# Problem 1.

A complex number z is represented in an Argand diagram by the point P. Sketch, on separate Argand diagrams, the locus of P. Describe geometrically the locus of P and determine its Cartesian equation.

- (a) |2z 6 8i| = 10
- (b) |z+2| = |z-i|
- (c)  $\arg(z+2-i) = -\frac{\pi}{4}$

## Solution

### Part (a)

Note that  $|2z - 6 - 8i| = 10 \implies |z - (3 + 4i)| = 5$ .



The locus of P is a circle with centre (3,4) and radius 5. Its Cartesian equation is  $(x-3)^2 + (y-4)^2 = 5^2$ .

#### Part (b)

Note that  $|z + 2| = |z - i| \implies |z - (-2)| = |z - i|$ .



The locus of P is the perpendicular bisector of the line segment joining (-2,0) and (0,1). Its Cartesian equation is y=-2x-1.5.

# Part (c)

Note that 
$$\arg(z + 2 - i) = -\frac{\pi}{4} \implies \arg(z - (-2 + i)) = -\frac{\pi}{4}$$
.



The locus of P is the half-line starting from (-2,1) and inclined at an angle  $-\frac{\pi}{4}$  to the positive real axis. Its Cartesian equation is y=-x-1.

# Problem 2.

Sketch the following loci on separate Argand diagrams.

- (a)  $\text{Re}(z^2) = 1$
- (b) |6 iz| = 2,
- (c)  $\arg\left(\frac{iz}{1-\sqrt{3}i}\right) = \pi$

# Solution

## Part (a)

Let  $z = r(\cos \theta + i \sin \theta)$ . Then  $\operatorname{Re}(z^2) = 1 \implies r^2 \cos 2\theta = 1 \implies r^2 = \sec 2\theta$ .



#### Part (b)

Note 
$$|6 - iz| = 2 \implies |-i(z + 6i)| = 2 \implies |z + 6i| = 2 \implies |z - (6i)| = 2.$$



#### Part (c)

Note 
$$\operatorname{arg}\left(\frac{iz}{1-\sqrt{3}i}\right) = \pi \implies \operatorname{arg}(i) + \operatorname{arg}(z) - \operatorname{arg}\left(1-\sqrt{3}i\right) = \pi \implies \frac{\pi}{2} + \operatorname{arg}(z) + \frac{\pi}{3} \implies \operatorname{arg}(z) = \frac{\pi}{6}.$$



# Problem 3.

Sketch, on separate Argand diagrams, the set of points satisfying the following inequalities.

- (a)  $2 < |z 2i| \le |3 4i|$
- (b) |z+i| > |z+1-i|
- (c)  $\frac{\pi}{4} < \arg\left(\frac{1}{z}\right) \le \frac{\pi}{2}$

## Solution

#### Part (a)

Note  $2 < |z - 2i| \le |3 - 4i| \implies 2 < |z - 2i| \le 5$ .



#### Part (b)

Note 
$$|z+i| > |z+1-i| \implies |z-(-i)| > |z-(-1+i)|$$
.



#### Part (c)

Note 
$$\frac{\pi}{4} < \arg\left(\frac{1}{z}\right) \le \frac{\pi}{2} \implies \frac{\pi}{4} < -\arg(z) \le \frac{\pi}{2} \implies -\frac{\pi}{2} \ge \arg(z) > -\frac{\pi}{4}$$
.



# Problem 4.

Sketch on separate Argand diagrams for (a) and (b) the set of points representing all complex numbers z satisfying both of the following inequalities.

(a) 
$$|z-3-i| \le 3$$
 and  $|z| \ge |z-3-i|$ 

(b) 
$$\frac{\pi}{2} < \arg(z+1) \le \frac{2}{3}\pi$$
 and  $3\operatorname{Im}(z) > 2$ 

## Solution

#### Part (a)

Note 
$$|z-3-i| \leq 3 \implies |z-(3+i)| \leq 3$$
 and  $|z| \geq |z-3-i| \implies |z| \geq |z-(3+i)|$ .



## Part (b)

Note 
$$\frac{\pi}{2} < \arg(z+1) < \frac{2}{3}\pi \implies \frac{\pi}{2} < \arg(z-(-1)) < \frac{2}{3}\pi$$
 and  $3\operatorname{Im}(z) > 2 \implies \operatorname{Im}(z) > \frac{2}{3}$ .



