A Primer on Permutation Tests (not only) for MVPA

Joram Soch

(with slides by Carsten Allefeld)

Bernstein Center for Computational Neuroscience, Berlin, Germany German Center for Neurodegenerative Diseases, Göttingen, Germany E-Mail: joram.soch@bccn-berlin.de, Joram.Soch@DZNE.de

introduction

why use a permutation test?

- sometimes precise distributions are not known, especially in MVPA
- a permutation test makes weaker assumptions about distributions than parametric tests
- permutation tests provide exact inference
- permutation testing applies in the same way to univariate and multivariate analysis

this talk

no recipes, but the basic principles underlying permutation tests, especially exchangeability

A simple example

a univariate example: two-sample test

is there a mean difference between groups A and B?

if not, values can be **exchanged** between conditions

the same test statistic is computed from permuted data

compute the test statistic for all permutations

perm	da	ita	$T = \bar{x}_{B} - \bar{x}_{A}$		
1 2 3 4 5 6 7 8 9 10 11 2 13 14 15 16 17 18 19 20	77777777777777711111444466339	99993993939393939369364433664443366444 1111777777777777777777777777777777	2.00 0.67 2.67 -1.33 -1.33 0.67 -3.33 -0.67 -4.67 -2.67 4.67 0.67 3.33 -0.67 1.33 -2.67 -0.67 -2.00		

determine ranks by sorting in descending order

perm	da	ita	$T = \bar{x}_{B} - \bar{x}_{A}$	sorted	rank
1 2 3 4 5 6 7 8 9 10 11 2 13 14 15 17 18 19 20	77777777777777711111444466339	999939939 446399939 11443699364 4411777777777777777777777777777777777	2.00 0.67 2.67 -1.33 -1.33 0.67 -3.33 -0.67 -4.67 -2.67 2.67 4.67 0.67 3.33 -0.67 1.33 1.33 -2.67 -0.67 -0.67	4.67 3.33 2.67 2.67 2.03 1.33 0.67 0.67 -0.67 -0.67 -1.33 -2.267 -2.67 -2.33 -3.467	1 2 3 4 5 6 7 8 9 10 11 21 3 14 15 16 17 18 19 20

the neutral permutation is part of the set

perm	da	ita	$T = \bar{x}_B - \bar{x}_A$	sorted	rank
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	7111463963999639997777777777777777711116339999999999	639 4399 4639 114369 114369 77443 77116 77114	2.00 0.67 2.67 -1.33 0.67 -3.33 -0.67 -4.67 -2.67 4.67 0.67 3.33 -0.67 1.33 1.33 1.33 -0.67 -0.67 -0.67	4.67 3.33 2.67 2.67 2.00 1.33 1.33 0.67 0.67 0.67 -0.67 -1.33 -1.33 -2.00 -2.67 -2.67 -2.67 -3.33 -4.67	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

the rank of the original value determines significance

equivalently, a p-value can be computed

test for decrease: use the negative test statistic

two-sided test: use the absolute value of the test statistic

perm	dat	ta	$T = \bar{x}_{B} - \bar{x}_{A} $	sorted	rank	
1 2 3	7 1 4 7 1 6 7 1 3	639 439 469	2.00 0.67 2.67	4.67 4.67 3.33 3.33	- <u>1</u> -2 -3	significant
2 3 4 5 6 7 8 9 10	7 1 9 7 4 6 7 4 3 7 4 9	4 6 3 1 3 9 1 6 9 1 6 3	1.33 1.33 0.67 3.33	2.67 2.67 2.67 2.67	2 3 4 5 6 7	
11	7 6 3 7 6 9 7 3 9 1 4 6	1 4 9 1 4 3 1 4 6 7 3 9	0.67 4.67 2.67 2.67	2.67 2.00 2.00 1.33	8 9 10 11	$p = \frac{10}{20} = 0.50$
12 13 14 15 16	1 4 3 1 4 9 1 6 3 1 6 9	769 763 749 743	4.67 / 0.67 3.33 0.67	1.33 1.33 1.33 0.67	12 13 14 15	
16 17 18 19 20	139 463 469 439 639	7 4 6 7 1 9 7 1 3 7 1 6 7 1 4	1.33 1.33 2.67 0.67 2.00	0.67 0.67 0.67 0.67 0.67	16 17 18 19 20	

formal procedure for a permutation test

given: data, test statistic, sig. level α , possible exchanges

- ightharpoonup compute test statistic T_1 for original data
- compute test statistic T_i for all permutations $i=2...n_P$ (or a random selection \longrightarrow 'Monte-Carlo') i=1 is the 'neutral permutation'
- lack determine the rank of ${\cal T}_1$: $r=\sum_{i=1}^r [{\cal T}_i \geq {\cal T}_1]$ where $[{\sf true}]=1$ and $[{\sf false}]=0$
- determine the *p*-value: $p = \frac{r}{n_P}$
- ▶ if $p \leq \alpha$, reject H_0

the test is exact if α is a multiple of $\frac{1}{n_P}$ and there are no ties, otherwise it is conservative

independent samples from the same distribution (i.i.d.) ...

... can be **exchanged**: $x_1 \leftrightarrow x_2$

independent samples from different distributions . . .

cannot be exchanged

exchangeability refers to the null hypothesis!

exchangeable also if there is dependency but symmetric

caution: null hypothesis may be wrong in unexpected ways

Some test examples

tests: univariate two-sample

independent values sampled from two univariate distributions

 H_0 : two samples come from the **same distribution** \longrightarrow i.i.d. case: values can be exchanged freely

test statistic is sensitive to difference in means: permutation analogue of the two-sample t-test

tests: multivariate two-sample

independent vectors from two multivariate distributions

 H_0 : two samples from the **same multivariate distribution** \longrightarrow i.i.d. case: **vector values** can be exchanged freely

Problem with accuracies: few possible values → ties!

