

22I-5.
$$\frac{\{(0.686 - 0.203 + \pi)/(-6.82)\}}{\{(8.51)(1.66)/(-4.68)\}}$$
 ------ 5=_____

22I-6. What is 32.5 times
$$7\pi$$
? ----- 6=_____

22I-8. What is the remainder of 3710 divided by the product of 0.586 and π ? 8=______

22I-9.

CIRCLE

R = ?

Area = 341

22I-11.
$$\frac{(0.908)(\pi) - (-0.348)(-6.7) + 2.1}{-70 + (8.71)(-4.26)}$$
 ------ 11=_____

22I-13.
$$\frac{8.15 \times 10^5 + 8.17 \times 10^5}{(-0.707)(-0.974) + 1.27} + \frac{6550 - 5790 + 6460}{(9.86 \times 10^{-5})(85.4)} ------ 13 = \underline{\hspace{2cm}}$$

22I-14.
$$\frac{614 + 294 - 710}{(0.481)(-0.61)} - \frac{(2.65 \times 10^5)(6.46 \times 10^{-4} + 1.79 \times 10^{-4})}{0.801 + 0.763 - 1.93} ------ 14 = \underline{\hspace{2cm}}$$

22I-18. If a gold chain has a mass of 20 g, what is the mass of the same chain made from stainless steel? Density of gold and stainless steel are

19.3 g/cm³ and 7.95 g/cm³, respectively. ------ 18=________g

22I-21.
$$\frac{1}{0.946 + 1.34} + \frac{1}{1.37 - 2.52} + \frac{1}{(0.955)}$$
 ------ 21=_____

22I-23.
$$\left[-81.3 + \sqrt{2550}\right]^2 \times \left[333 + 617\right]^2 \times \sqrt{365/161}$$
 ----- 23=_____

22I-24.
$$\frac{\sqrt{0.705 + 0.266 + (0.156)/(0.52)}}{-0.0486 + 0.0131}$$
 ------ 24=_____

22I-26. Oodaag Island, whose land area is 1270 ft², is a gravel bank in northern Greenland reported to be currently the northmost landmass on earth. If its latitude is 83°40′ N, how far is it from the North Pole? ----- 26= mi(SD)

22I-27. Donnie wants to spend exactly \$35 on a meal in a restaurant. If the tip is 15% of the total including tax, and tax is 8.125%, what is the maximum menu price of his meal? ------ 27=\$_______

vertically and horizontally. A 15-in long saw is to be hung horizontally using two pegs. If perfectly horizontal, any number of peg holes along a 15-in long row could be pegged. However, it is desired to hang the saw at 7° from horizontal. How many horizontal peg holes over should the second the peg be placed if it is raised 1 in vertically? ------ 28= <u>integer</u>

22I-29.

HEMISPHERE

22I-28. A pegboard has peg holes spaced in a 1 in square array that runs

Total Surface Area = 7.11

22I-29 =_____

22I-30 =____

22I-33.
$$\frac{(4.31\times10^{5})^{2}(4.65\times10^{-12}+2.89\times10^{-12})}{22.6+(-0.32)(-83.2)} + \frac{1}{\frac{1}{0.00714} + \frac{1}{(-0.0238)}}$$
33=______

22I-36. The planet Pluto is 39.5 AU from the sun. An AU is the sun-earth average distance, 8 light-minutes. The speed of light is 300,000 km/s. How long does it take light to travel from the sun to Pluto? ------ 36= hr

22I-37. A pound of 3-in long deck screws costs \$3.98, and a 10-lb box costs \$35.28. What is the lowest cost if 18 lbs of screws are needed? ----- 37=\$

22I-38. Corpus Christi lies on the same latitude as Mt. Everest, 28°N. There is an 11-hr time difference between the two locations. What is the percent error in the distance estimated as the line of constant latitude and

the actual distance, 8566 mi? ----- 38=

22I-44.
$$(-36.1 + 137)^{-(0.734 + 0.992)}$$
 ------ 44=_____

22I-48. Solve for h (greater than 8) if ln(2(h-7)) = h-8. ----- 48=_____

22I-49.

CONES AND FRUSTUM

Volume(Small Cone) = Volume(Frustum)

22I-49 =_____

22I-50.

CYLINDER WITH HEMISPHERICAL AND CONICAL CAVITIES

Volume = ?

22I-50 =____

22I-51.
$$\frac{10^{(0.597)} \times 10^{-(0.87)} + 0.833}{10^{(0.548 + 0.978)}}$$
 ------ 51=_____

22I-55.(rad)
$$\frac{\arctan\{9.41 + (9.05)(0.818)\}}{\arcsin\{(7480 + 2200)/35800\}}$$
 ------ 55=_____

22I-56. Calculate the value of x at the maximum for the curve

22I-58. Solve for
$$T_{12}$$
 if $T = \begin{bmatrix} 0.1 & 0.6 \\ 0.6 & -0.5 \end{bmatrix} \begin{bmatrix} 0.7 & 1.2 \\ 1.2 & 0.1 \end{bmatrix}$ ------ 58=_____

22I-59 =

22I-60. SEMICIRCLE AND SECTOR Hatched Area = ?

