Latent Networks Models

Game of Thrones

Lily Chou, Ben Draves, Nathan Josephs, Kelly Kung

Department of Mathematics and Statistics Boston University

December 10, 2018

Overview

- Introduction
- Latent Network Model
- Expectation Maximization
 - Unweighted Network Model
 - Weighted Network Model
- Markov Chain Monte Carlo
- Model Comparison
- Conclusion

Data

- Data origin: A Song of Ice and Fire · A Storm of Swords
- 2 Data form: 352 pairs of characters and the number of interactions between them

We start our analysis by constructing a Weighted Network G:

- i Characters \rightarrow nodes $N_V(G) = 107$
- ii Interactions \rightarrow edges $N_E(G) = 352$
- iii Number of interactions \rightarrow Weights on the edge

Form a Network

- a Q: How to handle the sparsity of the network?
- b A: Take a subnetwork of G, cut off at 100 interactions, call it G'
- c $N_V(G') = 24$, $N_E(G') = 102$
- d Use adjacency matrix A to represent G':
 - i a(i,j) = number of interactions between ith and jth character
 - ii i.e., a(i,j) = 0 if there's no interaction between the two people

Unfiltered Network

Filtered Network

Filtered Network

Latent Network Model

Using Hoff's work, we model the presence of an edge given our latent variables as

$$logit \mathbb{P}(Y_{ij} = 1|Z) = ||Z_i - Z_j|| + \epsilon_{ij}$$

where $||Z_i - Z_i||$ is the latent distance between nodes i and j and

$$Z_i \stackrel{ind}{\sim} \sum_{k=1}^G \lambda_k \mathsf{MVN}_d(\mu_k, \sigma_k^2 I_d)$$

Latent Network Model: Priors

$$Y_{ij}|Z_i,Z_j \stackrel{ind}{\sim} \operatorname{Bern}\left[\operatorname{logit}^{-1}(\|Z_i-Z_j\|)\right]$$
 $Z_i|K_i=k_i \stackrel{ind}{\sim} MVN_d(\mu_{k_i},\sigma_{k_i}^2I_d)$
 $K \stackrel{iid}{\sim} \operatorname{Multinoulli}(G,\lambda)$
 $\lambda_k \stackrel{iid}{\sim} \frac{1}{G}$
 $\mu_k \stackrel{iid}{\sim} \operatorname{MVN}_d(0,I_2)$
 $\sigma_L^2 \stackrel{iid}{\sim} \operatorname{Inv} Y_1^2$

Latent Network Model: Likelihood

$$\begin{split} \mathcal{L}(Z,\theta;Y) &= \prod_{i < j} \mathbb{P}(Y_{ij}|Z_i,Z_j) \mathbb{P}(Z_i|K_i,\mu_{k_i},\sigma_{k_i}^2) \mathbb{P}(Z_j|K_j,\mu_{k_j},\sigma_j^2) \\ &\times \mathbb{P}(K_i|\lambda_i) \mathbb{P}(\lambda_i) \mathbb{P}(\mu_{k_i}) \mathbb{P}(\sigma_{k_i}^2) \mathbb{P}(K_j) \mathbb{P}(\mu_{k_j}) \mathbb{P}(\sigma_{k_j}^2) \end{split}$$

