

E E Y

(12) PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 199883252 B2
(10) Patent No. 741851

(54) Title
Tropoelastin derivatives

(51)⁷ International Patent Classification(s)
C07K 014/435 C12N 015/12
A61K 038/17 C12P 021/02
C07H 021/04

(21) Application No: 199883252 (22) Application Date: 1998.07.17

(87) WIPO No: WO99/03886

(30) Priority Data

(31) Number (32) Date (33) Country
PO8117 1997.07.18 AU

(43) Publication Date : 1999.02.10

(43) Publication Journal Date : 1999.04.01

(44) Accepted Journal Date : 2001.12.13

(71) Applicant(s)
The University of Sydney

(72) Inventor(s)
Anthony Steven Weiss

(74) Agent/Attorney
GRIFFITH HACK,GPO Box 4164,SYDNEY NSW 2001

BEST AVAILABLE COPYOPI DATE 10/02/99 APPLN. ID 83252/98
AOJP DATE 01/04/99 PCT NUMBER PCT/AU98/00564

AU9883252

INT

(51) International Patent Classification 6: C07K 14/435, C07H 21/04, A61K 38/17, C12N 15/12, C12P 21/02		A1	(11) International Publication Number: WO 99/03886 (43) International Publication Date: 28 January 1999 (28.01.99)
(21) International Application Number: PCT/AU98/00564		(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).	
(22) International Filing Date: 17 July 1998 (17.07.98)			
(30) Priority Data: PO 8117 18 July 1997 (18.07.97) AU			
(71) Applicant (<i>for all designated States except US</i>): THE UNIVERSITY OF SYDNEY [AU/AU]; Parramatta Road, Sydney, NSW 2006 (AU).			
(72) Inventor; and			
(75) Inventor/Applicant (<i>for US only</i>): WEISS, Anthony, Steven [AU/AU]; 235 Rainbow Street, Randwick, NSW 2031 (AU).			
(74) Agent: GRIFFITH HACK; G.P.O. Box 4164, Sydney, NSW 2001 (AU).			

(54) Title: TROPOELASTIN DERIVATIVES

(57) Abstract

The invention relates to derivatives of tropoelastin and variants of those derivatives. The invention further provides expression products and hybrid molecules of the derivatives and variants of the invention. The invention further provides methods for the production of the derivatives, variants, expression products and hybrid molecules. Further provided are formulations, cross-linked structures and implants comprising the derivatives, variants, expression products and hybrid molecules of the invention. Further provided are uses of the derivatives, variants, expression products and hybrid molecules of the invention.

- 1 -

TROPOELASTIN DERIVATIVES

TECHNICAL FIELD

The present invention relates to derivatives of human tropoelastin and variants thereof, to genetic constructs encoding the amino acid sequences of the derivatives and variants and to uses of the derivatives and variants. In particular, the derivatives of the present invention have elastin-like properties or macro-molecular binding properties.

BACKGROUND ART

There are various forms of tropoelastin that typically appear to consist of two types of alternating domains: those rich in hydrophobic amino acids (responsible for the elastic properties) and those rich in lysine residues (responsible for cross-link formation). Hydrophobic and cross-linking domains are encoded in separate exons (Indik et al 1987).

The 26 A region of human tropoelastin is unique amongst tropoelastin domains in that, due to the absence of lysine, this region does not participate in elastin cross-link formation. Furthermore, this region is a serine-rich domain and lacks hydrophobic stretches, indicating that it is unlikely to contribute to the elasticity of tropoelastin. There is otherwise limited information on the structure and functional relationships of the 26 A region (Bedell-Hogan et al., 1993).

The gene for tropoelastin is believed to be present as a single copy in the mammalian genome, and is expressed in the form of multiple transcripts, distinguished by alternative splicing of the pre-mRNA (Indik et al, 1990; Oliver et al, 1987). Modest expression of a natural human tropoelastin sequence has been achieved by Indik et al (1990) using cDNA, providing free polypeptide which unfortunately was unstable.

Expression of substantial amounts of human tropoelastin using synthetic polynucleotides is reported

- 2 -

in WO94/14958. In particular, a construct, SHEL, providing substantial amounts of full length human tropoelastin is described.

5

DESCRIPTION OF THE INVENTION

In the specification and claims, "derivatives of human tropoelastin" or "tropoelastin derivatives" means novel peptides, polypeptides or proteins which contain amino acid sequences derived from the native amino acid sequences of human tropoelastin molecules. The amino acid sequences of the derivatives of human tropoelastin may be derived from any of the amino acid sequences of the isoforms of human tropoelastin. Derivatives of human tropoelastin are distinguished from human tropoelastin molecules in that the amino acid sequences of derivatives are altered with respect to native tropoelastin sequences by substitution, addition or deletion of residues, or a combination of these alterations, in derivative amino acid sequences.

20

In a first aspect, the present invention provides derivatives of human tropoelastin which have elastin-like properties. Elastin-like properties are a combination of elastic properties, including the phenomenon of recoil following molecular distention under appropriate conditions, and the ability to be cross-linked to other elastin molecules and/or other elastin-like molecules.

25

In a second aspect, the present invention provides derivatives of human tropoelastin which have macro-molecular binding properties including the ability to bind glycosaminoglycans.

In a third aspect, the present invention provides derivatives of human tropoelastin which have elastin-like properties and macro-molecular binding properties.

30

The present invention further provides amino acid sequence variants of the derivatives of the invention. In the specification and claims "variants" means amino acid sequences which retain the properties of the corresponding derivative of human tropoelastin, for example, elastin-

- 3 -

like properties or macro-molecular binding properties, or a combination of elastin-like properties and macro-molecular binding properties, and have an amino acid sequence which is homologous with the amino acid sequence of the corresponding derivative. For the purposes of this description, "homology" between the amino acid sequence of a particular derivative of human tropoelastin and another amino acid sequence connotes a likeness short of identity, indicative of a derivation of one sequence from the other.

In particular, an amino acid sequence is homologous to a derivative of human tropoelastin if the alignment of that amino acid sequence with the sequence of the derivative of human tropoelastin reveals a similarity of about 65% over any 20 amino acid stretch or over any repetitive element of the molecules shorter than 20 amino acids in length. Such a sequence comparison can be performed via known algorithms, such as that of Lipman and Pearson (1985). Similarity is observed between amino acids where those amino acids have a side chain which confers a similar chemical property in the same chemical environment. For example, threonine and serine are similar amino acids; aspartic acid and glutamic acid are similar amino acids; valine, leucine and isoleucine are similar amino acids etc. Thus, an amino acid sequence may be considered homologous with the amino acid sequence of a human tropoelastin derivative because the alignment of those sequences reveals a similarity of 65%, although at each amino acid position in the aligned sequences, none of the residues are identical.

Inasmuch as the present invention provides derivatives of human tropoelastin and amino acid sequence variants of those derivatives, the invention thus extends to amino acid sequence variants incorporating amino acid sequences of non-human tropoelastins. Amino acid sequence variants which are non-human tropoelastin derivatives, or are based all, or in part, on non-human tropoelastin derivatives retain properties of the corresponding derivative of non-human tropoelastin, for example,

- 4 -

elastin-like properties or macro-molecular binding properties, or a combination of elastin-like properties and macro-molecular binding properties, and have an amino acid sequence which is homologous with the amino acid 5 sequence of the corresponding human derivative. The variants of the invention also include variants of the non-human tropoelastin derivatives, or of derivatives based on the non-human tropoelastin derivatives.

"Homology" between the amino acid sequence of a particular 10 derivative of non-human tropoelastin and another amino acid sequence connotes a likeness short of identity, indicative of a derivation of one sequence from the other. In particular, an amino acid sequence is homologous to a derivative of non-human tropoelastin if the alignment of 15 that amino acid sequence with the sequence of the derivative of non-human tropoelastin reveals a similarity of about 65% over any 20 amino acid stretch or over any repetitive element of the molecules shorter than 20 amino acids in length. The skilled addressee will understand 20 that species that are substantially phylogenetically related to humans express tropoelastin molecules which consist of amino acid sequences with homology to human tropoelastin amino acid sequences. Indeed, amino acid sequences of non-human tropoelastins have been determined, 25 including the amino acid sequences of chick tropoelastin, bovine tropoelastin and rat tropoelastin (Bressan et al. 1987, Raju et al. 1987, Pierce et al. 1992) and over multiple regions, these are homologous with the human tropoelastin amino acid sequences. The skilled addressee 30 will recognise therefore, that derivatives of human tropoelastin and amino acid sequence variants of those derivatives will necessarily encompass corresponding tropoelastin amino acid sequences from these and other non-human species.

35 The present invention provides a tropoelastin derivative comprising the amino acid sequence of SHELδmodified (SEQ ID NO:5). The amino acid sequence of

- 5 -

SHEL δ modified and the alignment of that amino acid sequence with the human tropoelastin sequence is shown in Figure 5.

The invention also provides an amino acid sequence 5 variant of the derivative comprising the amino acid sequence of SHEL δ modified.

The invention also provides a polynucleotide encoding a tropoelastin derivative comprising the amino acid sequence of SHEL δ modified. The nucleotide sequence 10 encoding SHEL δ modified is shown in Figure 3 (SEQ ID NO: 4). Preferably the polynucleotide comprises the nucleotide sequence which corresponds to SHEL δ modified shown in Figure 3.

The invention also provides a polynucleotide encoding 15 an amino acid sequence variant of the derivative SHEL δ modified.

The present invention further provides a synthetic polynucleotide encoding a tropoelastin derivative comprising the amino acid sequence of SHEL δ 26A (SEQ ID 20 NO:3). A synthetic polynucleotide is a molecule which comprises a nucleotide sequence that contains silent mutations with respect to the corresponding native polynucleotide molecule. The silent mutations enhance the expression of the synthetic polynucleotide. The amino acid sequence of SHEL δ 26A and the alignment of that amino acid sequence with the human tropoelastin sequence is 25 shown in Figure 2. The SHEL δ 26A derivative excludes the SHEL coding sequence corresponding to exon 26A. Preferably the synthetic polynucleotide comprises the 30 sequence shown in Figure 1 (SEQ ID NO:1) from nucleotide position 1 to 1676 contiguous with nucleotide position 1775 to 2210.

The invention also provides a polynucleotide encoding an amino acid sequence variant of the derivative SHEL δ 26A.

35 The invention also provides an amino acid sequence

- 6 -

variant of the derivative comprising the amino acid sequence of SHEL δ 26A.

The present inventor has, for the first time, shown that the region encoded by exon 26A (peptide 26A) of the 5 tropoelastin gene binds glycosaminoglycans (GAGs) (Figure 6A and B). GAGs are macro-molecules particularly associated with the extracellular environment. These molecules play an important role in the architecture and mechanical properties of connective tissues and mediate 10 interactions with and availability of other molecules.

Thus, the present invention provides a tropoelastin derivative comprising the amino acid sequence of peptide 26A. Peptide 26A has the amino acid sequence:

GADEGVRRSLSPELREGDPSSSQHLPSTPSSPRV (SEQ ID NO: 12) or

15 GADEGVRRSLSPELREGDPSSSQHLPSTPSSPRF (SEQ ID NO: 13).

The present invention also provides an amino acid sequence variant of the derivative comprising the amino acid sequence of peptide 26A.

The invention also provides a polynucleotide encoding 20 a tropoelastin derivative comprising the amino acid sequence of peptide 26A. Preferably the polynucleotide comprises the nucleotide sequence shown in Figure 1 (SEQ ID NO: 1) from nucleotide position 1687 to 1778. Preferably the 3' terminal codon is GTT (which encodes V) 25 or TTT (which encodes F).

The invention also provides a polynucleotide encoding an amino acid sequence variant of the derivative comprising the amino acid sequence of peptide 26A.

In appreciating the GAG binding property of peptide 26A, the present inventor envisages the generation of 30 novel subsets of hybrid molecules, comprising biological polymers which are linked to peptide 26A, wherein the peptide 26A imparts GAG binding activity to the polymer. In particular, the present inventor has recognised that 35 the deletion or insertion of the peptide 26A amino acid sequence, or a variant of that amino acid sequence will alter GAG binding activity. Thus, the present invention relates to tropoelastin derivatives in which full length

- 7 -

or partial length tropoelastin molecules have been modified by the addition of one or more exon 26A regions to enhance interactions with GAGs. Moreover, the invention relates to site directed modification of the 5 amino acid sequence of peptide 26A so as to generate variants of the peptide 26A amino acid sequence which have altered affinity or altered specificity for GAGs. Tropoelastin derivatives or variants of the derivatives which contain altered GAG binding activity may be uncross-linked 10 or cross-linked.

In another aspect, the invention provides a hybrid molecule. In the specification and claims, "hybrid molecule" means a molecule comprising a biological polymer which is linked to a tropoelastin derivative comprising 15 the amino acid sequence of peptide 26A or an amino acid sequence variant of a derivative comprising the amino acid sequence of peptide 26A. Preferably the biological polymer is a protein. More preferably the protein is selected from the group consisting of growth factors, 20 cytokines and antibodies. Alternatively the biological polymer is selected from the group consisting of lipids, sugars or nucleic acids.

In one embodiment, and where the biological polymer is a protein, the hybrid molecule is produced by 25 recombinant DNA techniques, including for example the construction of a nucleotide sequence which encodes the biological polymer and the tropoelastin derivative comprising the amino acid sequence of peptide 26A, or the amino acid sequence variant of a derivative comprising the 30 amino acid sequence of peptide 26 A, in a single open reading frame. Alternatively, the hybrid molecule may be produced synthetically by solid phase peptide synthesis, including, for example the methods of synthesis disclosed in Merrifield (1963) or Knorr et al. (1989). Examples of 35 peptide synthesis also include the synthesis methods used by peptide synthesisers of Perkin Elmer/Applied Biosystems, CA, US.

In another aspect, the invention provides a

- 8 -

polynucleotide sequence encoding a hybrid molecule of the invention.

In another aspect, the invention provides a hybrid molecule which comprises a synthetic polymer which is 5 linked in a tropoelastin derivative comprising the amino acid sequence of peptide 26A, or an amino acid sequence variant of the derivative comprising the amino acid sequence of peptide 26A.

The invention further provides a method of imparting 10 or enhancing GAG binding activity to a biological polymer comprising the step of linking a tropoelastin derivative comprising the amino acid sequence of peptide 26A, or an amino acid sequence variant of peptide 26A with the biological polymer. Preferably the biological polymer is 15 a protein.

The invention further provides a method of deleting or reducing GAG binding activity from a biological polymer comprising the step of deleting a tropoelastin derivative comprising the amino acid sequence of peptide 26A, or an 20 amino acid sequence variant of peptide 26A from the biological polymer. Preferably the biological polymer is a protein.

The present invention also provides a tropoelastin derivative comprising the amino acid sequence of 25 SHELgamma. SHELgamma has the amino acid sequence:
SAMGALVGLGVPGVGAGVPGFGAGADEGVRRSLSPELREGDPSSSQHLPSTPSSPR
VPGALAAAAKAKYGAAVPGVLGGLGALGGVGIPGGVVGAGPAAAAAAKAAKAAQFG
LVGAAGLGLGVGGLVPGVGGLGGIPPAAAAKAKYGAAGLGGVLGGAGQFPLGGVA
ARPGFGLSPIFPGGACLGKACGRKRK (SEQ ID NO: 9).

The invention also provides an amino acid sequence 30 variant of the derivative comprising the amino acid sequence of SHELgamma.

The invention also provides a polynucleotide encoding a tropoelastin derivative, the derivative comprising the 35 amino acid sequence of SHELgamma. The nucleotide sequence of the polynucleotide SHELgamma (SEQ ID NO: 8) is shown in Figure 8. In this nucleotide sequence, the first 9 codons from nucleotide position 948 to 974 are derived

- 9 -

from the glutathione *S*-transferase (GST) fusion nucleotide sequence. Preferably the polynucleotide comprises the nucleotide sequence shown in Figure 8. More preferably the polynucleotide comprises the nucleotide sequence shown 5 in Figure 8 from nucleotide sequence position 975 to 1547.

The invention also provides a polynucleotide encoding an amino acid sequence variant of the derivative comprising the amino acid sequence of SHELgamma.

The present invention also provides a polynucleotide 10 encoding a tropoelastin derivative, the derivative comprising the amino acid sequence of SHELgamma excluding exon 26A. The nucleotide sequence of the polynucleotide SHELgamma excluding exon 26A (SEQ ID NO: 6) is shown in Figure 7. In this nucleotide sequence, the first 5 codons 15 from nucleotide position 948 to 962 are derived from the GST nucleotide sequence. SHELgamma excluding exon 26A has the following amino acid sequence:

VPGALAAAKAAKYGAAVPGVLGGLGALGGVGIPGGVVGAGPAAAAAAKAAAQFG
LVGAAGLGGLGVGGLGVPGVGGLGGIPPAAAAKAAKYGAAGLGGVLGGAGQFPLGGVA
20 ARPGFGLSPIFPGGACLGKACGRKRK (SEQ ID NO: 7).

Preferably the polynucleotide comprises the nucleotide sequence shown in SEQ ID NO:6. More preferably the polynucleotide comprises the nucleotide sequence shown in SEQ ID NO: 6 from nucleotide sequence position 15 to 441.

25 The invention also provides a polynucleotide encoding an amino acid sequence variant of the derivative comprising the amino acid sequence of SHELgamma excluding exon 26A.

