Introduction to Apache Spark

pm jat @ daiict

What is Spark - recap

- Following are two main revolutionary features that make
 Spark a amazing solution for cluster computing
 - "In Memory", "Distributed", "Fault Tolerant" collection of objects (called as RDD)
 - Simple Programming Abstractions;
- Spark offers a revolutionary programming paradigm that makes distributed programming like a desktop programming

Resilient Distributed Dataset (RDD) - recap

- The main abstraction in Spark is Resilient Distributed Dataset (RDD)
- RDD are collection of distributed, fault tolerant "object collection" partitioned across a set of machines. (Note that "Object collection" here is "in memory")
- A simple analogy; a "Distributed, Fault Tolerant Array List"
- RDD objects can explicitly be cached in memory, and reused in consequent calls. This "in memory" processing is what makes Spark, amazing fast!
- For Fault Tolerance; RDD objects themselves are not replicated, but maintain information that a partition can be rebuilt if a node fails

Resilient Distributed Dataset (RDD) - recap

- Characteristics of RDD:
 - a read-only,
 - partitioned collection of records.
 - Fault tolerant
 - Lazily evaluated
 - Can be cached
- RDDs can only be created by:
 - (1) by reading from data file,
 - (2) distributing (parallelization) a local collection to multiple nodes,
 - (3) by applying a "transformations" on existing rdd

Operations on RDDs

- Operations
 - Transformations, and
 - Actions
- Recall: <u>RDDs are immutable (read only)</u>, that is any operation does not change content of an RDD but generates new RDD or some value.

RDD Transformations and Actions

Operations on RDDs

- Transformations
 - map, filter, reduce, group-by, and join
- Actions
 - count (which returns the number of elements in the dataset),
 - collect (which returns the elements themselves), and
 - save (which saves on storage)
- Other operations
 - Persistence/Caching, and
 - "Partitioning"

RDD Transformations^[4]

- Transformations create a new RDD, and are "lazy operations";
 i.e. computed only when required!
- Some of the may require shuffling of data: like reducebyKey, partition, sort, join etc.

```
map(f:T\Rightarrow U) : RDD[T]\Rightarrow RDD[U]
          filter(f: T \Rightarrow Bool) : RDD[T] \Rightarrow RDD[T]
     flatMap(f : T \Rightarrow Seq[U]) : RDD[T] \Rightarrow RDD[U]
      sample(fraction : Float) : RDD[T] \Rightarrow RDD[T] (Deterministic sampling)
                groupByKey() : RDD[(K, V)] \Rightarrow RDD[(K, Seq[V])]
reduceByKey(f:(V,V) \Rightarrow V) : RDD[(K,V)] \Rightarrow RDD[(K,V)]
                       union() : (RDD[T], RDD[T]) \Rightarrow RDD[T]
                                      (RDD[(K, V)], RDD[(K, W)]) \Rightarrow RDD[(K, (V, W))]
                         join() :
                                      (RDD[(K, V)], RDD[(K, W)]) \Rightarrow RDD[(K, (Seq[V], Seq[W]))]
                     cogroup() :
               crossProduct() :
                                      (RDD[T], RDD[U]) \Rightarrow RDD[(T, U)]
      mapValues(f: V \Rightarrow W):
                                     RDD[(K, V)] \Rightarrow RDD[(K, W)] (Preserves partitioning)
      sort(c : Comparator[K]):
                                     RDD[(K, V)] \Rightarrow RDD[(K, V)]
partitionBy(p: Partitioner[K])
                                      RDD[(K, V)] \Rightarrow RDD[(K, V)]
```

map transformation

```
map(map-function: T->U): RDD[T] => RDD[U]
```

- When applied on RDD of type T, it produces RDD of type U by applying map function. Mapping is 1:1
- RDD is produced on "same partitions"
- Following map function [Java Code] transforms RDD of String to RDD of String Arrays?

```
JavaRDD<String> lines = sc.textFile("data/employee.csv");
JavaRDD<String[]> records = lines.map(line -> line.split(","));
```

```
Ambani Institute of Morality o
```

```
JavaRDD<String> lines = sc.textFile("data/employee.csv");
JavaRDD<String[]> records = lines.map(line -> line.split(","));
```

Input: lines [RDD<String>]

```
101, John, 9-Jan-55, M, 30000, 102, 5

102, Franklin, 8-Dec-45, M, 40000, 105, 5

103, Joyce, 31-Jul-62, F, 25000, 102, 5

104, Ramesh, 15-Sep-52, M, 38000, 102, 5

105, James, 10-Nov-27, M, 55000, , 1

106, Jennifer, 20-Jun-31, F, 43000, 105, 4

107, Ahmad, 29-Mar-59, M, 25000, 106, 4

108, Alicia, 19-Jul-58, F, 25000, 10 Output: records [RDD<String[]>]
```



```
<101,John,9-Jan-55,M,30000,102,5>
<102,Franklin,8-Dec-45,M,40000,105,5>
<103,Joyce,31-Jul-62,F,25000,102,5>
<104,Ramesh,15-Sep-52,M,38000,102,5>
<105,James,10-Nov-27,M,55000,,1>
<106,Jennifer,20-Jun-31,F,43000,105,4>
<107,Ahmad,29-Mar-59,M,25000,106,4>
<108,Alicia,19-Jul-58,F,25000,106,4>
```

map (producing Pair RDD)

- A variation of RDD, that is, RDD of <K,V> pairs, called Pair RDD. Most aggregation operations are performed on such RDDs.
- If we want to produce Pair RDD through Map and often we require doing this, a variation of map function called mapToPair is available in Java (some languages like Python, Scala do it implicitly).
- Here is a map example that produces pairs of dno as key and a tuple <salary,1> as value.

and Ambani Institute of

map (producing Pair RDD)

Pseudo Code

```
records = lines.map(line -> line.split(","));
dnoSalPairs = records.map(
    record -> (record[6], (int) record = [4])
);
```

Input: records [RDD<String[]>]

```
<101,John,9-Jan-55,M,30000,102,5>
<102,Franklin,8-Dec-45,M,40000,105,5>
<103,Joyce,31-Jul-62,F,25000,102,5>
<104,Ramesh,15-Sep-52,M,38000,102,5>
<105,James,10-Nov-27,M,55000,,1>
<106,Jennifer,20-Jun-31,F,43000,105,4>
<107,Ahmad,29-Mar-59,M,25000,106,4>
<108,Alicia,19-Jul-58,F,25000,106,4>
```

Output: Pair RDD dnoSalPairs [String, Tuple<Int,Int>]

map (producing Pair RDD)

Java Code

Input: records [RDD<String[]>]

```
<101,John,9-Jan-55,M,30000,102,5>
<102,Franklin,8-Dec-45,M,40000,105,5>
<103,Joyce,31-Jul-62,F,25000,102,5>
<104,Ramesh,15-Sep-52,M,38000,102,5>
<105,James,10-Nov-27,M,55000,,1>
<106,Jennifer,20-Jun-31,F,43000,105,4>
<107,Ahmad,29-Mar-59,M,25000,106,4>
<108,Alicia,19-Jul-58,F,25000,106,4>
```

Output: Pair RDD dnoSalPairs [String, Tuple2<Int,Int>]

map transformation

- Note that instead of two maps for computing <Dno,<Salary,1>> pairs, we can do it one map too.
- Shown on next slide
- While second one sounds like shorter, Spark's strategy of lazy evaluation and optimizer should free us from writing either way.

How do following two solutions differ?

 How do following two solutions for computing <Dno,</p>
 differ?

```
lines = sc.textFile("data/employee.csv");
records = lines.map(line -> line.split(","));
dnoSalPairs = records.map(
    record -> (record[6], (int) record = [4])
);
```

```
lines = sc.textFile("data/employee.csv");
dnoSalPairs = lines.map( {
    record = line.split(",");
    line -> (record[6], (int) record = [4]);
});
```

filter transformation

```
filter(filter-func:T->bool):RDD[T]->RDD[T]
```

 Return a new dataset formed by selecting those elements of the source for which filter-function returns true [Java Code]

```
JavaRDD<String> lines = sc.textFile("data/log.txt");
JavaRDD<String> debugLines = lines.filter( line -> line.contains("DEBUG") );
System.out.println( "Count - Debug Line: " + debugLines.count() );
List<String> top3 = debugLines.take(3);
top3.forEach( line -> System.out.println(line));
```

 Note the code above also uses two actions "take", and "count"

flatMap transformation

```
flatMap(mapfunc:T->Seq(U)): RDD[T]->RDD[U]
```

- Similar to map, but each input item can be mapped to 0 or more output items,
- so map-function that we define should return a Sequence rather than a single item
- Following code transforms a RDD of "lines" to RDD of "words", though both are happens to be of type String. Type wise both are of String though!

```
JavaRDD<String> words = lines.flatMap(
    line -> Arrays.asList(line.split(" ")).iterator());
```


reduceByKey transformation

```
reduceByKey(reduce-func:(V,V)->V)
    :RDD[(K,V)]->RDD[(K,V)]
```

