Milestone 4 Project Results

Riley Taylor

Objectives

- In this presentation, I will address the following items:
 - Client Information, Initial Hypotheses, and Initial Approach
- Analysis Results
 - Correlations and Metrics
 - Relation to Initial Hypotheses
- Graphics and Visualizations

Client Description

- I've decided to work with SportStats to analyze data about previous Olympic medal winners
 - SportsStats is a sports analysis firm that works to provide insights to their partners
- I'm looking to provide an analysis that will develop a news story or discover key health insights based on geography

Preliminary Questions

- Is there a geographic pattern that correlates with the events that each country succeeds in?
 - How would climate affect the number of medals won in the Summer vs Winter Games?
- Is there a geographic pattern that correlates with the number of medals received by each country?

Initial Hypothesis

- There will be a correlation between geography and performance
 - Countries with colder climates will perform best in the Winter Games
 - Countries with warmer climates will perform best in the Summer Games
- Countries with higher populations will have higher medal counts
 - A higher population will be correlated with a higher number of competitive athletes to choose for the national team for each event

Approach

- I'll primarily be looking at the frequency of medal wins and will separate by Summer vs Winter Games
 - From there, I'll analyze by country, sport, and event
- Columns I expect to primarily analyze:
 - Team, Games, Year, Season, Sport, Event, and Medal
- Target Metric:
 - Count of medals by season and country

Importing the Athlete Dataset

- I imported the Athlete Dataset using Python's Pandas Library
- The data was imported as athlete_data and the info is displayed

```
import pandas as pd
                                                                                                   Python
   #import data and get info
   athlete_data = pd.read_csv('/Users/rileytaylor/Downloads/athlete_events.csv')
   athlete_data.info()
 ✓ 2.4s
                                                                                                   Python
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 271116 entries, 0 to 271115
Data columns (total 15 columns):
    Column Non-Null Count Dtype
            271116 non-null int64
            271116 non-null object
            271116 non-null object
            261642 non-null float64
    Height 210945 non-null float64
     Weight 208241 non-null float64
            271116 non-null object
            271116 non-null object
    Games 271116 non-null object
            271116 non-null int64
    Season 271116 non-null object
            271116 non-null object
            271116 non-null object
 13 Event 271116 non-null object
 14 Medal 39783 non-null object
dtypes: float64(3), int64(2), object(10)
```

Importing Additional Data

- I decided to import another Dataset from <u>Kaggle</u> to be able to analyze data from each country
- The data was imported as country_data and the info is displayed

```
#import datasets for info about each country
   country_data = pd.read_csv('/Users/rileytaylor/Downloads/population_by_country_2020.csv')
   country_data.info()
                                                                                                   Python
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 235 entries, 0 to 234
Data columns (total 11 columns):
                             Non-Null Count Dtype
    Country (or dependency) 235 non-null
                                             object
    Population (2020)
                             235 non-null
                                             int64
    Yearly Change
                             235 non-null
                                             object
                             235 non-null
                                             int64
    Net Change
    Density (P/Km<sup>2</sup>)
                             235 non-null
                                             int64
    Land Area (Km²)
                             235 non-null
                                             int64
    Migrants (net)
                             201 non-null
                                             float64
    Fert. Rate
                             235 non-null
                                             object
   Med. Age
                             235 non-null
                                             object
   Urban Pop %
                             235 non-null
                                             object
 10 World Share
                             235 non-null
                                             object
dtypes: float64(1), int64(4), object(6)
memory usage: 20.3+ KB
```

Create an ERD

Initial Exploration

select the 20 countries with the most medals from athlete data set :qlit("SELECT Team, COUNT(Medal) AS 'Medal Count' FROM athlete_data GROUP BY Team ORDER BY COUNT(Medal) DESC LIMIT 20") [22] 🗸 10.7s Python Python Team Medal Count 0 United States 5219 1 Soviet Union 2451 1984 Germany Great Britain 1673 France 1550 1527 Italy 6 1434 Sweden 1306 Australia 8 1243 Canada 9 1127 Hungary 10 Russia 1110 Netherlands 988 12 East Germany 941 13 Japan 911 14 Norway 910 15 China 901 16 Finland 876 651 Romania 592 South Korea Switzerland 588

Technical Challenges

- Since SQL queries were run within Python using SQLite, there were a few limitations
 - However, these were later resolved once the data was cleaned accordingly, and the formatting issues were addressed within my queries

Initial Findings

Initial Findings (cont.)

- The lists of the countries with the most medals by Winter vs Summer Games were incredibly similar
 - The Winter Games list suggests a slight correlation of climate vs number of medals won, but wasn't statistically significant upon further analysis
- These results led me toward further analysis based on population and the percentage of the population of each country living in urban areas

Visualizations

Visualizations (cont.)

Visualizations (cont.)

```
plt.figure(figsize=(20,10))
       winter_medals.hist()
[53] \checkmark 0.4s
                                                                                                              Python
... array([[<AxesSubplot:title={'center':'Medal Count'}>]], dtype=object)
    <Figure size 2000x1000 with 0 Axes>
                               Medal Count
      6
      5
     3
     0
            100
                         200
                                     300
                                                  400
                                                              500
                                                                           600
```

Deeper Analysis and Final Findings

- Deeper analysis showed a more significant correlation between population size and the percentage of the population living in urban areas
 - Additional analysis may be needed, but I suspect that pulling in additional data would provide more insight
 - For example, a more urbanized population may suggest a higher GDP, which I suspect may correlate with an increase in the number of medals won