

안전한 전동 킥보드

#음주측정 #헬멧필수착용

작품 기능 설명 – BLOCKDIAGRAM

작품 기능 설명 – BLOCKDIAGRAM

운행 중 부가기능

자동 헤드라이트 이용 시간 및 요금 안내

한 가지라도 NO

작품 기능 설명 – 회로 설계

킥보드

ATmega128

조도 센서

블루투스 모듈

스위치

LCD

터치센서

UART 통신

DC모터

모터 드라이버

헬멧

ATmega128

블루투스 모듈

스위치

알코올 센서

작품 부분 회로 설명

작품 부분 설명

헬멧부 ATMEGA128

알코올 농도 측정 센서

헬멧에 달린 스위치

블루투스 모듈 : 헬멧부, 킥보드부

작품 부분 설명

킥보드부 ATMEGA128

DC모터 (킥보드)

CLCD

조도 센서 및 LED (헤드라이트)

터치센서

CODE - 헬멧부 ATMEGA128

- main 함수 – 레지스터 설정

```
#include <avr/io.h>
#include <avr/delav.h>
#include <avr/interrupt.h>
#include <util/delay.h>
unsigned int alcohol_Result;
unsigned char alcohol_LOW, alcohol_HIGH;
int main(void) {
    cli();
   DDRA = 0xFF; //A0~A7 출력으로 사용
DDRC = 0xFF; //C0~C7 출력으로 사용
DDRD = 0x08; //D3 출력으로 사용
    DDRF = 0x00; //F0~F7 입력으로 사용
    TIMSK = (0 << OCIE2) | (0 << TOIE2) | (0 << TICIE1) | (0 << OCIE1A) | (0 << OCIE1B) | (1 << TOIE1) | (0 << OCIE0) | (0 << TOIE0); //
    TCCR1A = 0x00;
    TCCR1B = 0x05;
    TCNT1H = 0xFF;
    TCNT1L = 0xFE;
    ADMUX = (0 << REFS1) | (1 << REFS0) | (0 << ADLAR) | (0 << MUX4) | (0 << MUX3) | (0 << MUX2) | (0 << MUX1) | (0 << MUX0); //ADC
    ADCSRA = 0x87;
    UCSR1C = 0x07; //parity x, 8
    UCSRIB = (1 << RXCIE1) | (0 << TXCIE1) | (0 << UDRIE1) | (1 << RXENI) | (1 << TXENI) | (0 << UCSZI2) | (0 << RXB81) | (0 << TXB81); //Rx. Tx
    UBRR1L = 0x19; \frac{1}{38400} band rate
    sei();
    do {
    } while (1);
```

CODE - 헬멧부 ATMEGA128

- 타이머 인터럽트 / 킥보드부로 보낼 데이터 계산 / 알코올 농도 수치 측정 함수

```
| ISR(TIMER1_OVF_vect) {
    cli();
   TCNT1H = QxC2;
   TCNT1L = 0xF6;
   while (!(UCSR1A & Ox2O)); //데미터가 있을 때(1) 넘어갈 수 있음
UDR1 = calc_uart(); //킥보드부로 신호 전송
   sei();
int calc_uart() {
    int uart;
    int a = measure_alcohol();
   int b = testhelmet();
   uart = (a << 4) | b; // 앞 4bit = 알코올 , 뒤 4bit = 헬멧 정보를 TX로 전송
    return uart;
int measure_alcohol() {
   ADMUX = 0x40;
   ADCSRA |= 0x40; // ADC start
   while ((ADCSRA & 0x40)) {} //ADC complete stand by
   alcohol_LOW = ADCL;
   alcohol_HIGH = ADCH;
   alcohol_Result = (alcohol_HIGH << 8) | alcohol_LOW;
   return alcohol_Result / 100;
```

