

DMAIS

GNN for Social Recommender Systems 2

Lab Seminar (10/04)

HTET ARKAR

School of Computer Science and Engineering

Chung-Ang University

Paper Review

A Graph Neural Network Framework for Social Recommendations (GraphRec+)

Wenqi Fan¹, Yao Ma², Qing Li³, *Senior Member, IEEE*, Jianping Wang⁴, Guouong Cai², Jiliang Tang², and Dawei Yin⁵

^{1,4}Clty University of Hong Kong, ²Michigan State University, ^{1,3}The Hong Kong Polytechnic University, ⁵Baidu Inc.

IEEE Transactions on Knowledge and Data Engineering, 2020

Content

- Introduction
- Movitation
- Proposed Method
- Architecture
- Experimental Evaluation
- Conclusion & Future Work

Introduction

Recommender Systems (RS)

- To suggest to the user a personalized list of items
 - ☐ That are likely to be clicked on or purchased
- Collaborative Filtering (CF): one of most popular techniques used
 - ☐ To model users' preference for items by utilizing the history of user-item interactions

Social Recommender Systems (SocialRS)

- Social relations of users can play a important role
 - In helping RS filter information
 - In profiling users' preferences towards items
- Utlizing Social Relations has been used in RS
 - To greatly boost the performance

Building SocialRS with GNN

- Why Graph Neural Networks?
 - GNNs provide a powerful method for learning meaningful representations
 - By integrating node information and topological structure
- ❖ Data Representation in Social Recommendations (SR):
 - User-Item Graph
 - Social Graph
 - Item-Item Graph

Data in Social Recommendation

- Data can be naturally represented as graph data
 - User-item graph for denoting interactions between users and items
 - Social graph for denoting the relationships between users
 - SR: Incorparate social network info into user and item latent factors learning

Data in Social Recommendation (Cont'd)

- Two graphs provide info about users from different perspectives
- User-item graph contains user-item interactions + user's opinions on items
- User's opinions
 - Ratings and reviews
 - Valuable signals associated with users and items

Data in Social Recommendation (cont'd)

- Item-Item Graph
 - Relationships between items
 - ☐ Items in real-world settings (e.g., e-commerce, electronics) are often related or similar
 - ☐ E.g., users who buy an **iPhone** are likely to buy **AirPods** (both designed by Apple).
 - Bundled Items for Comparison
 - ☐ When purchasing a MacBook, similar items (MacBook Air/Pro) are shown together for easy comparison
 - Integrating I-I graph into the process of learning better item representations

Data in Social Recommendation (cont'd)

- It can be represented as a heterogeneous graph
 - Users bridging the user-item graph and social graph
 - Items bridging the user-item graph and I-I graph

Motivation

1. How to inherently combine these graphs?

Learning representations of items and users are the key to building SocialRS

```
U-I graph user representation

Social graph litem representation

I-I graph litem representation
```

* 2. How to capture interactions and opinions between users & items jointly

- User-item interactions alone are insufficient
- User opinions are crucial to fully model user preferences

3. How to distinguish social relations with heterogeneous strengths

- Scoial networks include both strong and weak ties
- Treating all social connections equally can lead to poor performance

Proposed Method

- **❖** Novel GraphRec+ Framework:
 - Coherent modeling of multiple types of graphs
- Joint Modeling of Interactions and Opinions:
 - Integrating both interactions and opinions in the user-item graph
- ***** Heterogeneous Strengths in Social Relations:
 - Differentiating strong and weak ties using an attention mechanism
- **Comprehensive Experiments:**
 - Demonstrating the effectiveness on three real-world datasets

Proposed Framework

- Three Main Components:
 - 1. User Modeling: Aggregates both item and social graph information
 - 2. **Item Modeling**: Uses both user-item interactions and item-item similarities
 - 3. Rating Prediction: Combines user and item representations for final predictions

Model Architecture Overview

Fig. 2. The overall architecture of the proposed model. It contains three major components: User modeling, item modeling, and score prediction.

