Máximo Divisor Comum

 $36 = 2 \times 2 \times 3 \times 3$ 2 x 3 x 3 x 5 MDC(36,90) = 2x3x3 = 18

Mínimo Múltiplo Comum

múltiplos de 6: 0, 6, 12, 18, 24, 30, ... múltiplos de 4: 0, 4, 8, 12, 16, 20, 24, ...

MMC(6,4) = 12 (pois é o menor múltiplo comum diferente de zero)

```
a \equiv b \pmod{n} \rightarrow a - b = kn
```

Uma função diz-se **injetiva** se p/ cada elemento $x \in X$, existe um <u>único</u> $y \in Y$ tq f(x) = y. Uma função diz-se **sobrejetiva** se p/ cada elemento $y \in Y$, existe <u>pelo menos</u> um $x \in X$ tq f(x) = y. Uma função diz-se bijetiva se for injetiva e sobrejetiva.

Associatividade: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$

Uma operação • é associativa quando p/ qq 3 elementos do conjunto/grupo se verifica regra acima

Comutatividade/Abeliano: a•b = b•a

Uma operação • é comutativa quando p/ qq 2 elementos do conjunto/grupo se verifica a regra acima

Seja (S,*) um grupóide.

Um elemento $0 \in S$ diz-se um **elemento zero/nulo** se 0 * a = 0 = a * 0, $\forall a \in S$.

Um elemento $id \in S$ diz-se um **elemento neutro/identidade** se id * a = a = a * id, $\forall a \in S$.

Um elemento $a \in S$ diz-se um **elemento idempotente** se a * a = a. Um elemento neutro/nulo é um elemento idempotente.

Num grupóide existe no máximo um elemento neutro - representado por $1_{\mathcal{S}}$.

Um grupóide diz-se **semigrupo** se a sua operação * for associativa.

Seja S um semigrupo, $m,n\in\mathbb{N}$ e $a\in S$, então:

1. $a^m a^n = a^{m+n}$ [ma + na = (m + n)a];

2. $(a^m)^n = a^{mn}$ [n(ma) = (nm)a].

Um semigrupo que admita elemento neutro, diz-se um monóide ou semigrupo com identidade. Seja (S,*) um monóide.

Um elemento $a' \in S$ diz-se um elemento oposto de a se $a' * a = \mathbf{1}_S = a * a'$.

Um elemento $a \in S$, tem no máxmio, um elemento oposto.

Oposto:

inverso de a = a^{-1} [Linguagem Multiplicativa] A não ser que seja referido, trabalhamos com linguagem multiplicativa. simétrico de a = -a [Linguagem Aditiva]

Nota p/ - para

qq - qualquer

tq - tal que

sse - se e só se (⇔)

então (⇒)

TEORIA DE GRUPOS

Um Grupo é um monóide no qual todos elementos admitem um único elemento opostos.

```
G é grupo sse:
```

- 1) a operação binária é associativa
- **2)** $\forall a \exists id \in G$: $a \bullet id = a = id \bullet a$

(se qualquer elemento de G admita um elemento identidade que pertença a G)

3) $\forall a \exists (a^{-1}) \in G: a \cdot (a^{-1}) = id = (a^{-1}) \cdot a$ (se para qualquer elemento de G haja um elemento oposto pertencente a G)

```
Seje G um grupo:
```

- $> id^{-1} = id$
- $> (x^m) \cdot (x^n) = x^{m+n}$
- $> (x^m)^n = x^{m \cdot n}$
- $(a^{-1})^{-1} = a$
- $(a \cdot b)^{-1} = (b^{-1}) \cdot (a^{-1})$
- $(a_1 ... a_n)^{-1} = (a_n^{-1})...(a_1^{-1})$
- > são válidas as **leis de corte**: para $x,y,a\in G$, $a\bullet x=a\bullet y\implies x=y$

Existem semigrupos que não são grupos nos quais se verifica as leis do corte – por ex.: $\mathbb{Z}\setminus\{0\}$, este monóide comutativo as leis do corte mas não é um grupo (pois os únicos elementos que admitem inverso são 1 e -1).

Seja G um grupo, e S o seu subconjunto não vazio (=subgrupo, escrevemos S<G)

S⊆G é S<G sse:

- S ≠ \emptyset vazio (pois pelo menos a id(G)∈S)**
- $x,y \in S \Rightarrow xy \in S$
- $x \in S \implies x^{-1} \in S$

**se G é grupo e S<G então o elemento neutro de S (1_S) é o mesmo que o de G (1_G) . Pois por um lado temos que, $1_S*1_S=1_S$; por outro lado, como $1_S\in G$, temos que $1_S*1_G=1_S$. Logo pela lei do corte, $1_S*1_S=1_S*1_G\Leftrightarrow 1_S=1_G$

Sejam G um grupo e S<G. Então:

- -para cada s∈S, o inverso de s em S é o mesmo que o inverso de s em G
- -para $S_1, S_2 < G$ então $S_1 \cap S_2 < G$

Ordem do Grupo é o $\underline{n}^{\underline{o}}$ de elementos do grupo G, e representa-se por |G|

Ordem de um Elemento é o menor n.º natural p tq um elemento a pertencente a um grupo G dê $a^p=1_G$ -representa-se por $o([a]_p)$ - também, para o(a)=k, $se\colon a^k=1_G;\ p\in\mathbb{N},\ a^p=1_G\Rightarrow k\leq p$

Seja G grupo e a∈G um elemento de ordem finita f.

