Amendments to the Claims:

1.	(previously presented) A method of efficiently transmitting media information
	associated with two or more concurrent calls carried in a packet-switched network, the
	method comprising the computer-implemented steps of:
	aggregating two or more media packets from the two or more concurrent calls
	originating from one or more source end points into an aggregated media
	payload;
	re-packetizing the aggregated media payload using a single aggregated header to form
	an aggregated media packet;
	forwarding the aggregated media packet to a next hop in the packet-switched network
	in response to either one of
	(a) a timer reaching a non-zero maximum allowed delay time value, or
	(b) the aggregated media packet containing a specified number of Real-Time
	Protocol segments, wherein the specified number is variable according
	to user input.
2.	(currently amended) The method of Claim [[1]] 15, further comprising de-aggregating
	the aggregated media payload for one or more destination endpoints by separating the
	aggregated media payload to result in creating and sending restored copies of the two
	or more media packets, wherein each media packet corresponds to one of the two or
	more concurrent calls.
	2.

1	3.	(currently amended) The method of Claim [[1]] 15, wherein aggregating the two or
2		more media packets comprises compressing one or more headers of each media
3		packet.
1	4.	(original) The method of Claim 1, wherein the two or more media packets are Real-
2		Time Protocol (RTP) packets.
1	5.	(currently amended) The method of Claim [[4]] 15, wherein the step of aggregating
2		two or more media packets further comprises the steps of:
3		compressing an IP header and a UDP header of each RTP packet to form a
4		corresponding uncompressed RTP segment; and
5		encapsulating the two or more uncompressed RTP segments with the single
6		aggregated header.
1	6.	(currently amended) The method of Claim [[4]] 21, wherein the step of aggregating
2		two or more media packets further comprises the steps of:
3		compressing an IP header, a UDP header, and an RTP header of each RTP packet to
4		form a corresponding compressed RTP segment; and
5		encapsulating the two or more compressed RTP segments with the single aggregated
6		header.
1	7.	(previously presented) The method of Claim 1, wherein the step of aggregating the
2		two or more media packets further comprises forming the aggregated media payload
3		according to an aggregation protocol for aggregating the two or more media packets.

1 8. (currently amended) The method of Claim [[7]] 15, wherein the aggregation protocol

2 comprises forming the aggregated media payload based on an aggregated media

packet format for each aggregated media packet wherein the aggregated media packet

4 format comprises a version field indicating a version of the aggregation protocol.

1 9. (currently amended) The method of Claim [[7]] 15, wherein the aggregation protocol

2 comprises forming the aggregated media payload based on an aggregated media

packet format for each aggregated media packet wherein the aggregated media packet

format comprises a placeholder field that reserves packet space for future use.

- 10. (currently amended) The method of Claim [[7]] 15, wherein the aggregation protocol
- 2 comprises forming the aggregated media payload based on an aggregated media

packet format for each aggregated media packet wherein the aggregated media packet

format comprises a sequence number field that is incremented for each aggregated

5 media packet and is used to detect media packet loss.

3

4

1

4

- 1 11. (currently amended) The method of Claim [[7]] 15, wherein the aggregation protocol
- 2 comprises forming the aggregated media payload based on an aggregated media

3 packet format for each aggregated media packet wherein the aggregated media packet

- format comprises a trunk ID field that uniquely identifies a corresponding trunk.
- 1 12. (currently amended) The method of Claim [[7]] 15, wherein the aggregation protocol

2 further comprises forming the aggregated media payload based on an uncompressed

Real-Time Protocol segment format for each uncompressed Real-Time Protocol

4		segment of the two or more media packets that comprises a context ID field indicating
5		a session context ID for the uncompressed Real-Time Protocol segment.
1	13.	(currently amended) The method of Claim [[7]] 15, wherein the aggregation protocol
2		further comprises forming the aggregated media payload based on an uncompressed
3		Real-Time Protocol segment format for each uncompressed Real-Time Protocol
4		segment of the two or more media packets that comprises a compression bit indicating
5		whether the uncompressed Real-Time Protocol segment is uncompressed.
1	14.	(currently amended) The method of Claim [[7]] 15, wherein the aggregation protocol
2		further comprises forming the aggregated media payload based on an uncompressed
3		Real-Time Protocol segment format for each uncompressed Real-Time Protocol
4		segment of the two or more media packets that comprises a placeholder field for
5		future use.
1	15.	(currently amended) A method of efficiently transmitting media information
2		associated with two or more concurrent calls carried in a packet-switched network, the
3		method comprising the computer-implemented steps of:
4		aggregating, according to an aggregation protocol, two or more media packets from
5		the two or more concurrent calls originating from one or more source end
6		points into an aggregated media payload;
7		re-packetizing the aggregated media payload using a single aggregated header to form
8		an aggregated media packet;
9		forwarding the aggregated media packet to a next hop in the packet-switched network;
10		wherein the aggregation protocol further comprises forming the aggregated media
11		payload based on an uncompressed Real-Time Protocol segment format for

