

SE5220

600mA CMOS Ultra LDO Voltage Regulator with EN

Modify Record

时间	新版本	旧版本	修改人	修改内容
2012-09-07	Rev.1.0	NA	Jiao	
2012-09-07	Rev.1.1	Rev1.0	LZM	修改为 SE5220CB 的参数
2017-06-30	Rev.1.2	Rev1.1	JOE	修改热阻描述方法和表头电流数
2017-08-30	Rev.1.3	Rev1.2	JOE	根据 AP7365 修改 VINMAX 到 6.5V
2017-08-30	Rev.1.4	Rev1.3	JOE	去掉 EN 对 VIN 的 ESD 二极管
2020-05-22	Rev 1.5	Rev 1.3	Shiyan	Power is reduced to 0.4W for SOT23,
2020-03-22	Kev 1.3	Nev 1.3	Sillyali	and 0.9W for PSOP8

General Description

The SE5220 series of adjustable output ultra ■ low dropout linear regulators are designed for portable battery powered applications, which require low power consumption and low dropout voltage. Each device contains a bandgap voltage ■ reference, an error amplifier, a PMOS power transistor, and current limit and temperature limit protection circuits. The output voltage can be adjusted via the external resistor network, based on the internal reference voltage of 0.8V

The SE5220 is designed to work with low cost electrolytic and ceramic capacitors and requires a minimum output capacitor of 1µF.

Features

- Typical 150mV Dropout Voltage at 500mA.
- Fast Enable Turn-On Time of 20µs (Typ.)
- Excellent Line and Load Regulation.
- High Accuracy Output Voltage of 2%.
- Ultra-Low Ground Current at 78µA(Typ)
- Disable Current Less than 1µA (Typ.)
- Thermal and Over-Current Protection.
- Short Circuit Protection
- Standard SOT23-5 Package.

Applications

- USB removable devices
- MPEG4 devices
- Wireless LAN's
- Hand-Held Instrumentation.
- Portable DVD players
- Digital camera

Typical Application

Figure 2. ADJ Vout Typical Application Circuit (Minimum Cout 1uF)

Pin Configuration

Pin Description

NO.	Pin Name	Pin Function Description				
1	ENABLE	Enable Pin				
2	VIN	Input Voltage				
3	VOUT	Output Voltage				
4	ADJ	Adjust Pin				
5	GND	Ground				

Functional Block Diagram

Ordering Information

Package	Ordering Information		М	arking Information
IN 1 5 OUT 5 OUT 4 ADJ/FB SOT-23-5	ADJ	SE5220-HF-ADJ	5220X	Adjustable output voltage X means Production batch.code. (A-Z: 1-26, a-z: 27-52)
	3.3V	SE5220ALG-HF	220Alx	
SOT-23-5L (Top View)	2.8V	SE5220BLG-HF	220BLx	
VIN 1 5 VOUT	2.5V	SE5220CLG-HF	220CLx	x means Production
GND 2	1.8V	SE5220DLG-HF	220DLx	batch.code. (A-Z: 1-26, a-z:
ENABLE 3 4 NC	1.5V	SE5220ELG-HF	220ELx	27-52)
	3.0V	SE5220FLG-HF	220FLx	
	1.2V	SE5220GLG-HF	220GLx	

Absolute Maximum Ratings⁽¹⁾

Parameter	Symbol	Value	Units	
Input Voltage	V _{IN}	6.5	٧	
Enable Voltage Range	V _{EN}	-0.3 to V _{IN}	٧	
Output Voltage Range	V _{OUT}	-0.3 to V _{IN}	V	
Power Dissipation	D	SOT23-5: 0.4	W	
Power Dissipation	P_{D}	PSOP8: 0.9	VV	
	0	SOT23-5: 150		
Thermal Desigtance, Junction to Ambient	Θ_{JA}	PSOP8: 30	°C/W	
Thermal Resistance, Junction-to-Ambient	0	SOT23-5: 33	C/VV	
	Θ _{JC}	PSOP8: 20]	
Lead Temperature (Soldering, 5 sec.)		260	°C	
Junction Temperature Range	TJ	-40 to +150	°C	
Storage Temperature Range	Ts	-40 to +150	°C	

Test condition for all packages: Device mounted on FR-4 substrate PC board, 1oz copper, with minimum recommended pad layout.

MIL-STD-202G 210F

Recommended Operating Conditions⁽²⁾

Parameter	Symbol	Value	Units
Supply Input Voltage Range	V _{IN}	2~6	V
Junction Temperature Range	TJ	-40 to +125	°C
Ambient Temperature	T _A	-40 to 85	°C

Electrical Characteristics

 $(V_{IN} = Vout + 1.0V)$; $C_{IN} = 10\mu F$; $C_{OUT} = 10\mu F$; $I_{OUT} = 10mA$; $I_{J} = 25$ °C; unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{OUT}	Output Voltage Accuracy		-2%		2%	V
V_{REF}	ADJ Pin Voltage	SE5220 – ADJ	-2%	0.8	2%	V
ΔV _{OUT} /V _{OUT}	Line Regulation	$V_{IN} = (V_{OUT} + 0.7)V \text{ to } 6V$		0.05	0.2	%/V
ΔV _{OUT} /V _{OUT}	Load Regulation ⁽⁵⁾	$V_{IN} = (V_{OUT} + 0.7)V$ $I_{OUT} = 10\text{mA to } 500\text{mA}$	-	0.12	1	%
ΔV _{OUT} /ΔΤ	Output Voltage Temperature Coefficient	Note 4		0.1		mV/°C

