NOTES ON ANALYSIS

RALPH HOWARD

Contents

l.	Metric Spaces.	1
1.1.	Definition of limit in a metric space and some special limits in	
	$\mathbb{R}.$	8
1.1.	1. Limits and rational functions	11

1. Metric Spaces.

Definition 1. A *metric space* is a nonempty set E with a function $d: E \times E \to [0, \infty)$ such that for all $p, q, r \in E$ the following hold

- (a) $d(p,q) \ge 0$,
- (b) d(p,q) = 0 if and only if p = q,
- (c) d(p,q) = d(q,p), and

(d)
$$d(p,r) \le d(p,q) + d(q,r)$$
.

The function d is called the **distance function** on E. The condition d(p,q) = d(q,p) is that the distance between points is **symmetric**. The inequality $d(p,r) \le d(p,q) + d(q,r)$ is the **triangle inequality**.

The most basic example if a metric space is when $E \subseteq \mathbb{R}$ is a nonempty subset of the real numbers, \mathbb{R} , and the distance is defined by

$$d(p,q) = |p - q|.$$

Problem 1. Show that this makes E into a metric space.

We have seen that if $p=(p_1,\ldots,p_n)$ and $q=(q_1,\ldots,q_n)$ are points in \mathbb{R}^n and we define the **length** or **norm** of p to be

$$||p|| = \sqrt{p_1^2 + \dots + p_n^2}$$

then the inequality

$$||p+q|| \le ||p|| + ||q||$$

holds.

Date: October 6, 2018.

Proposition 2. Let E be a nonempty subset of \mathbb{R}^n and for $p, q \in E$ let

$$d(p,q) = ||p - q||.$$

Then E with the distance function d is a metric space.

Problem 2. Prove this.

Here are some inequalities that we will be using later.

Proposition 3 (Reverse triangle inequality). Let E be a metric space with distance function d and let $x, y, z \in E$. Then

$$|d(x,y) - d(x,z)| \le d(y,z).$$

Problem 3. Prove this. Then draw a picture in the case of \mathbb{R}^2 with its standard distance function showing why this inequality is reasonable. \square

Proposition 4. Let E be a metric space with distance function d and $x_1, \ldots, x_n \in E$. Then

$$d(x_1, x_n) \le d(x_1, x_2) + d(x_2, x_3) + \dots + d(x_{n-1}, x_n).$$

Problem 4. Prove this. Then draw a picture in the plane showing why this is reasonable. *Hint:* Induction. \Box

Definition 5. Let E be a metric space with distance function d. Let $a \in E$, and r > 0.

(a) The **open ball** of radius r centered at x is

$$B(a,r) := \{x : d(a,x) < r\}.$$

(b) The $closed\ ball$ or radius r centered at a is

$$\overline{B}(a,r) := \{x : d(a,x) \le r\}.$$

In the real numbers with their usual metric d(x, y) = |x - y| the open and closed balls about a are intervals with center a:

In the plane, \mathbb{R}^2 , with its usual metric $d(\mathbf{p}, \mathbf{q}) = ||\mathbf{p} - \mathbf{q}||$, the open and closed balls about \mathbf{a} are disks centered at \mathbf{a} .

$$B(\mathbf{a},r)=$$
 $\overline{B}(\mathbf{a},r)=$

FIGURE 1. A set is open if and only if each of its points is the center of an open ball contained in the set.

Definition 6. Let E be a metric space with distance function d. Then $S \subseteq E$ is an **open set** if and only if for all $x \in S$ there is an r > 0 such that $B(x,r) \subseteq S$.

This can be restated by saying that S is open if and only if each of its points is the center of an open ball contained in S. See Figure 1.

Proposition 7. In any metric space E, the sets E and \varnothing are open. \square

Proof. Let $p \in E$, then for any r > 0 we have $B(p, r) = \{x \in E : d(x, p) < r\} \subseteq E$. Thus E contains not only some open ball about p, it contains every open ball about p. Therefore E is open.

