Método dos mínimos quadrados

Este método utiliza um conjunto de m pares ordenados (x_k, y_k) para encontrar uma função da forma

$$\varphi\left(x\right) = \sum_{i=1}^{n} \alpha_{i} g_{i}\left(x\right)$$

que ajusta os dados através do método dos mínimos quadrados. As funções $g_i(x)$ são prédeterminadas. O algoritmo retorna $\tilde{y} = \varphi(\tilde{x})$, onde \tilde{x} é um número arbitrário.

Algoritmo:

- A) Dados iniciais:
 - 1) $x_{m\times 1}$
 - 2) $y_{m\times 1}$
 - 3) $g_i(x)$, i = 1, 2, ..., n
 - 4) $\tilde{x}_{1\times 1}$
- B) Cálculo de A

$$\begin{bmatrix}
Para & i = 1, 2, ..., n \\
Para & j = 1, 2, ..., n \\
A_{ij} &= 0 \\
Para & k = 1, 2, ..., m \\
A_{ij} &= A_{ij} + g_i(x_k) g_j(x_k)
\end{bmatrix}$$

C) Cálculo de b

Para
$$i = 1, 2, ..., n$$

$$b_{i} = 0$$
Para $k = 1, 2, ..., m$

$$b_{i} = b_{i} + y_{k}g_{i}(x_{k})$$

D) Solução de $A\alpha=b$

$$\alpha = A^{-1}b$$
 (dimensão $n \times 1$)

E) Cálculo de $\tilde{y} = \varphi(\tilde{x})$

$$\tilde{y} = 0$$

$$\begin{bmatrix}
\operatorname{Para} k = 1, 2, ..., n \\
\tilde{y} = \tilde{y} + \alpha_k g_k(\tilde{x})
\end{bmatrix}$$