- Forward and Backward Error
 - nearby solutions for nearby problems
- Multiple Roots
 - where functions are very flat
- The Wilkinson Polynomial
 - a historical example in numerical analysis
- Condition Number
 - the error magnification factor

MCS 471 Lecture 4 Numerical Analysis Jan Verschelde, 20 January 2021

- Forward and Backward Error
 - nearby solutions for nearby problems
- Multiple Roots
 - where functions are very flat
- The Wilkinson Polynomial
 - a historical example in numerical analysis
- Condition Number
 - the error magnification factor

nearby solutions for nearby problems

Consider a solution map \mathcal{S} between the space of *inputs* and *outputs*.

Because of floating-point arithmetic, we obtain $\overline{y} = S(x)$.

Definition

If y = S(x) is the exact solution for input x and $\overline{y} = \overline{S}(x)$ is the approximate solution for the input x, then *the forward error* is $|y - \overline{y}|$.

forward error and backward error

For y = S(x) and $\overline{y} = \overline{S}(x)$, the forward error is $|y - \overline{y}|$. Modify the input x into \overline{x} so that $\overline{y} = S(\overline{x})$.

Definition

If y = S(x) is the exact solution for input x, $\overline{y} = \overline{S}(x)$ is the approximate solution for the input x, and \overline{x} is the modified input so that $\overline{y} = S(\overline{x})$, then *the backward error* is $|x - \overline{x}|$.

application to the root finding problem

Solve the equation f(x) = 0 to find a root r.

We find an approximation \bar{r} : $f(\bar{r}) \approx 0$.

Denote Δr such that $\Delta r = r - \overline{r}$ or $r = \overline{r} + \Delta r$.

We have f(r) = 0 and thus $f(\overline{r} + \Delta r) = 0$, $|\Delta r|$ is the forward error.

Denote Δf such that $\Delta f = f - \overline{f}$, where $\overline{f}(\overline{r}) = 0$.

$$\overline{f}(\overline{r}) = 0 \Leftrightarrow (f - \Delta f)(\overline{r}) = 0$$

 $\Leftrightarrow f(\overline{r}) = \Delta f(\overline{r})$

The backward error is $|\Delta f(\overline{r})| = |f(\overline{r})|$.

Although we do not know Δr , $f(\bar{r})$ is a simple evaluation.

relation between forward and backward error?

For the root finding problem: $r = \mathcal{S}(f)$, $\overline{r} = \overline{\mathcal{S}}(f)$, and $\overline{r} = \mathcal{S}(\overline{f})$.

As the backward error $|\Delta f| = |f(\overline{r})|$, is $|\Delta f| \approx |\Delta r|$?

- Forward and Backward Error
 - nearby solutions for nearby problems
- Multiple Roots
 - where functions are very flat
- The Wilkinson Polynomial
 - a historical example in numerical analysis
- Condition Number
 - the error magnification factor

a multiple root

Consider the plot of $(x - 3/2)^3$:

close to a multiple root

Consider the plot of (x - 1.49)(x - 1.5)(x - 1.51):

relation between forward and backward error?

Consider $p(x) = (x - 1.5)^3$ and q(x) = (x - 1.51)(x - 1.5)(x - 1.49). The forward error is the error in the roots: $|\Delta r| = 0.01 = 10^{-2}$.

Consider the difference in the coefficients of p and q:

$$p(x) = x^3 - 4.5x^2 + 6.75x - 3.375$$

$$q(x) = x^3 - 4.5x^2 + 6.7499x - 3.37485$$

 $|6.75 - 6.7499| = 10^{-4}$ and $|3.375 - 3.37484| = 1.50 \cdot 10^{-4}$. Adding up the errors, we find $|\Delta p| = 2.50 \cdot 10^{-4}$.

Now we compare: $|\Delta p| = 2.50 \cdot 10^{-4} \ll 10^{-2} = |\Delta r|$.

The magnitude of the error on the root (the output) is much larger than the magnitude of the error on the coefficients (the input).

sensitivity formula for roots

The equation f(x) = 0 has the root r: f(r) = 0.

Denote Δr : $\Delta r = r - \overline{r}$ or $r = \overline{r} + \Delta r$, Δr is the forward error.

