

Some notation

Existing notation:

"models"

When we write

$$\varphi_1,\ldots,\varphi_n\models\psi$$

we mean: in any model where $\varphi_1, \ldots, \varphi_n$ are all true, then so is ψ .

Some notation

Existing notation:

"models"

When we write

$$\varphi_1,\ldots,\varphi_n\models\psi$$

we mean: in any model where $\varphi_1, \ldots, \varphi_n$ are all true, then so is ψ .

New notation:

"entails"

We will write

$$\varphi_1,\ldots,\varphi_n\vdash\psi$$

to mean: we can construct a natural deduction proof starting with the premises $\varphi_1, \ldots, \varphi_n$ and finishing with the conclusion ψ .

Show that: $P \rightarrow Q, Q \rightarrow R \vdash P \rightarrow R$

Show that: $P \rightarrow Q, Q \rightarrow R \vdash P \rightarrow R$

Formal Proof.

- $2 Q \to R$
- Suppose P :
- 4

- Q
- **5**
- $oldsymbol{0}$ $P \rightarrow R$

Premise

Premise

- $ightarrow_{\mathcal{E}}$ lines 3,1
- $\rightarrow_{\mathcal{E}}$ lines 4,2
- $\rightarrow_{\mathcal{I}}$ lines 3-5

Show that: $P \rightarrow Q, Q \rightarrow R \vdash P \rightarrow R$

Formal Proof.

- $\bigcirc P \rightarrow Q$
- $Q \to R$
- Suppose P :
- indent Q
- indent R

Premise Premise

(making a local assumption)

- $\rightarrow_{\mathcal{E}}$ lines 3.1
 - $\rightarrow \varepsilon$ lines 4.2
- local assumption now discharged by: $\rightarrow_{\mathcal{I}}$ lines 3-5

• I use **indentation** in lines 4 and 5 to show the *scope* of the local assumption *P*.

Show that: $P \rightarrow Q, Q \rightarrow R \vdash P \rightarrow R$

Formal Proof.

- $\bigcirc P \rightarrow Q$
- Suppose P :
- 4
- **5**
- $P \rightarrow R$

Premise

Premise

 $\rightarrow_{\mathcal{E}}$ lines 3,1

 $\rightarrow_{\mathcal{E}}$ lines 4,2

 $\rightarrow_{\mathcal{I}}$ lines 3-5

• This proof shows that implies is a transitive relation.

Proofs using 'and'

The rules for dealing with conjunction (i.e. 'and') are pretty straightforward:

- Introduction: To prove $A \wedge B$: you must prove A and you must also prove B.
- Elimination: If you know $A \wedge B$: then you can deduce that A is true, also you can deduce that B is true (you can deduce both, if you like).

Formal proof rules for 'and'

$$\frac{A}{A \wedge B} \wedge_{\mathcal{I}}$$

$$\frac{A \wedge B}{A} \wedge_{\mathcal{E}1} \qquad \frac{A \wedge B}{B} \wedge_{\mathcal{E}2}$$

$$\frac{A \wedge B}{B} \wedge_{\mathcal{E}2}$$

Formal proof rules for 'and'

$$\frac{A \quad B}{A \wedge B} \wedge_{\mathcal{I}} \qquad \frac{A \wedge B}{A} \wedge_{\mathcal{E}1} \qquad \frac{A \wedge B}{B} \wedge_{\mathcal{E}2}$$

 There are two elimination rules, so use whichever one suits your proof. You can use both of them if you like.

Example of a proof using 'and'

Show that: $P \wedge Q \vdash Q \wedge P$

Example of a proof using 'and'

Show that: $P \wedge Q \vdash Q \wedge P$

Formal Proof.