That \varnothing is open is a case of a vicious implication. To see this consider the statement

$$p \in \emptyset$$
 and $r > 0 \implies B(p,r) \subseteq \emptyset$.

If this statement is true, then \varnothing satisfies the definition of being open. But this is a true statement as an implication $P \implies Q$ is true whenever the hypotheses, P, is false. And the hypothesis " $p \in \varnothing$ and r > 0" is false as " $p \in \varnothing$ " is false.

Proposition 8. Let E be a metric space. Then for any $a \in E$ and r > 0 the open ball B(x,r) is an open set.

Problem 5. Prove this. *Hint:* Let $x \in B(a,r)$. Then d(a,x) < r. Set $\rho := r - d(a,x) > 0$ and show $B(x,\rho) \subseteq B(a,r)$

Proposition 9. In the real numbers, \mathbb{R} , with their standard metric, the open intervals (a,b) are open.

Problem 6. Prove this. \Box

Proposition 10. Let E be a metric space. Then for any $a \in E$ and r > 0 the compliment, $C(\overline{B}(a,r))$, of the closed ball $\overline{B}(a,r)$ is open.

Proposition 11. Prove this. Hint: If $x \in C(B(a,r))$, then d(x,a) > r. Let $\rho := d(a,x) - r > 0$ and show $B(a,\rho) \subseteq C(B(a,r))$.

Proposition 12. If U and V are open subsets of E, then so are $U \cup V$ and $U \cap V$.

Proof. Let $x \in U \cup V$. Then $x \in U$ or $x \in V$. By symmetry we can assume that $x \in U$. Then, as U is open, there is an r > 0 such $B(x,r) \subseteq U$. But then $B(x,r) \subseteq U \subseteq U \cup V$. As x was any point of $U \cup V$ this shows that $U \cup V$ is open.

Let $x \in U \cap V$. Then $x \in U$ and $x \in V$. As $x \in U$ there is an $r_1 > 0$ such that $B(x, r_1) \subseteq U$. Likewise there is an $r_2 > 0$ such that $B(x, r_2) \subseteq V$. Let $r = \min\{r_1, r_2\}$. Then

$$B(x,r) \subseteq B(x,r_1) \subseteq U$$
 and $B(x,r) \subseteq B(x,r_2) \subseteq V$

and therefore $B(x,r) \subseteq U \cap V$. As x was any point of $U \cap V$ this shows that $U \cap V$ is open.

Proposition 13. Let E be a metric space.

- (a) Let $\{U_i : i \in I\}$ be a (possibly infinite) collection of open subsets of E. Then the union $\bigcup_{i \in I} U_i$ is open.
- (b) Let U_1, \ldots, U_n be a finite collection of open subsets of E. Then the intersection $U_1 \cap U_2 \cap \cdots \cap U_n$ is open.

Problem 7.	Prove this.	
I I Oblem 1.	1 TOVE UNID.	

Problem 8. In \mathbb{R} let U_n be the open set $U_n := (-1/n, 1/n)$. Show that the intersection $\bigcap_{n=1}^{\infty} U_n$ is not open.

Definition 14. Let E be a metric space. Then a subset S of E is **closed** if and only if its compliment, C(S) is open.

Because the compliment of the compliment is the original set this implies that a set, S, is open if and only if its compliment C(S) is closed. Likewise a set, S, is closed if and only if its compliment C(S) is open.

Proposition 15. In any metric space E the sets \varnothing and E are both closed.

Proof. We have seen the sets E and \varnothing are open, thus their compliments $\mathcal{C}(E) = \varnothing$ and $\mathcal{C}(\varnothing) = E$ are closed.

Proposition 16. If E is a metric space, $a \in E$, and r > 0, then the closed ball $\overline{B}(a,r)$ is closed.

