Homework 2

Due date: 2018/10/16 12:10pm

- 1. (10%)What advantage does a circuit-switched network have over a packet-switched network?
- 2. (20%)How long does it take a packet of length 1,000 bytes to propagate over a link of distance 2,500 km, propagation speed 2.5 · 10⁸ m/s, and transmission rate 2 Mbps? More generally, how long does it take a packet of length L to propagate over a link of distance d, propagation speed s, and transmission rate R bps? Does this delay depend on packet length? Does this delay depend on transmission rate?
- 3. (20%)Suppose users share a 3 Mbps link. Also suppose each user requires 150 kbps when transmitting, but each user transmits only 10 percent of the time. (See the discussion of packet switching versus circuit switching in Section 1.3.)
 - a. When circuit switching is used, how many users can be supported?
 - b. For the remainder of this problem, suppose packet switching is used. Find the probability that a given user is transmitting.
 - c. Suppose there are 120 users. Find the probability that at any given time, exactly n users are transmitting simultaneously. (Hint: Use the binomial distribution.)
 - d. Find the probability that there are 21 or more users transmitting simultaneously.
- 4. (10%)What are the five layers in the Internet protocol stack? Briefly describe the principal responsibilities of each of these layers.
- 5. (20%)Suppose two hosts, A and B, are separated by 20,000 kilometers and are connected by a direct link of R = 2 Mbps. Suppose the propagation speed over the link is $2.5 \cdot 10^8$ meters/sec.
 - a. Calculate the bandwidth-delay product, R \cdot d_{prop}
 - b. Consider sending a file of 800,000 bits from Host A to Host B. Suppose the file is sent continuously as one large message. What is the maximum number of bits that will be in the link at any given time?
 - c. Provide an interpretation of the bandwidth-delay product.
 - d. What is the width (in meters) of a bit in the link? Is it longer than a football field?
 - e. Derive a general expression for the width of a bit in terms of the propagation speed s, the transmission rate R, and the length of the link m.

- 6. (20%)In modern packet-switched networks, including the Internet, the source host segments long, application-layer messages (for example, an image or a music file) into smaller packets and sends the packets into the network. The receiver then reassembles the packets back into the original message. We refer to this process as message segmentation. Figure 1.27 illustrates the end-to-end transport of a message with and without message segmentation. Consider a message that is 8 · 106bits long that is to be sent from source to destination in Figure 1.27. Suppose each link in the figure is 2 Mbps. Ignore propagation, queuing, and processing delays.
 - a. Consider sending the message from source to destination without message segmentation. How long does it take to move the message from the source host to the first packet switch? Keeping in mind that each switch uses storeand-forward packet switching, what is the total time to move the message from source host to destination host?
 - b. Now suppose that the message is segmented into 800 packets, with each packet being 10,000 bits long. How long does it take to move the first packet from source host to the first switch? When the first packet is being sent from the first switch to the second switch, the second packet is being sent from the source host to the first switch. At what time will the second packet be fully received at the first switch?
 - c. How long does it take to move the file from source host to destination host when message segmentation is used? Compare this result with your answer in part (a) and comment.

Figure 1.27 • End-to-end message transport: (a) without message segmentation; (b) with message segmentation