ОГЛАВЛЕНИЕ

введение	8
1. ПУТИ ПОВЫШЕНИЯ КАЧЕСТВА ПОВЕРХНОСТИ	
ПРИ ФИНИШНОЙ ОБРАБОТКЕ ЗАГОТОВОК ИЗ СПЛА-	
ВОВ НА ОСНОВЕ ЖЕЛЕЗА, ХРОМА И НИКЕЛЯ	10
1.1. Анализ методов финициюй обработки поверхности	
заготовок из сплавов на основе железа, хрома и никеля	10
1.1.1. Механические методы отделочно-зачистной об-	
работки	10
1.1.2. Механизмы и основные закономерности хими-	
ческого и электрохимического полирования	15
1.1.2.1. Химическое полирование	16
1.1.2.2. Электрохимическое полирование	22
1.2 Основные закономерности разрядных процессов в	
парогазовой оболочке при электролитной анодной обработ-	
ке	30
1.2.1. Анодные эффекты в водных электролитах и их	
технологическое применение	31
1.2.2. Современные представления о механизме элек-	
трической проводимости парогазовой оболочки в условиях	
электролитной анодной обработки	38
1.3. Электроимпульсное полирование заготовок из спла-	
вов на основе железа, хрома и никеля	48
1.3.1. Факторы, влияющие на стабильность процесса	
электроимпульсного полирования, производительность,	
точность обработки, качество и эксплуатационные характе-	
ристики поверхности деталей	48
1.3.2. Современные представления о механизме фор-	
мирования профиля поверхности в условиях электроим-	
пульсного полирования	57
2. ЭКСПЕРИМЕНТАЛЬНОЕ ОБОРУДОВАНИЕ И МЕТО-	
ДЫ ИССЛЕДОВАНИЯ	61
2.1. Оборудование и технологическая оснастка для ис-	
следования процесса электроимпульсного полирования	61
2.2. Выбор объектов для исследования	63
2.3. Методы исследования	66
2.3.1. Методика исследования самоорганизованных	

гидродинамических потоков в электролите	67
ных и спектральных характеристик электрического тока в	
парогазовой оболочке при анодном процессе	68
2.3.3. Методика измерения толщины парогазовой обо-	
лочки	69
2.3.4. Методики определения рассеивающей способ-	
ности электролита, выхода металла по току, точности и	
производительности обработки	71
2.3.5. Методики исследования геометрических пара-	
метров качества и блеска поверхности	80
2.3.6. Вероятностно-статистический метод исследова-	
ния механизма формирования профиля поверхности в про-	
цессе электроимпульсного полирования	83
2.3.7. Методики исследования морфологии, микро-	
структуры, химического и фазового состава поверхно-	
СТИ	90
2.3.8. Методика определения твердости тонкого по-	
верхностного слоя	93
2.3.9. Методики исследования коррозионной стойко-	
сти и склонности к межкристаллитной коррозии	94
2.3.10. Методика определения адгезионной прочности	
гальванических и тонкопленочных вакуумно-плазменных	
покрытий	98
2.3.11. Методика определения коэффициента трения	100
3. ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ПРОЦЕС-	
СА ЭЛЕКТРОИМПУЛЬСНОГО ПОЛИРОВАНИЯ	103
3.1. Основные закономерности электрической проводимо-	
сти парогазовой оболочки в условиях электроимпульсного по-	
лирования	103
3.1.1. Исследование стабильности анодного процесса	
в режиме электроимпульсного полирования	103
3.1.2. Исследование равномерности распределения	
электрического тока на поверхности анода в условиях элек-	
троимпульсного полирования	107
3.1.3. Исследование амплитудных, частотных и спек-	
тральных характеристик электрического тока, протекающе-	
го через парогазовую оболочку при анодном процессе	115

