Non-thermal particles

The Fokker-Planck equation

Lecture 18

March 29, 2017

particles in phasespace volume: particles "flow" through phase-space

particles in phasespace volume: particles "flow" through phase-space

Vlasov's equation

1d version
$$\frac{\partial f}{\partial t} = -\frac{\partial}{\partial x} (\mathbf{v}_x f) - \frac{\partial}{\partial \mathbf{v}_x} \left[\frac{F_x(x, \mathbf{v}_x)}{m} f \right]$$

3d version
$$\frac{\partial f_{\sigma}}{\partial t} = -\sum_{i} \frac{\partial}{\partial x_{i}} (\mathbf{v}_{i} f_{\sigma}) - \sum_{i} \frac{\partial}{\partial \mathbf{v}_{i}} \left[\frac{F_{i}(\mathbf{x}, \mathbf{v})}{m} f_{\sigma} \right] = -\frac{\partial}{\partial x_{i}} (\mathbf{v}_{i} f_{\sigma}) - \frac{\partial}{\partial \mathbf{v}_{i}} \left[\frac{F_{i}(\mathbf{x}, \mathbf{v})}{m} f_{\sigma} \right]$$
 $\sigma = \text{p, e (proton, electron)}$

Implicit sum over repeated indices

Force: $\mathbf{F}(\mathbf{x}, \mathbf{v}) = q_{\sigma} \mathbf{E}(\mathbf{x}) + q_{\sigma} \frac{\mathbf{v}}{c} \times \mathbf{B}(\mathbf{x})$

$$\nabla \times \mathbf{B} = \frac{4\pi e}{c} \mathbf{J}(\mathbf{x}) = \frac{4\pi e}{c} \int \left[\mathbf{v} f_p(\mathbf{x}, \mathbf{v}) - \mathbf{v} f_e(\mathbf{x}, \mathbf{v}) \right] d^3 \mathbf{v} \qquad \text{\& similarly for } \mathbf{E}(\mathbf{x})$$

 $\mathbf{E}(\mathbf{x})$ & $\mathbf{B}(\mathbf{x})$ are each linear in $f_{p}(\mathbf{x}, \mathbf{v})$ & $f_{e}(\mathbf{x}, \mathbf{v})$

Q: what about the **pressure force**? Does that need to be included in F_i? How?

Vlasov's equation

1d version
$$\frac{\partial f}{\partial t} = -\frac{\partial}{\partial x} (\mathbf{v}_x f) - \frac{\partial}{\partial \mathbf{v}_x} \left[\frac{F_x(x, \mathbf{v}_x)}{m} f \right]$$

3d version
$$\frac{\partial f_{\sigma}}{\partial t} = -\sum_{i} \frac{\partial}{\partial x_{i}} (\mathbf{v}_{i} f_{\sigma}) - \sum_{i} \frac{\partial}{\partial \mathbf{v}_{i}} \left[\frac{F_{i}(\mathbf{x}, \mathbf{v})}{m} f_{\sigma} \right] = -\frac{\partial}{\partial x_{i}} (\mathbf{v}_{i} f_{\sigma}) - \frac{\partial}{\partial \mathbf{v}_{i}} \left[\frac{F_{i}(\mathbf{x}, \mathbf{v})}{m} f_{\sigma} \right]$$

$$\sigma = \text{p, e (proton/electron)}$$

Force: $\mathbf{F}(\mathbf{x}, \mathbf{v}) = q_{\sigma} \mathbf{E}(\mathbf{x}) + q_{\sigma} \frac{\mathbf{v}}{\sigma} \times \mathbf{B}(\mathbf{x})$

Implicit sum over repeated indices

$$\nabla \times \mathbf{B} = \frac{4\pi e}{c} \mathbf{J}(\mathbf{x}) = \frac{4\pi e}{c} \int \left[\mathbf{v} f_p(\mathbf{x}, \mathbf{v}) - \mathbf{v} f_e(\mathbf{x}, \mathbf{v}) \right] d^3 \mathbf{v} \qquad \& \text{ similarly for } \mathbf{E}(\mathbf{x})$$

 $\mathbf{E}(\mathbf{x})$ & $\mathbf{B}(\mathbf{x})$ are each linear in $f_{p}(\mathbf{x}, \mathbf{v})$ & $f_{e}(\mathbf{x}, \mathbf{v})$

- \rightarrow Vlasov equations for $f_p(x, v) \& f_e(x, v)$
 - nonlinear in $f_p(x, v) \& f_e(x, v)$

