ON THE COHEN-MACAULAY PROPERTY OF MULTIPLICATIVE INVARIANTS

MARTIN LORENZ

ABSTRACT. We investigate the Cohen-Macaulay property for rings of invariants under multiplicative actions of a finite group $\mathcal G$. By definition, these are $\mathcal G$ -actions on Laurent polynomial algebras $\Bbbk[x_1^{\pm 1},\ldots,x_n^{\pm 1}]$ that stabilize the multiplicative group consisting of all monomials in the variables x_i . For the most part, we concentrate on the case where the base ring \Bbbk is $\mathbb Z$. Our main result states that if $\mathcal G$ acts non-trivially and the invariant ring $\mathbb Z[x_1^{\pm 1},\ldots,x_n^{\pm 1}]^{\mathcal G}$ is Cohen-Macaulay then the abelianized isotropy groups $\mathcal G_m^{\mathrm{ab}}$ of all monomials m are generated by the bireflections in $\mathcal G_m$ and at least one $\mathcal G_m^{\mathrm{ab}}$ is non-trivial. As an application, we prove the multiplicative version of Kemper's 3-copies conjecture.

Introduction

This article is a sequel to [LPk]. Unlike in [LPk], however, our focus will be specifically on multiplicative invariants. In detail, let $L \cong \mathbb{Z}^n$ denote a lattice on which a finite group $\mathcal G$ acts by automorphisms. The $\mathcal G$ -action on L extends uniquely to an action by $\mathbb K$ -algebra automorphisms on the group algebra $\mathbb K[L] \cong \mathbb K[x_1^{\pm 1}, \dots, x_n^{\pm 1}]$ over any commutative base ring $\mathbb K$. We are interested in the question when the subalgebra $\mathbb K[L]^{\mathcal G}$ consisting of all $\mathcal G$ -invariant elements of $\mathbb K[L]$ has the Cohen-Macaulay property. The reader is assumed to have some familiarity with Cohen-Macaulay rings; a good reference on this subject is [BH].

It is a standard fact that k[L] is Cohen-Macaulay precisely if k is. On the other hand, while $k[L]^{\mathcal{G}}$ can only be Cohen-Macaulay when k is so, the latter condition is far from sufficient and rather stringent additional conditions on the action of \mathcal{G} on L are required to ensure that $k[L]^{\mathcal{G}}$ is Cohen-Macaulay. Remarkably, the question whether or not $k[L]^{\mathcal{G}}$ is Cohen-Macaulay, for any given base ring k, depends only on the rational isomorphism class

²⁰⁰⁰ Mathematics Subject Classification. 13A50, 16W22, 13C14, 13H10.

Key words and phrases. finite group action, ring of invariants, multiplicative invariant theory, height, depth, Cohen-Macaulay ring, group cohomology, generalized reflections, bireflections, integral representation, binary icosahedral group.

Research of the author supported in part by NSF grant DMS-9988756.

of the lattice L, that is, the isomorphism class of $L \otimes_{\mathbb{Z}} \mathbb{Q}$ as $\mathbb{Q}[\mathcal{G}]$ -module; see Proposition 3.4 below. This is in striking contrast with most other ring theoretic properties of $\mathbb{k}[L]^{\mathcal{G}}$ (e.g., regularity, structure of the class group) which tend to be sensitive to the \mathbb{Z} -type of L. For an overview, see $[L_1]$.

We will largely concentrate on the case where the base ring \mathbbm{k} is \mathbbm{Z} . This is justified in part by the fact that if $\mathbbm{Z}[L]^{\mathcal{G}}$ is Cohen-Macaulay then likewise is $\mathbbm{k}[L]^{\mathcal{G}}$ for any Cohen-Macaulay base ring \mathbbm{k} (Lemma 3.2). Assuming $\mathbbm{Z}[L]^{\mathcal{G}}$ to be Cohen-Macaulay, we aim to derive group theoretical consequences for the isotropy groups $\mathcal{G}_m = \{g \in \mathcal{G} \mid g(m) = m\}$ with $m \in L$. An element $g \in \mathcal{G}$ will be called a k-reflection on L if the sublattice $[g, L] = \{g(m) - m \mid m \in L\}$ of L has rank at most k or, equivalently, if the g-fixed points of the \mathbb{Q} -space $L \otimes_{\mathbb{Z}} \mathbb{Q}$ have codimension at most k. As usual, k-reflections with k = 1 and k = 2 will be referred to as reflections and bireflections. For any subgroup $\mathcal{H} \leq \mathcal{G}$, we let $\mathcal{H}^{(2)}$ denote the subgroup generated by the elements of \mathcal{H} that act as bireflections on L. Our main result now reads as follows.

Theorem. Assume that $\mathbb{Z}[L]^{\mathcal{G}}$ is Cohen-Macaulay. Then $\mathcal{G}_m/\mathcal{G}_m^{(2)}$ is a perfect group (i.e., equal to its commutator subgroup) for all $m \in L$. If \mathcal{G} acts non-trivially on L then some \mathcal{G}_m is non-perfect.

It would be interesting to determine if the conclusion of the theorem can be strengthened to the effect that all isotropy groups \mathcal{G}_m are in fact generated by bireflections on L. I do not know if, for the latter to occur, it is sufficient that \mathcal{G} is generated by bireflections. The corresponding fact for reflection groups is known to be true: if \mathcal{G} is generated by reflections on L (or, equivalently, on $L \otimes_{\mathbb{Z}} \mathbb{Q}$) then so are all isotropy groups \mathcal{G}_m ; see [St, Theorem 1.5] or [Bou₁, Exercise 8(a) on p. 139].

There is essentially a complete classification of finite linear groups generated by bireflections. In arbitrary characteristic, this is due to Guralnick and Saxl [GuS]; for the case of characteristic zero, see Huffman and Wales [HuW]. Bireflection groups have been of interest in connection with the problem of determining all finite linear groups whose algebra of polynomial invariants is a complete intersection. Specifically, suppose that $\mathcal{G} \leq \operatorname{GL}(V)$ for some finite-dimensional vector space V and let $\mathcal{O}(V) = \mathsf{S}(V^*)$ denote the algebra of polynomial functions on V. It was shown by Kac and Watanabe [KW] and independently by Gordeev [G₁] that if the algebra $\mathcal{O}(V)^{\mathcal{G}}$ of all \mathcal{G} -invariant polynomial functions is a complete intersection then \mathcal{G} is generated by bireflections on V. The classification of all groups \mathcal{G} so that $\mathcal{O}(V)^{\mathcal{G}}$ is a complete intersection has been achieved by Gordeev [G₂] and by Nakajima [N].

The last assertion of the above Theorem implies in particular that if $\mathbb{Z}[L]^{\mathcal{G}}$ is Cohen-Macaulay and \mathcal{G} acts non-trivially on L then some element of

 \mathcal{G} acts as a non-trivial bireflection on L. Hence we obtain the following multiplicative version of Kemper's 3-copies conjecture:

Corollary. If \mathcal{G} acts non-trivially on L and $r \geq 3$ then $\mathbb{Z}[L^{\oplus r}]^{\mathcal{G}}$ is not Cohen-Macaulay.

The 3-copies conjecture was formulated by Kemper [K₁, Vermutung 3.12] in the context of polynomial invariants. Using the above notation, the original conjecture states that if $1 \neq \mathcal{G} \leq \operatorname{GL}(V)$ and the characteristic of the base field of V divides the order of \mathcal{G} ("modular case") then the invariant algebra $\mathcal{O}(V^{\oplus r})^{\mathcal{G}}$ will not be Cohen-Macaulay for any $r \geq 3$. This is still open. The main factors contributing to our success in the multiplicative case are the following:

- Multiplicative actions are permutation actions: \mathcal{G} permutes the \Bbbk -basis of $\Bbbk[L]$ consisting of all "monomials", corresponding to the elements of the lattice L. Consequently, the cohomology $H^*(\mathcal{G}, \Bbbk[L])$ is simply the direct sum of the various $H^*(\mathcal{G}_m, \Bbbk)$ with m running over a transversal for the \mathcal{G} -orbits in L.
- Up to conjugacy, there are only finitely many finite subgroups of $\operatorname{GL}_n(\mathbb{Z})$ and these groups are explicitly known for small n. A crucial observation for our purposes is the following: if \mathcal{G} is a nontrivial finite perfect subgroup of $\operatorname{GL}_n(\mathbb{Z})$ such that no $1 \neq g \in \mathcal{G}$ has eigenvalue 1 then \mathcal{G} is isomorphic to the binary icosahedral group and $n \geq 8$; see Lemma 2.3 below.

