

Dualities for Accessible Categories

Giacomo Tendas

Joint work with: Steve Lack

9 December 2020

Gabriel-Ulmer duality

$$\mathsf{LFP}(-,\mathsf{Set}):\mathsf{LFP} \xrightarrow{} \mathsf{Lex}^{op}:\mathsf{Lex}(-,\mathsf{Set})$$

Gabriel-Ulmer duality

Lex:

- C small with finite limits;
- $F: \mathcal{C} \to \mathcal{C}'$ preserving
 - finite limits;
- natural transformations.

Gabriel-Ulmer duality

$$LFP(-, Set) : LFP \xrightarrow{\cong} Lex^{op} : Lex(-, Set)$$

$$LFP(-, Set) : LFP \xrightarrow{\cong} Lex^{op} : Lex(-, Set)$$

- K complete + freely generated
- by a small category under filtered colimits; $\mathbf{F}: \mathcal{K} \to \mathcal{K}'$ preserving
- - limits
 - filtered colimits:
 - natural transformations.

Lex:

- C small with finite limits:
- $F: \mathcal{C} \to \mathcal{C}'$ preserving
 - finite limits:
- natural transformations.

Diers duality

$$\mathsf{LMP}(-,\mathsf{Set}): \mathsf{LMP} \xrightarrow{} \mathsf{Fam}\mathsf{-Lex}^{op}: \mathsf{Fam}\mathsf{-Lex}(-,\mathsf{Set})$$

LOrd, Lilb, Freld LMP:

- K finitely accessible with connected limits;
- $F: \mathcal{K} \to \mathcal{K}'$ preserving
 - connected limits
 - filtered colimits:
- natural transformations.

Diers duality

LMP:

- K finitely accessible with connected limits:
- $F: \mathcal{K} \to \mathcal{K}'$ preserving
 - connected limits
 - filtered colimits:
- natural transformations.

- $\mathcal{E} \simeq \mathsf{Fam}(\mathcal{C})$ with finite limits, \mathcal{C} small; \leftarrow correction
- $F: \mathcal{E} \to \mathcal{E}'$ preserving
 - coproducts
 - finite limits:
- natural transformations.

 Ψ -limits commuting with \mathscr{D} -colimits in **Set**

Ψ -limits commuting with \mathscr{D} -colimits in **Set**

+ . . .

$$\bullet$$
 $\Psi = \{\text{small categories}\}\$

$$\rightarrow \mathscr{D} = \emptyset;$$

$$\gamma \mathscr{L} = \{\text{discrete categories}\},$$

$$\mathbf{Q} \mathbf{\Psi} = 0$$

$$\rightarrow \mathscr{D} = \{\text{small categories}\}; \quad \mathbf{r}$$

$$\begin{array}{l} \begin{tabular}{ll} \begin{tabular}{ll}$$

$$\Phi W = \emptyset$$
 finite discrete categories

$$\rightarrow \mathscr{D} = \{ \text{sifted categories} \};$$

$$\rightarrow \mathscr{D} = \{\text{connected categories}\};$$

$$\rightarrow \mathscr{D} = ??$$

$$\Psi = \{ \text{discrete categories} \}$$

$$\rightarrow \mathscr{D} = \stackrel{??}{?}$$

$$\Psi = \{ \text{wide pullbacks} \}$$

$$\rightarrow \mathscr{D} = \stackrel{??}{?}$$

$$\rightarrow \mathscr{D} = !!$$

$$\Psi = \{\text{wide pullbacks}\}$$

$$\rightarrow \mathscr{D} = ??$$

Classes of Diagrams

A class of diagrams \mathscr{D} is the data of a full subcategory $\mathscr{D}_{\mathcal{C}} \subseteq [\mathcal{C}, \mathbf{Set}]$ for each small category \mathcal{C} .

Definition

Let Ψ be a class of indexing categories; a class of diagrams $\widehat{\mathscr{D}}$ s a companion for Ψ if:

 Ψ -limits commute with \mathscr{D} -colimits in **Set**: for each \mathcal{C} , $\mathcal{B} \in \Psi$ and

$$\mathcal{B} \xrightarrow{\forall H} [\mathcal{C}, \mathbf{Set}]$$

$$\simeq \operatorname{colim}_{c \in \mathcal{C}} \lim_{b \in \mathcal{B}} H(b, c) \cong \lim_{b \in \mathcal{B}} \operatorname{colim}_{c \in \mathcal{C}} H(b, c)$$

•• Let \mathcal{K} be finitely accessible with Ψ -limits and $F:\mathcal{K}\to \mathbf{Set}$ preserve Ψ -limits and filtered colimits. Then

$$F \cong \operatorname{colim}_i \mathcal{K}(X_i, -)$$

is a \mathscr{D} -colimit of representables with $X_i \in \mathcal{K}_f$.

< Examples 1-6>

· ... (technical)

Back to the examples

$$\mathbf{Q} \ \Psi = \{ \text{wide pullbacks} \}$$

 $-\mathscr{D} = \{ \text{free groupoid actions} \}.$ (Hu-tholen...)

The Duality

Theorem

Let ${\mathscr D}$ be a companion for $\Psi.$ The following is a biequivalence of 2-categories

$$\mathsf{fAcc}_{\Psi}(-,\mathsf{Set}): \mathsf{fAcc}_{\Psi} \xrightarrow{} \mathscr{D}\text{-}\mathsf{Lex}^{op}: \mathscr{D}\text{-}\mathsf{Lex}(-,\mathsf{Set})$$

The Duality

Theorem

Let ${\mathscr D}$ be a companion for $\Psi.$ The following is a biequivalence of 2-categories

$$\mathsf{fAcc}_{\Psi}(-,\mathsf{Set}): \mathsf{fAcc}_{\Psi} \xrightarrow{} \mathscr{D}\text{-}\mathsf{Lex}^{\mathit{op}}: \mathscr{D}\text{-}\mathsf{Lex}(-,\mathsf{Set})$$

$fAcc_{\psi}$:

- K finitely accessible with Ψ-limits;
- $F: \mathcal{K} \to \mathcal{K}'$ preserving
 - Ψ-limits
 - filtered colimits:
- natural transformations.

The Duality

Theorem

Let \mathscr{D} be a companion for Ψ . The following is a biequivalence of 2-categories

fAcc_w:

- \mathcal{K} finitely accessible with Ψ -limits:
- $F: \mathcal{K} \to \mathcal{K}'$ preserving
 - Ψ-limits
 - filtered colimits:
- natural transformations.

$\mathscr{D} ext{-Lex}$:

- $\mathcal{E} \simeq \mathcal{D}(\mathcal{C})$ with finite limits, \mathcal{C} small:
- $F: \mathcal{E} \to \mathcal{E}'$ preserving
 - D-colimits
 - finite limits;
- natural transformations.

- (1) $\Psi = \{\text{small categories}\}$ $\mathscr{D} = \emptyset$ → Gabriel-Ulmer duality:
- (2) $\Psi = \{\text{connected diagrams}\} \mathcal{D} = \{\text{discrete categories}\} \rightarrow \text{Diers duality};$

- (1) $\Psi = \{\text{small categories}\}$ $\mathscr{D} = \emptyset$

- → Gabriel-Ulmer duality:
- (2) $\Psi = \{\text{connected diagrams}\} \mathcal{D} = \{\text{discrete categories}\} \rightarrow \text{Diers duality};$
- (3) $\Psi = \emptyset$

- $\mathcal{P} = \{\text{small categories}\} \rightarrow$

$$-\mathcal{P} = \{\text{small categories}\} \rightarrow \{\text{fAcc}(-, \mathbf{Set}) : \underline{\mathbf{fAcc}} \longrightarrow \mathcal{P}\text{-Lex}^{op} : \mathcal{P}\text{-Lex}(-, \mathbf{Set}) \}$$

$$\mathcal{G} \text{Top}^{\text{p}} \qquad [D, \underline{\mathbf{Set}}]$$

- (1) $\Psi = \{\text{small categories}\}$ $\mathscr{D} = \emptyset$ → Gabriel-Ulmer duality:
- (2) $\Psi = \{\text{connected diagrams}\} \mathcal{D} = \{\text{discrete categories}\} \rightarrow \text{Diers duality};$
- (3) $\Psi = \emptyset$ - $\mathcal{P} = \{\text{small categories}\} \rightarrow$

$$\mathsf{fAcc}(-,\mathsf{Set}):\mathsf{fAcc} \xrightarrow{} \mathcal{P}\mathsf{-Lex}^{op}:\mathcal{P}\mathsf{-Lex}(-,\mathsf{Set})$$

(4)
$$\Psi = \{\text{finite categories}\} \quad - \mathscr{D} = \{\text{filtered categories}\} \quad \rightarrow \mathbf{fAcc}_{\Psi} = \mathscr{D}\text{-Lex}, \text{ so}$$

$$\mathsf{fAcc}_{\Psi} \simeq \mathsf{fAcc}_{\Psi}^{op}$$
.

(5)
$$\Psi = \{ \text{discrete categories} \}$$
 - $\mathscr{D} = \{ \text{pseudo equivalence relations} \}$

$$\mathsf{wLFP}(-,\mathsf{Set}): \mathsf{wLFP} \xrightarrow{\longleftarrow} \mathsf{p}\text{-}\mathsf{Ex}^{op}: \mathsf{Reg}(-,\mathsf{Set})$$

(5) $\Psi = \{ \text{discrete categories} \}$ - $\mathscr{D} = \{ \text{pseudo equivalence relations} \}$

wLFP:

- K finitely accessible with products;
- $F: \mathcal{K} \to \mathcal{K}'$ preserving
 - products
 - filtered colimits;
- natural transformations.

$$\mathsf{wLFP}(-,\mathsf{Set}): \mathsf{wLFP} \xrightarrow{\longleftarrow} \mathsf{p}\text{-}\mathsf{Ex}^{op}: \mathsf{Reg}(-,\mathsf{Set})$$

- (5) $\Psi = \{ \text{discrete categories} \}$ $\mathcal{D} = \{ \text{pseudo equivalence relations} \}$

wLFP:

- K finitely accessible with products;
- $F: \mathcal{K} \to \mathcal{K}'$ preserving
 - products
 - filtered colimits:
- natural transformations.

p-Ex:

- \bullet \mathcal{E} small exact with enough projectives;
- $F: \mathcal{E} \to \mathcal{E}'$ preserving
 - regular epimorphisms
 - finite limits:
- natural transformations.

$$\mathsf{wLFP}(-,\mathsf{Set}): \mathsf{wLFP} \xrightarrow{} \mathsf{p-Ex}^{op}: \mathsf{Reg}(-,\mathsf{Set})$$

- (5) $\Psi = \{ \text{discrete categories} \}$ $\mathcal{D} = \{ \text{pseudo equivalence relations} \}$

wLFP:

- K finitely accessible with products;
- $F: \mathcal{K} \to \mathcal{K}'$ preserving
 - products
 - filtered colimits:
- natural transformations.

p-Ex:

- \bullet \mathcal{E} small exact with enough projectives;
- $F: \mathcal{E} \to \mathcal{E}'$ preserving
 - regular epimorphisms
 - finite limits:
- natural transformations.

Thank You