

Grundbegriffe der Informatik Tutorium 33

Lukas Bach, lukas.bach@student.kit.edu | 22.12.2016

Algorithmen

Lukas Bach, lukas.bach@student.kit.edu

Algorithmen

Pseudocode

Algorithmen

Lukas Bach, lukas.bach@student.kit.edu

Algorithmen

Pseudocode

Das Hoare-Kalkül

■ Es existiert eine **endliche** Beschreibung

Algorithmen

Lukas Bach, lukas.bach@student.kit.edu

Algorithmen

Pseudocod

- Es existiert eine endliche Beschreibung
- Es wird zu einer beliebig großen, aber endlichen Eingabe eine endliche Ausgabe berechnet

Algorithmen

Lukas Bach, lukas.bach@student.kit.edu

Algorithmen

Pseudocode

- Es existiert eine endliche Beschreibung
- Es wird zu einer beliebig großen, aber endlichen Eingabe eine endliche Ausgabe berechnet
- Es finden **endlich** viele Schritte statt (der Algorithmus terminiert)

Algorithmen

Lukas Bach, lukas.bach@student.kit.edu

Algorithmen

Pseudocod

- Es existiert eine endliche Beschreibung
- Es wird zu einer beliebig großen, aber endlichen Eingabe eine endliche Ausgabe berechnet
- Es finden endlich viele Schritte statt (der Algorithmus terminiert)
- Deterministisch (bei mehrmaliger Ausführung kommt immer das selbe raus)

Hier verwendeter Pseudocode

Lukas Bach, lukas.bach@student.kit.edu

Algorithmen

Pseudocode

Hier verwendeter Pseudocode

Lukas Bach, lukas.bach@student.kit.edu

Algorithmen

Pseudocode

Das Hoare-Kalkül

 $\qquad \hbox{\bf Zuwe} \hbox{\bf isungs symbol} \leftarrow$

Hier verwendeter Pseudocode

Lukas Bach, lukas.bach@student.kit.edu

Algorithmen

Pseudocode

- $\quad \blacksquare \ \, \text{Zuweisungssymbol} \leftarrow$
- Schlüsselwörter für Verzweigungen if, then, else, fi

Hier verwendeter Pseudocode

Lukas Bach, lukas.bach@student.kit.edu

Algorithmen

Pseudocode

- Zuweisungssymbol ←
- Schlüsselwörter für Verzweigungen if, then, else, fi
- Schlüsselwörter für Schleifen while, do, od, for, to

Hier verwendeter Pseudocode

Lukas Bach, lukas.bach@student.kit.edu

Algorithmen

Pseudocode

- Zuweisungssymbol ←
- Schlüsselwörter für Verzweigungen if, then, else, fi
- Schlüsselwörter für Schleifen while, do, od, for, to
- Symbole für Konstanten, Funktionen und Relationen

Eine if-Verzweigung

Lukas Bach, lukas.bach@student.kit.edu

Algorithmen

Pseudocode

1 if x < y then

 $s \leftarrow x$

з else

4 *s* ← *y* 5 **fi**

Eine if-Verzweigung

Lukas Bach, lukas.bach@student.kit.edu 1 if x < y then

 $s \leftarrow x$

Algorithmen

3 else

Pseudocode

4 $S \leftarrow Y$ 5 fi

Das Hoare-Kalkül

Eine while-Schleife

1 **while** x > 0 **do**

 $x \leftarrow x \operatorname{div} 2$

 $s \leftarrow s + x$

4 od

Eine if-Verzweigung

Lukas Bach, lukas.bach@student.kit.edu

Algorithmen

1 if x < y then

 $s \leftarrow x$

3 else

4 $s \leftarrow y$ 5 **fi**

Pseudocode

Das Hoare-Kalkül

Eine while-Schleife

1 while x > 0 do

 $x \leftarrow x \operatorname{div} 2$

 $s \leftarrow s + x$

4 od

Eine for-Schleife

1 for $i \leftarrow 1$ to n do

 $s \leftarrow s + i$

3 **od**

Was kann man mit Algorithmen machen?

Lukas Bach, lukas.bach@student.kit.edu

Algorithmen

Pseudocode

Was kann man mit Algorithmen machen?

