IBM Data Science Professional Certificate

Capstone Project: To Predict the Severity of a Traffic Accident

Monica

monica110394@gmail.com (mailto:monica110394@gmail.com)

https://www.linkedin.com/in/monica110394/ (https://www.linkedin.com/in/monica110394/)

https://github.com/monica110394/Coursera_Capstone (https://github.com/monica110394/Coursera_Capstone)

Date: 9-10-2020

Data Introduction

```
# imporing libraries
import pandas as pd
import numpy as np
import seaborn as sns
from matplotlib import pyplot as plt
from scipy import stats
import warnings
warnings.filterwarnings('ignore')
```

```
In [2]:
print('Hello Capstone Project Course!')
```

Hello Capstone Project Course!

```
In [3]: ▶
```

```
# Loading the dataset
data = pd.read_csv('Data-Collisions.csv')

# knowing the dimensions of the dataset
print('Number of rows:', data.shape[0],'\nNumber of Columns', data.shape[1])
data.head()
```

Number of rows: 194673 Number of Columns 38

Out[3]:

	SEVERITYCODE	X	Y	OBJECTID	INCKEY	COLDETKEY	REPORTNO	ST
0	2	-122.323148	47.703140	1	1307	1307	3502005	Ма
1	1	-122.347294	47.647172	2	52200	52200	2607959	Ма
2	1	-122.334540	47.607871	3	26700	26700	1482393	Ма
3	1	-122.334803	47.604803	4	1144	1144	3503937	Ма
4	2	-122.306426	47.545739	5	17700	17700	1807429	Ма

5 rows × 38 columns

Variable Selection

```
In [4]:

# browing the attributes present in the dataset
```

```
# knowing the attributes present in the dataset
print('Column Names:\n\n', data.columns)
```

Column Names:

In [5]:

Feature Engineering

```
In [6]: ▶
```

```
# checking for null values
data.isnull().sum()
```

Out[6]:

CEVEDITYCODE

SEVERITYCODE	0
ADDRTYPE	1926
COLLISIONTYPE	4904
PERSONCOUNT	0
PEDCOUNT	0
PEDCYLCOUNT	0
VEHCOUNT	0
JUNCTIONTYPE	6329
SDOT_COLCODE	0
INATTENTIONIND	164868
UNDERINFL	4884
WEATHER	5081
ROADCOND	5012
LIGHTCOND	5170
SPEEDING	185340
ST_COLCODE	18
HITPARKEDCAR	0
dtype: int64	

```
In [7]: ▶
```

```
# removing rows with high number of null values
data.drop(columns=['SPEEDING', 'INATTENTIONIND'], inplace = True)
print('Updated Features:\n', data.columns)
print('\nNumber of rows:', data.shape[0],'\nNumber of Columns', data.shape[1])
```

In [8]:

```
# checking for null values
data.isnull().sum()
```

Out[8]:

SEVERITYCODE	0
ADDRTYPE	1926
COLLISIONTYPE	4904
PERSONCOUNT	0
PEDCOUNT	0
PEDCYLCOUNT	0
VEHCOUNT	0
JUNCTIONTYPE	6329
SDOT_COLCODE	0
UNDERINFL	4884
WEATHER	5081
ROADCOND	5012
LIGHTCOND	5170
ST_COLCODE	18
HITPARKEDCAR	0
dtype: int64	

In [9]: ▶

```
# removing rows with null values
data.dropna(axis=0, inplace = True)
# data.reset_index(inplace = True)
print('Updated Features:\n', data.columns)
print('\nNumber of rows:', data.shape[0],'\nNumber of Columns', data.shape[1])
print('\nNumber of Null Values', data.isnull().sum())
Updated Features:
Index(['SEVERITYCODE', 'ADDRTYPE', 'COLLISIONTYPE', 'PERSONCOUNT', 'PEDCOUN
Τ',
       'PEDCYLCOUNT', 'VEHCOUNT', 'JUNCTIONTYPE', 'SDOT_COLCODE', 'UNDERINF
L',
       'WEATHER', 'ROADCOND', 'LIGHTCOND', 'ST_COLCODE', 'HITPARKEDCAR'],
      dtype='object')
Number of rows: 182895
Number of Columns 15
Number of Null Values SEVERITYCODE
ADDRTYPE
                 0
COLLISIONTYPE
                 0
PERSONCOUNT
                 0
PEDCOUNT
                 0
PEDCYLCOUNT
                 0
VEHCOUNT
                 0
JUNCTIONTYPE
                 0
SDOT_COLCODE
                 0
UNDERINFL
                 0
WEATHER
                 0
ROADCOND
                 0
                 0
LIGHTCOND
ST COLCODE
HITPARKEDCAR
                 0
dtype: int64
```

```
In [10]:
```

```
# checking the datatypes of the features
print('Data types of all attributes:\n\n', data.dtypes)
```

