NLT Technologies, Ltd.

TFT MONOCHROME LCD MODULE

NL204153AM21-18A

54cm (21.3 Type) QXGA LVDS interface (4 ports)

DOD-PP-2134 (3rd edition)

This DATA SHEET is updated document from DOD-PP-1620(2).

All information is subject to change without notice. Please confirm the sales representative before starting to design your system.

INTRODUCTION

The Copyright to this document belongs to NLT Technologies, Ltd. (hereinafter called "NLT"). No part of this document will be used, reproduced or copied without prior written consent of NLT.

NLT does and will not assume any liability for infringement of patents, copyrights or other intellectual property rights of any third party arising out of or in connection with application of the products described herein except for that directly attributable to mechanisms and workmanship thereof. No license, express or implied, is granted under any patent, copyright or other intellectual property right of NLT.

Some electronic products would fail or malfunction at a certain rate. In spite of every effort to enhance reliability of products by NLT, the possibility of failures and malfunction might not be avoided entirely. To prevent the risks of damage to death, human bodily injury or other property arising out thereof or in connection therewith, each customer is required to take sufficient measures in its safety designs and plans including, but not limited to, redundant system, fire-containment and anti-failure.

The products are classified into three grades: "Standard", "Special", and "Specific".

Each quality grade is designed for applications described below. Any customer who intends to use a product for application other than that of Standard is required to contact an NLT sales representative in advance

The **Standard:** Applications as any failure, malfunction or error of the products are free from any damage to death, human bodily injury or other property (Products Safety Issue) and not related the safety of the public (Social Issues), like general electric devices.

Examples: Office equipment, audio and visual equipment, communication equipment, test and measurement equipment, personal electronic equipment, home electronic appliances, car navigation system (with no vehicle control functions), seat entertainment monitor for vehicles and airplanes, fish finder (except marine radar integrated type), PDA, etc.

The **Special:** Applications as any failure, malfunction or error of the products might directly cause any damage to death, human bodily injury or other property (Products Safety Issue) and the safety of the public (Social Issues) and required high level reliability by conventional wisdom.

Examples: Vehicle/train/ship control system, traffic signals system, traffic information control system, air traffic control system, surgery/operation equipment monitor, disaster/crime prevention system, etc.

The **Specific:** Applications as any failure, malfunction or error of the products might severe cause any damage to death, human bodily injury or other property (Products Safety Issue) and the safety of the public (Social Issues) and developed, designed and manufactured in accordance with the standards or quality assurance program designated by the customer who requires extremely high level reliability and quality.

Examples: Aerospace system (except seat entertainment monitor), nuclear control system, life support system, etc.

The quality grade of this product is the "Standard" unless otherwise specified in this document.

☆

CONTENTS

INTRODUCTION	2
1 ALIENTALE	4
1. OUTLINE 1.1 STRUCTURE AND PRINCIPLE	
1.1 STRUCTURE AND PRINCIPLE	
1.3 FEATURES	
3. BLOCK DIAGRAM 4. DETAILED SPECIFICATIONS	6
4.1 MECHANICAL SPECIFICATIONS	
4.3 ELECTRICAL CHARACTERISTICS	
4.3.1 LCD panel signal processing board	
4.3.2 LED driver	
4.3.3 Current wave for LED driver	
4.3.4 Power supply voltage ripple	
4.3.5 Fuse	
4.4 POWER SUPPLY VOLTAGE SEQUENCE	
4.4.1 LCD panel signal processing board	11
4.4.2 LED driver	
4.5 CONNECTIONS AND FUNCTIONS FOR INTERFACE PINS	12
4.5.1 LCD panel signal processing board	12
4.5.2 LED driver	
4.5.3 Positions of socket	
4.6 LUMINANCE CONTROL	
4.6.1 Luminance control methods	
4.6.2 Detail of BRTP timing	
4.7 METHOD OF CONNECTION FOR LVDS TRANSMITTER	
4.8 DISPLAY GRAYSCALE AND INPUT DATA SIGNALS	
4.9 INPUT SIGNAL TIMINGS	
4.9.1 Timing characteristics	
4.9.2 Input signal timing chart	22
4.10 LVDS DATA TARANSMISSION METHOD	23
4.12 DISPLAY POSITIONS	
4.13 PIXEL ARRANGNMENT	
4.14.1 Optical characteristics	
4.14.2 Definition of contrast ratio	
4.14.3 Definition of luminance uniformity	
4.14.4 Definition of response times	
4.14.5 Definition of viewing angles	
6. RELIABILITY TESTS	
7. PRECAUTIONS	
7.1 MEANING OF CAUTION SIGNS	
7.2 CAUTIONS	
7.3 ATTENTIONS	
7.3.1 Handling of the product	
7.3.2 Environment	
7.3.3 Characteristics	
7.3.4 Others	
8.1 FRONT VIEW	
8.2 REAR VIEW	34

1. OUTLINE

1.1 STRUCTURE AND PRINCIPLE

Monochrome LCD module NL204153AM21-18A is composed of the amorphous silicon thin film transistor liquid crystal display (a-Si TFT LCD) panel structure with driver LSIs for driving the TFT (Thin Film Transistor) array and a backlight.

The a-Si TFT LCD panel structure is injected liquid crystal material into a narrow gap between the TFT array glass substrate and a monochrome-filter glass substrate.

Grayscale data signals from a host system (e.g. signal generator, etc.) are modulated into best form for active matrix system by a signal processing board, and sent to the driver LSIs which drive the individual TFT arrays.

The TFT array as an electro-optical switch regulates the amount of transmitted light from the backlight assembly, when it is controlled by data signals. Monochrome images are created by regulating the amount of transmitted light through the TFT array.

1.2 APPLICATION

• Monochrome monitor system

1.3 FEATURES

- Ultra-wide viewing angle (Super Fine TFT (SFT))
- High luminance
- High contrast
- Low reflection
- 1,024 gray scales per 1 sub-pixel (10-bit)
- LVDS interface
- Small foot print
- Long life LED backlight
- Built in LED driver
- Compliant with the European RoHS directive (2011/65/EU)
- Acquisition product for UL60950-1/CSA C22.2 No.60950-1-03 (File number: E170632)

2. GENERAL SPECIFICATIONS

Display area	433.152 (H) × 324.864 (V) mm		
Diagonal size of display	54cm (21.3 inches)		
Drive system	a-Si TFT active matrix		
Display grayscale	1,024 gray scales per 1 sub-pixel (10-bit) (3,072 gray scales per 1 pixel)		
Pixel	$2,048$ (H) \times 1,536 (V) pixels (1 pixel consists of 3 sub-pixels (LCR).)		
Pixel arrangement	LCR vertical stripe		
Sub-pixel pitch	$0.0705 \text{ (H)} \times 0.2115 \text{ (V)} \text{ mm}$		
Pixel pitch	$0.2115 \text{ (H)} \times 0.2115 \text{ (V)} \text{ mm}$		
Module size	457.0 (W) × 350.0 (H) × 21.5 (D) mm (typ.)		
Weight	2,700 g (typ.)		
Contrast ratio	1,400:1 (typ.)		
Viewing angle	 At the contrast ratio ≥ 10:1 Horizontal: Right side 88° (typ.), Left side 88° (typ.) Vertical: Up side 88° (typ.), Down side 88° (typ.) 		
Designed viewing direction	Viewing angle with optimum grayscale (γ≒DICOM): Normal axis (perpendicular) Note1		
Polarizer surface	Antiglare		
Polarizer pencil-hardness	2H (min.) [by JIS K5600]		
Response time	$Ton+Toff (10\% \longleftrightarrow 90\%)$ 40ms (typ.)		
Luminance	At the maximum luminance control 1,700cd/m² (typ.)		
Signal system	4 ports LVDS interface (THC63LVD104S×2pcs, THine Electronics, Inc. or equivalent) [LCR 10-bit signals, Data enable signal (DE), Dot clock (CK)]		
Power supply voltage	LCD panel signal processing board: 12.0V LED driver: 12.0V		
Backlight	LED backlight built in LED driver		
Power consumption	At checkered flag pattern, the maximum luminance control 37.0W (typ.)		

