Homework 5

Due date: February 20, 2023, 12pm

Learning Objectives

Use the inference rules, laws of logic, and proof techniques to formally prove an argument.

Exercises

1. (18 points)

Given the argument below, determine what went wrong in each of the following proof attempts. If suitable, refer to the step that is incorrect.

Premises:

(1)
$$s \rightarrow (t \lor p)$$

(2)
$$\neg s \rightarrow (p \lor \neg t)$$

(3)
$$\neg s \lor \neg t \lor \neg u$$

(4)
$$(\neg s \rightarrow w) \land (\neg t \rightarrow \neg w)$$

(5)
$$p \rightarrow (\neg u \lor z)$$

Claim:
$$\neg z \rightarrow \neg u$$

a) Proof by contradiction

Step 1 Assume
$$\neg z \rightarrow \neg u$$
 does not hold.

The assumption
$$\neg(\neg z \rightarrow \neg u)$$
 can be transformed as follows:

Step 2
$$\neg(\neg z \rightarrow \neg u)$$

$$\Leftrightarrow \neg(z \lor \neg u)$$
 due to implication law and double negation

$$\Leftrightarrow \ \neg z \wedge u \ \ (6) \ \ \text{due to De Morgan's law and double negation}$$

We apply disjunctive syllogism to (3) and (8) to deduce

Step 4 (9)
$$\neg s \lor \neg t$$

Step 6
$$(12) \neg s \rightarrow w$$

 $(13) \neg t \rightarrow \neg w$

$$Step 7 \qquad (14) w$$

Step 8
$$(15) \neg w$$

Step 9 We have derived the contradiction (14) and (15). Therefore, your assumption that
$$\neg z \rightarrow \neg u$$
 does not hold is false. That means, $\neg z \rightarrow \neg u$ holds.

Step 3 is incorrect – from simplification, we only obtain
$$\neg z$$
, but step 3 also

CS3151 Data Structures and Discrete Mathematics I

denotes that we obtain u, which is incorrect.

b) Proof by cases

Step 1 Case 1: s and t are both true

In this case, the following holds:

Step 2 (6) s

(7) t

We can apply the disjunctive syllogism to (6) and (3) to deduce

Step 3 (8) $\neg t \lor \neg u$

We apply disjunctive syllogism to (7) and (8) to deduce

Step 4 (9) ¬u

Using addition and (9), we deduce

Step 5 $(10) \neg u \lor z$

Due to double negation and commutative law, (10) is logically equivalent

Step 6 to $(11) \neg \neg z \lor \neg u$

Due to the implication law, the following holds

Step 7 (11) $\Leftrightarrow \neg z \to \neg u$

Therefore, the claim $\neg z \rightarrow \neg u$ holds in Case 1.

Step 8 Case 2: s and t are both false

In this case, the following holds:

Step 9 (12) ¬s

 $(13) \neg t$

Applying simplification to (4), we can deduce

 $\frac{11}{\text{Step 10}} \qquad (14) \, \neg s \to w$

Applying modus ponens to (12) and (14), we deduce

Step 11 (15) w

Applying simplification to (4), we can deduce

Step 12 $(16) \neg t \rightarrow \neg w$

Applying modus ponens to (13) and (16), we deduce

Step 13 (17) ¬w

(15) and (17) is a contradiction. Therefore, Case 2 cannot occur and nothing needs to be shown in this case.

For case 1, there appears to be an issue in step 5 where addition yields ¬u ∨ z, however it is unknown where the z is derived from, since it is not one of the premises or the case statements.

Case 2 appears to have an issue in step 10 where simplification is applied to step 4, which would be valid if it were stated that the commutative law was applied beforehand.

Does not check all cases -> where s = T, t = F OR s = F, t = T

c) Proof by contradiction

Step 1 Assume $\neg z \rightarrow \neg u$ does not hold.

The assumption $\neg(\neg z \rightarrow \neg u)$ can be transformed as follows:

 $\begin{array}{ccc}
\neg(\neg z \to \neg u) \\
\Rightarrow \neg(\neg z \to \neg u)
\end{array}$

 $\Leftrightarrow \neg(z \vee \neg u)$ due to implication law and double negation

 $\Leftrightarrow \neg z \wedge u$ (6) due to De Morgan's law and double negation

Applying simplification to (6), we obtain

Step 3 (7) ¬z

(8) u

We apply disjunctive syllogism to (3) and (8) to deduce

Step 4 (9) ¬s ∨ ¬t since we are doing proof by cases, we must do each statement and prove it separately since there is an OR operator

Step 5 Since $\neg s \lor \neg t$ has to hold, we distinguish the case $\neg s$ and the case $\neg t$.

Step 6 Case ¬s (this is true)

Applying simplification to (4), we can deduce

Step 7 $(10) \neg s \rightarrow w$

From (10) and the case $\neg s$ and modus ponens, it follows

Step 8 (11) w

Step 9 Case ¬t (this is true)

Applying simplification to (4), we can deduce

Step 10 $(12) \neg t \rightarrow \neg w$

From (12) and the case $\neg t$ and modus ponens, it follows

Step 11 $(13) \neg w$

We have derived the contradiction (11) and (13). Therefore, the assumption that $\neg z \to \neg u$ does not hold is false. That means, $\neg z \to \neg u$ holds.

Step 2 is incorrect because double negation is not applied to the first part of the step. There is also the possibility that step 5 is correct, since a statement ¬s ∨ ¬t could mean that either ¬s is true, ¬t is true, or both are true (though, that's what proof by cases shows anyways).

2. (10 points)

Use a proof by contrapositive to prove the following argument Premises:

(1) $t \vee \neg w$

(2) $\mathbf{u} \vee \mathbf{w} \vee \neg \mathbf{p}$

(3) $t \lor u \rightarrow \neg s$

Claim: $p \rightarrow \neg s$

CS3151 Data Structures and Discrete Mathematics I

Assuming $\neg q$, prove $\neg p$ -> for this problem, assume $\neg (\neg s)$ and prove $\neg p$

- 1. double negation ⇔ s (4)
- 2. modus tollens to (3), (4) $\Leftrightarrow \neg (t \lor u)$ (5)
- 3. de morgan's to (5) $\Leftrightarrow \neg t \lor \neg u$ (6)
- 4. disjunctive syllogism to (1), (2) \Leftrightarrow u $\vee \neg p$ (7)
- 5. commutative law & simplification to (6) $\Leftrightarrow \neg u$ (8)
- 6. disjunctive syllogism to (8), (7) ¬p

Since assuming $\neg(\neg s)$ we have proven $\neg p$, then $p \rightarrow \neg s$ holds.

3. (12 points)

An island contains two types of people: knight who always tell the truth and knaves who always lie. Two natives A and B approach you but only A speaks.

A says: Both of us are knaves.

Write a formal proof to show that A is a knave, and B is a knight. Specify the proof technique that you apply.

- (1) Knights always tells the truth
- (2) Knaves always lie
- (3) A and B are knaves.

Claim: A is a knave and B is a knight

Proof by contrapositive: Assume that B is NOT a knight (prove that A is NOT a knave).

- 1. If B is not a knight, then B is a knave.
- 2. If B is a knave, then that means that A is telling the truth.
- 3. If A is telling the truth, then A is a knight, since knights always tell the truth.
- 4. Since A is a knight, then A is NOT a knave.
- 5. Since A is not a knave given that B is not a knight, then A is a knave and B is a knight holds.

Submission

Upload your solution as a PDF file to the course website.

Questions:

Can we get p is true AND q is true from simplification, even though only p is denoted?

Simplification

The simplification in step 3 and step 7 are confusing because step 3 gets p is true and q is true, but step 7 only gets that p is true

For simplification, we can infer that p is true AND q is true (by themselves), since the AND operator means that they are both true.

Applying simplification to (6), we obtain

Step 3

(8) u

We apply disjunctive syllogism to (3) and (8) to deduce

Step 4

Step 5

Since $\neg s \lor \neg t$ has to hold, we distinguish the case $\neg s$ and the case $\neg t$.

Step 6

Step 7

 $(10) \neg s \rightarrow w$

For addition, does q need to be one of the premises in order to infer p v q? The example uses addition, but z is not one of the premises.

For addition, as long as p is true, we can pull any premise/statement and pair it w/ p and long as the OR operator is used.

(9) ¬u

Step 5

Using addition and (9), we deduce

 $(10) \neg u \lor z$

Addition

p

 $p \lor q$