# Ch 7.1-7.2: Polynomial regression and Step Functions Lecture 14 - CMSF 381

Michigan State University

::

Dept of Computational Mathematics, Science & Engineering

March 13, 2024

#### Announcements

#### Last time:

- PLS
- High dimensions

#### This lecture:

- 7.1 Polynomial regression
- 7.2 Step functions

(MSU-CMSE) March 13, 2024 2 / 26

## Section 1

Last time

(MSU-CMSE) March 13, 2024

# High-Dimensional Data

#### **Low-Dimensions**

$$n \gg p$$

- Low here means p is low, or at least small relative to n
- Can do all the stuff we've talked about so far

#### **High-Dimensions**

$$n \ll p$$

- Issues show up even if  $p \ge n$
- Classical approaches not appropriate since lots of overfitting

#### What to do about it?

Be less flexible....

(MSU-CMSE) March 13, 2024 4/26

# Key points

- regularization or shrinkage plays a key role in high-dimensional problems,
- appropriate tuning parameter selection is crucial for good predictive performance, and
- the test error tends to increase as the dimensionality of the problem increases, unless the additional features are truly associated with the response.

- Curse of dimensionality
- Report results on an independent test set, or cross-validation errors.

(MSU-CMSE) March 13, 2024 5 / 26

## Section 2

# Polynomial Regression

(MSU-CMSE) March 13, 2024

# Polynomial regression

#### Replace linear model

$$y_i = \beta_0 + \beta_1 x_1 + \varepsilon_i$$
 with

$$y_i = \beta_0 + \beta_1 x_1 + \beta_2 x_i^2 + \dots + \beta_d x_i^d + \varepsilon_i$$

- Can learn with linear models by passing in predictors  $x_i^{\ell}$
- Tend to not go higher than degree 3 or 4 because makes overly flexible

7/26

(MSU-CMSE) March 13, 2024

# Coding bit

wage = 
$$\beta_0 + \beta_1$$
age +  $\beta_2$ age<sup>2</sup> +  $\cdots$  +  $\beta_p$ age<sup>p</sup> +  $\varepsilon$ .

• My code learned:

$$-184.1542 + 21.24552 * age + -0.56386 * age^2 + 0.00681 * age^3 + -3e - 05 * age^4$$

• Equivalent figure from the book on the next page

(MSU-CMSE) March 13, 2024

# Example with wage data



- Plot of wage vs age for men in central Atlantic region of the US
- Dark line is degree 4 polynomial
- Have variance for each coefficient
- Assume you have a model  $\hat{f}(x_0) = \hat{\beta}_0 + \hat{\beta}_1 x_0 + \dots + \hat{\beta}_d x_0^d$
- Can use that to estimate the pointwise variance  $Var(\hat{f}(x_0))$
- Draw 2 std deviations away from the line, 95% confidence interval

## Section 3

# Step function

MSU-CMSE) March 13, 2024

# Step functions

$$I(X < c)$$
  $I(c_1 \le X < c_2)$   $I(c \le X)$ 

• Draw each of the functions above

(MSU-CMSE) March 13, 2024

# More on step function setup

$$\begin{array}{lcl} C_0(X) & = & I(X < c_1), \\ C_1(X) & = & I(c_1 \le X < c_2), \\ C_2(X) & = & I(c_2 \le X < c_3), \\ & \vdots & & \vdots \\ C_{K-1}(X) & = & I(c_{K-1} \le X < c_K), \\ C_K(X) & = & I(c_K \le X), \end{array}$$

- Choose values  $c_1, \dots, c_K$
- Allow to learn models that don't have global structure
- Use indicator functions to break up the range of X into bins, then we can fit a new constant in each bin.
- these are sometimes also called dummy variables
- Note that  $\sum_{j} C_{j}(X) = 1$  because X is in only one interval

12/26

MSU-CMSE) March 13, 2024

## Example

Given knots  $c_1 = 3$ ,  $c_2 = 5$ ,  $c_3 = 7$ , determine the entries in the columns for  $C_i(X)$  in the below matrix.

| X | $C_0(X)$ | $C_1(X)$ | $C_2(X)$ | $C_3(X)$ |
|---|----------|----------|----------|----------|
| 1 |          |          |          |          |
| 2 |          |          |          |          |
| 3 |          |          |          |          |
| 4 |          |          |          |          |
| 5 |          |          |          |          |

| Х  | $C_0(X)$ | $C_1(X)$ | $C_2(X)$ | $C_3(X)$ |
|----|----------|----------|----------|----------|
| 6  |          |          |          |          |
| 7  |          |          |          |          |
| 8  |          |          |          |          |
| 9  |          |          |          |          |
| 10 |          |          |          |          |