- When called on a dataset of (K, V) pairs (Pair RDD), returns a dataset of (K, V) pairs. where the values for each key are aggregated using the given reduce-function.
- The function may also provide additional parameter for number of reduce tasks.
- Here is an example.

```
sums = dnoSalPairs.reduceByKey((x, y) -> x + y);
```


reduceByKey transformation

```
sums = dnoSalPairs.reduceByKey((x, y) -> x + y);
```

Input: Pair RDD
dnoSalPairs[<String, Integer>]

- 5, 30000
- 5, 40000
- 5, 25000
- 5, 38000
- 1, 55000
- 4, 43000
- 4, 25000
- 4, 25000

output: Pair RDD
sums[<String, Integer>]

4: 93000

5: 133000

1: 55000

```
reduceByKey(reduce-func:(V,V)->V)
:RDD[(K,V)]->RDD[(K,V)]
```


reduceByKey transformation

```
reduceByKey(reduce-func:(V,V)->V)
:RDD[(K,V)]->RDD[(K,V)]
```

```
JavaPairRDD<String, Integer> sums
= dnoSalPairs.reduceByKey((x, y) -> x + y);
```

- Parameters to the function: value-1 (x) and Value-2 (y) each of type Integer. Can read them as following value-1 being the first one (for a distinct key, where as value-2 varies from second to last)
- Computes: performs simply addition, and returns!
- Note about type parameters: K is String, V is Integer

Compute Department wise Total Salary using Reduce-By-Key

 Compute Pipeline: map(extract dno, sal) → reduceByKey() → result(dno, sumsal)

```
lines = sc.textFile("data/employee.csv");
                                          Pseudo Code
dnoSalPairs = lines.mapToPair( {
    record = line.split(",");
    line \rightarrow (record[6], (int) record = [4]);
});
sums = dnoSalPairs.reduceByKey((x, y) -> x + y);
//collect and output on console
output = sums.collect();
output.forEach( t -> print(t. 1 + ": " + t. 2));
```

Compute Department wise Total Salary using Reduce-By-Key

Java Code

Compute Department wise Average Salary using Reduce-By-Key

- Note alone Reduce-By-Key is not enough to compute average; we require additional computation (a map task) after reduce-by-key!
- Here is a pipeline (red-one is additional step w.r.t SUM:
 Compute Pipeline:
 map(extract dno, <sal,1>)
 → reducebyKey()
 - → map(compute average)
 - → result(dno,avgsal)

Compute Department wise Average Salary using Reduce-By-Key

```
lines = sc.textFile("data/employee.csv");
                                                  MAP:
dnoSalPairs = lines.map( {
                                                  Dno , Sal Pairs
    record = line.split(",");
    line \rightarrow (record[6], ((int) record = [4],1))
});
                                                  ReduceByKey:
                                                  Dno , SumSal
sums = dnoSalPairs.reduceByKey(
     (v1, v2) -> (v1. 1 + v2. 1, v1. 2 + v2. 2)
aggregate = sums.map( v -> {
    key = v. 1;
                                             MAP: Dno , AvgSal
    avg = 1.\overline{0} * v. 2. 1/v. 2. 2;
    return (key, avg);
});
```


Compute Department wise Average Salary using Reduce-By-Key

Compute Pipeline: map(extract dno, <sal,1>) →
reducebyKey() → map(compute average) → result

```
Java Code
JavaRDD<String> lines = sc.textFile("data/employee.csv");
JavaPairRDD<String, Tuple2<Integer, Integer>> dnoSalPairs
                                                            MAP:
    = lines.mapToPair( line ->
                                                            Dno , Sal Pairs
        new Tuple2<>(line.split(",")[6],
                new Tuple2<>(Integer.parseInt(line.split(",")[4]),1))
    );
JavaPairRDD<String, Tuple2<Integer, Integer>> sums
                                                            ReduceByKey:
    = dnoSalPairs.reduceByKey((v1,v2)
                                                            Dno , SumSal
        -> new Tuple2<>(v1._1 + v2._1, v1._2 + v2._2));
JavaPairRDD<String, Double> aggregate = sums.mapToPair( (v)
    -> new Tuple2<String, Double>(v._1, 1.0 * v._2()._1/v._2()._2));
                                                       MAP: Dno, AvgSal
```


Reduce-By-Key for Average

 For computing Average, function for ReduceByKey is defined such that it produces <salary, sum(count)> pairs for every key (dno).

Reduce By Key

Input: dnoSalPairs[<String,<Int,Int>>]

```
5, <30000,1>
5, <40000,1>
5, <25000,1>
[
5, <38000,1>
1, <55000,1>
4, <43000,1>
4, <25000,1>
4, <25000,1>
```

```
output: sums[String,<Int,Int>>]
```

```
4, <93000,3>
5, <133000,4>
1, <55000,1>
```

```
reduceByKey(reduce-func:(V,V)->V)
:RDD[(K,V)]->RDD[(K,V)]
```


Reduce-By-Key for Average

```
reduceByKey(reduce-func:(V,V)->V)
:RDD[(K,V)]->RDD[(K,V)]
```

```
JavaPairRDD<String, Tuple2<Integer, Integer>> sums
= dnoSalPairs.reduceByKey((v1,v2)
    -> new Tuple2<>(v1._1 + v2._1, v1._2 + v2._2));
```

- Parameters to the function: value-1 and Value-2. each of type
 Integer, Integer> tuple.
- Computes: performs pairwise sum, and Returns as tuple!
- Note about type parameters:
 K is String, and V is Tuple<Integer, Integer>

Map function computing average!

```
aggregate = sums.map( v -> {
    key = v._1;
    avg = 1.0 * v._2._1/v._2._2;
    return (key, avg);
});
```

input: sums[String,<Int,Int>>]

```
4, <93000,3>
5, <133000,4>
1, <55000,1>
```


output: aggregate[<String,Double>]

```
4: 31000.0
5: 33250.0
1: 55000.0
```

```
JavaPairRDD<String, Double>
   aggregate = sums.mapToPair( (v)
   -> new Tuple2<>(v._1, 1.0 * v._2()._1/v._2()._2));
```

groupByKey transformation

```
groupByKey(): RDD[(K,V)]-> RDD[(K,seq(V)]
```

- When called on a dataset of (K, V) pairs, returns a dataset of (K, Iterable<V>) pairs.
- The function may also provide additional parameter for number of tasks.
- Example:

```
groupedRecords = dnoSalPairs.groupByKey();
```


groupByKey transformation

groupedRecords = dnoSalPairs.groupByKey();

Compute Average using Group-By-Key

```
lines = sc.textFile("data/employee.csv");
dnoSalPairs = lines.map( {
    record = line.split(",");
    line \rightarrow (record[6], ((int) record = [4],1));
});
groupedRecords = dnoSalPairs.groupByKey();
aggregate = groupedRecords.map( tuple -> {
    String key = tuple. 1;
    values = tuple. 2;
    int count = 0;
    double sum = 0;
    for( value : values) {
        sum += value. 1;
        count += value. 2;
    double avg = sum / count;
    return (key, avg);
```

10-Feb-21

"ImageCounter" implementation

```
Pseudo Code
requests = sc.textFile("data/access log.txt");
//Define filter function that keeps requests that are for images
imgFilter = request -> {
//Define Map function
imgMap = request -> {
//Apply Filter as per the above function
imgRequests = requests.filter( imgFilter );
//Perform MAP as per the defined in line anonymous function
images = imgRequests.mapToPair( imgMap );
//Apply Reduce Function
counts = images.reduceByKey((x, y) -> x + y);
//collect and output on console
output = sums.collect();
output.forEach( t -> print(t. 1 + ": " + t. 2));
```

"ImageCounter" implementation

```
//Define filter function that keeps requests that are for images
imgFilter = request -> {
    String url= request.split(" ")[6];
                                                    Pseudo Code
    String method= request.split(" ")[5];
    int pos = url.lastIndexOf(".");
    if(pos != -1) {
        ext=url.substring(pos+1);
        if(isImg.contains(ext) && method.equals("\"GET"))
            return TRUE;
    return FALSE;
};
//Define Map function
imgMap = request -> {
    String url= request.split(" ")[6];
    int pos = url.lastIndexOf(".");
    String ext=url.substring(pos+1);
    if(ext.equals("gif")) return ("GIF Images",1);
   else if(isJPG.contains(ext)) return ("JPG Images",1);
   else return ("Other Images",1);
};
```


Writing "functions" to be sent as an argument to Transformations

- Java being strongly typed language makes it bit verbose. Agree Java makes it bit complex!
- Provides following set of interfaces. An object of class implementing one of these interfaces can be sent as an argument to a transformation function.

```
Function<T1,R> //for processing RDDs
    Method:R call(T1 v1)
Function2<T1,T2,R> ///for processing Pair RDDs
    Method:R call(T1 v1, T2 v2)
PairFunction<T,K,V> //for returning Pairs
    Method:Tuple2<K,V> call(T t)
```


Examples: "function" parameters to transformations

Filter Function for ImageFilter

Function<T1,R>
 Method: R call(T1 v1)

• **imgFilter** gets a new object of anonymous class implementing Function2 interface. The class overrides **Call** method!

