CLAIMS

- 1. A composition comprising:
 - (A) a silicone oil, and
 - (B) a heat conductive filler,

with the provisos that component (A) is selected from the group consisting of silicone oils described by a general formula (A_1) ; silicone oils described by a general formula (A_2) ; silicone oils described by a general formula (A_3) ; mixtures of at least two of formulae (A_1) , (A_2) , and (A_3) ; and a hydrosilylation reaction mixtures of formula (A_1) and formula (A_3) , where

formula (A₁) is $[R^{1}_{a}R^{2}_{(3-a)}SiO(R^{1}_{b}R^{2}_{(2-b)}SiO)_{m}(R^{2}_{2}SiO)_{n}]_{c}SiR^{2}_{[4-(c+d)]}(OR^{3})_{a},$ formula (A₂) is

$$R^{2}$$
 R^{2} R^{2}

formula (A₃) is $[H_eR^2_{(3-e)}SiO(R^2_2SiO)_n]_eSiR^2_{[4-(c+d)]}(OR^3)_d$, where

all instances of R¹ are identical or different monovalent hydrocarbon groups with aliphatically unsaturated bonds,

all instances of R² are identical or different monovalent hydrocarbon groups that do not have aliphatically unsaturated bonds,

R³ stands for alkyl, alkoxyalkyl, alkenyl, or acyl,

"a" is an integer of 0 to 3,

"b" is 1 or 2,

"c" is an integer of 1 to 3,

"d" is an integer of 1 to 3,

"c+d" is an integer of 2 to 4,

"m" is an integer of 0 or greater,

"n" is an integer of 0 or greater,

with the proviso that "m" is 1 or greater when "a" is 0,

R⁴ is an oxygen atom or divalent hydrocarbon group,

"p" is an integer of 5 or greater, and

- "e" is an integer of 1 to 3, and component (B) is surface treated with component (A).
- 2. The composition of claim 1, where component (B) is an alumina powder.
- 3. The composition of claim 1, where component (B) is selected from component (B_1) or component (B_2), where
- (B_1) is a quasi-spherical alumina powder with an average particle size of 0.1 to 20 μm ;
 - (B_2) is a mixture of (B_{21}) and (B_{22}) , where
 - (B_{21}) is a quasi-spherical alumina powder with an average particle size of greater than 5 to 50 μ m, and
 - (B_{22}) is a quasi-spherical or irregular-shaped alumina powder with an average particle size of 0.1 to 5 μ m.
- 4. The composition of claim 3, where component (B_2) is 30 to 90 wt% of component (B_{21}) and 10 to 70 wt% of component (B_{22}) .
- 5. The composition of claim 1, where content of component (B) is 500 to 3,500 parts by weight per 100, parts by weight of component (A).
- 6. The composition of claim 1, where component (A) is a silicone oil selected from the group consisting of formula (A₁) and formula (A₃), and the composition further comprises (C) a component increasing the viscosity of component (A) via a hydrosilylation reaction, with the proviso that component (C) does not contain silicone oils corresponding to component (A).
- 7. Use of the composition of any of claims 1 to 6 to provide heat dissipation for an electronic component.