

### **SECTION 9**

## **OLED DISPLAY ELECTRONICS**

HANDBOOK OF VISUAL DISPLAY TECHNOLOGY 2<sup>ND</sup> EDITION (2016)

Active Matrix for OLED Displays

Ruiging Ma

Pages 1821-1841

# **Example device performance**

CDT Yellow, Ink Jet Printed – Luminance and Efficiency



# **OLED / LCD Addressing - Compare**

| Parameter  | LCD        | OLED     |
|------------|------------|----------|
| Optical    | Modulating | Emissive |
|            | (backlit)  |          |
| Electronic | Capacitive | Diodic   |
| Drive      | Voltage    | Current  |
| Polarity   | a.c.       | d.c.     |
|            | (rms)      |          |
| Switching  | >ms        | <µs      |

# **Passive Matrix OLED Displays**

- Simplest structure for a matrix display
  - Usually ITO anodes are 'columns' and Al cathodes are 'rows' due to the large peak currents the rows must cope with
  - Only one row active at any time, rows are activated in sequence within one 'frame'
- Columns are driven, illuminating the pixels on the currently active row
- Devices are less efficient at high pulsed brightness
  - Inevitable due to higher drive voltage



Al Cathode rows
ITO Anode columns

**OLED** 

### **Passive Matrix OLED construction**



# **Passive Matrix Driving**

#### **Line-scan Sequence**

- 1. Row is selected
- 2. Current driven onto all columns (only 1 is shown)
- 3. Capacitance of column charges up
- 4. Pixel starts to emit light
- 5. Pixel on full brightness
- 6. Row is deselected



# **Passive Matrix Driving – Power Consumption**

# Four Factors Dominate

- 1. Driver compliance
- 2. Column capacitive charging
- 3. Resistive losses
- 4. Diode Power



# Passive Matrix Driving – Power Consumption

# Four Factors Dominate

- 1. Driver compliance
- 2. Column capacitive charging
- 3. Resistive losses
- 4. Diode Power

# Power Consumption per Pixel in Passive Matrix Displays



Example

Clare Micronix presented, at OLED 2001 in San Diego, power consumption data for a 100 x 80 display panel driven with their MXED series of OLED/PLED passive matrix drivers.



#### **Passive Matrix Drive Scheme**

The simplest scheme to examine is the commonly use current driven Pulse Width Modulation (PWM)

- As the OLED is always driven with the same current density, linearity is good.
- The use of pre-charge can remove the charge-up time resulting in superb linearity.
- many discernable grey-scale levels can be achieved.
- Uniformity is also good as the use of current drive is insensitive to variations in threshold voltage.
- At the end of each line period, the charge is removed from the display, thus leading and trailing edges are not susceptible to the cross-talk that can occur.
- HOWEVER, the continual charge-up and discharge can result in a high power consumption.

#### **Passive-Matrix enhancements**

#### Skipping blank lines

- There are often blank rows on a screen, for example between lines of text.
- Skipping blank rows effectively reduces the multiplex ratio and therefore the power consumption per pixel.

A built-in reduced multiplex 'screensaver' or 'standby' mode

 Displaying, say, only the centre 16 rows, or a logo only 16 rows high scrolling over the screen.

|                         | Standard | Line skip |
|-------------------------|----------|-----------|
| All on 96x64 monochrome | 118mW    |           |
| Screen of text          | 41mW     | 36mW      |
| Screen-saver mode       | 12mW     | 5mW       |

### **Active Matrix Displays**

TFT (Thin Film Transistor) active matrix displays

- DC driven pixellated displays scalable up to large area
- Monochrome and full colour already demonstrated

#### **PLED TFT Pixel Circuit**



#### **PLED TFT Cross-section**



MMXXII MDP - S9 OLED Electronics Page 11

#### **Active Matrix OLED**

#### **Active matrix driving of OLED displays allows**

Longer, less intense current pulse in the pixel

#### Leading to

- Ease of design of driver circuits
- Reduction in I<sup>2</sup>R power dissipation
- Reduction in IR voltage drop
- Improvement in OLED efficiency / reduction in OLED power

Pixel circuits for LCD are designed to supply a voltage (analog or digital)

Pixel circuits for OLED are usually designed to supply a current

This involves either

- Sending a voltage and converting it to a current
- Sending a current

These circuits are more complex and more prone to manufacturing variation

# **AM-OLED Backplane Technologies**

|                                | LTPS           | Oxide (IGZO)            |
|--------------------------------|----------------|-------------------------|
| Type                           | CMOS           | NMOS                    |
| TFT structure                  | Coplanar       | Inverted staggered w ES |
| Mobility (cm <sup>2</sup> /Vs) | 50~100         | 10~30                   |
| Process                        | Laser          | Sputtering              |
| Uniformity                     | Issue          | OK                      |
| Stability                      | Excellent      | Issue                   |
| <b>Environment sensitivity</b> | Low            | High                    |
| Off current                    | Low            | Extremely low           |
| Pixel circuit                  | >5 T, 1~2C     | 2T1C, 5T2C              |
| Compensation                   | In-pixel       | External                |
| Manufacturability              | Matured        | Maturing                |
| Run-to-run reproducibility     | Excellent      | Issue                   |
| Mask steps                     | 8~11           | 4~5                     |
| Scaling up                     | Difficult Good |                         |
| Cost                           | High           | Low                     |

