# Chapitre 2.2 : Séries absolument convergentes et critères de convergence

## Série absolument convergente (ACV)

### Critère de Cauchy pour les séries numériques

Ce qui a été fait dans le Chapitre 1 - Suites de Cauchy sur les suites réelles reste valable si on considère des suites complexes.

**Définition :** On dit que la série  $\sum_{n>0} u_n$  vérifie le **critère de Cauchy** si :

$$\forall \varepsilon > 0, \exists N_\varepsilon \in \mathbb{N}, \forall N \geq N_\varepsilon, \forall p \in \mathbb{N}, |\sum_{k=N}^{N+p} u_k| < \varepsilon$$

### Proposition : Convergence et critère de Cauchy

 $\sum_{n\geq 0} u_n$  vérifie le critère de Cauchy  $\Leftrightarrow \sum_{n\geq 0} u_n$  converge.

### Preuve: (par équivalence)

 $\sum_{n\geq 0} u_n$  converge  $\Leftrightarrow (S_N)$  converge  $\Leftrightarrow (S_N)$  est une suite de Cauchy (car l'espace est complet)  $\Leftrightarrow \forall \varepsilon>0, \exists N_\varepsilon\in S_N$  $\mathbb{N}, \forall N \geq N_{\varepsilon}, \forall p \in \mathbb{N}, |S_{N+p} - S_N| < \varepsilon \Leftrightarrow \forall \varepsilon > 0, \exists N_{\varepsilon} \in \mathbb{N}, \forall N \geq N_{\varepsilon}, \forall p \in \mathbb{N}, |\sum_{n=N}^{N+p} u_n| < \varepsilon$ 

1 Remarque : Autre preuve de la divergence de la série harmonique :

Soit  $\varepsilon=1/2$ . Pour tout  $N\in\mathbb{N}$ , on peut choisir p=N et on a :  $|\sum_{k=N}^{2N}\frac{1}{k}|\geq\sum_{k=N}^{2N}\frac{1}{2N}=\frac{1}{2}$ . Donc la série harmonique ne vérifie pas le critère de Cauchy, donc elle diverge.

### Définitions et propriétés

**Définition :** On dit que la série  $\sum_{n\geq 0} u_n$  est absolument convergente (ACV) si la série  $\sum_{n\geq 0} |u_n|$  converge.

#### Théorème : Série ACV et convergence

Série ACV  $\Rightarrow$  série convergente et  $|\sum_{n=0}^{\infty} u_n| \leq \sum_{n=0}^{\infty} |u_n|$ .

#### Preuve:

Soit  $\sum_{n\geq 0} u_n$  une série ACV. Donc  $\sum_{n\geq 0} |u_n|$  converge.

Donc  $\sum_{n\geq 0}|u_n|$  vérifie le critère de Cauchy :  $\forall \varepsilon>0, \exists N_\varepsilon\in\mathbb{N}, \forall N\geq N_\varepsilon, \forall p\in\mathbb{N}, |\sum_{k=N+1}^{N+p}|u_k||<\varepsilon$ 

 $\begin{array}{l} \text{Donc } \forall \varepsilon > 0, \exists N_\varepsilon \in \mathbb{N}, \forall N \geq N_\varepsilon, \forall p \in \mathbb{N}, |\sum_{k=N+1}^{N+p} u_k| \leq \sum_{k=N+1}^{N+p} |u_k| < \varepsilon \\ \text{Ainsi } \forall \varepsilon > 0, \exists N_\varepsilon \in \mathbb{N}, \forall N \geq N_\varepsilon, \forall p \in \mathbb{N}, |\sum_{k=N}^{N+p} u_k| < \varepsilon \\ \text{Donc } \sum_{n \geq 0} u_n \text{ v\'erifie le crit\`ere de Cauchy.} \end{array}$ 

Donc  $\sum_{n\geq 0} u_n$  converge et on a  $|\sum_{n=0}^N u_n| \leq \sum_{n=0}^N |u_n| \implies |\sum_{n=0}^\infty u_n| \leq \sum_{n=0}^\infty |u_n|$ .

### **X** Attention **X** La réciproque est fausse.

**Exemple**: La série  $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$  est convergente, mais elle n'est pas absolument convergente car  $\sum_{n=1}^{\infty} \frac{1}{n}$  diverge.

