Hub Labeling Algorithms

Andrew V. Goldberg

Amazon.com

- Work on hub labeling was done while I was at Microsoft Research
- Amazon has may interesting algorithmic problems with OR and CS flavor
- Amazon is hiring PhDs as scientists and interns

Collaborators

The work on hub labeling took place over many years

Joint work with

Ittai Abraham, Maxim Babenko, Daniel Delling, Haim Kaplan, Thomas Pajor, Ruslan Savchenko, Mathis Weller, Renato Werneck

Theory vs. Practice

Outline

- Introduction
- Labeling Algorithms
- Hub Labeling Algorithm (HL)
- 4 HL Query
- 6 Hierarchical Labels
- 6 Theory: Approximating Optimal Labels
- Concluding Remarks

Motivation

Shortest path applications

- driving directions in road networks
- indoor and terrain navigation
- routing in communication/sensor networks
- moving agents on game maps
- proximity in social/collaboration networks

Challenges

- massive networks of varying structure
- real-time queries

6 / 45

Need a fast and robust approach

Single Pair Shortest Paths Problem

Input

- Graph G = (V, E); |V| = n, |E| = m
- Length function ℓ
- Assume G is undirected (simpler notation)
- HL algorithm works for directed graphs

Query (multiple for the same network)

 Given origin s and destination t, find an optimal path from s to t

Single Pair Shortest Paths Problem

Input

- Graph G = (V, E); |V| = n, |E| = m
- Length function ℓ
- Assume G is undirected (simpler notation)
- HL algorithm works for directed graphs

Query (multiple for the same network)

 Given origin s and destination t, find an optimal path from s to t

 $n \times n$ distance table infeasible for large graphs

SP Algorithms with Preprocessing

Motivating application: driving directions

- preprocessing to speed up queries
 - may take much longer than a query
 - can use a more powerful machine
- queries are fast (e.g., real-time)

SP Algorithms with Preprocessing

Motivating application: driving directions

- preprocessing to speed up queries
 - may take much longer than a query
 - can use a more powerful machine
- queries are fast (e.g., real-time)

HL works very well for a static distance oracle implementation

Outline

- Introduction
- 2 Labeling Algorithms
- Hub Labeling Algorithm (HL)
- 4 HL Query
- 6 Hierarchical Labels
- Theory: Approximating Optimal Labels
- Concluding Remarks

Labeling Algorithms

Labeling Algorithm [P 99]

- precompute labels L(v) for all $v \in V$
- answer s, t query using L(s) and L(t) only
- G used only for preprocessing

Labeling Algorithms

Labeling Algorithm [P 99]

- precompute labels L(v) for all $v \in V$
- answer s, t query using L(s) and L(t) only
- G used only for preprocessing

Label Sizes

- some networks have small labels, some do not [GPPR 04]
 - ▶ trees: $O(\log n)$ -size labels
 - ▶ planar graphs: $O^*(\sqrt{n})$, $\Omega^*(n^{1/3})$
 - general graphs: $\Omega^*(n)$
- graphs of highway dimension h: $O(h \log(h) \log(D))$ [ADFGW 11]

Example: Hypercube

Standard binary vertex names yield $n \log n$ size labels

Outline

- Introduction
- Labeling Algorithms
- 3 Hub Labeling Algorithm (HL)
- 4 HL Query
- 6 Hierarchical Labels
- Theory: Approximating Optimal Labels
- Concluding Remarks

Hub Labeling

• $L(v) = \{(w, \operatorname{dist}(v, w)) : w \in H(v))\},$ where $H(v) \subset V$ is a set of hubs of v

 $\circ t$

Hub Labeling

- $L(v) = \{(w, \operatorname{dist}(v, w)) : w \in H(v))\},$ where $H(v) \subset V$ is a set of hubs of v
- Labels satisfy the cover property: for all s, t, a shortest s-t path intersects $L(s) \cap L(t)$

Hub Labeling

- $L(v) = \{(w, \operatorname{dist}(v, w)) : w \in H(v))\},$ where $H(v) \subset V$ is a set of hubs of v
- Labels satisfy the cover property: for all s, t, a shortest s-t path intersects $L(s) \cap L(t)$

s-t query

• Find vertex $w \in L(s) \cap L(t) \dots$

Hub Labeling

- $L(v) = \{(w, \operatorname{dist}(v, w)) : w \in H(v))\},$ where $H(v) \subset V$ is a set of hubs of v
- Labels satisfy the cover property: for all s, t, a shortest s-t path intersects $L(s) \cap L(t)$

s-t query

- Find vertex $w \in L(s) \cap L(t) \dots$
- ... that minimizes dist(s, v) + dist(v, t)

