Problem 1

1.
$$X_{n+1} = \begin{pmatrix} Y_{n+1}, & X_n = 0 \\ Y_{n+1} + X_n - 1, & X_n > 0 \end{pmatrix}$$

2. $S = \{0,1,2,3,4,\dots\}, \{X_n, n \ge 0\}.$ We have that $\{X_n, n \ge 0\}$ is a DTMC if the following properties are true:

(i)
$$\forall$$
 $n \ge 0, X_n \in S$

(ii)
$$\forall n \ge 0$$
 and $\forall i, j \in S$, $P(X_{n+1}|X_n) = P(X_{n+1}|X_n, X_{n-1}, X_{n-2}, ..., X_0)$

Claim 1: $\{X_n, n \ge 0\}$ satisfies (i):

It follows from the definition of X_{n+1} on exercise 1 that for all n $X_n \in S = \{0,1,2,3,...\}$.

Claim 2: $\{X_n, n \ge 0\}$ satisfies (ii):

Without loss of generality, assume $X_n = Y_n + X_{n-1} - 1$, $X_n \ge 1$.

Let $n \ge 1$. Note that

$$\begin{array}{l} P_{\left(X_{n+1} \middle| X_{n}\right)} = P_{\left(X_{n+1} = Y_{n+1} + X_{n} - 1 \middle| X_{n} = Y_{n} + X_{n-1} - 1\right)} \\ \rightarrow P_{\left(X_{n+1} \middle| X_{n}\right)} = P_{\left(Y_{n+1} = X_{n+1} - X_{n} + 1 \middle| Y_{n} = X_{n} - X_{n-1} + 1\right)} \end{array}$$

Let $X_{n+1}-X_n+1=k_1$ and let $X_n-X_{n-1}+1=k_2.$

variables. Also note that for any $n \ge 1$, we can write Y_n in terms of X_n .

Since
$$\{Y_n, n \geq 1\}$$
 are iid random variables, we also have
$$P\big(Y_{n+1}|Y_n, Y_{n-1}, Y_{n-2}, ..., Y_1\big) = \frac{P(Y_{n+1} \cap Y_n \cap Y_{n-1} \cap ... \cap Y_1)}{P(Y_n \cap Y_{n-1} \cap ... \cap Y_1)} = P\big(Y_{n+1}\big) \quad \ (**)$$

$$P(X_{n+1}|X_n, X_{n-1}, ..., X_1) = P(Y_{n+1}|Y_n, Y_{n-1}, ..., Y_1)$$

$$P(X_{n+1}|X_n, X_{n-1}, ..., X_1) = P(Y_{n+1}|Y_n, Y_{n-1}, ..., Y_1) = P(Y_{n+1}|Y_n, Y_{n-1}, ..., Y_n)$$

From (*) and from (**), it follows that:
$$P(X_{n+1}|X_n,X_{n-1},...,X_1) = P(Y_{n+1}|Y_n,Y_{n-1},...,Y_1) = P(Y_{n+1})$$
 But $P(X_{n+1}|X_n) = P(Y_{n+1})$
$$\rightarrow P(X_{n+1}|X_n,X_{n-1},...,X_1) = P(X_{n+1}|X_n) = P(Y_{n+1}) \text{ where } Y_{n+1} = X_{n+1} - X_n + 1$$
 This proves claim ii.

Therefore $\{X_n, n \ge 0\}$ is a DTMC.

3.:

3.
$$P = X_n = 0 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot \cdots$$
 $X_{n-1} = 0 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot \cdots$
 $X_{n-1} = 0 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot \cdots$
 $X_{n-1} = 0 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot \cdots$
 $X_{n-1} = 0 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot \cdots$
 $X_{n-1} = 0 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot \cdots$
 $X_{n-1} = 0 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot \cdots$
 $X_{n-1} = 0 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot \cdots$
 $X_{n-1} = 0 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot \cdots$
 $X_{n-1} = 0 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot \cdots$
 $X_{n-1} = 0 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot \cdots$
 $X_{n-1} = 0 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot \cdots$
 $X_{n-1} = 0 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot \cdots$
 $X_{n-1} = 0 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot \cdots$
 $X_{n-1} = 0 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot \cdots$
 $X_{n-1} = 0 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot \cdots$
 $X_{n-1} = 0 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot \cdots$
 $X_{n-1} = 0 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot \cdots$
 $X_{n-1} = 0 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot \cdots$
 $X_{n-1} = 0 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot \cdots$
 $X_{n-1} = 0 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot \cdots$
 $X_{n-1} = 0 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot \cdots$
 $X_{n-1} = 0 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot \cdots$
 $X_{n-1} = 0 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot \cdots$
 $X_{n-1} = 0 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot \cdots$
 $X_{n-1} = 0 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot \cdots$
 $X_{n-1} = 0 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot \cdots$
 $X_{n-1} = 0 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot \cdots$
 $X_{n-1} = 0 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot \cdots$
 $X_{n-1} = 0 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot \cdots$
 $X_{n-1} = 0 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot \cdots$
 $X_{n-1} = 0 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot \cdots$
 $X_{n-1} = 0 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot \cdots$
 $X_{n-1} = 0 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot \cdots$
 $X_{n-1} = 0 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot \cdots$
 $X_{n-1} = 0 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot \cdots$
 $X_{n-1} = 0 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot \cdots$
 $X_{n-1} = 0 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot \cdots$
 $X_{n-1} = 0 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot \cdots$
 $X_{n-1} = 0 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot \cdots$
 $X_{n-1} = 0 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot \cdots$
 $X_{n-1} = 0 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot \cdots$
 $X_{n-1} = 0 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot \cdots$
 $X_{n-1} = 0 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot \cdots$
 $X_{n-1} = 0 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot \cdots$
 $X_{n-1} = 0 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot \cdots$
 $X_{n-1} = 0 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot \cdots$
 $X_{n-1} = 0 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot \cdots$
 $X_{n-1} = 0 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot \cdots$
 $X_{n-1} = 0 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot \cdots$
 $X_{n-1} = 0 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot \cdots$
 $X_{n-1} = 0 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot \cdots$
 $X_{n-1} = 0 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot \cdots$
 $X_{n-1} = 0 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot \cdots$
 $X_{n-1} = 0 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot \cdots$
 $X_{n-1} = 0 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot \cdots$
 $X_{n-1} = 0 \cdot 1 \cdot 2 \cdot 3 \cdot \cdots$
 $X_{n-1} = 0 \cdot 1 \cdot 2 \cdot 3 \cdot \cdots$
 $X_{n-1} = 0 \cdot 1 \cdot 2$

Then we have the following for the transition matrix P:

$$P = [p_{i,j}] \text{ where } p_{i,j} = \begin{cases} \alpha_j, & i = 0 \text{ or } i = 1 \\ 0, & i \ge j+2 \ge 2 \\ \alpha_{j+1-i}, & 2 \le i \le j+1 \end{cases}$$

Where $\alpha_k = P(\text{production at time } n = k), k = 0,1,2,3 ...$

Note that $p_{i,j}$ is well defined since:

Case i = 0 or i = 1:

If the inventory of X_n is i, where i=0 or i=1, then by exercise 1 we have that $X_{n+1}=Y_{n+1}$ in either case.

Since $\alpha_k = P(Y_n = k)$, and production happens after the demand is either met or not met, we have that $p_{i,j} = P(Y_n = j) = \alpha_j$ for i = 0 or i = 1.

Case $i \ge j + 2$:

Note that $p_{i,j}$ means going from $X_n=i$ to $X_{n+1}=j$, where $i\geq j+2>0$. Note that this is impossible since if we have i items in the inventory at time X_n , then the demand is always met (since $i\geq j+2\geq 2$). Note that $X_{n+1}=j$ where $i\geq j+2$ is a contradiction with the formula for X_{n+1} derived in exercise 1, since if $X_n=i$,

then
$$X_{n+1} = Y_{n+1} + X_n - 1 = Y_{n+1} + i - 1 = j \rightarrow i \geq Y_{n+1} + i - 1 + 2 = Y_{n+1} + i + 1 \rightarrow 0 \geq Y_{n+1} + 1$$
 which is a contradiction since $Y_{n+1} \in \{0,1,2,3,...\}$. Hence $p_{i,j} = 0$ if $i \geq j+2 > 0$

Case
$$2 \le i \le j + 1$$
:

Then $p_{i,j}$ means going from $X_n = i$ to $X_{n+1} = j$ where $2 \le i \le j+1$ is satisfied. Since

 $i \ge 2$, the demand at time n+1 is always met and $X_n = i \ge 2$.

