目で見てわかるビジネス統計学 ~Excel実践編~

第1回

「データの要約と可視化」

講師紹介

・氏名

・ (博士) 門田 実 (かどた みのる)

· 学歴

- ・北海道大学, University of Rhode Island 学士(理学)
- ・University of Rhode Island, New York University 修士(数学・物理)
- New York University, Columbia University 博士(応用数学)

職歴

- ·New York University 数学講師
- ・IPRC(国際太平洋研究センター) 気候変動のモデリング、中期気候予測
- ・近畿大学 21世紀GCOEプログラム研究員(農学部)
- ・Temple University, Japan 准教授(経済学部)
- LINE Corp Data Scientist
- ·首都大学 物理非常勤講師
- ·東洋大学 数学非常勤講師

• 趣味

- ウルトラマラソン(サハラ250km横断)
- ブラジリアン柔術

Copyright © 2018 Wakara Corp. All Rights Reserved.

ビジネスデータと統計学

うちの社では月末会議で、その月の 数字集計を行い、全員で課題点を確 認し、共有しているので、統計学な ど難しいことは必要ないのでは?

ある月の売上

その翌月の売上

その翌翌月の売上

2年が経過して、振り返ってみると

平均への回帰

フランシス・ゴルドン (1822~1911)

世の中の大半の物事はある平均を持っていて、何もしなければ勝手に平均に「戻る」(回帰する)性質がある。

ビジネスにおける目標?

フランシス・ゴルドン (1822~1911)

世の中の大半の物事はある平均を持っていて、何もしなければ 勝手に平均に「戻る」(回帰す る)性質がある。 「平均への回帰」の呪縛から 逃れられること

ビジネス指標

統計学で何ができるのか?

統計学でできること その1

「施策がうまく 機能しているかを 検証する」

実データ

検定

t-検定: 分散が等しくないと仮定した 2 標本による検定

	売上(施策前)	売上(施策後)
平均	612.6229508	671.9430894
分散	17644.00542	25759.48034
観測数	122	123
仮説平均との差異	0	
自由度	235	
t	-3.152608655	
P(T<=t) 片側	0.000914402	
t 境界值 片側	1.651363544	
P(T<=t) 両側	0.001828803	
t 境界值 両側	1.970110062	

統計学で何ができるのか?

統計モデリングで最適解を狙う

日時	Sales	広告1	広告 2	広告3	広告4	広告 5
6月1日	726	0	15	20	23	0
6月2日	639	23	13	20	12	О
6月3日	674	21	11	20	О	0
6月4日	743	20	12	О	10	12
6月5日	755	21	14	0	1	14
6月6日	733	21	2	О	12	14

施策ごとの影響度の大小関係を見ることができる

データ分析マップ

データ分析の実例

問題:このデータから何がわかるのか?

ID	満足度	他者評価	プロジェクト数	労働時間 (月平均)	労働時間 (会社内)	Work accident	退職・在職	過去5年の 昇進	所属部署	給料
1019	0.36	0.47	2	136	3	0	退職	無	accounting	low
6830	0.68	0.51	5	158	3	0	在職	無	technical	medium
9653	0.53	0.64	2	109	3	0	在職	無	hr	medium
12208	0.78	0.87	4	228	5	0	退職	無	support	low
4816	0.92	0.56	4	170	3	0	在職	無	marketing	medium
5637	0.98	0.92	4	175	2	0	在職	無	IT	medium
5305	0.69	0.83	4	264	3	0	在職	無	technical	low
4823	0.66	0.85	3	266	5	0	在職	無	sales	low
9335	0.79	0.49	4	163	3	0	在職	無	sales	high
12400	0.1	0.87	6	250	4	0	退職	無	sales	low
12205	0.87	0.9	5	254	6	0	退職	無	support	low

データの分類

ID	満足度	他者評価	プロジェクト数	労働時間 (月平均)	労働時間 (会社内)	Work accident		過去5年の 昇進	所属部署	給料
1019	0.36	0.47	2	136	3	0	退職	無	accounting	low
6830	0.68	0.51	5	158	3	0	在職	無	technical	medium
9653	0.53	0.64	2	109	3	0	在職	無	hr	medium
12208	0.78	0.87	4	228	5	0	退職	無	support	low
4816	0.92	0.56	4	170	3	0	在職	無	marketing	medium

数量データ

- 平均值
- 中央値
- 最大値
- 最小值
- 標準偏差
- 25%、75点
- ヒストグラム

質的データ

- 円グラフ
- クロス集計

データを分析する前に

何を目的として分析するのか?

