PROBLEM STATEMENT: To predict the rainfall based on various features of the dataset

```
In [1]: #importing libraries
         import numpy as np
         import pandas as pd
         from sklearn.linear_model import LinearRegression
         from sklearn import preprocessing,svm
         from sklearn.model selection import train test split
         import matplotlib.pyplot as plt
         import seaborn as sns
In [2]: df=pd.read csv(r"C:\Users\user\Downloads\rainfall in india 1901-2015.csv")
Out[2]:
                                                                                                                         Jan-
                                                                                                                               Mar
                  SUBDIVISION YEAR JAN
                                           FEB MAR APR
                                                             MAY
                                                                    JUN
                                                                          JUL AUG
                                                                                       SEP
                                                                                             OCT
                                                                                                   NOV
                                                                                                         DEC ANNUAL
                                                                                                                         Feb
                                                                                                                               May
                   ANDAMAN &
             0
                     NICOBAR
                                1901 49.2
                                            87.1
                                                 29.2
                                                         2.3 528.8 517.5 365.1 481.1 332.6 388.5 558.2
                                                                                                         33.6
                                                                                                                 3373.2 136.3 560.3
                      ISLANDS
                   ANDAMAN &
                     NICOBAR
                                1902
                                      0.0 159.8
                                                 12.2
                                                         0.0 446.1 537.1 228.9 753.7 666.2 197.2 359.0 160.5
                                                                                                                 3520.7 159.8 458.3
                      ISLANDS
                   ANDAMAN &
             2
                     NICOBAR
                                1903 12.7 144.0
                                                   0.0
                                                         1.0 235.1 479.9 728.4 326.7 339.0 181.2 284.4 225.0
                                                                                                                 2957.4 156.7 236.1
                      ISLANDS
                   ANDAMAN &
             3
                     NICOBAR
                                1904
                                      9.4
                                            14.7
                                                   0.0 \quad 202.4 \quad 304.5 \quad 495.1 \quad 502.0 \quad 160.1 \quad 820.4 \quad 222.2 \quad 308.7
                                                                                                         40.1
                                                                                                                 3079.6
                                                                                                                         24.1 506.9
                      ISLANDS
                   ANDAMAN &
                                                                                                                          1.3 309.
                                1905
                                                                                                                 2566.7
                     NICOBAR
                                      1.3
                                             0.0
                                                        26.9 279.5 628.7 368.7 330.5 297.0 260.7
                                                                                                   25.4 344.7
```

Data cleaning and preprocessing

ISLANDS

Out[3]:																			
		SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	ANNUAL	Jan- Feb	Mar- May	Jun Se _l
	0	ANDAMAN & NICOBAR ISLANDS	1901	49.2	87.1	29.2	2.3	528.8	517.5	365.1	481.1	332.6	388.5	558.2	33.6	3373.2	136.3	560.3	1696.
	1	ANDAMAN & NICOBAR ISLANDS	1902	0.0	159.8	12.2	0.0	446.1	537.1	228.9	753.7	666.2	197.2	359.0	160.5	3520.7	159.8	458.3	2185.
	2	ANDAMAN & NICOBAR ISLANDS	1903	12.7	144.0	0.0	1.0	235.1	479.9	728.4	326.7	339.0	181.2	284.4	225.0	2957.4	156.7	236.1	1874.
	3	ANDAMAN & NICOBAR ISLANDS	1904	9.4	14.7	0.0	202.4	304.5	495.1	502.0	160.1	820.4	222.2	308.7	40.1	3079.6	24.1	506.9	1977.