30 The invention also provides a tropoelastin derivative comprising the amino acid sequence of SHELgamma excluding exon 26A.

The invention also provides an amino acid sequence variant of the derivative comprising SHELgamma excluding exon 26A.

35 The derivatives of the invention based on SHELgamma can also be produced by *in vitro* biochemical cleavage of tropoelastin products such as SHEL, so as to release a carboxy-terminal fragment. The carboxy-terminal fragment

- 10 -

may be purified by reverse phase HPLC.

The present invention also provides a tropoelastin derivative comprising the amino acid sequence of SHEL31-36. SHEL31-36 has the following amino acid sequence:

5 GIPPAAAAKAAKYGAAGLGGVLGGAGQFPLGGVAARPGFGLSPIFPGGACLGKACG-RKRK (SEQ ID NO: 10).

SHEL31-36 retains a crosslinking domain. As a consequence of its elastin-like properties, it is envisaged that this and related tropoelastin derivatives 10 can be used to interfere with tropoelastin deposition and formation of unaltered elastic fibre.

The invention also provides an amino acid sequence variant of the derivative comprising the amino acid sequence of SHEL31-36.

15 The invention also provides a polynucleotide encoding a tropoelastin derivative, the derivative comprising the amino acid sequence of SHEL31-36. Preferably the polynucleotide comprises the nucleotide sequence shown in Figure 1 (SEQ ID NO:1) from nucleotide position 2022 to 20 2210.

The invention also provides a polynucleotide encoding an amino acid variant of the derivative comprising the amino acid sequence of SHEL31-36.

25 The present invention also provides a tropoelastin derivative, comprising the amino acid sequence of SHEL32-36. SHEL32-36 has the following amino acid sequence: GAAGLGGVLGGAGQFPLGGVAARPGFGLSPIFPGGACLGKACGRKRK (SEQ ID NO: 11).

30 The invention also provides an amino acid sequence variant of the derivative comprising the amino acid sequence of SHEL32-36.

The invention also provides a polynucleotide encoding a tropoelastin derivative, the derivative comprising the amino acid sequence of SHEL32-36. Preferably the 35 polynucleotide comprises the nucleotide sequence shown in Figure 1 (SEQ ID NO: 1) from nucleotide position 2061 to 2210.

The present invention also provides a polynucleotide

- 11 -

encoding an amino acid sequence variant of the derivative comprising the amino acid sequence of SHEL32-36.

As a consequence of its elastin-like properties, it is envisaged that SHEL32-36 and related tropoelastin derivatives can be used to interfere with tropoelastin deposition and formation of an unaltered elastic fibre.

The present invention also provides a tropoelastin derivative, comprising the amino acid sequence of SHEL26-36. SHEL26-36 has the following amino acid sequence:

10 AAAGLGAGIPGLGVGVGVPGLGVGAGVPGFGAGADEGVRRSLSPELREGD
PSSSQHLPSTPSSPRVPGALAAAKAAKYGAAVPGVLGGLGALGGVGIPGGVVGAGPAAA
AAAAKAAAKAAQFGLVGAAGLGGLVGGVGPGVGGLGGIPPPAAAAKAAKYGAAGLGGV
LGGAGQFPLGGVAARPGFGLSPIFPGGACLGKACGRKRK (SEQ ID NO: 14)

15 The invention also provides an amino acid sequence variant of the derivative comprising the amino acid sequence of SHEL26-36.

20 The invention also provides a polynucleotide encoding a tropoelastin derivative, the derivative comprising the amino acid sequence of SHEL26-36. Preferably the polynucleotide comprises the nucleotide sequence shown in Figure 1 from nucleotide position 1554-2210.

25 The present invention also provides a tropoelastin derivative, comprising the amino acid sequence of SHEL26-36 excluding exon 26A. SHEL26-36 excluding exon 26A has the following amino acid sequence:

AAAGLGAGIPGLGVGVGVPGLGVGAGVPGFGAVPGALAAAKAAKYGAAVP
GVLGGLGALGGVGIPGGVVGAGPAAAAAAKAAQFGLVGAAGLGGLVGGVGPG
VGGLGGIPPPAAAAKAAKYGAAGLGGVLGGAGQFPLGGVAARPGFGLSPIFPGGACLGKA
CGRKRK (SEQ ID NO: 15)

30 The invention also provides an amino acid sequence variant of the derivative comprising the amino acid sequence of SHEL26-36 excluding exon 26A.

35 The invention also provides a polynucleotide encoding a tropoelastin derivative, the derivative comprising the amino acid sequence of SHEL26-36 excluding exon 26A.

Preferably the polynucleotide comprises the nucleotide sequence shown in Figure 1 from nucleotide position 1554

- 12 -

to 1676 contiguous with 1776 to 2210.

The present invention also provides a polynucleotide encoding an amino acid sequence variant of the derivative comprising the amino acid sequence of SHEL26-36.

5 In another aspect the present invention provides a formulation comprising a tropoelastin derivative, a variant of the derivative or a hybrid molecule of the invention, together with a carrier or diluent.

Formulations of the derivatives, variants or hybrid
10 molecules of the invention can be prepared in accordance with standard techniques appropriate to the field in which they are to be used.

15 The polynucleotides and synthetic polynucleotides of the invention can be provided in association with other polynucleotide sequences including 5' and 3' untranslated sequences, and 5' upstream and 3' downstream transcriptional regulatory sequences. The polynucleotides and synthetic polynucleotides may be provided as a recombinant DNA molecule including plasmid DNA.

20 The polynucleotides and synthetic polynucleotides of the invention can be prepared using the techniques of chemical synthesis or recombinant DNA technology, or by a combination of both techniques.

25 In a further aspect the invention provides a vector comprising a polynucleotide or synthetic polynucleotide encoding a tropoelastin derivative, a variant of the derivative or a hybrid molecule of the invention.

30 Vectors useful in this invention include plasmids, phages and phagemids. The polynucleotides and synthetic polynucleotides of the present invention can also be used in integrative expression systems or lytic or comparable expression systems.

35 Suitable vectors will generally contain origins of replication and control sequences which are derived from species compatible with the intended expression host. Typically these vectors include a promoter located upstream from the polynucleotide, together with a ribosome binding site if intended for prokaryotic expression, and a

- 13 -

phenotypic selection gene such as one conferring antibiotic resistance or supplying an auxotrophic requirement. For production vectors, vectors which provide for enhanced stability through partitioning may be chosen. Where integrative vectors are used it is not necessary for the vector to have an origin of replication. Lytic and other comparable expression systems do not need to have those functions required for maintenance of vectors in hosts.

For *E. coli* typical vectors include pBR322, pBluescript II SK', pGEX-2T, pTrc99A, pET series vectors, particularly pET3d, (Studier et al., 1990) and derivatives of these vectors. Derivatives include those plasmids with a modified protease recognition sequence to facilitate purification of a protein domain.

In another aspect the invention provides a cell capable of expressing a polynucleotide or a synthetic polynucleotide which encodes a derivative or variant of the invention, or a polynucleotide which encodes a hybrid molecule of the invention.

A preferred expression system is an *E. coli* expression system. However, the invention includes within its scope the use of other hosts capable of expressing protein from the polynucleotides designed for use in *E. coli*. The invention also includes the use of polynucleotides and synthetic polynucleotides suitable for use in other expression systems such as other microbial expression systems. These other expression systems include yeast, and bacterial expression systems, insect cell expression systems, and expression systems involving other eukaryotic cell lines or whole organisms.

Examples of *E. coli* hosts include *E. coli* B strain derivatives (Studier et al, 1990), and K-strain derivatives such as NM522 (Gough and Murray, 1983) and XL1-Blue (Bullock et al, 1987).

In a further aspect the present invention provides an expression product. In the specification and claims, "expression product" means a derivative or variant of the

- 14 -

invention expressed by a cell containing a polynucleotide or a synthetic polynucleotide encoding a derivative or variant of the invention.

The expression products of the invention may be fused 5 expression products which include all or part of a protein encoded by the vector in peptide linkage with the derivative or variant. They may also include, for example, an N-terminal methionine or other additional residues which do not permanently impair the elastin-like, 10 or macro-molecular binding properties of the product.

Typically the fusion is to the N-terminus of the expression product. An example of a suitable protein is to the C-terminus of glutathione S-transferase. The fused protein sequence may be chosen in order to cause the 15 expression product to be secreted or expressed as a cell surface protein to simplify purification or expressed as a cytoplasmic protein.

The expressed fusion products may subsequently be treated to remove the fused protein sequences to provide 20 free tropoelastin derivative or variant. Treatment is typically through protease treatment or, in the case of secretion, removal is effected by endogenous host secretion machinery. An example of this is secretion by yeasts.

25 Non-fused systems include the introduction of or use of a pre-existing methionine codon. An example of this is the use of pET3a or pET3d in *E. coli*.

In another aspect the invention provides a 30 polynucleotide encoding an expression product of the invention.

In another aspect the present invention provides a formulation comprising an expression product of the invention together with a carrier or diluent. The formulation of the expression product can be prepared in 35 accordance with standard techniques appropriate to the field in which they are to be used.

According to a further aspect of the present invention there is provided a method for producing a

- 15 -

tropoelastin derivative or a variant of the derivative comprising providing a vector containing a polynucleotide or a synthetic polynucleotide encoding the derivative or variant; introducing the vector into a suitable host cell; 5 maintaining the cell in conditions suitable for expression of the polynucleotide or synthetic polynucleotide and isolating the derivative or variant of the invention. The method can be applied to the production of the expression products and hybrid molecules (in which the hybrid 10 molecules comprise the peptide 26A or a variant thereof and a further amino acid sequence) of the invention, by providing a vector containing a polynucleotide encoding an expression product or a hybrid molecule; introducing the vector into a suitable host cell; maintaining the cell in 15 conditions suitable for expression of the polynucleotide and isolating the expression product or hybrid molecule.

In one embodiment, the polynucleotide or synthetic polynucleotide encoding the derivative, variant, expression product or hybrid molecule of the invention is 20 expressed in a host cell which is maintained in culture *in vitro*.

Alternatively, the polynucleotide or synthetic polynucleotide encoding the derivative, variant, expression product or hybrid molecule of the invention is 25 expressed in a host cell which is maintained *in vivo*. Thus, in another embodiment, the polynucleotide or synthetic polynucleotide encoding the derivative, variant, expression product or hybrid molecule of the invention is expressed in a transgenic animal. Methods for the 30 generation of transgenic animals are known in the art. Exemplary methods are described in Slack et al. 1991 and Janne et al. 1992.

The tropoelastin derivatives, variants of the derivatives, and hybrid molecules (in which the hybrid 35 molecules comprise the peptide 26A or a variant thereof and a further amino acid sequence) of the invention may be produced by solid phase peptide synthesis, including, for example, the methods of synthesis disclosed in Merrifield

- 16 -

(1963) or Knorr et al (1989). Examples of peptide synthesis also include the synthesis methods used by peptide synthesisers of Perkin Elmer/Applied Biosystems, CA, US. As an alternative to cell synthesis from a 5 polynucleotide or synthetic polynucleotide, the expression products of the invention may be produced by solid phase peptide synthesis.

In a further aspect the present invention provides an 10 implant formed from at least one tropoelastin derivative and/or variant of the derivative of the invention. The implant may alternatively contain at least one expression product and/or at least one hybrid molecule of the invention.

The implants are formed into the required shape by 15 cross-linking the tropoelastin derivative, variant of the derivative, expression product, or hybrid molecule of the invention, in a mould which conforms to the desired shape of the implant. Where the implant is required to be used in sheet form the tropoelastin derivative, variant of the 20 derivative, expression product, or hybrid molecule of the invention can be cross-linked on a flat surface. Relevant methodologies are described in, for example, US Patent No. 4 474 851 and US Patent No. 5 250 516. The elastomeric materials may be exclusively prepared from one or more 25 tropoelastin derivatives, variants of the derivative, expression products, or hybrid molecules of the invention or may be composites prepared from one or more of these constituents together with other materials.

The tropoelastin derivatives or variants of the 30 derivatives can be cross-linked to form elastin or elastin-like material or can be cross-linked in conjunction with other biological or synthetic molecules to form a composite material.

Thus in another aspect the invention provides a 35 cross-linked complex which comprises at least one tropoelastin derivative of the invention and/or at least one variant of a derivative of the invention. The cross-linked complexes may additionally contain at least one

- 17 -

expression product and/or at least one hybrid molecule of the invention, which may be cross-linked to the at least one tropoelastin derivative and/or variant of the derivative of the invention.

5 The cross-linking of the tropoelastin derivatives, variants of the derivatives, hybrid molecules and expression products of the invention can be achieved by chemical oxidation of lysine side chains using processes such as ruthenium tetroxide mediated oxidation and quinone
10 mediated oxidation, or by using homobifunctional chemical cross-linking agents such as dithiobis (succinimidylpropionate), dimethyl adipimidate or dimethyl pimelimidate. Glutaraldehyde cross-linking is an important addition to this repertoire. Another alternative
15 is the cross-linking of lysine and glutamic side chains.

The tropoelastin derivatives, variants of the derivatives, hybrid molecules and expression products of the invention may also be enzymatically cross-linked by methods including lysyl oxidase mediated oxidation or may
20 be cross-linked using gamma irradiation.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1: Nucleotide (SEQ ID NO: 1) and predicted amino acid (SEQ ID NO: 2) sequences of synthetic human
25 tropoelastin SHEL. The upper (numbered) nucleotide sequence represents the coding strand.

Figure 2: Alignment of SHEL (SEQ ID NO: 2) (upper line) and SHEL δ 26A (SEQ ID NO: 3) amino acid sequences.

Figure 3: Nucleotide (SEQ ID NO: 4) and predicted amino acid (SEQ ID NO: 5) sequences of SHEL δ modified.
30

Figure 4: Alignment of SHEL δ modified (SEQ ID NO: 4) (upper line) and SHEL (SEQ ID NO: 1) nucleotide sequences.

Figure 5: Alignment of SHEL δ modified (SEQ ID NO: 5) (lower line) and SHEL (SEQ ID NO: 1) amino acid sequences.
35

Figure 6A: HPLC elution profile of GST-exon 26A fusion protein tropoelastin derivative loaded in from

- 18 -

heparin sepharose. 6B: Binding of peptide 26A (SEQ ID NO: 12 and SEQ ID NO: 13) to glycosaminoglycans.

Figure 7: Nucleotide (SEQ ID NO: 6) and predicted amino acid (SEQ ID NO: 7) sequences of SHELgamma excluding exon 26A.

Figure 8: Nucleotide (SEQ ID NO: 8) and predicted amino acid (SEQ ID NO: 9) sequences of SHELgamma.

BEST METHOD OF PERFORMING THE INVENTION

The recombinant and synthetic procedures used for the synthesis of the derivatives, variants, expression products and hybrid molecules of the invention are described in standard texts such as Sambrook et al (1989).

Tropoelastin nucleotide sequences may be modified so as to provide derivatives, variants, expression products or hybrid molecules, by conventional site-directed or random mutagenesis. The sequences may also be modified by oligonucleotide-directed mutagenesis, which comprises the following steps:

- 20 1. synthesis of an oligonucleotide with a sequence that contains the desired nucleotide substitution (mutation);
2. hybridising the oligonucleotide to a template comprising a structural sequence encoding tropoelastin; and
- 25 3. using a DNA polymerase to extend the oligonucleotide as a primer.

Another approach which is particularly suited to situations where a synthetic polynucleotide encoding the 30 tropoelastin derivative is prepared from oligonucleotide blocks bounded by restriction sites, is cassette mutagenesis where entire restriction fragments are replaced.

Purification of the derivatives, variants, expression 35 products or hybrid molecules of the invention is performed using standard techniques including HPLC. The actual sequence of steps in the purification of a particular derivative, variant, expression product or hybrid molecule

- 19 -

is limited by the environment from which the molecule is to be purified. By way of example, reference is made to the purification scheme disclosed in WO94/14958.

Formulations in accordance with the invention are
5 formulated in accordance with standard techniques.

The amount of derivative, variant, expression product or hybrid molecule that may be combined with a carrier or diluent to produce a single dosage will vary depending on the situation in which the formulation is to be used and
10 the particular mode of administration.

It will be understood also that specific doses for any particular host may be influenced by factors such as the age, sex, weight and general health of the host as well as the particular characteristics of the derivative,
15 variant, expression product or hybrid molecule of the invention being used, and how it is administered.

Injectable preparations, for example, sterile injectable aqueous or oleagenous suspensions may be formulated according to the known art using suitable
20 dispersing or wetting agents and suspending agents. The sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally acceptable diluent or solvent. Among the acceptable vehicles or solvents that may be employed are water, Ringer's solution, alcohols and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium.
25 For this purpose any bland fixed oil may be employed including synthetic mono- or diglycerides. In addition,
30 fatty acids such as oleic acid and organic solvents find use in the preparation of injectables.

Routes of administration, dosages to be administered as well as frequency of administration are all factors which can be optimised using ordinary skill in the art.

35 In addition, the derivatives, variants, expression products and hybrid molecules of the invention may be prepared as topical preparations for instance as anti-wrinkle and hand lotions using standard techniques for the

- 20 -

preparation of such formulations. They may be prepared in aerosol form for, for instance, administration to a patient's lungs, or in the form of surgical implants, foods or industrial products by standard techniques.

5

SHEL

The preparation of SHEL is described in WO94/14958. It is directly expressed as a full length human protein with a calculated molecular weight of 64kDa. The full 10 nucleotide sequence and corresponding amino acid sequence of SHEL is shown in Figure 1. The preparation of pSHELF is described in WO94/14958.

pSHELF differs from the natural coding sequence(s) in a number of ways. As described in WO94/14958, the 15 untranslated regions present in the tropoelastin cDNA sequence were disregarded in designing the synthetic gene, and the nucleotides encoding the signal peptide were removed. Restriction endonuclease recognition sites were incorporated at regular intervals into the gene by 20 typically altering only the third base of the relevant codons, thereby maintaining the primary sequence of the gene product. The facility for silent alteration of the coding sequence was also exploited to change the codon bias of the tropoelastin gene to that commonly found in highly 25 expressed *E.coli* genes. [Genetics Computer Group (GCG) package version 7-UNIX using Codon Frequency and Gen Run Data: ecohigh-cod]. Two additional stop codons were added to the 3'-end, and an ATG start codon comprising a novel NcoI site was appended to the 5'-end. *Bam* HI cloning sites 30 were engineered at both ends of the synthetic sequence. Since the gene contains no internal methionine residues, treatment of the newly-synthesized gene product (expressed directly or as a fusion with another gene) with cyanogen bromide would liberate a protein with the same or similar 35 sequence as one form of natural tropoelastin comprising 731 amino acids. Other forms of processing are envisaged, which may generate tropoelastin species of the same or different lengths.

- 21 -

Two stop codons were added in order to allow the possible use of the construct in suppressor hosts, and also to avoid any potential depletion of termination (release) factors for translation.

5 As described in the following examples, the derivatives, pSHELF δ 26A, pSHELF δ modified, pSHELgamma, pSHEL31-36, pSHEL32-36 and pSHELgamma δ 26A were derived from the pSHELF nucleotide sequence. These particular derivatives, and indeed the derivatives, variants, 10 expression products and hybrid molecules of the invention can equally be derived from a native human or non-human tropoelastin nucleotide sequence.

Example 1: Construction of pSHELF δ 26A and pSHELF δ

15 modified

Mutagenesis was used with pSHELF to remove DNA corresponding to exon 26A. The sequence of the mutagenic primer was:

5'CGG GTT TCG GTG CTG TTC CGG GCG CGC TGG 3'

20 This flanked either side of exon 26A by 15bp resulting in its precise deletion. A second selection primer, which mutates a unique restriction site to another restriction site is normally used in the protocol but was not in this case since deletion of exon 26A also resulted 25 in the deletion of a unique restriction site, PmlI. The enzyme PmlI was used to treat the mutation reaction to linearise any unmutated parental plasmid and consequently to enrich for mutant plasmid. The reaction mixture was used to transform competent BMH17-18 mutS E. coli, 30 defective in mismatch repair, by electroporation and the entire transformed culture was grown overnight in LB+ampicillin. Mixed plasmid DNA, containing both mutated and parental plasmids, was isolated from the culture and the plasmid DNA was digested with PmlI to linearise the 35 parental plasmid. The plasmid DNA, now enriched for mutated plasmid, was used to transform E. coli HMS174 by electroporation and transformants selected on LB plates

- 22 -

containing 75 μ g/ml¹ ampicillin.

Colonies were grown overnight and plasmid mini-preparations performed. Constructs were screened using PmlI and those which were insensitive to digestion were 5 further screened by KpnI/PstI double digestion. Candidate clones were sequenced to verify the sequence, named pSHELF δ modified.

Sequencing confirmed the region immediately surrounding the deletion was correct. PstI and BssHII 10 restriction sites surrounding the correct region of pSHELF δ modified were used to remove the desired segment and re-insert it into the corresponding site of pSHELF. 6.5 μ g pSHELF and 7.5 μ g pSHELF δ modified were digested with BssHII, precipitated and digested with PstI. The 15 appropriate three fragments were gel-purified and ligated. DNA was transformed into *E. coli* XLL-Blue and transformants selected on plates containing 75 μ g/ml¹ ampicillin.

Plasmids were isolated by mini-preparations and 20 screened using BglI digestion. A candidate clone was further analysed by restriction enzyme digestion and sequenced, and named pSHELF δ 26A.

Example 2: Synthesis of Exon 26A

25 The region of SHEL corresponding to exon 26A was amplified by PCR, with primers modified to introduce an in-frame BamH1 site upstream and a stop codon downstream at the 3' end. Two forms were generated: one terminating in valine (26AV) and the other terminating in phenylalanine 30 (26AF). These forms are as follows:

GADEGVRRSLSPELREGDPSSSQHLPSTPSSPRV with properties:

Molecular weight = 3588.80

Residues = 34

Average Residue Weight = 105.553

35 Charge = -1

Isoelectric point = 5.71

- 23 -

and

GADEGVRRSLSPELREGDPSSSQHLPSTPSSPRF

A 26A coding region was expressed as a glutathione S-transferase (GST) fusion protein.

5

Example 3: Glycosaminoglycan binding activity of Exon 26A

Ultrafiltration assay methodology was developed to examine and quantify interactions occurring *in vitro* between the 26A region and purified extracellular matrix glycosaminoglycans. GST26A fusion protein and tropoelastin were compared with GST and tropoelastin lacking exon 26A at physiologically relevant conditions of pH and ionic strength.

15

Experimental evidence supports the notion that peptide 26A (26AF and 26AV) binds GAGs. Immobilised heparin column binding shows that GST26A binds more tightly than does GST, and requires a higher sodium chloride concentration for elution (Figure 6B).

20

Furthermore, GST26A fusion protein binds radioactive heparin with greater efficiencies than GST, and these can be compared with GAGs including chondroitin sulphates and keratin sulphates. An implication of this is that GAGs binding to tropoelastin can be adjusted based upon the content of 26A. Cross-linked tropoelastin would be expected to show differential binding to GAGs based on the relative amounts of SHEL vs. SHEL δ 26A.

25

In summary, these studies reveal that the 26A region is a functional glycosaminoglycan binding domain, which functions in intact tropoelastin. It is also active when isolated as a fusion entity yet displays no detectable structure in the absence of bound GAG. Furthermore, panel competition studies indicate a preference for those GAGs found in close association with the elastic fibre in the extracellular matrix.

Example 4: Construction of pSHELgamma, pSHEL31-36,
pSHEL32-36 and pSHELgammaδ26A

pSHELgamma is derived from the pSHELgamma construct disclosed in WO94/74958. pSHEL31-36, pSHEL32-36 and 5 pSHELgammaδ26A were derived from pSHELgamma. pSHELgamma was modified by introducing an oligonucleotide linker at the *Kpn*I site. This encoded a faster Xa cleavage site which could be utilised in subsequent constructs. PCR and site directed mutagenesis was then used to generate further, 10 shorter forms which provided fusions with GST. Constructs were DNA sequenced for verification. Induced protein was isolated as GST-fusion proteins, which were subsequently bound to glutathione agarose. Protease cleavage was optional where fusion proteins were desired; otherwise the 15 cleaved proteins and peptides were further purified by reverse phase HPLC.

INDUSTRIAL APPLICATION

The derivatives and expression products of the 20 invention are of use in *inter alia* the medical, pharmaceutical, veterinary and cosmetic fields.

It is to be understood that a reference herein to a prior art document does not constitute an admission that the document forms part of the common general knowledge in 25 the art in Australia or in any other country.

In the claims which follow and in the preceding description of the invention, except where the context requires otherwise due to express language or necessary implication, the word "comprising" or grammatical variations thereof, is used in the sense of "including", 30 i.e. the features specified may be associated with further features in various embodiments of the invention.

- 25 -

REFERENCES

1. Indik Z, Yeh H, Ornstein-Goldstein N, Sheppard P, Anderson N, Rosenbloom JC, Peltonen L and Rosenbloom J (1987) PNAS (USA) **84** 5680-5684
2. Indik Z, Abrams W.R., Kucich U, Gibson C.W., Mecham R.P. and Rosenbloom J (1990) Arch. Biochem Biophys **280** 80-86
3. Oliver L, Luvalle PA, Davidson J.M., Rosenbloom J, Mathew C.G., Betser A.J. and Boyd C.D. (1987) Collagen Rel Res **7** 77-89
4. Sambrook J., Fritsch E.F., and Maniatis T. (1989) Molecular cloning: a laboratory manual, second edition Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York
5. Bressan G.M., Argos P. and Stanley K.K. (1987) Biochemistry **26** 1497-11503
6. Raju K. aand Anwar R.A. (1987) J. Biol Chem **262** 5755-5762
7. Pierce R.A., Alatawi A, Deak S.B. & Boyd C.D. (1992) Genomics **12** 651-658
8. Lipman and Pearson (1985) Science 227,1435.
9. Bedell-Hogan, D., Trackman, P., Abrams, W., Rosenbloom, J. and Kagan H. (1993) J. Biol. Chem. **268**, 10345-10350
10. Studier, F. W., Rosenberg, A. H., Dunn, J. J. and Dubendorff, J. W. (1990) Methods Enzymol. **185**, 60-89
11. Gough, J., and Murray, N. (1983) J. Mol. Biol. **166**,

- 26 -

1-19

12. Bullock, W. O., Fernandez, J. M. and Short, J. M.
(1987) BioTechniques 5, 376-379

5

13. Slack, J. L., Liska, D. J. and Bornstein P. (1991)
Mol. Cell Biol. 11: 2066-2074

10
14.

Janne, J., Hyttinen, J. M., Peura, T., Tolvanen, M.,
Alhonen, L. And Halmekyto M. (1992) Ann. Med. 24:
273-280.

15
15. Merrifield, R.B., (1963) J. Am. Chem. Soc. 85:
2149-2154.

16. Knorr R., Trzeciak, Bannarth W., Gillessen, D. (1989)
Tetrahedron Letters 30: 1927-1930

- 27 -

SEQUENCE LISTING

(1) GENERAL INFORMATION:

(i) APPLICANT: WEISS, ANTHONY S
UNIVERSITY, SYDNEY

(ii) TITLE OF INVENTION: TROPOELASTIN DERIVATIVES

(iii) NUMBER OF SEQUENCES: 15

(iv) CORRESPONDENCE ADDRESS:

- (A) ADDRESSEE: GRIFFITH HACK
- (B) STREET: 168 WALKER STREET
- (C) CITY: NORTH SYDNEY
- (D) STATE: NEW SOUTH WALES
- (E) COUNTRY: AUSTRALIA
- (F) ZIP: 2060

(v) COMPUTER READABLE FORM:

- (A) MEDIUM TYPE: Floppy disk
- (B) COMPUTER: IBM PC compatible
- (C) OPERATING SYSTEM: PC-DOS/MS-DOS
- (D) SOFTWARE: PatentIn Release #1.0, Version #1.30

(vi) CURRENT APPLICATION DATA:

- (A) APPLICATION NUMBER: AU
- (B) FILING DATE:
- (C) CLASSIFICATION:

(vii) PRIOR APPLICATION DATA:

- (A) APPLICATION NUMBER: AU P08117
- (B) FILING DATE: 18-JUL-1997

(viii) ATTORNEY/AGENT INFORMATION:

- (A) NAME: GUMLEY, THOMAS P
- (C) REFERENCE/DOCKET NUMBER: 04828ZK

(ix) TELECOMMUNICATION INFORMATION:

- (A) TELEPHONE: 61 2 9957 5944
- (B) TELEFAX: 61 2 9957 6288
- (C) TELEX: 26547

(2) INFORMATION FOR SEQ ID NO:1:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2210 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: YES

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

GATCCATGGG TGGCGTTCCG GGTGCTATCC CGGGTGGCGT TCCGGGTGGT GTATTCTACC	60
CAGGGCGGGG TCTGGGTGCA CTGGGGGGTG GTGGCGCTGGG CCCGGGTGGT AAACCGCTGA	120
AACCGGGTCC AGGCGGTCTG GCAGGTGCTG GTCTGGGTGC AGGTCTGGGC GCGTTCCCGG	180
CGGTTACCTT CCCGGGTGCT CTGGGTCCGG GTGGCGTTCG AGACGCAGCT GCTGCGTACA	240
AAGCGGCAA A GGCAGGTGCG GGTCTGGCG GGGTACCAAGG TGTTGGCGGT CTGGGTGTAT	300
CTGCTGGCGC AGTTGTTCCG CAGCCGGGTG CAGGTGTAAA ACCGGGCAA GTTCCAGGTG	360
TTGGTCTGCC GGGCGTATAC CCGGGTGGTG TTCTGCCGG CGCGCGTTTC CCAGGTGTTG	420
GTGTACTGCC GGGCGTTCCG ACCGGTGCAG GTGTTAACCC GAAGGCACCA GGTGTAGGCG	480
GCGCGTTCGC GGGTATCCCG GGTGTTGGCC CGTTGGTGG TCCGCAGCCA GGCAGTTCCGC	540
TGGGTTACCC GATCAAAGCG CCGAAGCTTC CAGGTGGCTA CGGTCTGCCG TACACCACCG	600
GTAAACTGCC GTACGGCTAC GGTCCGGGTG GCGTAGGCAGG TGCTGGGT AAAGCAGGCT	660
ACCCAACCGG TACTGGTGTG GGTCCGCAGG CTGCTGCCG AGCTGCAGCG AAGGCAGCAG	720
CAAAATTCCGG CGCGGGTGCA GCGGGTGTTC TGCCGGCGT AGGTGGTGCT GGCAGTTCCGG	780
GTGTTCCAGG TGCGATCCCG GGCATCGGTG GTATCGCAGG CGTAGGTACT CCGGGCGGCCG	840

- 29 -

CTGCGGCTGC	GGCAGCTGCG	GCGAAAGCAG	CTAAATACGG	TGCGGCAGCA	GGCCTGGTTC	900
CGGGTGGTCC	AGGCTTCGGT	CCGGGTGTTG	TAGGCGTTCC	GGGTGCTGGT	GTTCGGGCG	960
TAGGTGTTCC	AGGTGCCGGC	ATCCCGGTTG	TACCGGGTGC	AGGTATCCCC	GGCGCTGCAG	1020
TTCCAGGTGT	TGTATCCCC	GAAGCGGCAG	CTAAGGCTGC	TGCGAAAGCT	GCGAAATACG	1080
GAGCTCGTCC	GGGC GTTGGT	GTTGGTGGCA	TCCCGACCTA	CGGTGTAGGT	GCAGGGCGTT	1140
TCCCAGGTTT	CGGC GTTGGT	GTTGGTGGCA	TCCCGGGTGT	AGCTGGTGT	CCGTCTGTTG	1200
GTGGCGTACC	GGGT GTTGGT	GGCGTTCCAG	GTGTAGGTAT	CTCCCCGGAA	GCGCAGGCAG	1260
CTGCGGCAGC	TAAAGCACCG	AAGTACGGCG	TTGGTACTCC	GGCGGCAGCA	GCTGCTAAAG	1320
CAGCGGCTAA	AGCAGCCAG	TTCGGACTAG	TTCCGGGCGT	AGGTGTTGCG	CCAGGTGTTG	1380
GCGTAGCACC	GGGT GTTGGT	GTTGCTCCGG	GCGTAGGTCT	GGCACCGGGT	GTTGGCGTTG	1440
CACCAGGTGT	AGGTGTTGCG	CCGGCGTTG	GTGTAGCACC	GGGTATCGGT	CCGGGTGGCG	1500
TTGCGGCTGC	TGCGAAATCT	GCTGCGAAGG	TTGCTGCGAA	AGCGCAGCTG	CGTGCAGCAG	1560
CTGGTCTGGG	TGCGGGCATC	CCAGGTCTGG	GTGTAGGTGT	TGGTGTTCGG	GGCCTGGGTG	1620
TAGGTGCAGG	GGTACCGGGC	CTGGGTGTTG	GTGCAGGGGT	TCCGGGTTTC	GGTGCCTGGCG	1680
CGGACGAAGG	TGTACGTCGT	TCCCTGTCTC	CAGAACTGCG	TGAAGGTGAC	CCGTCCCTCTT	1740
CCCAGCACCT	GCCGTCTACC	CCGTCCCTCTC	CACGTGTTCC	GGGCGCGCTG	GCTGCTGCGA	1800
AAGCGGCGAA	ATACGGTGCA	GGGGTTCCGG	GTGTACTGGG	CGGTCTGGGT	GCTCTGGGCG	1860
GTGTTGGTAT	CCCGGGCGGT	GTTGTAGGTG	CAGGCCAGC	TGCAGCTGCT	GCTGCGGCAA	1920
AGGCAGCGGC	GAAAGCAGCT	CAGTTCGGTC	TGGTTGGTGC	AGCAGGTCTG	GGCGGTCTGG	1980
GTGTTGGCGG	TCTGGGTGTA	CCGGCGTTG	GTGGTCTGGG	TGGCATCCCC	CCGGCGGCGG	2040
CAGCTAAAGC	GGCTAAATAC	GGTGCAGCAG	GTCTGGGTGG	CGTTCTGGGT	GGTGCCTGGTC	2100
AGTTCCCACT	GGGC GG TGTA	GGGCACGTC	CGGGTTTCGG	TCTGTCCCC	ATCTTCCCAG	2160
CGGGTGCATG	CCTGGGTAAA	GCTTGCGGCC	GTAAACGTAA	ATAATGATAG		2210

