Visualizing distributions 1

Claus O. Wilke

last updated: 2021-01-18

Passengers on the Titanic

age	sex	class	survived
0.17	female	3rd	survived
0.33	male	3rd	died
0.80	male	2nd	survived
0.83	male	2nd	survived
0.83	male	3rd	survived
0.92	male	1st	survived
1.00	female	2nd	survived
1.00	female	3rd	survived
1.00	male	2nd	survived
1.00	male	2nd	survived

Histogram: Define bins and count cases

age range	count
0-5	36
6-10	19
11-15	18
16-20	99
21-25	139
26-30	121
31-35	76
36-40	74

Histograms depend on the chosen bin width

Alternative to histogram: Kernel density estimate (KDE)

Histograms show raw counts, KDEs show proportions. (Total area = 1)

KDEs also depend on parameter settings

Careful: KDEs can show nonsensical data

Careful: Are bars stacked or overlapping?

Stacked or overlapping histograms are rarely a good choice.

Alternatively: Age pyramid

hgistogram: works with two variables

Alternatively: KDEs showing proportions of total

scaled y axis: so total number of passangers

Making histograms with ggplot:

geom_histogram()

```
ggplot(titanic, aes(age)) +
  geom_histogram()
```

`stat_bin()` using `bins = 30`. Pick better val

Setting the bin width

```
ggplot(titanic, aes(age)) +
  geom_histogram(binwidth = 5)
```


Do you like the bin placement?

Always set the center as well

```
ggplot(titanic, aes(age)) +
  geom_histogram(
    binwidth = 5, # width of the bins
  center = 2.5 # center of the bin
)
```


Always set the center as well

```
ggplot(titanic, aes(age)) +
  geom_histogram(
    binwidth = 5, # width of the bins
  center = 10.5 # center of the bin
)
```


Making density plots with ggplot: geom_density()

```
ggplot(titanic, aes(age)) +
  geom_density(fill = "skyblue")
```


Making density plots with ggplot: geom_density()

```
ggplot(titanic, aes(age)) +
  geom_density() # without fill
```


Modifying bandwidth (bw) and kernel parameters

```
ggplot(titanic, aes(age)) +
  geom_density(
    fill = "skyblue",
    bw = 0.5,  # a small bandwidth
    kernel = "gaussian"  # Gaussian kernel (the
)
```


Modifying bandwidth (bw) and kernel parameters

```
ggplot(titanic, aes(age)) +
  geom_density(
    fill = "skyblue",
    bw = 2,  # a moderate bandwidth
    kernel = "rectangular" # rectangular kernel
)
```



```
ggplot(titanic, aes(age)) +
  geom_density(
    stat = "density", # the default for geom_de
    fill = "skyblue"
)
```



```
ggplot(titanic, aes(age)) +
  geom_area( # geom_area() does not normally use
    stat = "density",
    fill = "skyblue"
)
```



```
ggplot(titanic, aes(age)) +
  geom_line( # neither does geom_line()
   stat = "density"
)
```



```
ggplot(titanic, aes(age)) +
    # we can use multiple geoms on top of each other
geom_area(stat = "density", fill = "skyblue") +
geom_line(stat = "density")
```


Parameters are handed through to the stat

```
ggplot(titanic, aes(age
  geom_line(stat = "den
```

```
ggplot(titanic, aes(age
  geom_line(stat = "den
```


Here, bw is a parameter of stat_density(), not of geom_line().

We can explicitly map results from stat computations

```
ggplot(titanic, aes(age)) +
  geom_tile( # geom_tile() draws rectangular color
  aes(
     y = 1, # draw all tiles at the same y locate
     fill = after_stat(density) # use computed a
     ),
     stat = "density",
     n = 20 # number of points calculated by state
)
```


We can explicitly map results from stat computations

```
ggplot(titanic, aes(age)) +
  geom_tile( # geom_tile() draws rectangular color
  aes(
     y = 1, # draw all tiles at the same y locate
     fill = after_stat(density) # use computed a
    ),
    stat = "density",
    n = 200 # number of points calculated by state
)
```


Further reading

- Fundamentals of Data Visualization:
 Chapter 7: Visualizing distributions
- Data Visualization—A Practical Introduction: 4.6 Histograms and density plots
- **ggplot2** reference documentation: geom_histogram()
- ggplot2 reference documentation: geom_density()