

Annex E. LTE Band Edge

1. LTE_Band17

Center 704.00 MHz #Res BW 51 kHz

1.1. LTE Band Edge(NTNV)(Subtest:1, Channel:23755, Bandwidth:5, Modulation:QPSK, RB Number: 1, RB Position:LOW)

VBW 150 kHz*

Cente Frequency		Span(MHz)	RBW (MHz)	Detector		quency MHz)	Power (dBm)	Verdict	Sweep Point
	704	20	0.051	RMS		703.987	-23.78	Pass	784
Agilent Spectrum RL Center Free PASS	RF 50 Ω	AC	Trig: Fre	e Run .	<u>A</u> ¥Avg Type Avg Hold:		06:24:57 PM Mar 01, TRACE 1 2 3 TYPE M WWW DET A A A	4 5 6	equency
10 dB/div	tef Offset 8.5 tef 30.00 d					Mkr1	703.987 M -23.784 dl		Auto Tune
Trace 1	Pass			Λ					Center Freq 0.000000 MHz
0.00								694	Start Freq 0.000000 MHz
-20.0				1				714	Stop Freq .000000 MHz
-30.0								2	CF Step 2.000000 MHz

<u>Auto</u>

Span 20.00 MHz #Sweep 1.000 s (784 pts)

STATUS

Man

Freq Offset 0 Hz

1.2. LTE Band Edge(NTNV)(Subtest:2, Channel:23755, Bandwidth:5, Modulation:QPSK, RB Number: 1, RB Position:MID)

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point
704	20	0.051	RMS	703.987	-48.8	Pass	784

1.3. LTE Band Edge(NTNV)(Subtest:3, Channel:23755, Bandwidth:5, Modulation:QPSK, RB Number: 1, RB Position:HIGH)

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point
704	20	0.051	RMS	700.922	-44.44	Pass	784
Agilent Spectrum Analyzer - Swe	pt SA						

1.4. LTE Band Edge(NTNV)(Subtest:4, Channel:23755, Bandwidth:5, Modulation:QPSK, RB Number: 12, RB Position:LOW)

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point
704	20	0.051	RMS	703.962	-24.89	Pass	784
Agilent Spectrum Analyzer - Swe RL RF 50 \(\text{R} \) Center Freq 704.000 PASS	AC	Trig: Fre	eRun A	⚠ALIGN OFF Avg Type: RMS vg Hold: 1/1	06:25:15 PM Mar 01, TRACE 1 2 3 TYPE M WWW DET A A A	456 MMM AAA	equency
Ref Offset 8.5: 10 dB/div Ref 30.00 d				Mkr1	703.962 M -24.891 dl	П	Auto Tune

1.5. LTE Band Edge(NTNV)(Subtest:5, Channel:23755, Bandwidth:5, Modulation:QPSK, RB Number: 12, RB Position:MID)

Center	Span/MUz)	RBW	Dotoctor	Frequency	Power	Verdict	Sweep
Frequency(MHz)	Span(MHz)	(MHz)	Detector	(MHz)	(dBm)	verdict	Point
704	20	0.051	RMS	703.987	-33.92	Pass	784

1.6. LTE Band Edge(NTNV)(Subtest:6, Channel:23755, Bandwidth:5, Modulation: QPSK, RB Number: 12, RB Position: HIGH)

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point
704	20	0.051	RMS	703.987	-40.85	Pass	784
Agilent Spectrum Analyzer - Sw				A			- 100
Center Freq 704.00		Trig: Fre	INT REF #AuLIGN OFF #Avg Type: RMS → Trig: Free Run Atten: 32 dB		06:25:27 PM Mar 01, 2016 TRACE 1 2 3 4 5 6 TYPE M WWWWWW DET A A A A A A		equency

1.7. LTE Band Edge(NTNV)(Subtest:7, Channel:23755, Bandwidth:5, Modulation:QPSK, RB Number: 25, RB Position:LOW)

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point			
704	20	0.051	RMS	703.987	-27.68	Pass	784			
Agilent Spectrum Analyzer - Swept SA X										
Ref Offset 8.5				Mkr1	703.987 M -27.684 dl	HZ	Auto Tune			

1.8. LTE Band Edge(NTNV)(Subtest:8, Channel:23755, Bandwidth:5, Modulation:16QAM, RB Number: 1, RB Position:LOW)

Center	Span/MU=)	RBW	Detector	Frequency	Power	Verdict	Sweep
Frequency(MHz)	Span(MHz)	(MHz)	Detector	(MHz)	(dBm)	veruici	Point
704	20	0.051	RMS	703.987	-23.56	Pass	784

1.9. LTE Band Edge(NTNV)(Subtest:9, Channel:23755, Bandwidth:5, Modulation:16QAM, RB Number: 1, RB Position:MID)

Center	Span(MHz)	RBW	Detector	Frequency	Power	Verdict	Sweep
Frequency(MHz)	Span(wiriz)	(MHz)	Dotooto	(MHz)	(dBm)	Volume	Point
704	20	0.051	RMS	703.911	-50.42	Pass	784

1.10. LTE Band Edge(NTNV)(Subtest:10, Channel:23755, Bandwidth:5, Modulation:16QAM, RB Number: 1, RB Position:HIGH)

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point
704	20	0.051	RMS	700.948	-44.91	Pass	784

1.11. LTE Band Edge(NTNV)(Subtest:11, Channel:23755, Bandwidth:5, Modulation:16QAM, RB Number: 12, RB Position:LOW)

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point
704	20	0.051	RMS	703.962	-25.88	Pass	784
Agilent Spectrum Analyzer - Swe X RL RF 50 Ω Center Freq 704.000 PASS	OOO MHz PNO: Fast	Trig: Fre	eRun A	Avg Type: RMS vg Hold: 1/1	06:25:58 PM Mar 01, TRACE 1 2 3 TYPE M MANA	456 Fr	equency
Ref Offset 8.5	IFGain:Low 2 dB	Atten: 32	2 q B	Mkr1	703.962 M	Hz	Auto Tune

1.12. LTE Band Edge(NTNV)(Subtest:12, Channel:23755, Bandwidth:5, Modulation:16QAM, RB Number: 12, RB Position:MID)

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point		
704	20	0.051	RMS	703.962	-36.52	Pass	784		
Agilent Spectrum Analyzer - Swept SA LXX RL RF 50 Ω AC INT REF ALIGN OFF 06:26:04 PM Mar 01, 2016									
Center Freq 704.000	000 MHz PNO: Fast	Trig: Fre		Avg Type: RMS vg Hold: 1/1	TRACE 1 2 3	~~~	equency		

1.13. LTE Band Edge(NTNV)(Subtest:13, Channel:23755, Bandwidth:5, Modulation:16QAM, RB Number: 12, RB Position:HIGH)

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point
704	20	0.051	RMS	703.987	-43.67	Pass	784
Agilent Spectrum Analyzer - Swe	pt SA						

1.14. LTE Band Edge(NTNV)(Subtest:14, Channel:23755, Bandwidth:5, Modulation:16QAM, RB Number: 25, RB Position:LOW)

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point
704	20	0.051	RMS	703.987	-29.22	Pass	784
Agilent Spectrum Analyzer - Swe	pt SA						
LXI RL RF 50Ω	AC		INT REF	ALIGN OFF	06:26:16 PM Mar 01,	2016	
Center Freq 704.000	000 MHz	.		Avg Type: RMS	TRACE 1 2 3	7 J U	equency
PASS	BNO. F4 : b :		r: Free Run Avg Hold: 1/1 en: 32 dB		DET A A A		

1.15. LTE Band Edge(NTNV)(Subtest:15, Channel:23825, Bandwidth:5, Modulation:QPSK, RB Number: 1, RB Position:LOW)

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point	
716	20	0.051	RMS	719.052	-49.83	Pass	784	
Agilent Spectrum Analyzer - Swe	*							
Center Freq 716.000 PASS	AC 000 MHz PNO: Fast IFGain:Low	Trig: Fre	eRun A	Avg Type: RMS vg Hold: 1/1	06:26:26 PM Mar 01, TRACE 1 2 3 TYPE M WWW DET A A A	456 MMM AAA	equency Auto Tune	
Def 06 to 40 54 dB Mkr1 719.052 MHz								

1.16. LTE Band Edge(NTNV)(Subtest:16, Channel:23825, Bandwidth:5, Modulation:QPSK, RB Number: 1, RB Position:MID)

VBW 150 kHz*

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point
716	20	0.051	RMS	716.038	-51.03	Pass	784
Agilent Spectrum Analyzer - Swe	pt SA						
Center Freq 716.000 PASS	OOO MHZ PNO: Fast IFGain:Low	Trig: Fre	e Run A	⚠ ALIGN OFF Avg Type: RMS vg Hold: 1/1	06:26:32 PM Mar 01, TRACE 1 2 3 TYPE M WW DET A A A	4 5 6	equency
Ref Offset 8.5 10 dB/div Ref 30.00 d		1	Mkr1	716.038 M -51.031 dl	П	Auto Tune	
Trace 1 Pass						c	enter Freq
20.0						716	.000000 MHz

Start Freq 706.000000 MHz

Stop Freq 726.000000 MHz

> CF Step 2.000000 MHz Man

Freq Offset 0 Hz

<u>Auto</u>

Span 20.00 MHz #Sweep 1.000 s (784 pts)

1.17. LTE Band Edge(NTNV)(Subtest:17, Channel:23825, Bandwidth:5, Modulation:QPSK, RB Number: 1, RB Position:HIGH)

VBW 150 kHz*

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point
716	20	0.051	RMS	716.013	-22.27	Pass	784
Agilent Spectrum Analyzer - Sw XI RF 50 S Center Freq 716.00 PASS	AC AC	Trig: Fre	eRun A	ALIGN OFF Avg Type: RMS vg Hold: 1/1	06:26:38 PM Mar 01, TRACE 1 2 3 TYPE MUMAN DET A A A	456 MMM AAA	equency Auto Tune
Ref Offset 8. 10 dB/div Ref 30.00 Trace 1 Pass		$\overline{\top}$		IVIKET	716.013 M -22.269 dI	3m	enter Freq
10.0							Start Freq
-10.0						706	Stop Freq

726.000000 MHz

<u>Auto</u>

Span 20.00 MHz #Sweep 1.000 s (784 pts)

