Integración.

Antonio Garvín

1. Integración

1.1. Partición de un intervalo y sumas de Rieman

Consideremos un intervalo [a,b]. Una partición de [a,b], es un conjunto $P = \{x_0, x_1, \dots, x_n\}$, tal que $x_0 = a, x_n = b$ y cada $x_i < x_{i+1}$.

Sea f una función definida en $[a,b],\ f\colon [a,b]\to \mathbb{R}$ y P una partición de [a,b].

Consideremos ahora una elección de un punto en cada subintervalo que la partición determina, $c_i \in [x_{i-1}, x_i]$, es decir, elegimos $c_1 \in [a, x_1], c_2 \in [x_1, x_2], c_3 \in [x_2, x_3], \dots, c_n \in [x_{n-1}, b]$.

La suma de Riemann de f, S(f), asociada a la partición P y a la elección de los puntos c_i , se define como:

$$S(f) = \sum_{i=1}^{n} f(c_i)(x_i - x_{i-1})$$

1.2. Integral definida

Sea f una función definida en [a,b], decimos que f es <u>integrable</u> en [a,b] si para cualquier sucesión de sumas de Riemann, de particiones con longitudes de los subintervalos que tiendan a cero, e independientemente de la elección, existe el límite de la correspondiente sucesión de sumas de Riemann, y es siempre el mismo número l. En este caso escribimos

$$\int_{a}^{b} f = l$$

También se usa la notación

$$\int_{a}^{b} f(x)dx$$

1.3. Propiedades

• Toda función continua, salvo quizas en un número finito de puntos, en [a, b], es integrable en [a, b].

Además se tiene:

• Si $f: [a, b] \to \mathbb{R}$ es continua y positiva $\int_a^b f(x) dx = \text{area encerrada entre el eje } OX, \, x = a, \, x = b, \, \text{y la gráfica de } f$ • Si f es una función continua, y consideramos una sucesión de particiones P_n tales que las longitudes de los subintervalos $[x_{i-1}, x_i]$ tiendan a cero cuando $n \to \infty$, entonces

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}^{*})(x_{i} - x_{i-1}) = \lim_{n \to \infty} S_{n}(f)$$

1.4. Propiedades:

Sean $f, g: [a, b] \to \mathbb{R}$ continuas

1.
$$\int_{a}^{b} (\alpha f + \beta g) = \alpha \int_{a}^{b} f + \beta \int_{a}^{b} g$$

2. Si
$$f \ge 0$$
 en $[a, b] \Longrightarrow \int_a^b f \ge 0$

3.
$$f \leq g$$
 en $[a, b] \Longrightarrow \int_a^b f \leq \int_a^b g$

4.
$$c \in [a, b], \int_a^b f = \int_a^c f + \int_c^b f$$

5.
$$-\int_{a}^{b} f = \int_{b}^{a} f$$

6.
$$\int_{a}^{a} f = 0$$

1.5. Teoremas básicos

Enunciamos a continuación los principales resultados teóricos sobre funciones integrables. En particular el resultado que relaciona integrales con primitivas, el teorema fundamental del cálculo, asi como la regla de Barrow.

1.6. Teorema fundamental del cálculo:

Sea $f\colon [a,b]\to \mathbb{R}$ una función continua y sea $F\colon [a,b]\to \mathbb{R}$ la función definida por

$$F(x) = \int_{a}^{x} f(t) dt = \int_{a}^{x} f(t) dt$$

Entonces F es derivable y F'(x) = f(x)

[El que el límite inferior de la integral de la integral sea otro punto distinto de a no varia el resultado del teorema.]

1.7. Regla de Barrow

Si g es una primitiva de f (es decir si g'(x) = f(x)), entonces

$$\int_{a}^{b} f(x)dx = g(b) - g(a) := g(x) \big]_{a}^{b}$$

2. Cálculo de primitivas

g es primitiva de f si g' = f. El simbolo $\int f$, o tambien $\int f(x)dx$ denota una primitiva (o a veces todas las primitivas) de f. Cualesquiera dos primitivas se diferencian en una constante.

El cambio de variable y la integración por partes son dos técnicas para calcular primitivas.

2.1. Cambio de variable

$$\int_{a}^{b} f(g(x))g'(x)dx = \int_{g(a)}^{g(b)} f(u)du$$

se suele recordar haciendo "g(x) = u", por tanto "g'(x)dx = du". En cuanto a los límites de integración, si $x \in [a, b]$, entonces u = g(x) está entre g(a) y g(b), $u \in [g(a), g(b)]$ y por tanto estos son los límites de integración para u.

