Graphs Algorithms I

Breadth First Search


```
BFS(G, s)
                                                                                      /* G = (V, E) and s \in V */
    color[s] \leftarrow grey; d[s] \leftarrow 0; p[s] \leftarrow NIL
    For each v \in V - \{s\} do
               color[v] \leftarrow white
               d[v] \leftarrow \infty
               p[v] \leftarrow NIL
    Q \leftarrow \text{empty} ; ENQ(Q, s)
                                                                    Q: nodes that are discovered but not yet explored */
     While Q is not empty do
                                                                                      Explore u */
               u \leftarrow DEQ(Q)
               For each (u, v) \in E do
                                                                                  /* Explore edge (u,v) */
                        If color[v] = white then do
                                                                                  /* If v is first discovered */
                               color[v] ← grey
                                d[v] \leftarrow d[u] + 1
                                p[v] \leftarrow u
                                ENQ(Q, v)
                        End If
               End For
                                                                                      Done exploring u */
               color[u] \leftarrow black
    End While
                                    © 2019 by Jay Balasundaram and Sam Toueg. This document may not be posted
```

End BFS

on the internet without the written permission of the copyright owners.

Breadth First Search

Proof of Correctness

For every node v of G:

For every node v of G:

v's discovery path from s : $s \rightarrow u_1 \rightarrow u_2 \rightarrow ... \rightarrow u \rightarrow v$

For every node v of G:

v's discovery path from s : $s \rightarrow u_1 \rightarrow u_2 \rightarrow ... \rightarrow u \rightarrow v$

Length of discovery path: d[v]

For every node v of G:

v's discovery path from s : $s \rightarrow u_1 \rightarrow u_2 \rightarrow ... \rightarrow u \rightarrow v$

Length of discovery path: d[v]

v's shortest path from s : $s \rightarrow v_1 \rightarrow v_2 \rightarrow ... \rightarrow v_k \rightarrow v$

For every node v of G:

v's discovery path from s: $s \rightarrow u_1 \rightarrow u_2 \rightarrow ... \rightarrow u \rightarrow v$

Length of discovery path: d[v]

v's shortest path from s : $s \rightarrow v_1 \rightarrow v_2 \rightarrow ... \rightarrow v_k \rightarrow v$

Length of shortest path: $\delta(s,v)$

(Distance)

For every node v of G:

v's discovery path from s: $s \rightarrow u_1 \rightarrow u_2 \rightarrow ... \rightarrow u \rightarrow v$

Length of discovery path: d[v]

v's shortest path from s : $s \rightarrow v_1 \rightarrow v_2 \rightarrow ... \rightarrow v_k \rightarrow v$

Length of shortest path : $\delta(s,v)$

(Distance)

Lemma 0: $d[v] \delta(s,v)$

For every node v of G:

v's discovery path from s : $s \rightarrow u_1 \rightarrow u_2 \rightarrow ... \rightarrow u \rightarrow v$

Length of discovery path: d[v]

v's shortest path from s : $s \rightarrow v_1 \rightarrow v_2 \rightarrow ... \rightarrow v_k \rightarrow v$

Length of shortest path : $\delta(s,v)$

(Distance)

Lemma 0: $d[v] \ge \delta(s,v)$

We would like to prove the following:

Main Theorem:

After BFS(s), for every $v \in V$,

$$d[v] = \delta(s,v)$$

We would like to prove the following:

Main Theorem:

After BFS(s), for every $v \in V$,

$$d[v] = \delta(s,v)$$

That is: the discovery path to v is a shortest path to v

Lemma 1:

If u enters Q

Lemma 1:

If u enters Q before v enters Q during the execution of BFS(s), then:

Lemma 1:

If u enters Q before v enters Q during the execution of BFS(s), then:

Lemma 1:

If u enters Q before v enters Q during the execution of BFS(s), then:

Lemma 1:

If u enters Q before v enters Q during the execution of BFS(s), then:

© 2019 by Jay Balasundaram and Sam Toueg. This document may not be posted on the internet without the written permission of the copyright owners.

