1 | Problem

Suppose $T \in \mathcal{L}(V)$. Prove that $T/(\operatorname{null} T)$ is injective if and only if $(\operatorname{null} T) \cap (\operatorname{range} T) = \{0\}$

2 | **Proof**

2.1 | Condition Manipulation

First, we will rewrite the problem as logical statements for easier manipulation.

2.1.1 | Left condition

The left-hand side "T/(null T) is injective" is equivalent to:

$$\begin{split} (T/U \left(v + U \right) &= 0) \iff (v + U = 0) \\ Tv + U &= \operatorname{null} T \iff v + U = \operatorname{null} T \\ Tv + (\operatorname{null} T) &= \operatorname{null} T \iff v + (\operatorname{null} T) = \operatorname{null} T \\ Tv &\in \operatorname{null} T \iff v \in \operatorname{null} T \\ T^2v &= 0 \iff Tv = 0 \end{split}$$

We can also rewrite the second condition for easier manipulation. The intersection of the null space and the range being 0 is the same as (assuming $w \neq 0$) "if $w \in \operatorname{null} T$ then $w \notin \operatorname{range} T$ " and "if $w \in \operatorname{range} T$ then $w \notin \operatorname{null} T$ ". Note that these are contrapositives of eachother, so we just need to work with the second statement.

Assuming $w \neq 0$, these statements are equivalent:

$$\begin{array}{ccc} (\exists v: Tv = w) & \Longrightarrow & (Tw \neq 0) \\ & T^2v \neq 0 & \forall v \notin (\mathsf{null}\,T) \\ & v \notin \mathsf{null}\,T \implies & T^2v \neq 0 \end{array}$$

Note that this statement, along with its contrapositive, implies the original $(\text{null}\,T)\cap(\text{range}\,T)=\{0\}$ as desired.

Furthermore, keeping in mind that w = Tv and $w \neq 0$,

$$T^2v \neq 0 \implies T(Tv) \neq 0$$

 $\implies Tw \neq 0$
 $\implies w \notin \text{null } T$

which shows the previous relation is an if-and-only-if relation:

$$v \notin \mathsf{null}\, T \iff T^2 v \neq 0$$