March 29th, 2019 1

Inverse Power Iteration

If λ_i , $i \in 1, ..., n$ with $|\lambda_1| \geq |\lambda_2| \geq ... \geq |\lambda_n|$ are eigenvalues of A, then $\frac{1}{\lambda_i}$ are eigenvalues of A^{-1} and

 $\frac{1}{|\lambda_1|} \le \frac{1}{|\lambda_2|} \le \dots \le \frac{1}{|\lambda_n|}.$

Therefore, we can apply power iteration to A^{-1} to get λ_n and hence x_n . This is called the inverse power iteration.

Algorithm 1.1 1. Choose $y^{(0)} \in \mathbb{R}^n$ s.t. $||y^{(0)}||_2 = 1$

2. for $k = 1, 2, \dots$

$$z^{(k)} = A^{-1}y^{(k-1)}$$

$$y^{(k)} = \frac{z^{(k)}}{\|z^{(k)}\|_2}$$

$$\mu^{(k)} = (y^{(k)})^T A y^{(k)}.$$

Remark 1.2 — 1. From the convergence of power iteration, if:

- $\langle y^{(0)}, x_n \rangle \neq 0$ $\frac{1}{|\lambda_n|} > \frac{1}{|\lambda_{n-1}|}$ (i.e. $|\lambda_n| < |\lambda_{n-1}|$) A^{-1} is symmetric (always true because A is symmetric.

then the limit of the iteration is:

$$y^{(k)} \to \pm x_n, \quad \mu^{(k)} \to \lambda_n,$$

with a rate $\left(\frac{|\lambda_n|}{|\lambda_{n-1}|}\right)^{\frac{k}{2}}$

2. We need to solve $Az^{(k)} = y^{(k-1)}$ in each iteration, which can be done by Gaussian Elimination. But we only need to compute A = LU before the iteration and then, in each iteration, we obtain:

$$z^{(k)} = U^{-1}L^{-1}y^{(k-1)},$$

which is just a forward and backward substitution.

• Thus the total computational cost is:

$$O(n^3) + O\left(n^2 \cdot \log\left(\frac{1}{\epsilon}\right)\right).$$