### Univerzita Karlova v Praze Matematicko-fyzikální fakulta

### BAKALÁŘSKÁ PRÁCE



Jmďż"no Pďż"ďż"jmenďż"

## Ndž"zev prdž"ce

Nďż"zev katedry nebo ďż"stavu

Vedoucí bakalářské práce: Vedoucďż" prďż"ce

Studijní program: studijnďż" program

Studijní obor: studijnďz" obor

Praha ROK

| Prohlašuji, že jsem tuto bakalářskou práci vypracoval(a) samostatně a výhradně s použitím citovaných pramenů, literatury a dalších odborných zdrojů.                                                                                                                                                        |               |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--|--|
| Beru na vědomí, že se na moji práci vztahují práva a povinnosti vyplývající ze zákona č. 121/2000 Sb., autorského zákona v platném znění, zejména skutečnost že Univerzita Karlova v Praze má právo na uzavření licenční smlouvy o užití této práce jako školního díla podle §60 odst. 1 autorského zákona. |               |  |  |
| V dne                                                                                                                                                                                                                                                                                                       | Podpis autora |  |  |

Název práce: Nďż"zev prďż"ce

Autor: Jmďž"no Pďž"ďž"jmenďž"

Katedra: Nďż"zev katedry nebo ďż"stavu

Vedoucí bakalářské práce: Vedoucďż" prďż"ce, katedra

Abstrakt: Abstrakt.

Klíčová slova: klďż″ďż″ovďż″ slova

Title: Name of thesis

Author: Jmďż"no Pďż"ďż"jmenďż"

Department: Name of the department

Supervisor: Vedoucďż" prďż"ce, department

Abstract: Abstract.

Keywords: key words

Podďż"kovďż"nďż".

## Obsah

| Ú  | vod   |                                            | 2  |
|----|-------|--------------------------------------------|----|
| 1  | Celı  | ulární automaty                            | 3  |
|    | 1.1   | Co jsou to celulární automaty              | 3  |
|    | 1.2   | Elementární celulární automaty             | 3  |
|    | 1.3   | Jiné 1D celulární automaty                 | 3  |
|    | 1.4   | Dvourozměrné celulární automaty            | 3  |
|    | 1.5   | Implementace celulárních automatů          | 4  |
| 2  | Šifr  | ování                                      | 5  |
|    | 2.1   | Několik ukázek                             | 5  |
|    | 2.2   | Testy                                      | 5  |
|    |       | 2.2.1 Testy na úrovni jednotlivých výstupů | 5  |
|    |       | 2.2.2 Testy na úrovni celého zobrazení     | 6  |
|    | 2.3   | asdf                                       | 6  |
| 3  | Tab   | ulky, obrázky, programy                    | 7  |
|    | 3.1   | Tabulky                                    | 7  |
|    | 3.2   | Obrázky                                    | 8  |
|    | 3.3   | Programy                                   | 8  |
| Zá | ivěr  |                                            | 10 |
| Se | znan  | n obrázků                                  | 11 |
| Se | znan  | n tabulek                                  | 12 |
| Se | znan  | n pouďž"itďž"ch zkratek                    | 13 |
| Po | ďž″ďž | ż"lohy                                     | 14 |

## $\mathbf{\acute{U}vod}$

Toto je implementačně-experimentální práce. Cílem mojí práce je vytvořit šifrovací algoritmus využívající celulární automaty.

### 1. Celulární automaty

#### 1.1 Co jsou to celulární automaty

Celulární automat je diskrétní model, který se skládá z pravidelné mřížky buněk. Buňky se nacházejí v určitých stavech, přičemž množina stavů a pravidla pro přechod mezi stavy jsou společná pro celý automat. Celulární automat se vyvíjí diskrétně v čase (celý najednou).

Specialitou celulárních automatů je to, že i velmi jednoduchá sada pravidel může vést k velmi komplexnímu chování. Celulární automaty našly využití jako modely v biologii, chemii, fyzice, ale také třeba jako nástroj při procedurálním generování terénu pro počítačové hry.

#### 1.2 Elementární celulární automaty

Wofram popisuje 256 elementárních celulárních automatů. Jedná se o binární 1D automaty, kde nový stav každé buňky závisí pouze na jejím stavu a stavu přímých sousedů. Formálně by se dal přechod zapsat jako:

$$x_i(t+1) = f(x_{i-1}(t), x_i(t), x_{i+1}(t))$$

, kde

$$f: \{0,1\}^3 \to \{0,1\}$$

, tudíž existuje  $2^{2^3}=2^8=256$ takových funkcí f.

#### 1.3 Jiné 1D celulární automaty

- Nemusíme se omezovat jen na těsné sousedy.
- Můžeme povolit více než 2 stavy.
- Významným druhem celulárních automatů jsou totalistické automaty. Nehledě na to, jak velké se používá okolí a kolik stavů buňlky nabývají, v totalistických automatech se pouze číselně posčítají hodnoty hodnoty buňky s celým jejím okolím a podle součtu hodnot se přiřadí výsledná hodnota. Přechodová funkce pro totalistický automat s okolím velikosti o a počtem stavů s se tedy dá vyjádřít jako:

$$f: \{0,...,(s-1)(o+1)\} \to \{0,...,s-1\}$$

#### 1.4 Dvourozměrné celulární automaty

V oblasti 2D celulárních automatů se používají hlavně totalistické automaty, protože vytváření jiných typů pravidel by bylo příliš složité. Typických příkladem totalistického 2D automatu je Game Of Life. To je dvourozměrný automat nad binární abecedou používající 8-okolí, který se řídí pravidlem, že živá buňka přežívá,

pokud má 2 až 3 zivé sousedy (jinak umírá), zatímco mrtvá buňka obžije, pokud má právě 3 živé sousedy. Game Of Life se stal zdrojem mnoha různých hříček. Nicméně pro účely šifrování se nezdá být moc užitečný, protože nejde dostatečně parametrizovat.

#### 1.5 Implementace celulárních automatů

V teorii se typicky uvažují celulární automaty na nekonečném hříšti. V počátečním stavu mají se však všechny nenulové hodnoty vyskytují jen uvnitř nějaké konečné oblasti buněk. Nenulové hodnoty se pak ale mohou neomezeně rozrůstat do všech stran. Rychlost tohoto rozšiřování lze zhora omezit na základě velikosti okolí aplikovaného pravidla.

V praxi implementujeme celý automat na konečném hříšti. Možnosti jsou dvě. Buď celý automat zacyklíme a jeho vývoj v čase "pokresluje nekonečnou válcovou plochu", nebo automat na stranách ohraničíme a při aplikaci pravidel na okraji hřiště čteme nulové hodnoty za jeho okrajem.

Výhodou je snadná implementace a nízké paměťové nároky. Nevýhodou je, že se vývoj celého automatu periodicky opakuje, pokud provedeme dostatečný počet kroků. Délku této periody lze bohužel odhadnout pouze zhora.

### 2. Šifrování

Věda zabývající se šifrováním se nazývá kryptografie. Lámáním šifer se zase zabývá kryptoanalýza. Úkolem šifrování je uchovat a předat tajnou zprávu tak, aby ji mohl přečíst ten, pro koho je určena, ale už nikdo jiný. Dále se někdy za cíl dává ověřitelnost autora zprávy.

Původní čitelná zpráva se nazývá plaintext. Data po zašifrování se nazývají ciphertext. Pro převod plaintextu na ciphertext je potřeba použít šifrovací algoritmus. Ten by měl zároveň být schopen převézt ciphertext zpět na plaintext (tzv. dešifrování). Protože fungování šifrovacího algoritmu se velmi snadno vyzradí, zásadní roli hraje šifrovací klíč. Pokud se jedná o symetrickou kryptografii, tak stejný klíč slouží i k dešifrování. V případě asymetrické kryptografie se používají dva různé klíče. Šifrovací resp. dešifrovací klíče v asymetrické kryptografii se s ohledem na jejich použití nazývají jako veřejný resp. tajný klíč.

Před zašifrováním zprávy se často provádí její komprese. To má za následek nejen úsporu přenosového pásma a množství práce (času) šifrovacího algoritmu, ale velkou výhodou je dosažení výrazně rovnoměrnějšího pravděpodobnostního rozdělení na prostoru plaintextů, což výrazně komplikuje kryptoanalýzu.

#### 2.1 Několik ukázek

bla bla bla

V této práci se budeme věnovat vytvoření algoritmu na protahování klíčů (anglicky key stretching). Cílem je z krátkého klíče (který lze například v krátkém čase přenést pomocí RSA) vygenerovat dlouhý klíč (kterým lze přeXORovat celý soubor). Je to tedy podobný úkol jako naprogramovat Key Stream Generator, akorát my budeme dopředu vědět cílenou délku výsledného klíče.

Jako Key Stream Generator se dá použít například mnoho blokových šifer. U blokových šifer záleží na módu operace. Při Cipher Block Chaining (CBC, PCBC) či Cipher Feedback (CFB) módu zašifrování druhé části plaintextu záleží na výsledku zašifrování první části, tudíž to není Key Stream Generator. Ale při zapojení jako třeba Counter (CTR) vzniká proud bitů bez znalosti plaintextu, takže získáme Key Stream Generator. Dobrým příklalem je třeba AES-CTR.

#### 2.2 Testy

Je příliš obtížné ukázat o šifrovacím algoritmu, že je doopravdy kvalitní. Jako záruka kvality se proto v praxi používá spíše jeho zveřejnění na několik let, aby ho měli šanci oponovat nejlepší odborníci. Pokud se ani po několika letech neukáže jeho slabina, je šifrovací algoritmus považován za dost dobrý. Naštěstí alespoň ty velmi špatně šifrovací algoritmy je možné rychle rozpoznat statistickými testy. Na to se zaměříme v této práci.

#### 2.2.1 Testy na úrovni jednotlivých výstupů

vzd

#### 2.2.2 Testy na úrovni celého zobrazení

Skutečnost, že výstupem algoritmu je pseudonáhodná posloupnost čísel, je jistě dobrá. Ale co když algoritmus všem vstupům přiřadí stejnou pseudonáhodnou posloupnost? Nebo jeden konkrétní bit na vstupu neovlivní výsledek? Takovou nekvalitu musí objevit druhá skupina testů.

Budeme zde zkoumat vlastnosti algoritmů jako vlastnosti celého zobrazení z krátkých klíčů do dlouhých klíčů. Protože si budeme často klást otázky typu "Jak moc se liší výstup A od výstupu B?", tak by bylo vhodné zavést nějaké hodnocení, ideálně s vlastností metriky. Porovnávat budeme vždy jen výstupy stejné délky. Oblíbenými metrikami pro řetězce jsou *Hammingova vzdálenost* a *Levenshteinova vzdálenost*. Hamming měří počet pozic, na kterých se řetězce liší. Levenshtein měří minimální počet potřebných změn k tomu, abychom z jednoho řetězce dostali ten druhý. Jako změnu je možné provést záměnu znaku, smazání znaku, nebo dopsání znaku na libovolné místo.

Hammingova vzdálenost je triviálně horním odhadem na Levenshteinovu vzdálenost. V případě náhodných binárních řetězců je jejich hodnota často stejná, ale někdy můžu být Levenshtein výrazně nižší. Například když zrotujeme řetězec o jednu pozici, tak Levenshtein dává vzdálenost 2, zatímco Hamming může dát hodně vysoké číslo. Významná pro nás bude rychlost výpočtu. Hammingovu vzdálenost lze triviálně určit v lineárním čase, ale výpočet Levenshteinovy vzdálenost zabere čas kvadratický. Že to rychleji nejde, se nelze divit, protože Levenshtein vlastně spouští prohledávání prostoru editací. Díky dynamickému programování to lze provést alespoň v tom kvadratickém čase.

