## **Research Work Presentation**

**Zhonghan Wang** 

February 2024



- SMT Solving based on Z3 (October 2021 August 2023)
  - Implement strategy portfolio for nonlinear arithmetic (z3++, smt-comp 2022&2023 gold medal)
  - Design a new local search algorithm (z3-nra-ls, accepted in VMCAI'2024)
  - Clause level dynamic MCSat algorithm (currently working)
- Hybrid System Verification (February 2021 June 2021)

# NRA in Z3-Plus-Plus

## Introduction

polynomial (nonlinear)

$$p := x|c|p + p|p * p$$

atom

$$a := b|p > 0|p < 0$$

formula

$$f := a | \neg f| f \wedge f | f \vee f |$$

SMT: Given a formula, find a complete assignment to satisfy.

# Implementation of Z<sub>3</sub> Plus Plus (z<sub>3</sub>pp)

#### z3-plusplus.github.io

View My GitHub Profile

#### Z3++

#### Overview

Z3++ is a derived SMT solver based on Z3. It participates in the SMT-COMP 2022, and significantly improves Z3 on the following logics:

QF\_IDL, QF\_LIA, QF\_BV, QF\_NIA and QF\_NRA

It is a project mainly developed in State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China.

Detailed description and source code are available at the github repository.

#### Contact

z3\_plus\_plus@outlook.com

#### **Awards**

At the FLoC Olympic Games, Z3++ won 2 gold medals (6 in total) for Biggest Lead Model Validation and Largest Contribution Model Validation.

#### People

Leader:

Shaowei Cai.

Hosted on GitHub Pages — Theme by orderedlist

https://z3-plus-plus.github.io/

# z3pp file tree

```
vogunt-shadow@LAPTOP-PVNS20MS_MTNGW64_/c/code/z3np/src/nlsat
$ tree .
 -- CMakeLists.txt
-- nlsat assignment.h
 -- nlsat clause.cpp
 -- nlsat clause.h
 -- nlsat_evaluator.cpp
 -- nlsat evaluator.h
 -- nlsat explain.cpp
 -- nlsat explain.h
 -- nlsat interval set.cpp
 -- nlsat interval set.h
 -- nlsat justification.h
 -- nlsat params.pvg
 -- nlsat scoped literal vector.h
 -- nlsat simple checker.cpp
 -- nlsat simple checker.h
 -- nlsat_solver.cpp
 -- nlsat solver.h
 -- nlsat symmetry checker.cpp
 -- nlsat symmetry checker.h
 -- nlsat types.cpp
 -- nlsat types.h
 -- nlsat variable ordering strategy.cpp
-- nlsat variable ordering strategy.h
 -- tactic
    -- CMakeLists.txt
    -- goal2nlsat.cpp
     -- goal2nlsat.h
    -- nlsat tactic.cpp
    -- nlsat tactic.h
    -- ofnra nlsat tactic.cop
     -- gfnra_nlsat_tactic.h
1 directory, 30 files
```

File tree of z<sub>3</sub> nlsat

# Portfolio of Z3pp: variable ordering

- variable ordering of nlsat (nlsat\_variable\_ordering\_strategy.cpp)
  - number of univariate polynomials
  - max degree of variable
  - BROWN: max degree, max degree of total terms, number of terms containing the variable
  - TRIANGULAR: max degree, max leading coefficient degree, sum of degree

# Portfolio of Z3pp: Interval Constraint Propagation (nlsat\_simple\_checker.cpp)

- Target Instances: MBO Methylene Blue Oscillator System
- Whether certain polynomial has a zero where all variables are positive.
- Example:

$$f := h1 > 0 \land h2 > 0 \land h3 > 0 \land h1^3 + 2h1h2 + h3^4 = 0$$

Implementation:

$$2h1 > 0 
ightarrow h1^3 > 0 \ h1 > 0 \land h2 > 0 
ightarrow h1h2 > 0 \ h3h2 > 0 
ightarrow h3^4 > 0$$

# Portfolio of Z3pp: symmetry (nlsat\_symmetry\_checker.cpp)

Instance: Hong (fully symmetry)

Example 5. [12]

Hong\_n

$$\exists x_1, \dots, \exists x_n \sum_{i=1}^n x_i^2 < 1 \land \prod_{i=1}^n x_i > 1$$

Hong2\_n

$$\exists x_1,\dots,\exists x_n\ \sum_{i=1}^n x_i^2 < 2n \wedge \prod_{i=1}^n x_i > 1$$

Example 6. (C.n.x) Whether the distance between the ball  $B_r(\bar{x})$  and the complement of  $B_8(\bar{x})$  is less than  $\frac{1}{10861}$ ?

$$\exists_{i=1}^{n} x_{i}, \exists_{i=1}^{n} y_{i} \sum_{i=1}^{n} x_{i}^{2} < r \wedge \sum_{i=1}^{n} y_{i}^{2} > 8^{2} \wedge \sum_{i=1}^{n} (x_{i} - y_{i})^{2} < \frac{1}{1000^{2}}$$

Our solver LiMbs solves all the 21 examples shown in Table 1. LiMbs is faster than the other solvers on 15 examples. Only LiMbs can solve 9 of the examples within a reasonable time while other solvers either run time out or return unknown state. From this we can see that our algorithm has great potential in solving satisfiability of polynomial formulas, especially considering that our prototype solver is a small program with less than 1000 lines of codes. For Hong,n and Hong2.n, though our solver is much faster than 23, CVC4 is the one that performs best. We note that the examples of Hong,n and Hong2.n are all symmetric. This reminds us it is worth exploiting symmetry to optimize our solver's performance.

Insert ordering clauses for variables: If x, y, z are symmetry, insert

$$x \le y \le z$$

# Portfolio of Z3pp: sample cell projection (nlsat\_explain.cpp)

 $\begin{array}{l} \textbf{Definition 1. } \textit{Suppose $\bar{a}$ is a sample of $\bar{x}$ in $\mathbb{R}^n$ and $F = \{f_1, \ldots, f_r\}$ is a polynomial set in $\mathbb{Z}[\bar{x}]$ where $\bar{x} = (x_1, \ldots, x_n)$. The sample-cell projection of $F$ on $x_n$ at $\bar{a}$ is <math display="block">\begin{array}{l} \text{Proj}_{sc}(F, x_n, \bar{a}) = \bigcup_{f \in F} \text{s\_coeff}(f, x_n, \bar{a}) \cup \\ \bigcup_{f \in F} \{\text{disc}(f, x_n)\} \cup \\ \bigcup_{f \in F, g \in \\ \text{s\_poly}(F, x_n, \bar{a}), \\ f \neq g} \{\text{res}(f, g, x_n)\} \end{array}$ 

- difference from McCallum's projection: calculate resultant only between sample polynomials
- sample polynomials: one or two polynomials whose root is the closest to the assignment point

# Portfolio of Z3pp: sample polynomials



Demo for sample polynomial

# Z3pp: competition result on QF\_NRA (single query)



https://tools-comp.github.io/2022/results/qf-nonlinearrealarith-single-query

# **Dynamic Ordering of nlsat**

- Using VSIDS and LRB branching heuristic in mcsat framework, instead of static ordering
- what means dynamic: decide branching variable using state information
- Using reverse order of assigned variables for cylindrical algebraic decomposition
- dynamic clause learning: remove useless clauses after each restart

| solver    | solved | unsat | sat  | unsolved |
|-----------|--------|-------|------|----------|
| z3_nlsat  | 10730  | 5546  | 5184 | 1404     |
| dnlsat_v1 | 10883  | 5611  | 5272 | 1251     |
| dnlsat_v2 | 10967  | 5612  | 5355 | 1167     |

#### **Local Search Method**

- use boundary score (cell score) data structure for local search
- incremental computation of arith variable score
- temporary relaxation of equality constraints

| Category                    | $\# \mathrm{inst}$ | <b>Z</b> 3 | CVC5 | Yices | Ours |
|-----------------------------|--------------------|------------|------|-------|------|
| 20161105-Sturm-MBO          | 120                | 0          | 0    | 0     | 84   |
| 20161105-Sturm-MGC          | 2                  | 2          | 0    | 0     | 0    |
| 20170501-Heizmann           | 69                 | 3          | 1    | 0     | 6    |
| 20180501-Economics-Mulligan | 93                 | 93         | 89   | 91    | 87   |
| 2019-ezsmt                  | 63                 | 54         | 51   | 52    | 18   |
| 20200911-Pine               | 245                | 235        | 201  | 235   | 224  |
| 20211101-Geogebra           | 112                | 109        | 91   | 99    | 100  |
| 20220314-Uncu               | 74                 | 73         | 66   | 74    | 73   |
| LassoRanker                 | 684                | 155        | 304  | 122   | 284  |
| UltimateAtomizer            | 48                 | 41         | 34   | 39    | 26   |
| hycomp                      | 525                | 311        | 216  | 227   | 272  |
| kissing                     | 42                 | 33         | 17   | 10    | 33   |
| meti-tarski                 | 4391               | 4391       | 4345 | 4369  | 4356 |
| zankl                       | 136                | 70         | 61   | 58    | 99   |
| Total                       | 6604               | 5570       | 5476 | 5376  | 5662 |

