Double Negative	not(not(P)) <=> P		Cartesian Products
Associative Law	(X and Y) or 2	I (Y or Z)) <=> ((X and Z)	cons(h, L) creates a list whose head is h and whose tail is L
Distributive Law		I (Y or Z)) <=> ((X and X) and Z)	1.4 Graphs
Contrapositive	$X \to Y \leq \operatorname{not}(Y) \to \operatorname{not}(X)$		Graph: a set of nodes that are interconnected by
Equivalence	$X \leftrightarrow Y \iff (X \to Y) \text{ and } (Y \to X)$		edges Adjacent: two nodes share an edge n-colorable: if a graph is n-colorable then its edges
Proof Techniques Exhaustive checking Conditional proof Proof by contradiction 1.2 Sets			can be assigned n colors without any adjacent node sharing two same colored edges Chromatic number: the minimum n-color for a grap Complete graph: every node has an edge to every other node Path: the series of edges that link one node to
Natural Numbers (N) [0], 1, 2, 3		[0], 1, 2, 3	another
Integers (Z), -3, ,-2, -1, 0, 1, 2, 3		, -3, ,-2, -1, 0, 1, 2, 3	Connected graph: all nodes have a path to every other node
Rational numbers (R) A/B, A and B in Z		A / B, A and B in Z	Cycle: a path that starts and ends at the same node
			Crowh trovorcal

following the head

the adjacent nodes

rest of unvisited nodes.

Depth first: for some node, visit unvisited node, visit

Rooted tree: a tree with a node designated as root

Height: the number of edges from root to farthest

that map exactly one element from set A to set B.

Given sets A and B and function $f: A \rightarrow B$

Range: the subset of B that is mapped to by A

range(f) = $\{f(a) \mid a \in A\}$

value in B. Also, range(f) = codomain(f)

Bijection: f is injective and surjective

f maps elements from A to B

Domain: the set A

f(b) = 1

f(c) = 2

 $domain(f) = \{a, b, c\}$

range(f) = $\{1, 2\}$

 $f({a}) = {1}$

Preimages:

 $f({a, b}) = {1}$

 $f({a, b, c}) = {1, 2}$

 $codomain(f) = \{1, 2, 3\}$

Codomain: the set B

Tree: a connected graph without cycles

Two characteristics of sets:

There are no repeated occurrences of elements There is no particular order of elements

Power sets

1.1 Proofs

 $S = \{a, b, \{a, c\}\}$ $power(S) = {NULL, {a}, {b}, {{a, c}}, {a, b}, {a,}}$ $\{a, c\}\}, \{b, \{a, c\}\}, \{a, b, \{a, c\}\}\}$ Cardinality(S) = |S| = 3

Subsets:

A is a subset of B if A contains all elements in B A is a proper subset of B if A is a subset of B and A ! Leaf: a childless node

Two sets are equal if they have the same elements, 2.1 Functions so A is a subset of B and B is a subset of A Set Operations

 $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$ $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$

Set properties

A U NULL = A $A \cup (B \cup C) = (A \cup B) \cup C$ $A - B = \{x \mid x \in A \text{ and } x \text{ not } \in B\}$ A' = U - A $A \cup (A \cap B) = A, A \cap (A \cup B)$ $|A \cup B| = |A| + |B| - |A \cap B|$ $(A \cup B \cup C \cup D)' = A' \cup B' \cup C' \cup$

1.3 Ordered Structures

Tuple: An ordered collection of elements Two characteristics of tuples:

 $A = \{a, b, c\}, B = \{1, 2, 3\}$ There may be repeated occurrences of elements There is an order or arrangement of the elements $f: A \rightarrow B$

 $A = \{A, B, C\}, B = \{1, 2\}$ $A^0 = \{0\}$ $A^1 = \{(a), (b), (c)\}$ $A^2 = \{(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, a$ (c, b), (c, c) $A * B = \{(a, 1), (a, 2), (b, 1), (b, 2), (c, 1), (c, 2)\}$

List: a finite ordered sequence of zero or more

Two characteristics of lists: Elements can be repeated

Only two accessible elements: element at the head, and the tail which is the list of elements

