Alexandre Boucher & Pierre-Olivier Parisé

Concepts avancés en mathématiques et informatique appliquées
11 janvier 2016

Introduction

Rappels

Méthodologie

Résultats

Conclusion

Introduction

Remise en contexte :

- Les images : supports omniprésents dans notre quotidien.
- Nécessité d'algorithmes pour la compression.
- L'apparition des fractales en 1980.

Problématique:

- Algorithme JPEG dépend du spectre de Fourier et de la résolution de l'image.
- Comment les fractales peuvent-elles servir le domaine de la compression d'images?

Rappels
Sur les images
Sur les IFS

Méthodologie

Résultats

Conclusion

Sur les images

Définition d'une image

Une image:

- Composée de pixels;
- Affectée de trois composantes
 - R : rouge;
 - G : vert ;
 - B : bleu.

Notation:

$$\mathcal{I} := \{ (x, y, R(x, y), G(x, y), B(x, y)) \\ : 0 \le x \le I, \ 0 \le y \le h, \\ 0 < R, G, B < 255 \}$$

Sur les images Les systèmes de couleurs

Autres représentations :

- YUV;
- *YIQ*;
- HSV.

Sur les images

Les systèmes de couleurs

Passage de RGB à YUV

$$\begin{pmatrix} Y \\ U \\ V \end{pmatrix} = \begin{pmatrix} 0,299 & 0,587 & 0,114 \\ -0,147 & -0,289 & 0,436 \\ 0,615 & -0,515 & -0,100 \end{pmatrix} \begin{pmatrix} R \\ G \\ B \end{pmatrix}.$$

Passage de RGB à YIQ

$$\begin{pmatrix} Y \\ I \\ Q \end{pmatrix} = \begin{pmatrix} 0,299 & 0,587 & 0,114 \\ 0,596 & -0,274 & -0,322 \\ 0,211 & -0,523 & 0,312 \end{pmatrix} \begin{pmatrix} R \\ G \\ B \end{pmatrix}.$$

Sur les IFS

Définition d'un IFS

IFS: Iterated function system.

Formé:

- de contractions w_i;
- des facteurs de contractions s_i.

Notation:

$$\{\mathbb{R}^n; w_i, i = 1, 2, \dots, m\}$$

$$W(I) = \bigcup_{i=1}^m w_i(I).$$

Exemple : le triangle de Sierpinski

Introduction

Rappels

Méthodologie

Première étape Deuxième étape Troisième étape Quatrième étape Cinquième étape

Récultate

Conclusion

Méthodologie

Une image en entrée de taille $2^k \times 2^k$.

Passer de RGB à YIQ :

$$\begin{pmatrix} Y \\ I \\ Q \end{pmatrix} = \begin{pmatrix} 0,299 & 0,587 & 0,114 \\ 0,596 & -0,274 & -0,322 \\ 0,211 & -0,523 & 0,312 \end{pmatrix} \begin{pmatrix} R \\ G \\ B \end{pmatrix}.$$

Utilisation de YIQ:

- œil moins sensible à I et Q;
- variance I et Q plus petite que Y;
- réduction de la mémoire utilisée.

Partitionner l'image

- Construire les « range blocks » R_i.
- Construire les « domain blocks » D_i.

Les R_i :

- taille de $2^k \times 2^k$:
- sont disjoints.

Les D_k :

- deux fois la taille des R_i;
- se chevauchent.

Deuxième étape

Les « range blocks »

oixel

Deuxième étape

000

Les « domain blocks »

pixel

Troisième étape

Recherche du meilleur D_k :

- 1. Fixer un R_i .
- 2. Abaisser les dimensions des D_k à celles du R_i .
- 3. Calculer les coefficients s_u et o_u :

$$\min\left\{\chi^2:=\sum_{j=1}^n(s_u\cdot a_j+o_u-b_j)^2\right\}\qquad\text{ où }u=Y,\ I\text{ ou }Q.$$

- 4. Garder les coefficients minimisant l'erreur χ^2 .
- 5. Générer la transformation associée aux coefficients optimums.