- main 함수 – 레지스터 설정 / LCD 함수 / UART 인터럽트

```
#include <avr/io.h>
   #include <avr/delav.h>
  #include <avr/interrupt.h>
  #include <util/delay.h>
   #define ENABLE PORTE I= 0x01;
  #define DISABLE PORTE &=~0x01;
   #define RS_SET PORTE |= 0x04;
   #define RS_CLI PORTE &=~0x04;
   #define RW_SET PORTE |= 0x02;
  #define RW_CLI PORTE &= ~0x02;
   #define MAX_LCD_CNT 7
  volatile int usage_time = 0;
  volatile int cnt = 0;
unsigned int ADC_Result, inten;
unsigned char ADC_LOW, ADC_HIGH;
 unsigned int alcohol[8];
 volatile int name_pass[6] = { 'P', 'A', 'S', 'S' };
volatile int name_nonpass[7] = { 'N', 'O', 'N', 'P', 'A', 'S', 'S' };
 volatile int fromhelmet;
   int main(void) {
                    cli();
                     DDRÀ = 0xFF; // RC카 출력
                     DDRB = OxFF; // CLCD 출력
                  DDRE = 0x07; // CLCD 출력
DDRE = 0x07; // CLCD 출력
DDRD = 0x08; // TX 출력
DDRC = 0xFF; // 조도센서 LED 출력
DDRF = 0x00; // 터치센서 입력
                   EICRA = (0 << ISC31) | (0 << ISC30) | (0 << ISC21) | (0 << ISC20) | (1 << ISC11) | (1 << ISC10) | (1 << ISC01) | (1 << ISC01) | (1 << ISC00) | (1 << ISC01) 
                   EIMSK = (0 << INT7) / (1 << INT6) / (0 << INT5) / (0 << INT4) / (0 << INT3) / (0 << INT2) / (1 << INT1) / (1 << INT0); //
                    TIMSK = (0 << OCIE2) | (0 << TOIE2) | (0 << TOIE2) | (0 << TOIE2) | (0 << TOIE2) | (0 << TOIE3) 
                     TCCR1A = 0x00;
                     TCCR1B = 0x05;
                     TCNT1H = 0 \times FF:
                     TCNT1L = 0xFE;
                     ADMUX = (0 << REFS1) | (1 << REFS0) | (0 << ADLAR) | (0 << MUX4) | (0 << MUX3) | (0 << MUX2) | (0 << MUX1) | (1 << MUX0); //
                     ADCSRA = (1 << ADEN) | (0 << ADES) | (0 << ADER) | (0 << ADES) | (1 << A
                    UCSRIC = 0x07; //parity x, 8bit
                     UCSRIB = (1 << RXCTE1) | (0 << TXCIE1) | (0 << TXCIE1) | (0 << TXB81); //Rx, Tx
                     UBRRIL = 0x67; //16 메기clock , 9600 baud rate
                     _delay_ms(100);
                    init_LCD();
                    sei();
                     do {
                    } while (1);
```

```
void write_instruction(unsigned char data)
   RS_CL1
       RW_CL1
       ENABLE
       _delay_us(1);
   PORTB = data;
                                   |void clear(void) {
                                      write_instruction(0x80 | 0x46); _delay_ms(10);
   _delay_us(1);
                                      write_data(' '); _delay_us(1000);
   DISABLE
                                      write_instruction(0x80 | 0x47); _delay_ms(10);
                                      write_data(' '); _delay_us(1000);
                                      write_instruction(0x80 | 0x48); _delay_ms(10);
void write_data(unsigned char data) {
                                      write_instruction(0x80 | 0x49); _delay_ms(10);
   RS_SET
                                      RW_CL1
                                      write_instruction(0x80 | 0x4A); _delay_ms(10);
       ENABLE
                                      write_data(' ');    _delay_us(1000);
       PORTB = data;
                                      write_instruction(0x80 | 0x4B); _delay_ms(10);
   _delay_us(1);
                                      DISABLE
                                      write_instruction(0x80 | 0x4C); _delay_ms(10);
       _delay_us(1);
                                      write_data(' '); _delay_us(1000);
                                      write_instruction(0x80 | 0x4D); _delay_ms(10);
                                      write_data(' '); _delay_us(1000);
void init_LCD(void) {
                                      write_instruction(0x80 | 0x4E); _delay_ms(10);
                                      write_data(' '); _delay_us(1000);
   _delay_ms(75);
                                      write_instruction(0x30);
                                      write_data('');    _delav_us(1000);
   _delay_ms(25);
   write_instruction(0x30);
   _delay_ms(5);
   write_instruction(0x30);
                               [ISR(SIG_UART1_RECV) { // UART 인터럽트
   _delay_ms(5);
   write_instruction(0x3c);
                                   cli();
   _delay_ms(5);
   write_instruction(0x08);
                                   while (!(UCSR1A & Ox2O)); // 1일때만 허용
   _delav_ms(5);
                                   fromhelmet = UDR1; // 변수 저장
   write_instruction(0x01);
   _delay_ms(5);
   write_instruction(0x06);
                                   sei();
   _delay_ms(5);
   write_instruction(0x0c);
   _delay_ms(5);
```

- 킥보드 운행 제어 인터럽트

```
ISR(INTO_vect) {
    cli();
    if (cnt == 0) cnt++; // 준비 상태에서 INTO 발생시 cnt 증가 -> 안전검사 진행
    else if ((cnt >= 4) && (cnt < MAX_LCD_CNT)) cnt = 0; // 주행 중 INTO 발생 -> 운행종료
    sei();
}

// Icd
ISR(INT1_vect) { // 주행 중 INT1 발생 시 LCD 화면 변경
    cli();
    if (cnt >= 4) {
        cnt++;
        init_LCD();
        if (cnt == MAX_LCD_CNT) cnt = 4;
    }
    sei();
}
```

```
ISR(TIMER1_OVF_vect) {
    cli();
    TCNT1H = 0xC2; //1sec
    TCNT1L = 0xF6;
    if ((cnt > 3) && (cnt < MAX_LCD_CNT)) { // 운행 중(짬금해제 후)
     usage_time++; // 시간 증가
jodo(); // 조도센서 함수
if(fromhelmet >= 0x40){ // 알코올 넘으면 종료
         init_LCD();
           _delay_us(100);
           write_data('1');
         _delay_ms(1000);
         cnt = 0;
      else if(((fromhelmet & OxO1) == O)){ // 헬멧 벗으면 종료
         initLCD();
           _delay_us(100);
           write_data('2');
         _delav_ms(1000);
         cnt = 0;
    if (cnt == 0) off(); // 0 : 준비상태, 1~3 : 안전검사, 4~ : 주행
    else if (cnt == 1) testhelmet();
    else if (cnt == 2) testalcohol();
else if (cnt == 3) testouch();
    else if (cnt == 4) LCD_usagetime();
    else if (cnt == 5) LCD_jodo();
   else if (cnt == 6) LCD_monev();
    _delav_ms(100);
   sei();
```

