Algèbre 1 pour les informaticiens

Année scolaire 2022-2023

Table des matières

1	Calo	cul Algébrique	2					
	1.1	Point sur les ensembles de nombres	2					
		1.1.1 Axiomatique	2					
	1.2	Opérations sur les fractions	3					
	1.3	Sommes	5					
		1.3.1 Quelques sommes importantes	5					
		1.3.2 Sommes téléscopiques	6					
	1.4	Puissances	7					
2	Ense	Ensembles et applications						
	2.1	Ensembles	ç					
	2.2	Applications	11					
3	Logi	Logique						
	3.1		14					
		3.1.1 Négation	14					
4	Non	Nombres complexes 10						
	4.1	Vision algébrique des nombres complexes	16					
	4.2	Vision géométrique des nombres complexes	18					
	4.3	Géométrie des nombres complexes	21					
		4.3.1 Equation d'une droite	21					
5	Arit	thmétique	23					
	5.1	Divisibilité	23					
	5.2	PGCD et PPCM	24					
	5.3	Algorithme d'Euclide	24					
	5.4	Nombres premiers	26					
	5.5	Congruences	28					
6	Poly	Polynômes 3						
	6.1		32					
	6.2	Propriétés	32					
		6.2.1 Degré d'un polynôme	33					

| Chapitre 1

Calcul Algébrique

1.1 Point sur les ensembles de nombres

Définition 1.1.1 (Ensemble des nombres entiers naturels).

$$\mathbb{N} = \{0; 1; ...\}$$

Définition 1.1.2 (Ensemble des nombres entiers relatifs).

$$\mathbb{Z} = \{...; -1; 0; 1; ...\}$$

Définition 1.1.3 (Ensemble des nombres rationnels).

$$\mathbb{Q} = \left\{ \frac{a}{b} \mid a \in \mathbb{Z}, b \in \mathbb{N}^* \right\}$$

Définition 1.1.4. Ensemble des nombres réels

$$\mathbb{R} =]-\infty;+\infty[$$

1.1.1 Axiomatique

Ici \mathbb{K} désigne soit \mathbb{N} , soit \mathbb{Z} , soit \mathbb{Q} , soit \mathbb{R}

Proposition 1.1.1 (Loi de composition +).

1. Associativité:

$$\forall (a, b, c) \in \mathbb{K}^3, \ a + (b + c) = (a + b) + c$$

2. Commutativité:

$$\forall (a,b) \in \mathbb{K}^2, \ a+b=b+a$$

3. Existence d'un élément neutre :

$$\forall a \in \mathbb{K}, \ a+0=a$$

4. Symétrie:

$$\forall (a, a') \in \mathbb{K}^2, \ a + a' = 0 \text{ avec } a' = -a$$

Remarque : Cette propriété ne s'applique pas dans N

Proposition 1.1.2 (Loi de composition ·).

1. Associativité:

$$\forall (a, b, c) \in \mathbb{K}^3, (a \cdot b) \cdot c = a \cdot (b \cdot c)$$

2. Commutativité:

$$\forall (a,b) \in \mathbb{K}^3, \ a \cdot b = b \cdot a$$

3. Existence d'un élément neutre : $\forall a \in \mathbb{K}$

$$a \cdot 1 = a$$
$$a \cdot 0 = 0$$

4. Distributivité : $\forall (a, b, c) \in \mathbb{K}^3$

$$a \cdot (b+c) = a \cdot b + a \cdot c$$

 $(a+b) \cdot c = a \cdot c + b \cdot c$

1.2 Opérations sur les fractions

Proposition 1.2.1 (Addition sur les fractions).

$$\forall (a, b, c, d) \in \mathbb{Z}^4, \ \frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$

Démonstration.

 $\forall (a, b, c, d, a', b', c', d') \in \mathbb{Z}^8$

D'après la proposition on a :

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$

et:

$$\frac{a'}{b'} + \frac{c'}{d'} = \frac{a'd' + b'c'}{b'd'}$$

Montrons que:

$$\frac{ad+bc}{bd} = \frac{a'd'+b'c'}{b'd'}$$

On suppose que:

$$\frac{a}{b} = \frac{a'}{b'} \iff a'b = ab'$$

$$\frac{c}{d} = \frac{c'}{d'} \iff c'd = cd'$$

On aurait donc:

$$\frac{ad+bc}{bd} = \frac{a'd'+b'c'}{b'd'}$$

$$\iff (ad+bc)b'd' = bd(a'd'+b'c')$$

$$\iff (ad+bc)b'd' - bd(a'd'+b'c') = 0$$

$$(ad + bc)b'd' - bd(a'd' + b'c') = (adb'd' + bcb'd') - (bda'd' + bdb'c')$$

$$= adb'd' + bcb'd' - bda'd' - bdb'c'$$

$$= adb'd' - a'd'bd + bcb'd' - b'c'bd$$

$$= ab'dd' - a'bdd' + cd'bb' - c'dbb'$$

$$= (ab' - a'b)dd' + (cd' - c'd)dd'$$

D'après l'hypothèse de départ :

$$ab' = a'b \iff ab' - a'b = 0$$

 $cd' = c'd \iff cd' - c'd = 0$

Donc:

$$(\underbrace{ab'-a'b}_0)dd' + (\underbrace{cd'-c'd}_0)dd' = 0$$

On obtient alors:

$$(ad + bc)b'd' - bd(a'd' + b'c') = 0$$

Proposition 1.2.2 (Multiplication sur les fractions).

$$\forall (a, b, c, d) \in \mathbb{Z}^4, \ \frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}$$

Démonstration.

 $\forall (a, b, c, d, a', b', c', d') \in \mathbb{Z}^8$

D'après la proposition on a :

$$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$$

et:

$$\frac{a'}{b'} \cdot \frac{c'}{d'} = \frac{a'c'}{b'd'}$$

Montrons que:

$$\frac{ac}{bd} = \frac{a'c'}{b'd'}$$

On suppose que:

$$\frac{a}{b} = \frac{a'}{b'} \iff a'b = ab'$$

$$\frac{c}{d} = \frac{c'}{d'} \iff c'd = cd'$$

On aurait donc:

$$\frac{ac}{bd} = \frac{a'c'}{b'd'}$$

$$\iff acb'd' = bda'c'$$

$$\iff acb'd' - bda'c' = 0$$

$$acb'd' - bda'c' = (ab')(cd') - (a'b)(c'd)$$

$$= (ab')(cd') - (a'b)(cd') + (a'b)(cd') - (a'b)(c'd)$$

$$= (ab' - a'b)(cd') + (cd' - c'd)(a'b)$$

D'après l'hypothèse de départ :

$$ab' = a'b \iff ab' - a'b = 0$$

 $cd' = c'd \iff cd' - c'd = 0$

Donc:

$$(\underbrace{ab' - a'b}_{0})(cd') + (\underbrace{cd' - c'd}_{0})(a'b) = 0$$

On obtient alors:

$$acb'd' - bda'c' = 0$$

1.3 Sommes

Définition 1.3.1 (Définition de la somme). $\forall m, n \in \mathbb{N}$ avec $m \leq n$ et $a_k \in \mathbb{R}, m \leq k \leq n$

$$\sum_{k=m}^{n} a_k = a_m + a_{m+1} + \dots + a_n$$

Remarque 1.3.1. L'indice de sommation est important car :

$$\sum_{k=m}^{n} a_l = \underbrace{a_l + a_l + \dots + a_l}_{n-m+1 \text{ termes}} = (n-m+1)a_l$$

Proposition 1.3.1 (Linéarité de la somme). $\forall m, n \in \mathbb{N}$ avec $m \leqslant n$ et $a_k, b_k \in \mathbb{R}, m \leqslant k \leqslant n$

$$\sum_{k=m}^{n} (a_k + b_k) = \sum_{k=m}^{n} a_k + \sum_{k=m}^{n} b_k$$

Démonstration. $\forall m, n \in \mathbb{N}$ avec $m \leqslant n$ et $a_k, b_k \in \mathbb{R}, \ m \leqslant k \leqslant n$

$$\sum_{k=m}^{n} (a_k + b_k) = (a_m + b_m) + (a_{m+1} + b_{m+1}) + \dots + (a_n + b_n)$$

$$= (a_m + a_{m+1} + \dots + a_n) + (b_m + b_{m+1} + \dots + b_n)$$

$$= \sum_{k=m}^{n} a_k + \sum_{k=m}^{n} b_k$$

Proposition 1.3.2 (Linéarité de la multiplication de la somme par une constante). $\forall m, n \in \mathbb{N}$ avec $m \leqslant n$ et $a_k, \lambda \in \mathbb{R}$, $m \leqslant k \leqslant n$

$$\sum_{k=m}^{n} (\lambda a_k) = \lambda \sum_{k=m}^{n} a_k$$

Démonstration. $\forall m, n \in \mathbb{N}$ avec $m \leq n$ et $a_k, \lambda \in \mathbb{R}$, $m \leq k \leq n$

$$\sum_{k=m}^{n} (\lambda a_k) = \lambda a_m + \lambda a_{m+1} + \dots + \lambda a_n$$
$$= \lambda (a_m + a_{m+1} + \dots + a_n)$$

1.3.1 Quelques sommes importantes

1.
$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2} \text{ avec } n \in \mathbb{N}$$

2.
$$\sum_{k=1}^{n} (a + (k-1)d) = \frac{1}{2}n(2a + (n-1)d)$$
 avec $n \in \mathbb{N}$ et $a, d \in \mathbb{R}$

