Лабораторная работа №3 по дисциплине «Методы машинного обучения» на тему «Обработка пропусков в данных, кодирование категориальных признаков, масштабирование данных.»

Выполнил: Хотин П.Ю. ИУ5-24М

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
sns.set(style="ticks")
data = pd.read csv('data/restaurant-scores-lives-standard.csv',
sep=",")
data.shape
(53973, 17)
data.dtypes
business id
                            int64
business name
                           object
business address
                           object
business city
                           object
business state
                           object
business postal code
                           object
business latitude
                          float64
business longitude
                          float.64
business location
                           object
business phone number
                          float64
inspection id
                           object
inspection date
                           object
inspection score
                          float64
inspection type
                           object
violation id
                           object
violation description
                           object
risk category
                           object
dtype: object
data.isnull().sum()
business id
                              0
                              0
business name
business address
                              0
business city
                              0
```

business_state	0
business_postal_code	1083
business_latitude	24095
business_longitude	24095
business_location	24095
business_phone_number	36539
inspection_id	0
inspection_date	0
inspection_score	14114
inspection_type	0
violation_id	13462
violation_description	13462
risk_category	13462
dtype: int64	
data.head()	

Out[8]:

0 69	618 Wheat	ncy ield 1362 Stockton S ery	t San Francisco	CA	94133	NaN	
					34100	ivaiv	
1 97	975 BREADBE	LLY 1408 Clement S	t San Francisco	CA	94118	NaN	
2 69	9487 Hakkasan Franc	1 Kearny S	t San Francisco	CA	94108	NaN	
3 91	044 Chops Restau		t San Francisco	CA	94112	NaN	
4 85	5987 Tse	ogs 552 Jones S	t San Francisco	CA	94102	NaN	

1 Обработка пропусков в данных

```
# Удаление колонок, содержащих пустые значения
data_new_1 = data.dropna(axis=1, how='any')
(data.shape, data_new_1.shape)
print(f'Удалено колонок: {data.shape[1] - data_new_1.shape[1]}')
```

```
Удалено колонок: 9
# Удаление строк, содержащих пустые значения
data new 2 = data.dropna(axis=0, how='any')
(data.shape, data new 2.shape)
print(f'Удалено строк: {data.shape[0] - data new 2.shape[0]}')
Удалено строк: 48262
1.1 Обработка пропусков в числовых данных
rows count = data.shape[0]
num cols = []
for col in data.columns:
    # Количество пустых значений
    temp null count = data[data[col].isnull()].shape[0]
    dt = str(data[col].dtype)
    if temp null count > 0 and (dt=='float64' or dt=='int64'):
        num cols.append(col)
        temp perc = round((temp null count / rows count) * 100.0, 2)
        print('Колонка {}. Тип данных {}. Количество пустых значений
{}, {}%. '.format(col, dt, temp null count, temp perc))
Колонка business latitude. Тип данных float64. Количество пустых
значений 24095, 44.64%.
Колонка business longitude. Тип данных float64. Количество пустых
значений 24095, 44.64%.
Колонка business phone number. Тип данных float64. Количество пустых
значений 36539, 67.7%.
Колонка inspection score. Тип данных float64. Количество пустых
значений 14114, 26.15%.
# Фильтр по колонкам с пропущенными значениями
data num = data[num cols]
data num
```

Out[19]:

	business_latitude	business_longitude	business_phone_number	inspection_score
0	NaN	NaN	NaN	NaN
1	NaN	NaN	1.415724e+10	96.0
2	NaN	NaN	NaN	88.0
3	NaN	NaN	NaN	NaN
4	NaN	NaN	NaN	94.0
53968	NaN	NaN	1.415596e+10	94.0
53969	NaN	NaN	NaN	75.0
53970	NaN	NaN	1.415530e+10	84.0
53971	NaN	NaN	1.415544e+10	83.0
53972	NaN	NaN	1.415551e+10	NaN

53973 rows × 4 columns

