明朔科技智慧路灯部署策略

1、照明模组

1.1 石墨烯散热技术

石墨烯散热技术应用共有三种:石墨烯原位固化导热胶、石墨烯相变材料、石墨烯散热涂层,三种材料的应用示意图如下图所示。

- ① "石墨烯原位固化导热胶"具有超高的导热系数,能将 LED 芯片上的热量快速、高效的传导至散热器并且该导热胶寿命稳定性可达 10 年以上,是普通导热硅脂的 3 倍;
- ② "石墨烯相变材料"利用该材料的电子跃迁特性进行固液相变,实现散热器的均温作用;
- ③ "石墨烯散热涂层"可大幅提高散热器的热辐射性能,并且采用磨砂喷涂工艺可以增加散热面积,进一步提高散热能力;

石墨烯应用示意图

1.2 定制化的精准配光设计

根据不同道路参数及路灯等信息,通过配光设计模拟,结合相关样灯的安装测试并优化方案,最终完成定制化的精准配光设计,配光设计流程下图所示。

配光设计流程

专业的配光设计,配光均匀、有效光利用率高、眩光小,石墨烯 LED 路灯采用了"微米级数控加工工艺"、"特殊镀膜工艺"等世界先进的工艺技术手段实现了96%以上高透光率及地面照度效果的全线均匀性,提高了路面照度、解决了路面暗区的技术难题。

精准配光实际效果

1.3 保持原有高压钠灯光色,首创 1900K 仿钠灯光色 LED 模组

为保持与原有高压钠灯的光色一致, 通过对 LED 荧光粉及光谱的调节, 模拟

钠灯光色, 达到原有高压钠灯的视觉效果, 实际效果下图所示。

1900K 仿钠灯光色 LED 实际效果

1.4 石墨烯散热 LED 路灯与传统高压钠灯及普通 LED 路灯的参数对比

传统路灯、普通 LED 路灯和石墨烯散热 LED 路灯参数对比表如下表所示:

灯具 类型	额定功率	色温	显色 指数	有效	眩光	光衰	寿命	智能控制	配光	节能率
传统路灯	325 W	2500K	25	45LM/ W	大	5000H>6 0%	6000 H	无	· 较 差	0%
普通 LED 路灯	150 W	3000K-65 00K	60- 70	100LM /W	大	5000H<5 %	2000 OH	有	般	53%
石墨烯 散热 LED 路灯	100 W	1900K-65 00K	70- 80	150LM /W	小	5000H<2 %	5000 OH	有	优秀	70%

由此表可见传统的钠灯灯具路灯照明能耗高,寿命短,光效低、显色指数低、 光衰大、配光较差、光污染严重;普通 LED 路灯能耗低、寿命较长、光效良好、 光衰控制良好、但配光一般、有"斑马线"现象,较传统路灯节能率可达 53% 左右;而新材料散热 LED 路灯能耗极低,寿命长、光效高、光衰极低、配光精准、光利用率高,较传统路灯节能率可达 70%以上。

1.5 石墨烯散热 LED 路灯性能及经济效益数据对比

灯具类型	功耗	工作电压	色温		显色指数	有效光效	电源效率	光衰	寿命	启动时间	环保性	智能控制	节能率
高压钠灯	高	186V-250V	2000K-2	500K	20-25	40LM/W	70%	5000H > 60%	6000H	5min	汞污染	无	0%
普通LED路灯	较低	185V-265V	2700K-6500K		70	100LM/V	86%	5000H < 5%	20000H	0.1s	无	无	60%
石墨烯散热LED路灯	低	90V-305V	1900K-6500K		70-90	150LM/V	92%	5000H < 2%	50000H	0.1s	无	有	76%
灯具类型	光源功率 (W)	整灯功率 (W)	安装数量	总功料 (KW)					减排比较	比较		备注	
					用电量	量(度) 年	电费(元)	二氧化碳排放量(吨/年)		芍约标准煤(四	屯/年)	田江	
高压钠灯	250	325W	1000	000 325 3250		50 ¥	949000	783		0		电费按0.8元/度,平均	
普通LED路灯	130	150W	1000	150	150	00 ¥	438000	361		383.2	4	每天开灯10小时,	
石墨烯散热LED路灯	92	100W	1000	100	100	00 ¥	292000	241		492.8		年365天计算	
灯具类型		3年维护费用分析											
	光源维护费						维护人工费					合计	
	数量(蓋) 更换	(次) 灯	具费(テ	D 更换表	表(元) 数	(蓋)	更换(次)	工费(元)	维护费(元	E)	总维护费(元)
高压钠灯	100	0 3	U.	200	600	000	1000	3	50	150000		750000	
普通LED路灯	100	0 1		500		000	1000	1	50	50000		550000	
石墨烯散热LED路灯	100	1000 0		0			1000	0	50	0		0	

石墨烯散热 LED 路灯在光效、光衰、寿命等指标上远远高于普通 LED 路灯及传统钠灯;