3.
$$\sum_{k=0}^{n-1} ar^k = \sum_{k=1}^n ar^{k-1} = a \cdot \frac{1-r^n}{1-r}$$
 avec $n \in \mathbb{N}$ et $a, r \in \mathbb{R}$

Démonstration. 1 On pose $S = \sum_{k=1}^{n} k$ avec $n \in \mathbb{N}$

On a donc:

$$S = 1 + 2 + \dots + (n - 1) + n$$
$$n + (n - 1) + \dots + 2 + 1 = S$$

En additionnant les termes du "dessus" et du "dessous" on obtient :

$$2S = n \cdot (n+1)$$
$$S = \frac{n(n+1)}{2}$$

Démonstration. 2 On pose S = $\sum_{k=1}^{n} (a + (k-1) d)$ avec $n \in \mathbb{N}, \ a, d \in \mathbb{R}$

$$S = \sum_{k=1}^{n} (a + (k - 1) d) = \sum_{k=1}^{n} (a - d + dk)$$

$$= \sum_{k=1}^{n} (a - d) + \sum_{k=1}^{n} dk$$

$$= \sum_{k=1}^{n} (a - d) + d \sum_{k=1}^{n} k$$

$$= n(a - d) + d \frac{n(n+1)}{2}$$

$$= n \left((a - d) + \frac{d(n+1)}{2} \right)$$

$$= \frac{1}{2} n \left(2 (a - d) + d(n+1) \right)$$

$$= \frac{1}{2} n (2a - 2d + nd + d)$$

$$= \frac{1}{2} n (2a - d + nd)$$

$$= \frac{1}{2} n (2a + (n-1) d)$$

$$S = a + ar + \dots + ar^{n-1}$$
$$rS = ar + ar^{2} + \dots + ar^{n}$$

$$S - rS = (a + ar + \dots + ar^{n-1})$$
$$-(ar + \dots + ar^{n-1} + ar^n)$$

$$(1-r)S = a - ar^{n}$$
$$S = a \cdot \frac{1-r^{n}}{1-r}$$

1.3.2 Sommes téléscopiques

Proposition 1.3.3 (Somme téléscopique). $\forall m, n \in \mathbb{N}$ avec $m \leq n, \ a_k \in \mathbb{R}$ avec $m \leq k \leq n$

$$\sum_{k=m}^{n} (a_k - a_{k-1}) = a_n - a_{m-1}$$

Démonstration. $\forall m,n\in\mathbb{N}$ avec $m\leqslant n,\ a_k\in\mathbb{R}$ avec $m\leqslant k\leqslant n$

$$\sum_{k=m}^{n} (a_k + a_{k-1}) = (\underline{a_m} - a_{m-1})$$

$$+ (\underline{a_{m+1}} - \underline{a_m})$$

$$+ (a_{m+2} - \underline{a_{m+1}})$$

$$\vdots$$

$$+ (\underline{a_{n-1}} - \underline{a_{n-2}})$$

$$+ (a_n - \underline{a_{n-1}})$$

$$\sum_{k=m}^{n} (a_k + a_{k-1}) = a_n - a_{m-1}$$

1.4 Puissances

Définition 1.4.1 (Puissance d'un réel). $\forall a \in \mathbb{R}, \ \forall n \in \mathbb{N}$

$$a^n = \underbrace{a \times a \times \dots \times a}_{nfois}$$

Proposition 1.4.1 (Propriétés des puissances). $\forall a \in \mathbb{R}, \ \forall m, n \in \mathbb{N}$

1.
$$a^m \times a^n = a^{m+n}$$

2.
$$(a^m)^n = a^{mn}$$

3.
$$\frac{a^n}{a^m} = a^{n-m}, a \neq 0$$

4.
$$a^{-m} = \frac{1}{a^m}, a \neq 0$$

$$5 a^0 = 1$$

Démonstration. $1 \forall a \in \mathbb{R}, \ \forall n, m \in \mathbb{N}$

$$a^{m} \times a^{n} = \underbrace{(a \times a \times \dots \times a)}_{mfois} \times \underbrace{(a \times a \times \dots \times a)}_{nfois}$$
$$= \underbrace{a \times a \times \dots \times a}_{m+nfois}$$

Démonstration. 2 $\forall a \in \mathbb{R}, \ \forall n, m \in \mathbb{N}$

$$(a^m)^n = \underbrace{(a \times a \times \cdots \times a)}_{mfois} \times \underbrace{(a \times a \times \cdots \times a)}_{mfois} \times \cdots \times \underbrace{(a \times a \times \cdots \times a)}_{mfois} = \underbrace{a \times a \times \cdots \times a}_{m \times nfois}$$

Démonstration. $3 \forall a \in \mathbb{R}^*, \ \forall n, m \in \mathbb{N}$

$$\frac{a^n}{a^m} = \underbrace{\frac{a \times a \cdots \times a}{a \times a \cdots \times a}}_{mfois} = \underbrace{a \times a \times \cdots \times a}_{n-mfois}$$

Démonstration. 4 $\forall a \in \mathbb{R}^*, \ \forall m \in \mathbb{N}$

$$a^{-m} = a^{0-m}$$

$$= \frac{a^0}{a^m}$$

$$= \frac{1}{a^m}$$

Démonstration. $5 \forall a \in \mathbb{R}$

$$a^{1} = a$$
$$a^{0} = \frac{a}{a} = 1$$

Chapitre 2

Ensembles et applications

2.1 Ensembles

Définition 2.1.1 (Définition intuitive d'un ensemble). Un ensemble E est une collection d'objets appelés éléments. Si E contient un élément x, on dit que x appartient à E, noté $x \in E$

Définition 2.1.2 (Ensemble vide). L'ensemble vide noté \emptyset est l'ensemble ne contenant aucun élément.

Définition 2.1.3 (Inclusion).

Un ensemble F est inclus dans un ensemble E $\iff \forall x \in F, \ x \in E.$

On note : $F \subset E$ On dit aussi que F est un sous-ensemble, une partie de E

Définition 2.1.4 (Egalité d'ensembles).

Deux ensembles E et F sont égaux $\iff E \subset F$ et $F \subset E$

Définition 2.1.5 (Singleton). Un singleton est un ensemble de ne contenant qu'un seul élément (noté entre accolades).

Définition 2.1.6 (Réunion d'ensembles). Soient E et F deux ensembles.

$$E \cup F$$
 (lu E union F) = $\{ \forall x, x \in E \text{ ou } x \in F \}$

Définition 2.1.7 (Intersection d'ensembles). Soient E et F deux ensembles.

$$E \cap F$$
 (lu E inter F) = $\{ \forall x, x \in E \text{ et } x \in F \}$

Proposition 2.1.1 (Propriétés sur les ensembles). Soient A, B, C, E des ensembles

1. Associativité:

$$A \cup (B \cup C) = (A \cup B) \cup C$$
$$A \cap (B \cap C) = (A \cap B) \cap C$$

2. Elément neutre :

$$A \cup \emptyset = A$$
$$A \cap A = A$$

3. Intersection d'un ensemble et d'une partie :

$$A \subset E \iff A \cap E = E \cap A = A$$

4. Commutativité:

$$A \cup B = B \cup A$$
$$A \cap B = B \cap A$$

5. Distributivité:

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

Définition 2.1.8 (Complémentaire d'un ensemble).

$$E \backslash F = \{ \forall x, \ x \in E \text{ et } x \notin F \}$$

Remarque 2.1.1. Soient E, F des ensembles.

- $-(E\backslash F)\subset E$
- $-(E \backslash F) \cap F = \emptyset$
- $-\stackrel{\leftarrow}{E}\stackrel{\leftarrow}{F} \neq F \stackrel{\leftarrow}{E}$

Remarque 2.1.2. Soient E et A des ensembles.

$$A \subset E$$
$$A^C = E \backslash A$$
$$(A^C)^C = A$$

Proposition 2.1.2 (Lois de Morgan). Soient A et B des ensembles.

- 1. $(A \cup B)^C = A^C \cap B^C$
- $2. \ (A \cap B)^C = A^C \cup B^C$

Démonstration. 1

Soient A et B des ensembles et x un élément quelconque.

☐ Par définition du complémentaire :

$$x \in (A \cup B)^C \iff x \notin (A \cup B)$$

 $x \notin A$ car $A \subset (A \cup B)$ ce qui impliquerait que $x \in (A \cup B)$ et donc il y aurait une contradiction. On obtient une contradiction similaire si on suppose que $x \in B$. Ainsi on a $x \in A^C$ et $x \in B^C$, donc par la définition de l'intersection on a :

$$x \in (A^C \cap B^C)$$

d'où:

$$(A \cup B)^C \subset (A^C \cap B^C)$$

☐ Par définition de l'intersection :

$$x \in (A^C \cap B^C) \iff x \in A^C \text{ et } x \in B^C$$

 $\iff x \notin A \text{ et } x \notin B$
 $\iff x \in (A \cup B)^C$

d'où:

$$(A^C \cap B^C) \subset (A \cup B)^C$$

Ainsi:

$$(A \cup B)^C = A^C \cap B^C$$

Démonstration. 2

Soient A et B des ensembles et x un élément quelconque.

☐ Par définition du complémentaire :

$$x \in (A \cap B)^C \iff x \notin (A \cap B)$$

$$\iff x \notin A \text{ et } x \notin B$$

$$\iff x \in A^C \text{ et } x \in B^C$$

$$\iff x \in (A^C \cap B^C)$$

Sachant que:

$$(A^C \cap B^C) \subset (A^C \cup B^C)$$

On a:

$$x \in (A^C \cap B^C) \implies x \in (A^C \cup B^C)$$

d'où:

$$(A \cap B)^C \subset (A^C \cup B^C)$$

☐ Par définition de la réunion :

$$x \in (A^C \cup B^C) \iff x \in A^C \text{ ou } x \in B^C$$

$$\iff x \notin A \text{ ou } x \notin B$$

$$\iff x \notin (A \cap B)$$

$$\iff x \in (A \cap B)^C$$

Ainsi:

$$(A^C \cap B^C) \subset (A \cup B)^C$$

Donc:

$$(A \cap B)^C = A^C \cup B^C$$

Définition 2.1.9 (Produit cartésien). Soient E et F des ensembles

- $\begin{array}{ll} -- E \times F = \{(x,y), \ x \in E, \ y \in F\} \\ -- E \times E = E^2 \end{array}$
- $-E \times E \times E = E^3$

2.2 **Applications**

Définition 2.2.1 (Application). Soient E et F deux ensembles. $f: E \to F$ est une application si pour chaque $x \in E$, on associe un élément de F noté f(x)

Définition 2.2.2 (Injectivité). Soit $f: E \to F$, on dit que f est injective si pour chaque élément de F, il y a au plus un élément de E qui y est associé. Autrement dit :

f injective
$$\iff \{\forall (x_1, x_2) \in E^2, f(x_1) = f(x_2) \implies x_1 = x_2\}$$

Définition 2.2.3 (Surjectivité). Soit $f: E \to F$, on dit que f est surjective si pour chaque élément de F, il y a au moins un élément de E qui y est associé. Autrement dit :

f surjective
$$\iff \{ \forall y \in F, \exists x \in E, y = f(x) \}$$

Définition 2.2.4 (Bijectivité). Soit $f: E \to F$, on dit que f est bijective si elle est injective et surjective, c'est-à-dire que pour chaque élément de F, il y a exactement un élément de E qui y est associé. Autrement dit :

f bijective
$$\iff \{ \forall y \in F, \exists ! x \in E, y = f(x) \}$$

Définition 2.2.5 (Ensemble fini). Un ensemble E est un ensemble fini non-vide si et seulement si pour tout entier $n \ge 1$, il existe une application bijective de $\{1, 2, \dots, n\}$ dans E.

Définition 2.2.6 (Fonction réciproque). Soient E et F deux ensembles. Supposons que $f: E \to F$ est une application bijective. On peut définir l'application

$$f^{-1}: \begin{cases} F & \to E \\ y & \mapsto x \end{cases}$$

comme étant la réciproque de f.

Définition 2.2.7 (Composition). Soient f et g deux applications telles que : $f: E \to F$ et $g: F \to G$ on a l'application $g \circ f: E \to G$ qui est définie comme étant la composée de f et de g.

Définition 2.2.8 (Image directe et image réciproque). Soient $f: E \to F$ une application, A une partie de E et B une partie de F. Nous avons :

- $f(A) = \{f(x), x \in A\}$: image directe

Proposition 2.2.1 (Propriétés sur les images directes et réciproques). Soient $f: E \to F$ une application et A, B des parties de F.

- 1. $f^{-1}(F \setminus A) = E \setminus f^{-1}(A)$
- 2. $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$
- 3. $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$
- 4. $f(A \cup B) = f(A) \cup f(B)$
- 5. $f(A \cap B) \subset f(A) \cap f(B)$

Démonstration. $5: f(A \cap B) \subset f(A) \cap f(B)$

Soit $y \in f(A \cap B) = \{f(x), x \in A \cap B\}$, par définition : $\exists x \in A \cap B, y = f(x)$

$$x \in A \cap B \iff x \in A \land x \in B$$

 $x \in A \implies y = f(x) \subset f(A)$
 $x \in B \implies y = f(x) \subset f(B)$

d'où
$$y \in f(A) \cap f(B)$$

Remarque 2.2.1.

$$f(A \cap B) \neq f(A) \cap f(B)$$

Logique

Définition 3.0.1 (Assertion). Une **assertion** est une affirmation mathématique qui peut être vraie ou fausse.

Définition 3.0.2 (Prédicat). Un prédicat est une "assertion" dépendant d'une ou plusieurs variables.

Exemple 3.0.1.

- "Tous les entiers sont des nombres rationnels" est une assertion.
- "L'entier n est pair" est un prédicat.
- "Le réel *x* est le carré d'un nombre réel" est un prédicat.

3.1 Opérations sur les prédicats

P	Q	P et Q	P ou Q	non(P)	$P \implies Q$
V	V	V	V	F	V
V	F	F	V	F	F
F	V	F	V	V	V
F	F	F	F	V	V

Table 3.1 – Table de vérité des opérations logiques de base

3.1.1 Négation

- 1. $P \implies Q$ est équivalent à non(P) ou Q
- 2. non(P ou Q) est équivalent à non(P) et non(Q)
- 3. non(P et Q) est équivalent à non(P) ou non(Q)

Remarque 3.1.1.

1. Pour contredire "tous les éléments de E ont une propriété P", il suffit de trouver un contre-exemple

$$non(\forall x \in E, P(x)) \iff \exists x \in E, non(P(x))$$

2. Pour contredire "il existe un élément de E vérifiant une propriété P", il faut montrer que tous les éléments de E ne vérifient pas la propriété P.

$$non(\exists x \in E, P(x)) \iff \forall x \in E, non(P(x))$$

3. Une affirmation de type:

$$\exists ! x \in E, P(x) \iff \left\{ \begin{array}{c} \exists x \in E, P(x) \\ \text{Si } P(x) \text{ et } P(y) \text{ sont vrais, alors } x = y \end{array} \right.$$

Remarque 3.1.2.

$$\{(a_n)\}_{n\in\mathbb{N}}\subset\mathbb{R}, \lim_{n\to+\infty}a_n=\alpha\in\mathbb{R}$$
 A. Cauchy :

$$\forall \varepsilon > 0, \exists N, |a_n - \alpha| < \varepsilon, \forall n \geqslant N$$

Chapitre 4

Nombres complexes

$$(\mathbb{N},+,\times)\subset (\mathbb{Z},+,\times)\subset (\mathbb{Q},+,\times)\subset (\mathbb{R},+,\times)\subset (\mathbb{C},+,\times)$$

L'ensemble des nombres complexes est adapté à la résolution des équations algébriques.

4.1 Vision algébrique des nombres complexes

Définition 4.1.1 (Forme algébrique des nombres complexes).

$$\mathbb{C} = \{a + ib \mid (a, b) \in \mathbb{R}^2\}, \text{ avec } i = \sqrt{-1}$$

Proposition 4.1.1 (Opérations sur les nombres complexes).

1. Somme : Soient $z=a+ib\in\mathbb{C}, \omega=c+id\in\mathbb{C}, (a,b,c,d)\in\mathbb{R}^4$

$$z + \omega = a + c + i(b+d)$$

- (a) Associativité: $(z_1 + z_2) + z_3 = z_1 + (z_2 + z_3), (z_1, z_2, z_3) \in \mathbb{C}^3$
- (b) Elément neutre : $0 = 0 + i0 \implies z + 0 = 0 + z = z, z \in \mathbb{C}$
- (c) Symétrique : $\forall z \in \mathbb{C}, \exists z', z + z' = z' + z = 0, z' = -z$

$$z = a + ib \implies -z = -a + i(-b)$$

- (d) Commutativité : $z + \omega = \omega + z$
- 2. Produit : Soient $z = a + ib \in \mathbb{C}$, $\omega = c + id \in \mathbb{C}$, $(a, b, c, d) \in \mathbb{R}^4$

$$z \cdot \omega = (ac - bd) + i(ad + bc)$$

(a) Associativité:

$$(z_1 \cdot z_2) \cdot z_3 = z_1 \cdot (z_2 \cdot z_3), \forall (z_1, z_2, z_3) \in \mathbb{C}^3$$

(b) Elément neutre:

$$\begin{split} 1 &= 1 + i0 \implies z \times 1 = 1 \times z = z \\ \forall z &\in \mathbb{C} \backslash \{0\}, \exists z' \in \mathbb{C}, z \cdot z' = z' \cdot z = 1 \end{split}$$

(c) Commutativité:

$$z \cdot \omega = \omega \cdot z, \forall (z, \omega) \in \mathbb{C}^2$$

(d) Distributivité:

$$(z_1 + z_2) \cdot \omega = z_1 \cdot \omega + z_2 \cdot \omega$$
$$z \cdot (\omega_1 + \omega_2) = z \cdot \omega_1 + z \cdot \omega_2$$
$$\forall (z, z_1, z_2, \omega, \omega_1, \omega_1) \in \mathbb{C}^6$$

Démonstration. Produit

$$z \cdot \omega = (a+ib) \cdot (c+id)$$

$$"=" a \cdot (c+id) + ib \cdot (c+id)$$

$$"=" a \cdot c + a \cdot id + ib \cdot c + ib \cdot id$$

$$"=" ac + i(ad) + i(bc) + i^2bd$$

$$"=" ac - bd + i(ad + bc)$$

Remarque 4.1.1. $(\mathbb{C}, +, \times)$ est un corps commutatif

Définition 4.1.2 (Conjugué d'un nombre complexe). Soit z=a+ib un nombre complexe, le nombre $\overline{z}=a-ib$ est dit le conjugué de z.

