GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VI (NEW) - EXAMINATION - SUMMER 2018

Subject Code:2160704

Date:03/05/2018

Total Marks: 70

03

07

03

Subject Name: Theory of Computation

Time: 10:30 AM to 01:00 PM

Instructions: 1. Attempt all questions.

- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- **Q.1** (a) Show that the CFG with productions

 $S \rightarrow a \mid Sa \mid bSS \mid SSb \mid SbS$

is ambiguous.

(b) Define onto function. In each case, a relation on the set $\{1, 2, 3\}$ is given. Of the **04** three properties, reflexivity, symmetry, and transitivity, determine which ones the relation has. Give reasons.

a.
$$R = \{(1, 3), (3, 1), (2, 2)\}$$

b.
$$R = \{(1, 1), (2, 2), (3, 3), (1, 2)\}$$

c. $R = \phi$

(c) Write Principle of Mathematical Induction. Prove that for every $n \ge 1$,

 $\sum_{i=1}^{n} \frac{1}{i(i+1)} = n/(n+1)$

Explain Chomsky Hierarchy. Q.2 (a)

> Convert the given Moore machine into Mealy machine. Draw state transition **(b)** diagram of Mealy machine.

Present	Next State		Output
State	0	1	
$\rightarrow p_0$	r	q_0	3
p_1	r	q_0	1
q_0	p_1	S ₀	0
q_1	p_1	S ₀	1
r	q_1	p_1	0
S ₀	S 1	r	0
S ₁	S 1	r	1

(c) Given the context-free grammar G, find a CFG G' in Chomsky Normal Form. 07

 $S \rightarrow AaA \mid CA \mid BaB$ G:

A → aaBa | CDA | aa | DC

 $B \rightarrow bB \mid bAB \mid bb \mid aS$

 $C \rightarrow Ca \mid bC \mid D$

 $D \rightarrow bD \mid \epsilon$

ε represents null.

OR

- (c) Define Context Free Grammar. Find context-free grammar for the language: L **07** $= \{a^i b^j \mid i < 2i\}$
- (a) Show that the function f(x, y) = x + y is primitive recursive. 03 Q.3
 - **(b)** Explain Union Rule and Concatenation Rule for Context-Free Grammar. 04

1

(c) Figure shows NFA-^. Draw an FA accepting the same language.

Q.3 (a) Define Constant functions, Successor functions and Projection function.

03 04

07

(b) Let G be the grammar

 $S \rightarrow aB \mid bA$

 $A \rightarrow a \mid aS \mid bAA$

 $B \rightarrow b \mid bS \mid aBB$

For string aaabbabbba, find Left most derivation and Right most derivation.

(c) Let M_1 , M_2 and M_3 be the FAs pictured in Figure, recognizing languages L_1 , L_2 07 and L_3 , respectively.

Draw FAs recognizing the following languages.

- a. $L_1 U L_2$
- b. $L_1 \cap L_3$

Q.4 (a) Decide whether the given language is a CFL, and prove your answer. L = $\{ xyx \mid x, y \in \{a, b\}^* \text{ and } |x| \ge 1 \}$

(b) Construct PDA for

04

- $S \rightarrow 0AB$
- $A \rightarrow 1A \mid 1$
- $B \rightarrow 0B \mid 1A \mid 0$

Trace the string 01011 using PDA.

(c) Give transition tables for deterministic PDA recognizing following language:

$$L = \{x \in \{a, b\} * \mid n_a(x) \neq n_b(x)\}$$

Trace it for the string abbaababbb

07

- Q.4 (a) Show using pumping lemma that the given language is not a CFL. $L = \{ a^n b^{2n} a^n \mid n \ge 0 \}$
 - (b) Prove that There are CFLs L_1 and L_2 so that $L_1 \cap L_2$ is not a CFL, and there is a CFL L so that L' is not a CFL.
 - (c) For the PDA, ($\{q_0, q_1\}, \{0, 1\}, \{0, 1, z_0\}, \delta, q_0, z_0, \phi$), where δ is

$$\begin{split} &\delta(q_0,\,\epsilon,\,z_0) = \{(q_1,\,\epsilon)\} \\ &\delta(q_0,\,0,\,z_0) = \{(q_0,\,0z_0)\} \\ &\delta(q_0,\,0,\,0) = \{(q_0,\,00)\} \\ &\delta(q_0,\,1,\,0) = \{(q_0,\,10)\} \\ &\delta(q_0,\,1,\,1) = \{(q_0,\,11)\} \\ &\delta(q_0,\,0,\,1) = \{(q_1,\,\epsilon)\} \\ &\delta(q_1,\,0,\,1) = \{(q_1,\,\epsilon)\} \\ &\delta(q_1,\,0,\,0) = \{(q_1,\,\epsilon)\} \\ &\delta(q_1,\,\epsilon,\,z_0) = \{(q_1,\,\epsilon)\} \end{split}$$

Obtain CFG accepted by the above PDA.

- **Q.5** (a) Find a regular expression corresponding to each of the following subsets of $\{0, 03 1\}^*$
 - 1. The language of all strings that begin or end with 00 or 11.
 - 2. The language of all strings containing both 11 and 010 as substrings.
 - (b) Define Context-Sensitive Grammar. Write a CSG for $\{a^nb^nc^n \mid n \ge 1\}$.
 - (c) Draw a transition diagram for a Turing machine for the language of all 07 palindromes over {a, b}.

OR

- Q.5 (a) Use the pumping lemma to show that following language is not regular. $L = \{xy \mid x, y \in \{0, 1\}^* \text{ and } y \text{ is either } x \text{ or } x^r \}$
 - **(b)** Write Short note on Church-Turing Thesis.

(c) Draw a transition diagram for a Turing machine accepting the language $\{SS \ 07 \ | S \in \{a, b\}^*\}.$

04