

AN: PAT 1997-022347
TI: Ballast resistor arrangement for small electric motor, e.g. of vehicle windscreen wiper has thin curved ceramic body elements fitted within motor housing and hollow section to receive metal resistance elements
PN: DE29512310-U1
PD: 05.12.1996
AB: The resistor assembly is fitted into the electrical motor which has a base unit that is cylindrical and has a thin walled outer section. Located against the inner surface of this section are a number of ballast resistor elements (7) with connections made to the motor windings. Each ballast resistor is produced with a ceramic body that has a hollow form to receive a pressed metal resistance element with a zig-zag shape and end connections (14,14'). When inserted the resistor locates against formed stops (12). Any generated heat energy can pass through the hollow body.; For small motor drive, e.g. for ventilator, pump, servomotor, esp. in vehicle or household equipment. Allows dissipation of generated heat energy.
PA: (VOGT-) VOGT GMBH CERAMIC COMPONENTS;
FA: DE29512310-U1 05.12.1996;
CO: DE;
IC: H01C-001/02; H01C-001/08; H01C-003/10; H02K-011/00;
MC: V01-A01B; V01-A01X; V06-M14; V06-U03; X22-H01;
DC: V01; V06; X22;
FN: 1997022347.gif
PR: DE2012310 31.07.1995;
FP: 05.12.1996
UP: 13.01.1997

⑯ BUNDESREPUBLIK

DEUTSCHLAND

DEUTSCHES
PATENTAMT

Gebrauchsmuster

⑩ DE 295 12 310 U 1

⑮ Int. Cl. 6:
H 01 C 1/08

H 01 C 1/02
H 01 C 3/10
H 02 K 11/00

⑯ Aktenzeichen:	295 12 310.9
⑰ Anmeldetag:	31. 7. 95
⑱ Eintragungstag:	5. 12. 96
⑲ Bekanntmachung im Patentblatt:	23. 1. 97

DE 295 12 310 U 1

⑳ Inhaber:

VOGT GmbH, Ceramic Components, 91239
Henfenfeld, DE

㉑ Vertreter:

Richter, B., Dipl.-Ing., Pat.-Anw., 90491 Nürnberg

㉒ Anordnung aus einem Vorwiderstand und einer ihn umgebenden, aus Keramik bestehenden Isolierung

DE 295 12 310 U 1

DIPLO.-ING. BERNHARD RICHTER

PATENTANWALT

zugel. Vertreter beim Europ. Patentamt
European Patent Attorney

90491 NÜRNBERG

• Beethovenstraße 10

Telefon 92-Nr.: (0911) 595015

Telegramm/Cable: Patri

Telex: 623268 patri d

Telefax: 49 (0911) 599842 (Gr. II + III 24 hours)

Firma VOGT GmbH, Ceramic Components
Industriegebiet, 91239 Henfenfeld

26.07.95

R/vo

"Anordnung aus einem Vorwiderstand und einer ihn umgebenden,
aus Keramik bestehenden Isolierung"

Die Erfindung geht aus von einer Anordnung aus einem Vorwiderstand und einer ihn umgebenden, aus Keramik bestehenden Isolierung, wobei diese Anordnung entweder sich innerhalb eines Elektromotors befindet oder für die Unterbringung in einem Elektromotor vorgesehen ist (Oberbegriff des Anspruches 1). Hierbei ist insbesondere an Vorwiderstände für kleinere Motoren gedacht, wie sie beispielsweise zum Antrieb des Scheibenwischers eines Kraftfahrzeuges oder auch in anderen Sachgebieten eingesetzt werden. Die Leistungsregelung und damit auch die Drehzahlanpassung des betreffenden Motors erfolgt durch den Vorwiderstand, der in den jeweils in Frage kommenden Stromkreis des Elektromotors eingeschaltet wird. Hiermit entsteht am bzw. im Vorwiderstand eine entsprechend große Wärme, die abgeleitet werden muß. Bisher kennt man hierzu Anordnungen, bei denen sich der Vorwiderstand in einem hohlzylindrischen Röhrchen aus Keramik befindet. Nachteiligerweise kann die innerhalb des Röhrchens und damit im Röhrchen entstehende Wärme kaum an die Außenluft abgeführt werden, da ein solches Röhrchen nur entlang einer

