Real Analysis

Samuel Lindskog

June 1, 2025

Contents

1	The Natural Numbers 1 1.1 Peano Axioms 1 1.2 Multiplication 2
2	Set Theory 3 2.1 Fundamentals 3 2.2 Functions 6
3	Integers and Rationals83.1 The Integers83.2 The Rationals103.3 Absolute Value and Exponentiation11
4	Real Numbers114.1 Cauchy Sequences11
5	Sequences 12 5.1 Sequences 12 5.2 Monotone and Cauchy sequences 13 5.3 Limit superior and inferior 14
6	Series 14 6.1 Convergence tests 14
7	Topology Shit 7.1 Heine-Borel Theorem
8	Continuous Functions on \mathbb{R} 168.1 Limits of Functions168.2 Continuous functions178.3 Properties of continuous functions188.4 Uniform continuity18
9	Differentiation189.1 Differentiation189.2 Differentiation theorems19
10	Integration2010.1 Piecewise Constant Integrals2010.2 Upper and Lower Riemann Integrals21

1 The Natural Numbers

1.1 Peano Axioms

Definition 1.1 (Peano axioms). Using ++ as the successor operation, the natural numbers are defined as follows:

- (a) 0 is a natural number.
- (b) If n is a natural number, then n + + is also a natural number.
- (c) For all natural numbers $n, n++\neq 0$.

Definition 1.2 (Addition of natural numbers). Let m be a natural number. 0 + m := m and (n + +) + m := (n + m) + +.

Proposition 1.3. There is only one zero, i.e. for $a \in \mathbb{N}$ if 0 + a = 0' + a = a, then 0 = 0'.

Proof: Suppose $0 \neq 0'$. Then 0 is a successor of 0' or 0' is a successor of 0. Because no successor of a natural number is 0, this is impossible.

Proposition 1.4. m+0=m.

Proof: Let $n \in \mathbb{N}$. $0+0 \coloneqq 0$, so by inductive hypothesis n+0 = n. $(n++)+0 \coloneqq (n+0)++$, and from the inductive hypothesis equals n++.

Lemma 1.5. For any natural numbers n and m, n + (m + +) = (n + m) + +.

Proof: Suppose $n, m \in \mathbb{N}$. 0 + (m++) := m++=(0+m)++. By inductive hypothesis n+(m++)=(n+m)++. From the definition of addition (n++)+(m++)=(n+(m++))++ and from the inductive hypothesis n+(m++)=(n+m)++ so we have

$$(n++) + (m++) = (n+(m++)) + +$$

= $((n+m)++) + +$
= $((n++)+m) + +$

Proposition 1.6 (Commutativity of addition). For $n, m \in \mathbb{N}$, n+m=m+n.

Proof: Let $n, m \in \mathbb{N}$. From proposition 1.4, 0 + m = m + 0, so by inductive hypothesis n + m = m + n. (n + +) + m = (n + m) + + and from inductive hypothesis this equals (m + n) + +. From lemma 1.5, this equals m + (n + +).

Proposition 1.7. If $a, b \in \mathbb{N}$ and a + b = a, then b = 0.

Proof: Suppose $a, b \in \mathbb{N}$ with a + b = a.

Proposition 1.8 (Associativity of addition). Let $a, b, c \in \mathbb{N}$. Then (a+b)+c=a+(b+c).

Proof: Suppose $a, b \in \mathbb{N}$. From here we utilize the definition of addition, and commutativity of addition for the rest of the proof. It follows that (a+b)+0=a+b=a+(b+0). By inductive hypothesis suppose (a+b)+c=a+(b+c) for $c \in \mathbb{N}$. Then

$$(a + b) + c + + = [(a + b) + c] + +$$

$$= [a + (b + c)] + +$$

$$= a + (c + b) + +$$

$$= a + [(c + c) + b]$$

$$= a + (b + c + c)$$

Proposition 1.9 (Cancellation law). Let $a, b, c \in \mathbb{N}$. Iff a + b = a + c, then b = c.

Proof: If 0+b=0+c then from the definition of addition b=c. By inductive hypothesis for any $n \in \mathbb{N}$, n+b=n+c. (n++)+b=(n+b)++ and (n++)+c=(n+c)++, so from the inductive hypothesis and the axioms of natural numbers, (n++)+b=(n++)+c. \square

Definition 1.10 (Positive natural number). A natural number n is said to be positive iff it is not 0.

Definition 1.11 (Ordering of natural numbers). Let $n, m \in \mathbb{N}$. We write $n \geq m$ or $m \geq n$ iff n = m + a for some $a \in \mathbb{N}$.

Proposition 1.12. If a or b are not zero, then $a + b \neq 0$.

Proof: Suppose $a, b \in \mathbb{N}$ with $b \neq 0$. If a = 0 then $a + b = 0 + b = b \neq 0$. If $a \neq 0$, because no natural number has zero as a successor it follows from the definition of addition that $a + b \neq 0$.

Proposition 1.13 (Trichotomy of order for natural numbers). Let $a, b \in \mathbb{N}$. Then exactly one of the following statements is true: a < b, a = b, a > b.

Proof: Suppose $a, b \in \mathbb{N}$ and a < b. Then for some $c \in \mathbb{N}$, a = b + c with $b \neq a$. If c = 0 then a = b, a contradiction. If b < a, then for some $d \in \mathbb{N}$, b = a + d with $a \neq b$. If d = 0 then a = b, a contradiction. Because b = b + d + c and $c, d \neq 0$, it follows from commutivity and propositions 1.12 and 1.3 that this is impossible. Therefore wlog if a < b then a is not greater than or equal to b. Suppose a = b. If a < b then a = b + c for some $c \in \mathbb{N}$ with $b \neq c$, a contradiction. Therefore wlog if a = b then a is not less than or greater than b.

Proposition 1.14 (Strong principle of induction). Let $m_0, m, m' \in \mathbb{N}$, and let P(x) be a property of arbitrary $x \in \mathbb{N}$. Suppose that for each $m \geq m_0$ the following implication holds:

$$(\forall m' \in [m_0, m), P(m')) \Rightarrow P(m).$$

Then we can conclude P(m) is true for all natural numbers $m \geq m_0$.

1.2 Multiplication

Definition 1.15 (Multiplication of natural numbers). Let m be a natural number. $0 \times m := 0$ and $(n + +) \times m := (n \times m) + m$.

Proposition 1.16. $m \times 0 = 0$.

Proof: From the definition of multiplication, $0 \times 0 = 0$. By inductive hypothesis suppose $m \times 0 = 0$. Then $(m + +) \times 0 = (m \times 0) + 0 = 0$.

Proposition 1.17. For $n, m \in \mathbb{N}$, $n \times (m++) = (n \times m) + n$.

Proof: Let $n, m \in \mathbb{N}$. $0 \times (m++) = 0 = (0 \times m) + 0$. By inductive hypothesis, $(n \times (m++)) = (n \times m) + n$. It follows that

$$(n++) \times (m++) = (n \times (m++)) + (m++)$$
$$= (n \times m) + n + (m++)$$
$$= (n \times m) + m + (n++)$$
$$= ((n++) \times m) + (n++)$$

Proposition 1.18. For $m \in \mathbb{N}$, 1m = m.

Proof: If $m \in \mathbb{N}$ $0 \times m = 0$. Then $(0 + +) \times m = 1 \times m = 0 + m = m$.

Lemma 1.19 (Commutativity of multiplication). Let $n, m \in \mathbb{N}$. Then $n \times m = m \times n$.

Proof: Let $n, m \in \mathbb{N}$. $0 \times m = m \times 0 = 0$. By inductive hypothesis, $n \times m = m \times n$. It follows from proposition 1.17 that

$$(n++) \times m = (n \times m) + m$$
$$= (m \times n) + m$$
$$= m \times (n++)$$

Proposition 1.20 (Distributive law). For any natural numbers a, b, c, we have a(b+c) = ab + ac.

Proof: TODO □

Proposition 1.21 (Associativity of multiplication). If $a, b, c \in \mathbb{N}$ then $(a \times b) \times c = a \times (b \times c)$.

Proof: TODO □

Proposition 1.22. If $a, b \in \mathbb{N}^+$, then $ab \neq 0$.

Proof: Let $a \in \mathbb{N}^+$. By proposition 1.18 1a = a and a is positive. By inductive hypothesis if $n \in \mathbb{N}^+$ then na is positive. n + + is a successor to n, and no successor of a natural number is zero, so n + + is positive. (n + +)a = na + a. Both na and a are positive and by proposition 1.12, na + a is positive and thus not zero.

Proposition 1.23. If a, b are natural numbers such that a < b, and c is positive, then ac < bc.

Corollary 1.24. Let $a, b, c \in \mathbb{N}$ such that ac = bc and c is non-zero. Then a = b.

Proposition 1.25 (Euclid's division lemma). Let n be a natural number, and let q be a positive number. Then there exist natural numbers m, r such that $0 \le r < q$ and n = mq + r.

