Summary: Improper integrals

Consider f, g > 0. We say that g grows faster than f as x tends towards ∞ , and write this as

$$0 < f(x) << g(x),$$

if $f, g \longrightarrow \infty$ and $\frac{f(x)}{g(x)} \longrightarrow 0$ as $x \to \infty$.

Examples

For p > 0,

$$\ln x < < x^p < < e^x < < e^{x^2}$$
.

Note that $e^{x^2} = e^{(x^2)}$, not $(e^x)^2 = e^{2x}$.

Rate of Decay (as $x \to \infty$)

Consider f, g > 0. We say that f decays faster than g as x tends towards ∞ , and write this as

$$q(x) >> f(x) > 0$$
,

if $f, g \longrightarrow 0$ and $\frac{f(x)}{g(x)} \longrightarrow 0$ as $x \to \infty$.

Examples

For p > 0,

$$\frac{1}{\ln x} >> \frac{1}{x^p} >> e^{-x} >> e^{-x^2}.$$

Improper integrals definition

An **improper integral** is defined by $\int_a^\infty f(x) dx = \lim_{N \to \infty} \int_a^N f(x) dx$. This improper integral **converges** if the limit exists and is finite.

This improper integral **converges** if the limit exists and is finite. This improper integral **diverges** if the limit does not exist (this includes when the limit is $\pm \infty$).

Conclusion of example: powers of x

$$\int_{a}^{\infty} \frac{dx}{x^{p}} \qquad \begin{cases} \text{diverges} & \text{if } p \leq 1\\ \text{converges to } \frac{a^{-p+1}}{p-1} & \text{if } p > 1 \end{cases}$$

Notation

We say that
$$f(x) \sim g(x)$$
 as $x \to \infty$ if $\frac{f(x)}{g(x)} \xrightarrow[x \to \infty]{} 1$.

In words, we say that f(x) and g(x) are **similar** as $x \to \infty$. (The idea is that f(x) and g(x) have the same asymptotic behavior as x tends to infinity.)

Limit comparison

The idea behind limit comparison is that if the asymptotic behavior is the same, then the improper integrals have the same behavior.

If
$$f(x) \sim g(x)$$
 as $x \to \infty$,

then the two integrals $\int_a^\infty f(x) dx$ and $\int_a^\infty g(x) dx$ (for large a) either **both** converge or **both diverge**.

This also works in the case where one function decays faster than the other as x tends towards infinity.

Suppose that g(x) decays faster than f(x) as $x \to \infty$. That is f(x) >> g(x) as $x \to \infty$.

• If
$$\int_a^\infty f(x) dx$$
 converges, then $\int_a^\infty g(x) dx$ converges.

• If
$$\int_a^\infty g(x) dx$$
 diverges, then $\int_a^\infty f(x) dx$ diverges.

Comparison

Suppose
$$f(x) \ge g(x) > 0$$
 for $x \ge a$.
If $\int_a^\infty f(x) \, dx$ converges, then $\int_a^\infty g(x) \, dx$ converges also.
If $\int_a^\infty g(x) \, dx$ diverges, then $\int_a^\infty f(x) \, dx$ diverges also.