Geometric & Graphics Programming Lab: Lecture 1

Alberto Paoluzzi

October 3, 2016

Outline: pyplasm

Introduction to pyplasm

2 Matrices

Introduction to pyplasm

PLaSM = Geometric extension of the FL language by Backus (developed at IBM Research in the '80)
Backus' 1977 ACM Turing Award Lecture

1 geometric calculus in FL-style

PLaSM = Geometric extension of the FL language by Backus (developed at IBM Research in the '80)
Backus' 1977 ACM Turing Award Lecture

- geometric calculus in FL-style
- 2 dimension independence

PLaSM = Geometric extension of the FL language by Backus (developed at IBM Research in the '80)
Backus' 1977 ACM Turing Award Lecture

- geometric calculus in FL-style
- 2 dimension independence
- dynamic typing

PLaSM = Geometric extension of the FL language by Backus (developed at IBM Research in the '80)
Backus' 1977 ACM Turing Award Lecture

- 1 geometric calculus in FL-style
- dimension independence
- dynamic typing
- 4 higher-level operators

PLaSM = Geometric extension of the FL language by Backus (developed at IBM Research in the '80)
Backus' 1977 ACM Turing Award Lecture

- geometric calculus in FL-style
- dimension independence
- dynamic typing
- 4 higher-level operators
- arity: always 1 (number of arguments of functions)

PLaSM = Geometric extension of the FL language by Backus (developed at IBM Research in the '80)
Backus' 1977 ACM Turing Award Lecture

- geometric calculus in FL-style
- dimension independence
- dynamic typing
- 4 higher-level operators
- arity: always 1 (number of arguments of functions)
- small set of predefined functionals

PLaSM = Geometric extension of the FL language by Backus (developed at IBM Research in the '80)

- Backus' 1977 ACM Turing Award Lecture
 - dimension independence

geometric calculus in FL-style

- dynamic typing
- 4 higher-level operators
- arity: always 1 (number of arguments of functions)
- small set of predefined functionals
- names of functions: all-caps

PLaSM Basics (AA: Apply-to-All)

```
>>> AA(SUM)([[1,2,3],[4,5,6]])
[6,15]
```

PLaSM Basics (AA: Apply-to-All)

```
>>> AA(SUM)([[1,2,3],[4,5,6]])
[6,15]
>>> mat = [[1,2,3],[4,5,6]]
>>> [sum(v) for v in mat]
[6,15]
```

PLaSM Basics (DISTL: DISTribute-Left)

```
>>> DISTL([2,[1,2,3]])
[[2,1],[2,2],[2,3]]
```

PLaSM Basics (DISTL: DISTribute-Left)

```
>>> DISTL([2,[1,2,3]])
[[2,1],[2,2],[2,3]]
>>> DISTL([2,[]])
[]
```

PLaSM Basics (TRANS: TRANSpose)

```
>>> TRANS([[1,2,3],[10,20,30],[100,200,300]])
[[1,10,100],[2,20,200],[3,30,300]]
```

PLaSM Basics (TRANS: TRANSpose)

```
>>> TRANS([[1,2,3],[10,20,30],[100,200,300]])
[[1,10,100],[2,20,200],[3,30,300]]
>>> TRANS([[1,2,3,4,5],[10,20,30,40,50]])
[[1,10],[2,20],[3,30],[4,40],[5,50]]
```

PLaSM Basics (TRANS: TRANSpose)

```
>>> TRANS([[1,2,3],[10,20,30],[100,200,300]])
[[1,10,100],[2,20,200],[3,30,300]]
>>> TRANS([[1,2,3,4,5],[10,20,30,40,50]])
[[1,10],[2,20],[3,30],[4,40],[5,50]]
>>> TRANS([[],[]])
[]
```

```
>>> PROD([3,4])
12
```

```
>>> PROD([3,4])
12
>>> PROD([[1,2,3],[4,5,6]])
32.0
```

```
>>> PROD([3,4])
12
>>> PROD([[1,2,3],[4,5,6]])
32.0
>>> SUM([3,4])
7
```

```
>>> PROD([3,4])
12
>>> PROD([[1,2,3],[4,5,6]])
32.0
>>> SUM([3,4])
7
>>> SUM([[1,2,3],[4,5,6]])
[5, 7, 9]
```

PLaSM Basics (product scalar by vector)

```
>>> SCALARVECTPROD([3,[1,2,3]])
[3, 6, 9]
```

PLaSM Basics (product scalar by vector)

```
>>> SCALARVECTPROD([3,[1,2,3]])
[3, 6, 9]
>>> SCALARVECTPROD([[10,20,30],4])
[40, 80, 120]
```

Pyplasm: Exercise 1 (INNERPROD)

The inner (or scalar) product of $a, b \in \mathbb{R}^m$ is a number

INNERPROD:
$$\mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}: (\mathbf{u}, \mathbf{v}) \mapsto \sum_{i=1}^m u_i v_i$$

Pyplasm: Exercise 1 (INNERPROD)

The inner (or scalar) product of $a, b \in \mathbb{R}^m$ is a number

$$\texttt{INNERPROD}: \mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}: (\mathbf{u}, \mathbf{v}) \mapsto \sum_{i=1}^m u_i v_i$$

```
>>> u = [1,2,3]
>>> v = [10,20,30]
>>> INNERPROD([u, v])
140
```

Pyplasm: Exercise 1 (INNERPROD)

The inner (or scalar) product of $a, b \in \mathbb{R}^m$ is a number

```
 \begin{split} & \text{INNERPROD}: \mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}: (\mathbf{u}, \mathbf{v}) \mapsto \sum_{i=1}^n u_i v_i \\ >>> \mathbf{u} = \texttt{[1,2,3]} \\ >>> \mathbf{v} = \texttt{[10,20,30]} \\ >>> & \text{INNERPROD}([\mathbf{u}, \mathbf{v}]) \\ 140 \\ >>> & \text{def INNERPROD}(\text{args}): \\ \dots & \texttt{[u,v]} = \text{args} \\ \dots & \texttt{return SUM}(AA(\text{PROD})(\text{TRANS}([\mathbf{u},\mathbf{v}]))) \end{split}
```

Pyplasm: Exercise 2 (VECTNORM)

The norm of a vector $a \in \mathbb{R}^m$ is a number.

$$extsf{VECTNORM}: \mathbb{R}^m o \mathbb{R}: \mathbf{v} \mapsto \sqrt{\sum_{i=1}^m \mathbf{v}_i^2}$$

Pyplasm: Exercise 2 (VECTNORM)

The norm of a vector $a \in \mathbb{R}^m$ is a number.

$$extsf{VECTNORM}: \mathbb{R}^m o \mathbb{R}: \mathbf{v} \mapsto \sqrt{\sum_{i=1}^m \mathbf{v}_i^2}$$

3.7416574954986572

Pyplasm: Exercise 2 (VECTNORM)

The norm of a vector $a \in \mathbb{R}^m$ is a number.

$$extsf{VECTNORM}: \mathbb{R}^m o \mathbb{R}: \mathbf{v} \mapsto \sqrt{\sum_{i=1}^m \mathbf{v}_i^2}$$

```
>>> a = [1,2,3]

>>> VECTNORM(a)

3.7416574954986572

>>> def VECTNORM(vect):

... return SQRT(SUM(AA(SQR)(vect)))
```

Pyplasm: Exercise 3 (UNITVECT)

The unit vector is a function

UNITVECT:
$$\mathbb{R}^m \to \mathbb{R}^m : v \mapsto \frac{v}{|v|}$$

Pyplasm: Exercise 3 (UNITVECT)

The unit vector is a function

$$\mathtt{UNITVECT}: \mathbb{R}^m \to \mathbb{R}^m: v \mapsto \frac{v}{|v|}$$

```
>>> v = [1,2,3]
```

>>> UNITVECT(v)

[0.26726123690605164, 0.5345224738121033, 0.8017836809158325]

Pyplasm: Exercise 3 (UNITVECT)

The unit vector is a function

$$\mathtt{UNITVECT}: \mathbb{R}^m \to \mathbb{R}^m: v \mapsto \frac{v}{|v|}$$

```
>>> v = [1,2,3]
>>> UNITVECT(v)
[0.26726123690605164, 0.5345224738121033, 0.8017836809158325]
>>> VECTNORM(UNITVECT(v))
0.9999999403953552 1
```

Pyplasm: Exercise 4 (SUM)

SUM adds m vectors in \mathbb{R}^n , i.e. the rows of a matrix in \mathbb{R}_n^m :

```
>>> a = [1,2,3]
>>> a
[1, 2, 3]
>>> b = [10,20,30]
>>> b
[10, 20, 30]
>>> SUM([a,b])
[11, 22, 33]
```

Pyplasm: Exercise 5 (SUM)

```
>>> a = range(10)
>>> a
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> b = [10*k \text{ for } k \text{ in range}(10)]
>>> b
[0, 10, 20, 30, 40, 50, 60, 70, 80, 90]
>>> SUM([a,b])
[0, 11, 22, 33, 44, 55, 66, 77, 88, 99]
>>> c = [100*k for k in range(10)]
>>> c
[0, 100, 200, 300, 400, 500, 600, 700, 800, 900]
>>> SUM([a,b,c])
[0, 111, 222, 333, 444, 555, 666, 777, 888, 999]
```

Pyplasm: Exercise 6 (MATSUM)

Assignment

Write a function that adds any two matrices [A], [B] (compatible by sum). Both [A], [B] must belong to the same linear space \mathbb{R}_n^m

Pyplasm: Exercise 6 (MATSUM)

Assignment

Write a function that adds any two matrices [A], [B] (compatible by sum). Both [A], [B] must belong to the same linear space \mathbb{R}_n^m

```
>>> def MATSUM(args):
...     return AA(AA(SUM)) (AA(TRANS)(TRANS(args)))
>>> A = [ [1,2,3], [4,5,6], [7,8,9] ]
>>> B = [ [10,20,30], [40,50,60], [70,80,90] ]
```

Pyplasm: Exercise 6 (MATSUM)

Assignment

Write a function that adds any two matrices [A], [B] (compatible by sum). Both [A], [B] must belong to the same linear space \mathbb{R}_n^m

```
>>> def MATSUM(args):
        return AA(AA(SUM)) (AA(TRANS)(TRANS(args)))
>>> A = [[1,2,3], [4,5,6], [7,8,9]]
>>> B = [[10,20,30], [40,50,60], [70,80,90]]
>>> MATSUM([A,B])
[ [11,22,33], [44,55,66], [77,88,99] ]
>>> MATSUM([A,B,A])
[ [12,24,36], [48,60,72], [84,96,108] ]
>>> MATSUM([A,B,B,A])
[[22,44,66], [88,110,132], [154,176,198]]
```

Pyplasm: Exercise 7 (MATPROD)

Write a function that multiplies two matrices (compatible by product) Remember that

$$A \in \mathbb{R}_{p}^{m}$$
, $B \in \mathbb{R}_{p}^{n}$, and $C = AB \in \mathbb{R}_{p}^{m}$,

with

$$C = (c_j^i) = (\mathbf{A}^i \mathbf{B}_j), \qquad 1 \le i \le m, 1 \le j \le p,$$

where A^i is the *i*-th row of A, and B_j is the *j*-th column of B.

Pyplasm: Exercise 7 (MATPROD) – Solution

Write a function that multiplies two compatible matrices

```
>>> def MATPROD(args):
...     A,B = args
...     return AA(AA(INNERPROD)) (AA(DISTL) (DISTR ([A, TRANS (B)])))
```

Pyplasm: Exercise 7 (MATPROD) – Solution

Write a function that multiplies two compatible matrices

Pyplasm: Exercise 7 (MATPROD) – Solution

Write a function that multiplies two compatible matrices

```
>>> N(3) (0) # REPEAT
[0,0,0]
>>> N(3) ([0,1])
[ [0,1], [0,1], [0,1] ]
```

```
>>> N(3) (0) # REPEAT
[0,0,0]
>>> N(3) ([0,1])
[ [0,1], [0,1], [0,1] ]
>>> NN(3) ([0,1]) # REPeat LIst & CAtenate -- REPLICA
[ 0,1, 0,1, 0,1 ]
```

```
>>> N(3) (0) # REPEAT
[0,0,0]
>>> N(3) ([0,1])
[ [0,1], [0,1], [0,1] ]
>>> NN(3) ([0,1]) # REPeat LIst & CAtenate -- REPLICA
[ 0,1, 0,1, 0,1 ]
>>> AR ([ [0,0,0], 1 ]) # Append Rigth
[0,0,0,1]
```

```
>>> N(3) (0) # REPEAT
[0,0,0]
>>> N(3) ([0,1])
[[0,1],[0,1],[0,1]]
>>> NN(3) ([0,1]) # REPeat LIst & CAtenate -- REPLICA
[0,1,0,1,0,1]
>>> AR ([ [0,0,0], 1 ]) # Append Rigth
[0.0.0.1]
>>> AL ([ 1, [0,0,0] ]) # Append Left
[1,0,0,0]
```

Pyplasm: Exercise 9 (VECTPROD)

the vector product \boldsymbol{w} of vectors in \mathbb{R}^3 id defined as the function

$$\mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}^3 : (\mathbf{u}, \mathbf{v}) \mapsto \det \begin{pmatrix} \mathbf{e}_0 & \mathbf{e}_1 & \mathbf{e}_2 \\ u_x & u_y & u_z \\ v_x & v_y & v_z \end{pmatrix}$$

Therefore we can write, for the vector product of two 3D vector:

Pyplasm: Exercise 9 (VECTPROD)

the vector product \boldsymbol{w} of vectors in \mathbb{R}^3 id defined as the function

$$\mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}^3 : (\mathbf{u}, \mathbf{v}) \mapsto \det \begin{pmatrix} \mathbf{e}_0 & \mathbf{e}_1 & \mathbf{e}_2 \\ u_x & u_y & u_z \\ v_x & v_y & v_z \end{pmatrix}$$

Therefore we can write, for the vector product of two 3D vector:

Figure 1: 200 random points in $[0,2\pi] \times [0,2] \subset \mathbb{E}^2$

coordinate functions

```
>>> def x (p):
... u,v = p
... return v * COS(u)

>>> def y (p):
... u,v = p
... return v * SIN(u)
```

coordinate functions

coordinate functions

Pyplasm: Exercise 12 (4/4)

Figure 2: 200 random points within the 2D "ball" of radius 2

From PLaSM to Pyplasm

application (binary infix operator :) to (...)

$$f: x \to f(x)$$

composition (binary infix operator) to COMP

$$f \sim g \rightarrow COMP([f,g])$$

construction (of a vector function) to CONS

$$[f,g]: x \to CONS([f,g])(x)$$

sequence (arrow parentheses < ... >) to list

$$f:\langle x_1,x_2,\ldots,x_n\rangle\to f([x_1,x_2,\ldots,x_n])$$

From PLaSM to Pyplasm

The original FL syntax

```
hpc = MAP:f:dom
WHERE
    f = [COS~S1, SIN~S1],
    dom = INTERVALS: (2*PI): 24
END;

DRAW:hpc
```

Ported syntactically to python

```
>>> f = CONS([ COMP([COS,S1]), COMP([SIN,S1]) ])
>>> dom = INTERVALS(2*PI)(24)
>>> hpc = MAP(f)(dom)
>>> VIEW(hpc)
```

Using properly the Python syntax

The function to be mapped is from d-points to lists of coordinate functions $\mathbb{R}^d \to \mathbb{R}$

```
>>> def circle(p):
... alpha = p[0]
... return [COS(alpha), SIN(alpha)]
```

Using properly the Python syntax

The function to be mapped is from d-points to lists of coordinate functions $\mathbb{R}^d o \mathbb{R}$

```
>>> def circle(p):
       alpha = p[0]
        return [COS(alpha), SIN(alpha)]
>>> obj = MAP(circle)(INTERVALS(2*PI)(32))
>>> VIEW(obj)
```

In case of a curve, d=1

Current plasm.js Library

a subset of pyplasm: see fenvs.py)

AA	EMBED	•
AL	EXPLODE	
APPLY	EXTRUDE	
AR	FIRST	
BIGGER	FREE	
BIGGEST	Graph	
BOUNDARY	GRAPH	
BUTLAST	HELIX	
CART	ID	
CAT	IDNT	
CENTROID	IDNT	
CIRCLE	INNERPROD	
CLONE	INSL	
CODE	INSR	
COMP	INTERVALS	
CONS	INV	
CUBE	ISFUN	
CUBOID	ISNUM	
CYLSOLID	K	
CYLSURFACE	LAST	
DISK	LEN	
DISTL	LINSPACE1D	
DISTR	LINSPACE2D	

LINSPACE3D

LIST
MAP
MAT
MATPROD
MATSUM
MUL
PointSet
POLYLINE
POLYMARKER
PRECISION
PRINT
PROD
PROGRESSIVE SUN
QUADMESH
R
REPEAT
REPLICA
REVERSE
S
S0
S1
S2
S3
S4

SET
SIMPLEX
SIMPLEXGRID
SimplicialComplex
SKELETON
SMALLER
SMALLEST
SORTED
SUB
SUM
Т
TAIL
Topology
TORUSSOLID
TORUSSURFACE
TRANS
TREE
TRIANGLEARRAY
TRIANGLEFAN
TRIANGLESTRIP

UNITVECT VECTNORM VECTPROD

Matrices

Efficient matrix calculus with NumPy and SciPy

docs.scipy.org

NumPy for Matlab Users

'array' or 'matrix'? Which should I use?

Use arrays

 They are the standard vector/matrix/tensor type of numpy. Many numpy function return arrays, not matrices.

The only disadvantage of using the array type is that you will have to use dot instead of * to multiply (reduce) two tensors (scalar product, matrix vector multiplication etc.).

'array' or 'matrix'? Which should I use?

Use arrays

- They are the standard vector/matrix/tensor type of numpy. Many numpy function return arrays, not matrices.
- There is a clear distinction between element-wise operations and linear algebra operations.

The only disadvantage of using the array type is that you will have to use dot instead of * to multiply (reduce) two tensors (scalar product, matrix vector multiplication etc.).

'array' or 'matrix'? Which should I use?

Use arrays

- They are the standard vector/matrix/tensor type of numpy. Many numpy function return arrays, not matrices.
 There is a clear distinction between element-wise operations and linear
- There is a clear distinction between element-wise operations and linear algebra operations.
- You can have standard vectors or row/column vectors if you like.

The only disadvantage of using the array type is that you will have to use dot instead of * to multiply (reduce) two tensors (scalar product, matrix vector multiplication etc.).

Assignments

READ:

NumPy: The Numpy array object

References

Python Scientific Lecture Notes