Minería de Datos y el proceso de KDD

Fayyad (1996)

□ Técnicas de Minería de Datos

AGRUPAMIENTO

RED NEURONAL

Tipo de conocimiento a extraer

Descriptivo

- Muestran nuevas relaciones entre las variables.
- Por ejemplo se buscará describir:
 - Tipos de clientes para diseñar campañas de marketing
 - Transacciones en una tarjeta de crédito para detectar casos anómalos.

Predictivo

- En base al modelo construido es posible predecir hechos futuros.
- Por ejemplo se busca predecir:
 - Cuál medicamento suministrar a un paciente dado.
 - Si un mail recibido es spam o no.

Modelos predictivos

- Utiliza entrenamiento supervisado
 - Se debe contar con un conjunto de datos etiquetados previamente. Es decir que, para cada ejemplo, debe conocerse la respuesta esperada.
- Una vez entrenado, es capaz de predecir el valor del atributo indicado previamente como la respuesta esperada (label).

Ejemplos

- Modelo para predecir a qué clase de flor de iris corresponde una flor dada en base a la información suministrada en *Iris.csv*
- Modelo para predecir la probabilidad de que una persona padezca
 COVID en base a los datos de su historia clínica y sus síntomas.

Datos de entrenamiento y de testeo

El conjunto de datos original se dividirá en dos partes

Conjunto de datos de entrenamiento

Se utilizarán para construir el modelo. Como el aprendizaje es supervisado el método buscará ajustar su respuesta a lo indicado en estos ejemplos.

Conjunto de datos de testeo

- Una vez construido el modelo será utilizado para medir su calidad.
- Se espera que la respuesta del modelo coincida lo más posible con lo indicado en estos ejemplos.

Arbol de decisión

- Es un modelo de predicción muy utilizado en Minería de Datos.
- Por su forma jerárquica, permite visualizar la organización de los atributos.
- Se construye a partir de la identificación sucesiva de los atributos más relevantes.

Arbol de decisión – Aplicaciones

Predicción

- Recorriendo sus ramas se obtienen reglas que permiten tomar decisiones.
- Si todas las hojas se refieren al mismo atributo y es discreto es un árbol de clasificación.

Descripción

Su estructura jerárquica les permite mostrar cómo está organizada la información disponible.

Arbol de decisión. Ejemplo

- Suponga que se dispone de la siguiente información de pacientes tratados previamente por problemas visuales
 - Edad
 - Astigmatismo (si o no)
 - Grado de miopía
 - Recomendación de operarse (si o no)

A partir de esta información puede obtenerse un **modelo** en forma de **árbol** que resuma el criterio seguido para recomendar si debe operarse o no.

Arbol de decisión. Ejemplo

Note que las opciones son excluyentes

Arbol de decisión. Ejemplo

Un atributo cualitativo no puede aparecer más de una vez en la misma rama

y un atributo cuantitativo?

Obtención del modelo

Uso del modelo

Arboles como reglas

Si (Miopia>7) **entonces** (SeOpera=SI)

Si (Miopia<=7) y (Astig=SI) y (Miopía >3) entonces (SeOpera=SI)

Si (Miopia<=7) y (Astig=NO) y (Edad=MAYOR) entonces (SeOpera=SI)

EN OTRO CASO NO

Obtención del árbol de decisión - Algoritmo Básico

- El árbol se construye de la forma top-down recursive divide-andconquer.
- Al comienzo, todos los ejemplos de entrenamiento están en el nodo raíz.
- Los ejemplos se particionan recursivamente basado en los atributos seleccionados.
- Los atributos se seleccionan en base a una heurística o una medida estadística (p.ej., ganancia de información).

Obtención del árbol de decisión

- Condiciones para detener el particionamiento
 - Todas las muestras, para un nodo dado, corresponden a la misma clase.
 - No hay atributos restantes para particionar. Se usa voto mayoritario para clasificar la hoja.
 - No quedan más muestras (registros del conjunto de entrenamiento).

Ejemplo 1: AlSol.csv

id	Nombre	Pelo	Estatura	Peso	Protector	Quemado
E1	Sara	Rubio	Promedio	Ligero	No	SI
E2	Diana	Rubio	Alta	Promedio	Si	NO
E3	Alexis	Castaño	Baja	Promedio	Si	NO
E4	Ana	Rubio	Baja	Promedio	No	SI
E5	Emilia	Pelirrojo	Promedio	Pesado	No	SI
E6	Pedro	Castaño	Alta	Pesado	No	NO
E7	Juan	Castaño	Promedio	Pesado	No	NO
E8	Catalina	Rubio	Baja	Ligero	Si	NO

¿Cuál atributo elegiría como raíz del árbol?

