Temporal Database Support Focus on retention and performance

paSQuaLe ceglie

@pceglie

http://www.ugiss.org/author/pceglie/

http://pasqualeceglie.wordpress.com

Sponsors

Organizers

Pasquale Ceglie | @pceglie

- Microsoft MCSE Data Management and Analytics
- Microsoft MCSE Data Platform
- Attratto da
 - Modello Relazionale
 - Architettura DBMS
 - Tuning
 - Azure
 - Database Corruption
 - NoSQL (DocumentDB, MongoDb) ... è bene sapere che esistono ©
- Mail: pasqualeceglie@gmail.com

Database temporali, perché?

Le operazioni complesse diventano semplici

Analyze data history yourself Let the temporal tables do it

- SCHEMA MAINTENANCE
 Double effort to maintain current and history.
- HISTORY TRACKING
 User code is required (triggers, SPs, app).
 Hard to maintain and achieve good performance.
- DATA ANALYSIS Complex queries are required.
- DATA PROTECTION Immutability of history data cannot be guaranteed.

Database temporali, perché?

- «Workaround»
 - Complessi
 - Limitati
 - Inefficienti
- Funzionalità
 - Estensioni DML/DDL
 - ANSI SQL 2011

SQL Server 2016 rende tutto più facile Tracking delle modifiche senza scrivere codice Analisi del dato in qualsiasi momento nel tempo

Come funziona?

Temporal table (dati correnti)

* Vecchie versioni

History Table

Insert / Bulk Insert
Update */ Delete */ Merge *

Query

Predicati temporali

FOR SYSTEM_TIME

<u>EmployeeID</u>	Name	Salary	From	То
A001	John B.	62000	2005	2009
A001	Marketing	75000	2009	9999
A002	Michael P.	87500	2005	2008
A002	Michael P.	96300	2008	9999
A003	Tim W.	88400	2005	2007
A003	Tim W.	102000	2010	2012

DEMO

Temporal (1) with online app Temporal (2) script

Cronologia

DEMO

Temporal indexing

Spazio su disco in MB

	Current table	History table	Total
Raw data (uncompressed rowstore)	1080	506	1586
Scenario 1: rowstore objects	1080	30	1110
Scenario 2: rowstore current and columnstore history	1080	17	1097
Scenario 3: columnstore objects	56	17	73

Chart 1. Disk space usage per scenario, MB

Select performance (per le 4 query)

	#1	#2	#3	#4
Scenario 1: rowstore objects	9	11	131	175
Scenario 2: rowstore current and columnstore history	11	19	131	134
Scenario 3: columnstore objects	1	9	30	2

Chart 3. SELECTs performance, miliseconds

^|^ Ma allora perchè non COLUMNSTORE di default?

Feature	RTM			SP1				
	Standard	Web	Express	Local DB	Standard	Web	Express	Local DB
Row-level security	Yes	No	No	No	Yes	Yes	Yes	Yes
Dynamic Data Masking	Yes	No	No	No	Yes	Yes	Yes	Yes
Change data capture*	No	No	No	No	Yes	Yes	No*	No*
Database snapshot	No	No	No	No	Yes	Yes	Yes	Yes
Columnstore	No	No	No	No	Yes	Yes	Yes	Yes
Partitioning	No	No	No	No	Yes	Yes	Yes	Yes
Compression	No	No	No	No	Yes	Yes	Yes	Yes
In Memory OLTP	No	No	No	No	Yes	Yes	Yes	No**
Always Encrypted	No	No	No	No	Yes	Yes	Yes	Yes
PolyBase	No	No	No	No	Yes	Yes	Yes	No
Fine grained auditing	No	No	No	No	Yes	Yes	Yes	Yes
Multiple filestream containers	No	No	No	No	Yes	Yes	Yes	Yes

SQL Server 2016 Service Pack 1 (SP1) released !!!

- * Requires SQL Server agent which is not part of SQL Server Express Editions
- ** Requires creating filestream file groups which is not possible in Local DB due to insufficient permissions.

Business owners, end-users, ...

DBA Storage admins, budget owners, ...

Stretch Database

Perché Stretch Database?

