Día 2 – Arreglos y Listas Enlazadas Teoría: Diferencias entre arreglos (arrays) y listas enlazadas. Tipos: simple, doble y circular. Práctica: Implementar una lista enlazada simple desde cero. Ejercicio clave: Insertar, eliminar y buscar elementos en una lista enlazada.

1. Arreglos (arrays) vs. Listas Enlazadas (linked lists)

Característica	Array	Lista Enlazada	
Tamaño	Fijo (al momento de crear)	Dinámico	
Acceso a	Acceso directo por índice	Recorrido secuencial (O(n))	
elementos	(O(1))		
Inserción/elimina	Costosa si no es al final	Eficiente (O(1) si es al inicio)	
ción	(O(n))		
Uso de memoria	Contiguo	Disperso, cada nodo apunta al	
Oso de memona		siguiente	

2. Tipos de Listas Enlazadas

- Simplemente enlazada: Cada nodo apunta al siguiente.
- **Doblemente enlazada**: Cada nodo apunta al anterior y al siguiente.
- Circular:
 - o Simple: El último nodo apunta al primero.
 - o Doble: Como la doble, pero el último conecta al primero y viceversa.

Día 3 – Pilas y Colas Teoría: LIFO vs FIFO. Casos de uso comunes. Práctica: Implementar pila con push y pop. Implementar cola con enqueue y dequeue. Ejercicio clave: Verificar balanceo de paréntesis con una pila.

LIFO vs FIFO

Estructura	Significado	Operaciones clave	Ejemplo real
Pila	LIFO (Last In,	push (apilar), pop (desapilar)	Pila de platos, deshacer en un
Fila	First Out)	pusii (apitai), pop (desapitai)	editor
Cola	FIFO (First In,	enqueue (encolar), dequeue	Fila del supermercado,
	First Out)	(desencolar)	impresora

Día 4 – Árboles y Grafos (básico) Teoría: ¿Qué es un árbol? Nodo, raíz, hojas. Árbol binario vs. árbol binario de búsqueda. Qué es un grafo, tipos de representación.

Práctica: Implementar un árbol binario básico e insertar nodos. Ejercicio clave: Recorridos en profundidad: inorden, preorden, postorden.

¿Qué es un árbol?

- Es una estructura jerárquica.
- Tiene un **nodo raíz** (root), y **nodos hijos** conectados a través de **ramas**.
- Los nodos sin hijos se llaman hojas (leaves).

Árbol binario

 Cada nodo puede tener como máximo 2 hijos: izquierdo (1eft) y derecho (right).

Árbol binario de búsqueda (Binary Search Tree - BST)

- Propiedad clave:
 - o Los nodos a la **izquierda** tienen valores **menores**.
 - o Los nodos a la derecha tienen valores mayores.
- Permite búsquedas eficientes (O(log n) en promedio).

Teoría – Grafos

- Conjunto de nodos (vértices) conectados por aristas (edges).
- Pueden ser:
 - o Dirigidos (con dirección).
 - o No dirigidos (sin dirección).
 - o Con peso o sin peso.

Representaciones comunes:

- 1. Matriz de adyacencia: tabla NxN.
- 2. Lista de adyacencia: array/lista de listas.