Grundlagen der Programmierung

Ralf Möller, FH-Wedel

- Vorige Vorlesung: Einführung, Algorithmusbegriff
- Inhalt dieser Vorlesung
 - Aussagenlogik (Boole'sche Logik)
- Lernziele:
 - Syntax von Ausdrücken (Formeln der Aussagenlogik)
 - Semantik von Formeln
 - Entscheidungsprobleme über aussagenlogischen Formeln
 - Anwendungen

Motivation

- Eine zentrale Frage in der Informatik:
- Wie beschreibt man, was ein Algorithmus tun soll?
- Man macht Aussagen darüber, wie bestimmte Eingaben in entsprechende Ausgaben transformiert werden (Algorithmus als Funktion).
- Aussagen können verknüpft werden. Beispiele sind:
 - Konjunktion (UND-Verknüpfung)
 - Disjunktion (ODER-Verknüpfung)
 - Negation (Verneinung)
 - ...

Aussagenlogik

- Kernidee
- Aus gegebenen Aussagen und ihren Verknüpfungen neue Aussagen ableiten

Aussagen

- Der Begriff "Aussage" entzieht sich einer Definition (ebenso wie "Punkt", "natürliche Zahl")
- Daher: Beschreibung des Begriffs
 - Eine Aussage ist jeder sprachliche Satz, der seiner inhaltlichen Bedeutung nach entweder wahr oder falsch ist
- "Zweiwertige" Logik
 - {wahr, falsch} oder {true, false} oder {w, f} oder {1, 0}
- Aussagen werden nicht (sprachlich) zerlegt sofern sie nicht aus Verknüpfungen aufgebaut sind.

Aussagen: Beispiele aus dem täglichen Leben

- Holz ist brennbar (W)
- Jede Aussage ist wahr (F)
- Kiel liegt an der Nordsee (F)
- Kein Mensch ist unsterblich (W)

Aussagen: wissenschaftlicher Art

- Die Planeten bewegen sich auf elliptischen Bahnen um die Sonne (W)
- Die maligne Lymphogranulomatose ist derzeit medizinisch unheilbar (W)
- Jede Zahl der Gestalt $2^{(2^n)} + 1$ ist eine Primzahl, wenn n eine natürliche Zahl einschließlich 0 ist (F)
- Jedes lösbare Problem ist auch algorithmisch lösbar (F)

Aussagen: gesetzliche Regelungen

- Ostersonntag fällt auf einen Sonntag, der auf den ersten Vollmond nach Frühlingsanfang folgt (W)
- Die gesetzliche Einheit der Wärmemenge ist die Kilokalorie (F) (richtig ist Joule)
- Parken gegenüber einer Grundstücksein- oder ausfahrt auf schmaler Fahrbahn ist verboten (W)

Aussagen: Wahrheitswert nach Situtation

- Klaus studiert Nachrichtentechnik (?W)
- Am Donnerstag schien die Sonne (?F)
- Das Heizöl wird wieder teurer (?W)

Aussagen mit derzeit unbekanntem Wahrheitwert

- Kein Planet außer der Erde ist bewohnt
- In zwanzig Jahren wird die Medizin die Krebskrankheit besiegt haben

Die Zuordnung von Wahrheitswerten zu Aussagen ist frei wählbar!

Aussagenverknüpfungen

- Negation: $\neg W = F, \neg F = W$
 - Wie sieht die negierte sprachliche Aussagenform aus?
 - Beispiel: Alle Lösungen von f(x) = 0 sind reell
 - Negiert: Wenigstens eine Lösung von f(x) = 0 ist komplex
- Konjunktion (UND-Verknüpfung)
 - Die Sinusfunktion ist stetig und beschränkt
- Disjunktion (ODER-Verknüpfung)
 - In der Bibliothek kann man Zeitschriften oder Bücher ausleihen (inklusives ODER)

Aussagenverknüpfungen (Wahrheitstabellen)

Konjunktion

$$W \wedge F = F$$

$$F \wedge W = F$$

$$IF \wedge F = F$$

Disjunktion

Verknüpfungsoperatoren für Aussagen heißen auch "Junktoren"

