CORRIGÉ DS Nº6

I. Calcul de F(1) et F(2)

1°) Soit $x \in \mathbb{R}$; si x > 0, alors la suite $\left(\frac{1}{n^x}\right)_{n \geqslant 1}$ tend vers 0 en décroissant; donc la série alternée $\sum_{n \geqslant 1} \frac{(-1)^{n-1}}{n^x} \text{ converge}; \text{ si } x \leqslant 0, \text{ la suite } \left(\frac{(-1)^{n-1}}{n^x}\right)_{n \geqslant 1} \text{ ne converge pas vers 0, donc la série } \sum_{n \geqslant 1} \frac{(-1)^{n-1}}{n^x} \text{ diverge (grossièrement)}.$

Le domaine de définition de F est donc \mathbb{R}_+^* .

- 2°) a) Sur l'intervalle $\left] \frac{\pi}{2}, \frac{\pi}{2} \right[$ par exemple, on a $\tan = \frac{\sin}{\cos} = -\frac{(\cos)'}{\cos} = (-\ln \circ \cos)'$. Donc $J_1 = \int_0^{\frac{\pi}{4}} \tan t \, dt = \left[-\ln(\cos t) \right]_0^{\frac{\pi}{4}} = \frac{\ln 2}{2}$.
 - **b)** Sur l'intervalle $\left[0, \frac{\pi}{4}\right]$, $0 \leqslant \tan t \leqslant 1$, donc (J_n) est décroissante à valeurs positives, donc convergente.
 - c) En utilisant le changement de variable $u = \tan t$, on a

$$J_n + J_{n+2} = \int_0^{\frac{\pi}{4}} (1 + \tan^2 t) (\tan t)^n dt = \int_0^1 u^n du = \frac{1}{n+1}.$$

En faisant tendre n vers $+\infty$, on en déduit 2l=0 soit $\lim_{n\to +\infty} J_n=0$.

d) Pour tout entier naturel non nul k, on a $\frac{1}{2k} = J_{2k-1} + J_{2k+1}$. Donc

$$\sum_{k=1}^{n} \frac{(-1)^{k+1}}{2k} = \sum_{k=1}^{n} (-1)^{k+1} (J_{2k-1} + J_{2k+1})$$

$$= (J_1 + J_3) - (J_3 + J_5) + \dots + (-1)^{n+1} (J_{2n-1} + J_{2n+1})$$

$$= J_1 + (-1)^{n+1} J_{2n+1}$$

après télescopage.

- e) On fait tendre n vers $+\infty$ dans l'égalité ci-dessus. On en déduit : $\frac{1}{2}F(1)=J_1$, donc $F(1)=2\,J_1=\ln 2$.
- 3°) On a : $F(2) = \frac{\pi^2}{12}$, voir démo. en II.3

II. Quelques propriétés de F

 $\mathbf{1}^{\circ}) \quad \mathbf{a)} \ \forall n \geqslant 1, \forall x \geqslant a, \left|\frac{(-1)^{n-1}}{n^{x}}\right| \leqslant \frac{1}{n^{a}}. \text{ Comme la série } \sum_{n \geqslant 1} \frac{1}{n^{a}} \text{ est convergente } (a > 1), \text{ la série } \sum_{n \geqslant 1} \frac{(-1)^{n-1}}{n^{x}} \text{ converge normalement sur } [a, +\infty[.$

