SCRUM Planning and Delivery Optimization Model

${\bf Truely Most Wanted}$

September 5, 2025

Contents

1	1. Sets (Entities)	2
2	2. Indices	3
3	3. Goals	3
4	4. Conditions	5
5	5. DecisionVariables	5

1 1. Sets (Entities)

- P (Project): set of projects (Entity Project).
- T (Team): set of teams (Entity Team).
- W (Worker): set of workers (Entity Worker).
- F (Feature): set of features (Entity Feature).
- S (Skill): set of skills (Entity Skill).
- R (Role): set of roles (Entity Role).
- O (ProductOwner): set of product owners.
- M (ScrumMaster): set of scrum masters.
- B (ProductBacklog): set of product backlogs.
- SP (Sprint): set of sprints.
- SPP (SprintPlanning): set of sprint planning events.
- \bullet DS (DailyScrum): set of daily scrums.
- SR (SprintReview): set of sprint reviews.
- SRE (SprintRetrospective): set of sprint retrospectives.
- SBL (SprintBacklog): set of sprint backlogs.
- G (SprintGoal): set of sprint goals.
- E (Epic): set of epics.
- U (UserStory): set of user stories.
- K (Task): set of tasks.
- D (DevelopmentSnapshot): set of development snapshots.
- BL (Blocker): set of blockers.
- H (Stakeholder): set of stakeholders.
- V (Velocity): set of velocity measurements.
- RP (ReleasePlan): set of release plans.
- RM (Roadmap): set of roadmaps.
- \bullet *CB* (ScrumBoard): set of scrum boards.
- FD (FeatureDocumentation): set of feature documentation records.

2 2. Indices

- $p \in P$, $t \in T$, $w \in W$, $f \in F$, $s \in S$, $r \in R$,
- $o \in O$, $m \in M$, $b \in B$, $sp \in SP$, $spp \in SPP$, $ds \in DS$,
- $\bullet \ sr \in SR, \ sre \in SRE, \ sbl \in SBL, \ g \in G, \ e \in E, \ u \in U,$
- $k \in K$, $d_{-}v \in D$, $bl \in BL$, $h \in H$, $v \in V$, $rp \in RP$,
- $rm \in RM$, $cb \in CB$, $fd \in FD$.

Relationship incidence (from Relationships.csv). We interpret *Employee* as *Worker* and *Sprint Review* as *SprintReview*. Let the following binary parameters encode relations:

 $R1[t,p] \in \{0,1\}$

Team t is assigned to Project p,

R2[w, t], R3[w, s], R4[w, r],

R5[o, b], R6[t, m], R7[b, f], R8[b, e],

R9[e, u], R10[u, k], R11[u, sbl], R12[sbl, sp],

R13[sp, g], R14[cb, k], R15[fd, f], R16[k, bl],

R17[h, sr], R18[m, sre], R19[v, t], R20[rp, f],

 $R21[rp, rm], R22[sp, d_v].$

Attributes as parameters (from Entities.csv). For each entity, its attributes become data parameters. Examples (non-exhaustive):

Project budget: budget $[p] \ge 0$; Feature effort: eff $^F[f] \ge 0$; Epic effort: eff $^E[e] \ge 0$;

Task effort: $\operatorname{eff}^K[k] \ge 0$; User Story points: $\operatorname{sp}[u] \ge 0$;

Velocity average SP: $\overline{\text{SP}}[v] \geq 0$; Velocity trend: trend $[v] \in \mathbb{R}$;

Blocker severity: $sev[bl] \ge 0$; Review attendees: $att[sr] \ge 0$.

Costs and calendars. Let $c^F, c^E, c^K \ge 0$ be cost per effort unit for features, epics, and tasks; dates are converted to numeric time (e.g., days).

3 3. Goals

points_completed Logic: maximize delivered value measured in story points.

Math:

$$\max \ Z_0 = \sum _sp \in SP \sum _u \in U\mathrm{sp}[u] \ y_u, sp$$

where $y_{-}u, sp = DV0$.

goal_achievement Logic: reward sprints achieving their goals.

Math:

$$\max Z_{-1} = \sum _sp \in SPg_sp$$

where $g_{-}sp = DV10$ corresponds to Sprint.achievement_of_goal.

blocker_severity Logic: drive down severity of unresolved blockers.

$$\min \ Z _2 = \sum _bl \in BL \mathrm{sev}[bl] \ (1 - r_bl)$$

where $r_{-}bl = DV8$ (1 if resolved).

l_feature_effort Logic: prefer lower-effort features.

Math:

$$\min Z_{-3} = \sum_{-f} f \in Feff^{F}[f] s_{-f}$$

where $s_{-}f = DV4$.

otal_task_effort Logic: minimize workload planned in sprints.

Math:

$$\min \ Z _4 = \sum _sp \in SP \sum _k \in Keff^K[k] \ z _k, sp$$

where z_k , sp = DV1.

e_velocity_trend Logic: encourage improving velocity.

Math:

$$\max Z_{-5} = \sum v \in V \operatorname{trend}[v]$$

iority_delivered Logic: deliver higher-priority features.

Math:

$$\max \ Z_6 = \sum _f \in F \text{priority}[f] \ s_f$$

iority_delivered *Logic*: deliver higher-priority epics.

Math:

$$\max Z_{-7} = \sum_{e} e \in E \text{priority}[e] \ s_{-e}$$

where $s_e = DV5$.

eview_attendance Logic: increase stakeholder engagement.

Math:

$$\max Z_{-8} = \sum _{-s} r \in SRatt[sr]$$

e_budget_overrun Logic: keep planned cost within budgets. Let Spend = $\sum fc^F eff^F[f]s_f + \sum ec^E eff^E[e]s_e + \sum fc^F eff^F[f]s_f$ $\sum_{-sp,k} c^{\hat{K}} \hat{\text{eff}}^{K}[k] z_{-k}, sp.$ Math:

$$\min Z_{-9} = \max \left\{ 0, \text{ Spend} - \sum_{-p} P \text{ budget}[p] \right\}$$

(piecewise-linear; can be linearized with an overrun slack variable).

cklog_throughput Logic: favor sprints processing more tasks.

Math:

$$\max Z_{-}10 = \sum sp \in SPwsp$$

where $w_{-}sp = DV11$ approximates processed story points per sprint.

_resolution_time Logic: resolve blockers quickly. Given numeric dates det[bl] and res[bl].

Math:

$$\min Z_{-1}1 = \sum bl \in BL(res[bl] - det[bl]) r_bl$$

acklog_freshness Logic: encourage frequent backlog updates. With numeric recency score fresh[b].

$$\max \ Z _12 = \sum _b \in B fresh[b]$$

4 4. Conditions

s_project_budget Logic: spend within budget.

Math:

$$\sum _f c^F \mathrm{eff}^F[f] s_f + \sum _e c^E \mathrm{eff}^E[e] s_e + \sum _sp, kc^K \mathrm{eff}^K[k] z_k, sp \ \leq \ \sum _p \mathrm{budget}[p].$$

espects_velocity Logic: per-sprint load capped by velocity. For each sp belonging to team t via R19 mapping.

Math:

$$\sum \lrcorner u \in U \mathrm{sp}[u] \ y \lrcorner u, sp \ \leq \ \mathrm{Cap}[sp], \quad \mathrm{Cap}[sp] := \overline{\mathrm{SP}}[v] \ \text{for any} \ v \ \text{with} \ \mathsf{R19}[v,t] = 1.$$

s_most_one_sprint Logic: no double scheduling of a User Story.

Math: $\sum sp \in SPy_u, sp \leq 1, \forall u \in U.$

s_selected_story Logic: tasks only if their story is selected. If R10[u, k] = 1.

 $\mathit{Math:} \quad \sum _spz_k, sp \leq s_u, \ \forall (u,k) : \mathsf{R10}[u,k] = 1.$

_implies_stories Logic: selecting an epic enables its stories.

Math: $s_u \le s_e, \ \forall (e, u) : \mathsf{R9}[e, u] = 1.$

st_be_in_backlog Logic: selected features must exist in some backlog.

Math: $s_-f \leq \sum b \in B\mathsf{R7}[b,f], \ \forall f \in F.$

elongs_to_sprint Logic: each sprint backlog belongs to exactly one sprint (data integrity).

Math: $\sum sp \in SPR12[sbl, sp] = 1, \forall sbl \in SBL.$

before_task_done Logic: blocked tasks can't be closed until blocker resolved. If R16[k, bl] = 1.

Math: $d_{-}k \leq r_{-}bl, \ \forall (k, bl) : \mathsf{R16}[k, bl] = 1.$

e_moderated_by_sm Logic: every retrospective has a Scrum Master moderator.

Math: $\sum m \in MR18[m, sre] \ge 1, \forall sre \in SRE.$

ages_one_backlog Logic: each Product Owner manages exactly one backlog.

Math: $\sum b \in BR5[o, b] = 1, \forall o \in O.$

most_one_project Logic: team focuses on one project.

Math: $\sum p \in Pa_t, p \leq 1, \forall t \in T$.

exactly_one_team Logic: a worker belongs to exactly one team.

Math: $\sum t \in Ta_w, t = 1, \forall w \in W.$

e_sprint_if_done Logic: completed tasks are scheduled in exactly one sprint.

Math: $\sum sp \in SPz_k, sp = d_k, \forall k \in K.$

5 5. DecisionVariables

- DV0 $y_u, sp \in \{0, 1\}$: assign User Story u to Sprint sp.
- DV1 z_{-k} , $sp \in \{0,1\}$: schedule Task k in Sprint sp.
- DV2 a_-w , $t \in \{0,1\}$: assign Worker w to Team t.

- DV3 $a_{-}t, p \in \{0, 1\}$: assign Team t to Project p.
- DV4 $s_-f \in \{0,1\}$: select Feature f.
- DV5 $s_{-}e \in \{0,1\}$: select Epic e.
- DV6 $s_u \in \{0,1\}$: select User Story u.
- DV7 $d_{-}k \in \{0,1\}$: Task k done (within its sprint).
- DV8 $r_bl \in \{0,1\}$: Blocker bl resolved.
- DV9 $r_rp, f \in \{0,1\}$: include Feature f in Release Plan rp.
- DV10 $g_sp \in \{0,1\}$: Sprint sp achieves its Sprint Goal.
- DV11 $w_sp \in \mathbb{R} \ge 0$: planned sprint workload (story points).
- DV12 x- $sp \in \{0,1\}$: Sprint sp generates a Development Snapshot.