

Central University

Allahabad Central University (ACU)

Class & Div: 12 A

Prayagraj, Uttar Pradesh India

TEACHING PLAN

Programme: EEGG Academic Year: 2024-2025

Course & Code: T:EG-2024 Bio -

Course Type: Full Class Hrs/Week: 4 Credits: 10 **Allotted Lectures: 20**

Course Objectives:

This is belonging to course objective

Course Outcomes:

CO-> This is my description

Programme Outcomes (Pos) addressed in this course

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1							
CO2							
CO3							
CO4							
CO5							

Syllabus:

Lecture	Contents Schedule	Execution	CO
No.	Date	Date	Mapping

UNIT I Benzene and its derivatives:

01	1.1Analytical synthetic and other evidences in the derivation of structure of benzene	08/02/2024	27/07/2024	CO1
02	1.2 Orbital picture of benzene	09/02/2024	27/07/2024	CO1
03	1.3 resonance in benzene Resonance theory Modern theory of aromaticity	10/02/2024	27/07/2024	CO1
04	1.4Huckels rule	10/02/2024	27/07/2024	CO1
05	1.5 Reactions of benzene: Aromatic Electrophilic Substitution reactions	10/02/2024	27/07/2024	CO1
06	1.6Mechanism of ArSE2	10/02/2024	27/07/2024	CO1
07	1.7Rate and Orientation of Ar SE2	10/02/2024	27/07/2024	CO1
08	1.8Nitration, Sulphonation and halogenation of benzene and substituted benzene	10/02/2024	27/07/2024	CO1
09	1.9 Friedel craft alkylation and acylation reactions Structure and uses of DDT Saccharin BHC and Chloramine	10/02/2024	27/07/2024	CO1
10	1.10 Friedel craft alkylation and acylation reactions Structure and uses of DDT Saccharin BHC and Chloramine	10/02/2024	27/07/2024	CO1

UNIT II: Phenols aromatic amines aromatic acids

11	2.1 Phenols Acidity of phenols effect of substituents on acidity	10/02/2024	27/07/2024	CO2
12	2.2 qualitative tests of phenols	10/02/2024	27/07/2024	CO2
13	2.3Structure and uses of phenol cresols resorcinol naphthols	10/02/2024	27/07/2024	CO2
14	2.4b)Aromatic amines Basicity of amines	10/02/2024	27/07/2024	CO2
15	2.5Effect of substituents on basicity	10/02/2024	27/07/2024	CO2

16	2.6 synthetic uses of aryl diazonium salts	10/02/2024	27/07/2024	CO2
17	2.7Aromatic Acids Acidity	10/02/2024	27/07/2024	CO2
18	2.8effect of substituents on acidity	10/02/2024	27/07/2024	CO2
19	2.9important reactions of benzoic acid	10/02/2024	27/07/2024	CO2
20	2.10important reactions of benzoic acid	10/02/2024	27/07/2024	CO2

UNIT III Fats and Oils Fatty acids reactions.

21	3.1Fatty acids reactions.	10/02/2024	27/07/2024	CO3
22	3.2Hydrolysis Hydrogenation	10/02/2024	27/07/2024	CO2
23	3.3Saponification and Rancidity of oils Drying oils	10/02/2024	27/07/2024	CO3
24	3.4Saponification and Rancidity of oils Drying oils	10/02/2024	27/07/2024	CO3
25	3.5Analytical constants Acid value Saponification value	10/02/2024	27/07/2024	CO3
26	3.6significance and principle involved in their determination- Ester value	10/02/2024	27/07/2024	CO3
27	3.7 significance and principle involved in their determination Iodine value	10/02/2024	27/07/2024	CO3
28	3.8 Reichert Meissl (RM) value – significance and principle involved in their determination.	10/02/2024	27/07/2024	CO3
29	3.9significance and principle involved in their determination- Acetyl value	10/02/2024	27/07/2024	CO3

UNIT IV Polynuclear hydrocarbons

30	4.1Synthesis reactions of Naphthalene	10/02/2024	27/07/2024	CO1
31	4.2Synthesis reactions of Anthracene	10/02/2024	27/07/2024	CO1
32	4.3Synthesis reactions of Phenanthrene	10/02/2024	27/07/2024	CO1
33	4.4Structure and medicinal uses of Naphthalene and their derivatives	10/02/2024	27/07/2024	CO1
34	4.5Structure and medicinal uses of Phenanthrene and their derivatives	10/02/2024	27/07/2024	CO1
35	4.6Structure and medicinal uses of Anthracene and their derivatives	10/02/2024	27/07/2024	CO1

UNIT V Cycloalkanes

36	5.1Stabilities – Baeyers strain theory	10/02/2024	27/07/2024	CO4
37	5.2limitation of Baeyers strain theory	10/02/2024	27/07/2024	CO4
38	5.3Coulson and Moffitts modification	10/02/2024	27/07/2024	CO4
39	5.4Sachse Mohr's theory	10/02/2024	27/07/2024	CO4
40	5.5Reactions of cyclopropane and Cyclo-butane only.	10/02/2024	27/07/2024	CO4

Web Source References:

This is web reference

Books References:

This is book reference