

مستوى:السنة الأولى من سلك الباكالوريا

- شعبة التعليم الأصيل:مسلك العلوم الشرعية و مسلك اللغة العربية
- شعبة الآداب و العلوم الإنسانية: مسلك الآداب و مسلك العلوم الإنسانية

محتوى الدرس و الأهداف القدرات المنتظرة من الدرس و التعليمات الرسمية

- مقارنة تعبيرين باستعمال مختلف التقنيات؟	_ الدالة الزوجية؛ الدالة الفردية؛ التأويل
_ استنتاج تغيرات دالة أو القيم القصوية	المبياني؛
و الدنوية لدالة انطلاقا من تمثيلها المبياني أو من	- الدالة المكبورة، الدالة المصغورة؛ الدالة
جدول تغير اتها؟	المحدودة؛
- المزاوجة بين قراءة وتأويل بعض التمثيلات	- مقارنة دالتين؛ التأويل المبياني؛
المبيانية وبين بعض خاصيات الدوال.	- رتابة دالة عددية؛ معدل التغير ؛
	- مطاريف دالة
	- استنتاج تغيرات دالة أو القيم القصوية والدنوية لدالة انطلاقا من تمثيلها المبياني أو من جدول تغيراتها؛

تمرين 1: حدد مجموعة تعريف الدوال التالية:

$$g(x) = \frac{x^3}{2x-4}$$
 (2 $f(x) = 3x^2 - x + 1$ (1)

$$m(x) = \sqrt{2x-4}$$
 (4 $h(x) = \frac{5x+10}{x^2-9}$ (3

$$f(x) = 3x^2 - x + 1(1 + 1)$$

يعني
$$D_f=\mathbb{R}$$
 لأنها دالة حدودية

$$D_g = \{x \in \mathbb{R}/2x - 4 \neq 0\}$$
 يعني $g(x) = \frac{x^3}{2x - 4}$ (2)

$$D_{a} = \mathbb{R} - \{2\}$$
 ومنه $x = 2$ يعني $2x = 4$ يعني $2x - 4 = 0$

$$D_g = \{x \in \mathbb{R}/2x - 4 \neq 0\}$$
 $g(x) = \frac{x^3}{2x - 4}$ (3)

$$x = 2$$
 يعني $2x = 4$ يعني $2x - 4 = 0$

$$D_g = \mathbb{R} - \{2\}$$
ومنه

تمرين 2: حدد مجموعة تعريف الدالة f في الحالات التالية:

$$f(x) = \frac{x^2 + x - 1}{4x - 12} (2 \qquad f(x) = x^3 - 3x^2 - 5x + 10 (1$$

$$f(x) = \frac{7x-1}{x^3-2x}$$
 (4 $f(x) = \frac{x+10}{4x^2-1}$ (3)

$$f(x) = \sqrt{-3x+6}$$
 (6 $f(x) = \frac{x-5}{2x^2-5x-3}$ (5

$$f(x) = x^3 - 3x^2 - 5x + 10(1)$$

يعني
$$D_f=\mathbb{R}$$
 لأنها دالة حدودية

$$D_f = \{x \in \mathbb{R} / 4x - 12 \neq 0\}$$
يعني $f(x) = \frac{x^2 + x - 1}{4x - 12}$

$$D_f = \mathbb{R} - \{3\}$$
 ومنه $x = 3$ يعني $4x = 12$ يعني $4x - 12 = 0$

$$D_f = \left\{ x \in \mathbb{R} / 4x^2 - 1 \neq 0 \right\}$$
 يعني $f(x) = \frac{x+10}{4x^2 - 1} (3)$

$$(2x-1)(2x+1) = 0$$
 يعني $4x^2 - 1 = 0$ يعني $4x^2 - 1 = 0$ يعني $2x + 1 = 0$ ومنه $x = -\frac{1}{2}$ ومنه $x = \frac{1}{2}$

$$D_f = \mathbb{R} - \left\{ -\frac{1}{2}; \frac{1}{2} \right\}$$

$$D_f = \left\{ x \in \mathbb{R} / x^3 - 2x \neq 0 \right\} \quad \text{(4)} \quad f(x) = \frac{7x - 1}{x^3 - 2x}$$

$$x = 0$$
 يعني $x = 0$ يعني $x = 0$ يعني $x = 0$ يعني $x = 0$

$$x = 0$$
 يعنى $x = -\sqrt{3}$ أو $x = \sqrt{3}$ يعنى $x = 0$ أو $x = 0$ أو $x = 0$

$$D_f = \mathbb{R} - \left\{ -\sqrt{3}; 0; \sqrt{3} \right\}$$

$$f(x) = \frac{x-5}{2x^2 - 5x - 3} (5$$

$$D_f = \{x \in \mathbb{R} / 2x^2 - 5x - 3 \neq 0\}$$
يعني

$$2x^2-5x-3=0$$

$$c = -3$$
 g $b = -5$ g $a = 2$

$$\Delta = b^2 - 4ac = (-5)^2 - 4 \times 2 \times (-3) = 25 + 24 = 49 = (7)^2 > 0$$

بما أن
$$\Delta \succ 0$$
 فان هذه المعادلة تقبل حلين هُما:

$$x_2 = \frac{-b - \sqrt{\Delta}}{2}$$
 9 $x_1 = \frac{-b + \sqrt{\Delta}}{2}$

$$\begin{vmatrix} x_2 = \frac{(-5) - \sqrt{49}}{2 \times 2} = \frac{5 - 7}{4} = \frac{-2}{4} = \frac{1}{2} \quad \mathbf{9} \quad x_1 = \frac{-(-5) + \sqrt{49}}{2 \times 2} = \frac{7 + 5}{4} = \frac{12}{4} = 3$$

$$D_f = \mathbb{R} - \left\{ -\frac{1}{2}; 3 \right\}$$
 ومنه:

$$D_f = \{x \in \mathbb{R}/-3x+6 \ge 0\}$$
 $f(x) = \sqrt{-3x+6}$ (6)

$$D_m =]-\infty; 2]$$
 ومنه $x \le 2$ ومنه $x \le 2$ ومنه $x \le 2$

الأستاذ: عثماني نجيب

سؤال: هل الدالة f مكبورة على \mathbb{R} بالعدد 2? نعم $\forall x \in \mathbb{R} \ x^2 \ge 0$: نعلم أن $x^2+1 \ge 1$ اذن: $1+1 \ge 0+1$ يعني $1 \le 1+1 \ge 0$ $\forall x \in \mathbb{R} \ 0 \le f(x)$ يعني 0 نقول f دالة مصغورة على \mathbb{R} بالعدد سؤال: هل الدالة f مصغورة على \mathbb{R} بالعدد 1-؟ نعم $\forall x \in \mathbb{R} \ 0 \le f(x) \le 1$: انستنتج أن \mathbb{R} اذن : f مكبورة و مصغورة على \mathbb{R} نقول f دالة محدودة على \mathbb{R} من I من معرفة على مجال I من M نقول إن f دالة مكبورة على مجال I إذا وجد عدد حقيقي f $\forall x \in I \quad f(x) \leq M$: بحیث • نقول إن f دالة مصغورة على مجال I إذا وجد عدد حقيقى $\forall x \in I \quad f(x) \ge m$ بحیث m• نقول إن f دالة محدودة على مجال I إذا كانت مكبورة و مصغورة على المجال I. $f(x)=x^2-2x+5$: المعرفة كالتالي ألم الدالة ألم المعرفة كالتالي ألم الدالة ألم المعرفة كالتالي ألم الدالة ألم المعرفة كالتالي الدالة ألم المعرفة كالتالي المعرفة كالمعرفة كالتالي كالتالي المعرفة كالتالي ك بين أن الدالة f مصغورة بالعدد 4 $\forall x \in \mathbb{R} \ 4 \le f(x)$: الجواب: يكفي أن نبين أن $f(x)-4=x^2-2x+5-4=x^2-2x+1=(x-1)^2 \ge 0$: اذن نحسب الفرق $\forall x \in \mathbb{R} \ 4 \le f(x)$: each وبالتالي f مصغورة على \mathbb{R} بالعدد 4 **تمرین 6:**نعتبر الدالهٔ *f* المعرفة $f(x) = -2x^2 + 4x + 1$ بين أن الدالة f مكبورة بالعدد 3 $\forall x \in \mathbb{R} \ f(x) \le 3$: أن نبين أن يكفي أن نبين أن يكفي $3-f(x)=3-(-2x^2+4x+1)=3+2x^2-4x-1$: اذن نحسب الفرق $3-f(x)=2x^2-4x+2=2(x^2-2x+1)=2(x-1)^2 \ge 0$ $\forall x \in \mathbb{R} \ f(x) \leq 3$: وبالتالي f مكبورة على \mathbb{R} بالعدد 3 اال مطاريف دالة عددية $f(x)=x^2+2$:نشاط1: التكن f الدالة العددية المعرفة على $\mathbb R$ بما يلي: f(0): أحسب 1 2. أحسب: f(x)-f(0) وماذا تستنتج؟ f(0)=2 و $D_{t}=\mathbb{R}(1)$ $f(x)-f(0)=x^2+2-2=x^2$ (2) $\forall x \in \mathbb{R} \ 0 \le x^2$: نعلم أن $f(x)-f(0) \ge 0$ اذن: $\forall x \in \mathbb{R} \ f(0) \le f(x)$ يعني \mathbb{R} نقول f على الدالة على القول فيمة دنيا للدالة $f(x) = -x^2 + 2x + 1$: دالة معرفة ب تكن $f(x) = -x^2 + 2x + 1$. \mathbb{R} من x من f(1) - f(x) من f(1) مسب (1