User Modeling u_i

• 1. Learning item-space user latent factor h_i^I

■ Item aggregation:

$$\mathbf{h}_{i}^{I} = \sigma(\mathbf{W} \cdot AGG_{items}(\{\mathbf{x}_{ia}, \forall a \in C(i)\}) + \mathbf{b})$$

Opinion-aware interaction representation x_{ia}

$$\mathbf{x}_{ia} = g_v(ig[\mathbf{q}_a \oplus \mathbf{e}_rig])$$

Item-space user latent factor:

$$\mathbf{h}_i^I = \sigma(\mathbf{W} \cdot \left\{\sum_{a \in C(i)} lpha_{ia} \mathbf{x}_{ia}
ight\}_{\!\!\!m{lpha}_{\!ia}: ext{ item attention}}$$

C(i): set of items, user has interacted with

 g_{ν} : Multi-Layer Perceptron (MLP) e_r : opinion embedding vector

 q_a : item embedding

User Modeling u_i (cont'd)

• 2. Learning social-space user latent factor h_i^S

Social aggregation:

$$\mathbf{h}_{i}^{S} = \sigma(\mathbf{W} \cdot AGG_{social}(\{\mathbf{h}_{o}^{I}, \forall o \in N(i)\}) + \mathbf{b})$$

■ Social-space user latent factor:

$$\mathbf{h}_i^S = \sigma(\mathbf{W} \cdot \left\{\sum_{o \in N(i)} eta_{io} \mathbf{h}_o^I
ight\}_{\!\!\!eta_{io}: \, ext{social attention}}$$

N(i): social neighbors

User Modeling u_i (cont'd)

• 3. Learning User Latent Factor h_i

- To better learn user latent factiors
- Item-space and social-space user latent factors need to be considered together

$$egin{aligned} \mathbf{c}_1^u &= \left[\mathbf{h}_i^I \oplus \mathbf{h}_i^S
ight] \ \mathbf{c}_2^u &= \sigma(\mathbf{W}_2 \cdot \mathbf{c}_1^u + \mathbf{b}_2) \ & ... \ \mathbf{h}_i &= \sigma(\mathbf{W}_l \cdot \mathbf{c}_{l-1}^u + \mathbf{b}_l) \end{aligned}$$

Item Modeling v_i

• 1. Learning user-space item latent factor h_i^U

User aggregation:

$$\mathbf{h}_{j}^{U} = \sigma(\mathbf{W} \cdot AGG_{users}(\{\mathbf{f}_{jt}, \forall t \in B(j)\}) + \mathbf{b})$$

lacksquare Opinion-aware interaction representation f_{jt}

$$\mathbf{f}_{jt} = g_u(ig[\mathbf{p}_t \oplus \mathbf{e}_rig])$$

User-space user latent factor:

$$\mathbf{h}_{j}^{U} = \sigma(\mathbf{W} \cdot \left\{\sum_{t \in B(j)} \mu_{jt} \mathbf{f}_{jt}
ight\}_{m{\mu}_{jt}: ext{ user attention}}$$

B(j): set of users who has interacted with v_i

 g_u : Multi-Layer Perceptron (MLP) e_r : opinion embedding vector

 p_t : user embedding

Item Modeling v_i (cont'd)

4 2. Learning item2item-space item latent factor h_j^V

Item2item aggregation:

$$\mathbf{h}_{j}^{V} = \sigma(\mathbf{W} \cdot AGG_{Item2item}(\left\{\mathbf{h}_{k}^{U}, orall k \in M(j)
ight\}) + \mathbf{b})$$

Item2item-space item latent factor:

$$\mathbf{h}_j^V = \sigma(\mathbf{W} \cdot \left\{\sum_{k \in M(j)} \kappa_{jk} \mathbf{h}_k^U
ight\}_{\!\!\! \kappa_{jk} : ext{important weight}} + \mathbf{b})$$

