Notas del teórico

Complementos de análisis matemático - Irene Drelichman 2024

Bustos Jordi

Bustos Jordi jordibustos01@gmail.com

Contenido

5	Clase I - 23/08	
	1.1 Repaso de funciones 1.1.1 Propiedades 1.1.2 Función inversa 1.1.3 Composición de funciones 1.1.4 Familia de funciones 1.2 Números naturales 1.3 Cuerpo 1.3.1 Axiomas de la suma 1.3.2 Axiomas del producto 1.3.3 Cuerpos Ordenados	5 5 6 6 7 7 8 8 8 8 9
11	Clase II - 27/08	
	 2.1 Cuerpo Arquimediano 2.2 Supremo e ínfimo 2.3 Cuerpo completo 2.4 Cardinalidad - introducción 	
17	Clase III - 30/08	
	3.1 Conjuntos numerables 3.2 Cantor - Schröder - Bernstein 3.3 Los Reales son no numerables 3.3.1 Principio de encaje de Intervalos 3.4 Propiedades	18 19 19
23	Clase IV - 03/09	
	 4.1 Operaciones con cardinales 4.2 Hipótesis del continuo 4.3 Construcción de los Reales 	23 25 26

28	CI	ase V - 06/09	
	5.1 5.2 5.3	Construcción de los Reales Cuerpo ordenado R tiene la propiedad del supremo	29
34	CI	ase VI - 10/09	
	6.1 6.2 6.3 6.4	Sucesiones Propiedades de límites Ejemplo subsucesiones Punto de acumulación	35 35
37	CI	ase VII - 13/09	
	7.1 7.2 7.3 7.4	Límite superior e inferior Sucesiones de Cauchy Límites infinitos Series numéricas	37 37
39	CI	ase VIII - 24/09	
	8.	Ejemplo de convergencia condicional Corolarios de series Criterios de convergencia 3.1 Criterio del cociente y de la raíz 3.2 Criterio de Dirichlet 3.3 Criterio de Leibniz Parte positiva y negativa Reordenamientos	39 39 39 39

Clase I - 23/08

1.1 Repaso de funciones

Una función $f:A\to B$ es un objeto que consta de tres partes: un conjunto A (dominio), un conjunto B (codominio) y una regla que permite asociar todo elemento de A a un único elemento de B. Es decir, $f(x)\in B$, donde $x\in A$. Además, f(x)=y, lo que significa que f asigna a f0 el valor f1.

El gráfico de $f: A \to B$ es el subconjunto de $A \times B$ dada por (x, f(x)) con $x \in A$ y $f(x) \in B$. Notamos $G(f) = \{(x, y) \in A \times B : y = f(x)\}.$

Definición 1.1. $f: A \to B$ es inyectiva cuando para $x, y \in A$, $f(x) = f(y) \Rightarrow x = y$.

Definición 1.2. $f: A \to B$ es survectiva cuando para $(\forall y \in B)(\exists x \in A)(f(x) = y)$

Definición 1.3. $f: A \to B$ si es inyectiva y survectiva.

Definición 1.4. Dados $f:A\to B$ y $X\subset A$ se llama imagen de X por f al conjunto $f(X)=\{f(x):x\in X\}.$

1.1.1. Propiedades

Proposición 1.5. $f(X) \cup f(Y) = f(X \cup Y)$

Proposición 1.6. $f(X \cap Y) \subset f(X) \cap f(Y)$. La igualdad vale si y sólo si es inyectiva.

Demostración. Sea $a \in f(X \cap Y) \Rightarrow \exists x \in X \cap Y : f(x) = b \Rightarrow x \in X \Rightarrow f(x) \in f(X)$ y $y \in Y \Rightarrow f(y) \in f(Y)$.

Si $f: A \to B$ no es inyectiva $\Rightarrow \exists x \neq y : f(x) = f(y)$. Si $X = \{x\}, Y = \{y\} \Rightarrow X \cap Y = \emptyset$. $f(X) \cap f(Y) = \{f(x)\}$ luego $f(X \cap Y) = \emptyset$.

Si f es inyectiva, sea $y \in f(X) \cap f(Y) \Rightarrow \exists \alpha \in X, b \in Y \text{ tal que } f(\alpha) = f(b) = y$. Como f es inyectiva $\alpha = b \Rightarrow \alpha \in X \cap Y \Rightarrow y = f(\alpha), y \in f(X \cap Y) \Rightarrow f(X) \cap f(Y) \subset f(X \cap Y)$. Si f es inyectiva son iguales.

Proposición 1.7. $X \subset Y \Rightarrow f(X) \subset f(Y)$

Proposición 1.8. $f(\emptyset) = \emptyset$

Definición 1.9. Dados $f:A\to B$ y $Y\subset B$ se llama preimagen de Y por f al conjunto $f^{-1}(Y)=\{x\in A: f(x)=y, \forall y\in Y\}.$

1.1.2. Función inversa

Sea $f: A \to B$:

Proposición 1.10. $f^{-1}(X) \cup f^{-1}(Y) = f^{-1}(X \cup Y)$

Proposición 1.11. $f^{-1}(X) \cap f^{-1}(Y) = f^{-1}(X \cap Y)$

Proposición 1.12. $f^{-1}(Y^c) = (f^{-1}(Y))^c$

Proposición 1.13. $Y \subset Z \Rightarrow f^{-1}(Y) \subset f^{-1}(Z)$

Proposición 1.14. $f^{-1}(B) = A$

Proposición 1.15. $f^{-1}(\varnothing) = \varnothing$

1.1.3. Composición de funciones

Sean $f:A\to B$ y $g:B\to C$, definimos $g\circ f:A\to C$ como $(g\circ f)(x)=g(f(x))\forall x\in X$, es suficiente que $f(A)\subset B$.

Proposición 1.16. Composición de funciones survectivas/inyectivas es survectiva/inyectiva.

Proposición 1.17. $(g \circ f)^{-1}(Z) = f^{-1}(g^{-1}(Z)).$

Definición 1.18. La restricción de f en un subconjunto $X \subset A$ la notamos $f|_X : X \to B$.

Definición 1.19. Dada $f: A \to B$ y $g: B \to A$, g es una inversa a izquierda si y sólo si $g \circ f = id_A$. $\exists g$ si y sólo si f es invectiva.

Análoamente para la inversa a derecha si f es survectiva. Si f es biyectiva \Rightarrow g es inversa a ambos lados y es única.

1.1.4. Familia de funciones

Sea L un conjunto de elementos que llamamos índices y representamos genéricamente con λ .

Dado un conjunto X, una familia de elementos de X con índices en L es $X : L \to x$. El valor de x en $\lambda \in L$ lo notamos x_{λ} y la familia $(x_{\lambda})_{\lambda \in L}$.

Ejemplo. $L = \{1, 2\}$ los valores de $x : \{1, 2\} \to X$ se representan por x_1, x_2 , es decir que los puedo identificar con pares ordenados (x_1, x_2) de elementos de X.

Una familia con elementos en \mathbb{N} se llama sucesión. $(x_n)_{n\in\mathbb{N}}$ de elementos de X es una función de $x:\mathbb{N}\to X$ donde $x_n=x(n)$.

Las propiedades enunciadas previamente se pueden extender a cualquier familia de conjuntos.

1.2 Números naturales

Partimos de un conjunto \mathbb{N} y una función $S: \mathbb{N} \to \mathbb{N}$ que cumple los siguientes axiomas (de Peano):

- 1) Es inyectiva.
- 2) $\mathbb{N} S(\mathbb{N})$ tiene un solo elemento y lo llamamos 1.
- 3) Principio de inducción, si $X \subset \mathbb{N}$ tal que $1 \in X$ y $\forall m \in X$ vale $S(m) \Rightarrow X = \mathbb{N}$.

El principio de inducción permite definir operaciones

La suma se define como m + 1 = S(m), m + S(n) = S(m + n).

Proposición 1.20. Asociatividad: sea $X = \{p \in \mathbb{N} : m + (n+p) = (m+n) + p, \forall n, m \in \mathbb{N}\}$

Demostración.
$$1 \in X$$
, $p \in X \Rightarrow m + (n + S(p)) = m + S(n + p) = S(m + (n + p)) = S((n + m) + p) = (m + n) + S(p)$. Por inducción $X = \mathbb{N}$.

Proposición 1.21. Conmutatividad: n + m = m + n.

Proposición 1.22. Ley de cancelación: $m + n = m + p \Rightarrow n = p$.

Proposición 1.23. Tricotomía: $\mathfrak{m},\mathfrak{n}\in\mathbb{N},$ si $\mathfrak{m}>\mathfrak{n},\exists\mathfrak{p}:\mathfrak{m}+\mathfrak{p}=\mathfrak{n}.$ Si $\mathfrak{m}<\mathfrak{n},\,\exists\mathfrak{p}\in\mathbb{N}:\mathfrak{n}+\mathfrak{p}=\mathfrak{m}.$

Definición 1.24. La multiplicación se define recursivamente como: $m \times 1 = m$ y $m \times (n + 1) = m \times n + m$.

Cumple la asociatividad, conmutatividad, ley de cancelación y monotonía.

Teorema 1.25. Principio de buena ordenación

Todo subconjunto no vacío $A \subset \mathbb{N}$ tiene un elemento mínimo.

Demostración. Llamemos $\mathbb{I}_{\mathfrak{m}} = \{ \mathfrak{p} \in \mathbb{N} : 1 \leq \mathfrak{p} \leq \mathfrak{n} \} = [[1, \mathfrak{m}]] \ y \ X = \{ \mathfrak{m} \in \mathbb{N} : \mathbb{I}_{\mathfrak{m}} \subset \mathbb{N} - A \}.$

Si $1 \in A \Rightarrow 1$ es primer elemento. Si $1 \notin A \Rightarrow 1 \in X$ como $X \neq \mathbb{N}$ pues $X \subseteq \mathbb{N} - A$ y $A \neq \emptyset$. Por el principio de inducción $\exists m \in X$ tal que $m+1 \notin X$, si no tendríamos que $X = \mathbb{N}$. Luego todos los elementos entre 1 y m están en $\mathbb{N} - A$ y $m+1 \in A$, se sigue que $\mathfrak{a} = m+1$ es primer elemento de A.

1.3 Cuerpo

Un cuerpo es un conjunto dotado de dos operaciones, suma y producto y se denota por \mathbb{K} .

1.3.1. Axiomas de la suma

- 1) Associatividad: $\forall x, y, z \in \mathbb{K}, (x + y) + z = x + (y + z).$
- 2) Conmutatividad: $\forall x, y \in \mathbb{K}, x + y = y + x$.
- 3) Neutro: $\exists 0 \in \mathbb{K} : x + 0 = x, \forall x \in X$.
- 4) Opuesto: $\forall x \in X, \exists -x \in \mathbb{K} : x + (-x) = 0_{\mathbb{K}}$.

1.3.2. Axiomas del producto

- 1) Asociatividad: $\forall x, y, z \in \mathbb{K}, (xy)z = x(yz)$.
- 2) Conmutatividad: $\forall x, y \in \mathbb{K}, xy = yx$.
- 3) Neutro: $\exists 1 \in \mathbb{K} \{0\} : x \cdot 1 = x, \forall x \in X$.
- 4) Inverso: $\forall x \in X, \exists x^{-1} \in \mathbb{K} : x \cdot x^{-1} = 1_{\mathbb{K}}$.

Axioma de distributividad: $\forall x, y, z \in \mathbb{K}, x(y+z) = xy + xz$.

Ejemplo. \mathbb{Q}, \mathbb{Z}_2 .

1.3.3. Cuerpos Ordenados

Un cuerpo ordenado es un cuerpo \mathbb{K} que tiene un subconjunto $P \in \mathbb{K}$ llamado conjunto de elementos positivos de \mathbb{K} que cumplen:

- 1) $x, y \in P \Rightarrow x + y \in P, xy \in P$.
- 2) $x \in \mathbb{K} \Rightarrow x \in P \text{ o } -x \in P \text{ o } x = 0$.

Ejemplo. \mathbb{Q} con $P = \{p/q : p, q \in \mathbb{N}\}, \mathbb{Z}_2$ no es ordenado.

Proposición 1.26. Dado un cuerpo ordenado si $a \neq 0 \Rightarrow a^2 \in P$.

En un cuerpo ordenado definimos x < y para significar que $y - x \in P$. La relación < tiene las siguientes propiedades:

Proposición 1.27. Transitividad: $x < y \ y \ y < z \Rightarrow x < z$.

Proposición 1.28. Tricotomía: $x, y \in \mathbb{K} \Rightarrow x = y \circ x < y \circ x > y$.

Proposición 1.29. Monotonía de la suma $x < y \Rightarrow x + z < y + z$.

Proposición 1.30. Monotonía del producto $x < y, 0 < z \Rightarrow xz < yz$.

En el cuerpo ordenado \mathbb{K} escribimos $x \leq y$ para significar x < y o x = y. O sea $y - x \in P \cup \{0\}$. Con esta relación se cumplen todas las propiedades anteriores y la antisimetría. $x \leq y, y \leq x \Rightarrow x = y$.

Además tenemos la noción de intervalo, dados $a, b \in \mathbb{K}$ definimos $[a, b] = \{x \in \mathbb{K} : a \le x \le b\}, [a, b), (a, b), [a, +\infty), (-\infty, b], (a, +\infty), (-\infty, b), [a, a] = \{a\}.$

Un subconjunto de $X \subset K$ se dice acotado inferiormente, superiormente si tiene cota inferior o cota superior. $\exists b \in \mathbb{K} : x \leq b, \forall x \in X$.

Clase II - 27/08

2.1 Cuerpo Arquimediano

Si \mathbb{K} es un cuerpo ordenado, $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{K}$, pero esto no necesariamente implica que \mathbb{N} es no acotado.

Ejemplo. $\mathbb{Q}(t)$: cuerpo de funciones racionales con coeficientes en \mathbb{Q} , r(t) = p(t)/q(t), $p,q \in \mathbb{Q}, q \neq 0$. Este cuerpo puede ser ordenado diciendo que r(t) es positivo si y sólo si el coeficiente de mayor grado del polinomio pq es positivo. En este cuerpo observemos que p(t) = t = t/1 cumple que $\forall n \in \mathbb{N}, p(t) = t - n \in P \Rightarrow t > n, \forall n \in \mathbb{N}$. Es decir que en $\mathbb{Q}(t)$, \mathbb{N} es un conjunto acotado, por ejemplo por t.

Teorema 2.1. En un cuerpo ordenado K son equivalentes:

- 1) $\mathbb{N} \subset \mathbb{K}$ no es acotado superiormente.
- 2) Dados $a, b \in \mathbb{K}$ con $a > 0, \exists n \in \mathbb{N} : m \cdot a > b$.
- 3) Dado cualquier $0 < a \in \mathbb{K}, \exists n \in \mathbb{N} : 0 < \frac{1}{a} < a$.

Cuando vale cualquiera decimos que K es arquimediano.

Demostración. $1) \Rightarrow 2)$

Como $\mathbb N$ es no acotado, dados $\mathfrak a,\mathfrak b\in\mathbb K,\ \mathfrak a>0,\ \exists\mathfrak m\in\mathbb N:\mathfrak m>\frac{\mathfrak b}{\mathfrak a},\ \mathrm{caso}$ contrario $\frac{\mathfrak b}{\mathfrak a}$ sería cota de $\mathbb N\Rightarrow\mathfrak m\mathfrak a>\mathfrak b$

 $2) \Rightarrow 3)$

Dado $a > 0, \exists n \in \mathbb{N} : ma > 1 \text{ (tomando } b = 1 \text{ en 2.)} \Rightarrow a > \frac{1}{m} > 0$

 $3) \Rightarrow 1$

Dado $0 < a \in \mathbb{K} \Rightarrow \forall n \in \mathbb{N}, 0 < \frac{1}{n} < \frac{1}{a}$, pues 3. vale para todo $\mathbb{K} \Rightarrow b < n \Rightarrow$ es no acotado (pues ningún b > 0 puede ser cota superior).

2.2 Supremo e ínfimo

Definición 2.2. Dados un cuerpo ordenado \mathbb{K} y un subconjunto $X \subset \mathbb{K}$ acotado superiormente, decimos que $b \in \mathbb{K}$ es supremo de X si es la menor de las cotas superiores de X en \mathbb{K} .

Es decir, se cumple:

1) $\forall x \in X, x \leq b$

- 2) Si $c \in \mathbb{K}$ y $x \le c$, $\forall x \in X \Rightarrow b \le c$.
- 3) Dado c < b en $\mathbb{K}, \exists x \in X : c < x$.

Nota. 1) El supremo de un conjunto, si existe es único.

- 2) Si un conjunto tiene máximo, es el supremo.
- 3) Si $X = \emptyset$, todo $\mathfrak{b} \in \mathbb{K}$ es cota superior, como \mathbb{K} no tiene primer elemento, se sigue que \emptyset no tiene supremo en \mathbb{K} .

Definición 2.3. Dados un cuerpo ordenado \mathbb{K} y un subconjunto $X \subset \mathbb{K}$ acotado inferiormente, decimos que $b \in \mathbb{K}$ es ínfimo de X si es la mayor de las cotas inferiores de X en \mathbb{K} .

Es decir, se cumple:

- 1) $\forall x \in X, x > b$
- 2) Si $c \in \mathbb{K}$ y x > c, $\forall x \in X \Rightarrow b > c$.
- 3) Dado c > b en \mathbb{K} , $\exists x \in X : b < x < c$.

Ejemplo. Dados a < b en \mathbb{K} . Si $X = (a, b) \Rightarrow \inf(X) = a$, $\sup(X) = b$.

- 1) Por definición $\mathfrak a$ es cota inferior y $\mathfrak b$ superior.
- 2) $a < c \in \mathbb{K}$, no es cota inferior. En efecto, si $c \ge b$ trivial. Si $c < b \Rightarrow \frac{a+c}{2} \in X$, $a < \frac{a+c}{2} < c \Rightarrow a < c : c$ no es cota inferior.

Luego por 1) y por 2) \mathfrak{a} es ínfimo de X.

Ejemplo. $Y = \{y \in \mathbb{Q} : y = \frac{1}{2^n}, n \in \mathbb{N}\}$. Veamos que $\inf(Y) = 0, \sup(Y) = \frac{1}{2}$. $\frac{1}{2} \in Y, \frac{1}{2^n} < \frac{1}{2} \forall n \in \mathbb{N} \Rightarrow \frac{1}{2} = \sup(Y)$. Como $0 < \frac{1}{2^n} \forall n \in \mathbb{N} \Rightarrow 0$ es cota inferior. Sea $0 < c \in \mathbb{K}, 2^n = (1+1)^n \le 1 + n \le 1$. $\frac{1}{2^n} \Rightarrow n \le \frac{1}{2^n} = 1 \Rightarrow \frac{1}{2^n} < c \Rightarrow c$ no puede ser cota inferior por la propiedad 3 de la $\frac{1}{2^n} = 1 \Rightarrow \frac{1}{2^n} = 1 \Rightarrow \frac$

El problema más serio de los racionales desde el punto de vista del análisis es que algunos conjuntos acotados de números racionales no tienen súpremo (o ínfimo) en \mathbb{Q} .

Ejemplo. Sean $X = \{X \in \mathbb{Q} : x \ge 0, x^2 < 2\}$, $Y\{y \in \mathbb{Q} : y > 0, y^2 > 2\}$. Notemos que si $z > 2 \Rightarrow z^2 > 4 \Rightarrow z \notin X \Rightarrow X \subset [0, 2]$ y X es un conjunto acotado. Además $Y \subset (0, +\infty)$ por lo que es un conjunto acotado inferiormente. Veamos que \nexists supremo e ínfimo en \mathbb{Q} .

1) Quiero ver que X no tiene máximo. Dado $x \in X$ quiero encontrar $r \in \mathbb{Q}$ tal que 0 < r < 1 y $x + r \in X \iff (x + r)^2 = x^2 + 2xr + r^2 < 2$. Como $r < 1 \Rightarrow (x + r)^2 < x^2 + 2xr + r = x$

13

 $x^2 + r(2x + 1) < 2 : x + r \in X$.

2) Quiero ver que Y no tiene elemento mínimo, dado $y \in Y$ tomo $r \in \mathbb{Q}: 0 < r < \frac{y^2-2}{2y}$

$$(y-r)^2 = y^2 - 2yr + r^2 > y^2 - 2yr > 2$$
 (2.1)

$$y^2 - 2 > 2yr \tag{2.2}$$

$$\frac{y^2 - 2}{2y} > r \tag{2.3}$$

Es decir que $y - r \in Y$ e y - r < y

3) Si
$$x \in X, y \in Y \Rightarrow x < y \ x^2 < 2 < y^2 \Rightarrow x^2 < y^2$$
.

Veamos que por 1, 2, $3 \not\equiv \sup(X)$, $\inf(Y)$. Supongamos $0 < \alpha = \sup(X)$, no puede ser $\alpha^2 < 2$ porque si no $\alpha \in X$ y X no tiene máximo. Tampoco puede ser $\alpha^2 > 2$ pues estaría en Y e Y no tiene mínimo, pues habría un $\beta \in Y$ con $\beta < \alpha$ y por 3) sería $x < \beta < \alpha$, $\forall x \in X$ lo que contradice que $\sup(X) = \alpha$, pues sería β el supremo. En definitiva si existiese $\sup(X) = \alpha$, debe ser $\alpha^2 = 2 \notin \mathbb{Q}$. Luego X no tiene supremo en \mathbb{Q} . Ínfimo, ejercicio (análogo).

2.3 Cuerpo completo

Definición 2.4. Si \mathbb{K} es un cuerpo ordenado no Arquimediano, $\mathbb{N} \subset \mathbb{K}$ es acotado superiormente.

si $b \in \mathbb{K}$ es una cota superior de $\mathbb{N} \Rightarrow \mathfrak{n} + 1 \in \mathbb{N} < b, \forall \mathfrak{n} \in \mathbb{N} \Rightarrow \mathfrak{n} < b - 1$ o sea b - 1 es cota superior de $\mathbb{N} : \nexists sup(\mathbb{N})$ en \mathbb{K} .

Definición 2.5. Un cuerpo ordenado \mathbb{K} se dice completo cuando dado un subconjunto no vacío y acotado superiormente tiene supremo en \mathbb{K} .

Nota. 1) Si el cuerpo es ordenado y completo \Rightarrow es arquimediano.

2) En un cuerpo ordenado completo $\mathbb K$ todo subconjunto no vacío y acotado inferiormente tiene ínfimo en $\mathbb K.$

Demostración. Sea $Y \subset \mathbb{K}$, no vacío y acotado inferiormente. Sea $X = -Y = \{-y : y \in Y\} \Rightarrow X$ es no vacío y acotado superiormente $\Rightarrow \exists \sup(X) = \alpha \Rightarrow -\alpha = \inf(Y)$.

Axioma: Existe un cuerpo ordenado llamado \mathbb{R} .

Ejercicio: Dados $0 < \alpha \in \mathbb{R}, m \in \mathbb{N} \Rightarrow \exists ! 0 < b \in \mathbb{R} : b^m = \alpha$. Sugerencia Definir $X = \{x \in \mathbb{R} : x \geq 0, x^n < \alpha\}, Y = \{y \in \mathbb{R} : y > 0, y^n > \alpha\}$ e imitar la demostración anterior. Probar y usar que dado x > 0 \exists para cada $m \in \mathbb{N}$ un número real positivo que depende de x tal que $(x+d)^m \leq A_n d + x^n, \forall 0 < d < 1$.

Definición 2.6. Un conjunto $X \subset \mathbb{R}$ se dice denso en \mathbb{R} si todo intervalo abierto (a,b) contiene algún punto de X.

Ejemplo. \mathbb{Q} es denso en \mathbb{R} .

Demostración. Como $b-a>0, \exists p\in\mathbb{N}:0<\frac{1}{p}< b-a.$

Sea $A=\{m\in\mathbb{Z}:\frac{m}{p}\geq b\}$. Como \mathbb{R} es Arquimediano, A es un conjunto de números enteros no vacío y acotado por bp. Sea m_0 el menor elemento de A entonces $b\leq \frac{m_0}{p}$ y $\frac{m_0-1}{p}< b$. También $\frac{m_0-1}{p}>0$, si no tendríamos que

$$\frac{m_0-1}{\mathfrak{p}} \leq \mathfrak{a} \leq \mathfrak{b} \leq \frac{m_0}{\mathfrak{p}} \tag{2.4}$$

Luego

$$b - a \le \frac{m_0}{p} - \frac{m_0 - 1}{p} = \frac{1}{p} \tag{2.5}$$

Absurdo! \therefore \mathbb{Q} es denso en \mathbb{R} .

Ejemplo. $\mathbb{R} - \mathbb{Q}$ es denso en \mathbb{R} .

Para ver que $\mathbb{R} - \mathbb{Q}$ es denso usamos la misma idea tomando $\mathfrak{p} \in \mathbb{N} : \mathfrak{0} < \frac{1}{\mathfrak{p}} < \frac{b-a}{\sqrt{2}}$ por Arquimedianidad y $\frac{\sqrt{2}}{\mathfrak{p}} < b-a$ por longitud del intervalo. Ejercicio terminar la demostración.

2.4 Cardinalidad - introducción

Definición 2.7. Decimos que dos conjuntos X, Y tienen el mismo cardinal (coordinables o equipotentes) si $\exists f: X \to Y$ biyectiva. Notamos $X \sim Y$ o card(X) = card(Y) o #X = #Y y \sim es una relación de equivalencia.

Dado $n \in \mathbb{N}$ definimos $\mathbb{I}_n = \{1, 2, 3, \dots, n\}$.

Teorema 2.8. Sean $\mathfrak{n},\mathfrak{m}\in\mathbb{N}.$ Entonces, $\mathbb{I}_\mathfrak{n}\sim\mathbb{I}_\mathfrak{m}\iff\mathfrak{n}=\mathfrak{m}.$

15

Demostración. Sabemos que si $\mathbb{I}_n \sim \mathbb{I}_m$, entonces $\exists f : \mathbb{I}_n \to \mathbb{I}_m$ biyectiva. Supongamos que n < m.

Esto implica que puedo definir $g:\mathbb{I}_m \to \mathbb{I}_{n+1}$ survectiva como:

$$g(k) = \begin{cases} k & \text{si } 1 \leq k \leq n+1, \\ 1 & \text{si } k > n+1. \end{cases}$$

 $g \circ f : \mathbb{I}_n \to \mathbb{I}_{n+1} \Rightarrow$ basta probar que \nexists funciones $h : \mathbb{I}_n \to \mathbb{I}_{n+1}$ suryectivas para probar el absurdo. Por inducción:

Si m=1 luego h no puede ser survectiva. Supongamos que vale si $1 \le k \le n-1$, si $\exists h: \mathbb{I}_n \to \mathbb{I}_{n+1}$ survectiva $\exists k: f(n)=k$. Defino una permutación r de \mathbb{I}_{n+1} tal que $r(k)=n+1 \Rightarrow$

 $r\circ h:\mathbb{I}_n\to\mathbb{I}_{n+1}\ \mathrm{es}\ \mathrm{suryectiva}\ \mathrm{y}\ (r\circ f)(n)=r(k)=n+1.$

 \Rightarrow la restricción $\mathfrak{r}\circ\mathfrak{f}|_{\mathbb{I}_{n-1}}:\mathbb{I}_{n-1}\to\mathbb{I}_n$ y es suryectiva. Abusrdo, por Hipotesis inductiva no existen suryectivas de $\mathbb{I}_{n-1}\to\mathbb{I}_n$

 \Leftarrow trivial.

Definición 2.9. X es finito si $\exists n: X$ es coordinable con \mathbb{I}_n y escribimos card(X) = n. Decimos que X es infinito si no existe tal n.

Clase III - 30/08

3.1 Conjuntos numerables

Definición 3.1. Un conjunto X es numerable si $X \sim \mathbb{N}$. Cada biyección se llama una enumeración de los elementos de X.

Definición 3.2. Decimos que un conjunto es a lo sumo numerable (contable) si es finito numerable.

Ejemplo. Los números pares, $P = \{2n : n \in \mathbb{N}\}.$

Demostración. f(n) = 2n, $f: \mathbb{N} \to P$ es biyectiva : es numerable.

Ejemplo. \mathbb{Z} es numerable.

Demostración. Definimos $f: \mathbb{Z} \to \mathbb{N}$ como $f(n) = \begin{cases} 2n & \text{si } n > 0, \\ -2n+1 & \text{si } n \leq 0. \end{cases}$ y f^{-1} es una enumeración.

Teorema 3.3. Sea X un conjunto y $P(X) = \{A : A \subset X\} \Rightarrow card(X) \neq card(P)$

Demostración. Supongamos que $\exists f: X \to P(X)$ biyectiva, en particular, f es survectiva.

Dado $x \in X$, puede pasar que $x \in f(X)$ o $x \notin f(X)$. Definimos $B = \{x \in X : x \notin f(X)\} \subset X$. Como f es survectiva se tiene que $\exists y \in Y : f(y) = B$.

Si $y \notin B = f(y) \Rightarrow y \notin f(y) \Rightarrow y \in B$.

Si $y \in B = f(y) \Rightarrow y \in f(y) \Rightarrow y \notin B$.

Absurdo en ambos casos, luego $\Rightarrow \exists f$ biyectiva :: $card(X) \neq card(P)$.

Definición 3.4. Decimos que $card(X) \le card(Y)$ si $\exists f : X \to Y$ inyectiva. card(X) < card(Y) si card(X) < card(Y), pero $\neg(X \sim Y)$.

