

NOTATION: f'(x); dx; dx; dx[

DEFINITION: The devivotive of a function at a given point (x; y)
is the chapplayordient of the tongent of the is the slope/gradient of the tangent at that point

ie: f'(x) = m of f(x)

POWER RULE: If $f(x) = ax^2 + bx + c$

then f(x) = 2ax + b

 $= hax^{n-1}$

NOTE: remember

tano=m

as well.

TO FIND THE FORMULA OF A TANGENT TO A QUADRATIC

1) find m

Lo either f'(x) or tano

2) sub in one additional point to

y=mx+c and your m

to find c

3 write your tangent in general form

to y-axis

AVERAGE GLADIENT

The straight line gradient between two points on a grouph

average gradient = $y_2 - y_1$ therefore $x_2 - x_1$

MAXIMUM/ MINIMUM LENGTH (OPTIMISATION)

- Steps: 1 find a formula for the length to optimise: fcx)
 - 2) find the first derivative f'(x)
 - 3 let f(x) =0 and solve for x
 this gives us the x-value (s) that
 w/// give us max/min length

 Sub x-values into f(x) formula
 - to find optimised max/min length

FIRST AND SECOND DERIVATIVE

gradient changes sign
$$f''(x) = negative$$

$$focal max$$

$$f(x) = 0$$

$$f'(x) = 0$$

$$local min$$

$$f''(x) = positive$$

$$g radient changes sign$$

RELATIONSHIP BETWEEN THE FUNCTION, 1st, 2nd DEXIVATIVE

STANDARD FORM

horizontal shift (counter intuitive)

020: Es

O < 0 :

4

Asymptotes

Horizontal: y = 9 (same sign)

Verticle: x = p (opposite sign)

Axes of symmetry:

~ Over y=x

x and over y = -x

∞ y=x meets y = - ≥ where the asymptotes meet

- This point of intersection can be used to find the asymptotes'
 equations
- The point of intersection of the asymptotes can also be used to find the axes of symmetry equations:

POL (9;b)

Steps:

- Write out general form for the two axes of symmetry y = x + c y = -x + c
- 2 SUBIN POI (a;b) to find c
- 3) write out the two new equations
- Reflection across the POI of the axes of symmetry

Steps: 1 How far from the point (x;y)

- 2 do that same distance but switch sc/y's because this is a reflection over y = 2 (inverse)
 - e.g.: if you went UP two and ACROSS three to get to the POI

you would go UP three and Across two to get to the reflected point

INTEXPRETATION QUESTIONS

means

What x's will give us where yo is ABOVE YF

Here first take g(z) over

 $f(x) \leq g(x)$

Answer

 $x \leqslant a$ or $x \geqslant b$

x-coordinates at points a & b EXAMPLE 3

$$(hange f(x) = \frac{x-3}{x+1}$$

to standard form

Answer:

Steps. 1) find a way to split the denominator
So that the x +1 cancels out in one
of the terms

ie make it $\frac{x+1}{x+1}$; which = 1

- end-

3 do this as shown:

$$\begin{array}{c} x-3 \\ \hline x+1 \\ - (x+1)-4 \\ \hline x+1 \\ \hline = x+1 - x+1 \end{array}$$

$$= -\frac{4}{x+1} + 1$$