Definition 1.26 (Exponentiation for natural numbers). Let $m \in \mathbb{N}$. $m^0 := 1$, and $m^{n++} = m^n \times m$.

2 Set Theory

2.1 Fundamentals

Definition 2.1 (Axioms of sets).

- (a) (Sets are objects) If A is a set, then A is also an object. In particular, given two sets A and B, it is meaningful to ask whether A is also an element of B.
- (b) (Equality of sets) Two sets A and B are equal iff every element of A is an element of B and vice versa.
- (c) (Empty set) There exists a set known as the empty set, denoted \emptyset , which contains no elements. In other words, for all objects x we have $x \notin \emptyset$.
- (d) (Singleton sets) If a is an object, then there exists a set $\{a\}$ whose only element is a, i.e. for every object y we have $y \in \{a\}$ iff y = a. $\{a\}$ is referred to as a singleton set.
- (e) (Pairwise union) Given any two sets A and B, there exists a set $A \cup B$, called the union of A and B, which consists of all the elements which belong to A or B. In other words,

$$x \in A \cup B \Leftrightarrow (x \in A \lor x \in B).$$

- (f) (Axiom of specification) Let A be a set, and for each $x \in A$ let P(x) be a property pertaining to x. Then there exists a set $\{x \in A \mid P(x)\}$ whose elements are precisely the elements x in A for which P(x) is true.
- (g) (Replacement) Let A be a set. For any object $x \in A$ and any object y, suppose we have a property P(x,y) that is true for at most one y for each $x \in A$. Then

$$z \in \{y \mid P(x, y), x \in A\} \Leftrightarrow P(x, z).$$

- (h) (Infinity) There exists a set \mathbb{N} , whose elements are called natural numbers, as well as an object $0 \in \mathbb{N}$, and an object N + + assigned to every natural number $n \in \mathbb{N}$, such that the Peano axioms hold.
- (i) (Universal specification) DANGER Suppose for every object x we have a property P(x). Then there exists a set $\{x \mid P(x)\}$.
- (j) (Regularity). If A is a non-empty set, then there is at least one element x of A which is either not a set, or is disjoint from A.

(k) (Power set) Let X and Y be sets. Then there exists a set, denoted Y^X , which consists of all the functions from X to Y, thus

$$f \in Y^X \Leftrightarrow f$$
 is a function from X to Y.

(l) (Union) Let A be a set whose elements are all sets. Then there exists a set $\bigcup A$ defined

$$x \in \bigcup A = \{x \mid \exists S \in A, x \in S\}.$$

Remark. The axioms of set theory introduced, excluding universal specification, are known as the Zermelo-Fraenkel axioms of set theory.

Lemma 2.2 (Single choice). Let A be a non-empty set. Then there exists an object x such that $x \in A$.

Proof: Suppose there does not exist any object x such that $x \in A$. Simultaneously $x \notin \emptyset$, so $x \in A \Leftrightarrow x \in \emptyset$ and $A = \emptyset$, a contradiction.

Definition 2.3 (Subset). Let A, B be sets. We say that A is a subset of B, denoted $A \subseteq B$, iff every element of A is also an element of B. We say that A is a proper subset of B, denoted $A \subseteq B$, if $A \subseteq B$ and $A \neq B$.

Theorem 2.4. Let A be a set. Then $\emptyset \subseteq A$.

Proof: If $\emptyset \subseteq A$ then for all objects x,

$$x \in \emptyset \Rightarrow x \in A$$
.

П

This is vacuously true because there does not exist x such that $x \in \emptyset$.

Definition 2.5 (Intersection). The intersection $S_1 \cap S_2$ of two sets is the set

$$S_1 \cap S_2 = \{ x \mid x \in S_1 \land x \in S_2 \}.$$

Definition 2.6 (Union). The union $S_1 \cup S_2$ of two sets is the set

$$S_1 \cup S_2 = \{x \mid x \in S_1 \lor x \in S_2\}.$$

Definition 2.7 (Disjoint). Two sets are disjoint if $A \cap B = \emptyset$.

Definition 2.8 (Difference set). If A and B are sets, the set $A \setminus B$ is the set A with any elements of B removed, i.e.

$$A \setminus B := \{x \mid x \in A \land x \notin B\}.$$

Proposition 2.9. Let A, B, C be subsets of set X.

- (a) (Minimal element) $A \cup \emptyset = A$ and $A \cap \emptyset = \emptyset$.
- (b) (Maximal element) $A \cup X = X$ and $A \cap X = A$.
- (c) (Identity) $A \cap A = A$ and $A \cup A = A$.
- (d) (Commutativity) $A \cup B = B \cup A$ and $A \cap B = B \cap A$.
- (e) (Associativity) $(A \cup B) \cup C = A \cup (B \cup C)$ and $(A \cap B) \cap C = A \cap (B \cap C)$.
- (f) (Distributivity) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ and $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.
- (g) (Partition) $A \cup (X \setminus A) = X$ and $A \cap (X \setminus A) = \emptyset$.
- (h) (De Morgan Laws) $X \setminus (A \cup B) = (X \setminus A) \cap (X \setminus B)$ and $X \setminus (A \cap B) = (X \setminus A) \cup (X \setminus B)$.

Definition 2.10 (Ordered pair). If x and y are any objects, we define the ordered pair (x, y) to be a new object which consists of x as its "first component" and y as its "second component". Two ordered pairs x, y and x', y' are equal if

$$x = x', \quad y = y'.$$

Definition 2.11 (Cartesian product). Let A, B be sets. Then the cartesian product of A and B, written $A \times B$, is

$$A \times B = \{(a, b) | a \in A, b \in B\}.$$

Definition 2.12 (Ordered *n*-tuple). Let *n* be a natural number. An ordered *n*-tuple $(x_i)_{1 \leq i \leq n}$ is a collection of objects x_i , one for every natural number *i* between 1 and *n*. Two ordered *n*-tuples $(x_i)_{1 \leq i \leq n}$ and $(y_i)_{1 \leq i \leq n}$ are said to be equal iff $x_i = y_i$ for all $1 \leq i \leq n$.

Definition 2.13 (*n*-fold Cartesian product). If $(X_i)_{1 \le i \le n}$ is an ordered *n*-tuple of sets, their Cartisian product $\prod_{i=1}^{n} X_i$ is defined

$$\prod_{i=1}^{n} X_i = \{(x_i)_{1 \le i \le n} \mid x_i \in X_i\}.$$

Definition 2.14 (Indexed family). If for each element $j \in J$ with $J \neq \emptyset$, there corresponds a set A_j , then

$$\mathcal{A} = \{A_i \mid j \in J\}.$$

Is called an indexed family of sets with J as the index set. If $J = \{1, 2, ..., n\}$ we may index the set similarly to sum notation.

Definition 2.15 (Union and intersection of indexed family). The union of all sets in an indexed family $\mathscr A$ with index set J is

$$\bigcup_{j \in J} A_j = \{ x \, | \, \exists A_j \in \mathscr{A}, \, x \in A_j \}.$$

The intersection of all sets in $\mathcal A$ is

$$\bigcap_{j \in J} A_j = \{ x \, | \, \forall A_j \in \mathscr{A}, \, x \in A_j \}.$$

Lemma 2.16 (Finite choice). Let $n \ge 1$ be a natural number, and for each natural number $1 \le i \le n$, let X_i be a non-empty set. Then there exists an n-tuple $(x_i)_{1 \le i \le n}$ such that $x_i \in X_i$ for all $1 \le i \le n$. In other words if each X_i is non-empty, then its n-fold cartesian product is nonempty.

Proof: Let $\mathscr{A} = \{A_i \mid 1 \leq i \leq n\}$ with $n \in \mathbb{N}$ be an indexed family of nonempty sets. It follows from lemma 2.2 that for each A_i , $1 \leq i \leq n$, there exists $a_i \in A_i$. Using this fact, define an ordered n-tuple $(a_i)_{1 \leq i \leq n}$.

Definition 2.17 (Upper and lower bound). Let $S \subseteq \mathbb{R}$. If there exists a real number m such that $m \geq s$ for all $s \in S$, then m is called an upper bound of S, and we say that S is bounded above. If $m \leq s$ for all $s \in S$, then m is a lower bound of S and S is bounded below. The set S is said to be bounded if it is bounded above and bounded below.

Definition 2.18 (Maximum and minimum). If an upper bound m of S is a member of S, then m is called the maximum of S, and we write $m = \max S$. If a lower bound of S is a member of S, then it is called the minimum of S, and we write $m = \min S$.

Definition 2.19 (Supremum and infimum). Let S be a nonempty subset of \mathbb{R} . If S is bounded above, then the least upper bound of S is called its supremum, denoted $\sup S$. Therefore $m = \sup S$ iff

- (a) $m \ge s$ for all $s \in S$.
- (b) If m' < m, then there exists $s' \in S$ such that s' > m'.

If S is bounded below, then the greatest lower bound of S is called its infimum and is denoted by inf S.

Theorem 2.20 (Archimedean property). For each x > 0, there exists $n \in \mathbb{N}$ such that 0 < 1/n < x.

2.2 Functions

Definition 2.21 (Relation). Let A, B be sets. A relation between A and B is an subset of $A \times B$.

Definition 2.22 (Equivalence relation). An equivalence relation on a set S is a relation such that for all $x, y, z \in S$, the relation satisfies the following properties:

- (a) (Reflexive property) xRx.
- (b) (Symmetric property) $xRy \Rightarrow yRx$.
- (c) (Transitive property) $xRy \wedge yRx \Rightarrow xRz$.

Definition 2.23 (Partition). A partition of a set S is a collection \mathscr{P} of nonempty subsets of S that are pairwise disjoint, and whose union is S, i.e.

- (a) $A = \bigcup \mathscr{P}$.
- (b) $\forall A, B \in \mathscr{P}, A \neq B \Rightarrow A \cap B = \emptyset.$

Definition 2.24 (Function). A function from A to B, denoted $f: A \to B$ is a nonempty relation $f \subseteq A \times B$ that satisfies the following properties:

- (a) (Existence) $\forall a \in A, \exists b \in B, (a, b) \in f.$
- (b) (Uniqueness) $(a, b) \in f \land (a, c) \in f \Rightarrow b = c$.

Set A is called the domain of f, and set B is called the codomain. The range of f is f(A), i.e. $\{b \in B \mid (a,b) \in f\}$.

Definition 2.25 (Equality of functions). Two functions $f: X \to Y$ and $g: X' \to Y'$ are equal if their domains and codomains are equal, and furthermore that f(x) = g(x) for all $x \in X$.

Definition 2.26 (Composition). Let $f: X \to Y$ and $g: Y \to Z$ be two functions such that the codomain of f is the same set as the domain of g. Then the composition $g \circ f: X \to Z$ of the two functions g and f is the function defined by the formula

$$(g \circ f)(x) = g(f(x)).$$

Lemma 2.27. Let $f: Z \to W$, $g: Y \to Z$, and $h: X \to Y$ be functions. Then $f \circ (g \circ h) = (f \circ g) \circ h$.

Proof: $g \circ h$ is a function from X to Z, and $f \circ g$ is a function from $Y \to W$, so $(f \circ g) \circ h$ and $f \circ (g \circ h)$ are functions from X to W. It follows from the definition of function composition that

$$(f \circ (g \circ h))(x) = f((g \circ h)(x))$$

$$= f(g(h(x)))$$

$$= (f \circ g)(h(x))$$

$$= ((f \circ g) \circ h)(x)$$

Definition 2.28 (Injective). A function $f: X \to Y$ is injective (one-to-one) if for $x, x' \in X$,

$$x \neq x' \to f(x) \neq f(x')$$

Definition 2.29 (Surjective). A function $f: X \to Y$ is surjective (onto) if

$$\forall y \in Y, \exists x \in X, f(x) = y.$$

Definition 2.30 (Bijective). A function is bijective (invertible) if it is injective and surjective.

Proposition 2.31. Let $f: A \to B$ and $g: B \to C$. Then

(a) If f and g are surjective, then $g \circ f$ is surjective.

- (b) If f and g are injective, then $g \circ f$ is injective.
- (c) If f and g are bijective, then $g \circ f$ is bijective.

Lemma 2.32. If $f: X \to Y$ is bijective then f is invertible. In other words for all $y \in Y$ there exists a unique $x \in X$ denoted $f^{-1}(y)$ such that f(x) = y. Therefore the inverse of f, $f^{-1}: Y \to X$ exists and is defined

$$f^{-1}(y) = x.$$

Definition 2.33 (Identity function). A function defined on a set A that maps each element in A onto itself is called the identity function on A, and is denoted i_A .

Proposition 2.34. Let $f: A \to B$ be bijective. Then

- (a) $f^{-1}: B \to A$ is bijective.
- (b) $f^{-1} \circ f = i_A$ and $f \circ f^{-1} = i_B$.

Theorem 2.35. Let $f: A \to B$ and $g: A \to B$ be bijective. Then the composition $g \circ f: A \to C$ is bijective and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Definition 2.36 (Image). If $f: X \to Y$ is a function from X to Y, and $S \subseteq X$, we define the image of S under f, f(S) to be the set

$$f(S) = \{ f(x) \mid x \in S \}.$$

Definition 2.37 (Inverse image). If U is a subset of Y, we define the set $f^{-1}(U)$ to be the set

$$f^{-1}(U) = \{ x \in X \mid f(x) \in U \}.$$

We call $f^{-1}(U)$ the inverse image of U.

Theorem 2.38. Suppose that $f: A \to B$, let C, C_1, C_2 be subsets of A, and let D, D_1, D_2 be subsets of B. Then the following hold:

- (a) $C \subseteq f^{-1}(f(C))$.
- (b) $f(f^{-1}(D)) \subseteq D$.
- (c) $f(C_1 \cap C_2) \subseteq f(C_1) \cap f(C_2)$.
- (d) $f(C_1 \cup C_2) = f(C_1) \cup f(C_2)$.
- (e) $f^{-1}(D_1 \cap D_2) = f^{-1}(D_1) \cap f^{-1}(D_2)$.
- $(f) f^{-1}(D_1 \cup D_2) = f^{-1}(D_1) \cup f^{-1}(D_2).$
- $(g) f^{-1}(B \setminus D) = A \setminus f^{-1}(D).$

Proof: test

Proposition 2.39. If X, Y are sets and $f: X \to Y$ then $f(X) \subseteq Y$.

Proof: $y \in f(X)$ implies $y \in \{y \mid (x,y) \in f\}$ and f is a subset of $X \times Y$, so it follows from the definition of the cartesian product that $y \in Y$.

Lemma 2.40. Let X be a set. Then the set

$$\{Y \mid Y \subseteq X\}$$

Is a set.

Proof: Let X be a set and $A \subseteq X$ with $A \neq \emptyset$. Then there exists $p \in A$, and we can define a function $f: X \to A$ with $x \in X$ by

$$f(x) = \begin{cases} x \in A & f(x) = x \\ x \notin A & f(x) = p \end{cases}$$

Thus for all $a \in f(X)$, $a \in A$ or $a = p \in A$, so $f(X) \subseteq A$. Next, for all $x \in X$, $(x, f(x)) \in f(X)$. Because for all $a \in A$ we have $a \in X$ then for all $a \in A$, $(a, f(a)) = (a, a) \in f(X)$ so

from the definition of an image $A \subseteq f(X)$. Thus A = F(X). From the power set axiom in definition 2.1,

$$\{f: X \to A \mid A \subseteq X \land A \neq \emptyset\} \subseteq X^X$$

From replacement, pairwise union, and singleton set axioms in definition 2.1, we can define a set P(X) that is the union of all images of functions in X^X , and $\{\emptyset\}$. As established above, all nonempty subsets of X are included in this set, and from proposition 2.39 all images of functions in X^X are subsets of X.

Definition 2.41 (Power set). For a set X, the set $\{Y \mid Y \subseteq X\}$ is called the power set of X, and is denoted P(X) or 2^X .

Definition 2.42 (Cardinality). We say that two sets X and Y have equal cardinality iff there exists a bijection $f: X \to Y$ from X to Y.

Proposition 2.43. Let X, Y, Z be sets.

- (a) X has equal cardinality with X.
- (b) If X has equal cardinality with Y, then Y has equal cardinality with X.
- (c) If X has equal cardinality Y and Y has equal cardinality with Z, then X has equal cardinality with Z

Proof:

Definition 2.44 (Cardinality n). Let n be a natural number. A set X is said to have cardinality n, if it has equal cardinality with $\{ \in \mathbb{N} \mid 1 \le i \le n \}$. In this case we say that X has n elements.

Lemma 2.45. Suppose that $n \ge 1$, and set X has cardinality n. Then X is non-empty, and if x is any element of X, then the set $X - \{x\}$ has cardinality n - 1.

Proposition 2.46. Let X be a set with some cardinality n. Then X cannot have any other cardinality, i.e. X cannot have cardinality m for any $m \neq n$.

Definition 2.47 (Finite set). A set is finite iff it has cardinality n for some natural number n; otherwise, the set is called infinite.

Theorem 2.48. The set of natural numbers is infinite.

3 Integers and Rationals

3.1 The Integers

Definition 3.1 (Integers). An integer is an expression of the form a-b, where a and b are natural numbers. Two integers are considered to be equal, a-b=c-d, iff a+d=c+b. The set of all integers is denoted \mathbb{Z} .

Remark. The use of - is purely notational (until subtraction is defined). a-b can be interpreted as an ordered pair in $\mathbb{N} \times \mathbb{N}$.

Definition 3.2 (Integer addition). The sum of two integers (a - b) + (c - d) is defined by the formula

$$(a - b) + (c - d) = (a + c) - (c + d)$$

Definition 3.3 (Integer multiplication). The product of two integers $(a - b) \times (c - d)$ is defined by the formula

$$(a-b) \times (c-d) = (ac+bd) - (ad+bc).$$

Remark. We may identify the integers with natural numbers by setting $n \equiv n - 0$. Definitions of equality and previously defined operations remain consistent with each other.

Proposition 3.4. If $a, b \in \mathbb{Z}$ and a + b = b then a = 0.

Lemma 3.5. Addition and multiplication are well defined.

Definition 3.6 (Negation of integers). If (a-b) is an integer, we define the negation -(a-b) to be the integer b-a.

Lemma 3.7 (Trichotomy of integers). Let x be an integer. Then either x is zero, equal to a positive natural number, or x negated is a positive natural number.

Definition 3.8 (Positive integer). If n is a positive natural number, we call n a positive integer, and -n a negative integer.

Proposition 3.9 (Integer laws for algebra). Let x, y, z be integers. Then the following identities hold:

$$x + y = y + x$$

$$(x + y) + z = x + (y + z)$$

$$x + 0 = 0 + x = x$$

$$x + (-x) = 0$$

$$xy = yx$$

$$(xy)z = x(yz)$$

$$1x = x$$

$$x(y + z) = xy + xz$$

Proposition 3.10. If $a, b \in \mathbb{Z}$ with a, b > 0, then ab > 0.

Proof: If $a, b \in \mathbb{Z}$ with a, b > 0, then for some $x, y \in \mathbb{N}^+$, a = x - 0 and b = y - 0. Thus ab = (xy + 0) = (0 + 0) = xy - 0. Because $x, y \neq 0$, by proposition 1.22 xy > 0 so from the definition of a positive integer ab > 0.

Proposition 3.11. If $a, b \in \mathbb{Z}$ with a, b > 0, then a + b > 0.

Proof: If $a,b \in \mathbb{Z}^+$, then for some $x,y \in \mathbb{N}^+$ we have a=x-0 and b=y-0, so a+b=((x+y)-0). It follows from proposition 1.12 that x+y>0 so from the definition of a positive integer, a+b>0.

Proposition 3.12. If $x \in \mathbb{Z}$ with x = (a - b) then $-1 \cdot (a - b) = -(a - b)$.

Proof:
$$-1 \cdot (a-b) = (0-1) \cdot (a-b) = (0a+b) - (a+0b) = -(a-b).$$

Proposition 3.13 (Integers have no zero divisors). If a, b are integers such that ab = 0, then a = 0 or b = 0.

Corollary 3.14 (Cancellation law). If a, b, c are integers such that ac = bc and c is non-zero, then a = b.

Proof: Let $a,b,c\in\mathbb{Z}$ with $c=\neq 0$. If a=0 it follows from proposition 3.13 that ac=0 so bc=0 and thus b=0, so a=b. If $a\neq 0$, suppose to the contrary that $b\neq a$. It follows from proposition 3.4 that there exists $d\in\mathbb{Z}$ with $d\neq 0$ such that a+d=b. Using laws for algebra we see that ac=ac+dc. By proposition 3.13 $dc\neq 0$, a contradiction by proposition 3.4. Therefore a=b.

Definition 3.15 (Ordering of integers). Let $n, m \in \mathbb{Z}$. We say that n is greater than or equal to m and write $n \geq m$ or $m \leq n$ iff we have n = m + a for some natural number a. We say that n is strictly greater than m and write n > m or m < n iff $n \geq m$ and $n \neq m$.

3.2 The Rationals

Definition 3.16 (Rational number). A rational number is an expression of the form a//b, where a and b are integers and $b \neq 0$. Two rational numbers are equal, a//b = c//d, iff ad = bc. The set of all rational numbers is denoted \mathbb{Q} .

Remark. We may indentify the rationals with natural numbers by setting $n//1 \equiv n$.

Definition 3.17 (Addition of rationals). If a//b and c//d are rationals, their sum is

$$(a//b) + (c//d) = (ad + bc)//(bd).$$

Definition 3.18 (Product of rationals). If a//b and c//d are rationals, their product is

$$(a//b) \cdot (c//d) = (ac)//(bd).$$

Definition 3.19 (Negation of rationals). The negation of a rational (a//b), denoted = (a//b) is

$$-(a//b) = (-a//b).$$

Definition 3.20 (Reciprocal of rationals). If x = a//b is a non-zero rational number, then the reciprocal of x^{-1} of x is defined

$$x^{-1} = b//a.$$

Lemma 3.21. The sum, product, negation, and reciprocal operations on rational numbers are well-defined.

Proposition 3.22. The negation of the negation of $x \in \mathbb{Q}$ is x.

Proof: The negation of the negation of an integer x = (a - b) is - - (a - b) = -(b - a) = (a - b) so - - x = x. The negation of the negation of a rational number y = (c//d) is - - (c//d) = -(-c//d) = (- - c//d) = c//d.

Definition 3.23 (Quotient). The quotient of two rationals x and y with $y \neq 0$, denoted x/y, is

$$x/y = x \times y^{-1}$$
.

Definition 3.24 (Subtraction). The difference of two rationals x and y, denoted x - y, is defined

$$x - y = x + (-y).$$

Definition 3.25 (Positive rational number). A rational number x is said to be positive iff we have x = a/b for some positive integers a and b. It is said to be negative iff x = -y for some positive rational y.

Definition 3.26 (Ordering of rationals). Let $x, y \in \mathbb{Q}$. We say that x > y iff x - y is a positive rational number, and x < y iff x - y is a positive negative rational number. We write $x \ge y$ iff either x > y or x = y, and $x \le y$ iff either x < y or x = y.

Proposition 3.27. $x \in \mathbb{Q}$ is positive iff x > 0, and negative iff x < 0.

Proof: If x = a//b is a positive rational number then a, b > 0. Because 0 = 0//d for some $d \in \mathbb{N} \setminus \{0\}$, x - 0 = x + 0 = ad//bd = a//b and thus x > 0. If x > 0 then x - 0 is positive. Because 0 = 0//d for some $d \in \mathbb{N} \setminus \{0\}$ we have x - 0 = x + 0 = ad//bd = a//b, which is positive.

Proposition 3.28 (Laws of algebra for rationals). Let x, y, z be rationals. Then the following laws of algebra hold:

$$x + y = y + x$$

 $(x + y) + z = x + (y + z)$
 $x + 0 = x$
 $x + (-x) = 0$
 $xy = yx$
 $(xy)z = d(yz)$
 $1x = x$
 $x(y + z) = xy + xz$

Proposition 3.29. -1x = -x.

Proof: If x = a//b then $-1 \cdot x$ is $(-1//1) \cdot (a//b) = -1a//b$. From proposition 3.12, -1a = -a so -1a//b = -(a//b) = -x.

Proposition 3.30. If $a, b \in \mathbb{Q}$ with a > 0 and b > 0 then a + b > 0.

Proof: Suppose $a, b \in \mathbb{Q}$ with a, b > 0. It follows from the definition of positive rational number that for some positive $x, y, z, w \in \mathbb{Z}$, a = x//y and b = z//w, so ab = xw + zy/yw. By proposition 3.10 xw, zy, yw > 0, so by 3.11, a + b > 0.

Lemma 3.31 (Trichotomy of rationals). Let x be a rational number. Then exactly one of the following three statements is true:

- (a) x = 0.
- (b) x is positive.
- (c) x is negative.

3.3 Absolute Value and Exponentiation

Definition 3.32 (Absolute value). If x is a rational number, the absolute value |x| of x is defined as follows:

$$|x| = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}$$

Definition 3.33 (Distance). The distance between $x, y \in \mathbb{Q}$, sometimes denoted d(x, y), is

$$d(x,y) = |x - y|.$$

Proposition 3.34. For all $x \in \mathbb{Q}$, $|x| \ge 0$.

Proof: If $x \ge 0$ then |x| = x so $|x| \ge 0$. If x < 0 then |x| = -x. By proposition 3.27 x is negative. Therefore there exists $y \in \mathbb{Q}^+$ such that x = -y, so by proposition 3.22 -x = -y = y and -x is positive. By proposition 3.27, -x > 0.

Proposition 3.35 (Triangle inequality). For $x, y \in \mathbb{Q}$, $|x + y| \le |x| + |y|$.

Definition 3.36 (ϵ -closeness). Let $\epsilon > 0$ be a rational number, and let x, y be rational numbers. We say that y is ϵ -close to x iff $d(y, x) < \epsilon$.

Definition 3.37 (Exponentiation to a natural number). Let x be a rational number. To raise x to the power 0, we define $x^0 = 1$ and for all $n \in \mathbb{N}$, $x^{n+1} = x^n \times x$.

Definition 3.38 (Exponentiation to a negative number). Let x be a non-zero rational number. Then for any negative integer -n,

$$x^{-n} = 1/x^n.$$

Proposition 3.39. If x and y are two rationals such that x < y, then there exists a third rational z such that x < z < y.

