LESSON 13: SUPPORT VECTOR MACHINE

This lecture was refered by machinelearningcoban.com

1. Distance formular

In the 3D space, to calculate the distance between a point $X^st=(x_1^st,x_2^st,x_3^st)$ and a plane $w_1x_1+w_2x_2+w_3x_3+b=0$.

$$D = rac{|w_1 x_1^st + w_2 x_2^st + w_3 x_3^st + b|}{\sqrt{w_1^2 + w_2^2 + w_3^2}}$$

Generally to nD space, to calculate the distance between a point $X^*=(x_1^*,x_2^*,\dots,x_n^*)$ and a hyper-plane $w_1x_1+w_2x_2+\dots+w_nx_n+b=W^TX+b=0$.

$$D = \frac{|W^T X^* + b|}{\sqrt{\sum_{i=1}^n w_i^2}}$$

2. SVM introduction

With a classification model, like Logistics Regression, we can find lots of solutions to classify data samples exactly.

But one problem is which solution is the best among all of these solutions?

This solution show a problem is that the distance between a class point and the solution is larger than the distance between another class point and the solution.

=> That's unfair between the two classes

This solution show a problem is that the distances between each class point and the solution are equal but this distance is too small.

=> That's not good for classification

These are the reasons why SVM try to find a classification boundary which assure: The distances (or can be called margin) between the solution and nearest point of each class are equal and largest.

SVM is better than Neural network with only one layer - Logistic Regression.

3. Optimization

We have a training set $(X_1,y_1),(X_2,y_2),\ldots,(X_N,y_N)$ while X_i is the data sample vector n dimension and y_i is the label $(y_i=1 \text{ or } y_i=-1)$

To simplify, we consider 2D space,

We assume that $W^TX+b=w_1x_1+w_2x_2+b=0$ is the classification boundary. We have the distance between a data point (X_i,y_i) and the classification boundary

$$D = rac{y_i(W^TX_i + b)}{\sqrt{\sum_{i=1}^d w_i^2}}$$

and margin is the minimum distance of all data points,

$$margin = \min_i rac{y_i(W^TX_i + b)}{\sqrt{\sum_{i=1}^d w_i^2}}$$

We have to optimize the value of margin or, in other words, we have to find W and b to maximize the margin.

$$(W,b) = rg \max_{W,b} \left\{ \min_i rac{y_i(W^TX_i + b)}{\sqrt{\sum_{i=1}^d w_i^2}}
ight\}$$

It's complex to optimize the above formular, so we consider the classification boundary

$$W^TX + b = w_1x_1 + w_2x_2 + b = 0 \ kW^TX + kb = kw_1x_1 + kw_2x_2 + kb = 0$$

If we multiply both side by k>0, the classification boundary is not changed. So, we get the numerator $y_i(W^TX_i+b)$ from margin formular and assume that

$$egin{aligned} y_i(W^TX_i+b) &= v \ y_i(kW^TX_i+kb) &= 1 \end{aligned}$$

With that assumption, we have

$$orall i, y_i(kW^TX_i+kb) \geq 1$$

and we optimize

$$egin{aligned} (W,b) &= rg \max_{W,b} \left\{ \min_i rac{y_i(W^TX_i + b)}{\sqrt{\sum_{i=1}^n w_i^2}}
ight\} \ &= rg \max_{W,b} rac{1}{\sqrt{\sum_{i=1}^n w_i^2}} \ orall n, y_i(kW^TX_i + kb) \geq 1 \end{aligned}$$

We modify to get the more simple optimization formular

$$egin{aligned} (W,b) &= rg\min_{W,b} \sqrt{\sum_{i=1}^n w_i^2} \ &= rg\min_{W,b} \sum_{i=1}^n w_i^2 \ &orall n, y_i(kW^TX_i + kb) \geq 1 \end{aligned}$$

To optimize this formular, we use Convex optimization algorithms.

4. Soft-margin SVM

One problem with SVM is that this model works with only linearly separable dataset.

