Лекция 2.

ПРЕДЕЛ ФУНКЦИИ

Числовые функции

1. Понятие числовой функции. Пусть дано числовое множество $X \subset R$. Если каждому $x \in X$ поставлено в соответствие по некоторому правилу число y, то говорят, что на множестве X определена числовая функция.

Правило, устанавливающее соответствие, обозначают некоторым символом, например, f, и пишут

$$y = f(x), \quad x \in X, \tag{1}$$

а множество X называют *областью определения функции* и обозначают D(f), т. е. X = D(f).

В записи (1) x часто называют аргументом или независимой переменной, а y — зависимой переменной. Числа x из множества D(f) называют значениями аргумента. Число y_0 , соответствующее значению $x_0 \in D(f)$, называют значением функции при $x = x_0$ (или значением функции в точке x_0) и обозначают $f(x_0)$ или $f(x)|_{x=x_0}$. Совокупность всех значений, которые функция принимает на множестве D(f), называют множеством значений функции и обозначают E(f). Заметим, что если $y_0 \in E(f)$, то существует по крайней мере одно число $x_0 \in D(f)$ такое, что $f(x_0) = y_0$.

2. Равенство функций. Операции над функциями. Функции f и g называют равными или совпадающими, если они имеют одну и ту же область определения X и для каждого $x \in X$ значения этих функций совпадают. В этом случае пишут $f(x) = g(x), x \in X$ или f = g.

Например, если $f(x)=\sqrt{x^2},\ x\in R,$ и $g(x)=|x|,\ x\in R,$ то f=g, так как при всех $x\in R$ справедливо равенство $\sqrt{x^2}=|x|.$

Естественным образом для функций вводятся арифметические операции. Пусть функции f и g определены на одном и том же множестве E. Тогда функции, значения которых в каждой точке $x \in E$ равны f(x) + g(x), f(x) - g(x), f(x)g(x), f(x)/g(x) ($g(x) \neq 0$ для всех $x \in E$), называют соответственно суммой, разностью, произведением и частным функций f и g и обозначают f + g, f - g, fg, f/g.

Введем понятие сложной функции. Пусть функции $y = \varphi(x)$ и z = f(y) определены на множествах X и Y соответственно, причем множество значений функции φ содержится в области определения функции f. Тогда функцию, принимающую при каждом $x \in X$ значение $F(x) = f(\varphi(x))$, называют сложной функцией или суперпозицией (композицией) функций φ и f и обозначают $f \circ \varphi$ Например, функция $z=\sqrt{4-x^2},\ x\in[-2,2],$ является композицией функций $y=4-x^2,$ $x\in[-2,2],$ и $z=\sqrt{y},\ y\in[0,+\infty).$ Эта функция относится к совокупности элементарных функций, т. е. функций, которые можно получить из основных элементарных функций с помощью конечного числа арифметических операций и композиций. К основным элементарным функциям относят постоянную, степенную, логарифмическую, тригонометрические и обратные тригонометрические функции. Например, элементарными являются функции:

- а) линейная $y = ax + b, a \neq 0;$ б) квадратичная $y = ax^2 + bx + c, a \neq 0;$
- в) многочлен степени n, т. е. функция $y=P_n(x)$, где $P_n(x)=$
- $=a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0,\ a_n\neq 0;$ г) рациональная функция, т. е. функция вида $y=rac{P_n(x)}{Q_m(x)},$ где P_n и Q_m — многочлены степени n и m, $m \neq 0$.
- 3. Способы задания функции. Числовые функции чаще всего задаются при помощи формул. Такой способ задания называют аналитическим. Например, функции $y = x^2$, $y = |x|^{3/2}$, $y = \sin^3 3x$ заданы на множестве R аналитически.

Если числовая функция f задана формулой и не указана область ее определения D(f), то принято считать, что D(f) — множество всех тех значений аргумента, при которых эта формула имеет смысл, и результатом каждой операции, указанной в формуле, является вещественное число. Например, если $f(x) = \sqrt{9-x^2}$, то D(f) = [-3,3], а если $f(x) = \sqrt{\lg \sin x}$, то D(f) — множество корней уравнения $\sin x = 1$, т. е. множество чисел $x_k = \pi/2 + 2\pi k$, где $k \in \mathbb{Z}$.

Следует отметить, что функция может быть задана различными формулами на разных промежутках. Например, функция

$$f(x) = \begin{cases} -x, & \text{если} \quad x < 0, \\ x^2, & \text{если} \quad 0 \leqslant x \leqslant 1, \\ 2 - \sqrt{x}, & \text{если} \quad x > 1, \end{cases}$$

задана аналитическим способом на R с помощью трех различных формул.

4. График функции. Графиком функции $y = f(x), x \in D(f)$, в прямоугольной системе координат Oxy называют множество всех точек плоскости с координатами (x, f(x)), где $x \in D(f)$.

Для каждого $x_0 \in D(f)$ прямая $x = x_0$, параллельная оси Oy, пересекает график функции $y = f(x), x \in D(f)$, в одной точке $M_0(x_0, y_0)$, где $y_0 = f(x_0)$ — значение функции f при $x = x_0$. Значение x = a, при котором f(a) = 0, называют нулем функции f(x). Если x = a — нуль функции f, то график функции y = f(x) пересекает ось Ox при x = a, т. е. в точке M(a, 0).

График функции y = f(x) иногда можно получить (см. таблицу) преобразованием известного графика другой функции y = g(x).

