Fixed Points of a Complex Henon Map

Adhithi Ramasubramanian Rutgers, The State of New Jersey

04.02.22

Outline

Complex Dynamics

Fatou Sets

Henon Maps

Research

Complex Dynamics An Introduction and Some Examples

Fractals

Mandelbrot Set

• Julia Set for $z^3 - 1$

What is Complex Dynamics?

• Understanding the behavior of the sequence of functions formed by repeatedly composing a complex function with itself

For example:
$$f(z) = z^2$$

 $f_0 = f(1) = 1$
 $f_1 = f(f_0) = 1$
 $f_2 = f(f_1) = 1...$
 $f_3 = f(2) = 4$
 $f_4 = f(f_0) = 16$
 $f_5 = f(f_1) = 256...$

 f_0, f_1, f_2 : sequence of iterates 1: fixed point

Fatou Sets

Fatou Sets Defining Fatou Sets with

Defining Fatou Sets with an Example

Fatou Sets

Fatou Sets

Definition: Fatou Set \mathcal{F}

Let $q \in \widehat{\mathbb{C}}$ and $\{f^n\}$ be the sequence of iterates. Then, $q \in \mathcal{F}$ if, for every subsequence $f^{n_j}(q)$ of the sequence $f^n(q)$, there exists a further subsequence $f^{n_{j_k}}(q)$ that either diverges to infinity or converges finitely and this convergence is uniform.

Fatou Set Example

Theorem

For the function $f(z) = z^2$, the Fatou Set is the set of all complex numbers excluding those with norm 1.

Let us denote the Fatou Set of f to be \mathcal{F} . Let $q\in\mathbb{C}$ be arbitrary, such that $|q|\neq 1$. We will consider 2 scenarios:

$$|q| > 1$$
$$0 \le |q| < 1$$

Definition: Fatou Set ${\mathcal F}$

Let $q \in \widehat{\mathbb{C}}$ and $\{f^n\}$ be the sequence of iterates. Then, $q \in \mathcal{F}$ if, for every subsequence $f^{n_j}(q)$ of the sequence $f^n(q)$, there exists a further subsequence $f^{n_{j_k}}(q)$ that either diverges to infinity or converges finitely and this convergence is uniform.

Graphical Representation of Cases

Graphical Representation of Fatou and Julia Sets of z^2

Henon Maps A Brief Introduction

Henon Maps

A complex Henon map is a holomorphic polynomial diffeomorphism of \mathbb{C}^2 (i.e. an invertible mapping of \mathbb{C}^2 to itself) of the form:

$$f(x,y) = (y, p(y) - \delta x)$$

where p(y) is a holomorphic polynomial with a degree greater than 2 and $\delta \in \widehat{\mathbb{C}}$ is a non-zero constant.

- A conservative Henon map has $|\delta| = 1$.
- Graphically speaking, conservative Henon maps are volume-preserving.

Question:

Does every bounded Fatou component of a conservative Hénon map have a fixed point?

Bedford's Theorem

Theorem

Let f be conservative, and let Ω be a bounded Fatou component with $f(\Omega)=\Omega$. Let $\mathcal{O}\in\Omega$, and let $\mathsf{A}:=D_{\mathcal{O}}f$. If \mathcal{O} is a fixed point for f, then we may diagonalize $\mathsf{A}\sim\begin{pmatrix}\lambda&0\\0&\mu\end{pmatrix}$ with $|\lambda|=|\mu|=1$.

lf:

• $\mathcal{O} \in \Omega$ is a fixed point

Then:

• Derivative of f at \mathcal{O} , $D_{\mathcal{O}}f$ is diagonalizable

We will use the contrapositive:

lf:

• Derivative of f at \mathcal{O} , $D_{\mathcal{O}}f$ is **NOT** diagonalizable

Then:

O is not a fixed point

Diagonalization

Setting up the problem

- Function: $f(x, y) = (y, p(y) \delta x)$
- Derivative: $D_{\mathcal{O}}f = \begin{bmatrix} 0 & 1 \\ -\delta & p'(y_{\mathcal{O}}) \end{bmatrix}$
- Let $M = D_{\mathcal{O}} f$ have eigenvalues λ
- For all \mathcal{O} in Ω
 - Implies: infinitely many $y_{\mathcal{O}}$ since Ω is an open set
- For a matrix M to be non-diagonalizable: M must have only 1 eigenvalue
 - Can be proven for any M of the form $\begin{bmatrix} 0 & 1 \\ a & b \end{bmatrix}$

Diagonalization

Finding the eigenvalues λ of the derivative D of f at a fixed point

Characteristic polynomial of $D_{\mathcal{O}}f$: $\det(D_{\mathcal{O}}f - \lambda I) = 0$

$$D_{\mathcal{O}}f - \lambda I = \begin{bmatrix} 0 & 1 \\ -\delta & p'(y_{\mathcal{O}}) \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix}$$
$$= \begin{bmatrix} -\lambda & 1 \\ -\delta & p'(y_{\mathcal{O}}) - \lambda \end{bmatrix}$$

$$\det(D_{\mathcal{O}}f - \lambda I) = \begin{vmatrix} -\lambda & 1\\ -\delta & p'(y_{\mathcal{O}}) - \lambda \end{vmatrix}$$
$$= -\lambda p'(y_{\mathcal{O}}) + \lambda^2 + \delta$$

Solving for λ as a root of the charecteristic equation:

$$\lambda = \frac{p'(y_{\mathcal{O}}) \pm \sqrt{p'(y_{\mathcal{O}})^2 - 4\delta}}{2}$$

Condition for matrix to be non-diagonalizable

This gives us the following condition for non-diagonalizable as follows:

$$p'(y_{\mathcal{O}})^2 = 4\delta$$

Why does this not work?

$$p'(y_{\mathcal{O}})^2 = 4\delta$$

- Our goal: Show that matrix M is non-diagonalizable
- · Above equation needs to have infinitely many solutions
- $p'(y_{\mathcal{O}})^2$ has degree 2(n-1)
 - n is the degree of $p(y_{\mathcal{O}})$
- ullet Above equation has at most 2(n-1) unique solutions
 - Fundamental Theorem of Algebra

Bedford's Theorem cannot be used to determine if there exists at least 1 fixed point in every Fatou component of a complex Henon Map

Thank you!

