Lab 6 Neural Networks

Neuron model - Perceptron

$$x_0 = 1$$

 w_0 is the *bias* weight

Weights shows the strength of the particular node.

A **bias** value allows you to shift the activation function curve up or down.

Artificial Neural Network

Multi-Layer Perceptrons architecture or Vanilla Neural Network

Artificial Neural Network

$$a_{1}^{(2)} = g(\Theta_{10}^{(1)}x_{0} + \Theta_{11}^{(1)}x_{1} + \Theta_{12}^{(1)}x_{2} + \Theta_{13}^{(1)}x_{3}) \qquad \mathcal{G}$$

$$a_{2}^{(2)} = g(\Theta_{20}^{(1)}x_{0} + \Theta_{21}^{(1)}x_{1} + \Theta_{22}^{(1)}x_{2} + \Theta_{23}^{(1)}x_{3})$$

$$a_{3}^{(2)} = g(\Theta_{30}^{(1)}x_{0} + \Theta_{31}^{(1)}x_{1} + \Theta_{32}^{(1)}x_{2} + \Theta_{33}^{(1)}x_{3})$$

$$h_{\Theta}(x) = a_{1}^{(3)} = g(\Theta_{10}^{(2)}a_{0}^{(2)} + \Theta_{11}^{(2)}a_{1}^{(2)} + \Theta_{12}^{(2)}a_{2}^{(2)} + \Theta_{13}^{(2)}a_{3}^{(2)})$$

If network has s_j units in layer j, s_{j+1} units in layer j+1, then $\Theta^{(j)}$ will be of dimension $s_{j+1}\times (s_j+1)$.

$$a_i^{(j)} =$$
 "activation" of unit i in layer j

g is the **activation function** (e.g. Sigmoid)

vectors multiplication

In the example:

$$\Theta^{(1)} \in \mathbb{R}^{3 \times 4}$$

Artificial Neural Network

Forward Propagation

The features vector **a** is *learned* from the input features!

Neural Networks

Multiple output units

Want
$$h_{\Theta}(x) \approx \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
, $h_{\Theta}(x) \approx \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$, $h_{\Theta}(x) \approx \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$, etc. when pedestrian when car when motorcycle

Training set:
$$(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})$$

$$y^{(i)}$$
 one of $\begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}$, $\begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}$, $\begin{bmatrix} 0\\0\\1\\0 \end{bmatrix}$, $\begin{bmatrix} 0\\0\\0\\1 \end{bmatrix}$

pedestrian car motorcycle truck

Neural Networks - Cost Function

Logistic Regression:

m samples in the training set

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)})) \right]$$

Neural Network: Instead of having 1 logistic regression output unit, we have K of them

$$J(\Theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} \sum_{k=1}^{K} y_k^{(i)} \log(h_{\Theta}(x^{(i)}))_k + (1 - y_k^{(i)}) \log(1 - (h_{\Theta}(x^{(i)}))_k) \right]$$

$$(h_{\Theta}(x))_i = i^{th} \text{ output}$$

$$y \in \mathbb{R}^K \text{ E.g. } \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$\text{"how well is the network doing at predicting example } i?"}$$

Neural Networks - Backpropagation Algorithm

Minimizing the Cost Function

$$J(\Theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} \sum_{k=1}^{K} y_k^{(i)} \log(h_{\Theta}(x^{(i)}))_k + (1 - y_k^{(i)}) \log(1 - (h_{\Theta}(x^{(i)}))_k) \right]$$

weight associated from neuron *i* of the previous later to neuron *j*

Lab 6. 2 – assignment Feedforward Propagation and Prediction

7061748167

The 20 by 20 grid of pixels is "unrolled" into a 400-dimensional vector 5000 training examples.

$$X = \begin{bmatrix} -(x^{(1)})^T - \\ -(x^{(2)})^T - \\ \vdots \\ -(x^{(m)})^T - \end{bmatrix}$$
 [5000 x 400]

Input Layer

Output Layer

Hidden Layer

NN model

 $(\Theta^{(1)}, \Theta^{(2)})$ provided from the lab Theta1 and Theta2.

Lab 6. 2 – assignment Feedforward Propagation and Prediction

Implementation of Neural Network

- $(\Theta^{(1)}, \Theta^{(2)})$ provided from the lab
- Calculate
 - 1. Add $X_0 = 1$ to X matrix
 - 2. Compute z⁽²⁾, a⁽²⁾
 - 3. Add $a^{(2)}_0 = 1$ to $a^{(2)}$
 - 4. Compute $z^{(3)}$, $a^{(3)} = h_{\theta}(x)$
 - 5. Find max ($h_{\theta}(x)$)

Note: $h_{\theta}(x) = [5000 \times 10]$ Why?