```
In [1]: # Import libraries
   import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   import seaborn as sns

# Load datasets
   train = pd.read_csv('train.csv')
   test = pd.read_csv('test.csv')

# Display first 5 rows of train data
   train.head()
```

Out[1]:		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	I
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.5
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0
	4										

Insights on Age Distribution

The Age distribution is right-skewed with more passengers being younger adults. There are some children and older adults present.

Relationship between Gender and Survival

Females had a significantly higher survival rate compared to males, indicating gender was an important factor.

```
In [2]: # Overview of train data
train.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype			
0	PassengerId	891 non-null	int64			
1	Survived	891 non-null	int64			
2	Pclass	891 non-null	int64			
3	Name	891 non-null	object			
4	Sex	891 non-null	object			
5	Age	714 non-null	float64			
6	SibSp	891 non-null	int64			
7	Parch	891 non-null	int64			
8	Ticket	891 non-null	object			
9	Fare	891 non-null	float64			
10	Cabin	204 non-null	object			
11	Embarked	889 non-null	object			
dtypes: float64(2), int64(5), object(5)						

dtypes: float64(2), int64(5), object(5)

memory usage: 83.7+ KB

In [3]: # Summary statistics
train.describe()

Out[3]:		PassengerId	Survived	Pclass	Age	SibSp	Parch	
	count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000
	mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204
	std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693
	min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000
	25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.91(
	50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454
	75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000
	max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329

In [4]: # Value counts for 'Sex'
train['Sex'].value_counts()

Out[4]: Sex

male 577 female 314

Name: count, dtype: int64

In [5]: train.isnull().sum()

```
Out[5]: PassengerId
         Survived
                           0
         Pclass
         Name
                           0
         Sex
                         177
         Age
         SibSp
         Parch
                           0
         Ticket
                           0
         Fare
                           0
         Cabin
                         687
         Embarked
                           2
         dtype: int64
```

```
In [7]: train['Age'] = train['Age'].fillna(train['Age'].median())
    train['Embarked'] = train['Embarked'].fillna(train['Embarked'].mode()[0])
```

```
In [8]: # Histogram of Age
    train['Age'].hist(bins=30)
    plt.title('Age Distribution')
    plt.xlabel('Age')
    plt.ylabel('Count')
    plt.show()

# Boxplot of Fare
    sns.boxplot(x='Fare', data=train)
    plt.title('Fare Boxplot')
    plt.show()
```


In [9]: sns.countplot(x='Sex', data=train)
plt.title('Count of Gender')
plt.show()


```
In [10]: sns.countplot(x='Pclass', hue='Survived', data=train)
  plt.title('Survival Count by Passenger Class')
  plt.show()

sns.barplot(x='Sex', y='Survived', data=train)
  plt.title('Survival Rate by Gender')
  plt.show()
```



```
In [12]: corr = train.select_dtypes(include=['number']).corr()
    sns.heatmap(corr, annot=True, cmap='coolwarm')
    plt.title('Correlation Heatmap')
    plt.show()
```


In [15]: sns.pairplot(train[['Age', 'Fare', 'Pclass', 'Survived']], hue='Survived')
 plt.show()


```
In [16]: train['FamilySize'] = train['SibSp'] + train['Parch'] + 1
    sns.barplot(x='FamilySize', y='Survived', data=train)
    plt.title('Survival Rate by Family Size')
    plt.show()
```


Summary of Findings

- Females had a higher survival rate than males.
- Passengers in higher classes (1st and 2nd) had better survival chances.
- Younger passengers had a slightly higher chance of surviving.
- Family size influenced survival, with medium-sized families having better rates.

FamilySize

In []: