вариант	ф. номер	група	поток	курс	специалност
1					
Име:					

Първа контролна работа по логическо програмиране 13 ноември 2021 год.

Да няма лист, на който е писано по повече от една задача!

```
Зад. 1. Нека
\varphi_1 := \forall x (p(x, x) \& r(x, x)),
\varphi_2 := \forall x \forall y ((p(x,y) \Rightarrow p(y,x)) \& (r(x,y) \Rightarrow r(y,x))),
\varphi_3 := \forall x \forall y \forall z ((p(x,y) \& p(y,z) \Rightarrow p(x,z))
                       \&(r(x,y)\&r(y,z)\Rightarrow r(x,z))),
\psi[x,y] := \neg(x = y) \& p(x,y),
\chi[x,y] := \neg(x = y) \& r(x,y),
\varphi_4 := \forall x \exists y (\psi[x,y] \& \forall z (\psi[x,z] \Rightarrow z = y)),
\varphi_5 := \exists t (\forall x (\neg(t = x) \Longrightarrow \neg r(x,t)))
```

Зад. 2. Нека S е множеството от всички безкрайни редици от естествени числа. Ако $n\in\mathbb{N}$ и $\alpha\in S$, то с α_n ще означаваме n-тия член на редицата α . Нека $\mathcal L$ е предикатният език без формално равенство и с един триместен предикатен символ р. Да означим с A структурата за L, която е с универсум (носител) множеството $\mathbb{N} \cup \hat{S}$ и за произволни $\alpha, \beta, \ell \in \mathbb{N} \cup \hat{S}$

```
\langle \alpha, \beta, \ell \rangle \in p^{\mathcal{A}} \stackrel{def}{\longleftrightarrow} \alpha, \beta \in S, \ \ell \in \mathbb{N} и за всяко n \in \mathbb{N} \beta_n = \alpha_{\ell n}.
а) Да се докаже, че следните множества са определими в {\cal A} с
формула от \mathcal{L}:
   1. N, {1} и {0},
   2. \{\alpha \mid \alpha \in S \text{ и всички членове на } \alpha \text{ са равни}\},
   3. \{\langle a, b, c \rangle \mid a, b, c \in \mathbb{N} \text{ и } a = bc\}.
```

б) Да се докаже, че множеството $\{2\}$ не е определимо в ${\cal A}$ с

Пожелаваме ви приятна и испешна работа!

формула от \mathcal{L} .

вариант	ф. номер	група	поток	курс	специалност
1					
Име:					

Първа контролна работа по логическо програмиране 13 ноември 2021 год.

Да няма лист, на който е писано по повече от една задача!

```
Зал. 1. Нека
  \varphi_1 := \forall x (p(x, x) \& r(x, x)),
  \varphi_1 := \forall x \forall y ((p(x, y) \Rightarrow p(y, x)) \& (r(x, y) \Rightarrow r(y, x))), 
 \varphi_3 := \forall x \forall y \forall z ((p(x, y) \& p(y, z) \Rightarrow p(x, z)) 
                                                     \&(r(x,y)\&r(y,z)\Rightarrow r(x,z))),
 \psi[x, y] := \neg(x = y)\&p(x, y), \\ \chi[x, y] := \neg(x = y)\&r(x, y),
\begin{array}{l} \chi[x_1,y] := - (x-y)\& \forall (x,y), \\ \varphi_4 := \forall x\exists y(\psi[x,y]\& \forall z(\psi[x,z]\Rightarrow z\doteq y)), \\ \varphi_5 := \exists t(\forall x(\neg(t\doteq x)\Rightarrow \neg r(x,t)) \\ \& \ \forall y(\neg(y\doteq t)\Rightarrow \exists z(\chi[y,z]\& \forall x(\chi[y,x]\Rightarrow z\doteq x)))))). \\ \text{Да се докаже, че множествата } \Gamma_1 = \{\varphi_1,\varphi_2,\varphi_3,\varphi_4\} \text{ и} \\ \Gamma_2 = \Gamma_1 \cup \{\varphi_5\} \text{ са изпълними}. \end{array}
```

Зад. 2. Нека S е множеството от всички безкрайни редици от естествени числа. Ако $n\in\mathbb{N}$ и $\alpha\in S$, то с α_n ще означаваме n-тия член на редицата α . Нека $\mathcal L$ е предикатният език без формално равенство и с един триместен предикатен символ р. $\mathring{\mathbb{A}}$ а означим с \mathcal{A} структурата за $\mathring{\mathcal{L}}$, която е с универсум (носител) множеството $\mathbb{N} \cup \hat{S}$ и за произволни $\alpha, \beta, \ell \in \mathbb{N} \cup \hat{S}$

```
\langle \alpha,\beta,\ell\rangle \in p^{\mathcal{A}} \ \stackrel{def}{\longleftrightarrow} \ \alpha,\beta \in S, \ \ell \in \mathbb{N} \ \text{и за всяко} \ n \in \mathbb{N} \ \beta_n = \alpha_{\ell n}.
а) Да се докаже, че следните множества са определими в {\cal A} с
формула от \mathcal{L}:
```

ормуна от Σ . 1. \mathbb{N} , $\{1\}$ и $\{0\}$, 2. $\{\alpha \mid \alpha \in S$ и всички членове на α са равни $\}$,

3. $\{\langle a, b, c \rangle \mid a, b, c \in \mathbb{N} \text{ и } a = bc\}.$

б) Да се докаже, че множеството $\{2\}$ не е определимо в ${\cal A}$ с

Пожелаваме ви приятна и успешна работа!

вариант	ф. номер	група	поток	курс	специалност
2					
Име:		•			

Първа контролна работа по логическо програмиране 13 ноември 2021 год.