20

31.07.95

-2-

1 Linie in eine wärmeübertragende Anlage an das Motorgehäuse
bringbar ist, bzw. das Röhrchen auch freistehend ohne direk-
te Anlage im Motor angebracht ist. Die Folge hiervon ist,
daß diese Röhrchen sich schnell bis zum Glühen erhitzen
5 können (insbesondere auch beim Anlaufen des Motors). Um dies
zu vermeiden, muß man die Wärme-, d.h. Leistungsaufnahme des
Vorwiderstandes entsprechend begrenzen. Ein weiterer Nach-
teil besteht darin, daß die Länge des Widerstandsrahtes
aufgrund der vorgegebenen Länge des Röhrchens festgelegt
10 ist. Die Drahtlänge kann also nicht variiert werden, so daß
eine Veränderung des Ohm-Wertes des Widerstandes nur durch
eine Veränderung der Drahtstärke möglich ist. Hiermit kann
der Ohm-Wert des Vorwiderstandes aber nur in sehr begrenztem
Maß verändert werden, wodurch die Drehzahlanpassung einge-
15 schränkt ist.

Die Aufgaben- bzw. Problemstellung der Erfindung besteht
demgegenüber darin, eine solche Anordnung so auszustalten,
daß bei geringem Raumbedarf der Anordnung durch diese eine
20 wesentlich größere Wärmemenge abgeführt werden kann.

Zur Lösung dieser Aufgabenstellung ist, ausgehend vom Ober-
begriff des Anspruches 1, zunächst gemäß dem Kennzeichen des
Anspruches 1 vorgesehen, daß die Keramikisolierung flächig
ausgebildet ist und der Vorwiderstand sich im wesentlichen
25 über diese Fläche erstreckt, und daß die Formgebung einer
der Außenseiten der Keramikisolierung der Formgebung der
Innenseite des Gehäuses des Antriebsmotors entspricht oder
angepaßt ist und im Einbauzustand daran anliegt. Eine flä-
chige Ausbildung einer solchen Keramikisolierung hat gegen-
über den Keramikröhren des Standes der Technik den Vorteil
30 einer entsprechend größeren Masse an Keramiksubstanz und
damit einer entsprechend größeren Wärmeaufnahmekapazität.
Außerdem ist die vom Vorwiderstand her in der Keramikisolie-
rung entstehende Wärme über deren flächige Anlage an das
Motorgehäuse in einer wesentlich größeren Menge nach außen
35 abführbar als bei dem erläuterten Stand der Technik, da an

31.07.95

-3-

1 die Stelle der beim Stand der Technik gegebenen Linienberührungen die um ein Vielfaches größere Flächenberührung zwischen Keramikisolierung und Innenseite des Motorgehäuses tritt. Es erfolgt also eine intensive Wärmeübertragung von der Keramikisolierung über das Motorgehäuse an die Außenluft. Auch ist die Wärmeabstrahlung in Richtung zum Motorinnenraum aufgrund der großen Fläche der Keramikisolierung wesentlich besser als die Wärmeabstrahlung von den genannten Röhrchen. Von Vorteil ist ferner, daß aufgrund der langgestreckten Form der Keramikisolierung sie von der Gehäuseinnenseite her nur um eine relativ kleine Distanz zum Motorinnern hin vorstehen muß, d.h. ihr Raumbedarf ist gering und stört den Einbau von Motorteilen im Gehäuseinnern praktisch nicht.

5 Während die vorgenannten Röhrchen sehr lang sind, ist bei der Keramikisolierung nach der Erfindung deren Bauhöhe demgegenüber wesentlich geringer. Auch läßt sich, wie aus den späteren Ausführungen näher hervorgeht, der Ohm-Wert eines solchen Vorwiderstandes über einen großen Variationsbereich auf den jeweils gewünschten Betrag auslegen. Bei der Erfindung werden mit dem Begriff Keramik auch analoge anorganische Stoffe verstanden, die im Prinzip die gleichen Eigenschaften, insbesondere die Eigenschaften der Wärmespeicherung und Wärmeleitfähigkeit sowie der elektrischen Isolationsfähigkeit haben.

