Project C

Raw data

Readme results folder

Folder structure:

results/{dry, wet}/{crf}/{segments}/{sample}/{Algo}

Then in every folder you will find:

 $solution.csv \rightarrow containing the parameters of the best solution for each trial.$

 $purity.csv \rightarrow containing three columns with the peak purity, time of first eluting compound and time of last eluting compound respectively, for each trial.$

 $runtime.csv \rightarrow contains$ a line for each trial, with the cumulative runtime for each iteration on each line. For the total runtime of the trial, take the last element.

 $score.csv \rightarrow contains$ a line for each trial with the score at each iteration. Note: CMA has negative values in score.csv (it assumes minimization and the negative values were stored).

 $best_solution_chrom_x.png \rightarrow contains$ a plot of the chromatogram of the best solution for each trial.

Note that GridSearch looks slightly different, as it is run on a grid, it only contains the total runtime, single best score, single best purity/min_time/max_time.

Information regarding number of iterations

Every method has been run for 10 trials with different random seeds.

Bayesian optimization → Ran for 200 iterations + 10 initial datapoints

Random search → Ran for 10010 iterations/function evaluations

GenAlgo/DiffEvo/CMA → Ran for 1001 iterations, but use a population of 10, so 10010 function evaluations, runtime and score as saved per iteration. runtime without the first random initialization. So scores.csv has length 1001, runtime.csv has length 1000.

CMA \rightarrow ran for 10000 function evaluations, first 10 of population not plotted GridSearch ran for:

Project C 1

```
• 1 segments \rightarrow N=10 (10 ** (2 + 2)) = 10000 function evaluations
```

• 2 segments \rightarrow N =5 (5 ** (4 +2)) = 15625 function evaluations

• 3 segments \rightarrow N = 4 (4 ** (6 +2)) = 65536 function evaluations

• 4 segments \rightarrow N = 3 (3 ** (8 +2)) = 59049 function evaluations

Grid search is restricted to (N ** (2*segments + 2), so it was either way too big or too small compared to other budgets

Processed data

Purity files

This data should be easier to digest and easier to make plots with.

purity_mintime_maxtime_averaged_over_trials.csv

K < 1-10 > > 3 860 rows x 10 columns pd.Dataframe #										
: wet	t :	crf :	seg :	algo :	mean_purity :	mean_min_time :	mean_max_time :	std_purity :	std_min_time :	std_max_time :
0 dry	у	crf	1segments	BayesOpt	28.568620	2.688542	1.613462e+01	0.238213	0.535043	1.478028e+00
1 dry	у	crf	2segments	BayesOpt	28.904629	2.637463	1.725195e+01	0.279516	0.510654	2.819629e+00
2 dry	у	crf	3segments	BayesOpt	28.942263	2.863705	1.729429e+01	0.297781	0.749652	2.611836e+00
3 dry	у	crf	4segments	BayesOpt	28.886997	2.884788	1.752916e+01	0.274857	1.003067	3.440033e+00
4 wet	t	crf	1segments	BayesOpt	11.483804	2.447535	1.125639e+01	1.951787	1.492036	4.879604e+00
5 wet	t	crf	2segments	BayesOpt	10.374934	3.892656	1.340918e+01	2.741786	2.897682	4.739754e+00
6 wet	t	crf	3segments	BayesOpt	11.019474	3.799124	1.422046e+01	2.541421	3.295316	5.894289e+00
7 wet	t	crf	4segments	BayesOpt	11.077480	4.279796	1.396758e+01	2.836316	3.739170	6.352412e+00
8 wat	+	nrod of kais	1comments	Raveennt	3 244524	57 207135	2 174917△+86	2 791811	37 551032	4 A52492a+A4

Here the mean and std over the columns of purity.csv is taken over all of the 10 trials for each combination.

purity_mintime_maxtime_averaged_over_trials_and_samples.csv

Here an additional mean and std is taken over all of the samples.

Scores and runtime files

Within the folder structure:

results/{dry, wet}/{crf}/{segments}/{sample}/{Algo}

In every folder you will find:

best so far.csv

These files are the same as *score.csv*, but are now made strictly increasing, and are interpolated so they all have the same length, **so way easier to make plots with**.

Project C 2

runtime_ext.csv

Same files as runtime, but now all agorithms with the same length for easier plotting. runtime_mean.csv, mean runtime over the 10 trials runtime_std.csv, std of runtime over the 10 trials.

Notebooks

data_preprocessing.ipynb contains the code that was used do make the files discussed in the Processed section.

paper_figures.ipynb contains the code to make some example plots, this probably is a good starting point for our discussion/analysis.

Project C 3