Контрольна # 1

Задача 1.1

Нехай деталі A, B, C можуть виготовлятися на трьох верстатах 1, 2, 3. Витрати часу на виготовлення деталі і на верстаті j є випадковими величинами, рівномірно розподіленими в інтервалі (t_{ji}, t_{ij}) і приводяться в таблиці $1 \cdot 1$, де також зазначена середня продажна ціна одиниці деталі $\mathbf{c_i}$ та собівартість однієї години роботи кожного верстата. Нехай сумарний плановий фонд часу роботи верстата – Φ_j рівномірно розподілена випадкова величина в інтервалі $[\phi_{jmin}, \phi_{jmax}]$.

Потрібно знайти оптимальну виробничу програму випуску деталей, яка б була реалізована з імовірністю не менше $\alpha \ge 0.90$ та забезпечувала б екстремум одного з таких критеріїв витрат:

- 1. максимум товарної продукції Т;
- 2. максимум сумарного прибутку П;

⊕Таблиця 1.1

*	иолица 1.1											
	Станки			Дет	галі			Вартість	Час р	оботи		
				Норм	и часу			однієї	верс	тата		
		A	A	В С		години						
		\underline{t}_{1j}	\bar{t}_{1j}	\underline{t}_{2j}	\bar{t}_{2j}	\bar{t}_{3j}	\bar{t}_{3j}	\bar{q}_{j}	$\phi_{j \min}$	$\phi_{j \max}$		
	1	0.2	0.3	0.1	0.2	0.05	0.1	30	20	60		
	2	0.5	1	0.2	0.4	0.2	0.4	10	60	90		
	3	0.1	0.2	0.15	0.3	0.3	0.5	20	20	40		
	Ціна деталі	10		16		12						

Максимум доходу

Нехай:

- x_{ij} кількість виробів i на верстаті j
- Φ_j ресурс роботи верстата j (визнаємо як математичне сподівання випадкової величини)
- a_{ij} час затрачений на виготовлення виробу i на верстаті j
- μ_{ij} математичне сподівання норми часу на виробництво деталі
- σ_{ij}^2 дисперсія μ_{ij}

Математична модель

$$max \qquad M\{\sum_{i=1}^{3} \sum_{i=1}^{3} C_i x_{ij}\}$$

Обмеження
$$P\{\sum_{i=1}^3 a_{ij} x_{ij} \leqslant b_j\} \geqslant \alpha$$
 $\alpha = 0.9$ $j = \overline{1,3}$

Детермінований еквівалент задачі

$$max \qquad M\{\sum_{i=1}^{3} \sum_{i=1}^{3} C_i x_{ij}\}$$

Обмеження (в загальному вигляді)

$$\sum_{i=1}^{3} \mu_{ij} x_{ij} + \Phi^{-1}(0.9) \left(\sum_{i=1}^{3} \sigma_{ij}^{2} x_{ij}^{2}\right)^{\frac{1}{2}} \leqslant \Phi_{j} \qquad j = \overline{1,3}$$

$$\Phi_{j} = \frac{\phi_{jmin} + \phi_{jmax}}{2} \qquad \mu_{ij} = \frac{t_{ijmin} + t_{ijmax}}{2} \qquad \sigma_{ij}^{2} = \frac{(t_{ijmax} - t_{ijmax})^{2}}{12}$$

Обмеження

$$\sum_{i=1}^{3} \frac{t_{ijmin} + t_{ijmax}}{2} + \Phi^{-1}(0.9) \left(\sum_{i=1}^{3} \frac{(t_{ijmax} - t_{ijmax})^{2}}{12} x_{ij}^{2}\right)^{\frac{1}{2}} \leqslant \frac{\phi_{jmin} + \phi_{jmax}}{2} \qquad j = \overline{1,3}$$

Задача 1.2

Завод при виготовленні трьох типів деталей використовує токарські, фрезерні і стругальні верстати. При цьому виготовлення кожної деталі можна проводити трьома різними технологічними способами (1 , 2 , 3). У табл. 1 . 2 зазначені наявні ресурси по кожній i -тій групі верстатів (у верстато-год) ϕ_i , i=1,3, норми витрати часу при обробці деталей j(j=1,2,3) на верстаті i є нормально розподіленими випадковими величинами з параметрами μ_{ij} і σ_{ij} . Нехай прибуток від випуску одиниці деталі кожного виду складає відповідно 12, 18 і 30 грн/шт.

