

中华人民共和国国家标准

GB 18871 — 2002

电离辐射防护与辐射源安全基本标准

Basic standards for protection against ionizing radiation and for the safety of radiation sources

2002-10-08 发布

2003-04-01 实施

前 言

本标准的全部技术内容均为强制性的。

本标准是根据六个国际组织(即:联合国粮农组织、国际原子能机构、国际劳工组织、经济合作与发展组织核能机构、泛美卫生组织和世界卫生组织)批准并联合发布的《国际电离辐射防护和辐射源安全基本安全标准》(国际原子能机构安全丛书 115 号,1996 年版)对我国现行辐射防护基本标准进行修订的,其技术内容与上述国际组织标准等效。

依据上述国际组织标准对我国现行辐射防护基本标准进行修订时,还充分考虑了我国十余年来实施现行辐射防护基本标准的经验和我国当前的实际情况,保留了现行标准中实践证明适合我国国情又与国际组织标准相一致的那些技术内容。

本标准自发布之日起,同时代替 GB 4792—1984 和 GB 8703—1988。

本标准的附录 A、附录 B、附录 C、附录 D、附录 E、附录 F 和附录 F 和附录 F 和附录 F 是提示的附录。

本标准由(以部门名称笔画为序)中华人民共和国卫生部、国家环境保护总局和原中国核工业总公司联合提出。

本标准起草单位,联合编制组,编制组秘书单位为核工业标准化研究所。

本标准主要起草人:潘自强(以下以姓氏笔画为序)

叶常青、张延生、吴德强、郑钧正、金家齐、夏益华、禚凤官。

I

中华人民共和国国家标准

电离辐射防护与辐射源安全基本标准

GB 18871 — 2002

代替 GB 4792—1984 GB 8703—1988

Basic standards for protection against ionizing radiation and for the safety of radiation sources

1 范围

本标准规定了对电离辐射防护和辐射源安全(以下简称"防护与安全")的基本要求。

本标准适用于实践和干预中人员所受电离辐射照射的防护和实践中源的安全。

本标准不适用于非电离辐射(如微波、紫外线、可见光及红外辐射等)对人员可能造成的危害的防护。

2 定义

本标准所采用的术语和定义见附录 J(标准的附录)。

- 3 一般要求
- 3.1 适用
- 3.1.1 实践

适用本标准的实践包括:

- a)源的生产和辐射或放射性物质在医学、工业、农业或教学与科研中的应用,包括与涉及或可能涉及辐射或放射性物质照射的应用有关的各种活动,
 - b)核能的产生,包括核燃料循环中涉及或可能涉及辐射或放射性物质照射的各种活动;
 - c) 审管部门规定需加以控制的涉及天然源照射的实践;
 - d) 审管部门规定的其他实践。
- 3.1.2 源
- 3.1.2.1 适用本标准对实践的要求的源包括:
- a)放射性物质和载有放射性物质或产生辐射的器件,包括含放射性物质消费品、密封源、非密封源和辐射发生器:
- b)拥有放射性物质的装置、设施及产生辐射的设备,包括辐照装置、放射性矿石的开采或选冶设施、放射性物质加工设施、核设施和放射性废物管理设施:
 - c) 审管部门规定的其他源。
- 3.1.2.2 应将本标准的要求应用于装置或设施中的每一个辐射源;必要时,应按审管部门的规定,将本标准的要求应用于被视为单一源的整个装置或设施。
- 3.1.3 照射
- 3.1.3.1 适用本标准对实践的要求的照射,是由有关实践或实践中源引起的职业照射、医疗照射或公众照射,包括正常照射和潜在照射。

- 3. 1. 3. 2 通常情况下应将天然源照射视为一种持续照射,若需要应遵循本标准对干预的要求。但下列各种情况,如果未被排除或有关实践或源未被豁免,则应遵循本标准对实践的要求。
 - a)涉及天然源的实践所产生的流出物的排放或放射性废物的处置所引起的公众照射;
 - b)下列情况下天然源照射所引起的工作人员职业照射。
 - 1)工作人员因工作需要或因与其工作直接有关而受到的氡的照射,不管这种照射是高于或低于工作场所中氡持续照射情况补救行动的行动水平(见附录 H(提示的附录));
 - 2)工作人员在工作中受到氡的照射虽不是经常的,但所受照射的大小高于工作场所中氡持续 照射情况补救行动的行动水平(见附录 H(提示的附录));
 - 3)喷气飞机飞行过程中机组人员所受的天然源照射;
 - c) 审管部门规定的需遵循本标准对实践的要求的其他天然源照射。
- 3.1.4 干预
- 3.1.4.1 适用本标准的干预情况是:
 - a)要求采取防护行动的应急照射情况,包括:
 - 1)已执行应急计划或应急程序的事故情况与紧急情况;
 - 2)审管部门或干预组织确认有正当理由进行干预的其他任何应急照射情况:
 - b)要求采取补救行动的持续照射情况,包括:
 - 1)天然源照射,如建筑物和工作场所内氡的照射,
 - 2)以往事件所造成的放射性残存物的照射,以及未受通知与批准制度(见 4.2.1 及 4.2.2)控制的以往的实践和源的利用所造成的放射性残存物的照射;
 - 3)审管部门或干预组织确认有正当理由进行干预的其他任何持续照射情况。
- 3.2 排除

任何本质上不能通过实施本标准的要求对照射的大小或可能性进行控制的照射情况,如人体内的⁴⁰K、 到达地球表面的宇宙射线所引起的照射,均不适用本标准,即应被排除在本标准的适用范围之外。

- 3.3 实施的责任方与责任
- 3. 3. 1 责任方
- 3.3.1.1 对本标准的实施承担主要责任的责任方(以下简称"主要责任方")应是,
 - a)注册者或许可证持有者;
 - b)用人单位。
- 3.3.1.2 其他有关各方应对本标准的实施承担各自相应的责任,其他有关各方可以包括:
 - b)工作人员;

a)供方;

- ~ / = 11 / 12 ()
- c)辐射防护负责人;
- d)执业医师;
- e)医技人员;
- f)合格专家:
- g)由主要责任方委以特定责任的任何其他方。
- 3.3.2 责任
- 3.3.2.1 各责任方应承担本标准有关章、条所规定的一般责任和特定责任。
- 3.3.2.2 主要责任方应承担的一般责任是:
 - a)确立符合本标准有关要求的防护与安全目标;
- b)制定并实施成文的防护与安全大纲,该大纲应与其所负责实践和干预的危险的性质和程度相适应,并足以保证符合本标准的有关要求。在该大纲中,应:
 - 1)确定实现防护与安全目标所需要的措施和资源,并保证正确地实施这些措施和提供这些资

源;

- 2)保持对这些措施和资源的经常性审查,并定期核实防护与安全目标是否得以实现;
- 3)鉴别防护与安全措施和资源的任何失效或缺陷,并采取步骤加以纠正和防止其再次发生;
- 4)根据防护与安全需要,做出便于在有关各方间进行咨询和合作的各种安排;
- 5)保存履行责任的有关记录。
- 3.4 实施的监督管理
- 3.4.1 本标准的贯彻和本标准实施的监督管理由审管部门负责;对于干预情况,干预组织应对本标准 有关要求的贯彻负主要责任。
- 3.4.2 主要责任方应接受审管部门正式授权的人员对其获准实践的防护与安全的监督,包括对其防护与安全记录的检查。
- 3.4.3 发生违反本标准有关要求的情况时,主要责任方应:
 - a)调查此违反行为及其原因与后果;
 - b)采取相应的行动加以纠正并防止类似的违反事件再次发生:
 - c)向审管部门报告违反标准的原因和已经采取或准备采取的纠正行动或防护行动;
 - d)按照本标准的要求采取其他必要的行动。
- 3.4.4 主要责任方应及时报告违反本标准的事件。如果因违反标准已经演变成或即将演变成应急照射情况,应立即报告。
- 3.4.5 发生违反标准的事件后,如果主要责任方不能在规定的时间内按照国家有关法规采取纠正或改进行动,则审管部门应修改、中止或撤销原先已颁发的注册证、许可证或其他批准文件。
- 4 对实践的主要要求
- 4.1 基本原则
- 4.1.1 任何实践的引入、实施、中断或停止,以及实践中任何源的开采、选冶、处理、设计、制造、建造、装配、采购、进口、出口、销售、出卖、出借、租赁、接受、设置、定位、调试、持有、使用、操作、维护、修理、转移、退役、解体、运输、贮存或处置,均应按照本标准的有关要求进行,除非有关实践或源产生的照射是被排
- 除的或有关实践或源是被本标准的要求所豁免的。
- 4.1.2 对于适用本标准的任何实践、实践中的任何源或 4.1.1 所规定的任何活动,本标准各项有关要求的实施应与该实践或源的特性及其所致照射的大小和可能性相适应,并应符合审管部门规定的有关要求。
- 4.1.3 放射性物质的运输应遵循国家有关放射性物质安全运输法规与标准的要求。
- 4.2 管理要求
- 4.2.1 通知
- 4.2.1.1 拟进行某项实践或本标准 4.1.1 中所规定的任何活动的任何法人,均应向审管部门提交通知书,说明其目的与计划;对于含放射性物质消费品,只要求说明有关制造、装配、进口和销售等方面的计划。
- 4.2.1.2 如果实践或活动满足下列各项条件,并经审管部门确认,则可只履行通知程序,否则,还应按4.2.2 的要求履行相应的批准程序:
 - a) 所引起的正常照射不大可能超过审管部门规定的有关限值的某一很小份额;
 - b)所伴随的潜在照射的可能性与大小可以忽略:
 - c)所伴随的任何其他可能的危害后果也可以忽略。
- 4.2.2 批准:注册或许可
- 4.2.2.1 对任何密封源、非密封源或辐射发生器负责的任何法人均应向审管部门提出申请,以获得批准,除非其所负责的源是被豁免的。这类批准是采用注册的方式还是许可的方式,应由审管部门根据源

或利用该源的实践的性质及所致照射的大小与可能性决定。适于以注册方式批准的实践应具有如下特征:

- a)通过设施与设备的设计可在很大程度上保证安全;
- b)运行程序简单易行;
- c)对安全培训的要求极低:
- d)运行历史上几乎没有安全问题。
- 4.2.2.2 对下列任何源负责的法人均应向审管部门提交申请以获得批准,对这类源的批准应采用许可的方式:
 - a)辐照装置;
 - b)放射性矿石的开采或选冶设施;
 - c)放射性物质加工设施;
 - d)核设施;
 - e)放射性废物管理设施;
 - f)非豁免的、审管部门尚未指明适于以注册方式批准的其他任何源。
- 4.2.2.3 任何申请者均应:
 - a)向审管部门提交支持其申请所需要的有关资料;
- b)在所提交的申请资料中,说明对其所负责的源所致照射的性质、大小和可能性所作的分析,并说明为保护工作人员、公众及环境所采取的或计划采取的各种措施。
- c)如果照射可能大于审管部门规定的某种水平,则进行相应的安全评价和环境影响评价,并作为其申请书的一部分提交给审管部门;
 - d)在审管部门颁发注册证或许可证之前,不进行本标准 4.1.1 中所规定的任何活动。
- 4.2.2.4 医疗照射实践及其用源的申请者在申请书中还应:
 - a)说明执业医师在辐射防护方面的资格;或
- b)承诺只有具备有关法规规定的或许可证中写明的辐射防护专业资格的执业医师,才允许开具使用其源的检查申请单或治疗处方。
- 4.2.3 获准的法人:注册者和许可证持有者
- 4. 2. 3. 1 注册者和许可证持有者应对制定和实施各项必需的技术与组织措施负责,确保其获准的源的防护与安全;它们可以委托其他方完成某些有关的活动或任务,但它们自己仍应对这些活动和任务承担主要责任。注册者和许可证持有者应按需要选聘合格人员,负责确保符合本标准。
- 4.2.3.2 注册者和许可证持有者如果拟对其获准的实践或源进行修改,并且拟议中的修改对防护或安全可能具有重要影响,则应将其修改计划通知审管部门;在获得审管部门认可前,不应进行这类修改。
- 4.2.4 豁免
- 4.2.4.1 如果源符合下列条件之一,并经审管部门确认和同意,则该源或利用该源的实践可以被本标准的要求所豁免:
 - a)符合本标准附录 A(标准的附录)中所规定的豁免要求;
 - b)符合审管部门根据本标准附录 A(标准的附录)规定的豁免准则所确定的豁免水平。
- 4.2.4.2 对于尚未被证明为正当的实践不应予以豁免。
- 4.2.5 解控
- 4.2.5.1 已通知或已获准实践中的源(包括物质、材料和物品),如果符合审管部门规定的清洁解控水平,则经审管部门认可,可以不再遵循本标准的要求,即可以将其解控。
- 4. 2. 5. 2 除非审管部门另有规定,否则清洁解控水平的确定应考虑本标准附录 A(标准的附录)所规定的豁免准则,并且所定出的清洁解控水平不应高于本标准附录 A(标准的附录)中规定的或审管部门根据该附录规定的准则所建立的豁免水平。

4.3 辐射防护要求

- 4.3.1 实践的正当性
- 4.3.1.1 对于一项实践,只有在考虑了社会、经济和其他有关因素之后,其对受照个人或社会所带来的 利益足以弥补其可能引起的辐射危害时,该实践才是正当的。对于不具有正当性的实践及该实践中的 源,不应予以批准。
- 4.3.1.2 涉及医疗照射的实践的正当性判断应遵循第7章所规定的详细要求。
- 4. 3. 1. 3 除了被判定为正当的涉及医疗照射的实践外,在下列实践中,通过添加放射性物质或通过活化从而使有关日用商品或产品中的放射性活度增加都是不正当的:
- a)涉及食品、饮料、化妆品或其他任何供人食入、吸入、经皮肤摄入或皮肤敷贴的商品或产品的实践;
 - b)涉及辐射或放射性物质在日用商品或产品(例如玩具等)中无意义的应用的实践。
- 4.3.2 剂量限制和潜在照射危险限制
- 4.3.2.1 应对个人受到的正常照射加以限制,以保证除本标准 6.2.2 规定的特殊情况外,由来自各项获准实践的综合照射所致的个人总有效剂量和有关器官或组织的总当量剂量不超过附录 B(标准的附录)中规定的相应剂量限值。不应将剂量限值应用于获准实践中的医疗照射。
- 4.3.2.2 应对个人所受到的潜在照射危险加以限制,使来自各项获准实践的所有潜在照射所致的个人 危险与正常照射剂量限值所相应的健康危险处于同一数量级水平。
- 4.3.3 防护与安全的最优化
- 4.3.3.1 对于来自一项实践中的任一特定源的照射,应使防护与安全最优化,使得在考虑了经济和社会因素之后,个人受照剂量的大小、受照射的人数以及受照射的可能性均保持在可合理达到的尽量低水平,这种最优化应以该源所致个人剂量和潜在照射危险分别低于剂量约束和潜在照射危险约束为前提条件(治疗性医疗照射除外)。
- 4. 3. 3. 2 防护与安全最优化的过程,可以从直观的定性分析一直到使用辅助决策技术的定量分析,但均应以某种适当的方法将一切有关因素加以考虑,以实现下列目标:
- a)相对于主导情况确定出最优化的防护与安全措施,确定这些措施时应考虑可供利用的防护与安全选择以及照射的性质、大小和可能性;
- b)根据最优化的结果制定相应的准则,据以采取预防事故和减轻事故后果的措施,从而限制照射的大小及受照的可能性。
- 4.3.4 剂量约束和潜在照射危险约束
- 4.3.4.1 除了医疗照射之外,对于一项实践中的任一特定的源,其剂量约束和潜在照射危险约束应不大于审管部门对这类源规定或认可的值,并不大于可能导致超过剂量限值和潜在照射危险限值的值:
- 4.3.4.2 对任何可能向环境释放放射性物质的源,剂量约束还应确保对该源历年释放的累积效应加以限制,使得在考虑了所有其他有关实践和源可能造成的释放累积和照射之后,任何公众成员(包括其后代)在任何一年里所受到的有效剂量均不超过相应的剂量限值。
- 4.3.5 医疗照射指导水平

应制定供执业医师使用的医疗照射指导水平。这类指导水平应:

- a)根据第7章的详细要求并参照附录 G(提示的附录)制定;
- b)对于中等身材的受检者,是一种合理的剂量指征;
- c)为当前良好医术(而不是最佳医术)可以实现的医院实践提供指导;
- d)在可靠的临床判断表明需要时,可以灵活应用,即允许实施更高的照射:
- e)随着工艺与技术的改进而加以修订。
- 4.4 营运管理要求
- 4.4.1 安全文化素养

应培植和保持良好的安全文化素养,鼓励对防护与安全事宜采取深思、探究和虚心学习的态度并反 对固步自封,保证:

- a)制定把防护与安全视为高于一切的方针和程序;
- b)及时查清和纠正影响防护与安全的问题,所采用的方法应与问题的重要性相适应;
- c)明确规定每个有关人员(包括高级管理人员)对防护与安全的责任,并且每个有关人员都经过适当培训并具有相应的资格:
 - d)明确规定进行防护与安全决策的权责关系;
- e)做出组织安排并建立有效的通信渠道,保持防护与安全信息在注册者或许可证持有者各级部门内和部门间的畅通。
- 4. 4. 2 质量保证

应制定和执行质量保证大纲,该大纲应:

- a)为满足涉及防护与安全的各项具体要求提供充分保证;
- b)为审查和评价防护与安全措施的综合有效性提供质量控制机制和程序。
- 4.4.3 人为因素

应采取措施确保符合下列要求,以尽可能减小人为错误导致事故和事件的可能性:

- a)所有防护与安全有关人员均经适当培训并具有相应的资格,使之能理解自己的责任,并能以正确的判断和按照所规定的程序履行职责,
- b)按照行之有效的人机工程学原则设计设备和制定操作程序,使设备的操作或使用尽可能简单, 从而使操作错误导致事故的可能性降至最小,并减少误解正常和异常工况指示信号的可能性;
 - c)设置适当的设备、安全系统和控制程序,并做出其他必要的规定,以:
 - 1)尽可能减小人为错误导致人员受到意外照射的可能性;
 - 2)提供发现和纠正或弥补人为错误的手段;
 - 3)便于安全系统或其他防护措施失效时进行干预。
- 4.4.4 合格专家
- 4.4.4.1 注册者和许可证持有者应根据需要选聘合格专家,为执行本标准提供咨询。
- 4.4.4.2 注册者和许可证持有者应将选聘合格专家的安排通知审管部门。通知时所提供的信息应包括所聘用专家的从业或专业范围。
- 4.5 技术要求

本条所规定的技术要求适用于所有实践和源。注册者或许可证持有者应保证其实践和源的防护与安全符合本条中的有关要求。应用这些要求的严格程度应与注册者或许可证持有者的实践和源所引起的照射的大小和可能性相适应。对于核设施和放射性废物管理设施,除本条中规定的这些基本技术要求外,还应符合国家有关法规和标准所规定的更为专门的技术要求和其他要求。

4.5.1 源的实物保护

应按照下列要求,使源始终处于受保护状态,防止被盗和损坏,并防止任何法人未经批准进行本标准 4.1.1 所规定的任何活动。

- a)确保源的实物保护符合注册证或许可证中规定的所有有关要求,并保证将源的失控、丢失、被盗或失踪的信息立即通知审管部门:
 - b)不将源转让给不持有有效批准证件的接收者;
 - c)对可移动的源定期进行盘存,确认它们处于指定位置并有可靠的保安措施。

4.5.2 纵深防御

应对源运用与其潜在照射的大小和可能性相适应的多层防护与安全措施(即纵深防御),以确保当某一层次的防御措施失效时,可由下一层次的防御措施予以弥补或纠正,达到:

a)防止可能引起照射的事故;

- b)减轻可能发生的任何这类事故的后果;
- c)在任何这类事故之后,将源恢复到安全状态。

4.5.3 良好的工程实践

实践中源的选址、定位、设计、建造、安装、调试、运行、维修和退役,均应以行之有效的工程实践为基础,这种工程实践应:

- a)符合现行法规、标准和有关文件的规定:
- b)以确保源全寿期过程中的防护与安全为目的,有可靠的管理措施和组织措施予以支持;
- c)在源的设计、建造及运行中留有足够的安全裕量,以确保可靠的正常运行性能;预留安全裕量时 着眼于预防事故、减轻事故后果和限制照射,并考虑质量、多重性和可检查性;
 - d)考虑技术标准的发展,以及防护与安全方面的有关研究成果与经验教训。
- 4.6 安全的确认
- 4.6.1 安全评价

应在不同阶段(包括选址、设计、制造、建造、安装、调试、运行、维修和退役)对实践中源的防护与安全措施进行安全评价,以:

- a)在分析外部事件对源的影响和源与其附属设备自身事件的基础上,鉴别出可能引起正常照射和 潜在照射的各种情形:
 - b)预计正常照射的大小,并在可行的范围内估计潜在照射发生的可能性与大小;
 - c)评价防护与安全措施的质量和完善程度。
- 4.6.2 监测与验证
- 4. 6. 2. 1 应确定用以验证是否符合本标准的要求所需要的参数,并对这些参数进行监测或测量。
- 4.6.2.2 应为进行所需要的监测与验证提供适当的设备和程序。应对这类设备定期进行维修和检验,

并定期用可溯源到国家基准的计量标准进行校准。

4.6.3 记录

应保存监测与验证的记录,包括设备检验与校准记录。

5 对干预的主要要求

5.1 基本原则

- 5. 1. 1 在干预情况下,为减少或避免照射,只要采取防护行动或补救行动是正当的,则应采取这类行动。
- 5. 1. 2 任何这类防护行动或补救行动的形式、规模和持续时间均应是最优化的,使在通常的社会和经济情况下,从总体上考虑,能获得最大的净利益。
- 5. 1. 3 在应急照射情况下,除非超过或可能超过旨在保护公众成员的干预水平或行动水平(见附录 E (标准的附录)的 E2),否则一般不需要采取防护行动。
- 5.1.4 在持续照射情况下,除非超过有关行动水平(见附录 H(提示的附录)),否则一般不需要采取补
- 救行动。 5. 1. 5 对于适用本标准的任何特定干预情况,本标准各项有关要求的应用应与该干预情况的性质、严
- 5.2 管理要求
- 5.2.1 应急照射情况

重程度和所涉及的范围相适应。

5. 2. 1. 1 每一注册者或许可证持有者,如果其所负责的源可能发生需要紧急干预的情况,则应制定相 应的应急计划或程序,并经审管部门认可;应急计划应规定注册者或许可证持有者的场内应急职责,并

考虑与其所负责的源相适应的场外应急责任;同时注册者或许可证持有者应为实施所规定的各种防护 行动作好准备(详细要求见本标准第 10 章)。 5.2.1.2 有关干预组织应根据可能出现的紧急干预情况的严重程度和可能涉及的场外范围制定相应的总体应急计划(以下称为场外应急计划),据以协调场区内、外的应急行动和实施所需要的场外防护行动,以支持和补充根据注册者或许可证持有者应急计划实施的各种防护行动。场外应急计划应由相应的干预组织负责实施。

有关干预组织还应为应付其他各种可能要求紧急干预的意外情况(如源非法入境、带源的卫星坠入境内或境外事故释放的放射性物质进入境内等)做出安排。

5.2.2 持续照射情况

对于超过或可能超过有关行动水平的持续照射情况,有关干预组织应按需要制定通用或场址专用补救行动计划,并经有关部门认可。采取补救行动时,负责实施的法人应确保按照经认可的补救行动计划进行。

- 5.2.3 工作人员与公众的保护
- 者、用人单位或有关干预组织承担本标准 10.5 所规定的各项防护责任。 5.2.3.2 对于干预情况下的公众照射,应按政府根据实施有效干预所确定的各种组织安排和职能分工,由国家、地方有关干预组织以及导致干预的实践或源的注册者或许可证持有者承担各项公众保护责

5. 2. 3. 1 对于工作人员因实施干预而受到的职业照射,应按审管部门的要求,由注册者、许可证持有

- 任。
 5.2.4 报告要求
 发生或预计可能发生需要采取防护行动的应急照射情况时,注册者和许可证持有者应立即报告有
 - a)事态的发展和预计的发展趋势;
 - b)为保护工作人员和公众成员所采取的措施;
 - c)已经造成的和预计可能造成的照射。

关于预组织和审管部门,并应随时向它们报告.

- 5.3 辐射防护要求
- 5.3.1 只有根据对健康保护和社会、经济等因素的综合考虑,预计干预的利大于弊时,干预才是正当
- 取防护行动或补救行动几乎总是正当的。 5. 3. 2 在干预计划中,应规定最优化的干预水平和行动水平;这种最优化干预水平和行动水平的确定 应以附录 E(标准的附录)的 E2 和附录 H(提示的附录)所给出的准则为基础,并应考虑国情和当地的具

的。如果剂量水平接近或预计会接近附录 E(标准的附录)的 E1 所给出的水平,则无论在什么情况下采

- 体条件,如: a)通过干预可以避免的个人和集体剂量;
 - a/迪及干淡可以避免的干入和条件剂里;
- b)干预本身所伴有的放射和非放射健康危险,以及干预的经济、社会代价与利益。
- 5.3.3 在对事故进行响应的过程中,应根据下列因素对干预的正当性和预定的干预水平的优化程度重新加以考虑:
 - a)实际情况特有的因素,如释放的性质、气候条件和其他有关非放射性因素;
 - b)未来条件不确定时,防护行动带来净利益的可能性。
- 6 职业照射的控制
- 6.1 责任 6.1.1 注册者、许可证持有者和用人单位应对工作人员所受职业照射的防护负责,并遵守本标准的有 关要求。
- 6.1.2 注册者、许可证持有者和用人单位应向所有从事涉及或可能涉及职业照射活动的工作人员承诺:
- a)按照本标准附录 B(标准的附录)的规定限制职业照射;

- b)按照本标准的有关要求使职业防护与安全最优化;
- c)记录职业防护与安全措施的决定,并将此类决定通知有关各方;
- d)建立实施本标准有关要求的防护与安全方针、程序和组织机构;并优先考虑控制职业照射的工程设计和技术措施:
- e)提供适当而足够的防护与安全设施、设备和服务,它们的种类与完善程度应与预计的职业照射水平和可能性相适应:
 - f)提供相应的防护装置和监测设备,并为正确使用这些装置和设备做出安排;
 - g)提供必要的健康监护和服务;
- h)提供适当而足够的人力资源,为防护与安全培训做出安排,并根据需要安排定期再培训,以更新知识和保证工作人员达到所需要的适任水平;
 - i)按照本标准的要求保存有关的记录;
- j)就如何有效地实施本标准和所采取的防护与安全措施等问题与工作人员或他们的代表进行协商和合作:
 - k)为促进安全文化素养的提高提供所需条件。
- 6.1.3 注册者、许可证持有者和用人单位聘用新工作人员时,应从受聘人员的原聘用单位获取他们的原有职业受照记录及其他有关资料。
- 6.1.4 注册者、许可证持有者和用人单位应要求工作人员遵守本标准,必要时应采取行动管理措施,确保工作人员了解他们负有保护自己及他人免受或少受辐射照射以及保持源的安全的义务和责任。
- 6.1.5 工作人员的义务和责任应是:
 - a) 遵守有关防护与安全规定、规则和程序:
 - b)正确使用监测仪表和防护设备与衣具;
- c)在防护与安全(包括健康监护和剂量评价等)方面与注册者、许可证持有者和用人单位合作,提供有关保护自己和他人的经验与信息:
 - d)不故意进行任何可能导致自己和他人违反本标准要求的活动;
- e)学习有关防护与安全知识,接受必要的防护与安全培训和指导,使自己能按本标准的要求进行工作。
- 6.1.6 工作人员发现违反或不利于遵守本标准的情况,应尽快向注册者、许可证持有者或用人单位报告。
- 6.2 职业照射的剂量控制
- 6.2.1 正常照射的剂量控制

正常照射的剂量控制应符合 4.3.2 的规定,并应遵循 4.3.3 中对辐射防护最优化的有关要求。

- 6.2.2 特殊情况的剂量控制
- 6.2.2.1 如果某一实践是正当的,是根据良好的工程实践设计和实施的,其辐射防护已按本标准的要求进行了优化,而其职业照射仍然超过正常照射的剂量限值,但预计经过合理的努力可以使有关职业照射剂量处于正常照射剂量限值之下,则在这种情况下,审管部门可以按照附录 B(标准的附录)B1.1.2
- 的规定,例外地认可对剂量限制要求作某种临时改变。 6.2.2.2. 剂量限制要求的临时改变应由注册者或许可证持有者向审管部门提出正式申请,经审查认可
- 后,方可进行:未经审管部门认可,不得进行这种临时改变。
- 6.2.2.3 在申请临时改变剂量限制要求时,注册者或许可证持有者应在申请文件中对需要进行这种临时改变的特殊情况进行说明,并提供证据证明.
 - a)已尽了一切努力减少照射,并已按本标准的要求使防护与安全措施最优化;
- b)已与有关用人单位和工作人员进行了协商,并就临时改变剂量限制要求的需要和条件取得了共识:

- c)正在尽一切合理的努力改善工作条件,直到满足附录 B(标准的附录)B1.1.1 所规定的剂量限值要求:
- d)工作人员个人受照的监测与记录足以证明已遵守了附录 B(标准的附录)中的有关要求,并为受照记录在有关用人单位之间进行转交提供了方便。
- 6.2.2.4 对剂量限制要求的任何临时改变均应:
 - a)按照附录 B(标准的附录)中给出的适用于特殊情况的剂量限制要求进行;
 - b)限定改变的期限;
 - c)逐年接受审查;
 - d)不再延期;
 - e)仅限于规定的工作场所。
- 6.2.3 表面放射性污染的控制

工作人员体表、内衣、工作服、以及工作场所的设备和地面等表面放射性污染的控制应遵循附录 B (标准的附录)B2 所规定的限制要求。

- 6.3 从事工作的条件
- 6.3.1 工作待遇

不得以特殊补偿、缩短工作时间或以休假、退休金或特种保险等方面的优待安排代替为符合本标准的要求所需要采取的防护与安全措施。

6.3.2 孕妇的工作条件

女性工作人员发觉自己怀孕后要及时通知用人单位,以便必要时改善其工作条件。孕妇和授乳妇女 应避免受到内照射。

用人单位不得把怀孕作为拒绝女性工作人员继续工作的理由。用人单位有责任改善怀孕女性工作 人员的工作条件,以保证为胚胎和胎儿提供与公众成员相同的防护水平。

6.3.3 未成年人的工作条件

年龄小于 16 周岁的人员不得接受职业照射。年龄小于 18 周岁的人员,除非为了进行培训并受到监督,否则不得在控制区工作;他们所受的剂量应按附录 B(标准的附录)中 B1.1.1.2 的规定进行控制。

- 6.3.4 工作岗位的调换
- 审管部门或健康监护机构认定某一工作人员由于健康原因不再适于从事涉及职业照射的工作时, 用人单位应为该工作人员调换合适的工作岗位。
- 6.4 辐射工作场所的分区

应把辐射工作场所分为控制区和监督区,以便于辐射防护管理和职业照射控制。

- 6.4.1 控制区 6.4.1.1 注册者和许可证持有者应把需要和可能需要专门防护手段或安全措施的区域定为控制区,以
- 便控制正常工作条件下的正常照射或防止污染扩散,并预防潜在照射或限制潜在照射的范围。
- 6.4.1.2 确定控制区的边界时,应考虑预计的正常照射的水平、潜在照射的可能性和大小,以及所需要的防护手段与安全措施的性质和范围。
- 6.4.1.3 对于范围比较大的控制区,如果其中的照射或污染水平在不同的局部变化较大,需要实施不同的专门防护手段或安全措施,则可根据需要再划分出不同的子区,以方便管理。
- 6.4.1.4 注册者、许可证持有者应:
 - a)采用实体边界划定控制区:采用实本边界不现实时也可以采用其他适当的手段:
- b)在源的运行或开启只是间歇性的或仅是把源从一处移至另一处的情况下,采用与主导情况相适应的方法划定控制区,并对照射时间加以规定,
- c)在控制区的进出口及其他适当位置处设立醒目的、符合附录 F(标准的附录)规定的警告标志,并给出相应的辐射水平和污染水平的指示;

- d)制定职业防护与安全措施,包括适用于控制区的规则与程序;
- e)运用行政管理程序(如进入控制区的工作许可证制度)和实体屏障(包括门锁和联锁装置)限制进 出控制区;限制的严格程度应与预计的照射水平和可能性相适应;
 - f)按需要在控制区的入口处提供防护衣具、监测设备和个人衣物贮存柜:
- g)按需要在控制区的出口处提供皮肤和工作服的污染监测仪、被携出物品的污染监测设备、冲洗或 淋浴设施以及被污染防护衣具的贮存柜:
- h)定期审查控制区的实际状况,以确定是否有必要改变该区的防护手段或安全措施或该区的边 界。
- 6.4.2 监督区
- 6.4.2.1 注册者和许可证持有者应将下述区域定为监督区:这种区域未被定为控制区,在其中通常不 需要专门的防护手段或安全措施,但需要经常对职业照射条件进行监督和评价。
- 6.4.2.2 注册者和许可证持有者应:
 - a)采用适当的手段划出监督区的边界:
 - b)在监督区入口处的适当地点设立表明监督区的标牌:
- c)定期审查该区的条件,以确定是否需要采取防护措施和做出安全规定,或是否需要更改监督区的 边界。
- 6.4.3 非密封源工作场所的分级
 - 非密封源工作场所的分极应按附录 C(标准的附录)的规定进行。
- 6.5 个人防护用具的配备与应用
- 6.5.1 注册者、许可证持有者和用人单位应根据实际需要为工作人员提供适用、足够和符合有关标准 的个人防护用具,如各类防护服、防护围裙、防护手套、防护面罩及呼吸防护器具等,并应使他们了解其 所使用的防护用具的性能和使用方法。
- 6.5.2 应对工作人员进行正确使用呼吸防护器具的指导,并检查其配戴是否合适。
- 6.5.3 对于需要使用特殊防护用具的工作任务,只有经担任健康监护的医师确认健康合格并经培训和 授权的人员才能承担。
- 6.5.4 个人防护用具应有适当的备份,以备在干预事件中使用。所有个人防护用具均应妥善保管,并应 对其性能进行定期检验。
- 6.5.5 对于任何给定的工作任务,如果需要使用防护用具,则应考虑由于防护用具的使用使工作不便 或工作时间延长所导致的照射的增加,并应考虑使用防护用具可能伴有的非辐射危害。
- 6.5.6 注册者、许可证持有者和用人单位应通过利用适当的防护手段与安全措施(包括良好的工程控 制装置和满意的工作条件),尽量减少正常运行期间对行政管理和个人防护用具的依赖。
- 6.6 职业照射监测和评价
- 6. 6. 1 注册者、许可证持有者和用人单位应根据其负责的实践和源的具体情况,按照辐射防护最优化 的原则制定适当的职业照射监测大纲,进行相应的监测与评价。应将监测与评价的结果定期向审管部门 报告;发生异常情况时应随时报告。
- 6.6.2 个人监测和评价
- 6. 6. 2. 1 注册者、许可证持有者和用人单位应负责安排工作人员的职业照射监测和评价。对职业照射 的评价主要应以个人监测为基础。
- 6. 6. 2. 2 对于任何在控制区工作的工作人员,或有时进入控制区工作并可能受到显著职业照射的工作 人员,或其职业照射剂量可能大于 $5~\mathrm{mSv/a}$ 的工作人员,均应进行个人监测。在进行个人监测不现实或 不可行的情况下,经审管部门认可后可根据工作场所监测的结果和受照地点和时间的资料对工作人员

的职业受照做出评价。 6.6.2.3 对在监督区或只偶尔进入控制区工作的工作人员,如果预计其职业照射剂量在 $1~\mathrm{mSv/a}$ \sim

- 5 mSv/a范围内,则应尽可能进行个人监测。应对这类人员的职业受照进行评价,这种评价应以个人监 测或工作场所监测的结果为基础。
- 6. 6. 2. 4 如果可能,对所有受到职业照射的人员均应进行个人监测。但对于受照剂量始终不可能大于 1 mSv/a的工作人员,一般可不进行个人监测。
- 6.6.2.5 应根据工作场所辐射水平的高低与变化和潜在照射的可能性与大小,确定个人监测的类型、
- 周期和不确定度要求。 6.6.2.6 注册者、许可证持有者和用人单位应对可能受到放射性物质体内污染的工作人员(包括使用
- 射评价提供所需要的摄入量或待积当量剂量数据。 6.6.3 工作场所的监测和评价

呼吸防护用具的人员)安排相应的内照射监测,以证明所实施的防护措施的有效性,并在必要时为内照

- 6.6.3.1 注册者和许可证持有者应在合格专家和辐射防护负责人的配合下(必要时还应在用人单位的 配合下),制定、实施和定期复审工作场所监测大纲。
- 6.6.3.2 工作场所监测的内容和频度应根据工作场所内辐射水平及其变化和潜在照射的可能性与大 小来确定,并应保证:
 - a)能够评估所有工作场所的辐射状况;
 - b)可以对工作人员受到的照射进行评价;
 - c)能用于审查控制区和监督区的划分是否适当。
- 6.6.3.3 工作场所监测大纲应规定:
 - a)拟测量的量:
 - b)测量的时间、地点和频度;
 - c)最合适的测量方法与程序;
 - d)参考水平和超过参考水平时应采取的行动。
- 6.6.3.4 应将实施工作场所监测大纲所获得的结果予以记录和保存。
- 6.6.4 监测的质量保证

应将质量保证贯穿于从监测大纲制定到监测结果评价的全过程。监测大纲必须包含有质量保证要 求,以确保,测量设备具备所要求的计量特性(如准确度、稳定性、量程和分辨能力等)并得以适当的维 护,测量与分析程序得以正确地建立和执行,监测的结果得以正确地记录、评价和妥善保管。

- 6.7 注册者、许可证持有者和用人单位的职业照射管理
- 6.7.1 注册者、许可证持有者和用人单位应制定和实施用以控制和管理本单位职业照射的书面规则和
- 程序,以确保工作人员和其他人员的防护与安全水平符合本标准的要求。
- 6.7.2 应在所制定的规则和程序中包括有关调查水平和管理水平的具体数值,以及超过这些数值时应 执行的程序。
- 6.7.3 应加强防护与安全培训和安全文化素养的培植,提高工作人员和有关人员对所制定的规则、程 序和防护与安全规定的理解和执行的自觉性。应将所有培训记录妥善存档保管。
- 6.7.4 应建立监督制度和按照审管部门的要求聘任辐射防护负责人,对所有涉及职业照射的工作进行 充分监督,并采取合理步骤,保证各种规则、程序、防护与安全规定等得到遵守。
- 6.7.5 应向所有工作人员提供:
 - a)他们所受职业照射(包括正常照射和潜在照射)的情况及可能产生的健康影响:
 - b)适当的防护与安全培训与指导:
 - c)他们的行动对防护与安全的意义的信息。
- 6.7.6 应向可能进入控制区或监督区工作的女性工作人员提供下列信息:
 - a) 孕妇受到照射对胚胎和胎儿的危险;
 - b)女性工作人员怀孕后尽快通知注册者、许可证持有者和用人单位的重要性:

- c)婴儿经哺乳食入放射性物质的危险。
- 6.7.7 应向可能受到应急计划影响的工作人员提供相应的信息、指导和培训。
- 6.8 职业健康监护
- 6.8.1 注册者、许可证持有者和用人单位应按照有关法规的规定,安排相应的健康监护。
- 6.8.2 健康监护应以职业医学的一般原则为基础,其目的是评价工作人员对于其预期工作的适任和持续适任的程度。
- 6.9 职业照射的记录
- 6.9.1 注册者、许可证持有者和用人单位必须为每一位工作人员都保存职业照射记录。
- 6.9.2 职业照射记录应包括:
 - a)涉及职业照射的工作的一般资料;
 - b)达到或超过有关记录水平的剂量和摄入量等资料,以及剂量评价所依据的数据资料;
 - c)对于调换过工作单位的工作人员,其在各单位工作的时间和所接受的剂量和摄入量等资料;
- d)因应急干预或事故所受到的剂量和摄入量等记录;这种记录应附有有关的调查报告,并应与正常工作期间所受到的剂量和摄入量区分开。
- 6.9.3 注册者、许可证持有者和用人单位应:
 - a)按国家审管部门的有关规定报送职业照射的监测记录和评价报告;
 - b)准许工作人员和健康监护主管人员查阅照射记录及有关资料;
 - c) 当工作人员调换工作单位时,向新用人单位提供工作人员的照射记录的复制件:
- d)当工作人员停止工作时,注册者、许可证持有者和用人单位应按审管部门或审管部门指定部门的要求,为保存工作人员的职业照射记录做出安排:
- e)注册者、许可证持有者和用人单位停止涉及职业照射的活动时,应按审管部门的规定,为保存工作人员的记录做出安排。
- 6.9.4 在工作人员年满75岁之前,应为他们保存职业照射记录。在工作人员停止辐射工作后,其照射记录至少要保存30年。

7 医疗照射的控制

7.1 责任

- 7.1.1 许可证持有者应对保证受检者与患者的防护与安全负责。有关执业医师与医技人员、辐射防护负责人、合格专家、医疗照射设备供方等也应对保证受检者与患者的防护与安全分别承担相应的责任。
- 7.1.2 许可证持有者应保证:
 - a)只有具有相应资格的执业医师才能开具医疗照射的检查申请单或治疗处方;
 - b)只能按照医疗照射的检查申请单或治疗处方对受检者与患者实施诊断性或治疗性医疗照射;
- c)在开具医疗照射检查单或治疗处方时,以及在实施医疗照射期间,执业医师对保证受检者与患者的防护与安全承担主要职责与义务:
- d)所配备的医技人员满足需要,并接受过相应的培训,在实施医疗照射检查单或治疗处方所规定的诊断或治疗程序的过程中能够承担指定的任务:
 - e)制定并实施经审管部门认可的培训准则。
- 7.1.3 许可证持有者将电离辐射应用于治疗或诊断时,应注意听取放射治疗物理、核医学物理或放射诊断物理等方面合格专家的意见,并应实施相应的质量保证要求。
- 7.1.4 执业医师和有关医技人员应将受检者与患者的防护与安全方面所存在的问题和需求及时向许可证持有者报告,并尽可能采取相应的措施,以确保受检者与患者的防护与安全。
- 7.2 医疗照射的正当性判断
- 7.2.1 正当性判断的一般原则

在考虑了可供采用的不涉及医疗照射的替代方法的利益和危险之后,仅当通过权衡利弊,证明医疗 照射给受照个人或社会所带来的利益大于可能引起的辐射危害时,该医疗照射才是正当的。

对于复杂的诊断与治疗,应注意逐例进行正当性判断。还应注意根据医疗技术与水平的发展,对过去认为是正当的医疗照射重新进行正当性判断。

7.2.2 诊断检查的正当性判断

在判断放射学或核医学检查的正当性时,应掌握好适应证,正确合理地使用诊断性医疗照射,并应注意避免不必要的重复检查;对妇女及儿童施行放射学或核医学检查的正当性更应慎重进行判断。

7.2.3 群体检查的正当性判断

涉及医疗照射的群体检查的正当性判断,应考虑通过普查可能查出的疾病、对被查出的疾病进行有效治疗的可能性和由于某种疾病得到控制而使公众所获得的利益,只有这些受益足以补偿在经济和社会方面所付出的代价(包括辐射危害)时这种检查才是正当的。X 射线诊断的筛选性普查还应避免使用透视方法。

7.2.4 与临床指征无关的放射学检查的控制

判断因职业、法制需要或健康保险目的而进行放射学检查是否正当,应考虑能否获得有关受检者健康状况的有用信息及获得这些信息的必要性,并应与有关专业机构进行磋商。

7.2.5 关于医学研究中志愿者的照射

对医学研究中志愿者的照射应按照国家有关规定仔细进行审查(包括涉及人体生物医学研究的伦理审查等),应将接受此类照射的可能危险控制在可以接受的水平并告知志愿受照者,只能由具有相应资格又训练有素的人员施行这种照种。

7.3 医疗照射的防护最优化

医疗照射的防护最优化除了应符合本标准其他各章对防护最优化所规定的有关要求外,还应满足下列要求。

7.3.1 设备要求

- 7.3.1.1 医疗照射所使用的辐射源应符合本标准其他各章对辐射源的安全所规定的有关要求;尤其应将医疗照射所使用的系统设计成可及时发现系统内单个部件的故障,以使对患者的任何非计划医疗照射减至最小,并有利于尽可能避免或减少人为失误。
- 7.3.1.2 在设备供方的合作下,许可证持有者应保证:
 - a)所使用的设备不论是进口的还是国产的,均符合国家有关标准及规定;
 - b)备有设备性能规格和操作及维修说明书,特别应备有防护与安全说明书;
 - c)现实可行时,将操作术语(或其缩写)和操作值显示于操作盘上;
- d)设置辐射束控制装置,这类装置应包括能清晰地并以某种故障安全方式指示辐射束是处于"开"或"关"状态的部件;
 - e)设备带有射束对中准直装置,以便于将照射尽可能限制于被检查或治疗的部位;
- f)在没有任何辐射束调整装置的情况下,使诊治部位的辐射场尽可能均匀,并由设备供方说明其不均匀性;
 - g)使辐射泄漏或散射在非诊治部位所产生的照射量率保持在可合理达到的尽量低水平。
- 7.3.1.3 对于放射诊断设备,许可证持有者在设备供方的合作下应保证.
- a)辐射发生器及其附属部件的设计和制造便于将医疗照射保持在能获得足够诊断信息的可合理达到的尽量低水平:
- b)对于辐射发生器,能清晰、准确地指示各种操作参数,如管电压、过滤特性、焦点位置、源与像接收器的距离、照射野的大小,以及管电流与时间或二者的乘积等;
- c)射线摄影设备配备照射停止装置,在达到预置的时间、管电流与时间的乘积或剂量后该装置能自动使照射停止;

- d) 荧光透视设备配备某种 X 射线管工作控制开关,只有将此开关持续按下时才能使 X 射线管工作,并配备有曝光时间指示器和(或)入射体表剂量监测器。
- 7.3.1.4 对于放射治疗设备,许可证持有者在设备供方的合作下应保证:
- a)辐射发生器和照射装置配备有用于可靠地选择、指示和(必要并可行时)证实诸如辐射类型、能量指标、射束调整因子、治疗距离、照射野大小、射束方向、治疗时间或预置剂量等运行参数的装置:
- b)使用放射源的辐射装置是故障安全的,即一旦电源中断放射源将自动被屏蔽,并一直保持到由控制台重新启动射束控制机构时为止:
- c)对于高能放射治疗设备,至少具有两个独立的用于终止照射的故障安全保护系统,并配备安全联锁装置或其他手段,用以防止在工作条件不同于控制台上所选定的情况下将设备用于临床;
- d)执行维修程序时,如果联锁被旁路,安全联锁装置的设计能确保只有在维修人员使用适当的器件、编码或钥匙进行直接控制的条件下照射装置才能运行:
- e)不论是远距离治疗用的放射源或是近距离治疗用的放射源均符合附录 J(标准的附录)中 J2.8 所给出的对密封源的要求;
- f)必要时,安装或提供能对放射治疗设备使用过程中出现的异常情况给出报警信号的监测设备。
- 7.3.2 操作要求
- 7.3.2.1 许可证持有者应:
 - a)在分析供方所提供资料的基础上,辨明各种可能引起非计划医疗照射的设备故障和人为失误;
- b)采取一切合理措施防止故障和失误,包括选择合格人员、制定适当的质量保证与操作程序,并就程序的执行和防护与安全问题对有关人员进行充分的培训与定期再培训:
 - c)采取一切合理措施,将可能出现的故障和失误的后果减至最小;
 - d)制定应付各种可能事件的应急计划或程序,必要时进行应急训练。
- 7.3.2.2 对于放射诊断,许可证持有者应保证:
- a)开具或实施放射诊断申请单的执业医师和有关医技人员所使用的设备是合适的,在考虑了相应专业机构所制定的可接受图像质量标准和有关医疗照射指导水平后,确保患者所受到的照射是达到预期诊断目标所需的最小照射,并注意查阅以往的检查资料以避免不必要的额外检查:
- b) 执业医师和有关医技人员应认真选择并综合使用下列各种参数,以使受检查所受到的照射是与可接受的图像质量和临床检查目的相一致的最低照射,对于儿童受检者和施行介入放射学更应特别重视对下列参数的选择处理:
 - 1)检查部位,每次检查的摄片次数(或断层扫描切片数)和范围或每次透视的时间;
 - 2)图像接收器的类型;
 - 3)防散射滤线栅的使用;
 - 4)初级 X 射线束的严格准直;
 - 5)管电压,管电流与时间或它们的乘积;
 - 6)图像存贮方法;
 - 7)适当的图像处理因素等。
- c)只有在把受检查转移到固定放射学检查设备是不现实的或医学上不可接受的情况下,并采取了 严格的辐射防护措施后,才可使用可携式、移动式放射学检查设备;
- d)除临床上有充分理由证明需要进行的检查外,避免对怀孕或可能怀孕的妇女施行会引起其腹部或骨盆受到照射的放射学检查:
- e) 周密安排对有生育能力的妇女的腹部或骨盆的任何诊断检查, 以使可能存在的胚胎或胎儿所受到的剂量最小:
 - f)尽可能对辐射敏感器官(例如性腺、眼晶体、乳腺和甲状腺)提供恰当的屏蔽。
- 7.3.2.3 对于核医学,许可证持有者应保证:

- a)开具或实施放射性核素显像检查申请单的执业医师和有关医技人员使受检查所受到的照射,是 在考虑了有关医疗照射指导水平后为达到预期诊断目的所需要的最低照射,并注意查阅以往的检查资 料以避免不必要的额外检查:
- b)执业医师和有关医技人员针对不同受检者的特点,恰当地选用可供利用的适当的放射性药物及 其用量,使用阻断非检查器官吸收的方法(必要时实施促排),并注意采用适当的图像获取和处理技术, 以使受检者受到的照射是为获得合平要求的图像质量所需要的最低照射:
 - c)除有明显临床指征外,避免因进行诊断或治疗让怀孕或可能怀孕的妇女服用放射性核素:
- d)哺乳妇女服用了放射性药物后,建议其酌情停止喂乳,直到其体内放射性药物的分泌量不再给婴 儿带来不可接受的剂量为止;
- e)仅当有明显的临床指征时才可以对儿童施行放射性核素显像,并应根据受检儿童的体重、身体表 面积或其他适用的准则减少放射性药物服用量,还应尽可能避免使用长半衰期的放射性核素。
- 7.3.2.4 对于放射治疗,许可证持有者应保证,
- a)在对计划照射的靶体积施以所需要的剂量的同时使正常组织在放射治疗期间所受到的照射控制 在可合理达到的尽量低水平,并在可行和适当时采用器官屏蔽措施;
 - b)除有明显临床指征外,避免对怀孕或可能怀孕的妇女施行腹部或骨盆受照射的放射治疗;
 - c)周密计划对孕妇施行的放射治疗,以使胚胎或胎儿所受到的照射剂量减至最小:
 - d)将放射治疗可能产生的危险通知患者。
- 7.3.3 医疗照射的质量保证
- 7.3.3.1 许可证持有者应根据本标准所规定的质量保证要求和其他有关医疗照射质量保证的标准制 定一个全面的医疗照射质量保证大纲:制定这种大纲时应邀请诸如放射物理、放射药物学等有关领域的 合格专家参加。

a)对辐射发生器、显像设备和辐照装置等的物理参数的测量(包括调试时的测量和调试后的定期测

- 7.3.3.2 医疗照射质量保证大纲应包括:
- 量);
 - b)对患者诊断和治疗中所使用的有关物理及临床因素的验证:
 - c)有关程序和结果的书面记录:
 - d)剂量测定和监测仪器的校准及工作条件的验证;
 - e)放射治疗质量保证大纲的定期和独立的质量审核与评审。
- 7.3.3.3 许可证持有者应重视对照射剂量和放射性药物活度测定的校准,保证:
 - a)对医疗照射用辐射源的校准可追溯到剂量标准实验室;
 - b)按辐射的线质或能量,以及规定条件下预定距离处的吸收剂量或吸收剂量率,对放射治疗设备
- 进行校准: c)按某一特定参考日期的活度、参考空气比释动能率或在规定介质中规定距离处的吸收剂量率,对
- 近距离治疗用密封源进行校准:
- d)按应服用的放射性药物的活度以及服药时所测定和记录的活度对核医学中使用的非密封源进行 校准;
- e)在设备调试时,在进行了可能影响剂量测定的任何维修之后,以及在审管部门认可的时间间隔结 束时,均进行有关校准。
- 7.3.3.4 许可证持有者应保证进行下列临床剂量测定并形成文件。
- a)在放射学检查中,典型身材成年受检者的入射体表剂量、剂量与面积之积、剂量率及照射时间或 器官剂量等的代表值:
- b)对于利用外照射束放射治疗设备进行治疗的患者,计划靶体积的最大与最小吸收剂量,以及有 关部位(例如靶体积中心或开具处方的执业医师选定的其他部位)的吸收剂量:

- c)在使用密封源的近距离治疗中,每位患者的选定部位处的吸收剂量;
- d)在使用非密封源的诊断或治疗中,受检者或患者的典型吸收剂量;
- e)在各种放射治疗中,有关器官的吸收剂量。
- 7.4 医疗照射的指导水平与剂量约束
- 7.4.1 医疗照射的指导水平
- 7.4.1.1 对于常用的诊断性医疗照射,应通过广泛的质量调查数据推导,并根据本标准的规定(见4.3.5),由相应的专业机构与审管部门制定医疗照射的指导水平,并根据技术的进步不断对其进行修订,供有关执业医师作为指南使用,以便:
- a) 当某种检查的剂量或活度超过相应指导水平时,采取行动改善优化程度,使在确保获得必需的诊断信息的同时尽量降低受检者的受照剂量;
- b)当剂量或活度显著低于相应的指导水平而照射又不能提供有用的诊断信息和给患者带来预期的医疗利益时,按需要采取纠正行动。
- 7.4.1.2 考虑到本标准 4.3.5 中 b)和 c)的规定,不应将所确定的医疗照射指导水平视为在任何情况下都能保证达到最佳性能的指南;实践中应用这些指导水平时应注意具体条件,如医疗技术水平、受检者的身材和年龄等。
- 7.4.2 放射诊断的医疗照射指导水平

对于典型成年受检者,各种常用的 X 射线摄影、X 射线 CT 检查、乳腺 X 射线摄影和 X 射线透视的 剂量或剂量率指导水平见附录 G(提示的附录)的 G1。

7.4.3 核医学诊断的医疗照射指导水平

对于典型成年受检者,各种常用的核医学诊断的活度指导水平见附录 G(提示的附录)的 G2。

- 7.4.4 其他有关的剂量约束
- 7.4.4.1 医学研究中志愿者所受的医疗照射不能给受照个人带来直接利益,审管部门或其授权的机构 应对这类人员的防护最优化规定相应的剂量约束。
- 7.4.4.2 许可证持有者应对明知受照而自愿帮助护理、扶持与慰问或探视正在接受医疗照射的患者的人员的受照剂量进行控制。这类人员个人所受到的剂量应限制在附录 B(标准的附录)B1.2.2 所规定的数值以下。
- 7.4.4.3 接受放射性核素治疗的患者应在其体内的放射性物质的活度降至一定水平后才能出院,以控制其家庭与公众成员可能受到的照射。接受了碘 131 治疗的患者,其体内的放射性活度降至低于 400 MBq 之前不得出院。必要时应向患者提供有关他与其他人员接触时的辐射防护措施的书面指导。
- 7.5 事故性医疗照射的预防和调查
- 7.5.1 许可证持有者应采取一切合理的措施,包括不断提高所有有关人员的安全文化素养,防止发生潜在的事故性医疗照射。
- 7.5.2 许可证持有者应对下列各种事件及时进行调查:
- a)各种治疗事件,如弄错患者或其组织的、用错药物的、或剂量或分次剂量与处方数值严重不符以及可能导致过度急性次级效应的治疗事件;
- b)各种诊断性照射事件,如剂量明显大于预计值的诊断性照射,或剂量反复并显著超过所规定的相应指导水平的诊断性照射:
- c)各种可能造成患者的受照剂量与所预计值显著不同的设备故障、事故或其他异常偶然事件。
- 及其在体内的分布;提出防止此类事件再次发生需要采取的纠正措施;实施其责任范围内的所有纠正措施;按规定尽快向审管部门提交书面报告,说明事件的原因和采取纠正措施的情况;将事件及其调查与纠正情况通知受检者与患者及有关人员。

7.5.3 对于 7.5.2 所要求的每一项调查,许可证持有者均应,计算或估算受检者与患者所受到的剂量

7.5.4 许可证持有者应在审管部门规定的期限内保存并在必要时提供下列记录:

- a)在放射诊断方面,进行追溯性剂量评价所必需的资料,包括特殊检查中荧光透视检查的照射次数 和持续时间等:
 - b)在核医学方面,所服用的放射性药物的类型及活度;
- c)在放射治疗方面,计划靶体积的说明、靶体积中心的剂量和靶体积所受的最大与最小剂量、其他 有关器官的剂量、分次剂量和总治疗时间:
 - d)放射治疗所选定的有关物理与临床参数的校准和定期核对的结果:
 - e)在医学研究中志愿者所受照射的剂量。
- 8 公众照射的控制
- 8.1 责任
- 8. 1. 1
- 制,除非这种照射是被排除的或引起这种照射的实践或源是被豁免的。对于未被排除的天然源照射或未 豁免的天然源,除了氡所致的照射低于审管部门所制定的持续照射行动水平的情况以外,注册者和许可

注册者和许可证持有者应按本标准的要求对他们所负责的源或实践所引起的公众照射实施控

- 证持有者应按照审管部门的规定实施本标准的有关要求(见 3.1.3.2)。
- 8.1.2 对于其所负责的源,注册者和许可证持有者应负责:
 - a)制定和实施与公众照射控制有关的防护与安全原则和程序,并建立相应的组织机构:
 - b)制定、采取和坚持相应的措施,保证:
 - 1)受其所负责的源照射的公众成员的防护是最优化的; 2)受其所负责的源照射的关键人群组的正常照射受到限制,使组内成员个人的总受照剂量
 - (Q, 4, 3, 2) 不超过附录 B(标准的附录) 所规定的公众成员的剂量限值: c)制定、采取和保持各种所需要的措施,确保源的安全,使对与公众有关的潜在照射的控制符合本
- 标准的要求:
- d)提供适当且足够的用于公众防护的设施、设备和服务,它们的性能和范围应与照射的可能性与大 小相适应:
- e)对有关工作人员进行防护与安全和环境保护的培训及定期再培训,确保他们始终保持所需要的 适任水平:
- f)按照审管部门的要求,制定和实施公众照射监测大纲,并提供相应的监测设备,以便对公众照射 进行评价;
 - g)按照本标准的要求,保存有关监督与监测的详细记录;
- h)按照本标准第 5 章和第 10 章的有关要求,制定与所涉及危险的性质和大小相适应的应急计划或 程序,并作好相应的应急准备。
- 8.1.3 注册者和许可证持有者应负责确保所采取的放射性物质排放控制措施的最优化过程遵循审管 部门制定或认可的剂量约束,应考虑下列有关因素:
 - a)其他源或实践(包括实际上已评价过的未来可能出现的源和实践)的剂量贡献;
- b)可能影响公众照射的任何条件的可能变化,如源的特性和运行操作条件的变化、照射途径的变 化、居民习惯或分布的变化、关键人群组的改变,或环境弥散条件的变化等;
 - c) 同类源或实践的运行操作经验和教训:
- d) 照射评价中的各种不确定性,特别是当关键人群组与源在空间或时间上相距较远的情况下照射 评价的不确定性。
- 8.2 外照射源的控制
 - 如果审管部门确认某种外照射源可能引起公众照射,则这种源的注册者或许可证持有者应保证.
- a)在调试之前,所有利用这种外照射源的新设施的平面布置与设备布置资料和现有设施的全部重 要修改均已经审管部门审评和认可,未经审评和获得书面认可之前,不得进行调试或修改;

- b)为这种源的运行制定专门的剂量约束,并报审管部门认可;
- c)按照本标准的有关要求,提供最优化的屏蔽和其他防护措施。
- 8.3 非开放场所中放射性污染的控制

注册者和许可证持有者应保证:

- a)按照本标准的要求,根据情况对其所负责的源采取最优化的措施,限制污染在公众可到达区域内引起公众照射:
 - b)针对源的建造和运行,建立专门的包容措施,以防止污染向公众可到达的区域内扩散。
- 8.4 参观访问人员的控制

注册者和许可证持有者应:

- a)确保进入控制区的参观访问人员有了解该区域防护与安全措施的工作人员陪同;
- b)在参观访问人员进入控制区前,向他们提供足够的信息和指导,以确保他们和可能受他们的行动影响的其他人员的防护;
 - c)在监督区设置醒目的标志,并采取其他必要的措施,确保对来访者进入监督区实施适当的控制。
- 8.5 放射性废物管理
- 8.5.1 注册者和许可证持有者应确保在现实可行的条件下,使其所负责实践和源所产生的放射性废物的活度与体积达到并保持最小。
- 8.5.2 注册者和许可证持有者应按照本标准和国家其他有关法规与标准的要求,对其所负责实践和源 所产生的放射性废物实施良好的管理,进行分类收集、处理、整备、运输、贮存和处置,确保:
 - a)使放射性废物对工作人员与公众的健康及环境可能造成的危害降低到可以接受的水平:
 - b) 使放射性废物对后代健康的预计影响不大于当前可以接受的水平:
 - c)不给后代增加不适当的负担。
- 8.5.3 注册者和许可证持有者进行放射性废物管理时,应充分考虑废物的产生与管理各步骤之间的相互关系,并应根据所产生废物中放射性核素的种类、含量、半衰期、浓度以及废物的体积和其他物理与化学性质的差别,对不同类型的放射性废物进行分类收集和分别处理,以利于废物管理的优化。
- 8.6 放射性物质向环境排放的控制
- 8.6.1 注册者和许可证持有者应保证,由其获准的实践和源向环境排放放射性物质时符合下列所有条件,并已获得审管部门的批准:
 - a)排放不超过审管部门认可的排放限值,包括排放总量限值和浓度限值;
 - b)有适当的流量和浓度监控设备,排放是受控的;
 - c)含放射性物质的废液是采用槽式排放的;
 - d)排放所致的公众照射符合本标准附录 B(标准的附录)所规定的剂量限制要求;
 - e)已按本标准的有关要求使排放的控制最优化。
- 8.6.2 不得将放射性废液排入普通下水道,除非经审管部门确认是满足下列条件的低放废液,方可直接排入流量大于 10 倍排放注量的普通下水道,并应对每次排放作好记录:
- a)每月排放的总活度不超过 $10~ALI_{min}(ALI_{min}$ 是相应于职业照射的食入和吸入 ALI 值中的较小者,其具体数值可按 B1.3.4 和 B1.3.5 条的规定获得);
- 8.6.3 注册者和许可证持有者在开始由其负责的源向环境排放任何液态或气载放射性物质之前应根据需要完成以下工作,并将结果书面报告审管部门.
 - a)确定拟排放物质的特性与活度及可能的排放位置和方法:
- b)通过环境调查和适当的运行前试验或数学模拟,确定所排放的放射性核素可能引起公众照射的 所有重要照射途径:
 - c)估计计划的排放可能引起的关键人群组的受照剂量。

- 8.6.4 注册者和许可证持有者在其所负责源的运行期间应:
 - a) 使所有放射性物质的排放量保持在排放管理限值以下可合理达到的尽量低水平:
- b)对放射性核素的排放进行足够详细和准确的监测,以证明遵循了排放管理限值,并可依据监测结果估计关键人群组的受照剂量:
 - c)记录监测结果和所估算的受照剂量;
 - d)按规定向审管部门报告监测结果;
 - e)按审管部门规定的报告制度,及时向审管部门报告超过规定限值的任何排放。
- 8.6.5 注册者和许可证持有者应根据运行经验的积累和照射途径与关键人群组构成的变化,对其所负责源的排放控制措施进行审查和调整,但任何调整均需在书面征得审管部门的同意后才能实施。
- 8.7 公众照射的监测
- 8.7.1 注册者和许可证持有者应按照审管部门的要求,并结合其所负责实践和源的实际情况,
- a)制定并实施详细的监测大纲,以保证本标准中有关外照射源所致公众照射的各项要求得以满足, 并可对这类照射进行评价:
- b)制定并实施详细的监测大纲,以保证本标准中有关放射性物质向环境排放的各项要求和审管部门所制定的各项要求得以满足,使审管部门能够确认在推导排放管理限值时的假设条件继续有效,并能依据监测结果估算关键人群组的受照剂量:
 - c)按规定保存监测记录;
 - d)按规定期限向审管部门提交监测结果的摘要报告;
- e)及时向审管部门报告环境辐射水平或污染显著增加的情况;若这种增加可能是由其所负责源的辐射或放射性流出物所造成的,则应迅速报告;
- f)建立和保持实施应急监测的能力,以备事故或其他异常事件引起环境辐射水平或放射性污染水平意外增加时启用:
 - g)验证对排放的放射性后果进行预评价时所作假设的正确性。
- 8.8 含放射性物质消费品的管理
- 8.8.1 任何人均不得向公众出售能够引起辐射照射的消费品,除非.
 - a) 所引起的照射是被排除的;
 - b)消费品本身满足附录 A(标准的附录)所规定的豁免要求,已被审管部门所豁免;或
 - c)消费品本身是已由审管部门批准销售的。
- 8. 8. 2 非豁免消费品的制造商和供应商应保证其产品符合本标准的要求,特别应保证其产品设计与制造中那些在正常操作和使用过程中或在误操作、误使用、事故或处置情况下可能影响人员受照的特性均已实现最优化;在对这些特性进行最优化时,应执行审管部门制定或认可的剂量约束,并应考虑下列因素:
 - a)所使用的各种放射性核素及其辐射类型、辐射能量、活度和半衰期;
 - b)所使用的放射性核素的化学和物理形态及其正常和异常情况下对防护与安全的影响;
 - c)消费品中放射性物质的包容和屏蔽,以及在正常和异常情况下接触这些放射性物质的可能性;
 - d)对售后服务的需求及提供服务的方式:
 - e)同类消费品的有关经验。
- 8.8.3 消费品的制造商和供应商应保证:
- a)在每件消费品的可见表面上以印刷、粘贴或其他方式牢固地固定一个醒目的标签,说明该消费品含有放射性物质,并说明该消费品的销售已获得有关审管部门的批准.
 - b)在每个供应消费品的包装体上也清楚地标明 a)中所规定的信息。
- 8.8.4 消费品的制造商和供应商应随每件消费品提供一份说明书,就下列各个方面给出明确而贴切的说明和指导:

- a)该消费品的安装、使用和维修;
- b)售后服务:
- c)所包含的放射性核素及其在规定年月日的活度;
- d)正常使用过程和服务、修理期间的辐射剂量率;
- e)推荐的处置方法。
- 9 潜在照射的控制——源的安全
- 9.1 责任
- 9.1.1 注册者和许可证持有者应对其所负责源的潜在照射的控制(即源的安全)负责,应实施本标准第3章所规定的一般要求和第4章与第5章所规定的主要要求,并应根据其所负责源的实际情况实施本章所规定的详细要求。

对于获准营运核设施或放射性废物管理设施的许可证持有者,除了本标准的要求之外,还应遵循国家有关核设施、放射性废物管理设施的防护与安全的专门法规与标准所规定的要求。

- 9.1.2 注册者和许可证持有者应通过与源的供方或设计者、建(制)造成以合同等法律上有效的方式的合作,保证其实践中的源:
 - a)是经良好设计和建(制)造的;
 - b)符合有关防护与安全要求及相应质量标准;
 - c)经过检查,确认符合相应技术规格书的要求。
- 9.1.3 注册者和许可证持有者应对其所负责源的运行操作的安全负全部责任;注册者和许可证持有者可以把所负责的源的运行操作任务委托给其他方进行,但仍然要负责保证源的所有运行操作符合本标准要求。
- 9.2 安全评价

施:

9.2.1 注册者和许可证持有者应根据第 4 章所规定的有关要求(见 4.2.2.3 和 4.6.1),对其所负责的源进行安全评价。对于结构、系统及部件设计一致的同类型源,如果已存在对源的技术性能的安全评价,则经审管部门认可,可见对源在当地的设置。使用及运行操作条件进行一般的安全评价,其他情况下,通

则经审管部门认可,可只对源在当地的设置、使用及运行操作条件进行一般的安全评价。其他情况下,通 常应进行全面详细的专门安全评价。

- 9.2.2 安全评价应视源的实际情况包括对下列问题的全面严格审查:
 - a)源的运行操作限值和运行操作条件;
 - b)潜在照射产生的可能性及其性质和大小;
- c)可能导致潜在照射或可能导致与防护和安全有关的构筑物、系统、部件和程序失效(单一失效或组合失效)的各种途径,以及这类失效可能造成的后果;
 - d)环境变化可能影响防护与安全的途径,以及这类影响的可能后果;
 - e)与防护和安全有关的运行操作程序可能出现错误的途径,以及这类错误可能造成的后果:
 - f)所提出的任何设计修改或运行操作修改及其对防护与安全的意义。
- 9.2.3 在安全评价中,还应视源的实际情况考虑下述问题。
- a)可能导致放射性物质突然大量释放的因素和可能释放的最大活度,以及为预防或控制这类释放可以采取的措施:
 - b)可能导致放射性物质连续小量释放的因素,以及为防止或控制这类释放可以采取的措施;
 - c)可能引起任何辐射束意外照射的因素,以及为防止、识别和控制此类事件的发生可以采取的措
- d)为限制潜在照射的可能性和大小所用的安全装置的独立性以及安全装置的冗余性和多样性的适宜程度。
- 9.2.4 应将安全评价形成文件,如有必要,应由注册者或许可证持有者依据有关质量保证大纲组织对

安全评价文件进行独立的审核。

注册者和许可证持有者应按审管部门规定的审管要求,将安全评价文件提交审管部门进行审评。

- 9.2.5 在下列情况下,必要时应重新或补充进行安全评价.
 - a) 拟对源或与源有关的设施、运行操作程序或维修程序作重大修改:
- b)运行操作经验或者引起或可能引起潜在照射的事故、故障、失误或事件的资料表明现有的安全 评价不当或无效:或
 - c)源的活度发生或可能发生显著改变,或有关安全导则或技术标准已经变更。
- 9.3 对设计的要求
- 9.3.1 一般要求
- 9.3.1.1 源的设计和建(制)造应保证源:
 - a)符合本标准规定的防护与安全要求; b)满足工程、性能和功能方面的技术规格书:
 - c)满足与部件和系统的防护与安全功能和性能相适应的质量标准;
 - d)便于将来在满足本标准规定的防护与安全要求的前提下退役。
- 9.3.1.2 对于简单的源,应备有关于正确安装、使用和安全注意事项的资料;对于复杂和较复杂的源, 还应备有详细的设计资料。所有资料的表述方式与表述语言文字均应易于其使用者正确理解和执行。
- 9.3.2 源的选址或定位

9.3.2.1 为具有大量放射性物质和可能造成这些放射性物质大量释放的源选择场址时,应考虑可能影 响该源的辐射安全的各种场址特征和可能受到该源影响的场址特征,并应考虑实施场外干预(包括实施

- 应急计划和防护行动)的可行性。
- 9.3.2.2 在确定装置和设施(例如医院和制造厂)内的小型源的位置时,应考虑:
 - a)可能影响该源的安全和保安的因素;
 - b)可能影响该源引起职业照射和公众照射的因素,包括诸如通风、屏蔽、距人员活动区的距离等;
 - c)考虑了上述因素后工程设计上的可行性。
- 9.3.3 事故的预防和事故后果的缓解
- 9.3.3.1 源的各种与防护或安全有关的系统、部件和设备的设计与建(制)造应尽可能有效地预防与该 源相关的各种可能的事故、偶发事件或异常事件,将工作人员和公众成员遭受照射的大小与可能性限制 到可合理达到的尽量低水平。
- 9.3.3.2 设计应依据纵深防御原则(见 4.5.2),设置与源的潜在照射的大小和可能性相适应的多重防 护与安全措施,并使源的防护与安全重要系统、部件和设备具有适当的冗余性、多样性和独立性,将可以 预见的各种事故或事件发生的可能性降至足够低,并有效地控制或缓解它们的后果。
- 9.3.3.3 设计应为识别可能显著影响防护或安全的非正常运行条件提供必要的系统和设备,所提供的
- 系统和设备应具有足够快的响应,以便能及时采取纠正行动。 9.3.3.4 不管哪种源,只要需要均应设置适当的自动安全系统,一旦源的运行状态超出规定的运行操
- 9. 3. 3. 5 设计还应做出适当安排,以:
- a)保证能对安全重要系统、部件和设备进行定期检查和检验,并为进行这类检查和检验提供相应的 方法和手段:
- b)提供适当的方法和手段,确保遵循防护与安全规定进行维修、检查和检验时工作人员不受到过 量照射:
 - c)为对工作人员进行运行操作和维修方面的培训提供所需要的专门设备和手段:
 - d)为工作人员实施必要的应急响应计划或程序提供适度的手段。

作限制条件时,能自动将源安全地关闭或减少源的辐射输出量。

9.3.4 设计的改进 22

- 9. 3. 4. 1 对于已用于实践的源,如果由于安全评价的结果或任何其他原因,认为有必要对这种源的防护与安全措施进行改进,则只有在对拟议中的改进的防护与安全含义进一步作了适当的安全评价之后,特别是应在评价或排除了这种改进对防护与安全的可能的负面影响之后,方可实施这种改进;如果拟议中的改进对防护与安全可能具有重要影响,则还必须上报审管部门,获得批准后方可实施(见 4. 2. 3. 2)。
- 9.4 对运行操作的要求
- 9.4.1 一般要求
- 9.4.1.1 注册者和许可证持有者应:
- a)建立明确的职责关系,对源整个运行操作寿期内的防护与安全实施管理,必要时还应建立和健全防护与安全管理组织;
- b)制定书面运行操作程序,保证按所制定的程序进行源的运行操作,并应按相应的质保大纲定期 对运行操作程序进行复查和必要的更新;
- c)定期审查防护与安全措施的总体有效性,并定期或按需要对源的与防护和安全有关的系统、部件和设备进行适当的检查、维修、试验和保养,以使源在其整个运行操作寿期内均能满足其防护与安全设计要求。
- 9.4.1.2 注册者和许可证持有者应根据其所负责实践和源的实际情况,配备足够的合格运行操作人员 和必要的管理人员,并定期或不定期地对他们进行培训和考核,使他们具备和保持所要求的适任能力。
- 9.4.2 源的盘查
- 9.4.2.1 注册者和许可证持有者必须建立和保持严格的源的盘查制度,随时掌握源的数量、存放、分布和转移情况,严防源被遗忘、失控、丢失、失踪或被盗。对于长期闲置的源和已经不能应用或不再应用的源,更应坚持进行严格的盘查。
- 9.4.2.2 注册者和许可证持有者对其所负责的源的盘查至少应记录和保存下列资料;
 - a)每个源的位置、形态、活度及其他说明;
 - b)每种放射性物质的数量、活度、形态、分布、包装和存放位置。
- 9.4.3 异常事件和事故的调查与跟踪
- 9.4.3.1 注册者和许可证持有者应按本标准的要求和审管部门的有关规定,制定对异常事件和事故进行调查、跟踪和报告的程序。
- 9. 4. 3. 2 在下列任何一种情况下,注册者和许可证持有者均应按审管部门规定的要求和所制定的程序进行调查和跟踪:
- a) 防护与安全相关的量超过了规定的调查水平,或防护与安全相关的运行操作参数超出了规定的运行操作条件范围:
- b)发生了可能导致某个量超过有关限值或运行操作限制条件的设备故障、失误、差错或其他异常事件:
 - c)发生了事故;
 - d)源的破损或泄漏超过了技术规格书的规定;
 - e)源丢失或被盗。
- 9.4.3.3 发生事件或事故后应尽快进行调查,并应提出包括下述内容的书面报告:
 - a)事件或事故的过程与原因;
 - b)所造成的辐射剂量和污染及其他后果;
 - c)防止类似事件或事故再次发生的措施和建议。
- 9.4.3.4 注册者和许可证持有者应按审管部门的规定,将事故或应报告事件的正式调查报告尽快报送审管部门,并送交其他有关各方。
- 9.4.4 事故处理准则
- 9.4.4.1 对于涉及其所负责源的可合理预见的运行操作错误或事故,注册者和许可证持有者应事先作

好准备,使一旦需要时能采取必要的行动进行响应和纠正。

- 9.4.4.2 对于可能造成异常照射的源,在有可能采取行动控制或影响事故进程和缓解事故后果的场合,注册者和许可证持有者应.
 - a)在考虑源的防护与安全装置对事故的预期响应的前提下,事先制定事故处理程序或指南;
- b)对运行操作人员和有关应急人员进行培训和定期再培训,使他们掌握事故发生时需要执行的程序:
 - c)使控制事故进程及后果可能需要的设备、仪表和诊断辅助手段处于随时可用的状态。
- 9.4.5 运行操作经验的反馈
- 9. 4. 5. 1 注册者和许可证持有者应在其所负责源的正常、非正常运行操作和退役过程中,特别应从所发生的事件和事故中,积累和总结对防护与安全具有重要意义的经验和资源,用以改进自己所负责源的

防护与安全,并按审管部门的规定向审管部门提交和向其他有关各方(如源的供方、设计者和同类源的注册者与许可证持有者等)提供这些资料;这些资料应包括与所给定活动相关的剂量数据、维修数据、事

- 件描述和纠正措施等。 9.4.5.2 注册者和许可证持有者应与源的供方或设计者协商,共同建立和保持一种机制,使后者能将 其所获得的有关源的防护与安全的资料及时反馈给注册者和许可证持有者。
- 9.5 质量保证
- 9.5.1 注册者和许可证持有者应负责制定和实施符合本标准 4.4.2 所规定的主要要求的质量保证大纲或程序。所制定和实施的质量保证大纲或程序的性质和范围应与注册者或许可证持有者所负责源的潜在照射的大小和可能性相适应。
- 9.5.2 质量保证大纲应规定:
- a)各项有计划的和系统的活动,以确保所规定的各项与防护和安全有关的设计及运行操作要求(包括经验反馈要求)得到满足:
- b)管理机制,使与源的设计和运行操作有关的各种任务分析、方法开发、标准制定和技能鉴别等能 正确、有效地进行和完成;
- c)确认程序,用以对设计、材料的供应和使用、制造工艺、检查与检验方法以及运行操作程序和其他程序等进行确认。
- 10 应急照射情况的干预
- 10.1 责任

注册者或许可证持有者以及有关干预组织和审管部门,应按国家有关法规和本标准的要求承担对应急照射情况下干预的准备、实施和管理方面的责任。

- 10.2 应急计划
- 10.2.1 应根据源的类型、规模和场址特征制定应急计划,将场内、场外应承担的应急干预的准备、实施

和管理责任规定清楚并做出相应的安排。场内应急计划和场外应急计应相互衔接和协商。

- 10.2.2 注册者或许可证持有者和相应的干预组织及审管部门应保证:
 - a)对可能需要进行应急干预的任何实践或源均已制定应急计划,并履行了相应的批准程序;
 - b)干预组织参与相关应急计划的制定;
- c)确定应急计划的性质、内容和范围时,不但考虑了对该源进行事故分析的结果,而且考虑了由同类源的运行操作和发生过的事故所吸取的经验与教训:
 - d)对应急计划定期进行复审和修订:
 - e)对参与实施应急计划人员的培训做出规定,并对以适当的间隔进行应急响应演习做出安排;
 - f)向预计可能会受到事故影响的公众成员提供早期信息。
- 10.2.3 应急计划应根据情况包括下列内容:

- a)在报告有关负责部门和启动干预行动方面的责任的划分与安排;
- b)对可能导致应急干预情况的源的各种运行操作条件和其他条件的鉴别:
- c)根据附录 E(标准的附录)E2 中给出的准则并考虑可能发生的事故或紧急事件的严重程度所确定的有关防护行动的干预水平及它们的适用范围:
- d)与有关干预组织进行联系的程序(包括通信安排)和由消防、医疗、公安和其他有关组织获得支援的程序:
 - e)用于评价事故及其场内、外后果的方法与仪器的描述;
 - f)事故情况下发布公众信息的安排;
 - g)终止每种防护行动的准则。
- 10.2.4 注册者和许可证持有者应保证为迅速获得并向有关应急组织传递足够的资料做出适当安排,以便.
 - a)对放射性物质向环境的任何事故性排放的范围和严重程序进行早期预测或评价;
 - b)随着事故的发展对事故进行快速和连续的跟踪评价:
 - c)确定对防护行动的需求。
- 10.3 干预的决策与干预水平
- 10.3.1 一般要求
- 10.3.1.1 应依据干预水平和行动水平来实施应急照射情况下的干预。干预水平用干预中采取某一特定防护行动时预计可以防止的剂量来表示;行动水平则用放射性核素在食品、水和农作物等中的放射性活度浓度来表示,有时也可用预期剂量率或预期剂量来表示。
- 10.3.1.2 相应于有关防护行动的干预水平和行动水平应是最优化的,但不允许超过附录 E(标准的附录)E1 所给出的任何情况下均要求进行干预的急性照射剂量行动水平。应急计划中所确定的干预水平值只应作为实施防护行动的初始准则;应在对事故进行响应的过程中,在考虑当时的主导情况及其可能的演变的基础上对有关干预水平值进行相应的修改。
- 10.3.2 干预的正当性

如果任何个人所受的预期剂量(而不是可防止的剂量)或剂量率接近或预计会接近可能导致严重损伤的阈值(如附录 E(标准的附录)E1 所列),则采取防护行动几乎总是正当的(见 5. 3. 1)。在这种情况下,对任何不采取紧急防护行动的决策,必须对其正当性进行判断。

- 10.3.3 防护行动的最优化:紧急防护行动的干预水平和行动水平
- 10. 3. 3. 1 采取紧急防护行动的决策应以事故时的主导情况为基础。实际可行时,则应根据放射性物质向环境释放的预计情景来做出,但不能为了要验证释放而推迟到根据释放开始后的测量结果来做出。除了这些紧急防护行动之外,还有其他一些在特定情况下可能实行的防护行动,如人员去污或简易的呼吸道防护等,但本标准未对这类防护行动规定专门的干预水平。
- 10. 3. 3. 2 应在应急计划中根据附录 E(标准的附录)E2.1 所给出的准则明确规定相应于紧急防护行动(包括隐蔽、撤离和碘预防)的干预水平;不管什么群体,当其可防止的剂量预计会超过所规定的干预水平时,则应考虑实施相应的防护行动。
- 10.3.3.3 需要时,应在应急计划中规定用于停止和替代特定食品与饮水供应的行动水平。
- 10.3.3.4 如果不存在食品短缺和其他强制性的社会或经济因素,则停止和替代特定食品和饮水供应的行动水平应根据附录 E(标准的附录)E2.2 所给出的准则确定。应将所确定的行动水平应用于可直接食用的食品和经稀释或恢复水分后再食用的干燥的或浓缩的食品。
- 10.3.3.5 某些情况下,如果食品短缺或有其他重要的社会或经济因素考虑,可以采用数值稍高一些的优化的食品与饮水行动水平。但是,当所使用的行动水平高于附录 E(标准的附录)所给出的行动水平时,则采取行动的决策必须经过干预的正当性判断和行动水平的最优化分析。
- 10. 3. 3. 6 对于消费数量很少(如少于每人每年 10~kg)的食品,如香料,由于它们在人们的全部膳食中

所占的份额很小,使个人照射的增加也很小,因此,可以采用比主要食品高 10 倍的行动水平。

- 10.3.4 防护行动的最优化:较长期防护行动的干预水平和行动水平
- 10.3.4.1 应根据事故后土壤或水体的污染情况考虑农业、水文和其他技术或工业方面的防护行动。
- 10.3.4.2 受放射性核素污染食品的国际贸易应遵循附录 E(标准的附录)E2.2 中所规定的准则。
- 10.3.4.3 应在应急计划中根据附录 E(标准的附录)E2.3 所给出的准则规定适用于受照人员临时避迁和返回的干预水平。
- 10.3.4.4 干预组织应使临时避迁人员了解他们返回家园的大体时间和他们的财产的保护状况。
- 10.3.4.5 下列情况下,应根据附录 E(标准的附录)E2.3 所规定的准则考虑受照人员的永久再定居:
 - a)预计临时避迁的时间会超过所约定的期限;或
 - b)根据可防止的剂量,判定永久再定居是正当的。
- 10.3.4.6 在开始实施永久再定居计划之前,应与可能受影响的人们进行充分的协商。
- 10.4 事故后的评价和监测
- 10.4.1 应采取一切合理的步骤,对事故使公众成员所受到的照射进行评价,并应通过适当的方式将评价结果向公众公布。
- 10.4.2 评价应以已获得的最有价值的资料为基础,并应根据实质上能产生更准确结果的任何新资料及时加以修改。
- 10.4.3 应将各项评价和它们的修改以及对工作人员、公众和环境监测的结果进行全面记录,并予以妥善保存。
- 10.4.4 如果评价表明,继续实施防护行动已不再是正当的,则应停止所实施的防护行动。
- 10.5 从事干预的工作人员的防护
- 10.5.1 除下列情况而采取行动以外,从事干预的工作人员所受到的照射不得超过附录 B(标准的附录)中所规定的职业照射的最大单一年份剂量限值:
 - a) 为抢救生命或避免严重损伤;
 - b)为避免大的集体剂量;
 - c)为防止演变成灾难性情况。

在这些情况下从事干预时,除了抢救生命的行动外,必须尽一切合理的努力,将工作人员所受到的剂量保持在最大单一年份剂量限值的两倍以下;对于抢救生命的行动,应做出各种努力,将工作人员的受照剂量保持在最大单一年份剂量限值的10倍以下,以防止确定性健康效应的发生。此外,当采取行动的工作人员的受照剂量可能达到或超过最大单一年份剂量限值的10倍时,只有在行动给他人带来的利益明显大于工作人员本人所承受的危险时,才应采取该行动。

- 10.5.2 采取行动使工作人员所受的剂量可能超过最大单一年份剂量限值时,采取这些行动的工作人员应是自愿的,应事先将采取行动所要面临的健康危险清楚而全面地通知工作人员,并应在实际可行的范围内,就需要采取的行动对他们进行培训。
- 10.5.3 应在应急计划中明确规定负责确保 10.5.1 和 10.5.2 所规定的要求得以满足的法人。
- 10.5.4 一旦应急干预阶段结束,从事恢复工作(如工厂与建筑物修理,废物处置,或厂区及周围地区去污等)的工作人员所受的照射则应满足本标准第6章所规定的有关职业照射的全部具体要求。
- 10.5.5 应采取一切合理的步骤为应急干预提供适当的防护,并对参与应急干预的工作人员的受照剂量进行评价和记录。干预结束时,应向有关工作人员通告他们所接受的剂量和可能带来的健康危险。
- 10.5.6 不得因工作人员在应急照射情况下接受了剂量而拒绝他们今后再从事伴有职业照射的工作。但是,如果经历过应急照射的工作人员所受到的剂量超过了最大单一年份剂量限值的 10 倍,或者工作人员自己提出要求,则在他们进一步接受任何照射之前,应认真听取合格医生的医学劝告。

11 持续照射情况的干预

11.1 责任

注册者或许可证持有者以及有关干预组织和审管部门,应按国家有关法规和本标准的要求承担其 对持续照射情况下干预的准备、实施和管理方面的责任。

- 11.2 补救行动计划
- 11.2.1 干预组织应根据情况制定通用的或场址专用的持续照射情况补救行动计划。该计划应在考虑
 - - a)个人照射和集体照射: b)辐射危险和非辐射危险:
 - c)补救行动的经济和社会代价、利益及所需经费的支付责任。

下列因素后规定正当的和最优化的补救行动及相应的行动水平:

- 11.3 补救行动的正当性判断
- 11.3.1 在持续照射情况下,如果剂量水平接近或预计会接近附录 E(标准的附录)表 E1.2 所列出的 值,则不管在何种情况下采取补救行动几乎总是正当的(见 5.3.1)。在这种情况下,对任何不采取补救 行动的决策,则应进行正当性判断。
- 11.3.2 对下列两类情况采取补救行动不具有正当性。
 - a)污染和剂量水平很低,不值得花费代价去采取补救行动:
 - b)污染非常严重和广泛,采取补救行动花费的代价太大。
- 11.3.3 与特定实践有关的补救行动的正当性判断应考虑该实践的注册或许可情况:
- a)对于已注册或许可并处于辐射防护体系控制下的实践,在考虑与该实践有关的持续照射的补救 行动时,其正当性判断应是该实践正当性判断的组成部分,不应单独考虑补救行动本身的净利益;
- b)对于未履行注册或许可程序的以往的实践,可以只根据与补救行动直接有关的各种因素(如厂
- 址开放的价值、去污可避免的健康危害、投资以及公众的接受程度等)来判断补救行动的正当性。 11.3.4 对于一种已确定为正当的补救行动,即通过检验确认其能带来净利益而认为有理由实施的补
- 救行动,应在实施过程中对其详细特征不断加以调整,以使所获得的净利益达到最大。
- 11.4 持续照射情况的行动水平或剂量约束
- 11.4.1 应以适当的量规定通过补救行动实施干预的行动水平,如考虑采取补救行动时的年剂量率或
- 所存在的放射性核素的适当平均的活度浓度。
- 11.4.2 氡持续照射情况的行动水平 11.4.2.1 对于住宅和工作场所内的氡持续照射情况,最优化的行动水平应处于附录 H(提示的附录) 中所规定的水平范围之内。
- 11.4.2.2 审管部门或干预组织应在考虑有关社会或法律情况后,对住宅内氡持续照射情况的补救行 动是强制实施还是推荐实施做出决策。
- 11.4.3 放射性残存物持续照射的剂量约束
- 11.4.3.1 对于获准的实践或源退役所造成的持续照射,其剂量约束应不高于该实践或源运行期间的 剂量约束。使用这类剂量约束的典型情况有:
 - a)核设施退役后厂址的开放;
- b)以往实践所污染的场区或土地的重新开发或利用,并且这种重新开发或利用可能导致公众照射 的增加。
- 11. 4. 3. 2 剂量约束值通常应在公众照射剂量限值 10%~30%(即 0.1 mSv/a~0.3 mSv/a)的范围之 内。但剂量约束的使用不应取代最优化要求,剂量约束值只能作为最优化值的上限(见 4.3.4)。

- 11. 4. 3. 3 如果不存在其他照射的可能性,并且降低照射的经济代价太大,则在这种情况下经审管部门认可,可将剂量约束值放宽到 $1~{\rm mSv/a}_{\circ}$
- 11. 4. 3. 4 如果剂量约束已超过 1 mSv/a,并且为进一步减小持续照射而采取技术性措施的经济代价太大,则在这类情况下应采用行政手段对持续照射进行有组织的控制。应对有组织控制的严格程度进行决择,使之适应当时的情况。

附 录 **A** (标准的附录) 豁 免

A1 豁免准则

- A1.1 如果审管部门确认某项实践是正当的,并确认该实践中的源满足本附录所规定的豁免准则或豁免水平,或满足审管部门根据这些豁免准则所规定的其他豁免水平,则该实践和该实践中的源可以被本标准的要求所豁免。
- A1.2 豁免的一般准则是:
 - a)被豁免实践或源对个人造成的辐射危险足够低,以至于再对它们加以管理是不必要的,
- b)被豁免实践或源所引起的群体辐射危险足够低,在通常情况下再对它们进行管理控制是不值得的:
 - c)被豁免实践和源具有固有安全性,能确保上述准则 a)和 b)始终得到满足。
- A1.3 如果经审管部门确认在任何实际可能的情况下下列准则均能满足,则可不作更进一步的考虑而将实践或实践中的源予以豁免:
 - a)被豁免实践或源使任何公众成员一年内所受的有效剂量预计为 $10~\mu Sv$ 量级或更小:和
- b)实施该实践一年内所引起的集体有效剂量不大于约 1 人 \cdot Sv \cdot 或防护的最优化评价表明豁免是最优选择。
- A2 可豁免的源与豁免水平
- A2.1 根据 $A1.1\sim A1.3$ 规定的准则,下列各种实践中源经审管部门认可后可被本标准的要求豁免:
- a)符合下列条件并具有审管部门认可的型式的辐射发生器和符合下列条件的电子管件(如显像用阴极射线管):
 - 1)正常运行操作条件下,在距设备的任何可达表面 $0.1~\mathrm{m}$ 处所引起的周围剂量当量率或定向剂量当量率不超过 $1~\mu\mathrm{Sv/h}$;或
 - 2)所产生辐射的最大能量不大于 $5~{
 m keV}$ 。
- b)符合以下要求的放射性物质,即任何时间段内在进行实践的场所存在的给定核素的总活度或在 实践中使用的给定核素的活度浓度不超过表 A1 所给出的或审管部门所规定的豁免水平:
- A2. 2 表 A1 给出的放射性核素的豁免活度浓度和豁免活度,是根据某些可能还不足以可无限制使用的照射情景和模式、参数推导得出的,仅可作为申报豁免的基础。考虑豁免时,审管部门应根据实际情况逐例审查,某些情况下,也可以要求采用更为严格的豁免水平。应用表 A1 所给出的豁免水平时,还应注意以下各点:
- a)这些豁免水平原则上只适用于在组织良好、人员训练有素的工作场所对小量放射性物质和源的工业应用及实验室或医学应用,例如,利用小的密封点源校准仪器,将小量非密封放射性溶液装进容器,工业示踪,一瓶低活度气体的医用等:
- b)对于未被排除的天然放射性核素豁免的应用,仅限于引入到消费品中的天然放射性核素、或是将它们作为一种放射源使用(如²²⁶Ra,²¹⁰Po)、或是利用它们的元素特性(如钍、铀)等情况:
- c)如果存在一种以上的放射性核素,仅当各种放射性核素的活度或活度浓度与其相应的豁免活度或豁免活度浓度之比的和小于 1 时,才可能考虑给予豁免:
- d)除非有关的照射已被排除,否则,对于较大批量放射性物质的豁免,即使其活度浓度低于表 A1给出的豁免水平,也需要由审管部门作更进一步的考虑:

- e)严禁为申报豁免而采用人工稀释等方法来降低放射性活度浓度。
- A2.3 遵循审管部门规定的条件(例如与放射性物质的物理或化学形态有关的条件和与放射性物质的使用或处置有关的条件等)时,可以给予有条件的豁免。

对于符合下列条件的内装按照 A2.1 中 b) 项末予豁免的放射性物质的设备,可以给予这种有条件的豁免:

- a) 具有审管部门认可的型式:
- b)其放射性物质呈密封源形式,能有效地防止与放射性物质的任何接触或能有效地防止放射性物质的泄漏:
- c)正常运行操作条件下,在距设备的任何可达表面 $0.1~\mathrm{m}$ 处所引起的周围剂量当量率或定向剂量当量率不超过 $1~\mu\mathrm{Sv/h}$;
 - d) 审管部门已明确规定了处置时必须满足的条件。

表 A1 作为申报豁免基础的豁免水平:放射性核素的豁免活度浓度与豁免活度 (四舍五入为整数)

核 素	活度浓度/(Bq/g)	活 度/Bq	核素	活度浓度/(Bq/g)	活 度/Bq	
H-3	1 E+06	1 E+09	Cr-51	1 E+03	1 E+07	
Be-7	1 E+03	1 E+07	Mn-51	1 E+01	1 E+05	
C-14	1 E+04	1 E+07	Mn-52	1 E+01	1 E+05	
O-15	1 E+02	1 E+09	Mn-52m	1 E+01	1 E+05	
F-18	1 E+01	1 E+06	Mn-53	1 E+04	1 E+09	
Na-22	1 E+01	1 E+06	Mn-54	1 E+01	1 E+06	
Na-24	1 E+01	1 E+05	Mn-56	1 E+01	1 E+05	
Si-31	1 E+03	1 E+06	Fe-52	1 E+01	1 E+06	
P-32	1 E+03	1 E+05	Fe-55	1 E+04	1 E+06	
P-33	1 E+05	1 E+08	Fe-59	1 E+01	1 E+06	
S-35	1 E+05	1 E+08	Co-55	1 E+01	1 E+06	
Cl-36	1 E+04	1 E+06	Co-56	1 E+01	1 E+05	
Cl-38	1 E+01	1 E+05	Co-57	1 E+02	1 E+06	
Ar-37	1 E+06	1 E+08	Co-58	1 E+01	1 E+06	
Ar-41	1 E+02	1 E+09	Co-58m	1 E+04	1 E+07	
K-40	1 E+02	1 E+06	Co-60	1 E+01	1 E+05	
K-42	1 E+02	1 E+06	Co-60m	1 E+03	1 E+06	
K-43	1 E+01	1 E+06	Co-61	1 E+02	1 E+06	
Ca-45	1 E+04	1 E+07	Co-62m	1 E+01	1 E+05	
Ca-47	1 E+01	1 E+06	Ni-59	1 E+04	1 E+08	
Sc-46	1 E+01	1 E+06	Ni-63	1 E+05	1 E+08	
Sc-47	1 E+02	1 E+06	Ni-65	1 E+01	1 E+06	
Sc-48	1 E+01	1 E+05	Cu-64	1 E+02	1 E+06	
V-48	1 E+01	1 E+05	Zn-65	1 E+01	1 E+06	

表 A1(续)

表 A1(续)							
核 素	活度浓度/(Bq/g)	活 度/Bq	核素	活度浓度/(Bq/g)	活 度/Bq		
Zn-69	1 E+04	1 E+06	Zr-97*	1 E+01	1 E+05		
Zn-69m	1 E+02	1 E+06	Nb-93m	1 E+04	1 E+07		
Ga-72	1 E+01	1 E+05	Nb-94	1 E+01	1 E+06		
Ge-71	1 E+04	1 E+08	Nb-95	1 E+01	1 E+06		
As-73	1 E+03	1 E+07	Nb-97	1 E+01	1 E+06		
As-74	1 E+01	1 E+06	Nb-98	1 E+01	1 E+05		
As-76	1 E+02	1 E+05	Mo-90	1 E+01	1 E+06		
As-77	1 E+03	1 E+06	Mo-93	1 E+03	1 E+08		
Se-75	1 E+02	1 E+06	Mo-99	1 E+02	1 E+06		
Br-82	1 E+01	1 E+06	Mo-101	1 E+01	1 E+06		
Kr-74	1 E+02	1 E+09	Tc-96	1 E+01	1 E+06		
Kr-76	1 E+02	1 E+09	Tc-96m	1 E+03	1 E+07		
Kr-77	1 E+02	1 E+09	Tc-97	1 E+03	1 E+08		
Kr-79	1 E+03	1 E+05	Tc-97m	1 E+03	1 E+07		
Kr-81	1 E+04	1 E+07	Tc-99	1 E+04	1 E+07		
Kr-83m	1 E+05	1 E+12	Tc-99m	1 E+02	1 E+07		
Kr-85	1 E+05	1 E+04	Ru-97	1 E+02	1 E+07		
Kr-85m	1 E+03	1 E+10	Ru-103	1 E+02	1 E+06		
Kr-87	1 E+02	1 E+09	Ru-105	1 E+01	1 E+06		
Kr-88	1 E+02	1 E+09	Ru-106*	1 E+02	1 E+05		
Rb-86	1 E+02	1 E+05	Rh-103m	1 E+04	1 E+08		
Sr-85	1 E+02	1 E+06	Rh-105	1 E+02	1 E+07		
Sr-85m	1 E+02	1 E+07	Pd-103	1 E+03	1 E+08		
Sr-87m	1 E+02	1 E+06	Pd-109	1 E+03	1 E+06		
Sr-89	1 E+03	1 E+06	Ag-105	1 E+02	1 E+06		
Sr-90*	1 E+02	1 E+04	Ag-110m	1 E+01	1 E+06		
Sr-91	1 E+01	1 E+05	Ag-111	1 E+03	1 E+06		
Sr-92	1 E+01	1 E+06	Cd-109	1 E+04	1 E+06		
Y-90	1 E+03	1 E+05	Cd-115	1 E+02	1 E+06		
Y-91	1 E+03	1 E+06	Cd-115m	1 E+03	1 E+06		
Y-91m	1 E+02	1 E+06	In-111	1 E+02	1 E+06		
Y-92	1 E+02	1 E+05	In-113m	1 E+02	1 E+06		
Y-93	1 E+02	1 E+05	In-114m	1 E+02	1 E+06		
Zr-93*	1 E+03	1 E+07	In-115m	1 E+02	1 E+06		
Zr-95	1 E+01	1 E+06	Sn-113	1 E+03	1 E+07		

表 A1(续)

表 A1(续)							
核 素	活度浓度/(Bq/g)	活 度/Bq	核 素	活度浓度/(Bq/g)	活 度/Bq		
Sn-125	1 E+02	1 E+05	Cs-135	1 E+04	1 E+07		
Sb-122	1 E+02	1 E+04	Cs-136	1 E+01	1 E+05		
Sb-124	1 E+01	1 E+06	Cs-137*	1 E+01	1 E+04		
Sb-125	1 E+02	1 E+06	Cs-138	1 E+01	1 E+04		
Te-123m	1 E+02	1 E+07	Ba-131	1 E+02	1 E+06		
Te-125m	1 E+03	1 E+07	Ba-140*	1 E+01	1 E+05		
Te-127	1 E+03	1 E+06	La-140	1 E+01	1 E+05		
Te-127m	1 E+03	1 E+07	Ce-139	1 E+02	1 E+06		
Te-129	1 E+02	1 E+06	Ce-141	1 E+02	1 E+07		
Te-129m	1 E+03	1 E+06	Ce-143	1 E+02	1 E+06		
Te-131	1 E+02	1 E+05	Ce-144*	1 E+02	1 E+05		
Te-131	1 E+02	1 E+05	Pr-142	1 E+02	1 E+05		
Te-131m	1 E+01	1 E+06	Pr-143	1 E+04	1 E+06		
Te-132	1 E+02	1 E+07	Nd-147	1 E+02	1 E+06		
Te-133	1 E+01	1 E+05	Nd-149	1 E+02	1 E+06		
Te-133m	1 E+01	1 E+05	Pm-147	1 E+04	1 E+07		
Te-134	1 E+01	1 E+06	Pm-149	1 E+03	1 E+06		
I-123	1 E+02	1 E+07	Sm-151	1 E+04	1 E+08		
I-125	1 E+03	1 E+06	Sm-153	1 E+02	1 E+06		
I-126	1 E+02	1 E+06	Eu-152	1 E+01	1 E+06		
I-129	1 E+02	1 E+05	Eu-152m	1 E+02	1 E+06		
I-130	1 E+01	1 E+06	Eu-154	1 E+01	1 E+06		
I-131	1 E+02	1 E+06	Eu-155	1 E+02	1 E+07		
I-132	1 E+01	1 E+05	Gd-153	1 E+02	1 E+07		
I-133	1 E+01	1 E+06	Gd-159	1 E+03	1 E+06		
I-134	1 E+01	1 E+05	Tb-160	1 E+01	1 E+06		
I-135	1 E+01	1 E+06	Dy-165	1 E+03	1 E+06		
Xe-131m	1 E+04	1 E+04	Dy-166	1 E+03	1 E+06		
Xe-133	1 E+03	1 E+04	Ho-166	1 E+03	1 E+05		
Xe-135	1 E+03	1 E+10	Er-169	1 E+04	1 E+07		
Cs-129	1 E+02	1 E+05	Er-171	1 E+02	1 E+06		
Cs-131	1 E+03	1 E+06	Tm-170	1 E+03	1 E+06		
Cs-132	1 E+01	1 E+05	Tm-171	1 E+04	1 E+08		
Cs-134m	1 E+03	1 E+05	Yb-175	1 E+03	1 E+07		
Cs-134	1 E+01	1 E+04	Lu-177	1 E+03	1 E+07		

表 A1(续)

表 A1(续)							
核 素	活度浓度/(Bq/g)	活 度/Bq	核 素	活度浓度/(Bq/g)	活 度/Bq		
Hf-181	1 E+01	1 E+06	Po-205	1 E+01	1 E+06		
Ta-182	1 E+01	1 E+04	Po-207	1 E+01	1 E+06		
W-181	1 E+03	1 E+07	Po-210	1 E+01	1 E+04		
W-185	1 E+04	1 E+07	At-211	1 E+03	1 E+07		
W-187	1 E+02	1 E+06	Rn-220*	1 E+04	1 E+07		
Re-186	1 E+03	1 E+06	Rn-222*	1 E+01	1 E+08		
Re-188	1 E+02	1 E+05	Ra-223*	1 E+02	1 E+05		
Os-185	1 E+01	1 E+06	Ra-224*	1 E+01	1 E+05		
Os-191	1 E+02	1 E+07	Ra-225	1 E+02	1 E+05		
Os-191m	1 E+03	1 E+07	Ra-226*	1 E+01	1 E+04		
Os-193	1 E+02	1 E+06	Ra-227	1 E+02	1 E+06		
Ir-190	1 E+01	1 E+06	Ra-228*	1 E+01	1 E+05		
Ir-192	1 E+01	1 E+04	Ac-228	1 E+01	1 E+06		
Ir-194	1 E+02	1 E+05	Th-226*	1 E+03	1 E+07		
Pt-191	1 E+02	1 E+06	Th-227	1 E+01	1 E+04		
Pt-193m	1 E+03	1 E+07	Th-228*	1 E+00	1 E+04		
Pt-197	1 E+03	1 E+06	Th-229*	1 E+00	1 E+03		
Pt-197m	1 E+02	1 E+06	Th-230	1 E+00	1 E+04		
Au-198	1 E+02	1 E+06	Th-231	1 E+03	1 E+07		
Au-199	1 E+02	1 E+06	Th-天然	1.5.1.00	1 E 02		
Hg-197	1 E+02	1 E+07	(包括 Th-232)	1 E+00	1 E+03		
Hg-197m	1 E+02	1 E+06	Th-234*	1 E+03	1 E+05		
Hg-203	1 E+02	1 E+05	Pa-230	1 E+01	1 E+06		
Tl-200	1 E+01	1 E+06	Pa-231	1 E+00	1 E+03		
Tl-201	1 E+02	1 E+06	Pa-233	1 E+02	1 E+07		
Tl-202	1 E+02	1 E+06	U-230*	1 E+01	1 E+05		
Tl-204	1 E+04	1 E+04	U-231	1 E+02	1 E+07		
Pb-203	1 E+02	1 E+06	U-232*	1 E+00	1 E+03		
Pb-210*	1 E+01	1 E+04	U-233	1 E+01	1 E+04		
Pb-212*	1 E+01	1 E+05	U-234	1 E+01	1 E+04		
Bi-206	1 E+01	1 E+05	U-235 *	1 E+01	1 E+04		
Bi-207	1 E+01	1 E+06	U-236	1 E+01	1 E+04		
Bi-210	1 E+03	1 E+06	U-237	1 E+02	1 E+06		
Bi-212*	1 E+01	1 E+05	U-238*	1 E+01	1 E+04		
Po-203	1 E+01	1 E+06	U- 天然	1 E+00	1 E+03		

表 A1(完)

核 素	活度浓度/(Bq/g)	活 度/Bq	核 素	活度浓度/(Bq/g)	活 度/Bq
U-239	1 E+02	1 E+06	Cm-242	1 E+02	1 E+05
U-240	1 E+03	1 E+07	Cm-243	1 E+00	1 E+04
U-240*	1 E+01	1 E+06	Cm-244	1 E+01	1 E+04
Np-237*	1 E+00	1 E+03	Cm-245	1 E+00	1 E+03
Np-239	1 E+02	1 E+07	Cm-246	1 E+00	1 E+03
Np-240	1 E+01	1 E+06	Cm-247	1 E+00	1 E+04
Pu-234	1 E+02	1 E+07	Cm-248	1 E+00	1 E+03
Pu-235	1 E+02	1 E+07	Bk-249	1 E+03	1 E+06
Pu-236	1 E+01	1 E+04	Cf-246	1 E+03	1 E+06
Pu-237	1 E+03	1 E+07	Cf-248	1 E+01	1 E+04
Pu-238	1 E+00	1 E+04	Cf-249	1 E+00	1 E+03
Pu-239	1 E+00	1 E+04	Cf-250	1 E+01	1 E+04
Pu-240	1 E+00	1 E+03	Cf-251	1 E+00	1 E+03
Pu-241	1 E+02	1 E+05	Cf-252	1 E+01	1 E+04
Pu-242	1 E+00	1 E+04	Cf-253	1 E+02	1 E+05
Pu-243	1 E+03	1 E+07	Cf-254	1 E+00	1 E+03
Pu-244	1 E+00	1 E+04	Es-253	1 E+02	1 E+05
Am-241	1 E+00	1 E+04	Es-254	1 E+01	1 E+04
Am-242	1 E+03	1 E+06	Es-254m	1 E+02	1 E+06
Am-242m*	1 E+00	1 E+04	Fm-254	1 E+04	1 E+07
Am243*	1 E+00	1 E+03	Fm-255	1 E+03	1 E+06

* 长期平衡中的母核及其子体如下所列:

```
Sr-90
            Y-90
Zr-93
            Nb-93m
Zr-97
            Nb-97
            Rh-106
Ru-106
Cs-137
            Ba-137m
Ba-140
            La-140
Ce-134
            La-134
Ce-144
            Pr-144
Pb-210
            Bi-210, Po-210
Pb-212
            Bi-212, Tl-208(0. 36), Po-212(0. 64)
Bi-212
            Tl-208(0.36), Po-212(0.64)
Rn-220
            Po-216
Rn-222
            Po-218, Pb-214, Bi-214, Po-214
Ra-223
            Rn-219, Po-215, Pb-211, Bi-211, Tl-207
Ra-224
            Rn-220, Po-216, Pb-212, Bi-212, Tl-208(0. 36), Po-212(0. 64)
Ra-226
            Rn-222, Po-218, Pb-214, Bi-214, Po-214, Pb-210, Bi-210, Po-210
Ra-228
            Ac-228
```

Th-226 Ra-222,Rn-218,Po-214
Th-228 Ra-224,Rn-220,Po-216,Pb-212,Bi-212,Tl-208(0, 36),Po-212(0, 64)

Th-229 Ra-225, Ac-225, Fr-221, At-217, Bi-213, Po-213, Pb-209

Th-天然 Ra-228, Ac-228, Th-228, Ra-224, Rn-220, Po-216, Pb-212, Bi-212, Tl-208(0.36), Po-212(0.64)

Th-234 Pa-234m

U-230 Th-226, Ra-222, Rn-218, Po-214

U-232 Th-228,Ra-224,Rn-220,Po-216,Pb-212,Bi-212,Tl-208(0.36),Po-212(0.64)

U-235 Th-231

U-238 Th-234, Pa-234m

U-天然 Th-234, Pa-234m, U-234, Th-230, Ra-226, Rn-222, Po-218, Pb-214, Bi-214, Po-214, Pb-210,

Bi-210, Po-210

U-240 Np-240m Np-237 Pa-233 Am-242m Am-242

Am-242m Am-242 Am-243 Np-239

附 录 B

(标准的附录)

剂量限值和表面污染控制水平

B1 剂量限值

本附录所规定的剂量限值适用于实践所引起的照射,不适用于医疗照射,也不适用于无任何主要责任方负责的天然源的照射。

本附录所规定的剂量限值与潜在照射的控制无关,也与决定是否和如何实施干预无关,但实施干预的工作人员应遵循第 11 章中的有关要求。

- B1.1 职业照射
- B1.1.1 剂量限值
- B1.1.1.1 应对任何工作人员的职业照射水平进行控制,使之不超过下述限值:
 - a)由审管部门决定的连续 5 年的年平均有效剂量(但不可作任何追溯性平均),20 mSv;
 - b)任何一年中的有效剂量,50 mSv;
 - c)眼晶体的年当量剂量,150 mSv;
 - d)四肢(手和足)或皮肤的年当量剂量,500 mSv。
- **B1. 1. 1. 2** 对于年龄为 16 岁 \sim 18 岁接受涉及辐射照射就业培训的徒工和年龄为 16 岁 \sim 18 岁在学习过程中需要使用放射源的学生,应控制其职业照射使之不超过下述限值:
 - a)年有效剂量,6 mSv;
 - b)眼晶体的年当量剂量,50 mSv;
 - c)四肢(手和足)或皮肢的年当量剂量,150 mSv。

B1.1.2 特殊情况

在特殊情况下,可依据第6章6.2.2所规定的要求对剂量限值进行如下临时变更:

- a)依照审管部门的规定,可将 B1. 1. 1. 1 中 a)项指出的剂量平均期破例延长到 10 个连续年;并且,在此期间内,任何工作人员所接受的年平均有效剂量不应超过 20 mSv,任何单一年份不应超过 50 mSv;此外,当任何一个工作人员自此延长平均期开始以来所接受的剂量累计达到 100 mSv 时,应对这种情况进行审查;
- b)剂量限制的临时变更应遵循审管部门的规定,但任何一年内不得超过 $50~\mathrm{mSv}$,临时变更的期限不得超过 $5~\mathrm{ft}$ 。
- B1.2 公众照射
- B1.2.1 剂量限值

实践使公众中有关关键人群组的成员所受到的平均剂量估计值不应超过下述限值:

- a)年有效剂量,1 mSv;
- b)特殊情况下,如果 5 个连续年的年平均剂量不超过 1 mSv,则某一单一年份的有效剂量可提高到 5 mSv:
 - c)眼晶体的年当量剂量,15 mSv;
 - d)皮肤的年当量剂量,50 mSv。
- B1. 2. 2 慰问者及探视人员的剂量限制
- B1.2.1 所规定的剂量限值不适用于患者的慰问者(例如,并非是他们的职责、明知会受到照射却自愿帮助护理、支持和探视、慰问正在接受医学诊断或治疗的患者的人员)。但是,应对患者的慰问者所受的照射加以约束,使他们在患者诊断或治疗期间所受的剂量不超过 $5~\mathrm{mSv}_{\circ}$ 应将探视食入放射性物质的

患者的儿童所受的剂量限制于 1 mSv 以下。

- B1.3 遵守剂量限值情况的确认
- B1. 3. 1 本附录所规定的剂量限值适用于在规定期间内外照射引起的剂量和在同一期间内摄入所致的待积剂量的和;计算待积剂量的期限,对成年人的摄入一般应为 50 年,对儿童的摄入则应算至 70 岁。
- 的特权剂重的相;10 异特权剂重的期限,对成千人的摄入一般应为 50 年,对几重的摄入则应算至 70 夕。 B1.3.2 为确认是否遵守剂量限值,应利用规定期间内贯穿辐射所致外照射个人剂量当量与同一期间
- B1.3.3 应采用下列方法之一来确定是否符合有效剂量的剂量限值要求:
 - a)将总有效剂量与相应的剂量限值进行比较;这里,总有效剂量 $E_{\scriptscriptstyle T}$ 按下式计算:

$$E_{\mathrm{T}} = H_{\mathrm{p}}(d) + \sum_{j} e(g)_{\mathrm{j,ing}} I_{\mathrm{j,ing}} + \sum_{j} e(g)_{\mathrm{j,inh}} I_{\mathrm{j,inh}}$$

式中: $H_{p}(d)$ 一 该年内贯穿辐射照射所致的个人剂量当量;

内摄入的放射性物质所致物待积当量剂量或待积有效剂量的和。

 $e(g)_{j,ing}$ 和 $e(g)_{j,inh}$ 一同一期间内 g 年龄组食入和吸入单位摄入量放射性核素 j 后的待积有效剂量; $I_{i,inh}$ 一同一期间内食入和吸入放射性核素 j 的摄入量。

b)检验是否满足下列条件:

$$\frac{H_{\text{p}}}{DL} + \sum_{j} \frac{I_{\text{j,ing}}}{I_{\text{j,ing,L}}} + \sum_{j} \frac{I_{\text{j,inh}}}{I_{\text{j,inh,L}}} \leq 1$$

式中: DL——相应的有效剂量的年剂量限值;

 $I_{\mathrm{j,ing.L}}$ 和 $I_{\mathrm{j,inh.L}}$ 一 食入和吸入放射性核素 j 的年摄入量限值(ALI)(即通过有关途径摄入的放射性核素 j 的量所导致的待积有效剂量等于有效剂量的剂量限值)。

c)通过任何其他认可的方法。

B1. 3. 4 除氡子体和氧子体外,表 B3 和 B6、表 B7 分别对职业照射和公众照射给出了食入和吸入单位摄入量所致的待积有效剂量 $e(g)_{j,ing}$ 和 $e(g)_{j,inh}$ 。利用下列关系式,可以由相应的单位摄入量的待积有效剂量的值得到放射性核素 i 的年摄入量限值, $I_{i,L}$:

$$I_{\rm j,L} = \frac{DL}{e_{\rm i}}$$

式中:DL——相应的有效剂量的年剂量限值;

的生物动力学模型未作这种改变。

 e_i —表 B3 和 B6、B7 中给出的放射性核素 j 的单位摄入量所致的待积有效剂量的相应值。 B1. 3. 5 对于职业照射,表 B3 给出了食入和吸入放射性核素的剂量转换系数,即食入和吸入单位摄入

- 量的待积有效剂量;前者是相应于元素的各种化学形态的不同肠道转移因子 f_1 (即转移到肠道体液中的摄入份额)给出的;后者是相应于新呼吸道模型中给出的缺省肺吸收类别 (F,M 和 S)并引入摄入核素自肺廓清到消化道的合适份额 f_1 给出的。表 B4 给出了 f_1 值。表 B5 给出了元素的各种化学形态的肺吸收类别。对于职业照射,在一定的假设下,可将 $I_{1.1}$ 用作 $ALI_{1.0}$
- **B**1. 3. 6 对于公众照射,表 B6 给出了在不同肠道转移因子 f_1 的情况下公众成员食入放射性核素后的剂量转换系数。计算中所使用的 f_1 值也示于该表。表 B7 相应于各种肺吸收类别(F_1) 从 和 S)给出了公众成员吸入放射性核素的剂量转换系数。表 B8 列出了上述计算所依据的肺吸收类别和载有生物动力学模型和吸收类别详细资料的 ICRP 出版物的编号。对于其肺吸收情况已知的 31 种元素,给出了与 3
- 字模型和吸收类别详细资料的 ICRP 出版物的编号。对于其肺吸收情况已知的 31 种元素,给出了与 3 种吸收类别相应的剂量转换系数,同时,还推荐了仅当放射性核素的化学形态未知时才可使用的缺省值。对其余 60 种附加元素,相应于 F、M 和 S 三种肺吸收类别,给出了其放射性核素的剂量转换系数;计算其放射性核素的剂量时,考虑了体重、几何尺寸和排泄率与年龄相关的改变,但对用于计算全身活度
- **B1. 3.** 7 表 B9 给出了婴儿、儿童和成人的气体和水蒸气剂量转换系数。成人的数值既适用于工作人员也适于公众成员。表 B10 给出了成人暴露于惰性气体时的有效剂量率。这些值对工作人员和公众成员中的成人都适用。

B1. 3. 8 对于氡子体的照射,如果利用的转换系数为 $1.4~{\rm mSv/(mJ \cdot h \cdot m^{-3})}$,则 B1.~1.~1 中的剂量限

值可解释为: 20 mSv 相当于 $14 \text{ mJ} \cdot \text{h/m}^3$ (4 个工作水平月); 50 mSv 相当于 $35 \text{ mJ} \cdot \text{h/m}^3$ (10 个工作水平月)。对于氡子体和氧子体的照射,如果利用表 B1 和表 B2 中所规定的相应限值,则 B1. 3. 3 公式中的 $I_{j,\text{inh}}$ 和 $I_{j,\text{inh},\text{L}}$ 可用 α 潜能摄入量来表示;或者,采用表 B1 和表 B2 中规定的相应限值时, $I_{j,\text{inh}}$ 和 $I_{j,\text{inh},\text{L}}$ 可用 α 潜能照射量(常用 WLM 表示)来替代。

- **B**1. 3. 9 任何一种放射性核素通过某一给定途径被摄入后,所引起的器官或组织的待积当量剂量可通过下述方法来确定.
- a)将通过这一途径所摄入的该放射性核素的估计摄入量乘以相应于该组织或器官的单位摄入量的 待积当量剂量值;或
 - b)采用其他认可的方法。

B2 表面污染控制水平

- **B**2.1 工作场所的表面污染控制水平如表 B11 所列。应用这些控制水平时应注意:
 - a)表 B11 中所列数值系指表面上固定污染和松散污染的总数。
- b)手、皮肤、内衣、工作袜污染时,应及时清洗,尽可能清洗到本底水平。其他表面污染水平超过表 B11 中所列数值时,应采取去污措施。
- c)设备、墙壁、地面经采取适当的去污措施后,仍超过表 B11 中所列数值时,可视为固定污染,经审管部门或审管部门授权的部门检查同意,可适当放宽控制水平,但不得超过表 B11 中所列数值的 5 倍。
- d)β 粒子最大能量小于 0.3 MeV 的 β 放射性物质的表面污染控制水平,可为表 B11 中所列数值的 5 倍。
 - e)²²⁷Ac、²¹⁰Pb、²²⁸Ra 等 β 放射性物质,按 α 放射性物质的表面污染控制水平执行。
 - f) 氚和氚化水的表面污染控制水平,可为表 B11 中所列数值的 10 倍。
 - g)表面污染水平可按一定面积上的平均值计算:皮肤和工作服取 100 cm²,地面取 1 000 cm²。
- **B2.** 2 工作场所中的某些设备与用品,经去污使其污染水平降低到表 B11 中所列设备类的控制水平的 五十分之一以下时,经审管部门或审管部门授权的部门确认同意后,可当作普通物品使用。

	表 B1	氡子体和気子体的摄入量及照射量限值
--	-------------	-------------------

量	单 位	氡子体值 ^{a)}	듳子体值 ы
5 年以上的年平均值			
α潜能摄入量	J	0.017	0.051
α潜能照射量	J • h • m ^{-3 d)}	0.014	0.042
	WLM ^{c),d)}	4.0	12
单一年份内的最大值			
α潜能摄入量	J	0.042	0.127
α潜能照射量	J • h • m ^{-3 d)}	0.035	0.105
	WLM	10.0	30

- a) **氡子体**:²²²Rn 的短寿命衰变产物:²¹⁸Po(RaA),²¹⁴Bi(RaC),²¹⁴Pb(RaB)和²¹⁴Po(RaC')。
- b)氧子体:²²⁰Rn 的短寿命衰变产物:²¹⁶Po(ThA),²¹²Pb(ThB),²¹²Bi(ThC),²¹²Po(ThC')和²⁰⁸Tl(ThC")。
- c)工作水平月(WLM):氢子体或氧子体的照射量单位,一个工作水平月是 $3.54~{\rm mJ} \cdot {\rm h} \cdot {\rm m}^{-3}$ 或 $170~{\rm WL} \cdot {\rm h}$,这 里一个工作水平(WL)时一升空气中氡子体或氧子体的任意组合,它们将最终发射出 $1.3 \times 10^5~{\rm MeV}$ 的 α 能量。在 SI 单位中,WL 等于 $2.1 \times 10^{-5}~{\rm J} \cdot {\rm m}^{-3}$ 。
- d)表 B2 中给出转换系数。

表 B2 表 B1 中氢和氡子体用单位的转换系数

量	单位	值
氡子体转换	(mJ•h•m ⁻³)/WLM	3.54
氡子体/氡照射量转换	$(mJ \cdot h \cdot m^{-3})/(Bq \cdot h \cdot m^{-3})$	2.22×10^{-6}
(平衡因子 0.4)	$WLM/(Bq \cdot h \cdot m^{-3})$	6.28×10^{-7}
单位氡浓度的氡子体年照射量*):		
在住宅中	$(mJ \cdot h \cdot m^{-3})/(Bq \cdot m^{-3})$	1.56×10^{-2}
在工作场所	$(mJ \cdot h \cdot m^{-3})/(Bq \cdot m^{-3})$	4.45×10^{-3}
在住宅中	$WLM/(Bq \cdot m^{-3})$	4.40×10^{-3}
在工作场所	$WLM/(Bq \cdot m^{-3})$	1.26×10^{-3}
剂量转换惯例,单位氡子体照射量的 有效剂量:		
在住宅中	$mSv/(mJ \cdot h \cdot m^{-3})$	1.1
在工作场所	mSv/(mJ • h • m ⁻³)	1.4
剂量转换惯例,单位氡子体照射量的 有效剂量:		
在住宅中	mSv/WLM	4
在工作场所	mSv/WLM	5
氡子体/氡浓度转换:		
平衡因子 F=0.4	$WL/(Bq \cdot m^{-3})$	1.07×10^{-4}
一般情况下	$WL/(Bq \cdot m^{-3})$	2.67×10^{-4}
a)假设每年在住宅中 7 000 h 或每年		

表 B3 工作人员:工作人员吸入和食入单位摄入量所致的待积有效剂量 e(g)

单位:Sv·Bg⁻¹

						+ 12:	Sv • Bg	
± ±	物油水气物		吸 入				食 入	
核素	物理半衰期	类别	f_1	$e(g)_{1 \mu m}$	$e(g)_{5 \mu m}$	f_1	e(g)	
氢								
氚化水	12.3 a					1.000	1.8 E-11	
OBT ^{a)}	12.3 a					1.000	4. 2 E-11	
铍								
Be-7	53. 3 d	M	0.005	4.8 E-11	4.3 E-11	0.005	2.8 E-11	
		S	0.005	5. 2 E-11	4.6 E-11			
Be-10	1.60E+06 a	M	0.005	9.1 E-09	6.7 E-09	0.005	1.1 E-09	
		S	0.005	3. 2 E-08	1.9 E-08			
碳								
C-11	0.340 h					1.000	2.4 E-11	
C-14	5.73E+03 a					1.000	5.8 E-10	
氟								
F-18	1.83 h	F	1.000	3.0 E-11	5.4 E-11	1.000	4.9 E-11	
		M	1.000	5.7 E-11	8.9 E-11			
		S	1.000	6.0 E-11	9.3 E-11			
钠								
Na-22	2.60 a	F	1.000	1.3 E-09	2.0 E-09	1.000	3. 2 E-09	
Na-24	15.0 h	F	1.000	2.9 E-10	5.3 E-10	1.000	4.3 E-10	
镁								
Mg-28	20.9 h	F	0.500	6.4 E-10	1.1 E-09	0.500	2.2 E-09	
		M	0.500	1.2 E-09	1.7 E-09			

				食 入			
核素	物理半衰期	类别	f_1	$e(g)_{1 \mu m}$	$e(g)_{5 \mu m}$	f_1	e(g)
铝		2033	31	0 (8 / 1 pm	V (8 / 5 μm	5.1	0.87
Al-26	7.16 E+05 a	F	0.010	1.1 E-08	1.4 E-08	0.010	3.5 E-09
		M	0.010	1.8 E-08	1. 2 E-08		
硅							
Si-31	2. 62 h	F	0.010	2.9 E-11	5.1 E-11	0.010	1.6 E-10
		M	0.010	7.5 E-11	1.1 E-10		
		S	0.010	8.0 E-11	1.1 E-10		
Si-32	4.50E+02 a	F	0.010	3.2 E-09	3.7 E-09	0.010	5. 6 E-10
		M	0.010	1.5 E-08	9.6 E-09		
716		S	0.010	1.1 E-07	5. 5 E-08		
磷	14.0.1	T.		0.0 1.10	1.15.00		0.48.00
P-32	14. 3 d	F	0.800	8. 0 E-10	1.1 E-09	0.800	2.4 E-09
D 22	05 4 1	M	0.800	3. 2 E-09	2.9 E-09	0.000	0.45.10
P-33	25. 4 d	F	0.800 0.800	9. 6 E-11	1. 4 E-10	0.800	2.4 E-10
 硫		M	0.000	1. 4 E-09	1.3 E-09		
Mil S-35(无机的)	87. 4 d	F	0.800	5.3 E-11	8.0 E-11	0.800	1.4 E-10
	0111	M	0.800	1. 3 E-09	1. 1 E-09	0.100	1. 9 E-10
S-35(有机的)	87. 4 d			1 0 2 10		1.000	7. 7 E-10
氯							
Cl-36	3.01E+05 a	F	1.000	3.4 E-10	4.9 E-10	1.000	9.3 E-10
		M	1.000	6.9 E-09	5.1 E-09		
Cl-38	0. 620 h	F	1.000	2.7 E-11	4.6 E-11	1.000	1.2 E-10
		M	1.000	4.7 E-11	7. 3 E-11		
Cl-39	0.927 h	F	1.000	2.7 E-11	4.8 E-11	1.000	8.5 E-11
		M	1.000	4.8 E-11	7. 6 E-11		
钾							
K-40	1.28E+09 a	F	1.000	2.1 E-09	3.0 E-09	1.000	6.2 E-09
K-42	12.4 h	F	1.000	1.3 E-10	2.0 E-10	1.000	4.3 E-10
K-43	22.6 h	F	1.000	1.5 E-10	2.6 E-10	1.000	2.5 E-10
K-44	0.369 h	F	1.000	2.1 E-11	3.7 E-11	1.000	8. 4 E-11
K-45	0.333 h	F	1.000	1. 6 E-11	2. 8 E-11	1.000	5. 4 E-11
钙							
Ca-41	1.40E+05 a	M	0.300	1.7 E-10	1.9 E-10	0.300	2.9 E-10
Ca-45	163 d	M	0.300	2.7 E-09	2.3 E-09	0.300	7.6 E-10
Ca-47	4.53 d	M	0.300	1.8 E-09	2.1 E-09	0.300	1.6 E-09
钪							
Sc-43	3.89 h	S	1.0 E-04	1.2 E-10	1.8 E-10	1.0 E-04	1.9 E-10
Sc-44	3. 93 h	S	1.0 E-04	1.9 E-10	3.0 E-10	1.0 E-04	3.5 E-10
Sc-44m	2.44 d	S	1.0 E-04	1.5 E-09	2.0 E-09	1.0 E-04	2.4 E-09
Sc-46	83. 8 d	S	1.0 E-04	6.4 E-09	4.8 E-09	1.0 E-04	1.5 E-09
Sc-47	3. 35 d	S	1.0 E-04	7.0 E-10	7.3 E-10	1.0 E-04	5.4 E-10
Sc-48	1.82 d	S	1.0 E-04	1.1 E-09	1.6 E-09	1.0 E-04	1.7 E-09
Sc-49	0.956 h	S	1.0 E-04	4.1 E-11	6.1 E-11	1.0 E-04	8. 2 E-11
L	1	1	1	i	1	1	1

核素	物理火膏期		吸	Д		食 入	
校	物理半衰期	类别	f_1	$e(g)_{1 \mu m}$	$e(g)_{5 \mu m}$	f_1	e(g)
钛	47.0	F.	0.010	2 1 E 00	5 0 F 00	0.010	5 0 5 00
Ti-44	47.3 a	F	0.010	6.1 E-08	7. 2 E-08	0.010	5.8 E-09
		M S	0.010 0.010	4. 0 E-08 1. 2 E-07	2. 7 E-08 6. 2 E-08		
Ti-45	3. 08 h	F	0.010	4. 6 E-11	8. 3 E-11	0.010	1.5 E-10
11 10	0.001	M	0.010	9. 1 E-11	1. 4 E-10	0.010	1.0 1.0
		S	0.010	9.6 E-11	1.5 E-10		
钒							
V-47	0.543 h	F	0.010	1.9 E-11	3.2 E-11	0.010	6.3 E-11
		M	0.010	3.1 E-11	5.0 E-11		
V-48	16.2 d	F	0.010	1.1 E-09	1.7 E-09	0.010	2.0 E-09
		M	0.010	2.3 E-09	2.7 E-09		
V-49	330 d	F	0.010	2.1 E-11	2.6 E-11	0.010	1.8 E-11
		M	0.010	3.2 E-11	2.3 E-11		
 铬							
Cr-48	23.0 h	F	0.100	1.0 E-10	1.7 E-10	0.100	2.0 E-10
		M	0.100	2.0 E-10	2.3 E-10	0.010	2.0 E-10
		S	0.100	2.2 E-10	2.5 E-10		
Cr-49	0. 702 h	F	0.100	2.0 E-11	3.5 E-11	0.100	6.1 E-11
		M	0.100	3. 5 E-11	5. 6 E-11	0.010	6. 1 E-11
		S	0.100	3.7 E-11	5. 9 E-11		
Cr-51	27.7 d	F	0.100	2.1 E-11	3. 0 E-11	0.100	3.8 E-11
		M	0.100	3. 1 E-11	3. 4 E-11	0.010	3.7 E-11
		S	0.100	3. 6 E-11	3. 6 E-11	01 01 0	0.1211
		2	0.100	0.0211	0.0211		
Mn-51	0.770 h	F	0.100	2.4 E-11	4.2 E-11	0.100	9.3 E-11
7777 01	0111011	M	0.100	4. 3 E-11	6. 8 E-11	0.100	0.0211
Mn-52	5. 59 d	F	0.100	9. 9 E-10	1. 6 E-09	0.100	1.8 E-09
14111 02	0.03 a	M	0.100	1. 4 E-09	1. 8 E-09	0.100	1.0 2 00
Mn-52m	0.352 h	F	0.100	2. 0 E-11	3. 5 E-11	0.100	6.9 E-11
WIII 02III	0.002 11	M	0.100	3. 0 E-11	5. 0 E-11	0.100	0. 3 L 11
Mn-53	3.70E+06 a	F	0.100	2. 9 E-11	3. 6 E-11	0.100	3.0 E-11
WIII-33	3. 70E 00 a	M	0.100	5. 2 E-11	3. 6 E-11	0.100	3. 0 E-11
Mn-54	312 d	F	0.100	8. 7 E-10	1. 1 E-09	0.100	7.1 E-10
WIII-34	312 u	M	0.100	1. 5 E-09	1. 1 E-09 1. 2 E-09	0.100	7.1 E-10
Mr. FC	2. 58 h	F	0.100			0.100	2 F F 10
Mn-56	2. 50 H		0.100	6. 9 E-11	1. 2 E-10	0.100	2.5 E-10
铁		М	0.100	1. 3 E-10	2.0 E-10		
	0 90 1	T:	0.100	4 1 E 10	C 0 E 10	0.100	1 4 E 00
Fe-52	8. 28 h	F	0.100	4. 1 E-10	6. 9 E-10	0.100	1.4 E-09
D. EE	2 70 -	M	0.100	6. 3 E-10	9. 5 E-10	0 100	2 2 1 10
Fe-55	2.70 a	F	0.100	7.7 E-10	9. 2 E-10	0.100	3.3 E-10
F- 50	44 5 1	M	0.100	3. 7 E-10	3. 3 E-10	0 100	1 0 5 00
Fe-59	44.5 d	F	0.100	2. 2 E-09	3. 0 E-09	0.100	1.8 E-09
F 60	1 005 1 05	M	0.100	3. 5 E-09	3. 2 E-09	0.100	1 1 1 2 05
Fe-60	1.00E+05 a	F	0.100	2.8 E-07	3. 3 E-07	0.100	1.1 E-07
		М	0.100	1.3 E-07	1.2 E-07		

			吸			食人		
核素	物理半衰期	类别	f_1	$e(g)_{1 \mu m}$	$e(g)_{5 \mu m}$	f_1	<i>e</i> (<i>g</i>)	
钴		7 3 3 3	3 1	- 18 / 1 / 111	- 18 / Jan	3 1	1.07	
Co-55	17.5 h	M	0.100	5.1 E-10	7.8 E-10	0.100	1.0 E-09	
		S	0.050	5.5 E-10	8.3 E-10	0.050	1.1 E-09	
Co-56	78.7 d	M	0.100	4.6 E-09	4.0 E-09	0.100	2.5 E-09	
		S	0.050	6.3 E-09	4.9 E-09	0.050	2.3 E-09	
Co-57	271 d	M	0.100	5. 2 E-10	3.9 E-10	0.100	2.1 E-10	
		S	0.050	9.4 E-10	6.0 E-10	0.050	1.9 E-10	
Co-58	70.8 d	M	0.100	1.5 E-09	1.4 E-09	0.100	7.4 E-10	
		S	0.050	2.0 E-09	1.7 E-09	0.050	7.0 E-10	
Co-58m	9.15 h	M	0.100	1.3 E-11	1.5 E-11	0.100	2.4 E-11	
		S	0.050	1.6 E-11	1.7 E-11	0.050	2.4 E-11	
Co-60	5. 27 a	M	0.100	9.6 E-09	7.1 E-09	0.100	3.4 E-09	
		S	0.050	2.9 E-08	1.7 E-08	0.050	2.5 E-09	
Co-60m	0.174 h	M	0.100	1.1 E-12	1. 2 E-12	0.100	1.7 E-12	
		S	0.050	1.3 E-12	1. 2 E-12	0.050	1.7 E-12	
Co-61	1.65 h	M	0.100	4.8 E-11	7.1 E-11	0.100	7.4 E-11	
		S	0.050	5.1 E-11	7.5 E-11	0.050	7.4 E-11	
Co-62m	0. 232 h	M	0.100	2.1 E-11	3. 6 E-11	0.100	4.7 E-11	
46		S	0.050	2.2 E-11	3.7 E-11	0.050	4.7 E-11	
镍 Ni-56	6. 10 d	F	0.050	5.1 E-10	7.9 E-10	0.050	8. 6 E-10	
111 00	0.10 d	M	0.050	8. 6 E-10	9. 6 E-10	0.000		
Ni-57	1.50 d	F	0.050	2. 8 E-10	5. 0 E-10	0.050	8.7 E-10	
111 07	1.00 a	M	0.050	5. 1 E-10	7. 6 E-10	0.000		
Ni-59	7.50E+04 a	F	0.050	1. 8 E-10	2. 2 E-10	0.050	6. 3 E-11	
111 00	7100 2 7 01 a	M	0.050	1. 3 E-10	9. 4 E-11			
Ni-63	96.0 a	F	0.050	4. 4 E-10	5. 2 E-10	0.050	1.5 E-10	
111 00	00.04	M	0.050	4. 4 E-10	3. 1 E-10	0.000		
Ni-65	2.52 h	F	0.050	4. 4 E-11	7. 5 E-11	0.050	1.8 E-10	
111 00	2-02 11	M	0.050	8. 7 E-11	1. 3 E-10	0.000		
Ni-66	2. 27 d	F	0.050	4. 5 E-10	7. 6 E-10	0.050	3.0 E-09	
111 00	2-27-6	M	0.050	1. 6 E-09	1. 9 E-09	0.000		
铜				1 0 2 10	1 0 2 10			
Cu-60	0.387 h	F	0.500	2.4 E-11	4. 4 E-11	0.500	7.0 E-11	
		M	0.500	3.5 E-11	6.0 E-11			
		S	0.500	3. 6 E-11	6. 2 E-11			
Cu-61	3.41 h	F	0.500	4.0 E-11	7.3 E-11	0.500	1. 2 E-10	
		M	0.500	7.6 E-11	1.2 E-10			
		S	0.500	8.0 E-11	1. 2 E-10			
Cu-64	12.7 h	F	0.500	3.8 E-11	6.8 E-11	0.500	1.2 E-10	
		M	0.500	1.1 E-10	1.5 E-10			
		S	0.500	1.2 E-10	1.5 E-10			
Cu-67	2.58 d	F	0.500	1.1 E-10	1.8 E-10	0.500	3.4 E-10	
		M	0.500	5.2 E-10	5.3 E-10			
		S	0.500	5.8 E-10	5.8 E-10			

++ =	物理业章期	吸 入			食 入		
核素	物理半衰期	类别	f_1	$e(g)_{1 \mu m}$	$e(g)_{5 \mu m}$	f_1	e(g)
锌	1				0 0 F 10	0.500	0 4 F 10
Zn-62	9. 26 h	S	0.500	4. 7 E-10	6. 6 E-10	0.500	9. 4 E-10
Zn-63	0. 635 h	S	0.500	3. 8 E-11	6. 1 E-11	0.500	7. 9 E-11
Zn-65	244 d	S	0.500	2. 9 E-09	2. 8 E-09	0.500	3. 9 E-09
Zn-69	0. 950 h	S	0.500	2. 8 E-11	4. 3 E-11	0.500	3.1 E-11
Zn-69m	13. 8 h	S	0.500	2. 6 E-10	3. 3 E-10	0.500	3. 3 E-10
Zn-71m	3. 92 h	S	0.500	1. 6 E-10	2. 4 E-10	0.500	2.4 E-10
Zn-72 镓	1. 94 d	S	0.500	1. 2 E-09	1.5 E-09	0.500	1.4 E-09
Ga-65	0. 253 h	F	0.001	1.2 E-11	2.0 E-11	0.001	3.7 E-11
		M	0.001	1.8 E-11	2.9 E-11		
Ga-66	9.40 h	F	0.001	2.7 E-10	4.7 E-10	0.001	1.2 E-09
		M	0.001	4.6 E-10	7.1 E-10		
Ga-67	3. 26 d	F	0.001	6.8 E-11	1.1 E-10	0.001	1.9 E-10
		M	0.001	2.3 E-10	2.8 E-10		
Ga-68	1.13 h	F	0.001	2.8 E-11	4.9 E-11	0.001	1.0 E-10
		M	0.001	5.1 E-11	8.1 E-11		
Ga-70	0.353 h	F	0.001	9.3 E-12	1.6 E-11	0.001	3.1 E-11
		M	0.001	1.6 E-11	2.6 E-11		
Ga-72	14.1 h	F	0.001	3.1 E-10	5.6 E-10	0.001	1.1 E-09
		M	0.001	5.5 E-10	8.4 E-10		
Ga-73	4.91 h	F	0.001	5.8 E-11	1.0 E-10	0.001	2.6 E-10
		M	0.001	1.5 E-10	2.0 E-10		
锗	9 97 1	E	1 000	5 7 E 11	0.0 E.11	1 000	1.0 E-10
Ge-66	2. 27 h	F	1.000	5. 7 E-11	9. 9 E-11	1.000	1.0 E-10
C - C7	0.210 l	M	1.000	9. 2 E-11 1. 6 E-11	1. 3 E-10	1 000	6.5 E-11
Ge-67	0. 312 h	F	1.000		2. 8 E-11	1.000	0. 0 E-11
0. 40	200 1	M	1.000	2. 6 E-11	4. 2 E-11	1 000	1.3 E-09
Ge-68	288 d	F	1.000	5. 4 E-10	8. 3 E-10	1.000	1.3 E-09
0.00	1 20 1	M	1.000	1. 3 E-08	7. 9 E-09	1 000	9 4 E 10
Ge-69	1. 63 d	F	1.000	1. 4 E-10	2. 5 E-10	1.000	2.4 E-10
0. 51	11 0 1	M	1.000	2. 9 E-10	3. 7 E-10	1 000	1 9 E 11
Ge-71	11.8 d	F	1.000	5. 0 E-12	7. 8 E-12	1.000	1.2 E-11
0 55	1 00 1	M	1.000	1. 0 E-11	1.1 E-11	1 000	4 C F 11
Ge-75	1. 38 h	F	1.000	1. 6 E-11	2. 7 E-11	1.000	4.6 E-11
0.55	11.01	M	1.000	3. 7 E-11	5. 4 E-11	1 000	0.05.10
Ge-77	11. 3 h	F	1.000	1.5 E-10	2. 5 E-10	1.000	3.3 E-10
0.50	1 151	M	1.000	3. 6 E-10	4. 5 E-10	1 000	1.0 5.10
Ge-78	1.45 h	F	1.000	4.8 E-11	8. 1 E-11	1.000	1.2 E-10
 · 砷		M	1.000	9.7 E-11	1.4 E-10		
As-69	0. 253 h	M	0.500	2.2 E-11	3.5 E-11	0.500	5.7 E-11
As-70	0.876 h	M	0.500	7.2 E-11	1.2 E-10	0.500	1.3 E-10
As-71	2. 70 d	M	0.500	4.0 E-10	5.0 E-10	0.500	4.6 E-10
As-72	1. 08 d	M	0.500	9.2 E-10	1.3 E-09	0.500	1.8 E-09
	l .	1	1		I.	1	

	(A) D3(契)							
核素	物理半衰期	类别	f_1	$e(g)_{1 \mu m}$	$e(g)_{5 \mu m}$	f_1	e(g)	
As-73	80. 3 d	M	0.500	9. 3 E-10	6. 5 E-10	0.500	2. 6 E-10	
As-74	17.8 d	M	0.500	2.1 E-09	1.8 E-09	0.500	1.3 E-09	
As-76	1. 10 d	M	0.500	7.4 E-10	9. 2 E-10	0.500	1.6 E-09	
As-77	1.62 d	M	0.500	3. 8 E-10	4.2 E-10	0.500	4.0 E-10	
As-78	1.51 h	M	0.500	9. 2 E-11	1.4 E-10	0.500	2.1 E-10	
硒	_							
Se-70	0.683 h	F	0.800	4.5 E-11	8. 2 E-11	0.800	1.2 E-10	
~		M	0.800	7. 3 E-11	1. 2 E-10	0.050	1. 4 E-10	
Se-73	7.15 h	F	0.800	8. 6 E-11	1. 5 E-10	0.800	2.1 E-10	
G		M	0.800	1. 6 E-10	2. 4 E-10	0.050	3. 9 E-10	
Se-73m	0.650 h	F	0.800	9. 9 E-12	1. 7 E-11	0.800	2. 8 E-11	
		M	0.800	1. 8 E-11	2. 7 E-11	0.050	4. 1 E-11	
Se-75	120 d	F	0.800	1. 0 E-09	1. 4 E-09	0.800	2. 6 E-09	
~		M	0.800	1. 4 E-09	1.7 E-09	0.050	4.1 E-10	
Se-79	6.50E+04 a	F	0.800	1. 2 E-09	1. 6 E-09	0.800	2. 9 E-09	
		M	0.800	2. 9 E-09	3.1 E-09	0.050	3. 9 E-10	
Se-81	0.308 h	F	0.800	8. 6 E-12	1. 4 E-11	0.800	2. 7 E-11	
~		M	0.800	1.5 E-11	2. 4 E-11	0.050	2. 7 E-11	
Se-81m	0.954 h	F	0.800	1.7 E-11	3. 0 E-11	0.800	5. 3 E-11	
		M	0.800	4.7 E-11	6.8 E-11	0.050	5. 9 E-11	
Se-83	0. 375 h	F	0.800	1.9 E-11	3. 4 E-11	0.800	4.7 E-11	
		M	0.800	3. 3 E-11	5. 3 E-11	0.050	5.1 E-11	
Br-74	0. 422 h	F	1.000	2. 8 E-11	5.0 E-11	1.000	8.4 E-11	
		M	1.000	4. 1 E-11	6. 8 E-11			
Br-74m	0.691 h	F	1.000	4. 2 E-11	7. 5 E-11	1.000	1.4 E-10	
		M	1.000	6. 5 E-11	1.1 E-10			
Br-75	1.63 h	F	1.000	3.1 E-11	5. 6 E-11	1.000	7.9 E-11	
		M	1.000	5. 5 E-11	8. 5 E-11			
Br-76	16. 2 h	F	1.000	2. 6 E-10	4.5 E-10	1.000	4. 6 E-10	
		M	1.000	4. 2 E-10	5.8 E-10			
Br-77	2. 33 d	F	1.000	6.7 E-11	1. 2 E-10	1.000	9. 6 E-11	
		M	1.000	8.7 E-11	1.3 E-10			
Br-80	0. 290 h	F	1.000	6. 3 E-12	1.1 E-11	1.000	3.1 E-11	
		M	1.000	1.0 E-11	1.7 E-11			
Br-80m	4. 42 h	F	1.000	3. 5 E-11	5. 8 E-11	1.000	1.1 E-10	
	1 12 11	M	1.000	7. 6 E-11	1.0 E-10			
Br-82	1. 47 d	F	1.000	3.7 E-10	6. 4 E-10	1.000	5.4 E-10	
32		M	1.000	6. 4 E-10	8. 8 E-10			
Br-83	2. 39 h	F	1.000	1. 7 E-11	2. 9 E-11	1.000	4. 3 E-11	
	_ 50	M	1.000	4. 8 E-11	6. 7 E-11			
Br-84	0. 530 h	F	1.000	2. 3 E-11	4. 0 E-11	1.000	8. 8 E-11	
	0.0001	M	1.000	3. 9 E-11	6. 2 E-11	1.000		
铷		111	1.000	0. U D 11	U. 2 D 11			
Rb-79	0.382 h	F	1.000	1.7 E-11	3.0 E-11	1.000	5.0 E-11	

₩ ±	物理业产地	吸 入				食 入	
核素	物理半衰期	类别	f_1	$e(g)_{1 \mu m}$	$e(g)_{5 \mu m}$	f_1	e(g)
Rb-81	4.58 h	F	1.000	3.7 E-11	6.8 E-11	1.000	5. 4 E-11
Rb-81m	0.533 h	F	1.000	7.3 E-12	1.3 E-11	1.000	9.7 E-12
Rb-82m	6.20 h	F	1.000	1.2 E-10	2.2 E-10	1.000	1.3 E-10
Rb-83	86. 2 d	F	1.000	7.1 E-10	1.0 E-09	1.000	1.9 E-09
Rb-84	32.8 d	F	1.000	1.1 E-09	1.5 E-09	1.000	2.8 E-09
Rb-86	18.6 d	F	1.000	9.6 E-10	1.3 E-09	1.000	2.8 E-09
Rb-87	4.70E+10 a	F	1.000	5.1 E-10	7.6 E-10	1.000	1.5 E-09
Rb-88	0.297 h	F	1.000	1.7 E-11	2.8 E-11	1.000	9.0 E-11
Rb-89	0.253 h	F	1.000	1.4 E-11	2.5 E-11	1.000	4.7 E-11
锶	1 67 h	F	0.300	7. 6 E-11	1. 3 E-10	0.300	3.4 E-10
Sr-80	1.67 h	S	0.010	1. 4 E-10		0.010	3. 4 E-10 3. 5 E-10
Sr-81	0. 425 h	F	0.010	2. 2 E-11	2. 1 E-10 3. 9 E-11	0.010	7. 7 E-11
Sr-01	0. 425 H	S				0. 300	7. 7 E-11 7. 8 E-11
C., 00	25 0 4		0.010	3. 8 E-11	6. 1 E-11		
Sr-82	25.0 d	F	0.300	2. 2 E-09	3. 3 E-09	0.300	6. 1 E-09
0.00	1.05.1	S	0.010	1. 0 E-08	7. 7 E-09	0.010	6.0 E-09
Sr-83	1. 35 d	F	0.300	1. 7 E-10	3. 0 E-10	0.300	4. 9 E-10
0.05	24.0.1	S	0.010	3. 4 E-10	4. 9 E-10	0.010	5. 8 E-10
Sr-85	64. 8 d	F	0.300	3. 9 E-10	5. 6 E-10	0.300	5. 6 E-10
G 0-		S	0.010	7.7 E-10	6. 4 E-10	0.010	3. 3 E-10
Sr-85m	1.16 h	F	0.300	3.1 E-12	5. 6 E-12	0.300	6. 1 E-12
		S	0.010	4. 5 E-12	7. 4 E-12	0.010	6. 1 E-12
Sr-87m	2.80 h	F	0.300	1.2 E-11	2. 2 E-11	0.300	3. 0 E-11
		S	0.010	2. 2 E-11	3. 5 E-11	0.010	3. 3 E-11
Sr-89	50. 5 d	F	0.300	1.0 E-09	1.4 E-09	0.300	2.6 E-09
		S	0.010	7.5 E-09	5. 6 E-09	0.010	2.3 E-09
Sr-90	29. 1 a	F	0.300	2.4 E-08	3.0 E-08	0.300	2.8 E-08
		S	0.010	1.5 E-07	7.7 E-08	0.010	2.7 E-09
Sr-91	9.50 h	F	0.300	1.7 E-10	2.9 E-10	0.300	6.5 E-10
		S	0.010	4.1 E-10	5.7 E-10	0.010	7.6 E-10
Sr-92	2. 71 h	F	0.300	1.1 E-10	1.8 E-10	0.300	4.3 E-10
47		S	0.010	2.3 E-10	3.4 E-10	0.010	4.9 E-10
钇 Y-86	14.7 h	M	1.0 E-04	4.8 E-10	8.0 E-10	1.0 E-04	9.6 E-10
1 00	11.4.11	S	1. 0 E-04	4. 9 E-10	8. 1 E-10	1.0 2 01	0 0 2 1
Y-86m	0.800 h	M	1. 0 E-04	2. 9 E-11	4. 8 E-11	1.0 E-04	5. 6 E-11
1 00111	0.000 H	S	1.0 E-04	3. 0 E-11	4. 9 E-11	1.0 L 04	0.0211
Y-87	3. 35 d	M	1.0 E-04	3. 8 E-10	5. 2 E-10	1.0 E-04	5.5 E-10
1 07	3. 33 d	S	1.0 E-04	4. 0 E-10	5. 3 E-10	1. 0 L 04	0.0210
Y-88	107 d	M	1.0 E-04 1.0 E-04	3. 9 E-09	3. 3 E-10 3. 3 E-09	1.0 E-04	1.3 E-09
1 00	107 0	S	1.0 E-04 1.0 E-04	4. 1 E-09	3. 0 E-09	1.00	10200
Y-90	2. 67 d	M	1.0 E-04 1.0 E-04	1. 4 E-09	1. 6 E-09	1.0 E-04	2.7 E-09
1 50	2.07 u	S	1. 0 E-04 1. 0 E-04	1. 4 E-09 1. 5 E-09	1. 6 E-09 1. 7 E-09	1.0 P-04	2.7 2 00
V 00m	3 10 h				1. 7 E-09 1. 3 E-10	1.0 E-04	1.7 E-10
Y-90m	3. 19 h	M	1.0 E-04	9. 6 E-11		1. U E-U4	1.1 15-10
		S	1.0 E-04	1.0 E-10	1.3 E-10		

1+ +	46 TM N/ ⇌ #0	吸 入			食入		
核素	物理半衰期	类别	f_1	$e(g)_{1 \mu m}$	$e(g)_{5 \mu m}$	f_1	e(g)
Y-91	58. 5 d	M	1.0 E-04	6.7 E-09	5. 2 E-09	1.0 E-04	2.4 E-09
		S	1.0 E-04	8. 4 E-09	6.1 E-09		
Y-91m	0.828 h	M	1. 0 E-04	1. 0 E-11	1. 4 E-11	1.0 E-04	1.1 E-11
	020 11	S	1.0 E-04	1. 1 E-11	1. 5 E-11		
Y-92	3. 54 h	M	1.0 E-04	1. 9 E-10	2. 7 E-10	1.0 E-04	4.9 E-10
		S	1.0 E-04	2.0 E-10	2. 8 E-10		
Y-93	10.1 h	M	1.0 E-04	4.1 E-10	5. 7 E-10	1.0 E-04	1.2 E-09
		S	1.0 E-04	4. 3 E-10	6. 0 E-10		
Y-94	0.318 h	M	1.0 E-04	2.8 E-11	4.4 E-11	1.0 E-04	8.1 E-11
		S	1.0 E-04	2.9 E-11	4.6 E-11		
Y-95	0. 178 h	M	1.0 E-04	1. 6 E-11	2.5 E-11	1.0 E-04	4.6 E-11
		S	1.0 E-04	1.7 E-11	2. 6 E-11		
告 :							
Zr-86	16.5 h	E	0.002	2 0 E 10	E 9 E 10	0 002	0.05.10
Zr-86	16.5 h	F	0.002	3. 0 E-10	5. 2 E-10	0.002	8. 6 E-10
		M	0.002	4. 3 E-10	6. 8 E-10		
700	02 4 1	S	0.002	4. 5 E-10	7. 0 E-10	0.000	
Zr-88	83. 4 d	F	0.002	3. 5 E-09	4.1 E-09	0.002	3. 3 E-10
		M	0.002	2. 5 E-09	1.7 E-09		
7 00	2 07 1	S	0.002	3. 3 E-09	1.8 E-09	0.000	
Zr-89	3. 27 d	F	0.002	3. 1 E-10	5. 2 E-10	0.002	7.9 E-10
		M	0.002	5. 3 E-10	7. 2 E-10		
702	1 525 1 00 -	S	0.002	5. 5 E-10	7. 5 E-10	0.000	
Zr-93	1.53E+06 a	F	0.002	2. 5 E-08	2. 9 E-08	0.002	2.8 E-10
		M	0.002	9. 6 E-09	6. 6 E-09		
705	C4 0 J	S	0.002	3.1 E-09	1.7 E-09	0.000	
Zr-95	64.0 d	F	0.002	2. 5 E-09	3. 0 E-09 3. 6 E-09	0.002	8.8 E-10
		M S	0.002	4.5 E-09			
707	16 0 h		0.002	5. 5 E-09	4. 2 E-09	0 002	0.1.17.00
Zr-97	16.9 h	F	0.002 0.002	4. 2 E-10	7. 4 E-10	0.002	2.1 E-09
		M S		9. 4 E-10 1. 0 E-09	1. 3 E-09 1. 4 E-09		
<i>E</i> D		3	0.002	1.0 E-09	1.4 E-09		
铌							
Nb-88	0. 238 h	M	0.010	2. 9 E-11	4.8 E-11	0.010	6. 3 E-11
		S	0.010	3. 0 E-11	5.0 E-11		
Nb-89	2.03 h	M	0.010	1. 2 E-10	1.8 E-10	0.010	3.0 E-10
		S	0.010	1.3 E-10	1.9 E-10		
Nb-89	1.10 h	M	0.010	7.1 E-11	1.1 E-10	0.010	1.4 E-10
		S	0.010	7. 4 E-11	1. 2 E-10		
Nb-90	14.6 h	M	0.010	6. 6 E-10	1.0 E-09	0.010	1. 2 E-09
211 00	10.0	S	0.010	6. 9 E-10	1. 1 E-09		1 0 5 - 1
Nb-93m	13.6 a	M	0.010	4. 6 E-10	2. 9 E-10	0.010	1. 2 E-10
371		S	0.010	1.6 E-09	8. 6 E-10		1.55
Nb-94	2.03E+04 a	M	0.010	1.0 E-08	7. 2 E-09	0.010	1.7 E-09
371 05		S	0.010	4.5 E-08	2. 5 E-08		
Nb-95	35. 1 d	M	0.010	1. 4 E-09	1. 3 E-09	0.010	5.8 E-10
		S	0.010	1.6 E-09	1.3 E-09		

				λ		食	λ
核素	物理半衰期	类别	f_1	$e(g)_{1 \mu m}$	$e(g)_{5 \mu m}$	f_1	e(g)
Nb-95m	3. 61 d	M	0.010	7. 6 E-10	7.7 E-10	0.010	5. 6 E-10
- 1.0 0 0 0 1 1	0 01 0	S	0.010	8. 5 E-10	8. 5 E-10		
Nb-96	23. 3 h	M	0.010	6. 5 E-10	9.7 E-10	0.010	1.1 E-09
		S	0.010	6. 8 E-10	1.0 E-09		
Nb-97	1. 20 h	M	0.010	4. 4 E-11	6. 9 E-11	0.010	6.8 E-11
	1 2 1	S	0.010	4. 7 E-11	7. 2 E-11		0 0 2 11
Nb-98	0.858 h	M	0.010	5. 9 E-11	9. 6 E-11	0.010	1.1 E-10
110 00	0.000 1	S	0.010	6. 1 E-11	9. 9 E-11	0.010	1 1 2 11
 · 钼		~		0 1 2 11	0 0 2 11		
	5 05 1	T.	0.000	1.5.5.10	0.05.10	0.000	0.1.5.10
Mo-90	5. 67 h	F	0.800	1. 7 E-10	2. 9 E-10	0.800	3.1 E-10
3.4.00	0.505 00	S	0.050	3. 7 E-10	5. 6 E-10	0.050	6. 2 E-10
Mo-93	3.50E+03 a	F	0.800	1.0 E-09	1. 4 E-09	0.800	2. 6 E-09
3.4.00	0.051	S	0.050	2. 2 E-09	1. 2 E-09	0.050	2. 0 E-10
Mo-93m	6.85 h	F	0.800	1. 0 E-10	1. 9 E-10	0.800	1. 6 E-10
3.5	1	S	0.050	1. 8 E-10	3. 0 E-10	0.050	2.8 E-10
Mo-99	2.75 d	F	0.800	2. 3 E-10	3. 6 E-10	0.800	7. 4 E-10
3.5	1	S	0.050	9. 7 E-10	1.1 E-09	0.050	1. 2 E-09
Mo-101	0. 244 h	F	0.800	1.5 E-11	2.7 E-11	0.800	4. 2 E-11
		S	0.050	2.7 E-11	4.5 E-11	0.050	4.2 E-11
锝							
Tc-93	2.75 h	F	0.800	3. 4 E-11	6. 2 E-11	0.800	4.9 E-11
		M	0.800	3. 6 E-11	6.5 E-11		
Tc-93m	0.725 h	F	0.800	1.5 E-11	2.6 E-11	0.800	2.4 E-11
		M	0.800	1.7 E-11	3.1 E-11		
Tc-94	4.88 h	F	0.800	1.2 E-10	2.1 E-10	0.800	1.8 E-10
		M	0.800	1.3 E-10	2. 2 E-10		
Tc-94m	0.867 h	F	0.800	4.3 E-11	6.9 E-11	0.800	1.1 E-10
		M	0.800	4.9 E-11	8.0 E-11		
Tc-95	20.0 h	F	0.800	1.0 E-10	1.8 E-10	0.800	1.6 E-10
		M	0.800	1.0 E-10	1.8 E-10		
Tc-95m	61.0 d	F	0.800	3.1 E-10	4.8 E-10	0.800	6.2 E-10
		M	0.800	8.7 E-10	8.6 E-10		
Tc-96	4. 28 d	F	0.800	6.0 E-10	9.8 E-10	0.800	1.1 E-09
		M	0.800	7.1 E-10	1.0 E-09		
Tc-96m	0.858 h	F	0.800	6.5 E-12	1. 1 E-11	0.800	1.3 E-11
		M	0.800	7.7 E-12	1. 1 E-11		
Tc-97	2.60E+06 a	F	0.800	4.5 E-11	7. 2 E-11	0.800	8.3 E-11
		M	0.800	2.1 E-10	1.6 E-10		
Tc-97m	87.0 d	F	0.800	2.8 E-10	4.0 E-10	0.800	6.6 E-10
		M	0.800	3.1 E-09	2.7 E-09		
Tc-98	4.20E+06 a	F	0.800	1.0 E-09	1.5 E-09	0.800	2.3 E-09
		M	0.800	8.1 E-09	6.1 E-09		
Tc-99	2.13E+05 a	F	0.800	2.9 E-10	4.0 E-10	0.800	7.8 E-10
		M	0.800	3.9 E-09	3.2 E-09		

						食	λ
核素	物理半衰期	类别	f_1	$e(g)_{1 \mu m}$	$e(g)_{5 \mu m}$	f_1	e(g)
Tc-99m	6.02 h	F	0.800	1. 2 E-11	2. 0 E-11	0.800	2. 2 E-11
10 00111	0.02 11	M	0.800	1. 9 E-11	2. 9 E-11	0.000	2.2211
Tc-101	0. 237 h	F	0.800	8. 7 E-12	1. 5 E-11	0.800	1. 9 E-11
	20, 11	M	0.800	1. 3 E-11	2. 1 E-11		1 0 2 11
Tc-104	0.303 h	F	0.800	2. 4 E-11	3. 9 E-11	0.800	8. 1 E-11
10 141		M	0.800	3. 0 E-11	4. 8 E-11		0 1 2 11
钌				0 7 2 11	1 0 2 11		
Ru-94	0.863 h	F	0.050	2.7 E-11	4.9 E-11	0.050	9.4 E-11
		M	0.050	4.4 E-11	7. 2 E-11		0.1211
		S	0.050	4.6 E-11	7.4 E-11		
Ru-97	2. 90 d	F	0.050	6.7 E-11	1. 2 E-10	0.050	1.5 E-10
		M	0.050	1.1 E-10	1.6 E-10		110210
		S	0.050	1.1 E-10	1.6 E-10		
Ru-103	39. 3 d	F	0.050	4.9 E-10	6.8 E-10	0.050	7.3 E-10
		M	0.050	2.3 E-09	1.9 E-09		
		S	0.050	2.8 E-09	2. 2 E-09		
Ru-105	4.44 h	F	0.050	7.1 E-11	1.3 E-10	0.050	2.6 E-10
		M	0.050	1.7 E-10	2.4 E-10		_ 0 _ 1
		S	0.050	1.8 E-10	2.5 E-10		
Ru-106	1.01 a	F	0.050	8.0 E-09	9.8 E-09	0.050	7.0 E-09
		M	0.050	2.6 E-08	1.7 E-08		
		S	0.050	6. 2 E-08	3. 5 E-08		
Rh-99	16.0 d	F	0.050	3. 3 E-10	4.9 E-10	0.050	5.1 E-10
		M	0.050	7. 3 E-10	8. 2 E-10		J. 1 L 10
		S	0.050	8. 3 E-10	8. 9 E-10		
Rh-99m	4.70 h	F	0.050	3. 0 E-11	5. 7 E-11	0.050	6. 6 E-11
		M	0.050	4. 1 E-11	7. 2 E-11		0.0 L 11
		S	0.050	4. 3 E-11	7. 3 E-11		
Rh-100	20.8 h	F	0.050	2. 8 E-10	5. 1 E-10	0.050	7.1 E-10
		M	0.050	3. 6 E-10	6. 2 E-10		7.1 L 10
		S	0.050	3.7 E-10	6.3 E-10		
Rh-101	3.20 a	F	0.050	1. 4 E-09	1.7 E-09	0.050	5.5 E-10
		M	0.050	2.2 E-09	1.7 E-09		0.0 5 10
		S	0.050	5.0 E-09	3.1 E-09		
Rh-101m	4. 34 d	F	0.050	1.0 E-10	1.7 E-10	0.050	2. 2 E-10
		M	0.050	2.0 E-10	2.5 E-10		2. 2 B 10
		S	0.050	2.1 E-10	2.7 E-10		
Rh-102	2.90 a	F	0.050	7.3 E-09	8. 9 E-09	0.050	2.6 E-09
		M	0.050	6.5 E-09	5.0 E-09		2.02.00
		S	0.050	1.6 E-08	9.0 E-09		
Rh-102m	207 d	F	0.050	1. 5 E-09	1. 9 E-09	0.050	1. 2 E-09
		M	0.050	3. 8 E-09	2. 7 E-09		1.2100
		S	0.050	6. 7 E-09	4. 2 E-09		
Rh-103m	0.935 h	F	0.050	8. 6 E-13	1. 2 E-12	0.050	3. 8 E-12
		M	0.050	2. 3 E-12	2. 4 E-12		0.0 E-14
		S	0.050	2. 5 E-12	2. 5 E-12		
		1	1 - 1			1	

表 B3(续)

Rh-105	±+ ==	45cm ソノ 幸 45c		吸	. λ		食	λ
Rh 196m	核 素	物理半衰期	类别	f_1	$e(g)_{1 \mu m}$	$e(g)_{5 \mu m}$	f_1	e(g)
Rh-106m 2. 20 h F 0. 050 3. 4 E-10 4. 4 E-10 0. 050 1. 6 E-10 Rh-107 0. 362 h F 0. 050 1. 1 E 10 1. 8 E 10 0. 050 1. 6 E-11 0. 050 1. 6 E-11 0. 050 1. 6 E-11 0. 050 2. 4 E-11 0. 050 2. 4 E-11 0. 050 0. 6 E-12 1. 6 E-11 0. 050 2. 4 E-11 0. 050 0. 6 E-12 1. 6 E-11 0. 050 2. 4 E-11 0. 050 0. 6 E-12 1. 6 E-11 0. 050 2. 4 E-11 0. 050 0. 6 E-12 1. 6 E-11 0. 050 0. 6 E-12 1. 6 E-11 0. 050 2. 4 E-11 0. 050 0. 6 E-12 1. 6 E-11 0. 050 2. 4 E-11 0. 050 0. 6 E-12 1. 6 E-11 0. 050 0. 6 E-12 1. 6 E-11 0. 050 2. 4 E-11 0. 050	Rh-105	1. 47 d	F	0.050	8.7 E-11	1.5 E-10	0.050	3.7 E-10
Rh-106m			M	0.050	3.1 E-10	4.1 E-10		
Rh-107			S	0.050	3.4 E-10	4.4 E-10		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Rh-106m	2.20 h	F	0.050	7.0 E-11	1.3 E-10	0.050	1.6 E-10
Rh-107			M	0.050	1.1 E-10	1.8 E-10		
### Parameter March Marc			S	0.050	1.2 E-10	1.9 E-10		
Pd-100	Rh-107	0.362 h	F	0.050	9.6 E-12	1.6 E-11	0.050	2.4 E-11
We 3.63 d F 0.005 4.9 E-10 7.6 E-10 0.005 9.4 E-10 Pd-100 3.63 d F 0.005 7.9 E-10 9.5 E-10 0.005 9.4 E-10 Pd-101 8.27 h F 0.005 8.3 E-10 9.7 E-10 0.005 9.4 E-11 Pd-101 8.27 h F 0.005 6.2 E-11 9.8 E-11 0.005 9.4 E-11 Pd-103 17.0 d F 0.005 6.4 E-11 1.0 E-10 0.005 1.9 E-10 Pd-103 17.0 d F 0.005 9.0 E-11 1.2 E-10 0.005 1.9 E-10 Pd-103 17.0 d F 0.005 3.5 E-10 3.0 E-10 0.005 1.9 E-10 Pd-104 6.50E+06 a F 0.005 8.0 E-11 3.2 E-10 0.005 3.7 E-11 Pd-109 13.4 h F 0.005 8.0 E-11 2.1 E-10 0.005 5.5 E-10 Ag-109 13.4 h F 0.005 1.4 E-11 2.4 E-11			M	0.050	1.7 E-11	2.7 E-11		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			S	0.050	1.7 E-11	2.8 E-11		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	钯							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Pd-100	3. 63 d	F	0,005	4.9 E-10	7.6 E-10	0.005	9.4 E-10
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
Pd-101 8 . 27 h F 0 . 005 4 . 2 E - 11 7 . 5 E - 11 0 . 005 9 . 4 E - 11 Pd-103 17 . 0 d F 0 . 005 6 . 2 E - 11 1 . 0 E - 10 0 . 005 1 . 9 E - 10 Pd-103 17 . 0 d F 0 . 005 3 . 5 E - 10 3 . 0 E - 10 0 . 005 1 . 9 E - 10 Pd-107 6 . 50E + 06 a F 0 . 005 3 . 5 E - 10 3 . 0 E - 10 0 . 005 3 . 7 E - 11 Pd-107 6 . 50E + 06 a F 0 . 005 2 . 6 E - 11 3 . 3 E - 11 0 . 005 3 . 7 E - 11 Pd-109 13 . 4 h F 0 . 005 5 . 5 E - 10 2 . 9 E - 10 0 . 005 5 . 5 E - 10 2 . 9 E - 10 0 . 005 3 . 7 E - 11 0 . 005 3 . 7 E - 11 0 . 005 3 . 7 E - 11 0 . 005 3 . 7 E - 11 0 . 005 3 . 7 E - 11 0 . 005 5 . 5 E - 10 0 . 005 5 . 5 E - 10 0 . 005 5 . 5 E - 10 0 . 005 5 . 5 E - 10 0 . 005 4 . 0 E - 11 0 . 005 4 . 0 E - 11 0 . 005 0								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Pd-101	8. 27 h					0.005	9. 4 E-11
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0 2						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Pd-103	17.0 d					0.005	1.9 E-10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		11 7 2						
Pd-107 6.50E+06 a F 0.005 2.6 E-11 3.3 E-11 0.005 3.7 E-11 Pd-109 13.4 h F 0.005 5.5 E-10 2.9 E-10 0.005 5.5 E-10 Pd-109 13.4 h F 0.005 1.2 E-10 2.1 E-10 0.005 5.5 E-10 M 0.005 3.4 E-10 4.7 E-10 0.005 5.5 E-10 W D 0.005 3.4 E-10 4.7 E-10 0.005 5.5 E-10 Ag-102 D 2.15 h F 0.050 1.4 E-11 2.4 E-11 0.050 4.0 E-11 Ag-103 1.09 h F 0.050 1.8 E-11 3.2 E-11 0.050 4.3 E-11 Ag-104 1.15 h F 0.050 1.6 E-11 2.8 E-11 0.050 4.3 E-11 Ag-104 1.15 h F 0.050 2.7 E-11 4.3 E-11 0.050 4.3 E-11 Ag-104 1.15 h F 0.050 3.0 E-11 5.7 E-11 0.050 6.0 E-11 Ag-104 1.5 h F 0.050 3.0 E-11 7.1 E-11								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Pd-107	6.50E ± 06 a					0.005	3. 7 E-11
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Pd-109	13. 4 h					0.005	5.5 E-10
$ \begin{array}{ c c c c c c } \hline \textbf{4} \hline \\ \hline \textbf{4} \hline \textbf{4} \hline \\ \hline \textbf{4} \hline \\ \textbf{4} \hline \textbf{4} \hline \\ \textbf{4} \hline $								
Ag-102 0. 215 h F 0. 050 1. 4 E-11 2. 4 E-11 0. 050 4. 0 E-11 Ag-103 1. 09 h F 0. 050 1. 9 E-11 3. 2 E-11 0. 050 4. 3 E-11 Ag-103 1. 09 h F 0. 050 1. 6 E-11 2. 8 E-11 0. 050 4. 3 E-11 Ag-104 1. 15 h F 0. 050 2. 8 E-11 4. 5 E-11 0. 050 6. 0 E-11 Ag-104m 0. 558 h F 0. 050 3. 9 E-11 6. 9 E-11 0. 050 5. 4 E-11 Ag-104m 0. 558 h F 0. 050 1. 7 E-11 0. 050 5. 4 E-11 Ag-104m 0. 558 h F 0. 050 1. 7 E-11 0. 050 5. 4 E-11 Ag-104m 0. 558 h F 0. 050 1. 7 E-11 0. 050 5. 4 E-11 Ag-104m 0. 558 h F 0. 050 1. 7 E-11 0. 050 5. 4 E-11 Ag-104m 0. 558 h F 0. 050 1. 7 E-11 0. 050 5. 4 E-11 Ag-105 41. 0 d F 0. 050 5. 4 E-10 8. 0 E-10								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	银							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			_					4 0 F 11
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ag-102	0. 215 h					0.050	4.0 E-11
Ag-103 1.09 h F 0.050 1.6 E-11 2.8 E-11 0.050 4.3 E-11 M 0.050 2.7 E-11 4.3 E-11 0.050 4.3 E-11 Ag-104 1.15 h F 0.050 3.0 E-11 5.7 E-11 0.050 6.0 E-11 M 0.050 3.9 E-11 6.9 E-11 0.050 6.0 E-11 Ag-104m 0.558 h F 0.050 1.7 E-11 3.1 E-11 0.050 5.4 E-11 Ag-105 41.0 d F 0.050 2.7 E-11 4.5 E-11 0.050 4.7 E-10 Ag-106 0.399 h F 0.050 7.8 E-10 7.3 E-10 0.050 3.2 E-11 M 0.050 1.6 E-11 2.6 E-11 0.050 3.2 E-11								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								4 2 E 11
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ag-103	1.09 h					0.050	4.5 E-11
Ag-104 1.15 h F 0.050 3.0 E-11 5.7 E-11 0.050 6.0 E-11 Ag-104m 0.558 h F 0.050 4.0 E-11 7.1 E-11 0.050 5.4 E-11 Ag-104m 0.558 h F 0.050 1.7 E-11 3.1 E-11 0.050 5.4 E-11 Ag-105 41.0 d F 0.050 2.7 E-11 4.5 E-11 0.050 4.7 E-10 Ag-106 0.399 h F 0.050 7.8 E-10 7.3 E-10 0.050 3.2 E-11 M 0.050 1.6 E-11 2.6 E-11 0.050 3.2 E-11								
Ag-104m 0. 050	A 104	1 15 1					0.050	6 0 F 11
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ag-104	1.15 h					0.050	0. 0 L-11
Ag-104m 0.558 h F 0.050 1.7 E-11 3.1 E-11 0.050 5.4 E-11 M 0.050 2.6 E-11 4.4 E-11 4.5 E-11 Ag-105 41.0 d F 0.050 5.4 E-10 8.0 E-10 0.050 4.7 E-10 M 0.050 6.9 E-10 7.0 E-10 7.3 E-10 7.3 E-10 7.3 E-11 0.050 3.2 E-11 Ag-106 0.399 h F 0.050 9.8 E-12 1.7 E-11 0.050 3.2 E-11								
Ag-105 Ag-106 M 0.050 2.6 E-11 4.4 E-11 S 0.050 2.7 E-11 4.5 E-11 4.5 E-11 A.5 E-10 A.7 E-10 A.7 E-10 A.7 E-10 A.7 E-10 A.7 E-10 A.8 E-10 A.8 E-10 A.9 E-11 A.9 E-	A 104	0.5501					0.050	5 4 F 11
Ag-105 Ag-106 S 0.050 2.7 E-11 4.5 E-11 5.4 E-10 8.0 E-10 0.050 4.7 E-10 M 0.050 6.9 E-10 7.0 E-10 S 0.050 7.8 E-10 7.3 E-10 Ag-106 F 0.050 9.8 E-12 1.7 E-11 0.050 3.2 E-11 M 0.050 1.6 E-11 2.6 E-11	Ag-104m	0. 558 h					0.050	J. 4 L-11
Ag-105 41.0 d F 0.050 5.4 E-10 8.0 E-10 0.050 4.7 E-10 M 0.050 6.9 E-10 7.0 E-10 7.3 E-10 Ag-106 S 0.050 7.8 E-10 7.3 E-10 7.3 E-11 M 0.050 9.8 E-12 1.7 E-11 0.050 3.2 E-11 M 0.050 1.6 E-11 2.6 E-11 2.6 E-11								
M 0. 050 6. 9 E-10 7. 0 E-10 8 0. 050 7. 8 E-10 7. 3 E-10 7. 3 E-10 9. 8 E-12 1. 7 E-11 0. 050 3. 2 E-11 M 0. 050 1. 6 E-11 2. 6 E-11	A = 105	41 0 4					0.050	4.7 F-10
Ag-106 S 0. 399 h F 0. 050 F 0. 050 F 0. 050 S 0. 050 F 0. 050 S	Ag-100	41. U U					0.000	4. 1 L 10
Ag-106								
M 0.050 1.6 E-11 2.6 E-11	A = 106	0 200 5					0.050	3. 2 F ₋ 11
	1100 Ug-1∪0	0. 999 H					0.000	0. 2 1. 11
			S	0.050	1. 6 E-11 1. 6 E-11	2. 6 E-11 2. 7 E-11		
S 0.000 1.0 E-11 2.7 E-11			ی	0.000	1.0 E-11	2. (E-11		

						食	λ
核素	物理半衰期	类别	f_1	$e(g)_{1 \mu m}$	$e(g)_{5 \mu m}$	f_1	e(g)
Ag-106m	8. 41 d	F	0.050	1.1 E-09	1. 6 E-09	0.050	1.5 E-09
Ag-100m	6. 41 d	M	0.050	1.1 E-09 1.1 E-09	1. 6 E-09 1. 5 E-09	0.050	1. 5 E-05
		S	0.050	1.1 E-09 1.1 E-09	1. 3 E-09 1. 4 E-09		
Ag-108m	1.27E+02 a	F	0.050	6. 1 E-09	7. 3 E-09	0.050	2.3 E-09
Ag-100III	1. 27E 02 a	M	0.050	7. 0 E-09	5. 2 E-09	0.030	2.3 L 03
		S	0.050	3. 5 E-08	1. 9 E-08		
Ag-110m	250 d	F	0.050	5. 5 E-09	6. 7 E-09	0.050	2.8 E-09
rig 110iii	230 d	M	0.050	7. 2 E-09	5. 9 E-09	0.000	2.02.03
		S	0.050	1. 2 E-08	7. 3 E-09		
Ag-111	7. 45 d	F	0.050	4. 1 E-10	5. 7 E-10	0.050	1.3 E-09
7.8 111	77 10 d	M	0.050	1. 5 E-09	1. 5 E-09	0.000	1 0 2 10
		S	0.050	1.7 E-09	1. 6 E-09		
Ag-112	3. 12 h	F	0.050	8. 2 E-11	1. 4 E-10	0.050	4.3 E-10
**8 112	0.12.11	M	0.050	1.7 E-10	2. 5 E-10	0.000	
		S	0.050	1.8 E-10	2. 6 E-10		
Ag-115	0.333 h	F	0.050	1. 6 E-11	2. 6 E-11	0.050	6.0 E-11
8		M	0.050	2.8 E-11	4. 3 E-11		
		S	0.050	3. 0 E-11	4. 4 E-11		
镉							
Cd-104	0.961 h	F	0.050	2.7 E-11	5.0 E-11	0.050	5.8 E-11
		M	0.050	3. 6 E-11	6. 2 E-11		0.0 2 11
		S	0.050	3.7 E-11	6.3 E-11		
Cd-107	6. 49 h	F	0.050	2.3 E-11	4. 2 E-11	0.050	6. 2 E-11
		M	0.050	8.1 E-11	1.0 E-10		
		S	0.050	8.7 E-11	1.1 E-10		
Cd-109	1.27 a	F	0.050	8.1 E-09	9.6 E-09	0.050	2.0 E-09
		M	0.050	6. 2 E-09	5.1 E-09		
		S	0.050	5.8 E-09	4.4 E-09		
Cd-113	9.30E+15 a	F	0.050	1. 2 E-07	1.4 E-07	0.050	2.5 E-08
		M	0.050	5.3 E-08	4.3 E-08		
		S	0.050	2.5 E-08	2.1 E-08		
Cd-113m	13.6 a	F	0.050	1.1 E-07	1.3 E-07	0.050	2.3 E-08
		M	0.050	5.0 E-08	4.0 E-08		
		S	0.050	3.0 E-08	2.4 E-08		
Cd-115	2. 23 d	F	0.050	3.7 E-10	5.4 E-10	0.050	1.4 E-09
		M	0.050	9.7 E-10	1.2 E-09		
		S	0.050	1.1 E-09	1.3 E-09		
Cd-115m	44.6 d	F	0.050	5.3 E-09	6.4 E-09	0.050	3.3 E-09
		M	0.050	5.9 E-09	5.5 E-09		
		S	0.050	7.3 E-09	5.5 E-09		
Cd-117	2.49 h	F	0.050	7.3 E-11	1.3 E-10	0.050	2.8 E-10
		M	0.050	1.6 E-10	2.4 E-10		
		S	0.050	1.7 E-10	2.5 E-10		
Cd-117m	3. 36 h	F	0.050	1.0 E-10	1.9 E-10	0.050	2.8 E-10
		M	0.050	2.0 E-10	3.1 E-10		
		S	0.050	2.1 E-10	3.2 E-10		

				λ		食	λ
核素	物理半衰期	类别	f_1	$e(g)_{1 \mu m}$	$e(g)_{5 \mu m}$	f_1	<i>e</i> (<i>g</i>)
铟			3.1	-8 - 1 /	-8 - 0 7	5 1	.0.
In-109	4. 20 h	F	0.020	3. 2 E-11	5.7 E-11	0.020	6. 6 E-11
11 100	11 20 11	M	0.020	4. 4 E-11	7. 3 E-11	0.020	
In-110	4. 90 h	F	0.020	1. 2 E-10	2. 2 E-10	0.020	2.4 E-10
111		M	0.020	1. 4 E-10	2.5 E-10		
In-110	1.15 h	F	0.020	3. 1 E-11	5. 5 E-11	0.020	1.0 E-10
		M	0.020	5.0 E-11	8.1 E-11		
In-111	2.83 d	F	0.020	1.3 E-10	2.2 E-10	0.020	2.9 E-10
		M	0.020	2.3 E-10	3.1 E-10		
In-112	0. 240 h	F	0.020	5.0 E-12	8. 6 E-12	0.020	1.0 E-11
		M	0.020	7.8 E-12	1.3 E-11		
In-113m	1.66 h	F	0.020	1.0 E-11	1.9 E-11	0.020	2.8 E-11
		M	0.020	2.0 E-11	3.2 E-11		
In-114m	49.5 d	F	0.020	9.3 E-09	1.1 E-08	0.020	4.1 E-09
		M	0.020	5.9 E-09	5.9 E-09		
In-115	5.10E+15 a	F	0.020	3.9 E-07	4.5 E-07	0.020	3.2 E-08
		M	0.020	1.5 E-07	1.1 E-07		
In-115m	4.49 h	F	0.020	2.5 E-11	4.5 E-11	0.020	8. 6 E-11
		M	0.020	6.0 E-11	8.7 E-11		
In-116m	0. 902 h	F	0.020	3.0 E-11	5.5 E-11	0.020	6.4 E-11
		M	0.020	4.8 E-11	8.0 E-11		
In-117	0.730 h	F	0.020	1.6 E-11	2.8 E-11	0.020	3.1 E-11
		M	0.020	3.0 E-11	4.8 E-11		
In-117m	1.94 h	F	0.020	3. 1 E-11	5.5 E-11	0.020	1.2 E-10
		M	0.020	7.3 E-11	1.1 E-10		4 5 P 11
In-119m	0.300 h	F	0.020	1.1 E-11	1.8 E-11	0.020	4.7 E-11
		M	0.020	1.8 E-11	2.9 E-11		
锡							
Sn-110	4.00 h	F	0.020	1.1 E-10	1.9 E-10	0.020	3.5 E-10
		M	0.020	1. 6 E-10	2.6 E-10		
Sn-111	0.588 h	F	0.020	8.3 E-12	1.5 E-11	0.020	2.3 E-11
		M	0.020	1.4 E-11	2. 2 E-11		
Sn-113	115 d	F	0.020	5.4 E-10	7.9 E-10	0.020	7.3 E-10
		M	0.020	2.5 E-09	1.9 E-09		
Sn-117m	13. 6 d	F	0.020	2.9 E-10	3.9 E-10	0.020	7.1 E-10
		M	0.020	2.3 E-09	2.2 E-09		_
Sn-119m	293 d	F	0.020	2.9 E-10	3.6 E-10	0.020	3.4 E-10
		M	0.020	2.0 E-09	1.5 E-09		0.0810
Sn-121	1.13 d	F	0.020	6. 4 E-11	1.0 E-10	0.020	2.3 E-10
0 101	55.0	M	0.020	2. 2 E-10	2.8 E-10	0.000	2 0 17 10
Sn-121m	55.0 a	F	0.020	8. 0 E-10	9. 7 E-10	0.020	3.8 E-10
C 102	100 1	M	0.020	4. 2 E-09	3. 3 E-09	0.000	9.1 F 00
Sn-123	129 d	F	0.020	1. 2 E-09	1. 6 E-09	0.020	2.1 E-09
Cm 199	0 600 1	M	0.020	7. 7 E-09	5. 6 E-09	0.000	9 0 E 11
Sn-123m	0. 668 h	F	0.020	1. 4 E-11	2. 4 E-11	0.020	3.8 E-11
		M	0.020	2. 8 E-11	4.4 E-11		

Γ	T		衣 B3(狭)				
核素	物理半衰期	= .	吸			食	λ
		类别	f_1	$e(g)_{1 \mu m}$	$e(g)_{5 \mu m}$	f_1	<i>e</i> (<i>g</i>)
Sn-125	9.64 d	F	0.020	9. 2 E-10	1.3 E-09	0.020	3.1 E-09
		M	0.020	3.0 E-09	2.8 E-09		
Sn-126	1.00E+05 a	F	0.020	1.1 E-08	1.4 E-08	0.020	4.7 E-09
		M	0.020	2.7 E-08	1.8 E-08		
Sn-127	2.10 h	F	0.020	6.9 E-11	1.2 E-10	0.020	2.0 E-10
		M	0.020	1.3 E-10	2.0 E-10		
Sn-128	0.985 h	F	0.020	5.4 E-11	9.5 E-11	0.020	1.5 E-10
		M	0.020	9. 6 E-11	1.5 E-10		
锑							
Sb-115	0.530 h	F	0.100	9.2 E-12	1.7 E-11	0.100	2.4 E-11
		M	0.010	1.4 E-11	2.3 E-11		
Sb-116	0.263 h	F	0.100	9.9 E-12	1.8 E-11	0.100	2.6 E-11
		M	0.010	1.4 E-11	2.3 E-11		
Sb-116m	1.00 h	F	0.100	3.5 E-11	6.4 E-11	0.100	6.7 E-11
		M	0.010	5.0 E-11	8.5 E-11		
Sb-117	2.80 h	F	0.100	9.3 E-12	1.7 E-11	0.100	1.8 E-11
		M	0.010	1.7 E-11	2.7 E-11		
Sb-118m	5.00 h	F	0.100	1.0 E-10	1.9 E-10	0.100	2.1 E-10
		M	0.010	1.3 E-10	2.3 E-10		
Sb-119	1.59 d	F	0.100	2.5 E-11	4.5 E-11	0.100	8.1 E-11
		M	0.010	3.7 E-11	5.9 E-11		
Sb-120	5.76 d	F	0.100	5.9 E-10	9.8 E-10	0.100	1.2 E-09
		M	0.010	1.0 E-09	1.3 E-09		
Sb-120	0.265 h	F	0.100	4.9 E-12	8.5 E-12	0.100	1.4 E-11
		M	0.010	7.4 E-12	1.2 E-11		
Sb-122	2.70 d	F	0.100	3.9 E-10	6.3 E-10	0.100	1.7 E-09
		M	0.010	1.0 E-09	1.2 E-09		
Sb-124	60. 2 d	F	0.100	1.3 E-09	1.9 E-09	0.100	2.5 E-09
		M	0.010	6.1 E-09	4.7 E-09		
Sb-124m	0.337 h	F	0.100	3.0 E-12	5.3 E-12	0.100	8.0 E-12
		M	0.010	5. 5 E-12	8.3 E-12		
Sb-125	2.77 a	F	0.100	1.4 E-09	1.7 E-09	0.100	1.1 E-09
		M	0.010	4.5 E-09	3.3 E-09		
Sb-126	12.4 d	F	0.100	1.1 E-09	1.7 E-09	0.100	2.4 E-09
		M	0.010	2.7 E-09	3.2 E-09		
Sb-126m	0.317 h	F	0.100	1.3 E-11	2.3 E-11	0.100	3.6 E-11
		M	0.010	2.0 E-11	3.3 E-11		
Sb-127	3. 85 d	F	0.100	4.6 E-10	7.4 E-10	0.100	1.7 E-09
		M	0.010	1.6 E-09	1.7 E-09		
Sb-128	9.01 h	F	0.100	2.5 E-10	4.6 E-10	0.100	7.6 E-10
		M	0.010	4.2 E-10	6.7 E-10		
Sb-128	0.173 h	F	0.100	1.1 E-11	1.9 E-11	0.100	3.3 E-11
		M	0.010	1.5 E-11	2.6 E-11		
Sb-129	4.32 h	F	0.100	1.1 E-10	2.0 E-10	0.100	4.2 E-10
		M	0.010	2.4 E-10	3.5 E-10		
	1			1		1	

15 +	₩ TB V = HB		吸 入			食 入		
核素	物理半衰期	类别	f_1	$e(g)_{1 \mu m}$	$e(g)_{5 \mu m}$	f_1	e(g)	
Sb-130	0.667 h	F	0.100	3.5 E-11	6. 3 E-11	0.100	9.1 E-11	
		M	0.010	5.4 E-11	9.1 E-11			
Sb-131	0.383 h	F	0.100	3.7 E-11	5.9 E-11	0.100	1.0 E-10	
		M	0.010	5.2 E-11	8.3 E-11			
碲								
Te-116	2. 49 h	F	0.300	6.3 E-11	1.2 E-10	0.300	1.7 E-10	
		M	0.300	1.1 E-10	1.7 E-10			
Te-121	17.0 d	F	0.300	2.5 E-10	3.9 E-10	0.300	4.3 E-10	
		M	0.300	3.9 E-10	4.4 E-10			
Te-121m	154 d	F	0.300	1.8 E-09	2.3 E-09	0.300	2.3 E-09	
		M	0.300	4.2 E-09	3.6 E-09			
Te-123	1.00E+13 a	F	0.300	4.0 E-09	5.0 E-09	0.300	4.4 E-09	
		M	0.300	2.6 E-09	2.8 E-09			
Te-123m	120 d	F	0.300	9.7 E-10	1.2 E-09	0.300	1.4 E-09	
		M	0.300	3.9 E-09	3.4 E-09			
Te-125m	58.0 d	F	0.300	5.1 E-10	6.7 E-10	0.300	8.7 E-10	
		M	0.300	3. 3 E-09	2.9 E-09			
Te-127	9.35 h	F	0.300	4. 2 E-11	7.2 E-11	0.300	1.7 E-10	
		M	0.300	1. 2 E-10	1.8 E-10			
Te-127m	109 d	F	0.300	1.6 E-09	2.0 E-09	0.300	2.3 E-09	
		M	0.300	7.2 E-09	6. 2 E-09			
Te-129	1.16 h	F	0.300	1.7 E-11	2.9 E-11	0.300	6. 3 E-11	
		M	0.300	3.8 E-11	5.7 E-11			
Te-129m	33. 6 d	F	0.300	1.3 E-09	1.8 E-09	0.300	3.0 E-09	
		M	0.300	6.3 E-09	5.4 E-09			
Te-131	0.417 h	F	0.300	2.3 E-11	4.6 E-11	0.300	8.7 E-11	
		M	0.300	3.8 E-11	6.1 E-11			
Te-131m	1. 25 d	F	0.300	8.7 E-10	1.2 E-09	0.300	1.9 E-09	
		M	0.300	1.1 E-09	1.6 E-09			
Te-132	3. 26 d	F	0.300	1.8 E-09	2.4 E-09	0.300	3.7 E-09	
		M	0.300	2.2 E-09	3.0 E-09			
Te-133	0. 207 h	F	0.300	2.0 E-11	3.8 E-11	0.300	7.2 E-11	
		M	0.300	2.7 E-11	4.4 E-11		0.0 17.10	
Te-133m	0. 923 h	F	0.300	8.4 E-11	1. 2 E-10	0.300	2.8 E-10	
		M	0.300	1.2 E-10	1. 9 E-10		1.15.10	
Te-134	0.696 h	F	0.300	5.0 E-11	8. 3 E-11	0.300	1.1 E-10	
		M	0.300	7.1 E-11	1.1 E-10			
碘								
I-120	1.35 h	F	1.000	1.0 E-10	1.9 E-10	1.000	3.4 E-10	
I-120m	0.883 h	F	1.000	8.7 E-11	1.4 E-10	1.000	2.1 E-10	
I-121	2.12 h	F	1.000	2.8 E-11	3.9 E-11	1.000	8. 2 E-11	
I-123	13. 2 h	F	1.000	7.6 E-11	1.1 E-10	1.000	2.1 E-10	
I-124	4. 18 d	F	1.000	4.5 E-09	6.3 E-09	1.000	1.3 E-08	
I-125	60.1 d	F	1.000	5.3 E-09	7.3 E-09	1.000	1.5 E-08	
I-126	13.0 d	F	1.000	1.0 E-08	1.4 E-08	1.000	2.9 E-08	

				λ		食	λ
核素	物理半衰期	类别	f_1	$e(g)_{1 \mu m}$	$e(g)_{5~\mu\mathrm{m}}$	f_1	e(g)
I-128	0.416 h	F	1.000	1. 4 E-11	2. 2 E-11	1.000	4. 6 E-11
I-128	1.57E+07 a	F	1.000	3. 7 E-08	5. 1 E-08	1.000	1. 1 E-07
	12. 4 h	F	1.000		9. 6 E-10	1.000	
I-130	8. 04 d	F		6. 9 E-10 7. 6 E-09	9. 6 E-10 1. 1 E-08		2.0 E-09
I-131			1.000			1.000	2. 2 E-08
I-132	2.30 h	F	1.000	9. 6 E-11	2. 0 E-10	1.000	2. 9 E-10
I-132m	1. 39 h	F	1.000	8. 1 E-11	1.1 E-10	1.000	2. 2 E-10
I-133	20.8 h	F	1.000	1.5 E-09	2.1 E-09	1.000	4. 3 E-09
I-134	0. 876 h	F	1.000	4.8 E-11	7. 9 E-11	1.000	1.1 E-10
I-135	6.61 h	F	1.000	3.3 E-10	4.6 E-10	1.000	9.3 E-10
色 105	0.5501	D.	1 000	1 0 1 11	0.0 5.11	1 000	0.5.11
Cs-125	0.750 h	F	1.000	1.3 E-11	2. 3 E-11	1.000	3. 5 E-11
Cs-127	6. 25 h	F	1.000	2. 2 E-11	4.0 E-11	1.000	2.4 E-11
Cs-129	1. 34 d	F	1.000	4.5 E-11	8.1 E-11	1.000	6.0 E-11
Cs-130	0.498 h	F	1.000	8.4 E-12	1.5 E-11	1.000	2.8 E-11
Cs-131	9. 69 d	F	1.000	2.8 E-11	4.5 E-11	1.000	5.8 E-11
Cs-132	6.48 d	F	1.000	2.4 E-10	3.8 E-10	1.000	5.0 E-10
Cs-134	2.06 a	F	1.000	6.8 E-09	9.6 E-09	1.000	1.9 E-08
Cs-134m	2.90 h	F	1.000	1.5 E-11	2.6 E-11	1.000	2.0 E-11
Cs-135	2.30E+06 a	F	1.000	7.1 E-10	9.9 E-10	1.000	2.0 E-09
Cs-135m	0.883 h	F	1.000	1.3 E-11	2.4 E-11	1.000	1.9 E-11
Cs-136	13.1 d	F	1.000	1.3 E-09	1.9 E-09	1.000	3.0 E-09
Cs-137	30.0 a	F	1.000	4.8 E-09	6.7 E-09	1.000	1.3 E-08
Cs-138	0.536 h	F	1.000	2.6 E-11	4.6 E-11	1.000	9.2 E-11
钡							
Ba-126	1.61 h	F	0.100	7.8 E-11	1.2 E-10	0.100	2.6 E-10
Ba-128	2.43 d	F	0.100	8.0 E-10	1.3 E-09	0.100	2.7 E-09
Ba-131	11.8 d	F	0.100	2.3 E-10	3.5 E-10	0.100	4.5 E-10
Ba-131m	0. 243 h	F	0.100	4.1 E-12	6.4 E-12	0.100	4.9 E-12
Ba-133	10.7 a	F	0.100	1.5 E-09	1.8 E-09	0.100	1.0 E-09
Ba-133m	1.62 d	F	0.100	1.9 E-10	2.8 E-10	0.100	5.5 E-10
Ba-135m	1. 20 d	F	0.100	1.5 E-10	2.3 E-10	0.100	4.5 E-10
Ba-139	1.38 h	F	0.100	3.5 E-11	5.5 E-11	0.100	1.2 E-10
Ba-140	12.7 d	F	0.100	1.0 E-09	1.6 E-09	0.100	2.5 E-09
Ba-141	0.305 h	F	0.100	2.2 E-11	3.5 E-11	0.100	7.0 E-11
Ba-142	0.177 h	F	0.100	1.6 E-11	2.7 E-11	0.100	3.5 E-11
镧							
La-131	0. 983 h	F	5.0 E-04	1.4 E-11	2.4 E-11	5.0 E-04	3.5 E-11
24 101	7 000 11	M	5.0 E-04	2. 3 E-11	3. 6 E-11		0. 0 E 11
La-132	4.80 h	F	5. 0 E-04	1. 1 E-10	2. 0 E-10	5.0 E-04	3.9 E-10
24 100	1.00	M	5. 0 E-04	1. 7 E-10	2. 8 E-10	5. 0 D 0 f	0.0 15-10
La-135	19.5 h	F	5. 0 E-04	1. 1 E-11	2. 0 E-11	5.0 E-04	2 A F 11
24 100	10.011	M	5. 0 E-04 5. 0 E-04	1. 1 E-11 1. 5 E-11	2. 5 E-11	0.0 L 04	3.0 E-11
La-137	6.00E+04 a	F	5. 0 E-04 5. 0 E-04	8. 6 E-09	1. 0 E-08	5. 0 E-04	0 1 E 11
101 101	0.00L 04 a	M	5. 0 E-04 5. 0 E-04	3. 4 E-09	2. 3 E-09	0.0 E-04	8.1 E-11
		141	0.0 L 04	0. I L 00	2.0 L 03		

拉	物理坐亭期		吸	λ		食	λ
核素	物理半衰期	类别	f_1	$e(g)_{1 \mu m}$	$e(g)_{5 \mu m}$	f_1	e(g)
La-138	1.35E+11 a	F	5.0 E-04	1.5 E-07	1.8 E-07	5.0 E-04	1.1 E-09
		M	5.0 E-04	6.1 E-08	4.2 E-08		
La-140	1. 68 d	F	5.0 E-04	6.0 E-10	1.0 E-09	5.0 E-04	2.0 E-09
		M	5.0 E-04	1.1 E-09	1.5 E-09		
La-141	3. 93 h	F	5.0 E-04	6.7 E-11	1.1 E-10	5.0 E-04	3.6 E-10
		M	5.0 E-04	1.5 E-10	2.2 E-10		
La-142	1.54 h	F	5.0 E-04	5.6 E-11	1.0 E-10	5.0 E-04	1.8 E-10
		M	5.0 E-04	9.3 E-11	1.5 E-10		
La-143	0.237 h	F	5.0 E-04	1.2 E-11	2.0 E-11	5.0 E-04	5. 6 E-11
		M	5.0 E-04	2.2 E-11	3. 3 E-11		
铈							
Ce-134	3.00 d	M	5.0 E-04	1.3 E-09	1.5 E-09	5.0 E-04	2.5 E-09
		S	5.0 E-04	1.3 E-09	1.6 E-09		
Ce-135	17.6 h	M	5.0 E-04	4.9 E-10	7.3 E-10	5.0 E-04	7.9 E-10
		S	5.0 E-04	5.1 E-10	7.6 E-10		
Ce-137	9.00 h	M	5.0 E-04	1.0 E-11	1.8 E-11	5.0 E-04	2.5 E-11
		S	5.0 E-04	1.1 E-11	1.9 E-11		
Ce-137m	1. 43 d	M	5.0 E-04	4.0 E-10	5.5 E-10	5.0 E-04	5.4 E-10
		S	5.0 E-04	4.3 E-10	5.9 E-10		
Ce-139	138 d	M	5.0 E-04	1.6 E-09	1.3 E-09	5.0 E-04	2.6 E-10
		S	5.0 E-04	1.8 E-09	1.4 E-09		
Ce-141	32. 5 d	M	5.0 E-04	3.1 E-09	2.7 E-09	5.0 E-04	7.1 E-10
		S	5.0 E-04	3.6 E-09	3.1 E-09		
Ce-143	1. 38 d	M	5.0 E-04	7.4 E-10	9.5 E-10	5.0 E-04	1.1 E-09
		S	5.0 E-04	8.1 E-10	1.0 E-09		
Ce-144	284 d	M	5.0 E-04	3.4 E-08	2.3 E-08	5.0 E-04	5.2 E-09
		S	5.0 E-04	4.9 E-08	2.9 E-08		
镨							
Pr-136	0. 218 h	M	5.0 E-04	1.4 E-11	2. 4 E-11	5.0 E-04	3. 3 E-11
11 100	0.210 H	S	5. 0 E-04	1. 5 E-11	2. 5 E-11	0.0 5 01	0 0 2 11
Pr-137	1. 28 h	M	5. 0 E-04	2. 1 E-11	3. 4 E-11	5.0 E-04	4.0 E-11
1 2 101	1 20 11	S	5.0 E-04	2. 2 E-11	3. 5 E-11		
Pr-138m	2.10 h	M	5. 0 E-04	7. 6 E-11	1. 3 E-10	5.0 E-04	1.3 E-10
		S	5.0 E-04	7.9 E-11	1. 3 E-10		
Pr-139	4.51 h	M	5.0 E-04	1. 9 E-11	2. 9 E-11	5.0 E-04	3.1 E-11
		S	5.0 E-04	2.0 E-11	3. 0 E-11		
Pr-142	19.1 h	M	5.0 E-04	5.3 E-10	7.0 E-10	5.0 E-04	1.3 E-09
		S	5.0 E-04	5.6 E-10	7.4 E-10		
Pr-142m	0. 243 h	M	5.0 E-04	6.7 E-12	8. 9 E-12	5.0 E-04	1.7 E-11
		S	5.0 E-04	7.1 E-12	9.4 E-12		
Pr-143	13.6 d	M	5.0 E-04	2.1 E-09	1. 9 E-09	5.0 E-04	1. 2 E-09
		S	5.0 E-04	2.3 E-09	2.2 E-09		
Pr-144	0. 288 h	M	5.0 E-04	1.8 E-11	2.9 E-11	5.0 E-04	5.0 E-11
		S	5.0 E-04	1.9 E-11	3.0 E-11		
Pr-145	5. 98 h	M	5.0 E-04	1.6 E-10	2.5 E-10	5.0 E-04	3.9 E-10
		S	5.0 E-04	1.7 E-10	2.6 E-10		

			1 Do (-5,7)				
核素	物理半衰期	Nr. = :	吸		T .	食	λ
		类别	f_1	$e(g)_{1 \mu m}$	$e(g)_{5 \mu m}$	f_1	<i>e</i> (<i>g</i>)
Pr-147	0. 227 h	M	5.0 E-04	1.8 E-11	2. 9 E-11	5.0 E-04	3. 3 E-11
		S	5.0 E-04	1.9 E-11	3. 0 E-11		
钕							
Nd-136	0.844 h	M	5.0 E-04	5.3 E-11	8.5 E-11	5.0 E-04	9.9 E-11
		S	5.0 E-04	5.6 E-11	8.9 E-11		
Nd-138	5.04 h	M	5.0 E-04	2.4 E-10	3.7 E-10	5.0 E-04	6.4 E-10
		S	5.0 E-04	2.6 E-10	3.8 E-10		
Nd-139	0.495 h	M	5.0 E-04	1.0 E-11	1.7 E-11	5.0 E-04	2.0 E-11
		S	5.0 E-04	1.1 E-11	1.7 E-11		
Nd-139m	5.50 h	M	5.0 E-04	1.5 E-10	2.5 E-10	5.0 E-04	2.5 E-10
		S	5.0 E-04	1.6 E-10	2.5 E-10		
Nd-141	2.49 h	M	5.0 E-04	5.1 E-12	8. 5 E-12	5.0 E-04	8.3 E-12
		S	5.0 E-04	5.3 E-12	8. 8 E-12		
Nd-147	11.0 d	M	5.0 E-04	2.0 E-09	1.9 E-09	5.0 E-04	1.1 E-09
		S	5.0 E-04	2.3 E-09	2.1 E-09		
Nd-149	1.73 h	M	5.0 E-04	8.5 E-11	1. 2 E-10	5.0 E-04	1.2 E-10
		S	5.0 E-04	9.0 E-11	1.3 E-10		
Nd-151	0.207 h	M	5.0 E-04	1.7 E-11	2.8 E-11	5.0 E-04	3.0 E-11
		S	5.0 E-04	1.8 E-11	2. 9 E-11		
钜							
Pm-141	0. 348 h	M	5.0 E-04	1.5 E-11	2.4 E-11	5. 0 E-04	3. 6 E-11
		S	5.0 E-04	1.6 E-11	2.5 E-11		
Pm-143	265 d	M	5.0 E-04	1.4 E-09	9.6 E-10	5.0 E-04	2. 3 E-10
		S	5.0 E-04	1.3 E-09	8. 3 E-10		
Pm-144	363 d	M	5.0 E-04	7.8 E-09	5.4 E-09	5.0 E-04	9.7 E-10
		S	5.0 E-04	7.0 E-09	3.9 E-09		
Pm-145	17.7 a	M	5.0 E-04	3.4 E-09	2.4 E-09	5.0 E-04	1.1 E-10
		S	5.0 E-04	2.1 E-09	1.2 E-09		
Pm-146	5.53 a	M	5.0 E-04	1.9 E-08	1.3 E-08	5.0 E-04	9.0 E-10
		S	5.0 E-04	1.6 E-08	9.0 E-09		
Pm-147	2.62 a	M	5.0 E-04	4.7 E-09	3.5 E-09	5.0 E-04	2.6 E-10
		S	5.0 E-04	4.6 E-09	3. 2 E-09		
Pm-148	5. 37 d	M	5.0 E-04	2.0 E-09	2.1 E-09	5.0 E-04	2.7 E-09
		S	5.0 E-04	2.1 E-09	2. 2 E-09		
Pm-148m	41.3 d	M	5.0 E-04	4.9 E-09	4.1 E-09	5.0 E-04	1.8 E-09
		S	5.0 E-04	5.4 E-09	4.3 E-09		
Pm-149	2.21 d	M	5.0 E-04	6.6 E-10	7.6 E-10	5.0 E-04	9.9 E-10
		S	5.0 E-04	7.2 E-10	8. 2 E-10		
Pm-150	2.68 h	M	5.0 E-04	1.3 E-10	2.0 E-10	5.0 E-04	2.6 E-10
		S	5.0 E-04	1.4 E-10	2.1 E-10		
Pm-151	1.18 d	M	5.0 E-04	4.2 E-10	6.1 E-10	5.0 E-04	7.3 E-10
		S	5.0 E-04	4.5 E-10	6.4 E-10		
钐							
Sm-141	0.170 h	M	5.0 E-04	1. 6 E-11	2.7 E-11	5.0 E-04	3.9 E-11
Sm-141m	0. 377 h	M	5. 0 E-04	3. 4 E-11	5. 6 E-11	5. 0 E-04	6. 5 E-11
~ 111-11	0.01111	111	0.00	U: 1 D 11	0.0 11	0.00	0.0 11

