)	1.	2.	3.	4.	5.
	6.	7.	8.	9.	10.
	11.	12.	13.	14.	15.
1. ì	计算机层次结构 [。] A. 操作系统(0		的分界面是(<u>答</u> 系结构(ISA)		D. 机器语言
2. †	世界上第一台电 ⁻ A.ENIAC	·	<u>案填表中</u>)。 1	BC D.	IBM 370
机的	的实现奠定了基础 A.Charles Ba C.Von Neuma 第三代计算机采	出。 bbage unn 用的代表器件是	B. George I D. Claude S (<u>答案填表中</u>)。	Boole Shannon	里论为现代电子计算 . 大规模集成电路
6. 5	按照 Flynn 分类 A. SISD 定点 8 位整数补 A. [-128,127] C. [-128,128] 定点数表示方法	B. SIMD 玛表示数据的范	C. MISD 围是(<u>答案填表</u> B. [-127, D. [-127,	D. MIMD 中)。 128] 127]	
8. 5	定点数表示方法。	中,0 有唯一表表	C. 反码 示是(<u>答案填表</u> 1移码 C. 补	<u>中</u>)。). 源码和移码
	CII 编码值是(<u>各</u>	答案填表中)。	编码值是十六进 C. 4EH		大写英文字母'N'的
	IEEE754 标准的	32 位单精度浮	点数,指数偏移	量是(答案填表	钟)。

12. 在 1980 年 <u>案填表中</u>) 字		个汉字编码字	符集标准 Gl	B2312-198	80 中, 1 个汉字用	(<u>答</u>
A. 1	B. 2		C. 3	Ι	0. 4	
13. 根据 ASC	II 码表特征,判	断下面正确的ス	F等式是(名	李宝道表字	†):	
	.'>'a'			1214 27 44	<u> </u>	
)'<'a'					
			10 位 (今符	4号) 补和	表示,阶码6位	(4
	示,那么规划化					\
11 37 12131	.Ar Ar Amazaru	1.2.以效用.1.6.1周入	C \ <u>日本%</u> 1	<u>X* *</u> /		
A. [-1	$\times 2^{31}, -(\frac{1}{2} + 2^{-9})$	$) \times 2^{-32}] \cup [-$	$+\frac{1}{2}\times 2^{-32}$,	$+(1-2^{-9})$	$(2) \times 2^{31}$	
B. [-1 >	$(2^{31}, -(\frac{1}{2} + 2^{-10}))$	$) \times 2^{-32}] \cup [-$	$+\frac{1}{2}\times2^{-32},$	$+(1-2^{-1})$	$^{0}) \times 2^{31}$	
C. [-1 >	$< 2^{32}, -(\frac{1}{2} + 2^{-9})$	$) \times 2^{-32}] \cup [+$	$\frac{1}{2} \times 2^{-32}$,	$+(1-2^{-9})$	$) \times 2^{32}$	
D. [-1 >	$<2^{31},-2^{-9}\times2^{-3}$	2] \cup [+ $\frac{1}{2}$ \times 2	2^{-32} ,+ $(1-2)$	$(2^{-9}) \times 2^{35}$	1]	
	8 位补码数据以一 码表示的十六进制			H,那么柞	同数值情况下,	采用
A. FFAB	H B. F)ABH	C. 80ABH		D. 00ABH	
二、(每空1	分,共8分)					
已知 x = - 0.0	1111, $y = +0.1100$	1,采用8位定点	点小数方式表	長示数据,	以二进制填写下	表。
[X] _{原码}		[3	[]原码			
[X] _{补码}		ין	[]补码			
[X/2] _{补码}		ין	【/ 2] _{补码}			
[-X]补码		[-	Y]补码			

三. (6分)

已知 $27/64 = (0.421875)_{10} = (0.011011)_2$,请用 IEEE754 单精度浮点数编码十进制数 27/64 和 -27/64,并用二进制形式填写下表,s 为尾符,e 为指数,f 为尾数。

数值	s		•	e								f						
27/64																		
-27/64																		

四、(共11分)

某程序在单核处理器构成的计算机系统上运行,需要处理大量的浮点运算,且浮点运算 占该程序运行时间的 40%。

1. (5 分) 现在将单核处理器中的浮点计算部件改为流水线实现,其浮点运算速度可以提高 4 倍,请问在此情况下该程序的运行速度是改进前的几倍?

2. (6分) 若进一步将计算机系统的处理器核数增加为8核,当该程序中可并行执行的部分占总运行时间的80%时,此时该程序的运行速度是系统未有任何改进时的几倍?

五、(共12分)

某传感器采集的十位二进制数据为 1101010101, 利用海明码对该数据进行编码,希望能够纠正数据中的1位错误。

1. (4分) 为了满足要求,需要在编码字中添加多少个校验位?编码字共多少位?

2. (8 分)将编码字填入下面的方框中,并在方框的下方用对勾标出所添加校验位的位置。方框上方的数字是位置编号;若高位不用,留白即可。

20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1

六、(8分)

约定生成多项式为 $G(x)=x^4+x+1$,计算十位二进制数据 1101010101 的循环冗余校验 (CRC) 编码字。

要求写出计算过程,并将编码字用十六进制表示。

七、(共20分)

- 1.(6分)关于定点数原码加减交替除法运算的法则,下列说法正确的有____。
 - A. 余数 R≥0,则商上1,余数左移一位后,减除数
 - B. 若余数 R<0,则商上0,余数左移一位后,加除数
 - C. 如果上一步减除数,则下一步必加除数
 - D. 如果上一步加除数,则下一步必减除数
 - E. 商的符号位由被除数与除数的符号位相异或得到
- 2. (9分) 若二进制数 X=-0.100101, Y=0.1101, 使用原码加减交替法求 X+Y 的商及余数。(请给出详细的计算过程)

3. (5分) 加减交替法运算过程已完成时,下列内容 A~E 应该填入如下电路框图中的什么位置? (请将编号直接填入图中相应位置,例如:在加法器的位置已填入"F")

八、(共20分)

某规格化浮点数字长 12 位,阶码 5 位(含 1 位符号),尾数 7 位(含 1 位符号);阶码和尾数均用补码表示。 $x=-0.100100\times2^{-110},y=+0.110000\times2^{-101},x$ 、y 的阶码和尾数均已用二进制表示。

1. (4分)将 X、Y 表示为符合上述格式的规格化浮点数,填入下表。

浮点数	阶码(含1位符号)	尾数(含1位符号)
X		
Y		

2. (5 分) 若要计算 X + Y,	请用一位全加器为其尾数求和设计双符号运算加法器	(包
括溢出标志产生)电路。		

- 3. 在 X 和 Y 均已是规格化浮点数的基础上,使用浮点数乘法规则计算 $X \times Y$ 。
- 1) (2分) 阶码相加。

3)) (3 分) 运算	算结果规格化、舍入处理	(全)方注平田() 全())注)	
		T/H/K/301H10 1 H/ 1/C-1		
	最终的结果浮点数		尾数(含1位符号)	
	最终的结果	是为:		
	最终的结果浮点数	是为:		

2)(6分)尾数相乘,采用布斯(Booth)法,要以表格形式写出计算过程。