M4202Cip – Recherche opérationnelle (IV) Programmation linéaire en nombres entiers

bruno.colombel@univ-amu.fr

IUT d'Aix-Marseille Site d'Arles DUT Informatique

2019-2020

Programmation linéaire en nombres entiers

Problèmes classiques

Relaxation linéaire

Sommaire

Programmation linéaire en nombres entiers

Problèmes classiques

Relaxation linéaire

PLNE

- ► Programmation Linéaire (PL)
 - ► Variables de décision continues (réels)
 - ► Algorithme du Simplexe efficace

PLNE

- ► Programmation Linéaire (PL)
 - Variables de décision continues (réels)
 - Algorithme du Simplexe efficace
- Programmation Linéaire en Nombres Entiers (PLNE)
 - ► Variables de décision discrètes (entiers, booléens {0,1})
 - Choix d'une bonne formulation souvent difficile
 - Pas de méthode générale efficace de résolution

PLNE

Un problème en nombres entiers peut s'écrire :

$$\max z = \sum_{j=1}^n c_j x_j$$
 s.c. $\sum_{j=1}^n a_{ij} x_j <= b_j$ x_j entiers

Ce problème est \mathcal{NP} -difficile.

Sommaire

Programmation linéaire en nombres entiers

Problèmes classiques

Relaxation linéaire

Un beau jour de vacances, vous avez décidé de partir en randonnée dans le Vercors. Vous voulez remplir votre sac de capacité 3kg avec les objets les plus utiles :

Objets	Utilité	poids (g)
carte	10	200
gourde	7	1 500
2 ^e gourde	3	1 500
pull	6	1 200
K-way	2	500
tomme	4	800
fruits secs	5	700

Feuille de TD

► Sac-à-dos

Problème générique de Sac à Dos

- ▶ Un ensemble d'objets $N = \{1, 2, ..., n\}$;
- à chaque objet est associé
 - ▶ une utilité *ui*
 - ightharpoonup un poids w_i
- un randonneur dispose d'un sac-à-dos dont le poids total ne doit pas dépasser W (capacité du sac-à-dos)
- déterminer quels objets prendre pour maximiser l'utilité

Problème d'optimisation classique

- ► Utiliser au mieux une capacité
- ► Choix d'un portefeuille d'investissement

Problème d'optimisation classique

- Utiliser au mieux une capacité
- Choix d'un portefeuille d'investissement

Variables

 $x_i = 1$ si l'objet i est choisi, 0 sinon

Problème d'optimisation classique

- Utiliser au mieux une capacité
- Choix d'un portefeuille d'investissement

Variables

$$x_i = 1$$
 si l'objet i est choisi, 0 sinon

Objectif

$$\max \sum_{i \in N} u_i x_i$$

Problème d'optimisation classique

- Utiliser au mieux une capacité
- Choix d'un portefeuille d'investissement

Variables

$$x_i = 1$$
 si l'objet i est choisi, 0 sinon

Objectif

$$\max \sum_{i \in N} u_i x_i$$

Contraintes

$$\sum_{i \in N} w_i x_i \leqslant W$$
 et $\forall i \in N, x_i \in \{0, 1\}$,

Remplissage de boîtes (bin packing)

Un déménageur souhaite empaqueter des objets en minimisant le nombre de boîtes de capacité W=6 nécessaires

	taille	
un livre	2	
un autre livre	2	
un pull	3	
des chaussettes	1	
des chaussures	2	
des assiettes	5	
des verres	6	

Remplissage de boîtes (bin packing)

- des objets $N = \{1, 2, ..., n\}$ de taille $\{s_1, s_2, ..., s_n\}$
- à ranger dans des boîtes de capacité W
- en utilisant le moins de boîtes possible

Couverture d'ensembles

On souhaite choisir les intervenants dans un projet afin d'avoir toutes les compétences nécessaires en minimisant le coût

	Alice	Babar	Casimir	Donald	Elmer
Coût (h ou €)	10	4	5	6	7
Rech. Op.	1	1	1	0	0
Java	1	0	1	1	0
Bases de données	0	1	1	1	0
Théorie des graphes	1	0	0	0	1
UML	0	1	0	0	1

Feuille de TD

Couverture d'ensembles

Problèmes classiques

mais aussi ...

