

Jednoduché čidlo s reflexním optronem

Milan Horkel

Popisované čidlo obsahuje pouze reflexní optron s odporovým trimrem a slouží k rozlišování tmavého a světlého povrchu. Dá se použít jak pro detekci čáry pro čárového robota tak i pro snímání otáčení pohonných kol robota.

1. Technické parametry

Parametr	Hodnota	Poznámka
Napájení	cca 4-8V	Orientační hodnota
Rozlišení	cca 2.5mm	Odraz, tisk laserovou tiskárnou
Výstupní signál	cca 2V p-p	Při 4V napájení
Čidlo	Vishay DNY70	Možno použít i jiné
Rozměry	30x10x15mm	Výška nad základnou

R1S01A

2. Popis konstrukce

2.1. Úvodem

Toto čidlo vzniklo pro potřeby konstrukce robota. Čidlo neobsahuje žádnou inteligenci ani zesilovací prvky. Předpokládá se, že je připojeno na vysokoimpedanční vstup procesoru nebo A/D převodníku.

2.2. Zapojení modulu

Zapojení je triviální. V případě potřeby je možné zvýšit proud LED diodou změnou hodnoty R1.

2.3. Důležité poznámky k použití

Při použití je třeba dát pozor na *rušení od motoru*. Motory je bezpodmínečně nutné *odrušit* alespoň kondenzátorem přímo na motoru (například 4n7).

Při výrobě kódového kotoučku na laserové tiskárně je třeba zvolit povrchovou úpravu takovou, která *není lesklá*. Přestříknutí bezbarvým lakem se neosvědčilo. Černá pak není (pro čidlo) dostatečně černá.

Za provozu se nesmí se příliš měnit *vzdálenost čidla* a snímaného povrchu. Změna vzdálenosti o 2mm odpovídá zhruba rozdílu mezi černou a bílou. Čidlo je zaostřené na vzdálenost cca 2mm před čelem čidla. Šířka pruhů černé a bílé musí být minimálně cca 2.5mm. Pokud jsou pruhy hustěji je výsledný signál příliš malý. Je skoro jedno, jak je orientovaná spojnice očiček vůči pruhům. V podélném i příčném směru je obdobné rozlišení.

Výstupní signál při snímání otáčení kola s kódovým kotoučkem je *sinusový* s rozkmitem cca 2V špička-špička. Zpracování signálu by mělo probíhat buď čistě analogově (A/D převodníkem) nebo digitálním vstupem s hysterezí.

2.4. Zapojení čidla CNY70

Součástka obsahuje infračervenou LED diodu a fototranzistor s infračerveným filtrem. *Fototranzistor je to tmavší očko*.

2.5. Mechanická konstrukce

Modul se připevňuje pomocí jediného šroubu. Obrázek zobrazuje konkrétní použití čidla pro snímání otáčení pohonného kola jednoduchého experimentálního robota.

R1S01A

3. Osazení a oživení

3.1. Osazení

Optron se osazuje "na ležato". Horní vývody je třeba prodloužit. Dá se na to s výhodou použít dvoupinový hřebínek (je pěkně tuhý a čidlo se pak tak snadno neohne).

Reference Název

Odporv

R1, R2 560 Odporové trimry

P1 PT6VK050_50K

Keramické kondenzátory

C1 100nF

Optrony

Q1 CNY70

Mechanické součástky

J1 JUMP3

J2 JUMP2

Konstrukční součástky

1ks Sloupek M3x5mm 1ks Šroub M3x12 1ks Podložka M3

3.2. Oživení

Není co oživovat. Stačí voltmetr.

Na pokusy se výborně hodí modul s procesorem ATmega s nahraným překladačem jazyka FORTH Sám používám amforth, který bydlí na adrese http://amforth.sourceforge.net/.

Ale to je už jiná pohádka...