(6) Given a point (c:d) of \mathbb{P}^1 , show that the preimage of (c:d) under φ is also \mathbb{P}^1 , at least on closed points. [hint: Start with the case a = 0.]

My map $\varphi \colon X \to \mathbb{P}^1$ is given by projection of the fan "downward." I will label the cones in the fan for \mathbb{P}^1 as follows:

$$\leftarrow \xrightarrow{\tau_1} \bullet \xrightarrow{\tau_0}$$

A point (c:d) in \mathbb{P}^1 is contained in (at least) one of the open sets $U_{\tau_0} = \{(c:d) \mid d \neq 0\}$ and $U_{\tau_1} = \{(c:d) \mid c \neq 0\}$. Assume (a:b) is of the second type, which is more difficult.

The open sets in X which map to U_{τ_1} correspond to the cones σ_1 and σ_2 , which intersect in the ray ρ_2 spanned by (-1, a). We have

- $U_{\sigma_1} = \operatorname{Spec} \mathbb{C}[x^a y, x^{-1}] \simeq \operatorname{Spec} \mathbb{C}[z, x^{-1}] \simeq \mathbb{A}^2$
- $U_{\sigma_2} = \operatorname{Spec} \mathbb{C}[x^{-a}y^{-1}, x^{-1}] \simeq \operatorname{Spec} \mathbb{C}[z^{-1}, x^{-1}] \simeq \mathbb{A}^2$ $U_{\rho_2} = \operatorname{Spec} \mathbb{C}[x^ay, x^{-a}y^{-1}] \simeq \operatorname{Spec} \mathbb{C}[z, z^{-1}, x^{-1}] \simeq \mathbb{C}^* \times \mathbb{A}^1$
- $U_{\tau_1} = \operatorname{Spec} \mathbb{C}[x^{-1}] \simeq \mathbb{A}^1$

where I have taken $z = x^a y$ throughout. Note that x^{-1} is algebraically independent from both z and z^{-1} so this is not misleading. The map φ on the open cover of X corresponds to the inclusion of $\mathbb{C}[x^{-1}]$ into each of the three rings.

In U_{τ_1} the point $(c:d) = (1:\frac{c}{d})$ corresponds to the maximal ideal $\langle x^{-1} - \frac{c}{d} \rangle$. The extension of this ideal to each of the rings above has the same generator. Thus the preimage of (c:d) under φ consists of the sets

- Spec $\left(\mathbb{C}[z, x^{-1}] / \left\langle x^{-1} \frac{c}{d} \right\rangle\right) \simeq \operatorname{Spec} \mathbb{C}[z] \simeq \mathbb{A}^1$ Spec $\left(\mathbb{C}[z^{-1}, x^{-1}] / \left\langle x^{-1} \frac{c}{d} \right\rangle\right) \simeq \operatorname{Spec} \mathbb{C}[z^{-1}] \simeq \mathbb{A}^1$ identified along Spec $\mathbb{C}[z,z^{-1}]$, which is indeed \mathbb{P}^1 .