4.5.4.	R an equivelence relation
	1. UA [x] = A.
	2. \u20da, \([x]_R + [x]_R -> [x]_R \([x]_1 = \u20ft)
	Proof:
	Let & CA, then & 6 [t].
	So E E MA [x] = A.
	2. Let v, y he mo elements of A.
	Suppose [π] Λ [y] ≠ Ø. so let € E [π] Λ [y]. (D [x] = [t] = [y]
	done by contragositive.
De7 4-5.7	. F = PLA). is called a pareition of A =7:
	$\frac{1}{1 - x \epsilon_{F}} \propto = A$
	2. b'a*b & ; a*b >> a1b=\$. 3. \(\frac{1}{2} -> \times \times \)
	For every equivlence relation 2 on a set A. A/R 25 a partition of R.
	A=\$1,2,3,43 }= \$ {3}, \$1,2}, {4}} \$ 533 \$1,23 543 543 \$ is still a partition lbut confusing).
De7 5.1.1	FEARB is a Junction if Yaca 3! beB x fy if (Mis) Gf, b= fa).
	_ = 1 (A15) (Ct, b= ta)