The Research on the New Pattern and New Approach to Accurate Poverty Alleviation in Henan Based on Big Data Analysis

Lu Lu Liu Xinyang Agriculture and Forestry University, Xinyang Henan, China 598595203@qq.com

Abstract—The property problem involves in livelihood issues of common people and also the social hotspot concerned by NPC and CPPCC. For poverty, the nation has already valued from the strategic height. The final target aims at establishing the comprehensive well-off society in an all-round way. For this reason, Henan Province keeps up with the step of the central, develops from finance and education and plays an obvious supporting role on overcoming poverty. However, standing on the whole province or even the whole country, the difficult task of poverty alleviation is still severe. Based on it, the author studied the new pattern and new approach to accurate poverty alleviation in Henan based on big data analysis.

Keywords: Big data; Accurate poverty alleviation; pattern; approach(Keywords)

1 INTRODACTION

Agricultural development is the need to establish a province with powerful economy and create beautiful Henan. It is necessary to transform the traditional agricultural development pattern for realize the agricultural development. In order to realize accurate poverty alleviation, it must identify accurately, namely it must find out the real impoverished people. However, for Henan with more than 100 million populations, it must live up to really accurate in every link and ensure high-efficient development of capital, manpower and material resources.

I. Conntations and Action Principles of Big Data

The concept of big data was proposed by the well-known consulting company McKinsey & Co, indicating that big data have already permeated into every industry and business field and have gradually become the important production factors. Big data will the cutting-edge field of improving innovation, competition and productivity. At present, this is no recognized definition on big data. Generally speaking, it is thought that big data mean that data scale involved can't be acquired, managed, disposed and settled into messages serving for business decisions through the current mainstream software tools. Big data generally have the following features: large quantization, diversification, high speed, reality and value. Big data are applied to relief poverty and have specific situations of populations in poverty-stricken areas, economic development status, resource development and utilization, constructive situation of basic facilities and traffic convenient degree, etc.

A. Industrialization and Synergetic Development of Accurate Poverty Alleviation

Accurate poverty alleviation is relative to the traditional extensive poverty alleviation. The obvious features include refinement, scientization, high efficiency and continuity.

- 1. Driven by the modern agricultural park; speed up the construction of the modern agricultural park; and increase incomes through "rent", "salary" and "money paid for shares", etc;
- 2. Concentrate on characteristic industrial development, apply the "six-in-one" pattern of the government+ leading enterprises+ financial organizations+ scientific research institutions +farmers' cooperatives+ peasant households"; There are so many characteristic agricultural products in Henan province, such as Chinese-date in XInzheng, apricots in Yongchi and tea in Xinyang, etc., and it is too numerous to mention one by one.
- 3. Driven by rural tourism: by virtue of the first tourism development meeting in Henan Province and based on resources and ecologic dominance in 68 scenic spots in the impoverished counties, it is necessary to explore the poverty alleviation through tourism and expand mechanism and pattern of poverty alleviation through tourism with "allround tourism and scenic spots in villages". Based on the abundant characteristic resources in Henan, it must explore its connotations, develop the excellent routes as a whole, and forge characteristic brands, such as biological science tourism circle, water science landscape belt and agricultural science tourism circle, etc. It can forge two belts-tourism belt of the Yellow River and middle line tourism belt of the south-to-north water transfer project. The tourism belt of the Yellow River has the total length of 711 km. The Henan section is the most characteristic. Plateaus and river valleys in Sanmenxia City, mountains and gorges in Luoyang, broad flats in Zhengzhou with vast boundary, hanging rivers in Kaifeng and towering levees, as well as ecological wetlands, agricultural landscapes, world cultural heritages and Chinese ancient capital groups, etc., integrate into the middle line tourism belts of the south-to-north water transfer project. It must integrate with the natural human resources, local features and urban recreation and forge the tourism belt of ecological culture.
- 4. Driven by the leading enterprises: enlarge and strengthen 161 three-level leading enterprises of poverty alleviation in provincial, municipal and county levels(53 provincial enterprises in application, 52 municipal enterprises and 66 county-level enterprises in approval), expand the industrial chain and drive 25000 low income families.
- B. Big data promote establishment of logistic e-commerce platform

