Kurs i dataeditering: Imputering

ASLAUG FOSS HURLEN

2025

Plan for Kurset

- **10:00 10.40** Introduksjon til imputering og regelbasert imputering
- **10.40 11.15** Øvelser i R med R-pakken dcmodify
- 11:15 11:45 Lunsj
- **11:45 12:25** Imputering med regresjon, nærmeste nabo og andre modeller
- **12:25 13.15** Øvelser i R med R-pakken simputation
- **13.15 13.30** Logging og kvalitetsindikatorer for imputering
- **13.30 13.45** Øvelse i R med pakken lumberjack
- **13.45 14.00** Oppsummering

Læringsmålet

Målet er:

- Kjenne til de mest kjente metodene for imputering
- Kjenne til prosessdata og kvalitetsindikatorer for imputering/editering
- Kunne bruke R til å gjennomføre imputeringen.

Materialet for kurset

• **Github:** https://github.com/statisticsnorway/kurs-metode-imputere

• Byrånettesiden «dataeditering»: lenke til materialet og lenker til all bakgrunnslitteratur

https://ssbno.sharepoint.com/sites/Metodikkistatistikkproduksjonen/SitePages/Dataeditering.aspx

Imputering og prosessmodell

 korrigering av mistenkelige verdier og erstatte manglende verdier

- Generic Statistical Data Editing Model
- https://statswiki.unece.org/display/sde/GSDEM

Imputering

 Imputering er prosessen der verdier i et datasett som mangler eller er mistenkelige erstattes av kjente akseptable verdier.

• Vi vil imputere med formålet å redusere frafallsskjevhet og lage et «fullt» datasett.

Hva er imputering og hvorfor det trengs?

Datasett – partielt frafall

Enhet	Variabel 1	Variabel 2	Variabel 3	Variabel 4	Variabel 5
1					
2					
3					
4					
5					
6					

Datasett - enhetsfrafall

Enhet	Variabel 1	Variabel 2	Variabel 3	Variabel 4	Variabel 5
1					
2					
3					
4					
5					
6					

Datasett – mistenkelige og feil verdier

Enhet	Variabel 1	Variabel 2	Variabel 3	Variabel 4	Variabel 5
1					
2					
3					
4					
5					
6					

Resultat hvis vi ikke gjør noe med frafall

- Sum av det som er rapportert
- Vanskelig å sammenligne over tid

2004/36 Notater 2004

Aslaug Hurlen Foss og Liv Taule

Museumsstatistikken

En gjennomgang av definisjoner, kvalitet og populasjon

Seksjon for statistiske metoder og standarder og Seksjon for utdanningsstatistikk

Hva kan man gjøre med frafall?

- Imputering: lage "fullt" datasett
- Vekting vanlig i utvalgsundersøkelser

Typer av imputering:

- Manuell: ekspertkunnskap, tilleggsopplysninger, rekontakt
- Regelbasert imputering: imputering basert på logiske regler
- Modellbasert imputering: gjennomsnitt, regresjon, decision tree, osv
- *Donor imputering*: får en verdi fra en annen enhet eller periode. Nærmeste nabo-imputering

Regelbasert imputering for åpenbare og systematiske feil

Systematiske feil og åpenbare feil

Åpenbare feil - er observasjoner som har klart uriktige verdier

Systematiske feil – er gjennomgående feil som trekker i en retning og forekommer for mange enheter i undersøkelsen

Regelbasert imputering

• Ofte logisk forhold eller basert på ekspertkunnskap.

• 'if - then'-type påstander:

if Alder < 0 then Alder = «-1»*Alder</pre>

if lonn< 10 000 then kjonn = «kvinne»</pre>

Fagkunnskap - emnekunnskap

Reglene settes ut fra kunnskap om datasett

• Det er viktig å kunne vurdere holdbarhet av reglene over tid

Historisk imputering

• En enhet er mest lik seg selv

Veksten mellom periodene kan ignoreres

• Eksempel:

- Foreløpige tall kommuneregnskap blir historisk imputert. Små kommuner
- Km med snøskuterløper. Lite endring fra år til år. Vedtak for endring.

Pakken dcmodify

 Mark van der Loo og Edwin de Jonge, statistics Nederlands

- Introduksjon:
 - https://cran.rproject.org/web/packages/dcmodify/vignettes/int
 roduction.html

Hvorfor en pakke for regelretting?

