

SEQUENCE LISTING

<110> DANA-FARBER CANCER INSTITUTE, INC.
KOLODNER, Richard
WINAND, Nena

<120> A METHOD OF DETECTION OF ALTERATIONS IN MSH5

<130> 700157/47483C

<140> 09/470,276
<141> 1999-12-22

<150> 60/051,686
<151> 1997-07-03

<150> PCT/US98/13850
<151> 1998-07-02

<160> 104

<170> PatentIn Ver. 2.1

<210> 1

<211> 2900

<212> DNA

<213> Human

<400> 1

cgctccctt gcaggctcggt ggcggcggcgt cagcggggcg ttctcccacc tgttagcgact 60
caggttactg aaaaggcggg aaaacgctgc gatggcggca gctggggag gaggaagata 120
agcgcgtgag gctggggtcc tggcgcgtgg ttggcagagg cagagacata agacgtgcac 180
gactcgcccc acagggcctt cagaccctt cttccaaag gagcctcaa gctcatggcc 240
tccttaggag cgaacccaag gaggacacccg cagggaccga gacctggggc ggccctctcc 300
ggtttccccca gcccggccccc agtgcgggc cccaggggagg ccgaggagga ggaagtgcag 360
gaggaggagg agctggccga gatccatctg tgtgtctgt ggaattcagg atacttggc 420
atgcctact atgatacttag tgactccact atccacttca tgccagatgc cccagaccac 480
gagagcctca agttctcca gagagttctg gatgagatca atccccagtc tggatgttacg 540
agtgccaaacc aggatgagaa tatgactcga ttctggaa agcttgccctc ccaggagcac 600
agagagccta aaagacctga aatcatattt ttgccaagtg tggatttgg tctggagata 660
agcaaacaac gcctcccttc tggaaactac tccttcatcc cagacgccc gactgccact 720
gagaaaatcc tttccctctc ttccatttatt cccttgact gcctcctcac agttcgagca 780
cttggagggc tgctgaagtt cctgggtcga agaagaatcg gggttgaact ggaagactat 840
aatgtcagcg tccccatcct gggctttaag aaattttatgt tgactctatct ggtgaacata 900
gatcaagaca cttacagtgt tctacagatt tttaagagtg agtctcaccc ctcagtgtac 960
aaagtggcca gtggactgaa ggaggggctc agccttttgc gaatcctcaa cagatgccac 1020
tgtaagtggg gagagaagct gctcaggcata tggttcacac gtccgactca tgacctgggg 1080
gagctcatgtt ctcgtctggc cgtcattcag tttttctgc tgccccagaa tctggacatg 1140

gctcagatgc tgcatcgct cctgggtcac atcaagaacg tgccttgat tctgaaacgc 1200
atgaagttgt cccacaccaa ggtcagcgac tggcagggttctacaagac tttgtacagt 1260
gccctgggcc tgagggatgc ctggcgctcc ctggcgcaatccagct ctttcgggac 1320
attgccaag agttctctga tgacctgcac catatcgcca gcctcattgg gaaagtagtg 1380
gactttgagg gcagccctgc tgaaaatcgc ttacagtcc tccccaaacat agatcctgaa 1440
attgatgaga aaaagcgaag actgatggga cttccagtt tccttactga ggttgcggc 1500
aaggagctgg agaatctgga ctcccgatt ccttcatgca gtgtcatcta catccctctg 1560
attggcttcc ttcttctat tccccgcctg cttccatgg tagaggccag tgactttgag 1620
attaatggac tggacttcat gtttctctca gaggagaagc tgcactatcg tagtgcggc 1680
accaaggagc tggatgcatt gctggggac ctgcactgcg agatccggc ccaggagacg 1740
ctgctgatgt accagctaca gtgccaggtg ctggcacgag cagctgtctt aacccgagta 1800
ttggaccttg cctccgcct ggacgtcctg ctggctcttgc ccagtgtgc ccgggactat 1860
ggctactcaa ggccgcgtta ctccccacaa gtcctgggg tacgaatcca gaatggcaga 1920
catccctctga tggaaactctg tgcccgaacc tttgtgcca actccacaga atgtggtgg 1980
gacaaaggga gggtaaagt catactgga cccaaactcat cagggaaagag catatacctc 2040
aaacaggttag gcttgatcac attcatggcc ctggtaggca gcttttgcc agcagaggag 2100
gccgaaattg gggcagtaga cgccatcttc acacgaattt atagctgcgaa atccatctcc 2160
cttggcctct ccacccatcat gatgcaccc aaccagggtt cgaaaggcgt gaacaatgccc 2220
actgcacagt cgctggcctt tattgatgaa tttggaaagg gaaccaacac ggtggatgg 2280
ctcgccgttc tggccgtgt gctccgacac tggctggcac gtggaccac atgccccccac 2340
atctttgtgg ccaccaactt tctgagcatt gttcagctac aactgctgcc acaaggccc 2400
ctggcgtcgt atttgaccat ggagacctgt gaggatggca acgttctgt ctcttctat 2460
cagggttgcg aagggtgtgc gaaggccagc catgcctccc acacagctgc ccaggctgg 2520
cttcctgaca agcttgcgc tcgtggcaag gaggtctcag atttgatccg cagtggaaaa 2580
cccatcaagc ctgtcaagga ttgtctaaag aagaaccaa tggaaaattt ccagacattt 2640
gtggataagt ttatgaaact ggatttgaa gatcctaacc tggacttgaa cgttttcatg 2700
agccaggaag tgctgcctgc tgccaccagc atcctctgag agtccttcca gtgtcctccc 2760
cagcctcctg agactccggt gggctccat gccctcttttgc tttccttatac tcctcagac 2820
gcagagttt tagttctct agaaattttt tttcatatta ggaataaaat ttatggaa 2880
aaaaaaaaaaaaaaa 2900

<210> 2
<211> 834
<212> PRT
<213> Human

<400> 2
Met Ala Ser Leu Gly Ala Asn Pro Arg Arg Thr Pro Gln Gly Pro Arg
1 5 10 15