Функция $y = f(x)$	Преобразование графика функции $y=g(x)$
y = g(x) + A y = g(x - a) y = g(-x) y = -g(x) y = Bg(x) y = g(kx)	Сдвиг (параллельный перенос) вдоль оси ординат на A Сдвиг вдоль оси абсцисс на a Симметрия относительно оси ординат Симметрия относительно оси абсцисс Умножение каждой ординаты на B , где $B \neq 0$ Деление каждой абсциссы на k , где $k \neq 0$

Приведем примеры применения преобразований, указанных в таблице.

Пример График квадратичной функции

$$y = ax^2 + bx + c, \quad a \neq 0, \tag{2}$$

можно получить сдвигом графика функции $y=ax^2$ вдоль оси Ox

на
$$-rac{b}{2a}$$
 и вдоль оси Oy на $c-rac{b^2}{4a}.$

△ Действительно, выделяя полный квадрат, получаем

$$ax^{2} + bx + c = a\left(x + \frac{b}{2a}\right)^{2} + c - \frac{b^{2}}{4a}.$$

Поэтому графиком квадратичной функции (2) является парабола, получаемая сдвигом параболы $y=ax^2$. \blacktriangle

Например, график функции $y=x^2-2x$, изображенный на рис. 9.3, можно получить сдвигом графика $y=x^2$ вдоль оси Ox на 1 и вдоль оси Oy на -1, так как $x^2-2x=(x-1)^2-1$.

- **5. Четные и нечетные функции.** Функция f, определенная на множестве X, называется:
- а) четной, если для любого $x \in X$ выполняются условия $-x \in X$ и f(-x) = f(x);
- б) нечетной, если для любого $x \in X$ выполняются условия $-x \in X$ и f(-x) = -f(x).

Четными являются, например, следующие функции: $y=x^4,\ y=\cos\frac{x}{2},\ y=\lg|x|,\ y=\frac{\sin x}{x},\$ а нечетными — функции $y=\frac{1}{x^3},\ y=\sin^5 2x,\ y=x^2 {\rm tg}\,\frac{x}{2},\ y=\arcsin{(\sin x)}.$

График четной функции симметричен относительно оси ординат, а график нечетной функции симметричен относительно начала координат.

6. Ограниченные и неограниченные функции. Функцию f называют ограниченной снизу на множестве $X \subset D(f)$, если существует число C_1 такое, что для любого $x \in X$ выполняется неравенство $f(x) \geqslant C_1$.

Используя символы ∃ и ∀, это определение можно записать так:

$$\exists C_1 \colon \forall x \in X \to f(x) \geqslant C_1.$$

Аналогично функцию f называют ограниченной сверху на множестве $X \subset D(f)$, если

 $\exists C_2 \colon \forall x \in X \to f(x) \leqslant C_2.$

Функцию, ограниченную и сверху, и снизу на множестве X, называют ограниченной на этом множестве.

Функция f является ограниченной на множестве X тогда и только тогда, когда

$$\exists C > 0 \colon \forall x \in X \to |f(x)| \leqslant C. \tag{4}$$

Если неравенство $|f(x)| \leq C$ выполняется для всех $x \in D(f)$, говорят, что функция f ограничена.

Геометрически ограниченность функции f на множестве X означает, что график функции $y=f(x),\,x\in X,$ лежит в полосе $-C\leqslant y\leqslant C.$

Например, функция $y=\sin\frac{1}{x}$, определенная при $x\in R,\,x\neq 0$, ограничена, так как

 $\left|\sin\frac{1}{x}\right| \leqslant 1.$

Функция f не ограничена на множестве X, если условие (4) не выполняется, т. е.

 $\forall C > 0 \quad \exists x_C \in X: \ |f(x_C)| \geqslant C. \tag{5}$

Если X = D(f) и выполнено условие (5), то говорят, что функция f не ограничена.

Пусть Y — множество значений, которые функция f принимает на множестве $X\subset D(f)$. Тогда точную верхнюю грань множества Y называют точной верхней гранью функции f на множестве X и обозначают $\sup_{x\in X} f(x)$, а точную нижнюю грань множества Y — точной $x\in X$

нижней гранью функции f на множестве X и обозначают $\inf_{x \in X} f(x)$.

Если X = D(f), то в этих определениях указание на множество X опускают.

Пусть существует точка $x_0 \in X \subset D(f)$ такая, что для всех $x \in X$ выполняется неравенство $f(x) \leqslant f(x_0)$. Тогда говорят, что функция f принимает в точке x_0 наибольшее (максимальное) значение на множестве X и пишут $f(x_0) = \max_{x \in X} f(x)$. В этом случае $\sup_{x \in X} f(x) = f(x_0)$.

Аналогично, если $\exists x_0 \in X \subset D(f) \colon \forall x \in X \to f(x) \geqslant f(x_0)$, то говорят, что функция f принимает в точке x_0 наименьшее (минимальное) значение на множестве X, и пишут $f(x_0) = \min_{x \in X} f(x)$. В этом случае $\inf_{x \in X} f(x) = f(x_0)$.

Максимальные и минимальные значения называют *экстремальными*.

Например, если $f(x) = \sin x$, то $\sup_{x \in R} f(x) = \max_{x \in R} f(x) = f(x_k)$, где $x_k = \frac{\pi}{2} + 2\pi k$, $k \in Z$, $\inf_{x \in R} f(x) = \min_{x \in R} f(x) = f(\widetilde{x}_k)$, где $\widetilde{x}_k = -\frac{\pi}{2} + 2\pi k$, $k \in Z$.