- **b)** On en déduit qu'elle converge uniformément sur $[a, +\infty[$. Comme, pour tout $n \ge 2, \frac{(-1)^{n-1}}{n^x} \xrightarrow[x \to +\infty]{}$ 0 et que, pour $n=1,\,\frac{(-1)^{n-1}}{n^x}=1,$ le théorème de passage à la limite terme à terme permet d'affirmer que $F(x) = \sum_{n=0}^{+\infty} \frac{(-1)^{n-1}}{n^x} \xrightarrow[x \to +\infty]{+\infty} \sum_{n=0}^{+\infty} \lim_{n \to +\infty} \frac{(-1)^{n-1}}{n^x} = 1.$
- c) Chacune des fonctions $x \mapsto \frac{1}{n^x}$ étant continue, on en déduit également la continuité de la fonction somme F sur $[a, +\infty[$ pour tout a > 1, donc la continuité sur $]1, +\infty[$.
- d) Du critère spécial des séries alternées, on déduit aussi que, en notant $R_n(x)$ le reste d'ordre nde la série définissant $F: |R_n(x)| \leq \left| \frac{(-1)^n}{(n+1)^x} \right| = \frac{1}{(n+1)^x}$. Soit alors a > 0; pour $x \in [a, +\infty[$, on a $|R_n(x)| \leq \frac{1}{(n+1)^a}$ et $\lim_{n \to +\infty} \frac{1}{(n+1)^a} = 0$, il y a donc convergence uniforme sur $[a, +\infty[$ de la série de fonctions définissant F.

Comme dans la question précédente, on en déduit que F est continue sur $[a, +\infty[$ pour tout a > 0, donc sur \mathbb{R}_{+}^{*} .

2°) Dérivabilité de F

a) Soit x > 0. La fonction $h_x : t \mapsto \frac{\ln t}{t^x}$ est de classe \mathcal{C}^{∞} sur $]0, +\infty[$ et $h'_x(t) = \frac{t^{x-1}(1-x\ln t)}{t^{2x}}$. Donc h'_x est négative sur l'intervalle $[e^{1/x}, +\infty[$ et positive sur $]0, e^{1/x}]$. Donc h_x est décroissante sur $[e^{1/x}, +\infty[$ et croissante sur $]0, e^{1/x}].$

On en déduit que la suite $\left(\frac{\ln n}{n^x}\right)_{n\geq 1}$ est décroissante à partir du rang $\mathrm{E}\left(\mathrm{e}^{1/x}\right)+1$.

b) $f_n: x \mapsto (-1)^{n-1} e^{-x \ln n}$ est de classe C^1 et $f'_n(x) = (-1)^n \frac{\ln n}{n^x}$.

Soit a > 0. On pose $N_a = \mathrm{E}\left(\mathrm{e}^{1/a}\right) + 1$. Pour tout $x \geqslant a$, la suite $\left(\frac{\ln n}{n^x}\right)_{n \geqslant N_a}$ tend vers 0 en décroissant; donc la série alternée $\sum_{n>N_-} f'_n(x)$ converge et, pour $n \geqslant N_a$, son reste d'ordre n, $\rho_n(x)$, vérifie :

$$|\rho_n(x)| \le \left| (-1)^{n+1} \frac{\ln(n+1)}{(n+1)^x} \right| \le \frac{\ln(n+1)}{(n+1)^a}.$$

Donc $\sup_{x\geqslant a} |\rho_n(x)| \leqslant \frac{\ln(n+1)}{(n+1)^a} \xrightarrow[n\to+\infty]{} 0$. Donc la série $\sum_{n\geqslant 1} f'_n$ converge uniformément sur $[a,+\infty[$.

- Pour tout $n \ge 1$, la fonction f_n est de classe C^1 sur $]0, +\infty[$; la série $\sum_{n \ge 1} f_n$ converge simplement sur $]0, +\infty[$ et sa somme est F;
- la série $\sum_{n=1}^{\infty} f'_n$ converge uniformément sur tout segment inclus dans $]0,+\infty[$.

