Machine Learning: Basi e Sue Applicazioni

Christian Salvatore Scuola Universitaria Superiore IUSS Pavia

Radiomic hypotesis

Molecular heterogeneity of cancer lesions is cause of different clinical outcome.

Such heterogeneity can be captured, *in vivo*, on the entire lesion volume, by high-throughput quantitative **radiomics** descriptors from 3D image of cancer lesion.

Different expression level of a signature of radiomic features are able to predict different prognosis or treatment response of patients with similar cancer diagnosis (statistical analysis and predictive models).

Radiomics: Images Are More than Pictures, They Are Data¹

In the past decade, the field of medical image analysis has grown exponentially, with an increased number of pattern recognition tools and an increase in data set sizes. These advances have facilitated the development of processes for high-throughput extraction of quantitative features that result in the conversion of images into mineable data and the subsequent analysis of these data for decision support; this practice is termed radiomics. This is in contrast to the traditional practice of treating medical images as pictures intended solely for visual interpretation. Radiomic data contain first-, second-, and higher-order statistics. These

data are combined with other patient data and are mined

Robert J. Gillies, PhD

Paul E. Kinahan, PhD

Hedvig Hricak, MD, PhD, Dr(hc)

Radiomics: a new approach for the study of cancer

Published in final edited form as: Eur J Camer. 2012 March; 43 (4): 441–446. doi:10.1016/j.ejca.2011.11.036.

Radiomics: Extracting more information from medical images using advanced feature analysis

Philippe Lambin^{a,*},e,f, Emmanuel Rios-Velazquez^{a,e}, Ralph Leijenaar^{a,e}, Sara Carvalho^{a,e}, Ruud G.P.M. van Stiphout^{a,e}, Patrick Granton^{a,e}, Catharina M.L. Zegers^{a,e}, Robert Gillies^{b,e}, Ronald Boellard^{c,e}, André Dekker^{a,e}, and Hugo J.W.L. Aerts^{a,d,e}

^aDepartment of Radiation Oncology (MAASTRO), GROW – School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands ^bH. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA ^cU University Medical Center, Department of Nuclear Medicine & PET Research, Amsterdam, The Netherlands ^dComputational Biology and Functional Genomics Laboratory, Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard School of Public Health, USA

Comprehensive quantification of disease phenotypes by applying a large number of quantitative image features representing lesion heterogeneity and correlating with omics and clinical data

Texture and shape features

Feature	Description		Examples
Texture-	Grey level frequency distribution from	Global	Minimum, mean and maximum intensity
First order	histogram Analysis		Standard deviation
			Skewness
			Kurtosis
			Percentile values
			Range of intensities
Texture-	From spatial grey level dependence matrices	Local	Entropy
Second order	(SGLDM) or co-occurrence matrices		Energy
order	They express how often a pixel of intensity i		Contrast
	finds itself within a certain relationship to another pixel of intensity j		Homogeneity
			Dissimilarity
			Uniformity
			Correlation
Texture-	From neighbourhood grey-tone difference	Local	Coarseness
Third order	matrices (NGTDMs)		Contrast
			Busyness
			Complexity
	From voval alignment matrices	Dogional	Run-length and emphasis
	From voxel alignment matrices	Regional	Run-length variability
	From grey level size zone matrices	Regional	Zone emphasis
	They reflect regional intensity variations or the distribution of homogeneous regions		Size-zone variability
Shape and			Spericity
Size			Compactness
			Eccentricity
			Surface Area
			Sperical Disproportion
			Surface to Volume ratio
			Solidity

https://www.researchgate.net/figure/Various-radiomic-features-such-as-mesh-based-shape-histogram-gray-level-co-occurrence_fig3_315902486

Morphological features

- 1. Metabolic Target Volume (MTV)
- 2. Surface
- 3. Spherical disproportion (ratio between measured surface of the lesion and surface of an equivalent-sphere in terms of volume)
- 4. Sphericity
- 5. Surface-to-volume ratio

