Sample variance and population variance

Created by Mr. Francis Hung on 20080906

Last updated: June 17, 2018

有舊生電郵問,為何 sample standard deviation =
$$\sqrt{\sum_{i=1}^{n}(x_i-\bar{x})^2}$$
 而不是 $\sqrt{\sum_{i=1}^{n}(x_i-\bar{x})^2}$ 呢?

這個問題很複雜,首先,要明白何謂 unbiased estimator。

為了簡單起見,試舉一例如下:有一市鎮,居民三萬人,有一萬人 (10^4) 每人有一元,另一萬人每人有二元,其餘一萬人每人有六元。由此可求得該批市民的 population mean (μ) ,和 population variance (σ^2) 了。

$$\begin{split} \mu = & \frac{10^4 \times 1 + 10^4 \times 2 + 10^4 \times 6}{3 \times 10^4} = \frac{1 + 2 + 6}{3} = 3 \dots (1) \\ \sigma^2 = & \frac{10^4 \times (1 - 3)^2 + 10^4 \times (2 - 3)^2 + 10^4 \times (6 - 3)^2}{3 \times 10^4} = \frac{(-2)^2 + (-1)^2 + 3^2}{3} = \frac{14}{3} \dots (2) \end{split}$$

此三萬人為 'Population'。假如我們只知道這市鎮有三萬人,而不知道每人有多少錢,最好的方法,當然是派人員到每家每人去登記;但是所花費的人力物力太大了。我們唯有去取一些樣本(Sample)。比如每個調查員去詢問三人,我們便可以得到許多不同的 Sample,而 Sample Size 為 3。這些樣本的平均值 (sample mean) 為 \bar{x} ,樣本方差(sample variance)為 θ^2 。那麼,如何從 \bar{x} 和 θ^2 去估算 μ 和 σ^2 呢?

如果我們派 n 個調查員得到 n 個樣本的平均值 \bar{x}_1 , \bar{x}_2 , ..., \bar{x}_n 和 n 個樣本的樣本方差 $\theta_1^2, \theta_2^2, \ldots, \theta_n^2$,則我們可以合理地以 \bar{x}_1 , \bar{x}_2 , ..., \bar{x}_n 的平均值和 $\theta_1^2, \theta_2^2, \ldots, \theta_n^2$ 的平均值 作為 μ 和 σ^2 的估算。即 $\mu = \frac{\bar{x}_1 + \bar{x}_2 + \cdots + \bar{x}_n}{n}$, $\sigma^2 = \frac{\theta_1^2 + \theta_2^2 + \cdots + \theta_n^2}{n}$ 。但是這是否合理呢?讓我們比較兩者的差異。

如果以
$$\theta^2 = \frac{\sum_{i=1}^n (x_i - \bar{x})^2}{n}$$
 和 $s^2 = \frac{\sum_{i=1}^n (x_i - \bar{x})^2}{n-1}$ 。假如我們要取 Sample 有 3 個 elements a, b, c 。 可以是 $1, 2$ 或 6 ,則共有 $3 \times 3 \times 3 = 27$ 個不同的 Sample 。 $n = 3$, $\theta^2 = \frac{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + (x_3 - \bar{x})^2}{3}$, $s^2 = \frac{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + (x_3 - \bar{x})^2}{2}$

下表可比較不同 x, y, z 時 $, \bar{x}, \theta^2, s^2$ 的值:

No. of sample	а	b	С	\overline{x}	θ^2	s^2
1	1	1	1	1	0	0
2	1	1	2	$\frac{4}{3}$	$\frac{2}{9}$	$\frac{1}{3}$
3	1	1	6	$\frac{8}{3}$	$\frac{50}{9}$	$\frac{25}{3}$
4	1	2	1	$\frac{4}{3}$	$\frac{2}{9}$	$\frac{1}{3}$
5	1	2	2	$\frac{5}{3}$	$\frac{2}{9}$	$\frac{1}{3}$
6	1	2	6	3	$\frac{14}{3}$	7
7	1	6	1	$\frac{8}{3}$	$\frac{50}{9}$	$\frac{25}{3}$
8	1	6	2	3	$\frac{14}{3}$	7
9	1	6	6	13 3	$\frac{50}{9}$	$\frac{25}{3}$

10	2	1	1	$\frac{4}{3}$	$\frac{2}{9}$	$\frac{1}{3}$
11	2	1	2	$\frac{\frac{4}{3}}{\frac{5}{3}}$	$\frac{2}{9}$	$\frac{\frac{1}{3}}{\frac{1}{3}}$
12	2	1	6	3		7
13	2	2	1	$\frac{5}{3}$	$\frac{\frac{14}{3}}{\frac{2}{9}}$	$\frac{1}{3}$
14	2	2	2	2.	0	0
15	2	2	6	$\frac{10}{3}$	$\frac{32}{9}$	$\frac{16}{3}$
16	2	6	1	3		7
17	2	6	2	$\frac{10}{3}$	$\frac{\frac{14}{3}}{\frac{32}{9}}$	$\frac{16}{3}$
18	2	6	6	$\frac{14}{3}$	$\frac{32}{9}$	$\frac{16}{3}$
19	6	1	1	$\frac{14}{3}$ $\frac{8}{3}$	<u>50</u> 9	$ \begin{array}{r} $
20	6	1	2	3	$\frac{14}{3}$	7
21	6	1	6	$\frac{13}{3}$	$\frac{\frac{14}{3}}{\frac{50}{9}}$	$\frac{25}{3}$
22	6	2	1	3		7
23	6	2	2	$\frac{10}{3}$	$\frac{\frac{14}{3}}{\frac{32}{9}}$	$\frac{16}{3}$
24	6	2	6		$\frac{32}{9}$	<u>16</u> 3
25	6	6	1	$\frac{\frac{14}{3}}{\frac{13}{3}}$	<u>50</u> 9	$\frac{16}{3}$ $\frac{25}{3}$
26	6	6	2	$\frac{14}{3}$	$\frac{32}{9}$	$\frac{16}{3}$
27	6	6	6	6	0	0
Total				81	84	126
Average $(\frac{\text{total}}{27})$				3	$\frac{28}{9}$	$\frac{14}{3}$

從表中最後一行與 (1), (2) 比較,Expected value of \bar{x} is $E(\bar{x}) = \mu = 3$ Expected value of \bar{x} is $E(s^2) = \sigma^2 = \frac{14}{3}$.

而
$$\theta^2 = \frac{\sum_{i=1}^n (x_i - \bar{x})^2}{n}$$
 是一個 biased estimator of σ^2 (因為 $E(\theta^2) = \frac{28}{9} \neq \frac{14}{3} = \sigma^2$) \circ

孔德偉老師