# Distributed Software Engineering Service Design

Submitted by
Mridha Md. Nafis Fuad
MSSE0901

# **Project Scenario**

Uthao is a local startup business that hired licensed drivers to participate in their ride-sharing business. They became popular due to their competitive pricing of rides but were also facing criticism due to a lack of IT infrastructure. This started causing a major customer mistrust towards the company in terms of reliability and security. They decided to build an online platform for managing their business. They immediately knew that they have to consider the existing pressure of ride requests in office times. On the other hand, according to their statistics, the net revenue was not matching with their predictions and thus suspected their drivers of not giving their proper share. The designed system should keep track of the billing of trips for accountability. They decided to automate the process and calculate the drivers' share. The performance of drivers based on their monthly income and customer feedback needs to be properly analyzed. In order to do so, a monthly report must be generated and checked manually.

The company visions to provide multiple services in the near future based on rides. This vision forces the design of the system to be reusable in nature. Service oriented architecture is a gold standard to support Uthao in their vision, support future business expansions, and respond to unpredictable business demands.

# **Business Process**



Fig: Ride Sharing Business Logic Flow



Fig: Salary Generation Logic Flow

# Principle 1: Service Contracts and Standardization

This principle states that: "Services share standardized contracts. Services within the same service inventory are in compliance with the same contract design standards."

#### **Planned Services**



Fig: Service Model

#### **Design Standards**

Functional Expression Standards:

- Entity services will be named in accordance with the corresponding business entities from which they are derived, such as Driver/Customer Service
- The names of task services will be based on the process the service is responsible for automating, further prefixed with an appropriate verb, such as Manage Ride Sharing Service.
- Operations for all services will be based on the following naming format: verb + noun. For example UpdateTrip Operation
- The operation name cannot repeat the name of the service.

#### Data Representation Standards:

- Whenever complex types representing data constructs already established by entity schemas are required, the existing complex types must be used.
- Only when services need new complex types that fulfill processing requirements unique to the service are service-specific schema definitions allowed.

• All XML schema definitions must exist in separate files that are linked to the WSDL definitions.

#### **Standardized WSDL Definition Profiles**

The contract specification for the planned services is tabulated below.

| Manage Ride Sharing Service |                                                                               |
|-----------------------------|-------------------------------------------------------------------------------|
| GetRideOptions Operation    | Input: source, destination address Output: ride options with predicted fares  |
| CreateRideRequest Operation | Input: trip header with customer identifier Output: acknowledgement code      |
| UpdateRideState Operation   | Input: trip header and customer/driver identifier Output: acknowledgment code |
| StoreFeedback Operation     | Input: trip identifier and feedback document Output: acknowledgement code     |
| MakePayment Operation       | Input: trip identifier and payment document Output: acknowledgement code      |

Table: The contract profile for the Manage Ride Sharing Service

| Genarate Monthly Salary Service |                                                                       |
|---------------------------------|-----------------------------------------------------------------------|
| GenerateSalaryInvoice Operation | Input: driver identifier, date range document Output: report document |
| GetSummaryReport Operation      | Input: date range document Ouput: report document                     |

Table: The contract profile for the Genarate Monthly Salary Service

| Driver Service           |                                                     |
|--------------------------|-----------------------------------------------------|
| RegisterDriver Operation | Input: driver document Output: acknowledgement code |
| UpdateProfile Operation  | Input: driver document                              |

|                             | Output: acknowledgement code                          |
|-----------------------------|-------------------------------------------------------|
| BanDriver Operation         | Input: driver identifier Output: acknowledgement code |
| GetDetails Operation        | Input: driver identifier Output: driver document      |
| GetVehicleDetails Operation | Input: driver identifier Output: vehicle document     |

Table: The contract profile for the Driver Service

| Customer Service           |                                                                    |
|----------------------------|--------------------------------------------------------------------|
| RegisterCustomer Operation | Input: customer document Output: acknowledgement code              |
| UpdateProfile Operation    | Input: customer document Output: acknowledgement code              |
| BanCustomer Operation      | Input: customer identifier Output: acknowledgement code            |
| GetDetails Operation       | Input: customer identifier Output: customer document               |
| GetPaymentMedium Operation | Input: customer identifier Output: payment medium header document  |
| StorePaymentInfo Operation | Input: payment medium header document Output: acknowledgement code |

Table: The contract profile for the Customer Service

| Trip Service             |                                                   |
|--------------------------|---------------------------------------------------|
| GetTripDetails Operation | Input: trip identifier Outpu: trip document       |
| CreateTrip Operation     | Input: trip document Output: acknowledgement code |
| UpdateTrip Operation     | Input: trip document Output: acknowledgement code |
| GetTripSummary Operation | Input: trip identifier                            |

|             | Output: trip header document                        |
|-------------|-----------------------------------------------------|
| Cancel Trip | Input: trip identifier Output: acknowledgement code |

