Question Number	Answer		Mark
16(a)(i)	Redshift is the (fractional) increase in the wavelength received	(1)	
	Due to the source of radiation moving away from the observer	(1)	(2)
	[Accept answers in terms of frequency]		,
16(a)(ii)	Use of $z = \frac{v}{c}$	(1)	
	Use of $v = H_0 d$	(1)	
	$d = 2.9 \times 10^{24} \mathrm{m}$	(1)	(3)
	Example of calculation		
	$v = 0.0158 \times 3.00 \times 10^8 \text{ m s}^{-1} = 4.74 \times 10^6 \text{ m s}^{-1}$		
	$d = \frac{4.74 \times 10^6 \text{ m s}^{-1}}{1.62 \times 10^{-18} \text{ s}^{-1}} = 2.93 \times 10^{24} \text{ m}$		
16(b)	The force between the galaxies obeys the inverse square law		
	Or $F = \frac{G m_1 m_2}{r^2}$ Or $F \propto \frac{1}{r^2}$	(1)	
	F = ma, so as the (resultant) force increases, so does the acceleration	(1)	(2)
	Total for Question 16		7