24°CT/JP00/05685 PATENT OFFICE 24.08.00 JAPANESE GOVERNMENT

別紙添付の書類に記載されている事項は下記の出願書類に記載されて いる事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office. 出願年月日

Date of Application:

1999年 8月27日

REC'D 13 OCT 2000 WIPO

出 顧 番 号 Application Number:

平成11年特許顯第241531号

出 Applicant (s):

武田薬品工業株式会社

JP00105685

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

2000年 9月29日

出証番号 出証特2000-3078665

【書類名】

特許願

【整理番号】

A99166

【提出日】

平成11年 8月27日

【あて先】

特許庁長官

殿

【国際特許分類】

C12N 15/00

【発明の名称】

新規G蛋白質共役型レセプター蛋白質およびそのDNA

【請求項の数】

14

【発明者】

【住所又は居所】 茨城県つくば市春日1丁目7番地9 武田春日ハイツ4

0 4 号

【氏名】

渡辺 卓也

【発明者】

【住所又は居所】 茨城県つくば市大字小野崎985 ロイヤルゾア中山3

07号

【氏名】

寺尾 寧子

【発明者】

【住所又は居所】 茨城県つくば市春日1丁目7番地9 武田春日ハイツ7

03号

【氏名】

新谷 靖

【特許出願人】

【識別番号】

000002934

【氏名又は名称】 武田薬品工業株式会社

【代理人】

【識別番号】

100073955

【弁理士】

【氏名又は名称】

朝日奈 忠夫

【選任した代理人】

【識別番号】

100110456

【弁理士】

【氏名又は名称】 内山 務

【手数料の表示】

【予納台帳番号】 005142

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 9000053

【包括委任状番号】 9721047

【プルーフの要否】 要

【書類名】明細書

【発明の名称】新規G蛋白質共役型レセプター蛋白質およびそのDNA 【特許請求の範囲】

【請求項1】配列番号:1で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有することを特徴とする蛋白質またはその塩。

【請求項2】請求項1記載の蛋白質の部分ペプチドまたはその塩。

【請求項3】請求項1記載の蛋白質をコードする塩基配列を有するDNAを含有するDNA。

【請求項4】配列番号:2または配列番号:3で表される塩基配列を有する請求項3記載のDNA。

【請求項5】請求項3記載のDNAを含有する組換えベクター。

【請求項6】請求項5記載の組換えベクターで形質転換された形質転換体。

【請求項7】請求項6記載の形質転換体を培養し、請求項1記載の蛋白質を生成

・蓄積せしめることを特徴とする請求項1記載の蛋白質またはその塩の製造法。

【請求項8】請求項1記載の蛋白質もしくは請求項2記載の部分ペプチドまたは その塩に対する抗体。

【請求項9】請求項1記載の蛋白質もしくは請求項2記載の部分ペプチドまたは その塩を用いることを特徴とする請求項1記載の蛋白質またはその塩に対するリ ガンドの決定方法。

【請求項10】請求項1記載の蛋白質もしくは請求項2記載の部分ペプチドまたはその塩を用いることを特徴とするリガンドと請求項1記載の蛋白質またはその塩との結合性を変化させる化合物またはその塩のスクリーニング方法。

【請求項11】請求項1記載の蛋白質もしくは請求項2記載の部分ペプチドまたはその塩を含有することを特徴とするリガンドと請求項1記載の蛋白質またはその塩との結合性を変化させる化合物またはその塩のスクリーニング用キット。

【請求項12】請求項10記載のスクリーニング方法または請求項11記載のスクリーニング用キットを用いて得られうる、リガンドと請求項1記載の蛋白質またはその塩との結合性を変化させる化合物またはその塩。

【請求項13】請求項10記載のスクリーニング方法または請求項11記載のスクリーニング用キットを用いて得られうる、リガンドと請求項1記載の蛋白質またはその塩との結合性を変化させる化合物またはその塩を含有してなる医薬。

【請求項14】請求項3記載のDNAとハイストリンジェントな条件下でハイブリダイズするDNA。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、ヒト脳由来の新規蛋白質(G蛋白質共役型レセプター蛋白質)またはその塩およびそれをコードするDNAなどに関する。

[0002]

【従来の技術】

多くのホルモンや神経伝達物質は、細胞膜に存在する特異的なレセプター蛋白質を通じて生体の機能を調節している。これらのレセプター蛋白質の多くは共役しているguanine nucleotide-binding protein (以下、G蛋白質と略称する場合がある)の活性化を通じて細胞内のシグナル伝達を行ない、また7個の膜貫通領域を有する共通した構造をもっていることから、G蛋白質共役型レセプター蛋白質あるいは7回膜貫通型レセプター蛋白質と総称される。

G蛋白質共役型レセプター蛋白質は生体の細胞や臓器の各機能細胞表面に存在 し、それら生体の細胞や臓器の機能を調節する分子、例えばホルモン、神経伝達 物質および生理活性物質等の標的として非常に重要な役割を担っている。

各種生体の細胞や臓器の内の複雑な機能を調節する物質と、その特異的レセプター蛋白質、特にはG蛋白質共役型レセプター蛋白質との関係を明らかにすることは、各種生体の細胞や臓器の機能を解明し、それら機能と密接に関連した医薬品開発に非常に重要な手段を提供することとなる。

[0003]

例えば、脳などの中枢神経系の器官では、多くのホルモン、ホルモン様物質、 神経伝達物質あるいは生理活性物質などによる調節のもとで脳の生理的な機能の 調節が行なわれている。特に、神経伝達物質は脳内の様々な部位に存在し、それ ぞれに対応するレセプター蛋白質を通してその生理機能の調節を行っている。脳内には未だ未知の神経伝達物質も多く、そのレセプター蛋白質をコードする c D N A の構造に関しても、これまで報告されていないものも多いと考えられる。さらに、既知のレセプター蛋白質のサブタイプが存在するかどうかについても分かっていなかった。

脳における複雑な機能を調節する物質と、その特異的レセプター蛋白質との関係を明らかにすることは、医薬品開発に非常に重要な手段である。また、レセプター蛋白質に対するアゴニスト、アンタゴニストを効率よくスクリーニングし、医薬品を開発するためには、脳内で発現しているレセプター蛋白質の遺伝子の機能を解明し、それらを適当な発現系で発現させることが必要であった。

近年、生体内で発現している遺伝子を解析する手段として、cDNAの配列をランダムに解析する研究が活発に行なわれており、このようにして得られたcDNAの断片配列がExpressed Sequence Tag (E.S.T) としてデータベースに登録され、公開されている。しかし、多くのESTは配列情報のみであり、その機能を推定することは困難である。

[0004]

【発明が解決しようとする課題】

本発明は、ヒト脳由来の新規蛋白質(G蛋白質共役型レセプター蛋白質)、その部分ペプチドまたはそれらの塩、該蛋白質またはその部分ペプチドをコードするDNAを含有するDNA、該DNAを含有する組換えベクター、該組換えベクターで形質転換された形質転換体、該蛋白質またはその塩の製造法、該蛋白質、その部分ペプチドまたはそれらの塩に対する抗体、該蛋白質(G蛋白質共役型レセプター蛋白質)に対するリガンドの決定方法、リガンドと該蛋白質(G蛋白質共役型レセプター蛋白質)との結合性を変化させる化合物またはその塩のスクリーニング方法、該スクリーニング用キット、該スクリーニング方法もしくはスクリーニングキットを用いて得られるリガンドと該蛋白質(G蛋白質共役型レセプター蛋白質)との結合性を変化させる化合物またはその塩、およびリガンドと該蛋白質(G蛋白質共役型レセプター蛋白質)との結合性を変化させる化合物またはその塩を含有してなる医薬などを提供する。

[0005]

【課題を解決するための手段】

本発明者らは、鋭意研究を重ねた結果、ヒト脳由来の新規な蛋白質(G蛋白質 共役型レセプター蛋白質)をコードするcDNAを単離し、全塩基配列を解析す ることに成功した。そして、この塩基配列をアミノ酸配列に翻訳したところ、第 1~第7膜貫通領域が疎水性プロット上で確認され、これらのcDNAにコード される蛋白質が7回膜貫通型のG蛋白質共役型レセプター蛋白質であることを確 認した(図3)。本発明者らは、これらの知見に基づいて、さらに研究を重ねた 結果、本発明を完成するに至った。

[0006]

すなわち、本発明は、

- (1)配列番号:1で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有することを特徴とする蛋白質またはその塩、
- (2) 上記(1) 記載の蛋白質の部分ペプチドまたはその塩、
- (3)上記(1)記載の蛋白質をコードする塩基配列を有するDNAを含有する DNA、
- (4) 配列番号: 2または配列番号: 3で表される塩基配列を有する上記(3) 記載のDNA、
- (5)上記(3)記載のDNAを含有する組換えベクター、
- (6) 上記(5) 記載の組換えベクターで形質転換された形質転換体、
- (7)上記(6)記載の形質転換体を培養し、上記(1)記載の蛋白質を生成・ 蓄積せしめることを特徴とする上記(1)記載の蛋白質またはその塩の製造法、
- (8)上記(1)記載の蛋白質もしくは上記(2)記載の部分ペプチドまたはその塩に対する抗体、
- (9)上記(1)記載の蛋白質もしくは上記(2)記載の部分ペプチドまたはその塩を用いることを特徴とする上記(1)記載の蛋白質またはその塩に対するリガンドの決定方法、

[0007]

(10)上記(1)記載の蛋白質もしくは上記(2)記載の部分ペプチドまたは

その塩を用いることを特徴とするリガンドと上記(1)記載の蛋白質またはその 塩との結合性を変化させる化合物またはその塩のスクリーニング方法、

- (11)上記(1)記載の蛋白質もしくは上記(2)記載の部分ペプチドまたはその塩を含有することを特徴とするリガンドと上記(1)記載の蛋白質またはその塩との結合性を変化させる化合物またはその塩のスクリーニング用キット、
- (12)上記(10)記載のスクリーニング方法または上記(11)記載のスクリーニング用キットを用いて得られうる、リガンドと上記(1)記載の蛋白質またはその塩との結合性を変化させる化合物またはその塩、
- (13)上記(10)記載のスクリーニング方法または上記(11)記載のスクリーニング用キットを用いて得られうる、リガンドと上記(1)記載の蛋白質またはその塩との結合性を変化させる化合物またはその塩を含有してなる医薬、および
- (14)上記(3)記載のDNAとハイストリンジェントな条件下でハイブリダイズするDNAなどを提供する。

[0008]

より具体的には、

- (15)蛋白質が、①配列番号:1で表わされるアミノ酸配列中の1または2個以上(好ましくは、1~30個程度、より好ましくは1~9個程度、さらに好ましくは数個(1または2個))のアミノ酸が欠失したアミノ酸配列、②配列番号:1で表わされるアミノ酸配列に1または2個以上(好ましくは、1~30個程度、より好ましくは1~10個程度、さらに好ましくは数個(1または2個))のアミノ酸が付加したアミノ酸配列、③配列番号:1で表わされるアミノ酸配列中の1または2個以上(好ましくは、1~30個程度、より好ましくは1~10個程度、さらに好ましくは、1~30個程度、より好ましくは1~10個程度、さらに好ましくは数個(1または2個))のアミノ酸が他のアミノ酸で置換されたアミノ酸配列、または④それらを組み合わせたアミノ酸配列を含有する蛋白質である上記(1)記載の蛋白質またはその塩、
- (16)上記(1)記載の蛋白質もしくはその塩または上記(2)記載の部分ペプチドもしくはその塩と、試験化合物とを接触させることを特徴とする上記(10)記載のリガンドの決定方法、

(17) リガンドがアンギオテンシン、ボンベシン、カナビノイド、コレシストキニン、グルタミン、セロトニン、メラトニン、ニューロペプチドY、オピオイド、プリン、バソプレッシン、オキシトシン、PACAP、セクレチン、グルカゴン、カルシトニン、アドレノメジュリン、ソマトスタチン、GHRH、CRF、ACTH、GRP、PTH、VIP(バソアクティブ インテスティナル アンド リレイテッド ポリペプチド)、ソマトスタチン、ドーパミン、モチリン、アミリン、ブラジキニン、CGRP(カルシトニンジーンリレーティッドペプチド)、ロイコトリエン、パンクレアスタチン、プロスタグランジン、トロンボキサン、アデノシン、アドレナリン、αおよび β -ケモカイン(chemokine)(例えば、IL-8、GRO α 、GRO β 、GRO γ 、NAP-2、ENA-78、PF4、IP10、GCP-2、MCP-1、HC14、MCP-3、I-309、MIP1 α 、MIP-1 β 、RANTESなど)、エンドセリン、エンテロガストリン、ヒスタミン、ニューロテンシン、TRH、パンクレアティックポリペプタイドまたはガラニンである上記(9)記載のリガンドの決定方法、

[0009]

- (18) (i)上記(1)記載の蛋白質もしくはその塩または上記(2)記載の部分ペプチドもしくはその塩と、リガンドとを接触させた場合と、(ii)上記(1)記載の蛋白質もしくはその塩または上記(2)記載の部分ペプチドもしくはその塩と、リガンドおよび試験化合物とを接触させた場合との比較を行なうことを特徴とする上記(11)記載のスクリーニング方法、
- (19) (i) 標識したリガンドを上記(1) 記載の蛋白質もしくはその塩または上記(2) 記載の部分ペプチドもしくはその塩に接触させた場合と、(ii) 標識したリガンドおよび試験化合物を上記(1) 記載の蛋白質もしくはその塩または上記(2) 記載の部分ペプチドまたはその塩に接触させた場合における、標識したリガンドの上記(1) 記載の蛋白質もしくはその塩または上記(2) 記載の部分ペプチドもしくはその塩に対する結合量を測定し、比較することを特徴とするリガンドと上記(1) 記載の蛋白質またはその塩との結合性を変化させる化合物またはその塩のスクリーニング方法、
- (20) (i) 標識したリガンドを上記(1)記載の蛋白質を含有する細胞に接

触させた場合と、(ii) 標識したリガンドおよび試験化合物を上記(1) 記載の 蛋白質を含有する細胞に接触させた場合における、標識したリガンドの該細胞に 対する結合量を測定し、比較することを特徴とするリガンドと上記(1) 記載の 蛋白質またはその塩との結合性を変化させる化合物またはその塩のスクリーニン グ方法、

(21)(i)標識したリガンドを上記(1)記載の蛋白質を含有する細胞の膜画分に接触させた場合と、(ii)標識したリガンドおよび試験化合物を上記(1)記載の蛋白質を含有する細胞の膜画分に接触させた場合における、標識したリガンドの該細胞の膜画分に対する結合量を測定し、比較することを特徴とするリガンドと上記(1)記載の蛋白質またはその塩との結合性を変化させる化合物またはその塩のスクリーニング方法、

[0010]

- (22)(i)標識したリガンドを上記(6)記載の形質転換体を培養することによって該形質転換体の細胞膜に発現した蛋白質に接触させた場合と、(ii)標識したリガンドおよび試験化合物を上記(6)記載の形質転換体を培養することによって該形質転換体の細胞膜に発現した蛋白質に接触させた場合における、標識したリガンドの該蛋白質に対する結合量を測定し、比較することを特徴とするリガンドと上記(1)記載の蛋白質またはその塩との結合性を変化させる化合物またはその塩のスクリーニング方法、
- (23)(i)上記(1)記載の蛋白質またはその塩を活性化する化合物を上記(1)記載の蛋白質を含有する細胞に接触させた場合と、(ii)上記(1)記載の蛋白質またはその塩を活性化する化合物および試験化合物を上記(1)記載の蛋白質を含有する細胞に接触させた場合における、蛋白質を介した細胞刺激活性を測定し、比較することを特徴とするリガンドと上記(1)記載の蛋白質またはその塩との結合性を変化させる化合物またはその塩のスクリーニング方法、
- (24)上記(1)記載の蛋白質またはその塩を活性化する化合物を上記(6) 記載の形質転換体を培養することによって該形質転換体の細胞膜に発現した蛋白 質に接触させた場合と、上記(1)記載の蛋白質またはその塩を活性化する化合 物および試験化合物を上記(6)記載の形質転換体を培養することによって該形

質転換体の細胞膜に発現した蛋白質に接触させた場合における、該蛋白質を介する細胞刺激活性を測定し、比較することを特徴とするリガンドと上記(1)記載の蛋白質またはその塩との結合性を変化させる化合物またはその塩のスクリーニング方法、

[0011]

(25) 上記 (1) 記載の蛋白質を活性化する化合物が、アンギオテンシン、ボンベシン、カナビノイド、コレシストキニン、グルタミン、セロトニン、メラトニン、ニューロペプチドY、オピオイド、プリン、バソプレッシン、オキシトシン、PACAP、セクレチン、グルカゴン、カルシトニン、アドレノメジュリン、ソマトスタチン、GHRH、CRF、ACTH、GRP、PTH、VIP(バソアクティブ インテスティナル アンド リレイテッド ポリペプチド)、ソマトスタチン、ドーパミン、モチリン、アミリン、ブラジキニン、CGRP(カルシトニンジーンリレーティッドペプチド)、ロイコトリエン、パンクレアスタチン、プロスタグランジン、トロンボキサン、アデノシン、アドレナリン、αおよびβーケモカイン(chemokine)(例えば、IL-8、GROα、GROβ、GROγ、NAP-2、ENA-78、PF4、IP10、GCP-2、MCP-1、HC14、MCP-3、I-309、MIP1α、MIP-1β、RANTESなど)、エンドセリン、エンテロガストリン、ヒスタミン、ニューロテンシン、TRH、パンクレアティックポリペプタイドまたはガラニンである上記(23)または上記(24)記載のスクリーニング方法、

(26)上記(18)~(25)記載のスクリーニング方法で得られうる、リガンドと上記(1)記載の蛋白質またはその塩との結合性を変化させる化合物またはその塩、

(27)上記(18)~(25)項記載のスクリーニング方法で得られうる、リガンドと上記(1)記載の蛋白質またはその塩との結合性を変化させるの化合物またはその塩を含有することを特徴とする医薬、

[0012]

(28)上記(1)記載の蛋白質を含有する細胞を含有することを特徴とする上記(11)記載のスクリーニング用キット、

- (29)上記(1)記載の蛋白質を含有する細胞の膜画分を含有することを特徴とする上記(11)記載のスクリーニング用キット、
- (30)上記(6)記載の形質転換体を培養することによって該形質転換体の細胞膜に発現した蛋白質を含有することを特徴とする上記(11)記載のスクリーニング用キット、
- (31)上記(28)~(30)記載のスクリーニング用キットを用いて得られ うる、リガンドと上記(1)記載の蛋白質またはその塩との結合性を変化させる 化合物またはその塩、
- (32)上記(28)~(30)記載のスクリーニング用キットを用いて得られ うる、リガンドと上記(1)記載の蛋白質またはその塩との結合性を変化させる 化合物またはその塩を含有することを特徴とする医薬、
- (33)上記(8)記載の抗体と、上記(1)記載の蛋白質もしくは上記(2)記載の部分ペプチドまたはその塩とを接触させることを特徴とする上記(1)記載の蛋白質もしくは上記(2)記載の部分ペプチドまたはその塩の定量法、
- (34)上記(8)記載の抗体と、被検液および標識化された上記(1)記載の蛋白質もしくは上記(2)記載の部分ペプチドまたはその塩とを競合的に反応させ、該抗体に結合した標識化された上記(1)記載の蛋白質もしくは上記(2)記載の部分ペプチドまたはその塩の割合を測定することを特徴とする被検液中の上記(1)記載の蛋白質もしくは上記(2)記載の部分ペプチドまたはその塩の定量法、および
- (35)被検液と担体上に不溶化した上記(8)記載の抗体および標識化された上記(8)項記載の抗体とを同時あるいは連続的に反応させたのち、不溶化担体上の標識剤の活性を測定することを特徴とする被検液中の上記(1)記載の蛋白質もしくは上記(2)記載の部分ペプチドまたはその塩の定量法などを提供する

[0013]

【発明の実施の形態】

本発明の蛋白質(G蛋白質共役型レセプター蛋白質)は、配列番号:1で表わされるアミノ酸配列[図1~図3または図4~図6中のアミノ酸配列]と同一も

しくは実質的に同一のアミノ酸配列を含有するレセプター蛋白質である(以下、本発明の蛋白質(G蛋白質共役型レセプター蛋白質)またはその塩を本発明の蛋白質と略記する場合がある)。

