[†] Department of Statistics and Data Science, Yale University, [‡] Department of Electrical Engineering, Yale University [‡] Department of Electrical and Systems Engineering, University of Pennsylvania, [‡] Department of Computer Science, Yale University

Bandit Submodular Maximization

Submodular Functions

Submodular function: $f:2^{\Omega}\to\mathbb{R}_{>0}$ defined on a finite ground set Ω such that for every $A\subseteq B\subseteq \Omega$ and $x \in \Omega \setminus B$, we have

$$f(x|A) \geq f(x|B),$$

where $f(x|A) \triangleq f(A \cup \{x\}) - f(A)$ is a discrete derivative.

Continuous DR-submodular functions are the continuous analogue: Let $F:\mathcal{X} \to \mathbb{R}_{>0}$ be a differentiable function defined on a box $\mathcal{X} \triangleq \prod_{i=1}^d \mathcal{X}_i$, where each \mathcal{X}_i is a closed interval of $\mathbb{R}_{>0}$. We say that F is continuous DR-submodular if for every $x,y\in\mathcal{X}$ that satisfy $x\leq y$ and every $i \in [d] \triangleq \{1, \ldots, d\}$, we have

$$\frac{\partial F}{\partial x_i}(x) \ge \frac{\partial F}{\partial x_i}(y)$$

Bandit Optimization

Online optimization is a repeated two-player game. At each round t:

- ▶ The learner chooses an action x_t from a convex set $\mathcal{K} \subseteq \mathbb{R}^n$;
- ▶ The adversary chooses a reward function F_t from \mathcal{F} , a family of real-valued functions;
- ▶ The learner receives a reward $F_t(x_t)$, and observes feedback.

The aim is to maximize the **regret**, i.e., the gap between her accumulated reward and the reward of the best single choice in hindsight

$$\mathcal{R}_{\mathcal{T}} \triangleq \max_{x \in \mathcal{K}} \left\{ \sum_{t=1}^{\mathcal{T}} F_t(x) - \sum_{t=1}^{\mathcal{T}} F_t(x_t) \right\}$$

In the bandit setting, the feedback is only a single real number $F_t(x_t)$.

Figure 1: Bandit Problems

However, even in the offline scenario, continuous DR-submodular maximization problem cannot be approximated within a factor of $(1-1/e+\epsilon)$ for any $\epsilon>0$ in polynomial time, unless RP=NP [1]. Therefore, we consider the (1-1/e)-regret

$$\mathcal{R}_{1-1/e,T} riangleq (1-1/e) \max_{x \in \mathcal{K}} \left\{ \sum_{t=1}^T F_t(x) - \sum_{t=1}^T F_t(x_t)
ight\}.$$

Our Contribution

In this paper, we study the following three problems:

- ► OCSM: the Online Continuous DR-Submodular Maximization problem,
- ▶ BCSM: the Bandit Continuous DR-Submodular Maximization problem, and
- ▶ RBSM: the Responsive Bandit Submodular Maximization problem.

Table 1: Comparison of previous and our proposed algorithms

1. L L L				
Setting	Algorithm	Stochastic gradient	# of grad. evaluations	(1-1/e)-regret
OCSM	Meta-FW[3]	No	$\mathcal{T}^{1/2}$	$O(\sqrt{T})$
	VR-FW[2]	Yes		$O(\sqrt{T})$
	Mono-FW (this work)	Yes	1	$O(T^{4/5})$
BCSM	Bandit-FW (this work)	_	_	$O(T^{8/9})$
RBSM	Responsive-FW (this work)	_	_	$O(T^{8/9})$

One-shot Online Continuous DR-Submodular Maximization

Key Techniques

Offline Frank-Wolfe (FW) method for maximizing monotone continuous DR-submodular functions: At k-th iteration, solves a linear optimization problem

$$v^{(k)} \leftarrow \underset{v \in \mathcal{K}}{\operatorname{arg max}} \langle v, \nabla F(x^{(k)}) \rangle$$

which is used to update $x^{(k+1)} \leftarrow x^{(k)} + \eta_k v^{(k)}$, where η_k is the step size. Obstacles of extending FW to online setting:

- ► To obtain $v_t^{(k)}$, we have to know the gradient in advance. Solution: Use K no-regret online linear maximization oracles $\{\mathcal{E}^{(k)}\}, k \in [K]$, with $\langle \cdot, d_t^{(k)} \rangle$ being the objective function, and $v_t^{(k)}$ being the output, where $d_t^{(k)}$ is an estimation of $\nabla F_t(x_t(k))$. By the no-regret property of $\mathcal{E}^{(k)}$, $v_t^{(k)}$ can approximately maximize $\langle \cdot, \nabla F_t(x_t^{(k)}) \rangle$ (First proposed in [2, 3], where $K = T^{3/2}$ stochastic gradients are required for each function).
- ▶ Reduce the number of stochastic gradients to 1. Idea1: the blocking procedure. Divide the objective functions F_1, \ldots, F_T into Q equisized blocks, and define the average function in the q-th block as $\bar{F}_q \triangleq \frac{1}{K} \sum_{k=1}^K F_{(q-1)K+k}$. Idea2: the permutation methods. Permute the indices $\{(q-1)K+1,\ldots,qK\}$, then we can obtain stochastic gradients of \bar{F}_a at K points (Lines 4 and 5 in Mono-Frank-Wolfe). Solution (combine Idea1 and Idea2): View the average functions F_1, \ldots, F_Q as virtual objective functions.

Algorithm 1: Mono-Frank-Wolfe

Input: constraint set \mathcal{K} , horizon T, block size K, online linear maximization oracles on \mathcal{K} : $\mathcal{E}^{(1)},\cdots,\mathcal{E}^{(K)}$, step sizes $ho_k\in(0,1),\eta_k\in(0,1)$, number of blocks Q=T/K

Output: $y_1, y_2, ...$

1: **for** q = 1, 2, ..., Q **do** $d_q^{(0)} \leftarrow 0, \ x_q^{(1)} \leftarrow 0$

For $k=1,2,\ldots,K$, let $v_q^{(k)}\in\mathcal{K}$ be the output of $\mathcal{E}^{(k)}$ in round $q,\,x_a^{(k+1)}\leftarrow x_a^{(k)}+\eta_k v_a^{(k)}$. Set $x_q \leftarrow x_q^{(K+1)}$

Let $(t_{a,1},\ldots,t_{a,K})$ be a random permutation of $\{(q-1)K+1,\ldots,qK\}$

For $t=(q-1)K+1,\ldots,qK$, play $y_t=x_q$ and obtain the reward $F_t(y_t)$; find the corresponding $k' \in [K]$ such that $t = t_{q,k'}$, observe $\tilde{\nabla} F_t(x_q^{(k')})$, i.e., $\tilde{\nabla} F_{t_{q,k'}}(x_q^{(k')})$

For $k=1,2,\ldots,K$, $d_q^{(k)}\leftarrow (1ho_k)d_q^{(k-1)}+
ho_k ilde
abla F_{t_{q,k}}(x_q^{(k)})$, compute $\langle v_q^{(k)},d_q^{(k)}
angle$ as reward for $\mathcal{E}^{(k)}$, and feed back $d_{a}^{(k)}$ to $\mathcal{E}^{(k)}$

end for

Bandit Continuous DR-Submodular Maximization

Key Techniques

One-point Gradient Estimator: define the δ -smoothed version of a function F as $\hat{F}_{\delta}(x) \triangleq$ $\mathbb{E}_{v \sim R^d}[F(x + \delta v)]$. Then we have

$$abla \hat{F}_{\delta}(x) = \mathbb{E}_{u \sim S^{d-1}} \left[\frac{d}{\delta} F(x + \delta u) u \right].$$

Obstacles of extending Mono-Frank-Wolfe to bandit setting:

▶ The point $x + \delta u$ may fall outside of \mathcal{K} .

Solution: Introduce the notion of δ -interior. A set \mathcal{K}' is a δ -interior of \mathcal{K} if it is a subset of

$$\operatorname{int}_{\delta}(\mathcal{K}) = \{x \in \mathcal{K} | \inf_{s \in \partial \mathcal{K}} d(x, s) \geq \delta\}.$$

Also define the discrepancy between $\mathcal K$ and $\mathcal K'$ by

$$d(\mathcal{K}, \mathcal{K}') = \sup_{\mathbf{x} \in \mathcal{K}} d(\mathbf{x}, \mathcal{K}'),$$

Can use the one-point gradient estimator on \mathcal{K}' . When F_t is Lipschitz and $d(\mathcal{K}, \mathcal{K}')$ is small, can approximate the optimal total reward on \mathcal{K} (max $_{x \in \mathcal{K}} \sum_{t=1}^{T} F_t(x)$) by that on \mathcal{K}' $(\max_{x \in \mathcal{K}'} \sum_{t=1}^{I} F_t(x)).$

▶ Lemma 1: Under some regularization assumptions, the set $\mathcal{K}' = (1 - \alpha)\mathcal{K} + \delta \mathbf{1}$ is a δ -interior of \mathcal{K} with $d(\mathcal{K},\mathcal{K}') \leq \left[\sqrt{d}(\frac{R}{r}+1) + \frac{R}{r}\right]\delta$.