Database in continua crescita

- Tabelle enormi (milioni di righe , diversi GB/TB di dimensioni)
- Gli utenti vogliono conservare tutti i loro dati e usarli
- Vecchi dati (cold) acceduti raramente ma devono essere online
- Manutenzione onerosa (ad es. re-index)
- A rischio SLA (ad es. restore time)

Soluzioni possibili

- Aumentare lo storage disponibile
 - Nonrisolve problemi di manutenzione e SLA (a meno che non mettiate i dati su costosi dischi \$\$D)
- Spostare i dati (di una tabella) verso un altro supporto, flat-file, backup, nastro
 - I dati però sono near-line oppure offline
- Cancellare vecchi dati
 - Ma sono veramente inutili?
 - Non applicabile in alcune realtà

Stretch SQL Server su Azure

7/1/2014

7/12/2014

7/29/2014

8/10/2014

Lorenzo Olds

Sophie Cook

Aida Durham

Jaclyn Wade

px61hi9306fj

ol43bi506qd

tx83hal916fi

nb95re926gi

Potenzialità

Effettuare "stretch" delle tabelle che contengono "cold data" con sicurezza da scenari on-prem verso Azure grazie al "remote query processing"

Vantaggi

- economico
- L'intera tabella resta online e rimane accessibile dale applicazioni esistenti
- Nessuna modifica alle applicazioni esistenti
- Sicuro "by default" con la possibilità di aggiungere ulteriore sicurezza con Always Encrypted e Row Level Security

Securely keep data indefinitely

Secure by default

- Data in motion always via secure channels (default TLS 1.2)
- Supports Always Encrypted
 - Encryption key remains on-premises with your application
- Row Level Security
- SQL Server and SQL Azure audit just works

DEMO

Stretch Database (40)

Considerazioni

Monitoring

- Extended Events, DMVs e system monitor
- Portale Azure per costi e gestione della sottoscrizione

Backup/Restore

- Attuali procedure di backup/restore sono valide
 - sp_reauthorize dopo aver effettuato un restore di un database «stretched» (riconciliazione)
- Ricordate i backup delle encryption keys (non c'è modo di recuperarle)

Prestazioni (query)

- Dati correnti e «hot-data» generalmente non interessati
- Dati temporali/cronologici locali non interessati
- Latenza su interrogazioni di «cold-data» dipende dalle performance della rete
- ^!^ RBAR Mooolto male , Set-based molto meglio!

Partizionamento delle tabelle

- 1. Attività di configurazione del partizionamento
- 2. Attività di manutenzione ricorrenti della partizione

Partizionamento delle tabelle - esempio

- Retention pari a 6 mesi (1 mese = 1 partizione)
- Inizio versioning Settembre 2015

Partizionamento delle tabelle

- 1. SWITCH OUT
- 2. MERGE RANGE
- 3. SPLIT RANGE

Custom delete script

Custom delete script

SysEndTime (history table)

- Turn off
 System Versioning
- 2. Delete old rows
- Turn on System-Versioning

cleanup iteration 1 cleanup iteration 2 history to be cleaned cleanup iteration N now - retention retained history now

Built-in retention policy

Built-in retention policy

Built-in retention policy

Definito a livello di database

```
SELECT
is_temporal_history_retention_enabled, name
FROM sys.databases
```

ON by default – modificabile dall'utente

```
ALTER DATABASE <myDB>
SET TEMPORAL_HISTORY_RETENTION ON
```

Auto OFF dopo un ripristino Point-in-time

https://docs.microsoft.com/en-us/azure/sql-database/sql-database-temporal-tables-retention-policy

Built-in retention policy

```
CREATE TABLE dbo.WebsiteUserInfo
    [UserID] int NOT NULL PRIMARY KEY CLUSTERED
   [UserName] nvarchar(100) NOT NULL
   [PagesVisited] int NOT NULL
   [ValidFrom] datetime2 (0) GENERATED ALWAYS AS ROW START
    [ValidTo] datetime2 (0) GENERATED ALWAYS AS ROW END
   PERIOD FOR SYSTEM_TIME (ValidFrom, ValidTo)
 WTTH
     SYSTEM VERSIONING = ON
        HISTORY_TABLE = dbo.WebsiteUserInfoHistory,
        HISTORY RETENTION PERIOD = 6 MONTHS
```


