

NUC976/977 Thermal Report

July 28, 2015

Nuvoton Technology Corp.

we innovate **NUVOTON**

Introduction

- In this report, we present the thermal characteristic for 128pin Low-Profile Quad Flat Packages with stack die (SLQFP 128) mounted on 4-layer PCB using the Finite Element Modeling (FEM) method.
- The junction-to-ambient thermal resistance is utilized to evaluate thermal performance for this package and then to predict the power dissipation capability by given ambient and maximum junction temperatures.

Confidential 2

Result Summaries

Thermal Performance of SLQFP under Forced Convection

Thermal Performance of SLQFP under Natural Convection

Conclusion

- From the simulation results, we can obtain the chip junction temperatures (T_J) and the case temperatures (T_C).
- Since the input power (P) and ambient temperature (T_A) are controlled variables, we can calculate the shown above thermal resistance of θ_{JA} according to $\theta_{JA} = (TJ TA)/P$
- Assuming ambient temperature of 65°C and maximum junction temperature of 125°C, we can predict the power dissipation capability of this package as below table:

Air Flow (m/s)	0	1	2	3	
Power Dissipation (watt)	1.78	2.02	2.14	2.22	

Assembly Condition

Package	Type		128-pin SLQFP				
	Device Name		NUC976DK62Y/ NUC977DK62Y				
	L/F Drawing No.		L37527 Rev.C				
	Dimension (L x W)		$14 \times 14 \text{ mm}^2$				
	Chip Size	Top die	4.47 x 5.2 x 0.1524 mm (176 x 204 x 6 mil)				
		Bottom die	5.37 x 4.08 x 0.1524 mm (211 x 160 x 6 mil)				
	Die Pad Size		7.92 x 7.58 mm ² (312 x 298 mil ²)				
	Thickness		1.4 mm				
	Die Attached Thickness		0.0254 mm				
	PCB Dimension (L x W)		3" x 4.5"				
<u> </u>	PCB Thickness		1.6 mm				
	Number of Cu Layer-PCB		4 layers				

Confidential 5

Thermal Modeling Method

A. Simulation Conditions

	Top die: 0.6 W Bottom die: 0.6W		
Test Board (PCB)	4 layers		
Control Condition	Air Flow = $0,1, 2, 3 \text{ m/s}$		

B. Material Property

Item		Material	Thermal Conductivity K (w/m-k)		
Package	Die	Silicon	147		
	Lead Frame	CDA7025	168		
	Silver Paste	1033BF	1.0		
	Mold Compound	G631	0.9		
PCB		FR4	0.2		
		Cu	400		

Confidential 6

we innovate

Appendix -Terminology

- TJ: the maximum junction temperature;
- TA: the ambient or environment temperature;
- TC: the top center of compound surface temperature;
- TB: the bottom center of PCB surface temperature;
- P: total input power

7

Estimation for Typical 4-Layers PCB

Item	Volt	Current	Power (mW)	T _J @ 4-layer PCB (℃)						
		(mA)		Incease	T _A = 25°C	T _A = 40°C	T _A = 50°C	T _A = 60°C	T _A = 70°C	T _A =85°C
IO	3.3	10.0	33.0	1.1	45.4	60.4	70.4	80.4	90.4	105.4
Core	1.2	185.0	222.0	7.5						
SARADC	3.3	3.0	9.9	0.3						
USBPLL	1.2	15.0	18.0	0.6						
USBH0_2.0	3.3	35.0	115.5	3.9						
USBH1_2.0	3.3	35.0	115.5	3.9						
DDR2	1.8	50.0	90.0	3.0						
Total	-	-	603.9	20.4						
Tc, PKG Surface temperature					40.5	55.5	65.5	75.5	85.5	100.5
ΘA=	33.8									
Өс=	8.1									

 $\theta JA = (TJ - TA)/P$

 $\theta JC = (TJ - TC)/P$

Note. Test program, NUC970 dataflow.BIN

Confidential 8