IERG 6300: THEORY OF PROBABILITY

CHANDRA NAIR

ABSTRACT. This class covers basics of probability theory from a measure theoretic perspective.

LOCATION: SHB 833

Hours: Mon 12:30 - 2:15, Thu 1:30 - 3:15

1. Course Outline

- i) Measure-theoretic foundations of probability theory
 - Construction of measures
 - Random variables, distributions, integration
- ii) Weak convergence
 - Characteristic functions
 - Weak Convergence
- iii) Independent sums limit theorems
 - Weak Law of large numbers
 - Strong law of large numbers
 - Central limit theorem
 - Concentration inequalities
- iv) Dependent random variables
 - Conditional expectation
 - Markov chains
 - Stopping times
- v) Martingales
 - Martingale convergence theorem
 - Doob's decomposition theorem and up-crossing inequality
- vi) Ergodic Theory
 - Sub-additive ergodic theorem

2. Textbook and other references

- a) Class notes (mainly based on the text below)
- b) Main Text: Probability Theory (Courant Lecture Notes) by S.R.S. Varadhan
 - Available at Amazon

Remarks: The textbook is rather terse if you have not encountered the results before. However I like the presentation of the contents very much and I will fill the "left-out" arguments in class. Sometimes I will deviate from the presentation in this book and use alternate proofs, especially for the strong law of large numbers where I will be following Etemadi's proof.

- I have also found an earlier version of the book online from Varadhan's website (Google search).
- c) Probability Theory and Examples, Durrett. Amazon
- d) List of references from David Aldous's course website.

3. Grading Policy and Remarks

- This is a class where the subject matter is best learnt by working through homeworks and arguments. Hence there will be regular homeworks.
 - Homeworks 30%
 - Mid-term (3-day take home) 30%
 - Final (1 week take home) 40%
- The focus will be on mathematical rigor and proofs.
- **Pre-requisites**: A (graduate-level) course on real analysis would be ideal. However, if one is mathematically inclined, then an exposure to analysis arguments at the undergraduate level would be sufficient.