Então para qq n \in N: $o(a^n) = \frac{f}{mdc(f,n)}$.

Se não existe nenhum n \in N tq $a^n=1_G$ então diz-se que a tem ordem infinita e escrevemos $o(a)=\infty$.

Num grupo finito, a ordem de cada elemento divide a ordem do grupo.

Num grupo finito nenhum elemento tem ordem infinita.

Num grupo o elemento identidade é o único com ordem 1.

Sejam G um grupo e a,b \in G. Então, p/ qq inteiro positivo k: $(ab)^k = 1_G \Leftrightarrow (ba)^k = 1_G$.

Sejam G um grupo e a \in G, então: $o(a^{-1})=o(a)$.

Teorema de Lagrange: Seje G grupo $\underline{\text{finito}}$ e H<G \Rightarrow |H| divide por |G|

Teorema de Cauchy: Seje G um grupo de ordem n∈N e p um <u>primo</u> divisor de n.

Então, existe um elemento a∈G tq o(a)=p

Sejam G um grupo e $\emptyset \neq X \subseteq G$.

Chama-se subgrupo de G gerado por X, e representa-se por <X>, ao menor subgrupo que contém X.

Se X = {a} , então escrevemos <a> para representar <X> e falamos no subgrupo de G gerado por a.

Sejam G e a∈G um elemento com ordem infinita, então <a> tem nº infinito de elementos

Seja G um grupo <u>abeliano</u>, então H<G é **subgrupo normal/invariante** de G (escreve-se H \triangleleft G) Ou seja \forall **x** ∈ **G**, $\mathbf{x}\mathbf{H} = \mathbf{H}\mathbf{x}$

Seja G um grupo abeliano, então qq subgrupo H de G é normal em G.

Seja G grupo e H⊲G, então, ao grupo **G/H** chama-se **grupo quociente** (que é abeliano)

Demonstração: Sejam $x, y \in G$, então, xHyH = xyHH = xyH

Grupo Cíclico: $\exists a \in G: G = \langle a \rangle$, i.e, se existe $a \in G$ tq - $(x \in G)(\exists n \in \mathbf{Z})$ $x = a^p$

Qualquer subgrupo de um grupo cíclico é cíclico.

Grupo Quociente de um grupo cíclico é cíclico.

Grupo Quociente de um grupo que não é cíclico pode ser cíclico.

Todo grupo cíclico é abeliano (o recíproco não é verdadeiro).

Dois grupos cíclicos são isomorfos sse tiverem a mesma ordem. G cíclico ordem n, então, $G\cong Zn$.

Se $(x,y) \in \mathbb{Z}_n \cdot \mathbb{Z}_m$ então o((x,y)) = mdc(o(x),o(y)).

Uma aplicação $\Psi: \mathbf{Zn} \to \mathbf{Zm}$ diz-se um morfismo, ou homomorfismo, se: $\forall x,y \in \mathbf{Gn} \ \Psi(xy) = \Psi(x)\Psi(y)$

Um morfismo diz-se um **epimorfismo** se for uma aplicação <u>sobrejetiva</u>, se: $\forall y \exists x, Y(x) = y$

Um morfismo diz-se um monomorfismo se for uma aplicação injetiva, sse: $\forall a,b \in X => Y(a) \neq Y(b)$

Um morfismo diz-se isomorfismo se for uma aplicação bijetiva (sobrejetiva e injetiva)

Um morfismo de um grupo nele mesmo diz-se **endomorfismo** (**automorfismo** se for bijetivo) Conjunto automorfismo é um grupo p/ a composição usual de funções

Seja ψ : Gn->Gm um morfismo de grupos

Chama-se **núcleo** (ou kernel) de ψ , e representa-se por **Nuc** ψ (ou ker ψ), ao subconjunto de Gn: $Nuc \psi = \{x \in Gn \mid \psi(x) = \mathbf{1}_{Gm}\}$

Sejam G um grupo e H⊲G, então:

$$\begin{array}{c} \text{pi: } G \, \longrightarrow \, G/H \\ x \, \longmapsto \, xH \end{array}$$

é um epimorfismo (ao qual se chama epimorfismo canónico) tq Nuc pi = H.