Proposition 3.40. There does not exists any rational number x for which $x^2 = 2$.

4 Real Numbers

4.1 Cauchy Sequences

Remark. Many definitions here are repeated later. Ones given here are necessary for the construction of the real numbers.

Definition 4.1 (Sequences). Let m be an integer. A sequence $(a_n)_{n=m}^{\infty}$ of rational numbers is any function from the set $\{n \in \mathbb{Z} \mid n \geq m\}$ to \mathbb{Q} .

Definition 4.2 (Cauchy sequence). A sequence $(a_n)_{n=0}^{\infty}$ of rational numbers is said to be a Cauchy sequence iff

$$\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall j, k \in \mathbb{N}, (j, k \ge N \Rightarrow |a_j - a_k| < \epsilon).$$

Definition 4.3 (Bounded sequence). Let $M \ge 0$ be rational. A finite sequence a_1, a_2, \ldots is bounded by M iff for all $i \in \mathbb{N}$, $|a_i| \le M$.

Lemma 4.4. Every finite sequence a_1, a_2, \ldots, a_n is bounded by some $M \in \mathbb{Q}$.

Definition 4.5 (Equivalent sequences). Two sequences (a_n) and (b_n) are equivalent iff

$$\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall i \in \mathbb{N}, (i, j \ge N \Rightarrow |a_i - b_i| < \epsilon).$$

Definition 4.6 (Real numbers). A real number is defined to be an object of the form $\lim_{n\to\infty} a_n$, where $(a_n)_{n=0}^{\infty}$ is a Cauchy sequence of rational numbers. Two real numbers are said to be equivalent if the Cauchy sequences they contain are equivalent. In this context LIM is a formal limit.

Definition 4.7 (Real operations). Let $x = \text{LIM}_{n \to \infty} a_n$ and $y = \text{LIM}_{n \to \infty} b_n$. Then

$$x + y = \text{LIM}_{n \to \infty}(a_n + b_n),$$

$$xy = \text{LIM}_{n \to \infty}(a_n b_n),$$

$$x^{-1} = \text{LIM}_{n \to \infty}a_n^{-1}$$

$$x/y = x \cdot y^{-1}, \ y \neq 0.$$

Definition 4.8 (Bounded away from zero). A sequence (a_n) is said to be bounded away from zero iff there exists a rational number c > 0 such that $|a_n| \ge c$ for all $n \ge 1$.

Definition 4.9 (Positive real number). A real number x is said to be positive iff it can be written as a real number for some Cauchy sequence positively bounded away from zero.

Definition 4.10 (Absolute value). Let x be a real number. We define the absolute value |x| of x to equal x if x is positive, -x when x is negative, and 0 when x is zero.

Definition 4.11 (Ordering of reals). Let x and y be real numbers. We say that x is greater than y iff x - y is a positive real number, and x < y if x - y is a negative real number. We define $x \ge y$ iff x > y or x = y.

Definition 4.12 (Archemedian property). Let x be a real number, and let ϵ be a positive real number. Then there exists a positive integer M such that $M\epsilon > x$.

Definition 4.13 (Real exponentiation by an integer). Let x be a real number. Then

$$x^0 = 1;$$
$$x^{n+1} = x^n \cdot x.$$

If $n \in \mathbb{Z}$ and $x \in \mathbb{R}$ is nonzero, we define

$$x^{-n} = 1/x^n.$$

Definition 4.14 (nth root). Let $x \ge 0$ be a non-negative real, and let $n \ge 1$ be a positive integer. We define $x^{1/n}$ as

$$x^{1/n} = \sup\{y \in \mathbb{R} \mid y \ge 0 \land y^n \le x\}.$$

Lemma 4.15. $x^{1/n}$ is a real number.

Definition 4.16 (Rational exponents). Let x > 0 be a positive real number, and let q = a/b be a rational number. Then

$$x^q = (x^{1/b})^a.$$

5 Sequences

5.1 Sequences

Definition 5.1 (Sequence). A sequence is a function whose domain is the set \mathbb{N} of natural numbers, and can denoted $(s_n)_{n=a}^b$ for $a \in \mathbb{N}, b \in \mathbb{N} \cup \{\infty\}$. (s_n) will be used here as shorthand for $(s_n)_{n=0}^{\infty}$.

Definition 5.2 (Limit of a sequence). A sequence (s_n) is said to converge to $s \in \mathbb{R}$ iff

$$\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall n \in \mathbb{N}, (n \ge N \Rightarrow |s_n - s| < \epsilon).$$

If (s_n) converges to s, then s is called the limit of the sequence (s_n) , and we write $\lim_{n\to\infty} s_n = s$. If a sequence does not converge, it is said to diverge.

Definition 5.3 (Real exponentiation). Let x > 0 be real, and let α be a real number. We define the quantity x^{α} by

$$x^{\alpha} = \lim_{n \to \infty} x^{q_n},$$

where $(q_n)_{n=0}^{\infty}$ is any sequence of rational numbers converging to α .

Lemma 5.4 (Continuity of exponentiation). Let x > 0, and let α be a real number. Let $(q_n)_{n=1}^{\infty}$ be any sequence of rational numbers converging to α . Then $(x^{q_n})_{n=1}^{\infty}$ is also a convergent sequence. Furthermore, if $(q'_n)_{n=1}^{\infty}$ is a sequence converging to α , then $(x^{q'_n})_{n=1}^{\infty}$ has the same limit as $(x^{q_n})_{n=1}^{\infty}$.

Definition 5.5 (Divergence to Infinity). A sequence (s_n) is said to diverge to infinity, and we write $\lim_{n\to\infty} s_n = \infty$ if

$$\forall M \in \mathbb{R}, \exists N \in \mathbb{N}, \forall n \in \mathbb{N}, (n \ge N \Rightarrow s_n > M).$$

Definition 5.6 (Bounded sequence). A sequence (s_n) is said to be bounded if

$$\exists M \geq 0, \forall n \in \mathbb{N}, (|s_n| \leq M).$$

Theorem 5.7. If a sequence converges, it is bounded.

Theorem 5.8. If a sequence converges, its limit is unique.

5.2 Monotone and Cauchy sequences

Theorem 5.9. Suppose that (s_n) and (t_n) are convergent sequences with $\lim_{n\to\infty} s_n = s$ and $\lim_{n\to\infty} t_n = t$. Then

- (a) $\lim s_n + t_n = s + t$.
- (b) $\lim ks_n = ks$.
- (c) $\lim s_n t_n = st$.
- (d) $\lim s_n/t_n = s/t$ iff $t \neq 0$ and $\forall n \in \mathbb{N}, t_n \neq 0$.

Theorem 5.10. Let (s_n) be a sequence of positive numbers. Then $\lim_{n\to\infty} s_n = \infty$ iff $\lim_{n\to\infty} 1/s_n = 0$.

Definition 5.11 (Increasing sequence). A sequence (s_n) of real numbers is increasing if $s_n \leq s_{n+1}$ for all $n \in \mathbb{N}$. A sequence is monotone if it is increasing or decreasing.

Theorem 5.12. A monotone sequence is convergent iff it is bounded.

Definition 5.13 (Cauchy sequence). A sequence (s_n) of real numbers is a Cauchy sequence if

$$\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall n, m \in \mathbb{N}, (m, n \ge N \Rightarrow |s_n - s_m| < \epsilon).$$

Lemma 5.14. Every convergent sequence is a Cauchy sequence

Lemma 5.15. Every Cauchy sequence is bounded.

Theorem 5.16. A sequence of real numbers is convergent iff it is a Cauchy sequence.

Definition 5.17 (Subsequence). Let $(s_n)_{n=1}^{\infty}$ be a sequence and let $(n_k)_{k=1}^{\infty}$ be any sequence of natural numbers such that $n_1 < n_2 < n_2 < \dots$ The sequence $(s_{n_k})_{k=1}^{\infty}$ is called a subsequence of $(s_n)_{n=1}^{\infty}$.

Theorem 5.18. If a sequence converges to a real number s, then every subsequence of (s_n) also converges to s.

Theorem 5.19. Every bounded sequence has a convergent subsequence.

5.3 Limit superior and inferior

Definition 5.20 (Limsup and liminf). A subsequential limit of (s_n) is any real number that is the limit of some subsequence of (s_n) . If S is the set of all subsequential limits of (s_n) , then we define the limit superior of (s_n) to be

$$\lim \sup s_n = \sup S.$$

The limit inferior is defined

$$\liminf s_n = \inf S$$
.

Theorem 5.21. Let (s_n) be a bounded sequence and let $m = \limsup s_n$. Then the following properties hold:

- (a) For every $\epsilon > 0$ there exists a natural number N such that $n \geq N$ implies that $s_n < m + \epsilon$.
- (b) For every $\epsilon > 0$ there exists an integer k > i such that $s_k > m \epsilon$.

Theorem 5.22. Suppose that (r_n) converges to a positive number r and (s_n) is a bounded sequence. Then

$$\limsup r_n s_n = r \limsup s_n$$

6 Series

6.1 Convergence tests

Definition 6.1 (Convergence of series). Let $\sum_{n=m}^{\infty} a_n$ be a formal infinite series. For any integer $N \geq m$, we define the Nth partial sum S_N of this series to be

$$S_N = \sum_{n=m}^N a_n.$$

If the sequence $(S_N)_{N=m}^{\infty}$ converges to L, then we say that the infinite series $\sum_{n=m}^{\infty} a_n$ is convergent, and converges to L. We also write $L = \sum_{n=m}^{\infty} a_n = L$. If the parial sums S_N diverge, we say the infinite series $\sum_{n=m}^{\infty} a_n$ is divergent, and do not assign any real number to it.

Proposition 6.2. Let $\sum_{n=m}^{\infty} a_n$ be a formal series of real numbers. $\sum_{n=m}^{\infty} a_n$ converges iff for every real number $\epsilon > 0$, there exists an integer $N \ge m$ such that for all $p, q \ge N$,

$$\left| \sum_{n=p}^{q} a_n \right| \le \epsilon.$$

Corollary 6.3. Let $\sum_{n=m}^{\infty} a_n$ be a convergent series of real numbers. Then we must have $\lim_{n\to\infty} a_n = 0$.

Definition 6.4 (Absolute convergence). Let $\sum_{n=m}^{\infty} a_n$ be a formal series of real numbers. We say that this series is absolutely convergent iff the series $\sum_{n=m}^{\infty} |a_n|$ is convergent.

Proposition 6.5. Let $\sum_{n=m}^{\infty} a_n$ be a formal series of real numbers. If the series is absolutely convergent, then it is also convergent. Furthermore,

$$\left| \sum_{n=m}^{\infty} a_n \right| \le \sum_{n=m}^{\infty} |a_n|.$$

Proposition 6.6 (Alternating series test). Let $(a_n)_{n=m}^{\infty}$ be a sequence of real numbers which are non-negative and decreasing, thus $a_n \geq 0$ and $a_n \geq a_{n+1}$ for every $n \geq m$. Then the series

$$\sum_{n=m}^{\infty} (-1)^n a_n$$

is convergent iff the sequence a_n converges to 0 as $n \to \infty$.

Proof: The sequence of partial sums is Cauchy, thus converges.

Proposition 6.7. Let $\sum_{n=m}^{\infty} a_n$ be a formal series of non-negative real numbers. Then this series is convergent iff there is a real number M such that for all $N \ge m$,

$$\sum_{n=m}^{N} a_n \le M.$$

Corollary 6.8 (Comparison test). Let $\sum_{n=m}^{\infty} a_n$ and $\sum_{n=m}^{\infty} b_n$ be two formal series of real numbers, and suppose that $|a_n| \leq b_n$ for all $n \geq m$. Then if $\sum_{n=m}^{\infty} b_n$ is convergent, then $\sum_{n=m}^{\infty} a_n$ is absolutely convergent, and

$$\left| \sum_{n=m}^{\infty} a_n \right| \le \sum_{n=m}^{\infty} |a_n| \le \sum_{n=m}^{\infty} b_n.$$

Definition 6.9 (Geometric series). The geometric series is defined

$$\sum_{n=0}^{\infty} x^n,$$

Where $x \in \mathbb{R}$.

Lemma 6.10. Let x be a real number. If $|x| \ge 1$, then the series $\sum_{n=0}^{\infty} x^n$ is divergent. If |x| < 1, then the series is absolutely convergent, and

$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}.$$

Proposition 6.11. Let $(a_n)_{n=1}^{\infty}$ be a decreasing sequence of non-negative real numbers. Then the series $\sum_{n=1}^{\infty} a_n$ is convergent iff

$$\sum_{k=0}^{\infty} 2^k a_{2^k}$$

is convergent.

Corollary 6.12. Let q > 0 be a real number. Then the series $\sum_{n=1}^{\infty} \frac{1}{n^q}$ is convergent when q > 1 and divergent when $q \le 1$.

Theorem 6.13 (Root test). Let $\sum_{n=m}^{\infty} a_n$ be a series of real numbers, and let $\alpha = \limsup |a_n|^{1/n}$.

- (a) If $\alpha < 1$, then the series $\sum_{n=m}^{\infty} a_n$ is absolutely convergent.
- (b) If $\alpha > 1$, then the series $\sum_{n=m}^{\infty} a_n$ is not convergent.
- (c) If $\alpha = 1$, we cannot assert any conclusion.

7 Topology Shit

7.1 Heine-Borel Theorem

Definition 7.1. Let $\epsilon > 0$. A neighborhood of x is a set of the form

$$N(x; \epsilon) = \{ y \in \mathbb{R} \, | \, |x - y| < \epsilon \},$$

where ϵ is referred to as the radius.

Definition 7.2 (Deleted neighborhood). Let $x \in \mathbb{R}$ and $\epsilon > 0$. A deleted neighborhood of x is the set

$$N^*(x;\epsilon) = N(x;\epsilon) \setminus \{x\}.$$

i.e.

$$N^*(x;\epsilon) = \{ y \in \mathbb{R} \mid 0 < |x - y| < \epsilon \}.$$

Definition 7.3 (Interior point). Let $S \subseteq \mathbb{R}$. A point $x \in \mathbb{R}$ is an interior point of S if there exists a neighborhood N of x such that $N \subseteq S$.

Definition 7.4 (Boundary point). If for every neighbrhood N of x we have $N \cap S \neq \emptyset$ and $N \cap (\mathbb{R} \setminus S) \neq \emptyset$, then x is a boundary point of S.

Definition 7.5 (Adherent point). Let $X \subseteq \mathbb{R}$, and let $y \in \mathbb{R}$. We say that y is an adherent point of X iff

$$\forall \epsilon > 0, \exists x \in X, (|x - y| < \epsilon).$$

Definition 7.6 (Accumulation point). Let $S \subseteq \mathbb{R}$. A point $x \in \mathbb{R}$ is an accumulation point of S if every deleted neighborhood of x contains a point of S.

Definition 7.7 (Isolated point). We say that x is an isolated point of X if $x \in X$ and there exists some $\epsilon > 0$ such that $|x - y| > \epsilon$ for all $y \in X \setminus \{x\}$.

Definition 7.8 (Closure). Let $X \subseteq \mathbb{R}$. The closure of X, denoted \overline{X} is defined to be the set of all adherent points of X.

Lemma 7.9. Let $X \subseteq \mathbb{R}$. The set of all convergent points of sequences in X is the closure of X.

Theorem 7.10 (Heine-Borel). Let X be a subset of \mathbb{R} . Then the following statements are equivalent:

- (a) X is closed and bounded.
- (b) Given any sequence $(a_n)_{n=0}^{\infty}$ of real numbers which takes values in X, there exists a subsequence $(a_{n_j})_{j=0}^{\infty}$ of the original sequence which converges to some number L in X.

8 Continuous Functions on \mathbb{R}

8.1 Limits of Functions

Definition 8.1 (Extended real numbers). The extended real number system $\mathbb{R} \cup \{\infty, -\infty\}$ is denoted \mathbb{R}^* . An extended real number is said to be finte iff it is a real number, and infinite iff it is equal to $\pm \infty$.

Definition 8.2 (Intervals). Let $a, b \in \mathbb{R}^*$. Then the closed interval [a, b] is the set

$$\{x \in \mathbb{R}^* \mid a \le x \le b\}.$$

The open interval (a, b) is the set

$$\{x \in \mathbb{R}^* \mid a < x < b\}.$$

Definition 8.3 (Limit point). Let $X \subseteq \mathbb{R}$. We say that $x \in \mathbb{R}$ is a limit point of X iff it is an adherent point of $X \setminus \{x\}$.

Definition 8.4 (Algebra of functions). Given two functions $f: X \to \mathbb{R}$ and $g: X \to \mathbb{R}$:

$$(f+g)(x) = f(x) + g(x),$$

$$(f-g)(x) = f(x) - f(x),$$

$$(fg)(x) = f(x)g(x),$$

$$(f/g)(x) = f(x)/g(x),$$

$$(cf)(x) = cf(x).$$

Definition 8.5 (Limit of a function). Let $f: D \to \mathbb{R}$ and let c be an accumulation point of D. We say that a real number L is a limit of f at c if

$$\forall \epsilon > 0, \exists \delta > 0, \forall x \in D, (0 < |x - c| < \delta \Rightarrow |f(x - L)| < \epsilon).$$

Remark. The effect of c being an accumulation point is that limits must be unique. If c wasn't an accumulation point of D, it would be vacuously true that every number is a limit for f at c. |x-c| > 0 specifies that we are focusing on f's approach to L as x approaches c, and not on the value of f at c.

