Paradygmaty programowania

IT, inż. II rok

lmię i nazwisko	Data	Godzina	
Paweł Kluska	20.10.2021	11:15	

	1	2	3	4	5	6	7	8	9	10
Lista nr 1										
	V	V	V	V	V	V	Х			
Lista nr 2										
	V	V	V	V	V	a)				

Niżej zamieszczam rozwiązanie zadania 1 Listy 2

1) W Ocamlu stos będzie miał głębokość 1, w scali natomiast będzie miał 4. Mamy tutaj do czynienia z rekursją ogonową. W Ocamlu zawsze następuje optymalizacja takiej rekursji. Nie ma tutaj powrotu rekurencyjnego więc na stosie od razu są zwalniane miejsca. W Scali jest trochę inaczej. Scala optymalizuje rekursję ogonową tylko wtedy gdy dotyczy ona tej samej funkcji. W tym zadaniu mamy wzajemną rekurencję, jedna funkcja wywołuje drugą, druga pierwszą itd. Nie został spełniony warunek więc nie zaszła optymalizacja stosu, zajmuje on tyle co przy zwykłej rekurencji.