

ELECTRONIC CASH REGISTER

ER-2710,2715

SERVICE MANUAL

CONTENTS

EXP	LANATION OF CIRCUITS	1
1.	OVERVIEW	1
2.	POWER MODULE CIRCUIT	1
3.	RESET CIRCUIT	3
4.	POWER FAILURE CIRCUIT	3
5.	POWER ON/OFF TIMING CHART	4
6.	KEYBOARD CIRCUIT	5
7.	DISPLAY CIRCUIT	6
8.	PRINTER CIRCUIT	7
9.	DRAWER CIRCUIT	8
10.	BUZZER CIRCUIT	8
11.	BATTERY CIRCUIT	9
12.	REAL TIME CLOCK(RTC) CIRCUIT	10
PAF	RTS STANDARD	11
ASS	SEMBLY CONSTRUCTION & PARTS LIST	23
APF	PENDIX	28
A)	BLOCK DIAGRAM	28
B)	WIRING DIAGRAM	29
C)	PARTS LAYOUT ON MAIN P.C.B	30
D)	CIRCUIT DIAGRAM	31
E)	PRINTER TIMING CHART	32
F)	PRINTER ASSEMBLY/DISASSEMBLY DIAGRAM	33

NOTE: All specifications are subject to change without prior notice.

1. EXPLANATION OF CIRCUITS

OVERVIEW

A) The battery back up On/Off Control S/W must be turned on.

After this switch is turned on the Ni-Cad battery can back up power to RAM and RTC. Prior to installation, you must turn this switch on. It is located below the printer cover and upper side of the printer unit.

B) Prior to programming at installation, you must clear all the programming contents by MC(MASTER CLEAR) mode.

To master clear the Register, turn Control Lock key ("OW" or "C") to MC mode, and hold down the "00" key on the cash register keyboard. While continuing to hold this "00" key down, the main power ON.

Continue to hold the "00" key down until the receipt printer stops printing and the display shows 0.00.

2. POWER MODULE CIRCUIT

A) Transformer

The voltage of the secondary line is shown below.

PIN NO.	WIRE COLOR	VOLTAGE
1 2	RED RED	19.5 VAC ±15%
3 4	BLU BLU	9.5 VAC ±15%
5 6	ORG ORG	26 VAC ±15%
7 8	YEL YEL	4.5 VAC ±15%

B) Fuse

Fuse 1	125V 1A	NORMAL TYPE
Fuse 2	125V 2A	SLOW BLOW
Fuse 3	125V 1A	NORMAL TYPE

C) POWER SUPPLY CIRCUIT

VDD (DC 5V)

The VDD voltage is used for the system logic and provides the stabilizing power source for the circuit through the Regulator MC7805.

VPF (DC 11,5V)

The VPF voltage is used for the reference voltage when the system power fails,

VPR (DC 20V)

The VPR voltage is used for the source voltage of the printer drive circuit, printer motor and drawer circuit.

The base voltage is controlled by ZD1 zener doiode. For providing more current the circuit is made of the Darlington circuit which is composed of TR C945 and D73Y.

VF(DC 4V)

The VF voltage is used for providing the power to the FILAMENT of the DIGITRON.

VDI (DC -30V)

This voltage is used for providing the power to the IR2C05 which drives DIGITRON.

3. RESET CIRCUIT

The reset circuit prevents the CPU from starting to operate before the system is fully powered-up and initialized.

Then 30ms later after the power is applied, RESET goes high and CPU begin functioning. This signal is generated from the PIN13 because of the difference of the time constant which is applied to the PIN10, ...

11 of the comparator LM339 after the power-on.

4. POWER FAILURE CIRCUIT

The power failure signal is generated when the power is off or power failure state.

The purpose of this signal is to save the start of the CPU and its data to the external RAM before the VDD goes down below the normal operation voltage.

This signal is generated from the PIN1 by the difference of the time constant of VCC and VPF which is applied to the PIN7 of the comparator LM339.

5. POWER ON/OFF TIMING CHART

3, KEYBOARD CIRCUIT

D0 \sim D7 of the CPU are connected to the keyboard matrix through the latch (IC20) as a key scan timming signal, and the key signals are received by the PTO \sim PT6 and PT7 (mode key to be a return signal).

-- 4 --

- 5 -

7. DISPLAY CIRCUIT

DIGITRON is controlled by the CPU through the latches (74HCTLS573) and the driver (IR2C05).

The CPU transfer the DIGIT signals and SEGMENT signals to the latches (74HCTLS573).

These signals are amplified by the IR2C05.

8. PRINTER CIRCUIT

The printer consists of 10 receipt trigger magnets and 10 journal trigger magnets, VPR is supplied to the trigger magnets and a signal from the CPU supplies ground to the appropriate magnet causing it to pull in. This stops the movement of the type wheel at a designated position.

At this time, the motor receives a signal from the CPU and allows VPR to turn on. When the motor turns on, timing signal is generated by the printer (T,S) and returns to the CPU to indicate the timing position of the type wheels. Each type wheel has 14 locations. The timing signal tells the CPU when to send a pulse to the trigger magnets of the printer to set the type wheels to formulate the desired characters.

