Chx = [o]-a, oja] coz

. So har \in or But $[h_{\alpha}, \chi] = \alpha(h) \cdot \chi$

x ∈ Ja 1803

So of is cernisingle. ex 5.3: $\Delta C f^*$ index if not of the form $\Delta = \Delta_1 \cup d_2$, $\Delta i \neq \emptyset$, $\forall \alpha, \beta \in \Delta$, $\alpha + \beta \notin \Delta \cup \{0\}$. 1- 1 inder => of simple [] not simple -> & de composable. g = g1 + g2 / g1/g2 + 0 and semisimple. ideals of oz. JI= g, & Doyx J2= g2 & Dyx XED1 RED2 $\Delta = \Delta_1 \cup \Delta_2 \subset \mathcal{G}^* \qquad \mathcal{G} = \mathcal{G}_1 \cup \mathcal{G}_2$ g* = g* ⊕ gr*. d∈S1, S∈S2. Show that d+B & DUEO3. d+B ≠0 ance gr 1 gr = 0 so a, s are linearly independent $2f + 3 = 3 \in \Delta = \Delta_1 \sqcup \Delta_2$ $f^* = f^*$ So. for ex. $\gamma \in \Delta_1$ and $\gamma = -\beta$ but hx 0 hx = (0). 2- A is undecomposable ⇔ Va, B ∈ A, can find of, ~ 85 ∈ A γ₁ γ₂ ······ γ_{S-1} γ_S

"
"
"
"
"
"
"
"
"
"
"
"
" 8i + 8i+1 € 1.0 €03 H Δ= Δ, LID decomposable. Take Y ∈ Δ, S ∈ Δ2. If I dr. 78s on in the r.h.s of (x),

Pit Pita EAU EO 3.

ho, 2 do not commute, but he, 2 ∈ oz: contradiction.

By def of a decomposition of A, count have this.
have to prove
(3) Bx, BED, no path between x and =) & decomposable
Assume ?.
Define $\Delta_1 = {\{\alpha' \in S \mid \exists \text{ path between } \alpha \text{ and } \kappa' \}}, \ni \propto$
Dz= {a'∈Δ / ≠ puth between α and x'y ∋β
$\Delta = \Delta_1 \sqcup \Delta_2 \qquad \text{Show if } \forall \in \Delta_1, \ \delta \in \Delta_2,$ $\propto \qquad \beta \qquad $
0 1 S ← ∠ O 2 8 J ,
Assume 8+S ∈ Δυ 103,
α — VE → path between a and S: contractions 8+8 ∈ Δυ (ο)
To 8+5 & Du Eo3. and D = Dy U Dz is a dec. of D
$\int \sigma_{s} s \rightarrow \Delta = \Delta_{1} \cup \cdots \cup \Delta_{s}$
ind root syst, canonical de amporhim
g=g1 D Di simple.
- -
exs.4. V C. vspace. B \(\(\nabla \nu \rangle \)*
1. Ov, B = {a ∈ oyl(v) B(au, v) + B(u, ow) = 0 Ku, v ∈ v}
of (V) $(V \otimes V)^{*} \ni f$ $(a \in ogl(V), a \cdot f(u,v))$ $= -f(a \cdot v,v) - f(u,a \cdot v)$ $G_{V,B} = Stab_{y}(v)(B) = \{a \in ogl(V) \mid a \cdot B = B\}^{s}.$ while algebra.
$G_{V,B} = Stab_{A(V)}(B) = \{a \in G(V) \mid a \cdot B = B\}.$
subhi algeba.
2 - Choose a basis of V, M the matrix of B in this bearing
Evi3 1 sism (Blown)
15/1/5 n
2- Thoose a basis of V , M the matrix of B in this basis $\{v_i\}_{1 \le i \le n}$ $(B(v_i, v_i))_{1 \le i \le n}$ $V \in V$ $V = \begin{pmatrix} x_1 \\ i \\ x_N \end{pmatrix}$ X_i are coordinates of V in $\{v_i\}_{i \in N}$.

$$B(M,V) = {}^{t}MBV \cdot EE, \qquad \text{transpox of } M$$

$$U_{m,M} = {}^{2} a \in \mathcal{O}_{m}(E) \mid a^{T}M + Ma = 0 {}^{2}$$

Mis symm n.d.

$$A^T M A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

3- Over alg. closed fied: $\exists A \in GLn(x) > t$.

ATMA = (1.0)

any gred form over a.c. field is equivalent to $x_1^2 + \cdots + x_n^2$ Edin n, naideg.

$$A \cdot M = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \in \mathfrak{gl}_{m}(\mathcal{L}),$$

$$a \in ofn.$$
 $a^TM + Ma = 0$

$$a' M + Ma = 0 \qquad (y t)$$

$$\Rightarrow a + a' = 0 \qquad M_a = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x & y \\ 3 & t \end{pmatrix}$$

$$a' = \text{transmoder of } a \qquad (1 1)$$

$$\begin{pmatrix} \alpha = \begin{pmatrix} x & y \\ 2 & t \end{pmatrix} = \begin{pmatrix} x & 0 \\ 0 - x \end{pmatrix}$$

$$\begin{pmatrix} x & 2 \end{pmatrix} \begin{pmatrix} 0 & 1 \end{pmatrix} = \begin{pmatrix} 3 & x \\ 3 & x \end{pmatrix}$$

abolina
$$a \in \text{oglin.} \quad a^{T}M + Ma = 0 \quad \begin{pmatrix} x & y \\ y & t \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 3 & x \\ E & y \end{pmatrix}$$

$$M = \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix} \begin{pmatrix} x & y \\ 2 & 0 \end{pmatrix}$$

$$\begin{array}{c}
M_{\alpha} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 3 & 1 \end{pmatrix} \\
= \begin{pmatrix} 3 & 1 \\ 2 & 1 \end{pmatrix}$$

a' = transprose of a

w.r.t. thatidiagonal.

$$\begin{pmatrix} a \\ -a \end{pmatrix}$$
 $\begin{pmatrix} a \\ +x \end{pmatrix}$
 $\begin{pmatrix} x+y \\ +x \end{pmatrix}$
 $\begin{pmatrix} x+y \\ +x \end{pmatrix}$

$$5-30_2 = \begin{cases} (x \ 0) \\ (0-x) \end{cases} \in \text{ole} \quad \times \quad C \quad \text{not simple}.$$

$$m = 2N + 1$$

$$y = \begin{cases} 3. & 50n \text{ is semismiple.} \\ m = 2N+1 \end{cases}$$

$$y = \begin{cases} a_{1} & a_{1} \\ 0 & a_{2} \end{cases}$$

$$x = 2N \cdot 4$$

$$x = 2N \cdot$$

an,, an s.t. an,, an, o, -an, -an are district, take x E ofn, (x, diaez (a1. -an, 0, -an, 7-an)) = 0 => x diagonal -> y maximal: y is a Cartan Entalgely of son. basis of h^{*} : ϵ_{1} , $\epsilon_{N} \in h^{*}$ $\epsilon_{i} \begin{pmatrix} a_{1} & 0 \\ 0 & a_{N} \end{pmatrix}$ m = 2N+1. $\mathcal{E}_{\lambda} = -\mathcal{E}_{m+1-\lambda} \cdot \frac{\mathcal{E}_{M+1} = 0}{2}$ Find radiagne de composition of son: exercetors for y D son. Find god space recomposition of $Eig = i \begin{pmatrix} 0.10 \\ 0.20 \end{pmatrix}$ answer: $Eig - E_{m+1-g, m+1-i}$ $1 \angle i, g \in m \quad i \neq g$ $Son = y + \sum_{i \neq j} C \cdot \begin{pmatrix} E_{i,g} - E_{m+n-j, m+n-i} \\ y \end{pmatrix} \xrightarrow{n+1-j}$ $3 \longrightarrow n+1-j$ $3 \longrightarrow n+1-i$ norto of son: n=2N+1 $\Delta son = \{ \underbrace{\epsilon_i - \epsilon_j}, \underbrace{\epsilon_i}, - \underbrace{\epsilon_i}, \underbrace{\epsilon_i + \epsilon_j}, \underbrace{\epsilon_i$ E1-E3 151,3€N E1-E3 151,3€N n=2N Dson = { Ei-Ei, Fi+Ei, -Ei-Ei | b ASKIS N, i +i Spen Dson > E: 122N [ofd, of-a] = Tha ofa = I. (Eig-Enin-z, min-i) of-a = (Ezi - En+1-i, n+1-i) 162,36 N

$$h_{\alpha} = \begin{bmatrix} E_{ij} - E_{nm} e_{inm-i} & 1 & E_{ii} - E_{nm-i} & 1 \\ E_{ii} - E_{nm-j} & 1 \end{bmatrix}$$

$$= E_{ii} + E_{nm-j} & 1 \end{bmatrix}$$

$$= E_{n-1} - E_{n-1} - E_{nm-i}$$

$$= E_{n-2} - E_{n-1} - E_{nm-i}$$

$$= E_{n-2} - E_{nm-i} - E_{nm-i}$$

$$= E_{nm-j} & 1 \end{bmatrix}$$

M75.
$$d-d$$
 $m:2N+1$. ΔSo_n
 E_i-E_j
 E_i
 E_i
 E_i