- 30 -

(2) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 733 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Ser Met Gly Gly Val Pro Gly Ala Ile Pro Gly Gly Val Pro Gly Gly
1 5 10 15

Val Phe Tyr Pro Gly Ala Gly Leu Gly Ala Leu Gly Gly Ala Leu
20 25 30

Gly Pro Gly Gly Lys Pro Leu Lys Pro Val Pro Gly Gly Leu Ala Gly
35 40 45

Ala Gly Leu Gly Ala Gly Leu Gly Ala Phe Pro Ala Val Thr Phe Pro
50 55 60

Gly Ala Leu Val Pro Gly Gly Val Ala Asp Ala Ala Ala Ala Tyr Lys
65 70 75 80

Ala Ala Lys Ala Gly Ala Gly Leu Gly Gly Val Pro Gly Val Gly Gly
85 90 95

Leu Gly Val Ser Ala Gly Ala Val Val Pro Gln Pro Gly Ala Gly Val
100 105 110

Lys Pro Gly Lys Val Pro Gly Val Gly Leu Pro Gly Val Tyr Pro Gly
115 120 125

Gly Val Leu Pro Gly Ala Arg Phe Pro Gly Val Gly Val Leu Pro Gly
130 135 140

Val Pro Thr Gly Ala Gly Val Lys Pro Lys Ala Pro Gly Val Gly Gly
145 150 155 160

Ala Phe Ala Gly Ile Pro Gly Val Gly Pro Phe Gly Gly Pro Gln Pro

- 31 -

165	170	175
Gly Val Pro Leu Gly Tyr Pro Ile Lys Ala Pro Lys Leu Pro Gly Gly		
180	185	190
Tyr Gly Leu Pro Tyr Thr Thr Gly Lys Leu Pro Tyr Gly Tyr Gly Pro		
195	200	205
Gly Gly Val Ala Gly Ala Ala Gly Lys Ala Gly Tyr Pro Thr Gly Thr		
210	215	220
Gly Val Gly Pro Gln Ala Ala Ala Ala Ala Ala Lys Ala Ala Ala		
225	230	235
240		
Lys Phe Gly Ala Gly Ala Ala Gly Val Leu Pro Gly Val Gly Gly Ala		
245	250	255
Gly Val Pro Gly Val Pro Gly Ala Ile Pro Gly Ile Gly Gly Ile Ala		
260	265	270
Gly Val Gly Thr Pro Ala Ala Ala Ala Ala Ala Ala Ala Ala Lys		
275	280	285
Ala Ala Lys Tyr Gly Ala Ala Ala Gly Leu Val Pro Gly Gly Pro Gly		
290	295	300
Phe Gly Pro Gly Val Val Gly Val Pro Gly Ala Gly Val Pro Gly Val		
305	310	315
320		
Gly Val Pro Gly Ala Gly Ile Pro Val Val Pro Gly Ala Gly Ile Pro		
325	330	335
Gly Ala Ala Val Pro Gly Val Val Ser Pro Glu Ala Ala Ala Lys Ala		
340	345	350
Ala Ala Lys Ala Ala Lys Tyr Gly Ala Arg Pro Gly Val Gly Val Gly		
355	360	365
Gly Ile Pro Thr Tyr Gly Val Gly Ala Gly Gly Phe Pro Gly Phe Gly		
370	375	380
Val Gly Val Gly Gly Ile Pro Gly Val Ala Gly Val Pro Ser Val Gly		
385	390	395
400		
Gly Val Pro Gly Val Gly Gly Val Pro Gly Val Gly Ile Ser Pro Glu		
405	410	415

- 32 -

Ala Gln Ala Ala Ala Ala Lys Ala Ala Lys Tyr Gly Val Gly Thr
420 425 430

Pro Ala Ala Ala Ala Lys Ala Ala Lys Ala Ala Gln Phe Gly
435 440 445

Leu Val Pro Gly Val Gly Val Ala Pro Gly Val Gly Val Ala Pro Gly
450 455 460

Val Gly Val Ala Pro Gly Val Gly Leu Ala Pro Gly Val Gly Val Ala
465 470 475 480

Pro Gly Val Gly Val Ala Pro Gly Val Gly Val Ala Pro Gly Ile Gly
485 490 495

Pro Gly Gly Val Ala Ala Ala Lys Ser Ala Ala Lys Val Ala Ala
500 505 510

Lys Ala Gln Leu Arg Ala Ala Ala Gly Leu Gly Ala Gly Ile Pro Gly
515 520 525

Leu Gly Val Gly Val Gly Val Pro Gly Leu Gly Val Gly Ala Gly Val
530 535 540

Pro Gly Leu Gly Val Gly Ala Gly Val Pro Gly Phe Gly Ala Gly Ala
545 550 555 560

Asp Glu Gly Val Arg Arg Ser Leu Ser Pro Glu Leu Arg Glu Gly Asp
565 570 575

Pro Ser Ser Ser Gln His Leu Pro Ser Thr Pro Ser Ser Pro Arg Val
580 585 590

Pro Gly Ala Leu Ala Ala Ala Lys Ala Ala Lys Tyr Gly Ala Ala Val
595 600 605

Pro Gly Val Leu Gly Gly Leu Gly Ala Leu Gly Gly Val Gly Ile Pro
610 615 620

Gly Gly Val Val Gly Ala Gly Pro Ala Ala Ala Ala Ala Lys
625 630 635 640

Ala Ala Ala Lys Ala Ala Gln Phe Gly Leu Val Gly Ala Ala Gly Leu
645 650 655

- 33 -

Gly Gly Leu Gly Val Gly Gly Leu Gly Val Pro Gly Val Gly Leu
660 665 670

Gly Gly Ile Pro Pro Ala Ala Ala Ala Lys Ala Ala Lys Tyr Gly Ala
675 680 685

Ala Gly Leu Gly Gly Val Leu Gly Gly Ala Gly Gln Phe Pro Leu Gly
690 695 700

Gly Val Ala Ala Arg Pro Gly Phe Gly Leu Ser Pro Ile Phe Pro Gly
705 710 715 720

Gly Ala Cys Leu Gly Lys Ala Cys Gly Arg Lys Arg Lys
725 730

(2) INFORMATION FOR SEQ ID NO:3:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 698 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

Gly Gly Val Pro Gly Ala Ile Pro Gly Gly Val Pro Gly Gly Val Phe
1 5 10 15

Tyr Pro Gly Ala Gly Leu Gly Ala Leu Gly Gly Gly Ala Leu Gly Pro
20 25 30

Gly Gly Lys Pro Leu Lys Pro Val Pro Gly Gly Leu Ala Gly Ala Gly
35 40 45

Leu Gly Ala Gly Leu Gly Ala Phe Pro Ala Val Thr Phe Pro Gly Ala
50 55 60

Leu Val Pro Gly Gly Val Ala Asp Ala Ala Ala Ala Tyr Lys Ala Ala
65 70 75 80

Lys Ala Gly Ala Gly Leu Gly Gly Val Pro Gly Val Gly Gly Leu Gly

- 34 -

85

90

95

Val Ser Ala Gly Ala Val Val Pro Gln Pro Gly Ala Gly Val Lys Pro
100 105 110

Gly Lys Val Pro Gly Val Gly Leu Pro Gly Val Tyr Pro Gly Gly Val
115 120 125

Leu Pro Gly Ala Arg Phe Pro Gly Val Gly Val Leu Pro Gly Val Pro
130 135 140

Thr Gly Ala Gly Val Lys Pro Lys Ala Pro Gly Val Gly Ala Phe
145 150 155 160

Ala Gly Ile Pro Gly Val Gly Pro Phe Gly Gly Pro Gln Pro Gly Val
165 170 175

Pro Leu Gly Tyr Pro Ile Lys Ala Pro Lys Leu Pro Gly Gly Tyr Gly
180 185 190

Leu Pro Tyr Thr Thr Gly Lys Leu Pro Tyr Gly Tyr Gly Pro Gly Gly
195 200 205

Val Ala Gly Ala Ala Gly Lys Ala Gly Tyr Pro Thr Gly Thr Gly Val
210 215 220

Gly Pro Gln Ala Ala Ala Ala Ala Ala Lys Ala Ala Ala Lys Phe
225 230 235 240

Gly Ala Gly Ala Ala Gly Val Leu Pro Gly Val Gly Gly Ala Gly Val
245 250 255

Pro Gly Val Pro Gly Ala Ile Pro Gly Ile Gly Gly Ile Ala Gly Val
260 265 270

Gly Thr Pro Ala Ala Ala Ala Ala Ala Ala Ala Lys Ala Ala
275 280 285

Lys Tyr Gly Ala Ala Ala Gly Leu Val Pro Gly Gly Pro Gly Phe Gly
290 295 300

Pro Gly Val Val Gly Val Pro Gly Ala Gly Val Pro Gly Val Gly Val
305 310 315 320

Pro Gly Ala Gly Ile Pro Val Val Pro Gly Ala Gly Ile Pro Gly Ala
325 330 335

- 35 -

Ala Val Pro Gly Val Val Ser Pro Glu Ala Ala Ala Lys Ala Ala Ala
340 345 350

Lys Ala Ala Lys Tyr Gly Ala Arg Pro Gly Val Gly Val Gly Gly Ile
355 360 365

Pro Thr Tyr Gly Val Gly Ala Gly Gly Phe Pro Gly Phe Gly Val Gly
370 375 380

Val Gly Gly Ile Pro Gly Val Ala Gly Val Pro Ser Val Gly Gly Val
385 390 395 400

Pro Gly Val Gly Gly Val Pro Gly Val Gly Ile Ser Pro Glu Ala Gln
405 410 415

Ala Ala Ala Ala Ala Lys Ala Ala Lys Tyr Gly Val Gly Thr Pro Ala
420 425 430

Ala Ala Ala Ala Lys Ala Ala Ala Lys Ala Ala Gln Phe Gly Leu Val
435 440 445

Pro Gly Val Gly Val Ala Pro Gly Val Gly Val Ala Pro Gly Val Gly
450 455 460

Val Ala Pro Gly Val Gly Leu Ala Pro Gly Val Gly Val Ala Pro Gly
465 470 475 480

Val Gly Val Ala Pro Gly Val Gly Val Ala Pro Gly Ile Gly Pro Gly
485 490 495

Gly Val Ala Ala Ala Ala Lys Ser Ala Ala Lys Val Ala Ala Lys Ala
500 505 510

Gln Leu Arg Ala Ala Ala Gly Leu Gly Ala Gly Ile Pro Gly Leu Gly
515 520 525

Val Gly Val Gly Val Pro Gly Leu Gly Val Gly Ala Gly Val Pro Gly
530 535 540

Leu Gly Val Gly Ala Gly Val Pro Gly Phe Gly Ala Val Pro Gly Ala
545 550 555 560

Leu Ala Ala Ala Lys Ala Ala Lys Tyr Gly Ala Ala Val Pro Gly Val
565 570 575

- 36 -

Leu Gly Gly Leu Gly Ala Leu Gly Gly Val Gly Ile Pro Gly Gly Val
580 585 590

Val Gly Ala Gly Pro Ala Ala Ala Ala Ala Ala Lys Ala Ala Ala
595 600 605

Lys Ala Ala Gln Phe Gly Leu Val Gly Ala Ala Gly Leu Gly Gly Leu
610 615 620

Gly Val Gly Gly Leu Gly Val Pro Gly Val Gly Gly Leu Gly Gly Ile
625 630 635 640

Pro Pro Ala Ala Ala Ala Lys Ala Ala Lys Tyr Gly Ala Ala Gly Leu
645 650 655

Gly Gly Val Leu Gly Gly Ala Gly Gln Phe Pro Leu Gly Gly Val Ala
660 665 670

Ala Arg Pro Gly Phe Gly Leu Ser Pro Ile Phe Pro Gly Gly Ala Cys
675 680 685

Leu Gly Lys Ala Cys Gly Arg Lys Arg Lys
690 695

(2) INFORMATION FOR SEQ ID NO:4:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1983 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: YES

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

ATGGGTGGCG TTCCGGGTGC TGTTCCGGGT GGCGTTCCGG GTGGTGTATT CTACCCAGGC 60

GCGGGTTTCG GTGCTGTTCC GGGTGGCGTT GCAGACGCAG CTGCTGCGTA CAAAGCAGCA 120

- 37 -

AAGGCAGGTG CGGGTCTGGG CGGGTACCA GGTGTTGGCG GTCTGGGTGT ATCTGCTGGC	180
GCAGTTGTTTC CGCAGCCGGG TGCAGGTGTA AAACCGGGCA AAGTTCCAGG TGTTGGTCTG	240
CCGGGCGTAT ACCCGGGTTT CGGTGCTGTT CGGGCGCGC GTTTCCCAGG TGTTGGTGT	300
CTGCCGGCGG TTCCGACCGG TGCAGGTGTT AAACCGAAGG CACCAGGTGT AGGCAGCGCG	360
TTCGCGGGTA TCCCCGGGTGT TGGCCCGTTTC GGTGGTCCGC AGCCAGGCCT TCCGCTGGGT	420
TACCCGATCA AAGCGCCGAA CCTTCCAGGT GGCTACCGTC TGCCGTACAC CACCGGTAAA	480
CTGCCGTACG GCTACGGTCC GGGTGGCGTA GCAGGTGCTG CGGGTAAAGC AGGCTACCCA	540
ACCGGTACTG GTGTTGGTCC GCAGGTGCTG CGGGCAGCTG CGGCGAAGGC AGCAGCAAA	600
TTCCGGCGGG GTGCAGCGGG TTTCGGTGCT GTTCCGGCG TAGGTGGTGC TGGCGTTCCG	660
GGTGTTCAG GTGCGATCCC GGGCATCGGT GGTATCGCAG GCGTAGGTAC TCCGGCGGCC	720
GCTGCGGCTG CGGCAGCTGC GGCGAAAGCA GCTAAATACG GTGCGGCAGC AGGCCTGGTT	780
CCGGGTGGTC CAGGCTTCGG TCCGGTGTT GTAGGCGTTCCG CGGGTTTCGG TGCTGTTCCG	840
GGCGTAGGTG TTCCAGGTGC GGGCATCCCG GTTGTACCGG GTGCAGGTAT CCCGGCGCT	900
GCGGGTTTCG GTGCTGTATC CCCGGAAGCG GCAGCTAAGG CTGCTGCGAA AGCTGCGAAA	960
TACGGAGCTC GTCCGGCGT TGGTGTGTTGGT GGCATCCCGA CCTACGGTGT AGGTGCAGGC	1020
GGTTTCCAG GTTTCGGCGT TGGTGTGTTGGT GGCATCCCGG GTGTAGCTGG TGTTCCGTCT	1080
GTTGGTGGCG TACCGGGTGT TGGTGGCGTT CCAGGTGTAG GTATCTCCCC GGAAGCGCAG	1140
GCAGCTGCGG CAGCTAAAGC AGCGAAGTAC GGCGTTGGTA CTCCGGCGGC AGCAGCTGCT	1200
AAAGCAGCGG CTAAAGCAGC GCAGTTCGGA CTAGTTCCGG GCGTAGGTGT TGCGCCAGGT	1260
GTTGGCGTAG CACCGGGTGT TGGTGTGCT CCGGGCGTAG GTCTGGCACC GGGTGTGTC	1320
GTTGCACCAAG GTGTAGGTGT TGCGCCGGGC GTTGGTGTAG CACCGGGTAT CGGTCCGGGT	1380
GGCGTTGCGG CTGCTGCGAA ATCTGCTGCG AAGGTTGCTG CGAAAGCGCA GCTGCGTGCA	1440
GCAGCTGGTC TGGGTGCGGG CATCCCAGGT CTGGGTGTAG GTGTTGGTGT TCCGGGCCTG	1500

- 38 -

GGTGTAGGTG CAGGGGTACC GGGCCTGGGT GTTGGTGCAG GCGTTCCGGG TTTCGGTGCT	1560
GTTCCGGGCG CGCTGGCTGC TGCGAAAGCG GCGAAATACG GTGCTGTTCC GGGTGTACTG	1620
GGCGGTCTGG GTGCTCTGGG CGGTGTTGGT ATCCCCGGCG GTGTTGTAAGG TGCAGGCCA	1680
GCTGCAGCTG CTGCTGCGGC AAAGGCAGCG GCGAAAGCAG CTCAGTTCGG TCTGGTTGGT	1740
GCAGCAGGTC TGGGCGGTCT GGGTGTGGC GGTCTGGGTG TACCGGGCGT TGGTGGTCTG	1800
GGTGGCATCC CGCCGGCGGC GGCAGCTAAA GCGGCTAAAT ACGGTGCAGC AGGTCTGGGT	1860
GGCGTTCTGG GTGGTGCTGG TCAGTTCCCA CTGGGCGGTG TAGCGGCACG TCCGGGTTTC	1920
GGTCTGTCCC CGATCTTCCC AGGCGGTGCA TGCCCTGGGTA AAGCTTGCGG CCGTAAACGT	1980
AAA	1983

(2) INFORMATION FOR SEQ ID NO:5:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 660 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

Met Gly Gly Val Pro Gly Ala Val Pro Gly Gly Val Pro Gly Gly Val
1 5 10 15

Phe Tyr Pro Gly Ala Gly Phe Gly Ala Val Pro Gly Gly Val Ala Asp
20 25 30

Ala Ala Ala Ala Tyr Lys Ala Ala Lys Ala Gly Ala Gly Leu Gly Gly
35 40 45

Val Pro Gly Val Gly Gly Leu Gly Val Ser Ala Gly Ala Val Val Pro
50 55 60

- 39 -

Gln Pro Gly Ala Gly Val Lys Pro Gly Lys Val Pro Gly Val Gly Leu
65 70 75 80

Pro Gly Val Tyr Pro Gly Phe Gly Ala Val Pro Gly Ala Arg Phe Pro
85 90 95

Gly Val Gly Val Leu Pro Gly Val Pro Thr Gly Ala Gly Val Lys Pro
100 105 110

Lys Ala Pro Gly Val Gly Gly Ala Phe Ala Gly Ile Pro Gly Val Gly
115 120 125

Pro Phe Gly Gly Pro Gln Pro Gly Val Pro Leu Gly Tyr Pro Ile Lys
130 135 140

Ala Pro Lys Leu Pro Gly Gly Tyr Gly Leu Pro Tyr Thr Thr Gly Lys
145 150 155 160

Leu Pro Tyr Gly Tyr Gly Pro Gly Gly Val Ala Ala Ala Gly Lys Ala
165 170 175

Gly Tyr Pro Thr Gly Thr Gly Val Gly Pro Gln Ala Ala Ala Ala Ala
180 185 190

Ala Ala Lys Ala Ala Ala Lys Phe Gly Ala Gly Ala Ala Gly Phe Gly
195 200 205

Ala Val Pro Gly Val Gly Gly Ala Gly Val Pro Gly Val Pro Gly Ala
210 215 220

Ile Pro Gly Ile Gly Gly Ile Ala Gly Val Gly Thr Pro Ala Ala Ala
225 230 235 240

Ala Ala Ala Ala Ala Ala Lys Ala Ala Lys Tyr Gly Ala Ala Ala
245 250 255

Gly Leu Val Pro Gly Gly Pro Gly Phe Gly Pro Gly Val Val Gly Val
260 265 270

Pro Gly Phe Gly Ala Val Pro Gly Val Gly Val Pro Gly Ala Gly Ile
275 280 285

Pro Val Val Pro Gly Ala Gly Ile Pro Gly Ala Ala Gly Phe Gly Ala
290 295 300

Val Ser Pro Glu Ala Ala Ala Lys Ala Ala Ala Lys Ala Ala Lys Tyr

- 40 -

305 310 315 320

Gly Ala Arg Pro Gly Val Gly Val Gly Ile Pro Thr Tyr Gly Val
325 330 335

Gly Ala Gly Phe Phe Pro Gly Phe Gly Val Gly Val Gly Gly Ile Pro
340 345 350

Gly Val Ala Gly Val Pro Ser Val Gly Gly Val Pro Gly Val Gly Gly
355 360 365

Val Pro Gly Val Gly Ile Ser Pro Glu Ala Gln Ala Ala Ala Ala Ala
370 375 380

Lys Ala Ala Lys Tyr Gly Val Gly Thr Pro Ala Ala Ala Ala Ala Lys
385 390 395 400

Ala Ala Ala Lys Ala Ala Gln Phe Gly Leu Val Pro Gly Val Gly Val
405 410 415

Ala Pro Gly Val Gly Val Ala Pro Gly Val Gly Val Ala Pro Gly Val
420 425 430

Gly Leu Ala Pro Gly Val Gly Val Ala Pro Gly Val Gly Val Ala Pro
435 440 445

Gly Val Gly Val Ala Pro Gly Ile Gly Pro Gly Gly Val Ala Ala Ala
450 455 460

Ala Lys Ser Ala Ala Lys Val Ala Ala Lys Ala Gln Leu Arg Ala Ala
465 470 475 480

Ala Gly Leu Gly Ala Gly Ile Pro Gly Leu Gly Val Gly Val Gly Val
485 490 495

Pro Gly Leu Gly Val Gly Ala Gly Val Pro Gly Leu Gly Val Gly Ala
500 505 510

Gly Val Pro Gly Phe Gly Ala Val Pro Gly Ala Leu Ala Ala Ala Lys
515 520 525

Ala Ala Lys Tyr Gly Ala Val Pro Gly Val Leu Gly Gly Leu Gly Ala
530 535 540

Leu Gly Gly Val Gly Ile Pro Gly Gly Val Val Gly Ala Gly Pro Ala
545 550 555 560

- 41 -

Ala Ala Ala Ala Ala Lys Ala Ala Ala Lys Ala Ala Gln Phe Gly
 565 570 575

Leu Val Gly Ala Ala Gly Leu Gly Gly Leu Gly Val Gly Gly Leu Gly
 580 585 590

Val Pro Gly Val Gly Gly Leu Gly Gly Ile Pro Pro Ala Ala Ala Ala
 595 600 605

Lys Ala Ala Lys Tyr Gly Ala Ala Gly Leu Gly Gly Val Leu Gly Gly
 610 615 620

Ala Gly Gln Phe Pro Leu Gly Gly Val Ala Ala Arg Pro Gly Phe Gly
 625 630 635 640

Leu Ser Pro Ile Phe Pro Gly Gly Ala Cys Leu Gly Lys Ala Cys Gly
 645 650 655

Arg Lys Arg Lys
 660

(2) INFORMATION FOR SEQ ID NO:6:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 441 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: YES

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

TCCGCCATGG GAGGTGTTCC GGGCGCGCTG GCTGCTGCGA AAGCGGCGAA ATACGGTGCA 60

GCGGTTCCGG GTGTACTGGG CGGTCTGGGT GCTCTGGCG GTGTTGGTAT CCCGGGGCGGT 120

GTTGTAGGTG CAGGCCAGC TGCAGCTGCT GCTGCGCAA AGGCAGCGGC GAAAGCAGCT 180

- 42 -

CAGTTCGGTC TGGTTGGTGC AGCAGGTGTG GGCGGTCTGG GTGTTGGCGG TCTGGGTGTA	240
CCGGGCCGTTG GTGGTCTGGG TGGCATCCCG CCGGCAGCGG CAGCTAAAGC GGCTAAATAC	300
GGTGCAGCAG GTCTGGGTGG CGTTCTGGGT GGTGCTGGTC AGTTCCCAGT GGGCGGTGTA	360
GCGGCACGTC CGGGTTTCGG TCTGTCCCCG ATCTTCCCAG GCGGTGCATG CCTGGGTAAA	420
GCTTGCGGCC GTAAACGTAA A	441

(2) INFORMATION FOR SEQ ID NO:7:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 147 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

Ser Ala Met Gly Gly Val Pro Gly Ala Leu Ala Ala Ala Lys Ala Ala			
1	5	10	15

Lys Tyr Gly Ala Ala Val Pro Gly Val Leu Gly Gly Leu Gly Ala Leu		
20	25	30

Gly Gly Val Gly Ile Pro Gly Gly Val Val Gly Ala Gly Pro Ala Ala		
35	40	45

Ala Ala Ala Ala Ala Lys Ala Ala Ala Lys Ala Ala Gln Phe Gly Leu		
50	55	60

Val Gly Ala Ala Gly Leu Gly Gly Leu Gly Val Gly Gly Leu Gly Val			
65	70	75	80

Pro Gly Val Gly Gly Leu Gly Gly Ile Pro Pro Ala Ala Ala Lys		
85	90	95

Ala Ala Lys Tyr Gly Ala Ala Gly Leu Gly Gly Val Leu Gly Gly Ala		
100	105	110

- 43 -

Gly Gln Phe Pro Leu Gly Gly Val Ala Ala Arg Pro Gly Phe Gly Leu
 115 120 125

Ser Pro Ile Phe Pro Gly Gly Ala Cys Leu Gly Lys Ala Cys Gly Arg
 130 135 140

Lys Arg Lys
 145

(2) INFORMATION FOR SEQ ID NO:8:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 600 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: YES

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

TCCGCCATGG GAGCTCTGGT AGGCCTGGC GTACCGGGCC TGGGTGTTGG TGCAGGCCGT	60
CCGGGTTTCG GTGCTGGCGC GGACGAAGGT GTACGTCGTT CCCTGTCTCC AGAACTGCGT	120
GAAGGTGACC CGTCCTCTTC CCAGCACCTG CCGTCTACCC CGTCCTCTCC ACGTGTTCCG	180
GGCGCGCTGG CTGCTGCGAA AGCGGCGAAA TACGGTGCAG CGGTTCCGGG TGTACTGGC	240
GGTCTGGTG CTCTGGCGG TGTTGGTATC CCGGGCGGTG TTGTAGGTGC AGGCCAGCT	300
GCAGCTGCTG CTGCGGCAAA GGCAGCGGCG AAAGCAGCTC AGTTCGGTCT GGTTGGTGCA	360
GCAGGTCTGG GCGGTCTGGG TGTTGGCGGT CTGGGTGTAC CGGGCGTTGG TGGTCTGGGT	420
GGCATCCCGC CGGCGGCGGC AGCTAAAGCG GCTAAATACG GTGCAGCAGG TCTGGGTGGC	480
GTTCTGGGTG GTGCTGGTCA GTTCCCAC TG GCGGGTAG CGGCACGTCC GGGTTTCGGT	540

- 44 -

CTGTCCCCGA TCTTCCCAGG CGGTGCATGC CTGGGTAAAG CTTGCGGCCG TAAACGTAAA 600

(2) INFORMATION FOR SEQ ID NO:9:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 200 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

Ser Ala Met Gly Ala Leu Val Gly Leu Gly Val Pro Gly Leu Gly Val
1 5 10 15

Gly Ala Gly Val Pro Gly Phe Gly Ala Gly Ala Asp Glu Gly Val Arg
20 25 30

Arg Ser Leu Ser Pro Glu Leu Arg Glu Gly Asp Pro Ser Ser Ser Gln
35 40 45

His Leu Pro Ser Thr Pro Ser Ser Pro Arg Val Pro Gly Ala Leu Ala
50 55 60

Ala Ala Lys Ala Ala Lys Tyr Gly Ala Ala Val Pro Gly Val Leu Gly
65 70 75 80

Gly Leu Gly Ala Leu Gly Gly Val Gly Ile Pro Gly Gly Val Val Gly
85 90 95

Ala Gly Pro Ala Ala Ala Ala Ala Lys Ala Ala Lys Ala
100 105 110

Ala Gln Phe Gly Leu Val Gly Ala Ala Gly Leu Gly Gly Leu Gly Val
115 120 125

Gly Gly Leu Gly Val Pro Gly Val Gly Gly Leu Gly Gly Ile Pro Pro
130 135 140

- 45 -

Ala Ala Ala Ala Lys Ala Ala Lys Tyr Gly Ala Ala Gly Leu Gly Gly
145 150 155 160

Val Leu Gly Gly Ala Gly Gln Phe Pro Leu Gly Gly Val Ala Ala Arg
165 170 175

Pro Gly Phe Gly Leu Ser Pro Ile Phe Pro Gly Gly Ala Cys Leu Gly
180 185 190

Lys Ala Cys Gly Arg Lys Arg Lys
195 200

(2) INFORMATION FOR SEQ ID NO:10:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 60 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

Gly Ile Pro Pro Ala Ala Ala Lys Ala Ala Lys Tyr Gly Ala Ala
1 5 10 15

Gly Leu Gly Gly Val Leu Gly Gly Ala Gly Gln Phe Pro Leu Gly Gly
20 25 30

Val Ala Ala Arg Pro Gly Phe Gly Leu Ser Pro Ile Phe Pro Gly Gly
35 40 45

Ala Cys Leu Gly Lys Ala Cys Gly Arg Lys Arg Lys
50 55 60

(2) INFORMATION FOR SEQ ID NO:11:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 47 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: linear

- 46 -

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

Gly Ala Ala Gly Leu Gly Gly Val Leu Gly Gly Ala Gly Gln Phe Pro
1 5 10 15

Leu Gly Gly Val Ala Ala Arg Pro Gly Phe Gly Leu Ser Pro Ile Phe
20 25 30

Pro Gly Gly Ala Cys Leu Gly Lys Ala Cys Gly Arg Lys Arg Lys
35 40 45

(2) INFORMATION FOR SEQ ID NO:12:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 34 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

Gly Ala Asp Glu Gly Val Arg Arg Ser Leu Ser Pro Glu Leu Arg Glu
1 5 10 15

Gly Asp Pro Ser Ser Ser Gln His Leu Pro Ser Thr Pro Ser Ser Pro
20 25 30

Arg Val

(2) INFORMATION FOR SEQ ID NO:13:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 34 amino acids
- (B) TYPE: amino acid

- 47 -

- (C) STRANDEDNESS:
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

Gly Ala Asp Glu Gly Val Arg Arg Ser Leu Ser Pro Glu Leu Arg Glu
1 5 10 15

Gly Asp Pro Ser Ser Ser Gln His Leu Pro Ser Thr Pro Ser Ser Pro
20 25 30

Arg Phe

(2) INFORMATION FOR SEQ ID NO:14:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 216 amino acids
 - (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

Ala Ala Ala Gly Leu Gly Ala Gly Ile Pro Gly Leu Gly Val Gly Val
1 5 10 15

Gly Val Pro Gly Leu Gly Val Gly Ala Gly Val Pro Gly Leu Gly Val
20 25 30

Gly Ala Gly Val Pro Gly Phe Gly Ala Gly Ala Asp Glu Gly Val Arg
35 40 45

Arg Ser Leu Ser Pro Glu Leu Arg Glu Gly Asp Pro Ser Ser Ser Gln
50 55 60

- 48 -

His Leu Pro Ser Thr Pro Ser Ser Pro Arg Val Pro Gly Ala Leu Ala
65 70 75 80

Ala Ala Lys Ala Ala Lys Tyr Gly Ala Ala Val Pro Gly Val Leu Gly
85 90 95

Gly Leu Gly Ala Leu Gly Gly Val Gly Ile Pro Gly Gly Val Val Gly
100 105 110

Ala Gly Pro Ala Ala Ala Ala Ala Ala Lys Ala Ala Ala Lys Ala
115 120 125

Ala Gln Phe Gly Leu Val Gly Ala Ala Gly Leu Gly Gly Leu Gly Val
130 135 140

Gly Gly Leu Gly Val Pro Gly Val Gly Gly Leu Gly Gly Ile Pro Pro
145 150 155 160

Ala Ala Ala Ala Lys Ala Ala Lys Tyr Gly Ala Ala Gly Leu Gly Gly
165 170 175

Val Leu Gly Gly Ala Gly Gln Phe Pro Leu Gly Gly Val Ala Ala Arg
180 185 190

Pro Gly Phe Gly Leu Ser Pro Ile Phe Pro Gly Gly Ala Cys Leu Gly
195 200 205

Lys Ala Cys Gly Arg Lys Arg Lys
210 215

(2) INFORMATION FOR SEQ ID NO:15:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 183 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

Ala Ala Ala Gly Leu Gly Ala Gly Ile Pro Gly Leu Gly Val Gly Val

- 49 -

1 5 10 15

Gly Val Pro Gly Leu Gly Val Gly Ala Gly Val Pro Gly Leu Gly Val
20 25 30

Gly Ala Gly Val Pro Gly Phe Gly Ala Val Pro Gly Ala Leu Ala Ala
35 40 45

Ala Lys Ala Ala Lys Tyr Gly Ala Ala Val Pro Gly Val Leu Gly Gly
50 55 60

Leu Gly Ala Leu Gly Gly Val Gly Ile Pro Gly Gly Val Val Gly Ala
65 70 75 80

Gly Pro Ala Ala Ala Ala Ala Ala Lys Ala Ala Ala Lys Ala Ala
85 90 95

Gln Phe Gly Leu Val Gly Ala Ala Gly Leu Gly Gly Leu Gly Val Gly
100 105 110

Gly Leu Gly Val Pro Gly Val Gly Gly Leu Gly Gly Ile Pro Pro Ala
115 120 125

Ala Ala Ala Lys Ala Ala Lys Tyr Gly Ala Ala Gly Leu Gly Gly Val
130 135 140

Leu Gly Gly Ala Gly Gln Phe Pro Leu Gly Gly Val Ala Ala Arg Pro
145 150 155 160

Gly Phe Gly Leu Ser Pro Ile Phe Pro Gly Gly Ala Cys Leu Gly Lys
165 170 175

Ala Cys Gly Arg Lys Arg Lys
180

- 50 -

THE CLAIMS

1. A human tropoelastin derivative or an amino acid sequence variant thereof, wherein the derivative or variant has elastin-like properties.
2. A human tropoelastin derivative or an amino acid sequence variant thereof, wherein the derivative or variant has macro-molecular binding properties.
- 10 3. A derivative or variant thereof according to claim 2 wherein the macro-molecular binding properties include the ability to bind glycosyaminoglycans.
- 15 4. A human tropoelastin derivative or an amino acid sequence variant thereof, wherein the derivative or variant has elastin-like properties and macro-molecular binding properties.
- 20 5. A polynucleotide encoding a derivative or variant thereof of any one of claims 1 to 4.
6. A tropoelastin derivative which has the amino acid sequence of SHELΔmodified.
- 25 7. A tropoelastin derivative which has the amino acid sequence shown in SEQ ID NO: 5.
8. A polynucleotide encoding a tropoelastin derivative according to claims 6 or 7.
- 30 9. A polynucleotide which has the nucleotide sequence shown in SEQ ID NO: 4.