A brief outline of the contents of the this article is as follows. The short preliminary Section 1 is devoted to general actions of a finite group $\mathcal G$ on a commutative ring R. This material relies rather heavily on [LPk]. We liberate a technical result from [LPk] from any a priori hypotheses on the characteristic; the new version (Proposition 1.4) states that if R and $R^{\mathcal G}$ are both Cohen-Macaulay and $H^i(\mathcal G,R)=0$ for 0< i< k then $H^k(\mathcal G,R)$ is detected by k+1-reflections. Section 2 then specializes to the case of multiplicative actions. We assemble the main tools required for the proof of the Theorem, which is presented in Section 3. The article concludes with a brief discussion of possible avenues for further investigation and some examples.

1. FINITE GROUP ACTIONS ON RINGS

1.1. In this section, R will be a commutative ring on which a finite group \mathcal{G} acts by ring automorphisms $r \mapsto g(r) \ (r \in R, g \in \mathcal{G})$. The subring of \mathcal{G} -invariant elements of R will be denoted by $R^{\mathcal{G}}$.

1.2. **Generalized reflections.** Following [GK], we will say an element $g \in \mathcal{G}$ acts as a k-reflection on R if g belongs to the inertia group

$$I_{\mathcal{G}}(\mathfrak{P}) = \{ g \in \mathcal{G} \mid g(r) - r \in \mathfrak{P} \ \forall r \in R \}$$

of some prime ideal $\mathfrak{P} \in \operatorname{Spec} R$ with height $\mathfrak{P} \leq k$. The cases k=1 and k=2 will be referred to as *reflections* and *bireflections*, respectively. Define the ideal $I_R(g)$ of R by

$$I_R(g) = \sum_{r \in R} (g(r) - r)R.$$

Evidently, $\mathfrak{P} \supseteq I_R(g)$ is equivalent to $g \in I_{\mathcal{G}}(\mathfrak{P})$. Thus:

g is a k-reflection on R if and only if height $I_R(g) \leq k$.

For each subgroup $\mathcal{H} \leq \mathcal{G}$, we put

$$I_R(\mathcal{H}) = \sum_{g \in \mathcal{H}} I_R(g) .$$

It suffices to let g run over a set of generators of the group \mathcal{H} in this sum.

1.3. A height estimate. The cohomology $H^*(\mathcal{G},R) = \bigoplus_{n \geq 0} H^n(\mathcal{G},R)$ has a canonical $R^{\mathcal{G}}$ -module structure: for each $r \in R^{\mathcal{G}}$, the map $\rho \colon R \to R$, $s \mapsto rs$, is \mathcal{G} -equivariant and hence it induces a map on cohomology $\rho_* \colon H^*(\mathcal{G},R) \to H^*(\mathcal{G},R)$. The element r acts on $H^*(\mathcal{G},R)$ via ρ_* . Let $\operatorname{res}_{\mathcal{H}}^{\mathcal{G}} \colon H^*(\mathcal{G},R) \to H^*(\mathcal{H},R)$ denote the restriction map.

The following lemma extends [LPk, Proposition 1.4].

Lemma. For any $x \in H^*(\mathcal{G}, R)$,

height
$$\operatorname{ann}_{R^{\mathcal{G}}}(x) \geq \inf\{\operatorname{height} I_{R}(\mathcal{H}) \mid \mathcal{H} \leq \mathcal{G}, \operatorname{res}_{\mathcal{H}}^{\mathcal{G}}(x) \neq 0\}$$
.

Proof. Put $\mathfrak{X} = \{\mathcal{H} \leq \mathcal{G} \mid \operatorname{res}_{\mathcal{H}}^{\mathcal{G}}(x) = 0\}$. For each $\mathcal{H} \leq \mathcal{G}$, let $R_{\mathcal{H}}^{\mathcal{G}}$ denote the image of the relative trace map $R^{\mathcal{H}} \to R^{\mathcal{G}}$, $r \mapsto \sum_g g(r)$, where g runs over a transversal for the cosets $g\mathcal{H}$ of \mathcal{H} in \mathcal{G} . By [LPk, Lemma 1.3],

$$R_{\mathcal{H}}^{\mathcal{G}} \subseteq \operatorname{ann}_{R^{\mathcal{G}}}(x)$$
 for all $\mathcal{H} \in \mathfrak{X}$.

To prove the lemma, we may assume that $\operatorname{ann}_{R^{\mathcal{G}}}(x)$ is a proper ideal of $R^{\mathcal{G}}$; for, otherwise height $\operatorname{ann}_{R^{\mathcal{G}}}(x) = \infty$. Choose a prime ideal \mathfrak{p} of $R^{\mathcal{G}}$ with $\mathfrak{p} \supseteq \operatorname{ann}_{R^{\mathcal{G}}}(x)$ and height $\mathfrak{p} = \operatorname{height} \operatorname{ann}_{R^{\mathcal{G}}}(x)$. If \mathfrak{P} is a prime of R that lies over \mathfrak{p} then

$$R_{\mathcal{H}}^{\mathcal{G}} \subseteq \mathfrak{P} \quad \text{for all } \mathcal{H} \in \mathfrak{X}$$

and height $\mathfrak{P}=\operatorname{height}\mathfrak{p}.$ By [LPk, Lemma 1.1], the above inclusion implies that

$$[I_{\mathcal{G}}(\mathfrak{P}):I_{\mathcal{H}}(\mathfrak{P})]\in\mathfrak{P}\quad\text{for all }\mathcal{H}\in\mathfrak{X}.$$

Put $p = \operatorname{char} R/\mathfrak{P}$ and let $\mathcal{P} \leq I_{\mathcal{G}}(\mathfrak{P})$ be a Sylow p-subgroup of $I_{\mathcal{G}}(\mathfrak{P})$ (so $\mathcal{P} = 1$ if p = 0). Then $I_R(\mathcal{P}) \subseteq \mathfrak{P}$ and $[I_{\mathcal{G}}(\mathfrak{P}) : \mathcal{P}] \notin \mathfrak{P}$. Hence,

 $\mathcal{P} \notin \mathfrak{X}$ and height $I_R(\mathcal{P}) \leq \operatorname{height} \mathfrak{P} = \operatorname{height} \operatorname{ann}_{R^{\mathcal{G}}}(x)$. This proves the lemma.

We remark that the lemma and its proof carry over verbatim to the more general situation where $H^*(\mathcal{G}, R)$ is replaced by $H^*(\mathcal{G}, M)$, where M is some module over the skew group ring of \mathcal{G} over R; cf. [LPk]. However, we will not be concerned with this generalization here.

1.4. A necessary condition. In this section, we assume that R is noetherian as $R^{\mathcal{G}}$ -module. This assumption is satisfied whenever R is an affine algebra over some noetherian subring $\mathbb{k} \subseteq R^{\mathcal{G}}$; see [Bou₂, Théorème 2 on p. 33]. Put

$$\mathfrak{X}_k = \{ \mathcal{H} \le \mathcal{G} \mid \text{height } I_R(\mathcal{H}) \le k \}. \tag{1.1}$$

Note that each $\mathcal{H} \in \mathfrak{X}_k$ consists of k-reflections on R. The following proposition is a characteristic-free version of [LPk, Proposition 4.1].

Proposition. Assume that R and $R^{\mathcal{G}}$ are Cohen-Macaulay. If $H^i(\mathcal{G}, R) = 0$ (0 < i < k) then the restriction map

$$\operatorname{res}_{\mathfrak{X}_{k+1}}^{\mathcal{G}} \colon H^k(\mathcal{G}, R) \to \prod_{\mathcal{H} \in \mathfrak{X}_{k+1}} H^k(\mathcal{H}, R)$$

is injective.

Proof. We may assume that $H^k(\mathcal{G}, R) \neq 0$. Let $x \in H^k(\mathcal{G}, R)$ be nonzero and put $\mathfrak{a} = \operatorname{ann}_{R^{\mathcal{G}}}(x)$. By [LPk, Proposition 3.3], depth $\mathfrak{a} \leq k+1$. Since $R^{\mathcal{G}}$ is Cohen-Macaulay, depth $\mathfrak{a} = \operatorname{height} \mathfrak{a}$. Thus, Lemma 1.3 implies that $k+1 \geq \operatorname{height} I_R(\mathcal{H})$ for some $\mathcal{H} \leq \mathcal{G}$ with $\operatorname{res}_{\mathcal{H}}^{\mathcal{G}}(x) \neq 0$. The proposition follows.