7. Монотонные функции. Функцию f называют возрастающей (неубывающей) на множестве $X \subset D(f)$, если для любых точек $x_1 \in X$, $x_2 \in X$ таких, что $x_1 < x_2$, выполняется неравенство $f(x_1) \leqslant x_2$. Если это неравенство является строгим $f(x_1) < f(x_2)$, то функцию f называют строго возрастающей на множестве $f(x_2)$.

Таким образом, функция f называется:

а) возрастающей (неубывающей) на множестве X, если

$$\forall x_1 \in X \quad \forall x_2 \in X \colon x_1 < x_2 \to f(x_1) \leqslant f(x_2);$$

б) строго возрастающей на множестве X, если

$$\forall x_1 \in X \quad \forall x_2 \in X : \ x_1 < x_2 \to f(x_1) < f(x_2).$$

Аналогично функция f называется:

а) убывающей (невозрастающей) на множестве X, если

$$\forall x_1 \in X \quad \forall x_2 \in X \colon x_1 < x_2 \to f(x_1) \geqslant f(x_2);$$

б) строго убывающей на множестве X, если

$$\forall x_1 \in X \quad \forall x_2 \in X : \ x_1 < x_2 \to f(x_1) > f(x_2).$$

Убывающие и возрастающие функции объединяют названием *мо*нотонные, а строго возрастающие и строго убывающие — названием строго монотонные.

Если X = D(f), то в этих определениях указание на множество X обычно опускают.

8. Периодические функции. Число $T \neq 0$ называют *периодом* функции f, если для любого $x \in D(f)$ значения x + T и x - T также принадлежат D(f) и выполняется равенство

$$f(x-T) = f(x) = f(x+T).$$

Функцию, имеющую период T, называют $\mathit{nepuoduчeckoй}\ \mathit{c}\ \mathit{nepuodow}\ \mathit{T}.$

Отметим, что если T — период функции f, то каждое число вида nT, где $n \in \mathbb{Z}, \, n \neq 0$, также является периодом этой функции.

Примерами периодических функций могут служить тригонометрические функции. При этом число 2π — наименьший положительный период функций $\sin x, \cos x,$ а π — наименьший положительный период функций $\operatorname{tg} x$ и $\operatorname{ctg} x$.

9. Обратная функция. Пусть задана числовая функция y = f(x), $x \in D(f)$. Тогда каждому числу $x_0 \in D(f)$ соответствует единственное число $y_0 = f(x_0) \in E(f)$. Нередко приходится по заданному значению функции y_0 находить соответствующее значение аргумента, т. е. решать относительно x уравнение

$$f(x) = y_0, \quad y_0 \in E(f).$$
 (8)

Это уравнение может иметь не одно, а несколько и даже бесконечно много решений. Решениями уравнения (8) являются абсциссы всех точек, в которых прямая $y = y_0$ пересекает график функции y = f(x).

Например, если $f(x) = x^2$, то уравнение

$$x^2 = y_0, \quad y_0 > 0,$$

имеет два решения: $x_0 = \sqrt{y_0}$ и $\tilde{x}_0 = -\sqrt{y_0}$.

Однако существуют функции, для которых уравнение (8) при каждом $y_0 \in E(f)$ однозначно разрешимо, т. е. имеет единственное решение $x_0 \in D(f)$. Этим свойством обладают, например, следующие функции:

- a) f(x) = 3x + 4, D(f) = R;
- 6) $f(x) = x^3$, D(f) = R;
- B) $f(x) = \frac{1}{x}$, $D(f) = \{x \in R, x \neq 0\}$.

Если функция f такова, что каждое значение $y_0 \in E(f)$ она принимает только при одном значении $x_0 \in D(f)$, то эту функцию называют обратимой. Для такой функции уравнение

$$f(x) = y$$

можно при любом $y \in E(f)$ однозначно разрешить относительно x, т. е. каждому $y \in E(f)$ соответствует единственное значение $x \in D(f)$. Это соответствие определяет функцию, которую называют *обратной* κ функции f и обозначают символом f^{-1} .

Заметим, что прямая $y=y_0$ для каждого $y_0 \in E(f)$ пересекает график обратимой функции y=f(x) в единственной точке (x_0,y_0) , где $f(x_0)=y_0$.

Обозначая, как обычно, аргумент обратной функции буквой x, а ее значения — буквой y, обратную для f функцию записывают в виде

$$y = f^{-1}(x), \quad x \in D(f^{-1}).$$

Для упрощения записи вместо символа f^{-1} будем употреблять букву g.

Отметим следующие свойства, которые показывают, как связаны данная функция и обратная к ней:

1) если g — функция, обратная к f, то и f — функция, обратная к g; при этом

$$D(g) = E(f), \quad E(g) = D(f),$$

т. е. область определения функции g совпадает с множеством значений функции f и наоборот;

2) для любого $x \in D(f)$ справедливо равенство

$$g(f(x)) = x,$$

а для любого $x \in E(f)$ справедливо равенство

$$f(g(x)) = x;$$

- 3) график функции y = g(x) симметричен графику функции y = f(x) относительно прямой y = x;
- 4) если нечетная функция обратима, то обратная к ней функция также является нечетной;
- 5) если f строго возрастающая (строго убывающая) функция, то она обратима, причем обратная к ней функция g также является строго возрастающей (строго убывающей).

