Databases

sql || no-sql

what is a database?

- it is a collection of data, typically describing the activities of one (or more related) application(s)
- the goal is to organize data in a way that facilitates efficient <u>retrieval</u> and <u>modification</u>
- note: the data maintained by a system are much more important/valuable than the system itself

 A database management system (DBMS) is a software program to assist in maintaining and utilizing large databases

advantages of using a dbms

- data independence
- efficient data access
- data integrity and security
- data administration
- concurrent access and crash recovery
- reduced application development time

more on data independence

- Idea: application programs are isolated from changes in the way the data is structured & stored.
 - Indirect access supports:
 - advanced data structures
 - data restructuring
 - distribution and load balancing,
 - •
 - all without changes to applications
 - Note: A very important advantage of using a DBMS!

more on data independence

- Logical: applications immune from changes in the logical structure of the data.
 - Example:
 - Student (name: string, major: string, DOB: integer)
 - •
 - •
- Physical: applications immune from physical storage details.
 - Such as the file structure and the choice of indexes

more on relational model

Idea. All information is organized in flat relations.

* Features:

- very simple and clean data model
- often matches how we think about data
- abstract model that underlies SQL, the most popular database language
- powerful and declarative query/update languages
- semantic integrity constraints

transaction

A transaction is any one execution of a process in a DBMS, which is seen as a series of actions—such as reads and writes, followed by a commit or an abort.

- Properties of transactions: (ACID)
 - Atomic: either all actions or nothing are carried out.
 - Consistency: must preserve the DB constraints.
 - Isolation: understandable without considering other transactions.
 - Durability: once committed, the changes made are permanent.

a relation is a table

more tabular form

FOOD

<u>Name</u>	Cuisine
Pizza	Italian
Stroganoff	Russian
Poutine	Canadian

STUDENT

<u>ID</u>	Name	Major
1022083920	Adam	Math
901183280	Saniya	CS

LIKES

<u>Student</u>	<u>Food</u>
1022083920 1022083920	Pizza Poutine
901183280	Pizza

that's why relations are often called "tables".

SQL examples

```
❖ INSERT INTO food VALUES ( "Pizza", "Canadian" );
♦ UPDATE food SET cuisine = "Italian"
     WHERE name = "Pizza":
❖ SELECT name FROM food
     WHERE cuisine = "Russian";
❖ SELECT cuisine, COUNT(*) AS "count"
     FROM food
     GROUP BY cuisine;
❖ SELECT DISTINCT cuisine
     FROM food,
              (SELECT food as name FROM likes, student
               WHERE major="CS") csLikes
     WHERE food.name=csLikes.name;
```