

Verificación formal

Facultad de Informática

October 7, 2024

Indice

1. Validación

Lógica de Hoare Axiomas Reglas

2. Reglas específicas

Secuencia Alternativa

Tabla de contenidos

1. Validación

Lógica de Hoare Axiomas Reglas

2. Reglas específicas

Alternativa

Introducción Conceptos

- Un estado es el cjto. de valores que toman el conjunto de variables que conforman la estructura de datos del sistema.
- Las aserciones o asertos son sentencias lógicas que hacen al estado del sistema.
- Las sentencias encerradas en llaves {} son asertos.

Un programa es un conjunto de sentencias que transforman un estado inicial en uno final.

Estado:

- inicial: previo a la ejecución de un código
- final: posterior a la ejecución de un código
- del sistema: valores de las variables en cada momento.

Representación formal Ternas de Hoare

Terna de Hoare:

- C es una parte del código, {P} se denomina precondiciones de C y {Q} se denomina postcondiciones
- Significa que P son predicados lógicos que deben cumplirse para que el código C funcione.
- El código comienza con un estado válido en P y el programa termina con un estado válido para Q.
 - Ejemplo 1: $\{y \neq 0\}$ x = 1/y $\{x = 1/y\}$.
 - Ejemplo 2: $\{\}$ a = b $\{a = b\}$.

Asertos

Ejemplos de asertos

Si se ha demostrado $\{P\}$ C $\{Q\}$, entonces:

- Si $P_1 \Rightarrow P$;
 - entonces $\{P_1\} C \{Q\}$ es verdadero;
 - y además se refuerzan las precondiciones.
- Si $Q \Rightarrow Q_1$
 - entonces {*P*} *C* {*Q*₁} es verdadero;
 - y además se **debilitan** las poscondiciones.

ejemplo

i > 1 es más fuerte que i > 0

todos los estados que satisfacen i > 1 también satisfacen i > 0 $i > 1 \Rightarrow i > 0$.

- Más fuerte (más selectivo, más específico).
- Más débil (menos selectivo, más general).
- Aserción más débil es {}
- Aserción más fuerte es false, (ningún estado satisface la cond).

Terna de Hoare Axiomas

 ${A}P{B}$

- Axioma SKIP o salto
 - *SKIP* {*P*}
- Axioma de la asignación
 - $\vdash \{P[E/V]\}\ V := E\{P\}$

ejemplo asignación

$$\{\} a := b \{a = b\}$$

Terna de Hoare Reglas

Fortalecimiento de la precondición

$$\frac{P_1 \Rightarrow P}{\{P\} C \{Q\}}$$

$$\frac{P_1 \Rightarrow P}{\{P\} C \{Q\}}$$

 Ejemplo: supongamos que la terna de Hoare es correcta: {y \neq 0} x=1/y {x = 1/y} demostrar que también lo es {y = 4} x=1/y {x = 1/y}

Ejemplo1

$${y = 4} \Rightarrow {y \neq 0}$$

 ${y \neq 0} x = 1/y {x = 1/y}$

$${y = 4} x = 1/y {x = 1/y}$$

Ejemplo2

$${P} \Rightarrow {}$$

$${} a = b {a = b}$$

$$\{P\}\ a = b\{a = b\}$$

Terna de Hoare Reglas

Fortalecimiento de la precondición

$$\frac{P \Rightarrow P_1}{\{P_1\} C \{Q\}}$$

$$\frac{P_1\} C \{Q\}}{\{P\} C \{Q\}}$$

$$\frac{P \Rightarrow P_1}{\{P\} C \{Q\}}$$

Si $P \Rightarrow P_1$ y se ha demostrado $\{P_1\}$ C $\{Q\}$ entonces $\{P\}$ C $\{Q\}$ es verdadero y además se refuerza el aserto

Reglas Debilitamiento1

Debilitamiento de la poscondición

•
$$\frac{\vdash \{P\}C\{Q\}, \vdash Q \Rightarrow Q_1}{\vdash \{P\}C\{Q_1\}}$$

• Ejemplo: la terna de Hoare es correcta:

$$\begin{cases} \text{} \max = b \text{ } \{\max = b\} \text{ también lo es} \\ \text{} \max = b \text{ } \{\max \geq b\} \end{cases}$$

$${max = b} \Rightarrow {max \ge b}$$

 ${max = b \mid {max = b}}$

$$\{\} \max = b \{ \max \geq b \}$$

Reglas Debilitamiento2

Debilitamiento de la poscondición

•
$$\frac{\vdash \{P\}C\{Q\}, \vdash Q \Rightarrow Q_1}{\vdash \{P\}C\{Q_1\}}$$

$$Q \Rightarrow Q_1
{P} C {Q}$$

$$\overline{{P} C {Q_1}}$$

Si $(Q \text{ implica a } Q_1) \ Q \Rightarrow Q_1$ y se ha demostrado $\{P\} \ C \{Q\}$ entonces $\{P\} \ C \{Q_1\}$ es verdadero y además se debilita el aserto

Reglas Conjunción y disyunción

• Regla de la conjunción

•
$$\frac{\vdash \{P_1\} C\{Q_1\}, \vdash \{P_2\} C\{Q_2\}}{\vdash \{P_1 \land P_2\} C\{Q_1 \land Q_2\}}$$

• Regla de la disyunción

•
$$\frac{\vdash \{P_1\} C\{Q_1\}, \vdash \{P_2\} C\{Q_2\}}{\vdash \{P_1 \lor P_2\} C\{Q_1 \lor Q_2\}}$$

Reglas De la conjunción 2

Conjunción

•
$$\frac{\vdash \{P_1\} C \{Q_1\}, \vdash \{P_2\} C \{Q_2\}}{\vdash \{P_1 \land P_2\} C \{Q_1 \land Q_2\}}$$

caso general

$$\{P_1\} C \{Q_1\}
\{P_2\} C \{Q_2\}
 \overline{\{P_1 \land P_2\} C \{Q_1 \land Q_2\}}$$

caso particular

$$\{\} C \{Q_1\}$$

 $\{P\} C \{Q_2\}$

$$\{P\} \subset \{Q_1 \wedge Q_2\}$$

Reglas De la disyunción 2

Disyunción

•
$$\frac{\vdash \{P_1\} C \{Q_1\}, \vdash \{P_2\} C \{Q_2\}}{\vdash \{P_1 \lor P_2\} C \{Q_1 \lor Q_2\}}$$

caso general

$$\{P_1\}\ C\ \{Q_1\}\ \{P_2\}\ C\ \{Q_2\}$$

 $\{P_1 \vee P_2\} \subset \{Q_1 \vee Q_2\}$

caso particular

$$\{\} C \{Q_1\}$$
$$\{P\} C \{Q_2\}$$

$$\{\} C \{Q_1 \vee Q_2\}$$

Reglas Regla de la secuencia

- Regla de la secuencia
 - $\frac{\vdash \{P\}C_1\{Q_1\}, \vdash \{Q_1\}C_2\{Q_2\}}{\vdash \{P\}C_1; C_2\{Q_2\}}$
- Regla de la secuencia general

•
$$\frac{\vdash \{P\}C_1\{Q_1\}, \; \vdash \{Q_1\}C_2\{Q_2\},....,\vdash \{Q_n-1\}C_n-1\{Q_n\}}{\vdash \{P\}C_1;C_2;...;C_n-1\{Q_n\}}$$

Tabla de contenidos

Validación
 Lógica de Hoare
 Axiomas
 Reglas

2. Reglas específicas Secuencia Alternativa

Estructura de control Secuencia

•
$$\frac{\vdash \{P\} C_1\{Q_1\}, \vdash \{Q_1\} C_2\{Q_2\}, \dots, \vdash \{Q_n-1\} C_n\{Q_n\}}{\vdash \{P\} C_1; C_2; \dots; C_n\{Q_n\}}$$

Nomenclatura Variables

- Representación del súbíndice: mediante subíndices se indica si las variables representan valores iniciales o finales.
 - $\{a_{\omega}=b_{\alpha}\} \wedge \{b_{\omega}=a_{\alpha}\}$
 - ω representa el estado final y α el estado inicial.
- Representación de las variables ocultas: Aparecen o no en el código y se introducen para almacenar los valores iniciales de ciertas posiciones de memoria.
 - $\{a = A, b = B\}$ h = a; a = b; $b = h\{a = B, b = A\}$

Corrección de un código Secuencia

Demostrar la corrección de código

- Se parte de la poscondición final (las condiciones que deben satisfacer los resultados).
- A partir de ahí se deduce la precondición.
- El código se verifica en sentido contrario a como se ejecuta.

```
PreC.1 = PreC. Inicial
Código 1
PostC. 1 = PreC. 2
Código 2
PostC. 2 = PreC. 3
Código 3 validación
PostC. 3 = PostC. Final
```

Figure: Orden de validación

Verificación formal de algoritmos

Reglas Asignación

La regla de asignación requiere que las variables implicadas no compartan el mismo espacio de memoria.

 Las sentencias de asignación son sentencias de la forma V = E, en donde V es una variable y E es una expresión.

$$\{\}\ V = E\{V = E_{\alpha}\}$$

Reglas Asignación2

Regla de la asignación: Sea C una sentencia de la forma V=E, y con la poscondición $\{Q\}$, entonces la precondición de C puede hallarse sustituyendo todos los caso de V en Q por E.

$$\{\}\ V = E\{V = E_{\alpha}\}$$

$$\{P\} V = E \{Q\}$$

$$\{P\} = \{Q_E^V\} \Rightarrow \{V = E_\alpha, Q\}$$

$$\{Q_E^V\} V = E \{Q\}$$

- Ejemplo: Determinar la precondición para que la terna siguiente sea correcta: {P} i = 2 * i {i < 6}
 - $\{Q_E^V\}\{i_\omega=2*i_\alpha,i_\omega<6\}\Rightarrow\{i_\alpha<3\}$

• Ejemplo 1: Determinar la precondición para que la terna siguiente sea correcta: $\{P\}j=i+1$ $\{j>0\}$

- Ejemplo 1: Determinar la precondición para que la terna siguiente sea correcta: $\{P\} j = i + 1 \{j > 0\}$
 - $\{Q_E^V\}\{j_\omega = i_\alpha + 1, j_\omega > 0\} \Rightarrow \{i_\alpha + 1 > 0\}$

- Ejemplo 1: Determinar la precondición para que la terna siguiente sea correcta: $\{P\}$ j = i + 1 $\{j > 0\}$
 - $\{Q_E^V\}\{j_\omega = i_\alpha + 1, j_\omega > 0\} \Rightarrow \{i_\alpha + 1 > 0\}$
- Ejemplo 2: Determinar la precondición para que la terna siguiente sea correcta: {P} y = x² {y > 1}

- Ejemplo 1: Determinar la precondición para que la terna siguiente sea correcta: $\{P\}$ j = i + 1 $\{j > 0\}$
 - $\{Q_E^V\}\{j_\omega = i_\alpha + 1, j_\omega > 0\} \Rightarrow \{i_\alpha + 1 > 0\}$
- Ejemplo 2: Determinar la precondición para que la terna siguiente sea correcta: {P} y = x² {y > 1}
 - $\{Q_E^V\}\{y_\omega = x_\alpha * x_\alpha, x_\omega > 1\} \Rightarrow \{x_\alpha^2 > 1\}$

- Ejemplo 1: Determinar la precondición para que la terna siguiente sea correcta: $\{P\}$ j = i + 1 $\{j > 0\}$
 - $\{Q_E^V\}\{j_\omega = i_\alpha + 1, j_\omega > 0\} \Rightarrow \{i_\alpha + 1 > 0\}$
- Ejemplo 2: Determinar la precondición para que la terna siguiente sea correcta: $\{P\} y = x^2 \{y > 1\}$
 - $\{Q_E^V\}\{y_\omega = x_\alpha * x_\alpha, x_\omega > 1\} \Rightarrow \{x_\alpha^2 > 1\}$
- Ejemplo 3: Determinar la poscondición para que la terna siguiente sea correcta: $\{x > 2\} x = x^2 \{Q\}$

- Ejemplo 1: Determinar la precondición para que la terna siguiente sea correcta: $\{P\}$ j = i + 1 $\{j > 0\}$
 - $\{Q_E^V\}\{j_\omega = i_\alpha + 1, j_\omega > 0\} \Rightarrow \{i_\alpha + 1 > 0\}$
- Ejemplo 2: Determinar la precondición para que la terna siguiente sea correcta: $\{P\} y = x^2 \{y > 1\}$
 - $\{Q_E^V\}\{y_\omega = x_\alpha * x_\alpha, x_\omega > 1\} \Rightarrow \{x_\alpha^2 > 1\}$
- Ejemplo 3: Determinar la poscondición para que la terna siguiente sea correcta: $\{x > 2\} \ x = x^2 \{Q\}$
 - $\{Q\} \Rightarrow \{x_{\alpha} > 2, x_{\omega} = x_{\alpha}^2\} \Rightarrow \{x_{\omega} > 4\}$

- Ejemplo 1: Determinar la precondición para que la terna siguiente sea correcta: $\{P\}$ j = i + 1 $\{j > 0\}$
 - $\{Q_E^V\}\{j_\omega = i_\alpha + 1, j_\omega > 0\} \Rightarrow \{i_\alpha + 1 > 0\}$
- Ejemplo 2: Determinar la precondición para que la terna siguiente sea correcta: $\{P\}$ $y = x^2$ $\{y > 1\}$
 - $\{Q_E^V\}\{y_\omega = x_\alpha * x_\alpha, x_\omega > 1\} \Rightarrow \{x_\alpha^2 > 1\}$
- Ejemplo 3: Determinar la poscondición para que la terna siguiente sea correcta: $\{x > 2\} x = x^2 \{Q\}$
 - $\{Q\} \Rightarrow \{x_{\alpha} > 2, x_{\omega} = x_{\alpha}^2\} \Rightarrow \{x_{\omega} > 4\}$
- Ejemplo 4: Determinar la precondición para que la terna siguiente sea correcta: {P} x = 1/x {x ≥ 0}

- Ejemplo 1: Determinar la precondición para que la terna siguiente sea correcta: $\{P\}$ j = i + 1 $\{j > 0\}$
 - $\{Q_E^V\}\{j_\omega = i_\alpha + 1, j_\omega > 0\} \Rightarrow \{i_\alpha + 1 > 0\}$
- Ejemplo 2: Determinar la precondición para que la terna siguiente sea correcta: $\{P\} y = x^2 \{y > 1\}$
 - $\{Q_E^V\}\{y_\omega = x_\alpha * x_\alpha, x_\omega > 1\} \Rightarrow \{x_\alpha^2 > 1\}$
- Ejemplo 3: Determinar la poscondición para que la terna siguiente sea correcta: $\{x > 2\} x = x^2 \{Q\}$
 - $\{Q\} \Rightarrow \{x_{\alpha} > 2, x_{\omega} = x_{\alpha}^2\} \Rightarrow \{x_{\omega} > 4\}$
- Ejemplo 4: Determinar la precondición para que la terna siguiente sea correcta: $\{P\} x = 1/x \{x > 0\}$
 - $\{Q\} = \{x_{\omega} = 1/x_{\alpha}, x_{\omega} \ge 0\} \Rightarrow \{x_{\alpha} > 0\}$

Reglas Alternativa simple

C1 es parte de un programa y B una condición, entonces la sentencia se forma if B then C_1 '

- Posibles estados de una sentencia if: Si el estado inicial satisface B además de P entonces se ejecutará C_1 , demostrar que $\{P \land B\} \Rightarrow \{Q\}$ es correcto.
- Si el estado inicial no satisface B , demostrar que $\{P \land \neg B\} \Rightarrow \{Q\}$ es correcto.

$$\{P \wedge B\} C_1 \{Q\}$$
$$\{P \wedge \neg B\} \Rightarrow \{Q\}$$

 $\{P\}$ if B then $C_1\{Q\}$

Ejemplo Alternativa simple

Ejemplo: Demostrar que: $\{\}$ if $\max < a$ then $\max = a$ $\{(\max \ge a)\}$

Si
$$\{\neg(max < a)\} \Rightarrow \{max \ge a\}\}$$

Si $\{(max < a)max = a\{max \ge a)\}$
 $P = \{max = a, (max \ge a)\} \Rightarrow \{a \ge a\}$
 $\{a \ge a\} \Rightarrow \{\}$

$$\{P \wedge B\} C_1 \{Q\}$$
$$\{P \wedge \neg B\} \Rightarrow \{Q\}$$

 $\{P\}$ if B then $C_1\{Q\}$

Reglas Alternativa con else

Sentencia if con precondición $\{P\}$ y poscondición $\{Q\}$:

- Si el estado inicial satisface B además de P entonces se ejecutará C_1 , demostrar que $\{P \land B\}$ C_1 $\{Q\}$ es correcto.1
- Si el estado inicial no satisface B demostrar $\{P \land \neg B\} \Rightarrow \{Q\}$ es correcto.

Alternativas Precondición a partir de la poscondición

Cuando se trabaja con la estructura 'if'es bastante fácil obtener la poscondición a partir de la precondición.

Sin embargo normalmente lo que se necesita es lo contrario.

• Regla de inferencia:

Reglas Regla de la alternativa

• Regla del IF then

•
$$\frac{\vdash \{P \lor B\} C \{Q\}, \vdash \{P \lor \neg B\} \Rightarrow Q}{\vdash \{P\} \text{if } B \text{ then } C \{Q\}}$$

• Regla del if then else

•
$$\frac{\vdash \{P \lor B\} C_1 \{Q\}, \; \vdash \{P \lor \neg B\} C_2 \Rightarrow Q}{\vdash \{P\} \text{if } B \text{ then } C_1 \text{ else } C_2 \{Q\}}$$

Reglas Regla de Repetitiva

- Regla del While
 - $\frac{\vdash \{P \land B\} C \{P\}}{\vdash \{P\} \text{while } B \text{ do } C \{P \lor \neg B\}}$
- Siendo P una invariante, esto significa:
 - P es cierto antes de la ejecución del programa
 - P es cierto durante la ejecución del programa
 - P es cierto después de la ejecución del programa

$$\{P \wedge B\} C \{P\}$$

 $\{P\}$ while B do $C\{(\neg B \land P\}$