Type Parameters to the Function: T1 parameter type, i.e. Parent RDD element type. R is return type

Inline Function for Map task [Java]

```
PairFunction<T,K,V>
Method: Tuple2<K,V> call(T t)
```

```
//Perform MAP as per the defined in line anonymous function
JavaPairRDD<String, Integer> images = imgRequests.mapToPair(
        new PairFunction<String, String, Integer>() {
    @Override
    public Tuple2<String, Integer> call(String request) throws Exception {
        String url= request.split(" ")[6];
        int pos = url.lastIndexOf(".");
        String extension=url.substring(pos+1);
        if(extension.equals("gif"))
            return new Tuple2<String, Integer>("GIF Images",1);
        else if(ImageCounter.isJPG.contains(extension))
            return new Tuple2<String, Integer>("JPG Images",1);
        else
            return new Tuple2<String, Integer>("Other Images",1);
```

});

Type Parameters to the PairFunction: T parameter type, i.e. Parent RDD element type. K,V are Key and Value types of Pair to be returned

Implementation of Average using Group-By-Key

```
lines = sc.textFile("data/employee.csv");
dnoSalPairs = lines.map( {
    record = line.split(",");
    line \rightarrow (record[6], ((int) record = [4],1))
});
sums = dnoSalPairs.reduceByKey(
    (v1, v2) -> (v1. 1 + v2. 1, v1. 2 + v2. 2)
);
aggregate = sums.map( v -> {
    key = v. 1;
    avg = 1.\overline{0} * v. 2. 1/v. 2. 2;
    return (key, avg);
});
```

Implementation of Average using Group-By-Key

Following are RDD Transformations in Average using Group-By-Key

- Read from file ==> RDD line[String]
- Map applied (line) ==> RDD dnoSalPairs[<String, <Int,Int>>]
- Group By Key applied (dnoSalPairs)
 ==> RDD groupedRecords[<String, Iterable(<Int,Int>)>]
- Map applied to groupedRecords==> RDD aggregate [<String, Double>]

This is desired result!

DA-IICT AROUND INCOME AND ADDRESS OF THE PROPERTY OF THE PROPE

Java Implementation of Average using Group-By-Key

```
JavaRDD<String> lines = sc.textFile("data/employee.csv");
JavaPairRDD<String, Tuple2<Integer, Integer>> dnoSalPairs
    = lines.mapToPair( line ->
        new Tuple2<>(line.split(",")[6],
                new Tuple2<>(Integer.parseInt(line.split(",")[4]),1))
    );
JavaPairRDD<String, Iterable<Tuple2<Integer, Integer>>>
            groupedRecords = dnoSalPairs.groupByKey();
JavaPairRDD<String, Double> aggregate = groupedRecords.mapToPair(
                { //Implementation of Map function follows }
//collect and output on console
List<Tuple2<String, Double>> output = aggregate.collect();
output.forEach( tuple -> System.out.println(tuple._1 + ": " + tuple._2));
```

Map Function for "Computing Aggregate"

Input: groupedRecords[**<String, Iterable[Int]>**]; i.e. DNO, SalPair List

```
4: <43000,1>, <25000,1>, <25000,1>
5: <30000,1>, <40000,1>, <25000,1>, <38000,1>
1: <55000,1>
```


output: aggregate[**<String,Double>**]; i.e. DNO, Avg

4: 31000.0

5: 33250.0

1: 55000.0

Map for

PairFunction<T,K,V>
 Method: Tuple2<K,V> call(T t)

"Computing Aggregate"

```
JavaPairRDD<String, Double> aggregate = groupedRecords.mapToPair(
        new PairFunction<Tuple2<String,</pre>
            Iterable<Tuple2<Integer, Integer>>>, String, Double>() {
            @Override
            public Tuple2<String, Double> call(Tuple2<String,</pre>
                    Iterable<Tuple2<Integer, Integer>>> tuple)
                             throws Exception {
                String key = tuple. 1;
                Iterable<Tuple2<Integer, Integer>> values = tuple._2();
                int count = 0;
                double sum = 0;
                for( Tuple2<Integer, Integer> value : values) {
                    sum += value._1;
                    count += value. 2;
                double avg = sum / count;
                return new Tuple2<String, Double>(key, avg);
```


map function for Computing Average

```
PairFunction<T,K,V>
    Method: Tuple2<K,V> call(T t)
```

