

Università degli Studi di Parma Dipartimento di Scienze Matematiche, Fisiche e Informatiche Corso di Laurea in Informatica

Sistemi Informativi

Il Sistema Informatico entro il Sistema Informativo

Giulio Destri

Dr. Ing. Giulio Destri, Ph.D.

Professore a contratto di Sistemi Informativi @Università di Parma dal 2003

Digital Transformation Advisor, Innovation Manager, Business Coach, Trainer @LINDA

Esaminatore ISO27021 e UNI11506-11621 BA (EPBA) @Intertek

Membro commissione UNI/CT 526 @UNINFO

Blogger @6MEMES di MAPS

Certificazioni: ISO27001LA, ISO9001LA, ISO27021, ITILv3 e v4, COBIT-2019, SCRUM Master, EPBA, NLP Coach, NLP AMP

https://www.linkedin.com/in/giuliodestri

http://www.giuliodestri.it/articoli.shtml

giulio.destri@unipr.it

twitter.com/GiulioDestri

Scopo del modulo

Definire

I concetti base dell'informatica aziendale e dell'organizzazione nell'ICT delle reti ed applicativi aziendali

Argomenti (1/2)

- Il concetto di servizio IT
- La struttura di un'applicazione software
- Le reti entro i sistemi informatici
- L'evoluzione tecnologica
- I servizi tipici
- Struttura dell'IT aziendale
- Il mondo del client-server
- Il problema delle compatibilità

Argomenti (2/2)

- Controllare i sistemi: TOGAF e ITIL
- Dispositivi di storage e architetture
- Panoramica sui sistemi operativi
- Panoramica sui linguaggi di sviluppo
- La Service Oriented Architecture (SOA)
- Il grid computing
- Virtual computing e macchine virtuali
- Il cloud computing

Il concetto di servizio IT

Un apparente paradosso

"Vi presentiamo un software di gestione che non vi farà preoccupare della gestione del software"

Definizione di servizio

Abbiamo visto che
Un Servizio è un modo per
fornire valore ai clienti
senza che questi si assumano costi e
rischi

Definizione di servizio IT

- Un SERVIZIO IT può essere definito come un insieme di funzioni fornite attraverso sistemi IT nel supportare uno o più aree dell'azienda (dipartimenti, agenzie, reparti, ecc.).
- Può essere costituito da software, hardware e mezzi di comunicazione, ma il cliente e utente lo percepisce come una unica entità.

Definizione di servizio IT (2)

- Molti elementi contribuiscono al servizio
- Il cliente lo percepisce come una sola entità
- "La posta non va!"
- Occorre conoscere e governare i componenti che contribuiscono al servizio

Il sistema informatico

Abbiamo visto che un sistema informativo si suddivide in:

- Risorse umane (con organizzazione, ruoli, esperienze, ecc...)
- Risorse tecnologiche (sistema informatico, inglese "IT System")
- Risorse organizzative (procedure, regolamenti, workflow, ecc...)
- Ma qual è la struttura del sistema informatico?

Programma software

- Applicazione software avente una sua identità precisa
- Un insieme di programmi può andare a formare un sistema software atto a svolgere le funzioni associate a uno o più processi business

Processo informatico

- E' un programma software in esecuzione
- Il processo informatico usa varie risorse (percentuale del tempo della CPU, memoria RAM, disco entro un computer e canali di comunicazione via rete) per svolgere il proprio compito

DBMS (Data Base Management System)

- E' un sistema software che standardizza l'accesso dei processi ai dati, offrendo delle interfacce generalizzate che permettono:
 - la condivisione dei dati da parte dei processi informatici
 - l'indipendenza dei dati rispetto ai processi
- Si definisce database o base di dati un insieme di archivi di dati gestiti contemporaneamente in modo efficiente ed unitario dal DBMS.