Impoverished counties in Henan province have product categories with bright features. Limited by traffic or marketing, most of them are hard to be known and recognized by the outside market. Features of e-commerce

refer to break through the limitation of geographical location and realize construction of crossing connection, so as to promote conclusion of transaction. Based on it, "ecommerce+ poverty alleviation" naturally becomes the perfect combination to achieve the task of poverty alleviation. Rural e-commerce should apply the thought of "industrial chain+ industry chain", use the way of "technical driving+ user driving+ data driving" to connect with ecological chain of rural e-commerce and provide basis for e-commerce platform decisions based on the participation of big data.

C. To realize long-term and accurate poverty alleviation and avoid from relevant poverty

Poverty alleviation should consider sustainable development in the areas of overcoming poverty and promote the lasting vitality of relevant industry. It must consider a unbalanced problem in subsequent regional development in current help-the-poor measures and improve foresight of policies.

II. The Performance Analysis of Accurate Poverty Allevaition Pattern Based on Big Data A, Index Confirmation

According to basis and principles of index selection and combined with the poverty features in Nanyang County and Lankao County, the AHP method is used to select the index system of evaluation preliminarily through field research and data analysis. Performance evaluation index is analyzed from relevance, efficiency, effects and sustainable development and confirms the index system structure.

Table 4-1 The Quantization Basis of Performance Evaluation for Poverty Alleviation Development in Resource

	Industry						
В	С	Scoring basis					
	Policy applicability C1	The coordination degree of relevancy of mutual poverty alleviation, new rural cooperative medical system and low guarantee accounts 50% of shares, respectively					
Poli cy rele vanc e B1	Planning and implementation of poverty alleviation C2	2 scores for having poverty alleviation planning, 2 scores for identical local poverty alleviation and provincial and municipal poverty alleviation planning, and 2 scores for consistent planning and actual progress					
6 11	Connection with other policies of poverty alleviation C3	Relevancy with industrial poverty alleviation, relevancy with scientific poverty alleviation, relevancy with industrialized poverty alleviation, relevancy with rainy planning, and relevancy with income increase account for 10% of shares, respectively					
Pov erty alle viati on effic	Poverty alleviation rate C4	Poverty alleviation rate gives priority to poverty alleviation monitoring data, involving in whether exceeding poverty occurrence rate, poverty return rate and proportion of poverty populations and accounting for 4 scores					
ienc y B2	Governmental tax rate C5	Growth situation of general budget incomes and expected targets confirmed by government work reports for 2					

		scores
	Growth rate of	Growth situation of farmers' incomes
	poor farmers C6	and expected targets confirmed by government work reports for 2 scores
Effe cts	Infrastructure construction C7	"Infrastructure construction" is used for grading standards according to individual field inspection. Constructive schedule and quality account for 50%, respectively
pov erty alle viati on B3	Scientific poverty alleviation and labor transmission C8	Check training tasks in the whole county; 80% of skill training or above, and transfer more than 90% and obtain 50% of scores
ВЗ	Demonstrative driving ability C9	Cooperative degree between villages and 50% of scores for two relevant enterprises or above
Sust	Industrial concentration development C10	Establish the influential industrial concentration area, attract the same kind of industry, perfect industrial chain, and score 50% for more than 10% of local GDP
ble deve lop men	Social development ability C11	Insect democratic management and coverage of various policies, score as regional schedule and quality, and account for 50%, respectively
t B4	Sustainability of ecological environment C12	Evaluate value according to rural household survey in counties and areas and deduct for unsatisfied ones as certain proportion

B. Performance Analysis of Poverty Alleviation Development

On the basis of mastering poverty alleviation development of relevant resources comprehensively, experts assign values to various indexes according to data analysis and settlement on the spot. According to the method of AHP performance evaluation, two counties are driven by leading enterprises to realize industrial resource development and degree of realization, so as to provide reference for poverty alleviation of resource industry.