- ► Flot de coût minimum
- Plus court chemin
- Coloration

Problèmes classiques

mais aussi . . .

- ► Flot de coût minimum
- ▶ Plus court chemin
- Coloration

Applications

- Localisation usines, entrepôts, magasins
- Localisation de matériels dans les réseaux de télécoms
- Ordonnancements de tâches , allocation de ressources
- Emploi du temps
- Contrôle aérien, séquencement des avions

Sommaire

Programmation linéaire en nombres entiers

Problèmes classiques

Relaxation linéaire

Relaxation linéaire

Pour résoudre le PLNE max $\{^t cx \mid Ax \leqslant b, x \in \mathbb{Z}^n\}$

- une idée simple est d'oublier que les variables sont entières
- on recherche alors l'optimum du PL sur le polyèdre P du problème de PL continu
- on peut utiliser l'algorithme du simplexe

Relaxation linéaire

Pour résoudre le PLNE max $\{^t cx \mid Ax \leqslant b, x \in \mathbb{Z}^n\}$

- une idée simple est d'oublier que les variables sont entières
- on recherche alors l'optimum du PL sur le polyèdre P du problème de PL continu
- on peut utiliser l'algorithme du simplexe

Définition

La relaxation linéaire d'une formulation en PLNE est le PL :

$$\max\{{}^t cx \mid Ax \leqslant b, x \in \mathbb{R}^n\}$$

Relaxation linéaire

Pour résoudre le PLNE max $\{^t cx \mid Ax \leqslant b, x \in \mathbb{Z}^n\}$

- une idée simple est d'oublier que les variables sont entières
- on recherche alors l'optimum du PL sur le polyèdre P du problème de PL continu
- on peut utiliser l'algorithme du simplexe

Définition

La relaxation linéaire d'une formulation en PLNE est le PL :

$$\max\{{}^t cx \mid Ax \leqslant b, x \in \mathbb{R}^n\}$$

Lien entre l'optimum du PL et l'optimum du PLNE?

$$\max z = 4x_1 + x_2$$
 s.c.
$$\begin{vmatrix} 7x_1 + x_2 \leq 36 \\ x_1 + 4x_2 \leq 22 \\ x_1 & \geq 0 \text{ entiers} \\ x_2 \geq 0 \text{ entiers} \end{vmatrix}$$

- ► Trouver graphiquement l'optimum fractionnaire
- Trouver graphiquement l'optimum entier

Pour une formulation en PLNE

$$z_{IP}^* = \max\{^t cx \mid Ax \leqslant b, x \in \mathbb{Z}^n\}$$

La relaxation linéaire

$$z_L^* = \max\{{}^t cx \mid Ax \leqslant b, x \in \mathbb{R}^n\}$$

vérifie :

Pour une formulation en PLNE

$$z_{IP}^* = \max\{{}^t cx \mid Ax \leqslant b, x \in \mathbb{Z}^n\}$$

La relaxation linéaire

$$z_L^* = \max\{{}^t cx \mid Ax \leqslant b, x \in \mathbb{R}^n\}$$

vérifie :

1.
$$z_{IP}^* \leqslant z_L^*$$

Pour une formulation en PLNE

$$z_{IP}^* = \max\{{}^t cx \mid Ax \leqslant b, x \in \mathbb{Z}^n\}$$

La relaxation linéaire

$$z_L^* = \max\{^t cx \mid Ax \leqslant b, x \in \mathbb{R}^n\}$$

vérifie :

- 1. $z_{IP}^* \leqslant z_L^*$
- 2. Si la solution optimale de la relaxation linéaire est entière, alors c'est aussi une solution optimale pour le PLNE

Enveloppe convexe

Enveloppe convexe

On appelle la zone rouge l'enveloppe convexe du domaine réalisable du programme linéaire en nombre entier

Une propriété importante de l'enveloppe convexe

Les solutions des programmes linéaire discret et continu sont les mêmes

PLNE binaire

Pour une formulation en PLNE binaire

$$z_{IP}^* = \max\{{}^t cx \mid Ax \leqslant b, x \in \{0;1\}^n\}$$

La relaxation linéaire est :

$$z_L^* = \max\{{}^t cx \mid Ax \leqslant b, x \in [0; 1]^n\}$$