2022 数学分析 C 期中

Will

Zavalon, 匿名群友

NanJing University

NanJing University

某平凡的数学讨论群

版本: 0.10

日期: 2022年11月6日

注 意

本试卷难度较大, 做之前请做好心理准备. 另外从分数构成来说, 最后一题应当是选做题而不 是附加题.

一. $(10 \, f) \, p > 0$, 讨论下列函数项级数在 \mathbb{R} 上一致收敛性.

$$\sum_{n=1}^{\infty} \frac{\sin nx}{n^p}$$

二. (10分)讨论下列数项级数敛散性.

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n+2\sin n}$$

三. (10 分) 证明: 存在 $(0,\pi]$ 上可积 (但不绝对可积) 的瑕积分 $\int_0^\pi f(x) dx$, 不满足:

$$\lim_{\lambda \to \infty} \int_0^{\pi} f(x) \sin(\lambda x) \, \mathrm{d}x = 0$$

- 四. 完成下面两题 (5 分 × 2)
- (1) 求 $\frac{1}{(1-x)^3}$ 的幂级数展开以及对应的收敛域; (2) 求 $\sum_{n=1}^{\infty} \frac{(2n)!!}{(2n-1)!!} x^n$ 的收敛域.

五. (10 分) 设 $f(x)=\sum\limits_{n=0}^{\infty}a_{n}x^{n}$ 的收敛半径为 R. 证明:存在 $b_{n},n=0,1,\ldots,\mathrm{s.t.}\forall~x$ 满足 $|x-x_0| < \min\{|x_0-R|, |x_0+R|\}, \hat{\eta}$

$$f(x) = \sum_{n=0}^{\infty} b_n (x - x_0)^n$$

六. (10 分) 给定 1 < ρ < ∞ , 证明: 存在常数 c_p 满足以下结论: 若 $f \in C^1([-1,1]), f(-1)$ < f(1)且 $\max_{[-1,1]} |f'| \leqslant 1$, 则:

∃
$$x \in [-1, 1]$$
s.t. $f'(x) > 0$ 且 $|f(x) - f(y)| ≤ c_p [f'(x)]^{\frac{1}{p}} |x - y|, \forall y \in [-1, 1]$

七. (10分)判断下列级数的敛散性;如果收敛,求其和.

$$\sum_{n=1}^{\infty} \frac{\cos(\sqrt{61}n\pi)}{n^3 \sin(\sqrt{61}n\pi)}$$

八. (10分)判断满足下列条件的 ƒ是否存在,并解释:

$$f(x) = \sum_{n=1}^{\infty} a_n x^n, x \in \mathbb{R} \mathbb{H} f\left(\frac{1}{n}\right) = \frac{(2n-1)!!}{(2n)!!}, n \in \mathbb{N}$$

九. (10分)证明:

$$\int_0^\infty \frac{s^{2022}}{e^{\pi\sqrt{s}} - 1} \, \mathrm{d}s \in \mathbb{Q}.$$

十. 选做题: 选且只能选其一(请注意分值)阁下选做(____).

A. (5 分) 求极限 (注: $\lfloor a \rfloor = \max\{n \in \mathbb{Z} : n \leq a\}$)

$$\lim_{x \to 0^+} e^{\frac{1}{x}} \sum_{n=\lfloor \frac{1}{x} \rfloor}^{\infty} \frac{x^n}{n}.$$

B. (10 分) 给定 $n \leq 2$. 设 $f(x) = \int_0^\infty \left(\frac{\sin t}{t}\right)^n \cos xt \, dt, x \in \mathbb{R}$. 证明: supp $f \subset [-n, n]$.