- $\bigcirc P \wedge Q$
- Q
- 63 F
- $Q \wedge P$

Premise $\wedge_{\mathcal{E}_2}$, line 1

 $\wedge_{\mathcal{E}_1}$, line 1

 $\wedge_{\mathcal{I}}$, lines 2,3

Example of a proof using 'and'

Show that: $P \wedge Q \vdash Q \wedge P$

Formal Proof.	
P ∧ Q	Premise
Q	$\wedge_{\mathcal{E}2}$, line 1
P	$\wedge_{\mathcal{E}1}$, line 1
Q ∧ P	$\wedge_{\mathcal{I}}$, lines 2,3

This proof shows that 'and' is a commutative operator.

Theorem

Suppose that $A \subseteq B$, and A and C are disjoint. Then $A \subseteq (B \setminus C)$.

Theorem

Suppose that $A \subseteq B$, and A and C are disjoint. Then $A \subseteq (B \setminus C)$.

- ...
- •
- •
- •
- _
- •
- •
- •
-
- $A \subseteq (B \setminus C)$

Theorem

Suppose that $A \subseteq B$, and A and C are disjoint. Then $A \subseteq (B \setminus C)$.

- ...
- •
- •
- .
- •
- •
- •
- •
-
- $(\forall x \cdot (x \in A) \rightarrow (x \in (B \setminus C)))$

Theorem

Suppose that $A \subseteq B$, and A and C are disjoint. Then $A \subseteq (B \setminus C)$.

- ...
- •
- •
- _
- _
- •
- •
- •
-
- $(\forall x \cdot (x \in A) \rightarrow ((x \in B) \land \neg (x \in C)))$

Theorem

Suppose that $A \subseteq B$, and A and C are disjoint. Then $A \subseteq (B \setminus C)$.

- · · ·

- •
- .
- •
- •
- $(x \in A) \rightarrow ((x \in B) \land \neg (x \in C))$
-
- $(\forall x \cdot (x \in A) \rightarrow ((x \in B) \land \neg (x \in C)))$

Theorem

Suppose that $A \subseteq B$, and A and C are disjoint. Then $A \subseteq (B \setminus C)$.

Proof.

- . . .
- •
- •
- .
- - $\bullet \qquad (x \in A) \to ((x \in B) \land \neg (x \in C))$

 $\rightarrow_{\mathcal{I}}$, lines ...

-
- $(\forall x \cdot (x \in A) \rightarrow ((x \in B) \land \neg (x \in C)))$

Theorem

Suppose that $A \subseteq B$, and A and C are disjoint. Then $A \subseteq (B \setminus C)$.

- · · ·
- Suppose $(x \in A)$:
- •
- •
- •
- •
- $(x \in B) \land \neg (x \in C)$
- $(x \in A) \rightarrow ((x \in B) \land \neg (x \in C))$
-
- $(\forall x \cdot (x \in A) \rightarrow ((x \in B) \land \neg (x \in C)))$

Theorem

Suppose that $A \subseteq B$, and A and C are disjoint. Then $A \subseteq (B \setminus C)$.

Proof.

- · · ·
- Suppose $(x \in A)$:
- •
- •
- •
- •
- $(x \in B) \land \neg (x \in C)$
- $(x \in A) \rightarrow ((x \in B) \land \neg (x \in C))$
-
- $(\forall x \cdot (x \in A) \rightarrow ((x \in B) \land \neg (x \in C)))$

 $\wedge_{\mathcal{I}}$, lines ...

 $\rightarrow_{\mathcal{I}}$, lines ...

$\mathsf{Theorem}$

Suppose that $A \subseteq B$, and A and C are disjoint. Then $A \subseteq (B \setminus C)$.

Proof.

```
. . . .
```

- Suppose $(x \in A)$:
- $(x \in B)$

- $\neg(x \in C)$
- $(x \in B) \land \neg (x \in C)$
- $(x \in A) \rightarrow ((x \in B) \land \neg (x \in C))$
- $(\forall x \cdot (x \in A) \rightarrow ((x \in B) \land \neg (x \in C)))$

 $\wedge_{\mathcal{I}}$, lines ...

 $\rightarrow_{\mathcal{T}}$, lines ...

Proofs using equivalence ('iff')

The rules for dealing with equivalence (i.e. 'iff') are also straightforward, and are closely related to the last two set of rules:

• Introduction: To prove $A \leftrightarrow B$: you must prove $A \rightarrow B$ and you must also prove $B \rightarrow A$.

