Teoria de Linguagem

Expressões Regulares

Vinicius H. S. Durelli

oxtimes durelli@ufsj.edu.br

Organização

- Contextualização
- 2 Definição
 - União
 - Concatenação
 - Concatenação sucessiva
- 3 Exemplos
- 4 Parênteses, precedência, operador extra e leis algébricas das ERs
- 5 Qual a classe de linguagens denotada por expressões regulares?
- 6 Considerações finais

Expressões regulares (ERs)...

Em aritmética, operações como + e \times podem ser utilizadas para construir expressões como $(5+3) \times 4$.

De forma similar, *expressões regulares* podem ser **usadas para criar expressões que descrevem linguagens**. Por exemplo, considere a expressão regular abaixo:

$$(0 \cup 1)0^*$$

Da mesma forma que o resultado da expressão aritmética acima é 32, o valor de uma expressão regular é uma linguagem (Sipser 2012).

Estamos falando sobre que tipo de formalismo?

ERs são um **formalismo denotacional**, também denominado formalismo funcional, pois:

- Definem um domínio que permite a caracterização do conjunto de palavras admissíveis em linguagens;
- Tratam-se de funções composicionais (horizontalmente).

Visto que a partir de uma ER é possível **inferir ("gerar")** as palavras da linguagem denotada, esse formalismo é algumas vezes referido como **formalismo gerador**.

Definição formal: expressões regulares

Definição → Expressão Regular

ightharpoonup Uma expressão regular (ER) sobre um alfabeto Σ é indutivamente definida como segue (Menezes 2011):

+ Base:

- ∅ é uma ER e denota a linguagem vazia;
- ε é uma ER e denota a linguagem contendo somente a palavra vazia, ou seja, $\{\varepsilon\}$;
- Qualquer símbolo x pertencente a Σ é uma ER e denota a linguagem contendo uma única palavra, ou seja, $\{x\}$;

+ Passo de indução:

- Se r e s são ERs e denotam as linguagens R e S, respectivamente, então:
 - $(r \cup s)$ é uma ER e denota a linguagem $R \cup S$;
 - $(r \cdot s)$ é uma ER e denota a linguagem $RS = \{uv | u \in R \text{ e } v \in S\};$
 - (r^*) é uma ER e denota a linguagem R^* .

União

Conforme mencionado, $(r \cup s)$ é uma ER e denota a linguagem $R \cup S$, ou seja, o conjunto de palavras que aparecem em R, S ou em ambos.

Exemplo: se $R = \{001, 10, 111\}$ e $S = \{\varepsilon, 001\}$, então

$$R \cup S = \{\varepsilon, 10, 001, 111\}$$

 \triangle Crie uma ER que gere a seguinte linguagem sobre $\Sigma = \{a, b\}$:

$$L = \{ w \mid w \in a, ab \text{ ou } aba \}$$

Concatenação

Conforme mencionado, $(r \cdot s)$ é uma ER e denota a linguagem $R \cdot S$, ou seja, o conjunto de palavras que podem ser formadas pela concatenação de qualquer palavra em R com qualquer palavra em S^1

Exemplo: se
$$R=\{001,10,111\}$$
 e $S=\{\varepsilon,001\}$, então
$$R\cdot S=\{001,10,111,001001,10001,111001\}$$

 \triangle Crie uma ER que gere a seguinte linguagem sobre $\Sigma = \{a, b, c\}$:

 $L = \{w \mid w \text{ cont\'em } a, ab \text{ ou } aba \text{ como prefixo e } cc \text{ como sufixo}\}$

Omitindo o operador ·

Note que, por questões de simplicidade, o operador \cdot pode ser omitido.

¹Conceitualmente semelhante ao produto cartesiano.

Concatenação sucessiva (fechamento de Kleene)

Exemplo: se $R=\{0,1\}$ então

$$R^* = \{\varepsilon, 0, 1, 00, 01, 10, 11, \ldots\}$$

 \triangle Crie uma ER que gere a seguinte linguagem sobre $\Sigma = \{a, b, c\}$:

 $L = \{ w \mid w \text{ contém } aa \text{ como subpalavra} \}$

- Contextualização
- 2 Definição
 - União
 - Concatenação
 - Concatenação sucessiva
- 3 Exemplos
- 4 Parênteses, precedência, operador extra e leis algébricas das ERs
- Qual a classe de linguagens denotada por expressões regulares?
- 6 Considerações finais

Exemplos de ER e suas respectivas linguagens

A tabela a seguir apresenta alguns exemplos de ERs.