Vlasov's equation

$$\frac{\partial f_{\sigma}}{\partial t} + \frac{\partial}{\partial x_{i}} \left(\mathbf{v}_{i} f_{\sigma} \right) + \frac{\partial}{\partial \mathbf{v}_{i}} \left[\frac{F_{i}(\mathbf{x}, \mathbf{v})}{m} f_{\sigma} \right] = 0 \qquad \mathbf{F}(\mathbf{x}, \mathbf{v}) = q_{\sigma} \mathbf{E}(\mathbf{x}) + q_{\sigma} \frac{\mathbf{v}}{c} \times \mathbf{B}(\mathbf{x})$$

 $f_{\sigma}(\mathbf{x}, \mathbf{v}) = \mathbf{smoothed}$ phase space density – does not reflect discrete particles – represents an **ensemble average**

→ E(x) & B(x) are smooth/ensemble averaged fields – not fields from discrete particles. Particles at ~same point in space feel ~same force

What is **not** included:

Forces between particles @ ~same point – i.e. collisions

Vlasov eqs. = eqs. for a collisionless plasma

Including Collisions: Fokker-Planck

$$\frac{\partial f_{\sigma}}{\partial t} + \frac{\partial}{\partial x_{i}} \left(\mathbf{v}_{i} f_{\sigma} \right) + \frac{\partial}{\partial \mathbf{v}_{i}} \left[\frac{F_{i}(\mathbf{x}, \mathbf{v})}{m} f_{\sigma} \right] = \left(\frac{\partial f_{\sigma}}{\partial t} \right)_{\text{col}} = -\frac{\partial}{\partial \mathbf{v}_{i}} \left(\left\langle \frac{\Delta \mathbf{v}_{i}}{\Delta t} \right\rangle f_{\sigma} \right) + \frac{1}{2} \frac{\partial^{2}}{\partial \mathbf{v}_{i} \partial \mathbf{v}_{j}} \left(\left\langle \frac{\Delta \mathbf{v}_{i} \Delta \mathbf{v}_{j}}{\Delta t} \right\rangle f_{\sigma} \right)$$

$$\left\langle \frac{\Delta \mathbf{v}_i}{\Delta t} \right\rangle$$
 & $\left\langle \frac{\Delta \mathbf{v}_i \Delta \mathbf{v}_j}{\Delta t} \right\rangle$

are ensemble-average changes $\left\langle \frac{\Delta \mathbf{v}_i}{\Delta t} \right\rangle$ & $\left\langle \frac{\Delta \mathbf{v}_i \Delta \mathbf{v}_j}{\Delta t} \right\rangle$ due to fluctuating **E** & **B** fields.* Each depends on **v** – velocity @ $t - \Delta t$ prior to fluctuating forces

dependence functions

dependence captured in
$$D_{ij}(\mathbf{v}) = \frac{1}{2} \left\langle \frac{\Delta \mathbf{v}_i \Delta \mathbf{v}_j}{\Delta t} \right\rangle$$
 $A_i(\mathbf{v}) = \left\langle \frac{\Delta \mathbf{v}_i}{\Delta t} \right\rangle - \frac{\partial D_{ij}}{\partial \mathbf{v}_j}$

$$\frac{\partial f_{\sigma}}{\partial t} + \frac{\partial}{\partial x_{i}} \left(\mathbf{v}_{i} f_{\sigma} \right) + \frac{\partial}{\partial \mathbf{v}_{i}} \left[\frac{F_{i}}{m} f_{\sigma} \right] = \left(\frac{\partial f_{\sigma}}{\partial t} \right)_{\text{col}} = -\frac{\partial}{\partial \mathbf{v}_{i}} \left[A_{i}(\mathbf{v}) f_{\sigma} \right] + \frac{\partial}{\partial \mathbf{v}_{i}} \left[D_{ij}(\mathbf{v}) \frac{\partial f_{\sigma}}{\partial \mathbf{v}_{j}} \right]$$

Fokker-Planck equation

*same eqs. used for stellar dynamics: "collision" from gravitational interaction

$$\left\langle \frac{\Delta \mathbf{v}_i}{\Delta t} \right\rangle = -\frac{8\pi e^4 \Lambda n'}{m m'} \frac{\mathbf{v}_i}{\mathbf{v}^3} \qquad \left\langle \frac{\Delta \mathbf{v}_i \Delta \mathbf{v}_j}{\Delta t} \right\rangle = \frac{8\pi e^4 \Lambda n' \mathbf{v}_{rms}^{\prime 2}}{m^2} \frac{\delta_{ij}}{\mathbf{v}^3}$$

$$A_i(\mathbf{v}) = -\frac{4\pi e^4 \Lambda n'}{m m'} \frac{\mathbf{v}_i}{\mathbf{v}^3}$$

$$D_{ij}(\mathbf{v}) = \frac{4\pi e^4 \Lambda n' \mathbf{v}_{rms}^{\prime 2}}{m^2} \frac{\delta_{ij}}{\mathbf{v}^3}$$

each is linear in $f_{\sigma'}(\mathbf{x}, \mathbf{v}) - \sigma' = \text{target species}$