12 each uncompressed Real-Time Protocol segment of the two or more media packets, that wherein the aggregated media payload comprises a Real-Time 13 14 Protocol header extension bit indicating whether a Real-Time Protocol header 15 extension appears in the uncompressed Real-Time Protocol segment. 1 16. (currently amended) The method of Claim [[7]] 15, wherein the aggregation protocol 2 further comprises forming the aggregated media payload based on an uncompressed Real-Time Protocol segment format for each uncompressed Real-Time Protocol 3 4 segment of the two or more media packets that includes a full length field containing a 5 length of a Real-Time Protocol packet that corresponds to the uncompressed Real-6 Time Protocol segment. 1 17. (currently amended) The method of Claim [[7]] 15, wherein the aggregation protocol 2 further comprises forming the aggregated media payload based on an uncompressed 3 Real-Time Protocol segment format for each uncompressed Real-Time Protocol 4 segment of the two or more media packets that comprises a Real-Time Protocol 5 payload and a Real-Time Protocol header corresponding to a Real-Time Protocol 6 packet that in turn corresponds to the uncompressed Real-Time Protocol segment. 18. 1 (currently amended) The method of Claim [[7]] 15, wherein the aggregation protocol 2 further comprises forming the aggregated media payload based on an uncompressed 3 Real-Time Protocol segment format for each uncompressed Real-Time Protocol segment of the two or more media packets that comprises a padding field that aligns 4 5 an end of the uncompressed Real-Time Protocol segment with a next four-byte 6 boundary.

I	19.	(currently amended) The method of Claim [[/]] 21, wherein the aggregation protocol
2		further comprises forming the aggregated media payload based on a compressed Real-
3		Time Protocol segment format for each compressed Real-Time Protocol segment of
4		the two or more media packets that comprises a context ID field indicating a session
5		context ID for the compressed Real-Time Protocol segment.
1	20.	(currently amended) The method of Claim [[7]] 21, wherein the aggregation protocol
2		further comprises forming the aggregated media payload based on a compressed Real-
3		Time Protocol segment format for each compressed Real-Time Protocol segment of
4		the two or more media packets that comprises a compression bit indicating whether
5		the Real-Time Protocol segment is compressed.
1	21.	(currently amended) A method of efficiently transmitting media information
2		associated with two or more concurrent calls carried in a packet-switched network, the
3		method comprising the computer-implemented steps of:
4		aggregating, according to an aggregation protocol, two or more media packets from
5		the two or more concurrent calls originating from one or more source end
6		points into an aggregated media payload;
7		re-packetizing the aggregated media payload using a single aggregated header to form
8		an aggregated media packet;
9		forwarding the aggregated media packet to a next hop in the packet-switched network;
10		wherein the aggregation protocol further comprises forming the aggregated media
11		payload based on a compressed Real-Time Protocol segment format for each
12		compressed Real-Time Protocol segment of the two or more media packets,
13		that wherein the aggregated media payload comprises a Real-Time Protocol

14 header extension bit indicating whether a Real-Time Protocol header extension 15 appears in the compressed Real-Time Protocol segment. 1 22. (currently amended) The method of Claim [[7]] 21, wherein the aggregation protocol 2 further comprises forming the aggregated media payload based on a compressed Real-3 Time Protocol segment format for each compressed Real-Time Protocol segment of the two or more media packets that comprises a Real-Time Protocol header marker 4 5 bit. 1 23. (currently amended) The method of Claim [[7]] 21, wherein the aggregation protocol 2 further comprises forming the aggregated media payload based on a compressed Real-3 Time Protocol segment format for each compressed Real-Time Protocol segment of 4 the two or more media packets that comprises a length field containing a length of a 5 Real-Time Protocol payload of a Real-Time Protocol packet of the compressed Real-6 Time Protocol segment. 1 24. (currently amended) The method of Claim [[7]] 21, wherein the aggregation protocol 2 further comprises forming the aggregated media payload based on a compressed Real-3 Time Protocol segment format for each compressed Real-Time Protocol segment of 4 the two or more media packets that comprises a sequence number field carrying a 5 Real-Time Protocol header sequence number. 1 25. (currently amended) The method of Claim [[7]] 21, wherein the aggregation protocol 2 further comprises forming the aggregated media payload based on a compressed Real-3 Time Protocol segment format for each compressed Real-Time Protocol segment