Problem 9. Show that in \mathbb{R} with its usual metric the closed intervals are closed.

Proposition 17. If E is a metric space, then every finite subset of E is closed.

Problem 10. Prove this.

Problem 11. In the real numbers show that the half open interval [0,1) is neither open or closed.

Problem 12. The integers, \mathbb{Z} , are a metric space with the metric d(m,n) = |m-n|. Note that for this metric space if $m \neq n$ that d(m,n) is a nonzero positive integer and thus $d(m,n) \geq 1$. Assuming these facts prove the following

- (a) Let r = 1/2, then for each $n \in \mathbb{Z}$ the open ball B(n, r) is the one element set $B(n, r) = \{n\}$ and therefore $\{n\}$ is open.
- (b) Every subset of \mathbb{Z} is open. Hint: Let $S \subseteq \mathbb{Z}$, then $S = \bigcup_{n \in S} \{n\}$ and use Proposition 13 to conclude that S is open.
- (c) Every subset of \mathbb{Z} is closed.

Proposition 18. Let E be a metric space.

- (a) Let $\{F_i : i \in I\}$ be a (possibly infinite) collection of closed subsets of E. Then the intersection $\bigcap_{i \in I} F_i$ is closed.
- (b) Let F_1, \ldots, F_n be a finite collection of closed subsets of E, then the union $U_1 \cup \cdots \cup U_n$ is closed.

Problem 13. Prove this. *Hint:* The correct way to do this is to deduce it directly from Proposition 13. For example to show that the union of two closed sets is closed, let F_1 and F_2 be closed. Then the compliments $C(F_1)$ and $C(F_1)$ are open and the intersection of two open sets is open. Therefore $C(F_1) \cap C(F_2)$ is open and thus the compliment of this set is closed. That is

$$F_1 \cup F_2 = \mathcal{C}(\mathcal{C}(F_1) \cap \mathcal{C}(F_2))$$

is closed. \Box

Let E be a metric space. Then a function $f: E \to \mathbb{R}$ is **Lipschitz** if and only if there is a constant $M \geq 0$ such that

$$|f(p) - f(q)| \le Md(p, q)$$
 for all $p, q \in E$.

Proposition 19. Let E be a metric space and $f: E \to \mathbb{R}$ a Lipschitz function. Then for all $c \in \mathbb{R}$ the sets

$$f^{-1}[(c,\infty)] = \{ p \in E : f(p) < c \}$$
$$f^{-1}[(-\infty,c)] = \{ p \in E : f(p) > c \}$$

are open and the sets

$$f^{-1}[[c,\infty)] = \{ p \in E : f(p) \ge c \}$$
$$f^{-1}[(-\infty,c]] = \{ p \in E : f(p) \le c \}$$

are closed.

Half of the proof. Assume that f satisfies $|f(p) - f(q)| \le Md(p,q)$ for $p, q \in E$. We will show that $f^{-1}[(-\infty,c)]$ is open. We need to show that for any

 $q \in f^{-1}[(-\infty,c)]$ the set $f^{-1}[(-\infty,c)]$ contains an open ball about q. As $q \in f^{-1}[(-\infty,c)]$ we have f(q) < c. Therefore

$$r = \frac{c - f(q)}{M}$$

is positive. Let $pe \in B(q,r)$. Then

$$f(p) = f(q) + (f(p) - f(q))$$

$$\leq f(q) + |f(p) - f(q)| \qquad \text{(as } (f(p) - f(q)) \leq |f(p) - f(q)|)$$

$$\leq f(q) + Md(p, q) \qquad \text{(as } f \text{ is Lipschitz})$$

$$< f(q) + Mr \qquad \text{(as } p \in B(q, r), \text{ so } d(p, q) < r)$$

$$= f(q) + M\left(\frac{c - f(q)}{M}\right) \qquad \text{(from our definition of } r)$$

$$= c.$$

Therefore if $p \in B(q, r)$ we have f(p) < c and thus $B(q, r) \subseteq f^{-1}[(-\infty, c)]$. Whence $f^{-1}[(-\infty, c)]$ contains an open ball about any of its points q and therefore $f^{-1}[(-\infty, c)]$ is open.

We now show $f^{-1}[[c,\infty]] = \{p \in E : f(p) \ge c\}$ is closed. We know $f^{-1}[(-\infty,c)] = \{p \in E : f(p) < c\}$ is open. Its compliment is

$$\mathcal{C}\left(f^{-1}\big[(-\infty,c)]\right) = f^{-1}\big[[c,\infty)\big].$$

Therefore $f^{-1}[[c,\infty)]$ is the compliment of an open set, which means that $f^{-1}[[c,\infty)]$ is closed.

Problem 14. Prove the other half of Proposition 19, that is show $f^{-1}[(c,\infty)]$ is open and $f^{-1}[(-\infty,c]]$ is closed.

Proposition 20. Let E be a metric space and $f: E \to \mathbb{R}$ a Lipschitz function. Then for any $c \in \mathbb{R}$ the set

$$f^{-1}[c] = \{ p \in E : f(p) = c \}$$

is a closed set.

Problem 15. Prove this. *Hint*: Write $f^{-1}[c]$ as the intersection of two closed sets.

We can now give some more examples of open and closed sets in the plane, \mathbb{R}^2 where we are using the distance function $d(\mathbf{p}, \mathbf{q}) = ||\mathbf{p} - \mathbf{q}||$. Let $\mathbf{a} = (a_1, a_2)$ be a vector in \mathbb{R}^2 define $f : \mathbb{R}^2 \to \mathbb{R}$ by

$$f(x_1, x_2) = a_1 x_1 + a_2 x_2 + b$$

where b is a real number. If $\mathbf{x} = (x_1, x_2)$ this can be written in vector form as

$$f(\mathbf{x}) = \mathbf{a} \cdot \mathbf{x} + b.$$

If $\mathbf{p}, \mathbf{q} \in \mathbb{R}^2$ then

$$|f(\mathbf{p}) - f(\mathbf{q})| = |\mathbf{a} \cdot \mathbf{p} + b - (\mathbf{a} \cdot \mathbf{q} + b)|$$

$$= |\mathbf{a} \cdot (\mathbf{p} - \mathbf{q})|$$

$$\leq ||\mathbf{a}|| ||\mathbf{p} - \mathbf{q}||$$

$$= Md(\mathbf{p}, \mathbf{q})$$
(Cauchy-Schwartz)

where $M = \|\mathbf{a}\|$. Thus f is a Lipschitz function.

Consider the case where $\mathbf{a} = (1,0)$ and b = 0. Then for any $c \in \mathbb{R}$. In this case $f(x_1, x_2) = x_1$, or in slightly different notation f(x, y) = x. Therefore Proposition 19 implies the sets

$$\{(x,y): x > c\}, \quad \{(x,y): x < c\}$$

are open and that

$$\{(x,y): x \ge c\}, \{(x,y): x \le c\}$$

are closed.

Problem 16. Let $(a, b) \in \mathbb{R}^2$ be a nonzero vector and $c \in \mathbb{R}$.

(a) Show that the line

$$\{(x,y) \in \mathbb{R}^2 : ax + by = c\}$$

is closed.

(b) Show that the half plane

$$\{(x,y) \in \mathbb{R}^2 : ax + by > c\}$$

is open (call such a half plane an open half plane).

(c) Show that the half plane

$$\{(x,y) \in \mathbb{R}^2 : ax + by \ge c\}$$

is closed (call such a half plane a *closed half plane*).

(d) Show that the triangle

$$T = \{(x, y) \in \mathbb{R}^2 : x, y > 0, x + y < 0\}$$

is an open set. Hint : Write this as the intersection of three open half planes.

(e) Show that the triangle

$$S = \{(x, y) : x, y \ge 0, x + y \le 0\}$$

is a closed subset of the plane. *Hint:* Write this as the interestion of three closed half planes. \Box

1.1. Definition of limit in a metric space and some special limits in \mathbb{R} .

Definition 21. Let E be a metric space and $\langle p_n \rangle_{n=1}^{\infty} = \langle p_1, p_2, p_3, \ldots \rangle$ a sequence in E. Then

$$\lim_{n\to\infty} p_n = p$$

if and only if for all $\varepsilon > 0$ there is a N > 0 such that

$$n > N \implies d(p_n, p) < \varepsilon.$$

In the case we say that the sequence $\langle p_n \rangle_{n=1}^{\infty}$ converges to p.

Problem 17. Let $\lim_{n\to\infty} p_n = p$ in the metric space E. Let $a_n = p_{2n}$. Show that $\lim_{n\to\infty} a_n = p$ also holds.

Here are some examples of working with limits in \mathbb{R} .

Example 22. If $\langle x_n \rangle_{n=1}^{\infty}$ is a sequence in \mathbb{R} with $\lim_{n \to \infty} x_n = x$, then $\lim_{n \to \infty} 5x_n = 5x$.

Proof. Let $\varepsilon > 0$. Note that

$$|5x_n - 5x| = 5|x_n - x|.$$

From the definition of $\lim_{n\to\infty} x_n = x$ there is a N > 0 such that

$$n > N$$
 implies $|x_n - x| < \frac{\varepsilon}{5}$.

But then (multiply by 5)

$$n > N$$
 implies $|5x_n - 5x| < \varepsilon$.

But this is just the definition of $\lim_{n\to\infty} 5x_n = 5x$.

Proposition 23. Let $\langle x_n \rangle_{n=1}^{\infty}$ and $\langle y_n \rangle_{n=1}^{\infty}$ be sequences in \mathbb{R} with

$$\lim_{n \to \infty} x_n = x \quad and \quad \lim_{n \to \infty} y_n = y.$$

Then

$$\lim_{n \to \infty} (x_n + y_n) = x + y.$$

Proof. Let $\varepsilon > 0$. Then from the definition of $\lim_{n\to\infty} x_n = x$, there is a $N_1 > 0$ such that

$$n > N_1$$
 implies $|x - x_n| < \frac{\varepsilon}{2}$.

Likewise $\lim_{n\to\infty} y_n = y$ implies there is a $N_2 > 0$ such that

$$n > N_2$$
 implies $|y - y_n| < \frac{\varepsilon}{2}$.

Set

$$N = \max\{N_1, N_2\}.$$

If n > N, then $n > N_1$ and $n > N_2$ and thus

$$|(x+y)-(x_n+y_n)| \le |x-x_n|+|y-y_n| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

That is

$$n > N$$
 implies $|(x+y) - (x_n + y_n)| < \varepsilon$

which is exactly the definition of $\lim_{n\to\infty}(x_n+y_n)=x+y$.

Proposition 24. Let $\langle x_n \rangle_{n=1}^{\infty}$ and $\langle y_n \rangle_{n=1}^{\infty}$ be sequences in \mathbb{R} with

$$\lim_{n \to \infty} x_n = x \quad and \quad \lim_{n \to \infty} y_n = y.$$

Then for any real numbers a and b

$$\lim_{n \to \infty} (ax_n + by_n) = ax + by.$$

Problem 18. Prove this.

Proposition 25. If $\langle x_n \rangle$ be a convergent sequence in \mathbb{R} . Then $\langle x_n \rangle$ is bounded. That is a constant M such that $|x_n| \leq M$ for all M.

Problem 19. Prove this. *Hint*: Let $\varepsilon = 1$. Then there is a N such that

$$n > N$$
 implies $|x - x_n| < 1$.