(MSU-CMSE) March 13, 2024 13/26

#### Draw the function

My code doing regression on the step function input returned the function.

$$f(X) = -1 + 3C_1(X) + 4C_2(X) - 2C_3(X).$$

Fill in the table of values, then draw this function below.

| Х | F(X) | X  | F(X) | - 5 |       |     |       |   |    |    |
|---|------|----|------|-----|-------|-----|-------|---|----|----|
| 1 |      | 6  |      | -4  |       |     |       |   |    |    |
| 2 |      | 7  |      | 3   |       |     |       |   |    |    |
| 3 |      | 8  |      | -1  |       |     |       |   |    |    |
| 4 |      | 9  |      | 0   | 1 2 3 | 4 6 | 6 7 8 | 9 | 10 | 11 |
| 5 |      | 10 |      | 2-  |       |     |       |   |    |    |
|   |      |    |      | -3  |       |     |       |   |    |    |

(MSU-CMSE

# Step function: Learned model

$$y_i = \beta_0 + \beta_1 C_1(x_i) + \beta_2 C_2(x_i) + \cdots + \beta_K C_K(x_i) + \varepsilon_i$$

- Note above we don't learn a coeff for C<sub>0</sub> since like qualitative variable version, we can figure out the value from the others.
- If  $X < c_1$ , all predictors are 0 so  $\beta_0$  is mean value of Y for  $X < c_1$
- Then response for  $X \in [c_j, c_{j+1})$  is  $\beta_0 + \beta_j$ , so  $\beta_j$  is the avg increase in response for X in the interval relative to  $X < c_1$

(MSU-CMSE) March 13, 2024

# Coding bit

Back to the wage data set

(MSU-CMSE) March 13, 2024

# Coding with step functions

(MSU-CMSE) March 13, 2024

# Step function example



• Learned peak where the high earners are

18 / 26

SU-CMSE) March 13, 2024

## Section 4

## Classification versions

(MSU-CMSE) March 13, 2024

# Remember logisitic regression?

$$y = \frac{e^x}{1 + e^x}$$



$$p(X)=rac{\mathrm{e}^{eta_0+eta_1X}}{1+\mathrm{e}^{eta_0+eta_1X}}$$

#### Multiple features:

$$p(X) = rac{e^{eta_0 + eta_1 X_1 + \cdots + eta_p X_p}}{1 + e^{eta_0 + eta_1 X_1 + \cdots + eta_p X_p}}$$

# Classification version: Polynomial regression

$$\Pr(y_i > 250 \mid x_i) = \frac{\exp(\beta_0 + \beta_1 x_i + \dots + \beta_d x_i^d)}{1 + \exp(\beta_0 + \beta_1 x_i + \dots + \beta_d x_i^d)}$$



- Note in previous fig that there is a distinct subcluster of high earners making more than \$250K
- Build a logistic regression model as above
- Note that the 95% confidence interval gets very wide on the right side
- Large sample size n = 3,000 but small number (79) of high earners makes for high variance in coeffs and wide confidence intervals

21 / 26

MSU-CMSE) March 13, 2024

# Classification version: Step functions

$$\Pr(y_i > 250 \mid x_i) = \frac{\exp(\beta_0 + \beta_1 C_1(x_i) + \beta_2 C_2(x_i) + \dots + \beta_K C_K(x_i))}{1 + \exp(\beta_0 + \beta_1 C_1(x_i) + \beta_2 C_2(x_i) + \dots + \beta_K C_K(x_i))}$$



- Again, learns that middle bit
- Still big confidence interval on the right, but likely because there's just less data over there

22 / 26

(MSU-CMSE) March 13, 2024

# Coding bit: classification version



Just talk through on projector, there's nothing in there for them to code

23 / 26

(MSU-CMSE) March 13, 2024

## A few more comments on step functions

- Gives the chance to break up the domain, avoid forcing global structure
- Need to make decisions about the c<sub>i</sub>.
   A bit arbitrary unless your data has natural breakpoints.
- Popular in biostats and epidemiology

(MSU-CMSE) March 13, 2024 24/26

## Section 5

## Basis functions

(MSU-CMSE) March 13, 2024

# Basis Functions Setup

Polynomial and piecewise-constant regression models are special cases of a *basis function* approach.

$$y_i = \beta_0 + \beta_1 b_1(x_i) + \beta_2 b_2(x_i) + \cdots + \beta_K b_K(x_i) + \varepsilon_i$$

- Pick a collection of basis functions  $b_1(X), \dots, b_K(X)$
- Use least squares to figure out the constants
- Explain the b<sub>i</sub>'s for polynomial and stepwise functions

- Lots of possible options for these
  - Some examples are wavelets or Fourier series
  - Next section is we'll talk about regression splines

26 / 26

(MSU-CMSE) March 13, 2024