Data types of all attributes:

```
SEVERITYCODE
                    int64
ADDRTYPE
                  object
COLLISIONTYPE
                  object
                   int64
PERSONCOUNT
PEDCOUNT
                   int64
PEDCYLCOUNT
                   int64
VEHCOUNT
                   int64
JUNCTIONTYPE
                  object
SDOT_COLCODE
                   int64
UNDERINFL
                  object
WEATHER
                  object
ROADCOND
                  object
LIGHTCOND
                  object
ST COLCODE
                  object
HITPARKEDCAR
                  object
dtype: object
```

In [11]: ▶

```
# converting string labels into numbers
from sklearn import preprocessing

le = preprocessing.LabelEncoder()

data['ADDRTYPE'] = le.fit_transform(data['ADDRTYPE'])
data['COLLISIONTYPE'] = le.fit_transform(data['COLLISIONTYPE'])
data['JUNCTIONTYPE'] = le.fit_transform(data['JUNCTIONTYPE'])
data['UNDERINFL'] = le.fit_transform(data['UNDERINFL'])
data['WEATHER'] = le.fit_transform(data['WEATHER'])
data['ROADCOND'] = le.fit_transform(data['ROADCOND'])
data['LIGHTCOND'] = le.fit_transform(data['LIGHTCOND'])
data['HITPARKEDCAR'] = le.fit_transform(data['HITPARKEDCAR'])
```

```
In [12]:
```

```
# changing to categorical data types
data['SEVERITYCODE'] = data['SEVERITYCODE'].astype('category')
data['ADDRTYPE'] = data['ADDRTYPE'].astype('category')
data['COLLISIONTYPE'] = data['COLLISIONTYPE'].astype('category')
data['JUNCTIONTYPE'] = data['JUNCTIONTYPE'].astype('category')
data['SDOT_COLCODE'] = data['SDOT_COLCODE'].astype('category')
data['UNDERINFL'] = data['UNDERINFL'].astype('category')
data['WEATHER'] = data['WEATHER'].astype('category')
data['ROADCOND'] = data['ROADCOND'].astype('category')
data['LIGHTCOND'] = data['LIGHTCOND'].astype('category')
data['ST_COLCODE'] = data['ST_COLCODE'].astype('category')
data['HITPARKEDCAR'] = data['HITPARKEDCAR'].astype('category')
```

In [13]: ▶

```
print('Dataframe Summary:\n')
print(data.info())
```

Dataframe Summary:

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 182895 entries, 0 to 194672
Data columns (total 15 columns):
```

Column Non-Null Count Dtype -----SEVERITYCODE 0 182895 non-null category 1 **ADDRTYPE** 182895 non-null category 2 COLLISIONTYPE 182895 non-null category 3 182895 non-null int64 PERSONCOUNT 4 PEDCOUNT 182895 non-null int64 5 182895 non-null int64 PEDCYLCOUNT 6 VEHCOUNT 182895 non-null int64 182895 non-null category 7 JUNCTIONTYPE 182895 non-null category 8 SDOT_COLCODE 9 182895 non-null category UNDERINFL 10 WEATHER 182895 non-null category 11 ROADCOND 182895 non-null category 182895 non-null category 12 LIGHTCOND 13 ST COLCODE 182895 non-null category 14 HITPARKEDCAR 182895 non-null category

dtypes: category(11), int64(4)

memory usage: 8.9 MB

None

In [14]:

▶