Es la seleccionada por tener la mayor cantidad de elementos en subconjuntos homogéneos

¿Cómo sigue?

Analizar la repuesta del resto de los atributos para los ejemplos que aún no pertenecen a un subconjunto homogéneo

Arbol de clasificación

Métodos de selección de atributos

- Utilizados por los algoritmos de construcción para seleccionar en cada paso, según se va generando el árbol, aquel atributo que mejor distribuye los ejemplos de acuerdo a su clasificación objetivo.
- Existen distintos criterios
 - Ganancia de Información (Algoritmo Id3)
 - Tasa de Ganancia (Algoritmo C4.5)
 - Indice Gini (Algoritmos CART)

Ganancia de Información

- Detecta el atributo con menor incertidumbre para identificar la clase.
- La Ganancia de Información es la diferencia entre la incertidumbre inicial y la del atributo seleccionado.
- Luego, se elegirá aquél que brinde la mayor Ganancia de Información.

Comencemos por revisar el concepto de entropía

Entropía

- La entropía caracteriza la heterogeneidad de un conjunto de valores.
- Si en el conjunto E hay n valores distintos, la entropía de E se define como:

$$Entropia(E) = \sum_{i=1}^{\infty} -p_i \log_2(p_i)$$

siendo p_i la proporción de ejemplos de E que coinciden con el i-ésimo valor.

Entropía

E1, E4, E5 (+) E2, E3, E6, E7, E8 (-)

х	log ₂ (x)
1/8	-3,00
2/8	-2,00
3/8	-1,42
4/8	-1,00
5/8	-0,68
6/8	-0,42
7/8	-0,19
8/8	0,00

En AlSol.csv, el conjunto inicial de ejemplos E está formado por 3 casos positivos y 5 negativos. Luego

$$Entropia(E) = -\left(\frac{3}{8}\right) * log_2\left(\frac{3}{8}\right) - \left(\frac{5}{8}\right) * log_2\left(\frac{5}{8}\right)$$

$$= 0.9544$$

0,00

E1, E4, E5 (+) E2, E3, E6, E7, E8 (-)

Entropía

■ En *AlSol.csv*, el conjunto inicial de ejemplos *E* está formado por 3 casos positivos y 5 negativos. Luego

$$Entropia(E) = -\left(\frac{3}{8}\right) * log_2\left(\frac{3}{8}\right) - \left(\frac{5}{8}\right) * log_2\left(\frac{5}{8}\right)$$

$$= 0.9544$$

Este valor mide la heterogeneidad del conjunto de ejemplos.
Valdría 0 si todos pertenecieran a la misma clase y 1 si
hubiera la misma cantidad de ejemplos positivos que
negativos (caso de 2 clases)

Entropía de un atributo

- Utilizaremos el concepto de entropía para medir la incertidumbre de cada atributo.
- La incertidumbre del atributo es la cantidad de información que necesita para identificar la clase.
- Permite medir cuán heterogénea es la distribución de los ejemplos luego de usar el atributo. Valdrá 0 si en cada rama los ejemplos pertenecen a una única clase.

Entropía de un atributo

La entropía de un atributo A con Va valores distintos y un conjunto de valores E se calcula de la siguiente forma:

$$Entropia(E, A) = \sum_{v \in V_a} \frac{|E_v|}{E} Entropia(E_v)$$

siendo E_v el subconjunto de ejemplos para los que el atributo A toma el valor v.

$$Entropia(E_{rubio}) = -\left(\frac{2}{4}\right) * log 2\left(\frac{2}{4}\right) - \left(\frac{2}{4}\right) * log 2\left(\frac{2}{4}\right) = 1$$

$$Entropia(E_{castaño}) = -\left(\frac{3}{3}\right) * log 2\left(\frac{3}{3}\right) = 0$$

$$Entropia(E_{pelirrojo}) = -\left(\frac{1}{1}\right) * log2\left(\frac{1}{1}\right) = 0$$

$$Entropia(E, Pelo) = \left(\frac{4}{8}\right) * 1 + \left(\frac{3}{8}\right) * 0 + \left(\frac{1}{8}\right) * 0 = 0.5$$

Ganancia de Información

Dado un atributo A y un conjunto de ejemplos E, la Ganancia de Información de dicho atributo se calcula así:

Ganancia(E,A) = Entropia(E) - Entropia(E,A)

Ganancia de Información

E1, E4, E5 (+) E2, E3, E6, E7, E8 (-)

Entropía(E, PELO)=0.5

Ganancia(E, Pelo) = 0.9544 - 0.5 = 0.4544

0,9183

Selección por Ganancia de Información

- Entropía(E) = 0.9544
- Ganancia(E,A) = Entropia(E) Entropia(E,A)

Atributo	Entropía(E,A)	Ganancia(E,A)		
Pelo	0,5	0,4544		
Protector	0,6069	0,3475		
Estatura	0,6887	0,2657		
Peso	0,9387	0,0157		

Es el seleccionado por ser el de mayor Ganancia

¿Cómo sigue?

Analizar la repuesta del resto de los atributos para los ejemplos que aún no pertenecen a un subconjunto homogéneo

Selección por Ganancia de Información

Entropia(E) = 1

E

E2, E8 (-)

E1, E4 (+)

Atributo	Entropía(E,A)	Ganancia(E,A)	
Protector	0	1	
Estatura	0,5	0,5	
Peso	1	0	

Es el seleccionado por ser el de mayor Ganancia

Arbol de clasificación

Ejemplo 2: Construir el árbol a partir de los siguientes datos

и°	Ambiente	Temperatura	Humedad	Viento	Juega?
1	soleado	alta	alta	no	No
2	soleado	alta	alta	si	No
3	nublado	alta	alta	no	Si
4	lluvioso	media	alta	no	Si
5	lluvioso	baja	normal	no	Si
6	lluvioso	baja	normal	si	No
7	nublado	baja	normal	si	Si
8	Soleado	media	alta	no	No
9	Soleado	baja	normal	no	Si
10	lluvioso	media	normal	no	Si
11	Soleado	media	normal	si	Si
12	Nublado	media	alta	si	Si
13	Nublado	alta	normal	no	Si
14	lluvioso	media	alta	si	No

Entropia _{Soleado} =
$$-\frac{2}{5}\log_2\left(\frac{2}{5}\right) - \frac{3}{5}\log_2\left(\frac{3}{5}\right) = 0,9710$$

Entropia _{Nublado} =
$$-\frac{4}{4}\log_2\left(\frac{4}{4}\right) = 0$$

Entropia _{Lluvioso} =
$$-\frac{3}{5}\log_2\left(\frac{3}{5}\right) - \frac{2}{5}\log_2\left(\frac{2}{5}\right) = 0,9710$$

Entropia _{AMBIENTE} =
$$\frac{5}{14} * 0.971 + \frac{4}{14} * 0 + \frac{5}{14} * 0.971 = 0.6935$$

0,9164

Baja

 $3 \rightarrow SI$

 $1 \rightarrow NO$

Es el seleccionado por tener el menor valor de *Entropia*, es decir, la mayor cantidad de elementos en subconjuntos homogéneos

Ya tenemos el nodo raíz

- Si está nublado, SI juega.
- Ahora falta analizar las dos ramas que no son puras.

Buscando los nodos del 1er. nivel del árbol

Para estas 5 muestras, calcular el desorden de los 3 atributos restantes

Muestras a considerar para la rama *SOLEADO* del atributo AMBIENTE

Nº	Ambiente	Temperatura	Humedad	Viento	Juega?
1	soleado	alta	alta	no	No
2	soleado	alta	alta	si	No
8	Soleado	media	alta	no	No
9	Soleado	baja	normal	no	Si
11	Soleado	media	normal	si	Si

Estado actual del árbol

Para estas 5 muestras, calcular el desorden de los 3 atributos restantes (sacando AMBIENTE)

75

Arbol de clasificación

Arboles de clasificación

- Algoritmos de construcción
 - ID3 sólo para atributos cualitativos
 - C4.5 opera con atributos cuantitativos y cualitativos

- Utilizaremos las métricas
 - Ganancia de Información
 - Tasa de Ganancia

Ejemplo: Utilice Rapid Miner para construir el árbol que modelice cuando jugar al golf usando el algoritmo ID3

