Projekt [3]

STEROWNIKI ROBOTÓW

Założenia projektowe

Żyroskopowy instrument muzyczny ZIM

Skład grupy: Kacper Poliński, 235391

Termin: czTP19

 $\frac{Prowadzący:}{\text{dr inż. Wojciech DOMSKI}}$

Spis treści

1	Opis projektu	2
2	Konfiguracja mikrokontrolera 2.1 Konfiguracja pinów	5
3	Urządzenia zewnętrzne	6
4	Projekt elektroniki	7
5	Konstrukcja	8
6	Opis działania programu 6.1 Generowanie sinusoidy	8 9 10
7	Harmonogram pracy 7.1 Zakres pracy	10 10 11
8	Podsumowanie	11
Βi	ibilografia	12

1 Opis projektu

Projekt ma na celu skonstruowanie w oparciu o płytkę STM32F429l-DISCO [8] instrumentu muzycznego zmieniającego częstotliwość dźwięku [1] na podstawie odczytu danych z wewnętrznego żyroskopu L3GD20 [7]. Amplituda będzie sterowana za pomocą klawiatury komputera, która będzie się komunikowała ze sterownikiem przez USART. Użytkownik będzie sterował głośnością dźwięku za pomocą klawiszy od 0 do 9. Do mikrokontrolera zostanie podlączony zewnętrzny głośnik.

2 Konfiguracja mikrokontrolera

Rysunek 1: Konfiguracja wyjść mikrokontrolera w programie STM32CubeIDE [6]

Rysunek 2: Konfiguracja zegarów mikrokontrolera [6]

2.1 Konfiguracja pinów

Numer pinu	PIN	Typ Pinu	Tryb pracy	Funkcja/etykieta
6	VBAT	Power	_ v <u>-</u> v	, , , , , , , , , , , , , , , , , , ,
16	VSS	Power		
17	VDD	Power		
19	PF7	I/O	SPI5 SCK	L3GD20 SCL/SPC
20	PF8	I/O	SPI5 MISO	L3GD20 SDO
21	PF9	I/O	SPI5 MOSI	L3GD20 SDA/SDI/SDO
23	PH0/OSC IN	RCC OSC OUT	PH0-OSC IN	_
24	PH1-OSC_OUT	I/O	$RCC OS\overline{C} OUT$	PH0-OSC_OUT
25	NRST	Reset		_
27	PC1	I/O	GPIO Output	L3GD20 CS I2C/SPI
30	VDD	Power		,
31	VSSA	Power		
32	VREF+	Power		
33	VDDA	Power		
34	PA0/WKUP	I/O	GPIO EXTI0	B1 [Blue PushButton]
35	PA1	I/O	GPIO EXTI1	L3GD20 INT1
36	PA2	I/O	GPIO EXTI2	L3GD20 INT2
38	VSS	Power	_	_
39	VDD	Power		
40	PA4	I/O	DAC OUT1	Audio OUT
51	VSS	Power	_	_
52	VDD	Power		
61	VSS	Power		
62	VDD	Power		
71	VCAP1	Power		
72	VDD	Power		
83	VSS	Power		
84	VDD	Power		
94	VSS	Power		
95	VDD	Power		
106	VCAP2	Power		
107	VSS	Power		
108	VDD	Power		
120	VSS	Power		
121	VDD	Power		
129	PG14	I/O	GPIO Output	LD4 [Red Led]
130	VSS	Power		
131	VDD	Power		
138	BOOT0	Boot		
143	PDR ON	Reset		
144	VDD_	Power		

Tabela 1: Konfiguracja pinów mikrokontrolera [6]

2.2 Konfiguracja DMA

Żądanie DMA	Kanał	Kierunek	Priorytet
DAC1	DMA1_Stream 5	Z pamięci do peryferium	Niski

Tabela 2: Konfiguracja DMA [6]

Parametr	DAC1
Tryb	Circular
Inkrementacja peryferium	Disable
Inkrementacja pamięci	Enable
Szerokość danych peryferium	Half Word
Szerokość danych pamięci	Half Word

Tabela 3: Konfiguracja kanałów DMA [6]

2.3 Konfiguracja peryferiów

Ustawiecia DAC_Out1:	
Output Buffer	Enable
Trigger	Timer 7 Trigger Out event
Wave generation mode	Disabled

Tabela 4: Konfiguracja DAC [6]

Ustawiecia SPI5:	
Tryb	Full-Duplex Master
Format ramki	Motorola
Rozmiar danych	8 Bits
Prescaler	16
Szybkość transmisji	$5.0~\mathrm{MBits/s}$
Biegunowość zegara	Low
Faza zegara	1 Edge
Obliczenia CRC	Disabled
Tryb sygnału NCC	Software

Tabela 5: Konfiguracja SPI [6]

Ustawiecia TIM7:	
Prescaler	399
Counter Mode	Up
Counter Period	19
auto-reload preload	Disable
Trigger Event Selection	Update Event

Tabela 6: Konfiguracja TIM7 [6]

Ustawiecia USART1:	
Baud Rate	115200
Word Length	8 Bits
Parity	None
Stop Bits	1
Data Direction	Recive and Transmit
Over Sampling	16 Samples

Tabela 7: Konfiguracja USART [6]

3 Urządzenia zewnętrzne

Wprojekcie zostały użyte urządzenia zewnętrzne: głośnik, potencjometr oraz wzmacniacz audio PAM8403 o 5V napięciu zasilania.