Theorem 8.6. Let $f: D \to \mathbb{R}$ and let c be an accumulation point of D. Then $\lim_{x \to c} f(x) = L$ iff for each neighborhood V of L there exists a deleted neighborhood U of c such that $f(U \cap D) \subseteq V$.

Theorem 8.7. Let $f: D \to \mathbb{R}$ and let c be an accumulation point of D. Then $\lim_{x\to c} f(x) = L$ iff for every sequence (s_n) in D that converges to c with $s_n \neq c$ for all n, the sequence $(f(s_n))$ converges to L.

Corollary 8.8. Limits are unique.

Theorem 8.9. Let $f: D \to \mathbb{R}$ and $g: D \to \mathbb{R}$, and let c be an accumulation point of D. If $\lim_{x\to c} f(x) = L$, and $\lim_{x\to c} g(x) = M$ and $k \in \mathbb{R}$, then

$$\begin{split} &\lim_{x\to c}(f+g)(x)=L+M,\\ &\lim_{x\to c}(fg)(x)=LM,\\ &\lim_{x\to c}(f/g)(x)=L/M,\ if\ \forall x\in D,\ g(x)\neq 0\ and\ M\neq 0. \end{split}$$

Definition 8.10 (Right and Left limits). Suppose $f: D \to \mathbb{R}$ with c an accumulation point of D and $\lim_{x\to c} f(x) = L$ for some $L \in \mathbb{R}$. The right hand limit of f at c is the limit of f restricted to some domain (c,d) with d > c as $x \to c$. The left hand limit of f at c is the limit of f restricted to some domain (-d,c) as $x \to c$.

8.2 Continuous functions

Definition 8.11 (Continuity). Let $f: D \to \mathbb{R}$ and let $c \in D$. We say that f is continuous at c iff

$$\forall \epsilon > 0, \ \exists \delta > 0, \ \forall x \in D, \ (|x - c| < \delta \Rightarrow |f(x) - f(c)| < \epsilon).$$

If f is continuous at each point of a subset S of D, then f is said to be continuous on S. If f is continuous on its domain D, then f is said to be a continuous function.

Theorem 8.12. Let $f: D \to \mathbb{R}$ and let $c \in D$. Then the following three conditions are equivalent:

- (a) f is continuous at c.
- (b) If (x_n) is any sequence in D such that (x_n) converges to c, then $\lim_{n\to\infty} f(x_n) = f(c)$.
- (c) For every neighborhood V of f(c) there exists a neighborhood U of c such that $f(U \cap D) \subseteq V$.

Theorem 8.13. Let f and g be functions from D to \mathbb{R} , and let $c \in D$. Suppose that f and g are continuous at c. Then

- (a) f + g and fg are continuous at c.
- (b) f/g is continuous at c if $g(c) \neq 0$.

Theorem 8.14. Let $F: D \to \mathbb{R}$ and $g: E \to \mathbb{R}$ be functions such that $f(D) \subseteq E$. If f is continuous at a point $c \in D$ and g is continuous at f(c), then the composition $g \circ f: D \to \mathbb{R}$ is continuous at c.

Theorem 8.15. A function $f: D \to \mathbb{R}$ is continuous on D iff for every open set G in \mathbb{R} there exists an open set H such that $H \cap D = f^{-1}(G)$.

Corollary 8.16. A function $f: \mathbb{R} \to \mathbb{R}$ is continuous iff $f^{-1}(G)$ is open in \mathbb{R} whenever G is open in \mathbb{R} .

Definition 8.17 (Lipschitz continuity). If $|f(x) - f(y)| \le M|x - y|$ for some M > 0, the function is called Lipschitz continuous.

8.3 Properties of continous functions

Theorem 8.18. Let D be a compact subset of \mathbb{R} and suppose that $f: D \to \mathbb{R}$ is continuous. Then f(D) is compact.

Corollary 8.19. Let D be a compact subset of \mathbb{R} , and suppose that $f: D \to \mathbb{R}$ is continuous. Then f assumes minimum and maximum values on D.

Theorem 8.20 (Intermediate value theorem). Suppose that $f : [a, b] \to \mathbb{R}$ is continuous. Then if f(a) < k < f(b) or f(b) < k < f(a), then there exists $c \in (a, b)$ such that f(c) = k.

Theorem 8.21. Let I be a compact interval, and suppose that $f: I \to \mathbb{R}$ is a continuous function. Then the set f(I) is a compact interval.

8.4 Uniform continuity

Definition 8.22. Let $f: D \to \mathbb{R}$. We say that f is uniformly continuous on D if

$$\forall \epsilon > 0, \ \exists \delta > 0, \ \forall x, y \in D, \ (|x - y| < \delta \Rightarrow |f(x) - f(y)| < \epsilon).$$

Theorem 8.23. Suppose $f: D \to \mathbb{R}$ is continuous on a compact set D. Then f is uniformly continuous on D.

Theorem 8.24. Let $f: D \to \mathbb{R}$ be uniformly continuous on D and suppose that (x_n) is a Cauchy sequence in D. Then $(f(x_n))$ is a Cauchy sequence.

Theorem 8.25. A function $f:(a,b)\to\mathbb{R}$ is uniformly continuous on (a,b) iff it can be extended to a function \overline{f} that is continuous on [a,b].

9 Differentiation

9.1 Differentiation

Definition 9.1 (Differentiation). Let I be an interval containing a point c, and let $f: I \to \mathbb{R}$. We say that f is differentiable at c if the limit

$$\lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$

exists and is finite. We denote the derivative of f at c by f'(c). If f is differentiable at each point of the set $S \subseteq I$, then f is said to be differentiable on S, and the function $f': S \to \mathbb{R}$ is called the derivative of f on S.

Theorem 9.2. If $f: I \to \mathbb{R}$ is differentiable at a point $c \in I$, then f is continuous at c.

Proof: Let $F: I \to \mathbb{R}$ be differentiable at $c \in I$. Then

$$\lim_{x \to c} \frac{f(x) - f(c)}{x - c} = f'(c) \tag{1}$$

for some $f'(c) \in \mathbb{R}$. If f is not continuous at c, then

$$\exists \epsilon > 0, \forall \delta > 0, \exists x \in I, (|x - c| < \delta \land |f(x) - f(c)| \ge \epsilon).$$

Thus there exists x with $|x-c| < \delta$, so

$$\left| \frac{f(x) - f(c)}{x - c} \right| = \frac{|f(x) - f(c)|}{|x - c|} \ge \frac{\epsilon}{\delta}.$$

Because ϵ/δ is arbitrarily large for small δ ,

$$\left\{ \frac{f(x) - f(c)}{x - c} \mid |x - c| < \delta \right\}$$

is unbounded for all $\delta > 0$.

Theorem 9.3. Suppose that $f: I \to \mathbb{R}$ and $g: I \to \mathbb{R}$ are differentiable at $c \in I$. Then the following identities hold:

(a) For $k \in \mathbb{R}$, kf is differentiable at c and

$$(kf')(c) = k \cdot f'(c).$$

(b) The function f + g is differentiable at c and

$$(f+g)'(c) = f'(c) + g'(c).$$

(c) The function fg is differentiable at c and

$$(fg)'(c) = f(c)g'(c) + g(c)f'(c).$$

(d) If $g(c) \neq 0$, the function f/g is differentiable at c and

$$(f/g)'(c) = \frac{g(c)f'(c) - f(c)g'(c)}{[g(c)]^2}.$$

9.2 Differentiation theorems

Theorem 9.4 (Chain rule). Let I and J be intervals in \mathbb{R} , $f: I \to \mathbb{R}$, and $g: J \to \mathbb{R}$, with $f(I) \subseteq J$ and $c \in I$. If f is differentiable at c and g is differentiable at f(c), then $g \circ f$ is differentiable at c and

$$(g \circ f)'(c) = g'(f(c)) \cdot f'(c).$$

Theorem 9.5. If f is differentiable on an open interval (a, b) and if f assumes it's maximum or minimum at a point $c \in (a, b)$, then f'(c) = 0.

Theorem 9.6 (Rolle's theorem). Let f be a continuous function on [a,b] that is differentiable on (a,b) and such that f(a) = f(b). Then there exists at least one point c in (a,b) such that f'(c) = 0.

Theorem 9.7 (Mean value theorem). Let f be a continuous function on [a,b] that is differentiable on (a,b). Then there exists at least one point $c \in (a,b)$ such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Theorem 9.8 (IVT for derivatives). Let f be differentiable on [a,b] and suppose that k is a number between f'(a) and f'(b). Then there exists a point $c \in (a,b)$ such that f'(c) = k.

Theorem 9.9. Suppose that f is differentiable on an interval I and $f'(x) \neq 0$ for all $x \in I$. Then f is injective, f^{-1} is differentiable of f(I), and

$$(f^{-1})'(y) = \frac{1}{f'(x)},$$

where y = f(x).

