STACKELBERG MEAN-PAYOFF GAMES WITH ONE EPSILON-OPTIMAL ADVERSARIAL FOLLOWER

Mrudula Balachander¹

Jointly with: Shibashis Guha² Jean-François Raskin²

¹Chennai Mathematical Institute, India

²Université libre de Bruxelles, Belgium

June 3rd 2020

Two (types of) Players:

Two (types of) Players:

Two (types of) Players:

Two (types of) Players:

Leader Follower

Game: v_1

Bi-Matrix Games					
	I	П			
1	(1,4)	(4,2)			
П	(1,3)	(3,5)			

Sequential Move:

- 1. Leader announces her strategy
- 2. Follower announces his response to leader's strategy

Leader Follower Two (types of) Players: **Bi-Matrix Games** Mean-Payoff Games (0,0)(0,1)Game: v_0 (1,4)(4,2)(0,0)(0, 2.2)(0, 1)

(2,0)

Sequential Move:

- 1. Leader announces her strategy
- 2. Follower announces his response to leader's strategy

(1,3)

(3,5)

Stackelberg Mean Payoff Games

Two (types of) Players:

Leader Follower

Mean-Payoff Game:

Sequential Move:

- 1. Leader announces her strategy
- 2. Follower announces his response to leader's strategy

Stackelberg Mean Payoff Games

Leader Follower

Two (types of) Players:

Mean-Payoff Game:

Sequential Move:

- 1. Leader announces her strategy
- 2. Follower announces his response to leader's strategy

Players are rational and choose the best possible strategy

Best Response

Best Response

Follower can be

Follower can be

- Cooperative or

Follower can be

- Cooperative or
- Adversarial

Stackelberg Mean Payoff Games with One Adversarial Follower

Two Players:

Leader Follower

Mean-Payoff Game:

Sequential Move:

- 1. Leader announces her strategy
- 2. Follower announces his **adversarial** best response to leader's strategy

Stackelberg Mean Payoff Games with One Adversarial Follower

Two Players:

Leader Follower

Adversarial

Mean-Payoff Game:

Sequential Move:

- 1. Leader announces her strategy
- 2. Follower announces his **adversarial** best response to leader's strategy

(Filiot, Gentilini and Raskin - ICALP 2020)

(Filiot, Gentilini and Raskin - ICALP 2020)

(Filiot, Gentilini and Raskin - ICALP 2020)

(Filiot, Gentilini and Raskin - ICALP 2020)

Leader strategy:

(Filiot, Gentilini and Raskin - ICALP 2020)

Leader strategy: If $a^k b$, then $(c^k de)^\omega$

(Filiot, Gentilini and Raskin - ICALP 2020)

Leader strategy: If $a^k b$, then $(c^k de)^\omega$

Follower strategy:

(Filiot, Gentilini and Raskin - ICALP 2020)

Leader strategy: If $a^k b$, then $(c^k de)^\omega$

Follower strategy: If $a^{1000}b$, then $(c^{1000}de)^{\omega}$

(Filiot, Gentilini and Raskin - ICALP 2020)

Leader strategy: If $a^k b$, then $(c^k de)^\omega$

Follower strategy: If $a^{1000}b$, then $(c^{1000}de)^{\omega}$

If $a^{100000}b$, then $(c^{100000}de)^{\omega}$

Best Responses May Not Exist

(Filiot, Gentilini and Raskin - ICALP 2020)

Leader strategy: If $a^k b$, then $(c^k de)^\omega$

Follower strategy: If $a^{1000}b$, then $(c^{1000}de)^{\omega}$

If $a^{100000}b$, then $(c^{100000}de)^{\omega}$

If $a^{\infty}b$, then the vertex v_1 is never reached.

(Filiot, Gentilini and Raskin - ICALP 2020)

Leader strategy: If $a^k b$, then $(c^k de)^\omega$

(Filiot, Gentilini and Raskin - ICALP 2020)

Leader strategy: If $a^k b$, then $(c^k de)^\omega$

Follower strategy:

(Filiot, Gentilini and Raskin - ICALP 2020)

Leader strategy: If $a^k b$, then $(c^k de)^\omega$

Follower strategy: For $\epsilon = 0.1$, play $a^{1000}b$

(Filiot, Gentilini and Raskin - ICALP 2020)

Leader strategy: If $a^k b$, then $(c^k de)^\omega$

Follower strategy: For $\epsilon = 0.1$, play $a^{1000}b$

For $\epsilon = 0.001$, play $a^{100000}b$

(Filiot, Gentilini and Raskin - ICALP 2020)

ASV is the largest mean-payoff value the Leader can obtain when the Follower plays an **adversarial** best response.