How about linearly separable dataset but contains noise?

SVM can find a solution in this case, but the solution is not so good because of the margin is too small.

That's why we call SVM is sensitive to noise.

And, now about almost linearly separable dataset?

SVM cannot find a solution in this case!

oo small.			

$\frac{\mathcal{E}_{2}^{2}}{\text{almost linearly separable}}$

But, on both the above cases, if we ignore some data points (allow them to fall inside the margin line), SVM can propose a really good solution with a large margin (dot line).

That's why we need another version of SVM - **Soft-margin SVM**, and the original version of SVM become **Hard-margin SVM**.

In Soft-margin SVM, we can ignore some data points, but we have to minimize the number of ignored data points.

So, the optimization problem of Soft-margin SVM is the combination of maximizing the margin and minimizing the number of ignored data points.

To maximize the margin, like Hard-margin SVM, we optimize $(W,b) = rg \min_{W,b} \sum_{i=1}^d w_i^2$.

To minimize the number of ignored data points, for each data point x_i in the dataset, we propose a variable called ξ to validate their position respected to the margin.

For each data point x_i in the dataset,

- if x_i is classified exactly and x_i is outside of the margin, $\xi_i = 0$.
- if x_i is classified exactly and x_i is inside of the margin, $0 < \xi_n < 1$.
- if x_i is not classified, $1<\xi_n$.

We have the following optimization problem for Hard-margin SVM,

$$(W,b) = rg \min_{W,b} \sum_{i=1}^d w_i^2$$

$$orall n, y_i(kW^TX_i + kb) \geq 1$$

We have the following optimization problem for Soft-margin SVM with ξ in the optimization condition.

$$egin{align} (W,b) &= rg \min_{W,b} \sum_{i=1}^d w_i^2 + C \sum_{i=1}^N \xi_i \ &orall v(kW^TX\cdot \pm kb) > 1 - \xi . \end{align}$$

$$orall n, y_i(kW^TX_i+kb) \geq 1-\xi_i$$

The role of C here is to balance the terms in the function.

- \bullet With small C, Soft-margin SVM will ignore lots of points to maximize the margin.
- With big C, Soft-margin SVM will try to ignore zero point. In case of linearly separable dataset, Soft-margin SVM will optimize to become the optimal Hard-margin SVM.

5. Kernel SVM

The original SVM (Hard-margin SVM) works with linearly separable dataset

The Soft-margin SVM works with linearly separable dataset with noise or almost linearly separable dataset.

And, how about non-linearly separable dataset?

Kernel SVM in this case will propose a function Φ to map each data point x_i in the dataset to the new data space. And in this space, our non-linearly separable dataset can become linearly separable dataset.

In the new data space, we can use Soft-margin SVM or Hard-margin SVM to find the classification boundary. With this classification boundary in the new data space, we can find the classification boundary in the original data space.

To save the computation cost, the function Φ can be **kernel function**. That's why we call **Kernel SVM**.

Instead of directly map data point x_i in the dataset to the new data space, kernel function try to calculate the relationship between data point in the new data space.

6. Implementation example

6.1. Prepare library and data

```
In [1]: import pandas as pd
    import matplotlib.pyplot as plt
    import numpy as np
    import seaborn as sns
    sns.set()

In [2]: iris_df = sns.load_dataset('iris')
    iris_df
```

Out[2]:		sepal_length	sepal_width	petal_length	petal_width	species
	0	5.1	3.5	1.4	0.2	setosa
	1	4.9	3.0	1.4	0.2	setosa
	2	4.7	3.2	1.3	0.2	setosa
	3	4.6	3.1	1.5	0.2	setosa
	4	5.0	3.6	1.4	0.2	setosa
	•••					
	145	6.7	3.0	5.2	2.3	virginica
	146	6.3	2.5	5.0	1.9	virginica
	147	6.5	3.0	5.2	2.0	virginica

	sepal_length	sepal_width	petal_length	petal_width	species
148	6.2	3.4	5.4	2.3	virginica
149	5.9	3.0	5.1	1.8	virginica

