The UNIVARIATE Procedure Variable: VALUE

Moments					
N	880	Sum Weights	880		
Mean	127.833523	Sum Observations	112493.5		
Std Deviation	12.3263345	Variance	151.938523		
Skewness	-0.0503064	Kurtosis	-0.056344		
Uncorrected SS	14513994.4	Corrected SS	133553.962		
Coeff Variation	9.64248992	Std Error Mean	0.41552065		

Basic Statistical Measures						
Loca	Location Variability					
Mean	127.8335	Std Deviation	12.32633			
Median	128.0300	Variance	151.93852			
Mode	121.0400	Range	79.23000			
		Interquartile Range	17.03500			

Tests for Normality					
Test	Test Statistic p Value				
Shapiro-Wilk	W 0.99942 Pr < W 0				
Kolmogorov-Smirnov	D	0.015657	Pr > D	>0.1500	
Cramer-von Mises	W-Sq	0.01714	Pr > W-Sq	>0.2500	
Anderson-Darling	A-Sq	0.105707	Pr > A-Sq	>0.2500	

1. The mean and median of systolic blood pressure is 127.83 and 128.03, with standard deviation 12.33. Since mean is less than median, the distribution is likely to have a long tail to the left. The negative skewness -0.05 supports it. Range is summarized as 79.23.

Systolic blood pressure seems to follow normal distribution. We can clearly the histogram is symmetric. The quantitative test results agree. Shapiro-Wilk, Kolmogorov-Smirnov, Cramer-von Mises, and Anderson-Darling test (H0: normal distribution fits data) show p-value greater than 0.05, thus we cannot reject null hypothesis. We should assume normality for systolic blood pressure.

The UNIVARIATE Procedure Variable: VALUE

RTRTN=1

Moments					
N	220	Sum Weights	220		
Mean	131.468818	Sum Observations	28923.14		
Std Deviation	12.2674483	Variance	150.490288		
Skewness	-0.0010869	Kurtosis	-0.2313581		
Uncorrected SS	3835448.41	Corrected SS	32957.3731		
Coeff Variation	9.33107065	Std Error Mean	0.8270712		

Basic Statistical Measures					
Loca	Location Variability				
Mean	131.4688	Std Deviation	12.26745		
Median	131.2050	Variance	150.49029		
Mode	121.0400	Range	66.95000		
		Interquartile Range	16.53500		

Tests for Normality						
Test	Statistic p Value					
Shapiro-Wilk	W 0.99743 Pr < W 0					
Kolmogorov-Smirnov	D	0.026652	Pr > D	>0.1500		
Cramer-von Mises	\mathbf{w} W-Sq 0.014424 Pr > W-Sq >0.2		>0.2500			
Anderson-Darling	A-Sq	0.115705	Pr > A-Sq	>0.2500		

Moments					
N	220	Sum Weights	220		
Mean	127.699136	Sum Observations	28093.81		
Std Deviation	Deviation 12.6911749 Variance		161.065919		
Skewness	0.07224663	Kurtosis	-0.2093769		
Uncorrected SS	3622828.71	Corrected SS	35273.4363		
Coeff Variation	9.9383404	Std Error Mean	0.85563883		

Basic Statistical Measures						
Loca	Location Variability					
Mean	127.6991	Std Deviation	12.69117			
Median	127.4250	Variance	161.06592			
Mode	112.4600	Range	71.74000			
		Interquartile Range	17.60000			

Tests for Normality					
Test	Statistic p Value				
Shapiro-Wilk	W 0.997674 Pr < W 0				
Kolmogorov-Smirnov	D	0.031239	Pr > D	>0.1500	
Cramer-von Mises	W-Sq	0.022743	Pr > W-Sq	>0.2500	
Anderson-Darling	A-Sq	0.142688	Pr > A-Sq	>0.2500	

The UNIVARIATE Procedure Variable: VALUE

RTRTN=3

Moments					
N	220	Sum Weights	220		
Mean	126.213227	Sum Observations	27766.91		
Std Deviation	11.60215	Variance	134.609884		
Skewness	-0.2289691	Kurtosis	0.15971785		
Uncorrected SS	3534030.89	Corrected SS	29479.5646		
Coeff Variation	9.19249925	Std Error Mean	0.78221679		

	Basic Statistical Measures					
Loca	Location Variability					
Mean	126.2132	Std Deviation	11.60215			
Median	126.5500	Variance	134.60988			
Mode	116.2300	Range	69.32000			
		Interquartile Range	16.38500			

Tests for Normality						
Test	Statistic p Value					
Shapiro-Wilk	W	0.993893	993893 Pr < W 0.50			
Kolmogorov-Smirnov	D	0.028123	Pr > D	>0.1500		
Cramer-von Mises W-Sq 0.028136 Pr > W-Sq >0		>0.2500				
Anderson-Darling	A-Sq	0.24813	Pr > A-Sq	>0.2500		

The UNIVARIATE Procedure Variable: VALUE

RTRTN=4

	Moments						
N	220	Sum Weights	220				
Mean	125.952909	Sum Observations	27709.64				
Std Deviation	12.0077179	Variance	144.18529				
Skewness	-0.1825049	Kurtosis	-0.0691965				
Uncorrected SS	3521686.35	Corrected SS	31576.5785				
Coeff Variation	9.5334979	Std Error Mean	0.80956018				

	Basic Statistical Measures					
Loca	Location Variability					
Mean	125.9529	Std Deviation	12.00772			
Median	126.7850	Variance	144.18529			
Mode	117.8500	Range	62.53000			
		Interquartile Range	15.56500			

Tests for Normality					
Test	Statistic p Value				
Shapiro-Wilk	W	0.99425	Pr < W	0.5645	
Kolmogorov-Smirnov	D	0.049239	Pr > D	>0.1500	
Cramer-von Mises	W-Sq	0.052537	Pr > W-Sq	>0.2500	
Anderson-Darling	A-Sq	0.283503	Pr > A-Sq	>0.2500	

Now we repeat the analysis by treatment groups (RTRTN). Firstly, mean values for 1, 2, 3 and 4 are 131.47, 127.70, 126.21 and 125.95, and the median values are 131.21, 127.43, 126.55 and 126.79, respectively. 1 is likely to have larger systolic blood pressure compared to the other three groups, 2, 3, 4. Among 2, 3, 4, 2 has larger weight. The standard deviation and range for 1, 2, 3, and 4 are (12.27, 66.95), (12.69, 71.74), (11.60, 69.32) and (12.01, 62.53), respectively. It can be seen that systolic blood pressure of 2 has larger standard deviation and range.

For the skewness, systolic blood pressure of 1, 2, 3 and 4 have skewness measure as -0.001, 0.072, -0.229 and -0.183. Generally, positive measure indicates right long tail, and right-skewness.

For 1, 2, 3 and 4, all test p-values are greater than 0.05, so conclude that we do not have evidence to reject normality assumption. It is clear that histograms of 1 and 2 are symmetric. Although histograms of 3 and 4 do not have perfect symmetric shapes, they are not very bad. The observations in the QQ-plots almost follow the diagonal line. In conclusion, the distributions of systolic blood pressure for all four treatment groups are normal.

The TTEST Procedure

Variable: VALUE

RTRTN	Method	Mean	95% CL Mean		Std Dev	95% (
1		131.5	129.8	133.1	12.2674	11.2183	13.5348
4		126.0	124.4	127.5	12.0077	10.9807	13.2483
Diff (1-2)	Pooled	5.5159	3.6082	Infty	12.1383	11.3850	12.9992
Diff (1-2)	Satterthwaite	5.5159	3.6082	Infty			

Method	Variances	DF	t Value	Pr > t
Pooled	Equal	438	4.77	<.0001
Satterthwaite	Unequal	437.8	4.77	<.0001

Equality of Variances						
Method Num DF Den DF F Value Pr > F						
Folded F	219	219	1.04	0.7518		

2. In Exercise 1 we found that systolic blood pressure for reference (RTRTN=1) and ABC123 80mg (RTRTN=4) be assumed as normal. Since we have normality for two groups, we perform the T-test to compare the systolic blood pressure of two groups. The "Equality of Variances" test reveals insufficient evidence of unequal variances (the Folded F statistic F'=1.04, with p=0.7518.), so we use Satterthwaite adjustment. One-sided two-sample T-test gives p-value less than 0.05, and we can conclude that ABC123 80mg significantly reduces the blood pressure compared to the reference drug.

