Analyse statistique de l'influence des composantes physiologiques et comportementales sur la fréquence cardiaque

Présentation des données

Ran

Ran

Sat

alpha **由** 0.1

Gender

Echantillons des deltas d'hommes et de femmes en fonction de la course ou non.

Expérience mesurant la fréquence cardiaque après un effort d'1min.

Composantes comportementales et physiologique

0.1							
	> summary(eval7))					
	Height	Weight	Age	Gender	Smokes	Alcohol	Exercise
ender	Min. :140.0	Min. : 41.00	Min. :18.00	Min. :1.000	Min. :1.0	Min. :1.000	Min. :1.000
Female	1st Qu.:166.2	1st Qu.: 57.00	1st Qu.:19.00	1st Qu.:1.000	1st Qu.:2.0	1st Qu.:1.000	1st Qu.:2.000
remale	Median:173.0	Median : 63.00	Median :20.00	Median :1.000	Median :2.0	Median :1.000	Median :2.000
Male	Mean :173.4	Mean : 66.74	Mean :20.56	Mean :1.464	Mean :1.9	Mean :1.382	Mean :2.209
	3rd Qu.:180.0	3rd Qu.: 75.00	3rd Qu.:21.00	3rd Qu.:2.000	3rd Qu.:2.0	3rd Qu.:2.000	3rd Qu.:3.000
	Max. :195.0	Max. :110.00	Max. :45.00	Max. :2.000	Max. :2.0	Max. :2.000	Max. :3.000
	Ran	Pulse1	Pulse2	Year	IMC	delta	
	Min. :1.000	Min. : 47.00	Min. : 56.0	Min. :93.00	Min. :16.59	Min. :-12.0	00
	1st Qu.:1.000	1st Qu.: 68.00	1st Qu.: 72.0	1st Qu.:95.00	1st Qu.:19.51	1st Qu.: -2.0	00
	Median :2.000	Median : 76.00	Median: 84.0	Median:96.00	Median :21.58	Median: 4.0	00
	Mean :1.582	Mean : 75.69	Mean : 96.8	Mean :95.63	Mean :22.01	Mean : 21.1	11

1) Quels paramètres influencent la fréquence cardiaque ?

```
3
```

```
> breaks.aov <- aov(delta ~ Gender+Age+Smokes+Alcohol+Exercice+
+ Ran+Height*Weight*IMC)</pre>
```

> anova(breaks.aov)

Analysis of Variance Table

Response: delta

Signif. codes:

	Df	Sum Sq	Mean Sq	F value	Pr(>F)	
Gender	1	9	9	0.0445	0.83335	
Age	1	735	735	3.6891	0.05780	
Smokes	1	1041	1041	5.2249	0.02451	*
Alcohol	1	459	459	2.3010	0.13265	
Exercice	2	102	51	0.2568	0.77409	
Ran	1	70789	70789	355.2119	< 2e-16	***
Height	1	437	437	2.1952	0.14179	
Weight	1	79	79	0.3961	0.53066	
IMC	1	1029	1029	5.1610	0.02538	*
Height:Weight	1	162	162	0.8146	0.36907	
Height: IMC	1	13	13	0.0664	0.79714	
Weight: IMC	1	307	307	1.5413	0.21752	
Height: Weight: IMC	1	52	52	0.2586	0.61229	
Residuals	94	18733	199			

H0 : la variabilité de delta suit la même loi normal que les autres variables.

H1 : au moins une distribution dont la moyenne s'écarte des autres moyennes

Accepte H1 : Facteurs de variabilité de la variance delta : Age Smokes Ran

```
> breaks.aov <- aov(delta ~ Age+Smokes+Ran)</p>
> anova(breaks.aov)
Analysis of Variance Table
Response: delta
           Df Sum Sq Mean Sq F value Pr(>F)
Age
                 744
                               3.7334 0.05603 .
                1024
                        1024
Smokes
                               5.1377 0.02546 *
               71257
                       71257 357.6208 < 2e-16 ***
Residuals 105
                         199
               20922
```

m¯

2) Existe-t-il une différence du pouls au repos selon le mode de vie ?

H0 : μ 1 = μ 2 : la moyenne des pouls 1 chez les fumeurs et la moyenne du pouls1 chez les non fumeurs sont égales

H1 μ1≠μ2 : les moyennes sont différentes chez les chez les fumeurs et chez les non fumeurs

> var.test(delta_SmokesYes,delta_SmokesNo)

F test to compare two variances

data: $delta_SmokesYes$ and $delta_SmokesNo$ F = 0.9332, num df = 66, denom df = 41, p-value = 0.7893 alternative hypothesis: true ratio of variances is not equal to 1 95 percent confidence interval:

0.5245769 1.6003353 sample estimates: ratio of variances

0.9331991

On ne rejette pas H0

pvalue= 0.19

Alcool:

pvalue= 0.46

Normalité? Egalité des variances? Test à effectuer Test paramétrique?

	Oui	Student	Oui
Oui			
	Non	Welch	Oui
Non	$Ignor\acute{e}$	Wilcoxon	Non


```
> prop.test(c(P1BAS,P1HAS),c(P1BAS+P1BAR,P1HAS+P1HAR))
       2-sample test for equality of proportions with continuity correction
data: c(P1BAS, P1HAS) out of c(P1BAS + P1BAR, P1HAS + P1HAR)
X-squared = 0.35867, df = 1, p-value = 0.5492
alternative hypothesis: two.sided
                                                     > MP
95 percent confidence interval:
 -0.1951133 0.4559829
sample estimates:
                                                     [1,]
   prop 1
            prop 2
                                                     [2,]
0.6521739 0.5217391
> MP <- rbind(c(P1BAS, P1BAR), c(P1HAS, P1HAR))
> # Fisher
> fisher.test(MP)
        Fisher's Exact Test for Count Data
data: MP
p-value = 0.5455
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
                                         > MP
   0.1087056 234.7561625
                                                [,1] [,2]
sample estimates:
                                         [1,]
                                                        17
odds ratio
   2.97405
                                                  33
                                                         29
```

H0 : les variables sont indépendantes

H1: Les variables sont liées

- Test du Khi deux pour la Comparaison de pulse1 avant et après 95
- Test de Fisher pour Comparaison de **pulse1 avant et après 95 chez les fumeurs** car conditions d'application du Khi2 non respecté (effectif calculé sous $H_0: A_{ii} \ge$
- → Aucun sous groupe ne montre un changement de proportions de coureurs après changement de protocol

Perspectives et conclusion

- 1. L'âge, Fumer ou Courir influencent la variabilité de la FC après effort
- Pas de différence significative sur le pouls au repos entre les consommateurs réguliers de tabac, d'alcool ou d'exercice
- 3. Le changement de protocol n'a pas mis en évidence des sous-groupes de population ayant introduit des biais d'autosélection

<u>Problèmes</u>

- → Manque d'effectif
- → Manque de reproductibilité

Perspectives

- → Poser des seuil de positivité
- → Prédire la FC après effort

