서울시 빅데이터 기반 도로 다이어트 권장 지역 모델을 통한 행정 효율화 및 보행 도시 실현

경인권 16조(우리에게 맡겨조)

우리나라의, 심각한 보행 사고 실태

'민식이법' 시행 1년, 韓 보행자 사망수 지금도 OECD '최다'

2021.04.24 15:00

교통사고 사망자 줄었지만 보행자 사망사고 비중 OECD 2배

입력 2021.03.25 (12:00)

사회 > 사회일반

교통사고 사망자 40%는 보행자...OECD 평균보다 2배 높아

등록 2021-06-01 16:00:00

서울 교통사고 사망자, OECD 하위권…역대 최저 경신

작년 사망자 219명, 10만명당 2.3명 광역지자체 최하위

입력: 2021-06-16 16:29:14

- 10만명당 어린이, 노인 보행 사고 사망자 OECD 국가 중 <mark>가장 높음</mark>
- * 어린이 인구 10만 명당 보행 중 사망자수 0.54명 (OECD 평균 0.23명)

01 도로 다이어트_설태

시행했던 보행 정책 중 효과가 검증된 사업은?

'민식이법' 시행 1년, 韓 보행자 사망수 지금도 OECD '최다'

2021.04.24 15:00

서울시 <mark>도로 다이어트</mark> 시행 이후 보행환경 만족도 상승

사회 > 사회일반

교통사고 사망자 40%는 보행자...OECD 평균보다 2배 높아

등록 2021-06-01 16:00:00

• 10만명당 어린이, 노인 보행 사고 사망지

인구 10만명당 65세 이상

서울 교통사고 사망자, OE <mark>도로 다이어트</mark> 사업 확대 필요성 확인

작년 사망자 219명, 10만명당 2,3명 광역지자체 최하위

입력 : 2021-06-16 16:29:14

* 어린이 인구 10만 명당 보행 중 사망자수 0.54명 (OECD 평균 0.23명)

-01 도로 다이어트_개념

도로 다이어트란?

효율성이 떨어지는 도로의 라인이나 <mark>폭을 조정</mark>하여 불필요한 부분을 줄이는 것 (즉, 자동차 중심에서 보행자 중심으로의 개편)

실제 도로 다이어트 사업 사례(서울시 관악구 관악로 30길)

도로 다이어트 효과

주변 상권 활성화

거주민 만족도 향상

안전성 향상

비동력 교통수단 활성화

"안전하고 편안하게··· '도로다이어트' 걷기 좋은 서울로"

도로다이어트의 가장 큰 장점은 도로의 안전성을 높인다는 것이다. 줄어든 차도 폭이나 차로 수로는 사람과 차량 간, 차량과 차량 간 충돌 위험을 낮춰준다.

i

보행, 자전거 등 비동력 교통수단의 이용 환경을 크게 개선시킨다.

- 뉴시스 2018년 뉴스 中 -

투명성 부재 "도로 다이어트가 필요한 최적 입지 선정을 위해 현 프로세스 개선 필요"

정량적 데이터를 활용해 만든 모델을 이용하여 최적 입지 선정 필요

현 절차를 통해 선정 된 대상지는 지자체 내부 공모를 통해 이루어짐

따라서, real 보이스 반영 및 <mark>투명성에 있어 문제</mark>가 있다고 판단

-> 데이터 기반 행정 기반 마련 필요

<u>프로젝트 목적</u> - 최적 입지 모델을 이용한 데이터 행정 실현

사업 대상지의 명확한 선정 근거 부재 -> 모델 개발로 근거 마련

데이터 분류 - 도로 환경요인을 고려한 데이터 선정

수집된 공공데이터 도로다이어트 특성 기준 범주화

보행 수요

주변 시설과 생활인구를 이용하여 도로의 보행 수요 산출

* 생활인구, 공공·복지·상가 등 시설 위치, 대중교통 승하차 인원 및 위치 데이터

교통 혼잡도

교통량이 많은 도로 다이어트 조성 불가함으로 지점들의 혼잡도 파악

* 도로별/일자별 통행속도, 차로수·도로폭 데이터

보행 안전성

도로의 보행사고와 보도폭을 활용하여 안전성 산출

* 차대사람 교통사고, 보도 폭 데이터

주차 수요

이전 사례들의 문제점으로 지적 됐던 주차수요 문제 개선을 위해 도로 주변 주차수요 파악 위함

* 주차장 위치 및 주차가능 면수 정보 데이터

- 03 분석_*흐름도*

변수 선정

Moran's I 검정

LISA 검정

OLS 분석

GWR 분석

모델 비교 - GWR vs OLS

	일반회귀모형 (OLS)	공간가중회귀분석 (GWR)		
R^2	0.5733	0.861		
Adjusted R^2	0.5731	0.822		
p-value	2.2e-16	0.000		

R-squared 비교 시 통계모델인 GWR(공간가중회귀모델)이 설명력이 높음

분석결과_시각화

각 지수별 시각화 - 붉은 곳으로 갈수록 수치가 높은 지수

강남, 경복궁 주변에 생활인구가 많음

교통량과 관련된 지수(* 교통량이 적을 수록 <mark>노랑</mark>으로 표현됨)

교통지수

교통량은 대체적으로 고르게 분포

-04 분석결과_시각화

순위권 최종 후보 & 최적 입지 점수 시각화

도로번호	도로명	도로길이	보행지수	안전지수	주차지수	교통지수	지수산출
63423	마들로14길	1198.02	0.160204	0.706311	0.085883	1	4.405579
63570	노해로69길	867.98	0.248957	0.38301	0.191426	1	3.837323
36612	선릉로86길	379.76	0.294919	0.621359	0.017443	1	4.510713

지수 합산으로 도로별 지역 점수 산출, 최종 결과

- 마들로 14길, 노해로 69길, 선릉로 86길

선정 지역 상위 순위

하얀색 < 파란색 < 빨간색 순으로 높은 점수

분석결과_시각화

순위권 최적 입지 후보1,2

교통량이 원활하고, 보행수요가 높으며 사고가 자주 발생하는 지역 도출

마들로 14길

- * 어린이 보호구역 근방
- * 좁은 보도 폭
- * 아파트 단지 주변 보행수요 높음

노해로 69길

- * 원활한 교통량, 불필요한 차도 수
- * 좁은 보도폭
- * 근방에 공영주차장 존재

순위권 최적 입지 후보3 # 입지 예측 성공 사례

(2020.03)

(2017.08)

- * 매우 높은 보행 수요
- * 높은 보행 안전성 문제

-> 추후, 자치구에서 문제가 있다고 판단하여 개선

[&]quot; 2020년 이전 데이터를 활용한 모델 결과에 실제 도로개선 사업 지역이 선정됨을 보아 <mark>모델의 유효성</mark> 입증"

05 기대효과/ 활용방안

- 상당기간 소요되는 공모과정의 절차 대체
- 데이터 행정 실현(모범 사례) 및 투명성 확보

- 모범 사례로써 타 자치구로의 분석 모델 이용 확대 가능
- 구축된 모델을 이용한 선제적 도로 점검으로 연관 기관의 이용 목적에 따라 활용
- 주민회의시 시민 설득에 주요 근거로 활용가능

도로 다이어트 최적 입지 선정 모델 개발함으로써 시민들은 **정책의 혜택**을 누리며 사업관리자는 **업무의 편의성**을 높임

