### SVD Dimension reduction method

# Xuelong Wang 2018-11-19

### Contents

| 1 | Motivation                                                               | 1 |
|---|--------------------------------------------------------------------------|---|
|   | Main idea two steps2.1 Dimension Reduction2.2 Following with GCTA method |   |
|   | Simulation study 3.1 Simulation setup                                    | 2 |
|   | PCBs data simulation result 4.1 sample matrix of PCB data                |   |

### 1 Motivation

Based on previous simulation results we did a series of simulation on estimation of total variance of main and interactive effects. we found that combing dimension reduction with decorrelation tend (our proposed method) to have a better result than GCTA, especially when n < p and correlation between covariates are high. Therefore, we conducted a group of simulation studies trying to evaluate the performance of the proposed method. we tried different covariance structures and PCBs data with re-sampling. Overall, the performance is good in most of the case. When n is small and correlation is also weak, the prospoed method is as good as the original GCTA method.

### 2 Main idea two steps

### 2.1 Dimension Reduction

$$\begin{split} X &= UDV^T = \begin{bmatrix} U_r & U_2 \end{bmatrix} \begin{bmatrix} D_r & 0 \\ 0 & D_2 \end{bmatrix} \begin{bmatrix} V_r & V_2 \\ V_3 & V_4 \end{bmatrix}^T \\ &= \begin{bmatrix} U_rD_r & U_2D_2 \end{bmatrix} \begin{bmatrix} V_r^T & V_3^T \\ V_2^T & V_4^T \end{bmatrix} = \begin{bmatrix} U_rD_rV_r^T + U_2D_2V_2^T & U_rD_rV_3^T + U_2D_2V_4^T \end{bmatrix} \end{split}$$

Ignore  $V_2$ ,  $V_3$  and  $V_4$ , then we have the X\_r as following

$$X_r = U_r D_r V_r^T.$$

We use  $X_r$  as the new covariates to the proposed methd. Therefore, we reduce the dimension from p to n

### 2.2 Following with GCTA method

After calculating  $X_r$ , we can regard  $X_r$  as our new predictors and use it as the input to the proposed method Note that we could use this blocking method to reduce X's dimension to  $k, k \leq min(p, n)$ .

### 3 Simulation study

I used Chi-square random variable with df = 1. To generate a certain covariance structure, one could randomly generate a sample from multivariate-normal-distribution first, and then just square each elements to have a group univarate Chi-saure distribution with desired correlations. The details of simulation is shown as follows.

#### 3.1 Simulation setup

1. Normal distribution

$$X = [X_1 \dots, X_p] \quad cov(X_i, X_j) = \Sigma_X$$

2. Chi-square distribution

$$T = [T_1 \dots, T_p], \quad T_i = X_i^2 \sim \chi_{(1)}^2, \quad cov(T_i, T_j) = \Sigma_{\chi^2}$$

- The sample size n is from 100 to 800
- The number of main effect is 34 (p = 34)

#### **3.1.1** correlation of $T_i$ and $T_j$

Assume  $Cov(X_i, X_j) = \sigma_{ij}$ ,  $Var(X_i) = \sigma_i^2$ ,  $E(X_i) = 0$  and constant variance, then we have

$$Var(X_i) = E(X_i^2) - E(X_i)^2 = E(X_i^2) = \sigma_i^2 = \sigma^2$$

$$\begin{aligned} Cov(T_i, T_j) &= Cov(X_i^2, X_j^2) = E\left((X_i^2 - E(X_i^2))(X_j^2 - E(X_j^2))\right) \\ &= E(X_i^2 X_j^2 - X_i^2 E(X_j^2) - X_j^2 E(X_i^2) + E(X_i^2) E(X_j^2)) \\ &= E(X_i^2 X_j^2) - \sigma^4 \\ &= \sigma_i^2 \sigma_j^2 + 2\sigma_{ij}^2 - \sigma^4 \\ &= 2\sigma_{ij}^2 \end{aligned}$$

$$Cor(T_i, T_j) = \frac{Cov(X_i^2, X_j^2)}{\sqrt{Var(X_i^2)Var(X_j^2)}}$$
$$= \frac{2\sigma_{ij}^2}{2\sigma^4}$$
$$= \frac{2(\rho\sigma^2)^2}{2\sigma^4}$$
$$= \rho^2$$

### 3.1.2 Compound Symmetry

$$T = [T_1 \dots, T_p], \quad T_i \sim \chi^2_{(1)}, \quad cov(T_i, T_j) = 2\rho^2, \quad \forall i \neq j, \rho = \{0.1, \dots, 0.9\}$$

Total effect with fixed main and fixed interactive with SVD method with 50% covariate