Lukas Bach, lukas.bach@student.kit.edu

Algorithmen

Pseudocode

Das Hoare-Kalkül

 Komplexe Algorithmen mit Pseudocode definieren zu Sortierung, Graphen, Datenstrukturen

Was kann man mit Algorithmen machen?

Lukas Bach, lukas.bach@student.kit.edu

Algorithmen

Pseudocode

Das Hoare-Kalkül

 Komplexe Algorithmen mit Pseudocode definieren zu Sortierung, Graphen, Datenstrukturen, im Modul Algorithmen I

Was kann man mit Algorithmen machen?

Lukas Bach, lukas.bach@student.kit.edu

Algorithmen

Pseudocode

- Komplexe Algorithmen mit Pseudocode definieren zu Sortierung, Graphen, Datenstrukturen, im Modul Algorithmen I
- Laufzeitanalyse von Algorithmen

Was kann man mit Algorithmen machen?

Lukas Bach, lukas.bach@student.kit.edu

Algorithmen

Pseudocode

- Komplexe Algorithmen mit Pseudocode definieren zu Sortierung, Graphen, Datenstrukturen, im Modul Algorithmen I
- Laufzeitanalyse von Algorithmen, später.

Was kann man mit Algorithmen machen?

Lukas Bach, lukas.bach@student.kit.edu

Algorithmen

Pseudocode

- Komplexe Algorithmen mit Pseudocode definieren zu Sortierung, Graphen, Datenstrukturen, im Modul Algorithmen I
- Laufzeitanalyse von Algorithmen, später.
- Korrektheitsbeweise

Was kann man mit Algorithmen machen?

Lukas Bach, lukas.bach@student.kit.edu

Algorithmen

Pseudocode

- Komplexe Algorithmen mit Pseudocode definieren zu Sortierung, Graphen, Datenstrukturen, im Modul Algorithmen I
- Laufzeitanalyse von Algorithmen, später.
- Korrektheitsbeweise, jetzt.

Korrektheitsbeweise

Lukas Bach, lukas.bach@student.kit.edu

Algorithmen

Pseudocode

Korrektheitsbeweise

Lukas Bach, lukas.bach@student.kit.edu

Algorithmen

Pseudocode

Wie findet man heraus, ob ein Algorithmus korrekt funktioniert?

Korrektheitsbeweise

Lukas Bach, lukas.bach@student.kit.edu

Algorithmen

Pseudocode

Das Hoare-Kalkül

Wie findet man heraus, ob ein Algorithmus korrekt funktioniert?

 Durch den Beweis von Zusicherungen, die an bestimmten Stellen des Algorithmus gelten.

Korrektheitsbeweise

Lukas Bach, lukas.bach@student.kit.edu

Algorithmen

Pseudocode

Das Hoare-Kalkül

Wie findet man heraus, ob ein Algorithmus korrekt funktioniert?

Durch den Beweis von Zusicherungen, die an bestimmten Stellen des Algorithmus gelten.

Was sind Zusicherungen?

Korrektheitsbeweise

Lukas Bach, lukas.bach@student.kit.edu

Algorithmen

Pseudocode

Das Hoare-Kalkül

Wie findet man heraus, ob ein Algorithmus korrekt funktioniert?

Durch den Beweis von Zusicherungen, die an bestimmten Stellen des Algorithmus gelten.

Was sind Zusicherungen?

 prädikatenlogische Formeln, die Aussagen über (Zusammenhänge zwischen) Variablen machen

Das Hoare-Tripel

Lukas Bach, lukas.bach@student.kit.edu

Algorithmen

Pseudocode

Das Hoare-Tripel

Lukas Bach, lukas.bach@student.kit.edu

Algorithmen

Pseudocode

Das Hoare-Kalkül

Definition

 $\{P\}S\{Q\}$ heißt Hoare-Tripel.

