الزوايا الموجهة

توجيها مباشرا (موجب) → <u>عكس</u> عقارب الساعة

 يوجه المستوي

 موجيها غير مباشر (سالب) → اتجاه عقارب الساعة

- 1 نسمي دائرة مثلثية كل دائرة موجهة في الإتجاه المباشر والتي نصف قطرها \vec{v} ، \vec{u}
 - نسمى الثنائية $(\overrightarrow{u}, \overrightarrow{v})$ زاوية موجهة لشعاعين.
- $k\in\mathbb{Z}$ مع $(\overrightarrow{u},\overrightarrow{v})$ مع الأعداد من الشكل $x+2k\pi$ هي أقياس للزاوية $(\overrightarrow{u},\overrightarrow{v})$ مع $(\overrightarrow{u},\overrightarrow{v})$ مع $(\overrightarrow{u},\overrightarrow{v})$
 - (\vec{u}, \vec{v}) يوجد قيس وحيد على المجال $[-\pi, \pi]$ أو $[0, 2\pi]$ يسمى القيس الرئيسي للزاوية الموجهة $[0, 2\pi]$
 - $(\vec{u}, \vec{v}) = x$ إيجاد القيس الرئيسي للزاوية (\vec{u}, \vec{v})
 - $(\vec{u}, \vec{v}) = x + 2k\pi$: نكتب الشكل العام للزاوية أي
 - $-\pi < x + 2k\pi < \pi$ أي: π و π نحصر الشكل العام للزاوية بين π
 - يكفي إيجاد k انطلاقا من هذا الحصر ثم تعويضه في الشكل العام لحساب القيس الرئيسي.
 - علاقة شال:

$$(\overrightarrow{u}, \overrightarrow{v}) + (\overrightarrow{v}, \overrightarrow{w}) = (\overrightarrow{u}, \overrightarrow{w})$$
 \vdots

- $(\vec{u}, \vec{v}) = -(\vec{v}, \vec{u})$
- $(\overrightarrow{u},-\overrightarrow{v})=(\overrightarrow{u},\overrightarrow{v})+\pi$
- $(-\overrightarrow{u},\overrightarrow{v})=(\overrightarrow{u},\overrightarrow{v})+\pi$
 - $(-\vec{u},-\vec{v})=(\vec{u},\vec{v}) \quad \bullet$
 - ۞ تقايس الزوايا الموجهة:

$$\left(\overrightarrow{u'},\overrightarrow{v'}
ight)=lpha'$$
 انکن $\left(\overrightarrow{u},\overrightarrow{v}
ight)=lpha$

 2π مضاعف ل lpha'-lpha أي $lpha'=lpha+2k\pi$ مضاعف ل أي $(\overrightarrow{u'},\overrightarrow{v'})$ و $(\overrightarrow{u},\overrightarrow{v})$

ن الارتباط الخطي في الزوايا الموجهة:

$$(\vec{u},\vec{v})=2k\pi$$
 الاتجاه) $(\vec{u},\vec{v})=2k\pi$ ال \vec{v} مرتبطان خطیا $(\vec{v},\vec{v})=2k\pi$ المتجاهن متعاکسین $(\vec{v},\vec{v})=\pi+2k\pi$

🗘 خاصية:

 $\{\boldsymbol{k};\boldsymbol{k}'\}\in\mathbb{R}^*$

- $(k\vec{u},k'\vec{v})=(\vec{u},\vec{v})$: إذا كان k' و k' من نفس الإشارة فإن
- $(k\vec{u},k'\vec{v})=(\vec{u},\vec{v})+\pi$ إذا كان k و k' من إشارتين مختلفتين فإن:
 - ◄ الزاوية المحيطية والزاوية المركزية:

اذا كانت B، A و M ثلات نقط متمايزة من دائرة مثلثية B مركزها D فإن:

$$(\overrightarrow{OA}, \overrightarrow{OB}) = 2(\overrightarrow{MA}, \overrightarrow{MB})$$

$$(\overrightarrow{MA}, \overrightarrow{MB}) = \frac{1}{2}(\overrightarrow{OA}, \overrightarrow{OB})$$

