# ENGG1003 - Tuesday Week 2

Calculating Pi C Arithmetic Datatypes

Brenton Schulz

University of Newcastle

February 25, 2019



# Case Study: Calulating $\pi$

- Computers are really good at repetitive things
- Lets use this fact to calculate  $\pi$  using a "monte-carlo" method
  - Informally, these are methods which solve problems by repeating the same thing with different inputs until patterns emerge
  - It could repeat millions or billions of times
  - Name comes from the Monaco Principality's high concentration of casinos
- Algorithm pseudocode will be written before an implementation in C



# Case Study: Calulating $\pi$

Consider a quadrant of a unit circle (r = 1) with a square around it:

- Area of the square  $A_1 = 1$
- Area of the circle quadrant  $A_2 = \frac{\pi r^2}{4} = \frac{\pi}{4}$
- ▶ Ratio of areas  $\frac{A_2}{A_1} = \frac{\pi}{4}$
- ► Therefore  $\pi = 4 \times \frac{A2}{A1}$



# Case Study: Calulating $\pi$

- We can't calculate the area ratio without knowing  $\pi$
- Estimate it by:
  - Randomly picking many points inside the square
  - Test if the point is inside the circle with  $x^2 + y^2 < 1$



 $\pi \approx 4 \times \frac{\text{Number of points which land inside circle}}{\text{Total number of points tested}} =$ 

$$4 \times \frac{9}{12} = 3$$



- How can the above mathematics be turned into an algorithm?
  - ▶ NB: You only have to understand the algorithm
- The algorithm needs to repeat the same thing multiple times
  - This implies use of a loop
  - ▶ The loop's *exit condition* needs to be defined
- As the loop repeats, we need to keep track of the following variables:
  - ▶ The number of points tested
  - ► The number of points which landed inside the circle
  - ▶ The (x,y) coordinates of the point under test



- ► The number of points tested will be an integer, we will call it countTotal
- The number of points found to be inside the circle is also an integer, we will call it countInside
- Before these variables are used they should be initialised
  - ▶ ie: The algorithm will explicitly include countTotal = 0 and countInside = 0
  - So-called uninitialised variables have undefined (or random) values



- Incrementing the countInside variable is conditional on the values of x and y
  - ► This implies IF...ENDIF flow control
- The condition on incrementing countInside is  $x^2 + y^2 < 1$
- Incrementing a variable in pseudocode takes the form:
  - variable = variable + 1
  - This can be read as "variable becomes variable plus 1"
  - Maths people would write:  $x_{n+1} = x_n + 1$



- The point under test needs two "real" variables: x and y
  - "Real" comes from mathematics: any number with integer and fractional components. Eg: 1.45
- These values take new random values each loop
- The pseudocode doesn't need to describe how a random number is generated
  - Stating: "x = a random number between
    0 and 1" is totally acceptable
- At the end of the algorithm the final step will be  $\pi=4 \times \frac{\text{countInside}}{\text{countTotal}}$



```
BEGIN
 integer countTotal = 0
 integer countInside = 0
 WHILE countTotal < A large number
   x = random number between 0 and 1
   y = random number between 0 and 1
   countTotal = countTotal + 1
   IF x*x + y*y < 1
     countInside = countInside + 1
   ENDIF
 ENDWHILE
 pi = 4*countInside/countTotal
 PRINT pi
END
```

# Missing Knowledge for C Implementation

- More information about arithmetic
  - ► Relational operators (less/greater-than) look useful
  - Is there a neat way to do count=count+1?
  - countInside and countTotal are both integers. What happens when we divide?
- Datatypes and how they are handled in arithmetic statements
- ▶ How do we generate random numbers?
- Syntax for WHILE loops and IF statements



- Basic arithmetic was seen in the lab
  - ► You all did the lab, right?

| Operation      | C Symbol |
|----------------|----------|
| Addition       | +        |
| Subtraction    | -        |
| Multiplication | *        |
| Division       | /        |

Table: Basic arithmetic operators in C

 Complex expressions can be built from these operators and parentheses

#### Examples:

$$z=x^2+5(y+b)$$
  $z=x*x+5*(y+b);$   $u=\frac{x+1}{x-1}$   $u=(x+1)/(x-1);$   $v=z^3+\frac{5(y+b)}{2}$   $v=z*z*z+(5*(y+b))/2;$ 

- Multiplication is not assumed. If you write 5 (y+b) the compiler will generate a syntax error.
- ➤ To be valid C expressions the semicolon is required.



- C supports two time-saving unary operators:
  - Very useful in loops.

| Operation | C Syntax     | Replaces   |  |
|-----------|--------------|------------|--|
| Increment | x++; or ++x; | x = x + 1; |  |
| Decrement | x; orx;      | x = x - 1; |  |

It also supports the following shorthand syntax:

What's the difference between x++ and ++x?

- x++ is a post-increment
- ► ++x is a pre-increment
- ▶ If they appear in an arithmetic expression, pre-increment is processed before the variable is used and post-increment is processed after it is used.
- In isolation there is no difference.



#### Increment Example

```
1 #include <stdio.h>
2 int main() {
  int x = 0;
 int v = 0;
int z = 0;
 y = ++x + 10;
  printf("Pre-increment: %d\n", y);
  y = z++ + 10;
   printf("Post-increment: %d\n", y);
   return 0;
10
11
```

Pre/post-inc/decrements have many applications, more details in coming weeks.



#### Modulus

- Computers frequently only deal with integers
- Integer division ignores (truncates) any fractional component
- The modulus operator provides the remainder after division
  - Implemented with the % character
  - ▶ a % b = remainder of a / b
  - Very useful for tasks performed every nth loop
- Example:
  - **▶** 10 / 3 = 3
  - ▶ 10 % 3 = 1



## Modulus Example - Factor Testing

```
1 #include <stdio.h>
2 int main() {
  int x;
   int v;
    printf("Enter an integer: ");
5
    scanf("%d", &x);
    printf("Enter another integer: ");
    scanf("%d", &y);
    if(x % y == 0) { // ie: if the remainder is zero}
9
      printf("%d is a factor of %d\n", y, x);
10
    } else {
      printf("%d is NOT a factor of %d\n", y, x);
12
13
    return 0;
14
15 }
```

## Relational Operators

C supports six relational operators:

| Operation                | C Symbol |
|--------------------------|----------|
| Less than                | <        |
| Less than or equal to    | <=       |
| Greater than             | >        |
| Greater than or equal to | >=       |
| Equal to                 | ==       |
| Not equal to             | ! =      |

## Relational Operators

- ▶ The result of a relational operation is 0 or 1
  - C treats 0 as Boolean FALSE and non-zero as TRUE
- They are typically used as flow control conditions
  - ▶ if(condition) {statements}
  - ▶ while (condition) {statements}
- While we're here: the above is the correct syntax for IF and WHILE flow control in C



# Modulus Example 1 - Printing Every *nth* Loop

```
1 #include <stdio.h>
2 int main() {
    int x = 0;
    while (x < 1000)
5
      // Presumably something useful is done with x
6
      // inside this loop
7
      if(x%100 == 0)
8
        printf("%d\n", x);
9
10
    return 0;
12
```

# Modulus Example 2 - Finding Factors

```
#include <stdio.h>
2 int main() {
    int input;
   int x;
    printf("Enter an integer to factorise: ");
    scanf("%d", &input);
    x = input;
    while (x > 0) {
      if (input % x == 0) // ie: if the remainder is zero
9
        printf("%d is a factor of %d\n", x, input);
      x--;
12
    return 0:
13
14
```

Observe that the while () loop loops over every value of x from input to 1. We will discuss a flow control method designed for this (the for loop) later.

# C Arithmetic Operator Precedence

- C has an "order of operations"
- ▶ eg: 1+5 \* 2 evaluates to 11
  - ► You remember BODMAS / PEDMAS, right?
- Multiplication and division first
- Addition and subtraction second
- Relational operators somewhere below that
- If in doubt: force order with parentheses
  - This makes the code more readable
  - It doesn't cost you anything
  - C compilers understand algebra and will optimise inefficient expressions automatically



# Data Types

- ▶ In C, all variables are declared before use
- Declaration specifies the variable's:
  - Datatype
  - Name
  - An initialisation value (optional)
    - Always assume uninitialised variables have random values! Behaviour varies between compilers and target platforms.
  - eg: int counter = 0;
    - ► Type is int
    - Name is counter
    - Initial value is 0
- C is a "strongly-typed" language
  - Every variable has a fixed type



## Integer Data Types

- There are several integer data types
- ► They vary by their:
  - Size
  - Support for negative numbers
- C integer types can be 1, 2, 4, or 8 bytes long
  - int and long sizes vary by platform
  - Larger sizes store larger numbers, use more RAM
- Each type can be signed or unsigned
  - Unsigned numbers are always positive but you get double the value range



## Diversion: Binary Nomenclature

- ► The value range is a result of the underlying binary storage mechanism
- A single binary digit is called a bit
- ► There are 8 bits in a *byte*
- In programming we use the "power of two" definitions of kB, MB, etc:
  - ▶ 1 kilobyte is  $2^{10} = 1024$  bytes
  - ▶ 1 Megabyte is  $2^{20} = 1048576$  bytes
  - ▶ 1 Gigabyte is  $2^{30} = 1073741824$  bytes
  - Decimal looks like a poor way to write these numbers... They look better in hex: 0x3FF, 0xFFFFF, etc.



#### Integer Data Types

- ► The integer data type ranges can be calculated from the data type's size in bits
- ► For unsigned numbers of bit length *n*:

$$\max = 2^n - 1 \tag{1}$$

For signed numbers of bit length *n*:

$$\max = 2^{(n-1)} - 1 \tag{2}$$

$$\min = -2^{(n-1)} \tag{3}$$

Signed numbers are stored in two's complement format, covered in ELEC1710

## Integer Data Types

- C includes the sizeof() expression so that a program can discover the size of a data type on a given platform
- On a modern 64-bit Linux desktop machine:

| Type  | Bytes | Bits | Value Range             |
|-------|-------|------|-------------------------|
| char  | 1     | 8    | -128, +127              |
| short | 2     | 16   | -65536, 65535           |
| int   | 4     | 32   | -2147483648, 2147483647 |
| long  | 8     | 64   | -9223372036854775808,   |

## **Unsigned Integers**

- Unsigned integers are always positive
- They are the same size as their signed counterparts
- ► The unsigned keyword placed before the data type makes that variable unsigned
- eg: unsigned char is 1 byte and has a value range of 0 to 255

# Unambiguous Integer Data Types

- Because the standard int and long data types don't have fixed size unambiguous types exist
- Under OnlineGDB (ie: Linux with gcc) these are defined in stdint.h (#include it)
- You will see them used commonly in embedded systems programming (eg: Arduino code)
- ▶ The types are:
  - ▶ int8\_t
  - ▶ uint8\_t
  - ▶ int16 t
  - ...etc



# Why Care About Data Types?

- You may be thinking "why not make everything a long?"
- Answer: speed and memory
- Smaller types use less RAM
- Arithmetic on a type larger than the target platform's native size is slow
- Matters if you store millions of the same type
- Makes a huge difference on embedded targets
  - Don't declare 32-bit variables on an 8-bit AVR microcontroller unless you have to



#### Overflow

- Overflow occurs when the result of a calculation is too big to fit into the target type
- $\triangleright$  Example: 127 + 1 = -128

```
#include <stdio.h>
2 int main() {
 char x = 127;
 printf("%d\n", x);
 x++;
 printf("%d\n", x);
  return 0;
7
8
```

Message: make variables as small as they can be, but no smaller

## Floating Point Data Types

- To store real numbers C has several floating point data types
- As with integers, try to use the smallest you can get away with
- Quad precision (\_\_float128) is supported in gcc but very slow
  - Not used in this course
- Run benchmark demonstration

| Type   | Size | Range                                                | Precision |
|--------|------|------------------------------------------------------|-----------|
| float  | 4    | $1.2 \times 10^{-38} \text{ to } 3.4 \times 10^{38}$ | 6 dp      |
| double | 8    | $2.3 \times 10^{-308}$ to $1.7 \times 10^{308}$      | 15 dp     |



#### Literals

- ► A *literal* is any number written in the code
- ▶ Why not "constant"?
  - That word means something different
- Examples:
  - $\triangleright$  x = 5; // 5 is a literal int
  - $\triangleright$  y = 2.0 / z; // 2.0 is a literal double
- By default:
  - An integer literal is stored as an int data type
    - ▶ ie: has the value range and arithmetic limits of int
  - ▶ A floating point literal is stored as double



#### Literals

- Integer literals can be in:
  - Decimal: 123
  - ► Hexadecimal: 0xA34 // Zero-x
  - ▶ Octal: 0125 // Capital letter 0
  - (Hex and octal are covered in ELEC1710)
- Integer literals can be specified as unsigned with the u suffix:
  - 93811
- They can also be declared long with the l suffix:
  - ▶ 37264841
  - The compiler will issue a warning if a literal is too big for int



#### Literals

- Floating point literals can be written in many ways:
  - ▶ 1.0f // f suffix forces float
  - ▶ (float)2.3 // Forces float
  - ▶ 1.0 // Default to double
  - ▶ 1e2 // Double, 1 times 10^2
- ▶ 1e2 is known as "e-notation"
  - $\triangleright$  XeY = X ×  $10^{\text{Y}}$
  - ▶ I will use it all the time
- Forcing literals to float is frequently necessary in embedded systems which lack double precision hardware



## Mixing Data Types

- C supports arithmetic between different types
- Changing a data type is called casting
- When types are mixed two things can happen:
  - Types get upgraded automatically (implicit type casting)
    - ▶ Upgrade path is roughly: short/char int long - long long - float - double
  - Types get specified manually by the programmer (explicit type casting)



# **Explicit Type Casting**

- ► The data type of a variable (or literal) can be forced to change using *type casting*
- Write the desired type in parentheses before the variable or constant
- Examples:

```
\triangleright x = (float) y / k;
```

```
\triangleright y = (unsigned int)y + 32;
```

## Format Specifiers

- A format specifier controls how printf(); converts numerical (or textual) data to a series of ASCII characters
- Full details are complex, for now just use:
  - %d for integer types
  - %f for "fixed decimal place" floating point
  - %e for e-notation floating point
  - Cast inside printf() to suppress compiler warnings



## Format Specifiers

Casting example:

```
1 long i;
2 // ...
3 printf("%d\n", (int)i); //Breaks when i>2^31
```

- %.df produces d decimal places of precision
  - eg:

```
float x = 1.23456;
printf("%.2f", x); // Prints 1.23
```

## Integer Division Example

With all that out of the way, what is the output of each printf() statement?

```
#include <stdio.h>
int main() {
   printf("%d\n", 9/10);
   printf("%f\n", 9/10);
   printf("%f\n", 9.0/10);
   printf("%f\n", 9/10.0);
   printf("%f\n", (float)9/10);
   return 0;
}
```

#### Random Numbers

- ► In C there is a *standard library* function which generates random numbers
- We will study functions in more detail later
- To use a library function:
  - Read the function's documentation
  - #include the correct header file
  - Take note of the return value
  - ► Add any *compiler flags* (beyond ENGG1003)
  - Use the function
- Demonstration: read the rand() man page
  - Click here



#### Random Numbers

Observe that rand(); requires

```
#include <stdlib.h>
```

- Note that it returns an int between 0 and RAND\_MAX which, in gcc, is  $2^{31} 1$
- Note that is has <u>limits</u> (advanced discussion, beyond ENGG1003)
- ► For us, using the % operator:

```
x = rand() % RANGE;
```

produces a *good enough* random number between zero and RANGE



Probably out of time by now, lets implement a  $\pi$  calculator in the lab... In theory you have enough information by now.