Correction

- 1. Supposons $f=\alpha.I$. La relation $f^2=\frac{1}{2}(f+I)$ donne $\alpha^2I=\frac{1}{2}(\alpha.I+I)$ d'où $(2\alpha^2-\alpha-1).I=\tilde{0}$ puis $2\alpha^2-\alpha-1=0$. Par suite $\alpha=1$ ou $\alpha=-1/2$. Inversement ok.
- 2.a $f^2=\frac{1}{2}(f+I) \text{ donne } 2f^2-f=I \text{ d'où } f\circ(2f-I)=I \text{ et } (2f-I)\circ f=I \text{ .}$ Par suite f est inversible et $f^{-1}=2f-I$.
- 2.b $\ker(f-I)$ et $\ker(f+\frac{1}{2}I)$ sont les noyaux des endomorphismes f-I et $f+\frac{1}{2}I$. Ce sont donc des sous-espaces vectoriels.
- 2.c Soit $\vec{x} \in \ker(f I) \cap \ker(f + \frac{1}{2}I)$. On a $f(\vec{x}) = \vec{x}$ et $f(\vec{x}) = -\frac{1}{2}\vec{x}$ donc $\vec{x} = \vec{o}$.

Ainsi $\ker(f-I)$ et $\ker(f+\frac{1}{2}I)$ sont en somme directe.

Montrons $E = \ker(f - I) + \ker(f + \frac{1}{2}I)$ par analyse/synthèse.

Analyse : Soit $\vec{x} \in E$. Supposons $\vec{x} = \vec{u} + \vec{v}$ avec $\vec{u} \in \ker(f - I)$ et $\vec{v} \in \ker(f + \frac{1}{2}I)$.

$$f(\vec{x}) = f(\vec{u}) + f(\vec{v}) = \vec{u} - \frac{1}{2}\vec{v}$$
 donc $\vec{v} = \frac{2}{3}\vec{x} - \frac{2}{3}f(\vec{x})$ et $\vec{u} = \vec{x} - \vec{v} = \frac{1}{3}\vec{x} + \frac{2}{3}f(\vec{x})$.

Synthèse : Soit $\vec{x} \in E$. Posons $\vec{u} = \frac{1}{3}\vec{x} + \frac{2}{3}f(\vec{x})$ et $\vec{v} = \frac{2}{3}\vec{x} - \frac{2}{3}f(\vec{x})$.

On a $\vec{x} = \vec{u} + \vec{v}$, $f(\vec{u}) = \frac{1}{3}f(\vec{x}) + \frac{2}{3}f^2(\vec{x}) = \frac{2}{3}f(\vec{x}) + \frac{1}{3}\vec{x} = \vec{u}$ donc $\vec{u} \in \ker(f - I)$

et
$$f(\vec{v}) = \frac{2}{3}f(\vec{x}) - \frac{2}{3}f^2(\vec{x}) = \frac{1}{3}f(\vec{x}) - \frac{1}{3}\vec{x} = -\frac{1}{2}\vec{v}$$
 donc $\vec{v} \in \ker(f + \frac{1}{2}I)$.

Finalement $E = \ker(f - I) \oplus \ker(f + \frac{1}{2}I)$.

2.d $(f + \frac{1}{2}I) \circ (f - I) = f^2 + \frac{1}{2}f - f - \frac{1}{2}I = f^2 - \frac{1}{2}f - \frac{1}{2}I = \tilde{0}$.

Puisque $(f+\frac{1}{2}I)\circ (f-I)=\tilde{0}$ on a $\mathrm{Im}(f-I)\subset \ker(f+\frac{1}{2}I)$.

Mais $\dim \operatorname{Im}(f-I) = \dim E - \dim \ker(f-I)$ et $E = \ker(f-I) \oplus \ker(f+\frac{1}{2}I)$ donne

 $\dim \ker(f-I) + \dim \ker(f+\frac{1}{2}I) = \dim E \text{ d'où } \dim \operatorname{Im}(f-I) = \dim \ker(f+\frac{1}{2}I) \text{ puis}$

 $\operatorname{Im}(f-I) = \ker(f + \frac{1}{2}I)$ par inclusion et égalité des dimensions.

- 2.e Comme ci-dessus $(f-I) \circ (f+\frac{1}{2}I) = \tilde{0}$ donc $\operatorname{Im}(f+\frac{1}{2}I) \subset \ker(f-I)$ puis par égalité des dimensions, on obtient $\operatorname{Im}(f+\frac{1}{2}I) = \ker(f-I)$
- 3.a $f^{3} = f \circ f^{2} = f \circ \frac{1}{2}(f+I) = \frac{1}{2}f^{2} + \frac{1}{2}f = \frac{3}{4}f + \frac{1}{4}I.$ $f^{4} = f \circ f^{3} = \frac{3}{4}f^{2} + \frac{1}{4}f = \frac{5}{8}f + \frac{3}{8}I.$
- 3.b Unicité : Supposons $f^n = a_n . f + b_n I$ et $f^n = \alpha_n . f + \beta_n I$

On a alors $(a_n - \alpha_n) \cdot f + (b_n - \beta_n) \cdot I = \tilde{0}$ or f et I sont libres donc $a_n = \alpha_n$ et $b_n = \beta_n$.

