第七章社会网络分析

授课教师: 吴翔

邮箱: wuhsiang@hust.edu.cn

2018.11.2 - 2018.11.7

- 1 社会网络分析概述 (2 个课时)
- 2 社会网络主要分析角度 (4 个课时)
- ③ 案例 (2 个课时)

Section 1

社会网络分析概述 (2 个课时)

课程存储地址

• 课程存储地址: https://github.com/wuhsiang/Courses

• 资源:课件、案例数据及代码

图 1: 课程存储地址

参考教材

- 斯坦利·沃瑟曼, 凯瑟琳·福斯特. 社会网络分析: 方法与应用. 北京: 中国人民大学出版社. 2012. (注: 对应英文版于 1996 年出版)
- 托马斯. 社会网络与健康: 模型、方法与应用. 北京: 人民卫生出版社. 2016.
- 埃里克·克拉泽克, 加博尔·乔尔迪. 网络数据的统计分析: R 语言实践. 西安: 西安 交通大学出版社. 2016.

本节知识点

- 社会网络的基本概念
- 社会网络的符号表示
- 图的基本概念
- 基本社会网络结构
- 社会网络分析软件

社交网络时代

IT -> 联系便利 -> 社交网络时代

图 2: 社交网络时代

社会网络与健康

图 3: 社会网络与肥胖

- 哪种饮食结构/生活习惯会让人变胖?
- 肥胖会"**传染**"吗?

社会网络与健康(续)

图 4: 社会网络与抑郁

- 哪种特质的人更容易抑郁?
- 社会支持是否有助于改善抑郁?

社会网络与健康(续)

图 5: 社会网络与卫生服务能力提升

• 医联体模式是否有助于提升基层医疗机构的卫生服务能力?

社会网络视角

- 行动者之间的关系是主要的, 行动者的属性是次要的
- 行动者和他们的行动被视为相互依赖的,而不是相互独立的自治体
- 行动者之间的联系是信息和资源的流动通道
- 个体的网络模型将网络结构环境视为个体行动的机遇或限制
- 网络模型将(社会、经济、政治、情感等)结构概念化为行动者之间关系的稳定形式

7.1.1 基本概念

社会网络分析 (social network analysis, SNA) 的关键概念:

- 行动者: 社会网络分析中的社会实体被称为行动者,包括个体、企业、民族国家等
- 关系连接:行动者通过社会关系彼此相连。这些联系包括:评价、资源传输、行为互动等。联系存在于特定的成对行动者之间
- 关系: 群体成员间某种类型的联系的集合
- 社会网络: 行动者 (人、组织等), 及其之间关系的集合

其它关键概念还包括: 二元图、三元图、子群、群。

基本特征

SNA 的基本特征 (Freeman 2004):

- 考虑整个网络结构
- 论证网络结构如何影响个体行为
- 运用图表展示
- 运用数学的形式

7.1.2 社会网络数据

社会网络数据包括:

- 行动者集合
- 社会关系
- 行动者属性

社会网络数据的符号表示包括:

- 图论
- 社会计量

图论符号表示法

图 G=(N,L) 由节点的集合 N 和边的集合 L 所定义。

表 1: 社会网络与图论的对应关系

社会网络图行动者节点社会关系边

图论符号表示法中,可以采用节点集合和边列表来表示社会网络数据。

图论符号表示法 (续)

- 行动者集合 $G = \{$ 王重阳,林朝英,黄药师,欧阳锋,洪七公,段智兴,周伯通,郭靖,杨过 $\}$
- 社会关系集合 $L=\{<$ 王重阳,周伯通 > ,< 王重阳,林朝英 > ,< 黄药师,郭靖 > ,< 洪七公,郭靖 > ,< 周伯通,郭靖 > ,< 欧阳锋,杨过 $>\}$

社会计量符号表示

- 社会计量 (sociometric): 由人以及被度量的人与人之间的情感关系组成的社会网络数据集合,旨在研究一群人中积极和消极的感情关系
- 社会关系矩阵: 邻接矩阵, 对应于量化行动者之间的社会关系图

邻接矩阵

	WCY	ZBT	LCY	HYS	GJ	HQG	OYF	YG	DZX
WCY	0	1	1	0	0	0	0	0	0
ZBT	1	0	0	0	1	0	0	0	0
LCY	1	0	0	0	0	0	0	0	0
HYS	0	0	0	0	1	0	0	0	0
GJ	0	1	0	1	0	1	0	0	0
HQG	0	0	0	0	1	0	0	0	0
OYF	0	0	0	0	0	0	0	1	0
YG	0	0	0	0	0	0	1	0	0
DZX	0	0	0	0	0	0	0	0	0

