Magnetic Reynolds Number Approach

- Useful for modeling eddy currents, loads and heating in dewar walls, radiation shields, vacuum vessels, etc. where $R_m \ll 1$.
- Two geometrically similar cases with the same R_m respond in the same way, even if there are differences:
 - Example, Two slabs with conductivities σ differing by a factor of 2 will behave the same if the one with lower σ has a thickness $\sqrt{2}$ greater than the other.
- When $R_m << 1$ the diffusion process is fast compared to the process of changing the driving field.

High R_m Approach

For a 2-D Structure:

$$R_m = \frac{\mu_o \sigma l_1 l_2}{\tau}$$

For a shell then
$$l_1 = R_o$$
, $l_2 = a$, $\rightarrow R_m = \frac{\mu_o \sigma R_o a}{\tau}$

- Eddy currents maintain the field distribution in the region being shielded in the t < 0 condition for the instant $t = 0^+$.
- The field distribution inside the shell at $t = 0^+$ will satisfy the governing equations and boundary conditions but is expected to differ from the t < 0 condition.
- For example: Consider tokamak vacuum vessel when there is a plasma disruption. The eddy current directions will image the plasma current.
- For R_m >> 1 diffusion is much slower than the time to change the driving field.

For Low R_m Approximation $R_m << 1$

$$\hat{\nabla}^2 \hat{B}_n = \frac{\partial}{\partial \hat{t}} \left(\hat{B}_{n-1} \right) \tag{1}$$

$$\hat{\nabla}^2 \hat{J}_n = \frac{\partial}{\partial \hat{t}} \left(\hat{J}_{n-1} \right) \tag{2}$$

$$\hat{\nabla} \times \hat{J}_n = -\frac{\partial}{\partial \hat{t}} \left(\hat{B}_{n-1} \right) \tag{3}$$

$$\hat{\nabla} \times \hat{B}_n = \hat{J}_n \tag{4}$$

Method of Solution:

use $\hat{\boldsymbol{B}}_{o}$ to find $\hat{\boldsymbol{J}}_{1}$ from (3)

then use \hat{J}_1 to find \hat{B}_1 from (4)

then use $\hat{\boldsymbol{B}}_1$ to find $\hat{\boldsymbol{J}}_2$ from (3)

then use \hat{J}_2 to find \hat{B}_2 from (4)

•

•

•

(etc)