Partie I : Approximation décimale d'un réel

- 1. Soient x un nombre réel et n un entier naturel. Montrer que $10^{-n} |10^n x|$ est une approximation décimale de x à 10^{-n} près. Cette approximation est-elle par défaut ou par excès?
- 2. Soit x un réel strictement positif. On définit $a_0 = |x|$, puis pour tout $n \in \mathbb{N}^*$, $a_n = \lfloor 10^n x \rfloor - 10 \lfloor 10^{n-1} x \rfloor$. Pour tout $n \in \mathbb{N}$, on note $S_n = \sum_{k=0}^n a_k 10^{-k}.$ **a)** Montrer que pour tout $n \in \mathbb{N}^{\star}, a_n \in \llbracket 0, 9 \rrbracket.$

 - **b)** Montrer que la suite $(S_n)_{n\in\mathbb{N}}$ est monotone et convergente.
 - c) Montrer que pour tout $n \in \mathbb{N}$, $S_n = 10^{-n} |10^n x|$.
 - **d)** En déduire que la suite $(S_n)_{n\in\mathbb{N}}$ converge vers x.
- e) Montrer par l'absurde que l'ensemble $\{n \in \mathbb{N} ; a_n < 9\}$ est infini. La suite $(a_n)_{n\in\mathbb{N}}$ est appelée le développement décimal propre de x.
- 3. On pourra généraliser les résultats de cette partie en remplaçant 10 par un entier naturel supérieur ou égal à 2.

Partie II: Construction à partir du développement décimal

Soit $(a_n)_{n\in\mathbb{N}}$ une suite d'entiers positifs vérifiant

- (i). pour tout $n \in \mathbb{N}^*$, $a_n \leq 9$,
- (ii). $\{n \in \mathbb{N} : a_n < 9\}$ est infini.

Pour tout $n \in \mathbb{N}$, on pose $S_n = \sum_{k=0}^n a_k 10^{-k}$.

4. Montrer que la suite $(S_n)_{n\in\mathbb{N}}$ est croissante et majorée. Montrer que sa limite x est un réel positif.

5. Soit $n \in \mathbb{N}$. Pour tout p > n, on pose $U_p = \sum_{k=n+1}^p a_k 10^{-k}$ et $V_p =$

- $\sum_{k=n+1}^{p} 9 \cdot 10^{-k}.$ a) Montrer que la suite (U_p) converge vers $x S_n$.
- **b)** Montrer qu'il existe un entier p > n tel que pour tout entier naturel $N \geqslant p$, il existe un entier q > N tel que $V_q - U_q \geqslant 10^{-q} + 10^{-p}$. En déduire que $x - S_n < 10^{-n}$.
 - **c)** En déduire que $S_n = 10^{-n} |10^n x|$.

Partie III : Développement décimal périodique et nombres rationnels

Nous allons montrer dans cette partie qu'un réel positif x est rationnel si et seulement si son développement décimal est périodique à partir d'un certain rang.

6. Soit x un réel positif et $(a_n)_{n\in\mathbb{N}}$ son développement décimal. On suppose qu'il existe deux entiers naturels non nuls N et q tels que

pour tout
$$n \geqslant N$$
, $a_{n+q} = a_n$. On pose $r = \sum_{k=0}^{N-1} a_k 10^{-k}$ et $T_p = a_{n-1}$

$$\sum_{k=0}^{q-1} a_{N+pq+k} 10^{-(N+qp+k)}.$$

$$\sum_{k=0}^{q-1} a_{N+pq+k} 10^{-(N+qp+k)}.$$
a) On pose $s = \sum_{k=0}^{q-1} a_{N+k} 10^{-k}$. Montrer que $T_p = 10^{-(N+pq)} s$ puis que

la suite $(\sum_{n=1}^{n} T_p)_{n \in \mathbb{N}}$ converge.

- **b)** En déduire que x est rationnel.
- 7. Calculer, sans calculatrice, le développement décimal de 22/7 et vérifier la proprété annoncée.
- 8. Soit x = p/q un nombre rationnel positif. Notons r_0 le reste de la division euclidienne de p par q et pour tout $k \in \mathbb{N}$, r_{k+1} le reste de la division euclidienne de $10r_k$ par q.
- a) Montrer par récurrence que pour tout $k \in \mathbb{N}, \frac{p}{q} = a_0 + a_1 10^{-1} +$ $\cdots + a_k 10^{-k} + \frac{r_k}{a} 10^{-k}$.
- **b)** En remarquant que le nombre de restes possibles $\{r_k, k \in \mathbb{N}\}$ est fini, montrer que la suite $(a_n)_{n\in\mathbb{N}}$ est périodique à partir d'un certain rang.