$12n_{0572} \ (K12n_{0572})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle 2u^{30} + 2u^{29} + \dots + 4b + 2, \ -2u^{30} - u^{29} + \dots + 4a - 6, \ u^{31} + 2u^{30} + \dots + 2u + 2 \rangle \\ I_2^u &= \langle b - 1, \ 2u^3 - 3u^2 + 3a + 3u - 3, \ u^4 + 3u^2 + 3 \rangle \\ I_3^u &= \langle -a^2u^2 + u^2a - 2au + b + 2a - 2u, \ -2a^2u^2 + a^3 + 2u^2a - 2a^2 - 3au + 5a - u + 1, \ u^3 - u^2 + 2u - 1 \rangle \\ I_4^u &= \langle b + 1, \ -u^2 + a + u - 1, \ u^4 + u^2 - 1 \rangle \\ I_1^v &= \langle a, \ b - 1, \ v - 1 \rangle \end{split}$$

* 5 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 49 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I_1^u = \langle 2u^{30} + 2u^{29} + \dots + 4b + 2, -2u^{30} - u^{29} + \dots + 4a - 6, u^{31} + 2u^{30} + \dots + 2u + 2 \rangle$$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} \frac{1}{2}u^{30} + \frac{1}{4}u^{29} + \dots + 2u + \frac{3}{2} \\ -\frac{1}{2}u^{30} - \frac{1}{2}u^{29} + \dots - u - \frac{1}{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -\frac{1}{4}u^{27} - 3u^{25} + \dots + \frac{1}{2}u + 1 \\ \frac{1}{4}u^{27} + \frac{11}{4}u^{25} + \dots - \frac{1}{2}u^{2} + \frac{1}{2}u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -\frac{1}{4}u^{25} - \frac{5}{2}u^{23} + \dots + u + 1 \\ \frac{1}{4}u^{27} + \frac{11}{4}u^{25} + \dots - \frac{1}{2}u^{2} + \frac{1}{2}u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{10} - 5u^{8} - 8u^{6} - 3u^{4} + 3u^{2} + 1 \\ u^{10} + 4u^{8} + 5u^{6} - 3u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{2} + 1 \\ -u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{5} + 2u^{3} + u \\ -u^{7} - 3u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{3} + u \\ u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} \frac{1}{2}u^{30} + u^{29} + \dots + \frac{3}{2}u + \frac{5}{2} \\ -\frac{1}{4}u^{28} - \frac{1}{4}u^{27} + \dots + \frac{3}{2}u - 1 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes

 $= 2u^{30} + 4u^{29} + 30u^{28} + 48u^{27} + 192u^{26} + 248u^{25} + 682u^{24} + 702u^{23} + 1432u^{22} + 1112u^{21} + 1656u^{20} + 764u^{19} + 556u^{18} - 384u^{17} - 1002u^{16} - 1040u^{15} - 1088u^{14} - 344u^{13} + 216u^{12} + 568u^{11} + 830u^{10} + 454u^9 + 206u^8 - 108u^7 - 284u^6 - 180u^5 - 122u^4 - 6u^3 + 30u^2 + 4u + 12$

Crossings	u-Polynomials at each crossing
c_1	$u^{31} + 44u^{30} + \dots + 119u + 1$
c_2, c_6	$u^{31} - 2u^{30} + \dots + 3u - 1$
c_3,c_4,c_9	$u^{31} + 2u^{30} + \dots + 2u + 2$
c_5	$u^{31} + 7u^{30} + \dots - 88514u + 28438$
c_7, c_{11}	$u^{31} + 2u^{30} + \dots - u - 1$
c_8,c_{10}	$u^{31} - 2u^{30} + \dots - 88u + 16$
c_{12}	$u^{31} - 4u^{30} + \dots + 39u - 1$

Crossings	Riley Polynomials at each crossing
c_1	$y^{31} - 104y^{30} + \dots + 10991y - 1$
c_2, c_6	$y^{31} - 44y^{30} + \dots + 119y - 1$
c_3, c_4, c_9	$y^{31} + 26y^{30} + \dots + 8y - 4$
c_5	$y^{31} + 55y^{30} + \dots + 4648364048y - 808719844$
c_7, c_{11}	$y^{31} - 4y^{30} + \dots + 39y - 1$
c_8, c_{10}	$y^{31} - 14y^{30} + \dots + 448y - 256$
c_{12}	$y^{31} + 56y^{30} + \dots + 479y - 1$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.422005 + 0.970388I		
a = 0.780023 - 0.122330I	-8.77509 - 4.02062I	3.17327 + 1.29124I
b = -1.63363 - 0.20014I		
u = 0.422005 - 0.970388I		
a = 0.780023 + 0.122330I	-8.77509 + 4.02062I	3.17327 - 1.29124I
b = -1.63363 + 0.20014I		
u = -0.438452 + 0.819465I		
a = 0.612911 + 0.875111I	-9.30026 - 3.06037I	2.53545 + 3.57264I
b = -1.66514 - 0.05832I		
u = -0.438452 - 0.819465I		
a = 0.612911 - 0.875111I	-9.30026 + 3.06037I	2.53545 - 3.57264I
b = -1.66514 + 0.05832I		
u = -0.151148 + 1.120390I		
a = -0.774438 + 0.936580I	-1.40117 + 1.17674I	6.48562 - 3.33148I
b = 0.430006 - 0.577254I		
u = -0.151148 - 1.120390I		
a = -0.774438 - 0.936580I	-1.40117 - 1.17674I	6.48562 + 3.33148I
b = 0.430006 + 0.577254I		
u = 0.822269 + 0.212623I		
a = -1.60479 + 1.78111I	-6.42043 + 8.50954I	6.05681 - 5.42341I
b = 1.64313 - 0.27195I		
u = 0.822269 - 0.212623I		
a = -1.60479 - 1.78111I	-6.42043 - 8.50954I	6.05681 + 5.42341I
b = 1.64313 + 0.27195I		
u = -0.769464 + 0.275211I		
a = -1.58833 - 1.20476I	-7.55262 - 1.26507I	4.68154 + 1.47900I
b = 1.68783 + 0.04109I		
u = -0.769464 - 0.275211I		
a = -1.58833 + 1.20476I	-7.55262 + 1.26507I	4.68154 - 1.47900I
b = 1.68783 - 0.04109I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.801134		
a = 1.76838	2.34779	4.38740
b = -1.08175		
u = -0.777905		
a = -0.722824	5.57117	16.4750
b = -0.0906547		
u = -0.709050 + 0.173396I		
a = 0.38023 + 2.22913I	1.18939 - 4.50976I	8.37255 + 6.79420I
b = -0.614830 - 0.764424I		
u = -0.709050 - 0.173396I		
a = 0.38023 - 2.22913I	1.18939 + 4.50976I	8.37255 - 6.79420I
b = -0.614830 + 0.764424I		
u = -0.332218 + 1.265660I		
a = 0.704768 + 0.124425I	1.64712 - 4.00353I	11.89002 + 3.58978I
b = 0.095778 - 0.113924I		
u = -0.332218 - 1.265660I		
a = 0.704768 - 0.124425I	1.64712 + 4.00353I	11.89002 - 3.58978I
b = 0.095778 + 0.113924I		
u = 0.355714 + 1.276500I		
a = -0.665256 + 0.850651I	-1.62439 + 4.16232I	0.18076 - 3.51312I
b = 1.105160 + 0.056084I		
u = 0.355714 - 1.276500I		
a = -0.665256 - 0.850651I	-1.62439 - 4.16232I	0.18076 + 3.51312I
b = 1.105160 - 0.056084I		
u = -0.054498 + 1.374780I		
a = -0.492915 - 0.029751I	-6.79962 + 0.91660I	-1.89239 - 1.83526I
b = -0.992043 + 0.551725I		
u = -0.054498 - 1.374780I		
a = -0.492915 + 0.029751I	-6.79962 - 0.91660I	-1.89239 + 1.83526I
b = -0.992043 - 0.551725I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.292248 + 1.364020I		
a = 0.75119 - 1.48738I	-3.67517 - 8.15180I	3.05070 + 7.43504I
b = 0.689770 + 0.858986I		
u = -0.292248 - 1.364020I		
a = 0.75119 + 1.48738I	-3.67517 + 8.15180I	3.05070 - 7.43504I
b = 0.689770 - 0.858986I		
u = 0.34385 + 1.39505I		
a = -0.22148 - 2.07364I	-11.5166 + 12.7194I	2.07160 - 6.66192I
b = -1.66852 + 0.31356I		
u = 0.34385 - 1.39505I		
a = -0.22148 + 2.07364I	-11.5166 - 12.7194I	2.07160 + 6.66192I
b = -1.66852 - 0.31356I		
u = -0.30540 + 1.41307I		
a = -0.24753 + 1.59262I	-12.92960 - 5.15155I	0.52455 + 2.55322I
b = -1.74843 - 0.08810I		
u = -0.30540 - 1.41307I		
a = -0.24753 - 1.59262I	-12.92960 + 5.15155I	0.52455 - 2.55322I
b = -1.74843 + 0.08810I		
u = -0.047932 + 0.529217I		
a = -0.316164 + 0.652908I	-1.07809 + 1.45065I	1.68946 - 3.85910I
b = 0.693120 - 0.435687I		
u = -0.047932 - 0.529217I		
a = -0.316164 - 0.652908I	-1.07809 - 1.45065I	1.68946 + 3.85910I
b = 0.693120 + 0.435687I		
u = -0.02824 + 1.47075I		
a = 1.096690 - 0.319605I	-16.7493 - 3.9918I	-1.06457 + 2.30903I
b = 1.77899 + 0.14272I		
u = -0.02824 - 1.47075I		
a = 1.096690 + 0.319605I	-16.7493 + 3.9918I	-1.06457 - 2.30903I
b = 1.77899 - 0.14272I		
	1	

