

MAM3 - MI1 # Mathématiques de l'ingénieur.
e 1 # 2023-24

Ch. 1 - Tribus, mesures

1. Tribus et applications mesurables

- déf. tribu, espace mesurable
- ex. tribus grossière et discrète
- déf. prop. : tribu engendrée
- ex. boréliens sur la droite (génération par $\{]-\infty,a[,\ a\in\mathbf{R}\})$ et la droite achevée
- déf. application mesurable
- prop. : mesurabilité de la composée d'applications mesurables
- ex. fonctions caractéristiques
- prop. : mesurabilité dans le cas d'une tribu engendrée sur le codomaine
- cor. : mesurabilité des applications continues, continues par morceaux (sur une partition mesurable)
- cor. : mesurabilité de f+g, $f\times g$, $\inf_n f_n$, $\sup_n f_n$, $\lim_n \inf f_n$, $\lim_n \sup f_n$

2. Mesures

- déf. mesure
- ex. Dirac, comptage, Lebesgue $(\mu_L([a,b]) := b-a)$
- prop. : monotonie, $\mu(A \cup B) + \mu(A \cap B) = \mu(A) + \mu(B)$, $\mu(B \setminus A) = \mu(B) \mu(A)$ si $A \subset B$ et $\mu(A) < \infty$, continuité intérieure et extérieure
- ex. $\mu_L(\mathbf{Q}) = 0$, $\mu_L(\mathbf{R} \setminus \mathbf{Q}) = \infty$, $\mu_L([a,b])$
- th. : complétion d'une tribu et prolongement de la mesure

Ch. 2 - Intégration et convergence

1. Cas des fonctions mesurables positives

- déf. fonction simple mesurable ou "étagée" (et forme canonique)
- déf. intégrale d'une fonction étagée positive
- déf. intégrale d'une fonction mesurable positive
- rem. : approximation des fonctions positives mesurables par des fonctions étagées

• prop. : si f est mesurable et positive, $\int_X f \mathrm{d}\mu = 0 \iff f = 0 \; \mu\text{-p.p.}$

2. Cas des fonctions intégrables

- déf. intégrabilité, et intégrale associée
- prop. : monotonie, positivité, linéarité, $|\int_X f \mathrm{d}\mu| \leq \int_X |f| \mathrm{d}\mu$

3. Résultats de convergence

- th. de convergence monotone
- th. de convergence dominée
- th. fondamental du calcul différentiel

4. Intégrales à paramètre

- th. de continuité
- th. de dérivabilité

Ch. 3 - Espaces L^p

- prop. : inégalités de Hölder et Minkowski pour 1
- déf. espaces $\mathcal{L}^p(X,\mathcal{B},\mu)$ et $L^p(X,\mathcal{B},\mu)$ pour $p \in [1,\infty]$
- prop. : inégalité de Hölder (bis)
- prop. : relations d'inclusion en mesure finie
- prop. : densité de $\mathscr{C}^0([a,b],\mathbf{R})$ dans $L^p([a,b])$ pour $p\in[1,\infty[$
- th. de Riesz-Fischer

Ch. 4 - Intégration produit

- déf. tribu produit
- déf. prop. : mesure produit (cas σ -fini)
- th. de Tonelli
- th. de Fubini
- complétion d'une mesure produit

Ch. 5 - Transformée de Fourier

1. Transformée de Fourier L^1

- th. déf. : transformée de Fourier $\hat{f}(\xi):=\int_{\mathbf{R}}f(x)e^{-2i\pi\xi x}\,\mathrm{d}x$ prop. : effet des translations et homothéties
- lemme de Riemann-Lebesgue $(\hat{f} \in \mathscr{C}_0(\mathbf{R}))$
- prop. : dérivation et transformée de Fourier
- th. déf. : transformée de Fourier inverse
- rem. : transformée de Fourier-Plancherel sur $L^2(\mathbf{R})$

2. Convolution

• th. déf. : convolution $L^1(\mathbf{R})$

• prop. : commutativité

• prop. : $\widehat{f*g} = \widehat{f}*\widehat{g}$ • prop. : convolution $L^p(\mathbf{R})*L^q(\mathbf{R})$ avec 1/p + 1/q = 1 + 1/r

3. Transformée de Laplace

• déf. : abscisse de sommabilité d'une fonction mesurable, $s_0 := \inf \{ \sigma \in \mathcal{S} \}$ $\mathbf{R} \mid e^{-\sigma t} f \in L^1(\mathbf{R}_+) \}$

• déf. : transformée de Laplace $\mathscr{L}f(s):=\int_0^\infty e^{-st}f(t)\ \mathrm{d}t,\ \mathrm{Re}(s)>s_0$

• rem. : lien avec transformée de Fourier

• prop. : dérivation et transformée de Laplace

• rem. : holomorphie de la transformée de Laplace (Morera)

• prop. : $\mathcal{L}(f * g) = \mathcal{L}f \cdot \mathcal{L}g$

• rem. : injectivité et transformée inverse