Elastic net

Reference

• Regularization and variable selection via the elastic net, Zou et al.

Introduction

elastic net은 lasso 이후에 제안된 방법이다. lasso는 ridge 이후에 제안된 방법으로, ridge와는 달리 lasso는 추정된 변수의 일부를 0으로 만들어서 변수 선택의 효과를 가져온다. 언뜻보면 lasso가 ridge 보다 좋아보이지만 꼭 그렇다고만 말할 수 없다. 왜냐하면 보통의 n>p일 때 변수 사이의 상관성이 높다면 lasso의 성능이 ridge보다 좋지 않다는 결과가 자주 보고되기 때문이다. 더욱이 lasso만의문제가 있는데, 이는 p>n일 때, lasso는 최대 n개의 변수만 선택할 수 있다. 만약 p>>n인 경우, 예를 들어 유전자 데이터에서는 p=7000, n=200일 때도 있는데, 7000개의 변수를 최대 200개로 줄인다면 그 성능이 의심되는 부분이다. 또한 변수간 상관성이 높다면 그 상관성이 높은 그룹에서 한 변수만 선택하는 경향이 있다. 생각해보면 이는 non-sense인데, 한 그룹의 변수들이 서로 상관되어 있으므로 그 중 하나의 변수만 의미가 있을리 없기 때문이다.

이러한 이유로, lasso가 variable selection의 대안으로 나왔다지만, 사실 p >>> n인 경우, variable selection을 사실상 잘 하지 못하는 것으로 밝혀졌다.

elastic net은 lasso의 변수 선택 장점은 취하되, 위에서 언급한 단점들은 보완한 모델이다. 즉, p >> n인 경우에 최대 n개의 변수만 선택했던 lasso와는 달리, 더 많은 변수를 선택해주고 서로 상관성이 높은 변수 중 일부만 선택하는 것이 아니라 그 그룹을 모두 선택한다. naive elastic net을 설명하고 elastic net, 그리고 numerical solution을 얻기 위한 LARS-EN을 소개한다.

Naive elastic net

n개의 데이터와 p개의 변수가 있다고 생각하자. y는 centering을 통해 평균을 0으로, 각 변수들도 column 별로 centering 및 표준화를 끝냈다고 하자. non-negative λ_1, λ_2 에 대해서 최소화하고자 하는 quantity을 아래와 같이 정의한다.

$$L(\lambda_1, \lambda_2, \beta) = |\mathbf{y} - \mathbf{X}\boldsymbol{\beta}|^2 + \lambda_2 |\boldsymbol{\beta}|^2 + \lambda_1 |\boldsymbol{\beta}|_1$$
 (1)

naive elastic net estimator는

$$\hat{\boldsymbol{\beta}} = \operatorname{argmin}_{\boldsymbol{\beta}} L(\lambda_1, \lambda_2, \boldsymbol{\beta}) \tag{2}$$

이는 $\alpha = \frac{\lambda_2}{\lambda_1 + \lambda_2}$ 인 penalized least squares로 볼 수도 있다.

$$\hat{\boldsymbol{\beta}} = \operatorname{argmin}_{\boldsymbol{\beta}} |\mathbf{y} - \mathbf{X}\boldsymbol{\beta}|^2, \ \operatorname{subject} \ \operatorname{to} \ (1 - \alpha)|\boldsymbol{\beta}|_1 + \alpha|\boldsymbol{\beta}|^2 \le t$$
(3)

Lemma 1에 의하면 (1)에 대한 solution은 lasso 타입의 optimization 문제를 푸는 것과 동일하다. 따라서 elastic net의 optimization 문제를 풀 때, lasso에서 사용했던 계산의 이점을 이용할 수 있다. *Lemma 1.* Given data set (y, X) and (λ_1, λ_2) , define an artificial data set (y^*, X^*) by

$$\mathbf{X}_{(n+p)\times p}^* = (1+\lambda_2)^{-1/2} \begin{pmatrix} \mathbf{X} \\ \sqrt{\lambda_2} \mathbf{I} \end{pmatrix}, \qquad \mathbf{y}_{(n+p)}^* = \begin{pmatrix} \mathbf{y} \\ 0 \end{pmatrix}.$$

Let $\gamma = \lambda_1/\sqrt{(1+\lambda_2)}$ and $\beta^* = \sqrt{(1+\lambda_2)\beta}$. Then the naïve elastic net criterion can be written

$$L(\gamma, \beta) = L(\gamma, \beta^*) = |\mathbf{y}^* - \mathbf{X}^* \beta^*|^2 + \gamma |\beta^*|_1.$$

Let

$$\hat{\beta}^* = \arg\min_{\beta^*} L\{(\gamma, \beta^*)\};$$

then

$$\hat{\beta} = \frac{1}{\sqrt{(1+\lambda_2)}} \hat{\beta}^*.$$

Lemma 1에 의하면 elastic net 해를 구하는 것이 augmented matrix을 만들고 이에 대한 lasso 해를 구하는 것과 동일하다. augmented matrix는 $(n+p) \times p$ 이며 \mathbf{X}^* 는 rank가 p이므로 결국 \mathbf{X}^* 를 이용한 lasso해는 p개 모두를 선택할 수 있다. 이로써 elastic net이 lasso의 단점 중 하나, 변수 선택을 최대 n개까지 할수 있다는 단점을 보완함을 알 수 있다.

다음으로는 lasso가 상관성 높은 변수 그룹에서 한 개의 변수만 고르는 단점을 elastic net이 어떻게 보완하는지 알아보자. 초고차원 데이터, p >> n인 데이터는 현실에서 종종 발생한다. 대표적인 예가 유전자 데이터이다. 유전자 데이터는 샘플 수가 곧 환자의 수인데, 보통 200을 넘지 않는다. 반면에, 한 사람의 유전자 변수는 수천개에서 많으면 10000개까지 된다. 이렇게 많은 변수 각각이 의미가 있기 보다는, 서로 상관성이 아주 높기 마련이다. 즉, 우리가 모르는 그룹이 있을텐데, 그 그룹을 모델이 잘 탐지해서 의미가 있는 그룹과 그렇지 않은 그룹으로 나누어야 한다. 이때, 의미가 있는 그룹 A을 생각해보자. 그룹 A에 있는 변수들은 상관성이 높을 텐데, lasso는 이 변수들 중에 한 개만 선택하는 경향이 있다. 한 개의 변수보다는 그 변수가 속해있는 set을 선택하는 것이 더 좋음에도, 이러한 경향성 때문에 lasso의 단점이 지적되어왔던 것이다.

극단적으로 어떤 두 변수가 같다고 가정해보자. 즉, 상관계수가 1인 두 변수의 계수 추정치는 같아야 할 것이다.

$$\hat{\boldsymbol{\beta}} = argmin_{\boldsymbol{\beta}} |\mathbf{y} - \mathbf{X}\boldsymbol{\beta}|^2 + \lambda J(\boldsymbol{\beta})$$

로 정의하고 아래 Lemma 2를 살펴보자.

Lemma 2. Assume that $\mathbf{x}_i = \mathbf{x}_j, i, j \in \{1, \dots, p\}$.

- (a) If $J(\cdot)$ is strictly convex, then $\hat{\beta}_i = \hat{\beta}_j$, $\forall \lambda > 0$. (b) If $J(\beta) = |\beta|_1$, then $\hat{\beta}_i \hat{\beta}_j \geqslant 0$ and $\hat{\beta}^*$ is another minimizer of equation (7), where

$$\hat{\beta}_k^* = \begin{cases} \hat{\beta}_k & \text{if } k \neq i \text{ and } k \neq j, \\ (\hat{\beta}_i + \hat{\beta}_j) \cdot (s) & \text{if } k = i, \\ (\hat{\beta}_i + \hat{\beta}_j) \cdot (1 - s) & \text{if } k = j, \end{cases}$$

for any $s \in [0, 1]$.

Lemma $2 는 J(\beta)$ 가 strict convex라면 두 추정치가 같지만, L_1 norm은 strict convex가 아니기 때문에 unique solution도 없을 뿐더러 같은 추정치를 내지도 않는다. 하지만 elastic \cot 은 λ_2 항으로 인해서 strict convex하고 따라서 grouping effect가 보장되는 것이다.

Elastic net

naive elastic net은 lasso의 두 단점을 보완하지만, 실험에서는 ridge나 lasso에 매우 가깝지 않으면 만족할만한 결과를 내지 않는다고 한다. 이러한 이유로 인해서 저자들이 'naive'라고 이름 붙인 것이다. navie elastic net은 two-stage 모델이다. λ_2 를 고정하고 ridge regression 계수를 찾고, lasso 타입의 shrinkage를 한다. 즉 두 번의 shrinkage를 하는 셈인데, 이는 variance를 크게 줄이지는 못하고 오 히려 불필요한 bias를 증가시킨다. 이러한 navie elastic net의 단점을 보완하기 위해 elastic net이 제안되었다.

augmented data인 $(\mathbf{y}^*, \mathbf{X}^*)$ 와 penalty parameter (λ_1, λ_2) 에 대해서 naive elastic net은 아래의 lasso 형태 optimization을 푸는 것과 동일하다.

$$\hat{\boldsymbol{\beta}}^* = argmin_{\boldsymbol{\beta}^*} |\mathbf{y}^* - \mathbf{X}^* \boldsymbol{\beta}^*|^2 + \frac{\lambda_1}{\sqrt{1 + \lambda_2}} |\boldsymbol{\beta}^*|_1$$

 ${
m elastic}$ ${
m net}$ 추정치 $\hat{oldsymbol{eta}}^E$ 은 아래와 같이 정의된다. (논문에서 정의된다고 나와있고 구체적인 설명은 없다.)

$$\hat{\boldsymbol{\beta}}^E = \sqrt{1 + \lambda_2} \hat{\boldsymbol{\beta}}^*$$

naive elastic net 추정치는

$$\hat{\boldsymbol{\beta}}^{NE} = \frac{1}{\sqrt{1+\lambda_2}} \hat{\boldsymbol{\beta}}^*$$

이므로

$$\hat{\boldsymbol{\beta}}^E = (1 + \lambda_2) \hat{\boldsymbol{\beta}}^{NE}$$

즉 elastic net 추정치는 naive elastic net 추정치를 rescale한 것이다. 이러한 rescaling은 변수 선택 성질을 보존하고 불필요한 shrinkage을 줄인다고 한다.

Why $1 + \lambda_2$?

왜 하필 rescaling factor가 $1+\lambda_2$ 일까? 이는 ridge의 성질과 연관시켜서 봐야한다. λ_2 는 ridge의

penalty,
$$|\boldsymbol{\beta}|^2$$
와 관련된 hyperparameter이다. 표준화된 \mathbf{X} 에 대한 ridge regression 추정치는 $\hat{\boldsymbol{\beta}}^R = \mathbf{R}$ \mathbf{R} , where $\mathbf{R} = \frac{1}{1+\lambda_2}\mathbf{R}^* = \frac{1}{1+\lambda_2}\mathbf{R}^* = \frac{1}{1+\lambda_2}\mathbf{R}^* = \frac{1}{1+\lambda_2}\mathbf{R}^* = \frac{1}{1+\lambda_2}\mathbf{R}^* = \frac{1}{1+\lambda_2}\mathbf{R}^*$ \mathbf{X}^T 인데, 여기서 \mathbf{R}^* 은 correlation이 $1/(1+\lambda_2)$

만큼 shrink되었다는 것 (이를 decorrelation이라 부른다.)을 제외하면, 기존의 OLS이다. 따라서 ridge 추정치에 대한 위 분해로부터 ridge perator가 decorrelation을 하고, 또 direct scaling, 즉 전체 행렬을 $1 + \lambda_2$ 로 나눔을 알 수 있다. 또한 이 분해는 ridge의 grouping effect가 decorrelation step의해서 발생함을 암시한다 (이렇게만 나와있고 구체적인 증명은 없다.) 그니까 elastic net에서 $1/(1+\lambda_2)$ 로 rescale함으로써 ridge의 decorrelation 효과도 얻고 (grouping effect도 자연스럽게 얻는다) lasso penalty을 사용하여 variance을 control하는 것이다.