Lecture Notes for Chapter 14: Augmenting Data Structures

Chapter 14 overview

We'll be looking at methods for *designing* algorithms. In some cases, the design will be intermixed with analysis. In other cases, the analysis is easy, and it's the design that's harder.

Augmenting data structures

- It's unusual to have to design an all-new data structure from scratch.
- It's more common to take a data structure that you know and store additional information in it.
- With the new information, the data structure can support new operations.
- But you have to figure out how to *correctly maintain* the new information *without loss of efficiency*.

We'll look at a couple of situations in which we augment red-black trees.

Dynamic order statistics

We want to support the usual dynamic-set operations from R-B trees, plus:

- OS-SELECT(x, i): return pointer to node containing the ith smallest key of the subtree rooted at x.
- OS-RANK(T, x): return the rank of x in the linear order determined by an inorder walk of T.

Augment by storing in each node x:

x.size = # of nodes in subtree rooted at x.

- Includes x itself.
- Does not include leaves (sentinels).

Define for sentinel T.nil.size = 0.

Then x.size = x.left.size + x.right.size + 1.

[Example above: Ignore colors, but legal coloring shown with "R" and "B" notations. Values of i and r are for the example below.]

Note: OK for keys to not be distinct. Rank is defined with respect to position in inorder walk. So if we changed D to C, rank of original C is 2, rank of D changed to C is 3.

```
OS-SELECT(x, i)

r = x.left.size + 1

if i == r

return x

elseif i < r

return OS-SELECT(x.left, i)

else return OS-SELECT(x.right, i - r)
```

Initial call: OS-SELECT(T.root, i)

Try OS-SELECT (T.root, 5). [Values shown in figure above. Returns node whose key is H.]

Correctness

r = rank of x within subtree rooted at x.

- If i = r, then we want x.
- If i < r, then ith smallest element is in x's left subtree, and we want the ith smallest element in the subtree.
- If i > r, then *i*th smallest element is in *x*'s right subtree, but subtract off the *r* elements in *x*'s subtree that precede those in *x*'s right subtree.
- Like the randomized SELECT algorithm.

Analysis

Each recursive call goes down one level. Since R-B tree has $O(\lg n)$ levels, have $O(\lg n)$ calls $\Rightarrow O(\lg n)$ time.

```
OS-RANK(T, x)

r = x.left.size + 1

y = x

while y \neq T.root

if y == y.p.right

r = r + y.p.left.size + 1

y = y.p

return r
```

Demo: Node D.

Why does this work?

Loop invariant: At start of each iteration of **while** loop, r = rank of x.key in subtree rooted at y.

Initialization: Initially, r = rank of x.key in subtree rooted at x, and y = x.

Termination: Loop terminates when $y = T.root \Rightarrow$ subtree rooted at y is entire tree. Therefore, r = rank of x.key in entire tree.

Maintenance: At end of each iteration, set y = y.p. So, show that if r = rank of x.key in subtree rooted at y at start of loop body, then r = rank of x.key in subtree rooted at y.p at end of loop body.

[r = # of nodes in subtree rooted at y preceding x in inorder walk] Must add nodes in y's sibling's subtree.

- If y is a left child, its sibling's subtree follows all nodes in y's subtree ⇒ don't change r.
- If y is a right child, all nodes in y's sibling's subtree precede all nodes in y's subtree ⇒ add size of y's sibling's subtree, plus 1 for y.p, into r.

Analysis

y goes up one level in each iteration $\Rightarrow O(\lg n)$ time.

Maintaining subtree sizes

- Need to maintain *size* attributes during insert and delete operations.
- Need to maintain them efficiently. Otherwise, might have to recompute them all, at a cost of $\Omega(n)$.

Will see how to maintain without increasing $O(\lg n)$ time for insert and delete.

Insert

- During pass downward, we know that the new node will be a descendant of each node we visit, and only of these nodes. Therefore, increment *size* attribute of each node visited.
- Then there's the fixup pass:
 - Goes up the tree.
 - Changes colors $O(\lg n)$ times.
 - Performs ≤ 2 rotations.
- Color changes don't affect subtree sizes.
- Rotations do!
- But we can determine new sizes based on old sizes and sizes of children.

$$y.size = x.size$$

 $x.size = x.left.size + x.right.size + 1$

- Similar for right rotation.
- Therefore, can update in O(1) time per rotation $\Rightarrow O(1)$ time spent updating *size* attributes during fixup.
- Therefore, $O(\lg n)$ to insert.

Delete

Also 2 phases:

- 1. Splice out some node y.
- 2. Fixup.

After splicing out y, traverse a path $y \to root$, decrementing size in each node on path. $O(\lg n)$ time.

During fixup, like insertion, only color changes and rotations.

- ≤ 3 rotations $\Rightarrow O(1)$ time spent updating *size* attributes during fixup.
- Therefore, $O(\lg n)$ to delete.

Done!

Methodology for augmenting a data structure

- 1. Choose an underlying data structure.
- 2. Determine additional information to maintain.
- 3. Verify that we can maintain additional information for existing data structure operations.
- 4. Develop new operations.

Don't need to do these steps in strict order! Usually do a little of each, in parallel.

How did we do them for OS trees?

- 1. R-B tree.
- 2. x.size.
- 3. Showed how to maintain *size* during insert and delete.
- 4. Developed OS-SELECT and OS-RANK.

Red-black trees are particularly amenable to augmentation.

Theorem

Augment a R-B tree with attribute f, where x.f depends only on information in x, x.left, and x.right (including x.left.f and x.right.f). Then can maintain values of f in all nodes during insert and delete without affecting $O(\lg n)$ performance.

Proof Since x.f depends only on x and its children, when we alter information in x, changes propagate only upward (to x.p, x.p.p, x.p.p.p, ..., root).

Height = $O(\lg n) \Rightarrow O(\lg n)$ updates, at O(1) each.

Insertion

Insert a node as child of existing node. Even if can't update f on way down, can go up from inserted node to update f. During fixup, only changes come from color changes (no effect on f) and rotations. Each rotation affects f of ≤ 3 nodes (x, y, and parent), and can recompute each in O(1) time. Then, if necessary, propagate changes up the tree. Therefore, $O(\lg n)$ time per rotation. Since ≤ 2 rotations, $O(\lg n)$ time to update f during fixup.

Delete

Same idea. After splicing out a node, go up from there to update f. Fixup has ≤ 3 rotations. $O(\lg n)$ per rotation $\Rightarrow O(\lg n)$ to update f during fixup. \blacksquare (theorem)

For some attributes, can get away with O(1) per rotation. Example: size attribute.

Interval trees

Maintain a set of intervals. For instance, time intervals.

[leave on board]

Operations

- INTERVAL-INSERT (T, x): x. int already filled in.
- INTERVAL-DELETE(T, x)
- INTERVAL-SEARCH (T, i): return pointer to a node x in T such that x.int overlaps interval i. Any overlapping node in T is OK. Return pointer to sentinel T.nil if no overlapping node in T.

Interval i has i.low, i.high.

i and *j* overlap if and only if $i.low \le j.high$ and $j.low \le i.high$.

(Go through examples of proper inclusion, overlap without proper inclusion, no overlap.)

Another way: i and j don't overlap if and only if i.low > j.high or j.low > i.high. [leave this on board]

Recall the 4-part methodology.

For interval trees

- 1. Use R-B trees.
 - Each node x contains interval x.int.
 - Key is low endpoint (x.int.low).
 - Inorder walk would list intervals sorted by low endpoint.

2. Each node *x* contains

x.max = max endpoint value in subtree rooted at x.

[leave on board]

$$x.max = max \begin{cases} x.int.high , \\ x.left.max , \\ x.right.max \end{cases}$$

Could x.left.max > x.right.max? Sure. Position in tree is determined only by low endpoints, not high endpoints.

- 3. Maintaining the information.
 - This is easy—x.max depends only on:
 - information in *x*: *x*.int.high
 - information in *x*.left: *x*.left.max
 - information in *x.right*: *x.right.max*
 - · Apply the theorem.
 - In fact, can update max on way down during insertion, and in O(1) time per rotation.
- 4. Developing new operations.

```
INTERVAL-SEARCH(T, i)
x = T.root
while x \neq T.nil and i does not overlap x.int
if x.left \neq T.nil and x.left.max \geq i.low
x = x.left
else x = x.right
return x
```

Examples

Search for [14, 16] and [12, 14].

Time

 $O(\lg n)$.

Correctness

Key idea: need check only 1 of node's 2 children.

Theorem

If search goes right, then either:

- There is an overlap in right subtree, or
- There is no overlap in either subtree.

If search goes left, then either:

- There is an overlap in left subtree, or
- There is no overlap in either subtree.

Proof If search goes right:

- If there is an overlap in right subtree, done.
- If there is no overlap in right, show there is no overlap in left. Went right because
 - $x.left = T.nil \Rightarrow$ no overlap in left.

OR

• $x.left.max < i.low \Rightarrow$ no overlap in left.

x.left.max = highest endpoint in left

If search goes left:

- If there is an overlap in left subtree, done.
- If there is no overlap in left, show there is no overlap in right.
 - Went left because:

 $i.low \le x.left.max$ = j.high for some j in left subtree.

- Since there is no overlap in left, i and j don't overlap.
- Refer back to: no overlap if

$$i.low > j.high \text{ or } j.low > i.high.$$

- Since $i.low \le j.high$, must have j.low > i.high.
- Now consider *any* interval *k* in *right* subtree.
- Because keys are low endpoint,

$$\underbrace{j.low}_{\text{in left}} \leq \underbrace{k.low}_{\text{in right}}.$$

- Therefore, $i.high < j.low \le k.low$.
- Therefore, i.high < k.low.
- Therefore, i and k do not overlap.

■ (theorem)