Санкт-Петербургский государственный электротехнический университет им. В.И. Ульянова (Ленина)

# Разработка программной модели лидара

Выполнил:

Руководитель:

Павлов Александр Павлович, гр. 7381 Заславский Марк Маркович, к.т.н., доцент

#### Цель и задачи

Актуальность: получение лидарных данных для задач машинного обучения на реальных транспортных средствах влечет за собой:

- большие финансовые риски,
- трудозатраты.

**Цель**: разработать настраиваемую программную модель лидара, которая эмулирует лидарные данные в заданном 3D-окружении.

#### Задачи:

- 1. Изучить принцип работы лидаров и параметры их настроек
- 2. Провести обзор существующих решений
- 3. На основе 3D-движка разработать симулятор лидара
- 4. Оценить количество потребляемых ресурсов

### 1. Принцип работы лидаров



Рисунок 1 – Принцип работы лидара

Рисунок 2 – Схема наземного лидара

## 2. Сравнение существующих решений

#### Таблица 1 – Сравнение существующих решений

| Критерий<br>сравнения                             | Carla                       | Helios                                                                     | Microsoft<br>Airsim         | Gazebo                      | Virtual Generation of Lidar Data for Autonomous Vehicles |
|---------------------------------------------------|-----------------------------|----------------------------------------------------------------------------|-----------------------------|-----------------------------|----------------------------------------------------------|
| Паттерны<br>сканирования                          | параллельный<br>(32 канала) | rotating mirror,<br>fiber array,<br>conic mirror,<br>oscillating<br>mirror | параллельный<br>(32 канала) | параллельный<br>(32 канала) | параллельный<br>(64 канала)                              |
| Количество<br>лидаров на<br>сцене                 | -                           | 1                                                                          | >1                          | -                           | -                                                        |
| Количество лидаров на одном транспортном средстве | 1                           | 1                                                                          | >1                          | 1                           | 1                                                        |

# 3. Архитектура приложения



Рисунок 3 – Диаграмма классов

#### 3. Использованные технологии

- Игровой 3D-движок Unreal Engine 4
- Высокоуровневый язык программирования С++
- Система визуального программирования Blueprint

## 3. Лидар Velodyne HDL-32E



Рисунок 4 – Лазерные каналы лидара

Рисунок 5 – Паттерн сканирования

#### 3. Лидар Livox Mid-40



Рисунок 6 – Паттерн сканирования

Данный паттерн сканирования может быть воспроизведен с помощью сканера Рисли, состоящего из двух призм, вращающихся вокруг общей оси.

$$x(t) = \frac{\rho}{2}(\cos(2\pi f_1 t) + \cos(2\pi f_2 t))$$
$$y(t) = \frac{\rho}{2}(\sin(2\pi f_1 t) - \sin(2\pi f_2 t))$$

где  $f_1$  – частота вращения первой призмы,  $f_2$  – частота вращения второй призмы,  $\rho$  – половина угла поля обзора лидара.

## 3. Демонстрация работы



Рисунок 7 – 3D-сцена

Рисунок 8 – Полученное облако точек

## 4. Оценка потребляемых ресурсов



Рисунок 9 – Потребление оперативной памяти

Рисунок 10 – Загрузка процессора в процентах

#### Заключение

- Проделанный обзор существующих решений показал, что необходимо разработать симулятор лидара, в котором должны быть реализованы модели лидаров, которые используется в области автономного транспорта, с возможностью установки нескольких лидаров на транспортное средство.
- Реализованное приложение позволяет настраивать виртуальное окружение и модели лидаров и создавать уникальные сценарии экспериментов, которые было бы проблематично реализовать в реальных условиях для генерирования лидарных данных.
- Экспериментальное исследование количества потребляемых ресурсов показало, что разработанное приложение может работать не на высокопроизводительных компьютерах.

Дальнейшие направления исследований включают в себя добавление других моделей лидаров, добавление влияния погодных условий на полученные данные.

11

### Апробация работы

• Исходный код выложен в открытый доступ в репозитории проекта https://github.com/moevm/bsc\_pavlov.