Scomposizioni dei Sistemi Informativi

- Su base funzionale
- Rispetto all'utenza
- Tecnologica/strutturale
- Per combinazione dei suddetti punti

La struttura di un'applicazione software

Categorie di applicazioni: ruoli

- **Interattive**: un operatore umano interagisce col programma
- Macchina-macchina: due o più applicazioni comunicano tra loro
- Batch: un'applicazione inizia, legge dati, li elabora, li salva e poi termina

Categorie di applicazioni: architetture

- **Self-consistent**: un'applicazione completa come MS-Office
- Client-server/strutturata:
 applicazione suddivisa in moduli, che spesso lavorano su macchine diverse (es. il Web server e il browser)
- Monolitica: applicazione selfconsistent non strutturata, che spesso svolge solo un semplice compito

Struttura base di un'applicazione

- Interfaccia utente (grafica): presentazione dei dati e interazione con l'utente
- Regole funzionali (logica business): le procedure che compiono le operazioni in base ai comandi ricevuti dal livello precedente
- Dati: su cui si deve agire e che devono essere memorizzati (durano oltre i programmi)

La struttura dell'applicazione

Le reti entro i sistemi informatici

Sistema informatico e reti

- Il sistema informatico si compone di diverse risorse di calcolo connesse fra di loro in rete
- Quindi il sistema informatico è basato sulla rete
- La sua struttura si è evoluta nel tempo

Le reti in azienda

II termine rete è nato per indicare in modo generico

- un collegamento tra due apparecchiature (sorgente e destinazione)
- attraverso un mezzo trasmissivo
- per effettuare una trasmissione di informazioni

Le reti in azienda: origini

- All'inizio le reti erano costituite essenzialmente da terminali remoti collegati a unità centrali (mainframe) mediante reti locali o linee telefoniche o telegrafiche
- l'uso di terminali remoti per l'elaborazione era noto come teleprocessing
- la potenza di elaborazione era concentrata in un punto (architettura centralizzata o master/slave)

Le reti in azienda: origini - 2

- La realizzazione di questo tipo di reti era legata a soluzioni proprietarie
- Una soluzione si dice proprietaria quando la realizzazione dipende dal costruttore ed è incompatibile con scelte di costruttori diversi
- Molto spesso le specifiche di una soluzione proprietaria non sono pubbliche

Le reti in azienda: oggi

- Attualmente per rete di calcolatori si intende un insieme di computer indipendenti,
- cioè che possono anche lavorare autonomamente
- ma collegati tra loro in modo da potersi scambiare informazioni (<u>architettura</u> <u>distribuita</u>)

Le reti in azienda: oggi - 2

- Inoltre si è sentita la necessità di realizzare sistemi aperti che consentano di collegare e utilizzare prodotti di costruttori diversi;
- ciò rende necessario lo sviluppo di standard comuni (es. TCP/IP)
- un fattore importante è la scalabilità, cioè la possibilità di aumentare le risorse collegate alla rete in base alla necessità

Classificazione delle reti

- Local Area Network (LAN)
- Metropolitan Area Network (MAN)
- Wide Area Network (WAN)
- Intranet
- Extranet
- Internet

Topologia delle reti

Sistemi Informativi - 6 - 29

Giulio Destri - © for Univ. Parma, 2020

Stratificazione delle reti: ISO/OSI (1/2)

- Applicazione
- Presentazione
- Sessione
- Trasporto (TCP)
- Rete (IP)
- Collegamento Dati (Ethernet, ADSL...)
- Fisico (cavo, wireless)

Stratificazione delle reti: ISO/OSI (2/2)

Sistemi Informativi - 6 - 31

Giulio Destri - © for Univ. Parma, 2020

Esempi di standard a livello fisico

- Doppino telefonico
- Cavo coassiale
- Cavo a 4 coppie RJ-45 (UTP, FTP)
- Cavi in fibra ottica
- Sistemi wireless a corto raggio (Bluetooth, IRDA)
- Sistemi wireless LAN (Wi-Fi IEEE 802.11g)
- Sistemi wireless MAN/WAN (GPRS/EDGE/UMTS, Wi-MAX)
- Collegamento radio via satellite
- Collegamento ponte radio terrestre (es. HamRadio)
- Cavo elettrico

L'evoluzione tecnologica

In principio era il Mainframe...

