

รายงานวิชา Pre-Project รหัสวิชา 01216747

จัดทำโดย

นาย กษิดิศ อินกอง รหัสนักศึกษา 60010042 นาย กิรติ ชาวสามทอง รหัสนักศึกษา 60010087 นาย สหรัฐ รัตนโมคา รหัสนักศึกษา 60011044

เสนอ

ผศ.ดร.อุดม จันทร์จรัสสุข ภาคเรียนที่ 2 ปีการศึกษา 2562 สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง

บทคัดย่อ

ในปัจจุบันมีการนำเทคโนโลยีมาใช้ในโรงงานอุตสาหกรรม หรือธุรกิจต่างๆ การประกอบการเหล่านี้ ได้นำเทคโนโลยีทางปัญญาประดิษฐ์หรือAI เข้ามามีส่วนร่วมในการลดเวลาในการผลิต ความราบรื่นใน การดำเนินงาน เพื่อสร้างผลผลิตที่ตอบสนองต่อความพึ่งพอใจต่อลูกค้า

การจัดทำโครงงานครั้งนี้ได้ทำให้นักศึกษาได้เรียนรู้ถึงการใช้ Arduino board และการใช้อุปกรณ์ ไฟฟ้า เช่น ตัวต้านทาน ตัวเก็บประจุ และอุปกรณ์อิเล็กทรอนิกส์ต่างๆ เช่น Diode LED สามารถต่อยอดเพื่อ ใช้ในการสร้างปัญญาประดิษฐ์ได้ในอนาคต และเป็นประโยชน์ต่ออุตสาหกรรมการผลิต หรือ การ ประกอบการต่างๆ

กิตติกรรมประกาศ

โครงงานนี้สำเร็จลุล่วงได้ด้วยความกรุณาของ ผส.ดร.อุดม จันทร์จรัสสุข อาจารย์ที่ปรึกษาโครงงาน และอาจารย์ผู้สอน ที่ได้ให้คำเสนอแนะ แนวคิด ตลอดจนวิธีการแก้ไขข้อบกพร่องต่างๆ จนโครงงานนี้เป็น อันเสร็จสมบูรณ์ ผู้ศึกษาจึงขอกราบพระคุณเป็นอย่างสูง

ขอบคุณเพื่อนสมาชิกกลุ่มที่ช่วยกันแก้ไขปัญหา ให้ข้อเสนอแนะคีๆ รับผิดชอบต่อหน้าที่ที่ได้รับ หมอบหมาย ตลอดจนโครงงานได้สำเร็จลุล่วงไปได้ด้วยดี

บทที่ 1

บทน้ำ

1.1 ความเป็นมาและความสำคัญของปัญหา

ปัจจุบันมีความก้าวหน้าทางเทคโนโลยี และมีการพัฒนาเทคโนโลยีที่หลากหลาย นวัตกรรมเหล่านี้ ถูกพัฒนาขึ้นเพื่อตอบสนองความต้องการของมนุษย์ โดยเฉพาะการคิดค้นสิ่งต่างๆ เพื่อคอยช่วยเหลือผู้คน อย่าง นวัตกรรมหุ่นยนต์ ด้วยเทคโนโลยีที่มีความหลากหลาย หุ่นยนต์ได้กระจายไปอยู่ในแทบทุกที่ ไม่ว่า จะเป็นโรงพยาบาล มหาวิทยาลัย โรงเรียน หรือแม้แต่บ้านของเราเอง และแน่นอนว่าสถานที่ที่มีการใช้ นวัตกรรมหุ่นยนต์มากที่สุดก็หนีไม่พ้นโรงงานอุตสาหกรรม

โรงงานอุตสาหกรรมในประเทศไทยมีการผลิตยานยนต์ หรือเครื่องมืออิเล็กทรอนิกส์ เป็นส่วน ใหญ่ ดังนั้นการใช้ทรัพยากรบุคคลจึงมีจำนวนมาก ทว่าด้วยปัญหาด้านการขาดแคลนแรงงาน และงานบาง ประเภทมีการทำงานซ้ำซ้อนกัน หรืองานเสี่ยงและอันตราย ซึ่งได้นำนวัตกรรมหุ่นยนต์เข้ามามีส่วนร่วมใน การทำงาน หุ่นยนต์นั้นสามารถทำงานได้อย่างต่อเนื่อง มีความแม่นยำ และรวดเร็วกว่ามนุษย์ อีกทั้งยังอดทน ต่อสภาพแวดล้อม จึงถูกนำมาใช้แทนที่ และให้มนุษย์เป็นผู้ควบคุมแทน ซึ่งจุดประสงค์หลักในการนำ นวัตกรรมหุ่นยนต์เข้ามามีส่วนร่วมในโรงงานอุตสาหกรรม เพื่อเพิ่มกำลังในการผลิต ยิ่งนวัตกรรมหุ่นยนต์ ใหม่ๆมีมากเท่าไหร่ ก็เป็นการเพิ่มความหลากหลายให้การทำงานและเปิดโอกาสให้ผู้ประกอบการ ผลิต ชิ้นงานได้หลากหลายและรวดเร็วยิ่งขึ้น

1.2 ปัญหา

การแข่งขันหุ่นยนต์มีลักษณะคล้ายกับการเล่น บอลลูนค่าน หรือ เล่นเตย โดยแบ่งเป็นทีมรุกและทีม รับสลับกันในการแข่งแต่ละรอบ โดยทีมหนึ่งจะประกอบด้วยหุ่นยนต์ 7 ตัว ผ่ายทีมรุกจะต้องวิ่งไปหาฝั่ง ตรงข้าม จนผ่านเส้นแคง แล้วกลับมาอย่างปลอดภัย(ผ่านเส้นสีเหลือง) โดยที่ไม่ถูกทีมรับจับได้ ก็จะเป็นฝ่าย ชนะในการแข่งขันรอบนั้น หุ่นยนต์ที่ถูกจับได้จะถูกตัดออกจากการแข่งขันในรอบนั้น ส่วนทีมรับ จะ สามารถวิ่งสกัดกั้นฝ่ายตรงข้ามในพื้นที่ป้องกันเท่านั้น ถ้าวิ่งออกนอกพื้นที่ก็จะถูกตัดออกจากการแข่งขันใน รอบนั้นเช่นกัน ถ้าไม่มีหุ่นยนต์ตัวไหนสามารถผ่านค่านได้ ทีมรับจะเป็นฝ่ายชนะ การแข่งขันของแต่ละรอบ จะยุติเมื่อทีมรุกสามารถผ่านค่านได้สำเร็จ หรือเมื่อทีมใดทีมหนึ่งไม่เหลือผู้เล่น ดังรูปที่ 1-1

รูปที่ 1-1 สนามการแข่งขัน

1.3 วัตถุประสงค์

- เพื่อศึกษาการ โปรแกรมและการออกแบบหุ่นยนต์ ซึ่งเป็นพื้นฐานนำ ไปสู่การต่อยอดใน
 อนาคต เพื่อใช้ในโรงงานอุตสาหกรรม หรือเป็นวัตกรรมใหม่ๆ ที่อำนวยความสะดวกของมนุษย์
- 2. เพื่อศึกษาอุปกรณ์ เครื่องมืออิเล็กทรอนิกส์ ทำให้เข้าใจถึงหลักการการทำงานของอุปกรณ์
- 3. ฝึกการทำงานเป็นทีมอย่างเป็นระบบ
- 4. ฝึกการคิดสร้างสรรค์และการแก้ไขปัญหาเฉพาะหน้า