Therefore is n > N we have

$$|x_n| = |x + (x_n - x)| \le |x| + |x - x_n| < |x| + 1.$$

This bounds all the terms with n > N. Let

$$M = \max \{|x| + 1, |x_1|, |x_2|, \dots, |x_N|\}.$$

Then $|x_n| \leq M$ for all n, which shows that the sequence is bounded. \square

Theorem 26. Let

$$\lim_{n \to \infty} x_n = x \quad and \quad \lim_{n \to \infty} y_n = y$$

in \mathbb{R} . Then

$$\lim_{n\to\infty} x_n y_n = xy.$$

Problem 20. Prove this. *Hint:* Start with

Scratch work that the no one else needs to see: Our goal is to make $|x_ny_n - xy|$ small. We compute

$$|x_n y_n - xy| = |x_n y_n - xy_n + xy_n - xy|$$
 (Adding and subtracting trick.)

$$\leq |x_n y_n - xy_n| + |xy_n - xy|$$

$$= |x_n - x||y_n| + |x||y_n - y|$$

The factors $|x_n - x|$ and $|y_n - y|$ are both good in that we can make them small. The factor |x| is independent of n and thus is not a problem. The sequence $\langle y_n \rangle_{n=1}^{\infty}$ is convergent and thus bounded, so we bound the factor $|y_n|$. We now return to our regularly scheduled proof.

Let $\varepsilon > 0$. The sequence $\langle y_n \rangle_{n=1}^{\infty}$ is convergent thus it is bounded. Therefore there is an M so that

$$|y_n| \leq M$$
 for all n .

As $\lim_{n\to\infty} x_n = x$ there There is a $N_2 > 0$ such that

$$n > N_2$$
 implies $|x_n - x| < \frac{\varepsilon}{2(M+1)}$

and as $\lim_{n\to\infty} y_n = y$ there is a $N_2 > 0$ such that

$$n > N_2$$
 implies $|y - y_n| < \frac{\varepsilon}{2(|x|+1)}$.

Now let $N = \max\{N_1, N_2\}$ and use the calculation from our scratch work to show

$$n > N$$
 implies $|x_n y_n - xy| < \varepsilon$

which completes the proof.

Corollary 27. If $\langle x_n \rangle_{n=1}^{\infty}$ is a sequence in \mathbb{R} with $\lim_{n\to\infty} x_n = x$, then

$$\lim_{n \to \infty} x_n^2 = x^2.$$

Proof. Use $\langle x_n \rangle = \langle y_n \rangle$ in Theorem 26.

Proposition 28. Let k be a positive integer and $\langle p_n \rangle$ a sequence in \mathbb{R} with $\lim_{n\to\infty} p_n = p$. Then

$$\lim_{n\to\infty} p_n^k = p^k$$

Problem 21. Prove this. *Hint:* What is probably the easiest why is to use induction. \Box

Problem 22. Let $f: \mathbb{R} \to \mathbb{R}$ be the quadratic polynomial $f(x) = ax^2 + bx + c$ where a, b, c are constants. Let $\langle p_n \rangle$ be a convergent sequence, $\lim_{n \to \infty} p_n = p$. Then

$$\lim_{n \to \infty} f(p_n) = f(p).$$

Lemma 29. Let $a \in \mathbb{R}$ with $a \neq 0$. Let $|x| > \frac{|a|}{2}$. Then

$$\frac{|a|}{2} < |x| < \frac{3|a|}{2},$$
$$\frac{1}{|x|} < \frac{2}{|a|},$$

and

$$\left|\frac{1}{x} - \frac{1}{a}\right| \leq \frac{2|x-a|}{|a|^2}.$$

Problem 23. Prove this.