Скласти оптимальний план навантаження виробничих потужностей, що забезпечує максимальний очікуваний прибуток, за умови фізичної реалізованості плану з ймовірністю 0.90.

Таблиця 1.2

Верстати			Но	рми витра	ти часу				Pecypc
	Дета	ль 1		Деталь 2		Де	еталь 3		часу
			Технологі	гічні способи виробництва					
	1	1 2		2	3	1	2		
	$\mu_{ij} \mid \sigma_{ij}$	$oxedsymbol{\mu_{ij}} oxedsymbol{\sigma_{ij}}$	$\mu_{ij} \mid \sigma_{ij}$	$\mu_{ij} \mid \sigma_{ij}$	$\mu_{ij} \mid \sigma_{ij}$	$\mu_{ij} \mid \sigma_{ij}$	$oxedsymbol{\mu_{ij}} oxedsymbol{\sigma_{ij}}$		ϕ_i
Токарний	0.4	0.5	0.4	0.3	0.8	0.7			300
	0.2	0.2	0.2	0.2	0.5	0.3	_		
Фрезерний	0.3		0.5	0.2	0.3	0.4	1.0		200
	0.15	_	0.4	0.1	0.2	0.2	0.5		
Стругальний 0.5		0.9	0.6	0.4	0.5		1.5		400
	0.3	0.45	0.3	0.5	0.3	_	0.8		
Прибуток		18	-	3	0	20			

Нехай

- x_{ij} кількість виробів i на верстаті j
- b_j ресурс часу верстата j

- a_{ij} нормовитрати ресурсу j на виріб i
- C_i прибуток за одиницю виробу i
- μ_{ij} математичне сподівання витрат часу на виробництво виробу
- σ_{ij}^2 дисперсія μ_{ij}

$$maxM\{\sum_{i=1}^{3}\sum_{j=1}^{3}C_{i}x_{ij}\}$$

Обмеження

$$P\{\sum_{i=1}^{3} a_{ij} x_{ij} \leq b_j\} \geqslant \alpha$$
 $\alpha = 0.9$ $j = \overline{1,3}$

Детермінований еквівалент задачі

Математична модель

$$max \qquad M\{\sum_{i=1}^{3} \sum_{j=1}^{3} C_i x_{ij}\}$$

Обмеження (оскільки μ_{ij} та σ_{ij}^2 подані в умові задачі)

$$\sum_{i=1}^{3} \mu_{ij} x_{ij} + \Phi^{-1}(0.9) \left(\sum_{i=1}^{3} \sigma_{ij}^{2} x_{ij}^{2}\right)^{\frac{1}{2}} \leqslant b_{j} \qquad j = \overline{1,3}$$

Задача 1.3

Три сорти взаємозамінної сировини (i=1, 2, 3) в кількості 200, 100 та 300 кг використовується для виробництва чотирьох виробів (j=1, 2, 3, 4). Норми витрат a_{ij} сировини і на виробництво виробу ј є нормально розподіленими випадковими величинами з середній та дисперсію σ_{ij}^2 , а виробничі витрати рівномірно розподілені випадкові величини на інтервалі $|\gamma_{ij}, \delta_{ij}|$.

Вихідні дані наведені в таблицях 1.3(а) і 1.3(б).

Скласти такий план виробництва виробів, щоб з ймовірністю 0,9 випустити 25 одиниць першого виробу, 45 одиниць другого виробу, 30 одиниць третього та 70 одиниць четвертого при мінімальних очікуваних сумарних виробничих витратах.

Таблиця 1.3(a)

Сорт Норми витрат на виріб ј												
	сировини і	1		2			3		4			
		μ_{i1}	σ_{i1}^2	μ_{i2}	σ_{i2}^2	μ_{i3}	σ_{i3}^2	μ_{i4}	σ_{i4}^2			
	1	2	3	0/5	1	3	2	1	2			
	2	1	3	2	3	2	3	2	4			
	3	2	5	1	2	2	4	2	3			

Таблиця 1.3(б)

Worthing 1.0 (0)												
Сорт		Виробничі витрати на одиницю продукції C_{ij}										
сировини і		1	2	2		3		1				
	γ_{i1}	$oldsymbol{\delta}_{i1}$	γ_{i2}	δ_{i2}	γ_{i3}	$oldsymbol{\delta}_{i3}$	γ_{i4}	$\delta_{_{i4}}$				
1	20	60	15	45	10	20	20	50				
2	15	45	20	30	40	50	30	50				
3	10	30	30	60	10	30	25	45				