Normal	Cancer	
00		Large, variably shaped nuclei
000	0000	Many dividing cells;
-		Disorganized arrangement
		Variation in size and shape
		Loss of normal features

http://sphweb.bumc.bu.edu/otlt/MPH-Modules/PH/PH709_Cancer/PH709_Cancer7.html

Histogram-based features

- 1. Maximum
- 2. Minimum
- 3. Mean
- 4. Median
- 5. Mean Absolute Deviation (MAD)
- 6. Root Mean Square (RMS)
- 7. Energy
- 8. Entropy
- 9. Kurtosis
- 10. Skewness
- 11. Standard Deviation
- 12. Uniformity
- 13. Variance

Texture descriptors Gray-Level Co-occurrence Matrix (GLCM)*

- 1. Energy
- 2. Contrast
- 3. Entropy
- 4. Homogeneity
- 5. Correlation
- 6. Sum Average
- 7. Variance
- 8. Dissimilarity
- 9. Auto Correlation
- * A Gray Level Co-occurrence Matrix (GLCM) quantifies the number of times the combination of levels X and Y occur in two pixels in the image that are separated by a distance of D pixels along angle A.

mathworks.com

Texture descriptors Gray-Level Run Length Matrix (GLRLM)*

https://www.researchgate.net/figure/Principles-of-generating-texture-analysis-features-Principles-of-generating-the_fig2_320821651

*A Gray Level Run Length Matrix (GLRLM) quantifies gray level runs, which are defined as the length in number of pixels, of consecutive pixels that have the same gray level value. It describes # runs with gray level G and length L that occur in the image along angle A.

Christian Salvatore | Machine Learning: Basi e Sue Applicazioni | Scuola Universitaria Superiore IUSS Pavia | 2021

Texture descriptors Gray-Level Size Zone Matrix (GLSZM)

1	2	3	4
1	3	4	4
3	2	2	2
4	1	4	1

Level	Size zone, s				
g	1	2	3		
1	2	1	0		
2	1	0	1		
3	0	0	1		
4	2	0	1		

http://thibault.biz/Research/ThibaultMatrices/GLSZM/GLSZM.html

Contrary to GLCM and GLRLM, the GLSZM is rotation independent, with only one matrix calculated for all directions in the ROI

^{*} A gray level zone is defined as a the number of connected voxels that share the same gray level intensity.

Texture descriptors Neighbouring Gray Tone Difference Matrix (NGTDM)*

^{*} A Neighbouring Gray Tone Difference Matrix quantifies the difference between a gray value and the average gray value of its neighbours within distance D

Textures in cancer by PET

measured by Spearman's rank correlation (rs) and the area under the ROC curve (AUC).

Variable	Spearman (rs)	AUC	
Tumor volume	0.6928	0.8750	
	Maximum	0.3464	0.7000
SUV Measurements	Minimum	-0.2642	0.6000
SOV Meastrements	Mean	0.1732	0.6500
	Standard deviation	0.3464	0.6750
	I ₁₀	0.1732	0.7000
	I ₉₀	0.0	0.5000
	I ₁₀₋₉₀	0.2598	0.6750
IVH Intensity-volume metrics	V ₁₀	-0.1732	0.5750
	V ₉₀	-0.7794	0.9500
	V ₁₀₋₉₀	0.0866	0.5000
	Energy	0.0866	0.5000
T 4 1 10 4	Contrast	-0.5196	0.8000
Texture-based features	Local homogeneity	0.5196	0.8250
	Entropy	-0.1732	0.5250
	Eccentricity	0.2598	0.6500
Shape-based features	Euler Number	0.6166	0.8500
Shape-based features	Solidity	-0.6088	0.8500
	- · ·	0.0000	

Table 2

Association between different extracted features and overall survival in a cohort of 9 head and neck patients

J Nucl Med 2011; 52:369-378

Intratumor Heterogeneity Characterized by Textural Features on Baseline ¹⁸F-FDG PET Images Predicts Response to Concomitant Radiochemotherapy in Esophageal Cancer

Florent Tixier¹, Catherine Cheze Le Rest^{1,2}, Mathieu Hatt¹, Nidal Albarghach^{1,3}, Olivier Pradier^{1,3}, Jean-Philippe Metges^{3,4}, Laurent Corcos⁴, and Dimitris Visvikis¹

JINSERM, 1650, LaTIM, CHIJ, Marvan, Brest, Epince: 2Department of Nuclear Medicine, CHIJ, Marvan, Brest, France: 3Institute.

