

Acta Crystallographica Section E

**Structure Reports** 

**Online** 

ISSN 1600-5368

# 3,3-Bis(4-bromophenylsulfanyl)-1-methylpiperidin-2-one

Julio Zukerman-Schpector, a\* Paulo R. Olivato, Carlos R. Cerqueira Jr, Bruna Contieri, Seik Weng Ng<sup>c,d</sup> and Edward R. T. Tiekink<sup>c</sup>

<sup>a</sup>Departmento de Química, Universidade Federal de São Carlos, CP 676, 13565-905 São Carlos-SP, Brazil, <sup>b</sup>Chemistry Institute, University of São Paulo, 05508-000 São Paulo, SP, Brazil, <sup>c</sup>Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and <sup>d</sup>Chemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia Correspondence e-mail: julio@power.ufscar.br

Received 12 March 2013; accepted 13 March 2013

Key indicators: single-crystal X-ray study; T = 100 K; mean  $\sigma(C-C) = 0.003 \text{ Å}$ ; R factor = 0.029; wR factor = 0.077; data-to-parameter ratio = 18.0.

In the title compound,  $C_{18}H_{17}Br_2NOS_2$ , the conformation of the piperidin-2-one ring is based on a half-chair with the methylene C atom diagonally opposite the N atom being 0.649 (3) Å above the plane of the remaining five atoms (r.m.s. deviation = 0.1205 Å). The S atoms occupy axial and bisectional positions, and the dihedral angle between the benzene rings of 59.95 (11)° indicates a splayed disposition. Helical supramolecular chains along the b axis sustained by  $C-H\cdots O$  interactions is the major feature of the crystal packing. The chains are connected into a three-dimensional architecture by  $C-H\cdots Br$  and  $C-H\cdots \pi$  interactions.

#### **Related literature**

For background to the chemistry and structures of  $\beta$ -thiocarbonyl compounds, see: Zukerman-Schpector *et al.* (2009); Vinhato (2007); Vinhato *et al.* (2011); Olivato *et al.* (2012, 2013). For the synthesis, see: Olivato *et al.* (2013). For ring conformational analysis, see: Cremer & Pople (1975).

#### **Experimental**

Crystal data

 $\begin{array}{lll} \text{C}_{18}\text{H}_{17}\text{Br}_2\text{NOS}_2 & c = 24.6757 \ (3) \ \text{Å} \\ M_r = 487.27 & \beta = 93.190 \ (1)^\circ \\ \text{Monoclinic, } P2_1/n & V = 1872.57 \ (4) \ \text{Å}^3 \\ a = 7.8777 \ (1) \ \text{Å} & Z = 4 \\ b = 9.6481 \ (1) \ \text{Å} & \text{Cu } K\alpha \text{ radiation} \end{array}$ 

 $\mu = 7.61 \text{ mm}^{-1}$ T = 100 K  $0.25\,\times\,0.25\,\times\,0.05$  mm

Data collection

Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer Absorption correction: multi-scan ( $CrysAlis\ PRO$ ; Agilent, 2011)  $T_{\min} = 0.298,\ T_{\max} = 1.000$ 

18656 measured reflections 3916 independent reflections 3715 reflections with  $I > 2\sigma(I)$   $R_{\rm int} = 0.038$ 

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.029$   $wR(F^2) = 0.077$  S = 1.103916 reflections

218 parameters H-atom parameters constrained  $\Delta \rho_{\rm max} = 0.71 \ {\rm e \ \mathring{A}^{-3}}$   $\Delta \rho_{\rm min} = -1.26 \ {\rm e \ \mathring{A}^{-3}}$ 

**Table 1**Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C7-C12 ring.

| $D-H\cdots A$                                                                                         | D-H  | $H \cdot \cdot \cdot A$ | $D \cdot \cdot \cdot A$ | $D-H\cdots A$ |
|-------------------------------------------------------------------------------------------------------|------|-------------------------|-------------------------|---------------|
| $ \begin{array}{c} C9-H9\cdots Br2^{i} \\ C11-H11\cdots O1^{ii} \\ C1-H1B\cdots Cg1^{i} \end{array} $ | 0.95 | 2.87                    | 3.744 (2)               | 154           |
|                                                                                                       | 0.95 | 2.27                    | 3.195 (3)               | 163           |
|                                                                                                       | 0.98 | 2.86                    | 3.660 (3)               | 139           |

Symmetry codes: (i)  $-x + \frac{3}{2}$ ,  $y + \frac{1}{2}$ ,  $-z + \frac{1}{2}$ ; (ii)  $-x + \frac{1}{2}$ ,  $y - \frac{1}{2}$ ,  $-z + \frac{1}{2}$ .

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

We thank the Brazilian agencies FAPESP, CNPq and CAPES (808/2009 to JZ-S) for financial support. CRC and BC thank CNPq for scholarships; PRO and JZ-S thank CNPq for fellowships. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR-MOHE/SC/03).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5299).

#### References

Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C.,
Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J.
Appl. Cryst. 32, 115–119.

Brandenburg, K. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Cremer, D. & Pople, J. A. (1975). *J. Am. Chem. Soc.* **97**, 1354–1358.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.

Olivato, P. R., Cerqueira, C. R. Jr, Contieri, B., Santos, J. M. M. & Zukerman-Schpector, J. (2013). J. Sulfur Chem. doi:10.1080/17415993.2013.771359).

Olivato, P. R., Santos, J. M. M., Cerqueira, C. R. Jr, Vinhato, E., Zukerman-Schpector, J., Ng, S. W., Tiekink, E. R. T. & Dal Colle, M. (2012). *J. Mol. Struct.* **1028**, 97–106.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Vinhato, E. (2007). PhD thesis, University of São Paulo, Brazil.

Vinhato, E., Olivato, P. R., Rodrigues, A., Zukerman-Schpector, J. & Dal Colle, M. (2011). J. Mol. Struct. 1002, 97–106.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Zukerman-Schpector, J., Vinhato, E., Olivato, P. R., Rodrigues, A., Dal Colle, M., Cerqueira, C. R. Jr, Aman, H. D. & Tiekink, E. R. T. (2009). Z. Kristallogr. New Cryst. Struct. 214, 563–564.

Acta Cryst. (2013). E69, o556 [doi:10.1107/S1600536813006995]

### 3,3-Bis(4-bromophenylsulfanyl)-1-methylpiperidin-2-one

# Julio Zukerman-Schpector, Paulo R. Olivato, Carlos R. Cerqueira Jr, Bruna Contieri, Seik Weng Ng and Edward R. T. Tiekink

#### Comment

The title compound (I), Fig. 1, was studied as a part of an on-going investigation of conformational and electronic interactions in  $\beta$ -thio-carbonyl compounds, *e.g.* N,N-diethyl-2-[(4'-substituted) phenylthio]acetamides, N,N-diethyl-2-[(4'-substituted) phenylsulfonyl]acetamides and 3,3-bis[(4'-substituted phenylsulfany)]-1-methyl-2-piperidinones using spectroscopic, theoretical and X-ray diffraction methods (Vinhato, 2007; Zukerman-Schpector *et al.*, 2009; Vinhato *et al.*, 2011; Olivato *et al.*, 2012; Olivato *et al.*, 2013).

