Module - 14

Python – Collections, functions and Modules

1) Accessing List

- Understanding how to create and access elements in a list.
 - In Python, a list is a built-in dynamic sized array (automatically grows and shrinks). We can store all types of items (including another list) in a list
 - List can contain duplicate items.
 - List in Python are Mutable. Hence, we can modify, replace or delete the items.
 - List are ordered. It maintain the order of elements based on how they are added.
 - Accessing items in List can be done directly using their position (index), starting from 0.

• Creating a List:

```
# List of integers a = [1, 2, 3, 4, 5]
```

List of strings b = ['apple', 'banana', 'cherry']

```
# Mixed data types c = [1, 'hello', 3.14, True]
```

```
print(a) #O/P: [1,2,3,4,5]
print(b) #O/P: ['apple', 'banana', 'cherry']
```

using list() constructor:

print(c)

We can also create a list by passing an iterable (like a string, tuple, or another list) to list() function.

#O/P : [1, 'hello', 3.14, True]

```
# From a tuple
a = list((1, 2, 3, 'apple', 4.5))
print(a) #O/P :[1, 2, 3, 'apple', 4.5]
```

• Accessing List Elements :

Elements in a list can be accessed using indexing. Python indexes start at 0, so a[0] will access the first element, while negative indexing allows us to access elements from the end of the list. Like index -1 represents the last elements of list.

```
a = [10, 20, 30, 40, 50]
```

```
# Access first element print(a[0]) #O/P: 10
```

Access last element

• Indexing in lists (positive and negative indexing).

- Negative indexes in Python are a powerful feature that allows us to access elements in a list from the end instead of the beginning.
- Negative indexes, start from -1, where -1 represents the last element in the list, -2 represents the second-to-last element, and so forth. This means that the negative index -n corresponds to the nth element from the end of the list.

```
L1 = [10, 20, "apple", 34.6, 86, "banana"]

print(L1[-1]) #O/P: banana

print(L1[-3]) #O/P: 34.6
```

• In Python Positive indexes, lists are zero-indexed, meaning that the first element is at index 0, the second element at index 1, and so on.

```
L1 = [10, 20, "apple", 34.6, 86, "banana"]

print(L1[1]) #O/P: 10

print(L1[4]) #O/P: 34.6

print(L1[2]) #O/P: 20
```

• Slicing a list: accessing a range of elements

In Python, "slicing a list" means extracting a specific portion of a list by specifying a range of indices using the colon (:) operator, allowing you to access only a subset of elements within the list without modifying the original list.

```
syntax:
list_name[start:stop:step]

EX:
my_list = ["apple", "banana", "cherry", "mango", "grape"]

# Get elements from index 1 to 3 (inclusive)
sliced_list = my_list[1:4]
print(sliced_list) # Output: ['banana', 'cherry', 'mango']

# Get every other element starting from index 0
sliced_list = my_list[::2]
print(sliced_list) # Output: ['apple', 'cherry', 'grape']

# Get the last two elements
sliced_list = my_list[-2:]
```

print(sliced_list) # Output: ['mango', 'grape']

2) List Operations

• Common list operations: concatenation, repetition, membership.

• Concatenation

```
You can join two or more lists using the + operator.
```

EX:

```
list1 = [1, 2, 3]
```

$$list2 = [4, 5, 6]$$

result = list1 + list2 # Concatenation

print(result) # Output: [1, 2, 3, 4, 5, 6]

• Repetition

You can repeat a list multiple times using the * operator.

Ex:

list1 = [1, 2, 3]

result = list1 * 3 # Repetition

print(result) # Output: [1, 2, 3, 1, 2, 3, 1, 2, 3]

Membership

You can check whether an element exists in a list using in and not in.

Ex:

list1 = [1, 2, 3, 4, 5]

print(3 in list1) # Output: True

print(6 in list1) # Output: False

print(6 not in list1) # Output: True

• Understanding list methods like append(), insert(), remove(), pop().

• append():

The append() method adds a single item to the end of the list.

Ex:

numbers = [1, 2, 3]

numbers.append(4) # Adds 4 to the end

print(numbers) # Output: [1, 2, 3, 4]

• insert():

The insert(index, element) method inserts an element at a specific position.

Ex:

numbers = [1, 2, 4]

numbers.insert(2, 3) # Inserts 3 at index 2

print(numbers) # Output: [1, 2, 3, 4]

• remove():

The remove(element) method removes the first occurrence of a specified value.

Ex:

numbers = [1, 2, 3, 2, 4]

```
numbers.remove(2) # Removes the first 2 print(numbers) # Output: [1, 3, 2, 4]
```

• pop():

The pop(index) method removes an element at a specific index and returns it. If no index is provided, it removes the last element.

Ex:

```
numbers = [1, 2, 3, 4]
removed_element = numbers.pop(2) # Removes and returns the
element at index 2
print(removed_element) # Output: 3
print(numbers) # Output: [1, 2, 4]

# Without index (removes the last element)
last_element = numbers.pop()
print(last_element) # Output: 4
print(numbers) # Output: [1, 2]
```

3) Working with Lists

• Iterating over a list using loops.

In Python, you can iterate over a list using different types of loops, such as for loops and while loops.

• Using a for Loop

A for loop is the most common and efficient way to iterate over a list.

Ex:

```
numbers = [10, 20, 30, 40, 50]
```

for num in numbers: print(num)

#O/P:

10

20

30

40

50

• Using for Loop with range() and len()

```
numbers = [10, 20, 30, 40, 50]
for i in range(len(numbers)):
    print(f"Index {i}: {numbers[i]}")
#O/P:
Index 0:10
```

```
Index 1:20
Index 2:30
Index 3:40
Index 4:50
```

• Using enumerate() for Index & Value

The enumerate() function is a more Pythonic way to get both the index and value while iterating.

```
Ex:
numbers = [10, 20, 30, 40, 50]

for index, value in enumerate(numbers):
    print(f"Index {index}: {value}")

#O/P:
Index 0: 10
Index 1: 20
Index 2: 30
Index 3: 40
Index 4: 50
```

• Using a while Loop

A while loop can also be used when you need more control over iteration.

```
Ex:
numbers = [10, 20, 30, 40, 50]
i = 0
while i < len(numbers):
    print(numbers[i])
    i += 1

#O/P:
10
20
30
40
50
```

• Sorting and reversing a list using sort(), sorted(), and reverse().

