CCP PSI 2002 - Maths 2

Durée: 4 heures

Les calculatrices sont autorisées

N.B.: Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

On désigne par \mathbf{N} l'ensemble des entiers naturels, par \mathbf{N}^* l'ensemble \mathbf{N} privé de 0, par \mathbf{Z} l'ensemble des entiers relatifs, par \mathbf{Q} l'ensemble des nombres rationnels et par \mathbf{R} l'ensemble des nombres réels.

Etant donné un entier naturel n, on note [0, n] l'ensemble des entiers naturels k tels que $0 \le k \le n$.

Cette épreuve comporte trois parties.

Dans la première partie, on étudie les solutions développables en série entière d'une équation différentielle.

Dans la deuxième partie, qui est indépendante de la première partie, on étudie des suites numériques définies par des relations de récurrence.

La troisième partie utilise les résultats des parties précédentes pour obtenir un encadrement de $\frac{1}{th(1)}$ par des nombres rationnels (th désignant la fonction tangente hyperbolique).

PARTIE I

Pour $n \in \mathbb{N}$, on considère les équations différentielles (E_n) $x^2y'' + (n - n^2 - x^2)y = 0$, où x désigne une variable réelle et y = y(x) une fonction deux fois dérivable. On remarque que (E_0) et (E_1) sont les mêmes équations.

- **I.1.** On prend n=0 et on étudie l'équation différentielle (E_0) .
 - **I.1.1.** Déterminer les solutions de (E_0) sur chacun des intervalles $]-\infty,0[,]0,+\infty[$
 - **I.1.2.** L'équation (E_0) a-t-elle des solutions sur \mathbb{R} ?
- **I.2.** On prend $n \ge 2$ et on suppose que l'équation différentielle (E_n) a une solution développable en série entière $y(x) = \sum_{k=0}^{+\infty} u_k x^k$, de rayon de convergence R > 0.
 - **I.2.1.** Calculer u_0 et u_1 .
 - **I.2.2.** Pour $k \geq 2$, donner une relation entre u_k et u_{k-2} .
 - **I.2.3.** Calculer les coefficients u_k pour $k \in [0, n-1]$.
 - **I.2.4.** Pour $p \in \mathbb{N}$, calculer les coefficients u_{n+2p+1} .
 - **I.2.5.** Peut-on calculer u_n ? On justifiera la réponse.
 - **I.2.6.** Déterminer le rayon de convergence R de la série entière.

Pour k et n dans \mathbf{N} , on note $C_{k,n} = \frac{2^n(k+n)!}{k!(2k+2n)!}$ et on considère les fonctions φ_n définies pour x réel

par $\varphi_n(x) = \sum_{k=0}^{+\infty} C_{k,n} x^{2k+n}$ lorsque la série converge.

I.3.

- **I.3.1.** Exprimer $\varphi_0(x)$ et $\varphi_1(x)$ à l'aide des fonctions usuelles.
- **I.3.2.** Montrer que les fonctions φ_n sont indéfiniment dérivables sur ${\bf R}.$

I.4.

- **I.4.1.** Calculer le quotient $\frac{C_{k,n+1}}{C_{k,n}}$.
- **I.4.2.** En déduire l'expression de $C_{k,n} (2n+1)C_{k,n+1}$ en fonction de k et de $C_{k,n+1}$.
- **I.4.3.** Pour $x \neq 0$, exprimer $\varphi_n(x) \frac{2n+1}{x} \varphi_{n+1}(x)$ en fonction de $\varphi_{n+2}(x)$.
- **I.4.4.** On admet que pour tout $n \in \mathbb{N}$, la fonction φ_n est solution sur \mathbb{R} de l'équation (E_n) . En reprenant la notation de **I.2.**, on écrit $\varphi_n(x) = y(x) = \sum_{k=0}^{+\infty} u_k x^k$. Quelle est la valeur de u_n ?
- **I.5.** Dans cette question on suppose $x \neq 0$.
 - **I.5.1.** Montrer que pour tout $n \in \mathbb{N}$, on a $\varphi_n(x) \neq 0$.

