Técnicas de minería en bases de conocimiento

Detección de *spam* en bases textuales mediante técnicas de aprendizaje supervisado

Mónica Calzado Granados

Universidad de Granada

22 de julio de 2024

- Introducción
- Minería de Textos
- 3 Naive Bayes
- 4 Máquinas de Soporte Vectorial
- 6 Experimentación
- 6 Conclusiones

- 1 Introducción
- Minería de Textos
- 4 Máquinas de Soporte Vectorial

Gestión de los datos

Importancia de la gestión de grandes volúmenes de datos.

Gestión de los datos

- Importancia de la gestión de grandes volúmenes de datos.
- El volumen de datos digitales crecerá hasta 175 ZB en 2025.

Figure 1: Imagen extraída de Forbes

Gestión de los datos

Introducción

0000

- Importancia de la gestión de grandes volúmenes de datos.
- El volumen de datos digitales crecerá hasta 175 ZB en 2025.

Figure 1: Imagen extraída de Forbes

Dos desafíos: Almacenamiento y análisis de datos.

Grandes flujos de datos ⇒ Nuevos problemas: spam

Grandes flujos de datos ⇒ Nuevos problemas: spam

Forma de comunicación no solicitada.

• Grandes flujos de datos \implies Nuevos problemas: spam

Forma de comunicación no solicitada.

 El 48.63% de correos electronicos fueron spam (Informe Kaspersky, 2022).

• Grandes flujos de datos \implies Nuevos problemas: spam

Forma de comunicación no solicitada.

 El 48.63% de correos electronicos fueron spam (Informe Kaspersky, 2022).

• Es fundamental crear métodos de detección de spam.

Objetivos

Introducción

- Proporcionar una visión integral del proceso de Minería de Textos.
- Explorar las bases teóricas de varias técnicas de minería.
- Buscar un ejemplo de aplicación real.
- Demostrar la utilidad de las técnicas empleadas en el campo de la Minería de Textos.

- 1 Introducción
- Minería de Textos
- 4 Máquinas de Soporte Vectorial

• Knowledge Discovery from Databases (KDD)

El proceso no trivial de identificar patrones válidos, novedosos, potencialmente útiles y, en última instancia, comprensibles a partir de los datos (Fayyad et al., 1996).

Figure 2: Fases del KDD (Fayyad et al., 1996)

• Knowledge Discovery from Databases (KDD)

- Knowledge Discovery from Text (KDT)
 - Principal diferencia con KDD: preprocesado más complejo

• Knowledge Discovery from Databases (KDD)

- Knowledge Discovery from Text (KDT)
 - Principal diferencia con KDD: preprocesado más complejo
 - Técnicas de PLN: tokenización, etiquetado, stemming, eliminar stop words...

Knowledge Discovery from Databases (KDD)

- Knowledge Discovery from Text (KDT)
 - Principal diferencia con KDD: preprocesado más complejo
 - Técnicas de PLN: tokenización, etiquetado, stemming, eliminar stop words...
 - Problema: pérdida de contexto

• Knowledge Discovery from Databases (KDD)

- Knowledge Discovery from Text (KDT)
 - Principal diferencia con KDD: preprocesado más complejo
 - Técnicas de PLN: tokenización, etiquetado, stemming, eliminar stop words...
 - Problema: pérdida de contexto
 - Sistemas de representación de conocimiento: redes semánticas, reglas de producción, ontologías...

00000

- 1 Introducción
- Minería de Textos
- 3 Naive Bayes
- 4 Máquinas de Soporte Vectorial

Problema de clasificación con n atributos $X = \{x_1, x_2, \dots, x_n\}$ y k clases $c_i \in \Omega = \{c_1, c_2, \dots, c_k\}$.

Problema de clasificación con n atributos $X = \{x_1, x_2, \dots, x_n\}$ y k clases $c_i \in \Omega = \{c_1, c_2, \dots, c_k\}$.