Figure 1: Compound Stymmetry

#### 3.1.3 Autoregression AR(1)

$$T = [T_1 \dots, T_p], \quad T_i \sim \chi^2_{(1)}, \quad cov(T_i, T_j) = 2\rho^{2|i-j|}, \quad \forall i \neq j, \rho = \{0.1, \dots, 0.9\}$$

### Total effect with fixed main and fixed interactive ar structure svd 0.5



Figure 2: AR(1)

#### 3.1.4 Unstructure

$$T = [T_1 \dots, T_p], \quad T_i \sim \chi^2_{(1)}, \quad cov(T_i, T_j) = \sigma_{ij}$$

### Total effect with fixed main and fixed interactive un structure svd 0.5 rho: 0.1 rho: 0.1 n: 100 n: 200 n: 300 10 rho: 0.1 rho: 0.1 rho: 0.1 n: 400 n: 500 n: 600 method value GCTA\_total prop\_total true\_total 3 -GCTA\_total prop\_total true\_total rho: 0.1 rho: 0.1 n: 700 n: 800 5 -3 -

Figure 3: Unstructure

GCTA\_total prop\_total true\_total method

GCTA\_total prop\_total true\_total

### 4 PCBs data simulation result

We are using the PCBs data from the

### 4.1 sample matrix of PCB data

### 4.1.1 A glimsp of the covariance matrix

Table 1: Covariance of PCB

|        | LBX028 | LBX066 | LBX074 | LBX105 | LBX118 | LBX156 | LBX157 | LBX167 | LBX044 | LBX049 |
|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| LBX028 | 1.000  | 0.678  | 0.399  | 0.304  | 0.311  | 0.260  | 0.257  | 0.280  | 0.649  | 0.672  |
| LBX066 | 0.678  | 1.000  | 0.665  | 0.721  | 0.694  | 0.502  | 0.509  | 0.629  | 0.327  | 0.333  |
| LBX074 | 0.399  | 0.665  | 1.000  | 0.799  | 0.856  | 0.810  | 0.817  | 0.880  | 0.054  | 0.046  |
| LBX105 | 0.304  | 0.721  | 0.799  | 1.000  | 0.974  | 0.689  | 0.707  | 0.840  | 0.046  | 0.040  |
| LBX118 | 0.311  | 0.694  | 0.856  | 0.974  | 1.000  | 0.763  | 0.781  | 0.906  | 0.037  | 0.032  |
| LBX156 | 0.260  | 0.502  | 0.810  | 0.689  | 0.763  | 1.000  | 0.989  | 0.890  | 0.004  | 0.000  |
| LBX157 | 0.257  | 0.509  | 0.817  | 0.707  | 0.781  | 0.989  | 1.000  | 0.908  | -0.001 | -0.005 |
| LBX167 | 0.280  | 0.629  | 0.880  | 0.840  | 0.906  | 0.890  | 0.908  | 1.000  | -0.015 | -0.019 |
| LBX044 | 0.649  | 0.327  | 0.054  | 0.046  | 0.037  | 0.004  | -0.001 | -0.015 | 1.000  | 0.983  |
| LBX049 | 0.672  | 0.333  | 0.046  | 0.040  | 0.032  | 0.000  | -0.005 | -0.019 | 0.983  | 1.000  |

### 4.1.2 Histgram of diagonal and off-diagonal elements of the PCBs'sample covariance

### Histogram of diag(cov\_PCB)



### Histogram of cov\_PCB[lower.tri(cov\_PCB)]



### 4.1.3 Histgram of off-diagonal elements of the PCBs'sample correlation-coefficient

#### Histogram of cor\_PCB[lower.tri(cor\_PCB)]



Based on the correlation coefficient values, it seems that there is no an obvious pattern and the correlations are basically uniformly distributed. Thus, the sample covariance of PCB is more likely to have an unstructure structure.

### 4.2 Simulation result

One thing about the PCB simulation is that we are using sub-sampling to evaluate the performance of the PCB data.

## PCB Total effect with fixed main and fixed interactive svd 0.2



Figure 4: PCB with 0.2

## PCB Total effect with fixed main and fixed interactive svd 0.5 pro: 0.2 pro: 0.3 pro: 0.4 pro: 0.5 pro: 0.6 method value GCTA\_total prop\_total true\_total 3 pro: 0.7 pro: 0.8 pro: 0.9 3 -

Figure 5: PCB with 0.5

GCTA\_total prop\_total true\_total

GCTA\_total prop\_total true\_total method

GCTA\_total prop\_total true\_total

## PCB Total effect with fixed main and fixed interactive svd 0.8 pro: 0.2 pro: 0.3 pro: 0.5 pro: 0.4 pro: 0.6 method value GCTA\_total 5 prop\_total true\_total 3 pro: 0.7 pro: 0.8 pro: 0.9 3 -

Figure 6: PCB with 0.8

GCTA\_total prop\_total true\_total

GCTA\_total prop\_total true\_total method

GCTA\_total prop\_total true\_total