

Script: relaxation.py

T = 450 K p(CO) = 1 bar $p(O_2) = 1 \text{ bar}$

Initial state: clean kMC steps: 2000

Script: relaxation.py

T = 450 K p(CO) = 1 bar $p(O_2) = 1 \text{ bar}$

Initial state: clean kMC steps: 2*108

Preparing the initial state

Modify occupation of single site:

```
model.put(site=[x,y,z,model.lattice.<site>], model.proclist.<species>)
```

More efficient for many sites:

```
Model._put(...)
model._put(...)
...
model._adjust_database()
```

Script: relaxation.py Uncomment lines 16-19

Script: relaxation.py

T = 450 K p(CO) = 1 bar $p(O_2) = 1 \text{ bar}$

Initial state: CO@br

kMC steps: 2000

Script: relaxation.py

T = 450 Kp(CO) = 1 bar $p(O_2) = 1 bar$

Initial state: CO@br

kMC steps: 2*10⁷

Script: relaxation.py

T = 450 K p(CO) = 1 bar $p(O_2) = 1 \text{ bar}$

Initial state: O@cus kMC steps: 2*108

Random initial state from guess coverages

Script:

relaxation_random.py

T = 450 K p(CO) = 1 bar $p(O_2) = 1 \text{ bar}$

Initial state: random based on known coverages.

kMC steps: 2*10⁸