D'après le théorème de dérivation terme à terme, F est de classe \mathcal{C}^1 sur $]0, +\infty[$ et

$$\forall x > 0, F'(x) = \sum_{n=1}^{+\infty} (-1)^n \frac{\ln n}{n^x}.$$

3°) Lien avec ζ

Pour x > 1, $F(x) - \zeta(x) = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1} - 1}{n^x} = \sum_{k=1}^{+\infty} \frac{-2}{(2k)^x} = -2^{1-x} \sum_{k=1}^{+\infty} \frac{1}{k^x} = -2^{1-x} \zeta(x)$. On en déduit

l'égalité : $F(x) = (1-2^{1-x})\zeta(x)$. Comme $2^{1-x} \xrightarrow[x \to +\infty]{} 0$, $F(x) \sim \zeta(x)$ au voisinage de $+\infty$ et donc $\zeta(x) \xrightarrow[x \to +\infty]{} 1$.

III. Produit de Cauchy de la série alternée par elle-même

- 6°) étude de la convergence
 - a) Lorsque x > 1, la série $\sum_{n \ge 1} \frac{(-1)^{n-1}}{n^x}$ converge absolument; donc la série produit de $\sum_{n \ge 1} \frac{(-1)^{n-1}}{n^x}$ par elle-même converge absolument et sa somme vaut : $\left(\sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n^x}\right)^2 = (F(x))^2$ (théorème du cours...).
 - **b)** Pour x > 0, $c_n(x) = (-1)^{n-2} \sum_{k=1}^{n-1} \frac{1}{[k(n-k)]^x}$. Comme $k \mapsto k(n-k)$ est maximum quand $k = \frac{n}{2}$ et que la somme comporte n-1 termes, $|c_n(x)| = \sum_{k=1}^{n-1} \frac{1}{[k(n-k)]^x} \ge (n-1) \frac{1}{[(n/2)^2]^x} = \frac{(n-1)4^x}{n^{2x}}$.

Pour $0 < x \le \frac{1}{2}$, $\frac{(n-1)4^x}{n^{2x}}$ a une limite strictement positive (finie ou non), donc la suite $(c_n(x))$ ne converge pas vers 0. Donc la série $\sum_{n \ge 2} c_n(x)$ diverge grossièrement.

7°) Cas où x=1

a)
$$\frac{1}{\mathbf{X}(n-\mathbf{X})} = \frac{1}{n} \left(\frac{1}{\mathbf{X}} + \frac{1}{n-\mathbf{X}} \right)$$
. Donc

$$c_n(1) = (-1)^{n-2} \sum_{k=1}^{n-1} \frac{1}{k(n-k)} = (-1)^{n-2} \frac{1}{n} \sum_{k=1}^{n-1} \left(\frac{1}{k} + \frac{1}{n-k} \right) = (-1)^{n-2} \frac{1}{n} \left(\sum_{k=1}^{n-1} \frac{1}{k} + \sum_{k=1}^{n-1} \frac{1}{n-k} \right)$$
$$= 2(-1)^{n-2} \frac{1}{n} \sum_{k=1}^{n-1} \frac{1}{k} = 2(-1)^{n-2} \frac{H_{n-1}}{n}.$$

b) Monotonie

$$\frac{H_{n-1}}{n} - \frac{H_n}{n+1} = \frac{1}{n} \left(H_n - \frac{1}{n} \right) - \frac{H_n}{n+1} = H_n \left(\frac{1}{n} - \frac{1}{n+1} \right) - \frac{1}{n^2}$$

$$\geq \left(1 + \frac{1}{2} \right) \frac{1}{n(n+1)} - \frac{1}{n^2} = \frac{n-2}{2n^2(n+1)} \geqslant 0.$$

Donc la suite $\left(\frac{H_{n-1}}{n}\right)_{n\geqslant 2}$ est décroissante.

c) "Classiquement", $H_n \sim \ln n$ au voisinage de $+\infty$. Donc la suite $\left(\frac{H_{n-1}}{n}\right)_{n\geqslant 2}$ converge vers 0 en décroissant et la série alternée $\sum_{n\geqslant 2} c_n(1)$ converge.

