ICE503 DSP-Homework#8

1. The two 8-point sequence $x_1[n]$ and $x_2[n]$ shown in Figure 1. have DFTs $X_1[k]$ and $X_2[k]$, respectively.

- (a) Determine the relationship between $X_1[k]$ and $X_2[k]$.
- (b) Plot the sequence $x_3[n]$ whose DFT is $X_3[k] = W_8^{-3k} X_1[k]$.
- 2. The even part of a real sequence x[n] is defined by

$$x_e[n] = \frac{x[n] + x[-n]}{2}$$

Suppose that x[n] is a real finite-length sequence defined such that x[n] = 0 for n < 0 and $n \ge N$. Let X[k] denote the N-point DFT of x[n].

- (a) Is $\frac{Re\{x[n]\}}{Re\{x[k]\}}$ the DFT of $x_e[n]$?
- (b) What is the inverse DFT of $\frac{\Re\{x[n]\}}{\Re\{x[k]\}}$ in terms of x[n]?

3. MATLAB simulation:

Let $x_1[n]$ and $x_2[n]$ be the two 4-points sequences given below

$$x_1[n] = [2,1,2,-3]$$

$$x_2[n] = [-3,2,1,-5]$$

- (a) Compute the linear convolution to obtain $x_3[n] = x_1[n] \otimes x_2[n]$.
- (b) Compute the DFT of $x_3[n]$ to obtain $X_3[k]$.
- (c) Compute the DFT of $x_1[n]$ and $x_2[n]$ to obtain $X_1[k]$ and $X_2[k]$, then multiply them to obtain $X'[k] = X_1[k] \times X_2[k]$.
- (d) Use stem function to plot the amplitude and phase of $X_3[k]$ and X'[k]. Are $X_3[k]$ and X'[k] the same?
- (e) Compute the 4-point circular convolution to obtain $x_4[n] = x_1[n] \textcircled{4} x_2[n]$.
- (f) Compute the DFT of $x_4[n]$ to obtain $X_4[k]$.
- (g) Use stem function to plot the amplitude of $X_4[k]$. Are $X_4[k]$ and X'[k] the same?

