Variable Gain High Speed Current Amplifier

Features • Transimpedance (Gain) Switchable from 1 x 10² to 1 x 10⁸ V/A

Bandwidth from DC up to 200 MHz

- Upper Cut-Off Frequency Switchable to 1 MHz, 10 MHz or Full Bandwidth
- Switchable AC/DC Coupling
- Adjustable Bias Voltage for Use with External Photo Detectors
- Input Protection Against ± 1.5 kV Transients
- Local and Remote Control of All Main Functions

Applications

- Photodiode and Photomultiplier Amplifier
- Spectroscopy
- Beam Monitoring for Particle Accelerators / Synchrotrons
- Ionisation Detectors
- Preamplifier for A/D-Converters, HF Lock-Ins, etc.

Block Diagram

SOPHISTICATED TOOLS FOR SIGNAL RECOVERY

Variable Gain High Speed Current Amplifier

Specifications	Test Conditions	Vs = ± 1.	5 V, Ta =	25°C			
Gain	Transimpedance Gain Accuracy	$1 \times 10^{2} \dots 1 \times 10^{8} \text{ V/A}$ ± 1 %					
Frequency Response	Lower Cut-Off Frequency Upper Cut-Off Frequency	depender			to 200 MH: Iz	z (see table	e below),
Input	Equ. Input Noise Current Equ. Input Noise Voltage Input Bias Current	see table typ. 2.8 n typ. 20 p	ıV/√Hz				
Performance depending on Gain Setting	Gain Setting (Low Noise) (V/A)	10 ²	10 ³	104	10 ⁵	10 ⁶	10 ⁷
,	Upper Cut-Off Frequency (-3 dB) Rise / Fall Time (10% - 90%) Input Noise Current Density (/√Hz measured at Integr. Input Noise Current (rms)* Max. Input Current (±) DC Input Impedance	1 MHz	80 MHz 4.4 ns 16 pA 1 MHz 270 nA 1 mA 50 Ω	14 MHz 25 ns 2.1 pA 1 MHz 33 nA 0.1 mA 60 Ω	3.5 MHz 0.1 μs 500 fA 10 kHz 5.4 nA 10 μA	1.8 MHz 0.2 μs 170 fA 10 kHz 1.1 nA 1 μA 1 kΩ	220 kHz 1.6 μs 60 fA 10 kHz 140 pA 0.1 μA 10 kΩ
	Gain setting (High Speed) (V/A)	10 ³	10 ⁴	10 ⁵	10 ⁶	10 ⁷	108
	Upper Cut-Off Frequency (- 3 dB) Rise / Fall Time (10% - 90%) Input Noise Current Density (/\Hz measured at Integr. Input Noise Current (rms)* Max. Input Current (±) DC Input Impedance	2.0 ns) 140 pA 1 MHz	80 MHz 4.4 ns 6.0 pA 1 MHz 230 nA 0.1 mA 50 Ω	14 MHz 25 ns 1.5 pA 1 MHz 30 nA 10 μA 60 Ω	3.5 MHz 0.1 μs 450 fA 10 kHz 5.3 nA 1 μA 100 Ω	1.8 MHz 0.2 μs 150 fA 10 kHz 1.1 nA 0.1 μA 1 kΩ	220 kHz 1.6 μs 55 fA 10 kHz 140 pA 10 nA 10 kΩ

^{*} The integrated input noise is measured with an open but shielded amplifier input in the full bandwidth ("FBW") setting. The input referred peak-peak noise can be calculated from the rms

noise as follows: $I_{peak\text{-peak}} = I_{rms} \times 6$ The output noise is given by: $U_{peak\text{-peak}} = I_{peak\text{-peak}} \times Gain$

Upper cut-off frequencies and equivalent input noise currents given in this table are typical values only which will depend on the source capacitance. Keep the source capacitance as low as possible by using short cables at the input to achieve best possible bandwidth and noise performance. For the dependence of the upper cut-off frequencies on the source capacitance please see the diagrams on the next page.