Coulomb log Λ enters here – how many scatterers to include?

e^{-}/e^{-} collisions ($\sigma = \sigma' = e$) w/ $f_e(\mathbf{v})$ Maxwellian:

pure advection in phase space: evolution maps
sharp bndrys → sharp bndrys

$$\frac{\partial f}{\partial t} + \frac{\partial}{\partial x_i} (\mathbf{v}_i f) + \frac{\partial}{\partial \mathbf{v}_i} \left[\left(\frac{F_i}{m} + A_i \right) f \right] = \frac{\partial}{\partial \mathbf{v}_i} \left[D_{ij} (\mathbf{v}) \frac{\partial f}{\partial \mathbf{v}_j} \right]$$
phase-space advection
diffusive term

advection/diffusion: $D_{ij}(\mathbf{v})$ is diffusion coefficient – diffuses only in \mathbf{v} & conserves total integral = $n(\mathbf{x})$

$$\frac{\partial f}{\partial t} + \frac{\partial}{\partial x_i} (\mathbf{v}_i f) + \frac{\partial}{\partial \mathbf{v}_i} \left[\left(\frac{F_i}{m} + A_i \right) f \right] = \frac{\partial}{\partial \mathbf{v}_i} \left[\underbrace{D_{ij}(\mathbf{v})}_{\partial \mathbf{v}_j} \underbrace{\partial f}_{\partial \mathbf{v}_j} \right]$$

D_{ii}(v) velocity diffusion coefficient [cm²/s⁻³]

- only diffuses in v
- Random walk in v due to numerous random accelerations – i.e. random "steps" in v
- Compare to advection/diffusion of spatial field $\psi(\mathbf{x},t)$

$$\frac{\partial \psi}{\partial t} + \frac{\partial}{\partial x_i} \left[u_i(\mathbf{x}) \psi(\mathbf{x}, t) \right] = \frac{\partial}{\partial x_i} \left[\kappa_{ij}(\mathbf{x}) \frac{\partial \psi}{\partial x_j} \right] \rightarrow \kappa \nabla^2 \psi$$

- Diffusion coefficient $\kappa_{ii}(\mathbf{x}) \rightarrow \kappa$ [cm²/s⁻¹]
- Random walk in x due to numerous random steps in x
- Not present in Fokker-Planck eq. no steps in x

also time irreversible

$$\left(\frac{\partial f}{\partial t}\right)_{\text{col}} = -\frac{\partial}{\partial \mathbf{v}_i} \left[A_i(\mathbf{v}) f - D_{ij}(\mathbf{v}) \frac{\partial f}{\partial \mathbf{v}_j} \right]$$

velocity-space divergence
$$n(\mathbf{x}) = \int f(\mathbf{x}, \mathbf{v}) d^3 \mathbf{v}$$

Q: How do collisions affect density?

$$\left(\frac{\partial n}{\partial t}\right)_{\text{col}} = \int \left(\frac{\partial f}{\partial t}\right)_{\text{col}} d^3\mathbf{v} = -\int \frac{\partial}{\partial \mathbf{v}_i} \left[A_i(\mathbf{v})f - D_{ij}(\mathbf{v})\frac{\partial f}{\partial \mathbf{v}_j}\right] d^3\mathbf{v}$$
velocity-space divergence theorem
$$= -\oint_{|\mathbf{v}| \to \infty} \left[A_i(\mathbf{v})f - D_{ij}(\mathbf{v})\frac{\partial f}{\partial \mathbf{v}_j}\right] da_i = 0$$

A: Leave it unchanged. Collisions are all at same point change particle velocities – leave their positions unchanged

Q: How do collisions affect e momentum?

$$P_{e,i} = m_e n_e u_{e,i} = m_e \int v_i f_e(\mathbf{x}, \mathbf{v}) d^3 \mathbf{v}$$

$$\left(\frac{\partial f_e}{\partial t} \right)_{\rm col} = - \frac{\partial}{\partial \mathbf{v}_j} \left[\left\langle \frac{\Delta \mathbf{v}_j}{\Delta t} \right\rangle f_e - \frac{1}{2} \frac{\partial}{\partial \mathbf{v}_k} \left(\left\langle \frac{\Delta \mathbf{v}_j \Delta \mathbf{v}_k}{\Delta t} \right\rangle f_e \right) \right]$$
 Initial form of F-P eq.

