

Machine learning: lecture 8

Tommi S. Jaakkola MIT CSAIL tommi@csail.mit.edu

Topics

- Support vector machines
 - training, prediction
 - other kernel methods
- Kernels
 - examples, properties, construction
 - feature vectors and sparsity

Tommi Jaakkola, MIT CSAIL

SVM summary

ullet Training: We can find the optimal setting of the Lagrange multipliers α_i by maximizing

$$\sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} y_i y_j \alpha_i \alpha_j \frac{K(\mathbf{x}_i, \mathbf{x}_j)}{}$$

subject to $0 \le \alpha_i \le C$ and $\sum_i \alpha_i y_i = 0$.

- larger ${\cal C}$ means larger penalty for errors
- $\hat{\alpha}_i = 0$ except for "support vectors"
- all misclassified examples will be support vectors
- \hat{w}_0 can be found based on examples for which $\hat{\alpha}_i$ is between 0 and C (when classification constraints are satisfied with equality)

SVM summary

• Training: We can find the optimal setting of the Lagrange multipliers α_i by maximizing

$$\sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} y_i y_j \alpha_i \alpha_j \frac{K(\mathbf{x}_i, \mathbf{x}_j)}{}$$

subject to $0 \le \alpha_i \le C$ and $\sum_i \alpha_i y_i = 0$.

 Prediction: We make predictions according to the sign of the discriminant function

$$\hat{y} = \operatorname{sign}(\hat{w}_0 + \sum_{i \in SV} \hat{\alpha}_i y_i \underline{K}(\mathbf{x}, \mathbf{x}_i))$$

Tommi Jaakkola, MIT CSAIL 4

Other kernel methods: linear regression

• A linear regression model with feature vectors:

$$f(\mathbf{x}; \mathbf{w}) = \phi(\mathbf{x})^T \mathbf{w}_1 + w_0,$$

where
$$\phi(\mathbf{x}) = [\phi_1(\mathbf{x}), \dots, \phi_m(\mathbf{x})]^T$$
.

We can train these models via regularized least squares

$$\min \frac{1}{2} \sum_{i=1} (y_i - f(\mathbf{x}; \mathbf{w}))^2 + \frac{\lambda}{2} ||\mathbf{w}_1||^2$$

• We'd like to turn these models into kernel methods where the examples (feature vectors) appear only in inner products $K(\mathbf{x}, \mathbf{x}') = \phi^T(\mathbf{x})\phi(\mathbf{x}')$.

Other kernel methods: linear regression

• Training: maximize

$$\sum_{i=1}^{n} (\alpha_i y_i - \lambda \alpha_i^2 / 2) - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j K(\mathbf{x}_i, \mathbf{x}_j)$$

subject to $\alpha_i \in \mathcal{R}$ and $\sum_i \alpha_i = 0$.

The offset parameter \hat{w}_0 can be obtained directly from the solution:

$$\hat{w}_0 = \frac{1}{n} \sum_{i=1}^n \left(y_i - \sum_{j=1}^n \hat{\alpha}_j K(\mathbf{x}_i, \mathbf{x}_j) \right)$$

Tommi Jaakkola, MIT CSAIL

Tommi Jaakkola, MIT CSAIL

6

Other kernel methods: linear regression

• Training: maximize

$$\sum_{i=1}^{n} \left(\alpha_i y_i - \lambda \alpha_i^2 / 2 \right) - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j K(\mathbf{x}_i, \mathbf{x}_j)$$

subject to $\alpha_i \in \mathcal{R}$ and $\sum_i \alpha_i = 0$.

The offset parameter \hat{w}_0 can be obtained directly from the solution:

$$\hat{w}_0 = \frac{1}{n} \sum_{i=1}^n \left(y_i - \sum_{j=1}^n \hat{\alpha}_j K(\mathbf{x}_i, \mathbf{x}_j) \right)$$

 \bullet $\boldsymbol{Prediction}:$ the predicted output for a new point \boldsymbol{x} is

$$f(\mathbf{x}; \hat{\alpha}, \hat{w}_0) = \hat{w}_0 + \sum_{i=1}^n \hat{\alpha}_i K(\mathbf{x}, \mathbf{x}_i)$$

Tommi Jaakkola, MIT CSAIL

Other kernel methods: logistic regression

• A logistic regression model with feature vectors

$$P(y = 1 | \mathbf{x}, \mathbf{w}) = g(\phi(\mathbf{x})^T \mathbf{w}_1 + w_0)$$

where
$$\phi(\mathbf{x}) = [\phi_1(\mathbf{x}), \dots, \phi_m(\mathbf{x})]^T$$

As before we can train these models by minimizing the following regularized empirical loss (maximizing penalized log-likelihood):

$$\min \sum_{i=1}^{n} -\log P(y_i|\mathbf{x}_i, \mathbf{w}) + \frac{\lambda}{2} ||\mathbf{w}_1||^2$$

Tommi Jaakkola, MIT CSAIL

9

Other kernel methods: logistic regression

• Training: maximize

$$\sum_{i=1}^{n} H(\lambda \alpha_i) / \lambda - \frac{1}{2} \sum_{i,j=1}^{n} y_i y_j \alpha_i \alpha_j K(\mathbf{x}_i, \mathbf{x}_j)$$

subject to $0 \le \alpha_i \le 1/\lambda$ and $\sum_i \alpha_i y_i = 0$.

Here $H(p)=-p\log(p)-(1-p)\log(1-p)$ is the binary entropy function. \hat{w}_0 has to be solved iteratively after obtaining $\hat{\alpha}$.

