

planetmath.org

Math for the people, by the people.

commutative

Canonical name Commutative

Date of creation 2013-03-22 12:22:45 Last modified on 2013-03-22 12:22:45

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 11

Author CWoo (3771)
Entry type Definition
Classification msc 20-00
Synonym commutativity
Synonym commutative law
Related topic

Related topic Associative
Related topic AbelianGroup2
Related topic QuantumTopos

Related topic NonCommutativeStructureAndOperation

Related topic Subcommutative Defines non-commutative

Let S be a set and \circ a binary operation on it. \circ is said to be *commutative* if

$$a \circ b = b \circ a$$

for all $a, b \in S$.

Viewing \circ as a function from $S \times S$ to S, the commutativity of \circ can be notated as

$$\circ(a,b) = \circ(b,a).$$

Some common examples of commutative operations are

- addition over the integers: m + n = m + n for all integers m, n
- multiplication over the integers: $m \cdot n = m \cdot n$ for all integers m, n
- addition over $n \times n$ matrices, A + B = B + A for all $n \times n$ matrices A, B, and
- multiplication over the reals: rs = sr, for all real numbers r, s.

A binary operation that is not commutative is said to be *non-commutative*. A common example of a non-commutative operation is the subtraction over the integers (or more generally the real numbers). This means that, in general,

$$a - b \neq b - a$$
.

For instance, $2 - 1 = 1 \neq -1 = 1 - 2$.

Other examples of non-commutative binary operations can be found in the attachment below.

Remark. The notion of commutativity can be generalized to n-ary operations, where $n \geq 2$. An n-ary operation f on a set A is said to be commutative if

$$f(a_1, a_2, \dots, a_n) = f(a_{\pi(1)}, a_{\pi(2)}, \dots, a_{\pi(n)})$$

for every permutation π on $\{1, 2, ..., n\}$, and for every choice of n elements a_i of A.