以安装 1000 台路灯为例, 石墨烯散热 LED 路灯较普通 LED 路灯年节省电费 14.6万元, 较传统钠灯年节省电费 65.7万元;

以安装 1000 台路灯为例,石墨烯散热 LED 路灯较普通 LED 路灯年节省维护费 55 万元,较传统钠灯年节省电费 75 万元。

2、明朔独有的灯头改造/替换方案

常规智慧路灯建设有两种解决方案,一种是在原有灯杆上集成智能设备的灯杆改造方案,另一种是新建智慧新灯杆。明朔科技经过充分的需求调研和实施可行性分析,认为两种方式都不适于当前背景下的智能改造。因此提出更加经济、

更加安全, 更加先进和统一的明朔智慧路灯改造方案, 即路灯灯头的智慧改造和替换方案。

2.1 改造方案

基于石墨烯散热技术优势,不更换原有灯壳,直接替换明朔石墨烯散热大功率 LED 模组(如下图)。石墨烯散热模组的体积比传统 LED 模组的体积减小了3/4,重量减少了4/5,为空间局限的路灯增加了可利用空间。可在原有灯壳内,可集成单灯控制器/网关/各类传感器等,供电由路灯杆底部的直流电源供电,通信接入路灯杆底部的交换机,在不改变或者替换原有的灯头上,即可实现各种智能设备的部署。

不更换灯壳石墨烯散热模组替换

不更换灯壳智能模块集成

2.2 替换方案

明朔科技可以不替换灯头即可实现智能改造,但受制于原有灯头形状和尺寸限制,很难集成较多功能。为进一步实现智能升级,可直接将原有灯头替换为明朔风语系智慧灯头。产品采用模块化结构设计,并留有多个通用接口,可根据不同的需求和不同的应用场合、选择不同的功能模块,为业主以及其服务的最终使用者提供更好的服务和基础设施,为智慧城市建设奠定基础。

集成WiFi AP,LoRa 网关、IP功放等功能

外接防水网口

单灯控制器/电源

2.3 明朔风语系智慧灯头

天线外接接口

2.3.1 产品简介:

➤ 采用明朔森海 I 系 60W-150W 石墨烯散热模组, 高光效、超节能, 低光衰,

精准配光, 超长使用寿命;

- ▶ 基于石墨烯散热技术优势,照明模组体积减小,节省出灯头内部空间,内置集成摄像头、IP 广播、无线路灯控制器、LoRa 网关和工业无线 AP 功能;
- 采用铝制喷塑磨砂灯壳,多合一外置天线,三拼式自由组合衬板,造型美观,组合灵活;
- ▶ 自主开发多功能,兼具 LoRa 网关、IP 功放、工业 AP 功能,预留外置防水 网口和天线接口,可拓展更多功能集成。
- ▶ 内置高清摄像球机,20倍光学变倍,支持水平360度,垂直-15—90度旋转,拥有12米高空上帝视角;
- ▶ 内置 IP 广播,可以实现广播喊话、音乐播放、定时任务,通过网络远程控制,方便实用。
- 內置无线路灯控制器,远程控制照明模组开关、调光,自动收集电流、电压、功率数据,可通过设置定时任务实现二次节能。
- 智能设备内置,解决了传统路灯改造难点,无需更换灯杆,无需灯杆上开孔、加支架,单纯替换灯头即可实现智慧路灯改造,充分体现产品先进性、经济性、安全性和统一性特点。

2.3.2 智慧灯头可实现功能

1、功能性照明(智慧照明) 2、语音广播 3、治安监控 4、投影灯 5、无线 WiFi 6、网关 7、5G 基站 8、其他功能、尺寸满足要求的拓展功能

2.3.3 产品特点

统一性

根据灯杆外形、周边环境,灵活选择施工方案,使改造/替换后的灯头与原有灯杆和周围环境协调统一,尤其适用于各种新颖造型路灯。

经济性

可在原有灯头上进行改造,不需更换灯壳,降低了施工和采购成本;智能设备集成在灯头内,不需要安装支架,降低了安装成本,而且更加美观;

安全性

充分考虑设备放置安全,进行灯头防脱落、灯杆倾斜自动检测等设计;用电安全方面,进行高低压分仓设计,路灯供电和设备供电两路独立供电,电缆防盗、漏电监控、异常用电监控等设计;充分考虑信息安全,采用芯片硬件加密、传输加密、数据安全、异常检测主动隔离、可信接入双因认证、路灯光纤专网等,从不同层面,构建立体的信息安全机制和制度。

先进性

应用石墨烯新材料,集成各种新型智能设备,采用最前沿的物联网通信方式, 运用大数据和云计算技术,计算机管理平台可视化管理,人工智能指令识别和任务 处理,方方面面体现着当下最新科技应用;

2.4 道路生态系统部署拓扑图

智慧 灯头