Разделение по вариантам:

1 Вариант:	2 Вариант:
Уткина	Апанасенко
Беденко	Якунина
Букина	Беликова
Горохова	Гаврищук
Карапетян	Крылова
Манузина	Лян Чи Цзюн
Никитин	Путнин
Плешакова	Рунович
Рондонуву	Фейгина

Контрольная работа №2

1. Используя таблицу ASCII и таблицу перевода чисел из одной системы счисления в другую: представьте следующие выражения в двоичной системе счисления:

1 ВАРИАНТ: «Hello, World!», «short-term», «12 + x = y - 4:z» (пробел тоже считается за знак) **2 ВАРИАНТ:** «Good luck!», «long-term», «10.5 + 1.3 >= y - 5*x» (пробел тоже считается за знак)

						Α	SCII	Coc	de C	hart						
١	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	∟ F
0	NUL	SOH	STX	ETX	EOT	ENQ	ACK	BEL	BS	HT	LF	VT	FF	CR	S0	SI
1	DLE	DC1	DC2	DC3	DC4	NAK	SYN	ЕТВ	CAN	EM	SUB	ESC	FS	GS	RS	US
2			=	#	\$	%	&	-	()	*	+	•		٠	/
3	0	1	2	3	4	5	6	7	8	9		;	۸	=	۸	?
4	0	Α	В	С	D	Е	F	G	Н	Ι	J	K	Г	М	N	0
5	Р	Q	R	S	T	U	V	W	X	Υ	Z	[/]	^	_
6	`	а	b	С	d	е	f	g	h	i	j	k	l	m	n	0
7	р	q	r	S	t	u	V	W	Х	у	Z	{		}	~	DEL

Десятичное	Восьмеричное	Двоичная	Шестнадцатеричное	Двоичная
число	число	запись	число	запись
0	0	000	0	0000
1	1	001	1	0001
2	2	010	2	0010
3	3	011	3	0011
4	4	100	4	0100
5	5	101	5	0101
6	6	110	6	0110
7	7	111	7	0111
8	10	000	8	1000
9	11	001	9	1001
10	12	010	A	1010
11	13	011	В	1011
12	14	100	C	1100
13	15	101	D	1101
14	16	110	E	1110
15	17	111	F	1111

2.

Реализуйте one hot encoding и n-gram модель(n = 2) для слов из следующего предложения:

1 BAPNAHT: «There are beautiful flowers growing in the garden»

2 BAPNAHT: «Read a book about the history of America.»

Ответ представьте в следующем виде:

one hot encoding: word = [1,0,0...]

n-gram: (w_1, w_2), (w_2,w_3) ...(w_n, w_m), где w_i - соответствующее слово

3.

1 ВАРИАНТ: Допустим, документ содержит 100 слов, в котором слова «кошка» встречается 5 раз. Чему равен term-frequance (tf) для данного слова? Теперь предположим, что у нас есть 10 миллионов текстов и слово «кошка» встречается в тысячи из них. Чему равна inverse document frequency (idf)?. Чему в итоге равен tf-idf вес для слова «Кошка»?

2 ВАРИАНТ: Допустим, документ содержит 100 слов, в котором слова «человек» встречается 2 раза. Чему равен term-frequance (tf) для данного слова? Теперь предположим, что у нас есть 1,5 тысячи текстов и слово «человек» встречается в ста из них. Чему равна inverse document frequency (idf)?. Чему в итоге равен tf-idf вес для слова «человек»?

4.

Какие архитектуры нейронных сетей для перевода слов в вектора вы знаете, в чем их принципиальные отличия? Приведите пример и нарисуйте базовую схему сети. (не более 2)

1 ВАРИАНТ: Допустим имеется модель CBOW (Continuous Bag of Words). На вход сети подается 2 закодированных с помощью one-hot encoding слова из нижеприведенного текста. То есть на вход сети подаются 2 вектора размерности V. Определить количество нейронов на входном и выходном слоях. Какова будет размерность матрицы весов между входным и скрытым слоями, если скрытый слой имеет 10 нейронов?

Текст: «Maître Corbeau, sur un arbre perché, Tenait en son bec un fromage. Maître Renard, par l'odeur alléché. Lui tint à peu près ce langage : « Hé ! bonjour, Monsieur du Corbeau.»»

Подсказка: Необходимо найти V с учетов вышеприведенного текста.

2 ВАРИАНТ: Допустим имеется модель Skip-Gram. На вход сети подается закодированный с помощью one-hot encoding вектор размерности V. Слово, которому соответствует данный вектор определяется из нижеприведенного текста. Определить количество нейронов на входном и выходном слоях нейронной сети. Какова будет размерность матрицы весов между входным и скрытым слоями, если скрытый слой имеет 5 нейронов?

Текст: «Jeder hat das Recht auf Bildung. Die Bildung ist unentgeltlich, zum mindesten der Grundschulunterricht und die grundlegende Bildung. Der Grundschulunterricht ist obligatorisch.»

Подсказка: Необходимо найти V с учетов вышеприведенного текста.

5.

В чем принципиальное отличие архитектуры LSTM от стандартной RNN?

- **1 ВАРИАНТ:** Изобразите модуль (ячейку) обыкновенной рекуррентной сети. В чем состоит отличие/отличия архитектуры RNN от стандартной архитектуры нейронной сети? Каковы недостатки стандартной рекуррентной сети?
- **2 ВАРИАНТ:** Изобразите модуль (ячейку) сети LSTM. Пошагово объясните каждый процесс в ячейке. В чем состоит основная идея LSTM?

6.

Что такое Doc2vec? Какие архитектуры нейронных сетей являются наиболее популярными doc2vec? в чем их состоит их сходство с соответствующими моделями из word2vec?