12 -	# + TO 14 40		吸	λ		食	λ
核素	物理半衰期	类别	f_1	$e(g)_{1 \mu m}$	$e(g)_{5 \mu m}$	f_1	e(g)
Sm-142	1. 21 h	M	5.0 E-04	7.4 E-11	1.1 E-10	5.0 E-04	1.9 E-10
Sm-145	340 d	M	5.0 E-04	1.5 E-09	1.1 E-09	5.0 E-04	2.1 E-10
Sm-146	1.03E+08 a	M	5.0 E-04	9.9 E-06	6.7 E-06	5.0 E-04	5.4 E-08
Sm-147	1.06E+11 a	M	5.0 E-04	8.9 E-06	6.1 E-06	5.0 E-04	4.9 E-08
Sm-151	90.0 a	M	5.0 E-04	3.7 E-09	2.6 E-09	5.0 E-04	9.8 E-11
Sm-153	1.95 d	M	5.0 E-04	6.1 E-10	6.8 E-10	5.0 E-04	7.4 E-10
Sm-155	0.368 h	M	5.0 E-04	1.7 E-11	2.8 E-11	5.0 E-04	2.9 E-11
Sm-156	9.40 h	M	5.0 E-04	2.1 E-10	2.8 E-10	5.0 E-04	2.5 E-10
铕							
Eu-145	5. 94 d	M	5.0 E-04	5.6 E-10	7.3 E-10	5.0 E-04	7.5 E-10
Eu-146	4. 61 d	M	5.0 E-04	8.2 E-10	1.2 E-09	5.0 E-04	1.3 E-09
Eu-147	24.0 d	M	5.0 E-04	1.0 E-09	1.0 E-09	5.0 E-04	4.4 E-10
Eu-148	54. 5 d	M	5.0 E-04	2.7 E-09	2.3 E-09	5.0 E-04	1.3 E-09
Eu-149	93. 1 d	M	5.0 E-04	2.7 E-10	2.3 E-10	5.0 E-04	1.0 E-10
Eu-150	34. 2 a	M	5.0 E-04	5.0 E-08	3.4 E-08	5.0 E-04	1.3 E-09
Eu-150	12.6 h	M	5.0 E-04	1.9 E-10	2.8 E-10	5.0 E-04	3.8 E-10
Eu-152	13.3 a	M	5.0 E-04	3.9 E-08	2.7 E-08	5.0 E-04	1.4 E-09
Eu-152m	9.32 h	M	5.0 E-04	2.2 E-10	3. 2 E-10	5.0 E-04	5.0 E-10
Eu-154	8.80 a	M	5.0 E-04	5.0 E-08	3.5 E-08	5.0 E-04	2.0 E-09
Eu-155	4.96 a	M	5.0 E-04	6.5 E-09	4.7 E-09	5.0 E-04	3. 2 E-10
Eu-156	15. 2 d	M	5.0 E-04	3.3 E-09	3.0 E-09	5.0 E-04	2.2 E-09
Eu-157	15.1 h	M	5.0 E-04	3.2 E-10	4.4 E-10	5.0 E-04	6.0 E-10
Eu-158	0.765 h	M	5.0 E-04	4.8 E-11	7.5 E-11	5.0 E-04	9.4 E-11
钆							
Gd-145	0. 382 h	F	5.0 E-04	1.5 E-11	2. 6 E-11	5.0 E-04	4.4 E-11
Ou 143	0.302 11	M	5. 0 E-04	2. 1 E-11	3. 5 E-11	3.0 L 04	1. 1 2 11
Gd-146	48. 3 d	F	5. 0 E-04	4. 4 E-09	5. 2 E-09	5.0 E-04	9.6 E-10
Gu 110	10.0 a	M	5. 0 E-04	6.0 E-09	4. 6 E-09	0.01	0 0 2 11
Gd-147	1.59 d	F	5. 0 E-04	2.7 E-10	4. 5 E-10	5.0 E-04	6.1 E-10
ou III	1.00 d	M	5. 0 E-04	4.1 E-10	5. 9 E-10	0.01	0.1210
Gd-148	93.0 a	F	5. 0 E-04	2. 5 E-05	3. 0 E-05	5.0 E-04	5.5 E-08
04 110	00.04	M	5. 0 E-04	1. 1 E-05	7. 2 E-06	0.0201	
Gd-149	9.40 d	F	5. 0 E-04	2. 6 E-10	4.5 E-10	5. 0 E-04	4.5 E-10
		M	5. 0 E-04	7.0 E-10	7.9 E-10		
Gd-151	120 d	F	5.0 E-04	7.8 E-10	9. 3 E-10	5.0 E-04	2.0 E-10
		M	5. 0 E-04	8. 1 E-10	6. 5 E-10		
Gd-152	1.08E+14 a	F	5.0 E-04	1.9 E-05	2. 2 E-05	5.0 E-04	4.1 E-08
		M	5. 0 E-04	7. 4 E-06	5. 0 E-06		
Gd-153	242 d	F	5.0 E-04	2.1 E-09	2.5 E-09	5.0 E-04	2.7 E-10
		M	5. 0 E-04	1.9 E-09	1. 4 E-09		
Gd-159	18.6 h	F	5. 0 E-04	1. 1 E-10	1. 8 E-10	5.0 E-04	4.9 E-10
		M	5. 0 E-04	2.7 E-10	3. 9 E-10		
铽							
Tb-147	1. 65 h	M	5.0 E-04	7.9 E-11	1. 2 E-10	5.0 E-04	1.6 E-10
Tb-147	4. 15 h	M	5. 0 E-04 5. 0 E-04	4. 3 E-09	3. 1 E-09	5. 0 E-04 5. 0 E-04	2. 5 E-10
1 D 147	4.19 11	171	J. U L-U4	4.0 E-03	9. 1 E-03	J. U E-U4	2. 0 E-10

ſ	T.	T	化 D3(织)				
核素	物理半衰期		吸		Т	食	λ
17. 27.	1000	类别	f_1	$e(g)_{1 \mu m}$	$e(g)_{5 \mu m}$	f_1	e(g)
Tb-150	3.27 h	M	5.0 E-04	1.1 E-10	1.8 E-10	5.0 E-04	2.5 E-10
Tb-151	17.6 h	M	5.0 E-04	2.3 E-10	3.3 E-10	5.0 E-04	3.4 E-10
Tb-153	2.34 d	M	5.0 E-04	2.0 E-10	2.4 E-10	5.0 E-04	2.5 E-10
Tb-154	21.4 h	M	5.0 E-04	3.8 E-10	6.0 E-10	5.0 E-04	6.5 E-10
Tb-155	5. 32 d	M	5.0 E-04	2.1 E-10	2.5 E-10	5.0 E-04	2.1 E-10
Tb-156	5. 34 d	M	5.0 E-04	1.2 E-09	1.4 E-09	5.0 E-04	1.2 E-09
Tb-156m	1.02 d	M	5.0 E-04	2.0 E-10	2.3 E-10	5.0 E-04	1.7 E-10
Tb-156m	5.00 h	M	5.0 E-04	9.2 E-11	1. 3 E-10	5.0 E-04	8.1 E-11
Tb-157	1.50E+02 a	M	5.0 E-04	1.1 E-09	7.9 E-10	5.0 E-04	3.4 E-11
Tb-158	1.50E+02 a	M	5.0 E-04	4.3 E-08	3.0 E-08	5.0 E-04	1.1 E-09
Tb-160	72. 3 d	M	5.0 E-04	6.6 E-09	5.4 E-09	5.0 E-04	1.6 E-09
Tb-161	6.91 d	M	5.0 E-04	1.2 E-09	1. 2 E-09	5.0 E-04	7.2 E-10
镝							
Dy-155	10.0 h	M	5.0 E-04	8.0 E-11	1.2 E-10	5.0 E-04	1.3 E-10
Dy-157	8.10 h	M	5.0 E-04	3.2 E-11	5.5 E-11	5.0 E-04	6.1 E-11
Dy-159	144 d	M	5.0 E-04	3.5 E-10	2.5 E-10	5.0 E-04	1.0 E-10
Dy-165	2.33 h	M	5.0 E-04	6.1 E-11	8.7 E-11	5.0 E-04	1.1 E-10
Dy-166	3. 40 d	M	5.0 E-04	1.8 E-09	1.8 E-09	5.0 E-04	1.6 E-09
钬							
Ho-155	0.800 h	M	5.0 E-04	2.0 E-11	3. 2 E-11	5.0 E-04	3.7 E-11
Ho-157	0.210 h	M	5.0 E-04	4.5 E-12	7.6 E-12	5.0 E-04	6.5 E-12
Ho-159	0.550 h	M	5.0 E-04	6.3 E-12	1.0 E-11	5.0 E-04	7.9 E-12
Ho-161	2.50 h	M	5.0 E-04	6.3 E-12	1.0 E-11	5.0 E-04	1.3 E-11
Ho-162	0.250 h	M	5.0 E-04	2.9 E-12	4.5 E-12	5.0 E-04	3.3 E-12
Ho-162m	1.13 h	M	5.0 E-04	2.2 E-11	3. 3 E-11	5.0 E-04	2.6 E-11
Ho-164	0.483 h	M	5.0 E-04	8.6 E-12	1. 3 E-11	5.0 E-04	9.5 E-12
Ho-164m	0.625 h	M	5.0 E-04	1.2 E-11	1.6 E-11	5.0 E-04	1.6 E-11
Ho-166	1.12 d	M	5.0 E-04	6.6 E-10	8. 3 E-10	5.0 E-04	1.4 E-09
Ho-166m	1.20E+03 a	M	5.0 E-04	1.1 E-07	7.8 E-08	5.0 E-04	2.0 E-09
Ho-167	3. 10 h	M	5.0 E-04	7.1 E-11	1.0 E-10	5.0 E-04	8.3 E-11
铒							
Er-161	3. 24 h	M	5.0 E-04	5.1 E-11	8.5 E-11	5.0 E-04	8.0 E-11
Er-165	10.4 h	M	5.0 E-04	8.3 E-12	1.4 E-11	5.0 E-04	1.9 E-11
Er-169	9. 30 d	M	5.0 E-04	9.8 E-10	9. 2 E-10	5.0 E-04	3.7 E-10
Er-171	7.52 h	M	5.0 E-04	2.2 E-10	3.0 E-10	5.0 E-04	3. 6 E-10
Er-172	2.05 d	M	5.0 E-04	1.1 E-09	1. 2 E-09	5.0 E-04	1.0 E-09
铥							
Tm-162	0.362 h	M	5.0 E-04	1.6 E-11	2.7 E-11	5.0 E-04	2.9 E-11
Tm-166	7.70 h	M	5.0 E-04	1.8 E-10	2. 8 E-10	5.0 E-04	2.8 E-10
Tm-167	9. 24 d	M	5.0 E-04	1.1 E-09	1.0 E-09	5.0 E-04	5.6 E-10
Tm-170	129 d	M	5.0 E-04	6.6 E-09	5. 2 E-09	5.0 E-04	1.3 E-09
Tm-171	1.92 a	M	5.0 E-04	1.3 E-09	9.1 E-10	5.0 E-04	1.1 E-10
Tm-172	2. 65 d	M	5.0 E-04	1.1 E-09	1.4 E-09	5. 0 E-04	1.7 E-09
Tm-173	8. 24 h	M	5. 0 E-04	1.8 E-10	2. 6 E-10	5. 0 E-04	3.1 E-10
Tm-175	0. 253 h	M	5.0 E-04	1. 9 E-11	3.1 E-11	5.0 E-04	2.7 E-11

				λ		食	λ
核素	物理半衰期	类别	f_1	$e(g)_{1 \mu m}$	$e(g)_{5 \mu m}$	f_1	e(g)
Yb-162	0.315 h	M	5.0 E-04	1.4 E-11	2. 2 E-11	5.0 E-04	2.3 E-11
10 102	- 010 H	S	5. 0 E-04	1. 4 E-11	2. 3 E-11		2 0 2 11
Yb-166	2.36 d	M	5.0 E-04	7.2 E-10	9. 1 E-10	5.0 E-04	9.5 E-10
		S	5.0 E-04	7.6 E-10	9.5 E-10		
Yb-167	0.292 h	M	5.0 E-04	6.5 E-12	9.0 E-12	5.0 E-04	6.7 E-12
		S	5.0 E-04	6.9 E-12	9.5 E-12		
Yb-169	32.0 d	M	5.0 E-04	2.4 E-09	2.1 E-09	5.0 E-04	7.1 E-10
		S	5.0 E-04	2.8 E-09	2.4 E-09		
Yb-175	4.19 d	M	5.0 E-04	6.3 E-10	6.4 E-10	5.0 E-04	4.4 E-10
		S	5.0 E-04	7.0 E-10	7.0 E-10		
Yb-177	1.90 h	M	5.0 E-04	6.4 E-11	8.8 E-11	5.0 E-04	9.7 E-11
		S	5.0 E-04	6.9 E-11	9.4 E-11		
Yb-178	1.23 h	M	5.0 E-04	7.1 E-11	1.0 E-10	5.0 E-04	1.2 E-10
		S	5.0 E-04	7.6 E-11	1.1 E-10		
Lu-169	1. 42 d	M	5.0 E-04	3.5 E-10	4.7 E-10	5.0 E-04	4.6 E-10
Eu 103	1. 42 u	S	5. 0 E-04	3. 8 E-10	4. 9 E-10	0. 0 L 04	
Lu-170	2. 00 d	M	5. 0 E-04	6. 4 E-10	9. 3 E-10	5.0 E-04	9.9 E-10
Bu 170	21 00 d	S	5. 0 E-04	6. 7 E-10	9. 5 E-10	0.01	
Lu-171	8. 22 d	M	5. 0 E-04	7. 6 E-10	8. 8 E-10	5.0 E-04	6.7 E-10
		S	5.0 E-04	8. 3 E-10	9.3 E-10		
Lu-172	6.70 d	M	5.0 E-04	1.4 E-09	1.7 E-09	5.0 E-04	1.3 E-09
		S	5.0 E-04	1.5 E-09	1.8 E-09		
Lu-173	1.37 a	M	5.0 E-04	2.0 E-09	1.5 E-09	5.0 E-04	2.6 E-10
		S	5.0 E-04	2.3 E-09	1.4 E-09		
Lu-174	3.31 a	M	5.0 E-04	4.0 E-09	2.9 E-09	5.0 E-04	2.7 E-10
		S	5.0 E-04	3.9 E-09	2.5 E-09		
Lu-174m	142 d	M	5.0 E-04	3.4 E-09	2.4 E-09	5.0 E-04	5.3 E-10
		S	5.0 E-04	3.8 E-09	2.6 E-09		
Lu-176	3.60E+10 a	M	5.0 E-04	6.6 E-08	4.6 E-08	5.0 E-04	1.8 E-09
		S	5.0 E-04	5.2 E-08	3.0 E-08		
Lu-176m	3.68 h	M	5.0 E-04	1.1 E-10	1.5 E-10	5.0 E-04	1.7 E-10
		S	5.0 E-04	1.2 E-10	1.6 E-10		
Lu-177	6.71 d	M	5.0 E-04	1.0 E-09	1.0 E-09	5.0 E-04	5.3 E-10
		S	5.0 E-04	1.1 E-09	1.1 E-09		
Lu-177m	161 d	M	5.0 E-04	1.2 E-08	1.0 E-08	5.0 E-04	1.7 E-09
		S	5.0 E-04	1.5 E-08	1.2 E-08		
Lu-178	0.473 h	M	5.0 E-04	2.5 E-11	3.9 E-11	5.0 E-04	4.7 E-11
		S	5.0 E-04	2.6 E-11	4.1 E-11		
Lu-178m	0.378 h	M	5.0 E-04	3.3 E-11	5.4 E-11	5.0 E-04	3.8 E-11
		S	5.0 E-04	3.5 E-11	5. 6 E-11		
Lu-179	4.59 h	M	5.0 E-04	1.1 E-10	1.6 E-10	5.0 E-04	2.1 E-10
		S	5.0 E-04	1.2 E-10	1.6 E-10		
		1			I	1	1

接 第 物理手級制	食人			
## Hf-170	e(g)			
M				
M	4.8 E-10			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
Hf-173	1.0 E-09			
Hf-173 24.0 h M 0.002 1.6 E-10 2.2 E-10 M 0.002 Hf-175 70.0 d F 0.002 7.2 E-10 8.7 E-10 0.002 Hf-177m 0.856 h F 0.002 1.1 E-09 8.8 E-10 M 0.002 1.1 E-09 8.8 E-10 0.002 Hf-178m 31.0 a F 0.002 1.1 E-07 1.3 E-10 0.002 Hf-178m 31.0 a F 0.002 1.1 E-07 7.8 E-08 Hf-179m 25.1 d F 0.002 1.1 E-07 7.8 E-08 Hf-180m 5.50 h F 0.002 1.1 E-09 1.4 E-09 0.002 M 0.002 1.1 E-07 7.8 E-08 Hf-180m 5.50 h F 0.002 1.4 E-10 2.0 E-10 Hf-181 42.4 d F 0.002 1.4 E-10 2.0 E-10 Hf-182 9.00E+06 a F 0.002 1.2 E-07 8.3 E-08 Hf-182m 1.02 h F 0.002 1.2 E-07 8.3 E-08 Hf-183 1.07 h F 0.002 1.2 E-07 8.3 E-08 Hf-184 4.12 h F 0.002 1.3 E-11 0.002 1.4 E-10 2.0 E-10 Hf-184 4.12 h F 0.002 1.3 E-10 2.5 E-11 0.002 1.4 E-10 0.002				
M	2.3 E-10			
Hf-175				
Hf-177m	4.1 E-10			
Hf-177m				
M	8.1 E-11			
Hf-178m				
Hf-179m	4.7 E-09			
Hf-179m				
Hf-180m 5.50 h F 0.002 6.4 E-11 1.2 E-10 0.002 Hf-181 42.4 d F 0.002 1.4 E-10 2.0 E-10 M 0.002 1.4 E-10 2.0 E-10 M 0.002 4.7 E-09 4.1 E-09 Hf-182 9.00E+06 a F 0.002 3.0 E-07 3.6 E-07 0.002 M 0.002 1.2 E-07 8.3 E-08 Hf-182m 1.02 h F 0.002 1.2 E-07 8.3 E-08 Hf-183 1.07 h F 0.002 4.7 E-11 7.1 E-11 0.002 Hf-184 4.12 h F 0.002 3.3 E-11 4.0 E-11 0.002 Hf-184 4.12 h F 0.002 3.3 E-10 4.5 E-10 0.002 1.2 E-07 8.3 E-08 1.000 1.3 E-10 1.000 1.3 E-10 1.000 1.3 E-10 1.0 E-10 1	1.2 E-09			
Hf-180m				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.7 E-10			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
Hf-182 9.00E+06 a F 0.002 3.0 E-07 3.6 E-07 0.002 M 0.002 1.2 E-07 8.3 E-08 Hf-182m 1.02 h F 0.002 2.3 E-11 4.0 E-11 0.002 M 0.002 4.7 E-11 7.1 E-11 1.07 h F 0.002 4.7 E-11 7.1 E-11 7.1 E-11 Hf-183 1.07 h F 0.002 3.3 E-11 4.4 E-11 0.002 M 0.002 5.8 E-11 8.3 E-11 8.3 E-11 Hf-184 4.12 h F 0.002 1.3 E-10 2.3 E-10 0.002 M 0.002 3.3 E-10 4.5 E-10 □ 1.07 h M 0.001 3.4 E-11 5.5 E-11 0.001 S 0.001 3.6 E-11 5.7 E-11 Ta-173 3.65 h M 0.001 3.6 E-11 5.7 E-11 Ta-174 1.20 h M 0.001 1.1 E-10 1.6 E-10 0.001 Ta-175 10.5 h M 0.001 1.3 E-10 2.0 E-10 0.001	1.1 E-09			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
Hf-182m	3.0 E-09			
Hf-182m				
Hf-183	4.2 E-11			
Hf-183				
Hf-184	7.3 E-11			
Hf-184 4.12 h F 0.002 1.3 E-10 2.3 E-10 0.002 担 Ta-172 0.613 h M 0.001 3.4 E-11 5.5 E-11 0.001 Ta-173 3.65 h M 0.001 1.1 E-10 1.6 E-10 0.001 Ta-174 1.20 h M 0.001 4.2 E-11 6.3 E-11 0.001 Ta-175 10.5 h M 0.001 1.3 E-10 2.0 E-10 0.001 S 0.001 1.4 E-10 2.0 E-10 0.001				
田田	5.2 E-10			
程				
Ta-172 0. 613 h M 0. 001 3. 4 E-11 5. 5 E-11 0. 001 S 0. 001 3. 6 E-11 5. 7 E-11 0. 001 Ta-173 3. 65 h M 0. 001 1. 1 E-10 1. 6 E-10 0. 001 S 0. 001 1. 2 E-10 1. 6 E-10 0. 001 Ta-174 1. 20 h M 0. 001 4. 2 E-11 6. 3 E-11 0. 001 S 0. 001 4. 4 E-11 6. 6 E-11 0. 001 Ta-175 M 0. 001 1. 3 E-10 2. 0 E-10 0. 001 S 0. 001 1. 4 E-10 2. 0 E-10 0. 001				
Ta-173 S 0.001 3.6 E-11 5.7 E-11 M 0.001 1.1 E-10 1.6 E-10 0.001 S 0.001 1.2 E-10 1.6 E-10 0.001 Ta-174 1.20 h M 0.001 4.2 E-11 6.3 E-11 0.001 S 0.001 4.4 E-11 6.6 E-11 Ta-175 M 0.001 1.3 E-10 2.0 E-10 0.001 S 0.001 1.4 E-10 2.0 E-10				
Ta-173 3. 65 h M 0. 001 1. 1 E-10 1. 6 E-10 0. 001 S 0. 001 1. 2 E-10 1. 6 E-10 0. 001 Ta-174 1. 20 h M 0. 001 4. 2 E-11 6. 3 E-11 0. 001 S 0. 001 4. 4 E-11 6. 6 E-11 0. 001 Ta-175 M 0. 001 1. 3 E-10 2. 0 E-10 0. 001 S 0. 001 1. 4 E-10 2. 0 E-10 0. 001	5.3 E-11			
Ta-174 1. 20 h M 0. 001 4. 2 E-10 6. 3 E-11 0. 001 S 0. 001 4. 4 E-11 6. 6 E-11 M 0. 001 1. 3 E-10 2. 0 E-10 0. 001 S 0. 001 1. 4 E-10 2. 0 E-10				
Ta-174 1. 20 h M 0. 001 4. 2 E-11 6. 3 E-11 0. 001 S 0. 001 4. 4 E-11 6. 6 E-11 Ta-175 M 0. 001 1. 3 E-10 2. 0 E-10 0. 001 S 0. 001 1. 4 E-10 2. 0 E-10	1.9 E-10			
Ta-175 S 0.001 4.4 E-11 6.6 E-11 M 0.001 1.3 E-10 2.0 E-10 0.001 S 0.001 1.4 E-10 2.0 E-10				
Ta-175	5.7 E-11			
S 0.001 1.4 E-10 2.0 E-10				
	2.1 E-10			
	3.1 E-10			
S 0.001 2.1 E-10 3.3 E-10				
	1.1 E-10			
S 0.001 1.0 E-10 1.3 E-10				
	7.8 E-11			
S 0.001 6.9 E-11 1.1 E-10				
	6.5 E-11			
S 0.001 5.2 E-10 2.9 E-10				
	8.4 E-10			
S 0.001 2.4 E-08 1.4 E-08				

	#6 rm \\ \			λ		食 入		
核素	物理半衰期	类别	f_1	$e(g)_{1 \mu m}$	$e(g)_{5 \mu m}$	f_1	e(g)	
Ta-180m	8. 10 h	M	0.001	4. 4 E-11	5. 8 E-11	0.001	5. 4 E-11	
	0 17 11	S	0.001	4.7 E-11	6. 2 E-11			
Ta-182	115 d	M	0.001	7. 2 E-09	5. 8 E-09	0.001	1.5 E-09	
101	110	S	0.001	9.7 E-09	7. 4 E-09			
Ta-182m	0.264 h	M	0.001	2.1 E-11	3. 4 E-11	0.001	1. 2 E-11	
102		S	0.001	2. 2 E-11	3. 6 E-11		1 2 2 11	
Ta-183	5. 10 d	M	0.001	1. 8 E-09	1. 8 E-09	0.001	1.3 E-09	
14 100	0.10 a	S	0.001	2. 0 E-09	2. 0 E-09	0.001	1.02 00	
Ta-184	8.70 h	M	0.001	4. 1 E-10	6. 0 E-10	0.001	6.8 E-10	
14 101	0.1011	S	0.001	4. 4 E-10	6. 3 E-10	0.001	0.0 2 10	
Ta-185	0.816 h	M	0.001	4. 6 E-11	6. 8 E-11	0.001	6. 8 E-11	
14 100	0.010 H	S	0.001	4. 9 E-11	7. 2 E-11	0.001	0.0211	
Ta-186	0.175 h	M	0.001	1. 8 E-11	3. 0 E-11	0.001	3. 3 E-11	
14 100	0.170 11	S	0.001	1. 9 E-11	3. 1 E-11	0.001	0.0 L 11	
			0.001	1.0 11	0.1211			
W-176	2. 30 h	F	0.300	4. 4 E-11	7.6 E-11	0.300	1.0 E-10	
						0.010	1.1 E-10	
W-177	2. 25 h	F	0.300	2. 6 E-11	4. 6 E-11	0.300	5.8 E-11	
						0.010	6. 1 E-11	
W-178	21.7 d	F	0.300	7.6 E-11	1. 2 E-10	0.300	2. 2 E-10	
						0.010	2.5 E-10	
W-179	0.625 h	F	0.300	9. 9 E-13	1.8 E-12	0.300	3. 3 E-12	
						0.010	3. 3 E-12	
W-181	121 d	F	0.300	2.8 E-11	4. 3 E-11	0.300	7. 6 E-11	
						0.010	8. 2 E-11	
W-185	75. 1 d	F	0.300	1.4 E-10	2. 2 E-10	0.300	4.4 E-10	
						0.010	5. 0 E-10	
W-187	23. 9 h	F	0.300	2.0 E-10	3.3 E-10	0.300	6. 3 E-10	
						0.010	7.1 E-10	
W-188	69. 4 d	F	0.300	5.9 E-10	8.4 E-10	0.300	2.1 E-09	
						0.010	2.3 E-09	
铼								
Re-177	0. 233 h	F	0.800	1.0 E-11	1.7 E-11	0.800	2.2 E-11	
		M	0.800	1.4 E-11	2.2 E-11			
Re-178	0. 220 h	F	0.800	1.1 E-11	1.8 E-11	0.800	2.5 E-11	
		M	0.800	1.5 E-11	2.4 E-11			
Re-181	20.0 h	F	0.800	1.9 E-10	3.0 E-10	0.800	4.2 E-10	
		M	0.800	2.5 E-10	3.7 E-10			
Re-182	2. 67 d	F	0.800	6. 8 E-10	1. 1 E-09	0.800	1.4 E-09	
		M	0.800	1.3 E-09	1.7 E-09			
Re-182	12.7 h	F	0.800	1.5 E-10	2. 4 E-10	0.800	2.7 E-10	
		M	0.800	2. 0 E-10	3. 0 E-10			
Re-184	38. 0 d	F	0.800	4. 6 E-10	7. 0 E-10	0.800	1.0 E-09	
		M	0.800	1. 8 E-09	1. 8 E-09	. 511	1 2 2 00	
		***	0.000	1.020	1.0 2 00			

			λ	食人			
核素	物理半衰期	类别	f_1	$e(g)_{1 \mu m}$	$e(g)_{5 \mu m}$	f_1	e(g)
Re-184m	165 d	F	0.800	6. 1 E-10	8. 8 E-10	0.800	1.5 E-09
Re-184m	D 601	M	0.800	6. 1 E-10 6. 1 E-09	8. 8 E-10 4. 8 E-09	0.800	1.5 E-09
Do 106	2 70 4	F	0.800			0.800	1.5 E-09
Re-186	3. 78 d		0.800	5. 3 E-10	7. 3 E-10	0.800	1.5 E-09
Do 106m	2.00E+05 a	M F	0.800	1.1 E-09 8.5 E-10	1. 2 E-09	0.800	2 2 E 00
Re-186m	2. 00E + 05 a		0.800		1. 2 E-09	0.800	2. 2 E-09
Do 107	5.00E+10 a	M F	0.800	1.1 E-08 1.9 E-12	7. 9 E-09	0.800	5.1 E-12
Re-187	5.00E+10 a	M	0.800	6. 0 E-12	2. 6 E-12 4. 6 E-12	0.800	3.1 E-12
Re-188	17.0 h	F	0.800	4. 7 E-10	6. 6 E-10	0.800	1.4 E-09
Ke-100	17.011	M	0.800	5. 5 E-10	7. 4 E-10	0. 800	1.4 E-09
Re-188m	0. 310 h	F	0.800	1. 0 E-11	1. 6 E-11	0.800	3. 0 E-11
Ke-100III	0.310 11	M	0.800	1. 0 E-11 1. 4 E-11	2. 0 E-11	0.000	3. U E-11
Re-189	1.01 d	F	0.800	2. 7 E-10	4. 3 E-10	0.800	7.8 E-10
Ke-103	1. 01 u	M	0.800	4. 3 E-10	6. 0 E-10	0.000	7. 8 E-10
LTD		1V1	0.000	4. 5 E-10	0.0 E-10		
锇							
Os-180	0.366 h	F	0.010	8.8 E-12	1. 6 E-11	0.010	1.7 E-11
		M	0.010	1.4 E-11	2.4 E-11		
		S	0.010	1.5 E-11	2. 5 E-11		
Os-181	1.75 h	F	0.010	3.6 E-11	6. 4 E-11	0.010	8.9 E-11
		M	0.010	6.3 E-11	9.6 E-11		
		S	0.010	6.6 E-11	1.0 E-10		
Os-182	22.0 h	F	0.010	1.9 E-10	3. 2 E-10	0.010	5.6 E-10
		M	0.010	3.7 E-10	5.0 E-10		
		S	0.010	3. 9 E-10	5. 2 E-10		
Os-185	94.0 d	F	0.010	1.1 E-09	1.4 E-09	0.010	5. 1 E-10
		M	0.010	1.2 E-09	1.0 E-09		
		S	0.010	1.5 E-09	1.1 E-09		
Os-189m	6.00 h	F	0.010	2.7 E-12	5. 2 E-12	0.010	1.8 E-11
		M	0.010	5.1 E-12	7.6 E-12		
		S	0.010	5.4 E-12	7.9 E-12		
Os-191	15.4 d	F	0.010	2.5 E-10	3.5 E-10	0.010	5. 7 E-10
		M	0.010	1.5 E-09	1.3 E-09		
		S	0.010	1.8 E-09	1.5 E-09		
Os-191m	13.0 h	F	0.010	2.6 E-11	4.1 E-11	0.010	9. 6 E-11
		M	0.010	1.3 E-10	1.3 E-10		
		S	0.010	1.5 E-10	1.4 E-10		
Os-193	1. 25 d	F	0.010	1.7 E-10	2.8 E-10	0.010	8.1 E-10
		M	0.010	4.7 E-10	6.4 E-10		
		S	0.010	5.1 E-10	6.8 E-10		
Os-194	6.00 a	F	0.010	1.1 E-08	1.3 E-08	0.010	2.4 E-09
		M	0.010	2.0 E-08	1.3 E-08		
		S	0.010	7.9 E-08	4.2 E-08		
铱							
Ir-182	0. 250 h	F	0.010	1.5 E-11	2.6 E-11	0.010	4.8 E-11
		M	0.010	2. 4 E-11	3. 9 E-11		
		S	0.010	2. 5 E-11	4. 0 E-11		
		<u> </u>	1		. –	I	<u> </u>

+ * =	物理业高期		吸		食	λ	
核素	物理半衰期	类别	f_1	$e(g)_{1 \mu m}$	$e(g)_{5 \mu m}$	f_1	e(g)
Ir-184	3.02 h	F	0.010	6.7 E-11	1. 2 E-10	0.010	1.7 E-10
		M	0.010	1.1 E-10	1.8 E-10		
		S	0.010	1. 2 E-10	1.9 E-10		
Ir-185	14.0 h	F	0.010	8.8 E-11	1.5 E-10	0.010	2.6 E-10
		M	0.010	1.8 E-10	2.5 E-10		
		S	0.010	1.9 E-10	2. 6 E-10		
Ir-186	15.8 h	F	0.010	1.8 E-10	3. 3 E-10	0.010	4.9 E-10
		M	0.010	3.2 E-10	4.8 E-10		
		S	0.010	3.3 E-10	5.0 E-10		
Ir-186	1.75 h	F	0.010	2.5 E-11	4.5 E-11	0.010	6.1 E-11
		M	0.010	4.3 E-11	6.9 E-11		
		S	0.010	4.5 E-11	7.1 E-11		
Ir-187	10.5 h	F	0.010	4.0 E-11	7.2 E-11	0.010	1.2 E-10
		M	0.010	7.5 E-11	1.1 E-10		
		S	0.010	7.9 E-11	1.2 E-10		
Ir-188	1.73 d	F	0.010	2.6 E-10	4.4 E-10	0.010	6.3 E-10
		M	0.010	4.1 E-10	6.0 E-10		
		S	0.010	4.3 E-10	6.2 E-10		
Ir-189	13. 3 d	F	0.010	1.1 E-10	1.7 E-10	0.010	2.4 E-10
		M	0.010	4.8 E-10	4.1 E-10		
		S	0.010	5.5 E-10	4.6 E-10		
Ir-190	12.1 d	F	0.010	7.9 E-10	1. 2 E-09	0.010	1.2 E-09
		M	0.010	2.0 E-09	2.3 E-09		
		S	0.010	2.3 E-09	2.5 E-09		
Ir-190m	3.10 h	F	0.010	5.3 E-11	9.7 E-11	0.010	1.2 E-10
		M	0.010	8.3 E-11	1.4 E-10		
		S	0.010	8.6 E-11	1.4 E-10		
Ir-190m	1.20 h	F	0.010	3.7 E-12	5. 6 E-12	0.010	8.0 E-12
		M	0.010	9.0 E-12	1.0 E-11		
		S	0.010	1.0 E-11	1.1 E-11		
Ir-192	74.0 d	F	0.010	1.8 E-09	2.2 E-09	0.010	1.4 E-09
		M	0.010	4.9 E-09	4.1 E-09		
		S	0.010	6.2 E-09	4.9 E-09		
Ir-192m	2.41E+02 a	F	0.010	4.8 E-09	5.6 E-09	0.010	3.1 E-10
		M	0.010	5.4 E-09	3.4 E-09		
		S	0.010	3.6 E-08	1.9 E-08		
Ir-193m	11.9 d	F	0.010	1.0 E-10	1. 6 E-10	0.010	2.7 E-10
		M	0.010	1.0 E-09	9. 1 E-10		
T 104	10.11	S	0.010	1. 2 E-09	1. 0 E-09	0.010	1 2 F 00
Ir-194	19.1 h	F	0.010	2. 2 E-10	3. 6 E-10	0.010	1.3 E-09
		M	0.010	5. 3 E-10	7. 1 E-10		
T 104	171 1	S	0.010	5. 6 E-10	7. 5 E-10	0.010	9.1 F 00
Ir-194m	171 d	F	0.010	5. 4 E-09	6. 5 E-09	0.010	2.1 E-09
		M	0.010	8. 5 E-09	6. 5 E-09		
		S	0.010	1. 2 E-08	8. 2 E-09		

		衣 B3(狭)						
核素	物理半衰期		吸	1	I	食	λ	
12. 23.	13:21 0000	类别	f_1	$e(g)_{1 \mu m}$	$e(g)_{5 \mu m}$	f_1	e(g)	
Ir-195	2.50 h	F	0.010	2.6 E-11	4.5 E-11	0.010	1.0 E-10	
		M	0.010	6.7 E-11	9.6 E-11			
		S	0.010	7.2 E-11	1.0 E-10			
Ir-195m	3.80 h	F	0.010	6.5 E-11	1.1 E-10	0.010	2.1 E-10	
		M	0.010	1.6 E-10	2.3 E-10			
		S	0.010	1.7 E-10	2.4 E-10			
铂								
Pt-186	2.00 h	F	0.010	3. 6 E-11	6.6 E-11	0.010	9.3 E-11	
Pt-188	10.2 d	F	0.010	4.3 E-10	6.3 E-10	0.010	7.6 E-10	
Pt-189	10.9 h	F	0.010	4.1 E-11	7.3 E-11	0.010	1.2 E-10	
Pt-191	2.80 d	F	0.010	1.1 E-10	1.9 E-10	0.010	3.4 E-10	
Pt-193	50.0 a	F	0.010	2.1 E-11	2.7 E-11	0.010	3.1 E-11	
Pt-193m	4. 33 d	F	0.010	1.3 E-10	2.1 E-10	0.010	4.5 E-10	
Pt-195m	4.02 d	F	0.010	1.9 E-10	3.1 E-10	0.010	6.3 E-10	
Pt-197	18. 3 h	F	0.010	9.1 E-11	1.6 E-10	0.010	4.0 E-10	
Pt-197m	1.57 h	F	0.010	2.5 E-11	4. 3 E-11	0.010	8. 4 E-11	
Pt-199	0.513 h	F	0.010	1.3 E-11	2. 2 E-11	0.010	3. 9 E-11	
Pt-200	12.5 h	F	0.010	2.4 E-10	4.0 E-10	0.010	1.2 E-09	
金								
Au-193	17.6 h	F	0.100	3. 9 E-11	7.1 E-11	0.100	1.3 E-10	
7tu 133	17.011	M	0.100	1. 1 E-10	1. 5 E-10	0.100	1. 3 E-10	
		S	0.100	1. 1 E 10 1. 2 E-10	1. 6 E-10			
Au-194	1. 64 d	F	0.100	1. 5 E-10	2. 8 E-10	0.100	4.2 E-10	
714 101	1.01 a	M	0.100	2. 4 E-10	3. 7 E-10	0.100	4. 2 L 10	
		S	0.100	2. 5 E-10	3. 8 E-10			
Au-195	183 d	F	0.100	7. 1 E-11	1. 2 E-10	0.100	2.5 E-10	
114 100	100 a	M	0.100	1. 0 E-09	8. 0 E-10	0.100	2.3 2 10	
		S	0.100	1. 6 E-09	1. 2 E-09			
Au-198	2.69 d	F	0.100	2. 3 E-10	3. 9 E-10	0.100	1.0 E-09	
110		M	0.100	7. 6 E-10	9. 8 E-10		11020	
		S	0.100	8. 4 E-10	1. 1 E-09			
Au-198m	2. 30 d	F	0.100	3. 4 E-10	5. 9 E-10	0.100	1.3 E-09	
		M	0.100	1. 7 E-09	2.0 E-09		1.02.00	
		S	0.100	1. 9 E-09	1.9 E-09			
Au-199	3. 14 d	F	0.100	1. 1 E-10	1. 9 E-10	0.100	4.4 E-10	
		M	0.100	6. 8 E-10	6.8 E-10			
		S	0.100	7.5 E-10	7.6 E-10			
Au-200	0.807 h	F	0.100	1.7 E-11	3. 0 E-11	0.100	6.8 E-11	
		M	0.100	3.5 E-11	5. 3 E-11		0 0 2 11	
		S	0.100	3. 6 E-11	5. 6 E-11			
Au-200m	18.7 h	F	0.100	3. 2 E-10	5. 7 E-10	0.100	1.1 E-09	
		M	0.100	6.9 E-10	9. 8 E-10			
		S	0.100	7. 3 E-10	1. 0 E-09			
Au-201	0.440 h	F	0.100	9. 2 E-12	1. 6 E-11	0.100	2.4 E-11	
		M	0.100	1. 7 E-11	2. 8 E-11			
		S	0.100	1. 8 E-11	2. 9 E-11			

	4/ 4/ 4/-		吸	λ		食	λ
核 素	物理半衰期	类别	f_1	$e(g)_{1 \mu m}$	$e(g)_{5 \mu m}$	f_1	e(g)
汞							
Hg-193	3.50 h	F	0.400	2. 6 E-11	4.7 E-11	1.000	3.1 E-11
(有机的)						0.400	6. 6 E-11
Hg-193	3.50 h	F	0.020	2.8 E-11	5.0 E-11	0.020	8. 2 E-11
(无机的)		M	0.020	7.5 E-11	1.0 E-10		
Hg-193m	11.1 h	F	0.400	1.1 E-10	2.0 E-10	1.000	1.3 E-10
(有机的)						0.400	3.0 E-10
Hg-193m	11.1 h	F	0.020	1.2 E-10	2.3 E-10	0.020	4.0 E-10
(无机的)		M	0.020	2.6 E-10	3.8 E-10		
Hg-194	2.60E+02 a	F	0.400	1.5 E-08	1.9 E-08	1.000	5.1 E-08
(有机的)						0.400	2.1 E-08
Hg-194	2.60E+02 a	F	0.020	1.3 E-08	1.5 E-08	0.020	1.4 E-09
(无机的)		M	0.020	7.8 E-09	5.3 E-09		
Hg-195	9.90 h	F	0.400	2.4 E-11	4.4 E-11	1.000	3.4 E-11
(有机的)						0.400	7.5 E-11
Hg-195	9.90 h	F	0.020	2.7 E-11	4.8 E-11	0.020	9.7 E-11
(无机的)		M	0.020	7.2 E-11	9.2 E-11		
Hg-195m	1.73 d	F	0.400	1.3 E-10	2.2 E-10	1.000	2.2 E-10
(有机的)						0.400	4.1 E-10
Hg-195m	1.73 d	F	0.020	1.5 E-10	2.6 E-10	0.020	5.6 E-10
(无机的)		M	0.020	5.1 E-10	6.5 E-10		
Hg-197	2.67 d	F	0.400	5.0 E-11	8. 5 E-11	1.000	9.9 E-11
(有机的)						0.400	1.7 E-10
Hg-197	2.67 d	F	0.020	6.0 E-11	1.0 E-10	0.020	2.3 E-10
(无机的)		M	0.020	2.9 E-10	2.8 E-10		
Hg-197m	23.8 h	F	0.400	1.0 E-10	1.8 E-10	1.000	1.5 E-10
(有机的)						0.400	3.4 E-10
Hg-197m	23.8 h	F	0.020	1.2 E-10	2.1 E-10	0.020	4.7 E-10
(无机的)		M	0.020	5.1 E-10	6.6 E-10		
Hg-199m	0.710 h	F	0.400	1.6 E-11	2.7 E-11	1.000	2.8 E-11
(有机的)						0.400	3.1 E-11
Hg-199m	0.710 h	F	0.020	1.6 E-11	2.7 E-11	0.020	3.1 E-11
(无机的)		M	0.020	3.3 E-11	5. 2 E-11		
Hg-203	46.6 d	F	0.400	5.7 E-10	7.5 E-10	1.000	1.9 E-09
(有机的)						0.400	1.1 E-09
Hg-203	46.6 d	F	0.020	4.7 E-10	5.9 E-10	0.020	5.4 E-10
(无机的)		M	0.020	2.3 E-09	1.9 E-09		
铊							
Tl-194	0.550 h	F	1.000	4.8 E-12	8. 9 E-12	1.000	8.1 E-12
Tl-194m	0.546 h	F	1.000	2.0 E-11	3. 6 E-11	1.000	4.0 E-11
Tl-195	1.16 h	F	1.000	1.6 E-11	3.0 E-11	1.000	2.7 E-11
Tl-197	2.84 h	F	1.000	1.5 E-11	2.7 E-11	1.000	2.3 E-11
Tl-198	5.30 h	F	1.000	6. 6 E-11	1.2 E-10	1.000	7.3 E-11
Tl-198m	1.87 h	F	1.000	4.0 E-11	7.3 E-11	1.000	5.4 E-11
Tl-199	7.42 h	F	1.000	2.0 E-11	3.7 E-11	1.000	2. 6 E-11

			化 D3(实)				•
核素	物理半衰期	24 Dil	吸	1		食	λ
		类别	f_1	$e(g)_{1 \mu m}$	$e(g)_{5 \mu m}$	f_1	e(g)
Tl-200	1.09 d	F	1.000	1.4 E-10	2.5 E-10	1.000	2.0 E-10
Tl-201	3. 04 d	F	1.000	4. 7 E-11	7.6 E-11	1.000	9.5 E-11
Tl-202	12. 2 d	F	1.000	2.0 E-10	3.1 E-10	1.000	4.5 E-10
Tl-204	3. 78 a	F	1.000	4.4 E-10	6. 2 E-10	1.000	1. 3 E-09
铅							
Pb-195m	0.263 h	F	0.200	1.7 E-11	3.0 E-11	0.200	2.9 E-11
Pb-198	2.40 h	F	0.200	4.7 E-11	8.7 E-11	0.200	1.0 E-10
Pb-199	1.50 h	F	0.200	2.6 E-11	4.8 E-11	0.200	5.4 E-11
Pb-200	21.5 h	F	0.200	1.5 E-10	2.6 E-10	0.200	4.0 E-10
Pb-201	9.40 h	F	0.200	6.5 E-11	1.2 E-10	0.200	1.6 E-10
Pb-202	3.00E+05 a	F	0.200	1.1 E-08	1.4 E-08	0.200	8.7 E-09
Pb-202m	3.62 h	F	0.200	6.7 E-11	1.2 E-10	0.200	1.3 E-10
Pb-203	2. 17 d	F	0.200	9.1 E-11	1.6 E-10	0.200	2.4 E-10
Pb-205	1.43E+07 a	F	0.200	3.4 E-10	4.1 E-10	0.200	2.8 E-10
Pb-209	3. 25 h	F	0.200	1.8 E-11	3. 2 E-11	0.200	5.7 E-11
Pb-210	22. 3 a	F	0.200	8. 9 E-07	1.1 E-06	0.200	6.8 E-07
Pb-211	0.601 h	F	0.200	3.9 E-09	5. 6 E-09	0.200	1.8 E-10
Pb-212	10. 6 h	F	0.200	1.9 E-08	3. 3 E-08	0.200	5. 9 E-09
Pb-214	0. 447 h	F	0.200	2.9 E-09	4.8 E-09	0.200	1.4 E-10
铋							
Bi-200	0. 606 h	F	0.050	9 4 E 11	4 9 E 11	0.050	5.1 E-11
DI-200	0. 000 n			2. 4 E-11	4. 2 E-11	0.030	3.1 E-11
D: 901	1 00 1	M	0.050	3. 4 E-11	5. 6 E-11	0.050	1 9 E 10
Bi-201	1.80 h	F	0.050	4. 7 E-11	8. 3 E-11	0.050	1. 2 E-10
D: 000	1 07 1	M	0.050	7. 0 E-11	1.1 E-10	0.050	0.05.11
Bi-202	1.67 h	F	0.050	4. 6 E-11	8. 4 E-11	0.050	8. 9 E-11
D' 000	11 01	M	0.050	5. 8 E-11	1. 0 E-10	0.050	4.0 5.10
Bi-203	11.8 h	F	0.050	2. 0 E-10	3. 6 E-10	0.050	4.8 E-10
D' 005	15.0.1	M	0.050	2. 8 E-10	4. 5 E-10	0.050	0.08.10
Bi-205	15. 3 d	F	0.050	4. 0 E-10	6. 8 E-10	0.050	9.0 E-10
		M	0.050	9. 2 E-10	1.0 E-09		
Bi-206	6. 24 d	F	0.050	7. 9 E-10	1. 3 E-09	0.050	1.9 E-09
		M	0.050	1.7 E-09	2.1 E-09		
Bi-207	38. 0 a	F	0.050	5. 2 E-10	8.4 E-10	0.050	1.3 E-09
		M	0.050	5. 2 E-09	3. 2 E-09		
Bi-210	5.01 d	F	0.050	1.1 E-09	1.4 E-09	0.050	1.3 E-09
		M	0.050	8.4 E-08	6.0 E-08		
Bi-210m	3.00E+06 a	F	0.050	4.5 E-08	5.3 E-08	0.050	1.5 E-08
		M	0.050	3.1 E-06	2.1 E-06		
Bi-212	1.01 h	F	0.050	9.3 E-09	1.5 E-08	0.050	2.6 E-10
		M	0.050	3.0 E-08	3.9 E-08		
Bi-213	0.761 h	F	0.050	1.1 E-08	1.8 E-08	0.050	2.0 E-10
		M	0.050	2.9 E-08	4.1 E-08		
Bi-214	0.332 h	F	0.050	7.2 E-09	1.2 E-08	0.050	1.1 E-10
		M	0.050	1.4 E-08	2.1 E-08		
	1	1	1	I	<u>I</u>	1	l .

	#6 rm \\ \			λ		食	λ
核素	物理半衰期	类别	f_1	$e(g)_{1 \mu m}$	$e(g)_{5 \mu m}$	f_1	e(g)
钋				0 1,			
Po-203	0.612 h	F	0.100	2.5 E-11	4.5 E-11	0.100	5. 2 E-11
		M	0.100	3.6 E-11	6. 1 E-11		
Po-205	1.80 h	F	0.100	3.5 E-11	6.0 E-11	0.100	5.9 E-11
		M	0.100	6.4 E-11	8.9 E-11		
Po-207	5.83 h	F	0.100	6.3 E-11	1.2 E-10	0.100	1.4 E-10
		M	0.100	8.4 E-11	1.5 E-10		
Po-210	138 d	F	0.100	6.0 E-07	7.1 E-07	0.100	2.4 E-07
		M	0.100	3.0 E-06	2.2 E-06		
砹							
At-207	1.80 h	F	1.000	3.5 E-10	4.4 E-10	1.000	2.3 E-10
		M	1.000	2.1 E-09	1.9 E-09		
At-211	7.21 h	F	1.000	1.6 E-08	2.7 E-08	1.000	1.1 E-08
		M	1.000	9.8 E-08	1.1 E-07		
钫							
Fr-222	0.240 h	F	1.000	1.4 E-08	2.1 E-08	1.000	7.1 E-10
Fr-223	0.363 h	F	1.000	9.1 E-10	1.3 E-09	1.000	2.3 E-09
镭							
Ra-223	11.4 d	M	0.200	6.9 E-06	5.7 E-06	0.200	1.0 E-07
Ra-224	3.66 d	M	0.200	2.9 E-06	2.4 E-06	0.200	6.5 E-08
Ra-225	14.8 d	M	0.200	5.8 E-06	4.8 E-06	0.200	9.5 E-08
Ra-226	1.60E + 03 a	M	0.200	3.2 E-06	2.2 E-06	0.200	2.8 E-07
Ra-227	0.703 h	M	0.200	2.8 E-10	2.1 E-10	0.200	8.4 E-11
Ra-228	5.75 a	M	0.200	2.6 E-06	1.7 E-06	0.200	6.7 E-07
锕							
Ac-224	2.90 h	F	5.0 E-04	1.1 E-08	1.3 E-08	5.0 E-04	7.0 E-10
		M	5.0 E-04	1.0 E-07	8.9 E-08		
		S	5.0 E-04	1.2 E-07	9.9 E-08		
Ac-225	10.0 d	F	5.0 E-04	8.7 E-07	1.0 E-06	5.0 E-04	2.4 E-08
		M	5.0 E-04	6.9 E-06	5.7 E-06		
		S	5.0 E-04	7.9 E-06	6.5 E-06		
Ac-226	1. 21 d	F	5.0 E-04	9.5 E-08	2. 2 E-07	5.0 E-04	1.0 E-08
		M	5.0 E-04	1.1 E-06	9. 2 E-07		
		S	5.0 E-04	1.2 E-06	1.0 E-06		
Ac-227	21.8 a	F	5. 0 E-04	5.4 E-04	6. 3 E-04	5.0 E-04	1.1 E-06
		M	5. 0 E-04	2.1 E-04	1.5 E-04		
	0.101	S	5. 0 E-04	6. 6 E-05	4.7 E-05	5 0 D 04	
Ac-228	6.13 h	F	5. 0 E-04	2.5 E-08	2. 9 E-08	5.0 E-04	4.3 E-10
		M	5. 0 E-04	1. 6 E-08	1. 2 E-08		
41		S	5.0 E-04	1.4 E-08	1. 2 E-08		
社							
Th-226	0.515 h	M	5.0 E-04	5.5 E-08	7.4 E-08	5.0 E-04	3.5 E-10
ml		S	2.0 E-04	5.9 E-08	7.8 E-08	2. 0 E-04	3. 6 E-10
Th-227	18.7 d	M	5. 0 E-04	7.8 E-06	6. 2 E-06	5. 0 E-04	8. 9 E-09
		S	2.0 E-04	9.6 E-06	7.6 E-06	2.0 E-04	8.4 E-09

衣 B3(汉)										
核素	物理半衰期		吸	λ		食	λ			
12 35	1002 (42 %)	类别	f_1	$e(g)_{1 \mu m}$	$e(g)_{5 \mu m}$	f_1	e(g)			
Th-228	1.91 a	M	5.0 E-04	3.1 E-05	2.3 E-05	5.0 E-04	7.0 E-08			
		S	2.0 E-04	3.9 E-05	3. 2 E-05	2.0 E-04	3.5 E-08			
Th-229	7.34E+03 a	M	5.0 E-04	9.9 E-05	6.9 E-05	5.0 E-04	4.8 E-07			
		S	2.0 E-04	6.5 E-05	4.8 E-05	2.0 E-04	2.0 E-07			
Th-230	7.70E+04 a	M	5.0 E-04	4.0 E-05	2.8 E-05	5.0 E-04	2.1 E-07			
		S	2.0 E-04	1.3 E-05	7.2 E-06	2.0 E-04	8.7 E-08			
Th-231	1.06 d	M	5.0 E-04	2.9 E-10	3.7 E-10	5.0 E-04	3.4 E-10			
		S	2.0 E-04	3.2 E-10	4.0 E-10	2.0 E-04	3.4 E-10			
Th-232	1.40E+10 a	M	5.0 E-04	4. 2 E-05	2.9 E-05	5.0 E-04	2.2 E-07			
		S	2.0 E-04	2.3 E-05	1. 2 E-05	2.0 E-04	9.2 E-08			
Th-234	24. 1 d	M	5.0 E-04	6.3 E-09	5.3 E-09	5.0 E-04	3.4 E-09			
		S	2.0 E-04	7.3 E-09	5.8 E-09	2.0 E-04	3.4 E-09			
镤										
Pa-227	0. 638 h	M	5.0 E-04	7.0 E-08	9.0 E-08	5.0 E-04	4.5 E-10			
		S	5. 0 E-04	7.6 E-08	9. 7 E-08					
Pa-228	22.0 h	M	5. 0 E-04	5. 9 E-08	4. 6 E-08	5.0 E-04	7.8 E-10			
		S	5.0 E-04	6.9 E-08	5.1 E-08					
Pa-230	17. 4 d	M	5.0 E-04	5.6 E-07	4.6 E-07	5.0 E-04	9. 2 E-10			
		S	5.0 E-04	7.1 E-07	5.7 E-07					
Pa-231	3.27E+04 a	M	5.0 E-04	1.3 E-04	8. 9 E-05	5.0 E-04	7.1 E-07			
		S	5.0 E-04	3. 2 E-05	1.7 E-05					
Pa-232	1.31 d	M	5.0 E-04	9.5 E-09	6.8 E-09	5.0 E-04	7. 2 E-10			
		S	5.0 E-04	3.2 E-09	2.0 E-09					
Pa-233	27.0 d	M	5.0 E-04	3.1 E-09	2.8 E-09	5.0 E-04	8.7 E-10			
		S	5.0 E-04	3.7 E-09	3.2 E-09					
Pa-234	6.70 h	M	5.0 E-04	3.8 E-10	5.5 E-10	5.0 E-04	5.1 E-10			
		S	5.0 E-04	4.0 E-10	5.8 E-10					
铀										
U-230	20.8 d	F	0.020	3.6 E-07	4.2 E-07	0.020	5. 5 E-08			
0-230	20. 6 d	M	0.020	1. 2 E-05	1. 0 E-05	0.002	2. 8 E-08			
		S	0.020	1. 2 E-05 1. 5 E-05	1. 0 E-05 1. 2 E-05	0.002	2.0 L 00			
U-231	4. 20 d	F	0.020	8. 3 E-11	1. 4 E-10	0.020	2.8 E-10			
0-231	4. 20 d	M	0.020	3. 4 E-10	3. 7 E-10	0.002	2. 8 E-10			
		S	0.002	3. 4 E 10 3. 7 E-10	4. 0 E-10	0.002	2.0210			
U-232	72.0 a	F	0.002	4. 0 E-06	4. 7 E-06	0.020	3. 3 E-07			
C 202	72.0 a	M	0.020	7. 2 E-06	4. 8 E-06	0.002	3. 7 E-08			
		S	0.002	3. 5 E-05	2. 6 E-05	0.002	0.72 00			
U-233	1.58E+05 a	F	0.020	5.7 E-07	6. 6 E-07	0.020	5.0 E-08			
C 200	1.002 00 a	M	0.020	3. 2 E-06	2. 2 E-06	0.002	8. 5 E-09			
		S	0.002	8. 7 E-06	6. 9 E-06	0.002	0 0 2 0			
U-234	2.44E+05 a	F	0.020	5. 5 E-07	6. 4 E-07	0.020	4.9 E-08			
	_ 112 , 00 a	M	0.020	3. 1 E-06	2. 1 E-06	0.002	8. 3 E-09			
		S	0.002	8. 5 E-06	6. 8 E-06	000				
U-235	7.04E+08 a	F	0.020	5.1 E-07	6. 0 E-07	0.020	4.6 E-08			
		M	0.020	2.8 E-06	1. 8 E-06	0.002	8.3 E-09			
		S	0.002	7.7 E-06	6. 1 E-06					
		~	1							

14 ±	46 TM 1/2 == #0		吸	λ		食	λ
核素	物理半衰期	类别	f_1	$e(g)_{1 \mu m}$	$e(g)_{5 \mu m}$	f_1	e(g)
236	2.34E+07 a	F	0.020	5.2 E-07	6. 1 E-07	0.020	4.6 E-08
		M	0.020	2.9 E-06	1.9 E-06	0.002	7.9 E-09
		S	0.002	7.9 E-06	6.3 E-06		
237	6.75 d	F	0.020	1.9 E-10	3.3 E-10	0.020	7.6 E-10
		M	0.020	1.6 E-09	1.5 E-09	0.002	7.7 E-10
		S	0.002	1.8 E-09	1.7 E-09		
238	4.47E + 09a	F	0.020	4.9 E-07	5.8 E-07	0.020	4.4 E-08
		M	0.020	2.6 E-06	1.6 E-06	0.002	7.6 E-09
		S	0.002	7.3 E-06	5.7 E-06		
239	0.392 h	F	0.020	1.1 E-11	1.8 E-11	0.020	2.7 E-11
		M	0.020	2.3 E-11	3. 3 E-11	0.002	2.8 E-11
		S	0.002	2.4 E-11	3. 5 E-11		
240	14.1 h	F	0.020	2.1 E-10	3.7 E-10	0.020	1.1 E-09
		M	0.020	5.3 E-10	7.9 E-10	0.002	1.1 E-09
		S	0.002	5.7 E-10	8.4 E-10		
-232	0.245 h	M	5.0 E-04	4.7 E-11	3.5 E-11	5.0 E-04	9.7 E-12
-233	0.603 h	M	5.0 E-04	1.7 E-12	3.0 E-12	5.0 E-04	2.2 E-12
-234	4. 40 d	M	5.0 E-04	5.4 E-10	7.3 E-10	5.0 E-04	8.1 E-10
-235	1.08 a	M	5.0 E-04	4.0 E-10	2.7 E-10	5.0 E-04	5.3 E-11
-236	1.15E + 05 a	M	5.0 E-04	3.0 E-06	2.0 E-06	5.0 E-04	1.7 E-08
-236	22.5 h	M	5.0 E-04	5.0 E-09	3. 6 E-09	5.0 E-04	1.9 E-10
-237	2.14E + 06 a	M	5.0 E-04	2.1 E-05	1.5 E-05	5.0 E-04	1.1 E-07
-238	2.12 d	M	5.0 E-04	2.0 E-09	1.7 E-09	5.0 E-04	9.1 E-10
-239	2.36 d	M	5.0 E-04	9.0 E-10	1.1 E-09	5.0 E-04	8.0 E-10
-240	1.08 h	M	5.0 E-04	8.7 E-11	1.3 E-04	5.0 E-04	8. 2 E-11
-234	8.80 h	M	5.0 E-04	1.9 E-08	1.6 E-08	5.0 E-04	1. 6 E-10
		S	1.0 E-05	2.2 E-08	1.8 E-08	1.0 E-05	1.5 E-10
						1.0 E-04	1.6 E-10
-235	0.422 h	M	5.0 E-04	1.5 E-12	2.5 E-12	5.0 E-04	2.1 E-12
		S	1.0 E-05	1.6 E-12	2.6 E-12	1.0 E-05	2.1 E-12
						1.0 E-04	2.1 E-12
-236	2.85 a	M	5.0 E-04	1.8 E-05	1. 3 E-05	5.0 E-04	8.6 E-08
		S	1.0 E-05	9.6 E-06	7.4 E-06	1.0 E-05	6.3 E-09
						1.0 E-04	2.1 E-08
-237	45.3 d	M	5.0 E-04	3.3 E-10	2. 9 E-10	5.0 E-04	1.0 E-10
		S	1.0 E-05	3.6 E-10	3.0 E-10	1.0 E-05	1.0 E-10
						1.0 E-04	1.0 E-10
-238	87.7 a	M	5.0 E-04	4.3 E-05	3.0 E-05	5.0 E-04	2.3 E-07
		S	1.0 E-05	1.5 E-05	1.1 E-05	1.0 E-05	8.8 E-09
						1.0 E-04	4.9 E-08
-239	2.41E + 04 a	M	5.0 E-04	4.7 E-05	3. 2 E-05	5.0 E-04	2.5 E-07
		S	1.0 E-05	1.5 E-05	8. 3 E-06	1.0 E-05	9.0 E-09
						1.0 E-04	5.3 E-08
-236 -237 -238 -239 -240 -234 -235 -236 -237	1. 15E+05 a 22. 5 h 2. 14E+06 a 2. 12 d 2. 36 d 1. 08 h 8. 80 h 0. 422 h 2. 85 a 45. 3 d	M M M M M M M M M M S M S M S M S M S M	5. 0 E-04 5. 0 E-04 5. 0 E-04 5. 0 E-04 5. 0 E-04 5. 0 E-04 1. 0 E-05 5. 0 E-04 1. 0 E-05 5. 0 E-04 1. 0 E-05 5. 0 E-04 1. 0 E-05 5. 0 E-04 1. 0 E-05	3. 0 E-06 5. 0 E-09 2. 1 E-05 2. 0 E-09 9. 0 E-10 8. 7 E-11 1. 9 E-08 2. 2 E-08 1. 5 E-12 1. 6 E-12 1. 8 E-05 9. 6 E-06 3. 3 E-10 3. 6 E-10 4. 3 E-05 1. 5 E-05 4. 7 E-05	2. 0 E-06 3. 6 E-09 1. 5 E-05 1. 7 E-09 1. 1 E-09 1. 3 E-04 1. 6 E-08 1. 8 E-08 2. 5 E-12 2. 6 E-12 1. 3 E-05 7. 4 E-06 2. 9 E-10 3. 0 E-10 3. 0 E-05 1. 1 E-05 3. 2 E-05	5. 0 E-04 5. 0 E-04 5. 0 E-04 5. 0 E-04 5. 0 E-04 5. 0 E-04 5. 0 E-04 1. 0 E-05 1. 0 E-04 5. 0 E-04	1. 7 E 1. 9 E 1. 1 E 9. 1 E 8. 0 E 8. 2 E 1. 6 E 2. 1 E 2. 1 E 2. 1 E 2. 1 E 1. 0 E 1. 0 E 1. 0 E 1. 0 E 2. 3 E 4. 9 E 2. 5 E 9. 0 E

				λ		食	λ
核素	物理半衰期	类别	f_1	$e(g)_{1 \mu m}$	$e(g)_{5 \mu m}$	f_1	<i>e</i> (<i>g</i>)
Pu-240	6.54E+03 a	М	5.0 E-04	4.7 E-05	3. 2 E-05	5. 0 E-04	2. 5 E-07
1 u-240	0. 34E 03 a	S	1. 0 E-05	1. 5 E-05	8. 3 E-06	1. 0 E-05	9. 0 E-09
		5	1. 0 L 00	1.0 L 00	0.00	1. 0 E-04	5. 3 E-08
Pu-241	14.4 a	M	5.0 E-04	8.5 E-07	5.8 E-07	5. 0 E-04	4. 7 E-09
1 4 211	11.14	S	1.0 E-05	1. 6 E-07	8. 4 E-08	1. 0 E-05	1. 1 E-10
		~	1 1 2 10	1 0 2 1	0 12 10	1. 0 E-04	9. 6 E-10
Pu-242	3.76E+05 a	M	5.0 E-04	4.4 E-05	3.1 E-05	5.0 E-04	2.4 E-07
	·	S	1.0 E-05	1.4 E-05	7.7 E-06	1.0 E-05	8.6 E-09
						1.0 E-04	5.0 E-08
Pu-243	4.95 h	M	5.0 E-04	8. 2 E-11	1.1 E-10	5.0 E-04	8.5 E-11
		S	1.0 E-05	8.5 E-11	1.1 E-10	1.0 E-05	8.5 E-11
						1.0 E-04	8.5 E-11
Pu-244	8.26E+07 a	M	5.0 E-04	4.4 E-05	3.0 E-05	5.0 E-04	2.4 E-07
		S	1.0 E-05	1.3 E-05	7.4 E-06	1.0 E-05	1.1 E-08
						1.0 E-04	5.2 E-08
Pu-245	10.5 h	M	5.0 E-04	4.5 E-10	6.1 E-10	5.0 E-04	7.2 E-10
		S	1.0 E-05	4.8 E-10	6.5 E-10	1.0 E-05	7.2 E-10
						1.0 E-04	7.2 E-10
Pu-246	10.9 d	M	5.0 E-04	7.0 E-09	6.5 E-09	5.0 E-04	3.3 E-09
		S	1.0 E-05	7.6 E-09	7.0 E-09	1.0 E-05	3.3 E-09
						1.0 E-04	3.3 E-09
镅							
Am-237	1. 22 h	M	5.0 E-04	2.5 E-11	3. 6 E-11	5.0 E-04	1.8 E-11
Am-238	1.63 h	M	5.0 E-04	8.5 E-11	6.6 E-11	5.0 E-04	3.2 E-11
Am-239	11.9 h	M	5.0 E-04	2.2 E-10	2.9 E-10	5.0 E-04	2.4 E-10
Am-240	2.12 d	M	5.0 E-04	4.4 E-10	5.9 E-10	5.0 E-04	5.8 E-10
Am-241	4.32E+02 a	M	5.0 E-04	3.9 E-05	2.7 E-05	5.0 E-04	2.0 E-07
Am-242	16.0 h	M	5.0 E-04	1.6 E-08	1.2 E-08	5.0 E-04	3.0 E-10
Am-242m	1.52E+02 a	M	5.0 E-04	3.5 E-05	2.4 E-05	5.0 E-04	1.9 E-07
Am-243	7.38E+03 a	M	5.0 E-04	3.9 E-05	2.7 E-05	5.0 E-04	2.0 E-07
Am-244	10.1 h	M	5.0 E-04	1.9 E-09	1.5 E-09	5.0 E-04	4.6 E-10
Am-244m	0.433 h	M	5.0 E-04	7.9 E-11	6. 2 E-11	5.0 E-04	2.9 E-11
Am-245	2.05 h	M	5.0 E-04	5.3 E-11	7.6 E-11	5.0 E-04	6. 2 E-11
Am-246	0.650 h	M	5.0 E-04	6.8 E-11	1.1 E-10	5.0 E-04	5. 8 E-11
Am-246m	0.417 h	M	5.0 E-04	2.3 E-11	3. 8 E-11	5.0 E-04	3.4 E-11
锔							
Cm-238	2.40 h	M	5.0 E-04	4.1 E-09	4.8 E-09	5.0 E-04	8.0 E-11
Cm-240	27.0 d	M	5.0 E-04	2.9 E-06	2.3 E-06	5.0 E-04	7.6 E-09
Cm-241	32. 8 d	M	5.0 E-04	3.4 E-08	2.6 E-08	5.0 E-04	9.1 E-10
Cm-242	163 d	M	5.0 E-04	4.8 E-06	3.7 E-06	5.0 E-04	1. 2 E-08
Cm-243	28.5 a	M	5.0 E-04	2.9 E-05	2.0 E-05	5.0 E-04	1.5 E-07
Cm-244	18. 1 a	M	5. 0 E-04	2.5 E-05	1.7 E-05	5. 0 E-04	1. 2 E-07
Cm-245	8.50E+03 a	M	5. 0 E-04	4.0 E-05	2.7 E-05	5. 0 E-04	2.1 E-07
Cm-246	4.73E+03 a	M	5.0 E-04	4.0 E-05	2.7 E-05	5.0 E-04	2.1 E-07

表 B3(完)

				λ		食	λ
核素	物理半衰期	类别	f_1	$e(g)_{1 \mu m}$	$e(g)_{5~\mu\mathrm{m}}$	f_1	e(g)
Cm-247	1.56E+07 a	M	5.0 E-04	3.6 E-05	2.5 E-05	5.0 E-04	1.9 E-07
Cm-248	3.39E+05 a	M	5.0 E-04	1.4 E-04	9.5 E-05	5.0 E-04	7.7 E-07
Cm-249	1.07 h	M	5.0 E-04	3. 2 E-11	5.1 E-11	5.0 E-04	3.1 E-11
Cm-250	6.90E+03 a	M	5.0 E-04	7.9 E-04	5.4 E-04	5.0 E-04	4.4 E-06
 :							
Bk-245	4.94 d	M	5.0 E-04	2.0 E-09	1.8 E-09	5.0 E-04	5.7 E-10
Bk-246	1.83 d	M	5.0 E-04	3.4 E-10	4.6 E-10	5.0 E-04	4.8 E-10
Bk-247	1.38E+03 a	M	5. 0 E-04	6.5 E-05	4. 5 E-05	5.0 E-04	3.5 E-07
Bk-249	320 d	M	5.0 E-04	1.5 E-07	1.0 E-07	5.0 E-04	9.7 E-10
Bk-250	3. 22 h	M	5. 0 E-04	9.6 E-10	7.1 E-10	5.0 E-04	1.4 E-10
—————————————————————————————————————							
Cf-244	0. 323 h	M	5.0 E-04	1.3 E-08	1.8 E-08	5.0 E-04	7.0 E-11
Cf-246	1. 49 d	M	5.0 E-04	4.2 E-07	3.5 E-07	5.0 E-04	3.3 E-09
Cf-248	334 d	M	5.0 E-04	8.2 E-06	6.1 E-06	5.0 E-04	2.8 E-08
Cf-249	3.50E+02 a	M	5.0 E-04	6.6 E-05	4.5 E-05	5.0 E-04	3.5 E-07
Cf-250	13.1 a	M	5.0 E-04	3.2 E-05	2.2 E-05	5.0 E-04	1.6 E-07
Cf-251	8.98E+02 a	M	5.0 E-04	6.7 E-05	4. 6 E-05	5.0 E-04	3.6 E-07
Cf-252	2.64 a	M	5.0 E-04	1.8 E-05	1. 3 E-05	5.0 E-04	9.0 E-08
Cf-253	17.8 d	M	5.0 E-04	1.2 E-06	1.0 E-06	5.0 E-04	1.4 E-09
Cf-254	60.5 d	M	5.0 E-04	3.7 E-05	2. 2 E-05	5.0 E-04	4.0 E-07
锿							
Es-250	2.10 h	M	5.0 E-04	5.9 E-10	4.2 E-10	5.0 E-04	2.1 E-11
Es-251	1. 38 d	M	5.0 E-04	2.0 E-09	1.7 E-09	5.0 E-04	1.7 E-10
Es-253	20. 5 d	M	5.0 E-04	2.5 E-06	2.1 E-06	5.0 E-04	6.1 E-09
Es-254	276 d	M	5.0 E-04	8.0 E-06	6.0 E-06	5.0 E-04	2.8 E-08
Es-254m	1.64 d	M	5.0 E-04	4.4 E-07	3.7 E-07	5.0 E-04	4.2 E-09
镄							
Fm-252	22.7 h	M	5.0 E-04	3.0 E-07	2.6 E-07	5.0 E-04	2.7 E-09
Fm-253	3.00 d	M	5.0 E-04	3.7 E-07	3.0 E-07	5.0 E-04	9.1 E-10
Fm-254	3. 24 h	M	5.0 E-04	5.6 E-08	7.7 E-08	5.0 E-04	4.4 E-10
Fm-255	20.1 h	M	5.0 E-04	2.5 E-07	2.6 E-07	5.0 E-04	2.5 E-09
Fm-257	101 d	M	5.0 E-04	6.6 E-06	5. 2 E-06	5.0 E-04	1.5 E-08
钔							
Md-257	5. 20 h	M	5.0 E-04	2.3 E-08	2.0 E-08	5.0 E-04	1.2 E-10
Md-258	55.0 d	M	5.0 E-04	5.5 E-06	4.4 E-06	5.0 E-04	1.3 E-08

注:类别 F,M 和 S 分别表示肺快速、中速和慢速吸收。

a)OBT:有机束缚氚。

表 B4 化合物和计算工作人员食入单位摄入量所致有效剂量所用的肠转移因子 f_1 的值

	松 D4 10 🗆	初和11 异工作人以良八年也预/	\ 	<u> </u>	
元素	肠转移因子 f ₁	化 合 物	元素	肠转移因子 f ₁	化合物
氢	1.000	氚化水(食入)	想	0.300	所有未特别指定的化合物
Ξ.	1.000	有机束缚氚		0.010	钛酸锶(SrTiO₃)
铍	0.005	所有化合物	钇	1.0 E-04	所有化合物
碳	1.000	带标记的有机化合物	锆	0.002	所有化合物
氟	1.000	所有化合物	铌	0.010	所有合化物
钠	1.000	所有化合物	钼	0.800	所有未特别指定的化合物
镁	0.500	所有化合物	111	0.050	硫化钼
铝	0.010	所有化合物	锝	0.800	所有化合物
硅	0.010	所有化合物	钌	0.050	所有化合物
磷	0.800	所有化合物	铑	0.050	所有化合物
	0.800	无机化合物	钯	0.005	所有化合物
硫	0.100	元素硫	银	0.050	所有化合物
	1.000	有机硫	镉	0.050	所有无机化合物
氯	1.000	所有化合物	铟	0.020	所有化合物
钾	1.000	所有化合物	锡	0.020	所有化合物
钙	0.300	所有化合物	锑	0.100	所有化合物
钪	1.0 E-04	所有化合物	碲	0.300	所有化合物
钛	0.010	所有化合物	碘	1.000	所有化合物
钒	0.010	所有化合物	铯	1.000	所有化合物
£47	0.100	六价化合物	钡	0.100	所有化合物
铬	0.010	三价化合物	镧	5.0 E-04	所有化合物
锰	0.100	所有化合物	铈	5.0 E-04	所有化合物
铁	0.100	所有化合物	镨	5.0 E-04	所有化合物
£+	0.100	所有未特别指定的化合物	钕	5.0 E-04	所有化合物
钴	0.050	氧化物、氢氧化物和无机化合物	钜	5.0 E-04	所有化合物
镍	0.050	所有化合物	钐	5.0 E-04	所有化合物
铜	0.500	所有化合物	铕	5.0 E-04	所有化合物
锌	0.500	所有化合物	钆	5.0 E-04	所有化合物
镓	0.001	所有化合物	铽	5.0 E-04	所有化合物
锗	1.000	所有化合物	镝	5.0 E-04	所有化合物
砷	0.500	所有化合物	钬	5.0 E-04	所有化合物
τ≖	0.800	所有未特别指定的化合物	铒	5.0 E-04	所有化合物
硒	0.050	元素硒和硒化物	铥	5.0 E-04	所有化合物
溴	1.000	所有化合物	镱	5.0 E-04	所有化合物
铷	1.000	所有化合物	镥	5.0 E-04	所有化合物
	1		11	1	

表 B4(完)

元素	肠转移因子 f_1	化 合 物	元素	肠转移因子 f ₁	化 合物
铪	0.002	所有化合物	锕	5.0 E-04	所有化合物
钽	0.001	所有化合物	! 钍	5.0 E-04	所有未特别指定的化合物
钨	0.300	所有未特别指定的化合物	† † <u>†</u>	2.0 E-04	氧化物和氢氧化物
15	0.010	钨酸	镤	5.0 E-04	所有化合物
铼	0.800	所有化合物		0.020	所有未特别指定的化合物
锇	0.010	所有化合物	铀	0.002	大多数四价化合物,如 UO2,U3O8,
铱	0.010	所有化合物		0.002	UF_4
铂	0.010	所有化合物	镎	5.0 E-04	可有化合物
金	0.100	所有化合物		5.0 E-04	所有未特别指定的化合物
	0.020	所有无机化合物	钚	1.0 E-04	硝酸盐
汞	1.000	甲基汞		1.0 E-05	不溶性氧化物
	0.400	所有未特别指定的有机化合物	镅	5.0 E-04	所有化合物
铊	1.000	所有化合物	锔	5.0 E-04	所有化合物
铅	0.200	所有化合物	锫	5.0 E-04	所有化合物
铋	0.050	所有化合物	锎	5.0 E-04	所有化合物
钋	0.100	所有化合物	锿	5.0 E-04	所有化合物
砹	1.000	所有化合物	镄	5.0 E-04	所有化合物
钫	1.000	所有化合物	钔	5.0 E-04	所有化合物
镭	0.200	所有化合物			

表 B5 化合物、肺吸收类别和计算工作人员吸入单位摄入量所致有效剂量所用的肠转移因子 f, 的值

表 B5 14	心言物、肺吸收炎	·别和订异工作人	.员吸入里位摄入量所致有效剂量所用的肠转移因子 f_1 的值
元素	吸收类别*)	肠转移因子 f ₁	化 合 物
铍	M	0.005	所有未特别指定的化合物
权	S	0.005	氧化物、氯化物和硝酸盐
	F	1.000	按化合的阳离子确定
氟	M	1.000	按化合的阳离子确定
	S	1.000	按化合的阳离子确定
钠	F	1.000	所用化合物
镁	F	0.500	所有未特别指定的化合物
τ χ	M	0.500	氧化物、氢氧化物、碳化物、卤化物和硝酸盐
铝	F	0.010	所有未特别指定的化合物
TI-1	M	0.010	氧化物、氢氧化物、碳化物、卤化物、硝酸盐和金属铝
	F	0.010	所有未特别指定的化合物
硅	M	0.010	氧化物、氢氧化物、碳化物和硝酸盐
	S	0.010	铝硅酸盐玻璃气溶胶

		T	衣 B5(续)
元 素	吸收类别®	肠转移因子 f_1	化 合 物
磷	F	0.800	所有未特别指定的化合物
1194	M	0.800	一些硅酸盐:按化合的阳离子确定
硫	F	0.800	硫化物和硫酸盐:按化合的阳离子确定
WIL	M	0.800	元素硫、硫化物和硫酸盐:按化合的阳离子确定
氯	F	1.000	按化合的阳离子确定
录	M	1.000	按化合的阳离子确定
钾	F	1.000	所有化合物
钙	M	0.300	所有化合物
钪	S	1.0 E-04	所有化合物
	F	0.010	所有未特别指定的化合物
钛	M	0.010	氧化物、氢氧化物、碳化物、卤化物和硝酸盐
	S	0.010	钛酸锶(SrTiO ₃)
钒	F	0.010	所有未特别指定的化合物
ቲ/' ኒ	M	0.010	氧化物、氢氧化物、碳化物和卤化物
	F	0.100	所有未特别指定的化合物
铬	M	0.100	卤化物和硝酸盐
	S	0.100	氧化物和氢氧化物
锰	F	0.100	所有未特别指定的化合物
tm	M	0.100	氧化物、氢氧化物、卤化物和硝酸盐
铁	F	0.100	所有未特别指定的化合物
坎	M	0.100	氧化物、氢氧化物和卤化物
钴	M	0.100	所有未特别指定的化合物
†D	S	0.050	氧化物、氢氧化物、卤化物和硝酸盐
镍	F	0.050	所有未特别指定的化合物
t 米	M	0.050	氧化物、氢氧化物和碳化物
	F	0.500	所有未特别指定的无机化合物
铜	M	0.500	硫化物、卤化物和硝酸盐
	S	0.500	氧化物和氢氧化物
锌	S	0.500	所有化合物
¢ ÷	F	0.001	所有未特别指定的化合物
镓	M	0.001	氧化物、氢氧化物、碳化物、卤化物和硝酸盐
- ±×	F	1.000	所有未特别指定的化合物
锗	M	1.000	氧化物、碳化物和卤化物
砷	M	0.500	所有化合物
h.J.	171	0.000	או אטו מווא

元素	吸收类别®	肠转移因子 f ₁	化 合 物			
7. π	F	0.800	所有未特别指定的无机化合物			
硒	M	0.800	元素硒、氧化物、氢氧化物和碳化物			
泊	F	1.000	按化合的阳离子确定			
溴	M	1.000	按化合的阳离子确定			
铷	F	1.000	所有化合物			
锶	F	0.300	所有未特别指定的化合物			
Ties	S	0.010	钛酸锶(SrTiO ₃)			
钇	M	1.0 E-04	所有未特别指定的化合物			
τυ	S	1.0 E-04	氧化物和氢氧化物			
	F	0.002	所有未特别指定的化合物			
锆	M	0.002	氧化物、氢氧化物、卤化物和硝酸盐			
	S	0.002	锆碳化物			
铌	M	0.010	所有未特别指定的化合物			
T/G	S	0.010	氧化物和氢氧化物			
钼	F	0.800	所有未特别指定的化合物			
ш	S	0.050	钼的硫化物、氧化物和氢氧化物			
锝	F	0.800	所有未特别指定的化合物			
10	M	0.800	氧化物、氢氧化物、卤化物和硝酸盐			
	F	0.050	所有未特别指定的化合物			
钌	M	0.050	卤化物			
	S	0.050	氧化物和氢氧化物			
	F	0.050	所有未特别指定的化合物			
铑	M	0.050	卤化物			
	S	0.050	氧化物和氢氧化物			
	F	0.005	所有未特别指定的化合物			
钯	M	0.005	硝酸盐和卤化物			
	S	0.005	氧化物和氢氧化物			
	F	0.050	所有未特别指定的化合物和金属银			
银	M	0.050	硝酸银和硫化银			
	S	0.050	氧化物、氢氧化物和碳化物			
	F	0.050	所有未特别指定的化合物			
镉	M	0.050	硫化物、卤化物和硝酸盐			
	S	0.050	氧化物和氢氧化			
铟	F	0.020	所有未特别指定的化合物			
i	M	0.020	氧化物、氢氧化物、卤化物和硝酸盐			

			衣 B5(续)
元 素	吸收类别®	肠转移因子 f ₁	化 合 物
锡	F	0.020	所有未特别指定的化合物
t物	M	0.020	磷酸锡、硫化物、氧化物、氢氧化物、卤化物和硝酸盐
锑	F	0.100	所有未特别指定的化合物
地	M	0.010	氧化物、氢氧化物、卤化物、硫化物、硫酸盐和硝酸盐
72	F	0.300	所有未特别指定的化合物
碲	M	0.300	氧化物、氢氧化物和硝酸盐
碘	F	1.000	所有化合物
铯	F	1.000	所有化合物
钡	F	0.100	所有化合物
£÷∓	F	5.0 E-04	所有未特别指定的化合物
镧	M	5.0 E-04	氧化物和氢氧化物
£+	M	5.0 E-04	所有未特别指定的化合物
铈	S	5.0 E-04	氧化物、氢氧化物和氟化物
£34	M	5.0 E-04	所有未特别指定的化合物
镨	S	5.0 E-04	氧化物、氢氧化物、碳化物和氟化物
E+r	M	5.0 E-04	所有未特别指定的化合物
钕	S	5.0 E-04	氧化物、氢氧化物、碳化物和氟化物
钜	M	5.0 E-04	所有未特别指定的化合物
世	S	5.0 E-04	氧化物、氢氧化物、碳化物和氟化物
钐	M	5.0 E-04	所有化合物
铕	M	5.0 E-04	所有化合物
钆	F	5.0 E-04	所有未特别指定的化合物
tl.	M	5.0 E-04	氧化物、氢氧化物和氟化物
铽	M	5.0 E-04	所有化合物
镝	M	5.0 E-04	所有化合物
钬	M	5.0 E-04	所有未特别指定的化合物
铒	M	5.0 E-04	所有化合物
铥	M	5.0 E-04	所有化合物
4空	M	5.0 E-04	所有未特别指定的化合物
镱	S	5.0 E-04	氧化物、氢氧化物和氟化物
给	M	5.0 E-04	所有未特别指定的化合物
镥	S	5.0 E-04	氧化物、氢氧化物和氟化物
£^	F	0.002	所有未特别指定的化合物
铪	M	0.002	氧化物、氢氧化物、卤化物、碳化物和硝酸盐
	<u> </u>		

元素	吸收类别®	肠转移因子 f_1	化 合 物
6 0	M	0.001	所有未特别指定的化合物
钽	S	0.001	元素钽、氧化物、氢氧化物、卤化物、碳化物、硝酸盐和氮化物
钨	F	0.300	所有化合物
₩	F	0.800	所有未特别指定的化合物
铼	M	0.800	氧化物、氢氧化物、卤化物和硝酸盐
	F	0.010	所有未特别指定的化合物
锇	M	0.010	卤化物和硝酸盐
	S	0.010	氧化物和氢氧化物
	F	0.010	所有未特别指定的化合物
铱	M	0.010	金属铱、卤化物和硝酸盐
	S	0.010	氧化物和氢氧化物
铂	F	0.010	所有化合物
	F	0.100	所有未特别指定的化合物
金	M	0.100	卤化物和硝酸盐
	S	0.100	氧化物和氢氧化物
汞	F	0.020	硫酸盐
<i>x</i>	M	0.020	氧化物、氢氧化物、卤化物、硝酸盐和硫化物
汞	F	0.400	所有有机化合物
铊	F	1.000	所有化合物
铅	F	0.200	所有化合物
铋	F	0.050	硫酸铋
	M	0.050	所有未特别指定的化合物
钋	F	0.100	所有未特别指定的化合物
,,	M	0.100	氧化物、氢氧化物硝酸盐
砹	F	1.000	按化合的阳离子确定
	M	1.000	按化合的阳离子确定
钫	F	1.000	所有化合物
镭	M	0.200	所有化合物
	F	5.0 E-04	所有未特别指定的化合物
锕	M	5.0 E-04	卤化物和硝酸盐
	S	5.0 E-04	氧化物和氢氧化物
钍	M	5.0 E-04	所有未特别指定的化合物
	S	2.0 E-04	氧化物和氢氧化物
镤	M	5.0 E-04	所有未特别指定的化合物
	S	5.0 E-04	氧化物和氢氧化物

表 B5(完)

元素	吸收类别®	肠转移因子 f ₁	化 合 物
	F	0.020	大多数六价化合物,如 UF ₆ ,UO ₂ F ₂ 和 UO ₂ (NO ₃) ₂
铀	M	0.020	微溶化合物,如 UO3,UF4,UCl4和其他大多数六价化合物
-	S	0.002	难溶化合物,如 UO ₂ and U ₃ O ₈
镎	M	5.0 E-04	所有化合物
¢Τ	M	5.0 E-04	所有未特别指定的化合物
钚	S	1.0 E-05	不溶氧化物
镅	M	5.0 E-04	所有化合物
锔	M	5.0 E-04	所有化合物
锫	M	5.0 E-04	所有化合物
锎	M	5.0 E-04	所有化合物
锿	M	5.0 E-04	所有化合物
镄	M	5.0 E-04	所有化合物
钔	M	5.0 E-04	所有化合物
a)类别	F、M 和 S 分别表	示肺快速、中速和慢	是速吸收。

表 B6 **食入:**公众成员食入单位摄入量所致的待积有效剂量 $e(g)/(Sv \cdot Bq^{-1})$

	1								
核 素	物理半衰期	年齢 g≤1 岁		f_1	1岁~2岁	2 岁~7 岁	7岁~12岁	12 岁~17 岁	>17 岁
12 35	物生干衣鄉	f_1	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
氢									
氚化水	12.3 a	1.000	6.4 E-11	1.000	4.8 E-11	3.1 E-11	2.3 E-11	1.8 E-11	1.8 E-11
OBT(有机束缚氚)	12.3 a	1.000	1. 2 E-10	1.000	1.2 E-10	7.3 E-11	5.7 E-11	4.2 E-11	4.2 E-11
铍									
Be-7	53. 3 d	0.020	1.8 E-10	0.005	1.3 E-10	7.7 E-11	5.3 E-11	3.5 E-11	2.8 E-11
Be-10	1.60 E+06 a	0.020	1.4 E-08	0.005	8.0 E-09	4.1 E-09	2.4 E-09	1.4 E-09	1.1 E-09
碳									
C-11	0.340 h	1.000	2.6 E-10	1.000	1.5 E-10	7.3 E-11	4.3 E-11	3.0 E-11	2.4 E-11
C-14	5.73 E+03 a	1.000	1.4 E-09	1.000	1.6 E-09	9.9 E-10	8.0 E-10	5.7 E-10	5.8 E-10
氟									
F-18 钠	1.83 h	1.000	5. 2 E-10	1.000	3.0 E-10	1.5 E-10	9.1 E-11	6. 2 E-11	4.9 E-11
**									
Na-22	2.60 a	1.000	2.1 E-08	1.000	1.5 E-08	8.4 E-09	5.5 E-09	3.7 E-09	3.2 E-09
Na-24 镁	15.0 h	1.000	3. 5 E-09	1.000	2.3 E-09	1.2 E-09	7.7 E-10	5. 2 E-10	4.3 E-10
	20.9 h	1.000	1 0 5 00	0.500	1 4 5 00	7 4 F 00	4.5.12.00	0.7.5.00	2. 2 E-09
Mg-28 铝	20.9 h	1.000	1. 2 E-08	0.500	1.4 E-08	7.4 E-09	4.5 E-09	2.7 E-09	Z. Z E-09
Al-26	7.16 E+05 a	0.020	3.4 E-08	0.010	2.1 E-08	1.1 E-08	7.1 E-09	4.3 E-09	3.5 E-09
Al-26 硅									
Si-31	2.62 h	0.020	1.9 E-09	0.010	1.0 E-09	5.1 E-10	3.0 E-10	1.8 E-10	1.6 E-10
Si-32	4.50 E+02 a	0.020	7.3 E-09	0.010	4.1 E-09	2.0 E-09	1.2 E-09	7.0 E-10	5.6 E-10
磷									
P-32	14.3 d	1.000	3.1 E-08	0.800	1.9 E-08	9.4 E-09	5.3 E-09	3.1 E-09	2.4 E-09
P-33	25. 4 d	1.000	2.7 E-09	0.800	1.8 E-09	9.1 E-10	5.3 E-10	3.1 E-10	2.4 E-10
硫									
S-35(无机的)	87.4 d	1.000	1.3 E-09	1.000	8.7 E-10	4.4 E-10	2.7 E-10	1.6 E-10	1.3 E-10
S-35(有机的)	87. 4 d	1.000	7.7 E-09	1.000	5.4 E-09	2.7 E-09	1.6 E-09	9.5 E-10	7.7 E-10
氯									
Cl-36	3.01 E+05 a	1.000	9.8 E-09	1.000	6.3 E-09	3.2 E-09	1.9 E-09	1.2 E-09	9.3 E-10

	45 777 14 = 110	年齢 g≤1 岁		f_1	1 岁~2 岁	2 岁~7 岁	7岁~12岁	12 岁~17 岁	>17 岁
核素	物理半衰期	f_1	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
Cl-38	0.620 h	1.000	1.4 E-09	1.000	7.7 E-10	3.8 E-10	2.2 E-10	1.5 E-10	1.2 E-10
Cl-39	0.927 h	1.000	9.7 E-10	1.000	5.5 E-10	2.7 E-10	1.6 E-10	1.1 E-10	8. 5 E-11
钾									
K-40	1.28 E+09 a	1.000	6.2 E-08	1.000	4.2 E-08	2.1 E-08	1.3 E-08	7.6 E-09	6.2 E-09
K-42	12.4 h	1.000	5.1 E-09	1.000	3.0 E-09	1.5 E-09	8. 6 E-10	5.4 E-10	4.3 E-10
K-43	22.6 h	1.000	2.3 E-09	1.000	1.4 E-09	7.6 E-10	4.7 E-10	3.0 E-10	2.5 E-10
K-44	0.369 h	1.000	1.0 E-09	1.000	5.5 E-10	2.7 E-10	1.6 E-10	1.1 E-10	8. 4 E-11
K-45	0.333 h	1.000	6.2 E-10	1.000	3.5 E-10	1.7 E-10	9.9 E-11	6.8 E-11	5.4 E-11
钙(*)									
Ca-41	1.40 E+05 a	0.600	1.2 E-09	0.300	5.2 E-10	3.9 E-10	4.8 E-10	5.0 E-10	1.9 E-10
Ca-45	163 d	0.600	1.1 E-08	0.300	4.9 E-09	2.6 E-09	1.8 E-09	1.3 E-09	7.1 E-10
Ca-47	4.53 d	0.600	1.3 E-08	0.300	9.3 E-09	4.9 E-09	3.0 E-09	1.8 E-09	1.6 E-09
钪									
Sc-43	3.89 h	0.001	1.8 E-09	1.0 E-04	1.2 E-09	6.1 E-10	3.7 E-10	2.3 E-10	1.9 E-10
Sc-44	3. 93 h	0.001	3.5 E-09	1.0 E-04	2.2 E-09	1.2 E-09	7.1 E-10	4.4 E-10	3.5 E-10
Sc-44m	2. 44 d	0.001	2.4 E-08	1.0 E-04	1.6 E-08	8.3 E-09	5.1 E-09	3.1 E-09	2.4 E-09
Sc-46	83. 8 d	0.001	1.1 E-08	1.0 E-04	7.9 E-09	4.4 E-09	2.9 E-09	1.8 E-09	1.5 E-09
Sc-47	3. 35 d	0.001	6.1 E-09	1.0 E-04	3.9 E-09	2.0 E-09	1.2 E-09	6.8 E-10	5.4 E-10
Sc-48	1.82 d	0.001	1.3 E-08	1.0 E-04	9.3 E-09	5.1 E-09	3.3 E-09	2.1 E-09	1.7 E-09
Sc-49	0.956 h	0.001	1.0 E-09	1.0 E-04	5.7 E-10	2.8 E-10	1.6 E-10	1.0 E-10	8. 2 E-11
钛									
Ti-44	47.3 a	0.020	5.5 E-08	0.010	3.1 E-08	1.7 E-08	1.1 E-08	6.9 E-09	5.8 E-09
Ti-45	3.08 h	0.020	1.6 E-09	0.010	9.8 E-10	5.0 E-10	3.1 E-10	1.9 E-10	1.5 E-10
钒									
V-47	0.543 h	0.020	7.3 E-10	0.010	4.1 E-10	2.0 E-10	1.2 E-10	8. 0 E-11	6.3 E-11
V-48	16.2 d	0.020	1.5 E-08	0.010	1.1 E-08	5.9 E-09	3.9 E-09	2.5 E-09	2.0 E-09
V-49	330 d	0.020	2. 2 E-10	0.010	1.4 E-10	6.9 E-11	4.0 E-11	2.3 E-11	1.8 E-11
铬									
Cr-48	23.0 h	0.200	1.4 E-09	0.100	9.9 E-10	5.7 E-10	3.8 E-10	2.5 E-10	2.0 E-10

	45 TM 1/ == #0	年齢 g≤1 岁		f_1	1 岁~2 岁	2 岁~7 岁	7岁~12岁	12 岁~17 岁	>17 岁
核 素	物理半衰期	f_1	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
		0.020	1.4 E-09	0.010	9. 9 E-10	5.7 E-10	3.8 E-10	2.5 E-10	2.0 E-10
Cr-49	0.702 h	0.200	6.8 E-10	0.100	3.9 E-10	2.0 E-10	1.1 E-10	7.7 E-11	6.1 E-11
		0.020	6.8 E-10	0.010	3.9 E-10	2.0 E-10	1.1 E-10	7.7 E-11	6.1 E-11
Cr-51	27.7 d	0.200	3.5 E-10	0.100	2.3 E-10	1.2 E-10	7.8 E-11	4.8 E-11	3.8 E-11
		0.020	3.3 E-10	0.010	2.2 E-10	1.2 E-10	7.5 E-11	4.6 E-11	3.7 E-11
锰									
Mn-51	0.770 h	0.200	1.1 E-09	0.100	6.1 E-10	3.0 E-10	1.8 E-10	1.2 E-10	9.3 E-11
Mn-52	5.59 d	0.200	1.2 E-08	0.100	8.8 E-09	5.1 E-09	3.4 E-09	2.2 E-09	1.8 E-09
Mn-52m	0.352 h	0.200	7.8 E-10	0.100	4.4 E-10	2.2 E-10	1.3 E-10	8.8 E-11	6.9 E-11
Mn-53	3.70 E+06 a	0.200	4.1 E-10	0.100	2. 2 E-10	1.1 E-10	6.5 E-11	3.7 E-11	3.0 E-11
Mn-54	312 d	0.200	5.4 E-09	0.100	3.1 E-09	1.9 E-09	1.3 E-09	8.7 E-10	7.1 E-10
Mn-56	2.58 h	0.200	2.7 E-09	0.100	1.7 E-09	8.5 E-10	5.1 E-10	3.2 E-10	2.5 E-10
铁(*)									
Fe-52	8. 28 h	0.600	1.3 E-08	0.100	9.1 E-09	4.6 E-09	2.8 E-09	1.7 E-09	1.4 E-09
Fe-55	2.70 a	0.600	7.6 E-09	0.100	2.4 E-09	1.7 E-09	1.1 E-09	7.7 E-10	3.3 E-10
Fe-59	44.5 d	0.600	3.9 E-08	0.100	1.3 E-08	7.5 E-09	4.7 E-09	3.1 E-09	1.8 E-09
Fe-60	1.00 E+05 a	0.600	7.9 E-07	0.100	2.7 E-07	2.7 E-07	2.5 E-07	2.3 E-07	1.1 E-07
钴(*)									
Co-55	17.5 h	0.600	6.0 E-09	0.100	5.5 E-09	2.9 E-09	1.8 E-09	1.1 E-09	1.0 E-09
Co-56	78. 7 d	0.600	2.5 E-08	0.100	1.5 E-08	8.8 E-09	5.8 E-09	3.8 E-09	2.5 E-09
Co-57	271 d	0.600	2.9 E-09	0.100	1.6 E-09	8.9 E-10	5.8 E-10	3.7 E-10	2.1 E-10
Co-58	70.8 d	0.600	7.3 E-09	0.100	4.4 E-09	2.6 E-09	1.7 E-09	1.1 E-09	7.4 E-10
Co-58m	9.15 h	0.600	2.0 E-10	0.100	1.5 E-10	7.8 E-11	4.7 E-11	2.8 E-11	2.4 E-11
Co-60	5.27 a	0.600	5.4 E-08	0.100	2.7 E-08	1.7 E-08	1.1 E-08	7.9 E-09	3.4 E-09
Co-60m	0.174 h	0.600	2. 2 E-11	0.100	1.2 E-11	5.7 E-12	3. 2 E-12	2.2 E-12	1.7 E-12
Co-61	1.65 h	0.600	8.2 E-10	0.100	5.1 E-10	2.5 E-10	1.4 E-10	9.2 E-11	7.4 E-11
Co-62m	0.232 h	0.600	5.3 E-10	0.100	3.0 E-10	1.5 E-10	8.7 E-11	6.0 E-11	4.7 E-11
镍									
Ni-56	6.10 d	0.100	5.3 E-09	0.050	4.0 E-09	2.3 E-09	1.6 E-09	1.1 E-09	8.6 E-10

+tr =	Marina W 古 Wo	年齢 g≤1 岁		f_1	1 岁~2 岁	2 岁~7 岁	7 岁~12 岁	12 岁~17 岁	>17 岁
核素	物理半衰期	f_1	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
Ni-57	1.50 d	0.100	6.8 E-09	0.050	4.9 E-09	2.7 E-09	1.7 E-09	1.1 E-09	8.7 E-10
Ni-59	7.50 E+04 a	0.100	6.4 E-10	0.050	3.4 E-10	1.9 E-10	1.1 E-10	7.3 E-11	6.3 E-11
Ni-63	96.0 a	0.100	1.6 E-09	0.050	8.4 E-10	4.6 E-10	2.8 E-10	1.8 E-10	1.5 E-10
Ni-65	2.52 h	0.100	2.1 E-09	0.050	1.3 E-09	6.3 E-10	3.8 E-10	2.3 E-10	1.8 E-10
Ni-66	2. 27 d	0.100	3.3 E-08	0.050	2.2 E-08	1.1 E-08	6.6 E-09	3.7 E-09	3.0 E-09
铜									
Cu-60	0.387 h	1.000	7.0 E-10	0.500	4.2 E-10	2.2 E-10	1.3 E-10	8.9 E-11	7.0 E-11
Cu-61	3.41 h	1.000	7.1 E-10	0.500	7.5 E-10	3.9 E-10	2.3 E-10	1.5 E-10	1.2 E-10
Cu-64	12.7 h	1.000	5.2 E-10	0.500	8.3 E-10	4.2 E-10	2.5 E-10	1.5 E-10	1.2 E-10
Cu-67	2. 58 d	1.000	2.1 E-09	0.500	2.4 E-09	1.2 E-09	7.2 E-10	4.2 E-10	3.4 E-10
锌									
Zn-62	9.26 h	1.000	4.2 E-09	0.500	6.5 E-09	3.3 E-09	2.0 E-09	1.2 E-09	9.4 E-10
Zn-63	0.635 h	1.000	8.7 E-10	0.500	5.2 E-10	2.6 E-10	1.5 E-10	1.0 E-10	7.9 E-11
Zn-65	244 d	1.000	3.6 E-08	0.500	1.6 E-08	9.7 E-09	6.4 E-09	4.5 E-09	3.9 E-09
Zn-69	0.950 h	1.000	3.5 E-10	0.500	2.2 E-10	1.1 E-10	6.0 E-11	3.9 E-11	3.1 E-11
Zn-69m	13.8 h	1.000	1.3 E-09	0.500	2.3 E-09	1.2 E-09	7.0 E-10	4.1 E-10	3.3 E-10
Zn-71m	3.92 h	1.000	1.4 E-09	0.500	1.5 E-09	7.8 E-10	4.8 E-10	3.0 E-10	2.4 E-10
Zn-72	1.94 d	1.000	8.7 E-09	0.500	8.6 E-09	4.5 E-09	2.8 E-09	1.7 E-09	1.4 E-09
镓									
Ga-65	0.253 h	0.010	4.3 E-10	0.001	2.4 E-10	1.2 E-10	6.9 E-11	4.7 E-11	3.7 E-11
Ga-66	9.40 h	0.010	1.2 E-08	0.001	7.9 E-09	4.0 E-09	2.5 E-09	1.5 E-09	1.2 E-09
Ga-67	3. 26 d	0.010	1.8 E-09	0.001	1.2 E-09	6.4 E-10	4.0 E-10	2.4 E-10	1.9 E-10
Ga-68	1.13 h	0.010	1.2 E-09	0.001	6.7 E-10	3.4 E-10	2.0 E-10	1.3 E-10	1.0 E-10
Ga-70	0.353 h	0.010	3.9 E-10	0.001	2.2 E-10	1.0 E-10	5.9 E-11	4.0 E-11	3.1 E-11
Ga-72	14.1 h	0.010	1.0 E-08	0.001	6.8 E-09	3.6 E-09	2.2 E-09	1.4 E-09	1.1 E-09
Ga-73	4.91 h	0.010	3.0 E-09	0.001	1.9 E-09	9.3 E-10	5.5 E-10	3.3 E-10	2.6 E-10
锗									
Ge-66	2.27 h	1.000	8. 3 E-10	1.000	5.3 E-10	2.9 E-10	1.9 E-10	1.3 E-10	1.0 E-10
Ge-67	0.312 h	1.000	7.7 E-10	1.000	4.2 E-10	2.1 E-10	1.2 E-10	8. 2 E-11	6.5 E-11

