Einführung in die Technische Informatik

Wintersemester 2013/14

Protokoll zu Übung 1

Name, Vorname: Kath, Sascha

Matrikelnummer: 3767333

Studiengang: Diplom Informatik, 2011

Aufgabe 1 und 2

a) Durchgeführte Optimierungen

- Durch das Tauschen der beiden inneren Schleifen kann eine Zeile so lang genutzt werden, bis sie für keine weiteren Berechnungen mehr benötigt wird.
- Vor betreten der Schleifen erfolgt die Berechnung von Variablen, die während eines Schleifen-Durchlaufs konstant sind.
- Code-Auszug:

b) Zeitmessung (Matrixgröße 1024)

Compiler	optimiert	Laufzeit (in s)	GFLOP/s
gcc	nicht optimiert	13,0523	0,16
gcc	optimiert	4,2746	0,50
icc	nicht optimiert	0.4215	5,20
icc	optimiert	0,4072	5,27

Aufgabe 3

· Zeitmessung mit Compiler-Flags:

Compiler	Compiler-Flags	optimiert	Laufzeit (in s)	GFLOP/s
gcc	ohne	nicht optimiert	13,0523	0,16
gcc	о3	nicht optimiert	7,4868	0,16
gcc	ohne	optimiert	4,2746	0,50
gcc	о3	optimiert	1,0946	1,95

- o3 → insbesondere -floop-optimize:
 - zieht konstante Ausdrücke vor die Schleife
 - ebenso werden die Schleifen evtl. abgerollt
- -floop-interchange:
 - tauscht geschachtelte Schleifen
- -funroll-loops:
 - rollt Schleifen ab, deren Ausführungsanzahl zur Compile-Zeit bestimmt werden kann

Aufgabe 4

a) Theoretische Gleitkomma-Spitzenleistung des Prozessors (Intel E5-2690)

- GFLOP/s = (CPU-Takt in GHz) * (Anzahl der CPU-Kerne) * (CPU-Instruktionen pro Takt)
- GFLOP/s = 2,9 GHz * 1 Kern * 8 Single Float/Tak = 23,2 GFLOP/s

b) Warum wird die Spitzenleistung nicht erreicht?

- Die Spitzenleistung von 23,2 GFLOP/s wird nicht erreicht, da nicht durchgängig in jedem Takt 8 Floating-Point-Operationen parallel ausgeführt werden können.
- Insbesondere sorgen die Datentransporte für Zeit- und Performance-Einbußen.