Свойства 1) и 2) следуют непосредственно из определения обратной функции, 4) и 5) — из определений обратной и соответственно нечетной и строго монотонной функции.

Рассмотрим свойство 3). Пусть точка (x_0, y_0) принадлежит графику

Рис. 9.9

функции y=f(x), т. е. $y_0=f(x_0)$. Тогда $x_0=g(y_0)$, т. е. точка (y_0,x_0) принадлежит графику обратной функции g. Так как точки (x_0,y_0) и (y_0,x_0) симметричны относительно прямой y=x (рис. 9.9), то график функции y=g(x) симметричен графику функции y=f(x) относительно этой прямой.

10. Неявные функции. Параметрически заданные функции. Пусть E — множество точек M(x,y) плоскости Oxy. Если каждой точке $M \in E$ поставлено в соответствие по некоторому правилу (закону) число z, то говорят, что на множестве E задана числовая функция от переменных x u y, и пишут z = f(x,y), $(x,y) \in E$.

Пусть функция F(x,y) определена на некотором множестве точек плоскости. Рассмотрим уравнение

Рис. 9.12

$$F(x,y) = 0. (9)$$

Графиком уравнения (9) в прямоугольной системе координат называют множество всех точек плоскости, координаты которых удовлетворяют этому уравнению. Например, графиком уравнения

$$x^2 + y^2 - 1 = 0 \tag{10}$$

является единичная окружность (рис. 9.12).

Естественной является постановка вопроса о том, можно ли уравнение (9) однозначно разрешить относительно y, т. е. найти единственную функцию y=f(x) такую, что F(x,f(x))=0, где x принимает значения из некоторого промежутка.

Обратимся к уравнению (10). Если |x| > 1, то не существует значений y таких, что пара чисел (x,y) удовлетворяет уравнению (10). Если $|x| \leq 1$, то, решая это уравнение относительно y, получаем

$$y = \pm \sqrt{1 - x^2}.\tag{11}$$

Таким образом, если |x| < 1, то из уравнения (10) y выражается через x неоднозначно: каждому значению x соответствуют два различных значения y, а именно $y_1 = -\sqrt{1-x^2}$ и $y_2 = \sqrt{1-x^2}$ ($y_1 = y_2$ при x = -1 и x = 1).

Отсюда следует, что всякая функция y = f(x), которая в точке $x \in [-1,1]$ принимает либо значение y_1 , либо значение y_2 , удовлетворяет уравнению (10), т. е.

$$x^2 + f^2(x) - 1 \equiv 0, \quad x \in [-1, 1].$$

Вернемся к уравнению (9). Пусть прямоугольник $K = \{(x,y): |x-x_0| \leqslant a, |y-y_0| \leqslant b\}$ содержится в области определения функции F(x,y), и пусть $F(x_0,y_0)=0$. Если на отрезке $\Delta=[x_0-a,\ x_0+a]$ существует единственная функция y=f(x) такая, что $f(x)\in \{y_0-b,y_0+b\}$ и

$$F(x, f(x)) \equiv 0, \quad x \in \Delta,$$

то говорят, что уравнение (9) определяет в прямоугольнике K переменную у как неявную функцию переменной x.

Достаточные условия существования неявной функции и другие вопросы, связанные с неявными функциями, рассматриваются в § 28.

Функция одной переменной может быть задана не только в явном виде y=f(x) или неявно уравнением F(x,y)=0, но также параметрически. Этот способ задания состоит в следующем.

Пусть функции $x=\varphi(t)$ и $\psi(t)$ определены на некотором множестве E, и пусть E_1 — множество значений функции φ . Предположим, что функция φ обратима на множестве E, и пусть $t=\varphi^{-1}(x)$ — обратная к ней функция. Тогда на множестве E_1 определена сложная функция $y=\psi(\varphi^{-1}(x))=f(x)$, которую называют параметрически заданной формулами (уравнениями) $x=\varphi(t), \ y=\psi(t)$.

Например, уравнения $x = \cos t$, $y = \sin t$, где $t \in \left[0, \frac{\pi}{2}\right]$, определяют параметрически заданную функцию y = f(x). В данном случае $t = \arccos x$, $y = \sin(\arccos x) = \sqrt{1-x^2}$.

Предел функции

1. Понятие предела. Важную роль в курсе математического анализа играет понятие предела, связанное с поведением функции в окрестности данной точки. Напомним, что δ -окрестностью точки a называется интервал длины 2δ с центром в точке a, т. е. множество

$$U_{\delta}(a) = \{x \colon |x - a| < \delta\} = \{x \colon a - \delta < x < a + \delta\}.$$

Если из этого интервала удалить точку a, то получим множество, которое называют *проколотой* δ -окрестностью точки a и обозначают $\dot{U}_{\delta}(a)$, т. е.

$$\dot{U}_{\delta}(a) = \{x \colon |x - a| < \delta, \ x \neq a\} = \{x \colon 0 < |x - a| < \delta\}.$$

Предваряя определение предела функции, рассмотрим два примера.

 Π ример 1. Исследуем функцию $f(x) = \frac{x^2-1}{x-1}$ в окрестности точки x=1.

 \triangle Функция f определена при всех $x \in R$, кроме x = 1, причем f(x) = x + 1 при $x \neq 1$. График этой функции изображен на рис. 10.1.

Рис. 10.1

Из этого рисунка видно, что значения функции близки к 2, если значения x близки к 1 ($x \neq 1$). Придадим этому утверждению точный смысл.