Pro Gly Ala Ala Ser Ser Gly Phe Pro Ser Pro Ala Pro Val Pro Gly
20 25 30

Pro Arg Glu Ala Glu Glu Glu Val Glu Glu Glu Glu Glu Leu Ala
35 40 45

Glu Ile His Leu Cys Val Leu Trp Asn Ser Gly Tyr Leu Gly Ile Ala

50	55	60													
Tyr	Tyr	Asp	Thr	Ser	Asp	Ser	Thr	Ile	His	Phe	Met	Pro	Asp	Ala	Pro
65															80
Asp	His	Glu	Ser	Leu	Lys	Leu	Leu	Gln	Arg	Val	Leu	Asp	Glu	Ile	Asn
															95
85															
Pro	Gln	Ser	Val	Val	Thr	Ser	Ala	Lys	Gln	Asp	Glu	Asn	Met	Thr	Arg
															110
100															
Phe	Leu	Gly	Lys	Leu	Ala	Ser	Gln	Glu	His	Arg	Glu	Pro	Lys	Arg	Pro
															125
115															
Glu	Ile	Ile	Phe	Leu	Pro	Ser	Val	Asp	Phe	Gly	Leu	Glu	Ile	Ser	Lys
															140
130															
Gln	Arg	Leu	Leu	Ser	Gly	Asn	Tyr	Ser	Phe	Ile	Pro	Asp	Ala	Met	Thr
															160
145															
Ala	Thr	Glu	Lys	Ile	Leu	Phe	Leu	Ser	Ser	Ile	Ile	Pro	Phe	Asp	Cys
															175
165															
Leu	Leu	Thr	Val	Arg	Ala	Leu	Gly	Gly	Leu	Leu	Lys	Phe	Leu	Gly	Arg
															190
180															
Arg	Arg	Ile	Gly	Val	Glu	Leu	Glu	Asp	Tyr	Asn	Val	Ser	Val	Pro	Ile
															205
195															
Leu	Gly	Phe	Lys	Lys	Phe	Met	Leu	Thr	His	Leu	Val	Asn	Ile	Asp	Gln
															220
210															
Asp	Thr	Tyr	Ser	Val	Leu	Gln	Ile	Phe	Lys	Ser	Glu	Ser	His	Pro	Ser
															240
225															
Val	Tyr	Lys	Val	Ala	Ser	Gly	Leu	Lys	Glu	Gly	Leu	Ser	Leu	Phe	Gly
															255
245															
Ile	Leu	Asn	Arg	Cys	His	Cys	Lys	Trp	Gly	Glu	Lys	Leu	Leu	Arg	Leu
															270
260															
Trp	Phe	Thr	Arg	Pro	Thr	His	Asp	Leu	Gly	Glu	Leu	Ser	Ser	Arg	Leu
															285
275															
Asp	Val	Ile	Gln	Phe	Phe	Leu	Leu	Pro	Gln	Asn	Leu	Asp	Met	Ala	Gln
															300
290															
295															
Met	Leu	His	Arg	Leu	Leu	Gly	His	Ile	Lys	Asn	Val	Pro	Leu	Ile	Leu

305	310	315	320
Lys Arg Met Lys Leu Ser His Thr Lys Val Ser Asp Trp Gln Val Leu			
325	330	335	
Tyr Lys Thr Val Tyr Ser Ala Leu Gly Leu Arg Asp Ala Cys Arg Ser			
340	345	350	
Leu Pro Gln Ser Ile Gln Leu Phe Arg Asp Ile Ala Gln Glu Phe Ser			
355	360	365	
Asp Asp Leu His His Ile Ala Ser Leu Ile Gly Lys Val Val Asp Phe			
370	375	380	
Glu Gly Ser Leu Ala Glu Asn Arg Phe Thr Val Leu Pro Asn Ile Asp			
385	390	395	400
Pro Glu Ile Asp Glu Lys Lys Arg Arg Leu Met Gly Leu Pro Ser Phe			
405	410	415	
Leu Thr Glu Val Ala Arg Lys Glu Leu Glu Asn Leu Asp Ser Arg Ile			
420	425	430	
Pro Ser Cys Ser Val Ile Tyr Ile Pro Leu Ile Gly Phe Leu Leu Ser			
435	440	445	
Ile Pro Arg Leu Pro Ser Met Val Glu Ala Ser Asp Phe Glu Ile Asn			
450	455	460	
Gly Leu Asp Phe Met Phe Leu Ser Glu Glu Lys Leu His Tyr Arg Ser			
465	470	475	480
Ala Arg Thr Lys Glu Leu Asp Ala Leu Leu Gly Asp Leu His Cys Glu			
485	490	495	
Ile Arg Asp Gln Glu Thr Leu Leu Met Tyr Gln Leu Gln Cys Gln Val			
500	505	510	
Leu Ala Arg Ala Ala Val Leu Thr Arg Val Leu Asp Leu Ala Ser Arg			
515	520	525	
Leu Asp Val Leu Leu Ala Leu Ala Ser Ala Ala Arg Asp Tyr Gly Tyr			
530	535	540	
Ser Arg Pro Arg Tyr Ser Pro Gln Val Leu Gly Val Arg Ile Gln Asn			
545	550	555	560
Gly Arg His Pro Leu Met Glu Leu Cys Ala Arg Thr Phe Val Pro Asn			

565	570	575
Ser Thr Glu Cys Gly Gly Asp Lys Gly Arg Val Lys Val Ile Thr Gly		
580	585	590
Pro Asn Ser Ser Gly Lys Ser Ile Tyr Leu Lys Gln Val Gly Leu Ile		
595	600	605
Thr Phe Met Ala Leu Val Gly Ser Phe Val Pro Ala Glu Glu Ala Glu		
610	615	620
Ile Gly Ala Val Asp Ala Ile Phe Thr Arg Ile His Ser Cys Glu Ser		
625	630	635
Ile Ser Leu Gly Leu Ser Thr Phe Met Ile Asp Leu Asn Gln Val Ala		
645	650	655
Lys Ala Val Asn Asn Ala Thr Ala Gln Ser Leu Val Leu Ile Asp Glu		
660	665	670
Phe Gly Lys Gly Thr Asn Thr Val Asp Gly Leu Ala Leu Leu Ala Ala		
675	680	685
Val Leu Arg His Trp Leu Ala Arg Gly Pro Thr Cys Pro His Ile Phe		
690	695	700
Val Ala Thr Asn Phe Leu Ser Leu Val Gln Leu Gln Leu Leu Pro Gln		
705	710	715
Gly Pro Leu Val Gln Tyr Leu Thr Met Glu Thr Cys Glu Asp Gly Asn		
725	730	735
Asp Leu Val Phe Phe Tyr Gln Val Cys Glu Gly Val Ala Lys Ala Ser		
740	745	750
His Ala Ser His Thr Ala Ala Gln Ala Gly Leu Pro Asp Lys Leu Val		
755	760	765
Ala Arg Gly Lys Glu Val Ser Asp Leu Ile Arg Ser Gly Lys Pro Ile		
770	775	780
Lys Pro Val Lys Asp Leu Leu Lys Lys Asn Gln Met Glu Asn Cys Gln		
785	790	795
Thr Leu Val Asp Lys Phe Met Lys Leu Asp Leu Glu Asp Pro Asn Leu		
805	810	815
Asp Leu Asn Val Phe Met Ser Gln Glu Val Leu Pro Ala Ala Thr Ser		

