User Guide for the SepGP Package

Contents

I. Description	1
II. Main Functions	1
III. Discussion	4
IV. Reference	4

I. Description

The SepGP package is designed to model a spatio-temporal function represented by

$$f:(x,t)\in\mathbb{R}^d\times\mathbb{R}\mapsto f(x,t)\in\mathbb{R},$$

and assumed to be observed for each point $x \in \mathbb{R}$ at discretization times $t_1, \dots, t_{N_t}.$

The main features of the SepGP package include:

- **Model Construction**: Create Gaussian Process models with separable covariance functions tailored to the data structure.
- **Parameter Optimization**: Use a Leave-One-Out cross-validation method combined with maximum likelihood estimation to optimize model parameters.
- **Prediction**: Make predictions for new spatial points and all discretization times $t_1,\dots,t_{N_t}.$

II. Main Functions

a) SepGP: Separable Gaussian Process Object

The SepGP function allows the creation of an object of class SepGP, initializing a Gaussian process model with customizable prior covariance and mean structures, along with an optional nugget effect.

Usage SepGP(D, FD, s, covtype, phi, nugget)

Parameters

- D: Design of experiments containing the spatial points.
- FD: Matrix of function evaluations at **D**.
- s: Degree of the polynomial for the prior mean function.
- B: (Optional) Matrix of regression coefficients for the prior mean. If not specified, a matrix consisting of ones is used by default.
- covtype: Type of spatial covariance function, with a default value of "gauss". Acceptable values are "gauss", "exp", "matern3_2", and "matern5_2".
- phi: (Optional) Hyperparameter vector for the covariance function. If not specified, a vector of ones is used by default.
- philow: (Optional) Lower bounds for the hyperparameter phi. If not specified, a vector consisting of 0.1 is used by default.
- phiup: (Optional) Upper bounds for the hyperparameter phi. If not specified, a vector consisting of 10 is used by default.
- Sigmat: (Optional) Temporal covariance matrix (for discretization times). If not specified, an identity matrix of appropriate size $(N_t \times N_t)$ is used by default.
- nugget: (Optional) A small positive value added to the diagonal of the covariance matrix to improve numerical stability, with a default value of 1e-16.

Value

• gp: An object of class SepGP representing a Gaussian process model with the specified parameters.

b) Covmat: Calculate the Covariance Matrix for SepGP

This function computes the covariance matrix between two design of experiments based on a SepGP model.

Usage Covmat(object, D1, D2)

Parameters

- object: An object of class SepGP.
- D1: First Design of Experiments.
- D2: Second Design of Experiments.

Value

• Cmat: Covariance matrix between **D1** and **D2**.

c) PriorMean: Calculate the Prior Mean for SepGP

The PriorMean function computes the prior mean for a given design of experiments (Dnew) based on an existing SepGP model. It constructs a polynomial prior mean function using the coefficients and degree specified in the SepGP object.

Usage PriorMean(object, Dnew)

Parameters

- object: An object of class SepGP, representing a Gaussian process model with a separable covariance structure.
- Dnew: A matrix representing a new design of experiments (DOE) for which the prior mean will be computed.

Values

- M: A matrix representing the prior mean values at each point in **Dnew**.
- H: A matrix where each row corresponds to the values of the polynomial basis functions evaluated at a point in Dnew.

d) GPoptim: SepGP Model parameters Optimization

The GPoptim function optimizes the hyperparameters of a given SepGP model. This includes tuning the spatial covariance function parameters, the temporal covariance matrix, and the coefficients matrix associated with the prior mean function. Optimization is achieved using a combination of leave-one-out cross-validation and maximum likelihood estimation methods, providing a robust fit for the model.

Usage GPoptim(object, maxit)

Parameters

- object: An object of class SepGP, representing a Gaussian process model with a separable covariance structure.
- maxit: (Optional) An integer specifying the maximum number of iterations for the optimization algorithm (refer to the optim function in the stats package for details). The default value is 100. You should choose a reasonable value for maxit based on the dimensionality of the hyperparameters of the spatial covariance function.

Values An optimized SepGP object with updated hyperparameters:

- phi: Optimal values for the covariance hyperparameters.
- B: Estimated coefficient matrix derived from the optimized hyperparameters.
- Sigmat: Estimated temporal covariance matrix.

e) predictSepGP: Make Predictions Using a SepGP Model

This function computes the posterior mean and covariance matrix for for new spatial points based on a SepGP model.

Usage predictSepGP(object, Dpred, covcompute)

Parameters

- object: An object of class SepGP, representing a Gaussian process model with a separable covariance structure.
- Dpred : A new design of spatial points for which predictions are to be made.
- covcompute: A logical value indicating whether the posterior covariance should be computed. The default value is TRUE.

Values A list with the following elements:

- Mean: Posterior mean vector of the predictions for each new input in Dpred.
- Covsp: Spatial posterior covariance matrix of the predictions.
- Covmat: Posterior covariance matrix of the predictions, quantifying the uncertainty for each point in Dpred.

III. Discussion

The SepGP package is particularly effective in cases where separability is justified, such as when a separability test confirms its suitability. However, it currently supports a limited range of covariance functions, specifically isotropic Gaussian, exponential, and Matérn kernels (with smoothness parameters $\nu=3/2$ and $\nu=5/2$).

The optimization process in SepGP is based on a leave-one-out cross-validation (LOO-CV) approach. While this method is generally reliable, it can be time-consuming, especially for cases with high spatial dimensionality and/or large numbers of discretized time points.

IV. Reference

Perrin, G. (2019). *Adaptive calibration of a computer code with time-series output*. Reliability Engineering and System Safety. Elsevier. Retrieved from https://hal.science/hal-01794807 and PDF link.