- Samle og vedlikeholde regler for korrigering et sted
- Kan legges på en egen fil
- Kan enkelt legge til logging av endring

Grunnleggende arbeidsflyt

- data: Det er ditt datasett (data formate: data.frame).
- modifier: Object som er laget for modifiseringsregler.
- modify: Funksjon som anvender modifiseringsregler på data.

modify(data, modifier(modifiseringsregler))

modifier – definere og lagre regler


```
> m
Object of class modifier with 2 elements:
M1:
   if (var1 < 0) var1 <- abs(var1)

M2:
   if (var1 > 1000 * var2) var1 <- var1/1000</pre>
```


modify data med regler

Vurdering av imputering

- Grafikk
- Størrelse på feil

$$RMSE = \sqrt{\frac{\sum_{i=1}^{N} ||y(i) - \hat{y}(i)||^2}{N}},$$

Et tall som forteller hvor god modellen er – jo mindre jo bedre

Data til vurdering av resultat

- Automatisk korrigert mot manuelt editert
- Foreløpige tall mot endelige tall
- Lager testdata

Eksempel

DATASETT WOMEN - BMI

Gruppe oppgaver

- Korrigerer dere verdier manuelt?
- Hvordan finner dere «riktig verdi»?
- Er det mulig å lage regelretting istedenfor manuell endring?

Datasett til øvelse i R

- Avtalte årsverk fysioterapi i kommunen reelt datasett fra 2021!
- Ved foreløpige tall 15. mars mangler en del kommuner disse blir imputert
- Variabler:
 - Kommune
 - arsverk_ 2020
 - arsverk_ 2021_for
 - Brutto_driftsutgifter_helse_2021
 - Folkemengde_2021
 - arsverk_ 2021_end

Kursmaterialet

https://github.com/statisticsnorway/kurs-metode-imputere

Starte opp Jupyter i produksjonssonen

• Trykk på ikonet:

Stå i «filutforsker»

• Trykk på github ikonet:

Clone a repo

Enter the Clone URI of the repository

https://host.com/org/repo.git

Cancel

CLONE

Oppgave 1. Frafall og historisk imputering

- 1a) Les inn datasett «fysio» (csv eller RData) og beregn hvor stort frafallet er i foreløpige tall
- 1b) Hva er konsekvensene av å ignorere frafallet?
- 1c) Imputer frafallet i foreløpige tall med forrige års verdi og vurder resultatet. Bruk pakken dcmodify.
- Diskuter resultatet med den du sitter ved siden av!

Hvordan jobbe med oppgaver

- Fokuser på metodene: Kjør programmet «Losninger_2022»
 med varierende forklaringsvariabler og med og uten grupper for
 modellene.
- Kode metodene selv: Bruk programmet «Oppgaver_2022» og kod dine egne løsninger

Tilfeldig frafall og feil: Modellbasert og donor imputering

Frafall

Gjennomsnitts-imputering

Gruppering

• Dele populasjonen inn i homogene grupper (strata)

Stratifisert gjennomsnitts-imputering

Stratifisert gjennomsnitts-imputering

Tilfeldig Hot-deck imputering

Tilfeldig Hot-deck imputering

Stratifisert tilfeldig hot-deck imputering

Stratifisert tilfeldig hot-deck imputering

Sekvensiell Hot-deck imputering

Sekvensiell Hot-deck imputering

Stratifisert nærmeste nabo imputering

Stratifisert nærmeste nabo imputering

K-nærmeste nabo imputering

Tilfeldig frafall eller feil

- Missing Completely At Random (MCAR): frafall avhenger ikke av intereesvariabel y_i eller hjelpevariabel $ext{er} x_i$
 - Svar-frafall kan ignoreres i utvalgsundersøkelser
- Missing At Random (MAR): frafall avhenger av hjelpevariaveler x_i , men ikke av interessevariabel y_i
 - Vi kan modellere svar-frafall

- Not Missing At Random (NMAR): frafall avhenger av både y_i (variable av interesse) og x_i (hjelpevariabel)
 - Modellering ønskelig, men kan ikke forvente en perfekt modell
 - Mest vanlig i virkeligheten. Vanlig behandlet som MAR

Typer av imputering:

- Multivariat imputering: imputerer mange variable samtidig
- *Univariat* imputering: imputerer **en og en** variabel separat

- *Enkel* imputering: bruke resultater fra et "rimelig" datasett
- *Multippel* imputering: kombinere resultater fra flere "rimelige" datasett

Regresjons-imputering

$$y_i^* = f(x_i) + e_i$$
, der f ble bygget basert på $\{(x_i, y_i): i \in s_r\}$

