AL/2017/02-S-II(A)

සියලු ම හිමිකම් ඇවිරිණි / μ ගුරු பුනිப්பුநිගையுடையது / $All\ Rights\ Reserved$

			,	h				4	- h h
		සහත්ත	PG 967	ക്കുക		0.000	N. A. 1711	17 A.G.	adedes.
			<u> </u>	-			DC, ZU		
				<u> </u>					-
ക്കാലി (te merce con	THE THE PARTY		- /	4 P. T.		P. 1	<u> 1017</u>	CITE POLICION
- COOU O MILL - W	iiiiionor	OHIII OHII I		19	1 111 131		1 101/1	ZX 1 1 6	<i>30</i> 56113111
		27 27				,,	,		,
		_ ^ T1		/ A . I	T 1			_	
- treneral - t	emnesie	- ОТ НДПИ	notte:	A/IV	PVP	-FYOM	Inonan-		
					LEVEL				

රසායන විදපාවIIஇரசாயனவியல்IIChemistryII

පැය තුනයි

மூன்று மணித்தியாலம் Three hours

විතාග අංකය :

- 🛠 ආවර්තිතා වගුවක් 15 වැනි පිටුවෙහි සපයා ඇත.
- * ගණක යන්තු භාවිතයට ඉඩ දෙනු නොලැබේ.
- * සාර්වනු වායු නියතය, $R = 8.314~\mathrm{J~K^{-1}~mol^{-1}}$
- * ඇවගාඩ්රෝ නියතය, $N_A = 6.022 \times 10^{23} \; \mathrm{mol}^{-1}$
- 🔻 මෙම පුශ්න පතුගට පිළිතුරු පැපයීමේ දී ඇල්කයිල් කාණ්ඩ සංක්ෂිප්ත ආකාරයකින් නිරුපණය කළ හැකි ග.

- A කොටස වපුහගත රචනා (පිටු 2 8)
- * සියලු ම පුශ්නවලට මෙම පුශ්න පතුයේ ම පිළිතුරු සපයන්න.
- * ඔබේ පිළිතුරු එක් එක් පුශ්නයට ඉඩ සලසා ඇති තැන්වල ලිවිය යුතු ය. මේ ඉඩ පුමාණය පිළිතුරු ලිවීමට පුමාණවත් බව ද දීර්ඝ පිළිතුරු බලාපොරොත්තු නොවන බව ද සලකන්න.
 - □ B කොටස සහ C කොටස රචනා (පිටු 9 14)
- * එක් එක් කොටසින් පුශ්න **දෙක** බැගින් තෝරා ග<mark>නි</mark>මින් පුශ්න **ගතරකට** පිළිතුරු සපයන්න. මේ සඳහා සපයනු ලබන කඩදාසි භාවිත කරන්න.
- * සම්පූර්ණ පුශ්න පතුයට නියමිත කාලය අවස<mark>න් වූ</mark> පසු A, B සහ C කොටස්වලට පිළිතුරු, A කොටස මුලින් තිබෙන පරිදි එක් පිළිතුරු පතුයක් වන සේ අමුණා විභාග ශාලාධිපතිට භාර දෙන්න.
- st පුශ්න පතුයෙහි f B සහ f C කොටස් **පf Dණක්** විභාග ශාලාවෙන් පිටතට ගෙන යා හැකි ය.

්ට්රික්ෂකවරුන්ගේ පුයෝජනය සඳහා පමණි

කොවස	උශ්න අංකය	ලැබූ ලකුණු
	1	
A	2	
	3	
	4	
	5	
В	6	
	7	
	8	
C	9	
	10	
එකතුව		
පුතිශ තය		

අවසාන ලකුණ

ඉලක්කමෙන්	
අකුරින්	•

සංකේත අංක

උත්තර පතු පරීක්ෂක 1	
උත්තර පනු පරීක්ෂක 2	
පරික්ෂා කළේ :	
අධීක්ෂණය කළේ :	

(දෙවැනි පිටුව බලන්න.

A කොටස - වපුහගත රවන	A	කොටස	- වපහගත	රචනා
---------------------	---	------	---------	------

පුශ්න **හතරව ම** මෙම පතුයේ ම පිළිතුරු සපයන්න. (එක් එක් පුශ්නය සඳහා නියමිත ලකුණු පුමාණය 10 කි.)

මෙම තීරයේ කිසිවක් නො ලියන්න

- I.~(a)~(i)~I.~ ලුවිස් වනුහයක ඇති පරමාණුවක ආරෝපණය $(\mathbf{Q})~$ නිර්ණය කිරීමට පහත දක්වා ඇති පුකාශනය $\mathbf{N}_{A},\mathbf{N}_{LP}$ සහ \mathbf{N}_{BP} යන පද සුදුසු කොටුවල ඇතුළත් කිරීමෙන් සම්පූර්ණ කරන්න. මෙහි,
 - \mathbf{N}_{A} = පරමාණුවේ ඇති සංයුජතා ඉලෙක්ටුෝන සංඛාාව
 - \mathbf{N}_{LP} = එකසර ඉලෙක්ටුෝන යුගලවල ඇති ඉලෙක්ටුෝන සංඛාාව
 - N_{BP} = පරමාණුව වටා බන්ධන යුගලවල ඇති ඉලෙක්ටුෝන සංඛ්යාව
 - $\mathbf{Q} = \boxed{ \frac{1}{2}}$
 - N_A,N_{LP} සහ N_{BP} සඳහා අගයයන් සුදුසු කොටුවල ඇතුළත් කිරීමෙන් පහත දී ඇති SOF_2 වනුහයෙහි S මත ආරෝපණය, \mathbf{Q} (සල්ෆර්), ගණනය කරන්න.

- (ii) ${
 m CIO}_2{
 m F}_2^+$ අයනය සඳහා **වඩාත් ම** පිළිගත හැකි ලුවිස් වාුනය අඳින්න.
- (iii) CH₂SO (සල්ෆින්) අණුව සඳහා වඩාත් ම ස්ථායි ලුවිස් වුහුගය පහත දක්වා ඇත. මෙම අණුව සඳහා තවත් ලුවිස් වුහුහ (සම්පුයුක්ත වාුහ) **දෙකක්** අදින්න.

- $({
 m i} {
 m v})$ පහත සඳහන් උපකල්පිත ලුවිස් වාුුහය පදනම් කරගෙන පහත වගුවේ දක්වා ඇති ${
 m C,N}$ සහ ${
 m O}$ පරමාණුවල
 - I. පරමාණුව වටා VSEPR යුගල්
- II. පරමාණුව වටා ඉලෙක්ටුෝන යුගල් ජාාමිතිය
- III. පරමාණුව වටා හැඩය
- IV. පරමාණුවේ මුහුම්කරණය

සඳහන් කරන්න.

$$\begin{array}{cccc} & :O: & H \\ \vdots & \oplus & \parallel & .. & \mid \\ C \equiv N - C - O - N - H \end{array}$$

පහත දැක්වෙන පරිදි පරමාණු අංකනය කර ඇත.

0	⁷ H ⁶	
	_	
C ¹ —N ² —C	3-04-N5-	$-H^6$

		N ²	C_3	O^4	N ⁵
I.	VSEPR යුගල්				
II.	ඉලෙක්ටුෝන යුගල් ජාාාමිතිය				
III-	හැඩය				
IV.	මුහුම්කරණය				

විහාග	අංකය	:	***************************************	
-------	------	---	---	--

	ඉහත) (iv) කොටසෙහි (දෙන ලද ලුවිස් වාූූහලයේ	හි පහත සඳහන් σ බන්	ධන සෑදීමට සහභාගි වන
			හඳුනාගන්න. (පරමාණුවල		
	I.	N^2 — C^3 N^2	,	C ³	
	II.	$O^4 - N^5$ O^4	•••••••••	N ⁵	
	III.		,		
	IV.	C^3 — O^7 C^3	,	O ⁷	
					(ලකුණු 5.5 යි)
(i)					කවච (පරමාණුක කාක්ෂික)
			7ටම අංකය (<i>I</i>) සහ චුමබ වතින උපරිම ඉලෙක්ටුෝද		ක (m_l) සමග හඳුනාගන්න.
			ඇති වගුවේ ලියන්න.		
		•			එක් එක් උපකවචියේ
		උපකවචය	උද්දිගංශ ක්වොන්ටම්	චුම්බක ක්වොන්ටම්	පවතින උප <mark>රි</mark> ම
			අංකය (<i>l</i>)	අංකය/අංක (m_l)	ඉලෙක්ටුෝන සංඛ්‍යාව