Proposition 4.1.2. Soient $z=a+ib, z'=a-ib, (a,b)\in \mathbb{R}^2, z\in \mathbb{C}$

$$z \cdot z' = a^2 + b^2$$

Démonstration.

$$z \cdot z' = (a+ib)(a-ib)$$
$$= a^2 - iab + iab - i^2b^2$$
$$= a^2 + b^2$$

Définition 4.1.3 (Module d'un nombre complexe). Soit z=a+ib un nombre complexe, on définit son module comme étant :

$$|z| = \sqrt{a^2 + b^2}$$

Proposition 4.1.3 (Propriétés des modules). Soient z=a+ib et z=a'+ib' des nombres complexes, on a les propriétés suivantes sur les modules :

$$\begin{aligned} & - |z \cdot z'| = |z| \cdot |z'| \\ & - \left| \frac{z}{z'} \right| = \frac{|z|}{|z'|} \\ & - |z + z'| \le |z| + |z'| \\ & - |z|^2 = z \cdot \overline{z} = a^2 + b^2 \\ & - |z| \ge 0 \\ & - |z| = 0 \iff z = 0 \\ & - |z| = |\overline{z}| = |-z| = |-\overline{z}| \end{aligned}$$

Définition 4.1.4 (Partie réelle et partie imaginaire). Soit $z=a+ib\in\mathbb{C}, (a,b)\in\mathbb{R}^2$

$$\Re(z)=Re(z)=a$$
 (Partie réelle) $\Im(z)=Im(z)=b$ (Partie imaginaire)

Proposition 4.1.4.

$$-z + \overline{z} = (a+ib) + (a-ib) = 2a \implies \Re(z) = \frac{z+\overline{z}}{2}$$
$$-z - \overline{z} = (a+ib) - (a-ib) = 2ib \implies \Im(z) = \frac{z-\overline{z}}{2i}$$

4.2 Vision géométrique des nombres complexes

Définition 4.2.1 (Argument d'un nombre complexe). Soit z un nombre complexe, l'argument de z, noté $\arg{(z)}$ représente l'angle entre la droite des réels et celle issue de l'origine et passant par z.

Proposition 4.2.1 (Propriétés des arguments). Soient $z,z_1,z_2\in\mathbb{C}^3,n\in\mathbb{N}$

- $--\operatorname{arg}(z_1 \cdot z_2) = \operatorname{arg} z_1 + \operatorname{arg} z_2$
- $--\arg z^n=n\arg z$
- $-\arg\frac{z_1}{z_2} = \arg z_1 \arg z_2$
- arg $\frac{1}{z} = -$ arg z

Figure 4.1 – Vision géométrique des nombres complexes (Base du code par : [2])

Définition 4.2.2 (Forme trigonométrique d'un nombre complexe). Soit z un nombre complexe, on peut l'écrire sous sa forme trigonométrique ainsi :

$$z = r(\cos(\theta) + i\sin(\theta))$$

Avec:

$$-r = |z|$$

$$-\theta = \arg(z)$$

Proposition 4.2.2. Soient $z_1 = r_1(\cos(\theta_1) + i\sin(\theta_1))$ et $z_2 = r_2(\cos(\theta_2) + i\sin(\theta_2))$, deux nombres complexes. Nous avons la propriété suivante :

$$z_1 z_2 = r_1 r_2 (\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2))$$

Démonstration.

$$\begin{split} z_1 z_2 &= (r_1(\cos{(\theta_1)} + i\sin{(\theta_1)})(r_2(\cos{(\theta_2)} + i\sin{(\theta_2)})) \\ &= (r_1\cos{\theta_1} + ir_1\sin{\theta_1})(r_2\cos{\theta_2} + ir_2\sin{\theta_2}) \\ &= (r_1\cos{\theta_1} \cdot r_2\cos{\theta_2}) + (r_1\cos{\theta_1} \cdot ir_2\sin{\theta_2}) + (ir_1\sin{\theta_1} \cdot r_2\cos{\theta_2}) + (ir_1\cos{\theta_1} + ir_2\sin{\theta_2}) \\ &= (r_1\cos{\theta_1})(r_2\cos{\theta_2}) - (r_1\sin{\theta_1})(r_2\sin{\theta_2}) + i((r_1\cos{\theta_1})(r_2\sin{\theta_2}) + (r_1\sin{\theta_1})(r_2\cos{\theta_2})) \\ &= r_1r_2((\cos{\theta_1}\cos{\theta_2} - \sin{\theta_1}\sin{\theta_2}) + i(\sin{\theta_1}\cos{\theta_2} + \cos{\theta_1}\sin{\theta_2})) \\ &= r_1r_2(\cos{(\theta_1 + \theta_2)} + i\sin{(\theta_1 + \theta_2)}) \end{split}$$

Proposition 4.2.3 (Formule de Moivre).

$$(\cos \theta + i \sin \theta)^n = \cos(n\theta) + i \sin(n\theta)$$

Définition 4.2.3 (Forme exponentielle d'un nombre complexe). On peut écrire un nombre complexe sous une forme exponentielle :

$$z = r(\cos\theta + i\sin\theta) = re^{i\theta}$$

Proposition 4.2.4 (Identité d'Euler).

$$e^{i\pi} = -1$$

Proposition 4.2.5 (Formules d'Euler).

$$\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2} \qquad \qquad \sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$$

Démonstration.

$$e^{i\theta} + e^{-i\theta} = (\cos\theta + i\sin\theta) + (\cos\theta - i\sin\theta)$$

$$= 2\cos\theta$$

$$\frac{e^{i\theta} + e^{-i\theta}}{2} = \cos\theta$$

$$e^{i\theta} - e^{-i\theta} = (\cos\theta + i\sin\theta) - (\cos\theta - i\sin\theta)$$

$$= 2i\sin\theta$$

$$\frac{e^{i\theta} - e^{-i\theta}}{2i} = \sin\theta$$

Remarque 4.2.1 (Passer de la forme algébrique à la forme trigonométrique).

Soit z = a + ib, $(a, b) \in \mathbb{R}^2$ un nombre complexe sous sa forme algébrique, on peut passer sous la forme trigonométrique ainsi :

$$\cos \theta = \frac{a}{|z|} \qquad \qquad \sin \theta = \frac{b}{|z|}$$

Exemple 4.2.1. z = 1 + i

On a:
$$|z| = \sqrt{1^2 + 1^2}$$

On a donc:

$$\cos \theta = \frac{1}{\sqrt{2}}$$

$$= \frac{\sqrt{2}}{2}$$

$$= \frac{\sqrt{2}}{2}$$

$$= \frac{\sqrt{2}}{2}$$

On en déduit donc que $\theta = \frac{\pi}{4}$.

Ainsi $z = \sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right)$

Définition 4.2.4 (Racine n-ième d'un nombre complexe). Soit $z \in \mathbb{C}$. On appelle racine n-ième du nombre complexe z tout nombre complexe $\omega \in \mathbb{C}$ vérifiant :

$$\omega^n = z$$

Proposition 4.2.6. Un complexe non nul $z=\rho e^{i\theta}$ ($\rho=|z|$) admet n racines n-ièmes données par :

$$\omega = \rho^{\frac{1}{n}} e^{i\left(\frac{\theta}{n} + \frac{2k\pi}{n}\right)}$$

Démonstration. On cherche à résoudre

$$\omega^n = z, (n \in \mathbb{N})$$

Posons

$$\begin{cases} \omega = |\omega|e^{i\theta_1} \\ z = |z|e^{i\theta_2} \end{cases} \iff \begin{cases} \omega^n = |\omega^n|e^{in\theta_1} \\ z = |z|e^{i\theta_2} \end{cases}$$

Par identification:

$$\begin{cases} |\omega|^n = |z| \\ n\theta_1 = \theta_2 + 2k\pi, \ (k \in \mathbb{Z}) \end{cases} \iff \begin{cases} |\omega| = |z|^{\frac{1}{n}} \\ \theta_1 = \frac{\theta_2}{n} + \frac{2k\pi}{n}, \ (k \in \mathbb{Z}) \end{cases}$$

En posant:

$$\begin{cases} \rho = |z| \\ \theta_2 = \theta \end{cases}$$

on obtient:

$$\omega = \rho^{\frac{1}{n}} e^{i\left(\frac{\theta}{n} + \frac{2k\pi}{n}\right)}, \ (k \in \mathbb{Z})$$

Définition 4.2.5 (Racine n-ième de l'unité). On appelle racine n-ième de l'unité, une racine n-ième de 1, on notera \mathbb{U}_n l'ensemble des racines n-ièmes de l'unité :

$$\mathbb{U}_n = \{ z \in \mathbb{C} | z^n = 1 \}$$

Proposition 4.2.7. Les racines n-ièmes de l'unité sont de la forme :

$$\omega_k=e^{\frac{2ik\pi}{n}}, k\in [\![0,n-1]\!]$$

Démonstration. On cherche à résoudre

$$z^n = 1, n \in \mathbb{N}$$

Posons $z=|z|e^{i\theta}$. On obtient donc en elevant à la puissance n

$$z^n = |z^n|e^{in\theta} = 1$$

 $\iff |z|^n e^{in\theta} = e^{i0}$

Par identification

$$\begin{cases} |z| = 1 \\ n\theta = 0 + 2k\pi, \ (k \in \mathbb{Z}) \end{cases}$$

On obtient alors

$$\theta = \frac{2k\pi}{n}, \ (k \in \mathbb{Z})$$

Finalement on obtient bien

$$z = e^{i\frac{2k\pi}{n}}, (k \in \mathbb{Z})$$

que l'on peut également écrire

$$z = e^{i\frac{2k\pi}{n}}, (k \in [0, n-1])$$

car il y a un cycle.