(1) Evaluation Index Weight and Score Confirmation The judge matrix of the second layer relative to the first layer is shown as follows:

rayci	layer is shown as folic															
Table 4-2 Judge Matrix of C1																
C1]	D1]	D2]	D3		D4		D5		D6				
D1		1	0	.33	0	.33		0.5		0.5		0.5				
D2		3		1	0	.33	(0.33		0.5		0.5				
D3		3		3		1	(0.33		0.33		0.5				
D4		2		3		3		1		0.33		0.33				
D5		2		2		3		3		1		0.3385				
D6		2		2		2		3		3		1				
		13	1	1.33	9	.66	•	3.16		5.66		3.16				
				Table	e 4-3	3 Judg	e M	atrix of	C7							
C	7	D	14	D15	5	D1	6	D17		D18		D19				
D1	4	1		0.5		0.3	5	0.5		0.33		0.33				
D1	5	2		1		0.3	5	0.5		0.5		0.33				

D16	2	2	1	0.5	0.5	0.5
D17	2	2	2	1	0.5	0.5
D8	3	2	2	2	1	0.5
D19	3	3	2	2	2	1
D20	2	3	3	2	2	2
D21	2	2	3	3	2	2
	17	15.5	14	11.5	8.83	7.16

Table 4-4 Judge Matrix of C8

C8	D22	D23	D24	D25
D22	1	0.33	0.33	0.5
D23	3	1	0.33	0.33
D24	3	3	1	0.33
D25	2	3	3	19
	9	7.33	4.66	2.16

According to the above-mentioned matrixes, matrix elements are conducted normalization processing, obtaining disposed matrix

After normalization processing, the corresponding W_i^1 =(0.0747,0.1067,0.1427,0.1691,0.2149, 0.2919)^T of C1, the corresponding W_i^1 =(0.0578, 0.0678, 0.0782, 0.0963,0.1267, 0.1577, 0.1878, 0.2277)^T of C7, and corresponding W_i^1 =(0.1146, 0.1733,0.2775, 0.4346)^T of C8 are shown as above, and so on, so as to obtain the corresponding W_i^1 of C2, C3, C4, C5, C6, C9, C10, C11 and C 12. Every data may stand for the corresponding index weight of every index.

The next is to test weight. First of all, SPSS16.0 is applied to calculate the largest eigenvalue λ max of judge matrixes.

matrixes.
$$\lambda \max = \frac{\sum (C_1 * W_i^1)}{6 * W_i^1} = 6.571$$

$$\lambda \max = \frac{\sum (C_7 * W_i^1)}{8 * W_i^1} = 8.362$$
(i=14, 15, 16, 17, 18, 19, 20, 21)

$$\lambda \max = \frac{\sum (C_8 * W_i^1)}{4 * W_i^1} = 4.391$$
 (i=22, 23, 24, 25)

The Consistency index of judge matrixes is calculated.

C.I.(Consistency Index) =
$$\frac{\lambda \max - n}{n-1} = \frac{6.571 - 6}{6 - 1} = 0.1142$$

Consistency ration of random matrixes is calculated.

$$C.R.$$
(Consistency Ratio)= $\frac{C.I.}{R.I.} = \frac{0.1142}{1.2494} = 0.0914 < 0.10$

indicating that the weight calcuatled by AHP is available. Therefore, weight of D1, D2, D3, D4, D5, D6 is 0.0747, 0.1067, 0.1427, 0.1691, 0.2149 and 0.2919, respectively. With the expert scoring, the scores of 6 indexes are 3.00, 3.00, 2.00, 3.00, 3.00, 3.00 and 3.00, respectively. The score of secondary indexes is 2.8573, and so on. In the evaluation system of poverty alleviation driven by leading enterprises in Taiqian County and Fan County, weight and scores of 4 criterion layers, 12 secondary indexes and 33 specific

evaluation indexes can be calculated, as 3.00, 3.00, 2.00, 3.00, 3.00 and 3.00. The score of secondary indexes is

rank of matr ix	1	2	3	4	5	6	7	8	9
RI	0	0	0.5149	0.8931	1.1185	1.2494	1.3 45	1.4 2	1.461 6

