(1001919) Métodos computacionalmente intensivos

Lista de fixação 5

Exercício 1. Defina $\Theta = \{0, 1, 2, 3, 4, 5\}$. Considere que $(\theta_1, \dots, \theta_{100})$ é uma Cadeia de Markov tal que cada $\theta_i \in \Theta$, θ_1 tem distribuição uniforme em Θ , e $\mathbb{P}(\theta_i = j | \theta_{i-1} = k)$ é 0.2 se j = k e 0.4 se |j - k| = 1 ou |j - k| = 5. Também, considere que $X_{i,j}$ é gerado por θ_i de forma que $X_{i,j} | \theta_i \sim N(\theta_i, \sigma_x^2)$ e $X_{i,1}$ e $X_{i,2}$ são independentes.

- (a) Gere $((\theta_1, X_{1,1}, X_{1,2}), \dots, (\theta_n, X_{n,1}, X_{n,2}))$ quando $\sigma_x^2 = 0.75$.
- (b) Utilize o SMC para simular de $f(\theta|X)$.
- (c) Estime $\mathbb{E}[\theta_{99}|X]$ e $\mathbb{E}[\theta_{100}|X]$.
- (d) Estime $Cov(\theta_{99}, \theta_{100}|X)$.

Referências