		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
		-			
(ii)			හි පවතින අන්තර් අණුක	බල වර්ගය/වර්ග හඳුනාශ	ාන්න.
	1.	Ar වායුව			
	**		••••••		
	11.	NO වායුව			
		•		• • • • • • • • • • • • • • • • • • • •	
		*******************************	1.0		
	III.		් දුවණය වී ඇති ජල සාමා	පලයක	·
	III.			පලයක	
iii)	" <i>n</i> - බි	KCl කුඩා පුමාණයක් යුටේන් (C ₄ H ₁₀) හි ත	ාපාංකය පුොපේන් (C ₃ H ₈)	හි තාපාංකයට වඩා ඉහළ	ද ය." මෙම පුකාශනය සත ා
iii)	" <i>n</i> - බි	KCl කුඩා පුමාණයක් යුටේන් (C ₄ H ₁₀) හි ත		හි තාපාංකයට වඩා ඉහළ	
iii)	" <i>n</i> - බි	KCl කුඩා පුමාණයක් යුටේන් (C ₄ H ₁₀) හි ත	ාපාංකය පුොපේන් (C ₃ H ₈) ා <mark>වග</mark> හේතු සහිත ව සඳහ	හි තාපාංකයට වඩා ඉහළ	; ය." මෙම පුකාශනය සත
iii)	" <i>n</i> - බි	KCl කුඩා පුමාණයක් යුටේන් (C ₄ H ₁₀) හි ත	ාපාංකය පුොපේන් (C ₃ H ₈) ා ව <mark>ග</mark> හේතු සහිත ව සඳහ	හි තාපාංකයට වඩා ඉහළ ාත් කරන්න.	; ය." මෙම පුකාශනය සත
iii)	" <i>n</i> - බි	KC! කුඩා පුමාණයක් යුවේන් (C ₄ H ₁₀) හි ත තමහාත් අසත ෂ ද යන	ාපාංකය පොජෙන් (C ₃ H ₈) ා වග හේතු සහිත ව සඳහ	හි තාපාංකයට වඩා ඉහළ නේ කරන්න.	ද ය." මෙම පුකාශනය සත
	"n- බි ද නැ	KC! කුඩා පුමාණයක් යුටේන් (C ₄ H ₁₀) හි ත තමහාත් අසත ¤ ද යන	ාපාංකය පොපේන් (C ₃ H ₈) හ වග හේතු සහිත ව සඳහ	හි තාපාංකයට වඩා ඉහළ තේ කරන්න.	ද ය." මෙම පුකාශනය සත
	"n- බි ද නැ	KC! කුඩා පුමාණයක් යුටේන් (C ₄ H ₁₀) හි ත තමහාත් අසත ¤ ද යන	ාපාංකය පොජෙන් (C ₃ H ₈) ා වග හේතු සහිත ව සඳහ	හි තාපාංකයට වඩා ඉහළ තේ කරන්න.	ද ය." මෙම පුකාශනය සත
	"n- බි ද නැ! වරහෘ	KCl කුඩා පුමාණයක් යුවේන් (C ₄ H ₁₀) හි ත තමහාත් අසත න ද යැ	ාපාංකය පොපේන් (C ₃ H ₈) හ වග හේතු සහිත ව සඳහ	හි තාපාංකයට වඩා ඉහළ නේ කරන්න. හන් දෑ සකසන්න. (හේතු අ	ද ය." මෙම පුකාශනය සත
	"n- බි ද නැග වරහෘ	KCl කුඩා පුමාණයක් යුවේන් (C ₄ H ₁₀) හි ත තහොත් අසත න ද යන න් තුළ දී ඇති ගුණය ර Li ₂ CO ₃ , Na ₂ CO ₃ , K	ාපාංකය පොපේන් (C ₃ H ₈) ත වග හේතු සහිත ව සඳහ සුවු වන පිළිවෙළට පහත සඳ	හි තාපාංකයට වඩා ඉහළ තේ කරන්න. හත් දෑ සකසන්න. (හේතු අ	ද ය." මෙම පුකාශනය සත
	"n- බි ද නැගි වරහන I. 1	KC! කුඩා පුමාණයක් යුවේන් (C ₄ H ₁₀) හි ත තහොත් අසත ෂ ද යන ත් තුළ දී ඇති ගුණය ර Li ₂ CO ₃ , Na ₂ CO ₃ , K	ාපාංකය පුොපේන් (C ₃ H ₈) ත වග හේතු සහිත ව සඳහ අ ඩු වන පිළිවෙළට පහත සඳ 2 ^{CO} 3 (ජලයෙහි දුාවානොව)	හි තාපාංකයට වඩා ඉහළ තේ කරන්න. හත් දෑ සකසන්න. (හේතු අ	ද ය." මෙම පුකාශනය සත
	"n- බි ද නැව වරහෘ I. I	KC! කුඩා පුමාණයක් යුටේන් (C ₄ H ₁₀) හි ත තහොත් අසත න ද යන ක් තුළ දී ඇති ගුණය ර Li ₂ CO ₃ , Na ₂ CO ₃ , K	ාපාංකය පුොපේන් (C ₃ H ₈) හ වග හේතු සහිත ව සඳහ අ ඩු වන පිළිවෙළට පහත සඳැ 2 ^{CO} 3 (ජලයෙහි දුාවානොව) 	හි තාපාංකයට වඩා ඉහළ තේ කරන්න. හන් දෑ සකසන්න. (මෙත්තු අ	ද ය." මෙම පුකාශනය සත ස ත ආවශා නොවේ .)
	"n- බි ද නැව වරහෘ I.]	KC! කුඩා පුමාණයක් යුටේන් (C ₄ H ₁₀) හි ත තහොත් අසත න ද යන Li ₂ CO ₃ , Na ₂ CO ₃ , K 	ාපාංකය පුොපේන් (C ₃ H ₈) ත වග හේතු සහිත ව සඳහ අ ඩු වන පිළිවෙළට පහත සඳ ලුCO ₃ (ජලයෙහි දුාවානොව) 	හි තාපාංකයට වඩා ඉහළ තේ කරන්න. හන් දෑ සකසන්න. (හේතු ද	ද ය." මෙම පුකාශනය සත ස ත ආවශා නොවේ .)
	"n- බි ද නැව වරහෘ I.]	KC! කුඩා පුමාණයක් යුටේන් (C ₄ H ₁₀) හි ත තහොත් අසත ෂ ද යන් ක් තුළ දී ඇති ගුණය ර Li ₂ CO ₃ , Na ₂ CO ₃ , K 	ාපාංකය පුොපේන් (C ₃ H ₈) හ වග හේතු සහිත ව සඳහ අ ඩු වන පිළිවෙළට පහත සඳැ 2 ^{CO} 3 (ජලයෙහි දුාවානොව) 	හි තාපාංකයට වඩා ඉහළ තේ කරන්න. හන් දෑ සකසන්න. (හේතු ද 	; ය." මෙම පුකාශනය සත ආවශා නොවේ .)

[හතරවැනි පිටුව බලන්න.

	1770# 15 11(13)	
2. (a)	X,Y සහ Z යනු ආවර්තිතා වගුවේ එකම කාණ්ඩයට අයත් මූලදුවා වේ. කාණ්ඩයේ පහළට යෑමේ දී ඒවා පිළිවෙළින් 🖁	මේ ජීර මීසි නො:
	(i) ${f X}, {f Y}$ සහ ${f Z}$ හඳුනාගන්න. (පරමාණුක සංකෝත දෙන්න.)	
	$X = \dots \qquad Y = \dots \qquad Z = \dots$	
	(ii) \mathbf{X},\mathbf{Y} සහ \mathbf{Z} සම්බන්ධයෙන් පහත දැහි සාපේක්ෂ විශාලත්ව දක්වන්න.	
	I. පරමාණුක විශාලත්වය >	
	II. ඉලෙක්ටුෝන බන්ධුතාවය >	
	III. පළමු අයනීකරණ ශක්තිය >	
	(iii) X,Y සහ Z හි ඇනායනයන්හි ජලීය දුාවණ වෙන වෙනම පරීක්ෂා නළවල ඔබට සපයා ඇත. මෙම ඇනායන හඳුනාගැනීම සඳහා භාවිත කළ හැකි තනි පුතිකාරකයක් යෝජනා කරන්න.	
	[සැ. යු: එක් එක් ඇනායනය සඳහා නිරීක්ෂණය ඔබ සඳහන් කළ යුතුයි.]	
	පුතිකාරකය:	
	නිරීක්ෂණය: X: (ඇතායන සඳහා) Y:	
	Z :	
	(iv) පහත දෑ සමග $\mathbf{X}_{\gamma}(\mathbf{g})$ හි පුතිකිුයා සඳහා තුලිත රසායනික සමීකරණ දෙන්න.	
	I. NH ₃ (g)	
	II. තනුක NaOH	
	(v) X හි ඔක්සො අම්ල දෙකක වනුහ අඳින්න.	
	(vi) 🗶 හි එක් ස්වාභාවික පුභවයක් නම් කරන්න	
	(vii) I. X අඩංගු ඒකඅවයවකයක් ජල නළ නිෂ්පාදනයේ දී බහුලව භාවිත කරන ආකලන බහුඅවයවකයක් සාදයි. ඒකඅවයවකයේ වාුුහය අඳින්න.	
	II. එම බහුඅවයවකයේ සම්පූර්ණ නම ලියන්න	