Item Modeling v_i (cont'd)

• 3. Learning Item Latent Factor z_i

Combine the different item representations together for final one

$$egin{aligned} \mathbf{c}_1^v &= \left[\mathbf{h}_j^U \oplus \mathbf{h}_j^V
ight] \ \mathbf{c}_2^v &= \sigma(\mathbf{W}_2 \cdot \mathbf{c}_1^v + \mathbf{b}_2) \ &\dots \ \mathbf{z}_j &= \sigma(\mathbf{W}_l \cdot \mathbf{c}_{l-1}^v + \mathbf{b}_l). \end{aligned}$$

Prediction & Training

Prediction

- Recommendation task: rating prediction
- Concatenate and then feed into MLP

$$egin{aligned} \mathbf{g}_1 &= ig[\mathbf{h}_i \oplus \mathbf{z}_jig] \ \mathbf{g}_2 &= \sigma(\mathbf{W}_2 \cdot \mathbf{g}_1 + \mathbf{b}_2) \ & ... \ \mathbf{g}_{l-1} &= \sigma(\mathbf{W}_l \cdot \mathbf{g}_{l-1} + \mathbf{b}_l) \ & r'_{ij} &= \mathbf{w}^T \cdot \mathbf{g}_{l-1}, \end{aligned}$$

*** Model Training:**
$$Loss = \frac{1}{2|\mathcal{O}|} \sum_{i,j \in \mathcal{O}} (r'_{ij} - r_{ij})^2$$

GraphRec (2019)

❖ W. Fan et al., "Graph neural networks for social recommendation," in Proc. World Wide Web Conf., 2019, pp. 417–426

❖ Model:

Figure 2: The overall architecture of the proposed model. It contains three major components: user modeling, item modeling, and rating prediction.

Experiment

Performance Comparison of RSs

* The lower the value, the better the performance

Datasets		Ciao (80%)		Ciao (60%)		Epinions (80%)		Epinions (60%)		Flixster (80%)		Flixster (60%)	
Metrics		RMSE	MAE	RMSE	MAE	RMSE	MAE	RMSE	MAE	RMSE	MAE	RMSE	MAE
Algorithms	PMF	1.1238	0.9021	1.1967	0.9520	1.2128	0.9952	1.2739	1.0211	1.0042	0.7559	1.0793	0.8296
	SoRec	1.0652	0.8410	1.0738	0.8489	1.1437	0.8961	1.1563	0.9086	0.9693	0.7303	0.9974	0.7537
	SoReg	1.0848	0.8611	1.0947	0.8987	1.1703	0.9119	1.1936	0.9412	0.9727	0.7415	1.0372	0.7736
	SocialMF	1.0501	0.8270	1.0592	0.8353	1.1328	0.8837	1.1410	0.8965	0.9705	0.7378	1.0060	0.7647
	TrustMF	1.0479	0.7690	1.0543	0.7681	1.1395	0.8410	1.1505	0.8550	0.9380	0.7091	0.9978	0.7480
	NeuMF	1.0617	0.8062	1.0824	0.8251	1.1476	0.9072	1.1645	0.9097	0.9698	0.7420	1.0540	0.7663
	DeepSoR	1.0316	0.7739	1.0437	0.7813	1.0972	0.8383	1.1135	0.8520	0.9548	0.7190	0.9913	0.7462
	GCMC+SN	0.9931	0.7526	1.0221	0.7697	1.0711	0.8590	1.1004	0.8602	0.9613	0.7351	0.9914	0.7606
	GraphRec	0.9794	0.7387	1.0093	0.7540	1.0631	0.8168	1.0878	0.8441	0.9452	0.7175	0.9857	0.7366
	GraphRec+	0.9787	0.733	0.9962	0.7446	1.0576	0.8093	1.0819	0.8336	0.9303	0.7047	0.9669	0.7289
Improvemen	ıt [*] (%)	0.07%	0.77%	1.30%	1.25%	0.52%	0.92%	0.54%	1.24%	0.82%	0.63%	1.91%	1.00%

^{&#}x27;The value indicates the percentage of improvements gained by GraphRec+ compared to the strongest baseline.