## Convergence absolue d'une série

Note de rédaction : Correspond à II. dans le plan de cours du prof.

### Séries à termes positifs

### Théorème:

Soit  $(u_n)_{n\in\mathbb{N}}$  une suite à valeurs dans  $\mathbb{R}^+$ .

Alors la série  $\sum_{n\geq 0} u_n$  ( $u_n\geq 0$ ) converge  $\Leftrightarrow$  la suite  $(S_N)$  des sommes partielles est bornée.

En effet,  $S_{N+1} - S_N = u_{N+1} \ge 0$  donc  $(S_N)$  est croissante (à termes positifs).

Ainsi  $(S_N)$  converge  $\Leftrightarrow (S_N)$  est bornée (théorème de convergence monotone).

Or  $\sum_{n\geq 0} u_n$  converge  $\Leftrightarrow$   $(S_N)$  converge.

Donc  $\sum_{n>0} u_n$  converge  $\Leftrightarrow (S_N)$  est bornée.

**1** Remarque : Si  $(S_N)$  n'est pas bornée, alors  $S_N \xrightarrow[N \to \infty]{} +\infty$ . On tolère la notation  $\sum_{n=0}^{\infty} u_n = +\infty$ .

### Application : Application du théorème.

Soit  $\sum_{n\geq 0} u_n$  et  $\sum_{n\geq 0} v_n$  deux séries à termes positifs. Montrons que la série  $\sum_{n\geq 0} \sqrt{u_n v_n}$  converge. En effet, utilisons l'inégalité de Cauchy-Schwarz.

$$\forall N \in \mathbb{N}, \sum_{n=0}^{N} \sqrt{u_n v_n} \le \sqrt{\sum_{n=0}^{N} u_n} \sqrt{\sum_{n=0}^{N} v_n}.$$

Or les deux termes de droite sont bornés, donc  $\forall N \in \mathbb{N}, \sum_{n=0}^{N} \sqrt{u_n v_n}$  est bornée.

Donc  $\sum_{n\geq 0} \sqrt{u_n v_n}$  converge.

### Autre preuve (sans Cauchy-Schwarz):

$$(a-b)^2 \ge 0 \Leftrightarrow ab \le \frac{a^2+b^2}{2} \forall a, b \in \mathbb{R}.$$

$$\begin{split} &(a-b)^2 \geq 0 \Leftrightarrow ab \leq \frac{a^2+b^2}{2} \forall a,b \in \mathbb{R}. \\ &\text{Donc } \sum_{n=0}^N \sqrt{u_n v_n} \leq \frac{1}{2} (\sum_{n=0}^N u_n + \sum_{n=0}^N v_n). \end{split}$$

Or les deux termes de droite sont bornés, donc  $\forall N \in \mathbb{N}, \sum_{n=0}^{N} \sqrt{u_n v_n}$  est bornée.

Donc  $\sum_{n\geq 0} \sqrt{u_n v_n}$  converge.

🗩 Note de rédaction : On a pas encore abordé Cauchy-Schwarz.

#### **Proposition:**

Soient  $\sum_{n>0} u_n$  et  $\sum_{n>0} v_n$  deux séries convergentes (pas forcément à termes positifs mais réels).

Si  $u_n \leq v_n \forall n \in \mathbb{N}$ , alors  $\sum_{n=0}^{\infty} u_n \leq \sum_{n=0}^{\infty} v_n$ .

#### Preuve:

On considère la série à termes positifs  $\sum_{n>0}(v_n-u_n)$ . C'est une série convergente.

On a 
$$\sum_{n=0}^{\infty} (v_n - u_n) \ge 0$$

On a  $\sum_{n=0}^{\infty}(v_n-u_n)\geq 0$ . Or  $\sum_{n\geq 0}v_n$  et  $\sum_{n\geq 0}u_n$  sont convergentes. Donc on peut écrire :  $\sum_{n=0}^{\infty}v_n-\sum_{n=0}^{\infty}u_n=\sum_{n=0}^{\infty}(v_n-u_n)\geq 0$ . Donc  $\sum_{n=0}^{\infty}u_n\leq\sum_{n=0}^{\infty}v_n$ .