150 rows × 5 columns

Out[3]:

```
In [3]: iris_df = iris_df.drop(columns=['sepal_length', 'sepal_width'])
    iris_df
```

	petal_length	petal_width	species
0	1.4	0.2	setosa
1	1.4	0.2	setosa
2	1.3	0.2	setosa
3	1.5	0.2	setosa
4	1.4	0.2	setosa
•••			
145	5.2	2.3	virginica
146	5.0	1.9	virginica
147	5.2	2.0	virginica
148	5.4	2.3	virginica
149	5.1	1.8	virginica

150 rows × 3 columns

```
In [4]: sns.scatterplot(data=iris_df, x='petal_length', y='petal_width', hue='species')
    plt.show()
```


6.2. Linearly separable dataset problem

Out[5]:		petal_length	petal_width	species	is_setosa
	0	1.4	0.2	setosa	True
	1	1.4	0.2	setosa	True
	2	1.3	0.2	setosa	True
	3	1.5	0.2	setosa	True
	4	1.4	0.2	setosa	True
	•••				
	145	5.2	2.3	virginica	False
	146	5.0	1.9	virginica	False
	147	5.2	2.0	virginica	False
	148	5.4	2.3	virginica	False
	149	5.1	1.8	virginica	False
	150 r	ows × 4 colum	nns		
In [6]:		s_setosa_df s_setosa_df		iris_df	is_setosa
Out[6]:	р	etal_length p	etal_width s	pecies is	_setosa

sa]

]:		petal_length	petal_width	species	is_setosa
	0	1.4	0.2	setosa	True
	1	1.4	0.2	setosa	True
	2	1.3	0.2	setosa	True
	3	1.5	0.2	setosa	True
	4	1.4	0.2	setosa	True

In [7]: iris_not_setosa_df = iris_df[~iris_df.is_setosa].sample(50, random_state=1) iris_not_setosa_df.head()

Out[7]:		petal_length	petal_width	species	is_setosa
	130	6.1	1.9	virginica	False
	134	5.6	1.4	virginica	False
	83	5.1	1.6	versicolor	False
	131	6.4	2.0	virginica	False
	143	5.9	2.3	virginica	False

In [8]: df = pd.concat([iris_setosa_df, iris_not_setosa_df]) df

Out[8]:	р	etal_length	petal_width	species	is_setosa
	0	1.4	0.2	setosa	True
	1	1.4	0.2	setosa	True
	2	1.3	0.2	setosa	True
	3	1.5	0.2	setosa	True

is_setosa	species	petal_width	petal_length	
True	setosa	0.2	1.4	4
				•••
False	versicolor	1.4	4.6	91
False	versicolor	1.2	4.2	95
False	virginica	2.3	5.1	141
False	versicolor	1.4	4.8	76
False	virginica	2.3	5.4	148

100 rows × 4 columns

In [9]: sns.scatterplot(data=df, x='petal_length', y='petal_width', hue='is_setosa')
plt.show()

In [10]: **df**

Out[10]:	petal_length	petal_width	species	is_setosa
0	1.4	0.2	setosa	True
1	1.4	0.2	setosa	True
2	1.3	0.2	setosa	True
3	1.5	0.2	setosa	True
4	1.4	0.2	setosa	True
	•••			
91	4.6	1.4	versicolor	False
95	4.2	1.2	versicolor	False
141	5.1	2.3	virginica	False
76	4.8	1.4	versicolor	False
148	5.4	2.3	virginica	False

