

Course Objective and Outcome

Department of Electrical and Computer Engineering School of Engineering and Physical Sciences North South University, Bashundhara, Dhaka-1229, Bangladesh

1. Course Number and Title: CSE231 Digital Logic Design

CSE231L Digital Logic Design Laboratory

2. **Credits:** 3 + 0 = 3 Credits

3. **Type:** Required, Engineering, Lecture + Lab

4. **Course Schedule/Timing:** Lecture – 3 Hours/week, Lab – 3 Hours/week

5. **Prerequisites:** CSE173 Discrete Mathematics

6. **Instructor**: Rifat Ahmed Hassan (RIH)

7. Contact E-Mail: rifat.hassan02@northsouth.edu

8. Office No. & Hours: TBA

9. Course Summary:

This course provides an introduction to logic design and basic tools for the design of digital logic systems. A basic idea of number systems will be provided, followed by a discussion on combinational logic: logic gates, Boolean algebra, minimization techniques, arithmetic circuits (adders, subtractors), basic digital circuits (decoders, encoders, multiplexers, shift registers), programmable logic devices (PROM, PAL, PLA). The course will then cover sequential circuits: flip-flops, state transition tables and diagrams, state minimization, state machines, design of synchronous/asynchronous counters, RAM/ROM design. An introduction to programmable logic will also be provided. Hands-on experience will be provided through project on design of a sequential logic system. This course has separate mandatory laboratory session every week as CSE 231L.

10. Course Objective:

The objectives of this course are

- a. to introduce Boolean logic operation and Boolean Algebra
- b. to teach students how to use Boolean Algebra and K-maps to realize two-level minimal/optimal combinational circuits
- c. to exposed students in the introductory design process of combinational and sequential circuits
- d. to teach the operation of latches, flip-flops, counters and registers.
- e. to explain how to analyze and design sequential circuits built with various flip-flops
- f. to introduce using simulation tool for digital system design.

11. Course Outcomes (COs):

Sl.	CO Description	Weightage (%)			
CO1	apply principles of Boolean algebra to logic functions.	10%			
CO2	1	10%			
	combinational circuits with up to 4-5 variables				
CO3	construct gate-level implementation of a combinational	30%			
	logic function using fundamental logic gates				
	(AND/OR/NOT), Multiplexers, Decoders and				
	Programmable logic gates (ROMs, PLAs and PALs)				
CO4	analyze and Design sequential circuits built with various flip-	30%			
	flops, registers, counters				
CO5	use simulation tool (e.g. Logisim) to construct Digital	5%			
	Logic				
CO6	operate laboratory equipment build, and troubleshoot simple combinational and sequential circuits	20%			

12. Mapping of CO-PO

Sl.	CO Description	POs	Bloom's taxonomy domain/level	Delivery methods and activities	Assessment tools
CO1	Apply principles of Boolean algebra to logic functions.	a	Cognitive/ Apply	Lectures, notes	Quiz, Exam
CO2	Use K-maps to realize two-level minimal/optimal combinational circuits with up to 4-5 variables.		Cognitive/ Apply	Lectures, notes	Quiz, Exam
CO3	Construct gate-level implementation of a combinational logic function using fundamental logic gates (AND/OR/NOT), Multiplexers, Decoders and Programmable logic gates (ROMs, PLAs and PALs)		Cognitive/ Create	Lectures, notes	Exam, Design Project
CO4	Analyze and Design sequential circuits built with various flip-flops, registers, counters		Cognitive/ Create	Lectures, notes	Exam, Design Project
CO5	Use simulation tool (e.g. Logisim) to construct Digital Logic Circuit in schematic level		Cognitive/ Apply, Psychomotor/ Manipulation	Lab class	Lab work, Design Project
CO6	Operate laboratory equipment build, and troubleshoot simple combinational and sequential circuits	e	Cognitive/ Remember,	Lab class	Lab work, Design Project

	Psychomotor/ Precision		
--	---------------------------	--	--

13. Resources

Text books:

No	Name of Author(s)	Year of Publication	Title of Book	Edition	Publisher's Name	ISBN
1	M Morris Mano & M D Ciletti	2012	Digital Design	5 th ed.	Pearson Education	ISBN-13: 978-0-13- 277420-8
2	M. Morris Mano & Charles Kime & Tom Martin	2015	Logic & Computer Design Fundamentals	5 th ed.	Pearson Education	ISBN-13: 978- 0133760637

Reference books:

No	Name of	Year of	Title of	Edition	Publisher's	ISBN
	Author(s)	Publication	Book		Name	
1	JF	2005	Digital	4 th ed.	Prentice	ISBN-13: 978-
	Wakerly		Design:		Hall	0131863897
			Principles			
			and Practices			

14. Weightage Distribution among Assessment Tools

Assessment Tools	Weightage (%)
Class Attendance	5%
Assignment/Project/Viva	10%
Quizzes	10%
Midterm Exam	25%
Final Exam	30%
Lab Work	20%

15. Grading policy: As per NSU grading policy available in