Teorema da Função Implícita e Extensão

Lucas Matheus Sandeski * Licenciatura em matemática - UEPG

lucassan1509@gmail.com

Prof. Marciano Pereira (Orientador) Departamento de Matemática e Estatística -UEPG

marciano@uepg.br

Palavras-chave: Teorema Função Implícita, Desigualdade de Young, Espaços de Banach.

Resumo: De modo geral é útil trabalhar com variáveis independentes, trabalhando com o menor número de variáveis para dado problema. Em alguns casos como na equação $x^3+y^2+z^2=-8, 1\cdot 10^{-8}$, é fácil escrever x em função de y e z. Porém no sistema

$$\begin{cases} x^3yz + yz^2 + xy + x^2y^3z^2 = 0\\ zyx + y^5x^4 + zy^3 + xyz^2 = 0, \end{cases}$$

já não é tão fácil.

De modo que se torna útil ter algum meio de saber de antemão se é possível ou não escrever alguma das variáveis em função de outras, em uma região. Por isso, este trabalho se voltou a estudar o Teorema da Função Implícita, que pode ser usado para resolver o problema.

Teorema 1 (Teorema da Função Implícita - TFI) Se $f: \mathbb{R}^k \times \mathbb{R}^m \to \mathbb{R}^m$ uma função de C^1 . Suponha $f(x_0, y_0) = 0$ e

$$\det\left[\frac{\partial f}{\partial y}(x_0, y_0)\right] \neq 0.$$

Então existe aberto $\Omega \subset \mathbb{R}^k$ e $\varphi: \Omega \to \mathbb{R}^m$ função de classe C^1 tais que

- a) $x_0 \in \Omega$ e $\varphi(x_0) = y_0$;
- b) $f(x, \varphi(x)) = 0, \forall x \in \Omega$.

Além disso, o TFI pode ser estendido para espaços de Banach em vez de espaços euclidianos. Porém antes de enunciá-lo definiremos a derivada de uma função entre espaços vetoriais normados e também o conceito de derivadas parciais em espaços vetoriais normados.

^{*}Bolsista do Programa de Iniciação Científica e Mestrado (PICME).

Definição 1 (Derivada) Para X,Y espaços vetoriais normados e $A\subset X$ um aberto, dizemos que uma aplicação $f:A\to Y$ é diferenciável em $x_\circ\in A$ se existe uma aplicação linear e contínua, denotada por $f'(x_\circ):X\to Y$, que será chamada a derivada (ou derivada de Fréchet) de f em x_\circ , tal que

$$\lim_{h \to 0} \frac{||f(x_\circ + h) - f(x_\circ) - f'(x_\circ)(h)||_Y}{||h||_X} = 0.$$

Nesta definição, $f'(x_\circ)(h)$ denota o valor da aplicação linear $f'(x_\circ)$ aplicada no vetor h pertencente a X, e assim, $f'(x_\circ)(h)$ pertence a Y.

Apresentaremos um exemplo bem simples desse conceito. Sejam $f:X\to Y$ uma função linear contínua e X,Y espaços vetorias normados. Então $f(x_\circ+h)=f(x_\circ)+f(h)$. Se considerarmos $f'(x_\circ)(h)=f(h)$, então a identidade

$$\lim_{h \to 0} \frac{||f(x_\circ + h) - f(x_\circ) - f'(x_\circ)(h)||_Y}{||h||_X} = 0,$$

fica satisfeita para todo $h \in X$, o que nos leva a concluir, pela unicidade da derivada, que f é diferenciável em x_\circ e $f'(x_\circ) \equiv f$. Ou seja, a derivada de uma transformação linear contínua é a própria transformação.

Definição 2 (Derivada Parcial) Sejam X,Y,Z espaços vetoriais normados e A um conjunto aberto de $X \times Y$. Seja

$$f: A \subset X \times Y \longrightarrow Z$$

 $(x,y) \longmapsto f(x,y).$

Seja (x_\circ, y_\circ) pertencente a A e $A_{y_\circ} = \{x \in X | (x, y_\circ) \in A\}$. Como A é aberto então A_{y_\circ} é aberto (em X). Seja

$$F: A_{y_{\circ}} \subset X \longrightarrow Z$$

 $x \longmapsto F(x) = f(x, y_{\circ})$

Se F é diferenciável em x_\circ então $F'(x_\circ): X \to Z$ é uma aplicação linear e contínua chamada derivada parcial em f em (x_\circ,y_\circ) em relação a variável x, denotada por $\frac{\partial f}{\partial x}(x_\circ,y_\circ)$.

Podendo agora enunciar o Teorema da Função Implícita em espaços de Banach.

Teorema 2 (Teorema da Função Implícita em espaços de Banach) Sejam E, F e G espaços vetoriais normados e assuma F um espaço de Banach. Sejam $\Omega \subset E \times F$ aberto e $f: \Omega \to G$ uma função tal que

- a) f é contínua;
- b) para todo $(x,y) \in \Omega$, $\frac{\partial f}{\partial y}(x,y)$ existe e é contínua em Ω ;
- c) f(a,b)=0 e $T=\frac{\partial f}{\partial y}(a,b)$ é invertível e tem inversa contínua.

Então, existem vizinhanças U de a e V de b e uma função contínua $\phi: U \to V$ tal que $\phi(a) = b$ e as únicas soluções em $U \times V$ da equação f(x,y) = 0 são da forma $(x,\phi(x))$. Além disso, se f é diferenciável em (a,b), então ϕ é diferenciável em a e

$$\phi'(a) = -\left[\frac{\partial f}{\partial y}(a,b)\right]^{-1} \left[\frac{\partial f}{\partial x}(a,b)\right].$$

Entre outras aplicações, esse teorema pode ser usado para demonstrar o Teorema da Função Inversa, e o Método dos Multiplicadores de Lagrange, enunciado abaixo.

Teorema 3 (Método dos Multiplicadores de Lagrange) Sejam $f, g : \mathbb{R}^n \to \mathbb{R}$ funções de classe C^1 e $S = \{x \in \mathbb{R} : g(x) = 0\}$. Supponha $x_0 \in S$ tal que

$$g'(x_{\circ}) \neq 0 \ e \ f(x_{\circ}) = \min\{f(x); x \in S\}.$$

Então $f'(x_\circ)$ e $g'(x_\circ)$ são linearmente dependentes, isto é, existe (multiplicador de Lagrange) $\lambda \in \mathbb{R}$ tal que $\nabla f(x_\circ) = \lambda \nabla g(x_\circ)$.

Que por sua vez é utilizado em demonstrações, como por exemplo o da desigualdade de Young, enunciada abaixo.

Desigualdade 1 (Young) Sejam p e q tais que $1 < p,q < +\infty$ e 1/p + 1/q = 1. Então, para todos $x,y \in \mathbb{R}$, vale a desigualdade

$$|xy| \le \frac{|x|^p}{p} + \frac{|y|^q}{q}.$$

Referências:

- [1] Cipolatti, R. Cálculo Avançado I. Rio de Janeiro: IM-UFRJ, 2002.
- [2] Domingues H. H. **Espaços Métricos e Introdução à Topologia**. São Paulo: Atual, 1982.
- [3] Kreyszig, E. Introductory Functional Analysis with Applications. Virgínia: John Wiley & Sons, 1989.
- [4] Wilberstaedt, J. M. **Diferenciabilidade e o Teorema da Função Implícita em Espaços de Banach**. Monografia (Licenciatura em Matemática) Centro de Ciências Físicas e Matemáticas, Universidade Federal de Santa Catarina, Florianópolis, 2000.
 - [5] Friedman, A. Advanced Calculus. New York: Dover Publications, 2007.
 - [6] Lima, E. L. Análise Real Volume 2. Rio de Janeiro: IMPA,2004.
- [7] Moriya, A. I. **Os Teoremas de Funções Inversa e Implícita e suas Aplicações**. Monografia (Especialista em Ciências Área de Concentração: Matemática) Programa de Pós-Graduação em Matemática, Universidade Tecnológica Federal do Paraná, Campo Mourão, 2011.
- [8] Araújo, G. S. O teorema da Função Implícita em Espaços de Banach e Aplicações. Monografia (Bacharel em Matemática) Centro de Ciências Exatas e da Natureza ,Universidade Federal da Paraíba, João Pessoa, 2010.