

Confusion Matrix and ROC-II

Dr A. RAMESH

DEPARTMENT OF MANAGEMENT STUDIES

Agenda

- Receiver operating characteristics curve
- Optimum threshold value

ROC analysis

- True Positive Fraction
 - TPF = TP / (TP+FN)
 - also called *sensitivity*
 - true abnormals called abnormal by the observer
- **False Positive Fraction**
 - FPF = FP / (FP+TN)
- Specificity = TN / (TN+FP)
 - True normals called normal by the observer
 - FPF = 1 specificity

Evaluating classifiers (via their ROC curves)

Classifier A can't distinguish between normal and abnormal.

B is better but makes some mistakes.

C makes very few mistakes.

"Perfect"
means no
false positives
and no false
negatives.

ROC analysis

ROC = receiver operator/operating characteristic/curve

ROC space: good and bad classifiers.

- Good classifier.
 - High TPR.
 - Low FPR.

- Bad classifier.
 - Low TPR.
 - High FPR.

 Bad classifier (real picture).

Area Under the ROC Curve (AUC)

Receiver Operator Characteristic Curve

Area Under the ROC Curve (AUC)

- What is a good AUC?
 - Maximum of 1 (perfect prediction)

Receiver Operator Characteristic Curve

Area Under the ROC Curve (AUC)

- What is a good AUC?
- Maximum of 1 (perfect prediction)
- Minimum of 0.5 (just guessing)

Receiver Operator Characteristic Curve

Selecting a Threshold using ROC

- Choose best threshold for best trade off
 - cost of failing to detect positives
 - costs of raising false alarms

ROC Plot

 A typical look of ROC plot with few points in it is shown in the following figure.

Note the four cornered points are the four extreme cases of classifiers

Interpretation of Different Points in ROC Plot

- The four points (A, B, C, and D)
- A: TPR = 1, FPR = 0, the ideal model, i.e., the perfect classifier, no false results
- B: TPR = 0, FPR = 1, the worst classifier, not able to predict a single instance
- C: TPR = 0, FPR = 0, the model predicts every instance to be a Negative class, i.e., it is an ultra-conservative classifier
- D: TPR = 1, FPR = 1, the model predicts every instance to be a Positive class, i.e., it is an ultra-liberal classifier

Interpretation of Different Points in ROC Plot

- Let us interpret the different points in the ROC plot.
- The points on the upper diagonal region
- All points, which reside on upper-diagonal region are corresponding to classifiers "good" as their TPR is as good as FPR (i.e., FPRs are lower than TPRs)
- Here, X is better than Z as X has higher TPR and lower FPR than Z.
- If we compare X and Y, neither classifier is superior to the other

Interpretation of Different Points in ROC Plot

- Let us interpret the different points in the ROC plot.
- The points on the lower diagonal region
 - The Lower-diagonal triangle corresponds to the classifiers that are worst than random classifiers
 - A classifier that is worser than random guessing, simply by reversing its prediction, we can get good results.

W'(0.2, 0.4) is the better version than W(0.4, 0.2), W' is a mirror reflection of W

Tuning a Classifier through ROC Plot

- Using ROC plot, we can compare two or more classifiers by their TPR and FPR values and this plot also depicts the trade-off between TPR and FPR of a classifier.
- Examining ROC curves can give insights into the best way of tuning parameters of classifier.
- For example, in the curve C2, the result is degraded after the point P.
- Similarly for the observation C1, beyond Q the settings are not acceptable.

Comparing Classifiers trough ROC Plot

- We can use the concept of "area under curve" (AUC) as a better method to compare two or more classifiers.
- If a model is perfect, then its AUC = 1.
- If a model simply performs random guessing, then its AUC = 0.5
- A model that is strictly better than other, would have a larger value of AUC than the other.
- Here, C3 is best, and C2 is better than C1 as AUC(C3)>AUC(C2)>AUC(C1).

ROC curve comparison

ROC curve extremes

Best Test:

Worst test:

The distributions don't overlap at all

The distributions overlap completely

ROC curve extremes

Typical ROC

ROC curve extremes

Example

- Let us consider an application of logistic regression involving a direct mail promotion being used by Simmons Stores.
- Simmons owns and operates a national chain of women's apparel stores.
- Five thousand copies of an expensive four-color sales catalog have been printed, and each catalog includes a coupon that provides a \$50 discount on purchases of \$200 or more.
- The catalogs are expensive and Simmons would like to send them to only those customers who have the highest probability of using the coupon.

Sources: Statistics for Business and Economics,11th Edition by David R. Anderson (Author), Dennis J. Sweeney (Author), Thomas A. Williams (Author)

Variables

- Management thinks that annual spending at Simmons Stores and whether
 a customer has a Simmons credit card are two variables that might be
 helpful in predicting whether a customer who receives the catalog will use
 the coupon.
- Simmons conducted a pilot study using a random sample of 50 Simmons credit card customers and 50 other customers who do not have a Simmons credit card.
- Simmons sent the catalog to each of the 100 customers selected.
- At the end of a test period, Simmons noted whether the customer used the coupon or not?

