

Blades—An Emerging System Design Model for Economic Delivery of High Performance Computing

Kirk Bresniker

Systems Architect
Internet and Applications Systems Laboratory
Hewlett-Packard

September 24, 2002

Agenda

Agenda

Introduction / Definitions
Origins of the Blade Server
Limitations of First Generation Designs
Second Generation Design
Future Directions

A Blade is ...

Definitions

An inclusive computing system that includes processor, memory, network connections and associated electronics on a single motherboard.

The server blade typically is associated with an enclosure system that allows multiple blades to be housed in a standard server 'sub-rack' or enclosure that share resources such as power supplies and cooling fans.

Blades ...

- are easily accessible
- offer increased computing density
- have modular architecture that ensures flexibility and scalability.

Source: Provisioning the Internet Infrastructure: Server Blades and Dynamic Workload Management IDC Document # 24155

Initial Blade Sketches

Origins

Dominant xSP Concerns – Circa 1999

Origins

Time-to-Deployment - Competition is cut-throat. How quickly can a new service be deployed in the physical plant?

System Density - The data center incurs costs in \$/area and recovers costs in systems/area. How many systems can be burdened on each square foot of data center?

Moving Customers up the price list - Currently shared hosting only sells at the introductory service level. Moving customers up the price list requires dedicated hardware

ASP Deployment Timeline – Circa 1999

Dominant xSP Concerns – Circa 1999

Origins

Time-to-Deployment - Competition is cut-throat. How quickly can a new service be deployed in the physical plant?

System Density - The data center incurs costs in \$/area and recovers costs in systems/area. How many systems can be burdened on each square foot of data center?

Moving Customers up the price list - Currently shared hosting only sells at the introductory service level. Moving customers up the price list requires dedicated hardware

First Generation Blade

Each blade contains:

- 700MHz PIII 512K LV
- 512MB/1GB PC133 SDRAM
- 30GB Mobile IDE Drive
- Dual 10/100 NICs
- Integrated Management

Each 3U chassis contains:

- 20 Server blades
- N+1 Power
- Dual Ethernet Switches

Mainstream Technology Clusters

First Generation

Cluster Topology

Cluster Racking

Mainstream Technology Cluster achieved rank of 385th on TOP500 as of 06/21/2001

What New Economy?

Limitations

Bladed Architectures: What's the Opportunity?

By 2005, IDC believes the blade form factor will capture approximately 27% of entry server unit sales and 12% of entry server revenue.

Source: IDC August 2001

Bladed Architectures: Where Are the Sweet Spots?

Second Generation

2005 \$4.5 billion

Share of bladed server revenue quickly migrates to the 2 & 4 processor "flavors" as volume ramps and commoditization occurs

Source: IDC August 2001

Second Generation Blade

- Processors: Mobile/LV/ULV → Mainline server Processors
- SMP: Single \rightarrow Dual (or more) Processors
- Memory sizes: Sub-1GB per processors → Greater than 1GB per processor
- Ethernet NICs: Dual $10/100 \rightarrow Multiple$ 10/100/1000
- Manageability: rack-optimized server leveraged
 → blade-aware
- Local Storage: low performance mobile \rightarrow high performance, high reliability server storage
- Remote Storage: Low performance NAS \rightarrow high performance NAS or SAN
- Chassis form factor: $3U \rightarrow 6U$
- Blades form factor increase in depth, width, and height

Rapid Deployment Tools

Advanced Telecom Computing Architecture

Futures

Each blade contains:

- A 200W Thermal Envelope (enables Dual slot / DP IPF or QP IA-32)
- Fully connected Mesh Data Transport Protocol Agnostic Fabric. Each Link can support, for example:
 - 1 4X Infiniband link/4 1X Infiniband links
 - 4 1000BX links
 - 1 10GbE XAUI link
 - 4 2Gpbs FC links
- Dedicated Management Dual Star 10/100/1000 Ethernet
- 10 pair Adjacent Slot Update bus
- Redundant blade-centric hardware management bus
- N+1 Redundant Power
- Cost focused module mechanical design

ATCA Target Serial I/O Standard Comparisons

Futures

Serial Standard	Data rate per Channel (Gbps)	Baud rate per Channel (Gbps)	Ref Clock (MHz)	Pairs/Channel Channel Configs
Infiniband	2.0	2.5	125	2 1X,2X,4X,12X
1Gb Ethernet 1000BASE-CX	1.0	1.25	62.5	2 1X
10Gb Ethernet XAUI	2.5	3.125	156.25	2 4X
Fibre Channel	0.85 / 1.7	1.06 / 2.12	53.125 / 106.25	2 1X
Serial ATA	1.2	1.5	75	2 1X
Serial RapidIO	2.5	3.125	156.25	2 1X,4X
PCI Express	2.0	2.5	125	2 1X-32X

