

Documento de Casos de Uso

Processador de Propósito Geral Simples

Universidade Estadual de Feira de Santana

Build 1.0a

Histórico de Revisões

Date	Descrição	Autor(s)
03/10/2014	Document conception	manuellemacedo
03/10/2014	Document conception	manuellemacedo

SUMÁRIO

1	Introdução		3
	1.1	Objetivo	3
	1.2	Visão Geral do Documento	3
	1.3	Representação Simbólica	3
	1.4	Definições, Acrônimos e Abreviações	4
2	Ato	res do Sistema	4
3	Cas	os de Usos	4
	3.1	[UC 001] Unidade de Processamento	4
		3.1.1 Fluxo Principal de Eventos	5
		3.1.2 Fluxo Secundário: Alternativo	5
	3.2	[UC 002] Unidade Lógica Aritmética	6
		3.2.1 Fluxo Principal de Eventos	6
		3.2.2 Fluxo Secundário: Alternativo	6

1. Introdução

1.1. Objetivo

O objetivo desse documento é especificar os casos de uso do projeto Processador de Propósito Geral Simples. O documento contempla as seguintes informações: descrição dos Atores envolvidos no processo; definição dos fluxos de eventos principal e secundário; lista de requisitos essenciais, funcionais e não funcionais; estabelecimento de pré-condições e pós-condições.

1.2. Visão Geral do Documento

- Sessão 2: lista todos os possíveis atores do sistema.
- Sessão 3: relata a lista dos casos de uso do projeto.

1.3. Representação Simbólica

A Figura 1 ilustra a simbologia utilizada para representar operações que devem ser realizadas pelo sistema. A Figura 2 ilustra as duas simbologias utilizadas para representar os Atores do sistema. Um ator, dentro do escopo desta descrição, pode ser identificado como um módulo *top level*, ou como um elemento de entrada e saída (botões, sensores, displays, etc).

Figura 1: Exemplo de Caso de Uso.

A simbologia usual para representação de um Ator é apresentada na Figura 2a, no entanto, para representar módulos incorporados que outrora deveriam utilizar a mesma simbologia, utiliza-se a representação ilustrada nas Figuras 2b e 2c, definida por convenção. Este elemento, em geral, está associado aos módulos do sistema, ou IP-cores que de terceiros incorporados ao mesmo. Esta simbologia ainda foi divida, tendo em vista representar instâncias únicas (Figura 2c), ou múltiplas (Figura 2b) de um determinado componente.

Figura 2: Simbologia utilizada na implementação dos Casos de Uso.

O projetista responsável por interpretar os diagramas não deve confundir-se no momento de interpretar as simbologias de atores. A representação alternativa, não implica que o módulo será instanciado no subsistema em questão, mas sim que os recursos providos por este *core* são necessários para garantir o seu funcionamento.

1.4. Definições, Acrônimos e Abreviações

Termo	Descrição
UC	Caso de Uso
SF	Fluxo Secundário
FR	Requisito Funcional
IF	Interface

2. Atores do Sistema

Unidade de Controle – Unidade que controla a execução das operações.

ULA – Unidade que realiza as operações lógicas e aritméticas.

3. Casos de Usos

3.1. [UC 001] Unidade de Processamento

A **Unidade de Processamento** é responsável por realizar as operações aritméticas e lógicas, de acordo com o código de entrada.

Atores

Controle – Unidade que controla a execução das operações.

LED de overflow – Interface de saída que aciona o LED de overflow.

LEDs de dados: – Interface de saída que aciona os sinais de dados.

Pré-condições

- Atender aos requisitos funcionais [FR7-12];
- Codificação das operações deve ser definida;
- Identificação das unidades sequenciais e combinacionais;

Pós-condições

- O módulo deve ser capaz de detectar overflow aritmético;
- O resultado deve estar presente nas saídas correspondentes aos pinos de dados usando uma codificação binária;

Diagrama de Caso de Uso

3.1.1. Fluxo Principal de Eventos

- P1. Decodificar o indicador operação;
- P2. Realizar operação aritmética ou lógica;
- P3. Armazenar o resultado em um registrador;

3.1.2. Fluxo Secundário: Alternativo

[SF1] Valor do resultado excede o suportado

1. Habilitar sinal de overflow;

3.2. [UC 002] Unidade Lógica Aritmética

A **Unidade Lógica Aritmética** é responsável por realizar as operações aritméticas e lógicas, de acordo com o código da operação.

Atores

Unidade de Controle – Unidade que controla a execução das operações.

Pré-condições

- Atender aos requisitos funcionais [FRX-XX];
- Codificação das operações deve ser definida;
- Identificação das unidades sequenciais e combinacionais;

Pós-condições

- O módulo deve ser capaz de detectar overflow e underflow aritmético;
- O módulo deve ser capaz de ativar flags;
- O resultado deve estar armazenada no banco de registradores;

3.2.1. Fluxo Principal de Eventos

- P1. Decodificar o indicador operação;
- P2. Realizar operação aritmética ou lógica;
- P3. Armazenar o resultado no banco de registradores;

3.2.2. Fluxo Secundário: Alternativo

[SF1] Valor do resultado excede o suportado

1. Habilitar sinal de overflow ou underflow;

[SF2] Operação que ativa flags

1. Habilitar um dos sinais de flags;