Note1: When the product luminance is 450cd/m^2 , the gamma characteristic is designed to $\gamma = DICOM$.

3. BLOCK DIAGRAM

Note1: Relations between GND (Signal ground), FG (Frame ground) and GNDB (LED driver board ground) in the LCD module are as follows.

◡.	,	
	GND - FG	Connected
	GND - GNDB	Not connected
	FG - GNDB	Not connected

Note2: GND, FG and GNDB must be connected to customer equipment's ground, and it is recommended that these grounds to be connected together in customer equipment.

Note3: Each pair of the LVDS signal lines has 100Ω terminating resistance.

4. DETAILED SPECIFICATIONS

4.1 MECHANICAL SPECIFICATIONS

Parameter	Specification		
Module size	457.0 ±0.5 (W) × 350.0 ±0.5 (H) × 21.5 (typ., D) 23.0 (max. D)	Note1, Note2	mm
Display area	433.152 (H) × 324.864 (V)	Note2	mm
Weight	2,700 (typ.), 2,980 (max.)		g

Note1: Excluding warpage of the cover for LED driver board.

Note2: See "8. OUTLINE DRAWINGS".

4.2 ABSOLUTE MAXIMUM RATINGS

	Parameter		Symbol	Rating	Unit	Remarks
Power supply LCD panel sign		al processing board	VDD	-0.3 to +14.0	V	
voltage	LEI	O driver	VDDB	-0.3 to +15.0	V	-
		al processing board Note1	Vi	-0.3 to +2.8	V	VDD= 12.0V
		BRTI signal	VBI	-0.3 to +1.5	V	
Input voltage for signals	LED driver	BRTP signal	VBP	-0.3 to +5.5	V	VDDD- 12.0V
	LED driver	BRTC signal	VBC	-0.3 to +5.5	V	VDDB= 12.0V
		PWSEL signal	VBS	-0.3 to +5.5	V	
S	Storage temperature	Note6	Tst	-20 to +60	°C	-
0 1		Front surface	TopF	0 to +60	°C	Note2
Operating	g temperature	Rear surface	TopR	0 to + 60	°C	Note3
				≤ 95	%	Ta ≤ 40°C
	Relative humidity Note4	Relative humidity Note4	RH	≤ 85	%	$40^{\circ}\text{C} < \text{Ta} \le 50^{\circ}\text{C}$
				≤ 70	%	50°C < Ta ≤ 55°C
Absolute humidity Note4			АН	≤ 73 Note5	g/m ³	Ta > 55°C
	Operating altitude			≤ 5,100	m	$0^{\circ}\text{C} \le \text{Ta} \le 55^{\circ}\text{C}$
	Storage altitud	-	≤ 13,600	m	-20°C ≤ Ta ≤ 60°C	

Note1: DA0+/-, DA1+/-, DA2+/-, DA3+/-, DA4+/-, CKA+/-, DB0+/-, DB1+/-, DB2+/-, DB3+/-, DB4+/-, CKB+/-, DC0+/-, DC1+/-, DC2+/-, DC3+/-, DC4+/-, CKC+/-, DD0+/-, DD1+/-, DD2+/-, DD3+/-, DD4+/-, CKD+/-

Note2: Measured at LCD panel surface (including self-heat)

Note3: Measured at LCD module's rear shield surface (including self-heat)

Note4: No condensation

Note5: Water amount at Ta = 55°C and RH = 70%

Note6: The image quality may cause degradation in case of rapid change humidity and temperature.

4.3 ELECTRICAL CHARACTERISTICS

4.3.1 LCD panel signal processing board

 $(Ta=25^{\circ}C)$

							(14 20 0)
Parameter		Symbol	min.	typ.	max.	Unit	Remarks
Power supply voltage		VDD	10.8	12.0	13.2	V	-
Power supply current		IDD	-	590 Note1	980 Note2	mA	at VDD= 12.0V
Permissible ripple voltage		VRP	-	-	100	mVp-p	for VDD
Differential input threshold	High	VTH	-	-	+100	mV	at VCM= 1.2V
voltage Low		VTL	-100	-	-	mV	Note3, Note4
Input voltage swing		VI	0	-	2.4	V	Note4
Terminating resistance		RT	-	100	-	Ω	-

Note1: Checkered flag pattern (by EIAJ ED-2522)

Note2: Pattern for maximum current

Note3: Common mode voltage for LVDS driver

Note4: DA0+/-, DA1+/-, DA2+/-, DA3+/-, DA4+/-, CKA+/-, DB0+/-, DB1+/-, DB2+/-, DB3+/-, DB4+/-, CKB+/-, DC0+/-, DC1+/-, DC2+/-, DC3+/-, DC4+/-, CKC+/-, DD0+/-, DD1+/-, DD2+/-, DD3+/-, DD4+/-, CKD+/-

4.3.2 LED driver

(Ta= 25°C)

	Parameter	Symbol	min.	typ.	max.	Unit	Remarks	
Power supply voltage			VDDB	11.4	12.0	12.6	V	-
Powe	r supply current		IDDB	-	2,500	3,300	mA	VDDB= 12.0V, At the maximum luminance control
	BRTI signal		VBI	0	-	1.0	V	
	DDTD -:1	High	VBPH	2.0	-	5.25	V	
	BRTP signal	Low	VBPL	0	-	0.8	V	
Input voltage for signals	DDTC -i1	High	VBCH	2.0	-	5.25	V	
	BRTC signal	Low	VBCL	0	-	0.8	V	
	DWCEL -:1	High	VBSH	2.0	-	5.25	V	
	PWSEL signal	Low	VBSL	0	-	0.8	V	
	BRTI signal		IBI	-200	-	-100	μΑ	-
	DDTD signal	High	IBPH	1	-	1,000	μΑ	
	BRTP signal	Low	IBPL	-600	-	1	μΑ	
Input current for signals	BRTC signal	High	IBCH	1	-	300	μΑ	
,	DKIC signal	Low	IBCL	-300	-	1	μΑ	
	PWSEL signal	High	IPSH	-	-	1,000	μΑ	
	I WOEL SIGNAL	Low	IPSL	-600	-	-	μΑ	

4.3.3 Current wave for LED driver

Duty: At the maximum luminance control 100% to at the minimum luminance control 1%. Luminance control frequency: 270Hz (typ.)

Note1: Luminance control frequency indicate the input pulse frequency, when select the external pulse control. See "**4.6.2 Detail of BRTP timing**".

Note2: The power supply lines (VDDB and GNDB) have large ripple voltage during luminance control. There is the possibility that the ripple voltage produces acoustic noise and signal wave noise in audio circuit and so on.

4.3.4 Power supply voltage ripple

This product works, even if the ripple voltage levels are beyond the permissible values as following the table, but there might be noise on the display image.

Power supply voltage		Ripple voltage Note1 (Measure at input terminal of power supply)	Unit
VDD	12.0V	≤ 100	mVp-p
VDDB	12.0V	≤ 200	mVp-p

Note1: The permissible ripple voltage includes spike noise.

