Lecture 23. Elementary Graph Algorithms

Introduction to Algorithms Sungkyunkwan University

Hyunseung Choo choo@skku.edu

Graphs

- \blacksquare Graph G = (V, E)
 - ▶ *V* is set of vertices
 - ightharpoonup E is set (family) of edges $\subseteq (V \times V)$
 - ★ edge or link or arc
- Types of graphs
 - ▶ Undirected: edge (u, v) = (v, u)
 - \star for all v, $(v, v) \notin E$ (No self loops)
 - ▶ Directed: (u, v) is edge from u to v, denoted as $u \rightarrow v$
 - ★ self loops are allowed
 - ▶ Weighted: each edge has an associated weight, given by a weight function $w : E \rightarrow R$
 - ▶ Dense: $|E| \approx |V|^2$
 - ► Sparse: |*E*| << |*V*|²
- $|E| = O(|V|^2)$

Graphs

- If $(u, v) \in E$, then vertex v is adjacent to vertex u
- Adjacency relationship is:
 - Symmetric if G is undirected
 - ▶ Not necessarily so if *G* is directed
- If G is connected:
 - There is a path between every pair of vertices
 - $|E| \geq |V| 1$
 - ▶ Furthermore, if |E| = |V| 1, then G is a tree
- Other definitions in Appendix B (B.4 and B.5) as needed
 - On pages 1080-1093

Eulerian and Hamiltonian Graphs

- A graph containing paths that include every 'edge' exactly once and end at the initial vertex is called an <u>Eulerian graph</u>
- A graph containing paths that include every 'vertex' exactly once and end at the initial vertex is called a <u>Hamiltonian graph</u>

Trees and Planar Graphs

- A connected graph with only one path between each pair of vertices is called a <u>tree</u>
- A tree can also be defined as a connected graph containing no cycles (figure 1)
- A graph that can be redrawn without crossings is called a <u>planar graph</u> (figures 2 and 3)

Other Definitions

- Two digraphs are <u>isomorphic</u> if there is an isomorphism between their underlying graphs that preserves the ordering of the vertices in each arc
 - ▶ See figures 4 and 5 : not isomorphic
- See figures 6 and 7: isomorphic

Practice Problems

Which of the following pairs are isomorphic graphs:

Connected and Strongly Connected

- A digraph D is <u>connected</u> if it cannot be expressed as the union of two digraphs
 - ► This is equivalent to saying that the underlying graph of D is a connected graph
- D is <u>strongly connected</u> if, for any two vertices v and w of D, there is a path from v to w
- Every strongly connected digraph is connected, but not all connected digraphs are strongly connected
 - ► See figure 4

Fig. 4

Connected and Strongly Connected

- We define a graph *G* to be <u>orientable</u> if each edge of *G* can be directed so that the resulting digraph is strongly connected
 - See figures 8 and 9
- Any Eulerian graph is orientable

Adjacency

- Two vertices v and w are <u>adjacent</u> if there is an edge (v,w) joining them, and the vertices v and w are then <u>incident</u> with such an edge
- Two distinct edges e and f are <u>adjacent</u> if they have a vertex in common

Representation of Graphs

- Two standard ways
 - Adjacency lists

Adjacency matrix

	1	2	3	4
1	0	1	1	1
2	1	0	1	0
3	1	1 0 1 0	0	1
4	1	0	1	0

Representation of Graphs

- Adjacency matrix A
- Incidence matrix M

$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 2 \\ 0 & 1 & 0 & 1 \\ 1 & 2 & 1 & 0 \end{pmatrix}$$

$$\mathbf{M} = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix}$$

Adjacency Lists

- \blacksquare Consists of an array Adj of |V| lists
- One list per vertex
- For $u \in V$, Adj[u] consists of all vertices adjacent to u

Degree

- The degree of a vertex v is the number of edges incident with v, and is written deg(v)
- A loop at v contributes 2 to the degree of v
- A vertex of degree 0 is an isolated vertex
- A vertex of degree 1 is an end-vertex
- Remember the handshaking lemma and its corollary

Handshaking Lemma

Handshaking Lemma

- ► If several people shake hands, then the total number of hands shaken must be even
- In any graph the sum of all the vertex degrees is an even number
 - in fact, twice the number of edges

Corollary

In any graph the number of vertices of odd degree is even

Handshaking Dilemma

- The out-degree of a vertex \vee of G is the number of arcs of the form (\vee, \vee) , and is denoted by $outdeg(\vee)$
- The in-degree of a vertex \vee of G is the number of arcs of the form (w, \vee) , and is denoted by indeg (\vee)
- The sum of the out-degrees of all the vertices of G is equal to the sum of their in-degrees
- We call this result the <u>handshaking dilemma</u>
- A <u>source</u> of G is a vertex with in-degree 0
- A sink of G is a vertex with out-degree 0

