Formule des trois niveaux

1) Des formes linéaires sur $\mathbb{R}[X]$.

Soit $\mathfrak a$ un réel . On note $\phi_{\mathfrak a}$ l'application de $\mathbb R[X]$ dans $\mathbb R$ qui à un polynôme P associe $P(\mathfrak a)$. L'application $\phi_{\mathfrak a}$ s'appelle l'évaluation en $\mathfrak a$.

Pour tout réel α , ϕ_{α} est une forme linéaire sur $\mathbb{R}[X]$. En effet , si P et Q sont deux polynômes et λ et μ deux réels, on a

$$\phi_{\alpha}(\lambda P + \mu Q) = (\lambda P + \mu Q)(\alpha) = \lambda P(\alpha) + \mu Q(\alpha) = \lambda \phi_{\alpha}(P) + \mu \phi_{\alpha}(Q).$$

Soit
$$\mathfrak a$$
 un réel et $\ \phi_{\mathfrak a}:\ \mathbb R[X] \to \mathbb R$, $\phi_{\mathfrak a}$ est une forme linéaire sur $\mathbb R[X].$ P $\mapsto P(\mathfrak a)$

D'autre part, soient $\mathfrak a$ et $\mathfrak b$ deux réels. On note encore $\mathfrak \psi$ l'application de $\mathbb R[X]$ dans $\mathbb R$ qui à un polynôme P associe $\int_{\mathfrak a}^{\mathfrak b} P(t) \ dt$. On sait que $\mathfrak \psi$ est une forme linéaire sur $\mathbb R[X]$.

2) Liberté de la famille (ϕ_a, ϕ_b, ϕ_c) dans $\mathcal{L}(\mathbb{R}_3[X], \mathbb{R})$.

On se place dorénavant sur $\mathbb{R}_3[X]$. On se donne trois réels deux à deux distincts \mathfrak{a} , \mathfrak{b} et \mathfrak{c} . Montrons que la famille $(\varphi_{\mathfrak{a}}, \varphi_{\mathfrak{b}}, \varphi_{\mathfrak{c}})$ est une famille libre de l'espace vectoriel $\mathscr{L}(\mathbb{R}_3[X], \mathbb{R})$. Soit $(\lambda, \mu, \nu) \in \mathbb{R}^3$.

$$\lambda \phi_{\alpha} + \mu \phi_{b} + \nu \phi_{c} = 0 \Rightarrow \forall P \in \mathbb{R}_{3}[X], (\lambda \phi_{\alpha} + \mu \phi_{b} + \nu \phi_{c})(P) = 0 \Rightarrow \forall P \in \mathbb{R}_{3}[X], \lambda P(\alpha) + \mu P(b) + \nu P(c) = 0.$$

On applique alors l'égalité précédente, valable pour tout polynôme de degré au plus 3, successivement aux trois polynômes $P_{\alpha} = \frac{(X-b)(X-c)}{(\alpha-b)(\alpha-c)}, \ P_{b} = \frac{(X-\alpha)(X-c)}{(b-\alpha)(b-c)} \ \text{et} \ P_{c} = \frac{(X-\alpha)(X-b)}{(c-\alpha)(c-b)}. \ \text{Puisque} \ P_{\alpha}(\alpha) = P_{b}(b) = P_{c}(c) = 1 \ \text{et} \ \text{que} \\ P_{\alpha}(b) = P_{\alpha}(c) = P_{b}(\alpha) = P_{b}(c) = P_{c}(\alpha) = P_{c}(b) = 0, \ \text{on obtient} \ \lambda = \mu = \nu = 0. \ \text{On a montré que}$

Si α , b, c sont trois réels deux à deux distincts, la famille $(\phi_{\alpha},\phi_{b},\phi_{c})$ est une famille libre du dual de $\mathbb{R}_{3}[X]$.

3) Indépendance des formes linéaires $\phi_a,\,\phi_b,\,\phi_c$ et ψ dans $\mathscr{L}(\mathbb{R}_3[X],\mathbb{R})$.

 α , b et c désignent trois réels deux à deux distincts. Tout d'abord, $\dim (\mathscr{L}(\mathbb{R}_3[X], \mathbb{R})) = \dim (\mathbb{R}_3[X]) \times \dim(\mathbb{R}) = \dim (\mathbb{R}_3[X]) = 4 < +\infty$. D'après 2), la famille $(\phi_\alpha, \phi_b, \phi_c)$ est libre et donc deux cas se présentent pour la famille $(\phi_\alpha, \phi_b, \phi_c, \psi)$ à savoir :

- 1er cas. la famille $(\phi_a, \phi_b, \phi_c, \psi)$ est libre et donc une base de $\mathcal{L}(\mathbb{R}_3[X], \mathbb{R})$,
- 2ème cas. la famille $(\phi_a, \phi_b, \phi_c, \psi)$ est liée ce qui équivaut, puisque la famille (ϕ_a, ϕ_b, ϕ_c) est libre, au fait que ψ est combinaison linéaire de ϕ_a , ϕ_b et ϕ_c .

On va montrer que $\psi \in \mathrm{Vect}\,(\phi_a,\phi_b,\phi_c) \Leftrightarrow \psi(Q)=0$ où Q=(X-a)(X-b)(X-c). On note que, puisque $Q \notin \mathrm{Vect}\,(P_a,P_b,P_c)$ pour des raisons de degré, la famille (P_a,P_b,P_c,Q) est une famille libre de $\mathbb{R}_3[X]$ et donc la famille (P_a,P_b,P_c,Q) est une base de $\mathbb{R}_3[X]$.

Puisque $\varphi_{\alpha}(Q) = \varphi_{b}(Q) = \varphi_{c}(Q) = 0$, si $\psi \in \text{Vect}(\varphi_{\alpha}, \varphi_{b}, \varphi_{c})$, alors $\psi(Q) = 0$.

Inversement, supposons que $\psi(Q) = 0$. Soit $\phi = \psi(P_a) \phi_a + \psi(P_a) \phi_a + \psi(P_a) \phi_a$. Alors, $\phi(P_a) = 1 \times \psi(P_a) + 0 \times \psi(P_b) + 0 \times \psi(P_c) = \psi(P_a)$ et de même, $\phi(P_b) = \psi(P_b)$ et $\phi(P_c) = \psi(P_c)$. Enfin, $\phi(Q) = 0 = \psi(Q)$. Les deux formes linéaires ϕ et ψ coïncident sur une base de $\mathbb{R}[X]$ et donc $\psi = \phi = \psi(P_a) \phi_a + \psi(P_a) \phi_a + \psi(P_a) \phi_a$.

On a montré que $\psi \in \operatorname{Vect}(\phi_{\mathfrak{a}}, \phi_{\mathfrak{b}}, \phi_{\mathfrak{c}}) \Leftrightarrow \psi(Q) = 0 \Leftrightarrow \int_{\mathfrak{a}}^{\mathfrak{b}} (t-\mathfrak{a})(t-\mathfrak{b})(t-\mathfrak{c}) \ dt = 0.$ Or,

$$\begin{split} \int_{a}^{b} (t-a)(t-b)(t-c) \ dt &= \int_{a}^{b} (t^{3} - (a+b+c)t^{2} + (ab+ac+bc)t - abc) \ dt \\ &= \frac{1}{4}(b^{4} - a^{4}) - \frac{1}{3}(a+b+c)(b^{3} - a^{3}) + \frac{1}{2}(ab+ac+bc)(b^{2} - a^{2}) - abc(b-a) \end{split}$$

et donc

$$\begin{split} \int_{a}^{b} (t-a)(t-b)(t-c) \ dt &= \frac{b-a}{12} (3(a^3+a^2b+ab^2+b^3) - 4(a+b+c)(a^2+ab+b^2) + 6(ab+ac+bc)(a+b) - 12abc) \\ &= \frac{b-a}{12} (-a^3-b^3+a^2b+ab^2+c(2a^2+2b^2-4ab)) = \frac{b-a}{12} ((a^2-b^2)(b-a)+2c(b-a)^2) \\ &= \frac{(b-a)^3}{12} (2c-(a+b)). \end{split}$$

