

National Computing Education Accreditation Council NCEAC

NCEAC.FORM.001-D

COURSE DESCRIPTION FORM

INSTITUTION	FAST – National University
PROGRAM (S) TO BE	
EVALUATED	

A. Course Description

(Fill out the following table for each course in your computer science curriculum. A filled out form should not be more than 2-3 pages.)

Course Code	CS5102			
Course Title	Deep Learning			
Credit Hours	3			
Prerequisites by Course(s) and Topics	Undergraduate machine learning or artificial intelligence Undergraduate programming/Python			
Assessment Instruments with Weights (homework, quizzes, midterms, final, programming assignments, lab work, etc.)	1 Mid-term exam: 15% eachFinal exam: 40%3 Projects: 30%			
Course Coordinator				
URL (if any)	piazza.com/nu.edu.pk/fall2018/cs5102/home			
Current Catalog Description				
Textbook (or Laboratory Manual for Laboratory Courses)	Deep Learning by Ian Goodfellow, Yoshua Bengio Stanford deep learning for visual recognition http://cs231n.stanford.edu/2017/syllabus.html			
Reference Material	 Neural Networks and Deep Learning by Michael Nielsen (Dec 2014) Pattern Recognition and Machine Learning, Christopher M Bishop, Springer 2006. Deep learning for medical imaging @ Purdue https://docs.google.com/document/d/1zEL-nu To7Olc3cD-dg5iADvWrErAQSJD8n-1CLrGGA/edit#heading=h.ml4r2vcdki0v 			

1 NCEAC.FORM.001.D

National Computing Education Accreditation Council NCEAC

NCEAC.FORM.001-D

	T			
Course Goals	Understand the fundamentals of neural networks			
	Understand deep learning with CNNs Apply doep learning to real problems, consciolly in the context.			
	 Apply deep learning to real problems, especially in the context of vision and language processing 			
Topics Covered in the Course,				
with Number of Lectures on Each	Looming overviews			
Topic (assume 15-week instruction and one-hour lectures)	Learning overview:			
and one nour lectures)	Introduction and motivation, biological neural network and its			
	history, learning vs programming, learning components,			
	supervised learning, classification vs regression			
	Basics of Neural Networks:			
	Perceptron, Multilayer Perceptron, Gradient Descent in MLPs,			
	Activation functions, Back-propagation			
	Convolutional Neural Networks:			
	Motivation for CNNs, basics of convolution, distinguishing			
	features of CNNs, What makes CNNs tick, deep learning with			
	CNNs			
	Deep learning - Applications:			
	Applying CNNs: transfer learning, CNNs in computer vision,			
	Recurrent NNs, Inception and GoogleNet, LSTMs and deep			
	learning for NLP, Generative Adversarial Networks			
	Breatical issues Overview of Buther, CDU Cloud based CDU			
	Practical issues: Overview of Python, GPU, Cloud-based GPU			
	solutions, useful libraries			
Laboratory Projects/Experiments				
Done in the Course	Project 1:			
	Implementation of NN backpropagation(MATLAB)			
	Project 2:			
	Implementation of a CNN(cats vs dogs problem) in Keras			
	Training, testing and visualization			
	Hyperparameter tuning: optimizer, layers, parameters etc			
	Project 3:			
	Implementation/modification of DL model for:			
	a) GAN for generating skin cancer data orb) LSTM model for describing the scene of a movie			
	b) Lo i w moder for describing the scene of a movie			

2 NCEAC.FORM.001.D

National Computing Education Accreditation Council NCEAC

NCEAC.FORM.001-D

Class Time Spent on (in credit hours)	Theory	Problem Analysis	Solution Design	Social and Ethical Issues
	0.9	0.9	0.9	0.3
Oral and Written Communications	Every student is required to submit at least 3 written reports of typically 5-10 pages. These reports are NOT graded for oral and verbal proficiency beyond what is expected of a technical report.			

Instructor Name	M Usman Sadiq
Instructor Signature	
Date _	

NCEAC.FORM.001.D