其它情形

- 有值关系
- 有向关系
- 多重关系
- 网络动态性

有向图/有值图

- 有向图
- 有值图 (含权图)

多重关系

- 师门关系
- 家庭关系

网络动态性

- 前 30 年
- 后 30 年

7.1.3 图的基本概念

- 子图: 若 $G_s=(N_s,L_s)$, 且 $N_S\subset N$ 、 $L_s\subset L$,那么 G_s 是 G 的子图
 - 点导出子图
 - 边导出子图
- 二元图: 包含两个节点的点导出子图
- 三元图: 包含三个节点的点导出子图

子图 (续)

点导出子图与边导出子图

```
par(mfrow = c(1, 2))
g.condorheros %>% induced_subgraph(c(1,2, 5, 8)) %>% plot()
g.condorheros %>% subgraph.edges(c(2:5)) %>% plot()
```


节点度

在无向图 G 中, 节点 n_i 的度为

$$\underline{d(n_i)}_{\text{degree}} = \underbrace{\sum_{j} x_{ji}}_{\text{indegree}} = \underbrace{\sum_{j} x_{ij}}_{\text{outdegree}}.$$
 (1)

对于有向图而言,

$$\underbrace{\sum_{j} x_{ji}}_{\text{indegree}} \neq \underbrace{\sum_{j} x_{ij}}_{\text{outdegree}}$$

节点度(续)

图 G 中节点度的均值为

$$\bar{d} = \frac{\sum d(n_i)}{g} = \frac{2L}{g}$$

度的方差为

$$S_D^2 = \frac{\sum [d(n_i) - \bar{d}]^2}{g}.$$

 $S_D^2=0$ 对应的图称为 d-规则图 (d-regular lattice)。

图的密度

图的密度

• 实际存在的边与可能的边的数量比例

$$\Delta = \frac{L}{g(g-1)/2} = \frac{2L}{g(g-1)}.$$
 (2)

图的密度(续)

- 空图
- 完全图
- 密度 $\Delta = 2/6 = 0.33$

节点间距离

- 测地线 (geodesic distance): 节点 n_i 和 n_j 之间的最短距离 $d(n_i,n_j)$
- 图的直径
 - 测地线的最大值 $D = \max_i \max_j d(n_i, n_j)$
 - 刻画了图中两点之间的最远距离
- 非连通图: 直径 D 无穷大

连通图

- 连通图
 - 任意两个节点 n_i 和 n_j 间都存在通路
 - 所有节点对都是可达的
- 连通分图
 - 非连通图的节点划分为多个子集
 - 每个子集内部是连通的,不同子集之间是不可达的
- 连通分图个数
 - 连通图: 1
 - 非连通图: ≥ 2

7.1.4 主要网络模型

参照网络模型:

- 随机网络
- 规则网络

现实网络模型:

- 小世界网络
- 无标度网络(优先连接网络)

随机网络

- 基本假定: 节点之间的边是随机构建的
- ullet G(n,p) 模型: 图 G 有 n 个节点, $\binom{n}{2}$ 条边以 p 的概率随机连接
- 节点的期望度是 (n-1)p,边的期望条数是 $\frac{n(n-1)}{2} imes p$

规则网络

ullet 基本假设:每个节点的度是常数 c

小世界网络

- 基本问题: 社会网络中两个节点之间传递信息将需要几个步骤?
- 基本假设: 大多数节点几乎没有联系,但任意两个节点之间的距离都比预期的短
- 特点: 这个世界真小啊! "六度分割" 理论

无标度网络

• 基本问题: 加入现有网络时, 行动者对要联系的人有偏好吗?

• 基本假设: 行动者更喜欢连接到网络最中心的位置

特点: "富者愈富"

7.1.5 社会网络分析软件

常用分析工具:

- UCINET
- Pajek
- NetMiner
- STRUCTURE
- MultiNet
- StOCNET

新兴分析工具

- Python-NetworkX
- R-igraph

本课程采用 igraph 包进行演示。

Section 2

社会网络主要分析角度 (4 个课时)

本节知识点

- 中心性与声望(行动者层级)
- 凝聚子群 (子群层级)
- 评估网络属性 (网络层级)

7.2.1 中心性与声望

- 基本问题:如何识别社会网络中"最重要的"角色?
- 中心性测度的有效性
 - 我们是否能够捕捉到实质上所要表示的"重要"?
 - 先有理论基础,再进行量化
- 中心性与声望
 - 中心性: 行动者参与其中, 适用于无向关系和有向关系
 - 声望: 行动者作为接受者, 适用于有向关系
 - 情境 (关系本身的性质): 讨厌 (接受者, 负面)、给出建议 (发送者)

中心性度量

无向关系的社会网络中, 主要的几种中心性度量:

- 度中心性 (degree centrality)
- 特征向量中心性 (eigenvector centrality)
- 接近中心性 (closeness centrality)
- 中介中心性 (betweenness centrality)

特殊网络

我们考虑星形网络、环形网络和线形网络。

度中心性

度中心性 (degree centrality) 的测量逻辑:

- 中心的行动者在某种意义上必须是最活跃的
- 节点度可以衡量活跃程度

$$C_D(n_i) = \frac{d(n_i)}{q-1} \tag{3}$$

度中心性(续)

在图 G 中,节点个数 g=9,度的最大值为 g-1=8。 $d(n_{HYS})=1, \text{ 故 } C_D(n_{HYS})=0.125$ $d(n_{WCY})=2, \text{ 故 } C_D(n_{WCY})=0.25$ $d(n_{DZX})=0, \text{ 故 } C_D(n_{DZX})=0$ $d(n_{GJ})=3, \text{ 故 } C_D(n_{DZX})=0.375$

度中心性(续)

表 3: Degree centrality for four graphs

star	ring	line	condor-heros
1	0.25	0.125	0.25
0.125	0.25	0.25	0.25
0.125	0.25	0.25	0.125
0.125	0.25	0.25	0.125
0.125	0.25	0.25	0.375
0.125	0.25	0.25	0.125
0.125	0.25	0.25	0.125
0.125	0.25	0.25	0.125
0.125	0.25	0.125	0

特征向量中心性

特征向量中心性 (eigenvector centrality) 的测量逻辑:

- 如果某个行动者邻居大多是中心行动者, 那么他就是中心行动者
- 中心性不仅取决于认识多少人, 还取决于认识的人是否重要

图 G 的邻接矩阵为 A,

$$Av = \lambda v$$
,

其中 λ 为特征值, v 为特征向量。

特征向量中心性 $C_e(n_i)$ 定义为**最大特征值**对应的特征向量。

特征向量中心性(续)

在图 G 中,最大特征值为 1.9。

对应的特征向量为
$$C_e(n_i) = c(0.37, 0.51, 0.2, 0.32, 0.6)$$

 $c(0.37, 0.51, 0.2, 0.32, 0.6, 0.32, 0, 0, 0) {\color{red} \bullet}$

特征向量中心性(续)

表 4: Eiggenvector centrality for four graphs

star	ring	line	condor-heros	
1	1	0.31	0.62	
0.35	1	0.59	0.85	
0.35	1	0.81	0.32	
0.35	1	0.95	0.53	
0.35	1	1	1	
0.35	1	0.95	0.53	
0.35	1	0.81	0	
0.35	1	0.59	4.9e-17	
0.35	1	0.31	6.1e-17	

PageRank

Google 搜索引擎

- 采用 PageRank 来度量网页的中心性
- 在检索时,和查询相匹配且 PageRank 值高的网页将最先显示

PageRank 在特征中心性的基础上作了修正:

- 中心节点在传递其中心性时, 考虑其度 (有向图中, 则是出度)
- 每个邻居获取其中心性的一部分(除以节点度)

接近中心性

接近中心性 (closeness centrality) 的测量逻辑:

- 占据中心地位的行动者在与其他行动者交流信息时更有效率
- 如果行动者能快速地与所有其他行动者产生内在连接,那么他就是中心行动者
- 最小距离可以用于测量中心性

$$C_C(n_i) = \frac{g - 1}{\sum_{j=1}^g d(n_i, n_j)}.$$
 (4)

缺陷:

- 必须是连通图
- 实际操作中,基于最大连通子图来计算

接近中心性(续)

首先,得到最大连通子图 G'。可以看到,欧阳锋、杨过和段智兴(节点 7-9)被排除在最大连通子图之外。

接近中心性(续)

