## Particle spectrograph

## Wave operator and propagator

| :                                                                     |                                                                                                                                                                                                                                      |                |
|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Source constraints SO(3) irreps                                       | Fundamental fields                                                                                                                                                                                                                   | Multiplicities |
|                                                                       | $\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta}==0$                                                                                                                                                                             | 1              |
| $\tau_0^{#1} == 0$                                                    | $\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau^{\alpha}_{\alpha}$                                                                                                                      | 1              |
| $\sigma_{0}^{\#1} = 0$                                                | $\partial_{\beta}\sigma^{\alpha\beta}_{\alpha} == 0$                                                                                                                                                                                 | 1              |
| $t_1^{\#2}\alpha + 2ik \ \sigma_1^{\#1}\alpha = 0$                    | $\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi}$ +                                                                                                                                                                 | м              |
|                                                                       | $2 (\partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi}_{\beta} - \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial_{\beta} \sigma^{\alpha \beta \chi} +$                           |                |
|                                                                       | $\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\sigma^{\alpha\beta}$ ) == $\partial_{\chi}\partial^{\chi}\partial^{\beta}\rho_{\beta}\tau^{\alpha\beta}$                                                           |                |
| $\tau_{1}^{\#1}{}^{\alpha} == 0$                                      | $\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$                                                                                               | 8              |
| $\sigma_{1}^{\#1}{}^{\alpha} == \sigma_{1}^{\#2}{}^{\alpha}$          | $\partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi}_{\beta} + \partial_{\chi} \partial^{\chi} \sigma^{\alpha \beta}_{\beta} = 0$                                                                                                  | 8              |
| $\tau_{1+}^{\#1}\alpha\beta + ik \ \sigma_{1+}^{\#2}\alpha\beta == 0$ | $\partial_{\chi}\partial^{\alpha}t^{\beta\chi} + \partial_{\chi}\partial^{\beta}t^{\chi\alpha} + \partial_{\chi}\partial^{\chi}t^{\alpha\beta} +$                                                                                    | 3              |
|                                                                       | $2 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} = =$                                                            |                |
|                                                                       | $\partial_{\chi}\partial^{\alpha}\iota^{\chi\beta} + \partial_{\chi}\partial^{\beta}\iota^{\alpha\chi} +$                                                                                                                            |                |
|                                                                       | $\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}$                                                                                                      |                |
| $\tau_{2+}^{\#1}\alpha\beta - 2ik \sigma_{2+}^{\#1}\alpha\beta = 0$   | $t_{2+}^{\#1}\alpha\beta - 2ik \sigma_{2+}^{\#1}\alpha\beta == 0 - i(4\partial_{\delta}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\tau^{\chi\delta} + 2\partial_{\delta}\partial^{\delta}\partial^{\alpha}\tau^{\chi}_{\chi} -$ | 5              |
|                                                                       | $3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} t^{\beta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} t^{\chi \beta} -$                                                  |                |
|                                                                       | $3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} +$                                            |                |
|                                                                       | $3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\alpha\beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\beta\alpha} +$                                              |                |
|                                                                       | $4  i  k^{\chi}  \partial_{\epsilon} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \sigma^{\delta \epsilon}_{\ \ \delta}$ -                                                                                                     |                |
|                                                                       | $6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \delta \epsilon}$ -                                                                                                              |                |
|                                                                       | $6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} +$                                                                                                              |                |
|                                                                       | $2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau^{\chi\delta} +$                                                                                                                 |                |
|                                                                       | $6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \delta \beta} +$                                                                                                              |                |
|                                                                       | $6 I k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta \delta \alpha}$ -                                                                                                              |                |
|                                                                       | $2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau^{\chi}_{\chi}$ -                                                                                                              |                |
|                                                                       | $4  \mathbb{I}   \eta^{\alpha\beta}   k^{\chi}  \partial_{\phi} \partial^{\phi} \partial_{\varepsilon} \partial_{\chi} \sigma^{\delta \varepsilon}_{\delta}) == 0$                                                                   |                |
| Total constraints/gauge generators:                                   | ige generators:                                                                                                                                                                                                                      | 20             |