SERIALIZED SHEET
AUSTRALIA

- 51 -

10. A synthetic polynucleotide encoding a tropoelastin derivative which has the amino acid sequence of SHELδ26A.

5 11. A synthetic polynucleotide which has the nucleotide sequence of from nucleotide position 1 to 1676 contiguous with the sequence of from nucleotide position 1775 to 2210 of SEQ ID NO: 1.

10 12. A tropoelastin derivative which has the amino acid sequence of SHELgamma.

13. A tropoelastin derivative which has the amino acid sequence shown in SEQ ID NO: 9.

15 14. A polynucleotide encoding a tropoelastin derivative according to claim 12 or 13.

15 15. A polynucleotide which has the nucleotide sequence shown in SEQ ID NO: 8.

16. A tropoelastin derivative which has the amino acid sequence of SHELgamma excluding exon 26A.

25 17. A tropoelastin derivative which has the amino acid sequence shown in SEQ ID NO: 7.

18. A polynucleotide encoding a tropoelastin derivative according to claim 16 or 17.

30 19. A polynucleotide which has the nucleotide sequence shown in SEQ ID NO: 6.

LM 00 SHEET
100/100

- 52 -

20. A tropoelastin derivative which has the amino acid sequence of SHEL31-36.

21. A tropoelastin derivative which has the amino acid sequence shown in SEQ ID NO: 10.

22. A polynucleotide encoding a tropoelastin derivative according to claim 20 or 21.

10 23. A polynucleotide which has the nucleotide sequence shown in nucleotide position 2022 to 2210 of SEQ ID NO: 1.

15 24. A tropoelastin derivative which has the amino acid sequence of SHEL32-36.

25. A tropoelastin derivative which has the amino acid sequence shown in SEQ ID NO: 11.

20 26. A polynucleotide encoding a tropoelastin derivative according to claim 23 or 24.

25 27. A polynucleotide which has the nucleotide sequence shown in nucleotide position 2061 to 2210 of SEQ ID NO: 1.

28. A tropoelastin derivative which has the amino acid sequence of peptide 26A.

30 29. A tropoelastin derivative which has the amino acid sequence shown in SEQ ID NO: 12 or SEQ ID NO: 13.

30. A polynucleotide encoding a tropoelastin derivative according to claim 28 or 29.

- 53 -

31. A polynucleotide which has the nucleotide sequence shown in nucleotide position 1667 to 1774 of SEQ ID NO: 1.

5 32. A tropoelastin derivative which has the amino acid sequence of SHEL26-36.

10 33. A tropoelastin derivative which has the amino acid sequence shown in SEQ ID NO: 14.

34. A polynucleotide encoding a tropoelastin derivative according to claim 32 or 33.

15 35. A polynucleotide which has the nucleotide sequence shown in nucleotide position 1554 to 2210 of SEQ ID NO: 1.

20 36. A tropoelastin derivative which has the amino acid sequence of SHEL26-36 excluding exon 26A.

37. A tropoelastin derivative which has the amino acid sequence shown in SEQ ID NO: 15.

25 38. A polynucleotide encoding a tropoelastin derivative according to claim 36 or 37.

39. A polynucleotide which has the nucleotide sequence shown in nucleotide position 1554 to 1676 contiguous with the sequence of from nucleotide position 30 1776 to 2210 of SEQ ID NO: 1.

40. A vector comprising a polynucleotide according to any one of claims 5, 8, 9, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31, 34, 35, 38, 39, or a synthetic

AMERICAN SHEET
8-17-1999

- 54 -

polynucleotide according to claim 10 or 11.

41. The vector according to claim 40 wherein
the polynucleotide or synthetic polynucleotide is
5 operatively linked to a promoter to enhancer regulatory
sequence.

42. The vector according to claim 40 or 41
wherein the polynucleotide or synthetic polynucleotide is
10 operatively linked to a nucleotide sequence, the nucleotide
sequence encoding a further amino acid sequence.

43. A cell containing a vector according to any
one of claims 40 to 42.

15

44. A method for producing a derivative of
tropoelastin, the method comprising:

20 (a) providing a vector according to any one
of claims 40 to 42;
(b) introducing the vector into a cell;
(c) maintaining the cell in conditions
suitable for expression of the vector;
and
25 (d) isolating the tropoelastin derivative.

45. A tropoelastin derivative produced by the
method of claim 44.

30 46. A transgenic non-human animal containing a
vector according to any one of claims 40 to 42, or a
polynucleotide according to any one of claims 5, 8, 9, 14,
15, 18, 19, 22, 23, 26, 27, 30, 31, 34, 35, 38, 39, or a
synthetic polynucleotide according to claim 10 or 11.

- 55 -

47. A tropoelastin derivative produced by a transgenic animal according to claim 46.

5 48. A method for producing a tropoelastin derivative according to any one of claims 1-4, 6, 7, 12, 13, 16, 17, 20, 21, 24, 25, 28, 29, 32, 33, 36 or 37, the method comprising producing the tropoelastin derivative by solid-phase peptide synthesis.

10

49. A tropoelastin derivative produced by the method of claim 48.

15 50. A formulation comprising at least one tropoelastin derivative according to any one of claims 1-4, 6, 7, 12, 13, 16, 17, 20, 21, 24, 25, 28, 29, 32, 33, 36, 37, 45 or 47, together with a pharmaceutically acceptable carrier or diluent.

20 51. An expression product comprising a tropoelastin derivative according to any one of claims 1-4, 6, 7, 12, 13, 16, 17, 20, 21, 24, 25, 28, 29, 32, 33, 36, 37, 45 or 47, and a further amino acid sequence.

25 52. An expression product according to claim 51 wherein the tropoelastin derivative has the amino acid sequence of peptide 26A.

30 53. A polynucleotide encoding an expression product according to claims 51 or 52.

54. A vector comprising the polynucleotide according to claim 53.

- 56 -

55. A cell containing a vector according to
claim 54.

56. A method for producing an expression
product according to claim 51 or 52, the method comprising:

(a) providing a vector according to claim
54;

(b) introducing the vector into a cell;

(c) maintaining the cell in conditions
suitable for expression of the vector;
and

(d) isolating the expression product.

57. An expression product produced by the
method of claim 56.

58. A transgenic non-human animal containing a
vector according to claim 54 or a polynucleotide according
to claim 53.

59. An expression product produced by a
transgenic animal according to claim 58.

60. A formulation comprising at least one
expression product according to any of claims 51, 52, 57 or
59, together with a pharmaceutically acceptable carrier or
diluent.

61. A hybrid molecule comprising a biological
polymer wherein the polymer is linked to a tropoelastin
derivative comprising the amino acid sequence of peptide
26A.

62. A hybrid molecule according to claim 61

- 57 -

wherein the biological polymer is a protein.

63. A hybrid molecule according to claim 62
wherein the protein is selected from the group consisting
5 of cytokines, growth factors and antibodies.

64. A hybrid molecule according to claim 61
wherein the biological polymer is selected from the group
consisting of lipids, sugars and nucleic acids.

10

65. A polynucleotide sequence encoding a hybrid
molecule according to claim 62.

15 66. A vector comprising a polynucleotide
sequence according to claim 65.

67. A cell containing a vector according to
claim 66.

20 68. A method for producing a hybrid molecule
according to claim 62, the method comprising:

(a) providing a vector according to claim
66;

(b) introducing the vector into a cell;

25 (c) maintaining the cell in conditions
suitable for expression of the vector;
and

(d) isolating the hybrid molecule.

30 69. A hybrid molecule produced by the method of
claim 68.

70. A transgenic non-human animal containing a
vector according to claim 66 or a polynucleotide according

- 58 -

to claim 65.

71. A hybrid molecule produced by a transgenic animal according to claim 70.

5

72. A hybrid molecule comprising a synthetic polymer linked to peptide 26A.

73. A formulation comprising at least one hybrid molecule according to any of claims 61-63, 69, 71 and 72, together with a pharmaceutically acceptable carrier or diluent.

74. A cross linked complex, the complex comprising at least one of the following:

- (i) at least one derivative according to any one of claims 1-4, 6, 7, 12, 13, 16, 17, 20, 21, 24, 25, 28, 29, 32, 33, 36, 37, 45 or 47;
- (ii) at least expression product according to any one of claims 51, 52, 56 or 59; and
- (iii) least one hybrid molecule according to any one of claims 61-63, 69, 71 or 72.

75. An implant, the implant comprising at least one of the following:

- (i) at least one derivative according to any one of claims 1-4, 6, 7, 12, 13, 16, 17, 20, 21, 24, 25, 28, 29, 32, 33, 36, 37, 45 or 47;
- (ii) at least one expression product according to any one of claims 51,

- 59 -

52, 56 or 59; and
(iii) at least one hybrid molecule
according to any one of claims 61-
63, 69, 71 or 72.

5

76. A method of imparting glycosaminoglycan binding activity to a biological polymer comprising the step of linking a tropoelastin derivative comprising the amino acid sequence of peptide 26A to the biological 10 polymer.

77. A method of deleting glycosaminoglycan binding activity from a biological polymer comprising the step of deleting a tropoelastin derivative comprising the 15 amino acid sequence of peptide 26A from the biological polymer.

78 The method of claim 64 or 65 wherein the biological polymer is a protein.

20

79. A formulation comprising a tropoelastin derivative and a synthetic or biological polymer.

1 / 19

1 GATCCATGGGTGGCGTTCCGGGTGCTATCCCGGGTGGCGTTCCGGGTGGTATTCACC 60
 GTACCCACCGCAAGGCCAACGATAGGGCCCACCGCAAGGCCACCATAGATGG
 S M G G V P G A I P G G V P G G V F Y P

61 CAGGCAGGGTCTGGGTGCAGTGGCGGTGGTGCCTGGGCCGGTGGTAACCGCTGA 120
 GTCCCGCCCAGACCCACGTGACCCGCCACCGCAACCGGGCCACCATGGCGACT
 G A G L G A L G G G A L G P G G K P L K

121 AACCGGTTCCAGGCAGGTCTGGCAGGTGCTGGTCTGGGTGCAGGTCTGGGCCGGTCCC GG 180
 TTGGCCAAGGTCCGCCAGACCGTCCACGACCCACGTCCAGACCCGCCAAGGGCC
 P V P G G L A G A G L G A G L G A F P A

181 CGGTTACCTTCCCGGGTGCCTCTGGTCCGGGTGGCTTGCAAGACGCAGCTGCTGCGTACA 240
 GCCAATGGAAGGCCACGAGACCAAGGCCACCGCAACGTCTGCGTCAACGGACGCATGT
 V T F P G A L V P G G V A D A A A A A Y K

241 AAGCGGCAAAGGCAGGTGCAGGTCTGGCGGGGTACCGGTGTTGGCGGTCTGGGTGAT 300
 TTCCGGTTCCGCCACGCCAGACCCGCCACATGGTCCACACCGCCAGACCCACATA
 A A K A G A G L G G V P G V G G L G V S

301 CTGCTGGCGCAGTTGTTCCGCAGCCGGTGCAGGTGTAACCGGGCAAGTCCAGGTG 360
 GACGACCCGGTCAACAGGGTCCGGCCACGTCCACATTGGCCCGTTCAAGGTCCAC
 A G A V V P Q P G A G V K P G K V P G V

361 TTGGTCTGCCGGGCGTATACCCGGGTGGTGTCTGCCGGGCGCGTTCCAGGTGTTG 420
 AACAGACGCCGCATATGGGCCACCAAGACGGCCCGCGCAAGGTCCACAC
 G L P G V Y P G G V L P G A R F P G V G

Figure 1(1)

2/19

421 GTGTACTGCCGGGCGTTCCGACCGGTGCAGGTGTTAACCGAAGGCACCAGGTGTAGGCG
CACATGACGGCCCGCAAGGCTGGCCACGTCCACATTGGCTTCCGTGGTCCACATCCGC 480
V L P G V P T G A G V K P K A P G V G G

481 GCGCGTTCCGGGTATCCCGGGTGTGGCCCGTTCCGGTGGTCCGCAGCCAGGCAGTCGC
CGCGCAAGGCCCATAGGGCCCACAACCGGCAAGCCACCAGGCAGTCGGTCCGCAGGCG 540
A F A G I P G V G P F G G P Q P G V P L

541 TGGGTTACCCGATCAAAGCGCCGAAGCTCCAGGTGGCTACGGTCTGCCGTACACCACCG
ACCCAAATGGGCTAGTTCCGGCTTCGAAGGTCCACCGATGCCAGACGGCATGTGGTGGC 600
G Y P I K A P K L P G G Y G L P Y T T G

601 GTAAACTGCCGTACGGCTACGGTCCGGGTGGCGTAGCAGGTGCTGCCGGTAAAGCAGGCT
CATTTGACGGCATGCCGTGCCAGGCCACCGATCGTCCACGACGCCATTCTCGTCCGA 660
K L P Y G Y G P G G V A G A A G K A G Y

661 ACCCAACCGGTACTGGTGGTCCCGCAGGCTGCTGCCGGCAGCTGCCGGCAAGGCAGCAG
TGGGTTGGCCATGACCACACCAGGCGTCCGACGACGCCGTGACGCCCTCCGTGTC 720
P T G T G V G P Q A A A A A A A A K A A A

721 CAAAATCCGGCGGGGTGCAGCGGGTGTCTGCCGGCGTAGGTGGTGTGGCGTCCGG
GTTTAAGCCCGCCCACGTCCGCCACAAGACGCCGCAATCCACCAAGACCGCAAGGCC 780
K F G A G A A G V L P G V G G A G V P G

781 GTGTTCCAGGTGCGATCCCGGGCATCGGTGGTATCGCAGGCAGGTACTCCGGCGGCC
CACAAAGGTCCACGCTAGGGCCCGTAGCCACCATAGCGTCCGATCCATGAGGCCGCC 840
V P G A I P G I G G I A G V G T P A A A

841 CTGGGGCTGCCAGCTGCCGGCAAGCAGCTAAATACGGTGCAGGCAGCAGGCCCTGGTTC
GACGCCGACGCCGTGACGCCGCTTCGTGATTATGCCACGCCGTGTCGGACCAAG 900
A A A A A A A K A A K Y G A A A G L V P

Figure 1(2)

3 / 19

901 CGGGTGGTCCAGGCTTCGGTCCGGGTGGTAGGCCTTCCGGGTGCTGGTGTCCGGCG 960
 GCCCACCAAGGTCGAAGCAGGCCAACATCCCAAGGCCACGACCACAGGCC

G G P G F G P G V V G V P G A G V P G V

961 TAGGTGTTCCAGGTGCGGGCATCCGGTGTACCGGGTGCAAGGTATCCGGCGCTGG 1020
 ATCCACAAGGTCACGCCAGTGGCAACATGGCCACGTCATAGGGCCGACGCC

G V P G A G I P V V P G A G I P G A A V

1021 TTCCAGGTGTTGATCCCCGGAAGCGGCAGCTAAGGCTGCTGGAAAGCTGCGAAATACG 1080
 AAGGTCCACACATAGGGCCTTCGCCGATTCGACGACGCTTCGACGCTTATGC

P G V V S P E A A A K A A A K A A K Y G

1081 GAGCTCGTCCGGCGTTGGTGGCATCCGACCTACGGTGTAGGTGCAAGGGTT 1140
 CTCGAGCAGGCCGCAACCACAACCACCGTAGGGCTGGATGCCACATCACGTCGCCAA

A R P G V G V G G I P T Y G V G A G G F

1141 TCCCAGGTTCCGGCGTTGGTGGCATCCGGGTGTAGCTGGTGTCCGTCTGTG 1200
 AGGGTCCAAAGCCGCAACCACAACCACCGTAGGGCCACATCGACCACAAGGCAGAAC

P G F G V G V G G I P G V A G V P S V G

1201 GTGGCGTACCGGGTGTGGTGGCGTCCAGGTGTAGGTATCTCCCCGGAAGCGCAGGCAG 1260
 CACCGCATGGCCACACCAACCGCAAGGTCCACATCCATAGAGGGCCTCGCGTC

G V P G V G G V P G V G I S P E A Q A A

1261 CTGCGGCAGCTAAAGCAGCGAAGTACGGCGTGGTACTCCGGCGCAGCAGCTGCTAAAG 1320
 GACGCCGTGATTCGTCGCTTCATGCCAACCATGAGGCCGCGTCGACGATTTC

A A A K A A K Y G V G T P A A A A A K A

1321 CAGCGGCATAAGCAGCGCAGTCCGGACTAGTCCGGCGTAGGTGTTGCCAGGTGTTG 1380
 GTCGCCGATTCGTCGCGTCAAGCCTGATCAAGGCCGACATCCACACAGCGGTCCACAAAC

A A K A A Q F G L V P G V G V A P G V G

Figure 1(3)

4 / 19

1381 GCGTAGCACCGGGTGTGGTGTGCTCCGGGCGTAGGTCTGGCACC GGTTGGCGTTG 1440
 CGCATCGTGGCCCACAAACCAACGAGGCCGCATCCAGACCGTGGCCCACAACCGCAAC