在图 G' 中,节点个数 g=6,最短距离之和的最大值为 g-1=5。

$$\begin{split} &\sum_{j \neq HYS} d(n_{HYS}, n_j) = \\ &1 + 2 \times 2 + 3 + 4 = 12, \text{ 故} \\ &C_C(n_{HYS}) = 5/12 = 0.42 \\ &\sum_{j \neq GJ} d(n_{GJ}, n_j) = 1 \times 3 + 2 + 3 = 8, \text{ 故} \\ &C_C(n_{CJ}) = 5/8 = 0.62 \end{split}$$

接近中心性(续)

表 5: Closeness centrality for four graphs

star	ring	line	condor-heros
1	0.4	0.22	0.5
0.53	0.4	0.28	0.62
0.53	0.4	0.33	0.36
0.53	0.4	0.38	0.42
0.53	0.4	0.4	0.62
0.53	0.4	0.38	0.42
0.53	0.4	0.33	0
0.53	0.4	0.28	0
0.53	0.4	0.22	0

中介中心性

中介中心性 (betweenness centrality) 的测量逻辑:

- 如果某个行动者位于其它行动者的最短路径上,那么他就是中心行动者
- 最短距离地位具有战略重要性

假定连接 j 和 k 的最短路径共有 g_{jk} 条,而其中包含节点 i 的有 $g_{jk}(n_i)$ 条

$$C_B(n_i) = \frac{\sum_{j \le k} g_{jk}(n_i)/g_{jk}}{(g-1)(g-2)/2}.$$
 (5)

中介中心性(续)

在图 G 中,节点个数 g=9,除节点 i 以外,图 G 的路径最大数目为 (g-1)(g-2)/2=28。 只有王重阳、周伯通、郭靖处于其他行动者的最短路径上。

$$n_{WCY}$$
: $\sum g_{j-LCY}=1\times 4=4$,故 $C_B(n_{WCY})=4/28=0.14$ 。
$$n_{GJ}$$
: $\sum g_{j-HYS}=\sum g_{j-HQG}=4$,故 $\sum_{j\leq k}g_{jk}(n_{GJ})/g_{jk}=4\times 2-1=7$,即 $C_B(n_{GJ})=7/28=0.25$ 。

中介中心性(续)

表 6: Betweenness centrality for four graphs

star	ring	line	condor-heros	
1	0.21	0	0.14	
0	0.21	0.25	0.21	
0	0.21	0.43	0	
0	0.21	0.54	0	
0	0.21	0.57	0.25	
0	0.21	0.54	0	
0	0.21	0.43	0	
0	0.21	0.25	0	
0	0.21	0	0	

中心性测度的比较(续)

表 7: A comparison of centralities for condor-heros network

	degree	eigen_centrality	closeness	betweenness
WCY	0.25	0.62	0.5	0.14
ZBT	0.25	0.85	0.62	0.21
LCY	0.12	0.32	0.36	0
HYS	0.12	0.53	0.42	0
GJ	0.38	1	0.62	0.25
HQG	0.12	0.53	0.42	0
OYF	0.12	0	0	0
YG	0.12	0	0	0
DZX	0	0	0	0

声望

有向关系的社会网络中,主要的三种声望测量:

- 度数声望(类似于度中心性)
- 邻近声望 (类似于接近中心性)
- 地位或等级声望(类似于特征向量中心性)

中心性与市场策略

智能穿戴设备可以用作:

- 慢性病管理
- 生活与运动习惯监测

大多数智能手环、智能手表等产品销售状况并不理想。在市场营销中,为了促进新产品的扩散,企业可能采用"product seeding program",亦即:

● 选取意见领袖作为"种子客户",免费向其提供新产品,以期这些"种子客户"能够通过口碑效应,促进新产品的扩散。

智能穿戴设备扩散模型

对于任意行动者i,购买智能穿戴设备的决策受到两个途径的影响:

• 大众传播: 广告等途径, 全局效果

● 口碑传播: 个体之间传播, 局部效果

智能穿戴设备扩散模型 (续)

如果第 t-1 期末行动者 i 尚未购买智能穿戴设备,那么他在第 i 期购买智能穿戴设备的概率是:

$$\mathsf{prob}_{it} = 1 - (1 - p) \times (1 - q)^{m_{it}}, \tag{6}$$

其中:

- p: 创新系数, 用以刻画大众传播
- q: 模仿系数,用以刻画口碑传播
- m_{it} : 在第 t-1 期末,与行动者 i 直接相连的行动者中,已经购买了智能穿戴设备的数量

智能穿戴设备扩散模型 (续)

