Information Security (WBCS004-05)

Fatih Turkmen

Some slides are borrowed from Dr. Frank B. Brokken

Today

- Hashing:
 - Concept and requirements
 - Collisions
 - Use of hashing in cryptography
 - CRC: a non-cryptographic hash
 - MD5, SHA-x, Tiger
 - Sharing Secrets / Key Escrow
 - Information Hiding
 - E-mail peculiarities

Yes, the alchemists worshipped the antimatter, vowing dark, agile actions while announcing algebra...

- Why do we hash?
 - Verification of the integrity of a message
 - Authentication
 - Message fingerprinting
 - Digital Signatures

Requirements

- Compression: A hashing function h computes a small string/number matching a large piece of information (e.g., a message).
- *Efficiency:* Computing h(x) must be easy/fast.
- Trap-door: Given h(x), x cannot be "easily" retrieved
- Collision resistant: Infeasible to find y for which h(x) = h(y) (x is given or freely selectable)
 - Collisions do exist: If h() results in N bits and if x consists of M bits (M > N) then there must exist 2^{M-N} Consists of M bits (M > N) then there must exist

Hashing Algorithm

- Try 1: Simple addition: If x_i are bytes, $h(x) = \sum x_i \pmod{256}$
- ✓ Compresses, easy to compute, cannot be inverted.
- Unfortunately: many collisions

Try 2: Modification: If x_i are bytes, multiply the values w index $h(x) = \sum_i x_i \pmod{256}$

- Compresses, easy to compute, cannot be inverted.
- ✓ Fewer collisions (i.e., better distribution over the "has
- **X** it's still easy to construct collisions:

Given this scheme, what are the hashes of "@0" and ">1"?

ASCII printable characters						
ľ	32	space	64	@	96	`
ľ	33	!	65	Α	97	а
ı	34	"	66	В	98	b
ľ	35	#	67	С	99	С
	36	\$	68	D	100	d
ľ	37	%	69	E	101	е
	38	&	70	F	102	f
ľ	39	•	71	G	103	g
	40	(72	Н	104	h
	41)	73	ı	105	i
ĺ	42	*	74	J	106	j
ľ	43	+	75	K	107	k
	44	,	76	L	108	- 1
	45	-	77	M	109	m
	46		78	N	110	n
	47	I	79	0	111	0
	48	0	80	Р	112	р
	49	1	81	Q	113	q
	50	2	82	R	114	r
ľ	51	3	83	S	115	s
	52	4	84	Т	116	t
	53	5	85	U	117	u
	54	6	86	V	118	V
	55	7	87	W	119	w
	56	8	88	X	120	X
ĺ	57	9	89	Υ	121	У
ĺ	58	:	90	Z	122	Z
ĺ	59	;	91	[123	{
	60	<	92	1	124	
	61	=	93]	125	}
	62	>	94	٨	126	~
ĺ	63	?	95	_		

Collisions

Read about the **Birthday Paradox** in the book!

Tiger Hash

- Developed (1995) by Ross Anderson & Eli Biham.
- Resembles block ciphers
- Operates on blocks of 512 bits (padding may be applied if necessary)
- Resulting hash value (digest): 192 bits (works well with 64-bit processors)
- 4 S-boxes mapping 8 bits to 64 bits
- Uses a key schedule, using the input blocks as key.
- Tiger applies one *outer round* on each 512-bit block.

Tiger Hash (Outer Rounds)

- Input is $X = (X_0, X_1, ..., X_{n-1})$
- Tiger's outer round: Applied to each 512-bit block (i.e. X_i):

Note: The message itself is used as a key, since there is no key!

- There are n iterations of the outer round
- Initial a, b, c have fixed values (e.g., a is 0x123456789abcdef)

Tiger Hash (Outer Rounds)

- Three outer round functions F₅, F₇, F₉
- a, b, c: each 64 bits
- a leaving F5 becomes
 b of F7, b leaving F7 becomes a of F9 etc...

• Final a, b, c is the hash value, thus the final output is 192 bits

Tiger Hash (Inner Rounds)

- Each F_m consists of 8 inner rounds where $m \in \{5,7,9\}$:
 - Each w_i is a 64-bit section of a 512 bit input block, i.e. W= (w_0 , w_1 , ..., w_{n-1})
 - Each $f_{m,i}$ receives a permutation of the a,b,c output by $f_{m,i-1}$. E.g., (abc), (bca), (cab):
 - f_{m.0} to f_{m.1}: output b becomes input a

Tiger Hash (Inner Rounds) ox

- Final step in inner rounds
 - The 64 c-bits are split in 8 bits $(c_0 \dots c_7)$:

```
c \oplus = W_{i}
a \cdot = S[0][c_{0}] \oplus S[1][c_{2}] \oplus S[2][c_{4}] \oplus S[3][c_{6}]
b += S[3][c_{1}] \oplus S[2][c_{3}] \oplus S[1][c_{5}] \oplus S[0][c_{7}]
b *= m
```

- The key schedule recomputes
 w_o to w₇ between the f_m boxes (how? Next slide!)
 - cf. Stamp, p. 132.

Tiger Hash

• Tiger's key schedule, simplifying Table 5.1 (see Stamp, p. 93 for more details):

```
w0 -= w7 ⊕ 0xa5a5a5a5a5a5a5;
w1 <sup>⊕</sup>= w0;
w2 += w1;
w3 -= w2 \oplus (\sim w1 << 19);
w4 <sup>⊕</sup>= w3;
w5 += w4;
w6 -= w5 \oplus (\sim w4 >> 23);
w7 <sup>⊕</sup>= w6;
w0 += w7;
w1 -= w0 \oplus (\sim w7 << 19);
w2 ⊕= w1;
w3 += w2;
w4 -= w3 \oplus (\sim w2 >> 23);
w5 <sup>⊕</sup>= w4;
w6 += w5;
w7 -= w6 \oplus 0x0123456789abcdef;
```


Tiger Hash

- The final step is called feedforward
- The results, say a', b', c' of F9 are XORed, subtracted and added with the initial a, b, c respectively.

- For the original proposal see Tiger Hash paper: https://link.springer.com/content/pdf/10.1007/3-540-60865-6_46.pdf
- For the Cryptanalysis see: https://iacr.org/archive/asiacrypt2007/48330539/48330539.pdf

Refresher on Message Integrity

- Use of cryptography for "Unauthorized Modification" (not about unauthorized reading!) of the plain text
- Message Authentication Code (MAC) (chapter 3.4)

What "principal" is this about?

- How does MAC work?
 - Symmetric encryption, i.e., the same encryption key is used
 - It works in <u>CBC mode</u>, i.e., blocks of messages M₀, M₁,..,M_{n-1}

$$C_0 = E(M_0 \oplus IV, K), C_1 = E(M_1 \oplus C_0, K), ..., C_{n-1} = E(M_{n-1} \oplus C_{n-2}, K)$$

• C_{n-1} , also called as CBC residue, serves as the MAC. The rest is discarded for the case of "integrity".

(Example) Uses of Hashing: Integrity

- Verification of the **integrity** of a message
 - With MAC $\{c_0, c_1,...,c_{n-1}\}$ + c_{n-1} is sent for confidentiality + integrity.
- Requirements:
 - M and h(M): changing M changes h(M) and v.v.
 - M and h(M) will be sent together since we are interested in integrity...

HMAC

- Integrity with respective to original message "M" must be protected (i.e., the figure).
- Enter: Hashed Message Authentication Code.
 - Prevent the change of hash!
 - Hashing functions typically process blocks of bytes.
 - We could prepend (or append) a key K to the message M (i.e., start with the key, or start with the message block(s))

h(M), M

Bob

• So, should we use h(K, M) or h(M, K)?

- Let's consider the prepend: h(K, M)
 - Hash functions F tend to use *blocks* (e.g., Tiger uses ?), e.g., M = (B1, B2).
 - The common case is to use the hash of the previous block as input when computing the next block's hash:
 - h(M) = F(F(Init, B1), B2), where **F** is similar to the outer round of Tiger

Given h(K,M) = F(F(K, B1), B2) where M = (B1, B2),

- Intruder Trudy (1) intercepts M;
 (2) appends a new block X to M (i.e., M'=(M,X));
 and (3) sends the appropriate hash
 - Trudy doesn't know K.
 - Trudy knows M', h(K, M) and needs to find h(K,M').

- Use h(K, M)? Bad idea...
- h(K, M) = F(F(K, B1), B2)
 - If Trudy appends X and sends M not knowing K:
 - h(K, M, X) =

$$F(F(F(A, K), M), X) = F(h(K, M), X)$$

Intercepted by Trudy earlier

Set A=0 if you use Tiger which does not have key but fixed constants..

$$h(M1, K) = h(h(M1), K) = h(h(M2), K)$$

- Use h(M, K) instead.
- Less serious but (if there is) a known collision (h(M1) == h(M2)) renders the hash function insecure.
 - Note: M1 and M2 need to be a multiple of the block size.
 - This happened to MD5. SHA1 by now is also considered insecure.
 - Better to use HMAC described in RFC 2104: (https://www.ietf.org/rfc/rfc2104.txt)
 - K, unknown to Trudy, is required to finalize the hash computation

Look for a nice discussion here! : https://stackoverflow.com/questions/7885268/simple-enquiry-on-hash-algorithm

- h(M,K) is preferred over h(K,M)
- None of these solutions is complete safe!
 - RFC 2104 offers a solution, B the block length (i.e., 512/8=64)
 - Thoroughly mixing the key to the hash!

```
B: hash block size in bytes (e.g., B = 64) define: ipad = 0x36 repeated B times opad = 0x5C bytes repeated B times.

HMAC(M,K) = h_1(K \oplus opad, h_2(K \oplus ipad, M))
```

- (ipad and opad could be omitted)
- Note: h_1 and h_2 are the same hash function. h_2 is the real work but it reduces the message to digest/hash so h_1 is quickly computed thereafter.
- See also https://en.wikipedia.org/wiki/HMAC

Example Non-cryptographic Uses of Hashing: CRC

- Cyclic Redundancy Check (CRC)
 - Not a cryptographically-acceptable hash function.
 - Intended for networking applications: detecting transmission errors.
 - WEP uses (inappropriately) CRCs.

Computation of CRC

Given a divisor of size n;

- Add *n-1* 0-bits at the end of the dividend (i.e., data stream).
 - Once the first (leftmost) bit of the input stream is 1: *xor* the leftmost *n* bits of the input stream by the divisor:
 - Continue the process until the remainder is 0 or smaller than the divisor
 - The remainder (n-1 bits) is the CRC.

bitstream: 101010110000 divisor: 10011 11001

Computation of CRC

• The remainder (n-1 bits) is the CRC:

$$X \mid \emptyset \oplus d = 0 \mid c \quad (\oplus d: d `slides' over x \mid 0)$$

• So:

$$x \mid 0 \oplus d = c$$

Consequently: the CRC of a bitstream + its CRC equals 0:

$$x \mid c \oplus d = 0 \mid 0$$

Computation of CRC

Example:

The message: 10011100

The divisor: 10011

What is the CRC?

1100

```
101010110000
bitstream:
                                    101010111010
divisor:
                                    10011
               10011
                  11001
                                       11001
                  10011
                                       1001/1
                   10101
                                        10101
                   <del>1001</del>1
                                        <del>1001</del>1
                      11000
                                           11010
                      10011
                                           <del>1001</del>1
                       10110
                                            10011
                                            10011
                          1010
```

See this fooan explanation of the division (in CRC): https://www.youtube.com/watch?v=kscjEvjTVBI

Collisions in CRC

- bitstream: 101010110000 101010111010 divisor: 10011 10011 11001

- It's easy to create CRC collisions
 - Look at the final (intermediate) value before the CRC bits are added at the end of the bit stream:

```
bitstream: 101010111010
...
10101
10011
11010
```

- Observation: Once 110 is the remainder of the division, the resulting CRC is 1010
- Earlier bits are irrelevant, as long as the result, ignoring the remainder, equals 110.

Collisions in CRC

- Finding CRC collisions
 - Change the bitpattern *ad lib*, and turn the final #divisor bits into .- characters, then solve for the dots. Originally:

```
bitstream: 101010111010
(...)
10101
10011
11010
```

Collisions in CRC

• Find a collision: CRC = 1010, d = 10011original: **101**01011 find 5 bits modified: 010.....1010 divisor: 0....

```
bitstream: 101010110000
                            101010111010
            10011
                            10011
              11001
                              11001
              10011
                              10011
               10101
                               10101
                               10011
               10011
                 11000
                                 11010
                 10011
                                 10011
                  10110
                                  10011
                  10011
                                  10011
                    1010
                                        0
```

divisor:

 the required bits are all implied and easy to find.

- MD5, SHA-1
 - Both MD5 and SHA-1 were extremely popular
 - MDx (128 bit hash) hashes are now considered insecure, as collisions can be found.
 - SHA-1 (180 bit) is an improvement, but is in fact by now superseded by SHA-256.

(cf. http://csrc.nist.gov/groups/ST/hash/policy.html), Software computing SHA-x is widely available

- How insecure is SHA-1?
- *Schneier* reports that in approx. 2⁷⁴ computer cycles a SHA-1 collision is found

How insecure is SHA-1?

Schneier reports that in approx. 274 computer cycles a SHA-1 collision is found

[•] In 2016 a *core* ran at approx. 2^{33} cycles/sec. Assume a *processor* has 8 cores, and a multi-processor *server* 4 processors; then a server did $2^{33+3+2} = 2^{38}$ cycles/second.

How insecure is SHA-1?

Schneier reports that in approx. 274 computer cycles a SHA-1 collision is found In 2016 a core ran at approx. 233 cycles/sec. Assume a processor has 8 cores, and a multi-processor server 4 processors; then a server did 238 cycles/second.

In a year there are approx. 2²⁵ seconds. A server-year (s-y) does 2⁶³ cycles, so collisions after (74-63): 2¹¹ s-y.

• How insecure is SHA-1?

- Schneier reports that in approx. 274 computer cycles a SHA-1 collision is found In 2016 a core ran at approx. 233 cycles/sec. Assume a processor typically has 8 cores, and a multi-processor server 4 processors; then a server did 238 cycles/second.
- In a year there are approx. 2^{25} seconds. A server-year (s-y) does 2^{63} cycles, so collisions after (74-63): 2^{11} s-y.

Using *Moore's law* (computing power doubles every 18 months):

In 2019: 3/1.5 = 2 doublings in computer power (2²): 2^{65} cycles, so collisions after: 2^9 s-y.

In 2022: 6/1.5 = 4 doublings (24): 2^{67} cycles, collisions after: 2^{7} s-y.

Hashing

- How insecure is SHA-1?
- Schneier reports that in approx. 274 computer cycles a SHA-1 collision is found
- A core runs at approx. 2³³ cycles/sec. In 2016 processors typically had 8 cores, a multi-processor server had 4 processors, so a server did 2³⁸ cycles/second.
- In a year there are approx. 2²⁵ seconds. A server-year (s-y) did 2⁶³ cycles, collision after: 2¹¹ s-y.
- Using *Moore's law* (computing power doubles every 18 months):

In 2019: 3/1.5 = 2 doublings in computer power (2²): 2^{65} cycles, so collisions after: 2^9 s-y.

In 2022: 6/1.5 = 4 doublings (24): 2^{67} cycles, collisions after: 2^7 s-y.

Renting a server costs approx. €250/yr = approx. €28/yr, multiply by #s-y for a collision: a collision attack in 2016 costs approx. €219, approx. €500k, in 2019 217 (€130k), in 2022 215 (€33k).

Sharing Secrets

- Simple ways to share a secret
 - Basic idea: polynomials fitting
 - E.g., straight line polynomial of degree 1
 - Given two points, the line's equation can be determined

• In general: n + 1 points are required to determine a polynomial of degree n.

Sharing Secrets

- Simple ways to share a secret
 - Select a polynomial of your choice
 - E.g., Y = aX + b
 - A polynomial of degree 1: Alice and Bob each receive one point on this line as the secret info.
 - Using only their own point neither Alice nor Bob can determine the secret.
 - The secret could be, e.g., the Y coordinate for X = 0

Sharing Secrets

- Simple ways to share a secret
 - E.g., Y = aX + b
 - Two parties each receive the coordinates of one point on this line.
 - The secret S is defined as point (0, S), so
 b == S
 - Select *a* and two points X_a and X_b.
 - Alice gets (X_a, Y_a) , where $Y_a = a * X_a + S$, Bob gets (X_b, Y_b) , where $Y_b = a * X_b + S$.

- An example use of secret sharing
- Key Escrow
 - Store your secret (i.e., key) with a trusted party.
 - A notary? A good friend?

Real Life Adventures

Jobs in which nobody understands what you do.

• Who do **you** trust??

- Key Escrow
 - Example: The *clipper chip*, announced in 1993 and abandoned by 1996.
 - To be built into all electronic devices offering cryptography
 - Used a symmetric encryption algorithm (Skipjack) comparable to DSA
 - Key escrow by the US Government...
 - Can the Government be trusted?

- Key Escrow
 - Alternative:
 - use polynomial key-splitting, requiring *n* people to work together to determine your secret, which may be the *passphrase* to unlock your *file of secrets* or to access your *encrypted file system*.

- Key Escrow
 - Subtle modification:
 - A polynomial of order n-1 may be determined if n points are provided.
 - Provide m points (m>n) to m people, thus implementing an

```
n out of in
```

key escrow: any *n* people may join to obtain the secret.

Steganography

- Information Hiding (steganography)
 - Hide information in unlikely places
 - Yes, the alchemists worshipped the antimatter, vowing dark, agile actions while announcing algebra...
 - The problem is of course Kerckhoffs principle
 - Unused places can be used to hide information in
 - cf. Stamp's low order bits of a html-file's color attribute
 - Collusion attacks (i.e., use diff) can be used to reveal hidden information.

What did we learn today?

- Topics this lecture:
 - Concept and requirements
 - Collisions
 - Use of hashing in cryptography
 - CRC: a non-cryptographic hash
 - MD5, SHA-x, Tiger
 - Sharing Secrets / Key Escrow
 - Information Hiding
 - E-mail peculiarities

FAQ

- What is m in Tiger hash?
 - It is a constant value (denoting the round index, i.e., 5,7,9)
- Does Tiger hash work with chaining, meaning for instance the resulting a,b,c, values of hashing X0 would be used in hashing X1, given M={X0,...,Xn}?
 - Yes, the result of the hashing of Xi is the final hash value or the initial value for the next message block Xi+1.
- Why does h(M,K) prevent length extension attacks?
 - TBC

That's all for today.