ER	Linguagem Representada
aa	Somente a palavra <i>aa</i>
ab*	Palavras que iniciam com a, seguido por zero ou mais bs
$(a \cup b)^*$	Todas as palavras sobre $\{a, b\}$
a* ba* ba*	Todas as palavras contendo exatamente dois bs
$(a \cup b)^*(aa \cup bb)$	Todas as palavras que terminam com <i>aa</i> ou <i>bb</i>

 \triangle Dado $\Sigma = \{a, b\}$, crie ERs que gerem as linguagens descritas a seguir.

Exercício ①: $L_{e1} = \{ w \in \Sigma^* : w \text{ possui pelo menos um par de } a \text{ consecutivos} \}$

Exercício ②: $L_{e2} = \{a^n b^m : n \geqslant 3 \text{ e } m \text{ é par}\}$

 \triangle Dado $\Sigma = \{a, b\}$, crie ERs que gerem as linguagens descritas a seguir.

Exercício ①: $L_{e1} = \{ w \in \Sigma^* : w \text{ possui pelo menos um par de } a \text{ consecutivos} \}$

$$(a \cup b)^*aa(a \cup b)^*$$

Exercício ②: $L_{e2} = \{a^n b^m : n \geqslant 3 \text{ e } m \text{ \'e par}\}$

 \triangle Dado $\Sigma = \{a, b\}$, crie ERs que gerem as linguagens descritas a seguir.

Exercício ①: $L_{e1} = \{ w \in \Sigma^* : w \text{ possui pelo menos um par de } a \text{ consecutivos} \}$

$$(a \cup b)^*aa(a \cup b)^*$$

Exercício ②: $L_{e2} = \{a^n b^m : n \geqslant 3 \text{ e } m \text{ é par}\}$

 \triangle Dado $\Sigma = \{a, b\}$, crie ERs que gerem as linguagens descritas a seguir.

Exercício ①: $L_{e1} = \{ w \in \Sigma^* : w \text{ possui pelo menos um par de } a \text{ consecutivos} \}$

$$(a \cup b)^*aa(a \cup b)^*$$

Exercício ②: $L_{e2} = \{a^n b^m : n \geqslant 3 \text{ e } m \text{ é par}\}$

$$L = \{0^{2n}1^{2m+1} \mid n\geqslant 0, m\geqslant 0\}$$
 Ou Conjunto de todas as palavras com um número par de 0 e ímpar de 1 .

 $\mbox{\ensuremath{\triangle}}\mbox{\ensuremath{D}}\mbox{\ensuremath{D}}\mbox{\ensuremath{\Delta}}\mbox{\ensuremath{D}}\mbox{\ensuremath{\Delta}}\mbox{\ensuremath{D}}\mbox{\ensuremath{\Delta}}\mbox{\ensuremath{D}}\mbox{\ensuremath{\Delta}}\mbox{\ensuremath{D}}\mbox{\ensuremath{\Delta}}\mbox{\ensuremath{D}}\mbox{\ensuremath{\Delta}}\mbox{\ensuremath{D}}\mbox{\ensuremath{\Delta}}\mbox{\ensuremath{D}}\mbox{\ensuremath{\Delta}}\mbox{\ensuremath{\Delta}}\mbox{\ensuremath{D}}\mbox{\ensuremath{\Delta}}\mbox{\$

Exercício 4: $L_{e4} = \{ w \in \Sigma^* : \text{ o número de } 0 \text{ é divisível por } 5 \}$

Exercício ⑤: $L_{e5} = \{w : w \text{ contém pelo menos um } 0 \text{ e um } 1\}$

 $\ \ \, \square$ Dado $\Sigma=\{0,1\},$ crie ERs que gerem as linguagens descritas a seguir.

Exercício 4: $L_{e4} = \{ w \in \Sigma^* : \text{ o número de 0 é divisível por 5} \}$

$$(1*01*01*01*01*01*)* \cup 1*$$

Exercício (5): $L_{e5} = \{ w : w \text{ contém pelo menos um } 0 \text{ e um } 1 \}$

 $\ \ \, \square$ Dado $\Sigma=\{0,1\},$ crie ERs que gerem as linguagens descritas a seguir.

Exercício 4: $L_{e4} = \{ w \in \Sigma^* : \text{ o número de 0 é divisível por 5} \}$

$$(1*01*01*01*01*01*)* \cup 1*$$

Exercício 5: $L_{e5} = \{ w : w \text{ contém pelo menos um } 0 \text{ e um } 1 \}$

$$00^*1\cdot (0\cup 1)^*\cup 11^*0\cdot (0\cup 1)^*$$

- Contextualização
- 2 Definição
 - União
 - Concatenação
 - Concatenação sucessiva
- 3 Exemplos
- 4 Parênteses, precedência, operador extra e leis algébricas das ERs
- Qual a classe de linguagens denotada por expressões regulares?
- 6 Considerações finais

Parênteses, precedência e um operador extra...

Normalmente, parênteses são omitidos em ERs, respeitando as seguintes convenções: a concatenação sucessiva (i.e., *) tem precedência sobre a concatenação e a união, a concatenação tem precedência sobre a união.

Precedência mais alta		
Concatenação sucessiva	*	
Concatenação		
União		
Precedência mais baixa		

R^+

 R^+ é usado como uma **abreviação** para $R \cdot R^*$. R^* inclui todas as palavras formadas por 0 ou mais concatenações de palavras in R, enquanto R^+ contém palavras formadas por uma ou mais concatenações de palavras em R, i.e., $R^+ \cup \varepsilon = R^*$.

Principais leis algébricas das ERs...

Sejam, r, s, e t três ERs quaisquer. Então:

- Associatividade:
 - da união: $(r \cup s) \cup t = r \cup (s \cup t)$;
 - da concatenação: $(r \cdot s) \cdot t = r \cdot (s \cdot t)$;
- Comutativa:
 - da união: $r \cup s = s \cup r$;
- Flemento neutro:
 - da união: $r \cup \emptyset = \emptyset \cup r = r$:
 - da concatenação: $r \cdot \emptyset = \emptyset \cdot r = r$;
- Distribuição da concatenação sobre a união:
 - à esquerda: $r \cdot (s \cup t) = r \cdot s \cup r \cdot t$;
 - à direita: $(r \cup s) \cdot t = r \cdot t \cup s \cdot t$;

ERs denotam exatamente a classe das linguagens regulares

ERs denotam exatamente a classe das linguagens regulares.

Se r é uma ER, a linguagem denotada é dita a **linguagem gerada** por r, sendo representada por

$$L(r)$$
 ou $GERA(r)$

 É possível denotar as mesmas linguagens reconhecidas por autômatos (Sipser 2012).

Teorem:

Se r é uma ER, então GERA(r) é uma linguagem regular.

ERs denotam exatamente a classe das linguagens regulares

ERs denotam exatamente a classe das linguagens regulares.

Se r é uma ER, a linguagem denotada é dita a **linguagem gerada** por r, sendo representada por

$$L(r)$$
 ou $GERA(r)$

 É possível denotar as mesmas linguagens reconhecidas por autômatos (Sipser 2012).

Tipo 0 Tipo 1 Tipo 2

Teorema

Se r é uma ER, então GERA(r) é uma linguagem regular.

Prova (1)

Se r é uma ER, então GERA(r) é uma linguagem regular.

Por definição, uma linguagem é regular se é possível construir um autômato que reconheça tal linguagem.

Ideia central

É necessário mostrar que dada uma ER r qualquer, é possível construir um autômato finito \mathcal{M} tal que:

$$ACEITA(\mathcal{M}) = GERA(r)$$

+ Base: Seja r uma ER com zero operadores. Então r só pode ser da forma:

$$r = \emptyset$$

 $r = \varepsilon$
 $r = x (x \in \Sigma)$

Os autômatos finitos:

- $\mathcal{M}_1 = (\emptyset, \{q_0\}, \delta_1, q_0, \emptyset)$
- $\mathcal{M}_2 = (\emptyset, \{q_f\}, \delta_2, q_f, \{q_f\})$
- $\mathcal{M}_3 = (\{x\}, \{q_0, q_f\}, \delta_3, q_0, \{q_f\})$

ilustrados abaixo, aceitam as linguagens acima, respectivamente.

