Class 5: Data visualization with ggplot

Sanket Garg (A59026686)

Using GGPLOT

plot(cars)

to use ggplot2, we first need to install it on our computers. To do this, we will use the function 'install.packages()'.

to use ggplot, I need to spell out at least 3 things: - data (the stuff I want to plot as a data.frame) - aesthetics (aes() values - how the data map to the plot) - geoms (how I want things drawn)

```
library(ggplot2)
ggplot(cars) +
  aes(x = speed, y = dist) +
  geom_point() +
  geom_smooth(method='lm')
```

 $geom_smooth() using formula = 'y ~ x'$


```
ggplot(cars) +
aes(x = speed, y = dist) +
geom_point() +
labs(title="Speed and Stopping Distances of cars", x="Speed (MPH)", y="Stopping
geom_smooth(method = 'lm', se=FALSE) +
theme_bw()
```

[`]geom_smooth()` using formula = 'y ~ x'

Speed and Stopping Distances of cars

Your informative subtitle text here

How many genes are upregulated?

```
url <- "https://bioboot.github.io/bimm143_S20/class-material/up_down_expression.txt"
genes <- read.delim(url)
head(genes)</pre>
```

```
Gene Condition1 Condition2 State
A4GNT -3.6808610 -3.4401355 unchanging
AAAS 4.5479580 4.3864126 unchanging
AASDH 3.7190695 3.4787276 unchanging
AATF 5.0784720 5.0151916 unchanging
AATK 0.4711421 0.5598642 unchanging
AB015752.4 -3.6808610 -3.5921390 unchanging
```

```
ncol(genes)
```

[1] 4

```
table(genes$State)
```

```
down unchangingup724997127
```

```
round(table(genes$State)/nrow(genes)*100,2)
```

```
down unchanging up
1.39 96.17 2.44
```

Making a scatter plot for the Genes dataset

```
ggplot(genes) +
aes(x=Condition1, y=Condition2) +
geom_point()
```


Changing the color of the datapoints based on their State:

```
p <- ggplot(genes) +
  aes(x=Condition1, y=Condition2, col=State) +</pre>
```

```
geom_point()
p
```


Adding title and changing the x and y labels:

```
p +
    scale_color_manual(values = c("blue", "gray", "red")) +
    labs(title = "Gene Expression Changes Upon Drug Treatment", x="Control (No Drug)", y="Drug")
```


Downloading the gapminder dataset:

```
url <- "https://raw.githubusercontent.com/jennybc/gapminder/master/inst/extdata/gapminder.
gapminder <- read.delim(url)
library(dplyr)</pre>
```

```
Attaching package: 'dplyr'
```

The following objects are masked from 'package:stats':

```
filter, lag
```

The following objects are masked from 'package:base':

```
intersect, setdiff, setequal, union
```

```
gapminder_2007 <- gapminder %>% filter(year==2007)
```

Plotting the gapminder dataset:

```
ggplot(gapminder_2007) +
  aes(x=gdpPercap,y=lifeExp) +
  geom_point(alpha=0.4)
```


Controlling the aesthetics using the population and the continent aspects of the table:

```
ggplot(gapminder_2007) +
  aes(x=gdpPercap,y=lifeExp, color=continent, size=pop) +
  geom_point(alpha=0.4)
```


Plotting the scatter plot by using population aspect for color

```
ggplot(gapminder_2007) +
  aes(x=gdpPercap,y=lifeExp, color=pop) +
  geom_point(alpha=0.4)
```


Controlling the size of the data points:

```
ggplot(gapminder_2007) +
  aes(x=gdpPercap,y=lifeExp, size=pop) +
  geom_point(alpha=0.4) +
  scale_size_area(max_size = 10)
```


Plotting for 1957

```
gapminder_1957 <- gapminder %>% filter(year==1957)
ggplot(gapminder_1957)+
  aes(x=gdpPercap, y=lifeExp, color = continent, size = pop) +
  geom_point(alpha = 0.7) +
  scale_size_area(max_size = 15)
```


Comparing 1957 and 2007:

```
gapminder_1957 <- gapminder %>% filter(year==1957 | year==2007)
ggplot(gapminder_1957)+
  aes(x=gdpPercap, y=lifeExp, color = continent, size = pop) +
  geom_point(alpha = 0.7) +
  scale_size_area(max_size = 10) +
  facet_wrap(~year)
```

