### Introduction to Linear Regression – Solutions

COR1-GB.1305 – Statistics and Data Analysis

# Linear Regression

- 1. In the following scenarios, which would you consider to be predictor (x) and which would you consider to be response (y)?
  - (a) Sales revenue; Advertising expenditures
  - (b) Starting salary after college; Undergraduate GPA
  - (c) The current month's sales; the previous month's sales
  - (d) The size of an apartment; the sale price of an apartment.
  - (e) A restaurant's Zagat Price rating; a restaurant's Zagat Food rating.

**Solution:** This is a little bit subjective, but the following answers make sense: (a) y = sales revenue; (b) y = starting salary; (c) y = current sales; (d) y = sale price; (e) either makes sense.

2. Let y be the payment (in dollars) for a repair which takes x hours. Suppose that

$$y = 25 + 30x$$
.

What is the interpretation of this model?

**Solution:** There is a positive linear relationship between y and x. Increasing repair time by one hour increases payment by \$30. There is no interpretation for the intercept since repair time is always positive.

3. Consider two variables measured on 294 restaurants in the 2003 Zagat guide:

y = typical dinner price, including one drink and tip (\$)

x = Zagat quality rating (0-30).

Here is a scatterplot of y on x:

Why is an exact linear relationship inappropriate to describe the relationship between y and x?

**Solution:** There are no values  $\beta_0$  and  $\beta_1$  such that  $y = \beta_0 + \beta_1 x$  for all restaurants; no straight line fits the data perfectly.



4. Here is the least squares regression fit to the Zagat restaurant data:



Here is the Minitab output from the fit:

#### Model Summary

### Coefficients

Term Coef SE Coef T-Value P-Value VIF Constant 
$$-4.74$$
 3.95  $-1.20$  0.232

Food 2.129 (

0.200 10.64

4

0.000 1.00

Regression Equation

Price = -4.74 + 2.129 Food

(a) What are the estimated intercept and slope?

**Solution:** The estimated intercept is  $\hat{\beta}_0 = -4.74$ ; the estimated slope is  $\hat{\beta}_1 = 2.129$ .

(b) Use the estimated regression model to estimate the average dinner price of all restaurants with a quality rating of 20.

**Solution:** If Food = 20, then estimated expected price per meal (\$) is  $\widehat{\text{Price}} = -4.74 + 2.129(20) = 37.84$ .

(c) In the estimated regression model, what is the interpretation of the slope?

**Solution:** For every 1-point increase in food quality, the expected dinner price goes up by \$2.129.

(d) In the estimated regression model, why doesn't the intercept have a direct interpretation?

**Solution:** This would be the expected dinner price for a restaurant with a quality of 0. No such restaurant exists (this is outside the range of the data).

- 5. Refer to the Minitab output from the previous problem, the regression analysis of the Zagat data.
  - (a) What is the estimated standard deviation or the error? What is the interpretation of this value?

**Solution:** The estimated error standard deviation is s = 12.5559. Using the empirical rule, the model says that approximately 95% of restaurants have prices within 2s = 25.11 of the regression line.

(b) According to the estimated regression model, what is the range of typical prices for restaurants with quality ratings of 20?

**Solution:**  $37.84 \pm 25.11 = (12.73, 62.95)$ 

(c) According to the estimated regression model, what is the range of typical prices for restaurants with quality ratings of 10?

**Solution:** In the estimated regression model, when the quality rating is 10, the expected price is -4.74 + 2.129(10) = 16.55; the range of typical prices is  $16.55 \pm 25.11 = (-8.5441.66)$ . Since price can't be negative, we could just as well report the range as (0,41.66). Note that since x=10 is at the edge of the range of the data, the values predicted by the model are not very reliable.

# The Analysis of Variance Table

6. When we fit the regression model to the Zagat data with response "Price" and predictor "Food", we get the following "Analysis of Variance" table:

#### Analysis of Variance

| Source      | DF  | Adj SS | Adj MS  | F-Value | P-Value |
|-------------|-----|--------|---------|---------|---------|
| Regression  | 1   | 17838  | 17838.4 | 113.15  | 0.000   |
| Food        | 1   | 17838  | 17838.4 | 113.15  | 0.000   |
| Error       | 292 | 46034  | 157.7   |         |         |
| Lack-of-Fit | 18  | 5394   | 299.7   | 2.02    | 0.009   |
| Pure Error  | 274 | 40640  | 148.3   |         |         |
| Total       | 293 | 63873  |         |         |         |

(a) Find the SSE. Explain how this value is computed.

**Solution:** We read the sum of squares of the residual errors, SSE, from the Adj SS column of the Error row: 46034. This quantity is equal to the sum of squares of the residual errors:  $\sum_{i=1}^{n} (y_i - \hat{y}_i)^2$ .

(b) Find the SSR. Explain how this value is computed.

**Solution:** We read the sum of squares of the regression, SSR, from the Adj SS column of the Regression row: 17838. This quantity is equal to  $\sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$ , where  $\bar{y}$  is the average value of  $y_i$ , i.e.  $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$ .

(c) Find the SST. Explain how this value is computed.

**Solution:** We read the total sum of squares, SST, from the Adj SS column of the Total row: 63873. This quantity is equal to  $\sum_{i=1}^{n} (y_i - \bar{y})^2$ . Note also that SST = SSR + SST.

(d) Explain how to compute  $R^2$  from the ANOVA table.

**Solution:** The coefficient of determination,  $R^2$ , is equal to the proportion of the variability in the response that is explained by the regression:

$$R^2 = \frac{\text{SSR}}{\text{SST}}.$$

(e) Explain how to compute s from the ANOVA table.

Solution: The standard error of the regression is given by

$$s = \sqrt{\frac{\text{SSE}}{n-k}},$$

where k is the number of predictors in the model (k=1 for simple linear regression. This is also equal to  $\sqrt{\text{MSE}}$ , where MSE is given in the Adj MS column of the Error row. This is an estimate of the standard deviation of the regression error.