

Second Order Methods for L1-Regularization

Kimon Fountoulakis and Jacek Gondzio

with extra thanks to

Kristian Woodsend and Pavel Zlobich

Outline

- Motivation: Why not 2nd-order methods?
- Interior Point Methods and Continuation
- Inexact Newton directions
 - Krylov subspace methods
 - Preconditioner is a must
- Computational results
 - Compressed Sensing
 - Google Problem
 - Machine Learning Problems
- Linear Algebra viewpoint on ℓ_1 -regularization
- Conclusions

ℓ_1 regularization

Convex optimization problem:

$$\min_{x} \quad \tau ||x||_1 + \phi(x),$$

where $\|.\|_1$ is the ℓ_1 norm, and $\phi: \mathcal{R}^n \mapsto \mathcal{R}$ is a convex function (often strongly convex).

Usual example:

$$\min_{x} \quad \tau \|x\|_{1} + \frac{1}{2} \|Ax - b\|_{2}^{2}$$

where $A \in \mathbb{R}^{m \times n}$ (often $m \ge n$ or $m \gg n$).

Two features:

Difficulty:

non-differentiability of $||x||_1$

Triviality:

unconstrained optimization

It is fashionable to use the 1st-order methods to solve these problems. Marketed as *Haute Couture*.

Prête-à-porter. What about the 2nd-order methods???

Observation

- First-order methods
 - complexity $\mathcal{O}(1/\varepsilon)$ or $\mathcal{O}(1/\varepsilon^2)$
 - produce a rough approx. of solution quickly
 - but ... struggle to converge to high accuracy
- IPMs are second-order methods (they apply Newton method to barrier subprobs)
 - complexity $\mathcal{O}(\log(1/\varepsilon))$
 - produce accurate solution in a few iterations
 - but ... one iteration may be expensive

Just think

For example, $\varepsilon = 10^{-3}$ gives $1/\varepsilon = 10^3$ and $1/\varepsilon^2 = 10^6$, but $\log(1/\varepsilon) \approx 7$.

For example, $\varepsilon = 10^{-6}$ gives $1/\varepsilon = 10^6$ and $1/\varepsilon^2 = 10^{12}$, but $\log(1/\varepsilon) \approx 14$.

But **ML Community** loves the 1st-order methods.

Stirring up a hornets nest:

Give 2nd-order/IPMs a serious consideration!

Serious Issue: nondifferentiability of $\|.\|_1$

Two possible tricks:

- Splitting x = u v with $u, v \ge 0$
- Huber or pseudo-Huber regression

Splitting: $x = u - v, u \ge 0, v \ge 0$

Replace $x_i = u_i - v_i$, where $u_i = \max\{x_i, 0\}$ and $v_i = \max\{-x_i, 0\}$.

Then $x_i = u_i - v_i$ and $|x_i| = u_i + v_i$.

Hence
$$||x||_1 = \sum_{i=1}^n (u_i + v_i)$$
.

Removes nondifferentiability, but:

- doubles the dimension,
- introduces inequality constraints (fine for IPMs).

Huber: Replace $\|\mathbf{x}\|_1$ with $\psi_{\mu}(x)$

Huber approximation: replaces $||x||_1$ with $\sum_{i=1}^n \left[\phi_{\mu}(x)\right]_i$

$$\left[\phi_{\mu}(x)\right]_{i} = \begin{cases} \frac{1}{2}\mu^{-1}x_{i}^{2}, & \text{if } |x_{i}| \leq \mu\\ |x_{i}| - \frac{1}{2}\mu, & \text{if } |x_{i}| \geq \mu \end{cases} \quad i = 1, 2, \dots, n$$

where $\mu > 0$. Only first-order differentiable.

Pseudo Huber approximation: replaces $||x||_1$ with

$$\psi_{\mu}(x) = \mu \sum_{i=1}^{n} (\sqrt{1 + \frac{x_i^2}{\mu^2}} - 1)$$

Smooth function, has derivatives of any degree.

Huber:

2nd-order method

Use 2nd-order information (Newton direction).

But, do not waste time on computing exact direction.

Use Inexact Newton Method Dembo, Eisenstat & Steihaug, SIAM J. on Num Analysis 19 (1982) 400–408.

Continuation

Embed inexact Newton Meth into a *homotopy* approach:

- Inequalities $u \ge 0$, $v \ge 0 \longrightarrow \text{use } \mathbf{IPM}$ replace $z \ge 0$ with $-\mu \log z$ and drive μ to zero.
- pseudo-Huber regression \longrightarrow use **continuation** replace $|x_i|$ with $\mu(\sqrt{1+\frac{x_i^2}{\mu^2}}-1)$ and drive μ to zero.

Theory ???

Theory for IPM:

G., Matrix-Free Interior Point Method, Computational Optimization and Applications, vol. 51 (2012) 457–480.

G., Convergence Analysis of an Inexact Feasible IPM for Convex QP, *Tech Rep ERGO-2012-008*, July 2012.

Theory for Continuation:

Fountoulakis and G.

Second-order Methods for Strongly Convex ℓ_1 Regularization, $Tech\ Rep\ ERGO-2013$ - (in preparation) 2013.

Three examples of simple ℓ_1 regularization

- Compressed Sensing with **K. Fountoulakis and P. Zhlobich**
- Google Problem with **K. Woodsend**
- Machine Learning Problems with **K. Fountoulakis**

Example One

Compressed Sensing

with K. Fountoulakis and P. Zhlobich

Compressed Sensing

Relatively small number of random projections of a sparse signal can contain most of its salient information.

If a signal is sparse (or approximately sparse) in some orthonormal basis, then an accurate reconstruction can be obtained from random projections of the original signal. A has the form A = RW, where

- R is a low-rank randomised sensing matrix
- W is a basis over which the signal has a sparse representation

Candès, Romberg & Tao, Comm on Pure and Appl Maths 59 (2005) 1207-1233.

Compressed Sensing joint work with

Kimon Fountoulakis and Pavel Zhlobich

Large dense quadratic optimization problem:

$$\min_{x} \ \tau \|x\|_{1} + \frac{1}{2} \|Ax - b\|_{2}^{2},$$

where $A \in \mathcal{R}^{m \times n}$ is a **very special matrix**.

Fountoulakis, G., Zhlobich

Matrix-free IPM for Compressed Sensing Problems, ERGO Technical Report, 2012.

Software available at http://www.maths.ed.ac.uk/ERGO/

Two-way Orthogonality of A

• rows of A are orthogonal to each other (A is built of a subset of rows of an othonormal matrix $U \in \mathbb{R}^{n \times n}$)

$$AA^T = I_m.$$

• small subsets of columns of A are nearly-orthogonal to each other: $Restricted\ Isometry\ Property\ (RIP)$

$$\|\bar{A}^T\bar{A} - \frac{m}{n}I_k\| \le \delta_k \in (0,1).$$

Candès, Romberg & Tao,

Comm on Pure and Appl Maths 59 (2005) 1207-1233.

Restricted Isometry Property

Matrix $\bar{A} \in \mathcal{R}^{m \times k}$ $(k \ll n)$ is built of a subset of columns of $A \in \mathcal{R}^{m \times n}$.

This yields a very well conditioned optimization problem.

Problem Reformulation

$$\min_{x} \ \tau \|x\|_{1} + \frac{1}{2} \|Ax - b\|_{2}^{2}$$

Replace $x = x^+ - x^-$ to be able to use $|x| = x^+ + x^-$. Use $|x_i| = z_i + z_{i+n}$ to replace $||x||_1$ with $||x||_1 = 1_{2n}^T z$. (Increases problem dimension from n to 2n.)

$$\min_{z \ge 0} c^T z + \frac{1}{2} z^T Q z,$$

where

$$Q = \begin{bmatrix} A^T \\ -A^T \end{bmatrix} \begin{bmatrix} A & -A \end{bmatrix} = \begin{bmatrix} A^T A & -A^T A \\ -A^T A & A^T A \end{bmatrix} \in \mathcal{R}^{2n \times 2n}$$

Preconditioner

Approximate

$$\mathcal{M} = \begin{bmatrix} A^T A & -A^T A \\ -A^T A & A^T A \end{bmatrix} + \begin{bmatrix} \Theta_1^{-1} & & \\ & \Theta_2^{-1} \end{bmatrix}$$

with

$$\mathcal{P} = \frac{m}{n} \begin{bmatrix} I_n & -I_n \\ -I_n & I_n \end{bmatrix} + \begin{bmatrix} \Theta_1^{-1} & & \\ & \Theta_2^{-1} \end{bmatrix}.$$

We expect (optimal partition):

- k entries of $\Theta^{-1} \to 0$, $k \ll 2n$,
- 2n k entries of $\Theta^{-1} \to \infty$.

