北京航空航天大学数学二学位

《数理统计》

2019-2020 学年春季考试答题卡

学 号:	17373103	姓	名:	李析航
授课教师:	冯伟	成	绩:	

请在纸上抄写以下内容并签名,拍照后将图片粘贴在下面空白处:

我承诺严格遵守本次考试的约定,在规定时间内独立、完成本次 考试! 诚信考试!

承诺人:

我承诺严格遵守林次去试的约定在规定时间内加过完成林次去试试信告试

入路人:李析船

题号	_	 111	四	五	六	总分	
答案							

一、单选题(请将答案填写在相应位置空白处)

题号	1	2	3	4	5	
答案	A	С	D	С	В	

二、填空题(请将 5 道填空题目的最终答案清晰写在纸上并拍照,按照下图所示将答案图片 粘贴到文档中)

二.填空	729年海海海河北海(土土)之一丁堡村外的市
(WELL-FINE)	· · · · · · · · · · · · · · · · · · ·
2.	13 mc-181. 3 +1 m-101. 3] 2- 1900 -174
The same of the sa	Pq(r-1)或n-pq 其中n=1>qx
4.	る=2X
5.	n-m

三、(10 分, 任选一个) 1. 证明: $(t_{1-\frac{\alpha}{2}}(n))^2 = F_{1-\alpha}(1,n)$

选择 2

$$= . 2. \text{VILM}: \ \overline{X}_{n} = \frac{1}{h} \sum_{i=1}^{n} b_{i} \ \overline{X}_{n} \wedge N(u \cdot \frac{6^{2}}{n}).$$

$$\frac{b_{n+1} \wedge N(u \cdot 6^{2})}{x_{n+1} - \overline{X}_{n} \wedge N(u \cdot \frac{n+1}{n} \cdot 6^{2})}$$

$$\frac{1}{b} \frac{1}{\sqrt{x_{n+1}}} \frac{1}{\sqrt{x_{n+1}}} \frac{1}{\sqrt{x_{n}}} \frac{1}{\sqrt{$$

四、**(15 分)**设 x_1, x_2, L $, x_m$ 是来自正态总体 $N(\mu, 1)$ 的简单样本, y_1, y_2, L $, y_n$ 是来自正态总体 $N(2\mu, 1)$ 的简单样本,两样本独立,其中 μ 是未知参数。将两样本合并成样本容量为m+n样本 x_1, x_2, L $, x_m$ $, y_1, y_2, L$ $, y_n$ 。(1)证明 $T_1 = \frac{1}{2}(\bar{x} + \frac{\bar{y}}{2})$ 是 μ 的无偏估计;(2)求 μ 的一致最小方差无偏估计 T_2 ;(3)问 T_2 是否为 μ 的有效估计?证明你的结论。

(1) 12) En(x)=M En(y)=2M FFW 因而统计量下二寸(不十寸)度大的无格方计 21 t, bm. y, Yn雨联合癌度函数为 Plt, ... tm.y, ... yn) u) = 12下1-12-14-111-11+ 111-1111-11111 = (2下)-四世epp (一生(m+4n)がくepp (一生(本からをたり))(eop (いいか+2ny)) \$ ((M)=(2T) - mm exp (- 1 (m+4n)) } hは、い)=ebpく士(高がたないが WIM = M T = mx + 2ny A)有分解式 P(b, --- tm, y, --- tn; m)= L(m)h(t),y)etp {w(m) T} 的小小一小的位抗(一个,十四)有内气,由住社工工工作的丁良 完全記分次が量又同为EMIT)=MEMIT)+2nEmiy)=(m+4nlm IP EU[m+4n(mi+2ny)]=M 下列从T2= m+4n(mx+2ny)现足定全无分线计量T=mx+2ny 的函数及此的无偏行行 用在限入入5块了2=前+4n(mx+2ny) 且此的一致最小方生对席付什

时的是加加P(to....tom.y,...yn,从)=-(m+4n) 下好 样本的....tom,y,...yn下面的HOFisher信息是为了(m)=m+4n 当然也可以分别计算两个样本所包含的Fisher信息是别

五、(10分,任选一个)

- **1.** 设 x_1, x_2, L , x_n 是来自正态总体 N (μ , 1) 的简单样本,求检验问题 H₀: μ =0, H₁: μ =1 的水平为 α (0< α <1) 的 MPT
- **2.**设有某种产品,其长度服从正态分布,现从该种产品中随机抽取 25 件,得样本均值 \bar{x} = 9.28 (cm),样本标准差 s=0.36 (cm),问:这批产品的长度能否认为是 9cm?(已知 $z_{0.95}$ = 1.645; $z_{0.975}$ = 1.96; $t_{0.975}$ (24) = 2.064, $t_{0.975}$ (25) = 2.060; $t_{0.95}$ (24) = 1.711; $t_{0.95}$ (25) = 1.708)

取信区不符式中外符号成立 故下 = $\frac{1}{n+4n}$ (mx+2ny) 迎水的商品 \pm 2.解:由于 $\frac{1}{n+3}$ = 9.28. $\frac{1}{n+3}$ = 9.28. $\frac{1}{n+3}$ = 9.28. $\frac{1}{n+3}$ = 9.28. $\frac{1}{n+3}$ = 9.28 - $\frac{1}{n+3}$ = 9.28 - $\frac{1}{n+3}$ = 9.28 + $\frac{1}{n+3}$ = 9.28 + $\frac{1}{n+3}$ = 9.28 + $\frac{1}{n+3}$ = 9.429 $\frac{1}{n+3}$ = 9.429 $\frac{1}{n+3}$ = 9.28 + $\frac{1}{n+3}$ = 9.429 $\frac{1}{n+3}$ = 9.42

六、(10分)考虑某四因子二水平试验,除考察因子A,B,C,D外,还需考察交互作用 $A\times B$ 及 $A\times C$ 。今选用表 $L_8(2^7)$,表头设计及试验数据如表所示,所考虑的指标是越大越好。试用极差分析方法指出因子的主次顺序和较优工艺条件。

列号 试验号	A 1	В 2	$A \times B$	C 4	$A \times C$	D 6	7	实验数据
1	1	1	1	1	1	1	1	350
2	1	1	1	2	2	2	2	325
3	1	2	2	1	1	2	2	425
4	1	2	2	2	2	1	1	425
5	2	1	2	1	2	1	2	200
6	2	1	2	2	1	2	1	250
7	2	2	1	1	2	2	1	275
8	2	2	1	2	1	1	2	375

七 (10分) 随机向量 (x_1,x_2,x_3,x_4) 的协方差矩阵

且其特征根为 $\lambda_1=86.640$, $\lambda_2=7.094$, $\lambda_3=0.472$, $\lambda_4=0.257$ 。

- (1) 根据主成分85%的选取标准,应选取几个主成分?
- (2) 试求(1) 中所选的主成分。