Exercise P3

Nguyen Duc Thang

April 2020

1 P3.1

Problem 1 Prove the following Cauchy-Schwarz inequality $|\langle v, w \rangle| \le ||v|| ||w||$

1.1 Solution

$$\cos \theta = \frac{\langle v, w \rangle}{\|v\| \|w\|}$$

$$\implies |\cos \theta| = \frac{|\langle v, w \rangle|}{\|v\| \|w\|}$$

$$\implies \frac{|\langle v, w \rangle|}{\|v\| \|w\|} \le 1$$

Hence, $|\langle v, w \rangle| \le ||v|| ||w||$

2 P3.2

Problem 2 Prove the Triangle inequality $||v|| - ||w|| \le ||v + w|| \le ||v|| + ||w||$

2.1 Solution

$$(\|v\| - \|w\|)^2 = \langle v, v \rangle + \langle w, w \rangle - 2\|v\| \|w\| \le \langle v, v \rangle + \langle w, w \rangle + 2\langle v, w \rangle$$
$$= \langle v, v + w \rangle + \langle w + v, w \rangle = \langle v + w, v + w \rangle = \|v + w\|^2$$

Hence $||v|| - ||w|| \le ||v + w||$ Similarly:

$$(\|v\| + \|w\|)^2 = \langle v, v \rangle + \langle w, w \rangle + 2\|v\| \|w\| \ge \langle v, v \rangle + \langle w, w \rangle + 2\langle v, w \rangle$$
$$= \langle v, v + w \rangle + \langle w + v, w \rangle = \langle v + w, v + w \rangle = \|v + w\|^2$$

Hence $||v|| + ||w|| \ge ||v + w||$

3 P3.3

Problem 3 Prove the Parallellogram law $||v+w||^2 + ||v-w||^2 = 2(||v||^2 + ||w||^2)$

3.1 Solution

$$||v||^2 + ||w||^2 + 2\langle v, w \rangle = \langle v, v \rangle + \langle v, w \rangle + \langle w, w \rangle + \langle w, v \rangle = \langle v + w, v + w \rangle = ||v + w||^2$$
 Similarly:

$$||v||^2 + ||w||^2 - 2\langle v, w \rangle = \langle v, v \rangle - \langle v, w \rangle + \langle w, w \rangle - \langle w, v \rangle = \langle v - w, v - w \rangle = ||v - w||^2$$

Adding up 2 equations together:

$$||v + w||^2 + ||v - w||^2 = 2(||v||^2 + ||w||^2)$$

4 P3.4

Problem 4 Prove the Polarization identity: $\langle v, w \rangle = \frac{1}{2} (\|v + w\|^2 - \|v\|^2 - \|w\|^2)$

4.1 Solution

It is proven that:

$$||v||^2 + ||w||^2 + 2\langle v, w \rangle = \langle v, v \rangle + \langle v, w \rangle + \langle w, w \rangle + \langle w, v \rangle = \langle v + w, v + w \rangle = ||v + w||^2$$

Hence

$$2\langle v, w \rangle = \|v + w\|^2 - \|v\|^2 - \|w\|^2$$

$$\implies \langle v, w \rangle = \frac{1}{2}(\|v + w\|^2 - \|v\|^2 - \|w\|^2)$$

5 P3.5

Problem 5 Find the distance from a point $\mathbf{w} = (w_x, w_y, w_z)^{\top}$ to the plane H_n normal to $\mathbf{n} = (a, b, c)^{\top}$ and translated from the origin by vector $\mathbf{p} = (x_0, y_0, z_0)^{\top}$. Show that it is the smallest distance to any point in H_n

5.1 Solution

Given $H_n: \forall v \in V: \langle v - p, n \rangle = 0$

Denote w_H an orthogonal projection of w on H Hence

$$w - w_H = kn$$

$$\implies w_H = w - kn$$

 $\implies w_H = w - \kappa$

Also
$$w_H \in H$$

$$\implies \langle w_H - p, n \rangle = 0$$

$$\implies \langle w - kn - p, n \rangle = 0 \implies k = \frac{\langle w - p, n \rangle}{\|n\|^2}$$

Hence the distance is :

$$d = k ||n|| = \frac{\langle w - p, n \rangle}{||n||}$$

6 P3.6

Problem 6 Prove that $w_p = \text{proj}_{V_k}(w)$ is the vector in subspace V_k *closest* to w using 2 approaches:

6.1 Solution

Denote w_V the orthogonal projection of w on V_k . Denote w_i a point on a hyperplane V_k

$$\implies w - w_i = (w - w_V) + (w_V - w_i)$$

Since $(w - w_H)$ and $(w_H - w_i)$ are perpendicular $(w_H - w_i \in H_n \text{ and } w - w_H = kn)$, applying the Pythagorean theorem:

$$||w - w_i||^2 = ||w_H - w_i||^2 + ||w - w_H||^2 \implies ||w - w_i|| \ge ||w - w_H||$$

Hence, the shortest distance is the distance between a vector **w** and its projection in subspace V_k

7 P3.7

Problem 7 Least squares solution of $A\mathbf{x} = \mathbf{b}$ is $\hat{\mathbf{x}} = \arg\min_{\mathbf{x}} \|\mathbf{b} - A\mathbf{x}\|$. By column view of matrix multiplication, $A\hat{\mathbf{x}}$ is the orthogonal projection of \mathbf{b} onto the column space $\mathsf{Col}(A)$ of matrix A. Thus we must have $(\mathbf{b} - A\hat{\mathbf{x}}) \perp \mathsf{Col}(A)$. Write down matrix form for this and solve for $\hat{\mathbf{x}}$, given that A is full rank. Show that the orthogonal projection operator of \mathbf{b} onto $\mathsf{Col}(A)$ is: $P_{\mathsf{Col}(A)} = A(A^{\top}A)^{-1}A^{\top}$

$$(\mathbf{b} - A\hat{\mathbf{x}}) \perp \mathsf{Col}(A)$$

$$\iff A^T(b - A\hat{\mathbf{x}}) = 0$$

$$\iff A^Tb = A^TA\hat{\mathbf{x}}(1)$$

Since A^TA is square and full rank $(rank(A^TA) = rank(A)$, it is invertible Hence (1)

$$\iff \hat{x} = (A^T A)^{-1} A^T b$$

$$\implies A(A^T A)^{-1} A^T b = A\hat{x}(2)$$

From (2) we can see that b is transformed into the orthogonal projection of b in hyperplane Col(A). Hence, the matrix representation of orthogonal projection of b onto Col(A) is $P_{Col(A)} = A(A^TA)^{-1}A^T$

8 P3.8

Problem 8 Show that the generalized dot product $\langle \mathbf{x}, \mathbf{y} \rangle_M = \mathbf{x}^\top M \mathbf{y}$ with $M \in \mathbb{R}^{n \times n}$ a symmetric positive definite matrix satisfies all 3 requirements of a proper inner product.

8.1 Solution

We prove that the dot product satisfies the following 3 requirements:

-Symmetry:

$$\langle y, x \rangle = y^T M x = (x^T M^T y)^T = x^T M y$$

(because M is symmetric)

-Linearity:

$$\langle a\mathbf{x} + b\mathbf{y}, c\mathbf{z} + d\mathbf{t} \rangle$$

$$= (a\mathbf{x} + b\mathbf{y})^T M (c\mathbf{z} + d\mathbf{t})$$

$$= a\mathbf{x}^T M c\mathbf{z} + a\mathbf{x}^T M d\mathbf{t} + b\mathbf{y}^T M c\mathbf{z} + b\mathbf{y}^T M d\mathbf{t}$$

-Positive definiteness:

$$= ac\langle \mathbf{x}, \mathbf{z} \rangle + ad\langle \mathbf{x}, \mathbf{t} \rangle + bc\langle \mathbf{y}, \mathbf{z} \rangle + bd\langle \mathbf{y}, \mathbf{t} \rangle$$
$$\langle x, x \rangle = x^T M x > 0$$

(since M is positive definite)

Hence, the inner product $\langle x, y \rangle = x^T M y$ is a proper inner product.

9 P3.9

Problem 9 Prove that the null space and the row space of a matrix are orthogonal, i.e. every vector in null space is orthogonal to every vector in row space (zero dot product)

9.1 Solution

Given a vector $x \in N(A)$, where rank(A) = r, we have:

$$Ax = \vec{0}$$

Applying elementary row operation on both size to reduce A to row-echelon form

$$\Longrightarrow EAx = \vec{0}$$

$$\iff \begin{bmatrix} \langle \mathbf{e_1}^T, x \rangle \\ \langle \mathbf{e_2}^T, x \rangle \\ \vdots \\ \langle \mathbf{e_n}^T, x \rangle \end{bmatrix} = \vec{0}$$

As it can be seen here , x must be perpendicular to every row in EA. However, after reducing A to row echelon form,we can ensure that first r rows form a basis that span Row(A), hence, x must be orthogonal to Row(A) Therefore the null space of A and the row space of A are orthogonal.

10 P3.10

Problem 10 What is the distance from a vector to a line? Recall from lecture 1, a line through v in direction of u: $L_1 = \{w \in V : w = v + tu, \ \forall t \in R, \ u, v \in V\}$

10.1 Solution

Denote w_l an orthogonal projection of w on L_1 . Hence $w_l = v + t_l u$. We also have that:

$$\langle w - w_l, u \rangle = 0$$

$$\iff w - v - t_l u, u \langle = 0$$

$$\iff t_l = \frac{\langle w - v, u \rangle}{\|u\|^2}$$

The distance from w to L_1 is:

$$d = ||w - w_l|| = ||w - v - t_1 u|| = ||w||^2 + ||v||^2 + t_1^2 ||u||^2 - 2t_1 \langle w - v, u \rangle = ||w||^2 + ||v||^2 - t_1^2 ||u||^2$$
$$= ||w||^2 + ||v||^2 - \frac{\langle w - v, u \rangle^2}{||u||^2}$$