☆

Example of the power supply connection

a) Separate the power supply

b) Put in the filter

4.3.5 Fuse

Parameter		Fuse	Rating	Fusing	Remarks
1 arameter	Type	Supplier	Kating	current	Remarks
VDD	FCC16202AB	KAMAYA	2.0 A	4.0A, 5 seconds	
VDD	FCC10202AB	ELECTRIC Co., Ltd.	32 V	maximum	NI. 4. 1
VDDB	CCF1N10	VOA Composition	10 A	20 A, 1 seconds	Note1
ADDR	CCFINIU	KOA Corporation	60 V	maximum	

4.4 POWER SUPPLY VOLTAGE SEQUENCE

4.4.1 LCD panel signal processing board

*1: DA0+/-, DA1+/-, DA2+/-, DA3+/-, DA4+/-, CKA+/-, DB0+/-, DB1+/-, DB2+/-, DB3+/-, DB4+/-, CKB+/-, DC0+/-, DC1+/-, DC2+/-, DC3+/-, DC4+/-, CKC+/-, DD0+/-, DD1+/-, DD2+/-, DD3+/-, DD4+/-, CKD+/-

*2: LVDS signals should be measured at the terminal of 100 Ω resistance.

Note1: If there is a voltage variation (voltage drop) at the rising edge of VDD below 10.8V, there is a possibility that a product does not work due to a protection circuit.

Note2: LVDS signals must be set to Low or High-impedance, except the VALID period (See above sequence diagram), in order to avoid the circuitry damage.

If some of signals are cut while this product is working, even if the signal input to it once again, it might not work normally. If a customer stops the display and function signals, VDD also must be shut down.

Note3: The backlight should be turned on within the turn-on period, in order to avoid unstable data display.

Note4: After turning VDD on, terminal voltages on LVDS input terminals (*1) will rise. This is caused by initial operation of the product.

4.4.2 LED driver

Note1: If tr is more than 100 ms, the backlight will be turned off by a protection circuit for LED driver board.

Note2: When VDDB is 0V or BRTC is Low, PWSEL must be set to Low or Open.

4.5 CONNECTIONS AND FUNCTIONS FOR INTERFACE PINS

4.5.1 LCD panel signal processing board

CN1 socket (LCD module side): FI-RE51S-HF (Japan Aviation Electronics Industry Limited (JAE))
Adaptable plug: FI-RE51HL (Japan Aviation Electronics Industry Limited (JAE))

Pin No.	Symbol	Signal	Remarks
1	GND	Ground	Remarks
2	GND	Ground	Note1
3	GND	Ground	Note1
4	DA0-	Ground	
5	DA0+	Pixel data A0	LVDS differential data input Note2
6	GND	Ground	Note1
7	DA1-	Ground	Note1
		Pixel data A1	LVDS differential data input Note2
8	DA1+		
9	GND DA2-	Ground	Note1
10 11	DA2+	Pixel data A2	LVDS differential data input Note2
12	GND	Ground	Note1
13	CKA-		
14	CKA+	Pixel clock A	LVDS differential data input Note2
15	GND	Ground	Note1
16	DA3-	Di1 d-4- A2	LVDC differential data in most Nation
17	DA3+	Pixel data A3	LVDS differential data input Note2
18	GND	Ground	Note1
19	DA4-	Pixel data A4	LVDS differential data input Note2
20	DA4+		-
21	GND	Ground	Note1
22	DB0-	Pixel data B0	LVDS differential data input Note2
23	DB0+ GND	C 1	_
24	DB1-	Ground	Note1
26	DB1- DB1+	Pixel data B1	LVDS differential data input Note2
27	GND	Ground	Note1
28	DB2-		
29	DB2+	Pixel data B2	LVDS differential data input Note2
30	GND	Ground	Note1
31	CKB-	Pixel clock B	LVDS differential data input Note2
32	CKB+	Pixel Clock D	LVDS differential data input Note2
33	GND	Ground	Note1
34	DB3-	Pixel data B3	LVDS differential data input Note2
35	DB3+		Î .
36	GND	Ground	Note1
37	DB4-	Pixel data B4	LVDS differential data input Note2
38	DB4+		Î .
39	GND	Ground	Note1

\sim		. •		- 1
(`	α n	111	ni	ıed

40	GND	Ground	Note1
41	RSVD	-	Keep this pin Open.
42	RSVD	-	Keep this pin Open.
43	RSVD	-	Keep this pin Open.
44	RSVD	-	Keep this pin Open.
45	GND	Ground	Note1
46	GND	Ground	Note1
47	GND	Ground	Note1
48	RSVD	-	Keep this pin Open.
49	RSVD	-	Keep this pin Open.
50	RSVD	-	Keep this pin Open.
51	GND	Ground	Note1

CN1: Insert surface side

Note1: All GND terminals should be used without any non-connected lines.

Note2: Twist pair wires with 100Ω (Characteristic impedance) should be used between LCD panel signal processing board and LVDS transmitter.

CN2 socket (LCD module side): FI-RE41S-HF (Japan Aviation Electronics Industry Limited (JAE))
Adaptable plug: FI-RE41HL (Japan Aviation Electronics Industry Limited (JAE))

Pin No.	Symbol	Signal	Remarks
1	GND	Ground	
2	GND	Ground	Note1
3	GND	Ground	
4	DC0-		
5	DC0+	Pixel data C0	LVDS differential data input Note2
6	GND	Ground	Note1
7	DC1-		
8	DC1+	Pixel data C1	LVDS differential data input Note2
9	GND	Ground	Note1
10	DC2-	Pixel data C2	LVDS differential data input Note2
11	DC2+		LVD3 differential data input Note2
12	GND	Ground	Note1
13	CKC-	Pixel clock C	LVDS differential data input Note2
14	CKC+		<u> </u>
15	GND	Ground	Note1
16	DC3-	Pixel data C3	LVDS differential data input Note2
17	DC3+		_
18	GND	Ground	Note1
19 20	DC4- DC4+	Pixel data C4	LVDS differential data input Note2
20	GND	Ground	Note1
22	DD0-		
23	DD0+	Pixel data D0	LVDS differential data input Note2
24	GND	Ground	Note1
25	DD1-	Pixel data D1	LVDS differential data input Note2
26	DD1+		LVD3 differential data input Note2
27	GND	Ground	Note1
28	DD2-	Pixel data D2	LVDS differential data input Note2
29	DD2+		<u> </u>
30	GND	Ground	Note1
31	CKD-	Pixel clock D	LVDS differential data input Note2
32	CKD+	Carrier 1	
33 34	GND DD3-	Ground	Note1
35	DD3- DD3+	Pixel data D3	LVDS differential data input Note2
36	GND	Ground	Note1
37	DD4-		
38	DD4+	Pixel data D4	LVDS differential data input Note2
39	GND	Ground	Note1
40	GND	Ground	Note1
41	GND	Ground	Note1

CN2: Insert surface side

Note1: All GND terminals should be used without any non-connected lines.

Note2: Twist pair wires with 100Ω (Characteristic impedance) should be used between LCD panel signal processing board and LVDS transmitter.

CN3 socket (LCD module side): 53261-1271 (MOLEX Inc.) Adaptable plug: 51021-1200 (MOLEX Inc.)

	- ro.							
Pin No.	Symbol	Function	Description					
1	GND							
2	GND							
3	GND	S:1 1	N-4-1					
4	GND	Signal ground	Note1					
5	GND							
6	GND							
7	VDD							
8	VDD							
9	VDD	Power supply	Note1					
10	VDD	Power supply	140161					
11	VDD							
12	VDD							

CN3: Insert surface side

Note1: All VDD and GND terminals should be used without any non-connected lines.

4.5.2 LED driver

CN201 socket (LCD module side): DF3Z-10P-2H (2*) (HIROSE ELECTRIC Co,.Ltd.)
Adaptable plug: DF3-10S-2C (HIROSE ELECTRIC Co,.Ltd.)

	F 6 -					
Pin No.	Symbol	Function	Description			
1	GNDB					
2	GNDB					
3	GNDB	LED driver ground	Note1			
4	GNDB					
5	GNDB					
6	VDDB					
7	VDDB					
8	VDDB	Power supply	Note1			
9	VDDB					
10	VDDB					

Note1: All VDDB and GNDB terminals should be used without any non-connected lines.

CN202 socket (LCD module side): 53261-0971 (MOLEX Inc.) Adaptable plug: 51021-0900 (MOLEX Inc.)

Tauptuo	10 p10.8.	21021 0500 (1110EE11 IIIC.	•/				
Pin No.	Symbol	Function	Description				
1	PWSEL	Selection of luminance control signal method	Note2, Note3				
2	GNDB	LED driver ground	Note1				
3	BRTP	BRTP signal					
4	BRTI	Luminance control terminal	Note2				
5	BRTH	Lummance control terminal					
6	BRTC	Backlight ON/OFF control signal	High or Open: Backlight ON Low: Backlight OFF				
7	N. C.	-	Keep this pin Open.				
8	GNDB	LED driver ground	Note1				
9	GNDB	LED driver ground	Note1				

Note1: All GNDB terminals should be used without any non-connected lines.

Note2: See "4.6 LUMINANCE CONTROL ".

Note3: When VDDB is 0V or BRTC is Low, PWSEL must be set to Low or Open.

4.5.3 Positions of socket

☆

☆

4.6 LUMINANCE CONTROL

4.6.1 Luminance control methods

Method	Adjustment and luminance ratio	PWSEL terminal	BRTP terminal
Variable resistor control Note1	 Adjustment The variable resistor (R) for luminance control should be 10kΩ ±5%, 1/10W. Minimum point of the resistance is the minimum luminance and maximum point of the resistance is the maximum luminance. The resistor (R) must be connected between BRTH-BRTI terminals. • Luminance ratio Note3	High or Open	Open
Voltage control Note1	Voltage control method works, when BRTH terminal is 0V and VBI voltage is input between BRTI-BRTH terminals. This control method can carry out continuation adjustment of luminance. Luminance is the maximum when BRTI terminal is Open. • Luminance ratio Note3 BRTI Voltage (VBI) Luminance ratio 0V 0% (Min. Luminance) 1.0V 100% (Max. Luminance)		
Pulse width modulation Note1 Note2 Note4	Adjustment Pulse width modulation (PWM) method works, when PWSEL terminal is Low and PWM signal (BRTP signal) is input into BRTP terminal. The luminance is controlled by duty ratio of BRTP signal. • Luminance ratio Note3 Duty ratio Luminance ratio 1% (Min. Luminance) (At frequency: 325 Hz) 1.0 100% (Max. Luminance)	Low	BRTP signal

Note1: In case of the variable resistor control method and the voltage control method, noises may appear on the display image depending on the input signals timing for LCD panel signal processing board.

Use PWM method, if interference noises appear on the display image!

Note2: The LED driver board will stop working, if the Low period of BRTP signal is more than 50ms while BRTC signal is High or Open. Then the backlight will not turn on anymore, even if BRTP signal is input again. This is not out of order. The LED driver board will start to work when power is supplied again.

Note3: These data are the target values.

Note4: See "4.6.2 Detail of BRTP timing".

4.6.2 Detail of BRTP timing

(1) Timing diagrams

• Outline chart

• Detail of A part

(2) Each parameter

Parameter	Symbol	min.	typ.	max.	Unit	Remarks
PWM frequency	f_{PWM}	185	-	1k	Hz	Note1,2,3
PWM duty ratio	DR_{PWM}	1	-	100	%	Note4,5
PWM pulse width	tPWH	30	-	-	μs	Note1,4,5

Note1: Definition of parameters is as follows.

$$f_{PWM} = \ \, \frac{1}{tPW} \ \, , \quad \text{DR}_{PWM} = \frac{tPWH}{tPW} \label{eq:fpwm}$$

Note2: A recommended f_{PWM} value is as follows.

$$f_{PWM}\!=\!-\frac{2n\text{-}1}{4}\!\times fv$$

(n= integer, fv= frame frequency of LCD module)

Note3: Depending on the frequency used, some noise may appear on the screen, please conduct a thorough evaluation.

Note4: While the BRTC signal is high, do not set the tPWH (PWM pulse width) is less than $30\mu s$. It may cause abnormal working of the backlight. In this case, turn the backlight off and then on again by BRTC signal.

Note5: Regardless of the PWM frequency, both PWM duty ratio and PWM pulse width must be always more than the minimum values.

4.7 METHOD OF CONNECTION FOR LVDS TRANSMITTER

	Bit mapping
	LA4
	LA5
	LA6
	LA7
	LA8
	LA9
	CA4
	CA5
	CA6
	CA7
	CA8
	CA9
	RA4
	RA5
	RA6
	RA7
odd	RA8
Pixel	RA9
data	Hsync
	Vsync
A	DE
	LA2
	LA3
	CA2
	CA3
	RA2
	RA3
	N.C.
	LA0
	LA1
	CA0
	CA1
	KAU
	RA1
	N.C.
	CLK
	LB4
	LB4 LB5
	LB3
	LB0
	IRX
	LB9
	CB4
	CB5 CB6
	CB6
	CB7 CB8
	CB8
	RB4
	RB5
	RB6
	RB7
	RB8
even	RB9
Pixel	
data	Hsync
В	Vsync DE
ъ	I B3
	LB2 LB3
	CBS
	CB2 CB3
	RB2
	RB2
	N.C. LB0
	LBU
	LB1 CB0
	CB0
	CB1 RB0
	RB0 RB1
	N.C.
	CLK

	itter Pin Assign	
	Dual type LVDS Tx	Output
Single type	Thine	Connector
LVDS Tx	THC63LVD1023B	Connector
TA0	R14	
TA1	R15	
TA2	R15	ATA-
TA3	R17	ATT A
TA4	R18	ATA+
TA5	R19	
TA6	G14	
TB0	G15	
TB1	G16	ATB-
TB2	G17	
TB3 TB4	G18 G19	ATB+
TB5	B14	
TB6	B15	
TC0	B16	
TC1	B17	ATTC
TC2	B18	ATC-
TC3	B19	ATC+
TC4	Hsync	AIC+
TC5	Vsync]
TC6	DE	
TD0	R12	
TD1	R13 G12	ATD-
TD2 TD3	G12 G13	1
TD4	B12	ATD+
TD5	B13	
TD6	-	
TE0	R10	
TE1	R11	
TE2	G10	ATE-
TE3	G11	
TE4	B10	ATE+
TE5	B11	
TE6	-	ATCOLIZ
CLK	CLK	ATCLK-
TA0	R14	ATCLK+
TA1	R15	
	R16	BTA-
IA/		1
TA2 TA3		DTA
TA3 TA4	R17 R18	BTA+
TA3	R17	BTA+
TA3 TA4	R17 R18	BTA+
TA3 TA4 TA5 TA6 TB0	R17 R18 R19 G14 G15	BTA+
TA3 TA4 TA5 TA6 TB0 TB1	R17 R18 R19 G14 G15 G16	
TA3 TA4 TA5 TA6 TB0 TB1 TB2	R17 R18 R19 G14 G15 G16 G17	BTA+
TA3 TA4 TA5 TA6 TB0 TB1 TB2 TB3	R17 R18 R19 G14 G15 G16 G17	
TA3 TA4 TA5 TA6 TB0 TB1 TB2 TB3 TB4	R17 R18 R19 G14 G15 G16 G17 G18	ВТВ-
TA3 TA4 TA5 TA6 TB0 TB1 TB2 TB3 TB4 TB5	R17 R18 R19 G14 G15 G16 G17 G18 G19	ВТВ-
TA3 TA4 TA5 TA6 TB0 TB1 TB2 TB3 TB4 TB5 TB6	R17 R18 R19 G14 G15 G16 G17 G18 G19 B14 B15	ВТВ-
TA3 TA4 TA5 TA6 TB0 TB1 TB2 TB3 TB4 TB5 TB6 TC0	R17 R18 R19 G14 G15 G16 G17 G18 G19 B14 B15	BTB- BTB+
TA3 TA4 TA5 TA6 TB0 TB1 TB2 TB3 TB4 TB5 TB6	R17 R18 R19 G14 G15 G16 G17 G18 G19 B14 B15	ВТВ-
TA3 TA4 TA5 TA6 TB0 TB1 TB2 TB3 TB4 TB5 TB6 TC0 TC1	R17 R18 R19 G14 G15 G16 G17 G18 G19 B14 B15 B16 B17	BTB- BTB+
TA3 TA4 TA5 TA6 TB0 TB1 TB2 TB3 TB4 TB5 TB6 TC0 TC1 TC2 TC3 TC4	R17 R18 R19 G14 G15 G16 G17 G18 G19 B14 B15 B16 B17 B18 B19 Hsync	BTB- BTB+
TA3 TA4 TA5 TA6 TB0 TB1 TB2 TB3 TB4 TB5 TB6 TC0 TC1 TC2 TC3 TC4 TC5	R17 R18 R19 G14 G15 G16 G17 G18 G19 B14 B15 B16 B17 B18 B19 Hsync Vsync	BTB- BTB+
TA3 TA4 TA5 TA6 TB0 TB1 TB2 TB3 TB4 TB5 TB6 TC0 TC1 TC2 TC3 TC4 TC5 TC6	R17 R18 R19 G14 G15 G16 G17 G18 G19 B14 B15 B16 B17 B18 B19 Hsync Vsync DE	BTB- BTB+
TA3 TA4 TA5 TA6 TB0 TB1 TB2 TB3 TB4 TB5 TB6 TC0 TC1 TC2 TC3 TC4 TC5 TC6 TD0	R17 R18 R19 G14 G15 G16 G17 G18 G19 B14 B15 B16 B17 B18 B19 Hsync Vsync DE R12	BTB- BTB+
TA3 TA4 TA5 TA6 TB0 TB1 TB2 TB3 TB4 TB5 TB6 TC0 TC1 TC2 TC3 TC4 TC5 TC6 TD0 TD1	R17 R18 R19 G14 G15 G16 G17 G18 G19 B14 B15 B16 B17 B18 B19 Hsync Vsync DE R12 R13	BTB- BTB+
TA3 TA4 TA5 TA6 TB0 TB1 TB2 TB3 TB4 TB5 TC0 TC1 TC2 TC3 TC4 TC5 TC6 TD0 TD1 TD1 TD2	R17 R18 R19 G14 G15 G16 G17 G18 G19 B14 B15 B16 B17 B18 B19 Hsync Vsync DE R12 R13 G12	BTB- BTB+ BTC- BTC+
TA3 TA4 TA5 TA6 TB0 TB1 TB2 TB3 TB4 TB5 TB6 TC0 TC1 TC2 TC3 TC4 TC5 TC6 TD0 TD1 TD2 TD3	R17 R18 R19 G14 G15 G16 G17 G18 G19 B14 B15 B16 B17 B18 B19 Hsync Vsync DE R12 R13 G12 G13	BTB- BTB+ BTC- BTC+
TA3 TA4 TA5 TA6 TB0 TB1 TB2 TB3 TB4 TB5 TB6 TC0 TC1 TC2 TC3 TC4 TC5 TC6 TD0 TD1 TD2 TD3 TD4	R17 R18 R19 G14 G15 G16 G17 G18 G19 B14 B15 B16 B17 B18 B19 Hsync Vsync DE R12 R13 G12 G13 B12	BTB- BTB+ BTC- BTC+
TA3 TA4 TA5 TA6 TB0 TB1 TB2 TB3 TB4 TB5 TB6 TC0 TC1 TC2 TC3 TC4 TC5 TC6 TD0 TD1 TD2 TD3	R17 R18 R19 G14 G15 G16 G17 G18 G19 B14 B15 B16 B17 B18 B19 Hsync Vsync DE R12 R13 G12 G13	BTB- BTB+ BTC- BTC+
TA3 TA4 TA5 TA6 TB0 TB1 TB1 TB2 TB3 TB4 TB5 TB6 TC0 TC1 TC2 TC3 TC4 TC5 TC6 TD0 TD1 TD2 TD3 TD4 TD5	R17 R18 R19 G14 G15 G16 G17 G18 G19 B14 B15 B16 B17 B18 B19 Hsync Vsync DE R12 R13 G12 G13 B12	BTB- BTB+ BTC- BTC+
TA3 TA4 TA5 TA6 TB0 TB1 TB2 TB3 TB4 TB5 TB6 TC0 TC1 TC2 TC3 TC4 TC5 TC6 TD0 TD1 TD2 TD3 TD4 TD5 TD6 TD6 TD6 TE0 TE1	R17 R18 R19 G14 G15 G16 G17 G18 G19 B14 B15 B16 B17 B18 B19 Hsync Vsync DE R12 R13 G12 G13 B12 B13	BTB- BTB+ BTC- BTC+
TA3 TA4 TA5 TA6 TB0 TB1 TB2 TB3 TB4 TB5 TB6 TC0 TC1 TC2 TC3 TC4 TC5 TC6 TD0 TD1 TD2 TD3 TD4 TD5 TD6 TD6 TE0	R17 R18 R19 G14 G15 G16 G17 G18 G19 B14 B15 B16 B17 B18 B19 Hsync Vsync DE R12 R13 G12 G13 B12 B13 R10 R11 G10	BTB- BTB+ BTC- BTC+
TA3 TA4 TA5 TA6 TB0 TB1 TB2 TB3 TB4 TB5 TB6 TC0 TC1 TC2 TC3 TC4 TC5 TC6 TD0 TD1 TD2 TD3 TD4 TD5 TD6 TE0 TE0 TE1 TE2 TE3	R17 R18 R19 G14 G15 G16 G17 G18 G19 B14 B15 B16 B17 B18 B19 Hsync Vsync DE R12 R13 G12 G13 B12 B13 R10 R11 G10 G11	BTB- BTB+ BTC- BTC+ BTD- BTD+
TA3 TA4 TA5 TA6 TB0 TB1 TB2 TB3 TB4 TB5 TB6 TC0 TC1 TC2 TC3 TC4 TC5 TC6 TD0 TD1 TD2 TD3 TD4 TD5 TD6 TE0 TE1 TE2 TE3 TE4 TE5 TE6	R17 R18 R19 G14 G15 G16 G17 G18 G19 B14 B15 B16 B17 B18 B19 Hsync Vsync DE R12 R13 G12 G13 B12 B13	BTB- BTB+ BTC- BTC+ BTD- BTD+
TA3 TA4 TA5 TA6 TB0 TB1 TB2 TB3 TB4 TB5 TB6 TC0 TC1 TC2 TC3 TC4 TC5 TC6 TD0 TD1 TD2 TD3 TD4 TD5 TD6 TE0 TE1 TE2 TE3 TE4 TE5	R17 R18 R19 G14 G15 G16 G17 G18 G19 B14 B15 B16 B17 B18 B19 Hsync Vsync DE R12 R13 G12 G13 B12 B13 R10 R11 G10 G11 B10 B11	BTB- BTB+ BTC- BTC+ BTD- BTD+
TA3 TA4 TA5 TA6 TB0 TB1 TB2 TB3 TB4 TB5 TB6 TC0 TC1 TC2 TC3 TC4 TC5 TC6 TD0 TD1 TD2 TD3 TD4 TD5 TD6 TE0 TE1 TE2 TE3 TE4 TE5 TE6	R17 R18 R19 G14 G15 G16 G17 G18 G19 B14 B15 B16 B17 B18 B19 Hsync Vsync DE R12 R13 G12 G13 B12 B13	BTB- BTB+ BTC- BTC+ BTD- BTD+
TA3 TA4 TA5 TA6 TB0 TB1 TB2 TB3 TB4 TB5 TB6 TC0 TC1 TC2 TC3 TC4 TC5 TC6 TD0 TD1 TD2 TD3 TD4 TD5 TD6 TE0 TE1 TE2 TE3 TE4 TE5	R17 R18 R19 G14 G15 G16 G17 G18 G19 B14 B15 B16 B17 B18 B19 Hsync Vsync DE R12 R13 G12 G13 B12 B13 R10 R11 G10 G11 B10 B11	BTB- BTC- BTC+ BTD- BTD+ BTE- BTE+