PMF : Utilizing user-item rating only (CF)

• SoRec : Social Recommendation (user-item rating + SN)

SoReg : SN info as regularization terms

SocialMF : Trust info & Propagation into MF

• TrustMF : MF, truster & trustee space

NeuMF : CF with NNDeepSoR : DNN with SN

DeepSoR : DNN with SNGCMC+SN : GNN with SN

• GraphRec : GNN with SN

Performance Comparison of RSs

Traditional Matrix Factorization Models:

- SoRec, SoReg, Social MF, and Trust MF outperform PMF
- These models leverage both rating and social network information
- Social network information complements rating information leading to better performance

Datasets		Ciao (80%)		Ciao (60%)		Epinions (80%)		Epinions (60%)		Flixster (80%)		Flixster (60%)	
Metrics		RMSE	MAE										
Algorithms	PMF SoRec SoReg SocialMF TrustMF	1.1238 1.0652 1.0848 1.0501 1.0479	0.9021 0.8410 0.8611 0.8270 0.7690	1.1967 1.0738 1.0947 1.0592 1.0543	0.9520 0.8489 0.8987 0.8353 0.7681	1.2128 1.1437 1.1703 1.1328 1.1395	0.9952 0.8961 0.9119 0.8837 0.8410	1.2739 1.1563 1.1936 1.1410 1.1505	1.0211 0.9086 0.9412 0.8965 0.8550	1.0042 0.9693 0.9727 0.9705 0.9380	0.7559 0.7303 0.7415 0.7378 0.7091	1.0793 0.9974 1.0372 1.0060 0.9978	0.8296 0.7537 0.7736 0.7647 0.7480

^{*} PMF uses only rating data

Performance Comparison of RSs (Cont'd)

❖ Neural Network-based Models:

- **NeuMF** outperforms PMF significantly
- Both use only rating information, but NeuMF utilizes neural network architecture
- Highlighting the **power of neural networks** in RS

Advanced Models with Social Network Integration:

- **DeepSoR** and **GCMC+SN** outperform SoRec, SoReg, SocialMF, and TrustMF
- These models leverage **both rating and social network data** using neural networks
- NN-based SocialRSs show consistent performance improvements

NeuMF	1.0617	0.8062	1.0824	0.8251	1.1476	0.9072	1.1645	0.9097	0.9698	0.7420	1.0540	0.7663
DeepSoR	1.0316	0.7739	1.0437	0.7813	1.0972	0.8383	1.1135	0.8520	0.9548	0.7190	0.9913	0.7462
GCMC+SN	0.9931	0.7526	1.0221	0.7697	1.0711	0.8590	1.1004	0.8602	0.9613	0.7351	0.9914	0.7606

Performance of GraphRec+

❖ GCMC+SN

- Best among baselines due to its powerful representation learning using GNNs
- Integrate node information and topological structure

GraphRec+ Performance:

- Consistently outperforms all baseline methods
- Provides advanced model components to integrate rating, SN Info, and item-item relations

Compared to GraphRec:

- GraphRec+ shows **better performance, especially under smaller training sets** (60% dataset condition)
- Indicates that GraphRec+ is more robust in learning representations even with less data

GraphRec	0.9794	0.7387	1.0093	0.7540	1.0631	0.8168	1.0878	0.8441	0.9452	0.7175	0.9857	0.7366
GraphRec+	0.9787	0.733	0.9962	0.7446	1.0576	0.8093	1.0819	0.8336	0.9303	0.7047	0.9669	0.7289
GraphRec+	0.07%	0.77%	1.30%	1.25%	0.52%	0.92%	0.54%	1.24%	0.82%	0.63%	1.91%	1.00%

* GraphRec: not include item-item graph

Model Analysis

Ablation Study 1

- Effectiveness of Social Network Information
- Without Opinions in Interaction, performance deteriorates significantly
- Similar or related items are benefical to profile items, help improve performance

Model Analysis (Cont'd)

Ablation Study 2

- Effect of attenetion mechanisms
- Differentiating the importance of each local neighbor in the graph
- Helping boost the recommendation performance

Model Analysis (Cont'd)

Effect of Top-k Similar/Related Items on Model Performance

- **Explore** the impact of different top-k values for item-item relationships
- Optimal Value: k=10 for Ciao, k=15 for Epinions
- Performance Trend:
 - ☐ **Intitial Increase**: Performance improves as K increases
 - Indicating that including more similar/related items is beneficial
 - ☐ **Performance Degradation**: When K becomes too large
 - O Due to noisy information being added to the item-item graph

Model Analysis (Cont'd)

Effect of Embedding Size on Model Performance

- Impact of different embedding sizes for user, item, and opinion
- Findings:
 - □ Performance Improvement:
 - O Increasing embedding size from 8 to 64 leads to significant performance gains
 - □ Performance Degradation:
 - Performance starts to degrade when the embedding size is increased beyond 128
- Reason:
 - ☐ Smaller Embeddings:
 - May not capture sufficient information
 - □ Larger Embeddings:
 - Introduce unnecessary complexity,
 leading to overfitting and increased computation time

Validation on Ranking Matrics

- Importance of considering the relations among items
- **Enhancing the representation learning of items for social recommendations**

Performance Comparison of Different Recommender Systems on Ranking Metrics (NDCG@K)

Datasets			Ciao			Epinions		Flixster			
Metrics		NDCG@5	NDCG@10	NDCG@20	NDCG@5	NDCG@10	NDCG@20	NDCG@5	NDCG@10	NDCG@20	
Algorithms	PMF	0.3044	0.3067	0.3648	0.3073	0.3627	0.3847	0.5112	0.5255	0.5321	
O	SoRec	0.3592	0.3690	0.3831	0.4015	0.4380	0.4568	0.5407	0.5601	0.5683	
	SoReg	0.3670	0.3772	0.3951	0.4368	0.4684	0.5044	0.5504	0.5713	0.5800	
	SocialMF	0.3784	0.3891	0.4119	0.4438	0.4620	0.4691	0.5565	0.5789	0.5880	
	TrustMF	0.3776	0.3886	0.4103	0.4325	0.4630	0.4982	0.5662	0.5911	0.6011	
	NeuMF	0.3980	0.4096	0.4342	0.4246	0.4429	0.4814	0.5344	0.5638	0.5718	
	DeepSoR	0.3806	0.3938	0.4160	0.4421	0.4728	0.5046	0.5536	0.5754	0.5845	
	GCMC+SN	0.3814	0.4307	0.4611	0.4475	0.4776	0.5022	0.5707	0.5928	0.6039	
	GraphRec	0.3972	0.4410	0.4618	0.4580	0.4914	0.5124	0.5948	0.6245	0.6360	
	GraphRec+	0.4351	0.4738	0.4966	0.5169	0.5442	0.5684	0.6385	0.6669	0.6748	
Improveme		9.53	7.44	7.52	12.88	10.74	10.92	7.34	6.8	6.11	

The value indicates the percentage of improvements gained by GraphRec+ compared to the strongest baseline.

Conclusion and Future Work

Summary

- Effectively integrates multiple graph structures for better social recommendations
- Addresses heterogeneity in relations and opinion-aware interaction modeling

Future Work

- Addressing cold-start issues
- Extending to more complex social and temporal dynamics

HTET ARKAR (hak3601@cau.ac.kr)