MASSACHUSETTS MATHEMATICS LEAGUE **CONTEST 1 - OCTOBER 2007 SOLUTION KEY**

Team Round

A) Consider the diagram at the right.

The volume of the cone is given by
$$\frac{1}{3}\pi \left(\frac{s}{2}\right)^2 \left(\frac{s}{2}\sqrt{3}\right) = \frac{\sqrt{3}\pi s^3}{24}$$

The volume of the sphere is given by
$$\frac{4}{3}\pi \left(\frac{s\sqrt{3}}{6}\right)^3 = \frac{\sqrt{3}\pi s^3}{54}$$

The difference is
$$5\pi\sqrt{3}s^3 \left(\frac{1}{24} - \frac{1}{54}\right) = 5\pi\sqrt{3}s^3 \left(\frac{54 - 24}{24(54)}\right) = \frac{5\pi\sqrt{3}}{216}s^3$$

B) Examining right triangles in which the lengths of the hypotenuse and long leg differ by 1:

<u>a</u>	<u>b</u>	<u>c</u>	<u>Per</u>	<u>Factors</u>
3	4	5	12	3(4)
5	12	13	30	5(6)
7	24	25	56	7(8)
9	40	41	90	9(10)

Apparently, the perimeter is given by a(a + 1)

We want a as large as possible with
$$a(a + 1) \le 1000$$
 $a = 31 \rightarrow 992$, $a = 32 \rightarrow 1056$

We want a as large as possible with
$$a(a + 1) \le 1000$$
 $a = 31 \rightarrow 992$, $a = 32 \rightarrow 1056$
Thus, $a = 31$ and $31^2 + b^2 = (b + 1)^2 \rightarrow 961 = 2b + 1 \rightarrow b = 480$ and the sides are (31, 480, 481)

C) Let n denote the number of pencils originally bought for 30ϕ .

Let p denote the cost of a single pencil(in cents).

Then
$$np = 30$$
 and $(n + 3)(p - 27/12) = 30$.

$$(n+3)(p-2.25) = np-2.25n+3p-6.75 = 30$$

Cancelling,
$$-2.25n + 3p - 6.75 = 0 \Rightarrow -9n + 12p - 27 = 0 \Rightarrow -3n + 4p - 9 = 0 \Rightarrow p = \frac{9+3n}{4}$$

Substituting,
$$np = n \cdot \frac{9+3n}{4} = 30 \Rightarrow 3n^2 + 9n - 120 = 0 \Rightarrow (3n+24)(n-5) = 0$$

$$\rightarrow n = 5$$
 and $p = 6$

which means 8 pencils could be bought for the lower price of 6 - 9/4 = 3.75 cents \rightarrow (8, 3.75)

D)
$$\frac{1}{1+\frac{2}{x+3}} = 4 - 0.\overline{5} \Rightarrow \frac{x+3}{x+5} = 4 - \frac{5}{9} = \frac{31}{9} \Rightarrow 9x + 27 = 31x + 155 \Rightarrow x = \frac{-128}{22} = \frac{-64}{11}$$

Note: $\frac{64}{-11}$ is disallowed since A < B. If $\frac{-64 + n}{11}$ must be an integer and n > 0, the minimum possible value of n is 9.