Demostración. i) $card(X) \le card(X)$ porque la identidad es inyectiva.

ii) $card(X) \le card(Y)$, $card(Y) \le card(Z) \Rightarrow card(Z) \le card(Z)$ pues la composición de funciones es inyectiva.

iii)
$$card(X) = card(Y) \Rightarrow X \sim Y$$
.

3.2 Cantor - Schröder - Bernstein

Teorema 3.6 (Cantor - Schröder - Bernstein). Si $\exists f: X \to Y \ y \ g: Y \to X \ \mathrm{inyectivas}$ $\Rightarrow \exists h: X \to Y \ \mathrm{biyectiva}.$

Demostración. Vamos a probar que existen dos particiones distintas de X e Y. Sea $X = X_1 \cup X_2$ y $Y = Y_1 \cup Y_2$: $f: X_1 \to Y_1$ y $g: X_2 \to Y_2$ son biyectivas.

Podemos definir a $h: X \to Y$ como $h(x) = \begin{cases} f(x) & \text{si } x \in X_1, \\ g^{-1}(x) & \text{si } x \in X_2. \end{cases}$ y resulta biyectiva.

Definimos $\phi(x): P(X) \to P(X), \ \phi(A) = X - g(Y - f(A))$. Veamos primero que ϕ es creciente (i.e $A \subseteq B \Rightarrow \phi(A) \subseteq \phi(B)$.

Demostración.
$$A \subseteq B \iff f(A) \subseteq f(B) \iff y - f(B) \subseteq y - f(A) \iff g(y - f(B)) \subseteq g(y - f(A)) \iff X - \varphi(A) \subseteq X - \varphi(B)$$

Sea $\mathcal{C} = \{C \subset X : \varphi(C) \subset C\} \neq \emptyset$ pues $X \in \mathcal{C}$ y $A = \bigcap_{C \in \mathcal{C}} C \neq \emptyset$, $A \subset C, \forall C \in \mathcal{C}$ y φ es creciente y tenemos que $\varphi(C) \subset C \Rightarrow \varphi(A) \subset \varphi(C) \subset C \Rightarrow \varphi(C) \in A$. Además, usando otra vez que φ es creciente, $\varphi(\varphi(A)) \subset \varphi(A) \Rightarrow \varphi(A) \in \mathcal{C} \Rightarrow A \subset \varphi(A) \Rightarrow A = \varphi(A)$.

$$\begin{array}{l} \operatorname{Sean} \ X_1 = A, \ X - X_1 = X_2 = g_2(Y_2) \\ Y_1 = f(A), \ Y_2 = Y - f(A) \Rightarrow \\ A = \varphi(A) = X - g(Y - f(A)) \iff X - A = g(Y - f(A)) \iff X - X_1 = g(Y_2) = \\ X_2 \therefore f: X_1 \rightarrow Y_1 \ y \ g: X_2 \rightarrow Y_2 \ \text{son biyectivas.} \end{array}$$

Ejemplo. $\mathbb{N} \sim \mathbb{Z} \sim \mathbb{Q}$.

Demostración. $f: \mathbb{Z} \to \mathbb{Q}, f(x) = x$ es inyectiva.

Sea $a \in \mathbb{Z}, b \in \mathbb{N}, f : \mathbb{Q} \to \mathbb{Z}, f(\frac{a}{b}) = sign(a) \cdot 2^a \cdot 3^b$ es inyectiva por Teorema Fundamental de la Aritmética. Luego por el teorema anterior $\mathbb{Z} \sim \mathbb{Q}$.

Ejemplo. $(\mathbb{N} \times \mathbb{N})$ es numerable.

Demostración. $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}, f(n) = (1, n)$ es inyectiva. $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}, f((n, m)) = 2^n \cdot 3^m$ es inyectiva por Teorema Fundamental de la Aritmética : es numerable.

3.3 Los Reales son no numerables

Teorema 3.7. \mathbb{R} no es numerable.

Demostración. Supongamos que es numerable. \Rightarrow

 $\exists f: \mathbb{N} \to \mathbb{R}$ biyectiva. A cada número real x_n le asignamos un intervalo centrado en ese punto de longitud 2^{-n} . La unión de todos esos intervalos tiene longitud menor o igual a la suma de las longitudes (se pueden superponer).

 $|\bigcup_{n\in\mathbb{N}} Ix_n| \leq \sum_{i=1}^n |Ix_n| = \sum_{n\in\mathbb{N}} \frac{1}{2^n} = 1$. Se cubrió un intervalo de longitud 1 de toda la recta real, por lo tanto quedan reales afuera y eso es un absurdo $\therefore \mathbb{R}$ no es numerable.

Ejemplo. $A = \{(\alpha_n)_{n \geq 1} : \alpha_n \in \{0,1\}\} = \{0,1\}^{\mathbb{N}}$. Es decir las sucesiones de ceros y unos no es un conjunto numerable.

Demostración. Supongamos que si es numerable \Rightarrow podemos escribir $A = \{(\alpha_n^1)_{n \geq 1}, \cdots, (\alpha_n^j)_{n \geq 1}, \cdots\}$, todas las sucesiones de ceros y unos están contenidas en A. La sucesión donde $\alpha_i = 1 - \alpha_n^n$ (en el i-ésimo lugar tiene lo contrario de lo que la n-ésima sucesión tiene en el lugar n) debería ser una de ellas, pero eso es absurdo \therefore es no numerable.

La idea del último ejemplo (argumento diagonal), se puede adaptar para probar que (0,1] es no numerable.

3.3.1. Principio de encaje de Intervalos

Teorema 3.8. Sea $\mathbb{I}_1\supset\mathbb{I}_2\supset\mathbb{I}_3\supset\cdots$ una sucesión de intervalos cerrados y acotados $\mathbb{I}_n=[\mathfrak{a}_n,\mathfrak{b}_n]\Rightarrow$

La intersección de todos es no vacía.

 $\bigcap_{n=1}^\infty \mathbb{I}_n = [\mathfrak{a},\mathfrak{b}] \ \mathrm{con} \ \mathfrak{a} = sup(\mathfrak{a}_n), \mathfrak{b} = inf(\mathfrak{b}_n).$

Demostración. $\forall n \in \mathbb{N}, \ \exists \mathbb{I}_{n+1} \subset \mathbb{I}_n \Rightarrow \alpha_n \leq \alpha_{n+1} \leq b_{n+1} \leq b_n$ $\alpha_1 \leq \alpha_2 \leq \cdots \leq b_n \leq \cdots \leq b_1$. El conjunto A de los α_i está acotado A de los A

Teorema 3.9. \mathbb{R} no es numerable.

Demostración. Supongamos que $\exists f : \mathbb{N} \to \mathbb{R} : f(n) = x_n$.

Definimos la sucesión de \mathbb{I}_n de la siguiente forma:

Tomamos [0,1] y divido en 3 cerrados iguales, luego, al menos uno no contiene a x_1 , lo elijo como \mathbb{I}_1 (si hayh dos que no lo contienen elijo alguno). Inductivamente lo divido en 3 intervalos iguales y al menos 1 de ellos no contiene a x_{n+1} y lo elijo como \mathbb{I}_{n+1} . Por el principio anterior la $\mathbb{I} = \bigcap_{n=1}^{\infty} \mathbb{I}_n \neq \emptyset$ (tiene un único elemento y la longitud de los intervalos tiende a cero).

Si $x \in \mathbb{I}$ no puede ser igual o mayor que x_1 (por construcción se los excluye en algún paso) $\Rightarrow \mathbb{R}$ es no numerable, pues ese x queda afuera.

3.4 Propiedades

Teorema 3.10. Sea X numerable, $Y \subset X \Rightarrow Y$ es a lo sumo numerable.

Demostración. Supongamos que Y no es finito. Como $X \sim Y$ puedo pensar $X = (x_n)_{n \geq 1}$ y defino $n_1 = \min\{n \in \mathbb{N} : x_n \in Y\}$ e inductivamente elegimos $n_1, n_2, \cdots, n_k, \cdots$. Definimos $n_k = \min\{n \in \mathbb{N} : n > n_k, x_n \in Y\}$ \Rightarrow Tenemos la sucesión estrictamente creciente de naturales y podemos definir $g : \mathbb{N} \to Y, g(K) = x_{n_k}$. g es inyectiva si $K \neq Y, n_k \neq n_j$ por ser estrictamente creciente y es suryectiva, si $y \in Y \Rightarrow y = x_j$. Para ningún $j \Rightarrow \exists k : n_k \leq j \leq n_k + 1$. Como $j \leq n_{k+1} = \{n > n_k : x_n \in Y\}$ debe ser $j = n_k$.

Corolario 3.11. $f: X \to Y$ inyectiva e Y numerable $\Rightarrow X$ es a lo sumo numerable.

Demostración. f es inyectiva $\Rightarrow X \sim f(X)$ y como $f(X) \subset Y \Rightarrow$ es a lo sumo numerable por el teorema anterior.

Teorema 3.12. $f: X \to Y$ survectiva, X a lo sumo numerable $\Rightarrow Y$ es a lo sumo numerable.

Demostración. $f: X \to Y$ es survectiva $\exists g: Y \to X$ inversa a derecha tal que $f \circ g = id_Y \Rightarrow f$ es inversa a izquierda de $g \Rightarrow g$ es invectiva \therefore por el corolario anterior Y es a lo sumo numerable.

Teorema 3.13. Para cada $\mathfrak{m} \in \mathbb{N}$. Sea $\mathfrak{x}_\mathfrak{n}$ un conjunto numerable $\Rightarrow \bigcup_{\mathfrak{n} \in \mathbb{N}} \mathfrak{x}_\mathfrak{n} = X$ es numerable.

Demostración. x_n es numerable $\Rightarrow \exists f : \mathbb{N} \to x_n$ biyectiva. Sea $f : \mathbb{N} \times \mathbb{N} \to \bigcup_{n \in \mathbb{N}} x_n$ definida como $f(n,n) = f_n(n)$. Veamos que es suryectiva, dado $x \in X$, $\exists n \in \mathbb{N} : x \in x_n \Rightarrow \exists m : x = f_n(m)$ luego $X = f_n(m) = f(n,m)$. Como $\mathbb{N} \times \mathbb{N}$ es numerable $y \in \mathbb{N} \times \mathbb{N} \to \bigcup_{n \geq 1} x_n$ es suryectiva $x \in \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ es numerable $x \in \mathbb{N}$ como es infinito, es numerable.