- Lineær regresjon
- robust lineær regresjon

Regresjons-imputering

AVL_KALK_AVSKR_350 Regresjonsimputering

Regresjons-imputering

• Lager en lineær modell av data:

$$y_i = \beta_1 + \beta_2 x_i + e_i$$

- $\hat{\beta}$ ble estimert basert på på de som har svart $\{(\mathbf{x}_i, y_i): i \in s_r\}$
- Vi predikerer $y_i^* = \beta_1 + \beta_2 x_i^*$

Robust regresjonsimputering

- Kaster ut outliere når den lineære modellen skal estimeres
- Gir en mindre vekt til outliere når den lineære modellen estimeres

$$\circ (y_i - w_i y_i^*)^2 \rightarrow min$$

- For least squares alle $w_i = 1$
- \circ For Robust regresjon vekt w_i er mindre for «influential points»

Predictive mean matching

- Lager en lineær modell av data
- Den nærmeste observasjonen på regresjonslinja donerer sin y verdi

Imputering med kostra-pakke

- Robust regresjon
 - kaster ut ekstremverdier iterativt store standardiserte residualer
 - Kan velge flere modeller
 - Beregner usikkerhet variasjonskoeffisient
- Historisk imputering
 - Finner den siste observerte verdien
 - Logger hvilken periode den er fra
 - Beregner usikkerhet variasjonskoeffisient

- ImputeRegression()
- ImputeHistory()

Ikke lineær sammenheng?

Regression Trees....

- CART Classification and Regression Trees models
- Random forest

Fin forklaring av modellene:

https://www.youtube.com/watch?v=g9c66TUylZ4

https://www.youtube.com/watch?v=J4Wdy0Wc_xQ

Hvordan velge imputeringsmetode?

- Bruk fagkunnskap og vurder metodene
- Beregne feilen RMSE Treningsdata testdata
- Se på makronivå
- Se på grafikk plot mot forrige år, hjelpe variabeler
- Se på variasjonskoeffisient $cv = \frac{\sigma}{\mu}$

R-pakken simputation

Flere pakker for imputering (mice, VIM, Amelia, mi, ...), men:

- Simputation gir et uniformt grensesnitt for ofte brukt metoder
- Simputation er en pakke for å gjøre imputering enklere!

Laget av Mark van der Loo and Edwin de Jonge, Statistics Netherlands

Mer info: https://cran.r-project.org/web/packages/simputation/vignettes/intro.html

og: https://cran.r-project.org/web/packages/simputation/simputation.pdf

Tilgjengelige imputeringsmetoder

Regresjons-imputering

- linear regression (_**lm**)
- robust linear regression (_rlm)
- ridge/elasticnet/lasso regression (_en)
- CART models (decision trees) (_cart)
- Random forest (_rf)

Multivariate imputering

- Imputation based on the expectation-maximization algorithm (_em)
- missForest (=iterative random forest imputation) (_mf)

Hot-deck imputering

- k-nærmest nabo (based on gower's distance) (_knn)
- sequential hotdeck (LOCF, NOCB) (_shd)
- random hotdeck (_rhd)
- Predictive mean matching (_pmm)

Andre

- (groupwise) median imputation (optional random residual) (_median)
- Proxy imputation: copy another variable or use a simple transformation to compute imputed values. (_proxy, _constant)

Simputation grensesnitt

Simputation grensesnitt: lineær regresjon

Imputeringskjede

Skrive flere imputeringer i pipeline

```
library(magrittr)

newdata<- mydata %>%
 impute_lm(var1 ~ var2) %>%
 impute_median(var1) %>%
 impute_cart(var3 ~ .)
```


Imputerer flere variabler samtidig

Imputere flere variable samtidig med lik modell

newdata <- impute_rlm(mydata, var1 + var2 ~ var3)</pre>

Eksempler – datasett women

- 15 personer
- Variabler høyde og vekt
- Beregner KMI (BMI)
- Tar ut verdien for kmi for 4
 personer som vi skal imputere

Datasett women med høyde og vekt

Datasett women med høyde og vekt

Vurdering av modell

- Grafikk
- Størrelse på feil

$$RMSE = \sqrt{\frac{\sum_{i=1}^{N} ||y(i) - \hat{y}(i)||^2}{N}},$$

Eksempel i Jupyter med datasett women

Oppgave 2 testing av imputeringsmetoder

- a) Imputer med gjennomsnittet innen hver kostragruppe og vurder resultatet.
 - Hva blir totalen nå?
 - Hvor stor blir feilen RMSE? sammenlign med endelige tall
 - Bruk grafikk til å vurder hvor god metoden er
- b) Random hotdeck
- c) Nærmeste nabo
- d) Regresjon
- e) Prediktiv mean matching

