Fundamentals of Computing Coursework 1 MSc Data Science

1.a

1.a.i

A	В	C	$A \vee B$	$A \rightarrow C$	$C \wedge \neg B$
0	0	0	0	1	0
0	0	1	0	1	1
0	1	0	1	1	0
0	1	1	1	1	0
1	0	0	1	0	0
1	0	1	1	1	1
1	1	0	1	0	0
1	1	1	1	1	0

The set is consistent for A=1, B=0 and C=1, as hightlighted in the above truth table

1.a.ii

A	В	C	$\neg A \wedge \neg B$	$\neg C \to A$	$\neg C \lor B$
0	0	0	1	0	1
0	0	1	1	1	0
0	1	0	0	0	1
0	1	1	0	1	1
1	0	0	0	1	1
1	0	1	0	1	0
1	1	0	0	1	1
1	1	1	0	1	1

The set is not consistent as there exists no set of truth values for A, B, C such that all of the formulae in the set are true

1.b

A	В	C	$p_1 = \neg (A \land B)$	$p_2 = C \to A$	$p_3 = C \wedge B$	$(p_1 \land p_2 \land p_3) \to C$
0	0	0	1	1	0	1
0	0	1	1	0	0	1
0	1	0	1	1	0	1
0	1	1	1	0	1	1
1	0	0	1	1	0	1
1	0	1	1	1	0	1
1	1	0	0	1	0	1
1	1	1	0	1	1	1

The argument is logically correct. There exist no situations in which all of the premises are true and the conclusion is false.

 $\mathbf{2}$

2.a

A	В	C	$A \to \neg B$	$C \rightarrow A$	$ \neg ((A \to \neg B) \land (C \to A)) $
0	0	0	1	1	0
0	0	1	1	0	1
0	1	0	1	1	0
0	1	1	1	0	1
1	0	0	1	1	0
1	0	1	1	1	0
1	1	0	0	1	1
1	1	1	0	1	1

2.b

2.c

$$\neg((A \to \neg B) \land (C \to A))$$

$$\equiv \neg((\neg A \lor \neg B) \land (C \to A))$$

$$\equiv \neg((\neg A \lor \neg B) \land (\neg C \lor A))$$

$$\equiv \neg((\neg B \lor \neg A) \land (\neg C \lor A))$$

$$\equiv \neg((B \to \neg A) \land (\neg C \lor A))$$

$$\equiv \neg(B \to \neg A) \lor \neg(\neg C \lor A)$$

$$\equiv \neg(B \to \neg A) \lor (C \land \neg A)$$

$$\equiv (B \to \neg A) \to (C \land \neg A)$$

3

$$N = A_2 \cdot 2^2 + A_1 \cdot 2^1 + A_0 \cdot 2^0$$

A_2	A_1	A_0	$N < 3_{10}$	$A_1 \wedge A_0$	$A_2 \downarrow (A_1 \land A_0)$
0	0	0	1	0	1
0	0	1	1	0	1
0	1	0	1	0	1
0	1	1	0	1	0
1	0	0	0	0	0
1	0	1	0	0	0
1	1	0	0	0	0
1	1	1	0	1	0

The argument is not correct. With the following propositional variables:

A: 'Jones did not meet Smith last night'

B: 'Smith was the murderer'

C: 'Jones is lying'

D: 'The murder took place after midnight'

the propositions can be summarized as:

$$p_1 = A \to (B \lor C)$$

$$p_2 = \neg B \to (A \land D)$$

 $p_3 = D \rightarrow (B \lor C)$

These propositions can all be true whilst the conclusion is false, as show by the below row from the truth table, therefore the argument is not correct

_ A B C D	$p_1 = A \to (B \lor C)$	$p_2 = \neg B \to (A \land D)$	$p_3 = D \to (B \lor C)$
1 0 1 1	1	1 	1

5

5.a

Initial digit is a 1 therefore number is negative. Finding absolute value via following steps:

Initial word	1100 0001	1011 0000	0000 0000	0000 0	0000
Invert digits	0011 1110	0100 1111	1111 1111	1111 1	111
Add one					1
Result	0011 1110	0101 0000	0000 0000	0000	0000
	$=2^{29}+2^{28}$	$3+2^{27}+2^{26}$	$+2^{25}+2^{22}$	$+2^{20} =$	$=1,045,430,272_{10}$

Therefore the number is $-1,045,430,272_{10}$

5.b

5.c

Sign bit is 1, so S = 1.

Exponent bits are 100 0001 $1 = 2^7 + 2^1 + 2^0 = 131$, and the bias is 127, so E = 131 - 127 = 4.

Fraction bits are 011 000 ..., so $F = 1 + 2^{-2} + 2^{-3} = 1\frac{3}{8}$

So number is $(-1)^S \cdot F \cdot 2^E = -1 \cdot 1\frac{3}{8} \cdot 2^4 = -22$

6

6.a

First find binary representation of |-107| = 107

107/2 = 53 remainder 1

53/2 = 26 remainder 1

26/2 = 13 remainder 0

13/2 = 6 remainder 1

6/2 = 3 remainder 0

3/2 = 1 remainder 1

1/2 = 0 remainder 1

reading updwards $107_{10} = 1101011_2$, then convert to negative in two's complement via

Initial word 0000 0000 0000 0000 0000 0110 1011 Invert digits 1111 1111 1111 1111 1111 1111 1001 0100 Add one 1

Result 1111 1111 1111 1111 1111 1111 1001 0101

6.b

$$-107_{10} = -110 \ 1011_2 = -1.1010 \ 11_2 \times 2^6$$

So, sign bit is 1

Exponent is $6_{10} + 127_{10} = 133_{10} = 1000 \ 0101_2$

Fraction is 101011

And full word is

1100 0010 1101 0110 0000 0000 0000 0000

6.c

$$-14.375 = -\left(8+4+2+\frac{1}{4}+\frac{1}{8}\right) = -1110.011_2 = -1.1100 \ 11_2 + 2^3$$

So, sign bit is $\mathbf{1}$

Exponent is $3_{10} + 127_{10} = 130_{10} = 1000 \ 0010_2$

Fraction is 1100 11

And full word is

1100 0001 0110 0110 0000 0000 0000 0000

7.a

$$f(x) = x + 1$$

7.b

$$f(x) = \begin{cases} \frac{x}{2} & \text{if } x \text{ is even} \\ \\ \frac{x-1}{2} & \text{if } x \text{ is odd} \end{cases}$$

7.c

$$f(x) = \begin{cases} x+2 & \text{if 3 divides } x \\ x-1 & \text{if 3 does not divide } x \end{cases}$$

7.d

$$f(x) = 0$$

8

8.a

Note that f(2) = (2+1)/(2-2) = 3/0 is undefined, so f is not a function over the whole real domain as stated in the question. As it is not a function, it cannot be an injective nor surjective function, so f is not injective (one-to-one) and f is not surjective (onto).

8.b

Injectivity

$$f(0,1) = 0 = f(1,0)$$

however

$$(0,1) \neq (1,0)$$

$$\therefore \neg (\forall (m,n), (p,q) \in \mathbb{Z} \times \mathbb{Z} : f(m,n) = f(p,q) \implies (m,n) = (p,q))$$

therefore f is not injective (one-to-one)

Surjectivity Suppose n = 1 then f(m, n) = f(m, 1) = m + 1 - 1 = m. So,

$$\forall y \in \mathbb{Z} : f(y,1) = y$$

$$\therefore \forall y \in \mathbb{Z}, \ \exists (m,n) \in \mathbb{Z} \times \mathbb{Z}, \ f(m,n) = y$$

therefore f is surjective (onto)

8.c

Injectivity

$$f(0,-1) = 0 = f(-1,0)$$

however

$$(0,-1) \neq (-1,0)$$

$$\therefore \neg (\forall (m,n), (p,q) \in \mathbb{Z} \times \mathbb{Z} : f(m,n) = f(p,q) \implies (m,n) = (p,q))$$

therefore f is not injective (one-to-one)

Surjectivity

$$f(\max(0, y + 1), \min(0, y + 1)) = y$$

$$\forall y \in \mathbb{Z}, \ \max(0, y + 1) \in \mathbb{Z}, \ \min(0, y + 1) \in \mathbb{Z}$$

$$\therefore \ \forall y \in \mathbb{Z}, \ \exists (m, n) \in \mathbb{Z} \times \mathbb{Z}, \ f(m, n) = y$$

therefore f is surjective (onto)

9

9.a

	A	В	\mathbf{C}	D
A	1	2	0	1
В	2	0	3	0
\mathbf{C}	0	3	1	1
D	1	0	1	0

The graph is not simple as there are vertices with more than one edge between them.

9.b

Let the left hand graph be G such that

$$G = (V_G, E_G) = (\{1, 2, 3, 4, 5\}, \{1, 2\}, \{1, 3\}, \{1, 5\}, \{2, 3\}, \{2, 4\}, \{4, 5\})$$

and the right graph be H such that

$$H = (V_H, E_H) = (\{a, c, b, d, e\}, \{a, c\}, \{a, b\}, \{a, e\}, \{c, b\}, \{c, d\}, \{d, e\})$$

Then let the function $f: V_G \to V_H$ be the vertex bijection given by the following set of pairs of the form (v, f(v)):

$$\{(1,a),(2,c),(3,b),(4,d),(5,e)\}$$

Applying the function f to each vertex of each edge $\{v_1, v_2\}$ in E_G gives a set of subsets, $\{f(v_1), f(v_2)\} \subset V_H$ which is exactly E_H , i.e. all the edges of H.

$\{v_1, v_2\}$	$f(v_1), f(v_2)$
$-$ {1,2}	{a,c}
$\{1,3\}$	$\{a,b\}$
$\{1,5\}$	$\{a,e\}$
$\{2,3\}$	$\{c,b\}$
$\{2,4\}$	$\{c,d\}$
$\{4,5\}$	$\{d,e\}$

All the edges from the two graphs are in above table. No set of vertices which isn't an edge is in the table. If two vertices are adjacent in G their f-mapped vertices in H are also adjacent. If two vertices are not adjacent in G their f-mapped vertices in H are also not adjacent. Formally

$$\{v_1, v_2\} \in E_G \iff \{f(v_1), f(v_2)\} \in E_H$$

therefore f is an isomorphism and G and H are isomorphic.

9.c

The two graphs have a different number of edges, which is an invariant, so the two graphs cannot be isomorphic.

10

10.a

Computations for bb:

- $(s,bb),(q,b) \rightsquigarrow \text{stuck}$
- $(s,bb),(p,bb),(q,b) \rightsquigarrow \text{stuck}$

word bb is not accepted

Computations for ab:

- $\bullet \ (s,ab), (p,b), (q,\epsilon) \leadsto \text{accepted}$
- $(s, ab), (s, b), (q, \epsilon) \leadsto \text{accepted}$

• $(s, ab), (s, b), (p, b), (q, \epsilon) \sim$ accepted

word ab is accepted

Computations for aba:

- $(s, aba), (p, aba) \sim \text{stuck}$
- $(s, aba), (p, ba), (q, a), (q, \epsilon) \sim$ accepted
- $(s, aba), (s, ba), (q, a), (q, \epsilon) \sim$ accepted
- $(s, aba), (s, ba), (q, a), (p, \epsilon) \leadsto \text{not accepted}$
- $(s, aba), (s, ba), (p, ba), (q, a), (q, \epsilon) \sim$ accepted

word aba is accepted

Computations for ϵ :

• $(s, \epsilon) \rightsquigarrow \text{not accepted}$

• $(s, \epsilon), (p, \epsilon) \sim$ not accepted

word ϵ is not accepted

10.b

subset of states	reachable by a	reachable by b
	followed by one or more ε	followed by one or more ε
$\overline{\{s\}}$	$\{s,p\}$	$\{q\}$
$\{p\}$	Ø	$\{q\}$
$\{q\}$	$\{p,q\}$	Ø
$\{s,p\}$	$\{s,p\}$	$\{q\}$
$\{s,q\}$	$\{s,p,q\}$	$\{q\}$
$\{p,q\}$	$\{p,q\}$	$\{q\}$
$\{s,p,q\}$	$\{s,p,q\}$	$\{q\}$
Ø	Ø	Ø

The DFA starting state is the ε -closure of the NFA starting state, which is $\{s, p\}$. All subsets with q are accepting states. Full subset construction:

then removing the unreachable states:

then re-labelling the states

we have a deterministic finite automaton $A = (Q, \Sigma, \delta, q_0, F)$ with

- a set of states $Q = \{w, x, y, z\}$
- a set of symbols $\Sigma = \{a, b\}$
- a transition function $f:Q\times\Sigma\to Q$ given by the below table

	syn	nbol
state	a	b
\overline{w}	w	x
x	z	y
y	y	y
z	z	\boldsymbol{x}

- an initial state $q_0 = w$
- a set of accepting states $F = \{x, z\}$

10.c

The automaton accepts words comprised of a and b that contain at least one b, but no consecutive bs.

10.d

 $\mathtt{a}^*\mathtt{b}(\mathtt{a}\cup\mathtt{a}\mathtt{b})^*$

10.e

Let $G = (V, \Sigma, R, s)$ be a context free grammar with

- a set of variables $V = \{S, X, Y\}$
- a set of terminals $\Sigma = \{a, b\}$
- a set of production rules $R = \{S \to XbYX, \ X \to \varepsilon, \ X \to Xa, \ Y \to \varepsilon, \ Y \to Ya, T \to Yab\}$
- \bullet a start variable s = S

Let $A = (Q, \Sigma, \delta, q_0, F)$ be a deterministic finite automaton with

- $\bullet \ \mbox{a set of states} \ Q = \{s,p,q,r\}$
- a set of symbols $\Sigma = \{1, 0\}$
- a transition function $f:Q\times\Sigma\to Q$ given by the below table

	symbol	
state	0	1
s	p	s
p	q	p
q	q	r
r	q	p

- an initial state $q_0 = s$
- a set of accepting states $F = \{q, r\}$

We can visualise A with the following state diagram

This can be represented by the following regular expression $1*0(0 \cup 1)*(0 \cup 01)$