$$\left(\frac{\partial P_{e,i}}{\partial t} \right)_{\text{col}} = m_e \int \mathbf{v}_i \left(\frac{\partial f_e}{\partial t} \right)_{\text{col}} d^3 \mathbf{v} = -m_e \int \mathbf{v}_i \frac{\partial}{\partial \mathbf{v}_j} \left[\left\langle \frac{\Delta \mathbf{v}_j}{\Delta t} \right\rangle f_e - \frac{1}{2} \frac{\partial}{\partial \mathbf{v}_k} \left(\left\langle \frac{\Delta \mathbf{v}_j \Delta \mathbf{v}_k}{\Delta t} \right\rangle f_e \right) \right] d^3 \mathbf{v}$$
 velocity-space integration
$$= m_e \int \left[\frac{\partial \mathbf{v}_i}{\partial \mathbf{v}_j} \left[\left\langle \frac{\Delta \mathbf{v}_j}{\Delta t} \right\rangle f_e - \frac{1}{2} \frac{\partial}{\partial \mathbf{v}_k} \left(\left\langle \frac{\Delta \mathbf{v}_j \Delta \mathbf{v}_k}{\Delta t} \right\rangle f_e \right) \right] d^3 \mathbf{v}$$

integration by parts

$$= m_e \int \left\langle \frac{\Delta v_i}{\Delta t} \right\rangle f_e d^3 v - \frac{m_e}{2} \oint \left\langle \frac{\Delta v_i \Delta v_i}{\Delta t} \right\rangle f_e da_k$$

A: Collisions lead to a drag force density on electrons

$$\left(\frac{\partial P_{e,i}}{\partial t}\right)_{\text{col}} = m_e \int \left\langle \frac{\Delta \mathbf{v}_i}{\Delta t} \right\rangle f_e d^3 \mathbf{v}$$

Collisional drag force
$$\left(\frac{\partial P_{e,i}}{\partial t}\right)_{col} = m_e \int \left\langle \frac{\Delta v_i}{\Delta t} \right\rangle f_e d^3 v$$

velocity change due to

collisions suffered by electrons:
$$\left\langle \frac{\Delta v_i}{\Delta t} \right\rangle = \left\langle \frac{\Delta v_i}{\Delta t} \right\rangle_{ee} + \left\langle \frac{\Delta v_i}{\Delta t} \right\rangle_{ep}$$
Newton's collisions of e's w/ other e's e's w/ protons

Newton's 3rd law

$$\left(\frac{\partial P_{e,i}}{\partial t}\right)_{\text{col}} = m_e \int \left\langle \frac{\Delta v_i}{\Delta t} \right\rangle_{ee} f_e d^3 v + m_e \int \left\langle \frac{\Delta v_i}{\Delta t} \right\rangle_{ep} f_e d^3 v$$

drag only from protons

- expect drag to vanish if u_p= u_e
- lowest order in $|\mathbf{u}_p \mathbf{u}_e| << v_{th.e}$

$$m_e \int \left\langle \frac{\Delta \mathbf{v}}{\Delta t} \right\rangle_{ep} f_e d^3 \mathbf{v} \approx m_e n_e \mathbf{v}_{ep} \left(\mathbf{u}_p - \mathbf{u}_e \right) \approx \frac{m_e}{e} \mathbf{v}_{ep} \mathbf{J}$$

collision freq. from doing integral

$$\frac{1}{n_e} \int \left\langle \frac{\Delta v_i}{\Delta t} \right\rangle_{ep} f_e(\mathbf{v}) d^3 \mathbf{v} = \frac{F_d \left(\left| \mathbf{u}_p - \mathbf{u}_e \right| \right)}{m_e}$$
Exact integral for streaming Maxwellians
$$V_{ep} \left| \mathbf{u}_p - \mathbf{u}_e \right|$$
Note resemblance to A(v)
$$F_d = 0$$

$$V_{ep} \left| \mathbf{u}_p - \mathbf{u}_e \right|$$

Q: How do collisions affect e⁻ energy?

$$\varepsilon_e = \frac{1}{2} m_e \int \mathbf{v}^2 f_e(\mathbf{x}, \mathbf{v}) d^3 \mathbf{v}$$

$$\left(\frac{\partial f_e}{\partial t}\right)_{\text{col}} = -\frac{\partial}{\partial \mathbf{v}_j} \left[\left\langle \frac{\Delta \mathbf{v}_j}{\Delta t} \right\rangle f_e - \frac{1}{2} \frac{\partial}{\partial \mathbf{v}_k} \left(\left\langle \frac{\Delta \mathbf{v}_j \Delta \mathbf{v}_k}{\Delta t} \right\rangle f_e \right) \right]$$

Initial form of F-P eq.

