Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет программной инженерии и компьютерной техники

Вычислительная математика

Лабораторная работа №5

Вариант 3

Группа: Р3269

Выполнили:

Грибкова В.Е

Долганова О.А

Проверил:

Машина Е. А.

- 1. Цель лабораторной работы: решить задачу интерполяции, найти значения функции при заданных значениях аргумента, отличных от узловых точек.
- 2. Рабочие формулы используемых методов.

$$\Delta^k y_i = \Delta^{k-1} y_{i+1} - \Delta^{k-1} y_i$$

- конечные разности k-го порядка

Интерполяционные формулы Ньютона для равноотстоящих узлов

Введем обозначение: $t = (x - x_0)/h$. Тогда получим формулу Ньютона, которая называется первой интерполяционной формулой Ньютона для интерполирования вперед:

$$N_n(x) = y_0 + t\Delta y_0 + \frac{t(t-1)}{2!}\Delta^2 y_0 + \dots + \frac{t(t-1)\dots(t-n+1)}{n!}\Delta^n y_0$$

Полученное выражение может аппроксимировать функцию на всем отрезке изменения аргумента $[x_0,x_n]$. Однако более целесообразно (с точки зрения повышения точности расчетов) использовать эту формулу для $x_0 \leq x \leq x_1$. При этом за x_0 может приниматься любой узел интерполяции x_k . Например, для $x_1 \leq x \leq x_2$, вместо x_0 надо взять значение x_1 . Тогда интерполяционный многочлен Ньютона:

$$N_n(x) = y_i + t\Delta y_i + \frac{t(t-1)}{2!}\Delta^2 y_i + \dots + \frac{t(t-1)\dots(t-n+1)}{n!}\Delta^n y_i$$
 (*)

Интерполяционную формулу (*) обычно используют для вычислений значений функции в точках левой половины отрезка.

3. Вычислительная часть

	х	у	№ варианта	X_1	X_2
	1,10	0,2234	3	1,121	1,482
	1,25	1,2438	8	1,852	1,652
Таблица 1.3	1,40	2,2644	13	1,168	1,463
	1,55	3,2984	18	1,875	1,575
	1,70	4,3222	23	1,189	1,491
	1,85	5,3516	28	1,891	1,671
	2,00	6,3867	33	1,217	1,473

2. Построим таблицу конечных разностей для заданной таблицы.

x_i	y_i	Δy_i	$\Delta^2 y_i$	$\Delta^3 y_i$	$\Delta^4 y_i$	$\Delta^5 y_i$	$\Delta^6 y_i$
1,10	0,2234	1,0204	1,0210	1,0340	1,0238	1,0502	1,1253
1,25	1,2438	2,0414	2,0550	2,0578	2,0738	2,2005	

1,40	2,2644	4,0964	4,1128	4,1316	4,2743	
1,55	3,2984	8,1952	8,2244	8,4060		
1,70	4,3222	16,4196	16,6304			
1,85	5,3516	32.9820				
2,00	6,3867					

3. Вычислим значения функции для аргумента X1=1,121, используя первую интерполяционную формулу Ньютона.

$$t = \frac{(x-x_0)}{h} = \frac{1,121-1,1}{0,15} = 0,14$$

$$N_6(x) = y_0 + t\Delta y_0 + \frac{t(t-1)}{2!}\Delta^2 y_0 + \frac{t(t-1)(t-2)}{3!}\Delta^3 y_0 + \frac{t(t-1)(t-3)}{4!}\Delta^4 y_0 + \frac{t(t-1)(t-3)(t-4)}{5!}\Delta^5 y_0 + \frac{t(t-1)(t-3)(t-4)(t-5)}{6!}\Delta^6 y_0$$

$$y(1,121) \approx 0,3715$$

4. Вычислим значения функции для аргумента *X*2=1,482, используя вторую интерполяционную формулу Гаусса.

x_i	y_i	Δ y,	$\Delta^2 y_i$	$\Delta^3 y_i$	$\Delta^4 y_i$	$\Delta^5 y_i$	$\Delta^6 y_i$
1,10	0,2234	1,0204	1,0210	1,0340	1,0238	1,0502	1,1253
1,25	1,2438	2,0414	2,0550	2,0578	2,0738	2,2005	
1,40	2,2644	4,0964	4,1128	4,1316	4,2743		
x0=1,55	3,2984	8,1952	8,2244	8,4060			
1,70	4,3222	16,4196	16,6304				
1,85	5,3516	32.9820					
2,00	6,3867						·

$$t = \frac{(x-x_0)}{h} = \frac{1,428-1,55}{0,15} = -0,813$$

$$P_6(x) = y0 + t\Delta y_{-1} + \frac{t(t+1)}{2!}\Delta^2 y_{-1} + \frac{t(t+1)(t-2)}{3!}\Delta^3 y_{-2} + \frac{t(t+1)(t-3)}{4!}\Delta^4 y_{-2} + \frac{t(t+1)(t-3)(t-4)}{5!}\Delta^5 y_{-3} + \frac{t(t+1)(t-3)(t-4)(t-5)}{6!}\Delta^6 y_{-3}$$

$$y(1,428) \approx 2,830$$

4. Листинг программы.

```
import numpy as np
from matplotlib import pyplot as plt
# Функция для выбора режима ввода данных
def choose input mode():
происходить из файла. Введите 2, если с клавиатуры. "
def get data():
           if mode == 1:
                       x values.append(float(line.split(' ')[0]))
                       y values.append(float(line.split(' ')[1]))
                   x values.append(float(line.split(' ')[0]))
                   y values.append(float(line.split(' ')[1]))
               equation choice = int(input())
```

```
print('Введите исследуемый интервал')
                   x values.append(x i)
                   if equation choice == 1:
                       y values.append(math.sin(x i))
                   elif equation choice == 2:
                       y values.append(x i ** 2)
def lagrange polynomial(x values, y values, x current):
  result = 0
x values[j])
      result += term * y values[i]
   return result
def newton coefficient(x values, y values):
  y = np.copy(y values)
def newton polynomial(x values, y values, x current):
```

```
return result
def t calculation(t, n, forward=True):
  result = t
      if forward:
          result *= t - i
           result *= t + i
  return result
def newton interpolation(x values, y values, x current):
           is equally spaced = False
differences[j][i - 1]
math.factorial(i)
```

```
i - 1][i]) / math.factorial(i)
def stirling interpolation(x values, y values, x current):
   is equally spaced = True
  n = len(x values)
           is equally spaced = False
differences[j][i - 1]
differences[x0 - (i // 2)][i]
           comp t2 *= (t**2 - prev number**2)
           comp t1 *= (t**2 - prev number**2)
```

```
def bessel_interpolation(x values, y values, x current):
differences[j][i - 1]
   t = (x current - x values[x0]) / h
           last number += 1
1)][i]) / 2)
differences[x0 - ((i - 1) // 2)][i]
def finite differences(data, y values):
```

```
temp.append(y values[i + 1] - y values[i])
   data.append(temp)
def main():
  data = get data()
  x values = data[0]
               temp.append(x values[i])
               temp.append(x values[i]+0.01)
  x current = float(input())
  answer1 = lagrange polynomial(x values, y values, x current)
  answer2 = newton polynomial(x values, y values, x current)
answer2)
answer3)
  print('Многочлен Стирлинга дал ответ: ', answer4)
  print('Многочлен Бесселя дал ответ: ', answer5)
plot x]
   if answer3 != 'Узлы не являются равноотстоящими':
x c in plot x]
# Запуск главной функции
main()
```

5. Результаты выполнения программы

```
Введите 1, если ввод данных будет происходить из файла. Введите 2,
если с клавиатуры. Введите 3 для выбора уравнения3
1. sin(x)
2. x ** 2
Выберите уравнение (1 или 2)
Введите исследуемый интервал
Введите количество точек на интервале
Конечные разности: [[-0.7003509767480293, -1.1000442827230057,
1.6159108733819276], [-0.39969330597497643, 2.7159551561049335],
Введите значение аргумента
t < 0.25 или t > 0.75 => результат Бесселя может быть неточным
Полином Лагранжа дал ответ: 0.1411200080598672
Полином Ньютона с разделенными разностями дал ответ:
0.14112000805986724
Полином Ньютона с конечными разностями дал ответ:
Многочлен Стирлинга дал ответ: 0.1411200080598672
Многочлен Бесселя дал ответ: 0.14112000805986724
```


6. Выводы