解答题

1.

先设棋盘尺寸为 $n \times n$,求出通解后,再带入国际象棋棋盘实际尺寸 8×8 计算结果。

约定起点单元格为棋盘左上角(1,1),行为第一个维度,列为第二个维度。

动态规划

定义二维数组dp,其中数组元素 $dp[i][j](1 \le i, j \le n)$ 表示车从起点(1,1)到达位置(i,j)最短路径的数量。 dp的元素间存在递归关系:dp[i][j] = dp[i-1][j] + dp[i][j-1]。

因为车到达位置(i,j)的最短路径数量等于其**从上方移动到该位置**和**从左侧移动到该位置**两种情况最短路径最大数量之和,所以这两种情况所对应的最短路径分别应为:

- $max(dp[k][j]), 1 \le k \le i-1$
- $max(dp[i][h]), 1 \le h \le j-1$

但由于二维数组每一行、每一列都存在递增关系,以上两项可以简化为dp[i-1][j]和dp[i][j-1],即得到递推关系式。

初始化dp, (1,1)为0, 车只需一步抵达所在行或列任意位置, 因此第一行、第一列都初始化为1。

	1	2	3	•••	n
1	0	1	1		1
2	1				
3	1				
n	1				

利用递推关系按照行优先填表,即顺序为 $(2,2)\to(2,3)\to\dots(2,n)\to(3,2)\to\dots(n,n)$ 对于国际象棋棋盘n=8的情况,填表结果如下:

	1	2	3	4	5	6	7	8
1	0	1	1	1	1	1	1	1
2	1	2	3	4	5	6	7	8
3	1	3	6	10	15	21	28	36
4	1	4	10	20	35	56	84	120
5	1	5	15	35	70	126	210	330
6	1	6	21	56	126	252	462	792
7	1	7	28	84	210	462	924	1716
8	1	8	36	120	330	792	1716	3432

dp表格(8,8)的值即为结果3432。

基本排列组合

 $\mathsf{M}(1,1)$ 抵达(n,n)最短路径需要向右n-1步、向下n-1步。因此,将问题看成:在2n-2个步中,选出n-1步使之成为向右的步,则剩下的n-1步成为向下的步。

因此通解为: $\binom{n-1}{2n-2}$

对于国际象棋棋盘n=8的情况,计算 $\binom{7}{14}=3432$ 。

2.

1. 一种可能的哈夫曼编码如下面的哈夫曼树所示:

规定向左为0,向右为1,则哈夫曼编码为:

- A:1
- B:000
- C:010
- D:001
- - :011
- 2. 用上面编码对ABACABAD编码对结果为: 1000101010001001
- 3. 用上面编码对100010111001010 解码结果为: ABA-ADC