ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ЦИФРОВАЯ ПЛАТФОРМА «АВАНГАРД»

РУКОВОДСТВО СИСТЕМНОГО ПРОГРАММИСТА

Листов 42

Москва 2022

АННОТАЦИЯ

В документе представлена информация по установке и настройке программного обеспечения Цифровая платформа «Авангард» (далее – Система). Приведены требования к аппаратному и программному обеспечению Системы.

СОДЕРЖАНИЕ

1. Общие сведения о системе	6
1.1. Назначение Системы	6
1.2. Состав Системы	6
1.3. Требования к техническому и программному обеспечению	6
1.3.1. Требования к программному обеспечению	6
1.3.2. Требования к техническому обеспечению	7
2. Установка и настройка программного обеспечения	9
2.1. Установка и настройка сервиса авторизации	9
2.1.1. Подготовка СУБД	9
2.1.1.1. Развёртывание БД сервиса авторизации	9
2.1.1.2. Выполнение скрипта (для не CodeFirst миграций)	
2.1.2. Развёртывание .Net сервиса в linux	12
2.1.2.1. Установка .Net	12
2.1.2.2. Настройка бэкенд-сервиса	12
2.1.2.3. Настройка nginx	
2.1.2.4. Перезапуск служб	
2.1.2.5. Ошибки и решения	
2.1.3. Настройка сервиса авторизации	15
2.1.3.1. Настройка конфигурации фронтенд	15
2.1.3.2. Настройка конфигурации .Net сервиса	
2.2. Установка и настройка сервиса файлового хранилища	20
2.2.1. Подготовка СУБД	20
2.2.2. Развёртывание .Net сервисов в linux	
2.2.2.1. Установка .Net	21
2.2.2.2. Настройка бэкенд-сервисов	21
2.2.2.3. Настройка nginx	
2.2.2.4. Перезапуск служб	
2.2.3. Настройка сервиса файлового хранилища	22
2.2.3.1. Настройка конфигурации .Net сервиса	22
2.3. Установка и настройка сервиса интерактивных рабочи	х столов и
аналитики	
2.3.1. Подготовка СУБД	23
2.3.1.1. Развёртывание БД сервиса авторизации	

2.3.2. Развёртывание .Net сервисов в linux	24
2.3.2.1. Установка .Net	24
2.3.2.2. Настройка бэкенд-сервисов	24
2.3.2.3. Настройка nginx	25
2.3.2.4. Перезапуск служб	25
2.3.3. Настройка сервиса интерактивных рабочих столов и аналитики	. 25
2.3.3.1. Настройка конфигурации .Net сервиса	25
2.4. Установка и настройка сервиса оболочки	26
2.4.1. Выполнить следующие действия:	26
2.4.2. Настройка nginx	26
2.4.3. Настройка сервиса оболочки	26
3. Проверка работоспособности Системы	28
3.1. Проверка работоспособности приложения	28
3.2. Проверка работоспособности сервера СУБД	28
4. Администрирование Системы	29
4.1. Доступ к сервису	29
4.2. Управление доступом	
4.2.1. Клиенты	30
4.2.2. Ресурсы	
4.2.2.1. Создание нового ресурса	34
4.2.2.2. Раздел АРІ	
4.2.2.3. Раздел Полномочия:	35
4.2.3. Роли	37
4.2.4. Пользователи	38
4.2.5. Сотрудники	40
4.2.6. События	41

ПЕРЕЧЕНЬ СОКРАЩЕНИЙ

Сокращенное наименование	Полное наименование
БД	База данных
ЛКМ	Левая кнопка мыши
OC	Операционная система
Система	Цифровая платформа «Авангард»
СУБД	Система управления базами данных

1. ОБЩИЕ СВЕДЕНИЯ О СИСТЕМЕ

1.1. Назначение Системы

Программное обеспечение Цифровая платформа «Авангард» предназначена для организации единого рабочего пространства организации с возможностью расширения набора автоматизируемых процессов благодаря использованию модульной архитектуры.

1.2. Состав Системы

Система представляет собой web-приложение и состоит из следующих частей:

- серверная часть в составе:
 - о сервер СУБД управление данными;
- о сервер веб-приложения бизнес-логика и внешние процедуры, реализованная посредством следующих компонент:
 - сервис авторизации (далее также хаб);
 - сервис файлового хранилища;
 - сервис интерактивных рабочих столов и аналитики;
 - сервис оболочки.
- клиентская часть работа с пользовательским графическим интерфейсом Системы посредством браузера.

1.3. Требования к техническому и программному обеспечению

1.3.1. Требования к программному обеспечению

Требуемый состав программного обеспечения сервера:

- серверная операционная система семейства Linux, включенная в единый реестр российских программ для электронных вычислительных машин и баз данных;
 - СУБД PostgresPro либо PostgreSql версии не ниже 14;
 - СУБД MongoDB 5;
 - прокси Nginx 1.14;
 - программная платформа .NET sdk 6.0.

Требуемый состав программного обеспечения пользовательской рабочей станции:

- операционная система семейства Linux, включенная в единый реестр российских программ для электронных вычислительных машин и баз данных;
- браузер Google Chrome, Yandex Browser или Mozilla Firefox последней, или предпоследней версии.

1.3.2. Требования к техническому обеспечению

К аппаратной части серверной части предъявляются следующие требования:

- Процессоры:
 - о количество не менее 2;
 - о архитектура процессора х86-64;
 - о ядер не менее 8;
 - о потоков не менее 16;
- о тактовая частота в режиме повышенной нагрузки не менее 3,3 ГГц;
 - о кэш не менее 20 Мб;
 - о поддержка памяти ЕСС.
 - Оперативная память:
 - о объем не менее 64 Гб;
- о тип оперативной памяти DDR3/DDR4 с функцией коррекции ошибок.
 - Сетевой интерфейс:
 - о не менее 1 порта 100 Мб/с.
 - Дисковая подсистема:
 - о аппаратный RAID;
 - о интерфейс SAS не менее 6 Гб/сек;
 - о HDD с буфером обмена не менее 128 Мб либо SSD.

