CLAIMS

What is claimed is:

1	1. A system, comprising:
2	a finite state machine operating within a portable thread environment;
3	and
4	one or more PTE message generators configured to pass event
5	information contained in PTE messages to the finite state machine, wherein the
6	finite state machine changes states according to the event information.
1	2. The system of claim 1, wherein the event information comprises one
2	or more events passed to a thread and a present state of the finite state machine.
1	3. The system of claim 2, wherein the finite state machine comprises:
2	a message interpreter configured to accept the PTE messages; wherein the
3	interpreter maps the messages to actions using the look-up table.
1	4. The system of claim 3, wherein the finite state machine further
2	comprises:
3	a storage device for storing the one or more actions.
1	5. The system of claim 4, wherein the finite state machine further

a state changer configured to change the state of the finite state machine

based upon event information and the previous state of the finite state machine.

comprises:

2

3

4

1	6. A method comprising:
2	receiving PTE messages by a finite state machine in a portable thread
3	environment, wherein the messages contain event information;
4	mapping the state transition information with actions stored in a storage
5	device; and
6	changing from a first state to a second state based upon the first state and
7	the event information.
1	7. The method of claim 6, wherein the finite state machine stays in the
2	first state based upon the first state and the actions.
	o III
1	8. The method of claim 7, further comprising:
2	generating state machine events relating to the state of the finite state
3	machine.
1	9. The method of claim 8, further comprising:
2	distributing the state machine events between one or more threads in the
3	portable thread environment.
1	10. The method as in claim 9, further comprising:
2	distributing the state machine events between one or more threads in the
3	portable thread environment and a second portable thread environment.
1	11. A system, comprising:
2	means for receiving PTE messages by a finite state machine in a portable

SKD 30 04939.P006

thread environment, wherein the messages contain event information;

4	means for mapping the event information with actions stored in a storage
5	device; and
6	means for changing from a first state to a second state based upon the first
7	state and the event.
1	12. The system of claim 11, wherein the finite state machine stays in the
2	first state based upon the first state and the event.
1	13. The system of claim 12, further comprising:
2	means for generating state machine events indicating a state of the finite
3	state machine.
1	14. The system of claim 13, further comprising:
2	means for distributing the state machine events between one or more
3	threads in the portable thread environment.
1	15. The system of claim 14, further comprising:
2	means for distributing the state machine events between one or more
3	threads in the portable thread environment and a second portable thread
4	environment.
1	16. A computer-readable medium having stored thereon a plurality of
2	instructions, said plurality of instructions when executed by a computer, cause
3	said computer to perform:
4	receiving PTE messages by a finite state machine in a portable thread
5	environment, wherein the messages contain event information;

SKD 31 04939.P006

6	mapping the event information with actions stored in a storage device;
7	and
8	changing from a first state to a second state based upon the first state and
9	the event.
1	17. The computer-readable medium of claim 16, wherein the finite state
2	machine stays in the first state based upon the first state and the events.
1	1
1	18. The computer-readable medium of claim 17 having stored thereon
2	additional instructions, said additional instructions when executed by a
3	computer, cause said computer to further perform:
4	generating state machine events indicating a state of the finite state
5	machine.
1	•
1	19. The computer-readable medium of claim 18 having stored thereon
2	additional instructions, said additional instructions when executed by a
3	computer, cause said computer to further perform:
4	distributing the state machine events between one or more threads in the
5	portable thread environment.
1.	
l	20. The computer-readable medium of claim 19 having stored thereon
2	additional instructions, said additional instructions when executed by a
3	computer, cause said computer to further perform:
4	distributing the state machine events between one or more threads in the
5	portable thread environment and a second portable thread environment.

SKD 32 04939.P006