Körperaxiome

Für $x, y, z \in \mathbb{R}$ gelten die folgenden Eigenschaften.

$$\begin{array}{llll} (\mathsf{K1}) & x+(y+z)=(x+y)+z, & (Assoziativit\ddot{a}t)\\ (\mathsf{K2}) & x+y=y+x, & (Kommutativit\ddot{a}t)\\ (\mathsf{K3}) & \mathsf{Es} \ \mathsf{gibt} \ \mathsf{ein} \ \mathsf{Element} \ 0 \in \mathbb{R}, & (\mathit{Existenz} \ \mathit{der} \ \mathit{Null})\\ & \mathsf{so} \ \mathsf{dass} \ x+0=x \ (\mathsf{f\"{u}r} \ \mathsf{alle} \ x \in \mathbb{R}), & (\mathit{Existenz} \ \mathit{additiver} \ \mathit{Inverser})\\ (\mathsf{K4}) & \mathsf{Es} \ \mathsf{gibt} \ \mathsf{ein} \ -x \in \mathbb{R} \ \mathsf{mit} \ x+(-x)=0, & (\mathit{Existenz} \ \mathit{additiver} \ \mathit{Inverser})\\ (\mathsf{K5}) & x \cdot (y \cdot z)=(x \cdot y) \cdot z, & (Assoziativit\ddot{a}t)\\ (\mathsf{K6}) & x \cdot y=y \cdot x, & (Kommutativit\ddot{a}t)\\ (\mathsf{K7}) & \mathsf{Es} \ \mathsf{gibt} \ \mathsf{ein} \ \mathsf{Element} \ 1 \in \mathbb{R}, \ 1 \neq 0, & (\mathit{Existenz} \ \mathit{der} \ \mathsf{Eins})\\ & \mathsf{so} \ \mathsf{dass} \ x \cdot 1=x \ (\mathsf{f\"{u}r} \ \mathsf{alle} \ x \in \mathbb{R}), & (\mathit{Existenz} \ \mathit{multiplisodass} \ \mathsf{dass} \ x \cdot x^{-1}=1, & (\mathsf{Existenz} \ \mathit{multiplisodass} \ \mathsf{dass} \ x \cdot (y+z)=x \cdot y+x \cdot z, & (\mathit{Distributivit\ddot{a}t}) \end{array}$$

Folgerungen

- 0 und 1 sind eindeutig bestimmt, ebenso additive und multiplikative Inverse.
 (abkürzende Notation: y/y := x⁻¹ ⋅ y)
- $(x+y)\cdot z = x\cdot z + y\cdot z$
- $\mathbf{x} \cdot \mathbf{0} = \mathbf{0}$.
- $-x=(-1)\cdot x$
- -(-x) = x, $(-x) \cdot (-y) = x \cdot y$.
- $x \cdot y = 0$ genau dann, wenn x = 0 oder y = 0.
- ▶ Für $a, b \in \mathbb{R}$ ist die Gleichung a + x = b eindeutig lösbar. Falls $a \neq 0$, dann ist auch ax = b eindeutig lösbar.
- $(x^{-1})^{-1} = x$, falls $x \neq 0$,
- $(x \cdot y)^{-1} = x^{-1} \cdot y^{-1}$, falls $x \neq 0, y \neq 0$.

Ordnungsaxiome

Desweiteren sind in $\mathbb R$ gewisse Elemente als positiv ausgezeichnet. Notation: >0

Für $x, y \in \mathbb{R}$ gelten folgende Eigenschaften.

- (O1) Es gilt immer genau eine der drei Beziehungen x > 0, x = 0, -x > 0. (*Trichotomie*)
- (O2) Aus x > 0 und y > 0 folgt x + y > 0 und $x \cdot y > 0$.

Definition

Für $x, y \in \mathbb{R}$ definiert man

- > x y := x + (-y),
- ▶ x > y, falls x y > 0,
- \triangleright x < y, falls y > x,
- \triangleright $x \ge y$, falls x > y oder x = y,
- \triangleright $x \le y$, falls x < y oder x = y.

Folgerungen

Es ergeben sich nun zum Beispiel folgende Regeln, wobei $x, y, a, b \in \mathbb{R}$:

ightharpoonup Für x,y gilt immer genau eine der Relationen

$$x < y$$
, $x = y$, $y < x$.

- ▶ Falls x < y und y < z, dann ist x < z. (*Transitivität*)
- Falls x < y, dann ist a + x < a + y.
- ▶ Falls x < y, dann ist -x > -y.
- Falls x < y und a < b, dann ist x + a < y + b.
- ▶ Falls x < y und a > 0, dann ist ax < ay.
- ▶ Falls x < y und a < 0, dann ist ax > ay.
- ▶ Falls $0 \le x < y$ und $0 \le a < b$, dann ist ax < by.
- $\rightarrow x > 0$ genau dann, wenn $x^{-1} > 0$.
- ► Falls 0 < x < y, dann ist $x^{-1} > y^{-1}$.

Bemerkung

Notation:

▶ Statt $x \cdot y$ schreibt man meistens nur xy.

Archimedisches Axiom

Für $x, y \in \mathbb{R}$ gilt Folgendes.

(A) Sind x, y > 0, so existiert eine natürliche Zahl n mit $n \cdot x > y$.

Folgerung

Zu jedem $\epsilon>0$ exisitert eine natürliche Zahl n>0 mit

$$\frac{1}{n} < \epsilon$$
.

(nimm
$$x = \epsilon, y = 1$$
 in (A))

Intervalle

Definition

Seien $a, b \in \mathbb{R}$ und a < b. Dann definiere

- ▶ $[a,b] := \{x \in \mathbb{R} : a \le x \le b\}$, (abgeschlossenes Intervall)
- ▶ $(a, b) := \{x \in \mathbb{R} : a < x < b\}$, (offenes Intervall)
- ▶ $[a,b) := \{x \in \mathbb{R} : a \le x < b\}$, (nach rechts halboffenes Intervall)
- ▶ $(a, b] := \{x \in \mathbb{R} : a < x \le b\}$, (nach links halboffenes Intervall)

a und b sind die Randpunkte des Intervalls I und |I| := b - a ist die Länge des Intervalls I.

Uneigentliche Intervalle

Definition

Seien $a, b \in \mathbb{R}$. Dann definiere

- $(a, \infty) := \{ x \in \mathbb{R} : a < x \},$
- $(-\infty, b] := \{x \in \mathbb{R} : x \le b\},\$
- $(-\infty, b) := \{x \in \mathbb{R} : x < b\},\$
- $(-\infty, \infty) := \mathbb{R}.$

Intervallschachtelung

Definition

Eine Intervallschachtelung ist eine Folge abgeschlossener Intervalle I_1, I_2, I_3, \ldots mit den Eigenschaften

- 1. $I_{n+1} \subseteq I_n$ für $n \in \mathbb{N}$.
- 2. Zu jedem $\epsilon > 0$ gibt es ein Intervall I_n mit $|I_n| < \epsilon$.

Notation: $(I_n)_{n\in\mathbb{N}}$ oder (I_n) .

Intervallschachtelungsprinzip

(IP) Zu jeder Intervallschachtelung in $\mathbb R$ gibt es genau eine reelle Zahl, die allen ihren Intervallen angehört.

Literatur

- O. Forster, Analysis 1, Vieweg, 2008.
- ► K. Königsberger, *Analysis 1*, Springer-Verlag, 2004.