The FREQ Procedure

Table of RTRTN by responder							
RTRTN	1	responder					
Frequency Expected	0 1 Tota						
1	184 161.75	36 58.25	220				
2	160 161.75	60 58.25	220				
3	153 161.75	67 58.25	220				
4	150 161.75	70 58.25	220				
Total	647	233	880				

Statistics for Table of RTRTN by responder

Statistic	DF	Value	Prob
Chi-Square	3	16.6425	0.0008
Likelihood Ratio Chi-Square	3	17.6875	0.0005
Mantel-Haenszel Chi-Square	1	13.8552	0.0002
Phi Coefficient		0.1375	
Contingency Coefficient		0.1362	
Cramer's V		0.1375	

Sample Size = 880

Now we perform a hypothesis test of whether there is a significant relationship between treatment groups (RTRTN) and responder categories (responder). We find no cell presenting expected less than 5. Accordingly, we can use asymptotic tests. Both Chi-Square and Likelihood Ratio tests give p-values less than 0.05, thus we reject the null hypothesis (null: two variables are independent; alternative: there is some significant association) and conclude that there exists significant association between peanut allergy and early assumption. Note that we cannot apply Mantel-Haenszel test because treatment group is not ordered variable. Since the sample size is large, we cannot get the result of Fisher's exact test for the exact result.

The information about the magnitude of the relationship between two variables can be obtained from Phi Coefficient, Contingency Coefficient, and Cramer's V. The Phi Coefficient and Cramer's V give the same value, 0.1375, and Contingency Coefficient gives the similar magnitude 0.1362. We conclude that there's a mild association between treatment groups and responder categories. For larger dimensional tables, Cramer's V is standardized and its upper bound is 1, and therefore Cramer's V is preferred for larger dimensional tables.

The FREQ Procedure

Table of RTRTN by responder						
RTRTN	1	responder				
Frequency Expected	0	1	Total			
1	184 167	36 53	220			
4	150 167	70 53	220			
Total	334	106	440			

Statistics for Table of RTRTN by responder

Statistic	DF	Value	Prob
Chi-Square	1	14.3667	0.0002
Likelihood Ratio Chi-Square	1	14.5679	0.0001
Continuity Adj. Chi-Square	1	13.5341	0.0002
Mantel-Haenszel Chi-Square	1	14.3341	0.0002
Phi Coefficient		0.1807	
Contingency Coefficient		0.1778	
Cramer's V		0.1807	

Fisher's Exact Test		
Cell (1,1) Frequency (F)	184	
Left-sided Pr <= F	1.0000	
Right-sided Pr >= F	0.0001	
Table Probability (P)	<.0001	
Two-sided Pr <= P	0.0002	

We can test if two categorical variables are significantly associated via various types of asymptotic tests. Note that asymptotic tests can be performed, because all cells have expected values greater than 5. Chi-Square and Likelihood Ration Chi-Square tests give p-value less than 0.05, thus we reject the null hypothesis (H0: two are independent), and conclude that there exists a significant association between treatment groups and responder categories. Furthermore, we cannot apply Mantel-Haenszel test because treatment group is not ordinal variable. We can always refer to Fisher's exact test for the exact result. The Fisher's test also gives p-value less than 0.05 (2-sided p-value=0.0002), thus we can make the same conclusion.

The information about the magnitude of the relationship between two variables can be obtained from Phi Coefficient, Contingency Coefficient, and Cramer's V. The Phi Coefficient and Cramer's V.

give the same value, 0.1807, and Contingency Coefficient gives the similar magnitude 0.1778. For 2x2 tables, we focus more on the Phi and Cramer's V coefficients because they are bounded between -1 and 1, and therefore are analogues of correlation coefficients. We conclude that there's a mild association between peanut allergy and early consumption. We conclude that there's a mild association between treatment groups and responder categories.