Table: The contract profile for the Trip Service

| Place Service            |                                                      |
|--------------------------|------------------------------------------------------|
| AddPlace Operation       | Input: place document Output: acknowledgement code   |
| GetPlaceDetail Operation | Input: place identifier Output: place document       |
| GetCoordicates Operation | Input: place identifier Output: place coordinates    |
| UpdatePlace Operation    | Input: place document Output: acknowledgement code   |
| DeletePlace Operation    | Input: place identifier Output: acknowledgement code |

Table: The contract profile for the Place Service

| Map Service                   |                                                                  |
|-------------------------------|------------------------------------------------------------------|
| CalculateRoute Operation      | Input: route header document Output: route document              |
| CalculateCongession Operation | Input: Route header document<br>Output: congestion amount        |
| SearchPlace Operation         | Input: place coordinates or place name<br>Output: Place document |

Table: The contract profile for the Map Service

| Payment Service                |                                                        |
|--------------------------------|--------------------------------------------------------|
| InitiatePayment Operation      | Input: payment document Output: acknowledgement code   |
| HandlePaymentSuccess Operation | Input: payment identifier Output: acknowledgement code |

| HandlePaymentFailure Operation | Input: payment identifier Output: acknowledgement code |
|--------------------------------|--------------------------------------------------------|
| GetTransactions Operation      | Input: date range document Output: invoice document    |

Table: The contract profile for the Payment Service

| Logging Service            |                                                           |
|----------------------------|-----------------------------------------------------------|
| SaveLog Operation          | Input: log document Output: acknowledgement code          |
| GetLogs Operation          | Input: date range document Output: log documents          |
| SearchLog Operation        | Input: log document Output: log documents                 |
| SetDefaultConfig Operation | Input: data mapping document Output: acknowledgement code |
| GetConfig Operation        | Input:<br>Output: data mapping document                   |

Table: The contract profile for the Logging Service

| Notification Service       |                                                              |
|----------------------------|--------------------------------------------------------------|
| RegisterDevice Operation   | Input: device identifier string Output: acknowledgement code |
| SendNotification Operation | Input: notification document Output: acknowledgement code    |
| RefreshToken Operation     | Input: device identifier string Output: acknowledgement code |

Table: The contract profile for the Notification Service

| PDF Generator Service      |                                                           |
|----------------------------|-----------------------------------------------------------|
| SetDefaultConfig Operation | Input: data mapping document Output: acknowledgement code |
| GetConfig Operation        | Input:                                                    |

|                          | Output: data mapping document                                                       |
|--------------------------|-------------------------------------------------------------------------------------|
| AddTemplate Operation    | Input: template document Output: acknowledgement code                               |
| DeleteTemplate Operation | Input: template identifier Output: acknowledgement code                             |
| GeneratePdf Operation    | Input: pdf template identifier, data<br>mapping document<br>Output: report document |

Table: The contract profile for the PDF Generator Service

# **Standardized Service and Data Representation Layers**



#### Monthly Salary.wsdl







# Driver.wsdl Driver.wsdl Driver.xsd Vehicle.xsd Payment Header.xsd Customer.xsd





#### Notification.wsdl



## Principle 2: Service Coupling

This principle states that: "Services are loosely coupled. Service contracts impose low consumer coupling requirements and are themselves decoupled from their surrounding Environment."

All the services of our design exhibits high level of logic-to-contract coupling, because they are custom services for which standardized service contracts are delivered. The Trip, Place, Customer and Driver services are based on the entity service model, which deliberately decreases potential functional coupling to external or parent business process logic. Run Design Studio, which is a task-centric service, is bound to Uthao's business process, which is a very specific procedure within the ride sharing application. As a result, this service shows targeted functional coupling which is intentionally done during its design.

## Principle 3: Service Abstraction

This principle states that: "Non-essential service information is abstracted. Service contracts only contain essential information and information about services is limited to what is published in service contracts."

