_k \le \sum_{k=n_0}^n b_k \le B$.

Thus, by monotone convergence theorem, $\sum_{k=n_0}^{n} a_k$ converges.

- Ratio Test If $a_n > 0$, $\forall n$ and $\exists n_0 \in \mathbb{R}$ such that $\frac{a_{n+1}}{a_n} \le r < 1$, $\forall n \ge n_0$, then $\sum_n a_n$ converges.
 - Clarification The harmonic series has ratio $\frac{k}{k+1} < 1$ but since $\frac{k}{k+1} \stackrel{k \to \infty}{\to} 1$, there is no r which satisfies
 - Proof Suppose $a_{n+1} \le ra_n$ for $n \ge n_0$. Then $a_{m_0+p} \le a_{m_0+(p-1)}r \le a_{m_0+(p-2)}r^2 \le \cdots \le a_{m_0}r^p$. Then for $n \geq n_0$,

$$\sum_{k=n_0}^{n} a_k = \sum_{k=n_0}^{m_0} a_k + \sum_{k=m_0+1}^{n} a_k \le \sum_{k=m_0}^{m_0 + (n-m_0)} a_{m_0} r^{n-m_0} \le a_{m_0} \sum_{k=m_0}^{n-m_0} r^{n-m_0} \le \frac{1}{1-r}$$

- Rate of Convergnce The above proof shows that the ratio test implies a geometric rate of convergence.
- Root Test If $\exists n_0 \in \mathbb{N}$ and $r \in (0,1)$ such that $a_n^{1/n} \leq r$, then $\sum_n a_n$ converges.
 - Proof (Sketch) Same story as the ratio test: $a_n^{1/n} \le r \implies a_n \le r^n$.
- Rejection of Ratio/Root If $\exists n_0 \in \mathbb{N}$ such that either $\frac{a_{n+1}}{a_n} \ge 1$ for $n \ge n_0$ or $a_n^{1/n} \ge 1$ for $n \ge n_0$, then $\sum_n a_n$ diverges to $+\infty$.
 - Proof (Sketch) In either case, a_n cannot converge to zero. Therefore the series cannot converge.

Prototype Scales

Geometric Rates

 $\sum_{n\geq 1}\frac{1}{n^{\alpha}}$ converges if and only if $\alpha>1$ (to $\zeta(\alpha)$) $a_k = \frac{1}{k^{\alpha}} \rightarrow 2^k a_{2^k} = \frac{2^k}{2^{k\alpha}} = \left(\frac{1}{2^{\alpha-1}}\right)^k \implies t_n = \sum_{k=1}^n 2^k a_{2^k} \text{ converges if and only if } \frac{1}{2^{\alpha-1}} < 1 \text{ if and only if } \alpha > 1.$

Log Geometric Case

 $\sum_{n\geq 1} \frac{1}{n(\log(n))^{\beta}}$ converges if and only if $\beta>1$. $a_k = \frac{1}{k(\log(k))^\beta} \Rightarrow 2^k a_{2^k} = \frac{2^k}{2^k(\log(2^k)^\beta)} = \frac{1}{(\log(2)^\beta k^\beta)}$ converges if and only if $\beta > 1$.

Lemma:

Suppose a_n decreases to 0. Then the sequence $S_n = \sum_{k=1}^n a_k$ converges if and only if $t_n = \sum_{k=1}^n 2^k a_{2^k}$ converges.

$$S_{2^n} = a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + a_7 + a_8 + \cdots$$

$$a_3 + a_3 \leq \leq a_2 + a_3$$

$$S_n = a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + a_7 + a_8 + \cdots$$

$$= a_1 + \sum_{k=1}^{n} \sum_{p=1}^{2^k - 1} a_{2^k + p}$$

$$\leq a_1 + 2^k a_{2^{k+1}} + \cdots$$

This gives

$$\frac{1}{2}(t_n - a_1) \le S_{2^n} - a_1 \le t_{n-1}$$

Therefore S_{2^n} converges, which implies that t_n converges, and, since S_n is monotone, S_n itself converges.

Series with General Terms

General term is signed.

Trick

Write $a_n = a_n^+ - a_n^-$ and $a_n^{\pm} = \max(0, \pm a)$. Then

$$S_n = \sum_{k=n_0}^n a_k = \left(\sum_{k=n_0}^n a_k^+\right) - \left(\sum_{k=n_0}^n a_k^-\right)$$

Convergence Outcomes

	$\sum_{k=n_0}^{\infty} a_k^+ < \infty$	$\sum_{k=n_0}^{\infty} a_k^+ = \infty$	
$\sum_{k=n_0}^{\infty} a_k^- < \infty$	absolute convergence	$\lim S_n = +\infty$	If
$\sum_{k=n_0}^{\infty} a_k^+ = \infty$	$\lim S_n = -\infty$	lots of things can happen; divergence, convergence, any limit sequence	_

 S_n^+ and S_n^- converge, we can return to algebraic limit rules. S_n converges to $\lim_{n\to\infty} S_n^+ - \lim_{n\to\infty} S_n^-$

Definition: Absolute Convergence

We say $\sum_n a_n$ converges absolutely if and only if $\sum_n |a_n|$ converges.

Note

$$|a_n| = a_n^+ + a_n^-$$

Proposition: Absolute Convergence Implies Convergence

Proof

Absolute convergence $\implies \sum |a_n|$ converges $\implies \sum a_n^+$ and $\sum a_n^-$ converges $\implies \sum (a_n^+ - a_n^-)$ converges.

Definition: Conditional Convergence

 $\sum_n a_n$ converges conditionally if and only if $\sum_n a_n$ converges while $\sum_n |a_n|$ diverges.

Criteria for Convergence

For absolute convergence, run root/ratio/term test on $\sum_{n} |a_n|$. Other criteria which might indicate conditional convergence.

Alternating Series Test

If $a_n(-1)^n b_n$, $b_n \ge 0$ decreases to zero, the series is conditionally convergent.

Dirichlet Test

If $a_n = b_n c_n$, where b_n decreases to zero and c_n satisfies $|c_0 + c_1 + \cdots + c_n| \le C$, $\exists C \in \mathbb{R}, \forall n \in \mathbb{N}$, then $\sum_{n \ge 0} a_n$ converges conditionally.

- Applications $\sum_{n\geq 1} \frac{(-1)^n}{n}$ $\sum_{n\geq 1} \frac{\cos(n)}{n}$
- Proof Write $C_n = c_0 + c_1 + \dots + c_n$, such that $|C_n| \le C$, $\forall n$. Then $c_n = C_n - C_{n-1}$, and

$$\sum_{k=0}^{n} b_k c_k = \sum_{k=0}^{n} b_k (C_k - C_{k-1}) = \sum_{k=0}^{n} b_k C_k - \sum_{k=0}^{n} b_k C_{k-1} \stackrel{l=k-1}{=} \sum_{k=0}^{n} b_k C_k - \sum_{l=0}^{n-1} b_{l+1} C_l = b_n C_n + \sum_{k=0}^{n-1} (b_k - b_{k+1}) C_k$$

Then, since $b_n C_n \overset{n\to\infty}{\to} 0$, we only need to show that the final term converges absolutely. Consider

$$\sum_{k=0}^{n-1} |b_k - b_{k+1}| |C_k| \le C \sum_{k=0}^{n-1} (b_k - b_{k+1}) = C(b_0 - b_n) \le C(b_0)$$

independent of n. Hence, $\sum_{k=0}^{n} b_k c_k$ converges.

Definition: Rearrangement

Take $\sigma: \mathbb{N} \to \mathbb{N}$ a bijection and $\sum_{n \geq 1} a_n$ a series such that $S_n = \sum_{k=1}^n a_k$. Then define a rearranged sum $S_n^{(\sigma)} = \sum_{k=1}^n a_{\sigma(k)}$.

Q: When does the rarranged sum converge; to where?

- Theorem: Rearrangement of Absolute Convergence If $\sum a_n$ converges absolutely, then $\forall \sigma$, $\lim_{n\to\infty} S_n^{(\sigma)} = \lim_{n\to\infty} S_n$.
- Theorem: Rearrangement of Conditional Convergence If $\sum a_n$ converges conditionally, then $\forall x \in \mathbb{R}$, $\exists \sigma$ such that $\lim_{n\to\infty} S_n^{(\sigma)} = x$.

October 16, 2023

Overview

Sequences and Series of Functions Things that will be glossed over for time

- Limits
- Continuity
- Differentiability
- Integrability

Why care about sequences and series?

Extending features of functions. Approximations.

Limits and Continuity

Let $I \subseteq \mathbb{R}$ be an interval and $f: I \to \mathbb{R}$, $x_0 \in I$.

Definition: Limit

f has a limit at x_0 if $\exists \ell \in \mathbb{R}, \forall \epsilon > 0, \exists \delta > 0, 0 < |x - x_0| < \delta \implies |f(x) - \ell| < \epsilon$

• Equivalently

For every sequence $\{x_n\}_n$ in I converging to x (but distinct to x), $\lim_{n\to\infty} f(x_n) = \ell$.

Definition: Continuous

f is continuous at x_0 if $\lim_{x\to x_0} f(x) = f(x_0)$.

• Modulus of Continuity $\forall \epsilon > 0, \exists \delta > 0, \forall x \in I, |x - x_0| < \delta \implies |f(x) - f(x_0)| < \epsilon$ Then $\delta(x_0, \epsilon)$ is the modulus of continuity.

21

Definition: Uniform Continuity on I

f is uniformly continuous on I if $\forall \epsilon > 0, \exists \delta > 0, \forall x, y \in I, |x - y| < \delta \implies |f(x) - f(y)| < \epsilon$. Where δ is $\delta(\epsilon)$. That is, the modulus of continuity does not depend on the points.

Special Types of Uniform Continuity

Hölder Continuous

f is α-Hölder continuous on I for $\alpha \in (0, i]$, if $\exists c > 0$ such that $\forall x, y \in I, |f(x) - f(y)| \le c|x - y|^{\alpha}$ $\alpha = 1$ implies that f is "Lipschitz-continuous"

• Example

If f' exists and is bounded on [a,b] by M, then by the Mean Value Theorem: $|f(x) - f(y)| = |f'(\xi)| |x - y| \le M|x - y|$, where $x \le \xi \le y$.

Continuity on Compact Sets

Let $K \subseteq \mathbb{R}$ be a compact set and $f: K \to \mathbb{R}$ be continuous. Then

- 1. f(K) is compact. In particular, f is bounded on K.
- 2. f achieves its extrema on K. (e.g. $\exists M \in K$ such that $f(M) = \sup\{f(x) \mid x \in K\}$.
- 3. f is uniformly continuous on K.

Note: the proofs of these features are good practice. In particular, proofs that exploit the Heine-Borel property.

Proof 1: Compact

Let y_n be a sequence in f(K).

Then, $\forall n, y_n = f(x_n)$ for $x_n \in K$.

It follows that there exists a subsequence $\{x_{n_k}\}_k$ converging to x in K.

By continuity, $y_{n_k} = f(x_{n_k}) \stackrel{k \to \infty}{\to} f(x) \in f(k)$.

Proof 2: Achieves Its Extrema

Construct M.

By the suprememum property, $S = \sup\{f(x) \mid x \in \mathbb{R}\}, \ \forall n, \exists x_n \in K \text{ such that } S - \frac{1}{n} \leq f(x_n) < S.$

Since K is compact, there exists a subsequence $\{x_{n_k}\}_k$ converging to $x \in K$.

Since f is continuous at x, $f(x_{n_k}) \stackrel{k \to \infty}{\to} f(x)$, and also $S - \frac{1}{n_k} \le f(x_{n_k} \le S \stackrel{k \to \infty}{\to} S = f(x)$.