N°	Ambiente	Temperatura	Humedad	Viento	Juega?
1	soleado	alta	alta	no	No
2	soleado	alta	alta	si	No
3	nublado	alta	alta	no	Si
4	lluvioso	media	alta	no	Si
5	lluvioso	baja	normal	no	Si
6	lluvioso	baja	normal	si	No
7	nublado	baja	normal	si	Si
8	Soleado	media	alta	no	No
9	Soleado	baja	normal	no	Si
10	lluvioso	media	normal	no	Si
11	Soleado	media	normal	si	Si
12	Nublado	media	alta	si	Si
13	Nublado	alta	normal	no	Si
14	lluvioso	media	alta	si	No

Ejemplo

Ejemplo

Arbol con ID3

Arbol con ID3

Ejecutar y visualizar el árbol

Arbol obtenido con ID3

Arbol obtenido con ID3

Características del algoritmo ID3

- Sólo opera con atributos cualitativos.
- Utiliza la Ganancia de Información para seleccionar los atributos a insertar en el árbol.
- Crea el árbol de decisión de tal manera que clasifica correctamente los datos de entrenamiento.
- Esto puede limitar la capacidad de generalización del árbol ya que los datos de entrenamiento podrían contener ruido o no ser lo suficientemente representativos.

Algoritmo ID3

- Seleccionar el atributo A_i con mayor ganancia de información.
- Agregar el nodo al árbol.
- Para cada rama
 - Si sólo hay ejemplos de una clase C_k, etiquetarlo como C_k
 - Si no, llamar a ID3 con los ejemplos de la rama y eliminando al atributo A_i

Ejercicio: Utilice Rapid Miner para construir el árbol que modelice la información de **AlSol.csv**

Nombre	Pelo	Estatura	Peso	Protector	Resultado
Sara	Rubio	Promedio	Ligero	No	Quemado
Diana	Rubio	Alta	Promedio	Si	Ninguno
Alexis	Castaño	Baja	Promedio	Si	Ninguno
Ana	Rubio	Baja	Promedio	No	Quemado
Emilia	Pelirrojo	Promedio	Pesado	No	Quemado
Pedro	Castaño	Alta	Pesado	No	Ninguno
Juan	Castaño	Promedio	Pesado	No	Ninguno
Catalina	Rubio	Baja	Ligero	Si	Ninguno

Note que se obtienen árboles diferentes según el criterio utilizado

Utilizando como métrica (parámetro criterion) la Ganancia de Información (opción information_gain)

Utilizando como métrica la Ganancia de Información (opción information_gain) pero sin considerar el atributo Nombre

Operador Select Attibutes para descartar el atributo
 Nombre

Operador Select Attibutes para descartar el atributo Nombre

Ingrese aquí para indicar los atributos que deben considerarse

atributos que serán utilizados para generar el árbol

Estos son los

Utilizando como métrica la Ganancia de Información (opción information_gain) pero sin considerar el atributo Nombre

 Utilizando como métrica (parámetro criterion) la Tasa de Ganancia (opción gain_ratio)

Tasa de Ganancia (Gain Ratio)

La Ganancia de Información (*Information Gain*) favorece a los atributos con muchos valores.

Ej: atributo NOMBRE en AlSol.csv

La Tasa de Ganancia compensa el hecho de que un atributo pueda tener muchos valores dividiendo la Ganancia de Información por la medida denominada información de la división.

$$Gain_Ratio(E,Atrib) = \frac{Ganancia(E,Atrib)}{Info_Division(E,Atrib)}$$

Note que la tasa de ganancia se calcula para un atributo no para el conjunto de ejemplos completo

Ganancia de Información de PELO

 Dado el conjunto E, la ganancia de información del atributo PELO será Sara
Diana
Ana
Catalina
Alexis
Pedro

Juan

Emilia

 $Ganancia(E, Pelo) = \underline{Entropia(E)} - Entropia(E, PELO)$

Cantidad de **información** requerida para dar una respuesta en base los ejemplos del conjunto E

Cantidad de **incertidumbre** que se tiene al momento de dar una respuesta

Cantidad de **información** requerida para dar una respuesta en base los ejemplos del conjunto E divididos por el atributo PELO

Entropía del conjunto E

 Inicialmente, la cantidad de información requerida para dar una respuesta es

$$Entropia(E) = -\frac{5}{8}log_2\left(\frac{5}{8}\right) - \frac{3}{8}log_2\left(\frac{3}{8}\right) = 0.9544$$

