

Course > Unit 9: ... > Lec. 23:... > 4. Exer...

4. Exercise: People in the park

Exercises due May 13, 2020 05:29 IST Completed

Exercise: People in the park

2/2 points (graded)

Busy people arrive at the park according to a Poisson process with rate $\lambda_1=3$ /hour and stay in the park for exactly 1/6 of an hour. Relaxed people arrive at the park according to a Poisson process with rate $\lambda_2=2$ /hour and stay in the park for exactly half an hour. The arrivals of busy and relaxed people are independent processes. An observer visits the park at a specific time and sees B busy and R relaxed people at the park at that moment.

For both parts below, use <u>standard notation</u>. If your answer involves the exponential function, use notation such as $e^{(3)}$.

a) Find that probability that B=0. Hint: Think about what must have happened in the immediate past. Recall also the formula for the Poisson PMF with parameter λ :

$$\frac{\lambda^k e^{-\lambda}}{k!}$$
, for $k = 0, 1, 2, \dots$

$$P(B = 0) = e^{(-1/2)}$$
 Answer: e^(-0.5)

b) Find the probability that B+R=1.

STANDARD NOTATION

Solution:

a) The busy people that the observer sees are exactly those busy people who arrived during the last (1/6)th of an hour. It is therefore a Poisson random variable with parameter $3 \cdot (1/6) = 1/2$. The desired probability is $e^{-1/2}$.

b) By the same argument, R is an independent Poisson random variable with parameter $2\cdot(1/2)=1$. Thus, B+R is a Poisson random variable with parameter 1.5. Using the formula for the Poisson PMF,

$$\mathbf{P}(B+R=1) = 1.5e^{-1.5}$$
.

Submit

You have used 3 of 3 attempts

1 Answers are displayed within the problem

Discussion

Hide Discussion

Topic: Unit 9: Bernoulli and Poisson processes:Lec. 23: More on the Poisson process / 4. Exercise: People in the park

Show all posts 🔻	by recent ac	ctivity 🗸
[STAFF] Technical issue I'm entering a formula of a product	of a fraction and an exponent function. Everything fine in a preview f	4 new_
`	comma instead of decimal point. Please correct my score.	2
Hint for (a) and (b) Might be a bit late but I hope it is he	elpful. The observer can only see the busy people who come into the	1
Law of total probability I tought about solving b) using the l	law of total probability and got to the correct answer.	2
? What would be tau and lamdb	oa in the second case?	6
Hint for both questions- (a) and For both a and b, we need lambda a	d (b) and k values; one of them are given in the questions; we just need to	1 new_
Formula for ans. Use the formula in the last video w	hich has lambda* tao	

?	Process start time question? Is it valid to assume that both the processes start at the same time?	2
2	a) The probability of no busy person being in the park already	7
2	[STAFF] I entered right answer but it marks wrong answer (Please correct this) I entered the answer right but missed the last bracket that closes everything. Please can you correct the	2
?	Probability of R=0 and R=1 For R, using the value given in the question plugged into the formula, I calculate the probability of R = 0 a	2
?	Isn't merging 2 poisson processes the same as summing them? Isn't merging 2 poisson processes the same as summing them? If so, why is the new merged (added) pro	3
4		

© All Rights Reserved

