

Storage and Database Services

Storage and database services

Scope

Infrastructure Track

- Service differentiators
- When to consider using each service
- Set up and connect to a service

Data Engineering Track

- How to use a database system
- Design, organization, structure, schema, and use for an application
- Details about how a service stores and retrieves structured data

Agenda

01	Cloud Storage and Filestore
	Lab: Cloud Storage
02	Cloud SQL
	Lab: Implementing Cloud SQL
03	Spanner
04	AlloyDB
05	Firestore
06	Bigtable
07	Memorystore

Cloud Storage and Filestore

Cloud Storage is an object storage service

Use cases:

- Website content
- Storing data for archiving and disaster recovery
- Distributing large data objects to users via direct download

Key features:

- Scalable to exabytes
- Time to first byte in milliseconds
- Very high availability across all storage classes
- Single API across storage classes

Overview of storage classes

	Standard	Nearline	Coldline	Archive	
Use case	"Hot" data and/or stored for only brief periods of time like data-intensive computations	Infrequently accessed data like data backup, long-tail multimedia content, and data archiving	Infrequently accessed data that you read or modify at most once a quarter	Data archiving, online backup, and disaster recovery	
Minimum storage duration	None	30 days	90 days	365 days	
Retrieval cost	None	\$0.01 per GB	\$0.02 per GB	\$0.05 per GB	
Availability SLA	99.95% (multi/dual) 99.90% (region)	99.90% (multi/dual) 99.00% (region)		99.90% (multi/dual) 99.00% (region)	
Durability	99.999999%				

Cloud Storage overview

Buckets

- Naming requirements
- Cannot be nested

Objects

- Inherit storage class of bucket when created
- No minimum size; unlimited storage

Access

- gcloud storage command
- (RESTful) JSON API or XML API

Changing default storage classes

- Default class is applied to new objects
- Regional bucket can never be changed to Multi-Region/Dual-Region
- Multi-Regional bucket can never be changed to Regional
- Objects can be moved from bucket to bucket
- Object Lifecycle Management can manage the classes of objects

Access control

Access control lists (ACLs)

Examples:

- collaborator@gmail.com
- allUsers
- allAuthenticatedUsers

Signed URLs

- "Valet key" access to buckets and objects via ticket:
 - Ticket is a cryptographically signed URL
 - Time-limited
 - Operations specified in ticket: HTTP GET, PUT, DELETE (not POST)
 - Any user with URL can invoke permitted operations
- Example using private account key and gcloud storage:
 gcloud storage signurl -d 10m path/to/privatekey.p12
 gs://bucket/object

Cloud Storage features

- Customer-supplied encryption key (CSEK)
 - Use your own key instead of Google-managed keys
- Object Lifecycle Management
 - Automatically delete or archive objects
- Object Versioning
 - Maintain multiple versions of objects
- Directory synchronization
 - Synchronizes a VM directory with a bucket
- Object change notifications using Pub/Sub
- Autoclass

Object Versioning supports the retrieval of objects that are deleted or overwritten

- Objects are immutable.
- Object Versioning:
 - Maintain a history of modifications of objects.
 - List archived versions of an object, restore an object to an older state, or delete a version.

Soft Delete overview

Provides default bucket-level protection from:

Accidental deletion

Malicious deletion

Retains overwritten or changed data.

Is enabled by default with a 7 day retention duration.

Object Lifecycle Management policies specify actions to be performed on objects that meet certain rules

Assign a lifecycle management configuration to a bucket.

Example use cases:

Downgrade storage class on objects older than a year.

Delete objects created before a specific date.

Keep only the 3 most recent versions of an object.

Object inspection occurs in asynchronous batches.

Changes can take 24 hours to apply.

Object Retention Lock

Lets you define data retention requirements on a per-object basis.

Retention configuration governs how long the object must be retained.

Helps with regulatory and compliance requirements.

Pub/Sub notifications for Cloud Storage

Data import services

- Transfer Appliance: Rack, capture and then ship your data to Google Cloud.
- Storage Transfer Service: Import online data (another bucket, an S3 bucket, or web source).
- Offline Media Import: Third-party provider uploads the data from physical media.

Cloud Storage provides strong global consistency

- Read-after-write
- Read-after-metadata-update
- Read-after-delete
- Bucket listing
- Object listing

Choosing a storage class

Autoclass storage in Google Cloud

Autoclass transitions objects in your bucket to appropriate storage classes based on the access pattern of each object.

Filestore is a managed file storage service for applications

- Fully managed network attached storage (NAS) for Compute Engine and GKE instances.
- Predictable performance.
- Full NFSv3 support.
- Scales to 100s of TBs for high-performance workloads.