10

15

20

25

In einer bevorzugten Ausführungsform der Erfindung gemäß Anspruch 6 ergibt sich eine sehr einfache Montage und ein sicherer Halt des Vorwiderstandes innerhalb der Keramikisolierung. Besonders ist hiermit auch eine einwandfreie Sicherung der Position des Widerstandes in der Keramikisolierung zu erreichen.

30

Weitere Vorteile und Merkmale der Erfindung sind sowohl den weiteren Unteransprüchen als auch der nachfolgenden Beschreibung und der zugehörigen Zeichnung von erfindungsgemäßigen Ausführungsmöglichkeiten zu entnehmen. In der Zeichnung zeigt:

35

31.07.95

-4-

1

Fig. 1: in perspektivischer Ansicht eine Anordnung
nach der Erfindung in einen Elektromotor
eingebaut,

5

Fig. 2: eine Draufsicht gemäß der Linie II-II in Fig.
1,

10

Fig. 3: in einem gegenüber Fig. 1, 2 vergrößerten
Maßstab die Ausführung einer Keramikisolierung
nach der Erfindung in perspektivischer An-
sicht,

15

Fig. 4: ein zu der Ausführung nach Fig. 3 passender
Vorwiderstand,

20

Fig. 5: in einer teilweise geschnittenen, teilweise
perspektivischen Ansicht den Zusammenbau des
Widerstandes nach Fig. 4 mit der Keramik-
isolierung nach Fig. 3,

Fig. 6: in der Draufsicht eine Zugentlastung eines
Motors,

25

Fig. 7: eine Seitenansicht zu Fig. 6 gemäß dem Pfeil
VII,

30

Fig. 8: in der Seitenansicht und in schematischer
Darstellung eine weitere Ausführung der Erfin-
dung,

Fig. 9: die Draufsicht auf Fig. 8 gemäß dem Pfeil
VIII.

35

Fig. 10: in perspektivischer Ansicht eine weitere
Ausführung einer Anordnung nach der Erfindung,

31.07.95

-5-

1 Fig. 11: einen Schnitt gemäß der Linie XI-XI in Fig.
10,

5 Fig. 12: eine weitere Ausführungsform der Erfindung in
der Draufsicht,

Fig. 13: einen Schnitt gemäß der Linie XIII-XIII in
Fig. 12.

10 Fig. 1 zeigt einen Elektromotor 1 mit Unterteil 2 und Ober-
teil 3. An der Innenseite oder -wand 4 des hier in der
Draufsicht (siehe Fig. 2) kreisförmigen Gehäuses 5 liegen
mehrere Anordnungen nach der Erfindung vollflächig an, die
allgemein mit 6 beziffert sind. Die innerhalb dieser Anord-
nungen 6 befindlichen Vorwiderstände 7 sind über Leitungen
7' an die betreffende Motorwicklung angeschlossen, deren
Stromaufnahme mittels des oder der Vorwiderstände 7 auf
unterschiedliche Werte eingestellt werden soll.

20 In den Figuren 3 bis 5 ist ein Ausführungsbeispiel der
Erfindung mit einer Anordnung dargestellt, die in ihrer
Formgebung der Anordnung 6 nach den Fig. 1, 2 entspricht.
Sie besteht jeweils aus einer aus Keramik hergestellten
Isolierung 7, die in ihrem Innern hohl ist. Dieser Hohlraum
25 8 dient zur Aufnahme des Widerstandes 11 gemäß Fig. 4. Er
ist von einem Schlitz in der in den Figuren 3 und 5 unten
gelegenen schmalen Längsseite 9 her zugängig. Dieser Schlitz
erstreckt sich praktisch über die gesamte Länge L der Kera-
mikisolierung. Der Widerstand 10, hier ein aus entsprechen-
30 dem flachen Material gestanzter Widerstand, wird in den
Schlitz im vorliegenden Ausführungsbeispiel von unten her
eingesteckt. Die Anordnung könnte aber auch so gestaltet
sein, daß sich der zum Hohlraum 8 führende Längsschlitz in
der Einbaulage oben befindet. Unter Bezugnahme auf die Lage
35 der Teile in den Figuren 3 bis 5 ist zu sagen, daß die
oberen Querkanten 11 des Widerstandes 10 bei dessen Ein-
schieben zur Anlage an Vorsprünge 12 kommen, die sich im

31.07.95

-6-

1 Innern der Keramikisolierung befinden und den Hohlraum 8
oberseitig begrenzen. Anschlußfahnen 14 des Widerstandes 10
sind durch sog. Freiarbeitungen 13 der Isolierung hindurch-
zustecken und in der jeweils gewünschten Weise herausführ-
bar, z.B. gemäß Fig. 5 rechts nach oben gerichtet oder gemäß
5 Fig. 5 links in Form einer Abbiegung 14' nach unten verlau-
fend. Diese Abbiegung dient der Sicherung (Lagefixierung)
des Widerstandes im Keramikteil gegen Herausrutschen aus dem
Hohlraum 8. Hierdurch wird vermieden, daß der Widerstand
10 andere Bauteile berührt. Zu diesem Abwinkeln können die in
Fig. 3 erkennbaren Vertiefungen der Freiarbeitungen 13
dienen, wobei sich diese Vertiefungen an der zum Motorinnen-
raum gelegenen, konkaven Seitenfläche des Keramikteiles
15 befinden. Hiermit ist insbesondere ein Abwinkeln der An-
schlußfahnen 14 in der Weise möglich, daß sie nicht über die
in den Fig. 3, 5 oben gelegene Stirnfläche des Keramikteiles
hinausragen, was ebenfalls zur Berührung anderer Bauteile
führen könnte. Gemäß diesem Ausführungsbeispiel können
zwischen diesen Freiarbeitungen, d.h. Öffnungen 13, die sich
jeweils an der linken und der rechten schmalen Seitenkante
20 der Keramikisolierung befinden, auch weitere Freiarbeitungen
oder Öffnungen 13' vorgesehen sein, die sich jeweils zwi-
schen zwei der o.g. Vorsprünge 12 befinden. Somit kann man
auch in Längsrichtung L der Keramikisolierungen verkürzte
25 Widerstände 10 schaffen und deren Anschlußfahnen 14 an den
jeweils hierfür in Frage kommenden Freiarbeitungen oder
Öffnungen 13', 13 nach außen durchtreten lassen.

Den Fig. 3, 5 ist zu ferner entnehmen, daß die Keramik-
30 isolierungen in ihrer Draufsicht kreisbogenförmige Elemente
sein können, wobei der Radius R der Außenfläche 15 der
Keramikisolierung gleich dem Radius der Krümmung der Innen-
seite 4 des Motorgehäuses 5 ist. Somit ergibt sich nach
Einbau von Anordnungen gemäß den Fig. 3 bis 5 in den Motor
35 gemäß Fig. 1 und 2 eine flächige Anlage der Außenseite 15
der Keramikisolierung an der Innenfläche 4 des Gehäuses und
damit eine entsprechend intensive Übertragung der im Innern

31.07.95

-7-

1 der Keramikisolierung entstehenden Wärme auf das Motorgehäuse 5 und von diesem nach außen an die Umgebungsluft. Ferner ist den Fig. 1, 2 der eingangs erläuterte Vorteil einer sehr geringen und den Einbau weiterer Teile nicht störenden
5 Raumbedarfes von Anordnungen nach der Erfindung zu entnehmen. Sie eignet sich also insbesondere für kleinere Motoren, z.B. Lüfter-, Pumpen- und Stellmotoren beispielsweise im Bereich Kraftfahrzeuge, Haushaltsgeräte und darüber hinaus generell bei kleineren Antriebsmotoren.

10 Die Fig. 1, 2 zeigen ferner, daß je nach Bedarf mehrere der Anordnungen 6 räumlich in einer Reihe hintereinander angeordnet werden können, wobei sie einen entsprechenden Teil des Kreisumfangs des Gehäuses 5 bedecken. Die in ihnen befindlichen Widerstände sind miteinander und mit den Wicklungen des Motors je nach Bedarf verschaltet. In einer bevorzugten Ausführung der Erfindung kann die Keramikisolierung mit an ihren senkrechten Seitenkanten eingearbeiteten Vertiefungen 16 an entsprechenden Motorteilen, wie Zapfen oder Vorsprüngen 17 einer Zugentlastung oder einer Bürstenträgerplatte des Motors gehalten werden (siehe Fig. 6 und 7). Bevorzugt sind die Vorsprünge 17 geschlitzt, so daß sie nach dem Aufdrücken der Keramikisolierungen eine elastische Spannung bekommen, mit der die Keramikisolierung beidseits klemmend gehalten wird. Hiermit ergibt sich eine entsprechende Fixierung und Lagestabilisierung der Keramikisolierungen an den Bürstenträgerplatten oder Zugentlastung 18. Üblicherweise wird der Keramikwiderstand auf einer Bürstenträgerplatte gehalten. Er kann aber auch an einer Zugentlastung gehalten sein, welche auf der Bürstenträgerplatte sitzt. Fig. 6 zeigt ferner, daß diese Zugentlastung an ihrer Außenfläche 19 den gleichen Krümmungsradius R hat wie die o.g. Flächen 15 der Keramikisolierung und 4 des Motorgehäuses.
25
30
35 Es versteht sich, daß der Widerstand nicht nur aus flachgestanztem Material, sondern auch aus einem Draht hergestellt

31.07.95

-8-

1 sein kann. Auch ist der Verlauf des Widerstandes nicht an
die beispielsweise in Fig. 4, 5 dargestellte Mäanderform
gebunden, obgleich sich diese für das Einbringen in den
Hohlraum 8 empfiehlt. Sofern der elektrische Widerstand aus
5 Draht besteht, kann er in die gewünschte Form gebogen wer-
den.

Sowohl durch die Wahl des Materials und des Querschnittes
des elektrischen Widerstandes, als auch durch die Wahl der
10 Länge des Widerstandes kann dessen Ohm-Wert in weiten Gren-
zen auf den jeweils gewünschten Wert eingestellt werden.
Hierbei ist es gegenüber dem Stand der Technik von Vorteil,
daß mit der Erfindung bei gleichbleibender Größe der Kera-
mikisolierung und deren inneren Hohlraum 8 die für den
15 Ohm-Wert wesentliche effektive Länge des Widerstandes geän-
dert werden kann. So kann man z.B. durch Überbrückung einer
oder mehrerer der in Fig. 4 dargestellten Mäanderschleifen
eine Verkürzung der Länge dieses Widerstandes und damit eine
Reduzierung des entsprechenden Ohm-Wertes erreichen. Weitere
20 Möglichkeiten der Widerstandsänderung bestehen in einer
Änderung der Höhe des Mäanders, sowie des Abstandes und/oder
der Anzahl der Mäanderschleifen. Darüber hinaus kann man
durch entsprechende Wahl der Anzahl von Anordnungen 6 pro
Motor weitere Änderungen des Widerstandswertes vornehmen.

25 Ein Vorteil der Stanzung des Widerstandes gemäß Fig. 4, 5
aus einem Blech besteht darin, daß nach dem Stanzen der
Widerstand so weit in eine Kreisbogenform abzubiegen ist,
bis er über den Schlitz in den Hohlraum 8 eingeführt werden
30 kann. Nach seiner Einführung versucht er aufgrund seiner
Eigenelastizität, wieder die ebene Form zu bekommen, die er
während des Stanzvorganges hatte. Dadurch verspannt und hält
sich der Widerstand 11 innerhalb der Keramikisolierung 7.
Die mit der Erfindung ermöglichte Montage des Widerstandes
35 in der Keramikisolierung ist sehr einfach, d.h. von Hilfs-
kräften schnell durchführbar und ergibt eine stabile Halte-
rung des Widerstandes in der Keramikisolierung.

1

Das schematisch dargestellte Ausführungsbeispiel der Fig. 8,
9 zeigt zwei Varianten des geschilderten Erfindungsgedan-
kens: Zum einen ist die Keramikisolierung 7 mit in einer
5 Ebene verlaufenden Seitenflächen 20, 21 versehen. Eine
solche Formgebung wird dann verwendet, wenn die Anordnung an
einer ebenen Innenfläche eines Motorgehäuses zur Anlage und
damit zur Wärmeübertragung kommen soll. Die zweite Variante
besteht darin, daß für das Einbringen des Widerstandes 22
10 Rillen 23 vorgesehen sind, die zu einer Seitenfläche (Motor-
innenraum-Seite), hier der Seitenfläche 21, offen sind, so
daß der Widerstandsdraht 20 von der Seite her einlegbar ist.

Im Ausführungsbeispiel der Figuren 10, 11 ist die Keramik-
15 isolierung 7 ebenfalls so gekrümmt, daß sie mit ihrer äuße-
ren Fläche 15 zu einem wärmeübertragenden, satten Anliegen
an die entsprechende Innenwand 4' des Motorgehäuses kommt.
Seitlich sind auch die Aussparungen 16 für das Überstecken
20 Über die Vorsprünge 17 der Zugentlastung oder Bürstenträger-
platte vorgesehen. Die Bürstenträgerplatten sind im Motor-
innern in nicht gesondert dargestellter Weise befestigt. In
diesem vereinfachten Ausführungsbeispiel sind nur zwei
25 Freiarbeitungen 13 am jeweiligen Endbereich der Keramik-
isolierung 7 für das Durchstecken und Abwinkeln (z.B. um
90°) der Anschlußfahnen 14 vorgesehen.

Das Ausführungsbeispiel der Fig. 12, 13 zeigt eine Keramik-
isolierung 7, die oberseitig und unterseitig je einen Längs-
schlitz 24 für das Einlegen eines Isolierdrahtes 25 auf-
weist.

Es versteht sich, daß bei einem der Ausführungsbeispiele
erläuterte Merkmale auch sinngemäß bei anderen Ausführungs-
beispielen verwendet werden können.

35

Alle dargestellten und beschriebenen Merkmale, sowie ihre
Kombinationen miteinander, sind erfindungswesentlich.

Firma VOGT GmbH, Ceramic Components
Industriegebiet, 91239 Henfenfeld

26.07.95
R/vd

Schutzzansprüche:

1. Anordnung aus einem Vorwiderstand und einer ihn umgebenden, aus Keramik bestehenden Isolierung, wobei diese Anordnung entweder sich innerhalb eines Elektromotors befindet oder für die Unterbringung in einem Elektromotor vorgesehen ist, dadurch gekennzeichnet, daß die Keramikisolierung (7) flächig ausgebildet ist und der Vorwiderstand (11, 22) sich im wesentlichen über diese Fläche erstreckt, und daß die Formgebung zumindest einer der Außenseiten (15, 20) der Keramikisolierung der Formgebung der Innenseite (4) des Gehäuses (5) des Antriebsmotors (1) entspricht oder angepaßt ist und im Einbauzustand daran anliegt.
5
2. Anordnung nach Anspruch 1, dadurch gekennzeichnet, daß die Keramikisolierung (7) eben verlaufende Außenseiten (20, 21) aufweist.
10
3. Anordnung nach Anspruch 2, dadurch gekennzeichnet, daß die Keramikisolierung rechteckig ausgebildet ist.
15
4. Anordnung nach Anspruch 1, dadurch gekennzeichnet, daß die zur Anlage an die Innenseite (4) des Gehäuses (5) bestimmte Außenseite (15) der Keramikisolierung (7) bogenförmig, insbesondere kreisbogenförmig ausgebildet
20

31.07.95

-11-

1 ist derart, daß ihre Bogenform dem bogenförmigen Verlauf
der Innenseite (4) des Gehäuses des elektrischen Motors
entspricht und im Einbauzustand daran flächig anliegt.

