

Practica 2

Alumno: Norberto Hernández Cárdenas

Materia: Autómatas y Compiladores

Grupo: 3°

Semestre: 6°

Maestro: Eduardo Cornejo Velázquez

Instituto de Ciencias Básicas e Ingeniería

1 Introduction

Ejercicio 1. Obtenga un Autómata Finito Determinista (AFD) dado el lenguaje definido en el alfabeto $\Sigma=0,\,1,\,$ que acepte el conjunto de palabras que inician en "0".

$$AFD = (\Sigma, Q, f, q0, F)$$

- $\Sigma = \{0, 1\}$
- $Q = \{q0, q1\}$
- $f = \{q0 \times 0 \rightarrow q1, q1 \times 0 \rightarrow q1, q1 \times 1 \rightarrow q1\}$
- q0 = 1
- F = 2

Palabras aceptadas:

- 01001
- 01100
- 00010
- 00000
- 01010

Palabras rechazadas:

- 11011
- 11111
- 10000
- 10101
- 10111

Ejercicio 2. Obtenga un Autómata Finito Determinista (AFD) dado el lenguaje definido en el alfabeto $\Sigma=0,\,1,\,$ que acepte el conjunto de palabras que terminan en "1".

 $AFD = (\Sigma, Q, f, q0, F)$

- $\Sigma = \{0, 1\}$
- $Q = \{q0, q1\}$
- $f = \{q0 \times 0 \rightarrow q0, q0 \times 1 \rightarrow q1, q1 \times 1 \rightarrow q1, q1 \times 0 \rightarrow q0\}$
- q0 = q0
- F = q1

	0	1
q0	q0	q1
q1	q1	q0

- 01001
- 01111
- 10001
- 10111
- 11011

Palabras rechazadas:

- 11110
- 01000
- 10100
- 01010
- 11010

Ejercicio 3. Obtenga un Autómata Finito Determinista (AFD) dado el lenguaje definido en el alfabeto $\Sigma=0,\,1,\,$ que acepte el conjunto de palabras que contienen la subcadena "01"

$$AFD = (\Sigma, Q, f, q0, F)$$

- $\Sigma = \{0, 1\}$
- $Q = \{q0, q1, q2\}$
- $f = \{q0 \times 0 \rightarrow q1, q0 \times 1 \rightarrow q0, q1 \times 1 \rightarrow q2, q1 \times 0 \rightarrow q1, q2 \times 0 \rightarrow q2, q2 \times 1 \rightarrow q2\}$
- q0 = q0
- F = q1

	0	1
q0	q1	q0
q1	q1	q2
q2	q2	q2

- 11101
- 01100
- 10101
- 00100
- 01110

Palabras rechazadas:

- 11111
- 00000
- 11110

- 10000
- 11000

Ejercicio 4. Obtenga un Autómata Finito Determinista (AFD) dado el lenguaje definido en el alfabeto $\Sigma=0,\,1,\,$ que acepte el conjunto de palabras que no contienen la subcadena "01".

$$AFD = (\Sigma, Q, f, q0, F)$$

- $\bullet \ \Sigma = \{0,1\}$
- $\bullet \ \ Q=\{q0,q1,q2\}$
- $f = \{q0 \times 0 \rightarrow q1, q0 \times 1 \rightarrow q0, q1 \times 1 \rightarrow q2, q1 \times 0 \rightarrow q1, q2 \times 0 \rightarrow q2, q2 \times 1 \rightarrow q2\}$
- q0 = q0
- $F = \{q0, q1\}$

	0	1
q0	q1	q0
q1	q1	q2
q2	q2	q2

- 11111
- 00000
- 11110
- 10000
- 11000

Palabras rechazadas:

- 11101
- 01100
- 10101
- 00100
- 01110

Ejercicio 5. Obtenga un Autómata Finito Determinista (AFD) dado el lenguaje definido en el alfabeto $\Sigma=$ a, b, c, que acepte el conjunto de palabras que inician con la subcadena "ac" o terminan con la subcadena "ab" $AFD=(\Sigma,Q,f,q0,F)$

