Daten Transformation mit dplyr

rstatsZH - Data Science mit R

Lars Schöbitz

Oct 8, 2024

Lernziele (für diese Woche)

- 1. Die Lernenden können fünf Funktionen aus dem R-Paket dplyr anwenden, um eine Teilmenge von Daten zur Verwendung in einer Tabelle oder einem Diagramm zu erzeugen.
- 2. Die Lernenden können Funktionen aus dem R-Paket dplyr anwenden, um Daten mittels deskriptiver Statistik zusammenzufassen.

Datentransformation mit dplyr

Eine Grammatik der Datenmanipulation...

... basierend auf den Konzepten von Funktionen als Verben, die Dataframes manipulieren

- filter: wählt Zeilen aus, die den Kriterien entsprechen
- arrange: Zeilen neu ordnen
- select: Spalten nach Namen auswählen
- rename: Spalten umbenennen
- mutate: neue Variablen hinzufügen
- summarise: Variablen auf Werte reduzieren
- group_by: für gruppierte Operationen
- ... (viele mehr)

dplyr rules

Regeln der dplyr-Funktionen:

- Das erste Argument ist immer ein Dataframe.
- Nachfolgende Argumente sagen, was mit diesem Dataframe geschehen soll.
- Gibt immer einen Dataframe zurück.
- Nichts wird an Ort und Stelle verändert.

Funktionen & Argumente

- Funktion: filter()
- Argument: .data =
- Argumente, die folgen: year == 2007 Was ist mit den Daten gemacht wird

Objekte

- Funktion: filter()
- Argument: .data =
- Argumente, die folgen: year == 2007 Was ist mit den Daten gemacht wird
- Daten (Objekt): gapminder_2007

Operatoren

```
1 library(dplyr)
2
3 gapminder_2007 <- gapminder |>
4 filter(year == 2007)
```

- Funktion: filter()
- Argument: .data =
- Argumente, die folgen: year == 2007 Was ist mit den Daten gemacht wird
- Daten (Objekt): gapminder_2007
- Zuweisungsoperator: <-
- Pipe Operator: |>

Grafik

```
1 library(dplyr)
2
3 gapminder_2007 <- gapminder |>
4 filter(year == 2007)
5
6 ggplot(data = gapminder_2007,
7 mapping = aes(x = continent,
8 y = lifeExp,
9 fill = continent)) +
10 geom_boxplot(outlier.shape = NA)
```


Wir sind dran: Treibhausgasemissionen im Kanton Zürich

Daten

```
1 treibhausgase <- read_csv("daten/ktzh-treibhausgase.csv")

1 head(treibhausgase)
```

jahr	hauptgruppe	untergruppe	thg	thg_agg	emission
1990	Abwasser und Abfall	Abfalldeponie	CO2	CO2eq	0
1991	Abwasser und Abfall	Abfalldeponie	CO2	CO2eq	0
1992	Abwasser und Abfall	Abfalldeponie	CO2	CO2eq	0
1993	Abwasser und Abfall	Abfalldeponie	CO2	CO2eq	0
1994	Abwasser und Abfall	Abfalldeponie	CO2	CO2eq	0
1995	Abwasser und Abfall	Abfalldeponie	CO2	CO2eq	0

```
1 ncol(treibhausgase)
```

[1] 6

```
1 nrow(treibhausgase)
```

[1] 1980

Data

- 1 treibhausgase |>
- 2 distinct(hauptgruppe, untergruppe)

hauptgruppe	untergruppe			
Abwasser und Abfall	Abfalldeponie			
Abwasser und Abfall	Abwasserbehandlung			
Abwasser und Abfall	Abfallverbrennung			
Landwirtschaft	Fermentation bei der Verdauung			
Landwirtschaft	Wirtschaftsdünger-Management			
Landwirtschaft	Landwirtschaftliche Böden			
Verkehr	Motorräder			
Verkehr	Personenwagen			
Verkehr	Linien-/Omnibusse			
Verkehr	Reisebusse			
Verkehr	Lastkraftwagen			
Verkehr	Sattelzugmaschinen			
rstatszh-k009.github.io/website/				

hauptgruppe	untergruppe
Landwirtschaft	Land- und forstwirtschaftliche Maschinen
Industrie	Industrielle Fahrzeuge und Baumaschinen
Verkehr	Schiene
Verkehr	Schiff
Gebäude	Heizkessel Dienstleistungen Heizöl
Gebäude	Heizkessel Haushalte Heizöl
Gebäude	Heizkessel Dienstleistungen Gas
Gebäude	Heizkessel Haushalte Gas
Abwasser und Abfall	KVA
Industrie	Industrielle Prozesse nichtenergetisch
Industrie	Industrielle Prozesse energetisch

