Homework 3

21-740 Introduction to Functional Analysis II

Name: Shashank Singh¹

Due: Friday, November 8, 2013

Problem 1

A composition of closed linear operators is not, in general, closed.

Consider the Banach space $X := C([0,1];\mathbb{R})$ of continuous function from [0,1] to \mathbb{R} , under the supremum norm $||f|| := \sup_{x \in [0,1]} |f(x)|$.

Let $\mathcal{D}(B) = C^1([0,1];\mathbb{R}) \subseteq X$ and let $B : \mathcal{D}(B) \to X$ be the differentiation operator $Bf := f', \forall f \in \mathcal{D}(B)$. It is a well-known result that if a sequence $\{f_n\}_{n=1}^{\infty}$ of differentiable functions converges uniformly to f and $\{f'_n\}_{n=1}^{\infty}$ converges uniformly to g, then $f \in C^1([0,1];\mathbb{R})$ and g = f'. It follows that B is closed.

Now define $A: X \to X$ by $(Af)(x) := f(0), \forall f \in X, x \in [0,1]$. A is continuous and hence closed.

For all $n \in \mathbb{N}$, define $f_n \in \mathcal{D}(B)$ by

$$f_n(x) := \frac{e^{-nx}}{n}, \quad \forall x \in [0, 1].$$

Then, $||f_n|| = f_n(0) = 1/n$ and f'(0) = -1, $\forall n \in \mathbb{N}$, so that, as $n \to \infty$, $f_n \to 0$ and $ABf_n \to -1 \neq 0 = AB(0)$. Thus, AB is not closed.

Problem 2

 (\Rightarrow) Suppose A is closable and $(0,y) \in cl(Gr(A))$. If \bar{A} denotes the closure of A, then $(0,y) \in Gr(\bar{A})$. Since \bar{A} is a linear operator $(0,0) \in Gr(\bar{A})$, and it follows that y=0.

 (\Leftarrow) Suppose that

$$\forall (x, y) \in cl(Gr(A)), \quad x = 0 \Rightarrow y = 0.$$

First note that cl(Gr(A)) is a linear manifold. Define

$$\mathcal{D}(\bar{A}) := \{x : (x, y) \in cl(Gr(A)) \text{ for some } y \in X\}.$$

It is easily checked that $\mathcal{D}(\bar{A})$ is a linear manifold. If $(x, y_1), (x, y_2) \in cl(Gr(A))$, then

$$(0, y_1 - y_2) = (x - x, y_1 - y_2) \in cl(Gr(A)),$$

and hence $y_1 = y_2$ by the given condition. Thus, we can define an operator $\bar{A}: \mathcal{D}(\bar{A}) \to Y$ by $(x, \bar{A}x) \in cl(Gr(A))$ for each $x \in cl(\mathcal{D}(A))$ and have that $cl(Gr(A)) = Gr(\bar{A})$, so that \bar{A} is closed. Thus, A is closable (and \bar{A} is the closure of A).

¹sss1@andrew.cmu.edu

Problem 3

(a) A is not closed. Define the sequence $\{x_n\}_{n=1}^{\infty}$ in $\mathbb{K}^{(\mathbb{N})}$ by

$$x_n^{(k)} = \begin{cases} k^{-3} & \text{if } k \le n \\ 0 & \text{if } k > n \end{cases}, \quad \forall n, k \in \mathbb{N}.$$

Then, defining $x = (1^{-3}, 2^{-3}, 3^{-3}, \dots), x_n \to x$ as $n \to \infty$. Also,

$$(Ax_n)^{(k)} = \begin{cases} \sum_{i=1}^n i^{-2} & \text{if } k = 1\\ k^{-3} & \text{if } 1 < k \le n \\ 0 & \text{if } k > n \end{cases}, \quad \forall n, k \in \mathbb{N},$$

so $Ax_n \to (\pi^2/6, 2^{-3}, 3^{-3}, \dots)$ as $n \to \infty$. Since $x \notin \mathbb{K}^{(\mathbb{N})}$, Gr(A) is not closed.

(b) A is not closable. Define the sequence $\{x_n\}_{n=1}^{\infty}$ in $\mathbb{K}^{(\mathbb{N})}$ by

$$x_n^{(k)} = \begin{cases} (nk)^{-1} & \text{if } k \le n \\ 0 & \text{if } k > n \end{cases}, \quad \forall n, k \in \mathbb{N}.$$

Then, $||x_n||_p \leq \frac{H_n}{n} \to 0$ as $n \to \infty$ (where H_n denotes the n^{th} harmonic number). Also, noting $\sum_{i=1}^n k(nk)^{-1} = 1$ for all $n \in \mathbb{N}$,

$$(Ax_n)^{(k)} = \begin{cases} 1 & \text{if } k = 1\\ (nk)^{-1} & \text{if } 1 < k \le n \\ 0 & \text{if } k > n \end{cases}, \forall n, k \in \mathbb{N},$$

so, $Ax_n \to (1,0,0,\dots) \neq 0$ as $n \to \infty$. By the result of Problem 2, A is not closable.

Problem 4

As the following translation semigroup shows, it may be the case that T(t) = 0 for some $t \ge 0$. Let

$$X := \{ f \in C([0,1]; \mathbb{R}) : f(1) = 0 \}$$

and consider the mapping $T:[0,\infty)\to \mathcal{L}(X;X)$ given by

$$(T(t)f)(x) = \begin{cases} 0 & \text{if } x+t > 1 \\ f(x+t) & \text{else} \end{cases}, \forall f \in X, t \ge 0, x \in [0,1]$$

Since T simply applies a left-shift, clearly T(0) = I and, $\forall s, t \geq 0$, T(s+t) = T(s)T(t). Since [0,1] is compact, every $f \in X$ is uniformly continuous, and hence (since each f(1) = 0), T is strongly continuous, so that T is a linear C_0 -semigroup. Furthermore, it is clear that, $\forall t \geq 1$, T(t) = 0.

It's probably worth noting that this is not possible with T continuous in the uniform operator topology, since T is then the exponential of its generator and is therefore invertible.

Problem 5

- (a) By definition of T, $\forall t \geq 0, x \in X_0$, $T(t)x \in X_0$. Suppose that, for some $n \in \{1, \ldots, N\}$, for all $x \in X_{n-1}$, $T(t)x \in X_{n-1}$ for all $t \geq 0$. Let $t \geq 0, x \in X_n$. Since $X_n \subseteq X_{n-1}$, $T(t)x \in X_{n-1}$. Since $Ax \in X_{n-1}$, by part (b) of Lemma 9.2, $AT(t)x = T(t)Ax \in X_{n-1}$, so $T(t) \in X_n$, and the desired result follows by induction.
- (b) Suppose that, for some $n \in \{1, ..., N\}$, T is continuous in the strong operator topology on $(X_{n-1}, \|\cdot\|_{n-1})$. If $x \in X_n, t \geq 0$, then by part (b) of Lemma 9.2

$$\|T(t)x - x\|_n = \|T(t)x - x\|_{n-1} + \|A(T(t)x - x)\|_{n-1} = \|T(t)x - x\|_{n-1} + \|T(t)Ax - Ax\|_{n-1} \to 0$$

as $t \downarrow 0$, since $Ax \in X_{n-1}$. Thus, by induction, T is continuous in the strong operator topology on each $(X_n, \|\cdot\|_n)$.

Since T is continuous in the strong operator topology on $(X_n, \|\cdot\|_n)$, $u \in C^0([0, \infty); X_N)$.

Suppose that, for some $n \in \{1, ..., N\}$, we have $u \in C^{n-1}([0, \infty); X_{N-(n-1)})$ and $u^{(n-1)}(t) = T(t)A^{n-1}x$. Then, for $t \ge 0$, $x \in X_{N-n}$.

$$\lim_{h\downarrow 0} \frac{u^{(n-1)}(t+h) - u^{(n-1)}(t)}{h} = T(t) \lim_{h\downarrow 0} \frac{T(h)A^{n-1}x - A^{n-1}x}{h} = T(t)A^nx,$$

so $u \in C^n([0,\infty);X_{N-n})$ and $u^{(n)}=T(t)A^nx$. The desired result follows by induction.

Problem 6

By the Hille-Yosida Theorem, we have, for some $M > 0, \omega \in \mathbb{R}$,

- (i) $\mathcal{D}(A)$ is dense in X and A is closed.
- (ii) $\rho(A) \supseteq (\omega, \infty)$.

(iii)
$$||R(\lambda; A)^n|| \le \frac{M}{(\lambda - \omega)^n}, \forall n \in \mathbb{N}, \lambda > \omega.$$

Furthermore, also by the Hille-Yosida Theorem, it suffices to show

- (iv) $\mathcal{D}(A+L)$ is dense in X and A+L is closed.
- (v) $\rho(A+L) \supseteq (\omega + ||L||, \infty)$.

(vi)
$$||R(\lambda; A+L)^n|| \le \frac{M}{(\lambda - (\omega + M||L||))^n}, \forall n \in \mathbb{N}, \lambda > \omega.$$

Since L is continuous, $\mathcal{D}(A+L) = \mathcal{D}(A)$ and A+L is closed.

Also, since L is bounded, it can shift the spectrum by at most ||L||, so $(\omega + ||L||, \infty) \subseteq \rho(A + L)$. It follows from (iii) that, for $\lambda > \omega + M||L||$,

$$||LR(\lambda;A)|| \le \frac{M||L||}{\lambda - \omega} < \frac{M||L||}{M||L||} = 1.$$

Lemma 1 For $\lambda > \omega + M||L||$ (so $\lambda \in \rho(A+L)$),

$$R(\lambda; A + L) = R(\lambda; A) \left(I - LR(\lambda; A) \right)^{-1} = \sum_{k=0}^{\infty} R(\lambda; A) \left(LR(\lambda; A) \right)^{k}.$$

Proof: Since

$$(\lambda I - (A+L)) R(\lambda; A) = (\lambda I - A) R(\lambda; A) - LR(\lambda; A) = (I - LR(\lambda; A)),$$
$$(\lambda I - (A+L)) R(\lambda; A) (I - LR(\lambda; A))^{-1} = I.$$

Since $\lambda \in \rho(A+L)$, $\lambda I - (A+L)$ is bijective, and hence its right inverse is its inverse. \square Taking norms and reindexing terms in terms of powers of $\|L\|$,

$$||R(\lambda; A + L)^n|| = \left\| \left[\sum_{k=0}^{\infty} R(\lambda; A) \left(LR(\lambda; A) \right)^k \right]^n \right\| \le \sum_{k=0}^{\infty} \binom{n}{k} \frac{M^{k+1} ||L||^k}{(\lambda - \omega)^{n+k}}$$

Then, since $\lambda > \omega + M\|L\|$, using the identity $\frac{1}{(1-x)^n} = \sum_{k=0}^{\infty} {n \choose k} x^k$.

$$||R(\lambda; A + L)^n|| \le \sum_{k=0}^{\infty} \binom{n}{k} \frac{M^{k+1} ||L||^k}{(\lambda - \omega)^{n+k}}$$

$$= \frac{M}{(\lambda - \omega)^n} \sum_{k=0}^{\infty} \binom{n}{k} \left(\frac{M ||L||}{\lambda - \omega}\right)^k$$

$$= \frac{M}{(\lambda - \omega)^n} \cdot \left(1 - \frac{M ||L||}{\lambda - \omega}\right)^{-n}$$

$$= \frac{M}{(\lambda - (\omega + M ||L||))^n}. \quad \blacksquare$$

Problem 7

I wasn't able to prove this on my own. This proof is based on the proof of Theorem 1.6 in Engel and Nagel's A Short Course on Operator Semigroups.

By the Principle of Uniform Boundedness, $\forall t \geq 0$, $T(t) \in \mathcal{L}(X;X)$, and hence, again by the Principle of Uniform Boundedness, $\exists M, \delta > 0$ such that $||T(t)|| \leq M$ for all $t \in [0, \delta]$. Thus, it suffices to show that the set

$$E := \left\{ x \in X : \lim_{t \downarrow 0} T(t)x = x \right\}$$

is dense in X. In particular, since E is convex, it suffices to show E is weakly dense in X.

 $\forall x \in X, r > 0$, define $x_r \in X^{**}$ by

$$x_r(x^*) := \frac{1}{r} \int_0^r x^*(T(t)x) dt, \quad \forall x^* \in X^*.$$

Let $x \in X$ and suppose r > 0. Since [0, r] is compact and the mapping $s \to T(s)x$ is weakly continuous, $S := \{T(s)x : s \in [0, r]\}$ is weakly compact. Thus, the closure of the convex hull of S, cl(co(S)), is weakly compact. Since x_r is a limit of Riemann sums, $x_r \in cl(co(S))$, and so $x_r \in X$. Since the set $D := \{x_r : r > 0, x \in X\}$ is weakly dense in X, it suffices to show $D \subseteq E$.

$$||T(t)x_{r} - x_{r}|| = \sup_{\|x^{*}\| \le 1} \frac{1}{r} \left| \int_{t}^{t+r} x^{*}(T(s)x) \, ds - \int_{0}^{r} x^{*}(T(s)x) \, ds \right|$$

$$\leq \sup_{\|x^{*}\| \le 1} \frac{1}{r} \left(\left| \int_{r}^{r+t} x^{*}(T(s)x) \, ds \right| + \left| \int_{0}^{r} x^{*}(T(s)x) \, ds \right| \right)$$

$$\leq \frac{2t}{r} ||x|| \sup_{0 \le s \le r+t} ||T(s)|| \to 0 \quad \text{as } t \downarrow 0. \quad \blacksquare$$

Problem 8

We first note that, $\forall u \in X, t > 0$, $T(t)u = k_t * u$, where $k_t(x) = (\pi t)^{-1/2} e^{-x^2/t}$, $\forall x \in \mathbb{R}$. Then, $\{k_t\}_{t\geq 0}$ is an approximate identity (that is, $\forall t \geq 0$, $\int_{\mathbb{R}} k_t = 1$ and $\forall \delta > 0$, $\int_{\mathbb{R}\setminus (-\delta,\delta)} k_t(y) dy \to 0$ as $t \to 0$). We showed in Measure Theory that this implies $||k_t * f - f||_2 \to 0$ as $t \to 0$, $\forall f \in L^2(\mathbb{R})$. Thus, T is continuous in the strong operator topology. If $s, t \geq 0$, changing coordinates,

$$(T(s)T(t)u)(x) = (\pi st)^{-1/2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\frac{ty^2 + sz^2}{st}} u(x - y - z) \, dy \, dz$$
$$= \left(\frac{st}{s+t}\right)^{1/2} (\pi st)^{-1/2} \int_{-\infty}^{\infty} e^{-\frac{y^2}{s+t}} u(x - y) \, dy = (T(s+t)u)(x),$$

so we have the semigroup property. From reading Engel and Nagel's A Short Course on Operator Semigroups, I understand that the infinitesimal generator of T is the second derivative $A: C^2(\mathbb{R}) \cap L^2(\mathbb{R}) \to X$ defined by Au = u'', $\forall u \in C^2(\mathbb{R}) \cap L^2(\mathbb{R})$, but I wasn't able to show this. It seems to require Fourier transforms, which I'm not too familiar with.