Rotacije opisane s Kvaternioni

Timotej Mlakar

Fakulteta za matematiko in fiziko Oddelek za matematiko

17. april 2023

Naj bo V 4-razsežen vektorski prostor z bazo $\{1,i,j,k\}$. Elemente V označimo $\mathbf{q}=q_0\mathbf{1}+q_1i+q_2j+q_3k=q_0+\vec{q}$. Vektorski prostor V opremimo s operacijo množenja:

11 = 1, 1i = i, 1j = j, 1k = k,

$$ij = k$$
, $jk = i$, $ki = j$,
 $i^2 = j^2 = k^2 = ijk = -11$.

Tedaj V postane 4-razsežna algebra nad \mathbb{R} , ki jo označimo s \mathbb{H} in imenujemo Kvaternionska Algebra.

$$\overline{q}=q_0-\vec{q}.$$

$$\overline{q}=q_0-\vec{q}$$
.

Definicija

Naj bo $q \in \mathbb{H}$. Inverz q za množenje je je tedaj

$$q^{-1} = rac{1}{q\overline{q}}\overline{q}$$

Na \mathbb{H} vpeljemo skalarni produkt, sicer za $p, q \in \mathbb{H}$:

$$\langle p,q\rangle=rac{1}{2}ig(\overline{p}q+\overline{q}pig)$$

Norma, porojena s skalarnim produktom je

$$||q|| = |q| = \sqrt{\langle q, q \rangle}$$

Opomba

Za vsak $q \in \mathbb{H}$ je $\langle q, q \rangle = q\overline{q} = \overline{q}q$ in

$$|q| = \sqrt{q\overline{q}}$$

Na \mathbb{H} vpeljemo skalarni produkt, sicer za $p, q \in \mathbb{H}$:

$$\langle p,q \rangle = \frac{1}{2} (\overline{p}q + \overline{q}p)$$

Norma, porojena s skalarnim produktom je

$$||q|| = |q| = \sqrt{\langle q, q \rangle}$$

Opomba

Za vsak $q \in \mathbb{H}$ je $\langle q, q \rangle = q\overline{q} = \overline{q}q$ in

$$|q| = \sqrt{q\overline{q}}$$

Opomba

Norma na H je multiplikativna.

$$extbf{\emph{Q}}_e = \{q \in \mathbb{H}; |q| = 1\}$$

$$extbf{\emph{U}}_e = \{u \in \mathbb{H}; |u| = 1 \land u = \vec{u}\}$$

$$m{Q}_e=\{q\in\mathbb{H};|q|=1\}$$
 $m{U}_e=\{u\in\mathbb{H};|u|=1\land u=ec{u}\}$

Opomba

Za $u \in \boldsymbol{U}_e$ velja

$$u^2 = -1$$
.

Za poljubna $u,v \in \textbf{\textit{U}}_e$ velja

$$\langle u, v \rangle = 0 \iff uv + vu = 0 \iff uv = -vu.$$

Trditev

Naj bo $q \in \textbf{\textit{Q}}_e$. Obstajata $\theta \in \mathbb{R}$ in $u \in \textbf{\textit{U}}_e$, da je

$$q=\cos\theta+u\sin\theta.$$

Opomba

Polarni zapis kvaterniona ni enoličen.

Trditev

Naj bosta $p, q \in \mathbf{Q}_e$ taka, da $\exists u \in \mathbf{U}_e$, da je $p = e^{u\theta}$ in $q = e^{u\varphi}$, za neka $\theta, \varphi \in \mathbb{R}$. Tedaj je pq = qp.

Naj bosta $p,q \in extbf{\emph{Q}}_e$. Definiramo preslikavo $extsf{\emph{C}}_{p,q}: \mathbb{H} o \mathbb{H}$

$$C_{p,q}x := pqx$$
.

Naj bosta $p,q \in extbf{Q}_e$. Definiramo preslikavo $extstyle C_{p,q}: \mathbb{H} o \mathbb{H}$

$$C_{p,q}x := pqx$$
.

Definicija

Posebej označimo preslikavo $C=C_{q,\overline{q}}$, za $q=\mathrm{e}^{u\theta}$; $u\in oldsymbol{U}_{\mathrm{e}}, \theta\in\mathbb{R}$

$$Cx := C_{q,\overline{q}}x = e^{u\theta}xe^{-u\theta}.$$

Izrek

Naj bo $u \in \mathbf{U}_e$ in $\theta \in \mathbb{R}$ ter $q = e^{u\theta}$. Preslikava $C = C_{q,\overline{q}}$ je rotacija ravnine, pravokotne na u za kot 2θ .