EXTREME WEATHER ROBOTICS CONTROL PATENT

EXTREME WEATHER ROBOTICS CONTROL

UNITED STATES PATENT NO. 11,847,392

Filed: September 15, 2019

Issued: March 22, 2022

Assignee: Polar Dynamics Robotics, Inc.

ABSTRACT

A system and method for controlling autonomous mobile robots in ext

temperature environments, particularly sub-zero conditions, comprising temperature-hardened navigation system, reinforced chassis design, proprietary cold-environment power management system. The inventional reliable robot operation in temperatures ranging from -40 C to +50 C to combination of hardware and software innovations that maintain positional accuracy and power efficiency.

BACKGROUND OF INVENTION

[0001] Autonomous mobile robots (AMRs) operating in cold storage a environments face significant challenges related to battery performan reliability, and mechanical component durability. Conventional AMR s experience degraded performance or complete failure when exposed sub-zero temperatures.

[0002] Prior attempts to address these challenges have focused prima

companent insulation or heating elements, resulting in increased pow consumption and reduced operational efficiency.

SUMMARY OF INVENTION

[0003] The present invention provides a comprehensive solution for e weather robotics control through the following key innovations:

- a) Temperature-compensated sensor array utilizing proprietary BlueC technology
- b) Adaptive power management system optimizing battery performance conditions
- c) Self-regulating thermal management system for critical components
- d) Reinforced composite chassis with thermal isolation zones
- e) Cold-resistant navigation algorithms accounting for environmental t

DETAILED DESCRIPTION

Navigation System

[0004] The invention's navigation system comprises:
_
Multi-modal sensor array including:
-
Temperature-hardened LiDAR sensors
-
Infrared positioning beacons
-
Inertial measurement units with thermal compensation
-

Proprietary sensor fusion algorithms
[0005] Sensor data processing occurs through a distributed computin
architecture specifically designed for cold environment operation.
Power Management
[0006] The power management system includes:
-
Cold-resistant lithium iron phosphate battery cells
Thermal management system maintaining optimal battery temperatur
-
Dynamic power allocation based on environmental conditions

Regenerative braking system optimized for cold operations
Mechanical Systems
[0007] The chassis and mechanical systems feature:
-
Composite materials rated for extreme temperature differentials
Self-lubricating bearings with cold-specific formulations
Thermally isolated component compartments
-
Redundant drive systems with automatic failover

CLAM/S

A method for controlling autonomous mobile robots in extreme tempe

- a) Receiving environmental temperature data from multiple sensors
- b) Adjusting navigation parameters based on temperature conditions
- c) Implementing dynamic power management protocols
- d) Maintaining operational stability through thermal compensation

The method of claim 1, wherein the temperature range extends from -

A system for extreme weather robotics control comprising:

- a) Temperature-hardened sensor array
- b) Cold-environment power management system
- c) Reinforced chassis design

d) Adap t ive navigation algorithms
DRAWINGS
[Figure descriptions and technical drawings omitted for brevity]
INVENTORS
_
Dr. Elena Frost, Ph.D.
-
Marcus Chen
Dr. James Barrett
- -

Robert Winters

PATENT ATTORNEYS

Morrison & Thompson LLP

1234 Innovation Drive

Boston, MA 02110

ASSIGNMENT RECORD

All rights, title, and interest in this patent have been assigned to Polar Dynamics Robotics, Inc., a Delaware corporation, as recorded in the Assignment Database on April 15, 2022.

MAINTENANCE FEES

First majntenance fee due: March 22, 2026

Second maintenance fee due: March 22, 2030

Third maintenance fee due: March 22, 2034

FOREIGN PATENT RIGHTS

Corresponding patent applications filed in:

-

European Patent Office (EP3847392)

_

Japan Patent Office (JP2022-847392)

-

Canadian Intellectual Property Office (CA3847392)

CERTIFICATION

I hereby certify that this patent document accurately reflects the inventional assigned to Polar Dynamics Robotics, Inc. and contains no known material misrepresentations.

/s/ Victoria Wells

Chief Financial Officer

Polar Dynamics Robotics, Inc.

Date: March 22, 2022