- 킥보드 운행 제어 함수 (1)

```
void off() {
    usage_time = D; // 문행 시간 초기화
init_LCD(); // LCD 초기화
   fromhelmet = 0; // RX 변수 초기화
RC_stop();// 킥보드 정지
PORTC=0x00; // 조명 OFF
void testhelmet() {
    int name_testhelmet[6] = { 'H', 'E', 'L', 'M', 'E', 'T' };
    RSLCLI;
    RW_CLI;
    ENABLE;
    _delay_us(1);
    init_LCD();
    for (int i = 0; i < 6; i++) {
        _delay_us(100);
        write_data(name_testhelmet[i]);
    _delav_us(100); write_data(' ');
    if ((fromhelmet & OxO1) == 1) { //헬멧 착용하면
        for (int i = 0; i < 4; i++) {
             _delay_us(100);
             write_data(name_pass[i]);
         _delay_ms(1000);
        cnt++; // cnt 증가 -> 알코올검사 진행
         init_LCD();
```

```
void testalcohol() {
    int name_alcohol[8] = { 'A', 'L', 'C', 'O', 'H', 'O', 'L', ':' };
    RS_CLI;
    RW_CLI;
    ENABLE;
    _delav_us(1);
    init_LCD();
    for (int i = 0; i < 7; i++) {
        _delav_us(100);
        write_data(name_alcohol[i]);
    _delay_ms(3000);
    write_data(' ');
    if (fromhelmet >= 0x40) { // 알코올 값 기준 미상미면
        for (int i = 0; i < 7; i++) {
            _delav_us(100);
            write_data(name_nonpass[i]); // 논패스
        _delav_ms(1500);
        init_LCD();
        _delay_us(100); write_data('0');
_delay_us(100); write_data('F');
        _delay_us(100); write_data('F');
        _delav_ms(1500);
        cnt = 0; // 논패스 -> 종료
   else { // 기준 이하 알코올 값이면
        for (int i = 0; i < 4; i++) {
            _delay_us(100);
            write_data(name_pass[i]);
       _delay_ms(1000);
cnt++;// 다음 단계 -> 양손파지
```

- 킥보드 운행 제어 함수 (2) / 조도 센서 함수

```
void testtouch() {
    init_LCD();
    int name_testhandle[6] = { 'H', 'A', 'N', 'D', 'L', 'E' };
    RS_CLI;
    RW_CLI;
    ENABLE:
    _delav_us(1);
    init_LCD();
    for (int i = 0; i < 6; i++) {
        _delav_us(100);
        write_data(name_testhandle[i]);
    _delay_us(100); write_data(' ');
    while (((PINF & 0x08) == 0) || ((PINF & 0x04) == 0)){}//양손파지확인
    for (int i = 0; i < 4; i++) {
        _delay_us(100);
        write_data(name_pass[i]);
    _delay_ms(1000);
    cnt++; // 다음단계 -> 주행
```

```
void iodo(void) {
   ADCSRA I= 0x40; // ADC start
    while ((ADCSRA & Ox40)) {} //ADC complete stand by
    ADC_LOW = ADCL;
    ADC_HIGH = ADCH;
    ADC_Result = (ADC_HIGH << 8) | ADC_LOW;// 조도센서 값
    if (ADC_Result == 0) { inten = 0; }
         if (ADC_Result < 102)
                                inten = 1;
            (ADC_Result < 204)
                                 inten = 2;
            (ADC_Result < 306)
                                 inten = 3;
            (ADC_Result < 408)
                                 inten = 4;
            (ADC_Result < 510)
                                 inten = 5;
            (ADC_Result < 612)
                                 inten = 6;
   else if (ADC_Result < 814)
                                 inten = 7;
    else if (ADC_Result < 916) {
                                 inten = 8;
   else { inten = 9; } // 조도센서 값 분류
    if (inten <= 5) PORTC = OxFF; // 조도센서 값이 5이하면 조명 아
    else PORTC = 0 \times 00;
```

- LCD 출력 함수- 조도, 사용 시간, 요금

```
void LCD_jodo(void) {
    int name_light[6] = { 'L', 'I', 'G', 'H', 'T',':'};
   int name_on[2] = { '0', 'N'};
int name_off[3] = { '0', 'F', 'F'};
    RS_CLI;
    RW_CLI;
    ENABLE:
    _delay_us(1);
    init_LCD();
    write_instruction(0x80 | 0x00); _delav_ms(10);
    for (int i = 0; i < 6; i++) {
        _delay_us(100);
        write_data(name_light[i]);
    _delay_us(100); write_data(inten + '0');
   _delay_us(100); write_data('');
   if(inten <= 5){
      for (int i = 0; i < 2; i++) {
           _delay_us(100);
           write_data(name_on[i]);
   else{
      for (int i = 0; i < 3; i++) {
            _delay_us(100);
           write_data(name_off[i]);
    _delay_ms(1000);
```

```
void LCD_usagetime(void) { // 사용시간 표시함수
int name_usagetime[10] = { 'U', 'S', 'A', 'G', 'E', '', 'T', 'I', 'M', 'E' };
int where[cd[]_= { 0x80 | 0x00, 0x80 | 0x01, 0x80 | 0x02, 0x80 | 0x03, 0x80 | 0x04 };
     int usage_time2 = usage_time;
     int usagetime_sec1, usagetime_sec2;
     int usagetime_min1, usagetime_min2;
     int usagetime_hour1, usagetime_hour2;
     usagetime_hour1 = (usage_time2 / 3600) / 10; // 시간
     usagetime_hour2 = (usage_time2 / 3600) % 10;
     usage_time2 = usage_time % 3600;
                                                                      void LCD_money(void){
     usagetime_min1 = (usage_time2 / 60) / 10; //분
                                                                          int monev;
                                                                          int price[5];|
int name_won[3] = {'\','0','N'};
     usagetime_min2 = (usage_time2 / 60) % 10;
     usage_time2 = usage_time % 60;
                                                                         RS_CLI;
                                                                           RW_CLI;
     usagetime_sec1 = usage_time2 / 10; //초
                                                                           ENABLE;
     usagetime_sec2 = usage_time2 % 10;
                                                                           _delay_us(1);
                                                                           init_LCD();
     RS_CLI;
                                                                           write_instruction(0x80 | 0x00); _delay_ms(10);
     RW_CLI;
                                                                          money = usage_time*10;
     ENABLE;
                                                                         price[4] = money/10000;
money %= 10000;
price[3] = money/1000;
     _delay_us(1);
     write_instruction(0x80 | 0x00); _delay_ms(10);
                                                                          monev %= 1000;
     for (int i = 0; i < 10; i++) {
                                                                          price[2] = money/100;
          _delay_us(50);
                                                                          money %= 100;
          write_data(name_usagetime[i]);
                                                                          price[1] = money/10;
                                                                          money %= 10;
     _delav_us(50);
                                                                          price[0] = money;
     write_instruction(0x80 | 0x40);
                                                                          for (int i = 4; i >=0; i--) {
     _delay_us(50);
                                                                                   write_data(price[i]+'0');
     write_data(usagetime_hour1 + '0'); _delay_us(100);
write_data(usagetime_hour2 + '0'); _delay_us(100);
                                                                                 _delay_us(100);
     write_data(':'); _delay_us(100);
    write_data(usagetime_min1 + '0'); _delay_us(100);
write_data(usagetime_min2 + '0'); _delay_us(100);
write_data(':'); _delay_us(100);
                                                                          write_data(' '); _delay_us(100);
                                                                          for (int i = 0; i < 3; i++) {
                                                                                   write_data(name_won[i]);
                                                                                 _delay_us(100);
     write_data(usagetime_sec1 + '0'); _delay_us(100);
     write_data(usagetime_sec2 + '0'); _delay_us(100);
```

- 킥보드(RC카) 운행 함수

```
void RC_start() {
     PORTA = 0x3A;
}

void RC_stop() {
     PORTA = 0x00;
}
```

```
[SR(INT6_vect) { // 주행 버튼
cli();
if ((cnt > 3) && (cnt < MAX_LCD_CNT)) {
    if (EICRB == 0x30) { //라이징 엣지라면 -> 폴링엣지로
        RC_start();
        EICRB = (0 << ISC71) | (0 << ISC70) | (1 << ISC61) | (0 << ISC50) | (0 << ISC50) | (0 << ISC41) | (0 << ISC40); //set falling edge
    }

else if (EICRB == 0x20) { //폴링 엣지라면 -> 라이징 엣지로
        RC_stop();
        EICRB = (0 << ISC71) | (0 << ISC70) | (1 << ISC61) | (1 << ISC60) | (0 << ISC51) | (0 << ISC50) | (0 << ISC41) | (0 << ISC40);
    }
}
sei();
```

작품 시연

Q&A

