Intervals, Transformations, and Slope Solution (version 27)

1. The function f is graphed below.

Indicate the following intervals using interval notation. Remember, you can use \cup between two intervals to indicate the union. Except for range, all intervals will indicate x values; this is standard.

Feature	Where
Positive	$(-9, -6) \cup (-3, 4)$
Negative	$(-6, -3) \cup (4, 8)$
Increasing	$(-5,3) \cup (7,8)$
Decreasing	$(-9, -5) \cup (3, 7)$
Domain	(-9,8)
Range	(-9,3)

Intervals, Transformations, and Slope Solution (version 27)

2. In the four graphs below, y = f(x) is graphed as a dotted line. With a solid line, please graph the transformations indicated by the equations below.

3. Let function g be defined by the table below. Use the formula $\frac{g(x_2)-g(x_1)}{x_2-x_1}$ to find the average rate of change between $x_1=34$ and $x_2=46$. Express your answer as a reduced fraction.

$$\begin{array}{c|cc} x & g(x) \\ \hline 34 & 85 \\ 46 & 71 \\ 71 & 34 \\ 85 & 46 \\ \hline \end{array}$$

$$\frac{f(46) - f(34)}{46 - 34} = \frac{71 - 85}{46 - 34} = \frac{-14}{12}$$

The greatest common factor of -14 and 12 is 2. Divide numerator and denominator by the greatest common factor.

$$AROC = \frac{-7}{6}$$

2