

CENTRO UNIVERSITÁRIO FAESA

DESENVOLVIMENTO DA AULA

Curso:Ciência da Computação e Engenharia da ComputaçãoAno/Semestre:2020/01Disciplina:Complexidade de AlgoritmosCarga Horária:80 h/a

Professor:Fernando Antonio Marques FilhoTurma:5HC/8TC

Objetivos Específicos	Detalhamento dos Conteúdos	СН	Inicio	Fim	Procedimentos de Ensino	Leituras/Atividades Indicadas	Formas de Avaliaçã o da Aprendiz agem
 Conhecer o planejamento da disciplina, Plano de Ensino, Desenvolviment o da aula. Conhecer o processo avaliativo. Instituir o contrato didático 	Apresentação da Disciplina e Aplicação de Diagnóstico inicial	4	12/2/ 20	19/2/ 20	Apresentação do Plano de Ensino e Desenvolvimento de Aula. • Apresentar o cronograma do desenvolvimento das atividades. • Aplicação de Diagnóstico Inicial	Plano de ensino e Plano de aula, disponíveis no AVA.	-

1.	Recordar alguns	Unidade 1 – Medidas de	22	19/2/	01/4/	- Aulas expositivas	- Documentos	A1
	algoritmos clássicos.	complexidade e análise		20	20	interativas com auxílio de	postados no AVA.	P1
2.	Registrar a necessidade	assintótica				projetor e computador.	- Conteúdos	
	de se determinar o	1.1 Introdução					disponíveis na	
	número de operações	1.2 Análise de				- Desenvolvimento de	Web, relacionados	
	realizadas por um	complexidade algoritmos				exercícios individuais e	no AVA	
	algoritmo.	não recursivos no melhor				em grupo		
3.	Analisar a complexidade	caso, pior caso e caso						
	de vários algoritmos;	médio.						
4.	Utilizar as ordens	1.3 Comportamento						
	assintóticas;	assintótico de funções; A						
5.	Recordar algumas séries	notação O, ômega e						
	numéricas	theta;						
6.	Comparar algoritmos de							
	ordens diferentes.							
7.	Melhorar a eficiência							
	computacional de							
	algoritmos fornecidos.							
8.	Propor algoritmos,							
	pensando sempre em							
	uma melhor eficiência							
	para o mesmos.							
9.	Contribuir para o bom							
	andamento da aula.							
10.	Participar da aula com							
	postura ética e descente							
11.	Entender o significado de	Unidade 2 – Análise de	20	01/4/	29/4/	- Aulas expositivas	- Documentos	A2
' ' '	uma relação de	algoritmos recursivos e	_•	20	20	interativas com auxílio de	postados no AVA.	P2
	recorrência.	relações				projetor e computador.	- Conteúdos	
12.	Reconhecer e utilizar os	de recorrência				, , , , , , , , , , , , , , , , , , , ,	disponíveis na	
	diversos métodos de	2.1 Análise de algoritmos				- Desenvolvimento de	Web, relacionados	
	resolução para uma	de seleção e de outros				exercícios individuais e	no AVA-	
	relação de recorrência.	algoritmos recursivos.				em grupo		

14. 15. 16.	Resolver relações de recorrência; Analisar algoritmos recursivos. Usar o teorema mestre em diversas situações. Modelar e resolver problemas de contagem usando relações de recorrências. Propor algoritmos recursivos, pensando na complexidade deles.	2.2 Métodos de resolução de resolução de relação de recorrência 2.2.1 Desdobramento 2.2.2 Árvore 2.2.3 Teorema mestre 2.3 Modelagem de problemas usando relações de recorrência					Questionário Individual em - Lista de exercício em grupo em - Entrega de exercícios propostos em sala	
19. 20.	Saber diferenciar um problema Não Polinomial de um problema Polinomial; Entender o significado da redutibilidade Classificar problemas. Reconhecer problemas de decisão, localização e otimização.	Unidade 3 - Problemas P e NP 3.1 Introdução 3.2 Classes P, NP e NPC 3.3 Problemas de decisão, localização e otimização 3.4 Caráter NP -completo e redutibilidade .	14	29/4/20	29/5/20	 - Aulas expositivas interativas com auxílio de projetor e computador. - Desenvolvimento de exercícios individuais e em grupo 	- Documentos postados no AVA. - Conteúdos disponíveis na Web, relacionados no AVA	A3 P2
	Entender os métodos : divisão e conquista, programação dinâmica, algoritmo guloso; Conhecer alguns problemas clássicos que utilizam os métodos citados acima.	Unidade 4 – Técnicas de Programação 4.1. Método da Divisão e Conquista: problema da multiplicação de inteiros e da multiplicação de matrizes, dentre outros. 4.2 Programação dinâmica: Elementos da	20	29/5/20	26/6/20	 Aulas expositivas interativas com auxílio de projetor e computador. Desenvolvimento de exercícios individuais e em grupo 	- Documentos postados no AVA. - Conteúdos disponíveis na Web, relacionados no AVA	A3 P3

24.	Executar passo a passo	Programação Dinâmica;				
	os algoritmos	PD x Divisão e conquista;				
	apresentados nesta	Multiplicação de				
	unidade.	matrizes; subsequência				
25.	Usar estas técnicas para	comum mais longa,				
	resolver problemas	problema da mochila,				
	clássicos.	dentre outros.				
		4.3 Algoritmos Gulosos:				
		Elementos da estratégia				
		gulosa; Algoritmos				
		gulosos x PD;				
		Fundamentos teóricos				
		para métodos gulosos;				
		Problema de				
		escalonamento de				
		tarefas;				