SERVICE MANUAL

TABLE OF CONTENTS

1.	Specifications						1
2.	Main key's explanation .			•			3
3.	Disassembly procedure .						7
4.	Block diagram					•	7
5.	LSI signals						8
6.	Circuit diagram	 •					11
7.	Parts & signals position .	 •					13
8.	Parts list		•	•	•		15
9.	Parts guide						17

MODEL **EL-5100**

1. SPECIFICATIONS

• Key's Layout

Display Section

Display shape;

-3.3+ 00000 T 00000 5.05 00000 D Display system; Display capacity;

Symbols;

Dot matrix liquid crystal display (LCD1601J)

24 digits (algebraic operation system)

(numeral ... mantissa 10 digits, exponents 2 digits)

Second function designation sysmbol Hyperbolic function mode symbol HYP

DEG

Angular mode symbols RAD

GRAD

Appears, when there exists anything to be displayed $\tilde{t^{\varepsilon}}$ the left of the displayed contents of an algebraic formula.

Appears, when there exists anything to be displayed to the right of the displayed contents of an algebraic formula.

Appears also to indicates that the machine is in opera tion when it is executing a calculation.

Battery indicator The battery indicator is a grey dot located in the righ of the display. When this dot is not on, the batteric

Calculations

Four arithmetic calculations, trigonometric and inverse trigonometric functions, hyperbolic an liverse hyperbolic functions, angular conversion, reciprocal, square and cube root, square an power, logarithmic and exponential, Xth root of Y ($\sqrt[X]{y}$), factorial, permutation, combination coordinate conversion, memory, and statistical calculations.

must be replaced.

General calculation capacity;

80 steps

Algebraic expression reserve;

Capacity: 80 steps (AER mode)

Functions: Cursor step-up, step-down, insertion, deletion playback.

Others

Overflow errors;

- 1. When the absolute value of a calculation result is great. than 9.999999999 x 1099.
- 2. When a number is divided by 0 (zero). $(A \div 0)$.
- 3. When the absolute value of a result of memory calculation greater than 9.999999999 x 1099.
- 4. When a formula that exceeds the capacity of function (1 stage) or data (8-stage) buffer is used for calculation.
- 5. When a formula gramatically wrong is executed.
- 6. When date for both 1-variable and 2-variable statistical co culations are input at random in the STAT mode.

Error symbol; \dots \square \dots \square

Memory;

Power supply;

Battery life;

Dimentions;

Weight;

Silver oxide battery (G-13 \times 3)

Approx. 1000 hours

 $175(W) \times 70(D) \times 9.3(H)$ mm

Approx. 120g.

2. MAIN KEY'S EXPLANATION

Note: This key operation is ineffective right after or in the course of entry of a number

and in the AER mode.

DRG	Degree/Radian/Grad selection key
	Used for calculation of trigonometric, inverse trigonometric and coordinate conversion.
	The DRG key changes the angular mode.
	DEG
	(depress DRG) (depress DRG)
	(depress DRG)
	Ex. DEG \rightarrow GRAD: Depress the DRG key twice. (DRG DRG)
CTO.	Store key
STO	The EL-5101 has five (5) store memory registers. To designate each memory, depress the
	STO key followed by $A \sim J$ (Ex. STO A)
	AER mode:
	Designates the instruction to store a number into the designated store memory.
	COMP mode:
	Depression of the STO and A ~ J key clear a number in the designated memory and
	then stores a number being displayed or calculated result in the designated memory.
<u> </u>	
RCL	Recall key
	Recall the contents of the designated memory. To designate each memory, depress A
	J keys following the RCL key. (Ex. RCL A). The contents of the store memory
,	remain unchanged after this operation.
	AER mode:
	The contents of the store memory are written as a constant in the formula.
	COMP mode:
	When the formulas are displayed, the contents of the store memory are written in the
	formulas.
	When the calculated result is displayed, the contents of the store memory are displayed
A~E	Store memory keys
	AER mode, COMP mode:
	When the A ~ J keys are depressed following the STO or RCL key, corresponding
	store memories are designated.
	store memories are assignated.
1;	Formula keys
~	
2ndF J	AER mode; Displays the formulas in each area.
	COMP mode; Used to perform the calculation according to the algebraic formula stored
	in each area in the AER mode.
CD	
RM-	Recall memory and correct data key
RM:	Recalls the contents of the independently accessible memory.
	COMP mode:
	When the formula is displayed, the contents of the independently accessible memory i
	written in the formula.

