

planetmath.org

Math for the people, by the people.

reduced direct product

Canonical name ReducedDirectProduct
Date of creation 2013-03-22 17:10:11
Last modified on 2013-03-22 17:10:11

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 10

Author CWoo (3771)
Entry type Definition
Classification msc 08B25
Synonym ultraproduct
Defines prime product

Let $\{A_i \mid i \in I\}$ be a set of algebraic systems of the same type, indexed by I. Let A be the direct product of the A_i 's. For any $a, b \in A$, set

$$supp(a, b) := \{k \in I \mid a(k) \neq b(k)\}.$$

Consider a Boolean ideal L of the Boolean algebra P(I) of I. Define a binary relation Θ_L on A as follows:

$$(a,b) \in \Theta_L$$
 iff $\operatorname{supp}(a,b) \in L$.

Lemma 1. Θ_L defined above is a congruence relation on A.

Proof. Since L is an ideal $\emptyset \in L$. Therefore, $(a, a) \in \Theta_L$, since $\{k \in I \mid a(k) \neq a(k)\} = \emptyset$. Clearly, Θ_L is symmetric. For transitivity, suppose $(a, b, (b, c) \in \Theta_L$. If $a(k) \neq c(k)$ for some $k \in I$, then either $a(k) \neq b(k)$ or $b(k) \neq c(k)$ (a contrapositive argument). So

$$supp(a, c) \subseteq supp(a, b) \cup supp(b, c).$$

Since L is an ideal, supp $(a, c) \in L$, so $(a, c) \in \Theta_L$, and Θ_L is an equivalence relation on A.

Next, let ω be an n-ary operator on A and $a_j \equiv b_j \pmod{\Theta_L}$, where $j = 1, \ldots, n$. We want to show that $\omega(a_1, \ldots, a_n) \equiv \omega(b_1, \ldots, b_n) \pmod{\Theta_L}$. Let ω_i be the associated n-ary operators on A_i . If $\omega(a_1, \ldots, a_n)(k) \neq \omega(b_1, \ldots, b_n)(k)$, then $\omega_k(a_1(k), \ldots, a_n(k)) \neq \omega_k(b_1(k), \ldots, b_n(k))$, which implies that $a_j(k) \neq b_j(k)$ for some $j = 1, \ldots, n$. This implies that

$$\operatorname{supp}(\omega(a_1,\ldots,a_n),\omega(b_1,\ldots,b_n))\subseteq\bigcup_{j=1}^n\operatorname{supp}(a_j,b_j).$$

Since L is an ideal, and each supp $(a_j, b_j) \in L$, we have that supp $(\omega(a_1, \ldots, a_n), \omega(b_1, \ldots, b_n)) \in L$ as well, this means that $\omega(a_1, \ldots, a_n) \equiv \omega(b_1, \ldots, b_n) \pmod{\Theta_L}$.

Definition. Let $A = \prod \{A_i \mid i \in I\}$, L be a Boolean ideal of P(I) and Θ_L be defined as above. The quotient algebra A/Θ_L is called the L-reduced direct product of A_i . The L-reduced direct product of A_i is denoted by $\prod_L \{A_i \mid i \in I\}$. Given any element $a \in A$, its image in the reduced direct product $\prod_L \{A_i \mid i \in I\}$ is given by $[a]\Theta_L$, or [a] for short.

Example. Let $A = A_1 \times \cdots \times A_n$, and let L be the principal ideal generated by 1. Then $L = \{\emptyset, \{1\}\}$. The congruence Θ_L is given by

 $(a_1, \ldots, a_n) \equiv (b_1, \ldots, b_n) \pmod{\Theta_L}$ iff $\{i \mid a_i \neq b_i\} = \emptyset$ or $\{1\}$. This implies that $a_i = b_i$ for all $i = 2, \ldots, n$. In other words, Θ_L is isomorphic to the direct product of $A_2 \times \cdots \times A_n$. Therefore, the *L*-reduced direct product of A_i is isomorphic to A_1 .

The example above can be generalized: if $J \subseteq I$, then

$$\prod_{P(J)} \{A_i \mid i \in I\} \cong \prod \{A_i \mid i \in I - J\}.$$

For $a \in A = \prod \{A_i \mid i \in I\}$, write $a = (a_i)_{i \in I}$. It is not hard to see that the map $f : \prod_{P(J)} \{A_i \mid i \in I\} \to \prod \{A_i \mid i \in I - J\}$ given by $f([a]) = (a_i)_{i \in I - J}$ is the required isomorphism.

Remark. The definition of a reduced direct product in terms of a Boolean ideal can be equivalently stated in terms of a Boolean filter F. All there is to do is to replace $\mathrm{supp}(a,b)$ by its complement: $\mathrm{supp}(a,b)^c := \{k \in I \mid a(k) = b(k)\}$. The congruence relation is now $\Theta_{F'}$, where $F' = \{I-J \mid J \in F\}$ is the ideal complement of F. When F is prime, the F'-reduced direct product is called a *prime product*, or an *ultraproduct*, since any prime filter is also called an ultrafilter. Ultraproducts can be more generally defined over arbitrary structures.

References

[1] G. Grätzer: Universal Algebra, 2nd Edition, Springer, New York (1978).