| Quadratic (free) action | $S == \iiint (\frac{1}{6} \left( 2  t_1  \mathcal{A}^{\alpha \prime}  \mathcal{A}^{ \theta}_{             } \right. t_{\alpha \beta} + 6  \mathcal{A}^{\alpha \beta \chi}  \sigma_{\alpha \beta \chi} - 4  t_1  \mathcal{A}^{           }_{\alpha              } + 6  \mathcal{A}^{\alpha \beta \chi} - 4  t_1  \mathcal{A}^{           }_{\alpha             }$ | $4t_1\mathcal{A}_{'\theta}^{\theta}\partial' f^{\alpha}_{\alpha} - 2t_1\partial_{,} f^{\theta}_{\theta}\partial' f^{\alpha}_{\alpha} - 2t_1\partial_{,} f^{\alpha\prime}\partial_{\theta} f_{\alpha}^{\theta} +$ | $4t_1\partial'f^lpha_{}\partial_	heta f_{}^{}+4t_1{\mathscr R}_{\prime	hetalpha}\partial^	heta f^{lpha\prime}+4t_2{\mathscr R}_{\prime	hetalpha}\partial^	heta f^{lpha\prime}-$ | $4t_1\partial_\alpha f_{,\theta}\partial^\theta f^{\alpha\prime} + 2t_2\partial_\alpha f_{,\theta}\partial^\theta f^{\alpha\prime} - 4t_1\partial_\alpha f_{\theta\prime}\partial^\theta f^{\alpha\prime} -$ | $t_2  \partial_{\alpha} f_{ 	heta_l}  \partial^{	heta} f^{lpha_l} + 2  t_1  \partial_l f_{lpha 	heta}  \partial^{	heta} f^{lpha_l} - t_2  \partial_l f_{lpha 	heta}  \partial^{	heta} f^{lpha_l}  +$ | $4t_1\partial_\theta f_{\alpha_l}\partial^\theta f^{\alpha_l} + t_2\partial_\theta f_{\alpha_l}\partial^\theta f^{\alpha_l} + 2t_1\partial_\theta f_{l\alpha}\partial^\theta f^{\alpha_l} -$ | $t_2  \partial_{\theta} f_{\prime \alpha} \partial^{\theta} f^{\alpha\prime} + 2  (t_1 + t_2)  \mathcal{A}_{\alpha\prime\theta}  (\mathcal{A}^{\alpha\prime\theta} + 2  \partial^{\theta} f^{\alpha\prime}) +$ | $2\mathcal{A}_{\alpha\theta_{l}}\left(\left(t_{1}-2t_{2}\right)\mathcal{A}^{\alpha\prime\theta}+2\left(2t_{1}-t_{2}\right)\partial^{\theta}f^{\alpha\prime} ight)+$ | $8r_2\partial_\beta \mathcal{F}_{\alpha\prime\theta}\partial^\vartheta \mathcal{F}^{\alpha\beta\prime}4r_2\partial_\beta \mathcal{F}_{\alpha\theta\prime}\partial^\vartheta \mathcal{F}^{\alpha\beta\prime}\text{+-}4r_2\partial_\beta \mathcal{F}_{\prime\theta\alpha}$ | $\partial^{	heta}\mathcal{R}^{lphaeta_1}$ - $2r_2\partial_{arphi}\mathcal{R}_{lphaeta	heta}\partial^{	heta}\mathcal{R}^{lphaeta_1}+2r_2\partial_{	heta}\mathcal{R}_{lphaeta_1}\partial^{	heta}\mathcal{R}^{lphaeta_1}$ - | $4r_2\partial_	heta \mathcal{A}_{lpha ert eta}\partial_	heta \mathcal{A}_{lpha ert eta}) [t, lpha, eta, z]dzdydlpha dt$ |  |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--|
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--|

