Complex Networks:

Lecture 3a: Introduction to Graph Theory

EE 6605

Instructor: G Ron Chen

Most pictures on this ppt were taken from un-copyrighted websites on the web with thanks

What is a Graph?

 A graph is a diagrammatical representation of some physical structure

such as:

a circuit

a computer network

a human relationship network

... and so on.

Beginning of Graph Theory

Euler (1707-1783) proved that the Königsburg seven-bridge problem has no solution

Figure 1: Ehler's drawing of Königsberg, 1736

Notation

- Let G be a non-empty graph with at least one node (or, vertex).
- In a non-isolated case, G has at least one edge (or, link); thus, it has at least two nodes.
- Let N(G) and M(E) denote the set of its nodes and the set of its edges, respectively.
- In general, N(G) and M(E) are finite sets.
- Such a non-empty pair (N(G), M(E)) is referred to as a simple graph

Examples of General (non-simple) Graphs

Convention: not allowed

When a node is removed, all its edges will also be removed

Hyper-Graph

- Concept: A generalization of a graph, where an edges can connect any number of nodes.
- Formally, a hypergraph H is a pair H = (X,E) where X is a set of nodes {v} and E is a set of subsets {e} of X (called hyper-edges).

Hyper-graphs are not simple graphs

Examples of Simple Graphs

$$N(G) = \{A, B, C, D\}$$

$$M(E) = \{AB, AC, BC, CD\}$$

Subgraph: ABC, AB, D etc. (needed not be connected)

Circuit (Cycle): ABC

Component: A self-connected subgraph, but un-connected with

other parts of the same graph

← A simple graph with 3 components

• Theorem: If a simple graph G with N nodes has K components, then the number of edges, M, of G satisfies

$$N - K \le M \le \frac{1}{2}(N - K) (N - K + 1)$$

In particular, for a connected graph (K = 1), it reduces to

$$N-1 \le M \le \frac{1}{2}N(N-1)$$

• **Proof.** The general case is proved in the lecture notes, while the case of K = 1 is obvious: A connected graph with N nodes has at least N - 1 edges and at most N(N - 1)/2 edges.

Examples:

N - 1

A graph of N nodes has N(N-1)/2 edges

Corollary: If a simple graph of N nodes satisfies $M > \frac{1}{2}(N-1)(N-2)$ then it must be connected.

Proof. If not connected, then $K \ge 2$ in $N-K \le M \le \frac{1}{2}(N-K)$ (N-K+1) In case of K=2: $N-2 \le M \le \frac{1}{2}(N-1)(N-2)$ But, now it is assumed $M > \frac{1}{2}(N-1)$ (N-2) This is a contradiction.

The simplest connected graph is a chain, which has M = N - 1 edges

Examples:

Some Basic Results

- Theorem (Handshaking Lemma) The total node degree of a graph is always an even number.
- Proof. Since every edge joins two nodes, so the total node degree is twice of the number of edges.
- Corollary: In any graph, the number of nodes of odd degrees must be even.

Examples:

Isomorphism

• Two graphs G_1 and G_2 are said to be **isomorphic**, if there is a one-one correspondence between the nodes of G_1 and those of G_2 , with the property that the number of edges joining any two nodes of G_1 is equal to the number of edges joining the two corresponding nodes of G_2 .

• Example:

Graph Isomorphism is a Mapping

bipartite graph

This mapping is one-to-one and onto, hence invertible.

Example

Example

Bipartite Graphs

Bipartite Graphs

Circuits in Bipartite Graphs

- Theorem: A graph is bipartite if and only if every circuit (cycle) has an even number of edges in the path.
- **Proof.** Let $v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_n \rightarrow v_1$ be a circuit in the bipartite graph $G = G(V_1, V_2)$. Assume, without loss of generality, that $v_1 \in V_1$. Then, since G is bipartite, one must have $v_2 \in V_2, v_3 \in V_1$ etc. Finally, one must have $v_n \in V_2$ in order to form a circuit, yielding an even number of paths.

Another direction is obvious, since to form a circuit any path has to return to the same side, which has even number of edges.

Circuit = Loop = Circle = Closed Path

Tripartite Graphs

Tripartite Graph: All nodes are partitioned into three sets in such a way that no two vertices contained in any one of the three parts are adjacent

Adjacency Matrix

- For a graph G with nodes N(G) = {1,2,...,n}, its adjacency matrix A is defined to be the n×n constant matrix those ijth entry is 1 if node i connects node j; or 0 otherwise.
- Example:

(always square and symmetrical)

Computer/algorithm uses the adjacency matrix to store a network

Incidence Matrix

For a graph G with edges M(E) = {1,2,...,m}, its incidence matrix M is defined to be the n×m constant matrix whose ijth entry is 1 if node i connects edge j; or 0 otherwise.

Example:

$$M = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 0 & 0 & 1 & 0 \\ 2 & 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 4 & 0 & 0 & 1 & 1 & 1 \end{bmatrix}$$

(usually non-square)

Second-Order Adjacency Matrix

degrees

Clustering Coefficient

$$C_i = \frac{1}{k_i(k_i - 1)} \times \sum_{i=1}^{N} a_{ij} a_{jk} a_{ki} \qquad A = [a_{ij}] -- \text{ adjacency matrix}$$

$$C_{1} = \frac{1}{3(3-1)} \times \left((a_{12}a_{23}a_{31}) + (a_{13}a_{34}a_{41}) + (a_{14}a_{45}a_{51}) + (a_{12}a_{24}a_{41}) + (a_{12}a_{25}a_{51}) + (a_{13}a_{35}a_{51}) \right) \times 2$$

$$= \frac{1}{6} \left(1 + 0 + 0 + 0 + 0 \right) \times 2 = 1/3$$

Average Clustering Coefficient of graph:

$$C = \frac{tr(A^3)}{\sum_{i,j=1(i\neq j)}^{N} [(A^2)_{i,j}]}$$

Density of Graph

$$Den = \frac{\text{total number}}{N(N-1)/2} = \frac{2\sum_{i>j=1}^{N} a_{ij}}{N(N-1)}$$

- Fully connected graph: $\sum_{i>j=1}^{N} a_{ij} = N(N-1)/2$, so Den = 1
- Isolated nodes without edges: $\sum_{i>j=1}^{N} a_{ij} = 0$, so Den = 0

Den
$$= \frac{2}{5 \times 4} (a_{21} + a_{31} + a_{41} + a_{51} + a_{32} + a_{42} + a_{52} + a_{43} + a_{53} + a_{54})$$

$$= \frac{1}{10} (1 + 1 + 0 + 1 + 1 + 1 + 0 + 0 + 0 + 0)$$

$$= \frac{5}{10} = \frac{1}{2}$$

Number of Paths of Length n

Path Length formula:

The number of paths of length n between node i and node j = $(A^n)_{i,j}$

Laplacian Matrix

Definition: Laplacian matrix (admittance matrix, Kirchhoff matrix), denoted $L = [L_{ii}]$, is defined as

$$L_{ij} = \begin{cases} k_i & \text{if} & i = j \\ -1 & \text{if} & i \neq j, & v_i & \text{adjacent with} & v_j \\ 0 & & \text{otherwise} \end{cases}$$

where k_i is the degree of node v_i

It has zero row-sum (and, by symmetry, zero column-sum)

Example:

Degree matrix

$$L = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix} - \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 2 & -1 & 0 & -1 \\ -1 & 3 & -1 & -1 \\ 0 & -1 & 2 & -1 \\ -1 & -1 & -1 & 3 \end{bmatrix}$$

$$L = D - A$$

Relationships

Eigenvalues of Laplacian Matrix

For a connected undirected and unweighted graph G of size N, its Laplacian matrix L is symmetrical and semi-positive definite, with zero row-sums (hence, zero column-sums). Let the eigenvalues of L be $\{\lambda_1, \lambda_2, ..., \lambda_N\}$, which are real and nonnegative. Then

$$0 = \lambda_1 < \lambda_2 \le \dots \le \lambda_N$$

If G has m < N components (in the above, m = 1), then

$$0 = \lambda_1 = \lambda_2 = \dots = \lambda_m < \lambda_{m+1} \le \dots \le \lambda_N$$

In particular, if m = N then

$$0 = \lambda_1 = \lambda_2 = \dots = \lambda_N$$

This corresponds to a set of N isolated nodes for which L = 0.

 $\lambda_2 > 0$ is called the spectral gap of the graph, or the algebraic connectivity of the network

Verification

To verify the algebraic connectivity $\lambda_2 > 0$ for a connected network, let x be a nonzero eigenvector associated with the eigenvalue $\lambda_1 = 0$ of its Laplacian matrix L.

Then,
$$Lx = 0$$
, so that $x^T Lx = \sum_{(u,v) \in E} (x_u - x_v)^2 = 0$.

Consequently, $x_u = x_v$ for every pair of nodes (u, v) in the network since the network is connected.

This implies that $x = a[1,1,...,1]^T$ for some constant $a \neq 0$, namely, the eigenvalue $\lambda_1 = 0$ has multiplicity 1; therefore $\lambda_2 \neq 0$.

By the semi-positiveness of the Laplacian matrix L, one has $\lambda_2 > 0$.

Examples

$$L = \begin{bmatrix} 3 & -1 & -1 & 0 & -1 \\ -1 & 3 & -1 & -1 & 0 \\ -1 & -1 & 2 & 0 & 0 \\ 0 & -1 & 0 & 1 & 0 \\ -1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

symmetrical with zero row-sum

eigenvalues of L:

$$\lambda_1 = 0 < \lambda_{2,3} = \frac{5}{2} \pm \frac{\sqrt{5}}{2}, \lambda_{4,5} = \frac{5}{2} \pm \frac{\sqrt{13}}{2}$$

$$\begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$
 eigenvalues L : $\lambda_1 = 0$ $\lambda_2 = 2$

Regular Graphs

- ❖ A graph in which all nodes have the same degree is called a regular graph; if every node has degree r then the graph is called a regular graph of degree r (or, r-regular)
- ❖ Theorem: A regular graph of degree r with N nodes has r N / 2 edges.
- ❖ Proof. Since every node connects with r edges, there are rN connecting edges. However, each edge has been doubly counted, so it should be divided by two.

Example:

A regular graph of degree 3 (3-regular), which has 6 nodes and $3 \times 6 / 2 = 9$ edges

Eigenvalues of Regular Graphs

Let G be a connected r-regular graph with N nodes, with eigenvalues $\{\mu_1, \mu_2, ..., \mu_{N-1}, \mu_N\}$ of its adjacency matrix A

(i)
$$-r \le \mu_1 \le \dots \le \mu_{N-1} < \mu_N = r$$

(ii) G is bipartite if and only if the above eigenvalues are symmetrical about 0; and if and only if $\mu_1 = -r$

$$-r = \mu_1 < \mu_2 \le \dots \le \mu_{N-1} < \mu_N = r$$

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \qquad r = 1 \qquad -1 = \mu_1 < \mu_2 = 1$$

Line Graphs

Given a graph G, its line graph L(G) is a graph such that

- i) each node of L(G) represents an edge of G
- ii) two nodes of L(G) are adjacent if and only if their corresponding edges share a common node in G

That is, it is the intersection graph of the edges of G, representing each edge by the set of its two end-nodes

There are linear-time algorithms for recognizing line graphs and reconstructing their original graphs

Line Graphs

Planar Graphs

- Plane graph is one that can be drawn on the 2D plane without crossing edges
- Planar graph is one that is isomorphic to a plane graph
- Every planar graph can be embedded on a 2D plane (within the Euclidean 3D space)
- Theorem: A graph is planar
 if and only if it can be embedded
 on the surface of a sphere.

They can be embedding on to a 3-D sphere

Impossible to do so

Non-Planar Graphs

Two special yet important non-planar graphs:

Graph $K_{3,3}$

K. Kuratowski (1896 -1980)

Ramsey Problem

6 people meet in a party

If two persons know each other, then connect them with a red edge

If two persons don't know each other, then connect them with a blue edge

How many red triangles? How many blue triangles?

Try one case

Ramsey Theorem:

There exists at least one red triangle or one blue triangle

- 3 know each other OR
- 3 don't know each other

Homeomorphism

Two graphs are said to be homeomorphic, if they can both be obtained from the same graph by inserting new nodes of degree-2 into edges.
 (namely, identical to within nodes of degree-2)

 Theorem (Kuratowski Theorem) A graph is planar if and only if it contains no subgraphs homeomorphic to K₅ or K₃₃

An Application Example

Recall: The Königsburg seven-bridge problem

With multiple edges

A simple graph

BREAK

10 minutes

More Concepts

- Walk: A finite sequence of edges, one after another, in the form of $v_1v_2, v_2v_3, ..., v_{n-1}v_n$ where $N(G) = \{v_1, v_2, ..., v_n\}$ are nodes
- A walk is denoted by $v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_n$ and the number of edges in a walk is called its **length**
- Trail: A walk in which all edges are distinct
- Path: A trail in which all <u>nodes</u> are distinct, except perhaps $v_1 = v_n$ which is called a **closed path**, often called a **circuit** (or, a **cycle**)
- Tree: A graph with no circuits

• Lemma: If every node in a graph has degree $k \ge 2$ then this graph contains a circuit (cycle).

Proof.

Consider a simple graph. Starting from any node v_0 , construct a walk $v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \cdots$ in such a way that v_1 is any adjacent node of v_0 and, for i=1,2,..., node v_{i+1} is any (except v_{i-1}) adjacent node of v_i . Since every node has degree $k \geq 2$, such a node v_{i+1} exists. Because the graph has finitely many nodes, the walk eventually connects to a node that has been chosen before. This walk yields a circuit in the graph.

The converse may not be true:

Trees

- Tree: A connected graph without circuits
- Forest: A family of unconnected trees

- A tree with N nodes has N 1 edges
- Sum of node degrees in a tree = 2 x (number of edges) = 2 (N 1)

Family Tree

Decision Tree

Chemistry

Some Basic Results

Theorem: Let *T* be a graph with *N* nodes. Then, the following statements are equivalent:

- > T is a tree
- > T has N 1 edges but contains no circuits
- > T has N 1 edges and is connected
- T is connected, but the removal of any edge will disconnect the graph
- every pair of nodes of T are connected by exactly one path
- > T contains no circuits, but the addition of any new edge creates exactly one circuit

Fractal Tree Graphs

Number of nodes: N

Number of breaches: d

Number of generations: g

Number of peripheral nodes: m

$$N = \frac{d^{g+1}-1}{d-1}$$

$$m = d^g$$

$$N = 40$$

 $d = 3$
 $g = 3$
 $m = 27$

$$40 = \frac{3^{3+1} - 1}{3 - 1}$$

$$27 = 3^3$$

Complementary Graph

For a given graph G, its complementary graph G^c is the graph containing all the nodes of G and all the edges that are not in G

Graph Connectivity

- Q: How many edges or nodes must be removed in order to disconnect an originally connected graph?
- Note: If a node is removed, then all edges joining it will also be removed; but the converse is not so.

Example:

Disconnecting Sets and Cut-Sets

- **Disconnecting set**: A set of edges, denoted as $E_0(G)$, such that after it is being removed, the graph G will become unconnected
- Cut-Set: The smallest disconnecting set, i.e., no proper subset of which is a disconnecting set
- **Example**: $E_0^1(G) = \{e_1, e_2\}$ $E_0^2(G) = \{e_1, e_2, e_5\}$ $E_0^3(G) = \{e_3, e_6, e_7, e_8\}$ are disconnecting sets, in which both $E_0^1(G)$ and $E_0^3(G)$ are cut-sets

Bridges

Bridge: A cut-set with only one edge

Example: cut-set { e } below is a bridge

Bridge is also called Edge Connectivity

Importance of bridges

In a network, a node of low degree may be more important than a node of high degree. For example, on a bridge:

Node Connectivity

Node Connectivity, NC(G), of a connected graph G is the minimum number of nodes whose removal disconnects G

When $NC(G) \ge k$, the graph is said to be k-connected

Edge Connectivity

Edge Connectivity, EC(G), of a connected graph G is the minimum number of edges whose removal disconnects G

Let MD(G) be the minimum node degree of a graph

Theorem: $NC(G) \le EC(G) \le MD(G)$

$$C d NC(G) = 1$$

$$EC(G) = 1$$

$$MD(G) = 2$$

Closeness

A node is considered to be more important if it is "closer" to all other nodes. For node v_i in a network of N nodes:

Closeness:
$$C(v_i) = \left[\sum_{j=1}^{N} d(v_i, v_j)\right]^{-1}$$

Normalization:

$$C_n(v_i) = C(v_i) \times (N-1)$$

$$C(\text{yellow}) = 1 / (1 + 2) = 1 / 3$$

$$C(\text{red}) = 1/(1+1) = 1/2 (>1/3)$$

Closeness

Distance								Closeness	normalized
0	1	1	1	1	1	1	1	.143	1.00
1	0	2	2	2	2	2	2	.077	.538
1	2	0	2	2	2	2	2	.077	.538
1	2	2	0	2	2	2	2	.077	. 538
1	2	2	2	0	2	2	2	.077	. 538
1	2	2	2	2	0	2	2	.077	.538
1	2	2	2	2	2	0	2	.077	. 538
1	2	2	2	2	2	2	0	. 077	.538

	Di	.st	tai	nc	e		Closeness				normalized
0	1	2	3	4	4	3	2	1		.050	.400
1	0	1	2	3	4	4	3	2		.050	.400
2	1	0	1	2	3	4	4	3		.050	. 400
3	2	1	0	1	2	3	4	4		.050	.400
4	3	2	1	0	1	2	3	4		.050	.400
4	4	3	2	1	0	1	2	3		.050	. 400
3	4	4	3	2	1	0	1	2		.050	.400
2	3	4	4	3	2	1	0	1		.050	. 400
1	2	3	4	4	3	2	1	0		.050	.400

Graph-Theoretic Centre

Also called Barry Centre or Jordan Centre

The set of all nodes, A, satisfying that the longest distance d(A,B) to other nodes B, is minimal (or, 1 / d(A,B) is maximal)

Girth of a Node

Girth of Node A = length of the shortest cycle in the graph, which passes Node A

$$g = 3$$

$$q=4$$

$$g \coloneqq 0$$

$$g := \infty$$

Cyclic Coefficient

Definition:

 S_{ijk} = girth that passes nodes i, j, k

Example: Node 5 to all its neighbors

$$S_{512} = 3$$
 $S_{513} = 5$
 $S_{514} = 5$ $S_{523} = 4$
 $S_{524} = 4$ $S_{534} = 4$
 $S_{516} = S_{526} = S_{536} = S_{546} = \infty$
 $S_{56} = \infty, S_6 = 0$

$$S_{512} = 3$$
 $S_{513} = 5$

$$S_{514} = 5 \qquad S_{523} = 4$$

$$S_{524} = 4$$
 $S_{534} = 4$

$$S_{516} = S_{526} = S_{536} = S_{546} = \infty$$

Definition: Cyclic Coefficient of Node i

The graph:

$$\theta_i = \frac{1}{k_i(k_i - 1)/2} \sum_{k>j=1}^{N} \frac{a_{ij}a_{jk}}{S_{ijk}}$$

$$\theta = \frac{1}{N} \sum_{i=1}^{N} \theta_i$$

where $A = [a_{ij}]$ is adjacency matrix

Example: Node 5

$$\theta_5 = \frac{2}{4(4-1)} \left(\frac{a_{51}a_{12}}{S_{512}} + \frac{a_{52}a_{23}}{S_{523}} + 0 + \dots + 0 \right) = \frac{1}{6} \left(\frac{1}{3} + \frac{1}{4} \right) = \frac{7}{72}$$

Graphical Meaning:

Cyclic coefficient is the percentage of two ordered adjacent edges over all possibilities in an orderly motion (order: k > j)

Node 3: Path 312 has 1 ordered adjacent edge
Node 1: Path 124 has 1 and 134 has $1 \rightarrow 1+1=2$ 1 out of 4 = 1/42 out of 4 = 1/2

More about Trees

- Spanning tree of a graph G
 is a subgraph that is a tree
 and it connects all nodes of G
- Spanning tree usually is not unique

For example
Two spanning trees of a graph

Some Results

Theorem: Let T be any spanning tree of graph G. Then

- 1) every cut-set of G has an edge in common with T
- every circuit of G has an edge in common with the complementary graph of T

Eigenvalues of Spanning Trees

Let L be the Laplacian matrix of a connected graph G of size N, with eigenvalues

$$0 = \lambda_1 < \lambda_2 \le \dots \le \lambda_N$$

Let L(i, j) be the matrix obtained from L by deleting its i row and j column. Then, the number of spanning trees, n, in G, satisfies

$$n = \left| \det[L(i, j)] \right| = \frac{\lambda_2 \lambda_3 \cdots \lambda_N}{N}$$

Example:

$$L = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \qquad \lambda_1 = 0 \quad \lambda_2 = 2 \qquad n = 1$$

Minimum Connector Problem

- Minimum connector problem: Suppose that one wants to build a highway network connecting *N* given cities, in such a way that a car can travel from any city to any other city, but the total mileage of the highways is minimum.
- Clearly, the graph formed by taking the N cities as nodes and the connecting highways as edges must be a tree.
- The problem is to find an efficient algorithm to decide which tree connecting these cities reaches the minimum total mileage.

Greedy Algorithm

- Theorem (Kruskal Greedy Algorithm) Let G be a connected graph with N nodes. Then, the following constructive scheme yields a solution to the minimum connector problem:
- let e_1 be an edge of G with the smallest weight;
- choose $e_2,...,e_{N-1}$ one by one, by choosing an edge e_i (not previously chosen) with a smallest weight, subject to the condition that it forms no circuit with all the previous edges $\{e_1,...,e_{i-1}\}$;
- repeat this procedure until no more edge can be chosen
- the resulting graph is a spanning tree, i.e., the subgraph of G with edges $\{e_1,...,e_{N-1}\}$

It is a minimum spanning tree (usually not unique)

Staring from the shortest edge, apply the greedy algorithm ->

Keep the edge

Continue the greedy algorithm →

Continue the greedy algorithm →

Continue the greedy algorithm >

Because BD = 5 or AE = 6 or BE= 6 will form a circuit

Result

The greedy algorithm finally yields:

No more edge can be added

Result

The greedy algorithm finally yields:

No more edge can be removed

End