### Critère de comparaison

Tout cela est fait pour des séries à termes positifs.

### Théorème : Critère de comparaison ("Hyper important")

Soit  $\sum_{n\geq 0} u_n$  et  $\sum_{n\geq 0} v_n$  deux séries à termes positifs.

Supposons que  $\forall n \in \mathbb{N}, 0 \leq u_n \leq v_n$ .

- Si  $\sum_{n\geq 0} v_n$  converge, alors  $\sum_{n\geq 0} u_n$  converge.
- Si  $\sum_{n>0} u_n$  diverge, alors  $\sum_{n>0} v_n$  diverge.

#### Preuve:

- On a  $\forall N \in \mathbb{N}, 0 \leq \sum_{n=0}^N u_n \leq \sum_{n=0}^N v_n$ . Or  $\sum_{n>0} v_n$  converge, donc la suite des sommes partielles $(\sum_{n=0}^N v_n)$  est bornée. Donc la suite des sommes partielles  $(\sum_{n=0}^N u_n)$  est bornée et donc  $\sum_{n\geq 0} u_n$  converge.
- Comme  $\sum_{n\geq 0} u_n$  diverge, la suite des sommes partielles  $(\sum_{n=0}^N u_n)$  n'est pas bornée. Et comme  $\forall N \in \mathbb{N}, 0 \leq \sum_{n=0}^N u_n \leq \sum_{n=0}^N v_n$ , la suite des sommes partielles  $(\sum_{n=0}^N v_n)$  n'est pas bornée. Et donc par le théorème de convergence des séries à termes positifs on a que  $\sum_{n>0} v_n$  diverge.

### Corollaire:

Soient  $\sum_{n\geq 0} u_n$  et  $\sum_{n\geq 0} v_n$  deux séries à termes positifs.

$$\exists n_0 \in \mathbb{N}, \forall n \ge n_0, \frac{u_{n+1}}{u_n} \le \frac{v_{n+1}}{v_n}.$$

Alors:

- Si  $\sum_{n>0} v_n$  converge, alors  $\sum_{n>0} u_n$  converge.
- Si  $\sum_{n>0} u_n$  diverge, alors  $\sum_{n>0} v_n$  diverge.

#### Preuve:

Pour  $n \geq n_0$ ,

$$\begin{array}{l} \text{Fold } n \geq n_0, \\ \frac{u_{n+1}}{u_n} \times \frac{u_n}{u_{n-1}} \times \ldots \times \frac{u_{n_0+1}}{u_{n_0}} \leq \frac{v_{n+1}}{v_n} \times \frac{v_n}{v_{n-1}} \times \ldots \times \frac{v_{n_0+1}}{v_{n_0}} \\ \Rightarrow \frac{u_{n+1}}{u_{n_0}} \leq \frac{v_{n+1}}{v_{n_0}} \Rightarrow u_{n+1} \leq k v_{n+1} \text{ avec } k = \frac{u_{n_0}}{v_{n_0}} \in \mathbb{R}_+^* \end{array}$$

- On suppose que  $\sum_{n\geq 0} v_n$  converge.
  - Donc  $\sum_{n\geq 0} kv_n$  converge.

Donc par le théorème précédent, comme  $\forall n \geq n_0, 0 \leq u_n \leq kv_n$ , on a que  $\sum_{n>0} u_n$  converge.

- (non démontré en cours)
- Application: applications aux séries absolument convergentes

### **Proposition:**

Soit  $\sum_{n\geq 0} u_n$  une série à termes réels.

Définissons  $u_n^+ = \max(u_n, 0) \ge 0$  et  $u_n^- = \max(-u_n, 0) \ge 0$ .

On a  $\sum_{n>0} u_n$  est ACV.

 $\sum_{n\geq 0} |u_n| \text{ converge} \Leftrightarrow \sum_{n\geq 0} u_n^+ \text{ et } \sum_{n\geq 0} u_n^- \text{ convergent.}$ 

### Preuve:

 $\Rightarrow$ / On a  $\forall n \in \mathbb{N}0 \leq u_n^+ \leq |u_n|$  et  $0 \leq u_n^- \leq |u_n|$ . Donc par le théorème de comparaison,  $\sum_{n \geq 0} u_n^+$  et  $\sum_{n \geq 0} u_n^-$  convergent.

 $\Leftarrow$ / On remarque que  $|u_n| = u_n^+ + u_n^-$ .

Si  $\sum_{n\geq 0} u_n^+$  et  $\sum_{n\geq 0} u_n^-$  convergent, alors  $\sum_{n\geq 0} |u_n|$  converge  $\Rightarrow \sum_{n>0} u_n$  est ACV.

### **Proposition:**

Soit  $\sum_{n\geq 0} u_n$  une série à termes complexes. On a  $\sum_{n\geq 0} u_n$  est ACV  $\Leftrightarrow \sum_{n\geq 0} Re(u_n)$  et  $\sum_{n\geq 0} Im(u_n)$  sont ACV.

Application : Montrer la proposition précédente.



### Domination, convergence et équivalence

• Rappel : Soient  $(u_n)$  et  $(v_n)$  deux suites.

- $u_n = O(v_n)$  ssi  $\exists M > 0, |u_n| \le M|v_n|$  au voisinage de l'infini (n assez grand)  $\Leftrightarrow |\frac{u_n}{v_n}|$  est bornée.
- $u_n = o(v_n)$  ssi  $\frac{u_n}{v_n} \xrightarrow[n \to \infty]{} 0$ .  $(u_n \text{ est n\'egligeable devant } v_n)$
- $u_n = o(v_n) \Rightarrow u_n = O(v_n)$
- $u_n \sim v_n$  ssi  $\frac{u_n}{v_n} \xrightarrow[n \to \infty]{} 1$ .  $(u_n$  est équivalent à  $v_n$ )

### **Proposition:** (admis)

Soient  $\sum_{n\geq 0}u_n$  et  $\sum_{n\geq 0}v_n$  deux séries à termes positifs. On suppose  $u_n=O_{+\infty}(v_n)$ .

- Si  $\sum_{n\geq 0} v_n$  converge, alors  $\sum_{n\geq 0} u_n$  converge.
- Si  $\sum_{n\geq 0} u_n$  diverge, alors  $\sum_{n\geq 0} v_n$  diverge.

### Indication pour la preuve:

Il suffit de remarquer que  $\sum_{n\geq 0} u_n$  et  $\sum_{n\geq 0} Mv_n$  sont de même nature ; et M est tel que  $u_n\leq Mv_n$ 

**X** Attention **X** Si on sait que  $\sum_{n>0} v_n$  alors pour montrer que  $\sum_{n>0} u_n$  converge, il suffit de montrer que  $u_n=0$ 

(en réalité il faudrait montrer grand O, mais o ⇒ O donc c'est plus fort et plus simple à montrer)

#### Corollaire: (admis)

Soit  $\sum_{n\geq 0} u_n$  une série à terme général dans  $\mathbb C$  et soit  $\sum_{n\geq 0} v_n$  une série à terme général positif tel que  $\sum_{n\geq 0} v_n$ 

Si  $u_n = O_{+\infty}(v_n)$ , alors  $\sum_{n \geq 0} u_n$  converge absolument (ACV).

### Application : Montrer le corollaire précédent.



### Théorème: "Hyper<sup>2</sup> important"

Soit  $\sum_{n\geq 0} u_n$  une série à terme général dans  $\mathbb C$  et soit  $\sum_{n\geq 0} v_n$  une série à termes positifs.

On suppose  $u_n \sim_{+\infty} v_n$ .

(on pourrait mettre une constante)

On a:

- Si  $\sum_{n\geq 0} v_n$  converge alors  $\sum_{n\geq 0} u_n$  converge absolument (ACV).
- Si  $\sum_{n\geq 0} v_n$  diverge alors  $\sum_{n\geq 0} u_n$  diverge.

**1** Remarque: Si  $u_n \ge 0$  alors  $\sum_{n>0} u_n$  et  $\sum_{n>0} v_n$  sont de même nature.

#### Séries de références Ш

### A Série de Riemann

#### Théorème:

Soit  $\alpha \in \mathbb{R}$ . Soit la série  $\sum_{n \geq 1} \frac{1}{n^{\alpha}}$ , dite série de Riemann.

La série converge  $\Leftrightarrow \alpha > 1$ .