Data (10 customer out of 100)

Customer	Spending	Card	Coupon
1	2.291	1	0
2	3.215	1	0
3	2.135	1	0
4	3.924	0	0
5	2.528	1	0
6	2.473	0	1
7	2.384	0	0
8	7.076	0	0
9	1.182	1	1
10	3.345	0	0

Explanation of Variables

- The amount each customer spent last year at Simmons is shown in thousands of dollars and the credit card information has been coded as 1 if the customer has a Simmons credit card and 0 if not.
- In the Coupon column, a 1 is recorded if the sampled customer used the coupon and 0 if not.

Loading data file and get some statistical detail

```
In [1]:
               import pandas as pd
                                                                In [3]:
                                                                             data.describe() #it is used to get some statistical detail
               import matplotlib.pyplot as plt
                                                                Out[3]:
                                                                                Customer
                                                                                          Spending
In [2]:
                data = pd.read excel('Simmons.xls')
                                                                         count 100.000000
                                                                                        100.000000
                data.head()
                                                                                50.500000
                                                                                          3.333790
                                                                          mean
                                                                                29.011492
                                                                                          1.741298
Out[2]:
              Customer Spending Card Coupon
                                                                                 1.000000
                                                                                          1.058000
                      1
                            2.291
                                              0
                                                                                25.750000
                                                                                          2.059000
                            3.215
                                      1
                                               0
                                                                                50.500000
                                                                                          2.805500
           2
                            2.135
                      3
                                      1
                                              0
                                                                                75.250000
                                                                                          4.468250
```

0

0

1

3.924

2.528

4

4

5

Card

100.000000

0.500000

0.502519

0.000000

0.000000

0.500000

1.000000

1.000000

7.076000

100.000000

Coupon

100.000000

0.400000

0.492366

0.000000

0.000000

0.000000

1.000000

1.000000

Method's description

• Dataframe.describe(): This method is used to get basic statistical details such as central tendency, dispersion and shape of dataset's distribution.

- Numpy.unique(): This method gives unique values in particular column.
- Series.value_counts(): Returns object containing counts of unique values.
- <u>ravel()</u>: It will return one dimensional array with all the input array elements.

Split dataset into training and testing sets

```
data['Coupon'].unique() # It gives unique value in perticular column
In [4]:
Out[4]: array([0, 1], dtype=int64)
In [5]:
            data['Coupon'].value counts()
Out[5]:
             60
        Name: Coupon, dtvpe: int64
In [7]:
          1 from sklearn import linear model
          2 from sklearn.model selection import train test split
          3 from sklearn.linear model import LogisticRegression
In [8]:
        1 x = data[['Card', 'Spending']]
         2 y = data['Coupon'].values.reshape(-1,1)
         3 x train, x test, y train, y_test = train_test_split(x, y, test_size=0.25, random_state = 42)
In [9]:
            len(x train), len(y train), len(x test), len(y test)
Out[9]: (75, 75, 25, 25)
```


Building the model and predicting values

```
In [10]:
         1 Lreg = LogisticRegression(solver='lbfgs')
          2 Lreg.fit(x train, y train.ravel()) #ravel() will return 1D array with all the input-array elements
Out[10]: LogisticRegression(C=1.0, class weight=None, dual=False, fit intercept=True,
                   intercept scaling=1, max iter=100, multi class='warn',
                   n jobs=None, penalty='12', random state=None, solver='lbfgs',
                   tol=0.0001, verbose=0, warm start=False)
         1 | y predict = Lreq.predict(x test)
In [11]:
           2 y predict
Out[11]: array([1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1,
                1, 0, 0], dtype=int64)
In [12]:
         1 y predict train = Lreg.predict(x train)
          2 y predict train
Out[12]: array([0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1,
                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
                1, 1, 0, 0, 0, 0, 1, 1, 0], dtype=int64)
```