A study in which we hope not to be cited...

RESEARCH ARTICLE

False Discovery Rates in PET and CT Studies with Texture Features: A Systematic Review

Anastasia Chalkidou*, Michael J. O'Doherty, Paul K. Marsden

Division of Imaging Sciences and Biomedical Engineering, Kings College London 4th Floor, Lambeth Wing, St. Thomas Hospital, SE1 7EH, London, United Kingdom

anastasia.chalkidou@kcl.ac.uk

Fig 2. Probability of a false positive result based on number of hypotheses tested per study (blue columns) for all study categories. 5% type-I error probability = red line, average type-I error probability (76%) over all studies = green line (Note—additional inflation of the type-I error probability due to the use of the optimum cut-off approach is not included here).

doi:10.1371/journal.pone.0124165.g002

Key methodological issues

- Repeatability, the closeness of the agreement between the results of successive radiomic measurements under the same conditions of measurement
- Riproducibility, the closensess of the agreement between the results of radiomic measurement under similar conditions of measurements
- **Significance**, the ability of radiomic in effectively characterizing cancer lesion heterogeneity

Stability

Biological change or radiomics unstability?

It is necessary that the radiomics features are **repeatable** for the same patient as part of the prognosis and therapeutic monitoring but also **reproducible** when performed across multiple centers and patients.

For the SUV and MTV metrics, a cut-off value of ±30% has been accepted for associating the changes to actual metabolic variations (PERCIST).

There is currently no consensus on the tolerated variability of radiomics features for the evaluation of prognosis or response to treatment.

Only radiomic features with high repeatability and reproducibility should be selected as candidate for predictive biomarkers.

Which model to study key radiomics issues?

Research Article

A Method for Manufacturing Oncological Phantoms for the Quantification of 18F-FDG PET and DW-MRI Studies

Francesca Gallivanone, ¹ Irene Carne, ² Matteo Interlenghi, ¹ Daniela D'Ambrosio, ² Maurizia Baldi, ³ Daniele Fantinato, ² and Isabella Castiglioni ¹

¹Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Milan, Italy ²Medical Physics Unit, IRCCS Fondazione S. Maugeri, Pavia, Italy

³Department of Diagnostic Imaging, IRCCS Fondazione S. Maugeri, Pavia, Italy

Radiomics repeatability

Hindawi Contrast Media & Molecular Imaging Volume 2018, Article ID 5324517, 12 pages https://doi.org/10.1155/2018/5324517

Research Article

Parameters Influencing PET Imaging Features: A Phantom Study with Irregular and Heterogeneous Synthetic Lesions

Francesca Gallivanone (0), Matteo Interlenghi (0), Daniela D'Ambrosio (0), Giuseppe Trifirò, and Isabella Castiglioni (0)

 1 Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Milan, Italy 2 Medical Physics Unit, IRCCS Fondazione S. Maugeri, Pavia, Italy

Nuclear Medicine Unit, IRCCS Fondazione S. Maugeri, Pavia, Italy

Nuclear Medicine Unit, IRCCS Fondazione S. Maugeri, Pavia, Italy

- Test-retest is performed among the distributions of the radiomic values obtained in the subsequent measurements.
- The pairwise Intraclass Correlation coefficient (ICC) is calculated (ICC>0.7 is considered for stability).

High repeatability

FIGURE 6: Reproducibility of radiomic features on test-retest datasets. ICC results. • indicates ICC ≥ 0.6.

Radiomics reproducibility

- Preparation
- Acquisition
- Reconstruction
- Segmentation
- Interpolation
- Re-segmentation
- Discretization

Preparation and acquisition

- Patient's conditions (e.g. Glycemia)
- Injected dose
- Scan time vs uptake time
- Time per bed position
- Respiratory motion

•••

Preparation and acquisition | Uptake time

Lovat et al. 2017 – 54 neurofibromas a significant **radiomic value change** between two different **uptake times** both for benign and malignant lesions

Preparation and acquisition | Respiratory motion

Vaidya et al. 2012 - 27 lung cancer

Radiomic value change considering or not respiratory motion correction by image deconvolution. *No change in radiotherapy response.*

Yip et al. 2014 - 26 lung cancer/Oliver et al. 2015 - 23 lung cancer Radiomic value change considering or not respiratory motion correction by gating. No results on clinical outcome.

Grootjans et al. 2016 - 60 lung cancer Radiomic value change in lower lobes considering or not respiratory motion correction by gating. No change in prognosis.

Image reconstruction

- Method (back-projection, iterative –n. it, n. subset...)
- PSF incorporation or not
- TOF incorporation or not
- Matrix size
- Filter
- PVC or not
- Statistical noise

...

Image reconstruction

Galavis et al. 2010 - 20 solid cancer

Radiomic value change with different **reconstruction** settings (method, n iter, matrix size, filter).

Yan et al. 2015 - 20 lung cancer / Orlhac et al. 2017 - 54 breast cancer Radiomic value change with different reconstruction settings (method, n iter, matrix size, filter) ±TOF± PSF.

However, matrix size is the more impacting factor.

Shiri et al. 2017 - 25 lung, head, neck, liver cancer

Poor reproducibility of radiomic values for different **reconstruction** settings (method, n iter, n subset, matrix size, filter, PSF, TOF, scan time).

Radiomics reproducibility

Contrast Media & Molecular Imaging Volume 2018. Article ID 5324517, 12 page

Research Article

Parameters Influencing PET Imaging Features: A Phantom Study with Irregular and Heterogeneous Synthetic Lesions

Francesca Gallivanone , Matteo Interlenghi , Daniela D'Ambrosio , Giuseppe Trifirò,3 and Isabella Castiglioni @1

¹Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Milan, Italy ²Medical Physics Unit, IRCCS Fondazione S. Maugeri, Pavia, Italy Nuclear Medicine Unit, IRCCS Fondazione S. Maugeri, Pavia, Italy

Coefficient of Variation (COV) can be calculated (COV<0.10 is considered for stability) but a statistical test is the best choice

High reproducibility

FIGURE 5: Stability of radiomic features on different reconstruction settings. COV results. • indicates COV ≤ 10%

Discretization

Resampling voxels in a limited number of intensity values (bins) (for textural feature calculation).

Fixed bin size

Fixed bin number

Discretization

Leijenaar et al. 2015 - 35 lung cancer Taxture value is dependent on the method of discretisation **fixed bin size is recommended** (constant intensity resolution, more robust, repeatable and less sensitive to segmentation and reconstruction changes)

Lu et al. 2016 - 40 nasopharyngeal carcinoma. 23% of texture features are stable vs **fixed bin size**

Orlhac et al. 2015 - 48 lung cancer & phantom studies / Desseroit et al. 2017 - 73 lung cancer fixed bin size is recommended (not requiring MTV of at least 45cc but less intuitive when imaged).

Discretization

Tixier et al.2011 – 41 oesophageal cancer Textural features are stable and less correlated with MTV for **fixed bin number** (64 bins is recommended since it seems to be sufficient to cover SUV range of lesions with 0.25 increments).

Segmentation

Segmentation of the tumour volume is a crucial step because all the radiomics features are calculated starting from the segmented volume.

A variety of methods exists (manual, thresholding, graph-based, region growing, statistical modelling, contour and gradient-based ...)

In radiomics **robustness** (e.g. stability vs noise) is more important than accuracy

Segmentation

Hatt et al. 2013- 50 oesophageal cancer Entropy, homogeneity showed moderate variability for different segmentation. **No change in radiochemotherapy response**.

Leijenaar et al. 2013 - 23 lung cancer Most textural features **are stable** vs4-operator manual contouring .

Orlhac et al. 2014 - 188 colorectal, lung, breast cancer Entropy and regional textural **are quite stable** for different segmentation methods.

Hatt et al. 2018 - 100 lung cancer
Sphericity, homogeneity and dissimilarity value changes depending on the segmentation method

Change in prognosis and prediction of response to treament.

