Unified Slope-Based Onset Detection (ver4)

1. Input CSV	Time, MGI, Temperature
2. Preprocessing	Smoothing, compute slope = d(MGI)/dt
3. First Onset (t ₁)	Baseline $+ \sigma$ test, sustained slope rise
4. Additional Onsets (t ₂ , t ₃)	Local slope maxima, backtrack & separation criteria
5. Plateau Detection	Slope near zero for ≥300 s
6. Visualization	Plot MGI curve + red dashed onset lines

Processing Flow:

Input CSV \rightarrow Preprocessing \rightarrow Slope Derivative \rightarrow t₁ Detection \rightarrow t₂, t₃ Detection \rightarrow Plateau Detection \rightarrow Visualization

Algorithm Overview:

The method detects physical change points (onsets) in MGI-time data by analyzing the slope profile.

- 1. Compute derivative of MGI over time.
- 2. Identify first sustained increase (t1) above baseline noise.
- 3. Locate later slope bursts (t₂, t₃...) using prominence criteria.
- 4. Define plateau when slope remains near zero.
- 5. Report onset times and temperatures, plot annotated MGI curve.

Advantages: automatic, reproducible, interpretable, and parameter-scalable.