Листок №Я1 17.08.2019

Языки первого порядка

Определение. Сигнатура $\Sigma = (Cnst, F_n, Pr)$ — это тройка множеств: фиксированный набор констант, функциональных символов и предикатных символов. Она определяет язык первого порядка (элементарный язык) сигнатуры Σ . Синтаксис языка содержит определения правильно построенных выражений двух сортов — термов и формул. Термы делаются из переменных $Var = \{x_0, x_1, \ldots\}$ и функциональных констант. Формулы делаются подстановкой термов в предикаты, при попомщи связок \neg , \vee , \wedge , \rightarrow , \leftrightarrow и кванторов \forall , \exists .

Задача Я1.1. Сигнатура содержит двухместные =, \in , \bot . Констант нет. Носитель интерпретации M — все точки и прямые на плоскости. Предикатные символы интерпретируются равенством, принадлежностью (точка лежит на прямой) и перпендикулярностью (прямых). Выразить:

- а. «x точка», «x прямая».
- **б.** «Прямые x и y параллельны».
- **в.** (x, y, z) вершины (невырожденного) треугольника».
- г. «Высоты каждого треугольника пересекаются в одной точке».
- **д.** «Точки x, y, z, t являются последовательными вершинами параллелограмма».
- **е.** «Точка z делит отрезок x, y пополам».

Задача $\mathbf{S1.2}(\mathbf{Язык}\ apuфметики)$. На множестве натуральных чисел заданы трехместные предикаты S(x,y,z)= (x+y=z), P(x,y,z)= (x+y=z). На языке первого порядка с предикатными символами $S,\ P$ записать:

- **а.** формулы с одной свободной переменной a, истинные тогда и только тогда, когда a=0, a=1, a=2, a чётное число, a нечётное число;
- **б.** формулы с двумя свободными переменными a и b, истинные тогда и только тогда, когда $a=b,\ a\leqslant b,\ a$ делит b;
- в. формулы с тремя свободными переменными a, b и c, истинные тогда и только тогда, когда a наименьшее общее кратное чисел b и c, a наибольший общий делитель чисел b и c.

Задача Я1.3. Доказать выразимость в стандартной интерпретации языка арифметики условия y = 2x.

Задача **Я1.4**(*Техника доказательства невыразимости*). Доказать, что если отношение не сохраняется при некотором автоморфизме модели, то оно невыразимо^{*}.

Задача Я1.5. Выразимы ли следующие отношения?

- **a.** a = b, b = a + 1, c = a + b B $(\mathbb{Z}, <)$.
- **6.** $a = 0, a = b, a < b \text{ B } (\mathbb{Z}, a + b = c).$
- **в.** a = b, a = 1, a = 3 в ($\mathbb{N}, a = b$), где $a = b \Leftrightarrow \exists k \quad a = k \cdot b$.
- **r.** a = b, |a-b| = 2 B $(\mathbb{R}, |a-b| = 1)$.
- д. a < b, a = 0, a = 1, a = 2 в $(\mathbb{N}, a + b = c)$.
- **е.** «a простое число» в (\mathbb{N} , a:b).

Задача Я1.6. Выразимы ли следующие отношения?

^{*}*Автоморфизм* — это биекция носителя на себя, сохраняющая все сигнатурные операции, отношения и константы.

Листок №Я1 17.08.2019

a.
$$a=1, a=2$$
 B $(\mathbb{Z}, a+b=c)$.
6. $a=0$ B $(\mathbb{Z}, a=b+1)$.
8. $a=b+1$ B $(\mathbb{Z}, |a-b|=1)$.
9. $a=b+1$ B $(\mathbb{Z}, |a-b|=1)$.

Определение (Семантика). Выбираем множество $M \neq \emptyset$ (*носитель*) и интерпретацию I сигнатуры Σ в M:

$$c \in Cnst \mapsto \bar{c} \in M, f^n \in Fn \mapsto \bar{f} \colon M^n \to M, P^n \in Pr \mapsto \bar{P} \subseteq M^n.$$

[†] Каждая замкнутая (т.е. без свободных переменных) формула становится обозначением для некоторого высказывания про конкретные (заданные интерпретацией) элементы, операции и отношения на множестве M. Оно оказывается истинным или ложным. Тем самым определяется истинность/ложность формулы в данной интерпретации (обозначение: $I \models \varphi$).

Определение. Замкнутая формула называется *выполнимой*, если существует интерпретация, в которой она истинна. *Общезначимость* означает истинность во всех интерпретациях.

Задача Я1.7. Исследовать на выполнимость и общезначимость:

- **a.** $\exists x \ P(x,x);$
- **6.** $(\forall x \ P(x) \lor Q(x)) \to (\forall x \ P(x)) \lor (\forall x \ Q(x));$
- **B.** $(\forall x \ P(x) \lor Q(x)) \to (\forall x \ P(x)) \lor (\exists x \ Q(x));$
- **r.** $(\exists x \ \forall y \ \exists z \ P(x,y,z)) \rightarrow (\forall x \ \exists y \ P(x,y,y));$
- **д.** $(\exists y \ \forall x \ P(x,y,y)) \rightarrow (\forall x \ \exists y \ \forall z \ P(x,y,z));$

Задача Я1.8. Доказать, что следующая формула выполнима только в бесконечных интерпретациях:

$$(\forall x \exists y \ Q(x,y)) \land (\forall x \ \forall y \ \forall z \ \neg Q(x,x) \land (Q(x,y) \rightarrow (Q(y,z) \rightarrow Q(x,z)))).$$

Задача Я1.9. Доказать, что следующая формула истинна в каждой интерпретации с трехэлементным носителем:

$$(\forall x \quad \forall y \quad \forall z \quad R(x,x) \land (R(x,z) \rightarrow R(x,y) \lor R(y,z))) \rightarrow (\exists x \quad \forall y \quad R(x,y)).$$

[†]Предикат $P: M^n \to \{\top, \bot\}$ отождествлен с его областью истинности $\bar{P} \subseteq M^n$.