 $f^-1(\{1,3\}) = \{a,b\}$ $f^{-1}(\{3\}) = NULL$

> se Partial functions: Functions that are undefined for some values

2.1 Various functions

 $Floor(x) \Longrightarrow f: R \longrightarrow Z$ $Floor(R) = Z \text{ iff } R \le Z \le R + 1 \text{ iff } Z - 1 \le R \le Z$ Properties: es Floor(R + Z) = Floor(R) + Zdes $Floor(R) \le Z \text{ iff } R \le Z$ $Z \leq Floor(R)$ iff $Z \leq R$ Ceiling(x) \Rightarrow f: R \rightarrow Z Ceiling(R) = Z iff R - 1 < Z <= R iff Z <= R < Z + 1

Properties: Ceiling(R + Z) = Ceiling(R) + ZZ < Ceiling(R) iff Z < RCeiling(R) \leq Z iff R \leq Z

gcd(a, b) = gcd(b, a) $gcd(a, b) = gcd(b, a - bq) q \in Z$ Breadth first: visit all unvisited adjacent nodes of a if g = gcd(a, b), then g = ax + by, $x, y \in Z$ given node, then visit all unvisited nodes adjacent to

 $a = bq + r, r \in Z, b! = 0$

2.4 Countability

Given sets A and B, if A biject B, then |A| = |B|

Informally, a set is countable if its elements can be counted in a step by step manner. Formally, a set is countable if it is finite or there is a bijection between it and N.

Function: an association between two sets, A and B, Countable properties: Every subset of N is countable S is countable iff $|S| \le |N|$ If S0 .. SN is a sequence of countable set, S0 U ... ∪ SN is countable.

Diagonalization:

Let A be an alphabet with two or more symbols and Image: For any set S that is a subset of A, the image let S0 .. SN be a countable listing of sequences. The is the elements in A that are actually mapped to B sequences are listed as the rows of an infinite matrix Injection, one-to-one: if f maps distinct elements of

A onto distinct elements of B. AKA Differentiable. Sol ao, a1, a2, a3, a4, a5, a6, Surjection: if f has a value from A mapped to every S1 a10, a11, a12, a13, a14, a15, a16, S1 a20, a21, a22, a23, a24, a25, a26

> Then there is a sequence S = (a0, a1, a2, a3, a4, ...)over A that is not in the original list. S can be constructed from a diagonal list of elements, (a00, a11, a22, a33, ...)

3.1 Inductively defined sets

An inductive definition of a S set consists of three Basis: Specify one or more elements of S. Induction: Give one or more rules to construct new elements of S from existing elements of S. Closure: State that S consists exactly of the elements

obtained by the basis and induction steps (assumed).

All Strings over A

Induction: if $s \in A$ and $a \in A$, then $as \in A^*$.

3.2 Recursive functions and procedures If S is an inductively defined set, then we can construct a function f with domain S as follows:

2) Give rules that, for any inductively defined element $x \in S$, will define f(x) in terms of previously defined values of f.

3.3 Grammars

A grammar is a set of rules used to define the structure of the strings in a language.

If L is a language over an alphabet A, then a grammar for L consists of a set of grammar rules of the form a → b, where a and b denote strings of symbols taken from A and a set of grammar symbols If A is a well-founded set, then every nonempty disjoint from A

The $a \rightarrow b$ notation is also known as a production.

The four parts of a grammar

1) An alphabet N of grammar symbols called nonterminals

2) An alphabet T of symbols called terminals. Distinct from N.

3) A specific nonterminal S, called the start symbol. A finite set of productions of the form a → b, where a and b are strings over the alphabet $N \cup T$ with the restriction that a is not the empty string.