- Il modello "alla Mainframe" è tuttora molto diffuso
- Server centrale e terminali "dummy"
- Topologia di rete a stella

La rete a stella

Il vecchio paradigma

"Grandi" applicazioni entro sistemi operativi "piccoli"

...e poi fu il Client-Server

• Introduzione di "intelligenza" nei Client

 Programmi sul client cooperano con programmi sul server

La rete a bus

Il nuovo paradigma

Applicazioni "frammentate" in DLL, plug-in ecc...
Sistemi operativi: altrettanto
Presenza della rete

Un esempio di sistema informatico

Sistemi Informativi – 6 - 40

Giulio Destri - © for Univ. Parma, 2020

Il sistema informatico: evoluzione (1/2)

- Spesso nuovi applicativi
- realizzati per rispondere alle mutate esigenze del business aziendale

- devono integrarsi con applicazioni ancora efficienti
- la cui architettura è però ormai datata

Il sistema informatico: evoluzione (2/2)

- si ha quindi la convivenza di applicazioni
 - > realizzate in epoche differenti
 - > su piattaforme molto eterogenee
- Che devono collaborare (e quindi comunicare fra loro)

Rischio: spaghetti-integration

Il mondo del clientserver

Il modello client-server

- Un programma server opera su un computer server (host)
- Un programma client opera su una postazione client (workstation)
- L'utente interagisce col programma client
- Il programma client dialoga col server via rete

2-Tier Client/Server

3-Tier Client/Server

Multi-Tier Client/Server

Middleware

 Strato software che lega insieme diversi tier

Caratteristiche fondamentali del client-server

• Performance e scalabilità

- Complessità
- Supportabilità

I servizi tipici in una infrastruttura IT

Servizi standard di Internet

- Posta Elettronica (SMTP), porta 25
- Prelievo posta elettronica ricevuta (POP), porta 110
- Lettura posta elettronica in remoto (IMAP), porta 143
- Trasferimento file (FTP), porte 20 e 21
- World Wide Web (HTTP), porta 80
- Terminale remoto (Telnet), porta 23
- News (NNTP), porta 119

Servizi di Internet

- Domain Name System (DNS), porta 53
- SecureHTTP (HTTPS), porta 443
- Secure Shell e SecureFTP (SSH), porta 22
- Chat (ICQ), porta?
- X-Windows, porte 6000-6012

Protocolli proprietari su Internet

- Condivisione di dischi e stampanti Microsoft/SAMBA (TcpBios), porte 137, 138, 139
- Oracle*Net di Oracle, porta 1521
- ODBC di Microsoft, porta 1433
- Desktop remoto (RDP) di Microsoft, porta 3389
- Iona Orbix (CORBA), porte 9000, 3085, 3094

L'informatica "distribuita"

- File Server e Print Server
- Domain Server
- Database Server
- Groupware Server
- Web Server
- Transaction Server
- Object Server

File Server

- Servizio di Cartelle Condivise offerto da un server, centrale o dipartimentale
- Spazio fisicamente locato sul disco del server
- Privilegi di accesso stabiliti da tabella centralizzata o non di password e profili

File Server - 2

- Sistemi Apple
- Windows for Workgroup
- Condivisione dischi e stampanti di Windows
- Unix-to-Unix (NFS)
- Unix-to-Windows (SAMBA)
- AS/400-to-Windows (Rumba e ClientAccess)

Print Server

- Servizio di stampa condivisa da più postazioni client
- Offerto da server centrale su cui risiedono anche i file temporanei della coda di stampa
- Non esente da problemi di safety e security

Domain Server

- Centralizzazione della gestione accessi e privilegi
- Mondo Windows: domain service e Active Directories
- Mondo Unix: Yellow Pages, NFS, OpenLDAP ed altro
- Sistemi ibridi: SAMBA server

Administration/monitoring Server

Sorveglianza

- dei sistemi di domain
- dei server (es. processi, uso disco, uso memoria)
- della rete (sniffer, analizzatori di traffico)
- dei servizi (applicazioni, database)

Administration/monitoring Server: il mercato

• IBM Tivoli

Computer Associates (CA) Unicenter

Altri

Database Server (DBMS)

- Gestione centralizzata dei dati, condivisi fra tante postazioni client
- La logica funzionale può essere distribuita fra client e server

Il mercato dei Database Server

- Oracle Server
- MS SQL Server
- IBM DB2 e derivati di Informix
- Sybase
- CA Ingres
- MySQL
- PostgreSQL