(Filiot, Gentilini and Raskin - ICALP 2020)

ASV is the largest mean-payoff value the Leader can obtain when the Follower plays an **adversarial** best response.

$$\mathbf{ASV}(\sigma_0)(v) = \sup_{\epsilon > 0} \inf_{\sigma_1 \in \mathbf{BR}^{\epsilon}(\sigma_0)} \mathsf{Mean-Payoff} \left[\mathsf{Outcome}(\sigma_0, \sigma_1) \right]$$

(Filiot, Gentilini and Raskin - ICALP 2020)

ASV is the largest mean-payoff value the Leader can obtain when the Follower plays an **adversarial** best response.

$$\mathbf{ASV}(\sigma_0)(v) = \sup_{\epsilon > 0} \inf_{\sigma_1 \in \mathbf{BR}^{\epsilon}(\sigma_0)} \mathsf{Mean-Payoff} \left[\mathsf{Outcome}(\sigma_0, \sigma_1) \right]$$

 σ_0 : Leader Strategy

 σ_1 : Follower Strategy

 $\mathbf{BR}^{\epsilon}(\sigma_0)$: Epsilon-Optimal Best Response of Follower to Leader's strategy σ_0

(Filiot, Gentilini and Raskin - ICALP 2020)

ASV is the largest mean-payoff value the Leader can obtain when the Follower plays an **adversarial** best response.

$$\mathbf{ASV}(\sigma_0)(v) = \sup_{\epsilon > 0} \inf_{\sigma_1 \in \mathbf{BR}^{\epsilon}(\sigma_0)} \mathsf{Mean-Payoff} \; [\mathsf{Outcome}(\sigma_0, \sigma_1)]$$

$$\mathbf{ASV}(v) = \sup_{\sigma_0} \mathbf{ASV}(\sigma_0)(v)$$

 σ_0 : Leader Strategy

 σ_1 : Follower Strategy

 $\mathbf{BR}^{\epsilon}(\sigma_0)$: Epsilon-Optimal Best Response of Follower to Leader's strategy σ_0

Follower is almost rational and choose the epsilon-optimal best response

Follower is almost rational and choose the epsilon-optimal best response

 ϵ is fixed

Stackelberg Mean Payoff Games with One Epsilon-Optimal Adversarial Follower

Two Players:

Leader Follower

Mean-Payoff Game:

Sequential Move:

- 1. Leader announces her strategy
- 2. Follower announces his adversarial **epsilon-optimal** best response to leader's strategy

Stackelberg Mean Payoff Games with One Epsilon-Optimal Adversarial Follower

Epsilon-Optimal Adversarial Follower

The state of the st

Two Players:

Mean-Payoff Game:

Sequential Move:

- 1. Leader announces her strategy
- 2. Follower announces his adversarial **epsilon-optimal** best response to leader's strategy

Epsilon-Optimal Adversarial Stackelberg Value (\mathbf{ASV}^{ϵ})

 \mathbf{ASV}^{ϵ} is the largest mean-payoff value the Leader can obtain when the Follower plays an adversarial epsilon-optimal best response.

Epsilon-Optimal Adversarial Stackelberg Value (\mathbf{ASV}^{e})

 \mathbf{ASV}^{ϵ} is the largest mean-payoff value the Leader can obtain when the Follower plays an **adversarial** epsilon-optimal best response.

$$\mathbf{ASV}^{\epsilon}(\sigma_0)(v) = \inf_{\sigma_1 \in \mathbf{BR}^{\epsilon}(\sigma_0)} \mathsf{Mean-Payoff} \; [\mathsf{Outcome}(\sigma_0, \sigma_1)]$$

Epsilon-Optimal Adversarial Stackelberg Value (\mathbf{ASV}^{e})

 \mathbf{ASV}^{ϵ} is the largest mean-payoff value the Leader can obtain when the Follower plays an adversarial epsilon-optimal best response.

$$\mathbf{ASV}^{\epsilon}(\sigma_0)(v) = \inf_{\sigma_1 \in \mathbf{BR}^{\epsilon}(\sigma_0)} \mathsf{Mean-Payoff} \; [\mathsf{Outcome}(\sigma_0, \sigma_1)]$$

 σ_0 : Leader Strategy

 σ_1 : Follower Strategy

 $\mathbf{BR}^{\epsilon}(\sigma_0)$: Epsilon-Optimal Best Response of Follower to Leader's strategy σ_0

Epsilon-Optimal Adversarial Stackelberg Value (\mathbf{ASV}^{e})