Note that the vanishing hypothesis on $H^i(\mathcal{G},R)$ is vacuous for k=1. Thus, $H^1(\mathcal{G},R)$ is detected by bireflections whenever R and $R^{\mathcal{G}}$ are both Cohen-Macaulay.

2. MULTIPLICATIVE ACTIONS

2.1. For the remainder of this article, L will denote a lattice on which the finite group $\mathcal G$ acts by automorphisms $m\mapsto g(m)\ (m\in L,g\in \mathcal G)$. The group algebra of L over some commutative base ring k will be denoted by k[L]. We will use additive notation in L. The k-basis element of k[L] corresponding to the lattice element $m\in L$ will be written as

so $\mathbf{x}^0 = 1$, $\mathbf{x}^{m+m'} = \mathbf{x}^m \mathbf{x}^{m'}$, and $\mathbf{x}^{-m} = (\mathbf{x}^m)^{-1}$. The action of \mathcal{G} on L extends uniquely to an action by \mathbb{k} -algebra automorphisms on $\mathbb{k}[L]$:

$$g(\sum_{m\in L} k_m \mathbf{x}^m) = \sum_{m\in L} k_m \mathbf{x}^{g(m)} .$$

The invariant algebra $\mathbb{k}[L]^{\mathcal{G}}$ is a free \mathbb{k} -module: a \mathbb{k} -basis is given by the \mathcal{G} -orbit sums $\sigma(m) = \sum_{m' \in \mathcal{G}(m)} \mathbf{x}^{m'}$, where $\mathcal{G}(m)$ denotes the \mathcal{G} -orbit of $m \in L$. Since all orbit sums are defined over \mathbb{Z} , we have

$$\mathbb{k}[L]^{\mathcal{G}} = \mathbb{k} \otimes_{\mathbb{Z}} \mathbb{Z}[L]^{\mathcal{G}} . \tag{2.1}$$

2.2. Let \mathcal{H} be a subgroup of \mathcal{G} . We compute the height of the ideal $I_{\Bbbk[L]}(\mathcal{H})$ from §1.2. Let

$$L^{\mathcal{H}} = \{ m \in L \mid g(m) = m \text{ for all } g \in \mathcal{H} \}$$

denote the lattice of \mathcal{H} -invariants in L and define the sublattice $[\mathcal{H}, L]$ of L by

$$[\mathcal{H}, L] = \sum_{g \in \mathcal{H}} [g, L] ,$$

where $[g, L] = \{g(m) - m \mid m \in L\}$. It suffices to let g run over a set of generators of the group \mathcal{H} in the above formulas.

Lemma. With the above notation, $k[L]/I_{k[L]}(\mathcal{H}) \cong k[L/[\mathcal{H}, L]]$ and

height
$$I_{\mathbb{k}[L]}(\mathcal{H}) = \operatorname{rank}[\mathcal{H}, L] = \operatorname{rank} L - \operatorname{rank} L^{\mathcal{H}}$$
.

Proof. Since the ideal $I_{\Bbbk[L]}(\mathcal{H})$ is generated by the elements $\mathbf{x}^{g(m)-m}-1$ with $m\in L$ and $g\in\mathcal{H}$, the isomorphism $\Bbbk[L]/I_{\Bbbk[L]}(\mathcal{H})\cong \Bbbk[L/[\mathcal{H},L]]$ is clear

To prove the equality $\operatorname{rank}[\mathcal{H}, L] = \operatorname{rank} L - \operatorname{rank} L^{\mathcal{H}}$, note that the rational group algebra $\mathbb{Q}[\mathcal{H}]$ is the direct sum of the ideals $\mathbb{Q}\left(\sum_{g\in\mathcal{H}}g\right)$ and $\sum_{g\in\mathcal{H}}\mathbb{Q}(g-1)$. This implies $L\otimes_{\mathbb{Z}}\mathbb{Q}=\left(L^{\mathcal{H}}\otimes_{\mathbb{Z}}\mathbb{Q}\right)\oplus([\mathcal{H},L]\otimes_{\mathbb{Z}}\mathbb{Q})$. Hence, $\operatorname{rank} L=\operatorname{rank} L^{\mathcal{H}}+\operatorname{rank}[\mathcal{H},L]$.

To complete the proof, it suffices to show that

height
$$\mathfrak{P} = \operatorname{rank}[\mathcal{H}, L]$$

holds for any minimal covering prime \mathfrak{P} of $I_{\mathbb{k}[L]}(\mathcal{H})$. Put $A = L/[\mathcal{H}, L]$ and $\overline{\mathfrak{P}} = \mathfrak{P}/I_{\mathbb{k}[L]}(\mathcal{H})$, a minimal prime of $\mathbb{k}[L]/I_{\mathbb{k}[L]}(\mathcal{H}) = \mathbb{k}[A]$. Further, put $\mathfrak{p} = \overline{\mathfrak{P}} \cap \mathbb{k} = \mathfrak{P} \cap \mathbb{k}$. Since the extension $\mathbb{k} \hookrightarrow \mathbb{k}[A] = \mathbb{k}[L]/I_{\mathbb{k}[L]}(\mathcal{H})$ is free, \mathfrak{p} is a minimal prime of \mathbb{k} ; see [Bou₃, Cor. on p. AC VIII.15]. Hence, descending chains of primes in $\mathbb{k}[L]$ starting with \mathfrak{P} correspond in a 1-to-1 fashion to descending chains of primes of $Q(\mathbb{k}/\mathfrak{p})[L]$ starting with the prime

that is generated by \mathfrak{P} . Thus, replacing \mathbb{k} by $Q(\mathbb{k}/\mathfrak{p})$, we may assume that \mathbb{k} is a field. But then

height
$$\mathfrak{P} = \dim \mathbb{k}[L] - \dim \mathbb{k}[L]/\mathfrak{P} = \operatorname{rank} L - \dim \mathbb{k}[L]/\mathfrak{P}$$
.

Let $\overline{\mathfrak{P}}_0=\overline{\mathfrak{P}}\cap \Bbbk[A_0]$, where A_0 denotes the torsion subgroup of A. Since $\overline{\mathfrak{P}}$ is minimal, we have $\overline{\mathfrak{P}}=\overline{\mathfrak{P}}_0\Bbbk[A]$ and so $\Bbbk[L]/\mathfrak{P}\cong \Bbbk_0[A/A_0]$, where $\Bbbk_0=\Bbbk[A_0]/\overline{\mathfrak{P}}_0$ is a field. Thus, $\dim \Bbbk[L]/\mathfrak{P}=\operatorname{rank} A/A_0$. Finally, $\operatorname{rank} A/A_0=\operatorname{rank} A=\operatorname{rank} L-\operatorname{rank}[\mathcal{H},L]$, which completes the proof.

Specializing the lemma to the case where $\mathcal{H} = \langle g \rangle$ for some $g \in \mathcal{G}$, we see that g acts as a k-reflection on $\mathbb{k}[L]$ if and only if g acts as a k-reflection on L, that is,

$$rank[g, L] \leq k$$
.

Moreover, the collection of subgroups \mathfrak{X}_k in equation (1.1) can now be written as

$$\mathfrak{X}_k = \{ \mathcal{H} \le \mathcal{G} \mid \operatorname{rank} L/L^{\mathcal{H}} \le k \} . \tag{2.2}$$

2.3. **Fixed-point-free lattices for perfect groups.** The \mathcal{G} -action on L is called *fixed-point-free* if $g(m) \neq m$ holds for all $0 \neq m \in L$ and $1 \neq g \in \mathcal{G}$. Recall also that the group \mathcal{G} is said to be *perfect* if $\mathcal{G}^{ab} = \mathcal{G}/[\mathcal{G},\mathcal{G}] = 1$.

Lemma. Assume that \mathcal{G} is a nontrivial perfect group acting fixed-point-freely on the nonzero lattice L. Then \mathcal{G} is isomorphic to the binary icosahedral group $2.\mathcal{A}_5 \cong \operatorname{SL}_2(\mathbb{F}_5)$ and rank L is a multiple of 8.