Storage Requirement

For directed graphs

► Sum of lengths of all adj. lists is

$$\sum_{v \in V} \text{outdeg}(v) = |E|$$

- ▶ Total storage: $\Theta(V+E)$
- For undirected graphs
 - Sum of lengths of all adj. lists is

$$\sum_{v \in V} \deg(v) = 2|E|$$

▶ Total storage: $\Theta(V+E)$

Pros and Cons: Adj List

Pros

- Space-efficient, when a graph is sparse
- Can be modified to support many graph variants

Cons

- ▶ Determining if an edge $(u,v) \in E$ is not efficient
 - \star Have to search in u's adjacency list, $\Theta(\deg(u))$ time
 - $\star \Theta(V)$ in the worst case

Adjacency Matrix

- $|V| \times |V|$ matrix A
- Number vertices from 1 to |V| in some arbitrary manner
- A is then given by:

$$A[i, j] = a_{ij} = \begin{cases} 1 & \text{if } (i, j) \in E \\ 0 & \text{otherwise} \end{cases}$$

	1	1 0 0 0	3	4
1	0	1	1	1
2	0	0	1	0
3	0	0	0	1
4	0	0	0	0

	1	1 0 1 0	3	4
1	0	1	1	1
2	1	0	1	0
3	1	1	0	1
4	1	0	1	0

 $A = A^{T}$ for undirected graphs

Space and Time

- Space: $\Theta(V^2)$
 - ► Not memory efficient for large graphs
- Time: to list all vertices adjacent to u
 - \triangleright $\Theta(V)$
- Time: to determine if $(u, v) \in E$
 - **▶** Θ(1)
- Can store weights instead of bits for weighted graph

Practice Problems

Draw the graph whose adjacency matrix is given as follows:

$$\begin{pmatrix}
0 & 1 & 1 & 2 & 0 \\
1 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 & 1 \\
2 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0
\end{pmatrix}$$

Draw the graph whose incidence matrix is given as follows:

$$\begin{pmatrix}
0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 & 1 & 0 & 0
\end{pmatrix}$$

Graph-Searching Algorithms

- Searching a graph
 - Systematically follow the edges of a graph to visit the vertices of the graph
- Used to discover the structure of a graph
- Standard graph-searching algorithms
 - Breadth-First Search (BFS)
 - Depth-First Search (DFS)

Breadth-First Search

Input

▶ Graph G = (V, E), either directed or undirected, and source vertex $s \in V$

Output

- ▶ d[v] = distance (smallest number of edges, or shortest path) from s to v, for all $v \in V$
- $b d[v] = \infty$ if v is not reachable from s
- π[v] = u such that (u, v) is last edge on shortest path s ~ v
 ★ u is v's predecessor
- Builds Breadth-First Tree with root s that contains all reachable vertices

Breadth-First Search

- Expands the frontier between discovered and undiscovered vertices uniformly across the breadth of the frontier
 - ► A vertex is "discovered" the first time it is encountered during the search
 - A vertex is "finished" if all vertices adjacent to it have been discovered
- Colors the vertices to keep track of progress
 - White Undiscovered
 - Gray Discovered but not finished
 - ▶ Black Finished
 - ★ Colors are required only to reason about the algorithm. Can be implemented without colors.

Breadth-First Search

Finished

Discovered

o Undiscovered

Pseudo Code

```
BFS(G,s)
1. for each vertex u in V[G] - \{s\}
                                                             white: undiscovered
       do color[u] \leftarrow white
                                                             gray: discovered
           d[u] \leftarrow \infty
                                                             black: finished
           \pi[u] \leftarrow \text{nil}
     color[s] \leftarrow gray
     d[s] \leftarrow 0
                                         Q: a queue of discovered vertices
   \pi[s] \leftarrow \mathsf{nil}
                                        color[v]: color of v
   Q \leftarrow \Phi
                                        d[v]: distance from s to v
                                        \pi[u]: predecessor of v
     enqueue(Q,s)
    while Q \neq \Phi
11
       do u \leftarrow dequeue(Q)
12
              for each v in Adj[u]
13
                     do if color[v] = white
14
                             then color[v] \leftarrow gray
15
                                    d[v] \leftarrow d[u] + 1
16
                                    \pi[v] \leftarrow u
17
                                    enqueue(Q,v)
18
              color[u] \leftarrow black
```


Q: w r 1 1

Q: r t x 1 2 2

Q: t x v 2 2 2

Q: x v u 2 2 3

Q: v u y 2 3 3

Q: u y 3 3

Q: y 3

BF Tree

Analysis of BFS

- Initialization takes O(V)
- Traversal Loop
 - After initialization, each vertex is enqueued and dequeued at most once, and each operation takes O(1). So, total time for queuing is O(V)
 - ▶ The adjacency list of each vertex is scanned at most once. The sum of lengths of all adjacency lists is $\Theta(E)$
- Summing up over all vertices
 - \blacktriangleright total running time of BFS is O(V+E), linear in the size of the adjacency list representation of graph