Hvordan jobbe med oppgaver

- Fokuser på metodene: Kjør programmet «Losninger_2022»
 med varierende forklaringsvariabler og med og uten grupper for
 modellene.
- Kode metodene selv: Bruk programmet «Oppgaver_2022» og kod dine egne løsninger

Gruppeoppgave

- Kan noen av metodene som er testet i dag bli brukt?
- Hva slags krav må metode tilfredsstille for at det skal bli godt nok?

Logging og kvalitetsindikatorer

Dokumentasjon av imputering

- Lag en variabel som dokumenter hvilken verdi som er endret
- Logg gammel og ny verdi

key	variable	old	new
<dbl></dbl>	<chr></chr>	<int></int>	<int></int>
1.003464e+14	varighet3	3	NA
1.003844e+13	KvpStonad	335846	212798

id [‡]	hoyde [‡]	vekt [‡]	kmi [‡]	kmi_org [‡]	imp [‡]	ç
1	147.32	52.16308	24.03476	24.03476	1	ç
2	149.86	53.07026	NA	23.63087	2	ç
3	152.40	54.43104	23.43563	23.43563	1	ç
4	154.94	55.79182	23,24039	23.24039	1	ç
5	157.48	57.15259	NA	23.04545	2	ç
6	160.02	58.51337	22.85107	22.85107	1	ç
7	162.56	59.87414	22.65750	22.65750	1	ç
8	165.10	61.23492	NA	22.46493	2	ç
9	167.64	63.04929	NA	22.43494	2	ç
10	170.18	64.41006	22.24010	22.24010	1	ç
11	172.72	66,22443	22.19898	22.19898	1	ç
12	175.26	68.03880	22.15088	22.15088	1	ç
13	177.80	69.85317	22.09645	22.09645	1	ç
14	180.34	72.12113	22.17575	22.17575	1	ç
15	182.88	74.38909	22.24215	22.24215	1	9

Kvalitetsindikatorer for imputering

- Imputeringsrate editeringsandel
 - «Sum antall imputerte verdier»/ «totalt antall verdier»
 - Eksempel women- bmi IR=4/15=0.267
- Usikkerhet variasjonskoeffisient $cv = \frac{\sigma}{\mu}$
 - Usikkerheten skapt av imputering i forhold til estimatet
 - Krever beregning av usikkerheten –lagt inn i kostra-pakken

Pakken lumberjack for logging av endringer

33

noun

(especially in North America) a person who <u>fells</u> trees, cuts them into logs, or <u>transports</u> them to a sawmill.

Lagre endringer med pakken *lumberjack*

- Lett å lagre endringer
- Mulig å studere effekt av imputering
- Pipe operator %>>%

```
library(lumberjack)
logger <- cellwise$new(key="ID")

out <- mydata %>>%
start_log(logger) %>>%
impute_lm(var1 ~ var2) %>>%
dump_log(file="mylog.csv", stop=TRUE)
```


Eksempel: Omsetningsindeksen

```
#rette opp 1000-feil og setter de som har <lik> til missing for å kunne imputere
mod <- modifier(
  if (is.na(OMS)) OMS <- 0,
  if (is.na(NACE)) NACE <- "47111",
  if (is.na(NACE2)) NACE2 <- "47",
  if (CMS_FMND > 0 & CMS> 0 & 750 < CMS/CMS_FMND & CMS/CMS_FMND < 1400) CMS <- CMS/1000,
  if (OMS > 0 & OMS = OMS FAAR ) OMS <- NA,
  if (OMS > 0 6 OMS == OMS FMND) OMS <- NA
logger <- cellwise$new(key="ID")
out<- doi %>>%
                                                                      step
                                                                                                     expression
start log(logger) %>>%
                                                                                                                                           <dbl>
modify(mod) %>>%
impute rlm(OMS ~ OMS FMND +OMS FAAR) %>>%
                                                                        1 2020-10-15 11:13:14 CEST
                                                                                                 NA modify(mod) 14219230025
                                                                                                                             OMS 474146 474.146
impute rlm(OMS ~ OMS FMND) %>>%
                                                                                                 NA modify(mod) 14219230026
                                                                        1 2020-10-15 11:13:14 CEST
                                                                                                                                  213740 213.740
dump log(file="minlog.csv", stop=TRUE)
log<-read.csv("minlog.csv")
                                                                        1 2020-10-15 11:13:14 CEST
                                                                                                 NA modify(mod) 14219230027
                                                                                                                                  484528 484.528
dim(log)
                                                                        1 2020-10-15 11:13:14 CEST
                                                                                                 NA modify(mod) 14219230028
                                                                                                                                  493670 493.670
head(log)
                                                                                                 NA modify(mod) 14219230029
                                                                        1 2020-10-15 11:13:14 CEST
                                                                                                                             OMS 529103 529.103
                                                                        1 2020-10-15 11:13:14 CEST
                                                                                                 NA modify(mod) 14219230030
                                                                                                                             OMS 209617 209.617
```