♦ حساب المثلثات

$$-1 \le \cos x \le 1$$

■
$$-1 \le sinx \le 1$$

$$\sin^2 x + \cos^2 x = 1$$

$$\cos^2 x = 1 - \sin^2 x$$

$$\sin^2 x = 1 - \cos^2 x$$

$$\cos(x + 2k\pi) = \cos x$$

$$\sin(x + 2k\pi) = \sin x$$

$$\cos(-x) = \cos x$$

$$\sin(-x) = -\sin x$$

$$\cos(x+\pi)=-\cos x$$

•
$$\sin(x+\pi) = -\sin x$$

$$\cos(\pi - x) = -\cos x$$

$$\cos\left(\frac{\pi}{2} + x\right) = -\sin x$$

$$\sin\left(\frac{\pi}{2} + x\right) = \cos x$$

$$\cos\left(\frac{\pi}{2} - x\right) = \sin x$$

$$\sin\left(\frac{\pi}{2} - x\right) = \cos x$$

جدول زوايا شهيرة:

x	0 °	30°	45°	60°	90°	180°
	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π
sinx	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0
cosx	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1

الدائرة المثلثية:

الاحداثيات القطبية والاحداثيات الديكارتية

 $m{0}$ ليكن $(m{0}; ec{t}, ec{j})$ معلم مباشر متعامد ومتجانس ولتكن المستوي غير منطبقة على

M الاحداثيات الديكارتية M(x;y) الاحداثيات الديكارتية النقطة *

 $heta=(ec{t}, \overrightarrow{OM})$ و r=OM: تسمى الثنائية M(r; heta) الاحداثيات القطبية للنقطة M(r; heta) نصف القطبى و σ زاوية قطبية مصطلحات: النقطة σ تسمى القطب، σ نصف القطبى و σ زاوية قطبية

العلاقة بين الاحداثيات القطبية والاحداثيات الديكارتية

$$y = r \sin \theta$$
 ; $x = r \cos \theta$; $r = \sqrt{x^2 + y^2}$

المعادلات المثلثية

$$\cos a = \cos b \Rightarrow \begin{cases} a = b + 2k\pi \\ a = -b + 2k\pi \end{cases}$$

$$\sin a = \sin b \Rightarrow \begin{cases} a = b + 2k\pi \\ a = \pi - b + 2k\pi \end{cases}$$

$$\cos x = a$$
 المعادلات من الشكل (3)

إذا كان
$$a > 1$$
 أو $a > 1$ فالمعادلة لا تقبل حلول $*$

$$: -1 \le a \le 1$$
 إذا كان $*$

$$\cos c = a$$
 خيث عن القيس الرئيسي (1

$$\begin{cases} x = c + 2k\pi \\ x = -c + 2k\pi \end{cases}$$
 (2)

$$\sin x = a$$
 المعادلات من الشكل 4

إذا كان
$$a > 1$$
 أو $a > 1$ فالمعادلة لا تقبل حلول $*$

$$: -1 < a < 1$$
 اذا کان *

$$\sin c = a$$
 نبحث عن القيس الرئيسي (1

$$\begin{cases} x = c + 2k\pi \\ x = \pi - c + 2k\pi \end{cases}$$
 (2)

$\cos u = \sin v$ المعادلات من الشكل 6

- $oldsymbol{1}$ اي من الشكل $\cos u = \cos\left(rac{\pi}{2}-v
 ight)$ فتصبح المعادلة $\sin v = \cos\left(rac{\pi}{2}-v
 ight)$ أي من الشكل stan
 - * أو نحول cos إلى sin بطريقتين:
 - $oxed{2}$ ابي من الشكل $\sin\left(rac{\pi}{2}-u
 ight)=\sin v$ فتصبح المعادلة $\cos u=\sin\left(rac{\pi}{2}-u
 ight)$ الشكل $oxed{2}$
 - $\mathbf{2}$ أو بالقانون $\sin\left(rac{\pi}{2}+u
 ight)=\sin v$ فتصبح المعادلة $\cos u=\sin\left(rac{\pi}{2}+u
 ight)$ أو بالقانون أو بالقانو