Standard Time Series Models

Romain Lafarguette, Ph.D.

ADIA Quant & IMF External Consultant

Singapore Training Institute, 08 November 2022

Perspective

- ETS (Error, Trend, Season) model was developed in the 1950s as algorithms to produce point forecasts
- ETS combines a "level" (l_{t-1}) , a "trend" $((b_{t-1}))$ and a "seasonal" (s_{t-m}) components to describe a time series
- The combination $f(l_{t-1}, b_{t-1}, s_{t-m})$ can be additive, multiplicative, etc.
- The rate of change of the components are controlled by "smoothing" parameters: α for the level, β for the trend, γ for the seasonal
- The researcher has to:
 - To choose the best values for the smoothing parameters
 - 2 The initial state of the parameters
- Equivalent ETS state-space models have been developed in the 1990s and the 2000s

Combining Level, Trend and Seasonal Components

- Additively: $y_t = l_{t-1} + b_{t-1} + s_{t-m} + \epsilon_t$
- Multiplicatively: $y_t = l_{t-1} \times b_{t-1} \times s_{t-m} \times (1 + \epsilon_t)$
- Mixed: $y_t = (l_{t-1} + b_{t-1}) \times s_{t-m} + \epsilon_t$

Notations:

- Error can be additive ("A") or multiplicative ("M")
- Trend can be None ("N"), additive ("A"), multiplicative ("M") or damped ("Ad" or "Md")
- Seasonality can be None ("N"), additive ("A") or multiplicative ("M")

Point forecasts and forecast distribution

- Models generates point forecasts estimates, based on a given conditional value $y_{t+1|y0} = f_y(y0)$
- However, need to generate the forecast distribution to assess the quality of models and select the best. **Model selection**
- A stochastic data generating process (DGP) can generate an entire forecast distribution
- Core idea: the residual (ϵ) is the only stochastic (=random) element in $y_t = l_{t-1} + b_{t-1} + s_{t-m} + \epsilon_t$
 - Hence, the distribution of the residuals will determine the distribution of the estimator

Level-Only Model ETS(A, N, N) (Simple Smoothing)

Component Form

- Forecast equation: $\hat{y}_{t+h|t} = l_t$
- Smoothing equation: $l_t = \alpha y_t + (1 \alpha)l_{t-1}$
- l_t is the level (="smoothed value") of the series at time t
- $\hat{y}_{t+1|t} = \alpha y_t + (1-\alpha)\hat{y}_{t|t-1}$

Iterate to get exponentially weighted moving average form:

$$\hat{y}_{T+1|T} = \sum_{j=0}^{T-1} \alpha (1-\alpha)^j y_{T-j} + (1-\alpha)^T l_0$$

Error Correction Form

Component Form

- Forecast equation: $\hat{y}_{t+h|t} = l_t$
- Smoothing equation: $l_t = \alpha y_t + (1 \alpha)l_{t-1}$

Forecast error: $e_t = y_t - \hat{y}_{t|t-1} = y_t - l_{t-1}$

Error Correction Form

- $y_t = l_{t-1} + e_t$
- $l_t = l_{t-1} + \alpha * \underbrace{(y_t l_{t-1})}_{e_t}$
- Intuition: α updates the next-period estimate based on the forecasting error
- Specify probability distribution for e_t , often assumed that $e_t = \epsilon_t \sim \mathcal{N}(0, \sigma^2)$

- Need to choose the best values for α and l_0
- Similarly to regression, choose optimal parameters by minimizing SSE:

$$SSE = \sum_{t=1}^{T} (y_t - \hat{y}_{t|t-1})^2$$

• Unlike regression, there is no closed form solution: need to use numerical optimization

State-Space Representation for Additive Models

State-Space Representation

- Measurement equation: $y_t = l_{t-1} + \epsilon_t$, where $\epsilon_t \sim \mathcal{N}(0, \sigma^2)$
 - The measurement equation is the relationship between observations (y_t) and state (=structure) l_t
- State equation $l_t = l_{t-1} + \alpha * \epsilon_t$, where $\epsilon_t \sim \mathcal{N}(0, \sigma^2)$
 - The state equation is evolution of the state variable (l_t) through time
- Both equations have the same error process ϵ

