第五章 基数(势)

定理 5.1 (1) $\mathbb{Z} \approx \mathbb{N}$; (2) $\mathbb{N} \times \mathbb{N} \approx \mathbb{N}$; (3) $\mathbb{N} \approx \mathbb{Q}$; (4) $(0,1) \approx \mathbb{R}$; (5) $[0,1] \approx (0,1)$.

定理 **5.2** 设 A 为任意的集合,则 $\mathcal{P}(A) \approx (A \to 2)$,其中 $(A \to 2)$ 为 2^A ,即 A 到 $2 = \{0,1\}$ 的全体函数.

定理 5.3 设 A,B,C 为任意的集合,则

- (1) $A \approx A$;
- (2) 若 $A \approx B$, 则 $B \approx A$;
- (3) $A \approx B 且 B \approx C$, 则 $A \approx C$.

定理 5.4 (康托定理)

- (1) $\mathbb{N} \not\approx \mathbb{R}$;
- (2) 设 A 为任意的集合,则 $A \approx \mathcal{P}(A)$.

定理 5.5 不存在与自己的真子集等势的自然数.

推论1 不存在与自己的真子集等势的有穷集合.

推论2

- (1) 任何与自己的真子集等势的集合都是无穷集.
- (2) № 是无穷集.

推论 3 任何有穷集合都与惟一的自然数等势.

定理 5.6 任何有穷集合的子集仍为有穷集合.

定理 5.7 设 A, B 为任意二集合,则 $A \preceq B$ 当且仅当存在 $C \subseteq B$,使得 $A \approx C$.

推论 设 A.B 为二集合.

(1) 若 $A \subseteq B$,则 $A \preccurlyeq \cdot B$;

(2) 若 $A \approx B$, 则 $A \preceq B$ 且 $B \preceq A$.

定理 **5.8** 设 *A*, *B*, *C* 为三个集合.

(1) $A \preccurlyeq \cdot A$;

(2) $A \approx B \perp B \leq \cdot C$, 则 $A \leq \cdot C$.

定理 5.9 设 A, B, C, D 为 4 个集合,已知 $A \preceq B$ 且 $C \preceq D$,则

(1) $\overrightarrow{A}B \cap D = \emptyset$, $M \cap A \cup C \preccurlyeq B \cup D$;

(2) $A \times C \preceq B \times D$.

定理 5.10 设 A,B,C,D 为 4 个集合,且已知 $\operatorname{card} A = \operatorname{card} C = \kappa,\operatorname{card} B = \operatorname{card} D = \lambda$,则 $A \preccurlyeq \cdot B$ 当且仅当 $C \preccurlyeq \cdot D$.

定理 5.11 设 A 为任意一个集合,则

 $\operatorname{card} A < \operatorname{card} \mathcal{P}(A)$.