Problem Set 5 Complex Analysis I

Bennett Rennier barennier@gmail.com

January 15, 2018

Ex 3 Let f be holomorphic on $U/\{P\}$, $P \in U$, U open. If f has an essential singularity at P, then what type of singularity does 1/f have at P? What about when f has a removable singularity or pole at P?

Ex 5 Let P = 0. Classify each of the following as having a removable singularity, a pole, or an essential singularity at P:

- a) $\frac{1}{2}$,
- b) $\sin \frac{1}{z}$,
- c) $\frac{1}{z^3} \cos z$,
- d) $z \cdot e^{1/z} \cdot e^{-1/z^2}$,
- e) $\frac{\sin z}{z}$,
- f) $\frac{\cos z}{z}$.

Ex 8a Let $U = D(P, r) \setminus \{P\}$. Prove that if f is holomorphic on U and $\lim_{z \to P} (z - P) \cdot f(z) = 0$, then f continues holomorphically across P (to all of U).

Ex 9 Prove that if $f: D(P,r) \setminus \{P\} \to \mathbb{C}$ has an essential singularity at P, then for each positive integer N there is a sequence $\{z_n\} \subseteq D(P,r) \setminus \{P\}$ with $\lim_{n\to\infty} z_n = P$ and

$$|(z_n - P)^N \cdot f(z_n)| \ge N.$$

[Informally, we can say that f "blows up" faster than any positive power of 1/(z-P) along some sequence converging to P.]

Ex 18 Let $f: \mathbb{C} \to \mathbb{C}$ be a nonconstant entire function. Define g(z) = f(1/z). Prove that f is a polynomial if and only if g has a pole at 0. In other words, f is transcendental (nonpolynomial) if and only if g has an essential singularity at 0.

Ex 27c Calculate the first four terms of the Laurent expansion of

$$f(z) = z/[(z-1)(z-3)(z-5)]$$

about P=1 and specify the annulus of convergence of the expansion.

Ex 33abc Compute each of the following residues:

- a) $\operatorname{Res}_{f}(2i)$, $f(z) = \frac{z^{2}}{(z-2i)(z+3)}$,
- b) $\operatorname{Res}_{f}(-3)$, $f(z) = \frac{z^{2}+1}{(z+3)^{2}z}$,
- c) $\operatorname{Res}_f(i+1)$, $f(z) = \frac{e^z}{(z-i-1)^3}$.