1 Úkol

- 1. Proveďte energetickou kalibraci α -spektrometru a určete jeho rozlišení.
- 2. Určete absolutní aktivitu kalibračního radioizotopu ²⁴¹Am.
- 3. Změřte závislost ionizační ztráty α -částic ve vzduchu při normálním tlaku -dT/dx=f(t). Srovnejte tuto závislost se závislotí získanou pomocí empirické formule pro dolet α -častic ve vzduchu za normálních podmínek.
- 4. Určete energie α -částic vzletujících ze vzorku obsahující izotop ²³⁹Pu a příměs izotopu ²³⁸Pu a porovnejte je s tabelovými hodnotami. Stanovne relativní zastoupení izotopu ²³⁸Pu ve vzorku s přesností lepší než 10 %, jsou-li $T_{1/2}(^{238}Pu)=81.71$ yr a $T_{1/2}(^{239}Pu)=24.13\cdot 10^3$ yr.

2 Teoretický úvod

2.1 α -záření

 α -záření je typ radioaktivního záření, které je tovřené kladně nabytými heliovými jádry. Pochází zejména z rozpadu těžkch prvků, jako je Am a Pu.

2.2 Rozlišení spektrometru

Rozlišení spektrometru udává jeho svhopnost rozlišit dvě různé energetické hodnoty. Podrobnější informace jsou v [1]. Jeho hodnota je dána vztahem

$$\Gamma = 2\sigma\sqrt{2\ln 2} \tag{1}$$

2.3 Aktivita

Aktivita zářiče je dána vztahem

$$A = \frac{\mathrm{d}N}{\mathrm{d}t}.\tag{2}$$

Pokud předpokládáme, že se aktivita vzorku po celou dobu měření nemění, můžeme tento vztrah zjednodušit na

$$A = \frac{\Delta A}{\Delta t}. (3)$$

Tento předpoklad je dobře splněn, pokud je doba měření výrazně nižší než poločas rozpadu, což je jak u Am, tak i Pu splněno dostatečně.

2.4 Braggova křivka

Braggova křivka je definována předpisem

$$h(x) = -\frac{\mathrm{d}T}{\mathrm{d}x} \tag{4}$$

2.5 Poměr izotopů

Poměr izotopů zastoupených ve vzorku získáme jednoduše za pomoci upravení rozpadové rovnice

$$P = \frac{X_1}{X_2} \frac{1 - e^{\frac{t \ln 2}{T_{2,1/2}}}}{\frac{t \ln 2}{T_{1,1/2}}},\tag{5}$$

kde X_i je počet interakcí s detektorem naměřených pro určitý izotop za dobu t, přičem izotom má poločas rozpadu $T_{i,1/2}$

3 Měření

3.1 Kalibrace

Za pomoci známé energie α -částic radioizotopu Am jsme provedli kalibraci spektrometru. Naměřené hosnoty jsou v prvním řádku tabulky 1. Z hodnoty pološířky a vztahu 1 jsem stanovil rozlišení spektrometru na

$$\Gamma = 0.3 \text{keV}.$$
 (6)

3.2 Aktivaita vzorku

Plocha histogramu odpovídá počtu interakcí na detektoru za dobu měření. Naše měření trvalo 500 sekund. Detektor měl tvar kruhu o průměru

$$d = 1.123 \pm 0.005 \text{cm} \tag{7}$$

a byl ve vzdálenosti

$$x = 3.0 \pm 0.1$$
cm (8)

od vzorku. Vzorek považujeme za bodový a detektor můžeme aproximovat kulovou úsečí. Pro absolutní aktivitu pak získáme vztah

$$A = \frac{N}{t} = 4\pi \frac{N_m}{\Omega_d t} = 16x \frac{N_m}{d^2 t},$$
 (9)

což dá po dosazení naměřených hodnot

$$A = 367000 \pm 1000 \text{s}^{-1} \tag{10}$$

p/bar	EkeV	FHHM	S	backg	NET C/S	ERR
0.0	5485.73	28.23	48132	162	96.264	0.46
0.1	5241.00	39.71	47925	240	95.850	0.46
0.2	4990.52	52.86	48282	127	96.564	0.46
0.3	4733.02	69.41	48231	174	96.462	0.46
0.4	4470.75	84.84	48002	97	96.001	0.46
0.5	4198.63	101.11	48135	139	96.270	0.46
0.6	3917.96	117.67	48437	99	96.874	0.46
0.7	3633.86	136.26	48435	135	96.870	0.46
0.8	3309.94	156.69	48424	162	96.848	0.46
0.9	2953.28	185.95	48197	131	96.394	0.46
0.97	2644.14	211.98	48122	217	96.244	0.46