#### Preuve:

On a vu que pour  $\alpha = 1$ , la série diverge (série harmonique).

- Si  $\alpha \leq 1, \frac{1}{n^{\alpha}} \geq \frac{1}{n}$ . Donc par le théorème de comparaison,  $\sum_{n \geq 1} \frac{1}{n^{\alpha}}$  diverge.
- $\Leftarrow$  / Supposons  $\alpha > 1$ .

Considérons la série  $\sum_{n>1} u_n$  de terme général  $u_n = \frac{1}{n^{\alpha-1}} - \frac{1}{(n+1)^{\alpha-1}}$ .

**Observation 1:**  $\forall N \in \mathbb{N}^*, \sum_{n=1}^N u_n = 1 - \frac{1}{(N+1)^{\alpha-1}} \text{ donc } \sum_{n\geq 1} u_n \text{ converge (car } \alpha-1>0).$  (téléscopage)

**Observation 2 :** Déterminons un équivalent de  $u_n$ .

$$u_n = \frac{1}{n^{\alpha-1}} - \frac{1}{(n+1)^{\alpha-1}} = \frac{1}{n^{\alpha-1}} (1 - (\frac{n}{n+1})^{\alpha-1}).$$

 $u_n = \frac{1}{n^{\alpha-1}} - \frac{1}{(n+1)^{\alpha-1}} = \frac{1}{n^{\alpha-1}} (1 - (\frac{n}{n+1})^{\alpha-1}).$  On a  $(\frac{n}{n+1})^{\alpha-1} = (\frac{n+1-1}{n+1})^{\alpha-1} = (1 - \frac{1}{n+1})^{\alpha-1} = 1 - \frac{\alpha-1}{n} + o_{+\infty}(\frac{1}{n})$  (DL ordre 1).  $\Rightarrow 1 - (\frac{n}{n+1})^{\alpha-1} = \frac{\alpha-1}{n} + o_{+\infty}(\frac{1}{n}) \sim_{+\infty} \frac{\alpha-1}{n}.$  Donc  $u_n \sim_{+\infty} \frac{1}{n^{\alpha-1}} \times \frac{\alpha-1}{n} = \frac{\alpha-1}{n^{\alpha}} > 0.$  On a deux séries à termes positifs  $\sum_{n \geq 1} u_n$  et  $\sum_{n \geq 1} \frac{\alpha-1}{n^{\alpha}}$  qui sont de même nature car équivalentes  $(u_n \sim_{+\infty} \frac{\alpha-1}{n})$  $\frac{\alpha-1}{n^{\alpha}}$ ). On en déduit que  $\sum_{n\geq 1} \frac{\alpha-1}{n^{\alpha}}$  converge pour  $\alpha>1$  par le théorème sur les équivalents.

De plus la nature d'une série n'est pas modifiée quand le terme général est multiplié par un scalaire non nul.

Donc  $\sum_{n\geq 1}\frac{1}{n^{\alpha}}$  est de même nature que  $\sum_{n\geq 1}\frac{\alpha-1}{n^{\alpha}}$ . Donc  $\sum_{n\geq 1}\frac{1}{n^{\alpha}}$  converge.

### X Attention X Démonstration probablement en question de cours au partiel/CC :)

### Règles de comparaisons avec les séries de Riemann :

Soient  $\sum u_n$  une série de terme général dans  $\mathbb C$ .

- 1. Si  $u_n \sim_{+\infty} k \frac{1}{n^{\alpha}}$  avec  $k \in \mathbb{C}^*$ .
  - Si  $\alpha>1$  alors  $\sum_{n\geq 1}u_n$  converge absolument (ACV).
  - Si  $\alpha \leq 1$  alors  $\sum_{n>1} u_n$  diverge.
- 2. Si  $\exists \alpha>1, n^{\alpha}|u_n|$  bornée (i.e.  $u_n=O(\frac{1}{n^{\alpha}})$ ), alors  $\sum u_n$  converge absolument (ACV). il suffit de montrer que  $u_n=o(\frac{1}{n^{\alpha}})$
- 3. On se restreint à  $u_n \in \mathbb{R}$ . Si  $\exists \alpha \leq 1, n^{\alpha}u_n \xrightarrow[n \to \infty]{} +\infty$ , alors  $\sum u_n$  diverge.

