APM32F003x4x6

Tutorial by Imeldushiii
The easiest way, using Keil Uvision instead of OpenOCD:)

1. Gather the things you need

OR

I use Geehy DAP Debbuger, because its cheaper and is from the same manufacturer that created this MCU

ARM Keil IDE https://www.keil.com/download/product/

TSSOP 20 Adapter or if you know how to create PCB, then you can create your own adapter:)

Jump Wires

The most important thing, 1uF Capacitor!
Later i will explain why

Prototype Board

And of course our lovely MCU :) APM32F003

BTW, why im using this MCU?
Why Tssop20?
Why APM32 instead of STM32?
Answer is simple..

i bought them because I found them at an auction for a veeeeery cheap money xD

2. Connect MCU to debbuger

Its Simple, im using DAP debbuger by Geehy so that's how I connected them:

Using this 4 pins, just like in st-link

+3.3V to Pin(9)
GND to Pin(7)
CLK to Pin(19)
SWDIO to Pin(18)
Polarized Capacitor (1 uF) to Pin(8)

Warning! Capacitor is veery Important, I've spend hour debbuging with different Errors just to realise i need connect Capacitor.

Read Documentation veery carefully!

3. Create Project

3.1 Open Keil

3.2 Create Uvision project

3.3 Save project Anywhere on your drive you want

Zapisz jako typ: Project Files (*.uvproj; *.uvprojx)

And click "Save"

3.4 Select device

WARNING! if you dont have APM32 packet, download here:

https://www.keil.arm.com/packs/apm32f00x _dfp-geehy/boards/ Here's how to download:

Click APM32F00x_DFP

Devices > APM32F0 Series > APM32F003 > APM32F003F4

APM32F003F4

Geehy

Cortex-M0+, 48 MHz

Family APM32F0 Series Sub-Family APM32F003

CMSIS Pack

APM32F00x DFP

And then click APM32F00x DFP 1.0.5

Packs > APM32F00x DFP

APM32F00x_DFP 1.0.5

eehy

Pack Type
Board Support
Device Support

Geehy Semiconductor APM32F00x Series Device Support, Drivers and Examples

i mean CLICK this:

Download

▲ APM32F00x_DFP 1.0.5

Okay, if you have already downloaded Click this:

And you will see this:

Click Next and You got this! You downloaded full APM32F003 pack!

3.5 Select Packets to your project

3.6 First, we need Cortex M0+ Core

CMSIS -> CORE

3.7 Then, we need System Start up

Device -> APM32F00x Start up

And Click "OK"

And Our Project is finally Created!

CAP NUM SCRL O

ULINK2/ME Cortex Debugger

4. Configure Debbuger

Click "Flash" and then "Configure flash tools"

You should see a window like this

Click "Debug" and you should see this:

Select your Debbuger, in my case "CMSIS dap debbuger"

Click "Settings"

And if you setup your debbuger corectly you should see this:

I mean THIS:

AND THIS:

5. Lets add some files

Right click on Source Group 1

Click "Add New item to group"

Name it "Main" and choose "C file"

You should see empy file

Okay, lets write some code that do nothing, just to verify if MCU is working!

5. Write main and verify MCU

Write this code WARNING! this code do nothing, really..

```
#include <stdint.h>

int main(void) {
   uint8_t test = 40;
   while(l) {
   }
}
```

Okay, now click Batch Setup

Okay, now select "Target_1"

Then Click "Rebuild"

In Console, you should see Something like this:

Which means, its okay, and now, lets build project!

Click "Rebuild"

AND NOW, load our program to MCU, finally!

Click "Load"

YOU REALLYYY SHOULD SEE THIS:

```
linking...
Program Size: Code=564 RO-data=204 RW-data=0 ZI-data=1632
".\Objects\name.axf" - 0 Error(s), 1 Warning(s).
Build Time Elapsed: 00:00:00

Batch-Build summary: 1 succeeded, 0 failed, 0 skipped - Tim Load "D:\\projekty_C\\Objects\\name.axf"
Erase Done.
Programming Done.
Verify OK.
Flash Load finished at 00:30:40
```

This Mean, Your MCU is working, and you finally load your program to APM32

6. Blink LED

I will not explain how this code work, its Bare Metal and if I were to write how everything works, it would take me another 20 pages
Just copy this Code and Paste to your main.c and compile

```
#include <stdint.h>
#define PERIPH BASE ((uint32 t)0x40000000U)
#define GPIOA BASE (PERIPH BASE + 0x0000U)
#define GPIOA DOUT * (volatile uint32 t*) (GPIOA BASE + 0x00U)
#define GPIOA DIN *(volatile uint32 t*)(GPIOA BASE + 0x04U)
#define GPIOA MODE * (volatile uint32 t*) (GPIOA BASE + 0x08U)
#define GPIOA CTRL1 * (volatile uint32 t*) (GPIOA BASE + 0x0CU)
#define GPIOA CTRL2 * (volatile uint32 t*) (GPIOA BASE + 0x10U)
int main(void) {
  GPIOA DOUT |= (1 << 3);
  GPIOA MODE |= (1 << 3);
  GPIOA CTRL1 |= (1 << 3);
  GPIOA CTRL2 |= (1 << 3);
 while(1) {
     for (volatile int i = 0; i < 1000000; i++);
     GPIOA DOUT &= \sim (1 << 3);
     for (volatile int i = 0; i < 1000000; i++);
     GPIOA DOUT |= (1 << 3);
```

Copy paste code:

```
#include <stdint.h>
#define PERIPH_BASE ((uint32_t)0x4000000U)
#define GPIOA_BASE (PERIPH_BASE + 0x0000U)
#define GPIOA_DOUT *(volatile uint32_t*)(GPIOA_BASE + 0x00U)
#define GPIOA_DIN *(volatile uint32_t*)(GPIOA_BASE + 0x04U)
#define GPIOA_MODE *(volatile uint32_t*)(GPIOA_BASE + 0x08U)
#define GPIOA_CTRL1 *(volatile uint32_t*)(GPIOA_BASE + 0x0CU)
#define GPIOA_CTRL2 *(volatile uint32_t*)(GPIOA_BASE + 0x10U)
int main(void) {
GPIOA_DOUT | = (1 << 3);
GPIOA\_MODE \mid = (1 << 3);
GPIOA_CTRL1 |= (1 << 3);
GPIOA\_CTRL2 \mid = (1 << 3);
while(1) {
 for (volatile int i = 0; i < 1000000; i++);
 GPIOA_DOUT &= \sim(1 << 3);
 for (volatile int i = 0; i < 1000000; i++);
 GPIOA_DOUT | = (1 << 3);
```

Connect LED to PA3 with resistor

The result:

So, this is the end of my tutorial.

My next target is LPC 2101, i dont know when, bcs im so busy, i create this PDF at 1AM.

date: 02.03.2025

Creator: Imeldushiii

https://github.com/Imeldushiii