	45 m y/ = #0	年龄。	[≤1 岁	f_1	1 岁~2 岁	2 岁~7 岁	7岁~12岁	12 岁~17 岁	>17 岁
核 素	物理半衰期	f_1	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
Ge-68	288 d	1.000	1. 2 E-08	1.000	8.0 E-09	4.2 E-09	2.6 E-09	1.6 E-09	1.3 E-09
Ge-69	1.63 d	1.000	2.0 E-09	1.000	1.3 E-09	7.1 E-10	4.6 E-10	3.0 E-10	2.4 E-10
Ge-71	11.8 d	1.000	1.2 E-10	1.000	7.8 E-11	4.0 E-11	2.4 E-11	1.5 E-11	1.2 E-11
Ge-75	1.38 h	1.000	5.5 E-10	1.000	3.1 E-10	1.5 E-10	8.7 E-11	5.9 E-11	4.6 E-11
Ge-77	11.3 h	1.000	3.0 E-09	1.000	1.8 E-09	9.9 E-10	6. 2 E-10	4.1 E-10	3.3 E-10
Ge-78	1.45 h	1.000	1.2 E-09	1.000	7.0 E-10	3.6 E-10	2. 2 E-10	1.5 E-10	1.2 E-10
砷									
As-69	0. 253 h	1.000	6.6 E-10	0.500	3.7 E-10	1.8 E-10	1.1 E-10	7.2 E-11	5.7 E-11
As-70	0.876 h	1.000	1.2 E-09	0.500	7.8 E-10	4.1 E-10	2.5 E-10	1.7 E-10	1.3 E-10
As-71	2.70 d	1.000	2.8 E-09	0.500	2.8 E-09	1.5 E-09	9.3 E-10	5.7 E-10	4.6 E-10
As-72	1.08 d	1.000	1.1 E-08	0.500	1.2 E-08	6.3 E-09	3.8 E-09	2. 3 E-09	1.8 E-09
As-73	80.3 d	1.000	2.6 E-09	0.500	1.9 E-09	9.3 E-10	5.6 E-10	3. 2 E-10	2.6 E-10
As-74	17.8 d	1.000	1.0 E-08	0.500	8. 2 E-09	4.3 E-09	2.6 E-09	1.6 E-09	1.3 E-09
As-76	1.10 d	1.000	1.0 E-08	0.500	1.1 E-08	5.8 E-09	3.4 E-09	2.0 E-09	1.6 E-09
As-77	1.62 d	1.000	2.7 E-09	0.500	2.9 E-09	1.5 E-09	8.7 E-10	5.0 E-10	4.0 E-10
As-78	1.51 h	1.000	2.0 E-09	0.500	1.4 E-09	7.0 E-10	4.1 E-10	2.7 E-10	2.1 E-10
硒									
Se-70	0.683 h	1.000	1.0 E-09	0.800	7.1 E-10	3.6 E-10	2.2 E-10	1.5 E-10	1. 2 E-10
Se-73	7.15 h	1.000	1.6 E-09	0.800	1.4 E-09	7.4 E-10	4.8 E-10	2.5 E-10	2.1 E-10
Se-73m	0.650 h	1.000	2.6 E-10	0.800	1.8 E-10	9.5 E-11	5.9 E-11	3.5 E-11	2.8 E-11
Se-75	120 d	1.000	2.0 E-08	0.800	1.3 E-08	8.3 E-09	6.0 E-09	3.1 E-09	2.6 E-09
Se-79	6.50 E+04 a	1.000	4.1 E-08	0.800	2.8 E-08	1.9 E-08	1.4 E-08	4.1 E-09	2.9 E-09
Se-81	0.308 h	1.000	3.4 E-10	0.800	1.9 E-10	9.0 E-11	5.1 E-11	3.4 E-11	2.7 E-11
Se-81m	0.954 h	1.000	6.0 E-10	0.800	3.7 E-10	1.8 E-10	1.1 E-10	6.7 E-11	5.3 E-11
Se-83	0.375 h	1.000	4.6 E-10	0.800	2.9 E-10	1.5 E-10	8.7 E-11	5.9 E-11	4.7 E-11
溴			_			_	_	_	_
Br-74	0. 422 h	1.000	9. 0 E-10	1.000	5. 2 E-10	2. 6 E-10	1. 5 E-10	1.1 E-10	8. 4 E-11
Br-74m	0. 691 h	1.000	1.5 E-09	1.000	8. 5 E-10	4. 3 E-10	2. 5 E-10	1.7 E-10	1.4 E-10
Br-75	1.63 h	1.000	8.5 E-10	1.000	4.9 E-10	2.5 E-10	1.5 E-10	9.9 E-11	7.9 E-11

	#6 TM 1/1 == #10	年龄 g	≪ 1 岁	f_1	1 岁~2 岁	2 岁~7 岁	7 岁~12 岁	12 岁~17 岁	>17 岁
核素	物理半衰期	f_1	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
Br-76	16.2 h	1.000	4.2 E-09	1.000	2.7 E-09	1.4 E-09	8.7 E-10	5.6 E-10	4.6 E-10
Br-77	2.33 d	1.000	6.3 E-10	1.000	4.4 E-10	2.5 E-10	1.7 E-10	1.1 E-10	9.6 E-11
Br-80	0.290 h	1.000	3.9 E-10	1.000	2.1 E-10	1.0 E-10	5.8 E-11	3.9 E-11	3.1 E-11
Br-80m	4.42 h	1.000	1.4 E-09	1.000	8.0 E-10	3.9 E-10	2.3 E-10	1.4 E-10	1.1 E-10
Br-82	1.47 d	1.000	3.7 E-09	1.000	2.6 E-09	1.5 E-09	9.5 E-10	6.4 E-10	5.4 E-10
Br-83	2.39 h	1.000	5.3 E-10	1.000	3.0 E-10	1.4 E-10	8.3 E-11	5.5 E-11	4.3 E-11
Br-84	0.530 h	1.000	1.0 E-09	1.000	5.8 E-10	2.8 E-10	1.6 E-10	1.1 E-10	8.8 E-11
铷									
Rb-79	0.382 h	1.000	5.7 E-10	1.000	3. 2 E-10	1.6 E-10	9.2 E-11	6.3 E-11	5.0 E-11
Rb-81	4.58 h	1.000	5.4 E-10	1.000	3.2 E-10	1.6 E-10	1.0 E-10	6.7 E-11	5.4 E-11
Rb-81m	0.533 h	1.000	1.1 E-10	1.000	6. 2 E-11	3.1 E-11	1.8 E-11	1. 2 E-11	9.7 E-12
Rb-82m	6.20 h	1.000	8.7 E-10	1.000	5.9 E-10	3.4 E-10	2.2 E-10	1.5 E-10	1.3 E-10
Rb-83	86.2 d	1.000	1.1 E-08	1.000	8.4 E-09	4.9 E-09	3.2 E-09	2.2 E-09	1.9 E-09
Rb-84	32.8 d	1.000	2.0 E-08	1.000	1.4 E-08	7.9 E-09	5.0 E-09	3.3 E-09	2.8 E-09
Rb-86	18.7 d	1.000	3.1 E-08	1.000	2.0 E-08	9.9 E-09	5.9 E-09	3.5 E-09	2.8 E-09
Rb-87	4.70 E+10 a	1.000	1.5 E-08	1.000	1.0 E-08	5. 2 E-09	3.1 E-09	1.8 E-09	1.5 E-09
Rb-88	0.297 h	1.000	1.1 E-09	1.000	6.2 E-10	3.0 E-10	1.7 E-10	1.2 E-10	9.0 E-11
Rb-89	0.253 h	1.000	5.4 E-10	1.000	3.0 E-10	1.5 E-10	8.6 E-11	5.9 E-11	4.7 E-11
锶(*)									
Sr-80	1.67 h	0.600	3.7 E-09	0.300	2.3 E-09	1.1 E-09	6.5 E-10	4.2 E-10	3.4 E-10
Sr-81	0. 425 h	0.600	8.4 E-10	0.300	4.9 E-10	2.4 E-10	1.4 E-10	9. 6 E-11	7.7 E-11
Sr-82	25.0 d	0.600	7.2 E-08	0.300	4.1 E-08	2.1 E-08	1.3 E-08	8.7 E-09	6.1 E-09
Sr-83	1. 35 d	0.600	3.4 E-09	0.300	2.7 E-09	1.4 E-09	9.1 E-10	5.7 E-10	4.9 E-10
Sr-85	64.8 d	0.600	7.7 E-09	0.300	3.1 E-09	1.7 E-09	1.5 E-09	1.3 E-09	5.6 E-10
Sr-85m	1.16 h	0.600	4.5 E-11	0.300	3.0 E-11	1.7 E-11	1.1 E-11	7.8 E-12	6-1 E-12
Sr-87m	2.80 h	0.600	2.4 E-10	0.300	1.7 E-10	9.0 E-11	5.6 E-11	3.6 E-11	3.0 E-11
Sr-89	50.5 d	0.600	3.6 E-08	0.300	1.8 E-08	8.9 E-09	5.8 E-09	4.0 E-09	2.6 E-09
Sr-90	29.1 a	0.600	2.3 E-07	0.300	7.3 E-08	4.7 E-08	6.0 E-08	8.0 E-08	2.8 E-08
Sr-91	9.50 h	0.600	5.2 E-09	0.300	4.0 E-09	2.1 E-09	1.2 E-09	7.4 E-10	6.5 E-10
Sr-92	2.71 h	0.600	3.4 E-09	0.300	2.7 E-09	1.4 E-09	8. 2 E-10	4.8 E-10	4.3 E-10

	46 m V = 110	年齢 g	≪1 岁	f_1	1 岁~2 岁	2 岁~7 岁	7 岁~12 岁	12 岁~17 岁	>17 岁
核素	物理半衰期	f_1	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
钇									
Y-86	14.7 h	0.001	7.6 E-09	1.0 E-04	5. 2 E-09	2.9 E-09	1.9 E-09	1.2 E-09	9.6 E-10
Y-86m	0.800 h	0.001	4.5 E-10	1.0 E-04	3.1 E-10	1.7 E-10	1.1 E-10	7.1 E-11	5.6 E-11
Y-87	3. 35 d	0.001	4.6 E-09	1.0 E-04	3. 2 E-09	1.8 E-09	1.1 E-09	7.0 E-10	5.5 E-10
Y-88	107 d	0.001	8.1 E-09	1.0 E-04	6.0 E-09	3.5 E-09	2.4 E-09	1.6 E-09	1.3 E-09
Y-90	2.67 d	0.001	3.1 E-08	1.0 E-04	2.0 E-08	1.0 E-08	5.9 E-09	3.3 E-09	2.7 E-09
Y-90m	3.19 h	0.001	1.8 E-09	1.0 E-04	1.2 E-09	6.1 E-10	3.7 E-10	2.2 E-10	1.7 E-10
Y-91	58.5 d	0.001	2.8 E-08	1.0 E-04	1.8 E-08	8.8 E-09	5.2 E-09	2.9 E-09	2.4 E-09
Y-91m	0.828 h	0.001	9.2 E-11	1.0 E-04	6.0 E-11	3.3 E-11	2.1 E-11	1.4 E-11	1.1 E-11
Y-92	3.54 h	0.001	5.9 E-09	1.0 E-04	3.6 E-09	1.8 E-09	1.0 E-09	6.2 E-10	4.9 E-10
Y-93	10.1 h	0.001	1.4 E-08	1.0 E-04	8.5 E-09	4.3 E-09	2.5 E-09	1.4 E-09	1.2 E-09
Y-94	0.318 h	0.001	9.9 E-10	1.0 E-04	5.5 E-10	2.7 E-10	1.5 E-10	1.0 E-10	8.1 E-11
Y-95	0.178 h	0.001	5.7 E-10	1.0 E-04	3.1 E-10	1.5 E-10	8.7 E-11	5.9 E-11	4.6 E-11
锆									
Zr-86	16.5 h	0.020	6.9 E-09	0.010	4.8 E-09	2.7 E-09	1.7 E-09	1.1 E-09	8.6 E-10
Zr-88	83. 4 d	0.020	2.8 E-09	0.010	2.0 E-09	1.2 E-09	8.0 E-10	5.4 E-10	4.5 E-10
Zr-89	3. 27 d	0.020	6.5 E-09	0.010	4.5 E-09	2.5 E-09	1.6 E-09	9.9 E-10	7.9 E-10
Zr-93	1.53 E+06 a	0.020	1.2 E-09	0.010	7.6 E-10	5.1 E-10	5.8 E-10	8.6 E-10	1.1 E-09
Zr-95	64.0 d	0.020	8.5 E-09	0.010	5.6 E-09	3.0 E-09	1.9 E-09	1.2 E-09	9.5 E-10
Zr-97	16.9 h	0.020	2. 2 E-08	0.010	1.4 E-08	7.3 E-09	4.4 E-09	2.6 E-09	2.1 E-09
铌									
Nb-88	0. 238 h	0.020	6.7 E-10	0.010	3.8 E-10	1.9 E-10	1.1 E-10	7.9 E-11	6.3 E-11
Nb-89	2.03 h	0.020	3.0 E-09	0.010	2.0 E-09	1.0 E-09	6.0 E-10	3.4 E-10	2.7 E-10
Nb-89	1.10 h	0.020	1.5 E-09	0.010	8.7 E-10	4.4 E-10	2.7 E-10	1.8 E-10	1.4 E-10
Nb-90	14.6 h	0.020	1.1 E-08	0.010	7.2 E-09	3.9 E-09	2.5 E-09	1.6 E-09	1.2 E-09
Nb-93m	13.6 a	0.020	1.5 E-09	0.010	9.1 E-10	4.6 E-10	2.7 E-10	1.5 E-10	1.2 E-10
Nb-94	2.03 E+04 a	0.020	1.5 E-08	0.010	9.7 E-09	5.3 E-09	3.4 E-09	2.1 E-09	1.7 E-09
Nb-95	35.1 d	0.020	4.6 E-09	0.010	3.2 E-09	1.8 E-09	1.1 E-09	7.4 E-10	5.8 E-10
Nb-95m	3.61 d	0.020	6.4 E-09	0.010	4.1 E-09	2.1 E-09	1.2 E-09	7.1 E-10	5.6 E-10

核 素	物田火膏地	年龄。	g≤1 岁	f_1	1岁~2岁	2 岁~7 岁	7岁~12岁	12 岁~17 岁	>17 岁
核 紊	物理半衰期	f_1	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
Nb-96	23. 3 h	0.020	9. 2 E-09	0.010	6.3 E-09	3.4 E-09	2.2 E-09	1.4 E-09	1.1 E-09
Nb-97	1.20 h	0.020	7.7 E-10	0.010	4.5 E-10	2.3 E-10	1.3 E-10	8.7 E-11	6.8 E-11
Nb-98	0.858 h	0.020	1.2 E-09	0.010	7.1 E-10	3.6 E-10	2.2 E-10	1.4 E-10	1.1 E-10
钼									
Mo-90	5.67 h	1.000	1.7 E-09	1.000	1.2 E-09	6.3 E-10	4.0 E-10	2. 7 E-10	2.2 E-10
Mo-93	3.50 E+03 a	1.000	7.9 E-09	1.000	6.9 E-09	5. 0 E-09	4.0 E-09	3.4 E-09	3.1 E-09
Mo-93m	6.85 h	1.000	8.0 E-10	1.000	5.4 E-10	3.1 E-10	2.0 E-10	1.4 E-10	1.1 E-10
Mo-99	2.75 d	1.000	5.5 E-09	1.000	3.5 E-09	1.8 E-09	1.1 E-09	7.6 E-10	6.0 E-10
Mo-101	0.244 h	1.000	4.8 E-10	1.000	2.7 E-10	1.3 E-10	7.6 E-11	5.2 E-11	4.1 E-11
锝									
Tc-93	2.75 h	1.000	2.7 E-10	0.500	2. 5 E-10	1.5 E-10	9. 8 E-11	6.8 E-11	5. 5 E-11
Tc-93m	0.725 h	1.000	2.0 E-10	0.500	1.3 E-10	7.3 E-11	4.6 E-11	3. 2 E-11	2.5 E-11
Tc-94	4.88 h	1.000	1.2 E-09	0.500	1.0 E-09	5.8 E-10	3.7 E-10	2.5 E-10	2.0 E-10
Tc-94m	0.867 h	1.000	1.3 E-09	0.500	6.5 E-10	3.3 E-10	1.9 E-10	1.3 E-10	1.0 E-10
Tc-95	20.0 h	1.000	9.9 E-10	0.500	8.7 E-10	5.0 E-10	3.3 E-10	2.3 E-10	1.8 E-10
Tc-95m	61.0 d	1.000	4.7 E-09	0.500	2.8 E-09	1.6 E-09	1.0 E-09	7.0 E-10	5.6 E-10
Tc-96	4. 28 d	1.000	6.7 E-09	0.500	5.1 E-09	3.0 E-09	2.0 E-09	1.4 E-09	1.1 E-09
Tc-96m	0.858 h	1.000	1.0 E-10	0.500	6.5 E-11	3.6 E-11	2.3 E-11	1.6 E-11	1.2 E-11
Tc-97	2.60 E+06 a	1.000	9.9 E-10	0.500	4.9 E-10	2.4 E-10	1.4 E-10	8. 8 E-11	6.8 E-11
Tc-97m	87.0 d	1.000	8.7 E-09	0.500	4.1 E-09	2.0 E-09	1.1 E-09	7.0 E-10	5.5 E-10
Tc-98	4.20 E+06 a	1.000	2.3 E-08	0.500	1.2 E-08	6.1 E-09	3.7 E-09	2.5 E-09	2.0 E-09
Tc-99	2.13 E+05 a	1.000	1.0 E-08	0.500	4.8 E-09	2.3 E-09	1.3 E-09	8. 2 E-10	6.4 E-10
Tc-99m	6.02 h	1.000	2.0 E-10	0.500	1.3 E-10	7. 2 E-11	4.3 E-11	2.8 E-11	2. 2 E-11
Tc-101	0. 237 h	1.000	2.4 E-10	0.500	1.3 E-10	6.1 E-11	3. 5 E-11	2.4 E-11	1.9 E-11
Tc-104	0. 303 h	1.000	1.0 E-09	0.500	5.3 E-10	2.6 E-10	1.5 E-10	1.0 E-10	8.0 E-11
钉									
Ru-94	0.863 h	0.100	9.3 E-10	0.050	5.9 E-10	3.1 E-10	1.9 E-10	1.2 E-10	9.4 E-11
Ru-97	2. 90 d	0.100	1.2 E-09	0.050	8.5 E-10	4.7 E-10	3.0 E-10	1.9 E-10	1.5 E-10
Ru-103	39. 3 d	0.100	7.1 E-09	0.050	4.6 E-09	2.4 E-09	1.5 E-09	9.2 E-10	7.3 E-10

=	45 m v = 110	年龄。	r≪l 岁	f_1	1 岁~2 岁	2 岁~7 岁	7岁~12岁	12 岁~17 岁	>17 岁
核 素	物理半衰期	f_1	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
Ru-105	4.44 h	0.100	2.7 E-09	0.050	1.8 E-09	9.1 E-10	5.5 E-10	3.3 E-10	2. 6 E-10
Ru-106	1.01 a	0.100	8. 4 E-08	0.050	4.9 E-08	2.5 E-08	1.5 E-08	8.6 E-09	7.0 E-09
铑 Rh-99	16.0 d	0.100	4. 2 E-09	0.050	2. 9 E-09	1. 6 E-09	1.0 E-09	6. 5 E-10	5. 1 E-10
Rh-99m	4. 70 h	0.100	4. 2 E-09 4. 9 E-10	0.050	2. 9 E-09 3. 5 E-10	2. 0 E-10	1. 0 E-09 1. 3 E-10	8. 3 E-11	6. 6 E-11
Rh-100	20.8 h	0.100	4. 9 E-09	0.050	3. 6 E-09	2. 0 E-09	1. 4 E-09	8. 8 E-10	7. 1 E-10
Rh-101	3. 20 a	0.100	4.9 E-09	0.050	2. 8 E-09	1. 6 E-09	1.0 E-09	6. 7 E-10	5.5 E-10
Rh-101m	4.34 d	0.100	1.7 E-09	0.050	1.2 E-09	6.8 E-10	4.4 E-10	2.8 E-10	2.2 E-10
Rh-102	2.90 a	0.100	1.9 E-08	0.050	1.0 E-08	6. 4 E-09	4.3 E-09	3.0 E-09	2.6 E-09
Rh-102m	207 d	0.100	1.2 E-08	0.050	7.4 E-09	3.9 E-09	2.4 E-09	1.4 E-09	1.2 E-09
Rh-103m	0.935 h	0.100	4.7 E-11	0.050	2.7 E-11	1.3 E-11	7.4 E-12	4.8 E-12	3.8 E-12
Rh-105	1.47 d	0.100	4.0 E-09	0.050	2.7 E-09	1.3 E-09	8.0 E-10	4.6 E-10	3.7 E-10
Rh-106m	2.20 h	0.100	1.4 E-09	0.050	9.7 E-10	5.3 E-10	3.3 E-10	2.0 E-10	1.6 E-10
Rh-107	0.362 h	0.100	2.9 E-10	0.050	1.6 E-10	7.9 E-11	4.5 E-11	3.1 E-11	2.4 E-11
钯									
Pd-100	3. 63 d	0.050	7.4 E-09	0.005	5.2 E-09	2.9 E-09	1.9 E-09	1.2 E-09	9.4 E-10
Pd-101	8. 27 h	0.050	8.2 E-10	0.005	5.7 E-10	3.1 E-10	1.9 E-10	1.2 E-10	9.4 E-11
Pd-103	17.0 d	0.050	2.2 E-09	0.005	1.4 E-09	7.2 E-10	4.3 E-10	2.4 E-10	1.9 E-10
Pd-107	6.50 E+06 a	0.050	4.4 E-10	0.005	2.8 E-10	1.4 E-10	8.1 E-11	4.6 E-11	3.7 E-11
Pd-109	13.4 h	0.050	6.3 E-09	0.005	4.1 E-09	2.0 E-09	1.2 E-09	6.8 E-10	5.5 E-10
银									
Ag-102	0.215 h	0.100	4.2 E-10	0.050	2.4 E-10	1.2 E-10	7.3 E-11	5.0 E-11	4.0 E-11
Ag-103	1.09 h	0.100	4.5 E-10	0.050	2.7 E-10	1.4 E-10	8.3 E-11	5.5 E-11	4.3 E-11
Ag-104	1.15 h	0.100	4.3 E-10	0.050	2.9 E-10	1.7 E-10	1.1 E-10	7.5 E-11	6.0 E-11
Ag-104m	0.558 h	0.100	5.6 E-10	0.050	3.3 E-10	1.7 E-10	1.0 E-10	6.8 E-11	5.4 E-11
Ag-105	41.0 d	0.100	3.9 E-09	0.050	2.5 E-09	1.4 E-09	9.1 E-10	5.9 E-10	4.7 E-10
Ag-106	0.399 h	0.100	3.7 E-10	0.050	2.1 E-10	1.0 E-10	6.0 E-11	4.1 E-11	3.2 E-11
Ag-106m	8. 41 d	0.100	9.7 E-09	0.050	6.9 E-09	4.1 E-09	2.8 E-09	1.8 E-09	1.5 E-09
Ag-108m	1.27 E+02 a	0.100	2.1 E-08	0.050	1.1 E-08	6.5 E-09	4.3 E-09	2.8 E-09	2.3 E-09

核素	物理半衰期	年齢 g	≪1 岁	f_1	1 岁~2 岁	2 岁~7 岁	7岁~12岁	12 岁~17 岁	>17 岁
12 34	初埕十長期	f_1	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
Ag-110m	250 d	0.100	2.4 E-08	0.050	1.4 E-08	7.8 E-09	5.2 E-09	3.4 E-09	2.8 E-09
Ag-111	7.45 d	0.100	1.4 E-08	0.050	9.3 E-09	4.6 E-09	2.7 E-09	1.6 E-09	1.3 E-09
Ag-112	3.12 h	0.100	4.9 E-09	0.050	3.0 E-09	1.5 E-09	8.9 E-10	5.4 E-10	4.3 E-10
Ag-115	0.333 h	0.100	7.2 E-10	0.050	4.1 E-10	2.0 E-10	1.2 E-10	7.7 E-11	6.0 E-11
镉	_								
Cd-104	0.961 h	0.100	4.2 E-10	0.050	2.9 E-10	1.7 E-10	1.1 E-10	7.2 E-11	5.4 E-11
Cd-107	6.49 h	0.100	7.1 E-10	0.050	4.6 E-10	2.3 E-10	1.3 E-10	7.8 E-11	6.2 E-11
Cd-109	1.27 a	0.100	2.1 E-08	0.050	9.5 E-09	5.5 E-09	3.5 E-09	2.4 E-09	2.0 E-09
Cd-113	9.30 E+15 a	0.100	1.0 E-07	0.050	4.8 E-08	3.7 E-08	3.0 E-08	2.6 E-08	2.5 E-08
Cd-113m	13.6 a	0.100	1.2 E-07	0.050	5.6 E-08	3.9 E-08	2.9 E-08	2.4 E-08	2.3 E-08
Cd-115	2. 23 d	0.100	1.4 E-08	0.050	9.7 E-09	4.9 E-09	2.9 E-09	1.7 E-09	1.4 E-09
Cd-115m	44.6 d	0.100	4.1 E-08	0.050	1.9 E-08	9.7 E-09	6.9 E-09	4.1 E-09	3.3 E-09
Cd-117	2.49 h	0.100	2.9 E-09	0.050	1.9 E-09	9.5 E-10	5.7 E-10	3.5 E-10	2.8 E-10
Cd-117m	3.36 h	0.100	2.6 E-09	0.050	1.7 E-09	9.0 E-10	5.6 E-10	3.5 E-10	2.8 E-10
铟									
In-109	4.20 h	0.040	5. 2 E-10	0.020	3.6 E-10	2.0 E-10	1.3 E-10	8. 2 E-11	6.6 E-11
In-110	4.90 h	0.040	1.5 E-09	0.020	1.1 E-09	6.5 E-10	4.4 E-10	3.0 E-10	2.4 E-10
In-110	1.15 h	0.040	1.1 E-09	0.020	6.4 E-10	3.2 E-10	1.9 E-10	1.3 E-10	1.0 E-10
In-111	2.83 d	0.040	2.4 E-09	0.020	1.7 E-09	9.1 E-10	5.9 E-10	3.7 E-10	2.9 E-10
In-112	0.240 h	0.040	1.2 E-10	0.020	6.7 E-11	3.3 E-11	1.9 E-11	1.3 E-11	1.0 E-11
In-113m	1.66 h	0.040	3.0 E-10	0.020	1.8 E-10	9.3 E-11	6.2 E-11	3.6 E-11	2.8 E-11
In-114m	49.5 d	0.040	5.6 E-08	0.020	3.1 E-08	1.5 E-08	9.0 E-09	5.2 E-09	4.1 E-09
In-115	5.10 E+15 a	0.040	1.3 E-07	0.020	6.4 E-08	4.8 E-08	4.3 E-08	3.6 E-08	3.2 E-08
In-115m	4.49 h	0.040	9.6 E-10	0.020	6.0 E-10	3.0 E-10	1.8 E-10	1.1 E-10	8.6 E-11
In-116m	0.902 h	0.040	5.8 E-10	0.020	3.6 E-10	1.9 E-10	1.2 E-10	8.0 E-11	6.4 E-11
In-117	0.730 h	0.040	3.3 E-10	0.020	1.9 E-10	9.7 E-11	5.8 E-11	3. 9 E-11	3.1 E-11
In-117m	1.94 h	0.040	1.4 E-09	0.020	8.6 E-10	4.3 E-10	2.5 E-10	1.6 E-10	1.2 E-10
In-119m	0.300 h	0.040	5.9 E-10	0.020	3.2 E-10	1.6 E-10	8.8 E-11	6.0 E-11	4.7 E-11

	4-m v = #0	年齢 g	r≪l 岁	f_1	1 岁~2 岁	2 岁~7 岁	7 岁~12 岁	12 岁~17 岁	>17 岁
核 素	物理半衰期	f_1	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
锡									
Sn-110	4.00 h	0.040	3.5 E-09	0.020	2.3 E-09	1.2 E-09	7.4 E-10	4.4 E-10	3.5 E-10
Sn-111	0.588 h	0.040	2.5 E-10	0.020	1.5 E-10	7.4 E-11	4.4 E-11	3. 0 E-11	2.3 E-11
Sn-113	115 d	0.040	7.8 E-09	0.020	5.0 E-09	2.6 E-09	1.6 E-09	9.2 E-10	7.3 E-10
Sn-117m	13.6 d	0.040	7.7 E-09	0.020	5.0 E-09	2.5 E-09	1.5 E-09	8.8 E-10	7.1 E-10
Sn-119m	293 d	0.040	4.1 E-09	0.020	2.5 E-09	1.3 E-09	7.5 E-10	4.3 E-10	3.4 E-10
Sn-121	1.13 d	0.040	2.6 E-09	0.020	1.7 E-09	8.4 E-10	5.0 E-10	2.8 E-10	2.3 E-10
Sn-121m	55.0 a	0.040	4.6 E-09	0.020	2.7 E-09	1.4 E-09	8. 2 E-10	4.7 E-10	3.8 E-10
Sn-123	129 d	0.040	2.5 E-08	0.020	1.6 E-08	7.8 E-09	4.6 E-09	2.6 E-09	2.1 E-09
Sn-123m	0.668 h	0.040	4.7 E-10	0.020	2.6 E-10	1.3 E-10	7. 3 E-11	4.9 E-11	3.8 E-11
Sn-125	9.64 d	0.040	3.5 E-08	0.020	2. 2 E-08	1.1 E-08	6.7 E-09	3.8 E-09	3.1 E-09
Sn-126	1.00 E+05 a	0.040	5.0 E-08	0.020	3.0 E-08	1.6 E-08	9.8 E-09	5.9 E-09	4.7 E-09
Sn-127	2.10 h	0.040	2.0 E-09	0.020	1.3 E-09	6.6 E-10	4.0 E-10	2.5 E-10	2.0 E-10
Sn-128	0.985 h	0.040	1.6 E-09	0.020	9.7 E-10	4.9 E-10	3.0 E-10	1.9 E-10	1.5 E-10
锑									
Sb-115	0.530 h	0.200	2.5 E-10	0.100	1.5 E-10	7.5 E-11	4.5 E-11	3.1 E-11	2.4 E-11
Sb-116	0.263 h	0.200	2.7 E-10	0.100	1.6 E-10	8.0 E-11	4.8 E-11	3.3 E-11	2.6 E-11
Sb-116m	1.00 h	0.200	5.0 E-10	0.100	3.3 E-10	1.9 E-10	1.2 E-10	8.3 E-11	6.7 E-11
Sb-117	2.80 h	0.200	1.6 E-10	0.100	1.0 E-10	5.6 E-11	3.5 E-11	2.2 E-11	1.8 E-11
Sb-118m	5.00 h	0.200	1.3 E-09	0.100	1.0 E-09	5.8 E-10	3.9 E-10	2.6 E-10	2.1 E-10
Sb-119	1.59 d	0.200	8.4 E-10	0.100	5.8 E-10	3.0 E-10	1.8 E-10	1.0 E-10	8.0 E-11
Sb-120	5.76 d	0.200	8.1 E-09	0.100	6.0 E-09	3.5 E-09	2.3 E-09	1.6 E-09	1.2 E-09
Sb-120	0.265 h	0.200	1.7 E-10	0.100	9.4 E-11	4.6 E-11	2.7 E-11	1.8 E-11	1.4 E-11
Sb-122	2.70 d	0.200	1.8 E-08	0.100	1.2 E-08	6.1 E-09	3.7 E-09	2.1 E-09	1.7 E-09
Sb-124	60.2 d	0.200	2.5 E-08	0.100	1.6 E-08	8.4 E-09	5.2 E-09	3.2 E-09	2.5 E-09
Sb-124m	0.337 h	0.200	8.5 E-11	0.100	4.9 E-11	2.5 E-11	1.5 E-11	1.0 E-11	8.0 E-12
Sb-125	2.77 a	0.200	1.1 E-08	0.100	6.1 E-09	3.4 E-09	2.1 E-09	1.4 E-09	1.1 E-09
Sb-126	12.4 d	0.200	2.0 E-08	0.100	1.4 E-08	7.6 E-09	4.9 E-09	3.1 E-09	2.4 E-09
Sb-126m	0.317 h	0.200	3.9 E-10	0.100	2.2 E-10	1.1 E-10	6. 6 E-11	4.5 E-11	3. 6 E-11

** =	45 m y/ = #0	年齢 g	≪1 岁	f_1	1 岁~2 岁	2 岁~7 岁	7岁~12岁	12 岁~17 岁	>17 岁
核素	物理半衰期	f_1	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
Sb-127	3. 85 d	0.200	1.7 E-08	0.100	1.2 E-08	5. 9 E-09	3. 6 E-09	2.1 E-09	1.7 E-09
Sb-128	9.01 h	0.200	6.3 E-09	0.100	4.5 E-09	2.4 E-09	1.5 E-09	9.5 E-10	7.6 E-10
Sb-128m	0.173 h	0.200	3.7 E-10	0.100	2.1 E-10	1.0 E-10	6.0 E-11	4.1 E-11	3.3 E-11
Sb-129	4.32 h	0.200	4.3 E-09	0.100	2.8 E-09	1.5 E-09	8.8 E-10	5.3 E-10	4.2 E-10
Sb-130	0.667 h	0.200	9.1 E-10	0.100	5.4 E-10	2.8 E-10	1.7 E-10	1.2 E-10	9.1 E-11
Sb-131	0.383 h	0.200	1.1 E-09	0.100	7.3 E-10	3.9 E-10	2.1 E-10	1.4 E-10	1.0 E-10
碲									
Te-116	2.49 h	0.600	1.4 E-09	0.300	1.0 E-09	5.5 E-10	3.4 E-10	2.1 E-10	1.7 E-10
Te-121	17.0 d	0.600	3.1 E-09	0.300	2.0 E-09	1.2 E-09	8.0 E-10	5.4 E-10	4.3 E-10
Te-121m	154 d	0.600	2.7 E-08	0.300	1.2 E-08	6.9 E-09	4.2 E-09	2.8 E-09	2.3 E-09
Te-123	1.00 E+13 a	0.600	2.0 E-08	0.300	9.3 E-09	6.9 E-09	5.4 E-09	4.7 E-09	4.4 E-09
Te-123m	120 d	0.600	1.9 E-08	0.300	8.8 E-09	4.9 E-09	2.8 E-09	1.7 E-09	1.4 E-09
Te-125m	58.0 d	0.600	1.3 E-08	0.300	6.3 E-09	3.3 E-09	1.9 E-09	1.1 E-09	8.7 E-10
Te-127	9.35 h	0.600	1.5 E-09	0.300	1.2 E-09	6.2 E-10	3.6 E-10	2.1 E-10	1.7 E-10
Te-127m	109 d	0.600	4.1 E-08	0.300	1.8 E-08	9.5 E-09	5. 2 E-09	3.0 E-09	2.3 E-09
Te-129	1.16 h	0.600	7.5 E-10	0.300	4.4 E-10	2.1 E-10	1.2 E-10	8. 0 E-11	6. 3 E-11
Te-129m	33.6 d	0.600	4.4 E-08	0.300	2.4 E-08	1.2 E-08	6.6 E-09	3.9 E-09	3.0 E-09
Te-131	0.417 h	0.600	9.0 E-10	0.300	6. 6 E-10	3.5 E-10	1.9 E-10	1.2 E-10	8.7 E-11
Te-131m	1. 25 d	0.600	2.0 E-08	0.300	1.4 E-08	7.8 E-09	4.3 E-09	2.7 E-09	1.9 E-09
Te-132	3. 26 d	0.600	4.8 E-08	0.300	3.0 E-08	1.6 E-08	8. 3 E-09	5. 3 E-09	3.8 E-09
Te-133	0.207 h	0.600	8.4 E-10	0.300	6.3 E-10	3.3 E-10	1.6 E-10	1.1 E-10	7. 2 E-11
Te-133m	0.923 h	0.600	3.1 E-09	0.300	2.4 E-09	1.3 E-09	6.3 E-10	4.1 E-10	2.8 E-10
Te-134	0.696 h	0.600	1.1 E-09	0.300	7.5 E-10	3.9 E-10	2.2 E-10	1.4 E-10	1.1 E-10
碘									
I-120	1.35 h	1.000	3.9 E-09	1.000	2.8 E-09	1.4 E-09	7.2 E-10	4.8 E-10	3.4 E-10
I-120m	0.883 h	1.000	2.3 E-09	1.000	1.5 E-09	7.8 E-10	4.2 E-10	2.9 E-10	2.1 E-10
I-121	2.12 h	1.000	6.2 E-10	1.000	5.3 E-10	3.1 E-10	1.7 E-10	1.2 E-10	8. 2 E-11
I-123	13.2 h	1.000	2.2 E-09	1.000	1.9 E-09	1.1 E-09	4.9 E-10	3.3 E-10	2.1 E-10
I-124	4. 18 d	1.000	1.2 E-07	1.000	1.1 E-07	6.3 E-08	3.1 E-08	2.0 E-08	1.3 E-08

+* =	た 田 火 亨 田	年龄 g	r≤1 岁	f_1	1 岁~2 岁	2 岁~7 岁	7岁~12岁	12 岁~17 岁	>17 岁
核 素	物理半衰期	f_1	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
I-125	60.1 d	1.000	5.2 E-08	1.000	5.7 E-08	4.1 E-08	3.1 E-08	2. 2 E-08	1.5 E-08
I-126	13.0 d	1.000	2.1 E-07	1.000	2.1 E-07	1.3 E-07	6.8 E-08	4.5 E-08	2.9 E-08
I-128	0.416 h	1.000	5.7 E-10	1.000	3.3 E-10	1.6 E-10	8. 9 E-11	6.0 E-11	4.6 E-11
I-129	1.57 E+07 a	1.000	1.8 E-07	1.000	2.2 E-07	1.7 E-07	1.9 E-07	1.4 E-07	1.1 E-07
I-130	12.4 h	1.000	2.1 E-08	1.000	1.8 E-08	9.8 E-09	4.6 E-09	3. 0 E-09	2.0 E-09
I-131	8.04 d	1.000	1.8 E-07	1.000	1.8 E-07	1.0 E-07	5. 2 E-08	3.4 E-08	2.2 E-08
I-132	2.30 h	1.000	3.0 E-09	1.000	2.4 E-09	1.3 E-09	6.2 E-10	4.1 E-10	2.9 E-10
I-132m	1.39 h	1.000	2.4 E-09	1.000	2.0 E-09	1.1 E-09	5.0 E-10	3.3 E-10	2.2 E-10
I-133	20.8 h	1.000	4.9 E-08	1.000	4.4 E-08	2.3 E-08	1.0 E-08	6.8 E-09	4.3 E-09
I-134	0.876 h	1.000	1.1 E-09	1.000	7.5 E-10	3.9 E-10	2.1 E-10	1.4 E-10	1.1 E-10
I-135	6.61 h	1.000	1.0 E-08	1.000	8.9 E-09	4.7 E-09	2.2 E-09	1.4 E-09	9.3 E-10
铯									
Cs-125	0.750 h	1.000	3.9 E-10	1.000	2.2 E-10	1.1 E-10	6.5 E-11	4.4 E-11	3.5 E-11
Cs-127	6. 25 h	1.000	1.8 E-10	1.000	1.2 E-10	6. 6 E-11	4. 2 E-11	2.9 E-11	2.4 E-11
Cs-129	1.34 d	1.000	4.4 E-10	1.000	3.0 E-10	1.7 E-10	1.1 E-10	7. 2 E-11	6.0 E-11
Cs-130	0.498 h	1.000	3.3 E-10	1.000	1.8 E-10	9.0 E-11	5.2 E-11	3.6 E-11	2.8 E-11
Cs-131	9.69 d	1.000	4.6 E-10	1.000	2.9 E-10	1.6 E-10	1.0 E-10	6.9 E-11	5.8 E-11
Cs-132	6.48 d	1.000	2.7 E-09	1.000	1.8 E-09	1.1 E-09	7.7 E-10	5.7 E-10	5.0 E-10
Cs-134	2.06 a	1.000	2.6 E-08	1.000	1.6 E-08	1.3 E-08	1.4 E-08	1.9 E-08	1.9 E-08
Cs-134m	2.90 h	1.000	2.1 E-10	1.000	1. 2 E-10	5.9 E-11	3. 5 E-11	2.5 E-11	2.0 E-11
Cs-135	2.30 E+06 a	1.000	4.1 E-09	1.000	2.3 E-09	1.7 E-09	1.7 E-09	2.0 E-09	2.0 E-09
Cs-135m	0.883 h	1.000	1.3 E-10	1.000	8.6 E-11	4.9 E-11	3. 2 E-11	2. 3 E-11	1.9 E-11
Cs-136	13.1 d	1.000	1.5 E-08	1.000	9.5 E-09	6.1 E-09	4.4 E-09	3.4 E-09	3.0 E-09
Cs-137	30.0 a	1.000	2.1 E-08	1.000	1.2 E-08	9.6 E-09	1.0 E-08	1.3 E-08	1.3 E-08
Cs-138	0.536 h	1.000	1.1 E-09	1.000	5.9 E-10	2.9 E-10	1.7 E-10	1.2 E-10	9.2 E-11
钡(*)									
Ba-126	1.61 h	0.600	2.7 E-09	0.200	1.7 E-09	8.5 E-10	5.0 E-10	3.1 E-10	2.6 E-10
Ba-128	2.43 d	0.600	2.0 E-08	0.200	1.7 E-08	9.0 E-09	5.2 E-09	3.0 E-09	2.7 E-09
Ba-131	11.8 d	0.600	4.2 E-09	0.200	2.6 E-09	1.4 E-09	9.4 E-10	6.2 E-10	4.5 E-10

=	46 rm 1/ = +0	年龄 g	≪1 岁	f_1	1 岁~2 岁	2 岁~7 岁	7 岁~12 岁	12 岁~17 岁	>17 岁
核 素	物理半衰期	f_1	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
Ba-131m	0.243 h	0.600	5.8 E-11	0.200	3. 2 E-11	1.6 E-11	9.3 E-12	6. 3 E-12	4.9 E-12
Ba-133	10.7 a	0.600	2.2 E-08	0.200	6.2 E-09	3.9 E-09	4.6 E-09	7.3 E-09	1.5 E-09
Ba-133m	1.62 d	0.600	4.2 E-09	0.200	3.6 E-09	1.8 E-09	1.1 E-09	5.9 E-10	5.4 E-10
Ba-135m	1.20 d	0.600	3.3 E-09	0.200	2.9 E-09	1.5 E-09	8.5 E-10	4.7 E-10	4.3 E-10
Ba-139	1.38 h	0.600	1.4 E-09	0.200	8.4 E-10	4.1 E-10	2.4 E-10	1.5 E-10	1.2 E-10
Ba-140	12.7 d	0.600	3.2 E-08	0.200	1.8 E-08	9.2 E-09	5.8 E-09	3.7 E-09	2.6 E-09
Ba-141	0.305 h	0.600	7.6 E-10	0.200	4.7 E-10	2.3 E-10	1.3 E-10	8. 6 E-11	7.0 E-11
Ba-142	0.177 h	0.600	3.6 E-10	0.200	2.2 E-10	1.1 E-10	6. 6 E-11	4.3 E-11	3.5 E-11
镧									
La-131	0.983 h	0.005	3.5 E-10	5.0 E-04	2.1 E-10	1.1 E-10	6. 6 E-11	4.4 E-11	3.5 E-11
La-132	4.80 h	0.005	3.8 E-09	5.0 E-04	2.4 E-09	1.3 E-09	7.8 E-10	4.8 E-10	3.9 E-10
La-135	19.5 h	0.005	2.8 E-10	5.0 E-04	1.9 E-10	1.0 E-10	6.4 E-11	3.9 E-11	3.0 E-11
La-137	6.00 E+04 a	0.005	1.1 E-09	5.0 E-04	4.5 E-10	2.5 E-10	1.6 E-10	1.0 E-10	8.1 E-11
La-138	1.35 E+11 a	0.005	1.3 E-08	5.0 E-04	4.6 E-09	2.7 E-09	1.9 E-09	1.3 E-09	1.1 E-09
La-140	1. 68 d	0.005	2.0 E-08	5.0 E-04	1.3 E-08	6.8 E-09	4.2 E-09	2.5 E-09	2.0 E-09
La-141	3.93 h	0.005	4.3 E-09	5.0 E-04	2.6 E-09	1.3 E-09	7.6 E-10	4.5 E-10	3.6 E-10
La-142	1.54 h	0.005	1.9 E-09	5.0 E-04	1.1 E-09	5.8 E-10	3.5 E-10	2.3 E-10	1.8 E-10
La-143	0.237 h	0.005	6.9 E-10	5.0 E-04	3.9 E-10	1.9 E-10	1.1 E-10	7.1 E-11	5.6 E-11
铈									
Ce-134	3.00 d	0.005	2.8 E-08	5.0 E-04	1.8 E-08	9.1 E-09	5.5 E-09	3.2 E-09	2.5 E-09
Ce-135	17.6 h	0.005	7.0 E-09	5.0 E-04	4.7 E-09	2.6 E-09	1.6 E-09	1.0 E-09	7.9 E-10
Ce-137	9.00 h	0.005	2.6 E-10	5.0 E-04	1.7 E-10	8.8 E-11	5.4 E-11	3. 2 E-11	2.5 E-11
Ce-137m	1.43 d	0.005	6.1 E-09	5.0 E-04	3.9 E-09	2.0 E-09	1.2 E-09	6.8 E-10	5.4 E-10
Ce-139	138 d	0.005	2.6 E-09	5.0 E-04	1.6 E-09	8.6 E-10	5.4 E-10	3.3 E-10	2.6 E-10
Ce-141	32. 5 d	0.005	8.1 E-09	5.0 E-04	5.1 E-09	2.6 E-09	1.5 E-09	8.8 E-10	7.1 E-10
Ce-143	1. 38 d	0.005	1.2 E-08	5.0 E-04	8.0 E-09	4.1 E-09	2.4 E-09	1.4 E-09	1.1 E-09
Ce-144	284 d	0.005	6.6 E-08	5.0 E-04	3.9 E-08	1.9 E-08	1.1 E-08	6.5 E-09	5.2 E-09
镨									
Pr-136	0.218 h	0.005	3.7 E-10	5.0 E-04	2.1 E-10	1.0 E-10	6.1 E-11	4.2 E-11	3.3 E-11

	46 rm V = +0	年齢 g	≪1 岁	f_1	1 岁~2 岁	2 岁~7 岁	7 岁~12 岁	12 岁~17 岁	>17 岁
核素	物理半衰期	f_1	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
Pr-137	1.28 h	0.005	4.1 E-10	5.0 E-04	2.5 E-10	1.3 E-10	7.7 E-11	5. 0 E-11	4.0 E-11
Pr-138m	2.10 h	0.005	1.0 E-09	5.0 E-04	7.4 E-10	4.1 E-10	2.6 E-10	1.6 E-10	1.3 E-10
Pr-139	4.51 h	0.005	3.2 E-10	5.0 E-04	2.0 E-10	1.1 E-10	6.5 E-11	4.0 E-11	3.1 E-11
Pr-142	19.1 h	0.005	1.5 E-08	5.0 E-04	9.8 E-09	4.9 E-09	2.9 E-09	1.6 E-09	1.3 E-09
Pr-142m	0.243 h	0.005	2.0 E-10	5.0 E-04	1.2 E-10	6.2 E-11	3.7 E-11	2.1 E-11	1.7 E-11
Pr-143	13. 6 d	0.005	1.4 E-08	5.0 E-04	8.7 E-09	4.3 E-09	2.6 E-09	1.5 E-09	1.2 E-09
Pr-144	0. 288 h	0.005	6.4 E-10	5.0 E-04	3.5 E-10	1.7 E-10	9.5 E-11	6.5 E-11	5.0 E-11
Pr-145	5. 98 h	0.005	4.7 E-09	5.0 E-04	2.9 E-09	1.4 E-09	8.5 E-10	4.9 E-10	3.9 E-10
Pr-147	0.227 h	0.005	3.9 E-10	5.0 E-04	2.2 E-10	1.1 E-10	6.1 E-11	4. 2 E-11	3.3 E-11
钕									
Nd-136	0.844 h	0.005	1.0 E-09	5.0 E-04	6.1 E-10	3.1 E-10	1.9 E-10	1.2 E-10	9.9 E-11
Nd-138	5.04 h	0.005	7.2 E-09	5.0 E-04	4.5 E-09	2.3 E-09	1.3 E-09	8.0 E-10	6.4 E-10
Nd-139	0.495 h	0.005	2.1 E-10	5.0 E-04	1.2 E-10	6.3 E-11	3.7 E-11	2.5 E-11	2.0 E-11
Nd-139m	5.50 h	0.005	2.1 E-09	5.0 E-04	1.4 E-09	7.8 E-10	5.0 E-10	3.1 E-10	2.5 E-10
Nd-141	2.49 h	0.005	7.8 E-11	5.0 E-04	5.0 E-11	2.7 E-11	1.6 E-11	1.0 E-11	8.3 E-12
Nd-147	11.0 d	0.005	1.2 E-08	5.0 E-04	7.8 E-09	3.9 E-09	2.3 E-09	1.3 E-09	1.1 E-09
Nd-149	1.73 h	0.005	1.4 E-09	5.0 E-04	8.7 E-10	4.3 E-10	2.6 E-10	1.6 E-10	1.2 E-10
Nd-151	0.207 h	0.005	3.4 E-10	5.0 E-04	2.0 E-10	9.7 E-11	5.7 E-11	3.8 E-11	3.0 E-11
钜									
Pm-141	0. 348 h	0.005	4. 2 E-10	5. 0 E-04	2.4 E-10	1. 2 E-10	6.8 E-11	4. 6 E-11	3. 6 E-11
Pm-143	265 d	0.005	1.9 E-09	5.0 E-04	1.2 E-09	6.7 E-10	4.4 E-10	2. 9 E-10	2.3 E-10
Pm-144	363 d	0.005	7. 6 E-09	5.0 E-04	4.7 E-09	2.7 E-09	1.8 E-09	1. 2 E-09	9.7 E-10
Pm-145	17.7 a	0.005	1.5 E-09	5. 0 E-04	6.8 E-10	3.7 E-10	2. 3 E-10	1. 4 E-10	1.1 E-10
Pm-146	5.53 a	0.005	1.0 E-08	5.0 E-04	5.1 E-09	2.8 E-09	1.8 E-09	1.1 E-09	9.0 E-10
Pm-147	2.62 a	0.005	3.6 E-09	5.0 E-04	1.9 E-09	9. 6 E-10	5.7 E-10	3.2 E-10	2.6 E-10
Pm-148	5. 37 d	0.005	3.0 E-08	5.0 E-04	1.9 E-08	9.7 E-09	5.8 E-09	3.3 E-09	2.7 E-09
Pm-148m	41.3 d	0.005	1.5 E-08	5.0 E-04	1.0 E-08	5.5 E-09	3.5 E-09	2. 2 E-09	1.7 E-09
Pm-149	2. 21 d	0.005	1.2 E-08	5.0 E-04	7.4 E-09	3.7 E-09	2.2 E-09	1.2 E-09	9.9 E-10
Pm-150	2.68 h	0.005	2.8 E-09	5.0 E-04	1.7 E-09	8.7 E-10	5. 2 E-10	3. 2 E-10	2.6 E-10
Pm-151	1.18 d	0.005	8.0 E-09	5.0 E-04	5.1 E-09	2.6 E-09	1.6 E-09	9.1 E-10	7.3 E-10

		年齢 g	≤1 岁	f_1	1 岁~2 岁	2 岁~7 岁	7岁~12岁	12 岁~17 岁	>17 岁
核素	物理半衰期	f_1	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
钐									
Sm-141	0.170 h	0.005	4.5 E-10	5.0 E-04	2.5 E-10	1.3 E-10	7.3 E-11	5.0 E-11	3.9 E-11
Sm-141m	0.377 h	0.005	7.0 E-10	5.0 E-04	4.0 E-10	2.0 E-10	1.2 E-10	8. 2 E-11	6.5 E-11
Sm-142	1.21 h	0.005	2.2 E-09	5.0 E-04	1.3 E-09	6.2 E-10	3.6 E-10	2.4 E-10	1.9 E-10
Sm-145	340 d	0.005	2.4 E-09	5.0 E-04	1.4 E-09	7.3 E-10	4.5 E-10	2.7 E-10	2.1 E-10
Sm-146	1.03 E+08 a	0.005	1.5 E-06	5.0 E-04	1.5 E-07	1.0 E-07	7.0 E-08	5.8 E-08	5.4 E-08
Sm-147	1.06 E+11 a	0.005	1.4 E-06	5.0 E-04	1.4 E-07	9. 2 E-08	6.4 E-08	5.2 E-08	4.9 E-08
Sm-151	90.0 a	0.005	1.5 E-09	5.0 E-04	6.4 E-10	3.3 E-10	2.0 E-10	1.2 E-10	9.8 E-11
Sm-153	1.95 d	0.005	8.4 E-09	5.0 E-04	5.4 E-09	2.7 E-09	1.6 E-09	9.2 E-10	7.4 E-10
Sm-155	0.368 h	0.005	3.6 E-10	5.0 E-04	2.0 E-10	9.7 E-11	5.5 E-11	3.7 E-11	2.9 E-11
Sm-156	9.40 h	0.005	2.8 E-09	5.0 E-04	1.8 E-09	9.0 E-10	5.4 E-10	3.1 E-10	2.5 E-10
铕									
Eu-145	5.94 d	0.005	5.1 E-09	5.0 E-04	3.7 E-09	2.1 E-09	1.4 E-09	9.4 E-10	7.5 E-10
Eu-146	4.61 d	0.005	8.5 E-09	5.0 E-04	6.2 E-09	3.6 E-09	2.4 E-09	1.6 E-09	1.3 E-09
Eu-147	24.0 d	0.005	3.7 E-09	5.0 E-04	2.5 E-09	1.4 E-09	8.9 E-10	5.6 E-10	4.4 E-10
Eu-148	54.5 d	0.005	8.5 E-09	5.0 E-04	6.0 E-09	3.5 E-09	2.4 E-09	1.6 E-09	1.3 E-09
Eu-149	93.1 d	0.005	9.7 E-10	5.0 E-04	6.3 E-10	3.4 E-10	2.1 E-10	1.3 E-10	1.0 E-10
Eu-150	34.2 a	0.005	1.3 E-08	5.0 E-04	5.7 E-09	3.4 E-09	2.3 E-09	1.5 E-09	1.3 E-09
Eu-150	12.6 h	0.005	4.4 E-09	5.0 E-04	2.8 E-09	1.4 E-09	8.2 E-10	4.7 E-10	3.8 E-10
Eu-152	13.3 a	0.005	1.6 E-08	5.0 E-04	7.4 E-09	4.1 E-09	2.6 E-09	1.7 E-09	1.4 E-09
Eu-152m	9.32 h	0.005	5.7 E-09	5.0 E-04	3.6 E-09	1.8 E-09	1.1 E-09	6.2 E-10	5.0 E-10
Eu-154	8.80 a	0.005	2.5 E-08	5.0 E-04	1.2 E-08	6.5 E-09	4.1 E-09	2.5 E-09	2.0 E-09
Eu-155	4.96 a	0.005	4.3 E-09	5.0 E-04	2.2 E-09	1.1 E-09	6.8 E-10	4.0 E-10	3.2 E-10
Eu-156	15.2 d	0.005	2.2 E-08	5.0 E-04	1.5 E-08	7.5 E-09	4.6 E-09	2.7 E-09	2.2 E-09
Eu-157	15.1 h	0.005	6.7 E-09	5.0 E-04	4.3 E-09	2. 2 E-09	1.3 E-09	7.5 E-10	6.0 E-10
Eu-158	0.765 h	0.005	1.1 E-09	5.0 E-04	6.2 E-10	3.1 E-10	1.8 E-10	1.2 E-10	9.4 E-11
钆 Gd-145	0. 382 h	0.005	4. 5 E-10	5. 0 E-04	2. 6 E-10	1. 3 E-10	8. 1 E-11	5. 6 E-11	4. 4 E-11
Gd-146	48. 3 d	0.005	9.4 E-09	5.0 E-04	6.0 E-09	3.2 E-09	2.0 E-09	1.2 E-09	9.6 E-10

	46 TM 1/1 = 110	年龄。	র≪1 岁	f_1	1 岁~2 岁	2 岁~7 岁	7岁~12岁	12 岁~17 岁	>17 岁
核 素	物理半衰期	f_1	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
Gd-147	1.59 d	0.005	4.5 E-09	5.0 E-04	3. 2 E-09	1.8 E-09	1. 2 E-09	7.7 E-10	6.1 E-10
Gd-148	93.0 a	0.005	1.7 E-06	5.0 E-04	1.6 E-07	1.1 E-07	7.3 E-08	5.9 E-08	5.6 E-08
Gd-149	9.40 d	0.005	4.0 E-09	5.0 E-04	2.7 E-09	1.5 E-09	9.3 E-10	5.7 E-10	4.5 E-10
Gd-151	120 d	0.005	2.1 E-09	5.0 E-04	1.3 E-09	6.8 E-10	4.2 E-10	2.4 E-10	2.0 E-10
Gd-152	1.08 E+14 a	0.005	1.2 E-06	5.0 E-04	1.2 E-07	7.7 E-08	5.3 E-08	4.3 E-08	4.1 E-08
Gd-153	242 d	0.005	2.9 E-09	5.0 E-04	1.8 E-09	9.4 E-10	5.8 E-10	3.4 E-10	2.7 E-10
Gd-159	18.6 h	0.005	5.7 E-09	5.0 E-04	3.6 E-09	1.8 E-09	1.1 E-09	6.2 E-10	4.9 E-10
铽									
Tb-147	1.65 h	0.005	1.5 E-09	5.0 E-04	1.0 E-09	5.4 E-10	3.3 E-10	2.0 E-10	1.6 E-10
Tb-149	4.15 h	0.005	2.4 E-09	5.0 E-04	1.5 E-09	8.0 E-10	5.0 E-10	3.1 E-10	2.5 E-10
Tb-150	3.27 h	0.005	2.5 E-09	5.0 E-04	1.6 E-09	8.3 E-10	5.1 E-10	3. 2 E-10	2.5 E-10
Tb-151	17.6 h	0.005	2.7 E-09	5.0 E-04	1.9 E-09	1.0 E-09	6.7 E-10	4.2 E-10	3.4 E-10
Tb-153	2.34 d	0.005	2.3 E-09	5.0 E-04	1.5 E-09	8. 2 E-10	5.1 E-10	3.1 E-10	2.5 E-10
Tb-154	21.4 h	0.005	4.7 E-09	5.0 E-04	3.4 E-09	1.9 E-09	1.3 E-09	8.1 E-10	6.5 E-10
Tb-155	5.32 d	0.005	1.9 E-09	5.0 E-04	1.3 E-09	6.8 E-10	4.3 E-10	2.6 E-10	2.1 E-10
Tb-156	5.34 d	0.005	9.0 E-09	5.0 E-04	6.3 E-09	3.5 E-09	2.3 E-09	1.5 E-09	1.2 E-09
Tb-156m	1.02 d	0.005	1.5 E-09	5.0 E-04	1.0 E-09	5.6 E-10	3.5 E-10	2.2 E-10	1.7 E-10
Tb-156m	5.00 h	0.005	8.0 E-10	5.0 E-04	5. 2 E-10	2.7 E-10	1.7 E-10	1.0 E-10	8.1 E-11
Tb-157	1.50 E+02 a	0.005	4.9 E-10	5.0 E-04	2. 2 E-10	1.1 E-10	6.8 E-11	4.1 E-11	3.4 E-11
Tb-158	1.50 E+02 a	0.005	1.3 E-08	5.0 E-04	5.9 E-09	3. 3 E-09	2.1 E-09	1.4 E-09	1.1 E-09
Tb-160	72. 3 d	0.005	1.6 E-08	5.0 E-04	1.0 E-08	5.4 E-09	3.3 E-09	2.0 E-09	1.6 E-09
Tb-161	6.91 d	0.005	8.3 E-09	5.0 E-04	5.3 E-09	2.7 E-09	1.6 E-09	9.0 E-10	7.2 E-10
镝									
Dy-155	10.0 h	0.005	9.7 E-10	5.0 E-04	6.8 E-10	3.8 E-10	2.5 E-10	1.6 E-10	1.3 E-10
Dy-157	8.10 h	0.005	4.4 E-10	5.0 E-04	3.1 E-10	1.8 E-10	1.2 E-10	7.7 E-11	6.1 E-11
Dy-159	144 d	0.005	1.0 E-09	5.0 E-04	6.4 E-10	3.4 E-10	2.1 E-10	1.3 E-10	1.0 E-10
Dy-165	2.33 h	0.005	1.3 E-09	5.0 E-04	7.9 E-10	3.9 E-10	2.3 E-10	1.4 E-10	1.1 E-10
Dy-166	3.40 d	0.005	1.9 E-08	5.0 E-04	1.2 E-08	6.0 E-09	3.6 E-09	2.0 E-09	1.6 E-09

核素	物理半衰期	年齢 g	≪1 岁	f_1	1 岁~2 岁	2 岁~7 岁	7岁~12岁	12 岁~17 岁	>17 岁
1久 系	初垤十农州	f_1	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
钬									
Ho-155	0.800 h	0.005	3.8 E-10	5.0 E-04	2.3 E-10	1.2 E-10	7.1 E-11	4.7 E-11	3.7 E-11
Ho-157	0.210 h	0.005	5.8 E-11	5.0 E-04	3.6 E-11	1.9 E-11	1. 2 E-11	8.1 E-12	6.5 E-12
Ho-159	0.550 h	0.005	7.1 E-11	5.0 E-04	4.3 E-11	2.3 E-11	1.4 E-11	9.9 E-12	7.9 E-12
Ho-161	2.50 h	0.005	1.4 E-10	5.0 E-04	8.1 E-11	4.2 E-11	2.5 E-11	1.6 E-11	1.3 E-11
Ho-162	0.250 h	0.005	3.5 E-11	5.0 E-04	2.0 E-11	1.0 E-11	6.0 E-12	4.2 E-12	3.3 E-12
Ho-162m	1.13 h	0.005	2.4 E-10	5.0 E-04	1.5 E-10	7.9 E-11	4.9 E-11	3. 3 E-11	2.6 E-11
Ho-164	0.483 h	0.005	1.2 E-10	5.0 E-04	6.5 E-11	3. 2 E-11	1.8 E-11	1. 2 E-11	9.5 E-12
Ho-164m	0.625 h	0.005	2.0 E-10	5.0 E-04	1.1 E-10	5. 5 E-11	3. 2 E-11	2.1 E-11	1.6 E-11
Ho-166	1.12 d	0.005	1.6 E-08	5.0 E-04	1.0 E-08	5.2 E-09	3.1 E-09	1.7 E-09	1.4 E-09
Ho-166m	1.20 E+03 a	0.005	2.6 E-08	5.0 E-04	9.3 E-09	5.3 E-09	3.5 E-09	2.4 E-09	2.0 E-09
Ho-167	3.10 h	0.005	8.8 E-10	5.0 E-04	5.5 E-10	2.8 E-10	1.7 E-10	1.0 E-10	8.3 E-11
铒									
Er-161	3. 24 h	0.005	6.5 E-10	5.0 E-04	4.4 E-10	2.4 E-10	1.6 E-10	1.0 E-10	8.0 E-11
Er-165	10.4 h	0.005	1.7 E-10	5.0 E-04	1.1 E-10	6.2 E-11	3.9 E-11	2.4 E-11	1.9 E-11
Er-169	9. 30 d	0.005	4.4 E-09	5.0 E-04	2.8 E-09	1.4 E-09	8.2 E-10	4.7 E-10	3.7 E-10
Er-171	7.52 h	0.005	4.0 E-09	5.0 E-04	2.5 E-09	1.3 E-09	7.6 E-10	4.5 E-10	3.6 E-10
Er-172	2.05 d	0.005	1.0 E-08	5.0 E-04	6.8 E-09	3.5 E-09	2.1 E-09	1.3 E-09	1.0 E-09
铥									
Tm-162	0.362 h	0.005	2.9 E-10	5.0 E-04	1.7 E-10	8.7 E-11	5.2 E-11	3.6 E-11	2.9 E-11
Tm-166	7.70 h	0.005	2.1 E-09	5.0 E-04	1.5 E-09	8.3 E-10	5.5 E-10	3.5 E-10	2.8 E-10
Tm-167	9. 24 d	0.005	6.0 E-09	5.0 E-04	3.9 E-09	2.0 E-09	1.2 E-09	7.0 E-10	5.6 E-10
Tm-170	129 d	0.005	1.6 E-08	5.0 E-04	9.8 E-09	4.9 E-09	2.9 E-09	1.6 E-09	1.3 E-09
Tm-171	1.92 a	0.005	1.5 E-09	5.0 E-04	7.8 E-10	3.9 E-10	2.3 E-10	1.3 E-10	1.1 E-10
Tm-172	2. 65 d	0.005	1.9 E-08	5.0 E-04	1.2 E-08	6.1 E-09	3.7 E-09	2.1 E-09	1.7 E-09
Tm-173	8.24 h	0.005	3.3 E-09	5.0 E-04	2.1 E-09	1.1 E-09	6.5 E-10	3.8 E-10	3.1 E-10
Tm-175	0.253 h	0.005	3.1 E-10	5.0 E-04	1.7 E-10	8. 6 E-11	5.0 E-11	3.4 E-11	2.7 E-11
镱									
Yb-162	0.315 h	0.005	2.2 E-10	5.0 E-04	1.3 E-10	6.9 E-11	4.2 E-11	2.9 E-11	2.3 E-11

+* ±	物理业产物	年齢 g	≤1 岁	f_1	1 岁~2 岁	2 岁~7 岁	7 岁~12 岁	12 岁~17 岁	>17 岁
核 素	物理半衰期	f_1	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
Yb-166	2. 36 d	0.005	7.7 E-09	5.0 E-04	5.4 E-09	2.9 E-09	1.9 E-09	1. 2 E-09	9.5 E-10
Yb-167	0.292 h	0.005	7.0 E-11	5.0 E-04	4.1 E-11	2.1 E-11	1.2 E-11	8.4 E-12	6.7 E-12
Yb-169	32.0 d	0.005	7.1 E-09	5.0 E-04	4.6 E-09	2.4 E-09	1.5 E-09	8.8 E-10	7.1 E-10
Yb-175	4.19 d	0.005	5.0 E-09	5.0 E-04	3.2 E-09	1.6 E-09	9.5 E-10	5.4 E-10	4.4 E-10
Yb-177	1.90 h	0.005	1.0 E-09	5.0 E-04	6.8 E-10	3.4 E-10	2.0 E-10	1.1 E-10	8.8 E-11
Yb-178	1.23 h	0.005	1.4 E-09	5.0 E-04	8.4 E-10	4.2 E-10	2.4 E-10	1.5 E-10	1.2 E-10
镥									
Lu-169	1.42 d	0.005	3.5 E-09	5.0 E-04	2.4 E-09	1.4 E-09	8.9 E-10	5.7 E-10	4.6 E-10
Lu-170	2.00 d	0.005	7.4 E-09	5.0 E-04	5.2 E-09	2.9 E-09	1.9 E-09	1.2 E-09	9.9 E-10
Lu-171	8. 22 d	0.005	5.9 E-09	5.0 E-04	4.0 E-09	2.2 E-09	1.4 E-09	8.5 E-10	6.7 E-10
Lu-172	6.70 d	0.005	1.0 E-08	5.0 E-04	7.0 E-09	3.9 E-09	2.5 E-09	1.6 E-09	1.3 E-09
Lu-173	1.37 a	0.005	2.7 E-09	5.0 E-04	1.6 E-09	8.6 E-10	5. 3 E-10	3.2 E-10	2.6 E-10
Lu-174	3.31 a	0.005	3.2 E-09	5.0 E-04	1.7 E-09	9.1 E-10	5.6 E-10	3.3 E-10	2.7 E-10
Lu-174m	142 d	0.005	6.2 E-09	5.0 E-04	3.8 E-09	1.9 E-09	1.1 E-09	6. 6 E-10	5.3 E-10
Lu-176	3.60 E+10 a	0.005	2.4 E-08	5.0 E-04	1.1 E-08	5.7 E-09	3.5 E-09	2. 2 E-09	1.8 E-09
Lu-176m	3.68 h	0.005	2.0 E-09	5.0 E-04	1.2 E-09	6.0 E-10	3.5 E-10	2.1 E-10	1.7 E-10
Lu-177	6.71 d	0.005	6.1 E-09	5.0 E-04	3.9 E-09	2.0 E-09	1.2 E-09	6.6 E-10	5.3 E-10
Lu-177m	161 d	0.005	1.7 E-08	5.0 E-04	1.1 E-08	5.8 E-09	3.6 E-09	2.1 E-09	1.7 E-09
Lu-178	0.473 h	0.005	5.9 E-10	5.0 E-04	3.3 E-10	1.6 E-10	9.0 E-11	6.1 E-11	4.7 E-11
Lu-178m	0.378 h	0.005	4.3 E-10	5.0 E-04	2.4 E-10	1.2 E-10	7.1 E-11	4.9 E-11	3.8 E-11
Lu-179	4.59 h	0.005	2.4 E-09	5.0 E-04	1.5 E-09	7.5 E-10	4.4 E-10	2.6 E-10	2.1 E-10
铪									
Hf-170	16.0 h	0.020	3.9 E-09	0.002	2.7 E-09	1.5 E-09	9.5 E-10	6.0 E-10	4.8 E-10
Hf-172	1.87 a	0.020	1.9 E-08	0.002	6.1 E-09	3.3 E-09	2.0 E-09	1.3 E-09	1.0 E-09
Hf-173	24.0 h	0.020	1.9 E-09	0.002	1.3 E-09	7.2 E-10	4.6 E-10	2.8 E-10	2.3 E-10
Hf-175	70.0 d	0.020	3.8 E-09	0.002	2.4 E-09	1.3 E-09	8.4 E-10	5.2 E-10	4.1 E-10
Hf-177m	0.856 h	0.020	7.8 E-10	0.002	4.7 E-10	2.5 E-10	1.5 E-10	1.0 E-10	8.1 E-11
Hf-178m	31.0 a	0.020	7.0 E-08	0.002	1.9 E-08	1.1 E-08	7.8 E-09	5.5 E-09	4.7 E-09
Hf-179m	25.1 d	0.020	1.2 E-08	0.002	7.8 E-09	4.1 E-09	2.6 E-09	1.6 E-09	1.2 E-09

核 素	物理半衰期	年龄 g	≪ l 岁	f_1	1 岁~2 岁	2 岁~7 岁	7岁~12岁	12 岁~17 岁	>17 岁
10 糸	初珪十衰期	f_1	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
Hf-180m	5.50 h	0.020	1.4 E-09	0.002	9.7 E-10	5. 3 E-10	3.3 E-10	2.1 E-10	1.7 E-10
Hf-181	42.4 d	0.020	1.2 E-08	0.002	7.4 E-09	3.8 E-09	2.3 E-09	1.4 E-09	1.1 E-09
Hf-182	9.00 E+06 a	0.020	5.6 E-08	0.002	7.9 E-09	5.4 E-09	4.0 E-09	3.3 E-09	3.0 E-09
Hf-182m	1.02 h	0.020	4.1 E-10	0.002	2.5 E-10	1.3 E-10	7.8 E-11	5.2 E-11	4.2 E-11
Hf-183	1.07 h	0.020	8.1 E-10	0.002	4.8 E-10	2.4 E-10	1.4 E-10	9.3 E-11	7.3 E-11
Hf-184	4.12 h	0.020	5.5 E-09	0.002	3.6 E-09	1.8 E-09	1.1 E-09	6.6 E-10	5.2 E-10
钽									
Ta-172	0.613 h	0.010	5.5 E-10	0.001	3.2 E-10	1.6 E-10	9.8 E-11	6. 6 E-11	5.3 E-11
Ta-173	3.65 h	0.010	2.0 E-09	0.001	1.3 E-09	6.5 E-10	3.9 E-10	2.4 E-10	1.9 E-10
Ta-174	1.20 h	0.010	6.2 E-10	0.001	3.7 E-10	1.9 E-10	1.1 E-10	7.2 E-11	5.7 E-11
Ta-175	10.5 h	0.010	1.6 E-09	0.001	1.1 E-09	6.2 E-10	4.0 E-10	2.6 E-10	2.1 E-10
Ta-176	8.08 h	0.010	2.4 E-09	0.001	1.7 E-09	9.2 E-10	6.1 E-10	3.9 E-10	3.1 E-10
Ta-177	2.36 d	0.010	1.0 E-09	0.001	6.9 E-10	3.6 E-10	2.2 E-10	1.3 E-10	1.1 E-10
Ta-178	2.20 h	0.010	6.3 E-10	0.001	4.5 E-10	2.4 E-10	1.5 E-10	9.1 E-11	7.2 E-11
Ta-179	1.82 a	0.010	6.2 E-10	0.001	4.1 E-10	2.2 E-10	1.3 E-10	8.1 E-11	6.5 E-11
Ta-180	1.00 E+13 a	0.010	8.1 E-09	0.001	5.3 E-09	2.8 E-09	1.7 E-09	1.1 E-09	8.4 E-10
Ta-180m	8.10 h	0.010	5.8 E-10	0.001	3.7 E-10	1.9 E-10	1.1 E-10	6.7 E-11	5.4 E-11
Ta-182	115 d	0.010	1.4 E-08	0.001	9.4 E-09	5.0 E-09	3.1 E-09	1.9 E-09	1.5 E-09
Ta-182m	0.264 h	0.010	1.4 E-10	0.001	7.5 E-11	3.7 E-11	2.1 E-11	1.5 E-11	1.2 E-11
Ta-183	5.10 d	0.010	1.4 E-08	0.001	9.3 E-09	4.7 E-09	2.8 E-09	1.6 E-09	1.3 E-09
Ta-184	8.70 h	0.010	6.7 E-09	0.001	4.4 E-09	2.3 E-09	1.4 E-09	8.5 E-10	6.8 E-10
Ta-185	0.816 h	0.010	8.3 E-10	0.001	4.6 E-10	2.3 E-10	1.3 E-10	8. 6 E-11	6.8 E-11
Ta-186	0.175 h	0.010	3.8 E-10	0.001	2.1 E-10	1.1 E-10	6.1 E-11	4. 2 E-11	3. 3 E-11
钨									
W-176	2.30 h	0.600	6.8 E-10	0.300	5.5 E-10	3.0 E-10	2.0 E-10	1.3 E-10	1.0 E-10
W-177	2.25 h	0.600	4.4 E-10	0.300	3. 2 E-10	1.7 E-10	1.1 E-10	7.2 E-11	5.8 E-11
W-178	21.7 d	0.600	1.8 E-09	0.300	1.4 E-09	7.3 E-10	4.5 E-10	2.7 E-10	2.2 E-10
W-179	0.625 h	0.600	3.4 E-11	0.300	2.0 E-11	1.0 E-11	6.2 E-12	4.2 E-12	3.3 E-12
W-181	121 d	0.600	6.3 E-10	0.300	4.7 E-10	2.5 E-10	1.6 E-10	9. 5 E-11	7.6 E-11

	46 777 14 = 447	年龄。	r≤l 岁	f_1	1 岁~2 岁	2 岁~7 岁	7岁~12岁	12 岁~17 岁	>17 岁
核 素	物理半衰期	f_1	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
W-185	75.1 d	0.600	4.4 E-09	0.300	3.3 E-09	1.6 E-09	9.7 E-10	5.5 E-10	4.4 E-10
W-187	23.9 h	0.600	5.5 E-09	0.300	4.3 E-09	2.2 E-09	1.3 E-09	7.8 E-10	6.3 E-10
W-188	69.4 d	0.600	2.1 E-08	0.300	1.5 E-08	7.7 E-09	4.6 E-09	2.6 E-09	2.1 E-09
铼									
Re-177	0. 233 h	1.000	2.5 E-10	0.800	1.4 E-10	7.2 E-11	4.1 E-11	2. 8 E-11	2. 2 E-11
Re-178	0.220 h	1.000	2.9 E-10	0.800	1.6 E-10	7.9 E-11	4.6 E-11	3.1 E-11	2.5 E-11
Re-181	20.0 h	1.000	4.2 E-09	0.800	2.8 E-09	1.4 E-09	8. 2 E-10	5.4 E-10	4.2 E-10
Re-182	2.67 d	1.000	1.4 E-08	0.800	8.9 E-09	4.7 E-09	2.8 E-09	1.8 E-09	1.4 E-09
Re-182	12.7 h	1.000	2.4 E-09	0.800	1.7 E-09	8.9 E-10	5.2 E-10	3.5 E-10	2.7 E-10
Re-184	38.0 d	1.000	8. 9 E-09	0.800	5.6 E-09	3.0 E-09	1.8 E-09	1.3 E-09	1.0 E-09
Re-184m	165 d	1.000	1.7 E-08	0.800	9.8 E-09	4.9 E-09	2.8 E-09	1.9 E-09	1.5 E-09
Re-186	3.78 d	1.000	1.9 E-08	0.800	1.1 E-08	5.5 E-09	3.0 E-09	1.9 E-09	1.5 E-09
Re-186m	2.00 E+05 a	1.000	3.0 E-08	0.800	1.6 E-08	7.6 E-09	4.4 E-09	2.8 E-09	2.2 E-09
Re-187	5.00 E+10 a	1.000	6.8 E-11	0.800	3. 8 E-11	1.8 E-11	1.0 E-11	6. 6 E-12	5.1 E-12
Re-188	17.0 h	1.000	1.7 E-08	0.800	1.1 E-08	5.4 E-09	2.9 E-09	1.8 E-09	1.4 E-09
Re-188m	0.310 h	1.000	3.8 E-10	0.800	2.3 E-10	1.1 E-10	6.1 E-11	4.0 E-11	3.0 E-11
Re-189	1.01 d	1.000	9.8 E-09	0.800	6.2 E-09	3.0 E-09	1.6 E-09	1.0 E-09	7.8 E-10
锇									
Os-180	0.366 h	0.020	1.6 E-10	0.010	9.8 E-11	5.1 E-11	3. 2 E-11	2. 2 E-11	1.7 E-11
Os-181	1.75 h	0.020	7.6 E-10	0.010	5.0 E-10	2.7 E-10	1.7 E-10	1.1 E-10	8. 9 E-11
Os-182	22.0 h	0.020	4.6 E-09	0.010	3.2 E-09	1.7 E-09	1.1 E-09	7.0 E-10	5.6 E-10
Os-185	94.0 d	0.020	3.8 E-09	0.010	2.6 E-09	1.5 E-09	9.8 E-10	6.5 E-10	5.1 E-10
Os-189m	6.00 h	0.020	2.1 E-10	0.010	1.3 E-10	6.5 E-11	3.8 E-11	2. 2 E-11	1.8 E-11
Os-191	15.4 d	0.020	6.3 E-09	0.010	4.1 E-09	2.1 E-09	1.2 E-09	7.0 E-10	5.7 E-10
Os-191m	13.0 h	0.020	1.1 E-09	0.010	7.1 E-10	3.5 E-10	2.1 E-10	1.2 E-10	9.6 E-11
Os-193	1.25 d	0.020	9.3 E-09	0.010	6.0 E-09	3.0 E-09	1.8 E-09	1.0 E-09	8.1 E-10
Os-194	6.00 a	0.020	2.9 E-08	0.010	1.7 E-08	8.8 E-09	5.2 E-09	3.0 E-09	2.4 E-09
铱									
Ir-182	0.250 h	0.020	5.3 E-10	0.010	3.0 E-10	1.5 E-10	8. 9 E-11	6.0 E-11	4.8 E-11

+	46 777 14 77 147	年龄 g	≪1 岁	f_1	1 岁~2 岁	2 岁~7 岁	7岁~12岁	12 岁~17 岁	>17 岁
核素	物理半衰期	f_1	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
Ir-184	3.02 h	0.020	1.5 E-09	0.010	9.7 E-10	5.2 E-10	3.3 E-10	2.1 E-10	1.7 E-10
Ir-185	14.0 h	0.020	2.4 E-09	0.010	1.6 E-09	8.6 E-10	5.3 E-10	3.3 E-10	2.6 E-10
Ir-186	15.8 h	0.020	3.8 E-09	0.010	2.7 E-09	1.5 E-09	9.6 E-10	6.1 E-10	4.9 E-10
Ir-186	1.75 h	0.020	5.8 E-10	0.010	3.6 E-10	2.1 E-10	1.3 E-10	7.7 E-11	6.1 E-11
Ir-187	10.5 h	0.020	1.1 E-09	0.010	7.3 E-10	3.9 E-10	2.5 E-10	1.5 E-10	1.2 E-10
Ir-188	1.73 d	0.020	4.6 E-09	0.010	3.3 E-09	1.8 E-09	1.2 E-09	7.9 E-10	6.3 E-10
Ir-189	13. 3 d	0.020	2.5 E-09	0.010	1.7 E-09	8.6 E-10	5.2 E-10	3.0 E-10	2.4 E-10
Ir-190	12.1 d	0.020	1.0 E-08	0.010	7.1 E-09	3.9 E-09	2.5 E-09	1.6 E-09	1.2 E-09
Ir-190m	3.10 h	0.020	9.4 E-10	0.010	6.4 E-10	3.5 E-10	2.3 E-10	1.5 E-10	1.2 E-10
Ir-190m	1.20 h	0.020	7.9 E-11	0.010	5.0 E-11	2.6 E-11	1.6 E-11	1.0 E-11	8.0 E-12
Ir-192	74.0 d	0.020	1.3 E-08	0.010	8.7 E-09	4.6 E-09	2.8 E-09	1.7 E-09	1.4 E-09
Ir-192m	2.41 E+02 a	0.020	2.8 E-09	0.010	1.4 E-09	8.3 E-10	5.5 E-10	3.7 E-10	3.1 E-10
Ir-193m	11.9 d	0.020	3.2 E-09	0.010	2.0 E-09	1.0 E-09	6.0 E-10	3.4 E-10	2.7 E-10
Ir-194	19.1 h	0.020	1.5 E-08	0.010	9.8 E-09	4.9 E-09	2.9 E-09	1.7 E-09	1.3 E-09
Ir-194m	171 d	0.020	1.7 E-08	0.010	1.1 E-08	6.4 E-09	4.1 E-09	2.6 E-09	2.1 E-09
Ir-195	2.50 h	0.020	1.2 E-09	0.010	7.3 E-10	3.6 E-10	2.1 E-10	1.3 E-10	1.0 E-10
Ir-195m	3.80 h	0.020	2.3 E-09	0.010	1.5 E-09	7.3 E-10	4.3 E-10	2.6 E-10	2.1 E-10
铂									
Pt-186	2.00 h	0.020	7.8 E-10	0.010	5.3 E-10	2.9 E-10	1.8 E-10	1. 2 E-10	9.3 E-11
Pt-188	10. 2 d	0.020	6.7 E-09	0.010	4.5 E-09	2.4 E-09	1.5 E-09	9.5 E-10	7.6 E-10
Pt-189	10. 9 h	0.020	1.1 E-09	0.010	7.4 E-10	3.9 E-10	2.5 E-10	1.5 E-10	1.2 E-10
Pt-191	2.80 d	0.020	3.1 E-09	0.010	2.1 E-09	1.1 E-09	6.9 E-10	4.2 E-10	3.4 E-10
Pt-193	50.0 a	0.020	3.7 E-10	0.010	2.4 E-10	1.2 E-10	6.9 E-11	3. 9 E-11	3.1 E-11
Pt-193m	4.33 d	0.020	5.2 E-09	0.010	3.4 E-09	1.7 E-09	9.9 E-10	5.6 E-10	4.5 E-10
Pt-195m	4.02 d	0.020	7.1 E-09	0.010	4.6 E-09	2.3 E-09	1.4 E-09	7.9 E-10	6.3 E-10
Pt-197	18.3 h	0.020	4.7 E-09	0.010	3.0 E-09	1.5 E-09	8.8 E-10	5.1 E-10	4.0 E-10
Pt-197m	1.57 h	0.020	1.0 E-09	0.010	6.1 E-10	3.0 E-10	1.8 E-10	1.1 E-10	8.4 E-11
Pt-199	0.513 h	0.020	4.7 E-10	0.010	2.7 E-10	1.3 E-10	7.5 E-11	5.0 E-11	3.9 E-11
Pt-200	12.5 h	0.020	1.4 E-08	0.010	8.8 E-09	4.4 E-09	2.6 E-09	1.5 E-09	1.2 E-09

* =	45 m V = 110	年齢 g	≪1 岁	f_1	1 岁~2 岁	2 岁~7 岁	7 岁~12 岁	12 岁~17 岁	>17 岁
核 素	物理半衰期	f_1	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
金									
Au-193	17.6 h	0.200	1.2 E-09	0.100	8.8 E-10	4.6 E-10	2.8 E-10	1.7 E-10	1.3 E-10
Au-194	1.65 d	0.200	2.9 E-09	0.100	2.2 E-09	1.2 E-09	8.1 E-10	5.3 E-10	4.2 E-10
Au-195	183 d	0.200	2.4 E-09	0.100	1.7 E-09	8.9 E-10	5.4 E-10	3.2 E-10	2.5 E-10
Au-198	2.69 d	0.200	1.0 E-08	0.100	7.2 E-09	3.7 E-09	2.2 E-09	1.3 E-09	1.0 E-09
Au-198m	2.30 d	0.200	1.2 E-08	0.100	8.5 E-09	4.4 E-09	2.7 E-09	1.6 E-09	1.3 E-09
Au-199	3.14 d	0.200	4.5 E-09	0.100	3.1 E-09	1.6 E-09	9.5 E-10	5.5 E-10	4.4 E-10
Au-200	0.807 h	0.200	8.3 E-10	0.100	4.7 E-10	2.3 E-10	1.3 E-10	8.7 E-11	6.8 E-11
Au-200m	18.7 h	0.200	9.2 E-09	0.100	6.6 E-09	3.5 E-09	2.2 E-09	1.3 E-09	1.1 E-09
Au-201	0.440 h	0.200	3.1 E-10	0.100	1.7 E-10	8. 2 E-11	4.6 E-11	3.1 E-11	2.4 E-11
汞									
Hg-193	3.50 h	1.000	3.3 E-10	1.000	1.9 E-10	9.8 E-11	5.8 E-11	3.9 E-11	3.1 E-11
(有机的)		0.800	4.7 E-10	0.400	4.4 E-10	2.2 E-10	1.4 E-10	8. 3 E-11	6.6 E-11
Hg-193(无机的)	3.50 h	0.040	8.5 E-10	0.020	5.5 E-10	2.8 E-10	1.7 E-10	1.0 E-10	8.2 E-11
Hg-193m	11.1 h	1.000	1.1 E-09	1.000	6.8 E-10	3.7 E-10	2.3 E-10	1.5 E-10	1.3 E-10
(有机的)		0.800	1.6 E-09	0.400	1.8 E-09	9.5 E-10	6.0 E-10	3.7 E-10	3.0 E-10
Hg-193m(无机的)	11.1 h	0.040	3.6 E-09	0.020	2.4 E-09	1.3 E-09	8.1 E-10	5.0 E-10	4.0 E-10
Hg-194	2.60 E+02 a	1.000	1.3 E-07	1.000	1.2 E-07	8.4 E-08	6.6 E-08	5.5 E-08	5.1 E-08
(有机的)		0.800	1.1 E-07	0.400	4.8 E-08	3.5 E-08	2.7 E-08	2.3 E-08	2.1 E-08
Hg-194(无机的)	2.60 E+02 a	0.040	7.2 E-09	0.020	3.6 E-09	2.6 E-09	1.9 E-09	1.5 E-09	1.4 E-09
Hg-195	9.90 h	1.000	3.0 E-10	1.000	2.0 E-10	1.0 E-10	6.4 E-11	4.2 E-11	3.4 E-11
(有机的)		0.800	4.6 E-10	0.400	4.8 E-10	2.5 E-10	1.5 E-10	9.3 E-11	7.5 E-11
Hg-195(无机的)	9.90 h	0.040	9.5 E-10	0.020	6.3 E-10	3.3 E-10	2.0 E-10	1.2 E-10	9.7 E-11
Hg-195m	1.73 d	1.000	2.1 E-09	1.000	1.3 E-09	6.8 E-10	4.2 E-10	2.7 E-10	2.2 E-10
(有机的)		0.800	2.6 E-09	0.400	2.8 E-09	1.4 E-09	8.7 E-10	5.1 E-10	4.1 E-10
Hg-195m(无机的)	1.73 d	0.040	5.8 E-09	0.020	3.8 E-09	2.0 E-09	1.2 E-09	7.0 E-10	5.6 E-10
Hg-197	2.67 d	1.000	9.7 E-10	1.000	6.2 E-10	3.1 E-10	1.9 E-10	1.2 E-10	9.9 E-11
(有机的)		0.800	1.3 E-09	0.400	1.2 E-09	6.1 E-10	3.7 E-10	2.2 E-10	1.7 E-10
Hg-197(无机的)	2.67 d	0.040	2.5 E-09	0.020	1.6 E-09	8.3 E-10	5.0 E-10	2.9 E-10	2.3 E-10

=	45 m y = m	年齢 g	≪1 岁	f_1	1岁~2岁	2 岁~7 岁	7岁~12岁	12 岁~17 岁	>17 岁
核素	物理半衰期	f_1	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
Hg-197m	23.8 h	1.000	1.5 E-09	1.000	9.5 E-10	4.8 E-10	2.9 E-10	1.8 E-10	1.5 E-10
(有机的)		0.800	2.2 E-09	0.400	2.5 E-09	1.2 E-09	7.3 E-10	4.2 E-10	3.4 E-10
Hg-197m(无机的)	23.8 h	0.040	5.2 E-09	0.020	3.4 E-09	1.7 E-09	1.0 E-09	5.9 E-10	4.7 E-10
Hg-199m	0.710 h	1.000	3.4 E-10	1.000	1.9 E-10	9.3 E-11	5.3 E-11	3.6 E-11	2.8 E-11
(有机的)		0.800	3.6 E-10	0.400	2.1 E-10	1.0 E-10	5.8 E-11	3.9 E-11	3.1 E-11
Hg-199m(无机的)	0.710 h	0.040	3.7 E-10	0.020	2.1 E-10	1.0 E-10	5.9 E-11	3.9 E-11	3.1 E-11
Hg-203	46.6 d	1.000	1.5 E-08	1.000	1.1 E-08	5.7 E-09	3.6 E-09	2.3 E-09	1.9 E-09
(有机的)		0.800	1.3 E-08	0.400	6.4 E-09	3.4 E-09	2.1 E-09	1.3 E-09	1.1 E-09
Hg-203(无机的)	46.6 d	0.040	5.5 E-09	0.020	3.6 E-09	1.8 E-09	1.1 E-09	6.7 E-10	5.4 E-10
铊									
Tl-194	0.550 h	1.000	6.1 E-11	1.000	3.9 E-11	2. 2 E-11	1.4 E-11	1.0 E-11	8.1 E-12
Tl-194m	0.546 h	1.000	3.8 E-10	1.000	2.2 E-10	1.2 E-10	7.0 E-11	4.9 E-11	4.0 E-11
Tl-195	1.16 h	1.000	2.3 E-10	1.000	1.4 E-10	7.5 E-11	4.7 E-11	3.3 E-11	2.7 E-11
Tl-197	2.84 h	1.000	2.1 E-10	1.000	1.3 E-10	6.7 E-11	4.2 E-11	2.8 E-11	2.3 E-11
Tl-198	5.30 h	1.000	4.7 E-10	1.000	3.3 E-10	1.9 E-10	1.2 E-10	8.7 E-11	7.3 E-11
Tl-198m	1.87 h	1.000	4.8 E-10	1.000	3.0 E-10	1.6 E-10	9.7 E-11	6.7 E-11	5.4 E-11
Tl-199	7.42 h	1.000	2.3 E-10	1.000	1.5 E-10	7.7 E-11	4.8 E-11	3. 2 E-11	2.6 E-11
Tl-200	1.09 d	1.000	1.3 E-09	1.000	9.1 E-10	5. 3 E-10	3.5 E-10	2.4 E-10	2.0 E-10
Tl-201	3.04 d	1.000	8.4 E-10	1.000	5.5 E-10	2.9 E-10	1.8 E-10	1.2 E-10	9.5 E-11
Tl-202	12.2 d	1.000	2.9 E-09	1.000	2.1 E-09	1.2 E-09	7.9 E-10	5.4 E-10	4.5 E-10
Tl-204	3.78 a	1.000	1.3 E-08	1.000	8.5 E-09	4.2 E-09	2.5 E-09	1.5 E-09	1.2 E-09
铅(*)									
Pb-195m	0.263 h	0.600	2.6 E-10	0.200	1.6 E-10	8.4 E-11	5.2 E-11	3.5 E-11	2.9 E-11
Pb-198	2.40 h	0.600	5.9 E-10	0.200	4.8 E-10	2.7 E-10	1.7 E-10	1.1 E-10	1.0 E-10
Pb-199	1.50 h	0.600	3.5 E-10	0.200	2.6 E-10	1.5 E-10	9.4 E-11	6.3 E-11	5.4 E-11
Pb-200	21.5 h	0.600	2.5 E-09	0.200	2.0 E-09	1.1 E-09	7.0 E-10	4.4 E-10	4.0 E-10
Pb-201	9.40 h	0.600	9.4 E-10	0.200	7.8 E-10	4.3 E-10	2.7 E-10	1.8 E-10	1.6 E-10
Pb-202	3.00 E+05 a	0.600	3.4 E-08	0.200	1.6 E-08	1.3 E-08	1.9 E-08	2.7 E-08	8.8 E-09
Pb-202m	3.62 h	0.600	7.6 E-10	0.200	6.1 E-10	3.5 E-10	2.3 E-10	1.5 E-10	1.3 E-10

** *	た 田 火 亨 田	年龄 g	r≤l 岁	f_1	1 岁~2 岁	2 岁~7 岁	7岁~12岁	12 岁~17 岁	>17 岁
核 素	物理半衰期	f_1	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
Pb-203	2. 17 d	0.600	1.6 E-09	0.200	1. 3 E-09	6.8 E-10	4.3 E-10	2.7 E-10	2.4 E-10
Pb-205	1.43 E+07 a	0.600	2.1 E-09	0.200	9.9 E-10	6.2 E-10	6.1 E-10	6.5 E-10	2.8 E-10
Pb-209	3. 25 h	0.600	5.7 E-10	0.200	3.8 E-10	1.9 E-10	1.1 E-10	6. 6 E-11	5.7 E-11
Pb-210	22.3 a	0.600	8.4 E-06	0.200	3.6 E-06	2.2 E-06	1.9 E-06	1.9 E-06	6.9 E-07
Pb-211	0.601 h	0.600	3.1 E-09	0.200	1.4 E-09	7.1 E-10	4.1 E-10	2.7 E-10	1.8 E-10
Pb-212	10.6 h	0.600	1.5 E-07	0.200	6.3 E-08	3. 3 E-08	2.0 E-08	1.3 E-08	6.0 E-09
Pb-214	0.447 h	0.600	2.7 E-09	0.200	1.0 E-09	5. 2 E-10	3.1 E-10	2.0 E-10	1.4 E-10
₩									
Bi-200	0.606 h	0.100	4.2 E-10	0.050	2.7 E-10	1.5 E-10	9.5 E-11	6.4 E-11	5.1 E-11
Bi-201	1.80 h	0.100	1.0 E-09	0.050	6.7 E-10	3.6 E-10	2.2 E-10	1.4 E-10	1.2 E-10
Bi-202	1.67 h	0.100	6.4 E-10	0.050	4.4 E-10	2.5 E-10	1.6 E-10	1.1 E-10	8.9 E-11
Bi-203	11.8 h	0.100	3.5 E-09	0.050	2.5 E-09	1.4 E-09	9.3 E-10	6.0 E-10	4.8 E-10
Bi-205	15.3 d	0.100	6.1 E-09	0.050	4.5 E-09	2.6 E-09	1.7 E-09	1.1 E-09	9.0 E-10
Bi-206	6.24 d	0.100	1.4 E-08	0.050	1.0 E-08	5.7 E-09	3.7 E-09	2.4 E-09	1.9 E-09
Bi-207	38.0 a	0.100	1.0 E-08	0.050	7.1 E-09	3.9 E-09	2.5 E-09	1.6 E-09	1.3 E-09
Bi-210	5.01 d	0.100	1.5 E-08	0.050	9.7 E-09	4.8 E-09	2.9 E-09	1.6 E-09	1.3 E-09
Bi-210m	3.00 E+06 a	0.100	2.1 E-07	0.050	9.1 E-08	4.7 E-08	3.0 E-08	1.9 E-08	1.5 E-08
Bi-212	1.01 h	0.100	3.2 E-09	0.050	1.8 E-09	8.7 E-10	5.0 E-10	3.3 E-10	2.6 E-10
Bi-213	0.761 h	0.100	2.5 E-09	0.050	1.4 E-09	6.7 E-10	3.9 E-10	2.5 E-10	2.0 E-10
Bi-214	0.332 h	0.100	1.4 E-09	0.050	7.4 E-10	3.6 E-10	2.1 E-10	1.4 E-10	1.1 E-10
钋									
Po-203	0.612 h	1.000	2.9 E-10	0.500	2.4 E-10	1.3 E-10	8.5 E-11	5.8 E-11	4.6 E-11
Po-205	1.80 h	1.000	3.5 E-10	0.500	2.8 E-10	1.6 E-10	1.1 E-10	7.2 E-11	5.8 E-11
Po-207	5.83 h	1.000	4.4 E-10	0.500	5.7 E-10	3.2 E-10	2.1 E-10	1.4 E-10	1.1 E-10
Po-210	138 d	1.000	2.6 E-05	0.500	8.8 E-06	4.4 E-06	2.6 E-06	1.6 E-06	1.2 E-06
砹			_		_		_		_
At-207	1.80 h	1.000	2. 5 E-09	1.000	1.6 E-09	8.0 E-10	4.8 E-10	2.9 E-10	2. 4 E-10
At-211	7. 21 h	1.000	1. 2 E-07	1.000	7.8 E-08	3.8 E-08	2.3 E-08	1.3 E-08	1.1 E-08

核素	物理半衰期	年龄 g	≪ 1 岁	f_1	1 岁~2 岁	2 岁~7 岁	7岁~12岁	12 岁~17 岁	>17 岁
1久 糸	初珪十衰期	f_1	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
钫									
Fr-222	0.240 h	1.000	6.2 E-09	1.000	3.9 E-09	2.0 E-09	1.3 E-09	8.5 E-10	7.2 E-10
Fr-223	0.363 h	1.000	2.6 E-08	1.000	1.7 E-08	8.3 E-09	5.0 E-09	2.9 E-09	2.4 E-09
镭(*)									
Ra-223	11.4 d	0.600	5.3 E-06	0.200	1.1 E-06	5. 7 E-07	4.5 E-07	3.7 E-07	1.0 E-07
Ra-224	3.66 d	0.600	2.7 E-06	0.200	6.6 E-07	3.5 E-07	2.6 E-07	2.0 E-07	6.5 E-08
Ra-225	14.8 d	0.600	7.1 E-06	0.200	1.2 E-06	6.1 E-07	5.0 E-07	4.4 E-07	9.9 E-08
Ra-226	1.60 E+03 a	0.600	4.7 E-06	0.200	9.6 E-07	6.2 E-07	8.0 E-07	1.5 E-06	2.8 E-07
Ra-227	0.703 h	0.600	1.1 E-09	0.200	4.3 E-10	2.5 E-10	1.7 E-10	1.3 E-10	8.1 E-11
Ra-228	5.75 a	0.600	3.0 E-05	0.200	5.7 E-06	3.4 E-06	3.9 E-06	5.3 E-06	6.9 E-07
锕									
Ac-224	2.90 h	0.005	1.0 E-08	5.0 E-04	5.2 E-09	2.6 E-09	1.5 E-09	8.8 E-10	7.0 E-10
Ac-225	10.0 d	0.005	4.6 E-07	5.0 E-04	1.8 E-07	9.1 E-08	5.4 E-08	3.0 E-08	2.4 E-08
Ac-226	1. 21 d	0.005	1.4 E-07	5.0 E-04	7.6 E-08	3.8 E-08	2.3 E-08	1.3 E-08	1.0 E-08
Ac-227	21.8 a	0.005	3.3 E-05	5.0 E-04	3.1 E-06	2.2 E-06	1.5 E-06	1.2 E-06	1.1 E-06
Ac-228	6.13 h	0.005	7.4 E-09	5.0 E-04	2.8 E-09	1.4 E-09	8.7 E-10	5.3 E-10	4.3 E-10
钍									
Th-226	0.515 h	0.005	4.4 E-09	5.0 E-04	2.4 E-09	1.2 E-09	6.7 E-10	4.5 E-10	3.5 E-10
Th-227	18.7 d	0.005	3.0 E-07	5.0 E-04	7.0 E-08	3.6 E-08	2.3 E-08	1.5 E-08	8.8 E-09
Th-228	1.91 a	0.005	3.7 E-06	5.0 E-04	3.7 E-07	2.2 E-07	1.5 E-07	9.4 E-08	7.2 E-08
Th-229	7.34 E+03 a	0.005	1.1 E-05	5.0 E-04	1.0 E-06	7.8 E-07	6.2 E-07	5.3 E-07	4.9 E-07
Th-230	7.70 E+04 a	0.005	4.1 E-06	5.0 E-04	4.1 E-07	3.1 E-07	2.4 E-07	2.2 E-07	2.1 E-07
Th-231	1.06 d	0.005	3.9 E-09	5.0 E-04	2.5 E-09	1.2 E-09	7.4 E-10	4.2 E-10	3.4 E-10
Th-232	1.40 E+10 a	0.005	4.6 E-06	5.0 E-04	4.5 E-07	3.5 E-07	2.9 E-07	2.5 E-07	2.3 E-07
Th-234	24.1 d	0.005	4.0 E-08	5.0 E-04	2.5 E-08	1.3 E-08	7.4 E-09	4.2 E-09	3.4 E-09
镆									
Pa-227	0.638 h	0.005	5.8 E-09	5.0 E-04	3.2 E-09	1.5 E-09	8.7 E-10	5.8 E-10	4.5 E-10
Pa-228	22.0 h	0.005	1.2 E-08	5.0 E-04	4.8 E-09	2.6 E-09	1.6 E-09	9.7 E-10	7.8 E-10
Pa-230	17.4 d	0.005	2.6 E-08	5.0 E-04	5.7 E-09	3.1 E-09	1.9 E-09	1.1 E-09	9. 2 E-10