本発明の蛋白質(G蛋白質共役型レセプター蛋白質)は、例えば、ヒトや哺乳 動物(例えば、モルモット、ラット、マウス、ウサギ、ブタ、ヒツジ、ウシ、サ ルなど) のあらゆる細胞(例えば、脾細胞、神経細胞、グリア細胞、膵臓 β 細胞 、骨髄細胞、メサンギウム細胞、ランゲルハンス細胞、表皮細胞、上皮細胞、内 皮細胞、繊維芽細胞、繊維細胞、筋細胞、脂肪細胞、免疫細胞(例、マクロファ ージ、T細胞、B細胞、ナチュラルキラー細胞、肥満細胞、好中球、好塩基球、 好酸球、单球)、巨核球、滑膜細胞、軟骨細胞、骨細胞、骨芽細胞、破骨細胞、 乳腺細胞、肝細胞もしくは間質細胞、またはこれら細胞の前駆細胞、幹細胞もし くはガン細胞など)や血球系の細胞(例えば、MEL, M1, CTLL-2, H T-2, WEHI-3, HL-60, JOSK-1, K562, ML-1, MO LT-3, MOLT-4, MOLT-10, CCRF-CEM, TALL-1, Jurkat, CCRT-HSB-2, KE-37, SKW-3, HUT-78 , HUT-102, H9, U937, THP-1, HEL, JK-1, CMK, KO-812, MEG-01など)、またはそれらの細胞が存在するあらゆる組 織、例えば、脳、脳の各部位(例、嗅球、扁頭核、大脳基底球、海馬、視床、視 床下部、視床下核、大脳皮質、延髄、小脳、後頭葉、前頭葉、側頭葉、被殻、尾 状核、脳染、黒質)、脊髄、下垂体、胃、膵臓、腎臓、肝臓、生殖腺、甲状腺、 胆のう、骨髄、副腎、皮膚、筋肉、肺、消化管(例、大腸、小腸)、血管、心臓 、胸腺、脾臓、顎下腺、末梢血、末梢血球、前立腺、睾丸、精巣、卵巣、胎盤、 子宮、骨、関節、骨格筋など(特に、脳や脳の各部位)に由来する蛋白質であっ てもよく、また合成蛋白質であってもよい。

[0014]

配列番号:1で表わされるアミノ酸配列と実質的に同一のアミノ酸配列としては、例えば、配列番号:1で表わされるアミノ酸配列と約90%以上、好ましくは約95%以上、より好ましくは約98%以上の相同性を有するアミノ酸配列などが挙げられる。

本発明の配列番号:1で表わされるアミノ酸配列と実質的に同一のアミノ酸配列を含有する蛋白質としては、例えば、配列番号:1で表わされるアミノ酸配列と実質的に同一のアミノ酸配列を有し、配列番号:1で表わされるアミノ酸配列と実質的に同質の活性を有する蛋白質などが好ましい。

実質的に同質の活性としては、例えば、リガンド結合活性、シグナル情報伝達作用などが挙げられる。実質的に同質とは、それらの活性が性質的に同質であることを示す。したがって、リガンド結合活性やシグナル情報伝達作用などの活性が同等(例、約0.5~2倍)であることが好ましいが、これらの活性の程度や蛋白質の分子量などの量的要素は異なっていてもよい。

リガンド結合活性やシグナル情報伝達作用などの活性の測定は、自体公知の方法 に準じて行なうことができるが、例えば、後述するリガンドの決定方法やスクリ ーニング方法に従って測定することができる。

[0015]

また、本発明の蛋白質としては、①配列番号:1で表わされるアミノ酸配列中の1または2個以上(好ましくは、1~30個程度、より好ましくは1~10個程度、さらに好ましくは数個(1または2個))のアミノ酸が欠失したアミノ酸配列、②配列番号:1で表わされるアミノ酸配列に1または2個以上(好ましくは、1~30個程度、より好ましくは1~10個程度、さらに好ましくは数個(1または2個))のアミノ酸が付加したアミノ酸配列、③配列番号:1で表わされるアミノ酸配列中の1または2個以上(好ましくは、1~30個程度、より好ましくは1~10個程度、さらに好ましくは数個(1または2個))のアミノ酸が他のアミノ酸で置換されたアミノ酸配列、または④それらを組み合わせたアミノ酸配列を含有する蛋白質なども用いられる。

[0016]

本明細書における蛋白質は、ペプチド標記の慣例に従って左端がN末端(アミノ末端)、右端がC末端(カルボキシル末端)である。配列番号:1で表わされるアミノ酸配列を含有する蛋白質をはじめとする本発明の蛋白質は、C末端が通常カルボキシル基(-COOH)またはカルボキシレート(-COO⁻)であるが、C末端がアミド(-CONH₂)またはエステル(-COOR)であってもよ

٧١°

ここでエステルにおけるRとしては、例えば、メチル、エチル、n-プロピル、イソプロピルもしくはn-ブチルなどの C_{1-6} アルキル基、例えば、シクロペンチル、シクロヘキシルなどの C_{3-8} シクロアルキル基、例えば、フェニル、 α ーナフチルなどの C_{6-12} アリール基、例えば、ベンジル、フェネチルなどのフェニルー C_{1-2} アルキル基もしくは α ーナフチルメチルなどの α ーナフチルー C_{1-2} アルキル基などの C_{7-14} アラルキル基のほか、経口用エステルとして汎用されるピバロイルオキシメチル基などが用いられる。

本発明の蛋白質がC末端以外にカルボキシル基(またはカルボキシレート)を 有している場合、カルボキシル基がアミド化またはエステル化されているものも 本発明の蛋白質に含まれる。この場合のエステルとしては、例えば上記したC末 端のエステルなどが用いられる。

さらに、本発明の蛋白質には、上記した蛋白質において、N末端のメチオニン残基のアミノ基が保護基(例えば、ホルミル基、アセチル基などの C_{2-6} アルカノイル基などの C_{1-6} アシル基など)で保護されているもの、N端側が生体内で切断され生成したグルタミル基がピログルタミン酸化したもの、分子内のアミノ酸の側鎖上の置換基(例えば、-OH、-COOH、アミノ基、イミダゾール基、インドール基、グアニジノ基など)が適当な保護基(例えば、ホルミル基、アセチル基などの C_{2-6} アルカノイル基などの C_{1-6} アシル基など)で保護されているもの、あるいは糖鎖が結合したいわゆる糖蛋白質などの複合蛋白質なども含まれる。

本発明の蛋白質の具体例としては、例えば、配列番号:1で表わされるアミノ酸配列を含有するヒト由来(より好ましくはヒト脳由来)の蛋白質などがあげられる。

[0017]

本発明の蛋白質の部分ペプチド(以下、部分ペプチドと略記する場合がある) としては、前記した本発明の蛋白質の部分ペプチドであれば何れのものであって もよいが、例えば、本発明の蛋白質分子のうち、細胞膜の外に露出している部位 であって、レセプター結合活性を有するものなどが用いられる。 具体的には、配列番号:1で表わされるアミノ酸配列を有する蛋白質の部分ペプチドとしては、〔図7〕で示される疎水性プロット解析において細胞外領域(親水性(Hydrophilic)部位)であると分析された部分を含むペプチドである。また、疎水性(Hydrophobic)部位を一部に含むペプチドも同様に用いることができる。個々のドメインを個別に含むペプチドも用い得るが、複数のドメインを同時に含む部分のペプチドでも良い。 本発明の部分ペプチドのアミノ酸の数は、前記した本発明の蛋白質の構成アミノ酸配列のうち少なくとも20個以上、好ましくは50個以上、より好ましくは100個以上のアミノ酸配列を有するペプチドなどが好ましい。

実質的に同一のアミノ酸配列とは、これらアミノ酸配列と約50%以上、好ましくは約70%以上、より好ましくは約80%以上、さらに好ましくは約90%以上、最も好ましくは約95%以上の相同性を有するアミノ酸配列を示す。

ここで、「実質的に同質の活性」とは、前記と同意義を示す。「実質的に同質 の活性」の測定は前記と同様に行なうことができる。

[0018]

また、本発明の部分ペプチドは、上記アミノ酸配列中の1または2個以上(好ましくは、1~10個程度、さらに好ましくは数個(1または2個))のアミノ酸が欠失し、または、そのアミノ酸配列に1または2個以上(好ましくは、1~20個程度、より好ましくは1~10個程度、さらに好ましくは数個(1または2個))のアミノ酸が付加し、または、そのアミノ酸配列中の1または2個以上(好ましくは、1~10個程度、より好ましくは1~5個程度、さらに好ましくは数個(1または2個))のアミノ酸が他のアミノ酸で置換されていてもよい。

また、本発明の部分ペプチドはC末端が通常カルボキシル基(-COOH)またはカルボキシレート(-COO⁻)であるが、前記した本発明の蛋白質のごとく、C末端がアミド(-CONH₂)またはエステル(-COOR)であってもよい。

さらに、本発明の部分ペプチドには、前記した本発明の蛋白質と同様に、N末端のメチオニン残基のアミノ基が保護基で保護されているもの、N端側が生体内で切断され生成したGlnがピログルタミン酸化したもの、分子内のアミノ酸の側

鎖上の置換基が適当な保護基で保護されているもの、あるいは糖鎖が結合したい わゆる糖ペプチドなどの複合ペプチドなども含まれる。

また、本発明の部分ペプチドはC末端が通常カルボキシル基(-COOH)またはカルボキシレート($-COO^-$) であるが、前記した本発明の蛋白質のごとく、C末端がアミド($-CONH_2$) またはエステル(-COOR) であってもよい。

本発明の蛋白質またはその部分ペプチドの塩としては、とりわけ生理学的に許容される酸付加塩が好ましい。この様な塩としては、例えば無機酸(例えば、塩酸、リン酸、臭化水素酸、硫酸)との塩、あるいは有機酸(例えば、酢酸、ギ酸、プロピオン酸、フマル酸、マレイン酸、コハク酸、酒石酸、クエン酸、リンゴ酸、蓚酸、安息香酸、メタンスルホン酸、ベンゼンスルホン酸)との塩などが用いられる。

[0019]

本発明の蛋白質またはその塩は、前述したヒトや哺乳動物の細胞または組織から自体公知の蛋白質の精製方法によって製造することもできるし、後述する本発明の蛋白質をコードするDNAを含有する形質転換体を培養することによっても製造することができる。また、後述の蛋白質合成法またはこれに準じて製造することもできる。

ヒトや哺乳動物の組織または細胞から製造する場合、ヒトや哺乳動物の組織または細胞をホモジナイズした後、酸などで抽出を行ない、該抽出液を逆相クロマトグラフィー、イオン交換クロマトグラフィーなどのクロマトグラフィーを組み合わせることにより精製単離することができる。

[0020]

本発明の蛋白質、その部分ペプチドもしくはそれらの塩またはそれらのアミド体の合成には、通常市販の蛋白質合成用樹脂を用いることができる。そのような樹脂としては、例えば、クロロメチル樹脂、ヒドロキシメチル樹脂、ベンズヒドリルアミン樹脂、アミノメチル樹脂、4ーベンジルオキシベンジルアルコール樹脂、4ーメチルベンズヒドリルアミン樹脂、PAM樹脂、4ーヒドロキシメチルメチルフェニルアセトアミドメチル樹脂、ポリアクリルアミド樹脂、4ー(2',4'-

ジメトキシフェニルーヒドロキシメチル)フェノキシ樹脂、4-(2',4'-ジメトキシフェニルーFmocアミノエチル)フェノキシ樹脂などを挙げることができる。このような樹脂を用い、α-アミノ基と側鎖官能基を適当に保護したアミノ酸を、目的とする蛋白質の配列通りに、自体公知の各種縮合方法に従い、樹脂上で縮合させる。反応の最後に樹脂から蛋白質を切り出すと同時に各種保護基を除去し、さらに高希釈溶液中で分子内ジスルフィド結合形成反応を実施し、目的の蛋白質またはそれらのアミド体を取得する。

上記した保護アミノ酸の縮合に関しては、蛋白質合成に使用できる各種活性化 試薬を用いることができるが、特に、カルボジイミド類がよい。カルボジイミド 類としては、DCC、N,N'-ジイソプロピルカルボジイミド、N-エチル-N'-(3-ジメ チルアミノプロリル)カルボジイミドなどが用いられる。これらによる活性化に はラセミ化抑制添加剤 (例えば、HOBt, HOOBt)とともに保護アミノ酸を直接樹脂 に添加するかまたは、対称酸無水物またはHOBtエステルあるいはHOOBtエステル としてあらかじめ保護アミノ酸の活性化を行なった後に樹脂に添加することがで きる。

[0021]

保護アミノ酸の活性化や樹脂との縮合に用いられる溶媒としては、蛋白質縮合反応に使用しうることが知られている溶媒から適宜選択されうる。例えば、N, Nージメチルホルムアミド, N, Nージメチルアセトアミド, Nーメチルピロリドンなどの酸アミド類、塩化メチレン, クロロホルムなどのハロゲン化炭化水素類、トリフルオロエタノールなどのアルコール類、ジメチルスルホキシドなどのスルホキシド類、ピリジン, ジオキサン, テトラヒドロフランなどのエーテル類、アセトニトリル, プロピオニトリルなどのニトリル類、酢酸メチル, 酢酸エチルなどのエステル類あるいはこれらの適宜の混合物などが用いられる。反応温度は蛋白質結合形成反応に使用され得ることが知られている範囲から適宜選択され、通常約-20℃~50℃の範囲から適宜選択される。活性化されたアミノ酸誘導体は通常1.5~4倍過剰で用いられる。ニンヒドリン反応を用いたテストの結果、縮合が不十分な場合には保護基の脱離を行うことなく縮合反応を繰り返すことにより十分な縮合を行なうことができる。反応を繰り返しても十分な縮合が

得られないときには、無水酢酸またはアセチルイミダゾールを用いて未反応アミ ノ酸をアセチル化することができる。

[0022]

原料のアミノ基の保護基としては、例えば、 Z、Boc、ターシャリーペンチルオキシカルボニル、イソボルニルオキシカルボニル、4ーメトキシベンジルオキシカルボニル、C1-Z、Br-Z、アダマンチルオキシカルボニル、トリフルオロアセチル、フタロイル、ホルミル、2ーニトロフェニルスルフェニル、ジフェニルホスフィノチオイル、Fmocなどが用いられる。

カルボキシル基は、例えば、アルキルエステル化(例えば、メチル、エチル、プロピル、ブチル、ターシャリーブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル、2ーアダマンチルなどの直鎖状、分枝状もしくは環状アルキルエステル化)、アラルキルエステル化(例えば、ベンジルエステル、4ーニトロベンジルエステル、4ーメトキシベンジルエステル、4ークロロベンジルエステル、ベンズヒドリルエステル化)、フェナシルエステル化、ベンジルオキシカルボニルヒドラジド化、ターシャリーブトキシカルボニルヒドラジド化、トリチルヒドラジド化などによって保護することができる。

セリンの水酸基は、例えば、エステル化またはエーテル化によって保護することができる。このエステル化に適する基としては、例えば、アセチル基などの低級アルカノイル基、ベンゾイル基などのアロイル基、ベンジルオキシカルボニル基、エトキシカルボニル基などの炭酸から誘導される基などが用いられる。また、エーテル化に適する基としては、例えば、ベンジル基、テトラヒドロピラニル基、t-ブチル基などである。

チロシンのフェノール性水酸基の保護基としては、例えば、Bz1、 Cl_2 -Bz1、2 ーニトロベンジル、Br-Z、ターシャリーブチルなどが用いられる。

ヒスチジンのイミダゾールの保護基としては、例えば、Tos、4-メトキシ-2,3,6-トリメチルベンゼンスルホニル、DNP、ベンジルオキシメチル、Bum、Boc、Trt、Fmocなどが用いられる。

[0023]

原料のカルボキシル基の活性化されたものとしては、例えば、対応する酸無水

物、アジド、活性エステル〔アルコール(例えば、ペンタクロロフェノール、2,4,5-トリクロロフェノール、2,4-ジニトロフェノール、シアノメチルアルコール、パラニトロフェノール、HONB、N-ヒドロキシスクシミド、N-ヒドロキシフタルイミド、HOBt)とのエステル〕などが用いられる。原料のアミノ基の活性化されたものとしては、例えば、対応するリン酸アミドが用いられる。

保護基の除去(脱離)方法としては、例えば、Pdー黒あるいはPd-炭素などの触媒の存在下での水素気流中での接触還元や、また、無水フッ化水素、メタンスルホン酸、トリフルオロメタンスルホン酸、トリフルオロ酢酸あるいはこれらの混合液などによる酸処理や、ジイソプロピルエチルアミン、トリエチルアミン、ピペリジン、ピペラジンなどによる塩基処理、また液体アンモニア中ナトリウムによる還元なども用いられる。上記酸処理による脱離反応は、一般に約−20℃~40℃の温度で行なわれるが、酸処理においては、例えば、アニソール、フェノール、チオアニソール、メタクレゾール、パラクレゾール、ジメチルスルフィド、1,4-ブタンジチオール、1,2-エタンジチオールなどのようなカチオン捕捉剤の添加が有効である。また、ヒスチジンのイミダゾール保護基として用いられる2,4-ジニトロフェニル基はチオフェノール処理により除去され、トリプトファンのインドール保護基として用いられるホルミル基は上記の1,2-エタンジチオール、1,4-ブタンジチオールなどの存在下の酸処理による脱保護以外に、希水酸化ナトリウム溶液、希アンモニアなどによるアルカリ処理によっても除去される

[0024]

原料の反応に関与すべきでない官能基の保護ならびに保護基、およびその保護 基の脱離、反応に関与する官能基の活性化などは公知の基または公知の手段から 適宜選択しうる。

蛋白質のアミド体を得る別の方法としては、例えば、まず、カルボキシ末端アミノ酸のαーカルボキシル基をアミド化して保護した後、アミノ基側にペプチド(蛋白質)鎖を所望の鎖長まで延ばした後、該ペプチド鎖のN末端のαーアミノ基の保護基のみを除いた蛋白質とC末端のカルボキシル基の保護基のみを除去した蛋白質とを製造し、この両蛋白質を上記したような混合溶媒中で縮合させる。

縮合反応の詳細については上記と同様である。縮合により得られた保護蛋白質を精製した後、上記方法によりすべての保護基を除去し、所望の粗蛋白質を得ることができる。この粗蛋白質は既知の各種精製手段を駆使して精製し、主要画分を 凍結乾燥することで所望の蛋白質のアミド体を得ることができる。

蛋白質のエステル体を得るには、例えば、カルボキシ末端アミノ酸のαーカルボキシル基を所望のアルコール類と縮合しアミノ酸エステルとした後、蛋白質のアミド体と同様にして、所望の蛋白質のエステル体を得ることができる。

[0025]

本発明の蛋白質の部分ペプチドまたはその塩は、自体公知のペプチドの合成法に従って、あるいは本発明の蛋白質を適当なペプチダーゼで切断することによって製造することができる。ペプチドの合成法としては、例えば、固相合成法、液相合成法のいずれによっても良い。すなわち、本発明の蛋白質を構成し得る部分ペプチドもしくはアミノ酸と残余部分とを縮合させ、生成物が保護基を有する場合は保護基を脱離することにより目的のペプチドを製造することができる。公知の縮合方法や保護基の脱離としては、例えば、以下の①~⑤に記載された方法が挙げられる。

- ①M. Bodanszky および M.A. Ondetti、ペプチド シンセシス (Peptide Synthes is), Interscience Publishers, New York (1966年)
- ②SchroederおよびLuebke、ザ ペプチド(The Peptide), Academic Press, New York (1965年)
- ③泉屋信夫他、ペプチド合成の基礎と実験、丸善(株) (1975年)
- ④矢島治明 および榊原俊平、生化学実験講座 1、 蛋白質の化学IV、205、(1977年)
- ⑤矢島治明監修、続医薬品の開発 第14巻 ペプチド合成 広川書店

また、反応後は通常の精製法、たとえば、溶媒抽出・蒸留・カラムクロマトグラフィー・液体クロマトグラフィー・再結晶などを組み合わせて本発明の部分ペプチドを精製単離することができる。上記方法で得られる部分ペプチドが遊離体である場合は、公知の方法によって適当な塩に変換することができるし、逆に塩で得られた場合は、公知の方法によって遊離体に変換することができる。

[0026]

本発明の蛋白質をコードするDNAとしては、前述した本発明の蛋白質をコードする塩基配列を含有するものであればいかなるものであってもよい。また、ゲノムDNA、ゲノムDNAライブラリー、前記した細胞・組織由来のcDNA、前記した細胞・組織由来のcDNAライブラリー、合成DNAのいずれでもよい。ライブラリーに使用するベクターは、バクテリオファージ、プラスミド、コスミド、ファージミドなどいずれであってもよい。また、前記した細胞・組織よりtotalRNAまたはmRNA画分を調製したものを用いて直接Reverse Transcriptase Polymerase Chain Reaction (以下、RT-PCR法と略称する)によって増幅することもできる。

具体的には、本発明の蛋白質をコードするDNAとしては、例えば、配列番号:2または配列番号:3で表わされる塩基配列を含有するDNA、または配列番号:2または配列番号:3で表わされる塩基配列とハイストリンジェントな条件下でハイブリダイズする塩基配列を有し、本発明の蛋白質と実質的に同質の活性(例、リガンド結合活性、シグナル情報伝達作用など)を有する蛋白質をコードするDNAであれば何れのものでもよい。

配列番号:2または配列番号:3で表わされる塩基配列とハイブリダイズできるDNAとしては、例えば、配列番号:2または配列番号:3で表わされる塩基配列と約90%以上、好ましくは約95%以上、より好ましくは約98%以上の相同性を有する塩基配列を含有するDNAなどが用いられる。

[0027]

ハイブリダイゼーションは、自体公知の方法あるいはそれに準じる方法、例えば、モレキュラー・クローニング (Molecular Cloning) 2 nd (J. Sambrook et al., Cold Spring Harbor Lab. Press, 1989) に記載の方法などに従って行なうことができる。また、市販のライブラリーを使用する場合、添付の使用説明書に記載の方法に従って行なうことができる。より好ましくは、ハイストリンジェントな条件に従って行なうことができる。

ハイストリンジェントな条件とは、例えば、ナトリウム濃度が約19~40m M、好ましくは約19~20mMで、温度が約50~70℃、好ましくは約60 ~ 65 \sim 0 の条件を示す。特に、ナトリウム濃度が約19 0 0 0 0 0 場合が最も好ましい。

より具体的には、配列番号:1で表わされるアミノ酸配列を含有する蛋白質を コードするDNAとしては、配列番号:2または配列番号:3で表わされる塩基 配列を有するDNAがあげられる。

本発明の蛋白質をコードする塩基配列を含有する、または該塩基配列と相補的な塩基配列の一部を含有してなるヌクレオチド(オリゴヌクレオチド)とは、本発明の蛋白質またはその部分ペプチドをコードするDNAを包含するだけではなく、RNAをも包含する意味で用いられる。

本発明に従えば、本発明の蛋白質遺伝子の複製又は発現を阻害することのできるアンチセンス・(オリゴ)ヌクレオチド(核酸)を、クローン化したあるいは決定された蛋白質をコードする塩基配列の塩基配列情報に基づき設計し、合成しうる。そうした(オリゴ)ヌクレオチド(核酸)は、G蛋白質共役型蛋白質遺伝子のRNAとハイブリダイズすることができ、該RNAの合成又は機能を阻害することができるか、あるいはG蛋白質共役型蛋白質関連RNAとの相互作用を介してG蛋白質共役型蛋白質遺伝子の発現を調節・制御することができる。G蛋白質共役型蛋白質関連RNAの選択された配列に相補的な(オリゴ)ヌクレオチド、及びG蛋白質共役型蛋白質関連RNAと特異的にハイブリダイズすることができる(オリゴ)ヌクレオチド、及びG蛋白質共役型蛋白質関連RNAと特異的にハイブリダイズすることができる(オリゴ)ヌクレオチドは、生体内及び生体外でG蛋白質共役型蛋白質遺伝子の発現を調節・制御するのに有用であり、また病気などの治療又は診断に有用である。

用語「対応する」とは、遺伝子を含めたヌクレオチド、塩基配列又は核酸の特定の配列に相同性を有するあるいは相補的であることを意味する。ヌクレオチド、塩基配列又は核酸とペプチド(蛋白質)との間で「対応する」とは、ヌクレオチド(核酸)の配列又はその相補体から誘導される指令にあるペプチド(蛋白質)のアミノ酸を通常指している。G蛋白質共役型蛋白質遺伝子の5、端へアピンループ、5、端6ーベースペア・リピート、5、端非翻訳領域、ポリペプチド翻訳開始コドン、蛋白質コード領域、ORF翻訳開始コドン、3、端非翻訳領域、3、端パリンドローム領域、及び3、端へアピンループは好ましい対象領域とし

て選択しうるが、G蛋白質共役型蛋白質遺伝子内の如何なる領域も対象として選択しうる。

[0028]

目的核酸と、対象領域の少なくとも一部に相補的な(オリゴ)ヌクレオチドと の関係は、対象物とハイブリダイズすることができる(オリゴ)ヌクレオチドと の関係は、「アンチセンス」であるということができる。アンチセンス・(オリ ゴ) ヌクレオチドは、2ーデオキシーD-リボースを含有しているポリデオキシ ヌクレオチド、D-リボースを含有しているポリデオキシヌクレオチド、プリン 又はピリミジン塩基のNーグリコシドであるその他のタイプのポリヌクレオチド 、あるいは非ヌクレオチド骨格を有するその他のポリマー(例えば、市販の蛋白 質核酸及び合成配列特異的な核酸ポリマー)又は特殊な結合を含有するその他の ポリマー(但し、該ポリマーはDNAやRNA中に見出されるような塩基のペア リナグや塩基の付着を許容する配置をもつヌクレオチドを含有する)などが挙げ られる。それらは、2本鎖DNA、1本鎖DNA、2本鎖RNA、1本鎖RNA 、さらにDNA:RNAハイブリッドであることができ、さらに非修飾ポリヌク レオチド又は非修飾オリゴヌクレオチド、さらには公知の修飾の付加されたもの 、例えば当該分野で知られた標識のあるもの、キャップの付いたもの、メチル化 されたもの、1個以上の天然のヌクレオチドを類縁物で置換したもの、分子内ヌ クレオチド修飾のされたもの、例えば非荷電結合(例えば、メチルホスホネート 、ホスホトリエステル、ホスホルアミデート、カルバメートなど)を持つもの、 電荷を有する結合又は硫黄含有結合(例えば、ホスホロチオエート、ホスホロジ チオエートなど)を持つもの、例えば蛋白質(ヌクレアーゼ、ヌクレアーゼ・イ ンヒビター、トキシン、抗体、シグナルペプチド、ポリーL-リジンなど)や糖 (例えば、モノサッカライドなど) などの側鎖基を有しているもの、インターカ レント化合物(例えば、アクリジン、プソラレンなど)を持つもの、キレート化 合物(例えば、金属、放射活性をもつ金属、ホウ素、酸化性の金属など)を含有 するもの、アルキル化剤を含有するもの、修飾された結合を持つもの(例えば、 αアノマー型の核酸など)であってもよい。ここで「ヌクレオシド」、「ヌクレ オチド」及び「核酸」とは、プリン及びピリミジン塩基を含有するのみでなく、

修飾されたその他の複素環型塩基をもつようなものを含んでいて良い。こうした 修飾物は、メチル化されたプリン及びピリミジン、アシル化されたプリン及びピ リミジン、あるいはその他の複素環を含むものであってよい。修飾されたヌクレ オチド及び修飾されたヌクレオチドはまた糖部分が修飾されていてよく、例えば 1個以上の水酸基がハロゲンとか、脂肪族基などで置換されていたり、あるいは エーテル、アミンなどの官能基に変換されていてよい。

[0029]

本発明のアンチセンス核酸は、RNA、DNA、あるいは修飾された核酸である。修飾された核酸の具体例としては核酸の硫黄誘導体やチオホスフェート誘導体、そしてポリヌクレオシドアミドやオリゴヌクレオシドアミドの分解に抵抗性のものが挙げられるが、それに限定されるものではない。本発明のアンチセンス核酸は次のような方針で好ましく設計されうる。すなわち、細胞内でのアンチセンス核酸をより安定なものにする、アンチセンス核酸の細胞透過性をより高める、目標とするセンス鎖に対する親和性をより大きなものにする、そしてもし毒性があるならアンチセンス核酸の毒性をより小さなものにする。

こうして修飾は当該分野で数多く知られており、例えば J. Kawakami et al., Pharm Tech Japan, Vol. 8, pp.247, 1992; Vol. 8, pp.395, 1992; S. T. Croke et al. ed., Antisense Research and Applications, CRC Press, 1993 などに開示がある。

本発明のアンチセンス核酸は、変化せしめられたり、修飾された糖、塩基、結合を含有していて良く、リポゾーム、ミクロスフェアのような特殊な形態で供与されたり、遺伝子治療により適用されたり、付加された形態で与えられることができうる。こうして付加形態で用いられるものとしては、リン酸基骨格の電荷を中和するように働くポリリジンのようなポリカチオン体、細胞膜との相互作用を高めたり、核酸の取込みを増大せしめるような脂質(例えば、ホスホリピッド、コレステロールなど)といった粗水性のものが挙げられる。付加するに好ましい脂質としては、コレステロールやその誘導体(例えば、コレステリルクロロホルメート、コール酸など)が挙げられる。こうしたものは、核酸の3、端あるいは5、端に付着させることができ、塩基、糖、分子内ヌクレオシド結合を介して付

着させることができうる。その他の基としては、核酸の3、端あるいは5、端に特異的に配置されたキャップ用の基で、エキソヌクレアーゼ、RNaseなどのヌクレアーゼによる分解を阻止するためのものが挙げられる。こうしたキャップ用の基としては、ポリエチレングリコール、テトラエチレングリコールなどのグリコールをはじめとした当該分野で知られた水酸基の保護基が挙げられるが、それに限定されるものではない。

アンチセンス核酸の阻害活性は、本発明の形質転換体、本発明の生体内や生体 外の遺伝子発現系、あるいは蛋白質の生体内や生体外の翻訳系を用いて調べるこ とができる。該核酸其れ自体公知の各種の方法で細胞に適用できる。

[0030]

本発明の部分ペプチドをコードするDNAとしては、前述した本発明の部分ペプチドをコードする塩基配列を含有するものであればいかなるものであってもよい。また、ゲノムDNA、ゲノムDNAライブラリー、前記した細胞・組織由来のcDNAライブラリー、合成DNAのいずれでもよい。ライブラリーに使用するベクターは、バクテリオファージ、プラスミド、コスミド、ファージミドなどいずれであってもよい。また、前記した細胞・組織よりmRNA両分を調製したものを用いて直接Reverse Transcriptase Polymerase Chain Reaction (以下、RT-PCR法と略称する)によって増幅することもできる。

具体的には、本発明の部分ペプチドをコードするDNAとしては、例えば、配列番号:2または配列番号:3で表わされる塩基配列を有するDNAの部分塩基配列を有するDNA、または②配列番号:2または配列番号:3で表わされる塩基配列とハイストリンジェントな条件下でハイブリダイズする塩基配列を有し、本発明の蛋白質ペプチドと実質的に同質の活性(例、リガンド結合活性、シグナル情報伝達作用など)を有する蛋白質をコードするDNAの部分塩基配列を有するDNAなどが用いられる。

配列番号:2または配列番号:3で表わされる塩基配列ハイブリダイズできる DNAとしては、例えば、配列番号:2または配列番号:3で表わされる塩基配 列と約90%以上、好ましくは約95%以上、より好ましくは約98%以上の相 同性を有する塩基配列を含有するDNAなどが用いられる。

[0031]

本発明の蛋白質またはその部分ペプチド(以下、本発明の蛋白質と略記する)を完全にコードするDNAのクローニングの手段としては、本発明の蛋白質の部分塩基配列を有する合成DNAプライマーを用いてPCR法によって増幅するか、または適当なベクターに組み込んだDNAを本発明の蛋白質の一部あるいは全領域をコードするDNA断片もしくは合成DNAを用いて標識したものとのハイブリダイゼーションによって選別することができる。ハイブリダイゼーションの方法は、例えば、モレキュラー・クローニング(Molecular Cloning)2nd(J. Sambrook et al., Cold Spring Harbor Lab. Press, 1989)に記載の方法などに従って行なうことができる。また、市販のライブラリーを使用する場合、添付の使用説明書に記載の方法に従って行なうことができる。

[0032]

DNAの塩基配列の変換は、公知のキット、例えば、MutantTM-G(宝酒造(株))、MutantTM-K(宝酒造(株))などを用いて、Gupped duplex法やKunkel法などの自体公知の方法あるいはそれらに準じる方法に従って行なうことができる

クローン化された蛋白質をコードするDNAは目的によりそのまま、または所望により制限酵素で消化したり、リンカーを付加したりして使用することができる。該DNAはその5'末端側に翻訳開始コドンとしてのATGを有し、また3'末端側には翻訳終止コドンとしてのTAA、TGAまたはTAGを有していてもよい。これらの翻訳開始コドンや翻訳終止コドンは、適当な合成DNAアダプターを用いて付加することもできる。

本発明の蛋白質の発現ベクターは、例えば、(イ)本発明の蛋白質をコードするDNAから目的とするDNA断片を切り出し、(ロ)該DNA断片を適当な発現ベクター中のプロモーターの下流に連結することにより製造することができる

[0033]

ベクターとしては、大腸菌由来のプラスミド(例、pBR322,pBR32

5, pUC12, pUC13)、枯草菌由来のプラスミド(例、pUB110, pTP5, pC194)、酵母由来プラスミド(例、pSH19, pSH15)、 えファージなどのバクテリオファージ、レトロウイルス, ワクシニアウイルス, バキュロウイルスなどの動物ウイルスなどの他、pA1-11、pXT1、pRc/CMV、pRc/RSV、pcDNAI/Neoなどが用いられる。

本発明で用いられるプロモーターとしては、遺伝子の発現に用いる宿主に対応して適切なプロモーターであればいかなるものでもよい。例えば、動物細胞を宿主として用いる場合は、SR α プロモーター、SV40プロモーター、HIV-LTRプロモーター、CMVプロモーター、HSV-TKプロモーターなどが挙げられる。

これらのうち、CMVプロモーター、SR α プロモーターなどを用いるのが好ましい。宿主がエシェリヒア属菌である場合は、trpプロモーター、1acプロモーター、recAプロモーター、 λ PLプロモーター、1ppプロモーターなどが、宿主がバチルス属菌である場合は、SPO1プロモーター、SPO2プロモーター、penPプロモーターなど、宿主が酵母である場合は、pHO5プロモーター、pGKプロモーター、pGKプロモーター、pCAPプロモーター、pCHプロモーターなどが好ましい。宿主が昆虫細胞である場合は、ポリヘドリンプロモーター、pCOプロモーターなどが好ましい。

[0034]

発現ベクターには、以上の他に、所望によりエンハンサー、スプライシングシグナル、ポリA付加シグナル、選択マーカー、SV40複製オリジン(以下、SV40oriと略称する場合がある)などを含有しているものを用いることができる。選択マーカーとしては、例えば、ジヒドロ葉酸還元酵素(以下、dhfrと略称する場合がある)遺伝子〔メソトレキセート(MTX)耐性〕、アンピシリン耐性遺伝子(以下、Amp「と略称する場合がある)、ネオマイシン耐性遺伝子(以下、Neoと略称する場合がある、G418耐性)等が挙げられる。特に、CHO(dhfr⁻)細胞を用いてdhfr遺伝子を選択マーカーとして使用する場合、目的遺伝子をチミジンを含まない培地によっても選択できる。

また、必要に応じて、宿主に合ったシグナル配列を、本発明の蛋白質のN端末

側に付加する。宿主がエシェリヒア属菌である場合は、Pho A・シグナル配列、0 mp A・シグナル配列などが、宿主がバチルス属菌である場合は、 α - アミラーゼ・シグナル配列、サブチリシン・シグナル配列などが、宿主が酵母である場合は、MF α ・シグナル配列、SUC 2・シグナル配列など、宿主が動物細胞である場合には、インシュリン・シグナル配列、 α - インターフェロン・シグナル配列、抗体分子・シグナル配列などがそれぞれ利用できる。

このようにして構築された本発明の蛋白質をコードするDNAを含有するベクターを用いて、形質転換体を製造することができる。

[0035]

宿主としては、例えば、エシェリヒア属菌、バチルス属菌、酵母、昆虫細胞、 昆虫、動物細胞などが用いられる。

エシェリヒア属菌の具体例としては、エシェリヒア・コリ (Escherichia coli) K12・DH1 [プロシージングズ・オブ・ザ・ナショナル・アカデミー・オブ・サイエンシイズ・オブ・ザ・ユーエスエー (Proc. Natl. Acad. Sci. US A), 60巻, 160(1968)], JM103 [ヌクイレック・アシッズ・リサーチ, (Nucleic Acids Research), 9巻, 309(1981)], JA221 [ジャーナル・オブ・モレキュラー・バイオロジー (Journal of Molecular Bio logy)], 120巻, 517(1978)], HB101 [ジャーナル・オブ・モレキュラー・バイオロジー, 41巻, 459(1969)], C600 [ジェネティックス (Genetics), 39巻, 440(1954)] などが用いられる。

バチルス属菌としては、例えば、バチルス・サチルス (Bacillus subtilis) MI114 [ジーン, 24巻, 255(1983)], 207-21 [ジャーナル・オブ・バイオケミストリー (Journal of Biochemistry), 95巻, 87(1984)] などが用いられる。

酵母としては、例えば、サッカロマイセス セレビシエ (Saccharomyces cere visiae) AH22, AH22R⁻, NA87-11A, DKD-5D, 20B-12、シゾサッカロマイセス ポンベ (Schizosaccharomyces pombe) NCYC 1913, NCYC2036、ピキア パストリス (Pichia pastoris) などが 用いられる。

[0036]

昆虫細胞としては、例えば、ウイルスがAcNPVの場合は、夜盗蛾の幼虫由来株化細胞(Spodoptera frugiperda cell; Sf細胞)、Trichoplusia niの中腸由来のMG1細胞、Trichoplusia niの卵由来のHigh FiveTM細胞、Mamestra brassicae由来の細胞またはEstigmena acrea由来の細胞などが用いられる。ウイルスがBmNPVの場合は、蚕由来株化細胞(Bombyx mori N; BmN細胞)などが用いられる。該Sf細胞としては、例えば、Sf9細胞(ATCC CRL1711)、Sf21細胞(以上、Vaughn, J.L.ら、イン・ヴィボ(In Vivo),13,213-217,(1977))などが用いられる。

昆虫としては、例えば、カイコの幼虫などが用いられる〔前田ら、ネイチャー (Nature), 315巻, 592(1985)〕。

動物細胞としては、例えば、サル細胞COS-7, Vero, チャイニーズハムスター細胞CHO(以下、CHO細胞と略記), dhfr遺伝子欠損チャイニーズハムスター細胞CHO(以下、CHO(dhfr) 細胞と略記), マウスL細胞, マウスAtT-20, マウスミエローマ細胞, ラットGH3, ヒトFL細胞などが用いられる。

[0037]

エシェリヒア属菌を形質転換するには、例えば、プロシージングズ・オブ・ザ・ナショナル・アカデミー・オブ・サイエンジイズ・オブ・ザ・ユーエスエー(Proc. Natl. Acad. Sci. USA), 69巻, 2110(1972)やジーン (Gene), 17巻, 107(1982)などに記載の方法に従って行なうことができる。 バチルス属菌を形質転換するには、例えば、モレキュラー・アンド・ジェネラル・ジェネティックス (Molecular & General Genetics), 168巻, 111(1979)などに記載の方法に従って行なうことができる。

酵母を形質転換するには、例えば、メッソズ・イン・エンザイモロジー(Methods in Enzymology), 194巻, 182-187 (1991)、プロシージングズ・オブ・ザ・ナショナル・アカデミー・オブ・サイエンシイズ・オブ・ザ・ユーエスエー (Proc. Natl. Acad. Sci. USA), 75巻, 1929(1978) などに記載の方法に従って行なうことができる。