Das Hoare-Tripel

Lukas Bach, lukas.bach@student.kit.edu

Algorithmen

Pseudocode

Das Hoare-Kalkül

Definition

Das Hoare-Tripel

Lukas Bach, lukas.bach@student.kit.edu

Algorithmen

Pseudocode

Das Hoare-Kalkül

Definition

 $\{P\}S\{Q\}$ heißt Hoare-Tripel. Dabei gilt:

S ist ein Programmstück im Pseudocode

Das Hoare-Tripel

Lukas Bach, lukas.bach@student.kit.edu

Algorithmen

Pseudocode

Das Hoare-Kalkül

Definition

- S ist ein Programmstück im Pseudocode
- P und Q sind Zusicherungen

Das Hoare-Tripel

Lukas Bach, lukas.bach@student.kit.edu

Algorithmen

Pseudocode

Das Hoare-Kalkül

Definition

- S ist ein Programmstück im Pseudocode
- P und Q sind Zusicherungen
- P nennt man Vorbedingung, Q Nachbedingung

Das Hoare-Tripel

Lukas Bach, lukas.bach@student.kit.edu

Algorithmen

Pseudocode

Das Hoare-Kalkül

Definition

- S ist ein Programmstück im Pseudocode
- P und Q sind Zusicherungen
- P nennt man Vorbedingung, Q Nachbedingung
- Prädikatenlogische Formeln

Das Hoare-Tripel

Lukas Bach, lukas.bach@student.kit.edu

Algorithmen

Pseudocod

Das Hoare-Kalkül

Definition

- S ist ein Programmstück im Pseudocode
- P und Q sind Zusicherungen
- P nennt man Vorbedingung, Q Nachbedingung
- Prädikatenlogische Formeln
- Beispiel (Vorausblick): $\{x = 1\}x \leftarrow x + 1\{x = 2\}$

Das Hoare-Tripel

Lukas Bach, lukas.bach@student.kit.edu

Algorithmen

Pseudocod

Das Hoare-Kalkül

Definition

- S ist ein Programmstück im Pseudocode
- P und Q sind Zusicherungen
- P nennt man Vorbedingung, Q Nachbedingung
- Prädikatenlogische Formeln
- Beispiel (Vorausblick): $\{x = 1\}x \leftarrow x + 1\{x = 2\}$
- Meistens in jeder Zeile nur eine Zeile Code oder ein Zusicherungsblock

Das Hoare-Tripel

Lukas Bach, lukas.bach@student.kit.edu

Algorithmen

Pseudocode

Das Hoare-Kalkül

Gültigkeit von Hoare-Tripeln

 $\{P\}S\{Q\}$ ist gültig, wenn für jede gültige Interpretation (D,I) und Variablenbelegung β gilt:

Das Hoare-Tripel

Lukas Bach, lukas.bach@student.kit.edu

Algorithmen

Pseudocode

Das Hoare-Kalkül

Gültigkeit von Hoare-Tripeln

 $\{P\}S\{Q\}$ ist gültig, wenn für jede gültige Interpretation (D,I) und Variablenbelegung β gilt: Aus

Das Hoare-Tripel

Lukas Bach, lukas.bach@student.kit.edu

Algorithmen

Pseudocode

Das Hoare-Kalkül

Gültigkeit von Hoare-Tripeln

 $\{P\}S\{Q\}$ ist gültig, wenn für jede gültige Interpretation (D,I) und Variablenbelegung β gilt:

Aus

•
$$val_{D,I,\beta}(P) = w$$

Das Hoare-Tripel

Lukas Bach, lukas.bach@student.kit.edu

Algorithmen

Pseudocod

Das Hoare-Kalkül

Gültigkeit von Hoare-Tripeln

 $\{P\}S\{Q\}$ ist gültig, wenn für jede gültige Interpretation (D,I) und Variablenbelegung β gilt:

Aus

- $val_{D,I,\beta}(P) = w$
- β' ist Variablenbelegung nach Ausführung von S

Das Hoare-Tripel

Lukas Bach, lukas.bach@student.kit.edu

Algorithmen

Pseudocod

Das Hoare-Kalkül

Gültigkeit von Hoare-Tripeln

 $\{P\}S\{Q\}$ ist gültig, wenn für jede gültige Interpretation (D,I) und Variablenbelegung β gilt:

Aus

- $val_{D,I,\beta}(P) = w$
- β' ist Variablenbelegung nach Ausführung von S

folgt
$$val_{D,I,\beta'}(Q) = w$$

Zuweisung

Lukas Bach, lukas.bach@student.kit.edu

Algorithmen

Axiom HT-A

Pseudocode

Zuweisung

Lukas Bach, lukas.bach@student.kit.edu

Algorithmen

Pseudocode

Das Hoare-Kalkül

Axiom HT-A

• Sei $x \leftarrow E$ eine Zuweisung

Zuweisung

Lukas Bach, lukas.bach@student.kit.edu

Algorithmen

Pseudocode

Das Hoare-Kalkül

Axiom HT-A

- Sei $x \leftarrow E$ eine Zuweisung
- Q eine Nachbedingung von $x \leftarrow E$ und

Zuweisung

Lukas Bach, lukas.bach@student.kit.edu

Algorithmen

Pseudocode

Das Hoare-Kalkül

Axiom HT-A

- Sei x ← E eine Zuweisung
- Q eine Nachbedingung von $x \leftarrow E$ und
- lacktriangledown $\sigma_{\{x/E\}}$ kollisionsfrei für Q

Zuweisung

Lukas Bach, lukas.bach@student.kit.edu

Algorithmen

Pseudocode

Das Hoare-Kalkül

Axiom HT-A

- Sei x ← E eine Zuweisung
- Q eine Nachbedingung von $x \leftarrow E$ und
- $\sigma_{\{x/E\}}$ kollisionsfrei für Q

Dann ist $\sigma_{\{x/E\}}(Q)x \leftarrow E\{Q\}$ ein gültiges Hoare-Tripel

Zuweisung

Lukas Bach, lukas.bach@student.kit.edu

Algorithmen

Pseudocode

Das Hoare-Kalkül

Axiom HT-A

- Sei x ← E eine Zuweisung
- Q eine Nachbedingung von $x \leftarrow E$ und
- $\sigma_{\{x/E\}}$ kollisionsfrei für Q

Dann ist $\sigma_{\{x/E\}}(Q)x \leftarrow E\{Q\}$ ein gültiges Hoare-Tripel

Bemerkung

Zuweisung

Lukas Bach, lukas.bach@student.kit.edu

Algorithmen

Pseudocod

Das Hoare-Kalkül

Axiom HT-A

- Sei x ← E eine Zuweisung
- Q eine Nachbedingung von $x \leftarrow E$ und
- $\sigma_{\{x/E\}}$ kollisionsfrei für Q

Dann ist $\sigma_{\{x/E\}}(Q)x \leftarrow E\{Q\}$ ein gültiges Hoare-Tripel

Bemerkung

• $\sigma_{\{x/E\}}$ ist die Substitution von x mit E

Zuweisung

Lukas Bach, lukas.bach@student.kit.edu

Algorithmen

Pseudocod

Das Hoare-Kalkül

Axiom HT-A

- Sei x ← E eine Zuweisung
- Q eine Nachbedingung von $x \leftarrow E$ und
- $\sigma_{\{x/E\}}$ kollisionsfrei für Q

Dann ist $\sigma_{\{x/E\}}(Q)x \leftarrow E\{Q\}$ ein gültiges Hoare-Tripel

Bemerkung

- $\sigma_{\{x/E\}}$ ist die Substitution von x mit E
- Bei Anwendung der Regel rückwärts vorgehen

Lukas Bach, lukas.bach@student.kit.edu

Algorithmen

Beispiel

Pseudocode

Betrachte die Zuweisung

Das Hoare-Kalkül

 $x \leftarrow x + 1$ und die Nachbedingung

{*x*≐1}

Lukas Bach, lukas.bach@student.kit.edu

Algorithmen

Beispiel

Pseudocode

Betrachte die Zuweisung

Das Hoare-Kalkül

 $x \leftarrow x + 1$ und die Nachbedingung

 $\{x \doteq 1\}$

Nach HT-A gilt

Lukas Bach, lukas.bach@student.kit.edu

Algorithmen

Beispiel

Pseudocode

Betrachte die Zuweisung

Das Hoare-Kalkül

 $x \leftarrow x + 1$

und die Nachbedingung

 $\{x \doteq 1\}$

Nach HT-A gilt

 $\{x+1 \dot= 1\} \ x \leftarrow x+1 \ \{x \dot= 1\}$ ist ein gültiges Hoare-Tripel.