Нехай:

- b_i ресурс сировини i
- x_{ij} виріб j з сировини i
- a_{ij} нормовитрати на виріб j з сировини i
- σ_{ij}^{2} дисперсія нормовитрат
- μ_{ij} математичне сподівання нормовитрат
- C_{ij} виробничі витрати (обчислюється як математичне сподівання величина на інтервалі $|\gamma_{ij},\delta_{ij}|$)

Математична модель

min
$$M\{\sum_{i=1}^{3}\sum_{j=1}^{4}C_{ij}x_{ij}\}$$

Обмеження

$$P\{\sum_{i=1}^{4} a_{ij} x_{ij} \leqslant b_i\} \geqslant \alpha \qquad \alpha = 0.9 \qquad i = \overline{1,3}$$

$$\sum_{i=1}^{3} x_{i1} = 25 \qquad \sum_{i=1}^{3} x_{i2} = 45 \qquad \sum_{i=1}^{3} x_{i3} = 30 \qquad \sum_{i=1}^{3} x_{i4} = 70$$

Детермінований еквівалент задачі

Математична модель

min
$$M\{\sum_{i=1}^{3}\sum_{j=1}^{4}\frac{\gamma_{ij}+\delta_{ij}}{2}x_{ij}\}$$

$$\sum_{i=1}^{3} \mu_{ij} x_{ij} + \Phi^{-1}(0.9) (\sum_{i=1}^{n} \sigma_{ij}^{2} x_{i}^{2})^{\frac{1}{2}} \geqslant b_{j} \qquad j = \overline{1, m}$$

$$\sum_{i=1}^{3} x_{i1} = 25 \qquad \sum_{i=1}^{3} x_{i2} = 45 \qquad \sum_{i=1}^{3} x_{i3} = 30 \qquad \sum_{i=1}^{3} x_{i4} = 70$$

Задача 1.4

В кормову суміш входять три продукти: сіно, силос і концентрати, які містять поживні речовини: білок, кальцій і вітаміни. Кількість поживних речовин (таблиця 1.4) представляє собою нормально розподілені випадкові величини із середній μ_{ij} і дисперсією σ_{ij}^2 . Мінімально необхідні норми споживання білка — 2000г., кальцію — 120г., вітамінів — 40г.

- Визначити оптимальний раціон харчування мінімальної вартості, який забезпечується з ймовірністю не менше 0.8 добової норми споживання всіх поживних речовин, якщо ціна 1 кг сіна дорівнює 30 коп., силосу 20 коп., концентратів 50 коп.
- Розв'язати цю ж задачу при умові, що відомі граничні норми споживання добової видачі: сіна —не більше 12 кг., силосу не більше 20 кг., концентратів —16 кг.

Таблиця 1.4

Продукт	Склад поживних речовин μ_{ij} / σ_{ij}^2							
	1	2	3					
Сіно	30/20	4/8	3/2					
Силос	20/10	6/4	1/2					
Концентрати	150/100	4/2	2/3					

Нехай:

- C_i ціна 1кг сировини i
- a_{ij} кількість поживних речовин j у сировині i
- b_j мінімально необхідна кількість речовин j
- x_i кількість продуктів i в кг

Математична модель

$$min \quad M\{\sum_{i=1}^{3} C_{i}x_{i}\}$$

Обмеження

$$P\{\sum_{i=1}^{3} a_{ij} x_i \geqslant b_j\} \geqslant \alpha_i \qquad \alpha = 0.8 \qquad j = \overline{1,3}$$

Детермінований еквівалент задачі

$$min \quad M\{\sum_{i=1}^{3} C_{i}x_{i}\}$$

Обмеження

$$\sum_{i=1}^{3} \mu_{ij} x_i - \Phi^{-1}(0.8) \left(\sum_{i=1}^{n} \sigma_{ij}^2 x_i^2\right)^{\frac{1}{2}} \geqslant b_j \qquad j = \overline{1,3}$$

Задача 1.5

На трьох ділянках колгоспного поля (k=1, 2, 3) можна вирощувати три культури: жито, пшеницю і ячмінь (i=1, 2, 3). Урожайність λ_{ik} цих культур нормально розподілені із середнім μ_{ik} і дисперсією σ_{ik}^2 (табл. 1.5).