كالتالي

تمرین 3: أدرس زوجیة الدالة f فی الحالات التالیة: $f(x) = 2x^5 - 3x$ (3 $f(x) = \frac{4}{3}$ (2 . $f(x) = 3x^2$ (1 $f(x) = \frac{x^3}{x^2 - 4}$ (5 $f(x) = \frac{x^4 - 2}{2x^2 - 1}$ (4 تمرین 4: نعتبر الدوال f و g المعرفة كالتالي: $g\left(x\right) = \frac{3x}{9x^2 - 1}$ g مجموعة تعريف الدالة (1 محموعة تعريف الدالة) 2) أدرس زوجية الدالة g و أعط تأويلا مبيانيا للنتيجة $D_g = \left\{ x \in \mathbb{R} / 9x^2 - 1 \neq 0 \right\} \quad g(x) = \frac{x^4}{9x^2 - 1} \quad (1 \pm \frac{x^4}{9x^2 - 1})$ $x = \frac{1}{3}$ او $x = -\frac{1}{3}$ ومنه $x = -\frac{1}{3}$ $D_g = \mathbb{R} - \left\{ -\frac{1}{3}, \frac{1}{3} \right\}$ 2) در اسة زوجية الدالة g: لاينا: x الكل $D_g = \mathbb{R} - \left\{ -\frac{1}{3}, \frac{1}{3} \right\}$ من (10) $D_g = \mathbb{R} - \left\{ -\frac{1}{3}, \frac{1}{3} \right\}$ الح g ومنه $g(-x) = \frac{3(-x)}{9(-x)^2 - 1} = -\frac{3x}{9x^2 - 1} = -g(x)$ (ب دالة فردية التأويلُ المبياني: النقطة 0 مركز تماثل لمنحنى الدالة gالتأويلات المبيانية لتكن f دالة عددية لمتغير χ حقيقي و C_f منحناها في معلم متعامد $\cdot (o; \vec{i}; \vec{j})$ ممنظم تكون f دالة زوجية إذا و فقط إذا كان محور الأراتيب محور C_{i} تماثل المنحنى ❖ تكون f دالة فردية إذا و فقط إذا كانت النقطة 0 مركز تماثل $\cdot C_{\scriptscriptstyle f}$ المنحنى II. الدالة المكبورة و الدالة المصغورة و الدالة المحدودة $f(x) = \frac{1}{x^2 + 1}$: نشاط: نعتبر الدالة f المعرفة كالتالي f حيز تعريف الدالة $D_{\scriptscriptstyle f}$ حدد $\forall x \in \mathbb{R}$ $f(x) \le 1$: 2. بين أن. $\forall x \in \mathbb{R} \quad 0 \le f(x)$: بين أن. f أدادا تستنتج أمادا نقول عن الدالة f $D_f = \{x \in \mathbb{R} / x^2 + 1 \neq 0\} (1)$ \mathbb{R} وهذه المعادلة ليس لها حل في $x^2 = -1 \Leftrightarrow x^2 + 1 = 0$ $\forall x \in \mathbb{R} \ x^2 \ge 0$: نعلم أن (2 $x^2+1\geq 1$ يعنى $1\leq 1+1\leq 0+1$ اذن: $\forall x \in \mathbb{R} f(x) \le 1 \Leftrightarrow \frac{1}{x^2 + 1} \le 1$ يعني