- Since we require returning Pair, we use PairFunction.
- Parameters to call function: Tuple of <DNO, List<Salary, 1>>,
 i.e. Tuple2<String, Iterable[Tuple2<Integer, Integer>]>
- Computes: Aggregates Value list, and computes Average= Σ salary/ Σ count, and
- Return <DNO, Average>
- Type Parameters:
 T=Tuple2<String, Iterable[Tuple2<Integer, Integer>]>,
 K=String, V=Double

aggregateByKey transformation

aggregateByKey(zeroValue, [numPartitions],
seqFunction, combFunction): <K,V> => <K, U>

- When called on a dataset of (K, V) pairs, returns a dataset of (K, U) pairs where the values for each key are aggregated using the given combine functions and a "zero" value.
- Four Parameters: (1) Zero value (used for initialization purpose while aggregation, (2) optional: number of tasks (3) sequence operation, that runs on every value of value list (sequence), typically accumulates into an accumulator. Corresponds to "map" function in a MR job.
 - (4) combine operations: Corresponds to "combine" function in a MR job.
- Allows defining an "aggregated value" type that is different than the input value type. Object of this type is what returned for every key.

Average using Aggregate By Key

We can use Aggregate By Key for computing

Average using Aggregate By Key

```
lines = sc.textFile("data/employee.csv");
dnoSalPairs = lines.map( {
    record = line.split(",");
    line -> (record[6], ((int) record = [4],1));
});
//define sequence function
addAndCount = ( aggregator, value) -> {
        aggregator.sum += value;
        aggregator.count += 1;
        return aggregator;
};
//define combine function
combine = (aggr1, aggr2) -> {
        aggr1.sum += aggr2.sum;
        aggr1.count += aggr2.count;
        return aggr1;
} ;
initialAggr = (0,0);
aggregate = dnoSalPairs
    .aggregateByKey(initialAggr, addAndCount, combine);
```


Average using Aggregate By Key

```
JavaRDD<String> lines = sc.textFile("data/employee.csv");
JavaRDD<String[]> records = lines.map(line -> line.split(","));
JavaPairRDD<String, Integer> dnoSalPairs
    = records.mapToPair(rec
        -> new Tuple2<>(rec[6], Integer.parseInt(rec[4])));
Function2<AvgCounter, Integer, AvgCounter> addAndCount = { ... }
Function2<AvgCounter, AvgCounter, AvgCounter> combine = { ... }
AvgCounter initial = new AvgCounter(0,0);
JavaPairRDD<String, AvgCounter> aggregate
    = dnoSalPairs.aggregateByKey(initial, addAndCount, combine);
```

Sequence Function for Average

- Created of type Function2, which is basically a function with two parameters. Try understanding the code below
- Type parameters(U,V,U): U is aggregate type and V is source rdd value type
- Function parameters: 1: aggregate object, 2: value of source rdd
- Function returns: update aggregate object; source value is updated to aggregate object

Combine Function for Average

- Again of type Function2. Try understanding the code below
- Type parameters(U,U,U): U is aggregate type
- Function parameters: 1: aggregate object a, 2: aggregate object b
- Function returns: updated aggregated object a; b is updated into a.

RDD Operations - recap

- Computations in Spark are performed by following two types of operations on RDD
 - Transformations, and
 - Actions
- In all cases RDD is operand. Transformations derive another RDD by applying specified transformation.
- Some transformations are unary while others are binary
- Most Transformations require specifying transformation function
- Actions are used by driver program to collect "some result"!

RDD Operations - summarize

```
map(map-function: T->U): RDD[T] => RDD[U]
```

 When applied on RDD of type T, it produces RDD of type U by applying map function. Mapping is 1:1

```
filter(filter-func: T->bool):RDD[T]->RDD[T]
```

 Return a new dataset formed by selecting those elements of the source for which filter-function returns true [Java Code]

```
flatMap(mapfunc:T->Seq(U)): RDD[T]->RDD[U]
```

 Similar to map, but each input item can be mapped to 0 or more output items

RDD Operations - summarize

```
reduceByKey(reduce-func:(V,V)->V)
    :RDD[(K,V)]->RDD[(K,V)]
```

 When called on a dataset of (K, V) pairs (Pair RDD), returns a dataset of (K, V) pairs. where the values for each key are aggregated using the given reduce-function.

```
groupByKey(): RDD[(K,V)]-> RDD[(K,seq(V)]
```

 When called on a dataset of (K, V) pairs, returns a dataset of (K, Iterable<V>) pairs.

```
aggregateByKey(zeroValue, seqFunction,
combFunction):<K,V> => <K, U>
```

When called on a dataset of (K, V) pairs, returns a dataset of (K, U)
pairs where the values for each key are aggregated using the given
combine functions.