Коммуникационная среда должна обеспечивать информационное взаимодействие между компонентами Системы в соответствии с транспортным протоколом TCP/IP.

К аппаратной части рабочей станции пользователя предъявляются следующие требования:

- Процессоры:
 - о количество не менее 1;
 - о архитектура процессора х86-64;
 - о ядер не менее 2;

Допустимо использование следующих видов процессоров:

- настольные процессоры Intel и AMD, вышедшие на рынок не ранее 2013 года;
- мобильные процессоры Intel и AMD, вышедшие на рынок не ранее 2015 года, кроме линейки процессоров Intel Atom;
 - процессоры Apple (M1, M1 PRO, M1 MAX).
 - Оперативная память:
 - о объем не менее 4Гб (рекомендуется 8Гб);

- о тип оперативной памяти DDR3/DDR4.
- Сетевой интерфейс:
 - о не менее 1 порта 100МБ/с

(доступ к сервисам системы со скоростью не ниже 8 Мбит/с (для быстрой загрузки приложения рекомендуется 25 Мбит/с и выше).

- Дисковая подсистема:
 - о HDD с буфером обмена не менее 64 Мб либо SSD.
- Графический режим монитора:
 - 1366х768 и выше (рекомендуется 1920х1080).
- Клавиатура, мышь.

2. УСТАНОВКА И НАСТРОЙКА ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ

2.1. Установка и настройка сервиса авторизации

Процесс установки необходимого программного обеспечения описывается, исходя из предположения, что на сервере имеется доступ к репозиторию с необходимыми пакетами для установки. Для выполнения большинства операций потребуется вводить команды посредством интерфейса командной строки Linux (на примере ОС CentOS).

2.1.1. Подготовка СУБД

2.1.1.1. Развёртывание БД сервиса авторизации

Выполнить следующие действия:

- Установить на сервер СУБД PostgresPro либо PostgreSql версии не ниже 14 в соответствии с руководством от производителя ПО;
- Подключиться к серверу, например, с помощью графического клиента pgAdmin;
- Создать БД hub и поднять бэкап (/Бэкапы баз данных/Бэкап базы хаба.bak.sql).

Установка СУБД на примере дистрибутива PostgresPro Enterprise 11 из ISO образа:

1. Подключить ISO образ дистрибутива:

mount PostgresProEntCert-11.12.1.iso /mnt/cdrom/ -o loop

2. В файл репозитория добавить iso образ /etc/yum.repos.d/RedOS-Sources.repo

[cdrom]

name= CDROM

baseurl=file:///mnt/cdrom/redos/7.2/os/x86_64/rpms

gpgkey=file:///mnt/cdrom/keys/GPG-KEY-POSTGRESPRO

enabled=1

gpgcheck=1

3. Далее обновить информацию о пакетах и устанавливаем СУБД:

yum update

yum install postgrespro-ent-11

4. Переключиться на пользователя postgres:

su postgres

5. Подключиться к консоли postgresql:

psql

6. Создать базы:

create database hub

- 7. create database logs
- 8. Подключиться к базе hub:

\c hub

9. Выполнить скрипт (см. п. 2.1.1.2)

Примечание. При высокой нагрузке логи можно выделить в отдельную БД. Для этого необходимо создать БД logs, прогнать на ней миграции и указать её в конфигурационном файле.

2.1.1.2. Выполнение скрипта (для не CodeFirst миграций)

```
DO
$do$
begin
IF NOT EXISTS (
   SELECT FROM pg_catalog.pg_class c
          pg_catalog.pg_namespace n ON n.oid = c.relnamespace
   JOIN
  WHERE n.nspname = 'public'
         c.relname = 'migration history'
  AND
          c.relkind = 'r'
   AND
   ) then
  CREATE TABLE public.migration history
        id
                      uuid
                                not null
                                           constraint
  pk migration history id primary key
      , file name
                          text
                                    not null
      , date
                        date
                                  not null
      , number
                       integer
                                    not null
                                               default (0)
                                 not null
      , author
                       text
                                 not null
      , name
                        text
      , request number
                                         null
                         integer
                                                default
      , begin date
                        timestamp
                                     not null
  (now()::timestamp)
      , end date
                         timestamp
                                         null
      , error
                         text
                                      null
      , index
                         integer
                                      not null default (0)
                        text
                                     null
      , content
                                     not null
                        integer
      , type
   );
   end if;
end
$do$;
```

```
create or replace function public.test procedure(test input integer)
   returns integer
     language plpgsql
AS
$function$
    begin
        return test_input;
    end;
$function$;
 create or replace function public.run migration script (script text)
returns boolean
language plpgsql
AS
$function$
begin
   execute script;
   return true;
end;
$function$;
create or replace function public.add_migration(
   id uuid,
   file name text,
   date timestamp,
   number integer,
   author text,
   name text,
   request_number integer = null,
   type integer = null,
   index integer = null,
   content text = null
   returns uuid
     language plpgsql
AS
$function$
Begin
   insert into public.migration_history (id, file_name, date, number,
   author, name, request number, type, index, content)
   SELECT id, file_name, date::date, number, author, name,
   request_number, type, index, content;
     return id;
end;
$function$;
create or replace function public.complete_migration (
```

```
migration id uuid,
    migration end date timestamp = null,
    migration error text = null
returns uuid
language plpgsql
AS
$function$
begin
    if migration end date is null then
        migration end date := now()::timestamp;
    end if;
   update public.migration history mh
   set end date = migration end date, error = migration error
   where mh.id = migration id;
   return migration id;
end;
$function$;
create or replace function public.get completed migrations()
returns table(file name text)
language plpgsql
AS
$function$
declare programmability_update_type integer;
begin
    programmability update type := 3;
    return query
    select (mh.file name)
    from public.migration history mh
   where mh.error is null and mh.type != programmability update type
   order by mh.begin date desc;
end;
$function$;
```