 $S \rightarrow \Lambda \mid aS \mid bS \mid cS$ $P = \{S \rightarrow \Lambda, S \rightarrow aS, S \rightarrow bS, S \rightarrow cS\}$ 4 tuple = $({S}, {a, b, c}, S, P)$

4.1 Properties of binary relations

For a binary relation R on a set A, we have the following definition 1) R is reflexive if x R x for all $x \in A$ 2) R is symmetric of x R y implies y R x for all x, y 3) R is transitive if x R y and y R z implies x R z for all $x, y, z \in A$ 4) R is irreflexive if $(x, x) ! \in R$ for all $x \in A$ 5) R is antisymmetric if x R y and y R x implies x = y for all $x, y \in A$

If R and S are binary relations, then the coposition of R and S is the following relation: R composition $S = \{(a, c) \mid (a, b) \in R \text{ and } (b, c) \in A\}$

4.2 Equivalence relations

Any binary relation that is reflexive, symmetric, and transitive is called an equivalence relation. Intersection Property of Equivalence If E and F are equivalence relations on the set A, then E ∩ F is an equivalence relation on A

If f is a function with domain A, then relation ~ defined by $x \sim y$ iff f(x) = f(y)is an equivalence relation on A, and is called the kernel relation of f.

Equivalence class

Let R be an equivalence relation on a set S. if $a \in S$, then the equivalence class of a, denoted by [a], is the

subset of S consisting of all elements that are equivalent to a. In other words, we have $[a] = \{x \in S \mid x R a\}$

1) For each basis element x ∈ S, specify a value for 4.3 Order Relations

Definition of a partial order A a binary relation is called a partial order if it is antisymmetric, transitive, and either reflexive or irreflexive

Definition of a partially ordered set The set over which a partial order is defined is called a partially ordered set, or poset. IF we want to emphasize the fact that R is the partial order that makes S a poset, we can write <S, R>.

Descending chains and minimality subset of A has a minimal element. Conversely, if

1 Inductively Defined Sets

 $A=\{3,5,7,9,\ldots\}$ can be represented as $A=\{2k+3\mid k\in\mathbb{N}\}$ But we can also describe A by saying $3\in A\Rightarrow x+2\in A$ and nothing else is in A.

Sets specified as unions of inductively defined sets: $A=\{2,3,4,7,8,11,15,16,\ldots\}$ can be expressed as $B\cup C,$ $B=\{2,4,8,16,\ldots\}$ and $C=\{3,7,11,15\}$

Basis: $2, 3 \in A$

Induction: If $x \in A$ and x is odd, then $x + 4 \in A$ If $x \in A$ and x is even, then $2x \in A$

1.1 Strings

All Strings over A: $Basis: \Lambda \in A$, Induction: If $s \in A*$ and $a \in A$, then $as \in A*$

 $\begin{array}{lll} \textbf{Inductive} & \textbf{Definition} & \textbf{of} & \textbf{Languages:} & S \\ \{a,ab,abb,abbb\} = \{ab^n \mid n \in \mathbb{N}\} \end{array}$

Basis: $a \in S$, Induction: If $x \in S$, then $xb \in S$

1.2 Lists

$$\begin{split} \langle x,y,z\rangle &= cons\left(x,\langle y,z\rangle\right) = \\ cons\left(head\left(\langle x,y,z\rangle\right),tail\left(\langle x,y,z\rangle\right)\right) \end{split}$$

Don't forget, $cons(x, \langle y, z \rangle) = x :: \langle y, z \rangle$

All lists over A: $Basis: \langle \rangle \in lists(A)$, Induction: If $x \in A$ and $L \in lists(A)$, then $cons(x, L) \in lists(A)$

1.3 Binary Trees

All Binary Trees over A: Basis: $\langle \rangle \in B$, Induction: If $x \in A$ and $L, R \in B$, then $tree(L, x, R) \in B$

1.4 Cartesian Products of Sets

Cartesian Product: Basis: $(0,a) \in \mathbb{N} \times A \ \forall a \in A$, Induction: If $(x,y) \in \mathbb{N} \times A$, then $(x+1,y) \in \mathbb{N} \times A$

Part of a plane: Let $S = \{(x,y) \mid x,y \in \mathbb{N} \text{and } x \leq y\}$. S is set of points in first quadrant, on or above the main diagonal. Basis: $(0,0) \in S$, Induction: If $(x,y) \in S$, then (x,y+1), $(x+1,y+1) \in S$

2 Recursive Functions

A function or procedure is recursively defined if defined in terms of itself. Constructing a recursively defined function: if S is inductively defined set, then construct function f with domain S as follows: 1. fo each basis element $x \in S$, specify value for f(x); 2. give rules that for any inductively defined element $x \in S$, specify a value for f(x).

