Started on	Sunday, 4 February 2024, 10:18 AM
State	Finished
Completed on	Sunday, 4 February 2024, 11:04 AM
Time taken	46 mins
Grade	10.00 out of 10.00 (100 %)
Question 1	
Correct	
Mark 1.00 out of 1.00	
Naïve Bayes is best suited for ML applications wherein	
$igcirc$ the feature vectors $\overline{\mathbf{x}}$ are discrete, response is continuous	
\bigcirc the feature vectors $\overline{\mathbf{x}}$ are continuous, response is discrete	
\bigcirc the feature vectors $ar{\mathbf{x}}$ are continuous, response is continuous	
$lacktriangledown$ the feature vectors $\overline{\mathbf{x}}$ are discrete, response is discrete	
Your answer is correct.	
The correct answer is: the feature vectors $\overline{\mathbf{x}}$ are discrete, response is discrete	
Question 2	
Correct	
Mark 1.00 out of 1.00	
In the example considered in lectures, the size of the feature vector equals	
Number of em	nails in the set
O 2	
Number of wo	rds in an e-mail
Number of words in the dictionary	
Your answer is corre	ect.
The correct answer is:	
Number of words in the dictionary	

Question ${\bf 3}$

Correct

Mark 1.00 out of 1.00

The naïve Bayes assumption states that

- the features are conditionally independent given the label
- the features are independent
- the features are only uncorrelated given the label
- the features are independent of the past history of features given the immediate past feature

Your answer is correct.

The correct answer is:

the features are conditionally independent given the label

Question **4**

Correct

Mark 1.00 out of 1.00

The probability $p(x_j=1|y=1)$ can be evaluated using the formula

$$\frac{\sum_{j=1}^{N} 1 (x_j(i) = 1, y(i) = 1)}{\sum_{i=1}^{M} 1 (y(i) = 1)}$$

$$\sum_{j=1}^{N} 1(x_j(i)=1,y(i)=1)$$

$$N$$

$$\hspace{0.5cm} \stackrel{\bigcirc}{=} \hspace{0.25cm} \frac{\sum_{i=1}^{M} \mathbbm{1} \big(x_{j}(i) = 1, y(i) = 1 \big)}{\sum_{i=1}^{M} \mathbbm{1} \big(y(i) = 1 \big)}$$

$$\bigcirc \quad \frac{\sum_{i=1}^{M} \mathbf{1} \left(x_{j}(i) = 1, y(i) = 1 \right)}{M}$$

Your answer is correct.

The correct answer is:
$$\frac{\sum_{i=1}^{M}\mathbf{1}\big(x_{j}(i)=\mathbf{1},y(i)=\mathbf{1}\big)}{\sum_{i=1}^{M}\mathbf{1}\big(y(i)=\mathbf{1}\big)}$$

Question ${\bf 5}$

Correct

Mark 1.00 out of 1.00

The probability $p(x_j = 1|y = 0)$ can be evaluated using the formula

$$\begin{array}{c} @ \quad \frac{\sum_{i=1}^{M} \mathbf{1} \left(x_{j}(i) = 1, y(i) = 0 \right)}{\sum_{i=1}^{M} \mathbf{1} \left(y(i) = 0 \right)} \\ @ \quad \frac{\sum_{j=1}^{N} \mathbf{1} \left(x_{j}(i) = 1, y(i) = 0 \right)}{N} \\ \end{array}$$

$$\sum_{j=1}^{N} \mathbf{1}(x_j(i) = 1, y(i) = 0)$$

$$0 1-p(x_j=1|y=1)$$

$$\bigcirc \quad \frac{\sum_{i=1}^{M} \mathbf{1} \left(x_j(i) = 1, y(i) = 0 \right)}{M}$$

Your answer is correct.

