Overview

- Company Profile
- Problem Statement
- Objectives
- Overall System
- Solution Approaches
- Deliverables

Gökhan Soylukan

Vice President

Company Profile

Our mission is to manufacture innovative, efficient, eco-friendly, high-technology unique engineering products.

Our vision is to become one of the leading robotics companies with systematic research and development activities.

Problem Statement

Adopted from http://capstone.eee.metu.edu.tr/projects/

- -Remotely controlling the robot from at least 30 meters.
- -Allowed time is 20 seconds for sending the ball to the counter side.
- -Grasping, scooping and carrying are forbidden actions.

Problem Statement

Goal width must be at least twice of the width of the robot

Scoring two goals more than the opponent wins the game.

Streaming Delay

- Delay in the real-time applications like in our case should be as small as possible.

- Criterion (in seconds)

Perfect: <100ms

Good: 100ms-500ms

Poor: >500ms

Response Time

- The robot should send the ball to the opponent's goal as soon as possible when the ball is in our side. Allowed maximum time for this operation is 20 seconds.
- Criterion (in seconds)

Perfect: <5s

Good: 5s-15s

Poor: 15s-20s

Horizontal angle of view

-View angle of the camera should be wide enough to be able to see the game field clearly.

-Criterion (in degrees)

Perfect: >150°

Good: 60°-150°

Poor: <60°

Budget

-The final price of POROBOT can be maximum \$200.

-Criterion (in dollars)

Perfect: <\$120

Good: \$120-\$200

Poor: >\$200

M. Caner Tol

R&D Manager

Overall System

- POROBOT
- Human Operator
- Remote Computer
 with Internet connection

POROBOT LOCAL **COMPUTER**

REMOTE COMPUTER

• Communication module

- Communication module
- Vision Controller module
 - Spatial information

- Communication module
- Vision Controller module
- Driving module

- Communication module
- Vision Controller module
- Driving module
- Dribbling & Kicker module

- Communication module
- Vision Controller module
- Driving module
- Dribbling & Kicker module
- Command module

Design

- Camera
 - Raspberry Pi Camera v1.3
- Ultrasonic sensors
 - HC-SR04
 - ~54 % of the time is wasted while trying to understand the current state of the robot (Casper, 2002)
 - Telepresence

- Camera Resolution tests
- 200x200 resolution

- Angle of View (AOV) tests
- 44.5° horizontal angle
- Solution:
 - External lenses

Distance Measurement tests

• Error < 5 % after 5 cm

Ayça Yıldırım

General Secretary

- 3G dongle modem and SIM card
 - Sakis3G
- Dataplicity Agent
 - Porthole
 - Wormhole
- MJPEG Streamer

- 3G dongle modem and SIM card
 - Sakis3G
- Dataplicity Agent
 - Porthole
 - Wormhole
- MJPEG Streamer

- 3G dongle modem and SIM card
 - Sakis3G
- Dataplicity Agent
 - Porthole
 - Wormhole
- MJPEG Streamer

Stream delay tests

Worst delay (around 590 ms)

- WebSocket protocol
 - Full-duplex communication
 - Suitable for real time applications
- Tornado web server module
 - Non-blocking
 - Asynchronous
- Joystick
 - Controlling omni-wheels with stick
 - Activating dribbling and kicker mechanisms with buttons

- WebSocket protocol
 - Full-duplex communication
 - Suitable for real time applications
- Tornado web server module
 - Non-blocking
 - Asynchronous
- Joystick
 - Controlling omni-wheels with stick
 - Activating dribbling and kicker mechanisms with buttons

- WebSocket protocol
 - Full-duplex communication
 - Suitable for real time applications
- Tornado web server module
 - Non-blocking
 - Asynchronous
- Joystick
 - Controlling omni-wheels with stick
 - Activating dribbling and kicker mechanisms with buttons

- WebSocket protocol
 - Full-duplex communication
 - Suitable for real time applications
- Tornado web server module
 - Non-blocking
 - Asynchronous
- Joystick
 - Controlling omni-wheels with stick
 - Activating dribbling and kicker mechanisms with buttons


```
var gamepadAPI = {
controller: {},
turbo: false,
connect: function() {},
disconnect: function() {},
update: function() {},
buttonPressed: function() {},
buttons: [],
buttonsCache: [],
buttonsStatus: [],
axesStatus: []
```

Ali Birkan Dönmez

CEO

Driving Module

Speed @ 6V	Stall Torque @ 6V	Gear Ratio
210 RPM	3.75 kg-cm	150:1

- -38 mm Aluminum Omni Wheel
- -Load capacity: 2kg (expected robot weight is 850g)
- -Provides 360° movement with rotational and sideways maneuverability

Driving Module

Four Omni directional wheels on chasis

Dribbling and Kicker Mechanism Module

Tasks:

- -Controlling the ball
- -Kicking the ball

Power Supplies of POROBOT

Power Banks for Raspberry Pi and Arduino

> Li-Po Batteries for DC motors

Power Analysis

Equipment	Quantity	Power
Raspberry Pi 3B + RaspiCam v1.3 + MF667 3G Dongle	1	10W
Arduino UNO	1	2.5W
HC-SR04 Ultrasonic Sensors	3	75mW
Carbon Brushed DC Motor	5	45W
	TOTAL	57.575W

Yunus Demirören

Project Manager

- Deliverables
- Time Management & Gantt Chart
- Cost analysis (Financial Management)
- Conclusion

Deliverables

•Robot, Game Field and Game Ball

Power Supplies

GUI Application

User Manual

Customer Service and Warranty

Time Management & Gantt Chart

Financial Management

Components	Quantity	Cost
Raspberry Pi	1	\$37
Arduino UNO	1	\$15
Raspberry Pi Camera	1	\$5
Ultrasonic Sensor HC-SR04	3	\$4.5
Brushed DC Motor	5	\$37.5
L298N Dual H-Bridge Motor Controller	2	\$6
3G Dongle USB Modem	1	\$9.5
SIM Card	1	\$14.5
Chassis	1	\$10
11.1V Li-Po Battery 1350 mAh	1	\$20
Omni Wheels	4	\$22
Design Material	-	\$10
	Total	\$191

CONCLUSION

THANK YOU

References

- 50 of the most important Raspberry Pi Sensors and Components. (n.d.). Retrieved from https://tutorials-raspberrypi.com/raspberry-pi-sensors-overview-50-important-components/
- Casper, J., & Murphy, R. R. (2003). Human-robot interactions during the robot-assisted urban search and rescue response at the world trade center. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 33(3), 367-385.
- Infrared Distance Measurement with the Raspberry Pi (Sharp GP2Y0A02YK0F). (n.d.). Retrieved from https://tutorials-raspberrypi.com/infrared-distance-measurement-with-the-raspberry-pi-sharp-gp2y0a02yk0f/
- Kieltyka, R. (2017, June 03). Control Raspberry Pi GPIOs with WebSockets. Retrieved from https://www.hackster.io/dataplicity/control-raspberry-pi-gpios-with-websockets-af3d0c
- Node.js and Raspberry Pi Webserver with WebSocket. (n.d.). Retrieved from https://www.w3schools.com/nodejs/nodejs_raspberrypi_webserver_websocket.asp
- Yaroslavsky, L. P., & Fishbain, B. (2007, August 28). Real-time 2D to 3D video conversion. Retrieved from https://link.springer.com/article/10.1007/s11554-007-0038-9