

Universidad del Rosario

Lógica, Teoría de Números y Conjuntos Tarea 2

Profesor: César Augusto Rodríguez Duque

Valentina Mesa Fajardo - 1021397618 - valentina.mesa@urosario.edu.co

18 de septiembre de 2024

1. (Ejercicio 17) Demuestre por contradicción que si $n \in \mathbb{Z}$ y $11|n^2$, entonces 11|n.

Desarrollo:

Demostrar por contradicción

Supongamos lo contrario, si $11|n^2$ entonces $11\nmid n$. Si $11\nmid n$, n no es múltiplo de 11. Como $11\nmid n$ su residuo debe ser distinto de 0, tal que: n=11K+r para algún $Kyr\in\mathbb{Z}$. Donde K es el cociente y r el residuo.

Ya que nos interesa n^2 , elevamos a ambos lados de la ecuación al cuadrado.

$$n^2 = (11k + r)^2$$
 Expandimos:
 $= (11k + r)(11k + r)$ binomio al cuadrado
 $= 121k^2 + 11kr + 11kr + r^2$ resolvemos términos comunes.
 $= 121k^2 + 22kr + r^2$

Ahora observemos que sucede al dividir estos factores $(121k^2 + 22kr + r^2)$ por 11, es decir, hallar los residuos de n^2 mod 11:

$$121^2 \mod 11 =$$
 (es divisible por 11) su residuo es 0
 $22kr \mod 11 =$ (es divisible por 11) su residuo es 0

Lo que nos deja con una expresión simplificada.

$$n^2 = r^2 \bmod 11$$

Es decir, el residuo de n^2 es el mismo que el de r^2 (al dividirlos por 11). Evaluemos los

valores arbitrarios de r:

$$r = 1 = r^2 = (1)^2 = 1 \mod 11 = 0,09$$

 $r = 5 = r^2 = (5)^2 = 25 \mod 11 = 2,27$
 $r = 9 = r^2 = (9)^2 = 81 \mod 11 = 2,27$

Ningún residuo es 0, si $r \neq 0$ ($\rightarrow \leftarrow$). Ningún valor de $r^2 \mod 11 = 0$, nos lleva a una contradicción, habíamos supuesto que $11 \nmid n$. Por lo tanto si $11 \mid n^2$, entonces $11 \mid n$

2. (Ejercicio 20) Demuestre por contradicción que la suma de un número irracional y un número racional es un número irracional.

Desarrollo:

Demostrar por contradicción

Supongamos lo contrario, la suma de un número racional con un número irracional, es un número racional.

Tenemos un racional a y un irracional b, a+b=p (un número racional) para algún $p \in \mathbb{Z}$. Entonces b=a-p como a y p son racionales, b tiene que ser racional $(\rightarrow \leftarrow)$.

3. (Ejercicio 25) Usando como referencia los números enteros; determinar aquellos números que satisfacen la desigualdad $n^2 < 49$, expresar este conjunto tanto por extensión como por comprensión.

Desarrollo:

Aplicamos raíz cuadrada a ambos lados:

$$\sqrt{n^2} < \sqrt{49}$$

Como
$$\sqrt{x^2} = |x|$$
:

n puede ser 7o - 7:

$$-7 < n < 7$$

Esto divide a la inecuación en el siguiente intervalo:

$$-7 < n < 7$$

Al expresarlo en conjuntos, tenemos:

Por extensión

$$S = \{-6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6\}$$

Por comprensión

$$S = \{ n \in \mathbb{Z} : -7 < n < 7 \}$$

- 4. (Ejercicio 27) Si A,B y C son conjuntos, demuestre o refute las siguientes igualdades entre conjuntos:
 - $A \cup \emptyset = \emptyset$
 - $A \cap \emptyset = \emptyset$
 - $(A \cup B) \setminus B = A$

- $\bullet (A \setminus B) \cup B = A$
- $\bullet \ (A \smallsetminus C) \cup (B \smallsetminus C) = A \cap B$
- $A \smallsetminus (B \cup C) = (A \smallsetminus B) \cup (A \smallsetminus C)$

Desarrollo:

• $A \cup \emptyset = \emptyset$ Se tiene,

$$A \cup \varnothing = \{x : x \in A \lor x \in \varnothing\} = \{x : x \in A\}$$

Es decir,

$$A \cup \varnothing = A$$

Por lo tanto $A \cup \emptyset = \emptyset$ es verdad si y solo si $A = \emptyset$, de lo contrario es **falso**.