Lemma 1:

If u enters Q before v enters Q during the execution of BFS(s), then

Lemma 1:

If u enters Q before v enters Q during the execution of BFS(s), then

$$d[u] \le d[v]$$

Lemma 1:

If u enters Q before v enters Q during the execution of BFS(s), then

$$d[u] \le d[v]$$

Proof of Lemma 1:

Lemma 1:

If u enters Q before v enters Q during the execution of BFS(s), then

$$d[u] \le d[v]$$

Proof of Lemma 1:

Suppose, for contradiction, that Lemma 1 is false.

Lemma 1:

If u enters Q before v enters Q during the execution of BFS(s), then

$$d[u] \le d[v]$$

Proof of Lemma 1:

Suppose, for contradiction, that Lemma 1 is false.

Let v be the first node that enter Q such that d[u] > d[v] for some node u
that entered Q before v.

Lemma 1:

If u enters Q before v enters Q during the execution of BFS(s), then

$$d[u] \le d[v]$$

Proof of Lemma 1:

Suppose, for contradiction, that Lemma 1 is false.

Let v be the first node that enter Q such that d[u] > d[v] for some node u
that entered Q before v.

	Q		
u	• • • •	V	
d[u]	> d[v]		

• v ≠ s

Q			
u	• • • •	V	
d[u]	> d[v]		

• v ≠ s because no vertex u enters Q before s

- v ≠ s because no vertex u enters Q before s
- u ≠ s

- v ≠ s because no vertex u enters Q before s
- $u \neq s$ because d[s] = 0 and $d[v] \geq 0$

- v ≠ s because no vertex u enters Q before s
- $u \neq s$ because d[s] = 0 and $d[v] \geq 0$

 \Rightarrow u and v entered Q during the exploration of some nodes, say u' and v' respectively

- v ≠ s because no vertex u enters Q before s
- $u \neq s$ because d[s] = 0 and $d[v] \geq 0$
 - \Rightarrow u and v entered Q during the exploration of some nodes, say u' and v' respectively

$$\Rightarrow$$
 d[u] =

- v ≠ s because no vertex u enters Q before s
- $u \neq s$ because d[s] = 0 and $d[v] \geq 0$
 - \Rightarrow u and v entered Q during the exploration of some nodes, say u' and v' respectively

$$\Rightarrow$$
 d[u] = d[u'] + 1

- v ≠ s because no vertex u enters Q before s
- $u \neq s$ because d[s] = 0 and $d[v] \geq 0$
 - \Rightarrow u and v entered Q during the exploration of some nodes, say u' and v' respectively

$$\Rightarrow$$
 d[u] = d[u'] + 1 and d[v] = d[v'] + 1

- v ≠ s because no vertex u enters Q before s
- $u \neq s$ because d[s] = 0 and $d[v] \geq 0$
 - \Rightarrow u and v entered Q during the exploration of some nodes, say u' and v' respectively
 - \Rightarrow d[u] = d[u'] + 1 and d[v] = d[v'] + 1
- Since $d[u] \neq d[v]$,

- v ≠ s because no vertex u enters Q before s
- $u \neq s$ because d[s] = 0 and $d[v] \geq 0$
 - \Rightarrow u and v entered Q during the exploration of some nodes, say u' and v' respectively
 - \Rightarrow d[u] = d[u'] + 1 and d[v] = d[v'] + 1
- Since $d[u] \neq d[v]$, $d[u'] \neq d[v']$

- v ≠ s because no vertex u enters Q before s
- $u \neq s$ because d[s] = 0 and $d[v] \geq 0$
 - \Rightarrow u and v entered Q during the exploration of some nodes, say u' and v' respectively
 - \Rightarrow d[u] = d[u'] + 1 and d[v] = d[v'] + 1
- Since $d[u] \neq d[v]$, $d[u'] \neq d[v'] \Rightarrow u' \neq v'$

i.e. u' and v' are **distinct** nodes

- v ≠ s because no vertex u enters Q before s
- $u \neq s$ because d[s] = 0 and $d[v] \geq 0$
 - \Rightarrow u and v entered Q during the exploration of some nodes, say u' and v' respectively

$$\Rightarrow$$
 d[u] = d[u'] + 1 and d[v] = d[v'] + 1

- Since $d[u] \neq d[v]$, $d[u'] \neq d[v'] \Rightarrow u' \neq v'$ i.e. u' and v' are distinct nodes
- u was discovered before v

- v ≠ s because no vertex u enters Q before s
- $u \neq s$ because d[s] = 0 and $d[v] \geq 0$
 - \Rightarrow u and v entered Q during the exploration of some nodes, say u' and v' respectively
 - \Rightarrow d[u] = d[u'] + 1 and d[v] = d[v'] + 1
- Since $d[u] \neq d[v]$, $d[u'] \neq d[v'] \Rightarrow u' \neq v'$ i.e. u' and v' are distinct nodes
- u was discovered before v ⇒ u' was discovered before v'

- v ≠ s because no vertex u enters Q before s
- $u \neq s$ because d[s] = 0 and $d[v] \geq 0$
 - \Rightarrow u and v entered Q during the exploration of some nodes, say u' and v' respectively
 - \Rightarrow d[u] = d[u'] + 1 and d[v] = d[v'] + 1
- Since $d[u] \neq d[v]$, $d[u'] \neq d[v'] \Rightarrow u' \neq v'$ i.e. u' and v' are distinct nodes
- u was discovered before v ⇒ u' was discovered before v'
 - ⇒ u' entered Q before v'

- v ≠ s because no vertex u enters Q before s
- $u \neq s$ because d[s] = 0 and $d[v] \geq 0$
 - \Rightarrow u and v entered Q during the exploration of some nodes, say u' and v' respectively
 - \Rightarrow d[u] = d[u'] + 1 and d[v] = d[v'] + 1
- Since $d[u] \neq d[v]$, $d[u'] \neq d[v'] \Rightarrow u' \neq v'$ i.e. u' and v' are distinct nodes
- u was discovered before v ⇒ u' was discovered before v'
 - ⇒ u' entered Q before v'

- v ≠ s because no vertex u enters Q before s
- $u \neq s$ because d[s] = 0 and $d[v] \geq 0$
 - \Rightarrow u and v entered Q during the exploration of some nodes, say u' and v' respectively

$$\Rightarrow$$
 d[u] = d[u'] + 1 and d[v] = d[v'] + 1

- Since $d[u] \neq d[v]$, $d[u'] \neq d[v'] \Rightarrow u' \neq v'$ i.e. u' and v' are distinct nodes
- u was discovered before v ⇒ u' was discovered before v'
 - ⇒ u' entered Q before v'
 - \Rightarrow d[u'] d[v']

- v ≠ s because no vertex u enters Q before s
- $u \neq s$ because d[s] = 0 and $d[v] \geq 0$
 - \Rightarrow u and v entered Q during the exploration of some nodes, say u' and v' respectively
 - \Rightarrow d[u] = d[u'] + 1 and d[v] = d[v'] + 1
- Since $d[u] \neq d[v]$, $d[u'] \neq d[v'] \Rightarrow u' \neq v'$ i.e. u' and v' are distinct nodes
- u was discovered before v ⇒ u' was discovered before v'
 - ⇒ u' entered Q before v'
 - \Rightarrow d[u'] \leq d[v'] By definition of v

- v ≠ s because no vertex u enters Q before s
- $u \neq s$ because d[s] = 0 and $d[v] \geq 0$
 - \Rightarrow u and v entered Q during the exploration of some nodes, say u' and v' respectively
 - \Rightarrow d[u] = d[u'] + 1 and d[v] = d[v'] + 1
- Since $d[u] \neq d[v]$, $d[u'] \neq d[v'] \Rightarrow u' \neq v'$ i.e. u' and v' are distinct nodes
- u was discovered before v ⇒ u' was discovered before v'
 - ⇒ u' entered Q before v'
 - \Rightarrow d[u'] \leq d[v'] By definition of v

$$\Rightarrow$$
 d[u'] + 1 \leq d[v'] + 1

- v ≠ s because no vertex u enters Q before s
- $u \neq s$ because d[s] = 0 and $d[v] \geq 0$
 - \Rightarrow u and v entered Q during the exploration of some nodes, say u' and v' respectively
 - \Rightarrow d[u] = d[u'] + 1 and d[v] = d[v'] + 1
- Since $d[u] \neq d[v]$, $d[u'] \neq d[v'] \Rightarrow u' \neq v'$ i.e. u' and v' are distinct nodes
- u was discovered before v ⇒ u' was discovered before v'
 - \Rightarrow u' entered Q before v'
 - \Rightarrow d[u'] \leq d[v'] By definition of v

$$\Rightarrow d[u'] + 1 \leq d[v'] + 1$$
 © 2019 by Jay Balasundaram and Sam Toueg. This document may not be

- v ≠ s because no vertex u enters Q before s
- $u \neq s$ because d[s] = 0 and $d[v] \geq 0$
 - \Rightarrow u and v entered Q during the exploration of some nodes, say u' and v' respectively

$$\Rightarrow$$
 d[u] = d[u'] + 1 and d[v] = d[v'] + 1

- Since $d[u] \neq d[v]$, $d[u'] \neq d[v'] \Rightarrow u' \neq v'$ i.e. u' and v' are distinct nodes
- u was discovered before v ⇒ u' was discovered before v'
 - \Rightarrow u' entered Q before v'
 - \Rightarrow d[u'] \leq d[v'] By definition of v

$$\Rightarrow$$
 d[u'] + 1 \leq d[v'] + 1

So we proved the following:

Lemma 1: If u enters Q **before** v enters Q then $d[u] \le d[v]$

After BFS(s), for every
$$v \in V$$
, $d[v] = \delta(s,v)$

After BFS(s), for every $v \in V$, $d[v] = \delta(s,v)$

Proof of Main Theorem:

After BFS(s), for every $v \in V$,

$$d[v] = \delta(s,v)$$

Proof of Main Theorem:

After BFS(s), for every $v \in V$,

$$d[v] = \delta(s,v)$$

Proof of Main Theorem:

After BFS(s), for every $v \in V$,

$$d[v] = \delta(s,v)$$

Proof of Main Theorem:

Suppose, for contradiction, that there exists $x \in V$ such that $d[x] \neq \delta(s,x)$. Clearly $x \neq s$.

• Let v be the **closest** node from s such that $d[v] \neq \delta(s,v)$

After BFS(s), for every $v \in V$,

$$d[v] = \delta(s,v)$$

Proof of Main Theorem:

- Let v be the **closest** node from s such that $d[v] \neq \delta(s,v)$
- By Lemma 0, d[v] δ (s,v)

After BFS(s), for every $v \in V$,

$$d[v] = \delta(s,v)$$

Proof of Main Theorem:

- Let v be the **closest** node from s such that $d[v] \neq \delta(s,v)$
- By Lemma 0, $d[v] > \delta(s,v)$

After BFS(s), for every
$$v \in V$$
,

$$d[v] = \delta(s,v)$$

Proof of Main Theorem:

- Let v be the **closest** node from s such that $d[v] \neq \delta(s,v)$
- By Lemma 0, $d[v] > \delta(s,v)$
- Consider some shortest path in s to v in G

After BFS(s), for every $v \in V$,

$$d[v] = \delta(s,v)$$

Proof of Main Theorem:

- Let v be the **closest** node from s such that $d[v] \neq \delta(s,v)$
- By Lemma 0, $d[v] > \delta(s,v)$
- Consider some **shortest** path in s to v in G

After BFS(s), for every $v \in V$,

$$d[v] = \delta(s,v)$$

Proof of Main Theorem:

- Let v be the **closest** node from s such that $d[v] \neq \delta(s,v)$
- By Lemma 0, $d[v] > \delta(s,v)$
- Consider some shortest path in s to v in G
 - Let (u,v) be the last edge on that path

After BFS(s), for every $v \in V$,

$$d[v] = \delta(s,v)$$

Proof of Main Theorem:

- Let v be the **closest** node from s such that $d[v] \neq \delta(s,v)$
- By Lemma 0, $d[v] > \delta(s,v)$
- Consider some shortest path in s to v in G
 - Let (u,v) be the last edge on that path