① Remarque : Penser  $u_n$  à terme réel positif et  $k \in \mathbb{R}_+^*$  pour la compréhension. (suffisant pour la compréhension et la plupart des exercices)

Application : Montrer les règles de comparaison avec les séries de Riemann.



Application : Etudier la nature de la série de terme général  $u_n = \sqrt{n^2 + n + 1} - \sqrt[3]{n^3 + an^2 + bn + c}$  avec  $a,b,c \in \mathbb{R}$ .



### Série géométrique

**1** Rappel: La série  $\sum_{n\geq 0}q^n$  converge  $\Leftrightarrow |q|<1$  et dans ce cas  $\sum_{n=0}^{\infty}q^n=\frac{1}{1-q}$ .

$$\Leftarrow$$
 Si  $|q| < 1$ , alors  $S_N = \sum_{n=0}^N q^n = \frac{1-q^{N+1}}{1-q} \xrightarrow[N \to \infty]{} \frac{1}{1-q}$ .

 $\Rightarrow$  Si  $|q| \ge 1$ , alors  $q^n \ne 0$  donc la série diverge (grossièrement).

### Règle de Cauchy:

Soit  $\sum_{n\geq 0} u_n$  une série à terme général dans  $\mathbb C.$ 

On suppose que  $\lim_{n\to\infty} |u_n|^{\frac{1}{n}} = l$  (existe et égale à  $l \in [0,+\infty]$ ,  $+\infty$  autorisé).

- 1. Si l < 1, alors  $\sum_{n>0} u_n$  converge absolument (ACV).
- 2. Si l > 1, alors  $\sum_{n>0} u_n$  diverge.
- 3. Si l=1, on ne peut rien conclure.
- Remarque : Comprendre la règle précédente dans le cas réel, terme positif.

#### Preuve:

1. Si l<1, prenons  $\varepsilon>0$  tel que  $l+\varepsilon<1$ . Or  $|u_n|^{\frac{1}{n}}\xrightarrow{n\to\infty}l$ , donc  $\exists N\in\mathbb{N}, \forall n\geq N, |u_n|^{\frac{1}{n}}\leq l+\varepsilon$ .

Donc  $|u_n| \leq (l+\varepsilon)^n$  pour  $n \geq N$ .

Or la série de terme général  $(l+\varepsilon)^n$  est une série géométrique de raison  $l+\varepsilon<1$ , donc elle converge.

Donc  $\sum_{n\geq 0} u_n$  converge.

- 2. Laissée à la douce appréciation du lecteur.
- 3. Trouvons une série  $\sum_{n\geq 0} u_n$  où  $|u_n|^{\frac{1}{n}}\xrightarrow[n\to\infty]{}1$  et où on ne peut rien conclure sur la nature de la série. Si on prend  $u_n=\frac{1}{n^{\alpha}}=e^{-\alpha\ln(n)}$ , on a bien  $u_n^{\frac{1}{n}}=e^{-\alpha\frac{\ln(n)}{n}}\xrightarrow[n\to\infty]{}1 \forall \alpha$ .

Or on a convergence pour  $\alpha > 1$  et divergence pour  $\alpha \le 1$ , on ne peut rien conclure.

**Application**: Etudier la nature de la série de terme général  $u_n = \cosh(\frac{1}{n})^{-n^3}$ .



### Règle de d'Alembert :

Soit  $\sum u_n$  une série à terme général dans  $\mathbb C$ . On suppose que  $\lim_{n \to \infty} |\frac{u_{n+1}}{u_n}| = l$  (existe et égale à  $l \in [0,+\infty]$ ,  $+\infty$  autorisé).

- 1. Si l < 1, alors  $\sum_{n \geq 0} u_n$  converge absolument (ACV).
- 2. Si l > 1, alors  $\sum_{n>0} u_n$  diverge.
- 3. Si l=1, on ne peut rien conclure.

