Les nombres complexes

Exercice 1 Les points A, B et C ont pour affixe respective -2 + i, 3 + 3i, $1 + \frac{11}{5}i$.

- a) Calculer les affixes des vecteurs \overrightarrow{AB} et \overrightarrow{AC} .
- b) En déduire que les points A, B et C sont alignés.

Exercice 2 On considère dans le plan complexe les points A, B, C et D d'affixe $z_A = 3 + i$, $z_B = 2 - 2i$, $z_C = 2i$ et $z_D = 1 + 5i$.

- a) Faire une figure
- b) Montrer de deux façons différentes que ABCD est un parallélogramme.

Exercice 3

- 1. Donner la forme algébrique de : i^{12} ; i^{2012} ; i^{37} ; i^{-13}
- 2. Calculer la somme : $S = 1 + i + i^2 + \cdots + i^{2019}$
- 3. On pose $j = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$. Calculer $1 + j + j^2$.

Exercice 4 Soit P le polynôme défini sur \mathbb{C} par : $P(z) = z^3 + z^2 - 4z + 6$.

- a) Montrer que pour tout complexe z, $\overline{P(z)} = P(\overline{z})$.
- b) Vérifier que 1+i est une racine de P, et en déduire une autre racine complexe de P.

Exercice 5 Déterminer l'ensemble des points M d'affixe z du plan complexe tels que $Z=z^2+\overline{z}$ soit réel.

Exercice 6 Montrer que l'équation $z^2 - 3\overline{z} + 2 = 0$ admet quatre solutions dans \mathbb{C} .

Exercice 7 Dans le plan complexe, A, B et C sont les points d'affixes :

$$z_A = 1 + i$$
 , $z_B = 4 + 5i$, $z_C = 5 - 2i$.

- 1. Montrer que AB = AC, puis que $(\overrightarrow{AB}; \overrightarrow{AC}) = -\frac{\pi}{2}$.
- 2. Déterminer l'affixe du point K tel que le quadrilatère ABKC soit un rectangle.
- 3. a) Déterminer l'affixe du point G tel que le quadrilatère AGBC soit un parallélogramme.
 - b) Vérifier que B est le milieu du segment [GK].

Exercice 8 Déterminer l'ensemble des points M d'affixe z tels que :

•
$$|z - 6i| = 3$$
 • $|z + 3 - 2i| < 2$ • $|z + 2| = |z - 3i + 1|$ • $|2 - iz| = |z + 5|$ • $\left| \frac{z + 2i}{z + 1 - 2i} \right| > 1$

Exercice 9 Ecrire sous forme trigonométrique et exponentielle les nombres complexes :

• 5 •
$$4+4i$$
 • $\frac{3}{2}i$ • $\frac{2}{1-i}$ • $\sqrt{3}-i$ • $(\sqrt{3}-i)^2$ • $(\sqrt{3}-i)^3$

Exercice 10 Ecrire le nombre complexe $(\sqrt{3}-i)^{10}$ sous forme algébrique.

Exercice 11

- a) Ecrire sous forme trigonométrique les complexes $z_1 = \sqrt{3} i$, $z_2 = 1 i$, et $Z = \frac{z_1}{z_2}$.
- b) Déterminer la forme algébrique de Z, et en déduire les valeurs exactes de $\cos\left(\frac{\pi}{12}\right)$ et $\sin\left(\frac{\pi}{12}\right)$.

Exercice 12 Déterminer l'ensemble des nombres complexes z tels que :

•
$$\arg(z) = \frac{\pi}{6}$$

$$\bullet |z-3| = |z+2i|$$

•
$$\arg(z) = \frac{\pi}{6}$$
 • $|z - 3| = |z + 2i|$ • $|z + 1 - 2i| < \sqrt{5}$ • $\left|\overline{z} + \frac{i}{2}\right| = 4$

$$\bullet \left| \overline{z} + \frac{i}{2} \right| = 4$$

•
$$arg(z+i) = \pi$$

•
$$\arg\left(\frac{1}{iz}\right) = \pi$$

•
$$\arg(z+i) = \pi$$
 • $\arg\left(\frac{1}{iz}\right) = \pi$ • $\arg\left(\frac{z+1}{z-2i}\right) = \frac{\pi}{2}$

Exercice 13 On considère l'équation $z^2 - 2\cos(\theta)z + 1 = 0$, où θ est un réel donné dans $[0; 2\pi[$.

- a) Vérifier que le discriminant de cette équation est $\Delta = -4\sin^2(\theta)$.
- b) Résoudre alors dans \mathbb{C} l'équation proposée, en discutant suivant les valeurs de θ , en donnant les solutions sous formes exponentielle.

Exercice 14

- a) Donner sous forme exponentielle les solutions de l'équation : $z^2 + z + 1 = 0$.
- b) Soit α un réel donné. Factoriser l'expression : $z^2 e^{2i\alpha}$.
- c) En déduire les solutions de l'équation : $z^4 + z^2 + 1 = 0$

Exercice 15 On considère l'équation du second degré $(E): z^2 + (1+i\sqrt{3})z - 1 = 0$.

- 1. Déterminer le discriminant Δ de cette équation. Écrire Δ sous forme exponentielle.
- 2. Donner un nombre complexe δ tel que $\delta^2 = \Delta$. Écrire δ sous forme algébrique.
- 3. Vérifier que les formules usuelles du second degré, $z_1 = \frac{-b-\delta}{2a}$ et son conjugué $z_2 = \overline{z_1}$ donnent bien deux solutions de (E).

Exercice 16 Soit le polynôme P défini sur \mathbb{C} par : $P(z) = 3z^3 + (1+6i)z^2 + 2(8+i)z + 32i$.

- a) Vérifier que $z_0 = -2i$ est une racine de P.
- b) En déduire une factorisation de P, et déterminer alors toutes les racines de P.

Exercice 17

- 1. x est un nombre réel. Ecrire la forme algébrique et la forme exponentielle de $\left(\frac{\sqrt{3}}{2} \frac{i}{2}\right)e^{ix}$.
- 2. Utiliser la question précédente pour résoudre dans $]-\pi;\pi[$ l'équation $\sqrt{3}\cos(x)+\sin(x)=\sqrt{2}$.

Exercice 18 On considère le nombre complexe $z = -\sqrt{2 + \sqrt{2}} + i\sqrt{2 - \sqrt{2}}$

- 1. Écrire z^2 sous forme trigonométrique
- 2. Déterminer le module, et un argument de z
- 3. En déduire les valeurs de $\cos\left(\frac{\pi}{8}\right)$ et $\sin\left(\frac{\pi}{8}\right)$