```
print('Statistical Summary:')
data.describe(include ='all')
```

Statistical Summary:

Out[14]:

	SEVERITYCODE	ADDRTYPE	COLLISIONTYPE	PERSONCOUNT	PEDCOUNT	PEDCY
count	182895.0	182895.0	182895.0	182895.000000	182895.000000	18289
unique	2.0	3.0	10.0	NaN	NaN	
top	1.0	1.0	5.0	NaN	NaN	
freq	126270.0	119362.0	43119.0	NaN	NaN	
mean	NaN	NaN	NaN	2.476268	0.038995	
std	NaN	NaN	NaN	1.370912	0.202960	
min	NaN	NaN	NaN	0.000000	0.000000	
25%	NaN	NaN	NaN	2.000000	0.000000	
50%	NaN	NaN	NaN	2.000000	0.000000	
75%	NaN	NaN	NaN	3.000000	0.000000	
max	NaN	NaN	NaN	81.000000	6.000000	

In [15]: ▶

Out[15]:

	SEVERITY	ADDRESS TYPE	COLLISION TYPE	#PEOPLE INVOLVED	#PEDESTRIANS INVOLVED	#BICYCLES INVOLVED	#VEHICLES INVOLVED	JU
0	2	2	0	2	0	0	2	
1	1	1	9	2	0	0	2	
2	1	1	5	4	0	0	3	
3	1	1	4	3	0	0	3	
4	2	2	0	2	0	0	2	

Balancing dataset

In [16]:

In [17]:

Number of rows: 113250 Number of Columns 15

Exploratory Data Analysis

Categorical Variables

```
In [18]:
```


In [19]:

In [20]:

In [21]:

In [22]: ▶

In [23]:

In [24]:

In [25]:

In [26]:


```
In [27]:
```


Numerical Variables

```
In [28]:

# aggregating by summing up numerical features grouped over 'SEVERITY'

invalidation of the state o
```

```
involved = data.groupby(['SEVERITY'], as_index=False).sum()
involved
```

Out[28]:

SI	EVERITY	#PEOPLE INVOLVED	#PEDESTRIANS INVOLVED	#BICYCLES INVOLVED	#VEHICLES INVOLVED
0	1	133436	342	277	113461
1	2	154656	6424	4792	107798

In [29]: ▶

In [30]: ▶

In [31]:

In [32]:


```
In [33]: ▶
```

```
# final dataset
data.head()
```

Out[33]:

	SEVERITY	ADDRESS TYPE	COLLISION TYPE	#PEOPLE INVOLVED	#PEDESTRIANS INVOLVED	#BICYCLES INVOLVED	#VEHICLE INVOLVE
20819	1	1	5	2	0	0	
114030	1	1	9	2	0	0	
137550	1	2	3	3	0	0	
32128	1	1	5	2	0	0	
52426	1	1	4	3	0	0	

Data Preparation

```
In [34]:

y = data['SEVERITY'].values
y[0:5]
```

Out[34]:

```
[1, 1, 1, 1, 1]
Categories (2, int64): [1, 2]
```

```
In [35]: ▶
```

```
features = data.drop(columns=['SEVERITY'])
features.head()
```

Out[35]:

	ADDRESS TYPE	COLLISION TYPE	#PEOPLE INVOLVED	#PEDESTRIANS INVOLVED	#BICYCLES INVOLVED	#VEHICLES INVOLVED	JUNCTIO TYP
20819	1	5	2	0	0	2	
114030	1	9	2	0	0	2	
137550	2	3	3	0	0	3	
32128	1	5	2	0	0	2	
52426	1	4	3	0	0	3	

In [36]:

```
# normalizing dataset to get to zero mean and unit variance
from sklearn import preprocessing

X = preprocessing.StandardScaler().fit(features).transform(features)
X[0:5]
```

Out[36]:

```
array([[-0.78486856, 0.23138773, -0.38496185, -0.24003531, -0.21465406,
         0.07597394, 1.00887947, -0.53788912, -1.13881327, -0.71206607,
        -0.67965636, 0.42454914, -0.11001508, -0.15866469],
       [-0.78486856, 1.62434501, -0.38496185, -0.24003531, -0.21465406,
        0.07597394, 1.00887947, -0.53788912, 0.82441877, -0.71206607,
        -0.67965636, 0.42454914, -0.7206508, -0.15866469],
       [ 1.26259106, -0.46509091, 0.32287244, -0.24003531, -0.21465406,
         1.71765476, -1.15285513, -0.53788912, 0.82441877, -0.71206607,
        -0.67965636, 0.42454914, 0.43277223, -0.15866469],
       [-0.78486856, 0.23138773, -0.38496185, -0.24003531, -0.21465406,
        0.07597394,
                    1.00887947, -0.11439511, -1.13881327, -0.71206607,
        -0.67965636, 0.42454914, 0.70416588, -0.15866469],
       [-0.78486856, -0.11685159, 0.32287244, -0.24003531, -0.21465406,
         1.71765476, -0.43227693, 2.28540429, -1.13881327, -0.71206607,
        -0.67965636, -1.44281192, 0.02568175, -0.15866469]])
```

In [37]: ▶

