ECE368 Cheatsheet

Hanhee Lee

January 7, 2025

Contents

	11 (LG-IPPR 1.1, 1.2; Murphy 2.1 – 2.3)
	.1 Sample Space
	.2 Probability Definitions
	.3 Axioms of Probability
	.4 Conditional Probability
	1.4.1 Consequences of Conditional Probability
	1.4.2 Independence
	1.4.3 Importance of Labelling
	.5 Total Probability
	.6 Bayes' Rule
	1.6.1 Posteriori Probability, Priori Probability (Prior), Likelihood
	1.6.2 Interpretation of Bayes' Rule
	.7 Random Variables
	1.7.1 Cumulative Distribution Function (CDF) of RV
	1.7.2 Discrete RV PMF
	1.7.3 Continuous RV PDF
	.8 Expected Values
2	$_{\sim}^{2}$
4	
	Definition:
i.	
	Process:
	Motivation:
	Desiration.
	Derivation:
	Derivation:
	Derivation: Varning:
	Varning:
	Varning: Jummary:
	Varning:
	Varning: Jummary:
	Varning: Summary: Algorithm:
	Varning: Jummary:
	Varning: Summary: Algorithm:
	Varning: Summary: Algorithm: Example:
	Varning: Summary: Algorithm:

1 L1 (LG-IPPR 1.1, 1.2; Murphy 2.1 – 2.3)

Summary:

FAQ:

- How to study? Practice, practice.
- What textbooks? Use 2024 version of Murphy, Leon Garcia as main reference, Bishop, 4th textbook is intro.
- How is HW graded? Effort, and tutorials are used to explain soln.

1.1 Sample Space

Motivation: If you have 4 sheeps and a flea, the probability that starting from sheep 1, the flea will jump to sheep 4 in 10 steps is 0.2.

- Ambigious as there are 2 different interpretations for the sample space (i.e. space of probability is not clear):
 - Set of sheeps
 - Set of number of steps

1.2 Probability Definitions

Definition:

- Random Experiment: An outcome (realization) for each run.
- Sample Space Ω : Set of all possible outcomes.
- Events: (measurable) subsets of Ω .
- Probability of Event A: $P[A] \equiv P[\text{'outcome is in A'}].$

Example: Roll Fair Die

- $\Omega = \{1, 2, 3, 4, 5, 6\}.$
- $P[\text{'even number'}] = \frac{1}{2}$.

1.3 Axioms of Probability

Definition:

- 1. $P[A] \geq 0$ for all $A \in \Omega$.
- 2. $P[\Omega] = 1$.
- 3. If $A \cap B = \emptyset$, then $P[A \cup B] = P[A] + P[B]$ for all $A, B \in \Omega$.

Figure 1: 3rd Axiom

1.4 Conditional Probability

Definition:

$$P[A|B] = \frac{P[A \cap B]}{P[B]} \tag{1}$$

• |: Given event (data/obs.).

Figure 2: Conditional Probability

Notes:

- Changing sample space to B.
- Conditional probability satisfy the 3 axioms, can be viewed as probability measure on new sample space B.

Consequences of Conditional Probability 1.4.1

Definition:

$$P[A \cap B] = P[A|B]P[B] = P[B|A]P[A] \tag{2}$$

1.4.2 Independence

Definition: A and B are independent iff

$$P[A \cap B] = P[A]P[B] \iff P[A|B] = P[A] \iff P[B|A] = P[B] \tag{3}$$

1.4.3 Importance of Labelling

Example: Toss 2 Fair Coins

- 1. Given: Given that one of the coins is heads, what is the probability that the other coin is tails?

 2. Wrong Solution: $\frac{1}{2}$ since $\{HH, HT, TH, TT\}$, so $P[T|H] = \frac{1}{2}$, which assumes that the coins are distin-
- guishable (i.e. coin #1 is heads)

 3. Correct Solution: $\frac{2}{3}$ since $\{HH, HT, TH\}$ as we didn't specify which coin was heads, so $P[T|H] = \frac{2}{3}$, which assumes that the coins are indistinguishable.

