An inner model with a Woodin from the Zipper Lemma

With the Zipper Lemma, we can get to the situiation where $L(V_{\delta}) \models "\delta$ is Woodin", but we might have that choice does not hold in $L(V_{\delta})$. As choice holds in V_{δ} , the only obstruction to choice there is the possible nonexistence of a wellorder of V_{δ} . There is a canonical forcing for adding such a wellorder. We show that this forcing does not destroy the Woodinness of δ . As we work in a choiceless context, Woodinness will mean here to be Woodin for all $A \subseteq V_{\delta}$ and not just all $A \subseteq \delta$ (i.e. there is $\kappa < \delta$ so that for all $\lambda < \delta$ there is an appropriate elementary embedding j with $j(A) \cap V_{\lambda} = A \cap V_{\lambda}$). Note that in the situation of the Zipper Lemma, this (in a choiceless context) stronger version of Woodinness is true in $L(V_{\delta})$.

Theorem 1. Assume that δ is A-Woodin for all $A \in V_{\delta+1}^{L(V_{\delta})}$. Then there is a forcing extension of $L(V_{\delta})$ in which δ is Woodin and choice holds.

First we prove a lemma.

Lemma 2. Suppose δ is A-Woodin for some $A \subseteq \delta$. Then there is $\kappa < \delta - A$ -strong and $f : \kappa \to V_{\kappa}$ so that for any $\kappa < \lambda < \delta$ and $x \in V_{\lambda}$ there is a $\lambda - A$ -strong embedding j with critical point κ so that $j(f)(\kappa) = x$.

Proof. This is essentially the construction of a Laver function for a supercompact. Fix a wellorder \langle of V_{δ} . Define $g: \delta \to V_{\delta}$ by induction as follows: $g(\alpha) = 0$ unless α is $\lambda - A$ -strong for some $\lambda < \delta$ and there is $x \in V_{\lambda}$ so that no λ – A-strong embedding i with critical point α satisfies $i(g \upharpoonright \alpha)(\alpha) = x$. In that case choose λ minimal and let $g(\alpha)$ be the \prec -minimal $x \in V_{\lambda}$ with that property. Now there is a club of cardinals α so that $\operatorname{ran}(g \upharpoonright \alpha) \subseteq V_{\alpha}$. As δ is Woodin, we can find a κ in this club that is $<\delta$ – A-strong. I claim that κ and $f = g \upharpoonright \kappa$ are as desired. Suppose this fails. Let $g(\kappa) = x$ and λ least with $x \in V_{\lambda}$. Let $j: V \to M$ be a $(|V_{\lambda}| + \omega) - A$ -strong embedding with $\operatorname{crit}(j) = \kappa$. Observe that $j(f) \upharpoonright \kappa = f$ as $\operatorname{ran}(f) \subseteq V_{\kappa}$. It follows that in M, there is no $\lambda - j(A)$ —strong embedding i with critical point κ so that $i(j(f) \upharpoonright \kappa)(\kappa) = x$ and thus the definition of j(f) at stage κ is non-trivial. Lets look at $y = j(f)(\kappa)$ and μ least with $y \in V_{\mu}$. Clearly $\mu \leq \lambda$. Furthermore we get that there can be no μ -A-strong embedding i at κ in V with $i(f)(\kappa) = y$, otherwise an appropriate extender witnessing this would be in M and be $\mu - j(A)$ -strong there. Consider E the $(\kappa, |V_{\mu}|)$ -extender derived from j. Let $i: V \to Ult(V, E) = N$ be the induced elementary embedding and note that i is μ -A-strong. Furthermore,

$$k: N \rightarrow M, k([h, a]_E) = j(h)(a)$$

is an elementary embedding with $\operatorname{crit}(k) \geqslant \mu$ and $k \circ i = j$. It is clear that $k \upharpoonright V_{\mu} = \operatorname{id} \upharpoonright V_{\mu}$. But then $i(f)(\kappa) = k(i(f)(\kappa)) = j(f)(\kappa) = y$, contradiction.

Corollary 3. Suppose δ is A-Woodin for some $A \subseteq \delta$. Then there is $\kappa < \delta$ that is $<\delta$ -A-strong and a function $p:\kappa \to V_{\kappa}$ so that for any $\lambda < \delta$ and any $q:\lambda \to V_{\lambda}$ that extends p, there is a λ -A-strong embedding j at κ with $j(p) \upharpoonright \lambda = q$.

Proof. Let $\kappa < \delta$ and $f : \kappa \to V_{\kappa}$ as in the lemma. Let p be the concatenation of all $f(\alpha)$ whenever $f(\alpha)$ is a sequence in V_{κ} . Suppose λ and q are as in the claim. Find a $\lambda - A$ -strong embedding j at κ so that $j(f)(\kappa)$ is the sequence induced by $q \upharpoonright [\kappa, \lambda)$. By elementarity, $j(p) \upharpoonright \lambda = q$.

Proof. (of the Theorem) Write $L(V_{\delta}) = M$. The forcing we use is

$$\mathbb{P} = \{ f \mid f : \alpha \to V_{\delta}, \alpha < \delta \}$$

Let G be \mathbb{P} -generic over M. Clearly \mathbb{P} adds a wellorder of V_{δ} and it is easy to see that $M[G] \models ZFC$. It remains to show that δ is still Woodin in M[G]. Let $A \subseteq \delta$ in M[G]. We can pick a "nice-enough" name \dot{A} for A in M, that is one which is of the form

$$\{(\check{\alpha}, p) \mid \alpha < \delta \land p \in D_{\alpha}\}$$

where $D_{\alpha} \subseteq \mathbb{P}$ is, say, open. (Just take $D_{\alpha} = \{ p \in \mathbb{P} \mid p \Vdash \check{\alpha} \in \dot{A}' \}$ where \dot{A}' is any name for A).

Claim 4. For any $\lambda < \delta$ there is $\gamma_0 < \delta$ so that for all $\gamma_0 \leq \gamma < \delta$ we have $A \cap \lambda = (\dot{A} \cap V_{\gamma})^G \cap \lambda$.

Proof. The reason that some $\alpha < \lambda$ is in A is that eventually G runs into the open set D_{α} , thus we can take γ_0 large enough so that V_{γ_0} contains a witness p_{α} for this whenever $\alpha \in A \cap \lambda$.

Consider

$$D = \{ p \in \mathbb{P} \mid \text{dom}(p) \text{ is } < \delta - \dot{A} - \text{strong and } p \text{ is as in the corollary} \}$$

Note that in the corollary, we can make an initial segment of p anything we want. This shows that D is dense, so pick some $p \in G \cap D$ and let $\kappa = \text{dom}(p)$.

Claim 5. For any $\lambda < \delta$ there is a λ -strong embedding $j : M[G] \to N$ with $\operatorname{crit}(j) = \kappa$ and $A \cap \lambda \subseteq j(A) \cap \lambda$.

Proof. In M, pick an extender $E \in V_{\delta}$ so that the induced embedding $i: M \to W$ satisfies:

- 1. $\operatorname{crit}(i) = \kappa$
- 2. i is $\gamma \dot{A}$ -strong, where $\lambda < \gamma$ is as in Claim 4

3.
$$i(p) \upharpoonright \gamma = \bigcup G \upharpoonright \gamma$$

As $V_{\delta}^{M[G]} = V_{\delta}^{M}$, E is an extender in M[G] and the induced embedding $i_{G}: M[G] \to N$ extends i and still satisfies the above properties. Let $H = i_{G}(G)$. As $p \in G$ and thus $j(p) \in H$, we have by 3. that $\bigcup G \upharpoonright \gamma = \bigcup H \upharpoonright \gamma$. This implies:

$$A \cap \lambda = \dot{A}^G \cap \lambda = (\dot{A} \cap V_{\gamma})^G \cap \lambda = (i_G(\dot{A}) \cap V_{\gamma})^G \cap \lambda$$

$$\subseteq (i_G(\dot{A}) \cap V_{\gamma})^H \cap \lambda \subseteq i_G(\dot{A})^H \cap \lambda = i_G(A) \cap \lambda$$

This shows that if we would do the same proof all over, not just with the name \dot{A} , but with a similar "nice-enough" name \dot{C} for the complement of A, in the end we would get $A \cap \lambda \subseteq i_G(A) \cap \lambda$ as well as $(\delta \backslash A) \cap \lambda \subseteq i_G(\delta \backslash A) \cap \lambda$. \Box This clearly gives $A \cap \lambda = i_G(A) \cap \lambda$.