Задание 2 «Торможение спутника»

Рассмотрим движение искусственного спутника Земли в верхних слоях атмосферы. Наличие атмосферного «хвоста» приводит к тому, что на спутник действует тормозящая сила, пропорциональная плотности газа, площади поперечного сечения спутника и квадрату его скорости:

$$F_C = C \cdot \rho \cdot S \cdot v^2.$$

Безразмерный коэффициент C в данной задаче можно принять равным единице.

Сила эта невелика, и спутник может годами вращаться вокруг Земли. Однако радиус его орбиты будет постепенно уменьшаться, соответственно будет изменяться и скорость движения спутника. Предлагаем рассмотреть динамику спутника подробнее:

- Спутник с массой m и площадью поперечного сечения S находится на орбите радиуса R_0 . Определите скорость его движения v_0 и период обращения вокруг Земли T_0 .
- 2. Чему равна полная механическая энергия спутника E_0 ?
- 3. Теперь учтём силу сопротивления. Плотность атмосферы на данной высоте – ρ_0 . За один «виток» радиус орбиты изменяется на относительно маленькую величину ΔR ($\Delta R << R_{_0}$), поэтому силу сопротивления на этом «витке» можно считать постоянной величиной. Определите относительное изменение скорости спутника $\frac{\Delta v}{v}$ и радиуса
- орбиты $\frac{\Delta R}{R_{\circ}}$ за один оборот.
- Определите тангенциальное a_{τ} (по касательной к орбите) ускорение спутника на 4. этой орбите.
- С какой скоростью v_{n0} спутник приближается к центру Земли на этой высоте? Если бы плотность атмосферы изменялась по закону $\rho = AR^{\alpha}$, то при некотором значении α , эта скорость оставалась бы постоянной величиной. Определите, чему равен этот показатель α .

6. Рассмотренное явление может дать ценную информацию о верхних слоях атмосферы. Сферический зонд с массой $m=100\kappa z$ и площадью поперечного сечения $S=1{,}00\text{-}m^2$ выводят на орбиту на высоте $h=208\kappa m$. Не составляет большого труда измерять изменение скорости спутника. На рисунке 1 приведён график зависимости скорости спутника от времени наблюдения.

Известно, что плотность атмосферы экспоненциально уменьшается с высотой, т.е.

 $\rho \sim e^{-\beta h}$. Используя приведенный график, определите постоянную β .

Некоторые постоянные:

 $Paduyc \ 3emлu \ R_3 = 6.40 \cdot 10^6 \, M.$

 $Macca Земли M = 6,00 \cdot 10^{24} кг.$

Задание 3. «Нервное возбуждение»

А. Ходжкин. и Э. Хаксли получили Нобелевскую премию по физиологии и медицине 1963 г. «за открытия, касающиеся ионных механизмов, участвующих в возбуждении и торможении в периферическом и центральном участках мембраны нервной клетки».

Основой жизнедеятельности живых организмов, во многом, являются процессы, протекающие в мембранах клеток. В данной задаче вам необходимо рассмотреть некоторые подходы к описанию процесса возбуждения нервных клеток в рамках примитивной модели.

Основная идея теории возбуждения клетки заключается описании процессов

переноса ионов через мембрану. Проницаемость мембраны различна для различных ионов, кроме того в мембрану встроены большие белковые молекулы, играющие роль насосов, способных переносить ионы определенного типа с одной стороны мембраны на другую (затрачивая на это энергию). Благодаря наличию этих насосов — каналов, концентрации ионов различны с разных сторон от мембраны, и как следствие появляется разность электрических потенциалов между противоположными стенками мембраны.

Еще более упростим модель. Будем считать, что мембрана является плоскопараллельной пластинкой толщиной a. Снаружи клетки находится слой жидкости (воды) толщиной h_0 , а внутриклеточное пространство моделируется слоем жидкости толщиной h_1 . Диэлектрические проницаемости всех сред будем считать равными единице. Концентрации частиц вне клетки будем

обозначать C_0 , а внутри - C_1 (при необходимости будем добавлять индексы, указывающие тип частиц).