After BFS(s), for every $v \in V$,

$$d[v] = \delta(s,v)$$

Proof of Main Theorem:

- Let v be the **closest** node from s such that $d[v] \neq \delta(s,v)$
- By Lemma 0, $d[v] > \delta(s,v)$
- Consider some shortest path in s to v in G
 - Let (u,v) be the last edge on that path

After BFS(s), for every $v \in V$,

$$d[v] = \delta(s,v)$$

Proof of Main Theorem:

- Let v be the **closest** node from s such that $d[v] \neq \delta(s,v)$
- By Lemma 0, $d[v] > \delta(s,v)$
- Consider some shortest path in s to v in G
 - Let (u,v) be the last edge on that path
 - Clearly $\delta(s,v) =$

After BFS(s), for every $v \in V$,

$$d[v] = \delta(s,v)$$

Proof of Main Theorem:

- Let v be the **closest** node from s such that $d[v] \neq \delta(s,v)$
- By Lemma 0, $d[v] > \delta(s,v)$
- Consider some shortest path in s to v in G
 - Let (u,v) be the last edge on that path
 - Clearly $\delta(s,v) = \delta(s,u) + 1$

After BFS(s), for every $v \in V$,

$$d[v] = \delta(s,v)$$

Proof of Main Theorem:

- Let v be the **closest** node from s such that $d[v] \neq \delta(s,v)$
- By Lemma 0, $d[v] > \delta(s,v)$
- Consider some shortest path in s to v in G
 - Let (u,v) be the last edge on that path
 - Clearly $\delta(s,v) = \delta(s,u) + 1$
- Since u is closer to s than v, d[u] δ (s,u) (By definition of v)

After BFS(s), for every $v \in V$,

$$d[v] = \delta(s,v)$$

Proof of Main Theorem:

- Let v be the **closest** node from s such that $d[v] \neq \delta(s,v)$
- By Lemma 0, $d[v] > \delta(s,v)$
- Consider some shortest path in s to v in G
 - Let (u,v) be the last edge on that path
 - Clearly $\delta(s,v) = \delta(s,u) + 1$
- Since u is closer to s than v, $d[u] = \delta(s,u)$ (By definition of v)

After BFS(s), for every $v \in V$,

$$d[v] = \delta(s,v)$$

Proof of Main Theorem:

- Let v be the **closest** node from s such that $d[v] \neq \delta(s,v)$
- By Lemma 0, $d[v] > \delta(s,v)$
- Consider some shortest path in s to v in G
 - Let (u,v) be the last edge on that path
 - Clearly $\delta(s,v) = \delta(s,u) + 1$
- Since u is closer to s than v, $d[u] = \delta(s,u)$ (By definition of v)
- So: $d[v] > \delta(s,v)$

After BFS(s), for every $v \in V$,

$$d[v] = \delta(s,v)$$

Proof of Main Theorem:

- Let v be the **closest** node from s such that $d[v] \neq \delta(s,v)$
- By Lemma 0, $d[v] > \delta(s,v)$
- Consider some shortest path in s to v in G
 - Let (u,v) be the last edge on that path
 - Clearly $\delta(s,v) = \delta(s,u) + 1$
- Since u is closer to s than v, $d[u] = \delta(s,u)$ (By definition of v)
- So: $d[v] > \delta(s,v)$

After BFS(s), for every $v \in V$,

$$d[v] = \delta(s,v)$$

Proof of Main Theorem:

- Let v be the **closest** node from s such that $d[v] \neq \delta(s,v)$
- By Lemma 0, $d[v] > \delta(s,v)$
- Consider some shortest path in s to v in G
 - Let (u,v) be the last edge on that path
 - Clearly $\delta(s,v) = \delta(s,u) + 1$
- Since u is closer to s than v, $d[u] = \delta(s,u)$ (By definition of v)
- So: $d[v] > \delta(s,v) = \delta(s,u) + 1$

After BFS(s), for every $v \in V$,

$$d[v] = \delta(s,v)$$

Proof of Main Theorem:

- Let v be the **closest** node from s such that $d[v] \neq \delta(s,v)$
- By Lemma 0, $d[v] > \delta(s,v)$
- Consider some shortest path in s to v in G
 - Let (u,v) be the last edge on that path
 - Clearly $\delta(s,v) = \delta(s,u) + 1$
- Since u is closer to s than v, $d[u] = \delta(s,u)$ (By definition of v)
- So: $d[v] > \delta(s,v) = \delta(s,u) + 1$

After BFS(s), for every $v \in V$,

$$d[v] = \delta(s,v)$$

Proof of Main Theorem:

- Let v be the **closest** node from s such that $d[v] \neq \delta(s,v)$
- By Lemma 0, $d[v] > \delta(s,v)$
- Consider some shortest path in s to v in G
 - Let (u,v) be the last edge on that path
 - Clearly $\delta(s,v) = \delta(s,u) + 1$
- Since u is closer to s than v, $d[u] = \delta(s,u)$ (By definition of v)
- So: $d[v] > \delta(s,v) = \delta(s,u) + 1 = d[u] + 1$

After BFS(s), for every
$$v \in V$$
,

$$d[v] = \delta(s,v)$$

Proof of Main Theorem:

- Let v be the **closest** node from s such that $d[v] \neq \delta(s,v)$
- By Lemma 0, $d[v] > \delta(s,v)$
- Consider some shortest path in s to v in G
 - Let (u,v) be the last edge on that path
 - Clearly $\delta(s,v) = \delta(s,u) + 1$
- Since u is closer to s than v, $d[u] = \delta(s,u)$ (By definition of v)
- So: $d[v] > \delta(s,v) = \delta(s,u) + 1 = d[u] + 1$

$$d[v] > d[u] + 1$$

$$d[v] > d[u] + 1$$
 (*)

$$d[v] > d[u] + 1$$
 (*)

Now consider the **color** of v **just before** u is explored.

$$d[v] > d[u] + 1$$
 (*)

Now consider the **color** of v **just before** u is explored. 3 possible cases:

$$d[v] > d[u] + 1$$
 (*)

Now consider the **color** of v **just before** u is explored. 3 possible cases:

Case 1. v is white

$$d[v] > d[u] + 1$$
 (*)

Now consider the **color** of v **just before** u is explored. 3 possible cases:

Case 1. v is white

 \Rightarrow When u is explored, u discovers v

$$d[v] > d[u] + 1$$
 (*)

Now consider the **color** of v **just before** u is explored. 3 possible cases:

Case 1. v is white

- ⇒ When u is explored, u discovers v
- \Rightarrow d[v] = d[u] + 1

$$d[v] > d[u] + 1$$
 (*)

Now consider the **color** of v **just before** u is explored. 3 possible cases:

Case 1. v is white

⇒ When u is explored, u discovers v

$$\Rightarrow$$
 d[v] = d[u] + 1

Contradicting (*)!

$$d[v] > d[u] + 1$$
 (*)

Now consider the **color** of v **just before** u is explored. 3 possible cases:

Case 1. v is white

⇒ When u is explored, u discovers v

 \Rightarrow d[v] = d[u] + 1

Contradicting (*)!

Case 2. v is black

$$d[v] > d[u] + 1$$
 (*)

Now consider the **color** of v **just before** u is explored. 3 possible cases:

Case 1. v is white

⇒ When u is explored, u discovers v

$$\Rightarrow$$
 d[v] = d[u] + 1

Contradicting (*)!

Case 2. v is black

⇒ v was explored before u is explored

$$d[v] > d[u] + 1$$
 (*)

Now consider the **color** of v **just before** u is explored. 3 possible cases:

Case 1. v is white

- ⇒ When u is explored, u discovers v
- \Rightarrow d[v] = d[u] + 1

Contradicting (*)!

Case 2. v is black

- ⇒ v was explored before u is explored
- ⇒ v entered Q before u enters Q

$$d[v] > d[u] + 1$$
 (*)

Now consider the **color** of v **just before** u is explored. 3 possible cases:

Case 1. v is white

- ⇒ When u is explored, u discovers v
- \Rightarrow d[v] = d[u] + 1

Contradicting (*)!

Case 2. v is black

- ⇒ v was explored before u is explored
- ⇒ v entered Q before u enters Q
- \Rightarrow By Lemma 1, $d[v] \le d[u]$

$$d[v] > d[u] + 1$$
 (*)

Now consider the **color** of v **just before** u is explored. 3 possible cases:

Case 1. v is white

- ⇒ When u is explored, u discovers v
- \Rightarrow d[v] = d[u] + 1

Contradicting (*)!

Case 2. v is black

- ⇒ v was explored before u is explored
- ⇒ v entered Q before u enters Q
- \Rightarrow By Lemma 1, $d[v] \le d[u]$

Contradicting (*)!

$$d[v] > d[u] + 1$$
 (*)

$$d[v] > d[u] + 1$$
 (*)

$$d[v] > d[u] + 1$$
 (*)

Case 3. v is grey (discovered but not explored)

⇒ Some node w discovered v before u is explored

$$d[v] > d[u] + 1$$
 (*)

- ⇒ Some node w discovered v before u is explored
- ⇒ w is explored before u

$$d[v] > d[u] + 1$$
 (*)

- ⇒ Some node w discovered v before u is explored
- \Rightarrow w is explored before u and d[v] = d[w] + 1

$$d[v] > d[u] + 1$$
 (*)

- ⇒ Some node w discovered v before u is explored
- \Rightarrow w is explored before u and d[v] = d[w] + 1(a)
 (b)

$$d[v] > d[u] + 1$$
 (*)

- ⇒ Some node w discovered v before u is explored
- \Rightarrow w is explored before u and d[v] = d[w] + 1(a)
 (b)
 - (a) ⇒ w enters Q before u

$$d[v] > d[u] + 1$$
 (*)

Case 3. v is grey (discovered but not explored)

- ⇒ Some node w discovered v before u is explored
- \Rightarrow w is explored before u and d[v] = d[w] + 1(a)
 (b)
 - (a) \Rightarrow w enters Q before u
 - $\Rightarrow d[w] d[u]$

$$d[v] > d[u] + 1$$
 (*)

Case 3. v is grey (discovered but not explored)

- ⇒ Some node w discovered v before u is explored
- \Rightarrow w is explored before u and d[v] = d[w] + 1(a)
 (b)
 - (a) \Rightarrow w enters Q before u
 - $\Rightarrow d[w] \le d[u]$

$$d[v] > d[u] + 1$$
 (*)

Case 3. v is grey (discovered but not explored)

- ⇒ Some node w discovered v before u is explored
- \Rightarrow w is explored before u and d[v] = d[w] + 1(a)
 (b)
 - (a) ⇒ w enters Q before u
 - $\Rightarrow d[w] \leq d[u]$

 \Rightarrow d[w] + 1 \leq d[u] + 1

$$d[v] > d[u] + 1$$
 (*)

Case 3. v is grey (discovered but not explored)

- ⇒ Some node w discovered v before u is explored
- \Rightarrow w is explored before u and d[v] = d[w] + 1(a)
 - (a) \Rightarrow w enters Q before u
 - $\Rightarrow d[w] \leq d[u]$

 \Rightarrow d[w] + 1 \leq d[u] + 1

- (b) \Rightarrow d[v] \leq d[u] + 1

$$d[v] > d[u] + 1$$
 (*)

Case 3. v is grey (discovered but not explored)

- ⇒ Some node w discovered v before u is explored
- \Rightarrow w is explored before u and d[v] = d[w] + 1 (a)

$$\Rightarrow d[w] \leq d[u]$$

By Lemma 1

$$\Rightarrow$$
 d[w] + 1 \leq d[u] + 1

(b)
$$\Rightarrow$$
 d[v] \leq d[u] + 1

Contradicting (*)!

We just proved

Theorem: After BFS(s), for every $v \in V$: $d[v] = \delta(s,v)$

We just proved

Theorem: After BFS(s), for every $v \in V$: $d[v] = \delta(s,v)$

So the BFS(s) discovery path from s to v is a shortest path from s to v in G

