Introduction

Model

Variance
Portfolio
Optimization

ARIMA+LS

Experimenta Design

Experimenta Results

Compariso

Conclusion

Portfolio Optimization Using Time Series Time Series Analysis

Jenny Petrova

Florida State University

April 24, 2025

Experimenta Design

Experimenta Results

Comparison Results

Conclusion

- 1 Introduction
- 2 Model Selection
- 3 Mean-Variance Portfolio Optimization Model
- 4 ARIMA+LS-SVM Model
- **5** Experimental Design
- 6 Experimental Results
- **7** Comparison Results
- 8 Conclusion

Introduction

Model Selection

Mean-Variance Portfolio

ARIMA+LS SVM Model

Experimenta Design

Experimenta Results

Compariso Results

Conclusion

- 1 Introduction
- 2 Model Selection
- 3 Mean-Variance Portfolio Optimization Model
- 4 ARIMA+LS-SVM Model
- **5** Experimental Design
- 6 Experimental Results
- 7 Comparison Results
- 8 Conclusion

Experimenta Design

Experimenta Results

Comparison Results

Conclusion

Introduction

- 'An approach to portfolio optimization with time series forecasting algorithms and machine learning techniques' by Jyotirmayee Behera and Pankaj Kumar.
- 2 Motivation: optimal asset selection and portfolio construction
- 3 Challenge: selecting an efficient model (balancing model limitations) to model stock price fluctuations

Introduction

Model Selection

Mean-Variance Portfolio Optimizatio

ARIMA+LS SVM Mode

Experimenta Design

Experimenta Results

Comparison Results

Conclusion

- Introduction
- 2 Model Selection
- 3 Mean-Variance Portfolio Optimization Model
- 4 ARIMA+LS-SVM Model
- 5 Experimental Design
- **6** Experimental Results
- 7 Comparison Results
- 8 Conclusion

Compariso Results

Conclusion

Model Selection

ARIMA(p,d,q) Model

$$\phi(L)(1-L)^d y_t = \theta(L)\varepsilon_t \tag{1}$$

$$\phi(L) = 1 - \phi_1 L - \phi_2 L^2 - \dots - \phi_p L^p \tag{2}$$

$$\theta(L) = 1 - \theta_1 L - \theta_2 L^2 - \dots - \theta_p L^p \tag{3}$$

$$\varepsilon_t \sim WN(0, \sigma^2)$$

- Linear combination of past values and white noise, differenced to stationarity
- Limitation: cannot capture non-linear patterns in time series data

Compariso Results

Conclusion

Model Selection

GARCH(p,q) Model

$$h_t = \alpha_0 + \sum_{i=1}^q \alpha_i \varepsilon_{t-i}^2 + \sum_{j=1}^p \beta_j h_{t-j}$$
 (4)

$$\varepsilon_t = \sqrt{h_t} v_t, \quad v_t \sim IID(0,1)$$
 (5)

- Captures volatility clustering, forecasts time-varying volatility
- Limitation: limited forecast horizon (assume deterministic and symmetric volatility, and normally distributed errors)

ARIMA+GARCH Model

 Effective in modeling volatility, but lacks in capturing complex price dynamics

Experimenta Design

Experimenta Results

Comparison Results

Conclusion

Model Selection

Neural Network Models

- types: ANN, RNN, MLP, LSTM
- Limitations: data hungry, high tuning and computational complexity

ARIMA+Neural Network Models

 Efficient in time series modeling / forecasting, but not suitable for financial applications

Experimenta Design

Experimenta Results

Comparisor Results

Conclusion

Model Selection

SVM Model

- Supervised ML algorithm
- High accuracy, effective high-dimensional performance
- Limitations: scalability, requires careful cross-validation, sensitive to extreme outliers

ARIMA+SVM Model

 Handles non-linearity and more robust to outliers, but not as flexible as neural networks

Experimenta Design

Experimenta Results

Compariso Results

Conclusion

Model Selection

LS-SVM Model

Enhances speed of solving optimization problems

ARIMA+LS-SVM Model

- Balances performance, efficiency, and flexibility
- High scalability and accuracy

Chosen model for portfolio optimization!

Introduction

Model

Mean-Variance Portfolio Optimization Model

ARIMA+LS SVM Mode

Experimenta Design

Experimenta Results

Compariso Results

Conclusion

- 1 Introduction
- 2 Model Selection
- 3 Mean-Variance Portfolio Optimization Model
- 4 ARIMA+LS-SVM Model
- **5** Experimental Design
- **6** Experimental Results
- Comparison Results
- 8 Conclusion

Experimenta Design

Experimenta Results

Comparison Results

Conclusion

Mean-Variance Portfolio Optimization (MVPO)

- Developed by Harry Markowitz, 'Modern Portfolio Theory'
- Maximize expected return (or minimize risk) of a portfolio Let P be a portfolio with $j = 1, \ldots, n$ stocks.

$$\min \sigma_p^2 = \sum_{i=1}^n \sum_{j=1}^n \sigma_{ij} w_i w_j$$
 subject to $\sum_{j=1}^n f_j w_j = f_P,$
$$\sum_{j=1}^n w_j = 1,$$
 where $\sigma_{ij} = \sigma_i \sigma_i \rho_{ij}, \ 0 \leq w_i \leq 1$

Introduction

Model

Mean-Variance Portfolio

ARIMA+LS-SVM Model

Experimenta Design

Experimenta Results

Comparisor Results

Conclusion

- 1 Introduction
- 2 Model Selection
- 3 Mean-Variance Portfolio Optimization Model
- 4 ARIMA+LS-SVM Model
- **5** Experimental Design
- 6 Experimental Results
- Comparison Results
- 8 Conclusion

Experimental Design

Experimenta Results

Compariso

Conclusion

ARIMA+LS-SVM Model

- utilized for stock price prediction
- performance of the model determined by obtaining the efficient solution for the mean-variance portfolio optimization model

Introduction

Model Selectio

Mean-Variance Portfolio

ARIMA+LS SVM Model

Experimental Design

Experimenta Results

Comparison Results

Conclusion

- Introduction
- 2 Model Selection
- 3 Mean-Variance Portfolio Optimization Model
- 4 ARIMA+LS-SVM Model
- **5** Experimental Design
- 6 Experimental Results
- 7 Comparison Results
- 8 Conclusion

Mean-Variance Portfolio Optimizatio

ARIMA+LS SVM Mode

Experimental Design

Experimenta Results

Comparison Results

Conclusion

Experimental Design

 Data: closing prices of BSE 100 component stocks, from January 1, 2010, to June 30, 2023

Methodological Framework to Portfolio Optimization:

Conclusion

Experimental Design

Hybrid Model Approach:

- **1** Employ ARIMA method to fit closing prices (y_t) and generate forecasts (\hat{f}_t)
- **2** Calculate residuals: $\varepsilon_t = y_t \hat{f}_t$
- **3** Employ LS-SVM method to fit residual terms (ε_t) and generate error forecasts $(\hat{\varepsilon}_t)$, using 8:2 train/test ratio.
- **4** Compute ultimate predictions: $\hat{y}_t = \hat{f}_t + \hat{\varepsilon}_t$
- **5** Choose stocks with lowest prediction error $(\min |y_t \hat{y}_t|)$
- Integrate MVPO model with chosen high-performing stocks to achieve most efficient portfolio

Introduction

Selection

Mean-Variance Portfolio

ARIMA+LS

Experimenta Design

Experimental Results

Compariso Results

Conclusion

- 1 Introduction
- 2 Model Selection
- 3 Mean-Variance Portfolio Optimization Model
- 4 ARIMA+LS-SVM Model
- 5 Experimental Design
- 6 Experimental Results
- 7 Comparison Results
- 8 Conclusion

Experimenta Design

Experimental Results

Compariso Results

Conclusion

Experimental Results

Performance assessment of various models in prediction.

Model		MAE	MSE	RMSE	Time (s)
SVM	Mean	0.001256	0.800960	0.001338	88.221
	Std	0.002416	3.087503	0.002507	
LS-SVM	Mean	0.000122	0.686276	0.000129	22.417
	Std	0.000222	2.616905	0.000229	
ARIMA	Mean	0.000750	1.028893	0.001497	16.740
	Std	0.001322	4.140065	0.002346	
ARIMA+SVM	Mean	0.001329	0.884505	0.001405	94.546
	Std	0.002435	1.433664	0.002523	
ARIMA+LS-SVM	Mean	0.000106	0.051044	0.000113	30.890
	Std	0.000294	0.305830	0.000298	

Design

Experimental Results

Results

Conclusion

Experimental Results

Performance assessment of ARIMA+LS-SVM model at different (p, d, q) values.

				Q	
(p,d,q) values		MAE	MSE	RMSE	Time (s)
(0,1,0)	Mean	0.000106	0.051044	0.000113	30.890
	Std	0.000294	0.305830	0.000298	
(1,1,0)	Mean	0.000110	0.088759	0.000116	33.474
	Std	0.000320	0.187223	0.000324	
(1,1,1)	Mean	0.000112	0.090481	0.000118	64.034
	Std	0.000330	0.187089	0.000333	
(1,1,2)	Mean	0.000108	0.087211	0.000115	84.276
	Std	0.000324	0.188150	0.000328	
(2,1,1)	Mean	0.000108	0.086934	0.000115	84.772
	Std	0.000324	0.187254	0.000328	
(2,1,2)	Mean	0.000109	0.088693	0.000115	162.089
	Std	0.000319	0.184776	0.000322	
(4,1,2)	Mean	0.000107	0.090520	0.000114	221.361
	Std	0.000299	0.191544	0.000303	
(5,2,0)	Mean	0.000139	0.131989	0.000148	66.304
	Std	0.000323	0.220939	0.000329	
					00.304

Mean-Variance Portfolio Optimization Model

ARIMA+LS SVM Model

Experimenta Design

Experimental Results

Compariso

Conclusion

Statistical Testing

Friedman Test - used to assess statistically significant differences in prediction accuracy.

 H_0 : mean performance metrics of all models are identical H_1 : significant disparities in the models' average performances **Results:** reject H_0 . At least one model's performance differs significantly from the others.

Experimental Results

Statistical Testing

Nemenyi Test - post-hoc test for pairwise comparison of models after a global statistical test (such as the Friedman test) has rejected the null hypothesis of similar performance. Results:

Nemenyi	post-hoc	test	p-values	for	MAE.

	ARIMA	SVM	LS-SVM	ARIMA+SVM	ARIMA+LS-SVM
ARIMA	1	0.650824	0	0.83145	0
SVM	0.650824	1	1.11E-16	0.111246	0
LS-SVM	0	1.11E-16	1	0	0.636464
ARIMA+SVM	0.83145	0.111246	0	1	0
ARIMA+LS-SVM	0	0	0.636464	0	1

Nemenvi post-hoc test p-values for MSE.

	ARIMA	SVM	LS-SVM	ARIMA+SVM	ARIMA+LS-SVM
ARIMA	1	2.06E-08	0.914924	5.88E-15	0.000721
SVM	2.06E-08	1	7.79E-11	0.219129	0
LS-SVM	0.914924	7.79E-11	1	1.11E-16	0.016156
ARIMA+SVM	5.88E-15	0.219129	1.11E-16	1	0
ARIMA+LS-SVM	0.000721	0	0.016156	0	1

Nemenyi post-hoc test p-values for RMSE.

	ARIMA	SVM	LS-SVM	ARIMA+SVM	ARIMA+LS-SVM
ARIMA	1	0.929185	0	0.991739	0
SVM	0.929185	1	0	0.720529	0
LS-SVM	0	0	1	0	0.578283
ARIMA+SVM	0.991739	0.720529	0	1	0
ARIMA+LS-SVM	0	0	0.578283	0	1

Experimenta Design

Experimental Results

Comparison Results

Conclusion

MVPO Model Performance

- Employ [SVM, LS-SVM, ARIMA, ARIMA+SVM, ARIMA+LS-SVM]+MVPO to represent MVPO models incorporating predicted stocks from each SVM, LS-SVM, ARIMA, ARIMA+SVM, ARIMA+LS-SVM model, respectively.
- ② Determine optimal portfolio for $f_P = 0.0003$, 0.0005, 0.0007, 0.0009, 0.0011, 0.0013, 0.0014.
- 3 Compute variance, standard deviation, and Sharpe Ratio for each portfolio.

$$SR = \max\{SR(P)\}, \text{ where } SR(P) = \frac{f_P}{\sigma_P}$$

Introduction

Model

Selection

1.4.....

Variance
Portfolio
Optimization

ARIMA+LS

Experimenta

Experimental Results

Compariso Results

Conclusion

Efficient Frontier

Introduction

Model

Mean-Variance Portfolio Optimization

ARIMA+LS

Experimenta Design

Experimental Results

Compariso

Conclusion

Sharpe Ratio

Experimental Results

Cumulative Return

Figure: $f_P = 0.0003$

Figure: $f_P = 0.0007$

Introduction

Model Selectio

Mean-Variance Portfolio

ARIMA+LS

Experimenta Design

Experimenta Results

Comparison Results

Conclusion

- 1 Introduction
- 2 Model Selection
- 3 Mean-Variance Portfolio Optimization Model
- 4 ARIMA+LS-SVM Model
- **5** Experimental Design
- 6 Experimental Results
- **7** Comparison Results
 - 8 Conclusion

Introductio

Model Selection

Mean-Variance Portfolio Optimization Model

ARIMA+LS SVM Mode

Experimenta Design

Experimenta Results

Comparison Results

Conclusion

Existing Literature

ERC Model:

- 'Equally-weighted Risk Contribution' portfolio by Maillard et al. (2009-2010)
- ensures each asset contributes same marginal risk
- maximizes diversification without relying on expected returns
- limitations: may overweight low-volatility assets

Minimax Portfolio Optimization Model

- by Young et al. (1998)
- maximizes worst-case return (equivalently, minimizes maximum loss) across past observation periods
- limitations: overly conservative if past worst cases are outliers, ignores variance and potential upside returns

Introduction

Selectio

Variance Portfolio Optimizatio

ARIMA+LS SVM Mode

Experimenta Design

Experimenta Results

Comparison Results

Conclusio

Comparison Results

Comparison with existing literature.

μ_{fix}	Model	Standard deviation	Variance	Sharpe ratio	Time (s)
	Our approach	0.007313	0.000053	0.041023	0.00
0.0003	ERC portfolio	0.022468	0.000505	0.013352	0.34
	Young et al.	0.020304	0.000412	0.014775	0.00
	Our approach	0.007875	0.000062	0.063489	0.00
0.0005	ERC portfolio	0.028649	0.000821	0.017452	0.34
	Young et al.	0.028746	0.000826	0.017393	0.00
	Our approach	0.009472	0.000090	0.073904	0.00
0.0007	ERC portfolio	0.021923	0.000481	0.031930	0.33
	Young et al.	0.019650	0.000386	0.035624	0.00
	Our approach	0.012069	0.000146	0.074570	0.00
0.0009	ERC portfolio	0.022243	0.000495	0.040462	0.33
	Young et al.	0.017093	0.000292	0.052654	0.00
	Our approach	0.016770	0.000281	0.065595	0.00
0.0011	ERC portfolio	0.023184	0.000537	0.047447	0.33
	Young et al.	0.016979	0.000288	0.064785	0.01
	Our approach	0.024070	0.000579	0.054009	0.00
0.0013	ERC portfolio	0.024673	0.000609	0.052688	0.33
	Young et al.	0.023996	0.000576	0.054076	0.00

Introduction

Model

Mean-

Portfolio Optimizatio Model

SVM Mode

Experimenta Design

Experimenta Results

Comparison Results

Conclusion

Comparison Results

Introduction

Introductio

Selecti

Moon

Mean-

Portfolio

Optimization Model

ARIMA+LS

Experimenta Design

Experimenta

Comparison Results

Conclusion

Cumulative Return

Figure: $f_P = 0.0003$

Figure: $f_P = 0.0007$

Introduction

Model Selection

Mean-

Variance Portfolio Optimizatio

ARIMA+LS SVM Mode

Experimenta Design

Experimenta Results

Comparison Results

Conclusion

- 1 Introduction
- 2 Model Selection
- 3 Mean-Variance Portfolio Optimization Model
- 4 ARIMA+LS-SVM Model
- **5** Experimental Design
- 6 Experimental Results
- 7 Comparison Results
- **8** Conclusion

Experimental Results

Comparisor Results

Conclusion

Conclusion

- ARIMA+LS-SVM demonstrates superior stock price prediction
- ARIMA+LS-SVM+MVPO achieves superior risk-return efficiency, higher returns, lower variance and standard deviation, higher Sharpe ratio, and improved portfolio cumulative returns → outperforms alternatives
- potential applications in algorithmic trading and risk management
- future research could incorporate additional factors and more diverse stock market datasets

Introduction

iviodei

Selecti

Mean-

Varianc

Ontimizatio

Model

ARIMA+LS

Experiment: Design

Experimenta Results

Compariso Results

Conclusion

Thank you!