1° Slide [1° PARTE]

Conceitos basicos de matematica discreta

Definindo conjuntos

Conjunto: Ideia de agrupamento;

Estrutura que agrupa objetos com base para construir estruturas mais complexas.

Tecla SAP SAP

- € Pertence [Relação de Elemento para Conjunto
- **∉** Não Pertence [Reção de Elemento para Conjunto]
- C Está contido [Relação de Subconjunto para Conjunto]
- ⊄ Não está contido [Relação de Subconjunto para Conjunto]
- ⊃ Contém [Relação de Conjunto para Subconjunto]
- ⊅ Não Contém [Relação de Conjunto para Subconjunto]]

Exemplos

Seja S um conjunto e a um elemento de S.

 $\mathbf{a} \in \mathbf{S}$: a pertence a \mathbf{S}

a ∉ S : <u>a não pertence a S</u>

Está Contido:

```
\{1,2,3\} ⊂ \{1,2,3,4\} : \{1,2,3\} é um subconjunto de \{1,2,3,4\} → Correto \{1,3\} ⊂ \{1,2,3,4\} : \{1,3\} é um subconjunto de \{1,2,3,4\} → Correto \{1\} ⊂ \{1,2,3,4\} : \{1,3\} é um subconjunto de \{1,2,3,4\} → Correto \{1,2,3,4\} : \{\} é um subconjunto de \{1,2,3,4\} → Correto \{1,2,3,4\} ⊃ \{\} : \{1,2,3,4\} contém \{\} → Correto \{\emptyset\} ⊂ \{1,2,3,4\} : \{\emptyset\} é um subconjunto de \{1,2,3,4\} → Errado
```

$\{\emptyset\}$ \rightarrow Conjunto unitário

 $\{\}$ ou $\emptyset \rightarrow$ Conjunto sem elementos [Vázio]

```
2º Slide [2º PARTE]
```

Relação entre conjuntos

Uniao (**U**) : A união dos elementos de dois conjuntos.

Ex.:

```
A = \{1,2,3,u,o\} e B = \{1,h,i,u,j\} então A \cup B = \{1,2,3,u,o,h,i,j\}
```

Intersecção(\cap): Os elementos <u>obrigatóriamente</u> precisam estar em todos os conjuntos da intersecção.

Ex.:

$$A = \{1,2,3,u,o\} e B = \{1,h,i,u,j\} então A \cap B = \{1,u\}$$

Diferença (-) : Retira-se de determinado conjunto a intersecção.

¡WARNING!: A ORDEM IMPORTA PORRA!

Ex.:

$$A = \{1,2,3,u,o\} e B = \{1,h,i,u,j\} então A - B = \{2,3,o\} e B - A = \{h,i,j\}$$

Conjunto Complementar (C) : É preciso da existência de um <u>conjunto universo (U)</u> o qual contém todos os elementos.

Conjunto das Paters (P(x)): Dado um conjunto gerador, o conjunto das partes é gerado por este, analisando as composições dos elementos que o compoem, sejam individuais, duplas, trios, etc, até chegar no próprio conjunto gerador.

Ex.: Seja A conjunto gerador $A = \{1,2,3\}$

$$P(a) = [\{\},\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}]$$

Noções de Lógica

Proposição: É uma construção (sentença, frase) a qual cabe um juizo de valor.

Ex:

1)
$$3+4 < 2 \rightarrow Falso$$

2)
$$3+4 > 2 \rightarrow Verdadeiro$$

Tecla SAP SAP

 \sim (¬) - Negação # Modificação do valor

e (^) - Conjunção

ou (v) – Disjunção

 \rightarrow - Condicional (se)

↔ - Bidondicional (Se e somente se)

Р	Q	P^Q
V	V	V
V	F	F
F	V	F
F	F	F

Tipos de Relações

Funcional: [Reção de um da origem para no máximo um do destino]

Seja R: A → B uma relação. Se R é uma relação funcional então:

$$(\forall a \in A) (\forall b1 \in B) (\forall b2 \in B) (aRb1 \land aRb2 \rightarrow b1 = b2)$$

Portanto, nessa relação R cada elemento de A está relacionada a no máximo um elemento de B.

Na Matriz: No máximo um valor verdadeiro em cada linha da matriz.

No Grafo: Existe no máximo um arco partindo de cada nó.

Injetora: [O inverso da Funcional]

Seja uma relação R: $A \rightarrow B$. R é um injetora se $(\forall b \in B)(\forall a 1 \in A)(\forall a 2 \in A)$ (a1Rb \land a2Rb \rightarrow a1 = a2)

Portanto, nessa relação R, cada elemento de B está associeado a no máximo um elemento de

A.

