الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

وزارة التربية الوطنية

دورة: جوان 2014

امتحان بكالوريا التعليم الثانوي

الشعبة: تقني رياضي

المدة: 04 سا و30 د

اختبار في مادة: الرياضيات

على المترشح أن يختار أحد الموضوعين التاليين:

الموضوع الأول

التمرين الأول: (05,5 نقاط)

$$(z-i)(z^2-2\sqrt{3}z+4)=0$$
 المعادلة: \mathbb{C} المعادلة الأعداد المركبة الأعداد المركبة المعادلة: \mathbb{C}

$$\left(O; \vec{u}, \vec{v}\right)$$
 المستوي المركب منسوب إلى المعلم المتعامد المتجانس (2

 $z_3=i$ و $z_2=\sqrt{3}-i$ ، $z_1=\sqrt{3}+i$ نسمي B ، A و نقط المستوي التي لاحقاتها على الترتيب B ، A

أ) أكتب العدد
$$\frac{Z_1}{Z_2}$$
 على الشكل الأسي.

برّر إجابتك.
$$\left(\frac{z_1}{z_2}\right)^n$$
 تخيليا صرفا ؟ برّر إجابتك. بي هل توجد قيم للعدد الطبيعي n يكون من أجلها العدد المركب

(3) أي عيّن العبارة المركبة للتشابه المباشر S الذي مركزه A ويحول B إلى C، محددا نسبته وزاويته.

4) أ) عيّن العناصر المميزة لـ (E) مجموعة النقط M من المستوي ذات اللاحقة z والتي تحقق:

$$|z-z_1|^2 + |z-z_3|^2 = 5$$

 $|z-z_1|=|z-z_3|$: حيث z مجموعة النقط M من المستوي التي لاحقتها z حيث (E') عين

التمرين الثاني: (04,5 نقاط)

 $\left(O; \vec{i}, \vec{j}, \vec{k}\right)$ الفضاء منسوب إلى المعلم المتعامد المتجانس

و (Δ_2) مستقيمان من الفضاء معرفان بتمثيليهما الوسيطيين التاليين:

 (Δ_2) و (Δ_1) عيّن إحداثيات النقطة B تقاطع المستقيمين إحداثيات النقطة

 (Δ_2) و (Δ_1) المعيّن بالمستقيمين و المعيّن بالمستقيمين و بالمستقيمين (P)

(P) أثبت أن النقطة A(6;4;4) لا تنتمي إلى المستوي (2

(P) على المستوى (P) بيّن أن النقطة (P) على المستوى المستوى (P)

(3) أ) عيّن معادلة ديكارتية للمستوي (Q) الذي يشمل النقطة A و (5;1;-7) شعاع ناظمي له.

ب) عيّن إحداثيات C و D نقطتي تقاطع (Q) مع كل من (Δ_1) و (Δ_2) على الترتيب.

ABCD، ثم أحسب حجم رباعي الوجو، BCD، ثم أحسب عين طبيعة المثلث

ب) استتج مساحة المثلث ACD

التمرين الثالث: (04 نقاط)

 $f\left(X \right) = X - \ln \left(X - 1 \right)$ بي: $\left[1; +\infty \right]$ المعرفة على المجال $\left[1; +\infty \right]$

f(X) - X مدد حسب قیم X، اشاره (1

f عيّن اتجاه تغير f

 $f(x) \in [2; e+1]$ فإن $x \in [2; e+1]$ بيّن أنه إذا كان

 $u_{n+1}=u_n-\ln \left(u_n-1
ight)$ ، $\mathbb N$ من n من n ومن أجل كل $u_0=e+1$ كما يلي: $u_0=e+1$ كما يلي: $u_0=e+1$

 (u_n) أدرس اتجاه تغير المتتالية (2

3) برر تقارب المتتالية (u_n) ، ثم أحسب نهايتها.

التمرين الرابع: (06 نقاط)

 $(O; \vec{t}, \vec{j})$ المستوي منسوب إلى المعلم المتعامد المتجانس

 $g(x) = x \ln x + x$: با $g(x) = x \ln x + x$ الدالة المعرفة على المجال و $g(x) = x \ln x + x$

g أدرس تغيرات الدالة

[0;3] في [0;3] في أن المعادلة g(x)=2 تقبل حلا وحيدا في

 $1,45 < \alpha < 1,46$ ثم تحقق أن

g(x)-2 ب) استنتج إشارة

التمثيل البياني المقابل (C_f) هو للدالة f المعرفة على (II

 $f(x) = |x - 2| \ln x :=]0;3$ المجال

2 عند f عند الدالة المتقاق الدالة (C_f) عند (1

2) أثبت صحة تخمينك.

f أدرس تغيرات الدالة f

 $h(x) = (2 - \cos x) \ln(\cos x)$ كما يلي: $\theta(x) = (2 - \cos x) \ln(\cos x)$ كما يلي: $h(x) = (2 - \cos x) \ln(\cos x)$

h بيّن أن المستقيم (Δ) ذو المعادلة $X=rac{\pi}{2}$ مقارب للمنحنى (C_h) ؛ حيث (C_h) هو التمثيل البياني للدالة (1)

 (C_h) و (Δ) و انجاه تغیر الداله (Δ) شکل جدول تغیر اتها و ارسم (Δ)

الموضوع الثاني

التمرين الأول: (04,5 نقاط)

 $z_0 = 1 + i$ ذات اللحقة A ذات المنسوب المي المعلم المتعامد المتجانس ($O; \vec{u}, \vec{v}$) النقطة المتعامد المت

$$\mathbb{R}$$
 و θ و $z=z_0+2e^{i\theta}$: مجموعة النقط $M\left(z
ight)$ من المستوي حيث $M\left(z
ight)$ مجموعة النقط (1)

$$\mathbb{R}^+$$
ب عيّن ثم أنشئ (γ) مجموعة النقط $M(z)$ من المستوي حيث: $z=z_0+ke^{i\left(rac{3\pi}{4}
ight)}$ عيّن ثم أنشئ

$$(\gamma)$$
 عيّن إحداثيات نقطة نقاطع (γ) و

$$z_1=z_0+2e^{\sqrt{3\pi\over 4}}$$
 نسمي B النقطة التي لاحقتها z_1 حيث (2

$$OAB$$
 عيّن الشكل الجبري للعدد المركب $\frac{z_1-z_0}{z_0}$ ، ثم استنج طبيعة المثلث (أ

$$-rac{\pi}{2}$$
ب) عيّن z_2 لاحقة النقطة C صورة النقطة B بالدوران الذي مركزه C

$$lpha+eta=\sqrt{2}$$
 عين العددين الحقيقيين $lpha$ و eta بحيث تكون النقطة O مرجحا للجملة $\{(A;lpha),(C;eta)\}$ و

$$\left(\left(1+\sqrt{2}\right)\overrightarrow{MA}-\overrightarrow{MC}\right).\left(\overrightarrow{MA}-\overrightarrow{MC}\right)=0$$
 عيّن ثم أنشئ (E) مجموعة النقط M من المستوي حيث:

التمرين الثاني: (04,5 نقاط)

 $\left(O; \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}\right)$ الفضاء منسوب إلى المعلم المتعامد المتعامد

$$C\left(-1;3;4
ight)$$
 و $B\left(1;3;2
ight)$ ، $A\left(0;-1;1
ight)$ و عند الفضاء حيث B ، A

$$\widehat{BAC}$$
 ، ثم استنج القيمة المدورة إلى الوحدة، بالدرجات، للزاوية $\overline{AB}.\overline{AC}$

بيّن أن النقط C ، B ، A نعين مستويا.

$$(ABC)$$
 ناظمي للمستوي $\vec{n}(2;-1;2)$ ناظمي المستوي ($(2;-1;2)$

$$(ABC)$$
 ب) أكتب معادلة ديكارتية للمستوي

$$x^2 + y^2 + z^2 - 4x + 6y - 2z + 5 = 0$$
 ليكن (S) سطح الكرة الذي معادلته:

$$\Omega$$
 نسمي Ω و عيّن احداثيات R نسمي Ω وعيّن احداثيات Ω

(ABC) والموازيين للمستويين (P_1) مماسي سطح الكرة (S) والموازيين المستوي (P_2) والمستوي (4

التمرين الثالث: (05 نقاط)

n و p عددان طبیعیان.