MongoDB

GroupWare Server

- Posta elettronica
- Raccolte integrate di posta e documenti vari (es. MS Exchange Server, Lotus Notes)
- Server di sviluppo per il lavoro in gruppo (es. CVS, RCCS, MS VisualSourceSafe)

GroupWare Server: il mercato

- MS Exchange Server
- MS SharePoint
- IBM Lotus Notes
- Novell OpenExchange

- CVS
- RCCS
- MS VisualStudio Team Edition

Transaction Server

 Server che ospita un sistema di coordinamento transazioni distribuite

 Es. IBM MQ Series (basato su code), Bea Tuxedo, MTS

Object Server

- Server che ospita un sistema per il funzionamento di oggetti distribuiti
- MS DCOM è garantito da Win2000
- CORBA
- Framework CORBA-based (es. BroadVision)
- Repository UDDI di SOAP (Web services)
- Sistemi Proprietari (es. Forté)

Web Server

I nodi Web o server Web rendono disponibili le informazioni in essi contenute sotto forma di pagine ipertestuali, contenenti documenti multimediali (ossia composti di testi, immagini fisse, filmati, suoni ecc...)

Il protocollo HTTP - 2

HTTP è un protocollo request/response

Sistemi Informativi – 6 - 69

Giulio Destri - © for Univ. Parma, 2020

Stratificazione fisica di un sistema Web

Sistemi Informativi – 6 - 70

Giulio Destri - © for Univ. Parma, 2020

Stratificazione fisica di un sistema Web - estensioni

Tipiche connessioni interattive su TCP/IP

- **telnet**: terminale a caratteri (UNIX, VMS)
- tn3270/tn5250: terminale a caratteri (MVS, OS/390, Z/OS, OS/400)
- WindowsTerminal: terminale grafico/desktop remoto (Windows 2000/XP/2003)
- PCAnywhere, VNC, CytrixWinFrame...: terminale grafico/desktop remoto (Windows, Linux)
- X-Windows: terminale grafico (UNIX)
- **Web Browser**: terminale HTML (tutti)

Struttura dell'IT aziendale

TOGAF/ArchiMate: lo schema dell'IT

Prodotti / **Ambiente** Servizi Esterno Livello Informazioni **Processi** Organizzazione **Business** Livello **Applicazioni** Dati **Applicazioni** Livello Infrastruttura tecnologica Tecnologia

Strumenti IT nei sistemi informativi: scomposizione tecnologica

- Sistemi per l'utente finale (workstation client, Office suite, e-mail, applicazioni client)
- Applicazioni Enterprise (ERP, business intelligence, supporto ai progetti ecc...)
- Database (RDBMS, archivi come Lotus Notes etc...)

Strumenti IT nei sistemi informativi: infrastruttura tecnologica

- Sistemi Gestione Accessi/permessi (e.g. AD/LDAP, RACF ...)
- Sistemi operativi
- Hardware (Computer e altri dispositivi)
- Infrastrutture di rete
 - Software (librerie, configurazioni dei dispositivi ecc...)
 - Hardware (cablaggi, router, hub...)

Il problema delle compatibilità e le relazioni fra livelli di applicazioni

Scomposizione di architetture IT

Le matrici di compatibilità: presentazione

Una determinata applicazione

- Possiede un look-and-feel dipendente dalle librerie grafiche usate
- Opera entro un window manager (es. Explorer di MS Windows o Gnome/Kde di X-Windows)
- Se Web usa uno standard di HTML e JavaScript

Le matrici di compatibilità: presentazione

- I componenti grafici spesso dipendono dal linguaggio/ambiente di sviluppo
- Le librerie relative possono non essere presenti in tutti i sistemi operativi o nelle loro versioni
- I componenti web possono non essere compatibili con una certa versione di browser/Java/sistema ospite

Le matrici di compatibilità: comunicazione

- Il protocollo di comunicazione può richiedere librerie esterne all'applicativo
- Il middleware richiesto può non essere compatibile col sistema operativo
- Le comunicazioni interprocesso sfruttano meccanismi proprietari
- Il contesto di applicazione ha schermature (es. IM e firewall)

Le matrici di compatibilità: operazione

- Vengono richieste librerie run-time con una versione precisa
- Le librerie richieste non sono supportate dal sistema operativo o dalla configurazione presente
- Ciò può valere anche solo per una parte dell'applicativo (es. componenti Java, singole finestre VB)

Le matrici di compatibilità: logica business

- L'applicativo è strutturato in componenti software e tutti devono essere presenti
- Vengono sfruttate librerie appartenenti ad altri pacchetti software

Le matrici di compatibilità: basi di dati

- L'applicativo sfrutta caratteristiche specifiche di un database (dialetti SQL, tipi di dati...)
- L'applicativo usa stored procedures
- L'applicativo richiede le librerie di connessione al database

Controllare i sistemi: ITIL e TOGAF

TOGAF/ArchiMate: lo schema dell'IT

Prodotti / **Ambiente** Servizi Esterno Livello Informazioni **Processi** Organizzazione **Business** Livello **Applicazioni** Dati **Applicazioni** Livello Infrastruttura tecnologica Tecnologia

ITIL Service Catalogue (1/2)

ITIL Service Catalogue (2/2)

Ambiente Esterno

Livello Business

Livello Applicazioni

Livello Tecnologia

Sistemi Informativi - 6 - 88

Giulio Destri - © for Univ. Parma, 2020

Configuration Item

- Nella terminologia del Configuration Management ITIL, i componenti IT ed i servizi con essi forniti sono noti come Configuration Item (CI).
- Tra i Configuration Item su cui si basa un servizio business sono presenti i servizi IT su cui si basa
- Lo stesso vale per i singoli servizi IT

Configuration Item

I CI possono includere

- l'hardware dei PC,
- i vari tipi di software,
- i componenti di rete sia attivi che passivi,
- i server,
- i processori,
- la documentazione,
- le procedure,
- i servizi
- e tutti gli altri componenti IT che vanno controllati dall'Organizzazione IT.

ITIL Service Catalogue: applicazione

Ambiente Esterno

Livello Business

Livello Applicazioni

Livello Tecnologia

Lo storage moderno e le architetture

Storage moderno: i dischi RAID

- Redundant Array of Inexpensive Disks
- Striping
- Diversi livelli

I dischi RAID: categorie (1/2)

- RAID 0: suddivisione senza ridondanza
- RAID 1: mirroring dei dischi
- RAID 2: mirroring + data check
- RAID 3: sudd. dati (byte)+ parity check su un disco
- RAID 4: sudd. dati (blocchi)+ parity check su un disco blocco
- RAID 5: sudd. dati fra dischi e parity check distribuito

I dischi RAID: categorie (2/2)

- RAID 6: suddivisione dati fra dischi e parity check distribuito e duplicato
- RAID 0+1: sistema a due livelli, in cui un primo livello di RAID-0 viene duplicato ed organizzato in un RAID-1
- RAID 1+0 (detto anche RAID 10): sistema a due livelli, in cui vari sistemi RAID-1 vengono uniti in un RAID-0.
- A livello pratico sono normalmente in uso sistemi RAID 1, 2, 5 e 10.

Tipi di strumenti per lo storage

Interni al server

- Storage device con "bus" dedicato
- Network Attached Storage (NAS)
- Storage Area Network (SAN)

I dischi RAID - Storage Device

Network Attached Storage (Device)

Storage Area Network (SAN)

Esempio di architettura ridondata

Web Client

Duplicazione totale

Load Balancing

e

Fault tolerance

Data Center: interno «piccolo»

Data Center: interno «grande»

Data Center: «in a box»

Sistemi Operativi e tecnologie per lo sviluppo di applicazioni

Sistemi Operativi Vari in uso in azienda

- MS-DOS, DOS+Windows 3.x
- MacOS X
- Windows95/98/2000/ME/XP/7/8/10
- WindowsNT/2000S/2003/2008/2012/2016
- UNIX/Linux
- MVS, OS/390, Z/OS
- OS/400, I/OS
- VMS, OpenVMS

Linguaggi di sviluppo (1/4)

- Famiglia del COBOL
- FORTRAN
- La famiglia Pascal/Delphi
- Visual Basic
- Il mondo .NET
- Il mondo Java
- La famiglia C/C++
- Phyton
- Ruby

Linguaggi di sviluppo (2/4)

- I 4GL (in primis ABAB di SAP)
- Il mondo assembler
- RPG
- Administration scripting (JCL, PowerShell, UNIX Shell scripting...)
- Personalizzazione di programmi (es. AutoLisp...)
- Altri...