Aussagenverknüpfungen Wahrheitstabellen (2)

Implikation

$$V \rightarrow V = V$$

$$W \rightarrow F = F$$

$$F \rightarrow W = W$$

$$F \rightarrow F = W$$

Biimplikation

$$W \leftrightarrow W = W$$

$$W \leftrightarrow F = F$$

$$F \leftrightarrow W = F$$

$$F \leftrightarrow F = W$$

Lies: \leftrightarrow als "genau dann - wenn"

Lies: \rightarrow "wenn - dann"

Motivation für Implikation

- Wir wollen (später) mehrere Aussagen betrachten
 - Wenn die Sonne scheint, gehe ich schwimmen
 - Die Sonne scheint
- Wir wollen annehmen, daß die betrachteten Aussagen wahr sein sollen
- Intuitiv möchten wir erreichen, daß bei den betrachteten (wahren) Aussagen die Aussage "Ich gehe schwimmen" eine Folgerung ist. Das kommt später.
- Unter Implikation wird ein syntaktischer Verknüpfungsoperator für Aussagen verstanden
- Folgerung bezieht sich auf die Bedeutung von Aussagen

Motivation für Implikation (2)

Wenn wir drei Aussagen

- Wenn die Sonne scheint, gehe ich schwimmen
- Die Sonne scheint NICHT
- Ich gehe schwimmen
- soll sich kein Widerspruch ergeben, d.h. alle Aussagen sollen wahr sein, denn ich kann (wie in diesem speziellen Fall) auch schwimmen gehen, wenn die Sonne nicht scheint.
- Die Wahrheitstabelle der Implikation erlaubt genau dieses
- Die Implikation drückt folgendes aus:
 - Wenn die Sonne scheint, gehe ich auf jeden Fall schwimmen. Andernfalls erfolgt in dem Beispiel keine Einschränkung: Ich kann schwimmen gehen oder auch nicht.

Variable und Ausdrücke

- Wir haben gesehen: Aussagen können sehr lang sein. Das ist unübersichtlich. Die Verknüpfungsoperatoren sind schlecht sichtbar.
- Wir wissen: Elementare Aussagen, seien sie sprachlich noch so komplex, werden nicht zerlegt.
- Also vergessen wir die (natürliche) Sprache und führen Bezeichner für Aussagen ein: Variable
- Mit Variablen und Junktoren lassen sich aussagenlogische Ausdrücke aufbauen

Wir müssen akurater, d.h. formaler arbeiten ...

- Nach welchen Regeln werden aussagenlogische Ausdrücke aufgebaut?
- Wie werden Wahrheitswerte von zusammengesetzen Ausdrücken bestimmt?
- Nach welchen Regeln lassen sich aus gegebenen Aussagen neue Aussagen ableiten?
- Die natürliche Sprache hilft uns nicht weiter
- Im folgenden verwenden wir daher 1 statt W, O statt F, um dieses zu verdeutlichen

Danksagung

Die Folien zur Aussagenlogik nach dem Buch "Logik für Informatiker" von Uwe Schöning wurden übernommen von Javier Esparza (http://wwwbrauer.in.tum.de/lehre/logik/SS99/)

Syntax der Aussagenlogik

Eine *atomare Formel* hat die Form A_i (wobei i = 1, 2, 3, ...).

Formeln werden durch folgende induktive Definition festgelegt:

- 1. Alle atomaren Formeln sind Formeln
- 2. Für alle Formeln F und G sind $(F \wedge G)$ und $(F \vee G)$ Formeln.
- 3. Für jede Formel F ist $\neg F$ eine Formel.