```
# splitting the dataset into train and test dataset
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.2, random_state=4)
print ('Train set:', X_train.shape, y_train.shape)
print ('Test set:', X_test.shape, y_test.shape)
```

Train set: (90600, 14) (90600,) Test set: (22650, 14) (22650,)

Model Building

KNN

In [38]:

```
from sklearn.neighbors import KNeighborsClassifier
from sklearn import metrics
K = 10
accuracy = []
# finding the best hyperparameter
for n in range(1,K):
    knn = KNeighborsClassifier(n_neighbors = n).fit(X_train,y_train)
    y_hat=knn.predict(X_test)
    acc = round(metrics.accuracy_score(y_test, y_hat),4)
    accuracy.append(acc)
print(accuracy)
plt.plot(range(1, K), accuracy)
plt.xlabel('K')
plt.ylabel('Accuracy')
plt.show()
print("\nThe best accuracy is", round(np.max(accuracy), 4), "with k=", np.argmax(accuracy)-
```

[0.6389, 0.6318, 0.6669, 0.6618, 0.6774, 0.671, 0.6806, 0.6779, 0.6804]

The best accuracy is 0.6806 with k=7

In [39]:

```
# training knn classifier with k=7
k = 7
knn = KNeighborsClassifier(n_neighbors = k).fit(X_train,y_train)
print(knn)

# predicting train accuracy
y_hat = knn.predict(X_train)
print("\nTrain set Accuracy: ", round(metrics.accuracy_score(y_train, y_hat),4))

# predicting test accuracy
y_hat = knn.predict(X_test)
print("\nTest set Accuracy: ", round(metrics.accuracy_score(y_test, y_hat),4))
```

Train set Accuracy: 0.7195

Test set Accuracy: 0.6806

Decision Tree

In [40]:

```
from sklearn.tree import DecisionTreeClassifier
from sklearn import metrics
K = 15
accuracy = []
# finding the best hyperparameter
for n in range(1,K):
    tree = DecisionTreeClassifier(criterion="entropy", max_depth = n).fit(X_train,y_train)
    y_hat = tree.predict(X_test)
    acc = round(metrics.accuracy_score(y_test, y_hat),4)
    accuracy.append(acc)
print(accuracy)
plt.plot(range(1, K), accuracy)
plt.xlabel('Max Depth')
plt.ylabel('Accuracy')
plt.show()
print("\nThe best accuracy is", round(np.max(accuracy), 4), "with max depth=", np.argmax(accuracy)
```

[0.5532, 0.6389, 0.6389, 0.6785, 0.6952, 0.7069, 0.7085, 0.7097, 0.713, 0.7131, 0.7124, 0.7125, 0.7098, 0.7081]

The best accuracy is 0.7131 with max depth= 10

In [41]: ▶

```
# training decision tree classifier with max depth=10
k = 10
tree = DecisionTreeClassifier(criterion="entropy", max_depth = k).fit(X_train,y_train)
print(tree)

# predicting train accuracy
y_hat = tree.predict(X_train)
print("\nTrain set Accuracy: ", round(metrics.accuracy_score(y_train, y_hat),4))

# predicting test accuracy
y_hat = tree.predict(X_test)
print("\nTest set Accuracy: ", round(metrics.accuracy_score(y_test, y_hat),4))
```

Train set Accuracy: 0.7183

Test set Accuracy: 0.7128

Logistic Regression

In [42]:

```
from sklearn.linear_model import LogisticRegression
from sklearn import metrics
Cs = [0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, 6]
accuracy = []
# finding the best hyperparameter
for c in Cs:
    LR = LogisticRegression(C=c, solver = 'liblinear').fit(X_train, y_train)
    y_hat = LR.predict(X_test)
    acc = round(metrics.accuracy_score(y_test, y_hat),4)
    accuracy.append(acc)
print(accuracy)
plt.plot(Cs, accuracy)
plt.xlabel('Cs')
plt.ylabel('Accuracy')
plt.show()
print("\nThe best accuracy is", round(np.max(accuracy), 4), "with C=", Cs[np.argmax(accuracy)]
```

[0.6581, 0.6591, 0.6592, 0.6594, 0.6595, 0.6595, 0.6595, 0.6595]

The best accuracy is 0.6595 with C= 0.1

In [43]: ▶

```
# training logistic regression classifier with C=0.1
C=0.1
LR = LogisticRegression(C=0.1, solver = 'liblinear').fit(X_train, y_train)
print(LR)

# predicting train accuracy
y_hat = LR.predict(X_train)
print("\nTrain set Accuracy: ", round(metrics.accuracy_score(y_train, y_hat),4))

