Thm 70 Let X S IR" and T S IRM Let \$: X = T be compact-valued

is who at REX => \$ is sequentially who at REX.

\$\text{g}\$ is who at REX if and only if, for every sequence \$\text{Re}\$ = \$\text{Satisfying Rn} → \$\text{R}\$ and every subsequence \$\text{Re}\$ = \$\text{Satisfying In \$\text{E}\$ (cm)}\$

there is a convergent subsequence of \$\text{Re}\$ in \$\text{Inition in \$\text{B}(\text{Re})\$}.

(ii) \$\text{B}\$ is the at \$\text{REX}\$ & \$\text{B}\$ is sequentially the at \$\text{REX}\$.

\$\text{B}\$ is the at \$\text{REX}\$ if and only if \$\text{Rn}\$ → \$\text{R}\$ and \$\text{B}\$ = \$\text{B}\$ (Mn) and \$\text{In}\$ → \$\text{T}\$.

prost) (i) "=>"

Suppose \$ is who, $x_n \rightarrow x$ and $y_n \in \beta(x_n)$.

Step1) In has a bounded subsequence.

Since $\phi(x)$ is compact, \exists a bounded open ball U containing $\phi(x)$.

Since ϕ is who, \exists $V \subseteq X$ such that $\chi \in V$ and $\phi(v) \subseteq U$.

Since χ_n is eventually in V. In is eventually in U.

Step 2) Since ∇ is compact, there is a convergent subsequence fill with limit y.

Suppose $y \notin \phi(x)$ (For antivadiction)

Let 2:= inf d(y, a) and note that 270.

the closure of Begins

Define $B_{\underline{s}} p(x) := U B_{\underline{s}}(a)$ and observe that $y \notin B_{\underline{s}} p(x)$

Since ϕ is who, \exists om open set $V \subseteq X$ satisfying $x \in V$ and $\phi(V) \subseteq B \subseteq \phi(x)$ (The definith of whe)

Therefore, $x_n \in V$ for large n which implies $y_n \in p(x_n) \subseteq p(V) \subseteq B_{\underline{s}} d(x_n)$ for n large enough.

But now, this implies $y \in B \leq p(x)$, a contradiction. We conclude that $y \in p(x)$. II

" =" (We place the contrapsitive)

Suppose ϕ is not who at α . Then \exists am open set $u \subseteq \Gamma$ such that $\phi(\alpha x) \subseteq u$. but $\forall u \in \mathbb{N}$, $\exists x_n \in B_n^+(x)$ such that $\phi(x_n) \not = u$.

That is, I a gn = p(xn) such that yn & U.

Since The is closed, all converging sequences in The have a limit in The.

Therefore, no subsequence Eyne's com have a limite in U. 11

(No proof for (ii))

Thurst Lee X = IR" T = IR" Z = IR"

Let p: X= Y and Y: Y= Z

Suppose ϕ and ψ are who, then their composition $\psi \circ \phi$ defined by $\psi \circ \phi(x) := \{z \in Z \mid \exists y \in \phi(x) \text{ such thre } z \in \phi(y)\}$ is who.

proof) Let WSZ be open and define U: [REX | 4.0 005 W?]
We show that U is open.

Let V := [yer | V(y) = W) and

Note that $u = \{ \alpha \in X \mid \phi(\alpha) \subseteq W \}.$

Then V is open because 4 is who is therefore u is open because \$\phi\$ is who. 11

Thm ? 1) < Theorem of the Meximum (Berge)>

Let X S IR" and Q S IR?

Suppose $f: X \times \Omega \longrightarrow \mathbb{R}$ is continuous and that $C: \Omega \ni X$ is non-empty valued, compact valued, and continuous.

Consider the parameterized optimization problem; max fix, a)

Then the value function $V(\alpha) = \sup_{x \in C(\alpha)} f(x, \alpha)$ is continuous and

the solution correspondence $S: \Omega \to X$ defined by $S(\alpha) := \arg\max_{\alpha \in C(\alpha)} f(\alpha, \alpha)$ is non-empty valued, compact-valued and who.

proof)

Step1): S(x) is non-empty and compact valued

Since C(00) is non-empty and compact, and f is continuous,

the extreme value theorem implies that S(d) is non-empty.

Also, $S(\alpha) = \{ x \in X \mid f(x, \alpha) = V(\alpha) \}$ is closed as the pleimage of a closed set. $C(\alpha)$, under a continuous function.

Since S(K) = C(X), S(X) is bounded and therefore compact. ||

Step+): Sow is who

We use Thm 70: Consider am arbitrary Sequence of Satisfying $dn \rightarrow d$ and a sequence of Satisfying $dn \in S(dn) \subseteq C(dn)$.

Since C is the and compact-valued, \exists a subsequence [Kina] converging to $\alpha \in C(\alpha)$. Given arbitrary $\Xi \in C(\alpha)$, since C is the, \exists a subsequence $\{\Xi \cap \alpha\} \subseteq X$ with $\Xi \cap \alpha \in C(\alpha)$ and $\Xi \cap \alpha = \Xi$.

Since f is continuous, we can take limits to obtain $f(x,\alpha) \ge f(z,\alpha)$. Since $z \in C(\alpha)$ is abbitrary, we conclude that $x \in S(\alpha)$.

Since S is compact-valued, we conclude by thm 70 that S is who. 11

Step 3) V(a) is continuous

Note that we can write $V(\alpha) = f(s(\alpha), \alpha)$

Interpreting f as a correspondence. V is the composition of two who correspondences and therefore who by them 71.

Since it is single-valued, it is continuous. (Problem set 11. 5 cis). 11

max $f(x, \alpha) \Rightarrow \alpha$ is charged according to α . : $S(\alpha)$ $\alpha \in C(\alpha)$

< The Envelope theorem>

The value function $V: \Omega \to IR$ for a maximization problem gives the maximization attainable value of the objective function for each value of the parameter

$$V(\alpha) = \max_{\alpha} \left\{ f(\alpha, \alpha) \mid \alpha \in C(\alpha) \right\} = f(\alpha^{*}, \alpha), \alpha^{*} \in S(\alpha).$$

Example: Maximum-value function as "upper envelope" of a family curve.

(Thin 13) (Concavity of the value function)

Consider the following problem and the associated value function $V(\alpha) = \max \left\{ f(x, \alpha) \mid g(x, \alpha) \ge 0 \right\}$

Suppose the objective function f is concave in (x, d) ((in x and d)) and that all constraint functions gic.), j=1,..., C, are quasi-concave. Then, $V(\cdot)$ is concave.

Thursy (Convexity of the Value Ametion)

Consider the following problem and the associated value function

 $V(\alpha) = \max_{x} \left\{ f(x, \alpha) \mid g(x) \ge 0 \right\}$ where $\alpha \in \Omega$ a convex set $\frac{1}{2} \left[\frac{1}{2} \left(\frac{1}{2} \right) \right] = 0$ where $\alpha \in \Omega$ a convex set $\frac{1}{2} \left[\frac{1}{2} \left(\frac{1}{2} \right) \right] = 0$.

If the objective function f is convex in the parameters of for any given X, then $V(\cdot)$ is convex.

-X What is the effect of a parameter change on the maximum?

(Thm 1) (Unconstraint Envelope theorem)

Let f(x, d) be a C'-function. (twice differentiable & continuous)

and let 100 be a solution to the maximization publish of f Ar 20.

Then $V(\alpha) = max f(\alpha, \alpha) = f[\alpha(\alpha), \alpha]$ is differentiable at d°

and $D V(\alpha^{\circ}) = D_{\alpha} + (\alpha^{\circ}, \alpha^{\circ})$

direct effect of ol

Idea: $DV(\alpha^{\circ}) = D_{x} + (\alpha^{\circ}, \alpha^{\circ}) \cdot D \times (\alpha^{\circ}) + D_{\alpha} + (\alpha^{\circ}, \alpha^{\circ})$

indirect effect through change in X

FOC: Dxf(m,do). Dx(do) =0. So, DV(do) = Oxf(m,do)

Thm 16 < Envelope Theorem Dr Logrange >

Let $V(\alpha) = \max_{x} \{f(x, \alpha) \mid g(x, \alpha) = 0\}$ where f and g are C^{2} -functions. If χ^{0} is a solution of this problem for d^{0} .

(i.e., it satisfles sufficient second-order anditions for a strict local maximum)

Then V is differentiable at do and DV(x0) = DaL(1,x0)

= Dx f(x2,00) + 1 Dx g(x2,00)

proof) Differentiate the Lagrangian function:

 $\mathcal{L}(x^{\circ}, \alpha^{\circ}) = \mathcal{L}(x^{\circ}, \alpha^{\circ}) + \lambda^{T} g(x^{\circ}, \alpha^{\circ})$

implies that the first order condition is

(2) $D_{\times} \mathcal{L}(x, \alpha^{\circ}) = D_{\times} f(x, \alpha^{\circ}) + \lambda^{\top} D_{\times} g(x, \alpha^{\circ}) = 0$

(3) $D_{\lambda} \mathcal{L}(\alpha, \alpha^{\circ}) = g(\alpha, \alpha^{\circ}) = 0$

By assumption, the decision rule for problem (XG) is a well-defined and differentiable function.

Substituting X into the objective, we obtain the value function $V(\alpha) = f[x(\alpha), \alpha]$

Differentiating V(1) and using (2), we get

 $DV(\alpha^{\circ}) = D_{\alpha} f(\alpha^{\circ}, \alpha^{\circ}) + D_{\alpha} f(\alpha^{\circ}, \alpha^{\circ}) \cdot Dx(\alpha^{\circ})$ $= D_{\alpha} f(\alpha^{\circ}, \alpha^{\circ}) - \lambda^{T} Dx g(\alpha^{\circ}, \alpha^{\circ}) \cdot Dx(\alpha^{\circ})$

Substituting X(00) into (3) and differentiating with respect to d.

Dx &(w, x0) Dx (90) + Dx &(w, x0) =0 - Dx &(w, x0) Dx(00) = - Dx &(w, x0)

Using this expression, we can beduce to to (minus sign is rancolled with OLT)

DV(do) = Dx f(xo, do) + AT Dx g(xo, do) . 11