In the following table Row1 and Row2 correspond to reference and ABC123 80mg groups, respectively. The proportional difference in the responder category is -0.1545. We can test whether the difference is significant by using the confidence interval. The table provides 95% confidence limit as (-0.2331, -0.0759), and zero is not in the interval. Thus, we can conclude there are more responders in the ABC123 80mg group compared to the reference group.

Column 1 Risk Estimates						
	Risk	ASE	(Asympto Confiden		(Exact Confiden	f .
Row 1	0.8364	0.0249	0.7875	0.8852	0.7807	0.8827
Row 2	0.6818	0.0314	0.6203	0.7434	0.6158	0.7428
Total	0.7591	0.0204	0.7191	0.7990	0.7163	0.7983
Difference	0.1545	0.0401	0.0759	0.2331		
	Difference is (Row 1 - Row 2)					

Column 2 Risk Estimates							
	Risk	ASE	(Asympto Confiden		(Exact Confiden		
Row 1	0.1636	0.0249	0.1148	0.2125	0.1173	0.2193	
Row 2	0.3182	0.0314	0.2566	0.3797	0.2572	0.3842	
Total	0.2409	0.0204	0.2010	0.2809	0.2017	0.2837	
Difference	-0.1545	0.0401	-0.2331	-0.0759			
	Difference is (Row 1 - Row 2)						

Sample Size = 440

The GLMSELECT Procedure

	Stepwise Selection Summary								
Step	Effect Entered	Effect Removed	Number Effects In	_ ,	F Value	Pr > F			
0	Intercept		1	1	0.00	1.0000			
1	RTRTN		2	4	9.64	<.0001			
2	SEX		3	5	12.86	0.0004			
3	SITE		4	24	1.73	0.0272			

Selection stopped because the candidate for entry has SLE > 0.05 and the candidate for removal has SLS < 0.05.

Stop Details					
Candidate For	Effect	Candidate Significance		Compare Significance	
Entry	RACE	0.6086	>	0.0500	(SLE)
Removal	SITE	0.0272	<	0.0500	(SLS)

Effects: Intercept SEX RTRTN SITE

We first use stepwise selection to investigate main effects. By using GLMSELECT, only SEX, RTRTN, and SITE are selected in the model.

Dependent Variable: VALUE

Source	D F	Type I SS	Mean Square	F Value	Pr > F
SEX	1	1937.736947	1937.736947	13.70	0.0002
RTRTN	3	4201.225734	1400.408578	9.90	<.0001
SEX*RTRTN	3	162.122603	54.040868	0.38	0.7660
SITE	19	4751.550870	250.081625	1.77	0.0227
SEX*SITE	19	2164.555128	113.923954	0.81	0.7022
RTRTN*SITE	57	8585.708923	150.626472	1.06	0.3521
SEX*RTRTN*SITE	57	9885.600761	173.431592	1.23	0.1290

Source	DF	Type III SS	Mean Square	F Value	Pr > F
SEX	1	2127.554532	2127.554532	15.04	0.0001
RTRTN	3	3354.476431	1118.158810	7.90	<.0001
SEX*RTRTN	3	256.319003	85.439668	0.60	<mark>0.6126</mark>
SITE	19	4631.274706	243.751300	1.72	0.0283
SEX*SITE	19	1783.048464	93.844656	0.66	<mark>0.8564</mark>
RTRTN*SITE	57	8153.740626	143.048081	1.01	0.4554
SEX*RTRTN*SITE	57	9885.600761	173.431592	1.23	0.1290

We then investigate whether the interaction terms are significant or not. From Type III SS, we could conclude interaction terms are not significant. Meanwhile from the plot we could also conclude there is no significant interaction. Then we focus on model with only SEX, RTRTN, and SITE as three main effects.

