Part III-B: Statistic

Lecture by SongHao
Note by THF

2024年11月25日

目录

T	捆秤	拥种分 布															T												
	1.1	t	分布																	 								2	
	1.2	F	分布		•											•				 				•				3	
L	earn	7																											

11.23

1 抽样分布

Definition. 卡方分布 $\chi^{2}\left(n\right)$: 标准正态分布平方后的和是卡方分布

即: $X_1, X_2, \dots X_i$ 相互独立且都是标准正态分布,则

$$\sum_{i=1}^{n} X_i^2 \sim \chi^2(n) = \chi^2.$$

Example. X_1, X_2, \dots, X_8 独立同分布于 $N\left(0,1\right)$,则 $\sum_{i=1}^8 X_i \sim \chi^2\left(8\right)$

Corollary. 卡方分布的期望 EX = n , 方差 DX = 2n

Corollary. 中心极限定理可得: 如果 $X \sim \chi^2(n)$ 且 n 充分大的时候: $\frac{X-n}{\sqrt{2n}}$ 近似符合标准正态分布 N(0,1)

Notation. 独立同分布的中心极限定理不管分布种类

Corollary. $X \sim \chi^2\left(n\right), Y \sim \chi^2\left(m\right)$,且 X, Y 独立,则 $X + Y \sim \chi^2\left(m + n\right)$

Notation. 推论: $X_i \sim \chi^2(m_i)$,则

$$\sum_{i=1}^{n} X_i \sim \chi^2 \left(\sum_{i=1}^{n} m_i \right).$$

即卡方分布符合可加性

图 1: 卡方分布图像

Definition. 上 α 分位数: $P\left(\chi^2>\chi^2_\alpha\left(n\right)\right)=\alpha$: 在分布图某点右边的概率为 α ,这个点的值

Example. $\chi^2_{0.05}(10) = 18.3, \chi^2_{0.1}(25) = 34.4$

上 α 分位数查表可得:n已知,确定所需的概率 α

Example. 已知 $X \sim \chi^2$ (10) 求: 当 P(X > a) = 0.025, P(X < b) = 0.05 时的 a, b

解: 由题: $n=10, \alpha_1=0.025$, 查表可得: $\chi^2_{0.025}(10)=20.5=a$

易得 $P\left(X < b\right) = 0.05 = 1 - P\left(X \ge b\right)$ 即 $P\left(X \ge b\right) = 0.95 = \alpha_2$,查表: $\chi^2_{\alpha_2}\left(10\right) = 3.94 = b$

Notation. 卡方分布为单峰曲线, n-2 时取最大值

1.1 t 分布

Definition. t 分布由标准正态分布和卡方分布组成: $X \sim N\left(0,1\right), Y \sim \chi^{2}\left(n\right), \; \perp X, Y \; \mid X,$

Notation. 上 α 分位数: $P(T > t_{\alpha}(n)) = \alpha : \alpha$ 为一个数,由于 t 分布的对称性可得: $t_{\alpha}(n) = 1 - t_{1-\alpha}(n)$

Example. $X \sim N(2,1), (Y_1,Y_2,\ldots,Y_4) \sim N(0,4)$,且相互独立,令 $T = \frac{4(X-2)}{\sqrt{\sum_{i=1}^4 Y_i^2}}$,求 T 的分布并求 $P(|T| > t_0) = 0.01$ 时的 t_0

Learn 8

图 2: t 分布图像

解: 对 Y_i : $\mu=0,\sigma=2$, 先将 Y_i 改为标准正态分布: $\frac{Y_i-0}{2}\sim N\left(0,1\right)$,写出一个关于 $\frac{Y_i-0}{2}$ 的卡方分布:

$$\chi^{2} = \sum_{i=1}^{4} \frac{Y_{i} - 0^{2}}{2} = \frac{\sum_{i=1}^{4} Y_{i}^{2}}{4} \sim \chi^{2} (4).$$

对 X 标准化: $\frac{X-2}{1} \sim N\left(0,1\right)$, 由于 t 分布 "上正态下卡方",所以:

$$\frac{(X-2)}{\sqrt{\frac{\sum_{i=1}^{4}Y_{i}^{2}}{4}/4}} = \frac{4\left(X-2\right)}{\sqrt{\sum_{i=1}^{4}Y_{i}^{2}}} = T \sim t\left(4\right).$$

