

Table of contents

W	/elcome	4
D	ocker image	5
RS	Studio Server	6
Se	ession info	7
Pr	reamble	10
I	Fundamentals concepts	11
1	Manipulating genomic interval data 1.1 Importing GRanges from files	12 12 13
2	Manipulating genomic interaction data 2.1 What are GInteractions?	14 14 14 14 15 15
	2.2.2 Filtering interactions	15 16 16 17 17 17 18 18
3	Manipulating summarized experiment data Resources	21 21 21

П	Specific omics	24
4	Manipulating transcriptomic data	25
	Resources	
	Session info	. 25
5	Manipulating epigenomics data	28
	5.1 Introduction to tidyCoverage	. 28
	5.1.1 CoverageExperiment and AggregatedCoverage class	. 28
	5.1.2 Creating a CoverageExperiment object from tracks and features	
	5.1.3 Tidy coverage? That's right!	. 29
	5.1.4 expand() or aggregate()	
	5.1.5 Visualizing aggregated coverage	
	5.2 Real-world use case: studying epigenomic landscape of reulatory elements	
	5.2.1 Fetch coverage data from ENCODE	
	5.2.2 Plotting coverage data over several loci	
	5.2.3 Import DNase peaks from ENCODE	
	5.2.4 Generating coverage aggregates and heatmaps over DNAse peak	
	Resources	
	Session info	. 32
6	Manipulating single-cell data	35
	Resources	. 35
	Session info	. 35
7	Manipulating spatial single-cell data	38
	Resources	. 38
	Session info	. 38
8	Manipulating mass cytometry data	41
	Resources	. 41
	Session info	
111	Additional resources	44
•••	Additional resources	44
9	Helper packages	45
	Resources	
	Session info	. 45
10	Future directions	48
	Resources	
	Session info	. 48

Welcome

Package: BiocBook.tidyomics Authors: Jacques Serizay [aut, cre] Compiled: 2024-07-26 Package version: 0.98.0 R version: R version 4.4.1 (2024-06-14) BioC version: 3.20

License: MIT + file LICENSE

This is the landing page of the BiocBook entitled

This book introduces the reader to

Docker image

A Docker image built from this repository is available here:

ghcr.io/js2264/biocbook.tidyomics

? Get started now

You can get access to all the packages used in this book in < 1 minute, using this command in a terminal:

Listing 0.1 bash

docker run -it ghcr.io/js2264/biocbook.tidyomics:devel R

RStudio Server

An RStudio Server instance can be initiated from the Docker image as follows:

Listing 0.2 bash

```
docker run \
    --volume <local_folder>:<destination_folder> \
    -e PASSWORD=OHCA \
    -p 8787:8787 \
    ghcr.io/js2264/biocbook.tidyomics:devel
```

The initiated RStudio Server instance will be available at https://localhost:8787.

Preamble

Part I Fundamentals concepts

1 Manipulating genomic interval data

1.1 Importing GRanges from files

```
library(GenomicRanges)
library(rtracklayer)
bedf <- system.file('extdata', 'S288C-borders.bed', package = 'Bioc2024tidyWorkshop', mustWorkshop')
import(bedf)</pre>
```

```
library(tidyverse)

tib <- read_tsv(bedf, col_names = FALSE)

tib

library(plyranges)

gr <- as_granges(tib, seqnames = X1, start = X2, end = X3)

gr</pre>
```

tidy evaluation

1.2 Manipulating GRanges with tidy verbs

a number of tidy operations

•

•

•

```
gr |>
    mutate(score = runif(n())) |>
    filter(score > 0.2) |>
    mutate(round_score = round(score, digits = 1)) |>
    group_by(round_score) |>
    summarize(mean = mean(score))
```

```
gr |>
    mutate(
        seqnames = factor('XVI', levels(seqnames)),
        width = 1,
        strand = rep(c('-', '+'), n()/2)
)
```

```
gr |>
    anchor_center() |>
    stretch(extend = -1000) |>
    shift_upstream(250) |>
    flank_upstream(100)
```