When the calculated result is displayed, the contents of the independently accessible

The contents of the independently accessible memory are written as a constant in the

memory is displayed.

Used to correct the mis-entry of data.

AER mode:

formula. STAT mode:

Memory-in-two variable data designation key

Designates the instruction for storing the number in the display or calculation result into the independently accessible memory.

: COMP mode:

Clear the contents of the independently accessible memory and replaces it with the number in the display or calculated result. To clear the memory depress the CL key followed by

(x, y): STAT mode:

Used to distinguish data x and data y in the two-variable statistical calculation.

When data x is 6 and data y is 3.

Key operation

(x, y)

Data

Data

Memory plus/enter data key AER mode:

Designates the instruction for storing the number displayed or a calculated result to the independently accessible memory.

COMP mode:

Used to add the number displayed or a calculated result to the contents of the independently accessible memory.

AER mode:

Designates the instruction to subtract the displayed number or a calculated result from the independently accessible memory.

COMP mode:

Used to subtract the displayed number or a calculated result from the contents of the independently accessible memory.

Note; When the 2NDF M+ keys is depressed, the "M-" will be displayed.

STAT mode:

Used to enter data in one-variable statistical calculation or data in two variable statistical calculation.

Clear/clear all key

AER mode:

Orders the cursor to be positoned at 0th step of algebraic expression reserve area.

COMP mode:

Clears the contents of the calculation registers. The contents of the memory and stored algebraic formula are not affected. Clears the error condition.

STAT mode:

Clears the contents of the calculation registers. The entry data for the statistical calculation is retained. And clears the error condition.

2ndF

AER mode:

Clears all of information stored in algebraic expression reserve area.

Clears the contents of the calculation registers. The contents of the memory and stored algebraic formula are not affected.

STAT-mode:

Clears the entry data or calculated result of the statistical calculation. The stored algebraic formulas are retained.

3. DISASSEMBLY PROCEDURE

- 1. Remove two screws on the bottom cabinet.
- 2. Detach the bottom cabinet from the top cabinet as it is clasped to the top cabinet at the points, X, Y, and Z.
- 3. Take batteries out (3 pcs).
- 4. Remove nine screws at the points a \sim i.
- 5. Detach the P.W.B. from the top cabinet by lifting the lower part of the P.W.B., as it is hooked to the top cabinet at the upper part (LCD side).
- As soon as the P.W.B. was removed, such as the key rubber and filter are ready to remove.
- 7. Now, dismount the LCD unit by releasing the hooks, as it is hooked to the P.W.B. at eight locations A ~ H.

9. As the LCD is held to the angle using a double-tack adhesive tape, pour in a small amount of alcohol into the contact phase between the LCD and the angle. This will make separation of the LCD much more easier.

4. BLOCK DIAGRAM

Key Section

Key signals are sent to the LSI as key signals $Ki_1 \sim Ki_{16}$, while key strobe'signals are sent from the SC43151 as key strobe signals $S_2 \sim S_{16}$.

Arithmetic Logic Section

All the arithmetic operations are carried out in the SC43150 on the basis of key signals $Ki_1 \sim Ki_{16}$. However, some part of the 1K RAM within the display chip (SC43125) is used for the memory of the SC43150, exchanging the data corresponding to the address bus $(B_1 \sim B_8)$ via $Di_{01} \sim DI_{04}$.