2.8573. The weight of specific evaluation indexes is shown in the table.

Table 4-5 Average Random Consistency Index RI Standard Value

Table 4-6 Index Weight, Score and Comprehensive Index Calculated by AHP

Calculated by AHP								
	terion ers B	Three-level indexes	Weight	Comprehe nsive index				
		D1 Relevancy with industrial poverty alleviation	0.0747	0.006225				
		D2 Relevancy with scientific poverty alleviation	0.1067	0.008892				
	C1	D3 Relevancy with industrialization of poverty alleviation	0.1427	0.011892				
		D4 Relevancy with rainy planning	0.1691	0.014092				
B1		DS Relevancy with income increase	0.2149	0.017908				
		D6 Relevancy with mutual poverty alleviation	0.2919	0.024325				
	C2	D7 Consistency between local policies and central and provincial policies	1.000	0.083333				
	С3	D8 Planning and implementation of poverty alleviation policy development	1.000	0.083333				
	C4	D9 Poverty occurrence rate	0.5000	0.041667				
	C4	D10 Poverty return rate	0.5000	0.041667				
B2	C5	D11 Proportion of poor farmers' income increase in total incomes	0.5000	0.041667				
		D12 Proportion of financial income in total incomes	0.5000	0.041667				
	С6	D13 Arrival rate of poverty alleviation capital	1.000	0.083333				
В3	C7	D14 Backroad hardening	0.0578	0.004817				

		construction		
		D15 Rainwater		
			0.0678	0.005650
		harvesting	0.0678	0.003630
		construction		
		D16Drinking water	0.0782	0.006517
		construction D17 Small-scale		
			0.0062	0.000025
		water conservancy	0.0963	0.008025
		construction		
		D18 Engel coefficient	0.1267	0.010558
		D19 Total power of		
		agricultural	0.1577	0.013142
		machinery		
		D20 Student number		
		in common primary	0.1878	0.015650
		schools		
		D21 Beds in hospitals	0.2277	0.018975
		and welfare houses	0.2211	0.010773
		D22 Proportion of		
		family operation	0.1146	0.009550
		incomes in pure	0.1140	0.007550
		incomes of farmers		
		D23 Scientific		
		training and	0.1733	0.014442
	C8	promotion situation		
		D24 The number of	0.2775	0.023125
		transfer labor force	0.2773	0.023123
		D25 "One college		
		student in a village"	0.4346	0.036217
		and training of "two	0.1510	0.030217
		after-born students"		
		D26 The number of		
	C9	driving settlement of	1.000	0.083333
		relevant enterprises		
		D27 Facilities		
		construction of	0.5000	0.041667
		footstone		
	C10			
		D28 Growth rate of		
		production value in	0.5000	0.041667
		industrial cluster		
		district		
		D29 Development	0.5000	0.041667
D4		ability of planting and	0.5000	0.041667
B4	C11	breeding industry		
		D30 Operation	0.5000	0.041667
		situation of	0.5000	0.041667
		industrialized projects		
		D31 Occurrence rate	0.31190	0.025992
		of natural disaster		
	C12	D32 Forest coverage	0.19762	0.016468
	C12	rate		
		D33Ecological	0.40040	0.040972
		environment	0.49048	0.040873
		satisfaction		

Table 4-7 Index Weight and Scores Calculated by AHP

1 autc	Table 4-7 findex weight and Scores Calculated by Arm						
Criterio n Layers	Weight	Scores	Second indexes	Weight	Scores		
B1	0.16486	2.59424	Policy	0.50832	2.8573		