要求 $P\left(|T|>t_0\right)=0.01$:由 t 分布的对称性: $P\left(|T|>t_0\right)=2P\left(T>t_0\right)=0.01$,即 $P\left(T>t_0\right)=0.005$; 令 $\alpha=0.005$, 查表 $t_{0.005}\left(4\right)$ 即可

查表得: $t_{0.005}(4) = 4.604$

1.2 F 分布

形式: $F(n_1, n_2)$ (共 2 个参数)

Corollary. $X \sim \chi^2(n_1), Y \sim \chi^2(n_2)$,且相互独立,则:

$$\frac{X/n_1}{Y/n_2} \sim F\left(n_1, n_2\right).$$

Learn 8

同理:

$$\frac{Y/n_2}{X/n_1} \sim F(n_2, n_1).$$

记 $F \sim F\left(n_1, n_2\right)$, 则 $\frac{1}{F} \sim F\left(n_2, n_1\right)$

Example. $X_1, X_2, \dots, X_6 \sim N\left(0, \sigma^2\right)$,求 $\frac{2\left(X_1^2 + X_2^2\right)}{X_3^2 + X_4^2 + X_5^2 + X_6^2}$ 的分布

解: $\frac{X_{i}}{\sigma} \sim N(0,1)$, 则 $\frac{X_{1}^{2}}{\sigma^{2}} + \frac{X_{2}^{2}}{\sigma} \sim \chi^{2}(2)$, 同理: $\sum_{i=3}^{6} \frac{X_{i}^{2}}{\sigma^{2}} \sim \chi^{2}(4)$

$$\frac{\frac{X_{1}^{2}+X_{2}^{2}}{\sigma^{2}}/2}{\frac{\sum_{i=3}^{6}X_{i}^{2}}{\sigma^{2}}/4} = \frac{2\left(X_{1}^{2}+X_{2}^{2}\right)}{X_{3}^{2}+X_{4}^{2}+X_{5}^{2}+X_{6}^{2}} \sim F\left(2,4\right).$$

Notation. F 分布的上 α 分位数: $P(F > F_{\alpha}(n_1, n_2) = \alpha)$

图 3: F 分布图像

Corollary.

$$F_{1-\alpha}(n_1, n_2) = \frac{1}{F_{\alpha}(n_2, n_1)}.$$

证明. 假设 $F \sim F(n_1, n_2)$,则 $\frac{1}{F} \sim (n_2, n_1)$,求 $P(F > F_{1-\alpha}(n_1, n_2)) = 1 - \alpha$ 将两边同时取倒数,符号反向:

Learn 8

$$\begin{split} 1-\alpha &= P\left(F > F_{1-\alpha}\left(n_1,n_2\right)\right) = P\left(\frac{1}{F} < \frac{1}{F_{1-\alpha}\left(n_1,n_2\right)}\right) \\ &= 1-P\left(\frac{1}{F} \geq \frac{1}{F_{1-\alpha}\left(n_1,n_2\right)}\right) \\ \alpha &= P\left(\frac{1}{F} > \frac{1}{F_{1-\alpha}\left(n_1,n_2\right)}\right) \\ \Rightarrow \frac{1}{F} \sim F\left(n_2,n_1\right), \alpha &= P\left(\frac{1}{F} > F_{\alpha}\left(n_2,n_1\right)\right) \\ \Rightarrow F_{\alpha}\left(n_2,n_1\right) &= \frac{1}{F_{1-\alpha(n_1,n_2)}}. \end{split}$$

解: 査表可得: $F_{0.01}\left(10,15\right)=\lambda_1=3.8$,由题: $P\left(F\leq\lambda_2\right)=P\left(\frac{1}{F}>\frac{1}{\lambda_2}\right)=0.01$,由于 $\frac{1}{F}\sim F\left(15,10\right)$,则可通过查表得 $F_{0.01}\left(15,10\right)$ 求得 $\frac{1}{\lambda_2}$:

得:
$$\begin{cases} \lambda_1 = 3.8\\ \lambda_2 = 0.293 \end{cases}$$