Нехай планове завдання із зібрання урожаю кожної культури складає відповідно 500 ц., 600 ц. і 400 ц., а площі ділянок дорівнюють відповідно 30 га., 50 га., 20 га.

- Визначити оптимальну структуру посівів, які мінімізують сумарні очікувані витрати при умові виконання прану з ймовірністю не менше 0.90.
- Визначити оптимальну структуру посівів, які забезпечують максимальну ймовірність перевиконання плану при збереженні планового асортименту 5:2:4.

∓Таблиия 1.5

Ділянка		Уро	жайність		Середні витрати				
k	μ_{k1}	$\sigma_{_{k1}}$	μ_{k2}	$\sigma_{\scriptscriptstyle k2}$	μ_{k3}	$\sigma_{\scriptscriptstyle k3}$	$\overset{-}{c}_{k1}$	c_{k2}	c_{k3}
1	10	15	12	6	8	4	2	3	4
2	12	8	14	10	18	12	3	6	8
3	20	10	16	8	24	8	4	7	10

Нехай:

- λ_{ik} урожайність культури i на полі k
- μ_{ik} математичне очікування λ_{ik}
- σ_{ik}^2 дисперсія λ_{ik}
- s_k посівна площа поля k
- x_{ik} площа під засів урожай культури i на полі k
- b_i план збору врожаю культури i
- c_{ik} середні витрати на культуру i на полі k

Математична модель

$$minM\{\sum_{i=1}^{3}\sum_{j=1}^{3}C_{ij}x_{ij}\}$$

$$P\{\sum_{i=1}^{3} \lambda_{ik} x_{ik} \ge b_i\} \ge \alpha \qquad \alpha = 0.9 \qquad k = \overline{1,3}$$

$$\sum_{i=1}^{3} x_{ik} \le s_k \qquad k = \overline{1,3}$$

Детермінований еквівалент задачі

Математична модель

$$minM\{\sum_{i=1}^{3}\sum_{j=1}^{3}C_{ij}x_{ij}\}$$

Обмеження

$$\sum_{i=1}^{3} \mu_{ik} x_{ik} - \Phi^{-1}(0.9) \left(\sum_{i=1}^{3} \sigma_{ik}^{2} x_{ik}^{2}\right)^{\frac{1}{2}} \geqslant b_{j} \qquad k = \overline{1,3}$$

$$\sum_{i=1}^{3} x_{ik} \leqslant s_{k} \qquad k = \overline{1,3}$$

$$\sum_{i=1}^{3} \sum_{k=1}^{3} x_{ik} \geqslant 0 \qquad k = \overline{1,3}$$

Задача 1.6

Таблиця 1.6(a)

Підприємство і		Норми витрат сировини виду 1 і 2 на одиницю продукції g_{ij}										
	A							C				
	1			2		1		2	1		2	
1	1	3	2	6	0.5	1.5	2	3	2	3	2	4
2	1	2	3	7	1	3	1.5	3	2	2.5	1	4
3	1	3.5	2	4	1	1.5	1	2	1	4	3	5

Таблиця 1.6(б)

Підприємство	Собівартість випуску одиниці продукції						
	A	В	C				
1	2	8	5				
2	3	6	6				
3	3	9	5				

Нехай:

- r_k^i Запаси ресурсу п (на підприємстві i)
- c_{ij} осбівартість товару j на підприємстві i
- x_{ij} кількість товару j виготовленого на підприємстві i
- g_{ij}^k (a_{ij}^k) нормовитрати ресурсу k на виготовлення товару j на підприємстві i
- b_i План виробництва продукції i
- μ_{ij} математичне сподівання нормовитрат
- $\sigma_{ij}^{\check{2}}$ дисперсія нормовитрат

Математична модель

min
$$M\{\sum_{i=1}^{3}\sum_{j=1}^{3}C_{ij}x_{ij}\}$$

Обмеження

$$P\{\sum_{j=1}^{3} g_{ij}^{k} x_{ij} \leq r_{k}^{i}\} \geq \alpha \qquad \alpha = 0.9 \qquad k = \overline{1, 2} \qquad i = \overline{1, 3}$$

$$P\{\sum_{j=1}^{3} x_{ij} \geq b_{i}\} \qquad i = \overline{1, 3}$$

Детермінований еквівалент задачі

Математична модель

min
$$M\{\sum_{i=1}^{3}\sum_{j=1}^{3}C_{ij}x_{ij}\}$$

$$\sum_{i=1}^{3} \mu_{ij} x_{ij} + \Phi^{-1}(0.9) \left(\sum_{i=1}^{n} \sigma_{ij}^{2} x_{ij}^{2}\right)^{\frac{1}{2}} \geqslant r_{k}^{i} \qquad k = \overline{1,2} \qquad i = \overline{1,3}$$

