

ROBT206 - Microcontrollers with Lab

Lecture 7 – Circuit Optimization

30 January, 2018

Topics

Today's Topics

Circuit Optimization

Two Level Optimization

Map Manipulation → Karnaugh Maps

Circuit Optimization

- ▶ Goal: To obtain the simplest implementation for a given function
- Optimization is a more formal approach to simplification that is performed using a specific procedure or algorithm
- Optimization requires a cost criterion to measure the simplicity of a circuit
- Distinct cost criteria we will use:
 - Literal cost (L)
 - Gate input cost (G)
 - Gate input cost with NOTs (GN)

Literal Cost

- ▶ Literal a variable or it's complement
- Literal cost the number of literal appearances in a Boolean expression corresponding to the logic circuit diagram
- Examples:

$$F = BD + ABC + A\overline{C}\overline{D}$$

$$L = 8$$

$$F = BD + A \overline{B}C + A \overline{B}\overline{D} + AB \overline{C} \qquad L =$$

$$F = (A + B)(A + D)(B + C + \overline{D})(\overline{C} + \overline{B} + D) L =$$

Which solution is best?

Gate Input Cost

- ▶ Gate input costs the number of inputs to the gates in the implementation corresponding exactly to the given equation or equations. (G inverters not counted, GN inverters counted)
- For SOP and POS equations, it can be found from the equation(s) by finding the sum of:
 - ▶ all literal appearances
 - the number of terms excluding single literal terms, (G) and
 - poptionally, the number of distinct complemented single literals (GN).
- Example:

F = BD +
$$\overline{ABC}$$
 + \overline{ACD} G = II, GN = I4
F = BD + \overline{ABC} + \overline{ABD} + \overline{ABC} G = , GN =
F = $(A + \overline{B})(A + D)(B + C + \overline{D})(\overline{B} + \overline{C} + D)$ G = , GN =

Which solution is best?

Cost Criteria

- L (literal count) counts the AND inputs and the single literal OR input.
 - G (gate input count) adds the remaining OR gate inputs
- GN (gate input count with NOTs) adds the inverter inputs

Cost Criteria

Boolean Function Optimization

- Minimizing the gate input (or literal) cost of a (a set of) Boolean equation(s) reduces circuit cost.
- We choose gate input cost.
- Boolean Algebra and graphical techniques are tools to minimize cost criteria values.
- Graphical technique using Karnaugh maps (K-maps)

Karnaugh Maps (K-map)

- ▶ A K-map is a collection of squares
 - Each square represents a minterm
 - The collection of squares is a graphical representation of a Boolean function
 - Adjacent squares differ in the value of one variable
 - Alternative algebraic expressions for the same function are derived by recognizing patterns of squares
- The K-map can be viewed as a reorganized version of the truth table

	y = 0	y = 1
x = 0	$m_0 = \frac{1}{x}$	m _I =
x = 1	m ₂ =	m ₃ = x y

Some Uses of K-Maps

- Provide a means for:
 - Finding optimum or near optimum
 - > SOP and POS standard forms, and
 - two-level AND/OR and OR/AND circuit implementations
 - for functions with small numbers of variables
 - Visualizing concepts related to manipulating Boolean expressions, and
 - Demonstrating concepts used by computeraided design programs to simplify large circuits

Two Variable Maps

- ▶ A 2-variable Karnaugh Map:
 - Note that minterm m₀ and minterm m₁ are "adjacent" and differ in the value of the variable y

	y = 0	y = 1
x = 0	m ₀ =	m _l =
x = 1	m ₂ =	m ₃ = x y

- Similarly, minterm m_0 and minterm m_2 differ in the x variable.
- Also, m_1 and m_3 differ in the x variable as well.
- Finally, m₂ and m₃ differ in the value of the variable y

K-Map and Truth Tables

- ▶ The K-Map is just a different form of the truth table.
- Example Two variable function:
 - We choose a, b, c and d from the set {0, I} to implement a particular function, F(x, y).