Finalement, puisque a et b sont distincts

$$\psi \in \operatorname{Vect}(\phi_{\alpha}, \phi_{b}, \phi_{c}) \Leftrightarrow c = \frac{\alpha + b}{2}.$$

Dans le cas où $c = \frac{a+b}{2}$, ψ est une combinaison linéaire de ϕ_a , ϕ_b et ϕ_c . Donc, il existe trois réels λ , μ et ν , uniquement définis puisque (ϕ_a, ϕ_b, ϕ_c) est libre, tels que $\psi = \lambda \phi_a + \mu \phi_b + \nu \phi_c$. Cette dernière égalité s'écrit encore

$$\exists (\lambda,\mu,\nu) \in \mathbb{R}^3/ \ \forall P \in \mathbb{R}_3[X], \ \int_{\alpha}^b P(t) \ dt = \lambda P(\alpha) + \mu P\left(\frac{\alpha+b}{2}\right) + \nu P(b).$$

4) La formule des trois niveaux.

Déterminons explicitement les trois réels λ , μ et ν du 3). Pour cela, on applique l'égalité précédente, valable pour tout polynôme P de degré au plus 3. On a vu que $\lambda = \psi\left(P_{\alpha}\right)$, $\mu = \psi\left(P_{b}\right)$ et $\nu = \psi\left(P_{c}\right)$ avec $c = \frac{\alpha + b}{2}$. Donc,

$$\begin{split} \lambda &= \psi \left(P_{\alpha} \right) = \int_{\alpha}^{b} P_{\alpha}(t) \ dt \\ &= \int_{\alpha}^{b} \frac{(t-\alpha)(t-b)}{(\alpha-b)(\alpha-c)} \ dt = \frac{1}{(\alpha-b)(\alpha-c)} \left(\frac{1}{3}(b^3-\alpha^3) - \frac{1}{2}(b^2-\alpha^2)(b+c) + bc(b-\alpha) \right) \\ &= \frac{1}{6(c-\alpha)} (2(\alpha^2+\alpha b+b^2) - 3(\alpha+b)(b+c) + 6bc) = \frac{1}{6(c-\alpha)} (2\alpha^2-b^2-\alpha b+c(-3\alpha+3b)) \\ &= \frac{1}{3(b-\alpha)} \left(2\alpha^2-b^2-\alpha b + \frac{\alpha+b}{2}(-3\alpha+3b) \right) = \frac{1}{3(b-\alpha)} (b-\alpha) \left(3\frac{\alpha+b}{2} - (2\alpha+b) \right) \\ &= \frac{b-\alpha}{6}. \end{split}$$

Puis en échangeant les rôles de a et b, $v = \frac{b-a}{6}$. Enfin

$$\begin{split} \mu &= \psi \left(P_c \right) = \int_{\alpha}^{b} P_c(t) \; dt = \int_{\alpha}^{b} \frac{(t-\alpha)(t-b)}{(c-\alpha)(c-b)} \; dt \\ &= \frac{1}{(c-\alpha)(c-b)} \left(\frac{1}{3} (b^3 - \alpha^3) - \frac{1}{2} (b^2 - \alpha^2)(\alpha+b) + \alpha b(b-\alpha) \right) \\ &= -\frac{4}{6(b-\alpha)^2} (b-\alpha)(2(\alpha^2 + \alpha b + b^2) - 3(\alpha+b)(\alpha+b) + 6\alpha b) = -\frac{4}{6(b-\alpha)} (-\alpha^2 - b^2 + 2\alpha b) = \frac{4(b-\alpha)}{6}. \end{split}$$

On a obtenu **la formule des trois niveaux** permettant de calculer la valeur de l'intégrale d'un polynôme de degré inférieur ou égal à 3 sur un segment connaissant les valeurs de ce polynôme au début, au milieu et à la fin de ce segment :

Soient
$$a$$
 et b deux réels distincts. $\forall P \in \mathbb{R}_3[X], \int_a^b P(t) \ dt = \frac{b-a}{6} \left(P(a) + 4P\left(\frac{a+b}{2}\right) + P(b) \right).$