• Using sort() (Modifies the Original List)

The sort() method sorts a list in place, meaning it modifies the original list and does not return a new list. It sorts in **ascending order** by default.

```
Ex:
numbers = [5, 2, 9, 1, 5, 6]
```

```
numbers.sort() # Sorts the list in ascending order print(numbers) # Output: [1, 2, 5, 5, 6, 9]

#You can sort in descending order using reverse=True.
numbers = [5, 2, 9, 1, 5, 6]
numbers.sort(reverse=True) # Sorts in descending order print(numbers) # Output: [9, 6, 5, 5, 2, 1]
```

Sorting with a Custom Key (key parameter)

You can use the key parameter to sort based on custom criteria Ex: sorting by length words = ["apple", "banana", "kiwi", "grape"] words.sort(key=len) # Sorts by string length print(words) # Output: ['kiwi', 'apple', 'grape', 'banana'].

• Using sorted() (Returns a New Sorted List)

The sorted() function returns a new sorted list without modifying the original list.

```
Ex:
```

```
numbers = [5, 2, 9, 1, 5, 6]
sorted_numbers = sorted(numbers) # Returns a new sorted list
print(sorted_numbers) # Output: [1, 2, 5, 5, 6, 9]
print(numbers) # Original list remains unchanged: [5, 2, 9, 1, 5, 6]
```

```
# Sorting in Descending Order with sorted()
numbers = [5, 2, 9, 1, 5, 6]
sorted_numbers = sorted(numbers, reverse=True)
print(sorted_numbers) # Output: [9, 6, 5, 5, 2, 1]
```

Sorting with a Custom Key

```
words = ["apple", "banana", "kiwi", "grape"]
sorted_words = sorted(words, key=len)
print(sorted_words) # Output: ['kiwi', 'grape', 'apple', 'banana']
```

• Using reverse()

The reverse() method reverses the list in place. It modifies the original list.It does not sort, just reverses the order

Ex:

```
numbers = [1, 2, 3, 4, 5]
numbers.reverse()
print(numbers) # Output: [5, 4, 3, 2, 1]
```

Using [::-1] (Returns a Reversed Copy)

You can use list slicing to create a reversed copy without modifying the original list.

```
Ex:
numbers = [1, 2, 3, 4, 5]
reversed_numbers = numbers[::-1] # Returns a new reversed
list
print(reversed_numbers) # Output: [5, 4, 3, 2, 1]
print(numbers) # Original list remains unchanged: [1, 2, 3, 4, 5]
```

- Basic list manipulations: addition, deletion, updating, and slicing.
 - Addition to a List
 - a) using append() (add at the end of list)

```
Ex:

my_list = [1, 2, 3]

my_list.append(4)

print(my_list) # Output: [1, 2, 3, 4]
```

b) using insert() (add at specific index)

```
Ex:
my_list.insert(1, 99)
print(my_list) # Output: [1, 99, 2, 3, 4]
```

c) using extend() (add multiple element in list)

```
Ex:
my_list.extend([5, 6, 7])
print(my_list) # Output: [1, 99, 2, 3, 4, 5, 6, 7]
```

Deletion from a List

Ex:

a) using remove(value) (remove 1st occurrence of value in list)

```
my_list = [1, 99, 2, 3, 4, 5, 6, 7]
my_list.remove(99)
print(my_list) # Output: [1, 2, 3, 4, 5, 6, 7]
```

b) using pop(index) (remove and returnan element by index)

```
my_list = [1, 2, 3, 4, 5, 6, 7]
popped_value = my_list.pop(2)
print(popped_value) # Output: 3
print(my_list) # Output: [1, 2, 4, 5, 6, 7]
```

c) using del (delete by index or full list)

```
Ex:

my_list = [1, 2, 4, 5, 6, 7]

del my_list[1]

print(my_list) # Output: [1, 4, 5, 6, 7]
```

```
# Delete the entire list
Ex :
del my_list
# print(my_list) # This will cause an error since the list no
longer exists.
```

• Updating a List

• Updating an element by index

```
Ex:

my_list = [10, 20, 30, 40]

my_list[1] = 99

print(my_list) # Output: [10, 99, 30, 40]
```

• Updating multiple element using slicing

```
Ex:

my_list[1:3] = [100, 200]

print(my_list) # Output: [10, 100, 200, 40]
```

- Slicing a List
 - Extract a range [start : end] (end index is excluded)

```
Ex:
number = [1, 99, 2, 3, 4, 5, 6]
print(numbers[2:6]) # Output: [2, 3, 4, 5]
```

• Extract every n element using step

```
Ex:
number = [0, 1, 2, 3, 4, 5, 6, 7, 8]
print(numbers[::2]) # Output: [0, 2, 4, 6, 8] (every second element)
```

• Reverse a List using slicing

```
Ex:

number = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

print(numbers[::-1]) # Output: [9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
```

4) Tuple

- Introduction to tuples, immutability.
 - A **tuple** is a built-in data structure in Python that is used to store an ordered collection of elements.
 - Tuples are similar to lists, but with one key difference: **tuples are immutable** (cannot be changed after creation).
 - Tuples are defined by enclosing elements in **parentheses** (), separated by commas.
 - Immutability means that once a tuple is created, its elements cannot be modified, added, or removed.

```
Ex: # Creating a tuple
```

```
my_tuple = (1, 2, 3, 4, 5)
print(my_tuple) # Output: (1, 2, 3, 4, 5)

# Tuple with different data types
mixed_tuple = (1, "Hello", 3.14, True)
print(mixed_tuple) # Output: (1, 'Hello', 3.14, True)

# Single-element tuple (must include a comma)
single_element_tuple = (42,)
print(single_element_tuple) # Output: (42,)
```

- Creating and accessing elements in a tuple.
 - Creating a tuple:
 - A **tuple** is created by enclosing elements in **parentheses** (), separated by commas.

```
Ex:
# Creating a tuple with multiple elements
fruits = ("apple", "banana", "cherry")
print(fruits) # Output: ('apple', 'banana', 'cherry')

# Tuple with different data types
mixed_tuple = (10, "Python", 3.14, True)
print(mixed_tuple) # Output: (10, 'Python', 3.14, True)

# Creating an empty tuple
empty_tuple = ()
print(empty_tuple) # Output: ()

# Creating a single-element tuple (MUST include a comma)
single_tuple = ("hello",)
print(single_tuple) # Output: ('hello',)
```

- Accessing element in tuple :
- Tuple elements are accessed using indexing (starting from 0).
- Negative indexes allow access from the end of the tuple.

```
Ex:
# Accessing elements by index
colors = ("red", "green", "blue")

print(colors[0]) # Output: red
print(colors[1]) # Output: green
print(colors[2]) # Output: blue
# Using negative indexing
```

```
print(colors[-1]) # Output: blue
print(colors[-2]) # Output: green
print(colors[-3]) # Output: red
```

• Basic operations with tuples: concatenation, repetition, membership.