Linguaggi di sviluppo: web (3/4)

- Linguaggi Web
- Javascript base
- Jquery
- Ext-JS
- AngularJS
- React
- HTML5 e il suo mondo...
- Altri...

Linguaggi di sviluppo: app (4/4)

- Java (per Android)
- Swift
- Objective-C
- C# (Mono Xamarin Suite)
- Framework vari
- Altri...

Sistema informatico e applicazioni: integrazione secondo la SOA

EAI: i tipi di integrazione

- Integrazione orientata ai dati
- Integrazione orientata a funzioni e metodi
- Integrazione di interfacce utente
- Integrazione dei processi business

EAI: integrazione orientata ai dati

- Avviene a livello di database o archivi dati
- Può essere real-time o no
 - Trasferimenti batch
 - Unioni di dati
 - Repliche di dati
 - Soluzioni ETL (Extract, Transform, Load)

EAI: integrazione di funzioni/metodi

- Integrazione di applicazioni (A2A)
- Diretta, con paradigma request/response

- Basata su strumenti di middleware
- O su codice custom

EAI: integrazione di interfacce (refacing)

- Standardizzazione delle interfacce utente entro un unico modello
- Di solito basata sul browser
- Enterprise business portal

EAI: integrazione dei processi business

- Agisce direttamente al livello dei processi business
- Non facile da applicare quando vi sono prodotti software con logica business rigida
- Per essere flessibile, conduce implicitamente alla SOA

Service-Oriented Architecture (SOA)

- La SOA è, ovviamente, un'architettura.
- E' più di un insieme particolare di tecnologie, come i Web Service, ed è definita indipendentemente da essi.
- Come il nome implica, i servizi sono il cuore della SOA

Ambiente di business: definizione di SOA

- Una architettura di applicazioni
- entro la quale tutte le funzioni sono definite come servizi indipendenti
- con interfacce invocabili ben definite,
- che possono essere chiamate in sequenze definite
- a formare i processi business
- I servizi sono il cuore della SOA

Ambiente di business: i servizi

- "Services are well-defined encapsulations of business assets" (Sun)
- I servizi sono accessibili via rete
- Descritti attraverso linguaggi standard per la definizione di interfacce
- Accessibili attraverso protocolli Webbased come SOAP

L'obiettivo della SOA

- La SOA si pone l'obiettivo di gestire
- la complessità,
- la mancanza di flessibilità,
- le problematiche di granularità
- legate agli approci esistenti all'integrazione fra ambienti eterogenei e non.

Predecessori della SOA

- Tale obiettivo non è certamente nuovo
- Predecessori sono stati ad esempio
 - CORBA
 - MS DCOM
 - Ambienti proprietari (Tibco, BEA...)

Ma ognuno con i propri limiti...

La struttura della SOA

- Topologia di applicazioni software
- formata da servizi e clienti dei servizi (service consumer)
- in relazione 1-a-1 tra di loro
- ma "debolmente accoppiati" (loosely coupled)

Componenti della SOA

Service Provider (fornitore di un servizio)

Service Requestor (cliente richiedente un servizio)

Service Broker (intermediario)

SOA: service provider

Componente responsabile di

- Creare il servizio
- Pubblicare l'interfaccia del servizio
- Provvedere l'implementazione effettiva che realizza il servizio
- Rispondere alle richieste in arrivo (realizzare effettivamente il servizio)

SOA: service requestor (client)

- Componente utente del servizio
- Deve trovare il servizio
 - Per conoscenza diretta
 - O interrogando un repository
- Deve inviare i dati previsti dall'interfaccia del servizio
- E ottenere indietro i risultati

SOA: service broker

- Componente intermediario
- Registra e categorizza i servizi
- Sono possibili interrogazioni con varie chiavi

Crea e gestisce un repository di servizio

Operazioni nella SOA

- Pubblicazione (publishing) di servizi
- Reperimento (finding) di servizi
- Interfacciamento (binding) ai servizi

SOA e servizi effettivi

- I servizi incapsulano tutta la gestione dello stato.
- I servizi vengono chiamati tramite messaggi inviati con protocolli <u>inaffidabili</u>

