The intention of this document is to provide the information listed below for the traffic signal support structure.

- 1) Reaction forces at the fixed support
- 2) Principle stresses on the four elements located at the base and around the vertical beam
- 3) Principle planes of the elements
- 4) Maximum shear stress on the elements
- 5) Shear plane on the elements

Blue cells contain modifiable values, while white cells are calculation outputs and should not be changed.

	Axial Conventions									
CCW	+M		Right	+X		Up	+Y		Out of Pg	+Z
CW	-M		Left	-X		Down	-Y		Into Page	-Z
	Rotational conventions are from the perspective of the positive positive side of the axis, facing the origin.									

Material, Environmental, and Structure Properties						
Material Al T6061 Wind Speed (m/s) Mass Per Traffic Bulb (kg)						Mass Per Traffic Bulb (kg)
Density	2700	kg/m ³				
Tens & Comp Yield	276	MPa		51		1
Shear Strength	207	MPa				

Wind Speed is calculated and has maximum effect in -Z direction

Reactions		Safety Factor	Stresses & Stress Planes						
RMx	50.8	kNm	2		Element 1	Element 2	Element 3	Element 4	
RMy	-40.9	kNm		σ_{Max}	87.5	27.6	10.9	35.4	MPa
RMz	8.8	kNm	Ctructure Ctatus	σ_{Min}	-11.0	-41.2	-88.1	-22.5	MPa
Rx	0.0	kN	Structure Status	τ_{Max}	49.2	34.4	49.5	29.0	MPa
Ry	2.8	kN	SAFE	$\theta_{principle}$	-19.5	39.3	19.4	-38.6	deg
Rz	10.1	kN	JAFE	θ_{shear}	25.5	-5.7	-25.6	6.4	deg

Modifia	ble Dimensi	on Entry
Α	8.4900	m
В	5.4900	m
C (Z)	0.3720	m
D	0.2620	m
Е	0.0064	m
F	0.0873	rad
G	0.2790	m
Н	0.1270	m
1	0.0061	m
J	13.2300	m
K	5.6400	m
L	3.6600	m
М	3.6600	m
N	1.2000	m
0	1.5750	m
Р	0.3870	m
Q	0.5700	m

Calculations Page 1

Wind Pressure 1594.413 N/m²

Vertical Beam					
Height	8.490	m			
OD Base	0.372	m			
OD Top	0.262	m			
Taper Loss/Meter	0.013	m dia/m			
Surface Area	2.691	m^2			
Local Windforce	4291.092	N			
Cntrd & COG dx, dz	0.000	m			
Center of Grav. dy	3.994	m			
Centroid dy	3.999	m			
I _x	59.054	m ⁴			
I _y	0.023	m ⁴			
Volume	0.053	m ³			
Mass	143.154	kg			
Weight	1404.338	N			

3 Segment Traffic Light						
Height	0.387	m				
Length	1.200	m				
Surface Area	0.464	m ²				
Local Windforce	740.445	N				
Centroid dx	5.769	m				
Centroid dx ₂	9.415	m				
Centroid dy _{1,2}	5.684	m				
Centroid dz ₁	0.499	m				
Centroid dz ₂	0.457	m				
I _x	15.007	m ⁴				
l _y	15.511	m ⁴				
I _{x2}	15.007	m ⁴				
I _{y2}	41.222					
Weight	29.430	N				

4 Segment Traffic Light						
Height	0.387	m				
Length	1.575	m				
Surface Area	0.610	m^2				
Local Windforce	971.835	N				
Centroid dx	13.061	m				
Centroid dy	5.684	m				
Centroid dz	0.415	m				
l _x	19.697	m ⁴				
Ι _γ	104.1	m ⁴				
Weight	39.240	N				

Note that letters refer to labels in dimension diagram

Assumptions

- 1) Wind is linear and blows only towards -Z axis
- 2) Anemometer is massless and dimensionless
- 3) Tapered beams have continuous wall thickness
- 4) Center of gravity of the light fixtures are located at Q/2
- 5) Bottom edge of all light fixtures align with the top of dimension B

--General Equations--

Wind Pressure =
$$0.613 * Velocity^2$$

$$Taper Loss Per Meter (TLoss) = \frac{(Root Diameter - Tip Diameter)}{Length}$$

Dia. of Tapered Beam at Length = Root Dia - (TLoss * Length)

-- Vertical Beam Calculations --

Vertical Beam (Trapezoid) Surface Area = Height *
$$\frac{\text{Base} + \text{Top}}{2}$$

Local Windforce = Wind Force * Surface Area

Vertical Beam Center of Gravity dy - See Appendix

Vertical Beam Centroid dy =
$$\frac{\text{Height}}{3} \left(\frac{2\text{Top} + \text{Base}}{\text{Top} + \text{Base}} \right)$$

Volume - See Appendix

-- 3 Segment Traffic Light Calculations --

Centroid dx = Radius of Vertical Beam + (K)cos(F)

Centroid
$$dx_2$$
 = Radius of Vertical Beam + $(K + L)\cos(F)$

Centroid
$$dy_{1,2} = B + (P/2)$$

Centroid $dz_{1,2}$ = Radius of Mast + (Q/2)

-- 4 Segment Traffic Light Calculations --

Centroid dx = Radius of Vertical Beam + (K + L + M)cos(F)

Centroid
$$dy = B + (P/2)$$

Centroid dz = Radius of Mast + (Q/2)

Note that the radius of the mast and the vertical beam differ over the span

Mast (Whole)							
Length	13.230	m					
OD Root	0.279	m					
OD Tip	0.127	m					
Taper Loss/Meter	0.011	m dia/m					
Surface Area	2.686	m^2					
Local Windforce	4282.099	N					
Center of Grav. dx	5.892	m					
Center of Grav. dy	6.006	m					
I _x	96.873	m ⁴					
l _y	130.592	m ⁴					
Volume	0.050	m ³					
Mass	134.787	kg					
Weight	1322.264	N					

Mast Section 1				
Length	5.040 m			
OD Root	0.279 m			
OD Tip	0.221 m			
Surface Area	1.260 m ²			
Local Windforce	2009.343 N			
Centroid dx	2.564 m			
Centroid dy	5.714 m			
I _x	41.158 m ⁴			
I _y	10.940 m ⁴			
Mast	: Section 2			
Length	2.460 m			
OD Root	0.207 m			
OD Tip	0.179 m			
Surface Area	0.475 m ²			
Local Windforce	757.689 N			
Centroid dx	7.562 m			
Centroid dy	6.152 m			
I _x	17.985 m ⁴			
I _y	27.415 m ⁴			
Mast	Section 3			
Length	2.273 m			
OD Root	0.165 m			
OD Tip	0.139 m			
Surface Area	0.346 m ²			
Local Windforce	551.482 N			
Centroid dx	11.112 m			
Centroid dy	6.462 m			
I _x	14.445 m ⁴			
I _v	42.860 m ⁴			

Calculations Page 2

ΣΧΥ Inertias (m⁴

182.352

-- Mast (Whole) Calculations --

$$Mast (Trapezoid) Surface Area = Length * \frac{Root + Tip}{2}$$

Center of Gravity dx - See Appendix

Center of Gravity dy = B + (dx * tan(F))

Volume - See Appendix

-- Mast Section 1 Calculations --

Length =
$$K - N/2$$

$$Mast (Trapezoid) Surface Area = Length * \frac{Root + Tip}{2}$$

Centroid
$$dx = \frac{h}{3} \left(\frac{Root + 2Tip}{Root + Tip} \right) cos(F) + Radius of Vertical Beam$$

Centroid $dy = B + (dx * tan(F))$

Mast Sections 2 & 3 follow similarly to Section 1

Reactions					
RMx	50764.6	Nm			
RMy	-40946.0	Nm			
RMz	8750.7	Nm			
Rx	0.0	N			
Ry	2824.7	N			
Rz	10062.3	N			

Calculations Page 3

Linear Axis' (X,Y,Z)

Rotational Axis' (Mx, My, Mz)

Origin (0,0,0)

Center of Gravity & Weight Force

Centroid & Wind Force

COG = Centroid for Wind Force & Weight Force

Fixed Base Support Cross Section						
Outer Diameter (OD)	0.372	m				
Inner Diameter (ID)	0.359	m				
Area	0.007	m^2				
J (Polar Moment of Inertia)	2.46E-04	m ⁴				
$I_x = I_y = J/2$	1.23E-04	m^4				
Centroid of Semicircle (y)	0.116	m				
Statical Moment of Area (Q)	4.28E-04	m ³				

Calculations Page 3

The directions of the reactions are flipped to observe the effect of the external forces on the material.

Mohrs Circle Coordinates

$$Pt1 = (\sigma_x, -\tau_{xy})$$

$$Pt2 = (\sigma_y, \tau_{xy})$$

Stress Element Diagram

Visible orange edges are kept on top of the element diagrams as though viewed from the outside of the pole.

