得分	评阅人

- 、 **选择题**(共 10 小题,每小题 2 分,共 20 分, 答案请填入下表格中。)

题号	1	2	3	4	5	6	7	8	9	10
答案										

1. 函数 $f(x) = \sin 3x$ 的全体原函数是(

A.
$$-\frac{1}{3}\cos 3x + C$$
 B. $\frac{1}{3}\cos 3x + C$ C. $\sin 3x$ D. $\frac{1}{3}\cos 3x + C$

B.
$$\frac{1}{3}\cos 3x + C$$

C.
$$\sin 3x$$

D.
$$\frac{1}{3}\cos 3x + C$$

2. (1) $\int (1-3x)^3 dx = ($

A.
$$-\frac{1}{4}(1-3x)^4 + C$$
; **B.** $-\frac{1}{12}(1-3x)^4 + C$

B.
$$-\frac{1}{12}(1-3x)^4 + C$$

C.
$$-\frac{1}{12}(1-3x)^3 + C$$

D.
$$\frac{1}{12}(1-3x)^4 + C$$

$$3. \frac{\mathrm{d}}{\mathrm{d}x} \int_{0}^{x} t^{2} \mathrm{d}t = (C)$$

A.
$$\frac{x^3}{3}$$
 B. t^2 C. x^2 D. $2x^2$

$$\mathbf{B}. t^2$$

D.
$$2x^2$$

4. 函数 $f(x, y) = \frac{1}{1 - x^2 - v^2}$ 的定义域是 ()。

A.
$$\{(x, y) | x^2 + y^2 = 1\}$$
; B. $\{(x, y) | x^2 + y^2 > 1\}$;

B.
$$\{(x, y) | x^2 + y^2 > 1\}$$

C.
$$\{(x,y) | x^2 + y^2 < 1\};$$
 D. $\{(x,y) | x^2 + y^2 \neq 1\}.$

D.
$$\{(x, y) | x^2 + y^2 \neq 1\}$$
.

5.微分方程 $\frac{dy}{dx} = \cos x$ 的通解为()

$$\mathbf{A}. \ y = \cos x + C$$

B.
$$y = \sin x$$

C.
$$y = \sin x + C (C$$
为任意常数)

D.
$$y = \cos x$$

6. 若 $f(x,y) = x^2y - yx$ 则 $\frac{\partial f}{\partial x} = ($)

$$\mathbf{A}$$
. $xy - y$

$$\mathbf{R} 2x\mathbf{v} - \mathbf{v}$$

B.
$$2xy - y$$
; C. $2x - yx$

$$\mathbf{D}$$
. $2x - y$

7.设 $\int_0^3 f(x) dx = 2$, $\int_0^3 g(x) dx = 3$, 则 $\int_0^3 [2f(x) - 3g(x)] dx = ($)

8 若曲线 y = f(x) 在点 x 处的切线斜率为 -x,且过点(1, 2),则该曲线方程为(

A.
$$y = \frac{1}{2}x^2 + \frac{5}{2}$$

B.
$$y = -\frac{1}{2}x^2 + 2$$

C.
$$y = -\frac{1}{2}x^2 + \frac{5}{2}$$

$$\mathbf{D.} \quad y = -x^2$$

9. 设 D 是由x轴、y轴与直线x+y=1围成的三角形区域如图,用先积y后积x(X-型)的方法将二重积分 $\iint_{\Omega} f(x,y) dx dy$ 化为二次积分为 ().

B.
$$\int_{0}^{1} dx \int_{0}^{1-y} f(x, y) dy$$

C.
$$\int_0^{1-x} dx \int_0^1 f(x, y) dy$$

D.
$$\int_{-1}^{0} dy \int_{0}^{x+1} f(x, y) dx$$

10.
$$y_n = n^2 + 2n \not\equiv \mathcal{L} \Delta y_n = ($$

$$\mathbf{A}$$
. $2r$

B.
$$2n+1$$

$$C. 2n + 2$$

B.
$$2n+1$$
 C. $2n+2$ D. $2n+3$

得分	评阅人

二、填空题(共9小题,每小题2分,共18分,请 将答案写在答题栏内)

答题栏		
1,	2、	
3,	4、	
5、	6,	
7、	8,	
9,		

$$1. \int 6^t \cdot 5^t dt =$$

2. 己知
$$z = x^2 + x^3 y - y^4 x$$
 则 $\frac{\partial^2 z}{\partial x \partial y} =$

3.
$$\int_0^{\pi} (\cos x + \sin x) dx =$$

4.
$$\frac{\Gamma(4)\Gamma(\frac{3}{2})}{\Gamma(\frac{1}{2})} =$$

6.广义积分
$$\int_{1}^{+\infty} \frac{1}{e^x} dx =$$

7.函数
$$f(x, y) = 2(x - y) - x^2 + y^2$$
 的驻点为

- 8. 函数 $z = \frac{y}{x}$ 在点 (1,2) 的全微分为____
- 9. 已知生产某种产品总收入的变化率是时间t(单位: 年)的函数 $f(t) = t + 2(t \ge 0)$ 则第 一个五年的总收入为

TT H4.0. D4/ 4/4		
得分	评阅人	

- 三、计算题 I(共 4 小题,每小题 6 分,共 24 分)

 1. 求不定积分 $\int (x^4 + \frac{1}{x} + 3^x 2\cos x + e^x) dx$
- 2. 求不定积分 $\int xe^x dx$
- **3.** 求定积分 $\int_{0}^{4} \frac{1}{1+\sqrt{x}} dx$
- 4. 求定积分 $\int_0^5 x e^{x^2} dx$

得分	评阅人

四、**计算题**(共 4 小题,每小题 6 分,共 24 分)

1. 求由曲线 $y = -x^2$ 与 $y = -\sqrt{x}$ 所围成的面积,如图阴影部分所示.

2. 设方程 $x^2 + y^2 + z^2 = 4z$ 确定的隐函数导数 $z = f(x, y) \frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$, .

3. 求二重积分 $\iint_D y dx dy$,其中 D 是由曲线 $x = y^2$ 及直线 x = 4 所围成的区域. 如图阴影部分所示

4.求微分方程 xy'-y=4 的通解

得分	评阅人

五、应用题(共1小题,每小题10分,共10分)

10. 已知某工厂生产某种产品的数量Q与所投入劳动力的数量L和资本的数量K之间有关系式: $Q = L^{\frac{2}{3}}K^{\frac{1}{3}}$. 其中,劳动力(L)的价格为 2 元,资本 (K)的价格为 1 元.

如果工厂希望生产 800 个单位的产品,问应投入K和L各多少才能使成本最低?

得分	评阅人

六、证明题(共1小题,每小题4分,共4分)

设
$$z = xy + xF(u)$$
, 而 $u = \frac{x}{y}$, $F(u)$ 为可导函数, 证明: $x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = z + xy$