```
from google.colab import drive
drive.mount("/content/gdrive")
    Mounted at /content/gdrive
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
df=pd.read_csv('/content/gdrive/My Drive/Colab Notebooks/Dataset/Social_Network Ads.csv')
dataset=df
print(dataset)
          User ID Gender Age EstimatedSalary Purchased
    0
                     Male
                           19
         15624510
                                          19000
    1
         15810944
                     Male
                                                         0
                           35
                                          20000
     2
         15668575 Female
                            26
                                          43000
                                                         0
     3
         15603246 Female
                            27
                                                         0
                                          57000
    4
         15804002
                     Male
                            19
                                          76000
                                                         0
    395 15691863 Female
                            46
                                          41000
                                                         1
    396 15706071
                     Male
                            51
                                          23000
                                                         1
    397 15654296 Female
                            50
                                          20000
                                                         1
    398 15755018
                   Male
                            36
                                          33000
                                                         0
     399 15594041 Female
                            49
                                          36000
                                                         1
     [400 rows x 5 columns]
print("Number of rows is = ", dataset.shape[0], " \nNumber of columns is = " , dataset.shape[
    Number of rows is = 400
    Number of columns is = 5
dataset.columns
     Index(['User ID', 'Gender', 'Age', 'EstimatedSalary', 'Purchased'], dtype='object')
dataset.describe()
```

		User ID	Age	EstimatedSalary	Purchased		
	count	4.000000e+02	400.000000	400.000000	400.000000		
	mean	1.569154e+07	37.655000	69742.500000	0.357500		
	std	7.165832e+04	10.482877	34096.960282	0.479864		
<pre>dataset.isnull().sum()</pre>							
	User ID 0 Gender 0 Age 0 EstimatedSalary 0 Purchased 0						

correlation = pd.DataFrame(dataset.corr().Purchased)
correlation

	Purchased
User ID	0.007120
Age	0.622454
EstimatedSalary	0.362083
Purchased	1.000000

dtype: int64

dataset.drop('User ID', axis = 1, inplace=True)

dataset['Purchased'].value_counts()

0 2571 143

Name: Purchased, dtype: int64

pd.crosstab(dataset.Gender,dataset.Purchased,normalize = "index")

Purchased	0	1	
Gender			
Female	0.622549	0.377451	
Male	0.663265	0.336735	

dataset = pd.get_dummies(dataset, columns = ['Gender'], drop_first=True)

Age EstimatedSalary Purchased Gender Male

dataset.head()

```
0
          19
                        19000
                                       0
                                                    1
      1
          35
                        20000
                                       0
                                                    1
      2
          26
                        43000
                                       0
                                                    0
      3
          27
                        57000
                                       0
                                                    0
      4
          19
                        76000
                                       0
                                                    1
X = dataset.drop(['Purchased'],axis = 1)
y = dataset['Purchased']
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0)
from sklearn.preprocessing import StandardScaler
sc X = StandardScaler()
X train = sc X.fit transform(X train)
X test = sc X.transform(X test)
from sklearn.linear_model import LogisticRegression
classifier = LogisticRegression(random state = 0, solver='lbfgs' )
classifier.fit(X_train, y_train)
y pred = classifier.predict(X test)
print(X_test[:10])
print('-'*15)
print(y_pred[:10])
     [[-0.80480212 0.50496393 1.02020406]
      [-0.01254409 -0.5677824 -0.98019606]
      [-0.30964085 0.1570462
                                1.02020406]
      [-0.80480212  0.27301877  -0.98019606]
      [-0.30964085 -0.5677824 -0.98019606]
      [-1.10189888 -1.43757673 1.02020406]
      [-0.70576986 -1.58254245 -0.98019606]
      [-0.21060859 2.15757314 1.02020406]
      [-1.99318916 -0.04590581 -0.98019606]
      [ 0.8787462 -0.77073441 1.02020406]]
     [0 0 0 0 0 0 0 1 0 1]
```

print(y_pred[:20])

```
print(y_test[:20])
```

```
[0\ 0\ 0\ 0\ 0\ 0\ 0\ 1\ 0\ 1\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 1\ 0]
132
309
        0
341
        0
196
        0
246
        0
60
        0
155
        0
261
        1
141
        0
214
        0
37
        0
134
        0
113
        0
348
        0
12
        0
59
        0
293
        0
140
        0
206
        1
199
        0
```

Name: Purchased, dtype: int64

from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)
print(cm)

[[65 3] [7 25]]

from sklearn import metrics
print(metrics.classification_report(y_test, y_pred))

precision	recall	f1-score	support
0.90	0.96	0.93	68
0.89	0.78	0.83	32
		0.90	100
0.90	0.87	0.88	100
0.90	0.90	0.90	100
	0.90 0.89 0.90	0.90 0.96 0.89 0.78 0.90 0.87	0.90 0.96 0.93 0.89 0.78 0.83 0.90 0.87 0.88

• ×