Deep Learning basics

Deep Feedforward Networks

Learning goals

- High level understanding of feed forward networks,
- and the role and choices of activations

DEEP FEEDFORWARD NETWORKS

- Function approximation: find good mapping $\vec{\hat{y}} = f(\vec{x}; \vec{\theta})$ (or more exactly $f(\vec{x}; \hat{\theta})$, but we omit the hat in future).
- *Network*: Composition of functions $f^{(1)}$, $f^{(2)}$, $f^{(3)}$ with multi-dimensional input and output
- Each $f^{(i)}$ represents one layer $f(\vec{x}) = f^{(1)}(f^{(2)}(f^{(3)}(\vec{x})))$
- Feedforward:
 - ullet Input o intermediate representation o output
 - No feedback connections
 - Cf. recurrent networks

DEEP FEEDFORWARD NETWORKS: TRAINING

- Loss function defined on output layer, e.g. $(y f(\vec{x}; \vec{\theta}))^2$
- Quality criterion on other layers not directly defined.
- Training algorithm must decide how to use those layers most effectively (w.r.t. loss on output layer)
- Non-output layers can be viewed as providing a feature function $\phi(\vec{x})$ of the input, that is to be learned.

"NEURAL" NETWORKS

- Inspired by biological neurons (nerve cells)
- Neurons are connected to each other, and receive and send electrical pulses.
- "If the [input] voltage changes by a large enough amount, an all-or-none electrochemical pulse called an action potential is generated, which travels rapidly along the cell's axon, and activates synaptic connections with other cells when it arrives." (Wikipedia)

ACTIVATION FUNCTIONS WITH NON-LINEARITIES

- Linear Functions are limited in what they can express.
- Famous example: XOR
- Simple layered non-linear functions can represent XOR.

DESIGN CHOICES FOR OUTPUT UNITS

- Can typically be interpreted as probabilities.
 - Logistic sigmoid
 - Softmax
 - mean and variance of a Gaussian, ...
- Trained with negative log-likelihood.

SOFTMAX

- Logistic sigmoid
 - Vector \vec{y} of binary outcomes, with no contraints on how many can be 1.
 - Bernoulli distribution.
- Softmax
 - Exactly one element of \vec{y} is 1.
 - Multinoulli (categorical) distribution.

$$p(Y = i | \vec{\phi}(\vec{x}))$$

$$\sum_{i} p(Y = i | \vec{\phi}(\vec{x})) = 1$$

$$softmax(\vec{z})_{i} = \frac{exp(z_{i})}{\sum_{i} exp(z_{i})}$$

PARAMETRIZING A GAUSSIAN DISTRIBUTION

- Use final layer to predict parameters of Gaussian mixture model.
- Weight of mixture component: softmax.
- Means: no non-linearity.
- Precisions $(\frac{1}{\sigma^2})$ need to be positive: softplus

$$softplus(z) = ln(1 + exp(z))$$

x

DESIGN CHOICES FOR HIDDEN UNITS

Rectified Linear Unit:

$$relu(z) = max(0, z)$$

$$z = \vec{x}^T \vec{w} + b$$

- Consistent gradient of 1 when unit is active (i.e. if there is an error to propagate).
- Default choice for hidden units.

A SIMPLE RELU NETWORK TO SOLVE XOR

$$f(\vec{x}; \vec{W}, \vec{c}, \vec{w}) = \vec{w}^T max(0, \vec{W}^T \vec{x} + \vec{c})$$
 $\vec{W} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$
 $\vec{c} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$
 $\vec{w} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$

OTHER CHOICES FOR HIDDEN UNITS

- A good activation function aids learning, and provides large gradients.
- Sigmoidal functions (logistic sigmoid)
 - have only a small region before they flatten out in either direction.
 - Practice shows that this seems to be ok in conjunction with Log-loss objective.
 - But they don't work as well as hidden units.
 - ReLU are better alternative since gradient stays constant.
- Other hidden unit functions:
 - maxout: take maximum of several values in previous layer.
 - purely linear: can serve as low-rank approximation.