1.4 ขอบเขตโครงงาน

ออกแบบและจำลองวงจรที่ใช้ในการควบคุมหุ่นยนต์ โคยแบ่งกลยุทธ์ออกเป็น 2 กลยุทธ์คือฝ่ายรุก และฝ่ายรับ ที่ควบคุมการทำงานด้วยไมโครคอนโทรลเลอร์ ซึ่งกำหนดให้ตัวรถมี 4 ล้อ ขนาด 10*10 ซม. (เป็นรูป สามเหลี่ยม) สูงประมาณ 10 ซม. ใช้มอเตอร์ 4 ตัว

บทที่ 2

ทฤษฎีและหลักการที่เกี่ยวข้อง

โครงงานนี้ ใค้จัดทำขึ้นเพื่อออกแบบและจำลองวงจรที่ใช้ในการควบคุมหุ่นยนต์ โดยแบ่งกลยุทธ์ ออกเป็น 2 กลยุทธ์ คือกลยุทธ์รับและกลยุทธ์รุก มีทฤษฎีที่เกี่ยวข้องต่อ ไปนี้

2.1 ภาษา C/C++

โครงสร้างภาษา C/C++ บนใมโครคอนโทรลเลอร์ Arduino โปรแกรมจะมีฟังก์ชันหลัก (Structure) อย่างน้อย 2 ฟังก์ชัน มีดังต่อไปนี้

1. ฟังก์ชัน Setup () เป็นฟังก์ชันการกำหนดค่าต่าง ๆ ในส่วนนี้มีการกำหนดค่าเพียงครั้งเดียวเท่านั้น เช่น กำหนดขาในการใช้งานให้เป็นขาอินพุตหรือขาเอาต์พุต การกำหนดค่าของการเรียกใช้ไลบรารี[1]

```
Void setup ()
{
//เป็นส่วนของคำสั่ง สำหรับกำหนดการทำงานในโปรแกรม และทำเพียงครั้งเดียว
}
```

2. ฟังก์ชัน Loop () เป็นส่วนในการเขียนโปรแกรมและสั่งให้โปรแกรมทำงาน ซึ่งมีการทำงานเป็น แบบวนลูปไปเรื่อย ๆ ตามการเขียนโปรแกรมของผู้พัฒนาโปรแกรมเพื่อรับค่าจากอินพุต นำค่าที่ได้มา ประมวลผล แล้วทำการส่งข้อมูลออกเอาต์พุตเพื่อควบคุมการทำงานตามโปรแกรม

```
Void loop ()
{

// เป็นโปรแกรมหลักของคำสั่ง ซึ่งในส่วนนี้ โปรแกรมมีการทำงานตลอดเวลา
}
```

ส่วนชุดคำสั่งในการควบคุม (Control Structure) เป็นคำสั่งให้ไมโครคอนโทรลเลอร์ทำงานตามเงื่อนไข หรือรูปแบบที่ผู้พัฒนาโปรแกรมต้องการ มีคำสั่งต่าง ๆ ดังต่อไปนี้

- คำสั่ง if เป็นคำสั่งในการตรวจสอบเงื่อนไขการทำงานของโปรแกรมถ้าเงื่อนไขเป็นจริง ให้ ทำงานตามคำสั่งที่กำหนดนั้น มีรูปแบบคำสั่งดังนี้

```
if (เงื่อนใขที่ตรวจสอบ)
{
คำสั่งที่ให้ทำงาน เมื่อเงื่อนไขเป็นจริง
```

- คำสั่ง if else เป็นคำสั่งกำหนดเงื่อนไขการทำงานของโปรแกรม โดยมี 2 เงื่อนไข ถ้าเงื่อนไข เป็นจริงทำงานตามคำสั่งที่กำหนดแบบหนึ่ง ถ้าเงื่อนไขเป็นเท็จทำงานตามคำสั่งที่กำหนดอีกแบบหนึ่ง มี รูปแบบคำสั่งดังนี้

- คำสั่ง for เป็นคำสั่งให้ โปรแกรมทำงานซ้ำตามจำนวนรอบที่ต้องการมีรูปแบบคำสั่งคือ for (ค่าเริ่มต้น ; เงื่อนไขการทำซ้ำ ; การเพิ่มหรือลดค่าตัวแปรในแต่ละรอบ)

```
คำสั่งที่ให้ทำงาน
         - คำสั่ง Switch case เป็นคำสั่งเพื่อกำหนดการทำงานของโปรแกรมหลาย ๆ เงื่อนไข ถ้าตัวแปรที่
กำหนดตรงกับเงื่อนไขนั้น ๆ ทำให้โปรแกรมทำงานตามที่กำหนดไว้แต่ละเงื่อนไข มีรูปแบบคำสั่ง
ดังนี้ Switch (ตัวแปร ที่ต้องการตรวจสอบ)
            {
            case 1: คำสั่งที่ให้ทำงาน เมื่อตรวจสอบว่า ตัวแปร == 1
            break;
            case 2: คำสั่งที่ให้ทำงาน เมื่อตรวจสอบว่า ตัวแปร == 2
            break:
            default: คำสั่งที่ให้ทำงาน เมื่อตรวจสอบว่า ตัวแปรไม่ตรงกับเงื่อนไขใด ๆ
         - คำสั่ง while เป็นคำสั่งทำซ้ำแบบวนรอบ ถ้าเงื่อนไขเป็นจริง โปรแกรมทำงานตามคำสั่ง
ที่เขียนไว้ในวงเล็บปีกกา แต่ถ้าเงื่อนไขเป็นเท็จโปรแกรมจบการทำงานในคำสั่ง while มีรูปแบบคำสั่ง ดังนี้
           while (เงื่อนไขที่ตรวจสอบ)
            คำสั่งที่ให้ทำงาน เมื่อเงื่อนไขยังเป็นจริง
```

- คำสั่ง Do while เป็นคำสั่งทำซ้ำแบบวนรอบ โดยมีการทำงานตรงกันข้ามกับคำสั่ง
while คือทำงานตามคำสั่งที่เขียนไว้ในวงเล็บปีกกา แล้วจึงมาตรวจสอบเงื่อนไข แต่ถ้าเงื่อนไขเป็นเท็จ
โปรแกรมจบการทำงานในคำสั่ง do มีรูปแบบคำสั่งคังนี้

Do

{

คำสั่งที่ให้ทำงาน

} while (เงื่อนไขที่ตรวจสอบ)

- คำสั่ง break เป็นคำสั่งใช้ร่วมกับคำสั่งการทำงานแบบวนรอบ ได้แก่ คำสั่ง do, for white หรือ Switch เพื่อให้โปรแกรมหยุดการทำงานจากการวนรอบโดยไม่มีเงื่อนไข
- คำสั่ง continue เป็นคำสั่งใช้สำหรับข้ามการทำงานของคำสั่งถัดไป คำสั่งนี้เขียนอยู่ใน คำสั่งการ ทำงานแบบวนรอบ ไค้แก่ คำสั่ง do, for หรือ while
 - คำสั่ง return เป็นคำสั่งจบการทำงานในโปรแกรมย่อย

โดยชุดคำสั่งที่ใช้เป็นชุดคำสั่งในการเขียนโปรแกรมเพื่อให้ไมโครคอนโทรลเลอร์ทำงานตามโปรแกรมที่ ออกแบบไว้ โดยมีคำสั่งต่าง ๆ ดังนี้

