## Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics

## **Abstract**

- This yields two intuitive mea sures for each example—the model's confidence in the true class, and the variability of this confifidence across epochs—obtained in a single run of training
  - 。 观察模型的置信度和偏差的分布
- The common belief is that the more abundant the labeled data, the higher the likelihood of learning diverse phe nomena, which in turn leads to models that gener alize well
- Training on ambiguous instances pro motes generalization to OOD test sets, with little or no effect on in-distribution (ID) performance
- Easy case 可以加快模型收敛
- 清洗错误数据,扩充易混淆数据,少量容易数据,训练的又快,泛化能力又好
- 通过对数据的置信度和偏差的分布观察



- o 置信度高且偏差小的数据,是 easy case,对模型的优化很关键
- o 置信度一般 且 偏差大的数据,是 ambiguous case,对模型的泛化能力很关键
- o 置信度低 且 偏差小的数据,是 error case,一般是错误数据,可以用于清洗数据集
- 大量的、多样性强的数据,对模型的泛化能力更关键
- 先从简单的样本学起,模型收敛的更快
- 易混淆样本占比在 25% 左右,泛化效果才会明显,低于 17% 没啥用,大于 25% 会有反向效果
- 低置信度的样本中,可能包括错误标签
- 作者用的置信度和方差,是在多个 epoch 中的均值,而不是最后一波预测的,这样可以找到再训练中的 esay case 和 hard case,结果更平滑、也更置信

## **Data Selection using Data Maps**

需要分析不同区域的数据对于模型的学习和泛化能力的区分

| _         |                  | WINOG. Val. (ID)    | WSC (OOD)                  |  |  |  |
|-----------|------------------|---------------------|----------------------------|--|--|--|
|           | 100%             |                     |                            |  |  |  |
|           | 100% train       | 79.7 <sub>0.2</sub> | 86.0 <sub>0.1</sub>        |  |  |  |
| 33% train | random           | 73.3 <sub>1.3</sub> | 85.6 <sub>0.4</sub>        |  |  |  |
|           | high-correctness | $70.8_{0.6}$        | 84.1 <sub>0.4</sub>        |  |  |  |
|           | high-confidence  | $69.4_{0.5}$        | $83.9_{0.5}$               |  |  |  |
|           | low-variability  | 70.1 <sub>1.0</sub> | 83.7 <sub>1.4</sub>        |  |  |  |
|           | forgetting       | 75.5 <sub>1.3</sub> | 84.8 <sub>0.7</sub>        |  |  |  |
|           | AL-uncertainty   | $75.7_{0.8}$        | $85.7_{0.8}$               |  |  |  |
|           | AL-greedyK       | $74.2_{0.4}$        | $86.5_{0.5}$               |  |  |  |
|           | AFLite           | $76.8_{0.8}$        | 86.6 <sub>0.6</sub>        |  |  |  |
|           | low-correctness  | $78.2_{0.6}$        | 86.3 <sub>0.6</sub>        |  |  |  |
|           | hard-to-learn    | $77.9_{1.3}$        | $87.2_{0.7}$               |  |  |  |
|           | ambiguous        | $78.7_{0.4}$        | <b>87.6</b> <sub>0.6</sub> |  |  |  |

Table 2: ID and OOD accuracies for RoBERTA-large models trained on different selections of *WinoGrande*. Reported values are averaged over 3 random seeds, with s.d. reported as a subscript. Selection of 33% training instances with highest variability (ambiguous) achieves the best OOD performance, outperforming all other baselines from this work, as well as prior work.

|           |                            |                     | SNLI                  |                  |                     |                     |                     | MultiNLI     |                       |                     |                     |                  |                     |                     |
|-----------|----------------------------|---------------------|-----------------------|------------------|---------------------|---------------------|---------------------|--------------|-----------------------|---------------------|---------------------|------------------|---------------------|---------------------|
|           |                            | ID                  | NLI Diagnostics (OOD) |                  |                     | )                   | ID                  | (Val.)       | NLI Diagnostics (OOD) |                     |                     |                  |                     |                     |
|           |                            | Test                | Lex.                  | PAS              | LS                  | Kno.                | All                 | Mat.         | MisM.                 | Lex.                | PAS                 | LS               | Kno.                | All                 |
|           | 100% train                 | 92.0                | 54.6                  | 67.9             | 62.7                | 52.1                | 61.8                | 90.2         | 90.1                  | 59.9                | 68.4                | 67.3             | 57.8                | 65.0                |
| 33% train | random                     | 91.3                | 53.0                  | 66.8             | 59.7                | 50.7                | 60.4                | 89.8         | 89.2                  | 59.3                | 69.6                | 66.5             | 56.3                | 64.6                |
|           | hard-to-learn<br>ambiguous | 91.8<br><b>92.2</b> | 55.2<br><b>58.5</b>   | <b>69.1</b> 67.9 | 63.2<br><b>64.1</b> | 51.7<br><b>54.2</b> | 62.0<br><b>63.5</b> | 89.5<br>90.1 | 89.7<br>89.3          | 59.3<br><b>63.5</b> | 68.9<br><b>71.0</b> | <b>69.5</b> 68.9 | 58.8<br><b>59.2</b> | 65.3<br><b>66.9</b> |

Table 3: ID and OOD accuracies for RoBERTA-large models trained on different selections of *SNLI* and *MultiNLI*; we report the best performance over 3 random seeds (see Appendix §B for *SNLI* validation results). *ambiguous* and *hard-to-learn* subsets of data promote OOD generalization, at minimal degradation of ID performance. OOD performance improves across all fine-grained linguistic categories in the *NLI Diagnostics* set.



Figure 3: ID (left) and OOD (centre) *WinoGrande* performance with increasing % of *ambiguous* (and randomly-sampled) training data. ROBERTA-large optimization fails when trained on small amounts (< 25%) of the most *ambiguous* data (results correspond to majority baseline performance and are not shown here, for better visibility). (Right) Replacing small amounts of *ambiguous* examples from the 17% subset with *easy-to-learn* examples results in successful optimization and ID improvements, at the cost of decreased OOD accuracy. All reported performances are averaged over 3 random seeds.

• hard case 部分,可能包括了错误数据