Géométrie des nombres complexes 4.3

- $z\mapsto z+a, (a\in\mathbb{C})$: translation de vecteur \vec{u} d'affixe a
- $z\mapsto az, (a\in\mathbb{R}^*)$: homothétie de rapport a
- $z \mapsto e^{i\theta}z, (\theta \in \mathbb{R})$: rotation d'angle θ et de centre 0
- $z\mapsto \overline{z}$: réflexion par rapport à l'axe des réels
- $z \mapsto a + e^{i\theta}(z a)$: rotation d'angle θ de centre a
- $z\mapsto e^{2i\theta}\cdot\overline{z}$: réflexion par rapport à la droite formant un angle θ avec l'axe des réels.

4.3.1 Equation d'une droite

- L'axe des réels : $\overline{z} = z$
- Un axe formant un angle θ avec l'axe des réels : $\overline{e^{-i\theta}z} = e^{-i\theta}z$
- L'asymptote verticale de partie réelle $a: z + \overline{z} = 2a$

Exemple 4.3.1.
$$z\mapsto \frac{1}{z}$$

On pose : $\omega = \frac{1}{z}$

$$z + \overline{z} = 2 \implies \frac{1}{\omega} + \frac{\overline{1}}{\overline{\omega}} = 2 \implies \frac{1}{\omega} + \frac{1}{\overline{\omega}} = 2$$

On pose : $\omega = \frac{z}{\overline{z}}$ On a donc : $z = \frac{1}{\omega}$ $z + \overline{z} = 2 \implies \frac{1}{\omega} + \frac{\overline{1}}{\overline{\omega}} = 2 \implies \frac{1}{\omega} + \frac{1}{\overline{\omega}} = 2$ $\omega \overline{\omega} \left(\frac{1}{\omega} + \frac{1}{\overline{\omega}} \right) = 2\omega \overline{\omega}$ On a donc : $\overline{\omega} + \omega = 2\omega \overline{\omega} \implies 2\omega \overline{\omega} - \omega - \overline{\omega} = 0$ C'est à dire : $\omega \overline{\omega} - \frac{1}{2}\omega - \frac{1}{2}\overline{\omega} = \left(\omega - \frac{1}{2}\right)\left(\overline{\omega} - \frac{1}{2}\right) - \frac{1}{4} = 0$ Ce qui équivaut à $\left|\omega - \frac{1}{2}\right|^2 = \left(\frac{1}{2}\right)^2 \iff \left|\omega - \frac{1}{2}\right| = \left(\frac{1}{2}\right)$

Exemple 4.3.2. $P=\{z\in\mathbb{C},\Im(z)>0\}$: le demi-plan de Poincaré

Déterminer l'image de P par la transformation $z\mapsto \frac{z-i}{z+i}$

1. $\omega = \frac{z-i}{z+i}$, exprimer z en fonction de ω .

$$\omega = \frac{z - i}{z + i}$$

$$\iff \omega(z + i) = z - i$$

$$\iff \omega(z+i) + i = z$$

$$\iff \omega z + \omega i + i = z$$

$$\iff \omega z - z = -\omega i - i$$

$$\iff z(\omega+1) = -\omega i - i$$

$$\Longleftrightarrow z = \frac{-\omega i - i}{\omega + 1}$$

$$\iff z = \frac{-i(\omega + 1)}{\omega + 1}$$

 $\begin{array}{l} \text{2. } z \in P \iff \Im(z) > 0 \\ z = x + iy, \, \overline{z} = x - iy, \, \text{on a} : z - \overline{z} = 2iy \\ \text{Si on a} \, \Im(z) = y > 0 \iff \frac{1}{2i}(z - \overline{z}) > 0 \\ \text{A la fin on obtient} : \omega \overline{\omega} < 1 \implies |\omega| < 1 \end{array}$

Chapitre 5

Arithmétique

5.1 Divisibilité

Définition 5.1.1. Soient $a \in \mathbb{Z}, b \in \mathbb{Z}^*$. On dit que :

- a est un multiple de $b \iff \exists q \in \mathbb{Z}, a = bq$
- b est un diviseur de $a \iff \exists q \in \mathbb{Z}, a = bq$
- $b \text{ divise } a \iff b \mid a$

Théorème 5.1.1 (Division euclidienne). Soit $(a,b) \in \mathbb{Z} \times \mathbb{Z}^*$. Alors

$$\exists ! (q, r) \in \mathbb{Z}^2, a = bq + r, \ (0 \le r < |b|)$$

Vocabulaire:

- a est appelé le dividende
- *b* est appelé le *diviseur*
- q est appelé le *quotient*
- *r* est appelé le *reste*

Démonstration. [1] Nous devons montrer deux choses, *l'existence* et *l'unicité* du couple (q, r)

1. Existence

Montrons que (q, r) existe.

Supposons $a \in \mathbb{N}$ et considérons $M = \{n \in \mathbb{N} \mid nb \leqslant a\}$ l'ensemble des multiples de b inférieurs à a. M est une partie de \mathbb{N} . Nous avons deux propriétés :

- (a) M est non vide car 0 est un multiple de b inférieur à a
- (b) M est majoré par a d'après sa définition.

Ainsi, M admet un plus grand élément que l'on notera q, vérifiant :

- (a) $qb \leqslant a \operatorname{car} q \in M$
- (b) (q+1)b > a car q+1 > q sachant que q est le plus grand élément de M, $q+1 \notin M$.

Posons $r = a - bq \iff a = bq + r$. Sachant que $a \geqslant bq$, $r \geqslant 0$.

On a r < b car b = (q+1)b - qb > a - bq = r.

Supposons que $a \in \mathbb{Z}$. Si a est positif, on se ramène au cas précédent.

Dans le cas où a < 0, $-a \geqslant 0$, ainsi, $\exists (q', r') \in \mathbb{Z}^2$ tel que

$$-a = bq' + r' \text{ avec } 0 \leqslant r' < |b|$$

$$\iff a = b(-q') - r'$$

Si r'=0, on pose q=-q' et r=0 et on obtient le couple recherché.

Si $r' \neq 0$, $r' \in [1, b-1]$ et a = b(-q'-1) + (b-r'), on pose q = -q'-1 et r = b-r' et on obtient le couple recherché.

2. Unicité

Pour cette partie, il suffit de supposer deux couples $(q,r) \in \mathbb{Z}^2$ et $(q',r') \in \mathbb{Z}^2$ et de montrer que q=q' et r=r'. Commençons par $a=bq+r,\ (0\leqslant r<|b|)$ et $a=bq'+r',\ (0\leqslant r'<|b|)$. Comme $0\leqslant r< b$ et $0\leqslant r'< b$, on a :

$$b|q' - q| = |r' - r| < b$$

ce qui n'est possible que si |q'-q|=0 ce qui implique que q=q'. Ceci entraı̂ne donc r=r' et donc on a montré que (q,r)=(q',r')

5.2 PGCD et PPCM

Définition 5.2.1 (PPCM et PGCD). Soient deux entiers non nuls a, b.

- 1. L'ensemble des diviseurs de \mathbb{N}^* communs à a et b admet un plus grand élément noté $a \wedge b$. C'est le **plus grand commun diviseur** (PGCD) des entiers a et b.
- 2. L'ensemble des entiers de \mathbb{N}^* multiples communs de a et b admet un plus petit élément noté : $a \vee b$. C'est le **plus petit commun multiple** (PPCM) des entiers a et b.

Théorème 5.2.1 (PPCM). Soit $(a,b) \in \mathbb{Z}^* \times \mathbb{Z}^*$ et $m \in \mathbb{Z}, \ a \mid m$ et $b \mid m$. Alors $\operatorname{ppcm}(a,b) \mid m$

Démonstration. Posons $\ell = ppcm(a, b)$

$$\exists ! (q,r) \in \mathbb{Z}^2, \ m=q\ell+r, \ 0 \leqslant r < \ell$$

$$\iff r=m-q\ell, \ m \ \text{et ℓ sont multiples de a et }$$

$$r \ \text{est aussi un multiple de a et b}$$

Par la minimalité de ℓ , $r = 0 \implies m = q\ell$

Théorème 5.2.2 (PGCD). Soit $(a,b) \in \mathbb{Z}^* \times \mathbb{Z}^*$ et $d \in \mathbb{Z}, \ d \mid a$ et $d \mid b$. Alors $d \mid \operatorname{pgcd}(a,b)$

Démonstration. Posons $m = \operatorname{pgcd}(a, b)$. Il suffit de montrer que

$$pgcd(m, d) = m$$

Soit $\ell=\mathrm{ppcm}(m,d)$, $\ell\geqslant m$, a et b sont multiples de m et d D'après le théorème précédent :

$$\ell \mid a \text{ et } \ell \mid b, \ l \leqslant m$$

Sachant qu'on a $\ell \geqslant m$ et $\ell \leqslant m$, on en conclut que $\ell = m$

Théorème 5.2.3. Soit $(a,b) \in (\mathbb{N}^*)^2 \implies ab = \operatorname{pgcd}(a,b)\operatorname{ppcm}(a,b)$

Définition 5.2.2 (Nombres premiers entre eux). Soit $(a,b) \in (\mathbb{Z}^*)^2$

a et b premiers entre eux \iff pgcd(a,b)=1

5.3 Algorithme d'Euclide

Proposition 5.3.1 (Algorithme d'Euclide). Soient $a \in \mathbb{Z}^*$, $b \in \mathbb{Z}^*$ tel que

$$|a| > |b| \implies \exists ! (q, r) \in \mathbb{Z}^2, a = bq + r, 0 \leqslant r < |b|$$

 $\operatorname{pgcd}(a, b) = \operatorname{pgcd}(b, a) = \operatorname{pgcd}(b, a - qb) = \operatorname{pgcd}(b, r)$

$$pgcd(a, b) = pgcd(b, r)$$

Si $r=0 \implies a=qb, \ \operatorname{pgcd}(a,b)=b$ Supposons que r=0:

$$\exists ! (q_1, r_1), \ b = q_1 r + r_1, \ 0 \leqslant r_1 < r$$

Si
$$r_1 \neq 0 \implies \exists ! (q_2, r_2), \; r = q_2 r_1 + r_2, \; 0 \leqslant r_2 < r_1$$
 .

