零死角玩转STM32

读写内部FLASH

淘宝: firestm32.taobao.com

论坛: www.firebbs.cn

扫描进入淘宝店铺

主讲内容

01 STM32的内部FLASH简介

02 对内部FLASH的写入过程

03 查看工程的空间分布

04 操作内部FLASH的库函数介绍

05 实验:读写内部FLASH

参考资料:《零死角玩转STM32》

"读写内部FLASH"章节

STM32的内部FLASH简介

在STM32芯片内部有一个FLASH存储器,它主要用于存储代码,我们在电脑上编写好应用程序后,使用下载器把编译后的代码文件烧录到该内部FLASH中,由于FLASH存储器的内容在掉电后不会丢失,芯片重新上电复位后,内核可从内部FLASH中加载代码并运行:

STM32的内部FLASH简介

除了使用外部的工具(如下载器)读写内部FLASH外,STM32芯片在运行的时候,也能对自身的内部FLASH进行读写,因此,若内部FLASH存储了应用程序后还有剩余的空间,我们可以把它像外部SPI-FLASH那样利用起来,存储一些程序运行时产生的需要掉电保存的数据。

由于访问内部FLASH的速度要比外部的SPI-FLASH快得多,所以在紧急状态下常常会使用内部FLASH存储关键记录;为了防止应用程序被抄袭,有的应用会禁止读写内部FLASH中的内容,或者在第一次运行时计算加密信息并记录到某些区域,然后删除自身的部分加密代码,这些应用都涉及到内部FLASH的操作。

1. 内部FLASH的构成

STM32的内部FLASH包含主存储器、系统存储器、OTP区域以及选项字节区域,它们的地址分布及大小如下:

区域	块	名称	块地址	大小	
主存储器	块1	扇区 0	0x0800 0000 - 0x0800 3FFF	16 Kbytes	
		扇区 1	0x0800 4000 - 0x0800 7FFF	16 Kbytes	
		扇区 2	0x0800 8000 - 0x0800 BFFF	16 Kbytes	
		扇区3	0x0800 C000 - 0x0800 FFFF	16 Kbyte	
		扇区 4	0x0801 0000 - 0x0801 FFFF	64 Kbytes	
		扇区 5	0x0802 0000 - 0x0803 FFFF	128 Kbytes	
		扇区 6	0x0804 0000 - 0x0805 FFFF	128 Kbytes	
		扇区 7	0x0806 0000 - 0x0807 FFFF	128 Kbytes	
		扇区 8	0x0808 0000 - 0x0809 FFFF	128 Kbytes	
		扇区 9	0x080A 0000 - 0x080B FFFF	128 Kbytes	
		扇区 10	0x080C 0000 - 0x080D FFFF	128 Kbytes	
		扇区 11	0x080E 0000 - 0x080F FFFF	128 Kbytes	
	块 2	扇区 12	0x0810 0000 - 0x0810 3FFF	16 Kbytes	
		扇区 13	0x0810 4000 - 0x0810 7FFF	16 Kbytes	
		扇区 14	0x0810 8000 - 0x0810 BFFF	16 Kbytes	
		扇区 15	0x0810 C000 - 0x0810 FFFF	16 Kbyte	
		扇区 16	0x0811 0000 - 0x0811 FFFF	64 Kbytes	
		扇区 17	0x0812 0000 - 0x0813 FFFF	128 Kbytes	
		扇区 18	0x0814 0000 - 0x0815 FFFF	128 Kbytes	
		扇区 19	0x0816 0000 - 0x0817 FFFF	128 Kbytes	
		扇区 20	0x0818 0000 - 0x0819 FFFF	128 Kbytes	
		扇区 21	0x081A 0000 - 0x081B FFFF	128 Kbytes	
		扇区 22	0x081C 0000 - 0x081D FFFF	128 Kbytes	
		扇区 23	0x081E 0000 - 0x081F FFFF	128 Kbytes	
系统存储区			0x1FFF 0000 - 0x1FFF 77FF	30 Kbytes	
OTP区域			0x1FFF 7800 - 0x1FFF 7A0F	528 bytes	
选项字节	块1		0x1FFF C000 - 0x1FFF C00F	16 bytes	
	块 2		0x1FFE C000 - 0x1FFE C00F	16 bytes	

1. 内部FLASH的构成

FLASH的各个存储区域的说明如下:

• 主存储器

一般我们说STM32内部FLASH的时候,都是指这个主存储器区域,它是存储用户应用程序的空间,芯片型号说明中的1M FLASH、2M FLASH都是指这个区域的大小。主存储器分为两块,共2MB,每块内分12个扇区,其中包含4个16KB扇区、1个64KB扇区和7个128KB的扇区。如我们实验板中使用的STM32F429IGT6型号芯片,它的主存储区域大小为1MB,所以它只包含有表中的扇区0-扇区11。

1. 内部FLASH的构成

与其它FLASH一样,在写入数据前,要先按扇区擦除,而有的时候我们希望能以小规格操纵存储单元,所以STM32针对1MB FLASH的产品还提供了一种双块的存储格式:

1M 字节单块	区分配(默认)	1M 字节双块存储器的扇区分配			
		DB1M=1			
主存储器	扇区号	扇区大小	主存储器	扇区号	扇区大小
1MB	扇区 0	16 Kbytes	Bank 1	扇区 0	16 Kbytes
TIVID	扇区1	16 Kbytes	512KB	扇区 1	16 Kbytes
	扇区 2	16 Kbytes		扇区 2	16 Kbytes
	扇区 3	16 Kbytes		扇区3	16 Kbytes
	扇区 4	64 Kbytes		扇区 4	64 Kbytes
	扇区 5	128 Kbytes		扇区 5	128 Kbytes
	扇区 6	128 Kbytes		扇区 6	128 Kbytes
	扇区 7	128 Kbytes		扇区 7	128 Kbytes
	扇区 8			扇区 12	16 Kbytes
扇区 9		128 Kbytes	28 Kbytes		16 Kbytes
	扇区 10	128 Kbytes		扇区 14	16 Kbytes
	扇区 11	128 Kbytes	Bank 2	扇区 15	16 Kbytes
	-	-	512KB	扇区 16	64 Kbytes
	-	-		扇区 17	128 Kbytes
	-	-		扇区 18	128 Kbytes
	-	-		扇区 19	128 Kbytes

1. 内部FLASH的构成

通过配置FLASH选项控制寄存器FLASH_OPTCR的DB1M位,可以切换这两种格式,切换成双块模式后,扇区8-11的空间被转移到扇区12-19中,扇区细分了,总容量不变。

注意如果您使用的是STM32F40x系列的芯片,它没有双块存储格式,也不存在扇区12-23,仅STM32F42x/43x系列产品才支持扇区12-23。

1. 内部FLASH的构成

• 系统存储区

系统存储区是用户不能访问的区域,它在芯片出厂时已经固化了启动 代码,它负责实现串口、USB以及CAN等ISP烧录功能。

· OTP区域

OTP(One Time Program),指的是只能写入一次的存储区域,容量为512字节,写入后数据就无法再更改,OTP常用于存储应用程序的加密密钥。

• 选项字节

选项字节用于配置FLASH的读写保护、电源管理中的BOR级别、软件/硬件看门狗等功能,这部分共32字节。可以通过修改FLASH的选项控制寄存器修改。

零死角玩转STM32

论坛: www.firebbs.cn

淘宝: firestm32.taobao.com

扫描进入淘宝店铺