

CMPE361 Computer Organization

Department of Computer Engineering TED University- Fall 2023

Memory Systems 1

These Slides are mainly based on slides of the text book (downloadable from the book's website).

Memory

- Computer system performance depends on the memory system as well as the processor microarchitecture.
- So far, an ideal memory system for a single clock cycle is assumed.
- This is very small memory for a very slow processor!
- However, processor speed has increased at a faster rate than memory speeds. DRAM memories are currently 10 to 100 times slower than processors.
- Demand for increasing DRAM memory speeds continues.

Introduction

- Computer performance depends on:
 - Processor performance
 - Memory system performance

Memory Interface

Memory processor interface

- The processor sends an address over the Address bus to the memory system.
- For a read, MemWrite is 0 and the memory returns the data on the ReadData bus.
- For a write, MemWrite is 1 and the processor sends data to memory on the WriteData bus.
- Memory usage principle: read the text on "a metaphor of books in a library" to understand the memory usage principles...

Note for instructor:	Explain the princip	ole of locality thro	ough library exam	nple.

Processor-Memory Gap

In about 1980, processor and memory speeds were the same. They have diverged since then, with memories badly falling behind.

Memory System Challenge

• Make memory system appear as fast as processor as far as possible!

• How?

Make use of hierarchy of memorie

• Ideal memory:

- Fast
- Cheap (inexpensive)
- Large (capacity)

But can only choose two!

Memory Hierarchy

memory hierarchy with typical costs, access times, and bandwidth in 2012 technology. (Figure 8.3)

Using Locality for performance

Exploit locality to make memory accesses fast

- Temporal Locality: Locality in time
 - If data used recently, likely to use it again soon
 - How to make use of it: keep recently accessed data in higher levels of memory hierarchy
- Spatial Locality: Locality in space
 - If data used recently, likely to use data soon
 - How to make use of it: when access data, bring into higher levels of memory hierarchy

Memory hierarchy performance

- Hit at a memory level: data found in that level of memory hierarchy
- Miss at a memory level: data not found (must go to next level)

```
Hit Rate = # hits / # memory accesses
```

= 1 - Miss Rate

Miss Rate = # misses / # memory accesses

= 1 - Hit Rate

• Average memory access time (AMAT): average time for processor to access data

$$\mathbf{AMAT} = t_{\text{cache}} + MR_{\text{cache}}[t_{MM} + MR_{MM}(t_{VM})]$$

=hitRate for cache x Access time of cache

=hitRate for memory x Access time of memory =hitRate for storage x Access time of storage

- A program has 2,000 loads and stores 1,250 of these data values in cache
- Rest supplied by other levels of memory hierarchy
- What are the hit and miss rates for the cache?

- A program has 2,000 loads and stores 1,250 of these data values in cache
- Rest supplied by other levels of memory hierarchy
- What are the hit and miss rates for the cache?

```
Hit Rate = 1250/2000 = 0.625
```

Miss Rate =
$$750/2000 = 0.375 = 1$$
 – Hit Rate

- Suppose processor has 2 levels of hierarchy: cache and main memory
- $t_{\text{cache}} = 1$ cycle, $t_{MM} = 100$ cycles
- What is the AMAT of the program from Example 1?

- Suppose processor has 2 levels of hierarchy: cache and main memory
- $t_{\text{cache}} = 1$ cycle, $t_{MM} = 100$ cycles
- What is the AMAT of the program from Example 1?

AMAT =
$$t_{\text{cache}} + MR_{\text{cache}}(t_{MM})$$

= $[1 + 0.375(100)]$ cycles
= **38.5** cycles

Gene Amdahl, 1922-

- Amdahl's Law: the effort spent increasing the performance of a subsystem is wasted unless the subsystem affects a large percentage of overall performance
- Co-founded 3 companies, including one called Amdahl Corporation in 1970