Proof. Put $V = L \otimes_{\mathbb{Z}} \mathbb{C}$, a nonzero fixed-point-free $\mathbb{C}[\mathcal{G}]$ -module. By a well-known theorem of Zassenhaus (see [Wo, Theorem 6.2.1]), \mathcal{G} is isomorphic to the binary icosahedral group $2.\mathcal{A}_5$ and the irreducible constituents of V are 2-dimensional. The binary icosahedral group has two irreducible complex representations of degree 2; they are Galois conjugates of each other and both have Frobenius-Schur indicator -1. We denote the corresponding $\mathbb{C}[\mathcal{G}]$ -modules by V_1 and V_2 . Both V_i occur with the same multiplicity in V, since V is defined over \mathbb{Q} . Thus, $V \cong (V_1 \oplus V_2)^m$ for some m and rank L = 4m. We have to show that m is even. Since both V_i have indicator -1, it follows that $V_1 \oplus V_2$ is not defined over \mathbb{R} , whereas each V_i^2 is defined over \mathbb{R} ; see [I, (9.21)]. Thus, $V_1 \oplus V_2$ represents an element x of order 2 in the cokernel of the scalar extension map $G_0(\mathbb{R}[\mathcal{G}]) \to G_0(\mathbb{C}[\mathcal{G}])$, and mx = 0. Therefore, m must be even, as desired.

We remark that the binary icosahedral group $2.\mathcal{A}_5$ is isomorphic to the subgroup of the nonzero quaternions \mathbb{H}^* that is generated by $(a+i+ja^*)/2$ and $(a+j+ka^*)/2$, where $a=(1+\sqrt{5})/2$ and $a^*=(1-\sqrt{5})/2$ and $\{1,i,j,k\}$ is the standard \mathbb{R} -basis of \mathbb{H} . Thus, letting $2.\mathcal{A}_5$ act on \mathbb{H} via left

multiplication, \mathbb{H} becomes a 2-dimensional fixed-point-free complex representation of $2.\mathcal{A}_5$. It is easy to see that this representation can be realized over $K = \mathbb{Q}(i, \sqrt{5})$; so $\mathbb{H} = V \otimes_K \mathbb{C}$ with $\dim_{\mathbb{Q}} V = 2[K : \mathbb{Q}] = 8$. Any $2.\mathcal{A}_5$ -lattice for V will be fixed-point-free and have rank 8.

2.4. **Isotropy groups.** The isotropy group of an element $m \in L$ in \mathcal{G} will be denoted by \mathcal{G}_m ; so

$$\mathcal{G}_m = \{ g \in \mathcal{G} \mid g(m) = m \} .$$

The \mathcal{G} -lattice L is called *faithful* if $\operatorname{Ker}_{\mathcal{G}}(L) = \bigcap_{m \in L} \mathcal{G}_m = 1$. The following lemma, at least part (a), is well-known. We include the proof for the reader's convenience.

- **Lemma.** (a) The set of isotropy groups $\{\mathcal{G}_m \mid m \in L\}$ is closed under conjugation and under taking intersections.
 - (b) Assume that the G-lattice L is faithful. If G_m $(m \in L)$ is a minimal non-identity isotropy group then G_m acts fixed-point-freely on $L/L^{G_m} \neq 0$.

Proof. Consider the $\mathbb{Q}[\mathcal{G}]$ -module $V = L \otimes_{\mathbb{Z}} \mathbb{Q}$. The collection of isotropy groups \mathcal{G}_m remains unchanged when allowing $m \in V$. Moreover, for any subgroup $\mathcal{H} \leq \mathcal{G}$, $L/L^{\mathcal{H}}$ is an \mathcal{H} -lattice with $L/L^{\mathcal{H}} \otimes_{\mathbb{Z}} \mathbb{Q} \cong V/V^{\mathcal{H}}$.

- (a) The first assertion is clear, since ${}^g\mathcal{G}_m=\mathcal{G}_{g(m)}$ holds for all $g\in\mathcal{G}, m\in V$. For the second assertion, let M be a non-empty subset of V and put $\mathcal{G}_M=\bigcap_{m\in M}\mathcal{G}_m$. We must show that $\mathcal{G}_M=\mathcal{G}_m$ for some $m\in V$. Put $W=V^{\mathcal{G}_M}$. If $g\in\mathcal{G}\setminus\mathcal{G}_M$ then $W^g=\{w\in W\mid g(w)=w\}$ is a proper subspace of W, since some element of M does not belong to W^g . Any $m\in W\setminus\bigcup_{g\in\mathcal{G}\setminus\mathcal{G}_M}W^g$ satisfies $\mathcal{G}_m=\mathcal{G}_M$.
- (b) Let $\mathcal{H} = \mathcal{G}_m$ be a minimal non-identity member of $\{\mathcal{G}_m \mid m \in V\}$. As $\mathbb{Q}[\mathcal{H}]$ -modules, we may identify V and $V^{\mathcal{H}} \oplus V/V^{\mathcal{H}}$. If $0 \neq v \in V/V^{\mathcal{H}}$ then $\mathcal{H}_v = \mathcal{H} \cap \mathcal{G}_v \subsetneq \mathcal{H}$. In view of (a), our minimality assumption on \mathcal{H} forces $\mathcal{H}_v = 1$. Thus, \mathcal{H} acts fixed-point-freely on $V/V^{\mathcal{H}}$, and hence on $L/L^{\mathcal{H}}$.

Proposition. Assume that L is a faithful G-lattice such that all minimal isotropy groups $1 \neq G_m$ $(m \in L)$ are perfect. Then rank $L/L^{\mathcal{H}} \geq 8$ holds for every nonidentity subgroup $\mathcal{H} \leq G$.

In the notation of equation (2.2), the conclusion of the proposition can be stated as follows:

$$\mathfrak{X}_k = \{1\} \text{ for all } k < 8.$$

Proof of the Proposition. Put $\overline{\mathcal{H}} = \bigcap_{m \in L^{\mathcal{H}}} \mathcal{G}_m$. Then $\overline{H} \supseteq \mathcal{H}$ and $L^{\overline{\mathcal{H}}} = L^{\mathcal{H}}$. Lemma 2.4(a) further implies that $\overline{\mathcal{H}} = \mathcal{G}_m$ for some m. Replacing \mathcal{H} by \overline{H} , we may assume that \mathcal{H} is a nonidentity isotropy group. If

 \mathcal{H} is not minimal then replace \mathcal{H} by a smaller nonidentity isotropy group; this does not increase the value of $\operatorname{rank} L/L^{\mathcal{H}}$. Thus, we may assume that \mathcal{H} is a minimal nonidentity isotropy group, and hence \mathcal{H} is perfect. By Lemma 2.4(b), \mathcal{H} acts fixed-point-freely on $L/L^{\mathcal{H}} \neq 0$ and Lemma 2.3 implies that $\operatorname{rank} L/L^{\mathcal{H}} > 8$, proving the proposition.

2.5. **Cohomology.** Let \mathfrak{X} denote any collection of subgroups of \mathcal{G} that is closed under conjugation and under taking subgroups. We will investigate injectivity of the restriction map

$$\operatorname{res}_{\mathfrak{X}}^{\mathcal{G}} \colon H^{k}(\mathcal{G}, \mathbb{k}[L]) \to \prod_{\mathcal{H} \in \mathfrak{X}} H^{k}(\mathcal{H}, \mathbb{k}[L]) \ .$$

This map was considered in Proposition 1.4 for $\mathfrak{X} = \mathfrak{X}_{k+1}$.

Lemma. The map $\operatorname{res}_{\mathfrak{X}}^{\mathcal{G}} \colon H^k(\mathcal{G}, \mathbb{k}[L]) \to \prod_{\mathcal{H} \in \mathfrak{X}} H^k(\mathcal{H}, \mathbb{k}[L])$ is injective if and only if the restriction maps

$$H^k(\mathcal{G}_m, \mathbb{k}) \to \prod_{\substack{\mathcal{H} \in \mathfrak{X} \\ \mathcal{H} \le \mathcal{G}_m}} H^k(\mathcal{H}, \mathbb{k})$$

are injective for all $m \in L$.