Sejam Gn e Gm dois grupos; se Ψ : Gn -> Gm é um momorfismo, então: $\Psi(1_{Gn})$ = 1_{Gm} .

Sejam Gn e Gm dois grupos e Ψ : Gn -> Gm um momorfismo, então: $[\Psi(x)]^{-1} = \Psi(x^{-1})$.

Sejam Gn e Gm dois grupos, $H\subseteq Gn$ e $\psi:Gn->Gm$ um morfismo, então: $H< Gn \Rightarrow \psi(H)< Gm$.

Seja ψ :Gn->Gm um morfismo de grupos.

Se ψ é um monomorfismo então $Gn \cong \psi(Gn)$.

Sejam Gn e Gm dois grupos, H \subseteq Gn e ψ :Gn->Gm um epimorfismo.

Então, $H \triangleleft Gn \Rightarrow \psi(H) \triangleleft Gm$.

Seja ψ :Gn->Gm um morfismo de grupos.

Então, ψ é um monomorfismo se e só se $Nuc\psi = \{1_{Gn}\}.$

Teorema Fundamental do Homomorfismo:

Seja $\theta:G\to G'$ um morfismo de grupos. Então, Im $\theta\cong G/\mathsf{Nuc}\theta$.

Teorema de representação de Cayley:

Todo o grupo é isomorfo a um grupo de permutações.

TEORIA DE ANÉIS

Seja A um conjunto não vazio e duas operações binárias, que representamos por + e \cdot , nele definidas. O triplo $(A,+,\cdot)$ diz-se um anel se:

- 1) (A, +) é um grupo comutativo (também chamado **módulo**)
- 2) (A, ⋅) é um semigrupo
- 3) A operação · é distributiva em relação à operação +
 (i.e., para todos a,b,c∈A, a·(b+c) = a·b + a·c e (b+c)·a = b·a + c·a)

O anel A diz-se comutativo se a multiplicação for comutativa.

Seja $(A,+,\cdot)$ um anel:

- > Ao elemento neutro do grupo chamamos **zero do anel** e representamos por $\mathbf{0}_{\mathbf{A}}$
- > Quando existe, ao elemento neutro do semigrupo chamamos $identidade\ do\ anel$ e representamos por 1_A
- > No caso de o anel ter identidade, podem existir elementos que admitem elemento oposto para a multiplicação
- > para todo $x \in A$, $0_A x = x 0_A = 0_A$
- > se a+a=a e a⋅a=a, é um anel comutativo com identidade, chamamos A um **anel nulo**
- > sejam $x,y \in A$, então, (-x)y = x(-y) = -xy e (-x)(-y) = xy

Sejam $a,b \in A$ e $m,n \in Z$, então:

- (m+n)a = ma+na
- n(ma) = (nm)a
- n(a+b) = na+nb
- n(ab) = (na)b = a(nb)
- $(a^n)^m = a^{nm}$
- $-a^na^m=a^{n+m}$

Propriedade Distributiva Generalizada

Sejam A um anel, $n \in N$ e a, b_1 , b_2 , ..., $b_n \in A$. Então:

- 1) $a(b_1+b_2+...+b_n) = ab_1+ab_2+...+ab_n$
- 2) $(b_1+b_2+...+b_n)a = b_1a+b_2a+...+b_na$

Seja A um anel com identidade $\mathbf{1}_A$, um elemento a \in A diz-se uma **unidade** se admite inverso em A. Representa-se por \mathbf{U}_A o conjunto das unidades de um anel com identidade.

Para um anel (A,+,·), $n \in \mathbb{N}$, os elementos $[x]_n$ com mdc(x,n)=1 são as unidades do anel.

Seje A um anel, um elemento a \in A diz-se **simplificável** se, para todos x,y \in A: **xa**=ya ou **ax**=ay \Rightarrow x=y Num anel A, toda a unidade é simplificável, mas nem todo o elemento simplificável é uma unidade

Seje A um anel, $a \in A$ diz-se um **divisor de zero** se existe $b \in A \setminus \{0_A\}$ tq: $ab = 0_A$ ou $ba = 0_A$ No anel $(Z_n, +, \cdot)$, os divisores de zero são os elementos $[x]_n$, onde $mdc(x, n) \neq 1$

Seja A um anel:

- 1) se não existir qq n \in N tq $na=0_A$, $\forall a\in A$, A diz-se anel de caraterística \emptyset e escreve-se c(A)=0
- 2) se n \in N for o menor natural tq $na=0_A$, $\forall a\in A$, c(A)=n

Sejam $A \neq \{0_A\}$ um anel com identidade 1_A e n \in N. Então, a c(A)=n \Leftrightarrow o (1_A) = n. Domínio de Integridade – um anel comutativo tq 0_A é o único divisor de zero