Œ	සට (ි ව දක්වා එක් එක් පරීක්ෂාව සඳහා Q දාවණයෙ	ාන් අලුත් කොටසක් භාවිත කරන ලදී.)
		ප රීක්ෂාව	නිරික්ෂණය
0	1	කනුක HCl එකතු කරන ලදී.	අවර්ණ වායුවක් පිට විය. පැහැදිලි දුාවණයක් ලැබුණි.
	II	පිටවූ වායුව ලෙඩ ඇසිටේට්වලින් තෙත් කරන ලද පෙරහන් කඩදාසියක් මගින් පරීක්ෂා කරන ලදී.	වර්ණ විපර්යාසයක් නොමැත.
0	I	BaCl ₂ දුාවණයක් එකතු කරන ලදී.	සුදු අවක්ෂේපයක් ලැබුණි.
	II	සුදු අවක්ෂේපය පෙරා වෙන් කර එයට තනුක HCl එක් කරන ලදී.	වායුවක් පිට වෙමින් සුදු අවක්ෂේපය දුවණය වුණි.
	Ш	පිටවුණු වායුව ආම්ලිකෘත පොටැසියම් ඩයිකෝමේට්වලින් තෙත් කරන ලද පෙරහන් කඩදාසියක් මගින් පරීක්ෂා කරන ලදී.	තැඹිලි පැහැයේ සිට කොළ පැහැයට වර්ණය වෙනස් වුණි.
3	දුාව	්දු HNO ₃ හා ඇමෝනියම් මොලිබ්ඩේට් ණයකින් වැඩිපුර පුමාණයක් එක් කර මිශුණය සුම් කරන ලදී.	කහ පැහැති අවක්ෂේපයක් නොසෑදුණි.
4		වර්ඩා මිශු ලෝහය සහ NaOH දුාවණයක් එක් මිශුණය රත් කරන ලදී.	නෙස්ලර් පුති <mark>කාරක</mark> ය දුඹුරු පැහැ ගන්වන වායුවක් පිට <mark>වුණි</mark> .
⑤	FeC	l ₃ දාවණයක් එකතු කරන ලදී.	ලේ රතු පැහැති දාවණයක් ලැබුණි.
(i)	Q g	ාවණයේ ඇති ඇනායන තුන හඳුනාගන්න.	
(ii)	පරීක	ක්ෂණ අංක ② III හි සිදු වන පුතිකිුයාව සඳහා	සහ
, ,			
			(ලකුණු 5.0 යි.)
මෙති	dqr.		ත් හි ජලීය දුාවණයක පහත සමතුලිතතාවය පවතී.
		$CH_3NH_2(aq) + H_2O(1) \rightleftharpoons CH_3NH_3^+(aq)$	ı) + OH (aq)
(1)	® €	බිල්ඇමින් හි $K_{ m i}$ සඳහා පුකාශනය ලියන්න.	
	•••••		
(ii)	25°0	\mathbb{C} දී $0.20~ ext{mol dm}^{-3}$ මෙතිල්ඇමීන් ජලීය දාවණය	ක pH අගය 11.00 වේ. $K_{ m b}$ ගණනය කරන්න.
	••••	•••••••••••••••••••••••••••••••••••••••	
	•••••		

2017/02-S-II(A)

