

Hybrid Data Center Networks

Hybrid Data Center Networks

1. Hybrid DCNs

Q. I am a packet. Do I go over the PSN or the CSN?

A. CSN. If a circuit exists between our pod and the destination pod, then the circuit setup time cost has already been paid.

Corollary. A scheduling algorithm should maximize the throughput over the CSN.

1. Hybrid DCNs

Q. I am a circuit switch. How should I be configured, both right now, and in the future?

The Talk-in-a-Slide Slide

Prior hybrid DCNs use Hotspot Scheduling

- Throughput depends on workload
- Not clear how to benefit from faster switch technology

We propose Traffic Matrix Scheduling

- Achieves 100% throughput on all workloads
- Trading off:
 - Switching time
 - Host buffering
 - Offered load
- Able to use faster switch technology
- But also requires faster switch technology

Outline

- 1. Hybrid DCNs
- 2. Algorithms
 - Linear and Stochastic Scaling
 - Hotspot Scheduling
 - Traffic Matrix Scheduling
- 3. Analysis

Linear and Stochastic Scaling

In general, pods have unequal demands.

Units are percentage of total link capacity.

Traffic demand matrix (TDM)

destination pods

$$TDM = [m_{ij}]$$

$$\forall i \forall j \ 0 \le m_{ij} \le 1$$

An admissible TDM has all row sums $(\mathbf{R_i})$ and all column sums $(\mathbf{C_i})$ less than or equal to 1.

Admissible is also called doubly substochastic.

We want admissible TDMs because

- Pods cannot send more than their link capacity.
- Pods cannot receive more than their link capacity.

Any TDM can be made admissible with *linear scaling*.

Step 1. Choose $c = max(\mathbf{R_i}, \mathbf{C_i})$

13

Any TDM can be made admissible with linear scaling.

Step 2. Multiply TDM by 1/c.

Linear scaling is unfair.

Instead of scaling the TDM, we will allocate the bandwidth.

Bandwidth allocation matrix (BAM)

A BAM is called doubly stochastic.

Stochastic scaling uses the TDM to compute the BAM.

Nathan Farrington

Sinkhorn (1964)

$$TDM \rightarrow BAM^{(0)}$$

$$\begin{bmatrix} 1/_{R_1} & 0 & \cdots & 0 \\ 0 & 1/_{R_2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1/_{R_N} \end{bmatrix} BAM^{(i)} \begin{bmatrix} 1/_{C_1} & 0 & \cdots & 0 \\ 0 & 1/_{C_2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1/_{C_N} \end{bmatrix} \to BAM^{(i+1)}$$

Stop when you have enough precision.

Hotspot Scheduling

A circuit switch can be represented as both a bipartite graph and as an adjacency matrix.

	1	2	3	4
1	1	1	1	1
2	1	1	1	1
3	1	1	1	1
4	1	1	1	1

A maximal assignment on the bipartite graph is a permutation matrix.

There are O(N!) maximal assignments.

Compute the max-weighted maximal matching (the maximum matching) on the BAM.

Kuhn-Munkres (1955) is $O(N^3)$.

Who uses Hotspot Scheduling?

c-Through [HotNets '09, SIGCOMM '10]

Flyways [HotNets '09, SIGCOMM '11]

Helios [SIGCOMM '10, OFC '11]

OSA [HotNets '10, NSDI '12]

MirrorMirror [HotNets '11, SIGCOMM '12]

How does Hotspot Scheduling perform?

100% Throughput

25% Throughput

3

1/4

1/4

1/4

1/4

1/4

1/4

1/4

1/4

Hotspot Scheduling is best for hotspot traffic and worst for all-to-all traffic.

Problems

- 1. Lengthy computation before every circuit switch reconfiguration.
- 2. Speeding up the switch technology does not speed up the computation.
- 3. Performance is too dependent on communication patterns.

Traffic Matrix Scheduling

Birkhoff-von Neumann Matrix Decomposition

Birkhoff-von Neumann Matrix Decomposition

BAM

$$= \sum_{i}^{k} c_i P_i$$

The BvN expansion is a convex combination.

$$k \le N^2 - 2N + 2$$

$$\forall i \ 0 < c_i \leq 1$$

$$\sum_{i}^{k} c_i = 1$$

We don't need to use all the terms.

BAM

In this example:

- The first term is the same as Hotspot Scheduling.
- The first two terms provide 53.8% of the capacity.

How does Traffic Matrix Scheduling perform?

100% Throughput for any BAM

Problems

- 1. Very expensive: $O(N^{4.5})$
- 2. $O(N^2)$ terms in the worst case.

Analysis

Switching Time (t_{setup})

Host Buffering

Offered Load

PSN Capacity

Duty Cycle (equal-length time slots)

$$D = \frac{t_{\text{stable}}}{t_{\text{setup}} + t_{\text{stable}}} = \frac{t_{\text{stable}}}{t_{\text{slot}}}$$

Duty Cycle (variable-length time slots)

$$T_{\text{schedule}}$$

$$T_{\text{setup}} = k t_{\text{setup}}$$

$$D = \frac{T_{\text{stable}}}{T_{\text{setup}} + T_{\text{stable}}} = \frac{T_{\text{stable}}}{T_{\text{schedule}}}$$

Effective Link Rate

$$L_{\text{effective}} = DL$$

If your duty cycle is 90%, then your 10G link becomes a 9G link.

Which is fine if your offered load is not more than 9G.

When can you achieve 100%?

n: number of time slots

CSN: circuit-switched network

PSN: packet-switched network

D: duty cycle

Longest Time Slot First (LTF)
Scheduling

If offered load is less than 9 Gb/s, we can achieve 100% throughput over the CSN. —

 $t_{\rm setup} = 10 \mu s$

 $T_{\text{schedule}} = 1 \text{ms}$

n	CSN	PSN	D
0	0%	100.0%	N/A
1	39.4%	60.6%	100.0%
2	53.8%	46.2%	98.0%
3	63.8%	36.2%	97.0%
4	72.7%	27.3%	96.0%
5	80.6%	19.4%	95.0%
6	87.3%	12.7%	94.0%
7	92.3%	7.7%	93.0%
8	96.6%	3.4%	92.0%
9	99.3%	0.7%	91.0%
10	100.0%	0%	90.0%

Host Buffer Requirements (all-to-all traffic)

$$B = L_{\text{effective}} (N - 1) t_{\text{slot}}$$

Helios
$$B = 9 \,\text{Gb/s} (24 - 1) \,270 \,\text{ms} = 7.23 \,\text{GB}$$

Mordia
$$B = 9 \,\text{Gb/s} (24 - 1) \,100 \,\mu\text{s} = 2.74 \,\text{MB}$$

Each host requires this much buffering.

mordia.net

Conclusion

Prior hybrid DCNs use Hotspot Scheduling

- Throughput depends on workload
- Not clear how to benefit from faster switch technology

We propose Traffic Matrix Scheduling

- Achieves 100% throughput on all workloads
- Trading off:
 - Switching time
 - Host buffering
 - Offered load
- Able to use faster switch technology
- But also requires faster switch technology

Backup Slides

Other Topics

Hosts and TDMA?

- Requires microsecond precision
- NIC vs kernel implementation

TCP?

50% throughput on Mordia prototype

Latency-sensitive Traffic?

• Traffic Matrix Scheduling adds milliseconds of latency (T_{schedule}).

Mordia Optical Circuit Switch Prototype?

No time in this talk, sorry.

Sinkhorn

Birkhoff