[Model Debugging & Testing] (CheatSheet)

Data Validation

• Check for missing values: data.isnull().sum() • Validate data types: data.dtypes Check for class imbalance: data['label'].value_counts() Validate range of values: data.describe() • Detect outliers (IQR): Q1 = data.quantile(0.25); Q3 = data.quantile(0.75); IQR = Q3 - Q1; outliers = data[(data < (Q1 - 1.5 *IQR)) | (data > (Q3 + 1.5 * IQR))]• Check for data duplication: data.duplicated().sum() • Validate against schema (Pandas): schema = pd.io.json.build_table_schema(data); pd.io.json.validate(data, schema) • Check for consistent labeling: data['label'].unique() • Visualize data distribution (Seaborn): sns.distplot(data['feature']) • Correlation matrix: data.corr() • Feature importance visualization: pd.Series(model.feature_importances_, index=features).nlargest(10).plot(kind='barh') • Cross-tabulation of categories: pd.crosstab(data['feature1'], data['feature2']) • Plot missing data heatmap: sns.heatmap(data.isnull(), cbar=False) • Time series data check for seasonality: pd.plotting.autocorrelation_plot(data['time_series_feature'])

Model Validation

• Cross-validation: cross_val_score(model, X, y, cv=5)

• Ensure data is shuffled for training: data = data.sample(frac=1).reset_index(drop=True)

- Train/test split: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
- Learning curves (Scikit-learn): plot_learning_curve(model, X, y, cv=5)
- Validation curves (Scikit-learn): plot_validation_curve(model, X, y, param_name, param_range, cv=5)
- Hyperparameter tuning (GridSearchCV): GridSearchCV(model, param_grid, cv=5).fit(X, y)
- Check model assumptions: sm.OLS(y, sm.add_constant(X)).fit().summary()
- **Performance on unseen data**: model.predict(X_new)

- Bootstrap sampling for model stability: bootstrap = resample(data, replace=True, n_samples=100, random_state=1)
- K-Fold cross-validation with stratification: StratifiedKFold(n_splits=5).split(X, y)
- Use A/B testing for model performance comparison: ttest_ind(groupA['metric'], groupB['metric'])
- Model comparison with statistical significance: stats.f_oneway(model1_scores, model2_scores)
- ROC-AUC curve for binary classification: plot_roc_curve(model, X_test, y_test)
- Precision-Recall curve for imbalanced datasets: plot_precision_recall_curve(model, X_test, y_test)
- Confusion matrix visualization: plot_confusion_matrix(model, X_test, y_test)
- Feature permutation importance: permutation_importance(model, X_val, y_val, n_repeats=30)

Debugging Techniques

- Log model predictions and actuals: log.info(f"Predictions: {predictions}, Actuals: {y_test}")
- Use assert statements to check shapes: assert X_train.shape[0] == y_train.shape[0]
- Check for NaNs in predictions: np.isnan(predictions).any()
- **Visualize model decisions**: plot_decision_regions(X, y, clf=model)
- Check weight and bias values: print(model.coef_, model.intercept_)
- Track gradients in neural networks (TensorFlow): tf.debugging.check_numerics(tensor, message='Check failed')
- Profile model training (TensorFlow): tf.profiler.experimental.start('logdir'); tf.profiler.experimental.stop()
- Monitor layer outputs (Keras Callbacks): ModelCheckpoint(filepath='model.h5', monitor='val_loss')
- Use Explainable AI frameworks for insights: shap_values = shap.TreeExplainer(model).shap_values(X_train)
- Detect and log model drift: if drift_detected: logger.warning('Model drift detected')
- Unit tests for data pipelines: def test_pipeline(): assert processed_data.shape[0] > 0
- Logging hyperparameters and results: mlflow.log_params(params); mlflow.log_metric("accuracy", accuracy)

- Memory profiling for large models: from memory_profiler import profile; @profile def train_model(): model.fit(X, y)
- CPU/GPU utilization monitoring: nvidia-smi (for NVIDIA GPUs)
- Validate model input features range: assert X.min() >= feature_range[0] and X.max() <= feature_range[1]</pre>

Performance Testing

- Load testing models: timeit.timeit(lambda: model.predict(X_test), number=1000)
- Stress testing models under heavy loads: stress_test_model(model, X, y, n_iterations=10000)
- Benchmarking model inference time: start_time = time.time(); model.predict(X_test); print(time.time() - start_time)
- Compare model performance across hardware: benchmark_on_cpu_gpu(model, X_test)
- Testing model resilience to adversarial attacks: test_adversarial_resilience(model, X_test, y_test)
- Scalability testing of model pipelines: scalability_test(model_pipeline, data_size_range)
- Memory usage of model during inference: memory_usage = memory_profiler.memory_usage((model.predict, (X_test,)))
- Test model with synthetic data for edge cases: test_with_synthetic_data(model)
- Concurrency testing with multiple requests: concurrent_inference_test(model, X_test, n_concurrent_requests=50)
- Latency testing at different data scales: latency_test(model, X_test_sizes)