Le sfide:

- Mantenimento dello stato della conversazione
- Gestione delle transazioni
- Gestione dello stato
- Data Caching per aumentare le performance, la scalabilità, e la disponibilità della soluzione

Funzionamento operativo della SOA

- I messaggi sono documenti di business scambiati per eseguire un processo di business.
- I servizi si aspettano che gli altri si ricordino delle conversazioni in atto.
- Esempio: identificativo acquirente

Funzionamento operativo della SOA

- Una conversazione basata su messaggi richiede che la situazione sia
- salvata
- e recuperata
- quando necessario al processo di business

...come una conversazione tra persone

Architettura a microservizi

MONOLITHIC

UI **BUSINESS** LOGIC **DATA ACCESS LAYER**

MICROSERVICES

La base della SOA: Enterprise Service Bus

- Per garantire il disaccopiamento e minimizzare il numero di interfacce
- Il componente intermediario deve assumere un ruolo "attivo"

L' Enterprise Service Bus (ESB)

- L'ESP è una soluzione di integrazione basata su standard aperti, messagebased, distribuita
- che provvede routing, invocazione e mediazione
- tra i servizi per facilitare le interazioni fra risorse IT distribuite (applicazioni, servizi, informazioni, piattaforme)
- in modo affidabile.
 (Brenda M. Michealson)

Punti chiave per l'ESB

- Standard aperti
- Message-Based: messaging, usando notazioni di messaggio, protocolli e trasporti standard
- Distribuito: Il runtime environment dell' ESB può essere distribuito (QOS, scalabilità...)
- Routing, invocazione e mediazione
- Facilitare
- Affidabilità

Il Grid Computing

Il Grid Computing

Servizi "impersonali" di calcolo

Storage Grid

CPU Grid

Application Grid

Virtual Computing e macchine virtuali

Il Virtual Computing

 Disaccoppiamento dei server (o anche dei client) dall'hardware sottostante

- Inserimento di uno strato software fra l'hardware ed il sistema operativo
- Robustezza, scalabilità, flessibilità

Virtual Machine

- Strato software che emula completamente un computer fisico
- Applicazione entro un sistema operativo
- Posto fra l'hardware e il sistema operativo dei server, basato su un piccolo sistema operativo dedicato

Virtual Server

- Computer server operante entro una virtual machine
- Può essere spostato da un server fisico ad un altro, spesso anche "a caldo"
- Il ripristino delle sue funzionalità quasi sempre è il semplice ripristino dall'immagine (snapshot)

Server virtuali su un server fisico

Server virtuale 1: App. .NET su Windows

Server virtuale 2: App. Java su Linux

Server virtuale 3: Oracle su Linux

Server virtuale 4: Oracle su Linux (2)

Desktop Virtualization

- Tecnologia che separa l'ambiente desktop di una postazione di lavoro con le sue applicazioni dal client fisico usato per accederlo
- Le postazioni fisiche mostrano in desktop remoto i desktop degli ambienti di lavoro (entro macchine virtuali o sessioni su server)

Il mercato del Virtual Computing

- VMWare (Fusion/Player, Workstation, VSphere...)
- Microsoft Hyper-V
- OracleVM e VirtualBox
- Cytrix XEN
- KVM
- Altri...

Il Cloud Computing

Il Cloud Computing

- Insieme di tecnologie che permettono, di memorizzare/archiviare e/o elaborare dati (tramite CPU o software)
- Grazie all'utilizzo di risorse hardware/software distribuite e virtualizzate in Rete
- Tipicamente sotto forma di un servizio offerto da un provider al cliente

Cloud Computing come evoluzione del Grid

 Visione degli elementi forniti come servizi e non necessariamente come calcolo o altro servizio IT

 Possibilità di cambiare i parametri dei servizi in base al variare delle loro necessità nel tempo.

I grandi provider di Cloud Computing

- Amazon S3
- Microsoft Azure (AWS)
- Google
- IBM
- Oracle

I provider italiani di Cloud Computing

- Telecom
- Aruba Cloud
- Seeweb
- FabbricaDigitale
- Enter
- MomIT
- OVH Italia
- Altri...

