EPC2022 – Enhancement Mode Power Transistor

 V_{DS} , 100 V $R_{DS(on)}\,,\,\,3.2\,m\Omega$ I_D, 90 A

Gallium Nitride's exceptionally high electron mobility and low temperature coefficient allows very low $R_{DS(on)}$, while its lateral device structure and majority carrier diode provide exceptionally low Q_G and zero Q_{RR}. The end result is a device that can handle tasks where very high switching frequency, and low on-time are beneficial as well as those where on-state losses dominate.

Maximum Ratings								
PARAMETER VALUE								
.,	Drain-to-Source Voltage (Continuous)	100	V					
V _{DS}	Drain-to-Source Voltage (up to 10,000 5 ms pulses at 150°C)	120	V					
I _D	Continuous ($T_A = 25$ °C, $R_{\theta JA} = 2.5$ °C/W)	90	۸					
	Pulsed (25°C, $T_{PULSE} = 300 \mu s$)	390	Α					
.,	Gate-to-Source Voltage	6	٧					
V _{GS}	Gate-to-Source Voltage	-4	V					
TJ	Operating Temperature -40 to 150							
T _{STG}	Storage Temperature	-40 to 150	-					

Thermal Characteristics							
	PARAMETER	ТҮР	UNIT				
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case	0.4					
$R_{\theta JB}$	Thermal Resistance, Junction-to-Board	1.1	°C/W				
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient (Note 1)	42					

Note 1: $R_{\theta JA}$ is determined with the device mounted on one square inch of copper pad, single layer 2 oz copper on FR4 board. See https://epc-co.com/epc/documents/product-training/Appnote_Thermal_Performance_of_eGaN_FETs.pdf for details.

M	n	n	n	n	n	n	n	n		n	n	n	1	1
U	U	U	U	U	U	U	U	U	U	U	U	U	U	Ų
0	•	•	•	1	•	0	•	•	•	n	1	1	0	ſ
U	U	U	U	U	U	U	U	U	U	U	U	U	U	Į

Die Size: 6.05 x 2.3 mm

EPC2022 eGaN® FETs are supplied only in passivated die form with solder bumps.

- · High Speed DC-DC Conversion
- Motor Drive
- Industrial Automation
- · Synchronous Rectification
- · Inrush Protection
- · Class-D Audio

	Static Characteristics (T _J = 25°C unless otherwise stated)							
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT		
BV _{DSS}	Drain-to-Source Voltage	$V_{GS} = 0 \text{ V, } I_D = 0.9 \text{ mA}$	100			V		
I _{DSS}	Drain-Source Leakage	$V_{DS} = 80 \text{ V}, V_{GS} = 0 \text{ V}$		0.1	0.7			
	Gate-to-Source Forward Leakage	$V_{GS} = 5 V$		1	9	mA		
I _{GSS}	Gate-to-Source Reverse Leakage	$V_{GS} = -4 V$		0.1	0.7			
V _{GS(TH)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 13 \text{ mA}$	0.8	1.4	2.5	V		
R _{DS(on)}	Drain-Source On Resistance	$V_{GS} = 5 \text{ V}, I_D = 25 \text{ A}$		2.4	3.2	mΩ		
V_{SD}	Source-Drain Forward Voltage	$I_S = 0.5 \text{ A}, V_{GS} = 0 \text{ V}$		1.8		V		

All measurements were done with substrate connected to source.

	Dynamic Characteristics# (T _J = 25°C unless otherwise stated)							
	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT		
C_{ISS}	Input Capacitance			1400	1690			
Coss	Output Capacitance	$V_{DS} = 50 \text{ V}, V_{GS} = 0 \text{ V}$		840	1260			
C_{RSS}	Reverse Transfer Capacitance			7		рF		
C _{OSS(ER)}	Effective Output Capacitance, Energy Related (Note 2)	V 04- 50VV 0V		1090				
C _{OSS(TR)}	Effective Output Capacitance, Time Related (Note 3)	$V_{DS} = 0$ to 50 V, $V_{GS} = 0$ V		1410				
R_{G}	Gate Resistance			0.3		Ω		
Q _G	Total Gate Charge	$V_{DS} = 50 \text{ V}, V_{GS} = 5 \text{ V}, I_D = 25 \text{ A}$		13	16			
Q_{GS}	Gate-to-Source Charge			3.4				
Q_{GD}	Gate-to-Drain Charge	$V_{DS} = 50 \text{ V}, I_D = 25 \text{ A}$		2.4				
Q _{G(TH)}	Gate Charge at Threshold			2.1		nC		
Q _{OSS}	Output Charge	$V_{DS} = 50 \text{ V}, V_{GS} = 0 \text{ V}$		71	107			
Q _{RR}	Source-Drain Recovery Charge			0				

All measurements were done with substrate connected to source.

