Problem: Find minimum average travel time to respond to calls from the 12 districts in Bloomington from its 2 hospitals within the calls/hr constraints for each hospital and district

Solution: Find the **minimum average travel time** for any hospital to respond to a call from any district

Inputs: in blue in spreadsheet

- Travel time per call (in minutes) from each district to each hospital
- Average calls/hr from each district

Objective function: Min (Average Travel time) = $\min_{i \in (1...12), j \in (1,2)} \sum Xij * Tij$, where

- Minimize the total time for responding to all calls from all districts from both hospitals
- The result is minimum total units (Calls/hr * Hrs/call)
 - Average is not calculated as that would require dividing the equation by total no of calls for both hospitals, which would result in a non-linear problem/solution
- X_{ij} Calls/hr assigned to district i from hospital j
- T_{ii} Travel time (hrs) per call from district i to hospital j
 - Data is given in minutes, converted to hrs (divide by 60)
- $i \in (1...12)$ for the 12 districts
- $j \in (1,2)$ for the 2 hospitals

Decision variable: X_{ii} – Calls/hr assigned to district i from hospital j

Constraints:

- 1. $\sum_{i} Xij >= 2*ACD_{i}$ for all i, where
 - o ACD_i Average Calls/hr emanating from each district i
 - Average of both hospitals for each district means 2 is taken to right side of equation to avoid non-linearity
- 2. \sum_{i} Xij <= MCH_i for all j, where
 - MCH_j Maximum Calls/hr that can be assigned to each hospital j, \in (4.9, 5.5)

Result:

- The minimum average travel time required to respond to a call is 0.92 units
- Solver method Simplex LP was used