12

Automaton accepting L[a]

Automaton accepting L[b]

Automaton accepting L[ab]

Automaton accepting L[d]

Automaton accepting L[e]

Automaton accepting L[de]

Automaton accepting $L[c \cup de]$

Automaton accepting $L[b^*]$

Automaton accepting $L[(c \cup de)ab^*]$

Simplified Automaton accepting $L[(c \cup de)ab^*]$

Automaton accepting $L[(c \cup de)ab^*)^*]$

Automaton accepting $L[ab(c \cup de)ab^*)^*]$

Automaton accepting $L[ab(c \cup de)ab^*)^*c]$

Let $A = (Q, \Sigma, \delta, q_0, F)$ be a nondeterministic finite automaton with ε moves, comprising

- a set of states $Q = \{p, q, r, s, t, u, v\}$
- a set of symbols $\Sigma = \{a, b, c, d, e\}$
- a transition function $f: Q \times (\Sigma \cup \{\varepsilon\}) \to \mathsf{Pow}(Q)$ given by the below table

	symbol					
state	a	b	c	d	e	ε
p	$\{q\}$	Ø	Ø	Ø	Ø	Ø
q	Ø	$\{r\}$	Ø	Ø	Ø	Ø
r	Ø	Ø	$\{t,v\}$	$\{s\}$	Ø	Ø
s	Ø	Ø	Ø	Ø	$\{t\}$	Ø
t	$\{u\}$	Ø	Ø	Ø	Ø	Ø
u	Ø	$\{u\}$	Ø	Ø	Ø	$\{r\}$
v	Ø	Ø	Ø	Ø	Ø	Ø

- an initial state $q_0 = p$
- a set of accepting states $F = \{v\}$

Then A accepts the language $L[ab(c \cup de)ab^*)^*c]$.

13

13.a

aaa*ba*

13.b

$$L = \{a^n b^m a^n | n > 0, m > 3\}$$

L is not regular. Consider words of the form a^nbbba^n which are all in L and can be of any length greater than 3 – no substring can be removed from these words whilst they remain in L: if the substring contains any b, and that substring is removed, there will be fewer than 3 b; if the substring contains only a, and that substring is removed, there will different numbers of a on each side. As there is no substring that can be removed, there is no substring that can be pumped. Therefore, for any length greater than a there is a word in a0 which does not satisfy the pumping property, therefore it is not regular.

14

Let $G = (V, \Sigma, R, s)$ be a context free grammar with

- a set of variables $V = \{S, X, Y\}$
- a set of terminals $\Sigma = \{a, b, c\}$
- a set of production rules $R = \{S \to XY, \ X \to \varepsilon, \ X \to aXb, \ Y \to \varepsilon, \ Y \to bYc\}$
- a start variable s = S

This would be accepted by a push-down automaton, $P = (Q, \Sigma, \Gamma, \delta, s_0, F)$ with

- a set of states, $Q = \{p, q, r, s, t, u\}$
- an input alphabet, $\Sigma = \{a, b, c\}$

- a stack alphabet, $\Gamma = \{\bot, a, b\}$
- a transition relation, δ , consisting of the following instructions of the form $((q_0, \sigma, \gamma_0), (q_1, \gamma_1))$
 - $-((p,\varepsilon,\varepsilon),(q,\perp))$
 - $-((q, a, \varepsilon), (q, a))$
 - $-((q,\varepsilon,\varepsilon),(r,\varepsilon))$
 - $-((r,b,a),(r,\varepsilon))$
 - $-((r,\varepsilon,\perp),(s,\perp))$
 - $-((s,b,\varepsilon),(s,b))$
 - $-((s,\varepsilon,\varepsilon),(t,\varepsilon))$
 - $-((t,c,b),(t,\varepsilon))$
 - $-((t,\varepsilon,\perp),(u,\varepsilon))$

where

- $-q_0 \in Q$ is the starting state of the transition
- $-\sigma \in (\Sigma \cup \{\varepsilon\})$ is the input symbol read during the transition
- $-\gamma_0 \in (\Gamma \cup \{\varepsilon\})$ is the symbol popped from the stack during the transition
- $-q_1 \in Q$ is the ending state of the transition
- $-\ \gamma_1 \in (\Gamma \cup \{\varepsilon\})$ is the symbol pushed onto the stack during the transition
- an initial state, $s_0 = p$
- a set of accepting states $F = \{u\}$

P can be represented by the following state diagram:

