FoP 3B Part II

Dr Budhika Mendis (b.g.mendis@durham.ac.uk) Room 151

Lecture 5: pn junction (part I)

Summary of Lecture 4

Donor and acceptor 'impurities'

Carrier concentrations and Fermi level (e.g. *n*-type semiconductor):

$$n \sim N_D$$

$$p \sim n_i^2 / N_D$$

$$\mu = E_c - kT \ln\left(\frac{N_c}{N_D}\right)$$

T(K)

Temp dependence of doping

Aim of today's lecture

► To describe the <u>equilibrium</u>* properties of a pn-junction

Key concepts:

- -Depletion approximation
- -derive electric field and potential for pn-junction

* Assumes no light or electrical biasing.

What happens when we bring p- and n-doped regions together?

p-type Si

n-type Si

- Concentration gradient for electrons and holes.
- Electrons diffuse to the p-region and holes diffuse to the n-region.

p-region

 E_c \bullet \bullet

n-region

 E_c

 E_d

 $E_v \longrightarrow \bullet \circ \circ \bullet \bullet \bullet$

Carrier diffusion and built-in electric field

Net negative charge from *ionised* acceptors

Net positive charge from *ionised* donors

The depletion approximation

Expected carrier diffusion profile:

Depletion approximation (no carriers within space charge region):

Built-in electric field

Gauss' law:

$$\vec{\nabla} \cdot \vec{\mathcal{E}} = \frac{d\mathcal{E}}{dx} = \frac{\rho(x)}{\epsilon_r \epsilon_0}$$

$$(-eN_A) \qquad -w_p < x$$

$$\Sigma(x) = \frac{-\frac{eN_A}{\epsilon_r \epsilon_0} (x + w_p) - w_p < x < 0}{\frac{eN_D}{\epsilon_r \epsilon_0} (x - w_n) \quad 0 < x < w_n}$$

Continuity of electric field at the boundary x = 0 gives:

$$N_A w_p = N_D w_n$$

(charge neutrality condition)

Electric potential

$$\varepsilon$$
 w_p
 w_n

From
$$\vec{\mathcal{E}} = -\vec{\nabla}\phi$$
 (ϕ = electrostatic potential)

$$\varepsilon(x) = \begin{cases} -eN_A(x + w_p)/\epsilon_r \epsilon_0 \\ eN_D(x - w_n)/\epsilon_r \epsilon_0 \\ 0 \end{cases} -w_p < x < 0 \\ 0 < x < w_n \\ \text{elsewhere}$$

$$\phi(x) = \frac{\frac{eN_A}{2\epsilon_r\epsilon_0} (x + w_p)^2 - w_p < x < 0}{\phi_{bi} - \frac{eN_D}{2\epsilon_r\epsilon_0} (x - w_n)^2 \quad 0 < x < w_n}$$

$$(\phi_{bi} = \text{built-in potential})$$

Potential

Electron energy

Energy level diagram for pn-junction

Before contact (unequal chemical potential $\mu = \frac{\partial G}{\partial n}$)

Note constant chemical potential after contact.