Pour $n \in \mathbb{N}$ et $x \neq 0$, on définit $\gamma_n(x) = \frac{\varphi_n(x)}{\varphi_{n+1}(x)}$. Dans la suite de la question, on pourra utiliser **I.4.3.**

- **I.5.2.** On suppose $0 < x \le 1$, montrer l'inégalité $\gamma_n(x) > 1$.
- **I.5.3.** Montrer la relation $\gamma_n(x) = \frac{2n+1}{x} + \frac{1}{\gamma_{n+1}(x)}$.

PARTIE II

On note S l'ensemble des suites $a=(a_n)_{n\in\mathbb{N}}$ vérifiant : $a_0\in\mathbf{Z}$ et pour tout $n\geq 1,\ a_n\in\mathbb{N}^*$. Etant donné une suite $a=(a_n)_{n\in\mathbb{N}}$ de S, on définit les suites $(p_n)_{n\in\mathbb{N}}$ et $(q_n)_{n\in\mathbb{N}}$ par :

$$p_0 = a_0$$
, $p_1 = a_0 a_1 + 1$, $q_0 = 1$, $q_1 = a_1$

puis, pour $n \ge 2$, par :

$$p_n = a_n p_{n-1} + p_{n-2}$$
 et $q_n = a_n q_{n-1} + q_{n-2}$.

- **II.1.** Montrer que pour tout $n \in \mathbb{N}$ on a $q_n \geq n$.
- **II.2.** Relations entre les p_n et les q_n .
 - **II.2.1.** Pour $n \ge 1$, calculer $p_n q_{n-1} q_n p_{n-1}$.
 - **II.2.2.** Pour $n \ge 2$, calculer $p_n q_{n-2} q_n p_{n-2}$.

Pour $n \in \mathbf{N}$, on définit $x_n = \frac{p_n}{q_n}$.

- **II.3.** Etude de la suite $(x_n)_{n \in \mathbb{N}}$.
- **II.3.1.** Pour $n \ge 1$, calculer $x_n x_{n-1}$ et pour $n \ge 2$, calculer $x_n x_{n-2}$ en fonction des a_k et des q_k .
 - **II.3.2.** En déduire que les suites $(x_{2n})_{n\in\mathbb{N}}$ et $(x_{2n+1})_{n\in\mathbb{N}}$ sont adjacentes.
- II.3.3. On note α la limite de la suite $(x_n)_{n \in \mathbb{N}}$. On se propose de démontrer par l'absurde que α est un nombre irrationnel.

En supposant que $\alpha = \frac{c}{d} \in \mathbf{Q}$, avec $d \in \mathbf{N}^*$, et en utilisant l'encadrement $0 < \alpha - x_{2n} < x_{2n+1} - x_{2n}$, déterminer un entier k_n vérifiant $0 < k_n < \frac{d}{q_{2n+1}}$. En déduire que α n'est pas rationnel.

Soit $\lambda \in \mathbf{N}^*$ un entier naturel non nul fixé; on considère la fonction f définie pour tout t réel par $f(t) = t^2 - \lambda t - 1$.

- **II.4.** Etude de la fonction f.
 - **II.4.1.** Tracer le graphe de la fonction f sur l'intervalle $[-1, \lambda + 1]$.
- II.4.2. On note r_1 et r_2 , avec $r_1 < r_2$, les deux racines de f. Déterminer le signe et la partie entière de chacune des racines.
- **II.5.** Pour tout $n \in \mathbb{N}$, on prend $a_n = \lambda$ et on considère la suite $a = (a_n)_{n \in \mathbb{N}}$.
 - **II.5.1.** Pour $i \in [0, 3]$, calculer p_i et q_i .
- **II.5.2.** Pour $n \ge 1$, exprimer q_n en fonction des p_k pour $k \in \mathbb{N}$. En déduire une expression de x_n en fonction des q_k pour $k \in \mathbb{N}$.
 - **II.5.3.** Exprimer q_n en fonction de r_1 , r_2 et n.
 - **II.5.4.** Déduire des questions précédentes une expression de x_n en fonction de r_1 , r_2 et n.
 - **II.5.5.** En déduire la valeur de la limite α de la suite $(x_n)_{n \in \mathbb{N}}$ en fonction de r_1 et r_2 .
- **II.5.6.** On prend $\lambda = 3$. Calculer q_n pour $n \in [0, 6]$. En déduire deux nombres rationnels qui encadrent α à 10^{-4} près.