| $	au_1^{\#2}$                                                                              | 0                                                   | 0                                                      | 0                                                  | $\frac{12 i k}{(3+4 k^2)^2 t_1}$ | $\frac{12 i \sqrt{2} k}{(3+4 k^2)^2 t_1}$ | 0                           | $\frac{24  k^2}{(3+4  k^2)^2  t_1}$ | £#2                 |
|--------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------|----------------------------------------------------|----------------------------------|-------------------------------------------|-----------------------------|-------------------------------------|---------------------|
| $\tau_{1}^{\#1}{}_{\alpha}$                                                                | 0                                                   | 0                                                      | 0                                                  | 0                                | 0                                         | 0                           | 0                                   | $f^{\#1}$           |
| $\sigma_{1}^{\#2}{}_{\alpha}$                                                              | 0                                                   | 0 0 $6\sqrt{2}$ $(3+4k^2)^2 t_1$ $12$ $(3+4k^2)^2 t_1$ |                                                    | 0                                | $-\frac{12i\sqrt{2}k}{(3+4k^2)^2t_1}$     | #5 t                        |                                     |                     |
| $\sigma_{1}^{\#1}{}_{\alpha}$                                                              | 0                                                   | 0                                                      | 0                                                  | $\frac{6}{(3+4 k^2)^2 t_1}$      | $\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$         | 0                           | $-\frac{12ik}{(3+4k^2)^2t_1}$       | $\mathcal{A}^{\#1}$ |
| $\tau_1^{\#1}_+ _{\alpha\beta}$                                                            | $\frac{i\sqrt{2} k(t_1-2t_2)}{3(1+k^2)t_1t_2}$      | $\frac{i k (t_1 + 4 t_2)}{3 (1 + k^2)^2 t_1 t_2}$      | $\frac{k^2 (t_1 + 4t_2)}{3 (1 + k^2)^2 t_1 t_2}$   | 0                                | 0                                         | 0                           | 0                                   | $f^{#1}$            |
| $\sigma_1^{\#_2^2}$                                                                        | $\frac{\sqrt{2} (t_1 - 2t_2)}{3 (1 + k^2) t_1 t_2}$ | $\frac{t_1 + 4t_2}{3(1+k^2)^2 t_1 t_2}$                | $-\frac{i k (t_1 + 4 t_2)}{3 (1 + k^2)^2 t_1 t_2}$ | 0                                | 0                                         | 0                           | 0                                   | ##5                 |
| $\sigma_{1}^{\#1}{}_{\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ |                                                     | $\frac{\sqrt{2} (t_1 - 2t_2)}{3(1 + k^2) t_1 t_2}$     | $-\frac{i\sqrt{2}k(t_1-2t_2)}{3(1+k^2)t_1t_2}$     | 0                                | 0                                         | 0                           | 0                                   | <b>4</b> #1         |
|                                                                                            | $r_1^{\#1} + \alpha \beta$                          | $r_1^{#2} + \alpha \beta$                              | $r_1^{\#1} + \alpha \beta$                         | $\sigma_{1}^{\#_1} +^{lpha}$     | $\sigma_{1}^{\#2} +^{\alpha}$             | $\tau_{1}^{\#1} +^{\alpha}$ | $\tau_1^{\#2} + ^{\alpha}$          |                     |