All signals from the printer are controlled by a gating circuit, IC4, IC5, IC6, IC7. These IC's are IR2C19 and connect the outputs to printer ground when the inputs from the CPU go from 0V to 5V. The output goes from 20V to 0V

When the signal at PC7 of the CPU becomes the "HIGH" level, TR C945 and A473 are turned "ON". Thus R-COM of the PRINTER becomes 20V.

At this time, if the signal at PA0 of the CPU becomes the "HIGH" level, then IR2C19 is turned "ON". Thus R1 solenoid is turned "ON".

The TR C945 and D288 are the motor break circuit and when PC5 becomes low this circuit immediately stops the motor,

9. DRAWER CIRCUIT

The Drawer is activated by using the signal PC4 from the UPD7810.

This signal is normally LOW. When it goes HIGH which causes TR C945Y and D288Y to go on and activate the Drawer Solenoid.

10. BUZZER CIRCUIT

The Buzzer is activated by the normal input of the key and the error state,

When PC1 signal in the CPU is set high, IR2C19 is turned on.

Thus, Buzzer sounds.

* COMPULSORY DRAWER CIRCUIT (OPTION)

When the drawer is opened, the switch is going to 'ON', so the PC3 PIN of the CPU goes to the low level

* MULTI DRAWER (OPTION)

Multi drawer circuit is equal to drawer circuit except PB3 instead of PC4.

11. BATTERY CIRCUIT

In the normal state of the operation, VDD voltage goes to the battery for the charge through D6, R23.

At power off, Battery voltage goes to the VCC of RAM and VCC of RP5C15 through D7. This operation is able to keep saving the data of the RAM and going the clock normally for the DATE and TIME.

12. REAL TIME CLOCK(RTC) CIRCUIT

RP5C15 is a real time-clock LSI which is capable of reading/writing like RAM chip. It consists of 8 counters and an alarm register.

All data uses a BCD code. Any communication between the CPU and RP5C15 is performed by a 1 bit data bus and 1 selected line.

PIN DESCRIPTION CS, CS : Chip select

CLKOUT

: Clock output

In the case of System-3 Clkout = 1024Hz

A0 - A3: Address line

RD : Read cycle status form CPU GND : 0V

WR : Write cycle status form CPU

D0 - D3 : Data bus ALARM

: Alarm output OSCIN : X-TAL pin for internal oscillator

OSCOUT : 32.768KHz

VCC : +5V

2. PARTS STANDARD

UPD 7810HG PIN CONFIGURATION DIAGRAM

Pin Configuration Diagram (Top View)

PA7 - 0 ; Port A PB7 -- 0 : Port B PC7 - 0 ; Port C PD7 - 0 : Port D PF7 - 0 : Port F

: Non Maskable Interrupt INT 1 : Interrupt Request

MODEO, 1: Mode 0, 1 X1, X2 : Crystal AN7 - 0 : Analog Input Read Strobe : Write Strobe WR : Address Latch Enable ALE

RESET : Reset

VAREF : Reference Voltage

5555

SAMSUNG **SEMICONDUCTOR**

The Expertise & Experience to Excel.

Best Quality Quick Delivery Good Price

64K SRAM

KM6264A/KM6264AL

8.192 WORDX8 BIT CMOS STATIC RAM

FEATURES

- Fast Access Time 100, 120, 150ns (max.)
- . Low Standly Current: 100µA (max)
- Low Data Retention Current: 50µA (max.)
- · Capability of Battery Back-up Operation
- Data Retention Voltage: 2.0V (min.)
- Single 5V±10% supply
- TTL compatible inputs and outputs
- . Pin compatible with 64K EPROMS Fully Static Operation
- Standard 28 pin DIP
- · Common I/O, Tristate Output

GENERAL DESCRIPTION

The KM6264A/AL is a 65,536-bit high speed static random access memory organized as 8,192 words by 8 bits. This device is fabricated using advanced SST'S CMOS technology. The KM6264A/AL has an output enable input for precise control of the data outputs. It also has chip enable inputs for the minimum current power down mode. The KM6264A/AL has been designed for high speed and low power applications. It is particularly well suited for battery backup nonvolatile memory applications.

Two versions are available-the KM6264A and KM6264AL. The L-version is specified with lower standby and data retention currents than the standard version. Otherwise the two versions are identical.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

N/C	-0	28	Vcc
A12	2	27	WE
A7 🗆	3	26	CS2
A6 🗆	4	25	□ A8
A5	5	24	A9
A4 [6	23	A11
A3 [7	22] Œ I
A2 [8	21	A10
A1	9	20	CS1
AO [10	19	D #08
101 C	11	18	107
VO2	12	17	106
103C	*3	16	1/05
v _{ss} 🗖	14	15	11:04

PIN NAMES

A0-A12	Address Inputs
WE	Write Enable
CS1, CS2	Chip Select
ŌĒ	Output Enable
1/01-1/08	Data Input/Output
Vcc	+5V Power Supply
Vss	Ground

SAMSUNG SEMICONDUCTOR & TELECOM-MUNICATIONS CO., LTD. reserves the right to change products and specifications without

RP5CI5 (REAL TIME CLOCK)

Features:

- Direct connection to CPU
- 4-bit bidirectional bus D0-D3
- * 4-bit address inputs A0-A3
- * Internal counters for time (hours, min., sec.) and date (100 years. leap years, months, days, and days-of-the-week)
- Choice of 24-hour or 12-hour (AM/PM) system
- All clock data expressed in BCD code
- ±30 sec. adjustment function
- Provision for battery backup
- * Internal 26 x 4-bit RAM
- * Alarm signal, 16Hz clock signal or 1Hz clock signal output

SAMSUNG SEMICONDUCTOR & TELECOMMUNICATIONS CO., LTD.

KS74HCTLS04 (Hex Inverters)

LOGIC DIAGRAM

IR2C19 7-Unit 400mA Darlington Transistor Array

FUNCTION TABLE (Each Gate)

Inputs	Output
Α	Y
Н	L
L	н

Features

1. High output current I our = 400mA (MAX.)

The IR2C19 is a 7-circuit driver. The internal

- 2. High output breakdown voltage BV cm = 45V (MAX.)
- 3. Directly driveable by CMOS
- 4. Internal output clamping diode
- 5. Darlington construction
- 6. 16-pin dual-in-line package

LM339/LM339A LINEAR INTEGRATED CIRCUIT

QUAD DIFFERENTIAL COMPARATORS

The LM339/LM339A series consists of four independent voltage comparators that are designed to operate from a single power supply over a wide range of voltages.

FEATURES

- Single supply or dual supplies
- Wide range of supply voltages 2 36V
- Low supply current drain 800 μA Typ.
- Open collector outputs for wired and connectors
- Low input bias current 25nA Typ.
- · Low input offset current 5nA Typ.
- Low input offset voltage 2mV Typ.
- Common mode input voltage range includes ground.
- Low output saturation voltage
- Output compatible with TTL, DTL and MOS

BLOACK DIAGRAM

Absolute Maximum Ratings

Parameter	Symbol	Condition	Rating	Unit
Supply voltage	Vcc		45	V
Output current *1	Lout	Each circuit	400	mA
Input voltage	VIN		45	v
Collector-emitter breakdown voltage	BV caso		45	v
Forward current	l'e	For clamp diode	40	mA
Max. forward current	IFM	For clamp diode	400	mA
Load inductance	Lı		100	mH
Power dissipation	Pn	Ta ≤ +25°C	650	mW
Derating ratio		Ta > +25°C	6.5	mW/°
Operating temperature	Torr		-25 ~ +75	°C
Storage temperature	Tag		-55 ∼+150	OC.

^{*1} Duty cycle: 10% or less, repetitive frequency: 10Hz or more

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)

Characteristic	Symbol	Value	Unit
Supply Voltage Differential Input Voltage	V cc	36	V
	V IN	±36	V
Output Current Power Dissipation	In	20	mA
	Pa	1.0	W
Operating Temperature Storage Temperature	Topr	0 ~+70	°C
	Tsta	−65~+150	W

Recommended Operating Conditions

Parameter	Symbol	Condition	Rating	Unit
Output voltage	V ceo		45	V
		at 10% duty	0~ 400	
Output current	I out	at 50% duty	0~ 150	mA

MC78XXC/MC78XXAC SERIES LINEAR INTEGRATED CIRCUIT

3-TERMINAL 1A POSITIVE VOLTAGE REGULATOR

The MC78XXC series of three-terminal positive regulators is available in TO-220 package and with several fixed output voltages, making it useful in a wide range of applications. These Regulators can provide local on card regulation, eliminating the distribution problems associated with single point regulation. Each type employs internal current limiting, thermal shut-down and safe area protection, making it essentially indestructible. If adequate heat sinking is provided, they can deliver over 1A output current. Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltages and currents.

FEATURES

- Output Current up to 1.5A
- Output Voltages of 5; 6; 8; 12; 15; 18; 20; 24V
- Thermal Overload Protection
- Short circuit protection
- Output Transistor SOA Protection

ELECTRICAL CHARACTERISTICS MC7805C

(Refer to the test circuits, $T_i = 0$ to $125^{\circ}C_{i, 10} = 500$ mA, $V_i = 10$ V, $C_i = 0.33 \mu$ F, $C_0 = 0.1 \mu$ F unless otherwise specified)

Characteristic	Symbol	Test Co	nditions	Min	Тур	Max	Unit
Output Voltage	V _o	T, = 25°C 1 _o = 5mA to 1A		4.8 4.75	5	5.2 5.35	v
		P. 15W	V 1 = 8 to 20V				
Line Regulation	ΔVn	T ₂ =25°C	V ₁ = 7 to 25V		3	50	1
Line Regulation	23 Vn	1,-25 €	V ₁ =8 to 12V		1	25	mV
		T,=25	- 1		******		
Load Regulation	ΔVo	I = 5	mA to 1.5A			100	mv
		$T_{i} = 2$				25	T inv
Quiescent Current		I _o = 250 to 750mA					
Quiescent Current	I _d .	T, = 25°C				6	mA
Quiescent Current Change	ΔI_d	I _o = 5mA to 1A				0.5	
		V ₁ = 8 to 25V				1.3	mA.
Output Voltage Drift	$\frac{\Delta V_o}{\Delta T}$.	I _a = 5mA			-1.1		mV/°C
Output Noise Voltage	*N	B=10Hz to 100KHz T, = 25°C			40		-μν
Supply Voltage Rejection	SVR	f = 120Hz V ₁ = 8 to 18V		62			dB
Dropout Voltage	V_{d}	T, = 25°C			2		v
Output Resistance	R _o	f = 1K	Hz		17		mΩ
Short Circuit Current	Isc	V ₁ = 3. T ₂ = 25			750		mA
Short Circuit Peak Current	Isce	T ₁ = 25			2.2	L	