In (I), the conformation of the six-membered piperidin-2-one ring is highly distorted with the best description being one based on a half-chair with the C4 atom lying 0.649 (3) Å above the plane of the remaining five atoms (r.m.s. deviation = 0.1205 Å), with puckering parameters:  $q_2 = 0.463$  (2) Å and  $q_3 = 0.275$  (2) Å, and amplitudes: Q = 0.539 (2) Å,  $\theta = 59.4$  (2)° and  $\varphi_2 = 214.7$  (3)° (Cremer & Pople, 1975). The carbonyl-O1 and methyl-C1 atom occupy equatorial positions with respect to the piperidinyl ring while the S1 and S2 atoms are axial and bisectional, respectively. The dihedral angle between the benzene rings is 59.95 (11)°, indicating a splayed disposition.

The crystal packing features helical supramolecular chains along the b axis sustained by rather strong C—H···O interactions, Fig. 2 and Table 1. These are consolidated into a three-dimensional architecture by C—H···Br and C—H··· $\pi$  interactions, Fig. 3 and Table 1.

#### **Experimental**

The preparation of the title compound was recently described (Olivato *et al.*, 2013). Suitable crystals were obtained by vapour diffusion of *n*-hexane into a chloroform solution at 283 K.; *M*.pt: 383–385 K.

#### Refinement

All H atoms were included in the riding-model approximation with C—H = 0.95–0.99 Å, and with  $U_{iso}(H)$  =  $1.5U_{eq}$ (methyl-C) and  $1.2U_{eq}$ (remaining-C). The maximum and minimum residual electron density peaks of 0.71 and -1.26 e Å<sup>-3</sup>, respectively, were located 0.77 and 0.72 Å from the Br2 atom.

#### **Computing details**

Data collection: *CrysAlis PRO* (Agilent, 2011); cell refinement: *CrysAlis PRO* (Agilent, 2011); data reduction: *CrysAlis PRO* (Agilent, 2011); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012) and *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).



**Figure 1**Molecular structure of (I) showing atom labelling and displacement ellipsoids at the 50% probability level.



Figure 2 Helical supramolecular chain along the b axis sustained by C—H···.O interactions (blue dashed lines).



Figure 3

View in projection down the b axis of the unit-cell contents. The C—H···O, C—H···Br and C—H··· $\pi$  interactions are shown as blue, orange and purple dashed lines, respectively.

#### 3,3-Bis(4-bromophenylsulfanyl)-1-methylpiperidin-2-one

Crystal data

 $C_{18}H_{17}Br_2NOS_2$   $M_r = 487.27$ Monoclinic,  $P2_1/n$ Hall symbol: -P 2yn a = 7.8777 (1) Å b = 9.6481 (1) Å c = 24.6757 (3) Å  $\beta = 93.190$  (1)° V = 1872.57 (4) Å<sup>3</sup> Z = 4

Data collection

Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer

Radiation source: SuperNova (Cu) X-ray

Source

Mirror monochromator

Detector resolution: 10.4041 pixels mm<sup>-1</sup>

 $\omega$  scans

Absorption correction: multi-scan (*CrysAlis PRO*; Agilent, 2011)

Refinement

0 restraints

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.029$  $wR(F^2) = 0.077$ S = 1.103916 reflections 218 parameters  $D_x = 1.728 \text{ Mg m}^{-3}$ Cu  $K\alpha$  radiation,  $\lambda = 1.5418 \text{ Å}$ Cell parameters from 10597 reflections

 $\theta = 3.6-76.5^{\circ}$   $\mu = 7.61 \text{ mm}^{-1}$ T = 100 K

F(000) = 968

Prism, colourless  $0.25 \times 0.25 \times 0.05$  mm

 $T_{\text{min}} = 0.298$ ,  $T_{\text{max}} = 1.000$ 18656 measured reflections

3916 independent reflections 3715 reflections with  $I > 2\sigma(I)$ 

 $R_{\rm int} = 0.038$ 

 $\theta_{\text{max}} = 76.7^{\circ}, \ \theta_{\text{min}} = 3.6^{\circ}$ 

 $h = -8 \longrightarrow 9$ 

 $k = -11 \rightarrow 12$ 

 $l = -31 \rightarrow 30$ 

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier

Hydrogen site location: inferred from

neighbouring sites

H-atom parameters constrained

$$w = 1/[\sigma^2(F_o^2) + (0.0402P)^2 + 1.5955P]$$

$$where P = (F_o^2 + 2F_c^2)/3$$

$$(\Delta/\sigma)_{max} < 0.001$$

$$\Delta\rho_{min} = -1.26 \text{ e Å}^{-3}$$

Special details

**Geometry**. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

**Refinement.** Refinement of  $F^2$  against ALL reflections. The weighted R-factor wR and goodness of fit S are based on  $F^2$ , conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2$  are statistically about twice as large as those based on F, and F-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\mathring{A}^2)$ 