Example: classification of subject-specific patterns, e.g. of patients based on structural MRI

tests: univariate paired

paired values sampled from two univariate distributions

 H_0 : two samples come from the same distribution \longrightarrow partial dependency: values can be exchanged within pairs

test statistic is sensitive to difference in means: permutation analogue of the **paired t-test**

tests: multivariate paired

paired vectors sampled from two multivariate distributions

 H_0 : two samples from the same multivariate distribution \longrightarrow partial dependency: vectors can be exchanged within pairs

Example:

- classification of condition-specific patterns across subjects
- classification of patterns across runs, within subject

multivariate samples can also be compared using significance tests \longrightarrow potentially more powerful

NeuroImage 146 (2017) 113-120

Contents lists available at ScienceDirect

NeuroImage

journal homepage; www.elsevier.com/locate/neuroimage

What's in a pattern? Examining the type of signal multivariate analysis uncovers at the group level[⋆]

Roee Gilron^{a,b,*}, Jonathan Rosenblatt^{c,d}, Oluwasanmi Koyejo^e, Russell A. Poldrack^e, Rov Mukamel^{a,b}

- ^a School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
- b Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- ^c Zlotowsky Center for Neuroscience Ben Gurion University, Beer Sheva, Israel
- d Department of Industrial Engineering and Management, Beer Sheva, Israel
- Department of Psychology, Stanford University, Stanford, CA, United States

Limited exchangeability

fMRI trials occur in a time series with serial dependency

problem: exchanges change the dependency structure

no exchangeability of values in fMRI time series!

for a randomized trial sequence, labels can be exchanged

→ randomization test, ≠ permutation test relies on the distribution of the labels, not the data disadvantage: not exact for given randomized design

run-wise means or GLM estimates are often exchangeable

→ run-wise classification may be a better alternative

alternative to classification: cvMANOVA

cross-validated multivariate ANOVA allows for arbitrary time series designs \longrightarrow more flexible than decoding

NeuroImage 89 (2014) 345-357

Contents lists available at ScienceDirect

NeuroImage

journal homepage: www.elsevier.com/locate/ynimg

Searchlight-based multi-voxel pattern analysis of fMRI by cross-validated MANOVA

Carsten Allefeld a,b,*, John-Dylan Haynes a,b,c,d,e,f

- a Bernstein Center for Computational Neuroscience, Charité Universitätsmedizin Berlin, Germany
- b Berlin Center of Advanced Neuroimaging, Charité Universitätsmedizin Berlin, Germany
- ^c Department of Neurology, Charité Universitätsmedizin Berlin, Germany
- ^d Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Germany
- e Excellence Cluster NeuroCure, Charité Universitätsmedizin Berlin, Germany
- ¹ Department of Psychology, Humboldt-Universität zu Berlin, Germany

Further topics

multiple comparisons

several tests in parallel (voxels): control for **family-wise error** precise correction depends on dependency between tests, accounted for by using the **same permutation** across tests

test statistic T_{ij} , permutations $i = 1 \dots n_P$, tests $j = 1 \dots n_T$

▶ test whether there is an effect somewhere (omnibus H_0): use the **maximum statistic**

$$M_i = \max_{j=1}^{n_T} T_{ij}, \qquad p_{\text{omnibus}} = \frac{1}{n_P} \sum_{i=1}^{n_P} [M_i \ge M_1]$$

▶ test whether there is an effect at *i*, corrected

$$p_j = \frac{1}{n_P} \sum_{i=1}^{n_P} [M_i \ge T_{1j}]$$

beyond permutations

the principle underlying permutation tests:

- find a group of transformations under which the H₀-distribution is invariant (includes the neutral transformation)
- compute the test statistic from data after each transformation has been applied

permutation is a special case of transformation, exchangeability is a special case of invariance

"group": the combination of two transformations is another transformation (is also in the group)

beyond permutations: mirror symmetry

'sign-flip test': $x \leftrightarrow -x$

39/41

beyond permutations: sphericity

'rotation test': https://f1000research.com/posters/6-1085

further reading

permutation tests, general

- Ernst, Permutation methods: A basis for exact inference, Statistical Science 2004
- Good, Permutation, Parametric, and Bootstrap Tests of Hypotheses, Springer 2005
- Lehmann & Romano, Testing Statistical Hypotheses, Springer 2005, Sec. 5.8

neuroimaging

- Nichols & Holmes, Nonparametric permutation tests for functional neuroimaging: A primer with examples, Human Brain Mapping 2001
- Winkler et al., Permutation inference for the general linear model, NeuroImage 2014
- Winkler et al., Non-parametric combination and related permutation tests for neuroimaging, *Human Brain Mapping* 2016

MVPA (caution!)

- Golland & Fischl, Permutation tests for classification: Towards statistical significance in image-based studies, *Information processing in medical imaging* 2003
- Etzel & Braver, MVPA permutation schemes: Permutation testing in the land of cross-validation, PRNI 2013
- Schreiber & Krekelberg, The statistical analysis of multi-voxel patterns in functional imaging, PLOS ONE 2013
- Stelzer et al., Statistical inference and multiple testing correction in classification-based multi-voxel pattern analysis (MVPA), *NeuroImage* 2013
- Allefeld et al., Valid population inference for information-based imaging: From the second-level t-test to prevalence inference, NeuroImage 2016

randomization tests

- Lehmann & Romano, Testing Statistical Hypotheses, Springer 2005, Sec. 5.10
- Edgington & Onghena, Randomization Tests, Chapman & Hall 2007