数学オリンピックワークショップ 当日問題 A ―解答―

| A6 | 略解

(帰納法を回す部分などは各自で確認してください. 白板で説明予定ですが, 必要に応じ窪田に聞いてください)

まず、(2) より帰納法で、任意の整数 n について f(na)=nf(a) を得る。a=1 を代入し、任意の整数 n について f(n)=n である。また、 $n\neq 0$ の時、 $a=\frac{m}{n}$ を代入し、 $m=nf(\frac{m}{n})$. よって任意の整数 $n,m(n\neq 0)$ について $f(\frac{m}{n})=\frac{m}{n}$ を得る。

ここで、(2) に $a=x,b=\frac{1}{x}$ を代入し、(3) より $f(x+\frac{1}{x})=f(x)+\frac{1}{f(x)}$ を得る。 $|x+\frac{1}{x}|\geq 2$ であること、 $|c|\geq 2$ を満たす任意の実数 c に対して $c=x+\frac{1}{x}$ を満たす x が存在することから、この式より、

 $|x| \ge 2$ なる任意の x について $|f(x)| \ge 2$ とわかる.

ここで、実数 k で、k < f(k) となるようなものの存在を仮定する.このとき,ある有理数 q であって k, f(k) - 4 < q < f(k) を満たすようなものが存在する.(有理数の稠密性といいます→参考)ここで,|k-q-2| > 2 より,|f(k-q-2)| > 2 である.一方,f(k-q-2) = f(k) + f(-q-2) = f(k) - q - 2 で,q < f(k) < q + 4 より |f(k) - q - 2| < 2.よって矛盾.よって任意の x について $x \ge f(x)$ である.k > f(k) なる実数 k の存在を仮定したときも,同様にして矛盾を導くことができる.したがって任意の x について f(x) = x である.

参考 有理数の稠密性

任意の実数 a < b に対し, a < q < b を見たす有理数 q が存在する.

証明 $\frac{1}{b-a}$ よりも大きな自然数 N をとってくる.ここで, $\frac{s-1}{N} \leq a < \frac{s}{N}$, $\frac{t}{N} < b \leq \frac{t+1}{N}$ なる s,t をとってくると, $\frac{1}{N} < b-a$ より $s \leq t$ である.よって $\frac{s}{N}$ は条件を満たす.

数学オリンピックワークショップ 当日問題 C ―解答―

 $oxed{C6}$ キーワード:一色ずつ処理, 数字から解法を予測する

次の補題を示す.

補題: 2n 個の箱があり、それぞれにいくつかの赤玉と白玉が入っている.赤玉の個数の最大を R、白玉の個数の最大を W としたとき、これらの箱を n 個ずつに分け、赤玉の個数の差が R 以下、白玉の個数の差が W 以下のあるようにすることができる.

補題証明: 帰納法を用いる. n=1 の時は明らか. 以下 n=k-1 で成立するならば n=k でも成立することを示す. 2k 個の箱の内, 赤玉の個数が多い順に箱を b_1,b_2,\cdots,b_{2k} とする. b_3,b_4,\cdots,b_{2k} に帰納法の仮定を用いて k-1 個ずつに分ける. そこで, b_1,b_2 のうち白玉が多い方を, k-1 個組のうち白玉が少ない方に加え、残りをもう一方に加える, とする. このとき白玉について条件を満たすのは明らか. 赤玉について, b_i の赤玉の個数を r_i とすると, 赤玉の個数の差は最大で $r_1-r_2+r_3(k-1)$ 個の箱の組同士の赤玉の個数の差は最大で r_3 なことに注意) より R 以下. よって赤玉についても条件をみたす. (補題証明終わり)

よって,最も赤玉が多い箱を選び,次に選ばれていない中で最も白玉が多い箱を選び,残った98箱を補題にしたがって49箱ずつに分け,緑玉が多い方を選べば条件を満たす.

数学オリンピックワークショップ 当日問題 G ―解答―

G6

OB に関する Q の対称点を Q' とすると, \angle AOP = \angle BOQ = \angle BOQ' より, \angle POQ' = 90° となるので, \triangle OPQ' は直角二等辺三角形。

ゆえに,PX + QX = PX + Q'X は P, X, Q' が同一直線上にあるとき,最小値 $6\sqrt{2}$ をとる。

G7

$$\begin{aligned} MP^2 &= MB \cdot MA \\ &= MQ^2 \end{aligned}$$

よって MP = MQ, つまり M は PQ の中点。

ゆえに、AS と \triangle PAQ の外接円の交点を R とすれば、

$$\angle PQB = \angle QAM$$
 (∵ 接弦定理)
$$= \angle PAS$$
 (∵ $G5$ (1))
$$= \angle PQR$$
 (∵ $\Box T$ (1))

同様に、 $\angle QPB=\angle QPR$ もわかるので、 $\triangle BPQ\equiv \triangle RPQ$ 。 つまり、 B' は R に他ならないので、 A, B' = R, S は同一直線上にある。

数学オリンピックワークショップ 当日問題 N ―解答―

N10

正整数 s>t が (s-t)|t を満たすとき、問題文の条件より $a_s\neq a_t$ である。正整数の集合であって、どの 2 要素 s>t も (s-t)|t を満たすようないくらでも大きいものを構成すればよい。 $\{1\}$ は条件を満たす。S が条件を満たすとき、M を S の要素の最小公倍数として、 $\{s+M|s\in S\}\cup\{M\}$ は条件を満たす。よって示された。