Logger typer

•	step [‡]	time [‡]	srcref [‡]	expression $\hat{ au}$	changed [‡]
1	1	2021-03-31 13:06:35	NA	start_log(cellwise\$new(key = "id"))	FALSE
2	2	2021-03-31 13:06:35	NA	$start_log(expression_logger\$new(mean = mean(height), sd \dots$	FALSE
3	3	2021-03-31 13:06:35	NA	start_log(filedump\$new(dir = paste0(getwd(), "/filedump_re	FALSE
4	4	2021-03-31 13:06:35	NA	mutate(women, bmi = weight/height^2)	TRUE
5	5	2021-03-31 13:06:35	NA	mutate(women, height = height * 0.0254)	TRUE

-	step [‡]	time	srcref [‡]	expression	key [‡]	variable [‡]	old [‡]	new [‡]
13	4	2021-03-31 13:06:35 CEST	NA	mutate(women, bmi = weight/height^2)	13	bmi	NA	0.03142857
14	4	2021-03-31 13:06:35 CEST	NA	mutate(women, bmi = weight/height^2)	14	bmi	NA	0.03154136
15	4	2021-03-31 13:06:35 CEST	NA	mutate(women, bmi = weight/height^2)	15	bmi	NA	0.03163580
16	5	2021-03-31 13:06:35 CEST	NA	mutate(women, height = height * 0.0254)	1	height	58	1.47320000
17	5	2021-03-31 13:06:35 CEST	NA	mutate(women, height = height * 0.0254)	10	height	67	1.70180000

simple\$new()
cellwise\$new(key = "id")
expression_logger\$new(mean=mean(height), sd=sd(height))
filedump\$new(dir = paste0(getwd(), "/filedump_res"))

•	step [‡]	srcref [‡]	expression	mean [‡]	sd [‡]
1	1	NA	$start_log(expression_logger\$new(mean = mean(height), sd \dots$	65.000	4.4721360
2	2	NA	$start_log(filedump\$new(dir = paste0(getwd(), "/filedump_re$	65.000	4.4721360
3	3	NA	mutate(women, bmi = weight/height^2)	65.000	4.4721360
4	4	NA	mutate(women, height = height * 0.0254)	1.651	0.1135923
5	5	NA	dump_log("simple")	1.651	0.1135923
6	6	NA	dump_log("cellwise")	1.651	0.1135923

 180 B	Mar 31, 2021, 1:06 PM
 180 B	Mar 31, 2021, 1:06 PM
 464 B	Mar 31, 2021, 1:06 PM
 521 B	Mar 31, 2021, 1:06 PM
 521 B	Mar 31, 2021, 1:06 PM
 521 B	Mar 31, 2021, 1:06 PM
 521 B	Mar 31, 2021, 1:06 PM

Kvalifiseringsprogrammet - automatisk korrigering

med pakken dcmodify, simputation og logging med pakken lumberjack

```
library(dcmodify)
library(simputation)
library(lumberjack)
kval3$varighet3<-kval3$varighet
G<-106399
#Barnetillegg 27 kr itdager i uken per barn
barnt<-27
regler <- modifier( if (KvpStonad > (2*G) + Antbu18*barnt*52*5 + 70000)
                        KvpStonad<-2*G + 52*5*Antbu18*barnt,</pre>
                   if (varighet != varighet2) varighet3<- NA</pre>
#Logfil
logfile1 <- tempfile(fileext=".csv")</pre>
logfile2 <- tempfile(fileext=".csv")</pre>
kval3$ID<- as.character(paste(kval3$PersonFodselsnr, kval3$KommuneNr, sep = ""))
out <- kval3 %L>%
  start log(cellwise$new(key="ID")) %L>%
  start log(expression logger$new(tot stonad=sum(KvpStonad), mean varighet=mean(varighet3, na.rm=TRUE)) ) %L>%
  modify(regler) %L>%
  impute pmm(varighet3~ KvpStonad -1) %L>%
  dump log("cellwise",file=logfile1) %L>%
  dump log("expression logger",file=logfile2,stop=TRUE)
a <-data.frame(read.csv(logfile1))
nrow(a)
head(a)
read.csv(logfile2)
```