# **Future work (SAT View)**

#### what previous work brings?

- MCSAT brings assignment to arithmetic variables directly
- Local Search operates on arithmetic variables
- NRA solution space consists of CAD cells, like bool assignment for SAT

#### what future work changes?

- hybrid solvers like SAT, cooperate local search and MCSAT in SMT
- operates on cells rather than assignment points or sample points (difficulty: heavy CAD against light ls)

Local Search for Nonlinear Arithmetic

# **SMT Solving**

#### SMT-NRA helps in many areas

- Nonlinear hybrid automata
- Generating ranking function for termination analysis (LassoRanker Benchmark)
- Constraint Programming Solving
- Automatic or interactive theorem prover (Isabelle or Coq)
- Biological networks
- .....

# Syntax of SMT(NRA)

- polynomial:  $p := x \mid c \mid p + p \mid p p \mid p \times p$
- atoms:  $a := b \mid p = 0 \mid p > 0 \mid p < 0$
- formula:  $f := a \mid \neg f \mid f \land f \mid f \lor f$

SMT: Determine whether the formula is satisfied by some assignment (local search focuses), or prove unsat

#### Example:

$$x^2+y^2\leq 1\land x+y<1\land x+z>0$$
 assignment with  $\{x\to 0,y\to 0,z\to 1\}$  satisfies all clauses.

# **Fragment of Local Search**

```
Input: A set of clauses F
Output: An assignment of variables that satisfy F. or failure
Initialize assignment to variables:
while ⊤ do
    if all clauses satisfied then
       return success with assignment;
    end
    if time or step limit reached then
       return failure:
    end
    Critical move procedure.
end
```

Algorithm 1: Basic Fragment of Local Search

# **Fragment of Local Search**

```
var. new\_value. score \leftarrow best move according to make-break score:
if score > 0 then
    Perform move, assigning var to new_value:
end
else
    Update clause weight according to PAWS scheme:
    repeat
        cls \leftarrow random unsatisfied clause:
        var. new\_value. score \leftarrow critical move making cls satisfied:
        if score \neq -\infty then
            Perform move, assigning var to new_value;
        end
    until 3 times;
    if no move performed in previous loop then
        Change assignment of some variable in some unsatisfied clause:
    end
```

#### Local Search for SAT and SMT

| Problem<br>LS     | SAT                    | SMT                     |  |
|-------------------|------------------------|-------------------------|--|
| Operation (Move)  | Flip                   | Critical Move           |  |
| Score Definition  | Weighted unsat clauses |                         |  |
| Score Computation | Cached score           | No Caching, time costly |  |

- What LS for SAT brings us:
  - Maintain scoring information after each iteration.
- Difficulty:
  - Predetermine critical move shift value.
- Our Solution
  - Introduce Scoring Boundaries

## **Infeasible Set**

#### Definition

**infeasible set** of a clause c with respect to an assignment asgn is the set of values that the variables in c can take under asgn such that c is unsatisfied.

#### **Example**

Current assignment:  $\{x \mapsto 1\}$ Calculate infeasible set for y:

• 
$$x^2 + y^2 \le 1 : (-\infty, 0) \cup (0, \infty)$$
.

• 
$$x + y < 1 : [0, \infty)$$
.

If we choose values from infeasible set, the satisfied clause will be unsatisfied, which changes the whole score.

#### **Make-break Intervals**

#### **Definition**

**make-break interval** is a combination of (in)feasible intervals of arithmetic variable x with respect to all clauses.

#### **Example**

Current assignment:  $\{x \mapsto 1, y \mapsto 1, z \mapsto 1\}$ 

Calculate infeasible set for each clause.

• 
$$x^2 + y^2 \le 1$$
 (unsat):  $(-\infty, 0) \cup (0, \infty)$ .

• 
$$x + y < 1$$
 (unsat):  $[0, \infty)$ .

• 
$$x + z > 0$$
 (sat):  $(-\infty, -1]$ .

Combined information:  $x: (-\infty, -1] \mapsto 0, (-1, 0) \mapsto 1, [0, 0] \mapsto 1, (0, \infty) \mapsto 0.$ 

# **Traditional Computation**

**Input**: unsat clauses *F* 

Output: Best critical move (variable, value)

foreach variable v in unsat clauses do

**foreach** unsat clause c with v do

Compute interval-score info of v in c.

end

Combine interval-score information.

Update best var-value move.

end

return best critical move

#### **Repeated computation:**

- variable's (in)feasible set
- clause's sat staus

# Boundary

**Definition.** A quadruple  $\langle val, is\_open, is\_make, cid \rangle$ , where val is a real number,  $is\_open$  and  $is\_make$  are boolean values, and cid is a clause identifier.

## Meaning

- val : make-break value.
- is\_open : active or not at val point.
- is\_make : make or break, increase or decrease score.
- cid: causing clause.

**Sorting:** First ordered by *val*, then by *is\_open* ( $\bot < \top$ ).

# Boundary

Current assignment:  $\{x \mapsto 1, y \mapsto 1, z \mapsto 1\}$ 

- $x^2 + y^2 \le 1$ : starting score o, boundary set  $\{(0, \bot, \top, 1), (0, \top, \bot, 1)\}$ , indicating no change for large negative values, <u>make</u> at boundary  $[0, \cdots$ , followed by <u>break</u> at boundary  $(0, \cdots)$ .
- x + y < 1: starting score 1, boundary set  $\{(0, \perp, \perp, 1)\}$ , indicating <u>make</u> at large negative values, and <u>break</u> at boundary  $[0, \ldots]$
- x+z>0: starting score -1, boundary set  $\{(-1, \top, \top, 1)\}$ , indicating <u>break</u> at large negative values, and <u>make</u> at boundary  $(-1, \ldots)$

sorted boundary set:  $\{(-1, \top, \top, 1), (0, \bot, \top, 1), (0, \bot, \bot, 1), (0, \top, \bot, 1)\}$ 

# **Boundary Example**

boundary set:  $\{(-1, \top, \top, 1), (0, \bot, \top, 1), (0, \bot, \bot, 1), (0, \top, \bot, 1)\}$ 



**Starting score:** Score when x moves to  $-\infty$ .

**Maintain and Change:** We maintain the boundary info for all arithmetic variables, unless the neighbour does a critical move.

# Algorithm for computing boundary

```
Input: Variable v that is modified
Output: Make-break score for all variables
S \leftarrow \{\};
                                                    // set of updated variables
for clause cls that contains v do
   for variable v' appearing in cls do
       add v' to S:
       recompute starting score and boundary of v' with respect to cls:
   end
end
for variable v' in S do
    recompute best critical move and score in terms of boundary information:
end
```

# **Complexity of Values**

#### **Definition**

We define a preorder  $\prec_c$  on algebraic numbers as follows.  $x \prec_c y$  if x is rational and y is irrational, or if both x and y are rational numbers, and the denominator of x is less than that of y. We write  $x \sim_c y$  if neither  $x \prec_c y$  nor  $y \prec_c x$ .

Previous work ignores equalities constraints, or only consider multi-linear (one-degree) examples.

Our Solution: Introducing relaxation, temporary enlarge the point irrational interval

## Relaxation

## **Example**

Given assignment 
$$\{x \mapsto 1, y \mapsto 1\}$$
  
 $z^3 \ge 5x^2 + y \lor z^3 \le 3x + 3y$ 

$$z^2 = x^2 + y^3$$

Both situations force z to an irrational number.

#### Relaxation

- If the constraint is of the form p=0, it is relaxed into the pair of inequalities  $p<\epsilon_p$  and  $p>-\epsilon_p$ .
- If the constraint is of the form  $p \ge 0$ , it is relaxed into  $p > -\epsilon_p$ . Likewise, if the constraint is of the form  $p \le 0$ , it is relaxed into  $p < \epsilon_p$ .
- Slacked var: the var that is being assigned.

#### Restore

```
Input: slacked clauses
Output: succeed or not
for each slacked clause cls do
    v \leftarrow slacked variable in cls;
    accu\_val \leftarrow inf\_set(cls);
    move v to accu_val;
end
for variable v' in slacked clauses do
    recompute best critical move and score in terms of boundary information:
end
return number of unsat clauses == o
```

## **Local Search with Relaxation**

```
Input: A set of clauses F
Output: An assignment of variables that satisfy F, or failure
Initialize assignment to variables:
while \top do
     if all clauses satisfied then
           success \leftarrow find exact solution:
           if success then
                return success with assignment;
           end
           else
                Restore relaxed constraints to original form;
                success \leftarrow find exact solution by limited local search;
                if success then
                      return success with assignment;
                end
           end
     end
     if time or step limit reached then
           return failure:
     end
     Proceed traditional local search (slack).
end
```

# **Implementation Detail**

# code available at: https://github.com/yogurt-shadow/LS\_NRA Preprocessing

- Combine constraints  $p \ge 0$  and  $p \le 0$  into equality p = 0.
- Eliminate variable x in an equation of the form  $c \cdot x + q = 0$ , where c is a constant and q is a polynomial with degree at most 1 and containing at most 2 variables.

**Restart mechanism** Two-level restart mechanism with two parameters  $T_1 = 100$  and  $T_2 = 100$ .

- Minor restart: randomly change one of the variables in one of the unsatisfied clauses.
- Major restart: reset the value of all variables.

# **Overall Result**

| Category                    | #inst | Z3   | cvc5 | Yices | Ours | Unique |
|-----------------------------|-------|------|------|-------|------|--------|
| 20161105-Sturm-MBO          | 120   | 0    | 0    | 0     | 88   | 88     |
| 20161105-Sturm-MGC          | 2     | 2    | О    | О     | О    | 0      |
| 20170501-Heizmann           | 60    | 3    | 1    | О     | 8    | 6      |
| 20180501-Economics-Mulligan | 93    | 93   | 89   | 91    | 90   | 0      |
| 2019-ezsmt                  | 61    | 54   | 51   | 52    | 19   | 0      |
| 20200911-Pine               | 237   | 235  | 201  | 235   | 224  | 0      |
| 20211101-Geogebra           | 112   | 109  | 91   | 99    | 101  | 0      |
| 20220314-Uncu               | 74    | 73   | 66   | 74    | 70   | 0      |
| LassoRanker                 | 351   | 155  | 304  | 122   | 272  | 13     |
| UltimateAtomizer            | 48    | 41   | 34   | 39    | 27   | 2      |
| hycomp                      | 492   | 311  | 216  | 227   | 304  | 11     |
| kissing                     | 42    | 33   | 17   | 10    | 33   | 1      |
| meti-tarski                 | 4391  | 4391 | 4345 | 4369  | 4351 | О      |
| zankl                       | 133   | 70   | 61   | 58    | 100  | 27     |
| Total                       | 6216  | 5570 | 5476 | 5376  | 5687 | 148    |

# **Scatter Plot**



Figure 1: Scatter plots of running time vs. Z3 and cvc5.

| Category                    | #inst | Incremental | Naive | Limit-45 |
|-----------------------------|-------|-------------|-------|----------|
| 20161105-Sturm-MBO          | 120   | 88          | 85    | 85       |
| 20161105-Sturm-MGC          | 2     | О           | О     | 0        |
| 20170501-Heizmann           | 60    | 8           | 5     | 5        |
| 20180501-Economics-Mulligan | 93    | 90          | 89    | 89       |
| 2019-ezsmt                  | 61    | 19          | 19    | 15       |
| 20200911-Pine               | 237   | 224         | 222   | 222      |
| 20211101-Geogebra           | 112   | 101         | 101   | 101      |
| 20220314-Uncu               | 74    | 70          | 70    | 70       |
| LassoRanker                 | 351   | 272         | 264   | 269      |
| UltimateAtomizer            | 48    | 27          | 26    | 26       |
| hycomp                      | 492   | 304         | 298   | 298      |
| kissing                     | 42    | 33          | 32    | 33       |
| meti-tarski                 | 4391  | 4351        | 4352  | 4352     |
| zankl                       | 133   | 100         | 100   | 100      |
| Total                       | 6216  | 5687        | 5663  | 5665     |

Table 1: Comparison of incremental computation

| Category                    | #inst | Relaxation | Threshold | NoOrder |
|-----------------------------|-------|------------|-----------|---------|
| 20161105-Sturm-MBO          | 120   | 88         | 100       | 99      |
| 20161105-Sturm-MGC          | 2     | О          | О         | 0       |
| 20170501-Heizmann           | 60    | 8          | 9         | 3       |
| 20180501-Economics-Mulligan | 93    | 90         | 89        | 86      |
| 2019-ezsmt                  | 61    | 19         | 19        | 19      |
| 20200911-Pine               | 237   | 224        | 223       | 222     |
| 20211101-Geogebra           | 112   | 101        | 98        | 92      |
| 20220314-Uncu               | 74    | 70         | 70        | 70      |
| LassoRanker                 | 351   | 272        | 277       | 278     |
| UltimateAtomizer            | 48    | 27         | 26        | 20      |
| hycomp                      | 492   | 304        | 211       | 164     |
| kissing                     | 42    | 33         | 31        | 27      |
| meti-tarski                 | 4391  | 4351       | 4353      | 4360    |
| zankl                       | 133   | 100        | 100       | 100     |
| Total                       | 6216  | 5687       | 5606      | 5540    |

Table 2: Comparison of temporary relaxation of constraints

#### **Future Work**

- Integrate into z3++ solver https://z3-plus-plus.github.io/
- Cacheing about cylindrical cells by CAD (we enter the same cell multiple times, how can we find that?)
- incorporate with other algorithms, like MCSAT or varaible substitution.
- used for nonlinear optimization

**Application: Hybrid System Verification** 

### **Hybrid System**

Hybrid systems refer to systems that have both continuous and discrete behaviors.

- Application
  - Transportation and spaceflight
  - Robots and medical devices
- Proving Method
  - Model Checking
  - Theorem Proving (KeymaeraX, HHLPY)
- Modeling Language about hybrid system
  - Dynamic differential logic (dL)
  - Hybrid Communication Sequential Process (HCSP)

# **Sequential fragment of HCSP**

Hybrid CSP: an extension of Hoare's Communicating Sequential Processes to include continuous evolution, with modeling communicating processes running in parallel. Commands in HCSP:

$$egin{array}{lll} \mathcal{S}, T &::= & ext{skip} \mid x := e \mid x := *(B) \mid \mathcal{S}; T \mid ext{if $B$ then $S$ else $T \mid \mathcal{S}$++ $T \mid \mathcal{S}$*} \ \mid \langle \dot{m{x}} = m{e} \ \& D 
angle \end{array}$$

#### **Proof rules based on invariants**

#### **Definition (Invariant Triple)**

Let P and Q be predicates on the variables of an ODE  $\dot{\mathbf{x}} = \mathbf{e}$ . Let  $\gamma:[0,T] \to \mathbb{R}^n$  be a solution of the ODE such that  $\gamma(t)$  satisfies P for all  $t \in [0,T]$  and such that  $\gamma(0)$  satisfies Q. If for all such solutions  $\gamma, \gamma(t)$  satisfies Q for all  $t \in [0,T]$ , then we say that Q is an invariant of ODE  $\dot{\mathbf{x}} = \mathbf{e}$  under domain P, written as

$$\llbracket P \rrbracket \langle \dot{\boldsymbol{x}} = \boldsymbol{e} \rangle \llbracket Q \rrbracket$$

## **Sequential HCSP Program**

The syntax for annotated sequential HCSP programs is:

$$\mathcal{S}, \mathcal{T}$$
 ::= skip  $| x := e | x := *(B) | \mathcal{S}; \mathcal{T} |$  if  $B$  then  $\mathcal{S}$  else  $\mathcal{T} |$   $\mathcal{S} ++ \mathcal{T} | \mathcal{S} *$  invariant  $[I_1] \dots [I_n] |$   $\langle \dot{\mathbf{x}} = e \& D \rangle$  invariant gvar $_1 \dots$  gvar $_k$ , ode\_inv $_1 \dots$  ode\_inv $_n \otimes \dot{\mathbf{x}} = e \& D \rangle$  solution

The only addition to the syntax of HCSP is that each loop is followed by a list of invariants  $I_1, \ldots, I_n$ , and each ODE is either followed by a list of ghost variable declarations and a list of invariant annotations, each of which specify an invariant to be proved using one of (dl), (dbx), or (bc) rules, or followed by the annotation "solution" to indicate that the (sln) rule is to be used.

