Solution - Big Buck Challenge by IEOR@IITB and McKinsey Knowledge Center India

Presented by
- Aakash Kerawat
Final year UG Student
IIT Roorkee

Outline

1. Predicting Withdrawal

- a. First thought
- b. Data preprocessing
- c. EDA
- d. Feature Engineering
- e. Model Selection

2. Optimizing replenishment

- a. Cost function
- b. Optimization
- c. Plots

Predicting Withdrawal

First Thought

Looking at the data there can be two approaches -

- 1. Time series forecasting
- 2. Using machine learning models.

Chose option 2 as -

- A. There was missing data.
- B. ML models can perform at par (or better) than TS models with right feature set.

Data Preprocessing

- Distribution of ATM_ID specific withdrawal indicated high-value outliers.
- Removed the data points with withdrawal value > 99 percentile of that ATM_ID..

EDA

• The given data -

sns.barplot(df_train.loc[df_train.ATM_ID=='SRN000279', 'day'],
plt.show()

Trends

Trends

رم,4)) ain.loc[df_train.ATM_ID=='SRN000279', 'day_of_year'], df_train.loc[df_train.ATM_Iv=

Final Date features

- Day
- Day of week
- Month
- Day of year
- Year
 - Removed as test data was only of 1 particular year.
 - Also there wasn't a significant trend.

Additional Features

Merged the ATM_info data which provided -

- Type
- Facility

Engineered Features

Motivation - Initially thought of making different model for each ATM, but this has many limitations.

Following features were added -

- Withdrawal_mean Mean value of withdrawal amount for a particular ATM_ID
- Withdrawal_std Std. deviation value of withdrawal amount for a particular ATM_ID

Engineered Features

These features gave a sense of distribution of withdrawal for that ATM to the model as a continuous value feature.

- Withdrawal_uq Upper quartile of withdrawal amount for a particular ATM_ID
- Withdrawal_lq Lower quartile value of withdrawal amount for a particular ATM_ID

Model Selection

- Tried a range of algorithms from Linear regression,
 Decision Tree regressor and Random Forest regressor to
 Gradient Boosting regressor.
- Chose Gradient boosting as the final model.

Reasons

- All the date features can be considered as categorical and one-hot encoding would result in more than 300 features.
- Data had both categorical and continuous features.
- Tree based algorithms are good at handling both at the same time.

Reasons

- Tree based algorithms can learn from categorical features without one-hot encoding.
- Another major reason Checked the cross-validation score for all the models and gradient boosting came out to be the best.

Optimizing Replenishment

Approach

Calculated the total cost for each strategy for a range of replenishment values and finally chose the pair for which the cost was minimum.

Defined 2 functions

- Cost function
- Optimization function

Cost function

Optimize

Thank You