```
# Гистограмма по признакам
for col in data_num:
    plt.hist(data[col], 50)
    plt.xlabel(col)
    plt.show()
```


Фильтр по пустым значениям поля inspection_score data[data['inspection_score'].isnull()]

Out[27]:

	business_id	business_name	business_address	business_city	business_state	business_postal_code	business_latitude	business
0	69618	Fancy Wheatfield Bakery	1362 Stockton St	San Francisco	CA	94133	NaN	
3	91044	Chopsticks Restaurant	4615 Mission St	San Francisco	CA	94112	NaN	
5	96024	Fig & Thistle Market	691 14th St	San Francisco	CA	94114	NaN	
6	97503	Moscone South Main Kitchen	747 Howard St	San Francisco	CA	94103	NaN	
7	97748	FISTFUL OF TACOS	201 Harrison St Unit C-2	San Francisco	CA	94105	NaN	
53955	94521	Joe & The Juice Howard	301 Howard St	San Francisco	CA	94105	NaN	
53957	81789	Koja Kitchen Truck	Off The Grid	San Francisco	CA	NaN	NaN	
53958	98279	LITTLE GEM	2184 UNION ST	San Francisco	CA	94123	NaN	
53961	99249	BLACK SANDS BREWERY	701 HAIGHT ST	San Francisco	CA	94117	NaN	
53972	77681	Tart To Tart Inc.	641 Irving St	San Francisco	CA	94122	NaN	

14114 rows × 17 columns

Out[26]:

	business_id	business_name	business_address	business_city	business_state	business_postal_code	business_latitude	business
0	69618	Fancy Wheatfield Bakery	1362 Stockton St	San Francisco	CA	94133	NaN	
3	91044	Chopsticks Restaurant	4615 Mission St	San Francisco	CA	94112	NaN	
5	96024	Fig & Thistle Market	691 14th St	San Francisco	CA	94114	NaN	
6	97503	Moscone South Main Kitchen	747 Howard St	San Francisco	CA	94103	NaN	
7	97748	FISTFUL OF TACOS	201 Harrison St Unit C-2	San Francisco	CA	94105	NaN	
53955	94521	Joe & The Juice Howard	301 Howard St	San Francisco	CA	94105	NaN	
53957	81789	Koja Kitchen Truck	Off The Grid	San Francisco	CA	NaN	NaN	
53958	98279	LITTLE GEM	2184 UNION ST	San Francisco	CA	94123	NaN	
53961	99249	BLACK SANDS BREWERY	701 HAIGHT ST	San Francisco	CA	94117	NaN	
53972	77681	Tart To Tart Inc.	641 Irving St	San Francisco	CA	94122	NaN	

```
# фильтр по колонке
data num[data num.index.isin(flt index)]['inspection score']
0
        NaN
3
        NaN
        NaN
6
        NaN
7
        NaN
53955
        NaN
53957
        NaN
53958
        NaN
53961
      NaN
53972
        NaN
Name: inspection score, Length: 14114, dtype: float64
data num inspection score = data num[['inspection score']]
data num inspection score.head()
inspection score
0 NaN
1 96 0
2 88 0
3 NaN
4 94 0
from sklearn.impute import SimpleImputer
from sklearn.impute import MissingIndicator
# Фильтр для проверки заполнения пустых значений
indicator = MissingIndicator()
mask missing values only =
indicator.fit transform(data num_inspection_score)
mask missing values only
array([[ True],
       [False],
       [False],
       . . . ,
       [False],
```

```
[False],
    [ True]])
strategies=['mean', 'median','most_frequent']

def test_num_impute_col(dataset, column, strategy_param):
    temp_data = dataset[[column]]

    indicator = MissingIndicator()
    mask_missing_values_only = indicator.fit_transform(temp_data)

    imp_num = SimpleImputer(strategy=strategy_param)
    data_num_imp = imp_num.fit_transform(temp_data)

    filled_data = data_num_imp[mask_missing_values_only]

    return column, strategy_param, filled_data.size, filled_data[0],
filled_data[filled_data.size-1]

data[['inspection_score']].describe()
```

Out[63]:

inspection score

count	39859.000000
mean	86.235254
std	8.480003
min	45.000000
25%	81.000000
50%	88.000000
75%	92.000000
max	100.000000