2.2. Integración por partes

$$\int_{a}^{b} f(x)g'(x)dx = f(x)g(x) \Big]_{a}^{b} - \int_{a}^{b} f'(x)g(x)dx$$

Se suele recordar haciendo "u=f(x), v=g(x)" y formalmente se tiene "du=f'(x)dx, dv=g'(x)dx" y queda

$$\int udv = uv - \int vdu$$

Los limites de integración no cambian.

2.3. Funciones racionales simples

1.
$$\int \frac{1}{x-a} dx = \log |x-a|$$

2.
$$\int \frac{1}{(x-a)^n} dx = \frac{1}{(1-n)(x-a)^{n-1}} \quad \text{si } n \ge 2$$

3. $\int \frac{1}{x^2 + bx + c} dx$ se busca un cuadrado $(2x+b)^2 = 4x^2 + 4bx + b^2$, se ajusta a $1 + (\text{algo})^2$ y luego se hace el cambio $t = \frac{2x+b}{\sqrt{4c-b^2}}$. Al final se obtiene

$$\int \frac{1}{x^2 + bx + c} dx = \frac{2}{\sqrt{4c - b^2}} \arctan \left(\frac{2x + b}{\sqrt{4c - b^2}} \right)$$

4.
$$\int \frac{x+a}{x^2+bx+c} dx = \frac{1}{2} \int \frac{2x+b}{x^2+bx+c} dx + \frac{1}{2} \int \frac{22-b}{x^2+bx+c} dx = \frac{1}{2} \log(x^2+bx+c) + \frac{2a-b}{\sqrt{4c-b^2}} \arctan\left(\frac{2x+b}{\sqrt{4c-b^2}}\right)$$

En los casos anteriores $x^2 + bx + c$ es irreducible, de lo contrario hacemos lo siguiente: $x^2 + bx + c = (x - \alpha)(x - \beta)$ con $\alpha \neq \beta$ (el caso $\alpha = \beta$ ya está comtemplado, ¿no?)

Descomponemos en fracciones simples

$$\frac{1}{x^2 + bx + c} = \left[\frac{1}{(x - \alpha)(x - \beta)} = \frac{A}{x - \alpha} + \frac{B}{x - \beta}\right]$$

determinamos A y B, y estamos en el caso 1.

$$\int \frac{1}{x^2 + bx + c} dx = A \log|x - \alpha| + B \log|x - \beta|$$

Este último ejemplo se basa en un hecho más general, la descomposición del denominador en fracciones simples.

2.4. Teorema: (Descomposición en fracciones simples)

Sean p(x) y q(x) dos polinomios con grado de p(x) < grado de q(x). Supongamos que q(x) se descompone en factores lineales y cuadráticos (descomposición real) como

$$(x-\alpha_1)^{r_1}(x-\alpha_2)^{r_2}\cdots(x-\alpha_k)^{r_k}(x^2+\beta_1x+\gamma_1)^{s_1}(x^2+\beta_2x+\gamma_2)^{s_2}\cdots(x^2+\beta_jx+\gamma_j)^{s_j}$$

Entonces el cociente $\frac{p(x)}{q(x)}$ se expresa como

$$\frac{a_{11}}{x-\alpha_{1}} + \frac{a_{12}}{(x-\alpha_{1})^{2}} + \dots + \frac{a_{1r_{1}}}{(x-\alpha_{1})^{r_{1}}} + \frac{a_{21}}{x-\alpha_{2}} + \frac{a_{22}}{(x-\alpha_{2})^{2}} + \dots + \frac{a_{2r_{2}}}{(x-\alpha_{2})^{r_{2}}} + \dots + \frac{a_{k1}}{x-\alpha_{k}} + \frac{a_{k2}}{(x-\alpha_{k})^{2}} + \dots + \frac{a_{kr_{k}}}{(x-\alpha_{k})^{r_{k}}} + \dots + \frac{b_{11}x+c_{11}}{x^{2}+\beta_{1}x+\gamma_{1}} + \frac{b_{12}x+c_{12}}{(x^{2}+\beta_{1}x+\gamma_{1})^{2}} + \dots + \frac{b_{1s_{1}}x+c_{1s_{1}}}{(x^{2}+\beta_{1}x+\gamma_{1})^{s_{1}}} + \dots + \frac{b_{21}x+c_{21}}{x^{2}+\beta_{2}x+\gamma_{2}} + \frac{b_{22}x+c_{22}}{(x^{2}+\beta_{2}x+\gamma_{2})^{2}} + \dots + \frac{b_{2s_{2}}x+c_{2s_{2}}}{(x^{2}+\beta_{2}x+\gamma_{2})^{s_{2}}} + \dots + \frac{b_{j1}x+c_{j1}}{x^{2}+\beta_{i}x+\gamma_{i}} + \frac{b_{j2}x+c_{j2}}{(x^{2}+\beta_{i}x+\gamma_{i})^{2}} + \dots + \frac{b_{js_{j}}x+c_{js_{j}}}{(x^{2}+\beta_{i}x+\gamma_{i})^{s_{j}}}$$

Con esta descomposición podemos calcular las primitivas de todos los sumandos excepto de los últimos, esto es, de las potencias de polinomios irreducibles de grado 2.