MMXXII MDP - S9 OLED Electronics Page 13

# **Simple Pixel Circuit**



MMXXII

# **Voltage Control (Source Follower)**

- Row is selected
- Driver TFT gate voltage set by column driver
- Row select is off, gate voltage held by capacitor until next frame
- Very simple (low TFT count)
- I<sub>DS</sub> varies with V<sub>G</sub><sup>2</sup> (gamma 2 control by default)
- Sensitive to TFT variations (can be compensated) and LEP variations
- V<sub>DS</sub> can be high (4-7V)



#### **AMOLED limitations**

### The limitations of <u>simple</u> AMOLED

No allowance for

- OLED process variation
  - Batch variability
- TFT process variation
  - Fixed pattern noise
- TFT aging & OLED luminance decay
  - Lifetime reduction
  - Image sticking
  - Differential decay of RGB

# Pulse Coded Modulation (PCM) Voltage Drive

- Address period split into sub-frames
- Drive TFT acts as a switch
- OLED effectively voltage controlled
- Not sensitive to TFT properties
- V<sub>DS</sub> low (~0.5V) efficient operation
- Accelerated pixel aging LEP V<sub>t</sub> increases with time reduce operating current
- Very susceptible to burn-in and differential aging
- Image artifacts possibly introduced
- Higher data rates



# **Threshold Voltage Correction**

Selected with 0V data, C1 off, C2 on

C1 turned on, Discharging the gate voltage to threshold

C2 turned off then C1, holding the threshold at the gate

Any voltage applied by the column driver is now offset by the threshold voltage

- 2 large TFTs
- V<sub>DS</sub> high (4V+0.5V)



# **Current Control (Sarnoff method)**

- Row is selected, diverting the drive current into the column driver
- Required drive current is sunk by the column driver.
- Any difference in the currents flows into the capacitor, modifying the drive voltage until the current is correct
- Row is deselected, redirecting the drive current through the LEP diode



- Linear current drive, insensitive to TFT variation.
- Complex, high TFT count, large V<sub>DS</sub> (4V+4.5V)
- 3 of the TFTs must cope with max current

# **Amplifying Current Mirror**

In use primarily by Sony

A similar feedback mechanism (to the Sarnoff circuit) sets the current on a 'mirror' TFT

The mirror TFT is geometrically scaled by a known factor (k) to the drive TFT

The drive TFT will exactly pass k times the mirror TFT current for a given gate voltage

- Three small TFTs and low currents on the column line
- Very linear and demonstrated on 13" diagonal display
- V<sub>DS</sub> still ~4V



### Charge programmed optical feedback

Very simple circuit

A charge is put on the capacitor
The photodiode will discharge
the capacitor until the gate
voltage drops sufficiently to turn
off the OLED

The light output should be proportional to the charge Sensitive to ambient light.

OLED is pulsed – less efficient Long tail of pulse can cause nonlinearities



### **Current programmed optical feedback**

- Row is selected
- Column driver requests photocurrent
- Current difference flows into the capacitor
- Row is deselected, holding the drive level on the storage cap
- Developed by CDT
- Medium TFT count, only one TFT needs to handle max current
- Insensitive to TFT and LEP variation, depends only on photodiode sensitivity – highly linear
- Automatically compensates for nonuniformities and aging



# **Summary of OLED Drive schemes**



# **OLED Drive Circuit and Process Variability**

| CAUSE AND<br>EFFECT                          | Effect of TFT<br>Process<br>variation | Effect of OLED process variation | Reduced lifetime due to resistive effects | Reduced lifetime due to reduced conversion efficiency |
|----------------------------------------------|---------------------------------------|----------------------------------|-------------------------------------------|-------------------------------------------------------|
| Voltage program<br>Voltage drive             | V small                               | Medium                           | Medium                                    | Medium                                                |
| Voltage program<br>Current drive             | Medium                                | Small                            | Very Small                                | Medium                                                |
| Voltage program VT compensated current drive | Small                                 | Small                            | Very Small                                | Medium                                                |
| Current programmed current drive             | Small                                 | Small                            | Very Small                                | Medium                                                |
| Optical feedback                             | Medium                                | Small                            | Very small                                | Very small                                            |