Calculate probability of predicting data values

```
y prob train = Lreg.predict proba(x train)[:,1]
In [13]:
          2 y prob train.reshape(1,-1)
Out[13]: array([[0.49622117, 0.32880793, 0.44329114, 0.33320924, 0.41456465,
                 0.32890329, 0.3975043, 0.66921229, 0.25844531, 0.63672372,
                 0.29274386, 0.28466974, 0.5159296 , 0.41992276, 0.24342356,
                 0.528514 , 0.47965107, 0.52805789, 0.33191449, 0.27457435,
                 0.49179296, 0.63261616, 0.24690181, 0.47089452, 0.27842076,
                 0.41663875, 0.36155602, 0.49970327, 0.23621636, 0.37860052,
                 0.48809323, 0.28877877, 0.28563859, 0.37231882, 0.65309742,
                 0.43807264, 0.33638478, 0.40406607, 0.23431177, 0.37282384,
                 0.49970327, 0.39768396, 0.32880793, 0.25782472, 0.47393834,
                 0.42878861, 0.26520939, 0.33320924, 0.54682499, 0.45446086,
                 0.44326597, 0.4965167, 0.60065954, 0.38989654, 0.49149447,
                 0.27414424, 0.27785686, 0.67464141, 0.28195004, 0.48593427,
                 0.38633222, 0.31373499, 0.42810085, 0.27418723, 0.44371771,
                 0.41629601, 0.642004 , 0.6571001 , 0.44068025, 0.28195004,
                 0.40217015, 0.43807264, 0.50977653, 0.57944626, 0.2904233 ]])
In [14]:
           1 | y prob = Lreg.predict proba(x test)[:,1]
             y prob.reshape(1,-1)
           3 y prob
Out[14]: array([0.52802946, 0.49516653, 0.45703306, 0.27712052, 0.34390047,
                 0.26825171, 0.27712052, 0.607686 , 0.42836534, 0.43637155,
                 0.31387455, 0.23676248, 0.45703306, 0.43602768, 0.37596116,
                 0.44900317, 0.46952365, 0.68521935, 0.25167254, 0.47073304,
                 0.42361093, 0.56580644, 0.52792177, 0.40302605, 0.27457435])
```


Summary for logistic model

```
1 x = data[['Spending', 'Card']]
In [15]:
           2 y = data['Coupon']
             import statsmodels.api as sm
           5 \times 1 = sm.add constant(x)
           6 logit model=sm.Logit(y,x1)
          7 result=logit model.fit()
           8 print(result.summary())
         Optimization terminated successfully.
                  Current function value: 0.604869
                  Iterations 5
                                    Logit Regression Results
                                        Coupon No. Observations:
         Dep. Variable:
                                                                                     100
                                         Logit Df Residuals:
         Model:
                                                                                      97
         Method:
                                           MLE Df Model:
                              Mon, 16 Sep 2019 Pseudo R-squ.:
                                                                                 0.1012
         Date:
                                      10:15:13 Log-Likelihood:
                                                                                 -60.487
         Time:
         converged:
                                          True LL-Null:
                                                                                 -67.301
                                                 LLR p-value:
                                                                                0.001098
                                                           P>|z|
                                                                      [0.025
                                                                                  0.9751
                          coef
                                  std err
                       -2.1464
                                    0.577
                                              -3.718
                                                          0.000
                                                                     -3.278
                                                                                  -1.015R
         const
         Spending
                       0.3416
                                    0.129
                                               2.655
                                                          0.008
                                                                     0.089
                                                                                  0.594
                                                                       0.227
         Card
                        1.0987
                                    0.445
                                                2.471
                                                          0.013_
                                                                                   1.970
```


Accuracy Checking

- By using accuracy_score function.
- By using confusion matrix

	Predicted (0)	Predicted (1)
Actual (0)	True Negative(tn)	False Positive(fp)
Actual (1)	False Negative(fn)	True Positive(tp)

Calculating Accuracy Score using Confusion Matrix

```
In [16]:
              from sklearn.metrics import accuracy score
              score =accuracy score(y test,y predict)
              score
Out[16]:
         0.76
In [17]:
           1 from sklearn.metrics import confusion matrix
              confusion matrix(y test, y predict)
Out[17]: array([[15,
                            dtype=int64)
In [18]:
             tn, fp, fn, tp = confusion matrix(y test, y predict).ravel()
                                                                          True Negatives: 15
          2 print("True Negatives: ",tn)
                                                                          False Positives: 1
          3 print("False Positives: ",fp)
                                                                          False Negatives: 5
            print("False Negatives: ",fn)
                                                                          True Positives: 4
             print("True Positives: ",tp)
```


Generating Classification Report

```
In [19]: 1 from sklearn.metrics import classification_report 2 print(classification_report(y_test, y_predict))
```

		precision	recall	f1-score	support
	0 1	0.75 0.80	0.94 0.44	0.83 0.57	16 9
micro	avg	0.76	0.76	0.76	25
macro	avg	0.78	0.69	0.70	25
weighted	avg	0.77	0.76	0.74	25

- Recall gives us an idea about when it's actually yes, how often does it predict yes.
- Precision tells us about when it predicts yes, how often is it correct

Interpreting Classification Report

Precision = tp / (tp + fp)

• Accuracy =
$$(tp + tn) / (tp + tn + fp + fn)$$

Recall= tp / (tp + fn)

	Predicted (U)	Predicted (1)	
Actual (0)	tn	fp	
Actual (1)	fn	tp	

Thank You