820

825

830

Ile Leu

<210> 3
<211> 29
<212> DNA
<213> Human

<400> 3
ttccaaaggg taacctccgc gtgacagaa

29

<210> 4
<211> 29
<212> DNA
<213> Human

<400> 4
ctggccgagg tctctgaggg gagtagaaaa

29

<210> 5
<211> 29
<212> DNA
<213> Human

<400> 5
tccagagagg tggggatgga accatgaat

29

<210> 6
<211> 29
<212> DNA
<213> Human

<400> 6
gaaagcttgg taaggacttg gtaaaggat

29

<210> 7
<211> 29
<212> DNA
<213> Human

<400> 7

tggattttgg tatctccttc ctttgatt 29

<210> 8
<211> 29
<212> DNA
<213> Human

<400> 8
ctcctcacag tgagattggc cctggggga 29

<210> 9
<211> 29
<212> DNA
<213> Human

<400> 9
atttatgttg tagtgattc accccaacc 29

<210> 10
<211> 29
<212> DNA
<213> Human

<400> 10
cacttacagg taaagaggtg gaggcatgc 29

<210> 11
<211> 29
<212> DNA
<213> Human

<400> 11
gcctcttgg tagtggtgcc ccatccctc 29

<210> 12
<211> 29
<212> DNA
<213> Human

<400> 12
gctgctcagg tgagtgggtc ccacacata 29

<210> 13
<211> 29
<212> DNA
<213> Human

<400> 13
aacgtgcctg tgagccagg gtggagggc

29

<210> 14
<211> 29
<212> DNA
<213> Human

<400> 14
ctctacaagg taaggccttc cttcttcaa

29

<210> 15
<211> 29
<212> DNA
<213> Human

<400> 15
gggaaagtag tgagtagaaag gaaaaaggg

29

<210> 16
<211> 29
<212> DNA
<213> Human

<400> 16
ttgatgagag tgagtgttgg gtgtggatg

29

<210> 17
<211> 29
<212> DNA
<213> Human

<400> 17
atccctctgg tgagggcagg agagtgggt

29

<210> 18
<211> 29
<212> DNA

<213> Human

<400> 18

gacttcatgg taagaccctc aacctctgt

29

<210> 19

<211> 29

<212> DNA

<213> Human

<400> 19

agatccgggg tgaggaaaag ccagagggt

29

<210> 20

<211> 29

<212> DNA

<213> Human

<400> 20

gaatggcagg taagaataga ggccgggtgg

29

<210> 21

<211> 29

<212> DNA

<213> Human

<400> 21

ctcaaacagg tgaggagaag ccctgcagc

29

<210> 22

<211> 29

<212> DNA

<213> Human

<400> 22

ctcaaccagg tcaaaggaa caaaggag

29

<210> 23

<211> 29

<212> DNA

<213> Human

<400> 23

accaacacgg tgaggggaga aactgatga 29

<210> 24
<211> 29
<212> DNA
<213> Human

<400> 24
cagtatttgg tgaggagacc aatctagct 29

<210> 25
<211> 29
<212> DNA
<213> Human

<400> 25
ggcaaggagg tgatgagatc caaatgtgc 29

<210> 26
<211> 29
<212> DNA
<213> Human

<400> 26
aatggaaaag tgcttatatg gccccagtg 29

<210> 27
<211> 29
<212> DNA
<213> Human

<400> 27
ctcaactttt gcatccgcag agcctccaa 29

<210> 28
<211> 29
<212> DNA
<213> Human

<400> 28
ctttcttcct tgctggacag atccatctg 29

<210> 29
<211> 29
<212> DNA
<213> Human

<400> 29
gatctctgtt ctcccttccag ttctggatg

29

<210> 30
<211> 29
<212> DNA
<213> Human

<400> 30
ttttctttcc tcccccacag cctcccagg

29

<210> 31
<211> 29
<212> DNA
<213> Human

<400> 31
tgcttgcctc cctcaaatacg gtctggaga

29

<210> 32
<211> 29
<212> DNA
<213> Human

<400> 32
cactgctgat cccctcccaag gttcgagca

29

<210> 33
<211> 29
<212> DNA
<213> Human

<400> 33
tttttgtttt ctgtcctcag gactcatct

29

<210> 34
<211> 29
<212> DNA

<213> Human

<400> 34

cctccatttc tcctcgacag tgttctaca

29

<210> 35

<211> 29

<212> DNA

<213> Human

<400> 35

cctgccttat ccctcacaag aatcctcaa

29

<210> 36

<211> 29

<212> DNA

<213> Human

<400> 36

acccaaaccc tcacttccag gctatggtt

29

<210> 37

<211> 29

<212> DNA

<213> Human

<400> 37

gtaaccttgt ctgactgtag ttgattctg

29

<210> 38

<211> 29

<212> DNA

<213> Human

<400> 38

tttttgtt tctctcacag actgtgtac

29

<210> 39

<211> 29

<212> DNA

<213> Human

<400> 39

aacagtactt atctcctcag gtggacttt

29

<210> 40

<211> 29

<212> DNA

<213> Human

<400> 40

cctgtcttcc accctcgtag aaaagcgaa

29

<210> 41

<211> 29

<212> DNA

<213> Human

<400> 41

ctcctcttta ctctccccag attggcttc

29

<210> 42

<211> 29

<212> DNA

<213> Human

<400> 42

ctttgaaccc ctgtacccag tttctctca

29

<210> 43

<211> 29

<212> DNA

<213> Human

<400> 43

ctttcctcac ccactccag accaggaga

29

<210> 44

<211> 29

<212> DNA

<213> Human

<400> 44

tgcctctccg cccactgcag acatcctct

29

<210> 45
<211> 29
<212> DNA