Na Matriz: Há no máximo um valor lógico verdade para cada coluna.

No Grafo: Existe no máxio um arco chegando em cada nó.

Relação Total [Todo a∈A tem um b∈B]

Seja R: $A \rightarrow B$ uma relação. S e R é uma relação total então: $(\forall a \in A) \ (\exists b \in B) \ (aRb)$

Portanto, nesta relação R, cada elemento da origem A está associado a "pelo menos" um elemento de B.

Na Matriz: Há pelo menos um valor lógico verdadeiro por linha na matriz.

Ex.: Seja A = $\{1,2,3,4\}$ e B = $\{A,E,i\}$ e R = $\{(1;a), (2;e), (3;i); (4;a); (4;e)\}$

R	A	E	i
1	1	1	0
2	0	1	0
3	0	0	1
4	1	1	0

Relação Sobrejetora

Seja R: A \rightarrow B numa relação. Se R é uma relação sobrejetora então: $(\forall b \in B)(\exists a \in A)(bRa)$

Portanto, nessa relação R, cada elemento do destino B esta associado a pelo menos um elemento na origem A.

Na matriz: Há pelo-menos um valor lógico verdadeiro para coluna na matriz.

Ex.: 1) =: $A \rightarrow A$ AxB : $A \rightarrow B$

Monomorfismo

Seja R: A → B uma relação. Para R ser uma monorelação, é preciso satisfazer simultaneamente:

- → Total (Pelo menos uma por linha)
- → Injetora (No máximo uma por linha)

Ex.:

=	Α	E	I
A	1	0	0
E	0	1	0
I	0	0	1

Epimorfismo

Seja R:A → B uma relação. Para que R seja uma epirrelação é preciso que seja simultaneamente:

- → Sobrejetora (Pelo menos um valor lógico verdadeiro por coluna)
- → Funcional (Mínimo um valor verdadeiro por linha)

R	1	2	3
1	0	1	0
2	1	0	0
3	0	0	1

Isomorfismo: Top da baile.

Seja R: A → B uma relação

Para R ser uma relação isomorfica, é preciso satisfazer:

- → Total
- → Sobrejetore
- → Funcional
- → Injetora

Seila qual Slide

Endorrelação: Uma endorrelação é uma relação binária interna de um conjunto. (dança do passarinho). Também pode ser chamada "autorrelação"

 $Ex. : A = \{1,2,3\}$

A; =	1	2	3
1	1	0	0
2	0	1	0
3	0	0	1

Propriedades da Endorrelação

Relfexiva: É uma propriedade na qual todo elemento do conjunto relaciona-se consigo mesmo, ou seja:

 $(\forall a \in A) (a R a)$

Na matriz: A diagonal principal só apresenta valores lógicos verdadeiros.

No grafo: Qualquer nodo possui arco (ou aresta) com origem e destino nele mesmo

Ex.: (A; =)

Irreflexiva: $(\forall a \in A) \sim (aRa)$

Na matriz: A diagonal principal da matriz só apresenta valores lógicos falso No grafo: Não tem dança do passarinho.

Relação Simétrica: Seja A um conjunto e R uma endorrelação em A. R será simétrica se:

$$(\forall a \in A)(\forall b \in A) (aRb \land bRa)$$

Matriz: A metade acima da diagonal principal é igual a metade de baixo, célula a célula. No grafo: Entre dois nodos não há nenhuma seta, ou há duas setas que os ligam.

Ex.: X;=

Relação Antissimétrica: Seja A um conjunto e R uma endorrelação em A. R será assimétrica se:

$$(\forall a \in A)(\forall b \in A) (aRb1 \land bRa \neg (bRa))$$
ou
 $(\forall a \in A)(\forall b \in A) (aRb \land bRa \rightarrow a = b)$

Na matriz: A metade aciam da diagonal principal é diferente da metade de baixo, célula a célula.

No grafo: Entre 2 nodos há no máximo uma seta.

Relação Transitiva: Seja A um conjunto e R uma endorrelação em A.

R será transitiva se:

$$(\forall a \in A) (\forall b \in A) (\forall c \in A) (aRb \land bRc \rightarrow aRc)$$

No grafo: Há a ideia de triangularidade entre 3 nodos, tal qual noção de vetor resultante.

Ex.:

$$A = \{1,2,3\} R = \{(1;2),(1;3),(2;3)\}$$