Contents

1	pre 1.1 1.2	Aim	3								
2	2.1		5								
Ι	Th	e integers $\mathbb Z$	7								
	2.2	Addition:	9								
	2.3	multiplication	9								
3	The	e fundamental theorem of arithmetic	L								
	3.1	Def	Ĺ								
	3.2	Theorem: The division algorithm	L								
	3.3	Def	2								
	3.4	Corollary of 3.2	2								
	3.5	Def	2								
	3.6	Euclid's Lemma	2								
	3.7	The fundamental theorem of arithmetic	3								
	3.8	Corollary	3								
4	Cor	agruence in $\mathbb Z$	5								
	4.1	Def	ó								
	4.2	Lemma	3								
	4.3	Remark	3								
	4.4	Theorem (The structure of $\mathbb{Z}/p\mathbb{Z}$, p prime)	3								
	4.5	Chinese remainder theorem	7								
5	Rings 19										
	5.1	Def)								
	5.2	Def)								
	5.3	Def	Ĺ								
	5 4	Theorem 21	1								

2		CONTENTS

	5.5	Def
	5.6	Def
	5.7	Def
	5.8	Prop
6	The	polynomial ring 25
	6.1	Def
	6.2	Theorem
	6.3	Theorem
	6.4	Def
	6.5	Theorem
		6.5.1 Proof
	6.6	Division algorithm
	6.7	Corollary
	6.8	Def
	6.9	Theorem

preface

1.1 Aim

- $\bullet\,$ abstract algebraic structures on math objects.
- Basic language of modern math.

1.2 Ref

- Dummit & Foote: Abstract algebra, 3rd edition.
- 聂灵沼 & 丁石孙: 代数学引论 (第二版)

2.1

for an equation:

$$x^2 + 4x + 3 = 0$$

Analysis
$$x^2 + 4x + 3 = 0 \Rightarrow (x+3)(x+1) = 0 \Rightarrow x = -1 \text{ or } x = -3$$

Algebra Vary the coefficients, consider $ax^2+bx+c=0$ general solution is $x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$

Geometry

For the analysis, we solve the problem itself, for algebra, we abstract the problem (using abstract def and notations) and for geometry, we care about the graph and shapes.

6 CHAPTER 2.

2.2. ADDITION: 9

$$\mathbb{Z} = \{0, \pm 1, \pm 2, \pm 3, \cdots\}$$

There are two binary operations: addition and multiplication.

2.2 Addition:

 $\exists! (exists uniquely) \ 0 \in \mathbb{Z}$ such that

$$n + 0 = n$$

$$\forall n, \exists -n \in \mathbb{Z} \text{ s.t. } n + (-n) = 0$$
 and

$$n+m=m+n$$

2.3 multiplication

 $\exists ! 1 \in \mathbb{Z} \text{ s.t.}$

$$n \cdot 1 = n$$

and

$$m \cdot n = n \cdot m \quad \forall m, n \in \mathbb{Z}$$

Only ± 1 have multiplication inverses.

The fundamental theorem of arithmetic

3.1 Def

For $a,b\in\mathbb{Z}$ a divides b (written as $a\mid b)$ if

$$\exists c \text{ s.t } b = ac$$

3.2 Theorem: The division algorithm

Let $a, b \in \mathbb{Z}$ with b > 0. Then $\exists ! (q, r) \in \mathbb{Z}^2$ such that

$$a = b \cdot q + r$$
 and $0 \le r < b$

Proof

Let $S = \{a - bk \mid k \in \mathbb{Z}, a - bk \ge 0\} \subseteq \mathbb{N}$ If $0 \in S$ then $b \mid a$, then $q = \frac{a}{b}, r = 0$ Now assume $0 \notin S (\Rightarrow a \ne 0)$. Since $S \ne \emptyset$, by well ordering principle of \mathbb{N} , we have a smallest number, say r = a - bq > 0. It remains to show r < b. If $r \ge b$

$$a - b(q + 1) = a - bq - b = r - b \ge 0$$

and

$$a - b(q+1) = r - b < r$$

contradiction.

For uniqueness, assume a = bq + r and a = bq' + r'. Suppose $r' \ge r$ then

$$bq + r = a = bq' \implies b(q - q') = r' - r \ge 0$$

 $\Rightarrow b \mid r' - r \text{ and } 0 \le r' - r \le r' < b, \text{ thus we have}$

$$r' - r = 0$$

so as q = q'

3.3 Def

- gcd(a, b) is the greatest common divisor of a and b
- If gcd(a, b) = 1 then we say a and b are relative prime or coprime.

3.4 Corollary of 3.2

Let $a, b \in \mathbb{Z}$ no both zero, and let $c = \gcd(a, b)$. Then $\exists (xx, y) \in \mathbb{Z}^2$ such that ax + by = c

Proof

Let $S = \{ax + by \mid (x, y) \in \mathbb{Z}^2\} \cap \mathbb{Z}_{>0} \neq \emptyset$. Let $d = \min S$. We claim that

$$d = c = \gcd(a, b)$$

First note that $c \mid a \& c \mid b \Rightarrow c \mid ax + by \quad \forall x, y \in \mathbb{Z} \Rightarrow c \mid d$. With division algorithm, we write

$$a = dq + r = \leq r < d$$

Note that $r \in S$ Hence r = 0 i.e. $d \mid a$ similarly $d \mid b \Rightarrow d \mid c$ They are positive hence d = c

3.5 Def

For $a \in \mathbb{Z} \setminus \{0, \pm 1\}$

• a is called **irreducible** in \mathbb{Z} , if \forall factorization a = bc, we have

$$b \in \pm 1$$
 or $c \in \pm 1$

• a is called **prime** in \mathbb{Z} , if $a \mid bc \Rightarrow a \mid b$ or $a \mid c$

3.6 Euclid's Lemma

In \mathbb{Z} , irreducible \Leftrightarrow prime.

Proof

 \subseteq

Assume a is irreducible and $a \mid bc$. Without loss of generality (WLOG), we assume a > 0 and $a \mid bc$. We show $a \mid c$ in the following way:

airreducible
$$a > 0 \\ a \not \mid b$$
 $\Rightarrow gcd(a,b) = 1$
$$\stackrel{3.4}{\Rightarrow} \exists x, y \in \mathbb{Z} s.tax + by = 1$$

$$\Rightarrow c = acx + acy = a(cx + \frac{bc}{a}y)$$

$$\Rightarrow a \mid c$$

 \supseteq

Assume a is prime and a = bc. WLOG, assume that $a \mid b$, then

$$|b| \stackrel{a=bc}{=} \gcd(a,b) \stackrel{a|b}{=} |a| \Rightarrow c = \pm 1$$

3.7 The fundamental theorem of arithmetic

 $\forall n \in \mathbb{Z}_{\geq 2}$ is a product of positive primes. This prime factorization is unique in the following sense:

• if $n = p_1 \cdots p_s$ and $n = q_1 \cdots q_t$ with p_i, q_j are primes. Then s = t and after reordering and relabeling, $p_i = q_i \forall i$

Proof

For existence, using induction on n. For n = 2, 2 is prime. Assume that the prime factorization exists for any integer k that k < n

If n is prime, done. If n not a prime, using Euclid's lemma 3.6, n = bc with 1 < b < n, 1 < c < n By induction hypothesis, n is also a product of primes.

For uniqueness, using induction on $l = \max\{s,t\}$ If l = 1, $n = p_1 = q_1$. If $p_s \mid q_1 \cdots q_t \Rightarrow \exists i \text{ s.t. } p_s \mid q_i \text{ But } q_i \text{ is prime, so } p_s = p_i$. Reindex and we may assume $p_s = q_t$. Cancel p_s with q_t we get

$$p_1 \cdots p_{s-1} = q_1 \cdots q_{t-1}$$

. By induction hypothesis, s-1=t-1 and after reindex, $p_i=q_i \forall i$

3.8 Corollary

 $\forall n \in \mathbb{Z} \setminus \{0, \pm 1\}, \ n = \pm p_1^{\alpha_1} \cdots p_s^{\alpha_s} \text{ with } p_i \text{ are primes and } \alpha_i \in \mathbb{Z}_{\geq 0}$

Congruence in \mathbb{Z}

4.1 Def

Let $a, b, n \in \mathbb{Z}$ with n > 0 a is **congruent** of b **modulo** n, written as

$$a \equiv b \mod n$$

if $n \mid a - b$

Remark

- It is an equivalence relation.
- Reflexive: $a \equiv a \mod n$
- Symmetric: $a \equiv b \mod n \Rightarrow b \equiv a \mod n$
- Transitive: $a \equiv b \mod n \& b \equiv c \mod n \Rightarrow a \equiv c \mod n$

 $a \equiv b \mod n \Rightarrow a + c \equiv b + d \mod n$ $c \equiv d \mod n \Rightarrow ac \equiv bd \mod n$

So we can have congruence class modulo n:

$$[a]_n := \{b \in \mathbb{Z} \mid b \equiv a \mod n\} = a + n\mathbb{Z}$$

They are only n disjoint congruence class modulo n:

$$[0]_n,\cdots,[n-1]_n$$

The set of congruence classes modulo n is denoted as $\mathbb{Z}/n\mathbb{Z}$

4.2 Lemma

If
$$[a]_n = [i]_n, [b]_n = [j]_n$$
 then

$$[a+b]_n = [i+j]_n$$
 $[ab]_n = [ij]_n$ $[a-b]_n = [i-j]_n$

Therefore, we define the following binary operations on $\mathbb{Z}/n\mathbb{Z}$:

$$[i]_n + [j]_n := [i+j]_n$$

 $[i]_n \cdot [j]_n := [ij]_n$

We have addition and multiplication satisfying associativity law, distribution law, additive inverse.

4.3 Remark

In \mathbb{Z} , if a, b are non-zero, then $ab \neq 0$. But in $\mathbb{Z}/n\mathbb{Z}$, $[a]_n[b]_n = [0]_n$ if $n \mid ab$. In \mathbb{Z} for 2x = 1 it have no solution. But in $\mathbb{Z}/3\mathbb{Z}, [2]_3x = [1]_3 \Rightarrow x = [2]_3$

4.4 Theorem (The structure of $\mathbb{Z}/p\mathbb{Z}$, p prime)

For $p \in \mathbb{Z}_{\geq 2}$. The following are equivalent(TFAE):

- 1 p is prime
- $2 \ \forall a \neq 0 \text{ in } \mathbb{Z}/p\mathbb{Z}, \ ax = 1 \text{ has a solution in } \mathbb{Z}/p\mathbb{Z}$
- 3 whenever bc = 0 in $\mathbb{Z}/p\mathbb{Z}$, b = 0 or c = 0

Proof

 $1 \Rightarrow 2$

 $0 \neq [a]_p \Rightarrow p \neq a$ so $\gcd(a,p) = 1$ then $\exists (x,y) \in \mathbb{Z} \text{ s.t. } ax + py = 1$. So moduloing p we get $ax \equiv 1 \mod p$. then $ax = 1 \mod \mathbb{Z}/p\mathbb{Z}$ has a solution

 $2 \Rightarrow 3$

Suppose bc=0 in $\mathbb{Z}/p\mathbb{Z}$, WLOG, we assume $b\neq 0$ in $\mathbb{Z}/p\mathbb{Z}$, $\exists \in \mathbb{Z}/p\mathbb{Z}$ s.t. xb=1.

$$\Rightarrow c = c \cdot 1 = xbc = 0$$

 $3 \Rightarrow 1$

bc = 0 in $\mathbb{Z}/p\mathbb{Z} \implies p \mid bc$ Hence it follows from the define of prime.

4.5 Chinese remainder theorem

If we have n and n' are relative prime, $b, b' \in \mathbb{Z}$, then the congruence equation

$$\begin{cases} x \equiv b \mod n \\ x \equiv b' \mod n' \end{cases}$$

have a common solution in \mathbb{Z} , and any two solutions are congruence modulo $n \cdot n'$.

Proof

 $x \equiv b \mod n \Rightarrow x = b + kn$ for some $k \in \mathbb{Z}$. We need to find k s.t.

$$b + kn = b' \mod n'$$

i.e.

$$kn \equiv b' - b \mod n'$$

Since gcd(n, n') = 1, then $\exists u, v \in \mathbb{Z}$ s.t.

$$nu + n'v = 1$$

$$b' - b = (b' - b)1 = nu(b' - b) + n'v(b' - b)$$

Therefore k = u(b' - b) satisfies $b + kn \equiv b' \mod n'$. If y in another solution in \mathbb{Z} , then $n \mid x - y, n' \mid x - y$. We write

$$x - y = nt = n't'$$

for some $t, t' \in \mathbb{Z}$

$$x - y = (x - y)1 = (x - y)(nu + n'v) = nun't' + n'vnt$$

$$\Rightarrow nn' \mid x - y$$

Remark

In other words, CRT claims that the mapping

$$\mathbb{Z}/nn'\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n'\mathbb{Z}$$

 $[a]_{nn'} \mapsto ([a]_n, [a]_{n'})$

is surjective, hence bijective.

Rings

5.1 Def

A **ring** is a nonempty set R equipped with two binary operations (usually written as addition and multiplication) that satisfy the following:

```
Addition — If a \in R, b \in R, a + b \in R (Close for addition)

— (a + b) + c = a + (b + c) (Associative)

— a + b = b + a (Commutative)

— \exists 0_R \in R \text{ s.t. } a + 0_R = a (neutral element)

— \forall a \in R, a + x = 0_R has a solution in R (additive inverse)

Multiplication — If a \in R, b \in R, ab \in R (Close for multiplication)

— (ab)c = a(bc) (Associative)

— \exists 1_R \in R \text{ s.t. } a \cdot 1_R = a = 1 \cdot a (neutral element)

— a(b + c) = ab + ac and (b + c)a = ba + ca (Distribution law)
```

Warning

- A ring R cannot be empty.
- All rings will have the identify element.

A commutative ring is a ring that satisfying

$$ab = ba \quad \forall a, b \in R$$

Let $S \subseteq R$ be a subset of a ring R. If S is a ring under the addition and multiplication in R, then we say S is a **subring** of R

Remark

- $\forall a \in R, a + x = 0_R$ has a unique solution denoted as -a
- In R, we have $a0_R = 0_R = 0_R a$
- $a+b=a+c \Rightarrow b=c \text{ and } -(a-b)=-a+b$

5.2 Def

Let R be a non-trivial ring.

• An element $r \in R$ is called **unit** if $\exists s \in R$ s.t.

$$rs = 1_R = sr$$

In this case, s is called the **multiplicative inverse** of r

- We denote R^{\times} the set of all units in R.
- An element $r \in R$ is called **zero-divisor** if $rs = 0_R$ for some $s \neq 0 \in R$ (then 0_R is also a zero divisor)

Remark

For a commutative ring R, $r \in R$ we can define

$$\varphi_r : R \longrightarrow R$$
$$x \mapsto rx$$

a mapping of sets.

r is a unit $\Leftrightarrow \varphi_r$ is bijective

$$\Rightarrow rs = 1 \Rightarrow \varphi_r \circ \varphi_s = Id = \varphi_s \circ \varphi_r$$

$$\Leftarrow \exists s \in R \text{ s.t. } 1 = \varphi_r(s) = rs$$
 $r \text{ is non a zero divisor } \Leftrightarrow (rs_1 = rs_2 \Rightarrow r(s_1 - s_2) = 0 \Rightarrow s_1 = s_2) \Leftrightarrow \varphi_r \text{ is injective.}$

Example

The only unit in \mathbb{Z} are ± 1 , but ni non-zero divisor. And also 2 is neither a unit nor a zero divisor.

• In $\mathbb{Z}/6\mathbb{Z}$ the zero-divisor:0,2,3,4; units: 1,5. So Any elements is either a unit or a zero-divisor in $\mathbb{Z}/6\mathbb{Z}$ (this holds for $\mathbb{Z}/n\mathbb{Z}$)

5.3. DEF 21

5.3 Def

• A division ring(skew filed) is a non-trivial ring R s.t. $\forall 0_R \neq a \in R$, is a unit

- A non-trivial commutative ring R is an **integral domain** if it has no non-zero zero-divisor.
- A non-trivial commutative division ring is called a **filed**.

EXample

- $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ are fields.
- $\mathbb{Z}/p\mathbb{Z}$ is a filed $\Leftrightarrow p$ is a prime.
- \mathbb{Z} is an integral domain, but $\mathbb{Z}/6\mathbb{Z}$ is not.
- Any field is an integral domain $(0 \neq r \in R \varphi_r)$ is bijective \Rightarrow is injective)
- Real Hamilton quaternions is a division ring, but not a field.

5.4 Theorem

Every finite integral domain R is a filed.

Proof

 $\forall r \neq 0 \in R$ we define $\varphi_r : x \mapsto rx$ is injective. But R is a finite set, hence φ_r is bijective $\Rightarrow r$ is a unit.

5.5 Def

Let R and S are rings. A mapping $f:R\to S$ is called a **ring homomorphism** if

$$f(a + b) = f(a) + f(b)$$
 $f(ab) = f(a)f(b)$ and $f(1_R) = 1_S$

A ring homomorphism is called ring isomorphism if it is bijective, denoted as \cong

Remark

- We have $f(0_R) = 0_S : f(0_R) = f(0_R + 0_R) = f(0_R) + f(0_R)$
- We require f sending 1_R to 1_S , hence $f \equiv 0$ is not a ring morphism unless S = 0
- Id_R is a isomorphism

- If $f: R \to S, g: S \to T$ are morphism, then $f \circ g$ also morphism.
- If $f: R \to S$ a ring isomorphism, so does f^{-1} .
- The image of a ring homomorphism $f: R \to S$ is a subring of S
- There's no morphism from \mathbb{Z} to $\mathbb{Z}/n\mathbb{Z}$

5.6 Def

For rings R and S, we have a ring structure on the Cartesian product $R \times S$ defined coordinatewise:

$$(r_1, s_1) + (r_2, s_2) = (r_1 + r_2, s_1 + s_2)$$
 $(r_1, s_1)(r_2, s_2) = (r_1r_2, s_1s_2)$

We have a mapping:

$$f: \mathbb{Z}/nn'\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n'\mathbb{Z}$$
$$[a]_{nn'} \mapsto ([a]_n, [a]_{n'})$$

It's in fact a ring morphism

$$f([a]_{nn'} + [b]_{nn'}) \stackrel{\text{on } \mathbb{Z}/nn'\mathbb{Z}}{=} f([a+b]_{nn'})$$

$$\stackrel{definition}{=} ([a+b]_n, [a+b]_{n'})$$

$$(on\mathbb{Z}/n\mathbb{Z} and\mathbb{Z}/n'\mathbb{Z}) = ([a]_n + [b]_n, [a]_{n'} + [b]_{n'})$$

$$(on \mathbb{Z} n\mathbb{Z} \times \mathbb{Z} n'\mathbb{Z}) = ([a]_n, [a]_{n'}) + ([b]_n, [b]_n)$$

$$= f([a]_{nn'}) + f([b]_{nn'})$$

Similarly, for $f([a]_{nn'}[b]_{nn'}) = f([ab]_{nn})$. If gcd(n, n') = 1, by CRT, f is surjective, hence bijective. We have a ring morphism:

$$\mathbb{Z}/nn'\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n'\mathbb{Z}$$

if gcd(n, n') = 1 But injective is much easier:

If $f([a]_{nn'}) = 0 \Rightarrow ([a]_n, [a]_{n'}) = 0 \Rightarrow n \mid a, n' \mid a \Rightarrow nn' \mid a \Rightarrow [a]_{nn'} = 0$ This gives an "abstract" proof of CRT.

There are 24 bijections $f: \mathbb{Z}/4\mathbb{Z} \to \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. But none of theses bijections is ring morphism. For $x \in \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n'\mathbb{Z}$ x + x = 0 However,

$$[1]_4 + [1]_4 = [2]_4 \neq 0$$
 in $\mathbb{Z}/4\mathbb{Z}$

cannot be a ring morphism.

5.7. DEF 23

Remark

In general, if $n=p_1^{\alpha_1}\cdots p_k^{\alpha_k}$ with p_i primes. We have

$$\mathbb{Z}/n\mathbb{Z} \stackrel{\cong}{\to} \mathbb{Z}/p_1^{\alpha_1}\mathbb{Z} \times \cdots \times \mathbb{Z}/p_s^{\alpha_s}$$
$$[a]_n \mapsto ([a]_{p_1^{\alpha_1}}, \cdots, [a]_{p_s^{\alpha_s}})$$

Moreover, $[a]_n \in {}^{\alpha_1} Z/n^{\alpha_1}Z$ is unit $\Leftrightarrow [a]_{p_i^{\alpha_i}}$ is a unit in $\mathbb{Z}/p_i^{\alpha_i}\mathbb{Z} \ \forall i$. Therefore,

$$(\mathbb{Z}/n\mathbb{Z})^{\times} \stackrel{1=1}{\to} (\mathbb{Z}/p_1^{\alpha_1}\mathbb{Z})^{\times} \times \cdots \times (\mathbb{Z}/p_s^{\alpha_s}\mathbb{Z})^{\times}$$

bijective.

5.7 Def

Euler φ -function is defined as:

$$\varphi(n) := \#\{x < n \in \mathbb{N}_+ \mid \gcd(x,n) = 1\}$$

5.8 Prop

Euler φ -function is multiplicative:

$$\varphi(n) = \stackrel{CRT}{=} \varphi(p_1^{\alpha_1}) \cdots \varphi(p_s^{\alpha_s}) = n(1 - \frac{1}{p_1}) \cdots (1 - \frac{1}{p_s})$$

for
$$\varphi(p^{\alpha}) = (p^{\alpha} - 1) - (p^{\alpha - 1} - 1) = p^{\alpha}(1 - \frac{1}{p})$$

The polynomial ring

The polynomial rings enjoy one feature that \mathbb{Z} does not: The notion of a root of a polynomial. \rightsquigarrow The theory of equations.

6.1 Def

Let R be a ring

- A **polynomial with coefficients** in R is defined to be an infinite sequence $(a_n)_{n\in\mathbb{N}}$ such that $a_i\in R$ and only finitely many of the a_i are nonzero. That's, for some index k, $a_i=0_R, \forall i>k$
- Two polynomial $(a_n)_{n\in\mathbb{N}}$ and $(b_n)_{n\in\mathbb{N}}$ are **equal** if they are equal as sequence; That's $a_i = b_i \forall i \geq 0$
- Addition:

$$(a_n)_{n\in\mathbb{N}} + (b_n)_{n\in\mathbb{N}} = (a_n + b_n)_{n\in\mathbb{N}}$$

Multiplication:

$$(a_n)_{n\in\mathbb{N}}(b_n)_{n\in\mathbb{N}} = (\sum_{i+j=n} a_i b_j)_{n\in\mathbb{N}}$$

6.2 Theorem

Let R be a ring, and let P be the set of all polynomials with coefficients in R. Then

- 1 P is a ring. If R is commutative, so as P
- 2 Let \tilde{R} be the set of all polynomial in P of the form $(r_n)_{n\in\mathbb{N}}$ with $r\in R$. Then \tilde{R} is a subring of P and is isomorphic to R