<213> Human

<400> 45
ctgtctcctt cccttattcag gtaggcttg

29

<210> 46
<211> 29
<212> DNA
<213> Human

<400> 46
gtccaccta tacccagcag gtggcgaaa

29

<210> 47
<211> 29
<212> DNA
<213> Human

<400> 47
aacctctgcc ctctttgcag gtggatggg

29

<210> 48
<211> 29
<212> DNA
<213> Human

<400> 48
gtcttttatt ctcttttaag accatggag

29

<210> 49
<211> 29
<212> DNA
<213> Human

<400> 49
caccttcttg cttgtccttag gtctcagat

29

<210> 50
<211> 29
<212> DNA

<213> Human

<400> 50

cgattttctc tcttcttcag ttgccagac

29

<210> 51

<211> 20

<212> DNA

<213> Human

<400> 51

gaatggcaga catcctctga

20

<210> 52

<211> 22

<212> DNA

<213> Human

<400> 52

ggtatatgct cttccctgat ga

22

<210> 53

<211> 2576

<212> DNA

<213> Human

<400> 53

ggcttgggc ggttggtcag ggaggtggat cgtcgcggct gagagtcgcc gagccatgg 60
ctttcagagc gaccccgaggc cgacgcggc cgggacccgg acccagatcc ggaatcccct 120
cagccagctt ccccaagccct cagccccaa tggcggggcc tggaggtatc gaggaagagg 180
acgaggagga gcccggcgag atccatctgt gctgtctgtg gagctcgga tacctggca 240
ttgcttacta tgacactagt gactccacta tccacttcat gccagatgcc ccagaccacg 300
agagcctaaa gctctccag agagttctgg atgaaatcaa ccccaagtct gttgtcacaa 360
gtgccaaaca ggatgaggct atgactcgat ttctaggaa gttgcctct gaggagcaca 420
gagagccaaa gggacctgaa atcatacttc tgccaagcgt ggatttttgtt ccagagataa 480
gcaaacagcg tctcccttcc ggaaactact ctttcatttc agactccatg actgctactg 540
agaaaatctt tttcctctcc tccatttattc cctttgactg tgccttcacg gtccggcac 600
ttggaggact gctcaagttc ctgagtcgaa gaagaattgg gtttgaactg gaagactatg 660
atgttggcgt ccctatcctg ggattcaaga agtttgtatt gacccatctg gtgagcata 720
atcaagacac ttacagcggtt ctacagattt tcaagagtga gtctcacccc tcggtgtaca 780
aagttagccag tggctgaag gaggggctca gccttttgg aatcctcaac agatgccgct 840
gtaagtgggg acagaagctg ctcaggctgt gtttacacg tccaacccgg gagctaagg 900
aactcaattc ccgactggat gtcattcagt tcttcctgat gcctcagaac ctggacatgg 960
cccagatgct gcaccgactc ctgagccaca tcaagaatgt gcctctgatt ctgaaacgc 1020
tgaagttgtc ccacaccaag gtcagtactt ggcaggtctt ctacaagact gtgtacagt 1080

ctctcgccct gaggatgcc tgccgttctc tgccacagtc catccagctt tttcaggaca 1140
 ttgcccagga gttctctgac gacctgcac acattgccag cctcatcggg aaggtggtgg 1200
 actttgagga aagtcttgct gaaaatcgct tcacagtctt ccctaacata gaccctgaca 1260
 tagatccaa gaagcgaagg ctgataggc ttccgagctt cctcaactgaa gttgctcaga 1320
 aggagctgga gaacctggac tctcgcatcc cctcatgcag tgtcatctac atccctctga 1380
 ttggcttcct tctttccatt ccccgcttgc ctttcattgtt ggaagctagt gactttgaga 1440
 ttgagggct ggacttcatg tttctctcag aggacaagct gcactatcgt agcgcggga 1500
 ccaaggagct ggacacgctg ctgggagacc tgcaactgtga gatccggac caggagactc 1560
 tggatgtt ccagctgcag tgccaggtgc tggcacgggc ttccgttgc actccggat 1620
 tggaccttc cttccgcctg gacgtcttgc tggcttgc cagtgctgcc cgggactacg 1680
 gctattcgag accgcattac tctccctgtt tccatggagt acgaatcagg aatggcaggc 1740
 atcctctgat ggaactgtgt gcacgaacct tcgtcccaa ctccacggac tgggtgggg 1800
 accagggcag ggtcaaagtc atcaactggac ccaactcctc agggaaaagc atatatctca 1860
 agcaggtagg ctgatcaact ttcatggccc tgggtggcag ttccgtgcct gcagaggagg 1920
 ccgagattgg ggtatcgac gccatctca ctgcattca cagctgcgaa tccatctccc 1980
 tcggcctctc caccttcatg attgatctca accaggtggc gaaagcagtg aacaatgcc 2040
 cagagcactc gctggcctg atcgatgaat tcgggaggg gaccaactcg gtggatggcc 2100
 tggcacttgc ggctgctgtc ctccgtcact ggctgact gggaccacg tgccccacg 2160
 tctttgttagc caccaacttc ctgagccttgc ttcaagctgc gctgctgccg caaggacccc 2220
 tggctgcatg tttgaccatg gagacttgc aggtgggg agaccttgc ttcttctacc 2280
 agctttgcca aggctgcgc agtgcagcc acgcctccca cacagcggcc caggctggc 2340
 ttccctgaccc actcattgtc cgtggcaaag aggtctcaga ttcatccgc agtgggaaac 2400
 ccatcaaggc cacgaatgag ttctaaagga gaaaccaaat ggaaaactgc caggcactgg 2460
 tggataagtt tctaaaactg gacttggagg atcccacccct ggacctggac atttcattt 2520
 gtcaggaagt gctgcccgc gctccacca ttctctgaga gtcctccag tgtcct 2576