Пусть задано любое число $\varepsilon > 0$ и требуется найти число $\delta > 0$ такое, что для всех x из проколотой δ -окрестности точки x=1 значения функции f(x) отличаются от числа 2 по абсолютной величине меньше, чем на ε .

Иначе говоря, нужно найти число $\delta > 0$ такое, чтобы для всех $x \in$

 $\in U_{\delta}(a)$ соответствующие точки графика функции y=f(x) лежали в горизонтальной полосе, ограниченной прямыми $y=2-\varepsilon$ и $y=2+\varepsilon$ (см. рис. 10.1), т. е. чтобы выподнялось условие $f(x)\in U_{\varepsilon}(2)$. В данном примере можно взять $\delta=\varepsilon$.

В этом случае говорят, что функция f(x) стремится к двум при x, стремящемся к единице, а число 2 называют пределом функции f(x) при $x \to 1$ и пишут $\lim_{x \to 0} f(x) = 2$ или $f(x) \to 2$ при $x \to 1$.

- 2. Два определения предела функции и их эквивалентность.
- а) Определение предела по Коши. Число A называется пределом функции f(x) в точке a, если эта функция определена в некоторой окрестности точки a, за исключением, быть может, самой точки a, и для каждого $\varepsilon > 0$ найдется число $\delta > 0$ такое, что для всех x, удовлетворяющих условию $|x-a| < \delta, \ x \neq a$, выполняется неравенство $|f(x)-A| < \varepsilon$. В этом случае пишут $\lim_{x\to a} f(x) = A$ или $f(x) \to A$ при $x\to a$.

С помощью логических символов это определение можно записать так:

 $\{\lim_{x\to a}f(x)=A\}\Leftrightarrow \forall \varepsilon>0\quad \exists \delta>0\colon \ \forall x\colon \ 0<|x-a|<\delta\to |f(x)-A|<\varepsilon,$ или, используя понятие окрестности, в виде

$$\{\lim_{x\to a} f(x) = A\} \Leftrightarrow \forall \varepsilon > 0 \quad \exists \delta > 0 \colon \forall x \in \dot{U}_{\delta}(a) \to f(x) \in U_{\varepsilon}(A).$$

Таким образом, число A есть предел функции f(x) в точке a, если для любой ε -окрестности числа A можно найти такую проколотую δ -окрестность точки a, что для всех x, принадлежащих этой δ -окрестности, соответствующие значения функции содержатся в ε -окрестности числа A.

Замечание 1. В определении предела функции в точке a предполагается, что $x \neq a$. Это требование связано с тем, что точка a может не принадлежать области определения функции.

Отметим еще, что число δ , фигурирующее в определении предела, зависит, вообще говоря, от ε , т. е. $\delta = \delta(\varepsilon)$.

- б) Определение предела по Гейне. Число A называется пределом функции f(x) в точке a, если эта функция определена в некоторой проколотой окрестности точки a, т. е. $\exists \delta_0 > 0$: $\dot{U}_{\delta_0}(a) \subset D(f)$, и для любой последовательности $\{x_n\}$, сходящейся к a и такой, что $x_n \in \dot{U}_{\delta_0}(a)$ для всех $n \in \mathcal{N}$, соответствующая последовательность значений функции $\{f(x_n)\}$ сходится к числу A.
 - в) Эквивалентность двух определений предела.

Теорема 1. Определения предела функции по Коши и по Гейне эквивалентны.

а) Пусть число A есть предел функции f в точке a по Коши; тогда $\exists \delta_0>0\colon \,\dot{U}_{\delta_0}\subset D(f)$ и

$$\forall \varepsilon > 0 \quad \exists \delta \in (0, \delta_0]: \quad \forall x \in \dot{U}_{\delta}(a) \to f(x) \in U_{\varepsilon}(A).$$
 (1)

Рассмотрим произвольную последовательность $\{x_n\}$, сходящуюся к числу a и такую, что $x_n \in \dot{U}_{\delta_0}(a)$ для всех $n \in \mathbb{N}$. Согласно определению предела последовательности для найденного в (1) числа $\delta = \delta(\varepsilon) > 0$ можно указать номер n_δ такой, что $\forall n \geqslant n_\delta \to x_n \in \dot{U}_\delta(a)$, откуда в силу условия (1) следует, что $f(x_n) \in U_\varepsilon(A)$. Таким образом,

$$\forall \varepsilon > 0 \quad \exists N_{\varepsilon} \colon \forall n \geqslant N_{\varepsilon} \to f(x_n) \in U_{\varepsilon}(A),$$
 (2)

где $N_{\varepsilon}=n_{\delta(\varepsilon)}$, причем условие (2) выполняется для любой последовательности $\{x_n\}$ такой, что $\lim_{x\to\infty}x_n=a$ и $x_n\in \dot{U}_{\delta_0}(a)\subset D(f)$. Следовательно, $\lim_{n\to\infty}f(x_n)=A$, т. е. число A — предел функции f(x) в точке a по Гейне.