:

. Si
$$r_{n-2} \neq 0 \implies \exists ! (q_{n-1}, r_{n-1}), \; r_{n-3} = q_{n-1} r_{n-2} + r_{n-1}, \; 0 \leqslant r_{n-1} < r_{n-2}$$

$$\exists q_n, \ r_{n-2} = q_n r_{n-1}$$

$$\begin{aligned} \operatorname{pgcd}(a,b) &= \operatorname{pgcd}(b,r) \\ &= \operatorname{pgcd}(r,r_1) \\ &= \operatorname{pgcd}(r_1,r_2) \\ &\vdots \\ &= \operatorname{pgcd}(r_{n-2},r_{n-1}) \\ &= \operatorname{pgcd}(q_n r_{n-1},r_{n-1}) = r_{n-1} \end{aligned}$$

Exemple 5.3.1.

1. pgcd(72, 58)

$$72 = 58 \times 1 + 14$$

$$58 = 14 \times 4 + 2$$

$$14 = 2 \times 7 + 0$$

On en conclut que pgcd(72, 58) = 2

2. pgcd(625, 216)

$$625 = 216 \times 2 + 193$$

$$216 = 193 \times 1 + 23$$

$$193 = 23 \times 8 + 9$$

$$23 = 9 \times 2 + 5$$

$$9 = 5 \times 1 + 4$$

$$5 = 4 \times 1 + 1$$

On en conclut que pgcd(625, 216) = 1

Théorème 5.3.1 (Identité de Bézout). Soient $(a, b) \in \mathbb{Z}^2$

$$\exists (u, v) \in \mathbb{Z}^2 \text{ tel que } au + bv = \operatorname{pgcd}(\mathbf{a}, \mathbf{b})$$

Corollaire 5.3.1. Soient $(a, b) \in (\mathbb{Z}^*)^2$, $d \in \mathbb{Z}$

$$\exists (u,v) \in \mathbb{Z}^2 \text{ tel que } au + bv = d \iff \operatorname{pgcd}(a,b) \mid d$$

Trouver les $(x,y) \in \mathbb{Z}$ tels que ax + by = d et $\operatorname{pgcd}(a,b) \mid d$ **Théorème de Bézout** : $\exists (x_0,y_0) \in \mathbb{Z}^2$ tel que $ax_0 + by_0 = d$

$$\begin{cases} ax + by = d \\ ax_0 + by_0 = d \end{cases} \implies a(x - x_0) + b(y - y_0) = 0 \iff a(x - x_0) = b(y_0 - y) \text{ multiple } k \text{ ppcm}(a, b)$$

$$\exists k \in \mathbb{Z} \text{ tq } a(x - x_0) = b(y - y_0) = \operatorname{ppcm}(a, b)k$$

$$\begin{cases} x = x_0 + \frac{\operatorname{ppcm}(a, b)k}{a} \\ y = y_0 - \frac{\operatorname{ppcm}(a, b)k}{b} \end{cases}$$

d'où

$$\{(x,y) \in \mathbb{Z}^2 \mid ax + by = d\} = (x_0, y_0) + \mathbb{Z}\left(\frac{\operatorname{ppcm}(a, b)}{a}, \frac{\operatorname{ppcm}(a, b)}{b}\right)$$

Exemple 5.3.2. a = 75 et b = 42

$$75 = 42 \cdot 1 + 33$$

$$42 = 33 \cdot 1 + 9$$

$$33 = 9 \cdot 3 + 6$$

$$9 = 6 \cdot 1 + 3$$

$$6 = 3 \cdot 2 + 0$$

On remonte dans l'algorithme d'Euclide

$$3 = 9 - 6$$

$$3 = (42 - 33) - (33 - 9 \cdot 3)$$

$$3 = (42 - (75 - 42)) - ((75 - 42) - (42 - 33)3)$$

$$3 = (42 - (75 - 42)) - ((75 - 42) - (42 - (75 - 42))3)$$

$$3 = 75 \cdot (-5) + 42 \cdot 9$$

Lemme 5.3.1 (Lemme de Gauss). $(a,b) \in \mathbb{Z}^*$ tels que a et b sont premiers entre eux (leur pgcd est 1)

$$c \in \mathbb{Z} \ \mathrm{tq} \ a \mid bc \implies a \mid c$$

Démonstration.

$$\operatorname{pgcd}(a,b) = 1 \implies \exists (u,v) \in \mathbb{Z}^2 \operatorname{tq} au + bv = 1$$
$$\implies a(cu) + b(cv) = c$$
$$\implies \operatorname{pgcd}(a,bc) \mid c$$

5.4 Nombres premiers

Définition 5.4.1 (Nombres premiers). $p \in \mathbb{N}^*$ est dit premier si

$$\exists d \in \mathbb{N}^* \text{ tq } d \mid p \implies d \in \{1, p\}$$

Exemple 5.4.1. 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37 sont des nombres premiers

Remarque 5.4.1. $F_n = 2^{2^n} + 1$ est une suite composée exclusivement de nombres premiers.

Théorème 5.4.1 (Théorème d'Euclide). Il existe une infinité de nombres premiers.

Démonstration. Supposons qu'il existe k nombres premiers p_1, p_2, \cdots, p_k

$$N \colon = p_1 p_2 \cdots p_k + 1 \implies p_i \nmid N$$

Lemme 5.4.1. Soit $n \in \mathbb{N}$ tq $n \geqslant 2$.

Soit p le plus petit diviseur de n tq $p > 2 \implies p$ premier

Démonstration. Si p n'était pas premier : $1 < \exists d < p \text{ tq } d \mid p$

 $d \mid p$ et $p \mid n \implies d \mid n$ ce qui reviendrait à contredire la minimialité de p

Théorème 5.4.2 (Décomposition en facteurs premiers). Soit $n \in \mathbb{N}^*$ tq $n \geqslant 2$. Il existe une unique écriture de n sous la forme de:

$$p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$$

- 1. p_i premiers
- 2. $\alpha_i \in \mathbb{N}^*$
- 3. $p_1 < p_2 < \cdots < p_k$

Démonstration. Existence : On procède par récurrence forte en utilisant le Lemme de Gauss

Unicité : On utilise le Lemme de Gauss

Proposition 5.4.1 (PGCD à partir de la décomposition en facteurs premiers). Soient $(a,b) \in \mathbb{Z}^2$, pour déterminer leur PGCD, on peut se servir de leurs décomposition en facteurs premiers.

$$a = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k} (k \in \mathbb{N})$$

$$b = n_1^{\beta_1} n_2^{\beta_2} \cdots p_i^{\beta_i} (i \in \mathbb{N})$$

 $\operatorname{pgcd}(a,b)$ correspond aux produits des facteurs premiers communs.

Remarque 5.4.2 (Décomposer en facteurs premiers). Pour décomposer facilement un nombre en facteurs premiers.

- 1. On divise par le diviseur premier le plus faible tel que le reste soit nul
- 2. On refait de même avec le quotient, il faut que le diviseur premier soit supérieur ou égal au précédent.
- 3. On continue jusqu'à finir avec un quotient premier

Exemple 5.4.2. Décomposons 423 en facteurs premiers.

$$\frac{423}{3} = 141$$

$$\frac{141}{3} = 47$$

$$\frac{141}{3} = 47$$

Sachant que 47 est premier, on obtient la décomposition

$$423 = 3 \times 3 \times 47 = 3^2 \times 47$$

Exemple 5.4.3. Calculons le PGCD de 624 et 408.

On a:

$$624 = 2^4 \times 3 \times 13$$

$$408 = 2^3 \times 3 \times 17$$

On remarque que 2^3 et 3 sont communs aux deux décompositions.

$$pgcd(624, 408) = 2^3 \times 3 = 24$$

Exemple 5.4.4. Calculons le PPCM de 12 et 16 On décompose en facteurs premiers.

$$12 = 2 \times 2 \times 3$$

$$16 = 2 \times 2 \times 2 \times 2$$

On remarque que la décomposition commune est 2×2 . Ainsi on multiplie 16 par 3 et 12 par 2×2 . On obtient donc

$$12 \times 2 \times 2 = 2 \times 2 \times 2 \times 2 \times 3 = 48$$

$$16 \times 3 = 2 \times 2 \times 2 \times 2 \times 3 = 48$$

On peut donc en conclure que le PPCM de 12 et 16 est 48.

5.5 Congruences

Définition 5.5.1 (Congruence). Soient $(a,b) \in \mathbb{Z}^2$ et $n \in \mathbb{N}, n \geqslant 2$ On dit que a et b sont congrus modulo n s'il existe un $k \in \mathbb{Z}$ tel que :

$$n \mid a - b \iff a - b = kn$$

On note:

$$a \equiv b [n] \iff a = b \pmod{n}$$

Exemple 5.5.1.

$$9 \equiv 2[7] \iff 9 \equiv 9[7]$$

Proposition 5.5.1. Pour $(a,b,c) \in \mathbb{Z}^3$ et $n \in \mathbb{N}, n \geqslant 2$

- 1. $a \equiv a [n]$ (Réflexivité)
- 2. $a \equiv b [n] \implies b \equiv a [n]$ (Symétrie)
- 3. $a \equiv b [n], b \equiv c [n] \implies a \equiv c [n]$ (Transitivité)
- 4. $a \equiv b [n], c \equiv d [n] \implies a + c \equiv b + d [n]$
- 5. $a \equiv b [n], c \equiv d [n] \implies ac \equiv bc [n]$
- 6. $a \equiv b [n] \implies a^k \equiv b^k [n], (k \in \mathbb{N})$

Démonstration. On revient à la définition de congruence

- 1. $a a = 0 = 0 \times n \implies a \equiv a [n]$
- 2. $a \equiv b [n] \iff a b = kn, (k \in \mathbb{Z}) \iff b a = -kn, (k \in \mathbb{Z}) \implies b \equiv a [n]$
- 3. $a \equiv b \ [n] \iff a-b=kn, \ (k \in \mathbb{Z}) \ \text{puis} \ b \equiv c \ [n] \implies b=c+k'n, \ (k' \in \mathbb{Z}) \ \text{On a donc}$

$$a - (c + k'n) = kn \iff a - c - k'n = kn$$

 $\iff a - c = (k + k')n$

En posant (k + k') = K, $K \in \mathbb{Z}$ par stabilité, ainsi on retrouve

$$a - c = Kn \iff a \equiv c[n]$$

4. $a \equiv b \ [n], \ c \equiv d \ [n]$ D'après la définition de congruence, on a :

$$\exists k \in \mathbb{Z}, \ a - b = kn$$

$$a = b + kn$$

$$\exists k' \in \mathbb{Z}, \ c - d = k'n$$

$$c = d + k'n$$

En faisant la somme des deux égalités on obtient :

$$a+c = b+d+kn+k'n$$

$$a+c = b+d+(k+k')n$$

En posant K=k+k', $K\in\mathbb{Z}$ par stabilité on obtient :

$$a + c = b + d + Kn \iff a + c \equiv b + d[n]$$

5. $a \equiv b \ [n], \ c \equiv d \ [n]$ D'après la définition de congruence on a :

$$\exists k \in \mathbb{Z}, \ a - b = kn$$
$$\exists k' \in \mathbb{Z}, \ c - d = k'n$$
$$c = d + k'n$$

En faisant le produit des deux égalités on obtient :

$$ac = (b + kn)(d + k'n)$$

$$ac = bd + bk'n + dkn + kk'n^{2}$$

$$ac = bd + (bk' + dk + kkn)n$$

En posant K = bk' + dk + kk'n, $K \in \mathbb{Z}$ par stabilité on obtient :

$$ac = bd + Kn \iff ac - bd = Kn \iff ac \equiv bd [n]$$

6. On procède par récurrence : Supposons la propriété

$$P_n$$
: " $a^p \equiv b^p [n], p \in \mathbb{N}$ "

Initialisation : Pour p = 0 on a : $a^0 = b^0 = 1$

$$a^0 \equiv b^0 [n] \iff 1 \equiv 1 [n]$$

La propriété P_0 est vraie.

Hérédité : Supposons pour un p>0 qu'on ait la propriété

$$P_n$$
: " $a^p \equiv b^p [n]$ "

Montrons que P_{n+1} est vraie.

D'après l'hypothèse de récurrence :

$$a^p \equiv b^p [n]$$

Sachant que $a \equiv b [n]$, par produit de congruences on obtient :

$$a^{p}a \equiv b^{p}b [n]$$

$$P_{n+1} \colon "a^{p+1} \equiv b^{p+1} [n]"$$

On a montré que P_0 est vraie puis que si P_n est vraie alors P_{n+1} est vraie. Ceci achève la récurrence et la propriété est vérifiée.

Exemple 5.5.2.

$$8^{5000} - 6^{4787}$$
 modulo 7

On a :
$$\begin{cases} 8 \equiv 1 \ [7] \\ 6 \equiv -1 \ [7] \end{cases} \implies \begin{cases} 8^{5000} \equiv 1 \ [7] \\ 6^{4787} \equiv -1 \ [7] \end{cases} \implies \begin{cases} 8^{5000} - 6^{4787} \equiv 2 \ [7] \end{cases}$$

Exemple 5.5.3. Trouver les $x \in \mathbb{Z}$ tels que

$$3x \equiv 5 [7]$$

On a une solution particulière $x_0 = 4$ On a ensuite

$$3x \equiv 5 [7]$$

$$6x \equiv 10 [7]$$

$$6x \equiv 3 [7]$$

$$6x \equiv -x_0 [7]$$

$$-x_0 \equiv 3 \ [7] \iff x_0 \equiv -3 \ [7] \equiv 4 \ [7]$$

On a ensuite

$$3x \equiv 5 [7]$$

 $3x_0 \equiv 5 [7] \iff 3 \times 4 \equiv 5 [7]$

On a donc:

$$3(x - x_0) \equiv 0 [7]$$

$$3(x-4) \equiv 0 \ [7] \iff 3(x-4) = 7k, \ (k \in \mathbb{Z})$$
$$\iff 7 \mid 3(x-4)$$

Par le Lemme de Gauss:

$$7 \nmid 3 \implies 7 \mid x - 4$$

$$\implies x - 4 = 7k, \ (k \in \mathbb{Z})$$

$$\implies x = 7k + 4, \ (k \in \mathbb{Z})$$

On doit être capable de résoudre deux types d'équations

— Equation diophantienne : $a, b \in \mathbb{N}^*$, $\operatorname{pgcd}(a, b) = d$

$$(E): ax + by = d, (x,y) \in \mathbb{Z}^2$$

— Equation à congruences

Remarque 5.5.1 (Méthode pour les équations diophantiennes).

- 1. On trouve une solution particulière avec l'identité de Bézout.
- 2. On résout ensuite l'équation homogène à l'aide du Lemme de Gauss.
- 3. On regroupe les deux équations et on résout le système.

Remarque 5.5.2 (Méthode pour les équations à congruences).

- 1. On trouve une solution particulière avec l'identité de Bézout en réécrivant la congruence sous une forme d'égalité.
- 2. On résout l'équation homogène à l'aide du Lemme de Gauss.
- 3. On regroupe les deux équations et on résout le système.

Remarque 5.5.3. Bien vérifier que l'équation est solvable en vérifiant si le membre de droite est un multiple du pgcd.

Remarque 5.5.4.
$$a_i \in \mathbb{Z}, m_i \in \mathbb{N}^*, (i=1,2)$$
 tel que

- $\operatorname{pgcd}(m_1, m_2) = 1$
- $-m_i > 1, \forall i$

(E):
$$x \equiv a_i [m_i], (i = 1, 2)$$

— Identité de Bézout : $\exists (u_1, u_2) \in \mathbb{Z}^2$ tel que $m_1u_1 + m_2u_2 = 1$

$$S_0 = a_1 m_2 u_2 + a_2 m_1 u_1$$

$$S_0 \equiv a_1 m_2 u_2 [m_1]$$

$$\equiv a_1 (1 - m_1 u_1) [m_1]$$

$$\equiv a_1 [m_1]$$

$$\equiv a_2 m_1 u_1 [m_2]$$

$$\equiv a_2 (1 - m_2 u_2) [m_2]$$

$$\equiv a_2 [m_2]$$

 $x = S_0$ est une solution particulière de (E)

On a:

$$\begin{cases} x & \equiv a_i \ [m_i] \\ S_0 & \equiv a_i \ [m_i] \end{cases} \implies x - S_0 \equiv 0 \implies \exists k \in \mathbb{Z}, x - S_0 = m_1 m_2 k$$

d'où l'ensemble des solution de (E) est

$$S_0 + m_1 m_2$$

la division euclidienne, $\exists ! (q, k_0) \in \mathbb{Z}^2$ tel que

- 1. $S_0 = qm_1m_2 + k_0$
- 2. $0 \le k_0 < m_1 m_2$

$$S_0 + m_1 m_2 \mathbb{Z} = k_0 + m_1 m_2 q + m_1 m_2 \mathbb{Z}$$

= $k_0 + m_1 m_2 (q + \mathbb{Z})$
= $k_0 + m_1 m_2 \mathbb{Z}$

Théorème 5.5.1 (Théorème des restes chinois). Soient m_1, m_2 deux entiers naturels tels que

$$-m_1 > 1$$

$$-m_1 > 1$$

 $-\operatorname{pgcd}(m_1, m_2) = 1$

Soient $a_i \in \mathbb{Z}$, (i = 1, 2)

Notons l'ensemble des solutions des systèmes d'équations par \mathcal{S} .

$$x \equiv a_1 [m_1] \qquad \qquad x \equiv a_2 [m_2]$$

Alors

$$\exists k_0 \in \mathbb{Z} \text{ tel que}$$

$$- \mathcal{S} = k_0 + m_1 m_2 \mathbb{Z}$$

$$- 0 \leqslant k_0 < m_1 m_2$$

Théorème 5.5.2 (Petit théorème de Fermat). Si p un nombre premier et si a un entier tel que $\operatorname{pgcd}(a,p)=1$. On a

$$a^{p-1} \equiv 1 [p]$$

Polynômes

6.1 Définitions

Définition 6.1.1 (Polynôme). Un polynôme est un élément de l'ensemble

$$\mathbb{K}[X] = \{ a_0 1 + a_1 X + a_2 X^2 + \dots + a_n X^n \mid a_i \in \mathbb{K}, \ n \in \mathbb{N} \}$$

Définition 6.1.2 (Fonction polynômiale). Une fonction polynomiale est une fonction f définie par :

$$f \colon \begin{cases} \mathbb{K} & \to \mathbb{K} \\ x & \mapsto \sum_{i=0}^{n} a_i x^i, \ a_i \in \mathbb{K} \end{cases}$$

6.2 Propriétés

Soient P et Q deux polynômes définis par

$$P(X) = a_0 1 + a_1 X + \dots + a_n X^n$$

$$Q(X) = b_0 1 + b_1 X + \dots + b_n X^n$$

1. On a:

$$P(X) + Q(X) := (a_0 + b_0)1 + (a_1 + b_1)X + \dots + (a_n + b_n)X^n$$

2. Puis:

$$(\sum_{k=0}^{m} a_k X^k) \cdot (\sum_{l=0}^{n} b_l X^l) := \sum_{k=0}^{m} \sum_{l=0}^{n} a_k b_l X^{k+l}$$

Proposition 6.2.1. Soient P, Q, R trois polynômes.

1.
$$(P+Q) + R = P + (Q+R)$$

2.
$$P + 0 = 0 + P = P$$

3.
$$P + (-P) = (-P) + P = 0$$

4.
$$(P \cdot Q) \cdot R = P \cdot (Q \cdot R)$$

5.
$$P \cdot 1 = 1 \cdot P = P$$

6.
$$P \cdot Q = Q \cdot P$$

7.
$$(P+Q)R = P \cdot R + Q \cdot R$$

8.
$$P \cdot (Q+R) = P \cdot Q + P \cdot R$$

6.2.1 Degré d'un polynôme

Définition 6.2.1 (Degré d'un polynôme). $P = a_0 + a_1 X + \cdots + a_n X^n$ avec $(a_n \neq 0) \in \mathbb{K}[X]$ On définit n comme étant le degré de P, on le note :

$$deg(P) = n$$

On peut aussi décrire le degré sous la forme d'une application : $\deg \colon \mathbb{K}[X] \to \mathbb{N}$

Proposition 6.2.2 (Propriétés sur les degrés).

- 1. Soit $\lambda \in \mathbb{K}$ on a : $deg(\lambda) = 0$
- 2. Soient P et Q deux polynômes on a : $deg(P \cdot Q) = deg(P) + deg(Q)$
- 3. Soient P et Q deux polynômes on a : $\deg(P+Q) = \max\left(\deg(P),\ \deg(Q)\right)$

Théorème 6.2.1 (Division euclidienne). P_1, P_2 deux polynômes non nuls.

$$\exists ! (Q,R) \in \mathbb{K}[X]^2$$
 tel que $P_1 = P_2Q + R$

Vérifiant : $deg(R) = -\infty$ ou $0 \le deg(R) < deg(Q)$

Remarque 6.2.1. Certaines propriétés vues dans le chapitre précédent, sont analogues avec les polynômes.

Exemple 6.2.1. $P_1 = X^3 + 6X^2 + 11X + 6$ et $P_2 = X + 3$

$$X^3 + 6X^2 + 11X + 6 = (X+3)(X^2 + 13X + 2)$$

Définition 6.2.2 (Polynôme irréductible). Un polynôme $P \in \mathbb{K}[X]$ non constant est dit irréductible, s'il n'existe pas $(P_1, P_2) \in \mathbb{K}[X]$ tel que $P = P_1 P_2$ et $\deg(P_i) < \deg(P)$

Proposition 6.2.3. Soit $P \in \mathbb{K}[X]$ **non constant et irréductible**. On a les propriétés suivantes :

- 1. $\mathbb{K} = \mathbb{C} \iff \deg(P) = 1$
- 2. $\mathbb{K} = \mathbb{R} \iff \operatorname{soit} \operatorname{deg}(P) = 1$ ou bien $\operatorname{deg}(P) = 2$ avec le discriminant négatif.

Proposition 6.2.4. Soit P(X) un polynôme **non constant**, si α est une racine de P(X) alors on a :

$$X - \alpha \mid P(X)$$

Autrement dit:

$$P(\alpha) = 0 \iff X - \alpha \mid P(X)$$

Démonstration. Division euclidienne de P par $X - \alpha$.

$$\exists ! (Q,R) \in \mathbb{K}[X] \times \mathbb{K} \text{ tel que}$$

$$P(X) = (X - \alpha)Q(X) + R$$

On a:

$$P(\alpha) = (\alpha - \alpha)Q(\alpha) + R = R$$

Puisque par hypothèse $P(\alpha) = 0$, le reste R est nul. Ainsi il reste

$$P(X) = (X - \alpha)Q(X)$$

Ce qui revient à dire que $X - \alpha$ divise P(X)

Corollaire 6.2.1. Un polynôme de degré d a au plus d racines.

Proposition 6.2.5. Soit $P \in \mathbb{K}[X]$ non nul. Soit $\alpha \in \mathbb{C}$.

$$P(\alpha) = 0 \iff P(\overline{\alpha}) = 0$$

Démonstration. $P(X) = a_0 + a_1 X + \cdots + a_p X^p, \ a_i \in \mathbb{R}$

$$\overline{P(\alpha)} = \overline{a_0 + a_1 \alpha + \dots + a_p \alpha^p}$$

$$= \overline{a_0} + \overline{a_1 \alpha} + \dots + \overline{a_p \alpha^p}$$

$$= \overline{a_0} + \overline{a_1}(\overline{\alpha}) + \dots + \overline{a_p}(\overline{\alpha})^p$$

$$= a_0 + a_1(\overline{\alpha}) + \dots + a_p(\overline{\alpha})^p$$

$$= P(\overline{\alpha})$$

d'où $P(\alpha)=0\iff P(\overline{\alpha})=0$ On a donc $X-\alpha\mid P$ et $X-\overline{\alpha}\mid P$ Ainsi

$$X-\alpha\mid P,\;\exists Q\;\mathrm{tel}\;\mathrm{que}\;P(X)=(X-\alpha)Q(X)$$

$$\overline{\alpha}\in\mathbb{C}\backslash\mathbb{R}\implies\alpha\neq\overline{\alpha},\;X-\overline{\alpha}\mid P\iff X-\overline{\alpha}\mid(X-\alpha)Q(X)$$

$$\mathrm{pgcd}(X-\alpha,X-\overline{\alpha})=1$$

Par le Lemme de Gauss:

$$X - \overline{\alpha} \mid Q$$

$$\exists Q_1 \text{ tel que } Q_1(X) = (X - \overline{\alpha})Q_1(X)$$

$$P(X) = (X - \alpha)Q(X)$$

$$= (X - \alpha)(X - \overline{\alpha})Q_1(X)$$

$$= X^2 - (\alpha + \overline{\alpha})X + \alpha\overline{\alpha}$$

$$= X^2 - 2Re(\alpha)X + |\alpha|^2$$

Définition 6.2.3. Soit P un polynôme non constant. Soit $\alpha \in \mathbb{K}$ et $m \in \mathbb{N}^*$ α est une racine d'ordre m de P si et seulement si.

$$(X-\alpha)^m \mid P \text{ et } (X-\alpha)^{m+1} \nmid P$$

Théorème 6.2.2. Soit P un polynôme non constant, $\alpha \in \mathbb{K}$, $m \in \mathbb{N}^*$

$$(X - \alpha)^m \mid P \iff P(\alpha) = P'(\alpha) = \dots = P^{m-1}(\alpha) = 0$$

Démonstration. Pour $m=2 \implies$

$$\begin{split} Q \in \mathbb{K}[X] \text{ tel que } P(X) &= (X-\alpha)^2 Q(X) \\ P(\alpha) &= (\alpha-\alpha)^2 Q(\alpha) = 0 \\ P(X) &= 2(X-\alpha)Q(X) + (X-\alpha)^2 Q(X) \\ P(\alpha) &= 2(\alpha-\alpha)Q(\alpha) + (\alpha-\alpha)^2 Q(\alpha) = 0 \end{split}$$

 \Leftarrow

$$P(\alpha) = 0 \implies \exists Q \in \mathbb{K}[X] \text{ tel que } P(X) = (X - \alpha)Q(X)$$

$$P'(X) = Q(X) + (X - \alpha)Q'(X)$$

$$P'(\alpha) = Q(\alpha) + (\alpha - \alpha)Q'(\alpha) = Q(\alpha) = 0$$

Remarque 6.2.2. Regarder dans le TD 6, les exercices 3, 5, 7, 12, 14, 15, 16, 19, 21

Théorème 6.2.3 (Théorème fondamental de l'algèbre). Soit P(X) un polynôme à coefficients complexes de degré n. P(X) admet n racines complexes.

Remarque 6.2.3. Ce théorème s'appelle également le théorème d'Alembert-Gauss.

Bibliographie

