无线通信实验在线开放课程

主讲人: 吴光 博士

广东省教学质量工程建设项目

From Theory to Practice

Lab 5: Voice Transmission using USRP

主讲人: 吴光 博士

Email: wug@sustech.edu.cn

Demo: Voice Transmission using USRP

USRP: Universal Software Radio Peripheral

192.168.10.2

Daughter board	Frequency range
SBX	400 - 4400MHz
WBX	50 - 2200MHz
XCVR2450	2400 - 2500MHz
Basic	1 - 250MHz

Demo: Transmit a signal

Find USRP

Host computer's IP: **192.168.10.1**

Programming for Transmitter

Block Diagram of the Transmitter

Parameters	Value
Device names	192.168.10.2
Carrier frequency	2.40001GHz
IQ rate (samples/s)	200k
Gain (dB)	0
Waveform size	10000
Data	1+0i
Active antenna	Tx1

Actual value

Block Diagram of the Receiver

Configuration Parameters in Front Panel

Complex Baseband

$$s(t) = a(t)cos[2\pi f_c t + \varphi] \qquad \longrightarrow$$

$$s_l(t) = s_I(t) + js_Q(t)$$

$$s_I(t) = a(t)cos(\varphi)$$

$$s_Q(t) = a(t)sin(\varphi)$$

How to Interpret the Results?

Most-used USRP functions

Close

niUSRP Abort.vi

USRP Receiver

Demo: Voice Transmission using USRP

$$s(t) = a(t)cos[2\pi f_c t + \varphi]$$

$$s_I(t) = a(t)cos(\varphi)$$

$$s_Q(t) = a(t) sin(\varphi)$$

$$s_l(t) = s_I(t) + js_Q(t)$$

Baseband

$$s(nT_s) = cos[2\pi f_c t + 2\pi \int k_f m(nT_s)dt]$$

$$s_I(nT_s) = A_c cos(2\pi \int k_f m(nT_s)dt)$$

$$s_Q(nT_s) = A_c sin(2\pi \int k_f m(nT_s)dt)$$

$$s_l(nT_s) = s_l(nT_s) + js_Q(nT_s)$$

Baseband

$$s(nT_s) = cos[2\pi f_c t + 2\pi \int k_f m(nT_s)dt]$$

$$s_I(nT_s) = A_c cos(2\pi \int k_f m(nT_s)dt)$$

$$s_Q(nT_s) = A_c sin(2\pi \int k_f m(nT_s)dt)$$

$$s_l(nT_s) = s_I(nT_s) + js_Q(nT_s)$$

$$2\pi \int k_f m(nT_S)dt = atan\left(\frac{s_Q(nT_S)}{s_I(nT_S)}\right)$$

$$m(nT_S) = \frac{1}{2\pi k_f} \frac{d}{dt} \left[atan\left(\frac{s_Q(nT_S)}{s_I(nT_S)}\right) \right]$$

FM Transmitter

FM Receiver

Demo: Multi Channel System

Receiver, Channel 2

Receiver, Channel 3

- 1. How to measure the SNR of your AM/DSB/SSB/FM system?
- 2. How to design a multi-channel system?
- 3. How to measure the transmission range?
- 4. How to implement a real-time system?

Summary

Question ?