Note 2: $C_{OSS(ER)}$ is a fixed capacitance that gives the same stored energy as C_{OSS} while V_{DS} is rising from 0 to 50% BV_{DSS} . Note 3: $C_{OSS(TR)}$ is a fixed capacitance that gives the same charging time as C_{OSS} while V_{DS} is rising from 0 to 50% BV_{DSS} .

Figure 1: Typical Output Characteristics at 25°C

Figure 3: $R_{DS(on)}$ vs. V_{GS} for Various Drain Currents

Figure 2: Typical Transfer Characteristics

Figure 4: R_{DS(on)} vs. V_{GS} for Various Temperatures

[#] Defined by design. Not subject to production test.

Figure 5a: Typical Capacitance (Linear Scale)

Figure 5b: Typical Capacitance (Log Scale)

Figure 6: Typical Gate Charge

Figure 7: Typical Reverse Drain-Source Characteristics

Figure 8: Normalized On-State Resistance vs. Temperature

Figure 9: Normalized Threshold Voltage vs. Temperature

Note: Negative gate drive voltage increases the reverse drain-source voltage. EPC recommends 0 V for OFF.

Figure 12: Transient Thermal Response Curves

Junction-to-Case Duty Cycle: Z_{Ð.G.} Normalized Thermal Impedance 0.5 0.2 0.1 0.1 0.05 0.02 0.01 0.01 0.001 Notes: Single Pulse Duty Factor: $D = t_1/t_2$ $Peak\,T_J = P_{DM}\,x\,Z_{\theta JC}\,x\,R_{\theta JC} + T_C$ 0.0001 10-6 10-5 10-3 10-1 t₁, Rectangular Pulse Duration, seconds

TAPE AND REEL CONFIGURATION

	Dimension (mm)				
EPC2022 (Note 1)	Target	MIN	MAX		
a	12.00	11.90	12.30		
b	1.75	1.65	1.85		
c (Note 2)	5.50	5.45	5.55		
d	4.00	3.90	4.10		
е	8.00	7.90	8.10		
f (Note 2)	2.00	1.95	2.05		
g	1.50	1.50	1.60		
h	1.50	1.50	1.75		

Note 1: MSL 1 (moisture sensitivity level 1) classified according to IPC/ JEDEC industry standard.

Note 2: Pocket position is relative to the sprocket hole measured as true position of the pocket, not the pocket hole.

DIE MARKINGS

Part	Laser Markings					
Number	Part # Marking Line 1	Lot_Date Code Marking Line 2	Lot_Date Code Marking Line 3			
EPC2022	2022	YYYY	ZZZZ			

DIE OUTLINE

Side View

Solder Bump View

	Micrometers					
DIM	MIN	Nominal	MAX			
Α	6020	6050	6080			
В	2270	2300	2330			
c	2047	2050	2053			
d	717	720	723			
e	210	225	240			
f	195	200	205			
g	400	400	400			

Pad 1 is Gate;

Pads 2,5,6,9,10,13,14,17,18,21,22,

25, 26, 29 are Source;

Pads 3, 4, 7, 8, 11, 12, 15, 16, 19, 20, 23, 24, 27, 28 are Drain;

Pad 30 is Substrate.*

*Substrate pin should be connected to Source

RECOMMENDED LAND PATTERN

(units in μ m)

Land pattern is solder mask defined.

Pad 1 is Gate; Pads 2, 5, 6, 9,10,13,14, 17, 18, 21, 22, 25, 26, 29 are Source; Pads 3, 4, 7, 8, 11, 12, 15, 16, 19, 20, 23, 24, 27, 28 are Drain; Pad 30 is Substrate.*

*Substrate pin should be connected to Source

RECOMMENDED STENCIL DRAWING

(units in µm)

Recommended stencil should be 4 mil (100 μ m) thick, must be laser cut, openings per drawing. Intended for use with SAC305 Type 4 solder,

Additional assembly resources available at https://epc-co.com/epc/design-support/assemblybasics

reference 88.5% metals content.

Efficient Power Conversion Corporation (EPC) reserves the right to make changes without further notice to any products herein to improve reliability, function or design. EPC does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

 $eGaN^{\bullet} \ is \ a \ registered \ trademark \ of \ Efficient \ Power \ Conversion \ Corporation.$ $EPC\ Patent\ Listing: \ https://epc-co.com/epc/about-epc/patents$

Information subject to change without notice.
Revised June 2023