Да няма лист, на който е писано по повече от една задача!

```
Зад. 1. Нека c е индивидна константа и
\varphi_1 := \forall x (p(x, x) \& r(x, x)),
 \varphi_2 := \forall x \forall y ((p(x,y) \Rightarrow p(y,x)) \& (r(x,y) \Rightarrow r(y,x))),
\varphi_3 := \forall x \forall y \forall z ((p(x,y) \& p(y,z) \Rightarrow p(x,z))
                                 \&(r(x,y)\&r(y,z)\Rightarrow r(x,z))),
\begin{array}{l} \varphi_4 := \forall x((r(x,c)) \not x = c) \& \exists y(p(x,y) \& \neg r(x,y))), \\ \varphi_5 := \forall x(\land x = c) \Rightarrow \exists y(r(x,y) \& \neg p(x,y))), \\ \varphi_6 := \forall x \forall y \forall z(p(x,y \& p(y,z) \Rightarrow r(x,y) \lor r(x,z) \lor r(y,z)). \\ \text{Да се докаже, че множествата } \Gamma_1 = \{\varphi_1, \varphi_2, \varphi_3, \varphi_4\} \text{ и} \end{array}
\Gamma_2 = \Gamma_1 \cup \{\varphi_5, \varphi_6\} са изпълними.
```

Зад. 2. Нека S е множеството от всички безкрайни редици от естествени числа. Ако $n\in\mathbb{N}$ и $\alpha\in S$, то с α_n ще означаваме n-тия член на редицата α . Нека $\mathcal L$ е предикатният език без формално равенство и с един триместен предикатен символ p. Да означим с $\mathcal A$ структурата за $\mathcal L$, която е с универсум (носител) множеството $\mathbb{N} \cup S$ и за произволни $\alpha, \beta, \ell \in \mathbb{N} \cup S$

```
\langle \alpha,\beta,\ell\rangle \in p^{\mathcal{A}} \ \stackrel{def}{\longleftrightarrow} \ \alpha,\beta \in S, \ \ell \in \mathbb{N} \ \text{и за всяко} \ n \in \mathbb{N} \ \beta_{\ell n} = \alpha_n.
```

- а) Да се докаже, че следните множества са определими в ${\cal A}$ с формула от \mathcal{L} :
 - 1. \dot{S} , {1} и {0},
 - 2. $\{\alpha \mid \alpha \in S \text{ и всички членове на } \alpha \text{ са равни} \},$ 3. $\{\langle a,b,c \rangle \mid a,b,c \in \mathbb{N} \text{ и } c = ab \}.$
- б) Да се докаже, че множеството $\{3\}$ не е определимо в ${\cal A}$ с формула от \mathcal{L} .

Пожелаваме ви приятна и успешна работа!

вариант	ф. номер	група	поток	курс	специалност
2					
Име:					

Първа контролна работа по логическо програмиране 13 ноември 2021 год.

Да няма лист, на който е писано по повече от една задача!

```
{\bf 3ag.}\ {\bf 1.}\  Некаcе индивидна константа и
\begin{array}{l} \varphi_1 := \forall x (p(x,x) \& r(x,x)), \\ \varphi_2 := \forall x \forall y ((p(x,y) \Rightarrow p(y,x)) \& (r(x,y) \Rightarrow r(y,x))), \\ \varphi_3 := \forall x \forall y \forall z ((p(x,y) \& p(y,z) \Rightarrow p(x,z))) \end{array}
                                         \&(r(x,y)\&r(y,z)\Rightarrow r(x,z)))
\begin{array}{l} \varphi_4 := \forall x ((r(x,c) \Rightarrow x = c) \& \exists y (p(x,y) \& \neg r(x,y))), \\ \varphi_5 := \forall x (\not (x = c) \Rightarrow \exists y (r(x,y) \& \neg p(x,y))), \end{array}
arphi_6:=orall x orall y orall z (p(x,y\&p(y,z)\Rightarrow r(x,y)ee r(x,z)ee r(y,z)). Да се докаже, че множествата \Gamma_1=\{arphi_1,arphi_2,arphi_3,arphi_4\} и \Gamma_2=\Gamma_1\cup\{arphi_5,arphi_6\} са изпълними.
```

 ${\bf 3ад.}\ {\bf 2.}\ {\bf Heka}\ S$ е множеството от всички безкрайни редици от естествени числа. Ако $n\in\mathbb{N}$ и $\alpha\in S$, то с α_n ще означаваме n-тия член на редицата α . Нека $\mathcal L$ е предикатният език без формално равенство и с един триместен предикатен символ p. Да означим с $\mathcal A$ структурата за $\mathcal L$, която е с универсум (носител) множеството $\mathbb N\cup S$ и за произволни $\alpha,\beta,\ell\in\mathbb N\cup S$

$$\langle \alpha, \beta, \ell \rangle \in p^{\mathcal{A}} \stackrel{def}{\longleftrightarrow} \alpha, \beta \in S, \ \ell \in \mathbb{N}$$
 и за всяко $n \in \mathbb{N}$ $\beta_{\ell n} = \alpha_n$.

- а) Да се докаже, че следните множества са определими в ${\cal A}$ с формула от \mathcal{L} :
 - 1. S, {1} и {0},
 - 2. $\{\alpha \mid \alpha \in S$ и всички членове на α са равни $\},$
 - 3. $\{\langle a, b, c \rangle \mid a, b, c \in \mathbb{N} \text{ и } c = ab\}.$
- б) Да се докаже, че множеството $\{3\}$ не е определимо в ${\cal A}$ с ϕ ормула от \mathcal{L} .

Пожелаваме ви приятна и испешна работа!