

Team 38: Fuel Cell Monitor Bi-Weekly Update 4

Russell Wells Rana Kortam Sameer Osama Jessica Odutola Sponsor: John Lusher

TA: Dalton Cyr

Project Summary

- Problem statement: A single fuel cell is an easy power source to monitor, but to achieve any level of real usable power they must be connected in a stack. If only monitored as a whole, each cell would have to be tested individually to determine the issue. This causes longer down times and more technician wages to trouble shoot.
- The Fuel Cell Monitor System will give the operator real time voltages of both the individual cells and stack. The voltages will be monitorable from an android based mobile app. In case of over or under voltage, the app will notify the operator of not only the error but which cell has fallen or risen outside of expected ranges. Saving both time and money for repairs.

Fuel Cell Monitor Integrated System Diagram

Project Timeline

Board is soldered and ESP/PIC32 have been successfully flashed.

Sameer Osama

Accomplishments since Update 3 8 hrs of effort	Ongoing progress/problems and plans until the next presentation
- Integrated power supply on PCB	 Ongoing: Testing current each component can handle (0A – 1A) while providing correct output voltages
	 Future: Testing negative voltages on buffer system

Sameer Osama

- -DC/DC converters output correct voltages from 0A 1A
- -Isolated DC/DC converter max current it can handle is .15A while still outputting the voltage required.

E-load measurements:

3.3V DC/DC 5V DC/DC			Isolated			
				DC/DC		
No Load	Max Load	No Load	Max Load	No Load	Max Load	
0A → 3.27V	1A → 3.2V	0A → 5V	1A → 4.9V	0A →5.28V	.15A →4.53V	

Russ Wells

Accomplishments since Update 3 40 Hours Worked	Ongoing progress/problems and plans until the next presentation
N/A	Ongoing: Testing of SPI communication within the device
	Update PCB Design as needed.

Russ Wells

- -- Opto-Isolators are capable of passing signals of up to 1MHz.
- --SPI communication is necessary for further testing.
- -- In Absence of working SPI communication. The PIC memory will be cleared and an Arduino will be used for testing and validating Internal Signal System and Buffer system.

Rana Kortam

Accomplishments since update 3 40 hrs of effort	Ongoing progress/problems and plans until the next presentation
Validated the SPI communication on Curiosity board	Ongoing: Integrating with ADC; Clock and digital in pin are working, however, both chip select pins are outputting low or high instead of high then low. Future: Complete Integration with ADC and Database

Rana Kortam

Oscilloscope of Curiosity board

Oscilloscope of clock and digital in

Oscilloscope of chip select

Jessica Odutola

Accomplishments since update 3 40 hrs of effort	Ongoing progress/problems and plans until the next presentation
N/A	 Ongoing: Integration with MCU; Testing and validating edge cases for App Subsystem Future: Complete integration and validate integrated system

Jessica Odutola

Fuel Cell	Voltage Level
Fuel Cell 1	1.5
Fuel Cell 2	1.5
Fuel Cell 3	0.5
Fuel Cell 4	1.4
Fuel Cell 5	2.0
Fuel Cell 6	1.3
Fuel Cell 7	0.7
Fuel Cell 8	1.0
Fuel Cell 9	0.8
Fuel Cell 10	1.9
Fuel Cell 11	1.5
Fuel Cell 12	1.1
Fuel Cell 13	0.4
Fuel Cell 14	0.8
Fuel Cell 15	1.2
Fuel Cell 16	1.7
RETURN	І НОМЕ

Execution Plan

	1/17/2023	1/24/2023	1/31/2023	2/7/2023	2/14/2023	2/21/2023	2/28/2023	3/7/2023	3/14/2023	3/21/2023	3/28/2023	4/4/2023	4/11/2023	4/18/2023	4/25/2023	DATE
EAM DELIVERABLES																
older and Test Power																Completed
older and Test Signal Transfer																In Progress
older and Test Micro Controllers																Not Started
CB/System redesign and order for Test Problems and actec Enclosure																Behind Schedule
ull System Assembly and Testing																
OWER SUBSYSTEM roubleshoot system																
rder extra parts if need be																
NTERNAL SIGNAL SUBSYSTEM																
stegrated PCB Design																
rder Integrated PCB																
IICRO CONTROLLER SUBSYSTEM																
PI communication with ADC																
eview SPI communication with Dr. Lusher																
stegrate SPI with ADC																
rder for Test Problems																
PP SUBSYSTEM																
pp Reads Values from Database																
stegration with Microcontroller																
ıll System Assembly and Testing																

Validation Plan

Paragraph #	Test Name	Success Criteria	Methodology	Status	Responsible Engineer(s)	Notes
3.1.1.1	Mass	Mass of the fuel cell monitor shall be less than or equal to 0.25 kilograms	meaure the fuel cell monitor with digital scale	Untested	Rana	
3.2.1.1	Read full voltage Range	Device is capable of measuring and passing voltages to the database from 0 to 4.096 V	Apply sustained negative voltage	Untested	Russell	
3.2.4.2	discontinuous cell		Apply voltages at least 8.192 Volts across a single cell input and check functionality.	Untested	Sameer	
4.3.1	General Error Alerts	App is able to correctly indicate which fuel cell is Low/High and Alerts the User of the situation Via the App.	meaure the fuel cell monitor with digital scale	Untested	Jessica	
4.3.2	User Specified Error Markers	App is capable of succsefully charnging the criteria for alerts	Use the app the manipulate the fuel cell voltage range, apply a voltage outside of the range to one of the cells and monitor the app for the error alert.	Untested	Jessica	
5.1.1.1	Power Outage Restart	Device should power up, reboot, and continue operation after full power disconnect	Disconnect power source for 30 seconds (Allow capacitors to disipate) and reconnect power.	Untested	Rana	
5.1.1.1	System Loop Functionality	A voltage is applied to the fuel cell input, read by the device, reported to the database, and diplayed on the app.	Apply a voltage of 2.048 volts to the first cell input and ensure the data apperas in both the database and is displayed on the app.	Untested	Rana	

Thank you! Any questions?