Ejemplo. $\mathbb{Q}(x) \sim \mathbb{N}$.

Demostración. $\mathbb{Q}_k[x] = \{ p \in \mathbb{Q}(x) : gr(p) \leq k \}$ tenemos $f_n : \mathbb{Q}^{n+1} \to \mathbb{Q}_n[x],$ $f(a_0, \cdots, a_{n+1}) = a_0 + \cdots + a_n x^n$, cada f_n es biyectiva $\Rightarrow \mathbb{Q}^{n+1}$ es numerable y como la unión numerable de conjuntos numerables es numerable $\therefore \mathbb{Q}(x)$ es numerable. \square

Definición 3.14. Un número se dice algebraico si es raíz de algún polinomio con coeficientes enteros, por ejemplo $\sqrt{2}$ es raíz de $x^2 = 2$.

Definición 3.15. Si un número real no es algebraico se lo llama trascendente.

Ejercicio: demostrar que el conjunto de números algebraicos es numerable.

Clase IV - 03/09

4.1 Operaciones con cardinales

Dados dos cardinales n, m (no necesariamente finitos) y X, Y conjuntos disjuntos tales que card(X) = n, card(Y) = m, podemos definir:

- 1) Suma: $n + m = card(X \cup Y)$.
- 2) **Producto:** $n \cdot m = card(X \times Y)$.
- 3) Potencia: $n^m = card(\{f: Y \to X\}) = card(X^Y)$.

Nota. Suponer que $X \cap Y = \emptyset$ no es restrictivo porque $X \sim (X \times \{1\})$ e $Y \sim (Y \times \{2\})$, y $(X \times \{1\}) \sim (Y \times \{2\})$ y son disjuntos.

Nota. Hay que probar que la definición es independiente de los conjuntos X, Y que elegimos. Si $n = card(\tilde{X})$ y $m = card(\tilde{Y})$, $\tilde{X} \cap \tilde{Y} = \varnothing \Rightarrow n + m = card(\tilde{X} \cup \tilde{Y})$. Vale porque existen biyecciones entre \tilde{X} y X y entre Y y \tilde{Y} . Sea $f: X \to \tilde{X}, g: Y \to \tilde{Y}$ con lo cual $h: X \cup Y \to \tilde{X} \cup \tilde{Y}$ dada por

$$h(z) = \begin{cases} f(z) & \text{si } z \in X, \\ g(z) & \text{si } z \in Y. \end{cases}$$

es biyectiva. Similar para el producto y la potencia.

Supongamos card(X) = n, card(Y) = m, card(Z) = p, no necesariamente finitos con X, Y, Z disjuntos dos a dos. La suma cumple las siguientes propiedades:

Proposición 4.1. 1) Conmutatividad: n + m = m + n, pues $X \cup Y = Y \cup X$.

- 2) Asociatividad: (n + m) + p = n + (m + p).
- 3) Existencia del neutro: 0 + n = n, $\emptyset \cup X = X$.

El producto cumple las siguientes propiedades:

Proposición 4.2. 1) Conmutatividad: $n \cdot m = m \cdot n$, pues $X \times Y \sim Y \times X$.

- 2) $0 \cdot n = 0$, pues $\emptyset \times X = \emptyset$.
- 3) $1 \cdot n = n$, pues $\{1\} \times X \sim X$. Aquí, $f: \{1\} \times X \to X$ saca el 1 y $g: X \to \{1\} \times X$ agrega el
- 1. Ambas funciones son biyectivas.

Proposición 4.3. Distributiva del producto en la suma: $n \cdot (m+p) = n \cdot m + n \cdot p$ porque $X \times (Y \cup Z) \sim (X \times Y) \cup (X \times Z)$.

Nota. No vale la ley de cancelación: $n + m = n + p \not\Rightarrow m = p$. $n \cdot m = n \cdot p \not\Rightarrow m = p$.

Ejemplo. Si $n = card(\mathbb{N}) = \aleph_0$ y $card(\mathbb{R}) = c$, tenemos que: a) $n + n = \aleph_0 + \aleph_0 = \aleph_0$. $n \cdot n = \aleph_0 \cdot \aleph_0 = \aleph_0$.

b) $c \cdot c = c$. c + c = c.

Demostración. a) Vimos que $card(\{2n:n\in\mathbb{N}\})=\aleph_0,\ card(\{2n+1:n\in\mathbb{N}\})=\aleph_0.$ Y la unión de ambos conjuntos es \mathbb{N} . Además $\mathbb{N}\times\mathbb{N}=\aleph_0$, así $\aleph_0\cdot\aleph_0=\aleph_0$.

b) Si pruebo que el cardinal de cualquier intervalo no degenerado (sin extremos iguales) de la recta es c, puedo probar que c+c=c observando que $(0,1)=(0,\frac{1}{2})\cup(\frac{1}{2},1)$.

En efecto, $\arctan(x)$ es una biyección entre \mathbb{R} y el intervalo $(-\frac{\pi}{2}, \frac{\pi}{2})$, y hay una biyección entre este intervalo y cualquier (a, b) dada por $y = \frac{b}{\pi} \cdot (x + \frac{\pi}{2}) + a$.

Además, (0,1) y [0,1] son coordinables. Si $f:[0,1]\to(0,1)$ es invectiva y por el Teorema de Cantor-Bernstein $[0,1]\sim(0,1)$.

Para probar $c \cdot c = c$, uso que $(0,1] \times (0,1] \sim (0,1]$.

Sea $g:(0,1]\to(0,1]\times(0,1],\ g(x)=(x,1)$ es inyectiva.

 $f:(0,1]\times(0,1]\to(0,1],\ f(x,y)=0.x_1y_1x_2y_2\cdots$ (primeros decimales).

Si $x, y \in (0, 1]$, los pensamos con desarrollo decimal infinito. Como f es inyectiva, por el Teorema de Cantor-Bernstein, existe una biyección entre ellos, por lo que $c \cdot c = c$.

Sean n = card(X), m = card(Y), p = card(Z), no necesariamente finitos, con X, Y, Z disjuntos dos a dos.

Proposición 4.4. $n^m \cdot n^p = n^{m+p}$

Demostración. $X^Y \times X^Z \sim X^{Y \cup Z}$.

 $\begin{array}{l} X^Y \times X^Z = \{(f,g): f: Y \to X, g: Z \to X\}. \\ f \in X^{Y \cup Z}, f: Y \cup Z \to X \Rightarrow (f|_Y, f|_Z) \in X^Y \times X^Z \ \mathrm{inyectiva}. \end{array}$

 $\mathrm{Dadas}\; f: Y \to X, g: Z \to X, h: Y \cup Z \to X \; \mathrm{tal} \; \mathrm{que}\; h(x) = \begin{cases} f(x) & \mathrm{si}\; x \in X, \\ g(x) & \mathrm{si}\; x \in Z \end{cases}$

Como Y, Z son disjuntos por hipótesis h es inyectiva y vale por Teorema CSB.

Proposición 4.5. $(n^m)^p = n^{mp}$

Demostración.
$$f \in (X^Y)^Z$$
, $f : Z \to X^Y$, $Z \mapsto (f_Z : Y \to X)$. $(\forall z \in Z)(\exists f_Z : Y \to X)$, si $y \in Y$, $f_Z(y)$ es $g(z,y) = f_Z(y)$

Teorema 4.6. Sea $n=\aleph_0$ o c y sea m otro cardinal tal que $2\leq m\leq 2^n\Rightarrow m^n=2^n$. $(2^{\aleph_0})=(2^{\aleph_0})^{\aleph_0}).$

Demostración. En general si $\mathfrak{m} \leq \mathfrak{p} \Rightarrow \mathfrak{m}^{\mathfrak{m}} \leq \mathfrak{p}^{\mathfrak{n}}$ con $card(X) = \mathfrak{m}, \ card(Y) = \mathfrak{m}, \ card(Z) = \mathfrak{p}, \ X, Y, Z \ disjuntos \ dos \ a \ dos.$

 $f: Y \to Z$ es inyectiva $\Rightarrow \forall g: X \to Y$ tenemos que $f \circ g: X \to Z$ de manera inyectiva (si $g_1 \neq g_2 \to f = g_1 \neq f \circ g_2$ porque f es inyectiva).

Nota. $\{0,1\}^{\mathbb{N}} \sim P(\mathbb{N})$ pues a cada $f: \mathbb{N} \to \{0,1\}$ le asigno el subconjunto $A \subset \mathbb{N}$ definido por $n \in A \iff f(n) = 1$

Teorema 4.7. $\mathbb{R} \sim \{0,1\}^{\mathbb{N}} \text{ es decir } 2^{\aleph_0} = c.$

Demostración. $f:[0,1]\to\{0,1\}^{\mathbb{N}}, f(x)=(x_n)_{n\in\mathbb{N}}.$ Siendo x_n las cifras del desarrollo en base dos de x.

Tenemos que $x = \sum_{n=1}^{\infty} \frac{x_n}{2^n} \Rightarrow f$ es inyectiva xq el desarrollo es único.

Ahora si $g:\{0,1\}^{\mathbb{N}} \to [0,1], g((x_n)_{n\in\mathbb{N}}) = \sum_{n\geq 1} \frac{x_n}{2^n}, x_n \in \{0,1\}$. No es inyectiva pues $0,11=0,10\overline{1}$. Una forma simple es pensar el desarrollo en base 3 de cada tira de 0 y 1 que no tiene ningún dos. Es decir $g((x_n)_{n\in\mathbb{N}}) = \sum_{n\geq 1} \frac{x_n}{3^n}$ y $(0,11)_3 \neq (0,10\overline{1})_3$: es inyectiva y por Teorema CSB: $\mathbb{R} \sim \{0,1\}^{\aleph_0}$.