Forces from the central diagram are translated to X, Y, and XY axis' on the element diagrams

See appendix for explanation of stress axis assignment and formulas

Element 1							
Effect of Mx (Tens Y+)	76856.9	kPa					
Effect of My (Shear XY+)	30995.8	kPa					
Effect of Mz (N/A)	0.0	kPa					
Effect of x (Shear XY + or -)	0.0	kPa					
Effect of y (Comp Y-)	-384.3	kPa					
Effect of z (N/A)	0.0	kPa					
σ_{X}	0.0	kPa					
σ_{y}	76472.6	kPa					
τ_{xy}	30995.8	kPa					
σ_{Min}	-10985.2	kPa					
σ_{Max}	87457.8	kPa					
τ_{Max}	49221.5	kPa					
Θ_{p}	-19.5	deg					
Θ_{s}	25.5	deg					

Element 2		
Effect of Mx (N/A)	0.0	kPa
Effect of My (Shear XY+)	30995.8	kPa
Effect of Mz (Comp Y-)	-13248.4	kPa
Effect of x (N/A)	0.0	kPa
Effect of y (Comp Y-)	-384.3	kPa
Effect of z (Shear XY+)	2737.2	kPa
σ_{χ}	0.0	kPa
σ_{y}	-13632.7	kPa
τ_{xy}	33733.0	kPa
σ_{Min}	-41231.2	kPa
σ_{Max}	27598.5	kPa
τ_{Max}	34414.8	kPa
Θ_{p}	39.3	deg
Θ_{s}	-5.7	deg

		Calcu		
Element 3				
Effect of Mx (Comp Y-)	-76856.9	kPa		
Effect of My (Shear XY+)	30995.8	kPa		
Effect of Mz (N/A)	0.0	kPa		
Effect of x (Shear XY - or +)	0.0	kPa		
Effect of y (Comp Y-)	-384.3	kPa		
Effect of z (N/A)	0.0	kPa		
σ_{X}	0.0	kPa		
σ_{y}	-77241.2	kPa		
T_{xy}	30995.8	kPa		
σ_{Min}	-88141.2	kPa		
σ_{Max}	10900.0	kPa		
τ_{Max}	49520.6	kPa		
Θ_{p}	19.4	deg		
Θ_{s}	-25.6	deg		

The directions of the reactions are flipped to observe the effect of the external forces on the material.

Mohrs Circle Coordinates

$$Pt1 = (\sigma_x, -\tau_{xy})$$

$$Pt2 = (\sigma_y, \tau_{xy})$$

Stress Element Diagram

Visible orange edges are kept on top of the element diagrams as though viewed from the outside of the pole.

Forces from the central diagram are translated to X, Y, and XY axis' on the element diagrams

See appendix for explanation of stress axis assignment and formulas

ulations Page 4							
		Element 4					
		Effect of Mx (N/A)	0.0	kPa			
		Effect of My (Shear XY+)	30995.8	kPa			
		Effect of Mz (Tens Y+)	13248.4	kPa			
		Effect of x (N/A)	0.0	kPa			
		Effect of y (Comp Y-)	-384.3	kPa			
		Effect of z (Shear XY-)	-2737.2	kPa			
		σ_{χ}	0.0	kPa			
		σ_{y}	12864.2	kPa			
		τ_{xy}	28258.6	kPa			
		σ_{Min}	-22549.3	kPa			
		σ _{Max}	35413.5	kPa			
		τ _{Max}	28981.4	kPa			
		Θ_{p}	-38.6	deg			
		Θς	6.4	deg			

Appendix

Vertical Beam Center of Gravity dy & Volume

$$A = (r_{o,b}^{2} + 2r_{o,b}r_{o,t} + 3r_{o,t}^{2}) - (r_{i,b}^{2} + 2r_{i,b}r_{i,t} + 3r_{i,t}^{2})$$

$$B = (r_{o,b}^2 + r_{o,b}r_{o,t} + r_{o,t}^2) - (r_{i,b}^2 + r_{i,b}r_{i,t} + r_{i,t}^2)$$

Center of Gravity dx, dy = 0, $\frac{hA}{4B}$

Volume Whole =
$$\frac{h\pi}{3} \left(r_{o,b}^2 + r_{o,b} r_{o,t} + r_{o,t}^2 \right)$$

Volume Inside =
$$\frac{h\pi}{3} (r_{i,b}^2 + r_{i,b}r_{i,t} + r_{i,t}^2)$$

Volume = Volume Whole - Volume Inside

Mast Center of Gravity dx, dy & Volume

Center of Gravity
$$dx = \frac{hA}{4B} * cos(F)$$

Center of Gravity dy = B + (dx * tan(F))

Volume calculations are identical to the vertical beam using root radius and tip radius instead of bottom and top.

Axial Loading

Torsion

Transverse Shear