Spectral Properties of $\mathcal{P}^{-1}\mathcal{M}$

Theorem

- Exactly n eigenvalues of $\mathcal{P}^{-1}\mathcal{M}$ are 1.
- The remaining n eigenvalues satisfy

$$|\lambda(\mathcal{P}^{-1}\mathcal{M}) - 1| \le \delta_k + \frac{n}{m\delta_k L},$$

where δ_k is the RIP-constant, and L is a threshold of "large" $(\Theta_1 + \Theta_2)^{-1}$.

Fountoulakis, G., Zhlobich

Matrix-free IPM for Compressed Sensing Problems, ERGO Technical Report, 2012.

Preconditioning

→ good clustering of eigenvalues

Computational Results: Comparing MatVecs

Prob size	k	NestA	mf-IPM
4k	51	424	301
16k	204	461	307
64k	816	453	407
256k	3264	589	537
1M	13056	576	613

NestA, Nesterov's smoothing gradient

Becker, Bobin and Candés,

http://www-stat.stanford.edu/~candes/nesta/

mf-IPM, Matrix-free IPM

Fountoulakis, G. and Zhlobich,

http://www.maths.ed.ac.uk/ERGO/

SPARCO problems

Comparison on 18 out of 26 classes of problems (all but 6 complex and 2 installation-dependent ones).

Solvers compared:

PDCO, Saunders and Kim, Stanford, $\ell_1-\ell_s$, Kim, Koh, Lustig, Boyd, Gorinevsky, Stanford, FPC-AS-CG, Wen, Yin, Goldfarb, Zhang, Rice, SPGL1, Van Den Berg, Friedlander, Vancouver, and mf-IPM, Fountoulakis, G., Zhlobich, Edinburgh.

On 36 runs (noisy and noiseless problems), **mf-IPM**:

- is the fastest on 11,
- is the second best on 14, and
- overall is very robust.

Example Two

• Google Problem with K. Woodsend

Edinburgh, May 2, 2013

Ranking of nodes in networks

Google Problem joint work with

Kristian Woodsend

An adjacency matrix $G \in \mathbb{R}^{n \times n}$ of web-page links is given (web-pages are the nodes). G is column-stochastic.

Teleportation:

$$M = \lambda G + (1 - \lambda) \frac{1}{n} e e^{T},$$

with $\lambda \in (0,1)$, usually $\lambda = 0.85$.

Find the dominant right eigenvector x of M with eigenvalue equal to 1

$$Mx = x$$
, such that $e^T x = 1$, $x \ge 0$.

and use x as a **ranking vector**.

Google Problem

min
$$\frac{1}{2} ||Mx - x||_2^2$$

s.t. $e^T x = 1, x \ge 0$

Rearrange:

$$||Mx - x||_2^2 = x^T (M - I)^T (M - I)x$$

to produce a standard QP formulation with

$$Q = (M - I)^T (M - I).$$

A very easy QP problem!

Preconditioner for Google Problem

Approximate

$$\mathcal{M} = \begin{bmatrix} Q + \Theta^{-1} & e \\ e^T & 0 \end{bmatrix}$$

with

$$\mathcal{P} = \begin{vmatrix} D_Q & e \\ e^T & 0 \end{vmatrix},$$

where $D_Q = diag\{Q + \Theta^{-1}\}.$

G., Woodsend

Matrix-free IPM for Google Problems, ERGO Technical Report (in preparation) 2013.

Computational Results: mf-IPM

	Size	degree	IPM-iters	MatVecs
$\lambda = 0.85$	16k	20	5	8
	64k	20	4	5
	256k	20	3	4
	1M	20	3	11
$\lambda = 1.0$	16k	20	5	8
	64k	20	4	5
	256k	20	3	6
	1M	20	3	14

mf-IPM faster than Nesterov's coordinate descent. Nesterov (SIOPT 2012) solves them in 45-70 MatVecs.