Cl							
Pin No.	Signal Name						
4	DA0-						
5	DA0+						
-	-						
7	DA1-						
8	DA1+						
-	-						
10	DA2-						
11	DA2+						
-	-						
16	DA3-						
17	DA3+						
-	-						
19	DA4-						
20	DA4+						
-	-						
13 14	CKA- CKA+						
22	DB0-						
23	DB0+						
-	-						
25	DB1-						
26	DB1+						
-	-						
28	DB2-						
29	DB2+						
-	-						
34	DB3-						
35	DB3+						
-	-						
37	DB4-						
38	DB4+						
31	- CKB-						
32	CKB+						

Bit mapping	Pin No.	CN2
Single type Thine Connector		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Pin No.	Signal
$\begin{array}{c cccc} LC5 & TA1 & R15 \\ LC6 & TA2 & R16 \\ LC7 & TA2 & R17 \\ \hline \end{array}$		Name
LC6 TA2 R16 TA2 TA2	-	-
I C7 TA2 D17	4	DC0-
$\begin{array}{c ccccc} & & & & & & & & & & & & & & & & &$	5	DC0+
$\begin{array}{c cccc} LC8 & TA4 & R18 \\ LC9 & TA5 & R19 \end{array}$		
CC4 TA6 G14	-	-
CC5 TB0 G15 CC6 TB1 G16 CTR	7	DC1
CC7 $TB2$ $G17$	7	DC1-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	DC1+
RC4 TB5 B14		
RC5 TB6 B15 RC6 TC0 B16	-	-
RC7 TC1 B17 CTC	10	DC2-
odd RCo 1C2 B10		
Hsvnc TC4 Hsvnc	11	DC2+
data Vsync TC5 Vsync C DE TC6 DE	_	_
LC2 TD0 R12	_	_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16	DC3-
CC3 TD3 G13 CTD.	17	DC3+
$\begin{array}{c ccccc} \hline RC2 & \hline TD4 & B12 \\ \hline RC3 & \hline TD5 & B13 \\ \hline \end{array}$	1.7	DC3+
N.C. TD6 -	-	-
LC0 TE0 R10 LC1 TE1 R11		
$CC0$ $TE2$ $G10$ $CTE \rightarrow$	19	DC4-
CC1 TE3 G11	20	DC4+
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		_
N.C. TE6 -	- 12	
$\begin{array}{c cccc} \text{CLK} & \text{CLK} & \text{CTCLK-} & \rightarrow \\ & \text{CTCLK+} & \rightarrow \end{array}$	13 14	CKC- CKC+
LD4 TA0 R14	-	-
$\begin{array}{c cccc} LD5 & TA1 & R15 \\ LD6 & TA2 & R16 & \end{array} DTA- \rightarrow$	22	DD0-
LD7 TA3 R17	23	DD0+
LD8		
CD4 TA6 G14	-	-
CD5 TB0 G15 CD6 TB1 G16	25	DD1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	25	DD1-
$\begin{array}{c cccc} \hline CD8 & \hline TB3 & \hline G18 & \\ \hline CD9 & \hline TB4 & \hline G19 & \\ \hline \end{array} \hspace{0.2cm} DTB+ \hspace{0.2cm} \rightarrow \hspace{0.2cm}$	26	DD1+
RD4 TB5 B14		
RD5 TB6 B15 RD6 TC0 B16	-	-
$\begin{array}{c cccc} RD7 & TC1 & B17 & DTC- \rightarrow \end{array}$	28	DD2-
even RD0 TC2 B10		
Fixet Hsync TC4 Hsync DIC+	29	DD2+
D DE TC5 Vsync DE	_	_
LD2 TD0 R12		
$\begin{array}{c ccccc} LD3 & TD1 & R13 \\ \hline CD2 & TD2 & G12 & DTD- \end{array} \rightarrow$	34	DD3-
CD3 TD3 G13 DTD	35	DD3+
RD2 TD4 B12 D1D+ TD5 B13		
N.C. TD6 -	-	-
LD0 TE0 R10 LD1 TE1 R11	27	DD 4
$\overline{CD0}$ $\overline{TE2}$ $\overline{G10}$ \overline{DTE}	37	DD4-
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	38	DD4+
RD1 TE5 B11	_	-
$\begin{array}{c ccccc} N.C. & TE6 & - & \\ \hline CLV & CLV & DTCLK- & \rightarrow & \\ \end{array}$	31	CKD-
CLK CLK CLK DICLK- Note 1. To interest a right 1000 (Characteristic immediates), should be used	32	CKD+

Note1: Twist pair wires with 100Ω (Characteristic impedance) should be used between LCD panel signal processing board and LVDS transmitter.

4.8 DISPLAY GRAYSCALE AND INPUT DATA SIGNALS

This product can display 1,024 gray scales in each LCR sub-pixel and 3,072 gray scales per 1 pixel. Also the relation between display gray scale and input data signals is as follows.

											Γ	Data	a sig	nal	(0: I	Low	leve	el, 1	: Hi	gh le	vel)									\neg
		LAS	LA8	LA7	LA6	LA5	LA4	LA3	LA2 I	LA1 I										CA1 (RA8	RA7	RA6	RA5	RA4	RA3	RA2 I	RA1 I	RA0
	isplay	LB9	LB8	LB7	LB6	LB5	LB4	LB3	LB2	LB1 I	LB0	CB9	CB8	СВ7	CB6	CB5	CB4	СВЗ	CB2	CB1 C	СВО	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2 l	RB1 I	RB0
gra	y scale	LC9	LC8	LC7	LC6	LC5	LC4	LC3	LC2	LC1 I	LC0	CC9	CC8	CC7	CC6	CC5	CC4	CC3	CC2	CC1 C	CC0	RD9	RC8	RC7	RC6	RC5	RC4	RC3	RC2	RC1 I	RC0
		LD9	LD8	LD7	LD6	LD5	LD4	LD3	LD2 I	LD1 I	.D0	CD9	CD8	CD7	CD6	CD5	CD4 (CD3 (CD2 C	CD1 C	D0	RD9	RD8	RD7	RD6	RD5	RD4	RD3	RD2 l	RD1 I	RD0
d)	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
scal		0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ray	dark	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
el g	1						:										:										:				ŀ
Left sub-pixel gray scale	↓						:										:										:				ŀ
t suk	bright	1	1	1	1	1	1	1	1	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Lef		1	1	1	1	1	1	1	1	1	0		0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	_	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0
cale	Black	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0
ay s	dark	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	1 0	•	0	0	0	0	0	0	0	0	0
el gr	dark ↑	U	U	U	U	U		U	U	U	U	U	U	U	U	U		U	U	1	U	U	U	U	U	U		U	U	U	U
Center sub-pixel gray scale	Ĺ																														
qns	bright	0	0	0	0	0	. 0	0	0	0	0	1	1	1	1	1	1	1	1	0	1	0	0	0	0	0	. 0	0	0	0	0
nter	ongn	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0
Cel	White	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
e	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
sca		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
gray	dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
xel g	↑					:	:										:										:				
Right sub-pixel gray scale	↓					:	:																				:				
t su	bright	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	1
₹igh		0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	0
F	White	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1

