PRÁCTICO 3 LENGUAJES FORMALES: GNFAs y el pumping Lemma.

Mauricio Velasco

- 1. Utilice el pumping lemma para demostrar que los siguientes lenguajes NO SON regulares. Incluya una argumentación clara.
 - a) $A_1 = \{0^n 1^n 2^n : n \in \mathbb{N}\}$
 - b) $A_2 = \{www | w \in \{a, b\}^*\}$
 - c) $A_3 = \{a^{2^n} : n \in \mathbb{N}\}$
- 2. Para un string $w_1 ldots w_n$ la reversa es $w_n w_{n-1} ldots w_2 w_1$. Demuestre que un lenguaje A es regular si y solo si el conjunto de sus reversas es tambien regular.
- 3. Demuestre que los siguientes lenguajes no son regulares:
 - a) $\{0^m 1^n : m \neq n\}$
 - b) $\{w \in \{0,1\}^*$ que NO son palabras capicua (a.k.a. palindromas) $\}$
- 4. Escriba formalmente las siguientes:
 - a) Definición de GNFA.
 - b) Complete: El GNFA M acepta la palabra w si...
 - c) Complete: Para todo GNFA existe una expresión regular tal que...
 - d) De un ejemplo de un GNFA con tres estados y construya la expresión regular del lenguaje que este acepta, obtenida eliminando el estado que no es de inicio o aceptación.
- 5. Un **TODO-NFA** es una 5-tupla $(Q, \Sigma, \delta, q_0, F)$ que acepta w^* si todo estado al que puede llegar despues de leer w^* esta en F. Demuestre que los **TODO-NFA**s tambien reconocen la colección de lenguajes regulares.

- 6. Sea $L \subseteq \Sigma^*$ un lenguaje. Decimos que x y y puden distinguirse mediante L si existe un $z \in \Sigma^*$ tal que exctamente uno de xz y yz estan en L. Para $x, y \in \Sigma^*$ definimos $x \sim y$ si x y y NO PUEDEN distinguirse mediante L. Demuestre que \sim es una relación de equivalencia (es decir es reflexiva, simétrica y transitiva).
- 7. Problema. Sea $\Sigma = \{1\}$. Intente caracterizar el conjunto de todos los lenguajes $L \subseteq \Sigma^*$ que son L(M) para algún DFA con un único estado de aceptación.