

UNIVERSIDADE DE LISBOA INSTITUTO SUPERIOR TÉCNICO

Università degli Studi di Padova

Tokamak Magnetic Control Simulation: Applications for JT60-SA and ISTTOK Operation.

Doménica Corona Rivera

Supervisor: Prof. Horácio Fernandes Co-Supervisor: Prof. Nuno Cruz

External supervisor: Prof. Alfredo Pironti

Thesis specifically prepared to obtain the PhD Degree in **Technological Physics Engineering**

Month 2020

A DOTTO A CIT			
ABSTRACT			
Abstract en ingles			

 $Keywords: Real-time\ control,\ plasma\ current,\ centroid\ position,\ state-space$

RESUMO

Abstract em tuga

Palavras-chave:

SOMMARIO

Abstract em italiano

Parole chiave:

ACKNOWLEDGEMENTS

This work was supported by Fundação para a Ciência e a Tecnologia (FCT) under the grant No.**PD/BD/114306/2016** carried out as part of the training in the framework of the Advanced Program in Plasma Science and Engineering (APPLAuSE, sponsored by FCT under grant No. PD/00505/2012).

CONTENTS

1	INT	RODUCTION 3
	1.1	Tokamak plasma control 3
	1.2	Behind the plasma current 3
	1.3	Thesis outline 3
2	PLA	SMA CONTROL SYSTEMS 5
	2.1	Overview of control systems 5
		2.1.1 DIII-D Plasma Control System 5
		2.1.2 Systéme de Contrôle Distribué 5
	2.2	MARTe framework 7
		2.2.1 MARTe architecture 7
		2.2.2 Hardware containers 7
		2.2.3 MARTe 2.0 7
	2.3	Equilibrium and control algorithms 7
		2.3.1 PID control 7
		2.3.2 Multiple-Input Multiple-Output control 7
3	JT60	0-sa control design 9
	3.1	Machine description 9
	3.2	CREATE tools 9
	3.3	Controller designs 9
	3.4	QST tools implementation 9
	3.5	Simulation results 9
4	IST	ток 11
	4.1	Machine description 11
	4.2	Diagnostics and Actuators 11
	4.3	ATCA-MIMO-ISOL boards 11
		4.3.1 Hardware layout 11
		4.3.2 Real-time integration software 11
	4.4	Plasma current magnetic field 11
	4.5	Plasma centroid position determination 11
5	ISTI	TOK RESULTS 13
	5.1	Implementation of the General Application Modules 13
		5.1.1 PID control implementation 13

5.1.2 Multiple-Input Multiple-Output control imple	ementation 13
5.2 Results 13	
5.2.1 PID control and LQR control results 13	
6 CONCLUSIONS 15	
Bibliography 17	
A DEMONSTRATIONS 19	

LIST OF FIGURES

Figure 2.1 DIII-D digital PCS in 1991 [1]. 6

Figure 2.2 TCV SCD. Real-time network nodes connection. The nodes configurations are shown together with the typical diagnostic and actuator systems to which they are connected [3].

LIST OF TABLES

LIST OF ABBREVIATIONS

@TODO: Review variable lists as writing the thesis

- AC Alternating Current
- ADC Analog to Digital Converter
- ATCA Advanced Telecommunications Computing Architecture
- CREATE Consorzio di Ricerca per l'Energia, l'Automazione e le Tecnologie dell'Elettromagnetismo
- DAC Digital to Analog Converter
- EO Electronic Offset
- IST Instituto Superior TÃl'cnico
- LQR Linear Quadratic Regulator
- MARTe Multi-threaded Application Real-Time executor
- MIMO Multiple-Input Multiple-Output
- PCS Plasma Control System
- PF Poloidal Field
- PID Proportional Integrative Derivative
- SCD Systéme de Contrôle Distribué
- XSC eXtreme Shape Controller
- WO Wiring Offset

LIST OF VARIABLES

@TODO: Review variable lists as writing the thesis

VARIABLES:

 \bullet B_p - Poloidal magnetic field

• I_p - Plasma current

• μ_0 - Vacuum permeability

INTRODUCTION

- 1.1 TOKAMAK PLASMA CONTROL
- 1.2 BEHIND THE PLASMA CURRENT
- 1.3 THESIS OUTLINE

PLASMA CONTROL SYSTEMS

2.1 OVERVIEW OF CONTROL SYSTEMS

The control of plasma position, shape and current among other parameters is one of the crucial engineering problems for present and future magnetic confinement devices. The Plasma Control Systems (PCS) lead with the overall control of fusion devices being responsible also for the plasma configuration and scenarios algorithms [2, Chapter 8]. Currently different PCS's are use in the tokamaks around the world. In this chapter the "DIII-D-like" PCS, the Systéme de Contrôle Distribué (SCD) and the Multi-threaded Application Real-Time executor (MARTe) will be approach, this last one being of special interest due to its extensive utilization in this work.

