Assignment 2

Statistical Learning Theory and Data Science Course Code: BI3424/DS3214

The assignment submission deadline is April 20, 2025, at 11:59 PM.

Obtaining a diabetes threshold from glucose data

Glucose homeostasis refers to the body processes that strive to maintain blood glucose in a tight range. Type 2 diabetes (T2DM) is a disease characterized by a persistent hyperglycemia: Clinically, a fasting blood glucose level of 126 mg/dL or more is diagnosed as diabetes.

The goal of this exercise is to ask: If we collect data on fasting glucose from a population – some of these will have healthy glucose homeostasis and others will have elevated blood glucose – could we **compute the correct glucose threshold for defining diabetes**. That is, can we *check* whether the diagnosis threshold of 126 mg/dL is indeed appropriate?

We will use some *simulated* data for our experiment. Create a dataset containing glucose values that follow two distinct distributions:

- 1. Normal glucose range: Gaussian distribution with a mean of 80 mg/dL and standard deviation of 20 mg/dL,
- 2. **Hyperglycemic range:** Gaussian distribution with a mean of 220 mg/dL and standard deviation of 50 mg/dL.

Our goal is to determine an optimal threshold value that can classify patients as diabetic or non-diabetic from this data. We will employ three clustering algorithms – specifically K-means clustering, DBSCAN and Gaussian Mixture Models (GMM). We will then examine various sample sizes (n = 20, 50 and 100) to check whether that makes any difference?

Your assignment requires you to:

- 1. Evaluate which algorithm performs best for this classification challenge, considering that the clinical threshold is 126 mg/dL.
- 2. Provide a detailed explanation of why certain algorithms succeed while others fail. Does the number of data points used for clustering affect the analysis?
- 3. Provide clear and comprehensive visualizations of the results obtained. Your graphical representations should include:
 - The original distribution of the synthetic glucose data,
 - The resulting distributions after applying each clustering algorithm, and
 - A scatter plot displaying the identified clusters along with the calculated decision threshold.

For K-means and DBSCAN, you may utilize the built-in functions from sklearn.cluster. However, for GMM, you must implement the corresponding Expectation-Maximization (EM) algorithm from scratch as outlined below.

Steps to implement Gaussian Mixture Models (GMM)

1. Compute Gaussian Probability Density Function (PDF):

Create a function gaussian_pdf(x, mean, var) that computes the value of the Gaussian (Normal) distribution at x for given mean and variance:

$$PDF(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

This is used in both the E-step and for computing final "responsibilities" (see below).

2. Initialization:

Parameters are initialized as follows: - Means (μ_k) : randomly chosen from the data. - Variances (σ_k^2) : initialized to the variance of the entire dataset. - Weights (w_k) : initialized equally for two components, i.e., 0.5.

3. E-step (Expectation) of the E-M algorithm:

This step computes the "responsibility" r_{nk} : the probability that the n^{th} data point was generated by the k^{th} Gaussian component.

$$r_{nk} = \frac{w_k \cdot \mathcal{N}(x_n)}{\sum w_j \cdot \mathcal{N}(x_n)}$$

This gives a matrix of shape (n_samples, 2) in our case.

4. M-step (Expectation) of the E-M algorithm:

Update the parameters using the responsibilities from the E-step:

- Effective number of samples assigned to each component:

$$N_k = \sum_{n=1}^{N} r_{nk}$$

- Updated means:

$$\mu_k = \frac{1}{N_k} \sum_{n=1}^{N} r_{nk} x_n$$

- Updated variances:

$$\sigma_k^2 = \frac{1}{N_k} \sum_{n=1}^{N} r_{nk} (x_n - \mu_k)^2$$

- Updated weights:

$$w_k = \frac{N_k}{N}$$

5. Final Assignment of Labels:

After the EM loop, the algorithm re-computes the responsibilities and assigns each data point to the component with maximum responsibility (i.e., class with highest posterior probability):

$$label(x_n) = \arg\max_{k} \ r_{nk}$$

6. Finding the Intersection (Threshold):

The threshold between the two Gaussians is computed by solving:

$$w_1 \cdot \mathcal{N}(x|\mu_1, \sigma_1^2) = w_2 \cdot \mathcal{N}(x|\mu_2, \sigma_2^2)$$

This is done numerically using fsolve. The point where these two weighted distributions intersect can serve as a decision boundary or threshold between the two classes.

Step	Description	Mathematical Expression
1	PDF Computation	$\mathcal{N}(x)$
2	Initialize Parameters	Random for means, equal weights
3	E-step	$r_{nk} = \frac{w_k \cdot \mathcal{N}(x_n)}{\sum_j w_j \cdot \mathcal{N}(x_n)}$
4	M-step	Update μ_k, σ_k^2, w_k
5	Label Assignment	$\operatorname{arg} \max_{k} r_{nk}$
6	Threshold (Intersection)	$w_1 \cdot \mathcal{N}_1(x) = w_2 \cdot \mathcal{N}_2(x)$

Notes

- 1. Take max_iter=100, tol=1e-6.
- 2. Use this to find the cluster labels (see step 5):
 labels = np.argmax(final_responsibility, axis=1)
- 3. Use this function to find the threshold:

```
def find_intersection(mu1, sigma1, w1, mu2, sigma2, w2):
def equation(x):
return w1 * norm.pdf(x, mu1, sigma1) - w2 * norm.pdf(x, mu2, sigma2)
x0 = (mu1 + mu2) / 2
return fsolve(equation, x0)[0]
```

4. To use fsolve, you will require from scipy.optimize import fsolve.