Dependent Variable: VALUE

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	23	10845.1411	471.5279	3.29	<.0001
Error	856	122708.8210	143.3514		
Corrected Total	879	133553.9621			

R-Square	Coeff Var	Root MSE	VALUE Mean
0.081204	9.366045	11.97295	127.8335

Source	DF	Type I SS	Mean Square	F Value	Pr > F
SEX	1	1937.736947	1937.736947	13.52	0.0003
RTRTN	3	4201.225734	1400.408578	9.77	<.0001
SITE	19	4706.178404	247.693600	1.73	0.0272

Source	DF	Type III SS	Mean Square	F Value	Pr > F
SEX	1	1601.135987	1601.135987	11.17	0.0009
RTRTN	3	4204.846218	1401.615406	9.78	<.0001
SITE	19	4706.178404	247.693600	1.73	0.0272

Dependent Variable: VALUE

Then we focus on model with only SEX, RTRTN, and SITE as three main effects. The ANOVA model is significant with p-value less than .0001. The proportion of variation in blood pressure value explained by the model is 8.12%, which is R-square in the output.

The GLM Procedure Least Squares Means Adjustment for Multiple Comparisons: Tukey-Kramer

RTRTN	VALUE LSMEAN	LSMEAN Number
1	131.431560	1
2	127.686717	2
3	126.374677	3
4	125.828717	4

Least Squares Means for Effect RTRTN t for H0: LSMean(i)=LSMean(j) / Pr > t Dependent Variable: VALUE						
i/j	1	2	3	4		
1		3.280347 0.0059	4.423744 <.0001	4.906718 <.0001		
2	-3.28035 0.0059		1.148132 0.6597	1.626877 0.3640		
3	-4.42374 <.0001	-1.14813 0.6597		0.476917 0.9642		
4	-4.90672 <.0001	-1.62688 0.3640	-0.47692 0.9642			

RTRTN	VALUE LSMEAN	95% Confidence Limits	
1	131.431560	129.847055	133.016066
2	127.686717	126.102346	129.271088
3	126.374677	124.787489	127.961866
4	125.828717	124.242685	127.414749

	Least Squares Means for Effect RTRTN									
i	j	Difference Between Means	Simultaneous 95% Confidence Limits for LSMean(i)-LSMean(j)							
1	2	3.744843	0.806323	6.683364						
1	3	5.056883	2.114442	7.999324						
1	4	5.602844	2.663623	8.542065						
2	3	1.312040	-1.629469	4.253548						
2	4	1.858000	<u>-1.081719</u>	4.797720						
3	4	0.545961	-2.400722	3.492643						

The UNIVARIATE Procedure Variable: resid

Tests for Normality									
Test	Statistic p Value								
Shapiro-Wilk	W	0.998765	Pr < W	<mark>0.8165</mark>					
Kolmogorov-Smirnov	D	0.020656	Pr > D	>0.1500					
Cramer-von Mises	W-Sq	0.034131	Pr > W-Sq	>0.2500					
Anderson-Darling	A-Sq	0.228641	Pr > A-Sq	>0.2500					

Now we investigate each main effect to see where we can find the significant differences. Firstly, we rank the treatment groups based on efficacy at reducing blood pressure. For blood pressure, reference group has the largest value, the ABC123 20mg group has the second largest value, the ABC123 40mg group has the third largest value, and the ABC123 80mg group has the smallest value. Second, differences of LS means, 95% CI and p-values are highlighted. Differences between group 1 and 2, between group 1 and 3, and between group 1 and 4 are significant. Differences between group 2 and 3, between group 2 and 4, and between group 3 and 4 are insignificant. At last we test for the normality. The normality tests for residuals show p-value greater than 0.05, thus we can say that residuals are normally distributed. It implies that model assumption is valid.

The GLMSELECT Procedure

	Stepwise Selection Summary										
Step	Effect Entered	Effect Removed	Number Effects In	_ ,	F Value	Pr > F					
0	Intercept		1	1	0.00	1.0000					
1	BASE		2	2	436.10	<.0001					
2	RTRTN		3	5	17.61	<.0001					
3	SEX		4	6	22.96	<.0001					
4	SITE		5	25	2.49	0.0004					

Selection stopped because the candidate for entry has SLE > 0.05 and the candidate for removal has SLS < 0.05.

Effects: Intercept SEX RTRTN SITE BASE

Base score, rtrtn, sex and site are retained in the final ANCOVA model after stepwise selection procedure with significance level 0.05.