	45 777 14 77 149	年龄 g	·≤1 岁	f_1	1 岁~2 岁	2 岁~7 岁	7岁~12岁	12 岁~17 岁	>17 岁
核 素	物理半衰期	f_1	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
Pa-231	3.27 E+04 a	0.005	1. 3 E-05	5.0 E-04	1.3 E-06	1.1 E-06	9. 2 E-07	8.0 E-07	7.1 E-07
Pa-232	1.31 d	0.005	6.3 E-09	5.0 E-04	4.2 E-09	2.2 E-09	1.4 E-09	8.9 E-10	7.2 E-10
Pa-233	27.0 d	0.005	9.7 E-09	5.0 E-04	6.2 E-09	3.2 E-09	1.9 E-09	1.1 E-09	8.7 E-10
Pa-234	6.70 h	0.005	5.0 E-09	5.0 E-04	3.2 E-09	1.7 E-09	1.0 E-09	6.4 E-10	5.1 E-10
铀									
U-230	20.8 d	0.040	7.9 E-07	0.020	3.0 E-07	1.5 E-07	1.0 E-07	6. 6 E-08	5.6 E-08
U-231	4.20 d	0.040	3.1 E-09	0.020	2.0 E-09	1.0 E-09	6.1 E-10	3.5 E-10	2.8 E-10
U-232	72.0 a	0.040	2.5 E-06	0.020	8. 2 E-07	5.8 E-07	5.7 E-07	6.4 E-07	3.3 E-07
U-233	1.58 E+05 a	0.040	3.8 E-07	0.020	1.4 E-07	9.2 E-08	7.8 E-08	7.8 E-08	5.1 E-08
U-234	2.44 E+05 a	0.040	3.7 E-07	0.020	1.3 E-07	8.8 E-08	7.4 E-08	7.4 E-08	4.9 E-08
U-235	7.04 E+08 a	0.040	3.5 E-07	0.020	1.3 E-07	8.5 E-08	7.1 E-08	7.0 E-08	4.7 E-08
U-236	2.34 E+07 a	0.040	3.5 E-07	0.020	1.3 E-07	8.4 E-08	7.0 E-08	7.0 E-08	4.7 E-08
U-237	6.75 d	0.040	8.3 E-09	0.020	5.4 E-09	2.8 E-09	1.6 E-09	9.5 E-10	7.6 E-10
U-238	4.47 E+09 a	0.040	3.4 E-07	0.020	1.2 E-07	8.0 E-08	6.8 E-08	6.7 E-08	4.5 E-08
U-239	0.392 h	0.040	3.4 E-10	0.020	1.9 E-10	9.3 E-11	5.4 E-11	3.5 E-11	2.7 E-11
U-240	14.1 h	0.040	1.3 E-08	0.020	8.1 E-09	4.1 E-09	2.4 E-09	1.4 E-09	1.1 E-09
镎 Np-232	0. 245 h	0.005	8. 7 E-11	5.0 E-04	5. 1 E-11	2. 7 E-11	1. 7 E-11	1. 2 E-11	9. 7 E-12
*	0. 245 h 0. 603 h	0.005							
Np-233			2. 1 E-11	5. 0 E-04	1. 3 E-11	6. 6 E-12	4.0 E-12	2. 8 E-12 1. 0 E-09	2. 2 E-12 8. 1 E-10
Np-234	4. 40 d	0.005	6. 2 E-09	5. 0 E-04	4.4 E-09	2. 4 E-09	1. 6 E-09		
Np-235	1.08 a	0.005	7. 1 E-10	5. 0 E-04	4.1 E-10	2. 0 E-10	1. 2 E-10	6. 8 E-11	5. 3 E-11
Np-236	1.15 E+05 a	0.005	1. 9 E-07	5. 0 E-04	2.4 E-08	1.8 E-08	1.8 E-08	1.8 E-08	1.7 E-08
Np-236	22.5 h	0.005	2. 5 E-09	5. 0 E-04	1. 3 E-09	6. 6 E-10	4.0 E-10	2. 4 E-10	1.9 E-10
Np-237	2.14 E+06 a	0.005	2. 0 E-06	5.0 E-04	2.1 E-07	1.4 E-07	1.1 E-07	1.1 E-07	1.1 E-07
Np-238	2.12 d	0.005	9.5 E-09	5.0 E-04	6. 2 E-09	3. 2 E-09	1.9 E-09	1.1 E-09	9.1 E-10
Np-239	2.36 d	0.005	8.9 E-09	5.0 E-04	5.7 E-09	2.9 E-09	1.7 E-09	1.0 E-09	8.0 E-10
Np-240 杯	1.08 h	0.005	8.7 E-10	5.0 E-04	5. 2 E-10	2. 6 E-10	1.6 E-10	1.0 E-10	8. 2 E-11
Pu-234	8.80 h	0.005	2.1 E-09	5.0 E-04	1.1 E-09	5. 5 E-10	3. 3 E-10	2.0 E-10	1.6 E-10

=	45 m V = 110	年齢 g	≪1 岁	f_1	1 岁~2 岁	2 岁~7 岁	7 岁~12 岁	12 岁~17 岁	>17 岁
核素	物理半衰期	f_1	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
Pu-235	0.422 h	0.005	2.2 E-11	5.0 E-04	1.3 E-11	6. 5 E-12	3.9 E-12	2.7 E-12	2.1 E-12
Pu-236	2.85 a	0.005	2.1 E-06	5.0 E-04	2.2 E-07	1.4 E-07	1.0 E-07	8.5 E-08	8.7 E-08
Pu-237	45.3 d	0.005	1.1 E-09	5.0 E-04	6.9 E-10	3.6 E-10	2.2 E-10	1.3 E-10	1.0 E-10
Pu-238	87.7 a	0.005	4.0 E-06	5.0 E-04	4.0 E-07	3.1 E-07	2.4 E-07	2.2 E-07	2.3 E-07
Pu-239	2.41 E+04 a	0.005	4.2 E-06	5.0 E-04	4.2 E-07	3.3 E-07	2.7 E-07	2.4 E-07	2.5 E-07
Pu-240	6.54 E+03 a	0.005	4.2 E-06	5.0 E-04	4.2 E-07	3.3 E-07	2.7 E-07	2.4 E-07	2.5 E-07
Pu-241	14.4 a	0.005	5.6 E-08	5.0 E-04	5.7 E-09	5.5 E-09	5.1 E-09	4.8 E-09	4.8 E-09
Pu-242	3.76 E+05 a	0.005	4.0 E-06	5.0 E-04	4.0 E-07	3. 2 E-07	2.6 E-07	2.3 E-07	2.4 E-07
Pu-243	4.95 h	0.005	1.0 E-09	5.0 E-04	6.2 E-10	3.1 E-10	1.8 E-10	1.1 E-10	8.5 E-11
Pu-244	8.26 E+07 a	0.005	4.0 E-06	5.0 E-04	4.1 E-07	3. 2 E-07	2.6 E-07	2.3 E-07	2.4 E-07
Pu-245	10.5 h	0.005	8.0 E-09	5.0 E-04	5.1 E-09	2.6 E-09	1.5 E-09	8.9 E-10	7.2 E-10
Pu-246	10.9 d	0.005	3.6 E-08	5.0 E-04	2.3 E-08	1.2 E-08	7.1 E-09	4.1 E-09	3.3 E-09
镅									
Am-237	1.22 h	0.005	1.7 E-10	5.0 E-04	1.0 E-10	5. 5 E-11	3. 3 E-11	2. 2 E-11	1.8 E-11
Am-238	1.63 h	0.005	2.5 E-10	5.0 E-04	1.6 E-10	9.1 E-11	5.9 E-11	4.0 E-11	3. 2 E-11
Am-239	11.9 h	0.005	2.6 E-09	5.0 E-04	1.7 E-09	8.4 E-10	5.1 E-10	3.0 E-10	2.4 E-10
Am-240	2. 12 d	0.005	4.7 E-09	5.0 E-04	3.3 E-09	1.8 E-09	1.2 E-09	7.3 E-10	5.8 E-10
Am-241	4.32 E+02 a	0.005	3.7 E-06	5.0 E-04	3.7 E-07	2.7 E-07	2.2 E-07	2.0 E-07	2.0 E-07
Am-242	16.0 h	0.005	5.0 E-09	5.0 E-04	2.2 E-09	1.1 E-09	6.4 E-10	3.7 E-10	3.0 E-10
Am-242m	1.52 E+02 a	0.005	3.1 E-06	5.0 E-04	3.0 E-07	2.3 E-07	2.0 E-07	1.9 E-07	1.9 E-07
Am-243	7.38 E+03 a	0.005	3.6 E-06	5.0 E-04	3.7 E-07	2.7 E-07	2.2 E-07	2.0 E-07	2.0 E-07
Am-244	10.1 h	0.005	4.9 E-09	5.0 E-04	3.1 E-09	1.6 E-09	9.6 E-10	5.8 E-10	4.6 E-10
Am-244m	0.433 h	0.005	3.7 E-10	5.0 E-04	2.0 E-10	9.6 E-11	5.5 E-11	3.7 E-11	2.9 E-11
Am-245	2.05 h	0.005	6.8 E-10	5.0 E-04	4.5 E-10	2.2 E-10	1.3 E-10	7.9 E-11	6.2 E-11
Am-246	0.650 h	0.005	6.7 E-10	5.0 E-04	3.8 E-10	1.9 E-10	1.1 E-10	7.3 E-11	5.8 E-11
Am-246m	0.417 h	0.005	3.9 E-10	5.0 E-04	2.2 E-10	1.1 E-10	6.4 E-11	4.4 E-11	3.4 E-11
锔	0.401	0.005	5 0 F 16	5 o F o :	4 0 F 16	0.0 5.16	1 0 F 16	1.0 5.16	0.0 5.15
Cm-238	2. 40 h	0.005	7.8 E-10	5.0 E-04	4.9 E-10	2. 6 E-10	1.6 E-10	1.0 E-10	8.0 E-11
Cm-240	27.0 d	0.005	2. 2 E-07	5.0 E-04	4.8 E-08	2.5 E-08	1.5 E-08	9.2 E-09	7.6 E-09

核素	物理半衰期	年齢 g≤1 岁		f_1	1 岁~2 岁	2 岁~7 岁	7岁~12岁	12 岁~17 岁	>17 岁
		f_1	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
Cm-241	32.8 d	0.005	1.1 E-08	5.0 E-04	5.7 E-09	3.0 E-09	1.9 E-09	1.1 E-09	9.1 E-10
Cm-242	163 d	0.005	5.9 E-07	5.0 E-04	7.6 E-08	3.9 E-08	2.4 E-08	1.5 E-08	1.2 E-08
Cm-243	28.5 a	0.005	3. 2 E-06	5.0 E-04	3. 3 E-07	2. 2 E-07	1.6 E-07	1.4 E-07	1.5 E-07
Cm-244	18.1 a	0.005	2.9 E-06	5.0 E-04	2.9 E-07	1.9 E-07	1.4 E-07	1.2 E-07	1.2 E-07
Cm-245	8.50 E+03 a	0.005	3.7 E-06	5.0 E-04	3.7 E-07	2.8 E-07	2.3 E-07	2.1 E-07	2.1 E-07
Cm-246	4.73 E+03 a	0.005	3.7 E-06	5.0 E-04	3.7 E-07	2.8 E-07	2.2 E-07	2.1 E-07	2.1 E-07
Cm-247	1.56 E+07 a	0.005	3.4 E-06	5.0 E-04	3.5 E-07	2.6 E-07	2.1 E-07	1.9 E-07	1.9 E-07
Cm-248	3.39 E+05 a	0.005	1.4 E-05	5.0 E-04	1.4 E-06	1.0 E-06	8.4 E-07	7.7 E-07	7.7 E-07
Cm-249	1.07 h	0.005	3.9 E-10	5.0 E-04	2.2 E-10	1.1 E-10	6.1 E-11	4.0 E-11	3.1 E-11
Cm-250	6.90 E+03 a	0.005	7.8 E-05	5.0 E-04	8. 2 E-06	6.0 E-06	4.9 E-06	4.4 E-06	4.4 E-06
锫									
Bk-245	4.94 d	0.005	6.1 E-09	5.0 E-04	3.9 E-09	2.0 E-09	1. 2 E-09	7. 2 E-10	5.7 E-10
Bk-246	1.83 d	0.005	3.7 E-09	5.0 E-04	2.6 E-09	1.4 E-09	9.4 E-10	6.0 E-10	4.8 E-10
Bk-247	1.38 E+03 a	0.005	8.9 E-06	5.0 E-04	8. 6 E-07	6.3 E-07	4.6 E-07	3.8 E-07	3.5 E-07
Bk-249	320 d	0.005	2. 2 E-08	5.0 E-04	2.9 E-09	1.9 E-09	1.4 E-09	1.1 E-09	9.7 E-10
Bk-250	3. 22 h	0.005	1.5 E-09	5.0 E-04	8.5 E-10	4.4 E-10	2.7 E-10	1.7 E-10	1.4 E-10
镧 Cf-244	0. 323 h	0.005	9. 8 E-10	5.0 E-04	4.8 E-10	2. 4 E-10	1. 3 E-10	8. 9 E-11	7.0 E-11
Cf-244 Cf-246	1. 49 d	0.005	5. 0 E-08	5. 0 E-04	2. 4 E-08	1. 2 E-08	7. 3 E-09	4. 1 E-09	3. 3 E-09
Cf-248	334 d	0.005	1. 5 E-06	5. 0 E-04	1. 6 E-07	9. 9 E-08	6. 0 E-08	3. 3 E-08	2. 8 E-08
Cf-249	3.50 E+02 a	0.005	9. 0 E-06	5. 0 E-04 5. 0 E-04	8. 7 E-07	6. 4 E-07	4. 7 E-07	3. 8 E-07	3. 5 E-07
Cf-249 Cf-250	13. 1 a	0.005	5. 7 E-06	5. 0 E-04 5. 0 E-04	5. 5 E-07	3. 7 E-07	2. 3 E-07	1. 7 E-07	1. 6 E-07
Cf-251	8. 98 E+02 a	0.005	9. 1 E-06	5. 0 E-04 5. 0 E-04	8. 8 E-07	6. 5 E-07	4. 7 E-07	3. 9 E-07	3. 6 E-07
Cf-252	2.64 a	0.005	5.0 E-06	5.0 E-04	5. 1 E-07	3. 2 E-07	1.9 E-07	1. 0 E-07	9. 0 E-08
Cf-253	17.8 d	0.005	1.0 E-07	5.0 E-04	1.1 E-08	6.0 E-09	3.7 E-09	1.8 E-09	1.4 E-09
Cf-254 锿	60.5 d	0.005	1.1 E-05	5.0 E-04	2.6 E-06	1.4 E-06	8. 4 E-07	5.0 E-07	4.0 E-07
Es-250	2.10 h	0.005	2. 3 E-10	5.0 E-04	9. 9 E-11	5.7 E-11	3.7 E-11	2. 6 E-11	2.1 E-11
Es-251	1.38 d	0.005	1.9 E-09	5.0 E-04	1.2 E-09	6.1 E-10	3.7 E-10	2.2 E-10	1.7 E-10

表 B6(续)

核 素	Mara 火 亭 tu	年龄。	g≤1 岁	f_1	1 岁~2 岁	2 岁~7 岁	7岁~12岁	12 岁~17 岁	>17 岁
核 系	物理半衰期	f_1	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
Es-253	20.5 d	0.005	1.7 E-07	5.0 E-04	4.5 E-08	2.3 E-08	1.4 E-08	7.6 E-09	6.1 E-09
Es-254	276 d	0.005	1.4 E-06	5.0 E-04	1.6 E-07	9.8 E-08	6.0 E-08	3.3 E-08	2.8 E-08
Es-254m	1.64 d	0.005	5.7 E-08	5.0 E-04	3.0 E-08	1.5 E-08	9.1 E-09	5.2 E-09	4.2 E-09
镄									
Fm-252	22.7 h	0.005	3.8 E-08	5.0 E-04	2.0 E-08	9.9 E-09	5.9 E-09	3.3 E-09	2.7 E-09
Fm-253	3.00 d	0.005	2.5 E-08	5.0 E-04	6.7 E-09	3.4 E-09	2.1 E-09	1.1 E-09	9.1 E-10
Fm-254	3.24 h	0.005	5.6 E-09	5.0 E-04	3. 2 E-09	1.6 E-09	9.3 E-10	5.6 E-10	4.4 E-10
Fm-255	20.1 h	0.005	3.3 E-08	5.0 E-04	1.9 E-08	9.5 E-09	5.6 E-09	3.2 E-09	2.5 E-09
Fm-257	101 d	0.005	9.8 E-07	5.0 E-04	1.1 E-07	6.5 E-08	4.0 E-08	1.9 E-08	1.5 E-08
钔									
Md-257	5.20 h	0.005	3.1 E-09	5.0 E-04	8.8 E-10	4.5 E-10	2.7 E-10	1.5 E-10	1.2 E-10
Md-258	55.0 d	0.005	6.3 E-07	5.0 E-04	8.9 E-08	5.0 E-08	3.0 E-08	1.6 E-08	1.3 E-08

* 对于钙,1 岁 \sim 15 岁的 f_1 值为 0.4;

对于铁,1岁 \sim 15岁的 f_1 值为 0.2;

对于钴,1 岁 \sim 15 岁的 f_1 值为 0.3;

对于锶,1岁 \sim 15岁的 f_1 值为 0.4;

对于钡,1岁 \sim 15岁的 f_1 值为0.3; 对于铅,1岁 \sim 15岁的 f_1 值为0.4;

对于镭,1 岁 \sim 15 岁的 f_1 值为 0.3。

表 B7 吸入:公众成员吸入单位摄入量所致的待积有效剂量 $e(g)/(\mathrm{Sv} \cdot \mathrm{Bq}^{-1})$

核 素	物理半衰期	类 别	年龄 8	r≪1 岁	f_1	1 岁~2 岁	2 岁~7 岁	7岁~12岁	12 岁~17 岁	>17 岁
1久 糸	初珪十長期	关 加	f_1	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
氢										
氚化水	12.3 a	F	1.000	2.6 E-11	1.000	2.0 E-11	1.1 E-11	8.2 E-12	5.9 E-12	6.2 E-12
		M	0.200	3.4 E-10	0.100	2.7 E-10	1.4 E-10	8.2 E-11	5. 3 E-11	4.5 E-11
		S	0.020	1.2 E-09	0.010	1.0 E-09	6.3 E-10	3.8 E-10	2.8 E-10	2.6 E-10
铍										
Be-7	53.3 d	M	0.020	2.5 E-10	0.005	2.1 E-10	1.2 E-10	8.3 E-11	6.2 E-11	5.0 E-11
		S	0.020	2.8 E-10	0.005	2.4 E-10	1.4 E-10	9.6 E-11	6.8 E-11	5.5 E-11
Be-10	1.60 E+06 a	M	0.020	4.1 E-08	0.005	3.4 E-08	2.0 E-08	1.3 E-08	1.1 E-08	9.6 E-09
		S	0.020	9.9 E-08	0.005	9.1 E-08	6.1 E-08	4.2 E-08	3.7 E-08	3.5 E-08
碳										
C-11	0.340 h	F	1.000	1.0 E-10	1.000	7.0 E-11	3.2 E-11	2.1 E-11	1.3 E-11	1.1 E-11
		M	0.200	1.5 E-10	0.100	1.1 E-10	4.9 E-11	3.2 E-11	2.1 E-11	1.8 E-11
		S	0.020	1.6 E-10	0.010	1.1 E-10	5.1 E-11	3. 3 E-11	2.2 E-11	1.8 E-11
C-14	5.73 E+03 a	F	1.000	6.1 E-10	1.000	6.7 E-10	3.6 E-10	2.9 E-10	1.9 E-10	2.0 E-10
		M	0.200	8.3 E-09	0.100	6.6 E-09	4.0 E-09	2.8 E-09	2.5 E-09	2.0 E-09
		S	0.020	1.9 E-08	0.010	1.7 E-08	1.1 E-08	7.4 E-09	6.4 E-09	5.8 E-09
氟										
F-18	1.83 h	F	1.000	2.6 E-10	1.000	1.9 E-10	9.1 E-11	5.6 E-11	3.4 E-11	2.8 E-11
		M	1.000	4.1 E-10	1.000	2.9 E-10	1.5 E-10	9.7 E-11	6.9 E-11	5.6 E-11
		S	1.000	4.2 E-10	1.000	3.1 E-10	1.5 E-10	1.0 E-10	7.3 E-11	5.9 E-11
钠										
Na-22	2.60 a	F	1.000	9.7 E-09	1.000	7.3 E-09	3.8 E-09	2.4 E-09	1.5 E-09	1.3 E-09
Na-24	15.0 h	F	1.000	2.3 E-09	1.000	1.8 E-09	9.3 E-10	5.7 E-10	3.4 E-10	2.7 E-10
镁 Mg-28	20.9 h	F	1.000	5. 3 E-09	0.500	4.7 E-09	2. 2 E-09	1. 3 E-09	7. 3 E-10	6.0 E-10
1V1g-40	20.9 11	M				7. 2 E-09	2. 2 E-09 3. 5 E-09		1. 5 E-09	
铝		iVI	1.000	7.3 E-09	0.500	1.2 E-09	3.3 E-09	2.3 E-09	1.5 E-09	1. 2 E-09
Al-26	7.16 E+05 a	F	0.020	8.1 E-08	0.010	6. 2 E-08	3.2 E-08	2.0 E-08	1.3 E-08	1.1 E-08
		M	0.020	8.8 E-08	0.010	7.4 E-08	4.4 E-08	2.9 E-08	2. 2 E-08	2.0 E-08

核 素	物理半衰期	类 别	年龄 8	r≤1 岁	f_1	1 岁~2 岁	2 岁~7 岁	7岁~12岁	12 岁~17 岁	>17 岁
12 25	物理干衣鄉	× //	f_1	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
硅										
Si-31	2.62 h	F	0.020	3.6 E-10	0.010	2.3 E-10	9.5 E-11	5.9 E-11	3. 2 E-11	2.7 E-11
		M	0.020	6.9 E-10	0.010	4.4 E-10	2.0 E-10	1.3 E-10	8.9 E-11	7.4 E-11
		S	0.020	7.2 E-10	0.010	4.7 E-10	2.2 E-10	1.4 E-10	9.5 E-11	7.9 E-11
Si-32	4.50 E+02 a	F	0.020	3.0 E-08	0.010	2.3 E-08	1.1 E-08	6.4 E-09	3.8 E-09	3.2 E-09
		M	0.020	7.1 E-08	0.010	6.0 E-08	3.6 E-08	2.4 E-08	1.9 E-08	1.7 E-08
		S	0.020	2.8 E-07	0.010	2.7 E-07	1.9 E-07	1.3 E-07	1.1 E-07	1.1 E-07
磷										
P-32	14.3 d	F	1.000	1.2 E-08	0.800	7.5 E-09	3.2 E-09	1.8 E-09	9.8 E-10	7.7 E-10
		M	1.000	2.2 E-08	0.800	1.5 E-08	8.0 E-09	5.3 E-09	4.0 E-09	3.4 E-09
P-33	25. 4 d	F	1.000	1.2 E-09	0.800	7.8 E-10	3.0 E-10	2.0 E-10	1.1 E-10	9.2 E-11
		M	1.000	6.1 E-09	0.800	4.6 E-09	2.8 E-09	2.1 E-09	1.9 E-09	1.5 E-09
硫										
S-35	87. 4 d	F	1.000	5.5 E-10	0.800	3.9 E-10	1.8 E-10	1.1 E-10	6.0 E-11	5.1 E-11
(无机的)		M	0.200	5.9 E-09	0.100	4.5 E-09	2.8 E-09	2.0 E-09	1.8 E-09	1.4 E-09
		S	0.020	7.7 E-09	0.010	6.0 E-09	3.6 E-09	2.6 E-09	2.3 E-09	1.9 E-09
氯										
Cl-36	3.01 E+05 a	F	1.000	3.9 E-09	1.000	2.6 E-09	1.1 E-09	7.1 E-10	3.9 E-10	3.3 E-10
		M	1.000	3.1 E-08	1.000	2.6 E-08	1.5 E-08	1.0 E-08	8.8 E-09	7.3 E-09
Cl-38	0.620 h	F	1.000	2.9 E-10	1.000	1.9 E-10	8.4 E-11	5.1 E-11	3.0 E-11	2.5 E-11
		M	1.000	4.7 E-10	1.000	3.0 E-10	1.4 E-10	8.5 E-11	5.4 E-11	4.5 E-11
Cl-39	0.927 h	F	1.000	2.7 E-10	1.000	1.8 E-10	8.4 E-11	5.1 E-11	3.1 E-11	2.5 E-11
		M	1.000	4.3 E-10	1.000	2.8 E-10	1.3 E-10	8.5 E-11	5.6 E-11	4.6 E-11
钾										
K-40	1.28 E+09 a	F	1.000	2.4 E-08	1.000	1.7 E-08	7.5 E-09	4.5 E-09	2.5 E-09	2.1 E-09
K-42	12.4 h	F	1.000	1.6 E-09	1.000	1.0 E-09	4.4 E-10	2.6 E-10	1.5 E-10	1.2 E-10
K-43	22.6 h	F	1.000	1.3 E-09	1.000	9.7 E-10	4.7 E-10	2.9 E-10	1.7 E-10	1.4 E-10
K-44	0.369 h	F	1.000	2.2 E-10	1.000	1.4 E-10	6.5 E-11	4.0 E-11	2.4 E-11	2.0 E-11
K-45	0.333 h	F	1.000	1.5 E-10	1.000	1.0 E-10	4.8 E-11	3.0 E-11	1.8 E-11	1.5 E-11

			年龄。	r≤1 岁	f_1	1 岁~2 岁	2 岁~7 岁	7岁~12岁	12 岁~17 岁	>17 岁
核 素	物理半衰期	类 别	f_1	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
钙(*)										
Ca-41	1.40 E+05 a	F	0.600	6.7 E-10	0.300	3.8 E-10	2.6 E-10	3.3 E-10	3.3 E-10	1.7 E-10
		M	0.200	4.2 E-10	0.100	2.6 E-10	1.7 E-10	1.7 E-10	1.6 E-10	9.5 E-11
		S	0.020	6.7 E-10	0.010	6.0 E-10	3.8 E-10	2.4 E-10	1.9 E-10	1.8 E-10
Ca-45	163 d	F	0.600	5.7 E-09	0.300	3.0 E-09	1.4 E-09	1.0 E-09	7.6 E-10	4.6 E-10
		M	0.200	1.2 E-08	0.100	8.8 E-09	5.3 E-09	3.9 E-09	3.5 E-09	2.7 E-09
		S	0.020	1.5 E-08	0.010	1.2 E-08	7.2 E-09	5.1 E-09	4.6 E-09	3.7 E-09
Ca-47	4.53 d	F	0.600	4.9 E-09	0.300	3.6 E-09	1.7 E-09	1.1 E-09	6.1 E-10	5.5 E-10
		M	0.200	1.0 E-08	0.100	7.7 E-09	4.2 E-09	2.9 E-09	2.4 E-09	1.9 E-09
		S	0.020	1.2 E-08	0.010	8.5 E-09	4.6 E-09	3.3 E-09	2.6 E-09	2.1 E-09
钪										
Sc-43	3.89 h	S	0.001	9.3 E-10	1.0 E-04	6.7 E-10	3.3 E-10	2.2 E-10	1.4 E-10	1.1 E-10
Sc-44	3.93 h	S	0.001	1.6 E-09	1.0 E-04	1.2 E-09	5.6 E-10	3.6 E-10	2.3 E-10	1.8 E-10
Sc-44m	2.44 d	S	0.001	1.1 E-08	1.0 E-04	8.4 E-09	4.2 E-09	2.8 E-09	1.7 E-09	1.4 E-09
Sc-46	83. 8 d	S	0.001	2.8 E-08	1.0 E-04	2.3 E-08	1.4 E-08	9.8 E-09	8.4 E-09	6.8 E-09
Sc-47	3. 35 d	S	0.001	4.0 E-09	1.0 E-04	2.8 E-09	1.5 E-09	1.1 E-09	9.2 E-10	7.3 E-10
Sc-48	1.82 d	S	0.001	7.8 E-09	1.0 E-04	5.9 E-09	3.1 E-09	2.0 E-09	1.4 E-09	1.1 E-09
Sc-49	0.956 h	S	0.001	3.9 E-10	1.0 E-04	2.4 E-10	1.1 E-10	7.1 E-11	4.7 E-11	4.0 E-11
钛										
Ti-44	47.3 a	F	0.020	3.1 E-07	0.010	2.6 E-07	1.5 E-07	9.6 E-08	6.6 E-08	6.1 E-08
		M	0.020	1.7 E-07	0.010	1.5 E-07	9.2 E-08	5.9 E-08	4.6 E-08	4.2 E-08
		S	0.020	3.2 E-07	0.010	3.1 E-07	2.1 E-07	1.5 E-07	1.3 E-07	1.2 E-07
Ti-45	3.08 h	F	0.020	4.4 E-10	0.010	3.2 E-10	1.5 E-10	9.1 E-11	5.1 E-11	4.2 E-11
		M	0.020	7.4 E-10	0.010	5.2 E-10	2.5 E-10	1.6 E-10	1.1 E-10	8.8 E-11
		S	0.020	7.7 E-10	0.010	5.5 E-10	2.7 E-10	1.7 E-10	1.1 E-10	9.3 E-11
钒										
V-47	0.543 h	F	0.020	1.8 E-10	0.010	1.2 E-10	5.6 E-11	3.5 E-11	2. 1 E-11	1.7 E-11
		M	0.020	2.8 E-10	0.010	1.9 E-10	8. 6 E-11	5.5 E-11	3.5 E-11	2.9 E-11
V-48	16.2 d	F	0.020	8.4 E-09	0.010	6.4 E-09	3.3 E-09	2.1 E-09	1.3 E-09	1.1 E-09

核 素	物理半衰期	类 别	年龄 g	≲1 岁	f_1	1 岁~2 岁	2 岁~7 岁	7岁~12岁	12 岁~17 岁	>17 岁
10 5	初连十表期	夫 제	f_1	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
		M	0.020	1.4 E-08	0.010	1.1 E-08	6.3 E-09	4.3 E-09	2.9 E-09	2.4 E-09
V-49	330 d	F	0.020	2.0 E-10	0.010	1.6 E-10	7.7 E-11	4.3 E-11	2. 5 E-11	2.1 E-11
		M	0.020	2.8 E-10	0.010	2.1 E-10	1.1 E-10	6.3 E-11	4.0 E-11	3.4 E-11
铬										
Cr-48	23.0 h	F	0.200	7.6 E-10	0.100	6.0 E-10	3.1 E-10	2.0 E-10	1.2 E-10	9.9 E-11
		M	0.200	1.1 E-09	0.100	9.1 E-10	5.1 E-10	3.4 E-10	2.5 E-10	2.0 E-10
		S	0.200	1.2 E-09	0.100	9.8 E-10	5.5 E-10	3.7 E-10	2.8 E-10	2.2 E-10
Cr-49	0.702 h	F	0.200	1.9 E-10	0.100	1.3 E-10	6.0 E-11	3.7 E-11	2.2 E-11	1.9 E-11
		M	0.200	3.0 E-10	0.100	2.0 E-10	9.5 E-11	6.1 E-11	4.0 E-11	3.3 E-11
		S	0.200	3.1 E-10	0.100	2.1 E-10	9.9 E-11	6.4 E-11	4.2 E-11	3.5 E-11
Cr-51	27.7 d	F	0.200	1.7 E-10	0.100	1.3 E-10	6.3 E-11	4.0 E-11	2.4 E-11	2.0 E-11
		M	0.200	2.6 E-10	0.100	1.9 E-10	1.0 E-10	6.4 E-11	3.9 E-11	3.2 E-11
		S	0.200	2.6 E-10	0.100	2.1 E-10	1.0 E-10	6.6 E-11	4.5 E-11	3.7 E-11
锰										
Mn-51	0.770 h	F	0.200	2.5 E-10	0.100	1.7 E-10	7.5 E-11	4.6 E-11	2.7 E-11	2. 3 E-11
		M	0.200	4.0 E-10	0.100	2.7 E-10	1.2 E-10	7.8 E-11	5.0 E-11	4.1 E-11
Mn-52	5. 59 d	F	0.200	7.0 E-09	0.100	5.5 E-09	2.9 E-09	1.8 E-09	1.1 E-09	9.4 E-10
		M	0.200	8.6 E-09	0.100	6.8 E-09	3.7 E-09	2.4 E-09	1.7 E-09	1.4 E-09
Mn-52m	0.352 h	F	0.200	1.9 E-10	0.100	1.3 E-10	6.1 E-11	3.8 E-11	2.2 E-11	1.9 E-11
		M	0.200	2.8 E-10	0.100	1.9 E-10	8.7 E-11	5.5 E-11	3.4 E-11	2.9 E-11
Mn-53	3.70 E+06 a	F	0.200	3.2 E-10	0.100	2.2 E-10	1.1 E-10	6.0 E-11	3.4 E-11	2.9 E-11
		M	0.200	4.6 E-10	0.100	3.4 E-10	1.7 E-10	1.0 E-10	6.4 E-11	5.4 E-11
Mn-54	312 d	F	0.200	5.2 E-09	0.100	4.1 E-09	2.2 E-09	1.5 E-09	9.9 E-10	8.5 E-10
		M	0.200	7.5 E-09	0.100	6.2 E-09	3.8 E-09	2.4 E-09	1.9 E-09	1.5 E-09
Mn-56	2.58 h	F	0.200	6.9 E-10	0.100	4.9 E-10	2.3 E-10	1.4 E-10	7.8 E-11	6.4 E-11
		M	0.200	1.1 E-09	0.100	7.8 E-10	3.7 E-10	2.4 E-10	1.5 E-10	1.2 E-10
铁(*)										
Fe-52	8. 28 h	F	0.600	5.2 E-09	0.100	3.6 E-09	1.5 E-09	8.9 E-10	4.9 E-10	3.9 E-10
		M	0.200	5.8 E-09	0.100	4.1 E-09	1.9 E-09	1.2 E-09	7.4 E-10	6.0 E-10

核 素	物理半衰期	类 别	年龄。	r≤1 岁	f_1	1 岁~2 岁	2 岁~7 岁	7岁~12岁	12 岁~17 岁	>17 岁
仅 糸	初珪十表期	关 加	f_1	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
		S	0.020	6.0 E-09	0.010	4.2 E-09	2.0 E-09	1.3 E-09	7.7 E-10	6.3 E-10
Fe-55	2.70 a	F	0.600	4.2 E-09	0.100	3.2 E-09	2.2 E-09	1.4 E-09	9.4 E-10	7.7 E-10
		M	0.200	1.9 E-09	0.100	1.4 E-09	9.9 E-10	6.2 E-10	4.4 E-10	3.8 E-10
		S	0.020	1.0 E-09	0.010	8.5 E-10	5.0 E-10	2.9 E-10	2.0 E-10	1.8 E-10
Fe-59	44.5 d	F	0.600	2.1 E-08	0.100	1.3 E-08	7.1 E-09	4.2 E-09	2.6 E-09	2.2 E-09
		M	0.200	1.8 E-08	0.100	1.3 E-08	7.9 E-09	5.5 E-09	4.6 E-09	3.7 E-09
		S	0.020	1.7 E-08	0.010	1.3 E-08	8.1 E-09	5.8 E-09	5.1 E-09	4.0 E-09
Fe-60	1.00 E+05 a	F	0.600	4.4 E-07	0.100	3.9 E-07	3.5 E-07	3. 2 E-07	2.9 E-07	2.8 E-07
		M	0.200	2.0 E-07	0.100	1.7 E-07	1.6 E-07	1.4 E-07	1.4 E-07	1.4 E-07
		S	0.020	9.3 E-08	0.010	8.8 E-08	6.7 E-08	5.2 E-08	4.9 E-08	4.9 E-08
钴(*)										
Co-55	17.5 h	F	0.600	2.2 E-09	0.100	1.8 E-09	9.0 E-10	5.5 E-10	3.1 E-10	2.7 E-10
		M	0.200	4.1 E-09	0.100	3.1 E-09	1.5 E-09	9.8 E-10	6.1 E-10	5.0 E-10
		S	0.020	4.6 E-09	0.010	3.3 E-09	1.6 E-09	1.1 E-09	6.6 E-10	5.3 E-10
Co-56	78.7 d	F	0.600	1.4 E-08	0.100	1.0 E-08	5.5 E-09	3.5 E-09	2.2 E-09	1.8 E-09
		M	0.200	2.5 E-08	0.100	2.1 E-08	1.1 E-08	7.4 E-09	5.8 E-09	4.8 E-09
		S	0.020	2.9 E-08	0.010	2.5 E-08	1.5 E-08	1.0 E-08	8.0 E-09	6.7 E-09
Co-57	271 d	F	0.600	1.5 E-09	0.100	1.1 E-09	5.6 E-10	3.7 E-10	2.3 E-10	1.9 E-10
		M	0.200	2.8 E-09	0.100	2.2 E-09	1.3 E-09	8. 5 E-10	6.7 E-10	5.5 E-10
		S	0.020	4.4 E-09	0.010	3.7 E-09	2.3 E-09	1.5 E-09	1.2 E-09	1.0 E-09
Co-58	70.8 d	F	0.600	4.0 E-09	0.100	3.0 E-09	1.6 E-09	1.0 E-09	6.4 E-10	5.3 E-10
		M	0.200	7.3 E-09	0.100	6.5 E-09	3.5 E-09	2.4 E-09	2.0 E-09	1.6 E-09
		S	0.020	9.0 E-09	0.010	7.5 E-09	4.5 E-09	3.1 E-09	2.6 E-09	2.1 E-09
Co-58m	9.15 h	F	0.600	4.8 E-11	0.100	3. 6 E-11	1.7 E-11	1.1 E-11	5.9 E-12	5.2 E-12
		M	0.200	1.1 E-10	0.100	7. 6 E-11	3. 8 E-11	2.4 E-11	1.6 E-11	1.3 E-11
		S	0.020	1.3 E-10	0.010	9.0 E-11	4.5 E-11	3.0 E-11	2.0 E-11	1.7 E-11
Co-60	5.27 a	F	0.600	3.0 E-08	0.100	2.3 E-08	1.4 E-08	8.9 E-09	6.1 E-09	5.2 E-09
		M	0.200	4.2 E-08	0.100	3.4 E-08	2.1 E-08	1.5 E-08	1.2 E-08	1.0 E-08
		S	0.020	9.2 E-08	0.010	8. 6 E-08	5. 9 E-08	4.0 E-08	3.4 E-08	3.1 E-08

核素	物理半衰期	类 别	年龄。	≲1 岁	f_1	1 岁~2 岁	2 岁~7 岁	7 岁~12 岁	12 岁~17 岁	>17 岁
1久 糸	初珪十表期	关 加	f_1	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
Co-60m	0.174 h	F	0.600	4.4 E-12	0.100	2.8 E-12	1.5 E-12	1.0 E-12	8.3 E-13	6.9 E-13
		M	0.200	7.1 E-12	0.100	4.7 E-12	2.7 E-12	1.8 E-12	1.5 E-12	1.2 E-12
		S	0.020	7.6 E-12	0.010	5.1 E-12	2.9 E-12	2.0 E-12	1.7 E-12	1.4 E-12
Co-61	1.65 h	F	0.600	2.1 E-10	0.100	1.4 E-10	6.0 E-11	3.8 E-11	2.2 E-11	1.9 E-11
		M	0.200	4.0 E-10	0.100	2.7 E-10	1.2 E-10	8. 2 E-11	5.7 E-11	4.7 E-11
		S	0.020	4.3 E-10	0.010	2.8 E-10	1.3 E-10	8.8 E-11	6.1 E-11	5.1 E-11
Co-62m	0.232 h	F	0.600	1.4 E-10	0.100	9.5 E-11	4.5 E-11	2.8 E-11	1.7 E-11	1.4 E-11
		M	0.200	1.9 E-10	0.100	1.3 E-10	6.1 E-11	3.8 E-11	2.4 E-11	2.0 E-11
		S	0.020	2.0 E-10	0.010	1.3 E-10	6.3 E-11	4.0 E-11	2.5 E-11	2.1 E-11
镍										
Ni-56	6.10 d	F	0.100	3.3 E-09	0.050	2.8 E-09	1.5 E-09	9.3 E-10	5.8 E-10	4.9 E-10
		M	0.100	4.9 E-09	0.050	4.1 E-09	2.3 E-09	1.5 E-09	1.1 E-09	8.7 E-10
		S	0.020	5.5 E-09	0.010	4.6 E-09	2.7 E-09	1.8 E-09	1.3 E-09	1.0 E-09
Ni-57	1.50 d	F	0.100	2.2 E-09	0.050	1.8 E-09	8.9 E-10	5.5 E-10	3.1 E-10	2.5 E-10
		M	0.100	3.6 E-09	0.050	2.8 E-09	1.5 E-09	9.5 E-10	6.2 E-10	5.0 E-10
		S	0.020	3.9 E-09	0.010	3.0 E-09	1.5 E-09	1.0 E-09	6.6 E-10	5.3 E-10
Ni-59	7.50 E+04 a	F	0.100	9.6 E-10	0.050	8.1 E-10	4.5 E-10	2.8 E-10	1.9 E-10	1.8 E-10
		M	0.100	7.9 E-10	0.050	6.2 E-10	3.4 E-10	2.1 E-10	1.4 E-10	1.3 E-10
		S	0.020	1.7 E-09	0.010	1.5 E-09	9.5 E-10	5.9 E-10	4.6 E-10	4.4 E-10
Ni-63	96.0 a	F	0.100	2.3 E-09	0.050	2.0 E-09	1.1 E-09	6.7 E-10	4.6 E-10	4.4 E-10
		M	0.100	2.5 E-09	0.050	1.9 E-09	1.1 E-09	7.0 E-10	5.3 E-10	4.8 E-10
		S	0.020	4.8 E-09	0.010	4.3 E-09	2.7 E-09	1.7 E-09	1.3 E-09	1.3 E-09
Ni-65	2.52 h	F	0.100	4.4 E-10	0.050	3.0 E-10	1.4 E-10	8.5 E-11	4.9 E-11	4.1 E-11
		M	0.100	7.7 E-10	0.050	5.2 E-10	2.4 E-10	1.6 E-10	1.0 E-10	8.5 E-11
		S	0.020	8.1 E-10	0.010	5.5 E-10	2.6 E-10	1.7 E-10	1.1 E-10	9.0 E-11
Ni-66	2.27 d	F	0.100	5.7 E-09	0.050	3.8 E-09	1.6 E-09	1.0 E-09	5.1 E-10	4.2 E-10
		M	0.100	1.3 E-08	0.050	9.4 E-09	4.5 E-09	2.9 E-09	2.0 E-09	1.6 E-09
		s	0.020	1.5 E-08	0.010	1.0 E-08	5.0 E-09	3. 2 E-09	2.2 E-09	1.8 E-09

核 素	物理半衰期	类 别	年龄 8	r≤l 岁	f_1	1 岁~2 岁	2 岁~7 岁	7岁~12岁	12 岁~17 岁	>17 岁
核 系	初理干衰期	尖 剂	f_1	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
铜										
Cu-60	0.387 h	F	1.000	2.1 E-10	0.500	1.6 E-10	7.5 E-11	4.6 E-11	2.8 E-11	2.3 E-11
		M	1.000	3.0 E-10	0.500	2.2 E-10	1.0 E-10	6.5 E-11	4.0 E-11	3.3 E-11
		S	1.000	3.1 E-10	0.500	2.2 E-10	1.1 E-10	6.7 E-11	4.2 E-11	3.4 E-11
Cu-61	3. 41 h	F	1.000	3.1 E-10	0.500	2.7 E-10	1.3 E-10	7.9 E-11	4.5 E-11	3.7 E-11
		M	1.000	4.9 E-10	0.500	4.4 E-10	2.1 E-10	1.4 E-10	9.1 E-11	7.4 E-11
		S	1.000	5.1 E-10	0.500	4.5 E-10	2.2 E-10	1.4 E-10	9.6 E-11	7.8 E-11
Cu-64	12.7 h	F	1.000	2.8 E-10	0.500	2.7 E-10	1.2 E-10	7.6 E-11	4.2 E-11	3.5 E-11
		M	1.000	5.5 E-10	0.500	5.4 E-10	2.7 E-10	1.9 E-10	1.4 E-10	1.1 E-10
		S	1.000	5.8 E-10	0.500	5.7 E-10	2.9 E-10	2.0 E-10	1.3 E-10	1.2 E-10
Cu-67	2.58 d	F	1.000	9.5 E-10	0.500	8.0 E-10	3.5 E-10	2.2 E-10	1.2 E-10	1.0 E-10
		M	1.000	2.3 E-09	0.500	2.0 E-09	1.1 E-09	8.1 E-10	6.9 E-10	5.5 E-10
		S	1.000	2.5 E-09	0.500	2.1 E-09	1.2 E-09	8.9 E-10	7.7 E-10	6.1 E-10
锌										
Zn-62	9.26 h	F	1.000	1.7 E-09	0.500	1.7 E-09	7.7 E-10	4.6 E-10	2.5 E-10	2.0 E-10
		M	0.200	4.5 E-09	0.100	3.5 E-09	1.6 E-09	1.0 E-09	6.0 E-10	5.0 E-10
		S	0.020	5.1 E-09	0.010	3.4 E-09	1.8 E-09	1.1 E-09	6.6 E-10	5.5 E-10
Zn-63	0.635 h	F	1.000	2.1 E-10	0.500	1.4 E-10	6.5 E-11	4.0 E-11	2.4 E-11	2.0 E-11
		M	0.200	3.4 E-10	0.100	2.3 E-10	1.0 E-10	6.6 E-11	4.2 E-11	3.5 E-11
		S	0.020	3.6 E-10	0.010	2.4 E-10	1.1 E-10	6.9 E-11	4.4 E-11	3.7 E-11
Zn-65	244 d	F	1.000	1.5 E-08	0.500	1.0 E-08	5.7 E-09	3.8 E-09	2.5 E-09	2.2 E-09
		M	0.200	8.5 E-09	0.100	6.5 E-09	3.7 E-09	2.4 E-09	1.9 E-09	1.6 E-09
		S	0.020	7.6 E-09	0.010	6.7 E-09	4.4 E-09	2.9 E-09	2.4 E-09	2.0 E-09
Zn-69	0.950 h	F	1.000	1.1 E-10	0.500	7.4 E-11	3.2 E-11	2.1 E-11	1.2 E-11	1.1 E-11
		M	0.200	2.2 E-10	0.100	1.4 E-10	6.5 E-11	4.4 E-11	3.1 E-11	2.6 E-11
		S	0.020	2.3 E-10	0.010	1.5 E-10	6.9 E-11	4.7 E-11	3.4 E-11	2.8 E-11
Zn-69m	13.8 h	F	1.000	6.6 E-10	0.500	6.7 E-10	3.0 E-10	1.8 E-10	9.9 E-11	8.2 E-11
		M	0.200	2.1 E-09	0.100	1.5 E-09	7.5 E-10	5.0 E-10	3.0 E-10	2.4 E-10
		S	0.020	2. 2 E-09	0.010	1.7 E-09	8. 2 E-10	5.4 E-10	3.3 E-10	2.7 E-10
Zn-71m	3.92 h	F	1.000	6.2 E-10	0.500	5.5 E-10	2.6 E-10	1.6 E-10	9.1 E-11	7.4 E-11

			年龄g	≲1 岁	f_1	1岁~2岁	2 岁~7 岁	7岁~12岁	12 岁~17 岁	>17 岁
核 素	物理半衰期	类 别			(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
			f ₁	e(g)	(g/13)	e(g)	e(g)	e(g)	e(g)	e(g)
		M	0.200	1.3 E-09	0.100	9.4 E-10	4.6 E-10	2.9 E-10	1.9 E-10	1.5 E-10
		S	0.020	1.4 E-09	0.010	1.0 E-09	4.9 E-10	3.1 E-10	2.0 E-10	1.6 E-10
Zn-72	1. 94 d	F	1.000	4.3 E-09	0.500	3.5 E-09	1.7 E-09	1.0 E-09	5.9 E-10	4.9 E-10
		M	0.200	8.8 E-09	0.100	6.5 E-09	3.4 E-09	2.3 E-09	1.5 E-09	1.2 E-09
		S	0.020	9.7 E-09	0.010	7.0 E-09	3.6 E-09	2.4 E-09	1.6 E-09	1.3 E-09
镓										
Ga-65	0. 253 h	F	0.010	1.1 E-10	0.001	7.3 E-11	3.4 E-11	2.1 E-11	1.3 E-11	1.1 E-11
	0. 255 H	M	0.010	1.6 E-10	0.001	1.1 E-10	4.8 E-11	3.1 E-11	2.0 E-11	1.7 E-11
Ga-66	0.401	F	0.010	2.8 E-09	0.001	2.0 E-09	9.2 E-10	5.7 E-10	3.0 E-10	2.5 E-10
	9. 40 h	M	0.010	4.5 E-09	0.001	3.1 E-09	1.5 E-09	9.2 E-10	5.3 E-10	4.4 E-10
Ga-67	3. 26 d	F	0.010	6.4 E-10	0.001	4.6 E-10	2.2 E-10	1.4 E-10	7.7 E-11	6.4 E-11
	3. 26 d	M	0.010	1.4 E-09	0.001	1.0 E-09	5.0 E-10	3.6 E-10	3.0 E-10	2.4 E-10
Ga-68	1 10 5	F	0.010	2.9 E-10	0.001	1.9 E-10	8.8 E-11	5.4 E-11	3.1 E-11	2.6 E-11
	1.13 h	M	0.010	4.6 E-10	0.001	3.1 E-10	1.4 E-10	9.2 E-11	5.9 E-11	4.9 E-11
Ga-70	0.0501	F	0.010	9.5 E-11	0.001	6.0 E-11	2.6 E-11	1.6 E-11	1.0 E-11	8.8 E-12
	0. 353 h	M	0.010	1.5 E-10	0.001	9.6 E-11	4.3 E-11	2.8 E-11	1.8 E-11	1.6 E-11
Ga-72	14.1 h	F	0.010	2.9 E-09	0.001	2.2 E-09	1.0 E-09	6.4 E-10	3.6 E-10	2.9 E-10
	14.1 h	M	0.010	4.5 E-09	0.001	3.3 E-09	1.6 E-09	1.0 E-09	6.5 E-10	5.3 E-10
Ga-73	4 03 1	F	0.010	6.7 E-10	0.001	4.5 E-10	2.0 E-10	1.2 E-10	6.4 E-11	5.4 E-11
	4.91 h	M	0.010	1.2 E-09	0.001	8.4 E-10	4.0 E-10	2.6 E-10	1.7 E-10	1.4 E-10
锗										
Ge-66	2.27 h	F	1.000	4.5 E-10	1.000	3.5 E-10	1.8 E-10	1.1 E-10	6.7 E-11	5.4 E-11
		M	1.000	6.4 E-10	1.000	4.8 E-10	2.5 E-10	1.6 E-10	1.1 E-10	9.1 E-11
Ge-67	0.312 h	F	1.000	1.7 E-10	1.000	1.1 E-10	4.9 E-11	3.1 E-11	1.8 E-11	1.5 E-11
		M	1.000	2.5 E-10	1.000	1.6 E-10	7.3 E-11	4.6 E-11	2.9 E-11	2.5 E-11
Ge-68	288 d	F	1.000	5.4 E-09	1.000	3.8 E-09	1.8 E-09	1.1 E-09	6.3 E-10	5.2 E-10
		M	1.000	6.0 E-08	1.000	5.0 E-08	3.0 E-08	2.0 E-08	1.6 E-08	1.4 E-08
Ge-69	1.63 d	F	1.000	1.2 E-09	1.000	9.0 E-10	4.6 E-10	2.8 E-10	1.7 E-10	1.3 E-10
		M	1.000	1.8 E-09	1.000	1.4 E-09	7.4 E-10	4.9 E-10	3.6 E-10	2.9 E-10

GB 18871 — 2002

核 素	物理半衰期	类 别	年龄。	r≤1 岁	f_1	1 岁~2 岁	2 岁~7 岁	7 岁~12 岁	12 岁~17 岁	>17 岁
核 系	初理干衰期	尖 剂	f_1	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
Ge-71	11.8 d	F	1.000	6.0 E-11	1.000	4.3 E-11	2.0 E-11	1.1 E-11	6.1 E-12	4.8 E-12
		M	1.000	1.2 E-10	1.000	8.6 E-11	4.1 E-11	2.4 E-11	1.3 E-11	1.1 E-11
Ge-75	1.38 h	F	1.000	1.6 E-10	1.000	1.0 E-10	4.3 E-11	2.8 E-11	1.7 E-11	1.5 E-11
		M	1.000	2.9 E-10	1.000	1.9 E-10	8.9 E-11	6.1 E-11	4.4 E-11	3.6 E-11
Ge-77	11.3 h	F	1.000	1.3 E-09	1.000	9.5 E-10	4.7 E-10	2.9 E-10	1.7 E-10	1.4 E-10
		M	1.000	2.3 E-09	1.000	1.7 E-09	8.8 E-10	6.0 E-10	4.5 E-10	3.7 E-10
Ge-78	1.45 h	F	1.000	4.3 E-10	1.000	2.9 E-10	1.4 E-10	8.9 E-11	5.5 E-11	4.5 E-11
		M	1.000	7.3 E-10	1.000	5.0 E-10	2.5 E-10	1.6 E-10	1.2 E-10	9.5 E-11
砷										
As-69	0. 253 h	M	1.000	2.1 E-10	0.500	1. 4 E-10	6.3 E-11	4.0 E-11	2.5 E-11	2.1 E-11
As-70	0.876 h	M	1.000	5.7 E-10	0.500	4.3 E-10	2.1 E-10	1.3 E-10	8.3 E-11	6.7 E-11
As-71	2.70 d	M	1.000	2.2 E-09	0.500	1.9 E-09	1.0 E-09	6.8 E-10	5.0 E-10	4.0 E-10
As-72	1.08 d	M	1.000	5.9 E-09	0.500	5.7 E-09	2.7 E-09	1.7 E-09	1.1 E-09	9.0 E-10
As-73	80.3 d	M	1.000	5.4 E-09	0.500	4.0 E-09	2.3 E-09	1.5 E-09	1.2 E-09	1.0 E-09
As-74	17.8 d	M	1.000	1.1 E-08	0.500	8.4 E-09	4.7 E-09	3.3 E-09	2.6 E-09	2.1 E-09
As-76	1.10 d	M	1.000	5.1 E-09	0.500	4.6 E-09	2.2 E-09	1.4 E-09	8.8 E-10	7.4 E-10
As-77	1.62 d	M	1.000	2.2 E-09	0.500	1.7 E-09	8.9 E-10	6.2 E-10	5.0 E-10	3.9 E-10
As-78	1.51 h	M	1.000	8.0 E-10	0.500	5.8 E-10	2.7 E-10	1.7 E-10	1.1 E-10	8.9 E-11
硒										
Se-70	0.683 h	F	1.000	3.9 E-10	0.800	3.0 E-10	1.5 E-10	9.0 E-11	5.1 E-11	4.2 E-11
		M	0.200	6.5 E-10	0.100	4.7 E-10	2.3 E-10	1.4 E-10	8.9 E-11	7.3 E-11
		S	0.020	6.8 E-10	0.010	4.8 E-10	2.3 E-10	1.5 E-10	9.4 E-11	7.6 E-11
Se-73	7.15 h	F	1.000	7.7 E-10	0.800	6.5 E-10	3.3 E-10	2.1 E-10	1.0 E-10	8.0 E-11
		M	0.200	1.6 E-09	0.100	1.2 E-09	5.9 E-10	3.8 E-10	2.4 E-10	1.9 E-10
		S	0.020	1.8 E-09	0.010	1.3 E-09	6.3 E-10	4.0 E-10	2.6 E-10	2.1 E-10
Se-73m	0.650 h	F	1.000	9.3 E-11	0.800	7.2 E-11	3.5 E-11	2.3 E-11	1.1 E-11	9.2 E-12
		M	0.200	1.8 E-10	0.100	1.3 E-10	6.1 E-11	3.9 E-11	2.5 E-11	2.0 E-11
		S	0.020	1.9 E-10	0.010	1.3 E-10	6.5 E-11	4.1 E-11	2.6 E-11	2.2 E-11
Se-75	120 d	F	1.000	7.8 E-09	0.800	6.0 E-09	3.4 E-09	2.5 E-09	1.2 E-09	1.0 E-09

			年龄 8	≤1 岁	f_1	1 岁~2 岁	2 岁~7 岁	7岁~12岁	12 岁~17 岁	>17 岁
核 素	物理半衰期	类 别	f ₁	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
		M	0.200	5. 4 E-09	0.100	4.5 E-09	2. 5 E-09	1. 7 E-09	1. 3 E-09	1.1 E-09
		S	0.020	5. 6 E-09	0.100	4. 7 E-09	2. 9 E-09	2. 0 E-09	1. 6 E-09	1. 3 E-09
8- 70	C 50 E 1 04 -	F								
Se-79	6.50 E+04 a		1.000	1. 6 E-08	0.800	1. 3 E-08	7. 7 E-09	5. 6 E-09	1. 5 E-09	1.1 E-09
		M	0.200	1. 4 E-08	0.100	1. 1 E-08	6. 9 E-09	4.9 E-09	3. 3 E-09	2. 6 E-09
		S	0.020	2.3 E-08	0.010	2. 0 E-08	1.3 E-08	8. 7 E-09	7.6 E-09	6.8 E-09
Se-81	0.308 h	F	1.000	8. 6 E-11	0.800	5. 4 E-11	2. 3 E-11	1.5 E-11	9. 2 E-12	8. 0 E-12
		M	0.200	1.3 E-10	0.100	8.5 E-11	3. 8 E-11	2.5 E-11	1.6 E-11	1.4 E-11
		S	0.020	1.4 E-10	0.010	8.9 E-11	3.9 E-11	2.6 E-11	1. 7 E-11	1.5 E-11
Se-81m	0.954 h	F	1.000	1.8 E-10	0.800	1.2 E-10	5. 4 E-11	3. 4 E-11	1. 9 E-11	1.6 E-11
		M	0.200	3.8 E-10	0.100	2.5 E-10	1.2 E-10	8. 0 E-11	5. 8 E-11	4.7 E-11
		S	0.020	4.1 E-10	0.010	2.7 E-10	1.3 E-10	8.5 E-11	6.2 E-11	5.1 E-11
Se-83	0.375 h	F	1.000	1.7 E-10	0.800	1.2 E-10	5.8 E-10	3.6 E-11	2.1 E-11	1.8 E-11
		M	0.200	2.7 E-10	0.100	1.9 E-10	9.2 E-10	5.9 E-11	3.9 E-11	3.2 E-11
		S	0.020	2.8 E-10	0.010	2.0 E-10	9.6 E-10	6.2 E-11	4.1 E-11	3.4 E-11
溴										
Br-74	0.422 h	F	1.000	2.5 E-10	1.000	1.8 E-10	8.6 E-11	5.3 E-11	3. 2 E-11	2.6 E-11
		M	1.000	3.6 E-10	1.000	2.5 E-10	1.2 E-10	7.5 E-11	4.6 E-11	3.8 E-11
Br-74m	0.691 h	F	1.000	4.0 E-10	1.000	2.8 E-10	1.3 E-10	8.1 E-11	4.8 E-11	3.9 E-11
		M	1.000	5.9 E-10	1.000	4.1 E-10	1.9 E-10	1.2 E-10	7.5 E-11	6.2 E-11
Br-75	1.63 h	F	1.000	2.9 E-10	1.000	2.1 E-10	9.7 E-11	5.9 E-11	3.5 E-11	2.9 E-11
		M	1.000	4.5 E-10	1.000	3.1 E-10	1.5 E-10	9.7 E-11	6.5 E-11	5.3 E-11
Br-76	16.2 h	F	1.000	2.2 E-09	1.000	1.7 E-09	8.4 E-10	5.1 E-10	3.0 E-10	2.4 E-10
		M	1.000	3.0 E-09	1.000	2.3 E-09	1.2 E-09	7.5 E-10	5.0 E-10	4.1 E-10
Br-77	2.33 d	F	1.000	5.3 E-10	1.000	4.4 E-10	2.2 E-10	1.3 E-10	7.7 E-11	6.2 E-11
		M	1.000	6.3 E-10	1.000	5.1 E-10	2.7 E-10	1.6 E-10	1.1 E-10	8.4 E-11
Br-80	0.290 h	F	1.000	7.1 E-11	1.000	4.4 E-11	1.8 E-11	1. 2 E-11	6.9 E-12	5.9 E-12
		M	1.000	1.1 E-10	1.000	6. 5 E-11	2.8 E-11	1.8 E-11	1.1 E-11	9.4 E-12
Br-80m	4.42 h	F	1.000	4. 3 E-10	1.000	2.8 E-10	1. 2 E-10	7. 2 E-11	4. 0 E-11	3.3 E-11
		M	1.000	6. 8 E-10	1.000	4.5 E-10	2.1 E-10	1. 4 E-10	9. 3 E-11	7. 6 E-11

±	46 rm V = +0	34 Dil	年龄。	(≤1 岁	f_1	1 岁~2 岁	2 岁~7 岁	7岁~12岁	12 岁~17 岁	>17 岁
核 素	物理半衰期	类 别	f_1	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
Br-82	1. 47 d	F	1.000	2.7 E-09	1.000	2. 2 E-09	1.2 E-09	7.0 E-10	4. 2 E-10	3.5 E-10
		M	1.000	3.8 E-09	1.000	3.0 E-09	1.7 E-09	1.1 E-09	7.9 E-10	6.3 E-10
Br-83	2.39 h	F	1.000	1.7 E-10	1.000	1.1 E-10	4.7 E-11	3.0 E-11	1.8 E-11	1.6 E-11
		M	1.000	3.5 E-10	1.000	2.3 E-10	1.1 E-10	7.7 E-11	5.9 E-11	4.8 E-11
Br-84	0.530 h	F	1.000	2.4 E-10	1.000	1.6 E-10	7.1 E-11	4.4 E-11	2.6 E-11	2.2 E-11
		M	1.000	3.7 E-10	1.000	2.4 E-10	1.1 E-10	6.9 E-11	4.4 E-11	3.7 E-11
铷										
Rb-79	0.382 h	F	1.000	1.6 E-10	1.000	1.1 E-10	5.0 E-11	3.2 E-11	1.9 E-11	1.6 E-11
Rb-81	4.58 h	F	1.000	3.2 E-10	1.000	2.5 E-10	1.2 E-10	7.1 E-11	4.2 E-11	3.4 E-11
Rb-81m	0.533 h	F	1.000	6.2 E-11	1.000	4.6 E-11	2.2 E-11	1. 4 E-11	8.5 E-12	7.0 E-12
Rb-82m	6.20 h	F	1.000	8.6 E-10	1.000	7.3 E-10	3.9 E-10	2.3 E-10	1.4 E-10	1.1 E-10
Rb-83	86. 2 d	F	1.000	4.9 E-09	1.000	3.8 E-09	2.0 E-09	1.3 E-09	7.9 E-10	6.9 E-10
Rb-84	32.8 d	F	1.000	8.6 E-09	1.000	6.4 E-09	3.1 E-09	2.0 E-09	1.2 E-09	1.0 E-09
Rb-86	18.7 d	F	1.000	1.2 E-08	1.000	7.7 E-09	3.4 E-09	2.0 E-09	1.1 E-09	9.3 E-10
Rb-87	4.70 E+10 a	F	1.000	6.0 E-09	1.000	4.1 E-09	1.8 E-09	1.1 E-09	6.0 E-10	5.0 E-10
Rb-88	0.297 h	F	1.000	1.9 E-10	1.000	1.2 E-10	5.2 E-11	3.2 E-11	1.9 E-11	1.6 E-11
Rb-89	0.253 h	F	1.000	1.4 E-10	1.000	9.3 E-11	4.3 E-11	2.7 E-11	1.6 E-11	1.4 E-11
锶(*)										
Sr-80	1.67 h	F	0.600	7.8 E-10	0.300	5.4 E-10	2.4 E-10	1.4 E-10	7.9 E-11	7.1 E-11
		M	0.200	1.4 E-09	0.100	9.0 E-10	4.1 E-10	2.5 E-10	1.5 E-10	1.3 E-10
		S	0.020	1.5 E-09	0.010	9.4 E-10	4.3 E-10	2.7 E-10	1.6 E-10	1.4 E-10
Sr-81	0.425 h	F	0.600	2.1 E-10	0.300	1.5 E-10	6.7 E-11	4.1 E-11	2.4 E-11	2.1 E-11
		M	0.200	3.3 E-10	0.100	2.2 E-10	1.0 E-10	6. 6 E-11	4.2 E-11	3.5 E-11
		S	0.020	3.4 E-10	0.010	2.3 E-10	1.1 E-10	6.9 E-11	4.4 E-11	3.7 E-11
Sr-82	25.0 d	F	0.600	2.8 E-08	0.300	1.5 E-08	6.6 E-09	4.6 E-09	3. 2 E-09	2.1 E-09
		M	0.200	5.5 E-08	0.100	4.0 E-08	2.1 E-08	1.4 E-08	1.0 E-08	8.9 E-09
		S	0.020	6.1 E-08	0.010	4.6 E-08	2.5 E-08	1.7 E-08	1.2 E-08	1.1 E-08
Sr-83	1.35 d	F	0.600	1.4 E-09	0.300	1.1 E-09	5.5 E-10	3.4 E-10	2.0 E-10	1.6 E-10
		M	0.200	2.5 E-09	0.100	1.9 E-09	9.5 E-10	6.0 E-10	3.9 E-10	3.1 E-10

ı. +	45 mm 1/4 == 140)/ Di	年齢 g	≲1 岁	f_1	1 岁~2 岁	2 岁~7 岁	7岁~12岁	12 岁~17 岁	>17 岁
核 素	物理半衰期	类 别	f1	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
		S	0.020	2.8 E-09	0.010	2. 0 E-09	1.0 E-09	6.5 E-10	4. 2 E-10	3.4 E-10
Sr-85	64.8 d	F	0.600	4.4 E-09	0.300	2.3 E-09	1.1 E-09	9.6 E-10	8. 3 E-10	3.8 E-10
		M	0.200	4.3 E-09	0.100	3.1 E-09	1.8 E-09	1.2 E-09	8.8 E-10	6.4 E-10
		S	0.020	4.4 E-09	0.010	3.7 E-09	2.2 E-09	1.3 E-09	1.0 E-09	8.1 E-10
Sr-85m	1.16 h	F	0.600	2.4 E-11	0.300	1.9 E-11	9.6 E-12	6.0 E-12	3.7 E-12	2.9 E-12
		M	0.200	3.1 E-11	0.100	2.5 E-11	1.3 E-11	8.0 E-12	5.1 E-12	4.1 E-12
		S	0.020	3. 2 E-11	0.010	2.6 E-11	1.3 E-11	8.3 E-12	5.4 E-12	4.3 E-12
Sr-87m	2.80 h	F	0.600	9.7 E-11	0.300	7.8 E-11	3.8 E-11	2.3 E-11	1.3 E-11	1.1 E-11
		M	0.200	1.6 E-10	0.100	1.2 E-10	5.9 E-11	3.8 E-11	2.5 E-11	2.0 E-11
		S	0.020	1.7 E-10	0.010	1.2 E-10	6.2 E-11	4.0 E-11	2.6 E-11	2.1 E-11
Sr-89	50.5 d	F	0.600	1.5 E-08	0.300	7.3 E-09	3.2 E-09	2.3 E-09	1.7 E-09	1.0 E-09
		M	0.200	3.3 E-08	0.100	2.4 E-08	1.3 E-08	9.1 E-09	7.3 E-09	6.1 E-09
		S	0.020	3.9 E-08	0.010	3.0 E-08	1.7 E-08	1.2 E-08	9.3 E-09	7.9 E-09
Sr-90	29.1 a	F	0.600	1.3 E-07	0.300	5.2 E-08	3.1 E-08	4.1 E-08	5.3 E-08	2.4 E-08
		M	0.200	1.5 E-07	0.100	1.1 E-07	6.5 E-08	5.1 E-08	5.0 E-08	3.6 E-08
		S	0.020	4.2 E-07	0.010	4.0 E-07	2.7 E-07	1.8 E-07	1.6 E-07	1.6 E-07
Sr-91	9.50 h	F	0.600	1.4 E-09	0.300	1.1 E-09	5.2 E-10	3.1 E-10	1.7 E-10	1.6 E-10
		M	0.200	3.1 E-09	0.100	2. 2 E-09	1.1 E-09	6.9 E-10	4.4 E-10	3.7 E-10
		S	0.020	3.5 E-09	0.010	2.5 E-09	1.2 E-09	7.7 E-10	4.9 E-10	4.1 E-10
Sr-92	2.71 h	F	0.600	9.0 E-10	0.300	7.1 E-10	3.3 E-10	2.0 E-10	1.0 E-10	9.8 E-11
		M	0.200	1.9 E-09	0.100	1.4 E-09	6.5 E-10	4.1 E-10	2.5 E-10	2.1 E-10
		S	0.020	2.2 E-09	0.010	1.5 E-09	7.0 E-10	4.5 E-10	2.7 E-10	2.3 E-10
钇										
Y-86	14.7 h	M	0.001	3.7 E-09	1.0 E-04	2.9 E-09	1.5 E-09	9.3 E-10	5.6 E-10	4.5 E-10
		S	0.001	3.8 E-09	1.0 E-04	3.0 E-09	1.5 E-09	9.6 E-10	5.8 E-10	4.7 E-10
Y-86m	0.800 h	M	0.001	2.2 E-10	1.0 E-04	1.7 E-10	8.7 E-11	5.6 E-11	3.4 E-11	2.7 E-11
		S	0.001	2.3 E-10	1.0 E-04	1.8 E-10	9.0 E-11	5.7 E-11	3.5 E-11	2.8 E-11
Y-87	3.35 d	M	0.001	2.7 E-09	1.0 E-04	2.1 E-09	1.1 E-09	7.0 E-10	4.7 E-10	3.7 E-10
		S	0.001	2.8 E-09	1.0 E-04	2.2 E-09	1.1 E-09	7.3 E-10	5.0 E-10	3.9 E-10

核 素	物理半衰期	类 别	年龄。	[≤1 岁	f_1	1 岁~2 岁	2 岁~7 岁	7岁~12岁	12 岁~17 岁	>17 岁
核 系	初埋干衰期	类 别	f_1	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
Y-88	107 d	M	0.001	1.9 E-08	1.0 E-04	1.6 E-08	1.0 E-08	6.7 E-09	4.9 E-09	4.1 E-09
		S	0.001	2.0 E-08	1.0 E-04	1.7 E-08	9.8 E-09	6.6 E-09	5.4 E-09	4.4 E-09
Y-90	2. 67 d	M	0.001	1.3 E-08	1.0 E-04	8.4 E-09	4.0 E-09	2.6 E-09	1.7 E-09	1.4 E-09
		S	0.001	1.3 E-08	1.0 E-04	8.8 E-09	4.2 E-09	2.7 E-09	1.8 E-09	1.5 E-09
Y-90m	3.19 h	M	0.001	7.2 E-10	1.0 E-04	5.7 E-10	2.8 E-10	1.8 E-10	1.1 E-10	9.5 E-11
		S	0.001	7.5 E-10	1.0 E-04	6.0 E-10	2.9 E-10	1.9 E-10	1.2 E-10	1.0 E-10
Y-91	58.5 d	M	0.001	3.9 E-08	1.0 E-04	3.0 E-08	1.6 E-08	1.1 E-08	8.4 E-09	7.1 E-09
		S	0.001	4.3 E-08	1.0 E-04	3.4 E-08	1.9 E-08	1.3 E-08	1.0 E-08	8.9 E-09
Y-91m	0.828 h	M	0.001	7.0 E-11	1.0 E-04	5.5 E-11	2.9 E-11	1.8 E-11	1.2 E-11	1.0 E-11
		S	0.001	7.4 E-11	1.0 E-04	5.9 E-11	3.1 E-11	2.0 E-11	1.4 E-11	1.1 E-11
Y-92	3.54 h	M	0.001	1.8 E-09	1.0 E-04	1.2 E-09	5.3 E-10	3.3 E-10	2.0 E-10	1.7 E-10
		S	0.001	1.9 E-09	1.0 E-04	1.2 E-09	5.5 E-10	3.5 E-10	2.1 E-10	1.8 E-10
Y-93	10.1 h	M	0.001	4.4 E-09	1.0 E-04	2.9 E-09	1.3 E-09	8.1 E-10	4.7 E-10	4.0 E-10
		S	0.001	4.6 E-09	1.0 E-04	3.0 E-09	1.4 E-09	8.5 E-10	5.0 E-10	4.2 E-10
Y-94	0.318 h	M	0.001	2.8 E-10	1.0 E-04	1.8 E-10	8.1 E-11	5.0 E-11	3.1 E-11	2.7 E-11
		S	0.001	2.9 E-10	1.0 E-04	1.9 E-10	8.4 E-11	5. 2 E-11	3.3 E-11	2.8 E-11
Y-95	0.178 h	M	0.001	1.5 E-10	1.0 E-04	9.8 E-11	4.4 E-11	2.8 E-11	1.8 E-11	1.5 E-11
		S	0.001	1.6 E-10	1.0 E-04	1.0 E-10	4.5 E-11	2.9 E-11	1.8 E-11	1.6 E-11
锆										
Zr-86	16.5 h	F	0.020	2.4 E-09	0.002	1.9 E-09	9.5 E-10	5.9 E-10	3.4 E-10	2.7 E-10
		M	0.020	3.4 E-09	0.002	2.6 E-09	1.3 E-09	8.4 E-10	5. 2 E-10	4.2 E-10
		S	0.020	3.5 E-09	0.002	2.7 E-09	1.4 E-09	8.7 E-10	5.4 E-10	4.3 E-10
Zr-88	83. 4 d	F	0.020	6.9 E-09	0.002	8.3 E-09	5.6 E-09	4.7 E-09	3.6 E-09	3.5 E-09
		M	0.020	8.5 E-09	0.002	7.8 E-09	5.1 E-09	3.6 E-09	3.0 E-09	2.6 E-09
		S	0.020	1.3 E-08	0.002	1.2 E-08	7.7 E-09	5.2 E-09	4.3 E-09	3.6 E-09
Zr-89	3. 27 d	F	0.020	2.6 E-09	0.002	2.0 E-09	9.9 E-10	6.1 E-10	3.6 E-10	2.9 E-10
		M	0.020	3.7 E-09	0.002	2.8 E-09	1.5 E-09	9.6 E-10	6.5 E-10	5.2 E-10
		S	0.020	3.9 E-09	0.002	2.9 E-09	1.5 E-09	1.0 E-09	6.8 E-10	5.5 E-10
Zr-93	1.53 E+06 a	F	0.020	3.5 E-09	0.002	4.8 E-09	5.3 E-09	9.7 E-09	1.8 E-08	2.5 E-08

					K DI (3)					
核 素	物理半衰期	类 别	年龄 g	r≤1 岁	f_1	1 岁~2 岁	2 岁~7 岁	7岁~12岁	12 岁~17 岁	>17 岁
12 35	初生十長期	× 10	f_1	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
		M	0.020	3.3 E-09	0.002	3.1 E-09	2.8 E-09	4.1 E-09	7.5 E-09	1.0 E-08
		S	0.020	7.0 E-09	0.002	6.4 E-09	4.5 E-09	3.3 E-09	3.3 E-09	3.3 E-09
Zr-95	64.0 d	F	0.020	1.2 E-08	0.002	1.1 E-08	6.4 E-09	4.2 E-09	2.8 E-09	2.5 E-09
		M	0.020	2.0 E-08	0.002	1.6 E-08	9.7 E-09	6.8 E-09	5.9 E-09	4.8 E-09
		S	0.020	2.4 E-08	0.002	1.9 E-08	1.2 E-08	8.3 E-09	7.3 E-09	5.9 E-09
Zr-97	16.9 h	F	0.020	5.0 E-09	0.002	3.4 E-09	1.5 E-09	9.1 E-10	4.8 E-10	3.9 E-10
		M	0.020	7.8 E-09	0.002	5.3 E-09	2.8 E-09	1.8 E-09	1.1 E-09	9.2 E-10
		S	0.020	8.2 E-09	0.002	5.6 E-09	2.9 E-09	1.9 E-09	1.2 E-09	8.9 E-10
铌										
Nb-88	0. 238 h	F	0.020	1.8 E-10	0.010	1.3 E-10	6.3 E-11	3. 9 E-11	2.4 E-11	1.9 E-11
		M	0.020	2.5 E-10	0.010	1.8 E-10	8.5 E-11	5. 3 E-11	3.3 E-11	2.7 E-11
		S	0.020	2.6 E-10	0.010	1.8 E-10	8.7 E-11	5.5 E-11	3.5 E-11	2.8 E-11
Nb-89	2.03 h	F	0.020	7.0 E-10	0.010	4.8 E-10	2.2 E-10	1.3 E-10	7.4 E-11	6.1 E-11
		M	0.020	1.1 E-09	0.010	7.6 E-10	3.6 E-10	2.2 E-10	1.4 E-10	1.1 E-10
		S	0.020	1.2 E-09	0.010	7.9 E-10	3.7 E-10	2.3 E-10	1.5 E-10	1.2 E-10
Nb-89	1.10 h	F	0.020	4.0 E-10	0.010	2.9 E-10	1.4 E-10	8.3 E-11	4.8 E-11	3.9 E-11
		M	0.020	6.2 E-10	0.010	4.3 E-10	2.1 E-10	1.3 E-10	8.2 E-11	6.8 E-11
		S	0.020	6.4 E-10	0.010	4.4 E-10	2.1 E-10	1.4 E-10	8.6 E-11	7.1 E-11
Nb-90	14.6 h	F	0.020	3.5 E-09	0.010	2.7 E-09	1.3 E-09	8. 2 E-10	4.7 E-10	3.8 E-10
		M	0.020	5.1 E-09	0.010	3.9 E-09	1.9 E-09	1.3 E-09	7.8 E-10	6.3 E-10
		S	0.020	5.3 E-09	0.010	4.0 E-09	2.0 E-09	1.3 E-09	8.1 E-10	6.6 E-10
Nb-93m	13.6 a	F	0.020	1.8 E-09	0.010	1.4 E-09	7.0 E-10	4.4 E-10	2.7 E-10	2.2 E-10
		M	0.020	3.1 E-09	0.010	2.4 E-09	1.3 E-09	8.2 E-10	5.9 E-10	5.1 E-10
		S	0.020	7.4 E-09	0.010	6.5 E-09	4.0 E-09	2.5 E-09	1.9 E-09	1.8 E-09
Nb-94	2.03 E+04 a	F	0.020	3.1 E-08	0.010	2.7 E-08	1.5 E-08	1.0 E-08	6.7 E-09	5.8 E-09
		M	0.020	4.3 E-08	0.010	3.7 E-08	2.3 E-08	1.6 E-08	1.3 E-08	1.1 E-08
		S	0.020	1.2 E-07	0.010	1.2 E-07	8.3 E-08	5.8 E-08	5. 2 E-08	4.9 E-08
Nb-95	35.1 d	F	0.020	4.1 E-09	0.010	3.1 E-09	1.6 E-09	1.2 E-09	7.5 E-10	5.7 E-10
		M	0.020	6.8 E-09	0.010	5. 2 E-09	3.1 E-09	2. 2 E-09	1.9 E-09	1.5 E-09

核 素	物理半衰期	类 别	年龄。	[≤1 岁	f_1	1 岁~2 岁	2 岁~7 岁	7岁~12岁	12 岁~17 岁	>17 岁
核 素	初理干衰期	类 别	f ₁	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
		S	0.020	7.7 E-09	0.010	5.9 E-09	3.6 E-09	2.5 E-09	2.2 E-09	1.8 E-09
Nb-95m	3. 61 d	F	0.020	2.3 E-09	0.010	1.6 E-09	7.0 E-10	4.2 E-10	2.4 E-10	2.0 E-10
		M	0.020	4.3 E-09	0.010	3.1 E-09	1.7 E-09	1.2 E-09	1.0 E-09	7.9 E-10
		S	0.020	4.6 E-09	0.010	3.4 E-09	1.9 E-09	1.3 E-09	1.1 E-09	8.8 E-10
Nb-96	23. 3 h	F	0.020	3.1 E-09	0.010	2.4 E-09	1.2 E-09	7.3 E-10	4.2 E-10	3.4 E-10
		M	0.020	4.7 E-09	0.010	3.6 E-09	1.8 E-09	1.2 E-09	7.8 E-10	6.3 E-10
		S	0.020	4.9 E-09	0.010	3.7 E-09	1.9 E-09	1.2 E-09	8.3 E-10	6.6 E-10
Nb-97	1.20 h	F	0.020	2.2 E-10	0.010	1.5 E-10	6.8 E-11	4.2 E-11	2.5 E-11	2.1 E-11
		M	0.020	3.7 E-10	0.010	2.5 E-10	1.2 E-10	7.7 E-11	5.2 E-11	4.3 E-11
		S	0.020	3.8 E-10	0.010	2.6 E-10	1.2 E-10	8.1 E-11	5.5 E-11	4.5 E-11
Nb-98	0.858 h	F	0.020	3.4 E-10	0.010	2.4 E-10	1.1 E-10	6.9 E-11	4.1 E-11	3.3 E-11
		M	0.020	5.2 E-10	0.010	3.6 E-10	1.7 E-10	1.1 E-10	6.8 E-11	5.6 E-11
		S	0.020	5.3 E-10	0.010	3.7 E-10	1.8 E-10	1.1 E-10	7.1 E-11	5.8 E-11
钼										
Mo-90	5.67 h	F	1.000	1.2 E-09	0.800	1.1 E-09	5.3 E-10	3.2 E-10	1.9 E-10	1.5 E-10
		M	0.200	2.6 E-09	0.100	2.0 E-09	9.9 E-10	6.5 E-10	4.2 E-10	3.4 E-10
		S	0.020	2.8 E-09	0.010	2.1 E-09	1.1 E-09	6.9 E-10	4.5 E-10	3.6 E-10
Mo-93	3.50 E+03 a	F	1.000	3.1 E-09	0.800	2.6 E-09	1.7 E-09	1.3 E-09	1.1 E-09	1.0 E-09
		M	0.200	2.2 E-09	0.100	1.8 E-09	1.1 E-09	7.9 E-10	6.6 E-10	5.9 E-10
		S	0.020	6.0 E-09	0.010	5.8 E-09	4.0 E-09	2.8 E-09	2.4 E-09	2.3 E-09
Mo-93m	6.85 h	F	1.000	7.3 E-10	0.800	6.4 E-10	3.3 E-10	2.0 E-10	1.2 E-10	9.6 E-11
		M	0.200	1.2 E-09	0.100	9.7 E-10	5.0 E-10	3.2 E-10	2.0 E-10	1.6 E-10
		S	0.020	1.3 E-09	0.010	1.0 E-09	5.2 E-10	3.4 E-10	2.1 E-10	1.7 E-10
Mo-99	2.75 d	F	1.000	2.3 E-09	0.800	1.7 E-09	7.7 E-10	4.7 E-10	2.6 E-10	2.2 E-10
		M	0.200	6.0 E-09	0.100	4.4 E-09	2.2 E-09	1.5 E-09	1.1 E-09	8.9 E-10
		S	0.020	6.9 E-09	0.010	4.8 E-09	2.4 E-09	1.7 E-09	1. 2 E-09	9.9 E-10
Mo-101	0.244 h	F	1.000	1.4 E-10	0.800	9.7 E-11	4.4 E-11	2.8 E-11	1.7 E-11	1.4 E-11
		M	0.200	2.2 E-10	0.100	1.5 E-10	7.0 E-11	4.5 E-11	3.0 E-11	2.5 E-11
		S	0.020	2.3 E-10	0.010	1.6 E-10	7.2 E-11	4.7 E-11	3.1 E-11	2.6 E-11

核 素	物理半衰期	类 别	年龄 g	≤1 岁	f_1	1 岁~2 岁	2 岁~7 岁	7岁~12岁	12 岁~17 岁	>17 岁
1久 系	彻垤十表别	× 70	f_1	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
锝										
Tc-93	2.75 h	F	1.000	2.4 E-10	0.800	2.1 E-10	1.1 E-10	6.7 E-11	4.0 E-11	3.2 E-11
		M	0.200	2.7 E-10	0.100	2.3 E-10	1.2 E-10	7.5 E-11	4.4 E-11	3.5 E-11
		S	0.020	2.8 E-10	0.010	2.3 E-10	1. 2 E-10	7.6 E-11	4.5 E-11	3.5 E-11
Tc-93m	0.725 h	F	1.000	1.2 E-10	0.800	9.8 E-11	4.9 E-11	2.9 E-11	1.8 E-11	1.4 E-11
		M	0.200	1.4 E-10	0.100	1.1 E-10	5.4 E-11	3.4 E-11	2.1 E-11	1.7 E-11
		S	0.020	1.4 E-10	0.010	1.1 E-10	5.4 E-11	3.4 E-11	2.1 E-11	1.7 E-11
Tc-94	4.88 h	F	1.000	8.9 E-10	0.800	7.5 E-10	3.9 E-10	2.3 E-10	1.4 E-10	1.1 E-10
		M	0.200	9.8 E-10	0.100	8.1 E-10	4.2 E-10	2.6 E-10	1.6 E-10	1.2 E-10
		S	0.020	9.9 E-10	0.010	8. 2 E-10	4.3 E-10	2.7 E-10	1.6 E-10	1.3 E-10
Tc-94m	0.867 h	F	1.000	4.8 E-10	0.800	3.4 E-10	1.6 E-10	8. 6 E-11	5. 2 E-11	4.1 E-11
		M	0.200	4.4 E-10	0.100	3.0 E-10	1. 4 E-10	8. 8 E-11	5. 5 E-11	4.5 E-11
		S	0.020	4.3 E-10	0.010	3.0 E-10	1. 4 E-10	8. 8 E-11	5. 6 E-11	4.6 E-11
Tc-95	20.0 h	F	1.000	7.5 E-10	0.800	6.3 E-10	3.3 E-10	2.0 E-10	1.2 E-10	9.6 E-11
		M	0.200	8.3 E-10	0.100	6.9 E-10	3.6 E-10	2. 2 E-10	1.3 E-10	1.0 E-10
		S	0.020	8.5 E-10	0.010	7.0 E-10	3.6 E-10	2.3 E-10	1.4 E-10	1.1 E-10
Tc-95m	61.0 d	F	1.000	2.4 E-09	0.800	1.8 E-09	9.3 E-10	5.7 E-10	3.6 E-10	2.9 E-10
		M	0.200	4.9 E-09	0.100	4.0 E-09	2.3 E-09	1.5 E-09	1.1 E-09	8.8 E-10
		S	0.020	6.0 E-09	0.010	5.0 E-09	2.7 E-09	1.8 E-09	1.5 E-09	1.2 E-09
Tc-96	4. 28 d	F	1.000	4.2 E-09	0.800	3.4 E-09	1.8 E-09	1.1 E-09	7.0 E-10	5.7 E-10
		M	0.200	4.7 E-09	0.100	3.9 E-09	2.1 E-09	1. 3 E-09	8. 6 E-10	6.8 E-10
		S	0.020	4.8 E-09	0.010	3.9 E-09	2.1 E-09	1.4 E-09	8. 9 E-10	7.0 E-10
Tc-96m	0.858 h	F	1.000	5.3 E-11	0.800	4.1 E-11	2.1 E-11	1. 3 E-11	7.7 E-12	6.2 E-12
		M	0.200	5.6 E-11	0.100	4.4 E-11	2.3 E-11	1.4 E-11	9.3 E-12	7.4 E-12
		S	0.020	5.7 E-11	0.010	4. 4 E-11	2. 3 E-11	1.5 E-11	9.5 E-12	7.5 E-12
Tc-97	2.60 E+06 a	F	1.000	5.2 E-10	0.800	3.7 E-10	1.7 E-10	9.4 E-11	5. 6 E-11	4.3 E-11
		M	0.200	1.2 E-09	0.100	1.0 E-09	5.7 E-10	3.6 E-10	2.8 E-10	2.2 E-10
		S	0.020	5.0 E-09	0.010	4.8 E-09	3.3 E-09	2. 2 E-09	1.9 E-09	1.8 E-09
Tc-97m	87. 0 d	F	1.000	3.4 E-09	0.800	2. 3 E-09	9.8 E-10	5. 6 E-10	3.0 E-10	2.7 E-10

± ±	46 TM V = 110	* 01	年龄。	(≤1 岁	f_1	1岁~2岁	2 岁~7 岁	7岁~12岁	12 岁~17 岁	>17 岁
核 素	物理半衰期	类 别	f_1	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
		M	0.200	1.3 E-08	0.100	1.0 E-08	6.1 E-09	4.4 E-09	4.1 E-09	3. 2 E-09
		S	0.020	1.6 E-08	0.010	1.3 E-08	7.8 E-09	5.7 E-09	5.2 E-09	4.1 E-09
Tc-98	4.20 E+06 a	F	1.000	1.0 E-08	0.800	6.8 E-09	3.2 E-09	1.9 E-09	1.2 E-09	9.7 E-10
		M	0.200	3.5 E-08	0.100	2.9 E-08	1.7 E-08	1.2 E-08	1.0 E-08	8.3 E-09
		S	0.020	1.1 E-07	0.010	1.1 E-07	7.6 E-08	5.4 E-08	4.8 E-08	4.5 E-08
Tc-99	2.13 E+05 a	F	1.000	4.0 E-09	0.800	2.5 E-09	1.0 E-09	5.9 E-10	3.6 E-10	2.9 E-10
		M	0.200	1.7 E-08	0.100	1.3 E-08	8.0 E-09	5.7 E-09	5.0 E-09	4.0 E-09
		S	0.020	4.1 E-08	0.010	3.7 E-08	2.4 E-08	1.7 E-08	1.5 E-08	1.3 E-08
Tc-99m	6.02 h	F	1.000	1.2 E-10	0.800	8.7 E-11	4.1 E-11	2.4 E-11	1.5 E-11	1.2 E-11
		M	0.200	1.3 E-10	0.100	9.9 E-11	5.1 E-11	3.4 E-11	2.4 E-11	1.9 E-11
		S	0.020	1.3 E-10	0.010	1.0 E-10	5.2 E-11	3.5 E-11	2.5 E-11	2.0 E-11
Tc-101	0.237 h	F	1.000	8.5 E-11	0.800	5.6 E-11	2.5 E-11	1.6 E-11	9.7 E-12	8.2 E-12
		M	0.200	1.1 E-10	0.100	7.1 E-11	3.2 E-11	2.1 E-11	1.4 E-11	1.2 E-11
		S	0.020	1.1 E-10	0.010	7.3 E-11	3.3 E-11	2. 2 E-11	1.4 E-11	1.2 E-11
Tc-104	0.303 h	F	1.000	2.7 E-10	0.800	1.8 E-10	8.0 E-11	4.6 E-11	2.8 E-11	2.3 E-11
		M	0.200	2.9 E-10	0.100	1.9 E-10	8.6 E-11	5.4 E-11	3.3 E-11	2.8 E-11
		S	0.020	2.9 E-10	0.010	1.9 E-10	8.7 E-11	5.4 E-11	3.4 E-11	2.9 E-11
钌										
Ru-94	0.863 h	F	0.100	2.5 E-10	0.050	1.9 E-10	9.0 E-11	5.4 E-11	3.1 E-11	2.5 E-11
		M	0.100	3.8 E-10	0.050	2.8 E-10	1.3 E-10	8.4 E-11	5.2 E-11	4.2 E-11
		S	0.020	4.0 E-10	0.010	2.9 E-10	1.4 E-10	8.7 E-11	5.4 E-11	4.4 E-11
Ru-97	2.90 d	F	0.100	5.5 E-10	0.050	4.4 E-10	2.2 E-10	1.3 E-10	7.7 E-11	6.2 E-11
		M	0.100	7.7 E-10	0.050	6.1 E-10	3.1 E-10	2.0 E-10	1.3 E-10	1.0 E-10
		S	0.020	8.1 E-10	0.010	6.3 E-10	3.3 E-10	2.1 E-10	1.4 E-10	1.1 E-10
Ru-103	39.3 d	F	0.100	4.2 E-09	0.050	3.0 E-09	1.5 E-09	9.3 E-10	5. 6 E-10	4.8 E-10
		M	0.100	1.1 E-08	0.050	8.4 E-09	5.0 E-09	3.5 E-09	3.0 E-09	2.4 E-09
		S	0.020	1.3 E-08	0.010	1.0 E-08	6.0 E-09	4.2 E-09	3.7 E-09	3.0 E-09
Ru-105	4.44 h	F	0.100	7.1 E-10	0.050	5.1 E-10	2.3 E-10	1.4 E-10	7.9 E-11	6.5 E-11
		M	0.100	1.3 E-09	0.050	9. 2 E-10	4.5 E-10	3.0 E-10	2.0 E-10	1.7 E-10

核 素	物理半衰期	类 别	年龄 g	≤1 岁	f_1	1 岁~2 岁	2 岁~7 岁	7 岁~12 岁	12 岁~17 岁	>17 岁
1久 系	彻垤十表朔	× 70	f_1	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
		S	0.020	1.4 E-09	0.010	9.8 E-10	4.8 E-10	3. 2 E-10	2. 2 E-10	1.8 E-10
Ru-106	1.01 a	F	0.100	7.2 E-08	0.050	5.4 E-08	2.6 E-08	1.6 E-08	9.2 E-09	7.9 E-09
		M	0.100	1.4 E-07	0.050	1.1 E-07	6.4 E-08	4.1 E-08	3.1 E-08	2.8 E-08
		S	0.020	2.6 E-07	0.010	2.3 E-07	1.4 E-07	9.1 E-08	7.1 E-08	6.6 E-08
铑										
Rh-99	16.0 d	F	0.100	2.6 E-09	0.050	2.0 E-09	9. 9 E-10	6. 2 E-10	3. 8 E-10	3. 2 E-10
		M	0.100	4.5 E-09	0.050	3.5 E-09	2.0 E-09	1.3 E-09	9.6 E-10	7.7 E-10
		S	0.100	4.9 E-09	0.050	3. 8 E-09	2. 2 E-09	1.3 E-09	1.1 E-09	8.7 E-10
Rh-99m	4.70 h	F	0.100	2.4 E-10	0.050	2.0 E-10	1.0 E-10	6.1 E-11	3. 5 E-11	2.8 E-11
		M	0.100	3.1 E-10	0.050	2.5 E-10	1.3 E-10	8. 0 E-11	4.9 E-11	3.9 E-11
		S	0.100	3.2 E-10	0.050	2.6 E-10	1.3 E-10	8. 2 E-11	5.1 E-11	4.0 E-11
Rh-100	20.8 h	F	0.100	2.1 E-09	0.050	1.8 E-09	9.1 E-10	5.6 E-10	3.3 E-10	2.6 E-10
		M	0.100	2.7 E-09	0.050	2.2 E-09	1.1 E-09	7.1 E-10	4.3 E-10	3.4 E-10
		S	0.100	2.8 E-09	0.050	2.2 E-09	1.2 E-09	7.3 E-10	4.4 E-10	3.5 E-10
Rh-101	3.20 a	F	0.100	7.4 E-09	0.050	6.1 E-09	3.5 E-09	2.3 E-09	1.5 E-09	1.4 E-09
		M	0.100	9.8 E-09	0.050	8.0 E-09	4.9 E-09	3.4 E-09	2.8 E-09	2.3 E-09
		S	0.100	1.9 E-08	0.050	1.7 E-08	1.1 E-08	7.4 E-09	6.2 E-09	5.4 E-09
Rh-101m	4.34 d	F	0.100	8.4 E-10	0.050	6.6 E-10	3.3 E-10	2.0 E-10	1.2 E-10	9.7 E-11
		M	0.100	1.3 E-09	0.050	9.8 E-10	5.2 E-10	3.5 E-10	2.5 E-10	1.9 E-10
		S	0.100	1.3 E-09	0.050	1.0 E-09	5.5 E-10	3.7 E-10	2.7 E-10	2.1 E-10
Rh-102	2.90 a	F	0.100	3.3 E-08	0.050	2.8 E-08	1.7 E-08	1.1 E-08	7.9 E-09	7.3 E-09
		M	0.100	3.0 E-08	0.050	2.5 E-08	1.5 E-08	1.0 E-08	7.9 E-09	6.9 E-09
		S	0.100	5.4 E-08	0.050	5.0 E-08	3.5 E-08	2.4 E-08	2.0 E-08	1.7 E-08
Rh-102m	207 d	F	0.100	1.2 E-08	0.050	8.7 E-09	4.4 E-09	2.7 E-09	1.7 E-09	1.5 E-09
		M	0.100	2.0 E-08	0.050	1.6 E-08	9.0 E-09	6.0 E-09	4.7 E-09	4.0 E-09
		S	0.100	3.0 E-08	0.050	2.5 E-08	1.5 E-08	1.0 E-08	8.2 E-09	7.1 E-09
Rh-103m	0.935 h	F	0.100	8. 6 E-12	0.050	5.9 E-12	2.7 E-12	1.6 E-12	1.0 E-12	8.6 E-13
		M	0.100	1. 9 E-11	0.050	1. 2 E-11	6. 3 E-12	4.0 E-12	3.0 E-12	2.5 E-12
		S	0.100	2.0 E-11	0.050	1.3 E-11	6.7 E-12	4.3 E-12	3. 2 E-12	2. 7 E-12

核素	物理半衰期	类 别	年龄。	r≤1 岁	f_1	1 岁~2 岁	2 岁~7 岁	7 岁~12 岁	12 岁~17 岁	>17 岁
枚 系	初理干衰期	尖 剂	f ₁	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
Rh-105	1.47 d	F	0.100	1.0 E-09	0.050	6.9 E-10	3.0 E-10	1.8 E-10	9. 6 E-11	8.2 E-11
		M	0.100	2.2 E-09	0.050	1.6 E-09	7.4 E-10	5.2 E-10	4.1 E-10	3.2 E-10
		S	0.100	2.4 E-09	0.050	1.7 E-09	8.0 E-10	5.6 E-10	4.5 E-10	3.5 E-10
Rh-106m	2.20 h	F	0.100	5.7 E-10	0.050	4.5 E-10	2.2 E-10	1.4 E-10	8.0 E-11	6.5 E-11
		M	0.100	8.2 E-10	0.050	6.3 E-10	3.2 E-10	2.0 E-10	1.3 E-10	1.1 E-10
		S	0.100	8.5 E-10	0.050	6.5 E-10	3.3 E-10	2.1 E-10	1.4 E-10	1.1 E-10
Rh-107	0.362 h	F	0.100	8.9 E-11	0.050	5.9 E-11	2.6 E-11	1.7 E-11	1.0 E-11	9.0 E-12
		M	0.100	1.4 E-10	0.050	9.3 E-11	4.2 E-11	2.8 E-11	1.9 E-11	1.6 E-11
		S	0.100	1.5 E-10	0.050	9.7 E-11	4.4 E-11	2.9 E-11	1.9 E-11	1.7 E-11
钯										
Pd-100	3.63 d	F	0.050	3.9 E-09	0.005	3.0 E-09	1.5 E-09	9.7 E-10	5.8 E-10	4.7 E-10
		M	0.050	5.2 E-09	0.005	4.0 E-09	2.2 E-09	1.4 E-09	9.9 E-10	8.0 E-10
		S	0.050	5.3 E-09	0.005	4.1 E-09	2.2 E-09	1.5 E-09	1.0 E-09	8.5 E-10
Pd-101	8.27 h	F	0.050	3.6 E-10	0.005	2.9 E-10	1.4 E-10	8. 6 E-11	4.9 E-11	3.9 E-11
		M	0.050	4.8 E-10	0.005	3.8 E-10	1.9 E-10	1.2 E-10	7.5 E-11	5.9 E-11
		S	0.050	5.0 E-10	0.005	3.9 E-10	2.0 E-10	1.2 E-10	7.8 E-11	6.2 E-11
Pd-103	17.0 d	F	0.050	9.7 E-10	0.005	6.5 E-10	3.0 E-10	1.9 E-10	1.1 E-10	8.9 E-11
		M	0.050	2.3 E-09	0.005	1.6 E-09	9.0 E-10	5.9 E-10	4.5 E-10	3.8 E-10
		S	0.050	2.5 E-09	0.005	1.8 E-09	1.0 E-09	6.8 E-10	5.3 E-10	4.5 E-10
Pd-107	6.50 E+06 a	F	0.050	2.6 E-10	0.005	1.8 E-10	8.2 E-11	5.2 E-11	3.1 E-11	2.5 E-11
		M	0.050	6.5 E-10	0.005	5.0 E-10	2.6 E-10	1.5 E-10	1.0 E-10	8.5 E-11
		S	0.050	2.2 E-09	0.005	2.0 E-09	1.3 E-09	7.8 E-10	6. 2 E-10	5.9 E-10
Pd-109	13.4 h	F	0.050	1.5 E-09	0.005	9.9 E-10	4.2 E-10	2.6 E-10	1.4 E-10	1.2 E-10
		M	0.050	2.6 E-09	0.005	1.8 E-09	8.8 E-10	5.9 E-10	4.3 E-10	3.4 E-10
		S	0.050	2.7 E-09	0.005	1.9 E-09	9.3 E-10	6.3 E-10	4.6 E-10	3.7 E-10
银										
Ag-102	0.215 h	F	0.100	1.2 E-10	0.050	8. 6 E-11	4.2 E-11	2.6 E-11	1.5 E-11	1.3 E-11
		M	0.100	1.6 E-10	0.050	1.1 E-10	5.5 E-11	3.4 E-11	2.1 E-11	1.7 E-11
		S	0.020	1.6 E-10	0.010	1.2 E-10	5.6 E-11	3.5 E-11	2.2 E-11	1.8 E-11

核 素	物理半衰期	类 别	年龄。	r≤1 岁	f_1	1 岁~2 岁	2 岁~7 岁	7岁~12岁	12 岁~17 岁	>17 岁
1久 糸	初珪十長期	关 加	f ₁	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
Ag-103	1.09 h	F	0.100	1.4 E-10	0.050	1.0 E-10	4.9 E-11	3.0 E-11	1.8 E-11	1.4 E-11
		M	0.100	2.2 E-10	0.050	1.6 E-10	7.6 E-11	4.8 E-11	3.2 E-11	2.6 E-11
		S	0.020	2.3 E-10	0.010	1.6 E-10	7.9 E-11	5.1 E-11	3.3 E-11	2.7 E-11
Ag-104	1.15 h	F	0.100	2.3 E-10	0.050	1.9 E-10	9.8 E-11	5.9 E-11	3.5 E-11	2.8 E-11
		M	0.100	2.9 E-10	0.050	2.3 E-10	1.2 E-10	7.4 E-11	4.5 E-11	3.6 E-11
		S	0.020	2.9 E-10	0.010	2.4 E-10	1.2 E-10	7.6 E-11	4.6 E-11	3.7 E-11
Ag-104m	0.558 h	F	0.100	1.6 E-10	0.050	1.1 E-10	5.5 E-11	3.4 E-11	2.0 E-11	1.6 E-11
		M	0.100	2.3 E-10	0.050	1.6 E-10	7.7 E-11	4.8 E-11	3.0 E-11	2.5 E-11
		S	0.020	2.4 E-10	0.010	1.7 E-10	8.0 E-11	5.0 E-11	3.1 E-11	2.6 E-11
Ag-105	41.0 d	F	0.100	3.9 E-09	0.050	3.4 E-09	1.7 E-09	1.0 E-09	6.4 E-10	5.4 E-10
		M	0.100	4.5 E-09	0.050	3.5 E-09	2.0 E-09	1.3 E-09	9.0 E-10	7.3 E-10
		S	0.020	4.5 E-09	0.010	3.6 E-09	2.1 E-09	1.3 E-09	1.0 E-09	8.1 E-10
Ag-106	0.399 h	F	0.100	9.4 E-11	0.050	6.4 E-11	2.9 E-11	1.8 E-11	1.1 E-11	9.1 E-12
		M	0.100	1.4 E-10	0.050	9.5 E-11	4.4 E-11	2.8 E-11	1.8 E-11	1.5 E-11
		S	0.020	1.5 E-10	0.010	9.9 E-11	4.5 E-11	2.9 E-11	1.9 E-11	1.6 E-11
Ag-106m	8.41 d	F	0.100	7.7 E-09	0.050	6.1 E-09	3.2 E-09	2.1 E-09	1.3 E-09	1.1 E-09
		M	0.100	7.2 E-09	0.050	5.8 E-09	3.2 E-09	2.1 E-09	1.4 E-09	1.1 E-09
		S	0.020	7.0 E-09	0.010	5.7 E-09	3.2 E-09	2.1 E-09	1.4 E-09	1.1 E-09
Ag-108m	1.27 E+02 a	F	0.100	3.5 E-08	0.050	2.8 E-08	1.6 E-08	1.0 E-08	6.9 E-09	6.1 E-09
		M	0.100	3.3 E-08	0.050	2.7 E-08	1.7 E-08	1.1 E-08	8.6 E-09	7.4 E-09
		S	0.020	8.9 E-08	0.010	8.7 E-08	6.2 E-08	4.4 E-08	3.9 E-08	3.7 E-08
Ag-110m	250 d	F	0.100	3.5 E-08	0.050	2.8 E-08	1.5 E-08	9.7 E-09	6.3 E-09	5.5 E-09
		M	0.100	3.5 E-08	0.050	2.8 E-08	1.7 E-08	1.2 E-08	6.2 E-09	7.6 E-09
		S	0.020	4.6 E-08	0.010	4.1 E-08	2.6 E-08	1.8 E-08	1.5 E-08	1.2 E-08
Ag-111	7.45 d	F	0.100	4.8 E-09	0.050	3.2 E-09	1.4 E-09	8.8 E-10	4.8 E-10	4.0 E-10
		M	0.100	9.2 E-09	0.050	6.6 E-09	3.5 E-09	2.4 E-09	1.9 E-09	1.5 E-09
		S	0.020	9.9 E-09	0.010	7.1 E-09	3.8 E-09	2.7 E-09	2.1 E-09	1.7 E-09
Ag-112	3.12 h	F	0.100	9.8 E-10	0.050	6.4 E-10	2.8 E-10	1.7 E-10	9.1 E-11	7.6 E-11
		M	0.100	1.7 E-09	0.050	1.1 E-09	5.1 E-10	3.2 E-10	2.0 E-10	1.6 E-10

