

MM54HC153/MM74HC153 Dual 4-Input Multiplexer

General Description

This 4-to-1 line multiplexer utilizes advanced silicon-gate CMOS technology. It has the low power consumption and high noise immunity of standard CMOS integrated circuits. This device is fully buffered, allowing it to drive 10 LS-TTL loads. Information on the data inputs of each multiplexer is selected by the address on the A and B inputs, and is presented on the Y outputs. Each multiplexer possesses a strobe input which enables it when taken to a low logic level. When a high logic level is applied to a strobe input, the output of its associated multiplexer is taken low.

The 54HC/74HC logic family is functionally and pinout compatible with the standard 54LS/74LS logic family. All inputs

are protected from damage due to static discharge by internal diode clamps to V_{CC} and ground.

Features

- Typical propagation delay: 24 ns
- Wide power supply range: 2V-6V
- Low quiescent current: 80 µA maximum (74HC Series)
- Low input current: 1 μA maximum
- Fanout of 10 LS-TTL loads

Connection Diagram

Dual-In-Line Package

TL/F/5107-1

Order Number MM54HC153 or MM74HC153

Truth Table

Select Inputs			Data l	nputs	Strobe	Output	
В	Α	CO	C1	C2	C3	G	Υ
Х	Х	Х	Χ	Х	Χ	Н	L
L	L	L	Х	Х	Х	L	L
L	L	Н	Х	Х	Х	L	Н
L	Н	Х	L	Х	Х	L	L
L	Н	Х	Н	Х	Х	L	Н
Н	L	Х	Х	L	Х	L	L
Н	L	Х	Х	Н	Х	L	Н
Н	Н	X	Х	Х	L	L	L
Н	Н	Х	Х	Х	Н	L	Н

Select inputs A and B are common to both sections.

H = high level, L = low level, X = don't care.

Absolute Maximum Ratings (Notes 1 & 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage (V _{CC})	-0.5 to $+7.0$
DC Input Voltage (V _{IN})	-1.5 to $V_{CC} + 1.5$
DC Output Voltage (V _{OUT})	-0.5 to $V_{CC} + 0.5$
Clamp Diode Current (I _{IK} , I _{OK})	± 20 m/
DC Output Current, per pin (IOUT)	± 25 mA
DC V _{CC} or GND Current, per pin (I _{CC})	± 50 mA
Storage Temperature Range (T _{STG})	$-65^{\circ}\text{C to } + 150^{\circ}\text{C}$

Power Dissipation (PD)

(Note 3) 600 mW S.O. Package only 500 mW

Lead Temperature (T_L)
(Soldering 10 seconds

(Soldering 10 seconds) 260°C

Operating Conditions

Supply Voltage (V _{CC})	Min 2	Max 6	Units V
DC Input or Output Voltage (V_{IN}, V_{OUT})	0	V _{CC}	V
Operating Temp. Range (T _A) MM74HC MM54HC	-40 -55	+85 +125	°C
$ \begin{array}{ll} \text{Input Rise or Fall Times} \\ (t_{r},t_{f}) & V_{CC}\!=\!2.0V \\ & V_{CC}\!=\!4.5V \\ & V_{CC}\!=\!6.0V \end{array} $		1000 500 400	ns ns ns

DC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions	v _{cc}	T _A = 25°C		74HC T _A = -40 to 85°C	54HC T _A = -55 to 125°C	Units
				Тур		Guaranteed		
V _{IH}	Minimum High Level Input Voltage		2.0V 4.5V 6.0V		1.5 3.15 4.2	1.5 3.15 4.2	1.5 3.15 4.2	V V V
V _{IL}	Maximum Low Level Input Voltage**		2.0V 4.5V 6.0V		0.5 1.35 1.8	0.5 1.35 1.8	0.5 1.35 1.8	V V V
V _{OH}	Minimum High Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 20 \mu A$	2.0V 4.5V 6.0V	2.0 4.5 6.0	1.9 4.4 5.9	1.9 4.4 5.9	1.9 4.4 5.9	V V V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 4.0 \text{ mA}$ $ I_{OUT} \le 5.2 \text{ mA}$	4.5V 6.0V	4.2 5.3	3.98 5.48	3.84 5.34	3.7 5.2	V V
V _{OL}	Maximum Low Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 20 \mu A$	2.0V 4.5V 6.0V	0 0 0	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	V V V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 4.0 \text{ mA}$ $ I_{OUT} \le 5.2 \text{ mA}$	4.5V 6.0V	0.2 0.2	0.26 0.26	0.33 0.33	0.4 0.4	V V
I _{IN}	Maximum Input Current	V _{IN} =V _{CC} or GND	6.0V		±0.1	±1.0	±1.0	μΑ
Icc	Maximum Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND $I_{OUT} = 0 \mu A$	6.0V		8.0	80	160	μΑ

Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.

Note 3: Power Dissipation temperature derating — plastic "N" package: -12 mW/°C from 65°C to 85°C; ceramic "J" package: -12 mW/°C from 100°C to 125°C.

Note 4: For a power supply of 5V \pm 10% the worst case output voltages (V_{OH}, and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC}=5.5V and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current (I_{IN}, I_{CC}, and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0V values should be used.

Note 2: Unless otherwise specified all voltages are referenced to ground.

^{**}V_{IL} limits are currently tested at 20% of V_{CC}. The above V_{IL} specification (30% of V_{CC}) will be implemented no later than Q1, CY'89.

AC Electrical Characteristics V_{CC}=5V, T_A=25°C, C_L=15 pF, t_r=t_f=6 ns

Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Units
t _{PHL} , t _{PLH}	Maximum Propagation Delay, Select A or B to Y		26	30	ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay, any Data to Y		20	23	ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay, Strobe to Y		8	15	ns

AC Electrical Characteristics $C_L = 50 \text{ pF}, t_r = t_f = 6 \text{ ns}$ (unless otherwise specified)

Symbol	Parameter	Conditions	v _{cc}	T _A =25°C		74HC T _A = -40 to 85°C	54HC T _A = -55 to 125°C	Units
				Тур		Guarantee	Guaranteed Limits	
t _{PHL} , t _{PLH}	Maximum Propagation Delay, Select A or B to Y		2.0V 4.5V 6.0V	131 29 25	158 35 30	198 44 38	237 52 45	ns ns ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay, any Data to Y		2.0V 4.5V 6.0V	99 22 19	126 28 23	158 35 29	189 42 35	ns ns ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay, Strobe to Y		2.0V 4.5V 6.0V	50 12 10	86 19 16	108 24 20	129 29 24	ns ns ns
t _{TLH} , t _{THL}	Maximum Output Rise and Fall Time		2.0V 4.5V 6.0V	30 8 7	75 15 13	95 19 16	110 22 19	ns ns ns
C _{IN}	Maximum Input Capacitance			5	10	10	10	pF
C _{PD}	Power Dissipation Capacitance	(Note 5)(per package) Outputs Enabled Outputs Disabled		90 25				pF pF

Note 5: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} \ V_{CC}^2 \ f + I_{CC} \ V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} \ V_{CC} \ f + I_{CC}$

Logic Diagram

TL/F/5107-2

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor

National Semiconducto Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

National Semiconductor Europe

Fax: (+49) 0-180-530 85 86 Fax: (+49) U-18U-35U oo oo Email: onjwege tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tei: (+49) 0-180-532 78 32 Français Tei: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80

National Semiconductor Hong Kong Ltd.
13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon

Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor Japan Ltd.
Tel: 81-043-299-2309
Fax: 81-043-299-2408