2.1.1 DIII-D Plasma Control System

Early documentation regarding the PCS in DIII-D¹ reefers to digitalization of analog signals transmitted to a high speed processor executing a shape control algorithm and then writing the result to a digital to analog converter for driving the controlled systems . The real-time computer used allowed to performed operations with vectors and matrices required for the plasma shape control algorithm [1]. Figure 2.1 shows the block diagram of the DIII-D PCS 30 years ago.

Blablabla

2.1.2 Systéme de Contrôle Distribué

The TCV distributed control system uses a modular network of real time PC nodes liken by a real time network to provide feedback control over all of the actuator systems. Each node consists of a Linux PC either embedded on a Compact-PCI module or as a desktop computer with Intel CPU. A real time CPU-only node is dedicated to the real time equilibrium reconstruction and fast Fourier transforms for MHD detection. [3]

¹ DIII-D is a D-shape tokamak operated by General Atomics in San Diego, California.

Figure 2.1.: DIII-D digital PCS in 1991 [1].

Figure 2.2.: TCV SCD. Real-time network nodes connection. The nodes configurations are shown together with the typical diagnostic and actuator systems to which they are connected [3].

2.2 MARTE FRAMEWORK

MARTe was developed in order to standardize general real-time control systems for the execution of control algorithms. MARTe framework is based on a multiplatform C^{++} library. [4]

- 2.2.1 MARTe architecture
- 2.2.2 Hardware containers
- 2.2.3 MARTe 2.0
- 2.3 EQUILIBRIUM AND CONTROL ALGORITHMS
- 2.3.1 PID control
- 2.3.2 Multiple-Input Multiple-Output control

JT60-SA CONTROL DESIGN

- 3.1 MACHINE DESCRIPTION
- 3.2 CREATE TOOLS
- 3.3 CONTROLLER DESIGNS
- 3.4 QST TOOLS IMPLEMENTATION
- 3.5 SIMULATION RESULTS

ISTTOK

- 4.1 MACHINE DESCRIPTION
- 4.2 DIAGNOSTICS AND ACTUATORS
- 4.3 ATCA-MIMO-ISOL BOARDS
- 4.3.1 Hardware layout
- 4.3.2 Real-time integration software
- 4.4 PLASMA CURRENT MAGNETIC FIELD

Retrieving the contribution of the plasma current in tokamaks ...

The methods of correction of the magnetic error fields due to inaccuracies of tokamak manufacturing and assembly are considered. The problems of the plasma position and shape reconstruction based on magnetic field measurements are discussed.

4.5 PLASMA CENTROID POSITION DETERMINATION

ISTTOK RESULTS

- 5.1 Implementation of the general application modules
- 5.1.1 PID control implementation
- 5.1.2 Multiple-Input Multiple-Output control implementation
- 5.2 RESULTS
- 5.2.1 PID control and LQR control results

CONCLUSIONS

bla bla bla

BIBLIOGRAPHY

- [1] J. R. Ferron, A. Kellman, E. McKee, T. Osborne, P. Petrach, T. S. Taylor, J. Wight, and E. Lazarus, "An advanced plasma control system for the diii-d tokamak," in [Proceedings] The 14th IEEE/NPSS Symposium Fusion Engineering, pp. 761–764 vol.2, Sep. 1991.
- [2] A. A. K. Valerij A. Belyakov, Fundamentals of Magnetic Thermonuclear Reactor Design. Elsevier, 2018.
- [3] J. I. Paley, S. Coda, B. Duval, F. Felici, and J. M. Moret, "Architecture and commissioning of the TCV distributed feedback control system," *Conference Record 2010 17th IEEE-NPSS Real Time Conference, RT10*, pp. 1–6, 2010.
- [4] A. C. Neto, D. Alves, L. Boncagni, P. J. Carvalho, D. F. Valcárcel, A. Barbalace, G. De Tommasi, H. Fernandes, F. Sartori, E. Vitale, R. Vitelli, and L. Zabeo, "A survey of recent MARTe based systems," in *IEEE Transactions on Nuclear Science*, vol. 58, pp. 1482–1489, 2011.

DEMONSTRATIONS