<210> 54

<211> 833

<212> PRT

<213> Human

<400> 54

Met Ala Phe Arg Ala Thr Pro Gly Arg Thr Pro Pro Gly Pro Gly Pro

1

5

10

15

Arg Ser Gly Ile Pro Ser Ala Ser Phe Pro Ser Pro Gln Pro Pro Met

20

25

30

Ala Gly Pro Gly Gly Ile Glu Glu Asp Glu Glu Glu Pro Ala Glu

35

40

45

Ile His Leu Cys Val Leu Trp Ser Ser Gly Tyr Leu Gly Ile Ala Tyr

50

55

60

Tyr Asp Thr Ser Asp Ser Thr Ile His Phe Met Pro Asp Ala Pro Asp

65

70

75

80

His Glu Ser Leu Lys Leu Leu Gln Arg Val Leu Asp Glu Ile Asn Pro
85 90 95

Gln Ser Val Val Thr Ser Ala Lys Gln Asp Glu Ala Met Thr Arg Phe
100 105 110

Leu Gly Lys Leu Ala Ser Glu Glu His Arg Glu Pro Lys Gly Pro Glu
115 120 125

Ile Ile Leu Leu Pro Ser Val Asp Phe Gly Pro Glu Ile Ser Lys Gln
130 135 140

Arg Leu Leu Ser Gly Asn Tyr Ser Phe Ile Ser Asp Ser Met Thr Ala
145 150 155 160

Thr Glu Lys Ile Leu Phe Leu Ser Ser Ile Ile Pro Phe Asp Cys Val
165 170 175

Leu Thr Val Arg Ala Leu Gly Gly Leu Leu Lys Phe Leu Ser Arg Arg
180 185 190

Arg Ile Gly Val Glu Leu Glu Asp Tyr Asp Val Gly Val Pro Ile Leu
195 200 205

Gly Phe Lys Lys Phe Val Leu Thr His Leu Val Ser Ile Asp Gln Asp
210 215 220

Thr Tyr Ser Val Leu Gln Ile Phe Lys Ser Glu Ser His Pro Ser Val
225 230 235 240

Tyr Lys Val Ala Ser Gly Leu Lys Glu Gly Leu Ser Leu Phe Gly Ile
245 250 255

Leu Asn Arg Cys Arg Cys Lys Trp Gly Gln Lys Leu Leu Arg Leu Trp
260 265 270

Phe Thr Arg Pro Thr Arg Glu Leu Arg Glu Leu Asn Ser Arg Leu Asp
275 280 285

Val Ile Gln Phe Phe Leu Met Pro Gln Asn Leu Asp Met Ala Gln Met
290 295 300

Leu His Arg Leu Leu Ser His Ile Lys Asn Val Pro Leu Ile Leu Lys
305 310 315 320

Arg Met Lys Leu Ser His Thr Lys Val Ser Asp Trp Gln Val Leu Tyr
325 330 335

Lys Thr Val Tyr Ser Ala Leu Gly Leu Arg Asp Ala Cys Arg Ser Leu
340 345 350

Pro Gln Ser Ile Gln Leu Phe Gln Asp Ile Ala Gln Glu Phe Ser Asp
355 360 365

Asp Leu His His Ile Ala Ser Leu Ile Gly Lys Val Val Asp Phe Glu
370 375 380

Glu Ser Leu Ala Glu Asn Arg Phe Thr Val Leu Pro Asn Ile Asp Pro
385 390 395 400

Asp Ile Asp Ala Lys Lys Arg Arg Leu Ile Gly Leu Pro Ser Phe Leu
405 410 415

Thr Glu Val Ala Gln Lys Glu Leu Glu Asn Leu Asp Ser Arg Ile Pro
420 425 430

Ser Cys Ser Val Ile Tyr Ile Pro Leu Ile Gly Phe Leu Leu Ser Ile
435 440 445

Pro Arg Leu Pro Phe Met Val Glu Ala Ser Asp Phe Glu Ile Glu Gly
450 455 460

Leu Asp Phe Met Phe Leu Ser Glu Asp Lys Leu His Tyr Arg Ser Ala
465 470 475 480

Arg Thr Lys Glu Leu Asp Thr Leu Leu Gly Asp Leu His Cys Glu Ile
485 490 495

Arg Asp Gln Glu Thr Leu Leu Met Tyr Gln Leu Gln Cys Gln Val Leu
500 505 510

Ala Arg Ala Ser Val Leu Thr Arg Val Leu Asp Leu Ala Ser Arg Leu
515 520 525

Asp Val Leu Leu Ala Leu Ala Ser Ala Ala Arg Asp Tyr Gly Tyr Ser
530 535 540

Arg Pro His Tyr Ser Pro Cys Ile His Gly Val Arg Ile Arg Asn Gly
545 550 555 560

Arg His Pro Leu Met Glu Leu Cys Ala Arg Thr Phe Val Pro Asn Ser
565 570 575

Thr Asp Cys Gly Gly Asp Gln Gly Arg Val Lys Val Ile Thr Gly Pro
580 585 590

Asn Ser Ser Gly Lys Ser Ile Tyr Leu Lys Gln Val Gly Leu Ile Thr
595 600 605

Phe Met Ala Leu Val Gly Ser Phe Val Pro Ala Glu Glu Ala Glu Ile
610 615 620

Gly Val Ile Asp Ala Ile Phe Thr Arg Ile His Ser Cys Glu Ser Ile
625 630 635 640

Ser Leu Gly Leu Ser Thr Phe Met Ile Asp Leu Asn Gln Val Ala Lys
645 650 655

Ala Val Asn Asn Ala Thr Glu His Ser Leu Val Leu Ile Asp Glu Phe
660 665 670

Gly Lys Gly Thr Asn Ser Val Asp Gly Leu Ala Leu Leu Ala Val
675 680 685

Leu Arg His Trp Leu Ala Leu Gly Pro Ser Cys Pro His Val Phe Val
690 695 700

Ala Thr Asn Phe Leu Ser Leu Val Gln Leu Gln Leu Leu Pro Gln Gly
705 710 715 720

Pro Leu Val Gln Tyr Leu Thr Met Glu Thr Cys Glu Asp Gly Glu Asp
725 730 735

Leu Val Phe Phe Tyr Gln Leu Cys Gln Gly Val Ala Ser Ala Ser His
740 745 750

Ala Ser His Thr Ala Ala Gln Ala Gly Leu Pro Asp Pro Leu Ile Ala
755 760 765

Arg Gly Lys Glu Val Ser Asp Leu Ile Arg Ser Gly Lys Pro Ile Lys
770 775 780

Ala Thr Asn Glu Leu Leu Arg Arg Asn Gln Met Glu Asn Cys Gln Ala
785 790 795 800

Leu Val Asp Lys Phe Leu Lys Leu Asp Leu Glu Asp Pro Thr Leu Asp
805 810 815

Leu Asp Ile Phe Ile Ser Gln Glu Val Leu Pro Ala Ala Pro Thr Ile
820 825 830

Leu

<210> 55
<211> 232
<212> DNA
<213> Human

<400> 55
gtaacctccg cgtagacagaa tgagggtggg gcgcgtggag tttccacaa tctgtacttt 60
agttaatac ccgagaattc acctcctgtg tccacagctc tccacgcccc tcagccctgc 120
cccgcagccc tgtatcagaa gtacttagcg cttgcattc tgcgcgccac cctacccgg 180
cctcctctgt gaatcggtgc ttccgaaccg ccctcacttt ttgcattccgc ag 232

<210> 56
<211> 74
<212> DNA
<213> Human

<220>
<221> intron
<222> (73)..(74)
<223> N = A or T or G or C

<400> 56
gtctctgagg ggagtagaaa cttgaatgga gagttgatgg gaatttaaaa taaaagaggg 60
ttgggagccg ggn 74

<210> 57
<211> 189
<212> DNA
<213> Human

<400> 57
aaaaaaaaac agggttggga agagctggc aagtctctta cttcctgagt ggctgttca 60
cattcactaa atgggggtga tcatgcctat ctcagagatt tgagaaatg attaaattat 120
ataagacatg gtaaacccta cacttatgag tgattctaat agtgattcc tttcttcctt 180
gctggacag 189

