Chapter 9

D. Zack Garza

Monday 21st September, 2020

Contents

1	Background, Notation, Setup	1
2	9.1 and Review	4
3	Three Important Theorems 3.1 First Theorem: Convergence to Broken Trajectories	
4	Gluing Theorem	9
5	9.3: Pre-gluing	10
6	9.4: Construction of ψ .	11
In	aportant Ideas:	
	 Compactness of L(x, y). ∂² = 0. Using broken trajectories to compactify Gluing 	

Background, Notation, Setup

Goals

• Construct Floer homology and prove the Arnold Conjecture ("Symplectic Morse Inequalities?"):

$$\# \{1\text{-Periodic trajectories of } X_H \} \ge \sum_{k \in \mathbb{Z}} HM_k(W; \mathbb{Z}/2\mathbb{Z}).$$

Here $HM_*(W)$ is the Morse homology.

Strategy:

- 1. Define the action functional A_H .
- 2. Construct the chain complex (graded vector space) CF_* .
- 3. Define X_H , which will be used to define ∂ later.
- 4. Count trajectories.
- 5. Show finite-energy trajectories connect critical points of \mathcal{A}_H .
- 6. Show compactness property for space of trajectories of finite energy.
- 7. Define ∂ (uses a compactness property in 9.1c)
- 8. Show space of trajectories is a manifold (plus genericity, "Smale property")
- 9. Show that $\partial^2 = 0$.
- 10. Show that HF_* doesn't depend on \mathcal{A}_H or X_H
- 11. Show $HF_* \cong HM_*$, and compare dimensions of the vector spaces CM_* and CF_* .

Ingredients:

- (W, ω) with $\omega \in \Omega^2(W)$ is a symplectic manifold with an almost complex structure J.
- $H \in C^{\infty}(W;\mathbb{R})$ a Hamiltonian with X_H the corresponding symplectic gradient.
 - Defined by how it acts on tangent vectors in T_xM :

$$\omega_x(\cdot, X_H(x)) = (dH)_x(\cdot).$$

- Zeros of vector field X_H correspond to critical points of H:

$$X_H(x) = 0 \iff (dH)_x = 0.$$

- Take the associated flow $\psi^t: W \to W$, assumed 1-periodic so $\psi^1(x) = x$: critical points of H are periodic trajectories.
- $u \in C^{\infty}(\mathbb{R} \times S^1; W)$ is a solution to the Floer equation.
- The Floer equation and its linearization:

$$\mathcal{F}(u) = \frac{\partial u}{\partial s} + J \frac{\partial u}{\partial t} + \text{grad } u(H) = 0$$
$$(d\mathcal{F})_u(Y) = \frac{\partial Y}{\partial s} + J_0 \frac{\partial Y}{\partial t} + S \cdot Y$$

$$Y \in u^*TW, \ S \in C^{\infty}(\mathbb{R} \times S^1; \operatorname{End}(\mathbb{R}^{2n})).$$

- $\mathcal{L}W$ is the free loop space on W, i.e. space of contractible loops on W, i.e. $C^{\infty}(S^1; W)$ with the C^{∞} topology
 - Elements $x \in \mathcal{L}W$ can be viewed as maps $S^1 \to W$.
 - Can extend to maps from a closed disc, $u: \overline{\mathbb{D}}^2 \to M$.

– Loops in $\mathcal{L}W$ can be viewed as maps $S^2 \to W$, since they're maps $I \times S^1 \to W$ with the boundaries pinched:

Figure 1: Loops in $\mathcal{L}W$

• The action functional is given by

$$\mathcal{A}_H : \mathcal{L}W \to \mathbb{R}$$

$$x \mapsto -\int_{\mathbb{D}} u^* \omega + \int_0^1 H_t(x(t)) dt$$

- Example: $W = \mathbb{R}^{2n} \implies A_H(x) = \int_0^1 (H_t dt p dq).$
- Correspondence between trajectories of the gradient of \mathcal{A}_H and solutions to Floer equations.
- x, y periodic orbits of H (nondegenerate, contractible), equivalently critical points of A_H .
- Assumption of symplectic asphericity, i.e. the symplectic form is zero on spheres. Statement: for every $u \in C^{\infty}(S^2, W)$,

$$\int_{S^2} u^* \omega = 0 \quad \text{or equivalently} \quad \langle \omega, \ \pi_2 W \rangle = 0.$$