STATUS

CF Step 2.000000 MHz

Freq Offset 0 Hz

Man

1.18. LTE Band Edge(NTNV)(Subtest:18, Channel:23825, Bandwidth:5, Modulation:QPSK, RB Number: 12, RB Position:LOW)

VBW 150 kHz*

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point
716	20	0.051	RMS	716.013	-36.99	Pass	784
Agilent Spectrum Analyzer - Swept SA M						HZ	equency Auto Tune
Trace 1 Pass							enter Freq

Start Freq 706.000000 MHz

Stop Freq 726.000000 MHz

> CF Step 2.000000 MHz Man

Freq Offset 0 Hz

<u>Auto</u>

Span 20.00 MHz #Sweep 1.000 s (784 pts)

1.19. LTE Band Edge(NTNV)(Subtest:19, Channel:23825, Bandwidth:5, Modulation:QPSK, RB Number: 12, RB Position:MID)

VBW 150 kHz*

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point
716	20	0.051	RMS	716.013	-29.61	Pass	784
Agilent Spectrum Analyzer - Swe XI RL RF 50Ω Center Freq 716.000 PASS	AC	Trig: Fre	e Run A	▲ ALIGN OFF Avg Type: RMS vg Hold: 1/1	06:26:50 PM Mar 01 TRACE 1 2 3 TYPE MWW DET A A A	4 5 6 ₩₩₩	equency
Ref Offset 8.5	4 dB Bm			Mkr	1 716.013 N -29.610 d		Auto Tune
Trace 1 Pass							enter Freq .000000 MHz
0.00	matur	A-dp-71 Myb-13 Ma				706	Start Freq .000000 MHz
-10.0						726	Stop Freq

CF Step 2.000000 MHz

Freq Offset 0 Hz

Man

<u>Auto</u>

Span 20.00 MHz #Sweep 1.000 s (784 pts)

1.20. LTE Band Edge(NTNV)(Subtest:20, Channel:23825, Bandwidth:5, Modulation: QPSK, RB Number: 12, RB Position: HIGH)

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point
716	20	0.051	RMS	716.038	-25.94	Pass	78
Agilent Spectrum Analyzer - Swep							
<u>x</u> RL RF 50 Ω Center Freq 716.000(INT REF	Avg Type: RMS	06:26:56 PM Mar 01, TRACE 123	456 Fr	equency
PASS	PNO: Fast IFGain:Low			vgjHold: 1/1	TYPE M WWW.	A A A	
D-COS-405				Mkr1	716.038 M	- 4	Auto Tune
Ref Offset 8.54 10 dB/div Ref 30.00 dl	, ав Вт		7		-25.944 dE	3m	
Trace 1 Pass							enter Fred
20.0							.000000 MH:
10.0		probleman					Start Free
0.00						706	.000000 MH
-10.0							Stop Free
-20.0		/ \ \ \				726	.000000 мн
-20.0	Name of the last o		∳ ¹				
-30.0	July July Mr.		R. Village				CF Step
	and the same of th		J.M.			Auto	Mar
-40.0	of the Table		Ma-4				
-50.0 Ave	uv			,			req Offse
And And			"	at the same			0 H
-60.0				Marsesta francosta de de la compansa	bruss II.		
					Lary Manager and Mary Mary Lary	Livery to Livery to the second se	
Center 716.00 MHz #Res BW 51 kHz		W 150 kHz*			Span 20.00 N 1.000 s (784 p	ИHz	

STATUS

1.21. LTE Band Edge(NTNV)(Subtest:21, Channel:23825, Bandwidth:5, Modulation:QPSK, RB Number: 25, RB Position:LOW)

Center Frequency(MHz)	Span(MHz)		Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point
716	20	0.051	RMS	716.013	-25.37	Pass	784
Agilent Spectrum Analyzer - Swe RE RF 50 \(\text{RL} \) Center Freq 716.000 PASS	AC	Trig: Fre	eRun A	ALIGN OFF Avg Type: RMS vg Hold: 1/1	06:27:02 PM Mar 01, TRACE 1 2 3 TYPE M WWW DET A A A	456 MMM AAA	equency
Ref Offset 8.5-				Mkr1	716.013 M -25.366 dl	П	Auto Tune

1.22. LTE Band Edge(NTNV)(Subtest:22, Channel:23825, Bandwidth:5, Modulation:16QAM, RB Number: 1, RB Position:LOW)

^ӆ╋╼╻╻╱╬╽╏_{╻╻}

VBW 150 kHz*

	Center uency(M	Hz)	Span(MHz)		RBW (MHz)	Detector		quency MHz)	Power (dBm)	Verdict	Sweep Point
		716		20	0.051	RMS		719.052	-50.7	Pass	784
LXI RL	r Freq 71	50 Ω	AC 000 MHz PN	NO: Fast Sain:Low	Trig: Fre	e Run	#Avg Type Avg Hold:		06:27:08 PM Mar 01 TRACE 1 2 3 TYPE M WW DET A A A	4 5 6	requency
10 dB/d		fset 8.54 10.00 d						Mkr1	719.052 N -50.697 d	IHz Bm	Auto Tune
20.0 T	race 1 Pas	S	٨								Center Freq 5.000000 MHz
0.00										706	Start Freq 5.000000 MHz
-10.0										726	Stop Freq
-30.0					<u> </u>						CF Step 2.000000 MHz

<u>Auto</u>

Span 20.00 MHz #Sweep 1.000 s (784 pts) Man

Freq Offset 0 Hz

1.23. LTE Band Edge(NTNV)(Subtest:23, Channel:23825, Bandwidth:5, Modulation:16QAM, RB Number: 1, RB Position:MID)

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point
716	20	0.051	RMS	716.013	-51.43	Pass	784
Agilent Spectrum Analyzer - Swept SA (X) R L RF 50 Ω AC INT REF ΔALIGN OFF 06:27:14 PM Mar 01, 2016							
Center Freq 716.000 PASS	000 MHz PNO: Fast IFGain:Low		eRun A	Avg Type: RMS vg Hold: 1/1	TRACE 1 2 3 TYPE M MAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	4 5 B	Auto Tupe

1.24. LTE Band Edge(NTNV)(Subtest:24, Channel:23825, Bandwidth:5, Modulation:16QAM, RB Number: 1, RB Position:HIGH)

Center Frequency(MHz)	Span(MHz)	pan(MHz) RBW Detector		Frequency (MHz)	Power (dBm)	Verdict	Sweep Point
716	20	0.051	RMS	716.013	-25.61	Pass	784
Agilent Spectrum Analyzer - Swe	•						
Center Freq 716.000 PASS	OOO MHz PNO: Fast	Trig: Fre	eRun A	Avg Type: RMS vg Hold: 1/1	06:27:20 PM Mar 01, TRACE 1 2 3 TYPE M WWW DET A A A	4 5 6 ₩₩	requency

1.25. LTE Band Edge(NTNV)(Subtest:25, Channel:23825, Bandwidth:5, Modulation:16QAM, RB Number: 12, RB Position:LOW)

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point					
716	20	0.051	RMS	716.013	-38.07	Pass	784					
Agilent Spectrum Analyzer - Swept SA M RL RF 50 Ω AC INT REF ALIGN OFF 06:27:26 PM Mar 01, 2016												

Trace 1 Pass

Center 716.00 MHz #Res BW 51 kHz

1.26. LTE Band Edge(NTNV)(Subtest:26, Channel:23825, Bandwidth:5, Modulation:16QAM, RB Number: 12, RB Position:MID)

VBW 150 kHz*

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	
716	20	0.051	RMS	716.038	-30.77	Pass	784
Agilent Spectrum Analyzer - Swe KM RL RF 50 Ω Center Freq 716.000 PASS	AC		Avg Type: RMS vg Hold: 1/1	06:27:32 PM Mar 01, TRACE 1 2 3 TYPE M WWW DET A A A	456 Fr	equency	
Ref Offset 8.5-				Mkr1	716.038 M -30.769 dl		Auto Tune

STATUS

STATUS

1.27. LTE Band Edge(NTNV)(Subtest:27, Channel:23825, Bandwidth:5, Modulation:16QAM, RB Number: 12, RB Position:HIGH)

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point
716	20	0.051	RMS	716.013	-27	Pass	78
Agilent Spectrum Analyzer - Swej XI RL RF 50 Q Center Freq 716.000 PASS	AC		e Run 🛮 A	ALIGN OFF Avg Type: RMS	06:27:38 PM Mar 01, TRACE 1 2 3 TYPE M WWW! DET A A A	456 MMM AAA	equency
Ref Offset 8.54 10 dB/div Ref 30.00 d				Mkr1	716.013 M -27.004 di		Auto Tune
Trace 1 Pass							enter Fred .000000 MHz
0.00		Anna Mary Chamman of Spring				706	Start Fred .0000000 MH:
-20.0	ار.		1			726	Stop Free .000000 мн
-30.0	The state of the s		Common Broke			2 <u>Auto</u>	CF Step .000000 MH Mai
-50.0	N ^o .		b days	parigh series have been a series and the series are the series and the series and the series are the series and the series and the series are the series are		F	Freq Offse 0 Ha
-60.0 Mary Mary					- Andrewall Antraleder		
Center 716.00 MHz #Res BW 51 kHz	VB	W 150 kHz*		#Sweep	Span 20.00 N 1.000 s (784	ots)	

1.28. LTE Band Edge(NTNV)(Subtest:28, Channel:23825, Bandwidth:5, Modulation:16QAM, RB Number: 25, RB Position:LOW)

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point
716	20	0.051	RMS	716.013	-26.68	Pass	784
Agilent Spectrum Analyzer - Swe	•						
Center Freq 716.000	000 MHz PNO: Fast	Trig: Fre	e Run A	Avg Type: RMS vg Hold: 1/1	06:27:44 PM Mar 01, TRACE 1 2 3 TYPE M WWW	456 Fr	equency

Center 704.00 MHz #Res BW 100 kHz

1.29. LTE Band Edge(NTNV)(Subtest:29, Channel:23780, Bandwidth:10, Modulation:QPSK, RB Number: 1, RB Position:LOW)

VBW 300 kHz*

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point
704	30	0.1	RMS	704	-29.97	Pass	601
Agilent Spectrum Analyzer - Swe RE RF 50 \(\text{SP} \) Center Freq 704.000 PASS Ref Offset 8.5 10 dB/div Ref 30.00 d	AC	Trig: Fre	eRun A	ALIGN OFF Avg Type: RMS vg Hold: 1/1	06:27:55 PM Mar 01, TRACE 1 2 3 TYPE M MAN DET A A A 1 704.00 M -29.974 dl	456 Fr MMW AAA	equency Auto Tune
Trace 1 Pass							Center Freq .000000 MHz

Start Freq 689.000000 MHz

Stop Freq 719.000000 MHz

> CF Step 3.000000 MHz Man

Freq Offset 0 Hz

<u>Auto</u>

Span 30.00 MHz #Sweep 1.000 s (601 pts)

STATUS

1.30. LTE Band Edge(NTNV)(Subtest:30, Channel:23780, Bandwidth:10, Modulation:QPSK, RB Number: 1, RB Position:MID)

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency Power (MHz) (dBm)		Verdict	Sweep Point
704	30	0.1	RMS	704	-56.46	Pass	601
Agilent Spectrum Analyzer - Swe RL RF 50 Ω Center Freq 704.000 PASS	AC	Trig: Fre	eRun A	Avg Type: RMS vg Hold: 1/1	06:28:01 PM Mar 01, TRACE 1 2 3 TYPE M MANA	4 5 6 ******	equency
Ref Offset 8.5.		Atten: 3	2 dB	Mkr	1 704.00 M -56.462 dl	Hz	Auto Tune

1.31. LTE Band Edge(NTNV)(Subtest:31, Channel:23780, Bandwidth:10, Modulation:QPSK, RB Number: 1, RB Position:HIGH)

	Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point	
	704	30	0.1	RMS	703.95	-57.53	Pass	601	
Agilent Spectrum Analyzer - Swept SA									

Center 704.00 MHz #Res BW 100 kHz

1.32. LTE Band Edge(NTNV)(Subtest:32, Channel:23780, Bandwidth:10, Modulation:QPSK, RB Number: 25, RB Position:LOW)

	enter ncy(MHz)	Span(MHz)	RBW (MHz)	Detector		quency MHz)	Power (dBm)	Verdict	Sweep Point
	704	30	0.1	RMS		704	-26.91	Pass	60
X/ RL	rum Analyzer - Sw RF 50 Ω Freq 704.000	AC		e Run A	Avg Type		06:28:13 PM Mar 01, TRACE 1 2 3 TYPE M MANN DET A A A	456 ////// AAA	equency
I0 dB/div	Ref Offset 8.5 Ref 30.00 (52 dB IBm				Mkr	1 704.00 M -26.909 dl		Auto Tune
20.0 Trac	e 1 Pass								enter Fred 000000 MH
0.00				Sandard Sandard	, p			689	Start Fre
20.0								719	Stop Fre 000000 мн
30.0			,	1	1	Note of the Control o		3	CF Ste 000000 MH

VBW 300 kHz*

Freq Offset 0 Hz

Span 30.00 MHz #Sweep 1.000 s (601 pts)

STATUS

Center 704.00 MHz #Res BW 100 kHz

1.33. LTE Band Edge(NTNV)(Subtest:33, Channel:23780, Bandwidth:10, Modulation:QPSK, RB Number: 25, RB Position:MID)

VBW 300 kHz*

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	'	quency MHz)	Power (dBm)	Verdict	Sweep Point
704	30	0.1	RMS		704	-33.49	Pass	601
Agilent Spectrum Analyzer - Sv LXI RL RF 500 Center Freq 704.00 PASS	2 AC	Trig: Fre	e Run .	#Avg Type Avg Hold:		06:28:20 PM Mar 01 TRACE 1 2 3 TYPE M WWW DET A A A	4 5 6	equency
Ref Offset 8. 10 dB/div Ref 30.00					Mkr	1 704.00 N -33.491 dl		Auto Tune
Trace 1 Pass								enter Freq .000000 MHz
10.0			m	the state of the s	January Januar		690	Start Freq
-10.0							089	Stop Freq
-20.0					A Supervioled	مراد	719	.000000 MHz
-30.0			1 pm			Mark Mark	3	CF Step

Man

Freq Offset 0 Hz

<u>Auto</u>

Span 30.00 MHz #Sweep 1.000 s (601 pts)

STATUS

1.34. LTE Band Edge(NTNV)(Subtest:34, Channel:23780, Bandwidth:10, Modulation:QPSK, RB Number: 25, RB Position:HIGH)

Frequency(MF	lz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point
	704	30	0.1	RMS	704	-38.78	Pass	601
Agilent Spectrum Analyza	2016							
PASS PASS PASS PRO: Fast FGain:Low			eRun A	Avg Type: RMS vg Hold: 1/1	TRACE 1 2 3 4 5 6 TYPE M WWWWWW DET A A A A A A		equency	

1.35. LTE Band Edge(NTNV)(Subtest:35, Channel:23780, Bandwidth:10, Modulation:QPSK, RB Number: 50, RB Position:LOW)

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point					
704	30	0.1	RMS	703.95	-29.15	Pass	601					
Agilent Spectrum Analyzer - Swept SA W RL RF 500 AC INT REF ALIGN OFF 06:28:32 PM Mar 01, 2016 Frequency WANT TWO DMS TRACE TO COME.												

1.36. LTE Band Edge(NTNV)(Subtest:36, Channel:23780, Bandwidth:10, Modulation:16QAM, RB Number: 1, RB Position:LOW)

VBW 300 kHz*

Center	Span(MHz)	RBW	Detector	Frequency	Power	Verdict	Sweep
Frequency(MHz)		(MHz)		(MHz)	(dBm)		Point
704	30	0.1	RMS	704	-30.67	Pass	601
Agilent Spectrum Analyzer - Swe	pt SA						
lxi RL RF 50Ω Center Freq 704.000			INT REF	ALIGN OFF AVg Type: RMS	06:28:38 PM Mar 01 TRACE 1 2 3		equency
PASS PASS	PNO: Fast		eRun /	Avg Hold: 1/1	TYPE M WAAA	\\\\\	
FASS	IFGain:Low	Atten: 3	2 dB	B.C.L	0217		Auto Tune
Ref Offset 8.5 10 dB/div Ref 30.00 d				IVIK	r1 704.00 N -30.670 dl		
Trace 1 Pass							
						C	enter Freq
20.0			ſ			704	.000000 MHz
40.0							
10.0							Start Freq
0.00						689	.000000 MHz
-10.0			 				Stop Erog
			1 [719	Stop Freq .000000 MHz
20.0						7 13	.000000 1111 12

CF Step 3.000000 MHz

Freq Offset 0 Hz

Man

<u>Auto</u>

Span 30.00 MHz #Sweep 1.000 s (601 pts)

1.37. LTE Band Edge(NTNV)(Subtest:37, Channel:23780, Bandwidth:10, Modulation:16QAM, RB Number: 1, RB Position:MID)

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point			
704	30	0.1	RMS	704	-56.98	Pass	601			
Agilent Spectrum Analyzer - Swept SA INT REF Δ ALIGN OFF 06:28:44 PM Mar 01, 2016 LW R L RF 50 Ω AC INT REF Δ ALIGN OFF 06:28:44 PM Mar 01, 2016										
Center Freq 704.000 PASS	000 MHz PNO: Fast IFGain:Low		eRun A	Avg Type: RMS vg Hold: 1/1	TRACE 123 TYPE MWWW DET AAA	AAA	equency			
Ref Offset 8.5	2 dB			Mkr	1 704.00 M	Hz	Auto Tune			

1.38. LTE Band Edge(NTNV)(Subtest:38, Channel:23780, Bandwidth:10, Modulation:16QAM, RB Number: 1, RB Position:HIGH)

	Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point	
[704	30	0.1	RMS	704	-56.58	Pass	601	
	Agilent Spectrum Analyzer - Swept SA								

1.39. LTE Band Edge(NTNV)(Subtest:39, Channel:23780, Bandwidth:10, Modulation:16QAM, RB Number: 25, RB Position:LOW)

VBW 300 kHz*

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point
704	30	0.1	RMS	704	-28.85	Pass	601
Agilent Spectrum Analyzer - Swe RL RF 50 Ω Center Freq 704.000 PASS	AC	Trig: Fre	e Run A	⚠ALIGN OFF Avg Type: RMS	06:28:56 PM Mar 01, TRACE 1 2 3 TYPE M WWW DET A A A	456 MMM AAA	equency
Ref Offset 8.5. 10 dB/div Ref 30.00 d				Mkr	1 704.00 M -28.853 dl	HZ	Auto Tune
Trace 1 Pass							enter Freq

Start Freq 689.000000 MHz

Stop Freq 719.000000 MHz

> CF Step 3.000000 MHz Man

Freq Offset 0 Hz

<u>Auto</u>

Span 30.00 MHz #Sweep 1.000 s (601 pts)

1.40. LTE Band Edge(NTNV)(Subtest:40, Channel:23780, Bandwidth:10, Modulation:16QAM, RB Number: 25, RB Position:MID)

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point
704	30	0.1	RMS	703.9	-35.56	Pass	601
Agilent Spectrum Analyzer - Swe	pt SA						
LXI RL RF 50 Ω	AC		INT REF	⚠ ALIGN OFF	06:29:02 PM Mar 01,	2016	
Center Freq 704.000	000 MHz PNO: Fast	Trig: Fre		Avg Type: RMS vg Hold: 1/1	TRACE 1 2 3 TYPE M WWW	//////	equency
PASS	IFGain:Low		2 dB		DET A A A	AAA	

1.41. LTE Band Edge(NTNV)(Subtest:41, Channel:23780, Bandwidth:10, Modulation:16QAM, RB Number: 25, RB Position:HIGH)

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point			
704	30	0.1	RMS	704	-41.43	Pass	601			
Agilent Spectrum Analyzer - Swept SA LXI RL RF 50 Ω AC INT REF Δ ALIGN OFF 06:29:08 PM Mar 01, 2016										
Center Freq 704.000		Trig: Fre	## eRun A	Avg Type: RMS vg Hold: 1/1	TRACE 123 TYPE MWW	456 MMM AAA	equency			
Dof Officet 0 F	2 40			Mkr	1 704.00 M	Hz	Auto Tune			

1.42. LTE Band Edge(NTNV)(Subtest:42, Channel:23780, Bandwidth:10, Modulation:16QAM, RB Number: 50, RB Position:LOW)

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point			
704	30	0.1	RMS	704	-32.1	Pass	601			
Agilent Spectrum Analyzer - Swept SA UNI RL RF 50 \(\Omega \) AC INT REF ALIGN OFF 06:29:14 PM Mar 01, 2016										
Center Freq 704.000	0000 MHz PNO: Fast IFGain:Low		eRun A	Avg Type: RMS vg Hold: 1/1	TRACE 123 TYPE MWW DET A A A	~~~	equency			
				Mkr	1 704 00 M	Hz	Auto Tune			