State-Space Representation for Multiplicative Models

- Instead of differential errors, specify relative errors: $\eta_t = \frac{y_t \hat{y}_{t|t-1}}{\hat{y}_{t|t-1}}$
- Some easy algebra, substituting $\hat{y}_{t|t-1} = l_{t-1}$ gives

State-Space Representation

- Measurement equation: $y_t = l_{t-1}(1 + \epsilon_t)$
- State equation: $l_t = l_{t-1}(1 + \alpha * \epsilon_t)$

Implication: Models with additivative and multiplicative errors with the same parameters generate the same point forecasts but with different prediction intervals

Holt's Linear Trend

Component Form

- Level: $l_t = \alpha_t + (1 \alpha)(l_{t-1} + b_{t-1})$
- Trend: $b_t = \beta * (l_t l_{t-1}) + (1 \beta)b_{t-1}$
- Forecast: $\hat{y}_{t+h|t} = l_t + hb_t$
- Two smoothing parameters: α and β ($0 \le \alpha$, $\beta \le 1$)
- l_t level: weighted average between y_t and one-step ahead forecast for time t: $l_{t-1} + b_{t-1} = \hat{y}_{t|t-1}$
- b_t slope: weighted average of $(l_t l_{t-1})$ and b_{t-1} , current and previous estimate of slope
- Choose α , β , l_0 , b_0 to minimize the SSE (sum squared errors)

Damped Trend Method

Component Form

- $l_t = \alpha y_t + (1 \alpha)(l_{t-1} + \phi b_{t-1})$
- $b_t = \beta * (l_t l_{t-1}) + (1 \beta)\phi b_{t-1}$
- $\hat{y}_{t+h|t} = l_t + (\phi + \phi^2 + \dots + \phi^h)b_t$
- ϕ is the damping parameter, $0 \le \phi \le 1$
- If $\phi = 1$, the method boils down to Holt's linear trend
- As $h \to \infty$, then $\hat{y}_{T+h|T} \to l_T + \frac{\phi b_T}{1-\phi}$
- Application: short-run forecasts are trended, long-run forecasts constant

Holt-Winters Seasonal Model

Holt and Winters extended Holt's method to capture seasonality

Component Form

- Level: $l_t = \alpha(y_t s_{t-m}) + (1 \alpha)(l_{t-1} + b_{t-1})$
- Trend: $b_t = \beta(l_t l_{t-1}) + (1 \beta)b_{t-1}$
- Season: $\gamma(y_t l_{t-1} b_{t-1}) + (1 \gamma)s_{t-m}$
- Forecast: $\hat{y}_{t+h|t} = l_t + hb_t + s_{t+h-m(k+1)}$
- m is the period of seasonality (e.g. m = 4 for quarterly data)

Seasonal Component

• The seasonal component is usually expressed as:

$$s_t = \gamma * (y_t - l_t) + (1 - \gamma) * s_{t-m} \quad 0 \leq \gamma \leq 1$$

• By subtitution, we can derive the dynamic of the seasonal term as:

$$s_t = \gamma * (1 - \alpha)(y_t - l_{t-1} - b_{t-1}) + [1 - \gamma(1 - \alpha)]s_{t-m}$$

Forecasting with ETS models

Traditional point forecasts: iterate the equations for t = T + 1, T + 2, ..., T + h. By construction, $\epsilon_t = 0 \ \forall \ t > T$

- Equals to $E[y_{t+h}|x_t]$ in the case of additive seasonality only
- Point forecasts for additive ETS are the same as for multiplicative ETS if the parameters are the same

Prediction Intervals

- They can only be generated using the models
- The prediction intervals will differ between models with additive and multiplicative errors
- Some simple ETS models offer exact formula
- For more complex ETS models, the only solution for generating the confidence intervals is by bootstrapping
 - Simulate future sample paths, conditional on the last estimates of the states
 - Obtain the prediction intervals from the percentiles of these simulated future paths

Main Idea: Control the Rate of Change

- α controls the flexibility of the **level**
 - If $\alpha = 0$, the level never updates (stays at the mean)
 - If $\alpha = 1$, the level updates completely (naive, start from yesterday)
- β controls the flexibility of the **trend**
- If $\beta = 0$, the trend is linear
- If $\beta = 1$, the trend changes suddenly at each observation
- γ controls the flexibility of the **seasonality**
 - If $\gamma = 0$ the seasonality is fixed (seasonal mean)
 - If $\gamma = 1$ the seasonality updates completely (seasonal naive)

ARIMA Model

- AR: autoregressive (lagged observations as inputs)
- I: integrated (differencing to make series stationary)
- MA: moving average (lagged errors as inputs)

Intuition

Contrary to an ETS, an ARIMA model is rarely interpretable in terms of visible data structures like trend and seasonality. But it can capture a huge range of time series patterns

Refresher: Intuitive Definition of Stationarity

Intuitive Characterization

If y_t is a stationary time series, then for any period s in the future, the distribution $\{y_t, \ldots, y_{t+s}\}$ doesn't depend on t

A stationary series is:

- Roughly horizontal
- Constant variance
- No predictable patterns in the long term

Stabilization:

- Transformations help to stabilize the variance
- For ARIMA modelling, we also need to stabilize the mean

Identifying Non-Stationary Series

Tips:

- Time plot
- The ACF of stationary data drops to zero relatively quickly
- The ACF of non-stationary data decreases slowly
- For non-stationary data, the value of the first coefficient is often large and positive

Differencing

- Differencing helps to stabilize the mean
- The differenced series is the *change* (or first difference) between each observation in the original series: $y'_t = y_t y_{t-1}$
- The differenced series will have only T-1 values since it is not possible to calculate a difference y'_1 for the first observation

Random Walk Model

If the differenced series is white noise with zero mean:

Specification

$$y_t - y_{t-1} = \epsilon_t$$
 where $\epsilon_t \sim \mathcal{N}(0, \sigma^2)$

- Very widely used for non-stationary data
- This is the model behind the **naive method**
- Random walks typically have:
 - Long periods of apparent trends up or down
 - Sudden/unpredictable chanes in direction
- In a random walk, the forecast are equal to the last observation
 - Future movements up or down are equally likely

Random Walk with Drift Model

If the differenced series has a drift c:

$$y_t - y_{t-1} = c + \epsilon_t$$
 where $\epsilon_t \sim \mathcal{N}(0, \sigma^2)$

- ullet c is the **average change** between consecutive observations
- If c > 0, y_t will tend to drift upwards and vice-versa
- This is the model behind the **drift method**

Second-Order Differencing

Occasionally, the differenced data will not appear stationary and it may be necessary to difference the data a second time:

$$y_t'' = y_t' - y_{t-1}' = (y_t - y_{t-1}) - (y_{t-1} - y_{t-2})$$

- y''_t will have T-2 values
- In practice, it is almost never necessary to go beyond second-order differences

Seasonal Differencing

Definition: Seasonal Difference

A seasonal difference is the difference between an observation and the corresponding observation from the previous year

$$y_t' = y_t - y_{t-m}$$

where m = number of seasons

- For monthly data, m = 12
- For quarterly data, m=4

Differencing in Practice

When both seasonal and first differences are applied:

- It makes no difference which one is done first the result will be the same
- If seasonality is strong, we recommend that seasonal differencing be done first because sometimes the resulting series will be stationary and there will be no need for further first difference
- It is important that, if differencing is used, the differences are **interpretable**: for instance, taking lag 3 differences for yearly data is difficult to interpret

Unit Root Tests

Statistical tests can be used to determine the required order of differencing

- Augmented Dickey Fuller test: null hypothesis is that the data is non-stationary and non-seasonal
- KPSS (Kwiatkowski-Phillips-Schmidt Shin) test: the null hypothesis is that the data is stationary is non-seasonal
- 3 Other tests are available for seasonal data

Backshift Notation

Notation

The backshift notational device, B is used as follows:

$$By_t = y_{t-1}$$

- B operating on y_t has the effect of shifting the data back one period
- Two applications of B to y_t shifts the data back **two periods**

$$B(By_t) = B^2 y_t = y_{t-2}$$

B depends on the period/frequency considered. Shifting monthly data by a year supposes using B^{12}

Combined Effects

Assume that you want to combine a first difference with a seasonal difference:

- First difference: (1 B)
- Seasonal difference: $(1 B^m)$

Then, the backshift operator can be directly combined, as a polynomial, to represent the resulting time series:

$$(1-B)(1-B^m)y_t = (1-B-B^m+B^{m+1})y_t = y_t - y_{t-1} - y_{t-m} + y_{t-m-1}$$