IV. Calcul de la somme d'une série à l'aide d'une étude de ζ au voisinage de 1

- 1°) Développement asymptotique en 1
 - a) On pose h = x 1. Comme F est dérivable en 1, au voisinage de 1, on a :

$$F(x) = F(1) + hF'(1) + o(h) = \ln 2 + hF'(1) + o(h).$$

On a aussi, d'après la formule de Taylor-Young : $1-2^{1-x}=1-\mathrm{e}^{-h\ln 2}=h\ln 2-\frac{\ln^2 2}{2}h^2+o(h^2)$ au voisinage de x=1.

b) Développement de ζ

$$\begin{split} \zeta(x) &= \frac{F(x)}{1-2^{1-x}} = \frac{\ln 2 + hF'(1) + o(h)}{h \ln 2 - \frac{\ln^2 2}{2} h^2 + o(h^2)} = \frac{1}{h \ln 2} \frac{\ln 2 + hF'(1) + o(h)}{1 - \frac{\ln 2}{2} h + o(h)} \\ &= \frac{1}{h \ln 2} \left(\ln 2 + hF'(1) + o(h) \right) \left(1 + \frac{\ln 2}{2} h + o(h) \right) = \frac{1}{h \ln 2} \left(\ln 2 + h \left(F'(1) + \frac{\ln^2 2}{2} \right) + o(h) \right) \\ &= \frac{1}{h} + \left(\frac{F'(1)}{\ln 2} + \frac{\ln 2}{2} \right) + o(1) \end{split}$$

- 2°) Développement asymptotique en 1 (bis)
 - a) Pour $n \ge 1$ et $x \in [1, 2]$, $t \mapsto \frac{1}{t^x}$ est décroissante sur [n, n+1] (qui est un intervalle de longueur 1), donc $\frac{1}{(n+1)^x} \le \int_{n}^{n+1} \frac{\mathrm{d}t}{t^x} \le \frac{1}{n^x}$. On en déduit que : $0 \le v_n(x) \le \frac{1}{n^x} \frac{1}{(n+1)^x}$.
 - b) Pour $x \in [1, 2]$, la suite $\left(\frac{1}{n^x}\right)_{n\geqslant 1}$ converge (vers 0); comme $\sum_{k=1}^n \left(\frac{1}{k^x} \frac{1}{(k+1)^x}\right) = 1 \frac{1}{(n+1)^x}$, la série $\sum_{n\geqslant 1} \left(\frac{1}{n^x} \frac{1}{(n+1)^x}\right)$ converge. De l'encadrement précédent, on déduit la convergence de la série $\sum_{n\geqslant 1} v_n(x)$.
 - c) Pour $x \in]1,2], \sum_{k=1}^{n} v_k(x) = \sum_{k=1}^{n} \frac{1}{k^x} \int_{1}^{n+1} \frac{\mathrm{d}t}{t^x} \xrightarrow[n \to +\infty]{} \zeta(x) \int_{1}^{+\infty} \frac{\mathrm{d}t}{t^x} = \zeta(x) \frac{1}{x-1}.$
 - d) La série $\sum_{n\geqslant 1} v_n$ converge simplement sur [1,2]. Notons $R_n(x) = \sum_{k=n+1}^{+\infty} v_k(x)$ le reste d'ordre n de la série. D'après (a), $0 \leqslant R_n(x) \leqslant \sum_{k=n+1}^{+\infty} \left(\frac{1}{k^x} \frac{1}{(k+1)^x}\right) = \frac{1}{(n+1)^x} \lim_{k \to +\infty} \frac{1}{k^x} = \frac{1}{(n+1)^x}$. Donc $\sup_{x \in [1,2]} |R_n(x)| \leqslant \frac{1}{(n+1)^1} \xrightarrow[n \to +\infty]{} 0$. Donc la série $\sum_{n\geqslant 1} v_n$ converge uniformément sur [1,2].
 - e) Pour $x \in]1,2]$, $v_n(x) = \frac{1}{n^x} \frac{1}{1-x} \left(\frac{1}{n^{x-1}} \frac{1}{(n+1)^{x-1}} \right)$; $v_n(1) = \frac{1}{n} \ln(n+1) + \ln n$. v_n est continue, sauf peut-être en 1. En 1: en posant h = x - 1, $\frac{1}{n^x} = \frac{1}{n} + o(1)$ par continuité de l'exponentielle $x \mapsto n^{-x}$ en 1 et $\frac{1}{1-x} \left(\frac{1}{n^{x-1}} - \frac{1}{(n+1)^{x-1}} \right) = \frac{1}{h} \left(e^{-h \ln n} - e^{-h \ln(n+1)} \right) = \frac{1}{h} \left((1-h \ln n + o(h)) - (1-h \ln(n+1) + o(h)) \right) = \ln(n+1) - \ln n + o(1)$; donc $v_n(x) = \frac{1}{n} + \ln(n+1) - \ln n + o(1)$. Donc v_n est continue en 1.

On en déduit que la série $\sum_{n\geqslant 1}v_n$ est une série de fonctions continues sur [1,2]. La convergence uniforme sur [1,2] entraı̂ne donc la continuité de sa somme sur [1,2].

On en déduit que $\zeta(x) - \frac{1}{x-1} = \sum_{n=1}^{+\infty} v_n(x) = \left(\sum_{n=1}^{+\infty} v_n(1)\right) + o(1) = \gamma + o(1)$ au voisinage de 1⁺. D'où $\zeta(x) = \frac{1}{x-1} + \gamma + o(1)$ au voisinage de 1⁺.

3°) Application

Par unicité du développement limité en 1⁺ (éventuellement en multipliant par (x-1)), on déduit de les égalités a=1 et $\frac{F'(1)}{\ln 2}+\frac{\ln 2}{2}=b=\gamma$. D'où $F'(1)=\ln 2\left(\gamma-\frac{\ln 2}{2}\right)$.

D'après,
$$\sum_{n=1}^{+\infty} \frac{(-1)^{n-1} \ln n}{n} = -F'(1) = \ln 2 \left(\frac{\ln 2}{2} - \gamma \right).$$

V. Étude d'une fonction

- 1°) Si x < 0, $\lim_{n \to +\infty} u_n(x) = +\infty$; si x = 0, $\lim_{n \to +\infty} u_n(x) = \ln 2$: dans ces deux cas, la série de terme général $u_n(x)$ diverge grossièrement. Si x > 0, alors $\lim_{n \to +\infty} e^{-nx} = 0$, donc $u_n(x) = \ln(1 + e^{-nx}) \sim_{n \to +\infty} e^{-nx}$: par comparaison de séries à termes positifs, on en déduit que la série de terme général $u_n(x)$ converge. En conclusion, $D_f =]0, +\infty[$.
- 2°) Soit a>0. Pour $x\in [a,+\infty[$, on a $\forall n\in\mathbb{N}$ $0\leqslant \ln(1+e^{-nx})\leqslant \ln(1+e^{-na})$ (terme général d'une série convergente). La série de fonctions $\sum_{n\geqslant 0}u_n$ converge donc normalement sur $[a,+\infty[$ pour tout a>0. Les fonctions u_n étant continues, on en déduit la continuité de la somme f sur $[a,+\infty[$ pour tout a>0, donc sur \mathbb{R}_+^* .
- 3°) Pour tout $n \in \mathbb{N}^*$, la fonction u_n est strictement décroissante sur \mathbb{R}_+^* , donc f est strictement décroissante sur \mathbb{R}_+^* (par addition d'inégalités de même sens, l'une au moins étant stricte).
- **4°)** La série $\sum_{n\geqslant 0}u_n$ converge normalement donc uniformément sur $[1,+\infty[$; $\lim_{x\to +\infty}u_0(x)=\ln 2$ et, pour $n\in\mathbb{N}^*$, $\lim_{x\to +\infty}u_n(x)=0$. Par le théorème d'interversion limite-somme, on déduit que $\lambda=\lim_{x\to +\infty}f(x)=\ln 2$.
- **5**°) **a)** Pour tout x > 0 fixé, la fonction ψ_x est décroissante sur \mathbb{R}_+ , donc

$$\forall n \in \mathbb{N}$$
 $\psi_x(n+1) \leqslant \int_n^{n+1} \psi_x(t) \, \mathrm{d}t \leqslant \psi_x(n)$.

On en déduit que

$$\int_{n}^{n+1} \psi_x(t) \, \mathrm{d}t \leqslant \psi_x(n) = u_n(x) \leqslant \int_{n-1}^{n} \psi_x(t) \, \mathrm{d}t$$

(la première inégalité est vraie pour tout n entier naturel, la deuxième à partir du rang 1). En sommant ces inégalités (les séries et intégrales impropres étant convergentes), on obtient

$$\int_0^{+\infty} \psi_x(t) dt \leqslant \sum_{n=0}^{+\infty} u_n(x) = f(x) \leqslant \ln 2 + \int_0^{+\infty} \psi_x(t) dt.$$

(la convergence de l'intégrale impropre résulte directement du théorème de comparaison série-intégrale. Elle peut aussi se démontrer ainsi :

 $\psi_x(t) = \ln(1 + e^{-tx}) \sim_{t \to +\infty} e^{-xt}$. Or on sait que, pour x > 0 fixé, la fonction $t \mapsto e^{-xt}$ est intégrable sur \mathbb{R}_+ , il en est donc de même de la fonction ψ_x .)

b) La fonction $y \mapsto \frac{\ln(1+y)}{y}$ est continue sur]0,1], et prolongeable par continuité en 0 (avec la valeur 1) d'où l'existence de l'intégrale. On la calcule maintenant par une intégration terme à terme.

Sur l'intervalle I =]0,1[, on a $\frac{\ln(1+y)}{y} = \sum_{n=1}^{+\infty} f_n(y)$, en posant $f_n(y) = (-1)^{n-1} \frac{y^{n-1}}{n}$. Cette série vérifie les condions du critère spécial sur les séries alternées, donc son reste d'ordre n est majoré,

vérifie les condions du critère spécial sur les séries alternées, donc son reste d'ordre n est majoré, en valeur absolue, par $\lfloor \frac{y^n}{n+1} \rfloor$, donc est uniformément majoré par $\frac{1}{n+1}$, qui tend vers 0 quand n tend vers $+\infty$. Cette série de fonctions converge donc uniformément sur [0,1] et on peut donc intervertir série et intégrale :

$$\int_0^1 \frac{\ln(1+y)}{y} \, dy = \int_0^1 \left(\sum_{n=1}^{+\infty} (-1)^{n-1} \frac{y^{n-1}}{n} \right) dy = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n} \int_0^1 y^{n-1} \, dy$$
$$= \sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n^2} = F(2) .$$

c) Le changement de variable $y = e^{-tx}$ donne

$$\int_0^{+\infty} \psi_x(t) \, \mathrm{d}t = \int_0^{+\infty} \ln(1 + e^{-tx}) \, \mathrm{d}t = -\int_1^0 \frac{\ln(1+y)}{xy} \, \mathrm{d}y = \frac{F(2)}{x} \; .$$

La question donne alors

$$\frac{F(2)}{x} \leqslant f(x) \leqslant \ln 2 + \frac{F(2)}{x} ,$$

soit l'encadrement recherché avec $\lambda = \ln 2$ et $\mu = F(2) = \frac{\pi^2}{12}$.

6°) Donc
$$F(2) \leqslant x \, f(x) \leqslant x \, \ln 2 + F(2)$$
 et $\lim_{x \to 0^+} x \, f(x) = F(2) = \frac{\pi^2}{12}$. Donc $f(x) \sim \frac{\pi^2}{12x}$ lorsque $x \to 0^+$.