Latent Network Model: Likelihood

$$\begin{split} \mathcal{L}(Z,\theta;Y) &= \prod_{i < j} \mathbb{P}(Y_{ij}|Z_i,Z_j) \mathbb{P}(Z_i|K_i,\mu_{k_i},\sigma_{k_i}^2) \mathbb{P}(Z_j|K_j,\mu_{k_j},\sigma_j^2) \\ &\times \mathbb{P}(K_i|\lambda_i) \mathbb{P}(\lambda_i) \mathbb{P}(\mu_{k_i}) \mathbb{P}(\sigma_{k_i}^2) \mathbb{P}(K_j) \mathbb{P}(\mu_{k_j}) \mathbb{P}(\sigma_{k_j}^2) \\ &\propto \prod_{i < j} \left(\log i t^{-1} (\|Z_i - Z_j\|) \right)^{Y_{ij}} \left(1 - \log i t^{-1} (\|Z_i - Z_j\|) \right)^{1 - Y_{ij}} \\ &\times \frac{1}{(\sigma_{k_i}^2)^{1/2}} \exp \left\{ -\frac{1}{2\sigma_{k_i}^2} (Z_i - \mu_{k_i})^T (Z_i - \mu_{k_i}) \right\} \frac{1}{(\sigma_{k_j}^2)^{1/2}} \\ &\times \exp \left\{ -\frac{1}{2\sigma_{k_j}^2} (Z_j - \mu_{k_j})^T (Z_j - \mu_{k_j}) \right\} \exp \left\{ -\frac{1}{2} \mu_{k_i}^T \mu_{k_i} \right\} \\ &\times \exp \left\{ -\frac{1}{2} \mu_{k_j}^T \mu_{k_j} \right\} \times \frac{1}{(\sigma_{k_i}^2)^2} \exp \left\{ -\frac{1}{\sigma_{k_i}^2} \right\} \frac{1}{(\sigma_{k_j}^2)^2} \exp \left\{ -\frac{1}{\sigma_{k_j}^2} \right\} \\ &\times \lambda_i \times \lambda_i \end{split}$$

Unweighted Network Model

Let Y_{ij} be the random variable that indicates whether there is an edge E_{ij} between nodes i and j.

$$Y_{ij}|p_{ij} \stackrel{\textit{ind}}{\sim} \mathsf{Bern}(p_{ij})$$
 $p_{ij} \stackrel{\textit{iid}}{\sim} \mathsf{Beta}(\alpha, \beta)$

where $p_{ij} \equiv 2 - 2 * \text{logit}^{-1}(d_{ij})$.

Unweighted Network Model

Let Y_{ij} be the random variable that indicates whether there is an edge E_{ij} between nodes i and j.

$$Y_{ij}|p_{ij} \stackrel{\textit{ind}}{\sim} \mathsf{Bern}(p_{ij}) \ p_{ij} \stackrel{\textit{iid}}{\sim} \mathsf{Beta}(lpha,eta)$$

where
$$p_{ij} \equiv 2 - 2 * \operatorname{logit}^{-1}(d_{ij})$$
.

Then the log-likelihood for this model can be written as

$$\begin{split} I(p,\alpha,\beta;Y) &= \sum_{i < j} Y_{ij} \log \left(\frac{p_{ij}}{1 - p_{ij}} \right) + \log(1 - p_{ij}) + \log \Gamma(\alpha + \beta) \\ &- \log \Gamma(\alpha) - \log \Gamma(\beta) + (\alpha - 1) \log p_{ij} + (\beta - 1) \log(1 - p_{ij}) \end{split}$$

Unweighted Network Model: E-Step

We can take the expectation of the log-likelihood given the data ${\bf Y}$ and parameters $\theta=(\alpha,\beta)$

$$\begin{split} Q(\theta; \theta^{(t)}) &= \sum_{i < j} (Y_{ij} + \alpha - 1) \mathbb{E}_{p_{ij} | Y_{ij}, \theta^{(t)}} [\log p_{ij}] \\ &+ (\beta - Y_{ij}) \mathbb{E}_{p_{ij} | Y_{ij}, \theta^{(t)}} [\log (1 - p_{ij})] + \log \Gamma(\alpha + \beta) \\ &- \log \Gamma(\alpha) - \log \Gamma(\beta) \end{split}$$

Unweighted Network Model: E-Step

We can take the expectation of the log-likelihood given the data ${\bf Y}$ and parameters $\theta=(\alpha,\beta)$

$$\begin{split} Q(\theta; \theta^{(t)}) &= \sum_{i < j} (Y_{ij} + \alpha - 1) \mathbb{E}_{p_{ij} | Y_{ij}, \theta^{(t)}} [\log p_{ij}] \\ &+ (\beta - Y_{ij}) \mathbb{E}_{p_{ij} | Y_{ij}, \theta^{(t)}} [\log (1 - p_{ij})] + \log \Gamma(\alpha + \beta) \\ &- \log \Gamma(\alpha) - \log \Gamma(\beta) \end{split}$$

