Enumerative invariants and birational geometry Spring 2024

Notes by Patrick Lei

Lectures by Various

Columbia University

Disclaimer

These notes were taken during the lectures using neovim. Any errors are mine and not the speakers'. In addition, my notes are picture-free (but will include commutative diagrams) and are a mix of my mathematical style and that of the lecturers. Also, notation may differe between lecturers. If you find any errors, please contact me at plei@math.columbia.edu.

Acknowledgements

I would like to thank Shaoyun Bai for co-organizing the seminar with me.

Seminar Website: https://math.columbia.edu/~plei/s24-birat.html

Contents

Contents • 2

- 1 Preliminaries 3
 - 1.1 Givental formalism (Patrick, Feb 01) 3
 - 1.1.1 Introduction 3
 - 1.1.2 Frobenius manifolds 4
 - 1.1.3 Givental formalism 6
 - 1.1.4 Quantization 8

Preliminaries

1.1 Givental formalism (Patrick, Feb 01)

1.1.1 Introduction Let X be a smooth projective variety. Then for any $g, n \in \mathbb{Z}_{\geqslant 0}$, $\beta \in H_2(X,\mathbb{Z})$, there exists a moduli space $\overline{\mathbb{M}}_{g,n}(X,\beta)$ (Givental's notation is $X_{g,n,\beta}$) of *stable maps* $f: C \to X$ from genus-g, n-marked prestable curves to X with $f_*[C] = \beta$. It is well-known that $\overline{\mathbb{M}}_{g,n}(X,\beta)$ has a virtual fundamental class

$$[\overline{\mathbb{M}}_{g,n}(X,\beta)]^{vir} \in A_{\delta}(\overline{\mathbb{M}}_{g,n}(X,\beta)), \qquad \delta = \int_{\beta} c_1(X) + (dim\,X - 3)(1-g) + 3.$$

In addition, there is a universal curve and sections

$$\mathfrak{C} \xrightarrow{\pi} \overline{\mathfrak{M}}_{g,n}(X,\beta).$$

In this setup, there are tautological classes

$$\psi_{\mathfrak{i}} \coloneqq c_1(\sigma_{\mathfrak{i}}^*\omega_\pi) \in H^2(\overline{\mathbb{M}}_{g,n}(X,\beta)).$$

This allows us to define individual Gromov-Witten invariants by

$$\left\langle \tau_{\alpha_1}(\varphi_1) \cdots \tau_{\alpha_n}(\varphi_n) \right\rangle_{g,n,\beta}^X = \int_{[\overline{\mathcal{M}}_{g,n}(X,\beta)]^{vir}} \prod_{i=1}^n ev_i^* \, \varphi_i \cdot \psi_i^{\alpha_i}.$$

These invariants satisfy various relations. The first is the string equation:

$$\left\langle \tau_0(1)\tau_{\alpha_1}(\varphi_1)\cdots\tau_{\alpha_n}(\varphi_n)\right\rangle_{g,n+1,\beta}^X = \sum_{i=1}^n \left\langle \tau_{\alpha_i-1}(\varphi_i)\prod_{j\neq i}\tau_{\alpha_j}(\varphi_j)\right\rangle_{g,n,\beta}^X.$$

The next is the dilaton equation:

$$\left\langle \tau_1(1)\tau_{\alpha_1}(\varphi_1)\cdots\tau_{\alpha_n}(\varphi_n)\right\rangle_{q,n+1,\beta}^X = (2g-2+n)\left\langle \tau_{\alpha_1}(\varphi_1)\cdots\tau_{\alpha_n}(\varphi_n)\right\rangle_{q,n,\beta}^X.$$

Finally, we have the *divisor equation* when one insertion is a divisor $D \in H^2(X)$:

$$\begin{split} \left\langle \tau_0(D) \tau_{\alpha_1}(\varphi_1) \cdots \tau_{\alpha_n}(\varphi_n) \right\rangle_{g,n+1,\beta}^X = & \left(\int_{\beta} D \right) \cdot \left\langle \tau_{\alpha_1}(\varphi_1) \cdots \tau_{\alpha_n}(\varphi_n) \right\rangle_{g,n,\beta}^X \\ & + \sum_{i=1}^n \left\langle \tau_{\alpha_i-1}(\varphi_i \cdot D) \prod_{j \neq i} \tau_{\alpha_j}(\varphi_j) \right\rangle_{g,n,\beta}^X. \end{split}$$

It is often useful to package Gromov-Witten invariants into various generating series.

Definition 1.1.1. The *quantum cohomology* $QH^*(X)$ of X is defined by the formula

$$(a \star_t b, c) := \sum_{\beta, n} \frac{Q^{\beta}}{n!} \langle a, b, c, t, \dots, t \rangle_{0,3+n,\beta}^X$$

for any $t \in H^*(X)$. This is a commutative and associative product.

The *small quantum cohomology* is obtained by setting t=0 and the ordinary cohomology is obtained by further setting Q=0.

Remark 1.1.2. Convergence of the formula does not hold in general, so quantum cohomology needs to be treated as a formal object.

Definition 1.1.3. Let ϕ_i be a basis of $H^*(X)$ and ϕ^i be the dual basis. Then the *J-function* of X is the cohomology-valued function

$$J_X(t,z) := z + t + \sum_{i} \sum_{n,\beta} \frac{Q^{\beta}}{n!} \left\langle \frac{\varphi_i}{z - \psi}, t, \dots, t \right\rangle_{0,n+1,\beta}^X \varphi^i.$$

Definition 1.1.4. The *genus-0 GW potential* of X is the (formal) function

$$\mathfrak{F}^{X}(\mathsf{t}(z)) = \sum_{\beta,n} \frac{Q^{\beta}}{n!} \langle \mathsf{t}(\psi), \dots, \mathsf{t}(\psi) \rangle_{0,n,\beta}^{X}.$$

The associativity of the quantum product is equivalent to the PDE

$$\sum_{e,f} \mathfrak{F}_{abe}^{X} \eta^{ef} \mathfrak{F}_{cdf} = \sum_{e,f} \mathfrak{F}_{ade}^{X} \eta^{ef} \mathfrak{F}_{bcf}^{X}$$

for any a, b, c, d, which are known as the *WDVV equations*. Here, we choose coordinates on $H^*(X)$ and set z = 0 (only consider primary insertions). In addition, set η_{ef} to be the components of the Poincaré pairing and let η^{ef} be the inverse matrix.

1.1.2 Frobenius manifolds A Frobenius manifold can be thought of as a formalization of the WDVV equations.

Definition 1.1.5. A *Frobenius manifold* is a complex manifold M with a flat symmetric bilinear form $\langle -, - \rangle$ (meaning that the Levi-Civita connection has zero curvature) on TM and a holomorphic system of (commutative, associative) products \star_t on T_tM satisfying:

1. The unit vector field **1** is flat: $\nabla \mathbf{1} = 0$;

- 2. For any t and $a, b, c \in T_t M$, $\langle a \star_t b, c \rangle = \langle a, b \star_t c \rangle$;
- 3. If $c(u,v,w) := \langle u \star_t v, w \rangle$, then the tensor $(\nabla_z c)(u,v,w)$ is symmetric in $u,v,w,z \in T_t M$.

If there exists a vector field E such that $\nabla \nabla E = 0$ and complex number d such that:

- 1. $\nabla \nabla E = 0$;
- 2. $\mathcal{L}_{E}(u \star v) \mathcal{L}_{E}u \star v u \star \mathcal{L}_{E}v = u \star v$ for all vector fields u, v;
- 3. $\mathcal{L}_E\langle u, v \rangle \langle \mathcal{L}_E u, v \rangle \langle u, \mathcal{L}_E v \rangle = (2-d)\langle u, v \rangle$ for all vector fields $u, v, v \in \mathcal{L}_E u, v \in \mathcal{L}_E u$

then E is called an Euler vector field and the Frobenius manifold M is called conformal.

Example 1.1.6. Let X be a smooth projective variety. Then we can give $H^*(X)$ the structure of a Frobenius algebra with the Poincaré pairing and the quantum product. Note that the quantum product does not converge in general, so we must treat this as a formal object. The Euler vector field is given by

$$E_X = c_1(X) + \sum_{i} \left(1 - \frac{\deg \phi_i}{2}\right) t^i \phi_i,$$

where a general element of $H^*(X)$ is given by $t = \sum_i t^i \phi_i$. We will also impose that $\phi_1 = 1$. There is another very important structure, the *quantum connection*, which is given by the formula

$$\begin{split} \nabla_{\mathsf{t}^{\mathsf{i}}} &\coloneqq \mathfrak{d}_{\mathsf{t}^{\mathsf{i}}} + \frac{1}{z} \varphi_{\mathsf{i}} \star_{\mathsf{t}} \\ \nabla_{z\frac{\mathsf{d}}{\mathsf{d}z}} &\coloneqq z\frac{\mathsf{d}}{\mathsf{d}z} - \frac{1}{z} \mathsf{E}_{X} \star_{\mathsf{t}} + \mu_{X}. \end{split}$$

Here, μ_X is the *grading operator*, defined for pure degree classes $\phi \in H^*(X)$ by

$$\mu_X(\varphi) = \frac{deg\, \varphi - dim\, X}{2} \varphi.$$

Finally, in the direction of the Novikov variables, we have

$$\nabla_{\xi Q \partial_Q} = \xi Q \partial_Q + \frac{1}{z} \xi \star_t.$$

Remark 1.1.7. For a general conformal Frobenius manifold $(H, (-, -), \star, E)$, there is still a *deformed flat connection* or *Dubrovin connection* given by

$$\nabla_{\mathsf{t}^{\mathsf{i}}} \coloneqq \frac{\partial}{\partial \mathsf{t}^{\mathsf{i}}} + \frac{1}{z} \varphi_{\mathsf{i}} \star$$

$$\nabla_{z \frac{\mathsf{d}}{\mathsf{d}z}} \coloneqq z \frac{\mathsf{d}}{\mathsf{d}z} - \frac{1}{z} \mathsf{E} \star.$$

Definition 1.1.8. The *quantum* D-module of X is the module $H^*(X)[z][[Q,t]]$ with the quantum connection defined above.

Remark 1.1.9. It is important to note that the quantum connection has a fundamental solution matrix $S^X(t,z)$ given by

$$S_X(t,z)\phi = \phi + \sum_{i} \sum_{n,\beta} \frac{Q^{\beta}}{n!} \phi^i \left\langle \frac{\phi_i}{z-\psi}, \phi, t, \dots, t \right\rangle_{0,n+2,\beta}^X.$$

It satisfies the important equation

$$S_X^*(\mathsf{t},-z)S(\mathsf{t},z)=1.$$

Using this formalism, the J-function is given by $S_X^*(t,z)\mathbf{1} = z^{-1}J_X(t,z)$.

1.1.3 Givental formalism The Givental formalism is a geometric way to package enumerative (CohFT) invariants cleanly. We begin by defining the symplectic space

$$\mathcal{H} := H^*(X, \Lambda)(z^{-1})$$

with the symplectic form

$$\Omega(f, g) := \operatorname{Res}_{z=0} f(-z)g(z).$$

This has a polarization by Lagrangian subspaces

$$\mathcal{H}_+ \coloneqq \mathsf{H}^*(\mathsf{X},\Lambda)[z], \qquad \mathcal{H}_- \coloneqq z^{-1}\mathsf{H}^*(\mathsf{X},\Lambda)[\![z^{-1}]\!]$$

giving $\mathcal{H} \cong T^*\mathcal{H}_+$ as symplectic vector spaces. Choose Darboux coordinates $\underline{p}, \underline{q}$ on \mathcal{H} . For example, there is a choice in Coates's thesis which gives a general element of \mathcal{H} as

$$\sum_{k\geqslant 0} \sum_i q_k^i \varphi_i z^k + \sum_{\ell\geqslant 0} \sum_j \mathfrak{p}_\ell^j \varphi^j (-z)^{-\ell-1}.$$

Taking the dilaton shift

$$q(z) = t(z) - z = -z + t_0 + t_1 z + t_2 z^2 + \cdots$$

we can now think of \mathfrak{F}^X has a formal function on \mathfrak{H}_+ near q=-z. This convention is called the *dilaton shift*.

Before we continue, we need to recast the string and dilaton equations in terms of \mathfrak{F}^X . Write $t_x = \sum t_k^i \varphi_i$. Then the string equation becomes

$$\vartheta_0^1 \mathcal{F}(t) = \frac{1}{2}(t_0, t_0) + \sum_{n=0}^{\infty} \sum_{i} t_{n+1}^j \vartheta_n^j \mathcal{F}(t)$$

and the dilaton equation becomes

$$\vartheta_1^1 \mathcal{F}(t) = \sum_{n=0}^\infty t_n^j \ \vartheta_n^j \mathcal{F}(t) - 2 \mathcal{F}(t).$$

There are also an infinite series of topological recursion relations

$$\vartheta_{k+1}^i\,\vartheta_\ell^j\,\vartheta_m^k\mathcal{F}(t)=\sum_{\alpha,b}\vartheta_k^i\,\vartheta_0^\alpha\mathcal{F}(t)\eta^{\alpha b}\,\vartheta_0^b\,\vartheta_\ell^j\,\vartheta_m^k\mathcal{F}(t).$$

We can make sense of these three relations for any (formal) function \mathcal{F} on \mathcal{H}_+ .

Now let

$$\mathcal{L} = \left\{ (\underline{p}, \underline{q}) \in \mathcal{H} \mid \underline{p} = d_{\underline{q}} \mathcal{F} \right\}$$

be the graph of d \mathcal{F} . This is a formal germ at q=-z of a Lagrangian section of the cotangent bundle $T^*\mathcal{H}_+$ and is therefore a formal germ of a Lagrangian submanifold in \mathcal{H} .

Theorem 1.1.10. The function \mathcal{F} satisfies the string equation, dilaton equation, and topological recursion relations if and only if \mathcal{L} is a Lagrangian cone with vertex at the origin q = 0 such that its tangent spaces L are tangent to \mathcal{L} exactly along zL.

Because of this theorem, \mathcal{L} is known as the *Lagrangian cone*. It can be recovered from the J-function by the following procedure. First consider $\mathcal{L} \cap (-z+z\mathcal{H}_-)$. Via the projection to -z+H along \mathcal{H}_- , this can be considered as the graph of the J-function. Next, we consider the derivatives $\frac{\partial J}{\partial t^i}$, which form a basis of $L \cap z\mathcal{H}_-$, which is a complement to zL in L. Then we know that

$$z\frac{\partial J}{\partial t^i} \in zL \subset \mathcal{L},$$

so

$$z\frac{\partial^2 J}{\partial t^i \partial t^j} \in L \cap z\mathcal{H}_-.$$

Writing these in terms of the first derivatives $\frac{\partial J}{\partial t^1}$ and using the fact that J is a solution of the quantum connection, so we recover the Frobenius structure of quantum cohomology.