データを分析するとは

データの要約

データ間の関係性

予測する

結果の検証

問題解決のための哲学

分解と統合

データを分析する前に

何を目的として分析するのか?

ID	満足度	他者評価	プロジェクト数	労働時間 (月平均)	労働時間 (会社内)	Work accident	退職・在職	過去5年の 昇進	所属部署	給料
1019	0.36	0.47	2	136	3	0	退職	無	accounting	low
6830	0.68	0.51	5	158	3	0	在職	無	technical	medium
9653	0.53	0.64	2	109	3	0	在職	無	hr	medium
12208	0.78	0.87	4	228	5	0	退職	無	support	low
4816	0.92	0.56	4	170	3	0	在職	無	marketing	medium
						•				

社員は会社にしているのだろうか?

(レベル1 集計)

量的データの集計

_										
ID	満足度	他者評価	プロジェクト数	労働時間 (月平均)	労働時間 (会社内)	Work accident		過去5年の 昇進	所属部署	給料
1019	0.36	0.47	2	136	3	0	退職	無	accounting	low
6830	0.68	0.51	5	158	3	0	在職	無	technical	medium
9653	0.53	0.64	2	109	3	0	在職	無	hr	medium
12208	0.78	0.87	4	228	5	0	退職	無	support	low
4816	0.92	0.56	4	170	3	0	在職	無	marketing	medium

データを分析するとは

データの要約

満足度

データ区間	頻度
0~0.2	1478
0.2~0.4	1646
0.4~0.6	3605
0.6~0.8	4268
0.8~1.0	4002

データを分析する前に

何を目的として分析するのか?

ID	満足度	他者評価	プロジェクト数	労働時間 (月平均)	労働時間 (会社内)	Work accident	退職・在職	過去5年の 昇進	所属部署	給料
1019	0.36	0.47	2	136	3	0	退職	無	accounting	low
6830	0.68	0.51	5	158	3	0	在職	無	technical	medium
9653	0.53	0.64	2	109	3	0	在職	無	hr	medium
12208	0.78	0.87	4	228	5	0	退職	無	support	low
4816	0.92	0.56	4	170	3	0	在職	無	marketing	medium
	•	•				•				

このデータからどの社員が退職するか予測することは可能なのか?

(レベル2 検定)

(レベル3 予測モデルの設計)

質的データの集計

ID	満足度	他者評価	プロジェクト数	労働時間 (月平均)	労働時間 (会社内)	Work accident	退職・在職	過去5年の 昇進	所属部署	給料
1019	0.36	0.47	2	136	3	0	退職	無	accounting	low
6830	0.68	0.51	5	158	3	0	在職	無	technical	medium
9653	0.53	0.64	2	109	3	0	在職	無	hr	medium
12208	0.78	0.87	4	228	5	0	退職	無	support	low
4816	0.92	0.56	4	170	3	0	在職	無	marketing	medium

データの可視化

退職	在職
3571	11428
23.8%	76.2%

データを分析するとは

データ間の関係性

ID	満足度	他者評価	プロジェクト数	労働時間 (月平均)	労働時間 (会社内)	Work accident	7 T▽ H□V • X → H□V	過去5年の 昇進	所属部署	給料
1019	0.36	0.47	2	136	3	0	退職	無	accounting	low
6830	0.68	0.51	5	158	3	0	在職	無	technical	medium
9653	0.53	0.64	2	109	3	0	在職	無	hr	medium
12208	0.78	0.87	4	228	5	0	退職	無	support	low
4816	0.92	0.56	4	170	3	0	在職	無	marketing	medium
			-							

