1

Channel Coding Theory: Homeworks 09/04/2008

Laura Cottatellucci

A. Exercise A

A (5,2) linear block code is defined by the following table

- 1) Find the generator matrix and the parity check matrix of the code.
- 2) Build the standard array and the decoding table to be used on a BSC.
- 3) What is the probability of making errors in decoding a codeword assuming an error detection strategy of the decoder?
- 4) What if we assume error correction capability?

B. Exercise B

Optional

Given the (7,4) Hamming code generated by the polynomial

$$g(X) = X^3 + X + 1$$

obtain the code generated by

$$g(X) = (X+1)(X^3 + X + 1).$$

- 1) How it is related to the original (7, 4) code?
- 2) What is its minimum distance?
- 3) Show that the new code can correct all single errors and simultaneously detect all double errors.

Institute Eurecom, Mobile Communications, Sophia Antipolis, France (email: laura.cottatellucci@ftw.at)

C. Exercise C

Optional warming up exercise. Recommended before Exercise D. Note it is not compulsory.

Draw the FSFG for the Markov chain

$$p_{XYZ}(x, y, z) = p_X(x)p_{Y|X}(y|x)p_{Z|Y}(z|y).$$

Compute the messages at each node to compute all marginals.

D. Exercise D

Consider a quantizer. Let \mathcal{X} be the finite input alphabet and \mathcal{Y} be the finite output alphabet. Let q be the quantization function $q:\mathcal{X}\to\mathcal{Y}$. Draw the corresponding FSFG. Starting from the general message passing rule and assuming that the incoming messages are $\mu_{xq}(x)$ and $\mu_{yq}(y)$, respectively what are the outgoing messages $\mu_{qx}(x)$ and $\mu_{qy}(y)$?