

MODULE 5

Propositional Logic

Dr Pooja Agarwal

Department of Computer Science & Engineering

Propositional Logic

Outline

- ◆ Propositional logic A very Simple Logic
 - Syntax and Semantics
- ➤ A Simple Knowledge Base
- ➤ A Simple Inference Procedure

Propositional Logic (A simple Knowledge Base)

Knowledge Base

To construct the **knowledge base**, let us focus on immutable aspects of wumpus world

We need the following symbols for each [i, j] location:

- P_{i,i} be true if there is a pit in [i, j].
- B_{i,i} be true if there is a breeze in [i, j].
- W_{i,j} be true if there is a wumpus in [i, j], dead or alive.
- S_{i,j} be true if agent perceives a stench in [i, j].

1,4	2,4	3,4	4.4
SS SSS S Stench S		Breeze	PIT
1,3	2,3	3,3	4,3
() () () () () () () () () ()	Dreeze 55 555 5 Stench 5	PIT	Breeze
1,2	2,2	3,2	4,2
\$5.555 Stench		Breeze	
1,1	2,1	3,1	4,1
START	Breeze -	PIT	Breeze

Propositional Logic (A simple Knowledge Base)

$$R_1$$
: $\neg P_{1,1}$

$$R_2$$
: $B_{1.1} \Leftrightarrow (P_{1.2} \vee P_{2.1})$

$$R_3: B_{2.1} \Leftrightarrow (P_{1.1} \vee P_{2.2} \vee P_{3.1})$$

Lat us include the brooze percent for the 1st

5. Let us include the breeze percept for the 1"	1.2	2.2
two squares, leading to the situation	,	_,_
R4: ¬ B _{1.1}	SS SSS S Stench S	
R5: B _{2.1}	1,1	2,1
The knowledge base might be considered as conjunction	START	₹B
of one or more statements		

4,1

Breeze -

- Breeze -

3,1

Breeze -

$$B_{1.1}$$
, $B_{2.1}$, $P_{1.1}$, $P_{1.2}$, $P_{2.1}$, $P_{2.2}$, $P_{3.1}$

Propositional Logic (A simple Inference Procedure)

Goal: If $\alpha 1 = \neg P_{1,2}$ and $\alpha 2 = P_{2,2}$ Whether KB $|= \alpha 1$ or KB $|= \alpha 2$ for some sentence $\alpha 1$ and $\alpha 2$.

Is $\neg P_{1,2}$ entailed by our Knowledge Base?

Is P_{2.2} entailed by our Knowledge Base?

Use Model Checking Approach

- 1. Enumerate the models
- 2. Check for α being true, in every model in which KB is true

For Wumpus world PROPOSITION SYMBOLS are:

$$B_{1,1}, B_{2,1}, P_{1,1}, P_{1,2}, P_{2,1}, P_{2,2}, P_{3,1}$$

So with 7 symbols there are $2^7 = 128$ possible models

For 3 symbols there are $2^3 = 8$ models

Α	В	C
True	True	True
True	False	False
False	True	False
False	False	True
True	True	False
True	False	True
False	True	True
False	False	False

Propositional Logic (A simple Inference Procedure)

Truth Table for inference

$B_{1,1}$	$B_{2,1}$	$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	$P_{2,2}$	$P_{3,1}$	KB
false	false	false	false	false	false	false	false
false	false	false	false	false	false	true	false
:	:	:	:	:	:	:	:
false	true	false	false	false	false	false	false
false	true	false	false	ightharpoonup $alse$	false	true	true
false	true	false	false	alse	true	false	\underline{true}
false	true	false	false	alse	true	true	true
false	true	false	false	true	false	false	false
:	:	:	:	:	:	:	:
true	true	true	true	true	true	true	false

Is $\neg P_{1,2}$ entailed by our KB?

Here $\neg P_{1,2}$ is true Hence, There is no pit in [1,2].

Propositional Logic (A simple Inference Procedure)

$B_{1,1}$	$B_{2,1}$	$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	$P_{2,2}$	$P_{3,1}$	KB	
false	false	false	false	false	false	false	false	
false	false	false	false	false	false	true	false	
:	:	:	:	:	:	:	:	
false	true	false	false	false	false	false	false	
false	true	false	false	$\neg false$	false	true	<u>true</u> <	<u>'</u>
false	true	false	fals($\neg false$	true	false	<u>true</u> <	H
false	true	false	fals	false	true	true	<u>true</u> <	Ļ
false	true	false	false	true	false	false	false	
:	÷	:	:	:	:	:	:	
true	true	true	true	true	true	true	false	

P	Q	¬P	PΛQ	PVQ	P⇒Q	P⇔Q
Т	Т	F	Т	Т	Т	Т
Т	F	F	F	Т	F	F
F	Т	Т	F	Т	Т	F
F	F	Т	F	F	Т	Т

- 1. R_1 : $\neg P_{1,1}$ 2. R_2 : $B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$ 3. R_3 : $B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1})$
- 4. R4: $\neg B_{1,1}$
- 5. R5: B_{2,1}

Propositional Logic (A simple Inference Procedure)

$B_{1,1}$	$B_{2,1}$	$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	$P_{2,2}$	$P_{3,1}$	KB
false	false	false	false	false	false	false	false
false	false	false	false	false	false	true	false
:	:	:	:	:	:	:	:
false	true	false	false	false	false	false	false
false	true	false	fals	$\neg false$	false	true	true
false	true	false	fals(false	true	false	$ \underline{true} \Leftrightarrow$
false	true	false	fals	$\neg false$	true	true	$true \Leftrightarrow$
false	true	false	false	true	false	false	false
:	:	:	:	:	:	:	:
true	true	true	true	true	true	true	false

 $KB = R1 \land R2 \land R3 \land R4 \land R5$

- 1. R_1 : $\neg P_{1,1}$ 2. R_2 : $B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$ 3. R_3 : $B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1})$
- 4. R4: $\neg B_{1.1}$
- 5. R5:

Propositional Logic (A simple Inference Procedure)

Truth Table for inference

$B_{1,1}$	$B_{2,1}$	$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	$P_{2,2}$	$P_{3,1}$	KB	
false								
false	false	false	false	false	false	true	false	
:	:	:	:	:	:	:	:	
false	true	false	false	false	false	false	false	
false	true	false	false	false	false	true	\underline{true} <	þ
false	true	false	false	false	true <	-alse	\underline{true}	۲
false	true	false	false	false	true <	true	true	
false	true	false	false	true	false	false	false	
:	:	:	:	:	:	:	:	
true	false							

Is P_{2,2} entailed by our Knowledge Base?

Here P_{2,2} is true in 2 of the three models and false in one.

Hence, We can't yet tell whether there is a pit in [2,2].

THANK YOU

Dr Pooja Agarwal
Department of Computer Science & Engineering
poojaagarwal@pes.edu