שיעור 11 רדוקציות פולינומיאליות

שלמה -NP היא CLIQUE 11.1

$CLIQUE \in NPC$ 11.1 משפט

CLIQUE היא (ראו הגדרה CLIQUE):

$$CLIQUE = \{\langle G, k \rangle \mid k$$
 מכיל קליקה בגודל מכיל מכיל מכיל מיקה בגודל מ

שלמה -NP שלמה CLIQUE

הוכחה:

- .9.2 במשפט $CLIQUE \in NP$ הוכחנו כי
- $.3SAT \leqslant_{P} CLIQUE$ נוכיח כי NP היא היא CLIQUE היא נוכיח כי

פונקצית הרדוקציה

ונוכיח כי $\langle G,k
angle$ מעל ϕ מעל משתנים x_1,x_2,\ldots,x_n המכיל משתנים ϕ מעל משתנים היינתן נוסחת

$$\left\langle \phi\right\rangle \in 3SAT\quad\Leftrightarrow\quad \left\langle G,k\right\rangle \in CLIQUE\ .$$

נבנה את הגרף G באופן הבא:

G הקדקודים של

 $:\!C_i$ של ליטרלים ללחטרלים המתאימים קודקודים מכילה t_i שלשה ניצור ליטרלים ללחטרלים ב- ϕ ב- C_i קודקודים לכל

$$x_1 \vee \bar{x}_3 \vee x_4 \longrightarrow (x_1) (\bar{x}_3)$$

:G הצלעות של

נבחר בין כל שני קודקודים פרט לזוגות הבאים:

- זוג קודקודים המתאימים למשתנה ומשלים שלו.
 - זוג קודקודים שנמצאים באותה שלושה.

לדוגמה:

$$\phi = \begin{pmatrix} \frac{T}{x_1} & \frac{T}{\bar{x}_2} \vee x_3 \\ C_1 & C_2 \end{pmatrix} \wedge \begin{pmatrix} \bar{x}_1 \vee \frac{T}{\bar{x}_2} \vee x_3 \\ C_3 \end{pmatrix}$$

.k=m נקבע

נכונות הרדוקציה

- $.\phi$ ניתן לבנות את G בזמן פולינומיאלי בגודל (1
 - 2) נוכיח כי

$$\langle \phi \rangle \in 3SAT \quad \Leftrightarrow \quad \langle G, k \rangle \in CLIQUE \ .$$

⇒ כיוון

- ϕ נניח כי ϕ ספיקה ונסתכל על השמה המספקת את ϕ .
- T יש לפחות ליטרל אחד שקיבל ערך ϕ בכל פסוקית בכל ϕ
- . נבחר מכל שלשה t_i בקודקוד אחד המתאים לליטרל שקיבל ערך T ב- T ונוסיף אותו לקליקה.
- מספר הקודקודים שבחרנו שווה k וכל שניים מהם מחוברים בצלע כי לא בחרנו שני קודקודים מאותה שלשה ולא בחרנו שני קודקודים המתאימים למשתנה ומשלים שלו.
 - k מכיל קליקה בגודל G

\Rightarrow כיוון

- . נניח כי G מכיל קליקה בגודל k ונסתכל על קליקה כזו. ullet
- לפי הבנייה הקליקה מכילה בדיוק קודקוד אחד מכל שלשה t_i . ניתן השמה למשתנים של ϕ כך שהליטרל שמתאים לקודקוד שנמצא בקליקה יקבל ערך T.
 - השמה זו אפשרית מכיוון שהקליקה לא מכילה שני קודקודים המתאימים למשתנה ומשלים שלו.

- בנוסף השמ זו מספקת את ϕ מכיוון שהקליקה מכילה קודקוד מכל שלשה t_i ולכן הליטרל המתאים לקודקוד פולעה העל היש לערך t_i הולכן הוא מספק את הפסוקית בשלשה t_i
 - . לכן ϕ ספיקה

11.2 בעיית הקבוצה הבלתי תלויה

הגדרה 11.1 קבוצה בלתי תלויה

כך $S\subseteq V$ בהינתן גרף לא מכוון G=(V,E), קבוצה בלתי תלויה ב- G היא תת-קבוצה של קודקודים קבוצה בהינתן גרף לא מתקיים $u,\mathbf{v}\in S$ מתקיים שלכל שני קודקודים $u,\mathbf{v}\in S$

 $\pm k=3$ קבוצה בלתי תלוייה בגודל

 $\cdot k = 3$ קבוצה בלתי תלוייה בגודל

IS בעיית באדרה בעיית

k ומספר G=(V,E) ומספר

 $rac{1}{2} \cdot k$ בגודל G -בגודל תלויה ב- G בגודל

 $IS = \{\langle G, k \rangle \mid k$ גרף גודל בלתי קבוצה בלתי קבוצה המכיל המכיל גרף גרף גרף א

$IS \in NPC$ בשפט 11.2 משפט

הבעייה IS היא NP שלמה.