Proposition 30. Let $\langle x_n \rangle$ be a sequence with $\lim_{n \to \infty} = a$ and $a \neq 0$. Then

$$\lim_{n \to \infty} \frac{1}{x_n} = \frac{1}{a}.$$

Problem 24. Prove this. *Hint:* First note there is a N_1 such that

$$n > N_1$$
 implies $|x_n - a| < \frac{|a|}{2}$.

Now let $\varepsilon > 0$ There is also a N_2 such that

$$n > N_2$$
 implies $|x_n - a| < \frac{|a|^2}{2} \varepsilon$.

Now let $N = \max\{N_1, N_2\}$ and use the last lemma to show that

$$n > N$$
 implies $\left| \frac{1}{x_n} - \frac{1}{a} \right| < \varepsilon$.

Proposition 31. Let E be a metric space and $f: E \to \mathbb{R}$ be a Lipschitz map. (That is there is a constant M such that for all $p, q \in E$ the inequality $|f(p) - f(q)| \le Md(p,q)$ holds.) Let $\langle p_n \rangle$ be a sequence in E with $\lim_{n\to\infty} p_n = p$ where $p \in E$. Then

$$\lim_{n \to \infty} f(p_n) = f(p).$$

Problem 25. Prove this.

1.1.1. Limits and rational functions. We show that limits play will with polynomials and rational functions. Recall a polynomial, f(x), is a function of the form

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

where n is a nonnegative integer and a_0, a_1, \ldots, a_n are real numbers. If $a_n \neq 0$, then the **degree** of f(x) is deg f(x) = n. The following is trivial, but useful in doing induction proofs involving polynomials.

Proposition 32. Let f(x) be a polynomial of degree $n \ge 1$. There there is a polynomial g(x) of degree (n-1) and a constant c such that

$$f(x) = xq(x) + c.$$

Proof. Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ Then factor out x from all the non-constant terms:

$$f(x) = x(a_n x^{n-1} + a_{n-1} x^{n-2} + \dots + a_2 x + a_1) + a_0$$

= $xg(x) + c$

where $g(x) = a_n x^{n-1} + a_{n-1} x^{n-2} + \dots + a_2 x + a_1$ and $c = a_0$.

Theorem 33. Let $\langle p_k \rangle_{k=1}^{\infty}$ be a convergent sequence in \mathbb{R} , say

$$\lim_{k \to \infty} p_k = p.$$

Then for any polynomial f(x)

$$\lim_{k \to \infty} f(p_k) = f(p).$$

Problem 26. Prove this. *Hint:* Use induction on deg f(x). The base case is deg f(x) = 0, that is $f(x) = a_0$ is a constant. This case $f(p_k) = a_0$ for all n and thus $\langle f(p_k) \rangle_{k=1}^{\infty}$ is a sequence of constants and so the result it true in this case. The case of deg f(x) = 1 is also easy. In this case $f(x) = a_1x + a_0$. And from some some of our earlier results we have

$$\lim_{k \to \infty} f(p_k) = \lim_{k \to \infty} (a_1 p_k + a_0)$$
$$= a_1 p + a_0$$
$$= f(p).$$

Now do the induction step. Assume we know the result is true for polynomials of degree (n-1) and let f(x) be a polynomial of degree n. By Proposition 32 write

$$f(x) = xg(x) + c$$

where g(x) is a polynomial of degree (n-1) and c is a constant. Then by the induction hypothesis we have

$$\lim_{k \to \infty} g(p_k) = g(p).$$

Now use our earlier results about limits of products and sums to finish the induction step and complete the proof. \Box