| C1         0.9475 (3)         0.8914 (3)         0.36927 (10)         0.0229 (5)           H1A         0.9052         0.8781         0.4055         0.034*           H1B         0.9443         0.9903         0.3601         0.034*           H1C         1.0648         0.8577         0.3689         0.034*           C2         0.6716 (3)         0.8271 (2)         0.33253 (8)         0.0144 (4)           C3         0.5560 (3)         0.7345 (2)         0.29522 (8)         0.0132 (4)           C4         0.6530 (3)         0.6307 (2)         0.26235 (8)         0.0143 (4)           H4A         0.5778         0.5947         0.2321         0.017*           H4B         0.6897         0.5516         0.2857         0.017*           C5         0.8078 (3)         0.6999 (2)         0.23983 (9)         0.0168 (4)           H5A         0.8652         0.6347         0.2159         0.020*           H5B         0.7722         0.7825         0.2182         0.020*           C6         0.9284 (3)         0.7424 (2)         0.28685 (9)         0.0195 (4)           H6A         0.9853         0.6588         0.3024         0.023*           H6B         1                                                                                                               |     | X           | у            | Z             | $U_{ m iso}$ */ $U_{ m eq}$ |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------|--------------|---------------|-----------------------------|
| S1       0.43546 (6)       0.86583 (5)       0.25378 (2)       0.01528 (11)         S2       0.39439 (6)       0.64897 (5)       0.33476 (2)       0.01610 (11)         O1       0.6089 (2)       0.90775 (16)       0.36438 (6)       0.0190 (3)         N1       0.8407 (2)       0.81429 (19)       0.32947 (7)       0.0166 (4)         C1       0.9475 (3)       0.8914 (3)       0.36927 (10)       0.0229 (5)         H1A       0.9052       0.8781       0.4055       0.034*         H1B       0.9443       0.9903       0.3601       0.034*         H1C       1.0648       0.8577       0.3889       0.034*         C2       0.6716 (3)       0.8271 (2)       0.33253 (8)       0.0144 (4)         C3       0.5560 (3)       0.7345 (2)       0.29522 (8)       0.0132 (4)         C4       0.6530 (3)       0.6307 (2)       0.26235 (8)       0.0143 (4)         H4A       0.5778       0.5947       0.2321       0.017*         H4B       0.6897       0.5516       0.2857       0.017*         C5       0.8078 (3)       0.6999 (2)       0.23983 (9)       0.0168 (4)         H5B       0.7722       0.7825       0.2182       0.020* <td>Br1</td> <td>0.20835 (4)</td> <td>0.58290(3)</td> <td>0.025429 (10)</td> <td>0.02829 (9)</td>                                                   | Br1 | 0.20835 (4) | 0.58290(3)   | 0.025429 (10) | 0.02829 (9)                 |
| S2         0.39439 (6)         0.64897 (5)         0.33476 (2)         0.01610 (11)           O1         0.6089 (2)         0.90775 (16)         0.36438 (6)         0.0190 (3)           N1         0.8407 (2)         0.81429 (19)         0.32947 (7)         0.0166 (4)           C1         0.9475 (3)         0.8914 (3)         0.36927 (10)         0.0229 (5)           H1A         0.9052         0.8781         0.4055         0.034*           H1B         0.9443         0.9903         0.3601         0.034*           H1C         1.0648         0.8577         0.3689         0.034*           C2         0.6716 (3)         0.8271 (2)         0.33253 (8)         0.0144 (4)           C3         0.5560 (3)         0.7345 (2)         0.29522 (8)         0.0132 (4)           C4         0.6530 (3)         0.6307 (2)         0.26235 (8)         0.0143 (4)           H4A         0.5778         0.5947         0.2321         0.017*           H4B         0.6897         0.5516         0.2857         0.017*           H5B         0.7722         0.7825         0.2182         0.020*           H5B         0.7722         0.7825         0.2182         0.020* <t< td=""><td>Br2</td><td>0.82389 (3)</td><td>0.31232 (3)</td><td>0.521415 (11)</td><td>0.03241 (9)</td></t<> | Br2 | 0.82389 (3) | 0.31232 (3)  | 0.521415 (11) | 0.03241 (9)                 |
| O1         0.6089 (2)         0.90775 (16)         0.36438 (6)         0.0190 (3)           N1         0.8407 (2)         0.81429 (19)         0.32947 (7)         0.0166 (4)           C1         0.9475 (3)         0.8914 (3)         0.36927 (10)         0.0229 (5)           H1A         0.9052         0.8781         0.4055         0.034*           H1B         0.9443         0.9903         0.3601         0.034*           H1C         1.0648         0.8577         0.3689         0.034*           C2         0.6716 (3)         0.8271 (2)         0.33253 (8)         0.0144 (4)           C3         0.5560 (3)         0.7345 (2)         0.29522 (8)         0.0132 (4)           C4         0.6530 (3)         0.6307 (2)         0.26235 (8)         0.0143 (4)           H4A         0.5778         0.5947         0.2321         0.017*           H4B         0.6897         0.5516         0.2857         0.017*           C5         0.8078 (3)         0.6999 (2)         0.23983 (9)         0.0168 (4)           H5A         0.8652         0.6347         0.2159         0.020*           H5B         0.7722         0.7825         0.2182         0.020*           C6                                                                                                      | S1  | 0.43546 (6) | 0.86583 (5)  | 0.25378 (2)   | 0.01528 (11)                |
| N1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S2  | 0.39439 (6) | 0.64897 (5)  | 0.33476 (2)   | 0.01610 (11)                |
| C1         0.9475 (3)         0.8914 (3)         0.36927 (10)         0.0229 (5)           H1A         0.9052         0.8781         0.4055         0.034*           H1B         0.9443         0.9903         0.3601         0.034*           H1C         1.0648         0.8577         0.3689         0.034*           C2         0.6716 (3)         0.8271 (2)         0.33253 (8)         0.0144 (4)           C3         0.5560 (3)         0.7345 (2)         0.29522 (8)         0.0132 (4)           C4         0.6530 (3)         0.6307 (2)         0.26235 (8)         0.0143 (4)           H4A         0.5778         0.5947         0.2321         0.017*           H4B         0.6897         0.5516         0.2857         0.017*           C5         0.8078 (3)         0.6999 (2)         0.23983 (9)         0.0168 (4)           H5A         0.8652         0.6347         0.2159         0.020*           C6         0.9284 (3)         0.7424 (2)         0.28685 (9)         0.0195 (4)           H6A         0.9853         0.6588         0.3024         0.023*           H6B         1.0172         0.8040         0.2733         0.023*           C7         0.                                                                                                               | O1  | 0.6089(2)   | 0.90775 (16) | 0.36438 (6)   | 0.0190(3)                   |
