Name	: Gruppe:								
	MA9202 Mathematik für Physiker 2 (Analysis 1), Prof. Dr. R. König								
	Probeklausur, 22.12.2017, 12:15-13:45								
Bei M Aussa Bei A	mittel: ein selbsterstelltes DIN-A4 Blatt. [ultiple-Choice-Aufgaben sind keine, eine oder mehrere, in jedem Fall jedoch genau die zutreffenden gen, anzukreuzen. ufgaben mit Kästen werden nur die Resultate in diesen Kästen berücksichtigt. ben ohne Kästen lösen Sie bitte auf dem bereitgestellten Bearbeitungsbogen.								
	Viel Erfolg!								
1.	Vollständige Induktion [8 Punkte]								
	Beweisen Sie mittels vollständiger Induktion für alle $n \in \mathbb{N}$ die folgende Aussage:								
	$\sum_{k=1}^{2n-1} \frac{(-1)^{k+1}}{k} = \sum_{k=n}^{2n-1} \frac{1}{k}$								
HINWEIS: Beachten Sie den Startindex in der Summe auf der rechten Seite der Gleichung.									
2.	Komplexe Zahlen [6 Punkte]								
Bestimmen Sie Real- und Imaginärteil von $\sqrt{\mathrm{e}^{\pi(2+\frac{7}{2}\mathrm{i})}}$.									
3.	Konvergenz von Folgen und Reihen [10 Punkte]								
	(a) Berechnen Sie den Wert der Reihe: $\sum_{n=1}^{\infty} \frac{1 - 2(-3)^n}{4^n} =$								
	(b) Wo liegt der Grenzwert c der Reihe $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt[3]{n}}$?								
	$\square \ c = -\infty \qquad \square \ c \in (-\infty,0) \qquad \square \ c = 0 \qquad \square \ c \in (0,\infty) \qquad \square \ c = +\infty \qquad \square \ c \text{ ist undefinier}$								
	(c) Wie groß ist der Konvergenzradius der Potenzreihe $\sum_{n=0}^{\infty} \left(1 - \frac{1}{n}\right)^{n^2} x^n$?								
	$\square \hspace{0.1cm} 0 \hspace{0.1cm} \square \hspace{0.1cm} \frac{1}{\pi} \hspace{0.1cm} \square \hspace{0.1cm} \frac{1}{\mathrm{e}} \hspace{0.1cm} \square \hspace{0.1cm} \frac{1}{2} \hspace{0.1cm} \square \hspace{0.1cm} 1 \hspace{0.1cm} \square \hspace{0.1cm} 2 \hspace{0.1cm} \square \hspace{0.1cm} \mathrm{e} \hspace{0.1cm} \square \hspace{0.1cm} \pi \hspace{0.1cm} \square \hspace{0.1cm} \infty$								
	(d) Sei $(x_n)_{n\in\mathbb{N}_0}\subset\mathbb{R}$ eine monoton wachsende Zahlenfolge mit $x_{n+1}-x_n\leq r(x_n-x_{n-1})$ für alle $n\in\mathbb{N}$, wobei $r<1$ ist. (x_n) ist								
	\Box beschränkt \Box divergent \Box alternierend \Box konvergent \Box unbeschränkt								
4.	Uneigentliche Grenzwerte [5 Punkte]								
	Seien (a_n) und (b_n) zwei reelle Folgen, die eigentlich oder uneigentlich konvergieren. Zeigen Sie: Ist $\lim_{n\to\infty} a_n = +\infty$ und $\lim_{n\to\infty} b_n > -\infty$, dann gilt								

 $\lim_{n\to\infty}(a_n+b_n)=+\infty.$

5. Stetige Funktionen

[10 Punkte]

Sei $f:[0,1]\to\mathbb{R}$ eine stetige Funktion mit der Eigenschaft, dass $f(x^2)=f(x)$ für alle $x\in[0,1]$ gilt. Zeigen Sie:

(a)
$$f(0) = f(\frac{1}{2}),$$

(b)
$$f(1) = f(\frac{1}{2})$$
.

6. Gerade und ungerade Funktionen

[10 Punkte]

Eine Funktion $f: \mathbb{R} \to \mathbb{R}$ heißt **gerade**, wenn $\forall x \in \mathbb{R}: f(-x) = f(x)$ und **ungerade**, wenn $\forall x \in \mathbb{R}: f(-x) = -f(x)$ ist.

- (a) Zeigen Sie: Ist $f: \mathbb{R} \to \mathbb{R}$ differenzierbar und ungerade, dann ist f' eine gerade Funktion.
- (b) Sei nun f wieder differenzierbar und ungerade. Setze $g(x) = f(x^3)$ und $h(x) = f(x)^3$. Zeigen Sie, dass g' und h' gerade Funktionen sind.

7. Ableitung einer Umkehrfunktion

[16 Punkte]

Sei die Funktion $f(x) = x + \sin(x)$ gegeben.

- (a) Zeigen Sie, dass $f: [-\pi, \pi] \to [-\pi, \pi]$ bijektiv ist.
- (b) Wie lautet die Ableitung von f^{-1} an den Punkten 0 und $1 + \frac{\pi}{2}$?

$$(f^{-1})'(0) =$$

$$(f^{-1})'(1+\frac{\pi}{2})=$$

(c)	Skizzieren	Sie die G	raphen von	(f, f', f^{\prime})	und (f^{-1})	' jeweils in ϵ	einem eigene	en Koordina	tensystem.