б) Докажем, что если число A есть предел функции f(x) в точке a по Гейне, то это же число является пределом функции f по Коши, т. е. выполняется условие (1). Допустим, что это неверно. Тогда

$$\exists \varepsilon_0 > 0 \colon \forall \delta \in (0, \delta_0] \quad \exists x(\delta) \in \dot{U}_{\delta}(a) \colon |f(x(\delta)) - A| \geqslant \varepsilon_0.$$
 (3)

Согласно (3) в качестве δ можно взять любое число из полуинтервала $(0, \delta_0]$. Возьмем $\delta = \delta_0/n$, где $n \in N$, и обозначим $x_n = x(\delta_0/n)$. Тогда в силу (3) для любого $n \in N$ выполняются неравенства

$$0 < |x_n - a| < \delta_0/n, \tag{4}$$

$$|f(x_n) - A| \geqslant \varepsilon_0. \tag{5}$$

Из (4) следует, что $\lim_{n\to\infty} x_n = a$ и $x_n \in \dot{U}_{\delta_0}(a)$ при всех $n \in \mathbb{N}$, а из (5) заключаем, что число A не может быть пределом последовательности $\{f(x_n)\}$. Следовательно, число A не является пределом функции f в точке a по Гейне. Полученное противоречие доказывает, что должно выполняться утверждение (1). \bullet

3. Различные типы пределов.

а) Односторонние конечные пределы. Число A называют пределом слева функции f(x) в точке a и обозначают $\lim_{x\to a-0} f(x)$ или f(a-0), если

$$\forall \varepsilon > 0 \quad \exists \delta > 0 \colon \forall x \in (a - \delta, a) \to |f(x) - A_1| < \varepsilon.$$

Аналогично число A_2 называют *пределом справа функции* f(x) в точке a и обозначают $\lim_{x\to a+0} f(x)$ или f(a+0), если

$$\forall \varepsilon > 0 \quad \exists \delta > 0 \colon \forall x \in (a, a + \delta) \to |f(x) - A_2| < \varepsilon.$$

Числа A_1 и A_2 характеризуют поведение функции f соответственно в левой и правой полуокрестности точки a, поэтому пределы слева и справа называют односторонними пределами. Если a=0, то предел слева функции f(x) обозначают $\lim_{x\to -0} f(x)$ или f(-0), а предел справа обозначают $\lim_{x\to +0} f(x)$ или f(+0).

Например, для функции $f(x) = \operatorname{sign} x$, где

$$\operatorname{sign} x = \begin{cases} -1, & \operatorname{если} & x < 0, \\ 0, & \operatorname{если} & x = 0, \\ 1, & \operatorname{если} & x > 0, \end{cases}$$

график которой изображен на рис. 10.4, $\lim_{x\to -0} f(x) = f(-0) = -1$,

$$\lim_{x \to +0} f(x) = f(+0) = 1.$$

Рис. 10.4

б) Бесконечные пределы в конечной точке. Говорят, что функция f(x), определенная в некоторой проколотой окрестности точки a, имеет в этой точке бесконечный предел, и пишут $\lim_{x\to a} f(x) = \infty$, если

$$\forall \varepsilon > 0 \quad \exists \delta > 0 \colon \forall x \in \dot{U}_{\delta}(a) \to |f(x)| > \varepsilon.$$
 (6)

В этом случае функцию f(x) называют бесконечно большой при $x \to a$.

Согласно условию (6) график функции y = f(x) для всех $x \in U_{\delta}(a)$ лежит вне горизонтальной полосы $|y| < \varepsilon$. Обозначим

$$U_{\varepsilon}(\infty) = \{y \colon |y| > \varepsilon\} = (-\infty, -\varepsilon) \cup (\varepsilon, +\infty)$$

и назовем это множество ε -окрестностью бесконечности. Тогда запись $\lim_{x\to a}f(x)=\infty$ означает, что для любой ε -окрестности бесконечности $U_\varepsilon(\infty)$ найдется такая проколотая δ -окрестность точки a, что

для всех $x \in U_{\delta}(a)$ выполняется условие $f(x) \in U_{\varepsilon}(\infty)$.

Например, если f(x) = 1/x, то $\lim_{x\to 0} f(x) = \infty$, так как условие (6) выполняется при $\delta = 1/\varepsilon$ (рис. 10.6).

Аналогично говорят, что функция f(x), определенная в некоторой проколотой окрестности точки a, имеет в этой точке $npe \partial e n$, $pashый +\infty$, и пишут $\lim_{x\to a} f(x) = +\infty$, если

Рис. 10.6

т. е. $f(x) \in U_{\varepsilon}(+\infty)$, где множество $U_{\varepsilon}(+\infty)$ называют ε -окресмностью символа $+\infty$.

Если
$$\forall \varepsilon > 0 \quad \exists \delta > 0 \colon \forall x \in \dot{U}_{\delta}(a) \to f(x) < -\varepsilon,$$

т. е. $f(x)\in U_{\varepsilon}(-\infty)$, где $U_{\varepsilon}(-\infty)=(-\infty,-\varepsilon)$, то говорят, что функция f имеет в точке a предел, равный $-\infty$, и пишут $\lim_{x\to a}f(x)=-\infty$, а множество $U_{\varepsilon}(-\infty)$ называют ε -окрестностью символа $-\infty$.

Например, если $f(x)=\lg x^2$ (рис. 10.7), то $\lim_{x\to 0}f(x)=-\infty$, а если $f(x)=\frac{1}{r^2}$ (рис. 10.8), то $\lim_{x\to 0}f(x)=+\infty$.

Рис. 10.7

Рис. 10.8

в) Предел в бесконечности. Если

$$\forall \varepsilon > 0 \quad \exists \delta > 0 \colon \forall x \in U_{\delta}(+\infty) \to f(x) \in U_{\varepsilon}(A),$$

то говорят, что число A есть $npe \partial e \Lambda$ функции f(x) npu x, $cmpe мящемся <math>\kappa$ $n \wedge b c$ бесконечности, и пишут $\lim_{x \to +\infty} f(x) = A$.