Proof 3: Uniformly Continuous

Suppose, for sake of contradiction, that $\exists \epsilon > 0, \forall \delta > 0, \exists x_{\delta}, y_{\delta} \in K, |x_{\delta} - y_{\delta}| < \delta \text{ and } |f(x_{\delta}) - f(y_{\delta})| \ge \epsilon.$

Letting $\delta = \frac{1}{n}$, we may write $x_n, y_n \in K$, $|x_n - y_n| < \frac{1}{n}$ and $|f(x_n) - f(y_n)| \ge \epsilon$. Since K is compact, there exists a subsequence $\{x_{n_k}\}_k$ which converges to $x \in K$. Since $|x_{n_k} - y_{n_k}| < \frac{1}{n_k}$, then $\{y_{n_k}\}_k$ also converges to x. By continuity of f at x, $\lim_{k\to\infty} f(x_{n_k}) - f(y_{n_k}) = 0$. However, this contradicts the established fact that $|f(x_n) - f(y_n)| \ge \epsilon \text{ for } \epsilon > 0.$

Notation

Let $I \subseteq \mathbb{R}$ be an interval.

Sequence of Functions

$$f_n(x), x \in I, n \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}$$

Series of Functions

$$S_n(x) = \sum_{k=0}^n f_k(x)$$

Definition: Pointwise Convergence

A sequence or series of functions converges pointwise on I if and only if $\forall x \in I, \{f_n(x)\}_n$ is convergent. Call f(x) the limit.

Q: Under what conditions do properties of a sequence (e.g. continuity, differentiability, integrability) propogate to the limit?

Power Series

$$\frac{\sum_{n\geq 0} a_n (x - x_0)^n}{S_n(x) = \sum_{k=0}^n a_k (x - x_0)^k} \frac{(x - x_0)^n}{(x - x_0)^n}$$

Fourier Series

$$S_n = a_0 + \sum_{n=1}^{N} a_n \cos(nx) + b_n \sin(nx) \text{ is } 2\pi\text{-periodic.}$$

Approximation

For purposes of approximation, it is useful to know if, for example, the integral may be approximated by taking integrals of the partial sums.

23

Deficiencies of Pointwise Convergence

Example 1

On
$$[0,1]$$
, $f_n(x) = x^n \xrightarrow{n \to \infty} \begin{cases} 0 & \text{if } x < 1 \\ 1 & \text{if } x = 1 \end{cases}$

 f_n is continuous on $[0,1], \forall n$, but f is not.

• Exercise

Show that there is no uniform convergence here.

Hint: negate uniform convergence and prove the negation.

Example 2

$$\chi_{\mathbb{Q}}(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ 0 & \text{otherwise} \end{cases}$$
 is not Riemann-integrable on $[0, 1]$.

If r_n denotes a denumeration of rationals in [0,1], define $f_n(x) = \begin{cases} 1 & \text{if } x \in \{r_0,\ldots,r_n\} \\ 0 & \text{otherwise} \end{cases}$

So f_n converges pointwise on $\chi_{\mathbb{Q}}$.

Yet, $\forall n, f_n$ is Riemann-integrable and $\int_0^1 f_n(x) dx = 0$.

Definition: Uniform Convergence

We say $f_n: D \to \mathbb{R}$ (e.g. D an interval) converges uniformly to f on D (notation $f_n \rightrightarrows f$ on D) if

$$\forall \epsilon > 0, \exists N \in \mathbb{N}, n \ge N \implies \begin{cases} |f_n(x) - f(x)| < \epsilon, \forall x \in D \\ \sup_D |f_n - f| < \epsilon \end{cases}$$

Compare with Pointwise Convergence

Compare to $f_n \to f$ pointwise on D.

 $\forall x \in D, \forall \epsilon > 0, \exists N \in \mathbb{N}, n \ge N \implies |f_n(x) - f(x)| < \epsilon.$

In this case, the behavior is primarily contingent upon the choice of x. That is $N(x,\epsilon)$ is dependent on x.

24

Theorem: Weierstrass M-Test

Let $f_n: D \to \mathbb{R}$ be bounded by M_n on D. If $\sum_{n=1}^{\infty} M_n < \infty$, then the series $S_n(x) = \sum_{k=1}^n f_k(x)$ converges uniformly to S(x)

Proof

$$\forall x \in D, |S_n(x) - S(x)| = |\sum_{k=n+1}^{\infty} f_k(x)|^{\text{triangle inequality}} \leq \sum_{k=n+1}^{\infty} |f_k(x)| \leq \sum_{k=n+1}^{\infty} M_k, \text{ where } \sum_{k=n+1}^{\infty} M_k \text{ is a uniform bound in } x.$$
 Let $\epsilon > 0, \exists n, n \geq N \implies \sum_{k=n+1}^{\infty} M_k < \epsilon.$ Then $\forall x \in D, n \geq N, |S_n(x) - S(x)| \leq \sum_{k=n+1}^{\infty} M_k < \epsilon. \blacksquare$

Theorem: Continuity and Uniform Limits

Let $f_n D \to \mathbb{R}$ be continuous on D for all n and $f_n f$ on D ($\lim_{n\to\infty} \sup_D |f_n - f| = 0$). Then f is continuous on D.

Proof

Fix $x \in D$, with x_n converging to x in D.

What To Show: $f(x_n) \xrightarrow{n \to \infty} f(x)$.

Scratch: $f(x_n) - f(x) = (f(x_n) - f_p(x_n)) + (f_p(x_n) - f_p(x)) + (f_p(x) - f(x))$.

Let $\epsilon > 0$ be given. $f_n \Rightarrow f : \exists N, n \ge N \implies |f_n(y) - f(y)| < \frac{\epsilon}{3}, \forall y \in D$.

For $p \ge N, |f_p(y) - f(y)| < \frac{\epsilon}{3}, \forall y \in D \implies \forall n \in \mathbb{N}, |f(x_n) - f(x)| \stackrel{\text{triangle inequality}}{\le} \frac{2\epsilon}{3} + |f_p(x_n - f_p(x))|$.

With p = N, since f_p is continuous at $x, \exists N_1, n \ge N_1 \implies |f_p(x_n) - f_p(x)| < \frac{\epsilon}{3}$.

Hence, for $n \ge N_1, |f(x_n) - f(x)| \le \epsilon$.

Riemann-Integrability

Fix D = [a, b] and $g : [a, b] \to \mathbb{R}$ bounded by $|g(x)| \le M, \forall x$.

Definition: Subdivision

$$\sigma = \{a = x_0 < x_1 < x_2 < \dots < x_n = b\}$$

Definition: Upper and Lower Riemann Sums

$$\begin{split} S^+(g,\sigma) &= \sum_{k=1}^n (x_k - x_{k-1}) M_k \text{ is the upper sum.} \\ S^-(g,\sigma) &= \sum_{k=1}^n (x_k - x_{k-1}) m_k \text{ is the lower sum.} \\ \text{Where } M_k &= \sup_{[x_{k-1},x_k]} g \text{ and } m_k = \inf_{[x_{k-1},x_k]} g. \\ \text{This gives } -M(b-a) &\leq S^-(g,\sigma) &\leq S^+(g,\sigma) &\leq (b-a) M. \\ \text{If } \mathfrak{S}[a,b] &= \{ \text{subdivisions of } [a,b] \}, \text{ then } \\ I^-(g) &= \sup_{\sigma \in \mathfrak{S}[a,b]} S^-(g,\sigma) \text{ and } I^+(g) &= \inf_{\sigma \in \mathfrak{S}[a,b]} S^+(g,\sigma). \end{split}$$

Definition: Riemann Integrable

g is Riemann integrable if $I^+(g) = I^-(g)$ and we denote $\int_a^b g(t) dt = I^+(g)$.

Lemma

g is Riemann integrable if and only if $\forall \epsilon > 0, \exists \sigma \in \mathfrak{S}[a,b]$ such that $S^+(g,\sigma) - S^-(g,\sigma) < \epsilon$.

Properties

- 1. Continous functions and monotone functions are Riemann Integrable.
- 2. $f \mapsto \int_a^b f(t) dt$ is linear.
- 3. If f, g are Riemann Integrable and $f(x) \leq g(x), \forall x \in [a, b], \text{ then } \int_a^b f(t) dt \leq \int_a^b g(t) dt$.

Theorem:

If $f_n \Rightarrow f$ on [a, b] and f_n is Riemann Integrable for all n, then f is Riemann Integrable on [a, b] and $\lim_{n\to\infty} \int_a^b f_n(t) dt = \int_a^b \lim_{n\to\infty} f_n(t) dt = \int_a^b f(t) dt$.

Proof

 $\forall n, \forall x \in [a, b], f_n(x) - \epsilon \leq f(x) \leq f_n(x) + \epsilon \text{ where } \epsilon_n = \sup_{x \in [a, b]} |f_n(x) - f(x)| \text{ (by hypothesis } e_n \xrightarrow{n \to \infty} 0)$ Then, for any $\sigma \in \mathfrak{S}[a, b], S^-(f_n, \sigma) - \epsilon_n(b - a) \leq S^-(f, \sigma) \leq S^+(f, \sigma) \leq S^+(f_n, \sigma) + \epsilon_n(b - a).$ It follows that $S^+(f, \sigma) - S^-(f, \sigma) \leq S^+(f_n, \sigma) - S^-(f_n, \sigma) + 2\epsilon_n(b - a).$ Finishing the proof is left as an exercise.

October 18, 2023

Overview

- Sequences/Series
- Power Series
- Exponential and Logarithms

Fundamental Theorems of Calculus

Full proofs in 105A lecture notes.

Differentiation of the Integral

$$f: [a,b] \to \mathbb{R}$$
 continuous.
 $\forall x \in [a,b]$, can define $F(X) = \int_a^x f(t) dt$.
Then F is continuously differentiable on $[a,b]$
 $F'(x) = f(x)$ for $x \in [a,b]$.

Integration of the Derivative

$$f \in C^1[a, b]$$
 with one-sided derivatives at a and b well defined. (e.g. $\xrightarrow{f(a+h)-f(a)} \xrightarrow{h>0; h\to 0} f'(a)$.
Then $\forall x, y, a \le x \le y \le b$, $f(y) - f(x) = \int_x^y f'(t) dt$.

Theorem: Differentiability of Uniform Limits

Let $f_n:(a,b)\to\mathbb{R}$ be a sequence in $C^1[a,b]$, and assume $f_n(x)\to f(x)$ pointwise while $f'_n(x)\Rightarrow g(x)$ uniformly. Then $f \in C^1(a,b)$ and f' = g.

Proof

Fix $a_0 \in (a, b)$.

Then $\forall x \in (a,b)$, by the Fundamental Theorem of Calculus,

$$f_n(x) - f_n(a_0) = \int_{a_0}^x f'_n(t) dt$$

Observe that $f_n(x) \xrightarrow[n \to \infty]{} f(x)$ and $f_n(a_0) \xrightarrow[n \to \infty]{} f(a_0)$ pointwise, and $\int_{a_0}^x f_n'(t) dt \to \int_{a_0}^x g(t) dt$ by the integrability of uniform limits. Then

$$f(x) - f(a_0) = \int_{a_0}^x g(t) dt, \ \forall x \in (a, b)$$

which implies $f \in C^1$ and f' = g.

Interesting Applications

$$S_n(x) = \sum_{k=0}^n f_k(x).$$

Suppose pointwise convergence, that $S_n'(x) = \sum_{k=0}^n f_k'(x)$ is continuous, $|f_k'(x)| \le M_k$ and $\sum_{k=0}^\infty M_k < \infty$. Long story short, this implies

$$\left(\sum_{k=0}^{\infty} f_k(x)\right)' = \sum_{k=0}^{\infty} f_k'(x)$$

Example

$$f(x) = \sum_{n=0}^{\infty} \frac{\cos(nx)}{n^3}$$

 $f(x) = \sum_{n=0}^{\infty} \frac{\cos(nx)}{n^3}$ Call $u_n(x) = \frac{\cos(nx)}{n^3}$, then $|u_n(x)| \le \frac{1}{n^3}$ summable and $|u_n'(x)| = \left|\frac{-\sin(nx)}{n^2}\right| \le \frac{1}{n^2}$ summable. This implies $f'(x) = -\sum_{n=0}^{\infty} \frac{\sin(nx)}{n^2}$.

Repetition of this process informs us that $f \in \mathbb{C}^2$.

Power Series

 $S_n(x) = \sum_{k=1}^n a_k (x - x_0)^k$ for, $x_0 \in \mathbb{R}$ fixed, is 'centered at x_0 .' Note that each term is $C^{\infty}(\mathbb{R})$.

Example 1

$$\frac{1}{1-x} = \sum_{k=0}^{\infty} x^k \text{ for } |x| < 1.$$

Example 2

 $\exp(x) := \sum_{k=0}^{\infty} \frac{x^k}{k!}$ converges $\forall x \in \mathbb{R}$.

• Why?
Ratio Test.

$$\frac{a_{k+1}}{a_k} = \frac{x^{k+1}}{(k+1)!} \cdot \frac{k!}{x^k} = \frac{x}{k+1}$$

So
$$\left| \frac{a_{k+1}}{a_k} \right| \xrightarrow[k \to \infty]{} 0$$

Lemma: Radius of Convergence

Suppose a power series $\sum_{n\geq 0} a_n x^n$ converges at $b\in \mathbb{R}$.

- 1. Converges absolutely $\forall x, |x| < |b|$.
- 2. $\forall a \in (0, b)$ converges uniformly on [-a, a].
- Proof of 1 Suppose $\sum_{n\geq 0} a_n b^n$ converges. Then $a_n b^n \to 0$. Let x such that |x| < b, then

$$|a_n x^n| = \left| a_n b^n \left(\frac{x}{b} \right)^n \right| \le M \left(\frac{|x|}{b} \right)^n$$

By term test, $\sum_{n=0}^{\infty} |a_n x^n| < \infty \implies \sum a_n x^n$ converges absolutely.

• Proof of 2 If $|x| \le a < b$,

$$|a_n x^n| \le M \left(\frac{|x|}{b}\right)^n \le M \left(\frac{a}{b}\right)^n$$

Thus, by M-test for $x \in [-a, a]$, the series converges uniformly on [-a, a].

• Upshot

The set where a power series converges is an interval centered at x_0 .

Theorem: Radius of Convergence

Given a power series, define R to be such that $\frac{1}{R} = \limsup_{n} |a_n|^{1/n}$. Then

- 1. $\forall a \in (0, R)$, the series converges uniformly on [-a, a].
- 2. If |x| > R, the series diverges.

Proof

IMAGE HERE - RADIUS OF CONVERGENCE Fix x. As an exercise, $\limsup_n |a_n x^n|^{1/n} = |x| \cdot \limsup_n |a_n|^{1/n} = \frac{|x|}{R}$.

Recall that $\limsup_n |a_n x^n|^{1/n} = \lim_{n \to \infty} y_n$ where $y_n = \sup_{k > n} \{|a_k x^k|^{1/k}\}$. If $\frac{|x|}{R} < 1$, then $\exists N_0, n \ge N_0 \implies y_n < \frac{1 + \frac{|x|}{R}}{2} < 1$.

This implies $\forall k \geq N_0, |a_k x^k|^{1/k} \leq \frac{1+\frac{|x|}{R}}{\frac{2}{R}} < 1$ and, by the root test, the series converges. If $\frac{|x|}{R} > 1$, $\forall n, \sup_{k \geq n} \{|a_k x^k|^{1/k}\} \geq \frac{|x|}{R}$.

By the properties of the supremum with $\epsilon = \left(\frac{|x|}{R} - 1\right)/2 > 0$,

$$\forall n, \exists k, 1 \le \frac{\frac{|x|}{R} + 1}{2} \le y_n - \epsilon \le |a_k x^k|^{1/k} \le y_n$$

Therefore $\forall n, \exists k > n, |a_k x^k|^{1/k} \ge 1$.

Observation: Behavior at Endpoints

At the endpoints of (-R, R), a series might

Converge Absolutely

e.g.
$$\sum_{k=1}^{\infty} \frac{x^k}{k^2}$$
, $R = 1$, $\frac{1}{R} = \limsup_n \left(\frac{1}{n^2}\right)^{1/n} \xrightarrow{n \to \infty} 1$

Converge Conditionally

e.g.
$$\sum_{k=1}^{\infty} \frac{x^k}{k}$$
, $R = 1 \longrightarrow \frac{1}{R} = \limsup_n \left(\frac{1}{n}\right)^{1/n} = 1$
Converges conditionally at $x = -1$.

Diverge

e.g.
$$\sum_{k=0}^{\infty} x^k$$
, $R = 1$

Theorem: Power Series Differentiation

Let
$$f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$
 converge on $(x_0 - R, x_0 + R)$.
Then $\forall k > 0, f \in C^k (x_0 - R, x_0 + R)$ and $f^{(k)}(x) = \sum_{n=k}^{\infty} a_n n(n-1) \cdots (n-k+1)(x-x_0)^{n-k}$, $\forall x \in (x_0 - R, x_0 + R)$

Exercise

Show that if $a_n \to a > 0$, then $\limsup a_n b_n = a \limsup b_n$.

Proof (by Induction)

Consider the series $S_n(x) = \sum_{n=1}^{\infty} a_n n(x - x_0^{n-1}) = \sum_{n=0}^{\infty} a_{n+1}(n+1)(x - x_0)^n$. Then

$$(x - x_0) \frac{1}{R \text{ of series of derivatives}} = \limsup_{n \to \infty} (a_n n)^{1/n} \limsup_{n \to \infty} a_n^{1/n} n^{1/n} = \limsup_{n \to \infty} a_n^{1/n} = \frac{1}{R}$$

This implies $\sum_{k=0}^{\infty} \frac{d}{dx} (a_k (x - x_0)^k)$ converges uniformly on $[x_0 - a, x_0 + a], \forall a \in (0, R)$. By the Theorem on Differentiability of Uniform Limits, f'(x) exists and $\forall x \in (x_0 - R, x_0 + R)$

$$f'(x) = \sum_{n=1}^{\infty} a_n n(x - x_0)^{n-1}$$

Repeat to get higher derivatives.

Integration

It is similarly possible to integrate term by term.

Famous Power Series

- $\frac{1}{1-x} = \sum_{k=0}^{\infty} x^k$, |x| < 1
- PSE of $\frac{1}{x}$ centered at $x_0 > 0$

IMAGE HERE - GRAPH

$$\frac{1}{x} = \frac{1}{x - x_0 + x_0} = \frac{1}{x_0} \cdot \frac{1}{1 + \frac{x - x_0}{x_0}} = \frac{1}{x_0} \sum_{k=0}^{\infty} \left(-\frac{x - x_0}{x_0} \right)^k = \sum_{k=0}^{\infty} \frac{(-1)^k}{x_0^{k+1}} (x - x_0)^k \text{ if } |x - x_0| < |x_0|, x \in (0, 2x_0)$$

- $\exp(x) = \sum_{k=0}^{\infty} \frac{x^k}{k!}$
- $\bullet \ \exp(0) = 1$
- $\exp'(x) = \sum_{k=1}^{\infty} \frac{kx^{k-1}}{k!} = \sum_{k=1}^{\infty} \frac{x^{k-1}}{(k-1)!} = \exp(x)$

Law of Exponents

 $\exp(a)\exp(b) = \exp(a+b), \forall a, b \in \mathbb{R}$

Proof

Special case of the "Cauchy product of convergent series."

If $\sum_{n\geq 0} a_n$ converges absolutely to A and $\sum_{n\geq 0} b_n$ converges to B, then $\sum_{n\geq 0} c_n$ converges to AB, where

$$c_n = \sum_{k=0}^{n} a_k b_{n-k} = a_0 b_n + a_1 b_{n-1} + \dots + a_n b_0$$

Heuristics

$$\left(\sum_{p=0}^{\infty}a_px^p\right)\left(\sum_{l=0}^{\infty}b_lx^l\right) = \sum_{p,l\in\mathbb{N}_0^2}a_pb_lx^{p+l}$$

IMAGE HERE - CIRCLES FROM L TO P

$$\{(p,l): p+l=n, p, l \in \mathbb{N}_0\} = \{(0,n), (1,n-1), \dots, (n,0)\}$$

Proof Continued

Aexp(a) = $\sum_{k=0}^{\infty} \frac{a^k}{k!}$ and exp(b) = $\sum_{l=0}^{\infty} \frac{b^l}{l!}$, thus exp(a) exp(b) = $\sum_{n=0}^{\infty} c_n = \sum_{n=0}^{\infty} \frac{(a+b)^n}{n!} = \exp(a+b)$ \) since

$$c_n = \frac{1}{n!} \sum_{n=0}^{n} \frac{a^k}{k!} \cdot \frac{b^{n-k}}{(n-k)!}$$
 and $n! = \frac{1}{n!} (a+b)^n$

Power Series Expansion of Exponential

Centered at x_0 , we have

$$\exp(x) = \exp(x - x_0) \exp(x_0) = \exp(x_0) \sum_{k=0}^{\infty} \frac{(x - x_0)^k}{k!}$$

Observation:

exp is the only $C^1(\mathbb{R})$ solution of $\begin{cases} \exp'(x) = \exp(x) \\ \exp(0) = 1 \end{cases}$

• Proof If f solves the above, then for some constant c

$$\frac{d}{dx}(f(x)\exp(-x)) = f'(x)\exp(-x) - f(x)\exp(-x) = 0 \implies f(x)\exp(-x) = c = f(0)\exp(-0) = 1$$
this implies

$$f(x) = \exp(x)f(x)\exp(-x) = \exp(x)$$

Exponential Features

$$\exp(x) > 0, \forall x \in \mathbb{R} \implies \begin{cases} \text{if } x \ge 0, \exp(x) \ge 1 > 0\\ \text{if } x < 0, \exp(x) = \frac{1}{\exp(-x)} > 0 \end{cases}$$

Theorem: Exponential and e

$$\exp(x) = (\exp(1))^x \forall x \in \mathbb{R} \text{ and } e = \exp(1)$$

Proof

Using law of exponents for

$$x \in \mathbb{N}$$
: $\exp(n) = \exp(1 + (n-1)) = e \cdot \exp(n-1) = \dots = e^n \exp(0)$

$$x = \frac{1}{q}, q \in \mathbb{N}$$
: $\left(\exp\left(\frac{1}{q}\right)\right)^q = \exp\left(\frac{1}{q} + \frac{1}{q} + \dots + \frac{1}{q}\right) = \exp(1) = e$
 $\therefore \exp\left(\frac{1}{q}\right) = e^{1/q}$

$$x = \frac{p}{q}, p, q \in \mathbb{N}$$
: $\exp\left(\frac{p}{q}\right) = \exp\left(\frac{1}{q} + \frac{1}{q} + \dots + \frac{1}{q}\right) = \left(e^{1/q}\right)^p = e^{p/q}$

 $x \in -\mathbb{N}, \mathbb{Q} < 0$: left as an exercise

Therefore, the functions $x \mapsto \begin{cases} \exp(x) \\ e^x \end{cases}$ are continous on \mathbb{R} and agree on \mathbb{Q} . This implies that they must be equal everywhere.

October 23, 2023

Today

Exp and log.

Real-analytic functions. (Newest bit of information.)

Trig functions.

Wednesday, October 25, 2023

Analytic vs C^{∞}

Approximation by polynomials.

Next Week

Fourier series.

Exponential and Log

Covered Last Lecture

Law of Exponents $\exp(x) = e^x$ and $e = \exp(1) = \sum_{k=0}^{\infty} \frac{1}{k!}$

Error Estimate

$$e = \lim_{n \to \infty} S_n$$
 where $S_n = \sum_{k=0}^{\infty} \frac{1}{k!}$ (increases). $e - S_n = \sum_{k=n+1}^{\infty} \frac{1}{k!}$ For $k = n+1+p, \ p \ge 0, \ e - S_n = \sum_{p=0}^{\infty} \frac{1}{(n+1+p)!}$. Then,

$$\frac{1}{(n+1+p)!} = \frac{1}{(n+1)!} \cdot \underbrace{\frac{1}{(n+2)(n+3)\cdots(n+p+1)}}_{p \text{ factors}}$$

$$\leq \frac{1}{(n+1)!} \cdot \frac{1}{(n+1)^p}$$

and

$$e - S_n = \sum_{k=n+1}^{\infty} \frac{1}{k!}$$

$$= \sum_{p=0}^{\infty} \frac{1}{(n+1+p)!}$$

$$\leq \frac{1}{(n+1)!} \cdot \sum_{p=0}^{\infty} \left(\frac{1}{n+1}\right)^p$$

$$= \frac{1}{(n+1)!} \cdot \frac{1}{1 - \frac{1}{n+1}}$$

$$= \frac{1}{(n+1)!} \cdot \frac{n+1}{n}$$

Therefore,

$$0 \le e - S_n \le \frac{1}{n!} \cdot \frac{1}{n}$$

Theorem: e is Irrational

Proof

Suppose $e = \frac{p}{q}$, q > 2, and p and q coprime. Consider

$$0 < e - S_q \le \frac{1}{q!} \cdot \frac{1}{q}$$

$$0 < q!(e - S_q) \le \frac{1}{q}$$

$$0 < q!\left(\frac{p}{q} - \sum_{k=0}^{q} \frac{1}{k!}\right) \le \frac{1}{q} < \frac{1}{2}$$

where
$$q! \left(\frac{p}{q} - \sum_{k=0}^{q} \frac{1}{k!}\right) \in \mathbb{N}$$
.

This is a contradiction. Thus, e must be irrational.

Exponential Decay

$$\exp(x) = \sum_{k=0}^{\infty} \frac{x^k}{k!}$$

$$\lim_{x \to +\infty} x^k e^{-k} = 0, \forall k \in \mathbb{N}$$
For $x > 0$, $\exp(x) \ge \frac{x^{k+1}}{(k+1)!}$ if and only if $x^k \exp(-x) \le \frac{(k+1)!}{x} \xrightarrow{x \to +\infty} 0$.

Exponential Strictly Positive Over Reals

$$\exp(x) > 0, \forall x \in \mathbb{R}$$

$$x > 0 \text{ is obvious.}$$

$$x \le 0, \exp(x) = \frac{1}{\exp(-x)} > 0$$

$$\lim_{x \to -\infty} \exp(x) = \lim_{x \to -\infty} \frac{1}{\exp(-x)} = 0.$$

Proposition: Exponential is a Bijection

 $\exp: \mathbb{R} \to (0, \infty)$ is a C^{∞} ($\exp' = \exp$) bijection (diffeomorphism in the sense that $\exp'(x) > 0, \forall x \in \mathbb{R}$). By Inverse Function Theorem then, define $\log: (0, \infty) \to \mathbb{R}$ such that $\exp(\log(x)) = x$. By MATH 105A, $\frac{d}{dx}(\log(x)) = \frac{d}{dx}(\exp^{-1}(x)) = \frac{1}{\exp'(\exp^{-1}(x))} = \frac{1}{\exp(\log(x))} = \frac{1}{x}$. $\log(1) = 0$ (since $\exp(0) = 1$) which implies, by the Fundamental Theorem of Calculus, that $\log(x) - \log(1) = \int_1^x \frac{dt}{t}$.

Properties (left as an exercise)

- $\bullet \ \log(xy) = \log(x) + \log(y), \ x, y > 0$
- Power Series Expansion: $\log(1-x) = -\sum_{k=0}^{\infty} \frac{x^k}{k}$, x near 0, radius of convergence: 1.
- $\lim_{n\to\infty} \left(1+\frac{x}{n}\right)^n = \exp(x)$

Definition: Real-Analytic Functions

A function $f:(a,b)\to\mathbb{R}$ is real-analytic on (a,b) if $\forall x_0\in(a,b),\ \exists r>0$ and a power series $\sum_{n\geq 0}(x-x_0)^n$ converging to f on (x_0-r,x_0+r) . When such a power series exists, $f(x)=\sum_{n=0}^\infty a_n(x-x_0)^n$, then

$$a_n = \frac{f^{(n)}(x_0)}{n!}$$

The radius of convergence is related by $\frac{1}{R} = \limsup_{n} |a_n|^{1/n}$ which provides a contraint on rate of divergence.

Example 1: Polynomial

For every polynomial, $p: \mathbb{R} \to \mathbb{R}$, and $\forall x_0 \in \mathbb{R}$,

$$p(x) = \sum_{k=0}^{\infty} \frac{p^{(k)}(x_0)}{k!} (x - x_0)^t, \forall x \in \mathbb{R}$$

Example 2: Exponential

$$\exp(x) = \exp(x - x_0 + x_0) = \sum_{k=0}^{\infty} \frac{e^{x_0}}{k!} (x - x_0)^t$$

and the radius of convergence, $R = \infty$.

Example 3: 1/x

$$\frac{\frac{1}{x} \text{ analytic on } (0, \infty)}{\frac{\frac{1}{x} \sum (x - x_0)^k}{0 \quad x_0}} \text{ and } R = |x_0|.$$

Remark: Analyticity Implies Smoothness

f analytic on $(a,b) \implies f$ smooth (C^{∞}) on (a,b)The converse is not true. (Example Wednesday)

Proposition:

Suppose $\sum_{n\geq 0} a_n (x-x_0)^n$ converges to f(x) on (x_0-R,x_0+R) . Then f(x) is analytic on $(x_0 - R, x_0 + R)$. $(x_0 + x_0) = x_0 + x_0 +$

f, centered at x_1 , with positive radius of convergence.

Proof

Let $x_0 = 0$ for simplicity and $x_1 \in (-R, R)$.

$$\sum_{n=0}^{\infty} a_n x^n = \sum_{n=0}^{\infty} a_n (x - x_1 + x_1)^n = \sum_{n=0}^{\infty} a_n \sum_{k=0}^{n} \binom{n}{k} (x - x_1)^k x_1^{n-k}$$

Assuming that rearangement is possible, this is

$$\sum_{n,k,n\geq 0} a_n \binom{n}{k} (x - x_1)^k x_1^{n-k} = \sum_{k=0}^{\infty} \left(\sum_{n=k}^{\infty} a_n \binom{n}{k} x_1^{n-k} \right) (x - x_1)^k$$

Need to prove two things:

- 1. b_k is well-defined
- 2. Interchange of sums valid.

• Proof of 1

For k fixed, $\binom{n}{k}$ is a d° k (degree k) polynomial in n.

Letting

$$b_k = \sum_{p=0}^{\infty} a_{p+k} \binom{p+k}{k} x_1^p$$

where p = n - k, we have

$$\limsup_{p \to \infty} \left(|a_{p+k}| \binom{p+k}{k} \right)^{1/p} = \limsup_{p \to \infty} |a_p|^{1/p}$$

since $x_1 \in (-R, R), b_k < \infty, \forall k$.

• Proof of 2

The proof requires invoking Fubini's Theorem to allow rearrangement. Need to check that

$$\sum_{n,k,n\geq k} |a_n| \binom{n}{k} \left| (x-x_1)^k x_1^{n-k} \right|$$

converges.

Consider

$$\sum_{n=0}^{\infty} |a_n| r^n$$

where r < R which, by absolute convergence of the original power series, is finite.

Remark: Analytic Continuation

The process of recentering a power series is also called "analytic continuation."

The radius of convergeence of the new series might actually be larger and allow the orgiginal function.

Example

$$\sum_{k=0}^{\infty} x^k = \frac{1}{1-x}$$

IMAGE HERE - Decaying curve.

Facts: Analytic Functions

- If f, g are analytic on (a, b), then so is $f \cdot g$.
- If f,g are analytic and g does not vanish on (a,b), then $\frac{f}{g}$ is analytic.
- If f is analytic on $(x_0 R, x_0 + R)$ and g is analytic on $(f(x_0) \delta, f(x_0) + \delta)$, then $g \circ f$ is analytic on a neighborhood of x_0 . (Proof in ; page number in lecture notes).

Remark: No Analytic Bump Functions

IMAGE HERE - BUMP FUNCTION -|-n-|-

Trig Functions

IMAGE HERE - UNIT CIRCLE

We want $(\cos(\theta), \sin(\theta))$ to be the point on the unit circle making an arclength θ from (1,0).

For x in the right-half plane, $cos(\theta) \ge 0$.

For x in top right quadrant,

$$\theta = \int_0^{\sin(\theta)} \sqrt{1 + (f'(y))^2} \, dy$$

Then, $y \mapsto (\underbrace{\sqrt{1-y^2}}_{f(y)}, y), y \in (-1, 1)$. It follows that

$$\theta = \lim_{x \to 0}^{\sin(\theta)} \frac{dy}{\sqrt{1 - u^2}} \underset{\text{FTC}}{\Longrightarrow} \arcsin'(x) = \frac{1}{\sqrt{1 - x^2}} \in C^{\infty}((-1, 1))$$

and

$$\arcsin(x) = \lim_{0}^{x} \frac{dy}{\sqrt{1 - u^2}}$$

Therefore, arcsin is a diffeomorphism from $(-1,1) \to (\lim_{x\to -1} \arcsin(x), \lim_{x\to 1} \arcsin(x))$. Since $\frac{1}{\sqrt{1-x^2}}$ is integrable near ± 1 , theese limits are finite.

Definition: Pi

 $\pi = 2 \lim_{x \to 1} \arcsin(x)$

Inverse Function Theorem

 $\sin: \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \to (-1, 1)$ exists as a C^1 inverse of arcsin. On $\left(-\frac{\pi}{2}, \frac{pi}{2}\right)$, define $\cos(\theta) = +\sqrt{1 - \sin^2(\theta)}$. Then

$$\sin'(\theta) = \frac{1}{\arcsin'(\sin(\theta))} = \sqrt{1 - \sin^2(\theta)} = \cos(\theta).$$

Similarly, $\cos'(\theta) = -\sin(\theta) \Rightarrow \sin, \cos \operatorname{are} C^{\infty} \operatorname{on} \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

Extension to the Reals

By graphical or geometric arguments, for $\theta \in (0, \frac{\pi}{2})$,

$$\cos(\theta) = -\sin\left(\theta - \frac{\pi}{2}\right)$$
$$\sin(\theta) = -\cos\left(\theta - \frac{\pi}{2}\right)$$

This helps extend to \mathbb{R} , with 2π -periodicity such that

$$\begin{cases}
\cos' &= -\sin \\
\sin' &= \cos \\
\cos(0) &= 1 \\
\sin(0) &= 0
\end{cases}$$

Therefore, you get all derivatives at x = 0 and the corresponding Taylor expansion looks like

$$C(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} x^{2k}$$

$$S(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} x^{2k+1}$$

We find that $R = \infty$ for both, and

$$C(0) = 1,$$
 $S(0) = 0,$ $C'(x) = -S(x),$ $S'(x) = C(x).$

Take

$$\epsilon(x) = (C(x) - \cos(x))^2 + (S(x) - \sin(x))^2$$

with $\epsilon(0) = 0$. Then, finally,

$$\epsilon'(x) = 0 \implies \epsilon = \text{some constant} = 0.$$

October 25, 2023

Today

Analytic vs C^{∞}

Approximation by Polynomials

Definition: Real Analytic

f is real analytic on (a,b) if $\forall x_0 \in (a,b), \exists \delta > 0, \{a_n\}_n$ such that $f(x) = \sum_{n=0}^{\infty} a_n (x-x_0)^n, \ \forall x \in (x_0-\delta,x_0+\delta).$

Proposition: Analyticity Implies Smoothness

Analytic on $(a,b) \implies C^{\infty}$ smooth on (a,b).

$$\sum_{n=0}^{\infty} (x - x_0)^n \rightsquigarrow a_n - \frac{f^n(x_0)}{n!}$$

Note: $C^w(a,b) \not\subseteq C^{\infty}(a,b)$ The converse is not true.

the converse is not true.

Example

Let
$$x \in \mathbb{R}$$
 and $f(x) = \begin{cases} 0 & x < 0 \\ \exp\left(\frac{-1}{x^2}\right) & x > 0 \end{cases}$
IMAGE HERE - FUNCTION $x \neq 0, f \in C^{\infty}(\mathbb{R} \setminus 0).$

• What about at x = 0?

$$\lim_{x \to 0: x < 0} f(x) = 0 = \lim_{x \to \emptyset: x > 0} e^{-\frac{1}{x^2}}$$

So we can define f(0) = e, the resulting function is continuous on \mathbb{R} .

• What about higher derivatives?

Claim:
$$\forall k > 0$$
, $\lim_{x \to 0; x > 0} \frac{d^k}{dx^k} \left(e^{-\frac{1}{x^2}} \right) = 0$

• Proof (Sketch)

$$\frac{d}{dx}\left(e^{-x^2}\right) = 2x^{-3}e^{-x^{-2}}$$

$$\lim_{x \to 0} \frac{e^{-\frac{1}{x^2}}}{r^3} \stackrel{y = \frac{1}{x}}{=} \lim_{y \to \infty} y^3 e^{-y^{-2}} = 0$$

Claim by induction:

$$\frac{d^k}{dx^k} \left(e^{-\frac{1}{x^2}} \right) = p_k(1/x)e^{-\frac{1}{x^2}}$$

for some polynomial p_k . If the claim is true, then

$$\lim_{x \to \emptyset} p_k \left(\frac{1}{x} \right) e^{-\frac{1}{x^2}} = \lim_{y \to +\infty} p_k(y) e^{-y^2} = 0 \quad \blacksquare$$

Then we can extend $f^{(k)}$ as a continious function on \mathbb{R} such that $f^{(k)}(0) = 0$.

• Claim

f(x) is not analytic on any neighborhood of $x_0 = 0$. If it were, it would equal $\sum_{n=0}^{\infty} a_n x^n$ on $(-\delta, \delta)$ for some a_k s. But,

$$a_k = \frac{f^{(k)}(0)}{k!} = 0 \qquad \text{then} \qquad \sum_{n=0}^{\infty} a_n x^n = 0, \forall x \in (-\delta, \delta)$$

which is impossible, since $f(x) \neq 0$ whenever x > 0.

Remark: Contraposition Can Disprove Analyticity

The existence of a non-zero radius of convergence for $\sum a_k(x-x_0)^k$ means

$$\frac{1}{R} = \limsup_{n} |a_n|^{1/n} = \left(\frac{f^{(n)}(x_0)}{n!}\right)^{1/n} < \infty$$

and
$$\left(\frac{f^{(n)}(x_0)}{n!}\right)^{1/n} \rightsquigarrow f^{(n)}(x_0) \le n! \left(\frac{c}{R}\right)^n$$

Remark: Analyticity is Not Guaranteed

The conditions

$$\begin{cases} h \in C^{\infty}(R) \\ \limsup_{n} \left(\frac{h^{(n)}(0)}{n!}\right)^{1/n} < \infty \end{cases}$$

are not sufficient to claim h is analytic on any neighborhood of 0. Indeed, if h is analytic then h(x) + f(x) will not be for otherwise

$$f(x) = -(h(x) + f(x)) - h(x)$$

would also be analytic, which it isn't.

Definition: Exponential Blip Function

Let $g(x) = \frac{f(x+1)f(1-x)}{f(1)^2}$, where f is the "exponential glue" function. IMAGE HERE - FUNCTION Smooth on \mathbb{R} ; $g(x) \ge 0$.

TODO Theorem: Borel

TODO - Name for theorem?

Given any sequence $\{a_n\}_n$ of reals and any $\begin{cases} x_0 \in \mathbb{R} \\ \lambda > 0 \end{cases}$, $\exists f \in C^{\infty}(\mathbb{R})$ such that

$$\begin{cases} f^{(k)}(x_0) = a_k & \forall k \\ f(x) = 0 & \text{if } |x - x_0| > \lambda \end{cases}$$

IMAGE HERE - BUMPY MOUNTAIN CLOSE TO X0

Proof

Reductions: $x_0 = 0$ and $\lambda = 1$.

Ansatz: $f(x) = \sum_{k=0}^{\infty} b_k x^k g\left(\frac{x}{\lambda_k}\right)$ where b_k s and λ_k s need to be tuned.

IMAGE HERE - G(X) and G(X/LAMBDA K)

 $g(x) = 0 \iff |x| \ge 1 \text{ and } g\left(\frac{x}{\lambda_k} = 0 \iff \left|\frac{x}{\lambda_k}\right| \ge 1 \iff |x| \ge \lambda_k\right)$ Observations: if $\lambda_k \underset{k \to \infty}{\longrightarrow} 0$, then $\forall x \ne 0$ the series is actuall finite!

Since $g\left(\frac{x}{\lambda_k} = 0\right)$ once $\lambda_k < |x|$. Therefore, convergent and C^{∞} on $\mathbb{R} \setminus \{0\}$.

Constraints:

$$a_0 = f(0) = b_0$$

 $a_1 = f'(0) = \frac{d}{dx} \left(b_0 g\left(\frac{x}{\lambda_0}\right) \right) |_{x=0} + b + 1$

Generally,

$$a_n = \sum_{k=0}^{n-1} \frac{d^n}{dx^n} \left(b_k x^k g\left(\frac{x}{\lambda_k}\right) \right) \big|_{x=0} + n! b_n$$

If λ_n are chosen, these constraints uniquely determine the b_n s.

How to Choose Lambdas?

Want to enforce

$$\max_{0 \le k \le n-1} \sup_{x \in \mathbb{R}} \left| \frac{d^k}{dx^k} \left(b_n x^n g\left(\frac{x}{\lambda_n} \right) \right) \right| \le 2^{-n}$$

• Example Determine λ_2 :

$$k = 0: \left| b_n x^n g\left(\frac{x}{\lambda_n}\right) \right| \le |b_n| \lambda_n^n 2^{-n}$$

$$k = 1: \left| b_n \left(n x^{n-1} g\left(\frac{x}{\lambda_n}\right) \right) + b_n x^n \frac{1}{\lambda_n} g'\left(\frac{x}{\lambda_n}\right) \right| \le |b_n| \lambda_n^{n-1} (n + ||g'||_{\infty}) \le 2^{-n}$$

In general,

$$a\lambda_n^p < 2^{-n}$$

for p > 0.

So we construct b_0 , then λ_0 , then b_1 , then λ_1, \ldots

Claim: Produces Uniform Convergence

When

$$\max_{0 \le k \le n-1} \sup_{x \in \mathbb{R}} \left| \frac{d^k}{dx^k} \left(b_n x^n g\left(\frac{x}{\lambda_n}\right) \right) \right| \le 2^{-n}$$

is satisfied, $\forall k \in \mathbb{N}$

$$\sum_{n=0}^{\infty} \frac{d^k}{dx^k} \left(b_n x^n g\left(\frac{x}{\lambda_n}\right) \right)$$

satisfies the Weierstrass M-Test. Therefore it is uniformly convergent. Because

$$\sum_{n=0}^{\infty} \left| \frac{d^k}{dx^k} \left(b_n x^n g\left(\frac{x}{\lambda_n} \right) \right) \right| \leq \sum_{n=0}^{k} \left| \frac{d^k}{dx^k} \left(b_n x^n g\left(\frac{x}{\lambda_n} \right) \right) \right| + \sum_{n=k+1}^{\infty} 2^{-n}$$
finite sum, uniformly bounded

Approximation by Polynomials

Goal (Weierstrass Approximation Theorem):

If $f:[a,b]\to\mathbb{R}$ is continuous on the compact set [a,b], then there exists a sequence of polynomials p_n such that $\lim_{n\to\infty} \sup_{x\in[a,b]} |f(x) - p_n(x)| = 0.$

That is, polynomials are dense in $(C([a,b]), ||\cdot||_{\infty})$, where $||f||_{\infty} := \sup_{x \in [a,b]} |f(x)|$.

How to do this?

Lagrange Interpolation

Give $f \in C([a,b])$.

Idea: subdivide [a, b] with $a = x_0 < x_1 < \dots < x_n < b$ where $x_k = x_0 + k \left(\frac{b-a}{n}\right)$. IMAGE HERE - UNIFORM SUBDIVISION Let $p_n(x) = \sum_{k=0}^n f(xk) \prod_{j \neq k} \frac{x-x_j}{x_k-x_j}$.

Problem: the Runge phenomenon.

IMAGE HERE - SMOOTHEST FUNCTION I CAN THINK OF (use the bump again) $1/(1+25x^2)$

Definition: Convolution

Take $f, g : \mathbb{R} \to \mathbb{R}$, define

$$h(x) = f * g(x) = \int_{\mathbb{R}} f(t)g(x-t) dt = \int_{\mathbb{R}} f(x-y)g(y) dy = g * f(x)$$

Take $f, g \in C(\mathbb{R})$ with compact support $(C_C(\mathbb{R}))$. That is, they vanish outside a compact set. IMAGE HERE - F AND G CONVOLVED

Definition: Approximation of Identity

An approximation of the identity is a sequence $\{g_n\}_n$, all piecewise continuous, defined on \mathbb{R} such that

$$\begin{cases} g_n(x) \ge 0 & \forall x \\ \int_{\mathbb{R}} g_n(x) \ dx = 1 \\ \forall \delta > 0, & \lim_{n \to \infty} \int_{|x| > \delta} g_n(x) \ dx = 0 \end{cases}$$

IMAGE HERE - CONVOLUTION ACCUMULATING BETWEEN -DELTA AND DELTA

Example

Let
$$g_n(x) = \frac{n \cdot g(nx)}{\int_{\mathbb{R}} g(x) dx}$$
.

Lemma:

If $\{g_n\}_n$ is an approximation of identity, then $\forall f \in C_C(\mathbb{R})$

$$g_n * f \Rightarrow f$$

on \mathbb{R} .

October 30, 2023

Today

Approximation by polynomials. Fourier Series.

Recall: Convolution

$$f, g \in C_C(\mathbb{R}), f * g(x) = \int_{\mathbb{R}} f(x - y)g(y) \ dy.$$

Recall: Approximation of Identity

 $\{g_n\}_n$ where $g_n:\mathbb{R}\to\mathbb{R}$ is piecewise continuous (this is overkill but sufficient).

- $1. \int g_n \ dx = 1.$
- $2. \ g_n(x) \ge 0.$
- 3. $\forall \delta > 0$, $\lim_{n \to \infty} \int_{|x| > \delta} g_n(x) dx = 0$.

Example

Take any $g(x) \ge 0$ (piecewise continuous) with $\int_{\mathbb{R}} g(x) dx = 1$.

Define $g_n(x) = n \cdot g(nx)$.

