Identifying Prospects based on User Data

Sera Diebel

Model Details

Model Objective	Predict the probability that a user with a mobile app will listen to podcasts
Data Inputs	 Age Gender Marital status Income band State Presence of a Child in the Household (Y/N) Number of subscriptions to news services (digital and non-digital) Streaming media subscription status (Y/N) Streaming entertainment listening status (Y/N)
Model Output	1 / 0 predictions (1 if the model predicts the user will listen to podcasts, 0 otherwise)
Methodology	→ Both traditional (logistic) and Machine Learning (XGBoost) approaches were explored

Results

Model Performance (XGBoost vs. Logistic)

- → XGBoost model has superior performance (AUC 98% vs. 96%) [1 being the perfect classification]
- → XGBoost predicts the outcome:
 - more accurately (96% vs. 93% accuracy)
 - more precisely (95% vs. 90% precision) than logistic regression

Key Drivers

XGBoost feature importance as measured by improvement in accuracy brought by a variable (gain metric)

Insights

- Lower income band information is not as informative in predicting the outcome
- Among states, residing in California contributes most to the predictive power
- > Odds of Female users listening to podcasts is higher than that of Male users, all else equal
- Compared to Unknown marital status, Married people are more likely to listen to podcasts, and Single users have even higher odds of listening than married users