| H1A 0.9052 0.8781 0.4055 0.034* H1B 0.9443 0.9903 0.3601 0.034* H1C 1.0648 0.8577 0.3689 0.034* C2 0.6716 (3) 0.8271 (2) 0.33253 (8) 0.0144 (4) C3 0.5560 (3) 0.7345 (2) 0.29522 (8) 0.0132 (4) C4 0.6530 (3) 0.6307 (2) 0.26235 (8) 0.0143 (4) H4A 0.5778 0.5947 0.2321 0.017* H4B 0.6897 0.5516 0.2857 0.017* C5 0.8078 (3) 0.6999 (2) 0.23983 (9) 0.0168 (4) H5A 0.8652 0.6347 0.2159 0.020* H5B 0.7722 0.7825 0.2182 0.020* C6 0.9284 (3) 0.7424 (2) 0.28685 (9) 0.0195 (4) H6A 0.9853 0.6588 0.3024 0.023* C7 0.3782 (3) 0.7802 (2) 0.19177 (8) 0.0138 (4) C8 0.4438 (3) 0.8300 (2) 0.19177 (8) 0.0138 (4) C8 0.4438 (3) 0.8300 (2) 0.19177 (8) 0.0138 (4) C8 0.4438 (3) 0.8300 (2) 0.14454 (9) 0.0183 (4) H8 0.5235 0.9040 0.1463 0.022* C9 0.3934 (3) 0.7720 (2) 0.09462 (9) 0.0208 (4) H9 0.4372 0.8061 0.0621 0.025* C10 0.2776 (3) 0.6631 (2) 0.09327 (9) 0.0171 (4) C11 0.2116 (3) 0.6111 (2) 0.1398 (9) 0.0165 (4) H12 0.2168 0.6369 0.2219 0.018* C13 0.5212 (3) 0.5553 (2) 0.38409 (9) 0.0163 (4)                                                                                                                                                                                                                                                                                          | N1  | 0.8407(2)   | 0.81429 (19) | 0.32947 (7)   | 0.0166 (4)                  |
| H1B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C1  | 0.9475 (3)  | 0.8914(3)    | 0.36927 (10)  | 0.0229 (5)                  |
| H1C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | H1A | 0.9052      | 0.8781       | 0.4055        | 0.034*                      |
| C2       0.6716 (3)       0.8271 (2)       0.33253 (8)       0.0144 (4)         C3       0.5560 (3)       0.7345 (2)       0.29522 (8)       0.0132 (4)         C4       0.6530 (3)       0.6307 (2)       0.26235 (8)       0.0143 (4)         H4A       0.5778       0.5947       0.2321       0.017*         H4B       0.6897       0.5516       0.2857       0.017*         C5       0.8078 (3)       0.6999 (2)       0.23983 (9)       0.0168 (4)         H5A       0.8652       0.6347       0.2159       0.020*         H5B       0.7722       0.7825       0.2182       0.020*         C6       0.9284 (3)       0.7424 (2)       0.28685 (9)       0.0195 (4)         H6A       0.9853       0.6588       0.3024       0.023*         H6B       1.0172       0.8040       0.2733       0.023*         C7       0.3782 (3)       0.7802 (2)       0.19177 (8)       0.0138 (4)         C8       0.4438 (3)       0.8300 (2)       0.14454 (9)       0.0183 (4)         H8       0.5235       0.9040       0.1463       0.022*         C9       0.3934 (3)       0.7720 (2)       0.09462 (9)       0.0208 (4) <t< td=""><td>H1B</td><td>0.9443</td><td>0.9903</td><td>0.3601</td><td>0.034*</td></t<>                                                                                           | H1B | 0.9443      | 0.9903       | 0.3601        | 0.034*                      |
| C3       0.5560 (3)       0.7345 (2)       0.29522 (8)       0.0132 (4)         C4       0.6530 (3)       0.6307 (2)       0.26235 (8)       0.0143 (4)         H4A       0.5778       0.5947       0.2321       0.017*         H4B       0.6897       0.5516       0.2857       0.017*         C5       0.8078 (3)       0.6999 (2)       0.23983 (9)       0.0168 (4)         H5A       0.8652       0.6347       0.2159       0.020*         H5B       0.7722       0.7825       0.2182       0.020*         C6       0.9284 (3)       0.7424 (2)       0.28685 (9)       0.0195 (4)         H6A       0.9853       0.6588       0.3024       0.023*         H6B       1.0172       0.8040       0.2733       0.023*         C7       0.3782 (3)       0.7802 (2)       0.19177 (8)       0.0138 (4)         C8       0.4438 (3)       0.8300 (2)       0.14454 (9)       0.0183 (4)         H8       0.5235       0.9040       0.1463       0.022*         C9       0.3934 (3)       0.7720 (2)       0.09462 (9)       0.0208 (4)         H9       0.4372       0.8061       0.0621       0.025*         C10                                                                                                                                                                                        | H1C | 1.0648      | 0.8577       | 0.3689        | 0.034*                      |
| C4       0.6530 (3)       0.6307 (2)       0.26235 (8)       0.0143 (4)         H4A       0.5778       0.5947       0.2321       0.017*         H4B       0.6897       0.5516       0.2857       0.017*         C5       0.8078 (3)       0.6999 (2)       0.23983 (9)       0.0168 (4)         H5A       0.8652       0.6347       0.2159       0.020*         H5B       0.7722       0.7825       0.2182       0.020*         C6       0.9284 (3)       0.7424 (2)       0.28685 (9)       0.0195 (4)         H6A       0.9853       0.6588       0.3024       0.023*         H6B       1.0172       0.8040       0.2733       0.023*         C7       0.3782 (3)       0.7802 (2)       0.19177 (8)       0.0138 (4)         C8       0.4438 (3)       0.8300 (2)       0.14454 (9)       0.0183 (4)         H8       0.5235       0.9040       0.1463       0.022*         C9       0.3934 (3)       0.7720 (2)       0.09462 (9)       0.0208 (4)         H9       0.4372       0.8061       0.0621       0.025*         C10       0.2776 (3)       0.6631 (2)       0.09327 (9)       0.0171 (4)         C11                                                                                                                                                                                       | C2  | 0.6716 (3)  | 0.8271 (2)   | 0.33253 (8)   | 0.0144 (4)                  |
| H4A       0.5778       0.5947       0.2321       0.017*         H4B       0.6897       0.5516       0.2857       0.017*         C5       0.8078 (3)       0.6999 (2)       0.23983 (9)       0.0168 (4)         H5A       0.8652       0.6347       0.2159       0.020*         H5B       0.7722       0.7825       0.2182       0.020*         C6       0.9284 (3)       0.7424 (2)       0.28685 (9)       0.0195 (4)         H6A       0.9853       0.6588       0.3024       0.023*         H6B       1.0172       0.8040       0.2733       0.023*         C7       0.3782 (3)       0.7802 (2)       0.19177 (8)       0.0138 (4)         C8       0.4438 (3)       0.8300 (2)       0.14454 (9)       0.0183 (4)         H8       0.5235       0.9040       0.1463       0.022*         C9       0.3934 (3)       0.7720 (2)       0.09462 (9)       0.0208 (4)         H9       0.4372       0.8061       0.0621       0.025*         C10       0.2776 (3)       0.6631 (2)       0.09327 (9)       0.0171 (4)         C11       0.2116 (3)       0.6111 (2)       0.13980 (9)       0.0167 (4)         H11                                                                                                                                                                                      | C3  | 0.5560(3)   | 0.7345 (2)   | 0.29522 (8)   | 0.0132 (4)                  |
| H4B       0.6897       0.5516       0.2857       0.017*         C5       0.8078 (3)       0.6999 (2)       0.23983 (9)       0.0168 (4)         H5A       0.8652       0.6347       0.2159       0.020*         H5B       0.7722       0.7825       0.2182       0.020*         C6       0.9284 (3)       0.7424 (2)       0.28685 (9)       0.0195 (4)         H6A       0.9853       0.6588       0.3024       0.023*         H6B       1.0172       0.8040       0.2733       0.023*         C7       0.3782 (3)       0.7802 (2)       0.19177 (8)       0.0138 (4)         C8       0.4438 (3)       0.8300 (2)       0.14454 (9)       0.0183 (4)         H8       0.5235       0.9040       0.1463       0.022*         C9       0.3934 (3)       0.7720 (2)       0.09462 (9)       0.0208 (4)         H9       0.4372       0.8061       0.0621       0.025*         C10       0.2776 (3)       0.6631 (2)       0.09327 (9)       0.0171 (4)         C11       0.2116 (3)       0.6111 (2)       0.13980 (9)       0.0167 (4)         H11       0.1333       0.5361       0.1379       0.020*         C12                                                                                                                                                                                      | C4  | 0.6530(3)   | 0.6307(2)    | 0.26235 (8)   | 0.0143 (4)                  |