Например, если $f(x)=\frac{3-2x}{x+1}$ (см. рис. 9.4), то $\lim_{x\to +\infty}f(x)=-2$. В самом деле, $f(x)=-2+\frac{5}{x+1}$, и если x>0, то x+1>x>0. Поэтому $\frac{5}{x+1}<\frac{5}{x}$, откуда следует, что неравенство $|f(x)+2|<\frac{5}{x}<\varepsilon$ для любого $\varepsilon>0$ выполняется при любом $x>\delta$, где $\delta=\frac{5}{\varepsilon}$, т. е. при любом $x\in U_\delta(+\infty)$.

Если $\forall \varepsilon > 0 \quad \exists \delta > 0$: $\forall x \in U_{\delta}(-\infty) \to f(x) \in U_{\varepsilon}(A)$, т. е. неравенство $|f(x) - A| < \varepsilon$ выполняется для всех $x \in (-\infty, -\delta)$, то говорят, что число A есть предел функции f(x) при x, стремящемся κ минус бесконечности, и пишут $\lim_{x \to -\infty} f(x) = A$. Например, $\lim_{x \to -\infty} \frac{3-2x}{x+1} = -2$ (см. рис. 9.4).

Аналогично, если

$$\forall \varepsilon > 0 \quad \exists \delta > 0 \colon \forall x \in U_{\delta}(\infty) \to f(x) \in U_{\varepsilon}(A),$$

то говорят, что число A есть npeden функции f(x) npu x, $cmpeмящем-ся <math>\kappa$ бесконечности, и пишут $\lim_{x\to\infty} f(x) = A$. Например, если $f(x) = \frac{3-2x}{x+1}$, то $\lim_{x\to\infty} f(x) = -2$.

Точно так же вводится понятие бесконечного предела в бесконечности. Например, запись $\lim_{x\to +\infty} f(x) = -\infty$ означает, что $\forall \varepsilon > 0 \; \exists \delta > 0$: $\forall x \in U_{\delta}(+\infty) \to f(x) \in U_{\varepsilon}(-\infty)$. Аналогично определяются бесконечные пределы при $x\to \infty$ и $x\to -\infty$.

- **4. Свойства пределов функций.** В рассматриваемых ниже свойствах речь идет о конечном пределе функции в заданной точке. Под точкой понимается либо число a, либо один из символов a-0, $a+0,-\infty,+\infty,\infty$. Предполагается, что функция определена в некоторой окрестности или полуокрестности точки a, не содержащей саму точку a. Для определенности будем формулировать и доказывать свойства пределов, предполагая, что a число, а функция определена в проколотой окрестности точки a.
- а) Локальные свойства функции, имеющей предел. Покажем, что функция, имеющая конечный предел в заданной точке, обладает некоторыми локальными свойствами, т. е. свойствами, которые справедливы в окрестности этой точки.

Свойство 1. Если функция f(x) имеет предел в точке a, то существует такая проколотая окрестность точки a, в которой эта функция ограничена.

Свойство 2. Если $\lim_{x\to a} f(x) = A$, причем $A \neq 0$, то найдется такая проколотая окрестность точки а, в которой значения функции f имеют тот же знак, что и число A.

Свойство 3. Если $\lim_{x\to a} g(x) = B$, причем $B\neq 0$, то существует число $\delta>0$ такое, что функция $\frac{1}{g(x)}$ ограничена на множест ве $U_{\delta}(a)$.

б) Свойства пределов, связанные с неравенствами.

Свойство 1. Если существует число $\delta > 0$ такое, что для всех $x \in U_{\delta}(a)$ выполняются неравенства

$$g(x) \leqslant f(x) \leqslant h(x),\tag{9}$$

и если

$$\lim_{x \to a} g(x) = \lim_{x \to a} h(x) = A,\tag{10}$$

то существует $\lim_{x \to a} f(x) = A$.

Свойство 2. Если существует число $\delta > 0$ такое, что для всех $x \in \dot{U}_{\delta}(a)$ справедливо неравенство $f(x) \leqslant g(x), \ u \ \text{если} \lim_{x \to a} f(x) = A,$ $\lim_{x \to a} g(x) = B, \text{ mo } A \leqslant B.$

в) Бесконечно малые функции. Если $\lim_{x \to a} \alpha(x) = 0$, то функцию $\alpha(x)$ называют бесконечно малой при $x \to a$.

Бесконечно малые функции обладают следующими свойствами:

- 1) сумма конечного числа бесконечно малых при $x \to a$ функций есть бесконечно малая функция при $x \to a$;
- 2) произведение бесконечно малой при $x \to a$ функции на ограниченную в некоторой проколотой окрестности точки a функцию есть бесконечно малая при $x \to a$ функция.
- г) Свойства пределов, связанные с арифметическими операциями. Если функции f(x) и g(x) имеют конечные пределы в точке a, причем $\lim_{x \to a} f(x) = A$, $\lim_{x \to a} g(x) = B$, то: 1) $\lim_{x \to a} (f(x) + g(x)) = A + B$;

1)
$$\lim_{x \to a} (f(x) + g(x)) = A + B;$$

2)
$$\lim_{x \to a} (f(x)g(x)) = AB; \tag{11}$$

3)
$$\lim_{x\to a} \frac{f(x)}{g(x)} = \frac{A}{B}$$
 при условии, что $B \neq 0$.

5. Пределы монотонных функций.