V A P G V G V A P G V G L A P G V G V A

1441 CACCAAGGTGTAGGTGTGGC GCCGGCGTTGGTGTAGCACC GGTA TCGGTCCGGGTGGCG 1500
 GTGGTCCACATCCACAAACGCGGCCGCACCATCGTGGCCATAGCCAGGCCACCGC

P G V G V A P G V G V A P G I G P G G V

1501 TTGCGGCTGCTGCGAAATCTGCTGCGAAGGTTGCTGCGAAAGCGCAGCTCGCTGCAGCAG
 AACGCCGACGACGCTTAGACGACGCTTCCAACGACGCTTCGCGTCGACGACGTGTC 1560

A A A A K S A A K V A A K A Q L R A A A

1561 CTGGTCTGGGTGCGGGCATCCCAGGTCTGGGTGTAGGTGTTGGTGTTCGGGCTGGTG 1620
 GACCAGACCCACGCCGTAGGGTCCAGACCCACATCCACAAACCACAAGGCCGGACCCAC

G L G A G I P G L G V G V G V P G L G V

1621 TAGGTGCAGGGGTACCGGGCCTGGGTGTGGTGCAGGCGTCCGGGTTCTGGTGCTGGCG 1680
 ATCCACGTCCCCATGGCCGGACCCACAACCACGTCCGCAAGGCCAACGACCGC

G A G V P G L G V G A G V P G F G A G A

1681 CGGACGAAGGTGTACGTCGTTCCCTGTCTCCAGAACTGCGTGAAGGTGACCCGTCTCTT 1740
 GCCTGCTTCACATGCAGCAAGGGACAGAGGTCTTGACCGACTTCCACTGGCAGGAGAA

D E G V R R S L S P E L R E G D P S S S

1741 CCCAGCACCTGCCGTCTACCCCGTCTCTCCACGTGTTCCGGGCGCGCTGGCTGCGA 1800
 GGGTCGTGGACGGCAGATGGGGCAGGAGAGGTGCACAAGGCCGCACGACCGACGCT

Q H L P S T P S S P R V P G A L A A A K

1801 AAGCGGGCAAATAACGGTGCAGCGTTCCGGGTGTACTGGGCGGTCTGGGTGCTCTGGCG 1860
 TTCGCCGCTTATGCCACGTGCCAAGGCCACATGACCCGCCAGACCCACGAGACCCGC

A A K Y G A A V P G V L G G L G A L G G

Figure 1(4)

5 / 19

1861 GTGTTGGTATCCCAGGGCGGTGTGTAGGGTCAGGCCAGCTGCAGCTGCTGCTGCGGCAA 1920
 CACAACCATAGGGCCGCCAACACATCCACGTCCGGTCACTGACGACGACGCCGTT

V G I P G G V V G A G P A A A A A A A K

1921 AGGCAGCGGCAGAAAGCAGCTCAGTTGGTCTGGTTGGTCAAGCAGGTCTGGGCGGTCTGG
 TCCGTGGCGCTTCGTCAAGCCAGACCAACACGTGTCCAGACCCGCCAGACC 1980

A A A K A A Q F G L V G A A G L G G L G

1981 GTGTTGGCGGTCTGGGTGTACCGGGCGTTGGTCTGGGTGGCATCCGCCGGCGGCGG 2040
 CACAACCGCCAGACCCACATGGCCCGCAACCACCAAGACCCACCGTAGGGCGGCCGCC

V G G L G V P G V G G L G G I P P A A A

2041 CAGCTAAAGCGGCTAAATACGGTGCAGCAGGTCTGGTGGCGTTCTGGGTGGTGTGGTC 2100
 GTCGATTTCGCCGATTATGCCACGTGTCCAGACCCACCGCAAGACCCACACGACCAAG

A K A A K Y G A A G L G G V L G G A G Q

2101 AGTCCCCACTGGCGGTGTAGCGGCACGTCCCCGGTTTGGTCTGTCCCCGATCTTCCCAG 2160
 TCAAGGGTGACCCGCCACATGCCGTGCAGGCCAAAGCCAGACAGGGCTAGAAGGGTC

F P L G G V A A R P G F G L S P I F P G

2161 GCGGTGCATGCCCTGGGTAAAGCTTGGCGGTAAACGTAATAATGATAG 2210
 CGCCACGTACGGACCCATTGCAACGCCGGCATTTGCATTATTACTATCCTAG
 G A C L G K A C G R K R K * * *

Figure 1(5)

6/19

1 GGVPGAIPGGVPGGVFYPGAGL GALGGCALGGKPLKPVPGGLAGAGLG 50
 1 GGVPGAIPGGVPGGVFYPGAGL GALGGCALGGKPLKPVPGGLAGAGLG 50
 51 AGLGAFPAVTFPGALVPGGVA DAAAAYKA AKAGAGLGGVPGVGLGVSAG 100
 51 AGLGAFPAVTFPGALVPGGVA DAAAAYKA AKAGAGLGGVPGVGLGVSAG 100
 101 AVVPQPGAGVKPGKVPGVGLPGVYPPGGVLPGARFPGVGVLPGVPTGAGVK 150
 101 AVVPQPGAGVKPGKVPGVGLPGVYPPGGVLPGARFPGVGVLPGVPTGAGVK 150
 151 PKAPGVGGAFAGIPGVGPFFGGPQPQGVPLGYPIKAPKLPGGYGLPYTTGKL 200
 151 PKAPGVGGAFAGIPGVGPFFGGPQPQGVPLGYPIKAPKLPGGYGLPYTTGKL 200
 201 PYGYGP GG VAGAAGKAGYPTGTGVGPQAAAAAAAKAAAKFGAGAAAGVLPG 250
 201 PYGYGP GG VAGAAGKAGYPTGTGVGPQAAAAAAAKAAAKFGAGAAAGVLPG 250
 251 VGGAGVPGVPGAI PGIGGIAGVGT PAAAAAAAKAAKYGAAGLVPGG 300
 251 VGGAGVPGVPGAI PGIGGIAGVGT PAAAAAAAKAAKYGAAGLVPGG 300
 301 PGFPGP GVVGVPGAGVPGVGVPGAGIPVVPGAGIPGIAAVPGVVSPEAAAKA 350
 301 PGFPGP GVVGVPGAGVPGVGVPGAGIPVVPGAGIPGIAAVPGVVSPEAAAKA 350
 351 AAKAAKYGARPGVGVGGIPTYGVGAGGFPGFVGVGJIPGVAGVPSVGGV 400
 351 AAKAAKYGARPGVGVGGIPTYGVGAGGFPGFVGVGJIPGVAGVPSVGGV 400
 401 PGVGGVPVGVISPEAQAAA AAKAAKYGVGT PAAAAAAKA AAQFGLVPG 450
 401 PGVGGVPVGVISPEAQAAA AAKAAKYGVGT PAAAAAAKA AAQFGLVPG 450
 451 VGVAPGVGVAPGVGVAPGVGLAPGVGVAPGVGVAPGVGVAPGVGVAPGIGPGGVAA 500
 451 VGVAPGVGVAPGVGVAPGVGLAPGVGVAPGVGVAPGVGVAPGVGVAPGIGPGGVAA 500
 501 AAKSAAKVAAKAQ LRAAAGL GAGIPGLGVGVGVPGVGLGVGAGVPGVGLGVGAG 550
 501 AAKSAAKVAAKAQ LRAAAGL GAGIPGLGVGVGVPGVGLGVGAGVPGVGLGVGAG 550
 551 VPGFGAGADEGVRRSLSPELREGDPSSSQHLPSTPSSPRVPGALA AAKAA 600
 551 VPGFGA VPGALA AAKAA 567
 601 KYGAAPGVVLGGILGALGGVGI PGGVVVGAGPAAAAAAKA AAQFGLVG 650
 568 KYGAAPGVVLGGILGALGGVGI PGGVVVGAGPAAAAAAKA AAQFGLVG 617
 651 AAGLGGILGVGGILGVPGVGGGLGGIPPA AAAKA AKYGAAGLGGVILGGAGQFP 700
 618 AAGLGGILGVGGILGVPGVGGGLGGIPPA AAAKA AKYGAAGLGGVILGGAGQFP 667
 701 LGGVAARPGFGLSPI FPGGACILGKACGRKRK 731
 668 LGGVAARPGFGLSPI FPGGACILGKACGRKRK 698

Figure 2(1)

7 / 19

1 ATGGGTGCGTTCCGGGTCCTGTTCCGGGTTGGCATTCCGGTGGTATT 50
 1 MetGlyGlyValProGlyAlaValProGlyGlyValProGlyGlyValPh 17
 51 CTACCCAGGCCGGTTTCGGTGCCTGTTCCGGGTTGGCTTGCAAGACGAG 100
 18 eTyrProGlyAlaGlyPheGlyAlaValProGlyGlyValAlaAspAlaA 34
 101 CTGCTGCGTACAAAGCGCAAAGGCAGGTGCGGCTCTGGGCGGGCTACCA 150
 35 laAlaAlaTyrAlaAlaAlaAlaGlyAlaGlyLeuGlyGlyValPro 50
 151 GGTGTTGGCGGTCCTGGTGTATCTGCTGGCGCAGTTGGTCCCGAGCCGG 200
 51 GlyValGlyGlyLeuGlyValSerAlaGlyAlaValValProGlnProG 67
 201 TGCAGGTGTAAAACGGCAAAAGTTCAGGTGGTGGTCTGCCGGCGTAT 250
 68 yAlaGlyValLysProGlyIysValProGlyValGlyLeuProGlyValT 84
 251 ACCGGGTTTCGGTGCCTGTTCCGGGCGCGCGTTCCCAAGGTGGTGGTGA 300
 85 yrProGlyPheGlyAlaValProGlyAlaArgPheProGlyValGlyVal 100
 301 CTGCCGGGGGTTCCGACCGGTGGCAGGTGTAAACCGAAGGCACCAAGGT 350
 101 LeuProGlyValProThrGlyAlaGlyValLysProIysAlaProGlyVa 117
 351 AGGCGGGCGGTTCCGACCGGTGGCAGGTGTGGCCCGTTCGGTGGTCCGC 400
 118 1GlyGlyAlaPheAlaGlyIleProGlyValGlyProPheGlyGlyProg 134
 401 AGCCAGGGGTTCCGCTGGGTACCCGATCAAAGGCGCGAAGCTCCAGGT 450
 135 lInProGlyValProLeuGlyTyrProIleIysAlaProIysLeuProGly 150
 451 GGCTACGGTCTGCCGTACACCACCGTAACACTGCCGTAACGGCTACGGTCC 500
 151 GlyTyrGlyLeuProTyrThrThrGlyIysLeuProTyrGlyTyrGlyPr 167
 501 GGGTGGCGTAGCAGGTGCTGGGGTAAAGCAGGCTACCCAACCGGTACTG 550
 168 oGlyGlyValAlaGlyAlaAlaGlyIysAlaAlaGlyTyrProThrGlyThrG 184
 551 GTGTTGGTCCGCAAGGCTGCTGGGGCAAGCTGCGGCAAGGCACCGAAAA 600
 185 lyValGlyProGlnAlaAlaAlaAlaAlaAlaAlaAlaAlaAlaAlaAla 200
 601 TTCGGCGCGGTCAGCGGTTTCGGTGCCTGTTCCGGCGTACGGTGGTCC 650
 201 PheGlyAlaGlyAlaAlaGlyPheGlyAlaValProGlyValGlyGlyAl 217
 651 TGGCGTTCCGGGTGTTCCAGGTGCGATCCCGGGCATCGGTGGTATCCAG 700
 218 aGlyValProGlyValProGlyAlaAlaAlaProGlyIleGlyGlyTieAlaG 234
 701 GCCTAGGTACTCCGGCGGCGCTGGCGCTGGCGAGCTGGCGGAAAGCA 750
 235 lyValGlyThrProAlaAlaAlaAlaAlaAlaAlaAlaAlaAlaAlaAla 250

Figure 3(1)

8 / 19

751 GCTAAATAACGGTGGGCGACAGCCCTGGTTCCGGGTGGTCCAGCTTCGG 800
 251 AlalysTyrGlyAlaAlaAlaGlyLeuValProGlyGlyProGlyPheG1 267
 801 TCCGGGTGGTGTAGGCCTTCCGGGTTGGTGGCTGGTCCGGGCTGGTG 850
 268 yProGlyValValGlyValProGlyPheGlyAlaValProGlyValGlyv 284
 851 TTCCAGGTGGGGCATCCGGTTGTACCGGGTGCAGGTATCCGGGCGT 900
 285 alProGlyAlaGlyIleProValValProGlyAlaGlyIleProGlyAla 300
 901 GCGGGTTTCCGGCTGTATCCCCGGAAAGCAGCTAAGCTCTGCGAA 950
 301 AlaGlyPheGlyAlaValSerProGluAlaAlaAlaAlaAlaAlaAlaAla 317
 951 AGCTGCGAAATAACGGAGCTCGTCCGGCGTTCGGTGTGGTGGCATCCCGA 1000
 318 eAlaAlaAlaLysTyrGlyAlaArgProGlyValGlyValGlyIlePro 334
 1001 CCTACGGTGTAGGTGCAGGCCGGTTTCCCAGGTTTCCGGCTGGTGGTGGT 1050
 335 hr-TyxGlyValGlyAlaGlyGlyPheProGlyPheGlyValGlyValGly 350
 1051 GGCATCCCGGGTGTAGGTTCGGTGTGGTGTCCGTCCTGGTGGCGTACCGGGTGT 1100
 351 GlyIleProGlyValAlaGlyValProSerValGlyGlyValProGlyVa 367
 1101 TGGTGGCGTTCCAGGTGTAGGTATCTCCCCGGAAAGCCAGCCAGCTGGG 1150
 368 lGlyGlyValProGlyValGlyIleSerProGluAlaGlnAlaAlaAlaAla 384
 1151 CAGCTAACGCCAGCGAAGTAGCCGGTTGGTACTCCGGGGCAGCAGCTGCT 1200
 385 laAlaAlaAlaAlaLysTyrGlyValGlyThrProAlaAlaAlaAlaAla 400
 1201 AAAGCAGCGGCTAACAGCAGCGCAGTTGGACTAGTTCCGGCGTAGGTGT 1250
 401 LysAlaAlaAlaAlaLysAlaAlaGlnPheGlyLeuValProGlyValGlyVa 417
 1251 TGCAGCGGGTGTGGCGTAGCACCGGGTGTGGTGTGGCTCGGGCGTAG 1300
 418 lAlaProGlyValGlyValAlaProGlyValGlyValAlaProGlyValG 434
 1301 GTCTGGCACCGGGTGTGGCGTAGCACCAAGGTGTAGGAGTGTGGCGGGC 1350
 435 lyleuAlaProGlyValGlyValAlaProGlyValGlyValAlaProGly 450
 1351 GTTGGGTGTAGCACCGGGTATCGGTCCGGTGGCGTGGCGCTGGCTGCGAA 1400
 451 ValGlyValAlaProGlyIleGlyProGlyGlyValAlaAlaAlaAlaAla 467
 1401 ATCTGCTGGAAAGGTTGCCTGGAAAGCGCAGCTGGTGCAGCAGCTGGTC 1450
 468 sSerAlaAlaAlaLysValAlaAlaAlaLysAlaGlnLeuArgAlaAlaAlaGlyL 484
 1451 TGGGTGGGGCATCCAGGTCTGGTGTAGGTGTGGTGTGGCTGGCGGGC 1500
 485 euGlyAlaGlyIleProGlyLeuGlyValGlyValGlyValProGlyLeu 500

Figure 3(2)

9/19

1501 GGTGTAGGTGCAGGGGTAACCGGCCCTGGTGTTGTCAGGCGTCCGGG 1550
 501 GlyValGlyAlaGlyValProGlyLeuGlyValGlyAlaGlyValProGly 517
 1551 TTTGGTGTCTGTTCCGGGCGCTGGCTGCTGGAAAGCGGGCGAAATACG 1600
 518 yPheGlyAlaValProGlyAlaLeuAlaAlaAlaLysAlaAlaLysTyrG 534
 1601 GTGCTGTCCGGGTGTACTGGGCCGCTGGCTGCTGGCTGGGGTGTGGT 1650
 535 lyAlaValProGlyValLeuGlyGlyLeuGlyAlaLeuGlyGlyValGly 550
 1651 ATCCCGGGCGGTGTGTAGGTGCAGGCCAGCTGCAGCTGCTGGGC 1700
 551 IleProGlyGlyValValGlyAlaGlyProAlaAlaAlaAlaAlaAlaAl 567
 1701 AAAGGCAGCGGCAGAAGCAGCTCACTTCGGTCTGGTGGTGGCAGCAGGTC 1750
 568 alysAlaAlaAlaAlaLysAlaAlaGlnPheGlyLeuValGlyAlaAlaGlyL 584
 1751 TGGCCGGTCTGGGTGTGGGTCTGGGTGTACCGGGCTTGGTGGTCTG 1800
 585 euglyGlyLeuGlyValGlyGlyLeuGlyValProGlyValGlyGlyLeu 600
 1801 GGTCGGCATCCCGCCGGCGAGCTAAAGCGGCTAAATACGGTGCAGC 1850
 601 GlyGlyIleProProAlaAlaAlaAlaLysAlaAlaLysTyrGlyAlaAl 617
 1851 AGGTCTGGGTGGCGTCTGGGTGGCTGGTCACTTCCCACGTGGGGGTG 1900
 618 aGlyLeuGlyGlyValLeuGlyAlaGlyGlnPheProLeuGlyGlyV 634
 1901 TAGCGGCACGTCCGGGTTTCGGCTCTCCCGATCTTCCCAGGGGGTCA 1950
 635 alAlaAlaArgProGlyPheGlyLeuSerProLeuPheProGlyGlyAla 650
 1951 TGCCTGGGTAAAGCTTGGGGCCGTAACGTAAA 1983
 651 CysLeuGlyLysAlaCysGlyArgLysArgLys 661

Figure 3(3)

10/19

1 ATGGGTGCGGTTCCGGGTGCTGTTCCGGGTGGCGTTCCGGGTGGTGTATT 50
 1 ATGGGTGCGGTTCCGGGTGCTATCCGGGTGGCGTTCCGGGTGGTGTATT 50
 51 CTACCCAGGCGCGGGTTTGGGTGC..... 74
 51 CTACCCAGGCGCGGGTCTGGGTGCACTGGGCGGTGGTGCGCTGGGCCGG 100

.

