Численные методы решения волнового уравнения первого и второго порядка

Дмитриев Александр Андреевич, гр. 522

Санкт-Петербургский государственный университет
Математико-механический факультет
Кафедра статистического моделирования

Научный руководитель: к.ф.-м.н. Христинич Владимир Борисович Рецензент: д.ф.-м.н. Ермаков Сергей Михайлович

Цель дипломной работы

- Анализ точности различных численных схем для волнового уравнения первого и второго порядка.
- Построение точных решений для сравнения с численными решениями.
- Применение рекуррентного метода Монте-Карло к волновому уравнению второго порядка.
- Разработка графического интерфейса, позволяющего:
 - о иллюстрировать решения, полученные различными методами;
 - о сравнивать точность различных методов;
 - анализировать их устойчивость.

Волновое уравнение первого порядка

$$\frac{\partial u}{\partial t} + a \frac{\partial u}{\partial x} = 0, \qquad u(x,0) = f(x), \qquad -\infty < x < \infty.$$

Для численного решения использовались методы:

- метод Эйлера;
- метод использования разностей против потока;
- метод Лакса;
- метод Лакса-Вендроффа;
- метод Мак-Кормака;
- метод Бима-Уорминга;
- неявный метод Эйлера.

Точное решение задается формулой:

$$u(x,t) = f(x - at).$$

В качестве ошибки численного метода используется разница между численным и точным решением.

Возможности интерфейса программы

Программный интерфейс позволяет:

- получать решение одномерного волнового уравнения первого порядка меняя различные параметры: скорость переноса, начальные данные, шаг по пространству и времени;
- в режиме реального времени изучать поведение решения волнового уравнения;
- анализировать устойчивость численного решения из-за накопления ошибки;
- изучать накопление ошибки со временем. Накопленные ошибки выводятся в динамическом режиме при визуализации решения;
- анализировать динамику накопления ошибки по графику;
- сравнивать решения, полученные по различным разностным схемам, и оценивать различные методы по накопленным за одинаковый промежуток времени ошибкам.

Поведение решения со временем

Сравнение точности разностных методов

Сравнение точности различных разностных методов. Отклонение от точного решения за одинаковый промежуток времени.

Волновое уравнение второго порядка

$$u_{xx} - a^2 u_{tt} = 0, \quad 0 \le x \le L, \ t \ge 0.$$

- Граничные условия: $U(0,t) = U(L,t) = 0, \quad t \ge 0.$
- Начальные условия: $U(x,0) = f(x), \quad 0 \le x \le L,$ $U_t(x,0) = g(x), \quad 0 < x < L.$

Для сравнения использовались:

- точное решение, полученное методом Фурье;
- численное решение, полученное методом конечно-разностной аппроксимации на основе явной схемы "Крест" и неявной схемы "Т";
- решение, полученное рекуррентным методом Монте-Карло на основе явной схемы "Крест" и неявной схемы "Т".

Кроме того, для рекуррентного метода Монте-Карло реализована возможность исследования всего множества трехслойных разностных схем.

Точное решение

Для граничных и начальных условий:

$$u(0,t) = u(L,t) = 0, \quad t \ge 0,$$

 $u(x,0) = \varphi(x), \quad 0 \le x \le L,$
 $u_t(x,0) = \psi(x), \quad 0 < x < L$

точное решение представляется в виде ряда Фурье:

$$u(x,t) = \sum_{k=1}^{\infty} [\psi_k \sin \frac{\pi k}{l} t + \varphi_k \cos \frac{\pi k}{l} t] \sin \frac{\pi k x}{l},$$

где

$$\psi_k = \frac{l}{\pi k} \int_0^l \psi(x) \sin(\pi kx) dx, \quad \varphi_k = \int_0^l \varphi(x) \sin(\pi kx) dx.$$

Для того, чтобы получать решение для любых начальных условий, коэффициенты φ_k и ψ_k вычислялись численным методом.

Рекуррентный метод Монте-Карло

Волновое уравнение второго порядка сводится к итерационному процессу вида:

$$x^{n} = A_{0}x^{n} + A_{1}x^{n-1} + A_{2}x^{n-2} + f, \qquad n \ge 2.$$

Рекуррентному методу Монте-Карло соответствует одношаговый итерационный процесс:

$$y^{n} = \mathcal{A}_{0}y^{n} + \mathcal{A}_{1}y^{n-1} + \varphi, \quad n \ge 1,$$

где

$$y^n = \begin{pmatrix} x^n \\ x^{n-1} \end{pmatrix}, \quad \mathcal{A}_0 = \begin{pmatrix} A_0 & 0 \\ 0 & 0 \end{pmatrix}, \quad \mathcal{A}_1 = \begin{pmatrix} A_1 & A_2 \\ I & 0 \end{pmatrix}, \quad \varphi = \begin{pmatrix} f \\ f \end{pmatrix}.$$

Зная y^0 из начальных условий и решая на каждом шаге по времени методом Монте-Карло систему линейных уравнений $y^n = \mathcal{A}_0 y^n + F$, где $F = \mathcal{A}_1 y^{n-1} + \varphi$, получается решение на следующем временном слое.

Построение итерационного процесса

Введём дифференциальный оператор второго порядка:

$$(\triangle_h z)_k := \frac{z_{k+1} - 2z_k + z_{k-1}}{h^2}, \qquad k = 1, \dots, m,$$

действующий на векторах $z=(z_1,\ldots,z_m)$, где $z_0=z_{m+1}:=0$. Иначе его можно записать как:

$$\triangle_h z = \frac{1}{h^2} (B - 2I) z,$$

где

$$B = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 & 0 & 0 \\ 1 & 0 & 1 & \dots & 0 & 0 & 0 \\ 0 & 1 & 0 & \dots & 0 & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 0 & 1 & 0 \\ 0 & 0 & 0 & \dots & 1 & 0 & 1 \\ 0 & 0 & 0 & \dots & 0 & 1 & 0 \end{pmatrix}.$$

Построение итерационного процесса

Рассмотрим семейство трехслойных разностных схем:

$$\frac{x_k^{j+1} - 2x_k^j + x_k^{j-1}}{\tau^2} = \alpha(\triangle_h x^{j+1})_k + \beta(\triangle_h x^j)_k + \gamma(\triangle_h x^{j-1})_k,$$

где $\alpha + \beta + \gamma = 1.$

Веса α, β, γ задают бесконечное множество разностных схем, каждая из которых обладает своими свойствами, такими как точность и устойчивость, исследовать которые можно лишь для конкретных α, β, γ . Пусть вектора $x^j = (x_1^j, \dots, x_m^j), \qquad j = 2, \dots, n$.

Тогда разностная схема сводится к итерационному процессу:

$$x^{j+1} = A_0 x^{j+1} + A_1 x^j + A_2 x^{j-1},$$

где

$$A_0 = \frac{\alpha}{2\alpha + \mu^2} B, \qquad A_1 = \frac{2[\mu^2 - \beta]}{2\alpha + \mu^2} I + \frac{\beta}{2\alpha + \mu^2} B,$$

$$A_2 = -\frac{\mu^2 + 2\gamma}{2\alpha + \mu^2} I + \frac{\gamma}{2\alpha + \mu^2} B, \qquad \mu^2 := \frac{h^2}{\tau^2}.$$

Описание интерфейса программы

Совокупность программ, входящих в интерфейс решения волнового уравнения второго порядка, позволяет с использованием графической визуализации решений в режиме реального времени анализировать точность, давать визуальную оценку устойчивости. Реализованы методы получения решения:

- точное решение, полученное с помощью рядов Фурье;
- численное решение, полученное методом конечно-разностной аппроксимации;
- решение, полученное рекуррентным методом Монте-Карло.

Для метода Монте-Карло реализованы возможности:

- исследования всего многообразия трехслойных разностных схем;
- анализа точности и устойчивости метода в зависимости от количества реализаций цепи Маркова.

Поведение решения волнового уравнения, полученного рекуррентным методом Монте-Карло, в различные моменты времени.

Ошибка, полученная в результате численного решения волнового уравнения методом Монте-Карло.

Среднеквадратичное отклонение численного решения, полученного методом Монте-Карло, от точного решения, полученного с помощью ряда Фурье.

Ошибка, полученная в результате численного решения волнового уравнения методом Монте-Карло, усредненная по времени.

Сравнение эффективности методов.

Было проведено сравнение эффективности исследуемых методов. Эффективность оценивалась следующим образом. Были заданы одинаковые параметры разностных схем: размерность сетки по пространству N_X , шаг по пространству h, шаг по времени τ . Фиксировалось время вычисления решения на одинаковом промежутке времени различными методами.

В следующей таблице приведено время вычисления решений для волнового уравнения второго порядка с начальными условиями $u(x,0)=\sin 2x,\ u_t(x,0)=0,\ x=0..\pi$ и нулевыми граничными условиями. $N_X=30,\ h=0.1083,\ \tau=0.0022,$ количество реализаций цепи Маркова в методе Монте-Карло N=1000. Под периодом понимается время периода колебания струны. Сравнение проводилось на процессоре AMD Sempron $2.0 \mathrm{GHz}.$

	Сх. "Крест"	Cx. "T"	м. МК., сх. "Крест"	м. Фурье
10 периодов	8 мс	16 мс	19016 мс	$257641~{ m Mc}$
20 периодов	16 мс	32 мс	$38024 { m Mc}$	$535500~{ m Mc}$
30 периодов	24 мс	47 мс	$57094~{ m Mc}$	$811407 \; \mathrm{Mc}$

Время, затраченное на расчет.

Прогноз эффективности методов.

Сравнение проделано в одномерном случае по пространству. В $R^2(t,x,y)$ и $R^3(t,x,y,z)$ эффективность схем "Крест" и "Т" падает в степенной зависимости, а для метода Монте-Карло такой зависимости нет и можно оценить, насколько он будет эффективен по сравнению с другими методами в R^2 и R^3 .

	Схема "Крест"	Схема "Т"	м. МК., схема "Крест"
10 периодов	64 мс	$256~\mathrm{mc}$	19016 мс
20 периодов	$256\mathrm{mc}$	$1024\mathrm{mc}$	$38024 { m Mc}$
30 периодов	$576~\mathrm{Mc}$	$2209~{ m MC}$	$57094~\mathrm{Mc}$

Прогноз времени, которое будет затрачено на расчет в пространстве \mathbb{R}^2 .

	Схема "Крест"	Схема "Т"	м. МК., схема "Крест"
10 периодов	512 мс	$4096~{ m Mc}$	19016 мс
20 периодов	$4096~\mathrm{Mc}$	$32768~\mathrm{MC}$	$38024 { m mc}$
30 периодов	$13824 { m MC}$	$103823~{ m MC}$	$57094 \; { m MC}$

Прогноз времени, которое будет затрачено на расчет в пространстве R^3 .