波動関数 $\psi(\mathbf{r})$ を次のように変換する.

$$\psi(\mathbf{r}) \to \psi'(\mathbf{r}) = e^{i\alpha(\mathbf{r})}\psi(\mathbf{r}) \tag{0.0.1}$$

この場合、運動量が Gauge 不変でなくなってしまう. 例えば波動関数の微分を計算すると

$$\nabla \psi'(\mathbf{r}) = i(\nabla \alpha(\mathbf{r})e^{i\alpha(\mathbf{r})})\psi(\mathbf{r}) + e^{i\alpha(\mathbf{r})}\nabla \psi(\mathbf{r}) = e^{i\alpha((\mathbf{r}))}(\nabla + i\nabla \alpha(\mathbf{r}))\psi(\mathbf{r})$$
(0.0.2)

余分な項が加わってしまう. よって,

$$\begin{cases} i\hbar \frac{\partial}{\partial t} \psi' \neq -\frac{\hbar^2}{2m} \nabla^2 \psi' \\ \langle \psi | \hat{A} | \psi \rangle \neq \langle \psi' | \hat{A} | \psi' \rangle \end{cases}$$
(0.0.3)

である. したがって、局所 Gauge 変換に対して物理は不変ではない.

局所 Gauge 不変性を基本原理とする物理を再構築する.

まずは、微分を次の共変微分として再定義する.

$$\mathbf{D} = \nabla + \mathrm{i}\frac{e}{\hbar}\mathbf{A} \tag{0.0.4}$$

ただし、 ψ と \boldsymbol{A} は Gauge 変換により

$$\psi \to \psi' = e^{i\alpha r} \psi \tag{0.0.5}$$

$$\mathbf{A} \to \mathbf{A}' = \mathbf{A} - \frac{\hbar}{e} \nabla \alpha(\mathbf{r})$$
 (0.0.6)

このように微分を定義すると,

$$\mathbf{D}'\psi'(\mathbf{r}) = e^{i\alpha(\mathbf{r})}\mathbf{D}\psi(\mathbf{r}) \tag{0.0.7}$$

つまり、局所 Gauge 変換は波動関数の微分を

$$D\psi(\mathbf{r}) \to e^{i\alpha(\mathbf{r})}D\psi(\mathbf{r})$$
 (0.0.8)

と変換することがわかる. これは大域的 Gauge 変換による $\nabla \psi(\mathbf{r}) \to \mathrm{e}^{\mathrm{i}\alpha} \nabla \psi(\mathbf{r})$ と同じ形をしている. 次に、 $\alpha(\mathbf{r})$ に時間依存性を持たせ、 $alpha(\mathbf{r},t)$ とする. つまり波動関数を

$$\psi \to \psi' = e^{i\alpha(\mathbf{r},t)}\psi \tag{0.0.9}$$

と変換する. このとき, 時間についての偏微分を

$$D_t = \frac{\partial}{\partial t} - i \frac{e}{\hbar} \varphi \tag{0.0.10}$$

と定義する. ただし,

$$\varphi \to \varphi' + \frac{\hbar}{e} \frac{\partial}{\partial t} \alpha(\mathbf{r}, t)$$
 (0.0.11)

である. 以上で定義した共変微分と時間微分を用いると Schrödinger 方程式は

$$i\hbar D_t'\psi' = -\frac{\hbar^2}{2m} \mathbf{D}'^2\psi' \tag{0.0.12}$$

$$i\hbar \frac{\partial}{\partial t}\psi = -\frac{\hbar^2}{2m} \left(\nabla + i\frac{e}{\hbar}\mathbf{A}\right)^2 \psi - e\varphi\psi \tag{0.0.13}$$

$$= \left[-\frac{\hbar^2}{2m} \left(\frac{\mathrm{i}}{\hbar} \boldsymbol{p} + \mathrm{i} \frac{e}{\hbar} \boldsymbol{A} \right)^2 - e\varphi \right] \psi \tag{0.0.14}$$

と変換される. よって,

- 局所 Gauge 変換に対して不変な Schrödinger 方程式 -

$$i\hbar \frac{\partial}{\partial t}\psi = \left[\frac{1}{2m}(\mathbf{p} + e\mathbf{A})^2 - e\varphi\right]\psi$$
 (0.0.15)

を得る

以上の流れをまとめると,局所 Gauge 不変性を要請した.それにより Gauge 場 ${\pmb A}$ が導入された.よって,電磁場の起源は局所 Gauge 不変性であるといえる.

1

Yuto Masuda