目录

1	数项级数			
	1.1	级数的]敛散性	2
	1.2	正项级	数	4
		1.2.1	正项级数收敛性的一般判别原则	4
		1.2.2	比式判别法和根式判别法	4
		1.2.3	积分判别法	6
	1.3	一般面纽数		6

数项级数 1

级数的敛散性 1.1

定义 1.1. 给定一个数列 $\{u_n\}$, 对它的各项依次用"+"号连接起来的表达式

$$u_1 + u_2 + \cdots + u_n + \ldots$$

称为常数项无穷级数或数项级数(也常简称级数),其中 u_n 称为数项级数的通项或一 般项.

数项级数的前n项之和,记为

$$S_n = \sum_{k=1}^n u_k = u_1 + u_2 + \dots + u_n,$$

称它为数项级数的第 n 个部分和, 也简称部分和.

定义 1.2. 若数项级数的部分和数列 $\{S_n\}$ 收敛于 S (即 $\lim_{n\to\infty} S_n = S$), 则称数项级数**收 敛**, 称 S 为数项级数的**和**,记作

$$S = u_1 + u_2 + \dots + u_n + \dots \quad \text{ if } S = \sum u_n$$

若 $\{S_n\}$ 是发散数列,则称数项级数**发散**.

例 1.1. 讨论等比级数(几何级数)

$$a + aq + aq^2 + \dots + aq^n + \dots$$

的敛散性 $(a \neq 0)$

 $\mathbf{H} q \neq 1$ 时,级数的第 n 个部分和

$$S_n = a + aq + \dots + aq^{n-1} = a \cdot \frac{1 - q^n}{1 - q}$$

因此,

- $\begin{array}{l} (i) \;\; \exists \;\; |q| < 1 \;\; \text{时}, \;\; \lim_{n \to \infty} = \lim_{n \to \infty} a \cdot \frac{1 q^n}{1 q} = \frac{a}{1 q}. \;\; \text{此时级数收敛,其和为} \; \frac{a}{1 q}. \\ (ii) \;\; \exists \;\; |q| < 1 \;\; \text{时}, \;\; \lim_{n \to \infty} = \infty, \; \text{级数发散}. \\ (iii) \;\; \exists \;\; q = 1 \;\; \text{时}, \;\; S_n = na, \;\; \text{级数发散}. \end{array}$

当 q=-1 时, $S_{2k}=0, S_{2k+1}=a, k=0,1,2,\ldots$, 级数发散.

总之, |q| < 1 时, 级数收敛; $|q| \ge 1$ 时, 级数发散.

定理 1.1. (级数收敛的柯西准则)

级数收敛的充要条件是:任给正数 ε ,总存在正整数 N,使得当 m>N 以及对任意的正整数 p,都有

$$|u_{m+1} + u_{m+2} + \dots + u_{m+p}| < \varepsilon. \tag{1}$$

级数发散的充要条件是: 存在某正数 ε_0 , 对任何正整数 N, 总存在正整数 $m_0(>N)$ 和 p_0 , 有

$$|u_{m+1} + u_{m+2} + \dots + u_{m+p}| \ge \varepsilon_0.$$
 (2)

推论 若级数收敛,则

$$\lim_{n\to\infty}u_n=0.$$

当一个级数 $\sum_{n=1}^{\infty} u_n$ 的一般项 u_n 不收敛于零时,由推论可知该级数发散.

例 1.2. 证明调和级数

$$1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} + \dots$$

是发散的.

证由

$$\lim_{n \to \infty} u_n = \lim_{n \to \infty} \frac{1}{n} = 0$$

无法用推论推出调和级数发散. 但令 p=m 时,有

$$|u_{m+1} + u_{m+2} + \dots + u_{2m}| = \left| \frac{1}{m+1} + \frac{1}{m+2} + \dots + \frac{1}{2m} \right|$$

$$\ge \left| \frac{1}{2m} + \frac{1}{2m} + \dots + \frac{1}{2m} \right|$$

$$= \frac{1}{2},$$

取 $\varepsilon_0 = \frac{1}{2}$, 对任何正整数 N, 只要 m > N 和 p = m 就有 (2) 式成立,所以调和级数是发散的.

定理 1.2. 若级数 $\sum u_n$ 与 $\sum v_n$ 都收敛,则对任意常数 c, d, 级数 $\sum (cu_n + dv_n)$ 亦收敛,且

$$\sum (cu_n + dv_n) = c \sum u_n + d \sum v_n.$$

定理 1.3. 去掉、增加或改变级数的有限个项并不改变级数的敛散性.

定理 1.4. 在收敛级数的项中任意加括号, 既不改变级数的收敛性, 也不改变它的和.

1.2 正项级数

1.2.1 正项级数收敛性的一般判别原则

定理 1.5 (比较原则). 设 $\sum u_n$ 和 $\sum v_n$ 是两个正项级数,如果存在某正数 N,对一切 n>N 都有

$$u_n < v_n$$

则

- (i) 若级数 $\sum v_n$ 收敛, 则级数 $\sum u_n$ 也收敛;
- (ii) 若级数 $\sum u_n$ 发散, 则级数 $\sum v_n$ 也发散.

推论 设

$$u_1 + u_2 + \dots + u_n + \dots \tag{1}$$

$$v_1 + v_2 + \dots + v_n + \dots \tag{2}$$

是两个正项级数, 若

$$\lim_{n \to \infty} \frac{u_n}{v_n} = l$$

则

- (i) 当 $0 < l < +\infty$ 时,级数 (1)(2)同时收敛或同时发散;
- (ii) 当 l=0 且级数 (2) 收敛时,级数 (1) 也收敛;
- (iii) 当 $l = +\infty$ 且级数 (2) 发散时, 级数 (1) 也发散.

1.2.2 比式判别法和根式判别法

定理 1.6 (拉朗贝尔判别法,或称比式判别法). 设 $\sum u_n$ 为正项级数,且存在某正整数 N_0 及常数 q (0 < q < 1).

(i) 若对一切 $n > N_0$, 成立不等式

$$\frac{u_{n+1}}{u_n} \le q,$$

则级数 $\sum u_n$ 收敛.

(ii) 若对一切 $n > N_0$, 成立不等式

$$\frac{u_{n+1}}{u_n} \ge 1,$$

则级数 $\sum u_n$ 发散.

推论 1 (比式判别法的极限形式) 若 $\sum u_n$ 为正项级数,且

$$\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = q,\tag{3}$$

- (i) 当 q < 1 时,级数 $\sum u_n$ 收敛;
- (ii) 当 q > 1 或 $q = +\infty$ 时, 级数 $\sum u_n$ 发散.

若 q=1,这时用比式判别法不能对级数的敛散性作出判断,因为它可能是收敛的, 也可能是发散的.

若某级数的(3)式的极限不存在,则可应用上、下极限来判别.

推论 2 设 $\sum u_n$ 为正项级数.

- $\begin{array}{l} (i) \ \ \overrightarrow{z} \ \overline{\lim_{n \to \infty}} \ \frac{u_{n+1}}{u_n} = q < 1, \ \ \text{则级数收敛;} \\ (ii) \ \ \overrightarrow{z} \ \underline{\lim_{n \to \infty}} \ \frac{u_{n+1}}{u_n} = q > 1, \ \ \text{则级数发散.} \end{array}$

定理 1.7 (柯西判别法,或称根式判别法). 设 $\sum u_n$ 为正项级数,且存在某正整数 N_0 及正常数 1,

(i) 若对一切 $n > N_0$, 成立不等式

$$\sqrt[n]{u_n} \le l < 1,$$

则级数 $\sum u_n$ 收敛;

(ii) 若对一切 $n > N_0$, 成立不等式

$$\sqrt[n]{u_n} \ge 1$$
,

则级数 $\sum u_n$ 发散.

推论 1 (根式判别法的极限形式) 若 $\sum u_n$ 为正项级数,且

$$\lim_{n \to \infty} \sqrt[n]{u_n} = l,\tag{4}$$

则

- (i) 当 l < 1 时,级数 $\sum u_n$ 收敛;
- (ii) 当 l > 1 时,级数 $\sum u_n$ 发散.

若(4)式的极限不存在,则可根据根式 $\sqrt[n]{u_n}$ 的上极限来判断.

推论 2 设 $\sum u_n$ 为正项级数,且

$$\overline{\lim}_{n\to\infty} \sqrt[n]{u_n} = l,$$

则当

- (i) l < 1 时级数收敛;
- (ii) l > 1 时级数发散.

若

$$\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = q,$$

则必有

$$\lim_{n \to \infty} \sqrt[n]{u_n} = q.$$

这说明凡能由比式判别法鉴别收敛性的级数,也能由根式判别法来判断.

1.2.3 积分判别法

定理 1.8. 设 f 为 $[1,+\infty)$ 上的减函数,则级数 $\sum\limits_{n=1}^{\infty}f(n)$ 收敛的充分必要条件是反常积分 $\int_{1}^{+\infty}f(x)\,dx$ 收敛.

1.3 一般项级数