- $\Sigma = \{a, b, c\}$
- $Q = \{q0, q1, q2, q3, q4, q5\}$
- $\bullet \ f = \{q0 \times a \rightarrow q1, q0 \times b \rightarrow q3, q0 \times c \rightarrow q3, q1 \times c \rightarrow q2, q2 \times a \rightarrow q2, q2 \times b \rightarrow q2, q2 \times c \rightarrow q2, q3 \times a \rightarrow q4, q3 \times b \rightarrow q3, q3 \times c \rightarrow q3, q4 \times a \rightarrow q4, q4 \times b \rightarrow q5, q4 \times c \rightarrow q3, q5 \times a \rightarrow q4, q5 \times b \rightarrow q3, q5 \times c \rightarrow q3, \}$
- q0 = q0
- $F = \{q2, q5\}$

	a	b	c
q0	q1	q3	q3
q1	q4	q5	q2
q2	q2	q2	q2
q3	q4	q3	q3
q4	q4	q5	q3
q5	q4	q3	q3
$^{\mathrm{q}}$	q4	q3	q ₃

- acb
- ccab
- acacab
- baaab
- cacbbab

Palabras rechazadas:

- \bullet aaaabb
- aaaccc
- abac
- aababbc
- bacbac

Ejercicio 6. Obtenga un Autómata Finito Determinista (AFD) dado el lenguaje definido en el alfabeto $\Sigma =$ a, b, c, que acepte el conjunto de palabras que inician con la subcadena "ac" y no terminan con la subcadena "ab". $AFD = (\Sigma, Q, f, q0, F)$

- $\Sigma = \{a, b, c\}$
- $Q = \{q0, q1, q2, q3, q4, q5\}$
- $\bullet \ f = \{q0 \times a \rightarrow q1, q0 \times b \rightarrow q3, q0 \times c \rightarrow q3, q1 \times c \rightarrow q2, q2 \times a \rightarrow q2, q2 \times b \rightarrow q2, q2 \times c \rightarrow q2, q3 \times a \rightarrow q4, q3 \times b \rightarrow q3, q3 \times c \rightarrow q3, q4 \times a \rightarrow q4, q4 \times b \rightarrow q5, q4 \times c \rightarrow q3, q5 \times a \rightarrow q4, q5 \times b \rightarrow q3, q5 \times c \rightarrow q3, \}$

- q0 = q0
- $\bullet \ F = \{q2, q3\}$

	a	b	c
q0	q1	q4	q4
q1	q4	q4	q2
q2	q3	q2	q2
q3	q3	q5	q2
q4	q4	q4	q4
q5	q3	q2	q2

- acaac
- acccc
- acbba
- acaba
- acabb

Palabras rechazadas:

- bacaa
- cabbc
- acbab
- accab
- acabbab

Ejercicio 7. Obtenga un Autómata Finito Determinista (AFD) dado el lenguaje definido en el alfabeto $\Sigma =$ a, b, c, que acepte el conjunto de palabras que inician con la subcadena "ac" o no terminan con la subcadena "ab". $AFD = (\Sigma, Q, f, q0, F)$

- $\Sigma = \{a, b, c\}$
- $Q = \{q0, q1, q2, q3, q4, q5\}$
- $\begin{array}{l} \bullet \ f = \{q0 \times a \rightarrow q1, q0 \times b \rightarrow q3, q0 \times c \rightarrow q3, q1 \times a \rightarrow q4, q1 \times b \rightarrow q5, q1 \times c \rightarrow q2, q2 \times a \rightarrow q2, q2 \times b \rightarrow q2, q2 \times c \rightarrow q2, q3 \times a \rightarrow q4, q3 \times b \rightarrow q3, q3 \times c \rightarrow q3, q4 \times a \rightarrow q4, q4 \times b \rightarrow q5, q4 \times c \rightarrow q3, q5 \times a \rightarrow q4, q5 \times b \rightarrow q3, q5 \times c \rightarrow q3\} \end{array}$

