Oraux de la MPX1 de Chaptal

Table des matières

(Centrale, Python, Cécile) — Autour de la fonction Γ et ses représen-2 (Mines Télécom, Robert) — Une série et une intégrale (Mines Télécom, Robert) — Condition suffisante de diagonalisabilité . (Mines-Ponts, Ali) — Équation fonctionnelle (opérateurs de somme) . 3 (Mines-Ponts, Ali) — Équation fonctionnelle (morphisme de l'addition 3 (Mines-Ponts, Ali) — Dimension et diagonalisabilité 3 (Mines-Télécom, Aymane) — Autour des racines de P et P' 3 (Mines-Télécom, Aymane) — Nature d'une série dont le terme général 3 3 (CCP, Mathilde) — Calcul de distance à un hyperplan 4 (CCP, Paul) — Suites de noyaux qui passent par une année de prépa. 4 (ENS LCR, Charles) — Étude probabiliste des records 4

(Centrale, Python, Cécile) — Autour de la fonction Γ et ses représentations

Posons $I_n = \int_0^{+\infty} t^n e^{-t} dt, n \ge 0.$

(1) Montrer que I_n converge et donner sa valeur.

On pose
$$v_n = \int_0^{+\infty} \left(1 + \frac{t}{n}\right)^n e^{-t} dt, n \ge 0.$$

- (2) Montrer que v_n converge.
- (3) Conjecturer un équivalent de v_n à une constante près à l'aide de Python.
- (4) Démontrer qu'il s'agit bien d'un équivalent de v_n et déterminer la constante.

On pose
$$S_n = e^{-n} \sum_{k=0}^n \frac{n^k}{k!}$$
.

- (5) Analyser le comportement de S_n au voisinage de l'infini, à l'aide de Python.
- (6) Démontrer ce que vous voyez. 1

(Centrale, Cécile) — Autour de $SL_n(\mathbb{K})$

On pose $SL_n(\mathbb{K}) = \{ M \in \mathcal{M}_n(\mathbb{K}) \mid \det(M) = 1 \}$, dans la suite : \mathbb{K} est un surcorps commutatif de \mathbb{R} , ie : $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

- On sait que $SL_n(\mathbb{K})$ est un sous groupe fermé de $GL_n(\mathbb{K})$ pour le produit matriciel, en effet : $SL_n(\mathbb{K}) = \text{Ker det} = \det^{-1}(\{1\})$, où : det : $(GL_n(\mathbb{K}), \times) \to (\mathbb{K}^*, \times)$ est un morphisme de groupe multiplicatif.
- On prend $\|\cdot\|$ sous multiplicative, i.e. $\forall A, B \in \mathcal{M}_n(\mathbb{K}), \|AB\| \leq \|A\| \|B\|$.
- (1) Montrer que pour tout $M \in SL_n(\mathbb{K}), ||M|| \geq 1$.
- (2) Montrer que pour tout $M \in SL_2(\mathbb{K})$, M est semblable à une matrice de la forme :

$$\begin{bmatrix} \lambda & 0 \\ 0 & \frac{1}{\lambda} \end{bmatrix}, \begin{bmatrix} \pm 1 & \lambda \\ 0 & \pm \lambda \end{bmatrix}, \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

Pour $\lambda \in \mathbb{K}$ et $\theta \in \mathbb{R}$.

(3) Pour tout $M \in SL_2(\mathbb{K})$, en déduire qu'il existe $B \in \mathcal{M}_n(\mathbb{K})$ de trace nulle telle que : $M^2 = \exp(B)$.

(Mines Télécom, Robert) — Une série et une intégrale

On regarde $f: x \mapsto \sum_{n\geq 0} \frac{x^n}{(n!)^2}$ définie sur \mathcal{D} son domaine de convergence.

- (1) Déterminer \mathcal{D} (rayon de convergence)
- (2) Comparer avec $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \exp\left[2\sqrt{\pi}\sin(t)\right] dt$

(Mines Télécom, Robert) — Condition suffisante de diagonalisabilité

Soit $A \in \mathcal{M}_n(\mathbb{C})$, supposons que :

- (1) A^2 soit diagonalisable dans $\mathcal{M}_n(\mathbb{R})$
- (2) $\operatorname{Sp}(A^2) \subset \mathbb{R}_+^*$

Montrer que A est diagonalisable.

^{1.} Indication : Montrer que la limite aperçu par Python est bien celle vers laquelle S_n tend quoi

(Mines-Ponts, Ali) — Équation fonctionnelle (opérateurs de somme)

Trouver toutes les fonctions continues de $\mathbb R$ dans $\mathbb R$ vérifiant :

$$\forall (x,y) \in \mathbb{R}^2, f(x+y) = f(x) + f(y)$$

(Mines-Ponts, Ali) — Équation fonctionnelle (morphisme de l'addition vers la multiplication)

Trouver toutes les fonctions continues de $\mathbb R$ dans $\mathbb C$ vérifiant :

$$\forall (x,y) \in \mathbb{R}^2, f(x+y) = f(x)f(y)$$

(Mines-Ponts, Ali) — Dimension et diagonalisabilité

Soit $A, B \in GL_n(\mathbb{C})$ telles que AB + BA = 0. ²

- (1) Montrer que n est pair.
- (2) Si n = 2, montrer que A et B sont diagonalisables.

(Mines-Télécom, Aymane) — Autour des racines de P et P'

Soit $P \in \mathbb{R}[X]$ scindé à racines simples.

- (1) Exprimer $\frac{P'}{P}$ 3
- (2) Pour $a \in \mathbb{R}$, une racine de P + aP' peut-elle être une racine de P?
- (3) P + aP' est-il scindé à racines simples?

(Mines-Télécom, Aymane) — Nature d'une série dont le terme général est l'inverse d'une somme partielle divergente

Soit
$$a_n = \left[\sum_{k=1}^n \ln^2(k)\right]^{-1}$$
.

Nature de
$$\sum_{n>2} a_n$$
.

(CCP, Aymane) — Un peu de projection

Soit $(E, \|\cdot\|)$ euclidien, $u \in O(E)$.

On pose $v = u - \mathrm{Id}_E$.

 $^{2.\ {\}bf Dites\ aussi}: {\bf anticommutantes}.$

^{3.} t'as dead ça chakal.

(1) Montrer que $\operatorname{Ker} v = (\operatorname{Im} v)^{\perp}$.

Soit $x \in E$.

On pose, pour tout $n \in \mathbb{N}^*$, $u_n(x) = \frac{1}{n} \sum_{k=0}^n u^k(x)$.

(2) Montrer que $(u_n(x))_n$ tend vers la projection orthogonale de x sur Ker v.

(CCP, Mathilde) — Calcul de distance à un hyperplan

Posons $E = \mathbb{R}_2[X]$ en tant que \mathbb{R} -espace, muni du produit scalaire canonique ⁵. On pose $F = \{P \in E \mid P(1) = 0\}$.

- (1) Montrer que F est un sous espace vectoriel de E et en donner une base.
- (2) Soit P = X, calculer la distance de $P \approx F$.

(CCP, Paul) — Suites de noyaux qui passent par une année de prépa

Soit E un \mathbb{K} -espace vectoriel de dimension finie.

Soit $u \in \mathcal{L}(E)$.

On note $N = \bigcup_{i>1} \operatorname{Ker} u^i$.

Montrer que $E = \operatorname{Im} u \oplus \operatorname{Ker} u \iff N = \operatorname{Ker} u$. ⁷

(ENS LCR, Charles) — Étude probabiliste des records

On travaillera dans S_n l'ensemble des permutations sur [[1, n]], on munit S_n de la probabilité uniforme \mathbb{P} .

Pour $k \in [[1, n]]$, on dit que k est un record de $\sigma \in \mathcal{S}_n$ si k maximise σ sur [[1, k]], autrement dit :

$$k = \max_{1 \le i \le k} \sigma(i)$$

On note $\mathcal{R}(\sigma)$ l'ensemble des records.

On note $X_k = \mathbbm{1}_{k \in \mathcal{R}(\sigma)}$ la variable aléatoire indicatrice de records, i.e. 1 si k est un record ou 0 sinon.

^{4.} Indication de l'énoncé : utiliser 1 pour décomposer \boldsymbol{x} judicieusement.

^{5.} Penser $\sum a_i b_i$ pour $(a_i), (b_i)$ les suites de coefficients respectifs

^{6.} Indication donnée par l'examinateur : Se mettre dans une base orthonormée de F.

^{7.} Indication donnée par l'examinateur : « On pourra prouver d'abord $E=\Im u\oplus \operatorname{Ker} u\iff \operatorname{Ker} u=\operatorname{Ker} u^2$ ».

^{8.} On pioche aléatoirement σ une permutation.

- $\begin{array}{ll} (1) \ \ \mbox{Donner la loi des} \ X_k, \, k \in [[1,n]]. \\ (2) \ \ X_k \ \mbox{et} \ X_{k-1} \ \mbox{sont elles indépendantes pour} \ k \in [[2,n]] \\ (3) \ \ \mbox{Montrer l'indépendance mutuelle de la famille} \ (X_k)_{k \in [[1,n]]} \end{array}^9$

^{9.} Requiert une indication selon Charles.