$$\left(\frac{\partial \varepsilon_e}{\partial t}\right)_{\text{col}} = \frac{1}{2} m_e \int v^2 \left(\frac{\partial f_e}{\partial t}\right)_{\text{col}} d^3 v = -\frac{1}{2} m_e \int v^2 \frac{\partial}{\partial v_j} \left[\left\langle \frac{\Delta v_j}{\Delta t} \right\rangle f_e - \frac{1}{2} \frac{\partial}{\partial v_k} \left(\left\langle \frac{\Delta v_j \Delta v_k}{\Delta t} \right\rangle f_e \right)\right] d^3 v$$

velocity-space integration by parts

$$= m_e \int \mathbf{v}_i \frac{\partial \mathbf{v}_i}{\partial \mathbf{v}_j} \left[\left\langle \frac{\Delta \mathbf{v}_j}{\Delta t} \right\rangle f_e - \frac{1}{2} \frac{\partial}{\partial \mathbf{v}_k} \left(\left\langle \frac{\Delta \mathbf{v}_j \Delta \mathbf{v}_k}{\Delta t} \right\rangle f_e \right) \right] d^3 \mathbf{v}$$

$$\left(\frac{\partial \varepsilon}{\partial t}\right)_{\text{col}} = \int L_e(\mathbf{v}) f_e d^3 \mathbf{v}$$

Energy conservation

$$\left(\frac{\partial \varepsilon_e}{\partial t}\right)_{\text{col}} = \int L_e(\mathbf{v}) f_e d^3 \mathbf{v}$$

$$L_{e}(\mathbf{v}) = m_{e} \left(\mathbf{v}_{i} \left\langle \frac{\Delta \mathbf{v}_{i}}{\Delta t} \right\rangle_{ee} + \frac{1}{2} \left\langle \frac{\Delta \mathbf{v}_{i} \Delta \mathbf{v}_{i}}{\Delta t} \right\rangle_{ee} \right) + m_{e} \left(\mathbf{v}_{i} \left\langle \frac{\Delta \mathbf{v}_{i}}{\Delta t} \right\rangle_{ep} + \frac{1}{2} \left\langle \frac{\Delta \mathbf{v}_{i} \Delta \mathbf{v}_{i}}{\Delta t} \right\rangle_{ep} \right)$$

L_{ee}(**v**): collisions of e⁻s w/ other e⁻s

L_{ep}(**v**): collisions of e⁻s w/ protons

Elastic collisions:

$$\int L_{ee}(\mathbf{v}) f_e d^3 \mathbf{v} = 0$$
 energy exchange between e-s & protons
$$\int L_{ep}(\mathbf{v}) f_e d^3 \mathbf{v} + \int L_{pe}(\mathbf{v}) f_p d^3 \mathbf{v} = 0$$

Q: Why might the collisions be inelastic? What would that do to the above relations?

What does $D_{ij}(\mathbf{v})$ do?

$$\left(\frac{\partial f}{\partial t}\right)_{\text{col}} = -\frac{\partial}{\partial \mathbf{v}_i} \left[A_i(\mathbf{v}) f \right] + \frac{\partial}{\partial \mathbf{v}_i} \left[D_{ij}(\mathbf{v}) \frac{\partial f}{\partial \mathbf{v}_j} \right] = -\frac{\partial}{\partial \mathbf{v}_i} \left\{ A_i(\mathbf{v}) \left[f - \frac{D_{ij}(\mathbf{v})}{A_i(\mathbf{v})} \frac{\partial f}{\partial \mathbf{v}_j} \right] \right\}$$

$$A_i(\mathbf{v}) = -\frac{4\pi e^4 \Lambda n}{m^2} \frac{\mathbf{v}_i}{\mathbf{v}^3} \qquad D_{ij}(\mathbf{v}) = \frac{4\pi e^4 \Lambda n \mathbf{v}_{rms}^2}{m^2} \frac{\delta_{ij}}{\mathbf{v}^3} \qquad \frac{D_{ij}(\mathbf{v})}{A_i(\mathbf{v})} = -\frac{\mathbf{v}_{rms}^2}{\mathbf{v}_i} \delta_{ij}$$

$$f(\mathbf{v}) \propto \exp\left(-\frac{|\mathbf{v}|^2}{2\mathbf{v}_{\text{rms}}^2}\right) \Rightarrow \frac{\partial f}{\partial \mathbf{v}_j} = -\frac{\mathbf{v}_j}{\mathbf{v}_{\text{rms}}^2}f$$
 \Rightarrow $\left(\frac{\partial f}{\partial t}\right)_{\text{col}} = 0$

A: It enforces 2nd law of thermodynamics:

- Maxwellian is steady solution ($v_{rms} = v_{th}$)
- Collisions do not change a Maxwellian (A_i & D_{ii} cancel out)
- D_{ii} relaxes (diffuses) $f(\mathbf{v})$ toward a Maxwellian

$$A_{i}(\mathbf{v}) = -\frac{4\pi e^{4} \Lambda n'}{m m'} \frac{\mathbf{v}_{i}}{\mathbf{v}^{3}} \qquad D_{ij}(\mathbf{v}) = \frac{4\pi e^{4} \Lambda n' \mathbf{v}_{rms}^{2}}{m^{2}} \frac{\delta_{ij}}{\mathbf{v}^{3}} \qquad \mathbf{v} >> \mathbf{v}_{th}$$

each is linear in $f_{\sigma}(\mathbf{x}, \mathbf{v})$ of target species σ'