Rysunek 3: Wzmacniacz PAM8403 [4]

4 Projekt elektroniki

Rysunek 4: Projekt elektroniki [2]

5 Konstrukcja

Rysunek 5: Konstrukcja projektu

6 Opis działania programu

- Podzczas uruchamiania urzadzenia inicjalizowany jest żyroskop oraz osprzęt audio.
- Dzięki zastosowaniu biblioteki BSP odczytywane są wartości z wewnętrznego żyroskopu L3GD20 za pomocą funkcji BSP_GYRO_GetXYZ(pfData).
- Następnie generowana jest sinusoida, której częsotliwość ustawiana jest na podstawie danych z żyroskopu, natomiast amplituda za pomocą danych wysyłanych przez użytkownika przez interfejs komunikacyjny USART.
- Wygenerowana sinusoida przesyłana jest do przetwornika cyfrowo-anologowego dzięki czemu użytkownik otrzymuje dźwięk o zmiennej tonacji.

Rysunek 6: Zasada działania programu

6.1 Generowanie sinusoidy

```
1  void process_buffor(size_t start_index, size_t end_index)
2  {
3     BSP_GYRO_GetXYZ(pfData);
4     int16_t pfData_16[3];
5     for(int i = 0; i < 3; ++i)
6     {
7         pfData_16[i] = (int16_t)pfData[i];
8     }
9     float freq = 1000**pfData_16[0]/32767;
10
11     goal_freq = 1000.0f + freq;
12     current_freq += (current_freq > goal_freq) ? -step_freq : +step_freq;
13
14     float delta_arg = 2*M_PI*current_freq*dt;
15
16     current_arg = fmod(current_arg, 2*M_PI); // sinf(duze warttosci kata) generuje duzy blad
17
18     for(size_t i = start_index; i<end_index; i++)
19     {
20          current_arg += delta_arg;
21
22          wave_table_dbuff[i] = (sinf(current_arg)/2+0.5)*volume;
23     }
24 }</pre>
```

6.2 Petla główna programu i przerwania

```
while (1)

\begin{array}{c}
2 \\
3 \\
4 \\
5 \\
6 \\
7 \\
8 \\
9 \\
10 \\
11 \\
12 \\
13
\end{array}

         f(is_ping_active)
           is_ping_active = false;
           process buffor (0, BUFF SIZ/2);
                if(is_pong_active)
           is_pong_active = false;
           process_buffor(BUFF_SIZ/2, BUFF_SIZ);
14
15
16
\begin{array}{c} 17 \\ 18 \end{array}
    {\color{red} \mathbf{void} \ \ HAL\_DAC\_ConvCpltCallbackCh1}(\,DAC\_HandleTypeDef \ *hdac\,)
19
19 {
20
21
22
23
24 }
25
       {\tt UNUSED(hdac)};
       is_pong_active = true;
26
27
28
29
     void HAL DAC ConvHalfCpltCallbackCh1(DAC HandleTypeDef *hdac)
    {
       {\tt UNUSED(hdac)};
30
       is\_ping\_active = true;\\
```

Generowanie sinusoidy jest podzielone na dwa przerwania tak by zapewnić płynność sygnału. Gdy pierwsza część tablicy jest generowana, druga część jest wysyłana.

7 Harmonogram pracy

Rysunek 7: Diagram Gantta [5]

7.1 Zakres pracy

Etep I

- Opracownie założeń projektowych
- Wstępna konfiguracja peryferiów mikrokontrolera za pomocą programu STM32CubeIDE

Etap II

- Konfiguracja peryferiów mikrokontrolera za pomocą programu STM32CubeIDE
- $\bullet\,$ Napisanie programu kontroli żyroskopu odczytywanie danych z żyroskopu
- Napisanie algorytmu pod DAC napisanie algorytmu zmieniającego położenie sterownika na amplitudę i częstotliwość sygnału audio

Etap III

- Podłączenie zewnętrznego głośnika
- Zaprojektowanie filtru danych z żyroskopu

- Testy oprogramowania przetestowanie algorytmów i ich dostrojenie
- Finalizacja projektu

7.2 Kamienie milowe

- Konfiguracja peryferiów
- Odczytanie danych z żyroskopu
- Przetworzenie otrzymanych danych na sygnał audio
- Finalizacja projektu

8 Podsumowanie

Finalna wersja projektu różni się nieznacznie od pierwotnych złożeń. Do sterownia częstotliwością użyto odczytów z jednej osi żyroskopu, natomiast do sterowania amplitudą (głośnością) użyto klawiatury komputera skomunikowanej prze interfejs USART. W projekci nie zastosowano finalnie filtru danych. Stworzony instrument muzyczny spełnia pierwotne oczekiawania, umożliwia użytkownikowi intuicyjną zmianę częstotliwości oraz amplitudy.

Literatura

- [1] M. Acoustic. Podstawowe informacje o dźwięku.
- [2] Autodesk. Eagle program komputerowy do wspomagania projektowania obwodów elektronicznych.
- [3] W. Domski. Sterowniki robotów, Laboratorium Wprowadzenie, Wykorzystanie narzędzi STM32CubeMX oraz SW4STM32 do budowy programu mrugającej diody z obsługą przycisku. Mar. 2017.
- [4] D. Incorporated. PAM8403 Datasheet.
- [5] B. S. s.r.o., G. Contributors. Gantt Project oprogramowanie do zarządzania projektami.
- $[6]\ {\rm STMicroelectronics}.\ {\rm STM32CubeIDE}$ środowisko programistyczne do programowania mikrokontrolerów ST.
- [7] STMicroelectronics. L3GD20 MEMS motion sensor, three-axis digital output gyroscope. Luty 2013.
- [8] STMicroelectronics. 32F429lDISCOVERY User manual. Sier. 2020.