Causal Signals

3	u[n]	$\frac{z}{z-1}$	z > 1
4	$\alpha^n u[n]$	$\frac{z}{z-\alpha}$	$ z > \alpha $
5	$(-\alpha)^n u[n]$	$\frac{z}{z+\alpha}$	$ z > \alpha $
6	nu[n]	$\frac{z}{(z-1)^2}$	z > 1
7	$n\alpha^n u[n]$	$\frac{z\alpha}{(z-\alpha)^2}$	$ z > \alpha $
8	$\cos(n\Omega)u[n]$	$\frac{z^2 - z\cos\Omega}{z^2 - 2z\cos\Omega + 1}$	z > 1
9	$\sin(n\Omega)u[n]$	$\frac{z\sin\Omega}{z^2-2z\cos\Omega+1}$	z > 1
10	$\alpha^n \cos(n\Omega)u[n]$	$\frac{z^2 - \alpha z \cos \Omega}{z^2 - 2\alpha z \cos \Omega + \alpha^2}$	$ z > \alpha $
11	$\alpha^n \sin(n\Omega)u[n]$	$\frac{\alpha z \sin \Omega}{z^2 - 2\alpha z \cos \Omega + \alpha^2}$	$ z > \alpha $

Table 17.2 Properties of the Two-Sided z-Transform

Entry	Property	Signal	z-Transform
1 100	Shifting	x[n-N]	$z^{-N}X(z)$
2	Reflection	x[-n]	$X\left(\frac{1}{z}\right)$
3	Anti-causal	x[-n]u[-n-1]	$X\left(\frac{1}{z}\right) - x[0]$ (for causal $x[n]$)
4	Scaling	$\alpha^n x[n]$	$X\left(\frac{z}{\alpha}\right)$
5	Times-n	nx[n]	$-z\frac{dX(z)}{dz}$
6	Times-cos	$\cos(n\Omega)x[n]$	$0.5\left[X(ze^{j\Omega})+X(ze^{-j\Omega})\right]$
:\17%	Times-sin	$\sin(n\Omega)x[n]$	$j0.5\left[X(ze^{j\Omega})-X(ze^{-j\Omega})\right]$
8	Convolution	$x[n] \star h[n]$	X(z)H(z)