PLATAFORMA DE DISEÑO QUARTUS

Pasos para trabajar en la tarjeta intel DE2i-150 FPGA:

Lo primero que se debe hacer es prender la tarjeta y esperar a que se cargue el sistema operativo "UBUNTU". Ver la siguiente figura:

Posteriormente se crea una carpeta en el escritorio con el nombre del proyecto a realizar y ejecutar los siguientes comandos que se llevan a cabo dentro del menú "terminal." Y escribir:

Sudo su root---- enter.

Password: padrecelestial---- enter.

cd altera ---- enter.

cd 12.1 ---- enter.

cd quartus ---- enter.

cd bin ---- enter.

./ quartus ---- enter .

Nota: Espere un momento ya que tarda al iniciar de 5 a 10 minutos.

1 HERRAMIENTAS DE DISEÑO "QUARTUS"

La plataforma QUARTUS integra herramientas de desarrollo necesarias para procesar diseños en forma amigable e incluso manejar proyectos jerárquicos. También cuenta con métodos poderosos de síntesis lógica, compilación, partición, simulación funcional, simulación en tiempo y simulación enlazada con varios dispositivos.

Para el manejo de esta plataforma se requiere introducir un diseño, sintetizarlo y finalmente configurarlo y grabarlo en el dispositivo seleccionado; sin embargo, es recomendable, antes de crear el diseño, que éste se simule y se analice en el tiempo.

2 PROYECTO

Un proyecto contiene todos los archivos de la jerarquía de un diseño. Los módulos que contenga un proyecto son llamados fuentes. La plataforma QUARTUS realiza la compilación, síntesis, simulación, análisis en el tiempo y programación de un dispositivo en un solo proyecto. Para compilar un proyecto con archivos independientes se debe especificar, primero, qué archivo se desea compilar.

3 Introducción del diseño

Introducir un diseño significa el proceso de describir la arquitectura del diseño, utilizando algún método que sea soportado por QUARTUS. La selección del dispositivo a utilizar se hace en el momento de introducir el diseño a esta plataforma. Existen muchos métodos para introducir un diseño; sin embargo, algunas reglas simples a seguir son las siguientes:

- La captura de cualquier esquemático se efectúa en el editor gráfico.
- La captura de diagramas de estado se efectua en el editor gráfico.
- La captura de diseños hechos en lenguaje de descripción AHDL se efectúa en el editor de texto.
- La captura de diseños hechos en lenguaje de descripción VHDL se efectúa en el editor de texto
- La captura de diseños hechos en lenguaje de descripción Verilog-HDL se efectúa en el editor de texto.
- La captura de diseños hechos en forma de vectores se efectúa en el editor de forma de onda.
- La captura de archivos generados en Edit y netlist que son diseños hechos con herramientas EDA de otras industrias se efectúa en el editor de texto.

4 SÍNTESIS DEL DISEÑO

Sintetizar un diseño significa traducirlo a código creador de hardware. Para sintetizar un proyecto se requiere compilarlo. Compilar un diseño significa evaluar el manejo correcto de la sintaxis necesaria para la creación de hardware. Puede darse el caso de que un diseño sea compilado exitosamente y sin embargo no sea sintetizable debido a que la plataforma QUARTUS no tenga los constructores necesarios para alguna instrucción de dicho diseño.

Después de sintetizar el diseño se requiere hacer una asignación a los pines de entrada y salida.

5 CONFIGURACIÓN O PROGRAMACIÓN DEL DISEÑO

Después de sintetizar cualquier diseño, éste queda listo para programarse en un CPLD o para configurarse en un FPGA, utilizando el cable JTAG.

6 ESPECIFICACIONES DE UN PROYECTO

Una correcta y detallada definición del proyecto es imprescindible para una correcta planificación. Considérese un proyecto que consta de dos bloques funcionales. El primer módulo será un divisor de frecuencia y el segundo será un contador del cero al nueve.

7 Diagrama de bloques del proyecto

Mediante el diagrama de bloques se analizan entradas, salidas y señales que se tienen en el proyecto.

Análisis:

Entradas: reloj

Salidas: Cuenta (3 downto 0)

Señales: div_clk.

Nota:

Las entradas y las salidas se declaran en la entidad y las señales en la arquitectura antes de su begin.

8 CREACIÓN DE UN PROYECTO

Lo primero que se requiere es crear una carpeta en donde se tendrán todos los archivos generados durante el desarrollo del proyecto, posteriormente, se requiere abrir la plataforma de QuartusII.

Esta acción inicia la ejecución del entorno de desarrollo de la plataforma QuartusII, que permite acceder a los recursos y procesos de la plataforma. La figura 1 muestra el menú principal del entorno de desarrollo.

Figura 1. Menú inicial del entorno de desarrollo QuartusII

Para crear un nuevo proyecto se requiere de las acciones listadas a continuación:

- ➤ En la opción "Create a new project" del menú inicial, seleccione "Next". Al hacer esto aparece una ventana de ayuda para introducir el nombre y la localización del proyecto, tal como se muestra en la figura 2 y seleccione "Next".
- ➤ Al proyecto se le llamará "contador".
- > Si ya tiene hecho el VHDL, busque y abra ese archivo Presione la opción "Add".
- > Presione la opción "Next".

Figura 2. Creación de un nuevo proyecto.

