Project Design Phase-I

Proposed Solution

Date	02 October 2022	
Team ID	PNT2022TMID00408	
Project Name	SmartFarmer - IoT Based Smart Farming	
	Application	
Maximum Marks	2 Marks	

Proposed Solution:

S.No.	Parameter	Description
1.	Problem Statement (Problem to be	Farmers have trouble managing large fields of
	solved)	crops, Each field has to get the right amount of
		water. Under-watering can cause crop stress and
		yield reduction and over-watering can cause the
		same but at the added expense of soil erosion,
		more usage of fertilizer, herbicide and pesticide
		runoff. Farmers also face the pressure of wildlife
		ruining their crops at unprecedented times which
		makes it hard to mitigate the damage caused by
		them.
2.	Idea / Solution description	A smart IoT based application that allows the
		farmer to remotely monitor every field under their
		care. This includes real-time monitoring of different
		parameters such as soil moisture, temperature and
		humidity with the usage of sensors, an intrusion
		detection system and a control system for water
		delivery and motor pumps.
3.	Novelty / Uniqueness	Extensive remote control of fields
		Real-time field monitoring system
		Intrusion detection system

4.	Social Impact / Customer Satisfaction	Farmers can save a lot of money if this system is implemented, it massively reduces sunk cost fallacy and provides more yield. It keeps the crops healthy and pays for itself in the long run. It reduces excessive waste of resources and helps mitigate damage early on
5.	Business Model (Revenue Model)	Pay-as-you-go (Subscription Based System)
6.	Scalability of the Solution	The scalability of this solution relies on how big the fields are, theoretically, it can be employed to a large number of fields without limitation.