- wherein the compressed Real-Time Protocol segment format comprises a timestamp

 field carrying a Real-Time Protocol header timestamp.
- 1 26. (original) The method of Claim 7, wherein the aggregation protocol further comprises
- 2 forming the aggregated media payload based on a compressed Real-Time Protocol
- 3 segment format for each compressed Real-Time Protocol segment of the two or more
- 4 media packets that comprises a Real-Time Protocol payload of a Real-Time Protocol
- 5 packet that corresponds to the compressed Real-Time Protocol segment.
- 1 27. (currently amended) The method of Claim [[7]] 21, wherein the aggregation protocol
- 2 further comprises forming the aggregated media payload based on a compressed Real-
- 3 Time Protocol segment format for each compressed Real-Time Protocol segment of
- 4 the two or more media packets that comprises a padding field that aligns an end of the
- 5 compressed Real-Time Protocol segment with a next boundary.
- 1 28. (original) The method of Claim 1, wherein the two or more media packets are
- 2 received while traversing a common sub-route.
- 1 29. (canceled)
- 1 30. (canceled)
- 1 31. (previously presented) A method of efficiently transmitting media information
- 2 associated with two or more concurrent calls carried in a packet-switched network, the
- method comprising the computer-implemented steps of:

4		aggregating two or more media packets from the two or more concurrent calls
5		originating from one or more source end points into an aggregated media
6		payload;
7		re-packetizing the aggregated media payload using a single aggregated header to form
8		an aggregated media packet;
9		forwarding the aggregated media packet to a next hop in the packet-switched network
10		when a non-zero maximum allowed delay time value is reached.
1	32.	(previously presented) The method of Claim 1, further comprising:
2		using the maximum allowed delay time value for forwarding the aggregated media
3		packet;
4		starting a count down for the maximum allowed delay time value when a first media
5		packet arrives for aggregation; and
6		aggregating subsequent media packets that arrive before the maximum allowed delay
7		time value is reached.
1	33.	(previously presented) An apparatus for transmitting media information associated
2		with two or more concurrent calls carried in a packet-switched network, the apparatus
3		comprising:
4		means for aggregating two or more media packets from one or more source endpoints
5		into an aggregated media payload;
6		means for re-packetizing the aggregated media payload using a single aggregated
7		header to form an aggregated media packet; and
8		means for forwarding the aggregated media packet to a next hop in the packet-
9		switched network in response to either one of

10		(a) a timer reaching a non-zero maximum allowed delay time value, or
11		(b) the aggregated media packet containing a specified number of Real-Time
12		Protocol segments, wherein the specified number is variable according
13		to user input.
1	34.	(previously presented) An apparatus for transmitting media information associated
2		with two or more concurrent calls carried in a packet-switched network, the apparatus
3		comprising:
4		one or more processors coupled to an aggregator for aggregating two or more media
5		packets into an aggregated media packet;
6		a memory accessible to the one or more processors; and
7		one or more sequences of instructions stored in the memory which, when executed by
8		the one or more processors, cause the one or more processors to carry out the
9		steps of:
10		aggregating two or more media packets from one or more source endpoints
11		into an aggregated media payload;
12		re-packetizing the aggregated media payload using a single aggregated header
13		to form the aggregated media packet; and
14		forwarding the aggregated media packet to a next hop in the packet-switched
15		network in response to either one of
16		(a) a timer reaching a non-zero maximum allowed delay time value, or
17		(b) the aggregated media packet containing a specified number of Real-
18		Time Protocol segments, wherein the specified number is
19		variable according to user input.

1	35.	(previously presented) A computer-readable medium comprising one or more
2		sequences of instructions for efficiently transmitting media information associated
3		with two or more concurrent calls carried in a packet-switched network, which the
4		sequences of instructions, when executed by one or more processors, cause the one or
5		more processors to carry out the steps of:
6		aggregating two or more media packets from the two or more concurrent calls
7		originating from one or more source end points into an aggregated media
8		payload;
9		re-packetizing the aggregated media payload using a single aggregated header to form
10		an aggregated media packet;
11		forwarding the aggregated media packet to a next hop in the packet-switched network
12		in response to either one of
13		(a) a timer reaching a non-zero maximum allowed delay time value, or
14		(b) the aggregated media packet containing a specified number of Real-Time
15		Protocol segments, wherein the specified number is variable according
16		to user input.