Mathematics for Robotics (ROB-GY 6013 Section A)

- Week 13:
 - Kalman Filter

Thinking

Batch:

- Everything, all at once
- Complete information is already there
 - No sense of probability concepts, covariance

Recursive:

- You receive new pieces of information as time progresses
 - For a discrete-time system, the index k is time
 - The matrix A_k is a function of time

Thinking

Dynamics:

Prediction based on equation that describes system behavior/state evolution

$$x_{k+1} = A_k x_k + G_k w_k$$

Measurement:

Sensor feedback

$$y_k = C_k x_k + v_k$$

Thinking

- Estimation is about finding a probability distribution or density
 - Normal density is defined by mean and covariance matrix
 - At each step of the Kalman Filter we are searching for some conditional density by computing an updated mean and covariance matrix

Model

Linear time-varying discrete-time system with "white" Gaussian noise

$$x_{k+1} = A_k x_k + G_k w_k \qquad y_k = C_k x_k + v_k$$

 $x \in \mathbb{R}^n$, $w \in \mathbb{R}^p$, $v \in \mathbb{R}^m$, $v \in \mathbb{R}^m$.

- Initial condition: x_0
- x_0 , and, for $k \ge 0$, w_k , v_k are independent Gaussian random vectors.

$$\operatorname{cov}\left(\left[\begin{array}{c} w_k \\ v_k \\ x_0 \end{array}\right], \left[\begin{array}{c} w_l \\ v_l \\ x_0 \end{array}\right]\right) = \left[\begin{array}{ccc} R_k \delta_{kl} & 0 & 0 \\ 0 & Q_k \delta_{kl} & 0 \\ 0 & 0 & P_0 \end{array}\right], \ \delta_{kl} = \left\{\begin{array}{ccc} 1 & k = l \\ 0 & k \neq l \end{array}\right.$$

Stochastic Assumptions

- For all $k \ge 0$, $l \ge 0$, x_0 , w_k , v_l are jointly Gaussian.
- w_k is a 0-mean white noise process: $\mathcal{E}\{w_k\}=0$, and $\operatorname{cov}(w_k,w_l)=R_k\delta_{kl}$
- v_k is a 0-mean white noise process: $\mathcal{E}\{v_k\}=0$, and $\operatorname{cov}(v_k,v_l)=Q_k\delta_{kl}$
- Uncorrelated noise processes: $cov(w_k, v_l) = 0$
- The initial condition x_0 is uncorrelated with all other noise sequences.
- We denote the mean and covariance of x_0 by

$$\bar{x}_0 = \mathcal{E}\{x_0\} \text{ and } P_0 = \text{cov}(x_0) = \text{cov}(x_0, x_0) = \mathcal{E}\{(x_0 - \bar{x}_0)(x_0 - \bar{x}_0)^\top\}$$

Properties of x_k and y_k

$$x_{k+1} = A_k x_k + G_k w_k \qquad y_k = C_k x_k + v_k$$

• For all $k \ge 1$, x_k is a linear combination of x_0 and $w_0, ..., w_{k-1}$.

• For all $k \ge 1$, y_k is a linear combination of x_0 and $w_0, ..., w_{k-1}$, and $v_0, ..., v_k$.

Properties of x_k and y_k

$$x_{k+1} = A_k x_k + G_k w_k \qquad y_k = C_k x_k + v_k$$

- For all $k \ge 1$, x_k is a linear combination of x_0 and $w_0, ..., w_{k-1}$.
 - In particular, x_k is uncorrelated with w_k .
- For all $k \ge 1$, y_k is a linear combination of x_0 and $w_0, ..., w_{k-1}$, and $v_0, ..., v_k$.
 - In particular, y_k is uncorrelated with w_k .
- For all $k \ge 0$, v_k is uncorrelated with x_k .

Basic Kalman Filter: Terms

- Update estimates of x and P at each time instant
- k | k vs. k+1 | k

Basic Kalman Filter: Terms

- Update estimates of *x* and *P* at each time instant
- $k \mid k$ vs. $k+1 \mid k$

$$\widehat{x}_{k|k} := \mathcal{E}\{x_k|y_0, \cdots, y_k\}$$

$$P_{k|k} := \mathcal{E}\{(x_k - \widehat{x}_{k|k})(x_k - \widehat{x}_{k|k})^\top | y_0, \cdots, y_k\}$$

Basic Kalman Filter: Terms

- Update estimates of *x* and *P* at each time instant
- $k \mid k \text{ vs. } k+1 \mid k$

$$\widehat{x}_{k|k} := \mathcal{E}\{x_k|y_0, \cdots, y_k\}$$

$$P_{k|k} := \mathcal{E}\{(x_k - \widehat{x}_{k|k})(x_k - \widehat{x}_{k|k})^\top | y_0, \cdots, y_k\}$$

$$\widehat{x}_{k+1|k} := \mathcal{E}\{x_{k+1}|y_0, \cdots, y_k\}$$

$$P_{k+1|k} := \mathcal{E}\{(x_{k+1} - \widehat{x}_{k+1|k})(x_{k+1} - \widehat{x}_{k+1|k})^{\top}|y_0, \cdots, y_k\}$$

Basic Kalman Filter: Initial Conditions

• Initial conditions: $\widehat{x}_{0|-1} := \overline{x}_0 = \mathcal{E}\{x_0\}$, and $P_{0|-1} := P_0 = \text{cov}(x_0)$

$$\widehat{x}_{k|k} := \mathcal{E}\{x_k|y_0, \cdots, y_k\}$$

$$P_{k|k} := \mathcal{E}\{(x_k - \widehat{x}_{k|k})(x_k - \widehat{x}_{k|k})^\top | y_0, \cdots, y_k\}$$

$$\widehat{x}_{k+1|k} := \mathcal{E}\{x_{k+1}|y_0, \cdots, y_k\}$$

$$P_{k+1|k} := \mathcal{E}\{(x_{k+1} - \widehat{x}_{k+1|k})(x_{k+1} - \widehat{x}_{k+1|k})^{\top}|y_0, \cdots, y_k\}$$

Basic Kalman Filter: Naïve MVE

• Initial conditions: $\widehat{x}_{0|-1} := \overline{x}_0 = \mathcal{E}\{x_0\}, \text{ and } P_{0|-1} := P_0 = \text{cov}(x_0)$

$$\widehat{x}_{k|k} := \mathcal{E}\{x_k|y_0, \cdots, y_k\}$$

$$P_{k|k} := \mathcal{E}\{(x_k - \widehat{x}_{k|k})(x_k - \widehat{x}_{k|k})^\top | y_0, \cdots, y_k\}$$

 Idea: Just use this for batch computation with MVE! These are conditional densities with multivariate normal random vectors

Basic Kalman Filter: Naïve MVE

• Initial conditions: $\widehat{x}_{0|-1} := \overline{x}_0 = \mathcal{E}\{x_0\}, \text{ and } P_{0|-1} := P_0 = \text{cov}(x_0)$

$$\widehat{x}_{k|k} := \mathcal{E}\{x_k|y_0, \cdots, y_k\}$$

$$P_{k|k} := \mathcal{E}\{(x_k - \widehat{x}_{k|k})(x_k - \widehat{x}_{k|k})^\top | y_0, \cdots, y_k\}$$

- BAD Idea: Just use this for batch computation with MVE! These are conditional densities with multivariate normal random vectors
 - Huge number of measurements $Y_k = (y_k, y_{k-1}, \dots, y_0)$.
 - Must run batch computation for each x_k

- Matrix: $Y_k = (y_k, y_{k-1}, \dots, y_0)$
 - $Y_k = (y_k, Y_{k-1})$

- Matrix: $Y_k = (y_k, y_{k-1}, \dots, y_0)$
 - $Y_k = (y_k, Y_{k-1})$
- Mean and Covariance of the conditional random vector: $x_k \mid Y_k$

• Mean and Covariance of the conditional random vector: $x_{k+1} \mid Y_k$

- Matrix: $Y_k = (y_k, y_{k-1}, \dots, y_0)$
 - $Y_k = (y_k, Y_{k-1})$
- Mean and Covariance of the conditional random vector: $x_k \mid Y_k$

$$\widehat{x}_{k|k} := \mathcal{E}\{x_k|Y_k\}$$

$$P_{k|k} := \mathcal{E}\{(x_k - \widehat{x}_{k|k})(x_k - \widehat{x}_{k|k})^\top | Y_k\}$$

• Mean and Covariance of the conditional random vector: $x_{k+1} \mid Y_k$

$$\widehat{x}_{k+1|k} := \mathcal{E}\{x_{k+1}|Y_k\}$$

$$P_{k+1|k} := \mathcal{E}\{(x_{k+1} - \widehat{x}_{k+1|k})(x_{k+1} - \widehat{x}_{k+1|k})^{\top}|Y_k\}$$

- Matrix: $Y_k = (y_k, y_{k-1}, \dots, y_0)$
 - $\bullet \quad Y_k = (y_k, Y_{k-1})$
- Mean and Covariance of the conditional random vector: $x_k \mid Y_k$
 - Density of: $N(\widehat{x}_{k|k}, P_{k|k})$