The correct answer is:
$$\frac{\sum_{i=1}^{M} \mathbf{1}(x_j(i) = 1, y(i) = 0)}{\sum_{i=1}^{M} \mathbf{1}(y(i) = 0)}$$

Question 6

Correct

Mark 1.00 out of 1.00

The probability p(y = 1) can be evaluated as

$$\bigcirc \quad \underline{\sum_{i=1}^{M} 1(y(i)=1)}_{N}$$

$$\frac{\sum_{i=1}^{M} 1(x_j(i) = 1, y(i) = 1)}{M}$$

$$\frac{\sum_{i=1}^{M} 1(x_j(i) = 1, y(i) = 1)}{N}$$

$$\frac{\sum_{i=1}^{M} 1(y(i) = 1)}{M}$$

$$\sum_{i=1}^{M} 1(x_j(i) = 1, y(i) = 1)$$

$$\sum_{i=1}^{M} 1(y(i)=1)$$

Your answer is correct.

The correct answer is:
$$\frac{\sum_{i=1}^{M} \mathbf{1}(y(i) = \mathbf{1})}{M}$$

Question ${\bf 7}$

Correct

Mark 1.00 out of 1.00

The probability $(x_j = 1|y = 1)$ is given as

$$0 1-p(x_j=1|y=0)$$

$$1-p(x_j=1|y=1)$$

$$0 \quad 1 - p(x_j = 0 | y = 0)$$

$$0 1-p(y=1|x_j=0)$$

Your answer is correct.

The correct answers are:

$$1 - p(x_j = 1 | y = 0).$$

$$1 - p(x_j = 1|y = 1).$$

$$1-p(x_j=0|y=0),$$

$$1 - p(y = 1 | x_i = 0)$$

Question ${\bf 8}$

Correct

Mark 1.00 out of 1.00

The posterior probability $p(y=1|ar{\mathbf{x}}=ar{\mathbf{v}})$ is given as

$$\frac{p(\bar{\mathbf{x}} = \bar{\mathbf{v}}|y=1)}{p(\bar{\mathbf{x}} = \bar{\mathbf{v}})}$$

$$\bigcirc \quad \frac{p(\overline{\mathbf{x}} = \overline{\mathbf{v}}|y = 1) \times p(y = 1) + p(\overline{\mathbf{x}} = \overline{\mathbf{v}}|y = 0) \times p(y = 0)}{p(\overline{\mathbf{x}} = \overline{\mathbf{v}})}$$

$$\frac{p(\bar{\mathbf{x}} = \bar{\mathbf{v}})}{p(\bar{\mathbf{x}} = \bar{\mathbf{v}}|y=1) \times p(y=1)}$$

Your answer is correct.

The correct answer is:

$$\frac{p(\bar{\mathbf{x}} = \bar{\mathbf{v}} | y = 1) \times p(y = 1)}{p(\bar{\mathbf{x}} = \bar{\mathbf{v}})}$$

Question ${\bf 9}$

Correct

Mark 1.00 out of 1.00

Given a new observation $\bar{\mathbf{X}} \equiv \bar{\mathbf{V}}$, it can be labeled as belonging to the class y = 1 if

$$\frac{\prod_{j=1}^{N} p(x_{j}=v_{j}|y=1)}{p(y=1)} > \frac{\prod_{j=1}^{N} p(x_{j}=v_{j}|y=0)}{p(y=0)}$$

$$\frac{p(y=1)}{\prod_{j=1}^{N} p(x_{j}=v_{j}|y=1)} > \frac{p(y=0)}{\prod_{j=1}^{N} p(x_{j}=v_{j}|y=0)}$$

$$\frac{p(y=1)}{\prod_{j=1}^{N} p(x_j=v_j|y=1)} > \frac{p(y=0)}{\prod_{j=1}^{N} p(x_j=v_j|y=0)}$$

Your answer is correct.

The correct answer is: $\prod_{j=1}^{N} p(x_j = v_j | y = 1) \times p(y = 1) > \prod_{j=1}^{N} p(x_j = v_j | y = 0) \times p(y = 0)$

Question 10

Correct

Mark 1.00 out of 1.00

To avoid zero prior probabilities, one can use

- Conjugate priors
- Fourier approximation
- Laplace smoothing
- Maximum likelihood

Your answer is correct.

The correct answer is: Laplace smoothing