Třída Crypto. Function<br/>Testing obsahuje následující metody. Podle nastavení v konstruktoru mohou všechny testy používat buď Hammingovu, nebo Levensteinovu vzdálenost.

- TestBitChange(IKeyExtender algorithm, int ratio) : Testuje, jak velká část bitů výstupu se změní při změně jednoho bitů vstupu. Metoda sampluje náhodné vstupy a pro každý z nich zkouší změnit zvlášť všechny bity. Optimální hodnota je 0,5.
- TestAverageDistance(IKeyExtender algorithm, int ratio) : Testuje průměrnou vzdálenost výstupů příslušející dvěma různým náhodně zvoleným vstupům. Optimální hodnota je 0,5.
- TestLargestBallExactly(IKeyExtender algorithm): Testuje, jaká největší
  koule se dá vměstnat do prostoru výstupů tak, aby neobsahovala žádný vygenerovatelný dlouhý klíč. Zkouší úplně všechny vstupy na malém prostoru
  a ty natahuje na dvojnásobek.
- TestLargestBallApprox(IKeyExtender algorithm) : Testuje to samé, ale používá delší vstupy, které už nezvládá vyzkoušet všechny, takže je sampluje.

#### 2.3 asdf

bla bla

### 3. Tabulky, obrázky, programy

Používání tabulek a grafů v odborném textu má některá společná pravidla a některá specifická. Tabulky a grafy neuvádíme přímo do textu, ale umístíme je buď na samostatné stránky nebo na vyhrazené místo v horní nebo dolní části běžných stránek. LATEX se o umístění plovoucích grafů a tabulek postará automaticky.

Každý graf a tabulku očíslujeme a umístíme pod ně legendu. Legenda má popisovat obsah grafu či tabulky tak podrobně, aby jim čtenář rozuměl bez důkladného studování textu práce.

Na každou tabulku a graf musí být v textu odkaz pomocí jejich čísla. Na příslušném místě textu pak shrneme ty nejdůležitější závěry, které lze z tabulky či grafu učinit. Text by měl být čitelný a srozumitelný i bez prohlížení tabulek a grafů a tabulky a grafy by měly být srozumitelné i bez podrobné četby textu.

Na tabulky a grafy odkazujeme pokud možno nepřímo v průběhu běžného toku textu; místo "Tabulka 3.1 ukazuje, že muži jsou v průměru o 9,9 kg těžší než ženy" raději napíšeme "Muži jsou o 9,9 kg těžší než ženy (viz Tabulka 3.1)".

#### 3.1 Tabulky

U tabulek se doporučuje dodržovat následující pravidla:

- Vyhýbat se svislým linkám. Silnějšími vodorovnými linkami oddělit tabulku od okolního textu včetně legendy, slabšími vodorovnými linkami oddělovat záhlaví sloupců od těla tabulky a jednotlivé části tabulky mezi sebou. V IATEXu tuto podobu tabulek implementuje balík booktabs. Chceme-li výrazněji oddělit některé sloupce od jiných, vložíme mezi ně větší mezeru.
- Neměnit typ, formát a význam obsahu políček v tomtéž sloupci (není dobré do téhož sloupce zapisovat tu průměr, onde procenta).
- Neopakovat tentýž obsah políček mnohokrát za sebou. Máme-li sloupec Rozptyl, který v prvních deseti řádcích obsahuje hodnotu 0,5 a v druhých deseti řádcích hodnotu 1,5, pak tento sloupec raději zrušíme a vyřešíme to jinak. Například můžeme tabulku rozdělit na dvě nebo do ní vložit popisné řádky, které informují o nějaké proměnné hodnotě opakující se v následujícím oddle tabulky (např. "Rozptyl = 0,5" a níže "Rozptyl = 1,5").
- Čísla v tabulce zarovnávat na desetinnou čárku.

