BIMM 143 Lab 17 Vaccination Rates

Patric Young

COVID-19 Vaccination Rates

```
vax <- read.csv("covid19vaccinesbyzipcode_test.csv")
head(vax)</pre>
```

	as_of_date	zip_code_tabu	lation_are	a local_heal	th_ju:	risdiction	county
1	2021-01-05	_	9544	3	_	Sonoma	Sonoma
2	2021-01-05		9601	1		Siskiyou	Siskiyou
3	2021-01-05		9608	7		Shasta	Shasta
4	2021-01-05		9600	3		Shasta	Shasta
5	2021-01-05		9541)		Mendocino	Mendocino
6	2021-01-05		9552	7		Trinity	Trinity
	vaccine_equ	uity_metric_qu	artile		vem_	source	
1			2 Hea	lthy Places :	Index	Score	
2			2	CDPH-Derived	ZCTA	Score	
3			2	CDPH-Derived	ZCTA	Score	
4			NA	No V	EM As	signed	
5			3 (CDPH-Derived	ZCTA	Score	
6			2	CDPH-Derived	ZCTA	Score	
	age12_plus_	population ag	e5_plus_po	pulation tot	_popu	lation	
1		4840.7		5057		5168	
2		135.0		135		135	
3		513.9		544		544	
4		1125.3		1164		NA	
5		926.3		988		997	
6		476.6		485		499	
	persons_ful	lly_vaccinated	persons_pa	artially_vac	cinat	ed	
1		NA]	AV	
2		NA]	AV	
3		NA]	NΑ	

```
4
                         NA
                                                        NA
5
                         NA
                                                        NA
6
                         NA
                                                        NA
  percent_of_population_fully_vaccinated
1
2
                                        NA
3
                                        NA
4
                                        NA
5
                                        NA
6
                                        NA
  percent_of_population_partially_vaccinated
                                            NA
1
2
                                            NA
3
                                            NA
4
                                            NA
5
                                            NA
                                            NA
  percent_of_population_with_1_plus_dose booster_recip_count
1
                                                             NA
                                        NA
2
                                        NA
                                                             NA
3
                                        NA
                                                             NA
4
                                        NA
                                                             NA
5
                                        NA
                                                             NA
                                        NA
                                                             NA
  bivalent_dose_recip_count eligible_recipient_count
1
                          NA
2
                                                      0
                          NA
                                                      2
3
                          NA
                                                      2
4
                          NA
5
                          NA
                                                      0
6
                          NA
                                                                  redacted
1 Information redacted in accordance with CA state privacy requirements
2 Information redacted in accordance with CA state privacy requirements
3 Information redacted in accordance with CA state privacy requirements
4 Information redacted in accordance with CA state privacy requirements
5 Information redacted in accordance with CA state privacy requirements
6 Information redacted in accordance with CA state privacy requirements
```

Q1. What column details the total number of people fully vaccinated?

#vax\$persons_fully_vaccinated

Q2. What column details the Zip code tabulation area?

#vax\$zip_code_tabulation_area

Q3. What is the earliest date in this dataset?

vax\$as_of_date[1]

[1] "2021-01-05"

Q4. What is the latest date in this dataset?

vax\$as_of_date[nrow(vax)]

[1] "2023-02-28"

We can use the skim() function for a quick overview of a new data set like this.

skimr::skim(vax)

Table 1: Data summary

Name Number of rows	vax 199332
Number of columns	18
Column type frequency:	
character	5
numeric	13
Group variables	None

Variable type: character

skim_variable	n_missing	complete	_rate	min	max	empty	n_unique	whitespace
as_of_date	0		1	10	10	0	113	0
local_health_jurisdiction	n 0		1	0	15	565	62	0
county	0		1	0	15	565	59	0

skim_variable	n_missing	$complete_{-}$	_rate	min	max	empty	n_unique	whitespace
vem_source	0		1	15	26	0	3	0
redacted	0		1	2	69	0	2	0

