Comparison

Algorithm	Worst-Case	Average-Case	Best-Case	In place?
Insertion Sort	$\Theta(n^2)$	$\Theta(n^2)$	$\Theta(n)$	Yes
Merge Sort	$\Theta(nlog(n))$	$\Theta(nlog(n))$	$\Theta(nlog(n))$	No
Quicksort	$\Theta(n^2)$	$\Theta(nlog(n))$	$\Theta(nlog(n))$	Yes
Heapsort	O(nlog(n))	O(nlog(n))	O(nlog(n))	Yes

Insertion sort is the most efficient sorting algorithm for short arrays since it has no recursive calls. However, for larger arrays quicksort and heapsort are generally more efficient.

Heapsort = O(nlog(n)) (worst case) which is better than Quicksort = $\Theta(n^2)$ (worst case). But the worst case scenario can often be avoided with quicksort by choosing the pivot wisely, for example with the median-of-three strategy. Quicksort is usually faster than heapsort when implemented wisely. But heapsort uses less storage which makes it good in for example embedded systems.