```
for strategy in strategies:
    print(test num impute col(data, 'inspection score', strategy))
    print(test num impute col(data, 'business latitude', strategy))
    print(test num impute col(data, 'business longitude', strategy),
end=' \n n')
('inspection score', 'mean', 14114, 86.23525427130636,
86.23525427130636)
('business latitude', 'mean', 24095, 37.7552651997791,
37.7552651997791)
('business longitude', 'mean', 24095, -122.37375472595221,
-122.37375472595221)
('inspection score', 'median', 14114, 88.0, 88.0)
('business latitude', 'median', 24095, 37.780174, 37.780174)
('business longitude', 'median', 24095, -122.41913600000001,
-122.41913600000001)
('inspection score', 'most frequent', 14114, 90.0, 90.0)
('business latitude', 'most frequent', 24095, 37.80824000000005,
37.808240000000005)
('business longitude', 'most frequent', 24095, -122.4101889999999,
-122.41018899999999)
1.2 Обработка пропусков в категориальных данных
cat cols = []
for col in data.columns:
    # Количество пустых значений
    temp null count = data[data[col].isnull()].shape[0]
    dt = str(data[col].dtype)
    if temp null count>0 and (dt=='object'):
        cat cols.append(col)
        temp_perc = round((temp null count / rows count) * 100.0, 2)
        print('Колонка {}. Тип данных {}. Количество пустых значений
{}, {}%.'.format(col, dt, temp null count, temp perc))
Konoнka business postal code. Тип данных object. Количество пустых
значений 1083, 2.01%.
Колонка business location. Тип данных object. Количество пустых
```

```
значений 24095, 44.64%.
Колонка violation id. Тип данных object. Количество пустых значений
13462, 24,94%.
Колонка violation description. Тип данных object. Количество пустых
значений 13462, 24.94%.
Колонка risk category. Тип данных object. Количество пустых значений
13462, 24.94%.
cat temp data = data[['risk category']]
cat temp data['risk category'].unique()
array(['Moderate Risk', nan, 'Low Risk', 'High Risk'], dtype=object)
cat temp data[cat temp data['risk category'].isnull()].shape
(13462, 1)
# Импьютация наиболее частыми значениями
imp2 = SimpleImputer(missing values=np.nan, strategy='most frequent')
data imp2 = imp2.fit transform(cat temp data)
data imp2
array([['Moderate Risk'],
       ['Moderate Risk'],
       ['Moderate Risk'],
       ['Moderate Risk'],
       ['High Risk'],
       ['Low Risk']], dtype=object)
# Пустые значения отсутствуют
np.unique(data imp2)
array(['High Risk', 'Low Risk', 'Moderate Risk'], dtype=object)
# Импьютация константой
imp3 = SimpleImputer(missing values=np.nan, strategy='constant',
fill value='Unknown')
data imp3 = imp3.fit transform(cat temp data)
data imp3
array([['Moderate Risk'],
       ['Moderate Risk'],
```

```
['Moderate Risk'],
...,
['Moderate Risk'],
['High Risk'],
['Unknown']], dtype=object)

np.unique(data_imp3)

array(['High Risk', 'Low Risk', 'Moderate Risk', 'Unknown'],
dtype=object)

data_imp3[data_imp3=='Unknown'].size

13462
```

2 Преобразование категориальных признаков в числовые

```
cat_enc = pd.DataFrame({'c1':data_imp2.T[0]})
cat enc
```

с1

Out[77]:

Moderate Risk
Moderate Risk
Moderate Risk
Moderate Risk
Low Risk
Moderate Risk
...
53968 Low Risk
53969 Moderate Risk
53970 Moderate Risk
High Risk

53972

Low Risk

2.1 Кодирование категорий целочисленными значениями