2.1.2. Развёртывание .Net сервиса в linux

2.1.2.1. Установка .Net

Выполнить команды:

```
wget https://packages.microsoft.com/config/debian/10/packages-
microsoft-prod.deb -O packages-microsoft-prod.deb
sudo dpkg -i packages-microsoft-prod.deb
sudo yum install -y dotnet-sdk-6.0
```

2.1.2.2. Настройка бэкенд-сервиса

Выполнить следующие действия:

– Копировать дистрибутив сервиса (Дистрибутивы

сервисов\Сервис авторизации\) на сервер (/usr/share/hosting/auth).

- Создать пользователя, под которым будет запускаться приложение. Пользователь должен иметь полный доступ к директории с приложением и права открывать сокеты.
- Создать службу /etc/systemd/system/hub.service. Указать директории, пути к файлам и приложениям, описание и указать пользователя под кем будет запускать приложение:

```
[Unit]
Description=[Authentication] Портал Авторизации ХАБ

[Service]
WorkingDirectory=/usr/share/hosting/auth
ExecStart=/usr/bin/dotnet /usr/share/hosting/auth/Quarta.Auth.Web.dll
Restart=always
RestartSec=10
SyslogIdentifier=dotnet-auth
User=%ИМЯ СИСТЕМНОГО ПОЛЬЗОВАТЕЛЯ%
Environment=DOTNET_PRINT_TELEMETRY_MESSAGE=false
Environment=DOTNET_CLI_TELEMETRY_OPTOUT=true
LimitNOFILE=49152

[Install]
WantedBy=multi-user.target
```

Перезагрузить информацию о сервисах, выполнив команду:

systemctl daemon-reload

2.1.2.3. Настройка nginx

Установить Nginx (любая последняя версия), вполнив команды:

```
$ wget https://nginx.org/download/nginx-1.19.0.tar.gz
$ tar zxf nginx-1.19.0.tar.gz
$ cd nginx-1.19.0
```

Подготовить ключ (/home/hosting/crt/private.key) и сертификат (/home/hosting/crt/cert.crt) который будут использоваться для SSL шифрования (https).

Ниже пример настройки nginx модуля http

```
access_log /var/log/nginx/access.log main;
 sendfile
                  on;
 #tcp_nopush
                  on;
 tcp nopush
                      on;
 tcp_nodelay
                      on;
 keepalive_timeout 65;
 ssl protocols
                      TLSv1.2 TLSv1.3;
 ssl ciphers
                      HMAC-SHA256:DHE-RSA-AES128-SHA256:DHE-RSA-
AES256-SHA256:ECDHE-RSA-AES128-SHA256:ECDHE-RSA-AES256-SHA384:ECDHE-
RSA-AES128-GCM-SHA256: ECDHE-RSA-AES256-GCM-SHA384;
 #gzip on;
 client_max_body_size 1024M;
 large_client_header_buffers 4 16k;
 fastcgi buffers 16 32k;
fastcgi buffer size 64k;
fastcgi_busy_buffers_size 64k;
##
# Proxy
##
proxy http version 1.1;
proxy set header Upgrade $http upgrade;
proxy_set_header Connection keep-alive;
proxy set header Host $host:$server port;
proxy cache bypass $http upgrade;
proxy_read_timeout 1200;
proxy_buffer_size
proxy_buffers
                4 256k;
proxy busy buffers size
                          256k;
 ##
# Compression settings
##
gzip on;
gzip_disable "msie6";
gzip_vary on;
gzip proxied any;
gzip_comp_level 6;
gzip_buffers 16 8k;
gzip_http_version 1.1;
gzip min length 256; gzip types text/plain text/css
application/json application/x-javascript application/javascript
text/xml application/xml application/xml+rss text/javascript;include
/etc/nginx/conf.d/*.conf;
```

#Добавить в server прокси к приложению:

#Пример при использовании SSL:

2.1.2.4. Перезапуск служб

Выполнить команды:

systemctl restart nginx
systemctl restart hub

2.1.2.5. Ошибки и решения

Ошибка kestrel dotnet

Для устранения переустановить самоподписанный сертификат приложения dotnet.

Зайти под пользователем, под которым стартует служба, и выполнить:

```
dotnet dev-certs https --clean
dotnet dev-certs https -t
```

2.1.3. Настройка сервиса авторизации

2.1.3.1. Настройка конфигурации фронтенд

Конфигурационный файл configuration.json размещается в папке \quarta-authentication-web-app\assets\configurations\clients\...

```
{
    //Хост API Хаба, куда будут идти запросы к данным Хаба.
    "serverUrl": "https://localhost:5090",
    //Хост API ресурса, который является источником кадровых сведений
    "staffServerUrl": "http://localhost:5080",
```

```
//Настройка аутентификации
"authentication": {
  //Identity Provider, должно совпадать с значением поля "serverUrl"
  "authority": "https://localhost:5090",
  //адрес куда осуществлять переадресацию, если пользователь
пытается попасть в режим, которые требует наличие
аутентифиированного пользователя
  "login_uri": "https://localhost:1090/login",
  //адрес куда осуществляется переадресация после успешного входа в
систему.
  "redirect_uri": "https://localhost:1090/login-callback",
  //адрес "тихой" аутентификации. Используется для рефреша сессии
без необходимости требовать от пользователя повторного входа
  "silent redirect uri": "https://localhost:1090/silent-callback",
  //адрес куда осуществляется переадресация, когда пользователь
выходит из системы.
  "post_logout_redirect_uri": "https://localhost:1090/login",
  //идентификатор SPA-приложения
  "client id": "admin",
  //тип используемых токенов
  "response type": "id token token",
  //перечень запрашиваемых ресурсов (API) системы
  "scope": "openid profile identityServer"
},
//настройка навигации
"navigation": {
  //URL по которому запрашивается перечень пунктов навигации
  "api": "https://localhost:5090/api/navigation",
  //идентификатор модуля навигации (проверяется по в разделе
"Navigation/Origins" бэкенда.
  "domain": "Auth"
}
```

2.1.3.2. **Настройка конфигурации** .Net сервиса

Конфигурационный файл appsettings.json размещается в папке \Clients\...

