8)
$$1+3+9+27+...+3n=\frac{3^{n+1}}{2}$$
 for all $n\geq 0$ follution:

 $1+3+9+27+...+3n=\frac{3^{n+1}-1}{2}$

The above equation can also be written as $3^0+3^1+3^2+3^3+...+3n=\frac{3^{n+1}-1}{2}$
 $3^0+3^{(1+2+3+...+n)}=\frac{3^{n+1}-1}{2}$
 $3^0+3^{(n+1)/2}=\frac{3^{n+1}-1}{2}$
 $1=1$ in the above equation, we have $1+3^{(n+1)/2}=3^{(n+1)/2}$
 $1+3^{2/2}=3^{2-1/2}$

Hence the result is true for $n=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$
 $1=1$

$$3^{k+1} - 1 + 2 \cdot 3^{k+1} = 3^{k+2} - 1$$

$$3^{k+1} (1+2) - 1 = 3^{k+2} - 1$$

$$3^{k+1} (3) - 1 = 3^{k+2} - 1$$

$$3^{k+1+1} - 1 = 3^{k+2} - 1$$

$$3^{k+2} - 1 = 3^{k+2} - 1$$

$$3^{k+2} - 1 = 3^{k+2} - 1$$

tience the result is true for n=k+1. For all $n\geq 0$, the result is correct. by, mathematical induction, the equation $1+3+9+2+1\cdots+3^n=3^{n+1}$ is correct. for all $n\geq 0$

Proof of the equation

het
$$S = 1+3+9+27+\cdots+3^n$$

 $S-1 = 3+9+27+\cdots+3^n \longrightarrow ①$
Multiply 3'on both sides
Multiply 3'on both sides
 $3(s-1) = 3(3+9+27+\cdots+3^n)$
 $3(s-1) = 9+27+81+\cdots+3^{n+1} \longrightarrow ②$
From eq. $+(1)$

S-1= $3+9+27+\dots+3^n$ Subtract '3' on both sides

Subtract '3' on both sides

S-1-3 = $3+9+27+\dots+3n$)-3

(S-H) = $9+27+\dots+3n$ -3

Subtract eq. (2) & eq. (3)

Subtract eq. (2) & eq. (3) $3(3-1)-(3-H)=(9+27+\dots+3^n+3^{n+1})-(9+27+\dots-3^n)$ 33-3-3+H=3n+1 23+1=3n+1 23+1=3n+1 33-3-3+H=3n+1 33-3-3+H=3+H=3 33-3-1+H=3+H=3 33-1+H=3+H=3 33-1+H=3+H=3