2.1 Numbers

Let $f: \mathbb{N} \to \mathbb{N}$ be defined in terms of floor as follows: f(0) = 0, f(n) = f(floor(n/2)) + n for n > 0, then:

f(25) = f(12) + 25 = f(6) + 12 + 25 = f(3) + 6 + 12 + 25 = f(1) + 3 + 6 + 12 + 25 = f(0) + 1 + 3 + 6 + 12 + 25 = 0 + 1 + 3 + 6 + 12 + 25 = 47

2.2 Lists

Consider $f: \mathbb{N} \to lists(\mathbb{N})$ which computes the backward sequence: $f(n) = \langle n, n-1, ..., 1, 0 \rangle$. We can define this recursively as: $f(0) = \langle 0 \rangle$, f(n) = n :: f(n-1) for n > 0.

The pairs function:

 $\begin{aligned} pairs(\langle a,b,c\rangle,\langle 1,2,3\rangle) &= \langle (a,1),(b,2),(c,3)\rangle = \\ (a,1) &:: \langle (b,2),(c,3)\rangle &= (a,1) :: pairs(\langle b,c\rangle,\langle 2,3\rangle). \text{ So pairs} \\ \text{can be defined recursively as:} \\ pairs(\langle \rangle,\langle 1\rangle) &= \langle 1\rangle, pairs(x::T,y::U) &= \langle x,y\rangle :: pairs(T,U) \end{aligned}$

2.3 Binary Trees

 $\label{eq:preorder} \textbf{Preorder traversal: } visit(root), \ preorder(L), \ preorder(R). \\ \textbf{Inorder traversal: } inorder(L), \ visit(root), \ inorder(R). \\$

 $\label{eq:postorder} \textbf{Postorder} \quad \textbf{traversal:} \qquad \text{postorder}(L), \quad \text{postorder}(R), \\ \text{visit}(\text{root}).$

3 Grammars

Example: $A=\{a,b,c\}$, the grammar for the language A^* has 4 productions: $\{S\to\Lambda,S\to aS,S\to bS,s\to cS\}$. A Grammar is a 4-tuple:

1. alphabet N of nonterminals, 2. alphabet T of terminals, distinct from nonterminals, 3. specific nonterminal S called start symbol, 4. finite set of products of form $\alpha \to \beta$, where α and β are strings over $N \cup T$ and $\alpha \neq \Lambda$.

3.1 Derivations

If x and y are sentential forms and $\alpha \to \beta$ is a production, then replacement of α by β in $x\alpha y$ is called a derivation step, written: $x\alpha y \Rightarrow x\beta y$.

 \Rightarrow derives in one step; \Rightarrow^+ derives in one or more steps; \Rightarrow^* derives in zero or more steps

The language of a grammar: if G is a grammar with start symbol S and set of terminals T, then language of G is the set $L(G) = \{s \mid s \in T^* \text{and } S \Rightarrow^+ s\}$

A grammar is **recursive** if it contains a recursive production or indirectly recursive production. $S \to b \mid aA, A \to c \mid bS$ is indirectly recursive because $S \Rightarrow aA \Rightarrow abS$, and $A \Rightarrow bS \Rightarrow baA$.

Constructing an inductive defintion for L(G): $G:S \to \Lambda \mid aB,B \to b \mid bB$. 2 derivatives don't contain recursive productions: $S \Rightarrow \Lambda$, and $S \Rightarrow aB \Rightarrow ab$. This is basis: $\Lambda,ab \in L(G)$. Only recursive production of G is $B \to bB$. Any element of L(G) whose derivation contains B must have form $S \Rightarrow aB \Rightarrow^+ ay$ for some string y. Then we can say $S \Rightarrow aB \Rightarrow abB \Rightarrow^+ aby$. Induction: If $ay \in L(G)$, then put aby in L(G).

Constructing grammars: $L = \{\Lambda, ab, aabb, ..., a^nb^n, ...\} = \{a^nb^n \mid n \in \mathbb{N}\}$. Grammar: $S \to \Lambda \mid aSb$.

1 Proofs, Sets, Graphs, and Trees

conjunction $\Rightarrow A \cup B$, disjunction $\Rightarrow A \cap B$, converse $if \ x > 0$ and $y > 0 \Rightarrow x + y > 0$ or $if \ x + y > 0 \Rightarrow x > 0 \cup y > 0$, $'(A \cup B) = 'A \cap 'B$, $'(A \cap B) = '(A) \cup '(B)$

2 Functions

3 Construction Techniques

4 Equivalence, Order, Induction

Binary Relation Relation properties

R is reflexive if xRy for all $x,y \in A$. R is symmetric if xRy implies yRx for all $x,y \in A$. R is transitive if xRy and yRz implies xRz for all $x,y,z \in A$. R is irreflexive if $(x,y) \notin \mathbb{R}$ for all $x \in A$. R is antisymmetric if xRy and yRx implies x = y for all $x,y \in A$. The < on \mathbb{R} is transitive, symmetric, reflexive, and antisymmetric. The \le relation on \mathbb{R} is reflexive, transitive and antisymmetric. The "is parent of" relation is irreflexive and antisymmetric.

Composition of Relations

Properties of combining Relations

$$\begin{split} R\circ(S\circ T) &= (R\circ S)\circ T \\ R\circ(S\cup T) &= R\circ S\cup R\circ T \\ R\circ(S\cap T) &= R\circ S\cap R\circ T \end{split}$$

Equivalence Relations

Any binary relation that is reflexive, symmetric and transitive is called an $equivalence\ relation.$ The intersection property of equivalence follows: if E and F are equivalence relations on the set A, then E \cap F is an eq. rel. on A. We can also say $x\sim y$ iff $x \to y$ and $x \to y$ which can also be said, $x\sim y$ iff $(x,y)\in E\cap F$

Kernel Relations: eq rel on functions

Notice that we can show $x \sim y$ iff f(x) = f(y). This is called the kernel relation of f. Mod is one function that can be defined $x \sim y$ iff $x \bmod n = y \bmod n$.

Equivalence Classes

Let R be an eq rel on a set S. If $a \in S$, then the eq class of a by [a] is the subset of S consisting of all elements that are eq to a. In other words we have $[a] = \{x \in S|xRa\}$. The property of equivalences is as follows: Let S be a set with

an equivalence relation R. If $a,b\in S$, then either [a]=[b] or $[a]\cap [b]=$. Partitions are the collection of nonempty subsets that are disjoint whose union is the whole set. For example $S=\{1,2,3,4,5,6,7,8,9\}$ can be paritioned in many ways, one of which consists of $\{0,1,4,9\},\{2,5,8\},\{3,6,7\}$. We could also say $[0]=\{0,1,4,9\}, [2]=\{2,5,8\}, [3]=\{3,6,7\}$. This is generalized into the rule; If R is an eqrel on the set S, then the eq classes form a partition of S. COnversely, if P is a partition of a set S, then there is an eqrel on S whose eq classe are sets of P.

Partial Orders

A binary relation is called a partial order if it is antisymmetric, transitive, and either reflexive or irreflexive. The set over which a partial order is defined is called a partially ordered set or poset for short. If we want to emphasize that R is the partial order that makes S a poset, we'll write $\langle S, R \rangle$. Symbols used: irreflexive partial order or \prec . These are read as $a \prec b$ or a is less than b and $a \preceq b$ or a is less than b and a $\preceq b$ or a is less than

Inductive Proof

The important thing to remember about applying inductive proof techniques is to make an assumption then use the assumption just made. The **Principle of Mathmatical Induction** follows: Let $m \in \mathbb{Z}$. To prove that P(n) is true for all integers $n \geq m$, perform the following two steps:

Prove that P(n) is true.

2. Assume that P(k) is true for an arbitrary $k \ge m$. Prove that P(k+1) is true.

Second Principle of Induction: Let $m \in \mathbb{Z}$. To prove that P(n) is true for all integers $n \geq m$, perform the following two steps:

- 1. Prove that P(m) is true.
- 2. Assume that n is an arbitrary integer n>m, and assume that $\mathrm{P}(k)$ is true for all k in the interval $m\leq k< n$. Prove that $\mathrm{P}(n)$ is true.

1