Les questions de cours portent sur les éléments entre accolades et en gras. On attend une maîtrise de l'ensemble des notions du programme de colle. Le calcul matriciel a été introduit sans aucune notion d'algèbre linéaire. L'optique de ce chapitre est essentiellement calculatoire, mais permet d'illustrer quelques concepts d'algèbre générale sur les groupes et les anneaux.

Chapitre 14: Calcul matriciel

Opérations sur les matrices

Notion de matrice, de coefficient de place (i,j) d'une matrice. Ligne i d'une matrice, colonne j d'une matrice. Symbole de Kronecker. Matrice élémentaire $E_{i,j}$. Somme de matrice, multiplication externe d'une matrice par un scalaire. $(\mathcal{M}_{n,p}(K),+)$ est un groupe commutatif. Compatibilité entre l'addition interne et la multiplication externe par un scalaire. Toute matrice est combinaison linéaire de matrices élémentaires. Produit matriciel entre $\mathcal{M}_{n,p}(K)$ et $\mathcal{M}_{p,q}(K)$. [Soit $A \in \mathcal{M}_{n,p}(K)$ et $X \in \mathcal{M}_{p,1}(K)$, alors AX est une combinaison linéaire des colonnes de A]. [Produit de matrices élémentaires]. Le produit matriciel est non commutatif dès que $n = p = q \ge 2$. Associativité et bilinéarité du produit matriciel. Interprétation de $E_{i,j}A$ et $AE_{k,l}$. Transposée d'une matrice. Linéarité de la transposition. $[\forall (A,B) \in \mathcal{M}_{n,p}(K) \times \mathcal{M}_{p,q}(K), (AB)^T = B^T A^T]$. Représentation par blocs. Produit par blocs sous réserve de dimensions compatibles.

Matrices carrées

Matrice identité I_n . $(\mathcal{M}_n(K), +, \times)$ est un anneau. Si $n \geq 2$, il n'est ni commutatif, ni intègre. Formules du binôme et factorisation de $A^n - B^n$ en cas de commutation. Matrices symétriques, antisymétriques. [**Décomposition unique en somme de matrice symétrique et antisymétrique**]. Matrices diagonales, triangulaires, triangulaires strictes. [**Stabilité de ces dernières par produit**]. Groupe linéaire $GL_n(K)$. $\forall (A,B) \in GL_n(K)^2$, $(AB)^{-1} = B^{-1}A^{-1}$. $\forall A \in GL_n(K)$, $A^T \in GL_n(K)$ et $(A^T)^{-1} = (A^{-1})^T$. Condition nécessaire et suffisante d'inversibilité des matrices diagonales (resp. triangulaires), expression des coefficients diagonaux de l'inverse.

Systèmes linéaires

Matrices de transvections $T_{i,j}(\lambda)$, de dilatations $D_i(\alpha)$, de permutations P_σ . [Inversibilité de ces matrices et expression de l'inverse]. Matrice de transposition (i,j) sous la forme $T_{i,j}(1)D_i(-1)T_{j,i}(1)T_{i,j}(-1)$. Effet sur les lignes (resp. colonnes) d'une multiplication à gauche (resp. droite) par une matrice d'opération élémentaire. Notion de système linéaire, compatible, de Cramer. Structure des solutions. Notion de matrice échelonnée en lignes. Méthode d'échelonnement sur des exemples. Application à la résolution de systèmes, à l'étude d'inversibilité de matrices, au calcul de l'inverse sur des exemples.

* * * * *