排序

希尔排序: PS序列

They are like the leaves which a tempest whirls up and scatters in every direction and then allows to fall.

d-Sorting an O(d)-Ordered Sequence in O(dn) Time

 \clubsuit If ${\bf g}$ and ${\bf h}$ are relatively prime and are both in ${\cal O}(d)$

we can d-sort the sequence in $\mathcal{O}(dn)$ time ...

- re-arrange the sequence as a 2D matrix with d columns
- each element is swapped with $\mathcal{O}((g-1)\cdot (h-1)/d) = \mathcal{O}(d)$ elements

lacktriangledow Since this holds for all elements, $\mathcal{O}(dn)$ steps are enough

PS Sequence

❖ Papernov & Stasevic, 1965 //also called Hibbard's sequence

$$\mathcal{H}_{PS} = \mathcal{H}_{Shell} - 1 = \{ 2^k - 1 \mid k \in \mathcal{N} \} = \{ 1, 3, 7, 15, 31, 63, 127, 255, \dots \}$$

 \clubsuit Different items MAY NOT be relatively prime, e.g., $h_{2k} = h_k \cdot (h_k + 2)$

But ADJACENT items MUST be, since $h_{k+1}-2\cdot h_k \equiv 1$

- - $\mathcal{O}(\log n)$ outer iterations and
 - $\mathcal{O}(n^{3/2})$ time to sort a sequence of length n //Why ...

- lacktriangle Let h_t be the h closest to \sqrt{n} and hence $h_t pprox \sqrt{n} = \Theta(n^{1/2})$
- 1)Consider those iterations for $\{\ h_k \mid t < k\ \} = \{\ \overleftarrow{h_{t+1},\ h_{t+2},\ \dots,\ h_m}\ \}$
 - \because there would be $\mathcal{O}(n/h_k)$ elements in each of the h_k columns
 - \therefore we can insertionsort each column in $\mathcal{O}((n/h_k)^2)$ time
 - \therefore each $\mathsf{h_k} ext{-sorting costs}\,\mathcal{O}(n^2/h_k)\,\mathsf{time}$
 - \therefore all these iterations cost time of $\mathcal{O}(2 \times n^2/h_t) = \mathcal{O}(n^{3/2})$

$$k = t$$

 $h_k = h_t$

2)Consider those iterations for $\{h_k \mid k \leq t\} = \{\overleftarrow{h_1, h_2, \ldots, h_t}\}$

- \therefore h_{k+1} and h_{k+2} are relatively prime and are both in $\mathcal{O}(h_k)$
- \therefore each h_k -sorting costs $\mathcal{O}(n \times h_k)$ time
- \therefore all these iterations cost $\mathcal{O}(n \times 2 \cdot h_t) = \mathcal{O}(n^{3/2})$ time
- This upper bound is TIGHT
- What about the average cases?
 - $\mathcal{O}(n^{5/4})$ based on simulations
 - but not proved yet

$$k = t$$

 $h_k = h_t$