	ı								T.	
核素	物理半衰期	类 别	年齢 g	≤1 岁	f_1	1 岁~2 岁	2 岁~7 岁	7岁~12岁	12 岁~17 岁	>17 岁
12 25	10/2 7 48 70	2 113	f_1	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
		s	0.020	1.8 E-09	0.010	1.2 E-09	5.4 E-10	3.4 E-10	2.1 E-10	1.7 E-10
Ag-115	0.333 h	F	0.100	1.6 E-10	0.050	1.0 E-10	4.6 E-11	2.9 E-11	1.7 E-11	1.5 E-11
		M	0.100	2.5 E-10	0.050	1.7 E-10	7.6 E-11	4.9 E-11	3.2 E-11	2.7 E-11
		S	0.020	2.7 E-10	0.010	1.7 E-10	8. 0 E-11	5. 2 E-11	3. 4 E-11	2.9 E-11
镉		_								
Cd-104	0.961 h	F	0.100	2.0 E-10	0.050	1.7 E-10	8.7 E-11	5. 2 E-11	3.1 E-11	2.4 E-11
		M	0.100	2.6 E-10	0.050	2.1 E-10	1.1 E-10	6.9 E-11	4. 2 E-11	3.4 E-11
	_	S	0.100	2.7 E-10	0.050	2. 2 E-10	1.1 E-10	7.0 E-11	4.4 E-11	3. 5 E-11
Cd-107	6.49 h	F	0.100	2.3 E-10	0.050	1.7 E-10	7.4 E-11	4. 6 E-11	2.5 E-11	2.1 E-11
		M	0.100	5. 2 E-10	0.050	3.7 E-10	2.0 E-10	1. 3 E-10	8. 8 E-11	8. 3 E-11
		S	0.100	5. 5 E-10	0.050	3. 9 E-10	2.1 E-10	1.4 E-10	9. 7 E-11	7.7 E-11
Cd-109	1.27 a	F	0.100	4.5 E-08	0.050	3.7 E-08	2.1 E-08	1.4 E-08	9.3 E-09	8.1 E-09
		M	0.100	3.0 E-08	0.050	2.3 E-08	1.4 E-08	9.5 E-09	7.8 E-09	6.6 E-09
		S	0.100	2.7 E-08	0.050	2.1 E-08	1.3 E-08	8.9 E-09	7.6 E-09	6.2 E-09
Cd-113	9.30 E+15 a	F	0.100	2.6 E-07	0.050	2.4 E-07	1.7 E-07	1.4 E-07	1.2 E-07	1.2 E-07
		M	0.100	1.2 E-07	0.050	1.0 E-07	7.6 E-08	6.1 E-08	5.7 E-08	5.5 E-08
		S	0.100	7.8 E-08	0.050	5.8 E-08	4.1 E-08	3.0 E-08	2.7 E-08	2.6 E-08
Cd-113m	13.6 a	F	0.100	3.0 E-07	0.050	2.7 E-07	1.8 E-07	1.3 E-07	1.1 E-07	1.1 E-07
		M	0.100	1.4 E-07	0.050	1.2 E-07	8.1 E-08	6.0 E-08	5.3 E-08	5.2 E-08
		S	0.100	1.1 E-07	0.050	8.4 E-08	5.5 E-08	3.9 E-08	3.3 E-08	3.1 E-08
Cd-115	2. 23 d	F	0.100	4.0 E-09	0.050	2.6 E-09	1.2 E-09	7.5 E-10	4.3 E-10	3.5 E-10
		M	0.100	6.7 E-09	0.050	4.8 E-09	2.4 E-09	1.7 E-09	1.2 E-09	9.8 E-10
		S	0.100	7.2 E-09	0.050	5.1 E-09	2.6 E-09	1.8 E-09	1.3 E-09	1.1 E-09
Cd-115m	44.6 d	F	0.100	4.6 E-08	0.050	3.2 E-08	1.5 E-08	1.0 E-08	6.4 E-09	5.3 E-09
		M	0.100	4.0 E-08	0.050	2.5 E-08	1.4 E-08	9.4 E-09	7.3 E-09	6.2 E-09
		S	0.100	3.9 E-08	0.050	3.0 E-08	1.7 E-08	1.1 E-08	8.9 E-09	7.7 E-09
Cd-117	2.49 h	F	0.100	7.4 E-10	0.050	5.2 E-10	2.4 E-10	1.5 E-10	8.1 E-11	6.7 E-11
		M	0.100	1.3 E-09	0.050	9.3 E-10	4.5 E-10	2.9 E-10	2.0 E-10	1.6 E-10
		S	0.100	1.4 E-09	0.050	9.8 E-10	4.8 E-10	3.1 E-10	2.1 E-10	1.7 E-10

					W DI (3)	• /				
核素	物理半衰期	类 别	年龄。	r≤1 岁	f_1	1 岁~2 岁	2 岁~7 岁	7岁~12岁	12 岁~17 岁	>17 岁
1久 糸	初珪十長期	关 加	f ₁	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
Cd-117m	3. 36 h	F	0.100	8.9 E-10	0.050	6.7 E-10	3.3 E-10	2.0 E-10	1.1 E-10	9.4 E-11
		M	0.100	1.5 E-09	0.050	1.1 E-09	5.5 E-10	3.6 E-10	2.4 E-10	2.0 E-10
		S	0.100	1.5 E-09	0.050	1.1 E-09	5.7 E-10	3.8 E-10	2.6 E-10	2.1 E-10
铟										
In-109	4. 20 h	F	0.040	2.6 E-10	0.020	2. 1 E-10	1.0 E-10	6. 3 E-11	3. 6 E-11	2.9 E-11
		M	0.040	3.3 E-10	0.020	2. 6 E-10	1. 3 E-10	8. 4 E-11	5. 3 E-11	4.2 E-11
In-110	4.90 h	F	0.040	8.2 E-10	0.020	7.1 E-10	3.7 E-10	2.3 E-10	1.3 E-10	1.1 E-10
		M	0.040	9.9 E-10	0.020	8.3 E-10	4.4 E-10	2.7 E-10	1.6 E-10	1.3 E-10
In-110	1.15 h	F	0.040	3.0 E-10	0.020	2.1 E-10	9.9 E-11	6.0 E-11	3.5 E-11	2.8 E-11
		M	0.040	4.5 E-10	0.020	3.1 E-10	1.5 E-10	9.2 E-11	5.8 E-11	4.7 E-11
In-111	2.83 d	F	0.040	1.2 E-09	0.020	8.6 E-10	4.2 E-10	2.6 E-10	1.5 E-10	1.3 E-10
		M	0.040	1.5 E-09	0.020	1.2 E-09	6.2 E-10	4.1 E-10	2.9 E-10	2.3 E-10
In-112	0.240 h	F	0.040	4.4 E-11	0.020	3.0 E-11	1.3 E-11	8.7 E-12	5.4 E-12	4.7 E-12
		M	0.040	6.5 E-11	0.020	4.4 E-11	2.0 E-11	1.3 E-11	8.7 E-12	7.4 E-12
In-113m	1.66 h	F	0.040	1.0 E-10	0.020	7.0 E-11	3.2 E-11	2.0 E-11	1.2 E-11	9.7 E-12
		M	0.040	1.6 E-10	0.020	1.1 E-10	5.5 E-11	3.6 E-11	2.4 E-11	2.0 E-11
In-114m	49.5 d	F	0.040	1.2 E-07	0.020	7.7 E-08	3.4 E-08	1.9 E-08	1.1 E-08	9.3 E-09
		M	0.040	4.8 E-08	0.020	3.3 E-08	1.6 E-08	1.0 E-08	7.8 E-09	6.1 E-09
In-115	5.10 E+15 a	F	0.040	8.3 E-07	0.020	7.8 E-07	5.5 E-07	5.0 E-07	4. 2 E-07	3.9 E-07
		M	0.040	3.0 E-07	0.020	2.8 E-07	2.1 E-07	1.9 E-07	1.7 E-07	1.6 E-07
In-115m	4.49 h	F	0.040	2.8 E-10	0.020	1.9 E-10	8. 4 E-11	5.1 E-11	2.8 E-11	2.4 E-11
		M	0.040	4.7 E-10	0.020	3.3 E-10	1.6 E-10	1.0 E-10	7.2 E-11	5.9 E-11
In-116m	0.902 h	F	0.040	2.5 E-10	0.020	1.9 E-10	9. 2 E-11	5.7 E-11	3.4 E-11	2.8 E-11
		M	0.040	3.6 E-10	0.020	2.7 E-10	1.3 E-10	8. 5 E-11	5. 6 E-11	4.5 E-11
In-117	0.730 h	F	0.040	1.4 E-10	0.020	9.7 E-11	4.5 E-11	2.8 E-11	1.7 E-11	1.5 E-11
		M	0.040	2.3 E-10	0.020	1.6 E-10	7. 5 E-11	5.0 E-11	3.5 E-11	2.9 E-11
In-117m	1.94 h	F	0.040	3. 4 E-10	0.020	2.3 E-10	1. 0 E-10	6. 2 E-11	3.5 E-11	2.9 E-11
		M	0.040	6.0 E-10	0.020	4.0 E-10	1.9 E-10	1. 3 E-10	8. 7 E-11	7. 2 E-11
In-119m	0. 300 h	F	0.040	1. 2 E-10	0.020	7. 3 E-11	3. 1 E-11	2. 0 E-11	1. 2 E-11	1. 0 E-11

核 素	物理半衰期	类 别	年龄。	r≤l 岁	f_1	1 岁~2 岁	2 岁~7 岁	7岁~12岁	12 岁~17 岁	>17 岁
1久 系	初埕十長期	× 71	f_1	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
		M	0.040	1.8 E-10	0.020	1.1 E-10	4.9 E-11	3.2 E-11	2.0 E-11	1.7 E-11
锡										
Sn-110	4.00 h	F	0.040	1.0 E-09	0.020	7.6 E-10	3.6 E-10	2.2 E-10	1.2 E-10	9.9 E-11
		M	0.040	1.5 E-09	0.020	1.1 E-09	5.1 E-10	3. 2 E-10	1.9 E-10	1.6 E-10
Sn-111	0.588 h	F	0.040	7.7 E-11	0.020	5.4 E-11	2.6 E-11	1.6 E-11	9.4 E-12	7.8 E-12
		M	0.040	1.1 E-10	0.020	8.0 E-11	3.8 E-11	2.5 E-11	1.6 E-11	1.3 E-11
Sn-113	115 d	F	0.040	5.1 E-09	0.020	3.7 E-09	1.8 E-09	1.1 E-09	6.4 E-10	5.4 E-10
		M	0.040	1.3 E-08	0.020	1.0 E-08	5.8 E-09	4.0 E-09	3.2 E-09	2.7 E-09
Sn-117m	13.6 d	F	0.040	3.3 E-09	0.020	2.2 E-09	1.0 E-09	6.1 E-10	3.4 E-10	2.8 E-10
		M	0.040	1.0 E-08	0.020	7.7 E-09	4.6 E-09	3.4 E-09	3.1 E-09	2.4 E-09
Sn-119m	293 d	F	0.040	3.0 E-09	0.020	2.2 E-09	1.0 E-09	6.0 E-10	3.4 E-10	2.8 E-10
		M	0.040	1.0 E-08	0.020	7.9 E-09	4.7 E-09	3.1 E-09	2.6 E-09	2.2 E-09
Sn-121	1.13 d	F	0.040	7.7 E-10	0.020	5.0 E-10	2. 2 E-10	1.3 E-10	7.0 E-11	6.0 E-11
		M	0.040	1.5 E-09	0.020	1.1 E-09	5.1 E-10	3.6 E-10	2.9 E-10	2.3 E-10
Sn-121m	55.0 a	F	0.040	6.9 E-09	0.020	5.4 E-09	2.8 E-09	1.6 E-09	9.4 E-10	8.0 E-10
		M	0.040	1.9 E-08	0.020	1.5 E-08	9. 2 E-09	6.4 E-09	5.5 E-09	4.5 E-09
Sn-123	129 d	F	0.040	1.4 E-08	0.020	9.9 E-09	4.5 E-09	2.6 E-09	1.4 E-09	1.2 E-09
		M	0.040	4.0 E-08	0.020	3.1 E-08	1.8 E-08	1.2 E-08	9.5 E-09	8.1 E-09
Sn-123m	0.668 h	F	0.040	1.4 E-10	0.020	8.9 E-11	3.9 E-11	2.5 E-11	1.5 E-11	1.3 E-11
		M	0.040	2.3 E-10	0.020	1.5 E-10	7.0 E-11	4.6 E-11	3. 2 E-11	2.7 E-11
Sn-125	9.64 d	F	0.040	1.2 E-08	0.020	8.0 E-09	3.5 E-09	2.0 E-09	1.1 E-09	8.9 E-10
		M	0.040	2.1 E-08	0.020	1.5 E-08	7.6 E-09	5.0 E-09	3.6 E-09	3.1 E-09
Sn-126	1.00 E+05 a	F	0.040	7.3 E-08	0.020	5.9 E-08	3.2 E-08	2.0 E-08	1.3 E-08	1.1 E-08
		M	0.040	1.2 E-07	0.020	1.0 E-07	6.2 E-08	4.1 E-08	3. 3 E-08	2.8 E-08
Sn-127	2.10 h	F	0.040	6. 6 E-10	0.020	4.7 E-10	2. 3 E-10	1.4 E-10	7. 9 E-11	6.5 E-11
		M	0.040	1.0 E-09	0.020	7.4 E-10	3.7 E-10	2.4 E-10	1.6 E-10	1.3 E-10
Sn-128	0.985 h	F	0.040	5.1 E-10	0.020	3.6 E-10	1.7 E-10	1.0 E-10	6. 1 E-11	5.0 E-11
		M	0.040	8.0 E-10	0.020	5.5 E-10	2.7 E-10	1.7 E-10	1.1 E-10	9. 2 E-11

核 素	物理半衰期	类 别	年龄 g	≲1 岁	f_1	1 岁~2 岁	2 岁~7 岁	7岁~12岁	12 岁~17 岁	>17 岁
1久 杂	初珪十表期	× 70	f_1	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
锑										
Sb-115	0.530 h	F	0.200	8.1 E-11	0.100	5.9 E-11	2.8 E-11	1.7 E-11	1.0 E-11	8.5 E-12
		M	0.020	1.2 E-10	0.010	8.3 E-11	4.0 E-11	2.5 E-11	1.6 E-11	1.3 E-11
		S	0.020	1.2 E-10	0.010	8.6 E-11	4.1 E-11	2.6 E-11	1.7 E-11	1.4 E-11
Sb-116	0.263 h	F	0.200	8.4 E-11	0.100	6.2 E-11	3.0 E-11	1.9 E-11	1.1 E-11	9.1 E-12
		M	0.020	1.1 E-10	0.010	8. 2 E-11	4.0 E-11	2.5 E-11	1.5 E-11	1.3 E-11
		S	0.020	1.2 E-10	0.010	8.5 E-11	4.1 E-11	2.6 E-11	1.6 E-11	1.3 E-11
Sb-116m	1.00 h	F	0.200	2.6 E-10	0.100	2.1 E-10	1.1 E-10	6.6 E-11	4.0 E-11	3.2 E-11
		M	0.020	3.6 E-10	0.010	2.8 E-10	1.5 E-10	9.1 E-11	5.9 E-11	4.7 E-11
		S	0.020	3.7 E-10	0.010	2.9 E-10	1.5 E-10	9.4 E-11	6.1 E-11	4.9 E-11
Sb-117	2.80 h	F	0.200	7.7 E-11	0.100	6.0 E-11	2. 9 E-11	1.8 E-11	1.0 E-11	8.5 E-12
		M	0.020	1.2 E-10	0.010	9-1 E-11	4.6 E-11	3.0 E-11	2.0 E-11	1.6 E-11
		S	0.020	1.3 E-10	0.010	9.5 E-11	4.8 E-11	3.1 E-11	2.2 E-11	1.7 E-11
Sb-118m	5.00 h	F	0.200	7.3 E-10	0.100	6.2 E-10	3.3 E-10	2.0 E-10	1.2 E-10	9.3 E-11
		M	0.020	9.3 E-10	0.010	7.6 E-10	4.0 E-10	2.5 E-10	1.5 E-10	1.2 E-10
		S	0.020	9.5 E-10	0.010	7.8 E-10	4.1 E-10	2.5 E-10	1.5 E-10	1.2 E-10
Sb-119	1.59 d	F	0.200	2.7 E-10	0.100	2.0 E-10	9.4 E-11	5.5 E-11	2.9 E-11	2.3 E-11
		M	0.020	4.0 E-10	0.010	2.8 E-10	1.3 E-10	7.9 E-11	4.4 E-11	3.5 E-11
		S	0.020	4.1 E-10	0.010	2.9 E-10	1.4 E-10	8. 2 E-11	4.5 E-11	3.6 E-11
Sb-120	5.76 d	F	0.200	4.1 E-09	0.100	3.3 E-09	1.8 E-09	1.1 E-09	6.7 E-10	5.5 E-10
		M	0.020	6.3 E-09	0.010	5.0 E-09	2.8 E-09	1.8 E-09	1.3 E-09	1.0 E-09
		S	0.020	6.6 E-09	0.010	5.3 E-09	2.9 E-09	1.9 E-09	1.4 E-09	1.1 E-09
Sb-120	0.265 h	F	0.200	4.6 E-11	0.100	3.1 E-11	1.4 E-11	8. 9 E-12	5.4 E-12	4.6 E-12
		M	0.020	6.6 E-11	0.010	4.4 E-11	2.0 E-11	1.3 E-11	8. 3 E-12	7.0 E-12
		S	0.020	6.8 E-11	0.010	4.6 E-11	2.1 E-11	1.4 E-11	8.7 E-12	7.3 E-12
Sb-122	2.70 d	F	0.200	4.2 E-09	0.100	2.8 E-09	1.4 E-09	8. 4 E-10	4.4 E-10	3.6 E-10
		M	0.020	8.3 E-09	0.010	5.7 E-09	2.8 E-09	1.8 E-09	1.3 E-09	1.0 E-09
		S	0.020	8.8 E-09	0.010	6.1 E-09	3.0 E-09	2.0 E-09	1.4 E-09	1.1 E-09
Sb-124	60. 2 d	F	0.200	1.2 E-08	0.100	8.8 E-09	4.3 E-09	2.6 E-09	1.6 E-09	1.3 E-09
		M	0.020	3.1 E-08	0.010	2.4 E-08	1.4 E-08	9.6 E-09	7.7 E-09	6.4 E-09

核素	物理半衰期	类 别	年龄。	r≤1 岁	f_1	1 岁~2 岁	2 岁~7 岁	7岁~12岁	12 岁~17 岁	>17 岁
核 系	初理干衷期	尖 剂	f ₁	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
		S	0.020	3.9 E-08	0.010	3.1 E-08	1.8 E-08	1.3 E-08	1.0 E-08	8.6 E-09
Sb-124m	0.337 h	F	0.200	2.7 E-11	0.100	1.9 E-11	9.0 E-12	5. 6 E-12	3.4 E-12	2.8 E-12
		M	0.020	4.3 E-11	0.010	3.1 E-11	1.5 E-11	9.6 E-12	6.5 E-12	5.4 E-12
		S	0.020	4.6 E-11	0.010	3.3 E-11	1.6 E-11	1.0 E-11	7.2 E-12	5.9 E-12
Sb-125	2.77 a	F	0.200	8.7 E-09	0.100	6.8 E-09	3.7 E-09	2.3 E-09	1.5 E-09	1.4 E-09
		M	0.020	2.0 E-08	0.010	1.6 E-08	1.0 E-08	6.8 E-09	5.8 E-09	4.8 E-09
		S	0.020	4.2 E-08	0.010	3.8 E-08	2.4 E-08	1.6 E-08	1.4 E-08	1.2 E-08
Sb-126	12. 4 d	F	0.200	8.8 E-09	0.100	6.6 E-09	3.3 E-09	2.1 E-09	1.2 E-09	1.0 E-09
		M	0.020	1.7 E-08	0.010	1.3 E-08	7.4 E-09	5.1 E-09	3.5 E-09	2.8 E-09
		S	0.020	1.9 E-08	0.010	1.5 E-08	8. 2 E-09	5.0 E-09	4.0 E-09	3.2 E-09
Sb-126m	0.317 h	F	0.200	1.2 E-10	0.100	8.2 E-11	3.8 E-11	2.4 E-11	1.5 E-11	1.2 E-11
		M	0.020	1.7 E-10	0.010	1.2 E-10	5.5 E-11	3.5 E-11	2.3 E-11	1.9 E-11
		S	0.020	1.8 E-10	0.010	1.2 E-10	5.7 E-11	3.7 E-11	2.4 E-11	2.0 E-11
Sb-127	3.85 d	F	0.200	5.1 E-09	0.100	3.5 E-09	1.6 E-09	9.7 E-10	5.2 E-10	4.3 E-10
		M	0.020	1.0 E-08	0.010	7.3 E-09	3.9 E-09	2.7 E-09	2.1 E-09	1.7 E-09
		S	0.020	1.1 E-08	0.010	7.9 E-09	4.2 E-09	3.0 E-09	2. 3 E-09	1.9 E-09
Sb-128	9.01 h	F	0.200	2.1 E-09	0.100	1.7 E-09	8.3 E-10	5.1 E-10	2.9 E-10	2.3 E-10
		M	0.020	3.3 E-09	0.010	2.5 E-09	1.2 E-09	7.9 E-10	5.0 E-10	4.0 E-10
		S	0.020	3.4 E-09	0.010	2.6 E-09	1.3 E-09	8.3 E-10	5.2 E-10	4.2 E-10
Sb-128	0.173 h	F	0.200	9.8 E-11	0.100	6.9 E-11	3.2 E-11	2.0 E-11	1.2 E-11	1.0 E-11
		M	0.020	1.3 E-10	0.010	9.2 E-11	4.3 E-11	2.7 E-11	1.7 E-11	1.4 E-11
		S	0.020	1.4 E-10	0.010	9.4 E-11	4.4 E-11	2.8 E-11	1.8 E-11	1.5 E-11
Sb-129	4.32 h	F	0.200	1.1 E-09	0.100	8.2 E-10	3.8 E-10	2.3 E-10	1.3 E-10	1.0 E-10
		M	0.020	2.0 E-09	0.010	1.4 E-09	6.8 E-10	4.4 E-10	2.9 E-10	2.3 E-10
		S	0.020	2.1 E-09	0.010	1.5 E-09	7.2 E-10	4.6 E-10	3.0 E-10	2.5 E-10
Sb-130	0.667 h	F	0.200	3.0 E-10	0.100	2.2 E-10	1.1 E-10	6.6 E-11	4.0 E-11	3.3 E-11
		M	0.020	4.5 E-10	0.010	3.2 E-10	1.6 E-10	9.8 E-11	6.3 E-11	5.1 E-11
		S	0.020	4.6 E-10	0.010	3.3 E-10	1.6 E-10	1.0 E-10	6.5 E-11	5.3 E-11
Sb-131	0.383 h	F	0.200	3.5 E-10	0.100	2.8 E-10	1.4 E-10	7.7 E-11	4.6 E-11	3.5 E-11

	1				1				1	
核 素	物理半衰期	类 别	年龄 8	r≤1 岁	f_1	1 岁~2 岁	2 岁~7 岁	7岁~12岁	12 岁~17 岁	>17 岁
12 25	100 22 17 42 90	× //3	f_1	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
		M	0.020	3.9 E-10	0.010	2. 6 E-10	1.3 E-10	8.0 E-11	5. 3 E-11	4.4 E-11
		S	0.020	3.8 E-10	0.010	2.6 E-10	1.2 E-10	7.9 E-11	5.3 E-11	4.4 E-11
碲										
Te-116	2.49 h	F	0.600	5.3 E-10	0.300	4.2 E-10	2.1 E-10	1.3 E-10	7.2 E-11	5.8 E-11
		M	0.200	8.6 E-10	0.100	6.4 E-10	3.2 E-10	2.0 E-10	1.3 E-10	1.0 E-10
		S	0.020	9.1 E-10	0.010	6.7 E-10	3.3 E-10	2.1 E-10	1.4 E-10	1.1 E-10
Te-121	17.0 d	F	0.600	1.7 E-09	0.300	1.4 E-09	7.2 E-10	4.6 E-10	2.9 E-10	2.4 E-10
		M	0.200	2.3 E-09	0.100	1.9 E-09	1.0 E-09	6.8 E-10	4.7 E-10	3.8 E-10
		S	0.020	2.4 E-09	0.010	2.0 E-09	1.1 E-09	7.2 E-10	5.1 E-10	4.1 E-10
Te-121m	154 d	F	0.600	1.4 E-08	0.300	1.0 E-08	5.3 E-09	3.3 E-09	2.1 E-09	1.8 E-09
		M	0.200	1.9 E-08	0.100	1.5 E-08	8.8 E-09	6.1 E-09	5.1 E-09	4.2 E-09
		S	0.020	2.3 E-08	0.010	1.9 E-08	1.2 E-08	8.1 E-09	6.9 E-09	5.7 E-09
Te-123	1.00 E+13 a	F	0.600	1.1 E-08	0.300	9.1 E-09	6.2 E-09	4.8 E-09	4.0 E-09	3.9 E-09
		M	0.200	5.6 E-09	0.100	4.4 E-09	3.0 E-09	2.3 E-09	2.0 E-09	1.9 E-09
		S	0.020	5.3 E-09	0.010	5.0 E-09	3.5 E-09	2.4 E-09	2.1 E-09	2.0 E-09
Te-123m	120 d	F	0.600	9.8 E-09	0.300	6.8 E-09	3.4 E-09	1.9 E-09	1.1 E-09	9.5 E-10
		M	0.200	1.8 E-08	0.100	1.3 E-08	8.0 E-09	5.7 E-09	5.0 E-09	4.0 E-09
		S	0.020	2.0 E-08	0.010	1.6 E-08	9.8 E-09	7.1 E-09	6.3 E-09	5.1 E-09
Te-125m	58.0 d	F	0.600	6.2 E-09	0.300	4.2 E-09	2.0 E-09	1.1 E-09	6.1 E-10	5.1 E-10
		M	0.200	1.5 E-08	0.100	1.1 E-08	6.6 E-09	4.8 E-09	4.3 E-09	3.4 E-09
		S	0.020	1.7 E-08	0.010	1.3 E-08	7.8 E-09	5.8 E-09	5.3 E-09	4.2 E-09
Te-127	9.35 h	F	0.600	4.3 E-10	0.300	3.2 E-10	1.4 E-10	8.5 E-11	4.5 E-11	3.9 E-11
		M	0.200	1.0 E-09	0.100	7.3 E-10	3.6 E-10	2.4 E-10	1.6 E-10	1.3 E-10
		S	0.020	1.2 E-09	0.010	7.9 E-10	3.9 E-10	2.6 E-10	1.7 E-10	1.4 E-10
Te-127m	109 d	F	0.600	2.1 E-08	0.300	1.4 E-08	6.5 E-09	3.5 E-09	2.0 E-09	1.5 E-09
		M	0.200	3.5 E-08	0.100	2.6 E-08	1.5 E-08	1.1 E-08	9.2 E-09	7.4 E-09
		S	0.020	4.1 E-08	0.010	3.3 E-08	2.0 E-08	1.4 E-08	1.2 E-08	9.8 E-09
Te-129	1.16 h	F	0.600	1.8 E-10	0.300	1.2 E-10	5.1 E-11	3.2 E-11	1.9 E-11	1.6 E-11
		M	0.200	3.3 E-10	0.100	2. 2 E-10	9.9 E-11	6.5 E-11	4.4 E-11	3.7 E-11

核 素	物理业享期	类 别	年龄。	g≤1 岁	f_1	1 岁~2 岁	2 岁~7 岁	7岁~12岁	12 岁~17 岁	>17 岁
核 系	物理半衰期	类 别	f_1	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
		S	0.020	3.5 E-10	0.010	2.3 E-10	1.0 E-10	6.9 E-11	4.7 E-11	3.9 E-11
Te-129m	33.6 d	F	0.600	2.0 E-08	0.300	1. 3 E-08	5.8 E-09	3.1 E-09	1.7 E-09	1.3 E-09
		M	0.200	3.5 E-08	0.100	2.6 E-08	1.4 E-08	9.8 E-09	8.0 E-09	6.6 E-09
		S	0.020	3.8 E-08	0.010	2.9 E-08	1.7 E-08	1.2 E-08	9.6 E-09	7.9 E-09
Te-131	0.417 h	F	0.600	2.3 E-10	0.300	2.0 E-10	9.9 E-11	5.3 E-11	3. 3 E-11	2.3 E-11
		M	0.200	2.6 E-10	0.100	1.7 E-10	8.1 E-11	5. 2 E-11	3.5 E-11	2.8 E-11
		S	0.020	2.4 E-10	0.010	1.6 E-10	7.4 E-11	4.9 E-11	3. 3 E-11	2.8 E-11
Te-131m	1.25 d	F	0.600	8.7 E-09	0.300	7.6 E-09	3.9 E-09	2.0 E-09	1.2 E-09	8.6 E-10
		M	0.200	7.9 E-09	0.100	5.8 E-09	3.0 E-09	1.9 E-09	1.2 E-09	9.4 E-10
		S	0.020	7.0 E-09	0.010	5.1 E-09	2.6 E-09	1.8 E-09	1.1 E-09	9.1 E-10
Te-132	3. 26 d	F	0.600	2.2 E-08	0.300	1.8 E-08	8.5 E-09	4.2 E-09	2.6 E-09	1.8 E-09
		M	0.200	1.6 E-08	0.100	1. 3 E-08	6.4 E-09	4.0 E-09	2.6 E-09	2.0 E-09
		S	0.020	1.5 E-08	0.010	1.1 E-08	5.8 E-09	3.8 E-09	2.5 E-09	2.0 E-09
Te-133	0.207 h	F	0.600	2.4 E-10	0.300	2.1 E-10	9.6 E-11	4.6 E-11	2.8 E-11	1.9 E-11
		M	0.200	2.0 E-10	0.100	1. 3 E-10	6.1 E-11	3.8 E-11	2. 4 E-11	2.0 E-11
		S	0.020	1.7 E-10	0.010	1. 2 E-10	5.4 E-11	3.5 E-11	2. 2 E-11	1.9 E-11
Te-133m	0.923 h	F	0.600	1.0 E-09	0.300	8. 9 E-10	4.1 E-10	2.0 E-10	1. 2 E-10	8.1 E-11
		M	0.200	8.5 E-10	0.100	5.8 E-10	2.8 E-10	1.7 E-10	1.1 E-10	8.7 E-11
		S	0.020	7.4 E-10	0.010	5.1 E-10	2.5 E-10	1.6 E-10	1.0 E-10	8.4 E-11
Te-134	0.696 h	F	0.600	4.7 E-10	0.300	3.7 E-10	1.8 E-10	1.0 E-10	6.0 E-11	4.7 E-11
		M	0.200	5.5 E-10	0.100	3. 9 E-10	1. 9 E-10	1.2 E-10	8. 1 E-11	6.6 E-11
		S	0.020	5.6 E-10	0.010	4.0 E-10	1.9 E-10	1.3 E-10	8. 4 E-11	6.8 E-11
碘										
I-120	1.35 h	F	1.000	1.3 E-09	1.000	1.0 E-09	4.8 E-10	2.3 E-10	1.4 E-10	1.0 E-10
		M	0.200	1.1 E-09	0.100	7.3 E-10	3.4 E-10	2.1 E-10	1.3 E-10	1.0 E-10
		S	0.020	1.0 E-09	0.010	6.9 E-10	3. 2 E-10	2.0 E-10	1.2 E-10	1.0 E-10
I-120m	0.883 h	F	1.000	8. 6 E-10	1.000	6.9 E-10	3.3 E-10	1.8 E-10	1.1 E-10	8.2 E-11
		M	0.200	8. 2 E-10	0.100	5.9 E-10	2.9 E-10	1.8 E-10	1.1 E-10	8.7 E-11
		S	0.020	8. 2 E-10	0.010	5.8 E-10	2.8 E-10	1.8 E-10	1.1 E-10	8.8 E-11

核 素	物理半衰期	类 别	年龄。	r≤1 岁	f_1	1 岁~2 岁	2 岁~7 岁	7岁~12岁	12 岁~17 岁	>17 岁
1次 新	初珪十表期	关 剂	f ₁	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
I-121	2.12 h	F	1.000	2.3 E-10	1.000	2.1 E-10	1.1 E-10	6.0 E-11	3.8 E-11	2.7 E-11
		M	0.200	2.1 E-10	0.100	1.5 E-10	7.8 E-11	4.9 E-11	3.2 E-11	2.5 E-11
		S	0.020	1.9 E-10	0.010	1.4 E-10	7.0 E-11	4.5 E-11	3.0 E-11	2.4 E-11
I-123	13.2 h	F	1.000	8.7 E-10	1.000	7.9 E-10	3.8 E-10	1.8 E-10	1.1 E-10	7.4 E-11
		M	0.200	5.3 E-10	0.100	3.9 E-10	2.0 E-10	1.2 E-10	8.2 E-11	6.4 E-11
		S	0.020	4.3 E-10	0.010	3.2 E-10	1.7 E-10	1.1 E-10	7.6 E-11	6.0 E-11
I-124	4.18 d	F	1.000	4.7 E-08	1.000	4.5 E-08	2.2 E-08	1.1 E-08	6.7 E-09	4.4 E-09
		M	0.200	1.4 E-08	0.100	9.3 E-09	4.6 E-09	2.5 E-09	1.6 E-09	1.2 E-09
		S	0.020	6.2 E-09	0.010	4.4 E-09	2.2 E-09	1.4 E-09	9.4 E-10	7.7 E-10
I-125	60.1 d	F	1.000	2.0 E-08	1.000	2.3 E-08	1.5 E-08	1.1 E-08	7.2 E-09	5.1 E-09
		M	0.200	6.9 E-09	0.100	5.6 E-09	3.6 E-09	2.6 E-09	1.8 E-09	1.4 E-09
		S	0.020	2.4 E-09	0.010	1.8 E-09	1.0 E-09	6.7 E-10	4.8 E-10	3.8 E-10
I-126	13.0 d	F	1.000	8.1 E-08	1.000	8.3 E-08	4.5 E-08	2.4 E-08	1.5 E-08	9.8 E-09
		M	0.200	2.4 E-08	0.100	1.7 E-08	9.5 E-09	5.5 E-09	3.8 E-09	2.7 E-09
		S	0.020	8.3 E-09	0.010	5.9 E-09	3.3 E-09	2.2 E-09	1.8 E-09	1.4 E-09
I-128	0.416 h	F	1.000	1.5 E-10	1.000	1.1 E-10	4.7 E-11	2.7 E-11	1.6 E-11	1.3 E-11
		M	0.200	1.9 E-10	0.100	1.2 E-10	5.3 E-11	3.4 E-11	2.2 E-11	1.9 E-11
		S	0.020	1.9 E-10	0.010	1.2 E-10	5.4 E-11	3.5 E-11	2.3 E-11	2.0 E-11
I-129	1.57 E+07 a	F	1.000	7.2 E-08	1.000	8.6 E-08	6.1 E-08	6.7 E-08	4.6 E-08	3.6 E-08
		M	0.200	3.6 E-08	0.100	3.3 E-08	2.4 E-08	2.4 E-08	1.9 E-08	1.5 E-08
		S	0.020	2.9 E-08	0.010	2.6 E-08	1.8 E-08	1.3 E-08	1.1 E-08	9.8 E-09
I-130	12.4 h	F	1.000	8.2 E-09	1.000	7.4 E-09	3.5 E-09	1.6 E-09	1.0 E-09	6.7 E-10
		M	0.200	4.3 E-09	0.100	3.1 E-09	1.5 E-09	9.2 E-10	5.8 E-10	4.5 E-10
		S	0.020	3.3 E-09	0.010	2.4 E-09	1.2 E-09	7.9 E-10	5.1 E-10	4.1 E-10
I-131	8.04 d	F	1.000	7.2 E-08	1.000	7.2 E-08	3.7 E-08	1.9 E-08	1.1 E-08	7.4 E-09
		M	0.200	2.2 E-08	0.100	1.5 E-08	8.2 E-09	4.7 E-09	3.4 E-09	2.4 E-09
		S	0.020	8.8 E-09	0.010	6.2 E-09	3.5 E-09	2.4 E-09	2.0 E-09	1.6 E-09
I-132	2.30 h	F	1.000	1.1 E-09	1.000	9.6 E-10	4.5 E-10	2.2 E-10	1.3 E-10	9.4 E-11
i		M	0.200	9.9 E-10	0.100	7.3 E-10	3.6 E-10	2.2 E-10	1.4 E-10	1.1 E-10

核 素	炉 田 火 喜 田	类 别	年龄。	r≤1 岁	f_1	1 岁~2 岁	2 岁~7 岁	7岁~12岁	12 岁~17 岁	>17 岁
核 系	物理半衰期	类 别	f_1	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
		S	0.020	9.3 E-10	0.010	6.8 E-10	3.4 E-10	2.1 E-10	1.4 E-10	1.1 E-10
I-132m	1.39 h	F	1.000	9.6 E-10	1.000	8.4 E-10	4.0 E-10	1.9 E-10	1.2 E-10	7.9 E-11
		M	0.200	7.2 E-10	0.100	5.3 E-10	2.6 E-10	1.6 E-10	1.1 E-10	8.7 E-11
		S	0.020	6.6 E-10	0.010	4.8 E-10	2.4 E-10	1.6 E-10	1.1 E-10	8.5 E-11
I-133	20.8 h	F	1.000	1.9 E-08	1.000	1.8 E-08	8.3 E-09	3.8 E-09	2.2 E-09	1.5 E-09
		M	0.200	6.6 E-09	0.100	4.4 E-09	2.1 E-09	1.2 E-09	7.4 E-10	5.5 E-10
		S	0.020	3.8 E-09	0.010	2.9 E-09	1.4 E-09	9.0 E-10	5.3 E-10	4.3 E-10
I-134	0.876 h	F	1.000	4.6 E-10	1.000	3.7 E-10	1.8 E-10	9.7 E-11	5.9 E-11	4.5 E-11
		M	0.200	4.8 E-10	0.100	3.4 E-10	1.7 E-10	1.0 E-10	6.7 E-11	5.4 E-11
		S	0.020	4.8 E-10	0.010	3.4 E-10	1.7 E-10	1.1 E-10	6.8 E-11	5.5 E-11
I-135	6.61 h	F	1.000	4.1 E-09	1.000	3.7 E-09	1.7 E-09	7.9 E-10	4.8 E-10	3.2 E-10
		M	0.200	2.2 E-09	0.100	1.6 E-09	7.8 E-10	4.7 E-10	3.0 E-10	2.4 E-10
		S	0.020	1.8 E-09	0.010	1.3 E-09	6.5 E-10	4.2 E-10	2.7 E-10	2.2 E-10
铯										
Cs-125	0.750 h	F	1.000	1.2 E-10	1.000	8.3 E-11	3. 9 E-11	2.4 E-11	1.4 E-11	1.2 E-11
		M	0.200	2.0 E-10	0.100	1.4 E-10	6.5 E-11	4.2 E-11	2.7 E-11	2.2 E-11
		S	0.020	2.1 E-10	0.010	1.4 E-10	6.8 E-11	4.4 E-11	2.8 E-11	2.3 E-11
Cs-127	6.25 h	F	1.000	1.6 E-10	1.000	1.3 E-10	6.9 E-11	4.2 E-11	2.5 E-11	2.0 E-11
		M	0.200	2.8 E-10	0.100	2.2 E-10	1.1 E-10	7.3 E-11	4.6 E-11	3.6 E-11
		S	0.020	3.0 E-10	0.010	2.3 E-10	1.2 E-10	7.6 E-11	4.8 E-11	3.8 E-11
Cs-129	1.34 d	F	1.000	3.4 E-10	1.000	2.8 E-10	1.4 E-10	8.7 E-11	5.2 E-11	4.2 E-11
		M	0.200	5.7 E-10	0.100	4.6 E-10	2.4 E-10	1.5 E-10	9.1 E-11	7.3 E-11
		S	0.020	6.3 E-10	0.010	4.9 E-10	2.5 E-10	1.6 E-10	9.7 E-11	7.7 E-11
Cs-130	0.498 h	F	1.000	8.3 E-11	1.000	5.6 E-11	2.5 E-11	1. 6 E-11	9.4 E-12	7.8 E-12
		M	0.200	1.3 E-10	0.100	8.7 E-11	4.0 E-11	2.5 E-11	1.6 E-11	1.4 E-11
		S	0.020	1.4 E-10	0.010	9.0 E-11	4.1 E-11	2.6 E-11	1.7 E-11	1.4 E-11
Cs-131	9.69 d	F	1.000	2.4 E-10	1.000	1.7 E-10	8.4 E-11	5. 3 E-11	3.2 E-11	2.7 E-11
		M	0.200	3.5 E-10	0.100	2.6 E-10	1.4 E-10	8. 5 E-11	5.5 E-11	4.4 E-11
		S	0.020	3.8 E-10	0.010	2.8 E-10	1.4 E-10	9.1 E-11	5. 9 E-11	4.7 E-11

核素	梅田火 草田	类 别	年齢 g	≤1 岁	f_1	1 岁~2 岁	2 岁~7 岁	7岁~12岁	12 岁~17 岁	>17 岁
核 系	物理半衰期	类 别	f_1	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
Cs-132	6. 48 d	F	1.000	1.5 E-09	1.000	1. 2 E-09	6.4 E-10	4.1 E-10	2.7 E-10	2.3 E-10
		M	0.200	1.9 E-09	0.100	1.5 E-09	8.4 E-10	5.4 E-10	3.7 E-10	2.9 E-10
		S	0.020	2.0 E-09	0.010	1.6 E-09	8.7 E-10	5.6 E-10	3.8 E-10	3.0 E-10
Cs-134	2.06 a	F	1.000	1.1 E-08	1.000	7.3 E-09	5.2 E-09	5.3 E-09	6.3 E-09	6.6 E-09
		M	0.200	3.2 E-08	0.100	2.6 E-08	1.6 E-08	1.2 E-08	1.1 E-08	9.1 E-09
		S	0.020	7.0 E-08	0.010	6.3 E-08	4.1 E-08	2.8 E-08	2.3 E-08	2.0 E-08
Cs-134m	2.90 h	F	1.000	1.3 E-10	1.000	8.6 E-11	3.8 E-11	2.5 E-11	1.6 E-11	1.4 E-11
		M	0.200	3.3 E-10	0.100	2.3 E-10	1.2 E-10	8.3 E-11	6.6 E-11	5.4 E-11
		S	0.020	3.6 E-10	0.010	2.5 E-10	1.3 E-10	9.2 E-11	7.4 E-11	6.0 E-11
Cs-135	2.30 E+06 a	F	1.000	1.7 E-09	1.000	9.9 E-10	6.2 E-10	6.1 E-10	6.8 E-10	6.9 E-10
		M	0.200	1.2 E-08	0.100	9.3 E-09	5.7 E-09	4.1 E-09	3.8 E-09	3.1 E-09
		S	0.020	2.7 E-08	0.010	2.4 E-08	1.6 E-08	1.1 E-08	9.5 E-09	8.6 E-09
Cs-135m	0.883 h	F	1.000	9.2 E-11	1.000	7.8 E-11	4.1 E-11	2.4 E-11	1.5 E-11	1.2 E-11
		M	0.200	1.2 E-10	0.100	9.9 E-11	5.2 E-11	3.2 E-11	1.9 E-11	1.5 E-11
		S	0.020	1.2 E-10	0.010	1.0 E-10	5.3 E-11	3.3 E-11	2.0 E-11	1.6 E-11
Cs-136	13.1 d	F	1.000	7.3 E-09	1.000	5.2 E-09	2.9 E-09	2.0 E-09	1.4 E-09	1.2 E-09
		M	0.200	1.3 E-08	0.100	1.0 E-08	6.0 E-09	3.7 E-09	3.1 E-09	2.5 E-09
		S	0.020	1.5 E-08	0.010	1.1 E-08	5.7 E-09	4.1 E-09	3.5 E-09	2.8 E-09
Cs-137	30.0 a	F	1.000	8.8 E-09	1.000	5.4 E-09	3.6 E-09	3.7 E-09	4.4 E-09	4.6 E-09
		M	0.200	3.6 E-08	0.100	2.9 E-08	1.8 E-08	1.3 E-08	1.1 E-08	9.7 E-09
		S	0.020	1.1 E-07	0.010	1.0 E-07	7.0 E-08	4.8 E-08	4.2 E-08	3.9 E-08
Cs-138	0.536 h	F	1.000	2.6 E-10	1.000	1.8 E-10	8.1 E-11	5.0 E-11	2.9 E-11	2. 4 E-11
		M	0.200	4.0 E-10	0.100	2.7 E-10	1.3 E-10	7.8 E-11	4.9 E-11	4.1 E-11
		S	0.020	4.2 E-10	0.010	2.8 E-10	1.3 E-10	8. 2 E-11	5.1 E-11	4.3 E-11
钡(*)										
Ba-126	1.61 h	F	0.600	6.7 E-10	0.200	5.2 E-10	2.4 E-10	1.4 E-10	6.9 E-11	7.4 E-11
		M	0.200	1.0 E-09	0.100	7.0 E-10	3.2 E-10	2.0 E-10	1.2 E-10	1.0 E-10
		S	0.020	1.1 E-09	0.010	7.2 E-10	3.3 E-10	2.1 E-10	1.3 E-10	1.1 E-10
Ba-128	2.43 d	F	0.600	5.9 E-09	0.200	5.4 E-09	2.5 E-09	1.4 E-09	7.4 E-10	7.6 E-10

+* =	梅田火膏地	* 01	年龄 &	r≤1 岁	f_1	1 岁~2 岁	2 岁~7 岁	7 岁~12 岁	12 岁~17 岁	>17 岁
核 素	物理半衰期	类 别	f ₁	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
		M	0.200	1.1 E-08	0.100	7.8 E-09	3.7 E-09	2.4 E-09	1.5 E-09	1.3 E-09
		S	0.020	1.2 E-08	0.010	8.3 E-09	4.0 E-09	2.6 E-09	1.6 E-09	1.4 E-09
Ba-131	11.8 d	F	0.600	2.1 E-09	0.200	1.4 E-09	7.1 E-10	4.7 E-10	3.1 E-10	2.2 E-10
		M	0.200	3.7 E-09	0.100	3.1 E-09	1.6 E-09	1.1 E-09	9.7 E-10	7.6 E-10
		S	0.020	4.0 E-09	0.010	3.0 E-09	1.8 E-09	1.3 E-09	1.1 E-09	8.7 E-10
Ba-131m	0.243 h	F	0.600	2.7 E-11	0.200	2.1 E-11	1.0 E-11	6.7 E-12	4.7 E-12	4.0 E-12
		M	0.200	4.8 E-11	0.100	3.3 E-11	1.7 E-11	1.2 E-11	9.0 E-12	7.4 E-12
		S	0.020	5.0 E-11	0.010	3.5 E-11	1.8 E-11	1.2 E-11	9.5 E-12	7.8 E-12
Ba-133	10.7 a	F	0.600	1.1 E-08	0.200	4.5 E-09	2.6 E-09	3.7 E-09	6.0 E-09	1.5 E-09
		M	0.200	1.5 E-08	0.100	1.0 E-08	6.4 E-09	5.1 E-09	5.5 E-09	3.1 E-09
		S	0.020	3.2 E-08	0.010	2.9 E-08	2.0 E-08	1.3 E-08	1.1 E-08	1.0 E-08
Ba-133m	1.62 d	F	0.600	1.4 E-09	0.200	1.1 E-09	4.9 E-10	3.1 E-10	1.5 E-10	1.8 E-10
		M	0.200	3.0 E-09	0.100	2.2 E-09	1.0 E-09	6.9 E-10	5.2 E-10	4.2 E-10
		S	0.020	3.1 E-09	0.010	2.4 E-09	1.1 E-09	7.6 E-10	5.8 E-10	4.6 E-10
Ba-135m	1.20 d	F	0.600	1.1 E-09	0.200	1.0 E-09	4.6 E-10	2.5 E-10	1.2 E-10	1.4 E-10
		M	0.200	2.4 E-09	0.100	1.8 E-09	8.9 E-10	5.4 E-10	4.1 E-10	3.3 E-10
		S	0.020	2.7 E-09	0.010	1.9 E-09	8.6 E-10	5.9 E-10	4.5 E-10	3.6 E-10
Ba-139	1.38 h	F	0.600	3.3 E-10	0.200	2.4 E-10	1.1 E-10	6.0 E-11	3.1 E-11	3.4 E-11
		M	0.200	5.4 E-10	0.100	3.5 E-10	1.6 E-10	1.0 E-10	6.6 E-11	5.6 E-11
		S	0.020	5.7 E-10	0.010	3.6 E-10	1.6 E-10	1.1 E-10	7.0 E-11	5.9 E-11
Ba-140	12.7 d	F	0.600	1.4 E-08	0.200	7.8 E-09	3.6 E-09	2.4 E-09	1.6 E-09	1.0 E-09
		M	0.200	2.7 E-08	0.100	2.0 E-08	1.1 E-08	7.6 E-09	6.2 E-09	5.1 E-09
		S	0.020	2.9 E-08	0.010	2.2 E-08	1.2 E-08	8.6 E-09	7.1 E-09	5.8 E-09
Ba-141	0.305 h	F	0.600	1.9 E-10	0.200	1.4 E-10	6.4 E-11	3.8 E-11	2.1 E-11	2.1 E-11
		M	0.200	3.0 E-10	0.100	2.0 E-10	9.3 E-11	5.9 E-11	3.8 E-11	3.2 E-11
		S	0.020	3.2 E-10	0.010	2.1 E-10	9.7 E-11	6. 2 E-11	4.0 E-11	3.4 E-11
Ba-142	0.177 h	F	0.600	1.3 E-10	0.200	9.6 E-11	4.5 E-11	2.7 E-11	1.6 E-11	1.5 E-11
		M	0.200	1.8 E-10	0.100	1.3 E-10	6.1 E-11	3.9 E-11	2.5 E-11	2.1 E-11
		S	0.020	1.9 E-10	0.010	1.3 E-10	6.2 E-11	4.0 E-11	2.6 E-11	2.2 E-11

			年龄 g	≤1 岁	f_1	1岁~2岁	2 岁~7 岁	7岁~12岁	12 岁~17 岁	>17 岁
核 素	物理半衰期	类 别	f ₁	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
镧				-						
La-131	0.983 h	F	0.005	1.2 E-10	5.0 E-04	8.7 E-11	4.2 E-11	2.6 E-11	1.5 E-11	1.3 E-11
		M	0.005	1.8 E-10	5.0 E-04	1.3 E-10	6.4 E-11	4.1 E-11	2.8 E-11	2.3 E-11
La-132	4.80 h	F	0.005	1.0 E-09	5.0 E-04	7.7 E-10	3.7 E-10	2.2 E-10	1.2 E-10	1.0 E-10
		M	0.005	1.5 E-09	5.0 E-04	1.1 E-09	5.4 E-10	3.4 E-10	2.0 E-10	1.6 E-10
La-135	19.5 h	F	0.005	1.0 E-10	5.0 E-04	7.7 E-11	3.8 E-11	2.3 E-11	1.3 E-11	1.0 E-11
		M	0.005	1.3 E-10	5.0 E-04	1.0 E-10	4.9 E-11	3.0 E-11	1.7 E-11	1.4 E-11
La-137	6.00 E+04 a	F	0.005	2.5 E-08	5.0 E-04	2.3 E-08	1.5 E-08	1.1 E-08	8.9 E-09	8.7 E-09
		M	0.005	8.6 E-09	5.0 E-04	8.1 E-09	5.6 E-09	4.0 E-09	3.6 E-09	3.6 E-09
La-138	1.35 E+11 a	F	0.005	3.7 E-07	5.0 E-04	3.5 E-07	2.4 E-07	1.8 E-07	1.6 E-07	1.5 E-07
		M	0.005	1.3 E-07	5.0 E-04	1.2 E-07	9.1 E-08	6.8 E-08	6.4 E-08	6.4 E-08
La-140	1.68 d	F	0.005	5.8 E-09	5.0 E-04	4.2 E-09	2.0 E-09	1.2 E-09	6.9 E-10	5.7 E-10
		M	0.005	8.8 E-09	5.0 E-04	6.3 E-09	3.1 E-09	2.0 E-09	1.3 E-09	1.1 E-09
La-141	3.93 h	F	0.005	8.6 E-10	5.0 E-04	5.5 E-10	2.3 E-10	1.4 E-10	7.5 E-11	6.3 E-11
		M	0.005	1.4 E-09	5.0 E-04	9.3 E-10	4.3 E-10	2.8 E-10	1.8 E-10	1.5 E-10
La-142	1.54 h	F	0.005	5.3 E-10	5.0 E-04	3.8 E-10	1.8 E-10	1.1 E-10	6.3 E-11	5.2 E-11
		M	0.005	8.1 E-10	5.0 E-04	5.7 E-10	2.7 E-10	1.7 E-10	1.1 E-10	8.9 E-11
La-143	0.237 h	F	0.005	1.4 E-10	5.0 E-04	8.6 E-11	3.7 E-11	2.3 E-11	1.4 E-11	1.2 E-11
		M	0.005	2.1 E-10	5.0 E-04	1.3 E-10	6.0 E-11	3. 9 E-11	2.5 E-11	2.1 E-11
铈										
Ce-134	3.00 d	F	0.005	7.6 E-09	5.0 E-04	5.3 E-09	2.3 E-09	1.4 E-09	7.7 E-10	5.7 E-10
		M	0.005	1.1 E-08	5.0 E-04	7.6 E-09	3.7 E-09	2.4 E-09	1.5 E-09	1.3 E-09
		S	0.005	1.2 E-08	5.0 E-04	8.0 E-09	3.8 E-09	2.5 E-09	1.6 E-09	1.3 E-09
Ce-135	17.6 h	F	0.005	2.3 E-09	5.0 E-04	1.7 E-09	8.5 E-10	5.3 E-10	3.0 E-10	2.4 E-10
		M	0.005	3.6 E-09	5.0 E-04	2.7 E-09	1.4 E-09	8.9 E-10	5.9 E-10	4.8 E-10
		S	0.005	3.7 E-09	5.0 E-04	2.8 E-09	1.4 E-09	9.4 E-10	6.3 E-10	5.0 E-10
Ce-137	9.00 h	F	0.005	7.5 E-11	5.0 E-04	5.6 E-11	2.7 E-11	1.6 E-11	8.7 E-12	7.0 E-12
		M	0.005	1.1 E-10	5.0 E-04	7.6 E-11	3.6 E-11	2.2 E-11	1.2 E-11	9.8 E-12
		S	0.005	1.1 E-10	5.0 E-04	7.8 E-11	3.7 E-11	2.3 E-11	1.3 E-11	1.0 E-11

+* =	施田 北京田	* 01	年龄。	r≤1 岁	f_1	1 岁~2 岁	2 岁~7 岁	7 岁~12 岁	12 岁~17 岁	>17 岁
核 素	物理半衰期	类 别	f ₁	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
Ce-137m	1.43 d	F	0.005	1.6 E-09	5.0 E-04	1.1 E-09	4.6 E-10	2.8 E-10	1.5 E-10	1.2 E-10
		M	0.005	3.1 E-09	5.0 E-04	2.2 E-09	1.1 E-09	6.7 E-10	5.1 E-10	4.1 E-10
		S	0.005	3.3 E-09	5.0 E-04	2.3 E-09	1.0 E-09	7.3 E-10	5.6 E-10	4.4 E-10
Ce-139	138 d	F	0.005	1.1 E-08	5.0 E-04	8.5 E-09	4.5 E-09	2.8 E-09	1.8 E-09	1.5 E-09
		M	0.005	7.5 E-09	5.0 E-04	6.1 E-09	3.6 E-09	2.5 E-09	2.1 E-09	1.7 E-09
		S	0.005	7.8 E-09	5.0 E-04	6.3 E-09	3.9 E-09	2.7 E-09	2.4 E-09	1.9 E-09
Ce-141	32.5 d	F	0.005	1.1 E-08	5.0 E-04	7.3 E-09	3.5 E-09	2.0 E-09	1.2 E-09	9.3 E-10
		M	0.005	1.4 E-08	5.0 E-04	1.1 E-08	6.3 E-09	4.6 E-09	4.1 E-09	3.2 E-09
		S	0.005	1.6 E-08	5.0 E-04	1.2 E-08	7.1 E-09	5.3 E-09	4.8 E-09	3.8 E-09
Ce-143	1.38 d	F	0.005	3.6 E-09	5.0 E-04	2.3 E-09	1.0 E-09	6.2 E-10	3.3 E-10	2.7 E-10
		M	0.005	5.6 E-09	5.0 E-04	3.9 E-09	1.9 E-09	1.3 E-09	9.3 E-10	7.5 E-10
		S	0.005	5.9 E-09	5.0 E-04	4.1 E-09	2.1 E-09	1.4 E-09	1.0 E-09	8.3 E-10
Ce-144	284 d	F	0.005	3.6 E-07	5.0 E-04	2.7 E-07	1.4 E-07	7.8 E-08	4.8 E-08	4.0 E-08
		M	0.005	1.9 E-07	5.0 E-04	1.6 E-07	8.8 E-08	5.5 E-08	4.1 E-08	3.6 E-08
		S	0.005	2.1 E-07	5.0 E-04	1.8 E-07	1.1 E-07	7.3 E-08	5.8 E-08	5.3 E-08
镨										
Pr-136	0. 218 h	M	0.005	1.3 E-10	5.0 E-04	8.8 E-11	4. 2 E-11	2.6 E-11	1.6 E-11	1.3 E-11
		S	0.005	1. 3 E-10	5.0 E-04	9.0 E-11	4.3 E-11	2.7 E-11	1.7 E-11	1.4 E-11
Pr-137	1.28 h	M	0.005	1.8 E-10	5.0 E-04	1.3 E-10	6.1 E-11	3.9 E-11	2.4 E-11	2.0 E-11
		S	0.005	1.9 E-10	5.0 E-04	1.3 E-10	6.4 E-11	4.0 E-11	2.5 E-11	2.1 E-11
Pr-138m	2.10 h	M	0.005	5.9 E-10	5.0 E-04	4.5 E-10	2.3 E-10	1.4 E-10	9.0 E-11	7.2 E-11
		S	0.005	6.0 E-10	5.0 E-04	4.7 E-10	2.4 E-10	1.5 E-10	9.3 E-11	7.4 E-11
Pr-139	4.51 h	M	0.005	1.5 E-10	5.0 E-04	1.1 E-10	5.5 E-11	3.5 E-11	2.3 E-11	1.8 E-11
		S	0.005	1.6 E-10	5.0 E-04	1.2 E-10	5.7 E-11	3.7 E-11	2.4 E-11	2.0 E-11
Pr-142	19.1 h	M	0.005	5.3 E-09	5.0 E-04	3.5 E-09	1.6 E-09	1.0 E-09	6. 2 E-10	5.2 E-10
		S	0.005	5.5 E-09	5.0 E-04	3.7 E-09	1.7 E-09	1.1 E-09	6. 6 E-10	5.5 E-10
Pr-142m	0.243 h	M	0.005	6.7 E-11	5.0 E-04	4.5 E-11	2.0 E-11	1.3 E-11	7.9 E-12	6.6 E-12
		S	0.005	7.0 E-11	5.0 E-04	4.7 E-11	2. 2 E-11	1.4 E-11	8. 4 E-12	7.0 E-12
Pr-143	13.6 d	M	0.005	1.2 E-08	5.0 E-04	8.4 E-09	4.6 E-09	3.2 E-09	2.7 E-09	2.2 E-09

+	45 m 14 == 4-	W 5:	年齢 g	≲1 岁	f_1	1 岁~2 岁	2 岁~7 岁	7岁~12岁	12 岁~17 岁	>17 岁
核 素	物理半衰期	类 别	f_1	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
		S	0.005	1.3 E-08	5.0 E-04	9. 2 E-09	5.1 E-09	3.6 E-09	3.0 E-09	2.4 E-09
Pr-144	0.288 h	M	0.005	1.9 E-10	5.0 E-04	1.2 E-10	5.0 E-11	3.2 E-11	2.1 E-11	1.8 E-11
		S	0.005	1.9 E-10	5.0 E-04	1.2 E-10	5.2 E-11	3.4 E-11	2.1 E-11	1.8 E-11
Pr-145	5.98 h	M	0.005	1.6 E-09	5.0 E-04	1.0 E-09	4.7 E-10	3.0 E-10	1.9 E-10	1.6 E-10
		S	0.005	1.6 E-09	5.0 E-04	1.1 E-09	4.9 E-10	3.2 E-10	2.0 E-10	1.7 E-10
Pr-147	0.227 h	M	0.005	1.5 E-10	5.0 E-04	1.0 E-10	4.8 E-11	3.1 E-11	2.1 E-11	1.8 E-11
		S	0.005	1.6 E-10	5.0 E-04	1.1 E-10	5.0 E-11	3.3 E-11	2.2 E-11	1.8 E-11
钕										
Nd-136	0.844 h	M	0.005	4.6 E-10	5.0 E-04	3.2 E-10	1.6 E-10	9.8 E-11	6.3 E-11	5.1 E-11
		S	0.005	4.8 E-10	5.0 E-04	3.3 E-10	1.6 E-10	1.0 E-10	6.6 E-11	5.4 E-11
Nd-138	5.04 h	M	0.005	2.3 E-09	5.0 E-04	1.7 E-09	7.7 E-10	4.8 E-10	2.8 E-10	2.3 E-10
		S	0.005	2.4 E-09	5.0 E-04	1.8 E-09	8.0 E-10	5.0 E-10	3.0 E-10	2.5 E-10
Nd-139	0.495 h	M	0.005	9.0 E-11	5.0 E-04	6.2 E-11	3.0 E-11	1.9 E-11	1. 2 E-11	9.9 E-12
		S	0.005	9.4 E-11	5.0 E-04	6.4 E-11	3.1 E-11	2.0 E-11	1. 3 E-11	1.0 E-11
Nd-139m	5.50 h	M	0.005	1.1 E-09	5.0 E-04	8.8 E-10	4.5 E-10	2.9 E-10	1.8 E-10	1.5 E-10
		S	0.005	1.2 E-09	5.0 E-04	9.1 E-10	4.6 E-10	3.0 E-10	1.9 E-10	1.5 E-10
Nd-141	2.49 h	M	0.005	4.1 E-11	5.0 E-04	3.1 E-11	1.5 E-11	9.6 E-12	6.0 E-12	4.8 E-12
		S	0.005	4.3 E-11	5.0 E-04	3.2 E-11	1.6 E-11	1.0 E-11	6.2 E-12	5.0 E-12
Nd-147	11.0 d	M	0.005	1.1 E-08	5.0 E-04	8.0 E-09	4.5 E-09	3.2 E-09	2.6 E-09	2.1 E-09
		S	0.005	1.2 E-08	5.0 E-04	8.6 E-09	4.9 E-09	3.5 E-09	3.0 E-09	2.4 E-09
Nd-149	1.73 h	M	0.005	6.8 E-10	5.0 E-04	4.6 E-10	2.2 E-10	1.5 E-10	1.0 E-10	8.4 E-11
		S	0.005	7.1 E-10	5.0 E-04	4.8 E-10	2.3 E-10	1.5 E-10	1.1 E-10	8.9 E-11
Nd-151	0.207 h	M	0.005	1.5 E-10	5.0 E-04	9.9 E-11	4.6 E-11	3.0 E-11	2.0 E-11	1.7 E-11
		S	0.005	1.5 E-10	5.0 E-04	1.0 E-10	4.8 E-11	3.1 E-11	2.1 E-11	1.7 E-11
钜						-				
Pm-141	0.348 h	M	0.005	1.4 E-10	5.0 E-04	9.4 E-11	4.3 E-11	2.7 E-11	1.7 E-11	1.4 E-11
		S	0.005	1.5 E-10	5.0 E-04	9.7 E-11	4.4 E-11	2.8 E-11	1.8 E-11	1.5 E-11
Pm-143	265 d	M	0.005	6.2 E-09	5.0 E-04	5.4 E-09	3.3 E-09	2.2 E-09	1.7 E-09	1.5 E-09
		S	0.005	5.5 E-09	5.0 E-04	4.8 E-09	3.1 E-09	2.1 E-09	1.7 E-09	1.4 E-09

+* ±	*** T田 火 壹 #0	* 01	年龄。	র≲1 岁	f_1	1 岁~2 岁	2 岁~7 岁	7 岁~12 岁	12 岁~17 岁	>17 岁
核 素	物理半衰期	类 别	f_1	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
Pm-144	363 d	M	0.005	3.1 E-08	5.0 E-04	2.8 E-08	1.8 E-08	1.2 E-08	9.3 E-09	8.2 E-09
		S	0.005	2.6 E-08	5.0 E-04	2.4 E-08	1.6 E-08	1.1 E-08	8.9 E-09	7.5 E-09
Pm-145	17.7 a	M	0.005	1.1 E-08	5.0 E-04	9.8 E-09	6.4 E-09	4.3 E-09	3.7 E-09	3.6 E-09
		S	0.005	7.1 E-09	5.0 E-04	6.5 E-09	4.3 E-09	2.9 E-09	2.4 E-09	2.3 E-09
Pm-146	5.53 a	M	0.005	6.4 E-08	5.0 E-04	5.9 E-08	3.9 E-08	2.6 E-08	2.2 E-08	2.1 E-08
		S	0.005	5.3 E-08	5.0 E-04	4.9 E-08	3.3 E-08	2.2 E-08	1.9 E-08	1.7 E-08
Pm-147	2.62 a	M	0.005	2.1 E-08	5.0 E-04	1.8 E-08	1.1 E-08	7.0 E-09	5.7 E-09	5.0 E-09
		S	0.005	1.9 E-08	5.0 E-04	1.6 E-08	1.0 E-08	6.8 E-09	5.8 E-09	4.9 E-09
Pm-148	5. 37 d	M	0.005	1.5 E-08	5.0 E-04	1.0 E-08	5.2 E-09	3.4 E-09	2.4 E-09	2.0 E-09
		S	0.005	1.5 E-08	5.0 E-04	1.1 E-08	5.5 E-09	3.7 E-09	2.6 E-09	2.2 E-09
Pm-148m	41. 3 d	M	0.005	2.4 E-08	5.0 E-04	1.9 E-08	1.1 E-08	7.7 E-09	6.3 E-09	5.1 E-09
		S	0.005	2.5 E-08	5.0 E-04	2.0 E-08	1.2 E-08	8.3 E-09	7.1 E-09	5.7 E-09
Pm-149	2. 21 d	M	0.005	5.0 E-09	5.0 E-04	3.5 E-09	1.7 E-09	1.1 E-09	8.3 E-10	6.7 E-10
		S	0.005	5.3 E-09	5.0 E-04	3.6 E-09	1.8 E-09	1.2 E-09	9.0 E-10	7.3 E-10
Pm-150	2.68 h	M	0.005	1.2 E-09	5.0 E-04	7.9 E-10	3.8 E-10	2.4 E-10	1.5 E-10	1.2 E-10
		S	0.005	1.2 E-09	5.0 E-04	8. 2 E-10	3.9 E-10	2.5 E-10	1.6 E-10	1.3 E-10
Pm-151	1.18 d	M	0.005	3.3 E-09	5.0 E-04	2.5 E-09	1.2 E-09	8.3 E-10	5.3 E-10	4.3 E-10
		S	0.005	3.4 E-09	5.0 E-04	2.6 E-09	1.3 E-09	7.9 E-10	5.7 E-10	4.6 E-10
钐										
Sm-141	0.170 h	M	0.005	1.5 E-10	5.0 E-04	1.0 E-10	4.7 E-11	2.9 E-11	1.8 E-11	1.5 E-11
Sm-141m	0.377 h	M	0.005	3.0 E-10	5.0 E-04	2.1 E-10	9.7 E-11	6.1 E-11	3.9 E-11	3.2 E-11
Sm-142	1.21 h	M	0.005	7.5 E-10	5.0 E-04	4.8 E-10	2.2 E-10	1.4 E-10	8.5 E-11	7.1 E-11
Sm-145	340 d	M	0.005	8.1 E-09	5.0 E-04	6.8 E-09	4.0 E-09	2.5 E-09	1.9 E-09	1.6 E-09
Sm-146	1.03 E+08 a	M	0.005	2.7 E-05	5.0 E-04	2.6 E-05	1.7 E-05	1.2 E-05	1.1 E-05	1.1 E-05
Sm-147	1.06 E+11 a	M	0.005	2.5 E-05	5.0 E-04	2.3 E-05	1.6 E-05	1.1 E-05	9.6 E-06	9.6 E-06
Sm-151	90.0 a	M	0.005	1.1 E-08	5.0 E-04	1.0 E-08	6.7 E-09	4.5 E-09	4.0 E-09	4.0 E-09
Sm-153	1.95 d	M	0.005	4.2 E-09	5.0 E-04	2.9 E-09	1.5 E-09	1.0 E-09	7.9 E-10	6.3 E-10
Sm-155	0.368 h	M	0.005	1.5 E-10	5.0 E-04	9.9 E-11	4.4 E-11	2.9 E-11	2.0 E-11	1.7 E-11
Sm-156	9.40 h	M	0.005	1.6 E-09	5.0 E-04	1.1 E-09	5.8 E-10	3.5 E-10	2.7 E-10	2.2 E-10

## 1	核 素	物理半衰期	类 别	年龄。	r≤1 岁	f_1	1 岁~2 岁	2 岁~7 岁	7岁~12岁	12 岁~17 岁	>17 岁
Eu-145 5.94 d M 0.005 3.6 E-09 5.0 E-04 2.9 E-09 1.6 E-09 1.0 E-09 6.8 E-10 5.5 E-11 Eu-146 4.61 d M 0.005 5.5 E-09 5.0 E-04 4.4 E-09 2.4 E-09 1.5 E-09 1.0 E-09 8.0 E-11 Eu-147 24.0 d M 0.005 4.9 E-09 5.0 E-04 3.7 E-09 2.2 E-09 1.6 E-09 1.3 E-09 1.0 E-09 8.0 E-11 Eu-147 24.0 d M 0.005 1.4 E-08 5.0 E-04 3.7 E-09 2.2 E-09 1.6 E-09 3.2 E-09 2.6 E-01 Eu-148 54.5 d M 0.005 1.4 E-08 5.0 E-04 1.2 E-08 6.8 E-09 4.6 E-09 3.2 E-09 2.6 E-01 Eu-149 93.1 d M 0.005 1.6 E-09 5.0 E-04 1.3 E-09 7.3 E-10 4.7 E-10 3.5 E-10 2.6 E-01 Eu-150 34.2 a M 0.005 1.6 E-09 5.0 E-04 1.1 E-07 7.8 E-08 5.7 E-08 5.3 E-08 5.3 E-08 Eu-150 12.6 h M 0.005 1.6 E-09 5.0 E-04 1.1 E-07 7.8 E-08 5.7 E-08 5.3 E-08 5.3 E-08 Eu-152 13.3 a M 0.005 1.1 E-07 5.0 E-04 1.0 E-07 7.0 E-08 4.9 E-08 4.3 E-08 4.2 E-10 1.9 E-1 Eu-152 13.3 a M 0.005 1.1 E-07 5.0 E-04 1.0 E-07 7.0 E-08 4.9 E-08 4.3 E-08 4.2 E-10 1.9 E-1 Eu-152 13.3 a M 0.005 1.6 E-09 5.0 E-04 1.5 E-07 9.7 E-08 6.5 E-08 5.6 E-08 5.0 E-04 1.2 E-07 9.7 E-08 6.5 E-08 5.6 E-08 5.0 E-04 1.5 E-07 9.7 E-08 6.5 E-08 5.6 E-08 5.0 E-04 1.5 E-07 9.7 E-08 6.5 E-08 5.6 E-08 5.6 E-08 5.0 E-04 1.9 E-09 5.0 E-04 1.4 E-08 9.2 E-09 7.6 E-09 6.9 E-0 Eu-155 4.9 6 a M 0.005 1.9 E-08 5.0 E-04 1.9 E-09 8.9 E-10 5.3 E-09 7.6 E-09 6.9 E-0 Eu-155 15.2 d M 0.005 1.9 E-08 5.0 E-04 1.9 E-09 8.9 E-10 5.9 E-10 3.5 E-10 2.8 E-11 4.2 E-10	12 糸	初珪十長期	关 加	f ₁	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
Eu-146	铕										
Eu-147	Eu-145	5.94 d	M	0.005	3.6 E-09	5.0 E-04	2.9 E-09	1.6 E-09	1.0 E-09	6.8 E-10	5.5 E-10
Eu-148 54.5 d M 0.005 1.4 E-08 5.0 E-04 1.2 E-08 6.8 E-09 4.6 E-09 3.2 E-09 2.6 E-0-149 93.1 d M 0.005 1.6 E-09 5.0 E-04 1.3 E-09 7.3 E-10 4.7 E-10 3.5 E-10 2.9 E-10-150 34.2 a M 0.005 1.1 E-07 5.0 E-04 1.1 E-07 7.8 E-08 5.7 E-08 5.3 E-08 5.3 E-08 1.3 E-01 1.9 E-11-150 12.6 h M 0.005 1.6 E-09 5.0 E-04 1.1 E-09 5.2 E-10 3.4 E-10 2.3 E-10 1.9 E-10-152 13.3 a M 0.005 1.1 E-07 5.0 E-04 1.1 E-09 5.2 E-10 3.4 E-10 2.3 E-10 1.9 E-10-152 13.3 a M 0.005 1.1 E-07 5.0 E-04 1.3 E-09 6.6 E-10 4.2 E-10 2.4 E-10 2.2 E-10-154 8.80 a M 0.005 1.6 E-07 5.0 E-04 1.3 E-09 6.6 E-10 4.2 E-10 2.4 E-10 2.2 E-10-154 8.80 a M 0.005 1.6 E-07 5.0 E-04 1.5 E-07 9.7 E-08 6.5 E-08 5.6 E-08 5.3 E-08 1.2 E-155 4.96 a M 0.005 1.9 E-08 5.0 E-04 1.3 E-09 9.2 E-09 7.6 E-09 6.9 E-0-156 15.2 d M 0.005 1.9 E-08 5.0 E-04 1.4 E-08 7.7 E-09 5.3 E-09 4.2 E-09 3.4 E-09 1.4 E-157 15.1 h M 0.005 2.5 E-09 5.0 E-04 1.9 E-09 8.9 E-10 5.9 E-10 3.5 E-10 2.8 E-11 4.7 E-11 4.7 E-11 4.7 E-11 4.7 E-11 5.6 E-11 5.0 E-14 5.0 E-04 5.0 E-	Eu-146	4.61 d	M	0.005	5.5 E-09	5.0 E-04	4.4 E-09	2.4 E-09	1.5 E-09	1.0 E-09	8.0 E-10
Eu-150	Eu-147	24.0 d	M	0.005	4.9 E-09	5.0 E-04	3.7 E-09	2.2 E-09	1.6 E-09	1.3 E-09	1.1 E-09
Eu-150	Eu-148	54.5 d	M	0.005	1.4 E-08	5.0 E-04	1.2 E-08	6.8 E-09	4.6 E-09	3.2 E-09	2.6 E-09
Eu-150	Eu-149	93.1 d	M	0.005	1.6 E-09	5.0 E-04	1.3 E-09	7.3 E-10	4.7 E-10	3.5 E-10	2.9 E-10
Eu-152	Eu-150	34.2 a	M	0.005	1.1 E-07	5.0 E-04	1.1 E-07	7.8 E-08	5.7 E-08	5.3 E-08	5.3 E-08
Eu-152m 9.32 h M 0.005 1.9 E-09 5.0 E-04 1.3 E-09 6.6 E-10 4.2 E-10 2.4 E-10 2.2 E-10 Eu-154 8.80 a M 0.005 1.6 E-07 5.0 E-04 1.5 E-07 9.7 E-08 6.5 E-08 5.6 E-08 5.3 E-08 Eu-155 4.96 a M 0.005 2.6 E-08 5.0 E-04 2.3 E-08 1.4 E-08 9.2 E-09 7.6 E-09 6.9 E-09 Eu-156 15.2 d M 0.005 1.9 E-08 5.0 E-04 1.4 E-08 7.7 E-09 5.3 E-09 4.2 E-09 3.4 E-09 Eu-157 15.1 h M 0.005 2.5 E-09 5.0 E-04 1.9 E-09 8.9 E-10 5.9 E-10 3.5 E-10 2.8 E-10 Eu-158 0.765 h M 0.005 4.3 E-10 5.0 E-04 2.9 E-10 1.3 E-10 8.5 E-11 5.6 E-11 4.7 E-11 4.7 E-11 4.7 E-11 2.9 E-11 1.7 E-11 1.4 E-11 4.7 E-11 4.7 E-11 2.9 E-11 1.7 E-11 1.4 E-11 4.7 E-11 4.8	Eu-150	12.6 h	M	0.005	1.6 E-09	5.0 E-04	1.1 E-09	5.2 E-10	3.4 E-10	2.3 E-10	1.9 E-10
Eu-154 8.80 a M 0.005 1.6 E-07 5.0 E-04 1.5 E-07 9.7 E-08 6.5 E-08 5.6 E-08 5.3 E-08 Eu-155 4.96 a M 0.005 2.6 E-08 5.0 E-04 2.3 E-08 1.4 E-08 9.2 E-09 7.6 E-09 6.9 E-08 Eu-156 15.2 d M 0.005 1.9 E-08 5.0 E-04 1.4 E-08 7.7 E-09 5.3 E-09 4.2 E-09 3.4 E-08 Eu-157 15.1 h M 0.005 2.5 E-09 5.0 E-04 1.9 E-09 8.9 E-10 5.9 E-10 3.5 E-10 2.8 E-10 Eu-158 0.765 h M 0.005 4.3 E-10 5.0 E-04 2.9 E-10 1.3 E-10 8.5 E-11 5.6 E-11 4.7 E-11 4.7 E-11 4.7 E-11 4.7 E-11 4.7 E-11 4.7 E-11 2.9 E-11 1.7 E-11 1.4 E-11 4.7 E-11 4.7 E-11 2.9 E-11 1.7 E-11 1.4 E-11 4.7 E-11 4.7 E-11 2.9 E-11 1.7 E-11 1.4 E-11 4.7 E-11 4.7 E-11 4.7 E-11 2.9 E-11 1.7 E-11 1.4 E-11 4.7 E-11	Eu-152	13.3 a	M	0.005	1.1 E-07	5.0 E-04	1.0 E-07	7.0 E-08	4.9 E-08	4.3 E-08	4.2 E-08
Eu-155	Eu-152m	9.32 h	M	0.005	1.9 E-09	5.0 E-04	1.3 E-09	6.6 E-10	4.2 E-10	2.4 E-10	2.2 E-10
Eu-156	Eu-154	8.80 a	M	0.005	1.6 E-07	5.0 E-04	1.5 E-07	9.7 E-08	6.5 E-08	5.6 E-08	5.3 E-08
Eu-157	Eu-155	4.96 a	M	0.005	2.6 E-08	5.0 E-04	2.3 E-08	1.4 E-08	9.2 E-09	7.6 E-09	6.9 E-09
Eu-158 0.765 h M 0.005 4.3 E-10 5.0 E-04 2.9 E-10 1.3 E-10 8.5 E-11 5.6 E-11 4.7 E-11 **Tuber	Eu-156	15. 2 d	M	0.005	1.9 E-08	5.0 E-04	1.4 E-08	7.7 E-09	5.3 E-09	4.2 E-09	3.4 E-09
\$\frac{1}{4}\$ \$\frac{1}{6}\$ \$1	Eu-157	15.1 h	M	0.005	2.5 E-09	5.0 E-04	1.9 E-09	8.9 E-10	5.9 E-10	3.5 E-10	2.8 E-10
Gd-145	Eu-158	0.765 h	M	0.005	4.3 E-10	5.0 E-04	2.9 E-10	1.3 E-10	8.5 E-11	5.6 E-11	4.7 E-11
Gd-146 48.3 d F 0.005 2.9 E-08 5.0 E-04 1.3 E-10 6.2 E-11 3.9 E-11 2.4 E-11 2.0 E-1 Gd-146 48.3 d F 0.005 2.9 E-08 5.0 E-04 2.3 E-08 1.2 E-08 7.8 E-09 5.1 E-09 4.4 E-0 Gd-147 1.59 d F 0.005 2.1 E-09 5.0 E-04 2.2 E-08 1.3 E-08 9.3 E-09 7.9 E-09 6.4 E-09 Gd-147 1.59 d F 0.005 2.1 E-09 5.0 E-04 1.7 E-09 8.4 E-10 5.3 E-10 3.1 E-10 2.6 E-10 M 0.005 2.8 E-09 5.0 E-04 2.2 E-09 1.1 E-09 7.5 E-10 5.1 E-10 4.0 E-10 Gd-148 93.0 a F 0.005 8.3 E-05 5.0 E-04 7.6 E-05 4.7 E-05 3.2 E-05 2.6 E-05 2.6 E-05 M 0.005 3.2 E-05 5.0 E-04 2.9 E-05 1.9 E-05 1.3 E-05 1.2 E-05 1.1 E-0 Gd-149 9.40 d F 0.005	钆										
Gd-146	Gd-145	0.382 h	F	0.005	1.3 E-10	5.0 E-04	9.6 E-11	4.7 E-11	2.9 E-11	1.7 E-11	1. 4 E-11
M 0.005 2.8 E-08 5.0 E-04 2.2 E-08 1.3 E-08 9.3 E-09 7.9 E-09 6.4 E-09 Gd-147 1.59 d F 0.005 2.1 E-09 5.0 E-04 1.7 E-09 8.4 E-10 5.3 E-10 3.1 E-10 2.6 E-10 M 0.005 2.8 E-09 5.0 E-04 2.2 E-09 1.1 E-09 7.5 E-10 5.1 E-10 4.0 E-10 Gd-148 93.0 a F 0.005 8.3 E-05 5.0 E-04 7.6 E-05 4.7 E-05 3.2 E-05 2.6 E-05 2.6 E-05 M 0.005 3.2 E-05 5.0 E-04 2.9 E-05 1.9 E-05 1.3 E-05 1.2 E-05 1.1 E-09 Gd-149 9.40 d F 0.005 2.6 E-09 5.0 E-04 2.0 E-09 8.0 E-10 5.1 E-10 3.1 E-10 2.6 E-01 Gd-151 120 d F 0.005 6.3 E-09 5.0 E-04 4.9 E-09 2.5 E-09 1.5 E-09 9.2 E-10 7.8 E-10			M	0.005	1.8 E-10	5.0 E-04	1.3 E-10	6. 2 E-11	3.9 E-11	2.4 E-11	2.0 E-11
Gd-147	Gd-146	48. 3 d	F	0.005	2.9 E-08	5.0 E-04	2.3 E-08	1.2 E-08	7.8 E-09	5.1 E-09	4.4 E-09
M 0.005 2.8 E-09 5.0 E-04 2.2 E-09 1.1 E-09 7.5 E-10 5.1 E-10 4.0 E-10 Gd-148 93.0 a F 0.005 8.3 E-05 5.0 E-04 7.6 E-05 4.7 E-05 3.2 E-05 2.6 E-05 2.6 E-05 M 0.005 3.2 E-05 5.0 E-04 2.9 E-05 1.9 E-05 1.3 E-05 1.2 E-05 1.1 E-06 Gd-149 9.40 d F 0.005 2.6 E-09 5.0 E-04 2.0 E-09 8.0 E-10 5.1 E-10 3.1 E-10 2.6 E-10 M 0.005 3.6 E-09 5.0 E-04 3.0 E-09 1.5 E-09 1.1 E-09 9.2 E-10 7.3 E-10 Gd-151 120 d F 0.005 6.3 E-09 5.0 E-04 4.9 E-09 2.5 E-09 1.5 E-09 9.2 E-10 7.8 E-10			M	0.005	2.8 E-08	5.0 E-04	2.2 E-08	1.3 E-08	9.3 E-09	7.9 E-09	6.4 E-09
Gd-148 93.0 a F 0.005 8.3 E-05 5.0 E-04 7.6 E-05 4.7 E-05 3.2 E-05 2.6 E-05 2.6 E-05 Gd-149 9.40 d F 0.005 2.6 E-09 5.0 E-04 2.9 E-05 1.9 E-05 1.3 E-05 1.2 E-05 1.1 E-00 Gd-151 120 d F 0.005 6.3 E-09 5.0 E-04 4.9 E-09 2.5 E-09 1.5 E-09 9.2 E-10 7.8 E-10 Gd-151 120 d F 0.005 6.3 E-09 5.0 E-04 4.9 E-09 2.5 E-09 1.5 E-09 9.2 E-10 7.8 E-1	Gd-147	1.59 d	F	0.005	2.1 E-09	5.0 E-04	1.7 E-09	8.4 E-10	5.3 E-10	3.1 E-10	2.6 E-10
M 0.005 3.2 E-05 5.0 E-04 2.9 E-05 1.9 E-05 1.3 E-05 1.2 E-05 1.1 E-05 Gd-149 9.40 d F 0.005 2.6 E-09 5.0 E-04 2.0 E-09 8.0 E-10 5.1 E-10 3.1 E-10 2.6 E-10 M 0.005 3.6 E-09 5.0 E-04 3.0 E-09 1.5 E-09 1.1 E-09 9.2 E-10 7.3 E-10 Gd-151 120 d F 0.005 6.3 E-09 5.0 E-04 4.9 E-09 2.5 E-09 1.5 E-09 9.2 E-10 7.8 E-10			M	0.005	2.8 E-09	5.0 E-04	2.2 E-09	1.1 E-09	7.5 E-10	5.1 E-10	4.0 E-10
Gd-149 9. 40 d F 0. 005 2. 6 E-09 5. 0 E-04 2. 0 E-09 8. 0 E-10 5. 1 E-10 3. 1 E-10 2. 6 E-14 M 0. 005 3. 6 E-09 5. 0 E-04 3. 0 E-09 1. 5 E-09 1. 1 E-09 9. 2 E-10 7. 3 E-14 Gd-151 120 d F 0. 005 6. 3 E-09 5. 0 E-04 4. 9 E-09 2. 5 E-09 1. 5 E-09 9. 2 E-10 7. 8 E-14	Gd-148	93.0 a	F	0.005	8.3 E-05	5.0 E-04	7.6 E-05	4.7 E-05	3.2 E-05	2.6 E-05	2.6 E-05
M 0.005 3.6 E-09 5.0 E-04 3.0 E-09 1.5 E-09 1.1 E-09 9.2 E-10 7.3 E-10 Gd-151 120 d F 0.005 6.3 E-09 5.0 E-04 4.9 E-09 2.5 E-09 1.5 E-09 9.2 E-10 7.8 E-10			M	0.005	3. 2 E-05	5.0 E-04	2.9 E-05	1.9 E-05	1.3 E-05	1.2 E-05	1.1 E-05
Gd-151 120 d F 0.005 6.3 E-09 5.0 E-04 4.9 E-09 2.5 E-09 1.5 E-09 9.2 E-10 7.8 E-10	Gd-149	9.40 d	F	0.005	2.6 E-09	5.0 E-04	2.0 E-09	8.0 E-10	5.1 E-10	3.1 E-10	2.6 E-10
			M	0.005	3.6 E-09	5.0 E-04	3.0 E-09	1.5 E-09	1.1 E-09	9. 2 E-10	7.3 E-10
M 0.005 4.5 E-09 5.0 E-04 3.5 E-09 2.0 E-09 1.3 E-09 1.0 E-09 8.6 E-10	Gd-151	120 d	F	0.005	6.3 E-09	5.0 E-04	4.9 E-09	2.5 E-09	1.5 E-09	9.2 E-10	7.8 E-10
			M	0.005	4.5 E-09	5.0 E-04	3.5 E-09	2.0 E-09	1.3 E-09	1.0 E-09	8.6 E-10
Gd-152 1.08 E+14 a F 0.005 5.9 E-05 5.0 E-04 5.4 E-05 3.4 E-05 2.4 E-05 1.9 E-05 1.9 E-05	Gd-152	1.08 E+14 a	F	0.005	5.9 E-05	5.0 E-04	5.4 E-05	3.4 E-05	2.4 E-05	1.9 E-05	1.9 E-05

	45 m V = 110	34 Dil	年齢 g	≤1 岁	f_1	1 岁~2 岁	2 岁~7 岁	7 岁~12 岁	12 岁~17 岁	>17 岁
核 素	物理半衰期	类 别	f_1	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
		M	0.005	2.1 E-05	5.0 E-04	1.9 E-05	1.3 E-05	8. 9 E-06	7.9 E-06	8.0 E-06
Gd-153	242 d	F	0.005	1.5 E-08	5.0 E-04	1.2 E-08	6.5 E-09	3.9 E-09	2.4 E-09	2.1 E-09
		M	0.005	9.9 E-09	5.0 E-04	7.9 E-09	4.8 E-09	3.1 E-09	2.5 E-09	2.1 E-09
Gd-159	18.6 h	F	0.005	1.2 E-09	5.0 E-04	8.9 E-10	3.8 E-10	2.3 E-10	1.2 E-10	1.0 E-10
		M	0.005	2.2 E-09	5.0 E-04	1.5 E-09	7.3 E-10	4.9 E-10	3.4 E-10	2.7 E-10
铽										
Tb-147	1.65 h	M	0.005	6.7 E-10	5.0 E-04	4.8 E-10	2.3 E-10	1.5 E-10	9.3 E-11	7.6 E-11
Tb-149	4.15 h	M	0.005	2.1 E-08	5.0 E-04	1.5 E-08	9.6 E-09	6.6 E-09	5.8 E-09	4.9 E-09
Tb-150	3.27 h	M	0.005	1.0 E-09	5.0 E-04	7.4 E-10	3.5 E-10	2.2 E-10	1.3 E-10	1.1 E-10
Tb-151	17.6 h	M	0.005	1.6 E-09	5.0 E-04	1.2 E-09	6.3 E-10	4.2 E-10	2.8 E-10	2.3 E-10
Tb-153	2.34 d	M	0.005	1.4 E-09	5.0 E-04	1.0 E-09	5.4 E-10	3.6 E-10	2.3 E-10	1.9 E-10
Tb-154	21.4 h	M	0.005	2.7 E-09	5.0 E-04	2.1 E-09	1.1 E-09	7.1 E-10	4.5 E-10	3.6 E-10
Tb-155	5.32 d	M	0.005	1.4 E-09	5.0 E-04	1.0 E-09	5.6 E-10	3.4 E-10	2.7 E-10	2.2 E-10
Tb-156	5.34 d	M	0.005	7.0 E-09	5.0 E-04	5.4 E-09	3.0 E-09	2.0 E-09	1.5 E-09	1.2 E-09
Tb-156m	1.02 d	M	0.005	1.1 E-09	5.0 E-04	9.4 E-10	4.7 E-10	3.3 E-10	2.7 E-10	2.1 E-10
Tb-156m	5.00 h	M	0.005	6.2 E-10	5.0 E-04	4.5 E-10	2.4 E-10	1.7 E-10	1.2 E-10	9.6 E-11
Tb-157	1.50 E+02 a	M	0.005	3.2 E-09	5.0 E-04	3.0 E-09	2.0 E-09	1.4 E-09	1.2 E-09	1.2 E-09
Tb-158	1.50 E+02 a	M	0.005	1.1 E-07	5.0 E-04	1.0 E-07	7.0 E-08	5.1 E-08	4.7 E-08	4.6 E-08
Tb-160	72.3 d	M	0.005	3.2 E-08	5.0 E-04	2.5 E-08	1.5 E-08	1.0 E-08	8.6 E-09	7.0 E-09
Tb-161	6.91 d	M	0.005	6.6 E-09	5.0 E-04	4.7 E-09	2.6 E-09	1.9 E-09	1.6 E-09	1.3 E-09
镝										
Dy-155	10.0 h	M	0.005	5.6 E-10	5.0 E-04	4.4 E-10	2.3 E-10	1.5 E-10	9.6 E-11	7.7 E-11
Dy-157	8.10 h	M	0.005	2.4 E-10	5.0 E-04	1.9 E-10	9.9 E-11	6.2 E-11	3.8 E-11	3.0 E-11
Dy-159	144 d	M	0.005	2.1 E-09	5.0 E-04	1.7 E-09	9.6 E-10	6.0 E-10	4.4 E-10	3.7 E-10
Dy-165	2.33 h	M	0.005	5.2 E-10	5.0 E-04	3.4 E-10	1.6 E-10	1.1 E-10	7.2 E-11	6.0 E-11
Dy-166	3.40 d	M	0.005	1.2 E-08	5.0 E-04	8.3 E-09	4.4 E-09	3.0 E-09	2.3 E-09	1.9 E-09
钬										
Ho-155	0.800 h	M	0.005	1.7 E-10	5.0 E-04	1.2 E-10	5.8 E-11	3.7 E-11	2.4 E-11	2.0 E-11
Ho-157	0.210 h	M	0.005	3.4 E-11	5.0 E-04	2.5 E-11	1.3 E-11	8.0 E-12	5.1 E-12	4.2 E-12

核 素	物理半衰期	类 别	年龄 g	≲1 岁	f_1	1 岁~2 岁	2 岁~7 岁	7岁~12岁	12 岁~17 岁	>17 岁
1久 系	初珪十表期	수 께	f_1	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
Ho-159	0.550 h	M	0.005	4.6 E-11	5.0 E-04	3.3 E-11	1.7 E-11	1.1 E-11	7.5 E-12	6.1 E-12
Ho-161	2.50 h	M	0.005	5.7 E-11	5.0 E-04	4.0 E-11	2.0 E-11	1.2 E-11	7.5 E-12	6.0 E-12
Ho-162	0.250 h	M	0.005	2.1 E-11	5.0 E-04	1.5 E-11	7.2 E-12	4.8 E-12	3.4 E-12	2.8 E-12
Ho-162m	1.13 h	M	0.005	1.5 E-10	5.0 E-04	1.1 E-10	5.8 E-11	3.8 E-11	2.6 E-11	2.1 E-11
Ho-164	0.483 h	M	0.005	6.8 E-11	5.0 E-04	4.5 E-11	2.1 E-11	1.4 E-11	9.9 E-12	8.4 E-12
Ho-164m	0.625 h	M	0.005	9.1 E-11	5.0 E-04	5.9 E-11	3.0 E-11	2.0 E-11	1.3 E-11	1.2 E-11
Ho-166	1.12 d	M	0.005	6.0 E-09	5.0 E-04	4.0 E-09	1.9 E-09	1.2 E-09	7.9 E-10	6.5 E-10
Ho-166m	1.20 E+03 a	M	0.005	2.6 E-07	5.0 E-04	2.5 E-07	1.8 E-07	1.3 E-07	1.2 E-07	1.2 E-07
Ho-167	3.10 h	M	0.005	5.2 E-10	5.0 E-04	3.6 E-10	1.8 E-10	1.2 E-10	8.7 E-11	7.1 E-11
铒										
Er-161	3.24 h	M	0.005	3.8 E-10	5.0 E-04	2.9 E-10	1.5 E-10	9.5 E-11	6.0 E-11	4.8 E-11
Er-165	10.4 h	M	0.005	7.2 E-11	5.0 E-04	5.3 E-11	2.6 E-11	1.6 E-11	9.6 E-12	7.9 E-12
Er-169	9.30 d	M	0.005	4.7 E-09	5.0 E-04	3.5 E-09	2.0 E-09	1.5 E-09	1.3 E-09	1.0 E-09
Er-171	7.52 h	M	0.005	1.8 E-09	5.0 E-04	1.2 E-09	5.9 E-10	3.9 E-10	2.7 E-10	2.2 E-10
Er-172	2.05 d	M	0.005	6.6 E-09	5.0 E-04	4.7 E-09	2.5 E-09	1.7 E-09	1.4 E-09	1.1 E-09
铥										
Tm-162	0.362 h	M	0.005	1.3 E-10	5.0 E-04	9.6 E-11	4.7 E-11	3.0 E-11	1.9 E-11	1.6 E-11
Tm-166	7.70 h	M	0.005	1.3 E-09	5.0 E-04	9.9 E-10	5.2 E-10	3.3 E-10	2.2 E-10	1.7 E-10
Tm-167	9.24 d	M	0.005	5.6 E-09	5.0 E-04	4.1 E-09	2.3 E-09	1.7 E-09	1.4 E-09	1.1 E-09
Tm-170	129 d	M	0.005	3.6 E-08	5.0 E-04	2.8 E-08	1.6 E-08	1.1 E-08	8.5 E-09	7.0 E-09
Tm-171	1.92 a	M	0.005	6.8 E-09	5.0 E-04	5.7 E-09	3.4 E-09	2.0 E-09	1.6 E-09	1.4 E-09
Tm-172	2.65 d	M	0.005	8.4 E-09	5.0 E-04	5.8 E-09	2.9 E-09	1.9 E-09	1.4 E-09	1.1 E-09
Tm-173	8.24 h	M	0.005	1.5 E-09	5.0 E-04	1.0 E-09	5.0 E-10	3.3 E-10	2.2 E-10	1.8 E-10
Tm-175	0.253 h	M	0.005	1.6 E-10	5.0 E-04	1.1 E-10	5.0 E-11	3.3 E-11	2.2 E-11	1.8 E-11
镱										
Yb-162	0.315 h	M	0.005	1.1 E-10	5.0 E-04	7.9 E-11	3.9 E-11	2.5 E-11	1.6 E-11	1.3 E-11
		S	0.005	1.2 E-10	5.0 E-04	8. 2 E-11	4.0 E-11	2.6 E-11	1.7 E-11	1.4 E-11
Yb-166	2.36 d	M	0.005	4.7 E-09	5.0 E-04	3.5 E-09	1.9 E-09	1.3 E-09	9.0 E-10	7.2 E-10
		S	0.005	4.9 E-09	5.0 E-04	3.7 E-09	2.0 E-09	1.3 E-09	9.6 E-10	7.7 E-10

核 素	物理半衰期	类 别	年龄 g	≲1 岁	f_1	1岁~2岁	2 岁~7 岁	7岁~12岁	12 岁~17 岁	>17 岁
1久 系	初珪十表期	天 加	f_1	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
Yb-167	0. 292 h	M	0.005	4.4 E-11	5.0 E-04	3.1 E-11	1.6 E-11	1.1 E-11	7.9 E-12	6.5 E-12
		S	0.005	4.6 E-11	5.0 E-04	3. 2 E-11	1.7 E-11	1.1 E-11	8.4 E-12	6.9 E-12
Yb-169	32.0 d	M	0.005	1.2 E-08	5.0 E-04	8.7 E-09	5.1 E-09	3.7 E-09	3.2 E-09	2.5 E-09
		S	0.005	1.3 E-08	5.0 E-04	9.8 E-09	5.9 E-09	4.2 E-09	3.7 E-09	3.0 E-09
Yb-175	4.19 d	M	0.005	3.5 E-09	5.0 E-04	2.5 E-09	1.4 E-09	9.8 E-10	8.3 E-10	6.5 E-10
		S	0.005	3.7 E-09	5.0 E-04	2.7 E-09	1.5 E-09	1.1 E-09	9.2 E-10	7.3 E-10
Yb-177	1.90 h	M	0.005	5.0 E-10	5.0 E-04	3.3 E-10	1.6 E-10	1.1 E-10	7.8 E-11	6.4 E-11
		S	0.005	5.3 E-10	5.0 E-04	3.5 E-10	1.7 E-10	1.2 E-10	8.4 E-11	6.9 E-11
Yb-178	1.23 h	M	0.005	5.9 E-10	5.0 E-04	3.9 E-10	1.8 E-10	1.2 E-10	8.5 E-11	7.0 E-11
		S	0.005	6.2 E-10	5.0 E-04	4.1 E-10	1.9 E-10	1.3 E-10	9.1 E-11	7.5 E-11
镥										
Lu-169	1. 42 d	M	0.005	2.3 E-09	5.0 E-04	1.8 E-09	9.5 E-10	6.3 E-10	4.4 E-10	3.5 E-10
		S	0.005	2.4 E-09	5.0 E-04	1.9 E-09	1.0 E-09	6.7 E-10	4.8 E-10	3.8 E-10
Lu-170	2.00 d	M	0.005	4.3 E-09	5.0 E-04	3.4 E-09	1.8 E-09	1.2 E-09	7.8 E-10	6.3 E-10
		S	0.005	4.5 E-09	5.0 E-04	3.5 E-09	1.8 E-09	1.2 E-09	8. 2 E-10	6.6 E-10
Lu-171	8. 22 d	M	0.005	5.0 E-09	5.0 E-04	3.7 E-09	2.1 E-09	1.2 E-09	9.8 E-10	8.0 E-10
		S	0.005	4.7 E-09	5.0 E-04	3.9 E-09	2.0 E-09	1.4 E-09	1.1 E-09	8.8 E-10
Lu-172	6.70 d	M	0.005	8.7 E-09	5.0 E-04	6.7 E-09	3.8 E-09	2.6 E-09	1.8 E-09	1.4 E-09
		S	0.005	9.3 E-09	5.0 E-04	7.1 E-09	4.0 E-09	2.8 E-09	2.0 E-09	1.6 E-09
Lu-173	1.37 a	M	0.005	1.0 E-08	5.0 E-04	8.5 E-09	5.1 E-09	3.2 E-09	2.5 E-09	2.2 E-09
		S	0.005	1.0 E-08	5.0 E-04	8.7 E-09	5.4 E-09	3.6 E-09	2.9 E-09	2.4 E-09
Lu-174	3.31 a	M	0.005	1.7 E-08	5.0 E-04	1.5 E-08	9.1 E-09	5.8 E-09	4.7 E-09	4.2 E-09
		S	0.005	1.6 E-08	5.0 E-04	1.4 E-08	8.9 E-09	5.9 E-09	4.9 E-09	4.2 E-09
Lu-174m	142 d	M	0.005	1.9 E-08	5.0 E-04	1.4 E-08	8.6 E-09	5.4 E-09	4.3 E-09	3.7 E-09
		S	0.005	2.0 E-08	5.0 E-04	1.5 E-08	9.2 E-09	6.1 E-09	5.0 E-09	4.2 E-09
Lu-176	3.60 E+10 a	M	0.005	1.8 E-07	5.0 E-04	1.7 E-07	1.1 E-07	7.8 E-08	7.1 E-08	7.0 E-08
		S	0.005	1.5 E-07	5.0 E-04	1.4 E-07	9.4 E-08	6.5 E-08	5.9 E-08	5.6 E-08
Lu-176m	3. 68 h	M	0.005	8.9 E-10	5.0 E-04	5.9 E-10	2.8 E-10	1.9 E-10	1.2 E-10	1.1 E-10
		S	0.005	9.3 E-10	5.0 E-04	6.2 E-10	3.0 E-10	2.0 E-10	1.2 E-10	1.2 E-10

