| DEPARTME                                                 | NT OF CHEMISTRY & LIFE SCIENCE                                                                 |
|----------------------------------------------------------|------------------------------------------------------------------------------------------------|
| CH365 2025-2026<br>Carnot Cycle Bonus<br>28 October 2025 | TEXT: Smith, Van Ness, Abbott & Swihart SCOPE: Lessons 22-23 TIME: 60 minutes                  |
| References Permitted: Open no                            | otes, book, internet, CHEMCAD, Mathematica, Excel.                                             |
|                                                          | INSTRUCTIONS                                                                                   |
|                                                          | nd is due 2359 28 October 2025.  age in this exercise (not including the cover page).  Canvas. |
| (To                                                      | OTAL WEIGHT: 30 POINTS)                                                                        |

CADET \_\_\_\_\_ SECTION \_\_\_\_TIME OF DEPARTURE \_\_\_\_\_

## DO NOT WRITE IN THIS SPACE

| PROBLEM     | VALUE | CUT |
|-------------|-------|-----|
| A           | 10    |     |
| В           | 20    |     |
| TOTAL BONUS | 30    |     |



## Problem: Weight: 10

A piston contains 0.1 kmol of nitrogen gas initially at 1.00 bar, 5.00 m<sup>3</sup>, and 601.4 K. The gas undergoes a cyclic Carnot-type PV process between 601.4 K and 721.7 K, with minimum volume of 1.50 m<sup>3</sup> at pressure 4.00 bar. In other words, referring to Figure 5.2 on page 185, point d in the figure corresponds to 5.00 m<sup>3</sup> and 1.00 bar, and point b is 1.50 m<sup>3</sup> and 4.00 bar. Use Mathematica to solve for the intermediate points (points a and c in Figure 5.2) and construct a graph of the given Carnot cycle in Mathematica. Your plot should be professional in appearance and appear as shown in the sample plot below.

## Problem: Weight: 20

Use your results from Problem A to calculate the heat absorbed by the system from the hot reservoir, the heat ejected from the system to the cold reservoir, and the work produced, all in units of kJ. Calculate the efficiency of the Carnot cycle by both equations 5.6 and 5.7.

## Additional information for Problems A and B: Direction of cycle: a-b-c-d-a $R=8.314 \text{ J/(mol \cdot K)}$ $C_P=7R/2$ , and $C_V=5R/2$

Sample plot created in Mathematica:

