Basics

Notations

- $\binom{V}{k} := \{A : A \subseteq V \land |A| = k\}$
- $[n] := \{1, \dots, n\} \subset \mathbb{N}$ Power set $2^X := \{A : A \subseteq X\}$

Graph

- **Definition**: G = (V, E) with vertex set V and edge set $E \subseteq \{\{u, v\} : u, v \in V\}$ $V, u \neq v$
- Vertex set: V(G)
- Edge set: E(G)
- Isomorphic (G_1 to another graph G_2): if \exists bijection $f:V_1 \to V_2$ with $\{u,v\} \in E_1 \iff \{f(u),f(v)\} \in E_2$
- Order: = |V(G)|, short |G|
- Size: = |E(G)|, short ||G||
- Degree sequence: multiset of degrees of vertices in V(G)
 - \circ graphic: deg. seq. (d_1,\ldots,d_n) , iff
- 1. $d_1 + \cdots + d_n$ even 2. $\sum_{i=1}^k d_i \le k(k-1) + \sum_i i = k+1^n \min(d_i,k)$ $(\forall 1 \le k \le n)$ Degree sum: $\sum_{v \in V(G)} \deg(v) = 2|E(G)|$ Minimum degree: $\delta(G) = \deg v \in V(G)$ with smallest degree

- Maximum degree: $\Delta(G)$ = degree of $v \in V(G)$ with largest degree
- Adjacency matrix: $A(G) = \mathbb{R}^{n \times n} \ni A_{i,j} = \begin{cases} 1, & ij \in E \\ 0, & \text{else} \end{cases}$
- Eulerian: if it contains an Eulerian tour

Digraph

• **Definition**: G = (V, E) with vertex set V and edge set $E \subseteq \{(u, v) : u, v \in V\}$ $V, u \neq v$

Multigraph

• **Definition**: G = (V, E) with vertex set V and multiset E of V-pairs

Hypergraph

• **Definition**: G = (V, E) with vertex set V and edge set $E \subseteq 2^V = \{A : A \subseteq V\}$

Vertex

- Incident to $e \in E(G)$ if $v \in e$
- Adjacent to $\tilde{v} \in V(G)$ if $\{v, \tilde{v}\} \in E(G)$
- Neighborhood: $N(v) = \{u : uv \in E(G)\}$
- Degree: deg(v) = d(v) = |N(v)|
- Isolated: vertex with deg(v) = 0
- **Leaf**: vertex with deg(v) = 1

Edge

Subgraph

- **Definition**: H subgraph of G (write $H \subseteq G$) if $V(H) \subseteq V(G) \land E(H) \subseteq$
- Induced subgraph: H induced subgraph of G (write $H \subseteq G$), if $H \subseteq G$ and E(H) contains all edges from E(G) between vertices in V(H)
- Edge-induced subgraph: subgraph induced by $X \subseteq E(G)$, note G[X]

Spanning graph

• Definition: Subgraph with same vertex set as supergraph

- Definition: $C_n \coloneqq (\{v_1,\dots,v_n\},\{\{v_1,v_2\},\dots,\{v_{n-1},v_n\},\{v_n,v_1\}\})$
- Shorthand: (v_1,\ldots,v_n,v_1)
- Length (of cycle): $= |V| \equiv |E|$
- Cyclic subgraph: If $\delta(G) \ge 2$, then G has cycle with length $\ge \delta + 1$

Path

- **Definition**: $(\{v_1, \ldots, v_n\}, \{\{v_1, v_2\}, \ldots, \{v_{n-1}, v_n\}\})$
- Shorthand: (v_1, \ldots, v_n)

- Length (of path): = $|E| \neq |V|$
- v_0v_k -path: path starting at v_0 and ending at v_k

Walk

• Definition: non-empty alternating sequence of vertices and edges

$$\begin{aligned} v_0 e_0 \dots e_{k-1} v_k \\ \text{with } e_i &= v_i v_{i+1}, \text{length } k \in \mathbb{N} \end{aligned}$$

- \circ closed: if $v_0 = v_k$
- \circ even: if k is even
- \circ odd: if k is odd
- Eulerian tour:
- o Definition: closed walk with
 - no edges of G are repeatedly used
- all edges of G are used
- Even degrees: G connected has Euler tour $\Leftrightarrow \forall v \in V(G) : \deg(v)$ even
- + v_0v_k -walk: walk starting at v_0 and ending at v_k
- Induces path: $\exists uv$ -walk $\Rightarrow \exists uv$ -path
- Odd closed walk, odd cycle: G has odd closed walk \Rightarrow G has odd cycle

Connected component

• **Definition**: maximal connected subgraph (connected, but any supergraph isn't)

Acyclic graph, Forest

· Definition: Graph with no cycle as subgraph

Tree

- Definition: Graph that is connected and acyclic
- Special trees: path, star, spider, caterpillar, broom

k-regular graph

• **Definition**: Graph with $\deg(v) = k \in \mathbb{N}_0 \quad (\forall v \in V(G))$