FPGAボードとBluetooth通信を行う Androidアプリで操作する自動車の制作

最終発表

122931B 木村 駿

計画時のシステム構成

アプリ操作

信号を送信

Bluetooth

モーター制御により動作

使用機器

- 自動車部分
 - ビュートローバー ×1
 - PmodBT2 (Bluetoothデバイス)×1
 - PmodHB3(モーターデバイス)×2
 - BASYS2 (FPGAボート) × 1
- Android端末
 - SH-04E(Androidバージョン 4.4.2)

アプリの仕様(通信仕様・計画)

- 5つのボタンを持つ。
- ・ 各ボタンの仕様は以下の通り
 - ↑:文字 f (0110 0110)
 - ←:文字 I (0110 1100)
 - →:文字 r (0111 0010)
 - ↓ :文字 b (0110 0010)
 - STOP:文字s (0111 0011)
- ・ ボタンを押し続ける間、100msごとに信号を送信

FPGAの仕様(機能仕様・計画)

- ・ 信号を200ms間受信しなければ停止
- 各信号を受信したとき、表の動作をするよう、モーターモジュールに信号を送信する。

受信文字	左モーター		右モーター	
	DIR	PWM	DIR	PWM
f	+	1	+	1
r	+	1	+	0
	+	0	+	1
b		1		1
S	X	0	X	0

• PWM制御に関する部分をモジュールに分割する。

開発結果(アプリ)

- ・ 出来たもの
 - FPGAボード・Arduinoとの接続の確立
 - 仕様通りの信号の送信
- 出来なかったもの
 - 100msごとの信号の送信→ボタンをクリックしたときのみ信号を送信

開発結果(FPGA)

目標到達度:70%

- 出来たもの
 - アプリとの接続の確立
 - 仕様通りのモーター制御
- 出来なかったもの
 - 200msごとの信号の受信確認
 - PWM制御を行うモジュールの分割
 →分割したところ、PWM制御が行えなくなった。値の受け渡し方がよくなかったか?

開発計画・実際の進歩(中間発表まで)

回数	日付	計画	実際の進歩	
第1回	10月2日	オリエンテーション	オリエンテーション	
第2回	10月16日	テーマ決定	テーマ決定	
第3回 10月23日		開発計画の作成	開発計画の作成	
		アプリ開発環境のガイダンス	アプリ開発環境のガイダンス	
第4回	10月30日	計画発表	計画発表	
	11月6日	Bluetooth通信•	Bluetooth通信	
第5回		Androidアプリ開発・	Androidアプリ開発	
		FPGAボード設計の基礎学習	FPGAボード設計の基礎学習	
笠の同	11月13日	A	Androidアプリ開発の基礎学習	
第6回		Androidアプリの制作	Androidアプリの制作(ボタン配置)	
第7回	11月20日	Androidアプリの制作	FPGAボードの設計	
第7回	11772011	Artarola > - 7.707 mij F	(シリアル通信の受信を行う回路)	
第8回	12月4日	Androidアプリの制作	FPGAボードの設計	
第0 回	12月4日	FPGAボードの設計	(シリアル通信の送受信を行う回路)	
	12月11日		実機を用いた動作確認(TeraTermを用いた、	
第9回		FPGAボードの設計	シリアル通信の接続テスト)	
			FPGAボードの設計(PWM制御を行う回路)	
第10回	12月18日	実機を用いた動作確認	実機を用いた動作確認	
			(モーターの制御テスト・TeraTermを用いた、	
			シリアル通信の信号を元にした	
			モーターの制御テスト)	
第11回	12月20日	中間発表	中間発表	

開発計画・実際の進歩(中間発表以降)

回数	日付	計画	実際の進歩	
第12回	12月25日	プログラムの修正	通信・機能仕様の決定	
お「乙凹	→1月8日	実機を用いた動作確認	PWM制御を行うモジュールの開発	
	1月8日		PWM制御を行うモジュールの開発	
第13回		同上	実機を用いた動作確認	
	→1月15日		(モーターの制御テスト)	
第14回	1月15日	同上	実機を用いた動作テスト	
第14回	→1月22日	旧上	(Androidアプリによるモーター制御)	
第15回	1月22日	最終発表	最終発表	
毎15凹	→1月24日	取於光衣	以於光衣 	

FPGAのモジュール構成

FPGAのモジュール構成 META_STABLE

- メタ・ステーブル(0と1の間の中間的な電圧が入力になることで出力が不安定になること)を回避する回路。
- RXをクロック1回分遅らせ、RX_METAとして出力することでメタ・ステーブルを回避。

FPGAのモジュール構成 EN_GEN

- イネーブルを生成する回路。
- 出力されたKHz-enableは後述のSW_GENの入力として使用する。

FPGAのモジュール構成 SW_GEN

- チャタリングの防止と立ち上がりの検出をする回路。
- 出力のsw_one_shotはトップモジュールのSIOで、受信データを送信開始するトリガとして使われる。

FPGAのモジュール構成 SIO

- シリアル通信での信号の送受信およびPWM制御によるモーター制御を行う回路であり、トップモジュール。
- TXはRXの値をそのままBluetoothモジュールへ送信する。
- rx_data_regはレジスタでもあり、RXの値を格納する。また、RXの値8ビットを LEDに表示するのにも使われる。
- DIRとPWMはモータードライバへ送信されモーターを制御する。

PWM制御部

- ・ 仕様決定時ではデューティ比60%で動作するよう設計
 - →実機テストでタイヤが回転しなかったため、70%に変更
- 制御変数としてmodeを設定。デューティ比に基づき、5000ns中 3500ns間modeに1を設定。それ以外は0。
- modeが1のとき、アプリから送信された信号の判定を行い、受信信号によりPWM1,2を送信。
- ・ Modeが0のとき、's' を受信した時と同じ信号を送信。

PWM制御部

 下記の表に対応させてDIRとPWMを送信する。コードの組みやす さから 's' の時のDIRを1と設定。

受信文字	左モーター		右モーター	
	DIR	PWM	DIR	PWM
f	1	1	1	1
r	1	1	1	0
I	1	0	1	1
b	0	1	0	1
S	1	0	1	0

本講義を受けてのまとめ

- 当初の計画通りに進まず、1から計画・設計しモノを作り上げる大変さが実感できた。また、実機テストで思うように動くたびに達成感が味わえた。
- 中間発表時の見通しでは前後2方向に動けば、と低い目標設定 だったが最終的には4方向+停止が操作できるしっかりとしたもの ができたと思う。