Built-in retention policy

Possibili valori per HISTORY_RETENTION_PERIOD:

- DAYS
- WEEKS
- MONTHS
- YEARS
- INFINITE (default se non specificato)

Impostando SYSTEM_VERSIONING = OFF viene perso il valore dell'impostazione HISTORY_RETENTION_PERIOD

```
ALTER TABLE dbo.WebsiteUserInfo

SET (SYSTEM_VERSIONING = ON (HISTORY_RETENTION_PERIOD = 9 MONTHS));
```


Built-in retention policy

- Solo le tabelle cronologiche con un indice cluster (B-Tree o Columnstore) può avere il parametro HISTORY_RETENTION_PERIOD impostato
- Processo background "netturbino"
 - Sugli indici B-Tree agisce su frammenti di 10K per minimizzare l'impatto sul database
 - Sugli indici COLUMNSTORE cancellazione per intero rowgroup (molto efficiente in ambienti in cui la cronologia è destinata a crescere in fretta)

Built-in retention policy


```
ALTER TABLE [dbo].[Inventory]
SET (SYSTEM_VERSIONING = ON (HISTORY_RETENTION_PERIOD = 6 MONTHS));
GO
```


DEMO

Buillt-in Retention (50)

Built-in retention policy

Query

 Filtro automatico sulle query con predicati temporali se is_temporal_history_retention_enabled = ON

Restore point in time

is_temporal_history_retention_enabled set to OFF

Considerazioni e limitazioni delle tabelle temporali - I

- Una tabella temporale deve avere una chiave primaria e la tabella di cronologia non può avere una chiave primaria definita.
- Le colonne periodo SYSTEM_TIME usate per registrare i valori SysStartTime e SysEndTime devono essere datetime2 (elevata precisione)
- La tabella di cronologia deve essere creata nello stesso database della tabella corrente. L'esecuzione di query temporali su Linked Server non è supportata.
- INSTEAD OF TRIGGER Né sulla tabella corrente che sulla cronologia
- AFTER TRIGGER solo sulla tabella corrente
- L'istruzione TRUNCATE TABLE non è supportata quando l'opzione SYSTEM_VERSIONING è impostata su ON

https://msdn.microsoft.com/it-it/library/mt604468.aspx

Considerazioni e limitazioni delle tabelle temporali - II

- La modifica diretta dei dati in una tabella di cronologia non è consentita
- ON DELETE CASCADE e ON UPDATE CASCADE non sono consentiti nella tabella dei dati correnti. App-logic oppure trigger AFTER come workaround
- L'istruzione TRUNCATE TABLE non è supportata quando l'opzione SYSTEM_VERSIONING è impostata su ON
- Replica limitata:
 - Always On: completamente supportato
 - Replica snapshot e transazionale: supportata solo per un singolo server di pubblicazione senza attivazione di tabella temporale e per un sottoscrittore con attivazione di tabella temporale. In questo caso, il server di pubblicazione viene usato per un carico di lavoro OLTP, mentre il sottoscrittore viene usato per la ripartizione di report, inclusa l'esecuzione di query AS OF
 - Replica di tipo merge: non supportata per le tabelle temporali

Works great with other SQL features

In-Memory OLTP

Cost-effective auditing for intensive transactional workloads

Columnstore

Excellent compression and fast analysis for historical data

Strech Database

Keep data history forever

Security features

Row-level security, Always Encrypted, Dynamic Data Masking

Tooling

First-class citizen in SSMS & SSDT

Resource

- SQL Server 2016 Stretch Database
 - http://go.microsoft.com/fwlink/?LinkId=627389
- Azure SQL Stretch Database service
 - https://azure.microsoft.com/en-us/services/sql-server-stretch-database/
- Pricing
 - http://go.microsoft.com/fwlink/?LinkID=724357
- Q&A forums
 - Stackoverflow: http://stackoverflow.com/questions/tagged/sql-server-2016
 - MSDN: http://go.microsoft.com/fwlink/?LinkId=627390

Q&A

Questions?

THANKS!