3.1.3.1. Осциллографические исследования электри-	
ческого тока	1
3.1.3.2. Исследование спектральных характеристик	
электрического тока	1
3.2. Основные закономерности механизма съема металла	
при электроимпульсном полировании сплавов на основе	
железа, хрома и никеля	1
3.2.1. Исследование выхода металла по току в услови-	
ях электроимпульсного полирования	1
3.2.2. Влияние электроимпульсного полирования на	
микроструктуру и фазовый состав поверхности коррозион-	
ностойких сталей	1
3.2.3. Влияние электроимпульсного полирования на	
химический состав сверхтонкого поверхностного слоя кор-	
розионностойких сталей	1
3.2.4. Влияние электроимпульсного полирования на	
морфологию и химический состав поверхности низколеги-	
рованных углеродистых и коррозионностойких сталей	1
4. ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ЭЛЕКТРОИМПУЛЬСНО-	
ГО ПОЛИРОВАНИЯ СПЛАВОВ НА ОСНОВЕ ЖЕЛЕЗА,	
ХРОМА И НИКЕЛЯ	1
4.1. Физико-математическая модель самоорганизованных	
гидродинамических потоков в электролите в условиях элек-	
троимпульсного полирования	1
4.1.1. Физическая модель самоорганизованных гидро-	
динамических потоков в электролите	1
4.1.2. Математическое моделирование самоорганизо-	
ванных гидродинамических потоков в электролите	1
4.2. Физико-математическая модель парогазовой оболоч-	
ки	1
4.2.1. Оценка адекватности математической модели	
парогазовой оболочки	1
4.3. Концептуальная модель коммутационного механизма	
электрической проводимости парогазовой оболочки в усло-	
виях электроимпульсного полирования	1
4.4. Анодные процессы и механизмы анодного растворе-	
ния низколегированных углеродистых и коррозионностой-	
ких сталей в условиях электроимпульсного полирования	2

	4.5. Основы выбора состава раствора электролита для	
	жтроимпульсного полирования металлов и сплавов	215
	МЕХАНИЗМ И ОСНОВНЫЕ ТЕХНОЛОГИЧЕСКИЕ	
	КОНОМЕРНОСТИ ФОРМИРОВАНИЯ КАЧЕСТВА	
	ВЕРХНОСТИ ПРИ ЭЛЕКТРОИМПУЛЬСНОМ ПОЛИ-	
	ВАНИИ СПЛАВОВ НА ОСНОВЕ ЖЕЛЕЗА, ХРОМА И	
	КЕЛЯ	219
	5.1. Механизм и основные технологические закономер-	
	сти формирования профиля поверхности в условиях элек-	
	римпульсного полирования	219
.100	5.1.1. Исследование влияния режимов обработки на	
паг	раметры шероховатости поверхности, связанные с высот-	
	ми свойствами неровностей профиля	222
1101	5.1.2. Математическое моделирование параметров	
mei	роховатости поверхности Ra, Rz и Rmax при электроим-	
	пьсном полировании низколегированных углеродистых и	
Kon	ррозионностойких сталей	231
No p	5.1.3. Исследование влияния режимов обработки на	
пап	раметры шероховатости поверхности, связанные с фор-	
	й неровностей и их свойствами в направлении длины	
	рфиля	238
1	5.1.4. Вероятностно-статистическая оценка профиля	
пов	верхности, сформированного в условиях электроимпуль-	
	ого полирования	246
	5.2. Геометрическая модель формирования профиля по-	
	хности	251
•	5.3. Влияние электроимпульсного полирования на блеск	
ПОВ	верхности низколегированных углеродистых и коррози-	
онн	ностойких сталей	255
	5.4. Влияние электроимпульсного полирования на твер-	
дос	сть поверхности низколегированных углеродистых и кор-	
роз	вионностойких сталей	258
	влияние электроимпульсного полирова-	
	ІЯ НА ЭКСПЛУАТАЦИОННЫЕ ХАРАКТЕРИСТИКИ	
	рверхности деталей из сплавов на основе	
	ЕЛЕЗА, ХРОМА И НИКЕЛЯ	261
	6.1. Коррозионная стойкость низколегированных углеро-	
дис	стых и коррозионностойких сталей	261

против межкристаллитной коррозии	26:
6.3. Коэффициент трения	26
6.4. Электромагнитные характеристики разрезных витых	
ленточных магнитопроводов трансформаторов	27
6.5. Адгезионная прочность и качество вакуумно-	
плазменных покрытий	272
6.6. Адгезионная прочность и качество гальванических по-	
крыгий	27
SAKIROUEHINE	20

JINTEPATYPA.....

6.2. Стойкость коррозионностойкой стали 12X18H10T