# predicting test accuracy
y_hat = LR.predict(X_test)
print("\nTest set Accuracy: ", round(metrics.accuracy_score(y_test, y_hat),4))
```

```
LogisticRegression(C=0.1, class_weight=None, dual=False, fit_intercept=True, intercept_scaling=1, l1_ratio=None, max_iter=100, multi_class='auto', n_jobs=None, penalty='l2', random_state=None, solver='liblinear', tol=0.0001, verbos e=0, warm_start=False)
```

Train set Accuracy: 0.6591

Test set Accuracy: 0.6595

Model Evaluation

```
In [44]:
```

KNN Evaluation

In [45]: ▶

```
# KNN
y_hat = knn.predict(X_test)
print('\nKNN\n')
print('-> Jaccard Similarity Score:', round(jaccard_similarity_score(y_test, y_hat),4))
print('-> F1 Score:', round(f1_score(y_test, y_hat, average='weighted'),4))
print('-> Precision Score:', round(precision_score(y_test, y_hat),4))
print('-> Recall Score:', round(recall_score(y_test, y_hat),4), '\n')
print(classification_report(y_test, y_hat))
metrics.plot_roc_curve(knn, X_test, y_test)
plt.show()
```

KNN

-> Jaccard Similarity Score: 0.6806

-> F1 Score: 0.6797

-> Precision Score: 0.6991 -> Recall Score: 0.6284

	precision	recall	f1-score	support
1	0.70	0.63	0.66	11267
2	0.67	0.73	0.70	11383
accuracy			0.68	22650
macro avg	0.68	0.68	0.68	22650
weighted avg	0.68	0.68	0.68	22650

Decision Tree Evaluation

In [46]: ▶

```
# Decision Tree
y_hat = tree.predict(X_test)
print('Decision Tree\n')
print('-> Jaccard Similarity Score:', round(jaccard_similarity_score(y_test, y_hat),4))
print('-> F1 Score:', round(f1_score(y_test, y_hat, average='weighted'),4))
print('-> Precision Score:', round(precision_score(y_test, y_hat),4))
print('-> Recall Score:', round(recall_score(y_test, y_hat),4), '\n')
print(classification_report(y_test, y_hat))
metrics.plot_roc_curve(tree, X_test, y_test)
plt.show()
```

Decision Tree

-> Jaccard Similarity Score: 0.7128

-> F1 Score: 0.7103

-> Precision Score: 0.7583 -> Recall Score: 0.6206

	precision	recall	f1-score	support
1	0.76	0.62	0.68	11267
2	0.68	0.80	0.74	11383
accuracy			0.71	22650
macro avg	0.72	0.71	0.71	22650
weighted avg	0.72	0.71	0.71	22650

Logistic Regression Evaluation

In [47]:

```
# Logistic Regression
y_hat = LR.predict(X_test)
y_hat_prob = LR.predict_proba(X_test)
print('Logistic Regression\n')
print('-> Jaccard Similarity Score:', round(jaccard_similarity_score(y_test, y_hat),4))
print('-> F1 Score:', round(f1_score(y_test, y_hat, average='weighted'),4))
print('-> Precision Score:', round(precision_score(y_test, y_hat),4))
print('-> Recall Score:', round(recall_score(y_test, y_hat),4))
print('-> Log Loss: ', round(log_loss(y_test, y_hat_prob),4), '\n')
print(classification_report(y_test, y_hat))
metrics.plot_roc_curve(LR, X_test, y_test)
plt.show()
```

Logistic Regression

-> Jaccard Similarity Score: 0.6595

-> F1 Score: 0.6585

-> Precision Score: 0.6417 -> Recall Score: 0.7144 -> Log Loss: 0.5899

	precision	recall	f1-score	support
1	0.64	0.71	0.68	11267
2	0.68	0.61	0.64	11383
accuracy			0.66	22650
macro avg	0.66	0.66	0.66	22650
weighted avg	0.66	0.66	0.66	22650

Results

Algorithm	Jaccard	F1-score	Precision	Recall	AUC	LogLoss
KNN	0.6806	0.6797	0.6991	0.6284	0.75	NA
Decision Tree	0.7128	0.7104	0.7582	0.6207	0.79	NA

Algorithm	Jaccard	F1-score	Precision	Recall	AUC	LogLoss
LogisticRegression	0.6595	0.6585	0.6417	0.7144	0.74	0.5899

Based on the above evaluation, it very clear that Decision Tree is the best classifiers in all the three classifiers.

In []:	H