

data science and enterprise engineering

how data scientists and engineers work in tandem to achieve real-time personalization at overstock.com

overstock

- pushing boundaries of retail since 1999
- · Midvale, Utah
- · 5 million unique products for sale
- billions of visits and page views
- · 160+ countries

overstock marketing dev

remember animal farm?

team in the beginning.....

- pigs
 - data science team 3 data scientists
 - engineering team 2 developers, 1 QA, and a product owner
 - chickens
 - plenty of business owners
 - lots of channel managers

overstock marketing dev

the problems we were up against

- data scientists were not working with the business to solve business problems
- engineers were not working with data scientists
- engineering was in a relational data mindset
- not regularly delivering business value
- solving yesterday's problems today

days minutes seconds

business problem

This is where I add text. If I want it to keep going, it looks like this.

1st problem we came together to solve

- real-time bidding (RTB) is a means by which advertising inventory is bought and sold on a per-impression basis via real-time bidding, similar to financial markets
 - low-latency operation need to bid >10ms
 - pre-compute scores nightly
 - push scored to cache in AWS
 - partnered with Bees Wax
 - replace existing 3rd party partners

problem to solve

This is where I add text. If I want it to keep going, it looks like this.

propensity to purchase

- identifying unique patterns and tendencies that indicate a user is ready to purchase
 - user score: represents a customer's likelihood of purchase
 - collected at the visit/user level
 - basic steps
 - turn raw user interactions into 'features'
 - train classifiers on months of data with label = purchase vs. no purchase
 - predict on new users/visits

data science

class imbalance

- many new customers
 - billions of unique page views in a calendar year
 - many users we are seeing for the first time (potentially)
- low conversion
 - a small percentage of sessions end in a purchase
 - sparse web logs mean we have to digest an enormous amount of data to generate useful features
- we are interested in accuracy on the positive label
 - recall over precision

what the team was up against

- Constraints with current infrastructure and processes
- used to pulling data instead of streaming it
- · data scientists are a scarce resource
 - working on many non-relative tasks
 - not a lot of experience with the care and feeding of enterprise software
 - a bit set in the academia mindset

© Overstock

overstock...

11

recap

Faster Scotty

what we accomplished in 6 months

- we were solving today's problems... by the end of the day
- engineering was thinking about streaming data
- had the pieces in place to start scoring users in minutes

days minutes seconds

business challenges

data science + engineering

needed to move faster

- score users faster
 - moved from daily to hourly
- picked up a fraud project
 - assign fraud score within 5 mins

data science + engineering

moving from daily batches to more regular micro-batches

hourly jobs

- much more responsive scoring = larger server footprint
- can still train offline in batch, but must have pipelines better tuned.

every 5 minutes

- ETL must be tightly honed
- at this point you hit the edge of what is possible in the batch setting
- feedback loops become critical for success

business vs engineering

balancing business goals with enterprise engineering

- as adoption increases visibility increases
 - need standardized data representations
 - have to make sure architecture is hardened and robust
 - need fail-safe mechanisms for critical processes

MOST IMPORTANT

you can never, ever slow down overstock.com

recap

data science + engineering

needed to move faster

- what was accomplished in 6 months
 - fraud scores in a minute or less
 - users were being scored in a minute
- what was left
 - still not fast enough for real time personalization on overstock.com

days minutes seconds

business problem

This is where I add text. If I want it to keep going, it looks like this.

near real-time personalization on the shopping site

- near real-time personalization on overstock
 - putting custom recs in front of the user.
 - · can't slow the site down

data science + engineering + business

from micro-batches to near real-time

- near real-time can limit the size of models and complexity of calculations
 - we aren't trading stocks, we sell home goods
- we may not know much about a user we are trying to personalize for
 - what can you personalize for a new user as they initially interact with your site
 - heuristics moving towards full models

data science + engineering + business

from micro-batches to near real-time

- real-time data flow requires rea-time analytics and strategy
 - introspection into processes becomes critical
 - must have automated process control to prevent algorithms from running wild
 - empower business owners to operate strategically without suffering from information overload

data science + engineering + business

from micro-batches to near real-time

- every piece of the process needs to function as a cohesive flow
 - do we need to wait for the data to get there, then act (fraud?)
 - or act on the data we have (recommendations for a shopping site)

© Overstock

recap

data science + engineering + business

what was done and undone

- still not quite to near-real-time/low-latency recs for shopping site
- fraud score and email recommendations are fast enough

where we are going

data science + engineering + business

roadmap

- page-less personalization
- deep learning for fraud
- balancing real-time needs with efficient gains

We all need to be daring and collaborative to accelerate innovation!

take always

data science + engineering + business

lessons learned

- the cloud presents a whole new set of problems
- tech is hard, politics are harder
- we can't operate in silos
- we must be aligned with the business
- the process must be iterative

questions?

and of course, we are hiring!