2.5. El método de Hermite

Supongamos las mismas condiciones que enunciabamos para la descomposición en fracciones simples, esto es, grado q(x) > grado de p(x), siendo

$$q(x) = (x - \alpha_1)^{r_1} \cdots (x - \alpha_k)^{r_k} (x^2 + \beta_1 x + \gamma_1)^{s_1} \cdots (x^2 + \beta_j x + \gamma_j)^{s_j}$$

Entonces siempre es posible expresar el cociente $\frac{p(x)}{q(x)}$ en la forma

$$\frac{d}{dx}(\frac{A(x)}{B(x)}) + \frac{C_1}{x - \alpha_1} + \dots + \frac{C_1}{x - \alpha_1} + \frac{D_1x + E_1}{x^2 + \beta_1x + \gamma_1} + \dots + \frac{D_jx + E_j}{x^2 + \beta_jx + \gamma_j}$$

donde A(x) tiene grado a lo sumo, uno menos que el grado de B(x), y donde

$$B(x) = (x - \alpha_1)^{r_1 - 1} \cdots (x - \alpha_k)^{r_k - 1} (x^2 + \beta_1 x + \gamma_1)^{s_1 - 1} \cdots (x^2 + \beta_j x + \gamma_j)^{s_j - 1}$$

es decir, B(x) tiene las raices de q(x) con multiplicidad de cada raiz una menos.

2.6. Método de Hermite para fracciones irracionales

Analizamos un caso más, variante del método de Hermite

$$\frac{P(x)}{\sqrt{ax^2 + bx + c}} = \frac{d}{dx} \left(Q(x) \sqrt{ax^2 + bx + c} \right) + \frac{M}{\sqrt{ax^2 + bx + c}}$$

con $M \in \mathbb{R}$ y donde Q(x) tiene grado a lo sumo el de P(x) menos uno.

2.7. Más técnicas

Existen cambios específicos para transformar trigonométricas en racionales. Dependiendo de los casos los cambios $t = \operatorname{sen} x$, $t = \cos x$ o $t = \operatorname{tag} x$ suelen funcionar. En cualquier caso podemos siempre aplicar el cambio $t = \operatorname{tag}\left(\frac{x}{2}\right)$.

Cuando aparecen raices cuadradas de polinomios cuadráticos los cambios con hiperbólicas o trigonométricas permiten reducir a expresiones conocidas para integrar. La idea básica es recordar las derivadas de las trigonométricas y de las hiperbólicas asi como de sus inversas. Por ejemplo puede ser util recordar que

$$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}, (\text{argsenh } x)' = \frac{1}{\sqrt{1+x^2}}, (\text{argcosh } x)' = \frac{1}{\sqrt{x^2-1}}$$

3. Integrales Impropias

Queremos extender las integrales a intervalos que no son cerrados y acotados

(1) Sea f continua en $I = [a, \infty)$. Se define la integral impropia

$$\int_a^{\infty} f(\text{ o bien}, \int_a^{\infty} f(x)dx)$$
 como

$$\int_{a}^{\infty} f(x)dx = \lim_{t \to \infty} \int_{a}^{t} f(x)dx$$

cuando este límite exista y sea un número real. En este caso decimos que la integral converge. Analogamente se define $\int_{-\infty}^{a} f$

(Necesitamos,
$$f: (-\infty, a] \to \mathbb{R}$$
 continua y definimos $\int_{-\infty}^{a} f = \lim_{t \to -\infty} \int_{t}^{a} f$)

Nota: Para cada $t \in [a, \infty], \int_{-t}^{t} f \in \mathbb{R}$, tenemos así definida una función F, $t \stackrel{F}{\to} \int^t f$, $F(t) = \int^t f$. Así por definición

$$F(\infty) := \lim_{t \to \infty} F(t)$$

(2) Sea f continua en I = [a, b) (f no está definida en b, o no es continua en b, o no está acotada en b). Se define la integral impropia

$$\int_{a}^{b} f(\text{ o bien}, \int_{a}^{b} f(x)dx) \text{ como}$$

$$\int_{a}^{b} f(x)dx = \lim_{t \to b^{-}} \int_{a}^{t} f(x)dx$$

cuando este límite exista y sea un número real. En este caso decimos que la integral <u>converge</u>. Analogamente se define $\int_{a}^{b} f$ cuando "hay problemas.en

(Necesitamos, $f:(a,b] \to \mathbb{R}$ continua y definimos $\int_a^b f = \lim_{t \to a^+} \int_t^b f$) Nota: $f:(a,b] \to \mathbb{R}, \ t \in (a,b], \quad a \bullet - t - \bullet b \quad t \stackrel{G}{\to} \int_{+}^{b} f, \ G(t) = \int_{+}^{b} f.$ $G(a) := \lim_{t \to a^+} G(t)$

También es posible definir integrales impropias si f presenta "problemas.en los dos límites de integración

¿Qué significa $\int_a^\infty f$ para $f:(a,\infty)\to\mathbb{R}$? Consideremos $x_0\in(a,\infty)$, definimos

$$\int_{a}^{\infty} f := \int_{a}^{x_0} f + \int_{x_0}^{\infty} f$$

siempre que la suma anteriro tenga sentido en cada sumando.

Otras expresiones se definen siguiendo el mismo criterio. Por ejemplo

$$\int_{-\infty}^{\infty} f := \int_{-\infty}^{x_0} f + \int_{x_0}^{\infty} f$$

Es importante decir que con esta definición que damos, en general $\int_{-\infty}^{\infty} f$ y $\lim_{T \to \infty} \int_{-T}^{T} f$ son cosas distintas.

3.1. Ejemplos:

(1) Se
a $a>0,\; \int_a^\infty \frac{1}{x^p} dx$ "p-integral". ¿Cuándo converge esta integral impropia?

$$\int_{a}^{\infty} \frac{1}{x^{p}} dx \text{ converge } \iff p > 1$$

Veámoslo

$$(p \neq 1) \quad \int x^{-p} dx = \frac{x^{-p+1}}{-p+1}; \qquad (p=1) \quad \int \frac{1}{x} dx = \log |x|$$

$$(p=1) \quad \lim_{t \to \infty} \log |x||_a^t = "\log(\infty) - \log(a)" = \infty$$

$$(p \neq 1) \quad \lim_{t \to \infty} \frac{x^{1-p}}{1-p} \bigg]_a^t = "\frac{\infty^{1-p}}{1-p} - \frac{a^{1-p}}{1-p}"$$

$$1 - p > 0 \Rightarrow \infty \quad (1 - p > 0 \iff p < 1)$$

$$1 - p < 0 \Rightarrow -\frac{a^{1-p}}{1-p} = \frac{a^{1-p}}{p-1} \quad (1 - p < 0 \iff p > 1)$$

(2) Estudiemos $\int_{a}^{b} \frac{1}{(b-x)^{p}} dx$ $\frac{1}{(b-x)^{p}} \text{ está definida en } [a,b)$

$$\int_{a}^{b} \frac{1}{(b-x)^{p}} dx := \lim_{u \to b^{-}} \int_{a}^{u} \frac{1}{(b-x)^{p}} dx$$

Hay varios casos:

$$(*)[p=1]$$

$$\lim_{u \to b^{-}} \int_{a}^{u} \frac{1}{(b-x)} dx = \lim_{u \to b^{-}} \log(b-x) \Big]_{a}^{u} = \lim_{u \to b^{-}} \log(b-u) + \log(b-a) =$$

$$= -\log(0^{+}) + \log(b-a) = -(-\infty) + \underbrace{\log(b-a)}_{\in \mathbb{R}} = \infty$$

Por tanto para p=1 la integral no converge.

$$(*)[p \neq 1]$$

$$\lim_{u \to b^{-}} \int_{a}^{u} \frac{1}{(b-x)^{p}} dx = \lim_{u \to b^{-}} \frac{-(b-x)^{1-p}}{1-p} \bigg|_{a}^{u} = \lim_{u \to b^{-}} \frac{1}{p-1} \left((b-u)^{1-p} - (b-a)^{1-p} \right)$$

Dos casos:

$$(p < 1)$$
, es decir $1 - p > 0$

$$\lim_{u \to b^{-}} \frac{1}{p-1} \left((b-u)^{1-p} - (b-a)^{1-p} \right) = \frac{(b-a)^{1-p}}{1-p}$$

CONVERGE

$$(p > 1)$$
, esto es, $1 - p < 0$

$$\lim_{u \to b^{-}} \frac{1}{p-1} \left(\underbrace{(b-u)^{1-p}}_{u \to b^{-}} - (b-a)^{1-p} \right)$$

NO CONVERGE

Como conclusión tenemos lo siguiente:

$$\int_{a}^{b} \frac{1}{(b-x)^{p}} dx \text{ converge } \iff p < 1$$

De forma totalmente análoga se puede probar que

$$\int_{a}^{b} \frac{1}{(x-a)^{p}} dx \text{ converge } \iff p < 1$$

Fijémonos que los casos acotado y no acotado se comportan justamente al contrario, esto es, el el caso no acotado se da convergencia si p > 1, y en el caso acotado si p < 1. En todos los casos para p = 1 no hay convergencia