הוכחה:

 $IS \in NP$ נוכיח כי (1)

IS נבנה אלגוריתם אימות V עבור $(\langle G, k \rangle, y)$ על קלט V

- . האם y האם G השונים מ- g השונים היא קבוצה של ϕ
 - . אם לא \Leftrightarrow דוחה.
 - G -בודק האם כל שני קודקודים מ-y לא מחוברים בצלע ב-
 - \circ אם כן \Leftrightarrow מקבל.

. אם לא \Leftrightarrow דוחה \circ

$CLIQUE \leqslant_P IS$ נוכיח כי (2)

פונקצית הרדוקציה:

:בהינתן אוג $\langle G,k \rangle$ הקלט של בIS, ונוכיח כי: בהינתן אוג הקלט של אוג בהינתן של בIS

$$\langle G, k \rangle \in CLIQUE \iff \langle G', k' \rangle \in IS$$
.

הפונקציית הרדוקציה מוגדרת כך שהתנאים הבאים מתקיימים:

.G=(V,E) נניח שהגרף הוא (1

G=(V,E) אז הגרף הוא הגרף המשלים של G'

כאשר
$$G'=ar{G}=(V,ar{E})$$
 כאשר

$$\bar{E} = \{(u_1, u_2) \mid (u_1, u_2) \notin E\}$$
.

.k' = k (2

לדוגמה, בהינתן הגרף R מחזירה את מביל קליקה בגודל את הבוקציית הרדוקציה המספר לG=(V,E) מחזירה את הגרף לבוגמה, בהינתן המספר לא בתרשים למטה: K'=k=3ואת המספר לא המספר לא בתרשים למטה:

נכונות הרדוקציה

- G ניתן לבנות G' בזמן פולינומיאלי בגודל (1
- $\langle G,k \rangle \in CLIQUE \quad \Leftrightarrow \quad \langle G',k' \rangle \in IS$. נוכיח כי

\Leftarrow כיוון

$$k$$
 ושלם $G=(V,E)$ ושלם . $\langle G,k \rangle \in CLIQUE$ נניח כי

- k מכיל קליקה מכיל מכיל $G \Leftarrow$
- G שני קדקודים ב- מחוברים בצלע של \in
- G' באיינו , $ar{G}$ איינו של המשלים של הגרף א מחוברים בצלע של המשלים של הגרף א כל שני קדקודים ב
 - k'=k בגודל G' באותה הקבוצה בלתי קבוצה בלתי היא קבוצה היא הקבוצה \in

- .k' מכיל קבוצה בלתי תלויה בגודל $G' \Leftarrow$
 - $\langle G', k \rangle \in IS \Leftarrow$

\Rightarrow כיוון

.k' בהינתן גרף G' ושלם . $\langle G', k' \rangle \in CLIQUE$ נניח כי

- k' מכיל קבוצה בלתי תלוייה מכיל קבוצה $G' \Leftarrow$
- G' שני קדקודים ב- מחוברים בצלע של \in
- k=k' בגודל G -ב היא קליקה הקבוצה אותה הקבוצה \in
 - .k מכיל קליקה בגודל $G \Leftarrow$
 - $\langle G, k \rangle \in CLIQUE \Leftarrow$

11.3 בעיית הכיסוי בקודקודים

הגדרה 11.3 כיסוי בקודקודים

כך $C\subseteq V$ כיסוי של קודקודים ב- G הוא תת-קבוצה לא כיסוי כיסוי ,G=(V,E) בהינתן גרף לא מכוון גרף לא ייסוי .v $\in C$ או מתקיים $u, {\rm v} \in S$ שלכל צלע

k=2 כיסוי בקדקודים בגודל

k=5 כיסוי בקדקודים בגודל

k=5 כיסוי בקדקודים בגודל

VC הבעייה 11.4

VC בעיית 11.4 הגדרה

.k ומספר G=(V,E) ומספר

?k בגודל G - בלט: האם קיים כיסוי בקודקודים ב

 $VC = \{\langle G, k \rangle \mid k$ גרף לא מכוון המכיל כיסוי בקודקודים בגודל $G \}$

$VC \in NPC$ 11.3 משפט

. שלמה NP היא VC הבעייה

הוכחה:

 $VC \in NP$ נוכיח כי

VC עבור V עבור אימות לבנה אלגוריתם

$$:(\langle G,k\rangle,y)$$
 על קלט $=V$

- y -בודק האם כל צלע ב- G מכילה לפחות קצה אחד ב-
 - \circ אם כן \Leftrightarrow מקבל.
 - ∘אם לא ⇔ דוחה. ∘

$IS \leqslant_P VC$ קשה ע"י רדוקציה VC נוכיח כי

פונקצית הרדוקציה:

ונוכיח ער אוג אר וונכיח על פיצור אוג אר ונוכיח של אר וונכיח ער הקלט אוג בהינתן אוג אר הקלט אל אר הקלט אר בהינתן אוג אר הקלט או

$$\langle G, k \rangle \in IS \quad \Leftrightarrow \quad \langle G', k' \rangle \in VC .$$

הפונקציית הרדוקציה מוגדרת כך שהתנאים הבאים מתקיימים:

G = (V, E) נניח שהגרף הוא (1

G=(V,E) אז הגרף G^{\prime} הוא אותו גרף

$$.k'=|V|-k$$
 (2

נכונות הרדוקציה

- G ניתן לבנות G' בזמן פולינומיאלי בגודל (1
- $\langle G,k \rangle \in IS \quad \Leftrightarrow \quad \langle G',k' \rangle \in VC$. נוכיח כי (2

⇒ כיוון

A ושלם G=(V,E) ושלם A

$$.\langle G,k
angle \in IS$$
 נניח כי

- k בגודל מכיל מכיל בלתי מלוייה מכיל קבוצה בלתי $G \Leftarrow$
- G -ב בצלע ב- לא מחוברים בצלע ב- S כל שני קדקודים ב
- .k' = |V| k בגודל ב- בהיטוי קדקודים ב- $V \backslash S \Leftarrow$
 - - $\langle G', k' \rangle \in VC \Leftarrow$

\Rightarrow כיוון

 $.k^\prime$ בהינתן גרף G^\prime ושלם

$$.\langle G',k'
angle \in VC$$
 נניח כי

- k' מכיל כיסוי קדקודים מכיל $G' \Leftarrow$
- G' -ב כל שני קדקודים ב- $V \backslash C$ לא מחוברים בצלע ב- \leftarrow
- k = |V| k' בגודל G' בהחא קבוצת בלתי תלוייה ב- $V \setminus C \Leftarrow$
 - k מכיל קבוצה בלתי מלוייה בגודל מכיל מכיל מכיל מכיל מכיל

PARTITION 11.5

הגדרה 11.5 בעיית PARTITION

 $S=\{x_1,x_2,\dots,x_n\}$ קלט: קבוצת מספרים שלמים $Y=\sum_{y\in Y}y=\sum_{y\in S\setminus Y}y$ כך ש- $Y\subseteq S$ פלט: האם קיימת תת-קבוצה $Y\subseteq S$

 $PARTITION = \left\{ S \ \middle| \ \sum_{y \in Y} y = \sum_{y \in S \setminus Y} y$ כך ש- $Y \subseteq S$ כך אלמים, וקיימת תת-קבוצה $S \right\}$

11.6 רדוקציות פולינומיאליות

משפט 11.4 רדוקציות פולינומיאליות

 $SAT \leqslant_P 3SAT$

 $3SAT \leqslant_P CLIQUE$

 $CLIQUE \leqslant_P IS$

 $IS \leqslant_P VC$

 $SubSetSum \leq_{P} PARTITION$ $HAMPATH \leq_{P} HAMCYCLE$

שלמות NP שלמות 11.7

משפט 11.5 שפות NP- שלמות

שלמה. (משפט קוק לוין) -NP SAT

-NP 3SAT

-NP HAMPATH

-NP CLIQUE

IS שלמה.

-NP VC