

Universidad Nacional de Ingeniería Escuela Profesional de Matemática Ciclo 2021-I

[Introducción a los procesos estocásticos]

[J. Ugarte]

UNI, 30 de julio de 2021.

Examen Final

Solucionario Tiempo: 2h Tolerancia 15min

1. Medidas invariantes

Sea X una cadena de Markov irreducible sobre el espacio de estados E que posee una medida invariante de probabilidad π . Para μ una medida positiva sobre E, y $f: \mathbb{R}^+ \to \mathbb{R}$ esctrictamente convexa y acotada, definimos:

$$\operatorname{Ent}(\mu|\pi) = \sum_{x \in E} f\left(\frac{\mu(x)}{\pi(x)}\right) \pi(x)$$

- a) Muestre que $\operatorname{Ent}(\mu P|\pi) \leq \operatorname{Ent}(\mu|\pi)$.
- b) Identifique cuando existe igualdad en la desigualdad anterior. Enseguida, deduzca que toda medida invariante de X es múltiplo de π .

[5 puntos]

Solución:

a) Dado que π es invariante, para todo x, $\nu_x(y) = \frac{\pi(y)P(y,x)}{\pi(x)}$ es una probabilidad. Por convexidad de f y por la desigualdad de Jensen tenemos:

$$\operatorname{Ent}(\mu P | \pi) = \sum_{x \in E} f\left(\frac{\sum_{y \in E} \mu(y) P(y, x)}{\pi(x)}\right) \pi(x)$$

$$= \sum_{x \in E} f\left(\sum_{y \in E} \nu_x(y) \frac{\mu(y)}{\pi(y)}\right) \pi(x)$$

$$= \sum_{x \in E} \sum_{y \in E} \nu_x(y f\left(\frac{\mu(y)}{\pi(y)}\right) \pi(x)$$

$$= \sum_{y \in E} \pi(y) \left(\sum_{x \in E} P(y, x)\right) f\left(\frac{\mu(y)}{\pi(y)}\right) = \operatorname{Ent}(\mu | \pi)$$

- b) Siendo f estrictamente convexa, y como $\operatorname{Ent}(\mu|\pi)$ es finita dado que f es acotada y π es una probabilidad, la igualdad sucede si y solamente si $y\mapsto \frac{\mu(y)}{\pi(y)}$ es constante. De forma equivalente, cuando $\mu=C\pi$. Si μ es invariante debemos de tener $\mu=\mu P$, y por el razonamiento de acá arriba concluimos que $\mu=C\pi$.
- 2. Tiempo de mezcla

Sea $p, q \in [0, 1]$, consideramos la cadena X con dos estados $\{1, 2\}$, con matriz de transición

$$P = \begin{pmatrix} 1 - p & p \\ q & 1 - q \end{pmatrix}$$

- a) Determine los valores de p,q para que la cadena sea irreducible y aperiódica.
- b) Determine el conjunto de probabilidades invariantes en función de p,q.
- c) Determine P^n para $n \in \mathbb{N}$.
- d) Cuando X es irreducible, calcule:

$$d_1(t) = \frac{1}{2}(|\mathbb{P}_1(X_t = 1) - \pi(1)| + |\mathbb{P}_1(X_t = 2) - \pi(2)|)$$

у

$$d_2(t) = \frac{1}{2}(|\mathbb{P}_2(X_t = 1) - \pi(1)| + |\mathbb{P}_2(X_t = 2) - \pi(2)|)$$

[5 puntos]

Solución:

- a) Irreducible si y solamente si p > 0 y q > 0, aperiódica si $(p, q) \neq 1, 1$.
- b) Si p=q=0 entonces $\{\alpha\delta_1+(1-\alpha)\delta_2,\alpha\in[0,1]\}$ es el conjunto de todas las medidas invariantes.
- c) Si p = q = 0 entonces $P^{(n)} = I_2$ para todo $I_2 \in \mathbb{N}$, sino

$$P^{(n)} = \begin{pmatrix} \frac{q}{p+q} & \frac{p}{p+q} \\ \frac{q}{p+q} & \frac{p}{p+q} \end{pmatrix} + (1-p-q)^n \begin{pmatrix} \frac{p}{p+q} & \frac{-p}{p+q} \\ \frac{-q}{p+q} & \frac{q}{p+q} \end{pmatrix}$$

d)

$$d_1(t) = \frac{p}{p+q} |1 - p - q|^t$$
$$d_2(t) = \frac{q}{p+q} |1 - p - q|^t$$

3. Tiempo de mezcla

Sea X una cadena de Markov sobre el espacio de estados $\{0,1,2,\ldots,n\}$ y matriz de transición P tal que:

$$P(0,k) = \frac{1}{2^{k+1}}, k \in \{0,1,\dots,n-1\}$$
 $P(0,n) = \frac{1}{2^n}$

$$P(k, k-1) = 1, k \in \{1, 2, \dots, n-1\}, \quad P(n, n) = P(n, n-1) = \frac{1}{2}$$

- a) Muestre que la cadena posee una unica medida de probabilidad invariante π y calcule dicha medida.
- b) Muestre que para $x_0 \in \{0, 1, 2, \dots, n-1\}, P^{(x_0+1)}(x_0, z) = \pi(z)$ para todo z.
- c) Muestre que para todo $x_0 \in \{0, 1, 2, \dots, n\}$, $P^{(n)}(x_0, z) = \pi(z)$.
- d) Para $t \ge 0$ calcule

$$d(t) = \frac{1}{2} \sum_{x=0}^{n} \left| P^{(t)}(n, x) - \pi(x) \right|$$

[5 puntos]

Solución:

a) La CM es claramente irreducible y aperiodica 0 \rightarrow 0. Por lo tanto, posee una medida de probabilidad π

$$\pi(k) = \frac{\pi(0)}{2^k}, \quad k = 0, 1, \dots, n - 1, \quad \pi(n) = \frac{\pi(0)}{2^n}$$

 $con \pi(0) = 1/2.$

- b) Esto es claro desde que $P(0,x)=\pi(x)$, de forma similar como $P^{(x_0)}(x_0,0)=1$ tenemos $P^{(x_0+1)}(x_0,z)=\pi(z)$ para todo z.
- c) De la pregunta anterior, cuando $x_0 = 0, 1, \dots, n-1$ tenemos:

$$P^{n}(x_{0}, z) = P^{n-x_{0}-1}\pi = \pi$$

Finalmente, para $x_0 = n$ consideramos $G = \inf\{n \ge 1 : X_n = n - 1\}$ es una v.a. geometrica de parametro 1/2. De esta forma,

$$P^{t}(n,k) = \mathbb{P}_{n}(X_{n} = k) = \mathbb{P}_{n}(G = k+1) = \frac{1}{2^{k+1}}, \quad k = 0, 1, 2, \dots, n-1$$
$$P^{t}(n,n) = \mathbb{P}_{n}(X_{n} = n) = \mathbb{P}_{n}(G > n) = \frac{1}{2^{n}}$$

Por lo tanto, $P^n(n,z) = \pi(z)$.

d) Si $t \ge n$ tenemos qued(t) = 0 Luego, para $t \le n - 1$ tenemos que:

$$d(t) = 1 - \frac{1}{2^{n-t}}$$

4. Tiempo medio de alcance

A mouse is placed in the maze in figure starting in box A. A piece of cheese is put in box I. From each room the mouse moves to an adjacent room through an open door, choosing from the available doors with equal probability.

- a) How many rooms, on average, will the mouse visit before it finds the cheese?
- b) How many times, on average, will the mouse visit room A before it finds the cheese?

[5 puntos]

Solución:

- a) We need to calculate $\mathbb{E}_A(T_I)$.
- b) Sustitutorio.