Uniwersytet Wrocławski Wydział Matematyki i Informatyki Instytut Matematyczny specjalność: Analiza Danych

Klaudia Balcer

FlowHMM

Praca magisterska napisana pod kierunkiem dr. hab. Pawła Lorka

Pytania

- 1. Praca może być po angielsku?
- $2.\ {\rm Czy}$ taka strukutra pracy będzie OK?
- 3. Czy rozpisywać dokładnie przykłady (estymację parametrów dla różnych emisji)?

Contents

1	Introduction			4	
2	Sta	Standard Solution 4			
	2.1		ov Chains	4	
	2.2				
		2.2.1	Example 1: cathegorical HMM	5 5	
		2.2.2	Example 2: Gaussian HMM	5	
		2.2.3	Example 3: Gausian Mixtuure Model HMM	5	
	2.3		neter estimation	5	
	2.0	2.3.1	Forward Algorithm	5	
		2.3.2	Backward Algorithm	5	
		2.3.2 $2.3.3$	Forward-Backward Algorithm	6	
		2.3.3 $2.3.4$	Viterbi Algorithm	6	
	2.4				
	2.4		ations	6	
		2.4.1	Related work - HMM extensions	6	
3	Co-occurence based learning schema			6	
	3.1 Discretization			6	
		3.1.1	Select points at random	6	
		3.1.2	Quasi random	6	
		3.1.3	unifromly by coordinates	6	
		3.1.4	latin hypercude	6	
4	Rel	Related work - HMM extensions			
5	Moder approach: Flow HMM				
	5.1	Flow I	NN	7	
	5.2	Comb	ined FlowHMM	7	
	5.3	Learni	ing	7	
		5.3.1	Baum-Welch - adapted	7	
		5.3.2	Cooc-based learning - adapted	7	
6	Exr	oerime	nts	7	
	6.1		ımarks	7	
	6.2		ts	7	
	0.2			7	
7	Cor	Conclusions			

Abstract

1 Introduction

- Minimalny wstęp (ta praca coś tam coś tam)
- Czym (z grubsza) jest HMM?
- Struktura dokumentu

2 Standard Solution

2.1 Markov Chains

- Markov Chain
- time-homogenous Markov Chains
- irreproducuble Markov Chain
- aperiodic markov chain
- ergodic Markov chain

$$S = \{s_1, \dots, s_N\}$$

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,N} \\ a_{2,1} & a_{2,2} & \dots & a_{2,N} \\ \vdots & \vdots & \vdots & \vdots \\ a_{N,1} & a_{N,2} & \dots & a_{N,N} \end{pmatrix}$$

$$A(i,j) = \mathbb{P}(X_{k+1} = s_j | X_k = s_i)$$

$$\pi = (\pi_1, \pi_2, \dots, \pi_N)$$

$$\{X_k\}_{k>0}$$

- ergodic Markov Chain Markov Assumption:

$$\mathbb{P}(X_{k+1} = x_{k+1} | X_{0:k} = x_{0:k}) = \mathbb{P}(X_{k+1} = x_{k+1} | X_k = x_k)$$

2.2 Hidden Markov Model

 \mathcal{V}

- observation space (discrete or continuous)

$${Y_k}_{k>0}$$

sequence of random variables taking values from V Independence Assumption:

$$\mathbb{P}(Y_{k+1} = y_{k+1} | Y_{0:k} = y_{0:k}, X_{0:k+1} = x_{0:k+1}) = \mathbb{P}(Y_{k+1} = y_{k+1} | X_{k+1} = x_{k+1}) =: p(y_{k+1} | x_{k+1})$$

- 2.2.1 Example 1: cathegorical HMM
- 2.2.2 Example 2: Gaussian HMM
- 2.2.3 Example 3: Gausian Mixtuure Model HMM
- 2.3 Parameter estimation

2.3.1 Forward Algorithm

Forward probability:

$$\alpha_k(i) = \mathbb{P}(Y_{1:k} = y_{1:k}, X_k = s_i)$$

Recursive formula:

$$\alpha_{1}(i) = \pi_{i} \mathbb{P}(Y_{1} = y_{1} | X_{1} = s_{i})$$

$$\alpha_{k}(i) = \sum_{j=1}^{n} \alpha_{k-1}(j) A(j, i) \mathbb{P}(Y_{k} = y_{k} | X_{k} = s_{i})$$

$$\mathbb{P}(Y_{1:T} = y_{1:T}) = \sum_{j=1}^{n} \alpha_{T}(i)$$

2.3.2 Backward Algorithm

Backward probability:

$$\beta_k(i) = \mathbb{P}(Y_{k+1:T} = y_{k+1:T} | X_k = s_i)$$

Recursive formula:

$$\beta_T(i) = 1$$

$$\beta_k(i) = \sum_{j=1}^n A(i,j) \mathbb{P}(Y_k = y_k | X_k = s_j) \beta_{k+1}(j)$$

$$\mathbb{P}(Y_{1:T} = y_{1:T}) = \sum_{j=1}^N \pi_j \mathbb{P}(Y_1 = y_1 | X_1 = s_j) \beta_1(j)$$

2.3.3 Forward-Backward Algorithm

$$\xi_k(i,j) := \mathbb{P}(X_{k+1} = s_i, X_k = s_i) \tag{3}$$

$$\gamma_k(i) := \mathbb{P}(X_k = s_i) \tag{4}$$

Expectations:

$$\gamma_k(i) = \mathbb{P}(X_k = s_i) = \frac{\mathbb{P}(X_k = s_i, Y_{0:T} = y_{0:T})}{\mathbb{P}(Y_{0:T} = y_{0:T})} = \frac{\alpha_k(i)\beta_k(i)}{\sum_{j=1}^n \alpha_k(j)\beta_k(j)}$$

$$\xi_k(i,j) = \mathbb{P}(X_{k+1} = s_j, X_k = s_i) = \frac{\alpha_k(i)A(i,j)\mathbb{P}(Y_{k+1} = y_{k+1}|X_{k+1} = s_j)\beta_{k+1}(j)}{\sum_{j=1}^n \alpha_k(j)\beta_k(j)}$$

Maximization: depends on distribution Examples?? (like previously)

2.3.4 Viterbi Algorithm

2.4 Limitations

2.4.1 Related work - HMM extensions

• Różne rozszerzenia HMMów

3 Co-occurence based learning schema

- 3.1 Discretization
- 3.1.1 Select points at random
- 3.1.2 Quasi random
- 3.1.3 unifromly by coordinates
- 3.1.4 latin hypercude

4 Related work - HMM extensions

• Różne rozszerzenia HMMów

- 5 Moder approach: Flow HMM
- 5.1 Flow NN
- 5.2 Combined FlowHMM
- 5.3 Learning
- 5.3.1 Baum-Welch adapted
- 5.3.2 Cooc-based learning adapted
- 6 Experiments
- 6.1 Bechmarks
- 6.2 Results
- 7 Conclusions