Big Models & More

Yuxiao Hu

May, 2021

In NLP, **Everything is Big** and Getting Bigger

credit: Al21 labs

Zoom-in on Transformer-specific Attributes

Outline

- Big Model:
 - what
 - who
 - why
 - how
- Current Progress
- Future Directions

 NLP Model size increases

• **2021 Jan**: Google Switch

200X/18month

Transformer: 1.6T,

i.e. 10X of GPT3

https://developer.nvidia.com/blog/training-bert-with-gpus/ https://arxiv.org/pdf/2101.03961.pdf

Who are the players?

What is BigModel, e.g. GPT?

- Algorithm_: [2005.14165] Language Models are Few-Shot Learners (arxiv.org)
- Model: Generative Pre-trained Transformer 3 (GPT-3) is a new language model created by OpenAI that is able to generate written text of such quality that is often difficult to differentiate from text written by a human.
- OpenAl APIs:
 - Classification
 - · Tweet sentiment
 - Company categorization
 - · Labeling parts of speech
 - Generation
 - Idea generator
 - Conversation
 - Q&A agent
 - Sarcastic chatbot
 - Transformation
 - Summarize text
 - English -> French
 - Movie Titles -> Emoji
 - Completion
 - Generate react components
 - Factual responses
 - · Provide factual answers
- License:
 - License: Microsoft exclusively license GPT-3 language model from OpenAI

What can big models do?

- Benchmarks
 - XTREME, SuperGLUE, GEM, SQuAD, SWAG, ...
- Applications:
 - Search engine
 - Voice assistant
 - Office/Productivity
 - Software development
 - Research
 - Media (news/documents/books/etc.)
- Demos
 - GPT-3 playground
 - <u>Debuild.co</u>: describe what your app should do in plain English, then start using it
 - GPT-3 Examples

Why Big Models? A little bit history

- Image/NLP/Speech
- CNN, RNN, LSTM, Transformer
- Deep, Deeper, Wider, Complex
 - 2012, AlexNet, VGG, Inception, etc.
 - 2015, ResNet 18, 34, 50, 101, 152, 1001,...
 - 2017, Attention: LSTM, GRU, <u>Transformer</u> (6 Layers)
 - 2018, Pretraining : <u>BERT</u>(24 Layers, 340M)
 - 2020, Turing(78 Layers, 17B):
 - 2020, July, GPT (3: 96Layers, 170B)

Why Big Models? Current Techniques

<EOS>

<pad>

<pad>

<pad>

<pad>

<pad>

<EOS>

<pad>

<pad>

<pad>

<pad>

<pad>

<pad>

Output Probabilities

How to Train/Serve Such Big Models?

- Pretrain
 - Loading data batch
 - Forward, Lost, Gradients, Update
- Finetune/Retrain
- Hardware
 - TPU-v4: ~250TFlops, POD(x4096): 1exaFlops
 - Google TPU v4 Puts Supercomputer Power In The Google Cloud
 - GPU A100: ~20TFlops, DGX-2(x8): ~156TFlops, Clusters(x2048)
 - https://blogs.microsoft.com/ai/openai-azure-supercomputer/

How Much: \$Cost to train big models

• "Price":

- \$2.5k \$50k (110 million parameter model)
- \$10k \$200k (340 million parameter model)
- \$80k \$1.6m (1.5 billion parameter model)

• Examples:

- Google-T5: \$1.3M/model, \$10M/project
- OpenAl GPT-3
 - ~\$10 million in expenses for research on GPT-3 and training the final model
 - Tens of thousands of dollars in monthly cloud computing or server and electricity costs for running the model
 - Possibly more than a million dollars in yearly retraining costs due to model decay
 - Additional costs of customer support, marketing, IT, security, legal and other requirements of running a product. This could be in the tens of thousands of dollars based on the number and size of customers OpenAI acquires.

Challenges for Infrastructure

- Storage: data/model
- Speed
 - Network/disk: Data/Model Loading
 - Compute: GPU / TPU
- Memory
 - Model Parameters, internal results
- Parrallel
- Reproduction

Even More Memory Needed for Training

• Data:

- Parameters(Weights/Bias)
- Gradients
- Activation
- Optimizer States
- Precision
 - Float
 - Int

Possible Solutions

- Parallelization
 - Data
 - Model
 - Pipeline
- Offloading
 - GPU→CPU
 - GPU Memory → CPU Memory → SSD

ZeRO + DeepSpeed

ZeRO 4-way data parallel training

Using:

- P_{os} (Optimizer state)
- P_g (Gradient)
- P_p (Parameters)

ZeRO+DeepSpeed

Zero-Infinity DeepSpeed

PanGu Big Models

PanGu-NLP:

- PanGu-Alpha
 - 首个2000亿参数GPT-3, 以中文为核心的预训练生成语言模型
 - 基于80T文本, 1T,
 - 2048卡集群"鹏城云脑Ⅱ"
 - MindSpore框架的自动混合并行模式
 - Details: https://zhuanlan.zhihu.com/p/368261642
 - 部分开源: https://git.openi.org.cn/PCL-Platform.Intelligence/PanGu-Alpha
- PanGu-Beta
 - 1000亿参数Transformer, 主打理解类任务
 - 基于40TB文本, 600G
 - MindSpore+千张昇腾910训练1月+
 - Details: https://zhuanlan.zhihu.com/p/370336501
- PanGu-Vision
 - 30亿参数

Limitations of Existing Big Models

- Disparity between Pre-training and down-stream tasks
- Disparity between Text/Speech/Conversation
- Data/Sample efficiency
- Learning = Understanding or Remembering ?
- Big

Future Directions

- Vision & Multi-Modality
- Faster/Stronger/MoreAccurate: Bigger?
- End the SOTA race: Benchmarks/Leaderboards
- Distillation/Compression
- Less Data/No Data?
- Cost-Reduction
- Non-Transformer/Non-DL?

Summary

- Big models are inspired by NLP, with many potential applications and businesses
- The state-of-the-art technique is Transformer with self-attentions mechanism
- Big model post challenges to training infrastructure, which demand large memory and fast computation
- Parallelization and Offloading can improve training speed and break memory limitation