Rajiv Gandhi Institute of Petroleum Technology Quiz-1

Course Course Code Full Marks Date & Time Inorganic & Physical Chemistry

CY111 40

09/Feb/2022, 10:15 AM- 11:00 AM

1A- to- 1J: MCQ, each question carries 1.5 marks each, one wrong answer carries 3 marks.

1A.	The concept that all microscopic physical entities have both wave & particle properties is called wave-particle:								
	(a) Singularity	(b) Triality	(c) Infinality	(d) N	Iullility ((e) Intell	ectuality	
1B.	The expectation value of operator Q for a wave function is often written as:								
	(a) Q	(b) $\langle Q \rangle$	(c) \\ Q(((d) $\langle f(Q) \rangle$	(6	e) f(Q)	
1C.	The energy operator for 1 particle in one dimension in quantum mechanics, $H=-\frac{\pi^2}{2m}\frac{\partial^2}{\partial x^2}+V(x)$ is called the:								
	(a) Lagrangian	(b) Delhinian	(c)	Hamiltonian	(d)	Laplacian (e)		Uponium	
1D.	In the probabilistic interpretation of wave function $\psi,$ the $ \psi ^2$ is:								
		(a) probability (b) probability amplitude density		(c) negative probability		(d) 1.00		(e) 0.00	
1E.	The probability of finding a particle in differential region dx is:								
	(a)	(b)	(c)		(d))	(e)		
	$\psi(x,t) dx$	$\psi(x,t)^*\mathrm{d} x$	ψ(x,	$(t)^*/\psi(x,t) dx$	$\psi(x,t)^2 dx$		(e) $\psi(x,t)^* \times \psi(x,t) dx$		
1F.	A physical requirement on wave functions is that they should be:								
	(a) reliable (b) friable		(c) certifiable ((d)) normalizable		(e) retriable	
1G.		lescribes a fundamental limitation on the accuracy with which we can know position and mentum simultaneously."							
	(a)	(b)		(c)		(d)		(e)	
	Tarkovsky's Rub doubtful thesis amb pos		S	Kelvin's nebu zeroth law		Schrödinger's wild hypothesis		Heisenberg's uncertainty principle	

1H. The momentum operator in one-dimension is:

(a)
$$\hbar \frac{\partial}{\partial x}$$
 $\left| \stackrel{\text{(b)}}{\frac{\pi}{i}} \frac{\partial}{\partial x} \right| \stackrel{\text{(c)}}{\frac{\pi}{\hbar}} \frac{\partial}{\partial x}$ $\left| \stackrel{\text{(d)}}{\frac{i}{\hbar}} \frac{\partial}{\partial t} \right| \stackrel{\text{(e)}}{\frac{\pi}{\hbar}} \frac{\partial}{\partial t}$

11. The time-independent Schrödinger equation from the full Schrödinger equation by:

1J. The full Schrödinger equation in compact form is:

(a) (b) (c) (d) (e)
$$H\Psi = \hbar \frac{\partial \Psi}{\partial t} \mid H\Psi = i \frac{\partial \Psi}{\partial t} \mid H\Psi = i \hbar \frac{\partial \Psi}{\partial t} \mid H^{-1}\Psi = i \hbar \frac{\partial \Psi}{\partial t} \mid H\Psi = i \hbar \frac{\partial \Psi}{\partial x}$$

- 2. Explain "Ultraviolet Catastrophe" in Black Body Radiation?

 Marks: 2
- 3. If an electron in a hydrogen atom is confined to a region of size 53 picometer (pm) from the nucleus, what is the indeterminacy in its momentum and velocity?

 Marks: 4
- 4. Write down the QM operator for momentum (p) and energy (E) Marks: 3 (1+2)
- 5. What are the conditions for acceptability of wave functions? Explain the validity of the function using graph

$$\frac{1}{x}\sin x$$

Marks: 4 (2+2)

- **6.** What is Born Interpretation on Probability density of Wave function?

 Marks: 3
- 7. Calculate the wavelength of light absorbed to bring out the transition from n = 1 and n = 2 for an electron in a one dimensional box of length of 1.0 nm.

 Marks: 4
- 8. In one dimensional box, calculate the expectation value for momentum $\langle P_x \rangle$ and explain its value.

 Marks: 5(2+2)