Tipologie di Cloud Computing

BaaS (Business as a Service)

SaaS (Software as a Service)

DaaS (Data as a Service)

PaaS (Platform as a Service)

IaaS (Infrastructure as a Service)

HaaS (Hardware as a Service)

XaaS (Everything as a Service)

Tipologie di Cloud Computing

Fonte: Valeria Cardellini - Introduzione al Cloud Computing

BaaS

- Si compra una funzione business completa come servizio, accedendovi via rete
- Esempio: elaborazione dati per conto terzi, cambio valuta in tempo reale, analisi rischio cliente...
- Tutti i dettagli tecnici sono nascosti
- Si devono comunicare solo i propri dati necessari per lo svolgimento della funzione

BaaS: pro

- Gestione completamente compresa nel servizio
- Non si vede praticamente il software
- Aggiornamenti compiuti dal gestore

BaaS: contro

- Il servizio ha le sue caratteristiche e le sue interfacce
- Cambiamenti lato gestore si ripercuotono lato utente

SaaS

- Si compra un software completo come servizio, accedendovi via rete
- Esempio: Google Mail, Google Drive, Icloud...
- Tutti i dettagli tecnici sono nascosti
- Si devono inserire solo i propri dati

SaaS: pro

- Gestione completamente compresa nel servizio
- Aggiornamenti compiuti dal gestore
- Configurazione solo delle parti utente

SaaS: contro

- Il software ha le sue caratteristiche
- Limitate possibilità di personalizzazione
- Aggiornamenti possono cambiare caratteristiche (soprattutto le interfacce utente)

PaaS

- Si compra una piattaforma configurata come servizio
- Esempio: virtual hosting PHP, application server Java...
- La piattaforma può essere condivisa con altri clienti, in ogni caso è trasparente
- Si devono installare solo le proprie applicazioni

PaaS: pro

- Gestione ridotta al minimo (la sola applicazione)
- Aggiornamenti compiuti dal gestore
- Configurazione semplificata

PaaS: contro

- Problematiche di compatibilità
- Gli aggiornamenti possono non essere trasparenti

IaaS

- Si compra l'infrastruttura base come servizio
- Esempio: virtual server Windows o Linux
- Di solito si acquista uno o più virtual server entro il sistema di Cloud
- Su di essi si devono installare tutte le componenti dell'ambiente per fare girare le proprie applicazioni

IaaS: pro

- Elevata possibilità di personalizzare
- Si possono ricostruire ambienti passo passo
- In alcuni casi è possibile virtualizzare interi server esistenti
- Controllo equivalente a quello di un server fisico

IaaS: contro

- Costo di configurazione
- Costo di gestione
- Aggiornamenti software sotto il controllo del cliente del servizio

Evoluzione verso il Cloud Computing

 Passaggio a macchine virtuali di tutti i server

 Creazione di sistemi di server virtuali entro data center propri, organizzati in alta affidabilità (-> Private Cloud)

Evoluzione del Cloud Computing

- Spostamento dei server virtuali entro data center di provider (-> Public Cloud)
- Alta affidabilità e mirror geografico (bilanciamento di carico e fault tolerance)
- Spostamento progressivo degli applicativi da configurazioni IaaS a configurazioni PaaS

Evoluzione di provider di Cloud Computing

Fonte: Valeria Cardellini - Introduzione al Cloud Computing

La rete ed i suoi falsi miti...

- La rete è omogenea
- La larghezza di banda non conta (è infinita)
- La latenza (ritardo di trasporto) non conta (è zero)
- Il costo del trasporto è zero
- La rete è sicura, robusta ed affidabile
- La topologia non cambia nel tempo
- C'è un solo amministratore di rete

Sommario (1/2)

- Il concetto di servizio IT
- La struttura di un'applicazione software
- Le reti entro i sistemi informatici
- L'evoluzione tecnologica
- I servizi tipici
- Struttura dell'IT aziendale
- Il mondo del client-server
- Il problema delle compatibilità

Sommario (2/2)

- Controllare i sistemi: TOGAF e ITIL
- Dispositivi di storage e architetture
- Panoramica sui sistemi operativi
- Panoramica sui linguaggi di sviluppo
- La Service Oriented Architecture (SOA)
- Il grid computing
- Virtual computing e macchine virtuali
- Il cloud computing