 5^n أدرس، حسب قيم n، بواقي القسمة الإقليدية على 16 للعدد 16

$$D_p = 5^p$$
 و $C_n = 16n + 9$ نضع: (2

$$C_n = D_p$$
 عدد طبیعی n یوجد عدد طبیعی $p = 4k + 2$ کان $p = 4k + 2$ کان (أ

$$p=6$$
 ب) عيّن n من أجل

$$f(x) = 5^{(4x+2)} - 9$$
 بـ: $[0; +\infty[$ المعرفة على المجال $f(x) = 5^{(4x+2)}$

 $f\left(X\right)$ أدرس تغير ات الدالة f، ثم استتج إشارة

$$u_{n+1} = 5^4 \left(u_n + \frac{9}{16} \right) - \frac{9}{16}$$
 ، N من n من n من $u_0 = 1$ كما يلي: $u_0 = 1$ كما يلي:

$$u_n = \frac{5^{(4n+2)} - 9}{16}$$
 , n such that n are n and n are n and n are n are n and n are n are n and n are n and n are n are n are n and n are n are n are n and n are n are n are n are n are n and n are n are n and n are n are n are n and n are n are n are n are n and n are n are n are n are n and n are n are n and n are n are n are n and n are n are n are n and n are n are

ب) برهن أنه من أجل كل عدد طبيعي n ، فإن u_n عدد طبيعي.

 (u_n) استتج اتجاه تغیر المتتالیة (5

التمرين الرابع: (06 نقاط)

 $f(x) = (x-1)e^x$ بے: \mathbb{R} هي الدالة المعرفة على f

 $\left(O;\overrightarrow{l},\overrightarrow{f}
ight)$ سنجاس البياني في المستوي المنسوب إلى المعلم المتعامد المتجانس المستوي المنسوب إلى تمثيلها البياني في المستوي المنسوب ال

 $+\infty$ و ∞ عين نهاية f عند كل من

ادرس اتجاه تغير الدالة f على $\mathbb R$ ثم شكل جدول تغير اتها.

 $1,27 < \alpha < 1,28$ أ) بيّن أن المعادلة f(x) = 1 تقبل حلا وحيدا α على π ، ثم تحقق أن f(x) = 1

(T) عند النقطة ذات الفاصلة 1 وحدّد وضعية (C_f) مماس المنحنى (C_f) عند النقطة ذات الفاصلة 1 وحدّد وضعية (C_f) بالنسبة إلى (C_f) و (C_f) و (C_f)

 \mathbb{R} عين قيم العدد الحقيقي m التي من أجلها تقبل المعادلة $e^m=-1$ عين قيم العدد الحقيقي واحدا في m

هي الدالة المعرفة على \mathbb{R} بــ: \mathbb{R} بــ و $h(x) = (|x|+1)e^{-|x|}$ و مثيلها البياني $h(x) = (|x|+1)e^{-|x|}$

أ) بيّن أنّ الدالة h زوجية.

 $\left(C_{f}
ight)$ ارسم $\left(C_{h}
ight)$ مستعینا بالمنحنی (ب

و دالة معرفة على \mathbb{R} بي: $g(x)=(ax+b)e^x$ عددان حقيقيان g(x)=g(x)=ax+b عين g(x)=ax+b عين g(x)=ax+b من g(x)=ax+b عين g(x)=ax+b عين g(x)=ax+b

الإجابة النموذجية لموضوع امتحان بكالوريا دورة: 2014

المدة: 04 ساعات ونصف

اختبار مادة: الرياضيات الشعبة: تقني رياضي

العلامة		(الموضوع الأول) عناصر الإجابة
مجموع	مجزأ	(الموضوع الأول) عناصر الإجابة
		التمرين الأول: (05.5 نقطة) 1) حل المعادلة:
	4x0.25	$z_3 = i_3$ $z_2 = \sqrt{3} - i_3$ $z_1 = \sqrt{3} + i$ $\Delta = (2i)^2$
	01	
	0.5	$\mathbb N$ ب) $2n=3+6$ ليس لها حل في $\left(rac{Z_1}{Z_2} ight)^n$ ب $\left(rac{Z_1}{Z_2} ight)^n=e^{i\left(nrac{\pi}{3} ight)}$ ب
	0.25	2n لأن $2n$ زوجي و $3+6k$ فردي ومنه لا يوجد أي عدد طبيعي يحقق المطلوب
05.5	0.5	$ \frac{z_3 - z_1}{z_2 - z_1} = -\frac{\sqrt{3}}{2}i = \frac{\sqrt{3}}{2}e^{i\left(-\frac{\pi}{2}\right)} \text{ (i) (3) } $
	0.5	$-\frac{\pi}{2}$ الز اوية $\frac{\sqrt{3}}{2}$ النسبة $z'-z_1=\frac{\sqrt{3}}{2}iz+\frac{\sqrt{3}}{2}iz+\frac{5}{2}i$ الزاوية $z'-z_1=\frac{\sqrt{3}}{2}e^{i\left(-\frac{\pi}{2}\right)}(z-z_1)$
	0.5	ABC فائم في A ، مع قبول أي تبرير صحيح ABC قائم في
	0.75	$\sigma\left(\frac{\sqrt{3}}{2};1\right)$ هي الدائرة التي مركزها $\omega\left(\frac{\sqrt{3}}{2};1\right)$ ونصف قطرها $\sigma\left(E\right)$
	0.5	(E') هي محور القطعة $[AC]$ (أو معادلة (E') : (E')
		التمرين الثاني: (04.5 نقط)
	0.5	B(1;0;2) و $t=-1$ و $t=-1$ أ) بحل الجملة نجد $t=-1$ و $t=-1$
	0.5	$(P): \begin{cases} x = 1 + 2t \\ y = -2t - t'; (t; t') \in \mathbb{R}^2 \end{cases} $ $z = 2 - t + 2t'$
	0.5	ر المستوي $\begin{cases} 6=1+2t \\ 4=-2t-t' \end{cases}$ المستوي (P) المستوي (P) المستوي A (6;4;4) (أ (2 A (6;4;4)) (أ (2 A (6;4;4)) (أ (2 A (6;4;4)) (أ (2 A (A
04.5	0.5	
	0.5	إذن B هي المسقط العمودي للنقطة A على المستوي (P)
	0.5	(Q):5x+y-7z-6=0 (i (3)
	0.5	D(1;1;0) و $C(3;-2;1)$ و

01	$W(ABCD) = \frac{15}{2} uv$ ، B قائم في BCD (أ (4
	$=\frac{3\times\frac{15}{2}}{\sqrt{3}}=\frac{15\sqrt{3}}{2}ua$ ومنه $S(ACD)=\frac{3\times V(ABCD)}{d(B,(Q))}$ (ب)
	التمرين الثالث: (04 نقط)
0.5]2;+∞[و $f(x)-x<0$ في $f(x)-x<0$ في $f(x)-x<0$
على [1;2]	و متناقصة تماما على $x-2$ و متناقصة تماما f ، $f'(x)=rac{x-2}{x-1}$ و متناقصة تماما
$0.5 \qquad 2 = f(2) \le f(x) \le$	$f(e+1) = e$ ومنه $2 \le x \le e+1$ ، $[2;e+1]$ ومنه $f(e+1)$
	. محقق $u_0 \in [2;e+1]$ (1 (II
0.75 پڌن u_{n+1}	$=f\left(u_{n} ight)\in\left[2;e+1 ight]$ نفرض $u_{n}\in\left[2;e+1 ight]$ ومنه ،حسب $u_{n}\in\left[2;e+1 ight]$
u_{n+1}	$u_n \le 0$ ويما أن $u_n \in [2;e+1]$ فإن $u_{n+1} - u_n = f(u_n) - u_n$ (2
0.5	ومنه $\left(u_{n} ight)$ متناقصة
0.5	متناقصة ومحدودة من الأسفل (بالعدد 2) فهي متقاربة (u_n)
0. 5	$I=2$ بفرض $I=I$ فإن $I=f\left(I\right)$ بفرض في $\lim_{n\to +\infty}u_n=I$ بفرض
	التمرين الرابع: (06 نقط)
0.25	$\lim_{x \to 0} g(x) = 0 \ (1(I)$
0.25	$g'(x) = 2 + \ln x$
0.25	$0-e^{-2}+3:g'(x)$ اشارة $g'(x)$
0.25	$g(e^{-2}) = -e^{-2}$ و $g(3) = 3 + 3\ln 3$
0.25	$\left[0;e^{-2} ight]$ ومنه المعادلة $g\left(x ight)$ لا تقبل حلّا في $\left[0;e^{-2} ight]$ (أ $\left(2 ight)$
0.25 $e^{-2};3$ المجال e^{-2}	. و مستمرة ومتزايدة تماما على $\left[e^{-2};3+3\ln3 ight]$ و $\left[e^{-2};3+3\ln3 ight]$ و المعادلة حا
0.25	. $1,45 < \alpha < 1,46$ ومنه $g(1,45) \simeq 1,99; g(1,46) \simeq 2,01$ و
0.25	$g(x)-2$ ب $g(x)$ ب $g(x)$ ب $g(x)$
ذات الفاصلة 2 و 0.25	لا يقبل مماسا في النقطة و الأشتقاق عند (C_f) لا يقبل مماسا في النقطة f ($I(II)$
0. 5	2) العدد المشتق من اليمين هو In 2 والعدد المشتق من اليسار هو In 2–
0.25	$\lim_{x \to \infty} f(x) = -\infty $ (3
06 0.5 $f'(x) = \frac{g(x)-2}{}$	$(x \in]2;3]$ من أجل $f'(x) = -\frac{g(x)-2}{x}$ $(x \in]0;2[$ من أجل
0.5 X	X $0+lpha-2+3$: $f'(x)$ اشارة
ات 0.25	جدول النغير $f(3) = \ln 3$ ، $f(2) = 0$ ، $f(\alpha) = (2-\alpha) \ln \alpha$

p)		
	0.25	$\dots \sum_{x = -\infty} \frac{\pi}{2}$ و منه $x = \frac{\pi}{2}$ معادلة مستقيم مقارب $h(x) = -\infty$ (1(III
	0.25	$h(x) = f(\cos x)(2)$
	0.25	مركب الدالة $x\mapsto \cos x$ متبوعة بالدالة $f\left(x ight)$ مركب الدالة مركب الدالة متبوعة بالدالة متبوعة بالدالة متبوعة بالدالة المتبا
		الدالة " \cos " متناقصة تماما على $\frac{\pi}{2}$ و f متزيدة تماما على $[0;1]$ و منه h متناقصة تماما
	0.25	$\left[0;rac{\pi}{2} ight]$ علی $\left[0;rac{\pi}{2} ight]$
	0.25	h'(0)=0 و جدول التغيرات $h'(0)=0$
	0. 5	رسم $(C_{_h})$ و (Δ)
1		

العلامة		Table ation (18th c - 5 - th)
مجموع	مجزأة	(الموضوع الثاني) عناصر الإجابة
	0.75	التمرين الأولى: (04.5 نقط) (γ) التمرين الأولى: ((γ) نقط) التي مركزها (γ) ونصف قطرها (γ) الشاء (γ) الدائرة التي مركزها (γ) ونصف قطرها (γ) الشاء (γ) المناء
	0.75	(γ) ب (γ) نصف مستقیم مبدؤه A ومعامل توجیهه ا (γ) ومعامل زوجیهه از رازی (γ) نصف مستقیم مبدؤه (γ)
	0.5	ج) إحداثيات نقطة تقاطع (γ) و (γ) هي: $(1-\sqrt{2};1+\sqrt{2})$
	0.5	*
04.5	0.5	
	0. 5	AB ومنه CAB ومنه CAB ومنه CAB ومنه CAB ومنه CAB
	0.25	$z_2 = 1 + \sqrt{2} - i(1 + \sqrt{2})$ (ب)
	0. 5	$ (\alpha; \beta) = (1 + \sqrt{2}; -1) $ و منه $\begin{cases} \alpha + (1 + \sqrt{2})\beta = 0 \\ \alpha + \beta = \sqrt{2} \end{cases} $ (**)
	0.5	$\overline{AC}=0$ د) و \overline{AC} شعاع ناظمي له د) هي المستقيم المار من $\overline{OM}.\overline{AC}=0$
	0.25	(y=-x قبریر آخر: معادلة (E) هي (E)
	0.25	(E)
		التمرين الثاني: (4.5 نقطة)
	01	$\overrightarrow{BAC} = 34^{\circ} \overrightarrow{AB.AC} = 18 \text{ (i)} (1)$
	0.5	$BAC \neq 0$ ومنه $BAC \neq 0$ تعین مستویا $BAC \neq 0$ و منه $BAC \neq 0$ تعین مستویا
	0.5	$ \overrightarrow{n}.\overrightarrow{AC} = 0 \overrightarrow{n}.\overrightarrow{AB} = 0 (1) $
04.5	0.5	(ABC): $2x - y + 2z - 3 = 0$ (
04.5	01	$R = 3$ $\Omega(2;-3;1)$ $(x-2)^2 + (y+3)^2 + (z-1)^2 = 9$ (3)
	0.25	(P): $2x - y + 2z + d = 0$ (4
	0.5	$d=-18$ ، $d=0$ ومنه $\left 9+d\right =9$
	0.25	$(P_2): 2x - y + 2z - 18 = 0$ $(P_1): 2x - y + 2z = 0$
	01	n قيم n قيم n قيم n قيم n قيم n قيم n التمرين الثالث: (n نقط) العدد n الباقي n الباقي القسمة الإقليدية على n العدد n
05	0. 5	$5^p = 9 + 16n$ يحقق $n \in \mathbb{N}$ يحقق $n \in \mathbb{N}$ ومنه يوجد $n \in \mathbb{N}$ من أجل $p = 4k + 2$ ومنه يوجد $(k \in \mathbb{N}), p = 4k + 2$ يحقق $(k \in \mathbb{N}), p = 4k + 2$
	0.5	n=976 ، $p=6$ ب) من أجل $p=6$ ، $p=976$ ، $p=976$

pt.		$[0;+\infty[$ متز ایدهٔ تماما علی f ، $f'(x)=4\ln 5 \times 5^{4x+2}>0$ ، $\lim_{x\to\infty} f(x)=+\infty$ (3
	0.75	«+←x جدول التغير ات
	0.5	استتاج أن $f(x) > 0$
	27046 89	$u_{n+1} = \frac{5^{4n+6}-9}{16} \dot{\omega}_{n+1} = 5^4(u_n + \frac{9}{16}) - \frac{9}{16} \text{ومن} u_n = \frac{5^{(4n+2)}-9}{16} \dot{\omega}_n = \frac{5^{(4n+2)}-9}{16} = 1 = u_0 \text{(§ (4)}$
	0.75	$u_n = rac{5^{(4n+2)}-9}{16}$, $n \in \mathbb{N}$ ومنه لکل
	0.5	
	0.5	$[0;+\infty[$ ومنه (u_n) متزایدة تماما لأن f متزایدة تماما علی $u_n=\frac{1}{16}$ ومنه $u_n=\frac{1}{16}$
		التمرين الرابع: (06 نقطة)
	0.5	$\lim_{x \to -\infty} f(x) = 0 \lim_{x \to +\infty} f(x) = +\infty (1)$
	0.75	$[0;+\infty[$ منز ایدهٔ تماما علی f ، $f'(x)=xe^x$ ومتناقصهٔ تماما علی f ، ومتناقصهٔ f ، ومتناقصهٔ تماما علی المناطق f
	0.25	جدول التغيرات
	0.25	(3 أ) 1;0[−1;0] ≠1 ومنه المعادلة لا تقبل حلولا على [0;∞−[
		مستمرة ومتزايدة تماما على $]\infty+0$ و $]\infty+(-1;+\infty]$ مستمرة ومتزايدة تماما على $]\infty+(0;+\infty]$ عقبل حلا f
	0. 25	اوحيدا في $\mathbb R$
06	0.5	$f(1,27) \approx 0.96; f(1,28) \approx 1.01$ \(\frac{1}{27} < 1 < f(1,28)
	0.75	(C_f) ، $(T): y = ex - e$ اب (C_f) ، $(T): y = ex - e$
	0.75	$\left[egin{array}{cccccccccccccccccccccccccccccccccccc$
	0.25	$\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$
	0.25	$f(m)-1\geq 0$ نقبل حلا واحدا إذا كان $f(m)-1=-1$ أو $f(m)-1\geq 0$ نقبل حلا واحدا إذا كان
	0. 25	$m=1$ أي $m=1$ أو $m\geq lpha$ أي $m=1$ أو $m>0$ أي $m=1$ أي
	0.25	دالة زوجية لأنها معرفة على \mathbb{R} و $h(-x)=h(-x)=h$ دالة زوجية لأنها معرفة على $h(-x)=h(-x)=h$
		ب) إذا كان $x \leq 0$ فإن $h(x) = -f(x)$ ومنه (C_h) نظير (C_f) بالنسبة إلى محور
	0.25	الفواصل على المجال [0;∞-[ثم نكمل الرسم بالتناظر بالنسبة إلى محور التراتيب
	0.25	رسم (C_h) رسم
	0. 5	$b=-2$ ، $a=1$ ، بالمطابقة نجد، $g'(x)=(ax+a+b)e^x$ (6