Α

1)

Can we simplify the churn data set using principal component analysis and retain the components that capture the most variance for future use in machine learning models and data visualization?

2)

One goal of the data analysis is to reduce the 'Churn' data set into principal components and determine the optimal number of components for future use in statistical analysis.

В

1)

PCA analyzes the the data set by creating new components out of a linear combination of the initial variables. They are constructed such that the components are not correlated with each other and the amount of variance within each component is greatest in the first component and decreases with each following component. An expected outcome is that after primary component analysis is complete, we should have a simplified data set with reduced dimensionality created from the initial data set. The analysis will also provide information about the explained variance ratio which will detail how much variance is contained in each principal component.

2)

One assumption of primary component analysis is that large variance indicates importance. It is assumed that principal components with the highest variance are the most significant.

 C

1)

The continuous variables being used are:

Lat Lng

Population

```
Children
Age
Income
Outage sec perweek
Email
Contacts
Yearly equip failure
Tenure
MonthlyCharge
Bandwidth_GB_Year
Item1
Item2
Item3
Item4
Item5
Item6
Item7
Item8
```

Standardize the data.

```
In [1]: import pandas as pd
        import matplotlib.pyplot as plt
        import seaborn as sns
        import numpy as np
        # Assuming your CSV file is named 'data.csv', adjust the file path as needed
        file path = '/home/dj/skewl/D212/2/churn clean.csv'
        pd.set option('display.max columns', None)
        # Read the data from the CSV file into a DataFrame
        df = pd.read csv(file path)
        #drop index column
        df = df.loc[:, ~df.columns.str.contains('Unnamed')]
        # get numeric columns
        data = df.select dtypes(include='number')
        # remove zip and CaseOrder columns because it is categorical
        del data['Zip']
        del data['CaseOrder']
        df = data
        #standardize the data
        df=(df-df.mean())/df.std()
        #write to csv file.
        df.to csv('standardized-data.csv', index=False)
```

Matrix of principal components:

	PC1	PC2	PC3	PC4	PC5	\
Lat			-0.007380	-0.713407		
Lng	0.008058	0.009447	0.022445	0.177972	-0.338392	
Population	-0.002181	-0.000771	0.015616	0.652679	0.173323	
Children	0.004128	0.015957	0.028784	-0.016885	0.413388	
Age	0.006509	0.000521	-0.028836	0.055294	-0.426834	
Income	0.001022	0.005808	0.025622	-0.055938	0.186964	
Outage_sec_perweek	-0.017494	0.003909	-0.014166	0.013937	-0.259856	
Email	0.008792	-0.019741	-0.002773	0.149799	-0.088409	
Contacts	-0.008725	0.003459	-0.011524	0.029306	-0.438742	
Yearly_equip_failure	-0.007705	0.017671	0.008043	-0.007244	0.150265	
Tenure	-0.016266	0.702098	-0.063693	-0.007696	0.009770	
MonthlyCharge	0.000980	0.039884	-0.009138	-0.002964	-0.416994	
Bandwidth_GB_Year	-0.016790	0.703617	-0.062724	-0.009177	0.009116	
Item1	0.458719	0.031335	0.280924	-0.011199	-0.017378	
Item2	0.433834	0.038617	0.281971	-0.018981	-0.020335	
Item3	0.400518	0.035598	0.280415	-0.003381	0.000304	
Item4	0.145752	-0.039814	-0.568295	-0.005339	0.009238	
Item5	-0.175652	0.056530	0.586829	-0.008554	-0.028968	
Item6	0.405012	-0.006736	-0.183775	0.012565	0.012014	
Item7	0.358211	0.001737	-0.181488	-0.020250	0.019927	
Item8	0.308716	-0.013350	-0.131543	0.045283	-0.011427	
	PC6	PC7	PC8	PC9	PC10	\
Lat			-0.028808			
Lng	-0.710967		-0.092208			
Population	0.307612					
Children	-0.493891				-0.076010	
Age	0.263319					
Income	-0.035440					
Outage_sec_perweek		-0.457488			-0.210243	
Email			-0.426345		-0.135628	
Contacts		0.020315			-0.525189	
Yearly_equip_failure				-0.254131		
Tenure	0.025127		-0.036361			
MonthlyCharge		-0.228324		-0.020344	0.679170	
Bandwidth_GB_Year	-0.004363	-0.021363		0.003876	0.003704	
Item1	-0.002033	-0.002239		-0.022008		
Item2			0.014141		-0.009914	
Item3		-0.012957		-0.035907		
Item4	-0.013591	0.005827		-0.028655		
Item5	0.042602	0.003137		-0.002505		
Item6	0.015886	-0.004968	0.007999		-0.003231	
Item7	-0.006088	0.025328	-0.026909	0.069894		
Item8	0.016670	-0.004744	0.069500	-0.000909	0.034239	
	5075	2012	2012	501:	501-	,
	PC11	PC12	PC13	PC14	PC15	\
Lat	0.087520	-0.010790	0.057719	0.095224	0.660205	