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.346395		
a = 2.12463	0.849256	13.6270
b = -0.429962		

II.
$$I_2^u = \langle b-1, \ 2u^3 - 3u^2 + 3a + 3u - 3, \ u^4 + 3u^2 + 3 \rangle$$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -\frac{2}{3}u^{3} + u^{2} - u + 1 \\ 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{2}{3}u^{3} - u^{2} + u \\ -1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} \frac{2}{3}u^{3} - u^{2} + u - 1 \\ -1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{2} + 1 \\ u^{2} + 3 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{3} - 2u \\ u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{3} - 2u \\ u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -\frac{1}{3}u^{3} - u^{2} - u - 1 \\ u^{3} + u - 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-4u^2$

Crossings	u-Polynomials at each crossing
c_1, c_2, c_{11} c_{12}	$(u-1)^4$
c_3, c_4, c_9	$u^4 + 3u^2 + 3$
c_5, c_8, c_{10}	$u^4 - 3u^2 + 3$
c_6, c_7	$(u+1)^4$

Crossings	Riley Polynomials at each crossing		
$c_1, c_2, c_6 \\ c_7, c_{11}, c_{12}$	$(y-1)^4$		
c_3,c_4,c_9	$(y^2 + 3y + 3)^2$		
c_5, c_8, c_{10}	$(y^2 - 3y + 3)^2$		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.340625 + 1.271230I		
a = 0.233945 + 0.669365I	4.05977I	6.00000 - 3.46410I
b = 1.00000		
u = 0.340625 - 1.271230I		
a = 0.233945 - 0.669365I	-4.05977I	6.00000 + 3.46410I
b = 1.00000		
u = -0.340625 + 1.271230I		
a = -1.23394 - 1.06269I	-4.05977I	6.00000 + 3.46410I
b = 1.00000		
u = -0.340625 - 1.271230I		
a = -1.23394 + 1.06269I	4.05977I	6.00000 - 3.46410I
b = 1.00000		

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} a^{2}u^{2} - u^{2}a + 2au - 2a + 2u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} a^{2}u^{2} + 2au - a + 2u \\ a^{2}u - u^{2}a - a^{2} + 2au - 2u^{2} + 2u - 2 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} a^{2}u^{2} + a^{2}u - u^{2}a - a^{2} + 4au - 2u^{2} - a + 4u - 2 \\ a^{2}u - u^{2}a - a^{2} + 2au - 2u^{2} + 2u - 2 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{2} + 1 \\ -u^{2} + u - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{2} + 1 \\ -u^{2} + u - 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{2} - 1 \\ u^{2} - u + 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} a^{2}u^{2} + 2au - a + 2u \\ a^{2}u - u^{2}a - a^{2} + 2au - 2u^{2} + 2u - 2 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $4u^2 4u + 10$