$$\mu_{ij} = \frac{(a_{ij} + b_{ij})}{2} \qquad \sigma_{ij}^{2} = \frac{(b_{ij}^{k} - a_{ij}^{k})^{2}}{12}$$

$$P\{\sum_{j=1}^{3} x_{ij} \geqslant b_{i}\} \qquad i = \overline{1,3}$$

Обмеження (загальний вигляд)

$$\sum_{i=1}^{3} \left(\frac{(a_{ij} + b_{ij})}{2}\right) x_{ij} + \Phi^{-1}(0.9) \left(\sum_{i=1}^{n} \left(\frac{(b_{ij}^{k} - a_{ij}^{k})^{2}}{12}\right) x_{ij}^{2}\right)^{\frac{1}{2}} \geqslant r_{k}^{i} \qquad k = \overline{1,2} \qquad i = \overline{1,3}$$

Задача 1.7

Підприємство володіє ресурсами сировини, робочої сили і обладнання, які необхідні для виробництва чотирьох видів виробів. Нехай питомі витрати ресурсів типу ј є випадковими величинами, рівномірно розподіленими у інтервалі $[a_{ij},b_{ij}]$, а прибуток на одиницю виробу і складає C_{ij} одиниць. Початкові дані наведені в таблицях 1.7(а) і 1.7(б).

Визначити оптимальний асортимент виробів, який забезпечує:

- максимум очікуваного прибутку, при умові реалізованості плану із ймовірністю 0.95;
- максимум очікуваного прибутку при асортименті 3:2:1:2;
- максимум числа компонентів, яке включає один виріб типу 1, два вироби типу 2, три вироби типу 3 і один виріб типу 4.

Таблиця 1.7(a)

Вид ресурсу		Норми витрат ресурсу <i>j</i>									
j	<i>i</i> =1	ресурсів									
Сировина	2-4	3-6	1-2	2-5	160						
Робоча сила	15-20	10-15	15-20	30-50	400						
Обладнання	6-12	10-18	6-10	12-20	200						
Матеріал	8-16	10-20	4-8	12-16	300						

Таблиця 1.7(б)

Вид виробу і	1	2	3	4
Прибуток C_i	30	25	56	48

Нехай:

- x_i кількість виробів i
- *b_j* pecypc *j*
- a_{ij} нормовитрати ресурсу j на виріб i
- C_i прибуток за одиницю виробу i
- μ_{ij} математичне сподівання витрат часу на виробництво виробу
- σ_{ij}^2 дисперсія μ_{ij}

$$\max M\{\sum_{i=1}^{4} C_i x_i\}$$

$$P\{\sum_{i=1}^{4} a_{ij} x_i \leqslant b_j\} \geqslant \alpha \qquad \alpha = 0.95 \qquad j = \overline{1, 4}$$

Детермінований еквівалент задачі

Математична модель

$$\max \qquad M\{\sum_{i=1}^4 C_i x_i\}$$

Обмеження (в загальному вигляді)

$$\sum_{i=1}^{3} \mu_{ij} x_i + \Phi^{-1}(0.95) \left(\sum_{i=1}^{4} \sigma_{ij}^2 x_i^2\right)^{\frac{1}{2}} \leqslant b_j \qquad j = \overline{1, 4}$$

$$\mu_{ij} = \frac{a_{ijmin} + a_{ijmax}}{2} \qquad \sigma_{ij}^2 = \frac{(a_{ijmax} - a_{ijmax})^2}{12}$$

Обмеження

$$\sum_{i=1}^{n} \frac{a_{ijmin} + a_{ijmax}}{2} x_i + \Phi^{-1}(0.95) \left(\sum_{i=1}^{n} \frac{(a_{ijmax} - a_{ijmax})^2}{12} x_i^2\right)^{\frac{1}{2}} \leqslant b_j \qquad j = \overline{1, 4}$$

$$max$$
 $30x_1 + 25x_2 + 56x_3 + 48x_4$

•
$$3x_1 + 4.5x_2 + 1.5x_3 + 3.5x_4 + \Phi^{-1}(0.95)(\frac{4}{12}x_1 + \frac{9}{12}x_2 + \frac{1}{12}x_3 + \frac{9}{12}x_4) \le 160$$

