Lecture Notes 10: Nonlinear Equations in One Variable

CPSC 302: Numerical Computation for Algebraic Problems

Jessica Bosch
 jbosch@cs.ubc.ca
http://www.cs.ubc.ca/~jbosch

University of British Columbia Department of Computer Science

2017/2018 Winter Term 1

Chapter 2: Nonlinear Equations in One Variable

- Bisection method
- Fixed point iteration
- Newton's method and variants
- Minimizing a function in one variable

Outline

1. Newton's Method and Variants

Newton's Method Secant Method

Outline

 Newton's Method and Variants Newton's Method

Secant Method

Newton's Method

This fundamentally important method is everything that bisection is not, and vice versa:

- Not so simple
- Not very safe or robust (local convergence)
- Requires more than continuity on f
- Fast
- Automatically generalizes to systems

Derivation

• By Taylor series $(h = x - x_k)$

$$f(x) = f(x_k + h) = f(x_k) + f'(x_k)(x - x_k) + f''(\xi(x))(x - x_k)^2 / 2.$$

• So, for $x = x^*$

$$0 = f(x_k) + f'(x_k)(x^* - x_k) + \mathcal{O}\left((x^* - x_k)^2\right).$$

• The method is obtained by neglecting nonlinear term, defining $0 = f(x_k) + f'(x_k)(x_{k+1} - x_k)$, which gives the iteration step

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}, \quad k = 0, 1, 2, \dots$$

A Geometric Interpretation

Next iterate is x-intercept of the tangent line to f at current iterate.

Example: Cosh with Two Roots

The function

$$f(x) = 2\cosh(x/4) - x$$

has two solutions in the interval [2, 10].

Newton's iteration is

$$x_{k+1} = x_k - \frac{2\cosh(x_k/4) - x_k}{0.5\sinh(x_k/4) - 1}.$$

For absolute tolerance 1.e-8:

- Starting from $x_0 = 2$ requires 4 iterations to reach x_1^* .
- Starting from $x_0 = 4$ requires 5 iterations to reach x_1^* .
- Starting from $x_0 = 8$ requires 5 iterations to reach x_2^* .
- Starting from $x_0 = 10$ requires 6 iterations to reach x_2^* .

Example (cont.): Cosh with Two Roots

• Tracing the iteration's progress for $x_0 = 8$:

$\overline{}$	0	1	2	3	4	5
$f(x_k)$	-4.76e-1	8.43e-2	1.56e-3	5.65e-7	7.28e-14	1.78e-15

• Note that the number of significant digits essentially doubles at each iteration (until the 5th, when roundoff error takes over).

Speed of Convergence

A given method is said to be

• **linearly convergent** if there is a constant $\rho < 1$ such that

$$|x_{k+1} - x^*| \le \rho |x_k - x^*|$$
,

for all k sufficiently large;

• superlinearly convergent if there is a sequence of constants $ho_k o 0$ such that

$$|x_{k+1} - x^*| \le \rho_k |x_k - x^*|,$$

for all k sufficiently large.

ullet quadratically convergent if there is a constant M such that

$$|x_{k+1} - x^*| \le M|x_k - x^*|^2$$
,

for all k sufficiently large;

Convergence Theorem for Newton's Method

If $f \in C^2[a,b]$ and there is a root x^* in [a,b] such that $f(x^*)=0$, $f'(x^*)\neq 0$, then there is a number δ such that, starting with x_0 from anywhere in the neighborhood $[x^*-\delta,x^*+\delta]$, Newton's method converges quadratically.

Idea of proof:

- Expand $f(x^*)$ in terms of a Taylor series about x_k ;
- divide by $f'(x_k)$, rearrange, and replace $x_k \frac{f(x)}{f'(x_k)}$ by x_{k+1} ;
- find the relation between $e_{k+1} = x_{k+1} x^*$ and $e_k = x_k x^*$.

Outline

1. Newton's Method and Variants

Newton's Method

Secant Method

Secant Method

- One potential disadvantage of Newton's method is the need to know and evaluate the derivative of f.
- The secant method circumvents the need for explicitly evaluating this derivative.
- Observe that near the root (assuming convergence)

$$f'(x_k) \approx \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}.$$

• So, define Secant iteration

$$x_{k+1} = x_k - \frac{f(x_k)(x_k - x_{k-1})}{f(x_k) - f(x_{k-1})}, \quad k = 1, 2, \dots$$

• Note the need for two initial starting iterates x_0 and x_1 : a *two-step method*.

Example: Cosh with Two Roots

$$f(x) = 2\cosh(x/4) - x.$$

Same absolute tolerance 1.e-8 and initial iterates as before:

- Starting from $x_0 = 2$ and $x_1 = 4$ requires 7 iterations to reach x_1^* .
- Starting from $x_0 = 10$ and $x_1 = 8$ requires 7 iterations to reach x_2^* .

\overline{k}	0	1	2	3	4	5	6
$f(x_k)$	2.26	-4.76e-1	-1.64e-1	2.45e-2	-9.93e-4	-5.62e-6	1.30e-9

Observe superlinear convergence: much faster than bisection and simple fixed point iteration, yet not quite as fast as Newton's iteration.

Newton's Method as a Fixed Point Iteration

- If $g'(x^*) \neq 0$ then fixed point iteration converges linearly, as discussed before, as $\rho > 0$.
- Newton's method can be written as a fixed point iteration with

$$g(x) = x - \frac{f(x)}{f'(x)}.$$

From this we get $g'(x^*) = 0$.

 In such a situation the fixed point iteration may converge faster than linearly: indeed, Newton's method converges quadratically under appropriate conditions.