| C5       0.8078 (3)       0.6999 (2)       0.23983 (9)       0.0168 (4)         H5A       0.8652       0.6347       0.2159       0.020*         H5B       0.7722       0.7825       0.2182       0.020*         C6       0.9284 (3)       0.7424 (2)       0.28685 (9)       0.0195 (4)         H6A       0.9853       0.6588       0.3024       0.023*         H6B       1.0172       0.8040       0.2733       0.023*         C7       0.3782 (3)       0.7802 (2)       0.19177 (8)       0.0138 (4)         C8       0.4438 (3)       0.8300 (2)       0.14454 (9)       0.0183 (4)         H8       0.5235       0.9040       0.1463       0.022*         C9       0.3934 (3)       0.7720 (2)       0.09462 (9)       0.0208 (4)         H9       0.4372       0.8061       0.0621       0.025*         C10       0.2776 (3)       0.6631 (2)       0.09327 (9)       0.0171 (4)         C11       0.2116 (3)       0.6111 (2)       0.13980 (9)       0.0167 (4)         H11       0.1333       0.5361       0.1379       0.020*         C12       0.2618 (3)       0.6707 (2)       0.18945 (9)       0.0154 (4)                                                                                                                                                                                 | H4A | 0.5778      | 0.5947       | 0.2321        | 0.017*                      |
| H5A       0.8652       0.6347       0.2159       0.020*         H5B       0.7722       0.7825       0.2182       0.020*         C6       0.9284 (3)       0.7424 (2)       0.28685 (9)       0.0195 (4)         H6A       0.9853       0.6588       0.3024       0.023*         H6B       1.0172       0.8040       0.2733       0.023*         C7       0.3782 (3)       0.7802 (2)       0.19177 (8)       0.0138 (4)         C8       0.4438 (3)       0.8300 (2)       0.14454 (9)       0.0183 (4)         H8       0.5235       0.9040       0.1463       0.022*         C9       0.3934 (3)       0.7720 (2)       0.09462 (9)       0.0208 (4)         H9       0.4372       0.8061       0.0621       0.025*         C10       0.2776 (3)       0.6631 (2)       0.09327 (9)       0.0171 (4)         C11       0.2116 (3)       0.6111 (2)       0.13980 (9)       0.0167 (4)         H11       0.1333       0.5361       0.1379       0.020*         C12       0.2618 (3)       0.6707 (2)       0.18945 (9)       0.0154 (4)         H12       0.2168       0.6369       0.2219       0.0163 (4) <t< td=""><td>H4B</td><td>0.6897</td><td>0.5516</td><td>0.2857</td><td>0.017*</td></t<>                                                                                                     | H4B | 0.6897      | 0.5516       | 0.2857        | 0.017*                      |
| H5B       0.7722       0.7825       0.2182       0.020*         C6       0.9284 (3)       0.7424 (2)       0.28685 (9)       0.0195 (4)         H6A       0.9853       0.6588       0.3024       0.023*         H6B       1.0172       0.8040       0.2733       0.023*         C7       0.3782 (3)       0.7802 (2)       0.19177 (8)       0.0138 (4)         C8       0.4438 (3)       0.8300 (2)       0.14454 (9)       0.0183 (4)         H8       0.5235       0.9040       0.1463       0.022*         C9       0.3934 (3)       0.7720 (2)       0.09462 (9)       0.0208 (4)         H9       0.4372       0.8061       0.0621       0.025*         C10       0.2776 (3)       0.6631 (2)       0.09327 (9)       0.0171 (4)         C11       0.2116 (3)       0.6111 (2)       0.13980 (9)       0.0167 (4)         H11       0.1333       0.5361       0.1379       0.020*         C12       0.2618 (3)       0.6707 (2)       0.18945 (9)       0.0154 (4)         H12       0.2168       0.6369       0.2219       0.0163 (4)                                                                                                                                                                                                                                                             | C5  | 0.8078 (3)  | 0.6999(2)    | 0.23983 (9)   | 0.0168 (4)                  |
| C6       0.9284 (3)       0.7424 (2)       0.28685 (9)       0.0195 (4)         H6A       0.9853       0.6588       0.3024       0.023*         H6B       1.0172       0.8040       0.2733       0.023*         C7       0.3782 (3)       0.7802 (2)       0.19177 (8)       0.0138 (4)         C8       0.4438 (3)       0.8300 (2)       0.14454 (9)       0.0183 (4)         H8       0.5235       0.9040       0.1463       0.022*         C9       0.3934 (3)       0.7720 (2)       0.09462 (9)       0.0208 (4)         H9       0.4372       0.8061       0.0621       0.025*         C10       0.2776 (3)       0.6631 (2)       0.09327 (9)       0.0171 (4)         C11       0.2116 (3)       0.6111 (2)       0.13980 (9)       0.0167 (4)         H11       0.1333       0.5361       0.1379       0.020*         C12       0.2618 (3)       0.6707 (2)       0.18945 (9)       0.0154 (4)         H12       0.2168       0.6369       0.2219       0.0163 (4)                                                                                                                                                                                                                                                                                                                             | H5A | 0.8652      | 0.6347       | 0.2159        | 0.020*                      |
| H6A       0.9853       0.6588       0.3024       0.023*         H6B       1.0172       0.8040       0.2733       0.023*         C7       0.3782 (3)       0.7802 (2)       0.19177 (8)       0.0138 (4)         C8       0.4438 (3)       0.8300 (2)       0.14454 (9)       0.0183 (4)         H8       0.5235       0.9040       0.1463       0.022*         C9       0.3934 (3)       0.7720 (2)       0.09462 (9)       0.0208 (4)         H9       0.4372       0.8061       0.0621       0.025*         C10       0.2776 (3)       0.6631 (2)       0.09327 (9)       0.0171 (4)         C11       0.2116 (3)       0.6111 (2)       0.13980 (9)       0.0167 (4)         H11       0.1333       0.5361       0.1379       0.020*         C12       0.2618 (3)       0.6707 (2)       0.18945 (9)       0.0154 (4)         H12       0.2168       0.6369       0.2219       0.018*         C13       0.5212 (3)       0.5553 (2)       0.38409 (9)       0.0163 (4)                                                                                                                                                                                                                                                                                                                                | H5B | 0.7722      | 0.7825       | 0.2182        | 0.020*                      |