E

Sara

Diana

Ana

Catalina

Alexis Pedro Juan

Emilia

Entropía del atributo PELO

Cantidad de información requerida por PELO para responder

E

Sara

Diana

Ana

Catalina

Alexis Pedro

Juan

Emilia

```
Ganancia de Información de PELO
```

Luego, la ganancia de información si se elige PELO será

$$Ganancia(E, Pelo) = Entropia(E) - Entropia(E, PELO)$$

= 0.9544 - 0.5 = 0.4544

Información de la división

La información de la división se calcula así

$$Info_Division(E,A) = -\sum_{v_i}^{v_n} \frac{|E_i|}{|E|} \log_2 \frac{|E_i|}{|E|}$$

Siendo E_i , E_{i+1} ,..., E_n las diferentes particiones que resultan de dividir el conjunto E de ejemplos teniendo en cuenta los valores v_i ... v_n que toma el atributo.

Info_Division(E, Pelo)

Dentro de las ramas del atributo no se distinguen las clases

$$Info_Division(E, Pelo) = -\frac{4}{8}\log_2\left(\frac{4}{8}\right) - \frac{3}{8}\log_2\left(\frac{3}{8}\right) - \frac{1}{8}\log_2\left(\frac{1}{8}\right)$$

$$Info_Division(E, Pelo) = 1.4056$$

Tasa de Ganancia de PELO

$$Gain_Ratio(E, Pelo) = \frac{Ganancia(E, Pelo)}{Info_Division(E, Pelo)}$$

$$Gain_Ratio(E, Pelo) = \frac{0.4544}{1.4056} = 0.3233$$

E

E1, E4, E5 (+) E2, E3, E6, E7, E8 (-)

$$Entropia(E) = 0.9544$$

$$Entropia(E, Pelo) = \frac{4}{8} * 1 + \frac{3}{8} * 0 + \frac{1}{8} * 0 = 0.5$$

$$Ganancia(E, PELO) = 0.9544 - 0.5 = 0.4544$$

E

E1, E4, E5 (+) E2, E3, E6, E7, E8 (-)

Entropia(E) = 0.9544

Entropia(E, Pelo) = 0.5

Ganancia(E, PELO) = 0.4544

E

E1, E4, E5 (+) E2, E3, E6, E7, E8 (-)

Entropia(E) = 0.9544

Entropia(E, Pelo) = 0.5

Ganancia(E, PELO) = 0.4544

Entropia(E) = 0.9544

$$Entropia(E, Protector) = \frac{3}{8} * 0 + \frac{5}{8} * 0.971 = 0.6069$$

$$Ganancia(E, Protector) = 0.9544 - 0.6069 = 0.3475$$

E

E1, E4, E5 (+) E2, E3, E6, E7, E8 (-)

Entropia(E) = 0.9544

Entropia(E, Pelo) = 0.5

Ganancia(E, PELO) = 0.4544

Entropia(E) = 0.9544

Entropia(E, Protector) = 0.6069

Ganancia(E, Protector) = 0.3475

Información por la división

$$InfoDiv(E, PELO) = -\frac{4}{8}\log_2\left(\frac{4}{8}\right) - \frac{3}{8}\log_2\left(\frac{3}{8}\right) - \frac{1}{8}\log_2\left(\frac{1}{8}\right) = 1.4056$$

$$InfoDiv(E, Protector) = -\frac{3}{8}\log_2\left(\frac{3}{8}\right) - \frac{5}{8}\log_2\left(\frac{5}{8}\right) = 0.9544$$

Tasa de Ganancia

E E1, E4, E5 (+) E2, E3, E6, E7, E8 (-)

Ganancia(E, Pelo) = 0.4544

InfoDiv(E, Pelo) = 1.4056

$$TasaGanancia(E, Pelo) = \frac{0.4544}{1.4056} = \mathbf{0.3232}$$

Ganancia(E, Protector) = 0.3475

InfoDiv(E, Protector) = 0.9544

$$TasaGanancia(E, Protector) = \frac{0.3475}{0.9544} = \mathbf{0.3641}$$

Tasa de Ganancia con Rapid Miner

Tasa de Ganancia con Rapid Miner

Arbol obtenido usando como criterio Tasa de Ganancia

Sobreajuste

- Es el efecto de entrenar excesivamente un modelo (en este caso el árbol) con ciertos datos para los que se conoce el resultado deseado.
- Cuando el modelo se ajusta excesivamente (sobreajusta) a los datos de entrenamiento su desempeño a la hora de clasificarlos es muy superior los obtenidos al aplicarlo sobre ejemplos nuevos. Esto evidencia el sobreajuste.
- Construir modelos complejos (en este caso árboles con demasiados nodos) a veces se debe a sobreajustar dicho modelo a los datos de entrenamiento.