• Elimination: If you know $A \leftrightarrow B$: then you can deduce that $A \to B$ is true, also you can deduce that $B \to A$ is true (you can deduce both, if you like).

Formal proof rules for 'iff'

$$\frac{A \to B \qquad B \to A}{A \leftrightarrow B} \leftrightarrow_{\mathcal{I}}$$

$$\frac{A \leftrightarrow B}{A \to B} \leftrightarrow_{\mathcal{E}1} \qquad \frac{A \leftrightarrow B}{B \to A} \leftrightarrow_{\mathcal{E}2}$$

$$\frac{A \leftrightarrow B}{B \to A} \leftrightarrow_{\mathcal{E}2}$$

Theorem

Suppose that x is an integer. Then x is even iff x^2 is even.

Theorem

Suppose that x is an integer. Then x is even iff x^2 is even.

Proof.

• ...

. . .

• $(x \text{ is even}) \leftrightarrow (x^2 \text{ is even})$

Theorem

Suppose that x is an integer. Then x is even iff x^2 is even.

Proof.

• · · ·

- $(x \text{ is even}) \leftrightarrow (x^2 \text{ is even})$

 $\leftrightarrow_{\mathcal{I}}$, lines ...

Theorem

Suppose that x is an integer. Then x is even iff x^2 is even.

Proof.

• · · ·

• $(x \text{ is even}) \rightarrow (x^2 \text{ is even})$

- $(x^2 \text{ is even}) \rightarrow (x \text{ is even})$
- . . .
- $(x \text{ is even}) \leftrightarrow (x^2 \text{ is even})$

 $\leftrightarrow_{\mathcal{I}}$, lines ...

Theorem

Suppose that x is an integer. Then x is even iff x^2 is even.

Proof.

• · · ·

• $(x \text{ is even}) \rightarrow (x^2 \text{ is even})$

 $\rightarrow_{\mathcal{I}}$, lines ...

- $(x^2 \text{ is even}) \rightarrow (x \text{ is even})$
- · · ·
- $(x \text{ is even}) \leftrightarrow (x^2 \text{ is even})$

Theorem

Suppose that x is an integer. Then x is even iff x^2 is even.

- · · ·
- Suppose *x* is even :
-
- x^2 is even
- $(x \text{ is even}) \rightarrow (x^2 \text{ is even})$

$$\rightarrow_{\mathcal{I}}$$
, lines ...

- $(x^2 \text{ is even}) \rightarrow (x \text{ is even})$
- · · ·
- $(x \text{ is even}) \leftrightarrow (x^2 \text{ is even})$

Theorem

Suppose that x is an integer. Then x is even iff x^2 is even.

Proof.

- · · ·
- Suppose *x* is even :
-
- x^2 is even
- $(x \text{ is even}) \rightarrow (x^2 \text{ is even})$

 $ightarrow_{\mathcal{I}}$, lines ...

- $(x^2 \text{ is even}) \rightarrow (x \text{ is even})$
- · · ·
- $(x \text{ is even}) \leftrightarrow (x^2 \text{ is even})$

 $\leftrightarrow_{\mathcal{I}}$, lines ...

 $\rightarrow_{\mathcal{T}}$, lines ...

$\mathsf{Theorem}$

Suppose that x is an integer. Then x is even iff x^2 is even.

Proof.

```
• · · ·
```

- Suppose *x* is even :
-
- x^2 is even
- $(x \text{ is even}) \rightarrow (x^2 \text{ is even})$
- Suppose x^2 is even :
-
- x is even
- $(x^2 \text{ is even}) \rightarrow (x \text{ is even})$
- · · ·
- $(x \text{ is even}) \leftrightarrow (x^2 \text{ is even})$

 $\leftrightarrow_{\mathcal{I}}$, lines ...

 $\rightarrow_{\mathcal{T}}$, lines ...

 $\rightarrow_{\mathcal{T}}$, lines ...