Existence : Par récurrence sur $n \in \mathbb{N}$.

Pour n=0: $a_0=0$ et $b_0=1$ conviennent.

Pour n=1: $a_1=1$ et $b_1=0$ conviennent.

Supposons la propriété établie au rang $n \ge 0$.

$$f^{n+1} = f \circ f^n \underset{\mathit{HR}}{=} f \circ (a_n.f + b_n.I) = a_n.f^2 + b_n.f = (\frac{a_n}{2} + b_n).f + \frac{a_n}{2}.I = a_{n+1}.f + b_{n+1}.I \ .$$

avec
$$a_{n+1} = \frac{a_n}{2} + b_n$$
 et $b_{n+1} = \frac{a_n}{2}$.

Récurrence établie

3.c $a_{n+2} = \frac{a_{n+1}}{2} + b_{n+1} = \frac{a_{n+1} + a_n}{2}$. (a_n) est une suite récurrente linéaire d'ordre 2 d'équation caractéristique

$$r^2 = \frac{r+1}{2} \text{ de racines 1 et } -\frac{1}{2} \text{ . Par suite il existe } \lambda, \mu \in \mathbb{R} \text{ tels que } \forall n \in \mathbb{N}, a_n = \lambda + \mu \bigg(\frac{-1}{2}\bigg)^n.$$

$$a_0 = 0$$
 et $a_1 = 1$ donne $\lambda = \frac{2}{3}$ et $\mu = -\frac{2}{3}$

Finalement $\forall n \in \mathbb{N}, a_n = \frac{2}{3} - \frac{2}{3} \left(-\frac{1}{2} \right)^n$.

Puisque $b_{n+1}=\frac{a_n}{2}$, on a $\forall n\in\mathbb{N}^*, b_n=\frac{a_{n-1}}{2}=\frac{1}{3}-\frac{1}{3}\left(-\frac{1}{2}\right)^{n-1}$ formule aussi valable pour n=0.

Puisque $\left|-\frac{1}{2}\right|<1$, on observe effectivement que $\,a_n\to 2/3\,$ et $\,b_n\to 1/3\,$.

3.d $p^2 = \frac{4}{9}f^2 + \frac{4}{9}f + \frac{1}{9}I = \frac{2}{3}f + \frac{1}{3}I = p$ donc p est une projection vectorielle.

$$\operatorname{Im} p = \operatorname{Im} \left(\frac{2}{3} f + \frac{1}{3} I \right) = \operatorname{Im} (f + \frac{1}{2} I) = \ker (f - I) \text{ et } \ker p = \ker \left(\frac{2}{3} f + \frac{1}{3} I \right) = \ker (f + \frac{1}{2} I) = \operatorname{Im} (f - I).$$

Finalement p est la projection vectorielle sur $\operatorname{Im} p = \ker(f - I)$ parallèlement à $\ker p = \operatorname{Im}(f - I)$.

4.a $\mathcal{M} \subset \mathcal{L}(E)$ et $I \in \mathcal{M}$ en prenant $\lambda = 0$ et $\mu = 1$.

Soit $\alpha, \beta \in \mathbb{R}$ et $g, h \in \mathcal{M}$. On peut écrire $g = \lambda f + \mu I$ et $h = \lambda' f + \mu' I$.

$$\alpha g + \beta h = (\alpha \lambda + \beta \lambda')f + (\alpha \mu + \beta \mu')I \in \mathcal{M}$$
 et

$$gh = \lambda \lambda' f^2 + (\lambda \mu' + \lambda' \mu) f + \mu \mu' I = (\lambda \mu' + \lambda' \mu + \frac{\lambda \lambda'}{2}) f + (\mu \mu' + \frac{\lambda \lambda'}{2}) I \in \mathcal{M}$$

Par suite \mathcal{M} est une sous algèbre de $\mathcal{L}(E)$.

De plus on observe gh = hg. Cette sous-algèbre est donc commutative.

4.b (f,I) est famille génératrice de \mathcal{M} puisque par définition $\mathcal{M} = \text{Vect}(f,I)$.

Par hypothèse, (f, I) est libre et donc (f, I) est une base de \mathcal{M} .

Finalement dim $\mathcal{M} = 2$.