Zadanie 105

Pokaż, że {1, v} nie jest zupetny

1 DEFINIUJE ZBIOR F

Niech Fp. ,, będzie najmniejszym zbiorem spetniającym warunki:

- PE FINN
- → dla dowolnych P, $\psi \in \mathcal{F}_{P,v,\Lambda}$, marry $(P \wedge \Psi) \in \mathcal{F}_{P,v,\Lambda}$
- Przy pomocy ind. strukturalnej udoubdnie poniższy lemat:

Dowolna formuta z F_{r.v.}, jest nownoważna formule p

3 DONOD (przez indukcje)

Korzystam z następującej zasady indukcji:

Niech X⊆F_{r,v,x} t., że:

- · PEX
- · dla dowolnych formut Pi Y, jeili PEX i YEX.

 Wtedy X = F_{e,v,r}
- DEFINIUJE ZBIOR X

 X = { PE F,v, } | P = P}
- 5 Podstawa indukcji cel: pokazać, że peX P=P, zatem PeX
- 6 KROK INDUKCYJNY

Wezmy dowolne formuty fit i zatózmy, ze f & X i y e X. cei: pokazac', że (f v y) & X oraz (f x y) & X

(PV4) = (PVP) = P, skad (PV4) EX

 $(P \wedge \Psi) \stackrel{\text{Zat}}{=} (P \wedge P) = P$, Skad $(P \wedge \Psi) \in X$

Na mocy zasady indukcji strukturalnej $X = \overline{F}_{iv,\Lambda}$, więc dowolna formuta f zbudowana ze zmiennej zd. p oraz spójników Λ , V jest nównoważna p.

Tat. nie wprost, że $\{1, 1\}$ jest zupetny oxnacxa to, że istnieje formuta $\{1, 1\}$ zbudowana ze zmiennej zdaniowej $\{1, 1\}$ i spójników $\{1, 1\}$, opisująca funkcję boolowską $\{1, 1\}$ by $\{1, 1\}$, zdefiniowaną jako $\{1, 1\}$ = $\{1,$

Z lematu 1 wiemy, \hat{R} P = P, ale wówczas przy wartościowaniu G(P) = T formuta P = 0 jest spetniona, a A = P nie, bo it (III) w dla G(P) = T, G(P) = F, co prowadzi do sprzeczności z zatożeniem, E = P = P. Stod: nie istnieje formuta P = 0 suchowana ze zmiennej zdaniowej P = 0 oraz spójników A = V, zotem zloión spójników Q(V, N) nie jest zupetny