Claim: this defined an approximation of identity.

Lemma: Convolution of Approximation of Identity Converges Uniformly

Suppose $\{g_n\}_n$ is an approximation of identity. Then, for any $f \in C_C(\mathbb{R})$,

 $g_n * f$ converges uniformly to f on \mathbb{R}

That is to say, $\lim_{n\to\infty} \sup_{x\in\mathbb{R}} |g_n * f(x) - f(x)| = 0$.

Proof

Since $\int_{\mathbb{R}} g_n(y) dy = 1$,

$$g_n * f(x) - f(x) = \int_{\mathbb{R}} g_n(y) f(x - y) \, dy - f(x) \cdot \int_{\mathbb{R}} g_n(y) \, dy$$

$$= \int_{\mathbb{R}} g_n(y) \left(f(x - y) - f(x) \right) \, dy$$

$$= \int_{|y| \ge \delta} g_n(y) \underbrace{\left(f(x - y) - f(x) \right)}_{\geq 2M} \, dy + \int_{|y| > \delta} g_n(y) \underbrace{\left(f(x - y) - f(x) \right)}_{\geq 2M} \, dy$$

By assumption, $f \in C_C(\mathbb{R})$ so f is bounded by M on \mathbb{R} .

f is continuous on supp(f), which is compact, so f is uniformly continuous on \mathbb{R} .

Let $\epsilon > 0$ be given.

By uniform continuity, $\exists \delta > 0, \forall x, y \in \mathbb{R}, |x - y| < \delta \implies |f(x) - f(y)| < \frac{\epsilon}{2}$.

By the Aproximation of Identity property, $\exists N, \forall n \geq N, \int_{|y| \geq \delta} g_n(y) dy < \frac{\epsilon}{4M}$. For $n \geq N$,

$$|g_{n} * f(x) - f(x)| = \left| \leq \int_{\mathbb{R}} g_{n}(y) \left(f(x - y) - f(x) \right) dy \right|$$

$$\leq \int_{|y| \geq \delta} g_{n}(y) |f(x - y) - f(x)| dy + \int_{|y| > \delta} g_{n}(y) |f(x - y) - f(x)| dy$$

$$\leq 2M \frac{\epsilon}{4M} + \frac{\epsilon}{2} \int_{|y| < \delta} g_{n}(y) dy$$

$$\leq \epsilon, \quad \forall x \in \mathbb{R} \quad \blacksquare$$

Recall: Riemann Integral Properties

If f is Riemann integrable, then

$$\left| \int f \, dx \right| \le \int |f| \, dx$$

$$\left| \sum_{n=1}^{\infty} S_n \right| \le \sum_{n=1}^{\infty} |S_n|$$

$$\left| \int f^+ \, dx - \int f^- \, dx \right| \le \int f^+ \, dx + \int f^- \, dx = \int (f^+ + f^{-1}) \, dx$$

Theorem: Weierstrass Approximation Theorem

If [a,b] is compact, then $\forall f \in C([a,b])$, there exists a sequence of polynomials $p_n(x)$ converging uniformly to f.

Step 1

Extend f into $F \in C_C(\mathbb{R})$. IMAGE HERE - EXTEND FUNCTION

$$F(x) = \begin{cases} 0 & \text{on } (-\infty, a-1] \cup [b+1, \infty) \\ f(x) & \text{on } [a,b] \\ f(a)(x-(a-1)) & \text{on } [a-1,a] \\ f(b)(b+1-x) & \text{on } [b,b+1] \end{cases}$$

Step 2

Note: $\forall \{g_n\}_n$ Approximation of Identity, $g_n * f \Rightarrow F(x)$ on \mathbb{R} (by previous lemma), and $\sup_{x \in [a,b]} |g_n * F(x) - f(x)| \leq \sup_{x \in \mathbb{R}} |g_n * F(x) - F(x)|$. Trick: Construct g_n such that $g_n * F$ is a polynomial on [a,b]. Answer:

$$g_n(x) = \begin{cases} a_n \left(1 - \frac{x^2}{(b-a+1)^2} \right)^n & \text{if } x \in [-(b-a+1), b-a+1] \\ 0 & \text{otherwise} \end{cases}$$

where a_n is chosen such that $\int_{\mathbb{R}} g_n(x) dx = 1$. IMAGE HERE - NARROWING GAUSSIAN WITH PEAK AT (0,1) BETWEEN -(b-a+1) and b-a+1 If $x \in [a,b]$ and $y \in [a-1,b+1]$, then

$$-b-1 \leq -y \leq -a+1 \implies -(b-a+1) \leq x-y \leq b-a+1$$

Then

$$g_n * F(x) = \int_{a-1}^{b+1} F(y) \underbrace{g_n(x-y)}_{a_n \left(1 - \frac{(x-y)^2}{(b-a+1)^2}\right)^n = \sum_{p=0}^{2n} x^p a_{p,n(y)}} dy$$

$$= \sum_{p=0}^{2n} x^p \int_{a-1}^{b+1} F(y) a_{p,n(y)} dy \blacksquare$$

Background: Fourier Series

Historical Perspective

In Strichartz.

Associated with solving the wave equation on $[0, L]_x \times [0, T]_t$ (Bernoulli) and the heat equation (Fourier).

Wave Equation

On $[0, L]_x \times [0, T]_t$, u(x, t) displacement field. IMAGE HERE - WAVE FROM 0 to L PEAK OF FIRST OSCILLATION AT U(X,T)

$$\frac{\partial^2 u}{\partial t^2}(x,t) = c \frac{\partial^2 u}{\partial x^2}(x,t)$$

where c is a fixed coefficient.

Plus Initial Conditions and Boundary Conditions

Initial Condition:
$$u|_{t=0}(x) = f(x)$$

$$\frac{\partial u}{\partial t}|_{t=0}(x) = 0$$

Boundary Conditions: u(0,t) = u(L,t) = 0

Observation: if $f(x) = \sin\left(\frac{k\pi x}{L}\right)$, IMAGE HERE - THREE SINUSOIDAL WAVES OVERLAPPING

Ansatz: $u(x,t) = \sin\left(\frac{k\pi x}{L}\right)g(t)$.

Plug into the PDE:

$$\frac{\partial^2 u}{\partial t^2} = \sin\left(\frac{k\pi x}{L}\right) g''(t)$$
$$c\frac{\partial^2 u}{\partial x^2} = -\frac{k^2 \pi^2}{L^2} c^2 \sin\left(\frac{k\pi x}{L}\right) g(t)$$

Setting

$$\sin\left(\frac{k\pi x}{L}\right)g''(t) = -\frac{k^2\pi^2}{L^2}c^2\sin\left(\frac{k\pi x}{L}\right)g(t) \stackrel{\text{ode for}}{\Longrightarrow} g'' = -\frac{k^2\pi^2}{L^2}c^2g$$

Which gives a general solution

$$g(t) = A\cos\left(\frac{k\pi ct}{L}\right) + B\sin\left(\frac{k\pi ct}{L}\right).$$

Initial conditions imply that g(0) = 1 and g'(0) = 0 which gives

$$g(t) = \cos\left(\frac{k\pi ct}{L}\right).$$

Thus

$$u(x,t) = \sin\left(\frac{k\pi x}{L}\right)\cos\left(\frac{k\pi x}{L}\right)$$

Solves the PDE!

Wave Equation Superposition

Consider instead

$$f(x) = \sum_{k=0}^{n} \sin\left(\frac{k\pi x}{L}\right) a_k$$

Then

$$u(x,t) = \sum_{k=0}^{n} a_k \sin\left(\frac{k\pi x}{L}\right) \cos\left(c\frac{k\pi x}{L}\right)$$

Next Question:

What if f is more general? ⇒ existence of Fourier series? In what sense do they converge?

Definition: Fourier Series

Context: $f: [-\pi, \pi) \to \mathbb{R}$ Riemann-Integrable or $f: \mathbb{R} \to \mathbb{R} \ 2\pi$ -periodic. $(f(x+2\pi) = f(x), \forall x)$ The Fourier series of f:

$$S_n(x) = \frac{a_0}{2} + \sum_{k=1}^n a_k[f] \cos(kx) + b_k[f] \sin(kx)$$

where $a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(kx) dx$ and $b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(kx) dx$. Alternatively,

$$S_n(x) = \sum_{k=-n}^n c_k e^{ikx}$$

where $c_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-ikx} dx$. As an exercise: relate c_k s to a_k s and b_k s and prove that these are equivalent.

Question:

In what sense does $S_n(x)$ converge to f(x)? That is

- For what topology?
 - Uniform Convergence: $\sup_{x \in [-\pi,\pi)} |S_n(x) f(x)| \underset{n \to \infty}{\longrightarrow} 0$
 - L^2 Convergence: $\int_{-\pi}^{\pi} |S_n(x) f(x)|^2 dx \xrightarrow[n \to \infty]{} 0$
- What are the (smoothness) requirements on f?
 - Observation: if $f(x) = \sum_{k=-N}^{N} f_k e^{ikx}$ is a trigonometric polynomial, then, for $n \ge N$, $S_n(x) = f(x)$.

Lemma: The Kronecker Delta

Fix
$$N \in \mathbb{N}$$

If $\sum_{k=-N}^{N} f_k e^{ikx} = \sum_{k=-N}^{N} c_k e^{ikx}$, then $f_k = c_k, \forall k$.
Note

$$\int_{-\pi}^{\pi} e^{ikx} e^{-imx} dx = \int_{-\pi}^{\pi} e^{i(k-m)x} dx = \begin{cases} 2\pi & \text{if } k = m \\ \left[\frac{1}{i(k-m)} e^{i(k-m)x}\right]_{-\pi}^{\pi} = 0 & \text{otherwise} \end{cases}$$

Why -imx?

$$\langle if, g \rangle = i \langle f, g \rangle$$

 $\langle f, ig \rangle = -i \langle f, g \rangle$

and

$$\int_{-\pi}^{\pi} f(x) \overline{g(x)} \, dx$$

November 1, 2023

Fourier Series

For f Riemann-integrable on $(-\pi, \pi)$, define

$$S_n(x) = \sum_{k=-n}^n c_k e^{ikx}$$

with

$$c_k := \frac{1}{2\pi} \in_{-\pi}^{\pi} f(x)e^{-ikx} dx$$

Then $f: [-\pi, \pi) \to \mathbb{R}$.

Recall

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} e^{ikx} e^{-ilx} dx = \begin{cases} 0 & \text{if } k \neq l \\ 1 & \text{if } k = l \end{cases} = \delta_{kl} \text{ (the Kronecker delta)}$$

Definition: Norm

 $||\cdot||:E\to\mathbb{R}_{\geq 0}$ is a "norm" on E if

1.
$$||f|| = 0 \iff f \equiv 0$$

2.
$$||\lambda f|| = |\lambda| \cdot ||f||, \forall \lambda \in \mathbb{R}, f \in E$$

3.
$$||f + g|| \le ||f|| + ||g||$$

Definition: Normed Space

$$(E, ||\cdot||)$$
 is a normed space.
e.g. $(\mathbb{R}, |\cdot|)$ or $(\mathbb{Q}, |\cdot|)$

Definition: Complete Space

 $(E, ||\cdot||)$ is complete if every cauchy sequence in E converges in E.

In what sense does a Fourier series converge?

Depends on regularity of f and the topology used.

Note

On $C([-\pi, \pi])$, can put 2 norms.

• $||f||_{\infty} = \sup_{x \in [-\pi,\pi]} |f(x)|$

 $d(f,g) = ||f-g||_{\infty}$: " f_n converges uniformly to f" $\leftrightarrow \lim_{n\to\infty} ||f_n-f||_{\infty} = 0$. $(C([-\pi,\pi]),||\cdot||_{\infty})$ is complete.

