HD74HC95

4-bit Parallel Access Shift Register

HITACHI

Description

This 4-bit register features parallel and serial inputs, parallel outputs, mode control, and two clock inputs. The register has three mode operation:

- Parallel (broadside) load
- Shift right (the direction Q_A toward Q_D)
- Shift left (the direction Q_D toward Q_A)

Parallel loading is accomplished by applying the four bits of data and taking the mode conrol input high. The data is loaded into the associated flip-flops and appears at the outputs after the high-to-low transition of the clock-2 input. During loading, the entry of serial data is inhibited. Shift right is accomplished on the high-to-low transition of clock-1 when the mode control is low; shift left is accomplished on the high-to-low transition of clock-2 when the mode control is high by connecting the output of each flip-flop (Q_D to input C, etc.) and serial data is entered at input D. The clock input may be applied commonly to clock-1 and clock-2 if both modes can be clocked from the same source. Changes at the mode control input should normally be made while both clock inputs are low: however, conditions described in the last three lines of the function table will also ensure that register contents are protected.

Features

• High Speed Operation: t_{pd} (Clock to Q) = 17 ns typ ($C_L = 50 \text{ pF}$)

• High Output Current: Fanout of 10 LSTTL Loads

• Wide Operating Voltage: $V_{CC} = 2$ to 6 V

• Low Input Current: 1 µA max

• Low Quiescent Supply Current: I_{CC} (static) = 4 μ A max (Ta = 25°C)

HD74HC95

Function Table

Inputs

	Clock	S		Paralle	el			Outputs			
Mode Control	2 (L)	1 (R)	Serial	Α	В	С	D	Q _A	Q _B	Q _c	Q _D
Н	Н	Χ	Χ	Χ	Χ	Χ	Χ	Q_{A0}	Q_{B0}	Q_{co}	Q_{D0}
Н		Χ	Χ	а	b	С	d	а	b	С	d
Н	_	Χ	Χ	Q_{B+}	Q_{C+}	Q_{D+}	d	Q_{Bn}	Q _{Cn}	Q_{Dn}	d
L	L	Н	Χ	Χ	Χ	Χ	Χ	Q_{A0}	Q_{B0}	Q _{co}	Q _{D0}
L	Χ		Н	Χ	Χ	Χ	Χ	Н	\mathbf{Q}_{An}	\boldsymbol{Q}_{Bn}	Q_{Cn}
L	Х	_	L	Х	Χ	Χ	Χ	L	Q_{An}	Q_{Bn}	Q _{Cn}
	L	L	Χ	Х	Χ	Х	Χ	Q_{A0}	Q_{B0}	Q _{C0}	Q _{D0}
	L	L	Χ	Χ	Χ	Χ	Χ	Q_{A0}	Q_{B0}	Q_{co}	Q_{D0}
	L	Н	Χ	Χ	Χ	Χ	Χ	Q_{A0}	Q_{B0}	Q _{co}	Q _{D0}
	Н	L	Χ	X	Χ	Χ	Х	Q_{A0}	Q_{B0}	Q_{co}	Q _{D0}
\int	Н	Н	Χ	Х	Χ	Χ	Χ	Q_{A0}	Q_{B0}	Q_{co}	Q_{D0}

Pin Arrangement

DC Characteristics

			Ta =	: 25°(3	Ta = - +85°C	–40 to	_		
Item	Symbol	V _{cc} (V)	Min	Тур	Max	Min	Max	Unit	Test Condition	ns
Input voltage	V _{IH}	2.0	1.5	_		1.5	_	V		
		4.5	3.15	_	_	3.15	_	-		
		6.0	4.2	_	_	4.2	_	_		
	V _{IL}	2.0	_	_	0.5	_	0.5	V		
		4.5	_	_	1.35	_	1.35	-		
		6.0	_	_	1.8	_	1.8	_		
Output voltage	V _{OH}	2.0	1.9	2.0	_	1.9	_	V	Vin = V _{IH} or V _{IL}	$I_{OH} = -20 \mu A$
		4.5	4.4	4.5	_	4.4	_	_		
		6.0	5.9	6.0	_	5.9	_	_		
		4.5	4.18	_	_	4.13		=		$I_{OH} = -4 \text{ mA}$
		6.0	5.68	_	_	5.63	_	_		$I_{OH} = -5.2 \text{ mA}$
	V _{OL}	2.0	_	0.0	0.1	_	0.1	V	Vin = V _{IH} or V _{IL}	$I_{OL} = 20 \mu A$
		4.5	_	0.0	0.1	_	0.1	-		
		6.0	_	0.0	0.1	_	0.1	=		
		4.5	_	_	0.26	_	0.33	_		I _{OL} = 4 mA
		6.0	_	_	0.26	_	0.33	=		I _{OL} = 5.2 mA
Input current	lin	6.0	_	_	±0.1	_	±1.0	μΑ	Vin = V _{CC} or GN	ND
Quiescent supply current	I _{cc}	6.0	_	_	4.0	_	40	μΑ	Vin = V _{CC} or Gf	ND, lout = $0 \mu A$

HD74HC95

AC Characteristics ($C_L = 50 \text{ pF}$, Input $t_r = t_f = 6 \text{ ns}$)

	Ta = -40 to
Га = 25°С	+85°C

					•		•		
Item	Symbol	V _{cc} (V)	Min	Тур	Max	Min	Max	Unit	Test Conditions
Maximum clock	f _{max}	2.0	_	_	4	_	3	MHz	
frequency		4.5	_	_	20	_	16	=	
		6.0	_	_	24	_	19	=	
Propagation delay	t _{PLH}	2.0	_	_	145	_	180	ns	
time		4.5	_	17	29	_	36	=	
		6.0	_	_	25	_	31	=	
	t _{PHL}	2.0	_	_	170	_	215	ns	
		4.5	_	17	34	_	43	=	
		6.0	_	_	29	_	37	=	
Pulse width	t _w	2.0	80	_	_	100	_	ns	Clock
		4.5	16	6	_	20	_	=	
		6.0	14	_	_	17	_	-	
Setup time	t _{su}	2.0	100	_	_	125	_	ns	
		4.5	20	2	_	25	_	=	
		6.0	17	_	_	21	_	=	
Hold time	t _h	2.0	10	_	_	10	_	ns	
		4.5	10	-1	_	10	_	=	
		6.0	10	_	_	10	_	-	
Output rise/fall	t _{TLH}	2.0	_	_	75	_	95	ns	
time	t_{THL}	4.5	_	5	15	_	19	=	
		6.0	_	_	13	_	16	_	
Input capacitance	Cin	_	_	5	10	_	10	pF	

Unit: mm

Hitachi Code	DP-14
JEDEC	Conforms
EIAJ	Conforms
Weight (reference value)	0.97 g

Unit: mm

Weight (reference value)

0.23 g

*Dimension including the plating thickness
Base material dimension

Unit: mm

EIAJ

Weight (reference value)

Conforms

0.13 g

*Pd plating