Introduction to Parallel Programming Assignment #1 (Due: Thursday, Sentember 20, 2022)

(Due: Thursday, September 29, 2022)

Objective:

To become familiar with parallel programming for distributed memories using MPI.

Requirements:

- (A) Write a parallel version of a pushing web service. Your program will create three processes, the master process loads a web page (hello.html), sends its contents to the other processes, which then "display" (print) their process numbers and the contents of the web page. Just treat the html file as a text file, don't parse it.
- (B) Write a parallel program to multiply a mxn matrix and nx1 vector. Your program should read the matrix and the vector from a data file (<u>mv-data.txt</u>) and print the results on the screen (assuming you only have 2 core processors).
- (C) Write a program to (1) prompt user for two integers: m and n (find proper values of m and n so your program does not run too short or too long), (2) create an array of 1000; (3) fill each element of the array with an integer randomly generated between m and n; (4) compute the factorial of the integers for each array element; (5) print out the time it takes to perform the computations (run-times); (6) repeat steps (3), (4) and (5) for array size of 2000, 4000, 8000, and 16000; (7) run the program with 1, 2, 4, and 8 processors; (8) record your run-times in performance.txt (table 3.5 in the textbook); (9) calculate and add into performance.txt: the speedup and efficiency of all of the above cases (tables 3.6 & 3.7 in the textbook); (10) at the top of performance.txt, tell me what are the values of m and n you used, whether your program is scalable, if yes, then strongly or weakly. You can manually enter your result tables into performance.txt or let your program to append to it.

Submission:

Name your code as pala.c, palb.c, and palc.c. Copy them along with your performance.txt to a directory named PA1 on YOUR COMPUTER. Zip PA1 and submit the zip file to BrightSpace.

Tips and Hints:

- 1. You need to use knuth to program MPI. Follow the instructions below to gain access to knuth.
 - http://www.cs.uakron.edu/~xiao/lab-use.html
- 2. Follow the instructions below to compile and run an example. http://www.cs.uakron.edu/~xiao/parallel/parallel-how-to.html
- 3. Knuth runs <u>Linux</u>, a version of <u>Unix</u> operating system. Follow the tutorials below to get familiar with UNIX commands. https://files.fosswire.com/2007/08/fwunixref.pdf

1 of 2 9/27/22, 9:15 AM

https://www.javatpoint.com/linux-commands https://www.javatpoint.com/linux-tutorial https://www.tutorialspoint.com/unix/unix-quick-guide.htm http://www.ee.surrey.ac.uk/Teaching/Unix/

- 4. Editor and Compiler: Parallel-HowTo.zip
- 5. Matrix multiplications. https://www.mathwarehouse.com/algebra/matrix/multiply-matrix.php https://www.youtube.com/watch?v=sYlOjyPyX3g

Learning Materials:

- 1. Textbook chapters 1 and 3.
- 2. Code examples in Chapter 3.

2 of 2 9/27/22, 9:15 AM