Otra forma es la siguiente: $S = \{0,1\}^{\mathbb{N}} - \bigcup_{i=1}^{n} S_i \text{ con } S_i = \{(x_n)_{n \in \mathbb{N}} \in \{0,1\}^{\mathbb{N}} : x_m = 0, \forall m > i\}$. O sea $0, 11000 \cdots$ se saca y queda solo $0, 10\overline{1}$. Cada S_i es un conjunto finito (tiene 2^i elementos) luego $\bigcup_{i \geq 1} S_i$ es numerable \therefore S y $\{0,1\}^{\mathbb{N}}$ tienen el mismo cardinal.

$$g((x_n)_{n\in\mathbb{N}}) = \sum_{n\geq 1} \frac{x_n}{2^n}$$
 si es inyectiva y $g: S \to [0,1]$.

4.2 Hipótesis del continuo

 \nexists cardinal entre \aleph_0 y $c=2^{\aleph_0}.$ No se puede demostrar ni refutar.

Es independiente de la teoría de conjuntos más el axioma de elección. Gödel 1940 probó que no se puede demostrar, Cohen en 1963 que no se puede refutar.

Construcción de los Reales 4.3

Sucesiones de números racionales $(a_n)_{n\in\mathbb{N}}\subset\mathbb{Q}$.

Sea $(a_n)_{n\in\mathbb{N}}\subset\mathbb{Q}$ decimos que tiende a 0 si dado $\varepsilon>0, \exists n_0\in\mathbb{N}: |a_n|<\varepsilon, \forall n>n_0$. Notamos $a_n \rightarrow 0$.

Definición 4.8. Sea $(a_n)_{n\in\mathbb{N}}\subset\mathbb{Q}$. Decimos que la sucesión es de Cauchy \iff dado $\varepsilon > 0, \exists n_0 : \forall n, m > n_0, |a_n - a_m| < \varepsilon.$

Teorema 4.9. $(a_n)_{n\in\mathbb{N}}\subset\mathbb{Q}$ es convergente (es decir $a_n-q\to 0, q\in\mathbb{Q})\Rightarrow$ es de Cauchy.

$$\begin{split} \textbf{Demostración.} \ \operatorname{Dado} \ \epsilon > 0, \exists n_0 \in \mathbb{N} : |\alpha_n - q| < \frac{\epsilon}{2}, \forall n > n_0. \\ |\alpha_n - \alpha_m| = |(\alpha_n - q) + (q - \alpha_n)| \leq |\alpha_n - q| + |q - \alpha_m| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \end{split}$$

Teorema 4.10. Toda sucesión de Cauchy es acotada.

Demostración. Como $(a_n)_{n\in\mathbb{N}}\subset\mathbb{Q}$ es de Cauchy, eligiendo $\varepsilon=1$

 $\exists n_0 \in \mathbb{N} : |a_n - a_m| < 1, \forall n, m > n_0.$

En particular $|\alpha_n - \alpha_{n_0+1}| < 1$

 $a_{n_0+1}-1 < a_n < 1 + a_{n_0+1}, \forall n > n_0 \Rightarrow |a_n| < max(|a_{n_0+1}+1|, |a_{n_0+1}-1|), \forall n > n_0.$ Tomo $M = \max(|a_0|, \dots, |a_{n_0}|, |a_{n_0+1}+1|, |a_{n_0+1}-1|)$ y vale $\forall n \in \mathbb{N}$.

Definición 4.11. Sea $\mathcal{C}_{\mathbb{Q}}$ el conjunto de todas las sucesiones de Cauchy de números racionales. Dados $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}\in\mathcal{C}_{\mathbb{Q}}$. Decimos que son equivalentes $\iff a_n-b_n\to 0$.

Proposición 4.12. La relación anterior es de equivalencia.

- i) Reflexidad: $a_n a_n = 0 \rightarrow 0$.
- $\begin{array}{l} \text{ii) Simetr\'ia: } \alpha_n b_n \xrightarrow{} 0 \Rightarrow b_n \alpha_n = -(\alpha_n b_n) \xrightarrow{} 0. \\ \text{iii) Tansitividad: } \epsilon > 0, \\ \exists n_0 : |\alpha_n b_n| < \frac{\epsilon}{2}, \\ \forall n > n_0 \text{ y } \\ \exists n_1 : |b_n c_n| < \frac{\epsilon}{2}, \\ \forall n > n_1. \\ \end{array}$

 $\mathrm{Tomando}\ n>max(n_0,n_1), |a_n-c_n|\leq |a_n-b_n|+|b_n-c_n|<\frac{\epsilon}{2}+\frac{\epsilon}{2}<\epsilon.$

Definición 4.13. Los números reales \mathbb{R} son las clases de equivalencia $[(a_n)]$ de las sucesiones $\mathcal{C}_{\mathbb{O}}$ por la relación anterior.

Clase V - 06/09

5.1 Construcción de los Reales

Nota. Dado $q \in \mathbb{Q}$ definimos \tilde{q} como la clase de equivalencia de la sucesión constante como $(q, q, q, \cdots) \Rightarrow \mathbb{Q} \subset \mathbb{R}$.

Definición 5.1. $\tilde{s}, \tilde{t} \in \mathbb{R}, \ s = [(a_n)], t = [(b_n)]$ definimos $s + t = [(a_n + b_n)]$ la clase de equivalencia de $(a_n + b_n)_{n \in \mathbb{N}}$.

 $s \cdot t = [(a_n b_n)]$ la clase de equivalencia de $(a_n b_n)_{n \in \mathbb{N}}$.

Veamos que están bien definidas, si $[(a_n)] = [(c_n)]$ y $[(b_n)] = [(d_n)]$.

 $a_n - c_n \rightarrow 0$ y $b_n - d_n \rightarrow 0$.

 $([a_n] + [(b_n)]) - ([c_n] + [d_n])) = ([a_n] - [(c_n)]) + ([b_n] - [(d_n)]) = 0 \Rightarrow \mathrm{la} \ \mathrm{suma} \ \mathrm{est\'a} \ \mathrm{bien} \ \mathrm{definida}.$

 $\begin{array}{l} a_n b_n - c_n d_n = a_n b_n - c_n b_n + c_n b_n - c_n d_n = b_n (a_n - c_n) + c_n (b_n - d_n) \Rightarrow |a_n \cdot b_n - c_n \cdot b_n| \leq \\ |b_n||a_n - c_n| + |c_n||b_n - d_n|. \end{array}$

 $\mathrm{Como}\ (b_n)_{n\in\mathbb{N}}\ \mathrm{y}\ (c_n)_{n\in\mathbb{N}}\ \mathrm{est\'{a}n}\ \mathrm{acotadas}\ \exists M: |b_n| < M,\, |c_n| < M, \forall n\in\mathbb{N}.$

 $|a_nb_n-c_nb_n|\leq M(|a_nc_n|+|b_n-d_n|)<\epsilon, \forall n>n_0.$

Porque $a_n - c_n \to 0$, $b_n - d_n \to 0$.

Proposición 5.2. \mathbb{R} es un cuerpo con esta definición.

Demostración. Ejercicio.

Teorema 5.3. Dado $S \in \mathbb{R} - \{0\}, \exists t \in \mathbb{R} : s \cdot t = 1.$

Demostración. $S = [(a_n)]$ sabemos que $S \notin 0$, o sea $a_n \neq 0$. Podría pasar que algunos de los terminos de $(a_n)_{n\in\mathbb{N}}$ si sean 0, lo que pasa es que $a_n\neq 0$, para n lo suficiente grande.

Como $a_n \to 0$, $\exists \epsilon_1 > 0$, \exists infinitos valores de $M : |a_M - 0| > \epsilon_1$, si $\epsilon = \frac{\epsilon_1}{2}$, como $(a_n)_{n \in \mathbb{N}}$ es de cauchy, $\exists n: |a_n-a_m|<rac{\epsilon}{2}, \forall n,m>n_0.$

Si
$$M > n_0$$
 (puedo porque son infinitos) : $|a_M| > \epsilon_1 \Rightarrow |a_m - a_M| < \frac{\epsilon_1}{2}, \forall m > n_0$.

$$-\varepsilon_1/2 < a_n - a_m < \varepsilon_1/2 \text{ o } -\varepsilon_1/2 < a_m - a_n < \varepsilon_1/2.$$

Si
$$a_M > 0 \Rightarrow \frac{\epsilon_1}{2} < a_M - \frac{\epsilon_1}{2} < a_n < a_M + \frac{\epsilon_1}{2}, \forall n > n_0.$$

$$\begin{split} &-\epsilon_1/2 < \alpha_n - \alpha_m < \epsilon_1/2 \text{ o } -\epsilon_1/2 < \alpha_m - \alpha_n < \epsilon_1/2. \\ &\mathrm{Si} \ \alpha_M > 0 \Rightarrow \frac{\epsilon_1}{2} < \alpha_M - \frac{\epsilon_1}{2} < \alpha_n < \alpha_M + \frac{\epsilon_1}{2}, \forall n > n_0. \\ &\mathrm{Si} \ \alpha_M < 0, \ \frac{\epsilon_1}{2} < -\alpha_M - \frac{\epsilon_1}{2} < -\alpha_n < -\alpha_m + \frac{\epsilon_1}{2} \Rightarrow \alpha_n < -\frac{\epsilon_1}{2}, \forall n > n_0. \\ &\mathrm{O} \ \mathrm{sea} \ \mathrm{que} \ \forall n > n_0, \ \alpha_n \ \mathrm{tiene} \ \mathrm{el} \ \mathrm{mismo} \ \mathrm{signo} \ \mathrm{que} \ \alpha_M \ \mathrm{en} \ \mathrm{particular} \ \alpha_n \neq 0, \forall n > n_0. \\ &\mathrm{Sabiendo} \ \mathrm{este} \ \mathrm{vectors} \ \mathrm{este} \ \mathrm{vectors} \ \mathrm{este} \ \mathrm{este$$

Sabiendo esto veamos que \exists el inverso:

 $S = [(a_n)] \neq 0$ por lo anterior $\exists n_0 : a_n \neq 0, \forall n > n_0$.