Function Table

Input	Function
V alues	V alue
(x,y)	F(x,y)
0 0	a
0 1	b
10	С
	d

K-Map

	y = 0	y = I
x = 0	a	b
x = I	С	d

K-Map Function Representation

ightharpoonup Example: F(x, y) = x

F = x	y = 0	y = 1
x = 0	0	0
x = I	I	Ī

For function F(x, y), the two adjacent cells containing I's can be combined using the Minimization Theorem:

$$F(x,y) = x\overline{y} + xy = x$$

K-Map Function Representation

Example: G(x, y) = x + y

3 = x+y	y = 0	y = 1
x = 0	0	I
x = I	Ι	I

For G(x, y), two pairs of adjacent cells containing I's can be combined using the Minimization Theorem:

G
$$(x,y) = (x \overline{y} + x y) + (xy + \overline{x} y) = x + y$$

Duplicate xy

K-Map Function Representation

When two cells share an edge and both are 1, those two terms can be combined to form a single, simpler term.

$$F = Y + X\overline{Y}$$

→ A three-variable K-map:

	yz=00	yz=01	yz=I I	yz=10
x=0	m_0	m _I	m_3	m ₂
x=I	m ₄	m ₅	m ₇	m_6

Where each minterm corresponds to the product terms:

	yz=00	yz=0I	yz=I I	yz=10
x=0	x y z	x y z	x y z	x y z
x=I	x y z	x y z	хух	ху⊽

Note that if the binary value for an index differs in one bit position, the minterms are adjacent on the K-Map

Alternative Map Labeling

- Map use largely involves:
 - Entering values into the map, and
 - Reading off product terms from the map.
- Alternate labelings are useful:

Example Functions

- By convention, we represent the minterms of F by a "I" in the map and leave the minterms of $\overline{\mathbf{F}}$ blank
- Example:

$$F(x, y, z) = \Sigma_m(2,3,4,5)$$

			y	
	0	I	3	2
X	4	5	7	6
·		_	7	

Example:

$$G(a,b,c) = \Sigma_m(3,4,6,7)$$

Learn the locations of the 8 indices based on the variable order shown (x (a) - most significant and z (c) - least significant) on the map boundaries

1)
	0	I	³ I	2
a	4	5	⁷ I	⁶ I
		C		

Combining Squares

- By combining squares, we reduce number of literals in a product term, reducing the literal cost, thereby reducing the other two cost criteria
- On a 3-variable K-Map:
 - One square represents a minterm with three variables
 - Two adjacent squares represent a product term with two variables
 - Four "adjacent" terms represent a product term with one variable
 - Eight "adjacent" terms is the function of all ones (no variables) = 1.

Example: Combining Squares

Example: Let

$$F = \Sigma m(2,3,6,7)$$

			У	
	0	I	3	21
X	4	5	71	61
_		Z		

Applying the Minimization Theorem three times:

Thus the four terms that form a 2×2 square correspond to the term "y".

- Reduced literal product terms for SOP standard forms correspond to <u>rectangles</u> on K-maps containing cell counts that are powers of 2.
- Rectangles of 2 cells represent 2 adjacent minterms; of 4 cells represent 4 minterms that form a "pairwise adjacent" ring.
- Rectangles can contain non-adjacent cells as illustrated by the "pairwise adjacent" ring above.

- ► Topological warps of 3-variable K-maps that show all adjacencies:
 - Venn DiagramCylinder

Example Shapes of 2-cell Rectangles:

Lets read the product terms for the rectangles shown

Example Shapes of 4-cell Rectangles:

Read off the product terms for the rectangles shown

K-Maps can be used to simplify Boolean functions by systematic methods. Terms are selected to cover the "Is"in the map.

$$F(x, y, z) = z + \overline{x} y$$

Three-Variable Map Simplification

Use a K-map to find an optimum SOP equation for

$$F(X, Y, Z) = \Sigma_m(0, 2, 4, 5, 6)$$

Three-Variable Map Simplification

Use a K-map to find an optimum SOP equation for

$$F(X, Y, Z) = \Sigma_m(0,1,2,4,6,7)$$

)	
	0	I	3	2
X	4	5	7	6
		7	Z	

Three-Variable Map Simplification

Use a K-map to find an optimum SOP equation for

$$F(X, Y, Z) = \Sigma_m(1,3,4,5,6)$$

Any Questions?