Variable type: numeric

skim_variable	n_mission	g mplete	nna ben	sd	p0	p25	p50	p75	p100	hist
zip_code_tabulation_ar	rea 0	1.00	93665.	.11817.3	389000	192257	.7933658	.5905380	.5997635	.0
vaccine_equity_metric_	9831 tile	0.95	2.44	1.11	1	1.00	2.00	3.00	4.0	
age12_plus_population	0	1.00	18895.	.048993	.870	1346.9	513685	.1301756	.128556	.7
$age5_plus_population$	0	1.00	20875.	.2241105	.970	1460.5	5015364	.0304877	.0100190	2.0
$tot_population$	9718	0.95	23372.	72/2628	.512	2126.0	018714	.038168	.001116	5.0
persons_fully_vaccinate	d 6525	0.92	13962.	3B5054	.091	930.00	8566.0	0023302	.0807566	.0
persons_partially_vaccin	16525	0.92	1701.6	42030.1	1811	165.00	1196.0	002535.0	039913	.0
percent_of_population_	270.812/ 5_vac	c On9 @e	d 0.57	0.25	0	0.42	0.60	0.74	1.0	
percent_of_population_	20825 ally	_ 0a90 ir	na 0e01 8	0.09	0	0.05	0.06	0.08	1.0	
percent_of_population_	2xt8559_1_	p 0u8 9_d	o s e63	0.24	0	0.49	0.67	0.81	1.0	
booster_recip_count	72872	0.63	5837.3	317165.8	31 11	297.00	2748.0	009438.2	2559553	.0
bivalent_dose_recip_co	1158 664	0.20	2924.9	33583.4	4511	190.00	1418.0	04626.2	2527458	.0
eligible_recipient_count	0	1.00	12801.	.8144908	.330	504.00	6338.0	0021973	.007234	.0

Q5. How many numeric columns are in this data set?

13

Q6. Note that there are "missing values" in the data set. How many NA values there in the persons_fully_vaccinated column?

```
n.missing <- sum(is.na(vax$persons_fully_vaccinated))
n.missing</pre>
```

[1] 16525

Q7. What percent of persons_fully_vaccinated values are missing (to 2 significant figures)?

```
round((n.missing/ nrow(vax))*100,2)
```

[1] 8.29

Q8. [Optional]: Why might this data be missing?

Working with dates

The lubridate package makes working with dates and times in R much less of a pain. Let's have a first play with this package here.

```
library(lubridate)
Attaching package: 'lubridate'
The following objects are masked from 'package:base':
    date, intersect, setdiff, union
  today()
[1] "2023-03-07"
We can now magically do math with dates.
  today() - ymd("2021-01-05")
Time difference of 791 days
How old am I?
  today() - ymd("2001-03-15")
Time difference of 8027 days
Let's treat the whole col.
How many days have passed since the first vaccination reported in this data set.
```

Time difference of 791 days

today() - vax\$as_of_date[1]

How many days does the dataset span.

vax\$as_of_date <- ymd(vax\$as_of_date)</pre>

```
vax$as_of_date[nrow(vax)] - vax$as_of_date[1]
Time difference of 784 days
Q9. How many days have passed since the last update of the dataset?
  today() - vax$as_of_date[nrow(vax)]
Time difference of 7 days
Q10. How many unique dates are in the dataset (i.e. how many different dates are de-
tailed)?67
  length(unique(vax$as_of_date))
[1] 113
  library(dplyr)
Attaching package: 'dplyr'
The following objects are masked from 'package:stats':
    filter, lag
The following objects are masked from 'package:base':
    intersect, setdiff, setequal, union
  n_distinct(vax$as_of_date)
[1] 113
```

Zip Codes

ZIP codes are rather annoying things to work with as they are numeric but not in the conventional sense of doing math.

Just like dates we have special packages to help us work with

```
library(zipcodeR)
  geocode_zip('92037')
# A tibble: 1 x 3
 zipcode
            lat
                  lng
  <chr>
          <dbl> <dbl>
1 92037
           32.8 -117.
  reverse_zipcode(c('92037', "92109") )
# A tibble: 2 x 24
 zipcode zipcode_~1 major~2 post_~3 common_c~4 county state
                                                                lat
                                                                      lng timez~5
  <chr>
          <chr>
                     <chr>
                             <chr>
                                          <blook> <chr> <dbl> <dbl> <dbl> <chr>
1 92037
          Standard
                     La Jol~ La Jol~ <raw 20 B> San D~ CA
                                                               32.8 -117. Pacific
2 92109
          Standard
                     San Di~ San Di~ <raw 21 B> San D~ CA
                                                               32.8 -117. Pacific
# ... with 14 more variables: radius_in_miles <dbl>, area_code_list <blob>,
   population <int>, population_density <dbl>, land_area_in_sqmi <dbl>,
    water_area_in_sqmi <dbl>, housing_units <int>,
   occupied_housing_units <int>, median_home_value <int>,
   median_household_income <int>, bounds_west <dbl>, bounds_east <dbl>,
   bounds_north <dbl>, bounds_south <dbl>, and abbreviated variable names
    1: zipcode_type, 2: major_city, 3: post_office_city, ...
  # Subset to San Diego county only areas
  sd <- vax[ vax$county == "san Diego", ]</pre>
  nrow(sd)
```

