Algebraische Zahlentheorie I

Prof. Dr. Alexander Schmidt

Wintersemester 2021/22

Inhaltsverzeichnis

Otens: Begriffe aus der Algebra:

- Ring, hier immer kommutativ mit 1
- R-Modul, $R \times M \to M$
- Ideal: $\mathfrak{a} \subset R$, R-Untermodul
- $x \in R \leadsto (x) = Rx = \{rx \mid r \in R\}$ das von x erzeugte Hauptideal
- R heißt nullteilerfrei: wenn $xy = 0 \Rightarrow x = 0$ oder y = 0
- Einheitengruppe: $R^{\times} = \{r \in R \mid \exists s \in R : rs = 1\}$
- R nullteilerfrei: $(x) = (y) \iff x = ey, e \in R^{\times}$
- $\mathfrak{p} \subset R$ heißt Primideal $\iff R/\mathfrak{p}$ nullteilerfrei
- $\bullet \mathfrak{m} \subset R$ Maximalideal $\iff R/\mathfrak{m}$ Körper
- $f: R \to R'$ Ringhomomorphismus und $\mathfrak{p}' \subset R'$ Primideal $\Rightarrow f^{-1}(\mathfrak{p}') \subset R'$ Primideal (gilt nicht für Maximalideal).
- jeder Ring $\neq 0$ besitzt ein Maximalideal
- jedes Ideal $\neq R$ ist in einem Maximalideal enthalten
- jede Nichteinheit ist in einem Maximalideal enthalten
- $a, b \in R$, $a \mid b \stackrel{\text{df}}{=}$ es existiert ein $c \in R$ mit $ac = b \iff (b) \subset (a)$
- a = b (assoziiert) $\stackrel{\text{df}}{=} a \mid b$ und $b \mid a \iff (a) = (b)$, R nullteilerfrei: $a = b \iff a = be, e \in R^{\times}$.

Definition 0.1. Sei R nullteilerfrei und $a, b \in R$. Ein Element $d \in R$ heißt größter gemeinsamer Teiler von a und b, wenn gilt

- (i) $d \mid a \text{ und } d \mid b$
- (ii) $(e \mid a \text{ und } e \mid b)) \Rightarrow e \mid d$.

Der ggT ist, wenn er existiert, bis auf Assoziiertheit eindeutig.

Definition 0.2. R heißt **Hauptidealring** wenn R nullteilerfrei ist, und jedes Ideal in R ist ein Hauptideal.

Bemerkung 0.3. Ist R ein Hauptidealring so existiert der ggT und es gilt

$$(a) + (b) = (ggT(a, b)).$$

Insbesondere läßt sich ggT(a,b) linear aus a und b kombinieren. (Erinnerung: $\mathfrak{a} + \mathfrak{b} = \{\alpha + \beta \mid \alpha \in \mathfrak{a}, \beta \in \mathfrak{b}\}$

Begründung: (a) + (b) = (d) für ein $d \in R$, weil R Hauptidealring. Es gilt also d|a, d|b. Gilt nun e|a und e|b, so folgt $(a) \subset (e)$ und $(b) \subset (e)$ also $(d) = (a) + (b) \subset (e) \Rightarrow e|d$

Definition 0.4. Ein nullteilerfreier Ring R heißt **euklidisch**, wenn es eine Funktion $\nu: R \setminus \{0\} \to \mathbb{N}$ gibt, so dass zu $a, b \in R$, $b \neq 0$ stets $q, r \in R$ mit a = qb + r und r = 0 oder $\nu(r) < \nu(b)$ gibt \leadsto erhalten ("Euklidischen") Algorithmus zur Bestimmung des ggT.

Satz 0.5. (LA 2) Jeder euklidische Ring ist ein Hauptidealring.

Definition 0.6. R nullteilerfrei $\pi \in R \setminus (\{0\} \cup R^{\times})$ heißt

- Primelement, wenn (π) Primideal
- irreduzibel, falls $\pi = ab \Rightarrow a \in R^{\times}$ oder $b \in R^{\times}$.

