Quick Reference

Polinomio <T>

Polynomial declaration, p.e. Polinomio<double> pol;

make(int d,int m)

Build internally the polynomial in d-dimensions with m-1 order. This is the first function that must be call before to employ any of the following functions.

deriva(string ip, int orden)

Derivate the polynomial, e.g, deriva("x",1) is the first derivative with respect of x.

You need to use the make function previously.

eval(const T *x, int d, T *px, int dim_px)

Evaluate the polynomial in the point x in d-dimensions and the result is stored in the vector px with length dim_px . Observe that dim_px must be equal than the value returned by $get_M()$.

You need to use the make function previously.

Matrix<T> build_tnt(const T *x, int n, int d)

Given a vector x with size n and each element in d-dimensions, this function evaluate the polynomial at each element of x and the values are stored in the matrix P of size nxm, where m are the elements of the base in the polynomial.

You need to use the make function previously.

int get M(void)

Return the number of the elements in the base of the polynomial.

Recall that this value depends of d and m used firstly in make function.

You need to use the make function previously.

int get d(void)

Get the d-dimension of the data, e.g. return 1 if the data is 1-d. You need to use the make function previously.

int get_m(void)

Get the degree of the polynomial. In particular, each element in *pol* has at most m-1 in the degree.

You need to use the make function previously.

Author.

José Antonio Muñoz-Gómez Universidad de Guadalajara CUCSUR June-2009