Display Section

When the signal Chip Enable is in high state, the display data is received into the designated address $(B_1 \sim B_8)$ of the SC43125 via the lines $Di_{01} \sim Di_{04}$.

Though the display data is decoded into one of signals la \sim 24e by the decoder in the SC43125, it is then controlled by the signal HA for synchronizing with the back plate signal. If the signal Disp is in high state (out of arithmetic operation), the decoded signal la \sim 24e is sent to the LCD as a segment signal so that segments are lit corresponding to the back plate signal $H_1 \sim H_7$ directly received from the SC43151.

5. LSI SIGNALS

• SC43150

Pin No.	Signal Name	IN/OUT	Description
1	F4		Nonconnection
2	F3		Nonconnection
3	F2	OUT	Display chip 2 enable signal
4	F1	OUT	Display chip 1 enable signal
5	VDD	IN	Power source
6	VGG	IN	Power source
7	Xout	IN	For internal CG
8	XIN	IN	For internal CG
9	TEST1	IN	LSi checking terminal
10	TEST2	IN	LSi checking terminal
11	RESET	IN	LSi reset signal
12	R/W	OUT	Read out/Write in control input
13	Di04	IN/OUT	Data buss
14	Di03	IN/OUT	Data buss
15	Di02	IN/OUT	Data buss
16	Di01	IN/OUT	Data buss
17	B8	OUT	Chip address
18	B7	OUT	Chip address
19	В6	OUT	Chip address
20	B5	OUT	Chip address
21	B4	OUT	Chip address
22	В3	OUT	Chip address
23	B2	OUT	Chip address
24	B1 .	OUT	Chip address
25	HA	OUT	Counter signal for display chip
26	DiS	OUT	Display control signal
27	VM	IN	Power source
28	VA	IN	Power source
29	GND	IN	Power source
30	H4	OUT	LCD back plate signal
31	H7	OUT	LCD back plate signal
32	Н3	OUT	LCD back plate signal
33	Н6	OUT	LCD back plate signal
34	H2	OUT	LCD back plate signal
35	H5	OUT	LCD back plate signal
36	HI	OUT	LCD back plate signal
37	VDISP	IN	Power source for display
38	VB	IN	Power source
39	S16	OUT	Key strobe signal
40	S15	OUT	Key strobe signal
41	S14	OUT	Key strobe signal
42	S13	OUT	Key strobe signal
43	S12	OUT	Key strobe signal
44	S11	OUT	Key strobe signal
45	S10	OUT	Key strobe signal

٥	1
į	_
7	
١	_

Pin No.	Signal Name	IN/OUT	Description
46	S 9	OUT	Key strobe signal
47	S 8	OUT	Key strobe signal
48	S 7	OUT	Key strobe signal
49	S6	OUT	Key strobe signal
50	S 5	OUT	Key strobe signal
51	S 4	OUT	Key strobe signal
52	S 3	OUT	Key strobe signal
53	S2	OUT	Key strobe signal
54	S1	OUT	LCD segment signal
55	Kil	IN	Key input signal
56	Ki2	IN	Key input signal
57	Ki3	IN	Key input signal
58	Ki4	IN	Key input signal
59	Ki5	IN	Key input signal (Mode key)
60	Ki6	IN	Key input signal (ON key)

