Quasi-random number generator

Ines Meršak

Mentor: doc. dr. Dejan Velušček

9. 6. 2017

1 / 11

Pseudo-random vs. quasi-random

Pseudo-random number

computer-generated number appears to be random generated by an entirely deterministic process

Quasi-random number

low-discrepancy number taking previous draws into account

Figure: The comparison between pseudo- (left) and quasi-random numbers.

Usage

- useful in computational problems
- popular for financial Monte Carlo calculations
- asymptotic convergence is faster than when using pseudo-random numbers

Sobol' numbers

Algorithm 1 Generates the d-dimensional vector x_n in the Sobol sequence.

- 1: $\gamma(n) = n \text{ or } \gamma(n) = G(n)$
- 2: **for** k = 1, ..., d **do**
- 3: $p_k(z) = a_{k0}z^{g_k} + a_{k1}z^{g_k-1} + \ldots + a_{k(g_k-1)}z + a_{kg_k}$
- 4: calculate the direction integers v_{kl} using a_{kj} and binary addition
- 5: calculate x_{nk} based on which bits in $\gamma(n)$ are set
- 6: end for

Gray code

- any unique representation of n can be used for $\gamma(n)$
- -G(n) switches only one single bit for every increment in n
- this means that a single XOR operation has to be carried out for each dimension:

$$x_{nk} = x_{(n-1)k} \oplus v_{kj}$$

Gray code vs. not Gray code

7 / 11

Monte Carlo integration

Figure: Plot of function x + y.

Figure: Plot of function $\sin(10x^2(1-y))$.

11 / 11