Bayesian dual endpoint decision making in Combination studies

David Dejardin and Daniel Sabanés Bové

F. Hoffmann-La Roche, Basel

BBS Conference Basel - 2016

Outline

- Introduction
- Dual endpoint gating
 - ORR and DCR
 - ORR and DoR
 - Target Definition
- Oiscussion

Early stage combination trials

Purpose of early stage single agent (SA) trials:

- Establish the dose (Dose escalation part)
- Provide early signs of efficacy (expansion) Gating to continue / stop development

Not different in combination

Single endpoint Bayesian Gating

- Gating on ORR
- Decision criteria based on Posterior probability:

GO:
$$P[p > \theta_u | \text{data}] > 0.8$$

no GO: $P[p < \theta_I | \text{data}] > 0.8$

- p = probability of response (Endpoint of interest)
- $\theta_u = \text{upper target}$, $\theta_l = \text{low target}$
- 0.8 = confidence level
- $P[p > \theta_u | \text{data}]$ computed from beta(r + a, n r + b)n = number of subjects in extension, r = number of PR/CR
- Prior (a, b) chosen as non-informative

CR = Complete response, PR= partial response, CR+PR= OR

Expansion in combinations

Assessment of efficacy in early stage combination trials

- Issues:
 - Incremental benefit compared to partner drug
 - Difficulty to detect in small advanced population
 - Combination of mechanisms of action (MoA)
 - CIT with no effect on ORR
 - Long term benefit combined with short term efficacy in partner
 - Proof of Concept studies (PoC)
 - Minimal signs of efficacy constitute proof of MoA
- ⇒ Need for more granularity in assessing efficacy
- ⇒ Look at combination of endpoints

Issues common to single agent (SA) trials, More complex for combination CIT = Cancer Immuno-therapy

Dual endpoint gating

Exemples of gating on 2 efficacy endpoints

- DoR \nearrow , ORR \rightarrow CIT example
- DCR ∠, ORR > 0 PoC or severe indication example

DoR = Duration of Response, DCR = Disease control rate

ORR and DCR

Decision criteria: **Joint posterior probability**

$$P[p > \theta_u^{ORR} \text{ and/or } p + s > \theta_u^{DCR} \mid \text{data}] > 0.8$$

- p = probability of response
- p + s = probability of disease control (s = probability of stable disease)
- 2 thresholds θ_{μ}^{ORR} , θ_{μ}^{DCR} (also for no go decision)
- Dependence between p and $s \Rightarrow$ Multinomial distribution
- Vague conjugate prior = Dirichlet(1/c, 1/c, 1/c) with c small

Goal of example

Illustrate Design of study and gating criteria

- Indication: 3rd line HER2+ breast cancer after failure of HER2 therapies
- Experimental therapy: CIT (no direct cytotoxic effect) in combination with HER2 therapy
- Purpose of study: Clinical proof of mechanism

Expected efficacy with CIT:

Continuation of HER2 therapy CIT
$$\Rightarrow$$
 no CR/PR expected

- Effect expected on slowing down progression (=DCR)
- Triple combo with chemo ⇒ dilution of effect
- Why dual endpoint?
 - Main decision making on DCR
 - If CR/PR observed ⇒ strong evidence of MoA

How do we set target θ_{μ}^{DCR} and θ_{μ}^{ORR} ?

- ORR > 10% (no CR/PR expected)
- DCR @ 6mths: Reference = Th3resa trial

- HER2+chemo \Rightarrow DCR @ 6mths < 30%DCR @ 6mths = CR/PR/SDmaintained for 6 mths
- Kadcyla curve not applicable (subjects get Kadcyla in 2L)

Resulting target: DCR @ 6 mths > 40% or ORR > 10%

- 10% improvement on DCR @ 6 mths over HER2+chemo
- OR to capture strong evidence on ORR
- Target using a fixed proportion here: No data in this exact population
- Example: n= 20
- Resulting gate for GO decision:

$$DC \ge 10 \text{ or}$$

$$OR \ge 3$$
 or

(DC
$$\geq$$
 9 and OR \geq 2)

Operating characteristics

"or" condition ORR and DCR ⇒ improved probability for GO

Decision making in combinations

Same can be done for NO GO decision

ORR and DoR

Decision criteria: Joint posterior probability

$$P[p > \theta_u^{ORR} \text{ and/or } m > \theta_u^{DoR} | \text{data}] > 0.8$$

- d = duration of response with median m
- $d \mid \text{data} \sim \text{Weibull}(\lambda, k)$ or other distribution
- $p \mid \text{data} \sim \text{beta}(r + a, n r + b)$
- Working independence assumed
 - p may influence d
 - Complex multi-state models to assess association
 - Small sample sizes in ph1 to check validity of assumptions

ORR and DoR

Weibull model and prior

Survival function:

$$S(d) = \exp(-\lambda t^k)$$

- Priors
 - \bullet $\lambda \parallel k$
 - No conjugate ⇒ various possible choice (flat)
 - Here $\lambda \sim \text{Gamma}(0.0001, 0.0001)$ and $k \sim \text{Gamma}(1, 0.0001)$
 - Fit can be checked using KM curve / MLE
- Log-normal model also used with flat prior

HR used for time-to-event models

- Small sample sizes imply parametric model
- HR ⇒ restriction on parameters
 - Weibull: Shape parameter k common
 - Degree of freedom assuming proportional hazard = 3 instead of 4
- Allows the use of different models for target definition
- Less relevant when target is fixed (⇔ data-based target)

Goal of example

Illustrate benefit of dual endpoint gating criteria

- Indication: 11 metastatic CRC
- Experimental therapy: VGEF inhibitor + SoC
- Data: Large phase 3
- Question: Compare single ORR criteria vs dual endpoint gating
- Method: Simulate phase 1 extension by sampling from phase 3 data

Efficacy in Phase 3 study:

	Endpoint	SoC	SoC+Exp.
Ì	ORR	47%	49%
	DoR	7.4 mths	8.5 mths

Ignoring MoA :

- Classical way: Gating on ORR only
- Meaningful Target: **55%** (8% improvement on SoC = 47%)

Accounting for MoA :

- Probability to respond not increased, but PFS prolonged
- At least ORR $> 47\% \Rightarrow$ No detrimental effect on ORR
- **AND** DoR > 8.5 mths (1 mth improvement on SoC) ⇒ Benefit in terms of DoR

- Assessment of P[GO] using gate:
 - Sampling n=20 subjects from ph 3 (=simulated ph 1 extension)
 - Frequency of GO decision

Results

Criteria	P[GO]
Improvement on ORR	26%
Improvement on DoR with same ORR	46%

- Gating on ORR only = Too high bar
- Gating on DoR only ⇒ Risk of lower ORR
- Dual endpoint gating better uses information on MoA

Target definition

How do we set targets θ_{II} , θ_{I} , θ_{II}^{DCR}

- Depends on Goal eg: PoC or informing ph 2
- Depends SoC data
 - SoC widely studied ⇒ Data available
 - Late stage ⇒ No SoC, experimental / off-label use ⇒ NO Data available
- Options:
 - Compared to fixed target (improvement over SoC, partner level)
 - Variable target (historical data, increased variability)

Target definition

Fixed target:

- Good idea of SoC and clinically relevant improvement Clinically relevant improvement needs to be linked to Phase 2/3 endpoint
- No good data on SoC \Rightarrow Conservative target (high relevant bar)

Random target

- Defined using Literature / existing studies
- Accounts for variability of measure
- DoR impacted by population ⇒ Data-based target allows subject matching

Discussion

Benefits

- Goal of early trial = Learning about the drug
 ⇒ Dual endpoint gating provides better granularity, more flexibility
- Ideally: Target based on "regulatory endpoints"
 ⇒ Alternative endpoints gating allows closer relationship

Limitations:

- Small sample size :Is it enough to identify good drugs or stop bad drugs?
- Choice of target crucial
 Use of historical data relevant (bias, drift)?
- Do we need granularity?
 Only very efficacious treatments are of interest

Thank you!