Lemma 34. Let g(x) be a polynomial and $p \in \mathbb{R}$ a point with $g(p) \neq 0$. Let $\langle p_k \rangle_{k=1}^{\infty}$ a sequence with

$$\lim_{k \to \infty} p_k = p.$$

Then $g(p_k) \neq 0$ for all but at most finitely many k's, and this the sequence

$$\left\langle \frac{1}{g(p_k)} \right\rangle_{k=1}^{\infty}$$

is defined for all but finitely many values of k and

$$\lim_{k \to \infty} \frac{1}{g(p_k)} = \frac{1}{g(p)}.$$

Problem 27. Prove this. *Hint:* First show that $g(p_k) \neq 0$ for all but finitely may k. One way to do this is to let $\varepsilon = |g(p)|/2$ in the definition of a limit. We know from Theorem 33 that

$$\lim_{k \to \infty} g(p_k) = g(p).$$

Let $\varepsilon = |g(p)|/2$ in the definition of $\lim_{k\to\infty} g(p_k) = g(p)$, to find a N>0 such that

$$n > N$$
 implies $|g(p_k) - g(p)| < |g(p)|/2$.

Use this to show

$$n > N$$
 implies $|g(k)| > |g(p)|/2$

and therefore

$$n > N$$
 implies $g(p_k) \neq 0$.

You should now be able to use Proposition 30 to finish the proof.

A rational function is a function

$$h(x) = \frac{f(x)}{g(x)}$$

where f(x) and g(x) are polynomials, g(x) is not identically zero and the domain of h(x) is the set of points where $g(x) \neq 0$.

Theorem 35. Let $\langle p_k \rangle_{k=1}^{\infty}$ be a convergent sequence in \mathbb{R} ,

$$\lim_{k \to \infty} p_k = p$$

Let

$$h(x) = \frac{f(x)}{g(x)}$$

be a rational function with $g(p) \neq 0$. Then

$$\lim_{k \to \infty} h(p_k) = h(p).$$

Problem 28. Prove this by putting together Lemma 34 and Proposition 30.

We can now do some limits you recall from calculus. For example let us compute

$$\lim_{n \to \infty} \frac{3n^2 - 3n + 7}{4n^2 + 6}.$$

Divide the numerator and denominator of the fraction in the limit to get

$$\frac{3n^2 - 3n + 7}{4n^2 + 6} = \frac{3 - 3(1/n) + 7(1/n)^2}{4 + 6/(1/n)^2} = \frac{f(1/n)}{g(1/n)}$$

where f(x) and g(x) are the polynomials

$$f(x) = 3 - 3x + 7x^2$$
 $g(x) = 4 + 6x^2$.

And have seen that

$$\lim_{n \to \infty} \frac{1}{n} = 0.$$

Therefore Theorem 35 gives

$$\lim_{n\to\infty}\frac{3n^2-3n+7}{4n^2+6}=\lim_{n\to\infty}\frac{f(1/n)}{g(1/n)}=\frac{f(0)}{g(0)}=\frac{3}{4}.$$

Problem 29. Find the following limits and give a justification (which can just be quoting the right proposition or theorem) for your answer.

(a)
$$\lim_{n \to \infty} \frac{4n^3 + 5n_6}{7n^3 - 8n + 7}$$

(b)
$$\lim_{n\to\infty} \frac{-3n^2+1}{7n^5-19}$$

Problem 30. Let 0 < a < 1. Give a ε , N proof that

$$\lim_{n\to\infty}a^k=0.$$

Hint: Let $\varepsilon > 0$. We have proven that for $a \in (0,1)$ there is a natural number N with $a^N < \varepsilon$.

Problem 31. Let a > 0 and $x \ge a/4$. Show

$$|\sqrt{x} - \sqrt{a}| \le \frac{2|x - a|}{3\sqrt{a}}.$$

Proposition 36. If $\langle a_n \rangle_{n=1}^{\infty}$ is a convergent sequence in \mathbb{R} , say

$$\lim_{n \to \infty} a_n = a$$

with a > 0. Then

$$\lim_{n \to \infty} \sqrt{a_n} = \sqrt{a}.$$

Problem 32. Give a N, ε proof of this.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SOUTH CAROLINA, COLUMBIA, S.C. 29208, USA E-mail address: howard@math.sc.edu URL: www.math.sc.edu/~howard