満足度	他者評価	プロジェクト数	労働時間 (月平均)	労働時間 (会社内)	Work accident	退職か在職	過去5年 昇進(有無)	所属部署	給料
0.58	0.55	4	202	3	0	在職	無	IT	medium
0.67	0.74	3	226	3	0	在職	無	product_mng	low
0.11	0.91	7	287	4	0	退職	無	sales	low
0.37	0.5	2	135	3	0	退職	無	product_mng	low
0.93	0.79	5	241	4	0	在職	無	marketing	high
0.4	0.38	3	280	2	0	在職	無	marketing	low
0.23	0.64	5	150	5	0	在職	無	hr	medium
0.83	0.98	5	189	4	1	在職	無	management	low
0.2	0.58	3	209	5	0	在職	無	hr	medium
0.95	0.7	4	267	3	1	在職	無	technical	low
0.11	0.8	6	282	4	0	退職	無	technical	medium
0.7	0.5	6	214	5	0	在職	無	support	medium
0.43	0.51	5	168	4	0	在職	無	product_mng	medium
0.46	0.75	6	276	6	0	在職	無	support	low
0.67	0.8	4	137	2	0	在職	無	support	medium
0.63	0.88	4	260	2	0	在職	無	sales	low
0.99	0.92	5	213	2	0	在職	無	hr	high
0.24	0.94	4	146	4	0	在職	無	product_mng	medium
0.55	0.82	4	134	6	0	在職	無	technical	medium
0.04	0.50	2	240	2	0	-A 18±0	Arr		

	accounting	hr	IT	management	marketing	product_mng	sales	support	technical
0.8-1									
0.6-0.8									
0.4-0.6									
0.2-0.4									
0-0.2									

		accounting	hr	ΙΤ	management	marketing	product_mng	sales	support	technical
(0.8-1	30	28	43	14	33	38	150	91	129
0	.6-0.8	12	22	26	11	20	30	128	72	62
0	.4-0.6	59	80	66	25	73	56	311	154	177
0	.2-0.4	44	35	50	13	36	34	186	103	126
	0-0.2	59	50	88	28	41	40	239	135	203

	accounting	hr	IT	management	marketing	product_mng	sales	support	technical
0.8-1	30	28	43	14	33	38	150	91	129
0.6-0.8	12	22	26	11	20	30	128	72	62
0.4-0.6	59	80	66	25	73	56	311	154	177
0.2-0.4	44	35	50	13	36	34	186	103	126
0-0.2	59	50	88	28	41	40	239	135	203

エクセルハンズオン

- ・ 基本統計量の計算
- 移動平均法
- ・データの正規化
- クロス集計

平均と標準偏差

- 平均と標準偏差について理解を深める
- 平均と標準偏差を使った分析
- 平均を使った分析事例 (移動平均法)

どつちが優秀なのか?

問題

テストの結果から優秀な人材を選別しなければならない時、あなたはどのように選ぶでしょうか?

- 1 点数をそのまま比べる
- 2 点数と平均点との差を比べる
- 3 標準偏差(偏差値)を比べる

どっちが優秀なのか?

標準偏差

どっちが優秀なのか?

大谷

ベーブールース

50点 点数と平均点を比べる 50点

どつちが優秀なのか?

大谷

ベーブールース

カール・ピアソン

遺伝の研究をしていました

標準偏差を使って、 集団のばらつきを数字で表す

標準偏差

$$\sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2}$$

難しく見えるけど、考え方は単純

標準偏差をイメージする

株価のヒストグラム

100人のテスト結果のヒストグラム

100人のテスト結果のヒストグラム

偏差值

偏差値 =
$$\frac{$$
得点 $-$ 平均値 σ

偏差値が高くなる条件

偏差値

偏差値 =
$$\frac{$$
得点 $-$ 平均値 $}{\sigma}$ \times $10 + 50$

こんな使われ方をするとは。。。

偏差値を求める

偏差値を求める

どっちが優秀なのか?

大谷

ベーブールース

50点 点数と平均点を比べる 50点

70

偏差値を比べる

63.3

正規分布

正規分布

移動平均法

移動平均法を使ったトレンドの抽出

課題:「アクセス数のトレンドを推定せよ」

移動平均法を使ったトレンドの抽出

・ 時系列データ = トレンド + 周期変動 + 不規則変動

ベースラインの推定