Ableitungsregeln: HT-E

Lukas Bach, lukas.bach@student.kit.edu

Algorithmen

Pseudocode

- Verstärkung der Vorbedingung
- Abschwächung der Nachbedingung

Ableitungsregeln: HT-E

Lukas Bach, lukas.bach@student.kit.edu

Algorithmen

Pseudocod

Das Hoare-Kalkül

Verstärkung der Vorbedingung

Abschwächung der Nachbedingung

HT-E

Wenn $\{P\}S\{Q\}$ ein gültiges Hoare-Tripel ist und $P' \vdash P$ und $Q \vdash Q'$ gelten, dann folgt:

Ableitungsregeln: HT-E

Lukas Bach, lukas.bach@student.kit.edu

Algorithmen

Pseudocod

Das Hoare-Kalkül

Verstärkung der Vorbedingung

Abschwächung der Nachbedingung

HT-E

Wenn $\{P\}S\{Q\}$ ein gültiges Hoare-Tripel ist und $P' \vdash P$ und $Q \vdash Q'$ gelten, dann folgt:

 $\{P'\}S\{Q'\}$ ist ein gültiges Hoare-Tripel.

Ableitungsregeln: HT-E

Lukas Bach, lukas.bach@student.kit.edu

Algorithmen

Pseudocode

Das Hoare-Kalkül

Verstärkung der Vorbedingung

Abschwächung der Nachbedingung

HT-E

Wenn $\{P\}S\{Q\}$ ein gültiges Hoare-Tripel ist und $P' \vdash P$ und $Q \vdash Q'$ gelten, dann folgt:

 $\{P'\}S\{Q'\}$ ist ein gültiges Hoare-Tripel.

Bemerkung

 $B \vdash A : \Leftrightarrow$ Aussage A ist syntaktisch aus Aussage B ableitbar

Lukas Bach, lukas.bach@student.kit.edu

Algorithmen

Pseudocode

Das Hoare-Kalkül

Beispiel

Angenommen es sei $\{y>3\}$ $x\leftarrow y-1$ $\{x>1\}$ ein gültiges Hoare-Tripel.

Es gilt $\{(y > 4)\} \vdash \{(y > 3)\} \text{ und } \{(x > 1)\} \vdash \{(x > 0)\}.$

Also folgt nach HT-E:

Lukas Bach, lukas.bach@student.kit.edu

Beispiel

Algorithmen

Angenommen es sei $\{y > 3\}$ $x \leftarrow y - 1$ $\{x > 1\}$ ein gültiges Hoare-Tripel. Es gilt $\{(y > 4)\} \vdash \{(y > 3)\}$ und $\{(x > 1)\} \vdash \{(x > 0)\}$.

Pseudocode

Also folgt nach HT-E:

Das Hoare-Kalkül

 $\{y > 4\} \ x \leftarrow y - 1 \ \{x > 0\}$ ist ein gültiges Hoare-Tripel.

Lukas Bach, lukas.bach@student.kit.edu

Algorithmen

Pseudocode

Das Hoare-Kalkül

Beispiel

Angenommen es sei $\{y > 3\}$ $x \leftarrow y - 1$ $\{x > 1\}$ ein gültiges Hoare-Tripel.

Es gilt $\{(y > 4)\} \vdash \{(y > 3)\}$ und $\{(x > 1)\} \vdash \{(x > 0)\}$.

Also folgt nach HT-E:

 $\{y>4\}$ $x\leftarrow y-1$ $\{x>0\}$ ist ein gültiges Hoare-Tripel.

Bemerkung

Es müssen sich nicht unbedingt beide Bedingungen ändern!

Aus $\{(y > 3)\} \vdash \{(y > 3)\} \text{ und } \{(x > 1)\} \vdash \{(x > 0)\}$

folgt nach HT-E auch

 $\{y > 3\}$ $x \leftarrow y - 1$ $\{x > 0\}$ ist ein gültiges Hoare-Tripel.

Ableitungsregeln: HT-S

Lukas Bach, lukas.bach@student.kit.edu

Algorithmen

Pseudocode

Ableitungsregeln: HT-S

Lukas Bach, lukas.bach@student.kit.edu

Algorithmen

Pseudocode

Das Hoare-Kalkül

Hintereinanderausführung von durch Hoare-Triple bewiesene Code Segmente sind selbst gültig.

Ableitungsregeln: HT-S

Lukas Bach, lukas.bach@student.kit.edu

Algorithmen

Pseudocode

Das Hoare-Kalkül

Hintereinanderausführung von durch Hoare-Triple bewiesene Code Segmente sind selbst gültig.

HT-S

Wenn $\{P\}S_1\{Q\}$ und $\{Q\}S_2\{R\}$ gültige Hoare-Tripel sind

Ableitungsregeln: HT-S

Lukas Bach, lukas.bach@student.kit.edu

Algorithmen

Pseudocod

Das Hoare-Kalkül

Hintereinanderausführung von durch Hoare-Triple bewiesene Code Segmente sind selbst gültig.

HT-S

Wenn $\{P\}S_1\{Q\}$ und $\{Q\}S_2\{R\}$ gültige Hoare-Tripel sind, dann folgt:

Ableitungsregeln: HT-S

Lukas Bach, lukas.bach@student.kit.edu

Algorithmen

Pseudocod

Das Hoare-Kalkül

Hintereinanderausführung von durch Hoare-Triple bewiesene Code Segmente sind selbst gültig.

HT-S

Wenn $\{P\}S_1\{Q\}$ und $\{Q\}S_2\{R\}$ gültige Hoare-Tripel sind, dann folgt: $\{P\}S_1; S_2\{R\}$ ist ein gültiges Hoare-Tripel.

Ableitungsregeln: HT-S

Lukas Bach, lukas.bach@student.kit.edu

Algorithmen

Pseudocode

Das Hoare-Kalkül

Hintereinanderausführung von durch Hoare-Triple bewiesene Code Segmente sind selbst gültig.

HT-S

Wenn $\{P\}S_1\{Q\}$ und $\{Q\}S_2\{R\}$ gültige Hoare-Tripel sind, dann folgt: $\{P\}S_1; S_2\{R\}$ ist ein gültiges Hoare-Tripel.

Bemerkung

";" trennt hier zwei Programmstücke

Lukas Bach, lukas.bach@student.kit.edu

Algorithmen

Pseudocode

Beispiel

Das Hoare-Kalkül

Angenommen es seien $\{y > 3\}$ $x \leftarrow y - 1$ $\{x > 1\}$ und $\{x > 1\}$ $z \leftarrow x - 1$ $\{z > -1\}$ gültige Hoare-Tripel.

Lukas Bach, lukas.bach@student.kit.edu

Algorithmen

Pseudocode

Beispiel

Das Hoare-Kalkül

Angenommen es seien $\{y > 3\}$ $x \leftarrow y - 1$ $\{x > 1\}$ und $\{x > 1\}$ $z \leftarrow x - 1$ $\{z > -1\}$ gültige Hoare-Tripel.

Dann folgt nach HT-S:

Lukas Bach, lukas.bach@student.kit.edu

Algorithmen

Pseudocode

Das Hoare-Kalkül

Beispiel

Angenommen es seien $\{y > 3\}$ $x \leftarrow y - 1$ $\{x > 1\}$ und

 $\{x > 1\}$ $z \leftarrow x - 1$ $\{z > -1\}$ gültige Hoare-Tripel.

Dann folgt nach HT-S:

 $\{y>3\}$ $x\leftarrow y-1; z\leftarrow x-1$ $\{z>-1\}$ ein gültiges Hoare-Tripel.

Bedingte Anweisungen

Lukas Bach, lukas.bach@student.kit.edu

Algorithmen

Pseudocode

Bedingte Anweisungen

Lukas Bach, lukas.bach@student.kit.edu

Algorithmen

Pseudocode

Das Hoare-Kalkül

HT-I

Wenn $\{P \land B\}S_1\{Q\}$ und $\{P \land \neg B\}S_2\{Q\}$ gültige Hoare-Tripel sind

Bedingte Anweisungen

Lukas Bach, lukas.bach@student.kit.edu

Algorithmen

Pseudocod

Das Hoare-Kalkül

HT-I

Wenn $\{P \land B\}S_1\{Q\}$ und $\{P \land \neg B\}S_2\{Q\}$ gültige Hoare-Tripel sind, dann folgt:

```
\{P\}
if B then S_1
else S_2
fi
\{Q\}
```

ist ein gültiges Hoare-Tripel.

