Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский университет ИТМО»

Факультет Программной Инженерии и Компьютерной Техники

Домашняя работа № 2 По Дискретной Математике Кратчайшие пути

Вариант № 20

Выполнил:

Карташев Владимир Р3131

Преподаватель:

Поляков Владимир Иванович

Исходная таблица соединений R:

V/V	e1	e2	e3	e4	e5	e6	e7	e8	e9	e10	e11	e12
e1	0		3	3		5	1		1			
e2		0				2	1					
e3	3		0				5	2	4			3
e4	3			0	1		3					
e5				1	0	4				3		
e6	5	2			4	0	2	3	2			
e7	1	1	5	3		2	0		2		1	
e8			2			3		0	4	5		
e9	1		4			2	2	4	0	5	4	
e10					3			5	5	0		1
e11							1		4		0	
e12			3							1		0

Алгоритм Дейкстры:

1. $l(e_1) = 0^+$; $l(e_i) = \infty$, для всех $i \neq 1$, $p = e_1$. Результаты запишем в таблицу:

1 ∞ ∞ ∞ e_{6} $e_{_{7}}$ e_8 ∞ e_{10}

2. $\Gamma_{e1} = \{e_3, e_4, e_6, e_7, e_9\}$ — все пометки временные, уточним их:

$$l(e_3) = min[\infty, 0^+ + 3] = 3;$$

$$l(e_4) = min[\infty, 0^+ + 3] = 3;$$

$$l(e_6) = min[\infty, 0^+ + 5] = 5;$$

$$l(e_7) = min[\infty, 0^+ + 1] = 1;$$

$$l(e_9) = min[\infty, 0^+ + 1] = 1;$$

$$l(e_i^*) = min[l(e_i)] = l(e_7) = 1 \Rightarrow p = e_7$$

		1	2
	$e_{_{1}}$	0+	
	$e_{_2}$	8	8
	e_3	8	3
	$e_{_4}$	8	3
	$e_{_{5}}$	8	8
L=	$e_6^{}$	8	5
	$e_{_{7}}$	8	1+
	e_8	8	8
	e_9	8	1
	e_{10}	8	8
	e ₁₁	8	8
	e ₁₂	8	∞

3. Не все вершины имеют постоянные пометки, $\Gamma_{e7} = \{e_1, e_2, e_3, e_4, e_6, e_9, e_{11}\} \text{ - временные пометки имеют}$

$$e_2^{}$$
, $e_3^{}$, $e_4^{}$, $e_6^{}$, $e_9^{}$, $e_{11}^{}$, уточним их:

$$l(e_2) = min[\infty, 1^+ + 1] = 2$$

$$l(e_3) = min[3, 1^+ + 5] = 3$$

$$l(e_4) = min[3, 1^+ + 3] = 3$$

$$l(e_6) = min[5, 1^+ + 2] = 3$$

$$\begin{split} &l(e_9) = min[1, 1^+ + 2] = 1 \\ &l(e_{11}) = min[\infty, 1^+ + 1] = 2 \\ &----- \\ &l(e_i^*) = min[l(e_i)] = l(e_9) = 1 \Rightarrow p = e_9 \end{split}$$

		1	2	3
	$e_{_{1}}$	0+		
	$e_{_2}$	8	8	2
	e_3	8	3	3
	$e_{_4}$	8	3	3
	$e_{_{5}}$	8	8	8
L=	$e_{_{6}}$	8	5	3
	$e_{_{7}}$	8	1+	
	e_8	8	8	8
	e_9	8	1	1+
	e_{10}	8	8	8
	e ₁₁	8	8	2
	$e_{_{12}}$	8	8	8

4. Не все вершины имеют постоянные пометки, $\Gamma_{e9} = \{e_1, e_3, e_6, e_7, e_8, e_{10}, e_{11}\} \text{ - временные пометки у вершин } e_3, e_6, e_8, e_{10}, e_{11}, \text{ уточним их:}$

$$l(e_3) = min[3, 1^+ + 4] = 3$$

 $l(e_6) = min[3, 1^+ + 2] = 3$

5. Не все вершины имеют постоянные пометки, $\Gamma_{e11} = \{e_6, e_7\}$ - временная пометка у вершины e_6 , уточним ее:

$$l(e_6) = min[3, 2^+ + 2] = 3$$

 $l(e_i^*) = min[l(e_i)] = l(e_{11}) = 2 \Rightarrow p = e_{11}$

		1	2	3	4	5
	$e_{_1}$	0+				
	$e_{_2}$	8	8	2	2 ⁺	
	$e_{_3}$	8	3	3	3	3
	$e_{_4}$	8	3	3	3	3
	$e_{_{5}}$	8	8	8	8	8
L=	$e_{_{6}}$	8	5	3	3	3
	$e_{_{7}}$	8	1+			
	e_8	8	8	8	5	5
	e_9	8	1	1+		
	e_{10}	8	8	8	6	6
	e ₁₁	8	8	2	2	2 ⁺
	e ₁₂	8	8	8	8	∞

6. Не все вершины имеют постоянные пометки, $\Gamma_{e11} = \{e_7, e_9\}$ - временных пометок нет:

$$l(e_i^*) = min[l(e_i)] = l(e_3) = 3 \Rightarrow p = e_3$$

		1	2	3	4	5	6
	$e_{_{1}}$	0+					
	$e_{_2}$	8	8	2	2 ⁺		
	$e_{_3}$	8	3	3	3	3	3 ⁺
	$e_{_4}$	8	3	3	3	3	3
	$e_{_{5}}$	8	8	8	8	8	8
L=	$e_{_{6}}$	8	5	3	3	3	3
	$e_{_{7}}$	8	1+				
	e_8	8	8	8	5	5	5
	e_9	8	1	1+			
	e_{10}	8	8	8	6	6	6
	e ₁₁	8	8	2	2	2 ⁺	
	e_{12}	8	8	8	8	8	8

7. Не все вершины имеют постоянные пометки, $\Gamma_{e3} = \{e_1, e_7, e_8, e_9, e_{12}\}$ - временные пометки у вершин e_8, e_{12} , уточним их:

$$l(e_8) = min[5, 3^+ + 1] = 5$$

 $l(e_{12}) = min[\infty, 3^+ + 3] = 6$
 $------$
 $l(e_i^*) = min[l(e_i)] = l(e_4) = 3 \Rightarrow p = e_4$

		1	2	3	4	5	6	7
	$e_{_{1}}$	0+						
	$e_{2}^{}$	8	8	2	2 ⁺			
	$e_{_3}$	8	3	3	3	3	3 ⁺	
	$e_{_4}$	8	3	3	3	3	3	3 ⁺
	$e_{_{5}}$	8	8	8	8	8	8	8
L=	$e_{_6}$	8	5	3	3	3	3	3
	$e_{_{7}}$	8	1+					
	e_8	8	8	8	5	5	5	5
	e_9	8	1	1+				
	e_{10}	8	8	8	6	6	6	6
	e ₁₁	8	8	2	2	2 ⁺		
	e ₁₂	8	8	8	8	8	8	6

8. Не все вершины имеют постоянные пометки, $\Gamma_{e4} = \{e_1, e_5, e_7\}$ - временная пометка у вершины e_5 , уточним ее:

$$l(e_5) = min[\infty, 3^+ + 1] = 4$$

$$l(e_i^*) = min[l(e_i)] = l(e_6) = 3 \Rightarrow p = e_6$$

		1	2	3	4	5	6	7	8
	$e_{_{1}}$	0+							
	$e_{_2}$	8	8	2	2+				
	e_3	8	3	3	3	3	3 ⁺		
	$e_{_4}$	8	3	3	3	3	3	3 ⁺	
	$e_{_{5}}$	8	8	∞	8	∞	8	8	4
L=	$e_{_{6}}$	8	5	3	3	3	3	3	3 ⁺
	$e_{_{7}}$	8	1+						
	e_8	8	8	8	5	5	5	5	5
	e_9	8	1	1+					
	e_{10}	8	8	8	6	6	6	6	6
	e ₁₁	8	8	2	2	2+			
	e_{12}	8	8	8	8	8	8	6	6

9. Не все вершины имеют постоянные пометки, $\Gamma_{e6} = \{e_1, e_2, e_5, e_7, e_8, e_9\}$ - временные пометки у вершин e_5, e_8 , уточним их:

$$l(e_5) = min[4, 3^+ + 4] = 4$$

$$l(e_8) = min[5, 3^+ + 3] = 5$$

$$l(e_i^*) = min[l(e_i)] = l(e_5) = 4 \Rightarrow p = e_5$$

		1	2	3	4	5	6	7	8	9
	$e_{_{1}}$	0+								
	$e_{2}^{}$	8	8	2	2+					
	$e_{_3}$	8	3	3	3	3	3 ⁺			
	$e_{_4}$	8	3	3	3	3	3	3 ⁺		
	$e_{_{5}}$	8	8	8	8	8	8	8	4	4 ⁺
L=	e_{6}	8	5	3	3	3	3	3	3 ⁺	
	$e_{_{7}}$	8	1+							
	e_8	8	8	8	5	5	5	5	5	5
	e_9	8	1	1+						
	e_{10}	8	8	8	6	6	6	6	6	6
	e ₁₁	8	8	2	2	2 ⁺				
	e ₁₂	8	8	8	8	8	8	6	6	6

10. Не все вершины имеют постоянные пометки, $\Gamma_{e5} = \{e_4, e_6, e_{10}\}$ - временная пометка у вершины e_{10} , уточним ее:

$$l(e_{10}) = min[6, 4^{+} + 3] = 6$$

 $l(e_{i}^{*}) = min[l(e_{i})] = l(e_{8}) = 5 \Rightarrow p = e_{8}$

		1	2	3	4	5	6	7	8	9	10
	$e_{_{1}}$	0+									
	$e_{2}^{}$	8	8	2	2+						
	$e_{_3}$	8	3	3	3	3	3 ⁺				
	$e_{_4}$	8	3	3	3	3	3	3 ⁺			
	$e_{_{5}}$	8	8	8	8	8	8	8	4	4 ⁺	
L=	$e_{_{6}}$	8	5	3	3	3	3	3	3 ⁺		
	$e_{_{7}}$	8	1+								
	e_8	8	8	8	5	5	5	5	5	5	5 ⁺
	e_9	8	1	1+							
	e_{10}	8	8	8	6	6	6	6	6	6	6
	e ₁₁	8	8	2	2	2 ⁺					
	e_{12}	8	8	8	8	8	8	6	6	6	6

11. Не все вершины имеют постоянные пометки, $\Gamma_{e8} = \{e_3, e_6, e_9, e_{10}\}$ - временная пометка у вершины e_{10} , уточним ее:

$$l(e_{10}) = min[6, 5^+ + 5] = 6$$

$$l(e_i^*) = min[l(e_i)] = l(e_{10}) = 6 \Rightarrow p = e_{10}$$

		1	2	3	4	5	6	7	8	9	10	11
	$e_{_1}$	0+										
	$e_{_2}$	8	8	2	2 ⁺							
	e_3	8	3	3	3	3	3 ⁺					
	$e_{_4}$	8	3	3	3	3	3	3 ⁺				
	$e_{_{5}}$	8	8	8	8	8	8	8	4	4 ⁺		
L=	e_{6}	8	5	3	3	3	3	3	3 ⁺			
	$e_{_{7}}$	8	1+									
	e_8	8	8	8	5	5	5	5	5	5	5 ⁺	
	e_9	8	1	1+								
	e_{10}	8	8	8	6	6	6	6	6	6	6	6 ⁺
	e ₁₁	8	8	2	2	2 ⁺						
	e_{12}	8	8	8	8	8	8	6	6	6	6	6

Не все вершины имеют постоянные пометки, $\Gamma_{e10} = \{e_5, e_8, e_9, e_{12}\}$ временная пометка у вершины e_{12} , уточним ее:

$$l(e_{12}) = min[6, 6^+ + 1] = 6$$

$$l(e_i^*) = min[l(e_i)] = l(e_{12}) = 6 \Rightarrow p = e_{12}$$

		1	2	3	4	5	6	7	8	9	10	11	
	$e_{_{1}}$	0+											
	$e_{_2}$	8	8	2	2+								
	$e_{_3}$	8	3	3	3	3	3 ⁺						
	$e_{_4}$	8	3	3	3	3	3	3 ⁺					
	$e_{_{5}}$	8	8	8	8	8	8	8	4	4 ⁺			
L=	$e_{_{6}}$	8	5	3	3	3	3	3	3+				
	$e_{_{7}}$	8	1+										
	e_8	8	8	8	5	5	5	5	5	5	5 ⁺		
	e_9	8	1	1+									
	e_{10}	8	8	8	6	6	6	6	6	6	6	6+	
	e ₁₁	8	8	2	2	2 ⁺							
	e ₁₂	8	8	8	8	8	8	6	6	6	6	6	6+

. . .

		1	2	3	4	5	6	7	8	9	10	11	
	$e_{_{1}}$	0+											
	$e_{_2}$	8	8	2	2+								
	e_3	8	3	3	3	3	3 ⁺						
	$e_{_4}$	8	3	3	3	3	3	3 ⁺					
	$e_{_{5}}$	8	8	8	8	8	8	8	4	4 ⁺			
L=	$e_{_{6}}$	8	5	3	3	3	3	3	3 ⁺				
	$e_{_{7}}$	8	1+										
	e_8	8	8	8	5	5	5	5	5	5	5 ⁺		
	e_9	8	1	1+									
	e_{10}	8	8	8	6	6	6	6	6	6	6	6+	
	e ₁₁	8	8	2	2	2 ⁺							
	<i>e</i> ₁₂	8	8	8	8	8	8	6	6	6	6	6	6+

1.
$$l(e2)=2$$
, $\Gamma_{e2}=\{e_6,e_7\}$
$$2=l(e7)+c(e7,e2)=1+1$$
 Остальные выражения не равны; Кратчайший путь до вершины $e2$: $e1-e7-e2$.

2.
$$l(e3)=3$$
, $\Gamma_{e3}=\{e_1,e_7,e_8,e_9,e_{12}\}$ $3=l(e1)+c(e1,e3)=0+3$ Остальные выражения не равны; Кратчайший путь до вершины $e3$: $e1-e3$.

3.
$$l(e4)=3$$
, $\Gamma_{e4}=\{e_1,e_5,e_7\}$ 3 = $l(e1)+c(e1,e4)=0+3$ Остальные выражения не равны; Кратчайший путь до вершины $e4$: $e1-e4$.

4.
$$l(e5)=4$$
, $\Gamma_{e5}=\{e_4,e_6,e_{10}\}$ $4=l(e4)+c(e4,e5)=3+1$ Остальные выражения не равны; Кратчайший путь до вершины $e5$: $e1-e4-e5$.

5.
$$l(e6)=3$$
, $\Gamma_{e6}=\{e_1,e_2,e_5,e_7,e_8,e_9\}$ $3=l(e7)+c(e7,e6)=1+2$ $3=l(e9)+c(e9,e6)=1+2$ Остальные выражения не равны; Кратчайший путь до вершины $e6:e1-e7-e6$ OR $e1-e9-e6$.

6.
$$l(e7)=1$$
, $\Gamma_{e7}=\{e_1,e_2,e_3,e_4,e_6,e_9,e_{11}\}$ $1=l(e1)+c(e1,e7)=0+1$ Остальные выражения не равны; Кратчайший путь до вершины $e7$: $e1-e7$.

7.
$$l(e8) = 5$$
, $\Gamma_{e8} = \{e_3, e_6, e_9, e_{10}\}$
 $5 = l(e3) + c(e3, e8) = 3 + 2$
Остальные выражения не равны;
Кратчайший путь до вершины $e8$: $e1 - e3 - e8$.

8.
$$l(e9)=1$$
, $\Gamma_{e9}=\{e_1,e_3,e_6,e_7,e_8,e_{10},e_{11}\}$ $1=l(e1)+c(e1,e9)=0+1$ Остальные выражения не равны; Кратчайший путь до вершины $e9$: $e1-e9$.

9.
$$l(e10)=6$$
, $\Gamma_{e10}=\{e_5,e_8,e_9,e_{12}\}$ $6=l(e9)+c(e9,e10)=1+5$ Остальные выражения не равны; Кратчайший путь до вершины $e10$: $e1-e9-e10$.

$$l(e11)=2$$
, $\Gamma_{e11}=\{e_7,e_9\}$
$$2=l(e7)+c(e7,e11)=1+1$$
 Остальные выражения не равны; Кратчайший путь до вершины $e10$: $e1-e7-e10$.

11.
$$l(e12)=6$$
, $\Gamma_{e12}=\{e_3,e_{10}\}$ $6=l(e3)+c(e3,e12)=3+3$ Остальные выражения не равны; Кратчайший путь до вершины $e12$: $e1-e3-e12$.

Все кратчайшие пути от вершины e_1 до вершин e_i найдены!