En la página de propiedades del proyecto se requiere escribir los datos del dispositivo que se desee utilizar. El dispositivo incluido en la tarjeta de desarrollo Intel "DE2i-150 board", con el que cuenta la Facultad de Ingeniería, en el laboratorio de Dispositivis Lógicos Programables tiene las siguientes propiedades:

Device Family: Ciclone IV FPGA GX Device: EP4CGX150DF31C7

La tabla de propiedades del proyecto aparece como se muestra en la figura 3:

Figura .3. Tabla de propiedades del proyecto

Creación del código en VHDL su análisis y síntesis

Una vez que se introducen los datos solicitados en la página de propiedades, se requiere la creación del módulo; por lo que se presiona la opción "siguiente", para que aparezca otra ventana en la que se debe presionar dos veces el nombre del proyecto que estamos desarrollando para ver o escribir el código del proyecto, posteriormente se debe compilar presionando el botón "analysis & synthesis" tal como lo muestra la figura 4.

Figura 4. Selección, escritura y compilación del archivo que se desea crear.

Si el proyecto no tiene errores de sintaxis aparecerá la ventana que se muestra en la figura 5.

Figura 5. Compilación correcta del proyecto.

Para abrir la ventana que permite definir los puertos de entradas y salidas del diseño en VHDL, se debe oprimir el botón "Pin Planner", como se muestra en la figura 6.

Figura .6. Acceso al Pin Planner Editor.

➤ Aparecerá la ventana que se muestra en la figura 7 y en la columna que dice "location" se deben anotar los pines que se asignará en el FPGA correspondiente a cada una de las salida y de las entradas del proyeccto.

Figura.7. Pin Planner Editor

Los periféricos más usados se muestran a continuación:

Signal Name	FPGA
SW[0]	V28
SW[1]	U30
SW[2]	V21
SW[3]	C2
SW[4]	AB3
SW[5]	U21
SW[6]	T28
SW[7]	R30
SW[8]	P30
SW[9]	R29
SW[10]	R26
SW[11]	N26
SW[12]	M26
SW[13]	N25
SW[14]	J26
SW[15]	K25
SW[16]	C30
SW[17]	H25

Pin Assignments for Push-buttons

Signal Name	FPGA
KEY[0]	AA26
KEY[1]	AE25
KEY[2]	AF30
KEY[3]	AE26

Pin Assignments for LEDs Signal Name FPGA LEDR[0] T23 T24 LEDR[1] LEDR[2] LEDR[3] V27 W25 LEDR[4] T21 LEDR[5] T26 LEDR[6] LEDR[7] T27 LEDR[8] P25 LEDR[9] R24 LEDR[10] P21 LEDR[11] N24 LEDR[12] N21 LEDR[13] M25 LEDR[14] K24 LEDR[15] L25 LEDR[16] M21 LEDR[17] M22 LEDG[0] AA25 LEDG[1] AB25 LEDG[2] F27 LEDG[3] F26 LEDG[4] W26 LEDG[5] Y22 LEDG[6] Y25 AA22 LEDG[7] LEDG[8] J25

Signal Name	FPGA	HEX4[2]	C7
HEX0[0]	E15	HEX4[3]	C6
HEX0[1]	E12	HEX4[4]	C5
HEX0[2]	G11		
HEX0[3]	F11	HEX4[5]	C4
HEX0[4]	F16	HEX4[6]	C3
HEX0[5]	D16	HEX5[0]	D3
HEX0[6]	F14	HEX5[1]	A10
HEX1[0]	G14	HEX5[2]	A9
HEX1[1]	B13		
HEX1[2]	G13	HEX5[3]	A7
HEX1[3]	F12	HEX5[4]	A6
HEX1[4]	G12	HEX5[5]	A11
HEX1[5]	J9	HEX5[6]	B6
HEX1[6]	G10	HEX6[0]	B9
HEX2[0]	G8		
HEX2[1]	G7	HEX6[1]	B10
HEX2[2]	F7	HEX6[2]	C8
HEX2[3]	AG30	HEX6[3]	C9
HEX2[4]	F6	HEX6[4]	D8
HEX2[5]	F4	HEX6[5]	D9
HEX2[6]	F10		
HEX3[0]	D10	HEX6[6]	E9
HEX3[1]	D7	HEX7[0]	E10
HEX3[2]	E6	HEX7[1]	F8
HEX3[3]	E4	HEX7[2]	F9
HEX3[4]	E3	HEX7[3]	C10
HEX3[5]	D5		-
HEX3[6]	D4	HEX7[4]	C11
HEX4[0]	A14	HEX7[5]	C12
HEX4[1]	A13	HEX7[6]	D12

Connections between the 7-segment display HEX0 and Cyclone IV GX FPGA

Block diagram of the clock distribution

Una vez que se anotaron los pines de entradas y de salidas como se muestra en la figura 8, se salva y cierra esa ventana.

Figura.8. Anotación de pines de entrada y de salida.

Una vez cerrado la ventana del "pin planner" se hace clck en el botón "start compilation" del menú de la barra superior.

Posteriormente hacer click en el botón progammer, de la misma barra superior, para iniciar la programación del chip, ver la figura 9.

Figura.9. Botón para acceder al programador.

Posteriormente aparecerá el siguiente menú, en donde se debe hacer click en el botón de "Add file" y una vez seleccionado el archivo punto .sof de la carpeta "output" files se debe hacer click en el botón "start", para iniciar la programación del FPGA. Ver figura 10.

Figura 10. Programmer Editor