昆虫細胞または昆虫を形質転換するには、例えば、バイオ/テクノロジー (Bi o/Technology),6,47-55(1988)) などに記載の方法に従って行なうことができる。

動物細胞を形質転換するには、例えば、細胞工学別冊8 新 細胞工学実験プロトコール. 263-267(1995)(秀潤社発行)、ヴィロロジー(Virology), 52巻, 456(1973)に記載の方法に従って行なうことができる。

このようにして、G蛋白質共役型蛋白質をコードするDNAを含有する発現ベクターで形質転換された形質転換体が得られる。

宿主がエシェリヒア属菌、バチルス属菌である形質転換体を培養する際、培養に使用される培地としては液体培地が適当であり、その中には該形質転換体の生育に必要な炭素源、窒素源、無機物その他が含有せしめられる。炭素源としては、例えば、グルコース、デキストリン、可溶性澱粉、ショ糖など、窒素源としては、例えば、アンモニウム塩類、硝酸塩類、コーンスチープ・リカー、ペプトン、カゼイン、肉エキス、大豆粕、バレイショ抽出液などの無機または有機物質、無機物としては、例えば、塩化カルシウム、リン酸二水素ナトリウム、塩化マグネシウムなどが挙げられる。また、酵母、ビタミン類、生長促進因子などを添加してもよい。培地のpHは約5~8が望ましい。

[0038]

エシェリヒア属菌を培養する際の培地としては、例えば、グルコース、カザミノ酸を含むM 9 培地〔ミラー(Miller),ジャーナル・オブ・エクスペリメンツ・イン・モレキュラー・ジェネティックス(Journal of Experiments in Molecu lar Genetics),431-433,Cold Spring Harbor Laboratory,New York 1972〕が好ましい。ここに必要によりプロモーターを効率よく働かせるために、例えば、 3β -インドリル アクリル酸のような薬剤を加えることができる。 宿主がエシェリヒア属菌の場合、培養は通常約 $15\sim43$ で約 $3\sim24$ 時間行ない、必要により、通気や撹拌を加えることもできる。

宿主がバチルス属菌の場合、培養は通常約30~40℃で約6~24時間行ない、必要により通気や撹拌を加えることもできる。

宿主が酵母である形質転換体を培養する際、培地としては、例えば、バークホ

ールダー (Burkholder) 最小培地 [Bostian, K. L. ら、「プロシージングズ・オブ・ザ・ナショナル・アカデミー・オブ・サイエンシイズ・オブ・ザ・ユーエスエー (Proc. Natl. Acad. Sci. USA), 77巻, 4505(1980)] や 0.5%カザミノ酸を含有するSD培地 [Bitter, G. A. ら、「プロシージングズ・オブ・ザ・ナショナル・アカデミー・オブ・サイエンシイズ・オブ・ザ・ユーエスエー (Proc. Natl. Acad. Sci. USA), 81巻, 5330 (1984)] が挙げられる。培地のpHは約5~8に調整するのが好ましい。培養は通常約20℃~35℃で約24~72時間行ない、必要に応じて通気や撹拌を加える

[0039]

宿主が昆虫細胞または昆虫である形質転換体を培養する際、培地としては、Grace's Insect Medium (Grace, T.C.C.,ネイチャー (Nature) ,195,788(1962)) に非動化した10%ウシ血清等の添加物を適宜加えたものなどが用いられる。培地のpHは約6. $2\sim6$. 4に調整するのが好ましい。培養は通常約27%で約 $3\sim5$ 日間行ない、必要に応じて通気や撹拌を加える。

宿主が動物細胞である形質転換体を培養する際、培地としては、例えば、約5~20%の胎児牛血清を含むMEM培地 [サイエンス (Seience), 122巻, 501(1952)], DMEM培地 [ヴィロロジー (Virology), 8巻, 396 (1959)], RPMI 1640培地 [ジャーナル・オブ・ザ・アメリカン・メディカル・アソシエーション (The Jounal of the American Medical Association) 199巻, 519(1967)], 199培地 [プロシージング・オブ・ザ・ソサイエティ・フォー・ザ・バイオロジカル・メディスン (Proceeding of the Society for the Biological Medicine), 73巻, 1(1950)] などが用いられる。pHは約6~8であるのが好ましい。培養は通常約30℃~40℃で約15~60時間行ない、必要に応じて通気や撹拌を加える。

以上のようにして、形質転換体の細胞膜に本発明のG蛋白質共役型蛋白質を生成せしめることができる。

[0040]

上記培養物から本発明の蛋白質を分離精製するには、例えば、下記の方法によ

り行なうことができる。

• .

本発明の蛋白質を培養菌体あるいは細胞から抽出するに際しては、培養後、公知の方法で菌体あるいは細胞を集め、これを適当な緩衝液に懸濁し、超音波、リゾチームおよび/または凍結融解などによって菌体あるいは細胞を破壊したのち、遠心分離やろ過により蛋白質の粗抽出液を得る方法などが適宜用いられる。緩衝液の中に尿素や塩酸グアニジンなどの蛋白質変性剤や、トリトンX-100TMなどの界面活性剤が含まれていてもよい。培養液中に蛋白質が分泌される場合には、培養終了後、それ自体公知の方法で菌体あるいは細胞と上清とを分離し、上清を集める。

このようにして得られた培養上清、あるいは抽出液中に含まれる蛋白質の精製は、自体公知の分離・精製法を適切に組み合わせて行なうことができる。これらの公知の分離、精製法としては、塩析や溶媒洗澱法などの溶解度を利用する方法、透析法、限外ろ過法、ゲルろ過法、およびSDS-ポリアクリルアミドゲル電気泳動法などの主として分子量の差を利用する方法、イオン交換クロマトグラフィーなどの荷電の差を利用する方法、アフィニティークロマトグラフィーなどの特異的親和性を利用する方法、逆相高速液体クロマトグラフィーなどの疎水性の差を利用する方法、等電点電気泳動法などの等電点の差を利用する方法などが用いられる。

[0041]

かくして得られる蛋白質が遊離体で得られた場合には、自体公知の方法あるいはそれに準じる方法によって塩に変換することができ、逆に塩で得られた場合には自体公知の方法あるいはそれに準じる方法により、遊離体または他の塩に変換することができる。

なお、組換え体が産生する蛋白質を、精製前または精製後に適当な蛋白修飾酵素を作用させることにより、任意に修飾を加えたり、ポリペプチドを部分的に除去することもできる。蛋白修飾酵素としては、例えば、トリプシン、キモトリプシン、アルギニルエンドペプチダーゼ、プロテインキナーゼ、グリコシダーゼなどが用いられる。

かくして生成する本発明の蛋白質またはその塩の活性は、標識したリガンドと

の結合実験および特異抗体を用いたエンザイムイムノアッセイなどにより測定することができる。

[0042]

本発明の蛋白質、その部分ペプチドまたはそれらの塩に対する抗体は、本発明 の蛋白質、その部分ペプチドまたはそれらの塩を認識し得る抗体であれば、ポリ クローナル抗体、モノクローナル抗体の何れであってもよい。

本発明の蛋白質、その部分ペプチドまたはそれらの塩(以下、本発明の蛋白質等と略記する)に対する抗体は、本発明の蛋白質等を抗原として用い、自体公知の抗体または抗血清の製造法に従って製造することができる。

[0043]

[モノクローナル抗体の作製]

(a) モノクロナール抗体産生細胞の作製

本発明の蛋白質等は、哺乳動物に対して投与により抗体産生が可能な部位にそれ自体あるいは担体、希釈剤とともに投与される。投与に際して抗体産生能を高めるため、完全フロイントアジュバントや不完全フロイントアジュバントを投与してもよい。投与は通常2~6週毎に1回ずつ、計2~10回程度行なわれる。用いられる哺乳動物としては、例えば、サル、ウサギ、イヌ、モルモット、マウス、ラット、ヒツジ、ヤギが挙げられるが、マウスおよびラットが好ましく用いられる。

モノクローナル抗体産生細胞の作製に際しては、抗原を免疫された温血動物、例えば、マウスから抗体価の認められた個体を選択し最終免疫の2~5日後に脾臓またはリンパ節を採取し、それらに含まれる抗体産生細胞を骨髄腫細胞と融合させることにより、モノクローナル抗体産生ハイブリドーマを調製することができる。抗血清中の抗体価の測定は、例えば、後記の標識化した本発明の蛋白質等と抗血清とを反応させたのち、抗体に結合した標識剤の活性を測定することにより行なうことができる。融合操作は既知の方法、例えば、ケーラーとミルスタインの方法 [ネイチャー (Nature)、256巻、495頁 (1975年)] に従い実施することができる。融合促進剤としては、例えば、ポリエチレングリコール(PEG) やセンダイウィルスなどが挙げられるが、好ましくはPEGが用いら

れる。

骨髄腫細胞としては、例えば、NS-1、P3U1、SP2/0などが挙げられるが、P3U1が好ましく用いられる。用いられる抗体産生細胞(脾臓細胞)数と骨髄腫細胞数との好ましい比率は $1:1\sim20:1$ 程度であり、PEG (好ましくは、PEG1000 \sim PEG6000)が $10\sim80\%$ 程度の濃度で添加され、約 $20\sim40\%$ 、好ましくは約 $30\sim37\%$ で約 $1\sim10$ 分間インキュベートすることにより効率よく細胞融合を実施できる。

[0044]

モノクローナル抗体産生ハイブリドーマのスクリーニングには種々の方法が使用できるが、例えば、本発明の蛋白質等抗原を直接あるいは担体とともに吸着させた固相(例、マイクロプレート)にハイブリドーマ培養上清を添加し、次に放射性物質や酵素などで標識した抗免疫グロブリン抗体(細胞融合に用いられる細胞がマウスの場合、抗マウス免疫グロブリン抗体が用いられる)またはプロテインAを加え、固相に結合したモノクローナル抗体を検出する方法、抗免疫グロブリン抗体またはプロテインAを吸着させた固相にハイブリドーマ培養上清を添加し、放射性物質や酵素などで標識した本発明の蛋白質等を加え、固相に結合したモノクローナル抗体を検出する方法などが挙げられる。

モノクローナル抗体の選別は、自体公知あるいはそれに準じる方法に従って行なうことができるが、通常はHAT (ヒポキサンチン、アミノプテリン、チミジン)を添加した動物細胞用培地などで行なうことができる。選別および育種用培地としては、ハイブリドーマが生育できるものならばどのような培地を用いても良い。例えば、1~20%、好ましくは10~20%の牛胎児血清を含むRPM I 1640培地、1~10%の牛胎児血清を含むGIT培地(和光純薬工業(株))またはハイブリドーマ培養用無血清培地(SFM-101、日水製薬(株))などを用いることができる。培養温度は、通常20~40℃、好ましくは約37℃である。培養時間は、通常5日~3週間、好ましくは1週間~2週間である。培養は、通常5%炭酸ガス下で行なうことができる。ハイブリドーマ培養上清の抗体価は、上記の抗血清中の抗体価の測定と同様にして測定できる。

[0045]

(b) モノクロナール抗体の精製

モノクローナル抗体の分離精製は、通常のポリクローナル抗体の分離精製と同様に免疫グロブリンの分離精製法〔例、塩析法、アルコール沈殿法、等電点沈殿法、電気泳動法、イオン交換体(例、DEAE)による吸脱着法、超遠心法、ゲルろ過法、抗原結合固相またはプロテインAあるいはプロテインGなどの活性吸着剤により抗体のみを採取し、結合を解離させて抗体を得る特異的精製法〕に従って行なうことができる。

[0046]

[ポリクローナル抗体の作製]

本発明のポリクローナル抗体は、それ自体公知あるいはそれに準じる方法にしたがって製造することができる。例えば、免疫抗原(レセプター蛋白質等抗原)とキャリアー蛋白質との複合体をつくり、上記のモノクローナル抗体の製造法と同様に哺乳動物に免疫を行ない、該免疫動物から本発明の蛋白質等に対する抗体含有物を採取して、抗体の分離精製を行なうことにより製造できる。

哺乳動物を免疫するために用いられる免疫抗原とキャリアー蛋白質との複合体に関し、キャリアー蛋白質の種類およびキャリアーとハプテンとの混合比は、キャリアーに架橋させて免疫したハプテンに対して抗体が効率良くできれば、どの様なものをどの様な比率で架橋させてもよいが、例えば、ウシ血清アルブミン、ウシサイログロブリン、キーホール・リンペット・ヘモシアニン等を重量比でハプテン1に対し、約0.1~20、好ましくは約1~5の割合でカプルさせる方法が用いられる。

また、ハプテンとキャリアーのカプリングには、種々の縮合剤を用いることができるが、グルタルアルデヒドやカルボジイミド、マレイミド活性エステル、チオール基、ジチオビリジル基を含有する活性エステル試薬等が用いられる。

縮合生成物は、温血動物に対して、抗体産生が可能な部位にそれ自体あるいは 担体、希釈剤とともに投与される。投与に際して抗体産生能を高めるため、完全 フロイントアジュバントや不完全フロイントアジュバントを投与してもよい。投 与は、通常約2~6週毎に1回ずつ、計約3~10回程度行なうことができる。 ポリクローナル抗体は、上記の方法で免疫された哺乳動物の血液、腹水など、 好ましくは血液から採取することができる。

抗血清中のポリクローナル抗体価の測定は、上記の血清中の抗体価の測定と同様にして測定できる。ポリクローナル抗体の分離精製は、上記のモノクローナル抗体の分離精製と同様の免疫グロブリンの分離精製法に従って行なうことができる。

[0047]

本発明の蛋白質、その部分ペプチドまたはそれらの塩、およびそれらをコードするDNAは、①本発明の蛋白質に対するリガンドの決定方法、②抗体および抗血清の入手、③組換え型蛋白質の発現系の構築、④同発現系を用いたレセプター結合アッセイ系の開発と医薬品候補化合物のスクリーニング、⑤構造的に類似したリガンド・レセプターとの比較にもとづいたドラッグデザインの実施、⑥遺伝子診断におけるプローブやPCRプライマーを作成するための試薬、⑦トランスジェニック動物の作製または⑧遺伝子予防・治療剤等の医薬などとして用いることができる。

特に、本発明の組換え型蛋白質の発現系を用いたレセプター結合アッセイ系を 用いることによって、ヒトや哺乳動物に特異的なG蛋白質共役型レセプターに対 するリガンドの結合性を変化させる化合物(例、アゴニスト、アンタゴニストな ど)をスクリーニングすることができ、該アゴニストまたはアンタゴニストを各 種疾病の予防・治療剤などとして使用することができる。

本発明の蛋白質、部分ペプチドまたはそれらの塩(以下、本発明の蛋白質等と略記する場合がある)、本発明の蛋白質またはその部分ペプチドをコードするDNA(以下、本発明のDNAと略記する場合がある)および本発明の蛋白質等に対する抗体(以下、本発明の抗体と略記する場合がある)の用途について、以下に具体的に説明する。

[0048]

(1) 本発明の蛋白質に対するリガンド (アゴニスト) の決定方法

本発明の蛋白質もしくはその塩または本発明の部分ペプチドもしくはその塩は、本発明の蛋白質またはその塩に対するリガンド(アゴニスト)を探索し、また

は決定するための試薬として有用である。

すなわち、本発明は、本発明の蛋白質もしくはその塩または本発明の部分ペプ チドもしくはその塩と、試験化合物とを接触させることを特徴とする本発明の蛋 白質に対するリガンドの決定方法を提供する。

試験化合物としては、公知のリガンド(例えば、アンギオテンシン、ボンベシ ン、カナビノイド、コレシストキニン、グルタミン、セロトニン、メラトニン、 ニューロペプチドY、オピオイド、プリン、バソプレッシン、オキシトシン、P ACAP、セクレチン、グルカゴン、カルシトニン、アドレノメジュリン、ソマ トスタチン、GHRH、CRF、ACTH、GRP、PTH、VIP(バソアク ティブ インテスティナル アンド リレイテッド ポリペプチド)、ソマトス タチン、ドーパミン、モチリン、アミリン、ブラジキニン、CGRP(カルシト ニンジーンリレーティッドペプチド)、ロイコトリエン、パンクレアスタチン、 プロスタグランジン、トロンボキサン、アデノシン、アドレナリン、αおよび.β ーケモカイン (chemokine) (例えば、IL-8、GROα、GROβ、GRO 7, NAP-2, ENA-78, PF4, IP10, GCP-2, MCP-1, HC14, MCP-3, I-309, MIP1 α , MIP-1 β , RANTES など)、エンドセリン、エンテロガストリン、ヒスタミン、ニューロテンシン、 TRH、パンクレアティックポリペプタイドまたはガラニンなどがあげられ、ま たその他に、例えば、ヒトまたは哺乳動物(例えば、マウス、ラット、ブタ、ウ シ、ヒツジ、サルなど)の組織抽出物、細胞培養上清などが用いられる。例えば 、該組織抽出物、細胞培養上清などを本発明の蛋白質に添加し、細胞刺激活性な どを測定しながら分画し、最終的に単一のリガンドを得ることができる。

[0049]

具体的には、本発明のリガンド決定方法は、本発明の蛋白質、その部分ペプチドもしくはそれらの塩を用いるか、または組換え型蛋白質の発現系を構築し、該発現系を用いたレセプター結合アッセイ系を用いることによって、本発明の蛋白質に結合して細胞刺激活性(例えば、アラキドン酸遊離、アセチルコリン遊離、細胞内Ca²⁺遊離、細胞内cAMP生成、細胞内cGMP生成、イノシトールリン酸産生、細胞膜電位変動、細胞内蛋白質のリン酸化、c-fos活性化、pH

の低下などを促進する活性または抑制する活性)を有する化合物 (例えば、ペプチド、蛋白質、非ペプチド性化合物、合成化合物、発酵生産物など) またはその 塩を決定する方法である。

本発明のリガンド決定方法においては、本発明の蛋白質またはその部分ペプチドと試験化合物とを接触させた場合の、例えば、該蛋白質または該部分ペプチドに対する試験化合物の結合量や、細胞刺激活性などを測定することを特徴とする

[0050]

より具体的には、本発明は、①標識した試験化合物を、本発明の蛋白質もしくはその塩または本発明の部分ペプチドもしくはその塩に接触させた場合における、標識した試験化合物の該蛋白質もしくはその塩、または該部分ペプチドもしくはその塩に対する結合量を測定することを特徴とする本発明の蛋白質またはその塩に対するリガンドの決定方法、

- ②標識した試験化合物を、本発明の蛋白質を含有する細胞または該細胞の膜画分に接触させた場合における、標識した試験化合物の該細胞または該膜画分に対する結合量を測定することを特徴とする本発明の蛋白質またはその塩に対するリガンドの決定方法、
- ③標識した試験化合物を、本発明の蛋白質をコードするDNAを含有する形質転換体を培養することによって細胞膜上に発現した蛋白質に接触させた場合における、標識した試験化合物の該蛋白質またはその塩に対する結合量を測定することを特徴とする本発明の蛋白質に対するリガンドの決定方法、

[0051]

④試験化合物を、本発明の蛋白質を含有する細胞に接触させた場合における、蛋白質を介した細胞刺激活性(例えば、アラキドン酸遊離、アセチルコリン遊離、細胞内Ca²⁺遊離、細胞内cAMP生成、細胞内cGMP生成、イノシトールリン酸産生、細胞膜電位変動、細胞内蛋白質のリン酸化、c-fosの活性化、pHの低下などを促進する活性または抑制する活性など)を測定することを特徴とする本発明の蛋白質またはその塩に対するリガンドの決定方法、および

⑤試験化合物を、本発明の蛋白質をコードするDNAを含有する形質転換体を培

養することによって細胞膜上に発現した蛋白質に接触させた場合における、蛋白質を介する細胞刺激活性(例えば、アラキドン酸遊離、アセチルコリン遊離、細胞内Ca²⁺遊離、細胞内cAMP生成、細胞内cGMP生成、イノシトールリン酸産生、細胞膜電位変動、細胞内蛋白質のリン酸化、c-fosの活性化、pHの低下などを促進する活性または抑制する活性など)を測定することを特徴とする本発明の蛋白質またはその塩に対するリガンドの決定方法を提供する。