Proof

 $\mathbf{2}$

Consider the mapping from R to \tilde{R}

$$\begin{array}{ccc} f: R & \to \tilde{R} \\ r & \mapsto (r, 0, 0, \cdots) \end{array}$$

This recovers the old notion for polynomials

$$(a,0,\cdots)\in \tilde{R}$$

will be denoted as a

$$(0,1,0,\cdots)$$

will be denoted as x. Hence

$$x_n = (\underbrace{0, 0, \cdots}_{n}, 1, 0, \cdots)$$

6.3 Theorem

Let P be the polynomials with coefficients in R. Then P contains an isomorphic copy \tilde{R} of R and an element x s.t.

- 1 $ax = xa, \forall a \in \tilde{R}$
- 2 Every element in P can be written in the form

$$a_0 + a_1 x + \dots + a_n x^n$$
 for some $n \in \mathbb{Z}_{\geq 0}$

3 If $a_0 + a_1x + \cdots + a_nx^n = b_0 + b_1x + \cdots + b_mx^m$ with $n \leq m$, then $a_i = b_i$ for $i \leq n$ and $b_i = 0_R$ for i > n

Proof

2 If $(a_n) \in P$ then $\exists n \text{ s.t. } a_i = 0_R \text{ for i} > n$

$$(a_i) = a_0 + a_1 x + \dots + a_n x^n$$

6.4 Def

• Let $f(x) = a_0 + a_1x + \cdots + a_nx^n \in R[x]$ with $a_n \neq 0$ Then a_n is called the leading coefficients of f(x) n is called the degree of f(x) denoted as $\deg f(x)$

Remark: leading coefficients of 0 is 0,

$$\deg(0_R) = -\infty$$

• Let $f(x), g(x) \in R[x]$ with $g(x) \neq 0_R$, we say g(x) divide f(x) written as $g(x) \mid f(x)$, if f(x) = g(x)q(x) for some $q \in R[x]$

6.5. THEOREM 27

6.5 Theorem

Let R be a ring

1 For any $f(x), g(x) \in R[x]$,

$$\deg(f(x) + g(x)) \le \max\{\deg f(x), \deg g(x)\}\$$

$$\deg(f(x)g(x)) \le \deg f(x) + \deg g(x)$$

2 If R is an integral domain. So as R[x] and $(R[x])^{\times} = R^{\times}$

6.5.1 Proof

1 Assume $f, g \neq 0_R$ Suppose $f(x) = a_0 + a_1 x + \dots + a_n x^n, g(x) = b_0 + b_1 x + \dots + b_m x^m$ with $a_n \neq 0_R, b_m \neq 0_R$ WLOG we assume $n \geq m$

$$f(x)+g(x)=(a_0+b_0)+(a_1+b_1)x+\cdots+(a_n+b_m)x^n+(a_{n+1}b_{n+1})x^{n+1}+\cdots$$

 \Rightarrow

$$\deg(f(x) + g(x)) \le \max\{\deg f(x), \deg g(x)\}\$$

similarly for multiplication.

2 By expression of f(x)g(x) the product of two nonzero polynomials in R[x] is nonzero $(\deg(f(x)g(x)) = \deg f + \deg g)$

It's clear that $R^{\times} \subset (R[x])^{\times}$ For any $f(x) \in (R[x])^{\times}$, there exists $g(x) \in R[x]$, s.t. $f(x)g(x) = 1_R$

$$0 \le \deg f(x) + \deg g(x) = \deg(f(x)g(x)) = \deg(1_R) = 0$$

so $\deg f = \deg g = 0$ meaning

$$f(x) = a \in R, q(x) = b \in R$$

with $ab = 1_R \Rightarrow f(x) = a \in R^{\times}$

6.6 Division algorithm

Let k be a field. $f(x), g(x) \in k[x]$ with $g(x) \neq 0$ Then there exists $q(x), r(x) \in k[x]$ uniquely s.t.

