

e smart, be a professional, and b

O universitas.binaniaga | www.unb

KONSEP DASAR LOGIKA PEMOGRAMAN

#pertemuan5 M. Miftahudin

LOGIKA

- Logika adalah metode atau teknik yang diciptakan untuk meneliti ketepatan penalaran.
- Menggunakan Simbolik untuk merepresentasikan pengetahuan dan operator untuk untuk memproduksi penalaran logis
- Logika Biner: logika benar dan salah yang disimbolkan dengan 0 (untuk logika salah) dan 1 (untuk logika benar)
- Logika Fuzzy: nilai kebenarn bukan bersifat crisp (tegas) 0 dan 1 saja tetapi berada diantaranya (multivariabel).

Pemrograman logika: paradigma pemrograman komputer di mana pernyataan program mengungkapkan fakta dan aturan tentang masalah dalam kaiddah logika.

KLASIFIKASI LOGIKA

PROPOSISI

- Proposisi / Pernyataan / Kalimat Deklaratif
- Proposisi adalah kalimat yang bernilai benar atau salah tetapi tidak keduanya
- Contoh.

Bogor adalah kota hujan.

benar

6 adalah bilangan prima. salah

LOGIKA PROPOSISI

- Merepresentasikan suatu statement yang memiliki nilai kebenaran yang pasti
- Statemen dinyatakan secara simbolik
- Diklasifikasikan:
- Imperatif / perintah
- Interogatif / pertanyaan
- Kalimat seru
- Deklaratif / pernyataan

OPERATOR LOGIKA

OPERATOR	FUNGSI	BENTUK		
~	Tidak/NOT/Negasi	Tidak		
۸	Dan/ANDKonjungsi	dan		
V	Atau/ORDisjungsi	atau		
→	Implikasi/Kondisional Jikamaka / IF THEN			
↔	Bi-Implikasi/Bikondisional/Equivalensi	Jikadan hanya jika / IF AND ONLY IF		

PRODUCTION RULE

- Kondisional merupakan operator yang analog dengan production rule.
- Contoh.
 - "Jika sekarang diberlakukan PSBB maka saya tidak pergi ke kampus"

Kalimat di atas dapat ditulis : p → q

dengan p = diberlakukan PSBB

PRODUCTION RULE

- p = Anda sudah test SWAB dan Rapid test q = Anda dinyatakan negatif Covid-19
- ❖ Kondisional p → q

Kondisional	Arti		
p implies q	Anda sudah test SWAB dan Rapid test implies Anda dinyatakan negatif Covid-19.		
Jika p maka q	Jika Anda sudah test SWAB dan Rapid test, maka Anda dinyatakan negatif Covid-19.		
p hanya jika q	Anda sudah test SWAB dan Rapid test hanya jika Anda dinyatakan negatif Covid-19.		
p adalah (syarat cukup untuk q)	Anda sudah test SWAB dan Rapid test adalah syarat cukup Anda dinyatakan negatif Covid-19.		
q jika p	Anda dinyatakan negatif Covid-19 , jika Anda sudah test SWAB dan Rapid tes.		
q adalah (syarat perlu untuk p)	Anda dinyatakan negatif Covid-19 , adalah syarat cperlu Anda sudah test SWAB dan Rapid tes.		

COMPOUND STATEMENT

- * Tautologi : pernyataan gabungan yang selalu bernilai benar.
- Kontradiksi: pernyataan gabungan yang selalu bernilai salah.
- Contingent: pernyataan yang bukan tautology ataupun kontradiksi.

ARGUMEN PROPORSIONAL

- Adalah argumen yang berisi proporsi, sehingga dapat diekspresikan menjadi bentuk formal dalam logika proporsional
- Skema inferensi untuk proporsional disebut :
 - 1. law of detachment atau assuming the antecedent
 - 2. Direct Reasoning
 - 3. Modus ponens
- ❖ skema modus ponens p → q,p;

 ∴

$$(p \rightarrow q) \land p \rightarrow q$$

TABEL KEBENARAN

Tabel Kebenaran untuk logika konektif :

n	а	p ^ q	D v a	$p \rightarrow q$	$p \leftrightarrow q$
T	T	T	T	T	T
Т	F	F	Т	F	F
F	Т	F	Т	Т	F
F	F	F	F	Т	Т

Tabel kebenaran untuk negasi konektif :

р	~p
Т	F
F	Т

ATURAN INFERENSI UNTUK LOGIKA YANG BENAR

ATURAN INFERENSI UNTUK LOGIKA YANG BENAR

ATURAN INFERENSI UNTUK LOGIKA YANG BENAR

a. Prinsip Modus Ponens

Bentuk umum:

Premis 1 : $p \rightarrow q$ = benar

Premis 2 : p = benar

Kesimpulan : q = benar

Contoh:

Premis 1 : Jika saya makan maka saya

kenyang.

Premis 2 : Saya makan.

b. Prinsip Modus Tollens

Bentuk umum:

Premis 1 : $p \rightarrow q$ = benar

Premis 2 : ~q = benar

Kesimpulan : _ p = benar

Contoh:

Premis 1 : Jika saya rajin belajar maka

nilai saya bagus.

Premis 2 : Nilai saya buruk.

Premis 1 : Jika saya rajin belajar maka

nilai saya bagus.

Premis 2 : Jika nilai saya bagus maka

saya naik kelas.

e smart, be a professional, and b

o universitas.binaniaga | www.unb

THANK YOU

- Muhamad Miftahudin
- 0813 80453975
- m.miftahudin@unbin.ac.id