$\alpha+_F = \{A \in R : F \vdash \alpha \rightarrow A\}$.

result := α ; while (changes to result) do for each $\beta \rightarrow \gamma$ in F do begin if $\beta \subseteq$ result then result := result U β end

Demostración de $\alpha+_F\subseteq$ result

Sup que $\alpha+_F=\alpha$. En este caso el algoritmo se inicializa con α , por lo tanto esta parte se cumple trivialmente, ya que del algoritmo nunca estamos eliminado elementos del conjunto result.

Sup que $\alpha+_F \neq \alpha$. Tomemos un subconjunto δ de $\alpha+_F$ tal que δ != α y tal que $\alpha \to \delta \in F$

Por definición de $\alpha+_F$ sabemos que existe ese δ donde δ puede ser solo un atributo de R o un conjunto de atibutos.

Entonces hasta ahora tengo que $\alpha \to \delta$ es DF en F por lo que el algoritmo para calcular result tendremos la DF $\alpha \to \delta$. Es decir $\alpha \subseteq$ result y se cumple que $\alpha \to \delta \in$ F por lo visto anteriormente. Esto implica entonces que podemos extender result a result U δ .

Ahora pueden pasar dos cosas:

Que no podamos encontrar más δ en $\alpha+_F$ en cuyo caso el algoritmo termina y tenemos que $\alpha+_F\subseteq$ result que es lo que queríamos probar.

O que podamos seguir encontrando δ tales que $\alpha \to \delta \in F \& \delta != \alpha$ en cuyo caso haríamos lo mismo que hicimos anteriormente.

Conclusión: Por cada $\delta \in \alpha +_F \& \alpha \to \delta \in F$ que encontremos por definición de $\alpha +_F$ siempre nuestro algoritmo encontrá esa DF por lo que extenderá result por cada δ que encontremos y con esto tenemos que $\alpha +_F$ result.

Que pasa si $\alpha+_F$ solo tiene un δ tal que $\alpha \to \delta \in F$ pero que existe un atributo k en $\alpha+_F$ que no está en δ ?

O existe la DF $\alpha \to k \in F$ lo cual contradice la pregunta o ese $k \in \delta$ lo que también contradice la pregunta. Ya que por definición de $\alpha +_F k$ se deriva de α o existe la DF combinada tales que δ es un conjunto de varias DF con solo un atributo combinadas y entre ellas está $\alpha \to k$ que forma parte de la combinación para formar $\alpha \to \delta$.