Случайные процессы

3 сентября 2014 г.

Глава 1

Азы

1.1 Определение случайного процесса

Определение 1.1.1: Случайный процесс

Случайные процесс с параметрическим множеством T — совокупность случайных величин ξ_t , зафиксированных элементами t множества T

То есть, случайный процесс является отображением из декартового произведения множества элементарных исходов и параметрического множества на множество действительных чисел

$$\xi: \Omega \times T \to \mathbb{R}$$

Также можно представить случайный процесс как случайную величину в вероятностном пространстве

$$(\Omega \times T, \mathfrak{F} \otimes \mathfrak{B}(\mathbb{R}), \mathbb{P}),$$

где множество «случайных событий» построено следующим образом

$$\forall t \in T, \omega \in \Omega : \{(t, \omega) \mid \xi_t(\omega) \in \Delta\} \in \mathfrak{F} \otimes \mathfrak{B}(\mathbb{R})$$

Замечание 1.1.2: Случайный процесс с дискретным временем

Если $T=\mathbb{N}$ или $T=\mathbb{Z},$ то ξ — случайный процесс с дискретным временем.

Замечание 1.1.3: Случайный процесс с непрерывным временем

Если же $T=[0;+\infty],\, T=[a;b]$ или $T=\mathbb{R},$ то ξ — случайный процесс с непрерывным временем.

Глава 1. Азы

Определение 1.1.4: Траектория случайного процесса

Для фиксированного $\omega_0 \in \Omega$ функция $\xi(\omega_0)$ назыввается реализацией или траекторией случайного процесса, соответствующей исходу ω_0

Определение 1.1.5: Сечение случайного процесса

Если $t_0 \in T$ фиксировано, то случайная величина ξ_{t_0} называется сечением случайного процесса в точке t_0

Пример 1.1.6

Пусть $\xi_{n\geq 1}$ — последовательность случайных величин. Тогда ξ — случайный процесс с параметрическим множеством $\mathbb N$

Пример 1.1.7

Рассмотрим процесс появления случайного события с параметрическим множеством $T=[0;+\infty)$. Пусть τ — неотрицательная случайная величина, а случайный процесс ξ определён следующим образом

$$\xi_{t}(\omega) = \begin{cases} 1, & t \geq \tau(\omega) \\ 0, & t < \tau(\omega) \end{cases}$$

или же, что то же

$$\xi_t = \mathbb{1}\{\tau \le t\}$$

Проверим, что ξ_t действительно является случайной величиной при любом $t \in T.$ Рассмотрим множество A

$$A = \{ \omega \mid \tau(\omega) \le t \}$$

Оно является случайным событием по определению, так как au является случайной величиной. Рассмотрим прообразы индикатора случайного события A

$$\{\mathbbm{1}_A \le x\} = \begin{cases} \emptyset, & x < 0 \\ \overline{A}, & 0 \le x < 1 \\ \Omega, & x \ge 1 \end{cases}$$

Это значит, что

$$\xi_t = \mathbb{1}\{\tau \le t\}$$

действительно является случайной величиной.

Пример 1.1.8

1.1. Определение случайного процесса

5

Рис. 1.1: Траектория случайного процесса, соответствующая элементарному исходу ω_0 в примере 1.1.7

Пускай случайный процесс определён следующим образом

$$\xi_t = t \cdot \eta,$$

где случайная величина η имеет равномерное распределение на отрезке [0;1]

$$\eta \sim U\left(\left[0;1\right] \right) ,$$

а параметрическое пространство — тоже отрезок [0;1]

$$t \in [0;1] = T$$

Предметный указатель

Оглавление

1	Аз в	и Определение случайного процесса						٠			3
Предметный указатель										7	
O i	глав.	ление									9