 \mathbf{ASV}^{ϵ} is the largest mean-payoff value the Leader can obtain when the Follower plays an adversarial epsilon-optimal best response.

$$\mathbf{ASV}^{\epsilon}(\sigma_0)(v) = \inf_{\sigma_1 \in \mathbf{BR}^{\epsilon}(\sigma_0)} \mathsf{Mean-Payoff} \; [\mathsf{Outcome}(\sigma_0, \sigma_1)]$$

$$\mathbf{ASV}^{\epsilon}(v) = \sup_{\sigma_0} \mathbf{ASV}^{\epsilon}(\sigma_0)(v)$$

 σ_0 : Leader Strategy

 σ_1 : Follower Strategy

 $\mathbf{BR}^{\epsilon}(\sigma_0)$: Epsilon-Optimal Best Response of Follower to Leader's strategy σ_0

(Filiot, Gentilini and Raskin - ICALP 2020)

(Filiot, Gentilini and Raskin - ICALP 2020)

Follower must be given mean-payoff > 1 else he will play $v_0 \rightarrow v_1$

(Filiot, Gentilini and Raskin - ICALP 2020)

Follower must be given mean-payoff > 1 else he will play $v_0 \rightarrow v_1$

Leader strategy:

Play $v_2 \rightarrow v_2$ for some j times, then play $v_2 \rightarrow v_0$ for some k times such that mean-payoff of Follower is $1 + \delta$

(Filiot, Gentilini and Raskin - ICALP 2020)

Follower must be given mean-payoff > 1 else he will play $v_0 \rightarrow v_1$

Leader strategy: Play $v_2 \to v_2$ for some j times, then play $v_2 \to v_0$ for some k times such that mean-payoff of Follower is $1 + \delta$

When $\delta \to 0$: Leader gets better mean-payoff $\to 1$ (at limit)

When $\delta = 0$: Follower gets a mean-payoff = 1 and plays $v_0 \rightarrow v_1$

(Filiot, Gentilini and Raskin - ICALP 2020)

Follower must be given mean-payoff > 1 else he will play $v_0 \rightarrow v_1$

Leader strategy: Play $v_2 \rightarrow v_2$ for some j times, then play $v_2 \rightarrow v_0$ for some k times such that mean-

payoff of Follower is $1 + \delta$

When $\delta \to 0$: Leader gets better mean-payoff $\to 1$ (at limit)

When $\delta = 0$: Follower gets a mean-payoff = 1 and plays $v_0 \rightarrow v_1$

\mathbf{ASV}^{e} is always achievable

\mathbf{ASV}^{ϵ} is always achievable

Follower must be given a mean-payoff $\geq 1 + \epsilon$

\mathbf{ASV}^{ϵ} is always achievable

Follower must be given a mean-payoff $\geqslant 1 + \epsilon$ If Follower is given a mean-payoff $< 1 + \epsilon$

\mathbf{ASV}^{ϵ} is always achievable

Follower must be given a mean-payoff $\geqslant 1 + \epsilon$ If Follower is given a mean-payoff $< 1 + \epsilon$ playing $v_0 \rightarrow v_1$ is an epsilon-optimal best response

\mathbf{ASV}^{ϵ} is always achievable

Follower must be given a mean-payoff $\geqslant 1 + \epsilon$ If Follower is given a mean-payoff $< 1 + \epsilon$ playing $v_0 \rightarrow v_1$ is an epsilon-optimal best response

Leader strategy:

Play $v_2 \rightarrow v_2$ for some j times, then play $v_2 \rightarrow v_0$ for some k times such that mean-payoff of Follower is $1 + \epsilon$

\mathbf{ASV}^{ϵ} is always achievable

$$\mathbf{ASV}^{\epsilon}(v_0) = 1 - \epsilon$$

Follower must be given a mean-payoff $\geqslant 1 + \epsilon$ If Follower is given a mean-payoff $< 1 + \epsilon$ playing $v_0 \rightarrow v_1$ is an epsilon-optimal best response

Leader strategy:

Play $v_2 \rightarrow v_2$ for some j times, then play $v_2 \rightarrow v_0$ for some k times such that mean-payoff of Follower is $1 + \epsilon$

RESULT 1:

 \mathbf{ASV}^{ϵ} is always achievable

Memory Requirements

Follower must be given a mean-payoff $\geqslant 1 + \epsilon$

Follower must be given a mean-payoff $\geqslant 1 + \epsilon$ If Follower is given a mean-payoff less than $1 + \epsilon$

Follower must be given a mean-payoff $\geqslant 1 + \epsilon$ If Follower is given a mean-payoff less than $1 + \epsilon$ playing $v_0 \rightarrow v_1$ is an epsilon-optimal best response

Follower must be given a mean-payoff $\geqslant 1 + \epsilon$ If Follower is given a mean-payoff less than $1 + \epsilon$ playing $v_0 \rightarrow v_1$ is an epsilon-optimal best response

Leader strategy: Follow the path $((v_0 \to v_0)^k \cdot (v_2 \to v_2)^k)_{k \in \mathbb{N}}$ If any deviation, then play $v_2 \to v_0$

Follower must be given a mean-payoff $\geqslant 1 + \epsilon$ If Follower is given a mean-payoff less than $1 + \epsilon$ playing $v_0 \rightarrow v_1$ is an epsilon-optimal best response

Leader strategy: Follow the path $((v_0 \to v_0)^k \cdot (v_2 \to v_2)^k)_{k \in \mathbb{N}}$ If any deviation, then play $v_2 \to v_0$ $v_0 \cdot v_2 \cdot v_0 v_0 \cdot v_2 v_2 \cdot v_0 v_0 v_0 \cdot v_2 v_2 v_2 \cdots$

Follower must be given a mean-payoff $\geqslant 1 + \epsilon$ If Follower is given a mean-payoff less than $1 + \epsilon$ playing $v_0 \rightarrow v_1$ is an epsilon-optimal best response

Leader strategy: Follow the path $((v_0 \to v_0)^k \cdot (v_2 \to v_2)^k)_{k \in \mathbb{N}}$ If any deviation, then play $v_2 \to v_0$

Follower must be given a mean-payoff $\geqslant 1 + \epsilon$ If Follower is given a mean-payoff less than $1 + \epsilon$ playing $v_0 \rightarrow v_1$ is an epsilon-optimal best response

Leader strategy: Follow the path $((v_0 \to v_0)^k \cdot (v_2 \to v_2)^k)_{k \in \mathbb{N}}$ If any deviation, then play $v_2 \to v_0$

If Follower follows path, he gets mean-payoff of $1+\epsilon$ and Leader gets a mean-payoff of 1

Follower must be given a mean-payoff $\geqslant 1 + \epsilon$ If Follower is given a mean-payoff less than $1 + \epsilon$ playing $v_0 \rightarrow v_1$ is an epsilon-optimal best response

Leader strategy: Follow the path $((v_0 \to v_0)^k \cdot (v_2 \to v_2)^k)_{k \in \mathbb{N}}$ If any deviation, then play $v_2 \to v_0$

If Follower deviates from path, the maximum mean-payoff he can get is 1

Infinite Memory Required for Follower

Follower must be given a mean-payoff $\geqslant 1 + \epsilon$ If Follower is given a mean-payoff less than $1 + \epsilon$ playing $v_0 \rightarrow v_1$ is an epsilon-optimal best response

Leader strategy: Follow the path $((v_0 \to v_0)^k \cdot (v_2 \to v_2)^k)_{k \in \mathbb{N}}$ If any deviation, then play $v_2 \to v_0$

Infinite Memory Required for Follower

Follower must be given a mean-payoff $\geqslant 1 + \epsilon$ If Follower is given a mean-payoff less than $1 + \epsilon$ playing $v_0 \rightarrow v_1$ is an epsilon-optimal best response

Leader strategy: Follow the path $((v_0 \to v_0)^k \cdot (v_2 \to v_2)^k)_{k \in \mathbb{N}}$ If any deviation, then play $v_2 \to v_0$

 $\mathbf{ASV}^{\epsilon}(\text{Leader Strategy})(v_0) = 1$

Leader strategy:

(Finite Memory)

Follow the path $((v_0 \rightarrow v_0)^k \cdot (v_2 \rightarrow v_2)^{k+\delta})^{\omega}$

If any deviation, then play $v_2 \rightarrow v_0$

Leader strategy: Follow the path $((v_0 \to v_0)^k \cdot (v_2 \to v_2)^{k+\delta})^{\omega}$ (Finite Memory) If any deviation, then play $v_2 \to v_0$

The effects of edges (0, 0) become non-negligible and decrease Leader's mean-payoff

Leader strategy: Follow the path $((v_0 \to v_0)^k \cdot (v_2 \to v_2)^{k+\delta})^{\omega}$ (Finite Memory) If any deviation, then play $v_2 \to v_0$

The effects of edges (0, 0) become non-negligible and decrease Leader's mean-payoff $\mathbf{ASV}^{\epsilon}(\text{Leader Strategy})(v_0) < 1$

Leader strategy:

(Infinite Memory)

Follow the path $((v_0 \to v_0)^k \cdot (v_2 \to v_2)^k)_{k \in \mathbb{N}}$

If any deviation, then play $v_2 \rightarrow v_0$

Leader strategy:

(Infinite Memory)

Follow the path
$$((v_0 \to v_0)^k \cdot (v_2 \to v_2)^k)_{k \in \mathbb{N}}$$

If any deviation, then play $v_2 \rightarrow v_0$

$$\mathbf{ASV}^{\epsilon}(v_0) = 1$$

RESULT 2:

Infinite memory is might be required for Leader to achieve the \mathbf{ASV}^{ϵ}

RESULT 3:

Infinite memory might be required for the Follower to play an epsilon-optimal best-response

Threshold Problem:

Is $\mathbf{ASV}^{\epsilon} > \mathbf{c}$?

$$\Lambda^{\epsilon}(v) = \left\{ \begin{array}{l} (\mathsf{c}, \mathsf{d}) \in \mathbb{R}^2 \mid \text{ From vertex } v, \text{ the Follower can ensure that} \\ \text{Leader's payoff} \leqslant \mathsf{c} \text{ and Follower's payoff} > \mathsf{d} - \epsilon \end{array} \right\}$$

$$\Lambda^{\epsilon}(v) = \left\{ \begin{array}{l} (\mathsf{c}, \mathsf{d}) \in \mathbb{R}^2 \mid \text{ From vertex } v, \text{ the Follower can ensure that} \\ \text{Leader's payoff} \leqslant \mathsf{c} \text{ and Follower's payoff} > \mathsf{d} - \epsilon \end{array} \right\}$$

$$\Lambda^{\epsilon}(v) = \left\{ \begin{array}{l} (\mathsf{c}, \mathsf{d}) \in \mathbb{R}^2 \mid \text{ From vertex } v, \text{ the Follower can ensure that} \\ \text{Leader's payoff} \leqslant \mathsf{c} \text{ and Follower's payoff} > \mathsf{d} - \epsilon \end{array} \right\}$$

From v_0 , Follower can ensure a payoff of (0, 1)

For all,
$$0 \le c < \infty$$
 and $-\infty < d < 1+\epsilon$,
$$(c, d) \in \Lambda^{\epsilon}(v_0)$$

$$\Lambda^{\epsilon}(v) = \left\{ \begin{array}{l} (\mathsf{c},\mathsf{d}) \in \mathbb{R}^2 \mid \text{ From vertex } v \text{, the Follower can ensure that} \\ \text{Leader's payoff} \leqslant \mathsf{c} \text{ and Follower's payoff} > \mathsf{d} - \epsilon \end{array} \right\}$$
 A vertex v is $(\mathsf{c},\mathsf{d})^{\epsilon}$ -bad if $(\mathsf{c},\mathsf{d}) \in \Lambda^{\epsilon}(v)$

$$\Lambda^{\epsilon}(v) = \left\{ \begin{array}{l} (\mathsf{c}, \mathsf{d}) \in \mathbb{R}^2 \mid \text{ From vertex } v, \text{ the Follower can ensure that} \\ \text{Leader's payoff} \leqslant \mathsf{c} \text{ and Follower's payoff} > \mathsf{d} - \epsilon \end{array} \right\}$$

A vertex v is $(c, d)^{\epsilon}$ -bad if $(c, d) \in \Lambda^{\epsilon}(v)$

$$\Lambda^{\epsilon}(v) = \left\{ \begin{array}{l} (\mathsf{c}, \mathsf{d}) \in \mathbb{R}^2 \mid \text{ From vertex } v, \text{ the Follower can ensure that} \\ \text{Leader's payoff} \leqslant \mathsf{c} \text{ and Follower's payoff} > \mathsf{d} - \epsilon \end{array} \right\}$$

A vertex v is $(c, d)^{\epsilon}$ -bad if $(c, d) \in \Lambda^{\epsilon}(v)$

For all $0 \le c < \infty$ and $-\infty < d < 1+\epsilon$, vertex v_0 is $(c, d)^{\epsilon}$ -bad.

$$\Lambda^{\epsilon}(v) = \left\{ \begin{array}{l} (\mathsf{c}, \mathsf{d}) \in \mathbb{R}^2 \mid \text{ From vertex } v, \text{ the Follower can ensure that} \\ \text{Leader's payoff} \leqslant \mathsf{c} \text{ and Follower's payoff} > \mathsf{d} - \epsilon \end{array} \right\}$$
 A vertex v is $(\mathsf{c}, \mathsf{d})^{\epsilon}$ -bad if $(\mathsf{c}, \mathsf{d}) \in \Lambda^{\epsilon}(v)$

$$\Lambda^{\epsilon}(v) = \left\{ \begin{array}{l} (\mathsf{c}, \mathsf{d}) \in \mathbb{R}^2 \mid \text{ From vertex } v, \text{ the Follower can ensure that} \\ \text{Leader's payoff} \leqslant \mathsf{c} \text{ and Follower's payoff} > \mathsf{d} - \epsilon \end{array} \right\}$$
 A vertex v is $(\mathsf{c}, \mathsf{d})^{\epsilon}$ -bad if $(\mathsf{c}, \mathsf{d}) \in \Lambda^{\epsilon}(v)$

A path π is a witness for $\mathbf{ASV}^{\epsilon} > \mathbf{c}$ if

$$\Lambda^{\epsilon}(v) = \left\{ \begin{array}{l} (\mathsf{c}, \mathsf{d}) \in \mathbb{R}^2 \mid \text{ From vertex } v, \text{ the Follower can ensure that} \\ \text{Leader's payoff} \leqslant \mathsf{c} \text{ and Follower's payoff} > \mathsf{d} - \epsilon \end{array} \right\}$$

$$\mathsf{A} \text{ vertex } v \text{ is } (\mathsf{c}, \mathsf{d})^{\epsilon}\text{-bad if } (\mathsf{c}, \mathsf{d}) \in \Lambda^{\epsilon}(v)$$

A path π is a witness for $\mathbf{ASV}^{\epsilon} > \mathbf{c}$ if

Mean-Payoff of π is (c', d), where c' > c

$$\Lambda^{\epsilon}(v) = \left\{ \begin{array}{l} (\mathsf{c}, \mathsf{d}) \in \mathbb{R}^2 \mid \text{ From vertex } v, \text{ the Follower can ensure that} \\ \text{Leader's payoff} \leqslant \mathsf{c} \text{ and Follower's payoff} > \mathsf{d} - \epsilon \end{array} \right\}$$

$$\text{A vertex } v \text{ is } (\mathsf{c}, \mathsf{d})^{\epsilon}\text{-bad if } (\mathsf{c}, \mathsf{d}) \in \Lambda^{\epsilon}(v)$$

A path π is a witness for $\mathbf{ASV}^{\epsilon} > \mathbf{c}$ if Mean-Payoff of π is (c', d), where c' > c and π does not cross a (c, d) $^{\epsilon}$ -bad vertex.

For all, $0 \le c \le \infty$ and $-\infty \le d \le 1 + \epsilon$,

For all, $0 \le c < \infty$ and $-\infty < d < 1+\epsilon$, vertex v_0 is $(c, d)^{\epsilon}$ -bad.

For all, $0 \le c < \infty$ and $-\infty < d < 1+\epsilon$, vertex v_0 is $(c, d)^{\epsilon}$ -bad.

For all, $0 \le c < \infty$ and $-\infty < d < 1+\epsilon$, vertex v_0 is $(c, d)^{\epsilon}$ -bad.

The path
$$((v_0 \rightarrow v_0)^k \cdot (v_2 \rightarrow v_2)^k)_{k \in \mathbb{N}}$$

For all, $0 \le c < \infty$ and $-\infty < d < 1+\epsilon$, vertex v_0 is $(c, d)^{\epsilon}$ -bad.

The path
$$((v_0 \rightarrow v_0)^k \cdot (v_2 \rightarrow v_2)^k)_{k \in \mathbb{N}}$$

gives a mean-payoff of (1, 1+ ϵ)

For all, $0 \le c < \infty$ and $-\infty < d < 1+\epsilon$, vertex v_0 is $(c, d)^{\epsilon}$ -bad.

The path
$$((v_0 \to v_0)^k \cdot (v_2 \to v_2)^k)_{k \in \mathbb{N}}$$

gives a mean-payoff of (1, 1+ ϵ)

and does not cross a $(c, d)^{\epsilon}$ -bad vertex for any c < 1

For all, $0 \le c < \infty$ and $-\infty < d < 1+\epsilon$, vertex v_0 is $(c, d)^{\epsilon}$ -bad.

