NEFROTIK SENDROM

Dr. Yaşar Kandur

İdrarda protein saptama yöntemleri

Kolorimetrik yöntem (dipstik)

Kantitatif yöntemler

Turbidometrik yöntem

Kolorimetrik yöntem (dipstik)

Albüminüriye duyarlı

Eser: 10-30 mg/dl

+: 30-100 mg/dl

++: 100-300 mg/dl

+++: 300-1000 mg/dl

++++: >1000 mg/dl

Kantitatif yöntemler

Spot idrar protein/kreatinin

<2 yaş : sınır >0.6-0.8

>2 yaş: sınır >0.2

24 saatlik idrar protein

<4 mg/m2/saat : Normal

4-40 mg/m2/saat: Proteinüri

>40 mg/m2/saat : Massif (Nefrotik düzeyde proteinüri)

Mikroabuminüri = >30 mg/gün (Diabet ve Hipertansiyon hastalarında)

Turbidometrik yöntem

İdrar örneğine sulfosalisik asit damlatılır

Proteinin sülfosalisilik asitle presipitasyonu esasına dayanır.

3-5 mg/dl proteinüri'ye bile duyarlıdır

Eser: 1-10 mg/dl

+: 15-30 mg/dl

++: 40-100 mg/dl

+++: 150-300 mg/dl

++++: >500 mg/dl

Proteinüri - Etiyopatogenez

***Glomerüler proteinüri:

Artmış glomerüler kapiller duvar geçirgenliği

Tübüler proteinüri

Azalmış tübüler geri emilim

 Glomerüler kan akımındaki hemodinamik değişiklikler Normalde idrarla atılan proteinin ~ %50 Tamm Horsfall proteini

• (Tüplerden salgılanan bir glikoprotein)

Podocyte is a fascinating cell

Octopus-like shape

Glomerular Filtration Barrier

Podocyte cytoskeleton

Hereditary podocytopathies

- Congenital NS
- Steroid-resistant NS
- ► Idiopathic FSGS

Machucca et al. HMG 2009 Faul, Trends Cell Biol 2007 Welsh, Nat Rev Nephrol 2012

Glomerüler Proteinüri Patogenez

Glomerül süzme membranı makromolekül geçirgenliği artışı!

Elektriksel yük bariyeri bozuluyor!?

Patogenez

Patogenez

Masif proteinüri

- > 40 mg/m2/saat, ya da 50mg/kg 1000 mg/m2/24 saat
- Spot idrar protein/kreatinin >2)
- İdrar tetkikinde 3 veya 4 + protein

Anazarka ödem

Nefrotik Sendrom

Hipoalbuminemi

Albumin < 2.5 g/dL;

yeni sınır <3 g/dl)

Hiperlipidemihiperkolesterolemi

Kolesterol >250 mg/dl

Epidemioloji

Prevalans: 16 / 100,000 çocukta

Yıllık insidans: 2-7 / 100,000 çocukta

Nefrotik Sendrom-Sınıflama

Etyoloji

Primer Sekonder

üstü

Konjenital - ilk 3 ay İnfantil -ilk 1 yaş Edinsel -1 yaş üstü Geç başlangıçlı - 10 yaş

Başlangıç yaşına göre

Steroid cevabına göre

Steroid duyarlı (%85)

Sık relaps

Steroide bağımlı

Steroid dirençli

Histolojiye göre

Minimal değişiklik hast.

FSGS

Membranöz

Membranoproliferatif

Mezangial hiperselülarite

Etyoloji

Primer : Minimal Lezyon Hastalığı, MPGN, MN, FSGS

 Sekonder: Sistemik hastalıklar, Enfeksiyon, İlaç, Malignite

Nefrotik Sendrom-Primer

- Çocukların büyük kısmı (%90) birincil ya da idiyopatik nefrotik sendrom tanılıdır.
- İdiyopatik nefrotik sendrom ilişkili glomerüler lezyonlar:
- Minimal değişiklik hastalığı (EN SIK,%85)
- ✓ Fokal segmental glomerüloskleroz (FSGS, ikinci sık, %10)
- Membranöz nefropati
- Membranoproliferatif glomerülonefrit (MPGN)
- Diffüz mezengiyal proliferasyon

Etyoloji (Primer)

Nefrotik Sendrom-Sekonder

- ✓ SLE
- ✓ HSP
- Malignite (lenfoma, lösemi)
- Enfeksiyon (HBV, sıtma, TORCH, HIV) gibi sistemik hastalıklara ikincil olabilir.
- İlaçlar (Penisilamin, kaptopril, NSAİD, Li, Fenitoin, Prokainamid, Metimazol..)
- Arı sokması
- Kalıtsal proteinüri sendromları, glomerüler süzme mekanizmasında görev alan kritik proteinleri kodlayan genlerdeki mutasyonlardan kaynaklanır.

Minimal Lezyon Hastalığı

Çocukluk çağı primer nefrotik sendromların büyük kısmı, ışık mikroskopunda minimal histolojik değişikliklerin olduğu Minimal lezyon hastalığı

Podositlerde silinme = EFFACEMENT

Podositlerde Silinme

HISTOLOGICAL FEATURES

 Minimal change disease is defined by nephrotic syndrome with normal appearing light microscopy

with foot process effacement on electron microscopy in the absence of cellular infiltrates or immune deposits.

Podocyte gene mutations result in actin rearrangement and foot process effacement

ÇİFT VURUŞ

- 1. CD 80 ekspresyonunun uyarılması
- T reg disfonk ile bu uyarılmanın devamı

Hikaye sorgulama

Sekonder sebeplere yönelik sorgulama

Klinik

Yaygın ödem: Anazarka

Laboratuvar

- Albumin <2.5gr/dl (<3 g/dl)
- TİT:Protein +++ veya ++++
- Hiperlipidemi (Kolesterol)
- Spot idrar pr/kr>2
- 24 saatlik idrar protein>40mg/m2/saat
- Hiponatremi

Örnek: 24 saatte idrar protein hesabı

10 yaşında hasta, kilo: 40kg

TİT: protein: 3+

24 saat idrar biriktirmesi istendi

Sabah ilk idrarını boşa dökecek: sonra 2 veya 5 lt lik şişeye 24 saat boyunca yapmış olduğu idrarı toplayacak.

24 saatlik idrar protein sonucu: 3500 mg

3500mg/24/ hastanın metrekaresi

Hastanın metrekaresi: 4xkilo+7 /90+ kilo

: 1.28 metrekare

3500 mg/24 / hastanın metrekaresi =113 mg/m²/saat

MLH düşündüren bulgular

Yaş: 2-6 yaş arası

Makroskopik hematüri yokluğu

Normal kompleman düzeyi

Sekonder sebeplerin dışlanmış olması

Komplikasyonlar

Tromboz

Akut böbrek yetmezliği

Enfeksiyon

Komplikasyonlar Tromboz-Tromboemboli

- 0 %3
- Çoğunlukla venöz
- Nedenleri
 - Proteinüri ile idrardan antikoagulasyon faktörleri kaybı (antitrombin III (ATIII), protein S,
 - Protein kaybı karaciğeri protein üretimine sevk ediyor :prokoagulan proteinler:faktör I, II, V,
 VII, VIII, X, XIII ve fibrinojen artış
 - Fibronilitik aktivite azalıyor plazminojen düzeyi azalıyor
 - Trombositoz
 - Hyperlipidemia,

Figure 16.4 A noncontrast computed tomography scan of a 12-year-old girl with nephrotic syndrome that shows a triangular area of infarction affecting the blood flow distribution area of the middle cerebral artery (arrow).

Komplikasyonlar Akut böbrek yetmezliği

- 0 %8.5
- Nedenleri
 - -prerenal
 - -akut tubular nekroz,
 - -İnterstisyal nefrit (furosemid)
 - -İlaç toksisitesi (siklosporin)

Komplikasyonlar

Enfeksiyon

- %17
- Nedenleri
 - -İdrarla alternatif kompleman proteinlerin

kaybı: Faktör B ve Faktör D

Kapsüllü bakteriler : Streptococcus pneumoniae,

Haemophilus influenzae,

Escherichia coli.

- -Düşük serum IgG levels
- -T hücre disfonksiyonu

Komplikasyonlar

Enfeksiyon

- Pnömoni
- Bakteremi
- İdrar yolu enfeksiyonu
- Peritonit
- Sellulit
- Menenjit

Tedavi Ödem

○ İV albumin:0.5 gr-1 gr/kg

Furosemid 1 mg/kg

Tuz kısıtlaması

Albumin verilmesi:Örnek vaka

- Hastanın idrar tetkikinde 4+ protein, kan albumin:1.2 gr/dl, Kilo:
 10 kg
- Oliguanürisi var.
- 1 gr/kg Albumin 1-2 saatte
- Ardından 1mg/kg Lasix iv puşe

Piyasada %10 luk ve %20 lik Albumin var (50-100cc).

Bu hastaya 10 gram Albumin vermemiz lazım : 50 cc %20 (50x20/100)=10 gr

Dikkat

- Ateşli enfeksiyonu varsa immünsuppresan geciktir, enfeksiyonu tedavi et.
- İmmunsupressan ilaç başlamadan evvel , <u>Hepatit marker</u> <u>ve HIV serolojisi yolla</u>
- Döküntülü hastalık (özellikle de Suçiçeği), ve bulaştırıcı hastalığı olanlardan uzak tut

İlk atak tedavisi

En az 12 hafta kortikosteroid tedavisi

Prednison veya prednisolon

★ Günde tek doz

★ 60 mg/m²/gün veya 2mg/kg/ gün, en fazla 60 mg/gün

Günlük tedavi 4-6 hafta

★ Daha sonra günaşırı 40 mg/m² veya 1.5 mg/kg, en fazla 40 mg

Günaşırı tedavi 2-5 ay, azaltılarak

Steroid ve antibiyotik öncesi %40 ölüm

Tadeusz Reichstein Edward Calvin Kendall Philip Showalter Hench

1950 Fizyoloji ve Tıp Nobel Ödülü

Adrenal korteks' den kortizon izolasyonu

Diğer İmmunsuppresan tedaviler

- Siklofosfamid
- Siklosporin
- Takrolimus
- MMF
- Rituximab

Konjenital Nefrotik Sendrom ilk 3 ay

Konjenital Nefrotik sendrom nedenleri

Podositopatiler (Mutasyonlar)
 Nefrin(Fin tipi), Podosin gen defekti

Sendromlar

Wilms tumor gen 1 defekti(WT1), Nail patella sendromu, Laminin gen defekti

Sekonder sebepler: CMV

Konjenital Nefrotik Sendrom

- Şiddetli jeneralize ödem
- Hipoalbüminemi
- Büyüme geriliği
- Enfeksiyonlara aşırı duyarlılık
- Hipotiroidi (idrarla TBP kaybı)**

Tedavi

- Konjenital nefrotik sendromda steroid ve immünosupresanlar faydasız
- Hiperkalorik diyet, Proteinden zengin özel mamalar
- 2-3 gr /kg albumin 4-6 saatte +lasix günlük-günaşırı
- Enfeksiyonlardan uzak tutmak
- Aspirin, tiroid hormon, enapril
- Sepsis ataklarında geniş spektrumlu antibiyotikler

Sürekli Albumin alacakalrı için bu hastalara öncelikle Çocuk cerrahisi tarafından port takılır

TAKE HOME MESSAGE

- Nefrotik sendrom tanımı: Hipoalbuminemi, Proteinüri, Hiperlipidemi, Anasarka Ödem
- Komplikasyonlar: Tromboz, Enfeksiyona eğilim, ABY
- Çocukluk çağında en sık Nefrotik sendroma neden olan PATOLOJİK tanı:
 - Minimal lezyon hastalığı
- Minimal Lezyon Hastalığı: Tedavi steroid ve diğer immün supresanlar
- Konjenital Nefrotik sendromda immunsupresan verilmez

Örnek Vaka

30 aylık çocuk hasta, acil servise idrar yapamama, yüzünde ve bacaklarda ödem, Hastanın bakılan tetkiklerinde; kan kreatinin 0.1 mg/dl, Ure: 15mg/dl, Albumin: 1.2 gr/dl, Trigliserit 560 Kolseterol:350 bulundu.TİT de protein++++

A-Bu hastada olası ön tanınız nedir?

B-Komplikasyonları sıralar mısınız?

C-Bu tanı doğrultusunda tedavi de tercihiniz?

D-Albumin vermeyi düşünür müsünüz?