1.43. LTE Band Edge(NTNV)(Subtest:43, Channel:23800, Bandwidth:10, Modulation:QPSK, RB Number: 1, RB Position:LOW)

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point		
716	30	0.1	RMS	716	-54.25	Pass	601		
Agilent Spectrum Analyzer - Swept SA									
	RF 50 Ω AC			#Avg Type: RMS TRACE 12 23 #Avg Hold: 1/1 TYPE MWW DET A A A		456 MMM AAA	equency		
Def Office 40 F	4 40			Mkr	1 716.00 M	Hz	Auto Tune		

1.44. LTE Band Edge(NTNV)(Subtest:44, Channel:23800, Bandwidth:10, Modulation:QPSK, RB Number: 1, RB Position:MID)

VBW 300 kHz*

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point
716	30	0.1	RMS	716.05	-57.66	Pass	601
Agilent Spectrum Analyzer - Swe X RL RF 50 Ω Center Freq 716.000 PASS	AC	Trig: Fre	eRun A	ALIGN OFF Avg Type: RMS vg Hold: 1/1	06:29:28 PM Mar 01, TRACE 1 2 3 TYPE M WWW DET A A A	456 WWW AAA	equency
Ref Offset 8.5			,	Mk	r1 716.05 M -57.664 dl		Auto Tune
Trace 1 Pass	Ą						enter Freq .000000 MHz
0.00						701	Start Freq
-10.0							Stop Freq

731.000000 MHz

<u>Auto</u>

Span 30.00 MHz #Sweep 1.000 s (601 pts)

STATUS

CF Step 3.000000 MHz

Freq Offset 0 Hz

Man

1.45. LTE Band Edge(NTNV)(Subtest:45, Channel:23800, Bandwidth:10, Modulation: QPSK, RB Number: 1, RB Position: HIGH)

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point
716	30	0.1	RMS	716	-31.79	Pass	601
Agilent Spectrum Analyzer - Swe	pt SA		INT REF	ALIGN OFF	06:29:34 PM Mar 01.	2016	
Center Freq 716.000		Tui F	## eRun A	Avg Type: RMS vg Hold: 1/1	TRACE 1 2 3 TYPE MINIMA	4 5 6 ₩₩	requency

1.46. LTE Band Edge(NTNV)(Subtest:46, Channel:23800, Bandwidth:10, Modulation:QPSK, RB Number: 25, RB Position:LOW)

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point
716	30	0.1	RMS	716	-39.88	Pass	601
Agilent Spectrum Analyzer - Swe X RL RF 50 \(\Omega\$ Center Freq 716.000 PASS	AC	Trig: Fre	eRun A	▲ ALIGN OFF Avg Type: RMS	06:29:40 PM Mar 01, TRACE 1 2 3 TYPE M WWW DET A A A	456 WWW AAA	equency
Ref Offset 8.5 10 dB/div Ref 30.00 d			1	Mkr	1 716.00 M -39.884 dl	П	Auto Tune

1.47. LTE Band Edge(NTNV)(Subtest:47, Channel:23800, Bandwidth:10, Modulation:QPSK, RB Number: 25, RB Position:MID)

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point
716	30	0.1	RMS	716.1	-28.75	Pass	601
Agilent Spectrum Analyzer - Swe XX	AC		INT REF	ALIGN OFF Avg Type: RMS	06:29:46 PM Mar 01,		equency
PASS Ref Offset 8.5	PNO: Fast IFGain:Low		eRun A	vgjHold: 1/1 Mkr	TYPE M A A A A A A A A A A A A A A A A A A	MAAA	Auto Tune

1.48. LTE Band Edge(NTNV)(Subtest:48, Channel:23800, Bandwidth:10, Modulation:QPSK, RB Number: 25, RB Position:HIGH)

Center	Span(MHz)	RBW	Detector	Frequency	Power	Verdict	Sweep
Frequency(MHz)	Span(IVITZ)	(MHz)	Detector	(MHz)	(dBm)	verdict	Point
716	30	0.1	RMS	716.05	-22.93	Pass	601
						<u>l</u>	

1.49. LTE Band Edge(NTNV)(Subtest:49, Channel:23800, Bandwidth:10, Modulation:QPSK, RB Number: 50, RB Position:LOW)

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point
716	30	0.1	RMS	716	-28.55	Pass	601
Agilent Spectrum Analyzer - Swe	pt SA		INIT DEE	A ALIGN OFF	06:20:50 DM May 01	2016	

1.50. LTE Band Edge(NTNV)(Subtest:50, Channel:23800, Bandwidth:10, Modulation:16QAM, RB Number: 1, RB Position:LOW)

VBW 300 kHz*

Center	Span(MHz)	RBW	Detector	Freque	•	Power	Verdict	Sweep
Frequency(MHz)		(MHz)		(MH	IZ)	(dBm)		Point
716	30	0.1	RMS	7	716.05	-54.8	Pass	601
Agilent Spectrum Analyzer - Swe	ept SA							
RL	000 MHz PNO: Fast	Trig: Fre	e Run /	ALIGI Avg Type: RN Avg Hold: 1/1		06:30:04 PM Mar 01, TRACE 1 2 3 TYPE M WWW DET A A A	456 Fr	equency
Ref Offset 8.5		Atten: 3.	2 46		Mkr	1 716.05 M -54.798 dl	Hz	Auto Tune
Trace 1 Pass								enter Freq
10.0								
0.00							701	Start Freq .000000 MHz
-10.0								Stop Freq
30.0							731	.000000 MHz

CF Step 3.000000 MHz

Freq Offset 0 Hz

Man

<u>Auto</u>

Span 30.00 MHz #Sweep 1.000 s (601 pts)

1.51. LTE Band Edge(NTNV)(Subtest:51, Channel:23800, Bandwidth:10, Modulation:16QAM, RB Number: 1, RB Position:MID)

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point			
716	30	0.1	RMS	716	-58.33	Pass	601			
Agilent Spectrum Analyzer - Swept SA (χ) R L RF 50 Ω AC INT REF Δ ALIGN OFF 06:30:10 PM Mar 01, 2016 Frequency Center Freq 716.000000 MHz #Avg Type: RMS 1RACE 1 2 3 4 5 6 1 7YPE MWWWWW Trig: Free Run Avg Hold: 1/1 TYPE MWWWWWW 1 A A A A A A A A A A A A A A A A A A A										
Ref Offset 8.5-				Mkr	1 716.00 M -58.326 dl	П	Auto Tune			

1.52. LTE Band Edge(NTNV)(Subtest:52, Channel:23800, Bandwidth:10, Modulation:16QAM, RB Number: 1, RB Position:HIGH)

VBW 300 kHz*

Cente Frequency	-	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point
	716	30	0.1	RMS	716	-32	Pass	601
Center Freq	F 50 Ω 716.000 ef Offset 8.5 ef 30.00 d	OOO MHZ PNO: Fast IFGain:Low	Trig: Fre		450 4444 A A A	equency Auto Tune		
Trace 1	Pass							enter Freq

Start Freq 701.000000 MHz

Stop Freq 731.000000 MHz

> CF Step 3.000000 MHz Man

Freq Offset 0 Hz

<u>Auto</u>

Span 30.00 MHz #Sweep 1.000 s (601 pts)

1.53. LTE Band Edge(NTNV)(Subtest:53, Channel:23800, Bandwidth:10, Modulation:16QAM, RB Number: 25, RB Position:LOW)

VBW 300 kHz*

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point			
716	30	0.1	RMS	716.05	-41	Pass	601			
Agilent Spectrum Analyzer - Swe	Agilent Spectrum Analyzer - Swept SA									
Center Freq 716.000 PASS	AC 000 MHz PNO: Fast IFGain:Low	Trig: Fre	e Run A	⚠ ALIGN OFF Avg Type: RMS vg Hold: 1/1	06:30:22 PM Mar 01, TRACE 1 2 3 TYPE M WWW DET A A A	456 ****** AAA	equency			
Ref Offset 8.5			_	Mkr	IHz 3m	Auto Tune				
Trace 1 Pass							Center Freq .000000 MHz			

Start Freq 701.000000 MHz

Stop Freq 731.000000 MHz

> CF Step 3.000000 MHz Man

Freq Offset 0 Hz

<u>Auto</u>

Span 30.00 MHz #Sweep 1.000 s (601 pts)

1.54. LTE Band Edge(NTNV)(Subtest:54, Channel:23800, Bandwidth:10, Modulation:16QAM, RB Number: 25, RB Position:MID)

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point
716	30	0.1	RMS	716.05	-30.38	Pass	601
Agilent Spectrum Analyzer - Swe	ept SA AC		INT REF	<u> </u>	06:30:28 PM Mar 01,	2016	
Center Freq 716.000	000 MHz PNO: Fast IFGain:Low		eRun A	Avg Type: RMS vg Hold: 1/1	TRACE 1 2 3 TYPE M WWW DET A A A	******	equency
Ref Offset 8.5	4 dB			Mkr	1 716.05 M	Hz	Auto Tune

1.55. LTE Band Edge(NTNV)(Subtest:55, Channel:23800, Bandwidth:10, Modulation:16QAM, RB Number: 25, RB Position:HIGH)

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point
716	30	0.1	RMS	716.05	-25.55	Pass	601
Agilent Spectrum Analyzer - Swe	ept SA		INT REF	/ ALIGN OFF	06:30:34 PM Mar 01,	2016	

1.56. LTE Band Edge(NTNV)(Subtest:56, Channel:23800, Bandwidth:10, Modulation:16QAM, RB Number: 50, RB Position:LOW)

VBW 300 kHz*

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point
716	30	0.1	RMS	716	-30.05	Pass	601
Agilent Spectrum Analyzer - Swe RL RF 50 Ω Center Freq 716.000 PASS	AC	Trig: Fre	e Run /	⚠ALIGN OFF Avg Type: RMS Avg Hold: 1/1	06:30:40 PM Mar 01 TRACE 1 2 3 TYPE M WWW DET A A A	456 WWW AAA	equency
Ref Offset 8.5	4 dB Bm			Mkr	1 716.00 N -30.047 dl	ПΖ	Auto Tune
Trace 1 Pass							enter Freq .000000 MHz
0.00	Annual of the second of the se	and the same of th				701	Start Freq
-10.0						731	Stop Freq .000000 MHz
-30.0		\ 	1			3	CF Step .000000 MHz

<u>Auto</u>

Span 30.00 MHz #Sweep 1.000 s (601 pts)

STATUS

Man

Freq Offset 0 Hz

END