We will now express some classical results in this formalism. Let X be a toric variety with toric divisors D_1, \ldots, D_N such that D_1, \ldots, D_k form a basis of $H^2(X)$ and Picard rank k. Then define the I-function

$$I_X = z e^{\sum_{j=1}^k t_i D_i} \sum_{\beta} Q^{\beta} \frac{\prod_{j=1}^N \prod_{m=-\infty}^0 (D_j + mz)}{\prod_{j=1}^N \prod_{m=-\infty}^{\langle D_j, \beta \rangle} (D_j + mz)}.$$

Theorem 1.1.11 (Mirror theorem). The formal functions I_X and J_X coincide up to some change of variables, which if $c_1(X)$ is semi-positive is given by components of the I-function.

Theorem 1.1.12 (Mirror theorem in this formalism). *For any* t, we have

$$I_X(t,z) \in \mathcal{L}$$
.

Another direction in Gromov-Witten theory is the Virasoro constraints. In the original formulation, these involved very complicated explicit differential operators, but in the Givental formalism, there is a very compact formulation.

Define $\ell^{-1} = z^{-1}$ and

$$\ell_0 = z \frac{d}{dz} + \frac{1}{2} + \mu + \frac{c_1(X) \cup -}{z}.$$

Then define

$$\ell_n = \ell_0 (z\ell_0)^n$$
.

Theorem 1.1.13 (Genus-0 Virasoro constraints). Suppose the vector field on $\mathfrak H$ defined by ℓ_0 is tangent to $\mathfrak L$. Then the same is true for the vector fields defined by ℓ_n for any $n\geqslant 1$.

Proof. Let L be a tangent space to \mathcal{L} . Then if $f \in zL \subset \mathcal{L}$, the assumption gives us $\ell_0 f \in L$. But then $z\ell_0 f \in zL$, so $\ell_0 z\ell_0 f = \ell_1 f \in L$. Continuing, we obtain $\ell_n f \in L$ for all n.

Next week, we will learn that the Quantum Riemann-Roch theorem can be stated in this formalism. Let \mathcal{L}^{tw} be the twisted Lagrangian cone (where the twisted theory will be defined next week).

Theorem 1.1.14 (Quantum Riemann-Roch). For some explicit linear symplectic transformation Δ , we have $\mathcal{L}^{tw} = \Delta \mathcal{L}$.

1.1.4 Quantization In the last part of the talk, we will briefly discuss the quantization formalism, which encodes the higher-genus theory. In Darboux coordinates p_{α} , q_{b} , we will quantize symplectic transformations by the standard rules

$$\widehat{q_\alpha q_b} = \frac{q_\alpha q_b}{\hbar}, \qquad \widehat{q_\alpha p_b} = q_\alpha \frac{\partial}{\partial q_b}, \qquad \widehat{p_\alpha p_b} = \hbar \frac{\partial^2}{\partial q_\alpha \, \partial q_b}.$$

This determines a differential operator acting on functions on \mathcal{H}_+ .

We also need the genus-g potential

$$\mathcal{F}_{g}^{X} := \sum_{\beta,n} \frac{Q^{\beta}}{n!} \langle t(\psi), \dots, t(\psi) \rangle_{g,n,\beta}^{X}$$

and the total descendent potential

$$\mathcal{D} \coloneqq \exp\left(\sum_{g\geqslant 0} \hbar^{g-1} \mathcal{F}_g^X\right).$$

In this formalism, the Virasoro conjecture can be expressed as follows. Let $L_n = \widehat{\ell}_n + c_n$, where c_n is a carefully chosen constant.

Conjecture 1.1.15 (Virasoro conjecture). *If* $L_{-1}\mathcal{D} = L_0\mathcal{D} = 0$, then $L_n\mathcal{D} = 0$ for all $n \ge 1$.

In this formalism, the higher-genus version of the Quantum Riemann-Roch theorem takes the very simple form

Theorem 1.1.16 (Quantum Riemann-Roch). Let \mathcal{D}^{tw} be the twisted descendent potential. Then

$$\mathfrak{D}^{\mathsf{tw}} = \widehat{\Delta} \mathfrak{D}.$$