Devoir maison 12 - Surfaces

On se place dans l'espace euclidien \mathbb{R}^3 muni de son produit scalaire canonique (sa base canonique étant orthonormée).

1. a. Pour $\theta \in \mathbb{R}$, on note $R_{\theta}: (x, y, z) \mapsto (\cos(\theta)x + \sin(\theta)z, y, -\sin(\theta)x + \cos(\theta)z)$. Justifier que \mathbb{R}_{θ} est une rotation de \mathbb{R}^3 .

On reconnaît la rotation d'axe $Vec(\bar{j})$ dont le plan orthogonal est orienté par le choix de la base (\vec{k}, \vec{i}) et d'angle θ .

b. Soit $x_0 \in \mathbb{R}$ et $M_{x_0} = \left(x_0, \frac{x_0^2}{2}, 0\right)$. Déterminer la nature de $\Gamma_{x_0} = \{R_{\theta}(M_{x_0}); \theta \in [0, 2\pi]\}$. Donner un système d'équations cartésiennes de Γ_{x_0}

La courbe Γ_{x_0} obtenue par la rotation est le cercle de centre $\Omega\left(0, \frac{x_0^2}{2}, 0\right)$ et de rayon x_0 .

Elle admet pour équations : $\begin{cases} x^2 + z^2 = x_0^2 \\ y = \frac{x_0^2}{2} \end{cases}$

c. Déterminer une équation de la surface $S = \bigcup_{x_0 \in \mathbb{R}} \Gamma_{x_0}$.

En éliminant le paramètre x_0 , on obtient pour équation de $S: x^2 + z^2 - 2y = 0$.

C'est une surface de révolution appelée paraboloïde, car elle est obtenue par la rotation d'une parabole!

d. Soient $\psi: \mathbb{R}^2 \to \mathbb{R}^3$ définie par $\psi(u, v) = \left(u, \frac{u^2 + v^2}{2}, v\right)$, et la surface $\Sigma = \psi(\mathbb{R}^2)$. Que peut-on dire des surfaces S et Σ ?

Les deux surfaces ont la même équation, elles coïncident donc.

Soient $(x_0, z_0) \in \mathbb{R}^2$ fixé et $A_0 = \psi(x_0, z_0)$. Déterminer une équation du plan tangent à Σ en

La fonction ψ est polynomiale dont de classe C^1 sur \mathbb{R}^2 , et on a :

$$\begin{split} \frac{\partial \psi}{\partial u}(x_0,z_0) &= (1,x_0,0) \text{ et } \frac{\partial \psi}{\partial v}(x_0,z_0) = (0,z_0,1), \text{ donc} \\ \frac{\partial \psi}{\partial u}(x_0,z_0) \wedge \frac{\partial \psi}{\partial v}(x_0,z_0) &= (x_0,-1,z_0) \neq 0_{\mathbb{R}^3}. \\ \text{Ce vecteur est normal au plan tangent } \Sigma \text{ en } A_0 \text{ qui admet donc pour équation :} \end{split}$$

$$x_0(x-x_0) - (y - \frac{x_0^2 + z_0^2}{2}) + z_0(z-z_0) = 0$$

ce qui s'écrit encore : $x_0x - y + z_0z = \frac{1}{2}(x_0^2 + z_0^2)$.

f. Déterminer A_0 tel que ce plan soit de la forme $P_c = \{(x,c,z),(x,z) \in \mathbb{R}^2\}$, où c est une constante.

La plan a la forme recherchée si et seulement si son équation ne dépend pas de x ni de z.

Il faut donc $x_0 = z_0 = 0$, et alors c = 0.

2. On considère les courbes :

$$C_1 = \left\{ \left(x, \frac{x^2}{2}, 0 \right), x \in \mathbb{R} \right\} \quad \text{et} \quad C_2 = \left\{ \left(0, y, \frac{y^2}{2} \right), y \in \mathbb{R} \right\}$$

Soit $\Delta = \{(0, u, 0), u \in \mathbb{R}\}\$ (c'est l'axe (Oy)!).

a. Soit $P = \left(x_0, \frac{x_0^2}{2}, 0\right) \in C_1$, avec $x_0 \neq 0$. Déterminer le point A_1 d'intersection entre Δ et la tangente à C_1 au point P.

La tangente à C_1 en P est dirigée par $(1, x_0, 0) \neq 0_{\mathbb{R}^3}$.

Elle admet pour représentation paramétrique $\varphi: t \mapsto \left(x_0 + t, \frac{x_0^2}{2} + x_0 t, 0\right)$.

Le point A_1 a donc pour coordonnées $(0, -\frac{x_0^2}{2}, 0)$.

b. Soit $Q = \left(0, y_0, \frac{y_0^2}{2}\right) \in C_2$, avec $y_0 \neq 0$. Déterminer le point A_2 d'intersection entre Δ et la tangente à C_2 au point Q.

A quelle condition a-t-on $A_1 = A_2$?

De même, on obtient que A_2 a pour coordonnées $(0, \frac{y_0}{2}, 0)$;

on a $A_1 = A_2$ si, et seulement si $y_0 = -x_0^2$.

c. Soit σ la réunion des droites génératrices (PQ), où $P \in C_1$ et $Q \in C_2$, avec $P \neq Q$ et tels que la tangente à C_1 au point P et la tangente à C_2 au point Q se coupent sur Δ . Déterminer une représentation paramétrique de σ .

Deux points P et Q satisfaisant la condition admettent pour coordonnées respectives

$$(x_0, \frac{x_0^2}{2}, 0)$$
 et $(0, -x_0^2, \frac{x_0^4}{2})$.

 $(x_0, \frac{x_0^2}{2}, 0)$ et $(0, -x_0^2, \frac{x_0^4}{2})$. On en déduit que σ admet comme représentation paramétrique :

$$\psi: (x_0, t) \mapsto \left(tx_0, \frac{3t - 2}{2}x_0^2, \frac{1 - t}{2}x_0^4\right)$$

d. Montrer que les plans tangents à σ en tous points de σ qui appartiennent à une même génératrice (PQ) donnée sont parallèles.

 ψ est polynomiale donc de classe C^1 sur \mathbb{R}^2 et on a :

$$\frac{\partial \psi}{\partial x}(x_0,t) = \left(t, (3t-2)x_0, (2-2t)x_0^3\right) \text{ et } \frac{\partial \psi}{\partial t}(x_0,t) = \left(x_0, \frac{3}{2}x_0^2, -\frac{1}{2}x_0^4\right), \text{ donc}$$

$$\frac{\partial \psi}{\partial x}(x_0,t) \wedge \frac{\partial \psi}{\partial t}(x_0,t) = \left(\frac{3t-4}{2}x_0^5, -\frac{3t-4}{2}x_0^4, -\frac{3t-4}{2}x_0^2\right).$$

Ce vecteur est non nul si, et seulement si $t \neq \frac{4}{3}$, et il est alors normal au plan tangent à σ en $\psi(x_0,t)$.

On parcourt une génératrice en fixant x_0 et en faisant varier $t \in \mathbb{R}$. Les plans tangents à σ aux points de paramètres (x_0,t) $(t\neq \frac{4}{3})$ sont tous orthogonaux au vecteur $(x_0^5,x_0^4,-x_0^2)$, donc parallèles.