5.N.	STATISTIC	FORMULA	STATEMENTS
1.	Mean		
(a)	Population Mean (µ)	$\frac{\sum_{i=1}^{n} x_i}{N}$	
		OR	The mean is the most widely spread measure of central tendency. It is the simple average
		$\frac{x_1 + x_2 + x_3 + \dots + x_{N-1} + x_n}{N}$	of the dataset.
		(Where, N=size of population)	
(b)	Sample Mean (\bar{x})	$\frac{\sum_{i=1}^{n} x_i}{n}$	
		(Where, n=size of sample)	
2.	Median (M)	if n is odd, $\left(\frac{n+1}{2}\right)^{th}$	The median is the midpoint of the ordered dataset.
		if n is even, $\frac{\left(\frac{n}{2}\right)^{th} + \left(\frac{n}{2} + 1\right)^{th}}{2}$	
3.	Mode		The mode is the value that occurs most often. A dataset can have 0 modes, 1 mode or multiple modes.
4.	Skewness	$\frac{\frac{1}{n}\sum_{i=1}^{n}(x_{i}-\overline{x})^{3}}{\sqrt[3]{\frac{1}{n-1}\sum_{i=1}^{n}(x_{i}-\overline{x})^{2}}}$	Skewness indicates whether the data is concentrated on one side or not.
(a)	Positive skewness	Mean > Median & Mode	If the data is
(b)	Negative skewness	Mode > Median & Mean	Right concentrated = Positive skewness
(c)	Zero skewness	Mean = Median = Mode	Left concentrated = Negative skewness No concentrated = Zero skewness
5	Variance		
(a)	Population Variance (σ^2)	$\frac{\sum_{i=1}^{n}(x_{i}-\mu)^{2}}{N}$ (Where, μ =mean of population)	Variance measures the dispersion of a set of data points around their mean.
(b)	Sample Variance (s²)	$\frac{\sum_{i=1}^{n}(x_{i}-\overline{x}))^{2}}{n-1}$ (Where, \overline{x} =mean of sample)	

6.	Standard Deviation		
(a)	Population Standard Deviation (σ)	$\sqrt{\sigma^2}$	Standard deviation is the most common
(b)	Sample Standard Deviation (s)	$\sqrt{s^2}$	Standard deviation is the most common measure of variability for a single Dataset.
7.	Coefficient of Variance (Cv)	Standard Deviation Mean	Cv is the most common measure of variability for two or more dataset.
8.	Covariance		
(a)	Sample Formula	$S_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x}) * (y_i - \bar{y})}{n - 1}$	The two variables are correlated and the main statistic to measure this correlation is called covariance.
(b)	Population Formula	$\sigma_{xy} = \frac{\sum_{i=1}^{N} (x_i - \mu_x) * (y_i - \mu_y)}{N}$	Covariance can take on values from -∞ to +∞.
9.	Correlation coefficient	$\frac{Cov(x,y)}{Stdev(x)*Stdev(y)}$	Correlation adjusts covariance, so that the relationship between the two variables becomes easy and intuitive to interpret. Correlation coefficient is between Correlation of 1 (perfect positive corelation) Correlation of 0 (variables are independent) Correlation of -1 (perfect negative corelation)

10.	Probability distribu	 tion	Distribution is a function that shows the
	obability distribu		possible values for a variable and how often
			they occur.
(a)	Normal distribution	$N \sim (\mu , \sigma^2)$	
(b)	Standard normal distribution	$N \sim (0,1)$	The Standard Normal distribution is a particular case of the Normal distribution. It has a mean of 0 and a standard deviation of 1.
(c)	Z-score	$\frac{x-\mu}{\sigma}$	Variable which converts normal distribution variable to standard normal distribution is called z-score.
11.	Confidence interval	s	
(a)	Confidence Level	$(1-\alpha)$ $0 \le \alpha \le 1$	
(b)	Margin of Error (ME)	reliability factor * $\frac{\sigma}{\sqrt{n}}$	
		or $reliability\ factor*rac{s}{\sqrt{n}}$	A confidence interval is an interval within
(c)	Standard Error	$rac{\sigma}{\sqrt{n}}$ or $rac{S}{\sqrt{n}}$	which we are confident (with a certain percentage of confidence) the population parameter will fall.
(d)	Population variance known (Z)	$ \bar{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}} $	General formula of Confidence Interval: $C.I. = [\overline{x} \pm ME]$ Where ME is the margin of error.
(e)	Population variance unknown (T)	$\bar{x} \pm t_{n-1,\alpha/2} \frac{s}{\sqrt{n}}$	
(f)	For two population means with dependent	$\bar{d} \pm t_{n-1,\alpha/2} \frac{s_d}{\sqrt{n}}$	
(g)	Student's T distribution	$t_{n-1,\alpha} = \frac{\bar{x} - \mu}{s / \sqrt{n}}$	

12.	Hypothesis Testing	1	
(a)	TYPE I ERROR	REJECTING TRUE NULL HYPOTHESIS OR FALSE POSITIVE	A hypothesis is an idea that can be tested NULL HYPOTHESIS \rightarrow (H_o)
(b)	TYPE II ERROR	ACCEPTING A FALSE NULL HYPOTHESIS OR FALSE NEGETIVE	ALTERNATIVE HYPOTHESIS \rightarrow (H_1 OR H_A)
(c)	P value	P-value is the smallest level of significance at which we can still reject the null hypothesis, given the observed sample statistic.	
13.	Advance Statistics		
(a)	Linear Regression	$\widehat{y} = b_0 + b_1 x_1$ Where, $\widehat{y} = Predicted / inferred value$ $b_0 = Intercept$	(SST = SSR + SSE)
(b)	Sum of squares total	$\sum_{i=1}^{n} (y_i - \bar{y})^2$	SSE SSR SST
(c)	Sum of squares regression	$\boxed{\sum_{i=1}^n (\widehat{y_i} - \bar{y})^2}$	· · · · · · · · · · · · · · · · · · ·
(d)	Sum of squares error	$\sum_{i=1}^n e_i^2$	OLS \rightarrow Ordinary least squares OLS stands for min SSE Or we can say that lower error. $\min \sum_{i=1}^{n} e_i^2$
(e)	R-Square	$\frac{SSR}{SST}$	∠ -1 t
(f)	Multivariate linear regression	$\widehat{y} = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_k x_k$	when we have multiple variables then we use multivariate analysis.
(g)	Adjusted R- Square	$\overline{R^2} < R^2$	The adjusted R-squared penalizes excessive use of variables. adjusted R square always use in multilinear regression.

14.	Principle Componen	t Analysis (PCA)	
(a)	Covariance of X&Y	$cov(x,y) = \sum_{i=1}^{n} \frac{(x_i - \bar{x})(y_i - \bar{y})}{n-1}$	The objective of PCA is to reduce the dimensionality of the data while retaining as much of the variation in the original dataset as
(b)	Identical Matrix	$\sum_{i=1}^{n-1} n-1$ $C-\lambda I=0$	possible.
15.	Slope (m)	$m = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sum (x - \bar{x})^2}$	Y = mx+c (equation of regression line) Where m=slope
		$\sum_{x} (x-x)^2$	The slope indicates the steepness of a line.
16.	CHI-SQUARE TEST (x2)	$x^2 = \frac{\sum (O_i - E_i)^2}{E_i}$	The Chi-Square test is a statistical procedure for determining the difference between observed and expected data. This test can also be used to determine whether it correlates to the categorical variables in our data.
17.	Gradient Descent		Gradient descent is an algorithm that finds the best fit line for given training data set.
(a)	Mean squared error/ Cost function/ OLS	$\frac{1}{n}\sum_{i=1}^{n}\left(y_{i}-(mx_{i}+b)\right)^{2}$	The Mean Squared Error measures how close a regression line is to a set of data points.
18.	Polynomial Regression	$y = b_0 + b_1 x_1 + b_2 x_1^2 + \dots + b_n x_1^n$	Polynomial regression is a type of regression analysis in which the relationship between the independent variable (x) and the dependent variable (y) is modelled as an nth degree polynomial.
			$y = b_0 + b_1 x_1 + b_2 x_1^2$