Real-life Networks

Stanford Large Network Dataset Collection

http://snap.stanford.edu/data/

			Conjugate Grad		Precond. CG			
Data set	Nodes	\mathbf{Edges}	Ite	$\mathbf{r}\mathbf{s}$	$_{ m time}$	Ite	ers	$_{ m time}$
			IPM	\mathbf{CG}	t(s)	IPM	PCG	t(s)
p2p-Gnutella04	10879	50873	13	233	2.7	13	151	2.3
p2p-Gnutella24	26518	91887	14	214	7.3	15	161	6.3
p2p-Gnutella25	22687	77392	13	216	5.4	13	143	4.6
p2p-Gnutella30	36682	125010	13	196	8.4	13	123	7.2
p2p-Gnutella31	$\boldsymbol{62586}$	210478	14	205	15.6	14	140	13.6
soc-Epinions1	75888	584725	28	588	31.9	35	459	48.6
amazon0601	403394	3790782	16	191	76.1	18	72	49.3
web-Google	916428	6021467	15	193	197.1	13	47	85.6
wiki-Talk	2394385	7415795	15	110	256.8	15	55	198.9
web-BerkStan	685231	8285826	12	204	106.7	12	52	52.0

The number of CG (PCG) iterations is equal to the number of **matrix-vector** products.

Example Three

• Machine Learning Problems
with K. Fountoulakis

Machine Learning Problems joint work with Kimon Fountoulakis.

Nesterov, *Math Prog*, 103 (2005) 127-152.

Nesterov, Gradient methods for minimizing composite objective function. *CORE Discussion Papers 2007076*, September 2007.

Richtárik and Takáč, Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function. *Math Prog*, 2012.

Richtárik and Takáč, Parallel coordinate descent methods for big data optimization. *Tech Rep ERGO-2012-013*, November 2012.

Huge-Scale LASSO problem

$$\min_{x} \ \tau \|x\|_{1} + \frac{1}{2} \|Ax - b\|_{2}^{2},$$

where $A \in \mathbb{R}^{m \times n}$ (m = 2n: overdetermined system).

Dimensions: $m = 4 \times 10^9$, $n = 2 \times 10^9$.

Very sparse: 20 nonzero entries per column.

- Parallel CD (Richtárik and Takáč) solves it doing 34-37 scans through the matrix 35 iterations, CPU time: 10779s;
- Truncated Newton (Fountoulakis and G.) solves it using 12-13 matrix-vector multiplications 13 iterations, CPU time: 5079s.

Trivial problem

$$\min_{x} \ \tau \|x\|_{1} + \frac{1}{2} \|Ax - b\|_{2}^{2},$$

where $A \in \mathbb{R}^{m \times n}$. Highly overdetermined system: m = 2n.

Strongly diagonally dominant matrix A^TA .

$$A^{T}A = \begin{bmatrix} x & x & x & x \\ x & x & x \\ \hline x & x & x \end{bmatrix} = \begin{bmatrix} d & 0 \\ 0 & d \end{bmatrix}$$

More Machine Learning Problems

		CPU time		
Problem	Features	Training size	CD	TN
gisette_scale	5,000	6,000	11.65	8.63
real_sim	20,958	72,309	1.85	0.78
epsilon	2,000	400,000	1,658	314
rcv1_train	47,236	20,242	0.77	0.57
news20_binary	1,355,191	19,996	3.30	9.57

CD Coordinate Descent, Chih-Jen Lin, Liblinear: http://www.csie.ntu.edu.tw/~cjlin/liblinear/

TN Truncated Newton Meth, Fountoulakis and G.

What is going on? Linear Algebra Viewpoint

$$\min_{x} \tau \|x\|_{1} + \underbrace{\frac{1}{2} \|Ax - b\|_{2}^{2}}_{\phi(x)},$$

Quadratic Opt. with $Q = A^T A$. For overdetermined systems (m > n), Q is likely to be very well conditioned.

Small exercise:

Ignore ℓ_1 term and compute:

$$abla \phi(x) = A^T (Ax - b)$$
 and $\nabla^2 \phi(x) = A^T A$

$$d_{SD} = -\nabla \phi(x) \text{ and } d_N = -(\nabla^2 \phi(x))^{-1} \nabla \phi(x)$$

If $\nabla^2 \phi(x) \approx I$ then $d_{SD} \approx d_N$.

Conclusions

The **2nd-order information** can (sometimes should) be used also in trivial optimization.

Achievable by using **inexact Newton directions** in:

- IPMs
- continuation approach

Final Comments

- large/huge does not always mean difficult
- Many **Big Data** problems are trivial!