

JENS NEUHALFEN

SECRET SHARING

GOOD CRYPTOGRAPHY

Problem: What happens when Alice forgets her password? Solution: Use cryptographic secret sharing for recovery

Alice

Justus

Peter

Mathilda

Alice will split her secret key (e.g. with Shamir) in such a way, that any three of her four trusted friends can restore the key.

i maining diaming a selection of the contraction of the selection of the s Alice trusts her friends only so far. But she thinks it is very unlikely that three of them conspire together

against her.

Problem: What happens when Alice forgets her password?

Solution: Use cryptographic secret sharing for recovery

any three of her four trusted friends can restore the key.

Alice will split her secret key (e.g. with Shamir) in such a way, that

a single point of trust (failure).

Secret sharing ("t out of n") shares a secret

This can be used for secret recovery without

such, that the secret can be restored with

any t (here 3) of the n (here 4) parts.

Alice

Justus

Peter

Mathilda