Radiomics significance

Hindawi Contrast Media & Molecular Imaging Volume 2018, Article ID 5324517, 12 pages https://doi.org/10.1155/2018/5324517

Research Article

Parameters Influencing PET Imaging Features: A Phantom Study with Irregular and Heterogeneous Synthetic Lesions

Francesca Gallivanone , ¹ Matteo Interlenghi , ¹ Daniela D'Ambrosio , ² Giuseppe Trifirò, ³ and Isabella Castiglioni .

¹Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Milan, Italy ²Medical Physics Unit, IRCCS Fondazione S. Maegeri, Pavia, Italy ³Nuclear Medicine Unit, IRCCS Fondazione S. Maegeri, Pavia, Italy

Test correlation of radiomic feature with gold-standard heterogeneity H_{GS}

Figure 8: Results of correlation analysis between radiomic features and $H_{\rm GS}$ (p value), \bullet indicates p value < 0.05.

High significance

Radiomics significance

Hindawi Contrast Media & Molecular Imaging Volume 2018, Article ID 5324517, 12 pages https://doi.org/10.1155/2018/5324517

Research Article

Parameters Influencing PET Imaging Features: A Phantom Study with Irregular and Heterogeneous Synthetic Lesions

Francesca Gallivanone , ¹ Matteo Interlenghi , ¹ Daniela D'Ambrosio , ² Giuseppe Trifirò, ³ and Isabella Castiglioni .

¹Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Milan, Italy ²Medical Physics Unit, IRCCS Fondazione S. Maugeri, Pavia, Italy ³Nuclear Medicine Unit, IRCCS Fondazione S. Maugeri, Pavia, Italy

- test significant differences among each radiomic feature from heterogeneous vs. homogeneous uptake (e.g. Mann-Whitney test)
- measure the ability of radiomic features in discriminating heterogeneous from homogeneous lesions

High significance

Figure 7: Mann-Whitney test results (p value), • indicates p value < 0.05.

Image Biomarker Standardization Initiative (IBSI)

They are providing:

- image biomarker nomenclature and definitions
- benchmark data sets and values
- reporting guidelines
- consensus-based guidelines for stable radiomic biomarkers

Zwanenburg A, Leger S, Valli`eres M, L`ock S. Image biomarker standardisation initiative. arXiv preprint arXiv:1612.07003.

Lambin P. Radiomics Digital Phantom, CancerData (2016), DOI:10.17195/candat.2016.08.1

Image Biomarker Standardization Initiative (IBSI)

Some recommandations are delivered: e.g. re-segmentation and discretization

Imaging intensity units ⁽¹⁾	Re-segmentation range	$\mathbf{FBN}^{(2)}$	$\mathbf{FBS}^{(3)}$
	[a,b]	~	~
definite	$[a,\infty)$	~	~
	none	~	×
arbitrary	none	~	×

Table 2.1 — Recommendations for the possible combinations of different imaging intensity definitions, re-segmentation ranges and discretisation algorithms. Checkmarks (\checkmark) represent recommended combinations of re-segmentation range and discretisation algorithm, whereas crossmarks (X) represent non-recommended combinations.

They are working on tolerated variability of radiomics features but results are not currently disclosed

⁽¹⁾ PET and CT are examples of imaging modalities with *definite* intensity units (e.g. SUV and HU, respectively), and raw MRI data of arbitrary intensity units.

⁽²⁾ Fixed bin number (FBN) discretisation uses the actual range of intensities in the analysed ROI (re-segmented or not), and not the re-segmentation range itself (when defined).

⁽³⁾ Fixed bin size (FBS) discretisation uses the lower bound of the re-segmentation range as the minimum set value. When the re-segmentation range is not or cannot be defined (e.g. arbitrary intensity units), the use of the FBS algorithm is not recommended.

A possible solution?