[1] 0

```
library(dplyr)
  sd <- filter(vax, county == "San Diego")</pre>
  nrow(sd)
[1] 12091
  library(dplyr)
  sd.10 <- filter(vax, county == "San Diego" &
                    age5_plus_population > 10000)
  nrow(sd.10)
[1] 8588
  n_distinct(sd.10$zip_code_tabulation_area)
[1] 76
Q11. How many distinct zip codes are listed for San Diego County?
  n_distinct(sd$zip_code_tabulation_area)
[1] 107
Q12. What San Diego County Zip code area has the largest 12 + Population in this dataset?
  ind <- which.max(sd$age12_plus_population)</pre>
  sd$zip_code_tabulation_area [2]
[1] 92154
Q13. What is the overall average "Percent of Population Fully Vaccinated" value for all San
Diego "County" as of "2023-11-15"?
  vax$as_of_date[nrow(vax)]
[1] "2023-02-28"
```

```
sd.today <- filter(sd, as_of_date == "2023-02-28")
mean(sd.today$percent_of_population_fully_vaccinated, na.rm=T)</pre>
```

[1] 0.7400878

Q14. Using either ggplot or base R graphics make a summary figure that shows the distribution of Percent of Population Fully Vaccinated values as of "2022-11-15"?

```
hist(sd.today$percent_of_population_fully_vaccinated, breaks=20)
```

Histogram of sd.today\$percent_of_population_fully_vaccinates

Focus on UCSD/La Jolla

```
ucsd <- filter(sd, zip_code_tabulation_area=="92037")
ucsd[1,]$age5_plus_population</pre>
```

[1] 36144

 ${f Q15}$. Using ${f ggplot}$ make a graph of the vaccination rate time course for the 92037 ZIP code area:

```
library(ggplot2)
ucplot <- ggplot(ucsd) +
   aes(as_of_date, percent_of_population_fully_vaccinated) +
   geom_point()+
   geom_line(group=1) +
   xlab("Date")+
   ylab("Proportion of Population Fully Vaccinated")+
   ylim(c(0,1))
ucplot</pre>
```


Q16. Calculate the mean "Percent of Population Fully Vaccinated" for ZIP code areas with a population as large as 92037 (La Jolla) as_of_date "2022-11-15". Add this as a straight horizontal line to your plot from above with the geom_hline() function?

```
ave <- mean(vax.36$percent_of_population_fully_vaccinated)
ave</pre>
```

[1] 0.7213331

```
ucplot + geom_hline(yintercept = ave, col="red", linetype =2)
```


Q17. What is the 6 number summary (Min, 1st Qu., Median, Mean, 3rd Qu., and Max) of the "Percent of Population Fully Vaccinated" values for ZIP code areas with a population as large as 92037 (La Jolla) as_of_date "2022-11-15"?

```
summary(vax.36$percent_of_population_fully_vaccinated)
```

```
Min. 1st Qu. Median Mean 3rd Qu. Max. 0.3804 0.6457 0.7181 0.7213 0.7907 1.0000
```

Q18. Using ggplot generate a histogram of this data.

```
ggplot(vax.36)+
  aes(percent_of_population_fully_vaccinated)+
  geom_histogram()+
  xlim(0,1)
```

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Warning: Removed 2 rows containing missing values (`geom_bar()`).

Q19. Is the 92109 and 92040 ZIP code areas above or below the average value you calculated for all these above?

The 92109 and 92040 ZIP code areas are above the average value.

```
x <- filter(vax.36, zip_code_tabulation_area %in% c("92109", "92040"))
x$percent_of_population_fully_vaccinated</pre>
```

[1] 0.694572 0.550296

Q20. Finally make a time course plot of vaccination progress for all areas in the full data set with a age5_plus_population > 36144.

```
vax.36.all <- filter(vax, age5_plus_population > 36144)
ggplot(vax.36.all) +
   aes(as_of_date, percent_of_population_fully_vaccinated,
        percent_of_population_fully_vaccinated,
        group=zip_code_tabulation_area) +
   geom_line(alpha=0.2, color="blue") +
   labs(x="Date", y="Percent_Vaccinated",
        title="Vaccination_rate_across_California",
        subtitle="Only_areas_with_a_population_above_36k_are_shown") +
   geom_hline(yintercept = ave, linetype=2)
```

Warning: Removed 183 rows containing missing values (`geom_line()`).

