Bits, Bytes, and Integers – Part 2

CS2011: Introduction to Computer Systems

Lecture 4

Bits, Bytes, and Integers

- Representing information as bits
- **■** Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating

previous lecture

Addition, negation, multiplication, shifting

- this lecture
- Representations in memory, pointers, strings
- Summary

Unsigned Addition

Operands: w bits

u

True Sum: w+1 bits

u + v. . .

Discard Carry: w bits

$$UAdd_{w}(u, v)$$

Standard Addition Function

- Ignores carry output
- **Implements Modular Arithmetic**

$$s = UAdd_w(u, v) = u + v \mod 2^w$$

0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
A	10	1010
В	11	1011
С	12	1100
D	13	1101
E	14	1110
F	15	1111
		3

Unsigned Addition

Operands: w bits

U •••

True Sum: w+1 bits

u + v

Discard Carry: w bits

$$UAdd_{w}(u, v)$$

Standard Addition Function

- Ignores carry output
- **■** Implements Modular Arithmetic

$$s = UAdd_w(u, v) = u + v \mod 2^w$$

unsigned char	+	1110 1101		E9 + D5	233 213
	1	1011	1110	1BE	446
		1011	1110	BE	190

Hex Decimary

0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
A	10	1010
В	11	1011
С	12	1100
D	13	1101
E	14	1110
F	15	1111

Visualizing (Mathematical) Integer Addition

Integer Addition

- **4-bit** integers *u*, *v*
- Compute true sum $Add_{4}(u, v)$
- Values increase linearly with u and v
- Forms planar surface

$Add_4(u, v)$

Visualizing Unsigned Addition

Wraps Around

- If true sum $\geq 2^{w}$
- At most once
- E.g., w = 4, after wrap around —> max sum = 14

True Sum

Two's Complement Addition

Operands: w bits

True Sum: w+1 bits

Discard Carry: w bits

TAdd and UAdd have Identical Bit-Level Behavior

Signed vs. unsigned addition in C:

Will give s == t

TAdd Overflow

Functionality

- True sum requires *w*+1 bits
- Drop off MSB
- Treat remaining bits as2's comp. integer

True Sum

Visualizing 2's Complement Addition

Values

- 4-bit two's comp.
- Range from -8 to +7

Wraps Around

- If sum ≥ 2^{w-1}
 - Becomes negative
 - At most once
- If sum $< -2^{w-1}$
 - Becomes positive
 - At most once

Characterizing TAdd

Functionality

- True sum requires w+1 bits
- Drop off MSB
- Treat remaining bits as 2's comp. integer

$$TAdd_{w}(u,v) = \begin{cases} u+v+2w & u+v < TMin_{w} \text{ (NegOver)} \\ u+v & TMin_{w} \leq u+v \leq TMax_{w} \\ u+v-2w & TMax_{w} < u+v \text{ (PosOver)} \end{cases} \text{ e.g., -5 + -5}$$

$$\underbrace{ u+v-2w}_{u+v-2w} \quad TMax_{w} < u+v \text{ (PosOver)} \text{ e.g., 4 + 4}$$

Multiplication

- **Goal:** Computing Product of w-bit numbers x, y
 - Either signed or unsigned
- **■** But, exact results can be bigger than w bits
 - Unsigned: up to 2w bits
 - Result range: $0 \le x * y \le (2^w 1)^2 = 2^{2w} 2^{w+1} + 1$
 - E.g., 4-bits: $0 \le x * y \le (2^4 1)^2 = 2^8 2^5 + 1 = 256 32 + 1 = 225$
 - Two's complement min (negative): Up to 2w-1 bits
 - Result range: $x * y \ge (-2^{w-1})^*(2^{w-1}-1) = -2^{2w-2} + 2^{w-1}$
 - E.g., 4-bits: $x * y \ge (-2^3)*(2^3-1) = -8*7 = -56$
 - **Two's complement** max (positive): Up to 2w bits, but only for $(TMin_w)^2$
 - Result range: $x * y \le (-2^{w-1})^2 = 2^{2w-2}$
 - E.g., 4-bits: $x * y \le (-2^3)^2 = (-8)^2 = 64$
- So, maintaining exact results...
 - would need to keep expanding word size with each product computed
 - is done in software, if needed
 - e.g., by "arbitrary precision" arithmetic packages

Unsigned Multiplication in C

Standard Multiplication Function

Ignores high order w bits

Implements Modular Arithmetic

$$UMult_{w}(u, v) = u \cdot v \mod 2^{w}$$

		1110	1001		E9		233
*		1101	0101	*	D5	*	213
1100	0001	1101	1101	C	C1DD 4		49629
		1101	1101		DD		221

Signed Multiplication in C

Standard Multiplication Function

- Ignores high order w bits
- Some of which are different for signed vs. unsigned multiplication
- Lower bits are the same