Lng	-0.173572	-0.094972	-0.158149	0.071398	0.360598	
Population	-0.025682			0.167885	0.606033	
Children	0.187104	0.176812	0.690935	-0.019480	-0.004987	
Age	0.345449	-0.323264	0.538841	0.035972	-0.043814	
Income	0.205332	-0.238138	-0.146506	0.024111	0.018182	
Outage_sec_perweek	0.034554	-0.551538	-0.004926	0.081577	-0.049628	
Email	0.751640	0.005453	-0.236985	-0.057343	0.041014	
Contacts	-0.084467	0.454008	0.160663	-0.045656	0.000769	
Yearly_equip_failure	0.420133	0.266144	-0.294977	-0.013081	0.039989	
Tenure	0.000451	-0.038848	-0.008380	-0.004235	0.011882	
MonthlyCharge	0.111057	0.452563	0.013219	0.004390	-0.009063	
Bandwidth_GB_Year	0.002315	0.006581	-0.003180	-0.008830	0.011760	
Item1	-0.004500	0.024850	-0.007659	0.071972	0.021536	
Item2	-0.002179	-0.000882	0.018278	0.109222	-0.006481	
Item3	-0.004230	-0.007590	-0.020047	0.175058	-0.005387	
Item4	-0.021718	0.020818	-0.010999	0.180290	0.061364	
Item5	-0.007609	-0.013871	0.002466	-0.136959	0.015125	
Item6	0.021769	0.017593	-0.001535	0.053518	-0.061373	
Item7	0.013871	0.014773	-0.010484	0.159747	-0.124997	
Item8	-0.040845	-0.090967	0.020455	-0.903150	0.185797	
	PC16	PC17	PC18	PC19	PC20	\
Lat	0.087845	-0.044067	-0.005204	0.015805	-0.011682	
Lng	0.059220	-0.038542	0.017837	0.000416	-0.025267	
Population	0.090310	-0.012212	0.000593	0.001053	-0.007964	
Children	-0.013577			0.020949	-0.000465	
Age	-0.002093	0.004171		0.005712	0.014211	
Income	-0.077328		-0.002393	0.005199		
Outage_sec_perweek	0.012222			0.017977		
Email	-0.012751				0.000869	
Contacts	-0.035995		-0.026819			
Yearly_equip_failure			-0.001251		-0.021791	
Tenure	-0.002089		-0.007826		0.007360	
MonthlyCharge	0.013084		-0.000506	0.021466		
Bandwidth_GB_Year			-0.006224		0.001790	
Item1	-0.113274	0.044657		-0.240334	0.792983	
Item2	-0.171007	0.068403		-0.591234		
Item3	-0.249520	0.149958			-0.176095	
Item4	-0.472789	0.445426	0.430805	0.087188	0.019061	
Item5	0.059286	0.208307	0.693579		-0.042083	
Item6	0.050732		0.402499		-0.065203	
Item7	0.799107	0.374344	0.070906		-0.041194	
Item8	-0.004547	0.109457	-0.046218	0.046139	-0.043523	
	DC21					
l a+	PC21 0.001011					
Lat						
Lng	0.000711					

Population -0.000064

```
Children
                     -0.021623
Age
                      0.022412
                     -0.000913
Income
                      0.000350
Outage sec perweek
Email
                      0.000247
Contacts
                     -0.000953
Yearly equip failure -0.000131
Tenure
                     -0.705243
MonthlyCharge
                     -0.045786
Bandwidth GB Year
                      0.706787
Item1
                      0.002931
Item2
                     -0.001136
                      0.000078
Item3
Item4
                      0.000089
Item5
                     -0.000809
                     -0.000564
Item6
Item7
                      0.000481
Item8
                     -0.001970
```

Total number of principal components:

Using the plot of explained variance below and the elbow rule we can determine that the total number of principal components is 4.

```
In [3]: plt.plot(pca.explained_variance_ratio_)
    plt.xlabel('number of components')
    plt.ylabel('explained variance')
    plt.show()

cov_matrix = np.dot(df.T, df) / df.shape[0]
    eigenvalues = [np.dot(eigenvector.T, np.dot(cov_matrix, eigenvector)) for
    eigenvector in pca.components_]

plt.plot(eigenvalues)
    plt.xlabel('number of components')
    plt.ylabel('eigenvalue')
    plt.show()
```


Variance of each principal component:

PC1 0.13414451

PC2 0.12586588

PC3 0.07448371

PC4 0.0561557

In [4]: print(pca.explained_variance_ratio_[:4])

```
[0.14041402 0.09511751 0.07794643 0.05882728]
```

Total variance of the first four principal components is 0.39064979323049326.

```
In [5]: total_variance_first_four = pca.explained_variance_ratio_[:4].sum()
print(total_variance_first_four)
```

0.3723052340938371

5)

The results of the PCA data analysis show that the 'Churn' data set can be dimensionally reduced to an optimum number of four principal components. The optimum number of components was determined using the elbow method and a scree plot of explained variance. The principal component matrix was also determined. This provides data to help understand how each principal component is loaded by the original variables in the 'Churn' data set.

In []: