

UNIVERSAL ISM BAND FSK TRANSCEIVER MODULE RFM12B

(the purpose of this spec covers mainly for the physical characteristic of the module, for register configure and its related command info please refer to RF12B data sheets)

General Introduction

RFM12B is a low costing ISM band transceiver module implemented with unique PLL. It works signal ranges from 433/868/915MHZ bands, comply with FCC, ETSI regulation. The SPI interface is used to communicate with microcontroller for parameter setting.

Features:

- · Low costing, high performance and price ratio
- Tuning free during production
- PLL and zero IF technology
- Fast PLL lock time
- High resolution PLL with 2.5 KHz step
- High data rate (up to 115.2 kbps with internal demodulator, with external RC filter highest data rate is 256 kbps)
- Differential antenna input/output
- Automatic antenna tuning
- Programmable TX frequency deviation (from 15 to 240 KHz)
- Programmable receiver bandwidth (from 67 to 400 kHz)
- Analog and digital signal strength indicator (ARSSI/DRSSI)
- Automatic frequency control (AFC)
- Data quality detection (DQD)
- · Internal data filtering and clock recovery
- RX synchron pattern recognition
- SPI compatible serial control interface
- Clock and reset signal output for external MCU use
- 16 bit RX Data FIFO
- Two 8 bit TX data registers
- Standard 10 MHz crystal reference
- Wakeup timer
- 2.2V 3.8V power supply
- Low power consumption
- Standby current less than 0.3uA
- Supports very short packets (down to 3 bytes)

Typical Application:

- Remote control
- Wireless data collection
- Toys

- Remote sensor
- Home security system
- Tire pressure monitoring system

RFM12B-TSSOP

Pin Definition:

definition	Туре	Function
nINT/VDI	DI/ DO	Interrupt input (active low)/Valid data indicator
VDD	S	Positive power supply
SDI	DI	SPI data input
SCK	DI	SPI clock input
nSEL	DI	Chip select (active low)
SDO	DO	Serial data output with bus hold
nIRQ	DO	Interrupts request output (active low)
FSK/DATA/nFFS	DI/DO/DI	Transmit FSK data input/ Received data output (FIFO not used)/ FIFO select
DCLK/CFIL/FFIT	DO/AIO/DO	Clock output (no FIFO)/ external filter capacitor(analog mode)/ FIFO
		interrupts(active high)when FIFO level set to 1, FIFO empty interruption can
		be achieved
CLK	DO	Clock output for external microcontroller
nRES	DIO	Reset output (active low)
GND	S	Power ground

Electrical Parameter:

Maximum (not at working mode)

symbol	parameter	minimum	maximum	Unit
V_{dd}	Positive power supply	-0.5	6.0	V
V _{in}	All pin input level	-0.5	Vdd+0.5	V
l _{in}	Input current except power	-25	25	mA
ESD	Human body model		1000	V
T _{st}	Storage temperature	-55	125	$^{\circ}$
T _{Id}	Soldering temperature(10s)		260	$^{\circ}$

Recommended working range

symbol	parameter	minimum	maximum	Unit
V_{dd}	Positive power supply	2.2	3.8	V
T _{op}	Working temperature	-40	85	$^{\circ}$ C

Field testing range

Band	Test condition	Distance
433MHz band	Receiver bandwidth =67KHz, data rate=1.2kbps, transmitter frequency	>200M
	deviation =45KHZ (matches with RFM12) In free open area	
868MHz band	Receiver bandwidth=67KHz,data rate =1.2kbps,Transmitter frequency	>200M
	deviation =45KHZ (matches with RFM12) in free open area	
915MHz band	Receiver bandwidth=67KHz,data rate =1.2kbps,Transmitter frequency	>200M
	deviation =45KHZ (matches with RFM12) in free open area	

DC characteristic

symbol	parameter	Remark	minimum	typical	maximum	Unit
I _{dd_TX_0}	Supply current	315,433MHz band		15	17	mA
	(TX mode, $P_{out} = 0dBm$)	868MHz band		16	18	
		915MHz band		17	19	
I _{dd_TX_PMAX}	Supply current	315,433MHz band		22	24	mA
	(TX mode, $P_{out} = P_{max}$)	868MHz band		23	25	
		915MHz band		24	26	
I _{dd_RX}	Supply current	315,433MHz band		11	13	mΑ
	(RX mode)	868MHz band		12	14	
		915MHz band		13	15	
l _x	Idle current	Crystal oscillator on		0.62	1.2	mΑ
I _{pd}	Sleep mode current	All blocks off		0.3		uA
I _{lb}	Low battery detection			0.5		uA
V _{Ib}	Low battery detect threshold	0.1V per step	2.2		3.7	٧
V _{lba}	Low battery detection		0		5	%
	accuracy					
Vil	Low level input				0.3*V _{dd}	٧
V _{ih}	High level input		0.7*V _{dd}			V
I _{ii}	Leakage current	V _{il} =0V	-1		1	uA
I _{ih}	Leakage current	$V_{ih}=V_{dd}, V_{dd}=5.4V$	-1		1	uA
Vol	Low level output	I _{ol} =2mA			0.4	٧
V _{oh}	High level output	I _{oh} =-2mA	V _{dd} -0.4			V

AC characteristic

symbol	parameter	remark	min	typical	max	Unit
f _{ref}	PLL frequency		9	10	11	MHz
	frequency	433 MHz band,2.5KHz step	430.24		439.75	
f_{LO}	(10MHz crystal	868 MHz band,5KHz step	860.48		879.51	MHz
	used)	915 MHz band,7.5KHz step	900.72		929.27	
	frequency	433 MHz band,2.5KHz step	387.22		395.76	
f_{LO}	(9MHZ crystal used)	868 MHz band,5KHz step	774.43		791.56	MHz
		915 MHz band,7.5KHz step	810.65		836.34	
	frequency	433 MHz band,2.5KHz step	473.26		483.73	
f_{LO}	(11MHZ crystal	868 MHz band,5KHz step	946.53		967.46	MHz
	used)	915 MHz band,7.5KHz step	990.79		1022.2	
BW	Receiver bandwidth	mode 0	60	67	75	
		mode 1	120	134	150	
		mode 2	180	200	225	KHz
		mode 3	240	270	300	
		mode 4	300	350	375	
		mode 5	360	400	450	
t _{lock}	PLL lock time	After 10MHz step hopping, frequency		30		us
		error <10 kHz				
	DLL startus time	With a running crystal		200	200	
tst, P	PLL startup time	oscillator		200	300	us
BR	Data rate	With internal digital demodulator	0.6		115.2	kbps
BR _A	Data rate	With external RC filter			256	kbps
		BER 10 ⁻³ , BW=134KHz,BR=1.2kbps, 433MHz band		-109	-100	
P_{min}	sensitivity	BER 10 ⁻³ , BW=134KHz,BR=1.2kbps, 868MHz band		-105	-100	dBm
		BER 10 ⁻³ , BW=134KHz,BR=1.2kbps, 915MHz band		-105	-100	
AFC _{range}	AFC working range	df _{FSK} : FSK deviation in the received		0.8* df _{FSK}		
		signal				
RSA	RSSI accuracy			±5		dB
RS _R	RSSI range			46		dB
C _{ARSSI}	ARSSI filter			1		nF
RS _{STEP}	RSSI programmable			6		dB
	step					
RS _{RESP}	DRSSI response	RSSI output high after valid ,		500		us
	time	CARRSI=5nF				

AC characteristic(Transmitter)

symbol	parameter	remark	min	typical	max	Unit
		433MHz band	3	5		
P_{max}	Max. available output power	868MHz band	2	4		dBm
		915MHz band	2	4		
P _{out}	Typical output power	Selectable in 3 dB	P _{max} -21		P _{max}	dbm
		steps				
Co	Output capacitance	In low bands	2	2.6	3.2	pf
	(set by the automatic antenna	In high bands	2.1	2.7	3.3	
	tuning circuit)					
Q _o	Quality factor of the output	In low bands	13	15	17	
	capacitance	In high bands	8	10	12	
L _{out}	Output phase noise	100 kHz from carrier			-80	dbc/HZ
		1 MHz from carrier			-103	
BR_{TX}	FSK bit rate	Via internal TX data			172	kbps
		register				
BRA _{TX}	FSK bit rate	TX data connected to the			256	kbps
		FSK input				
df _{fsk}	FSK frequency deviation	Programmable in 15	15		240	kHZ
		kHz steps				

AC characteristic(Turn-on/Turnaround timings)

symbol	parameter	remark	min	typical	max	Unit
T _{st}	Crystal oscillator startup	Crystal ESR < 100		1	5	ms
	time					
	Transmitter turn-on time	Synthesizer off, crystal oscillator		250		
$T_{tx_XTAL_ON}$		on with 10 MHz step		250		us
	Receiver turn-on time	Synthesizer off, crystal oscillator		250		
$T_{rx_XTAL_ON}$		on with 10 MHz step		250		us
	Transmitter – Receiver	Synthesizer and crystal oscillator				
$T_{tx_rx_SYNT_ON}$	turnover time	on during TX/RX change with 10		150		us
		MHz step				
	Receiver – Transmitter	Synthesizer and crystal oscillator				
$T_{rx_tx_SYNT_ON}$	turnover time	on during RX/TX change with 10		150		us
		MHz step				
C _{xl}	Crystal load capacitance	Programmable in 0.5 pF steps,	8.5		16	pf
		tolerance+/- 10%				
t _{POR}	Internal POR timeout	After V _{dd} has reached 90% of final			100	ms
		value				
t _{PBt}	Wake-up timer clock	Calibrated every 30 seconds	0.96		1.05	ms
	period					
C _{in, D}	Digital input apacitance				2	pf
t _{r, f}	Digital output rise/fall time	15pF pure capacitive load			10	ns

SGS Reports

HOPE RF

Mechanical Dimension (units in mm)

SMD PACKAGE (S1)

SMD PACKAGE (S2)

DIP PACKAGE (D)

SMD PACKAGE (S1P)

SMD PACKAGE (S2P)

DIP PACKAGE (DP)

Module Model Definition

model=module type+operation band+module package type+ core chip package type

example:

- 1, RFM12B-433D: RFM12B module at 433MHz band, DIP module, die chip.
- 2, RFM12B-433DP: RFM12B module at 433MHz band, DIP module, package chip.
- 3, RFM12B-868S1: RFM12B module at 868MHZ band, SMD module, thickness at 4.2mm, die chip.
- 4, RFM12B-868S1P: RFM12B module at 868MHZ band, SMD module, thickness at 4.2mm, package chip.
- 5, RFM12B-915S2: RFM12B module at 915MHZ band, SMD module, thickness at 2.2mm,die chip.
- 6, RFM12B-915S2P: RFM12B module at 868MHZ band, SMD module, thickness at 4.2mm, package chip.

Module model	operation band	module package type	core chip package type
RFM12B-433D	433MHz	DIP	Die
RFM12B-433DP	433MHz	DIP	16pin TSSOP
RFM12B-433S1	433MHz	SMD, thickness at 4.2mm	Die
RFM12B-433S1P	433MHz	SMD, thickness at 4.2mm	16pin TSSOP
RFM12B-433S2	433MHz	SMD, thickness at 2.2mm	Die
RFM12B-433S2P	433MHz	SMD, thickness at 2.2mm	16pin TSSOP
RFM12B-868D	868MHz	DIP	Die
RFM12B-868DP	868MHz	DIP	16pin TSSOP
RFM12B-868S1	868MHz	SMD, thickness at 4.2mm	Die
RFM12B-868S1P	868MHz	SMD, thickness at 4.2mm	16pin TSSOP
RFM12B-868S1	868MHz	SMD, thickness at 2.2mm	Die
RFM12B-868S1P	868MHz	SMD, thickness at 2.2mm	16pin TSSOP
RFM12B-915D	915MHz	DIP	Die
RFM12B-915DP	915MHz	DIP	16pin TSSOP
RFM12B-915S1	915MHz	SMD, thickness at 4.2mm	Die
RFM12B-915S1P	915MHz	SMD, thickness at 4.2mm	16pin TSSOP
RFM12B-915S2	915MHz	SMD, thickness at 2.2mm	Die
RFM12B-915S2P	915MHz	SMD, thickness at 2.2mm	16pin TSSOP

All RFM12B module model and description

HOPE MICROELECTRONICS CO.,LTD

Add:4/F, Block B3, East Industrial Area, Huaqiaocheng, Shenzhen, Guangdong, China

Tel: 86-755-82973805
Fax: 86-755-82973550
Email: sales@hoperf.com
trade@hoperf.com

Website: http://www.hoperf.com http://www.hoperf.cn http://hoperf.en.alibaba.com This document may contain preliminary information and is subject to change by Hope Microelectronics without notice. Hope Microelectronics assumes no responsibility or liability for any use of the information contained herein. Nothing in this document shall operate as an express or implied license or indemnity under the intellectual property rights of Hope Microelectronics or third parties. The products described in this document are not intended for use in implantation or other direct life support applications where malfunction may result in the direct physical harm or injury to persons. NO WARRANTIES OF ANY KIND, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MECHANTABILITY OR FITNESS FOR A ARTICULAR PURPOSE, ARE OFFERED IN THIS DOCUMENT.

©2006, HOPE MICROELECTRONICS CO.,LTD. All rights reserved.