Relative maxima and minima

4.3.1 Note: in (b) it should be $\sqrt{2}$ in place of $\sqrt{5}$.

(a)
$$f'(x) = 5(x-1)^4$$

 f' is defined everywhere, $f'(x) = 0$ $5(x-1)^4 = 0$ $x = 1$
 $x = 1 - \text{critical point}$
 $f'(x) = \frac{1}{2}$ $f'(x) = 0$ f

(b)
$$f'(x) = \frac{2x(x-1)-(x^2+1)\cdot 1}{(x-1)^2} = \frac{2x^2-2x-x^2-1}{(x-1)^2} = \frac{x^2-2x-1}{(x-1)^2}$$

$$x^2-2x-1=0 \qquad f'(x) = \frac{(x-(1-\sqrt{5}))(x-(1+\sqrt{5}))}{(x-1)^2}$$

$$x=1+\sqrt{5}, x=1-\sqrt{5} - critical pts.$$

$$f''(x) = \frac{1-\sqrt{5}}{(x-1)^2}$$

$$X=1-\sqrt{5}$$
 - relative max. $X=1+\sqrt{5}$ - relative min.