Министерство образования Республики Беларусь Учреждение Образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Кафедра высшей математики

Лабораторная работа №6

Проверила: Самсонов П.А. Выполнил: Васильков Е.Д. гр. 121703

Вариант 5

Цель: Изучение методов численного решения задачи Коши для обыкновенных дифференциальных уравнений - метода Эйлера и его модификаций, методов Рунге - Кутты методов Рунге - Кутты; исследование погрешности решения; сравнение числа вычислений правых частей уравнений, необходимого для достижения заданной точности разными методами.

5	$e^{x}(x+1)+y/(x+1)$	1	<i>[0, 2]</i>	$(x+1)e^x$
	0 (60 1) 3, (60 1)	_	[•, -]	(** -/-

Решение задачи Коши и составление таблицу значений на отрезке [a,b] с постоянным шагом h=0.1 и h=0.05 методами Эйлера и Рунге - Кутты.

Метод Рунге – Кутты:

```
ln[152] = f[x_, y_] := Exp[x] * (x + 1) + y / (x + 1);
       a = 0; b = 2;
       x0 = 0;
       y0 = 1;
       h = 0.1;
       m = Floor[(b-a)/h] + 1;
ln[158] = rk4[f_, x0_, y0_, h_, m_] := Block[\{k1, k2, k3, k4, x = x0, y = y0, t, k\},
         "Вспомогательные функции";
         k1[x_{-}, y_{-}] := h * f[x, y];
         k2[x_{,}, y_{]} := h * f[x + h/2, y + k1[x, y]/2];
         k3[x_{,y_{]}} := h * f[x + h/2, y + k2[x, y]/2];
         k4[x_{,y_{]}} := h * f[x + h, y + k3[x, y]];
         "Таблица приближенных значений t = tab1";
         t = Table[{x, y} =
             \{x + h, y + (k1[x, y] + 2 * k2[x, y] + 2 * k3[x, y] + k4[x, y]) / 6\},
           \{k, m-1\}\};
         t = Prepend[t, \{x0, y0\}];
         Return[t]
       tab1 := rk4[f, x0, y0, h, m]
       gr3 := ListPlot[tab1]
       lst = {{}, {" x", " y"}};
       PaddedForm[TableForm[tab1, TableHeadings → lst], 5]
       g[x_{-}] := Exp[x] * (x + 1)
       gr2 := Plot[g[x], {x, a, b}]
       Show[{gr3, gr2}]
```

Шаг 0.1

Шаг 0.05

Метод Эйлера:

```
ln[325] = f[x_, y_] := Exp[x] * (x + 1) + y / (x + 1);
      a = 0;
      b = 2;
      x0 = 0;
      y0 = 1;
      h = 0.1;
      m = Floor[(b - a) / h] + 1;
      (*расчет по методу Эйлера*)
      x = x0;
      y = y0;
      eu1 = Table[\{x, y\} = \{x+h, y+h*f[x, y]\}, \{i, m-1\}];
      eu1 = Prepend[eu1, {x0, y0}];
      Print["Результаты по методу Эйлера с шагом h = 0.1"];
      gr1 := ListPlot[eu1];
      lst = {{}, {" x", " y"}};
      PaddedForm[TableForm[eu1, TableHeadings → lst], {5, 5}]
      Show[{gr1, gr2}]
      (*для контроля сравним полученный результат с точным решением*)
      g[x_{-}] := Exp[x] * (x + 1)
      gr2 := Plot[g[x], {x, a, b}]
      Результаты по методу Эйлера с шагом h = 0.1
```

Шаг 0.1

x	У					
0	1					/_
0.10000	1.20000	20 -				/ *
0.20000	1.43070	-				/.
0.30000	1.69640	-				
0.40000	2.00240	15				/ •
0.50000	2.35430	-			/.	
0.60000	2.75860					
0.70000	3.22250	-			/ •	
0.80000	3.75440	10 -			<i>_</i> •	
0.90000	4.36360				<i>/</i> •	
1.00000	5.06060	-		/•		
1.10000	5.85730	5				
1.20000	6.76710	-		0		
1.30000	7.80510	t	-			
1.40000	8.98840					
1.50000	10.33600	+	0.5	1.0	1.5	2.0
1.60000	11.87000		0.5	1.0	1.5	2.0
1.70000	13.61400					
1.80000	15.59700					
1.90000	17.84700					
2.00000	20.40200					

Вывод: С учетом приведённых выше значений и графиков можно сказать, что график становится точнее с увеличением шага.