

Adam Chekroud











# How good is my model?



#### Multi-class extensions

- Confusion matrix is most helpful here
- · Can calculate within-category performance measures.

## How robust is my model?





- Are the output probabilities well calibrated?
- What happens if we change the cutpoint for classification?

 $http://scikit-learn.org/stable/auto\_examples/calibration/plot\_compare\_calibration.html \\$ 

# How good is my model?

#### What about numeric outcomes?

• RMSE

$$RMSE = \sqrt{\frac{\sum_{i}(y_i - \hat{y}_i)^2}{n}}$$

• R<sup>2</sup>, aka coefficient of determination



- R2 of 1 model is a perfect fit for data
- also indicates the proportion of variance in the data that is explained by the model

## Bias-Variance Tradeoff

#### Model's error is not just a function of accuracy



· Also error due to variance!

## Bias-Variance Tradeoff



#### A tiny bit of math

- We are estimating a model of a function/mapping f(x)
- Assuming error is normally distributed about zero, then our expected error is:

$$Err(x) = E\left[ (Y - \hat{f}(x))^2 \right]$$

Which becomes a function of **both** bias (accuracy) and variance :

$$Err(x) = \left(E[\hat{f}(x)] - f(x)\right)^2 + E\left[\hat{f}(x) - E[\hat{f}(x)]\right]^2 + \sigma_e^2$$

 $Err(x) = Bias^2 + Variance + Irreducible Error$ 

----> Fundamental balance between accuracy and variability of our model

#### Bias-Variance Tradeoff



As any given model becomes more complex, its accuracy improves but generalizabilty is **necessarily** reduced

## Model Validation



Model validation is crucial for measuring the second component of model error - its variance.

- 1. Take different training samples
- 2. Build models
- 3. See how variable their performance is!
- But data is expensive! And finite!

## Internal Validation



- Two motivations for internal validation:
  - 1. Estimate variance of modeling approach
  - 2. No point testing model on things it has seen before!

Easiest solution: split data into training and testing



Run 1 Run 2 Run 3





# Is my model <u>real</u>?

- Internal validation allows us to train models and get the best balance between bias and variance
  - But how well will our model perform in general?
- Examine performance on totally new data
  - If good, gives us confidence that the model is picking up on "real" signal
    - Better candidate for the truth!

Best practice: prospective validation

# Cross-trial prediction of treatment outcome in depression: a machine learning approach Adam Mourad Chekroud, Ryan Joseph Zott, Zaraw Shehzad, Ralliza Gueorguieva, Marcia K Johnson, Madhukar H Trivedi, Tyone D Cannon, John Harison Kystal, Philip Robert Corlett Start D Sequenced treatment alternatives to releve depression Trained in one trial, tested prospectively in another trial Model performance was weak (60%) Sometime of the program only not specificated prospectively in another trial Accuracy 65%\* ALCOTON Sequenced treatment alternatives to releve depression outcomes Combin gredication to enhance depression to the first depression outcomes Combin gredication to enhance depression to the first depression

# Is my model <u>real</u>? Molecular Psychiatry (2016), 1–6 0 2016 Macmillan Publishers Limited All rights reserved 13594184/16 www.nature.com/mp

npg

#### ORIGINAL ARTICLE

Testing a machine-learning algorithm to predict the persistence and severity of major depressive disorder from baseline self-reports

RC Kessler<sup>1</sup>, HM van Loo<sup>2</sup>, KJ Wardenaar<sup>2</sup>, RM Bossarte<sup>3</sup>, LA Brenner<sup>4</sup>, T Cai<sup>5</sup>, DD Ebert<sup>1,6</sup>, I Hwang<sup>1</sup>, J Li<sup>5</sup>, P de Jonge<sup>2</sup>, AA Nierenberg<sup>7</sup>, MV Petukhova<sup>1</sup>, AR Rosellini<sup>1</sup>, NA Sampson<sup>1</sup>, RA Schoevers<sup>2</sup>, MA Wilcox<sup>8</sup> and AM Zaslavsky<sup>1</sup>

- severity of MDD
- Model performance was weak (AUC=0.6-0.7)
- But reiterates possibility of using historic/archival data to make predictions that might guide patient

|           |          |            |        |          |        | odels and | logistic |
|-----------|----------|------------|--------|----------|--------|-----------|----------|
| regressio | n models | predicting | Survey | 2 outcon | nes (N | l = 1056) |          |

|                  | AUC of risk scores based on |                 |  |  |
|------------------|-----------------------------|-----------------|--|--|
|                  | ML models                   | Logistic models |  |  |
| High persistence | 0.71                        | 0.68            |  |  |
| High chronicity  | 0.63                        | 0.62            |  |  |
| Hospitalization  | 0.73                        | 0.65            |  |  |
| Disability       | 0.74                        | 0.69            |  |  |
| Suicide attempt  | 0.76                        | 0.70            |  |  |

## Summary

- · Choose most appropriate performance metric
- · Always consider biasvariance tradeoff
- Always keep training and testing data separate at all times
  - Internal (k-fold) CV is a minimum
- Do you think your model is real? Why?

