Mathematics for Machine Learning - Questions and Solutions

Edwin Fennell

Note - I'm not going to write out the questions here since they are very, very inefficiently posed and no way am I going to TeX all of that.

- **2.1** a. In order to show that this constitutes a group, we need to show four things:
 - Closure if $a, b \in \mathbb{R}$ then clearly $ab + a + b \in \mathbb{R}$. Now, suppose that ab + a + b = -1. This rearranges to

$$a(b+1) = -(b+1)$$

or

$$(a+1)(b+1) = 0$$

Therefore if neither a nor b is equal to -1, a * b also cannot be equal to -1, and therefore * is a valid group operation on $\mathbb{R}\setminus\{-1\}$.

• Identity - our identity is 0 since for any $a \in \mathbb{R} \setminus \{-1\}$ we have

$$a * 0 = a \cdot 0 + 0 + a = a$$

• Inverse - given a fixed $a \in \mathbb{R} \setminus \{-1\}$ we want to solve for x in the following:

$$a * x = ax + x + a = 0$$

we rearrange to get

$$x = \frac{-a}{a+1}$$

Therefore all elements in $\mathbb{R}\setminus\{-1\}$ have inverses under *

• Associativity - we consider the respective values of (a*b)*c and a*(b*c) for arbitrary $a,b,c\in\mathbb{R}\setminus\{-1\}$:

$$(a*b)*c = (a*b)c + a*b + c = abc + ac + bc + ab + a + b + c$$

$$(a*(b*c) = a(b*c) + b*c + a = abc + ac + bc + ab + a + b + c$$

and so we have associativity.

Now we need to show that the resulting group is Abelian, but this is clear from the definition of * being completely symmetric in its two operands.

b. Conveniently, from our proof of associativity we know immediately that

$$3 * x * x = 3x^{2} + 3x + 3x + x^{2} + x + x + 3 = 4x^{2} + 8x + 3$$

Therefore we need to solve $4x^2 + 8x + 3 = 15$, or rather

$$4x^{2} + 8x - 12 = 4(x^{2} + 2x - 3) = 4(x + 3)(x - 1) + 0$$

From this we see that the solutions are exactly x = 1, x = -3

- 2.2 a. We need to show the four group axioms:
 - Closure By definiton of \oplus the result of its application is a congruence class mod n. (Well-posedness is another matter but that isn't asked for here).
 - Identity the identity is $\bar{0}$ since

$$\forall a \in \mathbb{Z}, \bar{a} \oplus \bar{0} = \overline{(a+0)} = \bar{a}$$

• Inverses - the inverse of \bar{a} for any $a \in \mathbb{Z}$ is $\overline{-a}$:

$$\forall a \in \mathbb{Z}, \bar{a} \oplus \overline{-a} = \overline{(a-a)} = \bar{0}$$

• Associativity - for any $a,b,c\in\mathbb{Z}$ we have