Autômatos Finitos e Linguagens Regulares

Prof. Hamilton José Brumatto

CIC-UESC

21 de dezembro de 2024

- 1 Linguagem Regular
 - Definição Formal de Computação
 - Linguagem Regular
- Projetando um autômato
 - Estados do autômato?
 - Exercício
- Operações Regulares
 - Fecho de Operações
 - Fecho da Operação União
 - Demonstração
 - Operações de Concatenação e Estrela
- 4 Atividades

Retomando o tópico anterior

- Um automato finito é definido por uma 5-upla: $\{Q, \Sigma, \delta, q_0, F\}$, onde:
 - Q é o conjunto de estados do autômato.
 - ullet Σ é o alfabeto que define os elementos de uma cadeia computável
 - δ é a função de relação $\delta: Q \times \Sigma \to Q$ que define a computação passo a passo.
 - q₀ é o estado inicial do autômato.
 - F é o conjunto de estados de aceitação.

Definição Formal de Computação

Nós dissemos informalmente que um autômato aceita uma cadeia se a partir do estado inicial a cadeia for computada terminando em um estado final. Na matemática esta informação é muito imprecisa. Precisamos definir a computação formalmente:

Definição Formal de Computação

Seja $M = \{Q, \Sigma, \delta, q_0, F\}$ um autômato finito e suponha que $w = w_1, w_2, \ldots, w_n$ seja uma cadeia de tamanho n onde cada w_i é um membro do alfabeto Σ . Então M aceita w se existe uma sequência de estados r_0, r_1, \ldots, r_n em Q com três condições:

- $0 r_0 = q_0$
- $\delta(r_i, w_{i+1}) = r_{i+1}$, para i = 0, ..., n-1, e
- \circ $r_n \in F$.

Entendendo as condições

$$r_0 = q_0$$

A primeira condição diz que o autômato inicia em seu estado inicial.

$$\delta(r_i, w_{i+1}) = r_{i+1}$$
, para $i = 0, \dots, n-1$

A segunda condição diz que a máquina vai de estado para estado conforme a função de transição.

$$r_n \in F$$

A terceira condição diz que a máquina aceita a cadeia de entrada se ela termina em um estado de aceitação.

Linguagem Regular

Dizemos que *M* reconhece a linguagem *A* se:

$$A = \{w | M \text{ aceita } w\}$$

Uma linguagem é chamada de uma LINGUAGEM REGULAR se algum autômato finito a reconhece.

Então para demonstrar que uma linguagem é regular, precisamos construir um autômato finito que reconheça a linguagem.

Por onde começar?

A única informação que temos é o alfabeto e a linguagem (para definir uma linguagem é necessário especificar um alfabeto). Como projetar um autômato a partir daí?

Se fosse uma única cadeia seria simples, mas uma linguagem é o conjunto de todas as cadeias possíveis, mesmo que a cadeia seja finita, ela pode ser tão grande quando imaginarmos.

Veja um exemplo?

Seja $\Sigma = \{a, u, v\}$, considere a linguagem: $L = \{w | w \text{ termina com a cadeia } uva\}$.

Como projetar um autômato para esta linguagem? Lembre-se que poderíamos ter 500 entradas antes da cadeia final.

- A primeira tarefa a fazer é: Definir quais estados o autômato possui!
- Os estados representam a memória do autômato, portanto, o que será necessário lembrar?
- Para que reconheçamos que a cadeia *uva* tenha entrado, precisamos lembrar das três entradas na sequência:
 - \bigcirc u, vamos marcar isto no estado. q_u .
 - ② v, seguido de u, vamos marcar isto no estado q_{uv} , observe que a única transição possível para o estado q_{uv} seria a entrada $\delta(q_u, v)$.
 - ③ O estado final de aceitação, quando teríamos a entrada a após as entradas v e u, ou seja, do estado q_{uv} , somente a entrada a o levaria ao estado q_{uva} .
 - O Precisamos começar de algo: vamos colocar um estado inicial s.

