# Линейная регрессия

регуляризация

## Переобучение



Рис. 1. Регрессионные кривые для признаковых наборов различной сложности.

### Отложенная выборка

- По обучающей выборке нельзя отследить переобучение
- Разделяем данные на две части train/validation
- Обучаем модель на обучающей части, на валидационной проверяем качество

#### Проблема:

Результат существенно зависит от конкретного разбиения данных на обучение и контроль

## **Cross Validation**

**Errors** 

Mean Error



# Обучение линейной регрессии

$$rac{1}{l}\sum_{i=0}^{l}\left(\left\langle w,x_{i}
ight
angle -y_{i}
ight)^{2}
ightarrow egin{aligned} min \end{aligned}$$

$$rac{1}{l}{{\left| {\left| {Xw \, - \, y} 
ight|} 
ight|^2}} \, 
ightarrow \, \mathop {min} \, .$$

$$w = (X^T X)^{-1} X^T y$$

# Обучение линейной регрессии

Аналитическое решение

$$w = (X^T X)^{-1} X^T y$$

#### Проблемы

- ullet Матрица  $X^TX$  может быть вырождена или плохо обусловлена
- Обращение матрицы сложная операция

#### Пусть в выборке есть л.з. признаки

$$\exists \, v: \, orall \, x \, \langle v, \, x 
angle \, = \, 0$$

$$\langle w + \alpha v, x \rangle = \langle w, x \rangle + \alpha \langle v, x \rangle = \langle w, x \rangle$$

Большие веса w симптом переобучения

т. к модель чувствительна к крайне малым изменениям признака



$$rac{1}{l}||Xw-y||^2\,
ightarrow\, \mathop{min}\limits_{w}$$

$$|L_1| = rac{1}{l} ||Xw-y||^2 + lpha ||w||_1 
ightarrow \mathop{min}\limits_{w}$$

$$|L_2| = rac{1}{l} ||Xw-y||^2 + lpha ||w||_2^2 
ightarrow \min_w ||u||_2^2$$

На практике оказывается, что  $L_1$  зануляет часть параметров модели, а  $L_2$  нет



Нужно ли включать вес  $w_0$  в регуляризатор?

$$w_0 \, + \, rac{1}{l} \sum_{i=1}^l \left( \langle w, x_i 
angle \, - \, y_i 
ight)^2 
ightarrow \, \mathop{min}\limits_{w}$$