26.9 279.5 628.7 368.7 330.5 297.0 260.7

25.4 344.7

2566.7

ANDAMAN & NICOBAR

ISLANDS

1905

1.3

0.0

In [3]: df.head()

1.3 309.7 1624.

```
In [4]: df.tail()
```

Out[4]:

	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	ANNUAL	Jan- Feb	Mar- May	`
4111	LAKSHADWEEP	2011	5.1	2.8	3.1	85.9	107.2	153.6	350.2	254.0	255.2	117.4	184.3	14.9	1533.7	7.9	196.2	10
4112	LAKSHADWEEP	2012	19.2	0.1	1.6	76.8	21.2	327.0	231.5	381.2	179.8	145.9	12.4	8.8	1405.5	19.3	99.6	11
4113	LAKSHADWEEP	2013	26.2	34.4	37.5	5.3	88.3	426.2	296.4	154.4	180.0	72.8	78.1	26.7	1426.3	60.6	131.1	10:
4114	LAKSHADWEEP	2014	53.2	16.1	4.4	14.9	57.4	244.1	116.1	466.1	132.2	169.2	59.0	62.3	1395.0	69.3	76.7	9:
4115	LAKSHADWEEP	2015	2.2	0.5	3.7	87.1	133.1	296.6	257.5	146.4	160.4	165.4	231.0	159.0	1642.9	2.7	223.9	8
4																		•

In [5]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4116 entries, 0 to 4115
Data columns (total 19 columns):

#	Column	Non-Null Count	Dtype					
0	SUBDIVISION	4116 non-null	object					
1	YEAR	4116 non-null	int64					
2	JAN	4112 non-null	float64					
3	FEB	4113 non-null	float64					
4	MAR	4110 non-null	float64					
5	APR	4112 non-null	float64					
6	MAY	4113 non-null	float64					
7	JUN	4111 non-null	float64					
8	JUL	4109 non-null	float64					
9	AUG	4112 non-null	float64					
10	SEP	4110 non-null	float64					
11	OCT	4109 non-null	float64					
12	NOV	4105 non-null	float64					
13	DEC	4106 non-null	float64					
14	ANNUAL	4090 non-null	float64					
15	Jan-Feb	4110 non-null	float64					
16	Mar-May	4107 non-null	float64					
17	Jun-Sep	4106 non-null	float64					
18	Oct-Dec	4103 non-null	float64					
dtypes: float64(17), int64(1), object(1)								
		1 . I/D						

memory usage: 611.1+ KB

In [6]: df.shape

Out[6]: (4116, 19)

In [7]: df.describe()

Out[7]:

	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	:
count	4116.000000	4112.000000	4113.000000	4110.000000	4112.000000	4113.000000	4111.000000	4109.000000	4112.000000	4110.000
mean	1958.218659	18.957320	21.805325	27.359197	43.127432	85.745417	230.234444	347.214334	290.263497	197.361
std	33.140898	33.585371	35.909488	46.959424	67.831168	123.234904	234.710758	269.539667	188.770477	135.408
min	1901.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.400000	0.000000	0.000000	0.100
25%	1930.000000	0.600000	0.600000	1.000000	3.000000	8.600000	70.350000	175.600000	155.975000	100.525
50%	1958.000000	6.000000	6.700000	7.800000	15.700000	36.600000	138.700000	284.800000	259.400000	173.900
75%	1987.000000	22.200000	26.800000	31.300000	49.950000	97.200000	305.150000	418.400000	377.800000	265.800
max	2015.000000	583.700000	403.500000	605.600000	595.100000	1168.600000	1609.900000	2362.800000	1664.600000	1222.000
4						-				

```
In [8]: df.isnull().sum()
Out[8]: SUBDIVISION
                          0
         YEAR
                          0
         JAN
                          4
         FEB
                          3
         MAR
                          6
         APR
         MAY
                          3
                          5
         JUN
         JUL
                          7
         AUG
                          4
         SEP
                          6
         OCT
                         7
         NOV
                         11
         DEC
                         10
         ANNUAL
                         26
         Jan-Feb
                         6
         Mar-May
                         9
         Jun-Sep
                         10
         Oct-Dec
                         13
         dtype: int64
In [9]: df.fillna(method="ffill",inplace=True)
In [10]: df['YEAR'].value_counts()
Out[10]: YEAR
         1963
                 36
         2002
                 36
         1976
                 36
         1975
                 36
         1974
                 36
                  . .
         1915
                 35
         1918
                 35
         1954
                 35
         1955
                 35
         1909
                 34
         Name: count, Length: 115, dtype: int64
```

```
In [11]: sns.lmplot(x='JUN',y='JUL',order=2,data=df,ci=None)
plt.show()
```


In [12]: df=df[['JAN','FEB','MAR','APR','MAY']]
 sns.heatmap(df.corr(),annot=True)
 plt.show()

1.0

```
In [17]: y_pred=regr.predict(x_test)
    plt.scatter(x_test,y_test,color='blue')
    plt.plot(x_test,y_pred,color='black')
    plt.show()
```



```
In [18]: df500=df[:][:500]
    sns.lmplot(x='MAY',y='MAR',order=2,ci=None,data=df500)
    plt.show()
```



```
In [19]: df500.fillna(method='ffill',inplace=True)
```

In [20]: x=np.array(df500['FEB']).reshape(-1,1)
y=x=np.array(df500['JAN']).reshape(-1,1)

```
In [21]: X_train,X_test,y_train,y_test=train_test_split(x,y,test_size=0.33)
    regr.fit(X_train,y_train)
    regr.fit(X_test,y_test)
Out[21]: * LinearRegression
```

Out[21]: LinearRegression
LinearRegression()

In [22]: y_pred=regr.predict(X_test)
 plt.scatter(X_test,y_test,color='red')
 plt.plot(X_test,y_pred,color='purple')
 plt.show()


```
In [23]: from sklearn.metrics import r2_score
model=LinearRegression()
model.fit(X_train,y_train)
y_predmodel.predict(X_test)
r2=r2_score(y_test,y_pred)
print("R2 Score:",r2)
```

R2 Score: 1.0

RIGDE MODEL

```
In [24]: from sklearn.linear_model import Lasso,Ridge
    from sklearn.preprocessing import StandardScaler

In [25]: features= df.columns[0:4]
    target= df.columns[-4]

In [26]: x=np.array(df['FEB']).reshape(-1,1)
    y=np.array(df['JAN']).reshape(-1,1)

In [27]: x= df[features].values
    y= df[target].values
```

x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.4,random_state=100)

```
In [28]: ridgeReg=Ridge(alpha=10)
    ridgeReg.fit(x_train,y_train)
        train_score_ridge=ridgeReg.score(x_train,y_train)
        test_score_ridge=ridgeReg.score(x_test,y_test)

In [29]: print("\n Ridge Model:\n")
    print("the train score for ridge model is{}".format(train_score_ridge))
    print("the test score for ridge model is{}".format(test_score_ridge))

    Ridge Model:
    the train score for ridge model is0.999999999828922
    the test score for ridge model is0.999999999836248

In [30]: lr=LinearRegression()
```

LASSO MODEL

```
In [32]: print("\n Lasso Model:\n")
    lasso=Lasso(alpha=10)
    lasso.fit(x_train,y_train)
    train_score_ls=lasso.score(x_train,y_train)
    test_score_ls=lasso.score(x_test,y_test)
    print("The train score for ls model is {}".format(train_score_ls))
    print("The test score for ls model is{}".format(test_score_ls))
```

Lasso Model:

The train score for ls model is 0.999936226881545 The test score for ls model is 0.9999362250950667

```
In [34]: pd.Series(lasso.coef_,features).sort_values(ascending=True).plot(kind="box")
```

Out[34]: <Axes: >


```
In [35]: from sklearn.linear_model import LassoCV
    lasso_cv=LassoCV(alphas=[0.0001,0.001,0.01,1,10],random_state=0).fit(x_train,y_train)
    print(lasso_cv.score(x_train,y_train))
    print(lasso_cv.score(x_test,y_test))
```

0.999999994453043

0.999999993985869

ELASTIC NET

```
In [38]: from sklearn.linear_model import ElasticNet
    eln=ElasticNet()
    eln.fit(x,y)
    print(eln.coef_)
    print(eln.intercept_)
    print(eln.score(x,y))

    [0.00000000e+00 9.99136156e-01 1.56645396e-04 0.00000000e+00]
        0.01455738923123917
        0.9999994172977724

In [39]: y_pred_elastic = eln.predict(x_train)
        mean_squared_error=np.mean((y_pred_elastic - y_train)**2)
        print(mean_squared_error)

        0.000725960274965855
```

Conclusion: The above implemented models "Lasso and Ridge" regression is high accuracy compared to them

In []: