

Esercizi codice correzione Hamming

Es1: Si supponga che una parola di dati da 8 bit memorizzata sia 11001010

Adottando l'algoritmo di Hamming, determinare quali bit di controllo verrebbero immagazzinati in memoria insieme alla parola di dati.

Es2: Per la parola

00111001

i bit di controllo memorizzati sono 0111. Si supponga che, quando la parola viene letta dalla memoria, i bit di controllo siano calcolati per essere 1101. Quale parola di dati è letta dalla memoria?

Es3: Quanti bit di controllo sono necessari se il codice a correzione di errore di Hamming viene usato per rilevare errori di bit singoli in una parola di dati a 1024 bit ?

Es4: Sviluppare un codice SEC per una parola di dati a 16 bit. Generate il codice per la parola dati

0101000000111001

Esercizi codice correzione Hamming

Soluz. es1:

12	11	10	9	8	7	6	5	4	3	2	1
D8	D7	D6	D5		D4	D3	D2		D1		
				C8				C4		C2	C1
1	1	0	0		1	0	1		0		

Poiché
$$C1 = D1 \oplus D2 \oplus D4 \oplus D5 \oplus D7$$

 $C2 = D1 \oplus D3 \oplus D4 \oplus D6 \oplus D7$
 $C4 = D2 \oplus D3 \oplus D4 \oplus D8$
 $C8 = D5 \oplus D6 \oplus D7 \oplus D8$

si ha

$$C1 = 0 \oplus 1 \oplus 1 \oplus 0 \oplus 1 = 1$$

$$C2 = 0 \oplus 0 \oplus 1 \oplus 0 \oplus 1 = 0$$

$$C4 = 1 \oplus 0 \oplus 1 \oplus 1 = 1$$

$$C8 = 0 \oplus 0 \oplus 1 \oplus 1 = 0$$

Esercizi codice correzione Hamming

Soluz. es2: I dati e bit di controllo scritti in memoria sono:

12	11	10	9	8	7	6	5	4	3	2	1
D8	D7	D6	D5		D4	D3	D2		D1		
				C8				C4		C2	C1
0	0	1	1	0	1	0	0	1	1	1	1

I bit di controllo calcolati dai dati letti da memoria sono **1101**, pertanto la *parola sindrome* è:

$$(0\ 1\ 1\ 1) \oplus (1\ 1\ 0\ 1) = 1\ 0\ 1\ 0$$

quindi il bit errato è quello in posizione 10 (bit dati D6). Ne consegue che la parola letta dalla memoria è

00011001