<210> 58
<211> 450
<212> DNA
<213> Human

<220>
<221> intron
<222> (449)..(450)

<223> N = A or T or G or C

<400> 58

gtggggatgg aaccatgaat tcctctgctc tctgggattt cagatgtgtt acacacacac 60
acacacacac acacacacac acacacatat ttttttttcc tagacagagt ctgtctgt 120
tacccaggct caagtgcagt ggccaaatct tggctcaactg cagcctccac ctccctgggtt 180
caagcaattc tcctgactca acctcccgag tagctggac tacagggctg tgccaccaca 240
cccagctagt ttttgtgtg tggttttagc acagacgggtt tttcaccatg ttggccagg 300
tggctcaaa ctctgaccc tggatccgc ccaccttggc ctctaaagt gctgggacta 360
caggtgtgag tcaccacgccc cagccatgtt ttacttacat taactcacct cactgtctag 420
catatttgtt gttgtgtaa ggaaataacnn 450

<210> 59

<211> 323

<212> DNA

<213> Human

<400> 59

ggcgacaaat atatatgacg tatttacaat gtttcaggtt cttcagattc agccctgggc 60
aaatcagtca tgcgtgttct ccaggggttt acagcctagt gacaacatcc agaacatccc 120
acttccctct caccatccca ccactctaa ctactttctt aaatctcaac ttctacctgt 180
gttcccactg tgcagagcac tccctactcc tagggaggaa atgttttga gaaggagagg 240
ggtaggaaga ggagggctat gggtttctc ttagtcaaag acaaagatcc tttaactcat 300
ttgatctctg ttctccttcc aag 323

<210> 60

<211> 150

<212> DNA

<213> Human

<400> 60

gtaaggactt ggtaaaggat agagggaaaa tggggaaagga ctaatataatg gaatattcca 60
gggggctaga atttgggtgag agggagtgac agacagaggt agaaggactg agatgtaaag 120
aatgatagcc ttttcttcc tcccccacag 150

<210> 61

<211> 733

<212> DNA

<213> Human

<400> 61

gtatctcctt cctttgttt tgcctaactc cctgttccgg tgccttattt tttcccccaa 60
ctctacccctt atcatcacag atctcccttc tgccttattgt catcctaaac ctttgtctc 120
ctcatgcctt atgacctgtc ccccaagat ctctcctgtc ccctaccctt taataatctg 180
cagcttattt ggaaggctt gcttaagtca tgcgttaggaa tgaggccctc ccctgaggag 240

tggtgacact ttttggacag ggttttattt tggaattct ccccatthaag ttaaagcctt 300
ttatcaccaa accaaaaggc actgcctcag tgacccttat tatgatccat aaggcacttc 360
tataactttc ctaggtttac aataagaaca ggagtgtact atcctaatta gatattaagg 420
cattagtggtt actagttcta ttaataccat tattttgacc aaaatcctca attccagaca 480
gatgtctact ttccctcagcc atttatcttt ctcaggctgt gcttcagac aagtatctt 540
atattatatg tagaataaaaa agagaattag actaagagtc tgaaaatttgc ttcttgctc 600
tagctttcca ttaactgcct gtgtgagctt gggcaagtca aataatctct ctgccttcta 660
ttgtctcatt cttaaaaatgg ggtgaaaaaa ttgagctaca agaccgttcc ctggcttgc 720
ctccctcaaa tag 733

<210> 62
<211> 164
<212> DNA
<213> Human

<400> 62
gtgagattgg tcctggggga taagggctgg gaggcggcac aagtgcattt gctgaattct 60
gggaggtact ggcttagccc tggaaaatag taactttccc ttgtgctctg cagccccag 120
gagatttaag atttaccccg attccactgc tgatcccctc ccag 164

<210> 63
<211> 246
<212> DNA
<213> Human

<400> 63
gtaggtgatt caccccaacc ccaaccaaag taatgtggga ttggggggcc tgaaaagtaa 60
agtgggggtg ggggtggat gtggctgtga cccagtgggt caagggtctt agacaccccg 120
ggagaatcta agggctaattt agactttggg aagaagactg ggacaatatt cagagagggg 180
gacaaaggaa gtggagttgt ggaacgaact cagactgcctt cctgctttt tgggggtgt 240
cctcag 246

<210> 64
<211> 413
<212> DNA
<213> Human

<220>
<221> intron
<222> (412)..(413)
<223> N = A or T or G or C

<400> 64
gtaaagaggt ggaggcatgc tgctgtctt ggggagggag aaggattaag ttatgcctt 60
caataatctt aatggggctc tagttccctt aatccctgggg ctatataatg ctctctcctt 120

gaaggaaagg gaaggggggt tttgagggaa agagaggaag aaaagcataa agataactagc 180
tttctttct atagggagaa actgaggcaa agaaaaagtaa gggacaaacc ttacatcaag 240
atatgatctc ggctgggcgc ggtggctcat gcctgtaatc cccgcgttt gggaggccaa 300
ggcgggtgga tcgcctgagg tcaggagttt gagacctgac caatatggta aaaccccgac 360
tctactaaaa atataaaaaat tagctgggtg tgggtgcgc ctgtaatccc ann 413

<210> 65
<211> 136
<212> DNA
<213> Human

<400> 65
tttttttta aaaaaaaaaa aaaaaagacg tgatctcagg aggatatccc ctgtcccat 60
tccatttatac agtctcaat tcttattccc ctaaaaagtc caagttaccc caaactcctc 120
catttctcct cgacag 136

<210> 66
<211> 356
<212> DNA
<213> Human

<220>
<221> intron
<222> (355)..(356)
<223> N = A or T or G or C

<400> 66
gtaggtgtgc cccatccctc atctcacgta caaagaccta ccagaaaagc aattggctcc 60
aaagatgtgt cccagcctcc ctcccactt cactcccatt gtcagatatac tcttcatgc 120
caatccaaat ttcttaccta ttgtacccc ccgcggggca agcttgagca tcttccata 180
ctttgtggct gtacagtgtg ttgcataatca gccattactt taccattct gtgtccctc 240
cctgggtttg tatgaatgtt tctactagtt gggtagctgt tagggacttt ggagacctt 300
gtgtatagag aagagtttg taactgcata actgcctatt tgattttat agagnn 356

<210> 67
<211> 426
<212> DNA
<213> Human

<400> 67
ccaggagtag agggagagac agaaacagcc aacaatggcc cagaaaatgg atgatataatt 60
agataagggaa agaaaatgagt taccagattt gggagagatg gtttggatgt caaagcaggt 120
gatcggtgac gtcagcgtcc gagggaaagac ggctgccacc ggccggggca gttgagggaa 180
ctaggttagtt aagtgtgtc gggctaaaag tccctagagt gtccatccct ccccccattc 240
catgtgcgtt aatcccagct cattttagggg ccaggcacca actttgggtt ccttggcc 300

ctcccaggcc agttcctca acaaccagca cctctgactg gatgcctcg gtagacaca 360
taaacacatt ccattgcct gtccgtgcct tgtaacaagt tcactccctg ccttatccct 420
cacaag 426

<210> 68
<211> 360
<212> DNA
<213> Human

<220>
<221> intron
<222> (359)..(360)
<223> N = A or T or G or C

<400> 68
gtgagtgggt cccacacata ctacacacta atgcatgaat tccatatgca cactacatac 60
taagcctact aatggcagta tacagattct cacatacacc accccaccta gtagtagtaa 120
agcaactgccc cttactgag cactggctaa ctgcattca tccttataac agctttgtgt 180
agtagctgat atgcatctca tttttgttg tcagcgcagg tacacatata cattgatgat 240
acacagactt gcacacatac agcagcagga aaaaacacaa aatgtaaggc cgggcacagt 300
ggctcacacc tgttatcagc actttggggg gccaacgctg ggtgacccctc catcttggn 360

<210> 69
<211> 447
<212> DNA
<213> Human

<400> 69
cacaggaaga atatgaaaag atgaatgtct gttgctgtta cccagagaca ctttcacagc 60
taaaaagaca tacaactca tactgactca ccgtctctta ctcagcctca gagttagctg 120
cagtgttggc acacaaatac ctcaacacac tgctctcctt ctaaaatatt gacaagctcc 180
gttacttata tacatggaat gacacacggt cttatccgtt gaaactgtga tatgttagaca 240
caattatgtc cacatcttagc aattttcagt agatacatgt aaacacaccc gaatgggttag 300
gacactgcac ttgccactac attcccatag cacatcgtgg atacatattg ccacaatccc 360
cagggactgc aagcacactt tttggcaaac tgagatcaag atgatagatg taactttag 420
taccccccacc caaaccctca cttccag 447

<210> 70
<211> 127
<212> DNA
<213> Human

<400> 70
gtgagcccaag ggtggagggc agggagggtgg ggaaggaggt tgagggctga tactggcag 60
tgggcttctt gagggcatt agagtggagg aagagaaaac agcggctgta accttgcgt 120

actgttag

127

<210> 71
<211> 30
<212> DNA
<213> Human

<220>
<221> intron
<222> (29)..(30)
<223> N = A or T or G or C

<400> 71
gtaaggcatt ccttcttgaa tcccaaaaann

30

<210> 72
<211> 222
<212> DNA
<213> Human

<400> 72
tacaggcatg agccactgtg cctggccagg accatatctt aattgtcttt gtagttcag 60
tgtttggtagt agtgcctctc actgtttctt tttgccttg agatctccc tccttggtag 120
tgtgatcttc cctactggtc ttgttcttc tgagtctgtc cctatcacca cctcaacccg 180
agctggatgt ggcctgtcct ccttttgtg tttctctcac ag 222

<210> 73
<211> 254
<212> DNA
<213> Human

<400> 73
gtgagtagaa ggaaaaaggg agtgcaccca gggaggtcag ggagagagaa tgcaagtgtgc 60
aagatgggaa aacatgaaag atattgaggt caattggata aagaatggaa tggggagg 120
aggcagcaga acttcaggaa agtatctgga gggtagagt taaaggagga ctgcaggag 180
aattggggcc caaggagagc tgaggaacag gacagagggt gccaggtcct aagaaacagt 240
acttatctcc tcag 254

<210> 74
<211> 145
<212> DNA
<213> Human

<400> 74

gtgagtgttg ggtgtggatg ggcctgttag ccctgcgcag ttagggatg ccatccttgg 60
caggtggta ccacagctgg ggatcttcat agcaaccagg gcaggagact cactttgat 120
aaccacctgt ctccaccct cgtag
145

<210> 75
<211> 98
<212> DNA
<213> Human

<220>
<221> intron
<222> (97)..(98)
<223> N = A or T or G or C

<400> 75
gtgagggcag gagagtgggt gtagcctca gatgtctttt gggggagata ttaggcttat 60
gaaagacata ctggtagata agaaaacttg tggggcnn
98

<210> 76
<211> 83
<212> DNA
<213> Human

<400> 76
atcttttaag ctcccttggg atggggaggt tccagtaagt ctccaaacaa gagagttagag 60
tatctcctct ttactctccc cag
83

<210> 77
<211> 247
<212> DNA
<213> Human

<400> 77
gtaagaccct caacctctgt aaggtagtg atgaggaaaa ttagtcagca gctgaggaag 60
agcgttactc tacagcagca ctgccaata tggatctct cctctgttagt tttactctga 120
gctttaccag cactgagaca aaggaaagag aagtcagagt tagggctgg aggtgggtt 180
agaaagatgg ggaaggagag gaggaccaag agatgcaaag tccacagctt tgaaccctg 240
tacccag
247

<210> 78
<211> 273
<212> DNA
<213> Human

<400> 78

gtgaggaaaa gccagagggtt atatgcattg taagatgttt aaaaaaagca gcagccaggg 60
gaaggagggg agtgggcaac ttggggatgc ttccaacagg cccctctct tcctgctctc 120
tgtctcgctc actctgactc tatctttcc tctgaatgtc ttgaggctc agattgtatc 180
tgcaacctgt ttccagatcc ccctagggc ctctgcctct cttcaactt cccctggAAC 240
tgacctccag ctcccttcctt caccactcc cag 273

<210> 79

<211> 114

<212> DNA

<213> Human

<400> 79

gtaagaatag aggccgggtgg aggaatacac atgaggggcc caaaggctac atcttctggg 60
ggttcatcta tcttgatcca caagccatgc gaggtgcctc tccgcccact gcag 114

<210> 80

<211> 473

<212> DNA

<213> Human

<400> 80

gtgaggagaa gccctgcagc ctgggcctct ggctgtctct gcatctactc caccctact 60
tgccagccaa ctcaggctcc tgcagctctt ctcccatttt ctgaccggc tcttcatgaa 120
aggaccatca cccacatccc tggcttcca cctcacatgt tcttattctc cactggagag 180
ccatgctcta atgaaactt ccgtggccca aattcctca cctgcctctg agtaggtaca 240
caccactccc aagtatgtct ctgcccacgt cccgtgcctc ttcaactgatt ctaaatttagc 300
ccacagggct atggtcagga ttggggagg agagacagag tcagtgtgtc tggcacat 360
ttctcctgtt tcaccctgtc catttctctt tgatgtgcca ttcatgcctt gaggctact 420
ttcacctcag cccacggcac caggccccag gccctgtctc cttccctatt cag 473

<210> 81

<211> 348

<212> DNA

<213> Human

<400> 81

gtcaaaggga acaaaggag gtgggattga ggaagggat aatggaaag gaaccctga 60
aaatgctcat aacaggaaag catgcctct gctgcattgc cttaatacta aaagtggga 120
gcactaaagg cagagataag aagaatcaat accataaaca ttcttgaac ctttgcgtca 180
tgtgagtcac tggggcaaa gaggatgaac aaagcgtgca cttcaccatt caagaacttg 240
cagtgcagta gggagggcat gtatacagct ttattcacag gccaactgtg gtcagtgcgt 300
tacgggcttc caataactaac ttccccttgt ccaccttata cccagcag 348

<210> 82
<211> 209
<212> DNA
<213> Human

<400> 82
gtgaggggag aaactgatga ggggagaac taaggagggg aaaatggagg aggatgaagg 60
agcatgacag tgaggctggg cctctgaat ggaatagggc tgtgtggca gaaaagaaaat 120
agaacacgag acagggaaag gcagtgcag tgcaaggggg catatgggt cccatggct 180
ccgaatgcta acctctgccc tctttgcag 209

<210> 83
<211> 202
<212> DNA
<213> Human

<400> 83
gtgaggagac caatcttagct cctcggggac ccccaggctg ggcatttccc agaggtgggg 60
atggctccct ctatcagaac aagggctccc tcagcacaga gaccacatcc ctccctttt 120
ctccctcccc acaggattgg ccaagggttt caggacagga aggaggtgat tcatgataca 180
ctgtctttta ttctctttta ag 202

<210> 84
<211> 155
<212> DNA
<213> Human

<400> 84
gtgatgagat ccaaattgtgc aaccacctcc acatcagagc tcccttcat tcctagtct 60
actgggcctg ggtcttaggtc cacaggattt ctgaccctta tttcccttc tcttccccac 120
tccccttact cctcccacct tcttgcttgt cctag 155

<210> 85
<211> 215
<212> DNA
<213> Human

<400> 85
gtgcgtatat ggccccagtg tctttaccct ctctgcatct tctcctgcaa ctcttctccc 60
ccctccagca cttingccctt cagaaaccca ccatttcttt ctgaaatccc taaatcttca 120
agatcccagg ttttctgtgc cacagccctt cccctctgcc cagggatttg gtgtccatt 180
ctgccataaa tcttgcgatt ttctcttcc tttag 215

<210> 86

<211> 29
<212> DNA
<213> Human

<400> 86
gctgctcagg tatacagtagc cacgctccc

29

<210> 87
<211> 29
<212> DNA
<213> Human

<400> 87
agatccgggg tgaggagccc gtggtagga

29

<210> 88
<211> 29
<212> DNA
<213> Human

<400> 88
gaatggcagg tgagaagggg ccccatgtc

29

<210> 89
<211> 29
<212> DNA
<213> Human

<400> 89
ctcaagcagg tgaggggccc ccaagctgg

29

<210> 90
<211> 29
<212> DNA
<213> Human

<400> 90
accaactcgg tgcgaggaa aatgaagag

29

<210> 91
<211> 29
<212> DNA
<213> Human

<400> 91	
ttcccatccc aaccctccag gctgtggtt	29
<210> 92	
<211> 29	
<212> DNA	
<213> Human	
<400> 92	
ctctctct ctttccag accaggaga	29
<210> 93	
<211> 29	
<212> DNA	
<213> Human	
<400> 93	
tgtctctcta cccaccacag gcattct	29
<210> 94	
<211> 29	
<212> DNA	
<213> Human	
<400> 94	
tctccctgc cttggccag gtggctt	29
<210> 95	
<211> 29	
<212> DNA	
<213> Human	
<400> 95	
tcacctctgc ctttgacag gtggatggc	29
<210> 96	
<211> 79	
<212> DNA	
<213> Human	
<400> 96	
gtatacagta ccacgctccc caagcaaagt caagatgaga gaagacgtga ctgttaacct	60

tcccatccca accctccag

79

<210> 97
<211> 135
<212> DNA
<213> Human

<400> 97
gtgaggagcc cgtggtagga gggggcaggc tgctctaaca gaccctgctc tcatgctggc 60
ccctctgcat ggtcacactg catctgcatt cctgcttcca gatcttcca ggcacctctc 120
tctctcccttc tccag 135

<210> 98
<211> 79
<212> DNA
<213> Human

<400> 98
gtgagaaggg gccccatgtc ctgctgtggg gatcctccct gggtccacaa accatgcagt 60
gtctctctac ccaccacag 79

<210> 99
<211> 389
<212> DNA
<213> Human

<400> 99
gtgaggggcc gccaagctgg gggcccacat ctccatctcc tctggccgcc aggccagatc 60
ctctgcccc ccccacacac acatacagca catgtccttg tcctctgagg gacagtctgt 120
tcttttagat agacctttcc gtggccacaa gtccctggac caacctccaa atagatccat 180
gccgttccct agtatgcctt taccacaaac cttgactctg gagttattg tgaagtcaagg 240
acccaggaaaa ctgtgttcca gggctctgtt cttctgttac actgtgtcct ctcttaatc 300
tgtcggtcat gtcttagtt gagaccatt tttactttgc ccatagtagc gcaacaggcc 360
catgttctgt ctccccgtcc ctggcccaag 389

<210> 100
<211> 180
<212> DNA
<213> Human

<400> 100
gtgcggagga aaatgaagag atgctaagga ggggggatgg aggaaaatga gaaccgggag 60
caggagactg acctcaggga agaaaagggg gatgcgtgca cagaggggag gagaagccat 120
gacagactaca gaaggacaca gctgtcctgg ttctgccctc tcacctctgc cctttgacag 180

<210> 101
<211> 20
<212> DNA
<213> Human

<400> 101
ccagaactct ctggagaagc

20

<210> 102
<211> 21
<212> DNA
<213> Human

<400> 102
gtgctgtgga attcaggata c

21

<210> 103
<211> 27
<212> DNA
<213> Human

<400> 103
ctccactatac cacttcatgc cagatgc

27

<210> 104
<211> 28
<212> DNA
<213> Human

<400> 104
gctggggagg acactggaag gactctca

28