Неразрешимость задачи о проверке на принадлежность к классу КС-языков дополнения КС-языка

Долгополова Мария СПБГУ, 2019

Утверждение

Задача о проверке на принадлежность к классу КС-языков дополнения КС-языка неразрешима

Определения

- $\Sigma_3 = \{a, b, c\}$
- $P_x = \{ S \rightarrow ba^i Sx_i \mid ba^i cx_i : i \in [1..n] \}$
- $P_y = \{ S \rightarrow ba^iSy_i | ba^icy_i : i \in [1..n] \}$
- $G_x = \{\{S\}, \Sigma_3, P_x, S\}, G_y = \{\{S\}, \Sigma_3, P_y, S\}$
- $L_x = L(G_x), L_y = L(G_y)$
- $\bullet \quad \mathsf{K}_{\mathsf{x}\mathsf{y}} = \; \mathsf{L}_{\mathsf{x}} \cdot \{\mathsf{c}\} \cdot (\mathsf{L}_{\mathsf{y}})^{\mathsf{R}}$

 K_{xy} - контекстно-свободный

Доказательство 1/3

Лемма 1: Пусть $\Sigma_3 = \{a, b, c\}$

$$x = (x_1, ..., x_n), y = (y_1, ..., y_n), x_i, y_i \in \{a, b\}^*$$

Тогда язык $K_{xy} \cap \{ zcz^R \mid z \in \Sigma_3^* \}$ является контекстно-свободным тогда и только тогда, когда ПСП(x,y) не имеет решений.

Доказательство 2/3

Лемма 2: дополнение языка $K_{xy} \cap \{ zcz^R \mid z \in (\Sigma_3)^* \}$ является контекстно-свободным.

Доказательство:

- $L_0 = \{ w \in (\Sigma_3)^* : |w|c = 1 \}$
- $L_1 = \{ w \in (\Sigma_3)^* : |w|c \neq 3 \}$
- $L_2 = \{v_1 c v_2 c v_3 c v_4 : v_1, v_2, v_3, v_4 \in \{a, b\}^*, v_1 \neq v_4^R\}$
- $L_3 = \{v_1 c v_2 c v_3 c v_4 : v_1, v_2, v_3, v_4 \in \{a, b\}^*, v_2 \neq v_3^R\}$
- $L_4 = (((\Sigma_3)^* L_X) \cap L_0) \cdot \{c\} \cdot L_0$
- $(\Sigma_3)^* K_{xy} \cap \{ zcz^R \mid z \in (\Sigma_3)^* \} = L_1 \cup L_2 \cup L_3 \cup L_4 \cup L_5$

Доказательство 3/3

- Построим по постовской системе соответствия (x, y), x = (x₁,...,x_n), y = (y₁,...,y_n), x_i, y_i \in {a, b}* кс-грамматику G, порождающую язык $(\Sigma_3)^*$ K_{xy} \cap { $zcz^R \mid z \in (\Sigma_3)^*$ }
- По лемме 2 язык $(\Sigma_3)^*$ $K_{xy} \cap \{ zcz^R \mid z \in (\Sigma_3)^* \}$ KC
- Его дополнение $K_{xy} \cap \{ zcz^R \mid z \in (\Sigma_3)^* \}$
- По лемме 1 $K_{xy} \cap \{zcz^R \mid z \in (\Sigma_3)^*\}$ КС ⇔ ПСП(x,y) не имеет решений

Является ли дополнение L(G) кс?

Экземпляр ПСП не имеет решения

Экземпляр ПСП имеет решение

Спасибо за внимание!

Пусть $\Sigma_3 = \{a, b, c\}, x = (x_1, ..., x_n), y = (y_1, ..., y_n), где x_i \in \{a, b\}^*$, $yi \in \{a, b\}^*$ и $x_i y_i \neq \epsilon$ для всех і. Тогда язык $K_{xy} \cap \{zcz^R \mid z \in (\Sigma_3)^*\}$ является контекстно-свободным тогда и только тогда, когда ПСП(x, y) не имеет решений.

Доказательство: Пусть $(i_1,...,i_k)$ — решение ПСП (x,y), где $x_iy_i \neq \epsilon$ для всех і. Обозначим $u = ba^{ik} ba^{ik-1} \dots ba^{i1}, \ v = x_{i1} \dots x_{ik}$ и $L_0 = \{u\}^* \cdot \{c\} \cdot \{v\}^* \cdot \{c\} \cdot \{v\}^* \cdot \{c\} \cdot \{v\}^* \cdot \{c\} \cdot \{u^R\}^*$. Язык L_0 является регулярным. Кху $\cap \{zcz^R \mid z \in \{\Sigma_3\}^*\} \cap L_0 = \{u^m cv^m c(v^R)^m \mid m > 0\}$ не является КС. Согласно теореме о пересечении КС и регулярного языков Кху $\cap \{zcz^R \mid z \in \{\Sigma_3\}^*\}$ также не является контекстно-свободным.