

Федеральное государственное бюджетное образовательное учреждение высшего образования «Новосибирский государственный технический университет»

Кафедра прикладной математики
Практическое задание № 6
по дисциплине «Методы принятия оптимальных решений»

Применение критериев проверки гипотез об однородности (законов, средних значений, дисперсий)

Бригада ПМ-13 БУДАНЦЕВ ДМИТРИЙ

ПМ-13 ФОРКИН КИРИЛЛ

Преподаватели ЛЕМЕШКО БОРИС ЮРЬЕВИЧ

Новосибирск, 2024

Цель занятия — оценить возможности некоторых критериев проверки статистических гипотез по различению близких альтернатив (критериев однородности средних, однородности дисперсий, однородности законов). Проследить, как в зависимости от объемов выборок меняются результаты проверки (**p-value**). По результатам экспериментов оценить, примерно какой объем выборок потребуется, чтобы принять верное решение и отклонить «**несправедливую**» проверяемую гипотезу.

Этапы исследования

- 1. Смоделировать **2** выборки в соответствии с **нормальным законом** объемом n=1000 одна с параметрами сдвига и масштаба (0,1), вторая с параметрами (0.1,1), то есть математическое ожидание второй отличается на 10% от стандартного отклонения.
 - 1. Последовательно, меняя объем выборки n=25,50,100,200,500,1000 (в тексте анализируемых выборок менять объём и перегружать выборки), проследите, как меняется достигаемый уровень значимости при проверке гипотезы об однородности средних по следующим критериям: Стьюдента, сравнения средних при неизвестных и неравных дисперсиях, Краскела-Уаллиса, Манна-Уитни-Уилкоксона.
 - 2. Зафиксируйте результаты проверок в таблице.
 - 3. Оцените, примерно какой объем выборок потребуется, чтобы принять верное решение и отклонить **«несправедливую»** проверяемую гипотезу при задании вероятности ошибки 1-го рода $\alpha=0.1,0.05,0.01$.
- 2. Смоделировать 2 выборки в соответствии с **нормальным законом** объемом n=1000 одна с параметрами (0,1), вторая с параметрами (0,1.1), то есть *стандартное отклонение* второй отличается на 10% больше чем у первой.
 - 1. Последовательно, меняя объем выборки n=25,50,100,200,500,1000 (в тексте анализируемых выборок менять объём и перегружать выборки), проследите, как меняется достигаемый уровень значимости при проверке гипотезы об однородности дисперсий (характеристик рассеяния) по следующим критериям: параметрическим Бартлетта, Фишера, непараметрическим Ансари-Бредли (нормированному), Муда (нормированному).
 - 2. Зафиксируйте результаты проверок в таблице.
 - 3. Оцените, примерно какой объем выборок потребуется, чтобы принять верное решение и отклонить **«несправедливую»** проверяемую гипотезу при задании вероятности ошибки 1-го рода $\alpha=0.1,0.05,0.01.$
- 3. Смоделировать **2** выборки, одну в соответствии со <u>стандартным нормальным законом</u> объемом n=10000, другую по **логистическому закону** с параметрами сдвига и масштаба (0,0.551328895).
 - 1. Последовательно, меняя объемы выборок n=25,50,100,200,500,1000,5000,10000 (в тексте анализируемых выборок менять объём и перегружать выборки), проследите, как меняется достигаемый уровень значимости при проверке гипотезы об однородности законов по критериям Смирнова и Лемана-Розенблатта
 - 2. Зафиксируйте результаты проверок в таблице.
 - 3. Оцените, какой примерно объем выборок потребуется, чтобы принять верное решение и отклонить **«несправедливую»** проверяемую гипотезу при задании вероятности ошибки 1-го рода $\alpha=0.1,0.05,0.01$.
- 4. Кратко сформулируйте для себя выводы, вытекающие из Ваших результатов.

Выполнение пунктов

Моделирование выборок с разными средними

Моделирование первой выборки

Эмпирическая функция распределения *(см. график 1)* выборки $model_1$, смоделированная в соответствии $N(\sigma=1,\mu=0)$ со с объёмом n=1000

График 1 Эмпирическая функция распределения выборки *model_1*

Функция плотности распределения *(см. график 2)* выборки $model_1$, смоделированная в соответствии $N(\sigma=1,\mu=0)$ со с объёмом n=1000

График 2 Функция плотности распределения выборки model_1

Эмпирическая функция распределения *(см. график 3)* выборки $model_2$, смоделированная в соответствии $N(\sigma=1,\mu=0.1)$ со с объёмом n=1000

График 3 Эмпирическая функция распределения выборки *model_2*

Функция плотности распределения *(см. график 4)* выборки _model_2, смоделированная в соответствии $N(\sigma=1,\mu=0.1)$ со с объёмом n=1000

Проверка гипотез об однородности средних

Результаты проверки гипотезы об **однородности средних** по критерию **Стьюдента** выборок: *model_1*, *model_2*.

n	Значение S	Значение Р
25	-1.13767	0.152
50	-0.934651	0.1626
100	-0.815138	0.132
200	-0.586102	0.118
500	-0.328571	0.07
1000	-0.0142123	0.026

Результаты проверки гипотезы об **однородности средних** по критерию **при неизвестных и неравных дисперсиях** выборок: *model_1*, *model_2*.

n	Значение S	Значение Р
25	-1.13767	0.152
50	-0.934651	0.1626
100	-0.815138	0.132
200	-0.586102	0.118
500	-0.328571	0.07
1000	-0.0142123	0.026

Результаты проверки гипотезы об **однородности средних** по критерию **Краскела-Уаллиса** выборок: *model_1*, *model_2*.

n	Значение S	Значение Р
25	1.76649	0.198
50	1.80713	0.181
100	1.72161	0.19
200	1.67209	0.195
500	4.64582	0.031
1000	5.94448	0.018

Результаты проверки гипотезы об **однородности средних** по критерию **Манна-Уитни-Уилкоксона** выборок: *model_1*, *model_2*.

n	Значение S	Значение Р
25	1.3291	0.202
50	1.34429	0.188
100	1.3121	0.19
200	1.29309	0.206
500	2.15542	0.04

n	Значение S	Значение Р
1000	2.43813	0.016

Таким образом, рассматривая результаты полученные для критериев Cmьюдента и npu неизвестных u неравных дисперсиях можно заметить одинаковые результаты. Это связано с тем, что при одинаковых дисперсиях выборок, статистики критериев считаются одинаково. Можно увидеть прогнозируемое снижение p-value при увеличении n.

Не трудно догадаться, что увеличение числа наблюдений n благоприятно сказывается на вычисление выборочной дисперсии и среднего значения при вычислении статистик у параметрических критериев, поскольку эти значения стремятся к точному.

Непараметрические критерии сильнее зависят от n, чем параметрические критерии. Можно заметить, что при малых значениях n у параметрических критериев достигнутый уровень значимости меньше, чем у непараметрических. Это связано с тем, что при малых значениях n, статистики непараметрических критериев плохо сходятся к их распределениям. Также заметно, что в данном случае, при увеличении n значение p-value становится меньше, чем у параметрических критериев.

Можно сделать вывод, что для того чтобы отклонить **"несправедливую"** гипотезу при ошибки первого рода $\alpha=0.1$, для параметрических и непараметрических критериев потребуется $200 < n^* \le 500$ наблюдений. При ошибки первого рода $\alpha=0.05$, для параметрических критериев потребуется $500 < n^* \le 1000$ наблюдений, для непараметрических критериев потребуется $200 < n^* \le 500$ наблюдений. При ошибки первого рода $\alpha=0.01$, для параметрических и непараметрических критериев потребуется $n^* > 1000$ наблюдений.

