ELECTROMAGNETISMO

Série 7 – Campo magnético

- 1. Um protão move-se perpendicularmente a um campo magnético uniforme \vec{B} com uma velocidade de $1.00 \times 10^7 \ m/s$. Quando a sua velocidade aponta no sentido positivo do eixo z, sofre uma aceleração de $2.00 \times 10^{13} \ m/s^2$ dirigida no sentido positivo do eixo x. Determine a magnitude, a direção e o sentido do campo magnético.
- 2. Um fio com uma massa por unidade de comprimento de 0.500 g/cm transporta uma corrente de 2.00 A na horizontal dirigida de norte para sul. Determine a direcção e a magnitude do campo magnético mínimo necessário para levantar o fio verticalmente para cima.
- 3. Um protão (carga +e, massa m_p), um deuterão (carga +e, massa $2m_p$) e uma partícula alfa (carga +2e, massa $4m_p$) são acelerados por diferenças de potencial idênticas, ΔV . Cada uma das três partículas entra numa região onde existe um campo magnético uniforme \vec{B} , com a velocidade perpendicular ao campo magnético. O protão descreve uma trajectória circular de raio r_p . Determine os raios das trajectórias do deuterão, r_d , e da partícula alfa, r_α , em termos de r_p .
- 4. No espectrómetro de massa esquematizado na Fig. 1, o campo eléctrico no selector de velocidade tem uma magnitude de $2500\,V/m$ e o campo magnético no selector de velocidade e na câmara de deflexão tem uma magnitude de $0.0350\,T$. Calcule o raio da trajectória de um ião monovalente cuja massa é $m=2.18\times10^{-26}~kg$.

5. Uma barra cilíndrica com um raio de $6.00\,cm$ e cuja massa é igual a $0.720\,kg$ está assente sobre dois condutores paralelos que estão separados por uma distância de $12.0\,cm$ e têm um comprimento de $45.0\,cm$ cada, conforme está ilustrado na Fig. 2. Uma corrente com intensidade $I = 48.0\,A$ percorre a barra no sentido indicado na figura. Um campo magnético uniforme \vec{B} com magnitude $0.240\,T$ é aplicado perpendicularmente à barra e aos carris. Se a barra for largada em repouso numa ponta dos carris, com que velocidade chega à outra ponta?

Figura 2

- 6. Uma bobine de secção rectangular tem N = 100 espiras e dimensões a = 0.400 m, b = 0.300 m e $c \ll b$, como está ilustrado na Fig. 3. A bobine pode rodar em volta do eixo y e o seu plano faz um ângulo de 30° com o eixo x.
 - a) Qual é a magnitude do binário de forças exercido sobre a bobine por um campo magnético uniforme B=0.800T cuja direcção é segundo o eixo x quando a bobine é percorrida por uma corrente $I=1.20\,A$ na direcção ilustrada?
 - b) Qual vai ser o sentido de rotação da bobine?

2

7. Numa experiência para medir o campo magnético terrestre usando o efeito de Hall, uma lâmina de cobre com $0.500\,cm$ de espessura é colocada na direcção este-oeste, sendo o plano da lâmina perpendicular ao campo magnético terrestre, ver Fig 4. Se uma corrente de $8.00\,A$ na lâmina resultar numa diferença de potencial de Hall de $5.10\times10^{-12}\,V$, qual é a magnitude do campo magnético terrestre? Considere $n=8.46\times10^{28}\,electrões/m^3$.

Figuar 4

8. Um ciclotrão é um instrumento que se destina a acelerar partículas com carga eléctrica, ver Fig. 5. No centro *P* existe uma fonte de partículas carregadas. A aceleração é conseguida pelo campo eléctrico criado por uma diferença de potencial ac entre as regiões D₁ e D₂. O raio da trajectória da partícula, na região onde actua um campo magnético uniforme, aumenta com o aumento da velocidade da partícula até abandonar o ciclotrão.

Qual é o raio requerido para um ciclotrão planeado para acelerar protões até energias de 34.0 *MeV* usando um campo magnético de 5.20 *T*?

Figura 5

Soluções:

- 1. $B = 2.09 \times 10^{-2} T$, direcção e sentido negativo do eixo y .
- 2. $B_{min} = 0.245 T$, na horizontal dirigido de oeste para este.
- 3. $r_{\alpha} = r_d = \sqrt{2}r_p$.
- 4. r = 0.278 m.
- 5. $v = 1.07 \ m/s$.
- 6. a) $\tau = 9.98 \ N.m$; b) A rotação vai ocorrer no sentido dos ponteiros do relógio.
- 7. $B = 0.433 \times 10^{-4} T$.
- 8. r = 0.162 m.