5 5. Anordnung nach Anspruch 4, dadurch gekennzeichnet, daß
die Keramikisolierung (7) als Abschnitt eines zylindri-
schen Ringes ausgebildet ist.

10 6. Anordnung nach einem der Ansprüche 1 bis 5, dadurch
gekennzeichnet, daß die Keramikisolierung (7) einen
Hohlraum (8) aufweist und daß dieser Hohlraum an einer
der schmalen, in Längsrichtung der Keramikisolierung
verlaufenden Seitenflächen (9) offen ist und daß ein in
diesen offenen Hohlraum passender und einschiebbarer
15 Vorwiderstand (10) vorgesehen ist.

20 7. Anordnung nach einem der Ansprüche 1 bis 5, dadurch
gekennzeichnet, daß eine der Außenseiten (21) der Kera-
mikisolierung (7) mit Vertiefungen (23) zur Einlegung
des Vorwiderstandes (22) versehen ist.

25 8. Anordnung nach einem der Ansprüche 1 bis 7, dadurch
gekennzeichnet, daß die Hohlräume (8) oder Vertiefungen
(23) Austrittsöffnungen (13, 13') für das Herausführen
und gegebenenfalls Abwinkeln von Anschlußfahnen (14,
14') des Vorwiderstandes aufweisen oder bilden.

30 9. Anordnung nach einem der Ansprüche 1 bis 8, dadurch
gekennzeichnet, daß die Keramikisolierung an ihren
kurzen Seitenflächen eine Formgebung, insbesondere eine
nach innen gerichtete Wölbung (16) aufweist und daß am
Elektromotor hierin passende Halterungen, z.B. Zapfen
(17) vorgesehen sind.

35 10. Anordnung nach Anspruch 9, dadurch gekennzeichnet, daß
die Halterungen (17) quer zu ihrer Längsrichtung ela-
stisch, z.B. aus einzelnen, im Abstand voneinander

1 befindlichen Längsteilen eines Zapfens ausgebildet sind.

5 11. Anordnung nach Anspruch 9 oder 10, dadurch gekennzeichnet, daß sich die Halterungen (17) an einer Bürstenträgerplatte oder Zugentlastung (18) befinden.

10 12. Anordnung nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß der Vorwiderstand (10, 22) etwa mäanderförmig verlaufend ausgebildet und in den Hohlraum (8) oder in die Vertiefungen (22) eingebracht ist.

15 13. Anordnung nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß der Vorwiderstand aus Draht besteht oder aus einem Blech gestanzt ist.

20 14. Anordnung nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß eine Anordnung oder mehrere Anordnungen (6) in Reihe hintereinander in einem Elektromotor an der Innenseite (4) dessen Gehäuses (5) anliegend vorgesehen sind.

25 15. Anordnung nach einem der Ansprüche 1 bis 5, 9 bis 11, 13, 14, dadurch gekennzeichnet, daß die Keramikisolierung an ihren schmalen Längsseiten mit rillenförmigen Vertiefungen (24) für das Einlegen des Widerstandsdrähtes (25) versehen ist.

30 16. Anordnung nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, daß die Anschlußfahnen (14) zum Keramikteil abgewinkelt sind, z.B. um einen Winkel von 90°.

35 17. Anordnung nach Anspruch 16, dadurch gekennzeichnet, daß für das Abwinkeln der Anschlußfahnen Verlängerungen oder Vertiefungen der Austrittsöffnungen (13) dienen, die sich bevorzugt an der dem Motorinnenraum zugewandten Seitenfläche der Keramikisolierung befinden.

31.07.95

Fig. 1

31.07.95

Fig. 2

31.07.95

Fig. 3

Fig. 4

Fig. 5

31.07.95

Fig. 6

Fig. 7

Fig. 8

Fig. 9

31.07.95

Fig. 10

Fig. 11

Fig. 12

Fig. 13