MOwNiT Zagadnienie Lagrange'a i Hermita

Kacper Bieniasz

12 kwietnia 2024

1 Dane techniczne sprzętu

Obliczenia zostały wykonane na komputerze o następującej specyfikacji:

- Procesor: AMD Ryzen 7 5800U

- Pamięć RAM: 16 GB DDR4 3200 MHz (2×8GB)

- System operacyjny: Windows 11 Home x64

2 Interpolowana funkcja, wzór i wykres

$$f(x) = 10 \cdot m + \frac{x^2}{k} - 10 \cdot m \cdot \cos(kx)$$

$$\text{dla:}$$

$$x \in [-3\pi, 3\pi]$$

$$k = 2$$

$$m = 2$$

Rysunek 1: Wykres interpolowanej funkcji

3 Porównywane zagadnienia interpolacji

3.1 Zagadnienie Lagrange'a

W tym przypadku wyróżnia się dwa wzory dające w wyniku ten sam wielomian, dlatego zdecydowałem się na skorzystanie z poniższego wzoru Lagrange'a:

$$P_n(x) = \sum_{k=0}^{n} f(x_k) L_{(k)}(x)$$
 (2)

gdzie:

n -liczba węzłów

 $x_k - k$ -ty węzeł

 $f(x_k)$ – wartość interpolowanej funkcji odpowiadająca $k\text{-}\mathrm{temu}$ węzłowi

 $L_k(x)$ – tzw. baza Lagrange'a dla k-tego węzła wyznaczana wzorem:

$$L_k(x) = \prod_{i=0, i \neq k}^{n} \frac{x - x_i}{x_k - x_i}$$
(3)

gdzie:

$$x_i - i$$
-ty węzeł

3.2 Zagadnienie Hermita

W tym sposobie inetpolacji stosuje się poniższy wzór na wielomian n-tego stopnia.

$$H_n = \sum_{l=0}^n b_l \cdot p_l(x) = \sum_{i=0}^k \sum_{j=0}^{m_i - 1} b_{(s(i)+j)} \cdot P_{(s(i)+j)}(x)$$
(4)

gdzie:

 m_i – krotność i – tego węzła

 $b_{(s(i)+j)} - {\rm współczynnik}$ obliczny podobnie jak we wzorze Newtona, ale w tabeli znajdują się również wartości pochodnych

 $P_{(s(i)+j)}(x)$ – wielomian obliczany według wzoru:

$$\begin{cases}
P_0(x) = 1 \\
P_{(s(i)+j)}(x) = (x - x_0)^{m_0} (x - x_1)^{m_1} \cdots (x - x_{i-1})^{m_{i-1}} (x - x_i)^j
\end{cases}$$
(5)

dla: $i = 0, 1, ..., k; j = 0, 1, ..., m_i - 1$

4 Sposoby wyznaczenia błędów aproksymacji wielomianowej

4.1 Największa róznica między wartością funkcji, a wielomianem interpolacyjnym

Taki błąd wyznaczamy korzystając, ze wzoru:

$$\max_{x \in G} |f(x) - P_n(x)| \tag{6}$$

gdzie:

G–zbiór 1000 punktów z przedziału $[-3\pi, 3\pi]$ rozmieszczonych równolegle użytych do narysowania wykresu

4.2 Zastosowanie podobnego wzoru do standardowego estymatora wariancji

$$\frac{1}{N} \sum_{x \in G} (f(x) - P_n(x))^2 \tag{7}$$

gdzie:

G – zbiór taki sam jak(4.1)

N - liczba elementów zbioru G (1000)

5 Otrzymane wyniki dla konretnej liczby węzłów

5.1 Wyniki dla 2, 4, 6 i 7 węzłów

W przypadku wyboru 2 węzłów wielomian Lagrange'a jest linią prostą niezależnie od wybory węzłów. Natomiast wielomian Hermita jest dokładniejszy dla wezłów rozmieszczonych równomiernie.