Denote Δf : $\Delta f = f - \overline{f}$ or $f = \overline{f} + \Delta f$, Δf is the backward error.

$$(f + \Delta f)(r + \Delta r) = 0 \Leftrightarrow f(r + \Delta r) + \Delta f(r + \Delta r) = 0$$

We apply Taylor series, ignoring second order terms:

$$f(r + \Delta r) = f(r) + f'(r)\Delta r + \cdots$$

 $\Delta f(r + \Delta r) = \Delta f(r) + \Delta f'(r)\Delta r + \cdots$

Note that f(r) = 0 and $\Delta f'(r) \Delta r$ is of second order.

$$(f + \Delta f)(r + \Delta r) = 0 \Leftrightarrow f'(r)\Delta r + \Delta f(r) \approx 0.$$

Theorem (sensitiviy of a root)

For an equation
$$f(x) = 0$$
 with root $r: |\Delta r| \approx \left| \frac{\Delta f(r)}{f'(r)} \right|$.

- Forward and Backward Error
 - nearby solutions for nearby problems
- Multiple Roots
 - where functions are very flat
- The Wilkinson Polynomial
 - a historical example in numerical analysis
- 4 Condition Number
 - the error magnification factor

The Wilkinson Polynomial

The roots of the Wilkinson polynomials are consecutive integers 1,2,.... For example, the 20-th Wilkinson polynomial is

$$p(x) = (x-1)(x-2)\cdots(x-20).$$

To test a root finder, this polynomial seems like an ideal test problem.

When expanded, the constant coefficient of p is 20! = 2432902008176640000

and 20! = 2.43290200817664e18 as a 64-bit float.

Evaluating p correctly is the main difficulty.

evaluating Wilkinson polynomials

```
julia> import Pkg; Pkg.add("SymPy")
julia> using SymPy
julia> x = Sym("x")
julia> w20 = prod([(x - Float64(r)) for r = 1:20])
julia> e20 = expand(w20)
```

Observe the conversion Float 64 (r) of the integer r.

```
julia> subs(w20, x => 1.0)
0
julia> subs(e20, x => 1.0)
-2560.00000000000
```

Exercise 1:

Do the above calculation for the other 19 roots of the 20-th Wilkinson polynomial. What do you observe?

- Forward and Backward Error
 - nearby solutions for nearby problems
- Multiple Roots
 - where functions are very flat
- The Wilkinson Polynomial
 - a historical example in numerical analysis
- Condition Number
 - the error magnification factor

condition number

Every problem in numerical analysis has a condition number.

Definition

For a numerical problem with input x and output y,

the condition number
$$\kappa$$
 is $\frac{|\Delta y|}{|y|} \le \kappa \frac{|\Delta x|}{|x|}$.

The condition number measures how errors in the input are magnified to errors in the output.

A problem is

- *well-conditioned* if κ is small, and
- *ill-conditioned* if κ is large.

application to the root finding problem

For an equation f(x) = 0 with root r, we derived the sensitivity formula for the root:

$$|\Delta r| \approx \left| \frac{\Delta f(r)}{f'(r)} \right|.$$

To derive the condition number, divide both sides by |r| and insert |f|:

$$\left|\frac{\Delta r}{r}\right| pprox \frac{1}{|f'(r)|} \left|\frac{\Delta f(r)}{r}\right| = \frac{|f|}{|rf'(r)|} \left|\frac{\Delta f(r)}{f}\right|,$$

where |f| measures the size (of the coefficients) of f.

Theorem (condition of the root finding problem)

The equation f(x) = 0 with root r has condition number $\kappa = \frac{|f|}{|rf'(r)|}$.

interpretation of the condition number

For an equation f(x) = 0 with root r, the condition number is

$$\kappa = \frac{|f|}{|rf'(r)|}.$$

Three factors in the magnification of the backward error:

- - ▶ the largest coefficient of f if a polynomial, or
 - the largest value f(x) can take in the neighborhood of r.

This factor captures the numerical difficulty of evaluating f.

- 2 1/|r|: the smaller the root, the larger the relative error.
- **3** 1/|f'(r)|: if r is close to a multiple root, then $f'(r) \approx 0$.

the Wilkinson polynomials again

Exercise 2:

Consider
$$p(x) = \prod_{r=1}^{d} (x - r)$$
, for some finite degree d .

Evaluate the formula $\kappa = \frac{|p|}{|rp'(r)|}$ at the first root r = 1 of p,

for increasing values of the degree d = 2, 3, ..., 20, using the absolute value of the largest coefficient of p as the value for |p|.

For which value of *d* does κ become larger than 10⁸?