Abkürzungen:

$$A,B,C ext{ oder } P,Q,R ext{ oder } \dots$$
 statt $A_1,A_2,A_3\dots$
$$(F_1 \to F_2) ext{ statt } (\neg F_1 \lor F_2)$$

$$(F_1 \leftrightarrow F_2) ext{ statt } ((F_1 \land F_2) \lor (\neg F_1 \land \neg F_2))$$

$$(\bigvee_{\substack{i=1 \\ n}} F_i) ext{ statt } (\dots((F_1 \lor F_2) \lor F_3) \lor \dots \lor F_n)$$

$$(\bigwedge_{\substack{i=1 \\ n}} F_i) ext{ statt } (\dots((F_1 \land F_2) \land F_3) \land \dots \land F_n)$$

Semantik der Aussagenlogik

Die Elemente der Menge {0,1} heißen Wahrheitswerte.

Eine Belegung ist eine Funktion $A: D \to \{0,1\}$, wobei D eine Teilmenge der atomaren Formeln ist. Wir erweitern A zu einer Funktion $\overline{A}: E \to \{0,1\}$, wobei $E \supseteq D$ die Menge aller Formeln ist, die nur aus den atomaren Formeln in D aufgebaut sind.

$$\overline{A}((F \wedge G)) = \begin{cases} 1 & \text{falls } \overline{A}(F) = 1 \text{ und } \overline{A}(G) = 1 \\ 0 & \text{sonst} \end{cases}$$

$$\overline{A}((F \vee G)) = \begin{cases} 1 & \text{falls } \overline{A}(F) = 1 \text{ oder } \overline{A}(G) = 1 \\ 0 & \text{sonst} \end{cases}$$

$$\overline{A}((\neg F)) = \begin{cases} 1 & \text{falls } \overline{A}(F) = 0 \\ 0 & \text{sonst} \end{cases}$$

Wir schreiben A statt \overline{A} .

Modelle

Sei F eine Formel und A eine Belegung.

Falls A für alle in F vorkommenden atomaren Formeln definiert ist.

so heißt A zu F passend.

Sei A passend zu F:

Falls A(F) = 1 so schreiben wir $A \models F$

oder

etc.

und sagen F gilt unter A

A ist ein Modell für F

Falls A(F) = 0 so schreiben wir $A \not\models F$

Gültigkeit und Erfüllbarkeit

Eine Formel F heißt $erf\ddot{u}llbar$, falls F mindestens ein Modell besitzt, andernfalls heißt F $unerf\ddot{u}llbar$.

Eine (endliche oder unendliche!) Menge von Formeln *M* heißt *erfüllbar*, falls es eine Belegung gibt, die für jede Formel in *M* ein Modell ist.

Eine Formel F heißt $g\ddot{u}ltig$ (oder $allgemeing\ddot{u}ltig$ oder Tautologie) falls jede zu F passende Belegung ein Modell für F ist. Wir schreiben $\models F$, falls F eine Tautologie ist, und $\not\models F$ sonst.

Aufgabe

	Gültig	Erfüllbar	Unerfüllbar
A			
$A \lor B$			
$A \lor \neg A$			
$A \wedge \neg A$			
$A o \neg A$			
$\neg A \rightarrow A$			
$A \rightarrow B$			
$A \to (B \to A)$			
$A \to (A \to B)$			
$A \leftrightarrow \neg A$			
$A \leftrightarrow (B \leftrightarrow A)$			

Aufgabe

Gelten die folgenden Aussagen?

_				J/N	Gegenb.
Wenn	F gültig	dann	F erfüllbar		
Wenn	F erfüllbar	dann	$\neg F$ unerfüllbar		
Wenn	F gültig	dann	$\neg F$ unerfüllbar		
Wenn	F unerfüllbar	dann	¬F gültig		

Aufgabe

Gelten die folgenden Aussagen?

						J/N	Gegenb.
Wenn	(F o G) gültig	und	F gültig	dann	G gültig		
Wenn	$(F \rightarrow G)$ erfüllbar	und	F erfüllbar	dann	G erfüllbar		
Wenn	(F o G) gültig	und	F erfüllbar	dann	G erfüllbar		

Zusammenfassung, Kernpunkte

- Aussagenlogik
 - Syntax
 - Semantik
 - Entscheidungsprobleme

Was kommt beim nächsten Mal?

- Transformation von aussagenlogischen Formeln
- Boole'sche Algebra