10.2 Calculus with Parametric Curves

1.
$$x = 2t^3 + 3t$$
, $y = 4t - 5t^2$ $\Rightarrow \frac{dx}{dt} = 6t^2 + 3$, $\frac{dy}{dt} = 4 - 10t$, and $\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{4 - 10t}{6t^2 + 3}$.

2.
$$x = t - \ln t$$
, $y = t^2 - t^{-2}$ $\Rightarrow \frac{dx}{dt} = 1 - t^{-1}$, $\frac{dy}{dt} = 2t + 2t^{-3}$, and $\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{2t + 2t^{-3}}{1 - t^{-1}} \cdot \frac{t^3}{t^3} = \frac{2t^4 + 2t^{-3}}{t^3 - t^2}$

3.
$$x = te^t$$
, $y = t + \sin t$ $\Rightarrow \frac{dx}{dt} = te^t + e^t = e^t(t+1)$, $\frac{dy}{dt} = 1 + \cos t$, and $\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{1 + \cos t}{e^t(t+1)}$

4.
$$x = t + \sin(t^2 + 2)$$
, $y = \tan(t^2 + 2)$ $\Rightarrow \frac{dx}{dt} = 1 + 2t\cos(t^2 + 2)$, $\frac{dy}{dt} = 2t\sec^2(t^2 + 2)$, and $\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{2t\sec^2(t^2 + 2)}{1 + 2t\cos(t^2 + 2)}$.

5.
$$x = t^2 + 2t$$
, $y = 2^t - 2t$; (15,2). $\frac{dy}{dt} = 2^t \ln 2 - 2$, $\frac{dx}{dt} = 2t + 2$, and $\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{2^t \ln 2 - 2}{2t + 2}$. At (15,2), $x = t^2 + 2t = 15$ \Rightarrow $t^2 + 2t - 15 = 0$ \Rightarrow $(t+5)(t-3) = 0$ \Rightarrow $t = -5$ or $t = 3$. Only $t = 3$ gives $y = 2$. With $t = 3$, $\frac{dy}{dx} = \frac{2^3 \ln 2 - 2}{2(3) + 2} = \frac{4 \ln 2 - 1}{4} = \ln 2 - \frac{1}{4} \approx 0.44$.

6.
$$x = t + \cos \pi t, \ y = -t + \sin \pi t; \ (3, -2).$$
 $\frac{dy}{dt} = -1 + \pi \cos \pi t, \frac{dx}{dt} = 1 - \pi \sin \pi t, \text{ and}$ $\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{-1 + \pi \cos \pi t}{1 - \pi \sin \pi t}.$ When $x = 3$, we have $t + \cos \pi t = 3 \implies \cos^2 \pi t = (3 - t)^2$ (1). When $y = -2$, we have $-t + \sin \pi t = -2 \implies \sin^2 \pi t = (t - 2)^2$ (2). Adding (1) and (2) gives $\sin^2 \pi t + \cos^2 \pi t = (t - 2)^2 + (3 - t)^2 \implies 1 = t^2 - 4t + 4 + 9 - 6t + t^2 \implies 0 = 2t^2 - 10t + 12 \implies 0 = 2(t - 2)(t - 3) \implies t = 2 \text{ or } t = 3.$ Only $t = 2$ gives $y = -2$. With $t = 2$, $\frac{dy}{dx} = \frac{-1 + \pi \cos 2\pi}{1 - \pi \sin 2\pi} = \frac{-1 + \pi}{1 - 0} = \pi - 1 \approx 2.14.$

7.
$$x=t^3+1$$
, $y=t^4+t$; $t=-1$. $\frac{dy}{dt}=4t^3+1$, $\frac{dx}{dt}=3t^2$, and $\frac{dy}{dx}=\frac{dy/dt}{dx/dt}=\frac{4t^3+1}{3t^2}$. When $t=-1$, $(x,y)=(0,0)$ and $dy/dx=-3/3=-1$, so an equation of the tangent to the curve at the point corresponding to $t=-1$ is $y-0=-1(x-0)$, or $y=-x$.

8.
$$x = \sqrt{t}$$
, $y = t^2 - 2t$; $t = 4$. $\frac{dy}{dt} = 2t - 2$, $\frac{dx}{dt} = \frac{1}{2\sqrt{t}}$, and $\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = (2t - 2)2\sqrt{t} = 4(t - 1)\sqrt{t}$. When $t = 4$, $(x,y) = (2,8)$ and $dy/dx = 4(3)(2) = 24$, so an equation of the tangent to the curve at the point corresponding to $t = 4$ is $y - 8 = 24(x - 2)$, or $y = 24x - 40$.

9.
$$x = \sin 2t + \cos t$$
, $y = \cos 2t - \sin t$; $t = \pi$. $\frac{dy}{dt} = -2\sin 2t - \cos t$, $\frac{dx}{dt} = 2\cos 2t - \sin t$, and $\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{-2\sin 2t - \cos t}{2\cos 2t - \sin t}$. When $t = \pi$, $(x, y) = (-1, 1)$, and $\frac{dy}{dx} = \frac{1}{2}$, so an equation of the tangent to the curve at the point corresponding to $t = \pi$ is $y - 1 = \frac{1}{2}[x - (-1)]$, or $y = \frac{1}{2}x + \frac{3}{2}$.

^{© 2021} Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

- **10.** $x=e^t\sin\pi t,\ y=e^{2t};\ t=0.$ $\frac{dy}{dt}=2e^{2t}, \frac{dx}{dt}=e^t(\pi\cos\pi t)+(\sin\pi t)e^t=e^t(\pi\cos\pi t+\sin\pi t),$ and $\frac{dy}{dx}=\frac{dy/dt}{dx/dt}=\frac{2e^{2t}}{e^t(\pi\cos\pi t+\sin\pi t)}=\frac{2e^t}{\pi\cos\pi t+\sin\pi t}.$ When t=0,(x,y)=(0,1) and $\frac{dy}{dx}=\frac{2}{\pi}$, so an equation of the tangent to the curve at the point corresponding to t=0 is $y-1=\frac{2}{\pi}(x-0),$ or $y=\frac{2}{\pi}x+1.$
- 11. (a) $x = \sin t$, $y = \cos^2 t$; $(\frac{1}{2}, \frac{3}{4})$. $\frac{dy}{dt} = 2\cos t(-\sin t)$, $\frac{dx}{dt} = \cos t$, and $\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{-2\sin t\cos t}{\cos t} = -2\sin t$. At $(\frac{1}{2}, \frac{3}{4})$, $x = \sin t = \frac{1}{2}$ \Rightarrow $t = \frac{\pi}{6}$, so $dy/dx = -2\sin\frac{\pi}{6} = -2(\frac{1}{2}) = -1$, and an equation of the tangent is $y \frac{3}{4} = -1(x \frac{1}{2})$, or $y = -x + \frac{5}{4}$.
 - (b) $x = \sin t \implies x^2 = \sin^2 t = 1 \cos^2 t = 1 y$, so $y = 1 x^2$, and y' = -2x. At $\left(\frac{1}{2}, \frac{3}{4}\right)$, $y' = -2 \cdot \frac{1}{2} = -1$, so an equation of the tangent is $y \frac{3}{4} = -1\left(x \frac{1}{2}\right)$, or $y = -x + \frac{5}{4}$.
- **12.** (a) $x = \sqrt{t+4}$, y = 1/(t+4); $(2, \frac{1}{4})$. $\frac{dy}{dt} = -\frac{1}{(t+4)^2}$, $\frac{dx}{dt} = \frac{1}{2\sqrt{t+4}}$, and $\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{-1/(t+4)^2}{1/(2\sqrt{t+4})} = -2(t+4)^{-3/2}$. At $(2, \frac{1}{4})$, $x = \sqrt{t+4} = 2 \implies t+4=4 \implies t=0$ and $dy/dx = -2(4)^{-3/2} = -\frac{1}{4}$, so an equation of the tangent is $y \frac{1}{4} = -\frac{1}{4}(x-2)$, or $y = -\frac{1}{4}x + \frac{3}{4}$.
 - (b) $x = \sqrt{t+4} \implies x^2 = t+4 \implies t = x^2-4$, so $y = \frac{1}{t+4} = \frac{1}{x^2-4+4} = \frac{1}{x^2}$, and $y' = -\frac{2}{x^3}$. At $\left(2, \frac{1}{4}\right)$, $y' = -2/2^3 = -1/4$, so an equation of the tangent is $y \frac{1}{4} = -\frac{1}{4}(x-2)$, or $y = -\frac{1}{4}x + \frac{3}{4}$.
- **13.** $x=t^2-t,\ y=t^2+t+1;\ (0,3).$ $\frac{dy}{dx}=\frac{dy/dt}{dx/dt}=\frac{2t+1}{2t-1}.$ To find the value of t corresponding to the point (0,3), solve x=0 \Rightarrow $t^2-t=0$ \Rightarrow t(t-1)=0 \Rightarrow t=0 or t=1. Only t=1 gives y=3. With t=1, dy/dx=3, and an equation of the tangent is y-3=3(x-0), or y=3x+3.
- 5 (0, 3) -2
- **14.** $x=\sin \pi t, \ y=t^2+t; \ (0,2).$ $\frac{dy}{dx}=\frac{dy/dt}{dx/dt}=\frac{2t+1}{\pi\cos \pi t}.$ To find the value of t corresponding to the point (0,2), solve y=2 \Rightarrow $t^2+t-2=0 \Rightarrow (t+2)(t-1)=0 \Rightarrow t=-2 \text{ or } t=1.$ Either value gives $dy/dx=-3/\pi$, so an equation of the tangent is $y-2=-\frac{3}{\pi}(x-0), \text{ or } y=-\frac{3}{\pi}x+2.$

15. $x = t^2 + 1$, $y = t^2 + t$ \Rightarrow $\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{2t+1}{2t} = 1 + \frac{1}{2t}$ \Rightarrow $\frac{d^2y}{dx^2} = \frac{\frac{d}{dt}\left(\frac{dy}{dx}\right)}{dx/dt} = \frac{-1/(2t^2)}{2t} = -\frac{1}{4t^3}$. The curve is CU when $\frac{d^2y}{dx^2} > 0$, that is, when t < 0.