16 Equivalence Relations

In this section, we define four types of binary relations. A relation R on a set A is called **reflexive** if $(a, a) \in R$ for all $a \in A$. In this case, the digraph of R has a loop at each vertex.

Example 16.1

- (a) Show that the relation $a \leq b$ on the set $A = \{1, 2, 3, 4\}$ is reflexive.
- (b) Show that the relation on \mathbb{R} defined by aRb if and only if a < b is not reflexive.

Solution.

- (a) Since $1 \le 1, 2 \le 2, 3 \le 3$, and $4 \le 4$, the given relation is reflexive.
- (b) Indeed, for any real number a we have a a = 0 and not a a < 0

A relation R on A is called **symmetric** if whenever $(a,b) \in R$ then we must have $(b,a) \in R$. The digraph of a symmetric relation has the property that whenever there is a directed edge from a to b, there is also a directed edge from b to a.

Example 16.2

- (a) Let $A = \{a, b, c, d\}$ and $R = \{(a, a), (b, c), (c, b), (d, d)\}$. Show that R is symmetric.
- (b) Let \mathbb{R} be the set of real numbers and R be the relation aRb if and only if a < b. Show that R is not symmetric.

Solution.

- (a) bRc and cRb so R is symmetric.
- (b) 2 < 4 but $4 \nleq 2$

A relation R on a set A is called **antisymmetric** if whenever $(a,b) \in R$ and $a \neq b$ then $(b,a) \notin R$. The digraph of an antisymmetric relation has the property that between any two vertices there is at most one directed edge.

Example 16.3

- (a) Let \mathbb{N} be the set of positive integers and R the relation aRb if and only if a divides b. Show that R is antisymmetric.
- (b) Let $A = \{a, b, c, d\}$ and $R = \{(a, a), (b, c), (c, b), (d, d)\}$. Show that R is not antisymmetric.

Solution.

- (a) Suppose that a|b and b|a. We must show that a=b. Indeed, by the definition of division, there exist positive integers k_1 and k_2 such that $b=k_1a$ and $a=k_2b$. This implies that $a=k_2k_1a$ and hence $k_1k_2=1$. Since k_1 and k_2 are positive integers, we must have $k_1=k_2=1$. Hence, a=b.
- (b) bRc and cRb with $b \neq c$

A relation R on a set A is called **transitive** if whenever $(a, b) \in R$ and $(b, c) \in R$ then $(a, c) \in R$. The digraph of a transitive relation has the property that whenever there are directed edges from a to b and from b to c then there is also a directed edge from a to c.

Example 16.4

- (a) Let $A = \{a, b, c, d\}$ and $R = \{(a, a), (b, c), (c, b), (d, d)\}$. Show that R is not transitive.
- (b) Let \mathbb{Z} be the set of integers and R the relation aRb if a divides b. Show that R is transitive.

Solution.

- (a) $(b, c) \in R$ and $(c, b) \in R$ but $(b, b) \notin R$.
- (b) Suppose that a|b and b|c. Then there exist integers k_1 and k_2 such that $b = k_1 a$ and $c = k_2 b$. Thus, $c = (k_1 k_2) a$ which means that $a|c \blacksquare$

Now, let A_1, A_2, \dots, A_n be a partition of a set A. That is, the $A_i's$ are subsets of A that satisfy

- $(i) \cup_{i=1}^n A_i = A$
- (ii) $A_i \cap A_j = \emptyset$ for $i \neq j$.

Define on A the binary relation x R y if and only if x and y belongs to the same set A_i for some $1 \le i \le n$.

Theorem 16.1

The relation R defined above is reflexive, symmetric, and transitive.

Proof.

See Problem 16.9 ■

A relation that is reflexive, symmetric, and transitive on a set A is called an **equivalence relation on A.** For example, the relation "=" is an equivalence relation on \mathbb{R} .

Example 16.5

Let \mathbb{Z} be the set of integers and $n \in \mathbb{Z}$. Let R be the relation on \mathbb{Z} defined by aRb if a-b is a multiple of n. We denote this relation by $a \equiv b \pmod{n}$ read "a congruent to b modulo n." Show that R is an equivalence relation on \mathbb{Z} .

Solution.