| , ι α                   | 0                                   | 0                                         | 0                                | <u>i k t 1</u><br>3                       | $\tfrac{1}{3}\bar{l}\sqrt{2}kt_1$ | 0                             | $\frac{2 k^2 t_1}{3}$           |                                         |                                                     |                             |                                              |                         |                               |                                                      |                    |                     |
|-------------------------|-------------------------------------|-------------------------------------------|----------------------------------|-------------------------------------------|-----------------------------------|-------------------------------|---------------------------------|-----------------------------------------|-----------------------------------------------------|-----------------------------|----------------------------------------------|-------------------------|-------------------------------|------------------------------------------------------|--------------------|---------------------|
| , ι α                   | 0                                   | 0                                         | 0                                | 0                                         | 0                                 | 0                             | 0                               | ${\cal A}_{0}^{\#1}$                    | 0                                                   | 0                           | 0                                            | $k^2 r_2 + t_2$         |                               |                                                      |                    |                     |
| $\alpha$ .              | 0                                   | 0                                         | 0                                | $\frac{t_1}{3\sqrt{2}}$                   | <u>†1</u><br>3                    | 0                             | $-\frac{1}{3}i\sqrt{2}kt_1$     | $f_{0}^{\#1} f_{0}^{\#2} = \mathcal{F}$ | 0 0                                                 | 0 0                         | 0 0                                          | $0 \mid 0 \mid k^2 r_2$ | $\sigma_0^{\#}$               | 1 <b>†</b>                                           | $\sigma_{0}^{\#1}$ | τ                   |
| $\alpha$ 1. $\alpha$    | 0                                   | 0                                         | 0                                | <u>†1</u><br>6                            | $\frac{t_1}{3\sqrt{2}}$           | 0                             | $-\frac{1}{3}$ $\bar{l}$ $kt_1$ | $\mathscr{A}_{0}^{\#1}$ $f_{0}$         | 0                                                   | 0                           | 0                                            | 0 +                     |                               | 1 †<br>2 †                                           | 0                  |                     |
| ' $1$ ' $\alpha\beta$   | $-\frac{ik(t_1-2t_2)}{3\sqrt{2}}$   | $\frac{1}{3}$ $\bar{l}$ $k$ $(t_1 + t_2)$ | $\frac{1}{3} k^2 (t_1 + t_2)$    | 0                                         | 0                                 | 0                             | 0                               | gi.                                     | $\mathcal{A}_{0}^{\#1}$                             | $\mathcal{E}_{0_{+}}^{\#1}$ | $\int_{2^{+}\alpha}^{\#1} \alpha \beta$      |                         | 1<br>+ αβ                     |                                                      |                    | <u> </u><br> -      |
| $^{-1}$ ' $\alpha\beta$ | $-\frac{t_1-2t_2}{3\sqrt{2}}$       | $\frac{t_1+t_2}{3}$                       | $-\frac{1}{3}\bar{l}k(t_1+t_2)$  | 0                                         | 0                                 | 0                             | 0                               | $f_{z}^{*}$                             | $_{2}^{\#1}$ $+^{\alpha}$ $_{2}^{\#1}$ $+^{\alpha}$ | αβ                          | $\frac{t_1}{2}$ $\frac{i k t_1}{\sqrt{2}}$ 0 | k <sup>2</sup>          | $\frac{kt_1}{\sqrt{2}}$ $t_1$ |                                                      | )<br>)<br>1<br>2   |                     |
| $\alpha$ 1 $\alpha$     | $\frac{1}{6}(t_1+4t_2)$             | $-\frac{t_1-2t_2}{3\sqrt{2}}$             | $\frac{ik(t_1-2t_2)}{3\sqrt{2}}$ | 0                                         | 0                                 | 0                             | 0                               | $\sigma_2^{\!\#}$                       |                                                     | β <u> </u>                  | $\sigma_{2}^{\#1}\alpha_{2}$                 | $\frac{1}{2t_1}$        | $-\frac{2}{(1+2)^{2}}$        | #1 $\frac{1}{2} + \alpha \beta$ $i \sqrt{2}$ $2 k^2$ |                    | $\sigma_2^{\sharp}$ |
|                         | $\mathcal{A}_{1}^{\#1} +^{lphaeta}$ | $\mathcal{A}_1^{\#2} + ^{\alpha \beta}$   | $f_1^{\#1} + \alpha \beta$       | $\mathcal{A}_{1}^{\#_{1}} \dagger^{lpha}$ | $\mathcal{A}_{1}^{\#2} +^{lpha}$  | $f_{1}^{#1} \dagger^{\alpha}$ | $f_{1}^{\#2} +^{\alpha}$        |                                         | $\frac{1}{7} \uparrow^{\alpha \beta}$               |                             | $2i\sqrt{2} + 2k^2)^2$                       | $\frac{k}{2t_1}$        | (1+2                          | $\frac{4k^2}{(k^2)^2}$                               | t <sub>1</sub>     |                     |
|                         | R                                   | R                                         | <i>f</i>                         | (h)                                       | (h)                               |                               |                                 | $\sigma_2^{\#1}$                        | $+^{\alpha\beta}$                                   | x                           | 0                                            |                         |                               | 0                                                    |                    |                     |
|                         |                                     |                                           |                                  |                                           |                                   |                               |                                 |                                         |                                                     |                             |                                              |                         |                               |                                                      |                    |                     |

|                         | $^{\circ}2^{+}\alpha\beta$       |
|-------------------------|----------------------------------|
| $\dagger^{\alpha\beta}$ | $\frac{2}{(1+2k^2)^2}$           |
| † <sup>αβ</sup>         | $\frac{2i\sqrt{2}k}{(1+2k^2)^2}$ |
| αβχ                     | 0                                |
|                         |                                  |

| *                                |     |                                  |                                      |
|----------------------------------|-----|----------------------------------|--------------------------------------|
| 0                                | 0   | <u>t</u> 1<br>2                  |                                      |
| $\sigma_{2}^{\#1}_{\alpha\beta}$ | , τ | #1<br>2 <sup>+</sup> αβ          | $\sigma_{2}^{\#1}_{\alpha\beta\chi}$ |
| $\frac{2}{(1+2k^2)^2}$           |     | $\frac{i\sqrt{2}k}{(2k^2)^2t_1}$ | 0                                    |
| $\frac{2i\sqrt{2}k}{(1+2k^2)^2}$ |     | $\frac{4k^2}{2k^2)^2t_1}$        | 0                                    |
| 0                                |     | 0                                | $\frac{2}{t_1}$                      |

| Massive and m | nassless spectra |
|---------------|------------------|
|---------------|------------------|



|   | Massive partic | le                     |  |
|---|----------------|------------------------|--|
|   | Pole residue:  | $-\frac{1}{r_2} > 0$   |  |
| , | Polarisations: | 1                      |  |
| ( | Square mass:   | $-\frac{t_2}{r_2} > 0$ |  |
|   | Spin:          | 0                      |  |
|   | Parity:        | Odd                    |  |

## Unitarity conditions

 $r_2 < 0 \&\& t_2 > 0$