- 1. คำสั่งคิจิตอล อินพุต/เอาต์พุต
 - คำสั่ง pinMode () เป็นการกำหนดพอร์ตเป็นอินพุตหรือเอาต์พุต
 - กำสั่ง digitalWrite () เป็นการเขียนข้อมูลออกพอร์ตที่กำหนด
 - คำสั่ง digitalRead () เป็นการอ่านข้อมูลเข้าพอร์ตที่กำหนด
- 2. คำสั่งอนาล็อก อินพุต/เอาต์พุต
 - คำสั่ง analogReference () เป็นการกำหนดค่าแรงคันอ้างอิงที่ใช้สำหรับอนาล็อกอินพุต
- คำสั่ง analogRead () เป็นการอ่านแรงคันไฟฟ้าแบบอนาล็อกและแปลงเป็นจำนวนเต็ม มีค่าระหว่าง 0 ถึง 1023
 - คำสั่ง analogWrite () เป็นการใช้ PWM เขียนค่าออกทางพอร์ตที่กำหนด
- 3. คำสั่งเวลา

- คำสั่ง millisecond () เป็นการหน่วงเวลามีหน่วยเป็นมิลลิวินาทีของ Arduino ทันทีที่มีไฟเลี้ยงเข้า Arduino
- คำสั่ง microsecond () เป็นการหน่วงเวลามีหน่วยเป็นไมโครวินาทีของ Arduino ทันทีที่มีไฟเลี้ยง เข้า Arduino
 - คำสั่ง delay () เป็นการหน่วงเวลาตามค่าที่กำหนด มีหน่วยเป็นมิลลิวินาที
- คำสั่ง delayMicroseconds () เป็นการหน่วงเวลาตามค่าที่กำหนด มีหน่วยเป็นไม่วินาที ซึ่งจะต้องประกอบด้วยตัวแปรชนิดต่าง กล่าวคือตัวแปรเป็นชื่อเรียกแทนพื้นที่เก็บข้อมูลในหน่วยความจำ ของไมโครคอนโทรลเลอร์ โดยชนิดของข้อมูลหรือรูปแบบของตัวแปรต่าง ๆ มีดังนี้

1. ค่าคงที่

- คำสั่ง HIGH/LOW แทนสถานะลอจิก "1" กับลอจิก "0"
- คำสั่ง INPUT/OUTPUT ใช้สำหรับกำหนดค่าอินพุตกับเอาต์พุต

2. ชนิดของข้อมูล

- Void () ใช้เฉพาะในการประกาศฟังก์ชัน
- char () มีค่าตั้งแต่ 127 ถึง 127 ใช้สำหรับเก็บข้อมูลที่เป็นตัวอักษร
- int () มีค่าตั้งแต่ 32,767 ถึง 32,767

2.2 ใมโครคอนโทรถเลอร์ (Microcontroller)

ใมโครคอนโทรลเลอร์ คือ คอมพิวเตอร์ขนาดเล็กที่ถูกรวมไว้ในชิปเดียวประกอบด้วย หน่วย ประมวลผลกลาง (CPU) วงจรอินพุท/เอาท์พุท หน่วยความจำแรมและแฟลช ตัวจับเวลา ตัวนับ เป็นต้น สำหรับไมโครคอนโทรลเลอร์ Atmega 328p มีโครงสร้างภายในเป็นแบบ RISC (Reduced instruction set Computer) มีหน่วยความจำโปรแกรมภายในเป็นแบบแฟลช สามารถเขียน-ลบโปรแกรมใหม่ ได้หลายครั้ง โปรแกรมข้อมูลเป็นแบบ In-System programmable ดังรูปที่ 2-1

รูปที่ 2-1 ตำแหน่งและรูปร่างของใมโครคอนโทรลเลอร์ATmega328p

โดยคุณสมบัติเบื้องต้นของไมโครคอนโทรลเลอร์ ATmega328 มีดังนี้

Microcontroller :	ATmega 328P (8 bit)
Operating Voltage :	5 Volts
Digital I/O Pin :	14 Pins
Analog Input Pin :	6 Pins
DC Current per I/O	20 mA
Pin:	
Flash Memory :	32 KB
SRAM:	2 KB
EEPROM:	1 KB
Clock Speed :	16 MHz
Size :	53.4 x 68.6 mm
Weight:	25 g

ตารางที่ 1 แสดงคุณสมบัติของ ใมโครคอนโทรลเลอร์ Atmega328

2.3 โมดูลเซ็นเซอร์แสงสำหรับตรวจจับวัตถุกีดขวาง (IR Infrared Obstacle

Avoidance Sensor Module)

เซ็นเซอร์ใช้ตรวจจับวัตถุโดยใช้หลักการสะท้อนของแสงเมื่อไปชนวัตถุ (Reflective) สามารถปรับ ความไวในการตรวจจับได้ ใช้แสงอินฟราเรดในการตรวจจับ[2] แสดงดังรูปที่ 2-2

รูปที่ 2-2 โมคูลเซ็นเซอร์แสงสำหรับตรวจจับวัตถุกีดขวาง

มีคุณสมบัติคังต่อไปนี้

- สามารถตรวจจับวัตถุได้ในระยะ 2 30 cm.
- ใช้แรงคันไฟฟ้าในการทำงาน 3V 5.5V
- ใช้หลักการสะท้อนของแสงในการตรวจจับ โดยมีหลอด LED อินฟาเรคส่งแสง และมีโฟโด้ ทรานซิสเตอร์ในการรับแสง
- สามารถแยกสีขาว คำ ได้
- ใช้ใอซีเปรียบเทียบแรงคันเบอร์ LM393

2.4 เซนเซอร์วัดระยะทาง (Ultrasonic Module)

เซนเซอร์วัคระยะทางค้วย Ultrasonic ใช้หลักการ ส่งคลื่นเสียงความถี่ต่ำ Ultrasonic ไปเมื่อคลื่นเสียง กระทบกับวัตถุจะมีการสะท้อนกลับมา เซนเซอร์จับเวลาที่ส่งคลื่นเสียงออกไปจนถึงคลื่นเสียงสะท้อน กลับมา เมื่อนำมาคำนวนกับเวลาที่เสียงเดินทางในอากาศ ก็จะได้ระยะทางออกมา

จุดต่อการใช้งานของ เซ็นเซอร์วัดระยะทาง Ultrasonic Module HC-SR04

รูปที่ 2-3 จุดต่อใช้งานของเซ็นเซอร์วัคระยะทาง Ultrasonic Module HC-SR04

2.5 DC Motor Speed Control

ประกอบ H-bridge Driver และ Pulse-width modulation (PWM)

- 1. H-bridge Driver เป็นวงจรที่ทำหน้าที่ควบคุมทิสทางและความเร็วของมอเตอร์
 - หมุนตามเข็ม (Clockwise : CW) ก็ให้ S1 และ S4 ปีควงจร และให้ S2 และ S3 เปิควงจร
- หมุนทวนเข็ม (Conter Clockwise : CCW) ก็ให้ S2และ S3 ปิดวงจร และให้ S1 และ S4 เปิดวงจร จะเห็นว่าสวิตช์จะทำงานเป็นคู่ S1 คู่กับ S4 และ S2 คู่กับ S3 คู่แรกทำงาน คู่สองต้องเปิดวงจร และใน ทางตรงข้ามก็คือคู่สองทำงาน คู่แรกต้องเปิดวงจร [3][4] แสดงดังรูป 2-4

รูปที่ 2-4 วงจร H-bridge Driver

2. Pulse-width modulation (PWM) เป็นการควบคุมพลังงานที่ส่งออกไปยังอุปกรณ์ที่ต้องการควบคุม เช่น ความแรงมอเตอร์ ความสว่างของไฟ LED โดยปกติหมายถึงการลดแรงดันที่ส่งออกไปยังมอเตอร์ แต่การลด แรงดันนั้นเป็นแนวทางที่ต้องใช้วงจรที่ซับซ้อนมีความยุ่งยากค่อนข้างมาก ซึ่งไม่ได้ลดแรงดัน หากแต่ใช้ หลักการเปิด/ปิดมอเตอร์ด้วยความเร็วสูง จนผลค่าเฉลี่ยของแรงดันที่ได้ออกมาเทียบเท่ากับการเปลี่ยน แรงดันโดยตรง เทคนิคนี้ทำให้ไม่ต้องใช้วงจรซับซ้อน แต่การเขียนโปรแกรมจะยุ่งยากขึ้นบ้าง

L298N Dual H-bridge Motor Controller เป็นมอเตอร์ที่เลือกใช้ในโครงงานนี้มี สเปกดังนี้

Dual H bridge Drive Chip	L298N
แรงคันสัญญาณลอจิก	5V Drive voltage: 5V-35V
กระแสของสัญญาณลอจิก	0-36mA
กระแสขับมอเตอร์	สูงสุคที่ 2A (เมื่อใช้มอเตอร์เคียว)
กำลังไฟฟ้าสูงสุด	25W
ขนาด	43 x 43 x 26 มิลลิเมตร
น้ำหนัก	26 กรัม

ตารางที่ 2 คุณสมบัติของ Dual H bridge Drive Chip

2.6 TCRT5000 Infrared Reflective sensor

เป็นโมดูลตรวจจับวัตถุระยะใกล้ มีราคาถูก ขนาดเล็ก สะดวกในการนำไปใช้ติดตั้งกับงานจำพวก หุ่นยนต์, Smart car, หุ่นยนต์หลบสิ่งกีดขวาง เป็นต้น โดยการทำงานของตัวโมดูลนี้ เริ่มต้นโดยให้ หลอด Infrared LED ทำการส่งสัญญาณ เป็นแสงอินฟราเรดออกไปตกกระทบกับวัตถุที่ตรวจพบในระยะ และทำการสะท้อนกลับมายังตัว หลอดโฟโต้ไดโอดที่ทำหน้าที่รับแสงอินฟราเรด [5]

รูปที่ 2-6 TCRT5000 Infrared Reflective sensor

2.7 DC/DC step-up MT3608

โมคูลแปลงแรงคันต่ำเป็นแรงคันสูงรองรับแรงคันอินพุตได้ตั้งแต่ 2V ถึง 24V แรงคันเอาต์พุตสามารถ ปรับได้ตั้งแต่ 5V ถึง 28V จ่ายกระแสได้สูงสุดถึง 2A

รูปที่ 2-7 DC/DC step-up MT3608

บทที่ 3

การออกแบบและการจัดทำโครงงาน

3.1 การออกแบบกลยุทธ์

ในการออกแบบรถจะมีทั้งหมด 4 ล้อ โดยมี 2 ล้อหน้า 2 ล้อหลัง สามารถขับเคลื่อนได้ 4 ล้อ เพื่อ ความคล้องตัวและสมมาตรในการเคลื่อนที่ และมีเซนเซอร์รอบตัว 4 จุดเพื่อใช้ในการตรวจจับสิ่งกีดขว้าง เซนเซอร์ใต้ท้องรถ 1 จุด เพื่อใช้ในการตรวจจับเทปสี โดยมีกลยุทธ์การเคลื่อนที่ ดังนี้

3.1.1 กลยุทธ์รุก

เมื่อเป็นฝั่งรุก จะหันหน้าและเคลื่อนที่ในแนวตรง และมีการเปลี่ยนชุดคำสั่งเมื่อสัมผัสเส้นสีแดง และจะหยุดเมื่อสัมผัสเส้นสีเหลือง และเมื่อสัมผัสกับเส้นสีดำ(ขอบสนาม) จะทำการตั้งหลักใหม่ จะมี เซนเซอร์ตรวจจับโดยแบ่งเป็นชุดคำสั่งให้รถดังนี้

- เซนเซอร์ หน้ารถ ให้ตรวจจับสิ่งกีดขว้างด้านหน้า และ ให้ทำการวิ่งตรงหรือถอยหลังหรือ ชะลอหรือหยุด
 - เซนเซอร์ ซ้าย,ขวา ให้ตรวจจับสิ่งกีดขว้างซ้าย ขวา และ ให้ทำการเลี้ยวซ้ายขวา
- เซนเซอร์ หลัง ให้ตรวจจับสิ่งกีดขว้างด้านหลัง และให้ทำการวิ่งตรงหรือถอยหลังถอย หลังหรือชะลอหรือหยุด
- เมื่อไม่มีสัญญาณเซนเซอร์ให้รถวิ่งไปข้างหน้าหรือถอยหลังเมื่อเป็นขากลับ แสดงดังรูปที่ 3-1 Flow Chart การออกแบบกลยุทธ์รุก

รูปที่ 3-1 Flow Chart การออกแบบกลยุทธ์รุก

3.1.2 กลยุทธ์รับ

เมื่อเป็นฝั่งรับ จะหันรถเป็นแนวขว้าง จะมีเซนเซอร์ตรวจจับโดยแบ่งเป็นชุดคำสั่งให้รถดังนี้

- เซนเซอร์ หน้ารถ ให้รถวิ่งตรง
- เซนเซอร์ หลังรถ ให้รถถอยหลัง
- เมื่อไม่มีสัญญาณเซนเซอร์ให้รถอยู่เฉยๆ

แสดงดังรูปที่ 3-2 Flow Chart การออกแบบกลยุทธ์รับ

รูปที่ 3-2 Flow Chart การออกแบบกลยุทธ์รับ

3.2 การออกแบบการทำงานของวงจร

อุปกรณ์ที่ใช้ในการทำโครงงาน

- 1. Arduino board 1 ตัว
- 2. ล้อ 4 ล้อ
- 3.มอเตอร์ 4 ตัว
- 4.ถ่านชาร์จ Li-ion 18650 ขนาด 3400 mAh 3.7V 1 ก้อน
- 5.เซนเซอร์ 5 ตัว
- 6. โครงรถ
- 7.ที่ชาร์จแบตถ่าน
- 8.สายไฟ

รูปที่ 3-3 ลักษณะการต่อวงจร

3.3 การออกแบบโครงสร้างรถ

การออกแบบโครงสร้างรถ "Team 13" มีแรงบันดาลใจมาจาก Racing car หรือรถแข่งทามิย่า ที่เคยเป็น ของเล่นที่ยอดนิยมในช่วงยุค 90 ซึ่งมีการใช้มอเตอร์ต่อกับเฟืองโดยตรงในการขับเคลื่อน มีหลักการคล้าย กับโครงงานนี้ จึงออกแบบลักษณะรางถ่านรวมถึงตำแหน่งการวางมอเตอร์คล้ายกับรถแข่งทามิย่า โดยตัว รถที่ออกแบบจะมีโหลดต่ำใกล้พื้นเพื่อป้องกันการพลิกคว่ำ และช่วยให้ TCRT5000 อ่านค่าจากเส้นสีได้ แม่นยำขึ้น แสดงดังรูปที่ 3-4

รูปที่ 3-4 โครงสร้างรถโดยรวม

รูปที่ 3-5 ตำแหน่งที่จัดวางอุปกรณ์บนตัวรถ

รูปที่ 3-6 Top view Front view Side view

3.4 การออกแบบและอธิบายโค้ด

ผู้จัดทำขออธิบาย โค้ดเป็น 4 ส่วน ได้แก่ 1. ประกาศตัวแปร, 2. Setup, 3. Function ต่างๆ และ 4. Loop ซึ่งอธิบายได้ดังนี้

1. ประกาศตัวแปร

#include <HCSR04.h> เป็นการประกาศ library ให้ sensor ultra sonic ประมวลค่าที่รับและส่งเป็นหน่วย cm

HCSR04 hc(10,11); ultra sonic sensor ตัวด้านหน้ารถ

HCSR04 hc2(12,13); ultra sonic sensor ตัวค้านหลังรถ

#define SwitchPin A3 Switch ในการสับเปลี่ยนคำสั่งรุกหรือรับ

#define ia1 2 #define ia2 3 ล้อซ้ายหน้า

#define ib1 4 #define ib2 5 ล้องวาหน้า

#define ic 1 6 #define ic 2 7 ลื้อซ้ายหลัง

#define id1 8 #define id2 9 ลื้อขวาหลัง

#define S2 A2 Sennsor Infared ด้านซ้าย

#define S3 A1 Sennsor Infared ด้านขวา

#define SBt A0 Sensor จับเทปสีใต้ท้องรถ

#define maxSpd 255 ความเร็วของมอเตอร์

int SwitchState = 0; ตัวแปรในการเปลี่ยนคำสั่งในการเลือกกลยุทธ์ของรถ

int T=0; ตัวแปรในการเปลี่ยนคำสั่งในการเคลื่อนที่ ของกลยุทธ์ฝ่ายรุก กับเทปสีแคงและเหลือง

int B=0; ตัวแปรในการเปลี่ยนคำสั่งในการเคลื่อนที่ ของกลยุท์ฝ่ายรุก กับเทปสีดำ

int sensorValue = analogRead(A0); ตัวแปร sensorValue รับค่ามาจาก Sensor จับเทปสีใต้ท้องรถ

int speed = maxSpd; ตัวแปรspeedเท่ากับความเร็วของมอเตอร์

2. setup

pinMode(ia1, OUTPUT); pinMode(ia2, OUTPUT); ล้อซ้ายหน้าแสดงเป็น output

pinMode(ib1, OUTPUT); pinMode(ib2, OUTPUT); ล้องวาหน้าแสคงเป็น output

pinMode(ic1, OUTPUT); pinMode(ic2, OUTPUT); ลื้อซ้ายหลังแสคงเป็น output

pinMode(id1, OUTPUT); pinMode(id2, OUTPUT); ลื้อขวาหลังแสคงเป็น output

pinMode(S2,INPUT); เซนเซอร์ด้านซ้ายเป็นตัวรับค่า

pinMode(S3,INPUT); เซนเซอร์ด้านขวาเป็นตัวรับค่า

pinMode(SBt,INPUT); เซนเซอร์ใต้ท้องรถเป็นตัวรับค่า

Serial.begin(9600); ความเร็วในการแสดงค่าของ Monitor

```
Switch เป็นตัวรับค่า
pinMode(SwitchPin, INPUT);
3. Fucntion คำสั่งต่างๆ
        โดย แบ่งเป็น 5 ส่วน ดังนี้
ส่วนที่1 Function 3.1-3.9 จะเป็น Function เกี่ยวกับการขับเคลื่อนมอเตอร์
                                 ให้ล้อทั้งสี่เบรก
3.1 void Break()
{
 digitalWrite(ia1, HIGH);
 digitalWrite(ia2, HIGH);
 digitalWrite(ib1, HIGH);
 digitalWrite(ib2, HIGH);
 digitalWrite(ic1, HIGH);
 digitalWrite(ic2, HIGH);
 digitalWrite(id1, HIGH);
 digitalWrite(id2, HIGH);
}
                                 ให้ถ้อทั้งสี่วิ่งไปข้างหน้าด้วยความเร็ว speed
3.2 void Forward(int speed)
{
 digitalWrite(ia1, LOW);
 analogWrite(ia2, speed);
 digitalWrite(ib1, LOW);
```

```
analogWrite(ib2, speed);
 digitalWrite(ic1, LOW);
 analogWrite(ic2, speed);
 digitalWrite(id1, LOW);
 analogWrite(id2, speed);
 }
3.3 void Slow(int speed) ให้ล้อทั้งสี่วิ่งไปข้างหน้าด้วยความเร็ว speed*0.3(ช้า)
{
 digitalWrite(ia1, LOW);
 analogWrite(ia2, speed*0.3);
 digitalWrite(ib1, LOW);
 analogWrite(ib2, speed*0.3);
 digitalWrite(ic1, LOW);
 analogWrite(ic2, speed*0.3);
 digitalWrite(id1, LOW);
 analogWrite(id2, speed*0.3);
}
                                ให้ล้อทั้งสี่ถอยหลัง ด้วยความเร็ว speed
3.4 void Reward(int speed)
{
 digitalWrite(ia2, LOW);
```

```
analogWrite(ia1, speed);
 digitalWrite(ib2, LOW);
 analogWrite(ib1, speed);
 digitalWrite(ic2, LOW);
 analogWrite(ic1, speed);
 digitalWrite(id2, LOW);
 analogWrite(id1, speed);
}
                                ให้ล้อทั้งสี่ถอยหลัง ด้วยความเร็ว speed*0.3(ช้า)
3.5 void RSlow(int speed)
{
 digitalWrite(ia2, LOW);
 analogWrite(ia1, speed*0.3);
 digitalWrite(ib2, LOW);
 analogWrite(ib1, speed*0.3);
 digitalWrite(ic2, LOW);
 analogWrite(ic1, speed*0.3);
 digitalWrite(id2, LOW);
 analogWrite(id1, speed*0.3);
}
```

```
3.6 void Turnleft(int speed) ให้สองล้อหน้าทำการเลี้ยวซ้าย และสองล้อหลังทำการวิ่งไปข้างหน้าด้วย
speed*0.5
{
 digitalWrite(ia1, LOW);
 analogWrite(ia2, speed*0.7);
 digitalWrite(ib2, LOW);
 analogWrite(ib1, speed*0.3);
 digitalWrite(ic1, LOW);
 analogWrite(ic2, speed*0.5);
 digitalWrite(id1, LOW);
 analogWrite(id2, speed*0.5);
}
                                ให้สองล้อหน้าทำการเลี้ยวขวา และสองล้อหลังทำการวิ่งไปข้างหน้าด้วย
3.7 void TurnRight(int speed)
speed*0.5
{
 digitalWrite(ia2, LOW);
 analogWrite(ia1, speed*0.3);
 digitalWrite(ib1, LOW);
 analogWrite(ib2, speed*0.7);
 digitalWrite(ic1, LOW);
```

```
analogWrite(ic2, speed*0.5);
 digitalWrite(id1, LOW);
 analogWrite(id2, speed*0.5);
}
3.8 void RTurnleft(int speed) ให้สองล้อหลังทำการถอยหลังซ้าน และสองล้อหลังทำการถอยหลังด้วย
speed*0.5
{
 digitalWrite(ia1, LOW);
 analogWrite(ia2, speed*0.5);
 digitalWrite(ib2, LOW);
 analogWrite(ib1, speed*0.5);
 digitalWrite(ic1, LOW);
 analogWrite(ic2, speed*0.7);
 digitalWrite(id1, LOW);
 analogWrite(id2, speed*0.3);
}
```

```
3.9 void RTurnRight(int speed) ให้สองล้อหลังทำการถอยหลังซ้าน และสองล้อหลังทำการถอยหลังด้วย
speed*0.5
{
 digitalWrite(ia1, LOW);
 analogWrite(ia2, speed*0.5);
 digitalWrite(ib2, LOW);
 analogWrite(ib1, speed*0.5);
 digitalWrite(ic1, LOW);
 analogWrite(ic2, speed*0.3);
 digitalWrite(id1, LOW);
 analogWrite(id2, speed*0.7);
}
ส่วนที่2 Function 3.10-3.17 จะเป็น Function เกี่ยวกับชุดคำสั่งรับค่าของเซนเซอร์พร้อมการทำงานต่างๆ
3.10 void Sensor1() ใช้ ultra sonic ในการตรวจจับวัตถุอยู่ข้างหน้ารถ
{
 int speed = \maxSpd;
 Serial.println(hc.dist() ); //showdistantfromfront
  if((hc.dist()>=10) && (hc.dist()<=15)){
                        ถ้าวัตถุ อยู่ในระยะ 10-15 cm ให้ชะลอรถ
    Slow(speed);}
  else if ((hc.dist()>=5) && (hc.dist()<10)){
```

```
ถ้าวัตถุ อยู่ในระยะ 5-10 cm ให้หยุดรถ
    Break();}
  else if ((hc.dist()>=0) && (hc.dist()<5)){
                         ถ้าวัตถุ อยู่ในระยะ 0-5 cm ให้รถถอยหลังห
    Reward(speed);}
  else {
    Forward(speed);} ถ้าวัตถุไม่อยู่ในระยะ 15 cm ให้รถวิ่งไปข้างหน้า
}
3.11 void Sensor2(){
  int speed = \maxSpd;
 if(digitalRead(S2)==LOW){
     Serial.println("sensor detected object from left side");
     delay(20);
    Turnleft(speed);} ถ้า sensor 2 จับได้ รถจะเลี้ยวซ้าย
 else{
  Forward(speed); ถ้า sensor 2 จับไม่ได้ รถจะวิ่งไปข้างหน้า
 }
}
3.12 void RSensor2(){
  int speed = \maxSpd;
 if(digitalRead(S2)==LOW){
     Serial.println("sensor detected object from left side");
```

```
delay(20);
    RTurnRight(speed);} ถ้า sensor 2 จับได้ รถจะถอยขวา
 else {
  Reward(speed); ถ้า sensor 2 จับไม่ใค้ รถจะถอยหลัง
 }
}
3.13 void Sensor3(){
  int speed = \maxSpd;
 if(digitalRead(S3)==LOW){
     Serial.println("sensor detected object from right side");
     delay(20);
    TurnRight(speed);} ถ้า sensor 3 จับได้ รถจะเลี้ยวขวา
    else{
  Forward(speed); ถ้า sensor 3 จับไม่ได้ รถจะวิ่งไปข้างหน้า
     }
}
3.14 void RSensor3(){
  int speed = \maxSpd;
 if(digitalRead(S3)==LOW){
     Serial.println("sensor detected object from right side");
```

```
delay(20);
    RTurnleft(speed);} ถ้า sensor 3 จับได้ รถจะถอยซ้าย
    else{
 Reward(speed); ถ้า sensor 3 จับไม่ได้ รถจะถอยหลัง
     }
}
3.15 void Sensor4() ใช้ ultra sonic ในการตรวจจับวัตถุอยู่ข้างหลังรถ
{
 int speed = \maxSpd;
 Serial.println(hc2.dist() );
  if((hc2.dist()>=10) && (hc2.dist()<=15)){
                        ถ้าวัตถุ อยู่ในระยะ 10-15 cm ให้ชะลอรถ
    RSlow(speed);}
  else if ((hc2.dist()>=5) && (hc2.dist()<10)){
                        ถ้าวัตถุ อยู่ในระยะ 5-10 cm ให้หยุดรถ
    Break();}
  else if ((hc2.dist()>=0) && (hc2.dist()<5)){
    Forward(speed);} ถ้าวัตถุ อยู่ในระยะ 0-5 cm ให้รถวิ่งไปข้างหน้า
  else{
                        ถ้าวัตถุไม่อยู่ในระยะ 15 cm ให้รถถอยหลัง
    Reward(speed);}
}
3.16 void DSensor1()
```

```
{
 int speed = \maxSpd;
 Serial.println(hc2.dist() );
  if((hc2.dist()>=0) && (hc2.dist()<=15)){
                        ถ้าวัตถุ อยู่ในระยะ 0-15 cm ให้รถวิ่งไปข้างหน้า
    Forward(speed);}
  else {
                        ถ้าวัตถุไม่อยู่ในระยะ 0-15 cm ให้รถหยุด
    Break();}
}
3.17 void DSensor2() //ultrasonic
{
 int speed = maxSpd;
 Serial.println(hc2.dist() );
  if((hc2.dist()>=0) && (hc2.dist()<=15)){
                         ถ้าวัตถุ อยู่ในระยะ 0-15 cm ให้รถวิ่งถอยหลัง
    Reward(speed);}
  else {
                        ถ้าวัตถุไม่อยู่ในระยะ 0-15 cm ให้รถหยุด
    Break();}
}
ส่วนที่3 Function 3.18-3.21 จะเป็น Function เกี่ยวกับชุดคำสั่งรับค่าของเซนเซอร์ใต้ท้องรถพร้อมการ
ทำงานต่างๆ
```

```
3.18 void DetectRed(){
 if(sensorValue>=1700&&sensorValue<=1850)
   {
                              ถ้าsensor สัมผัสเทปสีแดง ให้ทำการถอยรถและ return T=1
     Reward(speed);
     delay(100);
     T = 1;
   }
 }
3.19 void RDetectYellow(){
 if(sensorValue>=1900&&sensorValue<=2100)
   {
                              ถ้าsensor สัมผัสเทปสีเหลือง ให้ทำการถอยรถและเพิ่มค่า T ขึ้น 1
      Reward(speed);
      delay(100);
      T+=1;
   }
}
3.20 void DetectBlack(){
if(sensorValue>=2400&&sensorValue<=2600) ถ้าsensor สัมผัสเทปสีดำ
                       ถ้า B หาร 2 ลงตัว รถจะถอยซ้าย
   { if(B%2==0){
     RTurnleft(speed);
```

```
delay(100);
                                                     และหาก sensor ไม่สัมผัสเทปสีดำ ให้เพิ่มค่า
if(!(sensorValue>=2400&&sensorValue<=2600)){
B ขึ้นเ
        B+=1;
     }
     }
                              ถ้า B หาร 2 เหลือเศษ 1 รถจะถอยขวา
     else if(B\%2==1){
      RTurnRight(speed);
      delay(100);
                                                             และหาก sensor ไม่สัมผัสเทปสีดำ
       if(!(sensorValue>=2400&&sensorValue<=2600)){
ให้เพิ่มค่า B ขึ้นเ
        B+=1;
     }
      }
     else{
                              ถ้า sensor ไม่สัมผัสเทปสีคำ รถจะวิ่งไปข้างหน้า
      Forward(speed);
     }
   }
```

```
}
3.21 void RDetectBlack(){
 if(sensorValue>=2400&&sensorValue<=2600) ถ้า sensor สัมผัสเทปสีดำ
                      ถ้า B หาร 2 ลงตัว รถเลี้ยวซ้าย
   \{ if(B\%2==0) \}
     Turnleft(speed);
     delay(100);
       if(!(sensorValue>=2400&&sensorValue<=2600 )){ และหาก sensor ใม่สัมผัสเทปสีดำ
ให้เพิ่มค่า B ขึ้น1
        B+=1;
     }
   }
     else if(B%2==1){ ถ้า B หาร 2 เหลือเศษ 1 รถจะเลี้ยวขวา
      TurnRight(speed);
      delay(100);
       if(!(sensorValue>=2400&&sensorValue<=2600 )){ และหาก sensor ไม่สัมผัสเทปสีดำ
ให้เพิ่มค่า B ขึ้น1
         B+=1;
      }
     }
     else{
```

```
Reward(speed); ถ้า sensor ไม่สัมผัสเทปสีคำ รถจะถอยหลัง
      }
   }
}
ส่วนที่4 Function 3.22-3.23 จะเป็น Function เกี่ยวกับชุดคำสั่งกลยุทธ์ฝ่ายรุก
3.22 void GoF(){
                        เปิดใช้ sensor 1,2,3 และsensor ใต้ท้องรถ
 Sensor1();
 Sensor2();
 Sensor3();
 DetectRed();
 DetectBlack();
 if(T=1 && (sensorValue>=1700&&sensorValue<=1850))
   {
                ถ้า T=1 และ sensor สัมผัสเทปสีแดง ให้ใช้ฟังก์ชั่น GoR()
    GoR();
   }
}
3.23 void GoR(){
                        เปิดใช้ sensor 4,2,3 และsensor ใต้ท้องรถ
 Sensor4();
 RSensor2();
```

```
RSensor3();
 RDetectYellow();
 RDetectBlack();
                        ถ้ำ T=6 ให้รถหยุค
 if(T=6)
   {
    Break();
   }
}
ส่วนที่ร Function 3.24 จะเป็น Function เกี่ยวกับชุดคำสั่งกลยุทธ์ฝ่ายรับ
3.24 void Defend(){
 DSensor1(); เปิดใช้ sensor หน้ารถและหลังรถ
 DSensor2();
}
4. loop
        void loop() {
                               ถ้า switch เปิด ให้ใช้ function GoF()
 if (SwitchState == HIGH)
 {
 GoF();
 }
                               ถ้า switch ปิด ให้ใช้ function Defend()
if (SwitchState == LOW)
```

```
{
  Defend();
}
```

}

<u>ภาคผนวก</u>

#include <hcsr04.h></hcsr04.h>
HCSR04 hc(10,11);
HCSR04 hc2(12,13); //initialisation class HCSR04 (trig,echo);
#define SwitchPin A3
#define ia1 2
#define ia2 3
#define ib1 4
#define ib2 5
#define ic1 6
#define ic2 7
#define id1 8
#define id2 9
#define S2 A2
#define S3 A1
#define SBt A0
#define maxSpd 255 // motor max speed
int SwitchState = 0;
int T=0;
int B=0;

```
int sensorValue = analogRead(A0);
int speed = \maxSpd;
void setup() {
pinMode(ia1, OUTPUT);
 pinMode(ia2, OUTPUT);
pinMode(ib1, OUTPUT);
 pinMode(ib2, OUTPUT);
pinMode(ic1, OUTPUT);
 pinMode(ic2, OUTPUT);
 pinMode(id1, OUTPUT);
 pinMode(id2, OUTPUT);
pinMode(S2,INPUT);
pinMode(S3,INPUT);
pinMode(SBt,INPUT);
 Serial.begin(9600);
pinMode(SwitchPin, INPUT);
```

}

```
void loop() {
 if (SwitchState == HIGH) //attack
 {
 GoF();
if (SwitchState == LOW) //defend
{
Defend();
 }
}
void Defend(){
 DSensor1();
 DSensor2();
}
void GoF(){
```

Sensor1();

```
Sensor2();
 Sensor3();
DetectRed();
DetectBlack();
if(T=1 && (sensorValue>=1700&&sensorValue<=1850)) //Red
   {
    GoR();
   }
}
void GoR(){
 Sensor4();
RSensor2();
RSensor3();
RDetectYellow();
RDetectBlack();
if(T=6)
   {
    Break();
   }
}
```

```
void DetectRed(){
if(sensorValue>=1700&&sensorValue<=1850)
   {
     Reward(speed);
     delay(100);
     T = 1;
   }
void RDetectYellow(){
if(sensorValue>=1900&&sensorValue<=2100)
   {
      Reward(speed);
      delay(100);
      T+=1;
   }
}
void DetectBlack(){
```

```
if(sensorValue>=2400&&sensorValue<=2600) // detect black
  { if(B%2==0){
   RTurnleft(speed);
   delay(100);
    if(!(sensorValue>=2400&&sensorValue<=2600)){
    B+=1;
    }
    }
    else if(B%2==1){
     RTurnRight(speed);
     delay(100);
    if(!(sensorValue>=2400&&sensorValue<=2600)){
    B+=1;
    }
    }
    else{
     Forward(speed);
    }
```

```
}
}
void RDetectBlack(){
 if(sensorValue>=2400&&sensorValue<=2600) // detect black
   { if(B%2==0){
     Turnleft(speed);
     delay(100);
     if(!(sensorValue>=2400&&sensorValue<=2600)){
     B+=1;
     }
   }
     else if(B%2==1){
      TurnRight(speed);
      delay(100);
       if(!(sensorValue>=2400&&sensorValue<=2600)){
         B+=1;
      }
     }
     else\{
      Reward(speed);
```

```
}
   }
}
void Sensor1() //ultrasonic
{
 int speed = \maxSpd;
 Serial.println(hc.dist()); //showdistantfromfront
  if((hc.dist()>=10) && (hc.dist()<=15)){
    Slow(speed);}
  else if ((hc.dist()>=5) && (hc.dist()<10)){
    Break();}
  else if ((hc.dist()>=0) && (hc.dist()<5)){
    Reward(speed);}
  else\{
    Forward(speed);}
}
void Sensor2(){
  int speed = \maxSpd;
```

```
if(digitalRead(S2)==LOW){
    Serial.println("sensor detected object from left side");
     delay(20);
    Turnleft(speed);}
 else\{
  Forward(speed);
 }
}
void RSensor2(){
  int speed = \maxSpd;
 if(digitalRead(S2)==LOW){
    Serial.println("sensor detected object from left side");
     delay(20);
    RTurnRight(speed);}
 else\{
  Reward(speed);
 }
}
void Sensor3(){
  int speed = \maxSpd;
```

```
if(digitalRead(S3)==LOW){
    Serial.println("sensor detected object from right side");
     delay(20);
    TurnRight(speed);}
    else\{
  Forward(speed);
     }
}
void RSensor3(){
  int speed = \maxSpd;
 if(digitalRead(S3)==LOW){
    Serial.println("sensor detected object from right side");
     delay(20);
    RTurnleft(speed);}
     else\{
 Reward(speed);
     }
}
void Sensor4() //ultrasonic
{
```

```
int speed = maxSpd;
 Serial.println(hc2.dist() );
  if((hc2.dist()>=10) && (hc2.dist()<=15)){
    RSlow(speed);}
  else if ((hc2.dist()>=5) && (hc2.dist()<10)){
    Break();}
  else if ((hc2.dist()>=0) && (hc2.dist()<5)){
    Forward(speed);}
  else\{
    Reward(speed);}
}
void DSensor1() //ultrasonic
{
 int speed = \maxSpd;
 Serial.println(hc2.dist() );
  if((hc2.dist()>=0) && (hc2.dist()<=15)){
    Forward(speed);}
  else\{
    Break();}
}
```

```
void DSensor2() //ultrasonic
{
 int speed = \maxSpd;
 Serial.println(hc2.dist() );
  if((hc2.dist()>=0) && (hc2.dist()<=15)){
    Reward(speed);}
  else\{
    Break();}
}
void Break() // motor break
{
 digitalWrite(ia1, HIGH);
 digitalWrite(ia2, HIGH);
 digitalWrite(ib1, HIGH);
 digitalWrite(ib2, HIGH);
 digitalWrite(ic1, HIGH);
 digitalWrite(ic2, HIGH);
 digitalWrite(id1, HIGH);
 digitalWrite(id2, HIGH);
```

```
}
void Forward(int speed) //goforward
{
 digitalWrite(ia1, LOW);
 analogWrite(ia2, speed);
 digitalWrite(ib1, LOW);
 analogWrite(ib2, speed);
 digitalWrite(ic1, LOW);
 analogWrite(ic2, speed);
 digitalWrite(id1, LOW);
 analogWrite(id2, speed);
}
void Slow(int speed) //goforwardwithSlowspeed
{
 digitalWrite(ia1, LOW);
 analogWrite(ia2, speed*0.3);
 digitalWrite(ib1, LOW);
 analogWrite(ib2, speed*0.3);
 digitalWrite(ic1, LOW);
 analogWrite(ic2, speed*0.3);
```

```
digitalWrite(id1, LOW);
 analogWrite(id2, speed*0.3);
}
void RSlow(int speed) //RewardwithSlowspeed
{
 digitalWrite(ia2, LOW);
 analogWrite(ia1, speed*0.3);
 digitalWrite(ib2, LOW);
 analogWrite(ib1, speed*0.3);
 digitalWrite(ic2, LOW);
 analogWrite(ic1, speed*0.3);
 digitalWrite(id2, LOW);
 analogWrite(id1, speed*0.3);
}
void Reward(int speed) //goReward
{
 digitalWrite(ia2, LOW);
 analogWrite(ia1, speed);
 digitalWrite(ib2, LOW);
```

```
analogWrite(ib1, speed);
 digitalWrite(ic2, LOW);
 analogWrite(ic1, speed);
 digitalWrite(id2, LOW);
 analogWrite(id1, speed);
}
void Turnleft(int speed) //turnleftandgoforward
{
 digitalWrite(ia1, LOW);
 analogWrite(ia2, speed*0.7);
 digitalWrite(ib2, LOW);
 analogWrite(ib1, speed*0.3);
 digitalWrite(ic1, LOW);
 analogWrite(ic2, speed*0.5);
 digitalWrite(id1, LOW);
 analogWrite(id2, speed*0.5);
}
void TurnRight(int speed) //turnrightandgoforward
{
 digitalWrite(ia2, LOW);
```

```
analogWrite(ia1, speed*0.3);
 digitalWrite(ib1, LOW);
 analogWrite(ib2, speed*0.7);
 digitalWrite(ic1, LOW);
 analogWrite(ic2, speed*0.5);
 digitalWrite(id1, LOW);
 analogWrite(id2, speed*0.5);
}
void RTurnleft(int speed) //turnleftandReward
{
 digitalWrite(ia1, LOW);
 analogWrite(ia2, speed*0.5);
 digitalWrite(ib2, LOW);
 analogWrite(ib1, speed*0.5);
 digitalWrite(ic1, LOW);
 analogWrite(ic2, speed*0.7);
 digitalWrite(id1, LOW);
 analogWrite(id2, speed*0.3);
}
void RTurnRight(int speed) //turnrightandReward
```

```
digitalWrite(ia1, LOW);
analogWrite(ia2, speed*0.5);
digitalWrite(ib2, LOW);
analogWrite(ib1, speed*0.5);
digitalWrite(ic1, LOW);
analogWrite(ic2, speed*0.3);
digitalWrite(id1, LOW);
analogWrite(id2, speed*0.7);
}
```

บทที่ 4

ผลการศึกษาโครงงาน

จากการศึกษาในวิชา Pre-Project ที่ได้รับหมอบหมายงานในการสร้างหุ่นยนต์รถ การจัดทำโครงงาน ครั้งนี้ ผู้จัดทำได้มีความรู้ ความเข้าใจเกี่ยวกับการโปรแกรม วงจรไฟฟ้าขั้นพื้นฐานร่วมไปถึงความคิด สร้างสรรค์ในการออกแบบตัวโครงสร้างรถ สามารถทำให้รถเคลื่อนที่ได้ตามที่ผู้จัดทำต้องการ โดยมี ขอบเขตงานและอุปกรณ์ที่ใช้อย่างจำกัด ซึ่งมีวิธีการดำเนินงานดังนี้

รายการ	W	W	W	W	W	W 13-	W
	1-2	3	4-5	6-7	7-12	14	15
จัดกลุ่มและแบ่งหน้าที่	←						
วางแผนกลยุทธ์และทำproject proposal		← →					
ออกแบบรูปร่างรถ			← →				
ทำตัวรถ				←→			
เขียน โค้ด				•	-		
ปรับปรุงตัวรถและการทำงาน			•		-		
จัดทำรูปเล่ม						•	-
จัดส่งโครงงาน							←

หมายเหตุ W1 เริ่มวันที่ 20 มกราคม 2563

ตารางที่ 3 ระยะเวลาและวิธีการคำเนินงาน

บทที่ 5

สรุปผลการศึกษาโครงงาน

ในการจัดทำโครงงานครั้งนี้เป็นการทำงานในรูปแบบออนไลน์ เนื่องจากเกิดสถานการณ์การระบาด ของโรคติดเชื้อไวรัสโควิด-19 ทำให้ไม่สามารถสร้างรถขึ้นมาได้จริง โครงงานที่จัดทำขึ้นครั้งนี้เป็นแนวคิด ที่สามารถต่อยอดการสร้างหุ่นยนต์ขึ้นมาได้ในอนาคต การจัดทำโครงงานครั้งนี้สมาชิกผู้จัดทำ ได้ ติดต่อสื่อสารกันทางออนไลน์ทำให้ฝึกทักษะในการสื่อสารที่สมาชิกในกลุ่มจะต้องเข้าใจและทำงานไปใน ทิสทางเดียวกัน มีสมาชิในการทำงานมากขึ้นและที่สำคัญประหยัดค่าเดินทางไปทำงาน

5.1 สรุปค่าใช้จ่ายในการทำโครงงาน

ล้อรถ 2 ล้อ 35*2 = 70 บาท

เซนเซอร์ 1 ตัว = 65 บาท (ultra sonic)

รวมประมาณ 135 บาท

เอกสารอ้างอิง

- [1] https://sites.google.com/site/mikhorkhxnthorllexr1/chud-kha-sang
- [2] https://robotsiam.blogspot.com/2016/10/ir-infrared-obstacle-avoidance-sensor.html
- [3] https://www.arduitronics.com/article/22/arduino-and-motor-control-part-1
- [4] http://naringroup.blogspot.com/2016/03/robot-1298n-dual-h-bridge-motor.html
- [5] https://www.arduinoall.com/product/698/tcrt5000-infrared-reflectance-obstacle-avoidance-line-tracking-sensor-