

Принцип роботи процесора

Підготувала учениця

групи №11

Яцюк Дарина

Інструкція, яку ЦП отримує з пам'яті, визначає, що ЦП робитиме.

> Виконується схемою двійкового декодера, інструкція перетворюється на сигнали, які керують іншими частинами ЦП.

> > RH

1. Отриманн

Спосіб інтерпретації інструкцій

3. Виконання

4. Збереження

Інтерпретація інструкцій

Визначається архітектурою набору інструкцій ЦП (ISA).

Одна група бітів в інструкції, яка називається кодом операції, вказує, яку операцію потрібно виконати, а решта полів зазвичай надають додаткову інформацію, необхідну для операції, таку як операнди.

Ці
значе Спосіб інтерпретації
знач інструкцій
про
визначається певним режимом
адресації.

Отримання

Передбачає отримання інструкції (яка представлена числом або послідовністю чисел) із пам'яті програми.

Розташування (адреса) інструкції в пам'яті програми визначається програмним лічильником який зберігає число, яке визначає адресу наступної інструкції, яку потрібно отримати.

1. Отримання

2. Леколування

Часто інструкцію, яку потрібно отримати, потрібно отримати з відносно повільної пам'яті, що спричиняє зупинку ЦП під час очікування повернення інструкції.

3. Виконання

4. Збереження

Виконання

Під час кожної дії керуючі сигнали електрично вмикають/вимикають різні частини процесора, щоб вони могли виконувати всю або частину потрібної операції.

Дія звершується у відповідь на тактовий імпуль

уються эгістр

2. Декодування

Принцип виконання інструкцій

Виконання інструкцій

Наприклад, якщо повинна бути виконана інструкція, яка виконує додавання, активуються регістри, що містять операнди (числа, які потрібно підсумувати), а також частини арифметико-логічного пристрою (ALU), які виконують додавання.

Коли виникає тактовий імпульс, операнди надходять із регістрів джерела в ALU, а на його виході з'являється сума.

На наступних тактових імпульсах інші компоненти вмикаються (і вимикаються), щоб перемістити вихід (суму операції) у пам'ять (наприклад, регістр або пам'ять).

Якщо результуюча сума є занадто великою (тобто вона більша за розмір вихідного слова ALU), буде встановлено позначку арифметичного переповнення, що впливатиме на наступну операцію.

Використані джерела

- o https://en.wikipedia.org/wiki/Central_processing_unit
- o https://www.techtarget.com/whatis/definition/processor
- o https://wouodl.wordpress.com/unit-2/2-2-components-of-a-system-unit/principles-of-processor-operation/

