Task 1, Task 2 analysis

Name: Zhumazhenis Dairabay

City: Astana

University: Nazarbayev University, School of Engineering, 2nd year student

School: KTL, Kyzylorda

Skills: 1. Machine learning https://www.udemy.com/machinelearning/

course is completed, use Python.

In 1st year, I had Programming for Engineers course and I did group project related to Machine Learning. We evaluated true errors of different Discriminant Analysis classifiers and SVM classifiers, and compared them: LDA, QDA, DLDA, RLDA, G13, KSVM, LSVM.

https://github.com/zhumazhenis/Classifier/blob/master/Report_of_project_Grade_ 114_out_of_115.pdf

- 2. Programming languages: C++, Java, Python
- 3. Few experience in Excel, SQL, Matlab, Wolfram Mathematica. I can improve my skills in Excel, SQL during working process.
- 4. Android App Development. Completed nFactorial Incubator 2017, published Makhal-matel app. http://bit.ly/makhal-matel

Achieveme Math Olympiads winner:

nts: 1. International Mathematics Competition 2017 (IMC 2017), Bulgaria – participant

- 2. International Zhautykov Math Olympiad 2014 bronze.
- 3. Asian-Pacific Math Olympiad 2015 bronze
- 4. Silk-Road Math Olympiad 2014 bronze
- 5. Republican Math Olympiad 2015 bronze, and other reginal
- 6. International Tuymaada Math Olympiad 2012, Yakutia participant
- 7. NU Math Battle 2016 3rd prize

Algorithm skills:

ACM ICPC Quarter Final – participant

Task 1

Aim:	To estimate the cost of cars in TEST data, according to TRAIN data.
Process:	1. Split Мошенники_training data into training and test data (proportion 0.8 and 0.2).
	2. Remove redundant features like ID, VIN_#
	3. It is clearly seen that, the ESTIM_COST is almost linearly dependent to
	AVG_COST. But, also we have to check how other features affect.
	$coefficient = \frac{ESTIM_COST}{AVG_COST}$
	Distribution graphics of each feature are shown below. The graphic is <i>coefficient</i>
	vs number of cars. From the graphs, it is clearly seen that almost all features are not
	discriminative and biases ESTIM_COST. Despite that, AUTO_CONDITION and
	YEAR features are selected for prediction. 20 different variables in YEAR feature are
	grouped and labeled as below.
	$YEAR = \begin{cases} 0, & 0 \le YEAR < 5\\ 1, & 5 \le YEAR < 10\\ 2, & 10 \le YEAR < 15\\ 3, & 15 \le YEAR < 20 \end{cases}$
	4. Apply Linear Regression (sklearn library).
Results:	Training data split with proportion 0.8 and 0.2:
	X_train (4800 samples):
	Number of predicted samples with -10% <error<10%: 3885<="" th=""></error<10%:>
	Accuracy: 3885 / 4800 * 100% = 80.94%
	X_test (1200 samples):
	Number of predicted samples with -10% <error<10%: 975<="" th=""></error<10%:>
	Accuracy: 975 / 1200 * 100% = 81.25%
Kernel:	

Task 2

Aim:	To classify Мошенники_test data, whether "мошенник" or not, according to
	Мошенники_training data.
Process:	1. Split Мошенники_training data into training and test data (proportion 0.8 and 0.2).
	2. Remove redundant features like ID.
	3. Identify highly discriminative features by visualizing them (27 features are
	selected). According, to graphics below, almost all values are not continuous (e.g. [0
	or 1], [1,2,3]), the data best fits with tree algorithms.
	4. Apply Random Forest Classifier (sklearn library).
Results:	Training data split with proportion 0.8 and 0.2:
	X_train (24000 samples): 23690 / 24000 * 100% = 98.7%
	X_test (6000 samples): 5592 / 6000 * 100% = 93.2%
Kernel:	

Highly discriminative features:

F2, F7, F8, F10, F11, F19, F32, F33, F34, F35, F38, F39, F40, F46, F63, F86, F87, F88, F107, F111, F77, F78, F79, F96, F108, F109, F119, F121, F126

È features

features

≘ features

-E features

0.25

0.00

£ features

⊵ features