Variable Gain High Speed Current Amplifier

Specifications (continued)

Frequency Response Plots

Variable Gain High Speed Current Amplifier

Specifications (continued)

Variable Gain **High Speed Current Amplifier**

Specifications (continued)

Output Voltage Range \pm 1 V (@ 50 Ω load), for linear amplification Output

> Output Impedance 50 Ω (designed for 50 Ω load)

Slew Rate 1,000 V/µs Max. Output Current \pm 40 mA

Output Offset Compensation adjustable by offset trimpot and external control voltage,

output offset compensation range min. ± 100 mV

DC Monitor Output Monitor Output Gain Mode Monitor Gain

> low noise gain setting divided by -1 high speed gain setting divided by -10

Monitor Output Polarity inverting

Monitor Output Voltage Range $\pm 1 \text{ V } (@ \ge 1 \text{ M}\Omega \text{ load})$

Monitor Output Bandwidth DC ... 1 kHz Monitor Output Impedance 1 k Ω (designed for \geq 1 M Ω load)

Detector Bias Bias Voltage Range ± 10 V, max. 22 mA, connected to shield of BNC input

socket, adjustable by trimpot, switchable to GND

Warning A bias current of 20 mA may destroy sensitive detectors.

Please pay attention to the correct polarity and careful adjustment of the bias voltage to protect your detector. Put the bias switch to GND (ground) if you do not want to use the internal bias voltage. The positive and the negative supply voltage of the amplifier must be switched

"on" and "off" simultaneously in order to avoid

overvoltage at the bias output.

Bias Voltage Monitor

Output

Power Supply

Description

The signal at the bias voltage monitor output (pin 7 of the Sub-D control socket) is identical to the detector bias voltage present on the shield of the input BNC socket. By monitoring the signal on pin 7 the desired bias voltage can be adjusted through the bias trimpot. Even if the bias switch is set to "GND", the bias voltage can be

monitored and set to the desired value.

Monitor Output Polarity non-inverting

Monitor Output Voltage Range $\pm 10 \text{ V } (@ \ge 1 \text{ M}\Omega \text{ load})$ Monitor Output Impedance 1 k Ω (designed for \geq 1 M Ω load)

Indicator LED **Function** overload

LOW bit: - 0.8 ... + 1.2 V, HIGH bit: + 2.3 ... + 12 V Digital Control Control Input Voltage Range Control Input Current 0 mA @ 0 V, 1.5 mA @ + 5 V, 4.5 mA @ + 12 V

Overload Output non active: 0 V, max. - 1 mA, active: 5.1 V, max. 7 mA

Ext. Offset Control Control Voltage Range $\pm 10 V$ Offset Control Input Impedance $15\,\mathrm{k}\Omega$

Supply Voltage

Supply Current typ. + 110 / - 90 mA (depends on operating conditions,

recommended power supply capability min. ± 200 mA)

Stabilized Power Supply Output ± 12 V, max. 50 mA, + 5 V, max. 150 mA

 $\pm 15 V$

Variable Gain High Speed Current Amplifier

	nigii əpecu cu	Trent Ampinier				
Specifications (continued)						
Case	Weight Material	320 g (0.74 lb.) AlMg4.5Mn, nickel-plated				
Temperature Range	Storage Temperature Operating Temperature	- 40 + 100 °C 0 + 60 °C				
Absolute Maximum Ratings	Signal Input Voltage Transient Input Voltage Control Input Voltage Power Supply Voltage	±5 V $\\ \pm1.5$ kV (out of a 1 nF source) -5 V / $+16$ V $\\ \pm20$ V				
Connectors	Input	BNC, isolated				
	Output	BNC				
	Detector Bias Output	shield of input BNC				
	Power Supply	LEMO series 1S, 3-pin fixed socket Pin 1: + 15V Pin 2: - 15V Pin 3: GND				
		PIN 2 VS PIN 1 +VS PIN 3 GND				
	Control Port	Sub-D 25-pin, female, qual. class 2 Pin 1: + 12 V (stabilized power supply output) Pin 2: - 12 V (stabilized power supply output) Pin 3: AGND (analog ground) Pin 4: + 5 V (stabilized power supply output) Pin 5: digital output: overload Pin 6: DC monitor output Pin 7: bias monitor output Pin 8: output offset control voltage input Pin 9: DGND (ground for digital control pins 10 - 16) Pin 10: digital control input: gain, LSB Pin 11: digital control input: gain, MSB Pin 12: digital control input: gain, MSB Pin 13: digital control input: high speed / low noise mode Pin 15: upper cut-off frequency limit 10 MHz PIN 16: upper cut-off frequency limit 1 MHz PIN 17-25 NC				