 \equiv is reflexive: For all $a \in \mathbb{Z}$, $a-a=0 \cdot n$. That is, $a \equiv a \pmod{n}$. \equiv is symmetric: Let $a,b \in \mathbb{Z}$ such that $a \equiv b \pmod{n}$. Then there is an integer k such that a-b=kn. Multiply both sides of this equality by (-1) and letting k'=-k we find that b-a=k'n. That is $b \equiv a \pmod{n}$. \equiv is transitive: Let $a,b,c \in \mathbb{Z}$ be such that $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$.

 \equiv is transitive: Let $a, b, c \in \mathbb{Z}$ be such that $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$. Then there exist integers k_1 and k_2 such that $a - b = k_1 n$ and $b - c = k_2 n$. Adding these equalities together we find a - c = kn where $k = k_1 + k_2 \in \mathbb{Z}$ which shows that $a \equiv c \pmod{n}$

Theorem 16.2

Let R be an equivalence relation on A. For each $a \in A$ let

$$[a] = \{x \in A | xRa\}$$

$$A/R = \{[a]|a \in A\}.$$

Then the union of all the elements of A/R is equal to A and the intersection of any two distinct members of A/R is the empty set. That is, A/R forms a partition of A.

Proof.

By the definition of [a] we have that $[a] \subseteq A$. Hence, $\bigcup_{a \in A} [a] \subseteq A$. We next show that $A \subseteq \bigcup_{a \in A} [a]$. Indeed, let $a \in A$. Since A is reflexive, $a \in [a]$ and consequently $a \in \bigcup_{b \in A} [b]$. Hence, $A \subseteq \bigcup_{b \in A} [b]$. It follows that $A = \bigcup_{a \in A} [a]$. This establishes (i).

It remains to show that if $[a] \neq [b]$ then $[a] \cap [b] = \emptyset$ for $a, b \in A$. Suppose the contrary. That is, suppose $[a] \cap [b] \neq \emptyset$. Then there is an element $c \in [a] \cap [b]$. This means that $c \in [a]$ and $c \in [b]$. Hence, $a \ R \ c$ and $b \ R \ c$. Since R is symmetric and transitive, $a \ R \ b$. We will show that the conclusion $a \ R \ b$ leads to [a] = [b]. The proof is by double inclusions. Let $x \in [a]$. Then $x \ R \ a$. Since $a \ R \ b$ and R is transitive, $x \ R \ b$ which means that $x \in [b]$. Thus, $[a] \subseteq [b]$. Now interchange the letters a and b to show that $[b] \subseteq [a]$. Hence, [a] = [b]

which contradicts our assumption that $[a] \neq [b]$. This establishes (ii). Thus, A/R is a partition of $A \blacksquare$

The sets [a] defined in the previous exercise are called the **equivalence** classes of A given by the relation R. The element a in [a] is called a **representative** of the equivalence class [a].

Example 16.6

Let R be an equivalence relation on A. Show that if aRb then [a] = [b].

Solution.

 $[a] \subseteq [b]$: Let $c \in [a]$. Then cRa. But aRb so that cRb since R is transitive. Hence, $c \in [b]$.

 $[b] \subseteq [a]$: Let $c \in [b]$. Then cRb. Since R is symmetric, bRa. Hence, cRa since R is transitive. Thus, $c \in [a]$

Example 16.7

Find the equivalence classes of the equivalence relation on \mathbb{Z} defined by $a \equiv b \mod 4$.

Solution.

For any integer $a \in \mathbb{Z}$, the congruence class of a is

$$[a] = \{ n \in \mathbb{Z} | n - a = 4k \text{ for some } k \in \mathbb{Z} \}.$$

Hence,

$$[0] = \{0, \pm 4, \pm 8, \pm 12, \cdots\}$$

$$[1] = \{\cdots, -11, -7, -3, 1, 5, 9, \cdots\}$$

$$[2] = \{\cdots, -10, -6, -2, 2, 6, 10, \cdots\}$$

$$[3] = \{\cdots, -9, -5, -1, 3, 7, 11, \cdots\}.$$

Note that $\{[0], [1], [2], [3]\}$ is a partition of \mathbb{Z} . Also, note that $[0] = [\pm 4] = [\pm 8] = \cdots$; $[1] = [-11] = [-7] = \cdots$, etc