

KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH WOJEWÓDZTWA MAZOWIECKIEGO

ETAP WOJEWÓDZKI

17 lutego 2022 r. godz. 9.00

Uczennico/Uczniu:

- 1. Arkusz składa się z 10 zadań, na rozwiązanie których masz 90 minut.
- 2. Pisz długopisem/piórem dozwolony czarny lub niebieski kolor tuszu.
- 3. Nie używaj ołówka ani korektora. Jeżeli się pomylisz, przekreśl błąd i napisz inną odpowiedź.
- 4. Pisz czytelnie i zamieszczaj odpowiedzi w miejscu do tego przeznaczonym.
- 5. Najpierw przeczytaj cały arkusz. Przeanalizowanie treści pozwoli Ci ocenić, jakie zadania pojawiły się w arkuszu, jakich działów dotyczą, które z nich są dla Ciebie najtrudniejsze, a które najłatwiejsze, oraz za które możesz uzyskać najwięcej punktów. Rozwiązywanie zadań rozpocznij od tych, które są dla Ciebie najprostsze.
- 6. W rozwiązaniach zadań otwartych przedstawiaj swój tok rozumowania za napisanie samej odpowiedzi nie otrzymasz maksymalnej liczby punktów.
- 7. Pamiętaj, że zapisy w brudnopisie nie podlegają ocenie.

Życzymy powodzenia!

Maksymalna liczba punktów	20	100%
Uzyskana liczba punktów		%
Podpis Przewodniczącej/-ego		

Zadanie 1. (0-1 pkt)

...../1

Wskaż wszystkie nierówności, które spełnia liczba $\sqrt{3}$.

A.
$$|2x-7| > 5$$

A.
$$|2x-7| > 5$$
 B. $|3x + \frac{2}{5}| < 6$ **C.** $|7-5x| \le 1$ **D.** $|\sqrt{3}x-7| \ge 4$

$$\mathbf{C.} |7 - 5x| \le 1$$

D.
$$|\sqrt{3}x - 7| \ge 4$$

Zadanie 2. (0-1 pkt)

...../1

Zuza sprząta łazienkę w ciągu pół godziny, Agata potrzebuje na to trzy kwadranse. Ile czasu zajmie im posprzątanie łazienki, jeśli będą pracować razem? Zaznacz poprawną odpowiedź.

A. 25 minut

B. mniej niż 20 minut

C. mniej niż kwadrans

D. 20 minut

Zadanie 3. (0-1 pkt)

...../1

Dane są punkty: W = (-5, -4) i Z = (1, 4) w układzie współrzędnych na płaszczyźnie. Uzupełnij poniższe zdanie. Wybierz poprawną odpowiedź spośród danych.

Współrzędne punktu X takiego, że jeden z trzech punktów W, Z, X jest środkiem odcinka o końcach w dwóch pozostałych punktach nie mogą być równe

B.
$$(-2,0)$$

B.
$$(-2,0)$$
 C. $(-12,-11)$ **D.** $(-11,-12)$

Zadanie 4. (0-2 pkt)

...../2

Szybę do okrągłego okna wycięto z kwadratowej tafli tak, aby było jak najmniej odpadów. Na tej szybie Zosia wykonała kolorowy rysunek w kształcie sześciokąta foremnego tak, że wierzchołki rysunku leżą na obrzeżach szyby. Oblicz pole szklanych odpadów, jeśli pole rysunku Zosi wynosi $24\sqrt{3}$ dm². Do obliczeń przyjmij, że $\pi = 3$.

Zadanie 5. (0-2 pkt)

...../2

W urnie są kule białe i czerwone. Prawdopodobieństwo wylosowania białej kuli wynosi $\frac{1}{4}$. Gdy dołożymy cztery białe kule, prawdopodobieństwo wylosowania białej kuli wzrośnie o 0,15. Oblicz, ile białych i ile czerwonych kul jest w tej urnie.

Zadanie 6. (0-2 pkt)/2

W trójkącie różnobocznym ABC środek D najdłuższego boku połączono z przeciwległym wierzchołkiem trójkąta. Trójkąt ABC został podzielony na dwa trójkąty, z których jeden jest równoboczny. Oblicz, ile procent pola trójkąta ABC stanowi pole powstałego trójkąta równobocznego.

Zadanie 7. (0-2 pkt)

...../2

W prostokącie *ABCD* bok *AD* jest trzy razy krótszy od boku *AB*. Punkt *S* dzieli bok *AB* w stosunku 5:1 licząc od wierzchołka *A*. Prostokąt *A'B'C'D'* jest symetryczny do prostokąta *ABCD* względem punktu *S*. Oblicz, jaką częścią obwodu wielokąta *AB'C'D'A'BCD* jest obwód prostokąta *ABCD*.

Zadanie 8. (0-3 pkt)

...../3

Pewna firma otrzymała zamówienie na dwa typy kodów dla uczestników internetowej grupy dyskusyjnej.

Kody typu I mają mieć dwie litery na początku i jedną na końcu, a między nimi trzy cyfry. Mogą w nich występować tylko litery S, B i K oraz cyfry 4, 6, 8, przy czym litery i cyfry mogą się powtarzać.

Kody typu II mają mieć na początku dwie litery spośród: W, Y i Z, a następnie pięć cyfr spośród: 1, 3, 5, 7, 9, przy czym litery i cyfry nie mogą się powtarzać.

Ilu maksymalnie uczestników może liczyć ta grupa, jeśli każdy uczestnik musi mieć inny kod? Odpowiedź uzasadnij.

Zadanie 9. (0-3 pkt)

...../3

Pan Adam zwiedzając Kraków, korzystał z parkingu samochodowego. Niestety na tablicy informacyjnej wysokość opłaty za pierwszą godzinę parkowania była nieczytelna.

Opłata za postój w Strefie Płatnego Parkowania w Krakowie OBOWIĄZUJĄ NASTĘPUJĄCE STAWKIZA POSTÓJ:

- pierwsza godzina ₹₩₹zł
- druga i trzecia godzina opłata za godzinę wzrasta o 1,50 zł
- czwarta i piąta godzina opłata za godzinę jest wyższa od drugiej i trzeciej godziny o 0,50 zł
- kolejne godziny opłata jest równa podwojonej stawce za pierwszą godzinę.

(Opłaty za poszczególne godziny postoju sumują się, np. opłata za 3 godziny postoju wynosi za pierwszą godzinę + za drugą godzinę + za trzecią godzinę postoju).

Pan Adam zostawił samochód na 7 godzin. Oblicz stawkę za pierwszą godzinę parkowania wiedząc, że jest ona liczbą całkowitą, a pan Adam zapłacił nie więcej niż 34 zł, ale nie mniej niż 16 zł. Podaj wszystkie możliwe odpowiedzi.

Zadanie 10. (0-3 pkt)

Filip z drewnianego klocka sześciennego odciął wszystkie "rogi" i w ten sposób otrzymał nowe klocki. Na rysunku pokazano sposób odcięcia jednego "rogu", a zaznaczone punkty A, B, C są środkami krawędzi sześcianu. Klocki w kształcie "rogów" Filip pomalował na czerwono, a pozostały klocek na zielono. Czy łączna powierzchnia wszystkich klocków czerwonych

jest większa od powierzchni klocka zielonego?

Odpowiedź uzasadnij.

Brudnopis

(zapisy w brudnopisie nie podlegają ocenie)