- A primeira tarefa a fazer é: Definir quais estados o autômato possui!
- Os estados representam a memória do autômato, portanto, o que será necessário lembrar?
- Para que reconheçamos que a cadeia *uva* tenha entrado, precisamos lembrar das três entradas na sequência:
 - \bigcirc u, vamos marcar isto no estado. q_u .
 - ② v, seguido de u, vamos marcar isto no estado q_{uv} , observe que a única transição possível para o estado q_{uv} seria a entrada $\delta(q_u, v)$.
 - 3 O estado final de aceitação, quando teríamos a entrada a após as entradas v e u, ou seja, do estado q_{uv} , somente a entrada a o levaria ao estado q_{uva} .
 - 4 Precisamos começar de algo: vamos colocar um estado inicial s.

- A primeira tarefa a fazer é: Definir quais estados o autômato possui!
- Os estados representam a memória do autômato, portanto, o que será necessário lembrar?
- Para que reconheçamos que a cadeia *uva* tenha entrado, precisamos lembrar das três entradas na sequência:
 - \bigcirc u, vamos marcar isto no estado. q_u .
 - ② v, seguido de u, vamos marcar isto no estado q_{uv} , observe que a única transição possível para o estado q_{uv} seria a entrada $\delta(q_u, v)$.
 - 3 O estado final de aceitação, quando teríamos a entrada a após as entradas v e u, ou seja, do estado q_{uv} , somente a entrada a o levaria ao estado q_{uva} .
 - 4 Precisamos começar de algo: vamos colocar um estado inicial s.

- A primeira tarefa a fazer é: Definir quais estados o autômato possui!
- Os estados representam a memória do autômato, portanto, o que será necessário lembrar?
- Para que reconheçamos que a cadeia *uva* tenha entrado, precisamos lembrar das três entradas na sequência:
 - \bigcirc u, vamos marcar isto no estado. q_u .
 - ② v, seguido de u, vamos marcar isto no estado q_{uv} , observe que a única transição possível para o estado q_{uv} seria a entrada $\delta(q_u, v)$.
 - 3 O estado final de aceitação, quando teríamos a entrada a após as entradas v e u, ou seja, do estado q_{uv} , somente a entrada a o levaria ao estado q_{uva} .
 - 4 Precisamos começar de algo: vamos colocar um estado inicial s.

Primeiro o estado q_u :

Primeiro o estado q_u :

O estado q_{uv} sendo que somente de q_u com v se chega a q_{uv}

Primeiro o estado q_u :

- O estado q_{uv} sendo que somente de q_u com v se chega a q_{uv}
- O estado q_{uva} , somente de q_{uv} com a se chega a q_{uva}

Primeiro o estado q_u :

- O estado $q_{\mu\nu}$ sendo que somente de q_{μ} com ν se chega a $q_{\mu\nu}$
- O estado q_{uva} , somente de q_{uv} com a se chega a q_{uva}
- O estado s inicial que permite chegar a q_u a partir do u

Primeiro o estado q_u :

O estado q_{uv} sendo que somente de q_u com v se chega a q_{uv}

O estado q_{uva} , somente de q_{uv} com a se chega a q_{uva}

O estado s inicial que permite chegar a q_u a partir do u

De qualquer estado se chega a q_u com um u

Primeiro o estado q_u :

- O estado q_{uv} sendo que somente de q_u com v se chega a q_{uv}
- O estado q_{uva} , somente de q_{uv} com a se chega a q_{uva}
- O estado s inicial que permite chegar a q_u a partir do u
- De qualquer estado se chega a q_u com um u
- Qualquer outra coisa vai para s

Vamos considerar a seguinte linguagem dada pelo alfabeto $\Sigma = \{0, 1\}$ $L = \{w | w \text{ contém a subcadeia } 001\}.$

Este é muito semelhante ao anterior, exceto que o 0 se repete e esta não é uma subcadeia final.

Quais são os estados que precisamos nos lembrar?