- + Hipótese de indução: Suponha que para algum $n \in \mathbb{N}$, e para qualquer $u \in \mathbb{N}$ tal que $u \leqslant n$, se o número de operadores de r é u, é possível definir um autômato finito que aceita a linguagem gerada por r.
- **+** Passo de indução: Seja r uma ER com n+1 operadores. Então r pode ser representada por um dos seguintes casos, nos quais r_1 e r_2 individualmente, possuem no máximo n operadores e, conjuntamente, possuem n+1:

$$r = r_1 \cup r_2$$

$$r = r_1 \cdot r_2$$

$$r = r_1^*$$

Prova (4)

Portanto, por hipótese de indução é possível construir os autômatos:

•
$$\mathcal{M}_1 = (\Sigma_1, Q_1, \delta_1, q_{0_1}, \{q_{f_1}\})$$
 e

•
$$\mathcal{M}_2 = (\Sigma_2, Q_2, \delta_2, q_{0_2}, \{q_{f_2}\})$$
 j

tais que:

- ACEITA $(\mathcal{M}_1) = \mathsf{GERA}(r_1)$ e
- ACEITA $(\mathcal{M}_2) = \mathsf{GERA}(r_2)$

Nota-se que \mathcal{M}_1 e \mathcal{M}_2 possuem somente um estado final. Adicionalmente, suponha que os conjuntos de estados desses autômatos sejam disjuntos.

Prova (5)

Para $r=r_1\cup r_2$ é possível criar o autômato abaixo (suponha $q_0\not\in Q_1\cup Q_2$ e $q_f\not\in Q_1\cup Q_2$):

$$\mathcal{M} = (\Sigma_1 \cup \Sigma_2, Q_1 \cup Q_2 \cup \{q_0, q_f\}, \, \delta, q_0, \{q_f\})$$

 \mathcal{M} (ilustrado ao lado) é tal que a partir do estado inicial q_0 , realiza transições vazias para os estados q_{0_1} e q_{0_2} . Assim, M_1 e M_2 processam de forma nãodeterminística e, portanto, é suficiente um dos "módulos" aceitar a entrada para o autômato M aceitar;

Prova (6)

Para $r = r_1 \cdot r_2$ é possível criar o autômato abaixo

$$\mathcal{M} = (\Sigma_1 \cup \Sigma_2, \textit{Q}_1 \cup \textit{Q}_2, \, \delta, \textit{q}_{0_1}, \{\textit{q}_{\textit{f}_2}\})$$

 \mathcal{M} (ilustrado abaixo), ao processar os módulos \mathcal{M}_1 e \mathcal{M}_2 em sequência, aceita a entrada se, e somente se, o prefixo pertencer a $ACEITA(\mathcal{M}_1)$ e o sufixo a $ACEITA(\mathcal{M}_2)$;

Prova (7)

Para $r=r_1^*$ é possível criar o autômato abaixo

$$\mathcal{M} = (\Sigma_1, Q_1 \cup \{q_0, q_f\}, \delta, q_0, \{q_f\})$$

 \mathcal{M} (ilustrado abaixo), é tal que a transição vazia de q_0 para q_f garante a aceitação da palavra vazia e a transição de q_{f_1} para q_{0_1} permite o sucessivo processamento de \mathcal{M}_1 para assegurar o reconhecimento de duas ou mais concatenações sucessivas.

- Contextualização
- 2 Definição
 - União
 - Concatenação
 - Concatenação sucessiva
- 3 Exemplos
- 4 Parênteses, precedência, operador extra e leis algébricas das ERs
- 5 Qual a classe de linguagens denotada por expressões regulares?
- 6 Considerações finais

Considerações finais...

Na aula de hoje nós vimos:

- Expressões regulares (ERs).
 - Precedência;
 - Leis algébricas.
- Equivalência entre as linguagens denotadas por ERs e autômatos finitos.

Na próxima aula: gramáticas livres de contexto.

Referências

- Hopcroft, John E., Rajeev Motwani, & Jeffrey D. Ullman (2006). Introduction to Automata Theory, Languages, and Computation. 3rd ed. Pearson, p. 750.
- Menezes, Paulo Blauth (2011). *Linguagens Formais e Autômatos*. 6th ed. Livros Didáticos Informática da UFRGS. Bookman, p. 256.
- Sipser, Michael (2012). *Introduction to the Theory of Computation*. 3rd ed. Cengage Learning, p. 480.
- ©Próxima aula: exercício(s) sobre o conteúdo da aula de hoje! ◎

"Math" icon by AFY Studio from the Noun Project (https://thenounproject.com/).