22I-60 =

22I-61. A tapered candle is 8 in long with diameters of 0.75 in and 0.5 in. If the first inch of length burns in 1.5 hr, what is the candle's total burn time? Assume the last inch of the candle length is discarded without burning. ----- 61=_____hr

22I-62. The odds of being dealt four aces in five-card poker is 1/54,145. What is this number raised to the -23,639 power? ------ 62=

22I-63. Sandy stands 45 ft from a 20-ft tall wall. She fires a projectile with a vertical release height of 5 ft that just clears the wall. What was the projectile release velocity? ------ 63= mph

Area(All Semicircles) - Area(Rectangle) $= 3.79a^{2}$

$$\frac{b}{a} = ?$$

22I-65 =____

22I-67.
$$(0.69)10^{\text{Log}[(1.99)(0.995)]} + \{(12.8)(0.926)\}^{1/2}$$
 ----- 67=_____

22I-68. (deg)
$$\left\{\cos^2(30.4^\circ) - \sin^2(30.4^\circ)\right\} \times \frac{\tan(30.4^\circ)}{1 - \tan^2(30.4^\circ)}$$
 ----- 68=_____

22I-69.
$$1 + 0.58 + (0.58)^2 + \frac{(0.58)^4}{8} - \frac{(0.58)^5}{15}$$
 ------ 69=_____

22I-1	$= 55.0$ $= 5.50 \times 10^{1}$	22I-11	$= -0.0245$ $= -2.45 \times 10^{-2}$	22I-21	$= 0.615$ $= 6.15 \times 10^{-1}$
22I-2	$= 3.50$ $= 3.50 \times 10^{0}$	22I-12	$= 3.44 \times 10^6$	22I-22	$= 0.00297$ $= 2.97 \times 10^{-3}$
22I-3	= -1.40 = -1.40×10 ⁰	22I-13	$= 1.69 \times 10^6$	22I-23	= 1.29x10 ⁹
22I-4	= -4.02	22I-14	= -77.5 = -7.75x10 ¹	22I-24	= -31.8 = -3.18x10 ¹
22I-5	$= -4.02 \times 10^{0}$ $= 0.176$	22I-15	= -49.3 = -4.93×10^{1}	22I-25	$= 9.34 \times 10^{-5}$
	$= 1.76 \times 10^{-1}$	22I-16	$= 221$ $= 2.21 \times 10^{2}$	22I-26	= 440 = 4.4×10^2 (2SD)
22I-6	$= 715$ $= 7.15 \times 10^{2}$	22I-17	= 90.0	22I-27	= \$28.15
22I-7	$= -0.537$ $= -5.37 \times 10^{-1}$	22I-18	$= 9.00 \times 10^{1}$ = 8.24	22I-28	= 8 integer
22I-8	= 0.439 = 4.39×10^{-1}		$= 8.24 \times 10^{0}$	22I-29	= 0.869 = 8.69×10^{-1}
22I-9	= 10.4	22I-19	$= 0.138$ $= 1.38 \times 10^{-1}$	22I-30	$= 0.187$ $= 1.87 \times 10^{-1}$
22I-10	$= 1.04 \times 10^{1}$ $= 2.33$ $= 2.33 \times 10^{0}$	22I-20	$= 5.87$ $= 5.87 \times 10^{0}$		

$22I-61 = 14.8$ $= 1.48 \times 10^{1}$	$22I-62 = 3.86 \times 10^{111,896}$	$22I-63 = 38.2$ $= 3.82 \times 10^{1}$	$22I-64 = 0.921$ $= 9.21 \times 10^{-1}$	$22I-65 = 2.69$ $= 2.69 \times 10^{0}$	$22I-66 = 1.57 \times 10^{-7}$	22I-67 = 4.81	$= 4.81 \times 10^{0}$ $22I-68 = 0.436$			22I-70 = -1020 = -1.02×10^{3}
$= 0.0407$ $= 4.07 \times 10^{-2}$	= -39.9 = -3.99x10 ¹	$= -1.17$ $= -1.17 \times 10^{0}$	$= 0.128$ $= 1.28 \times 10^{-1}$	= 5.52 = 5.52×10 ⁰		= 1.08	= 1.65 = 1.65×10 ⁰	$= 0.180$ $= 1.80 \times 10^{-1}$	= 61.6 = 6.16×10 ¹	$= 4420$ $= 4.42 \times 10^{3}$
22I-51	221-52	221-53	22I-54	221-55		95-177	221-57	221-58	221-59	22I-60
$= 1530$ $= 1.53 \times 10^{3}$	$= -0.0141$ $= -1.41 \times 10^{-2}$	$= 0.212$ $= 2.12 \times 10^{-1}$	$= 0.000348$ $= 3.48 \times 10^{-4}$	= -2.23	$= -2.23 \times 10^{9}$	= 5 integer	$= -31.0$ $= -3.10 \times 10^{1}$	$= 9.68$ $= 9.68 \times 10^{0}$	$= 95.3$ $= 9.53 \times 10^{1}$	$= 1380$ $= 1.38 \times 10^{3}$
22I-41	22I-42	22I-43	221-44	221-45		22I-46	221-47	221-48	221-49	221-50
$1 = 7.11 \times 10^{-7}$	$2 = 0.0912$ $= 9.12 \times 10^{-2}$	$3 = 0.0387$ $= 3.87 \times 10^{-2}$	$4 = 9.87 \times 10^{-10}$		$6 = 5.27$ $= 5.27 \times 10^{0}$	7 = \$67.12	$8 = 17.5 = 1.75 \times 10^{1}$		II II	
221-31	221-32	221-33	22I-34	221-35	221-36	221-37	22I-38	22I-39	221-40	