Troisième étape

Les symétries

Point 4 : appliquer les 7 symétries et rotations aux D_k .

- Réflexion selon x :
- Réflexion selon y;
- Réflexion selon y = x;
- Réflexion selon y = -x;

- Rotation de 90°:
- Rotation de 180°;
- Rotation de 270°.

Troisième étape

La transformation affine

Point 5: la transformation w_i sur chacune des composantes.

$$w(x,y,u) := \begin{pmatrix} \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & s_u \end{pmatrix} \cdot \begin{pmatrix} D_x \\ D_y \\ u \end{pmatrix} + \begin{pmatrix} x_0 \\ y_0 \\ o_u \end{pmatrix}$$

où
$$u := Y(x, y)$$
, $I(x, y)$ ou $Q(x, y)$.

ippels Metho

Troisième étape

Illustration des étapes

Enregistrer toutes les contractions : un minimum de bits.

- les s_u et o_u gardés;
- la position du D_k ;
- la symétrie utilisée.

Cinquième étape

Décompression:

- Une image quelconque en entrée.
- Application des contractions à l'image.
- Possibilité de lissage.
- Retour à la représentation RGB.

Rappels 000 00 Méthodologi 000 000 Résultats

Introduction

Rappels

Méthodologie

Résultats

Pour une image en niveau de gris Pour des images en couleur

Conclusion

Pour une image en niveau de gris

Illustration du procédé

Pour une image en niveau de gris

Illustration de l'invariance de l'image de départ

Image de Lenna 256×256 originale

(a) Adoucie

(b) Différence d'images

(a) Brut

(b) Différence d'images

(a) Adoucie

(b) Différence d'images

(a) Brut

(b) Différence d'images

(a) Adoucie

(b) Différence d'images

(a) Brut

(b) Différence d'images

Aspects visuels des carrés des algorithmes

(a) Format JPEG

(b) Format FCCI

0000000000

Pour des images en couleur

Taille des fichiers

Image	R	Taille FCCI	Taille JPEG	Taille PNG	Ratio
L-64×64	8	650	3255	9030	13.89 :1
L-64×64	4	2594	3255	9030	3.48:1
L-64×64	2	10370	3255	9030	0.87:1
L-128×128	8	2786	8994	33101	11.88 :1
L-128×128	4	11138	8994	33101	2.97:1
L-128×128	2	44546	8994	33101	0.74:1
L-256×256	8	11906	27212	125271	10.52:1
L-256×256	4	47618	27212	125271	2.63:1
L-256×256	2	190466	27212	125271	0.66:1
P-1920×960	8	399602	548790	7385829	18.48 :1

000000000

Temps d'encodage et fidélité à l'image originale

Image	R	Encodage	Déc. adouci	Déc. brut	PSNR Adouci	PSNR Brut
L-64×64	8	272 ms	9	6	8.7679	8.59116
L-64×64	4	506 ms	12	6	12.86739	15.29051
L-64×64	2	1420 ms	21	6	12.37583	NaN
L-128×128	8	5.67 s	39	24	12.64667	12.73227
L-128×128	4	9.61 s	55	24	15.40411	18.32838
L-128×128	2	24.87 s	81	23	14.37288	NaN
L-256×256	8	2m 17.2s	245	133	14.86215	15.2005
L-256×256	4	3m 17.62s	277	139	17.46362	20.96746
L-256×256	2	7m 18.73s	425	135	16.34114	NaN
P-1920×960	8	18h 43m 28.59s	7440	5027	15.50346	15.48109

Rappels 000 00 **éthodol** 00 000

Résultats 00 000000000 Conclusion

Introduction

Rappels

Méthodologie

Résultats

Conclusion

Conclusion

Méthode pertinente :

- Taux de compression très bon, spécialement avec des méthodes plus avancées.
- Temps de décompression très rapide.
- Par contre, le temps de compression est un facteur négatif.

Exploration de techniques plus avancées :

- Quadtree
- HV Partitioning

Pourrait être utilisé à l'avenir comme alternative à JPEG

Pour diminuer l'effet de pixellisation.