• Concatenation:

- You can join two or more tuples using the + operator.
- concatenation creates new tuple, it does not modify the original tuple.

```
Ex:

tuple1 = (1, 2, 3)

tuple2 = (4, 5, 6)

# Concatenating tuples

result = tuple1 + tuple2

print(result) # Output: (1, 2, 3, 4, 5, 6)
```

• Repetition:

- You can repeat a tuple multiple times using the * operator.
- creates new tuple, it does not modify the original tuple.

```
Ex:
numbers = (7, 8, 9)

# Repeating the tuple 3 times
repeated_tuple = numbers * 3
print(repeated_tuple) # Output: (7, 8, 9, 7, 8, 9, 7, 8, 9)
```

• Membership: (in and not in)

• The in keyword checks if an element exists in the tuple.

```
fruits = ("apple", "banana", "cherry")

# Checking membership
print("banana" in fruits) # Output: True
print("grape" in fruits) # Output: False
print("mango" not in fruits) # Output: True
```

5) Accessing tuple

- Accessing tuple elements using positive and negative indexing.
 - Tuple elements are accessed using indexing (starting from 0).
 - Negative indexes allow access from the end of the tuple.

Ex:

Accessing elements by index

```
colors = ("red", "green", "blue")
print(colors[0]) # Output: red
print(colors[1]) # Output: green
print(colors[2]) # Output: blue
# Using negative indexing
print(colors[-1]) # Output: blue
print(colors[-2]) # Output: green
print(colors[-3]) # Output: red
```

Slicing a tuple to access ranges of elements.

You can extract multiple elements using slicing.

```
Ex:
numbers = (10, 20, 30, 40, 50, 60)

# Extracting a sub-tuple
print(numbers[1:4]) # Output: (20, 30, 40)

# Omitting start index (default is 0)
print(numbers[:3]) # Output: (10, 20, 30)

# Omitting end index (default is till the end)
print(numbers[3:]) # Output: (40, 50, 60)

# Using step value
print(numbers[::2]) # Output: (10, 30, 50)
print(numbers[::-1]) # Output: (60, 50, 40, 30, 20, 10) (Reversing the tuple)
```

6) Dictionaries

- Introduction to dictionaries: key-value pairs.
 - A dictionary in Python is an mutable, unordered collection of key-value pairs. It is used to store data in a way that allows fast lookup using keys.
 - Dictionaries are created using **curly braces** {}, with each key-value pair separated by a **colon :**.
 - Keys must be unique and immutable (e.g., strings, numbers, tuples).
 - Values can be of any data type, including lists, tuples, and even other dictionaries.

```
Ex : Create dictionaries
# Creating a dictionary
student = {
    "name": "Alice",
```

```
"age": 20,
  "course": "Computer Science"
}
print(student)
# Output: {'name': 'Alice', 'age': 20, 'course': 'Computer Science'}
```

- Accessing, adding, updating, and deleting dictionary elements.
 - Accessing Dictionaries element :
 - You can access values using keys(using [], get ()).
 Ex: using [] bracket
 student = {"name": "Alice", "age": 20, "course": "Computer
 Science"}
 # Accessing values using keys
 print(student["name"]) # Output: Alice
 print(student["age"]) # Output: 20
 Ex: using get method
 # Using get() to avoid KeyError
 print(student.get("name")) # Output: Alice
 print(student.get("gender")) # Output: None
 print(student.get("gender", "Not Found")) # Output: Not Found

• Adding element to a Dictionaries :

 You can add new key-value pairs by assigning a value to a new key.

```
Ex:
student = {"name": "Alice", "age": 20, "course": "Computer
Science"}

# Adding a new key-value pair

student["gender"] = "Female"
print(student)

# Output: {'name': 'Alice', 'age': 20, 'course': 'Computer
Science', 'gender': 'Female'}
```

• Updating Dictionaries element :

• You can update an existing key's value.

Ex:

```
student = {"name": "Alice", "age": 20, "course": "Computer
 Science"}
 # Updating an existing value
 student["age"] = 21
 print(student)
 # Output: {'name': 'Alice', 'age': 21, 'course': 'Computer
 Science', 'gender': 'Female'}
The .update() method allows updating multiple values at once.
 Ex:
 student = {'name': 'Alice', 'age': 21, 'course': 'Computer
 Science', 'gender': 'Female'}
 student.update({"age": 22, "course": "Data Science"})
 print(student)
 # Output: {'name': 'Alice', 'age': 22, 'course': 'Data Science',
 'gender': 'Female'}
Deleting element from a dictionaries:
 Ex: using del keyword
 student= {'name': 'Alice', 'age': 21, 'course': 'Computer
 Science', 'gender': 'Female'}
 # Deleting a specific key
 del student["course"]
 print(student)
 # Output: {'name': 'Alice', 'age': 22, 'gender': 'Female'}
 Ex: Using .pop()
 student = {'name': 'Alice', 'age': 21, 'gender': 'Female'}
 # Removing a key and getting its value
 removed_value = student.pop("age")
 print(removed_value) # Output: 22
 print(student)
 # Output: {'name': 'Alice', 'gender': 'Female'}
Removes the last inserted key-value pair.
 student["city"] = "New York" # Adding a new key
 print(student.popitem())
 # Output: ('city', 'New York') (Removes and returns the last
 inserted item)
```

• clearing all element(using .clear()):

```
Ex :
student.clear()
print(student) # Output: {}
```

• Dictionary methods like keys(), values(), and items().

keys () method:

• The .keys() method returns a view object containing all the keys in the dictionary.

```
Ex:
    student = {"name": "Alice", "age": 20, "course": "Computer Science"}

# Getting all keys
    print(student.keys())

# Output: dict_keys(['name', 'age', 'course'])

values ( ) method :
```

• The .values() method returns a view object of all values in the dictionary.

```
Ex:
student = {"name": "Alice", "age": 20, "course": "Computer Science"}
# Getting all values
print(student.values())
# Output: dict_values(['Alice', 20, 'Computer Science'])
# Converting to a list
print(list(student.values()))
# Output: ['Alice', 20, 'Computer Science']
```

items () method:

• The .items() method returns a view object with key-value pairs as tuples.

```
Ex;
student = {"name": "Alice", "age": 20, "course": "Computer Science"}

# Getting all key-value pairs
print(student.items())

# Output: dict_items([('name', 'Alice'), ('age', 20), ('course', 'Computer Science')])
```

7) Working with dictionaries

- Iterating over a dictionary using loops.
 - Dictionaries store data as key-value pairs, and we often need to iterate over them. Python provides different ways to loop through dictionaries efficiently.
 - Iterating over Keys :

```
Ex:
student = {"name": "Alice", "age": 20, "course": "Computer
Science"}

# Iterating over keys
for key in student:
    print(key)

O/P:
name
age
course
```

• Iterating over values :

```
To loop over only values, use the .values() method.

Ex:
student = {"name": "Alice", "age": 20, "course": "Computer Science"}
for value in student.values():
    print(value)

O/P:
Alice
20
```

Computer Science

• Iterating over key-value pair :

using enumerate () with dictionaries:

To access both **keys and values** at the same time, use the .items() method.

```
Ex:
student = {"name": "Alice", "age": 20, "course": "Computer Science"}
for key, value in student.items():
    print(f"{key}: {value}")

O/P:
name: Alice
age: 20
course: Computer Science
```

```
If you need an index while iterating, use enumerate().

Ex:

student = {"name": "Alice", "age": 20, "course": "Computer Science"}

for index, (key, value) in enumerate(student.items()):
    print(f"{index}. {key} → {value}")

O/P:

0. name → Alice
1. age → 20
2. course → Computer Science
```

Merging two lists into a dictionary using loops or zip().