### Preuve:

 $\begin{array}{l} \text{1. Si } l<1, \text{ prenons } \varepsilon>0 \text{ tel que } l+\varepsilon<1. \\ \text{Or } |\frac{u_{n+1}}{u_n}| \xrightarrow[n \to \infty]{} l, \text{ donc } \exists N \in \mathbb{N}, \forall n \geq N, |\frac{u_{n+1}}{u_n}| \leq l+\varepsilon. \\ \text{Posons } q=l+\varepsilon<1. \\ \text{Ainsi, } |\frac{u_{n+1}}{u_n}| \leq \frac{q^{n+1}}{q^n} \text{ pour } n \geq N. \end{array}$ 

On a une comparaison du type  $\frac{a_{n+1}}{a_n} \leq \frac{b_{n+1}}{b_n}$ . On a vu que dans ce cas,  $sumb_n$  converge  $\Rightarrow \sum a_n$  converge.

Or  $\sum q^n$  converge (série géométrique de raison q < 1) donc  $\sum u_n$  converge (ACV).

- 2. Comme  $\lim_{n\to\infty}|\frac{u_{n+1}}{u_n}|=l>1, \exists N\in\mathbb{N}, \forall n\geq N, |\frac{u_{n+1}}{u_n}|\geq 1\Rightarrow |u_n|$  est minorée par n assez grand. Donc  $\sum u_n$  diverge.
- 3. Prendre  $\sum_{n\geq 1} \frac{1}{n^{\alpha}}$ . On a bien  $\frac{(n+1)^{\alpha}}{n} \xrightarrow[n\to\infty]{} 1$  et la nature dépend de  $\alpha$ .

**Application**: Etudier la nature de la série de terme général  $u_n = \frac{n!}{n^n}$ .



💬 Note de rédaction : On a évoqué en cours la formule de Stirling pour la culture, mais elle est hors programme :  $n! \sim \sqrt{2\pi n} (\frac{n}{e})^n$ .

### Proposition: Comparaison des règles de d'Alembert et de Cauchy

Soit  $\sum u_n$  une série à terme général positif ou nul. On suppose que  $\frac{u_{n+1}}{u_n}\xrightarrow[n\to\infty]{}l\in[0,+\infty].$ 

Alors  $u_n^{\frac{1}{n}} \xrightarrow[n \to \infty]{} l$ .

#### Preuve:

On suppose  $\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = l, l>0, l\neq +\infty$ .

On a  $\forall l_1, 0 < l_1 < l, \sum_{n \geq 0} \frac{l_1^n}{u_n}$  converge par la règle de d'Alembert. En effet,  $\frac{l_1^{n+1}}{u_{n+1}} \times \frac{u_n}{l_1^n} = l_1 \times \frac{u_n}{u_{n+1}} \xrightarrow[n \to \infty]{l_1} < 1.$  Par convergence de la série on a que  $\frac{l_1^n}{u_n} \xrightarrow[n \to \infty]{0}$ .

À partir d'un certain rang,  $\frac{l_1^n}{u_n} \leq 1 \Rightarrow l_1^n \leq u_n \Rightarrow l_1 \leq u_n^{\frac{1}{n}}$ .

On a  $\forall l_2, 0 < l < l_2, \sum_{n \geq 0} \frac{u_n}{l_n^n}$  converge par la règle de d'Alembert.

À partir d'un certain rang (même argument que pour  $l_1$ ),  $u_n \leq l_2^n \Rightarrow u_n^{\frac{1}{n}} \leq l_2$ .

Donc  $l_1 \le u_n^{\frac{1}{n}} \le l_2$ ,  $\forall l_1 < l < l_2$  pour un n assez grand.

On fait tendre n vers  $\infty$  puis  $l_1$  et  $l_2$  vers l et on en déduit que  $u_n^{\frac{1}{n}} \xrightarrow[n \to \infty]{} l$ .

### **X** Attention **X** La réciproque est fausse.

**Exemple**: Contre-exemple.

Soit 0 < a < b. Posons :

$$u_n = \begin{cases} a^p b^p & \text{si n = 2p} \\ a^{p+1} b^p & \text{si n = 2p + 1} \end{cases}$$

On a  $u_n^{\frac{1}{n}}\xrightarrow[n\to\infty]{}ab$  (peu importe la parité de n). Mais  $\frac{u_{n+1}}{u_n}$  dépend de la parité de n.

Remarque: Donc on préfère la règle de d'Alembert à celle de Cauchy. Mais si la règle d'Alembert ne donne rien, la règle de Cauchy ne donnera rien non plus.