Rose or Jack?

HEY ROSE, ACCORDING TO THIS ML MODEL

I MUST STAY IN WATER AND FREEZE

Taylor Bohl Harish Korrapati Corey Lawson-Enos Rhiana Schafer Ishanjit Sidhu

PROJECT BACKGROUND & DESCRIPTION

We built a machine learning model that predicts whether you will survive a voyage on the Titanic based on your age, gender, passenger class, fare, and whether you travel solo or with family.

Summary Data Model Refinement Webpage Improvements

INITIAL DATA SELECTION & MANIPULATION

Raw Data (n = 1309, cols = 14)						
Feature	Format	Type	Definition	Pct. Null		
Passenger Class	int.	Cat.	Class (1st, 2nd, 3rd)	0.0%		
Survival	bool.	Cat.	Survived?	0.0%		
Name	str.	pKey	Name	0.0%		
Sex	str.	Cat.	Sex	0.0%		
Age	int.	Quant.	Age	20.1%		
Siblings/Spouses	int.	Quant.	# siblings/spouses aboard	0.0%		
Parent/Child	int.	Quant.	# parents/ children aboard	0.0%		
Ticket Number	str.	Cat.	Ticket ID	0.0%		
Passenger Fare	float	Quant.	Ticket Cost	1.4%		
Cabin Number	str.	Cat.	Cabin+Deck alphanum.	77.5%		
Port of Embarkation	str.	Cat.	Port of passenger origin	<0.1%		
Lifeboat Boarded	str.	Cat.	Lifeboat boarded	62.9%		
Body Number	int.	Quant.	Recovered body #	90.8%		
Home Destination	str.	Cat.	Passenger's hometown	39.4%		

- 1. Proxy for outcome of interest (Survival)
- Excessive null values

3. Initial analysis deemed irrelevant

Rationale for Elimination

Objectives (Dataset 1.1)

- Take an initial pass by pulling a set of data with clean and reliable data to minimize noise
- Use simple, explainable data to understand drivers of survival rate
- Conduct basic feature engineering to combine similar columns into more predictive drivers

Source

cols = 8

Kaggle

Titanic - Machine Learning from Disaster

Source URL: https://www.kaggle.com/competitions/titanic/data

Full File: https://www.kaggle.com/datasets/vinicius150987/titanic3?resource=download

Summary Data Model Refinement Webpage Improvements

PRELIMINARY HYPOTHESES

Hypotheses

- I. Sex has a significant effect on survival likelihood
- II. Class has a significant effect on survival likelihood
- III. Family size has a significant effect on survival likelihood

Count of Survivors by Sex

Count of Survivors

by Sex

1st 2nd 3rd

Count of Survivors by Number of Family Members

Important questions to consider for future model refinement:

- Are you more likely to survive if you are alone or female?
- Are there far more women and solo travelers than not?
- Is it possible that people with missing family info are coded as 0 in data?
- What are potential reasons first-class passengers appear more likely to survive?
- What are the viable paths to survival?

Model Selection & Creation

We selected four classification models to predict the survival of Titanic passengers....

Model Results					
Model	Training Score	Testing Score	Notes		
Logistic Regression	76.7%	83.2%	 Needed to provide a higher value for max iterations 		
Random Forest	100.0%	84.0%	❖ 8 features❖ 5 informative		
Deep Neural Network	-	80.5%	Total parameters: 1,621 1st layer: 40 units; activation = relu 2nd layer: 20 units; activation = tanh 3rd layer: 20 units; activation = relu Output layer: 1 unit; activation = sigmoid		
K-Nearest Neighbors	82.6%	84.0%	 k: 5 provides the best accuracy where the classifier starts to stabilize model has highest performance at k: 11 		

WEBPAGE PATHS

- **00 Overview:** Our websites main page, featuring an overview of our project along with musical accompaniment, and links to the other routes.
- 01 Visualizations: Several tableau visualizations showing trends in the data
- **02 Models:** Descriptions of the various machine learning models attempted on the data, with their relative levels of success
- **03 Predict:** An interactive form that allows the you to enter in your information, and our machine learning model will predict whether you live or die!

00 - Overview (Homepage)

INTERACTIVE DEMONSTRATION

LEARNINGS, PAIN POINTS & FUTURE ENHANCEMENTS

Learnings/Pain Points

Future Enhancements

Learnings:

- Picking the right data saves you a ton of time in the beginning
- Hard to improve beyond 84% accuracy feature enhancements do not necessarily improve accuracy

Pain Points:

- Did not realize we needed to export the standardscaler for flask model to work
- Constant adjustments of CSS code
- Heroku deployment caused boat icon to vanish

Data Analysis:

- Find additional datasets with new features (e.g. socioeconomic features) to add and improve scores
- Create a database to hold input data to analyze participant trends
- Project what lifeboat passengers attempted to get on
- Understand if families stuck together or separated (reluctantly or willingly)
- Delve further into Random Forest documentation for parameter enhancements that might improve scores

Web Application/Visualizations:

On form page, restrict max/min values based on class selection