- Sometimes, we have two separate lists:
- One list containing **keys**
- Another list containing values

We can combine them into a dictionary using **loops** or the zip() function.

• Using a for loop:

We can use a loop to iterate over both lists and create a dictionary. Ensure both lists are of the same length to avoid IndexError.

```
Ex:
```

```
# Two lists
keys = ["name", "age", "city"]
values = ["Alice", 25, "New York"]

# Creating a dictionary using a loop
result_dict = {}
for i in range(len(keys)):
    result_dict[keys[i]] = values[i]

print(result_dict)

# Output: {'name': 'Alice', 'age': 25, 'city': 'New York'}
```

• **Using zip ():**

The zip() function pairs corresponding elements from both lists and converts them into a dictionary.

```
Ex:
# Two lists
keys = ["name", "age", "city"]
values = ["Alice", 25, "New York"]

# Using zip() to merge lists into a dictionary
result_dict = dict(zip(keys, values))

print(result_dict)
```

```
# Output: {'name': 'Alice', 'age': 25, 'city': 'New York'}
```

• If the lists have different lengths, zip() will stop at the shortest one.

```
Ex:
    keys = ["name", "age", "city"]
    values = ["Alice", 25] # Missing one value

result_dict = dict(zip(keys, values))
    print(result_dict)

# Output: {'name': 'Alice', 'age': 25}

• If you want missing keys to have a default value, use zip_longest from itertools.
    Ex:
    from itertools import zip_longest
    keys = ["name", "age", "city"]
    values = ["Alice", 25]

result_dict = dict(zip_longest(keys, values, fillvalue="Unknown"))
    print(result_dict)

# Output: {'name': 'Alice', 'age': 25, 'city': 'Unknown'}
```

- Counting occurrences of characters in a string using dictionaries
- Using simple For loop:

```
Ex:
def count_chars(s):
    char_count = {} # Empty dictionary to store character counts
    for char in s:
        char_count[char] = char_count.get(char, 0) + 1 # Increment count
    return char_count

# Example usage
text = "hello world"
result = count_chars(text)
print(result)

O/P:
{'h': 1, 'e': 1, 1': 3, 'o': 2, ' ': 1, 'w': 1, 'r': 1, 'd': 1}
```

Using Collection.Counter (Best for long text)

Ex:

from collections import Counter

```
text = "hello world"
char_count = Counter(text)

print(char_count)

O/P:
Counter({T': 3, 'o': 2, 'h': 1, 'e': 1, ' ': 1, 'w': 1, 'r': 1, 'd': 1})

• Using defaultdict (Avoid keyerror)

Ex:
from collections import defaultdict

def count_chars(s):
    char_count = defaultdict(int) # Default value of 0 for missing keys
    for char in s:
        char_count[char] += 1
        return dict(char_count) # Convert back to a normal dictionary

text = "hello world"
    print(count_chars(text))

O/P:
```

8) Function

- Defining functions in Python.
 - functions are blocks of reusable code that perform a specific task. They help in organizing code and improving reusability.
 - A function is defined using the **def** keyword.

```
Ex:
def greet():
    print("Hello, welcome to Python!")

# Calling the function
greet()

O/P:
Hello, welcome to Python!
```

- Different types of functions: with/without parameters, with/without return values.
 - Functions in Python can be categorized based on **parameters** (input) and return values (output).

> Function Without Parameter and Without Return type

- A simple function that **does not take any arguments** and **does not return a value**.
- Used when you just want to execute a block of code without needing input or returning anything.

```
Ex:
def greet():
    print("Hello, welcome to Python!")

# Calling the function
greet()

O/P:
Hello, welcome to Python!
```

> Function With Parameter and Without Return type

- A function that accepts parameters but does not return a value.
- Useful for printing or performing actions based on inputs but without needing to return anything.

```
Ex:
def greet(name):
    print(f"Hello, {name}!")
greet("Alice")
greet("Bob")

O/P:
Hello, Alice!
Hello, Bob!
```

➤ Function Without Parameter and With Return type

- A function that **does not take parameters** but **returns** a **value**.
- Used when a function needs to return a constant or computed value.

```
Ex:
def get_pi():
  return 3.14159

pi_value = get_pi()
print("Value of Pi:", pi_value)

O/P:
Value of Pi: 3.14159
```

> Function With Parameter and With Return type

- A function that accepts parameters and returns a computed result.
- Used for mathematical operations, data processing, etc.

```
Ex:
def add(a, b):
  return a + b

result = add(5, 3)
print("Sum:", result)

O/P:
Sum: 8
```

- Anonymous functions (lambda functions).
 - A one-line function that doesn't need a def statement.
 - > Used for short, simple functions.

```
Ex:
add = lambda x, y: x + y
print(add(3, 5))

O/P:
8
```

9) Modules

- Introduction to Python modules and importing modules.
 - A **module** in Python is a file that contains Python code, including functions, classes, and variables. Modules help in organizing code, making it reusable and manageable.
 - A module can be:
 - A file with a .py extension containing Python code.
 - A built-in module (like math, random, etc.).
 - A third-party module installed using pip (e.g., numpy, pandas).
 - Importing Modules in python:
 - > Python provides different ways to import and use modules:
 - Imporing an Entire module
 - Here, the math module is imported, and we use math.sqrt() to calculate the square root.

```
Ex: import math
```

```
print(math.sqrt(25)) # Output: 5.0
```

• Importing Specific Functions from a Module

• Here, only sqrt and pow are imported from math, so we can use them directly without math. prefix.

from math import sqrt, pow

```
print(sqrt(25)) # Output: 5.0
print(pow(2, 3)) # Output: 8.0
```

• Importing a Module with an Alias

Using an alias (as np) makes it easier to use a module with a shorter name.