DA-ICT DA

RDD Operations - summarize

```
union(otherRDD):(RDD[T],RDD[T])=>RDD[T]
```

 Return a new dataset that contains the union of the elements in the source dataset and the argument.

```
join(otherRDD)
:(RDD[(K,V)],RDD[(K,W)])=>RDD[(K,(V,W))]
```

 When called on datasets of type (K, V) and (K, W), returns a dataset of (K, (V, W)) pairs with all pairs of elements for each key.

```
mapValues(map-func:V=>W):RDD[K,V]=>RDD[K,W]
```

 Key remains unchanged, only value is transformed. It becomes efficient, partition does not change.

COALESCE(numPartitions, shuffle_flag)

- Return a new RDD which is reduced to a smaller number of partitions
- Shuffle_flag tells, if shuffling is to be done, or merely merging of some of partitions!

Transformations create a new RDD, and are "lazy operations";
 i.e. computed only when required!

```
map(f:T\Rightarrow U) : RDD[T]\Rightarrow RDD[U]
               filter(f: T \Rightarrow Bool) : RDD[T] \Rightarrow RDD[T]
         flatMap(f : T \Rightarrow Seq[U]) : RDD[T] \Rightarrow RDD[U]
           sample(fraction : Float) : RDD[T] \Rightarrow RDD[T] (Deterministic sampling)
                     groupByKey() : RDD[(K, V)] \Rightarrow RDD[(K, Seq[V])]
    reduceByKey(f:(V,V) \Rightarrow V)
                                     : RDD[(K, V)] \Rightarrow RDD[(K, V)]
                                           (RDD[T], RDD[T]) \Rightarrow RDD[T]
                            union():
Cogroup is also called
                                           (RDD[(K, V)], RDD[(K, W)]) \Rightarrow RDD[(K, (V, W))]
                              join()
groupWith
                          cogroup()
                                           (RDD[(K, V)], RDD[(K, W)]) \Rightarrow RDD[(K, (Seq[V], Seq[W]))]
                    crossProduct()
                                           (RDD[T], RDD[U]) \Rightarrow RDD[(T, U)]
           mapValues(f : V \Rightarrow W)
                                           RDD[(K, V)] \Rightarrow RDD[(K, W)] (Preserves partitioning)
           sort(c: Comparator[K])
                                           RDD[(K, V)] \Rightarrow RDD[(K, V)]
    partitionBy(p: Partitioner[K])
                                           RDD[(K, V)] \Rightarrow RDD[(K, V)]
                                                                              Partition is basically Repartition
```

You can get more concrete coverage at:

http://spark.apache.org/docs/latest/rdd-programming-guide.html

https://training.databricks.com/visualapi.pdf

RDD Actions[4]

 Actions launch a computation to return a value to the driver program or write data to external storage.

```
\begin{array}{c} \textit{count}() & : & \text{RDD}[T] \Rightarrow \text{Long} \\ \textit{collect}() & : & \text{RDD}[T] \Rightarrow \text{Seq}[T] \\ \textit{reduce}(f:(T,T)\Rightarrow T) & : & \text{RDD}[T]\Rightarrow T \\ \textit{lookup}(k:K) & : & \text{RDD}[(K,V)]\Rightarrow \text{Seq}[V] \text{ (On hash/range partitioned RDDs)} \\ \textit{save}(\textit{path}:\text{String}) & : & \text{Outputs RDD to a storage system, \textit{e.g.,}} \text{ HDFS} \end{array}
```

 Reduce action returns a single value of type T. The reduce function should be commutative and associative so that it can be computed correctly in parallel.

More Actions:

- take(n) //if collect can return huge list
- takeSample(num, seed)
- takeOrdered(n, ordering_function)
- countByKey
- foreach

Action Examples

Code below shows "take", "count" actions. Should be self explanatory.

```
JavaRDD<String> lines = sc.textFile("data/log.txt");
JavaRDD<String> debugLines = lines.filter( line -> line.contains("DEBUG") );
System.out.println( "Count - Debug Line: " + debugLines.count() );
List<String> top3 = debugLines.take(3);
top3.forEach( line -> System.out.println(line));
```


Persistence and caching of RDD

- We can make RDDs to live only in primary memory, or on disk
- RDD API provides two methods for this persist, and cache.
- Cache tells RDD to be living only in primary memory, where as
- With persist, we can specify various methods of persistence.
 Typical values: MEMORY_ONLY, MEMORY_AND_DISK,
 DISK_ONLY, MEMORY_ONLY_SER, and so.

RDD – lazy transformations

- RDD transformations are "lazy operations", i.e. they are evaluated on request of some "Action"
- RDD execution engine maintains "lineage graph"; all operations specified on RDD are added to lineage graph.
- Lineage graph is evaluated on demand.
- This arrangement helps in optimizing the execution
 - Multiple operations can be performed in a single scan
 - Amount of Data to be shuffled can be minimized by performing local aggregations, etc

Example: Lineage Graph^[4]

```
lines = spark.textFile("hdfs://...")
errors = lines.filter(_.startsWith("ERROR"))
errors.persist()
                                          lines
                                               filter(_.startsWith("ERROR"))
errors.count()
                                         errors
                                               filter(_.contains("HDFS")))
// Count errors mentioning MySQL:
errors.filter(_.contains("MySQL")
                                       HDFS errors
       .count()
                                               map(\_.split(^t)(3))
// Return the time fields of erro
                                        time fields
// HDFS as an array (assuming tim
// number 3 in a tab-separated format):
errors.filter(_.contains("HDFS"))
      .map(\_.split('\t')(3))
```

.collect()

RDDs – fault tolerance^[4]

- Replication is mechanism of fault tolerance.
- RDD themselves are not replicated but they are reconstructed on another node if a computing node holding part of an RDD fails.
- Suppose one of the node containing errors RDD fails.

 That partition of errors can be computed from other replica of data chunk on other available node

Shared variables

- Shared variables is a mechanism of capturing notion of "Global Variables" – global across computing nodes
- Are of two types
 - Broadcast variables: arrangement of making some data always data available on (data) partitions. Broadcast variables are in Read Only Mode.
 - Accumulators: a global short of data that tasks can accumulate some counters or aggregators.

Broadcast variables:

- Broadcast variables allow the programmer to keep a read-only variable cached on each machine rather than shipping a copy of it with tasks.
- If a large read-only piece of data (e.g., a lookup table) is used in multiple parallel operations, it is preferable to distribute it to the workers, only once.
- Spark uses sophisticated broadcast algorithms to reduce the communication cost!

Example in Java

```
Broadcast
Broadcast
Broadcast<int[]> broadcastVar = sc.broadcast(new int[] {1, 2, 3});

Accessing in some local function like map or so
broadcastVar.value();

// returns [1, 2, 3]
```

http://spark.apache.org/docs/latest/rdd-programming-guide.html

Accumulators

- Accumulators are variables that are only "added" through an associative and commutative operation and can therefore be efficiently supported in parallel.
- Accumulators typically allows, mappers to put data in parallel!
- Therefore, a mechanism of building some aggregations, like sums and counters (as in Map Reduce).
- Spark natively supports accumulators of numeric types, and programmers can add support for new types.

Java example

```
LongAccumulator accum = jsc.sc().longAccumulator();

Updaing in some local function like map, or forEach

sc.parallelize(Arrays.asList(1, 2, 3, 4)).foreach(x -> accum.add(x));

// ...

// 10/09/29 18:41:08 INFO SparkContext: Tasks finished in 0.317106 s

Collecting in Driver code
accum.value();

// returns 10
```


Typically, it works as following (local accumulation and then aggregation on request)

Further Reading

- <u>Chapter 3 and Chapter 4</u> of book
 "Learning spark: lightning-fast big data analysis",
 O'Reilly Media, Inc.", 2015.
 - The book discusses Spark programming in three languages:
 Scala, Python, Java!

 RDD Programming Guide <u>http://spark.apache.org/docs/latest/rdd-programming-guide.html</u>

Further Higher Abstractions

- RDD are still low level to perform analytical tasks!
- Spark provides higher abstractions
 - Dataframe API
 - Spark-SQL
- These abstractions makes "cluster programming" amazingly simple, and
- Primarily the reason Spark is becoming popular for big data processing.

References

- [1] Zaharia, Matei, et al. "Spark: Cluster computing with working sets." *HotCloud* 10.10-10 (2010): 95.
- [2] Zaharia, Matei, et al. "Apache spark: a unified engine for big data processing." *Communications of the ACM* 59.11 (2016): 56-65.
- [3] Shi, Juwei, et al. "Clash of the titans: Mapreduce vs. spark for large scale data analytics." *Proceedings of the VLDB Endowment* 8.13 (2015): 2110-2121.
- [4] Zaharia, Matei, et al. "Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing." *Proceedings of the 9th USENIX conference on Networked Systems Design and Implementation*. USENIX Association, 2012.
- [5] RDD Programming Guide: http://spark.apache.org/docs/latest/rdd-programming-guide.html