Tommi Jaakkola, MIT CSAIL

Other kernel methods: logistic regression

• Training: maximize

$$\sum_{i=1}^{n} H(\lambda \alpha_i) / \lambda - \frac{1}{2} \sum_{i,j=1}^{n} y_i y_j \alpha_i \alpha_j K(\mathbf{x}_i, \mathbf{x}_j)$$

subject to $0 \le \alpha_i \le 1/\lambda$ and $\sum_i \alpha_i y_i = 0$.

Here $H(p)=-p\log(p)-(1-p)\log(1-p)$ is the binary entropy function. \hat{w}_0 has to be solved iteratively after obtaining $\hat{\alpha}$.

• **Prediction:** the predicted probabilities over possible labels for a new point x are given by

$$P(y = 1 | \mathbf{x}, \hat{\alpha}, \hat{w}_0) = g(\hat{w}_0 + \sum_{i=1}^n \hat{\alpha}_i y_i K(\mathbf{x}, \mathbf{x}_i))$$

Tommi Jaakkola, MIT CSAIL 10

Example kernels

Linear kernel

$$K(\mathbf{x}, \mathbf{x}') = (\mathbf{x}^T \mathbf{x}')$$

Polynomial kernel

$$K(\mathbf{x}, \mathbf{x}') = (1 + (\mathbf{x}^T \mathbf{x}'))^p$$

where $p=2,3,\ldots$ To get the feature vectors we concatenate all up to p^{th} order polynomial terms of the components of ${\bf x}$ (weighted appropriately)

Polynomial kernels with SVMs

Tommi Jaakkola, MIT CSAIL 11 Tommi Jaakkola, MIT CSAIL

12

Example kernels

Radial basis kernel

$$K(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{1}{2}\|\mathbf{x} - \mathbf{x}'\|^2\right)$$

In this case the feature space is infinite dimensional function space (use of the kernel results in a *non-parametric* classifier).

 support vectors need not appear close to the boundary in the input space, only in the feature space

Tommi Jaakkola, MIT CSAIL

Definition of kernels

- We can think of kernels in terms of explicit or implicit feature mappings
- Definition 1: $K(\mathbf{x}, \mathbf{x}')$ is a kernel if it can be written as an inner product $\phi(\mathbf{x})^T \phi(\mathbf{x}')$ for some feature mapping ϕ .
- Definition 2: $K(\mathbf{x}, \mathbf{x}')$ is a kernel if for any finite set of training examples, $\mathbf{x}_1, \ldots, \mathbf{x}_n$, the $n \times n$ matrix $K_{ij} = K(\mathbf{x}_i, \mathbf{x}_j)$ is positive semi-definite.

Tommi Jaakkola, MIT CSAIL 14

Kernels and construction

- We can build kernels from simpler ones. For example:
 - If $K_1(\mathbf{x}, \mathbf{x}')$ and $K_2(\mathbf{x}, \mathbf{x}')$ are valid kernels then

$$\begin{split} f(\mathbf{x})K_1(\mathbf{x},\mathbf{x}')f(\mathbf{x}') & \text{(scaling)} \\ K_1(\mathbf{x},\mathbf{x}') + K_2(\mathbf{x},\mathbf{x}') & \text{(sum)} \\ K_1(\mathbf{x},\mathbf{x}')K_2(\mathbf{x},\mathbf{x}') & \text{(product)} \end{split}$$

are valid kernels.

– If $\mathbf{x}=[x_1,\dots,x_d]^T\in\mathcal{R}^d$ and $K_i(x_i,x_i')$ are valid 1-dimensional kernels, then

$$K(\mathbf{x}, \mathbf{x}') = \prod_{i=1}^{d} K_i(x_i, x_i')$$

is a valid kernel in \mathbb{R}^d .

Tommi Jaakkola, MIT CSAIL

13

15

Kernels and sequences

 We can also derive kernels for variable length sequences. For example:

$$x = \dots$$
 my first day this term was \dots $x' = \dots$ Last year the midterm had \dots

Gap-weighted subsequence kernel:

$$K(\mathbf{x},\mathbf{x}') = \sum_{u \in \Sigma^d} \sum_{\vec{i}: u = \mathbf{x}[\vec{i}]} \sum_{\vec{j}: u = \mathbf{x}[\vec{j}]} \lambda^{(i_d - i_1)} \lambda^{(j_d - j_1)}$$

where $\lambda \in (0,1)$ and Σ^d is the set of all sequences of length d. The kernel reflects the degree to which the sequences have common subsequences penalizing noncontiguous subsequences.

Tommi Jaakkola, MIT CSAIL 16

Dimensionality and complexity

- Many of these kernels correspond to very high dimensional feature spaces
 - polynomial kernel for large p or $dim(\mathbf{x})$
 - radial basis kernel (infinite)
- subsequence kernel (combinatorial) etc.
- The dimensionality of the feature space determines the number of parameters in the primal formulation

min
$$\|\mathbf{w}_1\|^2$$
 subject to $y_i[w_0 + \phi(\mathbf{x}_i)^T \mathbf{w}_1] - 1 \ge 0$, $\forall i$

Can these methods generalize?

Cross-validation

 For SVMs the leave-one-out cross-validation error does not depend on the dimensionality of the feature space but only on the # of support vectors

(similar results exist for kernel logistic regression)

Tommi Jaakkola, MIT CSAIL 17

Tommi Jaakkola, MIT CSAIL

18

Kernels, examples, sparsity

 High dimensional feature vectors (many basis functions) can still permit a sparse solution in terms of the number of training examples

 Alternatively, we could try to find a few basis functions (components) that solve the classification/regression task

19

Tommi Jaakkola, MIT CSAIL