MATH 135 Fall 2020: Extra Practice 5

Warm-Up Exercises

WE01. What is the remainder when -98 is divided by 7?

 $-98 \div 7 = -14$, so the remainder is 0.

WE02. Calculate gcd(10, -65).

We have $10 = 2 \cdot 5$ and $-65 = -1 \cdot 5 \cdot 13$, so the GCD is 5.

WE03. Let $a, b, c \in \mathbb{Z}$. Consider the implication S: If gcd(a, b) = 1 and $c \mid (a + b)$, then gcd(b, c) = 1. Fill in the blanks to complete a proof of S.

- (a) Since gcd(a, b) = 1, by Bézout's Lemma, there exist integers x and y such that ax + by = 1.
- (b) Since $c \mid (a+b)$, by definition, there exists an integer k such that a+b=ck.
- (c) Substituting a = ck b into the first equation, we get 1 = (ck b)x + by = b(-x + y) + c(kx).
- (d) Since 1 is a common divisor of b and c and -x + y and kx are integers, gcd(b, c) = 1 by the GCD Characterization Theorem.

WE04. Disprove: For all integers a, b, and c, if $a \mid (bc)$, then $a \mid b$ or $a \mid c$.

Proof. We prove the negation, there are integers a, b, and c where $a \mid bc$, $a \nmid b$, and $a \nmid c$. Let a = 15, b = 5, and c = 3. Clearly, $a \nmid b$ and $a \nmid c$. However, bc = 15, and $15 \mid 15$.

Recommended Problems

RP01.

(a) Use the Extended Euclidean Algorithm to find three integers x, y and $d = \gcd(1112, 768)$ such that 1112x + 768y = d.

Solution. Apply the EEA with x = 1112 and y = 768.

x	y	r	q
1	0	1112	
0	1	768	
1	-1	344	1
-2	3	80	2
9	-13	24	4
-29	42	8	3
96	-139	0	3

Therefore, we have that $d = \gcd(1112, 768) = 8$, and that

$$1112(-29) + 768(42) = 8$$

That is, our solution is when x = -29 and y = 42.

(b) Determine integers s and t such that $768s - 1112t = \gcd(768, -1112)$.

Solution. Since the GCD is invariant under sign changes, we immediately know that gcd(768, -1112) = 8. We also have that 1112(-96) + 768(42) = 8. But this is the same as saying 768(42) - 1112(96) = 8, so s = 42 and t = 96.

RP02. Prove that for all $a \in \mathbb{Z}$, gcd(9a + 4, 2a + 1) = 1.

Proof. Let a be an integer. We must show that 9a + 4 and 2a + 1 are coprime. Recall the Coprimeness Characterization Theorem: it suffices to find integers a and b such that (9a + 4)a + (2a + 1)b = 1.

Choose a = -2 and b = 9. Then,

$$(9a + 4)a + (2a + 1)b = -2(9a + 4)a + 9(2a + 1)$$
$$= -18a - 8 + 18a + 9$$
$$= 1$$

as desired. Therefore, gcd(9a + 4, 2a + 1) = 1.

RP03. Let gcd(x,y) = d for integers x and y. Express gcd(18x + 3y, 3x) in terms of d and prove that you are correct.

RP04. Let $a, b \in \mathbb{Z}$. Prove that if gcd(a, b) = 1, then $gcd(2a + b, a + 2b) \in \{1, 3\}$.

RP05. Prove that for all integers a, b and k, if $b \neq 0$, then $gcd(a, b) \leq gcd(ak, b)$.

RP06. Prove that for all integers a, b and c: if $a \mid c$ and $b \mid c$ and gcd(a, b) = 1, then $ab \mid c$.

RP07. Let $a, b, c \in \mathbb{Z}$. Prove that if gcd(a, b) = 1 and $c \mid a$, then gcd(b, c) = 1.

RP08. Let a and b be integers. Prove that if gcd(a,b) = 1, then $gcd(a^m,b^n) = 1$ for all $m, n \in \mathbb{N}$. You may use the result which is proved in Example 14 in the notes.

RP09. Suppose a, b and n are integers. Prove that $n \mid \gcd(a, n) \cdot \gcd(b, n)$ if and only if $n \mid ab$.

RP10. How many positive divisors does 33480 have?

RP11. Prove that for all integers a and b, if $9a^2 = b^4$ where $a, b \in \mathbb{Z}$, then 3 is a common divisor of a and b.

RP12. Let $n \in \mathbb{N}$. Prove that if p is prime and $p \leq n$, then p does not divide n! + 1.

Challenges

C01. Prove that for any integer $a \neq 1$ and $n \in \mathbb{N}$, $\gcd\left(\frac{a^n-1}{a-1}, a-1\right) = \gcd(n, a-1)$.

C02. Let n be a positive integer for which $gcd(n, n + 1) < gcd(n, n + 2) < \cdots < gcd(n, n + 20)$. Prove that gcd(n, n + 20) < gcd(n, n + 21).

C03. Let a and b be nonnegative integers. Prove that $gcd(2^a-1,2^b-1)=2 gcd(a,b)-1$.

C04. An integer n is *perfect* if the sum of all of its positive divisors (including 1 and itself) is 2n.

- (a) Is 6 a perfect number? Give reasons for your answer.
- (b) Is 7 a perfect number? Give reasons for your answer.
- (c) Prove the following statement: If k is a positive integer and $2^k 1$ is prime, then $2^{k-1}(2^k 1)$ is perfect.

C05. Let $a, b \in \mathbb{Z}$. Prove that $gcd(a^n, b^n) = gcd(a, b)^n$ for all $n \in \mathbb{N}$.