Se A é um domínio de integridade, então, $A \neq \{0_A\}$

O anel A é um domínio de integridade

Então, seja A um anel comutativo as próximas afirmações são equivalentes com a afirmação acima:

- $A\setminus\{0_A\}\neq\emptyset$ e todo o elemento de $A\setminus\{0_A\}$ é simplificável
- $A\setminus\{0_A\}\neq\emptyset$ e $A\setminus\{0_A\}$ é subsemigrupo de A relativamente ao produto
- A\ $\{0_A\} \neq \emptyset$ e, se as equações ax=b e xa=b ($a \neq 0_A$) tiverem solução, então, a solução é única

Um anel A diz-se um **anel de divisão** se (A\{0_A}, \cdot) é um grupo.

Um anel de divisão comutativo diz-se um corpo.

Resulta da definição que qq corpo é um domínio de integridade (o recíproco não é verdadeiro).

Sejam A um anel e A'⊆A. Então, A' é **subanel** de A sse:

- 1) A≠ Ø
- 2) $x,y \in A' \Rightarrow x-y \in A'$
- 3) $x,y \in A' \Rightarrow xy \in A'$

Sejam A um domínio de integridade e A'⊆A.

Então, A' é **subdomínio** de integridade de A sse:

- 1) $1_A \in A'$
- 2) $x,y \in A' \Rightarrow x-y \in A'$
- 3) $x,y \in A' \Rightarrow xy \in A'$

Sejam A um anel de divisão (respetivamente, corpo) e A'⊆A.

Então, A' é subanel de divisão (respetivamente, subcorpo) de A sse:

- 1) A'≠Ø
- 2) $x,y \in A' \Rightarrow x-y \in A'$
- 3) $x,y \in A' \setminus \{0_A\} \Rightarrow xy^{-1} \in A' \setminus \{0_A\}$

Seja A um anel, I é ideal de A se:

- 1) (I, +) < (A, +)
- 2) $\forall x \in A \ \forall i \in I, \ xi, ix \in I \ (I \subseteq A, I \neq \emptyset)$

Todo ideal de um anel A é um subanel de A

Ideial próprio:

- I⊈A
- I⊆A mas I≠A

Seja A um anel comutativo com identidade, um ideal I diz-se **ideal maximal** de A se $n\~ao$ existe K ideal de A tq: $\mathbf{I} \nsubseteq \mathbf{K} \nsubseteq \mathbf{A}$

Se existir K⊆A tq I⊈K então I=K

Se I e J são ideais maximais distintos de um anel comutativo com identidade A, então A=I+J

Seja A um anel comutativo com identidade e I um ideal de A.

Então, são equivalentes as seguintes afirmações:

- I é maximal
- A/I é corpo

Sejam A e A' dois anéis.

Uma aplicação φ:A->A' diz-se um morfismo (ou homomorfismo) de anéis se satisfaz as seguintes condições:

- 1) $(\forall a,b \in A) \varphi(a+b) = \varphi(a)+\varphi(b)$
- 2) $(\forall a,b \in A) \varphi(a \cdot b) = \varphi(a) \cdot \varphi(b)$

Um morfismo diz-se um monomorfismo se for injetivo.

Enquanto que um morfismo sobrejetivo diz-se epimorfismo, e isomorfismo caso for bijetivo.

Um morfismo diz-se um endomorfismo se A=A'. Um endomorfismo bijetivo diz-se um automorfismo.

Sejam A e A' dois anéis e ϕ :A->A' um morfismo. Então, $\phi(0_A)$ = 0_A

Sejam A e A' dois anéis e ϕ :A->A' um morfismo. Então, $(\forall a \in A) \phi(-a) = -\phi(a)$

Sejam A e A' dois anéis e φ :A->A' um morfismo. Então, $(\forall a \in A)$ $(\forall k \in Z)$ $\varphi(ka) = k\varphi(a)$

Sejam ϕ :A->A' um morfismo de anéis e B um subanel de A. Então, ϕ (B) é um subanel de A'

Sejam φ :A->A' um epimorfismo de anéis e I um ideal de A. Então, φ (I) é um ideal de A'

Seja $\phi:A\to A'$ um morfismo não nulo de anéis, se A é um corpo, então, $\phi(A)$ é um corpo

Seja ϕ :A->A' um morfismo de anéis, então A/Nuc ϕ é isomorfismo a ϕ (A)

Permutações

Seje A um conjunto, uma permutação de A é uma aplicação bijetiva de A em A

Se A é um conjunto de $n \in \mathbb{N}$, sabemos que podemos definir n! Permutações de A distintas

Ordem de σ só pode ser ou:

- comprimento do ciclo
- MMC do comprimento dos ciclos disjuntos

 $|\langle \sigma \rangle| = o(\sigma) = x$