• $||f||_2 := \left(\int_{-\pi}^{\pi} f^2(x) \ dx \right)^{1/2}$

" f_n converges to f in $L^{2,"} \longleftrightarrow \lim_{n \to \infty} ||f_n - f||_2 = 0$. $(C(\lceil -\pi, \pi \rceil), || \cdot ||_2)$ is not complete.

Example

Take
$$f(x) = \begin{cases} 1 & \text{if } |x| \le \pi/2 \\ 0 & \text{if } |x| > \pi/2 \end{cases}$$

IMAGE HERÈ - BOX FUNCTION FROM -pi/2 to pi/2

$$-\frac{+}{\pi}$$
 Then

$$c_k = \frac{1}{2\pi} \int_{-\pi/2}^{\pi/2} e^{-ikx} dx = \frac{1}{2\pi} \left[\frac{1}{-ik} e^{-kx} \right]_{-\pi/2}^{\pi/2} \frac{1}{2\pi} \frac{1}{-ik} \left[e^{-ik(\pi/2)} - e^{ik(\pi/2)} \right] = \frac{1}{k\pi} \sin(k(\pi/2))$$

So $c_k = 0$ and for k = 2p + 1: $c_{2p+1} = \frac{(-1)^p}{\pi(2p+1)}$. IMAGE HERE - BOX FUNCTION WITH SUNUSOIDALS APPROXIMATING

However, the approximation will over and undershoot at the boundaries. This is the "Gibbs Phenomenon", and the discrepency is roughly 12%.

For k < 0:

$$c_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-ikx} dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{ikx} dx = \overline{c_{-k}} = c_k$$

In the end,

$$S_{2p+1}(x) = \sum_{l=1}^{p} \frac{(-1)^{p}}{\pi(2p+1)} \underbrace{\left(e^{i(2p+1)x} + e^{-i(2p+1)x}\right)}_{2\cos((2p+1)x)}$$

Theorem: Uniform Convergence of Continuously Differentiable Continuous Functions

1. If f is C^2 , 2π -periodic, then $S_n \Rightarrow f$ on $[-\pi, \pi)$.

Moreover, $||S_n - f||_{\infty} \le \frac{c}{n}$ for some c > 0.

1. If $f \in C^1$, 2π -periodic, same conclusion with $||S_n - f||_{\infty} \le \frac{c}{\sqrt{n}}$ for some c > 0.

Proof of Part 1

Write

$$S_n(x) = \sum_{k=-n}^n c_k e^{ikx} = \sum_{k=-n}^n \frac{1}{2\pi} \in_{-\pi}^{\pi} f(y) e^{-iky} dy e^{ikx} = \frac{1}{2\pi} \in_{-\pi}^{\pi} f(y) \underbrace{\left[\sum_{k=-n}^n e^{ik(x-y)}\right]}_{D_n(x-y)} dy$$

Where $D_n(t) = \sum_{k=-n}^n e^{ikt}$ is the "Dirichlet kernel." That is S_n is a convolution of f(y) with some kernel.

$$e^{it} \cdot D_n(t) = \sum_{k=-n}^n e^{i(k+1)t} = \sum_{l=-n+1}^{n+1} e^{ilt} = D_n(t) + e^{i(n+1)t} - e^{-int}$$

Therefore

$$D_n(t) = \frac{e^{i(n+1)t} - e^{-int}}{e^{it} - 1} = \frac{e^{(it)/2} \left(e^{i(n+(1/2))t} - e^{-i(n+(1/2))t} \right)}{e^{(it)/2} \left(e^{(it)/2} - e^{-(it)/2} \right)} = \frac{\sin((n+1/2)t)}{\sin(t/2)}$$

IMAGE HERE - DN(T) OSCILLATING WITH MANY ZEROS THEN PEAKING TO 2N+1 at X=0 so

$$\int_{-\pi}^{\pi} D_n(t) dt = 2\pi$$

Then

$$S_n(x) - f(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(y) D_n(x - y) \, dy - f(x)$$

$$= \frac{1}{z = x - y} \frac{1}{2\pi} \int_{-\pi}^{pi} f(x - z) D_n(z) \, dz - \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) D_n(z) \, dz$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} (f(x - z) - f(x)) D_n(z) \, dz$$

and

$$S_n(x) \cdot f(x) = \frac{1}{2\pi} \underbrace{\frac{(f(x-y) - f(x))}{\sin(y/2)}}_{\text{call } g_x(y) = \frac{f(x-y) - f(x)}{\sin(y/2)}}_{\text{sin}(y/2)} \sin((n + (1/2)y) dy$$

If $g_x(y)$ was differentiable (in fact C^1), then integrating by parts

$$S_n(x) - f(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} g_x(y) \sin((n + (1/2)y)) dy = \frac{1}{2\pi} \int_{-\pi}^{\pi} g_x'(y) \frac{\cos((n + (1/2)y))}{n + (1/2)} dy$$

Then

$$|S_n(x) - f(x)| \le \sup_{y \in [-\pi, \pi]} |g'_x(y)| \frac{1}{n + (1/2)}$$

- Claim If $f \in C^2$, 2π -periodic, then $\sup_{x \in [-\pi,\pi]} |g'_x(y)| < \infty$. Then the first part of the theorem is proved.
 - Proof of Claim $f \in C^2 \implies g_x \in C^2$ away from y = 0. $(g''_x(y)) = differentiation rules. At <math>y = 0$, write

$$f(x-y) - f(x) = \int_{x}^{x-y} f'(t) dt$$

Changing variables such that t = x + u(x - y - x) = x - uy for $u \in [0, 1]$ gives dt = -y du

$$= -y \int_0^1 f'(x - uy) \ du$$

Therefore

$$g_x(y) = \underbrace{\left(\frac{-y}{\sin(y/2)}\right)}_{\text{smooth near } y=0} \int_0^1 f'(x - uy) \ du$$

Calling the smooth piece h(y),

$$g_x(y) = h(y) \int_0^1 f'(x - yu) du$$

is differentiable at 0 if and only if $\frac{d}{dy} \left(\int_0^1 f'(x-yu) \ du \right) = \int_0^1 f''(x-yu)(-u) \ du$ exists.

Proof of Part 2 (Sketch)

$$S_n(x) - f(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} g_x(y) \sin(n + (1/2)y) dy$$

If f is only C^1 , then g is C^1 away from 0, so it is unclear near y = 0. So, for some δ to be chosen later

$$S_n(x) - f(X) = \frac{1}{2\pi} \underbrace{\int_{[-\delta,\delta]} g_x(y) \sin((n+(1/2))y) \, dy}_{\leq \frac{2\delta}{2\pi} (||f'||_{\infty} + ||f||_{\infty})} + \frac{1}{2\pi} \underbrace{\int_{[-\pi,\pi] \setminus [-\delta,\delta]} g_x(y) \sin((n+(1/2))y) \, dy}_{\text{integrate by parts}}$$

Study \int_{δ}^{π} (study of $\int_{-\pi}^{-\delta}$ is similar)

$$\int_{\delta}^{\pi} g_{x}(y) \sin((n+(1/2)y)) dy = \int_{\delta}^{\pi} g_{x}(y) \frac{d}{dy} \left(\frac{-\cos((n+(1/2))y)}{n+(1/2)} \right) dy$$

$$= \int_{\delta}^{\pi} \frac{d}{dy} \left(g_{x}(y) \frac{-\cos((n+(1/2))y)}{n+(1/2)} \right) - \int_{\delta}^{\pi} g'_{x}(y) \frac{\cos((n+(1/2))y)}{n+(1/2)} dy$$

$$= -g_{x}(\pi) \frac{\cos((n+(1/2))\pi)}{n+(1/2)} + g_{x}(\delta) \frac{\cos((n+(1/2))\delta)}{n+(1/2)} - \int_{\delta}^{\pi} g'_{x}(y) \frac{\cos((n+(1/2))y)}{n+(1/2)} dy$$

Problem:

$$g'_x(y) = \frac{-f'(x-y)\sin(y/2) - (1/2)\cos(y/2)(f(x-y) - f(x))}{(\sin(y/2))^2} \approx \frac{c}{y} \text{ near } y = 0$$

So

$$\left| \int_{\delta}^{\pi} g_x(y) \sin((n + (1/2))y) \, dy \right| \le \frac{1}{n + (1/2)} \cdot \frac{1}{\delta}$$

Combining all estimates, for $\delta > 0$

$$|S_n(x) - f(x)| \le C_1 \delta + C_2 \frac{1}{n\delta}$$

Since we are free to choose δ , we may optimize over δ .

Balancing out the terms is done by choosing $\delta = \delta(n)$ such that

$$\delta \stackrel{n \to \infty}{\sim} \frac{1}{n\delta} \iff n\delta^2 \sim 1 \iff \delta \sim \frac{1}{\sqrt{n}}$$

which gives

$$|S_n(x) - f(x)| \le C_1 \delta + C_2 \frac{1}{n\delta} = \frac{C_1}{\sqrt{n}} + C_2 \frac{1}{n^{\frac{1}{-}}} \le \frac{C_1 + c_2}{\sqrt{n}}$$

• Comment on the Sketch Morally, we want $|g'_x(y)| \le \frac{c}{y}$ for some constant c. Numerator:

$$\left| -f'(x-y)\sin(y/2) - (1/2)\cos(y/2)(f(x-y) - f(x)) \right| \le ||f'||_{\infty}(y/2) + (\cdots)y \le Cy$$

Since $|\sin(y/2)| \le (y/2)$,

$$|\sin(x) - \sin(0)| = |\cos(\xi)||x - 0|$$

= 1|x|

Denominator

$$\left(\sin(y/2)\right)^2 \ge \left(\frac{2y}{2\pi}\right)^2 = \frac{y^2}{\pi}$$

So,

$$\left| g_x'(y) \right| \le \frac{Cy}{\left(\frac{y}{\pi}\right)^2} \le \frac{C^1}{y}$$

Theorem: Continuous, Periodic Functions Converge in L2

If f is continuous, 2π -periodic, then $\lim_{n\to\infty} ||S_n - f||_2 = 0$. That is, $\lim_{n\to\infty} \int_{-\pi}^{\pi} |S_n - f(x)|^2 dx = 0$. IMAGE HERE - PERIODIZE f(x) = x THEN APPROXIMATE WITH FOURIER

November 6, 2023

Recall: Fourier Series

$$f: [-\pi, \pi] \to \mathbb{R} \text{ or } \mathbb{C}$$

Fourier Coefficient:

$$c_k(f) := \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{ikx} dx, \ k \in \mathbb{Z}$$

$$s_n(x) = \sum_{k=-n}^{n} c_k e^{ikx} = \frac{1}{2\pi} \in_{-\pi}^{\pi} D_n(x-y) f(y) dy$$

Dirichlet Kernel:

$$D_n(y) := \frac{\sin((n+1/2)y)}{\sin((1/2)y)}$$

Theorem: L2 Convergence of Sn to N

If f is C^0 , 2π -periodic, then

$$\lim_{n\to\infty}\int_{-\pi}^{\pi}\left|s_n(x)-f(x)\right|^2\,dx=0$$

Recall: Kronecker Delta

For $m, n \in \mathbb{Z}$,

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} e^{imx} e^{-imx} dx = \delta_{m,n} = \begin{cases} 0 & m \neq n \\ 1 & m = n \end{cases}$$

That is $\{e^{inx}\}_{n\in\mathbb{Z}}$ is an orthnormal system for the inner product

$$\xi \times \xi \to \mathbb{C}$$

 $(f,g) \mapsto \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \overline{g(x)} dx$

where $\xi = \{f : \mathbb{R} \to \mathbb{C}, 2\pi\text{-periodic}, \text{continuous}\}.$

Example

For $f \in \xi$, fixing $n \in \mathbb{N}_0$, consider the map

$$\mathbb{C}^{2n+1} \to \mathbb{R}$$

$$(d_{-n}, \dots, d_n) \mapsto \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x) - \sum_{k=-n}^{n} d_k e^{ikx}|^2 dx$$

IMAGE HERE - PROJECTION

• Claim:

 F_n is minimal if and only if $\lambda_k = c_k(f), \ \forall -n \le k \le n$.