Filestore

Filestore has many use cases

- Application migration
- Media rendering
- Electronic Design Automation (EDA)
- Data analytics
- Genomics processing
- Web content management

Filestore

Lab Intro

Cloud Storage

Lab objectives

- O1 Create and use buckets
- Set access control lists to restrict access
- Use your own encryption keys
- 1 Implement version controls
- Use directory synchronization

Cloud SQL

Build your own database solution or use a managed service

Cloud SQL is a fully managed database service (MySQL, PostgreSQL, or Microsoft SQL Server)

Cloud SQL

- Patches and updates automatically applied
- You administer MySQL users
- Cloud SQL supports many clients
 - gcloud sql
 - App Engine, Google Workspace scripts
 - Applications and tools
 - SQL Workbench, Toad
 - External applications using standard MySQL drivers

Cloud SQL instance

Performance:

- 64 TB of storage
- 60,000 IOPS
- 624 GB of RAM
- Scale out with read replicas

Choice:

- MySQL 5.6, 5.7, or 8.0 (default)
- PostgreSQL 9.6, 10, 11, 12, 13, 14 or 15 (default)
- Microsoft SQL Server 2017 or 2019 (Standard default)

Cloud SQL services

- HA configuration
- Backup service
- Import/export
- Scaling
 - Up: Machine capacity
 - Out: Read replicas

Connecting to a Cloud SQL instance

Choosing Cloud SQL

Lab Intro

Implementing Cloud SQL

Lab objectives

- O1 Create a Cloud SQL database
- O2 Configure a virtual machine to run a proxy
- Create a connection between an application and Cloud SQL
- Connect an application to Cloud SQL using Private IP address

Encrypted connection

Spanner

Spanner combines the benefits of relational database structure with non-relational horizontal scale

Spanner

- Scale to petabytes
- Strong consistency
- High availability
- Used for financial and inventory applications
- Monthly uptime
 - Multi-regional: 99.999%
 - Regional: 99.99%

Characteristics

Spanner architecture

Data replication is synchronized across zones using Google's global fiber network

Choosing Spanner

AlloyDB

AlloyDB is a fully managed database service

- Fully managed database service
- Fast transactional processing
- High availability
- Real-time business insights

AlloyDB

Firestore

Firestore is a NoSQL document database

Firestore

- Simplifies storing, syncing, and querying data
- Mobile, web, and IoT apps at global scale
- Live synchronization and offline support
- Security features
- ACID transactions
- Multi-region replication
- Powerful query engine

Firestore is the next generation of Datastore

Datastore mode (new server projects):

- Compatible with Datastore applications
- Strong consistency
- No entity group limits

Native mode (new mobile and web apps):

- Strongly consistent storage layer
- Collection and document data model
- Real-time updates
- Mobile and Web client libraries

Choosing Firestore

Bigtable

Bigtable is a NoSQL big data database service

- Petabyte-scale
- Consistent sub-10ms latency
- Seamless scalability for throughput
- Learns and adjusts to access patterns
- Ideal for Ad Tech, Fintech, and IoT
- Storage engine for ML applications
- Easy integration with open source big data tools

Bigtable

Bigtable storage model

Processing is separated from storage

Learns access patterns

Rebalances without moving data

Throughput scales linearly

Choosing Bigtable

- Bigtable scales UP well
- Firestore scales DOWN well

Memorystore

Memorystore is a fully managed Redis service

- In-memory data store service
- Focus on building great apps
- High availability, failover, patching, and monitoring
- Sub-millisecond latency
- Instances up to 300 GB
- Network throughput of 12 Gbps
- Easy Lift-and-Shift

Memorystore

Quiz

Question

What data storage service might you select if you just needed to migrate a standard relational database running on a single machine in a data center to the cloud?

- A. Cloud SQL
- B. BigQuery
- C. Persistent Disk
- D. Cloud Storage

Answer

What data storage service might you select if you just needed to migrate a standard relational database running on a single machine in a data center to the cloud?

A. Cloud SQL

- B. BigQuery
- C. Persistent Disk
- D. Cloud Storage

Question

Which Google Cloud data storage service offers ACID transactions and can scale globally?

- A. Cloud Storage
- B. Cloud CDN
- C. Spanner
- D. Cloud SQL

Answer

Which Google Cloud data storage service offers ACID transactions and can scale globally?

- A. Cloud Storage
- B. Cloud CDN
- C. Spanner
- D. Cloud SQL

Question

Which data storage service provides data warehouse service for storing data but also offers an interactive SQL interface for querying the data?

- A. BigQuery
- B. Dataproc
- C. Datalab
- D. Cloud SQL

Answer

Which data storage service provides data warehouse service for storing data but also offers an interactive SQL interface for querying the data?

A. BigQuery

- B. Dataproc
- C. Datalab
- D. Cloud SQL

Review: Storage and Database Services

Decision chart

