Recall: If A is a 2×2 matrix then it defines a linear transformation

$$T_A \colon \mathbb{R}^2 \to \mathbb{R}^2 \qquad T_A(\mathbf{v}) = A\mathbf{v}$$

Note. T_A maps parallelograms to parallelograms:

Theorem

If A is a 2×2 matrix and $\mathbf{v}_1, \mathbf{v}_1 \in \mathbb{R}^2$ then

$$\operatorname{area}(T_A(\mathbf{v}_1), T_A(\mathbf{v}_2)) = |\det A| \cdot \operatorname{area}(\mathbf{v}_1, \mathbf{v}_2)$$

Generalization:

Theorem

If A is a 2×2 matrix then for any region S of \mathbb{R}^2 we have:

$$area(T_A(S)) = |det A| \cdot area(S)$$

Idea of the proof.

The area of S can be approximated by the sum of small squares covering S.

