Lecture #4: Introduction to Regression Data Science 1 CS 109A, STAT 121A, AC 209A, E-109A

Pavlos Protopapas Kevin Rader Margo Levine Rahul Dave

Lecture Outline

Announcements

Data

Statistical Modeling

Regression vs. Classification

Error, Loss Functions

Model I: k-Nearest Neighbors

Model II: Linear Regression

Evaluating Model

Comparison of Two Models

Model I: k-Nearest Neighbors

k-Nearest Neighbors

The k-Nearest Neighbor (kNN) model is an intuitive way to predict a quantitative response variable:

to predict a response for a set of observed predictor values, we use the responses of other observations most similar to it!

Note: this strategy can also be applied in classification to predict a categorical variable. We will encounter kNN again later in the semester in the context of classification.

k-Nearest Neighbors

k-Nearest Neighbors

Fixed a value of k. The predicted response for the i-th observation is the average of the observed response of the k-closest observations

$$\widehat{y}_i = \frac{1}{k} \sum_{i=1}^k y_{n_i}$$

where $\{X_{n_1}, \ldots, X_{n_k}\}$ are the k observations most similar to X_i (similar refers to a notion of distance between predictors).

k-Nearest Neighbors for Classification

Suppose you have 5 observations of taxi cab pick ups in New York City, the response is the average cab fare (in units of \$10), and the predictor is time of day (in hours after 7am):

We calculate the predicted number of pickups using kNN for k=2:

$$X = 1$$
 $\hat{y}_1 = \frac{1}{2}(7+4) = 5.5$

Suppose you have 5 observations of taxi cab pick ups in New York City, the response is the average cab fare (in units of \$10), and the predictor is time of day (in hours after 7am):

We calculate the predicted number of pickups using kNN for k=2:

$$X = 2$$
 $\hat{y}_2 = \frac{1}{2}(6+4) = 5.0$

Suppose you have 5 observations of taxi cab pick ups in New York City, the response is the average cab fare (in units of \$10), and the predictor is time of day (in hours after 7am):

We calculate the predicted number of pickups using kNN for k=2:

$$\widehat{Y} = (5.5, 5.0, 5.0, 3.0, 3.5)$$

Suppose you have 5 observations of taxi cab pick ups in New York City, the response is the average cab fare (in units of \$10), and the predictor is time of day (in hours after 7am):

We calculate the predicted number of pickups using kNN for k=2:

$$\hat{Y} = (5.5, 5.0, 5.0, 3.0, 3.5)$$

The MSE given our predictions is

$$MSE = \frac{1}{5} \left[(6 - 5.5)^2 + (7 - 5.0)^2 + \dots + (3.5 - 2)^2 \right] = 1.5$$

On average, our predictions are off by \$15.

We plot the observed responses along with predicted responses for comparison:

Choice of k Matters

But what value of k should we choose? What would our predicted responses look like if k is very small? What if k is large (e.g. k = n)?

kNN with Multiple Predictors

In our simple example, we used absolute value to measure the distance between the predictors in two different observations, $|x_i - x_j|$.

When we have multiple predictors in each observation, we need a notion of distance between two **sets** of predictor values. Typically, we use Euclidean distance:

$$d(x_i - x_j) = \sqrt{(x_{i,1} - x_{j,1})^2 + \ldots + (x_{i,p} - x_{j,p})^2}$$

Caution: when using Euclidean distance, the scale (or units) of measurement for the predictors matter! Predictors with large values, comparatively, will dominate the distance measurement.