22-51-04

Q: (a) HAC -> 2 average

(b) PCA: PCI PCZ

cc) Ci) NB + classify

Solution: (a) -(AC

OInitialize: Each point as an individual cluster

@ Iteration 1: calculate the distant between chester

	0	4	5	20	25	39	43	44
O	ט							
4	4	ס						
5	ځ	١	D					
20	20	16	15	0				
25	25	21	20	5	ی			
39	39	35	34	19	14	O		
43	43	39	38	23	18	4	0	
44	44	40	39	24	19	2	1	S

morge the two dusters withe the minimum average linkage

we merge 14) and 95} into cluster 94,5) with distant 1 and denote it as C_4 , $C_5 \longrightarrow C_{45}$

3 Iteration 2

$$d_{0,45} = \frac{1}{2} \times (\xi+5) = 4.5$$

and soon

	O	4,5	20	25	39	43	44
O	ט						
4,5	4.5	0					
20	20	15.7	0				
25	25	20.5	5	ی			
39	39	34.5	19	生	Ð		
43	43	38.5	23	18	4	0	
44	44	39.5	24	19	2	1	S

4) Iteration 3

	0	4,5	20	25	39	43,44
O	D					
4,5	4.5	0				
20	20	15.7	0			
25	25	20.5	ょ	Ŋ		
39	39	34.5	19	발	Ð	
43,44	43.5	39	23.5	[8,5]	4.5	D

C39, C43,44 -> C39,43,44

D 74

	0	4,5	20	25	39, 43,44
O	D				
4,5	4.5	0			
20	20	15.7	0		
25	25	20.5	5	D	
39 43 44	42	3 7.5	22	[7	0

Co, C4,5 > Co,4,5

@I5

	0, 4,5	20	25	39, 43,44
0,4,5	Ó			
20	17	0		
25	22	4	D	
39 43 44	39	22	רן	0

	0, 4,5	20 25	39, 43,44
0,4,5	O		
20 25	19.5	D	
39 43 44	39	19.5	0

Co,4,5 C20,25
$$\rightarrow$$
 Co,4,5,20,25
® Stopping: only 2 clusters left
Co,4,5,20,25 C39,43,44

Figure 5. Plots of the two datasets of 2D points.

Que can calculate a simple cample to find PCI&Z

N=(0,0)

center the data

$$\sigma_{1}^{2} = \frac{1}{5} \times \left[(-0.3)^{2} + (-0.3)^{2} + 0^{2} + 0.3^{2} + 0.3^{2} \right] = 0.072$$

$$\sigma_{22}^{2} = \frac{1}{5} \times \left[(-0.3)^{2} + (0.6)^{2} + 0^{2} + 0.8^{2} + 0.8^{2} \right] = 0.5 |2$$

$$S_{12} = \frac{1}{5} \times \left[(-0.5 \times 0.8) + [-0.3 \times (-0.8)] + 0.3 \times 0.8 + 0.3 \times (-0.8) \right]$$

$$= 0$$

$$|\lambda 1 - \bar{z}| = (\lambda - 0.072)(\lambda - 0.512) = 0$$

$$\lambda_1 = 0.512 \quad V \qquad \lambda_2 = 0.072$$

$$\begin{bmatrix} 0.072 & 0 \\ 0 & 0.512 \end{bmatrix} \begin{pmatrix} 9 \\ 6 \end{pmatrix} = \begin{bmatrix} 0.072 & 9 \\ 0.512 & 6 \end{bmatrix} = 0.512 \begin{pmatrix} 9 \\ 6 \end{pmatrix} = \begin{pmatrix} 0.512 & 9 \\ 0.512 & 6 \end{pmatrix}$$

$$= \begin{cases} a = 0 \\ b = \forall b \end{cases} = > V_i = \begin{pmatrix} 0 \\ \alpha \end{pmatrix} = > V_i = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

(C)(i) Naive Bayes

(D) we denote

$$X = \{Sound = Bark, Fur = Coarse, Golde = Brown\}$$
 $SB = \{Sound = Bark\}$
 $FC = \{Fur = Coarse\}$
 $CB = \{Golde = Brown\}$
 $D = \{Golde = Bark\}$
 $D = \{Golde = Bark, Fur = Coarse, Golde = Brown\}$
 $D = \{Golde = Bark, Fur = Coarse, Golde = Brown\}$
 $D = \{Golde = Bark, Fur = Coarse, Golde = Brown\}$
 $D = \{Golde = Bark, Fur = Coarse, Golde = Brown}$
 $D = \{Golde = Bark, Fur = Coarse, Golde = Brown}$
 $D = \{Golde = Bark, Fur = Coarse, Golde = Brown}$
 $D = \{Golde = Bark, Fur = Coarse, Golde = Brown}$
 $D = \{Golde = Bark, Fur = Coarse, Golde = Brown}$
 $D = \{Golde = Bark, Fur = Coarse, Golde = Brown}$
 $D = \{Golde = Bark, Fur = Coarse, Golde = Brown}$
 $D = \{Golde = Bark, Fur = Coarse, Golde = Brown}$
 $D = \{Golde = Bark, Fur = Coarse, Golde = Brown}$
 $D = \{Golde = Bark, Fur = Coarse, Golde = Brown}$
 $D = \{Golde = Bark, Fur = Coarse, Golde = Brown}$
 $D = \{Golde = Bark, Fur = Coarse, Golde = Brown}$
 $D = \{Golde = Bark, Fur = Coarse, Golde = Brown}$
 $D = \{Golde = Bark, Fur = Coarse, Golde = Brown}$
 $D = \{Golde = Bark, Fur = Coarse, Golde = Brown}$
 $D = \{Golde = Bark, Fur = Coarse, Golde = Brown}$
 $D = \{Golde = Bark, Fur = Coarse, Golde = Brown}$
 $D = \{Golde = Bark, Fur = Coarse, Golde = Brown}$
 $D = \{Golde = Bark, Fur = Coarse, Golde = Brown}$
 $D = \{Golde = Bark, Fur = Coarse, Golde = Bark, Fur = Coarse,$

(3)
$$p(SBID) = \frac{3}{4}$$
 $p(SBIC) = \frac{1}{4}$
 $p(FCID) = \frac{3}{4}$ $p(FCIC) = \frac{1}{4}$
 $p(CBID) = \frac{1}{2}$ $p(CBID) = \frac{1}{2}$
 $p(D) = \frac{4}{8} = \frac{1}{2}$ $p(C) = \frac{1}{2}$

$$\Theta G(D|X) = \frac{3}{4} \times \frac{3}{4} \times \frac{1}{2} \times \frac{1}{2} = 0.140625$$

$$G(C|X) = \frac{1}{4} \times \frac{1}{4} \times \frac{1}{2} \times \frac{1}{2} = 0.015625$$

@
$$g(DIX) > g(CIX)$$

So we dassify it to Pog-
Cii) we define $9=1-P$

P(First head occurres on -toss 2,4,6...) $= 9P + 9^{3}P + 9^{5}P + ... + 9^{2k+1}P$ $= \sum_{k=0}^{\infty} q^{2k+1}P$

$$= \frac{2p}{\sqrt{2k}} = \frac{2p}{\sqrt{2k}} = \frac{2p}{\sqrt{2k}} = \frac{(1-p)p}{(1-2p+p^2)} = \frac{(1-p)p}{\sqrt{2p-p^2}} = \frac{(1-p)p}{\sqrt{2p-p^2$$

$$\frac{1}{1-a}$$

$$\frac{n}{2}q = \frac{\alpha_1(1-q^n)}{1-\alpha}$$