Proof. As k[G]-module, k[L] is a permutation module:

$$\mathbb{k}[L] \cong \bigoplus_{m \in \mathcal{G} \setminus L} \mathbb{k}[\mathcal{G}/\mathcal{G}_m] ,$$

where $\mathbb{k}[\mathcal{G}/\mathcal{G}_m] = \mathbb{k}[\mathcal{G}] \otimes_{\mathbb{k}[\mathcal{G}_m]} \mathbb{k}$ and $\mathcal{G} \setminus L$ is a transversal for the \mathcal{G} -orbits in L. For each subgroup $\mathcal{H} \leq \mathcal{G}$,

$$\mathbb{k}[\mathcal{G}/\mathcal{G}_m]\big|_{\mathcal{H}} \cong \bigoplus_{g \in \mathcal{H} \setminus \mathcal{G}/\mathcal{G}_m} \mathbb{k}[\mathcal{H}/^g \mathcal{G}_m \cap \mathcal{H}];$$

see [CR, 10.13]. Therefore, $\operatorname{res}_{\mathcal{H}}^{\mathcal{G}}$ is the direct sum of the restriction maps

$$H^k(\mathcal{G}, \mathbb{k}[\mathcal{G}/\mathcal{G}_m]) \to H^k(\mathcal{H}, \mathbb{k}[\mathcal{G}/\mathcal{G}_m]) = \bigoplus_{g \in \mathcal{H} \setminus \mathcal{G}/\mathcal{G}_m} H^k(\mathcal{H}, \mathbb{k}[\mathcal{H}/^g\mathcal{G}_m \cap \mathcal{H}]) .$$

By the Eckmann-Shapiro Lemma [Br, III(5.2),(6.2)], $H^k(\mathcal{G}, \mathbb{k}[\mathcal{G}/\mathcal{G}_m]) \cong H^k(\mathcal{G}_m, \mathbb{k})$ and $H^k(\mathcal{H}, \mathbb{k}[\mathcal{H}/^g\mathcal{G}_m \cap \mathcal{H}]) \cong H^k(^g\mathcal{G}_m \cap \mathcal{H}, \mathbb{k})$. In terms of these isomorphisms, the above restriction map becomes

$$\rho_{\mathcal{H},m} \colon H^{k}(\mathcal{G}_{m}, \mathbb{k}) \longrightarrow \bigoplus_{g \in \mathcal{H} \setminus \mathcal{G}/\mathcal{G}_{m}} H^{k}({}^{g}\mathcal{G}_{m} \cap \mathcal{H}, \mathbb{k})$$
$$[f] \longmapsto ([\underline{h} \mapsto f(g^{-1}\underline{h}g)])_{g}$$

where [.] denotes the cohomology class of a k-cocycle and \underline{h} stands for a k-tuple of elements of ${}^{g}\mathcal{G}_{m} \cap \mathcal{H}$. Therefore,

k-tuple of elements of
$${}^g\mathcal{G}_m\cap\mathcal{H}$$
. Therefore,
$$\operatorname{Ker} \rho_{\mathcal{H},m} = \bigcap_{g\in\mathcal{H}\setminus\mathcal{G}/\mathcal{G}_m} \operatorname{Ker} \left(\operatorname{res}_{\mathcal{G}_m\cap\mathcal{H}^g}^{\mathcal{G}_m}\colon H^k(\mathcal{G}_m,\Bbbk) \to H^k(\mathcal{G}_m\cap\mathcal{H}^g,\Bbbk)\right) \ .$$

Thus, $\operatorname{Ker} \operatorname{res}_{\mathfrak{X}}^{\mathcal{G}}$ is isomorphic to the direct sum of the kernels of the restriction maps

$$H^k(\mathcal{G}_m, \mathbb{k}) \to \prod_{\mathcal{H} \in \mathfrak{X}} H^k(\mathcal{G}_m \cap \mathcal{H}^g, \mathbb{k})$$

with $m \in \mathcal{G} \setminus L$. Finally, by hypothesis on \mathfrak{X} , the groups $\mathcal{G}_m \cap \mathcal{H}^g$ with $\mathcal{H} \in \mathfrak{X}$ are exactly the groups $\mathcal{H} \in \mathfrak{X}$ with $\mathcal{H} \leq \mathcal{G}_m$. The lemma follows. \square

Corollary. Let $\mathbb{k} = \mathbb{Z}/(|\mathcal{G}|)$ and k = 1. Then $\operatorname{res}_{\mathfrak{X}}^{\mathcal{G}}$ injective if and only if all \mathcal{G}_m^{ab} $(m \in L)$ are generated by the images of the subgroups $\mathcal{H} \leq \mathcal{G}_m$ with $\mathcal{H} \in \mathfrak{X}$.

Proof. By the lemma with k=1, the hypothesis on the restriction map says that all restrictions

$$H^1(\mathcal{G}_m, \mathbb{k}) \to \prod_{\substack{\mathcal{H} \in \mathfrak{X} \\ \mathcal{H} \le \mathcal{G}_m}} H^1(\mathcal{H}, \mathbb{k})$$

are injective. Now, for each $\mathcal{H} \leq \mathcal{G}$, $H^1(\mathcal{H}, \mathbb{k}) = \operatorname{Hom}(\mathcal{H}^{ab}, \mathbb{k}) \cong \mathcal{H}^{ab}$, where the last isomorphism holds by our choice of \mathbb{k} . Therefore, injectivity of the above map is equivalent to \mathcal{G}_m^{ab} being generated by the images of all $\mathcal{H} \leq \mathcal{G}_m$ with $\mathcal{H} \in \mathfrak{X}$.

3. THE COHEN-MACAULAY PROPERTY

- 3.1. Continuing with the notation of §2.1, we now turn to the question when the invariant algebra $\mathbb{k}[L]^{\mathcal{G}}$ is Cohen-Macaulay. Our principal tool will be Proposition 1.4. We remark that the Cohen-Macaulay hypothesis of Proposition 1.4 simplifies slightly in the setting of multiplicative actions: it suffices to assume that $\mathbb{k}[L]^{\mathcal{G}}$ is Cohen-Macaulay. Indeed, in this case the base ring \mathbb{k} is also Cohen-Macaulay, because $\mathbb{k}[L]^{\mathcal{G}}$ is free over \mathbb{k} , and then $\mathbb{k}[L]$ is Cohen-Macaulay as well; see [BH, Exercise 2.1.23 and Theorems 2.1.9, 2.1.3(b)].
- 3.2. **Base rings.** Our main interest is in the case where $\mathbb{k} = \mathbb{Z}$. As the following lemma shows, if $\mathbb{Z}[L]^{\mathcal{G}}$ is Cohen-Macaulay then so is $\mathbb{k}[L]^{\mathcal{G}}$ for any Cohen-Macaulay base ring \mathbb{k} .

Lemma. The following are equivalent:

- (a) $\mathbb{Z}[L]^{\mathcal{G}}$ is Cohen-Macaulay;
- (b) $\mathbb{k}[L]^{\mathcal{G}}$ is Cohen-Macaulay whenever \mathbb{k} is;

- (c) $\mathbb{k}[L]^{\mathcal{G}}$ is Cohen-Macaulay for $\mathbb{k} = \mathbb{Z}/(|\mathcal{G}|)$;
- (d) $\mathbb{F}_p[L]^{\mathcal{G}}$ is Cohen-Macaulay for all primes p dividing $|\mathcal{G}|$.
- *Proof.* (a) \Rightarrow (b): Put $S = \Bbbk[L]^{\mathcal{G}}$ and consider the extension of rings $\Bbbk \hookrightarrow S$. This extension is free; see §2.1. By [BH, Exercise 2.1.23], S is Cohen-Macaulay if (and only if) \Bbbk is Cohen-Macaulay and, for all $\mathfrak{P} \in \operatorname{Spec} S$, the fibre $S_{\mathfrak{P}}/\mathfrak{p}S_{\mathfrak{P}}$ is Cohen-Macaulay, where $\mathfrak{p} = \mathfrak{P} \cap \Bbbk$. But $S_{\mathfrak{P}}/\mathfrak{p}S_{\mathfrak{P}}$ is a localization of $(S/\mathfrak{p}S)_{\mathfrak{p}\setminus 0} \cong Q(\Bbbk/\mathfrak{p})[L]^{\mathcal{G}}$; see equation (2.1). Therefore, by [BH, Theorem 2.1.3(b)], it suffices to show that $Q(\Bbbk/\mathfrak{p})[L]^{\mathcal{G}}$ is Cohen-Macaulay. In other words, we may assume that \Bbbk is a field. By [BH, Theorem 2.1.10], we may further assume that $\Bbbk = \mathbb{Q}$ or $\Bbbk = \mathbb{F}_p$. But equation (2.1) implies that $\mathbb{Q}[L]^{\mathcal{G}} = \mathbb{Z}[L]^{\mathcal{G}}_{\mathbb{Z}\setminus 0}$ and $\mathbb{F}_p[L]^{\mathcal{G}} \cong \mathbb{Z}[L]^{\mathcal{G}}/(p)$. Since $\mathbb{Z}[L]^{\mathcal{G}}$ is assumed Cohen-Macaulay, [BH, Theorem 2.1.3] implies that $\mathbb{Q}[L]^{\mathcal{G}}$ and $\mathbb{F}_p[L]^{\mathcal{G}}$ are Cohen-Macaulay, as desired.
 - (b) \Rightarrow (c) is clear.
- (c) \Rightarrow (d): Write $|\mathcal{G}| = \prod_p p^{n_p}$. Then $\mathbb{k}[L] \cong \prod_p \mathbb{Z}/(p^{n_p})[L]^{\mathcal{G}}$ and $\mathbb{Z}/(p^{n_p})[L]^{\mathcal{G}}$ is a localization of $\mathbb{k}[L]^{\mathcal{G}}$. Therefore, $\mathbb{Z}/(p^{n_p})[L]^{\mathcal{G}}$ is Cohen-Macaulay, by [BH, Theorem 2.1.3(b)]. If $n_p \neq 0$ then it follows from [BH, Theorem 2.1.3(a)] that $\mathbb{Z}_{(p)}[L]^{\mathcal{G}}$ and $\mathbb{F}_p[L]^{\mathcal{G}} \cong \mathbb{Z}_{(p)}[L]^{\mathcal{G}}/(p)$ are Cohen-Macaulay.
- (d) \Rightarrow (a): First, (d) implies that $\mathbb{F}_p[L]^{\mathcal{G}}$ is Cohen-Macaulay for all primes p. For, if p does not divide $|\mathcal{G}|$ then $\mathbb{F}_p[L]^{\mathcal{G}}$ is always Cohen-Macaulay; see [BH, Corollary 6.4.6]. Now let \mathfrak{P} be a maximal ideal of $\mathbb{Z}[L]$. Then $\mathfrak{P} \cap \mathbb{Z} = (p)$ for some prime p and $\mathbb{Z}[L]_{\mathfrak{P}}^{\mathcal{G}}/(p)$ is a localization of $\mathbb{Z}[L]^{\mathcal{G}}/(p) = \mathbb{F}_p[L]^{\mathcal{G}}$. Thus, $\mathbb{Z}[L]_{\mathfrak{P}}^{\mathcal{G}}/(p)$ is Cohen-Macaulay and [BH, Theorem 2.1.3(a)] further implies that $\mathbb{Z}[L]_{\mathfrak{P}}^{\mathcal{G}}$ is Cohen-Macaulay. Since, \mathfrak{P} was arbitrary, (a) is proved.

Since normal rings of (Krull) dimension at most 2 are Cohen-Macaulay, the implication (d) \Rightarrow (b) of the lemma shows that $\mathbb{k}[L]^{\mathcal{G}}$ is certainly Cohen-Macaulay whenever \mathbb{k} is Cohen-Macaulay and L has rank at most 2.

3.3. **Proof of the Theorem.** We are now ready to prove the Theorem stated in the Introduction. Recall that, for any subgroup $\mathcal{H} \leq \mathcal{G}$, $\mathcal{H}^{(2)}$ denotes the subgroup generated by the elements of \mathcal{H} that act as bireflections on L or, equivalently, by the subgroups of \mathcal{H} that belong to \mathfrak{X}_2 ; see (2.2). Throughout, we assume that $\mathbb{Z}[L]^{\mathcal{G}}$ is Cohen-Macaulay.

We first show that $\mathcal{G}_m/\mathcal{G}_m^{(2)}$ is a perfect group for all $m \in L$. Put $\mathbb{k} = \mathbb{Z}/(|\mathcal{G}|)$. Then $\mathbb{k}[L]^{\mathcal{G}}$ is Cohen-Macaulay, by Lemma 3.2. Therefore, the restriction $H^1(\mathcal{G},\mathbb{k}[L]) \to \prod_{\mathcal{H} \in \mathfrak{X}_2} H^1(\mathcal{H},\mathbb{k}[L])$ is injective, by Proposition 1.4; see the remark in §3.1. Corollary 2.5 yields that all \mathcal{G}_m^{ab} are generated by the images of the subgroups $\mathcal{H} \leq \mathcal{G}_m$ with $\mathcal{H} \in \mathfrak{X}_2$. In other words,

each $\mathcal{G}_m^{\mathrm{ab}}$ is generated by the images of the bireflections in \mathcal{G}_m . Therefore, $\left(\mathcal{G}_m/\mathcal{G}_m^{(2)}\right)^{\mathrm{ab}}=1$, as desired.

Now assume that \mathcal{G} acts non-trivially on L. Our goal is to show that some isotropy group \mathcal{G}_m is non-perfect. Suppose otherwise. Replacing \mathcal{G} by $\mathcal{G}/\operatorname{Ker}_{\mathcal{G}}(L)$ we may assume that $1 \neq \mathcal{G}$ acts faithfully on L. Then $\mathfrak{X}_k = \{1\}$ for all k < 8, by Proposition 2.4. It follows that

$$k = \inf\{i > 0 \mid H^i(\mathcal{G}, \mathbb{k}[L]) \neq 0\} \ge 7.$$

Indeed, if k < 7 then Proposition 1.4 implies that $0 \neq H^k(\mathcal{G}, \mathbb{k}[L])$ embeds into $\prod_{\mathcal{H} \in \mathfrak{X}_{k+1}} H^k(\mathcal{H}, \mathbb{k}[L])$ which is trivial, because $\mathfrak{X}_{k+1} = \{1\}$. By Lemma 2.5 with $\mathfrak{X} = \{1\}$, we conclude that

$$H^i(\mathcal{G}_m, \mathbb{k}) = 0$$
 for all $m \in L$ and all $0 < i < 7$.

On the other hand, choosing \mathcal{G}_m minimal with $\mathcal{G}_m \neq 1$, we know by Lemmas 2.3 and 2.4(b) that \mathcal{G}_m is isomorphic to the binary icosahedral group $2.\mathcal{A}_5$. The cohomology of $2.\mathcal{A}_5$ is 4-periodic (see [Br, p. 155]). Hence, $H^3(\mathcal{G}_m, \mathbb{k}) \cong H^{-1}(\mathcal{G}_m, \mathbb{k}) = \operatorname{ann}_{\mathbb{k}}(\sum_{\mathcal{G}_m} g) \cong \mathbb{Z}/(|\mathcal{G}_m|) \neq 0$. This contradiction completes the proof of the Theorem.

3.4. **Rational invariance.** We now show that the Cohen-Macaulay property of $\mathbb{k}[L]^{\mathcal{G}}$ depends only on the rational isomorphism class of the \mathcal{G} -lattice L. Recall that \mathcal{G} -lattices L and L' are said to be *rationally isomorphic* if $L \otimes_{\mathbb{Z}} \mathbb{Q} \cong L' \otimes_{\mathbb{Z}} \mathbb{Q}$ as $\mathbb{Q}[\mathcal{G}]$ -modules. In this section, \mathbb{k} denotes any commutative base ring.

Proposition. If $\mathbb{k}[L]^{\mathcal{G}}$ is Cohen-Macaulay then so is $\mathbb{k}[L']^{\mathcal{G}}$ for any \mathcal{G} -lattice L' that is rationally isomorphic to L.

Proof. Assume that $L \otimes_{\mathbb{Z}} \mathbb{Q} \cong L' \otimes_{\mathbb{Z}} \mathbb{Q}$. Replacing L' by an isomorphic copy inside $L \otimes_{\mathbb{Z}} \mathbb{Q}$, we may assume that $L \supseteq L'$ and L/L' is finite. Then $\mathbb{k}[L]$ is finite over $\mathbb{k}[L']$ which in turn is integral over $\mathbb{k}[L']^{\mathcal{G}}$. Therefore, $\mathbb{k}[L]$ is integral over $\mathbb{k}[L']^{\mathcal{G}}$, and hence so is $\mathbb{k}[L]^{\mathcal{G}}$.

We now invoke a ring-theoretic result of Hochster and Eagon [HE] (or see [BH, Theorem 6.4.5]): Let $R \supseteq S$ be an integral extension of commutative rings having a Reynolds operator, that is, an S-linear map $R \to S$ that restricts to the identity on S. If R is Cohen-Macaulay then S is Cohen-Macaulay as well.

To construct the requisite Reynolds operator, consider the truncation map

$$\pi : \mathbb{k}[L] \to \mathbb{k}[L'] , \quad \sum_{m \in L} k_m \mathbf{x}^m \mapsto \sum_{m \in L'} k_m \mathbf{x}^m .$$

This is a Reynolds operator for the extension $\mathbb{k}[L] \supseteq \mathbb{k}[L']$ that satisfies $\pi(g(f)) = g(\pi(f))$ for all $g \in \mathcal{G}$, $f \in \mathbb{k}[L]$. Therefore, π restricts to a Reynolds operator $\mathbb{k}[L]^{\mathcal{G}} \to \mathbb{k}[L']^{\mathcal{G}}$ and the proposition follows. \square

The proposition in particular allows to reduce the general case of the Cohen-Macaulay problem for multiplicative invariants to the case of effective \mathcal{G} -lattices. Recall that the \mathcal{G} -lattice L is effective if $L^{\mathcal{G}}=0$. For any \mathcal{G} -lattice L, the quotient $L/L^{\mathcal{G}}$ is an effective \mathcal{G} -lattice; this follows, for example, from the fact that L is rationally isomorphic to the \mathcal{G} -lattice $L^{\mathcal{G}} \oplus L/L^{\mathcal{G}}$.

Corollary. $\mathbb{k}[L]^{\mathcal{G}}$ is Cohen-Macaulay if and only if this holds for $\mathbb{k}[L/L^{\mathcal{G}}]^{\mathcal{G}}$.

Proof. By the proposition, we may replace L by $L' = L^{\mathcal{G}} \oplus L/L^{\mathcal{G}}$. But $\mathbb{k}[L']^G \cong \mathbb{k}[L/L^{\mathcal{G}}]^{\mathcal{G}} \otimes_{\mathbb{k}} \mathbb{k}[L^{\mathcal{G}}]$, a Laurent polynomial algebra over $k[L/L^{\mathcal{G}}]^{\mathcal{G}}$. Thus, by [BH, Theorems 2.1.3 and 2.1.9], $\mathbb{k}[L']^{\mathcal{G}}$ is Cohen-Macaulay if and only if $\mathbb{k}[L/L^{\mathcal{G}}]^{\mathcal{G}}$ is Cohen-Macaulay. The corollary follows.

3.5. Remarks and examples.

3.5.1. Abelian bireflection groups. It is not hard to show that if \mathcal{G} is a finite abelian group acting as a bireflection group on the lattice L then $\mathbb{Z}[L]^{\mathcal{G}}$ is Cohen-Macaulay. Using Corollary 3.4 and an induction on rank L, the proof reduces to the verification that $\mathbb{Z}[L]^{\mathcal{G}}$ is Cohen-Macaulay for $L = \mathbb{Z}^n$ and $\mathcal{G} = \operatorname{diag}(\pm 1, \ldots, \pm 1) \cap \operatorname{SL}_n(\mathbb{Z})$. Direct computation shows that, for n > 2,

$$\mathbb{Z}[L]^{\mathcal{G}} = \mathbb{Z}[\xi_1, \dots, \xi_n] \oplus \eta \mathbb{Z}[\xi_1, \dots, \xi_n]$$

where $\xi_i = \mathbf{x}^{e_i} + \mathbf{x}^{-e_i}$ is the \mathcal{G} -orbit sum of the standard basis element $e_i \in \mathbb{Z}^n$ and η is the orbit sum of $\sum_i e_i = (1, \dots, 1)$.

It would be worthwhile to try and extend this result to larger classes of bireflection groups. The aforementioned classification of bireflection groups in [GuS] will presumably be helpful in this endeavor.

3.5.2. Subgroups of reflection groups. Assume that \mathcal{G} acts as a reflection group on the lattice L and let \mathcal{H} be a subgroup of \mathcal{G} with $[\mathcal{G}:\mathcal{H}]=2$. Then \mathcal{H} acts as a bireflection group. (More generally, if \mathcal{G} acts as a k-reflection group and $[\mathcal{G}:\mathcal{H}]=m$ then \mathcal{H} acts as a km-reflection group; see $[L_1]$.) Presumably $\mathbb{Z}[L]^{\mathcal{H}}$ will always be Cohen-Macaulay, but I have no proof. For an explicit example, let $\mathcal{G}=\mathcal{S}_n$ be the symmetric group on $\{1,\ldots,n\}$ and let $L=U_n$ be the standard permutation lattice for \mathcal{S}_n ; so $U_n=\bigoplus_{i=1}^n\mathbb{Z}e_i$ with $s(e_i)=e_{s(i)}$ for $s\in\mathcal{S}_n$. Transpositions act as reflections on U_n and 3-cycles as bireflections. Let $\mathcal{A}_n\leq\mathcal{S}_n$ denote the alternating group. To compute $\mathbb{Z}[U_n]^{\mathcal{A}_n}$, put $x_i=\mathbf{x}^{e_i}\in\mathbb{Z}[U_n]$. Then $\mathbb{Z}[U_n]=\mathbb{Z}[x_1,\ldots,x_n][s_n^{-1}]$, where $s_n=\mathbf{x}^{\sum_{i=1}^n e_i}=\prod_{i=1}^n x_i$ is the n^{th} elementary symmetric function, and \mathcal{S}_n acts via $s(x_i)=x_{s(i)}$ ($s\in\mathcal{S}_n$).

Therefore, $\mathbb{Z}[U_n]^{\mathcal{A}_n} = \mathbb{Z}[x_1, \dots, x_n]^{\mathcal{A}_n}[s_n^{-1}]$. The ring $\mathbb{Z}[x_1, \dots, x_n]^{\mathcal{A}_n}$ of polynomial \mathcal{A}_n -invariants has the following form; see [S, Theorem 1.3.5]: $\mathbb{Z}[x_1, \dots, x_n]^{\mathcal{A}_n} = \mathbb{Z}[s_1, \dots, s_n] \oplus d\mathbb{Z}[s_1, \dots, s_n]$, where s_i is the i^{th} elementary symmetric function and

$$d = \frac{1}{2} \left(\Delta + \Delta_+ \right)$$

with $\Delta_+ = \prod_{i < j} (x_i + x_j)$ and $\Delta = \prod_{i < j} (x_i - x_j)$, the Vandermonde determinant. Thus,

$$\mathbb{Z}[U_n]^{\mathcal{A}_n} = \mathbb{Z}[s_1, \dots, s_{n-1}, s_n^{\pm 1}] \oplus d\mathbb{Z}[s_1, \dots, s_{n-1}, s_n^{\pm 1}]$$

This is Cohen-Macaulay, being free over $\mathbb{Z}[s_1,\ldots,s_{n-1},s_n^{\pm 1}].$

3.5.3. S_n -lattices. If L is a lattice for the symmetric group S_n such that $\mathbb{Z}[L]^{S_n}$ is Cohen-Macaulay then the Theorem implies that S_n acts as a bireflection group on L, and hence on all simple constituents of $L \otimes_{\mathbb{Z}} \mathbb{Q}$. The simple $\mathbb{Q}[S_n]$ -modules are the Specht modules S^λ for partitions λ of n. If $n \geq 7$ then the only partitions λ so that S_n acts as a bireflection group on S^λ are (n), (1^n) and (n-1,1); this follows from the lists in [Hu] and [W]. The corresponding Specht modules are trivial module, \mathbb{Q} , the sign module \mathbb{Q}^- , and the rational root module $A_{n-1} \otimes_{\mathbb{Z}} \mathbb{Q}$, where $A_{n-1} = \{\sum_i z_i e_i \in U_n \mid \sum_i z_i = 0\}$ and U_n is as in §3.5.2. Thus, if $n \geq 7$ and $\mathbb{Z}[L]^{S_n}$ is Cohen-Macaulay then we must have

$$L \otimes_{\mathbb{Z}} \mathbb{Q} \cong \mathbb{Q}^r \oplus (\mathbb{Q}^-)^s \oplus (A_{n-1} \otimes_{\mathbb{Z}} \mathbb{Q})^t$$

with $s+t \leq 2$. In most cases, $\mathbb{Z}[L]^{\mathcal{S}_n}$ is easily seen to be Cohen-Macaulay. Indeed, we may assume r=0 by Corollary 3.4. If $s+t \leq 1$ then \mathcal{S}_n acts as a reflection group on L and so $\mathbb{Z}[L]^{\mathcal{S}_n}$ is Cohen-Macaulay by $[L_2]$. For t=0 we may quote the last remark in §3.2. This leaves the cases s=t=1 and s=0, t=2 to consider.

If s=t=1 then add a copy of $\mathbb Q$ so that L is rationally isomorphic to $U_n\oplus\mathbb Z^-$. Using the notation of $\S 3.5.2$ and putting $t=\mathbf x^{(0_{U_n},1)}\in\mathbb Z[U_n\oplus\mathbb Z^-]$ the invariants are:

$$\mathbb{Z}[U_n \oplus \mathbb{Z}^-]^{\mathcal{S}_n} = R \oplus R\varphi$$

with $R=\mathbb{Z}[s_1,\ldots,s_{n-1},s_n^{\pm 1},t+t^{-1}]$ and $\varphi=\frac{1}{2}(\Delta_++\Delta)t+\frac{1}{2}(\Delta_+-\Delta)t^{-1}.$ If s=0 and t=2 then we may replace L by the lattice $U_n^2=U_n\oplus U_n.$ By Lemma 3.2 $\mathbb{Z}[U_n^2]^{\mathcal{S}_n}$ is Cohen-Macaulay precisely if $\mathbb{F}_p[U_n^2]^{\mathcal{S}_n}$ is Cohen-Macaulay for all primes $p\leq n.$ As in §3.5.2, one sees that $\mathbb{F}_p[U_n^2]^{\mathcal{S}_n}$ is a localization of the algebra "vector invariants" $\mathbb{F}_p[x_1,\ldots,x_n,y_1,\ldots,y_n]^{\mathcal{S}_n}.$ By [K₂, Corollary 3.5], this algebra is known to be Cohen-Macaulay for $n/2 , but the primes <math>p \leq n/2$ apparently remain to be dealt with.

3.5.4. Ranks ≤ 4 . As was pointed out in §3.2, $\mathbb{Z}[L]^{\mathcal{G}}$ is always Cohen-Macaulay when rank $L \leq 2$.

For $L=\mathbb{Z}^3$, there are 32 \mathbb{Q} -classes of finite subgroups $\mathcal{G} \leq \operatorname{GL}_3(\mathbb{Z})$. All \mathcal{G} are solvable; in fact, their orders divide 48. The Sylow 3-subgroup $\mathcal{H} \leq \mathcal{G}$, if nontrivial, is generated by a bireflection of order 3. Thus, $\mathbb{F}_3[L]^{\mathcal{H}}$ is Cohen-Macaulay, and hence so is $\mathbb{F}_3[L]^{\mathcal{G}}$. Therefore, by Lemma 3.2, $\mathbb{Z}[L]^{\mathcal{G}}$ is Cohen-Macaulay if and only if $\mathbb{F}_2[L]^{\mathcal{G}}$ is Cohen-Macaulay, and for this to occur, \mathcal{G} must be generated by bireflections. It turns out that 3 of the 32 \mathbb{Q} -classes consist of non-bireflection groups; these classes are represented by the cyclic groups

$$\left\langle \left(\begin{smallmatrix} -1 \\ & -1 \\ & & -1 \end{smallmatrix} \right) \right\rangle \; , \quad \left\langle \left(\begin{smallmatrix} -1 \\ & & 1 \\ & & -1 \end{smallmatrix} \right) \right\rangle \; , \quad \left\langle \left(\begin{smallmatrix} -1 \\ & -1 \\ & & -1 \end{smallmatrix} \right) \right\rangle$$

of orders 2, 4 and 6 (the latter two classes each split into 2 \mathbb{Z} -classes). For the \mathbb{Q} -classes consisting of bireflection groups, Pathak [Pk] has checked explicitly that $\mathbb{F}_2[L]^{\mathcal{G}}$ is indeed Cohen-Macaulay.

In rank 4, there are 227 \mathbb{Q} -classes of finite subgroups $\mathcal{G} \leq \operatorname{GL}_4(\mathbb{Z})$. All but 5 of them consist of solvable groups and 4 of the non-solvable classes are bireflection groups, the one exception being represented by \mathcal{S}_5 acting on the signed root lattice $\mathbb{Z}^- \otimes_{\mathbb{Z}} A_4$. Thus, if the group $\mathcal{G}/\mathcal{G}^{(2)}$ is perfect then it is actually trivial, that is, \mathcal{G} is a bireflection group. It also turns out that, in this case, all isotropy groups \mathcal{G}_m are bireflection groups. There are exactly 71 \mathbb{Q} -classes that do not consist of bireflection groups. By the foregoing, they lead to non-Cohen-Macaulay multiplicative invariant algebras. The \mathbb{Q} -classes consisting of bireflection groups have not been systematically investigated yet. The searches in rank 4 were done with [GAP].

Acknowledgments. Some of the research for this article was carried out during a workshop in Seattle (August 2003) funded by Leverhulme Research Interchange Grant F/00158/X and during the symposium "Ring Theory" in Warwick, UK (September 2003). The results described here were reported in the special session "Algebras and Their Representations" at the AMS-meeting in Chapel Hill (October 2003). Many thanks to Bob Guralnick for his helpful comments on an earlier version of this article.

REFERENCES

[Bou₁] N. Bourbaki, *Groupes et algèbres de Lie, chapitres 4, 5 et 6*, Hermann, Paris, 1968.

[Bou₂] _____, Algèbre commutative, chap. 5/6, Hermann, Paris, 1964.

[Bou₃] _____, Algèbre commutative, chapitres 8 et 9, Masson, Paris, 1983.

[Br] K.S. Brown, *Cohomology of Groups*, Springer-Verlag, New York, 1982.

[BH] W. Bruns and J. Herzog, *Cohen-Macaulay Rings*, Cambridge University Press, Cambridge, 1993.

[CR] C.W. Curtis and I. Reiner, *Methods of Representation Theory*, Volume 1, John Wiley & Sons, New York, 1981.

- [GAP] The GAP Group, GAP Groups, Algorithms, and Programming, Version 4.4; 2004, (\protect\vrule width0pt\protect\href{http://www.gap-system.org}{http://www.gap-system.org}
- [G₁] N.L. Gordeev, *Invariants of linear groups generated by matrices with two non-identity eigenvalues* (Russian), Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) **114** (1982), 120–130.
- [G₂] N.L. Gordeev, *Finite linear groups whose algebras of invariants are complete intersections*, Math. USSR Izv. **28** (1987), 335–379.
- [GK] N.L. Gordeev and G. Kemper, On the branch locus of quotients by finite groups and the depth of the algebra of invariants, J. Algebra 268 (2003), 22–38.
- [GuS] R. Guralnick and J. Saxl, *Generation of finite almost simple groups by conjugates*, J. Algebra **268** (2003), 519–571.
- [HE] M. Hochster and J.A. Eagon, *Cohen-Macaulay rings, invariant theory, and the generic perfection of determinantal loci*, Amer. J. Math. **93** (1971), 1020–1058.
- [Hu] C. Huffman, Linear Groups containing an element with an eigenspace of codimension two, J. Algebra **34** (1975), 260–287.
- [HuW] C. Huffman and D. Wales, *Linear groups containing an element with an eigenspace of codimension two*, in: Proceedings of the Conference on Finite Groups, Univ. Utah, Park City, Utah, 1975, Academic Press, New York, 1976, pp. 425–429.
- [I] I.M. Isaacs, Character Theory of Finite Groups, Academic Press, New York, 1976.
- [KW] V. Kac and K. Watanabe, Finite linear groups whose ring of invariants is a complete intersection, Bull. Amer. Math. Soc. 6 (1982), 221–223.
- [K₁] G. Kemper, *Die Cohen-Macaulay-Eigenschaft in der modularen Invariantentheorie*, Habilitationsschrift, Universität Heidelberg, 1999.
- [K₂] G. Kemper, *The depth of invariant rings and cohomology* (with an appendix by Kay Magaard), J. Algebra **245** (2001), 463–531.
- [L₁] M. Lorenz, *Multiplicative Invariant Theory*, to appear in Springer Encyclopaedia of Mathematical Sciences; preliminary version available at www.math.temple.edu/~lorenz/papers/EMS/EMS.html.
- [L₂] M. Lorenz, *Multiplicative invariants and semigroup algebras*, Algebras and Rep. Thy. **4** (2001), 293–304.
- [LPk] M. Lorenz and J. Pathak, *On Cohen-Macaulay rings of invariants*, J. Algebra **245** (2001), 247–264.
- [N] H. Nakajima, *Quotient singularities which are complete intersections*, Manuscripta Math. **48** (1984), 163–187.
- [Pk] J. Pathak, *The Cohen-Macaulay property of multiplicative invariants*, Ph.D. thesis, Temple University, 2003.
- [S] L. Smith, *Polynomial Invariants of Finite Groups*, A. K. Peters, Wellesley, 1995.
- [St] R. Steinberg, *Differential equations invariant under finite reflection groups*, Trans. Amer. Math. Soc. **112** (1964), 392–400.
- [W] D. Wales, *Linear groups of degree n containing an involution with two eigenvalues* -1, J. Algebra **53** (1978), 58–67.
- [Wo] J.A. Wolf, *Spaces of Constant Curvature*, 5th ed., Publish or Perish, Inc., Wilmington, 1984.

DEPARTMENT OF MATHEMATICS, TEMPLE UNIVERSITY, PHILADELPHIA, PA 19122 *E-mail address*: lorenz@math.temple.edu