$$f(x) = q(x)q(x) + r(x)$$

and

$$\deg r < \deg g$$

Proof

Existence

If $g(x) \mid f(x)$ then f(x) = q(x)g(x) for some $q(x) \in k[x]$ If $g(x) \mid f(x)$, then consider

$$S = \{ f(x) - q(x)g(x) \in k[x] \mid f(x) - q(x)g(x) \neq 0, q(x) \in k[x] \}$$

Let $r(x) = f(x) - q(x)g(x) \in S$ be a polynomial of the minimal deg. It suffices to show

$$\deg r < \deg g$$

We write

$$g(x) = s_0 + s_1 x + \dots + s_n x^n$$
 $r(x) = r_0 + r_1 x + \dots + r_m x^m$

with $s_n, r_m \neq 0$.

If $\deg r \ge \deg g$, then we could define:

$$h(x) = r(x) - t_m s_n^{-1} x^{m-n} g(x)$$

but deg $h < \deg r$. By the minimal degree of r(x), we have h(x) = 0 Then

$$f(x) = q(x)g(x) + t_m s_n^{-1} x^{m-n} g(x)$$

$$\Rightarrow g(x) \mid f(x)$$

Uniqueness

$$\begin{split} f(x) &= q(x)g(x) + r(x) = \tilde{q}(x)g(x) + \tilde{r}(x) \Rightarrow \\ \tilde{r}(x) - r(x) &= (q(x) - \tilde{q}(x))g(x) \\ \tilde{r}(x) &= r(x) \quad \tilde{q}(x) = q(x) \\ \deg(\tilde{r}(x) - r(x)) &< \deg g(x) \\ \deg(\tilde{r}(x) + r(x)) &= \deg q + \deg(q(x) - \tilde{q}(x)) \end{split}$$

Remark

The division algorithm holds for

- k a filed \rightsquigarrow R any commutative ring
- $g(x) \neq 0 \rightarrow$ the leading coefficients of g is unit

6.7 Corollary

Let R a commutative ring. $a \in R$ and $f(x) \in R[x]$. When we divide f(x) by x-a, the remainder if f(a)

6.8. DEF 29

Proof

We have f(x) = q(x)(x - a) + r(x) with deg r < 1 Then r(x) is a constant. Evaluating both sides at x = a, we get r =: f(a)

6.8 Def

Let R be a commutative ring.

• $\forall r \in R$, the evaluation mapping is

$$\varphi_r : R[x] \longrightarrow R$$

$$f(x) = \sum_{i=0}^n a_i x^i \quad \mapsto f(r) := \sum_{i=0}^n a_i r^i$$

which is a ring homomorphism.

• If $f(r) = 0_R$, then we say that r is a root of f(x)

6.9 Theorem

Let R be an **integral domain**. Then a nonzero polynomial $f(x) \in R[x]$ of degree n has at most n roots $\in R$ counting multiplicity.

Proof

If $f(a_1) = 0$, then possibly applied coro6.7 several times, we have

$$f(x) = q_1(x)(x - a_1)^{n_1}$$

with $q_1(a_1) \neq 0$, deg $q_1 = n - n_1$. If $a_2 \in R$ is another root of f(x), the

$$0 = f(a_2) = q(a_2)(a_2 - a_1)^{n_1}$$

 $\Rightarrow q_1(a_2)0$ so

$$q_1(x) = q_2(x)(x - a_2)^{n_2}$$

with $q_2(a_2) \neq 0$ and $\deg q_2 = n - n_1 - n_2$.

After n application of coro6.7, the quotient becomes constant, and we write

$$f(x) = c(x - a_1)^{n_1} \cdots (x - a_k)^{n_k}$$

with $n = n_1 + \cdots + n_k$ Since R is an integral domain, the only possible roots are a_1, \dots, a_k

(This is a tricky proof, for a_n 's existence doesn't guaranteed. But we can use induction to prove it)

Remark

$$f(x) = x^3$$
 in $\mathbb{Z}/8\mathbb{Z}[x]$ but

$$f(0) = f(2) = f(4) = f(6) = 0$$

in $\mathbb{Z}/8\mathbb{Z}$