By using the relation derived in problem 1, we have:

$$\begin{split} X_{n+1} &= Y_{n+1} + X_n - 1 = Y_{n+1} + i - 1 = j \\ &\to Y_{n+1} = j - i + 1 \ge 0 \end{split}$$

Then, by exercise 2, we have:

$$p_{(i,j)}=P(X_{n+1}=j|X_n=i)=P(Y_{n+1}=j-i+1)=\alpha_{j-i+1}, \text{where } j+1\geq i\geq 2,$$
 This proves claim 2.

$$: \{X_n, n \geq 0\} \text{ is a DTMC}$$

Problem 2

1. $\{Y_n, n \ge 1\}, Y_n$ is the size of batch demand at discrete time $n \ge 1$. $Y_n \in S =$ {0,1,2,3, ..., k, ...}

$$\rightarrow X_{n+1} = \begin{cases} X_n + 1 - Y_{n+1}, & X_n + 1 > Y_{n+1} \\ 0, & otherwise \end{cases}$$

2. $S = \{0,1,2,3,4,...\}$ $\{X_n, n \geq 0\}.$

We have that $\{X_n, n \geq 1\}$ is a DTMC if the following properties are true:

(i)
$$\forall$$
 $n \ge 0, X_n \in S$

(ii)
$$\forall n \ge 0$$
 and $\forall i, j \in S$, $P(X_{n+1}|X_n) = P(X_{n+1}|X_n, X_{n-1}, X_{n-2}, ..., X_0)$

Claim 1: $\{X_n, n \ge 0\}$ satisfies (i):

Since each X_n , $n \ge 0$ is a nonnegative integer, $X_n \in S = \{0,1,2,3,4,...\}$

This proves claim 1.

Claim 2: $\{X_n, n \ge 0\}$ satisfies (ii):

If
$$X_{n+1} = 0$$
, then $P(X_{n+1} = 0 | X_n) = P(Y_{n+1} \ge X_n + 1)$

Let $k = X_n + 1$. Then:

$$P(Y_{n+1} \ge k) = \sum_{i=0}^{\infty} P(Y_{n+1} = k + i) = \sum_{i=0}^{\infty} \alpha_{k+i}$$

 $P(Y_{n+1} \geq k) = \sum_{i=0}^{\infty} P(Y_{n+1} = k+i) = \sum_{i=0}^{\infty} \alpha_{k+i}$ The above is equivalent to $P(X_{n+1} = 0 | X_n, X_{n-1}, \dots, X_0)$ since

$$P(X_{n+1} = 0 | X_n, X_{n-1}, \dots, X_0) = P(Y_{n+1} \ge X_n + 1) = \sum_{i=0}^{\infty} \alpha_{k+i}$$

If
$$X_{n+1} = X_n + 1 - Y_{n+1}$$
, then $Y_{n+1} = X_n + 1 - X_{n+1}$

If $X_{n+1}=X_n+1-Y_{n+1}$, then $Y_{n+1}=X_n+1-X_{n+1}$. Note $X_n+1-X_{n+1}\geq 0$ is true, since the inequality $X_n+1\geq X_{n+1}$ is always true.

$$\begin{array}{l} \rightarrow P(X_{n+1}|X_n) = P(X_{n+1} = X_n + 1 - Y_{(n+1)}|X_n = X_{n-1} + 1 - Y_n) \\ = P(Y_{n+1} = X_n + 1 - X_{n+1}|Y_n = X_{n-1} + 1 - X_n) = \\ P(Y_{n+1}|Y_n) = \frac{P(Y_{n+1} \cap Y_n)}{P(Y_n)} = P(Y_{n+1}).(*) \end{array}$$

Similarly,
$$P(X_{n+1}|X_n,\dots,X_1) = P(Y_{n+1}|Y_n,\dots Y_1) = P(Y_{n+1})$$
 (**) Hence by (*) and by (**) we get $P(X_{n+1}|X_n) = P(X_{n+1}|X_n,\dots,X_1) = P(Y_{n+1})$ This proves claim (ii)

$$:= \{X_n, n \geq 0\}$$
 is a DTMC

3. Transition Probability Matrix:

Like problem 1, let $\alpha_k = P(Y_n = k)$, $n \ge 1$, k = 0,1,2,3...

Problem 3

1. Show $\{X_n, n \ge 1\}$ is a DTMC.

Claim 1: $X_n \in S = \{1, 2, 3, ..., k\} \forall n \ge 1$:

The definition of X_n = drug i administered to patient X at time n, $i \in S$.

 $X_n \in S \ for \ all \ n \geq 1.$

Claim proved.

Claim 2: $P(X_{n+1}|X_n) = P(X_{n+1}|X_n, ..., X_0)$:

Let i, j be any two drugs from the state space $S = \{1, 2, ..., k\}$.

Then
$$P(X_{n+1}=j|X_n=i)=\frac{P(X_{n+1}\cap X_n)}{P(X_n)}=P(X_{n+1})$$
 (*) since the successive patients $\{X_n,n\geq 1\}$ are independent of each other.

Similarly,
$$P(X_{n+1} = j | X_n = i, X_{n-1}, ..., X_0) = \frac{P(X_{n+1} | X_n, ..., X_0)}{P(X_n, X_{n-1}, ..., X_0)} = P(X_{n+1}).(**)$$
 $\rightarrow P(X_{n+1} = j | X_n = i, X_{n-1}, ..., X_0) = P(X_{n+1} | X_n) (by(*)and(**))$
This proves claim 2.

$$: \{X_n, n \ge 1\}$$
 is a DTMC.

2. Derive the transition matrix.

Commented [FMV1]: COMPLETE THIS

$$P_{kbyk} = \begin{bmatrix} i \mid j & 1 & 2 & 3 & 4 & \cdots & k-1 & k \\ 1 & p_1 & 1-p_1 & 0 & 0 & \cdots & 0 & 0 \\ 2 & 0 & p_2 & 1-p_2 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\ k-1 & 0 & 0 & 0 & 0 & \cdots & p_{k-1} & 1-p_{k-1} \\ k & 1-p_k & 0 & 0 & 0 & \cdots & 0 & p_k \end{bmatrix}$$
 In essence, we have the following:

In essence, we have the following:
$$p_i, \quad i=j \\ P = \begin{bmatrix} p_{ij} \end{bmatrix} = \begin{cases} 1-p_i, & j=i+1 \\ 1-p_k, & i=k \ and \ j=1 \\ 0, & otherwise \end{cases}$$
 Problem 4

1. $\{X_n, n \ge 0\}X_n$: number of white balls at urn A For 0 < i < N, we have:

For
$$0 < i < N$$
, we have:
$$\begin{cases} \frac{(N-i)^2}{N^2}, & j=i+1 \\ 2\left(\frac{i}{N}*\frac{N-i}{N}\right), & j=i \\ \frac{i}{N}, & j=i-1 \\ 1, & i=N \ and \ j=i-1 \\ 0, & otherwise \end{cases}$$

$$P_{N+1byN+1} = \begin{bmatrix} i/j & 0 & 1 & 2 & 3 & 4 & 5 & \cdots & N-2 & N-1 & N \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\ 1 & q_i & r_i & p_i & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\ 1 & 2 & 0 & q_i & r_i & p_i & 0 & 0 & \cdots & 0 & 0 & 0 \\ 3 & 0 & 0 & q_i & r_i & p_i & 0 & \cdots & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \cdots & \vdots & \vdots & \vdots & \vdots \\ N-1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots & q_i & r_i & p_i \\ N & 0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 \end{bmatrix}$$

Then for N=10 the transition probability P is:

	1	2	3	4	5	6	7	8	9	10	11
1	0	1.0000	0	0	0	0	0	0	0	0	0
2	0.0100	0.1800	0.8100	0	0	0	0	0	0	0	0
3	0	0.0400	0.3200	0.6400	0	0	0	0	0	0	0
4	0	0	0.0900	0.4200	0.4900	0	0	0	0	0	0
5	0	0	0	0.1600	0.4800	0.3600	0	0	0	0	0
6	0	0	0	0	0.2500	0.5000	0.2500	0	0	0	0
7	0	0	0	0	0	0.3600	0.4800	0.1600	0	0	0
8	0	0	0	0	0	0	0.4900	0.4200	0.0900	0	0
9	0	0	0	0	0	0	0	0.6400	0.3200	0.0400	0
10	0	0	0	0	0	0	0	0	0.8100	0.1800	0.0100
11	0	0	0	0	0	0	0	0	0	1.0000	0

NOTE: since this matrix was generated with MATLAB, for $i,j \in S = \{0,1,\dots,10\}$, then the location (i+1,j+1) in the matrix above will give you $p_{i,j}$.

2. Since $X_0 = 10 \rightarrow N = 10$ white marbles in urn A.

For n=0:

 $E(X_0) = 10$ since is given.

For n=5 transitions, X_5 have only five possible states i.e. $X_5 \in \{5,6,7,8,9,10\} \subset S$.

 $\mathrm{E}(\mathrm{X}_5) = \Sigma_{j=5}^{10} (X_5 = j) * P(X_5 = j) = \Sigma_{j=5}^{10} j * P(X_5 = j | X_0 = 10). \text{ where the marginal }$ probability is:

 $\Sigma_{i\in S}P(X_5=j|X_0=i)$. But $X_0=10\to P(X_5=j)=P(X_5=j|X_0=10)$. By theory, we have $a^n=a*P^n$ is the marginal probability of X_5 .

Hence: