Transform and Conquer

Balanced Search Trees

Attractiveness of binary search tree is marred by the bad (linear) worst-case efficiency. Two ideas to overcome it are:

- to rebalance binary search tree when a new insertion makes the tree "too unbalanced" (instance simplification)
 - AVL trees
 - red-black trees
- to allow more than one key per node in a search tree (representation change)
 - ▶ 2-3 trees
 - > 2-3-4 trees
 - B-trees

Balanced trees: AVL trees

- An AVL tree is a binary search tree in which, for every node, the balance factor is −1, 0 or 1;
- the balance factor is the difference between the heights of its left and right sub-trees
- the height of an empty tree is defined as 0

AVL Tree Invariants

Node Invariant 1: All keys in left sub-tree are less than key in current node. All keys in right sub-tree are greater than key in current node.

Node Invariant 2: The balance factor is 1, 0 or -1.

If we assume invariants are true as we enter any operation, the design problem reduces to making sure they are true when we leave any operation.

Balanced trees: AVL trees

An AVL tree is a binary search tree in which, for every node, the difference between the heights of its left and right sub-trees, called the balance factor, is at most 1 (with the height of an empty tree defined as 0)

Balanced trees: AVL trees

(a) is an AVL tree

An AVL tree is a binary search tree in which, for every node, the difference between the heights of its left and right sub-trees, called the balance factor, is at most 1 (with the height of an empty tree defined as 0)

If a key insertion violates the balance requirement at some node, the sub-tree rooted at that node is transformed via one of the four rotations.

If a key insertion violates the balance requirement at some node, the sub-tree rooted at that node is transformed via one of the four rotations.

If a key insertion violates the balance requirement at some node, the sub-tree rooted at that node is transformed via one of the four rotations.

If a key insertion violates the balance requirement at some node, the sub-tree rooted at that node is transformed via one of the four rotations.

General case: Single R-rotation

General case: Double LR-rotation

Construct an AVL tree for the list 5, 6, 8, 3, 2, 4, 7

0

5

AVL tree construction - an example (cont.)

Analysis of AVL trees

- $h \le 1.4404 \log_2(n+2) 1.3277$
- average height: $1.01 \log_2 n + 0.1$ for large n (found empirically)
- Search and insertion are $O(\log n)$
- \triangleright Deletion is more complicated but is also $O(\log n)$
- Disadvantages:
 - frequent rotations
 - complexity
- A similar idea: *red-black trees* (height of sub-trees is allowed to differ by up to a factor of 2)

1. Which of the following binary trees are AVL trees?

1. Which of the following binary trees are AVL trees?

1. Only (a) is an AVL tree; (b) has a node (in fact, there are two of them: 4 and 6) that violates the balance requirement; (c) is not a binary search tree because 2 is in the right subtree of 3 (and 7 is in the left subtree of 6).

- 4. For each of the following lists, construct an AVL tree by inserting their elements successively, starting with the empty tree.
 - a. 1, 2, 3, 4, 5, 6
 - b. 6, 5, 4, 3, 2, 1
 - c. 3, 6, 5, 1, 2, 4

Multi-way Search Trees

A multi-way search tree is a search tree that allows more than one key in the same node of the tree.

A node of a search tree is called an n-node if it contains n-1 ordered keys (which divide the entire key range into n intervals pointed to by the node's n links to its children):

Every node in a classical binary search tree is a 2-node

2-3 Tree

A 2-3 tree is a search tree that

- may have 2-nodes and 3-nodes
- height-balanced (all leaves are on the same level)

A 2-3 tree is constructed by successive insertions of keys given, with a new key always inserted into a leaf of the tree. If the leaf is a 3-node, it's split into two with the middle key promoted to the parent.

Analysis of 2-3 trees

$$\log \frac{(n+1)}{3} - 1 \le h \le \log \frac{(n+1)}{2} - 1$$

- Search, insertion, and deletion are in $\theta(\log n)$
- The idea of 2-3 tree can be generalized by allowing more keys per node
 - > 2-3-4 trees
 - B-trees