Все строковые настройки РЕГИСТРОЗАВИСИМЫЕ.

```
{
    //Перечень строк подключения
    "ConnectionStrings": {
        "DefaultConnection": "" //Основная строка подключения. В этой БД располагаются таблицы Хаба.
        "LogsConnection": "" //Строка подключения к БД, куда будут помещаться логи безопасности,

        "StaffConnection": "" //Строка подключения к ресурсу с кадровыми сведениями, откуда осуществляется репликация справочника организаций.
    },
```

```
// Адрес по которому поднимается портал внутри веб-сервера Kestrel,
  входящий в состав dotnet.
  "ApplicationUrls": [
    "https://localhost:5091",
    "http://localhost:5090"
  ],
 // Hacтройка CROSS-ORIGIN-RESOURCE-SHARING: Перечень адресов которым
  разрешено обращаться к АРІ приложения.
  "CorsOrigins": [
    "^http[s]?:\\/\\/x\\.x\\.x(:\\d{1,6})?$", //
Поддерживаются регулярные выражения
    "^http[s]?:\\/\\/localhost(:\\d{1,6})?$"
  ],
  // Перечень сервисов, которые работают в фоне приложения
  "HostedServices": {
    "Items": [
      {
        //Репликация справочника организаций
        "Key": "OrganizationReplication",
        "Enabled": true, // ВКЛ\ВЫКЛ
        "Interval": "00:05:00" //интервал репликации (5 минут)
      },
        //Кеширование состояний гридов. Поле Interval отсутствует,
  значит оно выполняется только один раз, при старте приложения.
        "key": "GridStateCaching",
        "Enabled": true
    1
 },
 //Настройка логирования, выводимого в STDOUT.
  "Logging": {
    "IncludeScopes": false, //вывод вспомогательных параметров при
  логировании (не используется).
    //Настройка минимальных уровней сообщений, которые должны войти в
  лог.
    //Возможные значения:
    // Trace = 0, Debug = 1, Information = 2, Warning = 3, Error = 4,
  Critical = 5, and None = 6.
    // Логируются сообщения от меньшего (Trace) к высшему (Critical)
    // Работают по принципу топика. T.e. namespace кода, вызвавшего
  лог пишет лог всех namespace входящий в указанные.
    "LogLevel": {
      "Default": "Warning",
      "System": "Warning",
      "Microsoft": "Warning"
    }
  },
  //Настройка кастомизации.
  "Customization": {
```

```
// Управление кешированием грида.
  "GridState": {
    //Нужно ли делать обращение в БД за проверкой состояния грида,
если такой не найден в кэше.
    //Работает в связке с фоновой операцией
HostedServices/Items['GridStateCaching']
    "FallbackOnNoCache": false
  }
},
//Настройки навигации, используемые при построении дашборда.
"Navigation": {
  // Хосты, на которых располагаются модули системы.
  // в appsettings.navigation.json в поле "domain" для пунктов и
групп меню указывается ключ из этого списка.
  "Origins": {
    "Auth": "https://x.x.x:1090",
    "Sophie": "https://x.x.x:1080",
    "Wage": "https://x.x.x.x:1070",
    "Buch": "https://x.x.x.x:1050"
  }
},
// Режим работы "Рабочих мест". На текущий момент поддерживается
только указанный ниже вариант.
"Workspace": {
  "OrgMode": "multi",
  "RoleMode": "multi"
},
// Возможность фильтрации данных по настраиваемым спискам
"RoleSettings": {
  "FilterByLists": false
//Настройки SMTP-клиента
"Smtp": {
  //Хост
  "Host": "qexch03.office.quarta-vk.ru",
  //Порт
  "Port": 465,
  //Использовать ли SSL при отправке писем
  "IsSsl": false,
  //От чьего имени отправляются письма
  "Email": "developer@quarta.su",
  //Логин
  "UserName": "developer",
  //Пароль
  "Password": "",
  //Проверять сертификаты на отзыв
  "CheckCertificateRevocation": false
},
//Настройки аутентификации
"Authentication": {
```

```
"Authority": "https://x.x.x.x:1090", //Xoct Identity Provider, cam
Хаб
  "ApiName": "identityServer", //идентификатор ресурса (для запросов
на АРІ используя JWT из SPA-приложения в составе модуля Хаба)
 "ApiSecret": "", //Секретное слово.
  "ClaimType": "uri://schemas.quarta.su/permission-claim-type",
//Ключ для прав доступа (не менять).
  //Настройка политик безопасности (в отношении новых паролей), уже
созданным учеткам будет разрешено войти с их действующими паролями.
  "Password": {
    //Требуется ли наличие хотя одной цифры
    "RequireDigit": false,
   //Минимальная длина пароля
    "RequiredLength": 1,
    //Требуется ли хотя бы один спецсимвол
    "RequireNonAlphanumeric": false,
    //Требуется хотя бы одна заглавная буква
    "RequireUppercase": false,
    //Требуется хотя бы одна строчная буква
    "RequireLowercase": false,
   //Требование к количеству уникальных символов в пароле.
    "RequiredUniqueChars": 1
  //Настройка блокировки учетных записей
  "AccountBlocking": {
    // Максимальное количество неудачных попыток входа (правильный
логин, неправильный пароль)
    "MaxLoginAttempts": 2
 },
 //Настройка SPA-приложения. Указанные настройки заливаются в БД
при запуске приложения.
  "Identity": {
    //идентификатор приложения
    "ClientId": "admin",
    //имя приложения
    "ClientName": "admin",
    //Адреса с которых разрешены запросы к АРІ Хаба.
    "Host": "https://x.x.x.x:1090 https://localhost:1090",
    //Адреса редиректов куда разрешено вернуться после удачной
аутентификации
    //Следует менять только Хост.
    "CallbackUrl": [
      "https://x.x.x.x:1090/login-callback",
      "https://x.x.x.x:1090/silent-callback",
      "https://localhost:1090/login-callback",
      "https://localhost:1090/silent-callback"
    //Адреса на которые разрешено вернуться после разлогинивания
    "PostLogoutUrl": "https://x.x.x.x:1090/login
https://localhost:1090/login",
```

```
//перечень доступных ресурсов (API) системы.
"Scope": "openid profile identityServer"
}
}
```

Автоматически заливаемые настройки

- 1. ``ApiName``, ``ApiSecret`` заливаются в БД в режим "Ресурсы" для обеспечения учета Хаба как доступного ресурса.
- 2. ``Identity`` весь раздел заливается в БД в режим "Клиенты" для обеспечения доступности SPA-приложения к данным Хаба. Настройки, указанные в данном разделе должны соответствовать настройкам ``configuration.json`` в SPA-приложении.
- 3. Учетная запись админа. В случае если в БД отсутствует учетная запись `admin_user/admin`, она будет создана. Данной учетной записи присваиваются все разрешения, указанные в файле `appsettings.claims.json`` и убрать их можно только напрямую из БД.
- 4. ``openid``, ``profile`` системные клеймы, заливаются в случае отсутствия.

Прочие настройки

1. ``Identity/Scope`` - перечень требуемых ресурсов для работы приложения.

Указываемые значения должны присутствовать в режиме "Ресурсы" приложения (за исключением `openid`, `profile`).

Данные настройки следует рассматривать как запрашиваемую аудиенцию приложения (те API-приложения в которые SPA-приложение требует доступ).

Эти настройки проверяются Хабом во время авторизации SPA-приложения.

Если приложение пытается запросить аудиенцию, которая ему не разрешена Хабом, то во время авторизации, пользователь увидит, что его приложение невалидно и не сможет зайти в систему.

2.2. Установка и настройка сервиса файлового хранилища

2.2.1. Подготовка СУБД

Необходимо выполнить следующие действия:

– Создать файл /etc/yum.repos.d/mongodb-org-5.0.repo со следующим содержимым:

```
[mongodb-org-5.0]
name=MongoDB Repository
baseurl=https://repo.mongodb.org/yum/redhat/$releasever/mongodb-
   org/5.0/x86_64/
gpgcheck=1
enabled=1
gpgkey=https://www.mongodb.org/static/pgp/server-5.0.asc
```

– Обновить информацию о репозитории и установить MongoDB, выполнив команды: sudo yum update

sudo yum install -y mongodb-org

— Запустить службу MongoDB, выполнив команды: systemctl start mongod systemctl enable mongod

- Убедиться, что MongoDB слушает свой порт, выполнив команду: netstat -tunlp | grep -i mongo
- Создать базу и collection в ней (пока что пустой), выполнив команды: use filestorage

```
db.files.insertOne( { x: 1 } )
```

В результате возможен запуск на localhost без пароля.

2.2.2. Развёртывание .Net сервисов в linux

2.2.2.1. Установка .Net

Если сервисы устанавливаются на выделенный сервер, то выполнить действия, описанные в п. 2.1.2.1.

2.2.2.2. Настройка бэкенд-сервисов

Выполнить следующие действия:

- Копировать дистрибутив сервиса (\Дистрибутивы сервисов\Файловое хранилище\) на сервер (/usr/share/hosting/fs).
- При отсутствии создать пользователя, под которым будет запускать приложение. Пользователь должен иметь полный доступ к директории с приложением и права открывать сокеты.
- Создать службу /etc/systemd/system/filestorage.service. Указать директории, пути к файлам и приложениям, описание и указать пользователя под кем будет запускать приложение:

```
[Unit]
Description=[File Storage] Файловый сервер
```

```
[Service]
WorkingDirectory=/usr/share/hosting/fs
ExecStart=/usr/bin/dotnet
    /usr/share/hosting/fs/Quarta.FileStorage.NetCore.Web.dll
Restart=always
RestartSec=10
SyslogIdentifier=dotnet-fs
User=%ИМЯ СИСТЕМНОГО ПОЛЬЗОВАТЕЛЯ%
Environment=DOTNET_PRINT_TELEMETRY_MESSAGE=false
Environment=DOTNET_CLI_TELEMETRY_OPTOUT=false

[Install]
WantedBy=multi-user.target
```

— Перезагрузить информацию о сервисах, выполнив команду: systemctl daemon-reload

2.2.2.3. Настройка nginx

Если сервисы устанавливаются на выделенный сервер, то выполнить действия по установке Nginx и выпуску сертификата pfx, описанные в п. 2.1.2.3.

#Добавить в server прокси к приложению:

2.2.2.4. Перезапуск служб

```
Выполнить команды:
systemctl restart nginx
systemctl restart filestorage
```

2.2.3. Настройка сервиса файлового хранилища

2.2.3.1. Настройка конфигурации .Net сервиса

Конфигурационный файл **appsettings.json** размещается в директории \Clients\...

```
{
// Хост сервиса
"ApplicationUrls": [
    "http://X.X.X.X:5048"
],
    "MongoDB": {
    // Адрес сервера СУБД
```

```
"ConnectionString": "mongodb://192.168.50.69:27017",
// Наименование базы данных
  "Catalog": "rc",
  "DefaultCollection": "files"
},
// Параметры логирования
"Logging": {
  "LogLevel": {
    "Default": "Information",
    "Microsoft": "Warning",
    "Microsoft.Hosting.Lifetime": "Information"
    }
},
// Перечень хостов, которым разрешено обращаться к сервису
"AllowedHosts": "*"
}
```

2.3. Установка и настройка сервиса интерактивных рабочих столов и аналитики

2.3.1. Подготовка СУБД

2.3.1.1. Развёртывание БД сервиса авторизации

Выполнить следующие действия:

- Установить на сервер СУБД <u>PostgresPro</u> либо <u>PostgreSql</u> версии не ниже 14;
- Подключиться к серверу, например, с помощью графического клиента pgAdmin;
 - Создать БД ВІ.

Установка СУБД на примере дистрибутива PostgresPro Enterprise 11 из ISO образа:

1. Подключить ISO образ дистрибутива:

```
mount PostgresProEntCert-11.12.1.iso /mnt/cdrom/ -o loop
В файл репозитория добавить iso образ /etc/yum.repos.d/RedOS-Sources.repo
[cdrom]
name= CDROM
baseurl=file:///mnt/cdrom/redos/7.2/os/x86_64/rpms
gpgkey=file:///mnt/cdrom/keys/GPG-KEY-POSTGRESPRO
enabled=1
gpgcheck=1
```

2. Далее обновить информацию о пакетах и устанавливаем СУБД:

yum update

yum install postgrespro-ent-11

3. Переключиться на пользователя postgres:

su postgres

4. Подключиться к консоли postgresql:

psql

5. Создать базы:

create database bi.

2.3.2. Развёртывание .Net сервисов в linux

2.3.2.1. Установка .Net

Если сервисы устанавливаются на выделенный сервер, то выполнить действия, описанные в п. 2.1.2.1.

2.3.2.2. Настройка бэкенд-сервисов

Выполнить следующие действия:

- Копировать дистрибутив сервиса (\Дистрибутивы сервисов\Бизнес аналитика\) на сервер (/usr/share/hosting/bi).
- При отсутствии создать пользователя, под которым будет запускать приложение. Пользователь должен иметь полный доступ к директории с приложением и права открывать сокеты.
- Создать службу /etc/systemd/system/bi.service. Указать директории, пути к файлам и приложениям, описание и указать пользователя под кем будет запускать приложение:

```
[Unit]
```

Description=[File Storage] Бизнес-Аналитика

[Service]

WorkingDirectory=/usr/share/hosting/bi

ExecStart=/usr/bin/dotnet /usr/share/hosting/bi/Quarta.BI.WebApi.dll

Restart=always

RestartSec=10

SyslogIdentifier=dotnet-bi

User=%ИМЯ СИСТЕМНОГО ПОЛЬЗОВАТЕЛЯ%

Environment=DOTNET_PRINT_TELEMETRY_MESSAGE=false

Environment=DOTNET_CLI_TELEMETRY_OPTOUT=false

Environment=ASPNETCORE ENVIRONMENT=Production

[Install]

— Перезагрузить информацию о сервисах, выполнив команду: systemctl daemon-reload

2.3.2.3. Настройка nginx

Если сервисы устанавливаются на выделенный сервер, то выполнить действия по установке Nginx и выпуску сертификата pfx, описанные в п. 2.1.2.3.

#Добавить в server прокси к приложению:

2.3.2.4. Перезапуск служб

Выполнить команды:

systemctl restart nginx

systemctl restart bi

2.3.3. Настройка сервиса интерактивных рабочих столов и аналитики

2.3.3.1. Настройка конфигурации .Net сервиса

Конфигурационный файл **appsettings.json** размещается в директории \Clients\...

```
{
    "Logging": {
        "LogLevel": { //Уровни логирования
            "Default": "Information",
                 "Microsoft.AspNetCore": "Warning"
        }
    },
    "ConnectionStrings": {//Строка подключения к БД, созданной в п.2.4.1.1
        "DefaultConnection": "Server=localhost; Database=bi; User ID=postg res; Password=postgres"
    },
    "ApplicationUrls": [ //Хост занимаемый веб-сервером Kestrel "https://localhost:5100"
    ],
    "CorsOrigins": [ // Настройка CROSS-ORIGIN-RESOURCE-SHARING: Перечень адресов которым разрешено обращаться к API приложения.
```

2.4. Установка и настройка сервиса оболочки

2.4.1. Выполнить следующие действия:

– Копировать дистрибутив сервиса (\Дистрибутивы сервисов\Оболочка\) на сервер (/usr/share/hosting/shell).

2.4.2. Настройка nginx

Если сервисы устанавливаются на выделенный сервер, то выполнить действия по установке Nginx и выпуску сертификата pfx, описанные в п. 2.1.2.3.