| Efekt         | Odhad  | $\begin{array}{c} \textbf{Sm\'{e}rod.} \\ \textbf{chyba}^a \end{array}$ | P-hodnota |
|---------------|--------|-------------------------------------------------------------------------|-----------|
| Abs. člen     | -10,01 | 1,01                                                                    | _         |
| Pohlaví (muž) | 9,89   | 5,98                                                                    | 0,098     |
| Výška (cm)    | 0,78   | 0,12                                                                    | < 0.001   |

Pozn: <sup>a</sup> Směrodatná chyba odhadu metodou Monte Carlo.

Tabulka 3.1: Maximálně věrohodné odhady v modelu M.

V tabulce je někdy potřebné používat zkratky, které se jinde nevyskytují.
 Tyto zkratky můžeme vysvětlit v legendě nebo v poznámkách pod tabulkou. Poznámky pod tabulkou můžeme využít i k podrobnějšímu vysvětlení významu některých sloupců nebo hodnot.

#### 3.2 Obrázky

Několik rad týkajících se obrázků a grafů.

- Graf by měl být vytvořen ve velikosti, v níž bude použit v práci. Zmenšení příliš velkého grafu vede ke špatné čitelnosti popisků.
- Osy grafu musí být řádně popsány ve stejném jazyce, v jakém je psána práce (absenci diakritiky lze tolerovat). Kreslíme-li graf hmotnosti proti výšce, nenecháme na nich popisky ht a wt, ale osy popíšeme Výška [cm] a Hmotnost [kg]. Kreslíme-li graf funkce h(x), popíšeme osy x a h(x). Každá osa musí mít jasně určenou škálu.
- Chceme-li na dvourozměrném grafu vyznačit velké množství bodů, dáme pozor, aby se neslily do jednolité černé tmy. Je-li bodů mnoho, zmenšíme velikost symbolu, kterým je vykreslujeme, anebo vybereme jen malou část bodů, kterou do grafu zaneseme. Grafy, které obsahují tisíce bodů, dělají problémy hlavně v elektronických dokumentech, protože výrazně zvětšují velikost souborů.
- Budeme-li práci tisknout černobíle, vyhneme se používání barev. Čáry rozlišujeme typem (plná, tečkovaná, čerchovaná,...), plochy dostatečně rozdílnými intensitami šedé nebo šrafováním. Význam jednotlivých typů čar a ploch vysvětlíme buď v textové legendě ke grafu anebo v grafické legendě, která je přímo součástí obrázku.
- Vyhýbejte se bitmapovým obrázkům o nízkém rozlišení a zejména JPEGům (zuby a kompresní artefakty nevypadají na papíře pěkně). Lepší je vytvářet obrázky vektorově a vložit do textu jako PDF.

#### 3.3 Programy

Algoritmy, výpisy programů a popis interakce s programy je vhodné odlišit od ostatního textu. Jednou z možností je použití LATEXového balíčku fancyvrb (fancy verbatim), pomocí něhož je v souboru makra.tex nadefinováno prostředí code. Pomocí něho lze vytvořit např. následující ukázky.

```
> mean(x)
[1] 158.90
> objekt$prumer
[1] 158.90
```

Menší písmo:

```
> mean(x)
[1] 158.90
> objekt$prumer
[1] 158.90
```

#### Bez rámečku:

> mean(x)
[1] 158.90
> objekt\$prumer
[1] 158.90

#### Užší rámeček:

> mean(x)
[1] 158.90
> objekt\$prumer
[1] 158.90

## Závěr

## Seznam obrázků

## Seznam tabulek

# Seznam pouďž"itďž"ch zkratek

# Pďž"ďž"lohy