# Problem 5.

Illustrate, in separate Argand diagrams, the set of points z for which

- (a)  $\text{Re}(z^2) < 0$
- (b)  $\text{Im}(z^3) > 0$

## Solution

## Part (a)

Let  $z = r(\cos\theta + i\sin\theta)$ ,  $0 \le \theta < 2\pi$ . Then  $\operatorname{Re}(z^2) < 0 \implies r^2\cos 2\theta < 0 \implies \cos 2\theta < 0 \implies 2\theta \in \left(\frac{1}{2}\pi, \frac{3}{2}\pi\right) \cup \left(\frac{5}{2}\pi, \frac{7}{2}\pi\right) \implies \theta \in \left(\frac{1}{4}\pi, \frac{3}{4}\pi\right) \cup \left(\frac{5}{4}\pi, \frac{7}{4}\pi\right)$ .



#### Part (b)

Let  $z = r(\cos \theta + i \sin \theta)$ ,  $0 \le \theta < 2\pi$ . Then  $\operatorname{Im}(z^3) > 0 \implies r^3 \sin 3\theta > 0 \implies \sin 3\theta > 0 \implies 3\theta \in (0,\pi) \cup (2\pi,3\pi) \cup (4\pi,5\pi) \implies \theta \in \left(0,\frac{1}{3}\pi\right) \cup \left(\frac{2}{3}\pi,\pi\right) \cup \left(\frac{4}{3}\pi,\frac{5}{3}\pi\right)$ .



# Problem 6.

The complex number z satisfies |z + 4 - 4i| = 3.

- (a) Describe, with the aid of a sketch, the locus of the point which represents z in an Argand diagram.
- (b) Find the least possible value of |z i|.
- (c) Find the range of values of  $\arg(z-i)$ .

#### Solution

#### Part (a)

Note  $|z + 4 - 4i| = 3 \implies |z - (-4 + 4i)| = 3$ .



#### Part (b)

Observe that the distance CI is equal to the sum of the radius of the circle and min |z - i|. Hence,

$$\min |z - i| = \sqrt{(-4 - 0)^2 + (4 - 1)^2} - 3 = 2$$

$$\boxed{\min |z - i| = 2}$$

#### Part (c)

Let A and B be points on the circle such that AI and BI are tangent to the circle. Let  $\angle CIA = \theta$ . Then  $\tan \theta = \frac{3}{4} \implies \theta = \arctan \frac{3}{4}$ . By symmetry, we also have  $\angle CIB = \theta$ , whence  $\angle AIB = 2\theta = 2\arctan \frac{3}{4}$ . Hence, min  $\arg(z-i) = \pi - 2\arctan \frac{3}{4}$  (at B) and  $\max \arg(z-i) = \pi$  (at A).

$$\pi - 2\arctan\frac{3}{4} \le \arg(z - i) \le \pi$$

# Problem 7.

Sketch, on the same Argand diagram, the two loci representing the complex number z for which z = 4 + ki, where k is a positive real variable, and |z - 1| = 4. Write down, in the form x + iy, the complex number satisfying both conditions.

# Solution



Note that z is of the form 4 + ki,  $k \in \mathbb{R}^+$ . Since |z - 1| = 4, we have  $|3 + ki| = 4 \implies 3^2 + k^2 = 4 \implies k = \sqrt{7}$ . Note that we reject  $k = -\sqrt{7}$  since k > 0.

$$z = 4 + \sqrt{7}i$$

## Problem 8.

Describe, in geometrical terms, the loci given by |z-1| = |z+i| and |z-3+3i| = 2 and sketch both loci on the same diagram.

Obtain, in the form a + ib, the complex numbers representing the points of intersection of the loci, giving the exact values of a and b.

#### Solution

Note that 
$$|z-1| = |z+i| \implies |z-1| = |z-(-i)|$$
 and  $|z-3+3i| = 2 \implies |z-(3-3i)| = 2$ .

The locus given by |z-1| = |z+i| is the perpendicular bisector of the line segment joining 1 and -i.

The locus given by |z-3+3i|=2 is a circle with centre 3-3i and radius 2.



