Homework Assignment 3 Infinite Square Well Potential and Fourier Series

Practice Problems

These problems are graded on effort only.

Griffiths: P1.17, P2.1bc, P2.3, P2.4

Additional Problems

Problem 1: The axiomatic definition of a vector space V over the real numbers \mathbb{R} is detailed in Table 1.

- (A) Show that D1 follows from A1-5 and M1-5. Hint: we already know for the scalars that 0+0=0
- (B) Show that D2 follows from A1-5, M1-5, and D1.

Problem 2: The axiomatic definition of an inner product space H over the real numbers \mathbb{R} is detailed in Table 1.

- (A) Show that D3 follows from A1-5,M1-5,D1-2 Hint: we already know for the scalars that 0+0=0
- (B) Show that D4 follows from A1-5,M1-5,D1-3.

Table 1: Here we define the properties of a vector space V and an inner product space H. Note that no complex conjugation appears in these definitions as the scalar field is the real numbers numbers.

Useful Math Symbols:

for all x in V (for any vector x)

 $\forall \alpha \in \mathbb{R}$ for all α in \mathbb{R} (for any real number α)

 $\exists !\, y$ there exists unique y

s.t. such that

Properties of Addition:

$\mathbf{A1}$	Closure	$\forall x, y \in V$	$(x+y) \in V$
---------------	---------	----------------------	---------------

 $\mathbf{A2}$ Commutative $\forall x, y \in V$ x + y = y + z

 $\forall x,y,z \in V$ $\mathbf{A3}$ Associative (x+y) + z = x + (y+z)

A4 Zero $\exists ! \ 0 \ \text{s.t.} \ \forall x \in V$ x + 0 = x

A5 Inverse $\forall x \in V \exists ! (-x) \in V \text{ s.t.}$ x + (-x) = 0

Properties of Scalar Multiplication:

M1Closure $\forall x \in V \text{ and } \forall \alpha \in \mathbb{R}$ $\alpha x \in V$

M2Identity $\forall x \in V$ 1x = x

M3Associative $\forall x \in V \text{ and } \forall \alpha, \beta \in \mathbb{R}$ $\alpha(\beta x) = (\alpha \beta)x$

M4**Distributive** $\forall x, y \in V \text{ and } \forall \alpha \in \mathbb{R}$ $\alpha(x+y) = \alpha x + \alpha y$

M5**Distributive** $\forall x \in V \text{ and } \forall \alpha, \beta \in \mathbb{R}$ $(\alpha + \beta)x = \alpha x + \beta x$

Deducible Properties:

$$\mathbf{D1} \quad \forall x \in V \quad 0x = 0$$

D2 $\forall x \in V \quad (-1)x = (-x)$

Properties of Inner Products:

I1
$$\forall x, y \in H$$
 $\langle x|y \rangle = \langle y|x \rangle$
I2 $\forall x, y, z \in H \text{ and } \forall \alpha \in \mathbb{R}$ $\langle x|\alpha y \rangle = \alpha \langle x|y \rangle$

13
$$\forall x, y, z \in H$$
 and $\forall \alpha \in \mathbb{R}$ $\langle x | \alpha y \rangle = \alpha \langle x | y \rangle$
 $\langle x + y | z \rangle = \langle x | z \rangle + \alpha \langle x + y | z \rangle$

I3
$$\forall x, y, z \in H$$
 $\langle x + y | z \rangle = \langle x | z \rangle + \langle y | z \rangle$
I4 $\forall x \in H$ $\langle x | x \rangle > 0$

I4
$$\forall x \in H$$
 $\langle x|x \rangle \ge 0$

I5
$$\forall x \in H$$
 $\langle x|x \rangle = 0$ if and only if $x = 0$

Deducible Properties:

D3
$$\forall x, y \in H \text{ and } \forall \alpha \in \mathbb{R} \quad \langle \alpha x | y \rangle = \alpha \langle x | y \rangle$$

D4
$$\forall x, y, z \in H$$
 $\langle x|y+z\rangle = \langle x|y\rangle + \langle x|z\rangle$