The path
$$((v_0 \to v_0)^k \cdot (v_2 \to v_2)^k)_{k \in \mathbb{N}}$$

gives a mean-payoff of (1, 1+ ϵ)

and does not cross a $(c, d)^{\epsilon}$ -bad vertex for any c < 1

The path
$$((v_0 \to v_0)^k \cdot (v_2 \to v_2)^k)_{k \in \mathbb{N}}$$
 is an ϵ -witness for $\mathbf{ASV}^{\epsilon} >$

The path
$$((v_0 \to v_0)^k \cdot (v_2 \to v_2)^k)_{k \in \mathbb{N}}$$
 is an ϵ -witness for $\mathbf{ASV}^{\epsilon} > 0.9$

The path
$$((v_0 \to v_0)^k \cdot (v_2 \to v_2)^k)_{k \in \mathbb{N}}$$
 is an ϵ -witness for $\mathbf{ASV}^{\epsilon} > 0.99$

The path
$$((v_0 \to v_0)^k \cdot (v_2 \to v_2)^k)_{k \in \mathbb{N}}$$
 is an ϵ -witness for $\mathbf{ASV}^{\epsilon} > 0.999$

RESULT 4:

 \mathbf{ASV}^{ϵ} > c if and only if there exists an ϵ -witness

RESULT 5:

If $\mathbf{ASV}^{\epsilon}>$ c, we can find an ϵ -regular-witness of the form

RESULT 5:

If $\mathbf{ASV}^{\epsilon}>$ c, we can find an ϵ -regular-witness of the form

$$\pi_1 \cdot (l_1^{[\alpha.k]} \cdot \pi_2 \cdot l_2^{[\beta.k]} \cdot \pi_3)^{\omega}$$

RESULT 5:

If $\mathbf{ASV}^{\epsilon}>$ c, we can find an ϵ -regular-witness of the form

$$\pi_1 \cdot (l_1^{[\alpha.k]} \cdot \pi_2 \cdot l_2^{[\beta.k]} \cdot \pi_3)^{\omega}$$

 l_1 and l_2 are simple cycles,

 π_1 , π_2 and π_3 are finite acyclic plays

We can describe a Finite Memory Strategy of Leader as follows:

We can describe a Finite Memory Strategy of Leader as follows:

1. Follow the ϵ -regular-witness π if Follower follows π . Mean-payoff of π is (c', d), where c' > c

We can describe a Finite Memory Strategy of Leader as follows:

- 1. Follow the ϵ -regular-witness π if Follower follows π . Mean-payoff of π is (c', d), where c' > c
- 2. If Follower deviates from π , then employ memoryless¹ punishing strategy: mean-payoff(Leader) > c or mean-payoff(Follower) \leq d ϵ

¹ Velner, Chatterjee, Doyen, Henzinger, Rabinovich, and Raskin: The complexity of multi-mean-payoff and multi-energy games

We can describe a Finite Memory Strategy of Leader as follows:

- 1. Follow the ϵ -regular-witness π if Follower follows π . Mean-payoff of π is (c', d), where c' > c
- 2. If Follower deviates from π , then employ memoryless¹ punishing strategy: mean-payoff(Leader) > c or mean-payoff(Follower) \leq d ϵ

 \mathbf{ASV}^{ϵ} (Finite Memory Leader Strategy) > c

¹ Velner, Chatterjee, Doyen, Henzinger, Rabinovich, and Raskin: The complexity of multi-mean-payoff and multi-energy games

 $\mathbf{ASV}^{\epsilon}_{\mathsf{FM}}$: Leader is restricted to playing Finite Memory Strategies

$$\mathbf{ASV}_{\mathsf{FM}}^{\epsilon} = \mathbf{ASV}^{\epsilon}$$

 $\mathbf{ASV}^{\epsilon}_{\mathsf{FM}}$: Leader is restricted to playing Finite Memory Strategies

$$\mathbf{ASV}_{\mathsf{FM}}^{\epsilon} = \mathbf{ASV}^{\epsilon}$$

 $\mathbf{ASV}^{\epsilon}_{\mathsf{FM}}$: Leader is restricted to playing Finite Memory Strategies

$$\mathbf{ASV}^{\epsilon} = \mathbf{c}'$$

$$\mathbf{ASV}_{\mathsf{FM}}^{\epsilon} = \mathbf{ASV}^{\epsilon}$$

 $\mathbf{ASV}^{\epsilon}_{\mathsf{FM}}$: Leader is restricted to playing Finite Memory Strategies

$$\mathbf{ASV}^{\epsilon} = \mathbf{c}'$$

 \mathbf{ASV}^{ϵ} (Finite Memory Leader Strategy) > c, for all c < c'

We can guess

We can guess

an ϵ -regular-witness

We can guess an ϵ -regular-witness in NP-Time

 $\mathbf{ASV}^{\epsilon}(v) = \sup\{c \mid \text{There is an } \epsilon\text{-witness } \pi \text{ for } \mathbf{ASV}^{\epsilon}(v) > c\}$