KSD288 NPN EPITAXIAL SILICON TRANSISTOR

POWER REGULATOR LOW FREQUENCY POWER AMPLIFIER

- Complement to KSA 614
- Collector-Base Voltage V_{CNO} = 80V
- Collector Dissipation Pc = 25W (Tc = 25°C)

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)

Characteristic	Symbol	Rating	Unit
Collector-Base Voltage	V _{C80}	80	V
Collector-Emitter Voltage	VCEO	55	v
Emitter-Base Voltage	Vieno	5	V
Collector Current	I c	3	A
Collector Dissipation (Tc = 25°C)	Pc	25	W
Junction Temperature	Τ,	150	°
Storage Temperature	Tate	_55~+150	°

ELECTRICAL CHARACTERISTICS (Ta = 25°C)

Symbol	Test Conditions	Min	Тур	Max	Unit	
	$I_c = 500 \mu A, I_E = 0$	80			V	
	•	55			v	
	$I_E = 500 \mu A, I_C = 0$	5			v	
	$V_{CR} = 50V$, $I_E = 0$			50	μΑ	
	$V_{CE} = 5V I_{C} = 0.5A$	40		240		
	$I_{c} = 1A, I_{b} = 0.1A$			1	v	
	Symbol BVcso BVcso IVcso Ivcso kvc Vas. (sat)	BVcso Ic = 500μ A, Ig = 0 BVcso Ic = $10 m$ A, Rsc = 00 IIVcso Ig = 500μ A, Ic = 0 Icso Vcs = 50 V, Ig = 0 hyg Vcs = 5 V Ic = 0.5 A	BVcso $I_c = 500 \mu A$, $I_E = 0$ 80 BVcso $I_c = 10 mA$, $R_{BE} = 00$ 55 IV_{EBO} $I_E = 500 \mu A$, $I_C = 0$ 5 I_{CBO} I_{CBO} I_{CBO} 5 I_{CBO} I_{CBO} I_{CBO} 5 I_{CBO} I_{CBO} I_{CBO} 5 I_{CBO} I_{CBO} I_{CBO} 40	BVcso $I_c = 500\mu A$, $I_E = 0$ 80 BVcso $I_c = 10mA$, $R_{BE} = 00$ 55 IV_{EBO} $I_E = 500\mu A$, $I_C = 0$ 5 I_{CBO} $V_{CH} = 50V$, $I_E = 0$ 5 I_{FE} $V_{CE} = 50V$, $I_E = 0$ 40		

hre CLASSIFICATION

Classification	R	0	Y
hек	40-80	70-140	120-240

LOW FREQUENCY HIGH POWER AMPLIFIER.

- Complement to KSB506
- Collector-Base Voltage V_{csu} = 100V
- Collector Current Ic = 5A
- Collector Dissipation H = 40W (Tr = 25°C)

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)

Characteristic	Symbol	Rating	Unit
Collector-Base Voltage	Vrae	100	V
Collector-Emitter Voltage	V cro	60	V
Emitter-Base Voltage	V _{EBO}	5	v
Collector Current	1_c	5.0	Α
Collector Dissipation $(T_c = 25^{\circ}C)$	$\mathbf{P}_{\mathcal{C}}$	40	W
Junction Temperature	T	150	°c
Storage Temperature	Taig	-55~+150	°c

LOW FREQUENCY POWER AMPLIFIER POWER REGULATOR

- Complement to KSC1173
- Collector Current: Ic = -3A
- Collector Dissipation: Pc=10W (Tc=25°C)

ABSOLUTE MAXIMUM RATINGS (Ta=25°C)

Characteristic	Symbol	Rating	Unit
Collector-Base Voltage Collector-Emitter Voltage Emitter-Base Voltage Collector Current Collector Dissipation (T _C = 25°C) Junction Temperature Storage Temperature	Vcso Vcso Vsso Ic Pc Tj Tstg	-30 -30 -5 -3 10 150 -55~+150	° % & ≫ < > <

ELECTRICAL CHARACTERISTICS (Ta = 25°C)

Characteristic	Symbol	Test Conditions	Min	Typ	Max	Unit
Collector-Base Breakdown Voltage	ВУсно	$I_C = 1mA$, $I_E = 0$	100			V
Collector-Emitter Breakdown Voltage	BVCEO	$I_c = 20 \text{mA}, R_{RE} =$	60			v
Emitter-Base Breakdown Voltage	BV_{EBO}	$I_E = 1 \text{mA}, I_C = 0$	5			v
Collector Cut-off Current	I cao	$V_{CB} = 100V, I_E = 0$			5	mA
DC Current Gain	her	$V_{cx} = 10V, I_c = 1.0A$	40		240	
Collector-Emitter Saturation Voltage	Vce (sat)	Ic = 5A, In =0.5A			2.0	V
Base-Emitter Saturation Voltage	V _{BE} (sat)	$I_{CE} = 5A, I_B = 0.5A$			1.5	V
Current-Gain-Bandwidth Product	fт	$V_{ck} = 10V, I_k = -0.3A$		20		MHz
DC Base Voltage	V_{BE}	$V_{CE} = 10V I_C = 1.0A$		0.75		v

hre CLASSIFICATION

Classification	R	0	Y
h se	40-80	70-140	120-240

ELECTRICAL CHARACTERISTICS (T₄=25°C)

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
Collector-Base Breakdown Voltage Collector-Emitter Breakdown Voltage Emitter-Base Breakdown Voltage Collector Cut-off Current Emitter Cut-off Current DC Current Gain Collector-Emitter Saturation Voltage Base-Emitter On Voltage Current Gain Bandwidth Product Output Capacitance	BVcso BVcso BVcso BVcso lcso lcso hre (1) hre (2) Vcc (sat) Vsc (on) fr Cob	$\begin{array}{l} I_{\rm C} = -500 \mu A, \ I_{\rm E} = 0 \\ I_{\rm C} = -10 m A, \ I_{\rm B} = 0 \\ I_{\rm E} = 1 m A, \ I_{\rm C} = 0 \\ V_{\rm CB} = -50 V, \ I_{\rm E} = 0 \\ V_{\rm CE} = -5 V, \ I_{\rm C} = 0 \\ V_{\rm CE} = -2 V, \ I_{\rm C} = -0.5 A \\ V_{\rm CE} = -2 V, \ I_{\rm C} = -0.5 A \\ V_{\rm CE} = -2 V, \ I_{\rm C} = -0.5 A \\ V_{\rm CE} = -2 V, \ I_{\rm C} = -0.5 A \\ V_{\rm CE} = -2 V, \ I_{\rm C} = -0.5 A \\ V_{\rm CB} = -10 V, \ I_{\rm E} = 0, \\ f = 1 M M 2 \\ \end{array}$	-30 -30 -5 70 25	-0.3 -0.75 100 40	-1.0 -1.0 240 -0.8 -1.0	V V µA µA V V MHz

hee CLASSIFICATION

Classification	0	Y
h _{FE} (1)	70-140	120-240

KSC945 NPN EPITAXIAL SILICON TRANSISTOR

AUDIO FREQUENCY AMPLIFIER HIGH FREQUENCY OSC.

Complement to KSA733

Collector-Base Voltage Von = 50V

High Current Gain-Bandwidth Product (= 300MHz (Typ)

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)

Characteristic	Symbol	Rating	Unit
Collector-Base Voltage	Veso	50	V
Collector-Emitter Voltage	V CKO	40	V
Emitter-Base Voltage	Veno	5	V
Collector Current	1 c	150	mA
Collector Dissipation	P_c	250	mW
Junction Temperature	T,	125	°C
Storage Temperature	Tate	-55~+125	°c

ELECTRICAL CHARACTERISTICS (Ta = 25°C)

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
Collector-Base Breakdown Voltage	ВУсво	$I_c = 100 \mu\text{A}, I_E = 0$	50			V
Collector-Emitter Breakdown Voltage	BVcso	$I_c = 10 \text{mA}, R_{BE} =$	40			V
Emitter-Base Breakdown Voltage	BV_{enc}	$I_{\pi} = 10 \mu A, I_{c} = 0$	5			v
Collector Cut-off Current	I _{cso}	$V_{c\mu} = 40V, 1_c = 0$			0.1	μΑ
Emitter Cut-off Current	1 E80	$V_{KB} = 3V, I_C = 0$			0.1	μΑ
DC Current Gain	hee	$V_{CE} = 6V, 1_{C} = 1.0 \text{mA}$	70		700	
Collector-Emitter Saturation Voltage	Ver (sat)	$I_C = 30 \text{mA}, I_B = 3 \text{mA}$		0.08	0.2	v
Current-Gain-Bandwidth Product	f _T	$V_{\rm CE} = 6V, 1_{\rm K} = 10 \text{ mA}$		300		МН
Output Capacitance	Coo	$V_{\rm cs} = 6V, I_{\rm E} = 0$		2.5		pF
		f = 1MHz				
Common Source Noise Figure	NF	$V_{CE} = 6V$, $I_E = -0.5 \text{mA}$		4.0		dB
		$f = 1 \text{KHz}$, $Rg = 500 \Omega$				

hrs CLASSIFICATION

Classification	0	Y	G	L
hre	70-140	120-240	200-400	350-700

PRINTER(CR-812A)

1. GENERAL SPECIFICATIONS

1-1. Features

The EPSON Digital Printer CR-800 Series is designed as a printer to be used exclusively for the cash register (ECR) and has the following features which match the ECR more than the conventional printers.

- 1. Independent paper feeding of receipts and journals and quick feeding of receipts are possible.
- 2. Stamp print and validation print can be conducted. (for CR-812 only)
- 3. Inking system using ink rollers.
- 4. Validation sensor is equipped. (option for CR-812 only) The printer also features that the printing system is a non-impact system and the sound is "zero" when the printer is in stand-by mode due to the intermittent motor drive.

1-2. Character Print Form

	10	9	8	7	6	5	4	3	2	
0	VD	×	×	×	×	*	×	×	×	X
-	ର	•	•	•	•	•	•	•	•	%
2	RT	-	-	-	_	_	-	_		ST
3										
4	CK	0	0	0	0	0	Ο,	0	0	#
5	ı	1	1	ı	١	١	١,	1	1	TL
6	2	2	2	2	2	2	2,	2	2	NS
7	3	3	3	3	3	3	3,	3	3	TS
8	4	4	4	4	4	4	4,	4	4	∞
9	CA	5	5	5	5	5	5,	5	5	AT
IC	CH	6	6	6	6	6	6,	6	6	TI
11	(-)	7	7	7	7	7	7,	7	7	TI
12	RA	8	8	8	8	8	8,	8	8	Z
13	PC	9	9	9	9	9	9,	9	9	CD
	٠									

1-3. F.P.C Terminal Arrangement

NOTE: For the arrangement of F.P.C. terminals are numbered 31 . . . 1 from the ink roller holder side.

3. ASSEMBLY CONSTRUCTION & PARTS LIST

PART LIST

A. ASSY-ECR

NO	PART NO	DESCRIPTION/SPECIFICATION	QTY
	27098-150-101 2D901-701-041 2D901-000-080	SCREW.PH(WASHER); M5*10*PI10*T1.0 FEFZY DRAWER; A5504 ASSY-ECR, BODY	2 1 1

B. ASSY-ECR, BODY

NO	PART NO	DESCRIPTION/SPECIFICATION	ΩТΥ
B1	27018-140-102	SCREW-FH;M4X10 FE FZW	
B2	28114-128-110	LABEL-SERIAL;ART PAPER	"
B3	28114-750-100	LABEL-BATTERY,NEXT;ART PAPER 100GR	
С	2D903-000-130	ASSY-CASE UPPER	
D	2D903-000-140	ASSY-COVER PRINTER	
E	2D903-000-150	ASSY-DISPLAY	
F	2D903-000-160	ASSY-TURRET DISPLAY	
G	2D903-000-170	ASSY-CASE LOWER	'
Н	2D903-000-180	ASSY-PRINTER	
1	2D903-000-190	ASSY-POWER, SUPPLY	
J	2D903-000-200	ASSY-MAIN PWB	
K	2D903-000-210	ASSY-KEY, BOARD	

C. ASSY-CASE UPPER

NO	PART NO	DESCRIPTION/SPECIFICATION	QTY
C1	23344-501-207	CONNECTOR-HOUSING;XHP-7(420)	1
C2	26031-700-210	CASE-UPPER;ABS T3.0	
C3	26404-700-310	PLATE-MODE S/W;PVC SHEET T0.3	
C4	27148-540-101	SCREW-TAP RH;2S-4*10 FE FZY	
C5	27158-526-101	SCREW-TAP PH(WASHER);2S-2.6*10*PI5*T0.5	
C6	27308-204-001	WASHER-PLAIN;PI4.0 FEFZY	2
C7	27652-700-110	WINDOW-DISPLAY; ACRYL T3.0	
C8	28034-700-710	LABEL-RATING; TETRON PAPER	
C9	28114-750-300	LABEL-FCC;TETRON PAPER TO.1	
C10	28344-100-010	KEY-"C";2K-71J-00	
	28344-100-020	KEY-"P";2K-71J-01	
	28344-100-030	KEY-"Z";2K-71J-03	
	28344-100-040	KEY-"VD":2K-71J-07	
	28344-100-050	KEY-"OP":2K-71J-15	
C11	28344-100-310	KEY LOCK SWITCH;KSL-795FC01-71J	

D. ASSY-COVER PRINTER

NO	PART NO	DESCRIPTION/SPECIFICATION	QTY
D1	26031-702-310	COVER-PRINTER;ABS T3.0	
D2	26614-703-110	CUTTER-PAPER;SUS304-CP TO,3	
D3	27653-701-310	WINDOW-JOURNAL;ACRYL T2.0	
D4	28024-710-210	BRAND-PANEL; PVC SHEET TO.3	
D5	28343-710-100	LOCK-KEY;WK-57(SIN DONG)	
D6	28343-710-110	LOCK-C;WK-57-1(SIN DONG)	

E, ASSY-DISPLAY

NO	PART NO	DESCRIPTION/SPECIFICATION	מידי
E1	22319-700-102	DIGITRON;FG1013RC1	1
E2	23023-701-310	PWB-DISPLAY; ER-2710	1
E3	23344-501-210	CONNECTOR-HOUSING;XHP-10(310)	1
E4	23344-501-211	CONNECTOR-HOUSING;XHP-11(310)	1
E5	26613-700-610	HOLDER-PWB DISPLAY; ABS (HB), BLACK T3.0	1 . 1
	26834-700-420	PAD-DIGITRON; RUBBER SPONGE T2.0	2

F. ASSY-TURRET DISPLAY

NO	PART NO	DESCRIPTION/SPECIFICATION	QTY
F1	22319-700-091	DIGITRON;FG98RD1	1
F2	23023-705-410	PWB-TURRET DISPLAY;ER-2710	1
F3	23344-501-209	CONNECTOR-HOUSING;XHP-9(400)	1
F4	23344-501-310	CONNECTOR-HOUSING;XHP-10(400)	1
F5	26032-700-300	TURRET-BODY;ABS	1
	26834-700-420	PAD-DIGITRON; RUBBER SPONGE T2.0	2
F6	27653-700-300	WINDOW-TURRET;ACRYL BLU	1
F7	28614-700-110	PAD-TURRET PCB;RUBBER SPONGE	2

G. ASSY-CASE LOWER

NO	PART NO	DESCRIPTION/SPECIFICATION	QTY
G1	26031-701-310	CASE-LOWER;ABS T3.0	1
G2	26604-700-500	HOLDER CORD;SBHG1 T1.0	1
G3	26604-700-600	BRACKET-CASING;SBHG1 T1.6	2
G4	26614-700-220	BRACKET-FOOT;SCP1 T1.6	2
G5	26834-705-110	CUSHION-PRINTER;NR(BLACK)	4
G6	27098-140-121	SCREW-PH(WASHER); +M4*12*P19.0*T0.9 FE FZY	4
G7	27148-530-101	SCREW-TAP RH;2S-3*10 FE FZY	1
G8	27148-540-101	SCREW-TAP RH;2S-4*10 FE FZY	2
G9	27148-540-101	SCREW-TAP RH;2S-4*10 FE PZY	2
G10	27148-540-101	SCREW-TAP RH:2S-4*10 FE FZY	1
G11	27158-530-101	SCREW-TAP,PH(WASHER);2S-3*10*P17*T0.7 FEFZY	3
G12	27158-530-101	SCREW-TAP, PH(WASHER);2S-3*10*P17*T0.7 FEFZY	2
G13	28114-750-500	WARNING-MARK; ART PAPER 100GR ER-1710A(CRS)	1

H, ASSY-PRINTER

NO	PART NO	DESCRIPTION/SPECIFICATION	QTY
H1 H2 H3 H4 H5	24958-701-050 27008-140-080 27328-204-001 28114-128-110 28460-000-001	DIGITAL-PRINTER;CR-812A(130-03-1) SCREW-PH;+M4*8 FE FZY WASHER-TOOTHED;PI4.0 FEFZY LABEL-SERIAL;ART PAPER STAMP;RUBBER(30x20 T2.5)	1 1 1 1

I. ASSY-POWER, SUPPLY

NO	PART NO	DESCRIPTION/SPECIFICATION	QTY
	21018-257-105	R-CARBON;RD 1/4R 1M-J	1
	21509-139-104	C-POLYSTER;CQ922 M2J 104-K	1
	21509-140-222	C-POLYPROPYLENE;DTMB222J	2
l1	22869-100-400	TRANS-POWER;P:120V, S:19.5V,9.5V,26V	1
12	23023-700-050	PWB-POWER;ER-2710	1
13	23053-700-200	POWER CORD; ASSY:ER-1730	1
	23101-300-310	TERMINAL RING;170	1
	23101-300-410	TERMINAL RING; 355	1
	23101-300-610	TERMINAL RING;210*360*100	1
	23164-600-000	CLIP-FUSE ER-700;PBSS3 T0.3 5.4PI	2
	24529-500-100	LINE-FILTER;HL-38	1
	24709-009-010	FUSE;125V 1A (51NM-010-L)	1
14	26624-700-510	PLATE-GROUND;SBHG1 T1.0	1
15	27148-530-101	SCREW-TAP RH;2S-3*10 FE FZY	4
16	27328-203-001	WASHER-TOOTHED;B-PI3.0 FE FZY	4

J. ASSY-MAIN PWB

NO	PART NO	DESCRIPTION/SPECIFICATION	QTY
	21018-427-102	R-CARBON;RD 1P 1KJ	1
	21049-101-752	R-METAL OXIDE;RS1W750J	2
	21099-100-000	R-ARRAY;100K*6 1/8 P-K	6
	21099-128-473	R-ARRAY;47KX8 1/8P-K	2
	21409-101-270	C-CERAMIC TEMP;CC45 SL 50V 47-J	2
	21409-105-210	C-CERAMIC, TEMP;CC45 CH 50V 30-J	2
	21419-109-140	C-CERAMIC, HK;CK45 F 50V 0.01M-Z	4
	21609-401-222	C-ELECTROLYTIC;CE04W10V220UF	1
	21609-401-500	C-ELECTROLYTIC; CE04W 16V 470M(SG TYPE)	3
	21609-401-630	C-ELECTROLYTIC;CE04W 35V 4.7M	2
	21609-402-270	C-ELECTROLYTIC;CE04W 50V 33M	1
	21609-402-280	C-ELECTROLYTIC;CE04W 50V 47M	1
	21609-402-380	C-ELECTROLYTIC;CE04W 50V 100M	1 1
	21609-402-400	C-ELECTROLYTIC;CE04W 35V 4700M	1
	21609-404-683	C-ELECTROLYTIC;CE04W40V6800M	1
	22109-111-139	IC-TTL;KS74HCTLS139	2
	22109-184-041	IC-CMOS;KS74HCTLS04	1
	22109-185-731	IC-CMODS;KS74HCTLS573	5
	22109-323-281	IC-EPROM;D27128	1
	22109-337-810	IC-NMOS LOGIC;UPD7810HG-36	1
	22109-413-686	IC-CMOS RAM;KM6264	1
	22109-414-990	IC-COMS;RP5C15	1
	22109-513-391	IC-LINEAR;LM339	1
	22119-302-205	IC-LINEAR;IR-2C05	3
	22119-502-419	IC-TR-ARRAY;IR2C19	4
	22139-103-441	TRANSISTOR;KSA733	1
	22139-103-473	TRANSISTOR;KSA473-Y	2
	22139-302-650	TRANSISTOR;KSC945-G	7
	22149-401-270	TRANSISTOR;KSD288-Y	3
	22169-201-060	DIODE; 1N4002	4
	22169-301-100	DIODE-BRIDGE;W02M	1
	22169-301-200	DIODE-BRIDGE;2KBP02	1
	22169-401-200	DIODE-ZENER;DZW-20B (1W)	11

NO	PART NO	DESCRIPTION/SPECIFICATION	QTY
	22169-401-300	DIODE-ZENER;DZW-308 (1W)	1
	23344-300-303	FDZ-CONN;08FDZ-BT	2
	23344-400-410	CONNECTOR POST;B4B-XH-A	1
	23344-401-002	CONNECTOR-POST;B2B-XH-A	1
	23344-401-007	CONNECTOR-POST;B7B-XH-A	1
	23344-401-009	CONNECTOR-POST;B9B-XH-A	1
	23344-401-010	CONNECTOR-POST;B10B-XH-A	2
	23344-401-011	CONNECTOR-POST;B11B-XH-A	1
	23344-501-302	CONNECTOR-HOUSING;XHP-2(540)	1
J1	23344-601-006	DRAWER-CONNECTOR ASSY;	1
	24709-010-020	FUSE:52S-020-L	1
	23344-601-004	SOCKET-HOUSING:W-E 2103-1N#02	0
	23344-700-040	CONNECTOR-MALE;B 4P-VH	1 1
	23344-700-310	CONNECTORS-F.P.C;FF-31-001	1
	23354-300-280	SOCKET-IC:28PIN	1
J2	23519-066-110	SW-SLIDE:KSA-2202	1
-	24209-700-010	BUZZER-PIEZO,PB 5V	1
	24539-001-060	CRYSTAL-QUARTZ;KF-38 32768HZ	1
	24539-019-140	CRYSTAL: 14MHZ	1
	24709-010-010	FUSE:52NM-010-L	1
	24719-006-010	BATTERY-NICAD:3/60DK	1
J3	28114-701-110	ROM PROTECTOR; MOJO PAPER 120GR	1 1
	20509-400-105	WIRE SO, COPPER; TA 0.6 SN	1
	21018-277-101	R-CARBON;RD 1/4T 100J	1 1
	21018-277-102	R-CARBON:RD 1/4T 1K-J	1
	21018-277-103	R-CARBON;RD 1/4T 10K-J	5
	21018-277-104	R-CARBON;RD 1/4T 100K-J	2
	21018-277-221	R-CARBON:RD 1/4T220-J	1 1
	21018-277-222	R-CARBON:RD 1/4T 2.2K-J	4
	21018-277-472	R-CARBON:RD 1/4T 4.7K-J	6
	21018-277-562	R-CARBON:RD 1/4T 5,6K-J	6
	21018-277-681	R-CARBON:RD 1/4T 680-J	3
		R-CARBON:RD 1/4T 6,8K-J	1 1
	21018-277-682	DIODE-SWITCHING; 1N4148 TAP	13
	22169-107-410	PWB-MAIN:ER-2710	13
J4	23023-300-210		1
	22119-104-357	REGULATOR;MC7805C TRANSISTOR;KSD73-Y	1 1
	22149-440-073		
J5	23914-100-340	PLATE-MICA:5-13X19 T0.09 RECT	
	23914-100-340	PLATE-MICA;5-13X19 TO.09 RECT	
J6	23934-700-210	INSULATOR-TRINYLON 66	1
	23934-700-210	INSULATOR-TR;NYLON 66	1
J7	25684-700-410	HEAT-SINK;AL6063 H30	
18	25684-700-420	HEAT-SINK;AL6063 H45	1
J9	27008-130-081	SCREW-PH;+M3X8 FE FZY	1
	27008-130-081	SCREW-PH;+M3X8 FE FZY	1
J10	27208-123-001	NUT-HEX;2-M3 FE FZY	1
	27208-123-001	NUT-HEX;2-M3 FE FZY	1

K. ASSY-KEY, BOARD

NO	PART NO	DESCRIPTION/SPECIFICATION	QTY
K1	23553-700-610	KEY-BOARD ASSY;MEMBRANE ER-2710	1
K2	27148-530-101	SCREW-TAP RH;2S-3*10 FE FZY	1
K3	27328-203-001	WASHER-TOOTHED;B-PI3.0 FE FZY	1

4. APPENDIX

A) BLOCK DIAGRAM

B) WIRING DIAGRAM

C) PARTS LAYOUT ON MAIN P.C.B.

E) PRINTER TIMING CHART

F) PRINTER ASSEMBLY/DISASSEMBLY DIAGRAM