Interpretability and Explainability

- Feature importance (Scikit-learn): model.feature_importances_
- Partial dependence plots (PDPbox): pdp.pdp_plot(pdp.pdp_isolate(model, dataset, model_features, feature), feature)
- Local Interpretable Model-agnostic Explanations (LIME): lime_explainer.explain_instance(data_row, model.predict_proba).as_pyplot_figure()
- SHAP values: shap_values = shap.TreeExplainer(model).shap_values(X_test)
- Global Surrogate Models: surrogate = DecisionTreeClassifier().fit(X, model.predict(X))

- Anchor explanations for robust predictions: anchor_explainer.explain_instance(data_row, model.predict, threshold=0.95)
- Feature interaction detection (Scikit-learn): interaction = interaction_terms(model, X, y)
- Visualize model decision boundaries: plot_decision_boundaries(X, y, model)
- Model agnostic metric plots: metric_plot.compare_models(true_y, model1_y, model2_y)
- Visualize embeddings and clusters (t-SNE, PCA): tsne_plot(model_embeddings)
- Counterfactual explanations: counterfactual = find_counterfactual(instance, model.predict, desired_label=1)
- Use AI Explainability 360 toolkit for comprehensive insights: aix360.explain(model, data)
- Diagnose model with What-If Tool: WitConfigBuilder(test_examples).set_model_type('classification').set_targ et_feature('label')
- Model Cards for model transparency: generate_model_card(model_details, performance_metrics, ethical_considerations)
- Fairness assessment in model predictions: fairness_indicators = compute_fairness_metrics(y_true, y_pred, sensitive_features)

Error Analysis

- Analyze error types: error_types = classify_errors(y_test, predictions)
- **Plot error distribution**: plt.hist(predictions y_test)
- Review misclassified examples: misclassified = X_test[predictions != y_test]
- Analyze errors by category: error_summary_by_category(y_test, predictions)
- Use confusion matrix for multi-class error analysis: sns.heatmap(confusion_matrix(y_test, predictions), annot=True)
- Text data error token analysis: token_error_analysis(misclassified_texts)
- Regression model residual analysis: sns.residplot(x=predicted_values, y=actual_values - predicted_values)
- Analyze model errors over time: plot_error_trends(errors_over_time)
- Feature contribution to errors analysis (SHAP values): shap.summary_plot(shap_values[misclassified], features[misclassified])
- Error bucketing for targeted analysis: bucket_errors(errors, criteria='magnitude')

Adversarial Testing

- Generate adversarial examples (Text): adversarial_text = perturb_text(original_text)
- Test model against adversarial examples: model_performance_on_adversarial = model.evaluate(adversarial_examples, y_true)
- Image data adversarial example generation: adversarial_image = create_adversarial_example(model, original_image)
- Use adversarial robustness toolbox (ART) for testing: art_attacks = art.attacks.FastGradientMethod(classifier)
- Evaluate model robustness to adversarial attacks: robustness = calculate_model_robustness(model, X_test, y_test)
- Adversarial retraining for model improvement: model_retrained = retrain_model_with_adversarials(model, adversarial_examples)
- Visual inspection of adversarial examples: plot_comparison(original, adversarial)
- Benchmarking model against common adversarial attacks: benchmark_adversarial_defenses(model)
- Adversarial example detection mechanism: is_adversarial = detect_adversarial_activity(input_data)
- Implement model defenses against adversarial attacks: defended_model = apply_defenses(original_model)

Model Monitoring and Updating

- Set up model performance dashboards: create_dashboard(model_metrics_over_time)
- Automate regular model evaluation: schedule_model_evaluation(model, data_stream, frequency='weekly')
- Monitor data drift and concept drift: detect_drift(data_stream, model)
- Alerting for performance degradation: setup_alerts_for_degradation(model_performance_metrics)
- Version control for models and datasets: dvc.track_changes(model_file, data_file)
- Rollback to previous model versions if needed: model = load_model_version(version_number)
- Automatically retrain model on new data: model_updated = auto_retrain(model, new_data)
- Continuous integration and deployment for models (CI/CD): setup_ci_cd_pipeline_for_model_deployment()

- A/B testing for new model versions: perform_ab_testing(model_A, model_B, test_data)
- Track and log all model experiments: log_experiment_details(experiment_id, experiment_params, results)
- Use model explainability as a monitoring tool: monitor_model_with_shap(model, data_stream)
- Model performance benchmarking across different environments: benchmark_model_across_environments(model)
- Automate model health checks: setup_automatic_health_checks(model)
- Deploy shadow models for live performance comparison: deploy_shadow_model(original_model, candidate_model)
- Feedback loop for model learning from new data: implement_feedback_loop(model, operational_data)