Sea $(b_n)_{n\in\mathbb{N}}\subset\mathbb{Q}$ como

$$b_n = \begin{cases} 0 & \text{si } n < n_0, \\ \frac{1}{a_n} & \text{si } n > n_0. \end{cases} \Rightarrow$$

$$a_n b_n = \begin{cases} 0 & \text{si } n < n_0, \\ 1 & \text{si } n > n_0, \end{cases} \Rightarrow$$

$$(1,1,\cdots)-(\alpha_n\cdot b_n)_{n\in\mathbb{N}}\to 0 \ \therefore [(\alpha_nb_n)]=[(1,1,\cdots)], \ \mathrm{es \ decir} \ t=[(b_n)] \ \mathrm{cumple \ que} \ t\cdot s=1.$$

Cuerpo ordenado 5.2

Para probrar que R es un cuerpo ordenado bajo esta definición hay que definir qué es ser positivo.

Sea $s \in \mathbb{R}$ decimos que s es positivo si $s \neq 0$ y $s = [(a_n)]$ tal que $a_n > 0 \forall n > n_0$. O sea, todos los terminos son positivos a partir de un punto.

Definición 5.4. Decimos que s > t si s - t > 0. Ejercicio probrar que está bien definido.

Veamos un ejemplo de como se prueban los axiomas de orden.

Teorema 5.5. Sean $s, t \in \mathbb{R} : s > t, r \in \mathbb{R} \Rightarrow s + r > t + r$. **Demostración.** $s = [(a_n)], t = [(b_n)], r = [(c_n)].$ Como s > t, $\exists n_0 : a_n - b_n > 0$, $\forall n > n_0, a_n - b_n \neq 0 \Rightarrow (a_n + c_n) - (b_n + c_n) = a_n + b_n > 0$ y $(a_n + c_n) - (b_n + c_n) \neq 0 \Rightarrow s + r - (t + r) > 0 \Rightarrow s + r > t + r$.

Teorema 5.6. \mathbb{R} con esta construcción es Arquimediano.

Demostración. Sean $s,t>0,s,t\in\mathbb{R}$ quiero ver que $\exists m\in\mathbb{N}:m\cdot s>t.$ Es decir si $s=[(a_n)],\ t=[(b_n)]$ quiero ver que $[(m\cdot a_n)]>[(b_n)]$. O sea que $m\cdot a_n-b_n\nearrow 0$ y que $\exists n_0:m\cdot a_n-b_n>0, \forall n>n_0$.

Supongamos que $\forall m, n_0, \exists n > n_0 : m \cdot a_n \leq b_n$. Como $(b_n)_{n \in \mathbb{N}}$ es de Cauchy $\Rightarrow \exists M \in \mathbb{Q} : b_n < M, \forall n \in \mathbb{N} \Rightarrow$.

 $a_n \leq \frac{b_n}{m} \leq \frac{M}{m}, \; \mathrm{para \; alg\'un} \; n > n_0, \forall n_0.$

Como $\mathbb Q$ es arquimediano, dado $\varepsilon > 0, \exists m : \frac{M}{m} < \frac{\varepsilon}{2}$, elijo m así y tengo que

 $\alpha_n \leq \frac{b_n}{m} < \frac{M}{m} < \frac{\epsilon}{2}, n > n_0, \forall n_0.$

Como $(a_n)_{n\in\mathbb{N}}$ es de Cauchy $\exists n_0: \forall n, k > n_0, |a_n - a_k| < \epsilon/2$. Para este n_0, \exists algún $n > n_0$ tal que $a_n < \epsilon/2 \Rightarrow$

 $\forall k>n_0, \alpha_k-\alpha_n<\epsilon/2 \Rightarrow \alpha_k<\alpha_n+\epsilon/2<\epsilon/2+\epsilon/2<\epsilon \Rightarrow \alpha_n\to 0. \ {\rm Absurdo!} \\ ([\alpha_n])=S>0.$

Luego $\exists m \in \mathbb{N} : m \cdot a_n - b_n > 0, \forall n > n_0$. Queda ver que $m \cdot a_n - b_n \to 0$, si $m \cdot a_n - b_n \to 0$ nada que probar. Caso contrario tomamos m+1 en vez de m.

 $\begin{array}{l} (m+1)\cdot a_n-b_n=m\cdot a_n+a_n-b_n>a_n>0, \forall n>n_0\Rightarrow m\cdot a_n-b_n\to 0\ \mathrm{y}\ a_n\nearrow 0\ \ddots \\ \mathbb{R}\ \mathrm{es\ arquimediano}. \end{array}$

Teorema 5.7. \mathbb{Q} es denso en \mathbb{R} . Es decir dado $r \in \mathbb{R}$ y $\varepsilon > 0, \exists q \in \mathbb{Q} : |r - q| < \varepsilon$. $r = [(a_n)], \text{ con } (a_n)_{n \in \mathbb{N}} \subset \mathbb{Q}$ es de Cauchy.

 $\begin{array}{l} \textbf{Demostración.} \ \mathrm{Dado} \ \epsilon > 0, \exists n_0 : |\alpha_n - \alpha_m| < \epsilon, \forall n, m > n_0. \\ \mathrm{Elijo} \ \mathrm{alg\'un} \ l > n_0 \ \mathrm{y} \ \mathrm{defino} \ q = [(\alpha_l, \alpha_l, \cdots)] \Rightarrow r - q = [(\alpha_n - \alpha_l)] \ \mathrm{y} \ q - r = [(\alpha_l - \alpha_n)]. \\ \mathrm{Como} \ l > n_0 \Rightarrow (\forall n > n_0) (\alpha_n - \alpha_l < \epsilon) (\alpha_l - \alpha_n < \epsilon) \Rightarrow |r - q| < \epsilon. \end{array}$

5.3 R tiene la propiedad del supremo

Sea $S \subset \mathbb{R}, S \neq \emptyset, M$ cota superior de S. Vamos a construir dos sucesiones $(\mathfrak{u}_n)_{n \in \mathbb{N}}, (\mathfrak{l}_n)_{n \in \mathbb{N}}$. Como $S \neq \emptyset, \exists s_0 \in S$. Defino $\mathfrak{u}_0 = M, \mathfrak{l}_0 = s_0$.

Si ya están definidos u_m, l_m , llamo $m_n = \frac{l_n + u_n}{2}$ al punto medio.

- i) Si m_n es cota superior de S definimos $u_{m+1} = m_n, l_{n+1} = l_n$.
- ii) Si \mathfrak{m}_n no es cota superior de S definimos $\mathfrak{u}_{n+1}=\mathfrak{u}_n$ y $\mathfrak{l}_{n+1}=\mathfrak{m}_n$.

Como $s_0 < M$ es fácil ver que $(u_n)_{n \in \mathbb{N}}$ es decreciente y que $(l_n)_{n \in \mathbb{N}}$ es creciente. Queda como ejercicio demostrarlo.

Lema 5.8. $(\mathfrak{u}_n)_{n\in\mathbb{N}}$ y $(\mathfrak{l}_n)_{n\in\mathbb{N}}$ son sucesiones de Cauchy de números reales.

```
\begin{array}{l} \textbf{Demostración.} \ \mathrm{Por} \ \mathrm{construcción} \ \mathrm{se} \ \mathrm{tiene} \ \mathrm{que} \ l_n \leq M, \forall n \in \mathbb{N} \Rightarrow \\ (l_n)_{n \in \mathbb{N}} \ \mathrm{es} \ \mathrm{creciente} \ \mathrm{y} \ \mathrm{acotada} \ ^*{\Rightarrow} \\ \mathrm{Es} \ \mathrm{de} \ \mathrm{cauchy.} \\ \\ \mathrm{Como} \ u_n > s_0, \forall n \in \mathbb{N} \Rightarrow -u_n \leq s_0, (-u_n)_{n \in \mathbb{N}} \ \mathrm{es} \ \mathrm{creciente} \Rightarrow \\ \mathrm{Es} \ \mathrm{de} \ \mathrm{cauchy.} \\ \\ * \\ \\ \textbf{Demostración.} \ \mathrm{Supongamos} \ \mathrm{que} \ (l_n)_{n \in \mathbb{N}} \ \mathrm{no} \ \mathrm{es} \ \mathrm{de} \ \mathrm{Cauchy.} \ \mathrm{Entonces} \ \mathrm{existe} \ \varepsilon > 0 : \\ \forall n_0, \exists n, m \geq n_0 : l_n - l_m \geq \varepsilon. \\ \mathrm{Como} \ (l_n)_{n \in \mathbb{N}} \ \mathrm{es} \ \mathrm{creciente}, \ l_n - l_{n_0} \geq \varepsilon, \ \mathrm{inductivamente} \ \mathrm{consigo:} \\ n_1 > n_0 : l_{n_1} - l_{n_0} \geq \varepsilon \\ n_2 > n_1 : l_{n_2} - l_{n_1} \geq \varepsilon \\ \vdots \\ \\ \mathrm{Por} \ \mathrm{otro} \ \mathrm{lado} \ \mathrm{por} \ \mathrm{la} \ \mathrm{arquimedianidad} \ \exists k \in \mathbb{N} : k \cdot \varepsilon > M - l_{n_0} \Rightarrow \\ l_{n_k} - l_{n_0} = (l_{n_k} - l_{n_{k-1}}) + (l_{n_{k-1}} - l_{n_{k-2}}) + \cdots + (l_{n_1} - l_{n_0}) > k \cdot \varepsilon > M - l_{n_0} \Rightarrow \\ l_{n_k} > M. \ \mathrm{Absurdo!} \\ \\ \Box
```

```
Demostración. Sea u_n un termino de (u_n)_{n\in\mathbb{N}} \Rightarrow \exists q_n \in \mathbb{Q} : |u_n - q_n| < \frac{1}{n}
Consideremos (q_1, q_2, \dots) \subset \mathbb{Q}.
```

Afirmo que $(q_n)_{n\in\mathbb{N}}$ es de Cauchy. Dado $\varepsilon > 0$, como $(u_n)_{n\in\mathbb{N}}$ es de Cauchy $\Rightarrow \exists n_0 : \forall n, m > n_0, |u_n - u_m| < \frac{\varepsilon}{3}$.