75 TGT 77
 151 GGTCAGGTCTGGCGGTTCCCGGTTACCTTCGGGTGCTCTGGT 200
 78 TCCGGGTGGCGTTGCAAGCAGCTGCTGCGTACAACGGGAAAGGCAG 127
 201 TCCGGGTGGCGTTGCAAGCAGCTGCTGCGTACAACGGGAAAGGCAG 250
 128 GTGCCGGTCTGGGCGGGTACCAAGGTGTTGGCGGTCTGGGTGTATCTGCT 177
 251 GTGCCGGTCTGGGCGGGTACCAAGGTGTTGGCGGTCTGGGTGTATCTGCT 300
 178 GGCGCAGTTGTCGCCAGCAGCGGGTGCAGGTGTAACCGGGCAAAGTTCC 227
 301 GGCGCAGTTGTCGCCAGCAGCGGGTGCAGGTGTAACCGGGCAAAGTTCC 350
 228 AGGTGTTGGTCTGCCGGGCGTATAACCGGGTTTGGGTGCTGTCGGGCG 277
 351 AGGTGTTGGTCTGCCGGGCGTATAACCGGGT...GGTGTCTGCCGGGCG 397
 278 CGCGTTCCCAGGTGTTGGTACTGCCGGGCGTCCGACCGGTGCGAGGT 327
 398 CGCGTTCCCAGGTGTTGGTACTGCCGGGCGTCCGACCGGTGCGAGGT 447
 328 GTTAACCGAAGGCACCAGGTGTAAGCGGGCGTCCGGGTATAACCGGG 377
 448 GTTAACCGAAGGCACCAGGTGTAAGCGGGCGTCCGGGTATAACCGGG 497
 378 TGTTGCCCGTTGGTGGTCCGGCAGCCAGGCGTCCGCTGGGTACCGGA 427
 498 TGTTGCCCGTTGGTGGTCCGGCAGCCAGGCGTCCGCTGGGTACCGGA 547
 428 TCAAAAGCGCGAAGGCTTCCAGGTGCTACGGTCTGGGTACACACCGGT 477
 548 TCAAAAGCGCGAAGGCTTCCAGGTGCTACGGTCTGGGTACACACCGGT 597
 478 AAACTGCCGTACGGCTACGGTCAAGGTCCGGGTGGGTAGCAGGTCTGGGGTAA 527
 598 AAACTGCCGTACGGCTACGGTCAAGGTCCGGGTGGGTAGCAGGTCTGGGGTAA 647
 528 AGCAGGCTACCCAACCGGTACTGGTGTGGTCCGGCAGGCTGCTGGGGCAG 577
 648 AGCAGGCTACCCAACCGGTACTGGTGTGGTCCGGCAGGCTGCTGGGGCAG 697
 578 CTGCGGGCGAAGGCAGCAGCAAAATTGGCGCGGGTGGCAGCGGGTTTGGT 627
 698 CTGCGGGCGAAGGCAGCAGCAAAATTGGCGCGGGTGGCAGCGGGTAA 741
 628 GCTGTTCCGGGCGTAGGTGGTCTGGCTGGGTCCGGGTGGAT 677
 742 GTTCTGCCGGGCGTAGGTGGTCTGGCTGGGTCCGGGTGGTCCAGGTGGCGAT 791

Figure 4(1)

11/19

678 CCAGGGCATGGTGGTATCGCAGGCCGTAGGTAATCCGGGGGGCGCTGGG 727
 792 CCAGGGCATGGTGGTATCGCAGGCCGTAGGTAATCCGGGGGGCGCTGGG 841
 728 CTGGGGCAGCTGGGGGAAAGCAGCTAAATACGGTGCGGGCAGCAGGCCG 777
 842 CTGGGGCAGCTGGGGGAAAGCAGCTAAATACGGTGCGGGCAGCAGGCCG 891
 778 GTTCCGGGTGGTCCAGGCTTCGGTCCGGGTTGGTAGGGGTTCCGGGTT 827
 892 GTTCCGGGTGGTCCAGGCTTCGGTCCGGGTTGGTAGGGGTTCCGGGTT.. 939
 828 CGGTGCCTGTCGGGCGTAGGTGTCAGGTGGGGCATCCGGGTGTCAC 877
 940 .CGTGGTGTTCGGGCGTAGGTGTCAGGTGGGGCATCCGGGTGTCAC 988
 878 CGGGTCAGGTATCCGGGGCGCTGGGGTTCCGGTGCTGTAATCCCCGGAA 927
 989 CGGGTCAGGTATCCGGGGCGCTGGGGTTCCAGGTGTTGTAATCCCCGGAA 1038
 928 GGGCAGCTAAGGCTGCTGOGAAAGCTGCGAAATACGGAGCTCGTCGGG 977
 1039 GGGCAGCTAAGGCTGCTGOGAAAGCTGCGAAATACGGAGCTCGTCGGG 1088
 978 CGTTGGTGTGGTGGCATCCGACCTACGGTGTAAGGTGCGAGGGGTTCC 1027
 1089 CGTTGGTGTGGTGGCATCCGACCTACGGTGTAAGGTGCGAGGGGTTCC 1138
 1028 CAGGTTTCGGGGTTGGTGTGGTGGCATCCGGGTTGGTAGCTGGTGTCCG 1077
 1139 CAGGTTTCGGGGTTGGTGTGGTGGCATCCGGGTTGGTAGCTGGTGTCCG 1188
 1078 TCTGTTGGTGGCGTACGGGGTTGGTGGCGGTTCCAGGTGTAAGGTATCTC 1127
 1189 TCTGTTGGTGGCGTACGGGGTTGGTGGCGGTTCCAGGTGTAAGGTATCTC 1238
 1128 CCCGGAAAGCGCAGGCAGCTGGGGCAGCTAAAGCAGCGAAGTACGGGTTG 1177
 1239 CCCGGGAGCGCAGGCAGCTGGGGCAGCTAAAGCAGCGAAGTACGGGTTG 1288
 1178 GTACTCCGGGGCAGCAGCTGCTAAAGCAGCGGCTAAAGCAGCGCAGTTC 1227
 1289 GTACTCCGGGGCAGCAGCTGCTAAAGCAGCGGCTAAAGCAGCGCAGTTC 1338
 1228 GGACTAGTTCCGGGGCGTAGGTGTTGGCGCCAGGTGTTGGCGTAGCACCGGG 1277
 1339 GGACTAGTTCCGGGGCGTAGGTGTTGGCGCCAGGTGTTGGCGTAGCACCGGG 1388
 1278 TGTGGGTGTTGCTCCGGGGCGTAGGTCTGGCACCGGGTTGGCGTTGCA 1327
 1389 TGTGGGTGTTGCTCCGGGGCGTAGGTCTGGCACCGGGTTGGCGTTGCA 1438
 1328 CAGGTGTAGGTGTTGGCGCCGGGCGTTGGTAGCACCGGGTACGGTCGG 1377
 1439 CAGGTGTAGGTGTTGGCGCCGGGCGTTGGTAGCACCGGGTACGGTCGG 1488
 1378 GGTGGCGGTTGGCGCTGCTGCGAAATCTGCTGCGARGGTTGCGGARAGC 1427
 1489 GGTGGCGGTTGGCGCTGCTGCGAAATCTGCTGCGAAGGTTGCGGARAGC 1538

Figure 4(2)

12 / 19

1428 GCAGCTCGCTGCAGCAGCTGGTCTGGGTGCGGGCATCCAGGTCTGGTG 1477
 1539 GCAGCTCGCTGCAGCAGCTGGTCTGGGTGCGGGCATCCAGGTCTGGTG 1588
 1478 TAGGTGTTGGTGTTCGGGCGCTGGGTGAGGTGAGGGTACCGGGCTG 1527
 1589 TAGGTGTTGGTGTTCGGGCGCTGGGTGAGGTGAGGGTACCGGGCTG 1638
 1528 GGTGTTGGTGCAGCGTTCGGGTTTCGGTCTGGGCGGACGAGGTGT 1559
 1639 GGTGTTGGTGCAGCGTTCGGGTTTCGGTCTGGGCGGACGAGGTGT 1688
 .
 1560TGTTCCGGGCGCCCTGGCT 1578
 1739 AGCACCTGCCGTCTACCCCGTCCCTCCACGTGTTCCGGGCGCCCTGGCT 1788
 1579 GCTGCGAAAGCGGCGAAATACCGT...GCTGTTCCGGGTGACTGGGG 1625
 1789 GCTGCGAAAGCGGCGAAATACCGTGCAGCGGTAACGGGTGACTGGGG 1838
 1626 TCTGGGTCCTCTGGCGGTGTGGTATCCCGGGCGGTGTTAGGTGCAG 1675
 1839 TCTGGGTCCTCTGGCGGTGTGGTATCCCGGGCGGTGTTAGGTGCAG 1888
 1676 GCCCAGCTGCAGCTGCCTGCGCAAGGCAGCGGCAAGCAGCTCAG 1725
 1889 GCCCAGCTGCAGCTGCCTGCGCAAGGCAGCGGCAAGCAGCTCAG 1938
 1726 TTGGGTCTGGTTGGTCAGCAGGTCTGGGCGGTCTGGGTGTTGGCGGTCT 1775
 1939 TTGGGTCTGGTTGGTCAGCAGGTCTGGGCGGTCTGGGTGTTGGCGGTCT 1988
 1776 GGGTGTACCGGGCGTTGGTGGCTGGGTGGCATCCCGCCGGGGCGCAG 1825
 1989 GGGTGTACCGGGCGTTGGTGGCTGGGTGGCATCCCGCCGGGGCGCAG 2038
 1826 CTAAGCGGCTAATAACGGTGCAGCAGGTCTGGGTGGCGTTCTGGGTGGT 1875
 2039 CTAAGCGGCTAATAACGGTGCAGCAGGTCTGGGTGGCGTTCTGGGTGGT 2088
 1876 GCTGGTCAGTTCCACTGGCGGTGTAAGCGGCACGTCCGGGTTTCGGTCT 1925
 2089 GCTGGTCAGTTCCACTGGCGGTGTAAGCGGCACGTCCGGGTTTCGGTCT 2138
 1926 GTCCCGATCTTCCAGGGTGCATGCCCTGGTAAAGCTTGGCCGCGTA 1975
 2139 GTCCCGATCTTCCAGGGTGCATGCCCTGGTAAAGCTTGGCCGCGTA 2188
 1976 AACGTAATAATGATAG 1992
 2189 AACGTAATAATGATAG 2205

Figure 4(3)

13 / 19

Figure 5(1)

14 / 19

Figure 5(2)

15/19

Fig. 6(a)

16 / 19

Fig. 6(b)

17/19

948 TCCGCCATGGGAGGTGTTCCGGGCGCGCTGGCTGCTGCGAAAGCGGCGAA 997
 |||||||
 1 SerAlaMetGlyGlyValProGlyAlaLeuAlaAlaLysAlaAlaLy 17

998 ATACGGTGCAGCGGTTCCGGGTACTGGGCGGTCTGGGTGCTCTGGGCG 1047
 |||||||
 18 sTyrGlyAlaAlaValProGlyValLeuGlyGlyLeuGlyAlaLeuGlyG 34

1048 GTGTTGGTATCCCAGGGCGGTGTTGTAGGTGCAGGCCAGCTGCAGCTGCT 1097
 |||||||
 35 lyValGlyIleProGlyGlyValValGlyAlaGlyProAlaAlaAlaAla 50

1098 GCTGCGCAAAGGCAGCGGCGAAAGCAGCTCAGTTGGTCTGGTTGGTGC 1147
 |||||||
 51 AlaAlaAlaLysAlaAlaAlaLysAlaAlaGlnPheGlyLeuValGlyAl 67

1148 AGCAGGTCTGGGCGGTCTGGGTGTTGGCGGTCTGGGTGTACCGGGCGTTG 1197
 |||||||
 68 aAlaGlyLeuGlyGlyLeuGlyValGlyGlyLeuGlyValProGlyValG 84

1198 GTGGTCTGGGTGGCATCCCGCCGGCGGCAGCTAAAGCGGCTAAATAC 1247
 |||||||
 85 lyGlyLeuGlyGlyIleProProAlaAlaAlaAlaLysAlaAlaLysTyr 100

1248 GGTGCAGCAGGTCTGGGTGGCGTTCTGGGTGGTGTGGTCAGTTCCCACT 1297
 |||||||
 101 GlyAlaAlaGlyLeuGlyGlyValLeuGlyGlyAlaGlyGlnPheProLe 117

1298 GGGCGGTGTAGCGGCACGTCCGGTTTCGGTCTGTCCCCGATCTCCAG 1347
 |||||||
 118 uGlyGlyValAlaAlaArgProGlyPheGlyLeuSerProIlePheProG 134

1348 GCGGTGCATGCCCTGGTAAAGCTTGCGGCCGTAAACGTAAA 1388
 |||||||
 135 lyGlyAlaCysLeuGlyLysAlaCysGlyArgLysArgLys 147

Figure 7

18 / 19

948 TCCGCCATGGGAGCTCTGGTAGGCCTGGCGTACCGGGCTGGGTGG 997
|||||||
1 SerAlaMetGlyAlaLeuValGlyLeuGlyValProGlyLeuGlyValG1 17

998 TGCAGGCCTTCGGGTTTCGGTGCTGGCGGGACGAAGGTGTACGTCGTT 1047
|||||||
18 yAlaGlyValProGlyPheGlyAlaGlyAlaAspGluGlyValArgArgS 34

1048 CCCTGTCTCCAGAACTGCGTGAAAGGTGACCCGTCTTCCCCAGCACCTG 1097
|||||||
35 erLeuSerProGluLeuArgGluGlyAspProSerSerGlnHisLeu 50

1098 CCGTCTACCCCGTCCTCTCCACGTGTTCCGGCGCGCTGGCTGCGAA 1147
|||||||
51 ProSerThrProSerSerProArgValProGlyAlaLeuAlaAlaAlaLy 67

1148 AGCGGCGAAATACGGTGCAGCGGTTCCGGGTGTACTGGCGGTCTGGGTG 1197
|||||||
68 sAlaAlaLysTyrGlyAlaAlaValProGlyValLeuGlyGlyLeuGlyA 84

1198 CTCTGGCGGGTGTGGTATCCCGGGCGGTGTTGTAGGTGCAGGCCAGCT 1247
|||||||
85 laLeuGlyGlyValGlyIleProGlyGlyValValGlyAlaGlyProAla 100

Figure 8(1)

19 / 19

1248 GCAGCTGCTGCTGGCAAAGGCAGCGCGAAAGCAGCTCAGTCGGTCT 1297
||| ||| ||| ||| ||| ||| |||
101 AlaAlaAlaAlaAlaAlaLysAlaAlaAlaLysAlaAlaGlnPheGlyLe 117

1298 GGTTGGTGCAGCAGGTCTGGCGGTCTGGGTGTTGGCGGTCTGGGTGTAC 1347
||| ||| ||| ||| ||| ||| |||
118 uValGlyAlaAlaGlyLeuGlyGlyLeuGlyValGlyGlyLeuGlyValP 134

1348 CGGGCGTTGGTGGTCTGGGTGGCATCCCGCCGGCGGCCAGCTAAAGCG 1397
||| ||| ||| ||| ||| ||| |||
135 roGlyValGlyGlyLeuGlyGlyIleProProAlaAlaAlaAlaLysAla 150

1398 GCTAAATACGGTGCAGCAGGTCTGGGTGGCGTTCTGGGTGGTGTGGTCA 1447
||| ||| ||| ||| ||| |||
151 AlaLysTyrGlyAlaAlaGlyLeuGlyGlyValLeuGlyGlyAlaGlyGl 167

1448 GTTCCCACGGCGGTGTAGCGGCACGTCCGGTTTCGGTCTGTCCCCGA 1497
||| ||| ||| ||| ||| |||
168 nPheProLeuGlyGlyValAlaAlaArgProGlyPheGlyLeuSerProI 184

1498 TCTTCCCAGGCGGTGCATGCCTGGTAAAGCTTGCGGCCGTAAACGTAAA 1547
||| ||| ||| ||| |||
185 lePheProGlyGlyAlaCysLeuGlyLysAlaCysGlyArgLysArgLys 200

Figure 8(2)

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record.**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.