Flintstones face detector

Stan Cătălin-Andrei

Cuprins

1	Tas		
	1.1	Modelul folosit	
	1.2	Generarea exemplelor pozitive	
	1.3	Generarea exemplelor negative	
		Rezultat	
	1.5	Hard negative mining	
2	Task 2		
		Modelul folosit	
	2.2	Rezultat	
3	Bon		
	3.1	Modelul folosit	
	3.2	Rezultat	

1 Task 1

1.1 Modelul folosit

Pentru a identifica fețele dintr-o imagine, am construit o piramidă Gaussiană de imagini, reducând rezoluția cu un factor de 1.25 la fiecare iterație. Apoi, am aplicat metoda ferestrei glisante cu dimensiunea de 40×40 . Fiecare fereastra a fost clasificata de către un *support vector machine* de parametrii C=100, kernel='rbf', gama='scale', aplicând înainte un *Standard Scaler*.

SVM-ul a fost antrenat pe descriptorii HOG parameterii orientations=9, pixels_per_cell = (10, 10), cells_per_block=(4,4), block_norm="L2-hys".

1.2 Generarea exemplelor pozitive

Pentru fiecare imagine din setul de antrenare am decupat fețele , le-am redimensionat la 40×40 și am extras descriptorii HOG cu parametrii de mai sus. Pentru mărirea setului de date am generat descriptorii și pentru fața oglindită vertical.

1.3 Generarea exemplelor negative

În primul rând am salvat o listă cu lungimile și lățimile fiecărui dreptunghi aferent fețelor din setul de antrenare. Pentru exemplele negative, am încercat sa extrag 4 dreptunghiuri random din lista extrasa astfel încât sa nu se intersecteze între ele și nici cu fețele. În final am avut 13954 exemple pozitive și 14964 exemple negative.

Figura 1: Rosu = patch negativ, Verde = patch pozitiv

1.4 Rezultat

Figura 2: Rezultat înainte de negative mining

1.5 Hard negative mining

Am luat clasificatorul și pentru fiecare imagine din setul antrenare am salvat patch-ul clasificat drept față cu scor maxim care are Intersection over Union maxim 0.3. Am observat că dacă există o detecție mare (D1) care conține o detecție mică (D2) cu

, astfel încât

o să fie păstrate amândouă. Pentru a rezolva problema am introdus și intersection over minimum size.

Figura 3: Rezultat după negative mining

2 Task 2

2.1 Modelul folosit

Am antrenat un SVM de parametrii C=1, kernel='rbf', gamma='scale' si decision_function_shape='ovr' pe fețele din setul de antrenare redimensionate la 40×40 și vectorizate, în plus am adăugat si oglindirea verticală a fiecărei decupări. După ce am testat am obținut 0.68 average precision, observând că nu

clasifică bine exempleme de fețe fals pozitive (care de fapt sunt o bucată de background și seamănă cu exemplele de la negative mining) așa că am adăugat și toate patch-urile obținute din negative mining de la task-ul anterior. Astfel am obținut un set de date cu 5 etichete : 'barney', 'betty', 'fred', 'unknown', 'background', iar după antrenare am obținut 0.725 average precision.

2.2 Rezultat

3 Bonus

3.1 Modelul folosit

Pentru bonus am folosit arhitectura Faster R-CNN care folosește ResNet50 pentru a extrage caracteristicile și care adaugă Feature Pyramid Network pentru a detecta obiecte la scăli diferite. L-am antrenat de la zero pe setul de antrenare, redimensionând imaginile la 240×240 .

3.2 Rezultat