Ex:

import numpy as np

```
arr = np.array([1, 2, 3])
print(arr)
import numpy as np
```

arr = np.array([1, 2, 3])
print(arr)

Creating and Importing a Custom Module

• Create a file named my_module.py with the following code:

Ex:

def greet(name):
 return f"Hello, {name}!"

 $pi_value = 3.14$

• Now, import it in another Python file:

Ex:

import my_module

print(my_module.greet("Alice")) # Output: Hello,
Alice!

print(my_module.pi_value) # Output: 3.14

• Standard library modules: math, random.

Python provides a rich Standard Library with built-in modules that help perform various tasks. Two commonly used modules are:

1. **math module** – provides mathematical functions.

- The math module contains many mathematical operations like square root, trigonometry, logarithms, and constants.
- import math(importing math module)
- Common function in math module:

Function	Description	Example
math.sqrt(x)	Square root	$math.sqrt(25) \rightarrow 5.0$
	of x	
math.pow(x, y)	x raised to	$math.pow(2, 3) \rightarrow$
	power y	8.0
math.ceil(x)	Rounds x up	$math.ceil(4.2) \rightarrow 5$
math.floor(x)	Rounds x	math.floor(4.8) \rightarrow 4
	down	
math.factorial(Factorial of x	$math.factorial(5) \rightarrow$
x)		120
math.log(x,	Logarithm of	$math.log(8, 2) \rightarrow 3.0$
base)	X	
math.sin(x),	Trigonometri	math.sin(math.radian
math.cos(x),	c functions	$s(30)) \rightarrow 0.5$
math.tan(x)		
math.pi	Constant π	math.pi
	(3.1416)	
math.e	Constant e	math.e
	(2.718)	

Ex:

import math

print(math.sqrt(16)) # Output: 4.0 print(math.pow(2, 5)) # Output: 32.0 print(math.ceil(4.3)) # Output: 5 print(math.factorial(5)) # Output: 120 print(math.sin(math.radians(30)))

Output: 0.5

- 2. **random module** generate the random numberand select random element
 - The random module provides functions to generate random numbers and make random selections.
 - import ramdom(importing random module)
 - Common function in random module:

Function	Descriptio	Example
	n	
random.random()	Returns a	random.random() →

random float between 0.0 and 1.0 random.randint (a , b) random.uniform(a, b) random.choice (se q) random.choices(seq, k=n) random.sample(seq, k=n) random.shuffle(seq) random.shuffle(seq) random.shuffle(seq) sequence random.shuffle(seq) sequence random.shuffle(seq) sequence random.shuffle(seq) sequence random.choices(seq, loans and b) random.choice(seq, loans and b) random.choice(seq, loans and b) random.choice(seq, loans and b) random.choices(seq, loans and b) random.choice(seq, loans and b) random.choices(seq, loans and			Γ
$\begin{array}{c} between \\ 0.0 \ and \\ 1.0 \\ \hline \\ random.randint (a \\ , \ b) \\ \hline \\ random.uniform(a,b) \\ \hline \\ random.choice (se \\ q) \\ \hline \\ random.choices(seq, k=n) \\ \hline \\ random.sample(seq, k=n) \\ \hline \\ random.shuffle(seq) \\ \hline \\ random.shuffle(seq) \\ \hline \\ \\ random.shuffle(seq) \\ \hline \\ \\ random.shuffle(seq) \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $			0.6578
$ \begin{array}{c} 0.0 \text{ and } \\ 1.0 \\ \hline \\ random.randint (a \\ , b) \\ \hline \\ random.uniform(a,b) \\ \hline \\ random.uniform(a,b) \\ \hline \\ random.choice (se \\ q) \\ \hline \\ \hline \\ random.choice (se \\ q) \\ \hline \\ \hline \\ random.choice (se \\ q) \\ \hline \\ \hline \\ random.choice (se \\ q) \\ \hline \\ \hline \\ random.choice (se \\ q) \\ \hline \\ \hline \\ random.choice (se \\ q) \\ \hline \\ \hline \\ random.choice (se \\ q) \\ \hline \\ \hline \\ random.choice (se \\ q) \\ \hline \\ \hline \\ random.choices (seq, k=n) \\ \hline \\ \hline \\ random.choices (seq, k=n) \\ \hline \\ \hline \\ random.sample (seq, k=n) \\ \hline \\ \hline \\ random.sample (seq, k=n) \\ \hline \\ \hline \\ random.sample (seq, k=n) \\ \hline \\ \hline \\ random.shuffle (seq) \\ \hline \\ \hline \\ \hline \\ random.shuffle (seq) \\ \hline \\ \hline \\ \hline \\ \hline \\ random.shuffle (seq) \\ \hline \\ $		float	
$ \begin{array}{c} \text{random.randint (a} \\ \text{random.randint (a} \\ \text{rendom.randint (a} \\ \text{random} \\ \text{integer} \\ \text{between a} \\ \text{and b} \\ \\ \\ \text{random.uniform(a, b)} \\ \\ \text{random.choice (se} \\ \text{q)} \\ \\ \\ \text{random.choice (se} \\ \text{q)} \\ \\ \\ \text{random.choice (se} \\ \text{q)} \\ \\ \\ \\ \text{random.choices(seq, k=n)} \\ \\ \\ \text{random.sample(seq, k=n)} \\ \\ \\ \text{random.sample(seq, k=n)} \\ \\ \\ \text{random.shuffle(seq)} \\ \\ \\ \text{shuffles a} \\ \\ \\ \text{sequence} \\ \\ \\ \\ \text{random.shuffle(seq)} \\ \\ \\ \text{Shuffles a} \\ \\ \\ \\ \text{sequence} \\ \\ \\ \\ random.shuffle(my_l and models of the content of the$		between	
$\begin{array}{c} \text{random.randint(a} \\ \text{, b)} \end{array} \begin{array}{c} \text{Returns a} \\ \text{random} \\ \text{integer} \\ \text{between a} \\ \text{and b} \end{array} \begin{array}{c} \text{random.uniform(a, b)} \\ \text{Returns a} \\ \text{random} \\ \text{float} \\ \text{between a} \\ \text{and b} \end{array} \begin{array}{c} \text{random.uniform(1,} \\ 10) \rightarrow 4.56 \end{array}$ $\begin{array}{c} \text{random.choice(se} \\ \text{q)} \end{array} \begin{array}{c} \text{Picks a} \\ \text{random} \\ \text{element} \\ \text{from a} \\ \text{sequence} \end{array} \begin{array}{c} \text{random.choice(['apple'])} \rightarrow \text{'banana'}, \\ \text{'cherry'])} \rightarrow \text{'banana'}, \\ \text{'cherry'])} \rightarrow \text{'banana'}, \\ \text{'cherry'])} \rightarrow \text{'banana'}, \\ \text{'cherry']} \rightarrow \text{'banana'}, \\ \text{'cherry'} \rightarrow$		0.0 and	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1.0	
$\begin{array}{c} \text{integer} \\ \text{between a} \\ \text{and b} \\ \\ \text{random.uniform(a, b)} \\ \text{random.uniform(a, b)} \\ \text{Returns a} \\ \text{random} \\ \text{float} \\ \text{between a} \\ \text{and b} \\ \\ \text{random.choice (se} \\ \text{q}) \\ \\ \text{random.choice (see q)} \\ \text{random} \\ \text{element} \\ \text{from a} \\ \text{sequence} \\ \\ \text{random.choices(seq, k=n)} \\ \\ \text{random.sample(seq, k=n)} \\ \\ \text{random.sample(seq, k=n)} \\ \\ \text{random.sample(seq, without replacemen t)} \\ \text{random.shuffle(seq)} \\ \text{Shuffles a} \\ \text{sequence} \\ \\ \text{random.shuffle(seq)} \\ \\ \text{Shuffles a} \\ \text{sequence} \\ \\ \text{ist)} \\ \\ \text{random.shuffle(my_l ist)} \\ \\ \\ random.shuffle(my$	random.randint(a	Returns a	random.randint(1,
$\begin{array}{c} \text{between a} \\ \text{and b} \\ \\ \text{random.uniform(a, b)} \\ \text{random.uniform(a, b)} \\ \text{Returns a} \\ \text{random} \\ \text{float} \\ \text{between a} \\ \text{and b} \\ \\ \\ \text{random.choice (seq)} \\ \text{q)} \\ \\ \text{random.choices(seq)} \\ \text{random.choices(seq, k=n)} \\ \\ \text{random.sample(seq, k=n)} \\ \\ \text{random.sample(seq, k=n)} \\ \\ \text{random.shuffle(seq)} \\ \\ \text{random.shuffle(seq)} \\ \\ \text{Shuffles a} \\ \text{sequence} \\ \\ \text{random.shuffle(seq)} \\ \\ \text{Shuffles a} \\ \text{sequence} \\ \\ \text{random.shuffle(my_list)} \\ \\ \\ \\ \text{random.shuffle(my_list)} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$, b)	random	10) → 7
$ \begin{array}{c} \text{random.uniform(a,b)} \\ \text{random.uniform(a,b)} \\ \text{random.uniform(a,b)} \\ \text{random} \\ \text{float} \\ \text{between a} \\ \text{and b} \\ \\ \\ \text{random.choice (se} \\ \text{q)} \\ \\ \\ \text{random.choices(se} \\ \text{q)} \\ \\ \text{random.choices(seq, k=n)} \\ \\ \text{random.choices(seq, k=n)} \\ \\ \text{random.sample(seq, k=n)} \\ \\ \text{random.sample(seq, k=n)} \\ \\ \text{random.sample(seq, k=n)} \\ \\ \text{random.shuffle(seq)} \\ \\ \text{suffices a sequence} \\ \\ \text{Shuffles a sequence} \\ \\ \text{random.shuffle(seq)} \\ \\ \text{suffles a sequence} \\ \\ \text{random.shuffle(my_limits)} \\ \\ \\ \text{random.shuffle(my_limits)} \\ \\ \\ \text{random.shuffle(my_limits)} \\ \\ \\ random.shuffle(my_limits)$		integer	
$\begin{array}{c} \text{random.uniform(a,b)} \\ \text{random.uniform(a,b)} \\ \text{float} \\ \text{between a} \\ \text{and b} \\ \\ \text{random.choice (se} \\ \text{q}) \\ \\ \text{random.choice (seeq)} \\ \text{random.choices(seq, k=n)} \\ \\ \text{random.sample(seq, k=n)} \\ \\ \text{random.sample(seq, k=n)} \\ \\ \text{random.shuffle(seq)} \\ \\ \text{random.shuffle(seq)} \\ \\ \text{Shuffles a} \\ \text{sequence} \\ \\ \text{random.shuffle(seq)} \\ \\ \text{Shuffles a} \\ \text{sequence} \\ \\ \text{random.uniform(1, 10) $\rightarrow 4.56} \\ \\ \text{random.choice(['apple', 'banana', 'cherry']) $\rightarrow 'banana'} \\ \\ \text{random.choices(seq, k=n)} \\ \\ \text{random.choices(seq, with replacement t)} \\ \\ \text{random.sample(seq, without replacement t)} \\ \\ \text{random.shuffle(seq)} \\ \text{Shuffles a} \\ \text{sequence} \\ \\ \text{ist)} \\ \\ \text{random.shuffle(my_list)} \\ \\ \\ \text{random.shuffle(my_list)} \\ \\ \\ \text{random.shuffle(my_list)} \\ \\ \\ \text{random.shuffle(my_list)} \\ \\ \\ random.shuf$		between a	
$\begin{array}{c} \text{random} \\ \text{float} \\ \text{between a} \\ \text{and b} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $		and b	
$\begin{array}{c} \text{float} \\ \text{between a} \\ \text{and b} \\ \\ \\ \text{random.choice (seq)} \\ \text{q)} \\ \\ \\ \text{random.choice (seq)} \\ \text{random.choices(seq,} \\ \text{k=n)} \\ \\ \\ \\ \text{random.sample(seq,} \\ \text{k=n)} \\ \\ \\ \\ \text{random.sample(seq,} \\ \text{k=n)} \\ \\ \\ \\ \\ \\ \text{random.sample(seq,} \\ \text{lunique} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	random.uniform(a, b)	Returns a	random.uniform(1,
$\begin{array}{c} \text{between a} \\ \text{and b} \\ \\ \text{random.choice(se} \\ \text{q)} \\ \\ \\ \text{random.choice(se} \\ \text{q}) \\ \\ \\ \\ \text{random.choice(seq)} \\ \\ \text{random.choices(seq, k=n)} \\ \\ \\ \text{random.choices(seq, k=n)} \\ \\ \\ \text{random.sample(seq, k=n)} \\ \\ \\ \text{random.sample(seq, k=n)} \\ \\ \\ \\ \text{random.sample(seq, k=n)} \\ \\ \\ \\ \text{random.sample(seq, without replacemen t)} \\ \\ \\ \text{random.shuffle(seq)} \\ \\ \\ \text{Shuffles a sequence} \\ \\ \\ \text{sequence} \\ \\ \\ \text{sequence} \\ \\ \\ \\ \text{sequence} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$		random	10) → 4.56