A post-reconstruction harmonization method for multicenter radiomic studies in PET

Fanny Orlhac, Sarah Boughdad, Cathy Philippe, Hugo Stalla-Bourdillon, Christophe Nioche, Laurence Champion, Michaël Soussan, Frédérique Frouin, Vincent Frouin and Irène Buvat

J Nucl Med. Published online: January 4, 2018. Doi: 10.2967/inumed.117.199935

Harmonization method

To pool SUV and textural features measured from different PET protocols, we tested a harmonization method previously described for genomic studies to correct the so-called batch effect. The ComBat harmonization model developed by Johnson et al (25) assumes that the value of each feature y measured in VOI j and scanner i can be written as:

$$y_{ij} = \alpha + X_{ij}\beta + \gamma_i + \delta_i \varepsilon_{ij}$$
 Equation 1

where α is the average value for feature y, X is a design matrix for the covariates of interest, β is the vector of regression coefficients corresponding to each covariate, γ_i is the additive effect of scanner i on features supposed to follow a normal distribution, δ_i describes the multiplicative scanner effect supposed to follow an inverse gamma distribution, and ε_{ij} is an error term (normally distributed with a zero mean), as explained in Fortin et al (30). ComBat harmonization consists in estimating γ_i and δ_i using Empirical Bayes estimates (noted γ_i^* and δ_i^*) as described in (25). The normalized value of feature y for VOI j and scanner i is then obtained as:

$$y_{ij}^{ComBat} = \frac{y_{ij} - \hat{\alpha} - X_{ij} \hat{\beta} - \gamma_i^*}{\delta_i^*} + \hat{\alpha} + X_{ij} \hat{\beta}$$
 Equation 2

where $\hat{\alpha}$ and $\hat{\beta}$ are estimators of parameters α and β respectively. The ComBat harmonization determines a transformation for each feature separately based on the batch (here Department) effect observed on feature values. In the first part of this study, we used ComBat without accounting for any biological covariate (ie X=0), and, in the second part, we used the TN status as the covariate of interest.

For each tissue separately (tumor and liver tissues), we applied ComBat harmonization on all features using the R function called "combat" available at https://github.com/Jfortin1/ComBatHarmonization/.

Results

"Centre effect" on 9 radiomic features from breast cancer patients (63 A vs 74 B)

					After C	omBat		
	TN(A) vs TN(B)	non- TN(A) vs non- TN(B)	TN(A+B) vs non- TN(A+B)	TN(B) vs non- TN(A)	TN(A) vs TN(B)	non- TN(A) vs non- TN(B)	TN(A+B) vs non- TN(A+B)	TN(B) vs non- TN(A)
Homogeneity	0.4232	0.0074	0.0014	0.4635	0.5986	0.8737	0.0015	0.0093
Entropy	0.5196	0.3906	0.0031	0.0875	0.7405	0.9139	0.0027	0.0254
SRE	0.2995	0.00044	0.0063	0.9481	0.1294	0.8338	0.0062	0.0061
LRE	0.2814	0.0004	0.0072	0.9352	0.0055	0.3871	0.0162	0.0004
LGZE	0.0405	0.0244	5.69e-05	0.3786	0.1102	0.3059	0.0002	0.0003
HGZE	0.0494	0.0282	3.20e-05	0.2886	0.2814	0.3337	2.27e-05	0.0058
SUVmax	0.0544	0.0278	7.54e-05	0.4058	0.5717	0.7943	4.47e-05	0.0072
SUVmean	0.0448	0.0359	3.20e-05	0.2394	0.4463	0.7747	3.05e-05	0.0052
SUVpeak	0.0267	0.0306	9.75e-05	0.4736	0.3581	0.7894	4.99e-05	0.0061

Table 3: P-values of Wilcoxon's test for all features between TN and non-TN lesions from Departments A and B, before and after ComBat harmonization. Bold values are less than 0.05.

A recommendation

Test radiomic results on many different and independent image data sets!

Radiomics: a new approach for the study of cancer

Published in final edited form as: Eur J Can er. 2012 March; 45-4): 441–446. doi:10.1016/j.ejca.2011.11.036.