D 11	1		11 1 11 22	1	
Policy			applicability C1		
applicab ility			Poverty alleviation planning and implement C2	0.15846	3.0000
			Connection with other poverty alleviation policies C3	0.33322	2.0000
B2 poverty			Poverty alleviation rate C4	0.35681	2.4701
alleviati on	0.33535	2.60803	Financial growth rate C5	0.39474	2.4860
efficienc y			Growth rate of poor farmers' incomes C6	0.24845	3.0000
			Infrastructure construction C7	0.49505	2.4601
B3 poverty alleviati on effects	0.34442	2.52342	Scientific poverty alleviation and labor transmission C8	0.21228	2.8028
			driving ability	0.29267	2.4279
B4 Sustaina			Industrial cluster development ability C10	0.42105	3.0000
ble develop ment	015537	2.57993	Social development ability C11	0.33552	2.2257
ability			Sustainability of ecological environment C12	0.24343	2.3416

3. Performance Evaluation Results of Poverty Alleviation Development

According to index score standards and performance assessment quantization score, qualitative and quantitative evaluations are implemented on four criterion layers, including policy relevancy driven by leading enterprises, poverty alleviation efficiency, poverty alleviation effects and sustainable development ability, etc. The development pattern driven by leading enterprises has the good effects, as shown in the Table 4-11.

Table 4-8 The Performance Evaluation Results of Poverty Alleviation Pattern Driven by Leading Enterprises

Aneviation I attern Driven by Leading Enterprises								
Evaluatio n Criterion	Weight	Performance Grade	Scoring Value	Weight ed average				
B1	0.16486	Relevancy	2.59424	0.42768 6				
B2	0.33535	Higher poverty alleviation efficiency	2.60803	0.87460				
В3	0.34442	Satisfy poor populations	2.52342	0.86911 6				
B4	0.15537	Sustainability	2.57993	0.40084 4				

Compreh ensive performa nce	Good	/	2.57224
-----------------------------	------	---	---------

It can be observed from the table that the primary indexes of poverty alleviation driven by leading enterprises have the scores of 2.59, 2.6, 2.52 and 2.58, respectively. The total scores are 2.57. The total effects of driving poverty alleviation are good. Particularly, the poverty alleviation efficiency is high and driving force of poverty alleviation is strong. The weight index from AHP shows that actual situation in the poverty-stricken areas. This is basically consistent with experts' opinions.

III. Conclusions

Poverty alleviation should be accurate. It must be kept on every link, every duty and every policy in poverty alleviation accurately, so that capital of poverty alleviation can be used for the right place. It must control organizational management, establish the strict organizational system and assessment mechanism, including incentive mechanism, constraint mechanism, and evaluation mechanism, etc., and try to make progress orderly for every task. On the basis of

realizing long-term poverty alleviation and harmonious regional development, big data also can develop corresponding predictive roles. With big data, it also can contact with national provinces, share experience in poverty alleviation, communicate with regional differences, so as to match with the task of poverty alleviation with entire situation, contribute to promote the task as a whole, and realize the political vision of the moderately prosperous society benefiting all people.

REFERENCES

- Zhuang Tianhui, Chen Guangyan and Lan Hongxing, Behavioral Logic and Action Mechanism of Accurate Poverty Alleviation[J], Guangxi Ethnic Study, 2015, 06:138-146;
- [2] You Shengguang, Study on Inclusive Finance and Accurate Poverty Alleviation [J], Modern Economy, 2016, 05: 62-65
- [3] Liu Yansui, Zhou Yang and Liu Jilai, Regional Differentiation Features of Poverty in Rural China and Policy of Poverty Alleviation[J], Magazine of CAS, 2016, 03:269-278;
- [4] Zheng Ruiqiang and Wang Ying, Preliminary Discussion on Accurate Poverty Alleviation[J], Financial Research, 2016, 02: 17-24;
- [5] Gong Liuji, Construction of Poverty Alleviation Policy Dominated by the Government and Innovative Pattern Study—Based on the Perspective of Accurate Poverty Alleviation[J] China Soft Science, 2016, 05: 154-162