100 rows × 4 columns

```
In [11]: X = np.array(df.iloc[:, :2])
          X.shape
Out[11]: (100, 2)
In [12]: X
Out[12]: array([[1.4, 0.2],
                [1.4, 0.2],
                [1.3, 0.2],
                [1.5, 0.2],
                [1.4, 0.2],
                [1.7, 0.4],
                [1.4, 0.3],
                [1.5, 0.2],
                [1.4, 0.2],
                [1.5, 0.1],
                [1.5, 0.2],
                [1.6, 0.2],
                [1.4, 0.1],
                [1.1, 0.1],
                [1.2, 0.2],
                [1.5, 0.4],
                [1.3, 0.4],
                [1.4, 0.3],
                [1.7, 0.3],
                [1.5, 0.3],
                [1.7, 0.2],
                [1.5, 0.4],
                [1. , 0.2],
                [1.7, 0.5],
```

[1.9, 0.2], [1.6, 0.2], [1.6, 0.4], [1.5, 0.2], [1.4, 0.2], [1.6, 0.2], [1.6, 0.2], [1.5, 0.4], [1.5, 0.1], [1.4, 0.2], [1.5, 0.2], [1.2, 0.2], [1.3, 0.2], [1.4, 0.1], [1.3, 0.2], [1.5, 0.2], [1.3, 0.3], [1.3, 0.3], [1.3, 0.2], [1.6, 0.6], [1.9, 0.4], [1.4, 0.3], [1.6, 0.2], [1.4, 0.2], [1.5, 0.2], [1.4, 0.2], [6.1, 1.9], [5.6, 1.4], [5.1, 1.6], [6.4, 2.], [5.9, 2.3], [4.1, 1.], [4.7, 1.5], [5.6, 2.2], [5., 1.5], [5.3, 2.3],

```
[5.1, 1.9],
               [4., 1.3],
               [4.5, 1.7],
               [5.9, 2.1],
               [5.1, 1.9],
               [3.9, 1.2],
               [3.7, 1.],
               [4.2, 1.3],
               [5.6, 2.1],
               [3.5, 1.],
               [4.9, 1.5],
               [4.9, 1.8],
               [5.2, 2.],
               [5.5, 2.1],
               [3.9, 1.1],
               [4.5, 1.6],
               [5.7, 2.5],
               [5., 1.7],
               [4.2, 1.3],
               [4.1, 1.3],
               [6.7, 2.2],
               [5.1, 1.8],
               [5.8, 2.2],
               [5.2, 2.3],
               [4.8, 1.8],
               [4.4, 1.2],
               [3., 1.1],
               [6.1, 2.5],
               [4.7, 1.2],
               [4.5, 1.5],
               [5.6, 2.4],
               [5.6, 1.8],
               [4.9, 1.8],
               [4.4, 1.4],
               [5.1, 1.5],
               [4.6, 1.4],
               [4.2, 1.2],
               [5.1, 2.3],
               [4.8, 1.4],
               [5.4, 2.3]
In [13]: y = np.array(df['is_setosa'])
         y.shape
Out[13]: (100,)
In [14]: Y
Out[14]: array([ True, True, True, True, True, True, True, True, True, True,
                True, True, True, True, True, True, True, True, True,
                True, True, True, True, True, True, True, True, True,
                True, True,
                                    True, True, True, True, True, True,
                             True,
                True, True, True, True, True, True, True, True, True,
                True, True, True, True, False, False, False, False,
               False, False, False, False, False, False, False, False, False,
               False, False, False, False, False, False, False, False, False,
               False, False, False, False, False, False, False, False, False,
               False, False, False, False, False, False, False, False, False,
               False, False, False, False, False, False, False, False,
               False])
        6.3. Use sklearn
```

In [15]: **from** sklearn.svm **import** SVC

from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report

```
sklearn svm = SVC(kernel='linear', C=1e5) # big number to create Hard-margin SVM
In [16]:
          sklearn_svm
Out[16]: SVC(C=100000.0, kernel='linear')
In [17]: | sklearn_svm.fit(X, y)
Out[17]: SVC(C=100000.0, kernel='linear')
          svm_w = sklearn_svm.coef_
In [18]:
Out[18]: array([[-1.29411743, -0.82352928]])
          svm_b = sklearn_svm.intercept_
In [19]:
Out[19]: array([3.7882347])
          sklearn_logistic_regression = LogisticRegression()
In [20]:
          sklearn_logistic_regression
Out[20]: LogisticRegression()
In [21]: sklearn_logistic_regression.fit(X, y)
Out[21]: LogisticRegression()
In [22]: | lr_w = sklearn_logistic_regression.coef_
          lr_w
Out[22]: array([[-2.35093015, -0.97631903]])
In [23]: | lr_b = sklearn_logistic_regression.intercept_
          lr_b
Out[23]: array([7.56643687])
In [24]: | def display(X, y, w_1, b_1, w_2, b_2):
              plt.plot(X[:50, 0], X[:50, 1], 'ro', label='setosa')
              plt.plot(X[50:, 0], X[50:, 1], 'bo', label='not_setosa')
              line_types = ['g-', 'k-']
              model_name = ['svm', 'logistic_regression']
              reg_x = np.linspace(1.5, 3.5, 2)
              for idx, (w, b) in enumerate([[w_1, b_1], [w_2, b_2]]):
                  reg_y = \
                  (-b[0] / w[0][1]) + \setminus
                  (-w[0][0] / w[0][1]) * reg_x
                  plt.plot(reg_x, reg_y, line_types[idx], label=model_name[idx])
              plt.xlabel('petal_length')
              plt.ylabel('petal_width')
              plt.legend()
              plt.show()
```

In [25]: | display(X, y, svm_w, svm_b, lr_w, lr_b)

False

True

1.00

1.00

1.00

1.00

1.00

1.00

50

```
petal_length
In [26]: lr y pred = sklearn logistic regression.predict(X)
         lr y pred
Out[26]: array([ True, True, True, True, True, True, True, True, True,
                True, True, True, True, True, True, True, True, True,
                True, True, True, True, True, True, True, True, True,
                True, True, True, True, True, True, True, True, True,
                True, True, True, True, True, True, True, True, True,
                True, True, True, True, False, False, False, False,
               False, False, False, False, False, False, False, False, False,
               False, False, False, False, False, False, False, False, False,
               False, False, False, False, False, False, False, False, False,
               False, False, False, False, False, False, False, False, False,
               False, False, False, False, False, False, False, False, False,
               False])
In [27]: | svm_y_pred = sklearn_svm.predict(X)
         svm_y_pred
Out[27]: array([ True, True, True, True, True, True, True, True, True,
                True, True, True, True, True, True, True, True, True,
                True, True,
                             True, True,
                                          True,
                                                 True, True, True, True,
                True, True,
                             True, True,
                                           True, True, True, True, True,
                True, True, True, True, True, True, True, True, True,
                True, True, True, True, False, False, False, False,
               False, False, False, False, False, False, False, False, False,
               False, False, False, False, False, False, False, False, False,
               False, False, False, False, False, False, False, False, False,
               False, False, False, False, False, False, False, False, False,
               False, False, False, False, False, False, False, False, False,
               False])
In [28]: print(classification_report(lr_y_pred, y))
                      precision
                                  recall f1-score
                                                    support
               False
                           1.00
                                    1.00
                                              1.00
                                                         50
                True
                           1.00
                                    1.00
                                              1.00
                                                         50
            accuracy
                                              1.00
                                                        100
           macro avq
                           1.00
                                    1.00
                                              1.00
                                                        100
         weighted avg
                           1.00
                                    1.00
                                              1.00
                                                        100
In [29]: print(classification report(svm y pred, y))
                      precision
                                  recall f1-score
                                                    support
```

accuracy			1.00	100
macro avg	1.00	1.00	1.00	100
weighted avg	1.00	1.00	1.00	100

6.4. Almost linearly separable dataset problem

plt.show()

e neta	l length nets	al_width species	is setosa
): peta 0	1.4	0.2 setosa	True
1	1.4	0.2 setosa	True
2	1.3	0.2 setosa	True
3	1.5	0.2 setosa	True
4	1.4	0.2 setosa	True
145	5.2	2.3 virginica	False
146	5.0	1.9 virginica	False
147	5.2	2.0 virginica	False
148	5.4	2.3 virginica	False
149	5.1	1.8 virginica	False
lf =	iris_df[ir	is_df.species != al_width species	
vv_df	iris_df[ir		
: vv_df = vv_df : peta	iris_df[ir	al_width species	is_setosa False
: vv_df = vv_df : peta 50	iris_df[ir d_length peta 4.7	al_width species 1.4 versicolor	is_setosa False False
<pre>vv_df = vv_df peta 50 51</pre>	iris_df[ir d_length peta 4.7 4.5	al_width species 1.4 versicolor 1.5 versicolor	is_setosa False False False
 vv_df = vv_df peta 50 51 52 	iris_df[ir d_length peta 4.7 4.5 4.9	al_width species 1.4 versicolor 1.5 versicolor 1.5 versicolor	is_setosa False False False False
 vv_df = vv_df peta 50 51 52 53 	iris_df[ir d_length peta 4.7 4.5 4.9 4.0	al_width species 1.4 versicolor 1.5 versicolor 1.5 versicolor 1.3 versicolor	False False False False False False
vv_df = vv_df = vv_df 50 51 52 53 54	iris_df[ir d_length peta 4.7 4.5 4.9 4.0 4.6	1.4 versicolor 1.5 versicolor 1.5 versicolor 1.3 versicolor 1.5 versicolor 1.5 versicolor	False False False False False False
vv_df = vv_df	iris_df[ir d_length peta 4.7 4.5 4.9 4.0 4.6 	al_width species 1.4 versicolor 1.5 versicolor 1.5 versicolor 1.3 versicolor 1.5 versicolor	False False False False False False False
vv_df = vv_df	iris_df[ir d_length peta 4.7 4.5 4.9 4.0 4.6 5.2	1.4 versicolor 1.5 versicolor 1.5 versicolor 1.7 versicolor 1.8 versicolor 1.9 versicolor 1.9 versicolor 1.0 versicolor 1.1 versicolor 1.1 versicolor 1.2 versicolor 1.3 virginica	is_setosa False False False False False False False
vv_df = vv_df	iris_df[ir d_length peta 4.7 4.5 4.9 4.0 4.6 5.2 5.0	1.4 versicolor 1.5 versicolor 1.5 versicolor 1.6 versicolor 1.7 versicolor 1.8 versicolor 1.9 virginica 1.9 virginica	is_setosa False False False False False False False False
vv_df = vv_df	iris_df[ir d_length peta 4.7 4.5 4.9 4.0 4.6 5.2 5.0 5.2	1.4 versicolor 1.5 versicolor 1.5 versicolor 1.6 versicolor 1.7 versicolor 1.8 versicolor 1.9 virginica 2.0 virginica	is_setosa False

```
2.4 species
versicolor
virginica

2.0

1.8

1.6

1.4

1.2

1.0

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

petal_length
```

```
In [33]: X = vv_df[['petal_length', 'petal_width']]
X.shape
```

Out[33]: (100, 2)

In [34]: X

Out[34]:		petal_length	petal_width
	50	4.7	1.4
	51	4.5	1.5
	52	4.9	1.5
	53	4.0	1.3
	54	4.6	1.5
	•••		
	145	5.2	2.3
	146	5.0	1.9
	147	5.2	2.0
	148	5.4	2.3

100 rows × 2 columns

149

5.1

1.8

```
In [35]: y = vv_df['species']
y.shape
```

Out[35]: (100,)

In [36]: Y

```
Out[36]: 50 versicolor
51 versicolor
52 versicolor
53 versicolor
54 versicolor
...
145 virginica
146 virginica
```

```
147 virginica
148 virginica
149 virginica
Name: species, Length: 100, dtype: object
```