6/2/2016

13 / 45

Hub Labeling

- $L(v) = \{(w, \operatorname{dist}(v, w)) : w \in H(v))\},$ where $H(v) \subset V$ is a set of hubs of v
- Labels satisfy the cover property: for all s, t, a shortest s-t path intersects $L(s) \cap L(t)$

s-t query

- Find vertex $w \in L(s) \cap L(t) \dots$
- ... that minimizes dist(s, v) + dist(v, t)

Queries are efficient if labels are small

Hub Labeling

- $L(v) = \{(w, \operatorname{dist}(v, w)) : w \in H(v))\},$ where $H(v) \subset V$ is a set of hubs of v
- Labels satisfy the cover property: for all s, t, a shortest s-t path intersects $L(s) \cap L(t)$

s-t query

- Find vertex $w \in L(s) \cap L(t) \dots$
- ... that minimizes dist(s, v) + dist(v, t)

Queries are efficient if labels are small

Shortest paths are exact but label size may be suboptimal

Example: Star Graph

Example: Star Graph

Another Example

Another Example

Outline

- Introduction
- Labeling Algorithms
- Hub Labeling Algorithm (HL)
- 4 HL Query
- 6 Hierarchical Labels
- Theory: Approximating Optimal Labels
- Concluding Remarks

Label parameters

- |L(v)|: the number of hubs in L(v)
- size: $|L| = \sum_{V} |L(v)|$
- max label size: $M = \max_{V} |L(v)|$

Label parameters

- |L(v)|: the number of hubs in L(v)
- size: $|L| = \sum_{V} |L(v)|$
- max label size: $M = \max_{V} |L(v)|$

s-t query complexity

assume $|L(s)| \leq |L(t)|$

 $\forall v$, sort v's hubs by vertex IDs; query intersects sorted lists

Label parameters

- |L(v)|: the number of hubs in L(v)
- size: $|L| = \sum_{V} |L(v)|$
- max label size: $M = \max_{V} |L(v)|$

$$L(s) \ 2 \ 3 \ 6 \ 35 \ 37 \ 102 \ 155 \ 172$$

$$L(t)$$
 2 6 8 43 45 85

s-t query complexity

assume
$$|L(s)| \leq |L(t)|$$

 $\forall v$, sort v's hubs by vertex IDs; query intersects sorted lists

Label parameters

- |L(v)|: the number of hubs in L(v)
- size: $|L| = \sum_{V} |L(v)|$
- max label size: $M = \max_{V} |L(v)|$

$$L(s)$$
 2 3 6 35 37 102 155 172

$$L(t)$$
 2 6 8 43 45 85

s-t query complexity

assume
$$|L(s)| \leq |L(t)|$$

 $\forall v$, sort v's hubs by vertex IDs; query intersects sorted lists

Label parameters

- |L(v)|: the number of hubs in L(v)
- size: $|L| = \sum_{V} |L(v)|$
- max label size: $M = \max_{V} |L(v)|$

$$L(s)$$
 2 3 6 35 37 102 155 172

s-t query complexity

assume $|L(s)| \leq |L(t)|$

 $\forall v$, sort v's hubs by vertex IDs; query intersects sorted lists

Label parameters

- |L(v)|: the number of hubs in L(v)
- size: $|L| = \sum_{V} |L(v)|$
- max label size: $M = \max_{V} |L(v)|$

s-t query complexity

assume $|L(s)| \leq |L(t)|$

 $\forall v$, sort v's hubs by vertex IDs; query intersects sorted lists

Label parameters

- |L(v)|: the number of hubs in L(v)
- size: $|L| = \sum_{V} |L(v)|$
- max label size: $M = \max_{V} |L(v)|$

$$L(s)$$
 2 3 6 35 37 102 155 172

$$L(t)$$
 2 6 8 43 45 85

s-t query complexity

assume $|L(s)| \leq |L(t)|$

 $\forall v$, sort v's hubs by vertex IDs; query intersects sorted lists

Label parameters

- |L(v)|: the number of hubs in L(v)
- size: $|L| = \sum_{V} |L(v)|$
- max label size: $M = \max_{V} |L(v)|$

$$L(s) \ 2 \ 3 \ 6 \ 35 \ 37 \ 102 \ 155 \ 172$$

$$L(t)$$
 2 6 8 43 45 85

s-t query complexity

assume $|L(s)| \leq |L(t)|$

 $\forall v$, sort v's hubs by vertex IDs; query intersects sorted lists

Label parameters

- |L(v)|: the number of hubs in L(v)
- size: $|L| = \sum_{V} |L(v)|$
- max label size: $M = \max_{V} |L(v)|$

$$L(s) \ 2 \ 3 \ 6 \ 35 \ 37 \ 102 \ 155 \ 172$$

$$L(t)$$
 2 6 8 43 45 85

s-t query complexity

assume
$$|L(s)| \leq |L(t)|$$

 $\forall v$, sort v's hubs by vertex IDs; query intersects sorted lists

Label parameters

- |L(v)|: the number of hubs in L(v)
- size: $|L| = \sum_{V} |L(v)|$
- max label size: $M = \max_{V} |L(v)|$

$$L(s) \ 2 \ 3 \ 6 \ 35 \ 37 \ 102 \ 155 \ 172$$

$$L(t)$$
 2 6 8 43 45 85

s-t query complexity

assume
$$|L(s)| \leq |L(t)|$$

 $\forall v$, sort v's hubs by vertex IDs; query intersects sorted lists

Label parameters

- |L(v)|: the number of hubs in L(v)
- size: $|L| = \sum_{V} |L(v)|$
- max label size: $M = \max_{V} |L(v)|$

$$L(s) \ 2 \ 3 \ 6 \ 35 \ 37 \ 102 \ 155 \ 172$$

$$L(t)$$
 2 6 8 43 45 85

s-t query complexity

assume
$$|L(s)| \leq |L(t)|$$

 $\forall v$, sort v's hubs by vertex IDs; query intersects sorted lists

Label parameters

- |L(v)|: the number of hubs in L(v)
- size: $|L| = \sum_{V} |L(v)|$
- max label size: $M = \max_{V} |L(v)|$

$$L(s)$$
 2 3 6 35 37 102 155 172

$$L(t)$$
 2 6 8 43 45 85

s-t query complexity

assume $|L(s)| \leq |L(t)|$

 $\forall v$, sort v's hubs by vertex IDs; query intersects sorted lists

Label parameters

- |L(v)|: the number of hubs in L(v)
- size: $|L| = \sum_{V} |L(v)|$
- max label size: $M = \max_{V} |L(v)|$

$$L(s) \ 2 \ 3 \ 6 \ 35 \ 37 \ 102 \ 155 \ 172$$

s-t query complexity

assume $|L(s)| \leq |L(t)|$

 $\forall v$, sort v's hubs by vertex IDs; query intersects sorted lists

Label parameters

- |L(v)|: the number of hubs in L(v)
- size: $|L| = \sum_{V} |L(v)|$
- max label size: $M = \max_{V} |L(v)|$

$$L(s)$$
 2 3 6 35 37 102 155 172

$$L(t) \ 2 \ | 6 \ | 8 \ | 43 \ | 45 \ | 85 \ |$$

Time estimate assuming memory-bound queries:

- |L(s)| = |L(t)| = 100
- 4 byte IDs and dist
- 128 byte cache lines
- 50ns latency
- $2 \cdot \lceil 100 \cdot 8/128 \rceil \cdot 50 = 700$ ns

s-t query complexity

assume $|L(s)| \leq |L(t)|$

 $\forall v$, sort v's hubs by vertex IDs; query intersects sorted lists

Label parameters

- |L(v)|: the number of hubs in L(v)
- size: $|L| = \sum_{V} |L(v)|$
- max label size: $M = \max_{V} |L(v)|$

$$L(s)$$
 2 3 6 35 37 102 155 172

Time estimate assuming memory-bound queries:

•
$$|L(s)| = |L(t)| = 100$$

- 4 byte IDs and dist
- 128 byte cache lines
- 50ns latency
- $2 \cdot [100 \cdot 8/128] \cdot 50 = 700$ ns

s-t query complexity

assume $|L(s)| \leq |L(t)|$

 $\forall v$, sort v's hubs by vertex IDs; query intersects sorted lists

- O(|L(s)| + |L(t)|) = O(M); good locality
- O(|L(s)|) [ST 07]

Performance on Road Networks

Fast HL implementations

- implementation motivated by better query bounds [ADFGW 11]
- surprisingly small labels
- fastest distance oracles for road networks

6/2/2016

18 / 45

Performance on Road Networks

Fast HL implementations

- implementation motivated by better query bounds [ADFGW 11]
- surprisingly small labels
- fastest distance oracles for road networks

Western Europe, n = 18 Mil, m = 42 Mil

variant	prep (h:m)	L /n	GB	[ns]
HL	0:03	98	22.5	700
HL-15	0:05	78	18.8	556
HL-17	0:25	75	18.0	546
HL-R	5:43	69	17.7	508

Performance on Road Networks

Fast HL implementations

- implementation motivated by better query bounds [ADFGW 11]
- surprisingly small labels
- fastest distance oracles for road networks

Western Europe, n = 18 Mil, m = 42 Mil

variant	prep (h:m)	L /n	GB	[ns]
HL	0:03	98	22.5	700
HL-15	0:05	78	18.8	556
HL-17	0:25	75	18.0	546
HL-R	5:43	69	17.7	508

Memory-bound assumption verified

Beyond Road Networks: RXL [DGPW 14]

instance	n(K)	m/n	prep (h:m)	L /n	MB	$[\mu s]$
fla-t	1 070	2.5	0:02	41	261	0.5
buddha	544	6.0	0:02	92	180	0.9
buddha-w	544	6.0	0:11	336	953	2.9
rgg20	1 049	13.1	0:16	220	807	2.0
rgg20-w	1 049	13.1	1:00	589	3 154	4.9
WikiTalk	2394	2.0	0:17	60	626	0.5
Indo	1 383	12.0	0:04	27	218	0.4
Skitter-u	1 696	13.1	0:47	274	1 075	2.3
MetrcS	2 2 5 0	19.2	0:38	117	593	8.0
eur-t	18010	2.3	2:19	82	17 203	8.0
Hollywood	1 140	98.9	17:04	2114	5 9 3 4	13.9
Indochin	7415	25.8	4:07	66	3917	0.7

External Memory and Database Queries

Queries require only two seek operations

External Memory and Database Queries

Queries require only two seek operations

Natural database implementation [ADFGW]

Outline

- Introduction
- Labeling Algorithms
- 3 Hub Labeling Algorithm (HL)
- 4 HL Query
- 6 Hierarchical Labels
- Theory: Approximating Optimal Labels
- Concluding Remarks

Hierarchical Labels

Hierarchical Hub Labels (HHL) [ADGW 12]

 $v \lesssim w$ if w is a hub of v (w more important) L is hierarchical if \lesssim is a partial order

- special class of HL
- can be polynomially bigger than HL [GPS 13]
- in practice, HHL are often small
- in practice, HHL can be computed faster than HL

Canonical HHL

- L respects a total order of vertices, r, if \lesssim is consistent with r
- P_{uw} is the set of vertices on shortest paths from u to w

Canonical Labeling

- start with an empty labeling
- $\forall u, w, \text{ let } v = \operatorname{argmax}_{v \in P_{uv}} r(x)$
- add v to L(u) and L(w)

Canonical HHL

- L respects a total order of vertices, r, if \lesssim is consistent with r
- P_{uw} is the set of vertices on shortest paths from u to w

Canonical Labeling

- start with an empty labeling
- $\forall u, w, \text{ let } v = \operatorname{argmax}_{v \in P_{uv}} r(x)$
- add v to L(u) and L(w)

Canonical labels are exactly the minimal valid labels

- necessary: $v = \operatorname{argmax}_{v \in P_{uv}} r(x)$ must be in L(u) and L(w)
- sufficient: all vertex pairs are covered

Canonical HHL

- L respects a total order of vertices, r, if \lesssim is consistent with r
- P_{uw} is the set of vertices on shortest paths from u to w

Canonical Labeling

- start with an empty labeling
- $\forall u, w, \text{ let } v = \operatorname{argmax}_{v \in P_{uv}} r(x)$
- add v to L(u) and L(w)

Canonical labels are exactly the minimal valid labels

- necessary: $v = \operatorname{argmax}_{v \in P_{uv}} r(x)$ must be in L(u) and L(w)
- sufficient: all vertex pairs are covered

The definition implies a poly-time, but impractical, algorithm

Pruned Labeling (PL) Algorithm

[AIY 13]: compute canonical labeling form an order r

PL algorithm

- start with an empty L
- process vertices v in the order given by r (highest to lowest)
- run Dijkstra's search from v
 - \triangleright before scanning w check the following condition
 - ▶ is $d(w) \ge$ (estimate given by current labels)?
 - \triangleright if yes, prune w (do not scan)
- add v to the labels of all w scanned by Dijkstra

Pruned Labeling (PL) Algorithm

[AIY 13]: compute canonical labeling form an order r

PL algorithm

- start with an empty L
- process vertices v in the order given by r (highest to lowest)
- run Dijkstra's search from v
 - \triangleright before scanning w check the following condition
 - is $d(w) \ge ($ estimate given by current labels)?
 - \triangleright if yes, prune w (do not scan)
- add v to the labels of all w scanned by Dijkstra

Approximate PL complexity

- every scanned vertex is added to L
- $\bullet \approx O(|L|^{\frac{|L|}{n}})$
- efficient if |L|/n is small

PL Correctness

- For simplicity, assume unique shortest paths.
- Prove by induction on $|P_{uv}|$: $v = \operatorname{argmax}_{x \in P_{uv}} r(x) \Rightarrow \mathsf{PL}$ adds v
 - basis is trivial
 - ▶ by the inductive hypothesis, statement holds for the predecessor u' of u on the shortest u-v path (since $P_{u'v} \subset P_{uv}$).
 - ▶ Dijkstra's search from v scans u', setting d(u) to correct distance
 - ▶ when u is scanned, $L(u) \cap P_{uv} = \emptyset$, so $d(u) < (\textit{estimate given by current labels}) = \infty$
 - u scanned, v added to L(u) with d(u)
- $\begin{array}{l} \bullet \ v = \mathrm{argmax}_{x \in P_{uw}} r(x) \Rightarrow \\ v = \mathrm{argmax}_{x \in P_{uw}} r(x) \ \text{and} \ v = \mathrm{argmax}_{x \in P_{vw}} r(x) \Rightarrow \\ v \in L(u) \ \text{and} \ v \in L(w), \ \text{with correct distances}. \end{array}$

Example: labels on a path

Ordering matters!

- Sequential ordering: $\Omega(n^2)$ label size
- recursive "split in the middle" ordering: $O(n \log n)$ label size

HHL Vertex Ordering

PL allows separation of vertex ordering from label generation

Ordering requirements

- label quality (small size)
- efficiency

HHL Vertex Ordering

PL allows separation of vertex ordering from label generation

Ordering requirements

- label quality (small size)
- efficiency

HHL orderings

- bottom up [ADFGW 11]: works well for road networks, but not robust
 - related to contraction hierarchies [GSSD 08]
- by degree [AIY 13]: very fast, works on some networks but not robust
- greedy [ADGW 12]: slow but robust
 - can be made faster by sampling [DGPW 14]

Simple Bottom-Up Ordering

Order vertices from least to most important

- Choose a maximal independent set I using the least degree heuristic
- Order vertices of I, in the same order they were added to I
- Delete I and continue

Simple Bottom-Up Ordering

Order vertices from least to most important

- Choose a maximal independent set I using the least degree heuristic
- Order vertices of I, in the same order they were added to I
- Delete I and continue

Remarks

- This folklore ordering is OK
- There are better ordering heuristics [GSSD 08]
- You can experiment with this and other orderings using Ruslan Savchenko's code for basic HHL primitives https://github.com/savrus/hl

Greedy Ordering [ADGW 12]

 $v \text{ covers } \{u, w\} \text{ is } \exists \text{ a } u\text{-}w \text{ SP passing through } v$

Greedy ordering (most to least important)

[Abraham at al. 12]

- $U = V \times V$
- while there are unprocessed vertices
- pick a vertex v that covers most pairs in U as the next highest in the ordering
- ullet update U by deleting the pairs that v covers

Greedy Ordering [ADGW 12]

 $v \text{ covers } \{u, w\} \text{ is } \exists \text{ a } u\text{-}w \text{ SP passing through } v$

Greedy ordering (most to least important)

[Abraham at al. 12]

- $U = V \times V$
- while there are unprocessed vertices
- pick a vertex v that covers most pairs in U as the next highest in the ordering
- ullet update U by deleting the pairs that v covers

- next we describe data structures
- for simplicity assume that shortest paths are unique

- build shortest path trees from each vertex
 - lacktriangle tree rooted at v_i represents all SPs from v_i

- build shortest path trees from each vertex
 - tree rooted at v_i represents all SPs from v_i
- invariant: # (descendants of u in T_i) = # if SP from v_i hit by u

- build shortest path trees from each vertex
 - tree rooted at v_i represents all SPs from v_i
- invariant: # (descendants of u in T_i) = # if SP from v_i hit by u
- add a vertex u with the most (total) decedents to the order

- build shortest path trees from each vertex
 - tree rooted at v_i represents all SPs from v_i
- invariant: # (descendants of u in T_i) = # if SP from v_i hit by u
- add a vertex u with the most (total) decedents to the order
- delete subtrees rooted at u and update descendant counts

- build shortest path trees from each vertex
 - tree rooted at v_i represents all SPs from v_i
- invariant: # (descendants of u in T_i) = # if SP from v_i hit by u
- add a vertex u with the most (total) decedents to the order
- delete subtrees rooted at u and update descendant counts
- the trees represent U

Engineering Efficient Implementation of Greedy

- build shortest path trees from each vertex
 - tree rooted at v_i represents all SPs from v_i
- invariant: # (descendants of u in T_i) = # if SP from v_i hit by u
- add a vertex u with the most (total) decedents to the order
- delete subtrees rooted at u and update descendant counts
- the trees represent U
- complexity O(nDij(n,m)) time, $O(n^2)$ space

Engineering Efficient Implementation of Greedy

- build shortest path trees from each vertex
 - tree rooted at v_i represents all SPs from v_i
- invariant: # (descendants of u in T_i) = # if SP from v_i hit by u
- add a vertex u with the most (total) decedents to the order
- delete subtrees rooted at u and update descendant counts
- the trees represent U
- complexity O(nDij(n,m)) time, $O(n^2)$ space
- this is too much!