Breadth-First Trees

- For a graph G = (V, E) with source s, the predecessor subgraph of G is $G_{\pi} = (V_{\pi}, E_{\pi})$ where

 - $E_{\pi} = \{ (\pi[v], v) \in E : v \in V_{\pi} \{s\} \}$
- The predecessor subgraph G_{π} is a breadth-first tree if:
 - \triangleright V_{π} consists of the vertices reachable from s and
 - ▶ for all $v \in V_{\pi}$, there is a unique simple path from s to v in G_{π} that is also a shortest path from s to v in G.
- The edges in E_{π} are called tree edges
 - $|E_{\pi}| = |V_{\pi}| 1$

Depth-First Search

- Explore edges out of the most recently discovered vertex v
- When all edges of *v* have been explored, backtrack to explore other edges leaving the vertex from which *v* was discovered (its *predecessor*)
- "Search as deep as possible first"
- Continue until all vertices reachable from the original source are discovered
- If any undiscovered vertices remain, then one of them is chosen as a new source and search is repeated from that source

Depth-First Search

- Input
 - ightharpoonup G = (V, E), directed or undirected. No source vertex given!
- Output
 - 2 timestamps on each vertex. Integers between 1 and 2|V|.
 - $\star d[v] = discovery time (v turns from white to gray)$
 - $\star f[v] = finishing time (v turns from gray to black)$
 - $\pi[v]$: predecessor of v = u, such that v was discovered during the scan of u's adjacency list.
- Uses the same coloring scheme for vertices as BFS
 - White Undiscovered
 - Gray Discovered but not finished
 - ▶ Black Finished

Pseudo Code

DFS(G)

- 1. **for** each vertex $u \in V[G]$
- 2. **do** $color[u] \leftarrow$ white
- 3. $\pi[u] \leftarrow NIL$
- 4. time $\leftarrow 0$
- 5. **for** each vertex $u \in V[G]$
- 6. **do if** color[u] = white
- 7. **then** DFS-Visit(u)

Uses a global timestamp time

$\overline{\text{DFS-Visit}(u)}$

- 1. $color[u] \leftarrow GRAY$ ∇ White vertex *u* has been discovered
- 2. $time \leftarrow time + 1$
- 3. $d[u] \leftarrow time$

5.

- 4. **for** each $v \in Adj[u]$
 - **do if** color[v] = WHITE
- 6. then $\pi[v] \leftarrow u$
- 7. DFS-Visit(v)
- 8. $color[u] \leftarrow BLACK$ ∇ Blacken u; it is finished.
- 9. $f[u] \leftarrow time \leftarrow time + 1$

white: undiscovered

gray: discovered

black: finished

Analysis of DFS

Loops on lines 1-2 & 5-7 take $\Theta(V)$ time, excluding time to execute DFS-Visit

■ DFS-Visit is called once for each white vertex $v \in V$ when it's painted gray the first time. Lines 3-6 of DFS-Visit is executed |Adj[v]| times. The total cost of executing DFS-Visit is $\sum_{v \in V} |Adj[v]| = \Theta(E)$

■ Total running time of DFS is $\Theta(V+E)$

Depth-First Trees

- Predecessor subgraph defined slightly different from that of BFS
- The predecessor subgraph of DFS is $G_{\pi} = (V, E_{\pi})$ where $E_{\pi} = \{(\pi[v], v) : v \in V \text{ and } \pi[v] \neq \text{NIL}\}.$
 - ► How does it differ from that of BFS?
 - The predecessor subgraph G_{π} forms a *depth-first forest* composed of several *depth-first trees*. The edges in E_{π} are called *tree edges*.

Classification of Edges

- Tree edge: in the depth-first forest. Found by exploring (u, v)
- Back edge: (u, v), where u is a descendant of v (in the depth-first tree)
- Forward edge: (u, v), where v is a descendant of u, but not a tree edge
- Cross edge: any other edge Can go between vertices in same depth-first tree or in different depth-first trees

Practice Problems

Perform a depth-first search on the following graph starting at A. Break all ties by picking the vertices in alphabetical order (i.e A before Z).

Topological Sort

- A topological sort of a Directed Acyclic Graph (DAG) is a linear order of all its vertices s.t. if G contains an edge (u, v), then u appears before v in the ordering
 - ▶ If the graph is not acyclic, then no linear ordering is possible.
 - A topological sort can be viewed as an ordering of its vertices along a horizontal line so that all directed edges go from left to right
- TOPOLOGICAL-SORT(G) $\Theta(V+E)$
 - call DFS(G) to compute finishing times f[v] for each vertex v
 - 2 as each vertex is finished, insert it onto the front of a linked list
 - 3 **return** the linked list of vertices

Topological Sort

Intelligent Networking Laboratory

H.CHOO

63/63

Thanks to contributors

Mr. Pham Van Nguyen (2022)

Dr. Thien-Binh Dang (2017 - 2022)

Prof. Hyunseung Choo (2001 - 2022)