Roann Yanes (NetID: ryanes)
CSE 30264 Computer Networks
Professor Dong Wang
November 28, 2018

Homework 4

Problem 1:

A 244-byte MTU leaves 224 bytes for data after the 20-byte IP header.

M-bit (more	Offset	# of Data Bytes	Location of
fragments to follow)			Fragmentation
1	0	224	1 st fragment
1	28	224	1 st fragment
1	56	64	1 st fragment
1	64	224	2 nd fragment
1	92	224	2 nd fragment
1	120	64	2 nd fragment
1	128	224	3 rd fragment
0	156	152	3 rd fragment

Start of header						
Ident = x		1	Offset = 0			
	Rest of header					
	224 data bytes					

Start of header						
Ident = x		1	Offset = 28			
	Rest of header					
	224 data bytes					

	Start of header		
Ident = x		1	Offset = 56
	Rest of header		
	64 data bytes		
	Start of header		
Ident = x		1	Offset = 64
	Rest of header		
	224 data bytes		
	Start of header		
Ident = x		1	Offset = 92
	Rest of header		
	224 data bytes		
	Start of header		
Ident = x		1	Offset = 120
	Rest of header		
	64 data bytes		
	Start of header		
Ident = x		1	Offset = 128
	Rest of header		
	224 data bytes		
	Start of header		
Ident = x		0	Offset = 156
,	Rest of header		
	152 data bytes		
L			

of fragments =
$$\frac{1400}{224}$$
 = 7 fragments

If packets were originally fragmented for this MTU, there would be seven (7) fragments. The first 6 fragments would have 224 bytes each. The last fragment would have 56 bytes.

Problem 2:

(a) 128.13.155.144

BITWISE AND	255.255.255.128	255.255.255.192
128.13.155.144	128.13.155.128	128.13.155.128

Next Hop: R3

When the subnet mask 255.255.255.192 is applied, we receive 128.13.155.128, so router R3 is used as the next hop.

(b) 128.13.155.62

BITWISE AND	255.255.255.128	255.255.255.192
128.13.155.62	128.13.155.0	128.13.155.0

Next Hop: R4

When the subnet masks 255.255.255.192 and 255.255.255.192 are applied, we receive 128.13.155.0 as the subnet number, so the default router R4 is used as the next hop since there is no match.

(c) 128.64.72.69

BITWISE AND	255.255.255.128	255.255.255.192
128.64.72.69	128.64.72.0	128.64.72.64

Next Hop: R2

When the subnet mask 255.255.255.128 is applied, we receive 128.64.72.0, so router R2 is used as the next hop.

(d) 128.65.73.25

BITWISE AND	255.255.255.128	255.255.255.192
128.65.73.25	128.65.73.0	128.65.73.0

Next Hop: Interface 0

When the subnet mask 255.255.255.128 is applied, we receive 128.65.73.0, so router Interface 0 is used as the next hop.

(e) 192.64.73.176

BITWISE AND	255.255.255.128	255.255.255.192
192.64.73.176	192.64.73.128	192.64.73.128

Next Hop: Interface 1

When the subnet mask 255.255.255.192 is applied, we receive 192.64.73.128, so router Interface 1 is used as the next hop.

Problem 3:

(a) Each node knows only the distances to its immediate neighbors

Information Stored at Node	Distance to Reach Node					
	\boldsymbol{A}	В	C	D	\boldsymbol{E}	F
A	0	3	8	8	8	∞
\boldsymbol{B}	3	0	3	4	8	∞
C	8	3	0	8	3	∞
D	8	4	8	0	1	∞
\boldsymbol{E}	8	8	3	1	0	1
$oldsymbol{F}$	∞	∞	∞	∞	1	0

(b) Each node has reported the information it had in the preceding step to its immediate neighbors

Information Stored at Node	Distance to Reach Node					
	\boldsymbol{A}	В	C	D	\boldsymbol{E}	F
\boldsymbol{A}	0	3	6	7	8	8
\boldsymbol{B}	3	0	3	4	5	8
\boldsymbol{C}	6	3	0	4	3	4
D	7	4	4	0	1	2
\boldsymbol{E}	8	5	3	1	0	1
$oldsymbol{F}$	8	∞	4	2	1	0

(c) Step (b) happens a second time

Information Stored at Node	Distance to Reach Node					
	\boldsymbol{A}	В	C	D	\boldsymbol{E}	\boldsymbol{F}
A	0	3	6	7	8	∞
\boldsymbol{B}	3	0	3	4	5	6
\boldsymbol{C}	6	3	0	4	3	4
D	7	4	4	0	1	2
$oldsymbol{E}$	8	5	3	1	0	1
$oldsymbol{F}$	8	6	4	2	1	0

Problem 4:

Routing table for node A:

STEP	CONFIRMED	TENTATIVE
1	(A,0,-)	
2	(A,0,-)	(B,6,B) (C,2,C)
3	(A,0,-) (C,2,C)	(B,5,C)(D,6,C)(E,8,C)
4	(A,0,-)(C,2,C)(B,5,C)	(D,6,C) (E,7,C)
5	(A,0,-)(C,2,C)(B,5,C)	(E,7,C)(F,8,C)
	(D,6,C)	
6	(A,0,-)(C,2,C)(B,5,C)	(F,8,C)
	(D,6,C)(E,7,C)	
7	(A,0,-)(C,2,C)(B,5,C)	
	(D,6,C) (E,7,C) (F,8,C)	