Engineering Efficient Implementation of Greedy

- build shortest path trees from each vertex
 - tree rooted at v_i represents all SPs from v_i
- invariant: # (descendants of u in T_i) = # if SP from v_i hit by u
- add a vertex u with the most (total) decedents to the order
- delete subtrees rooted at u and update descendant counts
- the trees represent U
- complexity O(nDij(n,m)) time, $O(n^2)$ space
- this is too much!
- use sampling to reduce time and space requirements

• maintain a sample of $\ll n$ trees (within tree node budget)

• maintain a sample of $\ll n$ trees (within tree node budget)

- maintain a sample of $\ll n$ trees (within tree node budget)
- use #descendants in the sample to estimate coverage of every u
 - sample is biased (e.g., vertices close to roots)
 - eliminate outliers

- maintain a sample of $\ll n$ trees (within tree node budget)
- use #descendants in the sample to estimate coverage of every u
 - sample is biased (e.g., vertices close to roots)
 - eliminate outliers
- add vertex u with the highest coverage estimate

- maintain a sample of $\ll n$ trees (within tree node budget)
- use #descendants in the sample to estimate coverage of every u
 - sample is biased (e.g., vertices close to roots)
 - eliminate outliers
- add vertex u with the highest coverage estimate
- remove descendants of u in sampled trees

- maintain a sample of $\ll n$ trees (within tree node budget)
- use #descendants in the sample to estimate coverage of every u
 - sample is biased (e.g., vertices close to roots)
 - eliminate outliers
- add vertex u with the highest coverage estimate
- remove descendants of *u* in sampled trees
- add new (pruned using PL) trees as the budget permits

- maintain a sample of $\ll n$ trees (within tree node budget)
- use #descendants in the sample to estimate coverage of every u
 - sample is biased (e.g., vertices close to roots)
 - eliminate outliers
- add vertex u with the highest coverage estimate
- remove descendants of *u* in sampled trees
- add new (pruned using PL) trees as the budget permits
- sample size can be adjusted to trade time/space for quality

Degree vs. RXL

			degree		RXL	
instance	n(K)	m/n	prep (h:m)	L /n	prep (h:m)	L /n
fla-t	1 070	2.5	0:22	172	0:02	41
buddha	544	6.0	0:02	290	0:02	92
buddha-w	544	6.0	0:24	1 165	0:11	336
rgg20	1 049	13.1	0:47	1 136	0:16	220
rgg20-w	1 049	13.1	14:43	5 603	1:00	589
WikiTalk	2394	2.0	0:05	68	0:17	60
Indo	1 383	12.0	0:04	172	0:04	27
Skitter-u	1 696	13.1	0:32	457	0:47	274
MetrcS	2 2 5 0	19.2	0:06	132	0:38	117
eur-t	18010	2.3	_	_	2:19	82
Hollywood	1 140	98.9	10:40	2921	17:04	2114
Indochin	7415	25.8	3:20	540	4:07	66

Performance on Road Networks (Revisited)

Western Europe,
$$n = 18M$$
, $m = 24M$

variant	prep (h:m)	L /n	GB	[ns]
HL	0:03	98	22.5	700
HL-15	0:05	78	18.8	556
HL-17	0:25	75	18.0	546
HL-R	5:43	69	17.7	508

Bottom-up ordering, plus

- greedy reordering of 2¹⁵ (HL-15) or 2¹⁷ (HL-17) top vertices
- range optimization (reordering of overlapping intervals)

Outline

- Introduction
- Labeling Algorithms
- Hub Labeling Algorithm (HL)
- 4 HL Query
- 6 Hierarchical Labels
- 6 Theory: Approximating Optimal Labels
- Concluding Remarks

Approximating Optimal Labels

Theoretical results

- optimizing |L|:
 - ▶ poly-time $O(\log n)$ approximation in $O(n^5)$ time [CHKZ 03]
 - ► $O(n^3 \log n)$ time improvement [DGSW 14]
 - ► NP-hard [BGKSW 15]
- optimizing *M*:
 - ▶ poly-time $O(\log n)$ approximation in $O(n^5)$ time [BGGN 13]
 - ► $O(n^3 \log^2 n)$ time improvement [DGSW 14]

Approximating Optimal Labels

Theoretical results

- optimizing |L|:
 - ▶ poly-time $O(\log n)$ approximation in $O(n^5)$ time [CHKZ 03]
 - ► $O(n^3 \log n)$ time improvement [DGSW 14]
 - ▶ NP-hard [BGKSW 15]
- optimizing M:
 - ▶ poly-time $O(\log n)$ approximation in $O(n^5)$ time [BGGN 13]
 - ► $O(n^3 \log^2 n)$ time improvement [DGSW 14]

[DGSW 14] improvement story

- introduced a heuristic improvement of [CHKZ 03]
- proved a better bound for the heuristic

Cohen at al. Algorithm (log-HL)

- for a (partial) labeling L, a pair u, w is covered if $L(u) \cap L(w)$ contains a vertex on u–w SP
- v covers u, w if there is a u–w SP through v

Cohen at al. Algorithm (log-HL)

- for a (partial) labeling L, a pair u, w is covered if $L(u) \cap L(w)$ contains a vertex on u–w SP
- v covers u, w if there is a u–w SP through v

log-HL algorithm sketch

- start with an empty L, U containing all vertex pairs
- 2 add a vertex v to the labels of a set of vertices S

- remove covered pairs from U
- 4 if $U = \emptyset$ halt, otherwise go to 2

Cohen at al. Algorithm (log-HL)

- for a (partial) labeling L, a pair u, w is covered if $L(u) \cap L(w)$ contains a vertex on u–w SP
- v covers u, w if there is a u–w SP through v

log-HL algorithm sketch

- start with an empty L, U containing all vertex pairs
- 2 add a vertex v to the labels of a set of vertices S Pick v and S as follows:

$$v,S = rgmax \max_{v \in V} \max_{S \subseteq V} \frac{\text{\# pairs covered if we add } v \text{ to } S}{|S|}$$

- remove covered pairs from U
- 4 if $U = \emptyset$ halt, otherwise go to 2

The resulting labeling need not be hierarchical

Center Graphs and MDS

Center graph

 $G_v = (V, E_v)$ where $(u, w) \in E_v$ if $u, w \in U$ and v covers u, w

- graph density: (#edges)/(#vertices)
- MDS problem: find a maximum density vertex-induced subgraph

Center Graphs and MDS

Center graph

 $G_v = (V, E_v)$ where $(u, w) \in E_v$ if $u, w \in U$ and v covers u, w

- graph density: (#edges)/(#vertices)
- MDS problem: find a maximum density vertex-induced subgraph

MDS for G_v

$$\max_{S\subseteq V} \frac{\text{\# pairs covered if we add } v \text{ to } S}{|S|}$$

Step (2): maximize MDS over all G_v

MDS complexity

- polynomial using parametric flows
- linear time 2-approximation [KP 94] (2-MDS)

2-Approximate MDS

2-MDS Algorithm

- while more than one vertex remains
- delete a minimum degree vertex
- update degrees
- goto (1)
- o return the densest subgraph seen

2-Approximate MDS

2-MDS Algorithm

- while more than one vertex remains
- delete a minimum degree vertex
- update degrees
- goto (1)
- return the densest subgraph seen

Correctness intuition

- A "small degree" vertex is not in MDS
- If vertex degrees of G are "not small", G is a 2-MDS

2-Approximate MDS

2-MDS Algorithm

- while more than one vertex remains
- delete a minimum degree vertex
- update degrees
- goto (1)
- return the densest subgraph seen

Correctness intuition

- A "small degree" vertex is not in MDS
- If vertex degrees of G are "not small", G is a 2-MDS

Problem: deleting 2-MDS may not reduce MDS value

Eager-Lazy Algorithm [DGSW 14]

α -eager evaluation (a modification of 2-MDS algorithm)

- μ is an upper bound on MDS value of G, $\alpha > 1$
- while MDS value of $G < \mu/(2\alpha)$ delete min degree vertex
- G': remaining graph; G G' has MDS value $\leq \mu/\alpha$

Eager-Lazy Algorithm [DGSW 14]

α -eager evaluation (a modification of 2-MDS algorithm)

- μ is an upper bound on MDS value of G, $\alpha > 1$
- while MDS value of $G < \mu/(2\alpha)$ delete min degree vertex
- G': remaining graph; G G' has MDS value $\leq \mu/\alpha$

Center graph densities are monotone

Eager-lazy algorithm

- start with empty L, $U = V \times V$
- ullet compute upper bounds μ_v on MDS values of G_v
- while $U \neq \emptyset$
- $v = \operatorname{argmax}(\mu_v)$; apply α -eager evaluation to G_v
- add v to the vertices of G', G = G G', update U