- Proof:

Take any $\lambda_n, \lambda_{n+1}, \dots, \lambda_n$ and set $t_n(x) = \sum_{k=-n}^n \lambda_k e^{ikx}$. Then

$$\int_{-\pi}^{\pi} |f(x) - t_n(x)|^2 dx = \int_{-\pi}^{\pi} |f(x) - s_n(x) + s_n(x) - t_n(x)|^2 dx$$

Then, since

$$|z_1 + z_2|^2 = (z_1 + z_2)(\overline{z_1} + \overline{z_2}) = |z_1|^2 + |z_2|^2 + 2 \cdot \Re(z_1\overline{z_2})$$

$$\int_{-\pi}^{\pi} |f(x) - t_n(x)|^2 dx = \int_{-\pi}^{\pi} |f(x) - s_n(x)|^2 dx + \int_{-\pi}^{\pi} |s_n(x) - t_n(x)|^2 dx + 2 \cdot \Re \int_{-\pi}^{\pi} (f(x) - s_n(x)) (\overline{s_n(x) - s_n(x)}) (\overline{s_n(x) - s_n(x)}) dx$$

What to Show: Integral on real part is zero.

$$A = \int_{-\pi}^{\pi} (f(x) - s_n(x)) \sum_{k=-n}^{n} (c_k - \lambda_k) e^{ikx} dx$$
$$= \sum_{k=-n}^{n} \overline{(c_k - \lambda_k)} \underbrace{\int_{-\pi}^{\pi} (f(x) - s_n(x)) e^{-ikx} dx}_{2\pi(c_k - c_k) = 0}$$

Since

$$\int_{-\pi}^{\pi} s_n(x)e^{-ikx} dx = \int_{-\pi}^{\pi} \sum_{n=-n}^{n} c_p e^{ipx} e^{-ikx} dx = 2\pi c_k$$

It follows that

$$\underbrace{\frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x) - t_n(x)|^2 dx}_{F_n(\lambda_{-n}, \dots, \lambda_n)} = \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x) - s_n(x)|^2 dx + \frac{1}{2\pi} \int_{-\pi}^{\pi} |t_n(x) - s_n(x)|^2 dx}_{= \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x) - s_n(x)| dx} \\
\ge \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x) - s_n(x)| dx \\
\ge F_n(c_{-n}, \dots, c_n)$$

Moreover:

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} \left| \underbrace{t_n(x) - s_n(x)|^2}_{\underbrace{(t_n - s_n)}} \right|^2 dx = \frac{1}{2\pi} \sum_{p,l=-n}^{n} (\lambda_p - c_p) \overline{(\lambda_l - c_l)} \underbrace{\int_{-\pi}^{\pi} e^{ipx} e^{-ilx} dx}_{\delta_{p,l}}$$

$$= \frac{1}{2\pi} \sum_{p=-n}^{n} |\lambda_p - c_p|^2$$

Conclusion:

*
$$\forall (\lambda_{-n}, \dots, \lambda_n \neq (c_{-n}, \dots, c_n), F_n(\lambda_{-n}, \dots, \lambda_n) > F_n(c_{-n}, \dots, c_n)$$

*
$$F_n(c_{-n},...,c_n) = F_n(c_{-n},...,c_n)$$

* Lemma

For all trigonometric polynomials of degree at most n, of the form $\sum_{k=-n}^{n} \lambda_k e^{ikx} = t_n(x)$,

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x) - s_n(x)|^2 dx \le \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x) - t_n(x)|^2 dx$$

and

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} |t_n(x)|^2 dx = \sum_{k=-n}^{n} |\lambda_k|^2$$

Apply this to $(\lambda_{-n}, \ldots, \lambda_n) = (0, \ldots, 0)$:

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)|^2 dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x) - s_n(x)|^2 dx + \sum_{k=-n}^{n} |c_k|^2$$

As a consequence, for all n,

$$\sum_{k=-n}^{n} |c_k|^2 \le \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)|^2 dx$$

which implies that $\sum_{k=-n}^{n} |c_k|^2$ converges absolutely and, in particular, $c_k \to 0$ as $k \to \infty$.

Riemann-Lebesgue Lemma

The above proves that if $f \in \xi$ (more generally, if f is Riemann-integrable), then

$$\lim_{k \to \infty} \int_{-\pi}^{\pi} f(x) e^{\pm ikx} dx = 0$$

Moreover, sending $n \to \infty$, we get

$$\lim_{n \to \infty} \sum_{k=-n}^{n} |c_k|^2 \le \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)|^2 dx$$

Importantly, there is equality whenever $\lim_{n\to\infty} \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x) - s_n(x)|^2 dx = 0$. When does that happen?

Theorem:

If $f \in \xi$, then

$$\lim_{n \to \infty} \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x) - s_n(x)|^2 dx = 0$$

Proof

For $n \ge 0$, define $\sigma_n = \frac{1}{n+1} \sum_{k=0}^n s_k$ (the "Cesano sum").

$$\sigma_n \in \operatorname{span}\langle e^{-inx}, \dots, e^{inx} \rangle.$$

In particular,

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x) - s_n(x)|^2 dx \le \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x) - \sigma_n(x)|^2 dx \le \left(\sup_{[-\pi, \pi]} |f - \sigma_n| \right)^2$$

What to show: $\sigma_n \rightrightarrows f$ on $[-\pi, \pi]$.

Recall that

$$s_n(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} D_n(x - y) f(y) dy$$

$$\sigma_n(x) = \frac{1}{n+1} \sum_{k=0}^n s_k(x)$$
$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} K_n(x-y) f(y) dy$$

Where

$$K_n(y) = \frac{1}{n+1} \sum_{k=0}^n D_k(y)$$
$$= \frac{1}{n+1} \frac{1}{\sin(y/2)} \sum_{k=0}^n \sin((k+1/2)y)$$

Using $2\sin((k+1/2)y)\sin(y/2) = \cos(ky) - \cos((k+1)y)$.

$$= \frac{1}{n+1} \frac{1}{(\sin(y/2))^2} \frac{1}{2} \underbrace{\sum_{k=0}^{\infty} \cos(ky) - \cos((k+1)y)}_{\frac{1-\cos((n+1)y)}{2} \frac{2}{\sin^2((\frac{n+1}{2})y)}}$$

$$1 \quad \left(\sin\left((\frac{n+1}{2})y\right)\right)^2$$

 $= \frac{1}{n+1} \left(\frac{\sin\left(\left(\frac{n+1}{2}\right)y\right)}{\sin(y/2)} \right)^2$

This is the Féjer kernel. IMAGE HERE - FÉJER KERNEL Claims:

1.
$$\frac{1}{2\pi} \int_{-\pi}^{\pi} K_n(y) dy = 1$$

2.
$$K_n(y) \ge 0$$
 on $[-\pi, \pi]$ (obvious)

3.
$$\forall \delta > 0, K_n \Rightarrow 0$$

• Proof of 1

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} K_n(y) \ dy = \frac{1}{2\pi} \frac{1}{n+1} \sum_{k=0}^{n} \underbrace{\int_{-\pi}^{\pi} D_k(y) \ dy}_{2\pi} = 1$$

• Proof of 3 If $|y| \ge \delta$,

$$|K_n(y)| = \frac{1}{n+1} \frac{\int_{-\infty}^{\infty} \frac{\sin((n+1)y/2)|^2}{|\sin(y/2)|^2}$$

Recall $|sin(x)| \ge \frac{2|x|}{\pi}$

$$\leq \frac{1}{n+1} \frac{1}{(|y|/\pi)^2}$$
$$\leq \frac{1}{n+1} \frac{1}{(\delta/\pi)^2}$$

Which goes unformly to 0 on $[-\pi, \pi] \setminus [-\delta, \delta]$ as $n \to \infty$.

What to show: $K_n * f \Rightarrow f$ on $[-\pi, \pi]$.

The proof scheme is dentical to: if $f \in C_c(\mathbb{R})$ and K_n is an approximation of identity, then $K_n * f \Rightarrow f$ on \mathbb{R} .

Left as an exercise.

Corollary: Parseval's Equality

 $\forall \delta \in \xi$,

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)|^2 dx = \lim_{n \to \infty} \sum_{k=-n}^{n} |c_k|^2$$

Remark:

This should hold for a larger class of function.

- Piecewise Continuous
- L^2 functions

Example

Take f(x) = x on $[-\pi, \pi]$, 2π -periodized

Then $\sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6}$.

Application to Solving the Heat Equation

On $[0, L]_x \times \mathbb{R}_+$, u(x, t) is the "heat distribution"

IMAGE HERE - ONE DIMENSIONAL ROD HEAT EQUATION YADA YADA

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial u}{\partial x} \right)$$

$$\frac{\partial u}{\partial t} + \frac{\partial}{\partial x} \left(-\frac{\partial u}{\partial x} \right) = 0$$

Problem

PDE
$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} \qquad \text{on } [0, L] \times [0, T]$$
Boundary Conditions
$$u(0, t) = u(L, t) = 0$$
Initial Conditions
$$u(x, 0) = f(x) \qquad f \text{ continuous, } f(0) = f(L) = 0$$

IMAGE HERE - POSITION TIME PLANE

• Step 1: Separation of Variables Seek an ansatz of the form

$$u(x,t) = g(x)h(t)$$

Where

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} \iff g(x)h'(t) = g''(t)h(t)$$

$$\iff \frac{h'(t)}{h(t)} = \frac{g''(x)}{g(x)} = c$$

Left Solving:

$$g''(x) = cg(x)$$
 $g(0) = 0 = g(L)$

$$h'(t) = ch(t) \rightsquigarrow h(t) = h(0)e^{ct}$$

Then

$$g''(x) - cg(x) = 0 \Rightarrow c = 0. \quad g(x) = a + bx$$

$$c > 0. \quad g(x) = ae^{\sqrt{c}x} + be^{-\sqrt{c}x}$$

$$c < 0. \quad g(x) = a\cos(\sqrt{-c}x) + b\sin(\sqrt{-c}x)$$

and

$$g(0) = 0 = g(L) \implies \begin{cases} c = 0 : & g \equiv 0 \\ c > 0 : & g \equiv 0 \\ c < 0 : & a = 0. \end{cases}$$
 (no solution) (no solution)

$$g(L) = 0 \implies \sin(\sqrt{-c}k) = 0$$

$$\implies L\sqrt{-c} = k\pi$$

$$\implies c = -\left(\frac{k\pi^2}{L}\right), k \in \mathbb{N}_0$$

For
$$c = -\left(\frac{k\pi}{L}\right)^2 = \lambda_k$$
,

$$g_k(x) = \sin\left(\frac{k\pi x}{L}\right)$$

$$h_k(x) = h_k(0) \exp\left(-\left(\frac{k\pi}{L}\right)^2 t\right)$$

For all $k \in \mathbb{N}_0$,

$$u_k(x,t) = g_k(x)h_k(t)$$

solves the heat equation with boundary conditions. Initial conditions $g_k(x)$, fix $h_k(0) = 1$. Ansatz for a solution:

$$u(x,t) = \sum_{k=0}^{\infty} a_k g_k(x) h_k(t) \implies u(x,0) = \sum_{k=0}^{\infty} a_k \sin\left(\frac{k\pi x}{L}\right) = f(x)$$

Thus, the left hand side is the solution.