Pedestrian Evacuation of Bobby Dodd Stadium Chris Dunlap, Allen Koh, Matt May

Georgia Tech

Introduction

- Focus is most efficient evacuation strategy of Bobby Dodd Stadium (Fig. 1) at full capacity (~55,000 people).
- Goal was to minimize the pedestrian evacuation time of the stadium area as attendees leave following a home football game.
- Previous models have used cellular automata, social force, agent-based [1] approaches.
- Variety of interesting phenomena arise in pedestrian simulations: jamming [2], clogging, arching.
- In cellular automata literature, concept of floor field (secondary grid of cells underlying main grid)
 [3] has precedent. Acts as substitute for pedestrian intelligence.

Model

- Took a **stochastic**, **discrete** time-stepped approach based on **cellular automata**.
- Input: pedestrians exiting the stadium (Poisson).
- Selected pedestrian entrance, destination location at random from predefined groups.
- Output: timesteps to evacuate area around the stadium.
- System modeled as an undirected weighted graph.
- Modified Dijkstra's algorithm used for computing shortest path to pedestrian destination.
- Closing/opening/management of intersections used for parameterization.
- Took **object-oriented** software approach: Pedestrian, Intersection, Node, Edge classes.

Figure 2. Sample simulation run. Red dots are pedestrians.

Results

- For each of 10 intersection configurations, 20 simulation runs were performed.
- Each 20-run set is basis for **90%** confidence intervals for average evacuation time.
- Closure of intersection 9 results in approx. 15 minute increase in evacuation time.
- Maximum confidence interval was **0.9 minutes**.

Figure 4. 10 simulation configurations that were tested. Configurations are on the x-axis, intersection IDs (see Fig. 5) are on the y-axis. **Open** = open to pedestrians; **normal** = traffic cop supervision; **closed** = closed to pedestrians.

Figure 3. Simulation results. Different simulation configurations are on the x-axis, and minimum evacuation times with 90% confidence intervals are shown on the y-axis. **Lower is better.**

Conclusions

- All intersection configurations feature evacuation times within
 ~15 minutes of each other.
- No single configuration yields significantly lower evacuation time.

Figure 5. Map of the SUI with intersection 9 indicated by a red arrow. The closure of intersection 9 to pedestrian traffic appears to be pivotal in extending evacuation times.

Bibliography

- [1] Xiaoping Zheng, Tingkuan Zhong, and Mengting Liu. Modeling crowd evacuation of a building based on seven methodological approaches. Building and Environment, 44(3): 437–445, 2009.
- [2] Dirk Helbing. A fluid dynamic model for the movement of pedestrians. arXiv preprint cond-mat/9805213, 1998.
- [3] Carsten Burstedde, Kai Klauck, Andreas Schadschneider, and Johannes Zittartz. Simulation of pedestrian dynamics using a two-dimensional cellular automaton. Physica A: Statistical Mechanics and its Applications, 295(3):507–525, 2001.

Fer Drive
College of Engineering

Tech Tower
Lawn

North Avenue NW

North Avenue NW

Athur M. Blank
Family Youth YMCA

Family Youth YMCA

System Under Investigation (SIII)

Figure 1. System Under Investigation (SUI). The area surrounding Bobby Dodd Stadium at Georgia Tech.