Master Degree in Artificial Intelligence for Science and Technology

Cluster Analysis: Hierarchical Clustering

Fabio Stella

Department of Informatics, Systems and Communication
University of Milan-Bicocca
fabio.stella@unimib.it

OUTLOOK

- Concept
- Strengths
- Types
 - Agglomerative
 - single linkage
 - complete linkage
 - average linkage
 - Ward's method
 - Divisive
- Complexity
- Limitations

CONCEPT

- produces a set of **NESTED CLUSTERS** organized as a **HIERARCHICAL TREE**
- can be visualized as a **DENDROGRAM**
 - a tree like diagram that records the sequences of merges or splits

STRENGTHS

- do not have to assume any particular number of clusters
 - any desired number of clusters can be obtained by 'cutting' the dendrogram at the proper level
- they may correspond to meaningful taxonomies
 - example in biological sciences (e.g., animal kingdom, phylogeny reconstruction, ...)

TYPES OF CLUSTERING

— AGGLOMERATIVE

- start with the points as individual clusters
- at each step, merge the closest pair of clusters until only one cluster (or k clusters) left

— DIVISIVE

- start with one, all-inclusive cluster
- at each step, split a cluster until each cluster contains an individual point (or there are k clusters)
- Traditional hierarchical algorithms use a similarity or distance matrix
 - merge or split one cluster at a time

— KEY IDEA: successively merge closest clusters

BASIC ALGORITHM

- 1. Compute the proximity matrix
- 2. Let each data point be a cluster
- 3. REPEAT
- 4. Merge the two closest clusters
- 5. Update the proximity matrix
- **6. UNTIL** only a single cluster remains
- Key operation is the computation of the proximity of two clusters
- Different approaches to defining the distance between clusters distinguish the different algorithms

STEP 1: compute the proximity matrix

STEP 2: each point is a cluster

PROXIMITY MATRIX

After some merging steps we have some clusters

PROXIMITY MATRIX

We want to merge the two closest clusters (C_2 and C_3) and update the proximity matrix.

PROXIMITY MATRIX

The question is "How do we update the proximity matrix?"

 $\mathbf{C_2} \cup \mathbf{C_3}$

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's method uses squared error

PROXIMITY MATRIX

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's method uses squared error

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's method uses squared error

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's method uses squared error

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's method uses squared error

MIN OR SINGLE LINKAGE

- Proximity of two clusters is based on the two closest points in the different clusters
 - determined by one pair of points, i.e., by one link in the proximity graph

Distance Matrix:

9	p1	p2	р3	p4	p5	p6
p1	0.00	0.24	0.22	0.37	0.34	0.23
p2	0.24	0.00	0.15	0.20	0.14	0.25
р3	0.22	0.15	0.00	0.15	0.28	0.11
p4	0.37	0.20	0.15	0.00	0.29	0.22
p5	0.34	0.14	0.28	0.29	0.00	0.39
р6	0.23	0.25	0.11	0.22	0.39	0.00

MIN OR SINGLE LINKAGE

MIN OR SINGLE LINKAGE (STRENGTHS)

MIN OR SINGLE LINKAGE (STRENGTHS)

Can handle non-elliptical shapes

MIN OR SINGLE LINKAGE (LIMITATIONS)

MIN OR SINGLE LINKAGE (LIMITATIONS)

MIN OR SINGLE LINKAGE (LIMITATIONS)

MAX OR COMPLETE LINKAGE

- Proximity of two clusters is based on the two most distant points in the different clusters
 - determined by all pairs of points in the two clusters

Distance Matrix:

0	p1	p2	p3	p4	p5	p6
p1	0.00	0.24	0.22	0.37	0.34	0.23
p2	0.24	0.00	0.15	0.20	0.14	0.25
р3	0.22	0.15	0.00	0.15	0.28	0.11
p4	0.37	0.20	0.15	0.00	0.29	0.22
p5	0.34	0.14	0.28	0.29	0.00	0.39
р6	0.23	0.25	0.11	0.22	0.39	0.00

MAX OR COMPLETE LINKAGE

MAX OR COMPLETE LINKAGE (STRENGHTS)

MAX OR COMPLETE LINKAGE (STRENGHTS)

Less susceptible to noise

MAX OR COMPLETE LINKAGE (LIMITATIONS)

MAX OR COMPLETE LINKAGE (LIMITATIONS)

- Tends to break large clusters
- Biased towards globular clusters

GROUP AVERAGE

Proximity of two clusters is the average of pairwise proximity between points in the two clusters.

$$\operatorname{proximity}(C_{i}, C_{j}) = \frac{\sum_{p_{k} \in C_{i}, p_{m} \in C_{j}} \operatorname{proximity}(p_{k}, p_{m})}{|C_{i}||C_{j}|}$$

Distance Matrix:

9	p1	p2	р3	p4	p5	p6
p1	0.00	0.24	0.22	0.37	0.34	0.23
p2	0.24	0.00	0.15	0.20	0.14	0.25
р3	0.22	0.15	0.00	0.15	0.28	0.11
p4	0.37	0.20	0.15	0.00	0.29	0.22
p5	0.34	0.14	0.28	0.29	0.00	0.39
р6	0.23	0.25	0.11	0.22	0.39	0.00

GROUP AVERAGE

GROUP AVERAGE

Compromise between single and complete link

- Strengths
 - less susceptible to noise
- Limitations
 - biased towards globular clusters

WARD'S METHOD

- Similarity of two clusters is based on the increase in squared error when two clusters are merged
 - similar to group average if distance between points is distance squared
- Less susceptible to noise
- Biased towards globular clusters
- Hierarchical analogue of K-means
 - can be used to initialize K-means

HIERARCHICAL CLUSTERING: TIME AND SPACE REQUIREMENTS

- O(N²) space since it uses the proximity matrix.
 - N is the number of points.
- O(N³) time in many cases
 - there are N steps and at each step the size, N² proximity matrix must be updated and searched
 - complexity can be reduced to $O(N^2 \log(N))$ time with some cleverness

HIERARCHICAL CLUSTERING: PROBLEMS AND LIMITATIONS

- Once a decision is made to combine two clusters, it cannot be undone
- No global objective function is directly minimized
- Different schemes have problems with one or more of the following:
 - sensitivity to noise
 - difficulty handling clusters of different sizes and non-globular shapes
 - breaking large clusters

RECAP

- Concept
- Strengths
- Types
 - Agglomerative
 - single linkage
 - complete linkage
 - average linkage
 - Ward's method
 - Divisive
- Complexity
- Limitations