#Добавить в server прокси к приложению:

```
server {
    listen 6200;
    location / {
        root /usr/share/hosting/shell;
        try_files $uri /index.html;
    }
}
```

2.4.3. Настройка сервиса оболочки

Конфигурационный файл **configuration.json** размещается в директории \config\...

```
"modules": {
        "bi": {
            "serverUrl": "https://192.168.48.124:1100", //xoct
  размещения сервиса BI (п. 2.4)
            "path": "bi", //адрес корня, в которое будет размещаться
  сервис ВІ.
            "remoteEntry": "https://192.168.48.124:1100/remoteEntry.js
  ", //адрес загрузки файла, содержащего описание приложения BI
            "exposedModule": "./FeaturesModule", //экспортируемый
  корневой модуль
            "key": "FeaturesModule", //Имя модуля
            "name": "BI" // имя (описание) сервиса
        },
//секция настроек аутентификации и соединения с сервисом авторизации
(\pi. 2.1)
    "authentication": {
```

3. ПРОВЕРКА РАБОТОСПОСОБНОСТИ СИСТЕМЫ

3.1. Проверка работоспособности приложения

Для проверки работоспособности Системы необходимо выполнить следующие действия:

- запустить Интернет-браузер;
- авторизоваться в Системе, выполнив действия, описанные в подразделе 4.1. Для проверки работоспособности Системы авторизоваться можно под тестовым пользователем (login: admin_user, пароль: admin).

Система работоспособна, если в результате выполнения действий отображается главная страница.

3.2. Проверка работоспособности сервера СУБД

Для проверки работоспособности сервера СУБД требуется выполнить следующие действия:

- 1) Убедиться в том, что сервисы сервера СУБД находятся в состоянии «Работает».
- 2) Подключиться к БД. Для этого достаточно выполнить команду psql и в запустившемся интерактивном терминале Postgres Pro выполнить команду: \conninfo.

При успешном соединении отобразится соответствующее сообщение, например:

```
postgres=# \conninfo
You are connected to database "postgres" as user "postgres" via socket in "/var/run/postgresql" at port "54
32".
postgres=#
```

Рис. 3.1.

Успешное соединение с БД свидетельствует о работоспособности сервера.

4. АДМИНИСТРИРОВАНИЕ СИСТЕМЫ

Задачи администрирования Системы выполняются в сервисе авторизации (Hub).

Сервис авторизации предназначен для управления доступом к системе, а также настройки некоторых параметров функционирования системы.

Сервис включает следующие режимы:

- Пользователи;
- Роли;
- Клиенты;
- Ресурсы;
- События аутентификации;
- События безопасности.

4.1. Доступ к сервису

Для получения доступа к сервису авторизации необходимо запустить Интернет-браузер.

- 1) в адресной строке ввести адрес сервера. Адрес сервера имеет следующий вид http://aдpec_be6-cepвepa: порт (пример: http://localhost:8080);
- 2) в окне авторизации ввести логин и пароль пользователя с правами администратора (по умолчанию доступен пользователь «test» с паролем «l»), нажать на кнопку «**Войти**»:

Рис. 4.1. Окно авторизации

Для перехода в раздел администрирование нужно нажать кнопку профиля и в открывшемся меню выбрать **Настройки**

Рис. 4.2

Рис. 4.3. Главная страница сервиса администрирования

4.2. Управление доступом

К задачам управления доступом относятся:

- Настройка фронтенд-приложений и бэкенд-сервисов системы (клиентов, ресурсов);
- Настройка прав доступа к режимам Системы (формирование ролей, списка пользователей и сотрудников).

При запуске Системы выполняется сначала верификация клиента, потом авторизация пользователя. В ходе работы пользователя клиент (приложение) взаимодействует с ресурсами и (сервисами).

4.2.1. Клиенты

Нажать ЛКМ на подраздел «Системные настройки» Клиенты. Откроется списочная форма Клиент-Приложений.

Рис. 4.4. Клиенты

Списочная форма Клиент-Приложений содержит следующий набор сведений о настройках приложений:

- 1) Идентификатор уникальный строковый идентификатор приложения;
- 2) Наименование Читабельное представление (описание) приложения;
- 3) **Scopes** Перечень разрешений которые может запрашивать приложение;
- 4) **Redirect** Перечень разрешенных переадресаций пользователя после прохода аутентификации;
- 5) **Post Logout redirect** Перечень разрешенных переадресаций пользователя после того, как пользователь выходит из системы;
- 6) **CORS** Перечень хостов с которых приложению разрешено осуществлять запросы на аутентификацию/авторизацию пользователя.

Для добавления нового клиента необходимо нажать ЛКМ на «+» над списочной формой клиентов. Будет открыта форма внесения данных о клиенте с параметрами настройки его подключения:

Рис. 4.5. Описание клиента

Поля повторяют ранее описанные поля для списочной формы. Для всех полей, где возможен ввод нескольких значений, их порядок не имеет значения. Из особенностей отдельных полей:

Доступные ресурсы — каждый клиент должен содержать обязательные параметры: openid, profile. Остальные значения должны браться из списка идентификаторов Ресурсов, заполненных в режиме «Ресурсы». Разделителем всех значений является символ «пробел».

Время жизни токена — заполняется исходя из требований к безопасности. Чем меньше интервал жизни токена, тем чаще осуществляется его автоматическое обновление, однако не рекомендуется делать его короче среднего времени сессии пользователя.

Тип токена – влияет на то как будет передаваться токен авторизации из SPA-Приложения в Ресурс:

- 1) Reference: передаваться будет только обезличенный хэш-ключ, который требует подтверждения от Хаба;
- 2) JWT самодостаточный токен.

Коды аутентификации — ключи для автоматизации отдельных аспектов процесса разработки, не предусмотрены для использования в реальных сценариях.

Требования к полям **Redirect Uri, Post Logout Redirect Uri** разрешения адреса указываются в формате URL без указания возможных параметров или якорей: <cxema>: [//<xoct>[:<порт>]][/URL-путь>]

Пример корректно написанных URL:

https://auth.gd-workspace.ru/callback

http://192.168.48.124:1090/login

https://gd-workspace.ru

Требования к полю CORS: разрешенный адрес должен содержать только элементы: :<cxeмa>: [//<xocт>[:<порт>]] (т.е. без путей, параметров и якорей).

Пример:

https://gd-workspace.ru

http://auth-test.ru

Для сохранения нового клиента, или редактирования имеющегося, нужно нажать кнопку «Сохранить». В случае успешного сохранения будет выполнена переадресация на списочную форму.

4.2.2. Ресурсы

Нажать ЛКМ на подраздел «Системные настройки» - «Ресурсы». Откроется списочная форма Ресурсов:

Рис. 4.6. Ресурсы

Списочная форма Ресурсов содержит следующий набор сведений:

Идентификатор — уникальный строковый идентификатор ресурса;

Отображаемое название — читабельное представление (описание) приложения.

4.2.2.1. Создание нового ресурса

Необходимо нажать ЛКМ на «+» над списочной формой клиентов. Будет открыта форма заполнения данных:

Создание нового ресурса		
Наименование *		
Наименование		
Отображаемое наименование *		
Отображаемое наименование		
Адрес		
http://localhost:5000		
Сохранить Закрыть		

Рис. 4.7. Создание нового ресурса

Из особенностей полей:

Наименование не должно содержать пробелов в названии.

Адрес должен соответствовать формату <схема>: [//<хост>[:<порт>]]

Например: https://gd-workspace.ru

В случае успешного сохранения будет выполнена переадресация на карточку Ресурса.

Пример:

Рис. 4.8. Описание ресурса

4.2.2.2. Раздел API

Если Поле «Адрес» было заполнено корректно и Ресурс активен (запущен на сервере и имеет действующий ключ аутентификации), в данном режиме будет отражаться перечень его URL, которые могут быть использованы приложениями для обращения к данным в соответствии с их бизнес-логикой.

Кнопка «Перезагрузить» позволяет вручную запросить данный список у Ресурса. Полезен для случаев, когда спецификации Ресурса изменяются и эти изменения не были занесены в Хаб во время запуска приложения.

Рис. 4.9. Управление АРІ

4.2.2.3. Раздел Полномочия:

В данном разделе описывается справочник прав доступа, которые использует Ресурс при обращении к своему АРІ. Эти данные обновляются при каждом запуске Ресурса на сервере.

Носит уведомительный характер и используется как источник данных при назначении Полномочий ролям в режиме «Роли».

Рис. 4.10. Управление Полномочиями

Раздел Ключи аутентификации:

В данном разделе вносятся ключи, которые могут использоваться Ресурсом при следующих обращениях к Хабу:

- 1) Верификация токена, полученного от Клиента;
- 2) Межсерверная передача данных (Полномочия);
- 3) Логирование и пр.

Ресурс может иметь больше одного действующего ключа, это позволяет выполнять постепенный rollout-ключей в случае кластерного развертывания Ресурса (полезно для сервисов с высокой нагрузкой).

Рис. 4.11. Управление ключами доступа

Ключи хранятся в захешированном виде что исключает возможность их чтения после записи.

В случае отсутствия хоть одного действующего ключа, Ресурс не сможет аутентифицироваться в Хабе. Это приведет к тому что Ресурс не сможет проверить входящие токены и будет обязан отвергнуть запросы пользователей как недоверенные.

После настройки Администратором Системы комбинации Клиента + Ресурса, пользователь сможет зайти в Приложение (ака Клиент) по адресу на котором он развернут:

Например: https://192.168.48.124:6200

В случае успешной настройки, пользователь будет переадресован на страницу ввода Логина/Пароля, а после — обратно в приложение.

В случае если настройка была выполнена с ошибкой, то возможны следующие сценарии:

- 1) Ошибка настройки Клиента будет выведена ошибка при переадресации на страницу ввода логина при входе в систему;
- 2) Ошибка настройки Ресурса будет выведена **Ошибка Аутентификации** при попытке пользователя запросить данные из Ресурса, или ошибка **Отказано в Доступе** в случае если у пользователя недостаточно прав для выбранного действия.

4.2.3. Роли

При описании роли:

- определяется список доступных объектов и, для некоторых объектов, права доступа к объекту (управление или только чтение);
- могут быть ограничены права на уровне записи (разделение права для пользователей в разрезе динамически меняющихся данных).

В дереве присутствуют различные объекты: объекты структуры системы (подсистемы и модули, режимы), объекты интерфейса (разделы, пункты меню), объекты с общим назначением (приказы) и другие.

Чекбокс объекта имеет вид ✓, если роли предоставлен доступ к объекту и ко всем подчиненным объектам текущего объекта, вид □, если предоставлен доступ к некоторым подчиненным объектам.

Чтобы предоставить доступ к объекту, следует выполнить клик на чекбоксе. При предоставлении доступа к объекту автоматически предоставляется доступ к подчиненным объектам.

Роль может быть заблокирована / разблокирована (в форме списка ролей).

Рис. 4.12. Роли

Рис. 4.13. Роль. Основная информация

Рис. 4.14. Роль. Полномочия

Рис. 4.15. Роль. Фильтры

4.2.4. Пользователи

При описании пользователя определяются параметры авторизации и аутентификации (логин, пароль) и список доступных организаций/подразделений с указанием роли.

Доступные организации и указанные роли формируют списки выбора пользователя (на панели управления) при работе с системой. Текущая организация ограничивает отображение и выбор данной организацией и подчиненными подразделениями.

Пользователь может быть заблокирован / разблокирован (в форме списка пользователей).

Рис. 4.16. Пользователи

Рис. 4.17. Пользователь. Основные сведения

Рис. 4.18. Пользователь. Роли

Рис. 4.19. Смена пароля

4.2.5. Сотрудники

Режим сотрудники используется для просмотра информации личных данных сотрудников.

Рис. 4.20 Сотрудники

Рис. 4.21 Сотрудники. Основная информация

4.2.6. События

Режимы просмотра событий используются для контроля подключения пользователей к системе и проверки прав доступа к объектам системы.

Рис. 4.22. События аутентификации

Рис. 4.23. События безопасности