MAT 200 sample exam solutions C and D

C. In calculus you work with functions $f: \mathbb{R} \to \mathbb{R}$. For a given input $x \in \mathbb{R}$, f is called *continuous at x* if

For every number b > 0, there exists a number a > 0 such that the condition |f(y) - f(x)| < b holds when |y - x| < a. In other terms:

$$\forall b > 0 \,\exists \, a > 0 \,\forall y \,(|y - x| < a \implies |f(y) - f(x)| < b)$$

- 1. Write the negation (logical opposite) of "f is continuous at x" using the quantifer notation.
- 2. Find a specific function f which is not continuous at x = 1. Prove that it is not continuous there. (This hardly needs to be said: from the definition)
- 3. Assume a given function f is continuous at x = 1. Prove that the function g defined by $g(x) = f(x) \cdot f(x)$ is also continuous at 1.
- 4. Using (3), decide whether the function $f(x) = x^2$ is continuous at x = 1.

Solution.

1. There exists a number b > 0 such that for all numbers a > 0 there exists a number y such that |f(y) - f(x)| > b even though |y - x| < a. In other terms,

$$\exists b > 0 \ \forall a > 0 \ \exists y \ (|f(y) - f(x)| > b \ \text{and} \ |y - x| < a)$$

2. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by the rules f(x) = 0 if $x \le 1$ and f(x) = 2 if x > 1. f is discontinuous at x = 1: For the number b = 1, for any positive number a, there exists a number y, for example $y = 1 + \frac{a}{2}$, such that |f(y) - f(x)| > b and |y - x| < a. These conclusions hold since:

$$|f(y) - f(x)| = |2 - 0| = 2,$$

 $b = 1,$
 $2 > 1$

and

$$|y - x| = |1 + \frac{a}{2} - 1| = \frac{a}{2},$$

 $\frac{a}{2} < a$

3. Assume f is continuous at x=1. Pick b>0, and set $b'=\min\{\frac{b}{3|f(1)|},|f(1)|\}$ so that $b'<\frac{b}{3|f(1)|}$ and b'<|f(1)|. By continuity of f at x=1, we may assume there exists a'>0 such that for all $y,|y-1|< a' \Longrightarrow |f(y)-f(1)|< b'$. Then set a=a'. If |y-1|< a, then |y-1|< a', so |f(y)-f(1)|< b', and:

$$\begin{split} |g(y) - g(1)| &= |f(y)^2 - f(1)^2| \\ &= |f(y) - f(1)| \cdot |f(y) + f(1)| \\ &= |f(y) - f(1)| \cdot |(f(y) - f(1)) + 2f(1)| \\ &\leq b' \cdot (b' + 2|f(1)|) \\ &\leq \left(\frac{b}{3|f(1)|}\right) \cdot (|f(1)| + 2|f(1)|) \\ &= b \\ &\Longrightarrow \\ |g(y) - g(1)| < b \end{split}$$

Therefore g is continuous at x = 1.

- 4. The function $g(x) = x^2$ is equal to the function defined by $f(x) \cdot f(x)$ defined in (3), where f(x) = x. Since the function f is continuous (choose a = b in the definition), so is g (by 3!).
- ${f D}$. Consider a hemisphere and a tangent plane in 3-dimensional space. We may regard the hemisphere as the set H:

$$H = \{(x, y, z) \in \mathbb{R} \times \mathbb{R} \times \mathbb{R} | x^2 + y^2 + z^2 = 1 \text{ and } z > 0\}$$

and the plane as the set P:

$$P = \{(x, y, z) \in \mathbb{R} \times \mathbb{R} \times \mathbb{R} | z = 1\}$$

Define a function p from the 3-space to the plane P by the formula p(x,y,z) = (x/z,y/z,1). (Actually, p is not defined at (0,0,0).) p is called a *central projection*. It can be defined without formulas: p(X) is the intersection of the line through 0 and X with the plane P.

- 1. Let p_H be the projection from 3-space to H defined by: $p_H(X)$ is the intersection of the line through 0 and X with H. Let p_{HP} be the projection from H to P defined by: $p_{HP}(X)$ is the intersection of the line through 0 and X with the plane P. Write formulas for p_H and p_{HP} .
- 2. Using the formulas, prove that $p_{HP} \circ p_H = p$.

