28/03/2025 - Matematicas discretas - Ude@ \ WV 14-16

1. Avisos

2. Repaso

3. Enfoque axiomatico

Construcción de nuevas equivalencias lógicas

- Es posible demostrar que dos expresiones son lógicamente equivalentes desarrollando una serie de pasos que conlleven a enunciados lógicamente equivalentes mediante uso de las equivalencias de las tablas anteriores.
- Para probar que $A \equiv B$, producimos una serie de equivalencias empezando con A y finalizando con B.

$$A \equiv A_1$$

 \vdots
 $A_n \equiv B$

Equivalencias logicas

Nombre	Equivalencia lógica	
Conmutatividad	$P \wedge Q \equiv Q \wedge P$	$P \vee Q \equiv Q \vee P$
Asociatividad	$P \wedge (Q \wedge R) \equiv (P \wedge Q) \wedge R$	$P \lor (Q \lor R) \equiv (P \lor Q) \lor R$
Distributividad	$P \wedge (Q \vee R) \equiv (P \wedge Q) \vee (P \wedge R)$	$P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$
Idempotencia	$P \wedge P \equiv P$	$P \lor P \equiv P$
Doble negación	$\neg(\neg P) \equiv P$	
Leyes de Morgan	$\neg (P \land Q) \equiv \neg P \lor \neg Q$	$\neg (P \lor Q) \equiv \neg P \land \neg Q$
Identidad	$P \wedge V \equiv P$	$P \vee F \equiv P$
Dominación	$P \wedge F \equiv F$	$P \lor V \equiv V$
Absorción	$P \wedge (P \vee Q) \equiv P$	$P \lor (P \land Q) \equiv P$
Complemento	$P \wedge \neg P \equiv \mathbf{F}$	$P \vee \neg P \equiv V$
Implicación	$P \to Q \equiv \neg P \lor Q$	
Contrarrecíproco	$P \to Q \equiv \neg Q \to \neg P$	
Equivalencia	$P \leftrightarrow Q \equiv (P -$	$Q \land Q \land Q \rightarrow P$

A = B	
dimiento	Justificacion
= A, V	(Reglas
= AzV	\leq
•	/

Nombre	Equivalencia lógica	
Conmutatividad	$P \wedge Q \equiv Q \wedge P$	$P \vee Q \equiv Q \vee P$
Asociatividad	$P \wedge (Q \wedge R) \equiv (P \wedge Q) \wedge R$	$P \lor (Q \lor R) \equiv (P \lor Q) \lor R$
Distributividad	$P \wedge (Q \vee R) \equiv (P \wedge Q) \vee (P \wedge R)$	$P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$
Idempotencia	$P \wedge P \equiv P$	$P \lor P \equiv P$
Doble negación	$\neg(\neg P) \equiv P$	
Leyes de Morgan	$\neg (P \land Q) \equiv \neg P \lor \neg Q$	$\neg (P \lor Q) \equiv \neg P \land \neg Q$
Identidad	$P \wedge V \equiv P$	$P \lor F \equiv P$
Dominación	$P \wedge F \equiv F$	$P \lor V \equiv V$
Absorción	$P \wedge (P \vee Q) \equiv P$	$P \lor (P \land Q) \equiv P$
Complemento	$P \wedge \neg P \equiv F$	$P \vee \neg P \equiv V$
Implicación	$P \rightarrow Q \equiv$	$\equiv \neg P \lor Q$
Contrarrecíproco	$P \rightarrow Q \equiv$	$\neg Q \rightarrow \neg P$
Equivalencia	$P \leftrightarrow Q \equiv (P -$	$\rightarrow Q) \land (Q \rightarrow P)$

Ejemplos

- Demuestre mediante el uso de identidades lógicas demuestre la ley de la absorción para el Y
- 2. Demuestre que $\neg (p \lor (\neg p \land q))$ es lógicamente equivalente a $\neg p \land \neg q$
- 3. Pruebe la siguiente equivalencia lógica: $\neg(\neg p \land q) \land (p \lor q) \equiv p$
- 4. Demuestre que $(p \land q) \rightarrow (p \lor q)$ es una tautología.
- 5. Considerar el siguiente argumento: "Si la ley no fue aprobada, entonces la constitución del país queda sin modificaciones. Si la constitución del país queda sin modificaciones no se puede elegir nuevos diputados. O se eligen nuevos diputados o el informe del presidente del país se retrasará. El informe no se retrasó un mes. Por lo que la ley fue aprobada". Verificar su validez por la prueba formal de validez.

Solucion

$$P \wedge (P \vee Q) = P$$

$$A \equiv B$$

	74	
Nombre	Equivalencia lógica	
Conmutatividad	$P \wedge Q \equiv Q \wedge P$	$P \lor Q \equiv Q \lor P$
Asociatividad	$P \wedge (Q \wedge R) \equiv (P \wedge Q) \wedge R$	$P \lor (Q \lor R) \equiv (P \lor Q) \lor R$
Distributividad	$P \wedge (Q \vee R) \equiv (P \wedge Q) \vee (P \wedge R)$	$PV(Q \land R) \equiv (PVQ) \land (PVR)$
Idempotencia	$P \wedge P \equiv P$	$P \lor P \equiv P$
Doble negación	$\neg(\neg P) \equiv P$	
Leyes de Morgan	$\neg (P \land Q) \equiv \neg P \lor \neg Q$	$\neg (P \lor Q) \equiv \neg P \land \neg Q$
Identidad	$P \wedge V \equiv P$	$P \lor F \equiv P$
Dominación	$P \wedge F \equiv F$	$P \lor V \equiv V$
Absorción	$P \wedge (P \vee Q) \equiv P$	$P \lor (P \land Q) \equiv P$
Complemento	$P \wedge \neg P \equiv F$	$P \vee \neg P \equiv V$
Implicación	$P \to Q \equiv \neg P \lor Q$	
Contrarrecíproco	$P \to Q \equiv \neg Q \to \neg P$	
Equivalencia	$P \leftrightarrow Q \equiv (P -$	$Q \cap Q \cap Q \rightarrow P$

Proce dirmiento

$P \wedge (P \circ Q) \equiv (P \wedge P) \vee (P \wedge Q)$ $\equiv P \vee (P \wedge Q)$ $\equiv (P \wedge V) \vee (P \wedge Q)$ $\equiv P \wedge (V \vee Q)$ $\equiv P \wedge V$ $\equiv P$

Justificación

Ley distributiva para el *\frac{1}{2}

Ley de Idempotencia para el *\frac{1}{2}

Ley de identidad para el *\frac{1}{2}

Ley distributiva para el *\frac{1}{2}(I \in D)

Dominación para el *\frac{1}{2}

Identidad para el *\frac{1}{2}

· PA(PVQ)=P

2. $\neg (p \vee (\neg p \wedge q)) \equiv \neg p \wedge \neg q$

Nombre	Equivalencia lógica	
Conmutatividad	$P \wedge Q \equiv Q \wedge P$	$P \lor Q \equiv Q \lor P$
Asociatividad	$P \wedge (Q \wedge R) \equiv (P \wedge Q) \wedge R$	$P \lor (Q \lor R) \equiv (P \lor Q) \lor R$
Distributividad	$P \wedge (Q \vee R) \equiv (P \wedge Q) \vee (P \wedge R)$	$P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$
Idempotencia	$P \wedge P \equiv P$	$P \lor P \equiv P$
Doble negación	$\neg(\neg P) \equiv P$	
Leyes de Morgan	$\neg (P \land Q) \equiv \neg P \lor \neg Q$	$\neg (P \lor Q) \equiv \neg P \land \neg Q$
Identidad	$P \wedge V \equiv P$	$P \vee F \equiv P$
Dominación	$P \wedge F \equiv F$	$P \lor V \equiv V$
Absorción	$P \wedge (P \vee Q) \equiv P$	$P \lor (P \land Q) \equiv P$
Complemento	$P \wedge \neg P \equiv F$	$P \vee \neg P \equiv V$
Implicación	$P \to Q \equiv \neg P \lor Q$	
Contrarrecíproco	$P \to Q \equiv \neg Q \to \neg P$	
Equivalencia	$P \leftrightarrow Q \equiv (P -$	$Q \rightarrow Q \land (Q \rightarrow P)$

Proce dimiento

Justificación

 $\frac{\neg (p \lor (\neg p \land q))}{\equiv \neg p \land \neg (\neg p \land q)}$ $\equiv \neg p \land (\neg p \lor \neg q)$ $\equiv (\neg p \land p) \lor (\neg p \land \neg q)$ $\equiv F \lor (\neg p \land \neg q)$ $\equiv \neg p \land \neg q$

Ley de Morgan para el E Ley de Morgan para el E Doble negación Prop. distributiva para el E Complemento para el E Identidad para el E

:. 7 (pv (7p /9)) = 7p /79

3. $7(7P \wedge 9) \wedge (P \vee Q) \equiv P$ $(P \circ Q) \wedge (P \circ R) \equiv P \vee (Q \wedge R)$

Nombre	V Equivalencia lógica	
Conmutatividad	$P \wedge Q \equiv Q \wedge P$	$P \lor Q \equiv Q \lor P$
Asociatividad	$P \wedge (Q \wedge R) \equiv (P \wedge Q) \wedge R$	$P \lor (Q \lor R) \equiv (P \lor Q) \lor R$
Distributividad	$P \wedge (Q \vee R) \equiv (P \wedge Q) \vee (P \wedge R)$	$P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$
Idempotencia	$P \wedge P \equiv P$	$P \lor P \equiv P$
Doble negación	$\neg(\neg P) \equiv P$	
Leyes de Morgan	$\neg (P \land Q) \equiv \neg P \lor \neg Q$	$\neg (P \lor Q) \equiv \neg P \land \neg Q$
Identidad	$P \wedge V \equiv P$	$P \lor F \equiv P$
Dominación	$P \wedge F \equiv F$	$P \lor V \equiv V$
Absorción	$P \wedge (P \vee Q) \equiv P$	$P \lor (P \land Q) \equiv P$
Complemento	$P \wedge \neg P \equiv F$	$P \lor \neg P \equiv V$
Implicación	$P \rightarrow Q \equiv$	$\exists \neg P \lor Q$
Contrarrecíproco	$P \rightarrow Q \equiv$	$\neg Q \rightarrow \neg P$
Equivalencia	$P \leftrightarrow Q \equiv (P -$	$\rightarrow Q) \land (Q \rightarrow P)$

Identidad &

Proce dimiento

Justificación

 $\frac{1}{1}(1p \wedge q) \wedge (p \vee q) = (\pi(\pi p) \vee \pi q) \wedge (p \vee q)$ $= (p \vee \pi q) \wedge (p \vee q)$ $= p \vee (\pi q \wedge q)$ $= p \vee F$

 $\equiv p$

Ley de Morgan para el IL

Doble negación

Prop. distributiva (I (I = D)

Complemento IL

 $4. (p \wedge q) \rightarrow (p \vee q) \equiv 1$

Nombre	Equivalencia lógica	
Conmutatividad	$P \wedge Q \equiv Q \wedge P$	$P \lor Q \equiv Q \lor P$
Asociatividad	$P \wedge (Q \wedge R) \equiv (P \wedge Q) \wedge R$	$P \lor (Q \lor R) \equiv (P \lor Q) \lor R$
Distributividad	$P \wedge (Q \vee R) \equiv (P \wedge Q) \vee (P \wedge R)$	$P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$
Idempotencia	$P \wedge P \equiv P$	$P \lor P \equiv P$
Doble negación	$\neg(\neg P) \equiv P$	
Leyes de Morgan	$\neg (P \land Q) \equiv \neg P \lor \neg Q$	$\neg (P \lor Q) \equiv \neg P \land \neg Q$
Identidad	$P \wedge V \equiv P$	$P \lor F \equiv P$
Dominación	$P \wedge F \equiv F$	$P \lor V \equiv V$
Absorción	$P \wedge (P \vee Q) \equiv P$	$P \lor (P \land Q) \equiv P$
Complemento	$P \wedge \neg P \equiv F$	$P \lor \neg P \equiv V$
Implicación	$P \rightarrow Q \equiv$	$= \neg P \lor Q$
Contrarrecíproco	$P \to Q \equiv \neg Q \to \neg P$	
Equivalencia	$P \leftrightarrow O \equiv (P -$	$\rightarrow O) \land (O \rightarrow P)$

Justificación

Proce dimiento
$(p \wedge q) \rightarrow (p \vee q) \equiv \tau (p \wedge q) \vee (p \vee q)$
=(7pvg)v(pvg)
= 7p v p v 7qv q
= (-p vp) v (-q v q)
₹ V

Implicación
Ley de Morgan It
Prop. communitativa O
Prop. asociativa para el o
Complemento para el o
Il de Vy V