→ decompsing into thermal & non-thermal components

$$f_{\sigma'}(\mathbf{x}, \mathbf{v}) = f^{(th)}_{\sigma'}(\mathbf{x}, \mathbf{v}) + f^{(nt)}_{\sigma'}(\mathbf{x}, \mathbf{v}) , n_{\sigma'}^{(th)} >> n_{\sigma'}^{(nt)}$$

 \rightarrow A_i(**v**) = A_i(th)(**v**) + A_i(nt)(**v**) & similar for D_{ij}(**v**)

$$\left(\frac{\partial f}{\partial t}\right)_{\text{col}} \approx -\frac{\partial}{\partial \mathbf{v}_{i}} \left\{ \left[A_{i}^{(th)}(\mathbf{v}) - D_{ij}^{(th)}(\mathbf{v}) \frac{\partial}{\partial \mathbf{v}_{j}} \right] \left(f^{(th)} + f^{(nt)} \right) \right\} \\ \approx -\frac{\partial}{\partial \mathbf{v}_{i}} \left\{ \left[A_{i}^{(th)}(\mathbf{v}) - D_{ij}^{(th)}(\mathbf{v}) \frac{\partial}{\partial \mathbf{v}_{j}} \right] f^{(nt)} \right\}$$

$$\left(\frac{\partial f}{\partial t}\right)_{\text{col}} = 0$$
 when both are Maxwellians of same T

$$A_{i}(\mathbf{v}) = -\frac{4\pi e^{4} \Lambda n'}{m m'} \frac{\mathbf{v}_{i}}{\mathbf{v}^{3}} \qquad D_{ij}(\mathbf{v}) = \frac{4\pi e^{4} \Lambda n' \mathbf{v}_{rms}^{'2}}{m^{2}} \frac{\delta_{ij}}{\mathbf{v}^{3}} \qquad \mathbf{v} >> \mathbf{v}_{th}$$

each is linear in $f_{\sigma'}(\mathbf{x}, \mathbf{v})$ of target species σ'

→ decompsing into thermal & non-thermal components

$$f_{\sigma'}(\mathbf{x}, \mathbf{v}) = f^{(th)}_{\sigma'}(\mathbf{x}, \mathbf{v}) + f^{(nt)}_{\sigma'}(\mathbf{x}, \mathbf{v}) , n_{\sigma'}^{(th)} >> n_{\sigma'}^{(nt)}$$

 \rightarrow A_i(**v**) = A_i(th)(**v**) + A_i(nt)(**v**) & similar for D_{ij}(**v**)

$$\left(\frac{\partial f}{\partial t}\right)_{\text{col}} \approx -\frac{\partial}{\partial \mathbf{v}_{i}} \left\{ \left[A_{i}^{(th)}(\mathbf{v}) - D_{ij}^{(th)}(\mathbf{v}) \frac{\partial}{\partial \mathbf{v}_{j}} \right] \left(f^{(th)} + f^{(nt)} \right) \right\} \\ \approx -\frac{\partial}{\partial \mathbf{v}_{i}} \left\{ \left[A_{i}^{(th)}(\mathbf{v}) - D_{ij}^{(th)}(\mathbf{v}) \frac{\partial}{\partial \mathbf{v}_{j}} \right] f^{(nt)} \right\}$$

→ can use the collision coefficients computed w/ Maxwellian distribution

Electron momentum eq. – a.k.a. Ohm's law

$$\frac{\partial f_e}{\partial t} = -\frac{\partial}{\partial x_j} \left(\mathbf{v}_j f_e \right) - \frac{\partial}{\partial \mathbf{v}_j} \left(\frac{F_j}{m_e} f_e \right) + \left(\frac{\partial f_e}{\partial t} \right)_{\text{col}}$$

$$\frac{\partial}{\partial t} \left(m_e n_e u_{e,i} \right) = \int m_e v_i \frac{\partial f_e}{\partial t} d^3 v = -\frac{\partial}{\partial x_j} \int m_e v_i v_j f_e d^3 v - \int v_i \frac{\partial}{\partial v_j} \left(F_j f_e \right) d^3 v + m_e \int v_i \left(\frac{\partial f_e}{\partial t} \right)_{\text{col}} d^3 v$$

$$m_e \int (v_i - u_i)(v_j - u_j) f_e d^3 v + m_e \int u_i u_j f_e d^3 v = p_{ij} + m_e n_e u_i u_j$$

