Matematiikan ylioppilaskoe 20.3.2009

Pitkä oppimäärä

Vastaukset

1. a)
$$\frac{2}{9}a^2$$
; b) $x < \frac{5}{3}$; c) $x = \frac{3}{13}$, $y = \frac{24}{13}$.

2. a)
$$\frac{3}{4}$$
; b) $x_1 = 0$, $x_2 = 3$; c) $-\sin 2x$.

3. a)
$$\vec{a} + \vec{b} = 3\vec{i} + 3\vec{j}$$
, yksikkövektori $\frac{1}{\sqrt{2}}(\vec{i} + \vec{j})$; b) 11.1 %.

4.
$$x = -1$$
.

5. a)
$$x=20$$
;
b) $f(x)=\ln(1+\frac{1}{x})$ tai $f'(x)=-\frac{1}{x(x+1)}$, mistä seuraa monotonisuus.

7.
$$x_0 = \frac{2}{3}$$
.

8.
$$12x + 9y + 2z - 36 = 0$$
.

9.
$$x = \frac{\pi}{3} + n\pi, \ y = (-1)^n \frac{\sqrt{3}}{2}, \ n \in \mathbb{Z};$$
 ala = 2.

10.
$$V(a) = \frac{\pi}{2}(1 - e^{-2a}); V_{\infty} = \frac{\pi}{2}; a = \ln 10 \approx 2.3.$$

11.
$$\frac{9n^2 + 117n + 34}{3n + 5} = 3n + 34 - \frac{136}{3n + 5},$$
viimeinen termi supistuu kokonaisluvuksi, jos $n = 1, 4$ tai 21.

12.
$$x_{n+1} = x_n - \frac{x_n^3 - x_n - 2}{3x_n^2 - 1}$$
; jos $x_0 = 1.5$, niin $x_2 \approx 1.52$; $f(x) = x^3 - x - 2$, $f'(x) = 3x^2 - 1 > 0$, ei siis muita juuria.

13.
$$S_n = \sum_{i=1}^n a_i$$
; suppenee, jos on olemassa $\lim_{n\to\infty} S_n$; koska $S_i > a_1$ kaikilla i , on $\sum_{i=1}^n S_i > na_1$ eikä sarja suppene.

14. a)
$$h = \frac{1}{2}(1+\sqrt{3})a;$$
 b) $V = \frac{1}{6}(1+\sqrt{3})a^3;$ c) 70° .

15. a)
$$f(x) - f(0) = \int_0^x f'(x) dx \ge \int_0^x 2 dx = 2x;$$

b) $1 = \int_0^1 f(x) dx \ge \int_0^1 [f(0) + 2x] dx = f(0) + 1;$

c) koska
$$\int_0^1 f(x) dx > 0$$
 on olemassa $x_0 < 1$ siten, että $f(x_0) > 0$, jolloin välillä $[0, x_0]$ on nollakohta; koska $f'(x) > 0$, muita ei ole.