#### **Verification Condition Generation**

#### **Definition (Verification Condition)**

Given a Hoare triple  $\{P_1 \wedge \cdots \wedge P_m\} \mathcal{S}\{Q_1 \wedge \cdots \wedge Q_n\}$  to verify, we define the set of all VCs to be

$$\begin{array}{l} \operatorname{VC}(\{P_1 \wedge \cdots \wedge P_m\} \mathcal{S}\{Q_1 \wedge \cdots \wedge Q_n\}) = \\ \{P_1 \wedge \cdots \wedge P_m \to R \mid R \in \operatorname{pre}(\mathcal{S}, \{Q_1, \dots, Q_n\})\} \cup \\ \{\tilde{P}_1 \wedge \cdots \wedge \tilde{P}_{\tilde{m}} \to R \mid R \in \operatorname{vc}(\mathcal{S}, \{Q_1, \dots, Q_n\})\} \end{array} \tag{pre} \end{array}$$

where  $\tilde{P}_1, \dots, \tilde{P}_{\tilde{m}}$  is the subset of the preconditions  $P_1, \dots, P_m$  whose variables are never reassigned in S, and the functions pre and vc are defined below.

#### **Verification Condition Generation**

where

Given an annotated program S and a set  $\{Q_1, \ldots, Q_n\}$  of postconditions, we denote the set of derived preconditions as  $\operatorname{pre}(S, \{Q_1, \ldots, Q_n\})$ , defined as follows.

```
\operatorname{pre}(\mathcal{S}, \{Q_1, \dots, Q_n\}) = \operatorname{pre}(\mathcal{S}, Q_1) \cup \dots \cup \operatorname{pre}(\mathcal{S}, Q_n)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        (pre-multi)
 pre(skip, O) = O
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                (pre-skip)
pre(x := e, O) = O[e/x]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              (pre-assn)
\operatorname{pre}(\mathcal{S}; \mathcal{T}, \mathbf{0}) = \operatorname{pre}(\mathcal{S}, \operatorname{pre}(\mathcal{T}, \mathbf{0}))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   (pre-sea)
 \operatorname{pre}(\operatorname{if} B_1 \operatorname{then} S_1 \operatorname{else} \cdots \operatorname{if} B_{n-1} \operatorname{then} S_{n-1} \operatorname{else} S_n, 0) =
                  \{\neg (B_1 \lor \cdots \lor B_{i-1}) \land B_i \to P \mid P \in \operatorname{pre}(\mathcal{S}_i, Q), 1 \le i \le n-1\} \cup A_i \lor A_i
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                (pre-if)
                  \{\neg (B_1 \lor \cdots \lor B_{n-1}) \to P \mid P \in \operatorname{pre}(\mathcal{S}_n, O)\}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               (pre-else)
\operatorname{pre}(\mathcal{S}_1 ++ \cdots ++ \mathcal{S}_n, O) = \operatorname{pre}(\mathcal{S}_1, O) \cup \cdots \cup \operatorname{pre}(\mathcal{S}_n, O)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                               (pre-choice)
 \operatorname{pre}(x := *(B), Q) = B[y/x] \to Q[y/x] for a fresh variable y
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     (pre-nassn)
 pre(S * invariant [I_1] ... [I_n], O) = \{I_i | 1 < i < n\}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             (pre-loop)
 \operatorname{pre}(\langle \dot{\mathbf{x}} = \mathbf{e} \& D \rangle \text{ invariant gvar}_1 \dots \operatorname{gvar}_k, \operatorname{ode\_inv}_1 \dots \operatorname{ode\_inv}_n, Q) =
                 P_{\mathrm{skip}} \cup P_{\mathrm{init}}
\operatorname{pre}(\langle \dot{\boldsymbol{x}} = \boldsymbol{e} \& D \rangle \text{ solution}) = P_{\operatorname{skip}} \cup P_{\operatorname{sln}}
```

# KeymaeraX: A Tool to prove hybrid program correctness



# **Proof based on loop invariant**



# HHLPy: Hybrid hoare logic based prover written in Python



Prospect

#### What would I contribute?

- Analysis and Verification on Program usually relies on SMT Solving (model checker tools). Incremental verification involves solving procedure in SMT tools.
- Local Search helps for bug finding, or even give a counterexample (failed test).
- Symbolic Executation Tools (KLEE)

•

# Research Work Presentation

Thank you