The GLMSELECT Procedure Selected Model

	Para	ameter Estir	nates	
Parameter	DF	Estimate	Standard Error	t Value
Intercept	1	-13.667535	6.620411	-2.06
SEX 1	1	-2.935376	0.651005	-4.51
SEX 2	0	0		
RTRTN 1	1	6.622694	0.910344	7.27
RTRTN 2	1	3.351580	0.911818	3.68
RTRTN 3	1	1.963506	0.913721	2.15
RTRTN 4	0	0		
SITE 1	1	3.959005	2.035122	1.95
SITE 2	1	-2.446944	2.038411	-1.20
SITE 3	1	0.814686	2.033150	0.40
SITE 4	1	-0.491596	2.038506	-0.24
SITE 5	1	0.380479	2.033020	0.19
SITE 6	1	0.295423	2.034667	0.15
SITE 7	1	1.604897	2.035176	0.79
SITE 8	1	1.004447	2.041667	0.49
SITE 9	1	-3.815850	2.033261	-1.88
SITE 10	1	-1.221882	2.037493	-0.60
SITE 11	1	2.771067	2.037422	1.36
SITE 12	1	-4.390241	2.034593	-2.16
SITE 13	1	-2.017133	2.043674	-0.99
SITE 14	1	-1.362388	2.034010	-0.67
SITE 15	1	1.760251	2.038159	0.86
SITE 16	1	-2.183887	2.039350	-1.07
SITE 17	1	-3.675972	2.034477	-1.81
SITE 18	1	1.976391	2.044978	0.97
SITE 19	1	-0.597120	2.035177	-0.29
SITE 20	0	0		
BASE	1	0.850936	0.038239	22.25

One-unit increase in the baseline score increases the final blood pressure value by 0.850936.

Dependent Variable: VALUE

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	24	55850.0705	2327.0863	25.61	<.0001
Error	855	77703.8916	90.8817		
Corrected Total	879	133553.9621			

R-Square	Coeff Var	Root MSE	VALUE Mean	
0.418184	7.457505	9.533192	127.8335	

Source DF		Type I SS	Mean Square	F Value	Pr > F
SEX	1	1937.73695	1937.73695	21.32	<.0001
RTRTN	3	4201.22573	1400.40858	15.41	<.0001
SITE	19	4706.17840	247.69360	2.73	0.0001
BASE	1	45004.92938	45004.92938	495.20	<.0001

Source DF		Type III SS	Mean Square	F Value	Pr > F
SEX	1	1847.71487	1847.71487	20.33	<.0001
RTRTN	3	5122.02942	1707.34314	18.79	<.0001
SITE	19	4292.96137	225.94534	2.49	0.0004
BASE	1	45004.92938	45004.92938	495.20	<.0001

The predictors in the ANOVA model from Exercise 4 does not contain base score as in the ANCOVA model. The proportion of variation in blood pressure value explained by the ANCOVA model is 41.82%, which is much higher than the R-square in the ANOVA model from Exercise 4 (R-square=8.14%).

From the diagnostic plots below, we see all have cook's D less than 1. No observation is highly influential. The normality tests for residuals show p-value greater than 0.05, thus we can say that residuals are normally distributed. It implies that model assumption is valid.

Dependent Variable: VALUE

Tests for Normality									
Test	Statistic p Value			ıe					
Shapiro-Wilk	W	0.998249	Pr < W	0.5170					
Kolmogorov-Smirnov	D	0.020189	Pr > D	>0.1500					
Cramer-von Mises	W-Sq	0.047935	Pr > W-Sq	>0.2500					
Anderson-Darling	A-Sq	0.316642	Pr > A-Sq	>0.2500					

The REG Procedure Model: MODEL1 Dependent Variable: medv

	Summary of Stepwise Selection										
Step	Variable Entered	Variable Removed	Number Vars In	Partial R-Square	Model R-Square	C(p)	F Value	Pr > F			
1	<u>Istat</u>		1	0.5441	0.5441	309.376	601.62	<.0001			
2	rm		2	0.0944	0.6386	143.326	131.39	<.0001			
3	ptratio		3	0.0401	0.6786	74.0183	62.58	<.0001			
4	dis		4	0.0117	0.6903	55.2227	18.90	<.0001			
5	nox		5	0.0178	0.7081	25.5732	30.46	<.0001			
6	bb		6	0.0073	0.7154	14.5796	12.80	0.0004			
7	<mark>zn</mark>		7	0.0042	0.7196	9.1297	7.43	0.0066			
8	crim		8	0.0026	0.7222	6.5133	4.64	0.0317			

6. Based on stepwise selection, indus, age and tax are removed, and keep lstat, rm, ptratio, dis, nox, bb, zn and crim. We need to examine VIF to check multicollinearity problems. All VIFs are less than 10, thus we would not remove variables and keep all significant predictors.

	Parameter Estimates										
Variable F		Parameter Estimate Standard Error		t Value	Pr > t	Variance Inflation					
Intercept	1	29.54971	4.92700	6.00	<.0001	0					
crim	1	-0.06609	0.03068	-2.15	0.0317	1.47310					
zn	1	0.04127	0.01357	3.04	0.0025	2.11847					
nox	1	-15.21364	3.25900	-4.67	<.0001	3.01606					
rm	1	4.21741	0.41178	10.24	<.0001	1.77024					
dis	1	-1.46380	0.19048	-7.68	<.0001	3.40240					
ptratio	1	-0.87583	0.11816	-7.41	<.0001	1.38399					
bb	1	0.00878	0.00271	3.24	0.0013	1.29887					
lstat	1	-0.53163	0.04885	-10.88	<.0001	2.57395					

We need to examine VIF to check multicollinearity problems. All VIFs are less than 10, thus we would not remove variables and keep all significant predictors.

Now we need to identify any influential observations. From the diagnostic plots above, we see all have cook's D less than 1. No observation is highly influential.

The REG Procedure Model: MODEL1 Dependent Variable: medv

Analysis of Variance									
Source	DF	Sum of Squares		F Value	Pr > F				
Model	8	30848	3856.04614	161.48	<.0001				
Error	497	11868	23.87913						
Corrected Total	505	42716							

Root MSE	4.88663	R-Square	0.7222
Dependent Mean	22.53281	Adj R-Sq	0.7177
Coeff Var	21.68672		

Parameter Estimates								
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t			
Intercept	1	29.54971	4.92700	6.00	<.0001			
crim	1	<u>-0.06609</u>	0.03068	-2.15	0.0317			
zn	1	0.04127	0.01357	3.04	0.0025			
nox	1	-15.21364	3.25900	-4.67	<.0001			
rm	1	4.21741	0.41178	10.24	<.0001			
dis	1	-1.46380	0.19048	-7.68	<.0001			
ptratio	1	-0.87583	0.11816	-7.41	<.0001			
bb	1	0.00878	0.00271	3.24	0.0013			
lstat	1	-0.53163	0.04885	-10.88	<.0001			

The final model (medv~crim+zn+nox+rm+dis+ptratio+bb+lstat) is statistically significant model with p-value less than 0.0001. All predictors are significant in the model. The variation explained by the model is 72.22%.

The parameter estimates are -0.06609, 0.04127, -15.21364, 4.21741, -1.46380, -0.87583, 0.00878 and -0.53163 for crim, zn, nox, rm, dis, ptratio, bb and lstat, respectively. It means that medv is expected to decrease 0.06609, 15.21364, 1.46380, 0.87583 and 0.53163 for a one-unit increase in crim, nox, dis, ptratio and lstat. Medv is expected to increase 0.04127, 4.21741 and 0.00878 for a one-unit increase inzn, rm and bb.

Tests for Normality							
Test	Statistic		p Value				
Shapiro-Wilk	W	0.886384	Pr < W	<0.0001			
Kolmogorov-Smirnov	D	0.136664	Pr > D	<0.0100			
Cramer-von Mises	W-Sq	2.154266	Pr > W-Sq	<0.0050			
Anderson-Darling	A-Sq	12.02091	Pr > A-Sq	<0.0050			

From diagnostic plots, we see residuals are randomly distributed around 0. The normal QQ plot illustrate that residuals do not follow the diagonal line. The histogram supports it with right skewed shape. The normality can be investigated via normality tests. All p-values are less than 0.05, thus we can conclude that residuals are not normally distributed and there is an issue on assuming normality of the residuals.