Observe that the locus of |z-1| = |z+i| has Cartesian equation y = -x and the locus of |z-3+3i| = 2 has Cartesian equation  $(x-3)^2 + (y+3)^2 = 2^2$ . Solving both equations simultaneously, we have

$$(x-3)^{2} + (y+3)^{2} = 2^{2}$$

$$\Rightarrow (x-3)^{2} + (3-x)^{2} = 4$$

$$\Rightarrow x^{2} - 6x + 9 + 9 - 6x + x^{2} = 4$$

$$\Rightarrow 2x^{2} - 12x + 14 = 0$$

$$\Rightarrow x^{2} - 6x + 7 = 0$$

$$\Rightarrow x = \frac{6 \pm \sqrt{8}}{2}$$

$$= 3 \pm \sqrt{2}$$

$$\Rightarrow y = -(3 \pm \sqrt{2})$$

$$= -3 \mp \sqrt{2}$$

Hence, the complex numbers representing the points of intersections of the loci are  $(3 + \sqrt{2}) + (-3 - \sqrt{2})i$  and  $(3 - \sqrt{2}) + (-3 + \sqrt{2})i$ .

$$(3+\sqrt{2})+(-3-\sqrt{2})i, (3-\sqrt{2})+(-3+\sqrt{2})i$$

# Problem 9.

Sketch the locus for  $\arg(z - (4\sqrt{3} - 2i)) = \frac{5}{6}\pi$  in an Argand diagram.

- (a) Verify that the points 2i and  $2\sqrt{3}$  lie on it.
- (b) Find the minimum value of |z| and the range of values of  $\arg(z)$ .

## Solution



Part (a)

$$\arg\left(2i - (4\sqrt{3} - 2i)\right) = \arg\left(-\sqrt{3} + i\right) = \arctan\frac{1}{-\sqrt{3}} = \frac{5}{6}\pi$$
$$\arg\left(2\sqrt{3} - (4\sqrt{3} - 2i)\right) = \arg\left(-\sqrt{3} + i\right) = \arctan\frac{1}{-\sqrt{3}} = \frac{5}{6}\pi$$

Hence, the points 2i and  $2\sqrt{3}$  satisfy the equation  $\arg(z - (4\sqrt{3} - 2i)) = \frac{5}{6}\pi$  and thus lie on the locus.

#### Part (b)

Let A(2i) and  $B(2\sqrt{3})$ . Let C be the point on the required locus such that  $OC \perp AB$ . Observe that  $\triangle OAB$ ,  $\triangle COB$  and  $\triangle CAO$  are all similar to one another. Hence,

$$\frac{OC}{CB} = \frac{AO}{BO} = \frac{1}{\sqrt{3}} \implies AC = \frac{1}{\sqrt{3}}OC$$

$$\frac{OC}{CA} = \frac{BO}{OA} = \frac{\sqrt{3}}{1} \implies BC = \sqrt{3}OC$$
Hence,  $AB = AC + CB = \left(\sqrt{3} + \frac{1}{\sqrt{3}}\right)OC \implies \min|z| = OC = \frac{AB}{\sqrt{3} + 1/\sqrt{3}} = \frac{\sqrt{2^2 + (2\sqrt{3})^2}}{\sqrt{3} + 1\sqrt{3}} = \frac{4\sqrt{3}}{4} = \sqrt{3}.$ 

## Tutorial A10.4 Complex Numbers

Observe that 
$$\max \arg(z) = \frac{5}{6}\pi$$
 and  $\min \arg(z) = \min \arg(4\sqrt{3} - 2i) = \arctan \frac{-2}{4\sqrt{3}} = -\arctan \frac{1}{2\sqrt{3}}$ .

$$-\arctan\frac{1}{2\sqrt{3}} < \arg(z) \le \frac{5}{6}\pi$$

# Problem 10.

The complex number z satisfies  $|z-3-3i| \ge |z-1-i|$  and  $\frac{\pi}{6} < \arg(z) \le \frac{\pi}{3}$ .

- (a) On an Argand diagram, sketch the region in which the point representing z can lie.
- (b) Find the area of the region in part (a).
- (c) Find the range of values of  $\arg(z-5+i)$ .

## Solution

#### Part (a)

Note that  $|z - 3 - 3i| \le |z - 1 - i| \implies |z - (3 + 3i)| \le |z - (1 + i)|$ .



#### Part (b)

Note that the locus of |z-3-3i|=|z-1-i| has Cartesian equation y=-x+4, while the loci of  $\frac{\pi}{6}=\arg(z)$  and  $\arg(z)=\frac{\pi}{3}$  have Cartesian equations  $y=\frac{1}{\sqrt{3}}x$  and  $y=\sqrt{3}x$  respectively. Let A and B be the intersections between y=-x+4 with  $y=\sqrt{3}x$  and  $y=\frac{1}{\sqrt{3}}x$  respectively.

At A, we have  $y=\sqrt{3}x=-x+4$ , whence  $A\left(\frac{4}{1+\sqrt{3}},\frac{4\sqrt{3}}{1+\sqrt{3}}\right)$ . At B, we have  $y=\frac{1}{\sqrt{3}}x=-x+4$ , whence  $B\left(\frac{4\sqrt{3}}{1+\sqrt{3}},\frac{4}{1+\sqrt{3}}\right)$ . Observe that  $M\left(2,2\right)$  is the midpoint of AB. Then the required area is given by  $\frac{1}{2}\cdot AB\cdot OM$ .

Area = 
$$\frac{1}{2} \cdot AB \cdot OM$$
  
=  $\frac{1}{2} \cdot \sqrt{\left(\frac{4}{1+\sqrt{3}} - \frac{4\sqrt{3}}{1+\sqrt{3}}\right)^2 + \left(\frac{4\sqrt{3}}{1+\sqrt{3}} - \frac{4}{1+\sqrt{3}}\right)^2} \cdot \sqrt{2^2 + 2^2}$ 

$$= \frac{1}{2} \cdot \sqrt{2 \left( \frac{4}{1 + \sqrt{3}} - \frac{4\sqrt{3}}{1 + \sqrt{3}} \right)^2} \cdot 2\sqrt{2}$$

$$= 2 \cdot \left| \frac{4}{1 + \sqrt{3}} - \frac{4\sqrt{3}}{1 + \sqrt{3}} \right|$$

$$= 8 \cdot \left| \frac{1 - \sqrt{3}}{1 + \sqrt{3}} \right|$$

$$= 8 \cdot \left| \frac{(1 - \sqrt{3})^2}{(1 + \sqrt{3})(1 - \sqrt{3})} \right|$$

$$= 8 \cdot \left| \frac{(1 - \sqrt{3})^2}{-2} \right|$$

$$= 4(1 - \sqrt{3})^2$$

The area of the region is  $4(1-\sqrt{3})^2$  units<sup>2</sup>.

## Part (c)

Note that  $\arg(z-5+i)=\arg(z-(5-i))$ . Observe that  $\min\arg(z-(5-i))=\frac{3}{4}\pi$  and  $\max\arg(z-(5-i))=\arctan\frac{-1}{5}+\pi=\pi-\arctan\frac{1}{5}$ .

$$\boxed{\frac{3}{4}\pi \le \arg(z - 5 + i) < \pi - \arctan\frac{1}{5}}$$

# Problem 11.

Sketch on an Argand diagram the set of points representing all complex numbers z satisfying both inequalities

$$|iz - 2i - 2| \le 2$$
 and  $\operatorname{Re}(z) > \left|1 + \sqrt{3}i\right|$ 

Find

- (a) the range of  $\arg(z-2-2i)$ ,
- (b) the complex number z where  $\arg(z-2-2i)$  is a maximum.

The locus of the complex number w is defined by |w - 5 + 2i| = k, where k is a real and positive constant. Find the range of values of k such that the loci of w and z will intersect.

#### Solution

Note  $|iz - 2i - 2| \le 2 \implies |i(z - 2 + 2i)| \le 2 \implies |z - (2 - 2i)| \le 2$  and Re $(z) > |1 + \sqrt{3}i| = 2$ .



#### Part (a)

Note  $|z-2-2i|=\arg(z-(2+2i))$ . Let A(2+2i) and C(2-2i). Let T be the point at which AT is tangent to the circle. Then  $\angle ATC=\frac{\pi}{2},\ AC=4$  and TC=2. Hence,  $\angle CAT=\arcsin\frac{2}{4}=\frac{\pi}{6}$ . Thus,  $\min\arg(z-2-2i)=-\frac{\pi}{2}$  and  $\max\arg(z-2-2i)=\min\arg(z-2-2i)+\angle CAT=-\frac{\pi}{2}+\frac{\pi}{6}=-\frac{\pi}{3}$ .

$$-\frac{\pi}{2} < \arg(z - 2 - 2i) \le -\frac{\pi}{3}$$

#### Part (b)

Relative to C, T is given by  $2\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right) = \sqrt{3} + i$ . Thus,  $T = (\sqrt{3} + i) + (2 - 2i) = 2 + \sqrt{3} - i$ .

$$2 + \sqrt{3} - i$$

Note  $|w-5+2i|=k \implies |w-(5-2i)|=k$ . Let D(5-2i). Observe that CD is given by the sum of the radius of the circle and min k. Hence, min k=3-2=1. Let B(2-4i). Then max k is given by the distance between B and D. By the Pythagorean Theorem, we have  $\max k = \sqrt{(5-2)^2 + (-2-(-4))^2} = \sqrt{13}$ .

$$1 \le k \le \sqrt{13}$$