65 points total

1.

3∕₅ for process, no tree

 $\frac{4}{5}$ for process, incorrect tree

²/₅ for only showing order, no tree

1/₅ for tree, no work

5/5 if tree is right, work or not

a. (5 points)

(indegree, outdegree)

A: (1, 2)

B: (1, 3)

C: (2, 2)

D: (2, 2)

E: (3, 2)

F: (2, 0)

G: (1, 1)

b. BFS tree (5 points)

 $Q = \{B\}$

 $\mathsf{D} = \{\}$

Process B

 $Q = \{C, E, G\}$

 $\mathsf{D} = \{\mathsf{B}\}$

Process C

 $Q = \{E, G, D\}$

 $D = \{B, C\}$

Process E

 $Q = \{G, D, F\}$

 $\mathsf{D} = \{\mathsf{B},\,\mathsf{C},\,\mathsf{E}\}$

Process G

 $Q = \{D, F\}$

 $D = \{B, C, E, G\}$

Process D

 $Q = \{F, A\}$

 $\mathsf{D} = \{\mathsf{B},\,\mathsf{C},\,\mathsf{E},\,\mathsf{G},\,\mathsf{D}\}$

Process F

 $Q = \{A\}$

 $D = \{B, C, E, G, D, F\}$

Process A

 $Q = \{\}$

 $D = \{B, C, E, G, D, F, A\}$

c. DFS Tree (5 points)

 $S = \{B\}$ $D = \{\}$

Process B

 $S = \{C, E, G\}$

D = {B}

Process G

 $S = \{C, E\}$

 $D = \{B, G\}$

Process E

 $S = \{C, D, F\}$

 $D = \{B, G, E\}$

Process F

 $S = \{C, D\}$

 $\mathsf{D} = \{\mathsf{B},\,\mathsf{G},\,\mathsf{E},\,\mathsf{F}\}$

Process D

 $S = \{C, A\}$

 $D = \{B, G, E, F, D\}$

Process A

 $S = \{C\}$

 $D = \{B, G, E, F, D, A\}$

Process C

 $S = \{\}$

 $D = \{B, G, E, F, D, A, C\}$

{B, C, D, A, F, E, G}

2.

a. (10 Points... -2 pts/incorrect path)

A to	Shortest Weighted Path	Weighted Length
В	A => B	5
С	A => C	3
D	A => B => G => E => D	9
E	A => B => G => E	7

F	A => B => G => E => F	8
G	A => B => G	6

b. (5 points... -1 pt/incorrect path)

B to	Shortest Unweighted Unweighted Length	
А	B => C => D => A	3
С	B => C	1
D	B => C => D	2
Е	B => E	1
F	E => E => F	2
G	B => G	1

3. (5 points)

4. (10 points)

(b) Use an array numEdges such that for any $vertex\ u$, numEdges[u] is the shortest number of edges on a path of distance d_u from s to u known so far. Thus numEdges is used as a tiebreaker when selecting the vertex to mark. As before, v is the vertex marked known, and w is adjacent to v.

If $d_v + c_{v,w} = d_w$, then change p_w to v and numEdges[w] to numEdges[v]+1 if numEdges[v]+1 < numEdges[w].

If $d_v + c_{v,w} < d_w$, then update p_w and d_w , and set numEdges[w] to numEdges[v]+1.

5. (5 points) Check diagonals of resulting tables to see if there are any negative values.

6. a. (10 points)

D	1	2	3	4	5
1	0	-10	-9	-7	-3
2	inf	0	2	4	8
3	inf	-1	0	3	7
4	inf	-3	-2	0	5

5	inf	-7	-6	-4	0
Р	1	2	3	4	5
1	-	3	4	5	1
2	-	-	4	5	2
3	-	3	-	5	2
4	-	3	4	-	2
5	-	3	4	5	-

b. (5 points)

Path S/E	1	2	3	4	5
1	-	15432 (-10)	1543 (-9)	154 (-7)	15 (-3)
2	-	-	2543 (2)	254 (4)	25 (8)
3	-	32 (-1)	-	3254 (3)	325 (7)
4	-	432 (-3)	43 (-2)	-	4325 (5)
5	-	5432 (-7)	543 (-6)	54 (-4)	-