| H6B       1.0172       0.8040       0.2733       0.023*         C7       0.3782 (3)       0.7802 (2)       0.19177 (8)       0.0138 (4)         C8       0.4438 (3)       0.8300 (2)       0.14454 (9)       0.0183 (4)         H8       0.5235       0.9040       0.1463       0.022*         C9       0.3934 (3)       0.7720 (2)       0.09462 (9)       0.0208 (4)         H9       0.4372       0.8061       0.0621       0.025*         C10       0.2776 (3)       0.6631 (2)       0.09327 (9)       0.0171 (4)         C11       0.2116 (3)       0.6111 (2)       0.13980 (9)       0.0167 (4)         H11       0.1333       0.5361       0.1379       0.020*         C12       0.2618 (3)       0.6707 (2)       0.18945 (9)       0.0154 (4)         H12       0.2168       0.6369       0.2219       0.018*         C13       0.5212 (3)       0.5553 (2)       0.38409 (9)       0.0163 (4)                                                                                                                                                                                                                                                                                                                                                                                                | C6  | 0.9284(3)   | 0.7424(2)    | 0.28685 (9)   | 0.0195 (4)                  |
| C7       0.3782 (3)       0.7802 (2)       0.19177 (8)       0.0138 (4)         C8       0.4438 (3)       0.8300 (2)       0.14454 (9)       0.0183 (4)         H8       0.5235       0.9040       0.1463       0.022*         C9       0.3934 (3)       0.7720 (2)       0.09462 (9)       0.0208 (4)         H9       0.4372       0.8061       0.0621       0.025*         C10       0.2776 (3)       0.6631 (2)       0.09327 (9)       0.0171 (4)         C11       0.2116 (3)       0.6111 (2)       0.13980 (9)       0.0167 (4)         H11       0.1333       0.5361       0.1379       0.020*         C12       0.2618 (3)       0.6707 (2)       0.18945 (9)       0.0154 (4)         H12       0.2168       0.6369       0.2219       0.018*         C13       0.5212 (3)       0.5553 (2)       0.38409 (9)       0.0163 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H6A | 0.9853      | 0.6588       | 0.3024        | 0.023*                      |
| C8       0.4438 (3)       0.8300 (2)       0.14454 (9)       0.0183 (4)         H8       0.5235       0.9040       0.1463       0.022*         C9       0.3934 (3)       0.7720 (2)       0.09462 (9)       0.0208 (4)         H9       0.4372       0.8061       0.0621       0.025*         C10       0.2776 (3)       0.6631 (2)       0.09327 (9)       0.0171 (4)         C11       0.2116 (3)       0.6111 (2)       0.13980 (9)       0.0167 (4)         H11       0.1333       0.5361       0.1379       0.020*         C12       0.2618 (3)       0.6707 (2)       0.18945 (9)       0.0154 (4)         H12       0.2168       0.6369       0.2219       0.018*         C13       0.5212 (3)       0.5553 (2)       0.38409 (9)       0.0163 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H6B | 1.0172      | 0.8040       | 0.2733        | 0.023*                      |
| H8 0.5235 0.9040 0.1463 0.022* C9 0.3934 (3) 0.7720 (2) 0.09462 (9) 0.0208 (4) H9 0.4372 0.8061 0.0621 0.025* C10 0.2776 (3) 0.6631 (2) 0.09327 (9) 0.0171 (4) C11 0.2116 (3) 0.6111 (2) 0.13980 (9) 0.0167 (4) H11 0.1333 0.5361 0.1379 0.020* C12 0.2618 (3) 0.6707 (2) 0.18945 (9) 0.0154 (4) H12 0.2168 0.6369 0.2219 0.018* C13 0.5212 (3) 0.5553 (2) 0.38409 (9) 0.0163 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C7  | 0.3782 (3)  | 0.7802(2)    | 0.19177 (8)   | 0.0138 (4)                  |
| C9       0.3934 (3)       0.7720 (2)       0.09462 (9)       0.0208 (4)         H9       0.4372       0.8061       0.0621       0.025*         C10       0.2776 (3)       0.6631 (2)       0.09327 (9)       0.0171 (4)         C11       0.2116 (3)       0.6111 (2)       0.13980 (9)       0.0167 (4)         H11       0.1333       0.5361       0.1379       0.020*         C12       0.2618 (3)       0.6707 (2)       0.18945 (9)       0.0154 (4)         H12       0.2168       0.6369       0.2219       0.018*         C13       0.5212 (3)       0.5553 (2)       0.38409 (9)       0.0163 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C8  | 0.4438 (3)  | 0.8300(2)    | 0.14454 (9)   | 0.0183 (4)                  |
| H9       0.4372       0.8061       0.0621       0.025*         C10       0.2776 (3)       0.6631 (2)       0.09327 (9)       0.0171 (4)         C11       0.2116 (3)       0.6111 (2)       0.13980 (9)       0.0167 (4)         H11       0.1333       0.5361       0.1379       0.020*         C12       0.2618 (3)       0.6707 (2)       0.18945 (9)       0.0154 (4)         H12       0.2168       0.6369       0.2219       0.018*         C13       0.5212 (3)       0.5553 (2)       0.38409 (9)       0.0163 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | H8  | 0.5235      | 0.9040       | 0.1463        | 0.022*                      |
| H9       0.4372       0.8061       0.0621       0.025*         C10       0.2776 (3)       0.6631 (2)       0.09327 (9)       0.0171 (4)         C11       0.2116 (3)       0.6111 (2)       0.13980 (9)       0.0167 (4)         H11       0.1333       0.5361       0.1379       0.020*         C12       0.2618 (3)       0.6707 (2)       0.18945 (9)       0.0154 (4)         H12       0.2168       0.6369       0.2219       0.018*         C13       0.5212 (3)       0.5553 (2)       0.38409 (9)       0.0163 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C9  | 0.3934(3)   | 0.7720(2)    | 0.09462 (9)   | 0.0208 (4)                  |
| C11 0.2116 (3) 0.6111 (2) 0.13980 (9) 0.0167 (4) H11 0.1333 0.5361 0.1379 0.020* C12 0.2618 (3) 0.6707 (2) 0.18945 (9) 0.0154 (4) H12 0.2168 0.6369 0.2219 0.018* C13 0.5212 (3) 0.5553 (2) 0.38409 (9) 0.0163 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | H9  |             | 0.8061       | 0.0621        | 0.025*                      |
| H11 0.1333 0.5361 0.1379 0.020* C12 0.2618 (3) 0.6707 (2) 0.18945 (9) 0.0154 (4) H12 0.2168 0.6369 0.2219 0.018* C13 0.5212 (3) 0.5553 (2) 0.38409 (9) 0.0163 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C10 | 0.2776 (3)  | 0.6631(2)    | 0.09327 (9)   | 0.0171 (4)                  |
| C12 0.2618 (3) 0.6707 (2) 0.18945 (9) 0.0154 (4)<br>H12 0.2168 0.6369 0.2219 0.018*<br>C13 0.5212 (3) 0.5553 (2) 0.38409 (9) 0.0163 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C11 | 0.2116 (3)  | 0.6111 (2)   | 0.13980 (9)   | 0.0167 (4)                  |
| H12 0.2168 0.6369 0.2219 0.018*<br>C13 0.5212 (3) 0.5553 (2) 0.38409 (9) 0.0163 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | H11 | 0.1333      | 0.5361       | 0.1379        | 0.020*                      |
| C13 0.5212 (3) 0.5553 (2) 0.38409 (9) 0.0163 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C12 | 0.2618 (3)  | 0.6707(2)    | 0.18945 (9)   | 0.0154 (4)                  |
| C13 0.5212 (3) 0.5553 (2) 0.38409 (9) 0.0163 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | H12 | 0.2168      | 0.6369       | 0.2219        | 0.018*                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C13 | 0.5212 (3)  | 0.5553 (2)   | 0.38409 (9)   | 0.0163 (4)                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C14 | 0.5898 (3)  | 0.6240(2)    | 0.42994 (9)   |                             |

| H14 | 0.5735     | 0.7211     | 0.4336       | 0.025*     |  |
|-----|------------|------------|--------------|------------|--|
| C15 | 0.6815 (3) | 0.5517(3)  | 0.47026 (9)  | 0.0239 (5) |  |
| H15 | 0.7290     | 0.5986     | 0.5014       | 0.029*     |  |
| C16 | 0.7031(3)  | 0.4095 (3) | 0.46455 (10) | 0.0222 (5) |  |
| C17 | 0.6353(3)  | 0.3388 (2) | 0.41976 (10) | 0.0228 (5) |  |
| H17 | 0.6504     | 0.2415     | 0.4166       | 0.027*     |  |
| C18 | 0.5445 (3) | 0.4126 (2) | 0.37925 (9)  | 0.0193 (4) |  |
| H18 | 0.4980     | 0.3654     | 0.3481       | 0.023*     |  |

Atomic displacement parameters  $(\mathring{A}^2)$ 

|     | $U^{11}$     | $U^{22}$     | $U^{33}$     | $U^{12}$      | $U^{13}$      | $U^{23}$      |
|-----|--------------|--------------|--------------|---------------|---------------|---------------|
| Br1 | 0.04084 (17) | 0.02690 (14) | 0.01606 (13) | -0.00348 (10) | -0.00800 (10) | -0.00344 (9)  |
| Br2 | 0.03033 (15) | 0.04426 (17) | 0.02278 (14) | 0.01094 (11)  | 0.00269 (10)  | 0.01732 (11)  |
| S1  | 0.0192(2)    | 0.0127(2)    | 0.0134(2)    | 0.00287 (17)  | -0.00357 (18) | -0.00037 (17) |
| S2  | 0.0128 (2)   | 0.0221(2)    | 0.0133 (2)   | -0.00130 (18) | -0.00071 (17) | 0.00314 (18)  |
| 01  | 0.0211 (7)   | 0.0191 (7)   | 0.0165 (8)   | 0.0035 (6)    | -0.0020 (6)   | -0.0051(6)    |
| N1  | 0.0158 (9)   | 0.0185 (9)   | 0.0153 (9)   | -0.0012 (7)   | -0.0013 (7)   | -0.0003(7)    |
| C1  | 0.0186 (10)  | 0.0263 (11)  | 0.0230 (11)  | -0.0046(9)    | -0.0066(8)    | -0.0012(9)    |
| C2  | 0.0170 (10)  | 0.0129 (9)   | 0.0131 (9)   | 0.0011 (7)    | -0.0013 (7)   | 0.0025 (7)    |
| C3  | 0.0143 (9)   | 0.0127 (9)   | 0.0123 (9)   | 0.0005 (7)    | -0.0006(7)    | 0.0004 (7)    |
| C4  | 0.0176 (9)   | 0.0122 (9)   | 0.0130 (9)   | 0.0014 (7)    | 0.0004 (7)    | -0.0002(7)    |
| C5  | 0.0198 (10)  | 0.0161 (9)   | 0.0149 (10)  | 0.0028 (8)    | 0.0048 (8)    | 0.0016 (7)    |
| C6  | 0.0141 (10)  | 0.0211 (10)  | 0.0235 (11)  | 0.0013 (8)    | 0.0032 (8)    | -0.0003(8)    |
| C7  | 0.0141 (9)   | 0.0141 (9)   | 0.0128 (9)   | 0.0018 (7)    | -0.0033(7)    | 0.0002(7)     |
| C8  | 0.0177 (10)  | 0.0196 (10)  | 0.0170 (10)  | -0.0052(8)    | -0.0032(8)    | 0.0050(8)     |
| C9  | 0.0226 (11)  | 0.0263 (11)  | 0.0134 (10)  | -0.0029(9)    | -0.0008(8)    | 0.0051 (8)    |
| C10 | 0.0189 (10)  | 0.0178 (10)  | 0.0140 (10)  | 0.0020(8)     | -0.0054(8)    | -0.0007(8)    |
| C11 | 0.0150 (9)   | 0.0152 (9)   | 0.0193 (10)  | -0.0001(8)    | -0.0035(8)    | 0.0008(8)     |
| C12 | 0.0151 (9)   | 0.0159 (9)   | 0.0152 (10)  | 0.0015 (7)    | 0.0010(7)     | 0.0035 (7)    |
| C13 | 0.0135 (9)   | 0.0214 (10)  | 0.0139 (10)  | -0.0015 (8)   | 0.0006 (7)    | 0.0039 (8)    |
| C14 | 0.0242 (11)  | 0.0221 (11)  | 0.0158 (10)  | -0.0019(9)    | -0.0014(8)    | 0.0017 (8)    |
| C15 | 0.0281 (12)  | 0.0282 (12)  | 0.0150 (10)  | -0.0042(9)    | -0.0031 (9)   | 0.0023 (9)    |
| C16 | 0.0181 (10)  | 0.0298 (12)  | 0.0187 (11)  | 0.0019 (8)    | 0.0005 (8)    | 0.0119 (9)    |
| C17 | 0.0227 (11)  | 0.0215 (11)  | 0.0247 (12)  | 0.0012 (9)    | 0.0052 (9)    | 0.0060 (9)    |
| C18 | 0.0192 (10)  | 0.0203 (10)  | 0.0183 (10)  | -0.0035 (8)   | 0.0018 (8)    | 0.0007(8)     |

Geometric parameters (Å,  $^{o}$ )

| Br1—C10 | 1.897 (2) | C6—H6B  | 0.9900    |
|---------|-----------|---------|-----------|
| Br2—C16 | 1.899 (2) | C7—C8   | 1.387 (3) |
| S1—C7   | 1.775 (2) | C7—C12  | 1.398 (3) |
| S1—C3   | 1.856 (2) | C8—C9   | 1.391 (3) |
| S2—C13  | 1.778 (2) | C8—H8   | 0.9500    |
| S2—C3   | 1.842 (2) | C9—C10  | 1.390(3)  |
| O1—C2   | 1.229 (3) | С9—Н9   | 0.9500    |
| N1—C2   | 1.344 (3) | C10—C11 | 1.381 (3) |
| N1—C1   | 1.461 (3) | C11—C12 | 1.391 (3) |
| N1—C6   | 1.465 (3) | C11—H11 | 0.9500    |
| C1—H1A  | 0.9800    | C12—H12 | 0.9500    |
|         |           |         |           |

| C1—H1B     | 0.9800      | C13—C14                | 1.394(3)    |
|------------|-------------|------------------------|-------------|
| C1—H1C     | 0.9800      | C13—C18                | 1.396 (3)   |
| C2—C3      | 1.543 (3)   | C14—C15                | 1.385 (3)   |
| C3—C4      | 1.521 (3)   | C14—H14                | 0.9500      |
| C4—C5      | 1.522 (3)   | C15—C16                | 1.391 (3)   |
| C4—H4A     | 0.9900      | C15—H15                | 0.9500      |
| C4—H4B     | 0.9900      | C16—C17                | 1.380 (4)   |
| C5—C6      | 1.515 (3)   | C17—C18                | 1.392 (3)   |
| C5—H5A     | 0.9900      | C17—H17                | 0.9500      |
| C5—H5B     | 0.9900      | C18—H18                | 0.9500      |
| C6—H6A     | 0.9900      |                        | 0.5000      |
|            | 0.5500      |                        |             |
| C7—S1—C3   | 104.77 (9)  | H6A—C6—H6B             | 107.9       |
| C13—S2—C3  | 102.22 (9)  | C8—C7—C12              | 120.11 (19) |
| C2—N1—C1   | 116.82 (18) | C8—C7—S1               | 118.33 (16) |
| C2—N1—C6   | 126.33 (18) | C12—C7—S1              | 121.44 (16) |
| C1—N1—C6   | 116.53 (18) | C7—C8—C9               | 120.2 (2)   |
| N1—C1—H1A  | 109.5       | C7—C8—H8               | 119.9       |
| N1—C1—H1B  | 109.5       | C9—C8—H8               | 119.9       |
| H1A—C1—H1B | 109.5       | C10—C9—C8              | 118.7 (2)   |
| N1—C1—H1C  | 109.5       | C10—C9—C8<br>C10—C9—H9 | 120.7       |
| H1A—C1—H1C | 109.5       | C8—C9—H9               | 120.7       |
| H1B—C1—H1C | 109.5       | C11—C10—C9             | 120.7       |
|            |             |                        |             |
| O1—C2—N1   | 121.9 (2)   | C11—C10—Br1            | 118.85 (16) |
| O1—C2—C3   | 120.20 (18) | C9—C10—Br1             | 119.05 (17) |
| N1—C2—C3   | 117.86 (18) | C10—C11—C12            | 118.72 (19) |
| C4—C3—C2   | 113.70 (17) | C10—C11—H11            | 120.6       |
| C4—C3—S2   | 111.69 (14) | C12—C11—H11            | 120.6       |
| C2—C3—S2   | 110.22 (14) | C11—C12—C7             | 120.1 (2)   |
| C4—C3—S1   | 114.37 (14) | C11—C12—H12            | 119.9       |
| C2—C3—S1   | 101.59 (13) | C7—C12—H12             | 119.9       |
| S2—C3—S1   | 104.48 (10) | C14—C13—C18            | 119.5 (2)   |
| C3—C4—C5   | 109.99 (17) | C14—C13—S2             | 119.46 (17) |
| C3—C4—H4A  | 109.7       | C18—C13—S2             | 120.96 (17) |
| C5—C4—H4A  | 109.7       | C15—C14—C13            | 120.4 (2)   |
| C3—C4—H4B  | 109.7       | C15—C14—H14            | 119.8       |
| C5—C4—H4B  | 109.7       | C13—C14—H14            | 119.8       |
| H4A—C4—H4B | 108.2       | C14—C15—C16            | 119.1 (2)   |
| C6—C5—C4   | 108.68 (17) | C14—C15—H15            | 120.5       |
| C6—C5—H5A  | 110.0       | C16—C15—H15            | 120.5       |
| C4—C5—H5A  | 110.0       | C17—C16—C15            | 121.6 (2)   |
| C6—C5—H5B  | 110.0       | C17—C16—Br2            | 120.25 (18) |
| C4—C5—H5B  | 110.0       | C15—C16—Br2            | 118.10 (18) |
| H5A—C5—H5B | 108.3       | C16—C17—C18            | 118.9 (2)   |
| N1—C6—C5   | 112.15 (17) | C16—C17—H17            | 120.6       |
| N1—C6—H6A  | 109.2       | C18—C17—H17            | 120.6       |
| C5—C6—H6A  | 109.2       | C17—C18—C13            | 120.5 (2)   |
| N1—C6—H6B  | 109.2       | C17—C18—H18            | 119.7       |
| C5—C6—H6B  | 109.2       | C13—C18—H18            | 119.7       |
|            |             |                        |             |

| a a. a.      | (-)          | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | c= 04 (40)   |
|--------------|--------------|-----------------------------------------|--------------|
| C1—N1—C2—O1  | 5.5 (3)      | C3—S1—C7—C12                            | 67.81 (18)   |
| C6—N1—C2—O1  | -167.7(2)    | C12—C7—C8—C9                            | 0.4(3)       |
| C1—N1—C2—C3  | -173.40 (18) | S1—C7—C8—C9                             | -175.67 (17) |
| C6—N1—C2—C3  | 13.4 (3)     | C7—C8—C9—C10                            | -0.5(3)      |
| O1—C2—C3—C4  | -174.26 (18) | C8—C9—C10—C11                           | 0.0(3)       |
| N1—C2—C3—C4  | 4.6 (3)      | C8—C9—C10—Br1                           | -179.85 (17) |
| O1—C2—C3—S2  | -48.0 (2)    | C9—C10—C11—C12                          | 0.6(3)       |
| N1—C2—C3—S2  | 130.94 (17)  | Br1—C10—C11—C12                         | -179.60(15)  |
| O1—C2—C3—S1  | 62.4 (2)     | C10—C11—C12—C7                          | -0.6(3)      |
| N1—C2—C3—S1  | -118.72 (17) | C8—C7—C12—C11                           | 0.1(3)       |
| C13—S2—C3—C4 | 68.86 (16)   | S1—C7—C12—C11                           | 176.10 (16)  |
| C13—S2—C3—C2 | -58.56 (15)  | C3—S2—C13—C14                           | 80.85 (19)   |
| C13—S2—C3—S1 | -166.99 (10) | C3—S2—C13—C18                           | -103.11 (18) |
| C7—S1—C3—C4  | 30.32 (17)   | C18—C13—C14—C15                         | 0.5 (3)      |
| C7—S1—C3—C2  | 153.23 (13)  | S2—C13—C14—C15                          | 176.61 (18)  |
| C7—S1—C3—S2  | -92.10 (11)  | C13—C14—C15—C16                         | -0.5(4)      |
| C2—C3—C4—C5  | -42.8 (2)    | C14—C15—C16—C17                         | 0.0 (4)      |
| S2—C3—C4—C5  | -168.28 (14) | C14—C15—C16—Br2                         | -178.26 (18) |
| S1—C3—C4—C5  | 73.31 (19)   | C15—C16—C17—C18                         | 0.5 (4)      |
| C3—C4—C5—C6  | 64.5 (2)     | Br2—C16—C17—C18                         | 178.74 (17)  |
| C2—N1—C6—C5  | 9.0 (3)      | C16—C17—C18—C13                         | -0.5(3)      |
| C1—N1—C6—C5  | -164.26 (18) | C14—C13—C18—C17                         | 0.0(3)       |
| C4—C5—C6—N1  | -47.3 (2)    | S2—C13—C18—C17                          | -176.02 (17) |
| C3—S1—C7—C8  | -116.16 (17) |                                         |              |

### Hydrogen-bond geometry (Å, $^{o}$ )

Cg1 is the centroid of the C7-C12 ring.

| D— $H$ ··· $A$                     | <i>D</i> —H | $H\cdots A$ | D··· $A$  | <i>D</i> —H··· <i>A</i> |
|------------------------------------|-------------|-------------|-----------|-------------------------|
| C9—H9···Br2 <sup>i</sup>           | 0.95        | 2.87        | 3.744 (2) | 154                     |
| C11—H11···O1 <sup>ii</sup>         | 0.95        | 2.27        | 3.195 (3) | 163                     |
| C1—H1 <i>B···Cg</i> 1 <sup>i</sup> | 0.98        | 2.86        | 3.660(3)  | 139                     |

Symmetry codes: (i) -x+3/2, y+1/2, -z+1/2; (ii) -x+1/2, y-1/2, -z+1/2.