第二章 矩阵代数

- 1 矩阵与向量
- 2 矩阵的代数运算
- 3 逆矩阵与矩阵的初等变换
- 4 转置矩阵与一些重要矩阵
- 分块矩阵

第一节 矩阵与向量

- 一、数域
- 二、矩阵与向量
- 三、线性方程组与向量

一、数域

<u>引例</u> 求方程 $(x^2+1)(x^2-2)=0$ 的解.

解答 显然,所给方程 $(x^2 + 1)(x^2 - 2) = 0$ 在有理数范围 \mathbb{Q} 内无解; 在实数范围 \mathbb{R} 内有两解: $x_{1,2} = \pm \sqrt{2}$; 在复数范围 \mathbb{C} 内有四解:

$$x_{1,2} = \pm \sqrt{2}, \quad x_{3,4} = \pm i.$$

提醒 对给定方程而言,其解的情况与取值范 围有关。 设 \mathbb{K} 是一个数集,*是定义在 \mathbb{K} 上的一种运算。 称 \mathbb{K} 对运算* **封闭**,如果对任意的 $a,b\in\mathbb{K}$, 总有 $a*b\in\mathbb{K}$.

- 定义 设复数集的子集 P包含数0和1,且 P对加,减,乘,除四种运算封闭,则称 P为一个数域.
- **结论** 整数集 ℤ 不是数域 (关于除运算不封闭); 有理数集 ℚ,实数集 ℝ,复数集 ℂ都是数域, 分别称为<u>有理数域</u>,<u>实数域</u>,<u>复数域</u>.

週考 数集 $\mathbb{T} = \left\{ a + \sqrt{3}b : a, b \in \mathbb{Q} \right\}$ 是数域吗?

二、矩阵和向量

1. 矩阵的引入

引例 某班级同学早餐情况

姓名	馒头	包子	鸡蛋	稀饭
周驰	4	2	2	1
柏芝	0	0	0	0
川普	4	9	8	6

姓名	馒头	包子	鸡蛋	稀饭
周驰	4	2	2	1
柏芝	0	0	0	0
川普	4	9	8	6

为了方便,常用下面的数表表示

 $\begin{bmatrix} 4 & 2 & 2 & 1 \\ 0 & 0 & 0 & 0 \\ 4 & 9 & 8 & 6 \end{bmatrix}$

这个数表就 反映了学生 的早餐情况

矩阵即一些数据的集合

引例2 某航空公司在四座 城市之间的航线图

为方便,常用如下表格表示以上航线图

到站 发站	成都	伊宁	武汉	重庆
成都		\checkmark	\checkmark	
伊宁	\checkmark		\checkmark	
武汉	\checkmark			\checkmark
重庆		\checkmark		

到站 发站	成都	伊宁	武汉	重庆
成都	0	1	1	0
伊宁	1	0	1	0
武汉	1	0	0	1
重庆	0	1	0	0

为便于计算,把√改成1,空白处填0,就得到一数表

去掉表具体含义的第一行第一列,即得如下数表

到站 发站	成都	伊宁	武汉	重庆
成都	0	1	1	0
伊宁	1	0	1	0
武汉	1	0	0	1
重庆	0	1	0	0

$$\begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

该数表反映了四城市间交通联接情况.

2. 矩阵的定义

一般地,涉及到两个集合且其元素间由某一数集相 关联的场合,常常可用数表将其简洁明晰地表示出 这种关联.

定义 数域 \mathbb{P} 中 $s \times n$ 个数 a_{ij} $(i = 1, 2, \dots, s, j = 1, 2, \dots, n)$ 排成的 s 行 n 列的长方形数表,称为数域 \mathbb{P} 上的 $s \times n$ **矩阵**,其中s,n分别为矩阵的行数和列数.

实矩阵或复矩阵 元素为实数或复数的矩阵.

提醒 除特别声明,本书中的矩阵均为实矩阵.

定义 若矩阵 A与 B有相同的行数,且列数也相同,则称矩阵 A与 B为同型矩阵。

设
$$A = (a_{ij})_{s \times n}, B = (b_{ij})_{s \times n}$$
 为同型矩阵,满足 $a_{ij} = b_{ij}, \forall i = 1, 2, \dots, s, j = 1, 2, \dots, n$ 称矩阵 $A 与 B$ 相等,记为 $A = B$.