Following are a set of tables that summarize the technology, functional, programmatic, and quality of service abstraction for the designed services.

| Customer Service                                          |                                                                                                                                                    |
|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Functional Abstraction (Content Abstraction)              | Concise (the service contract provides targeted functionality with limited constraints)                                                            |
| Technology Information<br>Abstraction (Access<br>Control) | Open Access (the technologies used to build and implement this service are openly documented and published as part of architecture specifications) |
| Programmatic Abstraction (Access Control) Quality         | Open Access (source code and design specifications are openly available on the local LAN)                                                          |
| Quality of Service (Access Control)                       | Open Access (SLA is published alongside service contract)                                                                                          |

Table: The abstraction level for the Customer Service

| Driver Service                                            |                                                                                                                                                    |
|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Functional Abstraction (Content Abstraction)              | Concise (the service contract provides targeted functionality with limited constraints)                                                            |
| Technology Information<br>Abstraction (Access<br>Control) | Open Access (the technologies used to build and implement this service are openly documented and published as part of architecture specifications) |
| Programmatic Abstraction (Access Control) Quality         | Open Access (source code and design specifications are openly available on the local LAN)                                                          |
| Quality of Service (Access Control)                       | Open Access (SLA is published alongside service contract)                                                                                          |

Table: The abstraction level for the Driver Service

| Trip Service                                              |                                                                                                                                                    |
|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Functional Abstraction (Content Abstraction)              | Concise (the service contract provides targeted functionality with limited constraints)                                                            |
| Technology Information<br>Abstraction (Access<br>Control) | Open Access (the technologies used to build and implement this service are openly documented and published as part of architecture specifications) |
| Programmatic Abstraction (Access Control) Quality         | Open Access (source code and design specifications are openly available on the local LAN)                                                          |
| Quality of Service (Access Control)                       | Open Access (SLA is published alongside service contract)                                                                                          |

Table: The abstraction level for the Trip Service

| Place Service                                             |                                                                                                                                                    |
|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Functional Abstraction (Content Abstraction)              | Optimized (the sole operation provided by this Web service has few constraints and could likely not be more efficiently designed)                  |
| Technology Information<br>Abstraction (Access<br>Control) | Open Access (the technologies used to build and implement this service are openly documented and published as part of architecture specifications) |
| Programmatic Abstraction (Access Control) Quality         | Open Access (source code and design specifications are openly available on the local LAN)                                                          |
| Quality of Service (Access Control)                       | Open Access (SLA is published alongside service contract)                                                                                          |

Table: The abstraction level for the Place Service

| Map Service                                               |                                                                                                                                                    |
|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Functional Abstraction (Content Abstraction)              | Concise (a limited amount of available functionality is exposed via the service contract)                                                          |
| Technology Information<br>Abstraction (Access<br>Control) | Open Access (the technologies used to build and implement this service are openly documented and published as part of architecture specifications) |

| Programmatic Abstraction (Access Control) Quality | Open Access (source code and design specifications are openly available on the local LAN) |
|---------------------------------------------------|-------------------------------------------------------------------------------------------|
| Quality of Service (Access Control)               | Open Access (SLA is published alongside service contract)                                 |

Table: The abstraction level for the Map Service

| Payment Service                                           |                                                                                                                                                                                                               |
|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Functional Abstraction (Content Abstraction)              | Concise (a limited amount of available functionality is exposed via the service contract)                                                                                                                     |
| Technology Information<br>Abstraction (Access<br>Control) | Open Access (the technologies used to build and implement this service are openly documented and published as part of architecture specifications)                                                            |
| Programmatic Abstraction (Access Control) Quality         | Open-to-Controlled Access (source code and design specifications for the Web service are openly available on the local LAN, but information about the Payment database is tightly guarded by a group of DBAs) |
| Quality of Service (Access Control)                       | Open Access (SLA is published alongside service contract)                                                                                                                                                     |

Table: The abstraction level for the Payment Service

| Logging Service                                           |                                                                                                                                                                                                           |
|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Functional Abstraction (Content Abstraction)              | Concise (a limited amount of available functionality is exposed via the service contract)                                                                                                                 |
| Technology Information<br>Abstraction (Access<br>Control) | Open Access (the technologies used to build and implement this service are openly documented and published as part of architecture specifications)                                                        |
| Programmatic Abstraction (Access Control) Quality         | Open-to-Controlled Access (source code and design specifications for the Web service are openly available on the local LAN, but information about the Log database is tightly guarded by a group of DBAs) |
| Quality of Service (Access Control)                       | Open Access (SLA is published alongside service contract)                                                                                                                                                 |

Table: The abstraction level for the Logging Service

| Notification Service                                      |                                                                                                                                                    |
|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Functional Abstraction (Content Abstraction)              | Concise (a limited amount of available functionality is exposed via the service contract)                                                          |
| Technology Information<br>Abstraction (Access<br>Control) | Open Access (the technologies used to build and implement this service are openly documented and published as part of architecture specifications) |
| Programmatic Abstraction (Access Control) Quality         | Open Access (source code and design specifications are openly available on the local LAN)                                                          |
| Quality of Service (Access Control)                       | Open Access (SLA is published alongside service contract)                                                                                          |