Beispiel

Lukas Bach, lukas.bach@student.kit.edu

Algorithmen

Pseudocode

```
\{x = a \land y = b\}
if x > y
then
                   {...}
                   z \leftarrow x
                   {...}
else
                   {...}
                   z \leftarrow y
                   {...}
fi
\{z = \min(a,b)\}
```

Beispiel

Lukas Bach, lukas.bach@student.kit.edu

Algorithmen

Pseudocode

```
\{x = a \wedge y = b\}
if x > y
then
                        \{ x = a \land y = b \land \neg (x > y) \}
                        \{x = \min(a, b)\}
                      z \leftarrow x
                        \{z = \min(a,b)\}
else
                        \{x = a \land y = b \land x > y\}
                        \{ y = \min(a, b) \}
                      z \leftarrow y
                       \{z = \min(a,b)\}
fi
 \{z = \min(a, b)\}
```

Schleifen

Lukas Bach, lukas.bach@student.kit.edu

Algorithmen

Pseudocode

Das Hoare-Kalkül

HT-W

Wenn $\{I \land B\}S\{I\}$ ein gültiges Hoare-Tripel ist

Schleifen

Lukas Bach, lukas.bach@student.kit.edu

Algorithmen

Pseudocode

Das Hoare-Kalkül

HT-W

Wenn $\{I \land B\}S\{I\}$ ein gültiges Hoare-Tripel ist, dann folgt:

Schleifen

Lukas Bach, lukas.bach@student.kit.edu

Algorithmen

Pseudocode

Das Hoare-Kalkül

HT-W

Wenn $\{I \land B\}S\{I\}$ ein gültiges Hoare-Tripel ist, dann folgt:

{*I*}

 $\mathbf{while}\; B\; \mathbf{do}\; S$

od

 $\{I \land \neg B\}$

ist ein gültiges Hoare-Tripel.

Schleifeninvariante

Lukas Bach, lukas.bach@student.kit.edu

Algorithmen

Pseudocode

Schleifeninvariante

Lukas Bach, lukas.bach@student.kit.edu

Algorithmen

Pseudocode

Das Hoare-Kalkül

Eine spezielle Zusicherung

Schleifeninvariante

Lukas Bach, lukas.bach@student.kit.edu

Algorithmen

Pseudocode

- Eine spezielle Zusicherung
- Schleifeninvarianten müssen vor, während und nach jedem Schleifendurchlauf gelten

Schleifeninvariante

Lukas Bach, lukas.bach@student.kit.edu

Algorithmen

Pseudocod

- Eine spezielle Zusicherung
- Schleifeninvarianten müssen vor, während und nach jedem Schleifendurchlauf gelten
- Garantiert, dass die Schleife nicht w\u00e4hrend einem beliebigen Durchlauf "kaputt" geht.

Beispiel

Lukas Bach, lukas.bach@student.kit.edu

Algorithmen

Pseudocode

```
\{x = a \land y = b\}
{...}
while y \neq 0
do
     y \leftarrow y - 1
      {...}
     x \leftarrow x + 1
     {...}
od
\{x=a+b\}
```

Beispiel

Lukas Bach, lukas.bach@student.kit.edu

Algorithmen

Pseudocode

```
\{x = a \land y = b\}
 \{x+y=a+b\}
while y \neq 0
do
     \{x+y=a+b \land y \neq 0\}
     \{x+1+y-1=a+b\}
     y \leftarrow y - 1
     \{x+1+y=a+b\}
     x \leftarrow x + 1
     \{x+y=a+b\}
od
\{x+y=a+b \land \neg(y \neq 0)\}
\{x=a+b\}
```

Lukas Bach, lukas.bach@student.kit.edu

Algorithmen

Pseudocode