如果行动者 i 在第 t 期购买了智能穿戴设备,则记作 $y_{it}=1$; 否则,记作记作 $y_{it}=0$ 。所以,每期的销售量为:

$$\mathsf{sales}_t = \sum_i y_{it}.\tag{7}$$

进一步,考虑到货币的时间价值,可以通过折现率 r 来计算企业通过销售智能穿戴设备获得的收益净现值:

$$\mathsf{npv} = \sum_{t} \frac{\mathsf{sales}_t}{(1+r)^t}. \tag{8}$$

仿真模型及分析

根据以上仿真模型,模拟智能穿戴设备的扩散过程。

在 5000 个潜在客户中选取 10 个作为"种子客户",并考虑三种策略:

- 选择度中心性最大的 10 位
- 选择特征向量中心性最大的 10 位
- 选择接近中心性最大的 10 位
- 选择中介中心性最大的 10 位

模型的代码及实现请参阅:

• cases/case-diffusion.Rmd

智能穿戴设备扩散曲线

智能穿戴设备销售净现值

相应地得到销售净现值如下:

```
## normal dc ec cc bc
## 3443 3446 3442 3417 3460
```

考虑到免费向 10 位客户提供了智能穿戴产品,策略四是有效果的。

注: 需要多次重复 (repeat = 30) 求平均值

7.2.2 凝聚子群

社会网络的分析层次

• 行动者: 中心性与声望

• 子群: 凝聚子群

• 网络: 评估网络属性

理论背景

社会群体理论

- 结构化凝聚
 - 假设: 两个人存在正向互动时, 存在趋向一致的压力
 - 例子: 党同伐异
- 同质性
 - 社会规范: 凝聚导致同质性
 - 个体选择: 个体选择加入与自己类似的群体

社会群体理念

如何概念化社会群体?

- 联系的交互性
- 子群成员的接近度或可及性
- 成员间联系的频率
- 与非成员相比, 子群成员联系的相对频率

凝聚子群分析方法

- 基于完全交互性
- 基于可及性和直径
- 基于节点度
- 凝聚程度的度量
- 图分割与层次聚类

空手道俱乐部网络

考虑分裂为两个派别的空手道俱乐部网络 karate, 两派领导为 Mr Hi 和 John A。

基于完全交互性

团 (clique)

- 社会学含义:在友谊选择中,由那些彼此相互选择的人们构成的,并且包含了所有与全体子群成员相互选择的人
- 图论定义: 节点个数 $g_s \geq 3$ 的最大**完全**子图


```
# summary of cliques
table(sapply(cliques(karate), length)) %>% pandoc.table()
```

1	2	3	4	5
34	78	45	11	2

```
# cliques with size = 5
cliques(karate)[sapply(cliques(karate), length) == 5][[1]]
```

• 5/34 vertices, named, from 4b458a1: [1] Mr Hi Actor 2 Actor 3 Actor 4 Actor 14

团 (续)

团 (续)

缺点:

- 定义过于严格
 - 任意一个联系缺失,则无法成团
 - 现实例子非常少
- 团之间不存在内在的区别
 - 在图论意义上,都是完全子图
 - 无法探究团的特性带来的影响

改进:

• 放松其定义, 使其在理论和应用上更加有用

基于可及性和直径

基于可及性,可以定义 n-团

- 基本假定
 - 重要的社会过程可以通过中间人发生
 - 子群成员间的距离是最短的
- 定义
 - 在图 G 中,子图中任意节点距离 $d(n_i,n_j) \leq n$

n- \mathbf{Z}

右图的 2-团包括:

- 1, 2, 3, 4, 5
- 2, 3, 4, 5, 6

缺陷:

- 节点 4 和 5 的最短路径包含了节点 6
- 节点 6 不在子群中

n-族和 *n*-社

例子:

• 星形网络中,除去中心节点外其它节点组成了 2-团

反思:

- n-团作为子图,其直径可能大于 n
- n-团可能是非连通的
- n-团未能达到我们希望的凝聚程度

改进:

- n-族: 在子图 G_s 中,任意节点距离 $d(n_i,n_j) \leq n$
- n-社: 直径为 n 的最大子图

n-族和 n-社 (续)

右图的 2-团包括:

- 1, 2, 3, 4, 5
- 2, 3, 4, 5, 6

右图的 2-族包括:

2, 3, 4, 5, 6

右图的 2-社包括:

- 1, 2, 3, 4
- 1, 2, 3, 5
- 2, 3, 4, 5, 6

基于节点度

基本假定的适用性:

- 可及性: 重要的社会过程可以通过中间人发生 (信息与资源传播)
- 邻接性: 重要的社会过程需要直接接触(团体内的知识学习)

基于节点度的子群:

- 基本假定: 行动者与子群内相当数量的成员相邻接
- 现实含义:多重冗余的沟通渠道,子图的"脆弱性"问题(星形网络)
- k-丛 (k-plex): 子图 $G_s + d_s(n_i) \geq g_s k$
- k-核 (k-core): 子图 G_s 中 $d_s(n_i) \geq k$

k-核与可视化

核数 (coreness) 为 1 (黑色)、2 (红色)、3 (绿色)、4 (蓝色)

凝聚程度的度量

度量的思路:

- 内外联系的比较
 - 子群内联系集中
 - 子群内外联系的强度或频率之比较大
- 健壮的连通性
 - 凝聚子群在连通性方面是健壮的(有益的冗余)
 - 移除一定数量的边之后, 子群依然是连通的

图分割与层次聚类

对空手道俱乐部网络进行层次聚类,发现 3 个社团 (communities),其大小分别为 18、11 和 5。

图分割与层次聚类 (续)

采用树状图展示:

7.2.3 评估网络属性

真实网络的属性:

• 度分布: 幂律

• 聚类系数: 较高

• 平均路径长度: 较短

度分布

真实网络的节点度通常满足**幂律分布**,即度为 k 的节点在网络中的比例为

$$p_k = ak^{-b} (9)$$

或者得到

$$\ln(p_k) = -b\ln(k) + \ln(a). \tag{10}$$

符合幂律分布的网络称之为无标度网络。

聚类系数

聚类系数 (clustering coefficient) 定义为

$$cl_T(G) = \frac{3\tau_{\Delta}(G)}{\tau_3(G)},\tag{11}$$

其中 $\tau_{\Delta}(G)$ 是图 G 中三角形的个数,而 $\tau_{3}(G)$ 为连通的三元组(即由两条边连接的三个节点,亦即 2-star 网络)的个数。

聚类系数衡量了"传递三元组"的比例。

平均路径长度

平均路径长度为

$$\bar{d} = \frac{\sum_{i \neq j} d(n_i, n_j)}{2L}.$$
(12)

真实网络的平均路径长度大多在 4-6 之间。

真实网络案例

度分布

法国的博客网络 fblog, 包含 192 个节点和 1431 条边。

估计幂律指数

% Table created by stargazer v.5.2.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu % Date and time: 周一, 11 月 05, 2018 - 23:20:33

表 9

	Dependent variable:	
	Freq	
dc	-0.790***	
Constant	-1.700***	

主要参数

我们计算三个主要参数:

- 平均度
- 平均聚类系数
- 平均路径长度

degree	clustering coefficient	distance
14.91	0.3858	2.539

随机网络

设置 n=192, p=15/192=0.078, 创建随机网络。

进而计算三个主要参数。

degree	clustering coefficient	distance
15.14	0.07586	2.198

随机网络:

- 度不是幂律分布
- 聚类系数过低

小世界网络

设置 n=192, 重链概率 p=15/192=0.078, 创建小世界网络。

进而计算三个主要参数。

degree	clustering coefficient	distance
16	0.4434	2.479

小世界网络:

• 度不是幂律分布

优先连接网络

设置 n=192,幂律指数 b=0.79,创建小世界网络。

进而计算三个主要参数。

degree	clustering coefficient	distance
15.62	0.1567	2.202

优先连接网络:

• 聚类系数过低

典型网络的属性比较

我们最后比较典型网络的主要属性:

	degree	clustering coefficient	distance
fblog	15	0.39	2.5
random	15	0.076	2.2
sw	16	0.44	2.5
pa	16	0.16	2.2

Section 3

案例 (2 个课时)

本节知识点

- SNA 与文献分析
- SNA 与健康行为分析

7.3.1 医学领域案例: 文献分析

李杰. CiteSpace 中文版指南.
 http://cluster.ischool.drexel.edu/~cchen/citespace/manual/
 CiteSpaceChinese.pdf%5BEB/OL%5D%5B2018-09-05%5D.2015.

7.3.2 医学领域案例: 行为分析

参考文献

Freeman, Linton C. 2004. "The Development of Social Network Analysis: A Study in the Sociology of Science."