2 Manipulating genomic interaction data

2.1 What are GInteractions?

2.1.1 Creating a GInteractions object from scratch

```
library(InteractionSet)
gr1 <- GRanges("I:10-50")
gr2 <- GRanges("I:100-110")
GInteractions(anchor1 = gr1, anchor2 = gr2)</pre>
```

```
GInteractions(anchor1 = c(1, 2, 3), anchor2 = c(1, 4, 5), regions = gr)
```

2.1.2 Importing genomic interaction data from files

```
bedpef <- system.file('extdata', 'S288C-loops.bedpe', package = 'Bioc2024tidyWorkshop', must'

tib <- read_tsv(bedpef, col_names = FALSE)

tib

library(plyinteractions)

gi <- tib |>
    as_ginteractions(
        seqnames1 = X1, start1 = X2, end1 = X3,
        seqnames2 = X4, start2 = X5, end2 = X6
    )

gi
```

2.2 Manipulating GInteractions the tidy way

2.2.1 Moving anchors around

```
gi |>
   mutate(
      seqnames1 = factor('XVI', levels(seqnames1)),
      strand1 = '+',
      start2 = end1,
      width2 = width1 + 100,
      score = runif(length(gi)),
      is_cis = ifelse(seqnames1 == seqnames2, TRUE, FALSE)
)
```

2.2.2 Filtering interactions

```
gi |> filter(seqnames1 == 'I')
gi |> filter(seqnames2 == 'I')
gi |>
    mutate(score = runif(length(gi))) |>
    filter(seqnames2 == 'I', score > 0.2)
```

2.2.3 Overlapping anchors

```
centros <- system.file('extdata', 'col', package = 'Bioc2024tidyWorkshop', mustWork = TRUE)
    read_tsv() |>
    as_granges(seqnames = seqID) |>
    anchor_center() |>
    stretch(20000)

gi |>
    join_overlap_left(centros) |>
    filter(!is.na(patternName))
```

```
gi |>
    pin_anchors1() |>
    join_overlap_left(centros) |>
    filter(!is.na(patternName))

gi |>
    pin_anchors2() |>
    join_overlap_left(centros) |>
    filter(!is.na(patternName))
```

2.3 Real-world use case: computing a P(s)

2.3.1 Importing data from pairs file

```
pairsf <- system.file('extdata', 'mESCs.pairs.gz', package = 'Bioc2024tidyWorkshop', mustWork

pairs <- read_tsv(pairsf, col_names = FALSE, comment = "#") |>
    set_names(c(
        "ID", "seqnames1", "start1", "seqnames2", "start2", "strand1", "strand2"
    )) |>
    as_ginteractions(end1 = start1, end2 = start2, keep.extra.columns = TRUE)
```

2.3.2 Counting interactions by strands

```
df <- pairs |>
    add_pairdist() |>
    filter(pairdist < 2000) |>
    group_by(strand1, strand2, pairdist) |>
    count()

ggplot(df, aes(x = pairdist, y = n, col = interaction(strand1, strand2))) +
    geom_smooth() +
    scale_y_log10()
```

2.3.3 Plot P(s)

```
x <- 1.1^(1:200-1)
lmc <- coef(lm(c(1,1161443398)~c(x[1], x[200])))
bins_breaks <- unique(round(lmc[2]*x + lmc[1]))
bins_widths <- lead(bins_breaks) - bins_breaks

# Bin distances
df <- pairs |>
```

```
add_pairdist(colname = 's') |>
   mutate(
        binned_s = bins_breaks[as.numeric(cut(s, bins_breaks))],
       bin_width = bins_widths[as.numeric(cut(s, bins_breaks))]
   ) |>
   group_by(binned_s, bin_width) |>
   count(name = "n") |>
   as_tibble() |>
   mutate(Ps = n / sum(n) / bin_width)
ggplot(df, aes(x = binned_s, y = Ps)) +
   geom_line() +
   scale_y_log10() +
   scale_x_log10() +
   annotation_logticks() +
   labs(x = "Genomic distance", y = "Contact frequency") +
   theme_bw()
```