6.5. Use sklearn

```
In [37]: | sklearn svm c1 = SVC(kernel='linear', C=1)
         sklearn svm c1
Out[37]: SVC(C=1, kernel='linear')
In [38]: sklearn svm c1.fit(X, y)
Out[38]: SVC(C=1, kernel='linear')
In [39]: sklearn svm cl.coef
Out[39]: array([[2.1829247 , 2.25365588]])
In [40]: sklearn svm cl.intercept
Out[40]: array([-14.41486828])
         svm_c1_pred = sklearn_svm_c1.predict(X)
In [41]:
         svm c1 pred
Out[41]: array(['versicolor', 'versicolor', 'versicolor', 'versicolor',
                'versicolor', 'versicolor', 'versicolor', 'versicolor',
                'versicolor', 'versicolor', 'versicolor', 'versicolor',
                'versicolor', 'versicolor', 'versicolor', 'versicolor',
                'versicolor', 'versicolor', 'versicolor', 'versicolor',
                'virginica', 'versicolor', 'versicolor', 'versicolor',
                'versicolor', 'versicolor', 'versicolor', 'virginica',
                'versicolor', 'versicolor', 'versicolor', 'versicolor',
                'versicolor', 'virginica', 'versicolor', 'versicolor',
                'versicolor', 'versicolor', 'versicolor', 'versicolor',
                'versicolor', 'versicolor', 'versicolor', 'versicolor',
                'versicolor', 'versicolor', 'versicolor', 'versicolor',
                'versicolor', 'versicolor', 'virginica', 'virginica', 'virginica',
                'virginica', 'virginica', 'virginica', 'versicolor', 'virginica',
                'virginica', 'virginica', 'virginica', 'virginica',
                'virginica', 'virginica', 'virginica', 'virginica',
                'virginica', 'versicolor', 'virginica', 'virginica', 'virginica',
                'virginica', 'virginica'], dtype=object)
         sklearn svm c0p1 = SVC(kernel='linear', C=0.1)
In [42]:
         sklearn svm c0p1
Out[42]: SVC(C=0.1, kernel='linear')
In [43]: sklearn svm c0p1.fit(X, y)
Out[43]: SVC(C=0.1, kernel='linear')
In [44]: sklearn_svm_c0p1.coef_
```

```
Out[44]: array([[1.19016375, 0.95213016]])
         sklearn_svm_c0p1.intercept_
In [45]:
Out[45]: array([-7.4265328])
In [46]:
         svm c0p1 pred = sklearn svm c0p1.predict(X)
         svm c0p1 pred
Out[46]: array(['versicolor', 'versicolor', 'versicolor', 'versicolor',
                'versicolor', 'versicolor', 'versicolor', 'versicolor',
                'versicolor', 'versicolor', 'versicolor', 'versicolor',
                'versicolor', 'versicolor', 'versicolor', 'versicolor',
                'versicolor', 'versicolor', 'versicolor', 'versicolor',
                'virginica', 'versicolor', 'versicolor', 'versicolor',
                'versicolor', 'versicolor', 'versicolor', 'virginica',
                'versicolor', 'versicolor', 'versicolor', 'versicolor',
                'versicolor', 'virginica', 'versicolor', 'versicolor',
                'versicolor', 'versicolor', 'versicolor', 'versicolor',
                'versicolor', 'versicolor', 'versicolor', 'versicolor',
                'versicolor', 'versicolor', 'versicolor', 'versicolor',
                'versicolor', 'versicolor', 'virginica', 'virginica', 'virginica',
                'virginica', 'virginica', 'virginica', 'versicolor', 'virginica',
                'virginica', 'virginica', 'virginica', 'virginica', 'virginica',
                'virginica', 'virginica', 'virginica', 'virginica',
                'virginica', 'versicolor', 'virginica', 'virginica', 'virginica',
                'virginica', 'virginica'], dtype=object)
In [47]:
         sklearn lr = LogisticRegression()
         sklearn lr
Out[47]: LogisticRegression()
In [48]: | sklearn_lr.fit(X, y)
Out[48]: LogisticRegression()
In [49]: sklearn lr.coef
Out[49]: array([[2.77743512, 2.38548149]])
         sklearn_lr.intercept_
In [50]:
Out[50]: array([-17.5471049])
In [51]: | lr_pred = sklearn_lr.predict(X)
         lr_pred
Out[51]: array(['versicolor', 'versicolor', 'versicolor', 'versicolor',
                'versicolor', 'versicolor', 'versicolor', 'versicolor',
                'versicolor', 'versicolor', 'versicolor', 'versicolor',
                'versicolor', 'versicolor', 'versicolor', 'versicolor',
                'versicolor', 'versicolor', 'versicolor', 'versicolor',
                'virginica', 'versicolor', 'versicolor', 'versicolor',
                'versicolor', 'versicolor', 'versicolor', 'virginica',
                'versicolor', 'versicolor', 'versicolor',
                'versicolor', 'virginica', 'versicolor', 'versicolor',
                'versicolor', 'versicolor', 'versicolor', 'versicolor',
```

```
'versicolor', 'versicolor', 'versicolor', 'versicolor',
