EXERCICE N°1 Comportement d'une suite définie explicitement

VOIR LE CORRIGÉ

Étudier les variations des suites suivantes :

- 1) La suite u définie par : $\forall n \in \mathbb{N}$, $u_n = n^2 n$
- 2) La suite v définie par : $\forall n \in \mathbb{N}$, $v_n = \frac{5^n}{3^{n+1}}$
- 3) La suite w définie par : $\forall n \in \mathbb{N}$, $w_n = -8^n$
- **4)** La suite t définie par : $\forall n \in \mathbb{N}$, $t_n = (-8)^n$

EXERCICE N°2 Comportement d'une suite définie par récurrence

VOIR LE CORRIGÉ

Étudier les variations des suites suivantes :

- 1) La suite u définie par : $\begin{cases} u_0 = 2 \\ \forall n \in \mathbb{N}, u_{n+1} = u_n + 3n^2 + 5 \end{cases}$
- 2) La suite v définie par : $\begin{cases} v_0 = 9 \\ \forall n \in \mathbb{N}, v_{n+1} = \frac{9}{v_n} \end{cases}$

EXERCICE N°3 Comportement d'une suite arithmétique

VOIR LE CORRIGÉ

Étudier les variations des suites suivantes :

- 1) La suite u définie par : $\begin{cases} u_0 = 2 \\ \forall n \in \mathbb{N}, u_{n+1} = u_n + 1, 2 \end{cases}$
- 2) La suite v définie par : $\forall n \in \mathbb{N}$, $v_n = -2n+5$

EXERCICE N°4 Comportement d'une suite géométrique

VOIR LE CORRIGÉ

Étudier les variations des suites suivantes :

- 1) La suite u définie par : $\begin{cases} u_0 = -1,2 \\ \forall n \in \mathbb{N}, u_{n+1} = 3u_n \end{cases}$
- 2) La suite v définie par : $\forall n \in \mathbb{N}$, $v_n = 3 \times 0.5^n$

EXERCICE N°5 Limite d'une suite : 1ère approche

VOIR LE CORRIGÉ

Conjecturer, si elle existe, la limite des suites suivantes pour lesquelles on a donné quelques termes.

- 1) $u_0 = 6$, $u_{52} = 9$, $u_{7589} = 50$, $u_{20000} = 460$
- 2) $v_3 = -5$, $v_{52} = 3$, $v_{789} = -0.05$, $v_{5240} = 0.008$, $v_{35240} = -0.0000258$

EXERCICE N°6 Limite d'une suite : 2ème approche

VOIR LE CORRIGÉ

Conjecturer, si elle existe, la limite des suites suivantes.

- 1) La suite v définie par $\forall n \in \mathbb{N}^*$, $v_n = \frac{1}{n^2}$
- 2) La suite u définie par $\forall n \in \mathbb{N}$, $u_n = \frac{3n^2+1}{7n+5}$

EXERCICE N°1 Comportement d'une suite définie explicitement

RETOUR À L'EXERCICE

Étudier les variations des suites suivantes :

1) La suite u définie par : $\forall n \in \mathbb{N}$, $u_n = n^2 - n$

Soit $n \in \mathbb{N}$, $u_{n+1} - u_n = (n+1)^2 - (n+1) - [n^2 - n]$ $= n^2 + 2n + 1 - n - 1 - n^2 + n$

Or $n \ge 0$

On en déduit que la suite est croissante

Car: $u_{n+1} - u_n \ge 0 \Leftrightarrow u_{n+1} \ge u_n$

Si on avait eu $\forall n \in \mathbb{N}^*$, $u_n = n^2 - n$ alors la conclusion aurait été « strictement croissante » (Si vous ne voyez vraiment pas la différence, venez me voir en début ou fin d'heure)

2) La suite v définie par : $\forall n \in \mathbb{N}$, $v_n = \frac{5^n}{3^{n+1}}$

On remarque que $\forall n \in \mathbb{N}$, $v_n = > 0$, ce qui nous permet ce qui suit.