$\begin{array}{c} \text{random.choice}(\text{se}\\ \text{q}) \end{array} \begin{array}{c} \text{picks a}\\ \text{random}\\ \text{element}\\ \text{from a}\\ \text{sequence} \end{array} \begin{array}{c} \text{random.choice}([\text{'appl}\ e', \text{'banana'}, \text{'cherry'}])} \rightarrow \text{'banana'}\\ \text{random.choices}(\text{seq}, \\ \text{k=n}) \end{array} \begin{array}{c} \text{Picks n}\\ \text{random}\\ \text{elements}\\ \text{(with}\\ \text{replacemen}\\ \text{t)} \end{array} \begin{array}{c} \text{random.sample}(\text{seq}, \\ \text{k=n}) \end{array} \begin{array}{c} \text{Picks n}\\ \text{unique}\\ \text{random}\\ \text{elements}\\ \text{(without}\\ \text{replacemen}\\ \text{t)} \end{array} \begin{array}{c} \text{random.sample}([1, 2, 3, 4], \text{k=2}) \rightarrow [3, 1]\\ \text{random.shuffle}(\text{seq}) \end{array} \begin{array}{c} \text{Shuffles a}\\ \text{sequence} \end{array} \begin{array}{c} \text{random.shuffle}(\text{my_l}\\ \text{ist} \end{array} $		float	
$\begin{array}{c} \text{random.choice}(\text{se}\\ \text{q}) & \begin{array}{c} \text{Picks a}\\ \text{random}\\ \text{element}\\ \text{from a}\\ \text{sequence} \end{array} & \begin{array}{c} \text{random.choice}([\text{'appl}\\ \text{e', 'banana', 'cherry']}) \rightarrow \text{'banana'}\\ \text{'cherry']}) \rightarrow \text{'banana'}\\ \text{random.choices}(\text{seq,}\\ \text{k=n}) & \begin{array}{c} \text{Picks n}\\ \text{random}\\ \text{elements}\\ \text{(with}\\ \text{replacemen}\\ \text{t}) \\ \end{array} & \begin{array}{c} \text{random.choices}([1,\\2,3],k=2) \rightarrow [2,3]\\ \text{andom.sample}([1,\\2,3,4],k=2) \rightarrow [3,1]\\ \end{array} \\ \text{random.shuffle}(\text{seq}) & \begin{array}{c} \text{Picks n}\\ \text{unique}\\ \text{random}\\ \text{elements}\\ \text{(without}\\ \text{replacemen}\\ \text{t}) \\ \end{array} & \begin{array}{c} \text{random.shuffle}(\text{my_l}\\ \text{ist}) \\ \end{array} \\ \end{array}$		between a	
$\begin{array}{c} \text{random.choice}(\text{se}\\ \text{q}) & \begin{array}{c} \text{Picks a}\\ \text{random}\\ \text{element}\\ \text{from a}\\ \text{sequence} \end{array} & \begin{array}{c} \text{random.choice}([\text{'appl}\\ \text{e', 'banana', 'cherry']}) \rightarrow \text{'banana'}\\ \text{'cherry']}) \rightarrow \text{'banana'}\\ \text{random.choices}(\text{seq,}\\ \text{k=n}) & \begin{array}{c} \text{Picks n}\\ \text{random}\\ \text{elements}\\ \text{(with}\\ \text{replacemen}\\ \text{t}) \\ \end{array} & \begin{array}{c} \text{random.choices}([1,\\2,3],k=2) \rightarrow [2,3]\\ \text{andom.sample}([1,\\2,3,4],k=2) \rightarrow [3,1]\\ \end{array} \\ \text{random.shuffle}(\text{seq}) & \begin{array}{c} \text{Picks n}\\ \text{unique}\\ \text{random}\\ \text{elements}\\ \text{(without}\\ \text{replacemen}\\ \text{t}) \\ \end{array} & \begin{array}{c} \text{random.shuffle}(\text{my_l}\\ \text{ist}) \\ \end{array} \\ \end{array}$		and b	
$ \begin{array}{c} \textbf{q}) \\ \textbf{random} \\ \textbf{element} \\ \textbf{from a} \\ \textbf{sequence} \\ \end{array} \begin{array}{c} \textbf{e', 'banana', 'cherry']) \rightarrow 'banana'} \\ \textbf{random.choices(seq, k=n)} \\ \textbf{random.choices(seq, k=n)} \\ \textbf{random.sample(seq, k=n)} \\ \textbf{random.sample(seq, k=n)} \\ \textbf{random} \\ \textbf{elements} \\ \textbf{(with replacemen t)} \\ \textbf{unique} \\ \textbf{random} \\ \textbf{elements} \\ \textbf{(without replacemen t)} \\ \textbf{(without replacemen t)} \\ \textbf{random.shuffle(seq)} \\ \textbf{Shuffles a} \\ \textbf{sequence} \\ \textbf{ist)} \\ \textbf{random.shuffle(my_l ist)} \\ \textbf{sequence} \\ seq$	random.choice(se		random.choice(['appl
$\begin{array}{c} \text{element} \\ \text{from a} \\ \text{sequence} \\ \\ \text{random.choices(seq, k=n)} \\ \\ \text{random.choices(seq, k=n)} \\ \\ \text{random.sample(seq, k=n)} \\ \\ \text{random.sample(seq, k=n)} \\ \\ \text{random.sample(seq, k=n)} \\ \\ \text{random.sample(seq, k=n)} \\ \\ \text{random.elements (without replacemen t)} \\ \\ \text{random.shuffle(seq)} \\ \\ \text{Shuffles a sequence} \\ \\ \text{sequence} \\ \\ \text{set} \\ \\ \text{cherry'])} \rightarrow \text{'banana'} \\ \\ \text{random.choices([1, 2, 3], k=2)} \rightarrow [2, 3] \\ \\ \text{random.sample([1, 2, 3, 4], k=2)} \rightarrow [3, 1] \\ \\ \text{random.shuffle(seq)} \\ \\ \text{Shuffles a sequence} \\ \\ \text{ist)} \\ \end{array}$	· ·		
$\begin{array}{c} \text{from a} \\ \text{sequence} \\ \\ \text{random.choices(seq,} \\ \text{k=n)} \\ \end{array} \begin{array}{c} \text{Picks n} \\ \text{random} \\ \text{elements} \\ \text{(with} \\ \text{replacemen} \\ \text{t)} \\ \\ \text{random.sample(seq,} \\ \text{k=n)} \\ \end{array} \begin{array}{c} \text{Picks n} \\ \text{unique} \\ \text{random} \\ \text{elements} \\ \text{(without} \\ \text{random} \\ \text{elements} \\ \text{(without} \\ \text{replacemen} \\ \text{t)} \\ \end{array} \begin{array}{c} \text{random.sample([1, 2, 3, 4], k=2)} \rightarrow [3, 1] \\ \\ \text{random.shuffle(seq)} \\ \end{array} \begin{array}{c} \text{Shuffles a} \\ \text{sequence} \\ \end{array} \begin{array}{c} \text{random.shuffle(my_l} \\ \text{ist)} \\ \end{array}$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			onerry jy y bariaria
$\begin{array}{c} \text{random.choices(seq,} \\ \text{k=n)} \end{array} \begin{array}{c} \text{Picks n} \\ \text{random} \\ \text{elements} \\ \text{(with} \\ \text{replacemen} \\ \text{t)} \end{array} \begin{array}{c} \text{random.choices([1, 2, 3], k=2)} \rightarrow [2, 3] \\ \text{elements} \\ \text{(with} \\ \text{replacemen} \\ \text{t)} \end{array} \\ \begin{array}{c} \text{random.sample(seq,} \\ \text{k=n)} \end{array} \begin{array}{c} \text{Picks n} \\ \text{unique} \\ \text{random} \\ \text{elements} \\ \text{(without} \\ \text{replacemen} \\ \text{t)} \end{array} \begin{array}{c} \text{random.sample([1, 2, 3, 4], k=2)} \rightarrow [3, 1] \\ \text{random.shuffle(seq)} \end{array}$			
k=n) random elements (with replacemen t) random.sample(seq, k=n) Picks n unique random elements (without replacemen t) random.shuffle(seq) Shuffles a sequence random.shuffle(my_l ist) random.shuffle(my_l ist)	random choices(sea	•	random choices/[1
$\begin{array}{c} \text{elements} \\ \text{(with} \\ \text{replacemen} \\ \text{t)} \\ \\ \text{random.sample(seq,} \\ \text{k=n)} \\ \end{array} \begin{array}{c} \text{Picks n} \\ \text{unique} \\ \text{random} \\ \text{elements} \\ \text{(without} \\ \text{replacemen} \\ \text{(without} \\ \text{replacemen} \\ \text{t)} \\ \\ \text{random.shuffle(seq)} \\ \end{array} \begin{array}{c} \text{Shuffles a} \\ \text{sequence} \\ \text{ist)} \\ \end{array}$			•• •
$(with replacemen t) \\ random.sample(seq, k=n) \\ Picks n unique random elements (without replacemen t) \\ random.shuffle(seq) \\ Shuffles a sequence \\ Shuffles ist) \\ random.shuffle(my_l ist) \\ random.shuffle(my$	K-11)		2, 3], K-2) 7 [2, 3]
$\begin{array}{c} \text{replacemen} \\ \text{t)} \\ \text{random.sample(seq,} \\ \text{k=n)} \\ \end{array} \begin{array}{c} \text{Picks n} \\ \text{unique} \\ \text{random} \\ \text{elements} \\ \text{(without} \\ \text{replacemen} \\ \text{t)} \\ \\ \text{random.shuffle(seq)} \\ \end{array} \begin{array}{c} \text{Shuffles a} \\ \text{sequence} \\ \end{array} \begin{array}{c} \text{random.shuffle(my_l} \\ \text{ist)} \\ \end{array}$			
$ \begin{array}{c cccc} & t) & & & & \\ random.sample(seq, & Picks n & random.sample([1, \\ k=n) & unique & 2, 3, 4], k=2) \rightarrow [3, 1] \\ & random & elements & (without & replacemen & t) \\ \hline random.shuffle(seq) & Shuffles a & random.shuffle(my_l ist) \\ \hline \end{array} $			
$\begin{array}{c} \text{random.sample(seq,} \\ \text{k=n)} \end{array} \begin{array}{c} \text{Picks n} \\ \text{unique} \\ \text{random} \\ \text{elements} \\ \text{(without} \\ \text{replacemen} \\ \text{t)} \end{array} \begin{array}{c} \text{random.sample([1, 2, 3, 4], k=2)} \rightarrow [3, 1] \\ \text{sample(seq)} \end{array}$			
k=n) unique random elements (without replacemen t) Shuffles a sequence $(3, 3, 4], k=2) \rightarrow [3, 1]$,	1 ///
random elements (without replacemen t) random.shuffle(seq) Shuffles a sequence ist)	• • •		• • •
elements (without replacemen t) random.shuffle(seq) Shuffles a sequence ist) random.shuffle(my_l ist)	k=n)		$[2, 3, 4], k=2) \rightarrow [3, 1]$
(without replacemen t)random.shuffle(seq)Shuffles a sequencerandom.shuffle(my_l ist)			
replacemen t) random.shuffle(seq) Shuffles a random.shuffle(my_l ist)			
random.shuffle(seq) Shuffles a random.shuffle(my_l sequence ist)			
random.shuffle(seq) Shuffles a random.shuffle(my_l ist)		replacemen	
sequence ist)		t)	
	random.shuffle(seq)	Shuffles a	random.shuffle(my_l
in place		sequence	ist)
		in place	

Ex: import random

```
\begin{array}{ll} print(random.random()) & \#\ Output:\ 0.8274\ (random\ float)\\ print(random.randint(1,\ 10)) & \#\ Output:\ 7\ (random\ integer)\\ between\ 1\ and\ 10)\\ print(random.uniform(1,\ 10)) & \#\ Output:\ 4.23\ (random\ float)\\ print(random.choice(['red',\ 'blue',\ 'green'])) & \#\ Output:\ 'blue'\\ numbers &= [1,\ 2,\ 3,\ 4,\ 5]\\ random.shuffle(numbers)\\ print(numbers) \end{array}
```

Creating custom modules.

• In Python, you can create your own **custom modules** to organize and reuse code efficiently. A module is simply a .py file containing functions, variables, and classes that can be imported into other Python scripts.

1. Creating a Custom Module

- Create a python file.
- Define functions, variables, or classes in it.
- Import and use it in another script.

```
Ex:
# my_module.py

def greet(name):
    """Function to greet a person"""
    return f"Hello, {name}!"

def add(a, b):
    """Function to add two numbers"""
    return a + b

pi_value = 3.14159 # Variable
```

2.Importing and using the custom module:

Once you've created module, you can import and use it. Ex:

import my_module # Importing the custom module

```
# Using functions and variables from the module print(my_module.greet("Alice")) # Output: Hello, Alice! print(my_module.add(10, 5)) # Output: 15 print(my_module.pi_value) # Output: 3.14159
```

3.Importing specific function or variable :

```
Ex:
from my_module import greet, add
print(greet("Bob")) # Output: Hello, Bob!
print(add(4, 6)) # Output: 10
```

4. Storing module in different folder (packages):

- If your module is inside a folder (e.g., utils/), you need an __init__.py file in the folder.
- Folder Structure:

Then, in main.py, you can import it like this: from utils import my_module

print(my_module.greet("David")) # Output: Hello,
David!