Lista 3 - Expressões Regulares

1.

Use o procedimento descrito no Lema 1.29 para converter as seguintes expressões regulares em autômatos finitos não-determinísticos.

a.
$$(0 \cup 1)*000(0 \cup 1)*$$

b.
$$(((00)^*(11)) \cup 01)^*$$

2.

Use o procedimento descrito no Lema 1.32 para converter os autômatos finitos da Figura 1.38 para expressões regulares.

3.

Um *transdutor de estado finito* (TEF) é um tipo de autômato finito determinístico cuja saída é uma cadeia e não somente *aceita* ou *rejeita*. Os diagramas de estado da Figura 1.39 são diagramas de estado dos transdutores de estado finito T_1 e T_2 .

Cada transição de um TEF é rotulada com dois símbolos, um designando o símbolo de entrada e o outro designando o símbolo de saída. Os dois símbolos são escritos com uma barra, /, separando-os. Em T_1 , a transição de q_1 para q_2 tem símbolo de entrada 2 e símbolo de saída 1. Algumas transições podem ter múltpilos pares entrada-saída, tais como a transição em T_1 de q_1 para si próprio. Quando um TEF computa sobre uma cadeia de entrada w, ela toma os símbolos de entrada $w_1 \cdots w_n$ um por um e, começando no estado inicial, segue as transições emparelhando os rótulos de entrada com a seqüência de símbolos $w_1 \cdots w_n = w$. Toda vez que ele passa por uma transição, ele dá como saída o símbolo de saída correspondente. Por exemplo, sobre a entrada 2212011, a máquina T_1 entra na sequência de estados $q_1, q_2, q_2, q_2, q_1, q_1, q_1, q_1$ e produz a saída 1111000. Sobre a entrada abbb, T_2 dá como saída 1011. Dê a seqüência de estados visitados e a saída produzida em cada uma das seguintes partes.

- **a.** T_1 sobre a entrada 011.
- **b.** T_1 sobre a entrada 211.
- **c.** T_1 sobre a entrada 0202.
- **d.** T_2 sobre a entrada **b**.

4.

Leia a definição informal do transdutor de estados finitos dada no Exercício 3 Dê o diagrama de estados de um TEF com o seguinte comportamento. Seus alfabetos de entrada e de saída são {0,1}. Sua cadeia de saída é idêntica à cadeia de entrada nas posições pares mas invertida nas posições ímpares. Por exemplo, sobre a entrada 0000111 ele deveria dar como saída 1010010.