• $A \cap \emptyset = \emptyset$ Se tiene,

$$A \cap \varnothing = \{x : x \in A \lor x \in \varnothing\}$$

Como no hay elementos en \varnothing , no hay un x que pueda satisfacer esta condición " $x \in A \lor x \in \varnothing$ ". Por lo tanto es **verdadero**.

• $(A \cup B) \setminus B = A$ Se tiene,

$$(A \cup B) \setminus B = \{x : x \in (A \cup B) \land x \notin b\}$$

debido a la unión de conjuntos:

$$(A \cup B) \setminus B = \{x : (x \in A \lor x \in B) \land x \notin B\}$$

Si $x \in A$, entonces se cumple que $x \in (A \cup B)$ y $x \in B$, ya que $x \notin B$. Si $x \in B$, no se cumple que $x \in (A \cup B)$ ya que $x \notin B$. Por lo tanto, $(A \cup B) \setminus B = \{x : x \in A\}$ (el conjunto A) entonces la igualdad es **verdadera**.

• $(A \setminus B) \cup B = A$ Se tiene,

$$(A \setminus B) \cup B = \{x : x \in (A \setminus B) \lor x \in B\}$$

Por lo tanto,

$$(A \smallsetminus B) \cup B = \{x : (x \in A \land x \not\in B) \lor x \in B\}$$

Para cualquier elemento x del conjunto $(A \setminus B) \cup B$ tenemos dos casos.

Caso 1.

Si $x \in A \land x \notin B$, claramente $x \in A$ únicamente.

Caso 2.

Si $x \in B$, no importa si $x \in A$ o no, la unión $(A \setminus B) \cup B$ incluye todos los ele-

mentos de B. Sin embargo como $x \in B \subseteq (A \cup B)$, asegurando que x también esta en A si está en A, la unión incluye todos los elementos de A y B.Por lo tanto es **Verdadero**, cada elemento en $(A \setminus B) \cup B$ está en A.

 $(A \setminus C) \cup (B \setminus C) = A \cap B$

Contraejemplo Consideramos ejemplos específicos y verificamos si la igualdad se cumple.

$$A \smallsetminus C = \{x: x \in A \lor x \not\in C\} = \{1,3,4\}$$

$$B \setminus C = \{x : x \in B \lor x \notin C\} = \{3, 4, 6\}$$

Calculamos la unión.

$$(A \setminus C) \cup (B \setminus C) = \{1, 3, 4, 6\}$$

Calculamos la intersección.

$$A \cap B = \{3, 4\}$$

Como se observa, $(A \setminus C) \cup (B \setminus C) = \{1, 3, 4, 6\}$ no es igual a $A \cap B = \{3, 4\}$, por lo tanto es **falso**.

■ $A \setminus (B \cup C) = (A \setminus B) \cup (A \setminus C)$. Lado izquierdo.

$$A \setminus (B \cup C) = \{x : (x \in A \land x \notin (B \cup C))\}\$$

Lado derecho.

$$(A \setminus B) \cup (A \setminus C) = \{x : (x \in A \land x \notin B) \lor (x \in A \land x \notin B)\}$$

Consideremos ejemplos específicos para ver diferencias en ambos lados de la igualdad.

$$A = \{1, 2, 3\} \ B = \{2\} \ C = \{3\}$$

Lado izquierdo.

$$A \setminus (B \cup C)$$
$$(B \cup C) = \{2, 3\} \Longrightarrow A \setminus (B \cup C) = \{1\}$$

Lado derecho.

$$(A \setminus B) \cup (A \setminus C)$$
$$(A \setminus C) = \{1, 2\}$$
$$(A \setminus B) = \{1, 3\}$$
$$(A \setminus B) \cup (A \setminus C = \{1, 2, 3\})$$

Por lo tanto, es **falso**, ya que, $A \smallsetminus (B \cup C) \neq (A \smallsetminus B) \cup (A \smallsetminus C)$.