Bemerkung 0.7. Primelemente sind irreduzibel

Grund: $\pi = ab \Rightarrow \pi \mid a \text{ oder } \pi \mid b$. Gelte OE $\pi \mid a$. Wegen $a \mid \pi$ gilt $a = \pi$, also $a = \pi u, u \in R^{\times}$. Nun gilt $\pi = ab = \pi ub$, also $\pi(1 - ub) = 0 \Rightarrow 1 = ub \Rightarrow b \in R^{\times}$.

Definition 0.8. R (nullteilerfrei) heißt **faktoriell**, wenn jedes $a \in R \setminus \{0\}$ eine bis auf Einheiten und Reihenfolge eindeutige Zerlegung in das Produkt irreduzibler Elemente besitzt.

Satz 0.9. (i) In einem faktoriellen Ring ist jedes irreduzible Element Primelement. (Algebra 1, 2.20)

- (ii) Hauptidealringe sind faktoriell. (LA 2)
- (iii) R faktoriell \Rightarrow R[T] faktoriell. (Algebra 1, 2.42)

Sei R ein Ring und $\mathfrak{a} \subset R$ ein Ideal. Die Elemente des Faktorrings R/\mathfrak{a} heißen Restklassen modulo \mathfrak{a} . Die Gruppe $(R/\mathfrak{a})^{\times}$ heißt Gruppe der *primen Restklassen* modulo \mathfrak{a} . Für $\mathfrak{a},\mathfrak{b} \subset R$ gilt

$$\mathfrak{ab} \stackrel{df}{=} \left\{ \sum_{\text{endl}} a_i b_i \mid a_i \in \mathfrak{a}, \ b_i \in \mathfrak{b} \right\}.$$

 \mathfrak{a} und \mathfrak{b} heißen teilerfremd (auch koprim), wenn $\mathfrak{a} + \mathfrak{b} = (1)$ gilt.

Lemma 0.10. (Algebra 2, 1.15 (ii)) Es gilt

$$(\mathfrak{a} + \mathfrak{b})(\mathfrak{a} \cap \mathfrak{b}) \subset \mathfrak{ab} \subset \mathfrak{a} \cap \mathfrak{b}.$$

Insbesondere gilt $\mathfrak{ab} = \mathfrak{a} \cap \mathfrak{b}$ falls \mathfrak{a} und \mathfrak{b} teilerfremd sind.

Seien R_1, \ldots, R_n Ringe. Dann ist $R = \prod_{i=1}^n R_i$ mit komponentenweiser Addition und Multiplikation ein Ring. Sei R ein Ring und $\mathfrak{a}_1, \ldots, \mathfrak{a}_n \subset R$ Ideale. Wir betrachten den Ringhomomorphismus

$$\phi: R \longrightarrow \prod_{i=1}^n R/\mathfrak{a}_i$$

der durch $r \mapsto (r + \mathfrak{a}_1, \dots, r + \mathfrak{a}_n)$ gegeben ist.

Satz 0.11. (Algebra 2, 1.16)

- (i) Sind die \mathfrak{a}_i paarweise relativ prim, so gilt $\prod_{i=1}^n \mathfrak{a}_i = \bigcap_{i=1}^n \mathfrak{a}_i$.
- (ii) ϕ ist surjektiv \iff die \mathfrak{a}_i sind paarweise relativ prim.
- (iii) ϕ ist injektiv $\iff \bigcap \mathfrak{a}_i = (0)$.

Als Korollar erhält man:

Chinesischer Restklassensatz: Seien $r_1, \ldots, r_n \in R$ und $\mathfrak{a}_1, \ldots, \mathfrak{a}_n \subset R$ paarweise teilerfremde Ideale. Dann hat das System von Kongruenzen

eine Lösung $x \in R$ und x ist eindeutig bestimmt modulo $\mathfrak{a}_1 \cdots \mathfrak{a}_n$.

Beweis. Dies ist eine Umformulierung der Tatsache, dass unter den gegebenen Bedingungen $R/(\mathfrak{a}_1\cdots\mathfrak{a}_n)\longrightarrow\prod_{i=1}^nR/\mathfrak{a}_i$ ein Isomorphismus ist. \square