Теорема 2. Если функция f определена и является монотонной на отрезке [a,b], то в каждой точке $x_0 \in (a,b)$ эта функция имеет конечные пределы слева и справа, а в точках а и в — соответственно правый и левый пределы.

 \circ Пусть, например, функция f является возрастающей на отрезке [a,b]. Зафиксируем точку $x_0 \in (a,b]$. Тогда

$$\forall x \in [a, x_0) \to f(x) \leqslant f(x_0). \tag{12}$$

В силу условия (12) множество значений, которые функция f принимает на промежутке $[a,x_0)$, ограничено сверху, и по теореме о точной верхней грани существует

$$\sup_{a \leqslant x < x_0} f(x) = M, \quad \text{где} \quad M \leqslant f(x_0).$$

Согласно определению точной верхней грани (\S 2) выполняются условия:

a)
$$\forall x \in [a, x_0) \to f(x) \leqslant M;$$
 (13)

6)
$$\forall \varepsilon > 0 \quad \exists x_{\varepsilon} \in [a, x_0) \colon M - \varepsilon < f(x_{\varepsilon}).$$
 (14)

Обозначим $\delta = x_0 - x_\varepsilon$, тогда $\delta > 0$, так как $x_\varepsilon < x_0$. Если $x \in (x_\varepsilon, x_0)$, т. е. $x \in (x_0 - \delta, x_0)$, то

$$f(x_{\varepsilon}) \leqslant f(x), \tag{15}$$

так как f — возрастающая функция. Из условий (13)–(15) следует, что

 $\forall \varepsilon > 0 \quad \exists \delta > 0 \colon \forall x \in (x_0 - \delta, x_0) \to f(x) \in (M - \varepsilon, M].$

Согласно определению предела слева это означает, что существует

$$\lim_{x \to x_0 - 0} f(x) = f(x_0 - 0) = M.$$

Итак,

$$f(x_0 - 0) = \sup_{a \leqslant x < x_0} f(x).$$

Аналогично можно доказать, что функция f имеет в точке $x_0 \in [a,b)$ предел справа, причем

$$f(x_0 + 0) = \inf_{x_0 < x \leqslant b} f(x). \quad \bullet$$

Следствие. Если функция f определена и возрастает на отрезке $[a,b], x_0 \in (a,b), mo$

$$f(x_0 - 0) < f(x_0) \le f(x_0 + 0). \tag{16}$$

6. Критерий Коши существования предела функции. Будем говорить, что функция f(x) удовлетворяет в точке x=a условию Коши, если она определена в некоторой проколотой окрестности точки a и

$$\forall \varepsilon > 0 \quad \exists \delta = \delta(\varepsilon) > 0 \colon \forall x', x'' \in \dot{U}_{\delta}(a) \to |f(x') - f(x'')| < \varepsilon.$$
 (17)

T е о р е м а 3. Для того чтобы существовал конечный предел функции f(x) в точке x=a, необходимо и достаточно, чтобы эта функция удовлетворяла в точке a условию Коши (17).

 \circ Необходимость. Пусть $\lim_{x \to a} f(x) = A;$ тогда

$$\forall \varepsilon > 0 \quad \exists \delta > 0 \colon \forall x \in \dot{U}_{\delta}(a) \to |f(x) - A| < \frac{\varepsilon}{2}.$$
 (18)

Если x', x'' — любые точки из множества $\dot{U}_{\delta}(a)$, то из (18) следует, что

$$|f(x') - f(x'')| = |(f(x') - A) - (f(x'') - A)| \le$$

$$\le |f(x') - A| + |f(x'') - A| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$

т. е. выполняется условие Коши (17).

Достаточность. Докажем, что если $\exists \delta_0 \colon \dot{U}_\delta(a) \subset D(f)$ и выполняется условие (17), то существует предел функции f в точке a. Воспользуемся определением предела функции по Гейне. Пусть $\{x_n\}$ — произвольная последовательность такая, что $x_n \in \dot{U}_\delta(a)$ и $\lim_{x \to \infty} x_n = a$. Докажем, что соответствующая последовательность значений функции $\{f(x_n)\}$ имеет конечный предел, не зависящий от выбора последовательности $\{x_n\}$.

Если выполняется условие (17), то для каждого $\varepsilon>0$ можно найти число $\delta=\delta_{\varepsilon}>0$ такое, что

$$\forall x', x'' \in \dot{U}_{\delta}(a) \to |f(x') - f(x'')| < \varepsilon. \tag{19}$$

Так как $\lim_{x\to\infty}x_n=a$, то, задав число $\delta=\delta(\varepsilon)>0$, указанное в условии (19), найдем в силу определения предела последовательности номер $n_\delta=N_\varepsilon$ такой, что

$$\forall n > N_{\varepsilon} \to 0 < |x_n - a| < \delta.$$

Это означает, что для любого $n \geqslant N_{\varepsilon}$ и для любого $m \geqslant N_{\varepsilon}$ выполняются условия $x_n \in \dot{U}_{\delta}(a)$, $x_m \in \dot{U}_{\delta}(a)$ и в силу (19) $|f(x_n) - f(x_m)| < \varepsilon$. Таким образом, последовательность $\{f(x_n)\}$ является фундаментальной и согласно критерию Коши для последовательности (§ 8) имеет конечный предел. В силу леммы этот предел не зависит от выбора последовательности $\{x_n\}$, сходящейся к точке a. Следовательно, функция f(x) имеет конечный предел в точке a. \bullet