$$m\left(\frac{dV}{dt}\right) = my - c(V)^2$$
; $v(0) = 0$ $\frac{dV}{dt} = 0 \otimes V_S$

$$\frac{dV}{dt} = g - \frac{dV}{m}$$

Variables, v, t parametrs: g, c, m

$$\frac{d(V_s)}{d(t_s)} = g - C$$

$$\frac{V_s}{t_s} \left(\frac{dV}{dV} \right) = 9 - CV_s \left(\frac{V}{V} \right)$$

when
$$V_s$$
 is reached $dV = 1$

$$dV = 1 \cdot ts$$

$$V_s$$

$$\left(\frac{dV}{dZ}\right) = g - g\left(V\right)^{2}$$

16. Solve numerically with ruge-kutta

1c. set $\widehat{V} = 0.95$ — double check $\frac{d\widehat{V}}{dt} = 0$