SE5220

600mA CMOS Ultra LDO Voltage Regulator with EN

	Dropout Voltogo (C)	Vout<2.5V,lout = 600mA		306	550	ma\ /	
$V_{IN} - V_{OUT}$	Dropout Voltage (6)	Vout≥2.5V,lout = 600mA		240	350	mV	
_	Thermal Dratection	Thermal Protect Threshold		150		°C	
T _{PROTECTION}	Thermal Protection	Hysterisys		30		10	
I.	Quiescent Current	$V_{EN} = V_{IN}$; $I_{OUT} = 0mA$		78 100			
l _Q	Quiescent Current	$V_{EN} = 0.4V; I_{OUT} = 0mA$		0.1	1	μA	
		Voltage Increasing, Output	1.6			V	
V	Enable Input Threshold	Turns On, Logic High	1.0		1	V	
$V_{TH(EN)}$	Voltage	Voltage Decreasing, Output			0.4	V	
		Turns Off, Logic Low				V	
I _{LIMIT}	Current Limit		1	1.7	I	Α	
I _{short}	Short Circuit Current	V _{IN} =Vout+1V; Vout< 0.4V		0.32	-	Α	
DCDD	Pinnla Paigation	f =100HzVIN=4.5V		52.6	.0.0	dB	
PSRR	Ripple Rejection	Vp-p=1V, ILoad=50mA		53.6		uB	

- Note 1: Exceeding the absolute maximum rating may damage the device.
- **Note 2:** The device is not guaranteed to function outside its operating rating.
- Note 3: The maximum allowable power dissipation at any T_A (ambient temperature) is calculated using: $P_{D(MAX)} = (T_{J(MAX)} T_A)/\Theta_{JA}$. Exceeding the maximum allowable power dissipation will result in excessive die temperature, and the regulator will go into thermal shutdown. See "Thermal Consideration" section for details
- **Note 4:** Output voltage temperature coefficient is the worst case voltage change divided by the total temperature range.
- **Note 5:** Regulation is measured at constant junction temperature using low duty cycle pulse testing. Parts are tested for load regulation in the load range from 10mA to 600mA. Changes in output voltage due to heating effects are covered by the thermal regulation specification.
- **Note 6:** Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal value measured at 1V differential. Input voltage above minimum Vin=2V.

Typical Performance Characteristics

PSRR(dB) PSRR 60 40 30 20 10 0.01 0.1 1 10 100

Frequency(KHz)

Applications Information

Application Hints

Like any low dropout regulator, SE5220 requires external capacitors to ensure stability. The external capacitors must be carefully selected to ensure performance.

Input Capacitor

An input capacitor of at least $10\mu F$ is required. Ceramic or Tantalum can be used. The value can be increase without upper limit.

Output Capacitor

An output capacitor is required for stability. It must be placed no more than 1 cm away from the V_{OUT} pin, and connected directly between V_{OUT} and GND pins. The minimum value is $10\mu F$ but may be increase without limit.

Thermal Considerations

It is important that the thermal limit of the package is not exceeded. The SE5220 has built-in thermal protection. When the thermal limit is exceeded, the IC will enter protection, and V_{OUT} will be pulled to ground. The power dissipation for a given application can be calculated as following:

The power dissipation (P_D) is $P_D = I_{OUT} * [V_{IN} - V_{OUT}]$

The thermal limit of the package is then limited to $P_{D(MAX)} = [T_J - T_A]/\Theta_{JA}$ where T_J is the junction temperature, TA is the ambient temperature, and Θ_{JA} is around 150°C/W(SOT23-5) for SE5220. SE5220 is designed to enter thermal protection at 150°C. For example, if T_A is 25°C then the maximum P_D is limited to about 0.7W. In other words, if $I_{OUT(MAX)} = 300$ mA, then $[V_{IN} - V_{OUT}]$ cannot exceed 2.33V. (Test condition for all packages: Device mounted on FR-4 substrate PC board, 1oz copper, with minimum recommended pad layout.)

Outline Drawing For SOT23-5

DIMENSIONS						
DIM	INC	HES	MM			
LIIVI	MN	MAX	MN	MAX		
Α	0.110	0.120	2.80	3.05		
В	0.059	0.070	1.50	1.75		
С	0.036	0.051	0.90	1.30		
D	0.014	0.020	0.35	0.50		
E	-	0.037	-	0.95		
F	-	0.075	-	1.90		
Н	-	0.006	-	0.15		
J	0.0035	0.008	0.090	0.20		
K	0.102	0.118	2.60	3.00		

联系方式:

北京思旺电子技术有限公司-中国总部

地址:中国北京市海淀区信息路 22 号上地科技综合楼 B 座二层

邮编: 100085

电话:010-82895700/1/5 传真:010-82895706

Seaward Electronics Corporation - 台湾办事处

2F, #181, Sec. 3, Minquan East Rd,

Taipei, Taiwan R.O.C 电话: 886-2-2712-0307 传真: 886-2-2712-0191

Seaward Electronics Incorporated – 北美办事处

1512 Centre Pointe Dr. Milpitas, CA95035, USA 电话: 1-408-821-6600