Real Lecture 16: Distributions, Standard deviation, Confidence intervals and levels

Distributions

Assign a probability to sets of possible outcomes of a random variable (or in our case an experiment)

- For experiments that produce integer or boolean values it's easier to talk about the probability of each discrete value
- For experiments that produce real numbers, the probability of any real number will usually be zero
 - You need to talk about the probability of a neighborhood around a value

Plotting Histograms

pylab.hist(vals, bins=x)
Example:

 plot of the outcome of the MontyHall Simulation for the random strategy for 150k simulations

Uniform Distribution

That's what random.random() provides

- All values within some domain have equal probability
- All sets of values of the same size have equal probability

Exponential Distributions

Can model time until some random event happens

- assuming the probability of the event is independent of time
- memoryless property
- succinctly described by the half life

Normal Distributions

Completely Specified by two parameters

Mean and standard deviation

They fall off exponentially

gives them nice predictive power

Sums of independent variables from uniform distributions give this kind of distribution

Standard deviation

$$\sqrt{E[(E[x]-x)^2]}$$

Provides an estimate of how far values are from the mean

Confidence intervals

What is the probability that a result falls within a given range

- Easy to compute for normal distributions
 - 68% are less than 1 std dev away
 - 95.4% are less than 2 std dev away
 - .2% more than 3 std dev away

Back to Monty Hall example

Accuracy vs. Precision

Accuracy: How far is your mean from the true mean

Precision: How close together are your values