We can express ${\bf c}$ using FO-Theory over Reals with Addition

 $\mathbf{ASV}^{\epsilon}(v) = \sup\{c \mid \text{There is an } \epsilon\text{-witness } \pi \text{ for } \mathbf{ASV}^{\epsilon}(v) > c\}$

We can express \mathbf{c} using FO-Theory over Reals with Addition

$$\rho(c) = \exists x, y : x > c \land \Phi(x, y) \land \Psi^{\epsilon}(c, y)$$

 $\mathbf{ASV}^{\epsilon}(v) = \sup\{c \mid \text{There is an } \epsilon\text{-witness } \pi \text{ for } \mathbf{ASV}^{\epsilon}(v) > c\}$

$$\rho(c) = \exists x, y : x > c \land \Phi(x, y) \land \Psi^{\epsilon}(c, y)$$

Computing the \mathbf{ASV}^{e}

 $\mathbf{ASV}^{\epsilon}(v) = \sup\{c \mid \text{There is an } \epsilon\text{-witness } \pi \text{ for } \mathbf{ASV}^{\epsilon}(v) > c\}$

Shows that there exist plays with mean-payoff (x, y)
$$\rho(c) = \exists x,y: x>c \land \Phi(x,y) \land \Psi^{\epsilon}(c,y)$$

 $\mathbf{ASV}^{\epsilon}(v) = \sup\{c \mid \text{There is an } \epsilon\text{-witness } \pi \text{ for } \mathbf{ASV}^{\epsilon}(v) > c\}$

Shows that there exist plays with mean-payoff (x, y) $\rho(c) = \exists x,y: x > c \land \Phi(x,y) \land \Psi^{\epsilon}(c,y)$ Shows that the play does not cross a (c, y)\$\epsilon\$- bad vertex.

 $\mathbf{ASV}^{\epsilon}(v) = \sup\{c \mid \text{There is an } \epsilon\text{-witness } \pi \text{ for } \mathbf{ASV}^{\epsilon}(v) > c\}$

$$\rho(c) = \exists x, y : x > c \land \Phi(x, y) \land \Psi^{\epsilon}(c, y)$$

 $\mathbf{ASV}^{\epsilon}(v) = \sup\{c \mid \text{There is an } \epsilon\text{-witness } \pi \text{ for } \mathbf{ASV}^{\epsilon}(v) > c\}$

$$\rho(c) = \exists x, y : x > c \land \Phi(x, y) \land \Psi^{\epsilon}(c, y)$$

We can also express $\rho(c)$ as a set of linear programs In the linear program, we maximise ${\bf c}$.

Conclusion & Future Work

Results

- Results in our work
- Results by Filiot, Gentilini and Raskin

	Threshold Problem	Computing ASV	Achievability
General Case	NP-Time Finite Memory Strategy	Theory of Reals	No
Fixed Epsilon	NP-Time Finite Memory Strategy	Theory of Reals/ Solving LP in EXPTime	Yes (Requires Infinite Memory)

Results

- Results in our work
- Results by Filiot, Gentilini and Raskin

	Threshold Problem	Computing ASV	Achievability
General Case	NP-Time Finite Memory Strategy	Theory of Reals	No
Fixed Epsilon	NP-Time Finite Memory Strategy	Theory of Reals/ Solving LP in EXPTime	Yes (Requires Infinite Memory)

 $\mathbf{ASV}^{\epsilon}_{\mathsf{FM}}$: Restrict Leader to Finite Memory Strategy

Results

- Results in our work
- Results by Filiot, Gentilini and Raskin

	Threshold Problem	Computing ASV	Achievability
General Case	NP-Time Finite Memory Strategy	Theory of Reals	No
Fixed Epsilon	NP-Time Finite Memory Strategy	Theory of Reals/ Solving LP in EXPTime	Yes (Requires Infinite Memory)

 $\mathbf{ASV}^{\epsilon}_{\mathsf{FM}}$: Restrict Leader to Finite Memory Strategy

$$\mathbf{ASV}^{\epsilon} = \mathbf{ASV}^{\epsilon}_{\mathsf{FM}}$$

Future Work

- Multiple Followers
- Multiple Leaders and Multiple Followers
- Other Quantitative Objectives: Discounted Sum, Quantitative Reachability for \mathbf{ASV}^{ϵ}
- Subgame-Perfect Equilibrium

Future Work

- Multiple Followers
- Multiple Leaders and Multiple Followers
- Other Quantitative Objectives: Discounted Sum, Quantitative Reachability for \mathbf{ASV}^ϵ
- Subgame-Perfect Equilibrium

Thank You