特に、上記①~③の試験を行ない、試験化合物が本発明の蛋白質に結合することを確認した後に、上記④~⑤の試験を行なうことが好ましい。

[0052]

まず、リガンド決定方法に用いる蛋白質としては、前記した本発明の蛋白質または本発明の部分ペプチドを含有するものであれば何れのものであってもよいが、動物細胞を用いて大量発現させた蛋白質が適している。

本発明の蛋白質を製造するには、前述の発現方法が用いられるが、該蛋白質をコードするDNAを哺乳動物細胞や昆虫細胞で発現することにより行なうことが好ましい。目的とする蛋白質部分をコードするDNA断片には、通常、相補DNAが用いられるが、必ずしもこれに制約されるものではない。例えば、遺伝子断片や合成DNAを用いてもよい。本発明の蛋白質をコードするDNA断片を宿主動物細胞に導入し、それらを効率よく発現させるためには、該DNA断片を尾虫を宿主とするバキュロウイルスに属する核多角体病ウイルス(nuclear polyhedrosis virus; NPV)のポリヘドリンプロモーター、SV40由来のプロモーター、レトロウイルスのプロモーター、メタロチオネインプロモーター、ヒトヒートショックプロモーター、サイトメガロウイルスプロモーター、SRaプロモーター、レトロウイルスのが好ましい。発現したレセプターの量と質の検査はそれ自体公知の方法で行うことができる。例えば、文献〔Nambi, P. ら、ザ・ジャーナル・オブ・バイオロジカル・ケミストリー(J. Biol. Chem.),267巻,1955~19559頁,1992年〕—に記載の方法に従って行うことができる。

[0053]

したがって、本発明のリガンド決定方法において、本発明の蛋白質、その部分ペプチドまたはそれらの塩を含有するものとしては、それ自体公知の方法に従っ

て精製した蛋白質、その部分ペプチドまたはそれらの塩であってもよいし、該蛋 白質を含有する細胞またはその細胞膜画分を用いてもよい。

本発明のリガンド決定方法において、本発明の蛋白質を含有する細胞を用いる 場合、該細胞をグルタルアルデヒド、ホルマリンなどで固定化してもよい。固定 化方法はそれ自体公知の方法に従って行なうことができる。

本発明の蛋白質を含有する細胞としては、本発明の蛋白質を発現した宿主細胞をいうが、該宿主細胞としては、大腸菌、枯草菌、酵母、昆虫細胞、動物細胞などが用いられる。

細胞膜画分としては、細胞を破砕した後、それ自体公知の方法で得られる細胞膜が多く含まれる画分のことをいう。細胞の破砕方法としては、Potter-Elvehjem型ホモジナイザーで細胞を押し潰す方法、ワーリングブレンダーやポリトロン(Kinematica社製)による破砕、超音波による破砕、フレンチプレスなどで加圧しながら細胞を細いノズルから噴出させることによる破砕などが挙げられる。細胞膜の分画には、分画遠心分離法や密度勾配遠心分離法などの遠心力による分画法が主として用いられる。例えば、細胞破砕液を低速(500rpm~3000rpm)で短時間(通常、約1分~10分)遠心し、上清をさらに高速(15000rpm~30000rpm)で通常30分~2時間遠心し、得られる沈澱を膜画分とする。該膜画分中には、発現した蛋白質と細胞由来のリン脂質や膜蛋白質などの膜成分が多く含まれる。

[0054]

該蛋白質を含有する細胞やその膜画分中の蛋白質の量は、1 細胞当たり 10^3 $\sim 10^8$ 分子であるのが好ましく、 $10^5 \sim 10^7$ 分子であるのが好適である。なお、発現量が多いほど膜画分当たりのリガンド結合活性(比活性)が高くなり、高感度なスクリーニング系の構築が可能になるばかりでなく、同一ロットで大量の試料を測定できるようになる。

本発明の蛋白質またはその塩に対するリガンドを決定する前記の①~③の方法を実施するためには、適当な蛋白質画分と、標識した試験化合物が必要である。

蛋白質画分としては、天然型のレセプター蛋白質画分か、またはそれと同等の 活性を有する組換え型レセプター画分などが望ましい。ここで、同等の活性とは 、同等のリガンド結合活性、シグナル情報伝達作用などを示す。

標識した試験化合物としては、 $[^3H]$ 、 $[^{125}I]$ 、 $[^{14}C]$ 、 $[^{35}S]$ などで標識したアンギオテンシン、ボンベシン、カナビノイド、コレシストキニン、グルタミン、セロトニン、メラトニン、ニューロペプチドY、オピオイド、ブリン、バソプレッシン、オキシトシン、PACAP、セクレチン、グルカゴン、カルシトニン、アドレノメジュリン、ソマトスタチン、GHRH、CRF、ACTH、GRP、PTH、VIP(バソアクティブ インテスティナル アンド リイテッド ポリペプチド)、ソマトスタチン、ドーパミン、モチリン、アミリン、ブラジキニン、CGRP(カルシトニンジーンリレーティッドペプチド)、ロイコトリエン、パンクレアスタチン、プロスタグランジン、トロンボキサン、アデノシン、アドレナリン、 α および β -ケモカイン(chemokine)(例えば、IL-8、GRO α 、GRO β 、GRO γ 、NAP-2、ENA-78、PF4、IP10、GCP-2、MCP-1、HC14、MCP-3、I-309、MIP1 α 、MIP-1 β 、RANTESなど)、エンドセリン、エンテロガストリン、ヒスタミン、ニューロテンシン、TRH、パンクレアティックポリペプタイド、ガラニンなどが好適である。

[0055]

具体的には、本発明の蛋白質またはその塩に対するリガンドの決定方法を行なうには、まず本発明の蛋白質を含有する細胞または細胞の膜画分を、決定方法に適したバッファーに懸濁することによりレセプター標品を調製する。バッファーには、pH4~10(望ましくはpH6~8)のリン酸バッファー、トリスー塩酸バッファーなどのリガンドと本発明の蛋白質との結合を阻害しないバッファーであればいずれでもよい。また、非特異的結合を低減させる目的で、CHAPS、Tween-80TM(花王-アトラス社)、ジギトニン、デオキシコレートなどの界面活性剤やウシ血清アルブミンやゼラチンなどの各種蛋白質をバッファーに加えることもできる。さらに、プロテアーゼによるリセプターやリガンドの分解を抑える目的でPMSF、ロイペプチン、E-64(ペプチド研究所製)、ペプスタチンなどのプロテアーゼ阻害剤を添加することもできる。0.01ml~10mlの該レセプター溶液に、一定量(5000cpm~500000cpm

)の〔 3 H〕、〔 125 I〕、〔 14 C〕、〔 35 S〕などで標識した試験化合物を共存させる。非特異的結合量(NSB)を知るために大過剰の未標識の試験化合物を加えた反応チューブも用意する。反応は約0℃から50℃、望ましくは約4℃から37℃で、約20分から24時間、望ましくは約30分から3時間行なう。反応後、ガラス繊維濾紙等で濾過し、適量の同バッファーで洗浄した後、ガラス繊維濾紙に残存する放射活性を液体シンチレーションカウンターあるいは $_{7}$ -カウンターで計測する。全結合量(B)から非特異的結合量(NSB)を引いたカウント(B-NSB)が0cpmを越える試験化合物を本発明の蛋白質またはその塩に対するリガンド(アゴニスト)として選択することができる。

[0056]

本発明の蛋白質またはその塩に対するリガンドを決定する前記の④~⑤の方法を実施するためには、該蛋白質を介する細胞刺激活性(例えば、アラキドン酸遊離、アセチルコリン遊離、細胞内Ca²+遊離、細胞内CAMP生成、細胞内CGMP生成、イノシトールリン酸産生、細胞膜電位変動、細胞内蛋白質のリン酸化、C-fosの活性化、pHの低下などを促進する活性または抑制する活性など)を公知の方法または市販の測定用キットを用いて測定することができる。具体的には、まず、本発明の蛋白質を含有する細胞をマルチウェルプレート等に培養する。リガンド決定を行なうにあたっては前もって新鮮な培地あるいは細胞に毒性を示さない適当なバッファーに交換し、試験化合物などを添加して一定時間インキュベートした後、細胞を抽出あるいは上清液を回収して、生成した産物をそれぞれの方法に従って定量する。細胞刺激活性の指標とする物質(例えば、アラキドン酸など)の生成が、細胞が含有する分解酵素によって検定困難な場合は、該分解酵素に対する阻害剤を添加してアッセイを行なってもよい。また、CAMP産生抑制などの活性については、フォルスコリンなどで細胞の基礎的産生量を増大させておいた細胞に対する産生抑制作用として検出することができる。

[0057]

本発明の蛋白質またはその塩に結合するリガンド決定用キットは、本発明の蛋白質もしくはその塩、本発明の部分ペプチドもしくはその塩、本発明の蛋白質を含有する細胞、または本発明の蛋白質を含有する細胞の膜画分などを含有するも

のである。

本発明のリガンド決定用キットの例としては、次のものが挙げられる。

- 1. リガンド決定用試薬
- ①測定用緩衝液および洗浄用緩衝液

Hanks' Balanced Salt Solution (ギブコ社製) に、0.05%のウシ血清アルブミン (シグマ社製) を加えたもの。

孔径0.45μmのフィルターで濾過滅菌し、4℃で保存するか、あるいは用 時調製しても良い。

②G蛋白質共役型レセプター蛋白質標品

本発明の蛋白質を発現させたCHO細胞を、12穴プレートに5×10⁵個/穴で継代し、37℃、5%CO₂、95%airで2日間培養したもの。

③標識試験化合物

市販の $[^3$ H] 、 $[^{125}$ I] 、 $[^{14}$ C] 、 $[^{35}$ S] などで標識した化合物、または適当な方法で標識化したもの

水溶液の状態のものを4℃あるいは-20℃にて保存し、用時に測定用緩衝液にて1μMに希釈する。水に難溶性を示す試験化合物については、ジメチルホルムアミド、DMSO、メタノール等に溶解する。

④非標識試験化合物

標識化合物と同じものを100~1000倍濃い濃度に調製する。

[0058]

- 2. 測定法
- ①12穴組織培養用プレートにて培養した本発明の蛋白質発現CHO細胞を、測定用緩衝液1mlで2回洗浄した後、490μlの測定用緩衝液を各穴に加える
- ②標識試験化合物を5μ1加え、室温にて1時間反応させる。非特異的結合量を 知るためには非標識試験化合物を5μ1加えておく。
- ③反応液を除去し、1mlの洗浄用緩衝液で3回洗浄する。細胞に結合した標識 試験化合物を0.2N NaOH-1%SDSで溶解し、4mlの液体シンチレ -ターA (和光純薬製)と混合する。

④液体シンチレーションカウンター(ベックマン社製)を用いて放射活性を測定する。

[0059]

本発明の蛋白質またはその塩に結合することができるリガンドとしては、例え ば、脳、下垂体、膵臓などに特異的に存在する物質などが挙げられ、具体的には 、アンギオテンシン、ボンベシン、カナビノイド、コレシストキニン、グルタミ ン、セロトニン、メラトニン、ニューロペプチドY、オピオイド、プリン、バソ プレッシン、オキシトシン、PACAP、セクレチン、グルカゴン、カルシトニ ン、アドレノメジュリン、ソマトスタチン、GHRH、CRF、ACTH、GR **P、PTH、VIP(バソアクティブ インテスティナル アンド リレイテッ** ド ポリペプチド)、ソマトスタチン、ドーパミン、モチリン、アミリン、ブラ ジキニン、CGRP (カルシトニンジーンリレーティッドペプチド)、ロイコト リエン、パンクレアスタチン、プロスタグランジン、トロンボキサン、アデノシ ン、アドレナリン、 α および β - ケモカイン (chemokine) (例えば、IL-8、GROα、GROβ、GROγ、NAP-2、ENA-78、PF4、IP1 0, GCP-2, MCP-1, HC14, MCP-3, I-309, MIP1 α 、MΙΡ-1β、RANTESなど)、エンドセリン、エンテロガストリン、ヒ スタミン、ニューロテンシン、TRH、パンクレアティックポリペプタイド、ガ ラニンなどが用いられる。

[0060]

(2) 本発明の蛋白質欠乏症の予防・治療剤

上記(1)の方法において、本発明の蛋白質に対するリガンドが明らかになれば、該リガンドが有する作用に応じて、①本発明の蛋白質または②該蛋白質をコードするDNAを、本発明の蛋白質の機能不全に関連する疾患の予防および/または治療剤などの医薬として使用することができる。

例えば、生体内において本発明の蛋白質が減少しているためにリガンドの生理作用が期待できない(該蛋白質の欠乏症)患者がいる場合に、①本発明の蛋白質を該患者に投与し該蛋白質の量を補充したり、②(イ)本発明の蛋白質をコードするDNAを該患者に投与し発現させることによって、あるいは(ロ)対象とな

る細胞に本発明の蛋白質をコードするDNAを挿入し発現させた後に、該細胞を 該患者に移植することなどによって、患者の体内における蛋白質の量を増加させ 、リガンドの作用を充分に発揮させることができる。したがって、本発明の蛋白 質をコードするDNAは、安全で低毒性な本発明のレセプター蛋白質の機能不全 に関連する疾患の予防および/または治療剤などの医薬として有用である。

本発明の蛋白質は中枢疾患(例えばアルツハイマー病・痴呆・摂食障害(拒食症)・てんかんなど)、ホルモン系の疾患(例えば、微弱陣痛、弛緩出血、胎盤娩出前後、子宮復古不全、帝王切開術、人工妊娠中絶、乳汁うっ滞など)、肝/胆/膵/内分泌疾患(例えば糖尿病・摂食障害など)、炎症性疾患(アレルギー・喘息・リュウマチなど)、循環器疾患(例えば高血圧症・心肥大・狭心症・動脈硬化等)の予防および/または治療に有用である。

本発明の蛋白質を上記予防・治療剤として使用する場合は、常套手段に従って 製剤化することができる。

一方、本発明の蛋白質をコードするDNA(以下、本発明のDNAと略記する場合がある)を上記予防・治療剤として使用する場合は、本発明のDNAを単独あるいはレトロウイルスベクター、アデノウイルスベクター、アデノウイルスアソシエーテッドウイルスベクターなどの適当なベクターに挿入した後、常套手段に従って実施することができる。本発明のDNAは、そのままで、あるいは摂取促進のための補助剤とともに、遺伝子銃やハイドロゲルカテーテルのようなカテーテルによって投与できる。

例えば、①本発明の蛋白質または②該蛋白質をコードするDNAは、必要に応じて糖衣を施した錠剤、カプセル剤、エリキシル剤、マイクロカプセル剤などとして経口的に、あるいは水もしくはそれ以外の薬学的に許容し得る液との無菌性溶液、または懸濁液剤などの注射剤の形で非経口的に使用できる。例えば、①本発明の蛋白質または②該蛋白質をコードするDNAを生理学的に認められる公知の担体、香味剤、賦形剤、ベヒクル、防腐剤、安定剤、結合剤などとともに一般に認められた製剤実施に要求される単位用量形態で混和することによって製造することができる。これら製剤における有効成分量は指示された範囲の適当な容量が得られるようにするものである。

[0061]

錠剤、カプセル剤などに混和することができる添加剤としては、例えばゼラチ ン、コーンスターチ、トラガント、アラビアゴムのような結合剤、結晶性セルロ ースのような賦形剤、コーンスターチ、ゼラチン、アルギン酸などのような膨化 剤、ステアリン酸マグネシウムのような潤滑剤、ショ糖、乳糖またはサッカリン のような甘味剤、ペパーミント、アカモノ油またはチェリーのような香味剤など が用いられる。調剤単位形態がカプセルである場合には、前記タイプの材料にさ らに油脂のような液状担体を含有することができる。注射のための無菌組成物は 注射用水のようなベビクル中の活性物質、胡麻油、椰子油などのような天然産出 植物油などを溶解または懸濁させるなどの通常の製剤実施に従って処方すること ができる。注射用の水性液としては、例えば、生理食塩水、ブドウ糖やその他の 補助薬を含む等張液(例えば、Dーソルビトール、Dーマンニトール、塩化ナト リウムなど)などが用いられ、適当な溶解補助剤、例えば、アルコール(例、エ タノール)、ポリアルコール(例、プロピレングリコール、ポリエチレングリコ ール)、非イオン性界面活性剤(例、ポリソルベート80(TM)、HCO-5 0)などと併用してもよい。油性液としては、例えば、ゴマ油、大豆油などが用 いられ、溶解補助剤である安息香酸ベンジル、ベンジルアルコールなどと併用し てもよい。

[0062]

また、上記予防・治療剤は、例えば、緩衝剤(例えば、リン酸塩緩衝液、酢酸ナトリウム緩衝液)、無痛化剤(例えば、塩化ベンザルコニウム、塩酸プロカインなど)、安定剤(例えば、ヒト血清アルブミン、ポリエチレングリコールなど)、保存剤(例えば、ベンジルアルコール、フェノールなど)、酸化防止剤などと配合してもよい。調製された注射液は通常、適当なアンプルに充填される。

このようにして得られる製剤は安全で低毒性であるので、例えば、ヒトや哺乳動物 (例えば、ラット、ウサギ、ヒツジ、ブタ、ウシ、ネコ、イヌ、サルなど) に対して投与することができる。

本発明の蛋白質またはDNAの投与量は、投与対象、対象臓器、症状、投与方法などにより差異はあるが、経口投与の場合、一般的に成人(60kgとして)

の拒食症患者においては、一日につき約0.1 mg~100 mg、好ましくは約1.0~50 mg、より好ましくは約1.0~20 mgである。非経口的に投与する場合は、その1回投与量は投与対象、対象臓器、症状、投与方法などによっても異なるが、例えば、注射剤の形では通常成人(60 kgとして)の拒食症患者においては、一日につき約0.01~30 mg程度、好ましくは約0.1~20 mg程度、より好ましくは約0.1~10 mg程度を静脈注射により投与するのが好都合である。他の動物の場合も、60 kg当たりに換算した量を投与することができる。

[0063]

(3) 遺伝子診断剤

本発明のDNAは、プローブとして使用することにより、ヒトまたは哺乳動物 (例えば、ラット、ウサギ、ヒツジ、ブタ、ウシ、ネコ、イヌ、サルなど) における本発明の蛋白質またはその部分ペプチドをコードするDNAまたはmRNAの異常 (遺伝子異常)を検出することができるので、例えば、該DNAまたはmRNAの損傷、突然変異あるいは発現低下や、該DNAまたはmRNAの増加あるいは発現過多などの遺伝子診断剤として有用である。

本発明のDNAを用いる上記の遺伝子診断は、例えば、自体公知のノーザンハイブリダイゼーションやPCR-SSCP法(ゲノミックス(Genomics),第5巻,874~879頁(1989年)、プロシージングズ・オブ・ザ・ナショナル・アカデミー・オブ・サイエンシイズ・オブ・ユーエスエー(Proceedings of the Natinal Academy of Sciences of the United States of America),第86巻,2766~2770頁(1989年))などにより実施することができる

[0064]

(4) 本発明の蛋白質に対するリガンドの定量法

本発明の蛋白質等は、リガンドに対して結合性を有しているので、生体内におけるリガンド濃度を感度良く定量することができる。

本発明の定量法は、例えば、競合法と組み合わせることによって用いることができる。すなわち、被検体を本発明の蛋白質等と接触させることによって被検体

中のリガンド濃度を測定することができる。具体的には、例えば、以下の①または②などに記載の方法あるいはそれに準じる方法に従って用いることができる。

- ①入江寬編「ラジオイムノアッセイ」 (講談社、昭和49年発行)
- ②入江寛編「続ラジオイムノアッセイ」 (講談社、昭和54年発行)

[0065]

(5)本発明の蛋白質とリガンドとの結合性を変化させる化合物のスクリーニン グ方法

本発明の蛋白質等を用いるか、または組換え型蛋白質等の発現系を構築し、該 発現系を用いたレセプター結合アッセイ系を用いることによって、リガンドと本 発明の蛋白質等との結合性を変化させる化合物(例えば、ペプチド、蛋白質、非 ペプチド性化合物、合成化合物、発酵生産物など)またはその塩を効率よくスク リーニングすることができる。

このような化合物には、(イ) G蛋白質共役型レセプターを介して細胞刺激活性 (例えば、アラキドン酸遊離、アセチルコリン遊離、細胞内 C a ²⁺遊離、細胞内 c AM P 生成、細胞内 c GM P 生成、イノシトールリン酸産生、細胞膜電位変動、細胞内蛋白質のリン酸化、c-fosの活性化、p H の低下などを促進する活性または抑制する活性など)を有する化合物(いわゆる、本発明の蛋白質に対するアゴニスト)、(ロ) 該細胞刺激活性を有しない化合物(いわゆる、本発明の蛋白質に対するアンタゴニスト)、(ハ) リガンドと本発明の蛋白質との結合力を増強する化合物、あるいは(ニ) リガンドと本発明の蛋白質との結合力を減少させる化合物などが含まれる(なお、上記(イ)の化合物は、前記したリガンド決定方法によってスクリーニングすることが好ましい)。

すなわち、本発明は、(i)本発明の蛋白質、その部分ペプチドまたはそれらの塩と、リガンドとを接触させた場合と(ii)本発明の蛋白質、その部分ペプチドまたはそれらの塩と、リガンドおよび試験化合物とを接触させた場合との比較を行なうことを特徴とするリガンドと本発明の蛋白質、その部分ペプチドまたはそれらの塩との結合性を変化させる化合物またはその塩のスクリーニング方法を提供する。

本発明のスクリーニング方法においては、(i)と(ii)の場合における、例

えば、該蛋白質等に対するリガンドの結合量、細胞刺激活性などを測定して、比較することを特徴とする。

[0066]

より具体的には、本発明は、

①標識したリガンドを、本発明の蛋白質等に接触させた場合と、標識したリガンドおよび試験化合物を本発明の蛋白質等に接触させた場合における、標識したリガンドの該蛋白質等に対する結合量を測定し、比較することを特徴とするリガンドと本発明の蛋白質等との結合性を変化させる化合物またはその塩のスクリーニング方法、

②標識したリガンドを、本発明の蛋白質等を含有する細胞または該細胞の膜画分に接触させた場合と、標識したリガンドおよび試験化合物を本発明の蛋白質等を含有する細胞または該細胞の膜画分に接触させた場合における、標識したリガンドの該細胞または該膜画分に対する結合量を測定し、比較することを特徴とするリガンドと本発明の蛋白質等との結合性を変化させる化合物またはその塩のスクリーニング方法、

③標識したリガンドを、本発明のDNAを含有する形質転換体を培養することによって細胞膜上に発現した蛋白質等に接触させた場合と、標識したリガンドおよび試験化合物を本発明のDNAを含有する形質転換体を培養することによって細胞膜上に発現した本発明の蛋白質等に接触させた場合における、標識したリガンドの該蛋白質等に対する結合量を測定し、比較することを特徴とするリガンドと本発明の蛋白質等との結合性を変化させる化合物またはその塩のスクリーニング方法、

[0067]

④本発明の蛋白質等を活性化する化合物(例えば、本発明の蛋白質等に対するリガンドなど)を本発明の蛋白質等を含有する細胞に接触させた場合と、本発明の蛋白質等を活性化する化合物および試験化合物を本発明の蛋白質等を含有する細胞に接触させた場合における、レセプターを介した細胞刺激活性(例えば、アラキドン酸遊離、アセチルコリン遊離、細胞内Ca²⁺遊離、細胞内cAMP生成、細胞内cGMP生成、イノシトールリン酸産生、細胞膜電位変動、細胞内蛋白質

のリン酸化、c-fosの活性化、pHの低下などを促進する活性または抑制する活性など)を測定し、比較することを特徴とするリガンドと本発明の蛋白質等との結合性を変化させる化合物またはその塩のスクリーニング方法、および⑤本発明の蛋白質等を活性化する化合物(例えば、本発明の蛋白質等に対するリガンドなど)を本発明のDNAを含有する形質転換体を培養することによって細胞膜上に発現した本発明の田NAを含有する形質転換体を培養することによって細胞膜上に発現した本発明のDNAを含有する形質転換体を培養することによって細胞膜上に発現した本発明の蛋白質等に接触させた場合における、レセプターを介する細胞刺激活性(例えば、アラキドン酸遊離、アセチルコリン遊離、細胞内Ca²⁺遊離、細胞内cAMP生成、細胞内cGMP生成、イノシトールリン酸産生、細胞膜電位変動、細胞内蛋白質のリン酸化、c-fosの活性化、pHの低下などを促進する活性または抑制する活性など)を測定し、比較することを特徴とするリガンドと本発明の蛋白質等との結合性を変化させる化合物またはその塩のスクリーニング方法を提供する。

[0068]

. . ,

本発明の蛋白質等が得られる以前は、G蛋白質共役型レセプターアゴニストまたはアンタゴニストをスクリーニングする場合、まずラットなどのG蛋白質共役型レセプター蛋白質を含む細胞、組織またはその細胞膜画分を用いて候補化合物を得て(一次スクリーニング)、その後に該候補化合物が実際にヒトのG蛋白質共役型レセプター蛋白質とリガンドとの結合を阻害するか否かを確認する試験(二次スクリーニング)が必要であった。細胞、組織または細胞膜画分をそのまま用いれば他のレセプター蛋白質も混在するために、目的とするレセプター蛋白質に対するアゴニストまたはアンタゴニストを実際にスクリーニングすることは困難であった。

しかしながら、例えば、本発明のヒト由来蛋白質を用いることによって、一次スクリーニングの必要がなくなり、リガンドとG蛋白質共役型レセプター蛋白質との結合を阻害する化合物を効率良くスクリーニングすることができる。さらに、スクリーニングされた化合物がアゴニストかアンタゴニストかを簡便に評価することができる。

本発明のスクリーニング方法の具体的な説明を以下にする。

まず、本発明のスクリーニング方法に用いる本発明の蛋白質等としては、前記した本発明の蛋白質等を含有するものであれば何れのものであってもよいが、本発明の蛋白質等を含有する哺乳動物の臓器の細胞膜画分が好適である。しかし、特にヒト由来の臓器は入手が極めて困難なことから、スクリーニングに用いられるものとしては、組換え体を用いて大量発現させたヒト由来のレセプター蛋白質等などが適している。

[0069]

本発明の蛋白質等を製造するには、前述の方法が用いられるが、本発明のDNAを哺乳細胞や昆虫細胞で発現することにより行なうことが好ましい。目的とする蛋白質部分をコードするDNA断片には相補DNAが用いられるが、必ずしもこれに制約されるものではない。例えば、遺伝子断片や合成DNAを用いてもよい。本発明の蛋白質をコードするDNA断片を宿主動物細胞に導入し、それらを効率よく発現させるためには、該DNA断片を昆虫を宿主とするバキュロウイルスに属する核多角体病ウイルス(nuclear polyhedrosis virus; NPV)のポリヘドリンプロモーター、SV40由来のプロモーター、レトロウイルスのプロモーター、メタロチオネインプロモーター、ヒトヒートショックプロモーター、サイトメガロウイルスプロモーター、SR αプロモーターなどの下流に組み込むのが好ましい。発現したレセプターの量と質の検査はそれ自体公知の方法で行うことができる。例えば、文献 [Nambi, P. ら、ザ・ジャーナル・オブ・バイオロジカル・ケミストリー(J. Biol. Chem.),267巻,19555~19559頁,1992年]に記載の方法に従って行なうことができる。

したがって、本発明のスクリーニング方法において、本発明の蛋白質等を含有するものとしては、それ自体公知の方法に従って精製した蛋白質等であってもよいし、該蛋白質等を含有する細胞を用いてもよく、また該蛋白質等を含有する細胞の膜面分を用いてもよい。

[0070]

本発明のスクリーニング方法において、本発明の蛋白質等を含有する細胞を用いる場合、該細胞をグルタルアルデヒド、ホルマリンなどで固定化してもよい。

固定化方法はそれ自体公知の方法に従って行なうことができる。

本発明の蛋白質等を含有する細胞としては、該蛋白質等を発現した宿主細胞をいうが、該宿主細胞としては、大腸菌、枯草菌、酵母、昆虫細胞、動物細胞などが好ましい。

細胞膜画分としては、細胞を破砕した後、それ自体公知の方法で得られる細胞膜が多く含まれる画分のことをいう。細胞の破砕方法としては、Potter-Elvehjem型ホモジナイザーで細胞を押し潰す方法、ワーリングブレンダーやポリトロン(Kinematica社製)のよる破砕、超音波による破砕、フレンチプレスなどで加圧しながら細胞を細いノズルから噴出させることによる破砕などが挙げられる。細胞膜の分画には、分画遠心分離法や密度勾配遠心分離法などの遠心力による分画法が主として用いられる。例えば、細胞破砕液を低速(500rpm~3000rpm)で短時間(通常、約1分~10分)遠心し、上清をさらに高速(15000rpm~30000rpm)で通常30分~2時間遠心し、得られる沈澱を膜画分とする。該膜画分中には、発現した蛋白質等と細胞由来のリン脂質や膜蛋白質などの膜成分が多く含まれる。

該蛋白質等を含有する細胞や膜画分中の該蛋白質の量は、1 細胞当たり 10^3 $\sim 10^8$ 分子であるのが好ましく、 $10^5 \sim 10^7$ 分子であるのが好適である。なお、発現量が多いほど膜画分当たりのリガンド結合活性(比活性)が高くなり、高感度なスクリーニング系の構築が可能になるばかりでなく、同一ロットで大量の試料を測定できるようになる。

[0071] .

. . .

リガンドと本発明の蛋白質等との結合性を変化させる化合物をスクリーニング する前記の①~③を実施するためには、例えば、適当な蛋白質画分と、標識した リガンドが必要である。

蛋白質画分としては、天然型のレセプター蛋白質画分か、またはそれと同等の 活性を有する組換え型レセプター蛋白質画分などが望ましい。ここで、同等の活 性とは、同等のリガンド結合活性、シグナル情報伝達作用などを示す。

標識したリガンドとしては、標識したリガンド、標識したリガンドアナログ化合物などが用いられる。例えば〔 3 H〕、〔 125 I〕、〔 14 C〕、〔 35 S〕などで

標識されたリガンドなどが用いられる。

具体的には、リガンドと本発明の蛋白質等との結合性を変化させる化合物のス クリーニングを行なうには、まず本発明の蛋白質等を含有する細胞または細胞の 膜画分を、スクリーニングに適したバッファーに懸濁することにより蛋白質標品 を調製する。バッファーには、pH4~10(望ましくはpH6~8)のリン酸 バッファー、トリスー塩酸バッファーなどのリガンドと蛋白質との結合を阻害し ないバッファーであればいずれでもよい。また、非特異的結合を低減させる目的 で、CHAPS、Tween-80TM (花王-アトラス社)、ジギトニン、デオ キシコレートなどの界面活性剤をバッファーに加えることもできる。さらに、プ ロテアーゼによるレセプターやリガンドの分解を抑える目的でPMSF、ロイペ プチン、E-64 (ペプチド研究所製)、ペプスタチンなどのプロテアーゼ阻害 剤を添加することもできる。0.01ml~10mlの該レセプター溶液に、一 定量(5000cpm~50000cpm)の標識したリガンドを添加し、同 時に 10^{-4} M $\sim 10^{-10}$ Mの試験化合物を共存させる。非特異的結合量(NSB)を知るために大過剰の未標識のリガンドを加えた反応チューブも用意する。反 応は約0℃から50℃、望ましくは約4℃から37℃で、約20分から24時間 、望ましくは約30分から3時間行う。反応後、ガラス繊維濾紙等で濾過し、適 量の同バッファーで洗浄した後、ガラス繊維濾紙に残存する放射活性を液体シン チレーションカウンターまたはγーカウンターで計測する。拮抗する物質がない 場合のカウント(B_0) から非特異的結合量(NSB) を引いたカウント(B_0 -NSB)を100%とした時、特異的結合量(B-NSB)が、例えば、50% 以下になる試験化合物を拮抗阻害能力のある候補物質として選択することができ る。

[0072]

リガンドと本発明の蛋白質等との結合性を変化させる化合物スクリーニングする前記の②~⑤の方法を実施するためには、例えば、蛋白質を介する細胞刺激活性(例えば、アラキドン酸遊離、アセチルコリン遊離、細胞内Ca遊離、細胞内CAMP生成、細胞内cGMP生成、イノシトールリン酸産生、細胞膜電位変動、細胞内蛋白質のリン酸化、c-fosの活性化、pHの低下などを促進する活

性または抑制する活性など)を公知の方法または市販の測定用キットを用いて測 定することができる。

具体的には、まず、本発明の蛋白質等を含有する細胞をマルチウェルプレート等に培養する。スクリーニングを行なうにあたっては前もって新鮮な培地あるいは細胞に毒性を示さない適当なバッファーに交換し、試験化合物などを添加して一定時間インキュベートした後、細胞を抽出あるいは上清液を回収して、生成した産物をそれぞれの方法に従って定量する。細胞刺激活性の指標とする物質(例えば、アラキドン酸など)の生成が、細胞が含有する分解酵素によって検定困難な場合は、該分解酵素に対する阻害剤を添加してアッセイを行なってもよい。また、cAMP産生抑制などの活性については、フォルスコリンなどで細胞の基礎的産生量を増大させておいた細胞に対する産生抑制作用として検出することができる。

細胞刺激活性を測定してスクリーニングを行なうには、適当な蛋白質を発現した細胞が必要である。本発明の蛋白質等を発現した細胞としては、天然型の本発明の蛋白質等を有する細胞株、前述の組換え型蛋白質等を発現した細胞株などが望ましい。

試験化合物としては、例えば、ペプチド、タンパク、非ペプチド性化合物、合成化合物、発酵生産物、細胞抽出液、植物抽出液、動物組織抽出液などが用いられ、これら化合物は新規な化合物であってもよいし、公知の化合物であってもよい。

[0073]

, Sr

リガンドと本発明の蛋白質等との結合性を変化させる化合物またはその塩のスクリーニング用キットは、本発明の蛋白質等、本発明の蛋白質等を含有する細胞、または本発明の蛋白質等を含有する細胞の膜画分を含有するものなどである。 本発明のスクリーニング用キットの例としては、次のものが挙げられる。

1. スクリーニング用試薬

①測定用緩衝液および洗浄用緩衝液

Hanks' Balanced Salt Solution (ギブコ社製) に、0.05%のウシ血清アルブミン (シグマ社製) を加えたもの。

特平11-24153

孔径 0.45μ mのフィルターで濾過滅菌し、4 \circ で保存するか、あるいは用時調製しても良い。

②G蛋白質共役型レセプター標品

本発明の蛋白質を発現させたCHO細胞を、12穴プレートに 5×10^5 個/穴で継代し、37℃、 $5%CO_{2}$ 、95%airで2日間培養したもの。

③標識リガンド

市販の〔 3 H〕、〔 125 I〕、〔 14 C〕、〔 35 S〕などで標識したリガンド 水溶液の状態のものを 4 Cあるいは 2 CのCにて保存し、用時に測定用緩衝液にて 4 Mに希釈する。

④リガンド標準液

リガンドを0.1%ウシ血清アルブミン(シグマ社製)を含むPBSで1mM となるように溶解し、-20℃で保存する。

[0074].

2. 測定法

- ①12穴組織培養用プレートにて培養した本発明の蛋白質発現CHO細胞を、測定用緩衝液1mlで2回洗浄した後、490μlの測定用緩衝液を各穴に加える
- ② 10^{-3} ~ 10^{-10} Mの試験化合物溶液を $5\mu1$ 加えた後、標識リガンドを $5\mu1$ 加え、室温にて1時間反応させる。非特異的結合量を知るためには試験化合物の代わりに 10^{-3} Mのリガンドを $5\mu1$ 加えておく。
- ③反応液を除去し、1m1の洗浄用緩衝液で3回洗浄する。細胞に結合した標識リガンドを0.2N NaOH-1%SDSで溶解し、4m1の液体シンチレーターA (和光純薬製)と混合する。
- ④液体シンチレーションカウンター(ベックマン社製)を用いて放射活性を測定し、Percent Maximum Binding (PMB)を次の式〔数1〕で求める。

[0075]

[数1]

 $PMB = [(B-NSB) / (B_0-NSB)] \times 100$

PMB: Percent Maximum Binding

, V

B:検体を加えた時の値

NSB: Non-specific Binding (非特異的結合量)

B₀ :最大結合量

. V .

[0076]

本発明のスクリーニング方法またはスクリーニング用キットを用いて得られる化合物またはその塩は、リガンドと本発明の蛋白質等との結合性を変化させる作用を有する化合物であり、具体的には、(イ)G蛋白質共役型レセプターを介して細胞刺激活性(例えば、アラキドン酸遊離、アセチルコリン遊離、細胞内Ca²⁺遊離、細胞内cAMP生成、細胞内cGMP生成、イノシトールリン酸産生、細胞膜電位変動、細胞内蛋白質のリン酸化、c-fosの活性化、pHの低下などを促進する活性または抑制する活性など)を有する化合物(いわゆる、本発明の蛋白質に対するアゴニスト)、(ロ)該細胞刺激活性を有しない化合物(いわゆる、本発明の蛋白質に対するアンタゴニスト)、(ハ)リガンドと本発明のG蛋白質共役型蛋白質との結合力を増強する化合物、あるいは(二)リガンドと本発明のG蛋白質共役型蛋白質との結合力を減少させる化合物である。

該化合物としては、ペプチド、タンパク、非ペプチド性化合物、合成化合物、 発酵生産物などが挙げられ、これら化合物は新規な化合物であってもよいし、公 知の化合物であってもよい。

本発明の蛋白質等に対するアゴニストは、本発明の蛋白質等に対するリガンドが有する生理活性と同様の作用を有しているので、該リガンド活性に応じて安全で低毒性な医薬 [例えば、中枢疾患(例えばアルツハイマー病・痴呆・摂食障害(拒食症)・てんかんなど)、ホルモン系の疾患(例えば、微弱陣痛、弛緩出血、胎盤娩出前後、子宮復古不全、帝王切開術、人工妊娠中絶、乳汁うっ滞など)、肝/胆/膵/内分泌疾患(例えば糖尿病・摂食障害など)、炎症性疾患(アレルギー・喘息・リュウマチなど)、循環器疾患(例えば高血圧症・心肥大・狭心症・動脈硬化等)の予防および/または治療剤など]として有用である。

本発明の蛋白質等に対するアンタゴニストは、本発明の蛋白質等に対するリガンドが有する生理活性を抑制することができるので、該リガンド活性を抑制する安全で低毒性な医薬[例えば、ホルモン分泌調節薬、本発明の蛋白質等に対する

リガンドの過剰な産生によって惹起される中枢疾患、ホルモン系の疾患、肝/胆/膵/内分泌疾患(例えば抗肥満薬・摂食過剰など)、炎症性疾患、循環器疾患の予防および/または治療薬など]として有用である。

リガンドと本発明の蛋白質との結合力を減少させる化合物は、本発明の蛋白質等に対するリガンドが有する生理活性を減少させるための安全で低毒性な医薬[例えば、ホルモン分泌調節薬、本発明の蛋白質等に対するリガンドの過剰な産生によって惹起される中枢疾患、ホルモン系の疾患、肝/胆/膵/内分泌疾患(例えば抗肥満薬・摂食過剰など)、炎症性疾患、循環器疾患の予防および/または治療薬など]として有用である。

[0077]

本発明のスクリーニング方法またはスクリーニング用キットを用いて得られる 化合物またはその塩を上述の医薬組成物として使用する場合、常套手段に従って 実施することができる。例えば、前記した本発明のDNAを含有する医薬と同様 にして、錠剤、カプセル剤、エリキシル剤、マイクロカプセル剤、無菌性溶液、 懸濁液剤などとすることができる。

このようにして得られる製剤は安全で低毒性であるので、例えば、ヒトや哺乳動物 (例えば、ラット、ウサギ、ヒツジ、ブタ、ウシ、ネコ、イヌ、サルなど) に対して投与することができる。

該化合物またはその塩の投与量は、投与対象、対象臓器、症状、投与方法などにより差異はあるが、経口投与の場合、一般的に成人(60kgとして)においては、一日につき約0.1~100mg、好ましくは約1.0~50mg、より好ましくは約1.0~20mgである。非経口的に投与する場合は、その1回投与量は投与対象、対象臓器、症状、投与方法などによっても異なるが、例えば、注射剤の形では通常成人(60kgとして)においては、一日につき約0.01~30mg程度、好ましくは約0.1~20mg程度、より好ましくは約0.1~10mg程度を静脈注射により投与するのが好都合である。他の動物の場合も、60kg当たりに換算した量を投与することができる。

[0078]

(6) 本発明の蛋白質、その部分ペプチドまたはそれらの塩の定量

, *\J* ,

本発明の抗体は、本発明の蛋白質等を特異的に認識することができるので、被 検液中の本発明の蛋白質等の定量、特にサンドイッチ免疫測定法による定量など に使用することができる。すなわち、本発明は、例えば、(i)本発明の抗体と 、被検液および標識化蛋白質等とを競合的に反応させ、該抗体に結合した標識化 蛋白質等の割合を測定することを特徴とする被検液中の本発明の蛋白質等の定量 法、

(ii) 被検液と担体上に不溶化した本発明の抗体および標識化された本発明の抗体とを同時あるいは連続的に反応させたのち、不溶化担体上の標識剤の活性を測定することを特徴とする被検液中の本発明の蛋白質等の定量法を提供する。

上記(ii)においては、一方の抗体が本発明の蛋白質等のN端部を認識する抗体で、他方の抗体が本発明の蛋白質等のC端部に反応する抗体であることが好ましい。

[0079]

. .