• Assumption of symplectic trivialization: for every $u \in C^{\infty}(S^2; M)$ there exists a symplectic trivialization of the fiber bundle u^*TM , equivalently

$$\langle c_1 TW, \ \pi_2 W \rangle = 0.$$

Locally a product of base and fiber, transition functions are symplectomorphisms.

• Maslov index: used the fact that

- $\operatorname{Sp}(2n,\mathbb{R})$ retracts onto U(n): use a polar decomposition S=PQ as a PSD times orthogonal, then homotope P to I.
- $-\pi_1 U_n = \mathbb{Z}$: use $U(n,\mathbb{C}) \simeq SU(n,\mathbb{C}) \times S^1$ by the determinant, and $\pi_1 SU(n,\mathbb{C}) = 0$.
- Thus every path in $\gamma: I \to \operatorname{Sp}(2n,\mathbb{R})$ can be assigned an integer by getting a map $\tilde{\gamma}: I \to S^1$ and taking (approximately) its winding number.
- $\mathcal{M}(x,y)$, the moduli space of contractible finite-energy solutions to the Floer equation connecting x,y.
 - After perturbing H to get transversality, get a manifold of dimension $\mu(x) \mu(y)$.
 - How we did it:
 - * Describe as zeros of a section of a vector bundle over $\mathcal{P}^{1,p}(x,y)$ (Banach manifold modeled on the Sobolev spaces $W^{1,p}$),
 - * Apply Sard-Smale to show $\mathcal{M}(x,y)$ is the inverse image of a regular value of some map.
 - Needed tangent maps to be Fredholm operators, proved in Ch. 8 and used to show transversality.
 - * Followed from showing $(d\mathcal{F})_u$ is a Fredholm operator of index $\mu(x) \mu(y)$.

$\mathbf{2}$ \mid 9.1 and Review

• Defined moduli space of (parameterized) solutions:

 $\mathcal{M}(x,y) = \{\text{Contractible finite-energy solutions connecting } x,y\}$

 $\mathcal{M} = \{\text{All contractible finite-energy solutions to the Floer equation}\} = \bigcup_{x,y} \mathcal{M}(x,y).$

• Defined the moduli space of (unparameterized) **trajectories** connecting x to y:

$$\mathcal{L}(x,y) := \mathcal{M}(x,y)/\mathbb{R}.$$

- Use the quotient topology, define sequentially:

$$\tilde{u}_n \stackrel{n \to \infty}{\longrightarrow} \tilde{u} \iff \exists \{s_n\} \subset \mathbb{R} \text{ such that } u_n(s_n + s, \cdot) \stackrel{n \to \infty}{\longrightarrow} u(s, \cdot).$$

- When $|\mu(x) - \mu(y)| = 1$, get a compact 0-manifold, so the number of trajectories

$$n(x,y) \coloneqq \#\mathcal{L}(x,y)$$

is well-defined.

- $C_k(H) := \mathbb{Z}/2\mathbb{Z}[S]$ where S is the set of periodic orbits of X_H of Maslov index k.
 - Finitely many since they are nondegeneracy implies they are isolated.

Remark 1.

Some notation:

$$\mathbb{R} \longrightarrow \mathcal{M}(x,z)$$

$$\downarrow^{\pi}$$

$$\mathcal{L}(x,z)$$

Hats will generally denote maps induced on quotient.

• Defined a differential

$$\partial: C_k(H) \to C_{k-1}(H)$$

$$x \mapsto \sum_{\mu(y)=k-1} n(x,y)y$$

 $n(x,y) := \# \{ \text{Trajectories of grad } \mathcal{A}_H \text{ connecting } x,y \} \mod 2$ = $\# \mathcal{L}(x,y) \mod 2$.