	ඉහත (ii) හි දුාවණයෙන් $25.00~{ m cm}^3$ පරිමාවක් $0.20~{ m mol~dm}^{-3}$ HCl සමග $25~{ m ^{\circ}C}$ දී අනුමාපනය කරන ල සමකතා ලක්ෂායේ දී දුාවණයේ pH අගය ගණනය කරන්න. ($25~{ m ^{\circ}C}$ දී $K_{ m w}=1.0\times10^{-14}~{ m mol}^2{ m dm}^{-6}$)
සම	ක්ෂණයක දී $\mathbf{MX}(\mathbf{s})$ නම් අවක්ෂේපයකට $1.00\mathrm{moldm^{-3}HNO_3}$ සීමිත පරිමාවක් එකතු කර $25^\circ\mathrm{C}$ දී පද්ධ t තුලිතතාවයට එළඹීමට ඉඩ හරින ලදී. මෙවිට අව <mark>ක්ෂේප</mark> ය අර්ධ වශයෙන් දිය වී පැහැදිලි දුාවණයක් ල
සම දුනි	ක්ෂණයක දී ${\sf MX}({\sf s})$ නම් අවක්ෂේපයකට $1.00{\sf mol}{\sf dm}^{-3}{\sf HNO}_3$ සීමිත පරිමාවක් එකතු කර $25{}^\circ{\sf C}$ දී පද්ධ ${\sf t}$
සම දුනි	ක්ෂණයක දී MX(s) නම් අවක්ෂේපයකට 1.00 mol dm ⁻³ HNO ₃ සීමිත පරිමාවක් එකතු කර 25 °C දී පද්ධසි තුලිතතාවයට එළඹීමට ඉඩ හරින ලදී. මෙවිට අවක් <mark>ෂේප</mark> ය අර්ධ වශයෙන් දිය වී පැහැදිලි දුාවණයක් ල . සෑදුණු HX(aq) දුබල අම්ලයක් ලෙස කිුයා කරයි.
සම දුනි	ක්ෂණයක දී MX(s) නම් අවක්ෂේපයකට 1.00 mol dm ⁻³ HNO ₃ සීමිත පරිමාවක් එකතු කර 25 °C දී පද්ධසි තුලිතතාවයට එළඹීමට ඉඩ හරින ලදී. මෙවිට අවක් <mark>ෂේප</mark> ය අර්ධ වශයෙන් දිය වී පැහැදිලි දුාවණයක් ල . සෑදුණු HX(aq) දුබල අම්ලයක් ලෙස කිුයා කරයි.
සම දුනි	ක්ෂණයක දී MX(s) නම් අවක්ෂේපයකට 1.00 mol dm ⁻³ HNO ₃ සීමිත පරිමාවක් එකතු කර 25°C දී පද්ධර තුලිතතාවයට එළඹීමට ඉඩ හරින ලදී. මෙවිට අවක් <mark>ෂේප</mark> ය අර්ධ වශයෙන් දිය වී පැහැදිලි දුාවණයක් ල . සැදුණු HX(aq) දුබල අම්ලයක් ලෙස කිුයා කරයි. ඉහත දුාවණයෙහි පවතින සමතුලිතතා සඳහා රසායනික පුතිකිුයා ලියන්න.
සම දුනි (i)	ක්ෂණයක දී MX(s) නම් අවක්ෂේපයකට 1.00 mol dm ⁻³ HNO ₃ සීමිත පරිමාවක් එකතු කර 25 °C දී පද්ධසි තුලිතතාවයට එළඹීමට ඉඩ හරින ලදී. මෙවිට අවක්ෂේපය අර්ධ වශයෙන් දිය වී පැහැදිලි දුංචණයක් ල . සැදුණු HX(aq) දුබල අම්ලයක් ලෙස කිුයා කරයි. ඉහත දුංචණයෙහි පවතින සමතුලිතතා සඳහා රසායනික පුතිකිුයා ලියන්න. HX(aq) හි විසටනය නොසැලකිය හැකි බව උපකල්පනය කරමින් ඉහත දුංචණයෙහි ඇති [X (aq)] ගණය
සම දුනි (i)	ක්ෂණයක දී MX(s) නම් අවක්ෂේපයකට 1.00 mol dm ⁻³ HNO ₃ සීමිත පරිමාවක් එකතු කර 25 °C දී පද්ධති තුලිතතාවයට එළඹීමට ඉඩ හරින ලදී. මෙව්ට අවක්ෂේපය අර්ධ වශයෙන් දිය වී පැහැදිලි දුාවණයක් ල . සැදුණු HX(aq) දුබල අම්ලයක් ලෙස කිුයා කරයි. ඉහත දුාවණයෙහි පවතින සමතුලිතතා සඳහා රසායනික පුතිකිුයා ලියන්න.
සම දුනි (i)	ක්ෂණයක දී MX(s) නම් අවක්ෂේපයකට 1.00 mol dm ⁻³ HNO ₃ සීමිත පරිමාවක් එකතු කර 25 °C දී පද්ධති තුලිතතාවයට එළඹීමට ඉඩ හරින ලදී. මෙවිට අවක්ෂේපය අර්ධ වශයෙන් දිය වී පැහැදිලි දුාවණයක් ල . සැදුණු HX(aq) දුබල අම්ලයක් ලෙස කිුිිියා කරයි. ඉහත දුාවණයෙහි පවතින සමතුලිතතා සඳහා රසායනික පුතිකිුිිිිියා ලියන්න. HX(aq) හි විසටනය නොසැලකිය හැකි බව උපකල්පනය කරමින් ඉහත දුාවණයෙහි ඇති [X (aq)] ගණන
සම දුනි (i)	ක්ෂණයක දී MX(s) නම් අවක්ෂේපයකට 1.00 mol dm ⁻³ HNO ₃ සීමිත පරිමාවක් එකතු කර 25 °C දී පද්ධති තුලිතතාවයට එළඹීමට ඉඩ හරින ලදී. මෙවිට අවක්ෂේපය අර්ධ වශයෙන් දිය වී පැහැදිලි දුාවණයක් ල . සැදුණු HX(aq) දුබල අම්ලයක් ලෙස කිුිිියා කරයි. ඉහත දුාවණයෙහි පවතින සමතුලිතතා සඳහා රසායනික පුතිකිුිිිිියා ලියන්න. HX(aq) හි විසටනය නොසැලකිය හැකි බව උපකල්පනය කරමින් ඉහත දුාවණයෙහි ඇති [X (aq)] ගණන
සම දුනි (i)	ක්ෂණයක දී MX(s) නම් අවක්ෂේපයකට 1.00 mol dm ⁻³ HNO ₃ සීමිත පරිමාවක් එකතු කර 25 °C දී පද්ධති තුලිතතාවයට එළඹීමට ඉඩ හරින ලදී. මෙවිට අවක්ෂේපය අර්ධ වශයෙන් දිය වී පැහැදිලි දුාවණයක් ල . සැදුණු HX(aq) දුබල අම්ලයක් ලෙස කිුිිියා කරයි. ඉහත දුාවණයෙහි පවතින සමතුලිතතා සඳහා රසායනික පුතිකිුිිිිියා ලියන්න. HX(aq) හි විසටනය නොසැලකිය හැකි බව උපකල්පනය කරමින් ඉහත දුාවණයෙහි ඇති [X (aq)] ගණන
සම දුනි (i)	ක්ෂණයක දී MX(s) නම් අවක්ෂේපයකට 1.00 mol dm ⁻³ HNO ₃ සීමිත පරිමාවක් එකතු කර 25 °C දී පද්ධසි තුලිතතාවයට එළඹීමට ඉඩ හරින ලදී. මෙවිට අවක්ෂේපය අර්ධ වශයෙන් දිය වී පැහැදිලි දුංචණයක් ල . සැදුණු HX(aq) දුබල අම්ලයක් ලෙස කිුයා කරයි. ඉහත දුංචණයෙහි පවතින සමතුලිතතා සඳහා රසායනික පුතිකිුයා ලියන්න. HX(aq) හි විසටනය නොසැලකිය හැකි බව උපකල්පනය කරමින් ඉහත දුංචණයෙහි ඇති [X (aq)] ගණය
සම දුනි (i)	ක්ෂණයක දී MX(s) නම් අවක්ෂේපයකට 1.00 mol dm ⁻³ HNO ₃ සීමිත පරිමාවක් එකතු කර 25 °C දී පද්ධති තුලිතතාවයට එළඹීමට ඉඩ හරින ලදී. මෙවිට අවක්ෂේපය අර්ධ වශයෙන් දිය වී පැහැදිලි දුාවණයක් ල . සැදුණු HX(aq) දුබල අම්ලයක් ලෙස කිුිිියා කරයි. ඉහත දුාවණයෙහි පවතින සමතුලිතතා සඳහා රසායනික පුතිකිුිිිිියා ලියන්න. HX(aq) හි විසටනය නොසැලකිය හැකි බව උපකල්පනය කරමින් ඉහත දුාවණයෙහි ඇති [X (aq)] ගණන
සම දුනි (i)	ක්ෂණයක දී MX(s) නම් අවක්ෂේපයකට 1.00 mol dm ⁻³ HNO ₃ සීමිත පරිමාවක් එකතු කර 25 °C දී පද්ධති තුලිතතාවයට එළඹීමට ඉඩ හරින ලදී. මෙවිට අවක්ෂේපය අර්ධ වශයෙන් දිය වී පැහැදිලි දුාවණයක් ල . සැදුණු HX(aq) දුබල අම්ලයක් ලෙස කිුිිියා කරයි. ඉහත දුාවණයෙහි පවතින සමතුලිතතා සඳහා රසායනික පුතිකිුිිිිියා ලියන්න. HX(aq) හි විසටනය නොසැලකිය හැකි බව උපකල්පනය කරමින් ඉහත දුාවණයෙහි ඇති [X (aq)] ගණන
සම දුනි (i)	ක්ෂණයක දී MX(s) නම් අවක්ෂේපයකට 1.00 mol dm ⁻³ HNO ₃ සීමිත පරිමාවක් එකතු කර 25 °C දී පද්ධසි තුලිතතාවයට එළඹීමට ඉඩ හරින ලදී. මෙවිට අවක්ෂේපය අර්ධ වශයෙන් දිය වී පැහැදිලි දුංචණයක් ල . සැදුණු HX(aq) දුබල අම්ලයක් ලෙස කිුයා කරයි. ඉහත දුංචණයෙහි පවතින සමතුලිතතා සඳහා රසායනික පුතිකිුයා ලියන්න. HX(aq) හි විසටනය නොසැලකිය හැකි බව උපකල්පනය කරමින් ඉහත දුංචණයෙහි ඇති [X (aq)] ගණය
සම දුනි (i)	ක්ෂණයක දී MX(s) නම් අවක්ෂේපයකට 1.00 mol dm ⁻³ HNO ₃ සීමිත පරිමාවක් එකතු කර 25 °C දී පද්ධති තුලිතතාවයට එළඹීමට ඉඩ හරින ලදී. මෙවිට අවක්ෂේපය අර්ධ වශයෙන් දිය වී පැහැදිලි දුාවණයක් ල . සැදුණු HX(aq) දුබල අම්ලයක් ලෙස කිුිිියා කරයි. ඉහත දුාවණයෙහි පවතින සමතුලිතතා සඳහා රසායනික පුතිකිුිිිිියා ලියන්න. HX(aq) හි විසටනය නොසැලකිය හැකි බව උපකල්පනය කරමින් ඉහත දුාවණයෙහි ඇති [X (aq)] ගණන
සම දුනි (i)	ඉහත දුංවණයෙහි පවතින සමතුලිකකා සඳහා රසායනික පුතිකිුයා ලියන්න. HX(aq) හි විසටනය නොසැලකිය හැකි බව උපකල්පනය කරමින් ඉහත දුංවණයෙහි ඇති [X ⁻ (aq)] ගණන

- 6 -

[ඉත්වැනි පිටුව බලන්න.

AL/2017/02-S-II(A)	-7-		
(iii) 25 °C දී MX හි සංතෘප්ත ද විශාල ද යන වග හේතු		b)(ii) හි ලබා ගත් අගයට සමාන ද කුඩා	
	······		
•••••			
			100
•••••			
		(ලකුණු 5.0 යි)	
 (a) C₅H₁₂O අණුක සූතුය සහිත A, C ප්‍‍රකාශ සමාවයවිකතාවය පෙ 		තකෙහි වනුහ සමාවයවික වේ. A, B සහ	
(i) A, B සහ C සඳහා තිබිය :			
		Si	
	ැ ₂ O ₇ සමග පුතිකිුයා කළ විට පිළිවෙළින් ඊමෙන් පිළිවෙළින් B, C සහ D බවට නැ	X, Y සහ Z සැදේ. X, Y සහ Z යන එල වත පරිවර්තනය කළ හැක.	
ලබා දුනි. ${f G}$ පාරතිුමාන ස	A කළ විට A හා B පිළිවෙළින් E හා F ලබා දු මාවයවිකතාවය පෙන්වයි. E, F සහ G යා පුතිකි <mark>යා</mark> කළ විට එකම H නමැති එලය	න සංයෝග තුනටම $\mathrm{C_5H}_{10}$ අණුක සූතුය	
(iii) B,C,D,E,F සහ H හි ව	ුහ අඳින්න.		
Oepartin			
В	С	D	
E	F	Н	

AL/2017/02-S-II(A)

(ලකුණු 4.8 යි)

(b) පහත දී ඇති පුතිකිුයා අනුකුම දෙක සලකන්න.

(i) \mathbf{J},\mathbf{K} සහ \mathbf{L} හි වනුහ පහත දී ඇති කොටු තුළ අඳින්න.

(ii) V සහ W පුතිකාරක පහත දී ඇති කොටු තුළ ලියන්න.

(iii) ${\bf A_E}, {\bf A_N}, {\bf S_E}, {\bf S_N}$ හෝ ${\bf E}$ ලෙස අදාළ කොටුවෙහි ලියා ${\bf 1,2}$ සහ ${\bf 3}$ යන එක් එක් පුතිකියාව ඉලෙක්ටුෝෆිලික ආකලන $({\bf A_N})$, ඉලෙක්ටුෝෆිලික ආදේශ $({\bf S_E})$, නියුක්ලියෝෆිලික ආදේශ $({\bf S_N})$ හෝ ඉවත් වීම $({\bf E})$ ලෙස වර්ගීකරණය කරන්න.

(ලකුණු 4.0 යි)

(c) (i) CH₃CH=CH₂ සහ HBr අතර සිදුවන පුතිකිුයාවෙහි **පුධාන** ඵලයෙහි වාූහය කුමක් ද?

(ii) ඉහත සඳහන් කළ පුතිකිුියාවෙහි යන්තුණය ලියන්න.

(ලකුණු 1.2 යි)

100

සියලු ම හිමිකම් ඇව්රිණි / முழுப் பதிப்புரிமையுடையது / All Rights Reserved]

ලි ලංකා විභාග දෙපාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්තමේන්තුවෙන්න <mark>දෙපාර්තාවේන්තුව</mark>න්න දෙපාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්තමේන්තුව ඉහස්කෙස් ප්රියාත්ත නිකාශ්යයෙන් ඉහස්කෙස් ප්රියාත්ත නිකාශ්යයෙන් ප්රියාත්ත ප්රියාත්ත නිකාශ්යයෙන් ඉහස්කෙස් ප්රියාත්ත ප්රධාන ප්රධා

අධායන පොදු සහනික පනු (උසස් පෙළ) විභාගය, 2017 අගෝස්කු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2017 ஒகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2017

<mark>රසායන විදපාව II</mark> இரசாயனவியல் II Chemistry II

* සාර්වනු වායු නියනය $R=8.314~{
m J~K^{-1}~mol^{-1}}$ * ඇවගාඩ්රෝ නියනය $N_A=6.022~{
m \times}~10^{23}~{
m mol}^{-1}$

B කොටස — රචනා

පුශ්න **දෙකකට** පමණක් පිළිතුරු සපයන්න. (එක් එක් පුශ්නයට **ලකුණු 15** බැගින් ලැබේ.)

5. (a) NaHCO $_3$ (s), 100 °C ට ඉහළ උෂ්ණත්වයකට රත් කළ විට පහත පුතිකිුයාව සිදු වේ.

2 NaHCO₃(s) \rightleftharpoons Na₂CO₃(s) + CO₂(g) + H₂O(g)

 $m NaHCO_3(s)$ නියැදියක් පරිමාව $5.00~{
m dm}^3$ වන රේචනය කළ සංවෘත දෘඪ භාජනයක් තුළ තබා $328~{
m ^{\circ}C}$ ට රක් කරන ලදී. සමතුලිතතාවයට එළඹුණු පසු $m NaHCO_3(s)$ කුඩා පුමාණයක් තවදුරටත් භාජනයෙහි ඉතිරිව තිබුණි. භාජනයේ පීඩනය $1.0 \times 10^6 \, Pa$ බව සොයා ගන්නා ලදී. භාජනයේ ඉතිරිව ඇති ඝන දුවායන්හි පරිමාව නොසලකා හැරිය හැකි බව උපකල්පනය කරන්න. $328~{
m ^{\circ}C}$ දී $m RT = 5000 \, J \, mol^{-1}$ වේ.

- (i) 328 °C දී සමතුලිකතාවයට එළඹුණු විට භාජනයේ ඇති H₂O(g) මවුල පුමාණය ගණනය කරන්න.
- (ii) $328~^\circ\mathrm{C}$ දී ඉහත සමතුලිතතාවය සඳහා K_p ගණනය කර එන්ගීන් K_c ගණනය කරන්න.
- (iii) ඉහත විස්තර කරන ලද භාජනයට $328\,^{\circ}$ C දී $CO_2(g)$ අමතර පුමාණයක් එකතු කරන ලදී. සමතුලිතතාවයට නැවත එළඹුණු විට $CO_2(g)$ හි අාංශික පීඩනය $H_2O(g)$ හි අාංශික පීඩනය මෙන් සිව් (4) ගුණයක් විය. මෙම තත්ත්වය යටතේ දී $CO_2(g)$ හා $H_2O(g)$ හි අාංශික පීඩන ගණනය කරන්න.

(ලකුණු 7.5 යි.)

- (b) $2 \text{ NaHCO}_3(s) \to \text{Na}_2\text{CO}_3(s) + \text{H}_2\text{O}(l) + \text{CO}_2(g)$ පුතිකිුයාවේ සම්මත එන්නැල්පි විපර්යාසය (ΔH°) නිර්ණය කිරීම සඳහා පියවර දෙකකින් (I හා II) සමන්විත පහත සඳහන් පරීක්ෂණය කාමර උෂ්ණත්වයේ දී සිදු කරන ලදී.
 - පියවර I: බීකරයක ඇති 1.0 mol dm^3 HCl අම්ල දාවණ 100.00 cm^3 ට $NaHCO_3(s)$ 0.08 mol එකතු කරන ලදී. උෂ්ණත්වයෙහි උපරිම **පහත වැටීම** $5.0 \, ^{\circ}$ C බව සොයා ගන්නා ලදී.

[සිදු වන පුතිකියාව: NaHCO $_3$ (s) + HCl(aq) \longrightarrow Na+(aq) + Cl-(aq) + H $_2$ O(l) + CO $_2$ (g)]

පියවර II : බීකරයක ඇති 1.0 mol dm^{-3} HCl අම්ල දාවණ 100.00 cm^3 ට $Na_2CO_3(s)$ 0.04 mol එකතු කරන ලදී. උෂ්ණත්වයෙහි උපරිම **ඉහළ යාම** $3.5 \, ^{\circ}\text{C}$ බව සොයා ගන්නා ලදී.

[සිදු වන පුතිකියාව: $Na_2CO_3(s) + 2 HCl(aq) \longrightarrow 2 Na^+(aq) + 2 Cl^-(aq) + H_2O(l) + CO_2(g)$]

m HCl අම්ල දාවණයෙහි නියත පීඩනයේ දී විශිෂ්ට තාප ධාරිතාව හා ඝනත්වය පිළිවෙළින් $m 4.0~J~g^{-1}~K^{-1}$ හා $m 1.0~g~cm^{-3}$ වේ. ඉහත පියවර දෙකෙහි දී ඝනයන් එකතු කළ පසු දාවණයන්හි පරිමා සහ ඝනත්ව වෙනස නොසැලකිය හැකි බව උපකල්පනය කරන්න.

- (i) ඉහත I හා II පියවරවල දී ඇති පුතිකිුයාවන්හි එන්තැල්පි විපර්යාසයන් (kJ mol^{-1} වලින්) ගණනය කරන්න.
- (ii) ඉහත (i) හි ලබා ගත් අගයයන් හා **තාප රසායනික චකුයක්** භාවිතයෙන්,

2 NaHCO $_3$ (s) → Na $_2$ CO $_3$ (s) + H $_2$ O(l) + CO $_2$ (g) පුතිකිුයාවේ ΔH° ගණනය කරන්න.

- (iii) පුතිකිුයාවක තාප විපර්යාසය, කුමන තත්ත්වය යටතේ දී එහි එන්තැල්පි වෙනසට සමාන වේ දැයි සඳහන් කරන්න.
- (iv) ඉහත පරීක්ෂණාත්මක කියාපිළිවෙළෙහි දෝෂ පුභව දෙකක් හඳුනාගන්න.

(ලකුණු 7.5 යි.)

/දහවැනි පිටුව බලන්න.

- 6. (a) (i) ප්‍රතික්‍රියකයන්හි සාන්දුණ වැඩි කළ විට ප්‍රතික්‍රියාවක ශීස්‍රතාව වැඩි වන්නේ මන් දැයි පැහැදිලි කරන්න.
 - (ii) සාමානාශයන් පුතිකිුියාවක ශීසුතාව උෂ්ණත්වය වැඩි වීමත් සමග වැඩි වන්නේ මන් දැයි පැහැදිලි කිරීමට හේතු **දෙකක්** දක්වන්න.
 - (iii) මූලික පුතිකිුියාවක පෙළ හා අණුකතාවය අතර සම්බන්ධය කුමක් ද?
 - (iv) NO + $O_2 \to NO_2 + O$ යන මූලික පුතිකියාවෙහි සකිය සංකීර්ණයෙහි වපුහයෙහි දළ සටහනක් අඳින්න. සෑදෙමින් පවතින බන්ධන '**සෑදෙන**' හා කැඩෙමින් පවතින බන්ධන '**සෑදෙන**' හා කැඩෙමින් පවතින බන්ධන '**කෑඩෙන**' ලෙස නම් කරන්න.
 - (v) ශීසුතා නියතය k, හා ස්ටොයිකියෝමිතික සංගුණක x,y,z වන $x\mathbf{A}+y\mathbf{B} \longrightarrow z\mathbf{C}$ යන මූලික පුතිකිුයාව සඳහා ශීසුතා පුකාශනය ලියන්න.

(ලකුණු 5.0 යි.)

(b) $x\mathbf{A} + y\mathbf{B} \to z\mathbf{C}$ යන පුතිකියාව කාබනික දාවකයකින් හා ජලයෙන් සමන්විත ද්විකලාපීය පද්ධතියක් තුළ අධායනය කරන ලදී. \mathbf{A} සංයෝගය කලාප දෙකෙහිම දාවා වන අතර \mathbf{B} සහ \mathbf{C} සංයෝග ජලීය කලාපයෙහි පමණක් දාවා වේ.

කලාප අතර
$${f A}$$
 හි වසාප්තිය සඳහා විභාග සංගුණකය, ${f K}_{
m D}=rac{{f A}_{
m (org)}}{{f A}_{
m (aq)}}=4.0$ වේ.

 ${f A}$ සංයෝගය ද්විකලාපීය පද්ධතියට එකතු කර සමතුලිතතාවයට එළඹීමට ඉඩ හරින ලදී. ජලීය කලාපයට ${f B}$ සංයෝගය නික්ෂේපණය (injecting) කිරීමෙන් පුතිකිුයාව ආරම්භ කරන ලදී. පද්ධතියෙහි උෂ්ණත්වය නියත අගයක පවත්වා ගන්නා ලදී. සිදු කරන ලද පරීක්ෂණවල පුතිඵල පහත දක්වා ඇත.

පරීක්ෂණ අංකය	කාබනික කලාපයෙහි පරිමාව (cm³)	ජලීය කලාපයෙහි පරිමාව (cm³)	පද්ධතියට එකතු කළ A පුමාණය (mol)	නික්ෂේපිත B පුමාණය (mol)	ආරම්භක ශීසුතාව, $\left(rac{-oldsymbol{\Delta}C_{f A}}{oldsymbol{\Delta}t} ight)$ (mol dm $^{-3}$ s $^{-1}$)
I		100.00	1.00×10^{-2}	1.00×10^{-2}	1.20×10^{-5}
II	100.00	100.00	1.25×10^{-1}	1.00×10^{-2}	7.50×10^{-5}
III	50.00	50.00	6.25×10^{-2}	1.00×10^{-2}	1.50×10^{-3}

සටහන: I වන පරීක්ෂණය කාබනික කලාපය නොමැතිව සිදු කරන ලදී.

- (i) ඉහත I, II හා III පරීක්ෂණවල ජලීය කලාපයෙහි ආරම්භක A සාන්දුණය ගණනය කරන්න.
- (ii) A අනුබද්ධයෙන් පුතිකියාවෙහි පෙළ සොයන්න.
- (iii) **B** අනුබද්ධයෙන් පුතිකියාවෙහි පෙළ සොයන්න.
- (iv) පුතිකියාවෙහි ශීඝුතා නියත<mark>ය ග</mark>ණනය කරන්න.
- (v) ඉහත III පරීක්ෂණයෙහි A එකතු කර සමතුලිතතාවයට එළඹීමට ඉඩ හැරීමෙන් පසු කාබනික කලාපයෙන් $10.00~{
 m cm}^3$ පරිමාවක් ඉවත් කළේ නම්, පුතිකියාවේ ආරම්භක ශීඝුතාව ගැන කුමක් පුකාශ කළ හැකි ද? ඔබගේ පිළිතුරට හේතුව/හේතු දක්වන්න.

(ලකුණු 5.0 යි.)

(c) \mathbf{X} හා \mathbf{Y} දුව<mark>යන්හි</mark> මිශුණයක් පරිපූර්ණ ලෙස හැසිරේ. නියත උෂ්ණත්වයක ඇති දෘඪ සංවෘත භාජනයක් තුළ වාෂ්ප කලාපය සමග සමතුලිකව ඇති දුව කලාපයෙහි \mathbf{X} මවුල 1.2 හා \mathbf{Y} මවුල 2.8 ඇති විට, මුළු වාෂ්ප පීඩනය 3.4×10^4 Pa වේ. මෙම උෂ්ණත්වයේ දීම වාෂ්ප කලාපය සමග සමතුලිතව ඇති දුව කලාපයෙහි සංයුතිය \mathbf{X} මවුල 1.2 හා \mathbf{Y} මවුල 4.8 වන විට, මුළු වාෂ්ප පීඩනය 3.6×10^4 Pa වේ. මෙම උෂ්ණත්වයේ දී \mathbf{X} හා \mathbf{Y} හි සංතෘප්ත වාෂ්ප පීඩන ගණනය කරන්න.

(ලකුණු 5.0 යි.)

7. (a) පහත සඳහන් පරිවර්තනය පියවර **පහකට (5) නොවැඩි පියවර සංඛනවකින්** ඔබ සිදු කරන්නේ කෙසේ දැයි පෙන්වන්න.

$$\bigcirc \longrightarrow \bigcirc_{NO_2}^{CO_2 F}$$

(ලකුණු 3.0 යි.)

(b) ${f A}$ සහ ${f B}$ සංයෝග දෙක රසායනාගාරයේ දී පිළියෙල කිරීමට අවශාව ඇත.

- (i) අවශා පරිදි X සහ Y යොදා ගනිමින් A සහ B එකිනෙකක් පියවර **පහකට** (5) **නොවැඩි පියවර සංඛනාවකින්** ඔබ පිළියෙල කරන්නේ කෙසේ දැයි පෙන්වන්න.
- (ii) ඉහත දී ඇති A සහ B භාවිත කර පියවර **පහකට** (5) **නොවැඩ් පියවර සංඛනාවකින් C** සංයෝගය ඔබ පිළියෙල කරන්නේ කෙසේ දැයි පෙන්වන්න.

(ලකුණු 9.0 යි.)

(c) ඇසටයිල් ක්ලෝරයිඩ් හා NaOH අතර පුතිකිුයාවේ යන්තුණය පිළිබඳ ඔබගේ දැනුම භාවිත කරමින්

සහ NaOH අතර පුතිකිුයාව සඳහා යන්තුණයක් යෝජනා කරන්න.

(ලකුණු 3.0 යි.)

C කොටස — රචනා

පුශ්න **දෙකකට** පම<mark>ණක්</mark> පිළිතුරු සපයන්න. (එක් එක් පුශ්නයට **ලකුණු 15** බැගින් ලැබේ.)

- 8. (a) Y දාවණයෙහි කැටායන තුනක් අඩංගු වේ.
 - මෙම කැටියන හඳුනාගැනීම සඳහා පහත පරීක්ෂා සිදු කරන ලදී.

	පරීක්ෂාව	නිරික්ෂණය
0	Y හි කුඩා කොටසකට තනුක HCl එක් කරන ලදී.	සුදු පැහැති අවක්ෂේපයක් ($\mathbf{P_i}$)
0	$\mathbf{P_1}$ පෙරා වෙන් කර දාවණය තුළින් $\mathrm{H_2S}$ බුබුලනය කරන ලදී.	කළු පැහැති අවක්ෂේපයක් ($\mathbf{P_2}$)
3	$\mathbf{P_2}$ පෙරා වෙන් කරන ලදී. $\mathbf{H_2S}$ ඉවත් කිරීම සඳහා පෙරනය නටවා, සිසිල් කර, $\mathrm{NH_4OH/NH_4Cl}$ එක් කරන ලදී.	අවක්ෂේපයක් නොමැත.
4	දුාවණය තුළින් $ m H_2S$ බුබුලනය කරන ලදී.	කළු පැහැති අවක්ෂේපයක් (${f P_3}$)

[දොළොස්වැනි පිටුව බලන්න.

 $egin{array}{c} egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array$

අවක්ෂේපය	පරීක්ෂාච	නිරික්ෂණය
P ₁	$I. {f P}_I$ ට ජලය එක් කර මිශුණය නටවන ලදී.	P 1 හි කොටසක් දුවණය වුණි.
	II. ඉහත I හි මිශුණය උණුසුම්ව තිබිය දී පෙරා, පෙරනය (\mathbf{F}_1) හා ශේෂය (\mathbf{R}_1) මත පහත පරීක්ෂා සිදු කරන ලදී.	
	පෙරනය (F ₁)	
	$ullet$ උණුසුම් $oldsymbol{F}_1$ ට තනුක $oldsymbol{H}_2\mathrm{SO}_4$ එක් කරන ලදී.	සුදු අවක්ෂේපයක්
	dෙනය (R₁)	
	• උණුසුම් ජලයෙන් R 1 හොඳින් සෝදා කනුක NH4OH එක් කරන ලදී.	R ₁ දුවණය වුණි.
	• ඉන්පසු, KI දුාවණයක් එක් කරන ලදී.	තද කහ පැහැති අවක්ෂේපයක්
P ₂	උණුසුම් තනුක $ ext{HNO}_3$ හි $ extbf{P}_2$ දවණය කර පොටැසියම් කෝමේට් දුාවණයක් එක් කරන ලදී.	කහ පැහැති අවක්ෂේපයක්
P ₃	$I.$ උණුසුම් සාන්දු $\mathrm{HNO_3}$ හි $\mathbf{P_3}$ දවණය කරන ලදී.	රෝස පැහැති දාවණයක් (1 දුාවණය)
	II. ඉහත I දුාවණයට පහත දෑ එකතු කරන ලදී. • සාන්දු HCl	නිල් පැහැති දාවණයක් (2 දාවණ ය)
	• තනුක NH ₄ OH	කහ-දුඹුරු පැහැති දුාවණයක් (3 දුාවණය)

- (i) කැටායන **තුන** හඳුනාගන්න. (හේතු අවශා **නැත**.)
- (ii) I. $oldsymbol{P_1}, \, oldsymbol{P_2}$ හා $oldsymbol{P_3}$ අවක්ෂේප
 - II. 1,2 හා 3 දාවණවල වර්ණයන්ට හේතුවන විශේෂයන් හඳුනාගන්න.

(**සැ.යු:** රසායනික සූතු **පමණක්** ලියන්නු,)

(iii) ඉහත 🛕 🛈 හි අවක්ෂේප වන කැ<mark>ටාය</mark>නයි/කැටායන ආම්ලික මාධායේ දී අවක්ෂේප නොවන්නේ මන් දැයි **කෙට්යෙන්** පැහැදිලි කරන්න.

(ලකුණු 7.5 යි.)

(b) සන සාම්පලයක $({
m NH_4})_2{
m SO}_4$, ${
m NH_4}{
m NO}_3$ සහ පුතිකියාශීලි නොවන දුවා අඩංගු බව සොයා ගන්නා ලදී. මෙම සාම්පලයේ ඇමෝනියම් ලවණ පුමාණය නිර්ණය කිරීම සඳහා පහත දක්වා ඇති කියාපිළිවෙළ යොදා ගන්නා ලදී. සන සාම්පලයෙන් $1.00\,{
m g}$ කොටසක් ජලයේ දුවණය කර $250.00\,{
m cm}^3$ දක්වා පරිමාමිතික ප්ලාස්කුවක් තුළ තනුක කරන ලදී. (මින් පසු ${
m S}$ දාවණය ලෙස හැඳින්වේ.)

තුියාපිළිවෙළ 1

S දාවණයෙන් $50.00~{
m cm}^3$ කොටසක් පුබල ක්ෂාරයක (NaOH) වැඩිපුර පුමාණයක් සමග පිරියම් කර නිදහස් වූ වායුව $0.10~{
m mol}~{
m dm}^{-3}~{
m HCl}~30.00~{
m cm}^3$ තුළට යවන ලදී. ඉතිරිව ඇති HCl උදාසීන කිරීමට (ෆිනොල්ප්කලීන් දර්ශකය ලෙස යොදා ගනිමින්) අවශා වූ $0.10~{
m mol}~{
m dm}^{-3}~{
m NaOH}$ පරිමාව $10.20~{
m cm}^3$ විය.

කුගාපළිවෙළ 2

S දාවණයෙන් $25.00\,\mathrm{cm}^3$ කොටසකට Al කුඩු ද ඉන්පසු පුබල ක්ෂාරයක වැඩිපුර පුමාණයක් ද එකතු කර මිශුණය රත් කරන ලදී. නිදහස් වූ **වායුව** $0.10\,\mathrm{mol}~\mathrm{dm}^{-3}~\mathrm{HCl}~30.00\,\mathrm{cm}^3$ තුළට යවන ලදී. ඉතිරිව ඇති HCl උදාසීන කිරීමට (ෆිනොල්ප්තලීන් දර්ශකය ලෙස යොදා ගනිමින්) අවශා වූ $0.10\,\mathrm{mol}~\mathrm{dm}^{-3}~\mathrm{NaOH}$ පරිමාව $15.00\,\mathrm{cm}^3$ විය.

(සැ.යු: ලිට්මස් කඩදාසි භාවිත කරමින් 1 සහ 2 කිුයාපිළිවෙළහි වායු පිටවීම සම්පූර්ණ දැයි පරීක්ෂා කරන ලදී.)

- (i) කියාපිළිවෙළ 1 හි නිදහස් වූ **වායුව** හඳුනාගන්න.
- (ii) කුියාපිළිවෙළ 2 හි නිදහස් වූ **වායුව** හඳුනාගන්න.
- (iii) කියාපිළිවෙළ 1 සහ 2 හි දී සිදු වන පුතිකියා සඳහා තුලිත රසායනික සමීකරණ ලියන්න.
- (iv) ඝන සාම්පලයේ ඇති (NH $_4$) $_2$ SO $_4$ සහ NH $_4$ NO $_3$ යන එක් එක් සංයෝගයෙහි ස්කන්ධ පුතිශනය ගණනය කරන්න. (H = 1, N = 14, O = 16, S = 32)

(ලකුණු 7*5* යි.)

[දහතුන්වැනි පිටුව බලන්න.

- 9. (a) පහත දක්වා ඇති කාර්මික කිුියාවලි සලකන්න.
 - I. විරංජන කුඩු නිෂ්පාදනය
 - II. කැල්සියම් කාබයිඩ් නිෂ්පාදනය
 - III. යූරියා නිෂ්පාදනය
 - IV. සල්ෆියුරික් අම්ල නිෂ්පාදනය (ස්පර්ශ කුමය)
 - (i) එක් එක් කිුයාවලියෙහි දී භාවිත කරන ආරම්භක දුවා සඳහන් කරන්න.
 - (ii) අවශා තැන්වල දී සුදුසු තත්ත්ව සඳහන් කරමින් එක් එක් කිුිිියාවලියේ සිදු වන පුතිකිුිිිිිිිිිිි සඳහා තුලිත රසායනික සමීකරණ ලියන්න.
 - (iii) පහත එක් එක් දෑ සඳහා පුයෝජන **දෙක** බැගින් සඳහන් කරන්න:

විරංජන කුඩු, කැල්සියම් කාබයිඩ්, යූරියා හා සල්ෆියුරික් අම්ලය

(ලකුණු 7.5 යි.)

- (b) ඕසෝන් වියන හායනය (OLD), ගෝලීය උණුසුම (GW) හා අම්ල වැසි (AR) වර්තමානයේ දී අප මුහුණ <mark>දෙන</mark> පුධාන පාරිසරික ගැටලු වේ. පහත දැක්වෙන පුශ්න පරිසරය සහ ඉහත දැක්වෙන ගැටලු හා සම්බන්ධ ය.
 - (i) කාබන් සහ නයිටුජන් චකු පරිසරයේ කිුයාක්මක වන වැදගත් රසායනික චකු දෙකක් වේ.
 - I. කාබන් චකුය සම්බන්ධයෙන් පහත එක් එක් දැහි කාබන් පවතින පුධාන ආකාර **එක** බැගින් සඳහන් \cdot කරන්න:
 - වායුගෝලයේ, ශාකවල, ජලයෙහි, පෘථිවි කබොලේ.
 - II. නයිටුජන් චකුයෙහි වායුගෝලයේ ඇති N_2 වායුව ඉවත් වීම සහ පුතිපූර්ණ වීම සිදු වන්නේ කෙසේ දැයි කෙටියෙන් සඳහන් කරන්න.
 - III. කාබන් චකුයෙහි ක්ෂුදු ජීවීන් සහභාගි වන ආකාර **දෙකක්** සඳහ<mark>න්</mark> කරන්න.
 - (ii) අම්ල වැසි ඇති වීමට දායක වන වායුගෝලයේ පවතින නයිටුජන් අඩංගු පුධාන සංයෝග **දෙක** හඳුනාගන්න. තුලින රසායනික සමීකරණ ආධාරයෙන් මෙම සංයෝග වැසි ජලය ආම්ලික කරන්නේ කෙසේ දැයි පෙන්වන්න.
 - (iii) ඉහත සඳහන් **එක් එක්** පාරිසරික ගැටලුවට (OLD, GW, AR) දායක වන කාර්මික කිුියාවලි **දෙක බැගින්** හඳුනාගන්න. මෙම **එක් එක්** කාර්මික කිුියාවලිය මගින් වායුගෝලයට මුදාහැරෙන **එක්** රසායනික සංයෝගයක් බැගින් හඳුනාගන්න.
 - (iv) ජලයට සහ පසට නයිටුජන් සංයෝග එකතු වී<mark>මට සැ</mark>ලකිය යුතු අන්දමින් දායක වන පුධාන කාර්මික කියාවලිය හඳුනාගන්න. මෙම සංයෝග ජලයට හා පසට ඇතුල් වන මාර්ග සම්බන්ධව අදහස් දක්වන්න.
 - (v) මීතොටමුල්ල සිද්ධිය වැනි අකුමවත්ව නාගරික ඝන අපදුවා බැහැර කිරීම ඉහත සඳහන් පාරිසරික පුශ්න තුනෙන් එකකට සැලකිය යුතු දායකත්වයක් දක්වයි. එම පාරිසරික පුශ්නය හඳුනාගෙන අකුමවත් ලෙස නාගරික ඝන අපදුවා බැහැර කිරීම අදාළ පාරිසරික පුශ්නයට දායක වන්නේ කෙසේ දැයි කෙටියෙන් සඳහන් කරන්න.

(ලකුණු 7.5 යි.)

10. (a) (i) $\mathrm{TiCl_3}$ යනු ලා දම් පැහැති ඝනයකි. ජලයෙහි දී \mathbf{A} හා \mathbf{B} නම් $\mathrm{TiCl_3}$ හි සජලනය වූ විශේෂ දෙකක් සෑදෙයි. \mathbf{A} සහ \mathbf{B} යනු $\mathrm{H_2O}$ හා Cl^- ලිගන අඩංගු අෂ්ටතලීය ජාගමිතියක් සහිත ටයිටේනියම්හි සංගත සංයෝග වේ. \mathbf{A} හා \mathbf{B} වෙන් කර ඒවායෙහි පරමාණුක සංයුති නිර්ණය කරන ලදී. පහත සඳහන් කිුියාපිළිවෙළ භාවිත කර සංයෝග තවදුරටත් විශ්ලේෂණය කරන ලදී.

A හි විශ්ලේෂණය

f A හි $0.20~{
m mol~dm^{-3}}$ දාවණයකින් $50.00~{
m cm^3}$ ට වැඩිපුර $AgNO_3(aq)$ එක් කළ විට තනුක ඇමෝනියා හි දාවා සුදු පැහැති අවක්ෂේපයක් ලැබුණි. අවක්ෂේපය සෝදා, උදුනක වේලූ විට (නියත ස්කන්ධයක් ලැබෙන තුරු) ස්කන්ධය $4.305~{
m g}$ විය.

B හි චිශ්ලේෂණය

 ${f B}$ හි $0.30~{
m mol}~{
m dm}^{-3}$ දාවණයකින් $50.00~{
m cm}^3$ ට වැඩිපුර ${
m AgNO_3(aq)}$ එක් කළ විට ${f A}$ හි විශ්ලේෂණයේ දී ලැබුණු සුදු අවක්ෂේපය ම ලැබුණි. අවක්ෂේපය සෝදා, උදුනක වේලූ විට (නියත ස්කන්ධයක් ලැබෙන තුරු) ලැබුණු ස්කන්ධය ද $4.305~{
m g}$ විය.

(H = 1, O = 16, Cl = 35.5, Ti = 48, Ag = 108)

- I. A හා B හි දී ටයිටේනියම්හි ඉලෙක්ටුෝනික විනාහාසය ලියන්න.
- II. A හා B හි වාූහ අපෝහනය කරන්න.
- III. A හා B හි IUPAC නම් දෙන්න.

[දහහතරවැනි පිටුව බලන්න.

(ii) X,Y හා Z යනු M(II) ලෝහ අයනයෙහි සංගත සංයෝග වේ. ඒවාට තලීය සමවතුරසුාකාර ජාාමිතියක් ඇත. X උදාසීන සංයෝගයකි. Y හි ජලීය දාවණයකට $BaCl_2(aq)$ එක් කළ විට තනුක අම්ලවල අදාවා සුදු පැහැති අවක්ෂේපයක් ලැබේ. ජලීය දාවණයේ දී Z අයන තුනක් ලබා දෙයි.

පහත දී ඇති ලැයිස්තුවෙන් සුදුසු විශේෂ තෝරා ගතිමින් \mathbf{X},\mathbf{Y} හා \mathbf{Z} හි වුහුහ සූතු ලියන්න.

$$K^+$$
, NH_3 , CN^- , SO_4^{2-}

(ලකුණු 7.5 යි.)

(b)

ඉහත රූප සටහනේ පෙන්වා ඇති පරිදි විදාුුුත් රසායනික කෝෂයක් සාදා ඇත. පහත දත්ත සපයා ඇත.

$$E^{\circ} = 0.22 V$$

$$Hg(l) \mid Hg_2Cl_2(s) \mid Cl^-(aq)$$

$$E^{o} = 0.27V$$

- (i) ඉහත කෝෂයෙහි ඔක්සිහරණ අර්ධ පුතිකිුයාව ලියන්න.
- (ii) ඉහත කෝෂයෙහි ඔක්සිකරණ අර්ධ පුතිකියාව ලියන්න.
- (iii) කෝෂ පුතිකිුයාව ගොඩනගන්න.
- (iv) දී ඇති E° අගයයන් භාවිතයෙන් කෝෂයෙහි විදාුුත් ගාමක බලය ගණනය කරන්න.
- (v) ඉහත විදාුුත් රසායනික කෝෂ<mark>යේ</mark> සම්මත ලිබිත නිරූපණය දෙන්න.
- (vi) ඉහත විදාුත් රසායනික කෝෂයෙහි විදාුත් ගාමක බලය ක්ලෝරයිඩ අයන සාන්දුණය මත රඳාපවතී ද? ඔබගේ පිළිතුර සඳහා හේතුව/හේතු දක්වන්න.
- (vii) කෝෂයෙන් $0.10 \, \mathrm{A}$ වූ ධාරාවක් විනාඩි $60 \, \mathrm{m}$ කාලයක් තුළ දී ලබා ගත් විට $\mathrm{Ag}(\mathrm{s}) + \mathrm{AgCl}(\mathrm{s})$ ස්කන්ධයෙහි සිදු වූ වෙනස ගණනය කරන්න.
- (viii) ඉහත (vii) හි ධාරාව ලබා ගත් පසු දුාවණයෙහි ක්ලෝරයිඩ අයන සාන්දුණය කුමක් විය හැකි ද? $(m_1 cold)$ නියතය, $F = 96,500 \, \mathrm{C} \, \mathrm{mol}^{-1}, \, \mathrm{Cl} = 35.5, \, \mathrm{Ag} = 108)$

(ලකුණු 7.5 යි.)

ආවර්තිතා වගුව

	1																	2
1	H		-															He
	3	4											5	6	7	8	9	10
2	Li	Be											В	C	N	O	F	Ne
	11	12											13	14	15	16	17	18
3	Na	Mg											Al	Si	P	S	Cl	Ar
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
	55	56	La-	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	Cs	Ba	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
	87	88	Ac-	104	105	106	107	108	109	110	111	112	113					
7	Fr	Ra	Lr	Rf	Dh	Sø	Rh	Hs	Mt	Hun	Ilmi	Hub	Lint					

	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr															