Pravděpodobnost a statistika - zkoušková písemka 22.6.2016

Jméno a příjmení	1	2	3	4	celkem	známka

Úloha 1. Hokejisté jistého týmu vyšlou během utkání (hraného pouze na tři třetiny, tj. bez prodloužení) na branku průměrně 30 střel. Průměrně každá desátá střela skončí gólem. Poměr střel první, druhé a třetí formace jsou 5:3:2, první formace se trefuje s pravděpodobností 0.12 a druhá s pravděpodobností 0.1. Všechny střely, resp. góly, přicházejí zcela nezávisle na předešlých střelách, resp. gólech. Určete pravděpodobnost, že

- a) během první třetiny vstřelí tento tým maximálně dva góly,
- b) na první gól tohoto týmu budou diváci čekat alespoň 15 hracích minut (pozn.: jedna třetina má 20 hracích minut ;-)),
- c) nejpozději čtvrtá střela tohoto týmu skončí gólem,
- d) během prvních dvou třetin padnou maximálně tři góly, přičemž ani jeden nepadne během prvních pěti minut druhé třetiny, kdy fanoušek ještě stojí frontu na pivo,
- e) když vystřelí hráč třetí formace, padne gól,
- f) pokud padl gól, vstřelil ho hráč první formace,
- g) pokud nepadl gól, vystřelil hráč druhé formace,
- h) ze 100 střel padne alespoň 8 gólů (řešte pomocí CLV).

Úloha 2. Mějme P(B) = 1/5 a $P(A^c|B^c) = 3/4$. Spočtěte

- a) $P(A^c \cap B^c)$,
- b) $P(A \cap B^c)$.

Úloha 3. Rybáři měřili na 16 exemplářích délku ulovených mořských vlků. Naměřené hodnoty (zaokrouhlené na cm) jsou uvedeny v následující tabulce:

28 29 26 33 29 30 27 29 25 29 27 30 28 29 24 25	28	3 29	26	33	29	30	27	29	25	29	27	30	28	29	24	25
---	----	------	----	----	----	----	----	----	----	----	----	----	----	----	----	----

- a) Nakreslete histogram a empirickou distribuční funkci těchto dat.
- b) Odhadněte, jaké rozdělení má délka náhodně vybraného mořského vlka, a zdůvodněte.
- c) Odhadněte střední hodnotu a rozptyl tohoto rozdělení z dat. (hint: $\sum x_i = 448$, $\sum (x_i \bar{x})^2 = 78$)
- d) Otestujte, zda je možné říct, že střední délka mořského vlka je 30 cm.
- e) Předpokládejme (bez ohledu na výsledek d)), že skutečná střední hodnota délky mořského vlka je 30 cm a rozptyl je 4 (cm²). Spočtěte pravděpodobnost, že délka náhodně vybraného mořského vlka je v mezích 30cm 33cm.

Úloha 4. Počty prodaných lodí různých značek dvěma významným charterovým společnostem byly v uplynulých pěti letech následující:

$\operatorname{rok} \setminus \check{\operatorname{ctvrtlet}}$	Bavaria	Sun Odyssey	Elan	Gib Sea
Baotić	30	40	30	10
Adria Yacht Center	40	20	20	10

- a) Předpokládejme, že z těchto 200 prodaných lodí náhodně vybereme jednu. Určete marginální rozdělení náhodného vektoru (X,Y), kde X popisuje příslušnou charterovou společnost a Y popisuje značku této lodi.
- b) Určete pravděpodobnost, že náhodně vybraná loď je od Baotiće, ale není to Bavaria?
- c) Statisticky otestujte na hladině 5%, zda obě společnosti koupily přibližně stejné množství lodí.
- d) Statisticky otestujte na hladině 1%, zda jsou všechny značky lodí stejně oblíbené.
- e) Definujte **obecně** nezávislost diskrétních náhodných veličin X a Y.