- Temos um estado inicial s
- ② Um 0 foi inserido após um 1 ou o estado inicial $ightarrow q_0$
- **1** Um 0 foi inserido após outro $0 o q_{00}$
- Um 1 foi inserido após o estado $q_{00} \rightarrow q_{001}$, que é o estado de aceitação.
- ① Um 1 foi inserido após qualquer outro estado $\rightarrow s$,
- locdot Qualquer valor foi inserido após o estado de aceitação $o q_{001}$

- Temos um estado inicial s
- **2** Um 0 foi inserido após um 1 ou o estado inicial $\rightarrow q_0$.
- 3 Um 0 foi inserido após outro 0 ightarrow q_{00}
- ① Um 1 foi inserido após o estado $q_{00} \rightarrow q_{001}$, que é o estado de aceitação.
- **1** Um 1 foi inserido após qualquer outro estado $\rightarrow s$,
- lacktriangle Qualquer valor foi inserido após o estado de aceitação $ightarrow q_{001}$

- Temos um estado inicial s
- ② Um 0 foi inserido após um 1 ou o estado inicial $\rightarrow q_0$.
- **3** Um 0 foi inserido após outro $0 o q_{00}$
- ① Um 1 foi inserido após o estado $q_{00} o q_{001}$, que é o estado de aceitação.
- $exttt{ iny}$ Um $exttt{ iny}$ foi inserido após qualquer outro estado o s,
- $ext{ @ Qualquer valor foi inserido após o estado de aceitação <math> o q_{001}$

- Temos um estado inicial s
- ② Um 0 foi inserido após um 1 ou o estado inicial $\rightarrow q_0$.
- **3** Um 0 foi inserido após outro $0 o q_{00}$
- ① Um 1 foi inserido após o estado $q_{00} o q_{001}$, que é o estado de aceitação.
- $exttt{ iny Um 1 foi inserido após qualquer outro estado}
 ightarrow s$
- locolong Qualquer valor foi inserido após o estado de aceitação ightarrow q_{001}

- Temos um estado inicial s
- ② Um 0 foi inserido após um 1 ou o estado inicial $\rightarrow q_0$.
- **3** Um 0 foi inserido após outro $0 \rightarrow q_{00}$
- ① Um 1 foi inserido após o estado $q_{00} o q_{001}$, que é o estado de aceitação.
- 6 Um 1 foi inserido após qualquer outro estado $\rightarrow s$,
- ullet Qualquer valor foi inserido após o estado de aceitação $o q_{001}$

- 1 Temos um estado inicial s
- ② Um 0 foi inserido após um 1 ou o estado inicial $\rightarrow q_0$.
- **3** Um 0 foi inserido após outro $0 o q_{00}$
- ① Um 1 foi inserido após o estado $q_{00} o q_{001}$, que é o estado de aceitação.
- **5** Um 1 foi inserido após qualquer outro estado $\rightarrow s$,
- $exttt{ to}$ Qualquer valor foi inserido após o estado de aceitação $o q_{001}$.

- Temos um estado inicial s
- ② Um 0 foi inserido após um 1 ou o estado inicial $\rightarrow q_0$.
- **3** Um 0 foi inserido após outro $0 \rightarrow q_{00}$
- **1** Um 1 foi inserido após o estado $q_{00} o q_{001}$, que é o estado de aceitação.
- **5** Um 1 foi inserido após qualquer outro estado $\rightarrow s$,
- **1** Qualquer valor foi inserido após o estado de aceitação $o q_{001}$.

Vamos considerar a seguinte linguagem dada pelo alfabeto $\Sigma = \{0,1\}$ $L = \{w | w \text{ possui um número ímpar de } 1\}.$

Quais são os estados que precisamos nos lembrar?

Vamos considerar a seguinte linguagem dada pelo alfabeto $\Sigma = \{0, 1\}$ $L = \{w | w \text{ possui um número ímpar de } 1\}.$

Quais são os estados que precisamos nos lembrar?

Somente é possível acontecer duas coisas: termos um número *Ímpar* de 1s ou um número Par de 1s.

Vamos considerar a seguinte linguagem dada pelo alfabeto $\Sigma = \{0,1\}$ $L = \{w|w \text{ possui um número ímpar de } 1\}.$

Quais são os estados que precisamos nos lembrar?

Somente é possível acontecer duas coisas: termos um número $\acute{l}mpar$ de 1s ou um número Par de 1s. Em especial, o estado de entrada possui nenhum 1 e isto é um estado que possui um número par de 1s.

- Temos um estado inicial Par
- 2 Um 1 foi inserido neste estado, ele vai para o estado *lmpar*, que é o estado de aceitação.
- Um 1 foi inserido no estado Ímpar ele vai para o estado Par
- Um 0 não provoca mudança de estado

- Temos um estado inicial Par
- ② Um 1 foi inserido neste estado, ele vai para o estado *Ímpar*, que é o estado de aceitação.
- Um 1 foi inserido no estado Ímpar ele vai para o estado Par
- Um 0 não provoca mudança de estado

- 1 Temos um estado inicial Par
- 2 Um 1 foi inserido neste estado, ele vai para o estado *Ímpar*, que é o estado de aceitação.
- ① Um 1 foi inserido no estado *Ímpar* ele vai para o estado *Par*.
- Um 0 não provoca mudança de estado.

- 1 Temos um estado inicial Par
- 2 Um 1 foi inserido neste estado, ele vai para o estado *Ímpar*, que é o estado de aceitação.
- ① Um 1 foi inserido no estado *Ímpar* ele vai para o estado *Par*.
- Um 0 não provoca mudança de estado.

Exercício

Seja o alfabeto $\Sigma = \{ \updownarrow, \square \}$ e a linguagem: $L = \{ w | w = \varepsilon \lor w \text{ possui uma quantidade par de } \updownarrow \text{ e termina com } \square \}$. Mostre que L é regular.

Linguagens e Operações Regulares

No Projeto de autômatos, é possível manipular as linguagens através de operações. Sejam A e B linguagens, tais que: $A = \{w | w \in A\}$ e $B = \{w | w \in B\}$. A seguinte operações são definidas:

- União: $A \cup B = \{w | w \in A \lor w \in B\}$
- Concatenação: $A \circ B = \{wz | w \in A \land z \in B\}$
- Estrela: $A^* = \{ w_1 w_2 \dots w_k | k \ge 0, \forall w_i \in A \}$

Na operação unária *Estrela* sendo w_k uma coleção qualquer, ela pode ser vazia, então ε é sempre membro de A^*

As operações binárias: *União* e *Concatenação* precisam que as linguagens regulares a que se aplicam sejam baseadas no mesmo alfabeto.

Exemplos de Operações Regulares

Seja o alfabeto Σ padrão de 26 símbolos: $\{a,b,c,d,\ldots,z\}$ e A e B as linguagens: $A=\{\mathit{luar},\mathit{sol}\},\ B=\{\mathit{brilhante},\mathit{distante}$ As operações são:

- $A \cup B$: {luar, brilhante, distante, sol}
- *A* ∘ *B*: {luarbrilhante, luardistante, solbrilhante, soldistante}
- A^* : $\{\varepsilon, luar, sol, luarsol, solluar, luarluar, solsol, luarluarsol, luarsolluar, ...}$

Fecho de Operações

Definição

Uma operação é *fechada* sobre um conjunto quando a operação aplicada sobre elementos do conjunto sempre resulta em um elemento do próprio conjunto.

Por exemplo:

- A operação de multiplicação "x" é fechada sobre o conjunto dos inteiros Z.
- A operação de divisão "÷" não é fechada sobre o conjunto dos inteiros Z.

A operação de União é regular

Teorema

A classe de linguagens regulares é fechada sobre a operação de união. Ou, se A_1 e A_2 são linguagens regulares, o mesmo acontece com $A_1 \cup A_2$.

Para a demonstração usaremos:

- Temos M_1 e M_2 autômatos que reconhecem A_1 e A_2 . Construímos M que reconhece $A_1 \cup A_2$ a partir de M_1 e M_2 simulando ambos.
- Simulamos os estados que A_1 e A_2 estariam sob uma determinada cadeia de entrada. Cada estado de M representa uma par de estados.
- Se um dos estados simulados é de aceitação, então em M também o é.
- Se M_1 tem k_1 estados, e M_2 tem k_2 estados, então M tem $k_1 \times k_2$ estados.

Exemplo da técnica da demonstração

Linguagem A₁

Seja o alfabeto $\Sigma = \{0,1\}$ e a linguagem $A_1 = \{w|w \text{ tem um número } \text{impar de } 1\}.$

Já construímos este autômato e M_1 é dado pela seguinte máquina de estados:

$$M_1 = \{Q_1, \Sigma, \delta_1, q_{0_1}, F_1\}$$
 $M_1 = \{\{P, I\}, \{0, 1\}, \delta_1, P, \{I\}\}.$
 $\begin{array}{c|c} \delta_1 & P & I \\ \hline 0 & P & I \\ \hline 1 & I & P \end{array}$

Exemplo da técnica da demonstração

Linguagem A₂

Seja o alfabeto $\Sigma = \{0,1\}$ e a linguagem $A_2 = \{w | w \text{ termina com a sequencia } 11\}.$

$$M_2 = \{Q_2, \Sigma, \delta_2, q_{0_2}, F_2\}$$

 $M_2 = \{\{s, q_1, q_{11}\}, \{0, 1\}, \delta_2, s, \{q_{11}\}\}.$

Construindo a máquina união

- O conjunto de estados será o produto cartesiano entre ambos conjuntos Q_1 e Q_2 : $Q = Q_1 \times Q_2$. $Q = \{(P, s), (P, q_1), (P, q_{11}), (I, s), (I, q_1), (I, q_{11})\}\$
- O estado inicial é o estado que representa ambos estados iniciais: (P,s).
- O conjunto de estados de aceitação é o conjunto que possui pelo menos um dos estados de aceitação: $F = \{(P, q_{11}), (I, s), (I, q_1), (I, q_{11})\}.$
- A função de transição deve considerar como seria a transição considerando os estados como se fossem independentes:

A máquina de estados

Demonstração do Teorema

Construir M que reconheça $A = A_1 \cup A_2$; $M = \{Q, \Sigma, \delta, q_0, F\}$

- $Q = \{(r_1, r_2) | r_1 \in Q_1 er_2 \in Q_2\}$
- $\Sigma \equiv \Sigma_1 \equiv \Sigma_2$
- δ é definida como: $\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$
- $q_0 = (q_{0_1}, q_{0_2})$
- $F = \{(r_1, r_2) | r_1 \in F_1 \lor r_2 \in F_2\}$, isto é o mesmo que: $F = (F_1 \times Q_2) \cup (Q_1 \times F_2)$.

Uma cadeia de M_1 seria aceita quando os estados r_{1_i} resultasse em um estado de aceitação. Em M, como δ define as transições para os estados relacionados com M_1 através da função δ_1 no primeiro par da 2-upla, então o estado final será um estado de aceitação equivalente ao da máquina M_1 , e todos os estados equivalentes da máquina M_1 são estados de aceitação em M. O mesmo raciocínio aplica-se para uma cadeia aceita em M_2 . Logo M aceita cadeias que M_1 aceita e cadeias que M_2 aceita, logo ele aceita o conjunto união das linguagens A_1 e A_2 .

Fecho nas operações de Concatenação e Estrela

Poderíamos utilizar algo semelhante, no entanto além da questão de seguir por uma ou outra máquina, há também a questão de quebrar a cadeia concatenada para saber onde inicia outra cadeia.

O problema de quebrar a cadeia é complicado em autômatos finitos. Para tanto teremos de entender um novo conceito: Autômatos Finitos Não Determinísticos, que complementa o conceito dos Autômatos Finitos Determinísticos que vínhamos estudando.

Atividades baseadas no Sipser

- Ler as seções restantes do capítulo 1.1:
- resolver os exercícios: 1.4, 1.5, 1.6.