Since $p_{ij}|Y_{ij}, \theta \propto \textit{Beta}(\alpha + Y_{ij}, \beta + 1 - Y_{ij})$, we define the following

$$\pi_{ij} \equiv \mathbb{E}_{p_{ij}|Y_{ij},\theta} [\log p_{ij}] = \Psi(\alpha + Y_{ij}) - \Psi(\alpha + \beta + 1)$$

$$\eta_{ij} \equiv \mathbb{E}_{p_{ij}|Y_{ij},\theta} [\log(1 - p_{ij})] = \Psi(\beta + 1 - Y_{ij}) - \Psi(\alpha + \beta + 1)$$

Unweighted Network Model: M-Step

To maximize, $Q(\theta, \theta^{(t)})$ with respect to θ , we see that $\theta^{(t+1)}$ must satisfy the following:

$$\Psi\left(\alpha^{(t+1)} + \beta^{(t)}\right) - \Psi\left(\alpha^{(t+1)}\right) = -\frac{\sum_{i < n} \mathbb{E}_{p_{ij}|Y_{ij},\theta^{(t)}}\left[\log p_{ij}\right]}{\binom{n}{2}} \qquad (\alpha_U)$$

$$\Psi\left(\alpha^{(t+1)} + \beta^{(t+1)}\right) - \Psi(\beta^{(t+1)}) = -\frac{\sum_{i < n} \mathbb{E}_{p_{ij}|Y_{ij},\theta^{(t)}}\left[\log(1 - p_{ij})\right]}{\binom{n}{2}} (\beta_U)$$

Here, we use Newton-Raphson to obtain both $\alpha^{(t+1)}$ and $\beta^{(t+1)}$.

Unweighted Network Model: Pseudocode

Algorithm 1: EM for simplified latent network unweighted model

```
1 LNM EM (G, tol);
   Input: Graph G
                 Tolerance tol
   Output: Nuisance Parameters \alpha^*, \beta^*
                 Latent Probability Estimates \hat{p}
                 Latent Distance Estimates \hat{d}
2 Initialize Q^{(0)} repeat
        E: calculate \pi^{(t)}, \eta^{(t)};
3
        M: update \alpha^{(t+1)} using (\alpha_U);
4
        update \beta^{(t+1)} using (\beta_{II}):
5
        calculate Q(\theta, \theta^{(t+1)})
6
7 until \left|\frac{Q(\theta^{(t+1)}, \theta^{(t)}) - Q(\theta^{(t)}, \theta^{(t)})}{Q(\theta^{(t)}, \theta^{(t)})}\right| < tol;
8 return \alpha^*, \beta^*, \hat{p} = e^{\pi^*}, \hat{d} = logit^{-1}(1 - \frac{e^{\pi^*}}{2}); where \alpha^*, \beta^*, \pi^* are
     converged values
```

Unweighted Network Model: Distances

Unweighted Network Model: Probabilities

Weighted Network Model

Let Y_{ij} be the weight on edge $E_{ij} \in \mathbf{E}$.

$$Y_{ij}|\lambda_{ij} \stackrel{ind}{\sim} \mathsf{Pois}(\lambda_{ij}) \ \lambda_{ij} \stackrel{iid}{\sim} \mathsf{Gamma}(\alpha, \beta)$$

Weighted Network Model

Let Y_{ij} be the weight on edge $E_{ij} \in \mathbf{E}$.

$$Y_{ij}|\lambda_{ij} \stackrel{ind}{\sim} \mathsf{Pois}(\lambda_{ij}) \ \lambda_{ij} \stackrel{iid}{\sim} \mathsf{Gamma}(\alpha, \beta)$$

Then the log-likelihood for this model can be written as

$$I(\lambda, \alpha, \beta; Y) = \sum_{i < j} \left\{ \log \lambda_{ij} (Y_{ij} + \alpha - 1) - \lambda_{ij} (1 + \beta) - \log(Y_{ij}!) + \alpha \log(\beta) - \log \Gamma(\alpha) \right\}$$

Weighted Network Model: E-Step

Taking an expectation of this log-likelihood given the data ${\bf Y}$ and parameters $\theta=(\alpha,\beta)$

$$\begin{split} Q(\theta; \theta^{(t)}) &= \sum_{i < j} \left\{ (Y_{ij} + \alpha - 1) \mathbb{E}_{\lambda_{ij} | Y_{ij}, \theta^{(t)}} \big[\log \lambda_{ij} \big] \right. \\ &- (1 + \beta) \mathbb{E}_{\lambda_{ij} | Y_{ij}, \theta^{(t)}} \big[\lambda_{ij} \big] - \log(Y_{ij}!) + \alpha \log(\beta) - \log \Gamma(\alpha) \right\} \end{split}$$

Weighted Network Model: E-Step

Taking an expectation of this log-likelihood given the data ${\bf Y}$ and parameters $\theta=(\alpha,\beta)$

$$\begin{split} Q(\theta; \theta^{(t)}) &= \sum_{i < j} \left\{ (Y_{ij} + \alpha - 1) \mathbb{E}_{\lambda_{ij} | Y_{ij}, \theta^{(t)}} \big[\log \lambda_{ij} \big] \right. \\ &- (1 + \beta) \mathbb{E}_{\lambda_{ij} | Y_{ij}, \theta^{(t)}} \big[\lambda_{ij} \big] - \log(Y_{ij}!) + \alpha \log(\beta) - \log \Gamma(\alpha) \right\} \end{split}$$

Seeing as $\lambda_{ij}|Y_{ij}, heta \propto \mathsf{Gamma}(lpha + Y_{ij}, eta + 1)$ we can define

$$egin{aligned} \pi_{ij} &\equiv \mathbb{E}_{\lambda_{ij} \mid \mathbf{Y}_{ij}, heta} ig[\lambda_{ij}ig] = rac{lpha + \mathbf{Y}_{ij}}{1 + eta} \ \eta_{ij} &\equiv \mathbb{E}_{\lambda_{ij} \mid \mathbf{Y}_{ij}, heta} ig[\log \lambda_{ij}ig] = \log(1 + eta) + \Psi(lpha + \mathbf{Y}_{ij}) \end{aligned}$$

Weighted Network Model: M-Step

Maximizing $Q(\theta, \theta^{(t)})$ with respect to θ , we see that $\theta^{(t+1)}$ must satisfy

$$\beta^{(t+1)} = \frac{\binom{n}{2}}{\sum_{i < j} \pi_{ij}} \alpha^{(t+1)} \tag{\beta_W}$$

$$\Psi(\alpha^{(t+1)}) = \frac{\sum_{i < j} \eta_{ij} + \binom{n}{2} \log(\beta^{(t+1)})}{\binom{n}{2}}$$
 (\alpha_W)

We first update $\beta^{(t+1)}$ using $\alpha^{(t)}$ then use Netwon-Raphson to attain $\theta^{(t+1)}$.

Weighted Network Model: Pseudocode

Algorithm 2: EM for simplified latent network weighted model

```
1 LNM EM (G, tol);
   Input: Graph G
                 Tolerance tol
   Output: Nuisance Parameters \alpha^*, \beta^*
                 Latent Mean Estimates \hat{\lambda}
                 Latent Distance Estimates \hat{d}
2 Initialize Q^{(0)} repeat
        E: calculate \pi^{(t)}, \eta^{(t)};
3
        M: update \beta^{(t+1)} using (\beta_W);
4
        update \alpha^{(t+1)} using (\alpha_W);
5
        calculate Q(\theta, \theta^{(t+1)})
6
7 until \left|\frac{Q(\theta^{(t+1)},\theta^{(t)})-Q(\theta^{(t)},\theta^{(t)})}{Q(\theta^{(t)},\theta^{(t)})}\right| < tol;
8 return \alpha^*, \beta^*, \hat{\lambda} = \pi^*, \hat{d} = \frac{1}{\pi^*}; where \alpha^*, \beta^*, \pi^* are converged values
```

Weighted Network Model: Distance Estimates

Weighted Network Model: Distance Density

Weighted Network Model: λ Estimates

Weighted Network Model: Inference

- Now that we have estimates for $\hat{\lambda}_{ij}$, how can we use these estimates to infer communities in the network?
- One idea: Spectral Clustering

Weighted Network Model: Inference

- Now that we have estimates for $\hat{\lambda}_{ij}$, how can we use these estimates to infer communities in the network?
- One idea: Spectral Clustering
- Interpret these estimates as smooth estimates of the weighted -Adjacency matrix

$$\widehat{\Lambda} = \begin{bmatrix} \widehat{\lambda}_{11} & \widehat{\lambda}_{12} & \dots & \widehat{\lambda}_{1n} \\ \widehat{\lambda}_{21} & \widehat{\lambda}_{22} & \dots & \widehat{\lambda}_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \widehat{\lambda}_{n1} & \widehat{\lambda}_{n2} & \dots & \widehat{\lambda}_{nn} \end{bmatrix}$$

Spectral Clustering Visualization

Weighted Network Model: Spectral Clustering

Latent Network Model

$$Y_{ij}|Z_i,Z_j \stackrel{ind}{\sim} \operatorname{Bern}\left[\operatorname{logit}^{-1}(\|Z_i-Z_j\|)\right]$$
 $Z_i|K_i=k_i \stackrel{ind}{\sim} MVN_d(\mu_{k_i},\sigma_{k_i}^2I_d)$
 $K \stackrel{iid}{\sim} \operatorname{Multinoulli}(G,\lambda)$
 $\lambda_k \stackrel{iid}{\sim} \frac{1}{G}$
 $\mu_k \stackrel{iid}{\sim} \operatorname{MVN}_d(0,I_d)$
 $\sigma_k^2 \stackrel{iid}{\sim} \operatorname{Inv}_{\chi_1^2}$

Conditionals: μ

$$\begin{split} f_{\mu_k|\theta^{(t)},Y}(\mu_k|\theta^{(t)},Y) & \propto \prod_{k_i=k} \exp\left\{-\frac{1}{2\sigma_{k_i}^2} (Z_i - \mu_{k_i})^T (Z_i - \mu_{k_i})\right\} \exp\left\{-\frac{1}{2} \mu_{k_i}^T \mu_{k_i}\right\} \\ & \propto \exp\left\{\sum_{i=1}^{N_v} \mathbb{I}\{k_i=k\} \left[-\frac{(\sigma_{k_i}^2 + 1)}{2\sigma_{k_i}^t} \left(\mu_{k_i} - \frac{Z_i}{(\sigma_{k_i}^2 + 1)}\right)^T \left(\mu_{k_i} - \frac{Z_i}{(\sigma_{k_i}^2 + 1)}\right)^T \right\} \right\} \end{split}$$

Thus for all $k \in \{1, ..., G\}$, we arrive at the following distribution for $\mu_k | \theta^{(t)}, Y$:

$$\mu_k|\theta^{(t)}, Y \sim f_{MVN_d}\left(\sum_{i=1}^{N_v} \mathbb{I}\{k_i = k\} \frac{Z_i^{(t)}}{(\sigma_{k_i}^2)^{(t)} + 1}, \sum_{i=1}^{N_v} \mathbb{I}\{k_i = k\} \frac{(\sigma_{k_i}^2)^{(t)}}{(\sigma_{k_i}^2)^{(t)} + 1} I_2\right)$$

Conditionals: σ^2

$$\begin{split} f_{\sigma_{k_i}^2|\theta,Y}(\sigma_{k_i}^2|\theta,Y) &\propto \prod_{K_i=k} \sigma_{K_i}^2^{-\frac{1}{2}} \exp\left\{\frac{1}{2\sigma_{k_i}} (Z_i - \mu_{k_i})^T (Z_i - \mu_{k_i})\right\} (\sigma_{k_i}^2)^{-\frac{c}{2}-1} \exp\left\{-\frac{1}{2\sigma_{k_i}^2}\right\} \\ &\propto (\sigma_{k_i}^2)^{\left((\frac{-c-1}{2}ng-ng+1)-1\right)} \exp\left\{-\frac{1}{2\sigma_{k_i}^2} \sum_{K_i=k} \left((Z_i - \mu_{k_i})^T (Z_i - \mu_{k_i}) + 1\right)\right\} \end{split}$$

Conditionals: σ^2

$$\begin{split} f_{\sigma_{k_i}^2|\theta,Y}(\sigma_{k_i}^2|\theta,Y) &\propto \prod_{K_i=k} \sigma_{K_i}^2^{-\frac{1}{2}} \exp\left\{\frac{1}{2\sigma_{k_i}} (Z_i - \mu_{k_i})^T (Z_i - \mu_{k_i})\right\} (\sigma_{k_i}^2)^{-\frac{c}{2}-1} \exp\left\{-\frac{1}{2\sigma_{k_i}^2}\right\} \\ &\propto (\sigma_{k_i}^2)^{\left((\frac{-c-1}{2}ng-ng+1)-1\right)} \exp\left\{-\frac{1}{2\sigma_{k_i}^2} \sum_{K_i=k} \left((Z_i - \mu_{k_i})^T (Z_i - \mu_{k_i}) + 1\right)\right\} \end{split}$$

Thus for all $k \in \{1, \dots, G\}$, we arrive at the following distribution for $\sigma_k^2 | \theta^{(t)}, Y$:

$$\sigma_k^2|\theta^{(t)},\,\mathbf{Y}\sim \mathsf{Inv}\Gamma\left(\frac{c}{2},\frac{1}{2}\right)\stackrel{D}{=}\tau^2\;\nu\;\mathsf{Inv}\chi_c^2$$

where
$$n_g = \sum \mathbb{I}_{\{k_i = K\}}$$
 and $SS_g + n_g = \sum_{K_i = k} \left((Z_i - \mu_{k_i})^T (Z_i - \mu_{k_i}) + 1 \right)$ and

$$u_{post} = (c+1)n_g + 2(n_g - 1)$$

$$\tau_{post}^2 = \frac{SS_g + n_g}{(c+1)n_g + 2(n_g - 1)},$$

Conditionals: Group K

$$\mathbb{P}(K_i = k | \theta, Y) \propto \lambda_k f_{MVN_d(\mu_k, \sigma_k^2)}(Z_i)$$

Since K is Multinoulli, we arrive at the following probability by recognizing they must normalize to unity:

$$\mathbb{P}(K_i = k | \theta, Y) = \frac{\lambda_k f_{MVN_d(\mu_k, \sigma_k^2)}(Z_i)}{\sum_{g=1}^G \lambda_g f_{MVN_d(\mu_g, \sigma_g^2)}(Z_i)}$$

$$= \frac{f_{MVN_d(\mu_k, \sigma_k^2)}(Z_i)}{\sum_{g=1}^G f_{MVN_d(\mu_g, \sigma_g^2)}(Z_i)}$$

$$(\lambda^{(t)})$$

Conditionals: Latent variable Z

$$\begin{split} f_{Z_i|\theta,Y}(Z_i|\theta,Y) &\propto \prod_{j\neq i} \left(\mathsf{logit}^{-1} \big(\|Z_i - Z_j\| \big) \right)^{Y_{ij}} \Big(1 - \mathsf{logit}^{-1} \big(\|Z_i - Z_j\| \big) \Big)^{1 - Y_{ij}} \\ & \exp \Big\{ - \frac{1}{2\sigma_{k_i}^2} (Z_i - \mu_{k_i})^T (Z_i - \mu_{k_i}) \Big\} \end{split}$$

Conditionals: Latent variable Z

$$\begin{split} f_{Z_i|\theta,Y}(Z_i|\theta,Y) &\propto \prod_{j\neq i} \left(\mathsf{logit}^{-1} \big(\|Z_i - Z_j\| \big) \right)^{Y_{ij}} \Big(1 - \mathsf{logit}^{-1} \big(\|Z_i - Z_j\| \big) \Big)^{1 - Y_{ij}} \\ & \exp \Big\{ - \frac{1}{2\sigma_{k_i}^2} (Z_i - \mu_{k_i})^T (Z_i - \mu_{k_i}) \Big\} \end{split}$$

Do not know how to sample directly from this distribution, hence MH step. Symmetric proposal (deviating from Hoff):

$$\begin{split} q(Z_*|\theta^{(t)},Y) &\sim \textit{MVN}_d(0,I_d) \\ R(Z^*,Z^{(t)}) &= \frac{f_{Z|\theta,Y}(Z^*|\theta^{(t)},Y)q(Z^{(t)}|\theta^{(t)},Y)}{f_{Z|\theta,Y}(Z^{(t)}|\theta^{(t)},Y)q(Z^*|\theta^{(t)},Y)} \\ &= \frac{f_{Z|\theta,Y}(Z^*|\theta^{(t)},Y)}{f_{Z|\theta,Y}(Z^{(t)}|\theta^{(t)},Y)} \end{split}$$

MCMC Pseudocode

Algorithm 3: Gibbs sampler for latent network model

```
1 LNM MCMC (G, N_k, d, ns);
     Input: Graph G
                     Number of groups N_{\nu}
                     Dimension of Latent Variable d
                     Number of samples ns
     Output: Posterior p(Z|Y,\theta)
 2 Initialize parameters \mu^{(0)}, \sigma^{2^{(0)}}, \lambda^{(0)}, K^{(0)}, Z^{(0)};
 3 for t = 2, ..., ns do
           for k = 1, \ldots, N_{\nu} do
                  sample \mu_k | \theta^{(t)}, Y \sim
                   MVN_d\left(\sum_{i=1}^{N_v} \mathbb{I}\{k_i = k\} \frac{Z_i^{(t-1)}}{(\sigma_{k}^2)^{(t-1)} + 1}, \sum_{i=1}^{N_v} \mathbb{I}\{k_i = k\} \frac{(\sigma_{k_i}^2)^{(t-1)}}{(\sigma_{k_i}^2)^{(t-1)} + 1} I_d\right);
            end
 6
            for k = 1, \ldots, N_k do
 7
                  sample \sigma_k^2 | \theta^{(t)}, Y \sim \left(1 + \sum_{i=1}^{N_v} \mathbb{I}\{k_i = 1\}\right)
 8
                   k\}(Z_i^{(t-1)} - \mu_k^{(t)})^T(Z_i^{(t-1)} - \mu_k^{(t)})) \ln \chi_{1+d \sum_{i=k}^{N_V} \mathbb{I}\{k_i = k\}}^2;
            end
 9
            for i = 1, \ldots, N_{\nu} do
10
                  sample K_i \sim \text{Multinoulli}(G, \lambda^{(t)}):
11
            end
12
```

```
for i = 1, \dots, Marked Chain Monte Carlo
                  sample K_i \sim \text{Multinoulli}(G, \lambda^{(t)});
11
12
           end
           for i = 1, \ldots, N_v do
13
                 sample Z_i^* \sim MVN_d(0, I_d);
14
                 R(Z_i^*, Z_i^{(t)}) = \min\left(1, \frac{f_{Z|\theta, Y}(Z_i^*|\theta^{(t)}, Y, Z_{[-1]})}{f_{Z|\theta, Y}(Z_i^{(t)}|\theta^{(t)}, Z_{[-1]})}\right);
15
                 sample U \sim \mathcal{U}(0,1);
16
                if U \leq R(Z_i^*, Z_i^{(t)}) then
17
                       Z_i^{(t+1)} = Z_i^*;
18
                       else Z_i^{*(t+1)} = Z_i^{(t)}
19
20
                        end
21
                 end
22
23
           end
24 end
```

MCMC: Mean MAP Estimates

MCMC: Clustering

EM VS MCMC

- Results from EM using weighted network yields more information than the unweighted
- Both EM algorithms converge much faster than the MCMC for this model
- 3 Large room for the MCMC to improve:
 - Block-update covariate coefficients with the scale of latent space positions
 - ii This model easily extends to the regression framework were we can perform further analysis with the incorporation of vertex attributes

Conclusion

- The information we can draw from both EM and MCMC is very interpretable. We can group characters by their geographical location, or personal relation; we can also detect if a character stands out (i.e. Daenerys).
- This project used many topics covered in class; Newton-Raphson, EM, MCMC, Graphical models, Ise, and sampling

References

- Andrew Beveridge and Jie Shan. "Network of thrones". In: *Math Horizons* 23.4 (2016), pp. 18–22.
- Peter D Hoff, Adrian E Raftery, and Mark S Handcock. "Latent Space Approaches to Social Network Analysis". In: *Journal of the American Statistical Association* 97.460 (2002), pp. 1090–1098. DOI: 10.1198/016214502388618906.
- Pavel N. Krivitsky et al. "Representing degree distributions, clustering, and homophily in social networks with latent cluster random effects models". In: *Social Networks* 31.3 (2009), pp. 204–213. ISSN: 0378-8733.
- Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. "On Spectral Clustering: Analysis and an Algorithm". In: Proceedings of the 14th International Conference on Neural Information Processing Systems: Natural and Synthetic. NIPS'01. MIT Press, 2001, pp. 849–856.