	1110	1001		E9		-23
*	1101	0101	*	D5	*	-43
0000 001	1 1101	1101	C)3DD		989
	1101	1101		DD		-35

Power-of-2 Multiply with Shift

Operation

- $\mathbf{u} << \mathbf{k}$ gives $\mathbf{u} * 2^k$
- Both signed and unsigned

Operands: w bits

Discard *k* bits: *w* bits

True Product: w+k bits

$$UMult_{w}(u, 2^{k})$$

 $TMult_{w}(u, 2^{k})$

Examples

- u << 3 == u * 8
- u << 5 u << 3 == u * 24
- E.g., 2 * 24 = 2 * (32 8) = (2 * 32) (2 * 8)(2 << 5) - (2 << 3)

 $u \cdot 2^k$

- Most machines shift and add faster than multiply
 - Compiler generates this code automatically

Unsigned Power-of-2 Divide with Shift

example with no binary point:

	Division	Computed	Hex	Binary		
x	15213	15213	3B 6D	00111011 01101101		
x >> 1	7606.5	7606	1D B6	00011101 10110110		
x >> 4	950.8125	950	03 B6	00000011 10110110		
x >> 8	59.4257813	59	00 3B	00000000 00111011		

Signed Power-of-2 Divide with Shift

Quotient of Signed by Power of 2

- $x \gg k$ gives $[x / 2^k]$
- Uses arithmetic shift
- Rounds wrong direction when x < 0</p>

	Division	Computed	Hex	Binary
У	-15213	-15213	C4 93	11000100 10010011
y >> 1	-7606.5	-7607	E2 49	1 1100010 01001001
y >> 4	-950.8125	-951	FC 49	11111100 01001001
y >> 8	-59.4257813	-60	FF C4	1111111 11000100

Correct Power-of-2 Divide

- Quotient of Negative Number by Power of 2
 - Want $[x / 2^k]$ (Round Toward 0)
 - Compute as $[(x+2^k-1)/2^k]$
 - In C: (x + (1 << k) -1) >> k
 - Biases dividend toward 0

Biasing has no effect

Correct Power-of-2 Divide (Cont.)

Case 2: Rounding

Biasing adds 1 to final result

Correct Power-of-2 Divide (Example)

-17 / 16

Dividend:

$$x$$
 101111 -17
+2 k -1 1111 Bias (1 << 4) - 1

Incremented by 1

Arithmetic Shift right by 4

$$\lceil x / 2^k \rceil = \lceil -17 / 2^4 \rceil = -1$$

Binary Point

Incremented by 1

11. 1111

Biasing adds 1 to final result

Negation: Complement & Increment

Negate through complement and increase

```
\sim x + 1 == -x (works for both signed and unsigned)
```

Example

• Observation: $\sim x + x == 1111...111 == -1$

$$x = 15213$$

	Decimal	Hex	Binary
x	15213	3B 6D	00111011 01101101
~x	-15214	C4 92	11000100 10010010
~x+1	-15213	C4 93	11000100 10010011
У	-15213	C4 93	11000100 10010011

Complement & Increment Examples (Special Cases)

$$x = 0$$

	Decimal	Hex	Binary		
0	0	00 00	0000000 00000000		
~0	-1	FF FF	11111111 11111111		
~0+1	0	00 00	0000000 00000000		

Same for unsigned

x = TMin (Signed Two's Complement)

	Decimal	Hex	Binary
x	-32768	80 00	10000000 00000000
~x	32767	7F FF	01111111 11111111
~x+1	-32768	80 00	10000000 00000000

Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating

previous lecture

Addition, negation, multiplication, shifting

this lecture

- Summary
- **■** Representations in memory, pointers, strings

Arithmetic: Basic Rules

Addition:

- Unsigned/signed: Normal addition followed by truncate, same operation on bit level
- Unsigned: addition mod 2w
 - Mathematical addition + possible subtraction of 2^w
- Signed: modified addition mod 2^w (result in proper range)
 - Mathematical addition + possible addition or subtraction of 2^w

Multiplication:

- Unsigned/signed: Normal multiplication followed by truncate, same operation on bit level
- Unsigned: multiplication mod 2w
- Signed: modified multiplication mod 2^w (result in proper range)

Why Should I Use Unsigned?

- Don't use without understanding implications
 - Easy to make mistakes

```
unsigned i;
for (i = cnt-2; i >= 0; i--)
a[i] += a[i+1];
```

Can be very subtle

```
#define DELTA sizeof(int)
int i;
for (i = CNT; i-DELTA >= 0; i-= DELTA)
. . . .
```

Counting Down with Unsigned

Proper way to use unsigned as loop index

```
unsigned i;
for (i = cnt-2; i < cnt; i--)
  a[i] += a[i+1];</pre>
```

- See Robert Seacord, Secure Coding in C and C++
 - C Standard guarantees that unsigned addition will behave like modular arithmetic
 - $0-1 \rightarrow UMax$
- **■** Even better

```
size_t i;
for (i = cnt-2; i < cnt; i--)
   a[i] += a[i+1];</pre>
```

- Data type size_t defined as unsigned value with length = word size
- Code will work even if cnt == UMax

Why Should I Use Unsigned? (cont.)

- Do Use When Performing Modular Arithmetic
 - Multiprecision arithmetic
- Do Use When Using Bits to Represent Sets
 - Logical right shift, no sign extension
- Do Use In System Programming
 - Bit masks, device commands,...

—> unsigned numbers can be very **useful** and C language supports it (Java does not support unsigned numbers)

Integer C Puzzles

Initialization

Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating

previous lecture

Addition, negation, multiplication, shifting

this lecture

- Summary
- Representations in memory, pointers, strings

Byte-Oriented Memory Organization

Programs refer to data by address

- Conceptually, envision it as a very large array of bytes
 - In reality, it's not, but can think of it that way
- An address is like an index into that array
 - and, a pointer variable stores an address

■Note: system provides private address spaces to each "process"

- Think of a process as a program being executed
- So, a program can clobber its own data, but not that of others

Machine Words

Any given computer has a "Word Size"

- Nominal size of integer-valued data
 - and of addresses
- Until recently, most machines used 32 bits (4 bytes) as word size
 - Limits addresses to 4GB (2³² bytes)
- Increasingly, machines have 64-bit word size
 - Potentially, could have 18 EB (exabytes) of addressable memory
 - That's 18.4 X 10¹⁸
 - Machines still support multiple data formats
 - Fractions or multiples of word size
 - Always integral number of bytes

Word-Oriented Memory Organization

- Addresses Specify Byte Locations
 - Address of first byte in word
 - Addresses of successive words differ by 4 (32-bit) or 8 (64-bit)

Example Data Representations

C Data Type	Typical 32-bit	Typical 64-bit	x86-64
char	1	1	1
short	2	2	2
int	4	4	4
long	4	8	8
float	4	4	4
double	8	8	8
pointer	4	8	8

Byte Ordering

- So, how are the bytes within a multi-byte word ordered in memory?
- Conventions
 - Big Endian: Sun (Oracle SPARC), PPC Mac, *Internet*
 - Least significant byte has highest address
 - Little Endian: x86, ARM processors running Android, iOS, and Linux
 - Least significant byte has lowest address

Byte Ordering Example

Example

- Variable x has 4-byte value of 0x01234567
- Address given by &x is 0x100

Big Endian		0x100	0x101	0x102	0 x 103	
		01	23	45	67	
Little Endia	0 x 100	0x101	0x102	0x103		
		67	45	23	01	

Representing Integers

Decimal: 15213

Binary: 0011 1011 0110 1101

Hex: 3 B 6 D

int A = 15213;

Increasing addresses

long int C = 15213;

int B = -15213;

Two's complement representation

Examining Data Representations

Code to Print Byte Representation of Data

Casting pointer to unsigned char * allows treatment as a byte array

```
typedef unsigned char *pointer;

void show_bytes(pointer start, size_t len) {
    size_t i;
    for (i = 0; i < len; i++)
        printf("%p\t0x%.2x\n",start+i, start[i]);
    printf("\n");
}</pre>
```

Printf directives:

%p: Print pointer

%x: Print Hexadecimal

show bytes Execution Example

```
int a = 15213;
printf("int a = 15213;\n");
show_bytes((pointer) &a, sizeof(int));
```

Result (Linux x86-64):

```
int a = 15213;
0x7fffb7f71dbc 6d
0x7fffb7f71dbd 3b
0x7fffb7f71dbe 00
0x7fffb7f71dbf 00
```

Representing Pointers

int
$$B = -15213;$$

int *P = &B

Different compilers & machines assign different locations to objects

Even get different results each time run program

Representing Strings

Strings in C

- Represented by array of characters
- Each character encoded in ASCII format
 - Standard 7-bit encoding of character set
 - Character "0" has code 0x30
 - Digit i has code 0x30+l
 - man ascii for code table
- String should be null-terminated
 - Final character = 0

Compatibility

Byte ordering not an issue

Reading Byte-Reversed Listings

Disassembly

- Text representation of binary machine code
- Generated by program that reads the machine code

Example Fragment

Address	Instruction Code	Assembly Rendition
8048365:	5b	pop %ebx
8048366:	81 c3 ab 12 00 00	add \$0x12ab, %ebx
804836c:	83 bb 28 00 00 00 00	cmpl \$0x0,0x28(%ebx)

Deciphering Numbers

- Value:
- Pad to 32 bits:
- Split into bytes:
- Reverse:

```
0x12ab
0x000012ab
0 00 12 ab
1b 12 00 00
```

Summary

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Representations in memory, pointers, strings
- Summary