نقول f دالة مكبورة على $\mathbb R$ بالعدد 1

الأستاذ: عثماني نجيب

2) ماذا تستنتج؟

آ.تعریف:

لتكن f و g دالتين عدديتين و D_f و D_g على التوالي مجموعة تعريفهما.

نقول إن f تساوي g ونكتب f=g إذا وفقط إذا كان:

$$\left(\forall x \in D_f\right)$$
 $f\left(x\right) = g\left(x\right)$ $g\left(x\right) = D_g = D_f$

I و g دالتین عدیتین معرفتین علی مجال g و دالتین عدیتین معرفتین f و نکتب . نقول إن f أصغر من أو یساوي g علی مجال f و ونکتب $f \leq g$

 $(\forall x \in I) \quad f(x) \le g(x)$

3. *التأويل الهندسي: g \le f \le g على مجال I يعني هندسيا أن منحنى الدالة f \le g يوجد تحت منحنى الدالة g على المجال f .*

ملحوظة:

- I على المجال f < g f < g المجال $f \in G$ إذا وفقط إذا كان f(x) < g(x)
 - I على المجال $f \ge 0$ على المجال $f \ge 0$ إذا وفقط إذا كان $f(x) \ge 0$

٧ رتابة دالة عددية

- يمكن دراسة رتابة دالة f على مجال I بدراسة إشارة معدل التغير $\frac{f(x_2) f(x_1)}{f(x_2)}$
 - I مع x_2 عنصرین مختلفین من x_1
- نقول إن f دالة رتيبة على I إذا كانت f تزايدية قطعا أو تناقصية قطعا على مجال I.

f(x) = 4x - 3: المعرفة كالتالي f(x) = 4x - 3

- D_{ϵ} \sim (1
- f أدرس رتابة f
- f الدالة f

<u> جوبه :</u>

لأنها دالة حدودية $D_f = \mathbb{R}$ (1)

 $x_1 \neq x_2$ بحيث $x_2 \in \mathbb{R}$ و $x_1 \in \mathbb{R}$: اليكن (2)

 $\frac{f(x_2)-f(x_1)}{x_2-x_1}$: f الدالة f

 $\frac{f(x_2) - f(x_1)}{x_2 - x_1} = \frac{(4x_2 - 3) - (4x_1 - 3)}{x_2 - x_1} = \frac{4x_2 - 4x_1}{x_2 - x_1} = \frac{4(x_2 - x_1)}{x_2 - x_1}$

 \mathbb{R} ومنه : f قرايدية على f ومنه : f ومنه : f التغير ات

x	$-\infty$ $+\infty$
f(x)	

g(x) = -3x + 2: لتكن الدالة g المعرفة كالتالي يا تتكن الدالة والمعرفة كالتالي

- D_{\circ} 22 (1
- g أدرس رتابة (2)
- g حدد جدول تغیرات الدالة

f(1)=2 و $D_f=\mathbb{R}(1)$

 $f(1) - f(x) = 2 - (-x^2 + 2x + 1) = 2 + x^2 - 2x - 1$

 $f(1) - f(x) = x^2 - 2x + 1 = (x - 1)^2 \ge 0$

 $\forall x \in \mathbb{R} \ f(1) \ge f(x)$ اذن:

 \mathbb{R} نقول f هي قيمة قصوى للدالة f على

تعریف اتکن f دالة عددیة معرفة علی مجال I و a عنصرا من المجال f

iقول إن $f\left(a
ight)$ هي القيمة القصوى للدالة f على المجال الجادا ا

 $\forall x \in I \quad f(x) \le f(a)$: کان

: فقول إن $f\left(a\right)$ هي القيمة الدنيا للدالة f على المجال الجاد كان $f\left(a\right)$

 $\forall x \in I \quad f(x) \ge f(a)$

تمرین 7: الدالة العددیة المعرفة على $\mathbb R$ بما يلي:

 $f(x) = x^2 + 4$

 D_f حدد (1

f(0): (2

 \mathbb{R} بين أن f هي قيمة دنيا للدالة f على f

تمرین $\mathbf{8}$ لتکن f الدالة العددیة المعرفة علی \mathbf{R} بما یلي:

 $f(x) = -x^2 + 1$

 D_f 22 (1

ص 3

f(0): (2

 \mathbb{R} بين أن $f\left(0\right)$ هي قيمة قصوى للدالة $f\left(0\right)$ على

IV. مقارنة دالتين

 \mathbb{R} المعرفتين على g و g المعرفتين على g دمايا : 1 ... دمايا :

 $g(x)=x^2$ و f(x)=2x-1 بما يلي:

ا. املأ الجدولين التاليين ومثل الدالتين f و g في نفس المعلم f

х	-3	-2	-1	0	1	2	3
g(x)	9	4	1	0	1	4	9

g(x) - f(x) وماذا تستنتج مبيانيا? 2. أدرس اشارة الفرق: $D_f = \mathbb{R}$ و $D_f = \mathbb{R}$ (1) الأجوية:

 $g(x) \ge f(x)$ ومنه $g(x) - f(x) = x^2 - 2x + 1 = (x - 1)^2 \ge 0$ (2 نقول أننا قمنا بمقارنة للدالتين f و g وجدنا أن منحنى الدالة g يوجد فوق منحنى الدالة g

الأستاذ: عثماني نجيب

f عدد جدول تغيرات الدالة f

x	$-\infty$		0		$+\infty$
f(x)		_	0	/	

f رسم التمثيل المبياني للدالة

نحسب معدل تغير الدالة

ورية $D_{o} = \mathbb{R} (1)$ لأنها دالة حدودية

 $x_1 \neq x_2$ بحيث $x_2 \in \mathbb{R}$ و $x_1 \in \mathbb{R}$: اليكن (2)

 \mathbb{R} ومنه : g تناقصية على g ومنه : 3)جدول التغيرات

\mathscr{X}	$-\infty$ $+\infty$
g(x)	

f(x) = 12x - 7: المعرفة كالتالي f(x) = 12x - 7

- D_{ϵ} \sim (1
- f أدرس رتابة f
- f حدد جدول تغیرات الدالة

$$f(x) = 2x^2$$
 : دالة معرفة ب تمرين 10: لتكن

- f مجموعة تعريف الدالة D_f حدد
 - f أدرس زوجية الدالة f
 - f أحسب معدل تغير الدالة
- $[0;+\infty]$ و $[0;+\infty]$ و $[0;+\infty]$ على كل من المجالين
 - f وحدد جدول تغيرات الدالة f .
 - f حدد مطاریف الدالة f
 - f أرسم التمثيل المبياني للدالة f

أجوبة
$$D_f = \mathbb{R}$$
 الأنها دالة حدودية

 \mathbb{R} أ) لكل x من \mathbb{R} لدينا: x-تنتمي إلى x.

$$f(-x) = 2(-x)^2 = 2x^2 = f(x)$$

ومنه f دالة زوجية

f حساب معدل تغیر الداله f

$$T = \frac{f(x_2) - f(x_1)}{x_2 - x_1} = \frac{2x_2^2 - 2x_1^2}{x_2 - x_1} = \frac{2(x_2^2 - x_1^2)}{x_2 - x_1}$$

$$T = \frac{2(x_2 - x_1)(x_2 + x_1)}{x_2 - x_1} = 2(x_2 + x_1)$$

 $[0;+\infty]$ على المجال) در اسة رتابة الدالة f على المجال) (4

$$x_2 \in [0; +\infty[$$
 ي $x_1 \in [0; +\infty[$: ليكن

$$T = 2(x_2 + x_1) \ge 0$$
اذن

 $[0;+\infty]$ ومنه الدالة f تزايدية على

.]- ∞ ,0] در اسة رتابة الدالة f على المجال

 $x_2 \in]-\infty;0]$, $x_1 \in]-\infty;0]$

$$T = 2(x_2 + x_1) \le 0$$
اذن

 $]-\infty;0]$ ومنه الدالة f تناقصية على