• Teorema de Bayes aplicado a clasificación:

$$P(c_i|x_1,...,x_n) = \frac{P(c_i) \cdot P(x_1,...,x_n|c_i)}{P(x_1,...,x_n)}$$

Problema de clasificación con n atributos $X = \{x_1, x_2, \dots, x_n\}$ y k clases $c_i \in \Omega = \{c_1, c_2, \dots, c_k\}$.

• Teorema de Bayes aplicado a clasificación:

$$P(c_i|x_1,...,x_n) = \frac{P(c_i) \cdot P(x_1,...,x_n|c_i)}{P(x_1,...,x_n)}$$

• Hipótesis MAP:

$$C_{\mathsf{MAP}} = \arg\max_{c_i \in \Omega} P(c_i \mid x_1, ..., x_n)$$

Problema de clasificación con *n* atributos $X = \{x_1, x_2, \dots, x_n\}$ y *k* clases $c_i \in \Omega = \{c_1, c_2, \dots, c_k\}.$

Teorema de Bayes aplicado a clasificación:

$$P(c_i|x_1,...,x_n) = \frac{P(c_i) \cdot P(x_1,...,x_n|c_i)}{P(x_1,...,x_n)}$$

Hipótesis MAP:

$$C_{\mathsf{MAP}} = \arg\max_{c_i \in \Omega} P(c_i \mid x_1, ..., x_n)$$

• **Problema:** Calcular $P(x_1,...,x_n|c_i)$ es computacionalmente insostenible.

Problema de clasificación con *n* atributos $X = \{x_1, x_2, \dots, x_n\}$ y *k* clases $c_i \in \Omega = \{c_1, c_2, \dots, c_k\}.$

Teorema de Bayes aplicado a clasificación:

$$P(c_i|x_1,...,x_n) = \frac{P(c_i) \cdot P(x_1,...,x_n|c_i)}{P(x_1,...,x_n)}$$

Hipótesis MAP:

$$C_{\mathsf{MAP}} = \arg\max_{c_i \in \Omega} P(c_i \mid x_1, ..., x_n)$$

- **Problema:** Calcular $P(x_1,...,x_n|c_i)$ es computacionalmente insostenible.
- Solución: Asumir independencia.

$$P(x_1,...,x_n|c_i) = \prod_{x_j \in X} P(x_j|c_i)$$

Mónica Calzado Granados

Problema de clasificación con n atributos $X = \{x_1, x_2, \dots, x_n\}$ y k clases $c_i \in \Omega = \{c_1, c_2, \dots, c_k\}$.

Teorema de Bayes aplicado a clasificación:

$$P(c_i|x_1,...,x_n) = \frac{P(c_i) \cdot P(x_1,...,x_n|c_i)}{P(x_1,...,x_n)} = \frac{P(c_i) \cdot \prod_{x_j \in X} P(x_j|c_i)}{P(x_1,...,x_n)}$$

Problema de clasificación con *n* atributos $X = \{x_1, x_2, \dots, x_n\}$ y *k* clases $c_i \in \Omega = \{c_1, c_2, \dots, c_k\}.$

Teorema de Bayes aplicado a clasificación:

$$P(c_i|x_1,...,x_n) = \frac{P(c_i) \cdot P(x_1,...,x_n|c_i)}{P(x_1,...,x_n)} = \frac{P(c_i) \cdot \prod_{x_j \in X} P(x_j|c_i)}{P(x_1,...,x_n)}$$

Hipótesis MAP:

$$C_{\mathsf{MAP}} = rg \max_{c_i \in \Omega} P(c_i \mid x_1, ..., x_n)$$

$$= rg \max_{c_i \in \Omega} P(c_i) \prod_{j=1}^n P(x_j \mid c_i)$$

Tipos de clasificadores Naive Bayes

Dependiendo de la distribución de $P(x_i \mid y)$:

Tipos de clasificadores Naive Bayes

Dependiendo de la distribución de $P(x_i \mid y)$:

- NB Multinomial
 - Variables de entrada multivariantes.
 - Conteo de frecuencia relativa:

$$P(x_i \mid y) = \frac{N_{yi} + \alpha}{N_y + \alpha n}$$

Dependiendo de la distribución de $P(x_i \mid y)$:

Naive Bayes

- NB Multinomial
- NB Gaussiano
 - Variables de entrada continuas.
 - Función de densidad de probabilidad gaussiana:

$$P(x_i \mid y) = \frac{1}{\sqrt{2\pi\sigma_y^2}} \exp\left(-\frac{(x_i - \mu_y)^2}{2\sigma_y^2}\right)$$

Dependiendo de la distribución de $P(x_i \mid y)$:

- NB Multinomial
- NB Gaussiano
- NB de Bernoulli
 - Variables de entrada binarias
 - Función de probabilidad de Bernoulli:

$$P(x_i \mid y) = P(x_i = 1 \mid y)x_i + (1 - P(x_i = 1 \mid y))(1 - x_i)$$

- 1 Introducción
- 3 Naive Bayes
- 4 Máquinas de Soporte Vectorial

Problema lineal

Hiperplano de separación lineal:

$$h(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b = 0$$

Universidad de Granada

Mónica Calzado Granados

Problema lineal

Margen duro

- Función objetivo: $\min_{\mathbf{w},b} \left\{ \frac{1}{2} ||\mathbf{w}||^2 \right\}$
- Restricciones lineales: $y_i(\mathbf{w}^T\mathbf{x}_i + b) > 1$, $\forall \mathbf{x}_i \in \mathbf{D}$.

Margen blando

- Función objetivo: $\min_{\mathbf{w},b,\xi_i} \left\{ \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^n \xi_i \right\}$
- Restrictiones lineales: $y_i(\mathbf{w}^T\mathbf{x}_i + b) \ge 1 \xi_i$, $\forall \mathbf{x}_i \in \mathbf{D}, \ \xi_i \ge 0$.

Mónica Calzado Granados

Universidad de Granada

Problema dual asociado

Margen duro

- $\max \left\{ \sum_{i=1}^{n} \alpha_i \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j \right\}$ Función objetivo:
- Restricciones lineales: $\sum_{i=1}^{n} \alpha_i y_i = 0,$ $\alpha_i \geq 0, \quad \forall i = 1, \ldots, n$

Margen blando

- $\max \left\{ \sum_{i=1}^{n} \alpha_i \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j \right\}$ Función objetivo:
- Restricciones lineales: $\sum_{i=1}^{n} \alpha_i y_i = 0,$ $0 < \alpha_i < C, \forall i = 1, ..., n.$

Problema NO lineal

Nuevo hiperplano de separación lineal:

$$h(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x}) + b = 0$$

Nuevo problema dual

Función objetivo:

$$\max_{\alpha} \left\{ \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \phi(\mathbf{x}_{i})^{T} \phi(\mathbf{x}_{j}) \right\}$$

Restricciones lineales:

$$\sum_{i=1}^{n} \alpha_i y_i = 0,$$

$$0 < \alpha_i < C, \quad \forall i = 1, ..., n.$$

Truco del kernel

- Es costoso hallar ϕ y calcular $\phi(\mathbf{x}_i)$, $\forall \mathbf{x}_i \in \mathbf{D}$.
- **Función kernel:** basta con calcular $\phi(\mathbf{x}_i)^T \phi(\mathbf{x}_i)$.

Ejemplos de funciones kernel

Kernel lineal:

$$k(\mathbf{x}, \mathbf{y}) = \mathbf{x}^T \mathbf{y}$$

Kernel polinómico:

$$k(\mathbf{x}, \mathbf{y}) = (\mathbf{x}^T \mathbf{y} + c)^n$$

Kernel gaussiano:

$$k(\mathbf{x}, \mathbf{y}) = \exp(-\gamma \|\mathbf{x} - \mathbf{y}\|^2)$$

Mónica Calzado Granados

Universidad de Granada

2 Minería de Textos

Naive Bayes

4 Máquinas de Soporte Vectorial

5 Experimentación

6 Conclusiones

- Lenguaje de programación: Python. Scikit-Learn, Pandas y NLTK.
- Entorno: Jupyter Notebook
- Conjuntos de datos extraídos de Kaggle.
 - Temas corporativos, académicos, foros

Problema de clasificación binaria: Spam y Ham

Visualización y análisis exploratorio (1)

- Limpieza de datos.
- Representación de los datos: tokenización.

Label	Texto original	Texto tokenizado
Spam	Subject: make \$3500 per	['make', 'week', 'using',
	week using your home	'home', 'computer', 'put',
	computer! put my free	'free', 'software', 'com-
	software in your com-	puter', 'start', 'making',
	puter start making	'huge', 'amounts', 'cash',
	huge amounts of cash	'working', 'URL']
	without working!!! http:	
	//www.adclick.ws/p.	
	cfm?o=315&s=pk007	

Table 1: Ejemplo de correo antes y después de la limpieza y tokenización

- 4 ロ ト 4 園 ト 4 重 ト 4 重 ト 9 Q (

Visualización y análisis exploratorio (2)

Distribución de los datos

Figure 4: Desbalanceo de clases

Experimentación

Figure 5: Frecuencia total de palabras

Figure 6: Boxplot del número de palabras

◆□ > ◆□ > ◆量 > ◆量 > ■ 釣 Q ()

Visualización y análisis exploratorio (3)

Análisis del contenido de los datos: word clouds y n-gramas

Figure 7: Comparación de word clouds

Técnicas de minería en bases de conocimiento

Mónica Calzado Granados

Preprocesado (1)

- Selección de instancias
- Selección de características
- Balanceo de clases

Figure 8: Aplicando balanceo de clases

Figure 9: Boxplot del número de palabras

- (ロ) (部) (注) (注) 注 り(()

- Representación de los datos: Vectorización
 - Conteo de palabras
 - Ponderación TF-IDF (Frecuencia de Término Inversa de la Frecuencia del Documento)

 Naive Bayes Multinomial: número de apariciones de cada término. Complejidad $O(n \cdot m)$.

- Naive Bayes Multinomial: número de apariciones de cada término. Complejidad $O(n \cdot m)$.
- Naive Bayes de Bernoulli: aparición o no de cada término. Complejidad $O(n \cdot m)$.

- Naive Bayes Multinomial: número de apariciones de cada término. Complejidad $O(n \cdot m)$.
- Naive Bayes de Bernoulli: aparición o no de cada término. Complejidad $O(n \cdot m)$.
- **SVC:** permite elegir distintos kernel. Complejidad $O(n^2 \cdot m)$ a $O(n^3 \cdot m)$.

- Naive Bayes Multinomial: número de apariciones de cada término. Complejidad $O(n \cdot m)$.
- Naive Bayes de Bernoulli: aparición o no de cada término. Complejidad $O(n \cdot m)$.
- **SVC:** permite elegir distintos kernel. Complejidad $O(n^2 \cdot m)$ a $O(n^3 \cdot m)$.
- **LinearSVC:** enfoque lineal. Complejidad $O(n \cdot m)$.

Experimentación

- Naive Bayes Multinomial: número de apariciones de cada término. Complejidad $O(n \cdot m)$.
- Naive Bayes de Bernoulli: aparición o no de cada término. Complejidad $O(n \cdot m)$.
- SVC: permite elegir distintos kernel. Complejidad $O(n^2 \cdot m)$ a $O(n^3 \cdot m)$.
- **LinearSVC:** enfoque lineal. Complejidad $O(n \cdot m)$.
- SGDClassifier: enfoque lineal con aprendizaje estocástico por descenso de gradiente. Complejidad $O(n \cdot m)$.

Resultados de la clasificación (1)

- Holdout + validación cruzada estratificada.
- Métricas obtenidas en fase de prueba:

Clasificador	Accuracy	Precision	Recall	F1-Score	AUC
NB Multinomial (Count)	0.974114	0.974112	0.974173	0.974114	0.993202
NB Multinomial (TF-IDF)	0.983651	0.983641	0.983659	0.983649	0.998555
NB Bernoulli (Count)	0.945958	0.948644	0.946421	0.945910	0.994269
SVC (Count)	0.980018	0.980193	0.980160	0.980018	0.995960
SVC (TF-IDF)	0.992507	0.992503	0.992508	0.992506	0.999371
LinearSVC (Count)	0.987738	0.987770	0.987825	0.987738	0.997652
LinearSVC (TF-IDF)	0.988647	0.988655	0.988717	0.988646	0.999242
SGDClassifier (Count)	0.988193	0.988182	0.988243	0.988192	0.996938
SGDClassifier (TF-IDF)	0.989555	0.989540	0.989595	0.989554	0.999161

Resultados de la clasificación (2)

La vectorización TF-IDF obtiene mejores resultados.

Figure 10: Comparación de accuracy en test

Resultados de la clasificación (3)

Minería de Textos

Naive Bayes Bernoulli fue el algoritmo con peor desempeño.

Figure 11: Comparación de matrices de confusión para test

Experimentación

Técnicas de minería en bases de conocimiento

Mónica Calzado Granados

Resultados de la clasificación (4)

El área bajo la curva ROC es casi el total para todos los modelos:

Figure 12: Comparación de curvas ROC

Mónica Calzado Granados Universidad de Granada Técnicas de minería en bases de conocimiento 33 / 39

Otros enfogues: redes semánticas (1)

- Obtener synsets e hiperónimos de un término.
- Ejemplo: 'dollar' y 'euro' son hipónimos de 'monetary_unit'.

Label	Texto original	Texto tokenizado
Spam	fight risk cancer	['military_action', 'danger',
	URL slim guaran-	'malignant_tumor', 'address',
	teed lose lbs days	'change_state', 'pledge', 'lose',
	URL	'avoirdupois_unit', 'time_unit',
		'address']

Table 2: Ejemplo de correo antes y después de tokenización mediante synsets

Otros enfoques: redes semánticas (2)

 Resultados ligeramente peores a la tokenización normal.

Clasificador	Accuracy	Precision	Recall	F1-Score	AUC
NB Multinomial	0.990421	0.990341	0.990482	0.990408	0.999061
NB Multinomial Synsets	0.970727	0.970919	0.955656	0.962917	0.994958
SVC	0.993614	0.993604	0.993604	0.993604	0.998941
SVC Synsets	0.983947	0.982477	0.977371	0.979883	0.998355

Table 3: Métricas en fase de prueba (SpamAssassin)

Mónica Calzado Granados

- 1 Introducción
- Minería de Textos
- 4 Máquinas de Soporte Vectorial
- 6 Conclusiones

• Es viable la detección de spam mediante técnicas de minería.

- Es viable la detección de spam mediante técnicas de minería.
- Se han encontrado características y patrones distintivos.

- Es viable la detección de spam mediante técnicas de minería.
- Se han encontrado características y patrones distintivos.
- Dificultades:
 - Procesar texto
 - Grandes volúmenes de datos ⇒ sobrecarga computacional

- Es viable la detección de spam mediante técnicas de minería.
- Se han encontrado características y patrones distintivos.
- Dificultades:
 - Procesar texto
 - Grandes volúmenes de datos ⇒ sobrecarga computacional
- Resultados inmejorables: métricas por encima del 95%.

- Es viable la detección de spam mediante técnicas de minería.
- Se han encontrado características y patrones distintivos.
- Dificultades:
 - Procesar texto
 - Grandes volúmenes de datos ⇒ sobrecarga computacional
- Resultados inmejorables: métricas por encima del 95%.
- Otros enfoques no han conseguido mejorar los resultados.

Trabajos Futuros

Análisis de sentimientos.

Trabajos Futuros

Análisis de sentimientos.

Análisis de las URLs (detección de phishing).

Trabajos Futuros

Análisis de sentimientos.

Análisis de las URLs (detección de phishing).

• Uso de algoritmos más explicativos.

Gracias por su atención.