Electron momentum eq. – a.k.a. Ohm's law

$$\frac{\partial f_e}{\partial t} = -\frac{\partial}{\partial x_j} \left(\mathbf{v}_j f_e \right) - \frac{\partial}{\partial \mathbf{v}_j} \left(\frac{F_j}{m_e} f_e \right) + \left(\frac{\partial f_e}{\partial t} \right)_{\text{col}}$$

$$\frac{\partial}{\partial t} \left(m_e n_e u_{e,i} \right) = \int m_e v_i \frac{\partial f_e}{\partial t} d^3 v = -\frac{\partial}{\partial x_j} \int m_e v_i v_j f_e d^3 v - \int v_i \frac{\partial}{\partial v_j} \left(F_j f_e \right) d^3 v + m \int v_i \left(\frac{\partial f_e}{\partial t} \right)_{col} d^3 v$$

$$m_e \int (v_i - u_i)(v_j - u_j) f_e d^3 v + m_e \int u_i u_j f_e d^3 v = p_{ij} + m_e n_e u_i u_j$$

 δ_{i}

integration by parts

$$\int \frac{\partial \mathbf{v}_i}{\partial \mathbf{v}_j} F_j f_e d^3 \mathbf{v} = \int F_i f_e d^3 \mathbf{v} = n_e \overline{F}_i = -n_e e E_i - \frac{n_e e}{c} (\mathbf{u}_e \times \mathbf{B})_i$$

Electron momentum eq. – a.k.a. Ohm's law

$$\frac{\partial}{\partial t} \left(m_e n_e u_{e,i} \right) = -\frac{\partial}{\partial x_j} \left(m_e n_e u_{e,i} u_{e,j} + p_{ij} \right) - m_e n_e e \left[E_i + \frac{1}{c} \left(\mathbf{u}_e \times \mathbf{B} \right)_i \right] + m_e \int \mathbf{v}_i \left(\frac{\partial f_e}{\partial t} \right)_{\text{col}} d^3 \mathbf{v}$$

$$m_e \int \left\langle \frac{\Delta \mathbf{v}}{\Delta t} \right\rangle_{ep} f_e d^3 \mathbf{v} \approx \frac{m_e}{e} \mathbf{v}_{ep} \mathbf{J}$$

1st moment of e⁻ F-P eqn. → generalized Ohm's law

$$m_{e}n_{e}\frac{\partial\mathbf{u}_{e}}{\partial t} + m_{e}n_{e}\left(\mathbf{u}_{e}\cdot\nabla\right)\mathbf{u}_{e} = -\nabla\cdot\ddot{p}_{e} - en_{e}\left[\mathbf{E} + \frac{1}{c}\mathbf{u}_{e}\times\mathbf{B} - \underbrace{\left[\frac{m_{e}}{e^{2}n_{e}}v_{ep}\right]}\mathbf{J}\right]$$

e-p collision coefficient
$$\left\langle \frac{\Delta \mathbf{v}_i}{\Delta t} \right\rangle_{ep} \sim A_i^{(ep)}(\mathbf{v})$$
 = 0 in classical Ohm's law \rightarrow resistivity η

Ohm's law describes 1st moment of f(v)... Fokker-Planck eqn. describes full function

$$\left| \frac{\partial f_e}{\partial t} + \frac{\partial}{\partial x_i} (\mathbf{v}_i f_e) + \frac{\partial}{\partial \mathbf{v}_i} \left(\frac{F_i}{m} f_e \right) \right| = -\frac{\partial}{\partial \mathbf{v}_i} \left[A_i(\mathbf{v}) f_e \right] + \frac{\partial}{\partial \mathbf{v}_i} \left[D_{ij}(\mathbf{v}) \frac{\partial f_e}{\partial \mathbf{v}_j} \right] \right|$$

Response to E:

- idealized problem due to Spitzer & Härm (1953),
 Kruskal & Bernstein (1964), Kulsrud, et al. (1973)
- spatially uniform: $\nabla = 0$
- protons retain stationary Max'n distribution
- initialize e^-s w/ stationary uniform Max'n dist'n $T_e = T_p$
- @ t=0 introduce uniform $\mathbf{E} = -E \hat{\mathbf{z}}$ w/ $E < E_D$
- solve F-P eq. for $f_e(v_7, v_{\perp}, t)$ t > 0

$$\frac{\partial f_e}{\partial t} = eE \frac{\partial f_e}{\partial \mathbf{v}_z} - \frac{\partial}{\partial \mathbf{v}_i} \left[A_i(\mathbf{v}) f_e \right] + \frac{\partial}{\partial \mathbf{v}_i} \left[D_{ij}(\mathbf{v}) \frac{\partial f_e}{\partial \mathbf{v}_j} \right]$$

$$\frac{\partial f_e}{\partial t} = eE \frac{\partial f_e}{\partial \mathbf{v}_z} - \frac{\partial}{\partial \mathbf{v}_i} \left[A_i(\mathbf{v}) f_e \right] + \frac{\partial}{\partial \mathbf{v}_i} \left[D_{ij}(\mathbf{v}) \frac{\partial f_e}{\partial \mathbf{v}_j} \right]$$

