How to combine ML and ecodesign to find the best structure/material for sustainable aviation .

Ricard MAESO ORTI; Pablo BALLESTEROS MARTIN Tutor: Professor Joseph Morlier

1-2: ISAE-SUPAERO, Université de Toulouse, France 1. r.maeso-orti@student.isae-supaero.fr, 2. p,ballesteros-martin@student.isae-supaero.fr, xxx

I. Context

- The aerospace industry is evolving to reduce its environmental impact through lightweight structures
- Topology and material selection are key design variables for reducing mass and environmental footprint, creating a coupled optimization problem
- Currently, there is a lack of a comprehensive benchmark database that focuses on both mechanical performance and environmental impact of aerospace structures

II. Goals

- Develop a database on environmental impact
- Select strategic materials for aerospace structures
- Predict optimal mechanical and environmental performance for structures

III. SimJEB Library

- Simulated Jet Engine Bracket (SimJEB) is a public collection of crowdsourced topology optimised mechanical brackets
- 320 designs with the same interface and the same four bolts so they can be used for the same task.
- Design the lightest bracket with a maximum stress below the yield stress of Ti-6Al-4V across 4 load cases

Jet engine brackets [1]

IV. Methodology

Mat	E [MPa]	σ _{yield} [MPa]	${ m CO_{2(prod)}}\ [m kg/kg]$	Energy [MJ/kg]	Water [L/kg]
BeCu C17000	1,2 10 ⁵	483	5,25	71,0	300
Al 2024	7,3 104	165	12,5	220	250
Ti-6Al- 4V	1,1 10 ⁵	880	19,7	317	197
AISI 304	1,9 10 ⁵	517	5,0	81	220

$$CO_{2,T} = CO_{2,prod} + CO_{2,life} = CO_{2,prod} + 98,8 \frac{t CO_2}{kg}$$
 [2]

V. Results

• Pareto optimal solutions for structural design optimization using ML algorithms:

VI. Future Line of Work

- Develop of an open-source a HTML website to better visualise the obtained results
- Formulate a comprehensive figure of merit that integrates CO₂ emissions, energy consumption and water usage for each structure
- Include additional materials to further expand the database

