

Entrega 2

Grupo 125

Matías Navarrete Lucas Pedreros

Fecha entrega: 28 de Mayo de 2021

${\rm \acute{I}ndice}$

1.	Esquemas de Tablas	2
2.	Modelo Entidad/Relación	3
3.	Justificación del Modelo	4
4.	Consultas SQL	E.

1. Esquemas de Tablas

- 1. **Tiendas** (id_tienda INT PRIMARY KEY, nombre VARCHAR, id_direccion INT FOREIGN KEY-REFERENCES Direcciones(id_direccion), id_jefe INT FOREIGN KEY-REFERENCES Usuarios(id_usuario)).
- 2. **Tienda_Despacho** (id_tienda INT PRIMARY KEY, comuna_despacho VARCHAR, FOREIGN KEY(id_tienda)-REFERENCES Tiendas(id_tienda))
- 3. **Personal** (id_personal INT PRIMARY KEY, nombre VARCHAR, rut VARCHAR, edad INT, sexo VARCHAR, id_tienda INT FOREIGN KEY-REFERENCES Tiendas(id_tienda)).
- 4. Usuario (id_usuario INT PRIMARY KEY, nombre VARCHAR, rut VARCHAR, edad INT, sexo VARCHAR, id_direccion INT FOREIGN KEY-REFERENCES Direcciones(id_direccion))
- Directiones (id_direction INT PRIMARY KEY, nombre_direction VARCHAR, comuna VARCHAR)
- 6. Compras (id_compra INT PRIMARY KEY, id_usuarios INT FOREIGN KEY-REFERENCES Usuarios(id_usuario), id_direccion INT FOREIGN KEY-REFERENCES Direcciones(id_direccion), id_producto INT FOREIGN KEY-REFERENCES Productos(id_producto), cantidad INT, id_tienda INT FOREIGN KEY-REFERENCES Tiendas(id_tienda))
- 7. **Productos** (id_producto INT PRIMARY KEY, nombre VARCHAR, precio INT, descripcion VARCHAR, tipo VARCHAR)
- 8. **No_Comestible** (id_producto INT PRIMARY KEY, ancho INT, largo INT, alto INT, peso FLOAT, FOREIGN KEY(id_producto)-REFERENCES Productos(id_producto))
- 9. **Congelados** (id_producto INT PRIMARY KEY, fecha_exp VARCHAR, peso FLOAT, FO-REIGN KEY(id_producto)-REFERENCES Productos(id_producto))
- 10. **Frescos** (id_producto INT PRIMARY KEY, fecha_exp VARCHAR, tiempo VARCHAR, FO-REIGN KEY(id_producto)-REFERENCES Productos(id_producto))
- 11. **Conserva** (id_producto INT PRIMARY KEY, fecha_exp VARCHAR, metodo VARCHAR, FOREIGN KEY(id_producto)-REFERENCES Productos(id_producto))
- 12. **Stock:** (id_producto INT PRIMARY KEY, id_tienda INT FOREIGN KEY-REFERENCES Tiendas(id_tienda))

2. Modelo Entidad/Relación

Figura 1: Diagrama

3. Justificación del Modelo

Nuestro modelo desarrollado esta en 3NF. Para que el modelo esté en 3NF, cada relación debe cumplir con la siguiente condición:

 \blacksquare "Una relación R está en 3NF si para toda dependencia funcional no trivial X→Y, X es una súper llave o Y es parte de una llave minimal"

A continuación las relaciones que tenemos en nuestro modelo:

- Tiendas id_tienda → nombre, id_direccion, id_jefe
- Tiendas_despacho id_tienda → comuna_despacho
- ullet Personal id_personal, rut o nombre, edad, sexo, id_tienda
- Usuarios id_usuario, rut → nombre, edad, sexo, id_direccion
- lacktriangle Directiones id_direction ightarrow nombre_direction, comuna
- Compras id_compra → id_usuario, id_direccion, id_producto, cantidad, id_tienda
- **Productos** id_producto → nombre, precio, descripcion
- No_Comestibles id_producto → ancho, largo, alto, peso
- Congelados id_producto → fecha_exp, peso
- **Frescos** id_producto \rightarrow fecha_exp, duracion_sin_ref
- Conservas id_producto → fecha_esp, metodo
- Stocks id_producto → cantidad

El modelo desarrollado contiene 6 primary keys o súper llaves y, como se puede observar anteriormente, en cada una de las relaciones la componente X corresponde a una súper llave. Las únicas relaciones ligeramente distintas son la relaciones de Personal y Usuarios, sin embargo en estas relaciones la id_usuario e id_personal juntos con el rut componen una súper llave cada una.

Como cada relación depende de una súper llave, todas cumplen con la condición de 3NF, y por lo tanto al tener todas las relaciones en 3NF el modelo completo se encuentra en 3NF.

4. Consultas SQL

- 1. SELECT tiendas.nombre, tiendas_despacho.comuna_despacho FROM tiendas, tiendas_despacho WHERE tiendas.id_tienda = tiendas_despacho.id_tienda ORDER BY tiendas.id_tienda;
- SELECT tiendas.id_jefe, personal.nombre FROM tiendas, personal, direcciones WHERE personal.id_personal = tiendas.id_jefe AND tiendas.id_direccion = direcciones.id_direccion AND direcciones.comuna LIKE '%\$comuna %' ORDER BY tiendas.id_jefe;
- 3. SELECT DISTINCT tiendas.id_tienda, tiendas.nombre FROM tiendas, productos, stocks WHE-RE productos.tipo LIKE'%\$producto%' AND productos.id_producto = stocks.id_producto AND tiendas.id_tienda = stocks.id_tienda ORDER BY tiendas.id_tienda
- 4. SELECT DISTINCT usuarios.id_usuario, usuarios.nombre FROM usuarios, compras, productos WHERE productos.descripcion LIKE '%\$descripcion%' AND usuarios.id_usuario = compras.id_usuario AND productos.id_producto = compras.id_producto ORDER BY usuarios.id_usuario
- 5. SELECT personal.edad FROM tiendas, personal, direcciones WHERE personal.id_tienda = tiendas.id_tienda AND tiendas.id_direccion = direcciones.id_direccion AND direcciones.comuna LIKE '%\$comuna%';
- 6. SELECT tiendas.id_tienda, tiendas.nombre, SUM(tiendas.id_tienda) FROM tiendas, productos, compras WHERE productos.tipo LIKE' %\$producto %' AND productos.id_producto = compras.id_producto AND tiendas.id_tienda = compras.id_tienda GROUP BY tiendas.id_tienda, tiendas.nombre ORDER BY SUM(tiendas.id_tienda) DESC LIMIT 5;