Reply to Office Action of September 6, 2007

AMENDMENTS TO THE SPECIFICATION

Please amend the specification as indicated below. The paragraph numbers are with

respect to the paragraph numbers in the pre-grant publication of the present application, a

copy of which is attached.

After paragraph [0014], revise the heading as follows:

DESCRIPTION OF THE INVENTION Summary

Prior to paragraph [0019], revise the heading as follows:

Preferred Embodiment Brief Description of the Drawings

Please replace paragraph [0020] with the following amended paragraph:

[0020] FIGS. 1 to 3C show an example of the fabrication of a search coil of the present

measuring tool using thick-film technology;

Please replace paragraph [0021] with the following amended paragraph:

[0021] FIG. 4 shows FIGS. 4A and 4B show a second example of the coil layout of a search

coil together with the coil for measuring the magnetic field strength of the present measuring

tool as well as a close up of the search coil conducting tracks;

-2-

Application No.: 10/574936 Docket No.: 31583-229742

Reply to Office Action of September 6, 2007

Please replace paragraph [0024] with the following amended paragraph:

[0024] FIG. 7 shows a foto FIGS. 7A and 7B show a schematic of an embodiment of the two

pole pieces used in the present measuring tool; and

After paragraph [0025], insert the following heading:

Detailed Description

Please replace paragraph [0032] with the following amended paragraph:

[0032] The coil layer is fabricated with a thick-film coating of silver-palladium (3:1) and

consists of an inwardly-turning spiral with an outside diameter of 25 mm and an internal

diameter of 13 mm. FIG. 2A shows on the left-hand side the plain substrate 10, on the right-

hand-side and FIG. 2b shows the substrate 10 with the first coil layer 6a.

Please replace paragraph [0035] with the following amended paragraph:

[0035] FIG. 3 shows on the left-hand side FIG. 3A shows the first insulating layer 9, in the

centre FIG. 3B shows the second coil layer 6b and on the right-hand side FIG. 3C shows the

top insulating layer 16.

-3-

Application No.: 10/574936 Docket No.: 31583-229742

Please replace paragraph [0036] with the following amended paragraph:

EXAMPLE 2

[0036] In a second embodiment the reverse J-compensating coil 6 and the field-measuring

coil 7 are elaborated in the same way as in Example 1, but with a different construction. Of

the whole new coils have a circular H coil 7 and redesigned J coils 6a, 6b with fewer turns

and larger spacing between the individual turns. The layout out the coils was also slightly

altered to reduce the risks of short-circuiting. The design of the new J-coil 6 and a close up of

the conducting tracks can be seen in FIG. 4 FIGS. 4A and 4B. The right-hand side of FIG. 4

FIG. 4B shows a close up of the J-coil 6 conducting tracks.

Please replace paragraph [0040] with the following amended paragraph:

[0040] Both the base piece 11 and the pole piece body 12 are round and machined from pure

iron. The insulating piece 13 is 100.times.200 mm and 6-mm thick. The material is mica

based, it has a density of about 2.2 kg/dm.sup.3 and a thermal conductivity of 0.26 W/mK.

The heaters 8 are made from NiCr 8020 wire with pure magnesium oxide. Each heater 8 is

12.5 mm in diameter and 60-mm long (FIG. 7A and 7B).

-4-

Application No.: 10/574936 Docket No.: 31583-229742