## Proof of the Clustered Hadwiger Conjecture

David Wood Monash University Melbourne, Australia

joint work with

Vida Dujmović



Louis Esperet



Pat Morin



arXiv:2306.06224 and FOCS 2023

#### 4-colour theorem: every planar graph is 4-colourable



#### 4-colour theorem: every planar graph is 4-colourable



a graph H is a minor of a graph G if H can be obtained from a subgraph of G by contracting edges



a graph H is a minor of a graph G if H can be obtained from a subgraph of G by contracting edges



complete  $K_h$  minor  $\equiv$ 

h pairwise-disjoint pairwise-adjacent connected subgraphs



a graph H is a minor of a graph G if H can be obtained from a subgraph of G by contracting edges



complete  $K_h$  minor  $\equiv$ h pairwise-disjoint pairwise-adjacent connected subgraphs



planar graphs are 4-colourable and are  $K_5$ -minor-free

| excluded<br>minor | graph<br>family | colourable |                           |
|-------------------|-----------------|------------|---------------------------|
| $K_1$             | no vertices     | 0          |                           |
| $K_2$             | no edges        | 1          |                           |
| $K_3$             | forests         | 2          | Same.                     |
| $K_4$             | series parallel | 3          | [Hadwiger '43, Dirac '52] |
|                   |                 |            | -                         |

| excluded<br>minor | graph<br>family | colourable |                                         |
|-------------------|-----------------|------------|-----------------------------------------|
| $K_1$             | no vertices     | 0          |                                         |
| $K_2$             | no edges        | 1          |                                         |
| $K_3$             | forests         | 2          | See |
| $K_4$             | series parallel | 3          | [Hadwiger '43, Dirac '52]               |
| $K_5$             | planar++        | 4          | [4CT & Wagner '37]                      |
|                   |                 |            |                                         |
|                   |                 |            |                                         |

| excluded<br>minor | graph<br>family | coloura | ble                               |
|-------------------|-----------------|---------|-----------------------------------|
| $K_1$             | no vertices     | 0       |                                   |
| $K_2$             | no edges        | 1       |                                   |
| $K_3$             | forests         | 2       |                                   |
| $K_4$             | series parallel | 3       | [Hadwiger '43, Dirac '52]         |
| $K_5$             | planar++        | 4       | [4CT & Wagner '37]                |
| $K_6$             | ???             | 5 [4    | 4CT & Rob., Seymour & Thomas '93] |
|                   |                 |         |                                   |
|                   |                 |         |                                   |

|       | •               |   |                                    |
|-------|-----------------|---|------------------------------------|
| $K_1$ | no vertices     | 0 |                                    |
| $K_2$ | no edges        | 1 |                                    |
| $K_3$ | forests         | 2 |                                    |
| $K_4$ | series parallel | 3 | [Hadwiger '43, Dirac '52]          |
| $K_5$ | planar++        | 4 | [4CT & Wagner '37]                 |
| $K_6$ | ???             | 5 | [4CT & Rob., Seymour & Thomas '93] |
|       |                 |   |                                    |

colourable

Hadwiger's Conjecture [1943] every  $K_h$ -minor-free graph is (h-1)-colourable

excluded

minor

graph family



| $\kappa_1$ | no vertices     | U |                                    |
|------------|-----------------|---|------------------------------------|
| $K_2$      | no edges        | 1 |                                    |
| $K_3$      | forests         | 2 |                                    |
| $K_4$      | series parallel | 3 | [Hadwiger '43, Dirac '52]          |
| $K_5$      | planar++        | 4 | [4CT & Wagner '37]                 |
| $K_6$      | ???             | 5 | [4CT & Rob., Seymour & Thomas '93] |

colourable

Hadwiger's Conjecture [1943]

graph

family

excluded

minor

every  $K_h$ -minor-free graph is (h-1)-colourable

•  $O(h(\log h)^{1/2})$  colours [Kostochka '84, Thomason '84]

|       | ,               |   |                                    |
|-------|-----------------|---|------------------------------------|
| $K_1$ | no vertices     | 0 |                                    |
| $K_2$ | no edges        | 1 |                                    |
| $K_3$ | forests         | 2 |                                    |
| $K_4$ | series parallel | 3 | [Hadwiger '43, Dirac '52]          |
| $K_5$ | planar++        | 4 | [4CT & Wagner '37]                 |
| $K_6$ | ???             | 5 | [4CT & Rob., Seymour & Thomas '93] |
|       |                 |   |                                    |

colourable

Hadwiger's Conjecture [1943]

every  $K_h$ -minor-free graph is (h-1)-colourable

graph family

excluded

minor

- $O(h(\log h)^{1/2})$  colours
- $O(h(\log h)^{1/4+\epsilon})$  colours

olours [Kostochka '84, Thomason '84]

[Kostochka '84, Thomason '84] [Norin–Song–Postle '19]

| $K_2$                        | no edges                        | 1     | The state of the s |  |
|------------------------------|---------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| $K_3$                        | forests                         | 2     | Same of the same o |  |
| $K_4$                        | series parallel                 | 3     | [Hadwiger '43, Dirac '52]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| $K_5$                        | planar++                        | 4     | [4CT & Wagner '37]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| $K_6$                        | ???                             | 5     | [4CT & Rob., Seymour & Thomas '93]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Hadwiger's Conjecture [1943] |                                 |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| every k                      | K <sub>h</sub> -minor-free grap | oh is | (h-1)-colourable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |

[Kostochka '84, Thomason '84]

[Norin-Song-Postle '19]

[Delcourt-Postle '21]

colourable

0

excluded

minor

 $K_1$ 

graph

family no vertices

•  $O(h(\log h)^{1/2})$  colours

•  $O(h \log \log h)$  colours

•  $O(h(\log h)^{1/4+\epsilon})$  colours

## *k*-colouring with clustering *c*:

- each v is assigned one of k colours
- ullet each monochromatic component has  $\leqslant c$  vertices



#### *k*-colouring with clustering *c*:

- each v is assigned one of k colours
- each monochromatic component has  $\leq c$  vertices

planar graphs are 4-colourable with clustering 1 [4CT]

#### *k*-colouring with clustering *c*:

- each v is assigned one of k colours
- each monochromatic component has  $\leq c$  vertices

planar graphs are 4-colourable with clustering 1 [4CT] or clustering 2 [Cowen, Cowen, Woodall '86]

#### *k*-colouring with clustering *c*:

- each v is assigned one of k colours
- each monochromatic component has  $\leq c$  vertices

planar graphs are 4-colourable with clustering 1 [4CT] or clustering 2 [Cowen, Cowen, Woodall '86]

but planar graphs are not 3-colourable with bounded clustering



#### *k*-colouring with clustering *c*:

- $\bullet$  each v is assigned one of k colours
- each monochromatic component has ≤ c vertices

#### clustered chromatic number

 $\chi^{\mathsf{CLUS}}(\mathcal{G}) := \mathsf{minimum} \ k \ \mathsf{such that} \ \exists c \ \mathsf{and}$  every graph in  $\mathcal{G}$  is k-colourable with clustering c

#### *k*-colouring with clustering *c*:

- each v is assigned one of k colours
- ullet each monochromatic component has  $\leqslant c$  vertices

#### clustered chromatic number

 $\chi^{\mathsf{CLUS}}(\mathcal{G}) := \mathsf{minimum}\ k \ \mathsf{such}\ \mathsf{that}\ \exists c \ \mathsf{and}$  every graph in  $\mathcal{G}$  is k-colourable with clustering c

$$\chi^{\mathsf{CLUS}}(\mathsf{planar\ graphs}) = 4$$

#### *k*-colouring with clustering *c*:

- each v is assigned one of k colours
- ullet each monochromatic component has  $\leqslant c$  vertices

#### clustered chromatic number

 $\chi^{\mathsf{CLUS}}(\mathcal{G}) := \mathsf{minimum} \ k \ \mathsf{such} \ \mathsf{that} \ \exists c \ \mathsf{and}$  every graph in  $\mathcal{G}$  is k-colourable with clustering c

$$\chi^{\mathsf{CLUS}}(\mathsf{planar\ graphs}) = 4$$

 $\chi^{\rm CLUS}({\rm graphs\ embeddable\ on\ any\ fixed\ surface})=4$  [Dvořák & Norin '17]



$$\chi^{\mathsf{CLUS}}(K_h\text{-minor-free graphs}) \geqslant h-1$$

$$\chi^{\mathsf{CLUS}}(K_h\text{-minor-free graphs})\geqslant h-1$$



$$\chi^{\mathsf{CLUS}}(K_h\text{-minor-free graphs})\geqslant h-1$$



 $S_{h,d}$  is  $K_h$ -minor-free and has no (h-2)-colouring with clustering  $\leqslant d$ 

lower bound

$$\chi^{\mathsf{CLUS}}(K_h\text{-minor-free graphs}) \geqslant h-1$$

upper bounds

$$\chi^{\mathsf{CLUS}}(K_h\text{-minor-free graphs})\geqslant h-1$$

| upper bounds                           | # colours                      | clustering                    |
|----------------------------------------|--------------------------------|-------------------------------|
| [Kawarabayashi & Mohar '07]            | $\lceil \frac{31}{2}h \rceil$  | c(h)                          |
| [W. '10]*                              | $\lceil \frac{7h-3}{2} \rceil$ | <i>c</i> ( <i>h</i> )         |
| [Edwards, Kang, Kim, Oum, Seymour '14] | 4 <i>h</i> – 4                 | <i>c</i> ( <i>h</i> )         |
| [Liu & Oum '15]                        | 3h - 3                         | <i>c</i> ( <i>h</i> )         |
| [Norin '15]                            | 2h - 2                         | <i>c</i> ( <i>h</i> )         |
| [van den Heuvel & W. '17]              | 2h - 2                         | $\lceil \frac{h-2}{2} \rceil$ |
| [Liu & W. '19]                         | h                              | <i>c</i> ( <i>h</i> )         |

lower bound

$$\chi^{\mathsf{CLUS}}(K_h\text{-minor-free graphs})\geqslant h-1$$

#### upper bounds

clustered Hadwiger theorem [Dujmović, Esperet, Morin, W. '23]

- $K_h$ -minor-free graphs are (h-1)-colourable with clustering c(h)
- $\chi^{\mathsf{CLUS}}(K_h\text{-minor-free graphs}) = h 1$

lower bound

$$\chi^{\mathsf{CLUS}}(K_h\text{-minor-free graphs})\geqslant h-1$$

#### upper bounds

clustered Hadwiger theorem [Dujmović, Esperet, Morin, W. '23]

- $K_h$ -minor-free graphs are (h-1)-colourable with clustering c(h)
- $\chi^{\mathsf{CLUS}}(K_h\text{-minor-free graphs}) = h-1$

(announced by Dvořák & Norin '17)

 $K_{s,t}$ -minor-free graphs  $(s\leqslant t)$ 

Hadwiger's Conjecture  $K_{s,t}$ -minor-free graphs are (s+t-1)-colourable

 $K_{s,t}$ -minor-free graphs  $(s\leqslant t)$ 

Hadwiger's Conjecture  $K_{s,t}$ -minor-free graphs are (s+t-1)-colourable

 $| \text{lower bound} \quad \chi^{\text{CLUS}}(\textit{K}_{s,t}\text{-minor-free graphs}) \geqslant s+1$ 

$$K_{s,t}$$
-minor-free graphs  $(s\leqslant t)$ 

Hadwiger's Conjecture  $K_{s,t}$ -minor-free graphs are (s+t-1)-colourable

lower bound  $\chi^{\mathsf{CLUS}}(K_{s,t}\text{-minor-free graphs})\geqslant s+1$  upper bounds

| oounds                    | # colours  | clustering |
|---------------------------|------------|------------|
| [van den Heuvel & W. '17] | 3 <i>s</i> | $O(t^s)$   |
| [Dvořák & Norin '17]      | 2s + 2     | c(s,t)     |
| [Liu & W. '19]            | s+2        | c(s,t)     |
|                           |            |            |

$$K_{s,t}$$
-minor-free graphs  $(s\leqslant t)$ 

Hadwiger's Conjecture  $K_{s,t}$ -minor-free graphs are (s+t-1)-colourable

| upper bo | ounds<br>                 | # colours  | clustering |
|----------|---------------------------|------------|------------|
|          | [van den Heuvel & W. '17] | 3 <i>s</i> | $O(t^s)$   |
|          | [Dvořák & Norin '17]      | 2s + 2     | c(s,t)     |
|          | [Liu & W. '19]            | s+2        | c(s,t)     |

- $oldsymbol{\epsilon}_{s,t}$ -minor-free graphs are (s+1)-colourable with clustering c(s,t)
- $\chi^{\mathsf{CLUS}}(K_{s,t}\text{-minor-free graphs}) = s+1 \text{ for } t \geqslant \max\{s,3\}$



let  $\mathcal{J}_{s,t}$  be the class of all graphs with



let  $\mathcal{J}_{s,t}$  be the class of all graphs with



main theorem [Dujmović, Esperet, Morin, W. '22]  $\mathcal{J}_{s,t}$ -minor-free graphs are (s+1)-colourable with clustering c(s,t)

let  $\mathcal{J}_{s,t}$  be the class of all graphs with



main theorem [Dujmović, Esperet, Morin, W. '22]  $\mathcal{J}_{s,t}$ -minor-free graphs are (s+1)-colourable with clustering c(s,t)

implies previous theorems since  $\mathcal{J}_{h-2,2} = \{K_h\}$ 

let  $\mathcal{J}_{s,t}$  be the class of all graphs with



main theorem [Dujmović, Esperet, Morin, W. '22]  $\mathcal{J}_{s,t}$ -minor-free graphs are (s+1)-colourable with clustering c(s,t)

implies previous theorems since  $\mathcal{J}_{h-2,2} = \{K_h\}$  and every graph in  $\mathcal{J}_{s,t}$  contains  $K_{s,t}$ 



#### 1. treewidth

measures how similar a graph is to a tree



- 1. treewidth
- 2. graph product structure theory

- 1. treewidth
- 2. graph product structure theory

theorem [Dujmović, Joret, Micek, Morin, Ueckerdt, W. '19] every planar graph G is a subgraph of  $H \boxtimes P$  for some graph H with treewidth  $\leq 8$  and some path P



- 1. treewidth
- 2. graph product structure theory
- 3. graph minor structure theorem

theorem [Robertson & Seymour '80s] graphs excluding a fixed minor can be constructed from graphs embedded on surfaces, vortices, apex vertices, and clique-sums

- 1. treewidth
- 2. graph product structure theory
- 3. graph minor structure theorem
- 4. islands, curtains, drapes, etc.

| $K_h$ -minor-free                          | $K_h$ -subdivision-free                  |
|--------------------------------------------|------------------------------------------|
| Hadwiger Conjecture: $h-1$ colours suffice | Hajós' Conjecture: $h-1$ colours suffice |

| $K_h$ -minor-free                                               | $K_h$ -subdivision-free                                           |
|-----------------------------------------------------------------|-------------------------------------------------------------------|
| Hadwiger Conjecture: $h-1$ colours suffice                      | Hajós' Conjecture: $\mathit{h}-1$ colours suffice                 |
| true for clustered colouring [Dujmović, Esperet, Morin, W. '23] | almost true for clustered colouring $4h - 9$ colours [Liu W. '19] |

| $K_h$ -minor-free                                                                        | $K_h$ -subdivision-free                                                   |
|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Hadwiger Conjecture: $h-1$ colours suffice                                               | Hajós' Conjecture: $h-1$ colours suffice                                  |
| true for clustered colouring [Dujmović, Esperet, Morin, W. '23]                          | almost true for clustered colouring $4h - 9$ colours [Liu W. '19]         |
| Hadwiger's Conjecture is<br>true for almost every graph<br>[Bollobas, Catlin, Erdős '80] | Hajós' Conjecture is<br>false for every graph!<br>[Erdős, Fajtlowicz '81] |
|                                                                                          |                                                                           |

| $K_h$ -minor-free                                                                        | $K_h$ -subdivision-free                                                   |
|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Hadwiger Conjecture: $h-1$ colours suffice                                               | Hajós' Conjecture: $\mathit{h}-1$ colours suffice                         |
| true for clustered colouring [Dujmović, Esperet, Morin, W. '23]                          | almost true for clustered colouring $4h - 9$ colours [Liu W. '19]         |
| Hadwiger's Conjecture is<br>true for almost every graph<br>[Bollobas, Catlin, Erdős '80] | Hajós' Conjecture is<br>false for every graph!<br>[Erdős, Fajtlowicz '81] |

so do not think of the Clustered Hadwiger Theorem as evidence for Hadwiger's Conjecture