(b) Rozmieszczenie węzłów zgodne z Czebyszewem

Rysunek 2: Funkcje interpolujące dla 2 węzów, (a) i (b)

	Równomiernie		Według Czebyszewa	
	Lagrange'a Hermita		Lagrange'a	Hermita
Błąd względny	44.409615	39.999109	43.492885	121.645907
Drugi sposób	599.399999	457.207989	415.087311	5296.200747

Tabela 1: Otrzymane błędy dla 2 węzów

Dla 4 węzłów rozmieszczenie równomierne, daje takie same wyniki. Jest to spowodowane lokalizacją węzłów w minimach lokalnych funkcji. Dla węzłów Czebyszewa lepszy okazuje się wielomian Lagrange'a.

(b) Rozmieszczenie węzłów zgodne z Czebyszewem

Rysunek 3: Funkcje interpolujące dla 4 węzów, (a) i (b)

	Równomiernie		Według Czebyszewa	
	Lagrange'a Hermita		Lagrange'a	Hermita
Błąd względny	39.999109	39.999109	33.502592	92.741691
Drugi sposób	599.4	599.4	308.635461	2292.798209

Tabela 2: Otrzymane błędy dla 4 węzów

Dla 6 węzłów w zagadnieniu Hermita pojawia się efekt Rungego. W przypadku rozmieszczenia zgodnie z zerami wielomianu Czebyszewa podobniejak poprzednio lepszy okazał się wielomian Lagrange'a.

(b) Rozmieszczenie węzłów zgodne z Czebyszewem

Rysunek 4: Funkcje interpolujące dla 6 węzów, (a) i (b)

	Równomiernie		Według Czebyszewa	
	Lagrange'a Hermita		Lagrange'a	Hermita
Błąd względny	39.696033	150.150026	36.352385	79.792482
Drugi sposób	411.727337	3725.654442	317.217445	1391.900145

Tabela 3: Otrzymane błędy dla 6 węzów

W przypadku rozmieszczenia równomiernego mamy do czynienia z tym samym zjawiskiem co dla 4 węzłów. Dla rozmieszczenia zgodnie z zerami wielomianu Czebyszewa zachodzi ta sama relacja co poprzednio.

(b) Rozmieszczenie węzłów zgodne z Czebyszewem

Rysunek 5: Funkcje interpolujące dla 7 węzów, (a) i (b)

	Równomiernie		Według Czebyszewa	
	Lagrange'a Hermita		Lagrange'a	Hermita
Błąd względny	39.999110	39.999110	36.697209	64.610540
Drugi sposób	599.4	599.4	340.634114	730.041608

Tabela 4: Otrzymane błędy dla 7 węzów

5.2 Wyniki dla 8, 9, 11 i 13 węzłów

Dla 8 węzłów ponownie obserwujemy efekt Rungego dla wielomianu Hermita. W przypadku węzłów Czebyszewa sytuacja nie zmienia się, dalej lepiej przybliża wielomina Lagrange'a.

(b) Rozmieszczenie węzłów zgodne z Czebyszewem

Rysunek 6: Funkcje interpolujące dla 8 węzów, (a) i (b)

	Równomiernie		Według Czebyszewa	
	Lagrange'a	Hermita	Lagrange'a	Hermita
Błąd względny	39.988885	523.078708	42.139837	77.783920
Drugi sposób	398.867526	27835.186891	382.303458	648.537486

Tabela 5: Otrzymane błędy dla 8 węzów

Dla 9 węzłów sytuacja wygląda podobnie, ale dla węzłów Czebyszewa nastopiła zmiana. Teraz wielomian Hermita lepiej przybliża funkcje f(x).

(a) Rozmieszczenie węzłów równomierne

(b) Rozmieszczenie węzłów zgodne z Czebyszewem

Rysunek 7: Funkcje interpolujące dla 9 węzów, (a) i (b)

	Równomiernie		Według Czebyszewa	
	Lagrange'a	Hermita	Lagrange'a	Hermita
Błąd względny	30.892888	792.746884	42.769591	37.951752
Drugi sposób	378.193580	53147.724610	443.558046	247.384799

Tabela 6: Otrzymane błędy dla 9 węzów

Dla 11 węzłów u obu wielomianów występuje efekt Rungego. Ponownie jak poprzednio dla węzłów Czebyszewa lepszy okazuje się wielomian Hermita, który wizualnie jest podoby interpolowanej funkcji.

(b) Rozmieszczenie węzłów zgodne z Czebyszewem

Rysunek 8: Funkcje interpolujące dla 11 węzów, (a) i (b)

	Równomiernie		Według Czebyszewa	
	Lagrange'a Hermita		Lagrange'a	Hermita
Błąd względny	288.073059	395.439371	38.081971	4.226336
Drugi sposób	8408.286472	10023.661461	327.932021	3.996231

Tabela 7: Otrzymane błędy dla 11 węzów

Dla 13 węzłów efekt Rungego dla wielomianu Hermita zanika, a dla wielomianu Lagrange'a obserwujemy jego wzmocnione działanie. Dla węzłów Czebyszewa natomiast wielomian Hermita jest wizualnie nie odróżnialny od interpolowanej funckji.

(a)

(b)

Rysunek 9: Funkcje interpolujące dla 13 węzów, (a) i (b)

	Równom	iernie	Według Cz	ebyszewa
	Lagrange'a Hermita		Lagrange'a	Hermita
Błąd względny	1783.688130	62.251658	38.333793	0.168464
Drugi sposób	236328.085759	199.507842	267.095305	0.007420

Tabela 8: Otrzymane błędy dla 13 węzów

6 Wielomiany najlepiej przybliżające

Dla zagadnienia Lagranga najlepszy wielomian dla rozmieszczenia równomiernego węzłów systępuje dla 44, w przypadku rozmieszczenia zgodnie z zerami wielomianu Czebyszewa dla 52 węzłów. Wykres nie zawiera wielomianu Hermita, ponieważ dla takiej liczby węzłów występuje dużo błędów arytmetycznych, które utrudniałyby przejrzystość wykresu.

Rysunek 10: Najlepiej interpolujący wielomian Lagrange'a dla rozmieszczenia równoległego węzłów

Rysunek 11: Najlepiej interpolujący wielomian Lagrange'a dla rozmieszczenia węzłów zgodngeo z Czebyszewem

	Równomiernie (44 węzły)		Według Czebyszewa (52 węzły)	
	Lagrange'a Hermita		Lagrange'a	Hermita
Błąd względny	0.000128	(nie dotyczy)	9.947598e-14	(nie dotyczy)
Drugi sposób	7.794309e-11	(nie dotyczy)	5.546113e-28	(nie dotyczy)

Tabela 9: Otrzymane błędy dla najlepszego wielomiany Lagrange'a i Hermita

Dla zagadnienia Hermita najlepiej przybliżający wielomian dla rozmieszczenia równomiernego węzłów występuje dla 22 wezłów, natomiast dla rozmieszczenia zgodnie z zerami wielomianu Czebyszewa dla 18. Podobnie jak wcześniej ogranicznyłem wykres tylko do wielomianu Hermita i funkcji f(x), efekt Rungego dla wielomianu Lagrange'a zaburzałby czytelność wykresu.

(a) Rozmieszczenie równoległe węzłów

(b) Rozmieszczenie zgodne z Czebyszewem

Rysunek 12: Najlepiej interpolujący wielomian Hermita, (a) i (b)

	Równomiernie (22 węzły)		Według Czebyszewa (18 węzły)	
	Lagrange'a Hermita		Lagrange'a	Hermita
Błąd względny	(nie dotyczy)	0.000153	(nie dotyczy)	9.671306e-05
Drugi sposób	(nie dotyczy)	1.782987e-10	(nie dotyczy)	6.761522e-11

Tabela 10: Otrzymane błędy dla najlepszego wielomianu Hermita i Lagrange'a

7 Wnioski

Nie jesteśmy w stanie jednoznacznie stwierdzić, który sposób wyznaczenia wielomianu interpolacyjnego będzie lepszy dla konkretnej liczby węzłów i ich rozmieszczenia. Jednak efket Rungego dla wielomianu hermita pojawia się wcześniej, tak samo błędy związane z arytmetyką pojawiają się znacznie wcześniej. Niższe wartości błędów w najlepszych wielomianch otrzymujemy dla zagadnienia Lagrange'a, jendak wsytępuje to dopiero dla 44 i 52 węzłów, a dla Hermita dla 18 i 22. Każda metoda ma swoje plusy i minusy, jedynie przedstawienie relacji porządku rozpatrywanych własności dałoby jednoznaczą odpowiedź.