

MMVP: Motion-Matrix-based Video Prediction

School of Engineering **Microsoft**

Yiqi Zhong^{1*†} Luming Liang^{2*‡} Ilya Zharkov² Ulrich Neumann^{1‡ 1} ¹University of Southern California ²Microsoft ¹{yiqizhon, uneumann}@usc.edu ²{lulian,zharkov}@microsoft.com

Introduction

- feature and high-level motion information | simultaneously;
- MMVP is a dual-stream video prediction pipeline. It decouples motion and appearance information by constructing appearanceagnostic motion matrices. The motion I prediction module in MMVP is called matrix ! predictor, which takes motion matrices as the sole input. Later the predicted motion matrices I and the appearance features will then be reunited through matrix multiplication.
- MMVP outperforms existing video prediction methods in both accuracy and efficiency, and largely reduces the model size.

Framework Overview

Figure 2: MMVP is a two-stream video prediction framework. It decouples motion prediction and appearance and it reunites motion and appearance features through feature composition operation

Core Components

• Video prediction has a multi-modal nature Motion Matrix: Given two images I_p and I_q , an image encoder I Table 6: Ablation study on sources for future composition and the comparison with other SOTA methods on UCF Sports. that needs to handle the low-level **appearance** Θ encode the two consecutive images to a down-sample hidden space as image feature maps g_p and g_q . The temporal similarity i I matrix $M_{p,q}$ ∈ $\mathbb{R}^{H \times W \times H \times W}$ is defined as the pair-wise cosine similarity of the two feature maps, where H and W are the height and width of the feature map.

Multi-scale Future Composition: The future composition step generates information for the future frames using the observed information and the motion matrices. It is formulated as:

$$\widehat{\mathcal{X}_{T+j}} = \sum_{i=1}^{T} (\mathcal{X}_i \times \prod_{n=i}^{T-1} \mathbf{M}_{n,n+1} \times \widehat{\mathbf{M}_{T,T+j}}).$$

The χ in the equation represents the observed information of the past frames. The information can be the output features of the image encoder with different scales $f_i \in \mathbb{R}^{H_S \times W_S \times C}$, where C is the feature length; the information can also be the observed frames $I_i \in \mathbb{R}^{H \times W \times 3}$.

Evaluation Results

									E (GGD (> 0.0)			T		TI 1 (000 (. 0.0)				
Method	Composition source					Full set			Easy (SSIM ≥ 0.9)			Intermediate $(0.6 \le SSIM < 0.9)$			Hard (SSIM < 0.6)			- Param#
	Img	1	1/2	1/8	1/16	SSIM ↑	PSNR ↑	LPIPS ↓	SSIM ↑	PSNR ↑	LPIPS ↓	SSIM ↑	PSNR ↑	LPIPS \downarrow	SSIM ↑	PSNR ↑	LPIPS ↓	- arann
STIPHR [4]			-			0.8817	28.17	0.1626	0.9491	30.65	0.1066	0.8351	23.97	0.2271	0.4673	15.97	0.4450	18.05M
SimVP [12]			-			0.9189	29.97	0.1326	0.9664	32.87	0.0584	0.8845	25.79	0.1951	0.6267	18.99	0.5600	3.47M
	×	×	×	✓	✓	0.9000	28.31	0.1874	0.9375	30.43	0.1342	0.8759	25.36	0.2304	0.6593	19.90	0.4992	2.75M
	×	×	✓	✓	✓	0.9284	30.14	0.1115	0.9667	32.79	0.0603	0.8937	26.11	0.1693	0.7159	20.71	0.3570	2.79M
MMVP	×	✓	✓	✓	✓	0.9296	30.22	0.1064	0.9669	32.87	0.0576	0.8965	26.26	0.1571	0.7199	20.76	0.3555	2.80M
	√	✓	✓	✓	✓	0.9296	30.29	0.1051	0.9675	32.99	0.0567	0.8958	26.22	0.1554	0.7175	20.76	0.3517	2.80M
	✓	×	✓	✓	✓	0.9300	30.35	0.1062	0.9674	33.05	0.0580	0.8970	26.29	0.1569	0.7203	20.84	0.3510	2.79M

frame I_T in red and visualize their corresponding predicted motion matrices $\mathbf{M}_{T,T+1}^{h,w} \in \mathbb{R}^{H \times W}$ overlaying with the first future frame I_{T+1} . A brighter color indicates a higher predicted value. We select two samples for each dataset. From left to right, samples originate in the validation set of UCF Sports, KTH, and Moving MNIST

Figure 6: Qualitative results on our own splits of the UCF Sports dataset.