4.9 INPUT SIGNAL TIMINGS

4.9.1 Timing characteristics

	Parameter		Symbol	min.	typ.	max.	Unit	Remarks	
	Frequency		1/ tc	60.0	65.0	66.0	MHz	-	
CLK	Duty ratio		-	See the data	sheet of LVD	S	-	-	
	Rise time, Fal	l time	-	transmitter.			ns	-	
		Cycle	th	10.34	10.34	10.77	μs	96,72kHz(typ.)	
	Horizontal	Сусіе	ul	640	672	700	CLK	Note1	
		Display period	iod thd 512				CLK	-	
		Cycle	tv	15.47	16.667	17.9	ms	60.0Hz(typ.)	
DE	Vertical	Сусіе	tv	1547	1612	1628	Н	00.0Hz(typ.)	
		Display period	tvd		1536	Н	-		
	CLK-DE	Setup time	-	C 41	-14 -£137D	.c	ns	-	
	CLK-DE	Hold time	-	See the data transmitter.	2	ns	-		
	Rise time, Fal	l time	-	transmitter.		ns	-		

Note1: The sum of jitter and skew of horizontal period should be within ± 1 CLK.

4.9.2 Input signal timing chart

4.10 LVDS DATA TARANSMISSION METHOD

4.11 LVDS Rx AC SPEC

Symbol	Parameter	min.	typ.	max.	Units
t _{RCIP}	RCLKx_P Period	11.76	-	40.0	ns
t _{RCIH}	RCLKx_P High pulse width	-	$\frac{4}{7}t_{\text{RCIP}}$	-	ns
t _{RCIL}	RCLKx_P Low pulse width	-	$\frac{3}{7}t_{\text{RCIP}}$	-	ns
$t_{ m RMG}$	Receiver Data Input Margin fCLKIN= 60MHz fCLKIN= 65MHz fCLKIN= 66MHz	-0.65	-	0.65	ns
t_{RIP1}	Input Data Position0	- t _{RMG}	0.0	+ t _{RMG}	ns
t _{RIP0}	Input Data Position1	$\frac{\mathrm{t_{RCIP}}}{7} - \mathrm{t_{RMG}} $	$\frac{\mathrm{trcip}}{7}$	$\frac{t_{\rm RCIP}}{7} + t_{\rm RMG} $	ns
$t_{ m RIP6}$	Input Data Position2	$2\frac{\mathrm{trcip}}{7} - \mathrm{trmg} $	$2\frac{\mathrm{trcip}}{7}$	$2\frac{\mathrm{trcip}}{7} + \mathrm{trmg} $	ns
t _{RIP5}	Input Data Position3	$3\frac{\mathrm{t_{RCIP}}}{7} - \mathrm{t_{RMG}} $	$3\frac{\text{trcip}}{7}$	$3\frac{t_{RCIP}}{7} + t_{RMG} $	ns
$t_{ m RIP4}$	Input Data Position4	$4\frac{\mathrm{t_{RCIP}}}{7} - \mathrm{t_{RMG}} $	$4\frac{\mathrm{trcip}}{7}$	$4\frac{\mathrm{t_{RCIP}}}{7} + \mathrm{t_{RMG}} $	ns
t _{RIP3}	Input Data Position5	$5\frac{\mathrm{trcip}}{7} - \mathrm{trmg} $	$5\frac{\text{trcip}}{7}$	$5\frac{\mathrm{trcip}}{7} + \mathrm{trmg} $	ns
t _{RIP2}	Input Data Position6	$6\frac{\mathrm{t_{RCIP}}}{7}$ – $ \mathrm{t_{RMG}} $	$6\frac{\mathrm{t_{RCIP}}}{7}$	$6\frac{t_{RCIP}}{7} + t_{RMG} $	ns

4.12 DISPLAY POSITIONS

Odd pixel: LA= Left data Even pixel: LB= Left data CA= Center data CB= Center data

RA= Right data RB= Right data

4.13 PIXEL ARRANGNMENT

	1	2	2,048
1	L C R	L C R	 L C R
1,536	L C R	L C R	 L C R

4.14 OPTICS

4.14.1 Optical characteristics

(Note1, Note2)

Parameter		Condition	Symbol	min.	typ.	max.	Unit	Measuring instrument	Remarks
Luminance		White at center $\theta R = 0^{\circ}$, $\theta L = 0^{\circ}$, $\theta U = 0^{\circ}$, $\theta D = 0^{\circ}$	L	1,250	1,700	-	cd/m ²	BM-5A or SR-3	Note3
Contrast ratio		White/Black at center $\theta R = 0^{\circ}$, $\theta L = 0^{\circ}$, $\theta U = 0^{\circ}$, $\theta D = 0^{\circ}$	CR	1,000	1,400	ı	1	BM-5A or SR-3	Note3 Note5
Luminance uniformity		White $\theta R = 0^{\circ}$, $\theta L = 0^{\circ}$, $\theta U = 0^{\circ}$, $\theta D = 0^{\circ}$	LU	80	1	-	%	BM-5A or SR-3	Note4 Note6
Chromaticity	White	x coordinate	Wx	0.269	0.299	0.329		SR-3	Note3 Note7
Chromaticity		y coordinate	Wy	0.285	0.315	0.345	-	SK-3	
Response time		Black to White	Ton	ı	20	30	ms	BM-5A	Note3
		White to Black	Toff	ı	20	30	ms	-10000	Note8
	Right	θU= 0°, θD= 0°, CR≥ 10	θR	70	88	-	0		
Viewing angle	Left	θU= 0°, θD= 0°, CR≥ 10	θL	70	88	1	0	BM-5A or EZ Contrast	Note3
	Up	$\theta R=0^{\circ}, \theta L=0^{\circ}, CR \ge 10$	θU	70	88	-	0		Note9
	Down	$\theta R=0^{\circ}, \theta L=0^{\circ}, CR \ge 10$	θD	70	88	1	0		

Note1: These are initial characteristics.

Note2: Measurement conditions are as follows.

Ta= 25°C, VDD= 12.0V, VDDB= 12.0V, PWM: Duty 100%, Display mode: QXGA,

Horizontal cycle= 1/96.72 kHz, Vertical cycle= 1/60.0 Hz

Optical characteristics are measured at luminance saturation 20minutes after the product works in the dark room. Also measurement methods are as follows.

Note3: Product surface temperature TopF = 29°C (at the maximum luminance control)

Note4: Product surface temperature TopF = 27° C (at the product luminance 450cd/m^2)

LU is measured under the condition of temperature differences in the display area are less than 10°C

Note5: See "4.14.2 Definition of contrast ratio".

Note6: See "4.14.3 Definition of luminance uniformity".

Note7: These coordinates are found on CIE 1931 chromaticity diagram.

Note8: See "4.14.4 Definition of response times".

Note9: See "4.14.5 Definition of viewing angles".

4.14.2 Definition of contrast ratio

The contrast ratio is calculated by using the following formula.

4.14.3 Definition of luminance uniformity

The luminance uniformity is calculated by using following formula.

$$Luminance\ uniformity\ (LU) = \frac{Minimum\ luminance\ from\ \textcircled{1}\ to\ \textcircled{9}}{Maximum\ luminance\ from\ \textcircled{1}\ to\ \textcircled{9}}$$

The luminance is measured at near the 9 points shown below.

4.14.4 Definition of response times

Response time is measured at the time when the luminance changes from "black" to "white", or "white" to "black" on the same screen point, by photo-detector. Ton is the time when the luminance changes from 10% up to 90%. Also Toff is the time when the luminance changes from 90% down to 10% (See the following diagram.).

4.14.5 Definition of viewing angles

5. ESTIMATED LUMINANCE LIFETIME

The luminance lifetime is the time from initial luminance to half-luminance.

This lifetime is the estimated value, and is not guarantee value.

	Estimated luminance lifetime (Life time expectancy) Note1, Note2, Note3	Unit	
LED 1	25°C (Ambient temperature of the product) Continuous operation, PWM duty ratio: 100%	70,000	b
LED elementary substance	60°C (Surface temperature at screen) Continuous operation, PWM duty ratio: 100%	60,000	h

Note1: Life time expectancy is mean time to half-luminance.

Note2: Estimated luminance lifetime is not the value for LCD module but the value for LED elementary substance.

Note3: By ambient temperature, the lifetime changes particularly. Especially, in case the product works under high temperature environment, the lifetime becomes short.

6. RELIABILITY TESTS

Tes	t item	Judgment Note1			
High temperature and humidity (Operation)		① 60 ± 2°C, RH= 60%, 240hours ② Display data is white.			
Heat cycle (Operation)		① 0 ± 3°C1hour 60 ± 3°C1hour ② 50cycles, 4hours/cycle ③ Display data is white. Note2	No display malfunctions		
Thermal shock (Non operation)		① -20 ± 3°C30minutes 60 ± 3°C30minutes ② 100cycles, 1hour/cycle ③ Temperature transition time is within 5 minutes.			
Vibration (Non operation)		① 5 to 100Hz, 11.76m/s ² ② 1 minute/cycle ③ X, Y, Z directions ④ 10 times each directions	No display malfunctions No physical damages		
Mechanical shock (Non operation)		① 294m/s², 11ms ② ±X, ±Y, ±Z directions ③ 3 times each directions			
ESD (Operation)		 ① 150pF, 150Ω, ±10kV ② 9 places on a panel surface Note3 ③ 10 times each places at 1 sec interval 	No display malfunctions		
Low pressure	Non-operation	① 15kPa (Equivalent to altitude 13,600m) ② -20°C±3°C24 hours ③ +60°C±3°C24 hours	N. F. J. 16		
	Operation	① 53.3kPa (Equivalent to altitude 5,100m) ② 0°C±3°C24 hours ③ +55°C±3°C24 hours Note2	No display malfunctions		

Note3: See the following figure for discharge points

7. PRECAUTIONS

7.1 MEANING OF CAUTION SIGNS

The following caution signs have very important meaning. Be sure to read "7.2 CAUTIONS" and "7.3 ATTENTIONS"!

This sign has the meaning that a customer will be injured or the product will sustain damage if the customer practices wrong operations.

This sign has the meaning that a customer will be injured if the customer practices wrong operations.

7.2 CAUTIONS

* Do not shock and press the LCD panel and the backlight! There is a danger of breaking, because they are made of glass. (Shock: Equal to or no greater than 294m/s^2 and equal to or no greater than 11ms, Pressure: Equal to or no greater than 19.6N ($\phi 16\text{mm}$ jig))

7.3 ATTENTIONS 1

7.3.1 Handling of the product

- ① Take hold of both ends without touching the circuit board when the product (LCD module) is picked up from inner packing box to avoid broken down or misadjustment, because of stress to mounting parts on the circuit board.
- ② Do not hook or pull cables such as lamp cable, and so on, in order to avoid any damage.
- 3 When the product is put on the table temporarily, display surface must be placed downward.
- When handling the product, take the measures of electrostatic discharge with such as earth band, ionic shower and so on, because the product may be damaged by electrostatic.
- ⑤ The torque for product mounting screws must never exceed 0.735N·m. Higher torque might result in distortion of the bezel. And the length of product mounting screws must be ≤ 5.0 mm.

The product must be installed using mounting holes without undue stress such as bends or twist (See outline drawings). And do not add undue stress to any portion (such as bezel flat area). Bends or twist described above and undue stress to any portion may cause display mura. Recommended installing method: Ideal plane "A" is defined by one mounting hole (datum point) and other mounting holes. The ideal plane "A" should be the same plane within ±0.3 mm.

- ① Do not press or rub on the sensitive product surface. When cleaning the product surface, wipe it with a soft dry cloth.
- Do not push or pull the interface connectors while the product is working.
- When handling the product, use of an original protection sheet on the product surface (polarizer) is recommended for protection of product surface. Adhesive type protection sheet may change color or characteristics of the polarizer.
- We usually liquid crystals don't leak through the breakage of glasses because of the surface tension of thin layer and the construction of LCD panel. But, if you contact with liquid crystal by any chance, please wash it away with soap and water.

7.3.2 Environment

- ① Do not operate or store in high temperature, high humidity, dewdrop atmosphere or corrosive gases. Keep the product in packing box with antistatic pouch in room temperature to avoid dusts and sunlight, when storing the product.
- ② In order to prevent dew condensation occurred by temperature difference, the product packing box must be opened after enough time being left under the environment of an unpacking room. Evaluate the storage time sufficiently because dew condensation is affected by the environmental temperature and humidity. (Recommended leaving time: 6 hours or more with the original packing state after a customer receives the package)
- 3 Do not operate in high magnetic field. If not, circuit boards may be broken.
- 4 This product is not designed as radiation hardened.

7.3.3 Characteristics

The following items are neither defects nor failures.

- ① Response time, luminance and color may be changed by ambient temperature.
- ② Display mura, flickering, vertical streams or tiny spots may be observed depending on display patterns.
- ③ Do not display the fixed pattern for a long time because it may cause image sticking. Use a screen saver, if the fixed pattern is displayed on the screen.
- 4 The display color may be changed depending on viewing angle because of the use of condenser sheet in the backlight.
- ⑤ Optical characteristics may be changed depending on input signal timings.

7.3.4 Others

- ① All GND, GNDB, VDD and VDDB terminals should be used without any non-connected lines.
- ② Do not disassemble a product or adjust variable resistors.
- 3 Pack the product with the original shipping package, in order to avoid any damages during transportation, when returning the product to NLT for repairing and so on.
- 4 The LCD module by itself or integrated into end product should be packed and transported with display in the vertical position. Otherwise the display characteristics may be degraded.
- ⑤ The information of China RoHS directive six hazardous substances or elements in this product is as follows.

	China RoHS directive six l hazardous substances or elements							
Lead (Pb)Merc ury (Hg)Cadmium (Cd)Hexavalen t Chromium (Cr VI)Polybrominated Biphenys (PBB)Polybrominated Biphenyl Ethers (PBDE)								
×	0	0	0	0	0			

- Note1: (): This indicates that the poisonous or harmful material in all the homogeneous materials for this part is equal or below the limitation level of SJ/T11363-2006 standard regulation.
 - X: This indicates that the poisonous or harmful material in all the homogeneous materials for this part is above the limitation level of SJ/T11363-2006 standard regulation.

NLT Technologies, Ltd. NL204153AM21-18A

8. OUTLINE DRAWINGS

8.1 FRONT VIEW

Note1: Not shown tolerances of the dimensions are ± 0.5 mm.

Note2: The torque for product mounting screws must never exceed 0.735N·m.

Note3: The length of product mounting screws from surface of plate must be ≤ 5.0 mm.

Note4: The values in parentheses are for reference.

Unit: mm

NLT Technologies, Ltd. NL204153AM21-18A

8.2 REAR VIEW

Note1: Not shown tolerances of the dimensions are ± 0.5 mm.

Note2: The torque for product mounting screws must never exceed 0.735N·m.

Note3: The length of product mounting screws from surface of plate must be ≤ 5.0 mm.

Note4: The values in parentheses are for reference.

Unit: mm