Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский университет ИТМО» Факультет Программной Инженерии и Компьютерной Техники

Вариант №30105
Лабораторная работа №1
по дисциплине
Программирование

Выполнил Студент группы Р3111 **Кочергин А.И.** к. т. н. Преподаватель:

г. Санкт-Петербург 2025г.

Оглавление

Задания и цели работы	2
Исходный код программы	3
Результат работы программы	5
Вывод	

Задания и цели работы

Задание с сайта se.ifmo.ru:

Написать программу на языке Java, выполняющую указанные в варианте действия

Требования к программе:

- 1. Программа должна корректно запускаться, выполняться и выдавать результат. Программа не должна выдавать ошибки. Программа должна быть работоспособной именно во время проверки, то, что она работала 5 минут назад, дома или в параллельной вселенной оправданием не является.
- 2. Выражение должно вычисляться в соответствии с правилами вычисления математических выражений (должен соблюдаться порядок выполнения действий и т.д.).
- 3. Программа должна использовать математические функции из стандартной библиотеки Java.
- 4. Вычисление очередного элемента двумерного массива должно быть реализовано в виде отдельного статического метода.
- 5. Результат вычисления выражения должен быть выведен в стандартный поток вывода в виде матрицы с элементами в указанном в варианте формате. Вывод матрицы реализовать в виде отдельного статического метода.
- 6. Программа должна быть упакована в исполняемый јаг-архив.
- 7. Выполнение программы необходимо продемонстрировать на сервере helios.

Применания.

- 1. В случае, если в варианте будут предложены одинаковые имена массивов, для одного из них к имени добавить "1".
- 2. Если в результате вычислений иногда получается NaN возможно так и должно быть

Введите вариант: 30105

- 1. Создать одномерный массив s типа long. Заполнить его чётными числами от 2 до 20 включительно в порядке убывания.
- 2. Создать одномерный массив x типа double. Заполнить его 18-ю случайными числами в диапазоне от -7.0 до 10.0.
- 3. Создать двумерный массив I размером 10х18. Вычислить его элементы по следующей формуле (где x=x[j]):

$$\circ$$
 если $\mathbf{s}[i] = 14$, то $l[i][j] = \left(2 \cdot \arctan\left(\frac{x+1.5}{17}\right) \cdot \left(\tan(x) + \frac{1}{2}\right)\right)^3$; \circ если $\mathbf{s}[i] \in \{4, 6, 16, 18, 20\}$, то $l[i][j] = 0.25 + \arcsin\left(\frac{1}{e^{|x|}}\right)$; \circ для остальных значений $\mathbf{s}[i]$: $l[i][j] = \left(\frac{1}{2} / \left(\left(x \cdot (x-1)\right)^3\right)^{\frac{1}{4} - \cos(x)}\right)^{\frac{2}{3} + \cos\left(\frac{x+\frac{1}{2}}{1}/3\right)}\right)^{\arcsin\left(\sin\left(\sin\left(\frac{\pi}{4}/(x+1)\right)^2\right)\right)}$.

4. Напечатать полученный в результате массив в формате с четырьмя знаками после запятой.

Цель лабораторной работы — познакомиться с базовым синтаксисом языка программирования Java (класс, метод, условие, цикл, объявление переменной, алгебраические выражения и так далее), а также научиться работать с сервером helios посредством ssh и sftp.

Исходный код программы

```
import static java.lang.Math.*;
public class Main {
    public static void main(String[] args) {
        long[] s = new long[10];
        int idx = 0;
        for (int i = 20; i >= 2; i -= 2) {
             s[idx++] = i;
        }
        double[] x = new double[18];
        for (int i = 0; i < x.length; i++) {</pre>
             x[i] = -7.0 + random() * (10.0 + 7.0);
        }
        double[][] 1 = new double[10][18];
        for (int i = 0; i < s.length; i++) {</pre>
             for (int j = 0; j < x.length; <math>j++) {
                 double x = x[j];
                 if (s[i] == 14) {
                     l[i][j] = pow(
                              2 * atan(($x + 1.5) / 17.0) * (tan($x) +
0.5),
                              3
                     );
                 } else if (s[i] == 4 || s[i] == 6 || s[i] == 16 || s[i]
== 18 \mid \mid s[i] == 20)  {
                     l[i][j] = 0.25 + asin(1.0 / exp(abs($x)));
                 } else {
                     double a = pow(pow($x * ($x - 1), 3), 0.25 -
\cos(\$x));
                     double b = (2.0 / 3.0) + \cos(\$x);
                     double c = pow(\$x, (\$x + 0.5) / 3.0);
                     double d = a\sin(\sin(\sin(\cos(0.75 / (\$x + 1.0), 2))));
                     l[i][j] = pow(0.5 / pow(pow(a, b), c), d);
                 }
             }
        }
        for (double[] nums: 1) {
             for (double num: nums) {
```

```
System.out.printf("%10.4f ", num);
}
System.out.println();
}
}
```

Исходный код также доступен на GitHub:

https://github.com/SoraVWV/itmo/blob/main/prog/1sem/lab1/Main.java

Результат работы программы

0,2517	0,2521	0,2510	0,3633	0,2604	0,3803	0,2624	0,5134	0,2517	0,2515	0,7266	0,2791	0,5480	0,2507	0,3049	0,2511	0,2512	0,2580
0,2517	0,2521	0,2510	0,3633	0,2604	0,3803	0,2624	0,5134	0,2517	0,2515	0,7266	0,2791	0,5480	0,2507	0,3049	0,2511	0,2512	0,2580
0,2517	0,2521	0,2510	0,3633	0,2604	0,3803	0,2624	0,5134	0,2517	0,2515	0,7266	0,2791	0,5480	0,2507	0,3049	0,2511	0,2512	0,2580
-0,0132	0,0397	0,0041	-0,0629	10,5554	-0,2191	0,5629	4,2087	0,1483	0,3003	0,0624	0,1482	-0,0004	6,6631	-0,0018	0,0001	-0,0001	-215,6177
NaN	Infinity	NaN	0,9389	NaN	0,9232	NaN	0,9380	Infinity	Infinity	NaN	1,3186	NaN	Infinity	NaN	NaN	NaN	0,7659
NaN	Infinity	NaN	0,9389	NaN	0,9232	NaN	0,9380	Infinity	Infinity	NaN	1,3186	NaN	Infinity	NaN	NaN	NaN	0,7659
NaN	Infinity	NaN	0,9389	NaN	0,9232	NaN	0,9380	Infinity	Infinity	NaN	1,3186	NaN	Infinity	NaN	NaN	NaN	0,7659
0,2517	0,2521	0,2510	0,3633	0,2604	0,3803	0,2624	0,5134	0,2517	0,2515	0,7266	0,2791	0,5480	0,2507	0,3049	0,2511	0,2512	0,2580
0,2517	0,2521	0,2510	0,3633	0,2604	0,3803	0,2624	0,5134	0,2517	0,2515	0,7266	0,2791	0,5480	0,2507	0,3049	0,2511	0,2512	0,2580
NaN	Infinity	NaN	0,9389	NaN	0,9232	NaN	0,9380	Infinity	Infinity	NaN	1,3186	NaN	Infinity	NaN	NaN	NaN	0,7659

^{*} Один из возможных результатов программы

Вывод

По итогу выполнения лабораторной работы, я узнал базовые синтаксические конструкции языка программирования Java, один из способов сборки программ в .jar файлы, а также, например, изучил методы класса java.lang.Math.