• SC43125

Pin No.	Signal Name	IN/OUT	. г	Descrip	tion	
1 .	S 3	OUT	LCD segment signal	16c) 8c	7 24c
2	S4	OUT	LCD segment signal	16b	8b	24b
3	S 5	OUT	LCD segment signal	16a	8a	24a
4	S6	OUT	LCD segment signal	15e	7e	23e
5	S7	OUT	LCD segment signal	15d	7d	23d
6	S 8	OUT	LCD segment signal	15c	7c	23c
7	S 9	OUT	LCD segment signal	15b	7b	- 23b
8	S10	OUT	LCD segment signal	15a	7a	23a
9	S11	OUT	LCD segment signal	14e	6e	22e
10	S12	OUT	LCD segment signal	14d	6d	22d
11	S13	OUT	LCD segment signal	14c	6c	22c
12	S14	OUT	LCD segment signal	14b	CHIP 2 6b	CHIP 3 22b
13	S15	OUT	LCD segment signal	14a	6a	22a
14	S16	OUT	LCD segment signal	13e	5e	21e
15	S17	OUT	LCD segment signal	13d	5d	21d
16	S18	OUT	LCD segment signal	13c	5c	21c
17	S19	OUT	LCD segment signal	13b	5b	21b
18	S20	OUT	LCD segment signal	13a	5a	21a
19	S21	OUT	LCD segment signal	12e	4e	20e
20	S22	OUT	LCD segment signal	12d	4d	20d
21	S23	OUT	LCD segment signal	12c	4c	20c
22	S24	OUT	LCD segment signal	12b	4b	20b
23	S25	OUT	LCD segment signal	12a	4a	20a
24	S26	OUT	LCD segment signal	11e-	3e .	19e _

Pin No.	Signal Name	IN/OUT	Description
25	S27	OUT	LCD segment signal 11d 3d 19d
26	S28	OUT	LCD segment signal 11c 3c 19c
27	S 29	OUT	LCD segment signal 11b 3b 19b
28	S30	OUT	LCD segment signal 11a 3a 19a
29	GND	IN	Power source OV
30	\$31	OUT	LCD segment signal 10e 2e 18e
31	S32	OUT	LCD segment signal 10d CHIP 2 2d CHIP 3 18d
32	S33	OUT	LCD segment signal 10c 2c 18c
33	S34	OUT	LCD segment signal 10b 2b 18b
34	S35	OUT	LCD segment signal 10a 2a 18a
35	S36	OUT	LCD segment signal 9e le 17e
36	S37	OUT	LCD segment signal 9d 1d 17d
37	S38	OUT	LCD segment signal 9c 1c 17c
38	S39	OUT	LCD segment signal 9b 1b 17b
39	S40	OUT	LCD segment signal 9a la 17a
40	VA	IN	Power source
41	VB	IN .	Power source
42	DiS	IN	Display control signal
43	НА	IN	Control signal
44	Di04	IN/OUT	Data buss
45	Di03	IN/OUT	Data buss
46	Di02	IN/OUT	Data buss
47	Di01	IN/OUT	Data buss
48	VGG	IN	Power source
49	R/W	IN	Read out/Write in control signal
50	CE	IN	Chip-enable
51	В6	IN	Chip address
52	B4	IN	Chip address
53	B3	IN	Chip address
54	B2	IN	Chip address
55	Bi	IN	Chip address
56	B 8	IN	Chip address
57	В7	IN	Chip address
58	B 5	IN	Chip address
59	SI	OUT	LCD segment signal 16e CHIP 2 8e CHIP 3 24e
60	S2	OUT	LCD segment signal 16d 8d 1111 24d

6. CIRCUIT DIAGRAM

11

7. PARTS & SIGNALS POSITION

a) Main P.W.B.

12

SUB. P. W. B.

The circuit contained in this Sub P. W. B. will be fabricated in the L. S. I. itself.

Therefore, use of this Sub P. W. B. will be abolished from the July production, 1979.

本回路は7月生産分よりLSIの内部に組込まれます。従って当SUB PWBは7月生産分(新LSI使用分)より廃止となります。

8. PARTS LIST

NO.	PARTS CODE	DESCRIPTION	NEW MARK	PRICE	
1	CCABB2114CC01	Top cabinet	N	Α	S
2	PFILWI228CCZZ	Display filter		Α	С
3	HDECA 527CCZZ	Dec. panel for display	N	Α	С
4	PFiLW1230CCZZ	Filter	N	Α	Н
5	PSPAPI121CCZZ	Switch spacer	\$4 . 4x	A	Α
6	JKNBZ1256CCZZ	Knob for slide switch	. 4	A	В
7	QCNTM1034CCZZ	Contact for slide switch	*	A	A
 /8	MSPRC1098CCZZ	Earth spring		A	A
9	JKNBZ1492CC01	Key top (20key)		* A	E
10	JKNBZ1493CC01	Key top (2nd Fkey) for 30sets		1	Ē
11	JKNBZ1494CC01	Key top (CL key) for 30sets		1	E
12	JKNBZ1495CC01	Key top (function key) for 2sets			F
13	JKNBZ1495CC03	Key top (A~J key etc.) for 2sets	N		F
	JKNBZ1495CC04	Key top (ON, OFF, F↔E, TAB) for 6sets		1	F
14	JKNBZ1495CC05	Key top (COMP, PB, ▶, ◀) for 6sets	N	A	F
15	PGUMMI 185CCZZ	Key rubber	- 1	A	Ė
16	LANGK 1290CCZZ	L. C. D angle	N	A	<u>_</u>
17		L. C. D	N	A	Z
18	DUNT-179BCCZZ	Rubber connecctor	N		E
19	PGUMSI190CCZZ		111	A	B
20	QTANZ1249CCZZ	Battery terminal (+)		A	В
21	QTANZ1250CCZZ	Battery terminal (-)		 	В
22	QTANZ1251CCZZ	Battery terminal (+, -)		A	
23	QCNTM1036CCZZ	Contact		A	В
24	PZETL1273CCZZ	Battery insulating sheet		A	C
25	HDECA 526CCZZ	Bottom panel	N	-	K
26	LX-BZ1060CCZZ			A	A
27	LX-BZ1061CCZZ	LX-BZI06ICCZZ Screw		Α	Α
28	UBAGZI169CCZZ	Hard case			
	TiNSE2445CCZZ	Instruction book (U.S.A only)	N		
29	TiNSM2446CCZZ	Instruction book (E, F, G, S)	N	Α	T
	SPAKC4296CCZZ	Packing case (U.S.A only)	N	Α	С
30	SPAKC4299CCZZ	Packing case (except U.S.A)	N		С
31	TLABZ1295CCZZ	Name label		Α	Α
	RC-KZ1007CCZZ	Capacitor 1000PF		Α	В
	RC-SZ1006CCZZ	Capacitor 0.1 µF		Α	F
	RC-SZ1007CCZZ	Capacitor 1µF		Α	F
	RR-DZ1006CCZZ	Resistor 1/8W 143Kohm ±2%		Α	В
	RR-DZ1007CCZZ	Resistor 1/8W 12.7Kohm ±2%	N	Α	В
	RR-DZ1007CCZZ	Resistor 1/8W 21Kohm ±2%	N	Α	В
	RVR-MB510QCZZ	Variable resistor		Α	E
	RVR-M2510QCZZ	Variable resistor		+	D
	VHH154KD-5/-1	Thermistor			С
	VHISC43125/-1	L. S. i		Α	X
		L. S. i	i N	В	F
	VHISC43151/-1	Resistor 1/8W 100ohm ±10%			Ā
	VRC-MT2BG101K	Resistor 1/8W 1.6Mohm ±5%			Α
	VRC-MT2BG165J		1	<u> </u>	Ā
	VRD-ST2BY104J	Resistor 1/8W 100Kohm ±5%			$\frac{2}{A}$
	VRD-ST2BY332J	Resistor 1/8W 3.3Kohm ±5%			G
	VS2SJ40-//-I	Transistor		1	
				-	
Α	DUNTK5088CSZZ	Sub P.W.B unit	_	-	
В	LX-BZ1072CCZZ	Screw for sub P.W.B	1	1	

*A, B; These parts will be abolished from the July production, 1979.

. 1979.