```
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
le = LabelEncoder()
cat enc le = le.fit transform(cat enc['c1'])
cat enc['c1'].unique()
array(['Moderate Risk', 'Low Risk', 'High Risk'], dtype=object)
np.unique(cat enc le)
array([0, 1, 2])
le.inverse transform([0, 1, 2])
array(['High Risk', 'Low Risk', 'Moderate Risk'], dtype=object)
2.2 Кодирование категорий наборами бинарных значений
ohe = OneHotEncoder()
cat enc ohe = ohe.fit transform(cat enc[['c1']])
cat enc.shape
(53973, 1)
cat enc ohe.shape
(53973, 3)
cat enc ohe
<53973x3 sparse matrix of type '<class 'numpy.float64'>'
    with 53973 stored elements in Compressed Sparse Row format>
cat enc ohe.todense()[0:10]
matrix([[0., 0., 1.],
        [0., 0., 1.],
        [0., 0., 1.],
        [0., 1., 0.],
        [0., 0., 1.],
        [0., 1., 0.],
```

```
[0., 1., 0.],
[0., 1., 0.],
[0., 1., 0.],
[0., 1., 0.]])
```

2.3 Быстрый вариант one-hot кодирования

pd.get_dummies(cat_enc).head()

Out[88]:

	c1_High Risk	c1_Low Risk	c1_Moderate Risk
0	0	0	1
1	0	0	1
2	0	0	1
3	0	1	0
4	0	0	1

pd.get_dummies(cat_temp_data, dummy_na=True).head()

Out[89]:

	risk_category_High Risk	risk_category_Low Risk	risk_category_Moderate Risk	risk_category_nan
0	0	0	1	0
1	0	0	1	0
2	0	0	1	0
3	0	0	0	1
4	0	0	1	0

3 Масштабирование данных

Заменяю пропуски в колонке 'inspection_score' исходного датасета, чтобы использовать ее для масштабирования/нормализации

```
def num impute col(dataset, column, strategy param):
    temp data = dataset[[column]]
    indicator = MissingIndicator()
    mask missing values only = indicator.fit transform(temp data)
    imp num = SimpleImputer(strategy=strategy param)
    data num imp = imp num.fit transform(temp data)
      data num imp = imp num.fit transform(dataset[[column]])
    filled data = data num imp[mask missing values only]
    new data = imp num.transform(dataset[[column]])
    return new data
num impute col(data, 'inspection score', 'mean')
array([[86.23525427],
       [96.
       1881
                   1,
       . . . ,
       [84.
                   1,
       [83.
                   1,
       [86.23525427]])
data[['inspection score']] = num impute col(data, 'inspection score',
'mean')
data[['inspection score']]
```

Out[116]:

inspection score

	• –
0	86.235254
1	96.000000
2	88.000000
3	86.235254
4	94.000000
53968	94.000000
53969	75.000000
53970	84.000000
53971	83.000000
53972	86.235254

 $53973 \text{ rows} \times 1 \text{ columns}$

3.1 МіпМах масштабирование

```
from sklearn.preprocessing import MinMaxScaler, StandardScaler,
Normalizer

sc1 = MinMaxScaler()
sc1_data = sc1.fit_transform(data[['inspection_score']])

plt.hist(data['inspection_score'], 50)
plt.show()
```


plt.hist(scl_data, 50)
plt.show()

3.2 Масштабирование данных на основе Z-оценки

```
sc2 = StandardScaler()
sc2_data = sc2.fit_transform(data[['inspection_score']])
plt.hist(sc2_data, 50)
plt.show()
```


Нормализация данных

```
sc3 = Normalizer()
sc3_data = sc3.fit_transform(data[['inspection_score']])
plt.hist(sc3_data, 50)
plt.show()
```