Bandit Continuous DR-Submodular Maximization (Continued)

Key Techniques (Continued) $\bigcup_{x \in \mathcal{K}'} B(x, \delta) \subseteq \mathcal{K}$ \mathcal{K}' : δ -interior (a) Example of δ -interior (b) Construction of δ -

Figure 2: δ -interior

 \triangleright The one-point estimator requires that the point at which we estimate the gradient (i.e., x) must be identical to the point that we play (i.e., $x + \delta u$), if we ignore the random δu . In Mono-Frank-Wolfe, however, we play point x_q but obtain estimated gradient at other points $x_{q}^{(k')}$ (Line 5).

Solution: A biphasic approach that categorizes the plays into the exploration and exploitation phases.

Algorithm 2: Bandit-Frank-Wolfe

Input: smooth radius δ , δ -interior \mathcal{K}' with lower bound \underline{u} , horizon T, block size L, exploration steps K, online linear maximization oracles on \mathcal{K}' : $\mathcal{E}^{(1)},\cdots,\mathcal{E}^{(K)}$, step sizes $\rho_k\in(0,1),\eta_k\in(0,1)$, number of blocks Q = T/L

Output: $y_1, y_2, ...$ 1: **for** q = 1, 2, ..., Q **do** $d_a^{(0)} \leftarrow 0, \ x_a^{(1)} \leftarrow u$ For $k=1,2,\ldots,K$, let $v_q^{(k)}\in\mathcal{K}'$ be the output of $\mathcal{E}^{(k)}$ in round q, $x_q^{(k+1)}\leftarrow x_q^{(k)}+$ $\eta_k(v_q^{(k)}-\underline{u})$. Set $x_q \leftarrow x_q^{(K+1)}$ Let $(t_{q,1},\ldots,t_{q,L})$ be a random permutation of $\{(q-1)L+1,\cdots,qL\}$ for $t = (q-1)L + 1, \cdots, qL$ do If $t \in \{t_{q,1}, \cdots, t_{q,K}\}$, find the corresponding $k' \in [K]$ such that $t = t_{a,k'}$, play $y_t = t_{a,k'}$ $y_{t_{q,k'}} = x_q^{(k')} + \delta u_{q,k'}$ for F_t (i.e., $F_{t_{q,k'}}$), where $u_{q,k'} \sim S^{d-1}$ ▷ Exploration If $t \in \{(q-1)L+1,\cdots,qL\}$ \hat{\gamma}\left\{t_{q,1},\cdots,t_{q,K}}\}, play $y_t = x_q$ for F_t ▷ Exploitation For $k=1,2,\ldots,K$, $g_{q,k}\leftarrow \frac{d}{\delta}F_{t_{q,k}}(y_{t_{q,k}})u_{q,k}$, $d_q^{(k)}\leftarrow (1-\rho_k)d_q^{(k-1)}+\rho_kg_{q,k}$, compute $\langle v_q^{(k)}, d_q^{(k)} \rangle$ as reward for $\mathcal{E}^{(k)}$, and feed back $d_q^{(k)}$ to $\mathcal{E}^{(k)}$ 10: end for

Bandit Submodular Set Maximization

An Impossibility Result

A natural idea: apply Bandit-Frank-Wolfe on F_t , the multilinear extension of the discrete objective function f_t , subject to \mathcal{K} , where \mathcal{K} is the matroid polytope of the matroid constraint \mathcal{I} . Recall the one-point gradient estimator, we required the rounding scheme round $_{\mathcal{I}}:[0,1]^d o \mathcal{I}$ to satisfy the following unbiasedness condition

$$\mathbb{E}[f(\mathsf{round}_{\mathcal{I}}(x))] = F(x), \quad \forall x \in [0,1]^d$$

for any submodular set function f on the ground set Ω and its multilinear extension F.

▶ We showed these kind of rounding schemes does NOT exist (Lemma 2).

Responsive Bandit Submodular Maximization Problem (RBSM)

If $X_t \notin \mathcal{I}$, we can still observe the function value $f_t(X_t)$ as feedback, while the received reward at round t is 0 (since the subset that we play violates the constraint \mathcal{I}).

The description of our proposed algorithm Responsive-Frank-Wolfe is outlined in Alg. 3 of the paper.

References

- [1] An Bian, Baharan Mirzasoleiman, Joachim M. Buhmann, and Andreas Krause. Guaranteed non-convex optimization: Submodular maximization over continuous domains. In AISTATS, February 2017.
- [2] Lin Chen, Christopher Harshaw, Hamed Hassani, and Amin Karbasi. Projection-free online optimization with stochastic gradient: From convexity to submodularity. In ICML, page to appear, 2018.
- [3] Lin Chen, Hamed Hassani, and Amin Karbasi. Online continuous submodular maximization. In AISTATS, pages 1896–1905, 2018.

iid.yale.edu NeurIPS, December 2019 mingrui.zhang@yale.edu