Wir sind dran: md-03-uebungen

- 1. Öffne posit.cloud in deinem Browser (verwende dein Lesezeichen).
- 2. Öffne den rstatszh-k009 Arbeitsbereich (Workspace) für den Kurs.
- 3. Klicke auf Start neben md-03-uebungen.
- 4. Suche im Dateimanager im Fenster unten rechts die Datei 01-dplyr-wir.qmd und klicke darauf, um sie im Fenster oben links zu öffnen.

Pause machen

Bitte steh auf und beweg dich. Lasst eure E-Mails in Frieden ruhen.

Ihr seid dran: 02-dplyr-ihr.qmd

- 1. Öffne posit.cloud in deinem Browser (verwende dein Lesezeichen).
- 2. Öffne den rstatszh-k009 Arbeitsbereich (Workspace) für den Kurs.
- 3. Klicke auf Continue neben md-03-uebungen.
- 4. Suche im Dateimanager im Fenster unten rechts die Datei 02-dplyrihr.qmd und klicke darauf, um sie im Fenster oben links zu öffnen.
- 5. Folge den Anweisungen in der Datei.

R Terminologie

```
library(dplyr)
treibhausgase_verkehr <- treibhausgase |>
filter(hauptgruppe == "Verkehr", jahr == 2022)
```

- Funktion: filter()
- Argumente, die folgen: hauptgruppe == "Verkehr" Was ist mit den Daten gemacht wird
- Daten (Objekt): treibhausgase_verkehr
- Zuweisungsoperator: <-
- Pipe Operator: |>

Aufgabe: Verbundenes Streudiagram

■ Großartig für Zeitreihendaten

1. Nutze die Daten treibhausgase_gebaeude und die Funktion ggplot(), um ein verbundenmes Streudiagramm mit geom_point() und geom_line() zu erstellen

Definiere folgende visuellen Eigenschaften:

- jahr auf der x-Achse;
- emission auf der y-Achse;
- untergruppe zur Einfärbung mit dem Argument color = untergruppe innerhalb von aes()
- 3. Ändere die Farben mit scale_color_colorblind().

```
treibhausgase |>
filter(hauptgruppe == "Gebäude") |>
ggplot(aes(x = jahr, y = emission, color = untergruppe)) +
geom_point() +

    rstatszh-k009.github.io/website/
```

Aufgabe: Verbundenes Streudiagram

Wir sind dran: 03-dplyr-wir.qmd

- 1. Öffne posit.cloud in deinem Browser (verwende dein Lesezeichen).
- 2. Öffne den rstatszh-k009 Arbeitsbereich (Workspace) für den Kurs.
- 3. Klicke auf Start neben md-03-uebungen.
- 4. Suche im Dateimanager im Fenster unten rechts die Datei 03-dplyr-wir.qmd und klicke darauf, um sie im Fenster oben links zu öffnen.

Pause machen

Bitte steh auf und beweg dich. Lasst eure E-Mails in Frieden ruhen.

Zeitpuffer: 03-dplyr-wir.qmd

Welche Konzepte kann ich nochmals erklären?

Zusatzaufgaben Modul 3

Modul 3 Dokumentation

<u>rstatszh-k009.github.io/website/module/md-</u> <u>03.html</u>

Zusatzaufgaben Abgabedatum

- Abgabedatum: Montag, 14. Oktober
- Korrektur- und Feedbackphase bis zu: Donnerstag, 17. Oktober

Danke

Folien erstellt mit revealjs und Quarto:

https://quarto.org/docs/presentations/revealjs/

Access slides als PDF auf GitHub

Alle Materialien sind lizenziert unter <u>Creative Commons</u> <u>Attribution Share Alike 4.0 International</u>.