- 4) $A \vee A \equiv A$
- 5) $A \rightarrow (B \rightarrow C) \equiv (A \& B) \rightarrow C$
- 6) $\neg (A \rightarrow B) \equiv A \& \neg B$

Определение 1. Подформула - это часть формулы, которая сама является формулой. Формула Фи содержит Тета в виде подформулы - $\Phi[\Theta]$. $\Phi[\Theta'/\Theta]$ - формула, получаемая заменой Θ на формулу Θ'

Теорема 0.1. Пусть $\Phi[\Theta](x_1,\ldots,x_n)$. Тогда, если $\Theta' \equiv \Theta$, то $(\forall \widetilde{\alpha} = (\alpha_1,\ldots,\alpha_n))\Phi(\Theta'/\Theta)(\widetilde{\alpha}) = \Phi[\Theta](\widetilde{\alpha})$

Следствие. Если $\vdash \Phi[\Theta]$, то при $\Theta' \equiv \Theta \vdash \Phi[\Theta'/\Theta]$

0.1 Исчисление предикатов первого порядка

0.1.1 Понятие алгебраической системы

Определение 2. $\mathscr{A} = (A, \Omega, \prod)$ - алгебраическая система. А - множество, далее сигнатура операций, сигнатура предикатов.

$$\omega:A^n o A, \quad n \geq 0, \omega \in \Omega$$
 - операция

$$p:A^n \to \{T,F\}, \quad n \ge 1$$
 - предикат

$$p(x_1) = T \leftrightharpoons x_1$$
 есть четное число

$$p(x_1, x_2) = T \leftrightharpoons x_1 + x_2 \ge x_1 * x_2$$

Если множество предикатов $\prod=\varnothing$, то получаем алгебру $\mathscr{A}=(A,\Omega)$

Если множество операций $\Omega=\varnothing,$ то получаем модель $\mathscr{A}=(A,\prod)$

Модель - это, например, граф $\mathcal{J} = (V, \rho)$.

0.1.2 ИП1: алфавит, понятие формулы

Определение 3. Алфавит состоит из таких частей:

- 1) $X = \{x_1, x_2, \dots, x_n\}$ множество предметных элементов
- 2) $\mathcal{F} = \mathcal{F}^{(0)} \cup \mathcal{F}^{(1)} \cup \ldots \cup \mathcal{F}^{(n)} \cup \ldots$ множество функциональных символов
- 3) $\mathscr{P}=\mathscr{P}^{(1)}\cup\mathscr{P}^{(2)}\cup\ldots\cup\mathscr{P}^{(n)}\cup\ldots$ множество предикатных символов
- 4) $C = \mathcal{F}^{(0)}$ множество предметных констант
- 5) Множество логических символов: \to , \neg , \forall . \forall квантор общности.
- 6) Множество вспомогательных символов Aux

Определение 4. Термы - это

- 1) Любая предметная переменная и любая переменная константа есть терм
- 2) Если t_1, \ldots, t_n термы, а $f^{(n)} \in \mathcal{F}^{(n)}$, то $f^{(n)}(t_1, \ldots, t_n)$ терм
- 3) Других термов нет

Вместо $f^{(2)}(t_1, t_2)$ пишем $t_1 f^{(2)} t_2$

$$t = (x_1 + x_2) \cdot ((-x_3) + x_1) + \dots \in \mathcal{F}^{(2)}, \quad - \in F^{(1)}$$

Определение 5. Атомарная формула - это выражение вида $p^{(n)}(t_1,\ldots,t_n)$, где $p^{(n)}$ - n-арный предикатный символ, а t_1,\ldots,t_n - термы.

$$\underbrace{\geq}_{p^{(2)}}\underbrace{(\underbrace{x_1+x_1}_{t_1},\underbrace{x_1*x_2}_{t_2})}$$

Определение 6. Формула - это

1) Атомарная формула есть формула.

- 2) Если Φ,Ψ формулы, то $(\Phi \to \Psi)$ формула
- 3) Если Φ формула, то $(\overline{\Phi})$ формула
- 4) Если Φ формула, а $x_i \in X$, то $(\forall x_i)\Phi$ формула
- 5) Других формул нет

Определение 7.

- 1) $\Phi \lor \Psi = \neg \Phi \to \Psi$
- $2) \Phi \& \Psi = \neg(\Phi \to \neg \Psi)$
- 3) $(\exists x_i)\Phi = \neg(\forall x_i)\neg\Phi$

 $F\vee(\Phi)$ - множество свободных переменных в формуле Φ