A Constrained, Weighted-£1 Minimization Approach for Joint Discovery of Heterogeneous Neural Connectivity Graphs

PRESENTER: BEILUN WANG

ADVISOR: PROFESSOR YANJUN QI

JOINT WORK WITH CHANDAN SINGH (NOW IN UC BERKELEY)

UVA MACHINE LEARNING AND BIOMEDICINE GROUP

Connectomics: mapping the brain

- Brain's connectivity is largely unknown
 - 6 regions: 2⁶ = 64 possible connectomes
 - 160 regions: $2^{160} \approx 10^{78}$ possibilities 10^{66} Trillions
 - Impossible to test out one by one
 - Need other tools/methods

Connectomics: mapping the brain

 Find patterns (connections) from brain-imaging data through machine learning methods

- A very interesting task:
 - Find differences in the brains of people with diseases, e.g. Autism, Alzheimer's
 - Used for understanding
 - Used for diagnosis

Background: from data to connectome

Many human brains are scanned with fMRI

Resulting signals of activity

Correlations between signals

Connectome

The problem with correlations

- Correlations cannot find actual connections
 - E.g., A and C should not be connected
- Correlations cannot find the connections about differences
 - E.g., blue connection between two brains

Background

Problem

Solution

Results

Conclusions

The Solution: sparse Gaussian Graphical Model (sGGM)

0.2

0.2

0

1.05	-0.23	0.05	-0.02	0.05
-0.23	1.45	-0.25	0.10	-0.25
0.05	-0.25	1.10	-0.24	0.10
-0.02	0.10	-0.24	1.10	-0.24
0.05	-0.25	0.10	-0.24	1.10

 0.2
 1
 0.2
 0
 0.2

 0
 0.2
 1
 0.2
 0

 0
 0
 0.2
 1
 0.2

0

0

0.2

0

Connectome

Covariances between signals (Correlation is normalized covariance)

Sparse inversion (Precision Matrix)

0

CLIME: $\underset{\Omega}{\operatorname{argmin}} |\Omega|_1$ subject to: $|\widehat{\Sigma}\Omega - I|_{\infty} \leq \lambda$

The Solution: W-SIMULE

 $\widehat{\Omega}_{I}^{(1)},...,\widehat{\Omega}_{I}^{(k)},\widehat{\Omega}_{S} = \sum_{i} \underset{\Omega_{I}^{(i)},\Omega_{S}}{\operatorname{argmin}} ||W \cdot \Omega_{I}^{(i)}||_{1} + \epsilon k||W \cdot \Omega_{S}||_{1}$

Subject to: $||\Sigma^{(i)}(\Omega^{(i)}_I + \Omega_S) - I||_{\infty} \leq \lambda, i = 1, ..., k.$

- Nonparanormal assumption
- 2. Sparse
- Imposes prior
- Multi-task learning
- 5. Parallelizable

 $\widehat{\Omega}^{Autism}$ $\widehat{\Omega}^{Control}$

 $\widehat{\Omega}_I^{\ Control}$

Introduction Background Problem Results Conclusions Solution

The Solution: W-SIMULE

$$\widehat{\Omega}_I^{(1)},...,\widehat{\Omega}_I^{(k)},\widehat{\Omega}_S = \sum_{i} \underset{\Omega_I^{(i)},\Omega_S}{\operatorname{argmin}} ||W \cdot \Omega_I^{(i)}||_1 + \epsilon k ||W \cdot \Omega_S||_1 \quad \text{Column-wise} \quad \underset{\beta^{(i)},\beta^s}{\operatorname{argmin}} \sum_{i} ||W_{,j} \cdot \beta^{(i)}||_1 + \epsilon K ||W_{,j} \cdot \beta^s||_1 \quad \text{Subject to: } ||\Sigma^{(i)}(\Omega_I^{(i)} + \Omega_S) - I||_{\infty} \leq \lambda, i = 1,..., K$$

$$\underset{\theta^+,\theta^-}{\operatorname{argmin}} W_{,j} \cdot \theta^+ + W_{,j} \cdot \theta^-$$

Subject to:

$$\begin{pmatrix} \mathbf{A}^{(i)} & -\mathbf{A}^{(i)} \\ -\mathbf{A}^{(i)} & \mathbf{A}^{(i)} \end{pmatrix} \begin{pmatrix} \theta^{+} \\ \theta^{-} \end{pmatrix} \leq \begin{pmatrix} c+b \\ c-b \end{pmatrix}$$
 Programming
$$\begin{pmatrix} \theta^{+} \\ \theta^{-} \end{pmatrix} \geq 0$$

$$\underset{\theta}{\operatorname{argmin}} ||W_{,j} \cdot \theta||_{1}$$
 Subject to: $|\mathbf{A}^{(i)}\theta - b|_{\infty} \leq c, \ i = 1, \dots, K$
Where $\mathbf{A}^{(i)} = [0, \dots, 0, \Sigma^{(i)}, 0, \dots, 0, \frac{1}{\epsilon K} \Sigma^{(i)}],$ $\theta = [\beta^{(1)^{T}}, \dots, \beta^{(K)^{T}}, \epsilon K(\beta^{s})^{T}]^{T},$ $\mathbf{b} = \mathbf{e}_{i}, c = \lambda$

Results: validation

Connection lengths decrease

Fits data we have seen

Finds differences between groups Apply QDA

Method	Accuracy (%)	
W-SIMULE	58.62%	
CLIME	46.55%	
GLASSO	53.71%	
SIMULE	57.96%	
JGL (fused)	56.90%	
SIMONE	53.71%	

Conclusions

- Medial frontal cortex
- Post cingulate
- Post occipital
- Occipital lobe
- Precuneus

11/2/17

Conclusions

- The project website: http://jointggm.org/
- R package "simule"
 - Install.packages("simule")
 - Demo(wsimuleDemo)
 - https://cran.rproject.org/web/packages/simule/index.html

11/2/17

Appendix

- Toy example: 6 Nodes
- 2⁶ = 64 possible connectomes
- Realistic example: 160 Nodes
- 2¹⁶⁰ ≈ 2 x 10⁷⁸ possible connectomes!
- (There are about 10⁵⁰ atoms on Earth)

Nearly identical connectomes

11/2/17 BEILUN WANG ETL, JOINTGGM.ORG 12