

智能系统与控制

树莓派: GPIO输出 (激光器)

于泓 鲁东大学 信息与电气工程学院 2021.10.9

树莓派的GPIO

树莓派的开发功能强大,提供了一组用来输出与输入用的脚针,称为"Gereral-Purpose Input/Output"即 GPIO

树莓派 4B 在开发板上提供了提供了 40 个引脚的 GPIO 排针。 GPIO引脚具有编程控制能力,可以通过程序控制 GPIO 输出高低电平或者读入 GPIO 引脚的状态。

GPIO 是个比较重要的概念,用户可以通过 GPIO 口和硬件进行数据交互(如 UART),控制硬件工作(如 LED、蜂鸣器等),读取硬件的工作状态信号(如中断信号)等。

GPIO口的使用非常广泛。掌握了 GPIO, 差不多相当于掌握了操作硬件的能力。

使用时为了方便,我们用一个T型的转接板把GPIO引出

GPIO 引脚的定义 (编号方法)

(1) 排针引脚编号(BOARD) (2) CPU 定义引脚编号(BCM)

本课程采用

(3) WiringPI 编号。

与Arduino 兼容

在不同模型下 3,2,8 表示同一个引脚

树莓派的 GPIO 除了基本的输入输出功能之外,<mark>某些引脚还有自己特定的功能。</mark> GPIO12、GPIO13、 GPIO18、 GPIO19 是硬件的 PWM(pulse-width modulation,脉冲宽度调制)引脚,可以用来对伺服电机等对 PWM 精度要求较高的器件进行控制。

SPIO: MOSI (GPIO10)、MISO (GPIO9)、 SCLK (GPIO11)、 CEO (GPIO8)、 CE1 (GPIO7) 与 SPI1: MOSI (GPIO20)、MISO (GPIO19)、 SCLK (GPIO21)、 CE0 (GPIO18)、 CE1 (GPIO17)、 CE2 (GPIO16) 是两路 SPI 总线,可以和满足 SPI 总线协议的器件进行通信。

Data: (GPIO2); Clock (GPIO3)是 I2C 总线,通过树莓派内置的总线控制器较为方便的与 I2C 器件进行通信。

TX (GPIO14)与 RX (GPIO15) 具有 UART 数据传输功能,同样可以利用树莓派内置 UART 控制和外部设备进行串口通信

为了方便使用设计了一个pin_dic.py 来构建编号和功能之间的简单联系

```
📙 pin_dic.py 🛛 📙 wpa_supplicant.conf 🖾 📙
    pin dic = {
  2
                   'SDA':3,
                  'SLC':5,
  3
                  'G4' :7,
  4
  5
                   'G17':11,
                  'G27':13,
                   'G22':15,
  8
                  'MOSI':19,
  9
                  'MISO':21,
 10
                  'SCL':23,
 11
                  'IDSD':27,
 12
                   'G5':29,
                  'G6':31,
 13
 14
                  'G13':33,
 15
                  'G19':35,
 16
                  'G26':37,
                  'TXD':8,
 17
 18
                   'RXD':10,
                  'G18':12,
 19
 20
                   'G23':16,
                  'G24':18,
 21
                  'G25':32,
                  'CE0':24,
 23
 24
                  'CE1':26,
 25
                  'IDSC':28,
                  'G12':32,
 26
 27
                  'G16':36,
                  'G20':38,
                   'G21':40}
 29
      4U41/1U/7
```



```
import RPi.GPIO as GPIO
import time
from pin_dic import pin_dic

pin_sig = pin_dic['G17']

GPIO.setmode(GPIO.BOARD)  # Numbers GPIOs by physical location
GPIO.setup(pin_sig, GPIO.OUT)  # Set LedPin's mode is output
GPIO.output(pin_sig, GPIO.HIGH) #
```


在树莓派中对 GPIO 进行编程的方案有很多,如果采用基于 C语言的编程方案时推荐安装 wiringPI 库来对 GPIO 进行控制。

本课程中主要介绍的是 Python 编程控制的方法,因此采用 RPi.GPIO 提供的 API 对 GPIO 进行编程控制。

RPI.GPIO 是一个控制树莓派上的 GPIO通道的软件包。该软件包提供了一个类来控制树莓派上的 GPIO。在树莓派的 Raspbian 系统镜像中默认安装了 PRi.GPIO,因此可以直接使用

本节任务:

利用G17引脚

驱动激光器发出3秒亮3秒灭的信号


```
import RPi.GPIO as GPIO
 import time
 from pin dic import pin dic
pif name == " main ":
    pin sig = pin dic['G17']
    GPIO.setmode (GPIO.BOARD)
                                    # Numbers GPIOs by physical location
    GPIO.setup(pin sig, GPIO.OUT)
                                     # Set LedPin's mode is output
    GPIO.output (pin sig, GPIO.HIGH) #
     try:
         while True:
             print('...Laser on')
             GPIO.output (pin sig, GPIO.HIGH) # led on
             time.sleep(3)
             print('Laser off...')
             GPIO.output (pin sig, GPIO.LOW) # led off
             time.sleep(3)
    except KeyboardInterrupt:
        print('\n Ctrl + C QUIT')
     finally:
         GPIO.cleanup()
                                                      Ctrl+C 退出
```

端口清除