Soit $n \in \mathbb{N}$

$$\frac{v_{n+1}}{v_n} = \frac{\frac{5^{n+1}}{3^{n+2}}}{\frac{5^n}{3^{n+1}}} = \frac{5^{n+1}}{3^{n+2}} \times \frac{3^{n+1}}{5^n} = \frac{5}{3} > 1$$

On en déduit que la suite est strictement croissante .

En fait, ce n'est pas tout à fait gratuit :

$$\frac{v_{n+1}}{v_n} = \frac{5}{3} \Leftrightarrow v_{n+1} = \frac{5}{3}v_n > v_n \text{ et donc } v_{n+1} > v_n$$

et $\frac{5}{3}v_n > v_n$ car $\frac{5}{3} > 1$ (d'où la comparaison avec 1)

3) La suite w définie par : $\forall n \in \mathbb{N}$, $w_n = -8^n$

Soit $n \in \mathbb{N}$,

$$w_{n+1} - w_n = -8^{n+1} - (-8^n) = -8^{n+1} + 8^n = 8^n (-8+1) = -7 \times 8^n < 0$$

On en déduit que la suite est strictement décroissante.

4) La suite t définie par : $\forall n \in \mathbb{N}$, $t_n = (-8)^n$

Soit $n \in \mathbb{N}$

$$t_{n+1} - t_n = (-8)^{n+1} - (-8)^n = (-8)^n (-8-1) = -7 \times (-8)^n$$

Or

si *n* est pair
$$(-8)^n > 0$$
 d'où $-7 \times (-8)^n < 0 \Leftrightarrow t_{n+1} - t_n < 0$

et si n est impair $(-8)^n < 0$ d'où $-7 \times (-7)^n > 0 \Leftrightarrow t_{n+1} - t_n > 0$

On en déduit que la suite n'est pas monotone.

EXERCICE N°2 Comportement d'une suite définie par récurrence

RETOUR À L'EXERCICE

Étudier les variations des suites suivantes :

1) La suite u définie par : $\begin{cases} u_0 = 2 \\ \forall n \in \mathbb{N}, u_{n+1} = u_n + 3n^2 + 5 \end{cases}$

Soit $n \in \mathbb{N}$,

$$u_{n+1} - u_n = u_n + 3n^2 + 5 - u_n = 3n^2 + 5$$

Or
$$n \ge 0$$
 donc $3n^2 \ge 0$ et $3n^2 + 5 > 0$

Notez le changement de symbole pour la dernière inégalité.

On en déduit que la suite est strictement croissante .

2) La suite v définie par : $\begin{cases} v_0 = 9 \\ \forall n \in \mathbb{N} , v_{n+1} = \frac{9}{v_n} \end{cases}$

Allons y gaiement:

Soit $n \in \mathbb{N}$,

$$v_{n+1} - v_n = \frac{9}{v_n} - v_n = \frac{9 - v_n^2}{v_n} = \frac{(3 + v_n)(3 - v_n)}{v_n} = \dots$$

On n'arrive pas à se débarrasser de v_n . Dans ce cas, on va regarder les premiers termes

$$v_0 = 9 ,$$

$$v_1 = \frac{9}{9} = 1$$
,

$$v_2 = \frac{9}{1} = 9 ,$$

$$v_3 = \frac{9}{9} = 1$$

On constate sur les premiers termes que la su

la suite n'est pas monotone

Pourquoi on fait pas ça à chaque fois ? Souvenez-vous : un contre exemple démontre, mais un exemple non.

EXERCICE N°3 Comportement d'une suite arithmétique

RETOUR À L'EXERCICE

Étudier les variations des suites suivantes :

1) La suite u définie par : $\begin{cases} u_0 = 2 \\ \forall n \in \mathbb{N}, u_{n+1} = u_n + 1, 2 \end{cases}$

On reconnaît une suite arithmétique de raison r = 1,2 et de 1^{er} terme $u_0 = 2$ On a r > 0 donc la suite est strictement croissante .

2) La suite v définie par : $\forall n \in \mathbb{N}$, $v_n = -2n+5$

On reconnaît le terme général d'une suite arithmétique de raison r=-2 et de 1^{er} terme $u_0=5$

On a r > 0 donc la suite est strictement décroissante .

Vous avez tout à fait le droit de rédiger ainsi (en parlant bien du « terme général ») mais faites attention au premier terme. Si on avait eu « $\forall n \in \mathbb{N}^*$, $v_n = -2n+5$ » alors le premier terme aurait été $v_1 = 1$.

EXERCICE N°4 Comportement d'une suite géométrique

RETOUR À L'EXERCICE

Étudier les variations des suites suivantes :

1) La suite u définie par : $\begin{cases} u_0 = -1,2 \\ \forall n \in \mathbb{N}, u_{n+1} = 3u_n \end{cases}$

On reconnaît une suite géométrique de raison q = 3 et de 1^{er} terme $u_0 = -1,2$

On a q > 1 et $u_0 < 0$ donc la suite est strictement décroissante .

Il ne faut pas oublier de parler du signe du premier terme.

2) La suite v définie par : $\forall n \in \mathbb{N}$, $v_n = 3 \times 0.5^n$

On reconnaît le terme général d'une suite géométrique de raison q=0.5 et de 1^{er} terme $u_0=3$

On a 0 < q < 1 et $u_0 > 0$ donc la suite est strictement décroissante

Attention « q < 1 » tout seul ne suffit pas!

Il ne faut pas oublier non plus de parler du signe du premier terme.

EXERCICE N°5 Limite d'une suite : 1ère approche

RETOUR À L'EXERCICE

Conjecturer, si elle existe, la limite des suites suivantes pour lesquelles on a donné quelques termes.

1)
$$u_0 = 6$$
, $u_{52} = 9$, $u_{7589} = 50$, $u_{20000} = 460$

Avec les informations que l'on a, on peut se dire que la valeur des termes prend des valeurs de « plus positives » et que cela va continuer comme cela vers $+\infty$.

Il semble la suite u diverge vers $+\infty$

2)
$$v_3 = -5$$
, $v_{52} = 3$, $v_{789} = -0.05$, $v_{5240} = 0.008$, $v_{35240} = -0.0000258$

Avec les informations que l'on a, on peut se dire que la valeur des termes a tendance à tendre vers 0. En revanche, la suite n'est pas monotone.

Il semble la suite *v* converge vers 0

EXERCICE N°6 Limite d'une suite : 2ème approche

RETOUR À L'EXERCICE

Conjecturer, si elle existe, la limite des suites suivantes.

1) La suite v définie par $\forall n \in \mathbb{N}^*$, $v_n = \frac{1}{n^2}$

Il semble que
$$\lim_{n \to +\infty} v_n = 0$$

Autre rédaction possible

Il semble la suite v converge vers 0

2) La suite u définie par $\forall n \in \mathbb{N}$, $u_n = \frac{3n^2+1}{7n+5}$

Il semble que
$$\lim_{n \to +\infty} u_n = +\infty$$

Autre rédaction possible

Il semble la suite u diverge vers $+\infty$

Difficile à deviner?

Soit
$$n \in \mathbb{N}$$
, $u_n = \frac{3n^2 + 1}{7n + 5} = \frac{n^2 \left(3 + \frac{1}{n^2}\right)}{n\left(7 + \frac{5}{n}\right)} = n \times \frac{3 + \frac{1}{n^2}}{7 + \frac{5}{n}}$

En « regardant bien » on « voit que » : $3 + \frac{1}{n^2}$ tend vers 3, $7 + \frac{5}{n}$ tend vers 7 et que n tend vers $+\infty$. Celui qui « va gagner » est n.

(On formalisera ce raisonnement plus tard)