Tabulka 1: Měření energi α -částic pro různé hodnoty tlaku

3.3 Závislost ionizačních ztrát

Pro provedení kalibrace jsme provedli měření pro různé hodnoty tlaku v komoře. Naměřené hodnoty jsou v tabulce 1

Z těchto hodnot následně dopočítáme ionizační ztráty. Hodnoty jsou v tabulce 2.

3.4 Specifické ztráty

Naměřeným energiím jsem nafitoval polynom s předpisem

$$T(x) = -36.4 * x^3 + 77 * x^2 - 890 * x + 5494$$
(11)

Tomuto předpisu odpovídá dle 4 Braggova křivka

$$h(x) = 109.2 * x^2 - 154 * x + 890$$
(12)

Pro názornost je na obrázku 2.

3.5 Pu

Provedl jsem měření pro vzorek ze směsi plutonia izotopů 238 a 239. Pro Jenotlivé píky jsem získal hodnoty uvedené v tabulce 3.

Poměr izotopů 238 ku 239 následně získáme po dosazení do vtahu 5

$$P = 29.1 \pm 0.6 \tag{13}$$

p/bar	$\Delta T/\mathrm{keV}$
0.0	0.0 ± 0.4
0.1	244.7 ± 0.5
0.2	495.2 ± 0.5
0.3	752.7 ± 0.6
0.4	1015.0 ± 0.7
0.5	1287.1 ± 0.8
0.6	1567.8 ± 0.8
0.7	1851.9 ± 0.9
0.8	2175.8 ± 1.0
0.9	2532.4 ± 1.2
0.97	2841.6 ± 1.3

Tabulka 2: Ionizační ztráty $\alpha\text{-}{\check{\mathsf{c}}}{\mathsf{a}}{\mathsf{s}}{\mathsf{t}}{\mathsf{i}}{\mathsf{c}}$ v závislosti na tlaku

Obrázek 1: Graf závislosti ionizačních ztrát na tlaku

	EkeV	FHHM	S	backg	NET C/S	ERR
²³⁹ Pu	5142.42	34.26	106570	321	213.140	0.31
²³⁸ Pu	5484.98	40.25	917	5	1.834	3.27

Tabulka 3: Hodnoty naměřené pro smět Pu izotopů 238 a239

Obrázek 2: Bragoova křivka pro měřený vzorek

4 Diskuze

V celém měření se vyskytovali velmi malé chyby. To především velmi dobrému rozlišení spektrometru. Dále se do hodnot v podstatě neprojevovali vnější zdroje, což také přispělo k přesnosti měření. Získané honoty odpovídají předpokládaným teoretickým výsledkům.

5 Závěr

Provedl jsem kalibraci spektrometru. Určil jsem rozlišovací schopnost spektrometru

$$\Gamma = 0.3 \text{keV} \tag{14}$$

Změřil jsem ionizační ztrátu α -částic na tlaku. Výsledeky je v tabulce 2 na obrázku 1. Stanovil jsem Braggovu křivku, která je na obrázku 2. Stanovil jsem poměr izotopů 238 ku 239 v Pu

$$P = 29.1 \pm 0.6 \tag{15}$$

Reference

- [1] Studijní text na praktikum IV http://physics.mff.cuni.cz/vyuka/zfp/txt_405.pdf (16. 10. 2012)
- $[2]\ \textit{J. Englich}\colon \mathbf{Zpracov\acute{a}n\acute{i}\ v\acute{y}sldk\mathring{u}\ fyzik\acute{a}ln\acute{i}ch\ m\check{e}\check{r}en\acute{i}\ \mathrm{LS}\ 1999/2000}$