Variable Gain High Speed Current Amplifier

Remote Control Operation	General	Domoto contr	Describe control input wine are onto included and				
Remote Control Operation	deneral	Remote control input pins are opto-isolated and connected by a logical OR function to the local switch					
			remote control				
		switches to "Remote", "DC", "L" (low noise mode) and "FBW", and select the desired setting via a bit code at the corresponding digital inputs. Mixed operation, e.g. local AC/DC setting and remote controlled gain setting, is also possible. Switch setting "Bias / GND" is not remote controllable.					
	Gain Setting	Low Noise	High Speed	Din 10	Dip 11	Din 10	
		Gain (V/A)	Pin 14=HIGH Gain (V/A)	MSB	Pin 11	Pin 10 LSB	
		10 ²	10 ³	LOW	LOW	LOW	
		10 ³	10 ⁴	LOW	LOW	HIGH	
		10 ⁴	10 ⁵	LOW	HIGH	LOW	
		10 ⁵	10 ⁶	LOW	HIGH	HIGH	
		10 ⁶	10 ⁷	HIGH	LOW	LOW	
		10 ⁷	10 ⁸	HIGH	LOW	HIGH	
	AC/DC Setting	Coupling	Pin 13				
		DC	LOW				
		AC	HIGH				
	Low Pass Filter Setting	Upper Cut-Off Frequ. Limit		Pin 15	Pin 16		
		full bandwidth 10 MHz		LOW	LOW		
				HIGH	LOW		
		1 MHz		LOW	HIGH		
	High Speed / Low Noise Setting	Mode	Pin 14				
		low noise mo		LOW			
		high speed mode		HIGH			

Variable Gain High Speed Current Amplifier

Application Diagrams

Photo Detector Biasing through Internal Bias Voltage Source

Set bias switch to "Bias". The photodiode is biased through the amplifier with the bias voltage applied to the shield of the isolated BNC input socket. The photodiode should be mounted in a metal case. For optimum shielding the metal case has to be isolated from the photodiode but connected to the housing of the DHPCA-100.

Photo Detector Biasing through External Voltage Source

Set bias switch to "GND". The photodiode is biased through an external voltage source. The shield of the isolated BNC input socket is internally set to amplifier GND. The photodiode should be mounted in a metal case. For optimum shielding the metal case has to be isolated from the photodiode but connected to the housing of the DHPCA-100.

Variable Gain High Speed Current Amplifier

Dimensions

FEMTO Messtechnik GmbH Klosterstr. 64 D-10179 Berlin • Germany Tel.: +49-(0)30-280 4711-0 Fax: +49-(0)30-280 4711-1

Fax: +49-(0)30-280 4711-11 e-mail: info@femto.de http://www.femto.de Specifications are subject to change without notice. Information furnished herin is believed to be accurate and reliable. However, no responsibility is assumed by FEMTO Messtechnik GmbH for its use, nor for any infringement of patents or other rights granted by implication or otherwise under any patent rights of FEMTO Messtechnik GmbH. Product names mentioned may also be trademarks used here for identification purposes only.

© by FEMTO Messtechnik GmbH

Printed in Germany

F E M T