本発明の蛋白質等に対するモノクローナル抗体(以下、本発明のモノクローナル抗体と称する場合がある)を用いて本発明の蛋白質等の測定を行なえるほか、組織染色等による検出を行なうこともできる。これらの目的には、抗体分子そのものを用いてもよく、また、抗体分子のF(ab')2、Fab'、あるいはFab 画分を用いてもよい。本発明の蛋白質等に対する抗体を用いる測定法は、特に制限されるべきものではなく、被測定液中の抗原量(例えば、蛋白質量)に対応した抗体、抗原もしくは抗体一抗原複合体の量を化学的または物理的手段により検出し、これを既知量の抗原を含む標準液を用いて作製した標準曲線より算出する測定法であれば、いずれの測定法を用いてもよい。例えば、ネフロメトリー、競合法、イムノメトリック法およびサンドイッチ法が好適に用いられるが、感度、特異性の点で、後述するサンドイッチ法を用いるのが特に好ましい。

標識物質を用いる測定法に用いられる標識剤としては、例えば、放射性同位元素、酵素、蛍光物質、発光物質などが用いられる。放射性同位元素としては、例えば、 $[^{125}\,\mathrm{I}\,]$ 、 $[^{3}\,\mathrm{H}\,]$ 、 $[^{14}\,\mathrm{C}\,]$ などが用いられる。上記酵素としては、安定で比活性の大きなものが好ましく、例えば、 β - ガラクトシダーゼ、 β - グルコシダーゼ、アルカリフォスファターゼ、パーオキシダーゼ、リン

ゴ酸脱水素酵素などが用いられる。蛍光物質としては、例えば、フルオレスカミン、フルオレッセンイソチオシアネートなどが用いられる。発光物質としては、例えば、ルミノール、ルミノール誘導体、ルシフェリン、ルシゲニンなどが用いられる。さらに、抗体あるいは抗原と標識剤との結合にビオチンーアビジン系を用いることもできる。

[0080]

抗原あるいは抗体の不溶化に当っては、物理吸着を用いてもよく、また通常、 蛋白質あるいは酵素等を不溶化、固定化するのに用いられる化学結合を用いる方 法でもよい。担体としては、例えば、アガロース、デキストラン、セルロースな どの不溶性多糖類、ポリスチレン、ポリアクリルアミド、シリコン等の合成樹脂 、あるいはガラス等が用いられる。

サンドイッチ法においては不溶化した本発明のモノクローナル抗体に被検液を 反応させ(1次反応)、さらに標識化した本発明のモノクローナル抗体を反応さ せ(2次反応)たのち、不溶化担体上の標識剤の活性を測定することにより被検 液中の本発明の蛋白質量を定量することができる。1次反応と2次反応は逆の順 序に行なっても、また、同時に行なってもよいし時間をずらして行なってもよい 。標識化剤および不溶化の方法は前記のそれらに準じることができる。

また、サンドイッチ法による免疫測定法において、固相用抗体あるいは標識用 抗体に用いられる抗体は必ずしも1種類である必要はなく、測定感度を向上させ る等の目的で2種類以上の抗体の混合物を用いてもよい。

本発明のサンドイッチ法による本発明の蛋白質等の測定法においては、1次反応と2次反応に用いられる本発明のモノクローナル抗体は本発明の蛋白質等の結合する部位が相異なる抗体が好ましく用いられる。即ち、1次反応および2次反応に用いられる抗体は、例えば、2次反応で用いられる抗体が、本発明の蛋白質のC端部を認識する場合、1次反応で用いられる抗体は、好ましくはC端部以外、例えばN端部を認識する抗体が用いられる。

[0081]

本発明のモノクローナル抗体をサンドイッチ法以外の測定システム、例えば、 競合法、イムノメトリック法あるいはネフロメトリーなどに用いることができる 。競合法では、被検液中の抗原と標識抗原とを抗体に対して競合的に反応させたのち、未反応の標識抗原と(F)と抗体と結合した標識抗原(B)とを分離し(B/F分離)、B,Fいずれかの標識量を測定し、被検液中の抗原量を定量する。本反応法には、抗体として可溶性抗体を用い、B/F分離をポリエチレングリコール、前記抗体に対する第2抗体などを用いる液相法、および、第1抗体として固相化抗体を用いるか、あるいは、第1抗体は可溶性のものを用い第2抗体として固相化抗体を用いる固相化法とが用いられる。

イムノメトリック法では、被検液中の抗原と固相化抗原とを一定量の標識化抗 体に対して競合反応させた後固相と液相を分離するか、あるいは、被検液中の抗 原と過剰量の標識化抗体とを反応させ、次に固相化抗原を加え未反応の標識化抗 体を固相に結合させたのち、固相と液相を分離する。次に、いずれかの相の標識 量を測定し被検液中の抗原量を定量する。

また、ネフロメトリーでは、ゲル内あるいは溶液中で抗原抗体反応の結果、生 じた不溶性の沈降物の量を測定する。被検液中の抗原量が僅かであり、少量の沈 降物しか得られない場合にもレーザーの散乱を利用するレーザーネフロメトリー などが好適に用いられる。

[0082]

. . .

これら個々の免疫学的測定法を本発明の測定方法に適用するにあたっては、特別の条件、操作等の設定は必要とされない。それぞれの方法における通常の条件、操作法に当業者の通常の技術的配慮を加えて本発明の蛋白質またはその塩の測定系を構築すればよい。これらの一般的な技術手段の詳細については、総説、成書などを参照することができる〔例えば、入江 寛編「ラジオイムノアッセイ〕(講談社、昭和49年発行)、入江 寛編「続ラジオイムノアッセイ〕(講談社、昭和54年発行)、石川栄治ら編「酵素免疫測定法」(医学書院、昭和53年発行)、石川栄治ら編「酵素免疫測定法」(医学書院、昭和57年発行)、石川栄治ら編「酵素免疫測定法」(第2版)(医学書院、昭和67年発行)、「メソッズ・イン・エンジモノジー(Methods in ENZYMOLOGY)」Vol. 70(Immunochemical Techniques(Part A))、同書 Vol. 73(Immunochemical Techniques(Part B))、同書 Vol. 74(Immunochemical Techniques(Part C))、同書 Vol. 75(Immunochemical Techniques(Part C))、同意 Vol. 75(Immunochemical Techniques(Part C))、可能 Vol. 75(Immunochemical Techniques(Part C))、可能 Vol. 75(Immunochemical Techniques(Part C))、可能 Vol. 75(Immunochemical Techn

. 84(Immunochemical Techniques(Part D:Selected Immunoassays))、 同書 Vol. 92(Immunochemical Techniques(Part E:Monoclonal Antibodies and General Immunoassay Methods))、 同書 Vol. 121(Immunochemical Techniques(Part I:H ybridoma Technology and Monoclonal Antibodies))(以上、アカデミックプレス社発行)など参照]。

以上のように、本発明の抗体を用いることによって、本発明の蛋白質またはその塩を感度良く定量することができる。さらに、本発明の抗体を用いて本発明の蛋白質またはその塩を定量することによって、各種疾病の診断をすることができる。

また、本発明の抗体は、体液や組織などの被検体中に存在する本発明の蛋白質等を検出するために使用することができる。また、本発明の蛋白質等を精製するために使用する抗体カラムの作製、精製時の各分画中の本発明の蛋白質等の検出、被検細胞内における本発明の蛋白質の挙動の分析などのために使用することができる。

[0083]

(7) 本発明のG蛋白質共役型蛋白質をコードするDNAを有する非ヒト動物の作製

本発明のDNAを用いて、本発明の蛋白質等を発現するトランスジェニック非ヒト動物を作製することができる。非ヒト動物としては、哺乳動物(例えば、ラット、マウス、ウサギ、ヒツジ、ブタ、ウシ、ネコ、イヌ、サルなど)など(以下、動物と略記する)が挙げれるが、特に、マウス、ウサギなどが好適である。

本発明のDNAを対象動物に転移させるにあたっては、該DNAを動物細胞で発現させうるプロモーターの下流に結合した遺伝子コンストラクトとして用いるのが一般に有利である。例えば、ウサギ由来の本発明のDNAを転移させる場合、これと相同性が高い動物由来の本発明のDNAを動物細胞で発現させうる各種プロモーターの下流に結合した遺伝子コンストラクトを、例えば、ウサギ受精卵へマイクロインジェクションすることによって本発明の蛋白質等を高産生するDNA転移動物を作出できる。このプロモーターとしては、例えば、ウイルス由来プロモーター、メタロチオネイン等のユビキアスな発現プロモーターも使用しう

59

るが、好ましくは脳で特異的に発現するNGF遺伝子プロモーターやエノラーゼ 遺伝子プロモーターなどが用いられる。

[0084]

. .

受精卵細胞段階における本発明のDNAの転移は、対象動物の胚芽細胞および体細胞の全てに存在するように確保される。DNA転移後の作出動物の胚芽細胞において本発明の蛋白質等が存在することは、作出動物の子孫が全てその胚芽細胞及び体細胞の全てに本発明の蛋白質等を有することを意味する。遺伝子を受け継いだこの種の動物の子孫はその胚芽細胞および体細胞の全てに本発明の蛋白質等を有する。

本発明のDNA転移動物は、交配により遺伝子を安定に保持することを確認して、該DNA保有動物として通常の飼育環境で飼育継代を行うことができる。さらに、目的DNAを保有する雌雄の動物を交配することにより、導入遺伝子を相同染色体の両方に持つホモザイゴート動物を取得し、この雌雄の動物を交配することによりすべての子孫が該DNAを有するように繁殖継代することができる。

本発明のDNAが転移された動物は、本発明の蛋白質等が高発現させられているので、本発明の蛋白質等に対するアゴニストまたはアンタゴニストのスクリーニング用の動物などとして有用である。

本発明のDNA転移動物を、組織培養のための細胞源として使用することもできる。例えば、本発明のDNA転移マウスの組織中のDNAもしくはRNAを直接分析するか、あるいは遺伝子により発現された本発明の蛋白質が存在する組織を分析することにより、本発明の蛋白質等について分析することができる。本発明の蛋白質等を有する組織の細胞を標準組織培養技術により培養し、これらを使用して、例えば、脳や末梢組織由来のような一般に培養困難な組織からの細胞の機能を研究することができる。また、その細胞を用いることにより、例えば、各種組織の機能を高めるような医薬の選択も可能である。また、高発現細胞株があれば、そこから、本発明の蛋白質等を単離精製することも可能である。

[0085]

本明細書および図面において、塩基やアミノ酸などを略号で表示する場合、 I UPAC-IUB Commission on Biochemical Nomenclature による略号あるい

特平11-24153

は当該分野における慣用略号に基づくものであり、その例を下記する。またアミノ酸に関し光学異性体があり得る場合は、特に明示しなければL体を示すものとする。

DNA : デオキシリボ核酸

c D N A : 相補的デオキシリボ核酸

A:アデニン

T: チミン

G : グアニン

C:シトシン

RNA :リボ核酸

mRNA :メッセンジャーリボ核酸

dATP :デオキシアデノシン三リン酸

d T T P : デオキシチミジン三リン酸

dGTP:デオキシグアノシン三リン酸

dCTP:デオキシシチジン三リン酸

ATP : アデノシン三リン酸

EDTA :エチレンジアミン四酢酸

SDS : ドデシル硫酸ナトリウム

[0086]

Gly : グリシン

Ala:アラニン

Val :バリン

Leu :ロイシン

Ile :イソロイシン

Ser :セリン

Thr ___ : スレオニン

Cys :システイン

Met :メチオニン

Glu :グルタミン酸

特平11-241531

: アスパラギン酸 Asp : リジン Lys ・・アルギニン Arg :ヒスチジン His Phe :フェニルアラニン Tyr: チロシン Trp: トリプトファン Pro:プロリン : アスパラギン Asn :グルタミン G1n : ピログルタミン酸 pGlu Tos :p-トルエンスルフォニル :ホルミル CHO :ベンジル Bz1Cl₂Bzl :2,6-ジクロロベンジル :ベンジルオキシメチル BomZ : ベンジルオキシカルボニル :2-クロロベンジルオキシカルボニル C1-Z:2-ブロモベンジルオキシカルボニル Br-Z: t ーブトキシカルボニル Вос : ジニトロフェノール DNP Trt: トリチル :t-ブトキシメチル Bum : N – 9 – フルオレニルメトキシカルボニル Fmoc :1-ヒドロキシベンズトリアゾール HOBt :3,4-ジヒドロ-3-ヒドロキシ-4-オキソー HOOBt 1,2,3-ベンゾトリアジン :1-ヒドロキシ-5-ノルボルネン-2,3-ジカルボキシイミド HONB

: N、N'ージシクロヘキシルカルボジイミド

DCC

[0087]

本明細書の配列表の配列番号は、以下の配列を示す。

〔配列番号:1〕

本発明のヒト脳由来蛋白質のアミノ酸配列を示す。

〔配列番号:2〕

配列番号:1で表わされるアミノ酸配列を有する本発明のヒト脳由来蛋白質を コードするDNAの塩基配列を示す(ZAQC)。

〔配列番号:3〕

配列番号:1で表わされるアミノ酸配列を有する本発明のヒト脳由来蛋白質を コードするDNAの塩基配列を示す(ZAQT)。

〔配列番号:4〕

後述の実施例1で用いられたプライマー1の塩基配列を示す。

〔配列番号:5〕

後述の実施例1で用いられたプライマー2の塩基配列を示す。

[0088]

後述の実施例1で得られた形質転換体エシェリヒア コリ (Escherichia coli)DH5 α/pCR2. 1-ZAQCは、平成11年8月23日から通商産業省工業技術院生命工学工業技術研究所 (NIBH) に寄託番号FERM BP-6855として、平成11年8月4日から財団法人・発酵研究所 (IFO) に寄託番号IFO 16301として寄託されている。

後述の実施例1で得られた形質転換体エシェリヒア コリ (Escherichia coli) DH5 α/pCR2. 1-ZAQTは、平成11年8月23日から通商産業省工業技術院生命工学工業技術研究所 (NIBH) に寄託番号FERM BP-6856として、平成11年8月4日から財団法人・発酵研究所 (IFO) に寄託番号IFO 16302として寄託されている。

[0089]

【実施例】

以下に実施例を示して、本発明をより詳細に説明するが、これらは本発明の範囲を限定するものではない。なお、大腸菌を用いての遺伝子操作法は、モレキュ

ラー・クローニング (Molecular cloning) に記載されている方法に従った。 【0090】

実施例1 G蛋白質共役型レセプター蛋白質ZAQをコードする c DNAのクローニングと塩基配列の決定

ヒト脳下垂体 c D N A (C L O N T E C H 社) を鋳型とし、2個のプライマー 、プライマー1 (5'- GTC GAC ATG GAG ACC ACC ATG GGG TTC ATG G -3';配列番号:4)及びプライマー2(5'- ACT AGT TTA TTT TAG TCT GAT GCA GTC CAC CTC TTC -3';配列番号:5)を用いてPCR反応を 行った。該反応における反応液の組成は上記cDNAの10分の1量を鋳型とし て使用し、Advantage2 Polymerase Mix (CLONTECH社) 1/50量、 プライマー1及びプライマー2を各0.2μM, dNTPs 200μM、及び酵素に添付の バッファーを加え、25µ1の液量とした。PCR反応は、94℃・2分の後、9 4℃・20秒、72℃・100秒のサイクルを3回、94℃・20秒、68℃・ 100秒のサイクルを3回、94℃・20秒、64℃・20秒、68℃・100 秒のサイクルを38回繰り返し、最後に68℃・7分の伸長反応を行った。該P CR反応後の反応産物をTAクローニングキット(Invitrogen社)の処方に従い プラスミドベクターpCR2.1 (Invitrogen社) ヘサブクローニングした。これを大 腸菌DH5αに導入し、cDNAをもつクローンをアンピシリンを含むLB寒天 培地中で選択した後、個々のクローンの配列を解析した結果、新規G蛋白質共役 型レセプター蛋白質をコードする2種類のcDNA配列ZAQC(配列番号:2)及びZAQT(配列番号:3)を得た。このcDNAより導き出されるアミノ 酸配列を有する蛋白質はいずれも同一配列(配列番号:1)を有したためZAQ と命名し、配列番号:2で表されるDNAを含有する形質転換体を大腸菌(Esch erichia coli) DH5 α/pCR2.1-ZAQCならびに配列番号:3で表されるDNAを含 有する形質転換体を大腸菌DH5α/pCR2.1-ZAQTと命名した。

[0091]

【発明の効果】

. . .

本発明の蛋白質、その部分ペプチドまたはそれらの塩、およびそれらをコードするDNAは、①リガンド(アゴニスト)の決定、②抗体および抗血清の入手、

③組み替え型蛋白質の発現系の構築、④同発現系を用いたレセプター結合アッセイ系の開発と医薬品候補化合物のスクリーニング、⑤構造的に類似したリガンド・レセプターとの比較にもとづいたドラッグデザインの実施、⑥遺伝子診断におけるプローブやPCRプライマーの作成のための試薬、⑦トランスジェニック動物の作製または⑧遺伝子予防・治療剤等の医薬等として用いることができる。

[0092]

【配列表】

[SEQUENCE LISTING]

<110> Takeda Chemical Industries, Ltd.

<120> Novel G Protein Coupled Receptor Protein and Its Use

<130> A99166

<160> 5

<210> 1

⟨211⟩ 393

<212> PRT

<213> Human

<400> 1

Met Glu Thr Thr Met Gly Phe Met Asp Asp Asn Ala Thr Asn Thr Ser

5 10 15

Thr Ser Phe Leu Ser Val Leu Asn Pro His Gly Ala His Ala Thr Ser

20 25 30

Phe Pro Phe Asn Phe Ser Tyr Ser Asp Tyr Asp Met Pro Leu Asp Glu

35 40 45

Asp Glu Asp Val Thr Asn Ser Arg Thr Phe Phe Ala Ala Lys Ile Val

50 55 60

Ile Gly Met Ala Leu Val Gly Ile Met Leu Val Cys Gly Ile Gly Asn

65 70 75 80

Phe Ile Phe Ile Ala Ala Leu Val Arg Tyr Lys Lys Leu Arg Asn Leu

85 90 95

Thr	Asn	Leu	Leu	Ile	Ala	Asn	Leu	Ala	Ile	Ser	Asp	Phe	Leu	Val	Ala
			100					105					110		
Ile	Val	Cys	Cys	Pro	Phe	Glu	Met	Asp	Tyr	Tyr	Val	Val	Arg	Gln	Leu
		115					120					125			
Ser	Trp	Glu	His	Gly	His	Val	Leu	Cys	Thr	Ser	Val	Asn	Tyr	Leu	Arg
	130					135					140				
Thr	Val	Ser	Leu	Tyr	Val	Ser	Thr	Asn	Ala	Leu	Leu	Ala	Ile	Ala	Ile
145					150					155					160
Asp	Arg	Tyr	Leu	Ala	Ile	Val	His	Pro	Leu	Arg	Pro	Arg	Met	Lys	Cys
		-		165					170					175	
Gln	Thr	Ala	Thr	Gly	Leu	Ile	Ala	Leu	Val	Trp	Thr	Val	Ser	Ile	Leu
			180					185					190		
Ile	Ala	Ile	Pro	Ser	Ala	Tyr	Phe	Thr	Thr	Glu	Thr	Val	Leu	Val	Ile
		195					200					205			
Val	Lys	Ser	Gln	Glu	Lys	Ile	Phe	Cys	Gly	Gln	Ile	Trp	Pro	Val	Asp
	210					215					220				
Gln	Gln	Leu	Tyr	Tyr	Lys	Ser	Tyr	Phe	Leu	Phe	Ile	Phe	Gly	Ile	Glu
225					230					235					240
Phe	Val	Gly	Pro	Val	Val	Thr	Met	Thr	Leu	Cys	Tyr	Ala	Arg	Ile	Ser
				245					250					255	
Arg	Glu	Leu	Trp	Phe	Lys	Ala	Val	Pro	Gly	Phe	Gln	Thr	Glu	Gln	Ile
			260					265					270		
Arg	Lys	Arg	Leu	Arg	Cys	Arg	Arg	Lys	Thr	Val	Leu	Val	Leu	Met	Cys
		275					280					285			
Ile	Leu	Thr	Ala	Tyr	Val	Leu	Cys	Trp	Ala	Pro	Phe	Tyr	Gly	Phe	Thr
	290					295					300				
Ile	Val	Arg	Asp	Phe	Phe	Pro	Thr	Val	Phe	Val	Lys	Glu	Lys	His	Tyr
305					310					315					320
Leu	Thr	Ala	Phe	Tyr	Ile	Val	Glu	Cys	Ile	Ala	Met	Ser	Asn	Ser	Met

特平11-24153

32	25	330		335
Ile Asn Thr Leu Cy	s Phe Val Thr	Val Lys Asn	Asp Thr Val	Lys Tyr
340		345	350	
Phe Lys Lys Ile Me	et Leu Leu His	Trp Lys Ala	Ser Tyr Asn	Gly Gly
355	360		365	
Lys Ser Ser Ala As	sp Leu Asp Leu	Lys Thr Ile	Gly Met Pro	Ala Thr
370	375	į	380	
Glu Glu Val Asp Cy	s Ile Arg Leu	Lys		
385	390			
<210> 2				
<211> 1179				
<212> DNA				
<213> Human				
<400> 2				
ATGGAGACCA CCATGGG	GTT CATGGATGAC	AATGCCACCA A	ACACTTCCAC C	AGCTTCCTT 60
TCTGTGCTCA ACCCTCA	TGG AGCCCATGCC	ACTTCCTTCC (CATTCAACTT C	AGCTACAGC 120
GACTATGATA TGCCTTT	GGA TGAAGATGAG	GATGTGACCA A	ATTCCAGGAC G	TTCTTTGCT 180
GCCAAGATTG TCATTGG	GAT GGCCCTGGTG	GGCATCATGC 1	rggtctgcgg c	ATTGGAAAC 240
TTCATCTTTA TCGCTGC	CCT GGTCCGCTAC	AAGAAACTGC C	GCAACCTCAC C	AACCTGCTC 300
ATCGCCAACC TGGCCAT	CTC TGACTTCCTG	GTGGCCATTG T	CTGCTGCCC C	TTTGAGATG 360
GACTACTATG TGGTGCG	CCA GCTCTCCTGG	GAGCACGGCC A	CCTCCTGTG C	ACCTCTGTC 420
AACTACCTGC GCACTGT	CTC TCTCTATGTC	TCCACCAATG C	CCTGCTGGC C	ATCGCCATT 480
GACAGGTATC TGGCTAT	IGT CCATCCGCTG	AGACCACGGA T	GAAGTGCCA A	ACAGCCACT 540
GGCCTGATTG CCTTGGT	GTG GACGGTGTCC	ATCCTGATCG C	CATCCCTTC CO	GCCTACTTC 600
ACCACCGAGA CGGTCCTC	CGT CATTGTCAAG	AGCCAGGAAA A	GATCTTCTG CO	GGCCAGATC 660
TGGCCTGTGG ACCAGCAG	GCT CTACTACAAG	TCCTACTTCC T	CTTTATCTT TO	GGCATAGAA 720
TTCGTGGGCC CCGTGGTC	CAC CATGACCCTG	TGCTATGCCA G	GATCTCCCG GO	GAGCTCTGG 780
TTCAAGGCGG TCCCTGGA	ATT CCAGACAGAG	CAGATCCGCA A	GAGGCTGCG CT	rgccgcagg 840

AAGACGGTCC TGGTGCTCAT GTGCATCCTC ACCGCCTACG TGCTATGCTG GGCGCCCTTC 900

特平11-241531

TACGGCTTCA CCATCGTGCG CGACTTCTTC CCCACCGTGT TCGTGAAGGA GAAGCACTAC 960
CTCACTGCCT TCTACATCGT CGAGTGCATC GCCATGAGCA ACAGCATGAT CAACACTCTG 1020
TGCTTCGTGA CCGTCAAGAA CGACACCGTC AAGTACTTCA AAAAGATCAT GTTGCTCCAC 1080
TGGAAGGCTT CTTACAATGG CGGTAAGTCC AGTGCAGACC TGGACCTCAA GACAATTGGG 1140
ATGCCTGCCA CCGAAGAGGT GGACTGCATC AGACTAAAA 1179

<210> 3

<211> 1179

<212> DNA

<213> Human

<400> 3

ATGGAGACCA CCATGGGGTT CATGGATGAC AATGCCACCA ACACTTCCAC CAGCTTCCTT 60 TCTGTGCTCA ACCCTCATGG AGCCCATGCC ACTTCCTTCC CATTCAACTT CAGCTACAGC 120 GACTATGATA TGCCTTTGGA TGAAGATGAG GATGTGACCA ATTCCAGGAC GTTCTTTGCT. 180 GCCAAGATTG TCATTGGGAT GGCCCTGGTG GGCATCATGC TGGTCTGCGG CATTGGAAAC 240 TTCATCTTTA TCGCTGCCCT GGTCCGCTAC AAGAAACTGC GCAACCTCAC CAACCTGCTC 300 ATCGCCAACC TGGCCATCTC TGACTTCCTG GTGGCCATTG TCTGCTGCCC CTTTGAGATG 360 GACTACTATG TGGTGCGCCA GCTCTCCTGG GAGCACGGCC ACGTCCTGTG CACCTCTGTC 420 AACTACCTGC GCACTGTCTC TCTCTATGTC TCCACCAATG CCCTGCTGGC CATCGCCATT 480 GACAGGTATC TGGCTATTGT CCATCCGCTG AGACCACGGA TGAAGTGCCA AACAGCCACT 540 GGCCTGATTG CCTTGGTGTG GACGGTGTCC ATCCTGATCG CCATCCCTTC CGCCTACTTC 600 ACCACCGAGA CGGTCCTCGT CATTGTCAAG AGCCAGGAAA AGATCTTCTG CGGCCAGATC 660 TGGCCTGTGG ACCAGCAGCT CTACTACAAG TCCTACTTCC TCTTTATCTT TGGCATAGAA 720 TTCGTGGGCC CCGTGGTCAC CATGACCCTG TGCTATGCCA GGATCTCCCG GGAGCTCTGG 780 TTCAAGGCGG TCCCTGGATT CCAGACAGAG CAGATCCGCA AGAGGCTGCG CTGCCGCAGG 840 AAGACGGTCC TGGTGCTCAT GTGCATCCTC ACCGCCTACG TGCTATGCTG GGCGCCCTTC 900 TACGGCTTCA CCATCGTGCG CGACTTCTTC CCCACCGTGT TTGTGAAGGA GAAGCACTAC 960 CTCACTGCCT TCTACATCGT CGAGTGCATC GCCATGAGCA ACAGCATGAT CAACACTCTG 1020 TGCTTCGTGA CCGTCAAGAA CGACACCGTC AAGTACTTCA AAAAGATCAT GTTGCTCCAC 1080 TGGAAGGCTT CTTACAATGG CGGTAAGTCC AGTGCAGACC TGGACCTCAA GACAATTGGG 1140

19-11 24133

ATGCCTGCCA CCGAAGAGGT GGACTGCATC AGACTAAAA

1179

<210> 4

⟨211⟩ 31

<212> DNA

<213> Artificial Sequence

<220>

<223>

<400> 4

GTCGACATGG AGACCACCAT GGGGTTCATG G

31

<210> 5

<211> 36

<212> DNA

<213> Artificial Sequence

<220>

<223>

<400> 5

ACTAGTTTAT TTTAGTCTGA TGCAGTCCAC CTCTTC

36

[0093]

【図面の簡単な説明】

- 【図1】実施例1で得られた本発明のヒト脳由来蛋白質をコードするDNAの塩基配列(ZAQC)、およびそれから推定されるアミノ酸配列を示す(図2に続く)。
- 【図2】実施例1で得られた本発明のヒト脳由来蛋白質をコードするDNAの塩 基配列(ZAQC)、およびそれから推定されるアミノ酸配列を示す(図1の続き、図3に続く)。
- 【図3】実施例1で得られた本発明のヒト脳由来蛋白質をコードするDNAの塩 基配列(ZAQC)、およびそれから推定されるアミノ酸配列を示す(図2の続き)。

- 【図4】実施例1で得られた本発明のヒト脳由来蛋白質をコードするDNAの塩基配列(ZAQT)、およびそれから推定されるアミノ酸配列を示す(図5に続く)。
- 【図5】実施例1で得られた本発明のヒト脳由来蛋白質をコードするDNAの塩基配列(ZAQT)、およびそれから推定されるアミノ酸配列を示す(図4の続き、図6に続く)。
- 【図6】実施例1で得られた本発明のヒト脳由来蛋白質をコードするDNAの塩 基配列(ZAQT)、およびそれから推定されるアミノ酸配列を示す(図5の続き)。
- 【図7】本発明のヒト脳由来蛋白質の疎水性プロットを示す。

【書類名】図面

【図1】

10 20 30 40 50 60
ATGGAGACCACCATGGGGTTCATGGATGACAATGCCACCACACACTTCCACCAGCTTCCTT

M E T T M G F M D D N A T N T S T S F L

130 140 150 160 170 180

GACTATGATATGCCTTTGGATGAAGATGAGGATGTGACCAATTCCAGGACGTTCTTTGCT

D Y D M P L D E D E D V T N S R T F F A

190 200 210 220 230 240 GCCAAGATTGTCATTGGGATGGCCCTGGTGGGCATCATGCTGGTCTGCGGCATTGGAAAC A K I V I G M A L V G I M L V C G I G N

250 260 270 280 290 300 TTCATCTTTATCGCTGCCCTGGTCCGCTACAAGAAACTGCGCAACCTCACCAACCTGCTC F I F I A A L V R Y K K L R N L T N L L

310 320 330 340 350 360
ATCGCCAACCTGGCCATCTCCTGACTTCCTGGTGGCCATTGTCTGCCCCCTTTGAGATG
I A N L A I S D F L V A I V C C P F E M

370 380 390 400 410 420 GACTACTATGTGGGGCCAGCTCTCCTGGGAGCACGCCACGTCCTGTGCACCTCTGTC

D Y Y V V R Q L S W E H G H V L C T S V

【図2】

- 430 440 450 460 470 480
 AACTACCTGCGCACTGTCTCTCTCTGTCTCCACCAATGCCCTGCTGGCCATCGCCATT
 N Y L R T V S L Y V S T N A L L A I A I
- 490 500 510 520 530 540 GACAGGTATCTGGCTATTGTCCATCCGCTGAGACCACGGATGAAGTGCCAAACAGCCACT D R Y L A I V H P L R P R M K C Q T A T
- 550 560 570 580 590 600
 GGCCTGATTGCCTTGGTGGACGGTGTCCATCCTGATCGCCATCCCTTCCGCCTACTTC
 G L I A L V W T V S I L I A · I P S A Y F
- 610 620 630 640 650 660 ACCACCGAGACGTCCTCGTCATTGTCAAGAGCCAGGAAAAGATCTTCTGCGGCCAGATC T T E T V L V I V K S Q E K I F C G Q I
- TGGCCTGTGGACCAGCAGCTCTACTACAAGTCCTACTTCCTCTTTATCTTTGGCATAGAA

 W P V D Q Q L Y Y K S Y F L F I F G I E
- 730 740 750 760 770 780
 TTCGTGGGCCCCGTGGTCACCATGACCCTGTGCTATGCCAGGATCTCCCGGGAGCTCTGG
 F V G P V V T M T L C Y A R I S R E L W
- 790 800 810 820 830 840 TTCAAGGCGGTCCCTGGATTCCAGACAGAGCAGATCCGCAAGAGGCTGCGCTGCCGCAGG F K A V P G F Q T E Q I R K R L R C R R
- 850 860 870 880 890 900

 AAGACGGTCCTGGTGCTCATGTGCATCCTCACCGCCTACGTGCTATGCTGGGCGCCCCTTC

 K T V L V L M C I L T A Y V L C W A P F

【図3】

910 920 930 940 950 960
TACGGCTTCACCATCGTGCGCGACTTCTTCCCCACCGTGTTCGTGAAGGAGAAGCACTAC
Y G F T I V R D F F P T V F V K E K H Y

970 980 990 1000 1010 1020 CTCACTGCCTTCTACATCGTCGAGTGCATCGCCATGAGCAACAGCATGATCAACACTCTG L T A F Y I V E C I A M S N S M I N T L

1030 1040 1050 1060 1070 1080
TGCTTCGTGACCGTCAAGAACGACACCGTCAAGTACTTCAAAAAGATCATGTTGCTCCAC
C F V T V K N D T V K Y F K K I M L L H

1090 1100 1110 1120 1130 1140
TGGAAGGCTTCTTACAATGGCGGTAAGTCCAGTGCAGACCTGGACCTCAAGACAATTGGG
W K A S Y N G G K S S A D L D L K T I G

1150 1160 1170 1180 1190
ATGCCTGCCACCGAAGAGGTGGACTGCATCAGACTAAAATAA
M P A T E E V D C I R L K *

【図4】

10 20 30 40 50 60
ATGGAGACCACCATGGGGTTCATGGATGACAATGCCACCAACACTTCCACCAGCTTCCTT
M E T T M G F M D D N A T N T S T S F L

130 140 150 160 170 180
GACTATGATATGCCTTTGGATGAAGATGAGGATGTGACCAATTCCAGGACGTTCTTTGCT
D Y D M P L D E D E D V T N S R T F F A

190 200 210 220 230 240 GCCAAGATTGTCATTGGGATGGCCCTGGTGGGCATCATGCTGGTCTGCGGCATTGGAAAC A K I V I G M A L V G I M L V C G I G N

250 260 270 280 290 300
TTCATCTTTATCGCTGCCCTGGTCCGCTACAAGAAACTGCGCAACCTCACCAACCTGCTC
F I F I A A L V R Y K K L R N L T N L L

310 320 330 340 350 360 ATCGCCAACCTGGCCATCTCTGACTTCCTGGTGGCCATTGTCTGCCCCCTTTGAGATG

370 380 390 400 410 420 GACTACTATGTGGTGCGCCAGCTCTCTGGGAGCACGGCCACGTCCTGTGCACCTCTGTC

D Y Y V V R Q L S W E H G H V L C T S V

【図5】

- 430 440 450 460 470 480

 AACTACCTGCGCACTGTCTCTCTATGTCTCCACCAATGCCCTGCTGGCCATCGCCATT

 N Y L R T V S L Y V S T N A L L A I A I
- 490 500 510 520 530 540 GACAGGTATCTGGCTATTGTCCATCCGCTGAGACCACGGATGAAGTGCCAAACAGCCACT D R Y L A I V H P L R P R M K C Q T A T
- 550 560 570 580 590 600

 GGCCTGATTGCCTTGGTGTGGACGGTGTCCATCCTGATCGCCATCCCTTCCGCCTACTTC

 G L I A L V W T V S I L I A I P S A Y F
- 610 620 630 640 650 660

 ACCACCGAGACGTCCTCGTCATTGTCAAGAGCCAGGAAAAGATCTTCTGCGGCCAGATC

 T T E T V L V I V K S Q E K I F C G Q I
- 670 680 690 700 710 720
 TGGCCTGTGGACCAGCAGCTCTACTACAAGTCCTACTTCCTCTTTATCTTTGGCATAGAA
 W P V D Q Q L Y Y K S Y F L F I F G I E
- 730 740 750 760 770 780
 TTCSTGGGCCCCGTGGTCACCATGACCCTGTGCTATGCCAGGATCTCCCGGGAGCTCTGG
 F V G P V V T M T L C Y A R I S R E L W
- 790 800 810 820 830 840
 TTCAAGGCGGTCCCTGGATTCCAGACAGAGCAGATCCGCAAGAGGCTGCGCTGCCGCAGG
 F K A V P G F Q T E Q I R K R L R C R R
- 850 860 870 880 890 900

 AAGACGGTCCTGGTGCTCATGTGCATCCTCACCGCCTACGTGCTATGCTGGGCGCCCTTC

 K T V L V L M C I L T A Y V L C W A P F

【図6】

910 920 930 940 950 960 TACGGCTTCACCATCGTGCGCGACTTCTTCCCCACCGTGTTTGTGAAGGAGAAGCACTAC

YGFTIVRDFFPTVFVKEKHY

970 980 990 1000 1010 1020 CTCACTGCCTTCTACATCGTCGAGTGCATCGCCATGAGCAACAGCATGATCAACACTCTG

1030 1040 1050 1060 1070 1080 TGCTTCGTGACCGTCAAGAACGACCCGTCAAGTACTTCAAAAAGATCATGTTGCTCCAC C F V T V K N D T V K Y F K K I M L L H

1090 1100 1110 1120 1130 1140
TGGAAGGCTTCTTACAATGGCGGTAAGTCCAGTGCAGACCTGGACCTCAAGACAATTGGG
W K A S Y N G G K S S A D L D L K T I G

1150 1160 1170 1180 1190
ATGCCTGCCACCGAAGAGGTGGACTGCATCAGACTAAAATAA

M P A T E E V D C I R L K *

【書類名】要約書

【要約】

【課題】アゴニスト/アンタゴニストのスクリーニング等に有用な新規蛋白質の 提供。

【解決手段】ヒト由来の蛋白質、その部分ペプチドまたはそれらの塩、該蛋白質をコードするDNA、該蛋白質をコードする塩基配列に対するアンチセンス配列を持つDNA、該蛋白質の製造法、該蛋白質に対するリガンドの決定方法、リガンドと該蛋白質との結合性を変化させる化合物のスクリーニング方法/スクリーニング用キット、該スクリーニングで得られる化合物またはその塩、該G蛋白質共役型レセプター蛋白質に対する抗体など。

【効果】本発明のヒト由来の蛋白質またはそれをコードするDNAは、(1)本発明の蛋白質に対するリガンド(アゴニスト)の決定、(2)本発明の蛋白質の機能不全に関連する疾患の予防および/または治療剤、(3)遺伝子診断剤、(4)本発明の蛋白質に対するリガンドの定量、(5)本発明の蛋白質とリガンドとの結合性を変化させる化合物(アゴニスト、アンタゴニストなど)のスクリーニング、(6)本発明の蛋白質とリガンドとの結合性を変化させる化合物(アゴニスト、アンタゴニスト)を含有する各種疾病の予防および/または治療剤、(7)本発明の蛋白質、その部分ペプチドまたはそれらの塩の定量、(8)本発明の蛋白質、その部分ペプチドまたはそれらの塩に対する抗体による中和、(9)本発明の蛋白質をコードするDNAを有する非ヒト動物の作製などに用いることができる。

【選択図】なし

出願人履歴情報

識別番号

[000002934]

1. 変更年月日

1992年 1月22日

[変更理由]

住所変更

住 所

大阪府大阪市中央区道修町四丁目1番1号

氏 名

武田薬品工業株式会社