• Examined ∂^2 :

$$\partial^{2}: C_{k}(H) \to C_{k-2}(H)$$

$$x \mapsto \partial(\partial(x))$$

$$= \partial \left(\sum_{\mu(y)=\mu(x)-1} n(x,y)y\right)$$

$$= \sum_{\mu(y)=\mu(x)-1} n(x,y) \partial(y)$$

$$= \sum_{\mu(y)=\mu(x)-1} n(x,y) \left(\sum_{\mu(z)=\mu(y)-1} n(y,z)z\right)$$

$$= \sum_{\mu(y)=\mu(x)-1} \sum_{\mu(z)=\mu(y)-1} n(x,y)n(y,z)z$$

$$= \sum_{\mu(z)=\mu(x)-1} \left(\sum_{\mu(x)=\mu(x)-1} n(x,y)n(y,z)\right)z \qquad \text{(finite sums, swap order),}$$

so it suffices to show

$$\sum_{\mu(y)=\mu(x)-1} n(x,y) n(y,z) = 0 \text{ when } \mu(z) = \mu(x) - 2.$$

Easier to examine parity, so we'll show it's zero mod 2.

- When $\mu(z) = \mu(x) 2$, $\mathcal{L}(x, z)$ is a non-compact 1-manifold, so we compactify by adding in broken trajectories to get $\overline{\mathcal{L}}(x, y)$.
- We'll then have

$$\overline{\mathcal{L}}(x,z) = \mathcal{L}(x,z) \cup \partial \overline{\mathcal{L}}(x,z), \qquad \partial \overline{\mathcal{L}}(x,z) = \bigcup_{\mu(y) = \mu(x) - 1} \mathcal{L}(x,y) \times \mathcal{L}(y,z),$$

which "space-ifies" the equation we want.

• We'll show $\partial \overline{\mathcal{L}}(x,z)$ is a 1-manifold, which must have an even number of points, and thus

$$\sum_{\mu(y)=\mu(x)-1} n(x,y) n(y,z) = \#\Big(\partial \overline{\mathcal{L}}(x,z)\Big) \equiv 0 \mod 2.$$

3 | Three Important Theorems

3.1 First Theorem: Convergence to Broken Trajectories

- Recall: broken trajectories are unions of intermediate trajectories connecting intermediate critical points.
- Shown last time: a sequence of trajectories can converge to a broken trajectory, i.e. there are broken trajectories in the closure of $\mathcal{L}(x,z)$.
- This theorem describes their behavior:

Theorem 3.1(9.1.7: Convergence to Broken Trajectories).

Let $\{u_n\}$ be a sequence in $\mathcal{M}(x,z)$, then there exist

- A subsequence $\{u_{n_j}\}$
- Critical points $\{x_0, x_1, \dots, x_{\ell+1}\}$ with $x_0 = x$ and $x_{\ell+1} = z$
- Sequences $\left\{s_n^1\right\}, \left\{s_n^2\right\}, \cdots, \left\{s_n^{\ell}\right\}.$
- Elements $u^k \in \mathcal{M}(x_k, x_{k+1})$ such that for every $0 \le k \le \ell$,

$$u_{n_j} \cdot s_n^k \stackrel{n \to \infty}{\longrightarrow} u^k.$$

- Upshots:
 - Every sequence upstairs has a subsequence which (after reparameterizing) converges
 - This descends to actual convergence after quotienting by \mathbb{R} ?
 - Yields uniqueness of limits in $\mathcal{L}(x,z)$, thus a separated topology
 - Sequentially compact \iff compact since $\mathcal{L}(x,z)$ is a metric space?

Corollary 3.2(Compactness).

 $\bar{\mathcal{L}}(x,z)$ is compact.

3.2 Second Theorem: Compactness of $\overline{\mathcal{L}}(x,z)$

Definition 3.2.1 (Regular Pair).

For an almost complex structure J and a Hamiltonian H, the pair (H, J) is **regular** if the Floer map \mathcal{F} is transverse to the zero section in the following vector bundle:

$$E_u := \{ \text{Vector fields tangent to } M \text{ along } u \} \longrightarrow C^{\infty}(\mathbb{R} \times S^1; TM)$$

$$\mathcal{F} \bigcirc \mathbf{0}$$

 $C^{\infty}(\mathbb{R}\times S^1;M)$

Most of chapter 9 is spent proving this theorem:

Theorem 3.3(9.2.1).

Let (H, J) be a regular pair with H nondegenerate and x, z be two periodic trajectories of H such that

$$\mu(x) = \mu(z) + 2.$$

Then $\overline{\mathcal{L}}(x,z)$ is a compact 1-manifold with boundary with

$$\partial \overline{\mathcal{L}}(x,z) = \bigcup_{y \in \mathcal{I}(x,z)} \mathcal{L}(x,y) \times \mathcal{L}(y,z) \quad \text{where} \quad \mathcal{I}(x,z) = \left\{ y \mid \mu(x) < \mu(y) < \mu(z) \right\}.$$

Note: possibly a typo in the book? Has x, y on the LHS.

Corollary 3.4.

$$\partial^2 = 0.$$

3.3 Third Theorem: Gluing

• We already know that $\overline{\mathcal{L}}(x,z)$ is compact and $\mathcal{L}(x,z)$ is a 1-manifold, so we look at neighborhoods of boundary points.

Theorem 3.5(9.2.3: Gluing).

Let x, y, z be three critical points of \mathcal{A}_H with three consecutive indices

$$\mu(x) = \mu(y) + 1 = \mu(z) + 2.$$

and let

$$(u,v) \in \mathcal{M}(x,y) \times \mathcal{M}(y,z) \quad \leadsto \quad (\widehat{u},\widehat{v}) \in \mathcal{L}(x,y) \times \mathcal{L}(y,z).$$

Then

1. There exists a $\rho_0 > 0$ and a differentiable map

$$\psi: [\rho_0, \infty) \to \mathcal{M}(x, z)$$

such that $\widehat{\psi}$, the induced map on the quotient

$$[\rho_0, \infty) \xrightarrow{\psi} \mathcal{M}(x, z)$$

$$\widehat{\psi} \qquad \downarrow^{\pi}$$

$$\mathcal{L}(x, z)$$

is an embedding that satisfies

$$\widehat{\psi}(\rho) \stackrel{\rho \to \infty}{\longrightarrow} (\widehat{u}, \widehat{v}) \in \overline{\mathcal{L}}(x, z).$$

2. ("Uniqueness") For any sequence $\{\ell_n\} \subseteq \mathcal{L}(x,z)$,

$$\ell_n \stackrel{n \to \infty}{\longrightarrow} (\hat{u}, \hat{v}) \implies \ell_n \in \operatorname{im}(\hat{\psi}) \text{ for } n \gg 0.$$

4 | Gluing Theorem

Broken into three steps:

- 1. Pre-gluing:
- Get a function w_{ρ} which interpolates between u and v in the parameter ρ .
 - Not exactly a solution itself, just an "approximation".
- 2. Newton's Method:

• Apply the Newton-Picard method to w_p to construct a true solution

$$\psi: [-\rho, \infty) \to \mathcal{M}(x, z)$$

 $\rho \mapsto \exp_{w_n}(\gamma(p))$

for some
$$\gamma(p) \in W^{1,p}(w_p^*TW) = T_{w_p}\mathcal{P}(x,z)$$

where $\mathcal{P} = ?$.

- 3. Project and Verify Properties:
- Check that the projection $\widehat{\psi} = \pi \circ \psi$ satisfies the conditions from the theorem.

$\mathbf{5}$ | 9.3: Pre-gluing

- Choose a bump function β on $B_{\varepsilon}(0)^c \subset \mathbb{R} \to [0,1]$ which is 1 on $|x| \geq 1$ and 0 on $|x| < \varepsilon$
- Split into positive and negative parts β^{\pm} :

Figure 2: Bump away from zero

• Define an interpolation w_{ρ} from u to v in the following way:

$$w_{\rho}(s,t) = \begin{cases} u(s+\rho,t) & \text{if } s \leq -1\\ \exp_{y(t)} \left(\beta^{-}(s) \exp_{y(t)}^{-1} (u(s+\rho,t)) + \beta^{+}(s) \exp_{y(t)}^{-1} (v(s-\rho,t))\right) & \text{if } s \in [-1,1]\\ v(s-\rho,t) & \text{if } s \geq 1 \end{cases}$$

• Why does this make sense?

$$|s| \le 1 \implies u(s \pm \rho, t) \in \left\{ \exp_{y(t)} Y(t) \mid \sup_{t \in S^1} ||Y(t)|| \le r_0 \right\}.$$

6 9.4: Construction of ψ .

- Have constructed $w_{\rho} \in C_{\searrow}^{\infty}(x,z)C^{\infty}(x,z)$ for every $\rho \geq \rho_0$, since there is exponential decay.
- Yields $\psi_{\rho} \in \mathcal{M}(x,z)$ a true solution (to be defined).
- Need to check that $\mathcal{F}(\psi_{\rho}) = 0$ where

$$\mathcal{F} = \frac{\partial}{\partial s} + J \frac{\partial}{\partial t} + \text{grad } Hx$$

in the weak sense.

- ψ_{ρ} already continuous, and by elliptic regularity, makes it a strong solution.
- Trivialization
- Defining \mathcal{F}_{ρ} .

$$W^{1,p}\left(\mathbf{R}\times S^{1};\mathbf{R}^{2n}\right) \xrightarrow{\mathcal{F}_{\rho}} L^{p}\left(\mathbf{R}\times S^{1};\mathbf{R}^{2n}\right)$$
$$(y_{1},\ldots,y_{2n})\longmapsto \left[\left(\frac{\partial}{\partial s}+J\frac{\partial}{\partial t}+\operatorname{grad}H_{t}\right)\left(\exp_{w_{\rho}}\sum y_{i}Z_{i}^{\rho}\right)\right]_{Z_{i}}$$

where $\mathcal{F}_{\rho} := \mathcal{F} \circ \exp_{w_{\rho}}$ written in the bases Z_i . sd - Newton-Picard method, general idea

• Original method and variant: find the limit of a sequence

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, \qquad x_{n+1} = x_n - \frac{f(x_n)}{f'(x_0)}.$$

- Allows finding zeros of f given an approximate zero x_0 .
- Linearize \mathcal{F}_{ρ} .
- Applying Newton-Picard
 - Decompose $W^{1,p}(\mathbb{R}\times S^1;\mathbb{R}^{2n})$ as $\ker(L_{\rho_n})\oplus W_{\rho_n}^{\perp}$.
 - Apply Newton-Picard in $W_{\rho_n}^{\perp}$
- Will obtain for every $\rho \geq \rho_0$ an element $\gamma(\rho) \in W_{\rho}^{\perp}$ with

$$\mathcal{F}_{\rho}(\gamma(\rho)) = 0.$$

- Apply the implicit function theorem to show differentiability of γ in ρ .
- Use a trivialization Z_i^{ρ} to get a vector field along w_{ρ} (also called $\gamma(\rho)$)
 - * This is exactly an element of $T_{w_{\rho}}\mathcal{P}(x,z)$
- Exponentiate to get an element of $\mathcal{M}(x,z)$:

$$\psi(\rho) \coloneqq \exp_{w_{\rho}}(\gamma(\rho)).$$

- Project onto $\mathcal{L}(x,z)$ to get $\widehat{\psi}$.
- Prove $\widehat{\psi}$ is a proper injective immersion and thus an embedding.
- Show that the broken trajectory $(\widehat{u},\widehat{v})$ is the endpoint of an embedded interval in $\overline{\mathcal{L}}(x,z)$.
 - * Then show that any other sequence converging to $(\widehat{u}, \widehat{v})$ must approach via this interval, otherwise could have cuspidal points:

Figure 3: Cuspidal Point on Boundary