Table: The abstraction level for the Notification Service

| PDF Generator Service                                     |                                                                                                                                                    |  |
|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Functional Abstraction (Content Abstraction)              | Concise (a limited amount of available functionality is exposed via the service contract)                                                          |  |
| Technology Information<br>Abstraction (Access<br>Control) | Open Access (the technologies used to build and implement this service are openly documented and published as part of architecture specifications) |  |
| Programmatic Abstraction (Access Control) Quality         | Open Access (source code and design specifications are openly available on the local LAN)                                                          |  |
| Quality of Service (Access Control)                       | Open Access (SLA is published alongside service contract)                                                                                          |  |

Table: The abstraction level for the PDF Generator Service

| Manage Ride Sharing Service                               |                                                                                                                                                           |  |
|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Functional Abstraction<br>(Content Abstraction)           | Detailed (due to complex business flow associated with<br>the exchange of trip data this service's contract has a<br>low level of functional abstraction) |  |
| Technology Information<br>Abstraction (Access<br>Control) | Open Access (the technologies used to build and implement this service are openly documented and published as part of architecture specifications)        |  |

| Programmatic Abstraction (Access Control) Quality | Open Access (source code and design specifications are openly available on the local LAN) |
|---------------------------------------------------|-------------------------------------------------------------------------------------------|
| Quality of Service (Access Control)               | Open Access (SLA is published alongside service contract)                                 |

Table: The abstraction level for the Manage Ride Sharing Service

| Generate Monthly Report Service                           |                                                                                                                                                    |  |
|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Functional Abstraction (Content Abstraction)              | Optimized (the sole operation provided by this Web service has few constraints and could likely not be more efficiently designed)                  |  |
| Technology Information<br>Abstraction (Access<br>Control) | Open Access (the technologies used to build and implement this service are openly documented and published as part of architecture specifications) |  |
| Programmatic Abstraction (Access Control) Quality         | Open Access (source code and design specifications are openly available on the local LAN)                                                          |  |
| Quality of Service (Access Control)                       | Open Access (SLA is published alongside service contract)                                                                                          |  |

Table: The abstraction level for the Generate Monthly Report Service

# Principle 4: Service Reusability

This principle states that: "Services are reusable. Services contain and express agnostic logic and can be positioned as reusable enterprise resources."

The service contract for the Trip service is closely reviewed with an emphasis on facilitating service consumers beyond the Manage Ride Sharing service. To enhance this service and ensure reusability, the following changes are made.

The UpdateTrip operation will be used to change the data of existing trip record. This includes the details of the trip as well as the dynamic data, that is, the information that will change based on the state of the trip. Currently the Manage Ride Sharing service controls all the business process related to ride sharing. But this task is planned to be distributed in multiple task services and collaborating though orchestration. Throughout the ride sharing process multiple tasks need to update specific parts of the trip data. Thus denormalization is required keeping reusability of multiple services in mind.

#### The New UpdateTripState Operation

Currently CreateRideRequest, ConfirmRide and FinishRide Operations in the Manage Ride Sharing Service call the UpdateTrip Operation in which the entire Trip document needs to be passed as input. Denormalization is required to only update the state of the trip. This operation can serve the purpose of multiple task services requiring to change only the state of the ride sharing process. Since this operation also can handle the functionality provided by Cancel Trip Operation, we merge the responsibility to the newly created UpdateTripState Operation.

#### The New AdjustTripMetrics Operation

Currently the trip pricing is calculated in the task service (since billing algorithm is business centric) by fetching the trip information. But in near future, the billing might be dynamically adjusted based on rerouting of the trip, congestion, time spent on the total trip, etc. These metrics need to be stored in the trip database in order to dynamically calculate the billing in the task service.

Adding the aforementioned operations considering reusability, the Trip Service contract profile is adjusted.

| Trip Service             |                                                          |  |
|--------------------------|----------------------------------------------------------|--|
| CreateTrip Operation     | Input: trip document Output: acknowledgement code        |  |
| UpdateTrip Operation     | Input: trip document Output: acknowledgement code        |  |
| UpdateTrpState Operation | Input: trip header document Output: acknowledgement code |  |

| AdjustTripMetrics Operation | Input: trip document Output: acknowledgement code      |
|-----------------------------|--------------------------------------------------------|
| GetTripSummary Operation    | Input: trip identifier<br>Output: trip header document |
| Cancel Trip                 | Input: trip identifier<br>Output: acknowledgement code |

Table: The revised service contract for the Manage Ride Sharing Service