$HW5_YQ$

Youqing Xiang
July 16, 2016

Data Exploration

Variable	NAs	Percent_NAs
TARGET	0	0.000
FixedAcidity	0	0.000
VolatileAcidity	0	0.000
CitricAcid	0	0.000
ResidualSugar	616	0.048
Chlorides	638	0.050
FreeSulfurDioxide	647	0.051
${\bf Total Sulfur Dioxide}$	682	0.053
Density	0	0.000
рН	395	0.031
Sulphates	1210	0.095
Alcohol	653	0.051
LabelAppeal	0	0.000
AcidIndex	0	0.000
STARS	3359	0.263

This dataset includes 12795 observations with 15 variables (Index columns excluded) in total. As the table shows above, there are a fair number of NAs and STARS variable has the most NAs.

Missingness Map

The above matrix of the NAs doesn't show any pattern. So, we could consider to replace the NA values with certain method to avoid potentially losing a lardge amount to data if we just simply drop off the NA values during data preparation process.

Since STARS variable has the most NAs, which accounts for 26.3% of data points, it is worthwhile to check how STARS variable NAs affect other variables, especially the TARGET variable. Here I created a new variable: STARS_Present, which is a categorical variable, equals to 0 when STARS value is missing and 1 when STARS value is present. And then I show density plots for each variable grouped by STARS_Present.

From the above density plots, we can see that STARS variable NAs have big effect on TARGET distribution but no obvious effects on other variables. And we can also conclude that STARS variable NAs is actually predictive of the target. Overall, this part of analysis suggests us that we should treat STARS variable NAs as category variable.