负矩阵 称矩阵

$$(-a_{ij})_{s \times n} = \begin{bmatrix} -a_{11} & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & -a_{22} & \cdots & -a_{2n} \\ \vdots & \vdots & & \vdots \\ -a_{s1} & -a_{s2} & \cdots & -a_{sn} \end{bmatrix}$$

为矩阵 $A = (a_{ij})_{s \times n}$ 的负矩阵,记为 -A,

$$-A = (-a_{ij})_{s \times n} = \begin{bmatrix} -a_{11} & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & -a_{22} & \cdots & -a_{2n} \\ \vdots & \vdots & & \vdots \\ -a_{s1} & -a_{s2} & \cdots & -a_{sn} \end{bmatrix}.$$

3. 特殊矩阵

方阵 若矩阵 $A = (a_{ij})_{s \times n}$ 的行数和列数相等,

即 s=n,则称 A为 n 阶方阵,如

$$A = (a_{ij})_{n \times n} = egin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \ a_{21} & a_{22} & \cdots & a_{2n} \ dots & dots & dots \ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$
 副对角线

 $a_{11}, a_{22}, \cdots, a_{nn}$ 主对角元素

提醒 一阶方阵就是一个数! 此时不加括号!

下三角阵 主对角线上方元素都为 0 的 方阵

上三角阵 主对角线下方元素都为 0 的 方阵

$$\begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{nn} \\ 0 & a_{22} & \cdots & a_{nn} \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{bmatrix}$$

下三角阵

上三角阵

三角阵 上三角阵和下三角阵统称三角阵.

对角阵 既是上三角阵又是下三角阵的方阵

$$\operatorname{diag}(a_{11}, a_{22}, \cdots, a_{nn}) = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{bmatrix}$$

主对角元素相同的对角阵称为数量阵

$$\begin{bmatrix} k & 0 & \cdots & 0 \\ 0 & k & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & k \end{bmatrix}$$

主对角元素都为1的对角阵称为单位阵

$$E_n = egin{bmatrix} 1 & 0 & \cdots & 0 \ 0 & 1 & \cdots & 0 \ dots & dots & dots \ 0 & 0 & \cdots & 1 \end{bmatrix}$$

定义 元素全为 0 的矩阵称为零矩阵.

 $m \times n$ 零矩阵可记作 $0_{m \times n}$ 或 0.

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = 0_{2 \times 3}$$

矩阵 $A \neq 0 \iff$ 矩阵 A至少有一元素不为零 \iff 矩阵 A至少有一行不全为零 \iff 矩阵 A至少有一列不全为零

提醒 阶梯形矩阵和行最简形矩阵都是特殊矩阵.

4. 向量向量的引入

确定小鸟的飞行状态,需要以下若干个参数: 小鸟身体的质量 m 小鸟身体的仰角 φ 小鸟鸟翼的转角 ϕ 鸟翼的振动频率 t 小鸟身体的水平转角 θ 小鸟重心在空间的位置参数 (x,y,z) 还有…

为确定小鸟的飞行状态,会产生一个有序数组 $(m, \varphi, \phi, t, \theta, x, y, z, \cdots)$

向量的定义 由 n 个数 a_1, a_2, \dots, a_n 构成的有序数 组称为一个 n 维向量,称 a_i 为该向量的第 $i(i=1,2,\dots,n)$ 个分量.

向量的表示 常用小写希腊字母 α, β, γ 等表示.

$$\alpha = (a_1, a_2, \cdots, a_n)$$
 n 维**行**向量

$$\beta = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}$$
 n 维**列**向量

提醒 n 维行向量和n 维列向量统称为n 维向量.

5. 矩阵与向量

虽然矩阵与向量都是单独定义的,但从它们的 定义可见,一个向量完全可以视作一个特殊的 矩阵,具体来说,有

- 一个n维行向量可视为一个 $1 \times n$ 矩阵
- 一个n维列向量可视为一个 $n \times 1$ 矩阵

而对任意一个矩阵 $A = (a_{ij})_{m \times n}$ 而言,

矩阵A的每一行都是一个 n 维行向量

矩阵 A的每一列都是一个 m维列向量