A_i & D_{ij} from initial, Max'n, e⁻ & p dist'ns

response to E:

• $f_e(v_z, v_\perp, t)$ develops long tail

tail grows in time

 core decreases ~ e^{-γt}
 runaway loss

• Runaway loss rate, γ_{ra} , depends **strongly** on E/E_D

What this means for flares:

- tail is not a power law !? (can use in complicated model)
- E << E_D lest a significant fraction of e⁻s are lost

- would leave +ve net charge in corona
- → large opposing E cancel out original E
- No longer homogeneous problem need geometry
- dist'n w/ tail: unstable

 - modifies A_i & D_{ij} more to come about this
 - all current treatments include effects of turbulent wave spectra

$$\mathbf{A}(\mathbf{v}) = A(\mathbf{v})\hat{\mathbf{v}}$$
 $\vec{D}(\mathbf{v}) = D(\mathbf{v})\vec{I}$

$$\vec{D}(\mathbf{v}) = D(\mathbf{v})\vec{I}$$

gyromotion \rightarrow no dep'nce on ϕ_{ij}

$$f(\mathbf{v}) = \frac{\tilde{f}(\mathbf{v}, \mu)}{2\pi \mathbf{v}^2}$$

$$\frac{\partial}{\partial \mathbf{v}} \cdot \left[\mathbf{A}(\mathbf{v}) f(\mathbf{v}) \right] = \frac{1}{2\pi} \frac{1}{\mathbf{v}^2} \frac{\partial}{\partial \mathbf{v}} \left[A(\mathbf{v}) \tilde{f} \right]$$

$$\frac{\partial f(\mathbf{v})}{\partial \mathbf{v}} = \frac{1}{2\pi} \left[\frac{1}{\mathbf{v}^2} \frac{\partial \tilde{f}}{\partial \mathbf{v}} - \frac{2}{\mathbf{v}^3} \tilde{f} \right] \hat{\mathbf{v}} + \frac{1}{2\pi} \frac{1}{\mathbf{v}^3} \frac{d\mu}{d\theta_{\mathbf{v}}} \frac{\partial \tilde{f}}{\partial \mu} \hat{\theta}_{\mathbf{v}}$$

$$=-\sin(\theta_{\rm v})=-\sqrt{1-\mu^2}$$

$$\frac{\partial}{\partial \mathbf{v}} \cdot \left[\vec{D}(\mathbf{v}) \cdot \frac{\partial f(\mathbf{v})}{\partial \mathbf{v}} \right] = \frac{1}{2\pi} \frac{1}{\mathbf{v}^2} \left\{ \frac{\partial}{\partial \mathbf{v}} \left[D(\mathbf{v}) \left(\frac{\partial \tilde{f}}{\partial \mathbf{v}} - \frac{2}{\mathbf{v}} \tilde{f} \right) \right] + \frac{D(\mathbf{v})}{\mathbf{v}^2} \frac{\partial}{\partial \mu} \left[(1 - \mu^2) \frac{\partial \tilde{f}}{\partial \mu} \right] \right\}$$

Fokker-Planck equation in (v,μ) space

$$\tilde{f}(\mathbf{v}, \boldsymbol{\mu}) = 2\pi \mathbf{v}^2 f(\mathbf{v})$$

$$\left(\frac{\partial \tilde{f}}{\partial t}\right)_{\text{col}} = -\frac{\partial}{\partial v} \left\{ \left[A(v) + \frac{2D(v)}{v} \right] \tilde{f} \right\} + \frac{\partial}{\partial v} \left[D(v) \frac{\partial \tilde{f}}{\partial v} \right] + \frac{D(v)}{v^2} \frac{\partial}{\partial \mu} \left[(1 - \mu^2) \frac{\partial \tilde{f}}{\partial \mu} \right]$$

energy diffusion pitch angle diffusion – works to make f uniform in pitch angle cosine

distribution uniform over sphere of constant v

$$\frac{\partial \tilde{f}}{\partial \mu} \to 0$$

Summary

- Distribution function $f_{\sigma}(\mathbf{x}, \mathbf{v})$ for species σ (=e,p) evolves by Fokker-Planck (F-P) equation
- F-P eqn. includes collisions via coefficients
 A_i(v) and D_{ii}(v)
- Account for fluid effects include resistivity
- F-P shows how f_e(x,v) responds to DC E

Next: How F-P can account for plasma waves – **Stochastic Acceleration**