 $\begin{array}{l} \operatorname{Por\ arquimedianidad}\ \exists n_1: \frac{1}{m}, \forall n>n_1 \Rightarrow \operatorname{si}\ n> \max(n_0,n_1) \Rightarrow \\ |q_n-q_m| \leq |q_n-u_n| + |u_n-u_m| + |u_m-q_m| < \epsilon \Rightarrow \end{array}$

 $\mathfrak{u}=[(\mathfrak{q}_n)]\in\mathbb{R}, \text{ falta ver que }\mathfrak{u}_n\to\mathfrak{u}.$

Lema 5.9. $\exists u \in \mathbb{R} : u_n \to u$.

Si $\tilde{q}_n = [(q_n, q_n, \cdots)] \in \mathbb{R} \Rightarrow \tilde{q}_n - u \to 0$ pues q_n es de Cauchy y por construcción

$$\begin{array}{l} u_n - q_n < \frac{1}{n} \Rightarrow u_n - \tilde{q}_n \to 0 \mathrm{\ y\ como\ } \tilde{q}_n - u \to 0 \Rightarrow \\ u_n \to u. \end{array}$$

Lema 5.10. $l_n \to u$

Demostración. Según las posibles definiciones de l_n tenemos que:

Demostración. Según las posibles definiciones de
$$l_n$$
 ten $u_{n+1} - l_{n+1} = m_n - l_n = \frac{u_n + l_n}{2} - l_n = \frac{u_n - l_n}{2}$ o $u_{n+1} - l_{n+1} = u_{n+1} - m_n = u_n - \frac{u_n - l_n}{2} = \frac{u_n - l_n}{2} \Rightarrow u_1 - l_1 = \frac{1}{2}(M - s)$ $u_2 - l_2 = \frac{1}{2}(u_1 - l_1) = (\frac{1}{2})^2(u - s)$ \vdots $u_n - l_n = (\frac{1}{2})^n(M - s)$

 $\text{Por arquimedianidad de } \mathbb{R}, \forall \varepsilon > 0, \frac{1}{2^{\mathfrak{n}}} (M-s) < \varepsilon, \forall n > n_0 \Rightarrow$ $u_n-l_n\to 0\ {\rm ...}\ l_n\to u,\ {\rm pues}\ u_n\to u.$

Teorema 5.11. \mathbb{R} tiene la propiedad del supremo.

Demostración. 1) Veamos que $\mathfrak u$ es cota superior, si no $\mathfrak u < s, s \in S \Rightarrow \varepsilon = s - \mathfrak u > 0$, como $u_n \to u$ y es decreciente $\exists n : u_n - u < \varepsilon \Rightarrow u_n < u + \varepsilon = u + s - u = s$ Absurdo, por construcción u_n era cota superior de $S, \forall n$.

2) Veamos que es la menor de las cotas superiores.

Sabemos que l_n no es cota superior de S, así que $(\forall n \in \mathbb{N})(\exists s_n \in S): l_n \leq s_n$. Como $l_n \to u \ y \ l_n \ {\rm es \ creciente} \Rightarrow$

 $\forall \epsilon>0, \exists n_0: l_n>u-\epsilon, \forall n>n_0 \Rightarrow s_n\geq l_n>u-\epsilon, \forall n>n_0. \text{ Es decir que para todo}$ $\varepsilon > 0$ tengo un s_n más grande en S : u es la menor de las cotas superiores.

Clase VI - 10/09

6.1 Sucesiones

Una sucesión de números reales es una función $x: \mathbb{N} \to \mathbb{R}$. Notamos $x(n) = x_n$ y lo llamamos el n-ésimo término de la sucesión. Indicamos la sucesión como $(x_n)_{n \in \mathbb{N}}$ o (x_1, x_2, \cdots) . Una subsucesión de x es la restricción de x a un subconjunto infinito $A = \{n_1 < n_2 < \cdots\} \subset \mathbb{N}$. Escribimos $(x_n)_{n \in A}$ para indicar la subsucesión.

Nota. Estrictamente la subsucesión no tiene dominio \mathbb{N} , pero es trivial considerarla como una función definida en \mathbb{N} componiendo con $1 \mapsto x_1, 2 \mapsto x_2, \cdots$ Por esto se usa la notación $(x_{n_i})_{i \in \mathbb{N}}$.

Definición 6.1. Decimos que $a = \lim_{n \to \infty} x_n \iff (\forall \epsilon > 0)(\exists n_0 \in \mathbb{N}) : |x_n - \alpha| < \epsilon, \forall n > n_0.$

Equivalentemente, si $\forall \varepsilon > 0$ el intervalo $(\alpha - \varepsilon, \alpha + \varepsilon)$ contiene a todos los términos de la sucesión salvo quizás un número finitos.

Teorema 6.2 (Unicidad del límite). Si $\lim_{n\to\infty} x_n = a$ y $\lim_{n\to\infty} x_n = b \Rightarrow a = b$

Demostración. Supongamos que $a \neq b$. Tomemos $\varepsilon = \frac{|b-a|}{2} > 0$.

 $(a - \varepsilon, a + \varepsilon) \cap (b - \varepsilon, b + \varepsilon) = \emptyset$. En efecto si x pertenece a la intersección entonces $|x - a| < \varepsilon$ y $|x - b| < \varepsilon$ \Rightarrow

 $\begin{array}{l} |b-a| \leq |a-x| + |x-b| < \epsilon + \epsilon = 2\epsilon = |b-a| \; \mathrm{Absurdo!} \; \mathrm{Como} \; \lim_{n \to \infty} x_n = a \Rightarrow \\ \exists n_0 : x_n \in (a-\epsilon, a+\epsilon), \forall n > n_0 \Rightarrow \end{array}$

 $x_n\notin (b-\epsilon,b+\epsilon), \forall n>n_0: lim_{n\to\infty}x_n\neq b \text{ pues vimos que son disjuntos}.$

Teorema 6.3. Si $\lim_{n\to\infty} x_n = a \Rightarrow \text{toda subsucesión de } (x_n)_{n\in\mathbb{N}}$ converge a a.

Demostración. Dado $(x_{n_1}, x_{n_2}, \cdots)$ una subsucesión de $(x_n)_{n \in \mathbb{N}}$. Por hipotesis dado $\varepsilon > 0, \exists n_0 \in \mathbb{N} : |x_n - \alpha| < \varepsilon, \forall n > n_0$. Como los índices de la subsucesión son infinitos, $\exists n_{i_0} > n_0 \Rightarrow \text{si } n_i > n_{i_0} \Rightarrow |x_{n_i} - \alpha| < \varepsilon, (n_i > n_{i_0} > n_0) \Rightarrow \lim_{n \to \infty} x_{n_i} = \alpha$.

Teorema 6.4. Toda sucesión convergente es acotada.

Demostración. Sea $\alpha = \lim_{n \to \infty} x_n$. Tomando $\varepsilon = 1, \exists n_\varepsilon : x_n \in (\alpha - 1, \alpha + 1), \forall n > n_\varepsilon$. $A = \{x_1, x_2, \cdots, x_{n_\varepsilon}, \alpha - 1, \alpha + 1\}, \ c = \min(A), \ d = \max(A) \Rightarrow x_n \in [c, d], \forall n \in \mathbb{N}$: la sucesión es acotada.

Teorema 6.5. Toda sucesión monótona y acotada es convergente.

Demostración. Supongamos que $(x_n)_{n\in\mathbb{N}}$ es creciente y acotada y quiero ver que $\lim_{n\to\infty}x_n=\alpha=\sup\{x_n\}_{n\in\mathbb{N}}.$

Dado $\varepsilon > 0$, como $\alpha - \varepsilon < \alpha, \alpha - \varepsilon$ no puede ser cota superior de $\{x_n\} \Rightarrow \exists n_0 : x_{n_0} > \alpha - \varepsilon$. Como $(x_n)_{n \in \mathbb{N}}$ es monótona, si $n > n_0 \Rightarrow x_n > x_{n_0} > \alpha - \varepsilon \Rightarrow$

 $a - \varepsilon < x_n \le a < a + \varepsilon, \forall n > n_0 : x_n \to a.$

Análogamente para $(x_n)_{n\in\mathbb{N}}$ es decreciente y acotada.

Corolario 6.6. Si una sucesión monótona tiene una subsucesión convergente \Rightarrow es convergente.

Demostración. $(x_n)_{n\in\mathbb{N}}$ es acotada porque tiene una subsucesión acotada.

Ejemplo. $x_n = a^n$, $a \in \mathbb{R}$. Si a = 0 o a = 1 la sucesión es constante.

Si a = -1, la sucesión diverge porque $x_{2n} \to 1$ y $x_{2n+1} \to -1$.

Si a > 1, la sucesión es creciente y no acotada \Rightarrow diverge.

Si a < -1, la sucesión es decreciente y no acotada \Rightarrow diverge.

Si $0 < \alpha < 1$, la sucesión es convergente por ser subsucesión de $\frac{1}{n}$ y más aún $\alpha^n \to 0$.

Si $-1 < \alpha < 0$, la sucesión converge pues $|\alpha^n| = |\alpha|^n = \alpha^n \to 0$.

6.2 Propiedades de límites

6.3 Ejemplo subsucesiones

6.4 Punto de acumulación

Clase VII - 13/09

- 7.1 Límite superior e inferior
- 7.2 Sucesiones de Cauchy
- 7.3 Límites infinitos
- 7.4 Series numéricas

Clase VIII - 24/09

- 8.1 Ejemplo de convergencia condicional
- 8.2 Corolarios de series
- 8.3 Criterios de convergencia
- 8.3.1. Criterio del cociente y de la raíz
- 8.3.2. Criterio de Dirichlet
- 8.3.3. Criterio de Leibniz
 - 8.4 Parte positiva y negativa
 - 8.5 Reordenamientos

Bibliografía

[1] Walter Rudin. $Principles\ of\ mathematical\ analysis,\ 3rd\ Edition.$ McGraw-Hill, New York, 1976.