•
$$\mu_v = \mu_v / \alpha$$

Eager-Lazy Algorithm Analysis

- each iteration is $O(n^2)$ (vs. $O(n^3)$) (lazy)
- ullet decreases μ_v by a constant factor (eager)
- each v chosen $O(\log n)$ times (vs. $O(n^2)$)
- $O(n^3 \log n)$ bound (vs. $O(n^5)$)
- $O(n^2)$ space if center graphs maintained implicitly (vs. $O(n^3)$)

Eager-Lazy Algorithm Analysis

- each iteration is $O(n^2)$ (vs. $O(n^3)$) (lazy)
- ullet decreases μ_v by a constant factor (eager)
- each v chosen $O(\log n)$ times (vs. $O(n^2)$)
- $O(n^3 \log n)$ bound (vs. $O(n^5)$)
- $O(n^2)$ space if center graphs maintained implicitly (vs. $O(n^3)$)

From practice to theory

- log-HL picks same v consecutively
- use second-densest subgraph seen

Eager-Lazy Algorithm Analysis

- each iteration is $O(n^2)$ (vs. $O(n^3)$) (lazy)
- ullet decreases μ_v by a constant factor (eager)
- each v chosen $O(\log n)$ times (vs. $O(n^2)$)
- $O(n^3 \log n)$ bound (vs. $O(n^5)$)
- $O(n^2)$ space if center graphs maintained implicitly (vs. $O(n^3)$)

From practice to theory

- log-HL picks same v consecutively
- use second-densest subgraph seen
- use α -eager evaluation
- prove the new bound

41 / 45

Experimental Results for Approximation Algorithms

- log-HL: efficient implementation of [CHKZ 03]
- log-HL+: the implementation of [DGSW 14]
- log-HL+ labels are not much bigger
- log-HL+ is faster but still does not scale well

		time (s)		L /n	
instance	n	log-HL	log-HL+	log-HL	log-HL+
email	1133	109	47	30.0	30.4
polblogs	1222	376	145	25.2	25.5
venus	2838	978	558	27.3	28.0
alue5067	3524	2971	2486	23.4	24.5
ksw-64	4096	2319	901	81.4	82.3
hep-th	5835	6375	1479	38.7	39.2
berlin	10370	16027	8649	20.5	21.3
PGPgiant	10680	19114	3339	19.1	19.4

From Practice to Theory

Recent results on HHL [BGKSW 15]

- computing optimal HHL is NP-hard
- greedy algorithm approximation ratio
 - $O(n^{1/2} \log n)$ upper bound
 - $\Omega(n^{1/2})$ lower bound

- $ightharpoonup O(n^{1/2} \log n)$ upper bound
- $\Omega(n^{1/3})$ lower bound

From Practice to Theory

Recent results on HHL [BGKSW 15]

- computing optimal HHL is NP-hard
- greedy algorithm approximation ratio
 - $ightharpoonup O(n^{1/2}\log n)$ upper bound
 - $ightharpoonup \Omega(n^{1/2})$ lower bound

- $ightharpoonup O(n^{1/2} \log n)$ upper bound
- $ightharpoonup \Omega(n^{1/3})$ lower bound
- distance greedy algorithm

 - ► $M = O(h \log n \log D)$ (h: highway dimension; D: diameter) ► $O(n^{1/2} \log n \log D)$ upper and $\Omega(n^{1/2})$ lower bounds on approx ratio

A.V. Goldberg Hub Labeling 6/2/2016 43 / 45

From Practice to Theory

Recent results on HHL [BGKSW 15]

- computing optimal HHL is NP-hard
- greedy algorithm approximation ratio
 - $ightharpoonup O(n^{1/2} \log n)$ upper bound
 - $ightharpoonup \Omega(n^{1/2})$ lower bound

- $ightharpoonup O(n^{1/2}\log n)$ upper bound
- $ightharpoonup \Omega(n^{1/3})$ lower bound
- distance greedy algorithm
 - ► $M = O(h \log n \log D)$ (h: highway dimension; D: diameter) ► $O(n^{1/2} \log n \log D)$ upper and $\Omega(n^{1/2})$ lower bounds on approx ratio

Great open problem

Is there an $O(\log n)$ -approximation algorithm for optimal HHL?

Concluding Remarks

Remarks

- fruitful interaction between theory and experimentation
- impact beyond mainstream algorithms community
- highly practical algorithms
- opportunities for technology transfer
- active area, open problems remain

Thank You!

Joint work with

Ittai Abraham, Maxim Babenko, Daniel Delling, Haim Kaplan, Thomas Pajor, Ruslan Savchenko, Mathis Weller, Renato Werneck