19.	Bias & Variance		Bias refers to the Training Data
(a)	Total error	Bias²+Variance+Irreducible error	Variance refers to the Testing data. Low bias, High variance overfitting problem High bias, Low variance underfitting problem Low bias, Low variance = Good Model
20.	Simple Vector Regi	ression (SVR)	
(a)	Hyperplane equation	Y=wx+b	Decision Boundary
(b)	Decision boundary	wx+b=a (for positiove side) wx+b=-a (for negative side)	Boundary
(c)	Hyperplane satisfy SVR	-a < Y- wx+b < +a	Main aim in SVR is to decide a decision boundary at 'a' distance from the original hyperplane such that data points closest to the hyperplane or the support vectors are within that boundary line.
21.	Regularization		Regularization is a technique used in machine learning to prevent overfitting and improve the generalization ability of a model.
(a)	Lasso Regression (L1 regularization)	Loss + α w w = w_1 + w_2 + w_3 ++ w_n	Scaled down to 0 (due to we are eliminate the feature) this also called as FEATURE ELIMINATION TECHNIQEU
(b)	Ridge Regression (L2 regularization)	Loss + $\alpha \mathbf{w} ^2$ $ \mathbf{w} ^2 = w_1^2 + w_2^2 + w_3^2 + + w_n^2$	Scaled down high coefficient to low coefficient but it not 0 (scale down never happened to 0).
(c)	Elastic net Regression	Loss + $\alpha_1 \mathbf{w} + \alpha_2 \mathbf{w} ^2$	It uses the penalties from both the lasso and ridge techniques to regularize regression models

22.	Feature Scaling		Feature scaling is a data preprocessing technique that is used to bring different
(a)	Normalization	$X' = \frac{X - X_{min}}{X_{max} - X_{min}}$	features of a dataset onto a similar scale. Normalization typically refers to scaling a set of values to a range between 0 and 1. This is useful when the range of the data varies widely, as it puts all the values on a similar scale.
(b)	Standardization	$X^{'} = \frac{X - \mu}{\sigma}$	Standardization involves transforming a set of values to have a mean of 0 and a standard deviation of 1. This is useful when the distribution of the data is normal or approximately normal.
23.	Confusion Metrix		
(a)	Model Accuracy	$\frac{TP + TN}{TOTAL}$	It is a matrix that compares the predicted labels of a model with the actual labels in the
(b)	Error Rate	1-Accuracy	test dataset, and provides a summary of the model's performance
		Or	
		$\frac{FP + FN}{TOTAL}$	Actual Values
(c)	Recall	TP Actual Yes	Positive (1) Negative (0)
		Or	Positive (1) TP FP
		$\frac{TP}{TP + FN}$	Predicted (0) LN LN
(d)	Precision	TP Predicted Yes	
(e)	F1 score	$\frac{2.(Precission * Recall)}{((Precission + Recall)}$	
24.	Logistic Regression	$\max \sum_{i=1}^{n} y_i w_i^T x_i$	It is a statistical method for analysing a dataset in which there are one or more independent variable that determine an outcome. Logistic regression also called as logit or maxent

05	61 115 11		
25.	Sigmoid Function	$P = \frac{1}{1 + e^{-y}}$ $\ln\left(\frac{p}{1 - p}\right) = b_0 + b_{1^*}x$	When the data has outlier then logistic regression algorithm would misclassify, that's why we use probability concept using the help probability function which is called (SIGMOID FUNCTION).
26.	Support Vector Ma	chines (SVM)	It is a supervised machine learning problem where we try to find a hyperplane that best
(a)	For Linear SVM	$\max(\mathbf{w}^*, \mathbf{b}^*) \frac{2}{\ \mathbf{w}\ }$	separates the two classes. Maximum Margin Positive Hyperplane
(b)	For Non-Linear SVM	$\min\left(\mathbf{w}^*, \mathbf{b}^*\right) \frac{\ \mathbf{w}\ }{2} + c \sum_{i=1}^n \zeta_i$	Maximum Margin Hyperplane Support Vectors X1
			Two type of support vector machine -> 1-Linear SVM => When the data is perfectly linearly separable only then we can use Linear SVM. 2-Non-Linear SVM=> if a dataset cannot be classified by using a straight line, then such data is termed as non-linear data
27.	K-Nearest Neighbo	or (KNN)	K-NN algorithm assumes the similarity between the new case/data and available cases
(a)	Euclidean distance	$d = \sqrt{\left(x_2 - x_1 ight)^2 + \left(y_2 - y_1 ight)^2}$	and put the new case into the category that is most similar to the available categories X2 Refore K-NN After K-NN
(b)	Manhatten distance	distance = absolute sum xi-yi	Category B New data point assigned to Category A Category A X1

28.	Naïsa Davas		The idea of the control of the contr
20.	Naïve Bayes		It is a supervised machine learning algorithm, which is used for classification tasks, like text
(a)	BERNOULLI		classification.
(a)	NAVE BAYE'S	$P(x=x) = p^x \cdot (1-p)^{1-x}$	
	VARIANCE	$\Gamma(x-x)=p^{-1}(1-p)$	
(b)	GAUSSION	1 -1	
	NAVE BAYE'S	$f_{(x)} = \frac{1}{\sqrt{2\Pi}\sigma} e^{\frac{-1}{2\sigma^2}} (x - \mu)^2$	
	VARIANCE	√2Πσ 20-	
		$-\infty < x < \infty$	
(c)	MULTINOMIAL		
	NAVE BAYE'S	$P(x_1 = x_i \dots x_k)$	
	VARIANCE	$\frac{n!}{x_1! \dots x_k!} P^{1^{x_1} \dots P_k^{x_k}}$	
		$P^{1x_1}P_k^{x_k}$	
		$x_1: x_k$	
(d)	Conditional	$P(A B) = \frac{P(A \cap B)}{P(B)}$	Conditional probability is a measure of the
	Probability	$P(A B) - \frac{P(B)}{P(B)}$	probability of an event occurring, given that
	· ·		another event has already occurred.
(e)	Baye's Theorem	$P(A B) = \frac{P(B A) * P(A)}{P(B)}$	Bayes' Theorem states that the conditional
		P(B)	probability of an event, based on the
		0(410) 0	occurrence of another event, is equal to the
		P(A B)=Posterior probability	likelihood of the second event given the first event multiplied by the probability of the first
		P(B A) = Likelihood P(A) =Prior Probability	event.
		P(B) = Marginal likelihood	CVCIII.
29.	Decision Tree		It is a tree-structured classifier where internal
			nodes represent the features of a dataset,
(a)	Information Gain	$-\frac{P}{P+N}\log_2(\frac{P}{P+N})-\frac{N}{P+N}\log_2(\frac{N}{P+N})$	branches represent the decision rules and each
		$p+N \log_2(p+N) p+N \log_2(p+N)$	leaf node represents the outcome.
(b)	Entropy		Decision Node → Root Node
	E(A)	$\sum_{i=1}^{\nu} P_{i-1} N_{i}$	
		$\sum \frac{P_i + N_i}{p + N} (P_i N_i)$	
		$\sum_{i=1}^{p+N}$	Sub-Tree Decision Node Decision Node
(c)	Gain	I.G E(A)	Leaf Node Leaf Node Decision Node
			*
			Leaf Node Leaf Node

(d)	GINI Index	$I_G = 1 - \sum_{j=1}^{c} p_j^2$	
(e)	Entropy	$I_H = -\sum_{j=1}^c p_j log_2(p_j)$	
30.	Ensemble Technique	2	Ensemble methods is a machine learning technique that combines several base models in
(A)	ADABOOST		order to produce one optimal predictive model.
(a)	Performance of Stump	$\frac{1}{2} \log_e (\frac{1 - Total \ Error}{Total \ Error})$	Ensemble Method is split into three types - 1. Bagging> Random Forest 2. Boosting> (a) ADABOOST
(b)	New sample weight	old weight * $e^{\pm Amount\ of\ say\ (\alpha)}$	(b) GRADIENT BOSSTING (c) XGBOOST 3. Voting (stacking)
(B)	Gradient Boosting		
(a)	F(x)	$h_0(x) + l_1 h_1(x) + l_2 h_2(x) + \cdots + l_n h_n(x)$	
		Where , l = learning rate	
31.	AUC & ROC Curve		It will visualization for confusion matrix (classification)
(a)	True positive rate (TPR) Or Sensitivity	$\left rac{TP}{TP+FN} ight $	AUC & ROC is graph to measure the accuracy of the dataset
(b)	False positive rate (FPR) Or Specificity	$\frac{FP}{FP+TN}$	TPR AOC

32.	Clustering		Clustering is an unsupervised machine learning method of identifying and grouping similar data points in larger datasets without concern for the specific outcome.
			Clustering (sometimes called cluster analysis) is usually used to classify data into structures that are more easily understood and manipulated.
(a)	Euclidean Distance	$\sqrt{(X_0 - X_c)^2 + (Y_0 - Y_c)^2}$	Euclidean distance is used in many machine learning algorithms as a default distance metric to measure the similarity between two recorded observations. It works on the principle of the Pythagoras theorem and signifies the shortest distance between two points.
(b)	Within-Cluster Sum of Square (WCSS)	$\sum_{p_i=1}^{p_m} distance(C_j, p_i)^2$	WCSS is defined as the sum of the squared distance between each member of the cluster and its centroid.