Tutorial 6 (Questions)

Let
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$,
 $C = \begin{pmatrix} -1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $D = \begin{pmatrix} -3 & -2 & -1 \\ 1 & 2 & 3 \end{pmatrix}$

- 1. Check if the following calculation can be performed, and if it is, find the answer (Small 'T' means matrix transpose)
 - i) A + C
 - ii) $A C^T$
 - iii) $C^T + 3D$
 - iv) BA
 - v) BA^{T}
 - vi) BC
 - vii) CB
 - viii) B⁴
 - ix) AA^{T}
 - \mathbf{x}) $\mathbf{D}^{\mathrm{T}}\mathbf{D}$
 - 2. Find the determinant of each of the following matrix:

$$B = \begin{bmatrix} 4 & 1 \\ -9 & 5 \end{bmatrix}$$

$$S = \begin{bmatrix} 2 & 3 & 1 \\ 6 & 5 & 3 \\ 1 & 0 & 1 \end{bmatrix}$$

3. Use Cramer's Law to solve the following simultaneous equation:

i)
$$3x - y = 7$$

 $-5x + 4y = -2$

ii)
$$x + y = 6$$

 $x - y = 2$

iii)
$$x + y + z = 2$$

 $x + 2y + z = 6$
 $y + z = 1$

4. Find the inverse of each of the following matrix using minors, cofactors and transpose

i)
$$\begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$$

ii)
$$\begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$$

iii)
$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \\ 0 & 1 & 1 \end{pmatrix}$$

iv)
$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \\ 1 & 1 & 4 \end{pmatrix}$$