Resources

3 Manipulating summarized experiment data

Resources

Part II Specific omics

4 Manipulating transcriptomic data

Resources

5 Manipulating epigenomics data

- 5.1 Introduction to tidyCoverage
- 5.1.1 CoverageExperiment and AggregatedCoverage class

```
library(tidyCoverage)

data(ce)

data(ac)

ce
```

5.1.2 Creating a CoverageExperiment object from tracks and features

```
tracks <- BigWigFileList(c(
    mnase = system.file("extdata", "MNase.bw", package = "tidyCoverage"),
    cohesin = system.file("extdata", "Scc1.bw", package = "tidyCoverage")
))
features <- GRangesList(
    TSSs = system.file("extdata", "TSSs.bed", package = "tidyCoverage") |> import() |> sample    TTSs = system.file("extdata", "TTSs.bed", package = "Bioc2024tidyWorkshop") |> import()
)
```

```
ce2 <- CoverageExperiment(
    tracks = tracks,
    features = features,
    width = 2000,
    ignore.strand = FALSE
)</pre>
```

```
colData(ce2)
rowData(ce2)
assay(ce2, 'coverage')
class(assay(ce2, 'coverage')['TSSs', 'mnase'])
class(assay(ce2, 'coverage')[['TSSs', 'mnase']])
dim(assay(ce2, 'coverage')[['TSSs', 'mnase']])
```

5.1.3 Tidy coverage? That's right!

```
library(tidySummarizedExperiment)

ce2

ce2 |> filter(features == 'TSSs')

ce2 |> slice(2)

ce2 |> select(features, n)
```

5.1.4 expand() or aggregate()

```
tib <- expand(ce2)
tib</pre>
```

```
ac2 <- aggregate(ce2)
ac2</pre>
```

5.1.5 Visualizing aggregated coverage

•

```
CoverageExperiment(tracks, GRanges("II:1-100000"), window = 100) |>
    expand() |>
    ggplot() +
    geom_coverage() +
    facet_grid(track ~ features, scales = "free") +
    labs(x = 'chrV', y = 'Signal coverage')

ggplot(ac2) +
    geom_aggrcoverage() +
    facet_grid(track ~ features, scales = "free") +
    labs(x = 'Distance from genomic features', y = 'Signal coverage')
```

5.2 Real-world use case: studying epigenomic landscape of reulatory elements

5.2.1 Fetch coverage data from ENCODE

```
library(AnnotationHub)
ah <- AnnotationHub()
ids <- c('AH32207', 'AH35187')
names(ids) <- c('DNAse', 'H3K4me3')
bws <- lapply(ids, function(.x) ah[[.x]] |> resource()) |> BigWigFileList()
names(bws) <- names(ids)</pre>
```

5.2.2 Plotting coverage data over several loci

5.2.3 Import DNase peaks from ENCODE

```
features <- list(DNase = ah[['AH30077']] |> filter(zScore > 100) |> sample(1000))
```

5.2.4 Generating coverage aggregates and heatmaps over DNAse peak

```
ce4 <- CoverageExperiment(bws, features, width = 2000, window = 10)</pre>
```

```
aggregate(ce4) |>
    ggplot(aes(x = coord, y = mean)) +
    geom_aggrcoverage(aes(col = track)) +
    facet_wrap(~track) +
    labs(x = 'Distance from DNAse peak', y = 'Signal')
```

Resources

6 Manipulating single-cell data

Resources

7 Manipulating spatial single-cell data

Resources

8 Manipulating mass cytometry data

Resources

Part III Additional resources

9 Helper packages

•

•

Resources

10 Future directions

•

•

•

Resources