Total Probability 1.5

Definition: If H_1, \ldots, H_n form a partition of Ω , then

$$P[A] = \sum_{i=1}^{n} P[A|H_i]P[H_i]$$
(4)

Figure 3: Total Probability

Bayes' Rule 1.6

Definition:

$$P[H_k|A] = \frac{P[H_k \cap A]}{P[A]} = \frac{P[A|H_k]P[H_k]}{\sum_{i=1}^n P[A|H_i]P[H_i]}$$
 (5)

Posteriori Probability, Priori Probability (Prior), Likelihood

Definition:

• Posteriori: $P[H_k|A]$.

• Priori: $P[H_k]$.

• Likelihood: $P[A|H_k]$.

Example: Suppose a lie detector is 95% accurate, i.e. $P[\text{'out=truth'}|\text{'in=truth'}] = 0.95 \text{ and } P[\text{'out=lie'}|\text{'in=lie'}] = 0.95 \text{ and } P[\text{$ 0.95. It says that Mr. Ernst is lying. What is the probability Mr. Ernst is actually lying.

• Observation: A = 'out=lie'.

• **Hypothesis:** $H_0 = \text{'in=lie'}$ and $H_1 = \text{'in=true}$

• Hypothesis: $H_0 = \text{fin} =$

Warning: Need to know priori probability.

Interpretation of Bayes' Rule

Definition:

Random Variables 1.7

Motivation: Coin Toss Mapping of each outcome to a real number, i.e. $w \in \Omega$ is the outcome of a coin toss, and X(w) = 1 if heads and X(w) = 0 if tails.

Figure 4: Random Variables

• Mapping is deterministic function. RV is not random or variable.

Definition: Mapping from Ω to \mathbb{R} .

Cumulative Distribution Function (CDF) of RV

Definition:

$$F_X(x) \equiv P[X \le x] \tag{6}$$

Discrete RV PMF

Definition:

$$P_X(x_j) \equiv P[X = x_j] \quad j = 1, 2, 3, \dots$$
 (7)

Continuous RV PDF

Definition:

$$f_X(x) \equiv \frac{d}{dx} F_X(x) \tag{9}$$

$$P[x < X < x + dx] = f_X(x)dx \tag{10}$$

Example: Gaussian RV w/ (μ, σ^2)

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
 (11)

Figure 6: Gaussian RV

- $p[X \in A] = \int_A f_X(x) dx$. Note: Discrete RV has pdf w/ δ functions.

1.7.4 Conditional PMF/PDF

Definition:

$$P_X(x|A) \tag{12}$$

$$f_X(x|A) \tag{13}$$

Example: Continuous

$$f(x|X>a) = \begin{cases} \frac{f_X(x)}{P[X>a]} & \text{if } x>a\\ 0 & \text{otherwise} \end{cases}$$
 (14)

Example: Geometric RV Geometric RV X w/ success probability p

$$P_X(k) = (1-p)^{k-1}p (15)$$

• Memoryless Property: $P_X[k|X>m] = \frac{p(1-p)^{k-1}}{(1-p)^m} = p(1-p)^{k-m-1}$. So it only cares about the additional trials.

1.8 Expected Values

Definition:

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx \stackrel{\text{If int. values}}{=} \sum_k k f_X(k)$$
 (16)

$$E[h(X)] = \int_{-\infty}^{\infty} h(x) f_X(x) dx \stackrel{\text{If int. values}}{=} \sum_k h(k) f_X(k)$$
(17)

$$Var[X] = E[(X - E[X])^{2}] = E[X^{2}] - E[X]^{2}$$
(18)

$$E[X|A] = \int_{-\infty}^{\infty} x f_X(x|A) dx \tag{19}$$

Example: Lottery Ticket

- 1. Given: Buying one lottery ticket per week
 - Each ticket has $10^{-7} = p$ chance of winning the jackpot.
 - X = '# of weeks to win jackpot'.
- 2. **Problem:** What is the expected number of weeks to win the jackpot?
- 3. Solution: $E[X] = \sum_{k=1}^{\infty} k(1-p)^{k-1}p = \dots = \frac{1}{p} = 10^7$ weeks.
- 4. Extension (Memoryless Property): If I have already played for 999999 weeks, what is the expected number of weeks to win the jackpot? $E[X 999999|X > 999999] = E[X] = 10^7$ weeks.

2 L2