                'versicolor', 'versicolor', 'versicolor', 'versicolor',
                'versicolor', 'versicolor', 'virginica', 'virginica', 'virginica',
                'virginica', 'virginica', 'versicolor', 'virginica',
                'virginica', 'virginica', 'virginica', 'virginica',
                'virginica', 'virginica', 'virginica', 'virginica',
                'virginica', 'versicolor', 'virginica', 'virginica', 'virginica',
                'virginica', 'virginica'], dtype=object)
In [52]: | print(classification_report(lr_pred, y))
                      precision
                                  recall f1-score
                                                     support
           versicolor
                           0.94
                                    0.96
                                              0.95
                                                         49
           virginica
                           0.96
                                    0.94
                                              0.95
                                                         51
                                              0.95
                                                         100
            accuracy
                           0.95
                                    0.95
                                              0.95
                                                         100
           macro avg
                           0.95
                                    0.95
                                              0.95
                                                         100
         weighted avg
In [53]: | print(classification_report(svm_c1_pred, y))
                      precision
                                  recall f1-score
                                                    support
           versicolor
                           0.94
                                    0.96
                                              0.95
                                                         49
           virginica
                           0.96
                                    0.94
                                              0.95
                                                         51
                                              0.95
            accuracy
                                                         100
                           0.95
                                    0.95
                                              0.95
           macro avg
                                                         100
                                              0.95
         weighted avg
                           0.95
                                    0.95
                                                         100
In [54]: print(classification_report(svm_c0p1_pred, y))
                      precision
                                  recall f1-score
                                                     support
           versicolor
                           0.94
                                    0.96
                                              0.95
                                                         49
           virginica
                           0.96
                                    0.94
                                              0.95
                                                         51
                                              0.95
                                                         100
            accuracy
                           0.95
                                    0.95
                                              0.95
                                                         100
           macro avg
                           0.95
                                    0.95
                                              0.95
                                                         100
         weighted avg
In [55]: | def display(X, y, w_1, b_1, w_2, b_2, w_3, b_3):
             plt.plot(X[:50, 0], X[:50, 1], 'ro', label='vercicolor')
             plt.plot(X[50:, 0], X[50:, 1], 'bo', label='virginica')
             line_types = ['g-', 'k-', 'c-']
             model_name = ['svm_1', 'logistic_regression', 'svm_0p1']
             reg_x = np.linspace(4, 6, 2)
             for idx, (w, b) in enumerate([[w_1, b_1], [w_2, b_2], [w_3, b_3]]):
                 reg_y = \
                 (-b[0] / w[0][1]) + 
                 (- w[0][0] / w[0][1]) * reg_x
                 plt.plot(reg_x, reg_y, line_types[idx], label=model_name[idx])
             plt.xlabel('petal_length')
             plt.ylabel('petal_width')
```


In []: