Actividad Integradora 1

Oscar Gutierrez

2024-08-20

Cargar dataset

```
M= read.csv("food_data_g.csv")
```

Seleccionar la variable

```
agua = M$Water
```

Analizar datos atípicos

```
q1=quantile(agua, 0.25)
q3 = quantile(agua, 0.75)
ri=IQR(agua)  #Rango intercuartílico de X
par(mfrow=c(2,1))  #Matriz de gráficos de 2x1
boxplot(agua,horizontal=TRUE)  #y1=min en la escala del eje Y, y2=máx en la escala del
eje Y
abline(v=q3+1.5*ri, col="red")  #linea vertical en el límite de los datos atipicos o ext
remos
abline(v= mean(agua)+ 3*sd(agua), col="green")  # linea vertical a 3 sd de la media
abline(v=q3+3*ri, col="blue")  # linea vertival a 3 ri
summary(agua)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.0 25.9 76.7 101.7 169.1 535.8
```


DA = M[M\$Water > mean(agua) + 3*sd(agua),] DA

7724, 10.49 AM Actividad integration 1										
##		X Unname	ed0			food Ca	loric.Va	lue Fat		
##	67	66 66		kung pao chicken				779 42.2		
##	158	157 157		chicken chow mein				513 16.9		
##	199	198	198 chic	ken mushroo	m chowder	soup		431 23.7		
##	248	247	247		escarole	soup		61 4.0		
##		Saturated.	Fats Mono	unsaturated	nsaturated.Fats Polyunsaturated.Fats Carboh					
##	67		8.2		13.1		18.	2	41.5	
##	158		3.0		3.7		7.	4	50.1	
##	199		6.2		4.5		9.	4	38.3	
##	248		1.2		1.8		0.		4.0	
##				ary . Fiber C					Vitami	
##	67	18.3	59.0	9.1	157.0		451.7			0.2
	158		40.8	6.0		1.9				0.2
	199	0.0	16.2	7.5	32.3		453.8			0.0
	248	0.0	3.4	0.0			535.8			0.2
##										
	67	0.00		.034	0.3	16.7	3.		1.5	
	158			.092	0.1	8.9	1.		1.1	
	199	0.00		.000	0.0	0.0	0.		0.0	
	248	0.05		0.060 0.1		5.1	0.4		0.5	
##				Vitamin.E				_		
	67	42.9			0.012				145.0	
	158	12.1		2.6	0.100				66.4	
	199	10.8			0.000			2.6	0.0	
	248	10.0	0 Dhashbaru	0.0	0.000 0 colon	71.9		1.7	11.1	
##	67	manganese	•	s Potassium 8 1316.7				320.100		
	158	0.6	567.8 326.2			4.5 1.9		256.797		
	199	0.0						99.100		
	248	2.8	177.0			5.0		95.000		
11 11	_ +0	210	±/,•	55117	31000	3.0		33.000		

En la gráfica de caja y bigote se puede observar una linea verde, la cual corresponde a la cota de 1.5 ri, y una linea roja la cual corresponde a 3 desviaciones estándar, la cota de 3 ri no se alcanza a observar ya que se sale del límite derecho. De acuerdo con ambos criterios, existen 4 datos atípicos correspondientes a alimentos como sopas. # Normalidad

Histograma

hist(agua,freq=FALSE)

Histogram of agua

Los datos no se distribuyen normalmente.

Pruebas de normalidad Anderson Darling y Jarque Bera

h0: Los datos siguen una distribucion normal h1: Los datos no siguen una distribucion normal

```
library(nortest)
ad.test(agua)

##

## Anderson-Darling normality test

##

## data: agua

## A = 15.968, p-value < 2.2e-16

library(moments)
jarque.test(agua)</pre>
```

```
##
## Jarque-Bera Normality Test
##
## data: agua
## JB = 153.58, p-value < 2.2e-16
## alternative hypothesis: greater</pre>
```

Ambas pruebas rechazan h0.

QQ plot

```
qqnorm(agua)
qqline(agua)
```

Normal Q-Q Plot

Sesgo y Curtosis

```
cat("sesgo= ",skewness(agua), "\ncurtosis=",kurtosis(agua))
```

```
## sesgo= 1.083794
## curtosis= 4.411058
```

Media, mediana y rango medio

cat("media=", mean(agua), "\nmediana=",median(agua), "\nrango medio=", (max(agua)-min(agua))/2)

```
## media= 101.6587
## mediana= 76.7
## rango medio= 267.9
```

Grafico de densidad empirica y teorica

```
hist(agua, freq = FALSE)
lines(density(agua), col = "red")
curve(dnorm(x, mean = mean(agua), sd = sd(agua)), from = 0, to = 500, add = TRUE, col =
"blue", lwd = 2)
```

Histogram of agua

Las pruebas de normalidad de Anderson Darling y Jarque Bera rechazan h0, además, los gráficos como el QQ plot y la comparación de densidad empírica y teórica indican que no hay presencia de normalidad. Otro factor a considerar es que los coeficientes de sesgo y curtosis estan lejos de ser valores de una distribución normal ya que deberían ser 0 y 3 respectivamente. Además, los valores de media, mediana y rango medio son iguales en una distribución normal, mientras que en los datos no se tiene esta característica.

Transformacion a normalidad

Transformacion

library(VGAM)

```
## Loading required package: stats4
```

```
## Loading required package: splines
```

```
lp <- seq(0,1,0.001) # Valores de lambda propuestos</pre>
nlp <- length(lp)</pre>
n=length(agua)
D <- matrix(as.numeric(NA), ncol=2, nrow=nlp)</pre>
d <- NA
for (i in 1:nlp) {
  d = yeo.johnson(agua, lambda = lp[i])
  p = ad.test(d)
  D[i,] = c(lp[i], p$p.value)
# Convert matrix to data frame and name the columns
N <- as.data.frame(D)</pre>
colnames(N) <- c("Lambda", "Valor-p")</pre>
# Remove any rows with NA or infinite values
N <- N[is.finite(N$`Lambda`) & is.finite(N$`Valor-p`), ]</pre>
# Now, plot the data
plot(N$Lambda, N$`Valor-p`, type="l", col="darkred", lwd=3, xlab="Lambda", ylab="Valor p
(Normalidad)")
```



```
G=data.frame(subset(N,N$`Valor-p`==max(N$`Valor-p`)))
l = G$Lambda
```

Transformacion simple

La ecuacion para la transformacion simple es \sqrt{x}

```
transf_simple = sqrt(agua)
hist(transf_simple,freq=FALSE)
lines(density(transf_simple), col = "red")
curve(dnorm(x, mean = mean(transf_simple), sd = sd(transf_simple)), from = min(transf_si
mple), to = max(transf_simple), add = TRUE, col = "blue", lwd = 2)
```

Histogram of transf_simple

qqnorm(transf_simple)
qqline(transf_simple)

Normal Q-Q Plot

Transformacion exacta

La ecuacion para la transformacion exacta es $\frac{x^{\lambda}+1}{\lambda}$

```
transf_exacta = ((agua + 1)^l - 1)/l
hist(transf_exacta,freq=FALSE)
lines(density(transf_exacta), col = "red")
curve(dnorm(x, mean = mean(transf_exacta), sd = sd(transf_exacta)), from = min(transf_exacta), to = max(transf_exacta), add = TRUE, col = "blue", lwd = 2)
```

Histogram of transf_exacta

qqnorm(transf_exacta)
qqline(transf_exacta)

Normal Q-Q Plot

Resultados

```
library(nortest)
library(moments)
D0=ad.test(agua)
D1=ad.test(transf_simple)
D2=ad.test(transf exacta)
P0=jarque.test(agua)
P1=jarque.test(transf simple)
P2=jarque.test(transf_exacta)
m0=round(c(as.numeric(summary(agua)),kurtosis(agua),skewness(agua),D0$p.value, P0$p.valu
e).3)
m1=round(c(as.numeric(summary(transf_simple)),kurtosis(transf_simple),skewness(transf_si
mple),D1$p.value, P1$p.value),3)
m2=round(c(as.numeric(summary(transf_exacta)),kurtosis(transf_exacta),skewness(transf_ex
acta),D2$p.value, P2$p.value),3)
m<-as.data.frame(rbind(m0,m1,m2))</pre>
row.names(m)=c("Original","Primer modelo","Segundo Modelo")
names(m)=c("Minimo","Q1","Mediana","Media","Q3","Máximo","Curtosis","Sesgo","Valor p A
D", "Valor p JB")
m
```

```
##
                  Minimo
                             01 Mediana
                                          Media
                                                     Q3 Máximo Curtosis
                                                                          Sesgo
## Original
                       0 25.900 76.700 101.659 169.050 535.800
                                                                   4.411 1.084
## Primer modelo
                          5.089
                                  8.758
                                          8.952
                                                 13.002 23.147
                                                                   2.292 0.091
                                 11.375
                                        11.319 16.330 26.958
                                                                   2.221 -0.079
## Segundo Modelo
                          6.668
##
                  Valor p AD Valor p JB
## Original
                           0
                                  0.000
## Primer modelo
                           0
                                  0.002
## Segundo Modelo
                                  0.001
```

En el caso de esta variable, no hay anomalías, los ceros y valores atípicos corresponden a comidas que son válidas dentro del conjunto de datos.

Los valores de la media y mediana de ambas transformaciones mejoran considerablemente respecto a los valores originales. Los valores de sesgo y curtosis también se acercan a los valores de una distribución normal, sin embargo, de acuerdo con ambas pruebas de normalidad no se alcanza una distribución normal.

El mejor modelo seria la transformación simple debido a que obtiene un valor p mayor en la prueba de Jarque Bera.