This question paper contains 7 printed pages] Roll No. S. No. of Question Paper : 2780 Unique Paper Code : 32347611 Name of the Paper : Data Mining Name of the Course : B.Sc. (H) Computer Science : DSE-4 Semester · : **VI** Duration: 3 Hours Maximum Marks: 75 (Write your Roll No. on the top immediately on receipt of this question paper.) Attempt All questions from Section A. Attempt any four questions from Section B. Section A Find the Euclidean distance between data points X(0, -1, 0, 1) and Y(1, 0, -1, 0). If recall and precision are 0.5 and 0.6 respectively, compute the value of F, measure.

In a given dataset, it is found that an itemset $\{ab\}$

is infrequent. Will itemset {abc} be infrequent or

DENT 1980 ABBRORDOS DA OLIGINARIO

frequent? Explain why.

	(2) "2780"
(d)	What are the three strategies for handling missing values
	in a dataset ?
(e)	Differentiate between precision and bias on the basis of
	the quality of the measurement process. 3
(1)	What is meant by variable transformation? What are its
	advantages ?
(g)	If support of an association rule $X \rightarrow Y$ is 80% and
	confidence is 75%, can we derive support and confidence
nta.	of the rule $Y \rightarrow X$? If yes, list down the values. If no,
)	state the reason. 3
(h)	List down two advantages and two disadvantages of leave-
	one-out approach used in cross-validation for evaluating
	the performance of the classifier?
(1)	Differentiate between agglomerative and divisive methods
	of hierarchical clustering with the help of a diagram. 4
(i)	What are asymmetric attributes ? Give an example of
	each: 4
	(i) asymmetric binary attribute,
	(ii) asymmetric discrete attribute,

(iii) asymmetric continuous attribute.

(k) The confusion matrix for a 2-class problem is given below:

	1. ************************************	Predicted Class	
		Class=1	Class=0
Actual	Class=j	400	,100
Class	Class 0	200	300

Calculate the Accuracy, Sensitivity, Specificity, True Positive Rate, and False Positive rate.

Section B

- What are the differences between noise and outliers? Are noise objects always outliers? Are outliers always noise objects ? 2+1+1
 - Let A and B be two sets of integers. A distance measure 'd' is defined as follows: d(A - B) = size (A - B) + size (B - A) where '-' denotesset difference. Size denotes the number of elements in the

Prove that the distance measure 'd' is a metric.

What is unsupervised learning? Explain with the help of an example application.

3. (a) Consider the following dataset for a 2-class problem: 7

Λ	В	Class Label
T.	. F	J. J.
T	T	+
Т	Т	+
T	F.	
Τ.,,	T	1945
F	$\mathbf{F}_{\mathbf{F}}$	
F	F - J	
F	F	
Ť	, T.	
Т	P _i	1000mm (1000)

SAME LEGISLAND

- (i) Calculate the gain in the Gini Index when splitting on A and B.
- (ii) Which attribute would the decision tree induction algorithm choose?
- (iii) Draw the decision tree after splitting showing the number of instances of each class.

(iv) How many instances are misclassified by the resulting decision tree ?

- (b) Why is K-nearest neighbor classifier a lazy learner ? 3
- 4. (a) What is an exhaustive rule-sets in Rule based classification? If the rule-set is not exhaustive, what problem arises? How is it resolved?
 - (b) What is progressive sampling? What are its advantages?
 - (c) State Bayes' theorem. What assumption is used by the Naïve Bayes classifier?
- 5. (a) Consider the following set of frequent 3-itemsets:

{1, 2, 3}, {1, 2, 4}, {1, 2, 5}{1, 3, 4}, {1, 3, 5}, {2, 3, 4}, {2, 3, 5}, {3, 4, 5}.

Assume that there are only five items in the dataset.

- (i) List all candidate 4-itemsets obtained by a candidate generation procedure using the $\mathbf{F}_{k-1} \times \mathbf{F}_1$ merging strategy.
- (ii) List all candidate 4-itemsets obtained by a candidate generation procedure in Apriori. 6

an compart out the action in

P.T.O.

(b) Let X denotes the categorical attribute having values {awful, poor, OK, good}. What is the representation of each value when X is converted to binary form using :

(i) 2 bits

(ii) 4 bits ?

4

6. Consider the following transactional dataset :

-

Transaction ID	Items Bought
0001	{a, d, e}
0002	{a, b, c, e}
0003	$\{a, b, d, e\}$
0004	{a, c, d, e}
0005	{b, c, e}
0006	{b, d, e}
0007 St. 1	{e; d}
0008	$\{a, b, c\}$
0009	{a, d, e}
0010	{a, b, e}

- (1) Find out the support of itemsets $\{e\}$, $\{b, d\}$, $\{a, d\}$ and $\{b, d, e\}$. Are these itemsets frequent if minimum support threshold is 30%?
- (ii) Find all the rules generated from the 3-itemset {b, d, e}. List down the strong rules among these rules if minimum confidence threshold is 60%.
- (b) What is the difference between nominal attributes and ordinal attributes? Give an example of each.
- 7. (a) Explain the following terms with reference to the DBSCAN clustering algorithm:
 - (i) Core point
 - (ii) Noise point

(iii) Border point

6

(b) Given the following data points: 2, 4, 10, 12, 3, 20, 30,
11, 25. Assume K = 3 and initial means 2, 4, 6. Show the clusters obtained using K-means algorithm after two iterations and show the new means for the next iteration.

278

7

200