Radiomics: Extracting more information from medical images using advanced feature analysis

Philippe Lambin^{a,*},e,f, Emmanuel Rios-Velazquez^{a,e}, Ralph Leijenaar^{a,e}, Sara Carvalho^{a,e}, Ruud G.P.M. van Stiphout^{a,e}, Patrick Granton^{a,e}, Catharina M.L. Zegers^{a,e}, Robert Gillies^{b,e}, Ronald Boellard^{c,e}, André Dekker^{a,e}, and Hugo J.W.L. Aerts^{a,d,e}

^aDepartment of Radiation Oncology (MAASTRO), GROW – School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands ^bH. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA ^cU University Medical Center, Department of Nuclear Medicine & PET Research, Amsterdam, The Netherlands ^dComputational Biology and Functional Genomics Laboratory, Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard School of Public Health, USA

Comprehensive quantification of disease phenotypes by applying a large number of quantitative image features representing lesion heterogeneity and correlating with omics and clinical data

CT radiogenomics for cancer

An approach to radiogenomics: system medicine

Published online 23 December 2015

Nucleic Acids Research, 2016, Vol. 44, No. 8 e71 doi: 10.1093/nar/gkv1507

Molecular Sciences

and Isabella Castiglioni 1,8

TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data

Antonio Colaprico^{1,2,†}, Tiago C. Silva^{3,4,†}, Catharina Olsen^{1,2}, Luciano Garofano^{5,6}, Claudia Cava⁷, Davide Garolini⁸, Thais S. Sabedot^{3,4}, Tathiane M. Malta^{3,4}, Stefano M. Pagnotta^{5,9}, Isabella Castiglioni⁷, Michele Ceccarelli¹⁰, Gianluca Bontempi^{1,2,*} and Houtan Noushmehr^{3,4,*}

¹Interuniversity Institute of Bioinformatics in Brussels (IB)², Brussels, Belgium, ²Machine Learning Group (MLG), Department d'Informatique, Université libre de Bruxelles (ULB), Brussels, Belgium, ³Department of Genetics Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil, ⁴Center for Integrative Systems Biology - CISBi, NAP/USP, Ribeirão Preto, São Paulo, Brazil, ⁵Department of Science and Technology, University of Sannio, Benevento, Italy, ⁶Unlimited Software srl, Naples, Italy, ⁷Institute of Molecular Bioimaging and Physiology of the National Research Council (IBFM-CNR), Milan, Italy, 8 Physics for Complex Systems, Department of Physics, University of Turin, Italy, ⁹Bioinformatics Laboratory, BIOGEM, Ariano Irpino, Avellino, Italy and ¹⁰Qatar Computing Research Institute (QCRI), HBKU, Doha, Qatar

Theranostics 2015, Vol. 5, Issue 10 1122 Theranostics 2015: 5(10): 1122-1143. doi: 10.7150/thno.11543

MicroRNAs: New Biomarkers for Diagnosis, Prognosis, Therapy Prediction and Therapeutic Tools for Breast Cancer

Gloria Bertoli, Claudia Cava, and Isabella Castiglioni

Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Milan, Italy.

Received: 2015.01.09; Accepted: 2015.06.17; Published: 2015.07.13

SYSBIO Centre of Systems Biology (SYSBIO), Milan 20126, Italy

Correspondence: claudia.cava@ibfm.cnr.it (C.C.); isabella.castiglioni@ibfm.cnr.it (I.C.); Tel.: +39-02-21717552 (C.C. & I.C.)

Breast-cancer system biology

The Author(s) BMC Bioinformatics 2016, 17(Suppl 12):348 DOI 10.1186/s12859-016-1196-1

BMC Bioinformatics

RESEARCH

Open Access

How interacting pathways are regulated by miRNAs in breast cancer subtypes

Claudia Cava¹, Antonio Colaprico^{2,3}, Gloria Bertoli¹, Gianluca Bontempi^{2,3}, Giancarlo Mauri⁴ and Isabella Castiglioni^{1*}

From Twelfth Annual Meeting of the Italian Society of Bioinformatics (BITS) Milan, Italy. 3-5 June 2015

[Frontiers In Bioscience, Landmark, 22, 1697-1712, June 1, 2017]

Pathway-based classification of breast cancer subtypes

Alex Graudenzi¹², Claudia Cava¹, Gloria Bertoli¹, Bastian Fromm³, Kjersti Flatmark³,4,5, Giancarlo Mauri²,5, Isabella Castiglioni¹

¹Institute of Molecular Bioimaging and Physiology of the Italian National Research Council (IBFM-CNR), Milan, Italy, ²Department of Informatics, Systems and Communication, University of Milan-Bicocca, Milan, Italy, ³Department of Tumor Biology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway, ⁴Department of Gastroenterological Surgery, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway, ⁵Institute of Clinical Medicine, University of Oslo, Oslo, Norway, ⁵SYSBIO Centre of Systems Biology (SYSBIO), 20126 Milan, Italy

Table 1. Unique pathways enriched of differentially expressed genes for each breast cancer subtype: 17 pathways for luminal A, 5 for luminal B, 19 for basal and 16 for HER2

LUMINAL A	LUMINAL B	BASAL	HER2
REACTOME degradation of the extracellular matrix	KEGG arrhythmogenic right ventricular cardiomyopathy arvc	REACTOME mma splicing	REACTOME activation of the mrns upon binding of the cap binding complex and eifs and subsequent binding to 43s
BIOCARTA intrinsic pathway	REACTOME crmps in sema3a signaling	REACTOME activation of the pre replicative complex	REACTOME unfolded protein response
REACTOME abc family proteins mediated transport	BIOCARTA cellicycle pathway	KEGG spliceosome	REACTOME developmental biolog
REACTOME ethanol oxidation	KEGG ribosome	KEGG apoptosis	KEGG ether lipid metabolism
BIOCARTA ami pathway	REACTOME cell junction organization	REACTOME activation of atr in response to replication stress	REACTOME axon guidance
REACTOME metabolism of carbohydrates		KEGG dna replication	REACTOME nucleotide like purinergic receptors
REACTOME glycerophospholipid biosynthesis		REACTOME interferon alpha beta signaling	REACTOME ogmp effects
REACTOME platelet activation signaling and aggregation		BIOCARTA ranms pathway	REACTOME fgfr ligand binding an activation
KEGG chemokine signaling pathway		KEGG type i diabetes mellitus	REACTOME phospholipase c mediated cascade
BIOCARTA eryth pathway		BIOCARTA g2 pathway	REACTOME glycolysis
BIOCARTA longevity pathway		KEGG bladder cancer	KEGG histidine metabolism
REACTOME triglyceride biosynthesis		REACTOME s phase	KEGG natural killer cell mediated cytotoxicity
REACTOME transmembrane transport of small molecules		REACTOME g1 s transition	REACTOME asparagine n linked glycosylation
BIOCARTA cftr pathway		REACTOME amino acid synthesis and interconversion transamination	REACTOME p2y receptors
REACTOME o linked glycosylation of mucins		REACTOME metabolism of amino acids and derivatives	REACTOME keratan sulfate kerat metabolism
REACTOME transport of glucose and other sugars bile salts and organic acids metal ions and amine compounds		KEGG arginine and proline metabolism	KEGG melanoma
REACTOME factors involved in megakaryocyte development and platelet production		KEGG glycolysis gluconeogenesis	
		BIOCARTA mcm pathway	
		REACTOME extension of telomeres	

Conclusions

Radiomic features have been shown to be sensitive to many factors, i.e. preparation & acquisition, reconstruction, segmentation and new ones, more specific of radiomic (e.g discretization).

Factors not only influence the values of radiomics but their extent is highly variable with different results.

These instability generate fluctuations that should not be misinterpreted as being of biological meaning.

Conclusions

Some solutions are coming and collecting from research groups involved in radiomic harmonization initiatives (e.g. IBSI)

Until clear recommendations on how to harmonize data are defined, you should select only highly repeatable and reproducible radiomic features from your clinical imaging studies and validate in independent studies to select candidates radiomic biomarkers for prognosis and prediction.

However, it is currently not possible to formally exclude any radiomics feature from future investigations solely based upon their low repeatability and riproducibility.

Conclusions

Advanced image processing such as radiomics combined with machine learning can develop models based on imaging signatures for predicting phenotype subtype prognosis and response to therapy

They are opening new role to in vivo medical imaging in predictive personalized medicine

Some radiomic methodological issues (e.g. lesion segmentation, feature harmonization and stability) need robust solutions and validations prior to be traslated in clinicial studies

Radiomic predicting models can be improved by liquid epigenomics for integrated phenotype models

christian.salvatore@iusspavia.it https://christiansalvatore.github.io/machinelearning-iuss/