Mathematical Statistics I Assignment 7 - Questions

Due by June 21, 2024

1. Let (X,Y) has the joint density

$$f(x, y; \theta) = \exp\{-(\theta x + y/\theta)\}, \quad x > 0, \quad y > 0.$$

- (a) For an iid sample of size n, show that the Fisher information is $I(\theta) = 2n/\theta^2$.
- (b) For the estimators

$$T = \sqrt{\sum Y_i / \sum X_i}$$
 and $U = \sqrt{\sum X_i \sum Y_i}$,

show that

- (i) the information in T alone is $[n/(2n+1)]I(\theta)$;
- (ii) the information in (T, U) is $I(\theta)$;
- (iii) (T, U) is jointly sufficient but not complete.
- 2. Let X_1, \ldots, X_n be i.i.d. with the p.d.f. $f_{\theta}(x) = \theta f_1(x) + (1 \theta) f_2(x)$, where f_j 's are two different known p.d.f.'s and $\theta \in (0, 1)$ is unknown.
 - (a) Provide a necessary and sufficient condition for the likelihood equation to have a unique solution and show that if there is a solution, it is the MLE of θ .
 - (b) Derive the MLE of θ when the likelihood equation has no solution.
- 3. Suppose that T is a UMVUE of an unknown parameter θ . Show that T^k is a UMVUE of $E\left(T^k\right)$, where k is any positive integer for which $E\left(T^{2k}\right) < \infty$.
- 4. Let W_n denote a random variable with mean μ and variance b/n^p , where p > 0, μ , and b are constants (not functions of n). Prove that W_n converges in probability to μ .
- 5. Let X_1, \ldots, X_n be i.i.d. random variables having the p.d.f.

$$f_{\theta}(x) = \exp \left\{ -\left(\frac{x-\mu}{\sigma}\right)^4 - \xi(\theta) \right\},$$

where $\theta = (\mu, \sigma) \in \Theta = \mathcal{R} \times (0, \infty)$. Show that $\mathcal{P} = \{P_{\theta} : \theta \in \Theta\}$ is an exponential family, where P_{θ} is the joint distribution of X_1, \ldots, X_n , and that the statistic $T = \left(\sum_{i=1}^n X_i, \sum_{i=1}^n X_i^2, \sum_{i=1}^n X_i^3, \sum_{i=1}^n X_i^4\right)$ is minimal sufficient for $\theta \in \Theta$.