Ejemplo

■ En el archivo **Golf_V2.csv** se ha cambiado el ejemplo 7 a Juega=NO.

Rehaga el árbol utilizando Id3 y compárelo con el anterior.

Arboles usando sólo Ganancia de Información

Golf.csv

```
Ambiente = lluvioso
| Viento = no: si {no=0, si=3}
| Viento = si: no {no=2, si=0}
Ambiente = nublado: si {no=0, si=4}
Ambiente = soleado
| Humedad = alta: no {no=3, si=0}
| Humedad = normal: si {no=0, si=2}
```

Note que los datos de entrenamiento sólo difieren en un ejemplo

Golf_V2.csv

```
Viento = no
    Ambiente = lluvioso: si {no=0, si=3}
    Ambiente = nublado: si {no=0, si=2}
    Ambiente = soleado
        Temperatura = alta: no {no=1, si=0}
        Temperatura = baja: si {no=0, si=1}
        Temperatura = media: no {no=1, si=0}
Viento = si
    Temperatura = alta: no {no=1, si=0}
    Temperatura = baja: no {no=2, si=0}
    Temperatura = media
        Ambiente = lluvioso: no {no=1, si=0}
        Ambiente = nublado: si {no=0, si=1}
        Ambiente = soleado: si {no=0, si=1}
```

Cómo construir el árbol con atributos numéricos

#	Ambiente	Temperatura	Humedad	Viento	Juega
1	soleado	85	85	NO	No
2	soleado	80	90	sı	No
3	nublado	83	86	NO	Si
4	lluvioso	70	96	NO	Si
5	lluvioso	68	80	NO	Si
6	lluvioso	65	70	SI	No
7	nublado	64	65	sı	Si
8	soleado	72	95	NO	No
9	soleado	69	70	NO	Si
10	lluvioso	75	80	NO	Si
11	soleado	75	70	sı	Si
12	nublado	72	90	sı	Si
13	nublado	81	75	NO	Si
14	lluvioso	71	91	SI	No

Operando con atributos numéricos

El algoritmo ID3 sólo opera con atributos cualitativos

Arbol de clasificación. Algoritmo C4.5

Golf_Numérico.csv – Algoritmo C4.5 (W-J48)

Golf_V2.csv

W-J48 (C=0.25)

Precisión 10/14

```
Viento = NO: Si (8.0/2.0)
Viento = SI: No (6.0/2.0)
```

W-J48 (C=0.5)

Precisión 12/14

```
Viento = NO
| Humedad = alta
| Ambiente = soleado: No
| Ambiente = nublado: Si
| Ambiente = lluvioso: Si
| Humedad = Normal: Si (4.0)
Viento = SI: No (6.0/2.0)
```

Id3 (precisión 100%)

```
Viento = NO
I Ambiente = soleado
    Temperatura = alta: No
    Temperatura = media: No
    Temperatura = baja: Si
  Ambiente = nublado: Si
  Ambiente = lluvioso: Si
Viento = SI
   Temperatura = alta: No
   Temperatura = media
     Ambiente = soleado: Si
    Ambiente = nublado: Si
     Ambiente = lluvioso: No
   Temperatura = baja: No
```

Arboles. Atributos Numéricos

- Para cada atributo numérico
 - Se ordenan sus valores de menor a mayor
 - Se calculan TODOS los valores de desorden
 - Se elige el menor.