•
$$17.5_x 1 + 12.5x_2 + 17.5x_3 + 40x_4 + \Phi^{-1}(0.95)(\frac{25}{12}x_1 + \frac{25}{12}x_2 + \frac{25}{12}x_3 + \frac{400}{12}x_4) \le 400$$

•
$$9x_1 + 14x_2 + 8x_3 + 16x_4 + \Phi^{-1}(0.95)(\frac{36}{12}x_1 + \frac{64}{12}x_2 + \frac{16}{12}x_3 + \frac{64}{12}x_4) \le 200$$

•
$$12x_1 + 15x_2 + 6x_3 + 14x_4 + \Phi^{-1}(0.95)(\frac{64}{12}x_1 + \frac{100}{12}x_2 + \frac{16}{12}x_3 + \frac{16}{12}x_4) \le 300$$

Задача 1.8

Меблева фабрика випускає столи, крісла, бюро і книжкові шафи, використовуючи два типи дощок. Фабрика має 1000 дощок типу 1 и 500 дощок типу 2. Трудові ресурси фабрики складають 800 чоловік на тиждень. Витрати кожного виду ресурсів на виготовлення одного виробу є рівномірно розподіленими випадковими величинами в інтервалі $[a_{ij},b_{ij}]$ (табл. 1.8). Прибуток від реалізації одного стола — 12 гр., одного крісла — 5 гр., одного бюро — 15 гр., одної книжкової шафи — 20 гр.

Визначити оптимальний асортимент випуску, який забезпечується при умові реалізованості плану з ймовірністю не менше 0.9:

- максимум очікуваного прибутку;
- максимум очікувано прибутку при умові комплектності (кількість столів відноситься до кількості крісел як 1:6):
- максимум очікуваного прибутку при додаткових умовах: столів не менше 400 шт., бюро не менше 130 шт., книжкових шаф не більше 10 шт.;
- максимум очікуваної вартості товарної продукції при умові комплектності і наступних цінах на продукцію: стіл 40 гр., крісло 15 гр., бюро 30 гр., шафа 80 гр.

Таблиця 1.8

Online 1.0								
Вид ресурсу і	Стіл		Бю	Бюро Крі		сло	Книжкова шафа	
	a_{i1}	b_{i1}	a_{i2}	b_{i2}	a_{i3}	b_{i3}	a_{i4}	b_{i4}
Дошки типу 1, м	4	6	8	12	1	2	9	15
Дошки типу 2, м	1	3	4	6	2	4	10	16
Трудові ресурси	2	5	5	8	1	3	8	12

Нехай:

- x_{ij} столярний виріб i виготовлений за використання ресурсу j
- C_i ціна виробу i
- b_i pecypc j
- n_{ij} витрати ресурсу j на виріб i
- μ_{ij} математичне сподівання витрат ресурсів j на виробництво виробу i
- σ_{ii}^2 дисперсія μ_{ij}

Математична модель

$$maxM\{\sum_{i=4}^{3}\sum_{j=1}^{3}C_{i}x_{ij}\}$$

$$P\{\sum_{i=1}^{4} n_{ij} x_{ij} \leqslant b_j\} \geqslant \alpha \qquad \alpha = 0.9 \qquad j = \overline{1,3}$$

Детермінований еквівалент задачі

Математична модель

$$maxM\{\sum_{i=4}^{3}\sum_{j=1}^{3}C_{i}x_{ij}\}$$

Обмеження (загальний вигляд)

$$\sum_{i=1}^{4} \mu_{ij} x_{ij} + \Phi^{-1}(0.9) \left(\sum_{i=1}^{4} \sigma_{ij}^{2} x_{ij}^{2}\right)^{\frac{1}{2}} \leqslant b_{j} \qquad j = \overline{1, 3}$$

$$\mu_{ij} = \frac{a_{ij} + b_{ij}}{2} \qquad \sigma_{ij}^{2} = \frac{(b_{ij} - a_{ij})^{2}}{12}$$

Обмеження

$$\sum_{i=1}^{4} \frac{a_{ij} + b_{ij}}{2} x_{ij} + \Phi^{-1}(0.95) \left(\sum_{i=1}^{n} \frac{(b_{ij} - a_{ij})^2}{12} x_{ij}^2\right)^{\frac{1}{2}} \leqslant b_j \qquad j = \overline{1, 3}$$