Crossings	u-Polynomials at each crossing		
c_1	$u^9 + 6u^8 + 15u^7 + 21u^6 + 19u^5 + 12u^4 + 7u^3 + 5u^2 + 2u + 1$		
c_2, c_6, c_7 c_{11}	$u^9 - 3u^7 - u^6 + 3u^5 + 2u^4 - u^3 - u^2 + 1$		
c_3, c_4, c_9	$(u^3 - u^2 + 2u - 1)^3$		
c_5	u^9		
c_8, c_{10}	$(u^3 + u^2 - 1)^3$		
c_{12}	$u^9 - 6u^8 + 15u^7 - 21u^6 + 19u^5 - 12u^4 + 7u^3 - 5u^2 + 2u - 1$		

Crossings	Riley Polynomials at each crossing		
c_1, c_{12}	$y^9 - 6y^8 + 11y^7 - y^6 + 11y^5 - 40y^4 - 37y^3 - 21y^2 - 6y - 1$		
c_2, c_6, c_7 c_{11}	$y^9 - 6y^8 + 15y^7 - 21y^6 + 19y^5 - 12y^4 + 7y^3 - 5y^2 + 2y - 1$		
c_3, c_4, c_9	$(y^3 + 3y^2 + 2y - 1)^3$		
c_5	y^9		
c_8, c_{10}	$(y^3 - y^2 + 2y - 1)^3$		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.215080 + 1.307140I		
a = -1.110710 - 0.304480I	-3.02413 + 2.82812I	2.49024 - 2.97945I
b = -1.324820 - 0.175904I		
u = 0.215080 + 1.307140I		
a = -0.633796 - 0.350292I	-3.02413 + 2.82812I	2.49024 - 2.97945I
b = 0.376870 + 0.700062I		
u = 0.215080 + 1.307140I		
a = 0.41979 + 1.77933I	-3.02413 + 2.82812I	2.49024 - 2.97945I
b = 0.947946 - 0.524157I		
u = 0.215080 - 1.307140I		
a = -1.110710 + 0.304480I	-3.02413 - 2.82812I	2.49024 + 2.97945I
b = -1.324820 + 0.175904I		
u = 0.215080 - 1.307140I		
a = -0.633796 + 0.350292I	-3.02413 - 2.82812I	2.49024 + 2.97945I
b = 0.376870 - 0.700062I		
u = 0.215080 - 1.307140I		
a = 0.41979 - 1.77933I	-3.02413 - 2.82812I	2.49024 + 2.97945I
b = 0.947946 + 0.524157I		
u = 0.569840		
a = -0.101925	1.11345	9.01950
b = 1.26384		
u = 0.569840		
a = 1.37568 + 1.52573I	1.11345	9.01950
b = -0.631920 - 0.444935I		
u = 0.569840		
a = 1.37568 - 1.52573I	1.11345	9.01950
b = -0.631920 + 0.444935I		

IV.
$$I_4^u = \langle b+1, \ -u^2+a+u-1, \ u^4+u^2-1 \rangle$$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{2} - u + 1 \\ -1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{2} - u + 1 \\ -1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{2} - u + 1 \\ -1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{2} + 1 \\ -u^{2} - 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{3} + 2u \\ -u^{3} - u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{3} - 2u \\ u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{3} + u^{2} + u + 1 \\ -u^{3} - u - 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $4u^2 + 8$

Crossings	u-Polynomials at each crossing
c_1, c_6, c_7 c_{12}	$(u-1)^4$
c_2, c_{11}	$(u+1)^4$
c_3,c_4,c_9	$u^4 + u^2 - 1$
c_5, c_8, c_{10}	$u^4 - u^2 - 1$

Crossings	Riley Polynomials at each crossing
$c_1, c_2, c_6 \\ c_7, c_{11}, c_{12}$	$(y-1)^4$
c_3, c_4, c_9	$(y^2+y-1)^2$
c_5, c_8, c_{10}	$(y^2-y-1)^2$

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.786151		
a = 0.831883	3.94784	10.4720
b = -1.00000		
u = -0.786151		
a = 2.40419	3.94784	10.4720
b = -1.00000		
u = 1.272020I		
a = -0.618030 - 1.272020I	-3.94784	1.52790
b = -1.00000		
u = -1.272020I		
a = -0.618030 + 1.272020I	-3.94784	1.52790
b = -1.00000		