Моделирование выборок с разными дисперсиями

Моделирование первой выборки

Эмпирическая функция распределения *(см. график 5)* выборки $model_3$, смоделированная в соответствии $N(\sigma=1,\mu=0)$ со с объёмом n=1000

График 5 Эмпирическая функция распределения выборки model 3

Функция плотности распределения *(см. график 6)* выборки $model_3$, смоделированная в соответствии $N(\sigma=1,\mu=0)$ со с объёмом n=1000

График 6 Функция плотности распределения выборки *model_3*

Эмпирическая функция распределения *(см. график 7)* выборки _model_4, смоделированная в соответствии $N(\sigma=1.1,\mu=0)$ со с объёмом n=1000

<u>График 7</u> Эмпирическая функция распределения выборки <u>model_4</u>

Функция плотности распределения *(см. график 8)* выборки _model_4, смоделированная в соответствии $N(\sigma=1.1,\mu=0)$ со с объёмом n=1000

График 8 Функция плотности распределения выборки *model_4*

Проверка гипотез об однородности дисперсий

Результаты проверки гипотезы об **однородности дисперсий** по критерию **Бартлетта** выборок: *model_*3, *model_*4.

n	Значение S	Значение Р
25	0.109422	0.673
50	2.9842	0.02
100	1.76645	0.088
200	5.43276	0.001
500	1.13031	0.138
1000	6.86775	0.001

Результаты проверки гипотезы об **однородности дисперсий** по критерию **Фишера** выборок: *model_*3, *model_*4.

n	Значение S	Значение Р
25	1,14625	0.71
50	0.607365	0.022
100	0.764732	0.102
200	0.717756	0
500	0.909143	0.138

n	$\bf 3$ начение S	Значение Р
1000	0.847077	0.002

Результаты проверки гипотезы об **однородности дисперсий** по критерию **Ансари-Бредли** выборок: *model_*3, *model_*4.

n	Значение S	Значение Р
25	-0.077658	0.928
50	1.53066	0.138
100	0.762366	0.454
200	1.36317	0.18
500	0.00306572	0.986
1000	1.9721	0.038

Результаты проверки гипотезы об однородности дисперсий по критерию Муда выборок: model_3, model_4.

n	$\mathbf 3$ начение S	Значение Р
25	-0.194786	0.85
50	-1.63581	0.088
100	-1.10051	0.296
200	-1.91525	0.044
500	-0.256331	0.784
1000	-2.47562	0.012

Результаты проверки гипотезы об **однородности дисперсий** по критерию **Сижеля-Тьюки** выборок: *model_3*, *model_4*.

n	Значение S	Значение Р
25	-0.06791	0.944
50	1.53043	0.136
100	0.772111	0.448
200	1.36056	0.182
500	0.00284673	0.986
1000	1.97264	0.038

Из полученные результатов, можно заметить, что **параметрические критерии** получили близкие результаты p-value. Возможно это говорит о том, что критерии **Бартлетта** и **Фишера** имеют похожую мощность. Также заметно, что у **непараметрических критериев Ансари-Бредли** и **Сижеля-Тьюки** получены схожие результаты p-value, что также говорит о том, что критерии возможно имеют похожую мощность.

Можно заметить, что при данных выборках, параметрические критерии показали более хорошие результаты, чем непараметрические. *Мощность* параметрических критериев выше, чем у непараметрических.

Среди непараметрических критериев, критерий **Муда** выделяется. Мощность этого критерия выше, чем у критериев **Сижеля-Тьюки** и **Ансари-Бредли**

Можно сделать вывод, что для того чтобы отклонить **"несправедливую"** гипотезу при ошибки первого рода $\alpha=0.1$, для параметрических критериев потребуется $25 < n^* \le 50$ наблюдений, для критерия **Муда** потребуется $25 < n^* \le 50$ наблюдений, для критериев **Ансари-Бредли** и **Сижеля-Тьюки** потребуется $500 < n^* \le 1000$ наблюдений. При ошибки первого рода $\alpha=0.05$, для параметрических критериев потребуется $25 < n^* \le 50$ наблюдений, для критерия **Муда** потребуется $100 < n^* \le 200$ наблюдений, для критериев **Ансари-Бредли** и **Сижеля-Тьюки** потребуется $500 < n^* \le 1000$ наблюдений. При ошибки первого рода $\alpha=0.01$, для параметрических критериев потребуется $100 < n^* \le 200$ наблюдений, для непараметрических критериев потребуется $100 < n^* \le 200$ наблюдений, для непараметрических критериев потребуется $100 < n^* \le 200$ наблюдений, для непараметрических критериев потребуется $100 < n^* \le 200$ наблюдений, для непараметрических критериев

Моделирование выборок разного закона

Моделирование первой выборки

Эмпирическая функция распределения *(см. график 9)* выборки *model_5*, смоделированная в соответствии $N(\sigma=1,\mu=0)$ со с объёмом n=10000

График 9 Эмпирическая функция распределения выборки model_5

Функция плотности распределения *(см. график 10)* выборки $model_5$, смоделированная в соответствии $N(\sigma=1,\mu=0)$ со с объёмом n=10000

График 10 Функция плотности распределения выборки *model_5*

Эмпирическая функция распределения *(см. график 11)* выборки $model_6$, смоделированная в соответствии $L(s=0.551328895, \mu=0)$ со с объёмом n=10000

График 11 Эмпирическая функция распределения выборки model_6

Функция плотности распределения *(см. график 12)* выборки _model_6, смоделированная в соответствии $L(s=0.551328895, \mu=0)$ со с объёмом n=10000

<u>График 12</u> Функция плотности распределения выборки <u>model_6</u>

Проверка гипотез об однородности законов

Результаты проверки гипотезы об **однородности законов** по критерию **Смирнова** выборок: *model_5*, *model_6*.

n	Значение S	Значение Р
25	0.848528	0.464
50	0.6	0.864
100	0.494975	0.942
200	0.75	0.577
500	0.474342	0.966
1000	1.2522	0.082
5000	1.63	0.016
10000	1.66877	0.007

Результаты проверки гипотезы об **однородности законов** по критерию **Лемана-Розенблатта** выборок: *model_5*, *model_6*.

n	$\mathbf 3$ начение S	$\mathbf 3$ начение P
25	0.1588	0.379
50	0.0534	0.867
100	0.0554	0.857
200	0.106125	0.56
500	0.042244	0.903
1000	0.263003	0.194

n	Значение S	Значение Р
5000	0.77257	0.016
10000	1.16109	0

Таким образом, полученные результаты неоднозначны. При $n \leq 500$ значения p-value критерия **Лемана- Розенблатта** лучше, но не значительно. При $1000 \leq n \leq 5000$ ситуация меняется и значения p-value критерия **Смирнова** лучше, но, также, не значительно.

Из полученных результатов, можно заключить предположение, что мощности критериев похожи, поскольку значения p-value схожи.

Можно сделать вывод, что для того чтобы отклонить **"несправедливую"** гипотезу при ошибки первого рода $\alpha=0.1$, для критерия **Смирнова** потребуется $500 < n^* \le 1000$ наблюдений, для критерия **Лемана-Розенблатта** потребуется $1000 < n^* \le 5000$. При ошибки первого рода $\alpha=0.05$, для критериев потребуется $1000 < n^* \le 5000$ наблюдений. При ошибки первого рода $\alpha=0.01$, для критериев потребуется $5000 < n^* \le 10000$ наблюдений.

Выводы

Из проделанной работы, можно сделать вывод о том, что для проверки **однородности средних**, при **малых** значениях n, разумнее использовать **параметрические критерии** для проверки гипотез, при достаточно **больших** n можно использовать, как **непараметрические критерии**, так и **параметрические критерии** рассмотренные в работе.

Можно сделать вывод, что для проверки **однородности дисперсий**, лучше использовать **параметрические критерии**, поскольку из исследования они имеют *большую мощность*, чем **непараметрические критерии**. Если использовать **непараметрические критерии**, то разумно было бы использовать критерий **Муда**, поскольку среди тех, которые были исследованы в работе, он имеет *большую мощность*.

При проверки гипотез об **однородности законов**, критерии **Смирнова** и **Лемана-Розенблатта** показали похожие результаты *p-value* и возможно имеют *схожую мощность*.