- 3. Without using the formulas, prove that $p_{HP} \circ p_H = p$.
- 4. Verify that the formula $h(x, y, 1) = \left(\frac{x}{\sqrt{1+x^2+y^2}}, \frac{y}{\sqrt{1+x^2+y^2}}, \frac{1}{\sqrt{1+x^2+y^2}}\right)$ defines a function whose image is contained in H, and that this function defines an inverse for p_{HP} . Denote it by p_{PH} (for "projection from P to H"); conclude that p_{HP} is a bijection.
- 5. For a given angle θ , the formula

$$f(x, y, z) = (\cos(\theta)x + \sin(\theta)z, y, -\sin(\theta)x + \cos(\theta)z)$$

defines a function from the 3-space to itself called the *rotation about the y-axis* by angle θ . Compute a formula for $p \circ f$ as a function from P to P (actually, some points are missing from the domain: Why? It is better to regard P as some of the points of the projective plane). This function is called a *perspectivity*. What is the interpretation of $p \circ f$ in terms of visual perspective?

Solution.

1. Given X = (x, y, z) in 3-space, we must find the scaled version which has length equal to 1. We can simply divide it by its length:

$$p_H(x,y,z) = \left(\frac{x}{\sqrt{x^2 + y^2 + z^2}}, \frac{y}{\sqrt{x^2 + y^2 + z^2}}, \frac{z}{\sqrt{x^2 + y^2 + z^2}}\right)$$

Given X = (x, y, z) in H, we must find the scaled version which has z coordinate equal to 1. We can simply divide it by its z coordinate:

$$p_{HP}(x, y, z) = \left(\frac{x}{z}, \frac{y}{z}, 1\right)$$

2.

$$p_{HP} \circ p_H(x, y, z) = p_{HP}(p_H(x, y, z)) = p_{HP}\left(\frac{x}{\sqrt{x^2 + y^2 + z^2}}, \frac{y}{\sqrt{x^2 + y^2 + z^2}}, \frac{z}{\sqrt{x^2 + y^2 + z^2}}\right)$$

$$= \left(\frac{\frac{x}{\sqrt{x^2+y^2+z^2}}}{\frac{z}{\sqrt{x^2+y^2+z^2}}}, \frac{\frac{y}{\sqrt{x^2+y^2+z^2}}}{\frac{z}{\sqrt{x^2+y^2+z^2}}}, 1\right) = (x/z, y/z, 1)$$

The formulas for $p_{HP} \circ p_H$ and for p are the same.

3. Pick X in 3-space. By definition, $p_H(X)$ is the intersection of the line through 0 and X with H. By definition, $p_{HP}(p_H(X))$ is the intersection of the line through 0 and $p_H(X)$ with the plane P. Since this line equals the original line through 0 and

X, $p_{HP}(p_H(X))$ is also equal to the intersection of the line through 0 and X with the plane P. This is also, by definition, p(X).

4. Let $X=(x,y,z)=\left(\frac{a}{\sqrt{1+a^2+b^2}},\frac{b}{\sqrt{1+a^2+b^2}},\frac{1}{\sqrt{1+a^2+b^2}}\right)$ be an arbitrary point in the image of h (in this case, X=h(a,b)). X is in H because

$$x^{2} + y^{2} + z^{2} = \frac{a^{2}}{1 + a^{2} + b^{2}} + \frac{b^{2}}{1 + a^{2} + b^{2}} + \frac{1}{1 + a^{2} + b^{2}} = 1$$

and

$$\frac{1}{1+a^2+b^2} > 0$$

h is an inverse for p_{HP} ; for X = (x, y, z) belonging to H,

$$h(p_{HP}(x,y,z)) = h(\frac{x}{z}, \frac{y}{z}, 1) = \left(\frac{x/z}{\sqrt{1 + x^2/z^2 + y^2/z^2}}, \frac{y/z}{\sqrt{1 + x^2/z^2 + y^2/z^2}}, \frac{1}{\sqrt{1 + x^2/z^2 + y^2/z^2}}\right)$$

$$= (x, y, z)$$

and for X = (x, y, 1) belonging to P,

$$p_{HP}(h(x,y,1)) = p_{HP}\left(\frac{x}{\sqrt{1+x^2+y^2}}, \frac{y}{\sqrt{1+x^2+y^2}}, \frac{1}{\sqrt{1+x^2+y^2}}\right)$$
$$= \left(\frac{\frac{x}{\sqrt{1+x^2+y^2}}}{\frac{1}{\sqrt{1+x^2+y^2}}}, \frac{\frac{y}{\sqrt{1+x^2+y^2}}}{\frac{1}{\sqrt{1+x^2+y^2}}}, 1\right) = (x,y,1)$$

5. For X = (x, y, 1) belonging to P,

$$p(f(x, y, 1)) = \left(\frac{\cos(\theta)x + \sin(\theta)}{-\sin(\theta)x + \cos(\theta)}, \frac{y}{-\sin(\theta)x + \cos(\theta)}, 1\right)$$

 $p \circ f$ is the transformation of the viewing plane P effected by rotating your head by angle θ around the y-axis.