V.
$$I_1^v = \langle a, b-1, v-1 \rangle$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_n = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 0

Crossings	u-Polynomials at each crossing
$c_1, c_2, c_{11} \\ c_{12}$	u-1
c_3, c_4, c_5 c_8, c_9, c_{10}	u
c_6, c_7	u+1

Crossings	Riley Polynomials at each crossing
$c_1, c_2, c_6 \\ c_7, c_{11}, c_{12}$	y-1
c_3, c_4, c_5 c_8, c_9, c_{10}	y

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = 1.00000		
a = 0	0	0
b = 1.00000		

VI. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^9)(u^9 + 6u^8 + \dots + 2u + 1)$ $\cdot (u^{31} + 44u^{30} + \dots + 119u + 1)$
c_2	$(u-1)^{5}(u+1)^{4}(u^{9}-3u^{7}-u^{6}+3u^{5}+2u^{4}-u^{3}-u^{2}+1)$ $\cdot (u^{31}-2u^{30}+\cdots+3u-1)$
c_3, c_4, c_9	$u(u^{3} - u^{2} + 2u - 1)^{3}(u^{4} + u^{2} - 1)(u^{4} + 3u^{2} + 3)(u^{31} + 2u^{30} + \dots + 2u + 2)$
<i>C</i> 5	$u^{10}(u^4 - 3u^2 + 3)(u^4 - u^2 - 1)(u^{31} + 7u^{30} + \dots - 88514u + 28438)$
c ₆	$(u-1)^4(u+1)^5(u^9-3u^7-u^6+3u^5+2u^4-u^3-u^2+1)$ $\cdot (u^{31}-2u^{30}+\cdots+3u-1)$
c_7	$(u-1)^4(u+1)^5(u^9-3u^7-u^6+3u^5+2u^4-u^3-u^2+1)$ $\cdot (u^{31}+2u^{30}+\cdots-u-1)$
c_8, c_{10}	$u(u^3 + u^2 - 1)^3(u^4 - 3u^2 + 3)(u^4 - u^2 - 1)(u^{31} - 2u^{30} + \dots - 88u + 16)$
c_{11}	$(u-1)^{5}(u+1)^{4}(u^{9}-3u^{7}-u^{6}+3u^{5}+2u^{4}-u^{3}-u^{2}+1)$ $\cdot (u^{31}+2u^{30}+\cdots-u-1)$
c_{12}	$((u-1)^9)(u^9 - 6u^8 + \dots + 2u - 1)$ $\cdot (u^{31} - 4u^{30} + \dots + 39u - 1)$

VII. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y-1)^9)(y^9 - 6y^8 + \dots - 6y - 1)$ $\cdot (y^{31} - 104y^{30} + \dots + 10991y - 1)$
c_2, c_6	$((y-1)^9)(y^9 - 6y^8 + \dots + 2y - 1)$ $\cdot (y^{31} - 44y^{30} + \dots + 119y - 1)$
c_3,c_4,c_9	$y(y^{2} + y - 1)^{2}(y^{2} + 3y + 3)^{2}(y^{3} + 3y^{2} + 2y - 1)^{3}$ $\cdot (y^{31} + 26y^{30} + \dots + 8y - 4)$
<i>C</i> ₅	$y^{10}(y^2 - 3y + 3)^2(y^2 - y - 1)^2$ $\cdot (y^{31} + 55y^{30} + \dots + 4648364048y - 808719844)$
c_7, c_{11}	$((y-1)^9)(y^9 - 6y^8 + \dots + 2y - 1)$ $\cdot (y^{31} - 4y^{30} + \dots + 39y - 1)$
c_8, c_{10}	$y(y^{2} - 3y + 3)^{2}(y^{2} - y - 1)^{2}(y^{3} - y^{2} + 2y - 1)^{3}$ $\cdot (y^{31} - 14y^{30} + \dots + 448y - 256)$
c_{12}	$((y-1)^9)(y^9 - 6y^8 + \dots - 6y - 1)$ $\cdot (y^{31} + 56y^{30} + \dots + 479y - 1)$