	46 m V = 10	* DI	年齢 g	≤1 岁	f_1	1 岁~2 岁	2 岁~7 岁	7岁~12岁	12 岁~17 岁	>17 岁
核 素	物理半衰期	类 别	f_1	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
Lu-177	6.71 d	M	0.005	5.3 E-09	5.0 E-04	3.8 E-09	2.2 E-09	1.6 E-09	1.4 E-09	1.1 E-09
		S	0.005	5.7 E-09	5.0 E-04	4.1 E-09	2.4 E-09	1.7 E-09	1.5 E-09	1.2 E-09
Lu-177m	161 d	M	0.005	5.8 E-08	5.0 E-04	4.6 E-08	2.8 E-08	1.9 E-08	1.6 E-08	1.3 E-08
		S	0.005	6.5 E-08	5.0 E-04	5.3 E-08	3.2 E-08	2.3 E-08	2.0 E-08	1.6 E-08
Lu-178	0.473 h	M	0.005	2.3 E-10	5.0 E-04	1.5 E-10	6.6 E-11	4.3 E-11	2.9 E-11	2.4 E-11
		S	0.005	2.4 E-10	5.0 E-04	1.5 E-10	6.9 E-11	4.5 E-11	3.0 E-11	2.6 E-11
Lu-178m	0.378 h	M	0.005	2.6 E-10	5.0 E-04	1.8 E-10	8.3 E-11	5.6 E-11	3.8 E-11	3.2 E-11
		S	0.005	2.7 E-10	5.0 E-04	1.9 E-10	8.7 E-11	5.8 E-11	4.0 E-11	3.3 E-11
Lu-179	4.59 h	M	0.005	9.9 E-10	5.0 E-04	6.5 E-10	3.0 E-10	2.0 E-10	1.2 E-10	1.1 E-10
		S	0.005	1.0 E-09	5.0 E-04	6.8 E-10	3.2 E-10	2.1 E-10	1.3 E-10	1.2 E-10
铪										
Hf-170	16.0 h	F	0.020	1.4 E-09	0.002	1.1 E-09	5.4 E-10	3.4 E-10	2.0 E-10	1.6 E-10
		M	0.020	2.2 E-09	0.002	1.7 E-09	8.7 E-10	5.8 E-10	3.9 E-10	3.2 E-10
Hf-172	1.87 a	F	0.020	1.5 E-07	0.002	1.3 E-07	7.8 E-08	4.9 E-08	3.5 E-08	3.2 E-08
		M	0.020	8.1 E-08	0.002	6.9 E-08	4.3 E-08	2.8 E-08	2.3 E-08	2.0 E-08
Hf-173	24.0 h	F	0.020	6.6 E-10	0.002	5.0 E-10	2.5 E-10	1.5 E-10	8.9 E-11	7.4 E-11
		M	0.020	1.1 E-09	0.002	8.2 E-10	4.3 E-10	2.9 E-10	2.0 E-10	1.6 E-10
Hf-175	70.0 d	F	0.020	5.4 E-09	0.002	4.0 E-09	2.1 E-09	1.3 E-09	8.5 E-10	7.2 E-10
		M	0.020	5.8 E-09	0.002	4.5 E-09	2.6 E-09	1.8 E-09	1.4 E-09	1.2 E-09
Hf-177m	0.856 h	F	0.020	3.9 E-10	0.002	2.8 E-10	1.3 E-10	8.5 E-11	5.2 E-11	4.4 E-11
		M	0.020	6.5 E-10	0.002	4.7 E-10	2.3 E-10	1.5 E-10	1.1 E-10	9.0 E-11
Hf-178m	31.0 a	F	0.020	6.2 E-07	0.002	5.8 E-07	4.0 E-07	3.1 E-07	2.7 E-07	2.6 E-07
		M	0.020	2.6 E-07	0.002	2.4 E-07	1.7 E-07	1.3 E-07	1.2 E-07	1.2 E-07
Hf-179m	25.1 d	F	0.020	9.7 E-09	0.002	6.8 E-09	3.4 E-09	2.1 E-09	1.2 E-09	1.1 E-09
		M	0.020	1.7 E-08	0.002	1.3 E-08	7.6 E-09	5.5 E-09	4.8 E-09	3.8 E-09
Hf-180m	5.50 h	F	0.020	5.4 E-10	0.002	4.1 E-10	2.0 E-10	1.3 E-10	7.2 E-11	5.9 E-11
		M	0.020	9.1 E-10	0.002	6.8 E-10	3.6 E-10	2.4 E-10	1.7 E-10	1.3 E-10
Hf-181	42.4 d	F	0.020	1.3 E-08	0.002	9.6 E-09	4.8 E-09	2.8 E-09	1.7 E-09	1.4 E-09
		M	0.020	2.2 E-08	0.002	1.7 E-08	9.9 E-09	7.1 E-09	6.3 E-09	5.0 E-09

核 素	物理半衰期	类 别	年龄 8	r≤1 岁	f_1	1 岁~2 岁	2 岁~7 岁	7岁~12岁	12 岁~17 岁	>17 岁
12 系	初珪十表期	수 께	f_1	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
Hf-182	9.00 E+06 a	F	0.020	6.5 E-07	0.002	6. 2 E-07	4.4 E-07	3. 6 E-07	3.1 E-07	3.1 E-07
		M	0.020	2.4 E-07	0.002	2.3 E-07	1.7 E-07	1.3 E-07	1.3 E-07	1.3 E-07
Hf-182m	1.02 h	F	0.020	1.9 E-10	0.002	1.4 E-10	6.6 E-11	4.2 E-11	2.6 E-11	2.1 E-11
		M	0.020	3.2 E-10	0.002	2.3 E-10	1.2 E-10	7.8 E-11	5.6 E-11	4.6 E-11
Hf-183	1.07 h	F	0.020	2.5 E-10	0.002	1.7 E-10	7.9 E-11	4.9 E-11	2.8 E-11	2.4 E-11
		M	0.020	4.4 E-10	0.002	3.0 E-10	1.5 E-10	9.8 E-11	7.0 E-11	5.7 E-11
Hf-184	4.12 h	F	0.020	1.4 E-09	0.002	9.6 E-10	4.3 E-10	2.7 E-10	1.4 E-10	1.2 E-10
		M	0.020	2.6 E-09	0.002	1.8 E-09	8.9 E-10	5.9 E-10	4.0 E-10	3.3 E-10
钽										
Ta-172	0.613 h	M	0.010	2.8 E-10	0.001	1.9 E-10	9.3 E-11	6.0 E-11	4.0 E-11	3.3 E-11
		S	0.010	2.9 E-10	0.001	2.0 E-10	9.8 E-11	6. 3 E-11	4.2 E-11	3.5 E-11
Ta-173	3.65 h	M	0.010	8.8 E-10	0.001	6.2 E-10	3.0 E-10	2.0 E-10	1.3 E-10	1.1 E-10
		S	0.010	9.2 E-10	0.001	6.5 E-10	3.2 E-10	2.1 E-10	1.4 E-10	1.1 E-10
Ta-174	1.20 h	M	0.010	3.2 E-10	0.001	2.2 E-10	1.1 E-10	7.1 E-11	5.0 E-11	4.1 E-11
		S	0.010	3.4 E-10	0.001	2.3 E-10	1.1 E-10	7.5 E-11	5. 3 E-11	4.3 E-11
Ta-175	10.5 h	M	0.010	9.1 E-10	0.001	7.0 E-10	3.7 E-10	2.4 E-10	1.5 E-10	1.2 E-10
		S	0.010	9.5 E-10	0.001	7.3 E-10	3.8 E-10	2.5 E-10	1.6 E-10	1.3 E-10
Ta-176	8.08 h	M	0.010	1.4 E-09	0.001	1.1 E-09	5.7 E-10	3.7 E-10	2.4 E-10	1.9 E-10
		S	0.010	1.4 E-09	0.001	1.1 E-09	5.9 E-10	3.8 E-10	2.5 E-10	2.0 E-10
Ta-177	2.36 d	M	0.010	6.5 E-10	0.001	4.7 E-10	2.5 E-10	1.5 E-10	1.2 E-10	9.6 E-11
		S	0.010	6.9 E-10	0.001	5.0 E-10	2.7 E-10	1.7 E-10	1.3 E-10	1.1 E-10
Ta-178	2.20 h	M	0.010	4.4 E-10	0.001	3.3 E-10	1.7 E-10	1.1 E-10	8.0 E-11	6.5 E-11
		S	0.010	4.6 E-10	0.001	3.4 E-10	1.8 E-10	1.2 E-10	8.5 E-11	6.8 E-11
Ta-179	1.82 a	M	0.010	1.2 E-09	0.001	9.6 E-10	5.5 E-10	3.5 E-10	2.6 E-10	2.2 E-10
		S	0.010	2.4 E-09	0.001	2.1 E-09	1.3 E-09	8. 3 E-10	6.4 E-10	5.6 E-10
Ta-180	1.00 E+13 a	M	0.010	2.7 E-08	0.001	2.2 E-08	1.3 E-08	9.2 E-09	7.9 E-09	6.4 E-09
		S	0.010	7.0 E-08	0.001	6.5 E-08	4.5 E-08	3.1 E-08	2.8 E-08	2.6 E-08
Ta-180m	8.10 h	M	0.010	3.1 E-10	0.001	2.2 E-10	1.1 E-10	7.4 E-11	4.8 E-11	4.4 E-11
		S	0.010	3.3 E-10	0.001	2.3 E-10	1. 2 E-10	7. 9 E-11	5. 2 E-11	4.2 E-11

核 素	物理半衰期	类 别	年齢 g	≤1 岁	f_1	1 岁~2 岁	2 岁~7 岁	7 岁~12 岁	12 岁~17 岁	>17 岁
枚 系	初理干衰期	尖 剂	f_1	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
Ta-182	115 d	M	0.010	3.2 E-08	0.001	2.6 E-08	1.5 E-08	1.1 E-08	9.5 E-09	7.6 E-09
		S	0.010	4.2 E-08	0.001	3.4 E-08	2.1 E-08	1.5 E-08	1.3 E-08	1.0 E-08
Ta-182m	0.264 h	M	0.010	1.6 E-10	0.001	1.1 E-10	4.9 E-11	3.4 E-11	2.4 E-11	2.0 E-11
		S	0.010	1.6 E-10	0.001	1.1 E-10	5.2 E-11	3.6 E-11	2.5 E-11	2.1 E-11
Ta-183	5.10 d	M	0.010	1.0 E-08	0.001	7.4 E-09	4.1 E-09	2.9 E-09	2.4 E-09	1.9 E-09
		S	0.010	1.1 E-08	0.001	8.0 E-09	4.5 E-09	3.2 E-09	2.7 E-09	2.1 E-09
Ta-184	8.70 h	M	0.010	3.2 E-09	0.001	2.3 E-09	1.1 E-09	7.5 E-10	5.0 E-10	4.1 E-10
		S	0.010	3.4 E-09	0.001	2.4 E-09	1.2 E-09	7.9 E-10	5.4 E-10	4.3 E-10
Ta-185	0.816 h	M	0.010	3.8 E-10	0.001	2.5 E-10	1.2 E-10	7.7 E-11	5. 4 E-11	4.5 E-11
		S	0.010	4.0 E-10	0.001	2.6 E-10	1.2 E-10	8. 2 E-11	5.7 E-11	4.8 E-11
Ta-186	0.175 h	M	0.010	1.6 E-10	0.001	1.1 E-10	4.8 E-11	3.1 E-11	2.0 E-11	1.7 E-11
		S	0.010	1.6 E-10	0.001	1.1 E-10	5.0 E-11	3.2 E-11	2.1 E-11	1.8 E-11
钨										
W-176	2.30 h	F	0.600	3.3 E-10	0.300	2.7 E-10	1.4 E-10	8.6 E-11	5.0 E-11	4.1 E-11
W-177	2.25 h	F	0.600	2.0 E-10	0.300	1.6 E-10	8. 2 E-11	5.1 E-11	3.0 E-11	2.4 E-11
W-178	21.7 d	F	0.600	7.2 E-10	0.300	5.4 E-10	2.5 E-10	1.6 E-10	8.7 E-11	7.2 E-11
W-179	0.625 h	F	0.600	9.3 E-12	0.300	6.8 E-12	3.3 E-12	2.0 E-12	1.2 E-12	9.2 E-13
W-181	121 d	F	0.600	2.5 E-10	0.300	1.9 E-10	9.2 E-11	5.7 E-11	3. 2 E-11	2.7 E-11
W-185	75.1 d	F	0.600	1.4 E-09	0.300	1.0 E-09	4.4 E-10	2.7 E-10	1.4 E-10	1.2 E-10
W-187	23.9 h	F	0.600	2.0 E-09	0.300	1.5 E-09	7.0 E-10	4.3 E-10	2.3 E-10	1.9 E-10
W-188	69. 4 d	F	0.600	7.1 E-09	0.300	5.0 E-09	2.2 E-09	1.3 E-09	6.8 E-10	5.7 E-10
铼										
Re-177	0.233 h	F	1.000	9.4 E-11	0.800	6.7 E-11	3.2 E-11	1.9 E-11	1.2 E-11	9.7 E-12
		M	1.000	1.1 E-10	0.800	7.9 E-11	3.9 E-11	2.5 E-11	1.7 E-11	1.4 E-11
Re-178	0.220 h	F	1.000	9.9 E-11	0.800	6.8 E-11	3.1 E-11	1. 9 E-11	1.2 E-11	1.0 E-11
		M	1.000	1.3 E-10	0.800	8.5 E-11	3.9 E-11	2.6 E-11	1.7 E-11	1.4 E-11
Re-181	20.0 h	F	1.000	2.0 E-09	0.800	1.4 E-09	6.7 E-10	3.8 E-10	2.3 E-10	1.8 E-10
		M	1.000	2.1 E-09	0.800	1.5 E-09	7.4 E-10	4.6 E-10	3.1 E-10	2.5 E-10
Re-182	2.67 d	F	1.000	6.5 E-09	0.800	4.7 E-09	2.2 E-09	1.3 E-09	8.0 E-10	6.4 E-10

++ =	糖四水壳如	* 01	年龄。	r≤1 岁	f_1	1 岁~2 岁	2 岁~7 岁	7 岁~12 岁	12 岁~17 岁	>17 岁
核 素	物理半衰期	类 别	f_1	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
		M	1.000	8.7 E-09	0.800	6.3 E-09	3.4 E-09	2. 2 E-09	1.5 E-09	1.2 E-09
Re-182	12.7 h	F	1.000	1.3 E-09	0.800	1.0 E-09	4.9 E-10	2.8 E-10	1.7 E-10	1.4 E-10
		M	1.000	1.4 E-09	0.800	1.1 E-09	5.7 E-10	3.6 E-10	2.5 E-10	2.0 E-10
Re-184	38.0 d	F	1.000	4.1 E-09	0.800	2.9 E-09	1.4 E-09	8.6 E-10	5.4 E-10	4.4 E-10
		M	1.000	9.1 E-09	0.800	6.8 E-09	4.0 E-09	2.8 E-09	2.4 E-09	1.9 E-09
Re-184m	165 d	F	1.000	6.6 E-09	0.800	4.6 E-09	2.0 E-09	1.2 E-09	7.3 E-10	5.9 E-10
		M	1.000	2.9 E-08	0.800	2.2 E-08	1.3 E-08	9.3 E-09	8.1 E-09	6.5 E-09
Re-186	3.78 d	F	1.000	7.3 E-09	0.800	4.7 E-09	2.0 E-09	1.1 E-09	6.6 E-10	5.2 E-10
		M	1.000	8.7 E-09	0.800	5.7 E-09	2.8 E-09	1.8 E-09	1.4 E-09	1.1 E-09
Re-186m	2.00 E+05 a	F	1.000	1.2 E-08	0.800	7.0 E-09	2.9 E-09	1.7 E-09	1.0 E-09	8.3 E-10
		M	1.000	5.9 E-08	0.800	4.6 E-08	2.7 E-08	1.8 E-08	1.4 E-08	1.2 E-08
Re-187	5.00 E+10 a	F	1.000	2.6 E-11	0.800	1.6 E-11	6.8 E-12	3.8 E-12	2.3 E-12	1.8 E-12
		M	1.000	5.7 E-11	0.800	4.1 E-11	2.0 E-11	1. 2 E-11	7.5 E-12	6.3 E-12
Re-188	17.0 h	F	1.000	6.5 E-09	0.800	4.4 E-09	1.9 E-09	1.0 E-09	6.1 E-10	4.6 E-10
		M	1.000	6.0 E-09	0.800	4.0 E-09	1.8 E-09	1.0 E-09	6.8 E-10	5.4 E-10
Re-188m	0.310 h	F	1.000	1.4 E-10	0.800	9.1 E-11	4.0 E-11	2.1 E-11	1.3 E-11	1.0 E-11
		M	1.000	1.3 E-10	0.800	8. 6 E-11	4.0 E-11	2.7 E-11	1.6 E-11	1.3 E-11
Re-189	1.01 d	F	1.000	3.7 E-09	0.800	2.5 E-09	1.1 E-09	5.8 E-10	3.5 E-10	2.7 E-10
		M	1.000	3.9 E-09	0.800	2.6 E-09	1.2 E-09	7.6 E-10	5.5 E-10	4.3 E-10
锇										
Os-180	0.366 h	F	0.020	7. 1 E-11	0.010	5. 3 E-11	2.6 E-11	1. 6 E-11	1.0 E-11	8.2 E-12
		M	0.020	1.1 E-10	0.010	7.9 E-11	3.9 E-11	2.5 E-11	1.7 E-11	1.4 E-11
		S	0.020	1.1 E-10	0.010	8. 2 E-11	4.1 E-11	2.6 E-11	1.8 E-11	1.5 E-11
Os-181	1.75 h	F	0.020	3.0 E-10	0.010	2.3 E-10	1.1 E-10	7.0 E-11	4.1 E-11	3.3 E-11
		M	0.020	4.5 E-10	0.010	3.4 E-10	1.8 E-10	1.1 E-10	7.6 E-11	6.2 E-11
		S	0.020	4.7 E-10	0.010	3.6 E-10	1.8 E-10	1. 2 E-10	8.1 E-11	6.5 E-11
Os-182	22.0 h	F	0.020	1.6 E-09	0.010	1.2 E-09	6.0 E-10	3.7 E-10	2.1 E-10	1.7 E-10
		M	0.020	2.5 E-09	0.010	1.9 E-09	1.0 E-09	6.6 E-10	4.5 E-10	3.6 E-10
		S	0.020	2.6 E-09	0.010	2.0 E-09	1.0 E-09	6.9 E-10	4.8 E-10	3.8 E-10

核 素	物理半衰期	类 别	年齢 g	≲1 岁	f_1	1岁~2岁	2 岁~7 岁	7岁~12岁	12 岁~17 岁	>17 岁
10 系	初连十表期	关 加	f_1	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
Os-185	94.0 d	F	0.020	7.2 E-09	0.010	5.8 E-09	3.1 E-09	1.9 E-09	1.2 E-09	1.1 E-09
		M	0.020	6.6 E-09	0.010	5.4 E-09	2.9 E-09	2.0 E-09	1.5 E-09	1.3 E-09
		S	0.020	7.0 E-09	0.010	5.8 E-09	3.6 E-09	2.4 E-09	1.9 E-09	1.6 E-09
Os-189m	6.00 h	F	0.020	3.8 E-11	0.010	2.8 E-11	1.2 E-11	7.0 E-12	3.5 E-12	2.5 E-12
		M	0.020	6.5 E-11	0.010	4.1 E-11	1.8 E-11	1.1 E-11	6.0 E-12	5.0 E-12
		S	0.020	6.8 E-11	0.010	4.3 E-11	1.9 E-11	1.2 E-11	6.3 E-12	5.3 E-12
Os-191	15.4 d	F	0.020	2.8 E-09	0.010	1.9 E-09	8.5 E-10	5.3 E-10	3.0 E-10	2.5 E-10
		M	0.020	8.0 E-09	0.010	5.8 E-09	3.4 E-09	2.4 E-09	2.0 E-09	1.7 E-09
		S	0.020	9.0 E-09	0.010	6.5 E-09	3.9 E-09	2.7 E-09	2.3 E-09	1.9 E-09
Os-191m	13.0 h	F	0.020	3.0 E-10	0.010	2.0 E-10	8.8 E-11	5.4 E-11	2.9 E-11	2.4 E-11
		M	0.020	7.8 E-10	0.010	5.4 E-10	3.1 E-10	2.1 E-10	1.7 E-10	1.4 E-10
		S	0.020	8.5 E-10	0.010	6.0 E-10	3.4 E-10	2.4 E-10	2.0 E-10	1.6 E-10
Os-193	1. 25 d	F	0.020	1.9 E-09	0.010	1.2 E-09	5.2 E-10	3.2 E-10	1.8 E-10	1.6 E-10
		M	0.020	3.8 E-09	0.010	2.6 E-09	1.3 E-09	8. 4 E-10	5.9 E-10	4.8 E-10
		S	0.020	4.0 E-09	0.010	2.7 E-09	1.3 E-09	9.0 E-10	6.4 E-10	5.2 E-10
Os-194	6.00 a	F	0.020	8.7 E-08	0.010	6.8 E-08	3.4 E-08	2.1 E-08	1.3 E-08	1.1 E-08
		M	0.020	9.9 E-08	0.010	8.3 E-08	4.8 E-08	3.1 E-08	2.4 E-08	2.1 E-08
		S	0.020	2.6 E-07	0.010	2.4 E-07	1.6 E-07	1.1 E-07	8.8 E-08	8.5 E-08
铱										
Ir-182	0.250 h	F	0.020	1.4 E-10	0.010	9.8 E-11	4.5 E-11	2.8 E-11	1.7 E-11	1.4 E-11
		M	0.020	2.1 E-10	0.010	1.4 E-10	6.7 E-11	4.3 E-11	2.8 E-11	2.3 E-11
		S	0.020	2. 2 E-10	0.010	1.5 E-10	6.9 E-11	4.4 E-11	2.9 E-11	2.4 E-11
Ir-184	3.02 h	F	0.020	5.7 E-10	0.010	4.4 E-10	2.1 E-10	1.3 E-10	7.6 E-11	6.2 E-11
		M	0.020	8.6 E-10	0.010	6.4 E-10	3. 2 E-10	2.1 E-10	1.4 E-10	1.1 E-10
		S	0.020	8.9 E-10	0.010	6.6 E-10	3.4 E-10	2.2 E-10	1.4 E-10	1.2 E-10
Ir-185	14.0 h	F	0.020	8.0 E-10	0.010	6.1 E-10	2.9 E-10	1.8 E-10	1.0 E-10	8. 2 E-11
		M	0.020	1.3 E-09	0.010	9.7 E-10	4.9 E-10	3.2 E-10	2.2 E-10	1.8 E-10
		S	0.020	1.4 E-09	0.010	1.0 E-09	5.2 E-10	3.4 E-10	2.3 E-10	1.9 E-10
Ir-186	15.8 h	F	0.020	1.5 E-09	0.010	1.2 E-09	5.9 E-10	3.6 E-10	2.1 E-10	1.7 E-10
	l .	1	i e							

核 素	物理半衰期	类 别	年龄。	g≤l 岁	f_1	1 岁~2 岁	2 岁~7 岁	7 岁~12 岁	12 岁~17 岁	>17 岁
核 系	初埕干农期	尖 剂	f ₁	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
		M	0.020	2.2 E-09	0.010	1.7 E-09	8.8 E-10	5.8 E-10	3.8 E-10	3.1 E-10
		S	0.020	2.3 E-09	0.010	1.8 E-09	9.2 E-10	6.0 E-10	4.0 E-10	3.2 E-10
Ir-186	1.75 h	F	0.020	2.1 E-10	0.010	1.6 E-10	7.7 E-11	4.8 E-11	2.8 E-11	2.3 E-11
		M	0.020	3.3 E-10	0.010	2.4 E-10	1. 2 E-10	7.7 E-11	5. 1 E-11	4.2 E-11
		S	0.020	3.4 E-10	0.010	2.5 E-10	1.2 E-10	8.1 E-11	5.4 E-11	4.4 E-11
Ir-187	10.5 h	F	0.020	3.6 E-10	0.010	2.8 E-10	1.4 E-10	8. 2 E-11	4.6 E-11	3.7 E-11
		M	0.020	5.8 E-10	0.010	4.3 E-10	2.2 E-10	1.4 E-10	9-2 E-11	7.4 E-11
		S	0.020	6.0 E-10	0.010	4.5 E-10	2.3 E-10	1.5 E-10	9.7 E-11	7.9 E-11
Ir-188	1.73 d	F	0.020	2.0 E-09	0.010	1.6 E-09	8.0 E-10	5.0 E-10	2.9 E-10	2.4 E-10
		M	0.020	2.7 E-09	0.010	2.1 E-09	1.1 E-09	7.5 E-10	5.0 E-10	4.0 E-10
		S	0.020	2.8 E-09	0.010	2.2 E-09	1.2 E-09	7.8 E-10	5. 2 E-10	4.2 E-10
Ir-189	13.3 d	F	0.020	1.2 E-09	0.010	8. 2 E-10	3.8 E-10	2.4 E-10	1.3 E-10	1.1 E-10
		M	0.020	2.7 E-09	0.010	1.9 E-09	1.1 E-09	7.7 E-10	6.4 E-10	5.2 E-10
		S	0.020	3.0 E-09	0.010	2.2 E-09	1.3 E-09	8.7 E-10	7.3 E-10	6.0 E-10
Ir-190	12.1 d	F	0.020	6.2 E-09	0.010	4.7 E-09	2.4 E-09	1.5 E-09	9.1 E-10	7.7 E-10
		M	0.020	1.1 E-08	0.010	8. 6 E-09	4.4 E-09	3.1 E-09	2.7 E-09	2.1 E-09
		S	0.020	1.1 E-08	0.010	9.4 E-09	4.8 E-09	3.5 E-09	3.0 E-09	2.4 E-09
Ir-190m	3.10 h	F	0.020	4.2 E-10	0.010	3.4 E-10	1.7 E-10	1.0 E-10	6.0 E-11	4.9 E-11
		M	0.020	6.0 E-10	0.010	4.7 E-10	2.4 E-10	1.5 E-10	9.9 E-11	7.9 E-11
		S	0.020	6.2 E-10	0.010	4.8 E-10	2.5 E-10	1.6 E-10	1.0 E-10	8.3 E-11
Ir-190m	1.20 h	F	0.020	3. 2 E-11	0.010	2.4 E-11	1. 2 E-11	7. 2 E-12	4.3 E-12	3.6 E-12
		M	0.020	5.7 E-11	0.010	4.2 E-11	2.0 E-11	1.4 E-11	1. 2 E-11	9.3 E-12
		S	0.020	5.5 E-11	0.010	4.5 E-11	2. 2 E-11	1.6 E-11	1. 3 E-11	1.0 E-11
Ir-192	74.0 d	F	0.020	1.5 E-08	0.010	1.1 E-08	5.7 E-09	3.3 E-09	2.1 E-09	1.8 E-09
		M	0.020	2.3 E-08	0.010	1.8 E-08	1.1 E-08	7.6 E-09	6.4 E-09	5.2 E-09
		S	0.020	2.8 E-08	0.010	2.2 E-08	1.3 E-08	9.5 E-09	8.1 E-09	6.6 E-09
Ir-192m	2.41 E+02 a	F	0.020	2.7 E-08	0.010	2.3 E-08	1.4 E-08	8.2 E-09	5.4 E-09	4.8 E-09
		M	0.020	2.3 E-08	0.010	2.1 E-08	1.3 E-08	8.4 E-09	6.6 E-09	5.8 E-09
		S	0.020	9.2 E-08	0.010	9.1 E-08	6.5 E-08	4.5 E-09	4.0 E-08	3.9 E-08

核 素	物理半衰期	类 别	年齢 g	≤1 岁	f_1	1 岁~2 岁	2 岁~7 岁	7岁~12岁	12 岁~17 岁	>17 岁
12 35	10/2 7 42 70	2 113	f_1	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
Ir-193m	11.9 d	F	0.020	1.2 E-09	0.010	8.4 E-10	3.7 E-10	2.2 E-10	1.2 E-10	1.0 E-10
		M	0.020	4.8 E-09	0.010	3.5 E-09	2.1 E-09	1.5 E-09	1.4 E-09	1.1 E-09
		S	0.020	5.4 E-09	0.010	4.0 E-09	2.4 E-09	1.8 E-09	1.6 E-09	1.3 E-09
Ir-194	19.1 h	F	0.020	2.9 E-09	0.010	1.9 E-09	8.1 E-10	4.9 E-10	2.5 E-10	2.1 E-10
		M	0.020	5.3 E-09	0.010	3.5 E-09	1.6 E-09	1.0 E-09	6.3 E-10	5.2 E-10
		S	0.020	5.5 E-09	0.010	3.7 E-09	1.7 E-09	1.1 E-09	6.7 E-10	5.6 E-10
Ir-194m	171 d	F	0.020	3.4 E-08	0.010	2.7 E-08	1.4 E-08	9.5 E-09	6.2 E-09	5.4 E-09
		M	0.020	3.9 E-08	0.010	3.2 E-08	1.9 E-08	1.3 E-08	1.1 E-08	9.0 E-09
		S	0.020	5.0 E-08	0.010	4.2 E-08	2.6 E-08	1.8 E-08	1.5 E-08	1.3 E-08
Ir-195	2.50 h	F	0.020	2.9 E-10	0.010	1.9 E-10	8.1 E-11	5.1 E-11	2.9 E-11	2.4 E-11
		M	0.020	5.4 E-10	0.010	3.6 E-10	1.7 E-10	1.1 E-10	8.1 E-11	6.7 E-11
		S	0.020	5.7 E-10	0.010	3.8 E-10	1.8 E-10	1.2 E-10	8.7 E-11	7.1 E-11
Ir-195m	3.80 h	F	0.020	6.9 E-10	0.010	4.8 E-10	2.1 E-10	1.3 E-10	7.2 E-11	6.0 E-11
		M	0.020	1.2 E-09	0.010	8.6 E-10	4.2 E-10	2.7 E-10	1.9 E-10	1.6 E-10
		S	0.020	1.3 E-09	0.010	9.0 E-10	4.4 E-10	2.9 E-10	2.0 E-10	1.7 E-10
铂										
Pt-186	2.00 h	F	0.020	3.0 E-10	0.010	2.4 E-10	1.2 E-10	7.2 E-11	4.1 E-11	3.3 E-11
Pt-188	10.2 d	F	0.020	3.6 E-09	0.010	2.7 E-09	1.3 E-09	8.4 E-10	5.0 E-10	4.2 E-10
Pt-189	10.9 h	F	0.020	3.8 E-10	0.010	2.9 E-10	1.4 E-10	8.4 E-11	4.7 E-11	3.8 E-11
Pt-191	2.80 d	F	0.020	1.1 E-09	0.010	7.9 E-10	3.7 E-10	2.3 E-10	1.3 E-10	1.1 E-10
Pt-193	50.0 a	F	0.020	2.2 E-10	0.010	1.6 E-10	7.2 E-11	4.3 E-11	2.5 E-11	2.1 E-11
Pt-193m	4.33 d	F	0.020	1.6 E-09	0.010	1.0 E-09	4.5 E-10	2.7 E-10	1.4 E-10	1.2 E-10
Pt-195m	4.02 d	F	0.020	2.2 E-09	0.010	1.5 E-09	6.4 E-10	3.9 E-10	2.1 E-10	1.8 E-10
Pt-197	18.3 h	F	0.020	1.1 E-09	0.010	7.3 E-10	3.1 E-10	1.9 E-10	1.0 E-10	8.5 E-11
Pt-197m	1.57 h	F	0.020	2.8 E-10	0.010	1.8 E-10	7.9 E-11	4.9 E-11	2.8 E-11	2.4 E-11
Pt-199	0.513 h	F	0.020	1.3 E-10	0.010	8.3 E-11	3.6 E-11	2.3 E-11	1.4 E-11	1.2 E-11
Pt-200	12.5 h	F	0.020	2.6 E-09	0.010	1.7 E-09	7.2 E-10	5.1 E-10	2. 6 E-10	2.2 E-10
金										
Au-193	17.6 h	F	0.200	3.7 E-10	0.100	2.8 E-10	1.3 E-10	7.9 E-11	4.3 E-11	3.6 E-11

核素	物理业育物	类 别	年龄。	r≤1 岁	f_1	1 岁~2 岁	2 岁~7 岁	7 岁~12 岁	12 岁~17 岁	>17 岁
核素	物理半衰期	类 别	f_1	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
		M	0.200	7.5 E-10	0.100	5.6 E-10	2.8 E-10	1.9 E-10	1.4 E-10	1.1 E-10
		S	0.200	7.9 E-10	0.100	5.9 E-10	3.0 E-10	2.0 E-10	1.5 E-10	1.2 E-10
Au-194	1.65 d	F	0.200	1.2 E-09	0.100	9.6 E-10	4.9 E-10	3.0 E-10	1.8 E-10	1.4 E-10
		M	0.200	1.7 E-09	0.100	1.4 E-09	7.1 E-10	4.6 E-10	2.9 E-10	2.3 E-10
		S	0.200	1.7 E-09	0.100	1.4 E-09	7.3 E-10	4.7 E-10	3.0 E-10	2.4 E-10
Au-195	183 d	F	0.200	7.2 E-10	0.100	5.3 E-10	2.5 E-10	1.5 E-10	8.1 E-11	6.6 E-11
		M	0.200	5.2 E-09	0.100	4.1 E-09	2.4 E-09	1.6 E-09	1.4 E-09	1.1 E-09
		S	0.200	8.1 E-09	0.100	6.6 E-09	3.9 E-09	2.6 E-09	2.1 E-09	1.7 E-09
Au-198	2.69 d	F	0.200	2.4 E-09	0.100	1.7 E-09	7.6 E-10	4.7 E-10	2.5 E-10	2.1 E-10
		M	0.200	5.0 E-09	0.100	4.1 E-09	1.9 E-09	1.3 E-09	9.7 E-10	7.8 E-10
		S	0.200	5.4 E-09	0.100	4.4 E-09	2.0 E-09	1.4 E-09	1.1 E-09	8.6 E-10
Au-198m	2.30 d	F	0.200	3.3 E-09	0.100	2.4 E-09	1.1 E-09	6.9 E-10	3.7 E-10	3.2 E-10
		M	0.200	8.7 E-09	0.100	6.5 E-09	3.6 E-09	2.6 E-09	2.2 E-09	1.8 E-09
		S	0.200	9.5 E-09	0.100	7.1 E-09	4.0 E-09	2.9 E-09	2.5 E-09	2.0 E-09
Au-199	3.14 d	F	0.200	1.1 E-09	0.100	7.9 E-10	3.5 E-10	2.2 E-10	1.1 E-10	9.8 E-11
		M	0.200	3.4 E-09	0.100	2.5 E-09	1.4 E-09	1.0 E-09	9.0 E-10	7.1 E-10
		S	0.200	3.8 E-09	0.100	2.8 E-09	1.6 E-09	1.2 E-09	1.0 E-09	7.9 E-10
Au-200	0.807 h	F	0.200	1.9 E-10	0.100	1.2 E-10	5.2 E-11	3.2 E-11	1.9 E-11	1.6 E-11
		M	0.200	3.2 E-10	0.100	2.1 E-10	9.3 E-11	6.0 E-11	4.0 E-11	3.3 E-11
		S	0.200	3.4 E-10	0.100	2.1 E-10	9.8 E-11	6.3 E-11	4.2 E-11	3.5 E-11
Au-200m	18.7 h	F	0.200	2.7 E-09	0.100	2.1 E-09	1.0 E-09	6.4 E-10	3.6 E-10	2.9 E-10
		M	0.200	4.8 E-09	0.100	3.7 E-09	1.9 E-09	1.2 E-09	8.4 E-10	6.8 E-10
		S	0.200	5.1 E-09	0.100	3.9 E-09	2.0 E-09	1.3 E-09	8. 9 E-10	7.2 E-10
Au-201	0.440 h	F	0.200	9.0 E-11	0.100	5.7 E-11	2.5 E-11	1.6 E-11	1.0 E-11	8.7 E-12
		M	0.200	1.5 E-10	0.100	9.6 E-11	4.3 E-11	2.9 E-11	2.0 E-11	1.7 E-11
		S	0.200	1.5 E-10	0.100	1.0 E-10	4.5 E-11	3.0 E-11	2.1 E-11	1.7 E-11
汞	0.501				0.400	1.07.16	0.07.17	5 0 17 15	0.07.11	_
Hg-193	3. 50 h	F	0.800	2.2 E-10	0.400	1.8 E-10	8. 2 E-11	5.0 E-11	2. 9 E-11	2.4 E-11
(有机的)				1						

核素	物理半衰期	类 别	年齢 g	≤1 岁	f_1	1 岁~2 岁	2 岁~7 岁	7岁~12岁	12 岁~17 岁	>17 岁
10 30	初连十表期	天 加	f_1	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
Hg-193	3.50 h	F	0.040	2.7 E-10	0.020	2.0 E-10	8.9 E-11	5.5 E-11	3.1 E-11	2.6 E-11
(无机的)		M	0.040	5.3 E-10	0.020	3.8 E-10	1.9 E-10	1.3 E-10	9.2 E-11	7.5 E-11
Hg-193m	11.1 h	F	0.800	8.4 E-10	0.400	7.6 E-10	3.7 E-10	2.2 E-10	1.3 E-10	1.0 E-10
(有机的)										
Hg-193m	11.1 h	F	0.040	1.1 E-09	0.020	8.5 E-10	4.1 E-10	2.5 E-10	1.4 E-10	1.1 E-10
(无机的)		M	0.040	1.9 E-09	0.020	1.4 E-09	7.2 E-10	4.7 E-10	3.2 E-10	2.6 E-10
Hg-194	2.60 E+02 a	F	0.800	4.9 E-08	0.400	3.7 E-08	2.4 E-08	1.9 E-08	1.5 E-08	1.4 E-08
(有机的)										
Hg-194	2.60 E+02 a	F	0.040	3.2 E-08	0.020	2.9 E-08	2.0 E-08	1.6 E-08	1.4 E-08	1.3 E-08
(无机的)		M	0.040	2.1 E-08	0.020	1.9 E-08	1.3 E-08	1.0 E-08	8.9 E-09	8.3 E-09
Hg-195	9.90 h	F	0.800	2.0 E-10	0.400	1.8 E-10	8.5 E-11	5.1 E-11	2.8 E-11	2.3 E-11
(有机的)										
Hg-195	9.90 h	F	0.040	2.7 E-10	0.020	2.0 E-10	9.5 E-11	5.7 E-11	3.1 E-11	2.5 E-11
(无机的)		M	0.040	5.3 E-10	0.020	3.9 E-10	2.0 E-10	1.3 E-10	9.0 E-11	7.3 E-11
Hg-195m	1.73 d	F	0.800	1.1 E-09	0.400	9.7 E-10	4.4 E-10	2.7 E-10	1.4 E-10	1.2 E-10
(有机的)										
Hg-195m	1.73 d	F	0.040	1.6 E-09	0.020	1.1 E-09	5.1 E-10	3.1 E-10	1.7 E-10	1.4 E-10
(无机的)		M	0.040	3.7 E-09	0.020	2.6 E-09	1.4 E-09	8.5 E-10	6.7 E-10	5.3 E-10
Hg-197	2.67 d	F	0.800	4.7 E-10	0.400	4.0 E-10	1.8 E-10	1.1 E-10	5.8 E-11	4.7 E-11
(有机的)										
Hg-197	2.67 d	F	0.040	6.8 E-10	0.020	4.7 E-10	2.1 E-10	1.3 E-10	6.8 E-11	5.6 E-11
(无机的)		M	0.040	1.7 E-09	0.020	1.2 E-09	6.6 E-10	4.6 E-10	3.8 E-10	3.0 E-10
Hg-197m	23.8 h	F	0.800	9.3 E-10	0.400	7.8 E-10	3.4 E-10	2.1 E-10	1.1 E-10	9.6 E-11
(有机的)										
Hg-197m	23.8 h	F	0.040	1.4 E-09	0.020	9.3 E-10	4.0 E-10	2.5 E-10	1.3 E-10	1.1 E-10
(无机的)		M	0.040	3.5 E-09	0.020	2.5 E-09	1.1 E-09	8.2 E-10	6.7 E-10	5.3 E-10
Hg-199m	0.710 h	F	0.800	1.4 E-10	0.400	9.6 E-11	4. 2 E-11	2.7 E-11	1.7 E-11	1.5 E-11
(有机的)										
Hg-199m	0.710 h	F	0.040	1.4 E-10	0.020	9.6 E-11	4.2 E-11	2.7 E-11	1.7 E-11	1.5 E-11

# ±	梅田火き 地	* 01	年龄 &	r≤1 岁	f_1	1 岁~2 岁	2 岁~7 岁	7岁~12岁	12 岁~17 岁	>17 岁
核 素	物理半衰期	类 别	f ₁	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
(无机的)		M	0.040	2.5 E-10	0.020	1.7 E-10	7.9 E-11	5. 4 E-11	3. 8 E-11	3. 2 E-11
Hg-203	46.6 d	F	0.800	5.7 E-09	0.400	3.7 E-09	1.7 E-09	1.1 E-09	6.6 E-10	5.6 E-10
(有机的)										
Hg-203	46.6 d	F	0.040	4.2 E-09	0.020	2.9 E-09	1.4 E-09	9.0 E-10	5.5 E-10	4.6 E-10
(无机的)		M	0.040	1.0 E-08	0.020	7.9 E-09	4.7 E-09	3.4 E-09	3.0 E-09	2.4 E-09
铊										
Tl-194	0.550 h	F	1.000	3.6 E-11	1.000	3.0 E-11	1.5 E-11	9.2 E-12	5.5 E-12	4.4 E-12
Tl-194m	0.546 h	F	1.000	1.7 E-10	1.000	1.2 E-10	6.1 E-11	3.8 E-11	2.3 E-11	1.9 E-11
Tl-195	1.16 h	F	1.000	1.3 E-10	1.000	1.0 E-10	5. 3 E-11	3.2 E-11	1.9 E-11	1.5 E-11
Tl-197	2.84 h	F	1.000	1.3 E-10	1.000	9.7 E-11	4.7 E-11	2.9 E-11	1.7 E-11	1.4 E-11
Tl-198	5.30 h	F	1.000	4.7 E-10	1.000	4.0 E-10	2.1 E-10	1.3 E-10	7.5 E-11	6.0 E-11
Tl-198m	1.87 h	F	1.000	3.2 E-10	1.000	2.5 E-10	1.2 E-10	7.5 E-11	4.5 E-11	3.7 E-11
Tl-199	7.42 h	F	1.000	1.7 E-10	1.000	1.3 E-10	6.4 E-11	3.9 E-11	2.3 E-11	1.9 E-11
Tl-200	1.09 d	F	1.000	1.0 E-09	1.000	8.7 E-10	4.6 E-10	2.8 E-10	1.6 E-10	1.3 E-10
Tl-201	3.04 d	F	1.000	4.5 E-10	1.000	3.3 E-10	1.5 E-10	9.4 E-11	5.4 E-11	4.4 E-11
Tl-202	12. 2 d	F	1.000	1.5 E-09	1.000	1.2 E-09	5.9 E-10	3.8 E-10	2.3 E-10	1.9 E-10
Tl-204	3.78 a	F	1.000	5.0 E-09	1.000	3.3 E-09	1.5 E-09	8.8 E-10	4.7 E-10	3.9 E-10
铅(*)										
Pb-195m	0.263 h	F	0.600	1.3 E-10	0.200	1.0 E-10	4.9 E-11	3.1 E-11	1.9 E-11	1.6 E-11
		M	0.200	2.0 E-10	0.100	1.5 E-10	7.1 E-11	4.6 E-11	3.1 E-11	2.5 E-11
		S	0.020	2.1 E-10	0.010	1.5 E-10	7.4 E-11	4.8 E-11	3. 2 E-11	2.7 E-11
Pb-198	2.40 h	F	0.600	3.4 E-10	0.200	2.9 E-10	1.5 E-10	8.9 E-11	5. 2 E-11	4.3 E-11
		M	0.200	5.0 E-10	0.100	4.0 E-10	2.1 E-10	1.3 E-10	8.3 E-11	6.6 E-11
		S	0.020	5.4 E-10	0.010	4.2 E-10	2.2 E-10	1.4 E-10	8.7 E-11	7.0 E-11
Pb-199	1.50 h	F	0.600	1.9 E-10	0.200	1.6 E-10	8. 2 E-11	4.9 E-11	2. 9 E-11	2.3 E-11
		M	0.200	2.8 E-10	0.100	2.2 E-10	1.1 E-10	7.1 E-11	4.5 E-11	3.6 E-11
		S	0.020	2.9 E-10	0.010	2.3 E-10	1.2 E-10	7.4 E-11	4.7 E-11	3.7 E-11
Pb-200	21.5 h	F	0.600	1.1 E-09	0.200	9.3 E-10	4.6 E-10	2.8 E-10	1.6 E-10	1.4 E-10
		M	0.200	2.2 E-09	0.100	1.7 E-09	8.6 E-10	5.7 E-10	4.1 E-10	3.3 E-10

核 素	物理半衰期	类 别	年龄。	r≤1 岁	f_1	1 岁~2 岁	2 岁~7 岁	7岁~12岁	12 岁~17 岁	>17 岁
仅 糸	初珪十表期	关 加	f ₁	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
		S	0.020	2.4 E-09	0.010	1.8 E-09	9.2 E-10	6.2 E-10	4.4 E-10	3.5 E-10
Pb-201	9.40 h	F	0.600	4.8 E-10	0.200	4.1 E-10	2.0 E-10	1.2 E-10	7-1 E-11	6.0 E-11
		M	0.200	8.0 E-10	0.100	6.4 E-10	3.3 E-10	2.1 E-10	1.4 E-10	1.1 E-10
		S	0.020	8.8 E-10	0.010	6.7 E-10	3.5 E-10	2.2 E-10	1.5 E-10	1.2 E-10
Pb-202	3.00 E+05 a	F	0.600	1.9 E-08	0.200	1.3 E-08	8.9 E-09	1.3 E-08	1.8 E-08	1.1 E-08
		M	0.200	1.2 E-08	0.100	8.9 E-09	6. 2 E-09	6.7 E-09	8.7 E-09	6.3 E-09
		S	0.020	2.8 E-08	0.010	2.8 E-08	2.0 E-08	1.4 E-08	1.3 E-08	1.2 E-08
Pb-202m	3.62 h	F	0.600	4.7 E-10	0.200	4.0 E-10	2.1 E-10	1.3 E-10	7.5 E-11	6.2 E-11
		M	0.200	6.9 E-10	0.100	5.6 E-10	2.9 E-10	1.9 E-10	1.2 E-10	9.5 E-11
		S	0.020	7.3 E-10	0.010	5.8 E-10	3.0 E-10	1.9 E-10	1.3 E-10	1.0 E-10
Pb-203	2.17 d	F	0.600	7.2 E-10	0.200	5.8 E-10	2.8 E-10	1.7 E-10	9.9 E-11	8.5 E-11
		M	0.200	1.3 E-09	0.100	1.0 E-09	5.4 E-10	3.6 E-10	2.5 E-10	2.0 E-10
		S	0.020	1.5 E-09	0.010	1.1 E-09	5.8 E-10	3.8 E-10	2.8 E-10	2.2 E-10
Pb-205	1.43 E+07 a	F	0.600	1.1 E-09	0.200	6.9 E-10	4.0 E-10	4.1 E-10	4.3 E-10	3.3 E-10
		M	0.200	1.1 E-09	0.100	7.7 E-10	4.3 E-10	3.2 E-10	2.9 E-10	2.5 E-10
		S	0.020	2.9 E-09	0.010	2.7 E-09	1.7 E-09	1.1 E-09	9.2 E-10	8.5 E-10
Pb-209	3. 25 h	F	0.600	1.8 E-10	0.200	1.2 E-10	5. 3 E-11	3.4 E-11	1.9 E-11	1.7 E-11
		M	0.200	4.0 E-10	0.100	2.7 E-10	1.3 E-10	9.2 E-11	6.9 E-11	5.6 E-11
		S	0.020	4.4 E-10	0.010	2.9 E-10	1.4 E-10	9.9 E-11	7.5 E-11	6.1 E-11
Pb-210	22.3 a	F	0.600	4.7 E-06	0.200	2.9 E-06	1.5 E-06	1.4 E-06	1.3 E-06	9.0 E-07
		M	0.200	5.0 E-06	0.100	3.7 E-06	2. 2 E-06	1.5 E-06	1.3 E-06	1.1 E-06
		S	0.020	1.8 E-05	0.010	1.8 E-05	1.1 E-05	7.2 E-06	5.9 E-06	5.6 E-06
Pb-211	0.601 h	F	0.600	2.5 E-08	0.200	1.7 E-08	8.7 E-09	6.1 E-09	4.6 E-09	3.9 E-09
		M	0.200	6.2 E-08	0.100	4.5 E-08	2.5 E-08	1.9 E-08	1.4 E-08	1.1 E-08
		S	0.020	6.6 E-08	0.010	4.8 E-08	2.7 E-08	2.0 E-08	1.5 E-08	1.2 E-08
Pb-212	10.6 h	F	0.600	1.9 E-07	0.200	1.2 E-07	5.4 E-08	3.5 E-08	2.0 E-08	1.8 E-08
		M	0.200	6.2 E-07	0.100	4.6 E-07	3.0 E-07	2.2 E-07	2. 2 E-07	1.7 E-07
		S	0.020	6.7 E-07	0.010	5.0 E-07	3. 3 E-07	2.5 E-07	2.4 E-07	1.9 E-07
Pb-214	0.447 h	F	0.600	2.2 E-08	0.200	1.5 E-08	6.9 E-09	4.8 E-09	3. 3 E-09	2.8 E-09

			年龄;	r≤1 岁	f_1	1 岁~2 岁	2 岁~7 岁	7 岁~12 岁	12 岁~17 岁	>17 岁
核 素	物理半衰期	类 别	f ₁	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
		M	0.200	6.4 E-08	0.100	4.6 E-08	2.6 E-08	1.9 E-08	1.4 E-08	1.4 E-08
		S	0.020	6.9 E-08	0.010	5.0 E-08	2.8 E-08	2.1 E-08	1.5 E-08	1.5 E-08
铋										
Bi-200	0.606 h	F	0.100	1.9 E-10	0.050	1.5 E-10	7. 4 E-11	4.5 E-11	2.7 E-11	2. 2 E-11
		M	0.100	2.5 E-10	0.050	1. 9 E-10	9. 9 E-11	6. 3 E-11	4.1 E-11	3. 3 E-11
Bi-201	1.80 h	F	0.100	4.0 E-10	0.050	3.1 E-10	1.5 E-10	9.3 E-11	5. 4 E-11	4.4 E-11
		M	0.100	5.5 E-10	0.050	4.1 E-10	2.0 E-10	1.3 E-10	8.3 E-11	6.6 E-11
Bi-202	1.67 h	F	0.100	3.4 E-10	0.050	2.8 E-10	1.5 E-10	9.0 E-11	5.3 E-11	4.3 E-11
		M	0.100	4.2 E-10	0.050	3.4 E-10	1.8 E-10	1.1 E-10	6.9 E-11	5.5 E-11
Bi-203	11.8 h	F	0.100	1.5 E-09	0.050	1.2 E-09	6.4 E-10	4.0 E-10	2.3 E-10	1.9 E-10
		M	0.100	2.0 E-09	0.050	1.6 E-09	8.2 E-10	5.3 E-10	3.3 E-10	2.6 E-10
Bi-205	15. 3 d	F	0.100	3.0 E-09	0.050	2.4 E-09	1.3 E-09	8.0 E-10	4.7 E-10	3.8 E-10
		M	0.100	5.5 E-09	0.050	4.4 E-09	2.5 E-09	1.6 E-09	1.2 E-09	9.3 E-10
Bi-206	6.24 d	F	0.100	6.1 E-09	0.050	4.8 E-09	2.5 E-09	1.6 E-09	9.1 E-10	7.4 E-10
		M	0.100	1.0 E-08	0.050	8.0 E-09	4.4 E-09	2.9 E-09	2.1 E-09	1.7 E-09
Bi-207	38.0 a	F	0.100	4.3 E-09	0.050	3.3 E-09	1.7 E-09	1.0 E-09	6.0 E-10	4.9 E-10
		M	0.100	2.3 E-08	0.050	2.0 E-08	1.2 E-08	8. 2 E-09	6.5 E-09	5.6 E-09
Bi-210	5.01 d	F	0.100	1.1 E-08	0.050	6.9 E-09	3. 2 E-09	2.1 E-09	1.3 E-09	1.1 E-09
		M	0.100	3.9 E-07	0.050	3.0 E-07	1.9 E-07	1.3 E-07	1.1 E-07	9.3 E-08
Bi-210m	3.00 E+06 a	F	0.100	4.1 E-07	0.050	2.6 E-07	1.3 E-07	8. 3 E-08	5.6 E-08	4.6 E-08
		M	0.100	1.5 E-05	0.050	1.1 E-05	7.0 E-06	4.8 E-06	4.1 E-06	3.4 E-06
Bi-212	1.01 h	F	0.100	6.5 E-08	0.050	4.5 E-08	2.1 E-08	1.5 E-08	1.0 E-08	9.1 E-09
		M	0.100	1.6 E-07	0.050	1.1 E-07	6.0 E-08	4.4 E-08	3.8 E-08	3.1 E-08
Bi-213	0.761 h	F	0.100	7.7 E-08	0.050	5. 3 E-08	2.5 E-08	1.7 E-08	1.2 E-08	1.0 E-08
		M	0.100	1.6 E-07	0.050	1. 2 E-07	6.0 E-08	4.4 E-08	3. 6 E-08	3.0 E-08
Bi-214	0. 332 h	F	0.100	5.0 E-08	0.050	3.5 E-08	1. 6 E-08	1.1 E-08	8. 2 E-09	7.1 E-09
		M	0.100	8.7 E-08	0.050	6.1 E-08	3. 1 E-08	2. 2 E-08	1.7 E-08	1.4 E-08
钋										
Po-203	0.612 h	F	0.200	1.9 E-10	0.100	1.5 E-10	7.7 E-11	4.7 E-11	2.8 E-11	2.3 E-11

核素	物理半衰期	类 别	年齢 g	≤1 岁	f_1	1 岁~2 岁	2 岁~7 岁	7 岁~12 岁	12 岁~17 岁	>17 岁
核 系	初理干衷期	类 别	f_1	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
		M	0.200	2.7 E-10	0.100	2.1 E-10	1.1 E-10	6.7 E-11	4.3 E-11	3.5 E-11
		S	0.020	2.8 E-10	0.010	2.2 E-10	1.1 E-10	7.0 E-11	4.5 E-11	3.6 E-11
Po-205	1.80 h	F	0.200	2.6 E-10	0.100	2.1 E-10	1.1 E-10	6. 6 E-11	4.1 E-11	3.3 E-11
		M	0.200	4.0 E-10	0.100	3.1 E-10	1.7 E-10	1.1 E-10	8.1 E-11	6.5 E-11
		S	0.020	4.2 E-10	0.010	3.2 E-10	1.8 E-10	1.2 E-10	8.5 E-11	6.9 E-11
Po-207	5.83 h	F	0.200	4.8 E-10	0.100	4.0 E-10	2.1 E-10	1.3 E-10	7.3 E-11	5.8 E-11
		M	0.200	6.2 E-10	0.100	5.1 E-10	2.6 E-10	1.6 E-10	9.9 E-11	7.8 E-11
		S	0.020	6.6 E-10	0.010	5.3 E-10	2.7 E-10	1.7 E-10	1.0 E-10	8.2 E-11
Po-210	138 d	F	0.200	7.4 E-06	0.100	4.8 E-06	2.2 E-06	1.3 E-06	7.7 E-07	6.1 E-07
		M	0.200	1.5 E-05	0.100	1.1 E-05	6.7 E-06	4.6 E-06	4.0 E-06	3.3 E-06
		S	0.020	1.8 E-05	0.010	1.4 E-05	8. 6 E-06	5.9 E-06	5.1 E-06	4.3 E-06
砹										
At-207	1.80 h	F	1.000	2.4 E-09	1.000	1.7 E-09	8.9 E-10	5.9 E-10	4.0 E-10	3.3 E-10
		M	1.000	9.2 E-09	1.000	6.7 E-09	4.3 E-09	3.1 E-09	2.9 E-09	2.3 E-09
At-211	7.21 h	F	1.000	1.4 E-07	1.000	9.7 E-08	4.3 E-08	2.8 E-08	1.7 E-08	1.6 E-08
		M	1.000	5.2 E-07	1.000	3.7 E-07	1.9 E-07	1.4 E-07	1.3 E-07	1.1 E-07
钫										
Fr-222	0.240 h	F	1.000	9.1 E-08	1.000	6.3 E-08	3.0 E-08	2.1 E-08	1.6 E-08	1.4 E-08
Fr-223 镭(*)	0.363 h	F	1.000	1.1 E-08	1.000	7.3 E-09	3. 2 E-09	1.9 E-09	1.0 E-09	8.9 E-10
						_	_			_
Ra-223	11.4 d	F	0.600	3.0 E-06	0.200	1.0 E-06	4.9 E-07	4.0 E-07	3.3 E-07	1.2 E-07
		M	0.200	2.8 E-05	0.100	2.1 E-05	1.3 E-05	9.9 E-06	9.4 E-06	7.4 E-06
		S	0.020	3. 2 E-05	0.010	2.4 E-05	1.5 E-05	1.1 E-05	1.1 E-05	8.7 E-06
Ra-224	3. 66 d	F	0.600	1.5 E-06	0.200	6.0 E-07	2.9 E-07	2.2 E-07	1.7 E-07	7.5 E-08
		M	0.200	1.1 E-05	0.100	8. 2 E-06	5. 3 E-06	3. 9 E-06	3. 7 E-06	3. 0 E-06
		S	0.020	1. 2 E-05	0.010	9. 2 E-06	5. 9 E-06	4. 4 E-06	4. 2 E-06	3. 4 E-06
Ra-225	14.8 d	F	0.600	4.0 E-06	0.200	1. 2 E-06	5. 6 E-07	4. 6 E-07	3. 8 E-07	1. 3 E-07
		M	0.200	2.4 E-05	0.100	1.8 E-05	1.1 E-05	8. 4 E-06	7. 9 E-06	6.3 E-06
		S	0.020	2.8 E-05	0.010	2. 2 E-05	1.4 E-05	1.0 E-05	9.8 E-06	7.7 E-06

+* ±	梅丽火 亨 田	** 01	年龄。	r≤l 岁	f_1	1 岁~2 岁	2 岁~7 岁	7岁~12岁	12 岁~17 岁	>17 岁
核 素	物理半衰期	类 别	f_1	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
Ra-226	1.60 E+03 a	F	0.600	2. 6 E-06	0.200	9.4 E-07	5. 5 E-07	7. 2 E-07	1. 3 E-06	3.6 E-07
		M	0.200	1.5 E-05	0.100	1.1 E-05	7.0 E-06	4.9 E-06	4.5 E-06	3.5 E-06
		S	0.020	3.4 E-05	0.010	2.9 E-05	1.9 E-05	1.2 E-05	1.0 E-05	9.5 E-06
Ra-227	0.703 h	F	0.600	1.5 E-09	0.200	1.2 E-09	7.8 E-10	6.1 E-10	5.3 E-10	4.6 E-10
		M	0.200	8.0 E-10	0.100	6.7 E-10	4.4 E-10	3. 2 E-10	2.9 E-10	2.8 E-10
		S	0.020	1.0 E-09	0.010	8.5 E-10	4.4 E-10	2.9 E-10	2.4 E-10	2.2 E-10
Ra-228	5.75 a	F	0.600	1.7 E-05	0.200	5.7 E-06	3.1 E-06	3.6 E-06	4.6 E-06	9.0 E-07
		M	0.200	1.5 E-05	0.100	1.0 E-05	6.3 E-06	4.6 E-06	4.4 E-06	2.6 E-06
		S	0.020	4.9 E-05	0.010	4.8 E-05	3.2 E-05	2.0 E-05	1.6 E-05	1.6 E-05
锕										
Ac-224	2.90 h	F	0.005	1.3 E-07	5.0 E-04	8. 9 E-08	4.7 E-08	3.1 E-08	1.4 E-08	1.1 E-08
		M	0.005	4.2 E-07	5.0 E-04	3. 2 E-07	2.0 E-07	1.5 E-07	1.4 E-07	1.1 E-07
		S	0.005	4.6 E-07	5.0 E-04	3.5 E-07	2.2 E-07	1.7 E-07	1.6 E-07	1.3 E-07
Ac-225	10.0 d	F	0.005	1.1 E-05	5.0 E-04	7.7 E-06	4.0 E-06	2.6 E-06	1.1 E-06	8.8 E-07
		M	0.005	2.8 E-05	5.0 E-04	2.1 E-05	1.3 E-05	1.0 E-05	9.3 E-06	7.4 E-06
		S	0.005	3.1 E-05	5.0 E-04	2.3 E-05	1.5 E-05	1.1 E-05	1.1 E-05	8.5 E-06
Ac-226	1.21 d	F	0.005	1.5 E-06	5.0 E-04	1.1 E-06	4.0 E-07	2.6 E-07	1.2 E-07	9.6 E-08
		M	0.005	4.3 E-06	5.0 E-04	3.2 E-06	2.1 E-06	1.5 E-06	1.5 E-06	1.2 E-06
		S	0.005	4.7 E-06	5.0 E-04	3.5 E-06	2.3 E-06	1.7 E-06	1.6 E-06	1.3 E-06
Ac-227	21.8 a	F	0.005	1.7 E-03	5.0 E-04	1.6 E-03	1.0 E-03	7.2 E-04	5.6 E-04	5.5 E-04
		M	0.005	5.7 E-04	5.0 E-04	5.5 E-04	3.9 E-04	2.6 E-04	2.3 E-04	2.2 E-04
		S	0.005	2. 2 E-04	5.0 E-04	2.0 E-04	1.3 E-04	8.7 E-05	7.6 E-05	7.2 E-05
Ac-228	6.13 h	F	0.005	1.8 E-07	5.0 E-04	1.6 E-07	9.7 E-08	5.7 E-08	2.9 E-08	2.5 E-08
		M	0.005	8.4 E-08	5.0 E-04	7.3 E-08	4.7 E-08	2.9 E-08	2.0 E-08	1.7 E-08
		S	0.005	6.4 E-08	5.0 E-04	5.3 E-08	3.3 E-08	2.2 E-08	1.9 E-08	1.6 E-08
钍										
Th-226	0.515 h	F	0.005	1.4 E-07	5.0 E-04	1.0 E-07	4.8 E-08	3.4 E-08	2.5 E-08	2.2 E-08
		M	0.005	3.0 E-07	5.0 E-04	2.1 E-07	1.1 E-07	8.3 E-08	7.0 E-08	5.8 E-08
		S	0.005	3.1 E-07	5.0 E-04	2.2 E-07	1.2 E-07	8.8 E-08	7.5 E-08	6.1 E-08

核素	物理半衰期	类 别	年龄 g	≤1 岁	f_1	1岁~2岁	2 岁~7 岁	7岁~12岁	12 岁~17 岁	>17 岁
12 30	初生千衣粉	× 10	f_1	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
Th-227	18.7 d	F	0.005	8.4 E-06	5.0 E-04	5.2 E-06	2.6 E-06	1.6 E-06	1.0 E-06	6.7 E-07
		M	0.005	3.2 E-05	5.0 E-04	2.5 E-05	1.6 E-05	1.1 E-05	1.1 E-05	8.5 E-06
		S	0.005	3.9 E-05	5.0 E-04	3.0 E-05	1.9 E-05	1.4 E-05	1.3 E-05	1.0 E-05
Th-228	1.91 a	F	0.005	1.8 E-04	5.0 E-04	1.5 E-04	8.3 E-05	5.2 E-05	3.6 E-05	2.9 E-05
		M	0.005	1.3 E-04	5.0 E-04	1.1 E-04	6.8 E-05	4.6 E-05	3.9 E-05	3.2 E-05
		S	0.005	1.6 E-04	5.0 E-04	1.3 E-04	8.2 E-05	5.5 E-05	4.7 E-05	4.0 E-05
Th-229	7.34 E+03 a	F	0.005	5.4 E-04	5.0 E-04	5.1 E-04	3.6 E-04	2.9 E-04	2.4 E-04	2.4 E-04
		M	0.005	2.3 E-04	5.0 E-04	2.1 E-04	1.6 E-04	1.2 E-04	1.1 E-04	1.1 E-04
		S	0.005	2.1 E-04	5.0 E-04	1.9 E-04	1.3 E-04	8.7 E-05	7.6 E-05	7.1 E-05
Th-230	7.70 E+04 a	F	0.005	2.1 E-04	5.0 E-04	2.0 E-04	1.4 E-04	1.1 E-04	9.9 E-05	1.0 E-04
		M	0.005	7.7 E-05	5.0 E-04	7.4 E-05	5.5 E-05	4.3 E-05	4.2 E-05	4.3 E-05
		S	0.005	4.0 E-05	5.0 E-04	3.5 E-05	2.4 E-05	1.6 E-05	1.5 E-05	1.4 E-05
Th-231	1.06 d	F	0.005	1.1 E-09	5.0 E-04	7.2 E-10	2.6 E-10	1.6 E-10	9.2 E-11	7.8 E-11
		M	0.005	2.2 E-09	5.0 E-04	1.6 E-09	8.0 E-10	4.8 E-10	3.8 E-10	3.1 E-10
		S	0.005	2.4 E-09	5.0 E-04	1.7 E-09	7.6 E-10	5.2 E-10	4.1 E-10	3.3 E-10
Th-232	1.40 E+10 a	F	0.005	2.3 E-04	5.0 E-04	2.2 E-04	1.6 E-04	1.3 E-04	1.2 E-04	1.1 E-04
		M	0.005	8.3 E-05	5.0 E-04	8.1 E-05	6.3 E-05	5.0 E-05	4.7 E-05	4.5 E-05
		S	0.005	5.4 E-05	5.0 E-04	5.0 E-05	3.7 E-05	2.6 E-05	2.5 E-05	2.5 E-05
Th-234	24.1 d	F	0.005	4.0 E-08	5.0 E-04	2.5 E-08	1.1 E-08	6.1 E-09	3.5 E-09	2.5 E-09
		M	0.005	3.9 E-08	5.0 E-04	2.9 E-08	1.5 E-08	1.0 E-08	7.9 E-09	6.6 E-09
		S	0.005	4.1 E-08	5.0 E-04	3.1 E-08	1.7 E-08	1.1 E-08	9.1 E-09	7.7 E-09
镤										
Pa-227	0.638 h	M	0.005	3.6 E-07	5.0 E-04	2.6 E-07	1.4 E-07	1.0 E-07	9.0 E-08	7.4 E-08
		S	0.005	3.8 E-07	5.0 E-04	2.8 E-07	1.5 E-07	1.1 E-07	8.1 E-08	8.0 E-08
Pa-228	22.0 h	M	0.005	2.6 E-07	5.0 E-04	2.1 E-07	1.3 E-07	8.8 E-08	7.7 E-08	6.4 E-08
		S	0.005	2.9 E-07	5.0 E-04	2.4 E-07	1.5 E-07	1.0 E-07	9.1 E-08	7.5 E-08
Pa-230	17.4 d	M	0.005	2.4 E-06	5.0 E-04	1.8 E-06	1.1 E-06	8.3 E-07	7.6 E-07	6.1 E-07
		S	0.005	2.9 E-06	5.0 E-04	2.2 E-06	1.4 E-06	1.0 E-06	9.6 E-07	7.6 E-07
Pa-231	3.27 E+04 a	M	0.005	2.2 E-04	5.0 E-04	2.3 E-04	1.9 E-04	1.5 E-04	1.5 E-04	1.4 E-04
1		1	l	1	1	l	1		1	

核 素	物理半衰期	类 别	年龄 8	r≤1 岁	f_1	1 岁~2 岁	2 岁~7 岁	7岁~12岁	12 岁~17 岁	>17 岁
1久 糸	初珪十表期	关 剂	f ₁	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
		S	0.005	7.4 E-05	5.0 E-04	6.9 E-05	5. 2 E-05	3.9 E-05	3.6 E-05	3.4 E-05
Pa-232	1.31 d	M	0.005	1.9 E-08	5.0 E-04	1.8 E-08	1.4 E-08	1.1 E-08	1.0 E-08	1.0 E-08
		S	0.005	1.0 E-08	5.0 E-04	8.7 E-09	5.9 E-09	4.1 E-09	3.7 E-09	3.5 E-09
Pa-233	27.0 d	M	0.005	1.5 E-08	5.0 E-04	1.1 E-08	6.5 E-09	4.7 E-09	4.1 E-09	3.3 E-09
		S	0.005	1.7 E-08	5.0 E-04	1.3 E-08	7.5 E-09	5.5 E-09	4.9 E-09	3.9 E-09
Pa-234	6.70 h	M	0.005	2.8 E-09	5.0 E-04	2.0 E-09	1.0 E-09	6.8 E-10	4.7 E-10	3.8 E-10
		S	0.005	2.9 E-09	5.0 E-04	2.1 E-09	1.1 E-09	7.1 E-10	5.0 E-10	4.0 E-10
铀										
U-230	20.8 d	F	0.040	3.2 E-06	0.020	1.5 E-06	7.2 E-07	5.4 E-07	4.1 E-07	3.8 E-07
		M	0.040	4.9 E-05	0.020	3.7 E-05	2.4 E-05	1.8 E-05	1.7 E-05	1.3 E-05
		S	0.020	5.8 E-05	0.002	4.4 E-05	2.8 E-05	2.1 E-05	2.0 E-05	1.6 E-05
U-231	4. 20 d	F	0.040	8.9 E-10	0.020	6.2 E-10	3.1 E-10	1.4 E-10	1.0 E-10	6.2 E-11
		M	0.040	2.4 E-09	0.020	1.7 E-09	9.4 E-10	5.5 E-10	4.6 E-10	3.8 E-10
		S	0.020	2.6 E-09	0.002	1.9 E-09	9.0 E-10	6.1 E-10	4.9 E-10	4.0 E-10
U-232	72.0 a	F	0.040	1.6 E-05	0.020	1.0 E-05	6.9 E-06	6.8 E-06	7.5 E-06	4.0 E-06
		M	0.040	3.0 E-05	0.020	2.4 E-05	1.6 E-05	1.1 E-05	1.0 E-05	7.8 E-06
		S	0.020	1.0 E-04	0.002	9.7 E-05	6.6 E-05	4.3 E-05	3.8 E-05	3.7 E-05
U-233	1.58 E+05 a	F	0.040	2.2 E-06	0.020	1.4 E-06	9.4 E-07	8.4 E-07	8.6 E-07	5.8 E-07
		M	0.040	1.5 E-05	0.020	1.1 E-05	7.2 E-06	4.9 E-06	4.3 E-06	3.6 E-06
		S	0.020	3.4 E-05	0.002	3.0 E-05	1.9 E-05	1.2 E-05	1.1 E-05	9.6 E-06
U-234	2.44 E+05 a	F	0.040	2.1 E-06	0.020	1.4 E-06	9.0 E-07	8.0 E-07	8.2 E-07	5.6 E-07
		M	0.040	1.5 E-05	0.020	1.1 E-05	7.0 E-06	4.8 E-06	4.2 E-06	3.5 E-06
		S	0.020	3.3 E-05	0.002	2.9 E-05	1.9 E-05	1.2 E-05	1.0 E-05	9.4 E-06
U-235	7.04 E+08 a	F	0.040	2.0 E-06	0.020	1.3 E-06	8.5 E-07	7.5 E-07	7.7 E-07	5.2 E-07
		M	0.040	1.3 E-05	0.020	1.0 E-05	6.3 E-06	4.3 E-06	3.7 E-06	3.1 E-06
		S	0.020	3.0 E-05	0.002	2.6 E-05	1.7 E-05	1.1 E-05	9.2 E-06	8.5 E-06
U-236	2.34 E+07 a	F	0.040	2.0 E-06	0.020	1.3 E-06	8.5 E-07	7.5 E-07	7.8 E-07	5.3 E-07
		M	0.040	1.4 E-05	0.020	1.0 E-05	6.5 E-06	4.5 E-06	3.9 E-06	3.2 E-06
		S	0.020	3.1 E-05	0.002	2.7 E-05	1.8 E-05	1.1 E-05	9.5 E-06	8.7 E-06

核 素	物理半衰期	类 别	年龄 8	r≤1 岁	f_1	1 岁~2 岁	2 岁~7 岁	7 岁~12 岁	12 岁~17 岁	>17 岁
10 56	物柱干衣痴	× //	f_1	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
U-237	6.75 d	F	0.040	1.8 E-09	0.020	1.5 E-09	6. 6 E-10	4.2 E-10	1.9 E-10	1.8 E-10
		M	0.040	7.8 E-09	0.020	5.7 E-09	3.3 E-09	2.4 E-09	2.1 E-09	1.7 E-09
		S	0.020	8.7 E-09	0.002	6.4 E-09	3.7 E-09	2.7 E-09	2.4 E-09	1.9 E-09
U-238	4.47 E+09 a	F	0.040	1.9 E-06	0.020	1.3 E-06	8.2 E-07	7.3 E-07	7.4 E-07	5.0 E-07
		M	0.040	1.2 E-05	0.020	9.4 E-06	5.9 E-06	4.0 E-06	3.4 E-06	2.9 E-06
		S	0.020	2.9 E-05	0.002	2.5 E-05	1.6 E-05	1.0 E-05	8.7 E-06	8.0 E-06
U-239	0.392 h	F	0.040	1.0 E-10	0.020	6.6 E-11	2.9 E-11	1.9 E-11	1.2 E-11	1.0 E-11
		M	0.040	1.8 E-10	0.020	1.2 E-10	5.6 E-11	3.8 E-11	2.7 E-11	2.2 E-11
		S	0.020	1.9 E-10	0.002	1.2 E-10	5.9 E-11	4.0 E-11	2.9 E-11	2.4 E-11
U-240	14.1 h	F	0.040	2.4 E-09	0.020	1.6 E-09	7.1 E-10	4.5 E-10	2.3 E-10	2.0 E-10
		M	0.040	4.6 E-09	0.020	3.1 E-09	1.7 E-09	1.1 E-09	6.5 E-10	5.3 E-10
		S	0.020	4.9 E-09	0.002	3.3 E-09	1.6 E-09	1.1 E-09	7.0 E-10	5.8 E-10
镎										
Np-232	0.245 h	F	0.005	2.0 E-10	5.0 E-04	1.9 E-10	1.2 E-10	1.1 E-10	1.1 E-10	1.2 E-10
		M	0.005	8.9 E-11	5.0 E-04	8.1 E-11	5.5 E-11	4.5 E-11	4.7 E-11	5.0 E-11
		S	0.005	1.2 E-10	5.0 E-04	9.7 E-11	5.8 E-11	3. 9 E-11	2.5 E-11	2.4 E-11
Np-233	0.603 h	F	0.005	1.1 E-11	5.0 E-04	8.7 E-12	4.2 E-12	2.5 E-12	1.4 E-12	1.1 E-12
		M	0.005	1.5 E-11	5.0 E-04	1.1 E-11	5.5 E-12	3. 3 E-12	2.1 E-12	1.6 E-12
		S	0.005	1.5 E-11	5.0 E-04	1.2 E-11	5.7 E-12	3.4 E-12	2.1 E-12	1.7 E-12
Np-234	4.40 d	F	0.005	2.9 E-09	5.0 E-04	2.2 E-09	1.1 E-09	7.2 E-10	4.3 E-10	3.5 E-10
		M	0.005	3.8 E-09	5.0 E-04	3.0 E-09	1.6 E-09	1.0 E-09	6.5 E-10	5.3 E-10
		S	0.005	3.9 E-09	5.0 E-04	3.1 E-09	1.6 E-09	1.0 E-09	6.8 E-10	5.5 E-10
Np-235	1.08 a	F	0.005	4.2 E-09	5.0 E-04	3.5 E-09	1.9 E-09	1.1 E-09	7.5 E-10	6.3 E-10
		M	0.005	2.3 E-09	5.0 E-04	1.9 E-09	1.1 E-09	6.8 E-10	5.1 E-10	4.2 E-10
		S	0.005	2.6 E-09	5.0 E-04	2.2 E-09	1.3 E-09	8.3 E-10	6.3 E-10	5.2 E-10
Np-236	1.15E+05 a	F	0.005	8.9 E-06	5.0 E-04	9.1 E-06	7.2 E-06	7.5 E-06	7.9 E-06	8.0 E-06
		M	0.005	3.0 E-06	5.0 E-04	3.1 E-06	2.7 E-06	2.7 E-06	3.1 E-06	3.2 E-06
		S	0.005	1.6 E-06	5.0 E-04	1.6 E-06	1.3 E-06	1.0 E-06	1.0 E-06	1.0 E-06
Np-236	22.5 h	F	0.005	2.8 E-08	5.0 E-04	2.6 E-08	1.5 E-08	1.1 E-08	8.9 E-09	9.0 E-09

# ±	梅田火育物	* 01	年齢 g	≤1 岁	f_1	1 岁~2 岁	2 岁~7 岁	7 岁~12 岁	12 岁~17 岁	>17 岁
核 素	物理半衰期	类 别	f_1	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
		M	0.005	1.6 E-08	5.0 E-04	1.4 E-08	8.9 E-09	6. 2 E-09	5. 6 E-09	5.3 E-09
		S	0.005	1.6 E-08	5.0 E-04	1.3 E-08	8.5 E-09	5.7 E-09	4.8 E-09	4.2 E-09
Np-237	2.14E+06 a	F	0.005	9.8 E-05	5.0 E-04	9.3 E-05	6.0 E-05	5.0 E-05	4.7 E-05	5.0 E-05
		M	0.005	4.4 E-05	5.0 E-04	4.0 E-05	2.8 E-05	2. 2 E-05	2.2 E-05	2.3 E-05
		S	0.005	3.7 E-05	5.0 E-04	3.2 E-05	2.1 E-05	1.4 E-05	1.3 E-05	1.2 E-05
Np-238	2.12 d	F	0.005	9.0 E-09	5.0 E-04	7.9 E-09	4.8 E-09	3.7 E-09	3.3 E-09	3.5 E-09
		M	0.005	7.3 E-09	5.0 E-04	5.8 E-09	3.4 E-09	2.5 E-09	2.2 E-09	2.1 E-09
		S	0.005	8.1 E-09	5.0 E-04	6.2 E-09	3.2 E-09	2.1 E-09	1.7 E-09	1.5 E-09
Np-239	2.36 d	F	0.005	2.6 E-09	5.0 E-04	1.4 E-09	6.3 E-10	3.8 E-10	2.1 E-10	1.7 E-10
		M	0.005	5.9 E-09	5.0 E-04	4.2 E-09	2.0 E-09	1.4 E-09	1.2 E-09	9.3 E-10
		S	0.005	5.6 E-09	5.0 E-04	4.0 E-09	2.2 E-09	1.6 E-09	1.3 E-09	1.0 E-09
Np-240	1.08 h	F	0.005	3.6 E-10	5.0 E-04	2.6 E-10	1.2 E-10	7.7 E-11	4.7 E-11	4.0 E-11
		M	0.005	6.3 E-10	5.0 E-04	4.4 E-10	2.2 E-10	1.4 E-10	1.0 E-10	8.5 E-11
		S	0.005	6.5 E-10	5.0 E-04	4.6 E-10	2.3 E-10	1.5 E-10	1.1 E-10	9.0 E-11
钚										
Pu-234	8.80 h	F	0.005	3.0 E-08	5.0 E-04	2.0 E-08	9.8 E-09	5.7 E-09	3.6 E-09	3.0 E-09
		M	0.005	7.8 E-08	5.0 E-04	5.9 E-08	3.7 E-08	2.8 E-08	2.6 E-08	2.1 E-08
		S	1.0 E-04	8.7 E-08	1.0 E-05	6.6 E-08	4.2 E-08	3.1 E-08	3.0 E-08	2.4 E-08
Pu-235	0.422 h	F	0.005	1.0 E-11	5.0 E-04	7.9 E-12	3.9 E-12	2.2 E-12	1.3 E-12	1.0 E-12
		M	0.005	1.3 E-11	5.0 E-04	1.0 E-11	5.0 E-12	2.9 E-12	1.9 E-12	1.4 E-12
		S	1.0 E-04	1.3 E-11	1.0 E-05	1.0 E-11	5.1 E-12	3.0 E-12	1.9 E-12	1.5 E-12
Pu-236	2.85 a	F	0.005	1.0 E-04	5.0 E-04	9.5 E-05	6.1 E-05	4.4 E-05	3.7 E-05	4.0 E-05
		M	0.005	4.8 E-05	5.0 E-04	4.3 E-05	2.9 E-05	2.1 E-05	1.9 E-05	2.0 E-05
		S	1.0 E-04	3.6 E-05	1.0 E-05	3.1 E-05	2.0 E-05	1.4 E-05	1.2 E-05	1.0 E-05
Pu-237	45.3 d	F	0.005	2.2 E-09	5.0 E-04	1.6 E-09	7.9 E-10	4.8 E-10	2.9 E-10	2.6 E-10
		M	0.005	1.9 E-09	5.0 E-04	1.4 E-09	8. 2 E-10	5.4 E-10	4.3 E-10	3.5 E-10
		S	1.0 E-04	2.0 E-09	1.0 E-05	1.5 E-09	8.8 E-10	5.9 E-10	4.8 E-10	3.9 E-10
Pu-238	87.7 a	F	0.005	2.0 E-04	5.0 E-04	1.9 E-04	1.4 E-04	1.1 E-04	1.0 E-04	1.1 E-04
		M	0.005	7.8 E-05	5.0 E-04	7.4 E-05	5. 6 E-05	4.4 E-05	4.3 E-05	4.6 E-05

核 素	物理半衰期	类 别	年齢 g	≪1 岁	f_1	1岁~2岁	2 岁~7 岁	7岁~12岁	12 岁~17 岁	>17 岁
12 30	物理干衣鄉	× 10	f_1	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
		S	1.0 E-04	4.5 E-05	1.0 E-05	4.0 E-05	2.7 E-05	1.9 E-05	1.7 E-05	1.6 E-05
Pu-239	2.41 E+04 a	F	0.005	2.1 E-04	5.0 E-04	2.0 E-04	1.5 E-04	1.2 E-04	1.1 E-04	1.2 E-04
		M	0.005	8.0 E-05	5.0 E-04	7.7 E-05	6.0 E-05	4.8 E-05	4.7 E-05	5.0 E-05
		S	1.0 E-04	4.3 E-05	1.0 E-05	3.9 E-05	2.7 E-05	1.9 E-05	1.7 E-05	1.6 E-05
Pu-240	6.54 E+03 a	F	0.005	2.1 E-04	5.0 E-04	2.0 E-04	1.5 E-04	1.2 E-04	1.1 E-04	1.2 E-04
		M	0.005	8.0 E-05	5.0 E-04	7.7 E-05	6.0 E-05	4.8 E-05	4.7 E-05	5.0 E-05
		S	1.0 E-04	4.3 E-05	1.0 E-05	3.9 E-05	2.7 E-05	1.9 E-05	1.7 E-05	1.6 E-05
Pu-241	14.4 a	F	0.005	2.8 E-06	5.0 E-04	2.9 E-06	2.6 E-06	2.4 E-06	2.2 E-06	2.3 E-06
		M	0.005	9.1 E-07	5.0 E-04	9.7 E-07	9.2 E-07	8.3 E-07	8.6 E-07	9.0 E-07
		S	1.0 E-04	2.2 E-07	1.0 E-05	2.3 E-07	2.0 E-07	1.7 E-07	1.7 E-07	1.7 E-07
Pu-242	3.76 E+05 a	F	0.005	2.0 E-04	5.0 E-04	1.9 E-04	1.4 E-04	1.2 E-04	1.1 E-04	1.1 E-04
		M	0.005	7.6 E-05	5.0 E-04	7.3 E-05	5.7 E-05	4.5 E-05	4.5 E-05	4.8 E-05
		S	1.0 E-04	4.0 E-05	1.0 E-05	3.6 E-05	2.5 E-05	1.7 E-05	1.6 E-05	1.5 E-05
Pu-243	4.95 h	F	0.005	2.7 E-10	5.0 E-04	1.9 E-10	8.8 E-11	5.7 E-11	3.5 E-11	3.2 E-11
		M	0.005	5.6 E-10	5.0 E-04	3.9 E-10	1.9 E-10	1.3 E-10	8.7 E-11	8.3 E-11
		S	1.0 E-04	6.0 E-10	1.0 E-05	4.1 E-10	2.0 E-10	1.4 E-10	9.2 E-11	8. 6 E-11
Pu-244	8.26 E+07 a	F	0.005	2.0 E-04	5.0 E-04	1.9 E-04	1.4 E-04	1.2 E-04	1.1 E-04	1.1 E-04
		M	0.005	7.4 E-05	5.0 E-04	7.2 E-05	5.6 E-05	4.5 E-05	4.4 E-05	4.7 E-05
		S	1.0 E-04	3.9 E-05	1.0 E-05	3.5 E-05	2.4 E-05	1.7 E-05	1.5 E-05	1.5 E-05
Pu-245	10.5 h	F	0.005	1.8 E-09	5.0 E-04	1.3 E-09	5.6 E-10	3.5 E-10	1.9 E-10	1.6 E-10
		M	0.005	3.6 E-09	5.0 E-04	2.5 E-09	1.2 E-09	8.0 E-10	5.0 E-10	4.0 E-10
		S	1.0 E-04	3.8 E-09	1.0 E-05	2.6 E-09	1.3 E-09	8.5 E-10	5.4 E-10	4.3 E-10
Pu-246	10.9 d	F	0.005	2.0 E-08	5.0 E-04	1.4 E-08	7.0 E-09	4.4 E-09	2.8 E-09	2.5 E-09
		M	0.005	3.5 E-08	5.0 E-04	2.6 E-08	1.5 E-08	1.1 E-08	9.1 E-09	7.4 E-09
		S	1.0 E-04	3.8 E-08	1.0 E-05	2.8 E-08	1.6 E-08	1.2 E-08	1.0 E-08	8.0 E-09
镅										
Am-237	1.22 h	F	0.005	9.8 E-11	5.0 E-04	7.3 E-11	3.5 E-11	2. 2 E-11	1.3 E-11	1.1 E-11
		M	0.005	1.7 E-10	5.0 E-04	1.2 E-10	6.2 E-11	4.1 E-11	3.0 E-11	2.5 E-11
		S	0.005	1.7 E-10	5.0 E-04	1.3 E-10	6.5 E-11	4.3 E-11	3. 2 E-11	2.6 E-11

						I	I	1		
核 素	物理半衰期	类 别	年龄 g	≤1 岁	f_1	1岁~2岁	2 岁~7 岁	7 岁~12 岁	12 岁~17 岁	>17 岁
12 24	13-2 1 40.00	× "	f_1	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
Am-238	1.63 h	F	0.005	4.1 E-10	5.0 E-04	3.8 E-10	2.5 E-10	2.0 E-10	1.8 E-10	1.9 E-10
		M	0.005	3.1 E-10	5.0 E-04	2.6 E-10	1.3 E-10	9.6 E-11	8.8 E-11	9.0 E-11
		S	0.005	2.7 E-10	5.0 E-04	2.2 E-10	1.3 E-10	8. 2 E-11	6.1 E-11	5.4 E-11
Am-239	11.9 h	F	0.005	8.1 E-10	5.0 E-04	5.8 E-10	2.6 E-10	1.6 E-10	9.1 E-11	7.6 E-11
		M	0.005	1.5 E-09	5.0 E-04	1.1 E-09	5.6 E-10	3.7 E-10	2.7 E-10	2.2 E-10
		S	0.005	1.6 E-09	5.0 E-04	1.1 E-09	5.9 E-10	4.0 E-10	2.5 E-10	2.4 E-10
Am-240	2.12 d	F	0.005	2.0 E-09	5.0 E-04	1.7 E-09	8.8 E-10	5.7 E-10	3.6 E-10	2.3 E-10
		M	0.005	2.9 E-09	5.0 E-04	2.2 E-09	1.2 E-09	7.7 E-10	5.3 E-10	4.3 E-10
		S	0.005	3.0 E-09	5.0 E-04	2.3 E-09	1.2 E-09	7.8 E-10	5.3 E-10	4.3 E-10
Am-241	4.32 E+02 a	F	0.005	1.8 E-04	5.0 E-04	1.8 E-04	1.2 E-04	1.0 E-04	9.2 E-05	9.6 E-05
		M	0.005	7.3 E-05	5.0 E-04	6.9 E-05	5.1 E-05	4.0 E-05	4.0 E-05	4.2 E-05
		S	0.005	4.6 E-05	5.0 E-04	4.0 E-05	2.7 E-05	1.9 E-05	1.7 E-05	1.6 E-05
Am-242	16.0 h	F	0.005	9.2 E-08	5.0 E-04	7.1 E-08	3.5 E-08	2.1 E-08	1.4 E-08	1.1 E-08
		M	0.005	7.6 E-08	5.0 E-04	5.9 E-08	3.6 E-08	2.4 E-08	2.1 E-08	1.7 E-08
		S	0.005	8.0 E-08	5.0 E-04	6.2 E-08	3.9 E-08	2.7 E-08	2.4 E-08	2.0 E-08
Am-242m	1.52 E+02 a	F	0.005	1.6 E-04	5.0 E-04	1.5 E-04	1.1 E-04	9.4 E-05	8.8 E-05	9.2 E-05
		M	0.005	5.2 E-05	5.0 E-04	5.3 E-05	4.1 E-05	3.4 E-05	3.5 E-05	3.7 E-05
		S	0.005	2.5 E-05	5.0 E-04	2.4 E-05	1.7 E-05	1.2 E-05	1.1 E-05	1.1 E-05
Am-243	7.38 E+03 a	F	0.005	1.8 E-04	5.0 E-04	1.7 E-04	1.2 E-04	1.0 E-04	9.1 E-05	9.6 E-05
		M	0.005	7.2 E-05	5.0 E-04	6.8 E-05	5.0 E-05	4.0 E-05	4.0 E-05	4.1 E-05
		S	0.005	4.4 E-05	5.0 E-04	3.9 E-05	2.6 E-05	1.8 E-05	1.6 E-05	1.5 E-05
Am-244	10.1 h	F	0.005	1.0 E-08	5.0 E-04	9.2 E-09	5.6 E-09	4.1 E-09	3.5 E-09	3.7 E-09
		M	0.005	6.0 E-09	5.0 E-04	5.0 E-09	3. 2 E-09	2.2 E-09	2.0 E-09	2.0 E-09
		S	0.005	6.1 E-09	5.0 E-04	4.8 E-09	2.4 E-09	1.6 E-09	1.4 E-09	1.2 E-09
Am-244m	0.433 h	F	0.005	4.6 E-10	5.0 E-04	4.0 E-10	2.4 E-10	1.8 E-10	1.5 E-10	1.6 E-10
		M	0.005	3.3 E-10	5.0 E-04	2.1 E-10	1.3 E-10	9. 2 E-11	8.3 E-11	8.4 E-11
		S	0.005	3.0 E-10	5.0 E-04	2.2 E-10	1.2 E-10	8.1 E-11	5.5 E-11	5.7 E-11
Am-245	2.05 h	F	0.005	2.1 E-10	5.0 E-04	1.4 E-10	6. 2 E-11	4.0 E-11	2.4 E-11	2.1 E-11
		M	0.005	3.9 E-10	5.0 E-04	2.6 E-10	1.3 E-10	8.7 E-11	6.4 E-11	5.3 E-11

核 素	物理半衰期	类 别	年龄 g	≤1 岁	f_1	1 岁~2 岁	2 岁~7 岁	7岁~12岁	12 岁~17 岁	>17 岁
12 25	100 25 17 48 701	× "	f_1	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
		S	0.005	4.1 E-10	5.0 E-04	2.8 E-10	1.3 E-10	9.2 E-11	6.8 E-11	5.6 E-11
Am-246	0.650 h	F	0.005	3.0 E-10	5.0 E-04	2.0 E-10	9.3 E-11	6.1 E-11	3.8 E-11	3.3 E-11
		M	0.005	5.0 E-10	5.0 E-04	3.4 E-10	1.6 E-10	1.1 E-10	7.9 E-11	6.6 E-11
		S	0.005	5.3 E-10	5.0 E-04	3.6 E-10	1.7 E-10	1.2 E-10	8.3 E-11	6.9 E-11
Am-246m	0.417 h	F	0.005	1.3 E-10	5.0 E-04	8.9 E-11	4.2 E-11	2.6 E-11	1.6 E-11	1.4 E-11
		M	0.005	1.9 E-10	5.0 E-04	1.3 E-10	6.1 E-11	4.0 E-11	2.6 E-11	2.2 E-11
		S	0.005	2.0 E-10	5.0 E-04	1.4 E-10	6.4 E-11	4.1 E-11	2.7 E-11	2.3 E-11
锔										
Cm-238	2.40 h	F	0.005	7.7 E-09	5.0 E-04	5.4 E-09	2.6 E-09	1.8 E-09	9.2 E-10	7.8 E-10
		M	0.005	2.1 E-08	5.0 E-04	1.5 E-08	7.9 E-09	5.9 E-09	5.6 E-09	4.5 E-09
		S	0.005	2.2 E-08	5.0 E-04	1.6 E-08	8.6 E-09	6.4 E-09	6.1 E-09	4.9 E-09
Cm-240	27.0 d	F	0.005	8.3 E-06	5.0 E-04	6.3 E-06	3.2 E-06	2.0 E-06	1.5 E-06	1.3 E-06
		M	0.005	1.2 E-05	5.0 E-04	9.1 E-06	5.8 E-06	4.2 E-06	3.8 E-06	3.2 E-06
		S	0.005	1.3 E-05	5.0 E-04	9.9 E-06	6.4 E-06	4.6 E-06	4.3 E-06	3.5 E-06
Cm-241	32.8 d	F	0.005	1.1 E-07	5.0 E-04	8.9 E-08	4.9 E-08	3.5 E-08	2.8 E-08	2.7 E-08
		M	0.005	1.3 E-07	5.0 E-04	1.0 E-07	6.6 E-08	4.8 E-08	4.4 E-08	3.7 E-08
		S	0.005	1.4 E-07	5.0 E-04	1.1 E-07	6.9 E-08	4.9 E-08	4.5 E-08	3.7 E-08
Cm-242	163 d	F	0.005	2.7 E-05	5.0 E-04	2.1 E-05	1.0 E-05	6.1 E-06	4.0 E-06	3.3 E-06
		M	0.005	2.2 E-05	5.0 E-04	1.8 E-05	1.1 E-05	7.3 E-06	6.4 E-06	5.2 E-06
		S	0.005	2.4 E-05	5.0 E-04	1.9 E-05	1.2 E-05	8.2 E-06	7.3 E-06	5.9 E-06
Cm-243	28.5 a	F	0.005	1.6 E-04	5.0 E-04	1.5 E-04	9.5 E-05	7.3 E-05	6.5 E-05	6.9 E-05
		M	0.005	6.7 E-05	5.0 E-04	6.1 E-05	4.2 E-05	3.1 E-05	3.0 E-05	3.1 E-05
		S	0.005	4.6 E-05	5.0 E-04	4.0 E-05	2.6 E-05	1.8 E-05	1.6 E-05	1.5 E-05
Cm-244	18.1 a	F	0.005	1.5 E-04	5.0 E-04	1.3 E-04	8.3 E-05	6.1 E-05	5.3 E-05	5.7 E-05
		M	0.005	6.2 E-05	5.0 E-04	5.7 E-05	3.7 E-05	2.7 E-05	2.6 E-05	2.7 E-05
		S	0.005	4.4 E-05	5.0 E-04	3.8 E-05	2.5 E-05	1.7 E-05	1.5 E-05	1.3 E-05
Cm-245	8.50 E+03 a	F	0.005	1.9 E-04	5.0 E-04	1.8 E-04	1.2 E-04	1.0 E-04	9.4 E-05	9.9 E-05
		M	0.005	7.3 E-05	5.0 E-04	6.9 E-05	5.1 E-05	4.1 E-05	4.1 E-05	4.2 E-05
		S	0.005	4.5 E-05	5.0 E-04	4.0 E-05	2.7 E-05	1.9 E-05	1.7 E-05	1.6 E-05

=	46 TB V/ = #0	216 Dil	年龄。	র≲1 岁	f_1	1 岁~2 岁	2 岁~7 岁	7岁~12岁	12 岁~17 岁	>17 岁
核 素	物理半衰期	类 别	f_1	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
Cm-246	4.73 E+03 a	F	0.005	1.9 E-04	5.0 E-04	1.8 E-04	1.2 E-04	1.0 E-04	9.4 E-05	9.8 E-05
		M	0.005	7.3 E-05	5.0 E-04	6.9 E-05	5.1 E-05	4.1 E-05	4.1 E-05	4.2 E-05
		S	0.005	4.6 E-05	5.0 E-04	4.0 E-05	2.7 E-05	1.9 E-05	1.7 E-05	1.6 E-05
Cm-247	1.56 E+07 a	F	0.005	1.7 E-04	5.0 E-04	1.6 E-04	1.1 E-04	9.4 E-05	8.6 E-05	9.0 E-05
		M	0.005	6.7 E-05	5.0 E-04	6.3 E-05	4.7 E-05	3.7 E-05	3.7 E-05	3.9 E-05
		S	0.005	4.1 E-05	5.0 E-04	3.6 E-05	2.4 E-05	1.7 E-05	1.5 E-05	1.4 E-05
Cm-248	3.39 E+05 a	F	0.005	6.8 E-04	5.0 E-04	6.5 E-04	4.5 E-04	3.7 E-04	3.4 E-04	3.6 E-04
		M	0.005	2.5 E-04	5.0 E-04	2.4 E-04	1.8 E-04	1.4 E-04	1.4 E-04	1.5 E-04
		S	0.005	1.4 E-04	5.0 E-04	1.2 E-04	8.2 E-05	5.6 E-05	5.0 E-05	4.8 E-05
Cm-249	1.07 h	F	0.005	1.8 E-10	5.0 E-04	9.8 E-11	5.9 E-11	4.6 E-11	4.0 E-11	4.0 E-11
		M	0.005	2.4 E-10	5.0 E-04	1.6 E-10	8.2 E-11	5.8 E-11	3.7 E-11	3.3 E-11
		S	0.005	2.4 E-10	5.0 E-04	1.6 E-10	7.8 E-11	5. 3 E-11	3.9 E-11	3.3 E-11
Cm-250	6.90 E+03 a	F	0.005	3.9 E-03	5.0 E-04	3.7 E-03	2.6 E-03	2.1 E-03	2.0 E-03	2.1 E-03
		M	0.005	1.4 E-03	5.0 E-04	1.3 E-03	9.9 E-04	7.9 E-04	7.9 E-04	8.4 E-04
		S	0.005	7.2 E-04	5.0 E-04	6.5 E-04	4.4 E-04	3.0 E-04	2.7 E-04	2.6 E-04
锫										
Bk-245	4.94 d	M	0.005	8.8 E-09	5.0 E-04	6.6 E-09	4.0 E-09	2.9 E-09	2.6 E-09	2.1 E-09
Bk-246	1.83 d	M	0.005	2.1 E-09	5.0 E-04	1.7 E-09	9.3 E-10	6.0 E-10	4.0 E-10	3.3 E-10
Bk-247	1.38 E+03 a	M	0.005	1.5 E-04	5.0 E-04	1.5 E-04	1.1 E-04	7.9 E-05	7.2 E-05	6.9 E-05
Bk-249	320 d	M	0.005	3.3 E-07	5.0 E-04	3.3 E-07	2.4 E-07	1.8 E-07	1.6 E-07	1.6 E-07
Bk-250	3. 22 h	M	0.005	3.4 E-09	5.0 E-04	3.1 E-09	2.0 E-09	1.3 E-09	1.1 E-09	1.0 E-09
锎										
Cf-244	0.323 h	M	0.005	7.6 E-08	5.0 E-04	5.4 E-08	2.8 E-08	2.0 E-08	1.6 E-08	1.4 E-08
Cf-246	1.49 d	M	0.005	1.7 E-06	5.0 E-04	1.3 E-06	8.3 E-07	6.1 E-07	5.7 E-07	4.5 E-07
Cf-248	334 d	M	0.005	3.8 E-05	5.0 E-04	3. 2 E-05	2.1 E-05	1.4 E-05	1.0 E-05	8.8 E-06
Cf-249	3.50 E+02 a	M	0.005	1.6 E-04	5.0 E-04	1.5 E-04	1.1 E-04	8.0 E-05	7.2 E-05	7.0 E-05
Cf-250	13.1 a	M	0.005	1.1 E-04	5.0 E-04	9.8 E-05	6.6 E-05	4.2 E-05	3.5 E-05	3.4 E-05
Cf-251	8.98 E+02 a	M	0.005	1.6 E-04	5.0 E-04	1.5 E-04	1.1 E-04	8-1 E-05	7.3 E-05	7.1 E-05
Cf-252	2.64 a	M	0.005	9.7 E-05	5.0 E-04	8.7 E-05	5.6 E-05	3. 2 E-05	2.2 E-05	2.0 E-05

表 B7(完)

核 素	物理半衰期	类 别	年龄。	r≤l 岁	f_1	1 岁~2 岁	2 岁~7 岁	7岁~12岁	12 岁~17 岁	>17 岁
1次 糸	初珪十表期	关 加	f_1	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)
Cf-253	17.8 d	M	0.005	5.4 E-06	5.0 E-04	4.2 E-06	2.6 E-06	1.9 E-06	1.7 E-06	1.3 E-06
Cf-254	60.5 d	M	0.005	2.5 E-04	5.0 E-04	1.9 E-04	1.1 E-04	7.0 E-05	4.8 E-05	4.1 E-05
锿										
Es-250	2.10 h	M	0.005	2.0 E-09	5.0 E-04	1.8 E-09	1.2 E-09	7.8 E-10	6.4 E-10	6.3 E-10
Es-251	1.38 d	M	0.005	7.9 E-09	5.0 E-04	6.0 E-09	3.9 E-09	2.8 E-09	2.6 E-09	2.1 E-09
Es-253	20.5 d	M	0.005	1.1 E-05	5.0 E-04	8.0 E-06	5.1 E-06	3.7 E-06	3.4 E-06	2.7 E-06
Es-254	276 d	M	0.005	3.7 E-05	5.0 E-04	3.1 E-05	2.0 E-05	1.3 E-05	1.0 E-05	8.6 E-06
Es-254m	1.64 d	M	0.005	1.7 E-06	5.0 E-04	1.3 E-06	8.4 E-07	6.3 E-07	5.9 E-07	4.7 E-07
镄										
Fm-252	22.7 h	M	0.005	1.2 E-06	5.0 E-04	9.0 E-07	5.8 E-07	4.3 E-07	4.0 E-07	3.2 E-07
Fm-253	3.00 d	M	0.005	1.5 E-06	5.0 E-04	1.2 E-06	7.3 E-07	5.4 E-07	5.0 E-07	4.0 E-07
Fm-254	3.24 h	M	0.005	3.2 E-07	5.0 E-04	2.3 E-07	1.3 E-07	9.8 E-08	7.6 E-08	6.1 E-08
Fm-255	20.1 h	M	0.005	1.2 E-06	5.0 E-04	7.3 E-07	4.7 E-07	3.5 E-07	3.4 E-07	2.7 E-07
Fm-257	101 d	M	0.005	3.3 E-05	5.0 E-04	2.6 E-05	1.6 E-05	1.1 E-05	8.8 E-06	7.1 E-06
钔										
Md-257	5.20 h	M	0.005	1.0 E-07	5.0 E-04	8.2 E-08	5.1 E-08	3.6 E-08	3.1 E-08	2.5 E-08
Md-258	55.0 d	M	0.005	2.4 E-05	5.0 E-04	1.9 E-05	1.2 E-05	8.6 E-06	7.3 E-06	5.9 E-06

注:类别 F、M 和 S 分别表示肺快速、中速和慢速吸收。

^{*} 对于钙;1 岁~15 岁类别 F 的 f1 值为 0.4;对于铁,1 岁~15 岁类别 F 的 f1 值为 0.2;对于钴,1 岁~15 岁类别 F 的 f1 值为 0.3;对于锶,1 岁~15 岁类别 F 的 f1 值为 0.4;对于银,1 岁~15 岁类别 F 的 f1 值为 0.5;对于银,1 岁~15 岁类别 F 的 f1 值为 0.5;可以 F1 包含 f1 数 0.5;可以 F1 和 0.5;可以

表 B8 用于计算公众成员受微粒气溶胶或气体与蒸汽照射时 吸入单位摄入量所致待积有效剂量的肺吸收类别

元 素	吸收类别"	载有生物动力学模型和吸收 类别详细说明的 ICRP 出版物的编号
氢	F,M ^{b)} ,S,G	第 56、67 和 71 号出版物
铍	M,S	第30号出版物,第3部分
碳	F,M ^{b)} ,S,G	第 56、67 和 71 号出版物
氟	F,M,S	第 30 号出版物,第 2 部分
钠	F	第30号出版物,第2部分
镁	F,M	第30号出版物,第3部分
铝	F,M	第30号出版物,第3部分
硅	F,M,S	第30号出版物,第3部分
磷	F,M	第 30 号出版物,第 1 部分
硫	F,M ^{b)} ,S,G	第 67 和 71 号出版物
氯	F,M	第 30 号出版物,第 2 部分
钾	F	第 30 号出版物,第 2 部分
钙	F,M,S	第71号出版物
钪	S	第30号出版物,第3部分
钛	F,M,S	第 30 号出版物,第 3 部分
钒	F,M	第30号出版物,第3部分
铬	F,M,S	第 30 号出版物,第 2 部分
锰	F,M	第 30 号出版物,第1部分
铁	F,M ^{b)} ,S	第 69 和 71 号出版物
钴	F,M^b,S	第 67 和 71 号出版物
镍	F,M ^{b)} ,S,G	第 67 和 71 号出版物
铜	F,M,S	第 30 号出版物,第 2 部分
锌	F,M ^{b)} ,S	第 67 和 71 号出版物
镓	F,M	第 30 号出版物,第 3 部分
锗	F,M	第 30 号出版物,第 3 部分
砷	M	第 30 号出版物,第 3 部分
硒	F^{b} , M, S	第 69 和 71 号出版物
溴	F,M	第 30 号出版物,第 2 部分
铷	F	第 30 号出版物,第 2 部分
锶	F,M ^{b)} ,S	第 67 和 71 号出版物

表 B8(续)

元 素 吸收 类別"	表 B8(续)										
## F.M.**.S 第 56.67 和 71 号出版物 ## F.M.**.S 第 56.67 和 71 号出版物 ## F.M.**.S 第 67 和 71 号出版物 ## F.M.**.S 第 67 和 71 号出版物 ## F.M.**.S 第 67 和 71 号出版物 ## F.M.*S 第 56.67 和 71 号出版物 ## F.M.*S 第 30 号出版物 ## 3 30 号	元 素	吸收类别*`	类别详细说明的 ICRP								
## F.M"·S 第 56,67 和 71 号出版物 日	钇	M,S	第30号出版物,第2部分								
日日	锆	F,M ^{b)} ,S	第 56、67 和 71 号出版物								
## F.M**.S 第 67 和 71 号出版物 F.M**.S.G 第 56.67 和 71 号出版物 F.M.S 第 30 号出版物,第 2 部分 現	铌	F,M ^{b)} ,S	第 56、67 和 71 号出版物								
 打 F.M™.S.G 第 30 号出版物、第 2 部分 記 F.M.S 第 30 号出版物、第 3 部分 取 F.M™.S 第 67 和 71 号出版物 第 30 号出版物、第 2 部分 取 F.M.S 第 30 号出版物、第 2 部分 取 F.M 第 30 号出版物、第 3 部分 日 F.M 第 30 号出版物、第 3 部分 申 F.M™.S.G 第 67 和 71 号出版物 申 F.M™.S.G 第 67 和 71 号出版物 申 F.M™.S.G 第 67 和 71 号出版物 申 F.M™.S 第 67 和 71 号出版物 申 F.M™.S 第 67 和 71 号出版物 取 F.M™.S 第 67 和 71 号出版物 取 9 日出版物、第 3 部分 申 F.M™.S 第 66 67 和 71 号出版物 第 30 号出版物、第 3 部分 取 M.S 第 30 号出版物、第 3 部分 申 M.S 第 30 号出版物、第 3 部分 財 M 	钼	F,M ^{b)} ,S	第 67 和 71 号出版物								
### F.M.S 第 30 号出版物,第 2 部分 記	锝	F,M ^{b)} ,S	第 67 和 71 号出版物								
 甲・M・S 第 30号出版物・第 3 部分 银 F・M・S 第 30号出版物・第 2 部分 银 F・M 第 30号出版物・第 2 部分 银 F・M 第 30号出版物・第 3 部分 財 F・M・S・S 第 69和 71号出版物 第 66 7和 71号出版物 申 中・M・S・G 第 30号出版物・第 2 部分 申 中・M・S・G 第 30号出版物・第 2 部分 申 中・M・S 第 56 67和 71号出版物 明 F・M・S 第 67 和 71号出版物 申 F・M・S 第 66 67和 71号出版物 第 30号出版物・第 3 部分 中・M・S 第 30号出版物・第 3 部分 財 M・S 第 30号出版物・第 3 部分 申 M・S 第 30号出版物・第 3 部分 申 M 第 30号出版物、第 3 部分 申 M 第 30号出版物、第 3 部分 申 M 第 30号出版物、第 3 部分 申 財 財	钌	F,M ^{b)} ,S,G	第 56、67 和 71 号出版物								
 银 F.M^{bo}·,S 第 30号出版物・第 2 部分 银 F.M 第 30号出版物・第 2 部分 银 F.M 第 30号出版物・第 3 部分 诺 F.M^{bo}·,S 第 69 和 71号出版物 确 F^{bo}·,M·S·,G 第 67 和 71号出版物 确 F^{bo}·,M·S 第 30号出版物・第 2 部分 钟 F^{bo}·,M·S 第 56,67 和 71号出版物 明 F.M 第 30号出版物・第 3 部分 钟 F.M 第 30号出版物・第 3 部分 特 F.M 第 30号出版物・第 3 部分 特 M·S 第 30号出版物・第 3 部分 特 M·S 第 30号出版物・第 3 部分 特 M·S 第 30号出版物・第 3 部分 特 M 第 30号出版物・第 3 部分 	铑	F,M,S	第 30 号出版物,第 2 部分								
 第 30号出版物、第 2部分 1 日本の 1 第 30号出版物、第 2部分 1 第 30号出版物、第 3部分 1 第 30号出版物、第 3部分 1 第 69和 71号出版物 2 節 7 和 71号出版物 3 6 日出版物、第 2 部分 3 6 日出版物、第 3 部分 4 第 30号出版物、第 3 部分 4 M 5 3 6 日出版物、第 3 部分 4 M 5 3 0号出版物、第 3 部分 4 M 7 第 30号出版物、第 3 部分 4 M 9 第 30号出版物、第 3 部分 4 M 9 第 30号出版物、第 3 部分 4 M 9 第 30号出版物、第 3 部分 4 F M 9 第 30号出版物、第 3 部分 4 F M 9 第 30号出版物、第 3 部分 4 M 9 第 30号出版物、第 3 部分 5 M 9 日 1 版物、第 3 部分 6 M 9 30号出版物、第 3 部分 7 M 9 30号出版物、第 3 部分 8 M 9 30号出版物、第 3 部分 9 M 9 30号出版物、第 3 部分 	钯	F,M,S	第30号出版物,第3部分								
田田 F・M 第 30 号出版物・第 2 部分	银	F,M ^{b)} ,S	第 67 和 71 号出版物								
## F.M 第 30 号出版物、第 3 部分 ## F.M ^b 、S.G 第 69 和 71 号出版物 ## F ^b 、M·S.G 第 67 和 71 号出版物 ## F ^b 、M·S.G 第 30 号出版物、第 2 部分 ## F ^b 、M·S 第 56,67 和 71 号出版物 ## F.M ^b 、S 第 67 和 71 号出版物 ## 第 30 号出版物、第 3 部分 ## 第 56,67 和 71 号出版物 ## 第 30 号出版物、第 3 部分 ## M·S 图 30 号出版物、第 3 部	镉	F,M,S	第 30 号出版物,第 2 部分								
锑 F,Mb,S 第69和71号出版物 碲 F,Mb,S,G 第67和71号出版物 碘 Fb,M,S,G 第30号出版物,第2部分 铯 Fb,MS 第56,67和71号出版物 钡 F,Mb,S 第67和71号出版物 铜 F,M 第30号出版物,第3部分 铈 F,Mb,S 第56,67和71号出版物 特 M,S 第30号出版物,第3部分 粒 M,S 第30号出版物,第3部分 粒 M 第30号出版物,第3部分 秋 M 第30号出版物,第3部分 秋 M 第30号出版物,第3部分 秋 M 第30号出版物,第3部分 秋 M 第30号出版物,第3部分 類 M 第30号出版物,第3部分 財 M 第30号出版物,第3部分 財 M 第30号出版物,第3部分 財 M 第30号出版物,第3部分	铟	F,M	第30号出版物,第2部分								
	锡	F,M	第30号出版物,第3部分								
碘 Fb, M.S.G 第 30 号出版物・第 2 部分 铯 Fb, M.S 第 56,67 和 71 号出版物 钡 F.Mb, S 第 67 和 71 号出版物 镧 F.M 第 30 号出版物・第 3 部分 铈 F.Mb, S 第 56,67 和 71 号出版物 销 M.S 第 30 号出版物・第 3 部分 钕 M.S 第 30 号出版物・第 3 部分 钜 M.S 第 30 号出版物・第 3 部分 钐 M 第 30 号出版物・第 3 部分 铂 M 第 30 号出版物・第 3 部分 氧 M 第 30 号出版物・第 3 部分	锑	F,M ^{b)} ,S	第 69 和 71 号出版物								
 (地) F^b, M·S (切) F·M^b, S (可) 第 67 和 71 号出版物 (明) F·M (明) 第 30 号出版物,第 3 部分 (前) F·M^b, S (前) 第 56,67 和 71 号出版物 (前) F·M^b, S (前) 第 30 号出版物,第 3 部分 (対) M·S (前) 第 30 号出版物,第 3 部分 (前) M (前) 第 30 号出版物,第 3 部分 (対) 所列 (前) 号出版物,第 3 部分 (対) 所列 (前) 第 30 号出版物,第 3 部分 (対) 所列 (対) 所列 (前) 号出版物,第 3 部分 (対) 所列 (対) 号出版物,第 3 部分 (対) 所列 (対) 号出版物,第 3 部分 (対) 所列 (対) 号出版物,第 3 部分 (対) 号出版物,第 3 部分 	碲	F,M ^{b)} ,S,G	第 67 和 71 号出版物								
 (契) (中の) (中の) (中の) (中の) (中の) (中の) (中の) (中の	碘	F ^{b)} ,M,S,G	第30号出版物,第2部分								
調 F,M 第30号出版物,第3部分 特 F,Mb),S 第56,67和71号出版物 特 M,S 第30号出版物,第3部分 较 M,S 第30号出版物,第3部分 矩 M,S 第30号出版物,第3部分 杉 M 第30号出版物,第3部分 特 M 第30号出版物,第3部分 村 M 第30号出版物,第3部分 財 M 第30号出版物,第3部分	铯	F ^{b)} ,M,S	第 56、67 和 71 号出版物								
特 F,Mb,S 第56、67和71号出版物 増 M,S 第30号出版物,第3部分 技 M,S 第30号出版物,第3部分 杉 M 第30号出版物,第3部分 特 M 第30号出版物,第3部分 村 M 第30号出版物,第3部分	钡	F,M ^{b)} ,S	第 67 和 71 号出版物								
销 M,S 第30号出版物,第3部分 较 M,S 第30号出版物,第3部分 矩 M,S 第30号出版物,第3部分 杉 M 第30号出版物,第3部分 转 M 第30号出版物,第3部分 柱 F,M 第30号出版物,第3部分 域 M 第30号出版物,第3部分 较 M 第30号出版物,第3部分 村 M 第30号出版物,第3部分 括 M 第30号出版物,第3部分 括 M 第30号出版物,第3部分	镧	F,M	第30号出版物,第3部分								
牧M,S第30号出版物,第3部分矩M,S第30号出版物,第3部分杉M第30号出版物,第3部分销M第30号出版物,第3部分鼠F,M第30号出版物,第3部分試M第30号出版物,第3部分域M第30号出版物,第3部分財M第30号出版物,第3部分財M第30号出版物,第3部分財M第30号出版物,第3部分財M第30号出版物,第3部分財M第30号出版物,第3部分財M第30号出版物,第3部分	铈	F,M ^{b)} ,S	第 56、67 和 71 号出版物								
矩M,S第30号出版物,第3部分杉M第30号出版物,第3部分铕M第30号出版物,第3部分钆F,M第30号出版物,第3部分铽M第30号出版物,第3部分铕M第30号出版物,第3部分钬M第30号出版物,第3部分铒M第30号出版物,第3部分括M第30号出版物,第3部分括M第30号出版物,第3部分	镨	M,S	第30号出版物,第3部分								
钐 M 第 30 号出版物,第 3 部分 铕 M 第 30 号出版物,第 3 部分 钆 F,M 第 30 号出版物,第 3 部分 铽 M 第 30 号出版物,第 3 部分 镝 M 第 30 号出版物,第 3 部分 钬 M 第 30 号出版物,第 3 部分 铒 M 第 30 号出版物,第 3 部分 铥 M 第 30 号出版物,第 3 部分 括 M 第 30 号出版物,第 3 部分	钕	M,S	第30号出版物,第3部分								
销 M 第 30 号出版物,第 3 部分 钆 F,M 第 30 号出版物,第 3 部分 铽 M 第 30 号出版物,第 3 部分 镝 M 第 30 号出版物,第 3 部分 钬 M 第 30 号出版物,第 3 部分 铒 M 第 30 号出版物,第 3 部分 铥 M 第 30 号出版物,第 3 部分 括 M 第 30 号出版物,第 3 部分	钜	M,S	第 30 号出版物,第 3 部分								
1 F,M 第30号出版物,第3部分 1 M 第30号出版物,第3部分	钐	M	第30号出版物,第3部分								
試 M 第 30 号出版物,第 3 部分 摘 M 第 30 号出版物,第 3 部分 钬 M 第 30 号出版物,第 3 部分 铒 M 第 30 号出版物,第 3 部分 铥 M 第 30 号出版物,第 3 部分 括 M 第 30 号出版物,第 3 部分	铕	M	第30号出版物,第3部分								
摘 M 第 30 号出版物,第 3 部分 秋 M 第 30 号出版物,第 3 部分 铒 M 第 30 号出版物,第 3 部分 铥 M 第 30 号出版物,第 3 部分	钆	F,M	第 30 号出版物,第 3 部分								
(執) (M) (第 30 号出版物,第 3 部分 (耳) (M) (第 30 号出版物,第 3 部分 (括) (M) (第 30 号出版物,第 3 部分		М	第 30 号出版物,第 3 部分								
铒 M 第30号出版物,第3部分 铥 M 第30号出版物,第3部分	镝	M	第 30 号出版物,第 3 部分								
括 M 第 30 号出版物,第 3 部分	钬	M	第 30 号出版物,第 3 部分								
	铒	М	第 30 号出版物,第 3 部分								
1.	铥	M	第 30 号出版物,第 3 部分								
		M,S	第 30 号出版物,第 3 部分								

表 B8(完)

	北 Do(元)	
- +	n# 116 24 Fuls	载有生物动力学模型和吸收
元 素	吸 收 类 别◎	类别详细说明的 ICRP 出版物的编号
	M,S	第 30 号出版物,第 3 部分
铪	F,M	第30号出版物,第3部分
	M,S	第 30 号出版物,第 3 部分
· · · · · · · · · · · · · · · · · · ·	F	第 30 号出版物,第 3 部分
铼	F,M	第 30 号出版物,第 2 部分
锇	F,M,S	第 30 号出版物,第 2 部分
铱	F,M,S	第 30 号出版物,第 2 部分
铂	F	第 30 号出版物,第 3 部分
金	F,M,S	第 30 号出版物,第 2 部分
汞	F,M,G	第 30 号出版物,第 2 部分
铊	F	第 30 号出版物,第 3 部分
铅	F,M ^{b)} ,S,G	第 67 和 71 号出版物
铋	F,M	第 30 号出版物,第 2 部分
钋	F,M ^{b)} ,S,G	第 67 和 71 号出版物
砹	F,M	第 30 号出版物,第 3 部分
钫	F	第 30 号出版物,第 3 部分
镭	F,M ^{b)} ,S	第 67 和 71 号出版物
锕	F,M,S	第30号出版物,第3部分
钍	F,M,S ^{b)}	第 69 和 71 号出版物
镤	M,S	第 30 号出版物,第 3 部分
铀	F,M ^{b)} ,S	第 69 和 71 号出版物
	F,M ^{b)} ,S	第 67 和 71 号出版物
轹	F,M ^{b)} ,S	第 67 和 71 号出版物
镅	F,M ^{b)} ,S	第 67 和 71 号出版物
锔	F,M ^{b)} ,S	第 71 号出版物
	M	第 30 号出版物,第 4 部分
 锎	M	
	M	第 30 号出版物,第 4 部分
	M	第 30 号出版物,第 4 部分
 钔	M	第 30 号出版物,第 4 部分
#IJ 		ઋ ○○ 与山MX100,郑 t 部刀
a , スト 〒 1元ス ホト/ 。 ヒ ── 1米 1米・ V ── H 1米・>-	ㅡ ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	

a)对于微粒,F-快速;M-中速;S-慢速;G-气体与蒸汽。

b)对于微粒气溶胶,没有专门数据可用时,使用建议的缺省吸收类别。(见 ICRP 第 71 号出版物(1996))。

表 B9 吸入:可溶性或活性气体与蒸汽之单位摄入量所致的待积有效剂量 $e(g)/(\mathrm{Sv} \cdot \mathrm{Bq}^{-1})$

核 素	物理半衰期	吸收a)	沉积/%	年龄。	g≤l 岁	f_1	1岁~2岁	2 岁~7 岁	7岁~12岁	12 岁~17 岁	g>17 岁
10 系	彻垤十表期	ух чх а /	ルれ ス/ 70	f_1	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	e(g)b)
氚化水	12.3 a	V	100	1.000	6.4 E-11	1.000	4.8 E-11	3.1 E-11	2.3 E-11	1.8 E-11	1.8 E-11
元素氢	12.3 a	V	0.01	1.000	6.4 E-15	1.000	4.8 E-15	3.1 E-15	2.3 E-15	1.8 E-15	1.8 E-15
氚化甲烷	12.3 a	V	1	1.000	6.4 E-13	1.000	4.8 E-13	3.1 E-13	2.3 E-13	1.8 E-13	1.8 E-13
有机束缚氚	12.3 a	V	100	1.000	1.1 E-10	1.000	1.1 E-10	7.0 E-11	5.5 E-11	4.1 E-11	4.1 E-11
碳-11 蒸汽	0.340 h	V	100	1.000	2.8 E-11	1.000	1.8 E-11	9.7 E-12	6.1 E-12	3. 8 E-12	3. 2 E-12
二氧化碳-11	0.340 h	V	100	1.000	1.8 E-11	1.000	1.2 E-11	6.5 E-12	4.1 E-12	2.5 E-12	2. 2 E-12
一氧化碳-11	0.340 h	V	40	1.000	1.0 E-11	1.000	6.7 E-12	3.5 E-12	2.2 E-12	1.4 E-12	1. 2 E-12
碳-14 蒸汽	5.73E+3 a	V	100	1.000	1.3 E-09	1.000	1.6 E-09	9.7 E-10	7.9 E-10	5.7 E-10	5.8 E-10
二氧化碳-14	5.73E+3 a	V	100	1.000	1.9 E-11	1.000	1.9 E-11	1.1 E-11	8.9 E-12	6. 3 E-12	6.2 E-12
一氧化碳-14	5.73E+3 a	V	40	1.000	9-1 E-12	1.000	5.7 E-12	2.8 E-12	1.7 E-12	9.9 E-13	8.0 E-13
二硫-35 化碳	87. 4 d	F	100	1.000	6.9 E-09	0.800	4.8 E-09	2.4 E-09	1.4 E-09	8.6 E-10	7.0 E-10
二氧化硫-35	87. 4 d	F	85	1.000	9.4 E-10	0.800	6.6 E-10	3.4 E-10	2.1 E-10	1.3 E-10	1.1 E-10
碳酰镍-56	6.10 d	c)	100	1.000	6.8 E-09	1.000	5.2 E-09	3.2 E-09	2.1 E-09	1.4 E-09	1.2 E-09
碳酰镍-57	1.50 d	c)	100	1.000	3.1 E-09	1.000	2.3 E-09	1.4 E-09	9.2 E-10	6.5 E-10	5.6 E-10
碳酰镍-59	7.50E+4 a	c)	100	1.000	4.0 E-09	1.000	3.3 E-09	2.0 E-09	1.3 E-09	9.1 E-10	8.3 E-10
碳酰镍-63	96.0 a	c)	100	1.000	9.5 E-09	1.000	8.0 E-09	4.8 E-09	3.0 E-09	2.2 E-09	2.0 E-09
碳酰镍-65	2.52 h	c)	100	1.000	2.0 E-09	1.000	1.4 E-09	8.1 E-10	5.6 E-10	4.0 E-10	3.6 E-10
碳酰镍-66	2. 27 d	c)	100	1.000	1.0 E-08	1.000	7.1 E-09	4.0 E-09	2.7 E-09	1.8 E-09	1.6 E-09
四氧化钌-94	0.863 h	F	100	0.100	5.5 E-10	0.050	3.5 E-10	1.8 E-10	1.1 E-10	7.0 E-11	5.6 E-11
四氧化钌-97	2.90 d	F	100	0.100	8.7 E-10	0.050	6.2 E-10	3.4 E-10	2.2 E-10	1.4 E-10	1.2 E-10
四氧化钌-103	39.3 d	F	100	0.100	9.0 E-09	0.050	6.2 E-09	3.3 E-09	2.1 E-09	1.3 E-09	1.1 E-09
四氧化钌-105	4.44 h	F	100	0.100	1. 6 F-09	0.050	1.0 F-09	5. 3 E-10	3. 2 F-10	2. 2 F-10	1.8 F-10

表 B9(续)

+	46 mm 1/4 == 100		V C C C C C C C C C C	年龄。	[≤1 岁	f_1	1岁~2岁	2 岁~7 岁	7岁~12岁	12 岁~17 岁	g>17 岁
核 素	物理半衰期	吸收 ^{a)}	沉积/%	f_1	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	$e(g)^{b}$
四氧化钌-106	1.01 a	F	100	0.100	1.6 E-07	0.050	1.1 E-07	6.1 E-08	3.7 E-08	2. 2 E-08	1.8 E-08
碲-116 蒸汽	2.49 h	F	100	0.600	5.9 E-10	0.300	4.4 E-10	2.5 E-10	1.6 E-10	1.1 E-10	8.7 E-11
碲-121 蒸汽	17.0 d	F	100	0.600	3.0 E-09	0.300	2.4 E-09	1.4 E-09	9.6 E-10	6.7 E-10	5.1 E-10
碲-121m 蒸汽	154 d	F	100	0.600	3.5 E-08	0.300	2.7 E-08	1.6 E-08	9.8 E-09	6.6 E-09	5.5 E-09
碲-123 蒸汽	1.0E+13 a	F	100	0.600	2.8 E-08	0.300	2.5 E-08	1.9 E-08	1.5 E-08	1.3 E-08	1.2 E-08
碲-123m 蒸汽	120 d	F	100	0.600	2.5 E-08	0.300	1.8 E-08	1.0 E-08	5.7 E-09	3.5 E-09	2.9 E-09
碲-125m 蒸汽	58.0 d	F	100	0.600	1.5 E-08	0.300	1.1 E-08	5.9 E-09	3.2 E-09	1.9 E-09	1.5 E-09
碲-127 蒸汽	9. 35 h	F	100	0.600	6.1 E-10	0.300	4.4 E-10	2.3 E-10	1.4 E-10	9. 2 E-11	7.7 E-11
碲-127m 蒸汽	109 d	F	100	0.600	5.3 E-08	0.300	3.7 E-08	1.9 E-08	1.0 E-08	6.1 E-09	4.6 E-09
碲-129 蒸汽	1.16 h	F	100	0.600	2.5 E-10	0.300	1.7 E-10	9.4 E-11	6.2 E-11	4.3 E-11	3.7 E-11
碲-129m 蒸汽	33. 6 d	F	100	0.600	4.8 E-08	0.300	3.2 E-08	1.6 E-08	8.5 E-09	5.1 E-09	3.7 E-09
碲-131 蒸汽	0.417 h	F	100	0.600	5.1 E-10	0.300	4.5 E-10	2.6 E-10	1.4 E-10	9.5 E-11	6.8 E-11
碲-131m 蒸汽	1. 25 d	F	100	0.600	2.1 E-08	0.300	1.9 E-08	1.1 E-08	5.6 E-09	3.7 E-09	2.4 E-09
碲-132 蒸汽	3. 26 d	F	100	0.600	5.4 E-08	0.300	4.5 E-08	2.4 E-08	1.2 E-08	7.6 E-09	5.1 E-09
碲-133 蒸汽	0.207 h	F	100	0.600	5.5 E-10	0.300	4.7 E-10	2.5 E-10	1.2 E-10	8.1 E-11	5.6 E-11
碲-133m 蒸汽	0.923 h	F	100	0.600	2.3 E-09	0.300	2.0 E-09	1.1 E-09	5.0 E-10	3.3 E-10	2.2 E-10
碲-134 蒸汽	0.696 h	F	100	0.600	6.8 E-10	0.300	5.5 E-10	3.0 E-10	1.6 E-10	1.1 E-10	8. 4 E-11
元素碘-120	1.35 h	V	100	1.000	3.0 E-09	1.000	2.4 E-09	1.3 E-09	6.4 E-10	4.3 E-10	3.0 E-10
元素碘-120	0.883 h	V	100	1.000	1.5 E-09	1.000	1.2 E-09	6.4 E-10	3.4 E-10	2.3 E-10	1.8 E-10
元素碘-121	2.12 h	V	100	1.000	5.7 E-10	1.000	5.1 E-10	3.0 E-10	1.7 E-10	1. 2 E-10	8. 6 E-11
元素碘-123	13.2 h	V	100	1.000	2.1 E-09	1.000	1.8 E-09	1.0 E-09	4.7 E-10	3. 2 E-10	2.1 E-10

表 B9(续)

	*************************************	吸收a)	to in /n/	年齢 g	≤1 岁	f_1	1 岁~2 岁	2 岁~7 岁	7岁~12岁	12 岁~17 岁	g>17 岁
核 素	物理半衰期	WX 4X a /	沉积/%	f_1	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	$e(g)^{b)}$
元素碘-124	4. 18 d	V	100	1.000	1.1 E-07	1.000	1.0 E-07	5.8 E-08	2.8 E-08	1.8 E-08	1.2 E-08
元素碘-125	60. 1 d	V	100	1.000	4.7 E-08	1.000	5.2 E-08	3.7 E-08	2.8 E-08	2.0 E-08	1.4 E-08
元素碘-126	13. 0 d	V	100	1.000	1.9 E-07	1.000	1.9 E-07	1.1 E-07	6.2 E-08	4.1 E-08	2.6 E-08
元素碘-128	0.416 h	V	100	1.000	4.2 E-10	1.000	2.8 E-10	1.6 E-10	1.0 E-10	7.5 E-11	6.5 E-11
元素碘-129	1.57E+7 a	V	100	1.000	1.7 E-07	1.000	2.0 E-07	1.6 E-07	1.7 E-07	1.3 E-07	9.6 E-08
元素碘-130	12.4 h	V	100	1.000	1.9 E-08	1.000	1.7 E-08	9.2 E-09	4.3 E-09	2.8 E-09	1.9 E-09
元素碘-131	8. 04 d	V	100	1.000	1.7 E-07	1.000	1.6 E-07	9.4 E-08	4.8 E-08	3.1 E-08	2.0 E-08
元素碘-132	2.30 h	V	100	1.000	2.8 E-09	1.000	2.3 E-09	1.3 E-09	6.4 E-10	4.3 E-10	3.1 E-10
元素碘-132m	1.39 h	V	100	1.000	2.4 E-09	1.000	2.1 E-09	1.1 E-09	5.6 E-10	3.8 E-10	2.7 E-10
元素碘-133	20.8 h	V	100	1.000	4.5 E-08	1.000	4.1 E-08	2.1 E-08	9.7 E-09	6.3 E-09	4.0 E-09
元素碘-134	0.876 h	V	100	1.000	8.7 E-10	1.000	6.9 E-10	3.9 E-10	2.2 E-10	1.6 E-10	1.5 E-10
元素碘-135	6.61 h	V	100	1.000	9.7 E-09	1.000	8.5 E-09	4.5 E-09	2.1 E-09	1.4 E-09	9.2 E-10
碘-120 代甲烷	1.35 h	V	70	1.000	2.3 E-09	1.000	1.9 E-09	1.0 E-09	4.8 E-10	3.1 E-10	2.0 E-10
碘-120m 代甲烷	0.883 h	V	70	1.000	1.0 E-09	1.000	8.7 E-10	4.6 E-10	2.2 E-10	1.5 E-10	1.0 E-10
碘-121 代甲烷	2.12 h	V	70	1.000	4.2 E-10	1.000	3.8 E-10	2.2 E-10	1.2 E-10	8. 3 E-11	5.6 E-11
碘-123 代甲烷	13. 2 h	V	70	1.000	1.6 E-09	1.000	1.4 E-09	7.7 E-10	3.6 E-10	2.4 E-10	1.5 E-10
碘-124 代甲烷	4. 18 d	V	70	1.000	8.5 E-08	1.000	8.0 E-08	4.5 E-08	2.2 E-08	1.4 E-08	9.2 E-09
碘-125 代甲烷	60.1 d	V	70	1.000	3.7 E-08	1.000	4.0 E-08	2.9 E-08	2.2 E-08	1.6 E-08	1.1 E-08
碘-126 代甲烷	13. 0 d	V	70	1.000	1.5 E-07	1.000	1.5 E-07	9.0 E-08	4.8 E-08	3. 2 E-08	2.0 E-08
碘-128 代甲烷	0.416 h	V	70	1.000	1.5 E-10	1.000	1.2 E-10	6.3 E-11	3.0 E-11	1.9 E-11	1.3 E-11
碘-129 代甲烷	1.57E+7 a	V	70	1.000	1.3 E-07	1.000	1.5 E-07	1.2 E-07	1.3 E-07	9.9 E-08	7.4 E-08

表 B9(续)

核 素	Atom W = HO	877 III-	YEL 10.	年齢 &	র≪1 岁	f_1	1岁~2岁	2 岁~7 岁	7岁~12岁	12 岁~17 岁	g>17 岁
核 素	物理半衰期	吸收 ^{a)}	沉积/%	f_1	e(g)	(g>1岁)	e(g)	e(g)	e(g)	e(g)	$e(g)^{b}$
碘-130 代甲烷	12.4 h	V	70	1.000	1.5 E-08	1.000	1.3 E-08	7.2 E-09	3.3 E-09	2.2 E-09	1.4 E-09
碘-131 代甲烷	8.04 d	V	70	1.000	1.3 E-07	1.000	1.3 E-07	7.4 E-08	3.7 E-08	2.4 E-08	1.5 E-08
碘-132 代甲烷	2.30 h	V	70	1.000	2.0 E-09	1.000	1.8 E-09	9.5 E-10	4.4 E-10	2.9 E-10	1. 9 E-10
碘-132m 代甲烷	1.39 h	V	70	1.000	1.8 E-09	1.000	1.6 E-09	8.3 E-10	3.9 E-10	2.5 E-10	1.6 E-10
碘-133 代甲烷	20.8 h	V	70	1.000	3.5 E-08	1.000	3.2 E-08	1.7 E-08	7.6 E-09	4.9 E-09	3.1 E-09
碘-134 代甲烷	0.876 h	V	70	1.000	5.1 E-10	1.000	4.3 E-10	2.3 E-10	1.1 E-10	7.4 E-11	5.0 E-11
碘-135 代甲烷	6.61 h	V	70	1.000	7.5 E-09	1.000	6.7 E-09	3.5 E-09	1.6 E-09	1.1 E-09	6.8 E-10
汞-193 蒸汽	3.50 h	d)	70	1.000	4.2 E-09	1.000	3.4 E-09	2.2 E-09	1.6 E-09	1.2 E-09	1.1 E-09
汞-193m 蒸汽	11.1 h	d)	70	1.000	1.2 E-08	1.000	9.4 E-09	6.1 E-09	4.5 E-09	3.4 E-09	3.1 E-09
汞-194 蒸汽	2.60E+2 a	d)	70	1.000	9.4 E-08	1.000	8.3 E-08	6.2 E-08	5.0 E-08	4.3 E-08	4.0 E-08
汞-195 蒸汽	9.90 h	d)	70	1.000	5.3 E-09	1.000	4.3 E-09	2.8 E-09	2.1 E-09	1.6 E-09	1.4 E-09
汞-195m 蒸汽	1.73 d	d)	70	1.000	3.0 E-08	1.000	2.5 E-08	1.6 E-08	1.2 E-08	8.8 E-09	8. 2 E-09
汞-197 蒸汽	2.67 d	d)	70	1.000	1.6 E-08	1.000	1.3 E-08	8.4 E-09	6.3 E-09	4.7 E-09	4.4 E-09
汞-197m 蒸汽	23.8 h	d)	70	1.000	2.1 E-08	1.000	1.7 E-08	1.1 E-08	8.2 E-09	6.2 E-09	5.8 E-09
汞-199m 蒸汽	0.710 h	d)	70	1.000	6.5 E-10	1.000	5.3 E-10	3.4 E-10	2.5 E-10	1.9 E-10	1.8 E-10
汞-203 蒸汽	46.6 d	d)	70	1.000	3.0 E-08	1.000	2.3 E-08	1.5 E-08	1.0 E-08	7.7 E-09	7.0 E-09

- a)F:快速;V:全部吸收并立即转移到体液的物质。
- b)适用于工作人员和成年公众成员。
- c)沉积 30%;10%;20%;40%(胸外的;支气管的;毛细支气管的;肺泡的-间质的),0.1 天滞留半排出期(见 ICRP 第 68 号出版物(1994 年))。
- d) 沉积 10%; 20%; 40% (支气管的; 毛细支气管的; 肺泡的-间质的), 1.7 天滞留半排出期(见 ICRP 第 68 号出版物(1994 年))。

表 B10 成年人^{a)}受惰性气体照射时的有效剂量率

核素	物理半衰期	单位累积空气浓度的有效剂量率
7久	初连十表期	$(\mathrm{Sv/d})/(\mathrm{Bq/m^3})^{\mathrm{a}}$
氩		
Ar-37	35. 0 d	4.1 E-15
Ar-39	269 a	1.1 E-11
Ar-41	1.83 h	5.3 E-09
氪		
Kr-74	11.5 m	4.5 E-09
Kr-76	14.8 h	1.6 E-09
Kr-77	74.7 m	3. 9 E-09
Kr-79	1. 46 d	9.7 E-10
Kr-81	2.10 E+05 a	2.1 E-11
Kr-83m	1.83 h	2.1 E-13
Kr-85	10.7 a	2. 2 E-11
Kr-85m	4. 48 h	5.9 E-10
Kr-87	1.27 h	3.4 E-09
Kr-88	2.84 h	8. 4 E-09
氙		
Xe-120	40.0 m	1.5 E-09
Xe-121	40.1 m	7.5 E-09
Xe-122	20.1 h	1.9 E-10
Xe-123	2.08 h	2.4 E-09
Xe-125	17.0 h	9.3 E-10
Xe-127	36. 4 d	9.7 E-10
Xe-129m	8.0 d	8.1 E-11
Xe-131m	11.9 d	3. 2 E-11
Xe-133m	2. 19 d	1.1 E-10
Xe-133	5. 24 d	1. 2 E-10
Xe-135m	15.3 m	1.6 E-09
Xe-135	9. 10 h	9. 6 E-10
Xe-138	14. 2 m	4.7 E-09

a)适用于工作人员和成年公众成员。

表 B11 工作场所的放射性表面污染控制水平

单位:Bq/cm²

	WBII TIP	· 37// E 3/// 23 工 · C 四 / ·	1 1/1 thi 1/1	→ 12:5q/em
表面:	** #∥	α放射	性物质	β 放射性物质
衣風	关 望	极毒性 其 他		- β /JX 93 1主 49 /J以
工作台、设备、墙壁、	控制区1)	4	4×10	4×10
地面	监督区	4×10^{-1}	4	4
工作服、手套、工作鞋	控制区 监督区	4×10^{-1}	4×10 ⁻¹	4
手、皮肤、内衣、工作袜		4×10^{-2}	4×10^{-2}	4×10^{-1}
1)该区内的高污染子	区除外。			

附 录 C

(标准的附录)

非密封源工作场所的分级

C1 非密封源工作场所的分级

应按表 C1 将非密封源工作场所按放射性核素日等效最大操作量的大小分级。

表 C1 非密封源工作场所的分级

级 别	日等效最大操作量/Bq		
甲	>4×109		
Z	$2 \times 10^7 \sim 4 \times 10^9$		
丙	豁免活度值以上 $\sim 2 \times 10^7$		

C2 放射性核素的日等效操作量的计算

放射性核素的日等效操作量等于放射性核素的实际日操作量(Bq)与该核素毒性组别修正因子的积除以与操作方式有关的修正因子所得的商。放射性核素的毒性组别修正因子及操作方式有关的修正因子分别见表 C2 和表 C3。放射性核素的毒性分组见附录 D(标准的附录)。

表 C2 放射性核素毒性组别修正因子

毒性组别	毒性组别修正因子		
极毒	10		
高毒	1		
中毒	0.1		
低毒	0. 01		

表 C3 操作方式与放射源状态修正因子

	放 射 源 状 态				
操作方式	表面污染水 平较低的固体	液体,溶液, 悬浮液	表面有污染 的固体	气体,蒸汽,粉末, 压力很高的液体, 固体	
源的贮存	1000	100	10	1	
很简单的操作	100	10	1	0.1	
简单操作	10	1	0.1	0.01	
特别危险的操作	1	0.1	0.01	0.001	

附 录 D

(标准的附录)

放射性核素的毒性分组

D1 极毒组

```
<sup>148</sup>Gd, <sup>210</sup> Po, <sup>223</sup> Ra, <sup>224</sup> Ra, <sup>225</sup> Ra, <sup>226</sup> Ra, <sup>228</sup> Ra, <sup>225</sup> Ac, <sup>227</sup> Ac, <sup>227</sup> Th, <sup>228</sup> Th, <sup>229</sup> Th, <sup>230</sup> Th, <sup>231</sup> Pa, <sup>230</sup> U, <sup>232</sup> U, <sup>233</sup> U, <sup>234</sup> U, <sup>236</sup> Np (T1 = 1.15 × 10<sup>5</sup>a), <sup>236</sup> Pu, <sup>238</sup> Pu, <sup>239</sup> Pu, <sup>240</sup> Pu, <sup>242</sup> Pu, <sup>241</sup> Am, <sup>242m</sup> Am, <sup>243</sup> Am, <sup>240</sup> Cm, <sup>242</sup> Cm, <sup>243</sup> Cm, <sup>244</sup> Cm, <sup>245</sup> Cm, <sup>246</sup> Cm, <sup>248</sup> Cm, <sup>250</sup> Cm, <sup>247</sup> Bk, <sup>248</sup> Cf, <sup>250</sup> Cf, <sup>251</sup> Cf, <sup>252</sup> Cf, <sup>254</sup> Cf, <sup>253</sup> Es, <sup>254</sup> Es, <sup>257</sup> Fm, <sup>258</sup> Md
```

D2 高毒组

```
<sup>10</sup>Be, <sup>32</sup>Si, <sup>44</sup>Ti, <sup>60</sup>Fe, <sup>60</sup>Co, <sup>90</sup>Sr, <sup>94</sup>Nb, <sup>106</sup>Ru, <sup>108m</sup>Ag, <sup>113m</sup>Cd, <sup>126</sup>Sn, <sup>144</sup>Ce, <sup>146</sup>Sm, <sup>150</sup>Eu (T1 = 34. 2a), <sup>152</sup>Eu, <sup>154</sup>Eu, <sup>158</sup>Tb, <sup>166m</sup>Ho, <sup>172</sup>Hf, <sup>178m</sup>Hf, <sup>194</sup>Os, <sup>192m</sup>Ir, <sup>210</sup>Pb, <sup>210</sup>Bi, <sup>210m</sup>Bi, <sup>212</sup>Bi, <sup>213</sup>Bi, <sup>211</sup>At, <sup>224</sup>Ac,
```

²²⁶ Ac , ²²⁸ Ac , ²²⁶ Th , ²²⁷ Pa , ²²⁸ Pa , ²³⁰ Pa , ²³⁶ U , ²³⁷ Np , ²⁴¹ Pu , ²⁴⁴ Pu , ²⁴¹ Cm , ²⁴⁷ Cm , ²⁴⁹ Bk , ²⁴⁶ Cf , ²⁵³ Cf ,

 254 mEs, 252 Fm, 253 Fm, 254 Fm, 255 Fm, 257 Md

属于这一毒性组的还有如下气态或蒸汽态放射性核素: $^{126} I_{s}^{193m} Hg_{s}^{194} Hg$

D3 中毒组

```
<sup>22</sup>Na、<sup>24</sup>Na、<sup>28</sup>Mg、<sup>26</sup>Al、<sup>32</sup>P、<sup>33</sup>P、<sup>35</sup>S(无机)、<sup>36</sup>Cl、<sup>45</sup>Ca、<sup>47</sup>Ca、<sup>44m</sup>Sc、<sup>46</sup>Sc、<sup>47</sup>Sc、<sup>48</sup>Sc、<sup>48</sup>V、<sup>52</sup>Mn、<sup>54</sup>Mn、<sup>52</sup>Fe、<sup>55</sup>Fe、<sup>55</sup>Fe、<sup>55</sup>Fe、<sup>55</sup>Co、<sup>56</sup>Co、<sup>56</sup>Co、<sup>56</sup>Ni、<sup>57</sup>Ni、<sup>63</sup>Ni、<sup>66</sup>Ni、<sup>67</sup>Cu、<sup>62</sup>Zn、<sup>65</sup>Zn、<sup>69m</sup>Zn、<sup>72</sup>Zn、<sup>66</sup>Ga、<sup>67</sup>Ca、<sup>78</sup>Ca、<sup>78</sup>Ca、<sup>78</sup>Ca、<sup>78</sup>Ca <sup>78</sup>Ca <sup>78</sup>Ca
```

⁶⁷Ga, ⁷²Ga, ⁶⁸Ge, ⁶⁹Ge, ⁷⁷Ge, ⁷¹As, ⁷²As, ⁷³As, ⁷⁴As, ⁷⁶As, ⁷⁷As, ⁷⁵Se, ⁷⁶Br, ⁸²Br, ⁸³Rb, ⁸⁴Rb, ⁸⁶Rb, ⁸²Sr, ⁸³Sr, ⁸⁵Sr, ⁸⁹Sr, ⁹¹Sr, ⁹²Sr, ⁸⁶Y, ⁸⁷Y, ⁸⁸Y, ⁹⁰Y, ⁹¹Y, ⁹³Y, ⁸⁶Zr, ⁸⁸Zr, ⁸⁹Zr, ⁹⁵Zr, ⁹⁷Zr, ⁹⁰Nb, ⁹⁵Nb, ⁹⁵Mb, ⁹⁶Mb, ⁹⁷Mo, ⁹⁸Mo, ⁹⁸

¹⁰⁵Rh, ¹⁰⁰ Pd, ¹⁰³ Pd, ¹⁰⁹ Pd, ¹⁰⁵ Ag, ^{106m} Ag, ^{110m} Ag, ¹¹¹ Ag, ¹⁰⁹ Cd, ¹¹⁵ Cd, ^{115m} Cd, ¹¹¹ In, ^{114m} In, ¹¹³ Sn, ^{117m}Sn, ^{119m}Sn, ^{121m}Sn, ^{121m}Sn, ¹²²Sb, ¹²⁵Sb, ¹²⁶Sb, ¹²⁷Sb, ¹²⁷Sb,

¹²⁸Sb (T1=9.01h), ¹²⁹Sb, ¹²¹Te, ^{121m}Te, ^{123m}Te, ^{125m}Te, ^{127m}Te, ^{129m}Te, ^{131m}Te, ¹³¹Te, ¹²⁴I, ¹²⁵I, ¹³⁰I, ¹³¹I, ¹³³I, ¹³⁵I, ¹³²Cs, ¹³⁴Cs, ¹³⁶Cs, ¹³⁷Cs, ¹²⁸Ba, ¹³¹Ba, ¹³³Ba, ¹⁴⁰Ba, ¹³⁷La, ¹⁴⁰La, ¹³⁴Ce, ¹³⁵Ce, ^{137m}Ce,

¹³⁹Ce, ¹⁴¹Ce, ¹⁴²Pr, ¹⁴³Pr, ¹³⁸Nd, ¹⁴⁷Nd, ¹⁴³Pm, ¹⁴⁴Pm, ¹⁴⁵Pm, ¹⁴⁶Pm, ¹⁴⁷Pm, ¹⁴⁸Pm, ¹⁴

¹⁴⁹Gd、¹⁵¹Gd、¹⁵³Gd、¹⁵⁹Gd、¹⁴⁹Tb、¹⁵¹Tb、¹⁵⁴Tb、¹⁵⁴Tb、¹⁵⁶Tb、¹⁵⁷Tb、¹⁶⁰Tb、¹⁶¹Tb、¹⁵⁹Dy、¹⁶⁶Dy、¹⁶⁶Ho、¹⁶⁹Er、¹⁷²Er、¹⁶⁷Tm、¹⁷⁰Tm、¹⁷¹Tm、¹⁷¹Tm、¹⁶⁶Yb、¹⁶⁹Yb、¹⁶⁹Yb、¹⁷⁵Yb、¹⁶⁹Lu、¹⁷⁰Lu、¹⁷¹Lu、¹⁷²Lu、¹⁷³Lu、¹⁷⁴Lu、¹⁷⁴Lu、¹⁷⁵Lu ¹⁷⁵Lu ¹⁷⁵L

174m Lu, 177m Lu, 170 Hf, 175 Hf, 179m Hf, 181 Hf, 184 Hf, 179 Ta, 182 Ta, 183 Ta, 184 Ta, 188 W, 181 Re, 182 Re (T1=2.67d), 184 Re, 184m Re, 186 Re, 188 Re, 189 Re, 182 Os, 185 Os, 191 Os, 193 Os, 186 Ir (T1=15.8h),

188 Ir、189 Ir、190 Ir、192 Ir、193m Ir、194 Ir、194m Ir、188 Pt、200 Pt、194 Au、195 Au、198 Au、198m Au、199 Au、200m Au、193m Ha、(天机)197世。(天机)197世。(天机)197世(天机)203世。204丁[21] Db、212 Db、214 Db、214 Db、215 Db、215 Db、215 Db、215 Db、216 Db、216 Db、216 Db、216 Db、216 Db、216 Db、216 Db、216 Db、217 Db 217 Db 217

^{193m} Hg(无机)、¹⁹⁴Hg、^{195m}Hg(无机)、¹⁹⁷Hg(无机)、^{197m}Hg(无机)、²⁰³Hg、²⁰⁴Tl、²¹¹Pb、²¹²Pb、²¹⁴Pb、
²⁰³Bi、²⁰⁵Bi、²⁰⁶Bi、²⁰⁷Bi、²¹⁴Bi、²⁰⁷At、²²²Fr、²²³Fr、²²⁷Ra、²³¹Th、²³⁴Th、Th_{表然}、²³²Pa、²³³Pa、²³⁴Pa、²³¹U、

 $^{237}\text{U}, ^{240}\text{U}, \text{U}_{\text{\frac{7}{8}}}, ^{234}\text{Np}, ^{235}\text{Np}, ^{236}\text{Np}, (T2 = 22.5h), ^{238}\text{Np}, ^{239}\text{Np}, ^{234}\text{Pu}, ^{247}\text{Pu}, ^{245}\text{Pu}, ^{246}\text{Pu}, ^{240}\text{Am}, ^{242}\text{Am}, ^{244}\text{Am}, ^{238}\text{Cm}, ^{245}\text{Bk}, ^{246}\text{Bk}, ^{250}\text{Bk}, ^{244}\text{Cf}, ^{250}\text{Es}, ^{251}\text{Es}$

属于这一毒性组的还有如下气态或蒸汽态放射性核素:

 14C、C35S2、56Ni (羰基)、57Ni (羰基)、63Ni (羰基)、65Ni (羰基)、66Ni (羰基)、108RuO4、106RuO4、121Te、121mTe、122mTe
 (甲基)、124 I、124 I (甲基)、125 I、125 I (甲基)、125 I、125 I (甲基)、126 I (甲基)、126 I (甲基)、136 I、137 I (甲基)、137 I (甲基)、138 I (甲基)、138

D4 低毒组

⁷ Be, ¹⁸ F, ³¹ Si, ³⁸ Cl, ³⁹ Cl, ⁴⁰ K, ⁴² K, ⁴³ K, ⁴⁴ K, ⁴⁵ K, ⁴¹ Ca, ⁴³ Sc, ⁴⁴ Sc, ⁴⁹ Sc, ⁴⁵ Ti, ⁴⁷ V, ⁴⁹ V, ⁴⁸ Cr, ⁴⁹ Cr, ⁵¹ Cr, ⁵¹ Mn, ^{52m} Mn, ⁵³ Mn, ⁵⁶ Mn, ^{58m} Co, ^{60m} Co, ⁶¹ Co, ^{62m} Co, ⁵⁹ Ni, ⁶⁵ Ni, ⁶⁰ Cu, ⁶¹ Cu, ⁶⁴ Cu, ⁶³ Zn, ⁶⁹ Zn, ^{71m} Zn, ⁶⁵ Ga, ⁶⁸ Ga, ⁷⁰ Ga, ⁷³ Ga, ⁶⁶ Ge, ⁶⁷ Ge, ⁷⁵ Ge, ⁷⁵ Ge, ⁷⁸ Ge, ⁶⁹ As, ⁷⁰ As, ⁷⁸ As, ⁷⁰ Se, ⁷³ Se, ^{73m} Se, ⁷⁹ Se, ⁸¹ Se, ^{81m} Se, ⁸³ Se, ⁷⁴ Br, ^{74m} Br, ⁷⁵ Br, ⁷⁷ Br, ⁸⁰ Br, ^{80m} Br, ⁸³ Br, ⁸⁴ Br, ⁷⁹ Rb, ⁸¹ Rb, ^{81m} Rb, ^{82m} Rb, ⁸⁷ Rb, ⁸⁸ Rb, ⁸⁹ Rb, ⁸⁰ Sr, ⁸¹ Sr, ^{85m} Sr, ^{85m} Sr, ^{86m} Y, ^{90m} Y, ^{91m} Y, ⁹² Y, ⁹⁴ Y, ⁹⁵ Y, ⁹³ Zr, ⁸⁸ Nb, ⁸⁹ Nb, (T1 = 2, 03h),

 $^{89} \, Nb \ \ (T2 = 1.10h), ^{97} \, Nb, ^{98} \, Nb, ^{93m} \, Mo, ^{101} \, Mo, ^{93} \, Tc, ^{93m} \, Tc, ^{94} \, Tc, ^{94} \, Tc, ^{95} \, Tc, ^{96m} \, Tc, ^{97} \, Tc, ^{98} \, Tc, ^{99} \, Tc, ^{99m} \, Tc, ^{101} \, Tc, ^{104} \, Tc, ^{94} \, Ru, ^{97} \, Ru, ^{105} \, Ru, ^{99m} \, Rh, ^{101m} \, Rh, ^{103m} \, Rh, ^{106m} \, Rh, ^{107} \, Rh, ^{101} \, Pd, ^{107} \, Pd, ^{102} \, Ag, ^{103} \, Ag, ^{104} \, Ag, ^{104m} \, Ag, ^{106} \, Ag, ^{112} \, Ag, ^{115} \, Ag, ^{104} \, Cd, ^{107} \, Cd, ^{113} \, Cd, ^{117} \, Cd, ^{117m} \, Cd, ^{109} \, In, ^{110} \, In, ^{110} \, In, ^{115} \, In, ^{115m} \, In, ^{115m} \, In, ^{115m} \, In, ^{117m} \, In, ^{117m} \, In, ^{119m} \, In, ^{110} \, Sn, ^{111} \, Sn, ^{121} \, Sn, ^{123m} \, Sn, ^{127} \, Sn, ^{128} \, Sn, ^{115} \, Sb, ^{116} \, Sb, ^{116} \, Sb, ^{117} \, Sb, ^{118m} \, Sb, ^{119} \, Sb, ^{120} \, Sb, ^{120} \, Sb, ^{22} \, Co, ^{265h} \, N, ^{225} \, Co, ^{265h} \, N, ^{225}$

 $^{124\text{m}}\text{Sb},^{126\text{m}}\text{Sb},^{128}\text{Sb},^{128}\text{Sb},^{128}\text{Sb},^{128}\text{Sb},^{128}\text{Sb},^{131}\text{Sb},^{131}\text{Sb},^{131}\text{Sb},^{116}\text{Te},^{123}\text{Te},^{127}\text{Te},^{129}\text{Te},^{131}\text{Te},^{133}\text{Te},^{133\text{m}}\text{Te},^{134\text{Te}},^{124\text{Te}},^{126\text{Te}},^{12$

 187 Re、 188m Re、 180 Os、 181 Os、 189m Os、 191m Os、 182 Ir、 184 Ir、 185 Ir、 186 Ir(T2=1.75h)、 187 Ir、 190m Ir(T1=3.10h)、 190m Ir(T2=1.20h)、 195 Ir、 195m Ir、 186 Pt、 189 Pt、 191 Pt、 193 Pt、 193m Pt、 195m Pt、 197 Pt、 197m Pt、 199 Pt、 193 Au、 200 Au、 201 Au、 193 Hg、 193m Hg(有机)、 195 Hg、 195m Hg(有机)、 197m Hg(有机)、 199m Hg、 194 Tl、 194m Tl、 195 Tl、 197 Tl、 198m Tl、 199 Tl、 200 Tl、 201 Tl、 202 Tl、 195m Pb、 198 Pb、 199 Pb、 200 Pb、 201 Pb、 202 Pb、 202m Pb、 203 Pb、 205 Pb、 209 Pb、 209 Pb、 200 Bi、 201 Bi、 202 Bi、 203 Po、 207 Po、 232 Th、

²³⁵U, ²³⁸U, ²³⁹U, ²³²Np, ²³³Np, ²⁴⁰Np, ²³⁵Pu, ²⁴³Pu, ²⁴³Pu, ²³⁷Am, ²³⁸Am, ²³⁹Am, ^{244m}Am, ²⁴⁵Am, ²⁴⁶Am, ^{246m}Am, ^{246m}Am, ²⁴⁹Cm

属于这一毒性组的还有如下气态或蒸汽态放射性核素:

³ H (元素)、³ H (氚水)、³ H (有机结合氚)、³ H (甲烷氚)、¹¹ C、¹¹ CO₂、¹⁴ CO₂、¹⁴ CO₂、¹⁴ CO、³⁵ SO₂、³⁷ Ar、³⁹ Ar、⁴¹ Ar、⁵⁹ Ni、⁷⁴ Kr、⁷⁶ Kr、⁷⁷ Kr、⁷⁹ Kr、⁸¹ Kr、^{83m} Kr、⁸⁵ Kr、^{85m} Kr、⁸⁷ Kr、⁸⁸ Kr、⁹⁴ RuO₄、⁹⁷ RuO₄、¹⁰⁵ RuO₄、¹¹⁶ Te、¹²³ Te、¹²⁷ Te、¹²⁹ Te、¹³¹ Te、¹³³ Te、^{133m} Te、¹³⁴ Te、¹²⁰ I (甲基)、^{120m} I、^{120m} I (甲基)、¹²¹ I、¹²¹ I (甲基)、¹²³ I、¹²³ I (甲基)、¹²⁸ I、¹²⁸ I、(甲基)、¹²⁹ I、¹²⁹ I、(甲基)、¹³² I (甲基)、^{132m} I (甲基)、¹³⁴ I、¹³⁴ I (甲基)、¹²⁰ Xe、¹²¹ Xe、¹²² Xe、¹²⁵ Xe、¹²⁵ Xe、¹²⁷ Xe、^{129m} Xe、^{131m} Xe、^{133m} Xe、^{135m} Xe、^{135m} Xe、¹³⁵ Xe、¹³⁸ Xe、^{199m} Hg

注

- 1 本核素毒性分组清单中有 10 个核素具有 2 个半衰期。其中 6 个因其 2 个半衰期(T1、T2)相差悬殊而被分列入不同的毒性组别,另有 4 个具有 2 个半衰期的核素,因其半衰期相差不大而被列在同一毒性组别,它们是 $^{89}{\rm Nb}$ 、 $^{110}{\rm In}$ 、 $^{156m}{\rm Tb}$ 、 $^{190m}{\rm Ir}$ 。
- 2 汞分无机汞和有机汞,共有 9 个核素。其中 5 个(193 Hg、 194 Hg、 195 Hg、 199 mHg、 203 Hg),其无机和有机形态属同一毒性组别,另外 4 个(193 mHg、 195 mHg、 197 mHg)则不同。

附 录 E

(标准的附录)

任何情况下预期应进行干预的剂量水平和 应急照射情况的干预水平与行动水平

E1 任何情况下预期均应进行干预的剂量水平

E1.1 急性照射的剂量行动水平

器官或组织受到急性照射时,任何情况下预期都应进行干预的剂量行动水平如表 E1.1 所列。

表 E1.1 急性照射的剂量行动水平

器官或组织	2 天内器官或组织的预期吸收剂量 $/\mathrm{Gy}$
全身 (骨髓)	1
肺	6
皮肤	3
甲状腺	5
眼晶体	2
性腺	3

注:在考虑紧急防护的实际行动水平的正当性和最优化时,应考虑当胎儿在2天时间内受到大于约0.1Gy的剂量时产生确定性效应的可能性

E1.2 持续照射的剂量率行动水平

器官或组织受持续照射时,任何情况下预期都应进行干预的剂量率行动水平如表 E1.2 所列。

表 E1.2 持续照射的剂量率行动水平

器官或组织	吸收剂量率/ (Gy/a)		
性腺	0.2		
眼晶体	0.1		
骨髓	0.4		

E2 应急照射情况下的通用优化干预水平和行动水平

通用优化干预水平用可防止的剂量表示,即当可防止的剂量大于相应的干预水平时,则表明需要 采取这种防护行动。在确定可防止的剂量时,应适当考虑采取防护行动时可能发生的延误和可能干扰 行动的执行或降低行动效能的其他因素。

通用优化干预水平所规定的可防止的剂量值,是指对适当选定的人群样本的平均值,而不是指对最大受照(关键居民组中)个人所受到的剂量。但无论如何,应使关键人群组的预计剂量保持在本附录中表 E1 所规定的剂量水平以下。

一般情况下,作为防护决策的出发点,可以采用下面所推荐的通用优化干预水平。考虑了场址特有或情况特有的因素之后,厂址专用的干预水平可以比通用优化干预水平的值高一些,或者在某些情况下也可以低一些。在所考虑的因素中,可能包括特殊人群(如医院病人、常年居家的老年人或犯人)、有害天气状况或复合危害(如地震或有害化学物质),以及与运输有关的或高人口密度和场址或事故释放的特有属性等所引起的特殊问题。

- E2.1 紧急防护行动:隐蔽、撤离、碘防护的通用优化干预水平
- E2. 1. 1 隐蔽的通用优化干预水平是:在 2 天以内可防止的剂量为 10~mSv。决策部门可以建议在较短期间内的较低的干预水平下实施隐蔽,或者为便于执行下一步的防护对策(如撤离),也可以将隐蔽的干预水平适当降低。
- E2.1.2 临时撤离的通用优化干预水平是:在不长于一周的期间内可防止的剂量为 $50~\mathrm{mSv}$ 。当能够迅速和容易地完成撤离时(例如对于小的人群),决策部门可以建议在较短期间内的较低的干预水平下开始撤离。在进行撤离有困难的情况下(例如大的人群或交通工具不足),采用更高的干预水平则可能是合适的。
- E2.1.3 碘防护的通用优化干预水平是 100 mGv (指甲状腺的可防止的待积吸收剂量)。
- E2.2 食品通用行动水平
- ${f E}$ 2. 2. 1 食品通用行动水平见表 ${f E}$ 2。实际应用时,应将对不同核素组分别给出的水平值单独应用于相应核素组中各种核素的活度的总和。

放射性核素 一般消费食品/(kBq/kg) 牛奶、婴儿食品和饮水/(kBq/kg)

134 Cs、137 Cs、103 Ru、106 Ru、89 Sr 1 1

1 0・1

90 Sr 0・1 0・1

241 Am、238 Pu、239 Pu 0・01 0・001

表 E2 食品通用行动水平

E2.3 临时避迁和永久再定居

- E2.3.1 开始和终止临时避迁的通用优化干预水平分别是,一个月内可防止的剂量为 30~mSv 和 10~mSv。如果预计在 1~年或 2~年之内,月累积剂量不会降低到该水平以下,则应考虑实施不再返回原来家园的永久再定居。当预计终身剂量可能会超过 1~Sv 时,也应考虑实施永久再定居。
- E_2 . 3. 2 与这些干预水平进行比较的剂量,应是来自采取防护对策可以避免的所有照射途径(但通常不包括食品和饮水途径)的总剂量。

附 录 F (标准的附录) 电离辐射的标志和警告标志

F1 电离辐射标志

电离辐射的标志如图 F1 所示。

图 F1 电离辐射的标志

F2 电离辐射警告标志

电离辐射的警告标志如图 F2 所示。警告标志的含义是使人们注意可能发生的危险。其背景为黄色,正三角形边框及电离辐射标志图形均为黑色,"当心电离辐射"用黑色粗等线体字。正三角形外边 $a_1=0.034L$,内边 $a_2=0.700a_1$,L 为观察距离。

图 F2 电离辐射警告标志

附录 G

(提示的附录)

放射诊断和核医学诊断的医疗照射指导水平

G1 放射诊断的医疗照射指导水平

典型成年受检者 X 射线摄影、CT 检查、乳腺摄影和 X 射线透视的剂量或剂量率指导水平见表 G1.1、表 G1.2、表 G1.3 和表 G1.4。

表 G1.1 典型成年受检者 X 射线摄影的剂量指导水平

检 查 部 位	投照方位1)	每次摄影入射体表剂量 ²⁾ /mGy	
	AP	10	
腰椎	LAT	30	
	LSJ	40	
腹部,胆囊造影,静脉尿路造影	AP	10	
骨盆	AP	10	
髋关节	AP	10	
胸	PA	0.4	
力型	LAT	1.5	
胸椎	AP	7	
が到作用	LAT	20	
元	牙根尖周	7	
牙齿	AP	5	
থ ১৯	PA	5	
头颅 	LAT	3	

- 1) AP: 前后位投照, LAT: 侧位投照, LSJ: 腰骶关节投照, PA: 后前位投照。
- 2) 入射受检者体表剂量系空气中吸收剂量 (包括反散射)。这些值是对通常片屏组合情况 (相对速度 200),如对高速片屏组合 (相对速度 $400\sim600$),则表中数值应减少到 $1/2\sim1/3$ 。

表 G1.2 典型成年受检者 X 射线 CT 检查的剂量指导水平

检查部位	多层扫描平均剂量 ¹⁾ /mGy		
头	50		
腰椎	35		
腹部	25		

1)表列值是由水当量体模中旋转轴上的测量值推导的;体模长 15 cm,直径 16 cm (对头)和 30 cm (对腰椎和腹部)。

表 G1.3 典型成年受检者乳腺 X 射线摄影的剂量指导水平

防散射滤线栅的应用	每次头尾投照的腺平均剂量 ¹⁾ /mGy		
无滤线栅	1		
有滤线栅	3		

1) 在一个 50% 腺组织和 50% 脂肪组织构成的 $4.5~\mathrm{cm}$ 压缩乳腺上,针对胶片增感屏装置及用钼靶和钼过滤片的乳腺 X 射线摄影设备确定的。

表 G1.4 典型成年受检者 X 射线透视的剂量率指导水平

X 射 线 机 类 型	入射体表剂量率 ¹⁾ / (mGy • min ⁻¹)
普通医用诊断 X 射线机	50
有影像增强器的 X 射线机	25
有影像增强器并有自动亮度控制系统的 X 射线机 (介入放射学中使用)	100
1)表列值为空气中的吸收剂量率(包括反散射)。	

G2 核医学诊断的医疗照射指导水平

表 G2 给出了典型成年受检者各种常用核医学诊断的活度指导水平。

表 G2 典型成年受检者在各种核医学诊断中的活度指导水平

KOZ ZEMIZETINE JOSH BILIZEGA				
检查项目	放射性 核素	化 学 形 态	每次检查常用的 最大活度/MBq	
骨				
骨显像	^{99m} Tc	MDP (亚甲基二膦酸盐) 和磷酸盐化合物	600	
骨断层显像	^{99m} Tc	MDP 和磷酸盐化合物	800	
骨髓显像	^{99m} Tc	SC (标记的硫化胶体)	400	
脑				
脑显像 (静态的)	^{99m} Tc	${ m TcO_4^-}$	500	
	^{99m} Tc	DTPA (二乙三胺五乙酸),葡萄糖酸盐和葡庚糖酸盐	500	
脑断层显像	^{99m} Tc	ECD (双半胱氨酸乙酯)	800	
	^{99m} Tc	DTPA,葡萄糖酸盐和葡庚糖酸盐	800	
	^{99m} Tc	HM-PAO (六甲基丙二胺肟)	500	
脑血流	^{99m} Tc	HM-PAO, ECD	500	
脑池造影	¹¹¹ In	DTPA	40	
泪腺 泪引流	^{99m} Tc	TcO ₄ ⁻	4	
甲状腺				
甲状腺显像	131 I	碘化钠	20	
	^{99m} Tc	TcO_4^-	200	
甲状腺癌转移灶(癌切除后)	¹³¹ I	碘化钠	400	
甲状旁腺显像	²⁰¹ Tl	氯化亚铊	80	
	^{99m} Te	MIBI (甲氧基异丁基异腈)	740	

表 G2 (完)

	放射性			
检 查 项 目	核素	化 学 形 态	最大活度/MBq	
	仅杂		取八冶及/MDQ	
肺				
肺通气显像	^{99m} Tc	DTPA 气溶胶	80	
肺灌注显像	^{99m} Tc	HAM (人血清白蛋白)	100	
	^{99m} Tc	MAA (大颗粒聚集白蛋白)	185	
肺断层显像	^{99m} Tc	MAA	200	
肝和脾				
肝和脾显像	^{99m} Tc	SC	150	
胆道系统功能显像	^{99m} Tc	EHIDA (二乙基乙酰苯胺亚氨二醋酸)	185	
脾显像	^{99m} Tc	标记的变性红细胞	100	
肝断层显像	^{99m} Tc	SC	200	
心血管				
首次通过血流检查	^{99m} Tc	TcO_4^-	800	
	^{99m} Tc	DTPA	560	
心和血管显像	^{99m} Tc	HAM	800	
心血池显像	^{99m} Tc	标记的正常红细胞	800	
心肌显像	^{99m} Tc	PYP (焦磷酸盐)	600	
心肌断层显像	^{99m} Tc	MIBI	600	
	²⁰¹ Tl	氯化亚铊	100	
	^{99m} Tc	膦酸盐和磷酸盐化合物	800	
胃,胃肠道				
胃/唾液腺显像	^{99m} Tc	TcO_4^-	40	
美克耳氏憩室显像	^{99m} Tc	$\mathrm{TcO_{4}^{-}}$	400	
胃肠道出血	^{99m} Tc	SC	400	
	^{99m} Tc	标记的正常红细胞	400	
食管通过和胃-食管返流	^{99m} Tc	SC	40	
胃排空	^{99m} Tc	SC	12	
肾,泌尿系统				
肾皮质显像	^{99m} Tc	DMSA (二巯基丁二酸)	160	
	^{99m} Tc	葡庚糖酸盐	200	
肾血流、功能显像	^{99m} Tc	DTPA	300	
	^{99m} Tc	MAG3 (巯乙酰三甘肽)	300	
	^{99m} Tc	EC (双半胱氨酸)	300	
其他				
肿瘤或脓肿显像	⁶⁷ Ga	柠檬酸盐	300	
	²⁰¹ Tl	氯化物	100	
肿瘤显像	^{99m} Tc	DMSA, MIBI	400	
神经外胚层肿瘤显像	¹²³ I	MIBG (间碘苄基胍)	400	
	¹³¹ I	MIBG	40	
淋巴结显像	^{99m} Tc	标记的硫化锑胶体	370	
脓肿显像	^{99m} Tc	HM-PAO 标记的白细胞	400	
下肢深静脉显像	^{99™} Tc	标记的正常红细胞	每侧 185	
	^{99m} Tc	大分子右旋醣酐	每侧 185	

附 录 H (提示的附录) 持续照射情况下的行动水平

H1 住宅中的氡

在大多数情况下,住宅中氡持续照射的优化行动水平应在年平均活度浓度为 $200~{\rm Bq}~^{222}{\rm Rn/m}^3\sim 400~{\rm Bq}~^{222}{\rm Rn/m}^3$ (平衡因子 0.4) 范围内。其上限值用于已建住宅氡持续照射的干预,其下限值用于对待建住宅氡持续照射的控制。

H2 工作场所中氡

工作场所中氡持续照射情况下补救行动的行动水平是在年平均活度浓度为 500 Bq 222 Rn/m³ \sim 1 000 Bq 222 Rn/m³ (平衡因子 0.4) 范围内。达到 500 Bq 222 Rn/m³ 时宜考虑采取补救行动,达到 1 000 Bq 222 Rn/m³ 时应采取补救行动。

附录 J (标准的附录) 术语和定义

J1 基本定义

J1.1 (电离)辐射 (ionizing) radiation

在辐射防护领域,指能在生物物质中产生离子对的辐射。

J1.2 (辐射) 源 (radiation) source

可以通过发射电离辐射或释放放射性物质而引起辐射照射的一切物质或实体。例如,发射氡的物质是存在于环境中的源,γ辐照消毒装置是食品辐照保鲜实践中的源,X射线机可以是放射诊断实践中的源,核电厂是核动力发电实践中的源。对于本标准的应用而言,位于同一场所或厂址的复杂设施或多个装置均可视为一个单一的源。

J1.3 照射 exposure

受照的行为或状态。照射可以是外照射(体外源的照射),也可以是内照射(体内源的照射)。照射可以分为正常照射或潜在照射;也可以分为职业照射、医疗照射或公众照射;在干预情况下,还可以分为应急照射或持续照射。

J1.4 实践 practice

任何引入新的照射源或照射途径、或扩大受照人员范围、或改变现有源的照射途径网络,从而使 人们受到的照射或受到照射的可能性或受到照射的人数增加的人类活动。

J1.5 干预 intervention

任何旨在减小或避免不属于受控实践的或因事故而失控的源所致的照射或照射可能性的行动。

J1.6 防护与安全 protection and safety

保护人员免受电离辐射或放射性物质的照射和保持实践中源的安全,包括为实现这种防护与安全的措施,如使人员的剂量和危险保持在可合理达到的尽量低水平并低于规定约束值的各种方法或设备,以及防止事故和缓解事故后果的各种措施等。

- J2 辐射与源
- J2.1 氡 radon

原子序数为 86 的元素的同位素²²²Rn,是铀系衰变的中间产物。

J2.2 氡子体 radon progeny

氡的短寿命放射性衰变产物。

J2.3 氧 thoron

原子序数为 86 的元素的同位素²²²Rn,是钍系衰变的中间产物。

J2.4 氧子体 thoron progeny

J2.5 (氡子体和氧子体)α 潜能 potential alpha energy(of radon progeny and thoron progeny)

 ${\bf a}(^{222}{\rm Rn})$ 的子体完全衰变为 $^{210}{\rm Pb}({\bf U}{\bf n}{\bf v}{\bf h}{\bf e}^{210}{\rm Pb})$ 的衰变)和氧 $^{(220}{\rm Rn})$ 的子体完全衰变到稳定的 $^{208}{\rm Pb}{\bf v}{\bf h}$,所发射的 ${\bf a}$ 粒子能量的总和 ${\bf e}^{208}{\rm Pb}{\bf v}{\bf h}$

J2.6 平衡因子 equilibrium factor

氢的平衡当量浓度与氢的实际浓度之比 F。这里,平衡当量浓度是氢与其短寿命子体处于平衡状态、并具有与实际非平衡混合物相同的 α 潜能浓度时氢的活度浓度。

J2.7 天然源 natural sources

天然存在的辐射源,包括宇宙辐射和地球上的辐射源。

J2.8 密封源 sealed source

密封在包壳里的或紧密地固结在覆盖层里并呈固体形态的放射性物质。密封源的包壳或覆盖层应具有足够的强度,使源在设计使用条件和磨损条件下,以及在预计的事件条件下,均能保持密封性能,不会有放射性物质泄漏出来。

J2.9 非密封源 unsealed source

不满足密封源定义中所列条件的源。

J2.10 含放射性物质消费品 consumer product

因功能或制造工艺需要将少量放射性物质加入其中或以密封源形式装配在内或因所采用的原材料与生产工艺而具有一定放射性活度的消费品,如烟雾探测器、荧光度盘或离子发生管等,在本标准中有时简称"消费品"。

J2.11 显像设备 imaging devices

放射诊断和核医学显像用电子设备(例如图像转换器、) 照相机等)。

J2.12 辐射发生器 radiation generator

能产生诸如 X 射线、中子、电子或其他带电粒子辐射的装置,它们可用于科学、工业或医学等领域。

J2.13 高能放射治疗设备 high energy radiotherapy equipment

放射性核素远距离治疗机,以及能在高于 300~kV 的工作电压下工作的 X 射线机和其他类型的辐射发生器。

J2. 14 辐射装置 irradiation installations

安装有粒子加速器、X 射线机或大型放射源并能产生高强度辐射场的一种构筑物或设施。正确设计的构筑物提供屏蔽和其他防护,并设有用以防止误入高强度辐射区的安全装置(如联锁装置)。辐照装置包括外射束辐射治疗用装置,商品消毒或保鲜用装置,以及某些工业射线照相装置等。

J2.15 核燃料循环 nuclear fuel cycle

与核能生产有关的所有活动,包括铀或钍的采矿、选冶、加工或富集,核燃料制造,核反应堆运行,核燃料后处理,退役和放射性废物管理等各种活动,以及与上述各种活动有关的任何研究与开发活动。

J2.16 放射性矿石的开采或选冶设施 mine or mill processing radioactive ores

开采、选冶或处理含铀系或钍系放射性核素矿石的设施。

开采放射性矿石的矿山,是指任何开采含铀系或钍系放射性核素且数量充足、品位值得开采的矿石的矿山,或者当铀系或钍系放射性核素与被开采的其他矿物共生时其数量或品位要求按审管部门的规定采取辐射防护措施的矿山。

放射性矿石选冶厂是指任何处理这里所定义的矿山所开采的放射性矿石以生产某种物理或化学浓缩物的设施。

J2.17 核设施 nuclear installation

以需要考虑安全问题的规模生产、加工或操作放射性物质或易袭变材料的设施(包括其场地、建 (构)筑物和设备),如铀富集设施,铀、钚加工与燃料制造设施,核反应堆(包括临界和次临界装置),核动力厂,核燃料后处理厂等核燃料循环设施。

J2.18 放射性废物管理设施 radioactive waste management facility

专门设计的用于放射性废物操作、处理、整备、临时贮存或永久处置的设施。

J2.19 放射性物质加工设施 installation processing radioactive substances

加工放射性物质并且其放射性物质年通过量超过表 A1 所给出的豁免活度水平 $10\ 000$ 倍的任何设施。

J2.20 放射性流出物 radioactive effluents

放射性排出物 radioactive discharges

实践中源所造成的以气体、气溶胶、粉尘或液体等形态排入环境的通常情况下可在环境中得到稀释和弥散的放射性物质。

J2.21 放射性废物 radioactive waste

来自实践或干预的、预期不再利用的废弃物(不管其物理形态如何),它含有放射性物质或被放射性物质所污染,其活度或活度浓度大于规定的清洁解控水平,并且它所引起的照射未被排除。

J2.22 (放射性)污染 (Radioactive)contamination

材料或人体内部或表面或其他场所出现的不希望有的或可能有害的放射性物质。

J3 辐射的生物效应

J3.1 随机性效应 stochastic effects

发生几率与剂量成正比而严重程度与剂量无关的辐射效应。一般认为,在辐射防护感兴趣的低剂量范围内,这种效应的发生不存在剂量阈值。

J3.2 确定性效应 deterministic effect

通常情况下存在剂量阈值的一种辐射效应,超过阈值时,剂量愈高则效应的严重程度愈大。

J3.3 危害 detriment

因受某一辐射源的辐射照射,受照组及其后代最终所经受的总的伤害。

J3.4 危险 risk

一个用于表示与实在照射或潜在照射有关的危害、损害的可能性或伤害后果等的多属性量。它与诸如特定有害后果可能发生的概率及此类后果的大小和特性等量有关。

.I4 辐射量和单位

J4.1 活度 activity

在给定时刻处于一给定能态的一定量的某种放射性核素的活度 A 定义为:

$$A = \frac{\mathrm{d}N}{\mathrm{d}t}$$

式中:dN——在时间间隔 dt 内该核素从该能态发生自发核跃迁数目的期望值。活度的 SI 单位是秒的 倒数 (s^{-1}) ,称为贝可「勒尔(Bq)。

J4.2 比释动能 kerma

比释动能 K 定义为:

$$K = \frac{\mathrm{d}E_{\mathrm{tr}}}{\mathrm{d}m}$$

式中 $: dE_{tr}$ — 不带电电离粒子在质量为 dm 的某一物质内释出的全部带电电离粒子的初始动能的总和。比释动能的 SI 单位是焦耳每千克($J \cdot kg^{-1}$),称为戈[瑞](Gy)。

J4.3 参考空气比释动能率 reference air kerma rate

源的参考空气比释动能率是在空气中距源 1 m 参考距离处对空气衰减和散射修正后的比释动能

率,用1 m 处的 $\mu Gy \cdot h^{-1}$ 表示。

J4.4 剂量 dose

某一对象所接受或"吸收"的辐射的一种量度。根据上下文,它可以指吸收剂量、器官剂量、当量剂

量、有效剂量、待积当量剂量或待积有效剂量等。

J4.5 吸收剂量 absorbed dose

是一个基本的剂量学量 D,定义为:

$$D = \frac{\mathrm{d}\varepsilon}{\mathrm{d}m}$$

式中: $d\varepsilon$ ——电离辐射授与某一体积无中的物质的平均能量;

dm——在这个体积元中的物质的质量。

能量可以对任何确定的体积加以平均,平均能量等于授与该体积的总能量除以该体积的质量而得的商。吸收剂量的 SI 单位是焦耳每千克(J • kg^{-1}),称为戈[瑞](Gy)。

J4.6 当量剂量 equivalent dose

当量剂量 $H_{T,R}$ 定义为:

$$H_{\mathrm{T,R}} = D_{\mathrm{T,R}} \cdot w_{\mathrm{R}}$$

式中: $D_{T,R}$ 一辐射 R 在器官或组织 T 内产生的平均吸收剂量;

 $w_{ ext{R}}$ ——辐射 R 的辐射权重因数。

当辐射场是由具有不同 w_R 值的不同类型的辐射所组成时,当量剂量为:

$$H_{\mathrm{T}} = \sum_{\mathrm{R}} w_{\mathrm{R}} \cdot D_{\mathrm{T,R}}$$

当量剂量的单位是 $J \cdot kg^{-1}$,称为希[沃特](Sv)。

J4.7 辐射权重因数 radiation weighting factor

为辐射防护目的,对吸收剂量乘以的因数(如下表所示),用以考虑不同类型辐射的相对危害效应 (包括对健康的危害效应)。

辐射的类型及能量范围	辐射权重因数 $w_{ m R}$				
光子,所有能量	1				
电子及介子,所有能量10	1				
中子,能量<10 keV	5				
$10~{ m keV}\!\sim\!100~{ m keV}$	10				
$>$ 100 keV \sim 2 MeV	20				
$>$ 2 MeV \sim 20 MeV	10				
>20 MeV	5				
质子(不包括反冲质子),能量>2 MeV	5				
α粒子、裂变碎片、重核	20				
1)不包括由原子核向 DNA 发射的俄歇电子,此种情况下需进行专门的微剂量测定考虑。					

如果需要使用连续函数计算中子的辐射权重因数,则可使用下列近似公式:

$$w_{\rm R} = 5 + 17 {\rm e}^{-(\ln(2{\rm E}))^2/6}$$

式中:E—中子的能量(以 MeV 为单位)。

对于未包括在上表中的辐射类型和能量,可以取 w_R 等于 ICRU 球中 $10~\mathrm{mm}$ 深处的 \overline{Q} 值,并可由下式求得。

$$\overline{Q} = \frac{1}{D} \int_0^\infty Q(L) D_{\rm L} dL$$

式中:D——吸收剂量;

 $D_{\rm L}$ —D 随 L 的分布;

Q(L)——ICRP-60 号出版物中规定的水中非定限传能线密度为 L 时的辐射品质因数。 按照 ICRP 的建议,Q-L 关系式如下表所示。

水中的非定限传能线密度 $L/(\mathrm{keV} ullet \mu \mathrm{m}^{-1})$	$Q(L)^{1)}$
€10	1
10~100	0.32 <i>L</i> -2.2
≥100	$300/\sqrt{L}$
1)L 的单位是 keV•μm ⁻¹ 。	

J4.8 有效剂量 effective dose

有效剂量 E 被定义为人体各组织或器官的当量剂量乘以相应的组织权重因数后的和:

$$E = \sum_{\mathrm{T}} w_{\mathrm{T}} \cdot H_{\mathrm{T}}$$

式中: H_T —组织或器官T 所受的当量剂量;

 $w_{\rm T}$ ——组织或器官 T 的组织权重因数。

由当量剂量的定义,可以得到:

$$E = \sum_{T} w_{T} \cdot \sum_{R} w_{R} \cdot D_{T,R}$$

式中: w_R ——辐射 R 的辐射权重因数;

 $D_{T,R}$ ——组织或器官 T 内的平均吸收剂量。有效剂量的单位是 $J \cdot kg^{-1}$,称为希[沃特](Sv)。

J4.9 组织权重因数 tissue weighting factor

为辐射防护的目的,器官或组织的当量剂量所乘以的因数(如下表所示),乘以该因数是为了考虑不同器官或组织对发生辐射随机性效应的不同敏感性。

组织或器官	组织权重因数 $w_{\mathtt{T}}$	组织或器官	组织权重因数 w_{T}
性腺	0.20	肝	0.05
(红)骨髓	0.12	食道	0.05
结肠*)	0.12	甲状腺	0.05
肺	0.12	皮肤	0.01
胃	0.12	骨表面	0.01
膀胱	0.05	其余组织或器官 5)	0.05
乳腺	0.05		

- a)结肠的权重因数适用于在大肠上部和下部肠壁中当量剂量的质量平均。
- b)为进行计算用,表中其余组织或器官包括肾上腺、服、外服区域、小肠、肾、肌肉、胰、脾、胸腺和子宫。在上述其余组织或器官中有一单个组织或器官受到超过 12 个规定了权重因数的器官的最高当量剂量的例外情况下,该组织或器官应取权重因数 0.025,而余下的上列其余组织或器官所受的平均当量剂量亦应取权重因数 0.025。

J4.10 集体剂量 collective dose

群体所受的总辐射剂量的一种表示,定义为受某一辐射源照射的群体的成员数与他们所受的平均辐射剂量的乘积。集体剂量用人-希「沃特」(人·Sv)表示(见集体有效剂量)。

J4.11 集体有效剂量 collective effective dose

对于一给定的辐射源受照群体所受的总有效剂量 S,定义为:

$$S = \sum_{i} E_{i} \cdot N_{i}$$

式中 $.E_i$ 群体分组i 中成员的平均有效剂量:

 N_i 一 该分组的成员数。

集体有效剂量还可以用积分定义:

$$S = \int_{0}^{\infty} E \, \frac{\mathrm{d}N}{\mathrm{d}E} \mathrm{d}E$$

式中: $\frac{\mathrm{d}N}{\mathrm{d}E}\mathrm{d}E$ 一 所受的有效剂量在 E 和 $E+\mathrm{d}E$ 之间的成员数。

J4.12 待积剂量 committed dose

待积有效剂量和(或)待积当量剂量。

J4.13 待积吸收剂量 committed absorbed dose

待积吸收剂量 $D(\tau)$ 定义为:

$$D(\tau) = \int_{0}^{0+\tau} \dot{D}(t) dt$$

式中: t_0 ——摄入放射性物质的时刻:

D(t)—t 时刻的吸收剂量率;

τ—— 摄入放射性物质之后经过的时间。

未对 τ 加以规定时,对成年人 τ 取 50年;对儿童的摄入要算至 70岁。

J4.14 待积当量剂量 committed equivalent dose

待积当量剂量 $H_{T}(\tau)$ 定义为:

$$H_{\mathrm{T}}(\tau) = \int_{t}^{t_0 + \tau} H_{\mathrm{T}}(t) \mathrm{d}t$$

式中: t_0 —— 摄入放射性物质的时刻; $H_T(t)$ —— t 时刻器官或组织 T 的当量剂量率;

τ——摄入放射性物质之后经过的时间。

未对 τ 加以规定时,对成年人 τ 取 50年;对儿童的摄入要算至 70岁。

J4.15 待积有效剂量 committed effective dose

待积有效剂量 $E(\tau)$ 定义为:

$$E(\tau) = \sum_{T} W_{\mathrm{T}} \cdot H_{\mathrm{T}}(\tau)$$

式中: $H_{T}(\tau)$ — 积分至 τ 时间时组织 T 的待积当量剂量;

 W_{τ} ——组织T的组织权重因数。 未对 τ 加以规定时,对成年人 τ 取 50年;对儿童的摄入则要算至 70岁。

J4.16 器官剂量 organ dose

人体某一特定组织或器官 T 内的平均剂量 D_T ,由下一式给出:

当量和个人剂量当量。组织中某点处的剂量当量 H 是 $D \setminus Q$ 和 N 的乘积,即:

$$D_{\mathrm{T}} = (1/m_{\mathrm{T}}) \int_{m_{\mathrm{T}}} D \mathrm{d}m$$

式中: m_{T} —组织或器官T的质量:

D—— 质量元 dm 内的吸收剂量。

J4.17 剂量当量 dose equivalent

国际辐射单位与测量委员会(ICRU)所使用的一个量,用以定义实用量一周围剂量当量、定向剂量

$$H = DQN$$

式中:D——该点处的吸收剂量:

Q──辐射的品质因数(见 J4.7);

N——其他修正因数的乘积。

J4.18 个人剂量当量 personal dose equivalent

人体某一指定点下面适当深度 d 处的软组织内的剂量当量 $H_{\mathfrak{p}}(d)$ 。这一剂量学量既适用于强贯穿

辐射,也适用于弱贯穿辐射。对强贯穿辐射,推荐深度 d=10 mm,对弱贯穿辐射,推荐深度 d=0.07 mm。

J4.19 周围剂量当量 ambient dose equivalent

辐射场中某点处的周围剂量当量 $H^*(d)$ 定义为相应的扩展齐向场在 ICRU 球内逆齐向场的半径上深度 d 处所产生的剂量当量。对于强贯穿辐射,推荐 $d=10~\mathrm{mm}$ 。

J4.20 定向剂量当量 directional dose equivalent

辐射场中某点处的定向剂量当量 $H'(d,\Omega)$ 是相应的扩展场在 ICRU 球体内、沿指定方向 Ω 的半径上深度 d 处产生的剂量当量。对弱贯穿辐射,推荐 $d=0.07~\mathrm{mm}$ 。

J4.21 工作水平(WL) working level

氡子体或氧子体所引起的 α 潜能浓度(即空气中氡或氧的各种短寿命子体(不论其组成如何)完全衰变时,所发出的 α 粒子在单位体积空气中的能量的总和)的非 SI 单位(WL),相当于每升空气中发射出的 α 粒子能量为 $1.3\times10^5 {\rm MeV}$ 。在 SI 单位中,1 WL 对应于 $2.1\times10^{-5} {\rm J}\cdot {\rm m}^{-3}$ 。

- J4.22 工作水平月 (WLM)working level month(WLM)
 - 一种表示氡子体或氧子体照射量的单位,

1 WLM=170 WL • h

一个工作水平月相当于 $3.54 \text{ mJ} \cdot \text{h} \cdot \text{m}^{-3}$ 。

J5 实践中的防护与安全

J5.1 剂量约束 dose constraint

对源可能造成的个人剂量预先确定的一种限制,它是源相关的,被用作对所考虑的源进行防护和安全最优化时的约束条件。对于职业照射,剂量约束是一种与源相关的个人剂量值,用于限制最优化过程所考虑的选择范围。对于公众照射,剂量约束是公众成员从一个受控源的计划运行中接受的年剂量的上界。剂量约束所指的照射是任何关键人群组在受控源的预期运行过程中、经所有照射途径所接受的年剂量之和。对每个源的剂量约束应保证关键人群组所受的来自所有受控源的剂量之和保持在剂量限值以内。对于医疗照射,除医学研究受照人员或照顾受照患者的人员(工作人员除外)的防护最优化以外,剂量约束值应被视为指导水平。

J5.2 纵深防御 defense in depth

针对给定的安全目标运用多种防护措施,使得即使其中一种防护措施失效,仍能达到该安全目标。

J5.3 包容 containment

防止放射性物质穿过确定的边界向外界转移或扩散的方法或实体结构,即使在一般事故情况下这 类方法或实体结构也能阻止放射性物质的外泄达到不可接受的程度。

J5.4 故障安全 fail-safe

安全设计原则之一,按照这一原则完成的设计可以保证当某一部件或系统发生任何故障时源均能 建立起一种安全状态。

J5.5 控制区 controlled area

在辐射工作场所划分的一种区域,在这种区域内要求或可能要求采取专门的防护手段和安全措施,以便.

- a)在正常工作条件下控制正常照射或防止污染扩展;
- b)防止潜在照射或限制其程度。
- J5.6 监督区 supervised area

未被确定为控制区、通常不需要采取专门防护手段和安全措施但要不断检查其职业照射条件的任何区域。

J5.7 安全文化素养 safety culture

存在于单位和人员中的种种特性和态度的总和,它确立安全第一的观念,使防护与安全问题由于其重要性而保证得到应有的重视。

J5.8 安全评价 safety assessment

对源的设计和运行中涉及人员防护与源安全的各个方面所进行的一种分析评价,包括对源的设计和运行中所建立的各种防护与安全措施或条件的分析,以及对正常条件下和事故情况下所伴有的各种 危险的分析。

J5.9 环境影响评价 environmental impact assessment

对源的利用或某项实践可能对环境造成的影响所进行的预测和估计,包括对源或实践的规模与特性的概述,对厂址或场所环境现状的分析,以及对正常条件下和事故情况下可能造成的环境影响或后果的分析。

J5.10 职业照射 occupational exposure

除了国家有关法规和标准所排除的照射以及根据国家有关法规和标准予以豁免的实践或源所产生的照射以外,工作人员在其工作过程中所受的所有照射。
J5.11 公众照射 public exposure

公众成员所受的辐射源的照射,包括获准的源和实践所产生的照射和在干预情况下受到的照射,但

不包括职业照射、医疗照射和当地正常天然本底辐射的照射。
J5. 12 医疗照射 medical exposure
患者(包括不一定患病的受检者)因自身医学诊断或治疗所受的照射、知情但自愿帮助和安慰患者

的人员(不包括施行诊断或治疗的执业医师和医技人员)所受的照射,以及生物医学研究计划中的志愿者所受的照射。 J5.13 潜在照射 potential exposure

John James A State Care

有一定把握预期不会受到但可能会因源的事故或某种具有偶然性质的事件或事件序列(包括设备故障和操作错误)所引起的照射。

J.5. 14 正常照射 normal exposure

30. 14 milimas inormas exposure

在设施或源的正常运行条件下,包括在可能发生的能够保持在控制条件之下的小的意外事件情况 下受到或预计会受到的照射。

J5.15 照射途径 exposure pathways

放射性物质能够到达或照射人体的途径。

J5.16 关键人群组 critical group

对于某一给定的辐射源和给定的照射途径,受照相当均匀、并能代表因该给定辐射源和该给定照射途径所受有效剂量或当量剂量最高的个人的一组公众成员。

J5.17 公众成员 member of the public

广义而言,在本标准中是指除职业受照人员和医疗受照人员以外的任何社会成员。但对于验证是否

符合公众照射的年剂量限值而言,则指有关关键人群组中有代表性的个人。

在规定的活动中或情况下所使用的某个量的不得超过的值。

15.19 **剂量限値** dose limit

受控实践使个人所受到的有效剂量或当量剂量不得超过的值。

J5.20 摄入 intake

J5.18 限值 limit

U 放入 Intake 摄入量

指放射性核素通过吸入、食入或经由皮肤进入人体内的过程;也指经由这些途径进入人体内的放射性核素的量。

J5. 21 年摄入量限值(ALI) annual limit on intake(ALI)

参考人在一年时间内经吸入、食入或通过皮肤所摄入的某种给定放射性核素的量,其所产生的待积剂量等于相应的剂量限值。*ALI* 用活度的单位表示。

J.5. 22 参考水平 reference level

在本标准中,指行动水平、干预水平、调查水平或记录水平。对于辐射防护实践中可测的任何一种量都可以建立参考水平。

J5.23 记录水平 recording level

审管部门所规定的剂量或摄入量的一个水平,工作人员所接受的剂量或摄入量达到或超过这一水平时,则应记入他们的个人受照记录。

J5.24 调查水平 investigation level

诸如有效剂量、摄入量或单位面积或体积的污染水平等量的规定值,达到或超过此种值时应进行调查。

J5.25 清洁解控水平 clearance levels

审管部门规定的、以活度浓度和(或)总活度表示的值,辐射源的活度浓度和(或)总活度等于或低于该值时,可以不再受审管部门的审管。

J5.26 指导水平 guidance level

指定量的一个水平,高于该水平时应考虑采取适当的行动。某些情况下,在指定量实际上低于其指导水平时,亦可能需要考虑采取某些行动。

J5.27 医疗照射指导水平 guidance level for medical exposure

医疗业务部门选定并取得审管部门认可的剂量、剂量率或活度值,用以表明一种参考水平,高于该水平时则应由执业医师进行评价,以决定在考虑了特定情况并运用了可靠的临床判断后是否有必要超过此水平。

J5.28 计划靶体积 planning target volume

放射治疗中制定治疗方案时所用的一种几何概念。它考虑了患者与受照组织的移动、组织大小和形状的变化以及射束大小和射束方向等射束几何条件的变化所产生的净效应。

J5.29 剂量与面积之积 dose-area product

辐射束的横截面积与所致平均剂量的乘积。在放射诊断中用作所授与能量的一种量度。

J5.30 入射体表剂量 entrance surface dose

在辐射射入受检者的体表处照射野中心的吸收剂量,用考虑反散射后空气中的吸收剂量表示。

表征 X 射线 CT 多层扫描所致受检者剂量的量。其表达式为:

J5.31 多层扫描平均剂量(MSAD) multiple scan average dose(MSAD)

$$MSAD = \frac{1}{I} \int_{-\pi^{1/2}}^{+\pi^{1/2}} D(z) dz$$

式中:I——逐层扫描之间的距离增量(即扫描断层间隔);

 $n \longrightarrow X$ 射线 CT 扫描总层数:

D(z) — 垂直于断层面方向(z 轴)上z 点的吸收剂量。

J5.32 乳腺平均剂量 average mammary glandular dose

乳房X射线摄影中所致受检者的乳腺平均吸收剂量 D_{s} ,可由下式计算:

$$D_{\sigma} = D_{\sigma N} X_{a}$$

式中: X_a ——空气中的入射照射量;

 $D_{\rm gN}$ ——空气中的入射照射量为 2.58 \times 10⁻⁴C • kg⁻¹时乳腺所受的平均吸收剂量。

对于钼靶和装有钼过滤片的乳腺 X 射线摄影装置,工作于半值层为 $0.3~\mathrm{mm}$ 铝的条件下,若乳房组织由 50%的脂肪和 50%的腺体构成,则 D_{gN} 可由下表查得:

乳房厚度/cm	3.0	3.5	4.0	4.5	5.0	5.5	6.0	6.5	7.0
$D_{ m gN}$	2.2	1.95	1.75	1.55	1.4	1.25	1.15	1.05	0.95

 D_{gN} 以 mGy 每 2.58×10⁻⁴C·kg⁻¹表示。

J5.33 监测 monitoring

为评价或控制辐射或放射性物质的照射,对剂量或污染所进行的测量及对测量结果的解释。

J5. 34 剂量标准实验室 standards dosimetry laboratory

由国家有关机构指定的研制、保持或改进辐射剂量测定用基准或副基准的实验室。

J5.35 参考人 reference man

由国际放射防护委员会提出的、用于辐射防护评价目的的一种假设的成年人模型,其解剖学和生理学特征并不是实际的某一人群组的平均值,而是经过选择,作为评价内照射剂量的统一的解剖学和生理学基础。

J5.36 健康监护 health surveillance

为保证工作人员参加工作时及参加工作后都能适应他们拟承担或所承担的工作任务而进行的医学监督。

J5.37 去污 decontamination

通过某种物理或化学过程去除或降低污染。

J6 干预中的辐射防护

J6.1 事故 accident

从防护或安全的观点看,其后果或潜在后果不容忽视的任何意外事件,包括操作错误、设备失效或 损坏。

J6.2 应急 emergency

需要立即采取某些超出正常工作程序的行动以避免事故发生或减轻事故后果的状态,有时也称为 紧急状态,同时,也泛指立即采取超出正常工作程序的行动。

J6.3 持续照射 prolonged exposure

没有任何不间断人类活动予以维持而长期持续存在的非正常公众照射,这种照射的剂量率基本上 是恒定的或者下降缓慢。

J6.4 防护对策 countermeasure

旨在缓解事故后果的一种行动。

J6.5 农业防护对策 agricultural countermeasure

在消费者获得之前,为降低食品、农业或林业产品的污染水平而采取的措施。

J6.6 防护行动 protective action

protective action

为避免或减少公众成员在持续照射或应急照射情况下的受照剂量而进行的一种干预。 J.6.7 补救行动 remedial action

在涉及持续照射的干预情况下,当超过规定的行动水平时所采取的行动,以减少可能受到的照射剂

量。 J6.8 预期剂量 projected dose

J6.9 可防止的剂量 avertable dose

采取防护行动所减小的剂量,即在采取防护行动的情况下预期会受到的剂量与不采取防护行动的情况下预期会受到的剂量之差。

J6.10 干预水平 intervention level

针对应急照射情况或持续照射情况所制定的可防止的剂量水平,当达到这种水平时应考虑采取相应的防护行动或补救行动。

J6.11 行动水平 action level

在持续照射或应急照射情况下,应考虑采取补救行动或防护行动的剂量率水平或活度浓度水平。

J6.12 应急计划 emergency plan

为应付应急照射情况所制定并实施的一种经审批的文件或一组程序。

.J7 防护与安全管理

J7.1 审管部门 regulatory authority

为实施对防护与安全的监督管理,由政府指定或认可的一个或几个机构。

J7.2 干预组织 intervening organization

政府指定或认可的、负责管理或实施某一方面干预事宜的组织。

J7.3 法人 legal person

符合国家法律规定的、对其按照本标准的要求所采取的任何行动承担义务和享有权利的任何企业 单位、机关事业单位或社会团体。

J7.4 通知 notification

法人以一种书面文件的形式向审管部门说明其拟进行某项实践或活动的目的与计划。

J7.5 申请者 applicant

向审管部门提出申请,要求获准从事某项实践的任何法人。

J7.6 批准 authorization

审管部门以书面文件形式,准许已提出申请的法人进行某项实践。批准分注册和许可两种方式。

J7.7 注册 registration

对低、中等风险实践的一种批准方式。进行这种批准的前提是,对该实践负责的法人已按要求编制并向审管部门提交了关于设施和设备的适当的安全评价报告和必要的环境影响评价报告。批准时将视情况附以相应的条件或限制。适用于该类批准方式的实践的安全和环境影响评价要求以及批准时可能附加的条件或限制,应低于以许可方式批准的实践。

J7.8 注册者 registrant

已获准注册某一实践或源的申请者,它已承诺了对该实践或源的权利和义务,特别是有关防护与安全的权利和义务。

J7.9 许可 licensing

对具有较高风险实践的一种批准方式。进行这种批准的前提是,对该实践负责的法人已按要求编制并向审管部门提交了关于设施和设备的详细的安全评价报告和适当的环境影响评价报告。批准时还会附以特定的条件或限制。适用于该类批准方式的实践的安全和环境影响评价要求以及批准时可能附加的条件或限制,应严于用注册方式批准的实践。

J7.10 许可证 license

审管部门在安全审评基础上颁发的、并附有其持有者要遵守的特定要求和条件的许可证书。

J7.11 许可证持有者 licensee

持有为某一实践或源所颁发的当前有效许可证的法人,它已承诺了对该实践或源的权利和义务,特别是有关防护与安全的权利和义务。

J7.12 用人单位 employer

依据相互同意的关系,对受聘用的工作人员在他们受聘用期间负有确定的责任、承诺和义务的任何 法人(自聘人员被认为既是法人又是工作人员)。

J7.13 工作人员 worker

受聘用全日、兼职或临时从事辐射工作并已了解与职业辐射防护有关的权利和义务的任何人员(自聘用人员被认为同时具有法人和工作人员的责任)。

J7.14 供方 supplier

受注册者或许可证持有者委托,承接了与源的设计、制造、生产或建造有关的全部或部分任务的任何法人(源的进口商应被视为源的供方)。

J7.15 辐射防护负责人 radiation protection officer

技术上胜任某一给定类型实践的辐射防护业务,受注册者或许可证持有者聘任对防护与安全法规和标准的实践进行监督管理的人员。

J7.16 合格专家 qualified expert

根据相应机构或学会所颁发的证书或所持有的职业许可证或根据学历和工作资历被确认为在相关专业领域(例如医学物理、辐射防护、职业保健、防火安全、质量保证或任何有关的工程和安全专业)具有专门知识的专家。

J7.17 执业医师 medical practitioner

具备下列条件的人员;a)按照国家的有关规定,被确认为具有相应的资格;b)在开具涉及医疗照射的检查申请单或治疗处方方面,满足国家规定的培训和经验要求;c)是一个注册者或许可证持有者,或者是一个已注册或许可的用人单位指定的可以开具涉及医疗照射的检查申请单或治疗处方的人员。

J7.18 医技人员 health professional

按照国家的有关规定,准许其从事某种与医疗保健(例如内科、牙科、医学物理、放射学和核医学技术、放射药剂学、职业保健等)有关的职业的技术人员。

J7.19 豁免 exemptions

指实践和实践中的源经确认符合规定的豁免要求或水平并经审管部门同意后被本标准的要求所豁免。

J7.20 解控 clearance

审管部门按规定解除对已批准进行的实践中的放射性材料或物品的管理控制。

J7.21 获准的 authorized

获得审管部门批准的。

J7.22 认可的 approved

由审管部门认可的。

J7.23 被排除的 excluded

在本标准的适用范围之外的,特指那些本质上不能通过实施本标准的要求对照射的大小或可能性进行控制的照射情况,如人体内的¹⁰K、到达地球表面的宇宙射线等所引起的照射。