REGRESSION IN R

Jan-Philipp Kolb

16 Mai, 2019

Why a part on simple regression

- some machine learning concepts are based on regression
- ▶ I would like to remind you how simple regression in R works.
- ▶ I also want to show the constraints
- ▶ In a next step we will learn, how to coop with that

VARIABLES OF THE MTCARS DATASET

Help for the mtcars dataset:

- ▶ mpg Miles/(US) gallon
- cyl Number of cylinders
- disp Displacement (cu.in.)
- hp Gross horsepower
- drat Rear axle ratio
- wt Weight (1000 lbs)
- ▶ qsec 1/4 mile time
- ▶ vs Engine (0 = V-shaped, 1 = straight)
- ightharpoonup am Transmission (0 = automatic, 1 = manual)
- gear Number of forward gears
- carb Number of carburetors

DATASET MTCARS

mpg cyl dis	p hp	drat	wt	qsec	VS	am gear	carb
Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46
Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02
Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61
Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44
Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02
Valiant	18.1	6	225.0	105	2.76	3.460	20.22
Duster 360	14.3	8	360.0	245	3.21	3.570	15.84
Merc 240D	24.4	4	146.7	62	3.69	3.190	20.00
Merc 230	22.8	4	140.8	95	3.92	3.150	22.90
Merc 280	19.2	6	167.6	123	3.92	3.440	18.30
Merc 280C	17.8	6	167.6	123	3.92	3.440	18.90
Merc 450SE	16.4	8	275.8	180	3.07	4.070	17.40
Merc 450SL	17.3	8	275.8	180	3.07	3.730	17.60
Merc 450SLC	15.2	8	275.8	180	3.07	3.780	18.00
Cadillac Fleetwood	10.4	8	472.0	205	2.93	5.250	17.98
Lincoln Continental	10.4	8	460.0	215	3.00	5.424	17.82

DISTRIBUTIONS OF TWO VARIABLES OF MTCARS

density.default(x = mtcars\$ensity.default(x = mtcars\$i

Density

N = 32 Bandwidth = 0.3455

N = 32 Bandwidth = 2.477

A SIMPLE REGRESSION MODEL

DEPENDENT VARIABLE - MILES PER GALLON (MPG)

INDEPENDENT VARIABLE - WEIGHT (WT)

```
##
## Call:
## lm(formula = mpg ~ wt, data = mtcars)
##
## Coefficients:
## (Intercept) wt
## 37.285 -5.344
```

GET THE MODEL SUMMARY

```
##
## Call:
## lm(formula = mpg ~ wt, data = mtcars)
##
## Residuals:
      Min 1Q Median 3Q
##
                                  Max
## -4.5432 -2.3647 -0.1252 1.4096 6.8727
##
## Coefficients:
##
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) 37.2851 1.8776 19.858 < 2e-16 ***
## wt -5.3445 0.5591 -9.559 1.29e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ''
##
## Residual standard error: 3.046 on 30 degrees of freedom
## Multiple R-squared: 0.7528, Adjusted R-squared: 0.7446
## F-statistic: 91.38 on 1 and 30 DF, p-value: 1.294e-10
```

Drappagov v

THE MODEL FORMULA

Model without intercept

```
## Estimate Std. Error t value Pr(>|t|)
## wt 5.291624 0.5931801 8.920771 4.55314e-10
```

Adding further variables

```
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 39.686261 1.7149840 23.140893 3.043182e-20
## wt -3.190972 0.7569065 -4.215808 2.220200e-04
## cyl -1.507795 0.4146883 -3.635972 1.064282e-03
```

THE COMMAND AS.FORMULA

```
## [1] "formula"
```

THE COMMAND MODEL. MATRIX

FURTHER POSSIBILITIES TO SPECIFY THE FORMULA

INTERACTION EFFECT

TAKE THE LOGARITHM

A MODEL WITH INTERACTION EFFECT

```
-disp - Displacement (cu.in.)

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 44.08199770 3.123062627 14.114990 2.955567e-14

## wt -6.49567966 1.313382622 -4.945763 3.216705e-05

## disp -0.05635816 0.013238696 -4.257078 2.101721e-04

## wt:disp 0.01170542 0.003255102 3.596022 1.226988e-03
```

EXPLORING INTERACTIONS

```
library(jtools)
interact_plot(m3d, pred = "wt", modx = "disp")
```

With a continuous moderator (in our case disp) you get three lines — 1 standard deviation above and below the mean and the mean itself.

EXAMPLE: OBJECT ORIENTATION

- ▶ m3 is now a special regression object
- ▶ Various functions can be applied to this object

##	Mazda RX4	Mazda RX4 Wag	Datsun 710	Horn
##	22.27914	21.46545	26.25203	
##	Hornet Sportabout	Valiant		
##	16.64696	19.59873		
##	Mazda RX4	Mazda RX4 Wag	Datsun 710	Horn
## ##	Mazda RX4 -1.2791447	Mazda RX4 Wag -0.4654468	Datsun 710 -3.4520262	Horn
##		9		Horn

Make model prediction

[1] 21.0 21.0 22.8 21.4 18.7 18.1 ## Mazda RX4 Mazda RX4 Wag Datsun 710 Horn

Mazda RX4 Mazda RX4 Wag Datsun 710 ## 23.28261 21.91977 24.88595 ## Hornet Sportabout Valiant

18.90014 Variant

RESIDUAL PLOT - MODEL ASSUMPTIONS VIOLATED?

▶ the case if a deviation pattern from line

RESIDUAL PLOT

▶ If the residuals are normally distributed, they should be on the same line.

REGRESSION DIAGNOSTIC WITH BASE-R

THE VISREG-PACKAGE

THE VISREG-PACKAGE

- ▶ The default-argument for type is conditional.
- ▶ Scatterplot of mpg and wt plus regression line and confidence bands

VISUALISATION WITH VISREG

- Second argument Specification covariate for visualisation
- ▶ plot shows the effect on the expected value of the response by moving the x variable away from a reference point on the x-axis (for numeric variables, the mean).

REGRESSION WITH FACTORS

▶ The effects of factors can also be visualized with visreg:

```
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 33.990794 1.8877934 18.005569 6.257246e-17
## cyl6 -4.255582 1.3860728 -3.070244 4.717834e-03
## cyl8 -6.070860 1.6522878 -3.674214 9.991893e-04
## wt -3.205613 0.7538957 -4.252065 2.130435e-04
```

EFFECTS OF FACTORS

THE COMMAND MODEL. MATRIX

THE PACKAGE VISREG - INTERACTIONS

```
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 39.571196 3.193940 12.3894599 2.058359e-12
## cyl6 -11.162351 9.355346 -1.1931522 2.435843e-01
## cyl8 -15.703167 4.839464 -3.2448150 3.223216e-03
## wt -5.647025 1.359498 -4.1537586 3.127578e-04
## cyl6:wt 2.866919 3.117330 0.9196716 3.661987e-01
## cyl8:wt 3.454587 1.627261 2.1229458 4.344037e-02
```

CONTROL OF THE GRAPHIC OUTPUT WITH LAYOUT.

2 3 4 5

THE PACKAGE VISREG - INTERACTIONS OVERLAY

THE PACKAGE VISREG - VISREG2D

THE PACKAGE VISREG - SURFACE

PRODUCING NICE TABLE OUTPUT WITH PACKAGE STARGAZER

EXAMPLE HTML OUTPUT:

	Dependent variable.
	mpg
wt	-3.125***
	(0.911)
cyl	-1.510***
	(0.422)
am	0.176
	(1.304)
Constant	39.418***
	(2.641)
Observations	32
\mathbb{R}^2	0.830

EXERCISE

- Install the package AmesHousing and create a processed Version of the Ames housing data with the variables Sale_Price, Gr_Liv_Area and TotRms_AbvGrd
- Create a suitable regression model with Sale_Price as dependent and Gr_Liv_Area and TotRms_AbvGrd as independent variables. What do you think?

The problem - Overfitting

 Our model doesn't generalize well from our training data to unseen data.

THE SIGNAL AND THE NOISE

- In predictive modeling, you can think of the "signal" as the true underlying pattern that you wish to learn from the data.
- "Noise," on the other hand, refers to the irrelevant information or randomness in a dataset.

the signal and th and the noise and the noise and the noise and the noi why so many and predictions fail but some don't ti and the noise and the noise and the

OVERFITTING.

What can be done against overvitting

- Cross Validation
- ► Train with more data
- Remove features
- ▶ Regularization e.g. ridge and lasso regression
- ► Ensembling e.g. bagging and boosting

Cross-validation

- Cross-validation is a powerful preventative measure against overfitting.
- Use your initial training data to generate multiple mini train-test splits. Use these splits to tune your model.

Cross Validation in R

```
## Linear Regression
##
## 47 samples
##
   5 predictor
##
## No pre-processing
  Resampling: Leave-One-Out Cross-Validation
  Summary of sample sizes: 46, 46, 46, 46, 46, 46, ...
## Resampling results:
##
##
    RMSE Rsquared MAE
    7.738618 0.6128307 6.116021
##
```

K-FOLD CROSS VALIDATION

THE BIAS VARIANCE TRADEOFF

GOOD LITERATURE FOR LINEAR REGRESSION IN R

USEFUL PDF DOCUMENT:

J H Maindonald - Using R for Data Analysis and Graphics Introduction, Code and Commentary

- ▶ Introduction to R
- Data analysis
- Statistical models
- Inference concepts
- Regression with one predictor
- Multiple linear regression
- Extending the linear model

LINKS - LINEAR REGRESSION

- ► Regression **r-bloggers**
- ► The complete book of **Faraway** very intuitive
- Good introduction on Quick-R
- Multiple regression
- ▶ 15 Types of Regression you should know
- ggeffects Create Tidy Data Frames of Marginal Effects for 'ggplot' from Model Outputs

SHINY APP - DIAGNOSTICS FOR SIMPLE LINEAR REGRESSION

https://gallery.shinyapps.io/slr_diag/

Diagnostics for simple linear regression

Shiny Ann - Simple Linear Regression

RESOURCES

▶ machine learning iteration