- 1. Составить уравнение плоскости, проходящей через точки $M_1(2,-1,3)$ и $M_2(3,1,2)$ параллельно вектору $\mathbf{a}=(3,-1,3)$.
- 2. В треугольнике ABC дана вершина A(2,1,5) и середин сторон AB и AC: $M_1(0,2,3)$ и $M_2(3,0,1)$. Составить уравнения всех его сторон.
- 3. Стороны треугольника АВС заданы уравнениями:

$$AB: x + 21y - 22 = 0$$
, $BC: 5x - 12y + 7 = 0$, $CA: 4x - 33y + 146 = 0$.

Вычислить расстояние от центра тяжести этого треугольника до стороны BC.

Вариант 2

1. Выяснить, пересекаются ли три плоскости вместе в одной точке, и, если да, то найти эту точку:

$$\alpha_1$$
: $2x - 3y + 3z + 11 = 0$, α_2 : $x - 5y + 2z + 9 = 0$, α_3 : $x + 2y + z + 2 = 0$.

2. Выясните, перпендикулярны ли прямая ℓ и плоскость α :

$$\ell \colon \begin{cases} x + 3y + z - 2 = 0, \\ 2x + 2y - z + 5 = 0, \end{cases} \quad \alpha \colon 2x + 2y - z + 1 = 0.$$

3. Даны вершины треугольника на плоскости $M_1(2,1)$, $M_2(-1,-1)$ и $M_3(3,2)$. Составить уравнения его высот.

Вариант 3

- 1. Составить уравнение плоскости, проходящей через точки $M_1(2,-1,3)$ и $M_2(3,1,2)$ параллельно вектору $\mathbf{a}=(3,-1,3)$.
- 2. В треугольнике ABC дана вершина A(2,1,5) и середин сторон AB и AC: $M_1(0,2,3)$ и $M_2(3,0,1)$. Составить уравнения всех его сторон.
- 3. Стороны треугольника АВС заданы уравнениями:

$$AB: x + 21y - 22 = 0$$
, $BC: 5x - 12y + 7 = 0$, $CA: 4x - 33y + 146 = 0$.

Вычислить расстояние от центра тяжести этого треугольника до стороны BC.

Вариант 4

1. Выяснить, пересекаются ли три плоскости вместе в одной точке, и, если да, то найти эту точку:

$$\alpha_1: 2x - 3y + 3z + 11 = 0$$
, $\alpha_2: x - 5y + 2z + 9 = 0$, $\alpha_3: x + 2y + z + 2 = 0$.

2. Выясните, перпендикулярны ли прямая ℓ и плоскость α :

$$\ell \colon \begin{cases} x + 3y + z - 2 = 0, \\ 2x + 2y - z + 5 = 0, \end{cases} \quad \alpha \colon 2x + 2y - z + 1 = 0.$$

- 1. Составить уравнение плоскости, проходящей через точки $M_1(2,-1,3)$ и $M_2(3,1,2)$ параллельно вектору $\mathbf{a}=(3,-1,3)$.
- 2. В треугольнике ABC дана вершина A(2,1,5) и середин сторон AB и AC: $M_1(0,2,3)$ и $M_2(3,0,1)$. Составить уравнения всех его сторон.
- 3. Стороны треугольника АВС заданы уравнениями:

$$AB: x + 21y - 22 = 0$$
, $BC: 5x - 12y + 7 = 0$, $CA: 4x - 33y + 146 = 0$.

Вычислить расстояние от центра тяжести этого треугольника до стороны BC.

Вариант 6

1. Выяснить, пересекаются ли три плоскости вместе в одной точке, и, если да, то найти эту точку:

$$\alpha_1$$
: $2x - 3y + 3z + 11 = 0$, α_2 : $x - 5y + 2z + 9 = 0$, α_3 : $x + 2y + z + 2 = 0$.

2. Выясните, перпендикулярны ли прямая ℓ и плоскость α :

$$\ell \colon \begin{cases} x + 3y + z - 2 = 0, \\ 2x + 2y - z + 5 = 0, \end{cases} \quad \alpha \colon 2x + 2y - z + 1 = 0.$$

3. Даны вершины треугольника на плоскости $M_1(2,1)$, $M_2(-1,-1)$ и $M_3(3,2)$. Составить уравнения его высот.

Вариант 7

- 1. Составить уравнение плоскости, проходящей через точки $M_1(2,-1,3)$ и $M_2(3,1,2)$ параллельно вектору $\mathbf{a}=(3,-1,3)$.
- 2. В треугольнике ABC дана вершина A(2,1,5) и середин сторон AB и AC: $M_1(0,2,3)$ и $M_2(3,0,1)$. Составить уравнения всех его сторон.
- 3. Стороны треугольника АВС заданы уравнениями:

$$AB: x + 21y - 22 = 0$$
, $BC: 5x - 12y + 7 = 0$, $CA: 4x - 33y + 146 = 0$.

Вычислить расстояние от центра тяжести этого треугольника до стороны BC.

Вариант 8

1. Выяснить, пересекаются ли три плоскости вместе в одной точке, и, если да, то найти эту точку:

$$\alpha_1: 2x - 3y + 3z + 11 = 0$$
, $\alpha_2: x - 5y + 2z + 9 = 0$, $\alpha_3: x + 2y + z + 2 = 0$.

2. Выясните, перпендикулярны ли прямая ℓ и плоскость α :

$$\ell \colon \begin{cases} x + 3y + z - 2 = 0, \\ 2x + 2y - z + 5 = 0, \end{cases} \quad \alpha \colon 2x + 2y - z + 1 = 0.$$

- 1. Составить уравнение плоскости, проходящей через точки $M_1(2,-1,3)$ и $M_2(3,1,2)$ параллельно вектору $\mathbf{a}=(3,-1,3)$.
- 2. В треугольнике ABC дана вершина A(2,1,5) и середин сторон AB и AC: $M_1(0,2,3)$ и $M_2(3,0,1)$. Составить уравнения всех его сторон.
- 3. Стороны треугольника АВС заданы уравнениями:

$$AB: x + 21y - 22 = 0$$
, $BC: 5x - 12y + 7 = 0$, $CA: 4x - 33y + 146 = 0$.

Вычислить расстояние от центра тяжести этого треугольника до стороны BC.

Вариант 10

1. Выяснить, пересекаются ли три плоскости вместе в одной точке, и, если да, то найти эту точку:

$$\alpha_1$$
: $2x - 3y + 3z + 11 = 0$, α_2 : $x - 5y + 2z + 9 = 0$, α_3 : $x + 2y + z + 2 = 0$.

2. Выясните, перпендикулярны ли прямая ℓ и плоскость α :

$$\ell \colon \begin{cases} x + 3y + z - 2 = 0, \\ 2x + 2y - z + 5 = 0, \end{cases} \quad \alpha \colon 2x + 2y - z + 1 = 0.$$

3. Даны вершины треугольника на плоскости $M_1(2,1)$, $M_2(-1,-1)$ и $M_3(3,2)$. Составить уравнения его высот.

Вариант 11

- 1. Составить уравнение плоскости, проходящей через точки $M_1(2,-1,3)$ и $M_2(3,1,2)$ параллельно вектору $\mathbf{a}=(3,-1,3)$.
- 2. В треугольнике ABC дана вершина A(2,1,5) и середин сторон AB и AC: $M_1(0,2,3)$ и $M_2(3,0,1)$. Составить уравнения всех его сторон.
- 3. Стороны треугольника АВС заданы уравнениями:

$$AB: x + 21y - 22 = 0$$
, $BC: 5x - 12y + 7 = 0$, $CA: 4x - 33y + 146 = 0$.

Вычислить расстояние от центра тяжести этого треугольника до стороны BC.

Вариант 12

1. Выяснить, пересекаются ли три плоскости вместе в одной точке, и, если да, то найти эту точку:

$$\alpha_1$$
: $2x - 3y + 3z + 11 = 0$, α_2 : $x - 5y + 2z + 9 = 0$, α_3 : $x + 2y + z + 2 = 0$.

2. Выясните, перпендикулярны ли прямая ℓ и плоскость α :

$$\ell \colon \begin{cases} x + 3y + z - 2 = 0, \\ 2x + 2y - z + 5 = 0, \end{cases} \quad \alpha \colon 2x + 2y - z + 1 = 0.$$

- 1. Составить уравнение плоскости, проходящей через точки $M_1(2,-1,3)$ и $M_2(3,1,2)$ параллельно вектору $\mathbf{a}=(3,-1,3)$.
- 2. В треугольнике ABC дана вершина A(2,1,5) и середин сторон AB и AC: $M_1(0,2,3)$ и $M_2(3,0,1)$. Составить уравнения всех его сторон.
- 3. Стороны треугольника АВС заданы уравнениями:

$$AB: x + 21y - 22 = 0$$
, $BC: 5x - 12y + 7 = 0$, $CA: 4x - 33y + 146 = 0$.

Вычислить расстояние от центра тяжести этого треугольника до стороны BC.

Вариант 14

1. Выяснить, пересекаются ли три плоскости вместе в одной точке, и, если да, то найти эту точку:

$$\alpha_1$$
: $2x - 3y + 3z + 11 = 0$, α_2 : $x - 5y + 2z + 9 = 0$, α_3 : $x + 2y + z + 2 = 0$.

2. Выясните, перпендикулярны ли прямая ℓ и плоскость α :

$$\ell \colon \begin{cases} x + 3y + z - 2 = 0, \\ 2x + 2y - z + 5 = 0, \end{cases} \quad \alpha \colon 2x + 2y - z + 1 = 0.$$

3. Даны вершины треугольника на плоскости $M_1(2,1)$, $M_2(-1,-1)$ и $M_3(3,2)$. Составить уравнения его высот.

Вариант 15

- 1. Составить уравнение плоскости, проходящей через точки $M_1(2,-1,3)$ и $M_2(3,1,2)$ параллельно вектору $\mathbf{a}=(3,-1,3)$.
- 2. В треугольнике ABC дана вершина A(2,1,5) и середин сторон AB и AC: $M_1(0,2,3)$ и $M_2(3,0,1)$. Составить уравнения всех его сторон.
- 3. Стороны треугольника АВС заданы уравнениями:

$$AB: x + 21y - 22 = 0$$
, $BC: 5x - 12y + 7 = 0$, $CA: 4x - 33y + 146 = 0$.

Вычислить расстояние от центра тяжести этого треугольника до стороны BC.

Вариант 16

1. Выяснить, пересекаются ли три плоскости вместе в одной точке, и, если да, то найти эту точку:

$$\alpha_1: 2x - 3y + 3z + 11 = 0$$
, $\alpha_2: x - 5y + 2z + 9 = 0$, $\alpha_3: x + 2y + z + 2 = 0$.

2. Выясните, перпендикулярны ли прямая ℓ и плоскость α :

$$\ell \colon \begin{cases} x + 3y + z - 2 = 0, \\ 2x + 2y - z + 5 = 0, \end{cases} \quad \alpha \colon 2x + 2y - z + 1 = 0.$$

- 1. Составить уравнение плоскости, проходящей через точки $M_1(2,-1,3)$ и $M_2(3,1,2)$ параллельно вектору $\mathbf{a}=(3,-1,3)$.
- 2. В треугольнике ABC дана вершина A(2,1,5) и середин сторон AB и AC: $M_1(0,2,3)$ и $M_2(3,0,1)$. Составить уравнения всех его сторон.
- 3. Стороны треугольника АВС заданы уравнениями:

$$AB: x + 21y - 22 = 0$$
, $BC: 5x - 12y + 7 = 0$, $CA: 4x - 33y + 146 = 0$.

Вычислить расстояние от центра тяжести этого треугольника до стороны BC.

Вариант 18

1. Выяснить, пересекаются ли три плоскости вместе в одной точке, и, если да, то найти эту точку:

$$\alpha_1$$
: $2x - 3y + 3z + 11 = 0$, α_2 : $x - 5y + 2z + 9 = 0$, α_3 : $x + 2y + z + 2 = 0$.

2. Выясните, перпендикулярны ли прямая ℓ и плоскость α :

$$\ell \colon \begin{cases} x + 3y + z - 2 = 0, \\ 2x + 2y - z + 5 = 0, \end{cases} \quad \alpha \colon 2x + 2y - z + 1 = 0.$$

3. Даны вершины треугольника на плоскости $M_1(2,1)$, $M_2(-1,-1)$ и $M_3(3,2)$. Составить уравнения его высот.

Вариант 19

- 1. Составить уравнение плоскости, проходящей через точки $M_1(2,-1,3)$ и $M_2(3,1,2)$ параллельно вектору $\mathbf{a}=(3,-1,3)$.
- 2. В треугольнике ABC дана вершина A(2,1,5) и середин сторон AB и AC: $M_1(0,2,3)$ и $M_2(3,0,1)$. Составить уравнения всех его сторон.
- 3. Стороны треугольника АВС заданы уравнениями:

$$AB: x + 21y - 22 = 0$$
, $BC: 5x - 12y + 7 = 0$, $CA: 4x - 33y + 146 = 0$.

Вычислить расстояние от центра тяжести этого треугольника до стороны BC.

Вариант 20

1. Выяснить, пересекаются ли три плоскости вместе в одной точке, и, если да, то найти эту точку:

$$\alpha_1: 2x - 3y + 3z + 11 = 0$$
, $\alpha_2: x - 5y + 2z + 9 = 0$, $\alpha_3: x + 2y + z + 2 = 0$.

2. Выясните, перпендикулярны ли прямая ℓ и плоскость α :

$$\ell \colon \begin{cases} x + 3y + z - 2 = 0, \\ 2x + 2y - z + 5 = 0, \end{cases} \quad \alpha \colon 2x + 2y - z + 1 = 0.$$

- 1. Составить уравнение плоскости, проходящей через точки $M_1(2,-1,3)$ и $M_2(3,1,2)$ параллельно вектору $\mathbf{a}=(3,-1,3)$.
- 2. В треугольнике ABC дана вершина A(2,1,5) и середин сторон AB и AC: $M_1(0,2,3)$ и $M_2(3,0,1)$. Составить уравнения всех его сторон.
- 3. Стороны треугольника АВС заданы уравнениями:

$$AB: x + 21y - 22 = 0$$
, $BC: 5x - 12y + 7 = 0$, $CA: 4x - 33y + 146 = 0$.

Вычислить расстояние от центра тяжести этого треугольника до стороны BC.

Вариант 22

1. Выяснить, пересекаются ли три плоскости вместе в одной точке, и, если да, то найти эту точку:

$$\alpha_1$$
: $2x - 3y + 3z + 11 = 0$, α_2 : $x - 5y + 2z + 9 = 0$, α_3 : $x + 2y + z + 2 = 0$.

2. Выясните, перпендикулярны ли прямая ℓ и плоскость α :

$$\ell \colon \begin{cases} x + 3y + z - 2 = 0, \\ 2x + 2y - z + 5 = 0, \end{cases} \quad \alpha \colon 2x + 2y - z + 1 = 0.$$

3. Даны вершины треугольника на плоскости $M_1(2,1)$, $M_2(-1,-1)$ и $M_3(3,2)$. Составить уравнения его высот.

Вариант 23

- 1. Составить уравнение плоскости, проходящей через точки $M_1(2,-1,3)$ и $M_2(3,1,2)$ параллельно вектору $\mathbf{a}=(3,-1,3)$.
- 2. В треугольнике ABC дана вершина A(2,1,5) и середин сторон AB и AC: $M_1(0,2,3)$ и $M_2(3,0,1)$. Составить уравнения всех его сторон.
- 3. Стороны треугольника АВС заданы уравнениями:

$$AB: x + 21y - 22 = 0$$
, $BC: 5x - 12y + 7 = 0$, $CA: 4x - 33y + 146 = 0$.

Вычислить расстояние от центра тяжести этого треугольника до стороны BC.

Вариант 24

1. Выяснить, пересекаются ли три плоскости вместе в одной точке, и, если да, то найти эту точку:

$$\alpha_1: 2x - 3y + 3z + 11 = 0$$
, $\alpha_2: x - 5y + 2z + 9 = 0$, $\alpha_3: x + 2y + z + 2 = 0$.

2. Выясните, перпендикулярны ли прямая ℓ и плоскость α :

$$\ell \colon \begin{cases} x + 3y + z - 2 = 0, \\ 2x + 2y - z + 5 = 0, \end{cases} \quad \alpha \colon 2x + 2y - z + 1 = 0.$$

- 1. Составить уравнение плоскости, проходящей через точки $M_1(2,-1,3)$ и $M_2(3,1,2)$ параллельно вектору $\mathbf{a}=(3,-1,3)$.
- 2. В треугольнике ABC дана вершина A(2,1,5) и середин сторон AB и AC: $M_1(0,2,3)$ и $M_2(3,0,1)$. Составить уравнения всех его сторон.
- 3. Стороны треугольника АВС заданы уравнениями:

$$AB: x + 21y - 22 = 0$$
, $BC: 5x - 12y + 7 = 0$, $CA: 4x - 33y + 146 = 0$.

Вычислить расстояние от центра тяжести этого треугольника до стороны BC.

Вариант 26

1. Выяснить, пересекаются ли три плоскости вместе в одной точке, и, если да, то найти эту точку:

$$\alpha_1$$
: $2x - 3y + 3z + 11 = 0$, α_2 : $x - 5y + 2z + 9 = 0$, α_3 : $x + 2y + z + 2 = 0$.

2. Выясните, перпендикулярны ли прямая ℓ и плоскость α :

$$\ell \colon \begin{cases} x + 3y + z - 2 = 0, \\ 2x + 2y - z + 5 = 0, \end{cases} \quad \alpha \colon 2x + 2y - z + 1 = 0.$$

3. Даны вершины треугольника на плоскости $M_1(2,1)$, $M_2(-1,-1)$ и $M_3(3,2)$. Составить уравнения его высот.

Вариант 27

- 1. Составить уравнение плоскости, проходящей через точки $M_1(2,-1,3)$ и $M_2(3,1,2)$ параллельно вектору $\mathbf{a}=(3,-1,3)$.
- 2. В треугольнике ABC дана вершина A(2,1,5) и середин сторон AB и AC: $M_1(0,2,3)$ и $M_2(3,0,1)$. Составить уравнения всех его сторон.
- 3. Стороны треугольника АВС заданы уравнениями:

$$AB: x + 21y - 22 = 0$$
, $BC: 5x - 12y + 7 = 0$, $CA: 4x - 33y + 146 = 0$.

Вычислить расстояние от центра тяжести этого треугольника до стороны BC.

Вариант 28

1. Выяснить, пересекаются ли три плоскости вместе в одной точке, и, если да, то найти эту точку:

$$\alpha_1: 2x - 3y + 3z + 11 = 0$$
, $\alpha_2: x - 5y + 2z + 9 = 0$, $\alpha_3: x + 2y + z + 2 = 0$.

2. Выясните, перпендикулярны ли прямая ℓ и плоскость α :

$$\ell \colon \begin{cases} x + 3y + z - 2 = 0, \\ 2x + 2y - z + 5 = 0, \end{cases} \quad \alpha \colon 2x + 2y - z + 1 = 0.$$