Билет 26

Автор1, ..., Aвтор<math>N

21 июня 2020 г.

Содержание

Билет 26: ε -сети и вполне ограниченность. Свойства. Связь с компактностью (тео-	
рема Хаусдорфа). Теорема о характеристике компактов в \mathbb{R}^d . Теорема Больцано-	
Вейерштрасса	1

0.1. Билет 26: ε -сети и вполне ограниченность. Свойства. Связь с компактностью (теорема Хаусдорфа). Теорема о характеристике компактов в \mathbb{R}^d . Теорема Больцано-Вейерштрасса.

Определение 0.1.

X - метрическое пространство, $A\subset X$. Тогда E - ε -сеть множества A если $\forall a\in A$ $\exists e\in E: \rho(a,e)<\varepsilon.$

Также можно переписать в виде: E - ε -сеть множества A если $A\subset\bigcup_{e\in E}B_{\varepsilon}(e).$

Менее формально E - ε -приближение множества A.

Определение 0.2.

Множество A называется вполне ограниченным, если $\forall \varepsilon > 0 \quad \exists$ конечная ε -сеть множества A.

Определение 0.3.

Пусть $a, b \in \mathbb{R}^d$.

Замкнутый параллелепипед: $[a,b] = [a_1,b_1] \times [a_2,b_2] \times \ldots \times [a_d,b_d]$.

Открытый параллелепипед: $(a,b) = (a_1,b_1) \times (a_2,b_2) \times \ldots \times (a_d,b_d)$.

Свойства.

1. Из вполне ограниченности следует ограниченность.

Доказательство.

Возьмем $\varepsilon=1$. Тогда $A\subset\bigcup_{i=1}^n B_1(e_i)\subset B_R(e_1)$, где $R=1+\max\{\rho(e_1,e_2),\rho(e_1,e_3),\ldots,\rho(e_1,e_n)\}$.

2. В \mathbb{R}^d из ограничености следует вполне ограниченность.

Доказательство.

Любое ограниченное множество в \mathbb{R}^d можно впихнуть ограниченный параллелепипед. Возьемем $\delta < \frac{\varepsilon}{\sqrt{d}}$. Разделим параллелелипипед на кубики со стороной δ . А каждый такой кубик покрывается шариком радиуса ε , так как наибольшее расстояние в таком кубике равно $\sqrt{d}\delta$. Получили конечную ε -сеть.

Теорема 0.1 (Хаусдорфа).

- 1. Компакт вполне ограничен
- 2. Если X полное метрическое пространство и $K\subset X,$ из замкнутости и вполне ограниченности следует компактность.

Доказательство.

1. $K \subset \bigcup_{x \in K} B_{\varepsilon}(x)$ - открытое покрытие. Можем выбрать конечное покрытие, в таком случае центры шариков из конечного поркытия будут образовывать конечную ε -сеть.

Билет 26 СОДЕРЖАНИЕ

2. Проверим секвенциальную компактность. Пусть $\{x_n\} \in K$. Надо доказать, что из нее можно выбрать сходящуюся подпоследовательность, предел которой лежит в K.

Рассмотрим $\varepsilon_n = \frac{1}{n}$. Так как K вполне ограниченно возьмем $K \subset \bigcup_{i=1}^n B_{\varepsilon_1}(e_i)$. Так как шариков коненчное число, то в каком-то из них содержится бесконечное кол-во x_i из $\{x_n\}$. Пусть это шарик $B_{\varepsilon_1}(e_l) = V_1$.

 $V_1 \cap K$ - вполне ограничено, значит можно опять покрыть конечным числом шариков : $V_1 \cap K \subset \bigcup_{i=1}^m B_{\varepsilon_2}(e_i)$. Также существует $B_{\varepsilon_2}(e_k) = V_2$, который содержит бесконенчное число элементов

Так сделаем для каждого ε_i .

Выпишем таблицу, где в i- ой строке стоят элементы из V_i . Пусть a_{ij} - элемент таблицы. Тогда рассмотрим элементы $a_{11}, a_{22}, \ldots, a_{nn}, \ldots$ Эти точки образуют подпоследовательность $\{x_n\}$. Покажем, что это фундаментальная последовательность.

Для этого рассмотрим $\rho(a_{kk},a_{nn}), k < n$. По построению таблицы элемент a_{nn} также лежит в шарике, который был взят на k-ом шагу. Значит $\rho(a_{kk},a_{nn}) < 2\varepsilon_k = \frac{2}{k}$. Значит данная последовательность фундаментальна \implies имеет предел и так как K - замкнуто, данный предел $\in K$. Значит K - секвенциально компактно, а значит и просто компактно.

Замечание.

Если бы K было не замкнуто, то предел мог бы не лежать в K, поэтому не было бы секвенциальной компактности.

Теорема 0.2 (о характеристике компактов в \mathbb{R}^d).

В \mathbb{R}^d компактность тоже самое, что и замкнутость и ограниченность.

Доказательство.

- Из компактности замкнутость и ограниченность. Компактное множество замкнуто и по теореме Хаусдорфа из компактности следует вполне ограниченность, а из вполне ограниченность следует ограниченность.
- Из ограниченности в \mathbb{R}^d следует вполне ограниченность, а так как \mathbb{R}^d полно, то по теореме Хаусдофра следует, что замкнутое, вполне ограниченное множество компактно.

Теорема 0.3 (Больцано-Вейерштрасса).

Из всякой ограниченной последовательности в \mathbb{R}^d можно выбрать сходящуюся подпоследовательность.

Доказательство.

 $\{x_n\}$ ограничено \Longrightarrow $\{x_n\}\subset B_R(a)\subset \overline{B}_R(a)$ - замкнуто и ограничено \Longrightarrow компакт \Longrightarrow секвенциально компактно \Longrightarrow можно выбрать сходящуюся подпоследовательность.