Entropia
$$_{\leq 82.5} = -\frac{1}{7}\log_2\left(\frac{1}{7}\right) - \frac{6}{7}\log_2\left(\frac{6}{7}\right) = 0.5917$$

Entropia
$$_{>82.5} = -\frac{4}{7}\log_2\left(\frac{4}{7}\right) - \frac{3}{7}\log_2\left(\frac{3}{7}\right) = 0.9852$$

Entropia
$$_{HUMEDAD} = \frac{7}{14} * 0.5917 + \frac{7}{14} * 0.9852 = 0.7885$$

67,5	0,8926
72,5	0,9253
77,5	0,8950
82,5	0,7885
85,5	0,8922
88	0,8380
90,5	0,8610
93	0,9300
95,5	0,8926

Atributo TEMPERATURA

64,5	0,8926
66,5	0,9300
68,5	0,9398
69,5	0,9253
70,5	0,8950
71,5	0,9389
73,5	0,9389
77,5	0,9152
80,5	0,9398

Desorden Promedio de cada atributo

Repitiendo el mismo proceso para el resto de los atributos puede completarse la siguiente tabla:

Atributo	Entropía	Es el
Ambiente	0.6935	seleccionado por ser el de
Temperatura	0.8926	menor valor
Humedad	0.7885	
Viento	0.8922	

Buscando los nodos del 1er. nivel del árbol

Para estas 5 muestras, calcular el desorden de los 3 atributos restantes

Muestras a considerar para la rama *SOLEADO* del atributo AMBIENTE

#	Ambiente	Temperatura	Humedad	Viento	Juega
1	soleado	85	85	NO	No
2	soleado	80	90	SI	No
8	soleado	72	95	NO	No
9	soleado	69	70	NO	Si
11	soleado	75	70	SI	Si

TEMPERATURA

70,5	73,5	77,5	82,5
0,6490	0,9510	0,5510	0,80

HUMEDAD

77,5	87,5	92,5
0	0,5510	0,8

Muestras a considerar para la rama *SOLEADO* del atributo AMBIENTE

#	Ambiente	Temperatura	Humedad	Viento	Juega
1	soleado	85	85	NO	No
2	soleado	80	90	SI	No
8	soleado	72	95	NO	No
9	soleado	69	70	NO	Si
11	soleado	75	70	SI	Si

TEMPERATURA

70,5	73,5	77,5	82,5
0,6490	0,9510	0,5510	0,80

	HUMEDAD		
(77,5	87,5	92,5
	0	0,5510	0,8
		-	

0.9510

Arbol de decisión

El punto de corte puede variar (ej: sólo se considera el punto medio o se tiene en cuenta la cantidad de repetidos en cada extremo).

Arbol de decisión

Para estos 5 ejemplos se repite nuevamente el proceso de selección

Arbol de decisión

Ejemplo

Utilice el archivo "Golf_numerico.csv" y construya nuevamente el árbol utilizando el operador W-J48 que no requiere atributos discretos

Golf_numérico

Poda

- Estrategias para minimizar el sobreajuste
 - **Prepoda**: limitar el crecimiento del árbol cuando la división de los ejemplos no es estadísticamente significativa.
 - **Pospoda**: podar el árbol luego de haberlo generado. Es lo más usado.
- Cuando se poda un nodo de un árbol, se eliminan las ramificaciones y se convierte a ese nodo en una hoja a la que se puede asignar la clase mayoritaria de los ejemplos vinculados a ese nodo.

Prepoda

```
Viento = no
    Ambiente = lluvioso: si {no=0, si=3}
    Ambiente = nublado: si {no=0, si=2}
    Ambiente = soleado
        Temperatura = alta: no {no=1, si=0}
        Temperatura = baja: si {no=0, si=1}
        Temperatura = media: no {no=1, si=0}
Viento = si
   Temperatura = alta: no {no=1, si=0}
    Temperatura = baja: no {no=2, si=0}
    Temperatura = media
       Ambiente = lluvioso: no {no=1, si=0}
       Ambiente = nublado: si {no=0, si=1}
       Ambiente = soleado: si {no=0, si=1}
```

Hay varias hojas con un único ejemplo

Prepoda: no generar hojas con 1 ejemplo

```
Viento = no
    Ambiente = lluvioso: si {no=0, si=3}
    Ambiente = nublado: si {no=0, si=2}
    Ambiente = soleado
       Temperatura = alta: no {no=1, si=0}
        Temperatura = baja: si {no=0, si=1}
        Temperatura = media: no {no=1, si=0}
Viento = si
    Temperatura = alta: no {no=1, si=0}
    Temperatura = baja: no {no=2, si=0}
    Temperatura = media
        Ambiente = lluvioso: no {no=1, si=0}
        Ambiente = nublado: si {no=0, si=1}
        Ambiente = soleado: si {no=0, si=1}
```

Si no se usa TEMPERATURA la rama AMBIENTE=SOLEADO responde Juega=no (1 error)

Si la rama VIENTO=NO responde Juega=SI hay sólo 2 errores

Prepoda: no generar hojas con 1 ejemplo

```
Viento = no
    Ambiente = lluvioso: si {no=0, si=3}
    Ambiente = nublado: si {no=0, si=2}
    Ambiente = soleado
        Temperatura = alta: no {no=1, si=0}
        Temperatura = baja: si {no=0, si=1}
        Temperatura = media: no {no=1, si=0}
Viento = si
    Temperatura = alta: no {no=1, si=0}
    Temperatura = baja: no {no=2, si=0}
    Temperatura = media
        Ambiente = lluvioso: no {no=1, si=0}
       Ambiente = nublado: si {no=0, si=1}
        Ambiente = soleado: si {no=0, si=1}
```

Si no se usa AMBIENTE la rama TEMPERATURA = MEDIA responde Juega=SI (1 error)

Si la rama VIENTO=SI responde Juega=NO se producen 2 errores

Golf_V2

W-J48 (C=0.25)

Precisión 10/14

```
Viento = NO: Si (8.0/2.0)
Viento = SI: No (6.0/2.0)
```

W-J48 (C=0.5)

Precisión 12/14

```
Viento = NO
| Humedad = alta
| Ambiente = soleado: No
| Ambiente = nublado: Si
| Ambiente = lluvioso: Si
| Humedad = Normal: Si (4.0)
Viento = SI: No (6.0/2.0)
```

Id3 (precisión 100%)

```
Viento = NO
I Ambiente = soleado
    Temperatura = alta: No
    Temperatura = media: No
    Temperatura = baja: Si
  Ambiente = nublado: Si
  Ambiente = lluvioso: Si
Viento = SI
   Temperatura = alta: No
   Temperatura = media
     Ambiente = soleado: Si
    Ambiente = nublado: Si
     Ambiente = lluvioso: No
   Temperatura = baja: No
```

Prepoda

- Una forma fácil de prepoda es no permitir hojas con un único ejemplo.
- Hay otros criterios. Ej: chi-cuadrado, cota de error

```
Viento = no: si {no=2, si=6}
Viento = si: no {no=4, si=2}
```

No se generan tantas ramas. Esto facilita la lectura

Ejemplo: Clasificación de flores de Iris

Se dispone de información de 3 tipos de flores Iris

Ejemplo: Clasificación de flores de Iris

ld	sepallength	sepalwidth	petallength	petalwidth	class
1	5,1	3,5	1,4	0,2	Iris-setosa
2	4,9	3,0	1,4	0,2	Iris-setosa
	•••	•••	•••	•••	•••
95	5,6	2,7	4,2	1,3	Iris-versicolor
96	5,7	3,0	4,2	1,2	Iris-versicolor
97	5,7	2,9	4,2	1,3	Iris-versicolor
	•••	•••	•••	• • •	•••
149	6,2	3,4	5,4	2,3	Iris-virginica
150	5,9	3,0	5,1	1,8	Iris-virginica

https://archive.ics.uci.edu/ml/datasets/lris

Ejemplo 6: Clasificación de flores de Iris

Ejemplo 6 – Iris.csv

```
petallength
W-J48
J48 pruned tree
                                                           0.5
petalwidth <= 0.6: Iris-setosa (40.0)
petalwidth > 0.6
                                                         Iris-setosa
    petalwidth <= 1.7
        petallength <= 4.9: Iris-versicolor (37.0)
        petallength > 4.9
            petalwidth <= 1.5: Iris-virginica (3.0)</pre>
            petalwidth > 1.5: Iris-versicolor (3.0/1.0)
    petalwidth > 1.7: Iris-virginica (37.0/1.0)
Number of Leaves :
```

Number of Leaves . . .

Size of the tree:

1.5

Iris-virginica

petalwidth

Iris-versicolor

Ejemplo: matriz de confusión

accuracy: 96.67%

	true Iris-setosa	true Iris-versicolor	true Iris-virginica	class precision
pred. Iris-setosa	10	0	0	100.00%
pred. Iris-versicolor	0	10	1	90.91%
pred. Iris-virginica	0	0	9	100.00%
class recall	100.00%	100.00%	90.00%	

Verifique que la tasa de acierto (accuracy) es algo superior sobre los datos de testeo