- q0 = q0
- $F = \{q1, q2, q3, q4\}$

	a	b	с
q0	q1	q3	q3
q1	q4	q5	q2
q2	q2	q2	q2
q3	q4	q3	q3
q4	q4	q5	q 3
q5	q4	q3	q3

- acaac
- bbcca
- acbab
- ababc
- acaaa

Palabras rechazadas:

- cabab
- ab
- bccab
- caaab
- bbcab

Ejercicio 8. Obtenga un Autómata Finito Determinista (AFD) dado el lenguaje definido en el alfabeto Σ = a, b, c, que acepte el conjunto de palabras que no inician con la subcadena "ac" y no terminan con la subcadena "ab". $AFD = (\Sigma, Q, f, q0, F)$

- $\Sigma = \{a, b, c\}$
- $Q = \{q0, q1, q2, q3, q4, q5, q6\}$
- $\begin{array}{l} \bullet \ \ f = \{q0 \times a \rightarrow q1, q0 \times b \rightarrow q6, q0 \times c \rightarrow q6, q1 \times a \rightarrow q6, q1 \times b \rightarrow q6, q1 \times c \rightarrow q2, q2 \times a \rightarrow q3, q2 \times b \rightarrow q5, q2 \times c \rightarrow q5, q4 \times a \rightarrow q3, q4 \times b \rightarrow q5, q4 \times c \rightarrow q5, q5 \times a \rightarrow q3, q5 \times b \rightarrow q5, q5 \times c \rightarrow q5, q6 \times a \rightarrow q6, q6 \times b \rightarrow q6, q6 \times c \rightarrow q6\} \end{array}$

- q0 = q0
- $\bullet \ F = \{q1, q2, q3, q5, q6\}$

	a	b	c
q0	q1	q6	q6
q1	q6	q6	q2
q2	q3	q5	q5
q3	q3	q4	q5
q4	q3	q5	q 5
q5	q3	q5	q5
q6	q6	q6	q6

- acbabc
- \bullet cccab
- baabc
- accbac
- ababab

Palabras rechazadas:

- acab
- acbab
- acaab
- accab
- acbcab

Ejercicio 9. Obtenga un Autómata Finito No Determinista (AFND) dado el lenguaje definido en el alfabeto $\Sigma=0,\,1,\,$ que acepte el conjunto de palabras que no contienen a la subcadena "01".

$$AFD = (\Sigma, Q, f, q0, F)$$

- $\Sigma = \{0, 1\}$
- $Q = \{q0, q1, q2\}$
- $f = \{((q0,0),q1),((q0,1)q0),((q1,0),q1),((q1,1),q2),((q2,0),q2),((q2,1),q2)\}$

- q0 = q0
- $\bullet \ F = \{q0, q1\}$

	0	1
q0	q1	q0
q1	q1	q2
q2	q2	q2

- 11100
- 00000
- 11111
- 10000
- 11110

Palabras rechazadas:

- 01111
- 00001
- 01010

- 10101
- 11011
- acbcab

Ejercicio 10. Obtenga un Autómata Finito No Determinista (AFND) dado el lenguaje definido en el alfabeto $\Sigma = a$, b, c, que acepte el conjunto de palabras que inician en la subcadena "ac" y terminan en la subcadena "ab". $AFD = (\Sigma, Q, f, q0, F)$

- $\Sigma = \{a, b, c\}$
- $Q = \{q0, q1, q2, q3, q4\}$
- $f = \{((q0, a), q1), ((q1, c)q2), ((q2, a), q3), ((q2, b), q2), ((q2, c), q2), ((q3, a), q3), ((q3, b), q4), ((q3, c), q2), ((q4, a), q3), ((q4, b), q2), ((q4, c), q2)\}$
- q0 = q0
- $F = \{q4\}$

	a	b	c
q0	q1		
q1			q2
q2	q3	q2	q2
q3	q3	q4	q2
q4	q3	q2	q2

Palabras aceptadas:

- acab
- \bullet accbab

- \bullet acaaab
- \bullet acbbab
- \bullet accabab

${\bf Palabras\ rechazadas:}$

- \bullet aacab
- \bullet acabb
- \bullet aacbb
- \bullet abac
- \bullet abcba