# 电力拖动控制系统课程设计

#### 一、直流电机双闭环调速系统的仿真↩

已知 $n_N = 1500r/min$ ,电机的参数为:  $P_N = 3KW$ ,  $U_N = 220V$ ,  $I_N = 17.5A$ ,电枢绕组电阻 $R_a = 1.25\Omega$ ,  $GD^2 = 3.53N \cdot m^2$ 采用三相桥式整流电路,整流装置内阻为 $1.3\Omega$ ,平波电抗器电阻为 $0.3\Omega$ ,整流回路电感L = 200mH,整流装置的最大放大倍数 $K_s = 37.84$ ,取 ASR 的幅值输出 $U_m^* = 8V$ ,ACR 的幅值输出 $U_{cm}^* = 8V$ ,最大给定电压 $U_{nm}^* = 10V$ ,最大启动电流取 2. 1 倍额定电流。对系统进行调节器的参数设计,设计指标为: Q

- 电流超调量σ<sub>i</sub>% ≤ 5%;
- 2) 空载启动到额定转速时的转速超调量 $\sigma_n$ % ≤ 10%←
- 3) 空载启动到额定转速的过渡时间 $t_s$  ≤ 0.5s←

#### 要求: ←

- 1) 推导出直流电动机和整流环节的传递函数←
- 2) 用工程设计方法对 ASR 和 ACR 进行设计←
- 3) 用 Matlab/Simulink 对系统进行仿真,并给出波形。←

#### 二、异步电机矢量控制系统的仿真↩

已知以异步电机的额定功率 P=7.5KW, 额定电压 $U_N=380V$ ,额定频率f=50Hz额定转速n=1440rpm,定子电阻 $R_s=0.7384\Omega$ ,转子电阻 $R_r=0.7402$ ,定子电感 $L_s=0.003045H$ ,转子电感 $L_r=0.003045H$ ,互感 $L_m=0.1241H$ ,极对数 $n_p=2$ ,转动惯量  $J=0.0343Kg\cdot m^2$ . $\hookrightarrow$  设计要求:  $\hookleftarrow$ 

- 1) 完成主电路参数设置和仿真←
- 2) 控制策略采用磁场矢量控制,具体控制结构可自主选择; ←
- 3) 给出相应仿真波形,并对结果进行分析; ←

- 1. 两个题目先自主选择;
- 2. 题目二比题目一略微难一些, 但是最后给成绩时会考虑此因素;
- 3. 论文要求:
  - 1. 正文中文字体为宋体小四, 行距: 1.25 倍行距, 英文字体为 Courier New;
  - 2. 论文从前至后依次为: 摘要、目录、正文;
  - 3. 正文中图片居中,每个图片(包括流程图)需有编号及名称,样例如下:



**说明**: 第3章的第2个图编号为:图3-2,第三章第9个图为:图3-9。第四章的第5个图的编号为:图4-5。不可以有二级编号:比如、图3-2-2、图4-3-2等都是错误的。

4. 中文字数不少于8000字(不含字符), 报告正文不少于20页(不包括附录在内)。

# 双闭环调速参考一



# 双闭环调速参考二



#### 异步电机矢量控制结构框图



图 2.5 SVPWM 的异步电机矢量控制系统







# 异步电机矢量控制 参考一

### 坐标变换仿真



图 3.7 Clarke 变换模块

图 3.8 Clarke 逆变换模块



图 3.9 Park 变换模块

图 3.10 Park 逆变换模块

# PI控制器及转子磁链观测仿真



图 3.11 转速 PI 调节器模块



图 3.12 转子磁链观测模块



图 3.13 矢量所处扇区判断模块



图 3.14 X、Y、Z 计算模块图



图 3.16 开关切换时间模块



图 3.15 各扇区 $T_1$ 、 $T_2$ 时间模块图



图 3.17 SVPWM 生成模块图



图 3.18 SVPWM 仿真模块



图 3.21 矢量控制系统仿真模块图

# 异步电机矢量控制 参考二

# 矢量控制仿真参考二









p.u. --> SI 1