Theorem 9.10 (Cauchy mean value theorem). Let f and g be functions that are continuous on [a,b] and differentiable on (a,b). Then there exists at least one point $c \in (a,b)$ such that

$$[f(b) - f(a)]g'(c) = [g(b) - g(a)]f'(c).$$

Theorem 9.11 (L'Hospital's rule). Let f and g be continuous on [a,b] and differentiable on (a,b). Suppose that $c \in [a,b]$ and that f(c) = g(c) = 0. Suppose also that $g'(x) \neq 0$ for $x \in U$, where U is the intersection of (a,b) and some deleted neighborhood of c. If

$$\lim_{x \to c} \frac{f'(x)}{g'(x)} = L, \ L \in \mathbb{R},$$

Then

$$\lim_{x \to c} \frac{f(x)}{g(x)} = L.$$

Definition 9.12 (Limit at infinity). Let $f:(a,\infty)\to\mathbb{R}$. We say that $L\in\mathbb{R}$ is the limit of f as $x\to\infty$, and write

$$\lim_{x \to \infty} f(x) = L,$$

if

$$\forall \epsilon > 0, \exists N > a, \forall x \in (a, \infty), (x > N \Rightarrow |f(x) - L| < \epsilon).$$

Definition 9.13. Let $f:(a,\infty)\to\mathbb{R}$. We say that f tends to ∞ as $x\to\infty$ and write

$$\lim_{x \to \infty} f(x) = \infty,$$

if

$$\forall \alpha \in \mathbb{R}, \exists N > a, \forall x \in (a, \infty), (x > N \Rightarrow f(x) > \alpha).$$

Theorem 9.14 (L'Hospital's rule). Let f and g be differentiable on a, ∞ . Suppose that $\lim_{x\to\infty} f(x) = \lim_{x\to\infty} g(x) = \infty$, and that $g'(x) \neq 0$ for $x \in (a, \infty)$. If

$$\lim_{x \to \infty} \frac{f'(x)}{g'(x)} = L, \ L \in \mathbb{R},$$

then

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = L.$$

Theorem 9.15 (Taylor's theorem). Let f and its first n derivatives be continuous on [a,b] and differentiable on (a,b), and let $x_0 \in [a,b]$. Then for each $x \in [a,b]$ with $x \neq x_0$ there exists a point c between x and x_0 such that

$$f(x) = \sum_{n=0}^{k} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n + \frac{f^{(k+1)}(c)}{(k+1)!} (x - x_0)^{k+1}.$$

10 Integration

10.1 Piecewise Constant Integrals

Definition 10.1 (Connected sets). Let X be a subset of \mathbb{R} . We say that X is connected iff X is non-empty and whenever $x, y \in X$ with x < y, the bounded interval [x, y] is a subset of X.

Definition 10.2 (Length of interval). If I is a bounded interval, the length of I, denoted |I|, is defined as follows: If I is one of the intervals [a, b], (a, b), [a, b), (a, b] for some real numbers a < b, then

$$|I| = b - a$$
.

If I is a point or the empty set, absI = 0.

Definition 10.3 (Partition). Let I be a bounded interval. A partition of I is a finite set P of bounded intervals contained in I such that $\bigcup P = I$ and $\bigcap P = \emptyset$.

Theorem 10.4. Let I be a bounded interval, n be a natural number, and let P be a partition of I of cardinality n. Then

$$|I| = \sum_{J \in P} |J|.$$

Definition 10.5 (Finer and coarser partitions). Let I be a bounded interval, and let P and P' be two partitions of I. We say that P' is finer than P, or P is coarser than P', if for every J in P', there exists K in P such that $J \subseteq K$.

Definition 10.6 (Common refinement). Let I be a bounded interval, and let P and P' be two partitions of I. We define the common refinement P # P' of P and P' to be the set

$$P \# P' = \{ K \cap J \mid K \in P \land J \in P' \}.$$

Definition 10.7 (Constant function). Let X be a subset of \mathbb{R} , and let $f: X \to R$ be a function. We say that f is constant iff there exists a real number c such that f(x) = c for all $x \in X$. If $E \subseteq X$, we say that f is constant on E if the restriction $f|_E$ of f to E is constant.

Definition 10.8 (Piecewise constant). Let I be a bounded interval, let $f: I \to \mathbb{R}$ be a function, and let P be a partition of I. We say that f is piecewise constant with respect to P iff for every $j \in P$, f is constant on J. We say that f is piecewise constant if there exists a partition of its domain with which it is constant relative to.

Definition 10.9 (Piecewise constant integral). Let I be a bounded interval, and let P be a partition of I. Let $f: I \to \mathbb{R}$ be a function which is piecewise constant with respect to P. Then we define the piecewise constant integral $\int_{[P]} f$ of f with respect to the partition P by the formula

$$\int_{[P]} f = \sum_{J \in P} c_J |J|,$$

where for each $J \in P$ we let c_J be the constant value of f on J.

Definition 10.10 (Piecewise constant integral). Let I be a bounded interval, and let $f: I \to \mathbb{R}$ be a function which is piecewise constant function on I. Then we define the piecewise constant integral $\int_I f$ by the formula

$$\int_{I} f = \int_{[P]} f,$$

where P is any partition of I with respect to which f is piecewise constant. To explicitly denote we are taking the piecewise constant integral of a piecewise constant function, append p.c. to the integral. However this is usually clear through context.

10.2 Upper and Lower Riemann Integrals

Definition 10.11 (Majorization of functions). Let $f: I \to \mathbb{R}$ and $g: I \to \mathbb{R}$. We say that g majorizes f on I if we have $g(x) \geq f(x)$ for all $x \in I$, and that g minorizes f on I if $g(x) \leq f(x)$ for all $x \in I$.

Definition 10.12 (Upper and lower Riemann integrals). Let $f: I \to \mathbb{R}$ be a bounded function defined on a bounded interval I. We define the upper Riemann integral $\overline{\int_I} f$ by the formula

$$\overline{\int_I} f = \inf\bigg\{\int_I g \mid g \text{ majorizes } f \text{ and is piecewise constant}\bigg\},$$

and the lower Riemann integral $\int_I f$ by the formula

$$\int_I f = \sup \bigg\{ \int_I g \mid g \text{ minorizes } f \text{ and is piecewise constant} \bigg\}.$$

Lemma 10.13. Let $f: I \to \mathbb{R}$ be a function on a bounded interval I which is bounded by some real number M. Then we have

$$-M|I| \leq \int_I f \leq \overline{\int_I} f \leq M|I|.$$

In particular, both the lower and upper Riemann integrals are real numbers.

Definition 10.14 (Riemann integral). Let $f: I \to \mathbb{R}$ be a bounded function on a bounded interval I. If $\int_I f = \overline{\int_I} f$, then we say that f is Riemann integrable on I and define

$$\int_{I} f = \int_{\underline{I}} f = \overline{\int_{I}} f.$$

Lemma 10.15. Let $f: I \to \mathbb{R}$ be a piecewise constant function of a bounded interval I. Then f is Riemann integrable, and $\int_I f = \text{p.c.} \int_I f$.

Definition 10.16 (Riemann sums). Let $f: I \to \mathbb{R}$ be a bounded function on a bounded interval I, and let P be a partition of I. We define the upper Riemann sum U(f, P) and lower Riemann sum L(f, P) by

$$U(f,P) = \sum_{J \in P | j \neq \emptyset} \left(\sup_{x \in J} f(x) \right) |J|,$$

$$L(f,P) = \sum_{J \in P | j \neq \emptyset} \left(\inf_{x \in J} f(x) \right) |J|.$$

Proposition 10.17. Let $f: I \to \mathbb{R}$ be a bounded function on a bounded interval I. Then

$$\overline{\int_I} f = \int \{U(f,P) \, | \, P \text{ is a partition of I} \},$$

and

$$\int_I f = \sup\{L(f,P) \,|\, P \text{ is a partition of I}\}.$$

Theorem 10.18. Let I be a bounded interval, and let f be a function which is uniformly continuous on I. Then f is Riemann integrable.

Corollary 10.19. Let $f:[a,b]\to\mathbb{R}$ be continuous. Then f is Riemann integrable.

Definition 10.20 (Piecewise continuous). Let I be a bounded interval, and let $f: I \to \mathbb{R}$. We say that f is piecewise continuous on I iff there exists a partition P of I such that $f|_J$ is continuous on J for all $J \in P$.

Proposition 10.21. Let [a, b] be a closed and bounded interval and let $f : [a, b] \to \mathbb{R}$ be a monotone function. Then f is Riemann integrable on [a, b].

Definition 10.22 (α -length). Let I be a bounded interval, let X be an interval that is closed containing I, and let $\alpha: X \to \mathbb{R}$ be a monotone increasing function whenever $x, y \in X$ are such that $y \geq x$. Then we define the α -length $\alpha[I]$ of I be the following rules:

- (a) If I is empty, then $\alpha[I] = 0$.
- (b) If $I = \{a\}$ is a point, then $\alpha[I] = \lim_{x \to a^+|x \in X} \alpha(x) \lim_{x \to a^-|x \in X} \alpha(x)$, with the