A data.frame: 6 × 8

	step	time	srcref	expression	key	variable	old	new
	<int></int>	<chr></chr>	<lgl></lgl>	<chr></chr>	<dbl></dbl>	<chr></chr>	<int></int>	<int></int>
1	2	2021-09-22 12:03:04 UTC	NA	modify(regler)	1.003464e+14	varighet3	3	NA
2	2	2021-09-22 12:03:04 UTC	NA	modify(regler)	1.003844e+13	KvpStonad	335846	212798
3	2	2021-09-22 12:03:04 UTC	NA	modify(regler)	1.008282e+14	varighet3	3	NA
4	2	2021-09-22 12:03:04 UTC	NA	modify(regler)	1.008623e+14	varighet3	5	NA
5	2	2021-09-22 12:03:04 UTC	NA	modify(regler)	1.008761e+14	varighet3	9	NA
6	2	2021-09-22 12:03:04 UTC	NA	modify(regler)	1.008966e+13	KvpStonad	285917	212798

A data.frame: 4 × 5

step	srcref	expression	tot_stonad	mean_varighet
<int></int>	<lgl></lgl>	<chr></chr>	<int></int>	<dbl></dbl>
1	NA	start_log(expression_logger\$new(tot_stonad = sum(KvpStonad), mean_varighet = mean(varighet3, na.rm = TRUE)))	1339229279	7.688193
2	NA	modify(regler)	1295352854	9.029140
3	NA	impute_pmm(varighet3 ~ KvpStonad - 1)	1295352854	7.673370
4	NA	dump_log("cellwise", file = logfile1)	1295352854	7.673370

Eksempel Jupyter

Gruppeoppgave

- Vil det være vanskelig å logge endringer som blir gjort i den statistikken du jobber med?
- Blir det laget kvalitetsindikatorer i din statistikk for editering?
- Hva er fordelen med å ha kvalitetsindikatorer?

Øvelser: del 3

 Oppgave 3. Velg endelig modell for imputering og sett opp logging av endring av verdier og total

Oppsummering

Takk!

https://github.com/SNStatComp/awesome-official-statistics-software

Gjennomsnitt. RMSE: 0.28

Gjennomsnitt

• Kode:

impute_proxy(kmi ~ mean(kmi, na.rm = TRUE))

Gruppert gjennomsnitt. RMSE: 0.11

Gruppert gjennomsnitt

- Kode:
- impute_proxy(kmi ~ mean(kmi, na.rm = TRUE)|gruppe)
- gruppe <- cut(women\$hoyde,
 breaks = c(0, 155, 165, 175, 190),
 labels = c("gr1", "gr2", "gr3", "gr4"))

Random hotdeck

impute_rhd(kmi ~ 1, pool = "complete")

Random hotdeck. RMSE: 0.51

Random hot deck gruppe

- Kode:
- impute_rhd(kmi ~ 1 | gruppe, pool = "complete")

Random hotdeck, RMSE: 0.14

Nærmeste nabo imputering

- Kode:
- impute_knn(kmi ~ vekt + hoyde, k = 1)

Nærmeste nabo. RMSE: 0.14

Regresjonsimputering høyde

- Kode:
- impute_lm(kmi ~ hoyde)

Regresjonsimputering kmi-høyde. RMSE: 0.1

Regresjonsimputering - høyde og vekt

- Kode:
- impute_lm(kmi ~ hoyde+vekt)

Regresjonsimputering kmi-høyde+vekt. RMSE: 0.01

Prediktiv mean matching

- Kode:
- impute_pmm(kmi ~ vekt + hoyde)

predictiv mean matching. RMSE: 0.1

Sammenligning av modeller

Modell	RMSE
Gjennomsnitt	0.28
Gjennomsnitt gruppe	0.11
Random hotdeck	0.51
Random hotdeck gruppe	0.14
Nærmeste nabo	0.14
Lineær regresjon - høyde	0.10
Lineær regresjon – høyde+vekt	0.01
Predictiv mean matching – høyde+vekt	0.10