PARTIE III

Etant donné une suite de nombres réels $(b_n)_{n \in \mathbb{N}}$, telle que pour tout $n \ge 1$ on ait $b_n > 0$, on définit la suite dont le terme général d'indice n est noté $[b_0, b_1, \ldots, b_n]$ par :

$$[b_0] = b_0$$
, $[b_0, b_1] = b_0 + \frac{1}{b_1}$, puis pour $n \ge 1$, $[b_0, \dots, b_n, b_{n+1}] = \left[b_0, \dots, b_{n-1}, b_n + \frac{1}{b_{n+1}}\right]$.

En particulier $[b_0, b_1, b_2] = \left[b_0, b_1 + \frac{1}{b_2}\right].$

- III.1. Soit $a = (a_n)_{n \in \mathbb{N}}$ un élément de S. On lui associe les suites $(p_n)_{n \in \mathbb{N}}$, $(q_n)_{n \in \mathbb{N}}$ et $(x_n)_{n \in \mathbb{N}}$ définies dans II.
 - **III.1.1.** Ecrire $[a_0, a_1]$ et $[a_0, a_1, a_2]$ sous forme de fractions en fonction des a_i .
 - **III.1.2.** On suppose que, pour un entier $n \ge 2$ fixé, on a $[a_0, \ldots, a_n] = \frac{p_n}{q_n}$.

Quel nombre rationnel obtient-on en remplaçant dans $[a_0, \ldots, a_{n-1}, a_n]$, le terme a_n par $a_n + \frac{1}{a_{n+1}}$?

- **III.1.3.** Montrer que pour tout $n \in \mathbb{N}$ on a $[a_0, \ldots, a_n] = x_n$.
- **III.1.4.** Pour $n \in \mathbf{N}^*$, montrer $[a_0, \dots, a_n] = a_0 + \frac{1}{[a_1, \dots, a_n]}$.
- Dans II.3., on a montré que la suite $(x_n)_{n\in\mathbb{N}}$ converge vers un nombre irrationnel α . On note $\alpha=[a_0,a_1,\ldots]$ et on note F l'application de S dans l'ensemble des nombres irrationnels définie par F $(a)=\alpha=[a_0,a_1,\ldots]$. On admet que F est surjective.
- **III.2.** Soit α un nombre irrationnel et soit $a \in S$ une suite telle que $\alpha = F(a) = [a_0, a_1, \ldots]$.
 - III.2.1. Comparer x_0 , x_1 et α . En déduire que a_0 est la partie entière de α .
- **III.2.2.** Pour $k \in \mathbb{N}$, on note $\alpha_k = [a_k, a_{k+1}, \ldots]$. Montrer l'égalité $\alpha = \alpha_0 = a_0 + \frac{1}{\alpha_1}$. Donner une relation entre α_k , α_{k+1} et a_k .
 - III.2.3. Décrire un algorithme qui donne la suite $(a_n)_{n\in\mathbb{N}}$. En déduire que F est bijective.

- **III.2.4.** On prend $\alpha = \sqrt{3}$ et on note $a = (a_n)_{n \in \mathbb{N}} \in S$ la suite vérifiant $F(a) = \sqrt{3}$. Calculer a_0, a_1, a_2, a_3 et exprimer α_1, α_2 et α_3 en fonction de $\sqrt{3}$. Déterminer la suite $a = (a_n)_{n \in \mathbb{N}}$.
- **III.3.** Soit $\mu \in \mathbf{N}^*$. On note th la fonction tangente hyperbolique.
- III.3.1. Déduire des parties précédentes qu'il existe une suite $a \in S$ telle que $F(a) = \frac{1}{th\left(\frac{1}{u}\right)}$ et expliciter les termes de cette suite (on pourra utiliser les résultats du I).
- **III.3.2.** On choisit $\mu = 1$. Pour $n \in [0, 4]$ donner le tableau des entiers a_n, p_n, q_n . En déduire deux nombres rationnels qui donnent un encadrement de $\frac{1}{th(1)}$ à 10^{-4} près.