- Mean and Covariance of the conditional random vector: $x_{k+1} \mid Y_k$
 - Density of: $N(\widehat{x}_{k+1|k}, P_{k+1|k})$

Basic Kalman Filter

Initial Conditions:

$$\widehat{x}_{0|-1} := \overline{x}_0 = \mathcal{E}\{x_0\}, \text{ and } P_{0|-1} := P_0 = \text{cov}(x_0)$$

For $k \geq 0$

Measurement Update Step:

$$K_{k} = P_{k|k-1}C_{k}^{\top} \left(C_{k} P_{k|k-1} C_{k}^{\top} + Q_{k} \right)^{-1} \quad \text{(Kalman Gain)}$$

$$\widehat{x}_{k|k} = \widehat{x}_{k|k-1} + K_{k} \left(y_{k} - C_{k} \widehat{x}_{k|k-1} \right)$$

$$P_{k|k} = P_{k|k-1} - K_{k} C_{k} P_{k|k-1}$$

Time Update or Prediction Step:

$$\widehat{x}_{k+1|k} = A_k \widehat{x}_{k|k}$$

$$P_{k+1|k} = A_k P_{k|k} A_k^{\top} + G_k R_k G_k^{\top}$$

End of For Loop (Just stated this way to emphasize the recursive nature of the filter)

Review

Key Fact 1: Conditional Distributions of Gaussian Random Vectors

• Mean
$$\mu_{1|2} := \mu_1 + \Sigma_{12} \Sigma_{22}^{-1} (x_2 - \mu_2)$$

• Covariance
$$\Sigma_{1|2} := \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}$$

Proof: http://fourier.eng.hmc.edu/e161/lectures/gaussianprocess/node7.html

Key Fact 2: Conditional Independence

• Suppose we have 3 vectors X_1 , X_2 and X_3 that are **jointly normally distributed** and X_1 and X_3 are each **independent** of X_2 . The covariance matrix has the form

$$\Sigma = \begin{bmatrix} \Sigma_{11} & 0 & \Sigma_{13} \\ 0 & \Sigma_{22} & 0 \\ \Sigma_{13}^{\mathsf{T}} & 0 & \Sigma_{33} \end{bmatrix}$$

Key Fact 2: Conditional Independence

• Suppose we have 3 vectors X_1 , X_2 and X_3 that are **jointly normally distributed** and X_1 and X_3 are each **independent** of X_2 . The covariance matrix has the form

$$\Sigma = \begin{bmatrix} \Sigma_{11} & 0 & \Sigma_{13} \\ 0 & \Sigma_{22} & 0 \\ \hline \Sigma_{13}^{\top} & 0 & \Sigma_{33} \end{bmatrix}$$

 X_1 and X_2 are conditionally independent given X_3

Key Fact 2: Conditional Independence

• Suppose we have 3 vectors X_1 , X_2 and X_3 that are jointly normally distributed and X_1 and X_3 are each independent of X_2 .

$$\Sigma = \begin{bmatrix} \Sigma_{11} & 0 & \Sigma_{13} \\ 0 & \Sigma_{22} & 0 \\ \hline \Sigma_{13}^{\top} & 0 & \Sigma_{33} \end{bmatrix}$$

 X_1 and X_2 are conditionally independent given X_3

• Using Key Fact 1 for covariance: $\begin{bmatrix} \operatorname{cov}(\begin{bmatrix} X_{1|X_3} \\ X_{2|X_3} \end{bmatrix}, \begin{bmatrix} X_{1|X_3} \\ X_{2|X_3} \end{bmatrix}) = \begin{bmatrix} \begin{array}{ccc} \Sigma_{11} & 0 \\ 0 & \Sigma_{22} \end{array} \end{bmatrix} - \begin{bmatrix} \begin{array}{ccc} \Sigma_{13} \\ 0 \end{array} \end{bmatrix} \begin{array}{ccc} \Sigma_{13}^{-1} & \Sigma_{13}^{-1} & 0 \\ \end{array} \end{bmatrix} \\ = \begin{bmatrix} \begin{bmatrix} X_{11} - \Sigma_{13} \Sigma_{33}^{-1} \Sigma_{13}^{-1} & 0 \\ 0 & \Sigma_{22} \end{array} \end{bmatrix} \\ = \begin{bmatrix} \begin{array}{ccc} \Sigma_{11} - \Sigma_{13} \Sigma_{33}^{-1} \Sigma_{13}^{-1} & 0 \\ 0 & \Sigma_{22} \end{array} \end{bmatrix}$

Key Fact 3: Covariance of a Sum of Independent Normal Random Variables

- Linear Combination: $Y = AX_1 + BX_2$
- Mean: $\mu_Y = A\mu_1 + B\mu_2$
- Covariance: $cov(Y, Y) = A\Sigma_{11}A^T + B\Sigma_{22}B^T$.

• Suppose that X, Y, and Z are jointly distributed random vectors with density f_{XYZ} .

$$(X|Z)|(Y|Z) \sim \frac{f_{(X|Z)(Y|Z)}}{f_{(Y|Z)}} = \frac{f_{XYZ}}{f_{YZ}} \sim X \begin{vmatrix} Y \\ Z \end{vmatrix}$$

• Suppose that X, Y, and Z are jointly distributed random vectors with density f_{XYZ} .

$$(X|Z)|(Y|Z) \sim \frac{f_{(X|Z)(Y|Z)}}{f_{(Y|Z)}} = \frac{f_{XYZ}}{f_{YZ}} \sim X \begin{vmatrix} Y \\ Z \end{vmatrix}$$

Proof:

$$(X|Z)|(Y|Z) \sim \frac{f_{(X|Z)(Y|Z)}}{f_{(Y|Z)}} = \frac{f\begin{bmatrix} X \\ Y \end{bmatrix}|Z}{f_{Y|Z}} = \frac{\frac{f_{XYZ}}{f_Z}}{\frac{f_{YZ}}{f_Z}} = \frac{f_{XYZ}}{f_{YZ}} \sim X|\begin{bmatrix} Y \\ Z \end{bmatrix}$$

• Suppose that X, Y, and Z are jointly distributed random vectors with density f_{XYZ} .

$$(X|Z)|(Y|Z) \sim \frac{f_{(X|Z)(Y|Z)}}{f_{(Y|Z)}} = \frac{f_{XYZ}}{f_{YZ}} \sim X \begin{vmatrix} Y \\ Z \end{vmatrix}$$

Proof:

$$(X|Z)|(Y|Z) \sim \frac{f_{(X|Z)(Y|Z)}}{f_{(Y|Z)}} = \frac{f\begin{bmatrix} X \\ Y \end{bmatrix}|Z}{f_{Y|Z}} = \frac{\frac{f_{XYZ}}{f_Z}}{\frac{f_{YZ}}{f_Z}} = \frac{f_{XYZ}}{f_{YZ}} \sim X|\begin{bmatrix} Y \\ Z \end{bmatrix}$$

Does not require random vectors to be normal (Gaussian)!

• Suppose that X, Y, and Z are jointly distributed random vectors with density f_{XYZ} .

$$(X|Z)|(Y|Z) \sim \frac{f_{(X|Z)(Y|Z)}}{f_{(Y|Z)}} = \frac{f_{XYZ}}{f_{YZ}} \sim X|\begin{bmatrix} Y\\ Z \end{bmatrix}$$

Proof:

$$(X|Z)|(Y|Z) \sim \frac{f_{(X|Z)(Y|Z)}}{f_{(Y|Z)}} = \frac{f\begin{bmatrix} X \\ Y \end{bmatrix}|Z}{f_{Y|Z}} = \frac{\frac{f_{XYZ}}{f_Z}}{\frac{f_{YZ}}{f_Z}} = \frac{f_{XYZ}}{f_{YZ}} \sim X|\begin{bmatrix} Y \\ Z \end{bmatrix}$$

- Does not require random vectors to be normal (Gaussian)!
- Key to recursion!

Basic Kalman Filter (refer to Textbook section 5.7 for derivation)

Initial Conditions:

$$\widehat{x}_{0|-1} := \overline{x}_0 = \mathcal{E}\{x_0\}, \text{ and } P_{0|-1} := P_0 = \text{cov}(x_0)$$

For k > 0

Measurement Update Step:

$$K_{k} = P_{k|k-1}C_{k}^{\top} \left(C_{k} P_{k|k-1} C_{k}^{\top} + Q_{k} \right)^{-1}$$
 (Kalman Gain)
$$\widehat{x}_{k|k} = \widehat{x}_{k|k-1} + K_{k} \left(y_{k} - C_{k} \widehat{x}_{k|k-1} \right)$$

$$P_{k|k} = P_{k|k-1} - K_{k} C_{k} P_{k|k-1}$$

Time Update or Prediction Step:

$$\widehat{x}_{k+1|k} = A_k \widehat{x}_{k|k}$$

$$P_{k+1|k} = A_k P_{k|k} A_k^{\top} + G_k R_k G_k^{\top}$$

End of For Loop (Just stated this way to emphasize the recursive nature of the filter)

Singular Value Decomposition (SVD)

Plan next week

- Cover matrix factorizations
 - QR factorization
 - Finish SVD
 - LU factorizations
- Newton-Raphson
- A taste of linear programming and optimization