Evaluating Classifiers

	02_titanic
© Created	@Nov 24, 2020 1:26 PM
Materials	
• Туре	

Evaluating Classifiers

0) What we have done so far

- Introduced the concept of machine learning
- Introduced a typical machine learning workflow
- Introduced first machine learning model → Logistic Regression

1) Evaluating Classifiers

Q: What was the first step of the machine learning workflow?

Define a business goal. One component of this business goal will often be to design a *good* model.

We want a good model.

How can we measure the quality of the model?

- Accuracy: Share of correctly classified observations. In the first model of the warmup the accuracy would be (50+200)/1000 = 0.25; For the second model the accuracy would be (40+890)/1000=0.93
- One important point to note here is that accuracy might not be the only metric of interest. Although model 2 is much more accurate, we might still prefer model 1 in this case because it does not miss any patients with high risk of skin cancer

• What other metrics do we have at our disposal

1.1) The Confusion Matrix

		No Cancer	Cancer
ction	No Cancer	Desirable	Non Desirable
Prediction	Cancer	Non Desirable	Desirable

Positives and Negatives

TP: True Positive

TN: True Negative

FP: False Positive

FN: False Negative

1.2) Accuracy

$$\frac{TP + TN}{TP + FP + TN + FN}$$

1.3) Precision

$$\frac{TP}{TP+FP}$$

Precision answers the question: given the model classified an observation as positive, how sure can we be that this observation is actually positive?

Prediction

	No Cancer	Cancer
No Cancer	True Negative	False Negative
Cancer	False Positive	True Positive

Precision
TP/(TP+FP)

1.4) Recall (Sensitivity)

$$\frac{TP}{TP+FN}$$

Recall is a measure of the share of truly positive cases that our model is able to capture.

No Cancer

True
Negative

False
Negative

Positive

Positive

Recall
TP/(TP+FN)

1.5) F1-Score

 $2*rac{precision*recall}{precision+recall}$