Multiple Linear Regression

Comparing Regression Lines for Two Groups

We want to relate course evaluation scores (Y) to the beauty score assigned to the instructor (X_1) and the gender of (female v. male).

Questions we could ask:

- 1. Is there a difference in the **mean** *course evaluation score* between *female and male instructors*?
- 2. Is there a linear relationship between course evaluation scores and beauty scores?
- 3. Is there a difference in the mean course evaluation score between female and male instructors, after accounting for the beauty score?
- 4. Is the relationship between beauty score and course evaluation score the same for male and female instructors?

Comparing Regression Lines for Two Groups

We want to relate course evaluation scores (Y) to the beauty score assigned to the instructor (X_1) and the gender of (female v. male).

1. Is there a difference in the **mean** *course evaluation score* between *female and male instructors*?

Comparing Regression Lines for Two Groups

We want to relate course evaluation scores (Y) to the beauty score assigned to the instructor (X_1) and the gender of (female v. male).

2. Is there a linear relationship between course evaluation scores and beauty scores?

Comparing Regression Lines for Two Groups

We want to relate course evaluation scores (Y) to the beauty score assigned to the instructor (X_1) and the gender of (female v. male).

3. Is there a difference in the mean course evaluation score between female and male instructors, after accounting for the beauty score?

The Regression Model: Common (Parallel) Slope

Let Gender =
$$\begin{cases} 1, & \text{Male} \\ 0, & \text{Female} \end{cases}$$

Then,

We have two lines:

- Female
- Male

Interpretation:

- β_0 :
- β₁:
- β₂:

Interpretation

=========		=======	=======				
Dep. Variable:		score	R-squared	:	0.059 0.055		
Model:			Adj. R-sq				
Method:					14.45		
Date:	Tue, 25				8.18e-07		
Time:			Log-Likel	ihood:	-360.37		
No. Observations:	463	AIC:		726.7			
Df Residuals:	Of Residuals: 460				739.1		
f Model: 2							
Covariance Type:							
	coef	std err	t	P> t	[0.025	0.975	
Intercept							
gender[T.male]	er[T.male] 0.1724		3.433	0.001	0.074	0.27	
bty_avg							
======================================			Durbin-Wa				
Prob(Omnibus):		0.000	Jarque-Bera (JB):		34.960		
kew: -0.672			Prob(JB):		2.56e-08		
urtosis: 2.925			Cond. No.		17.5		
Notes:							
[1] Standard Erro	re assume t	hat the co	variance ma	triv of the	errors is co	rrectly (
	sum_sq			PR(>F)	CIIOID IB CO	ricotry .	
gender 1.0							
bty avg 1.0							
Residual 460.0							

Comparing Regression Lines for Two Groups

We want to relate course evaluation scores (Y) to the beauty score assigned to the instructor (X_1) and the gender of (female v. male).

4. Is the relationship between beauty score and course evaluation score the same for male and female instructors?

The Regression Model: Different Slopes

Let Gender =
$$\begin{cases} 1, & \text{Male} \\ 0, & \text{Female} \end{cases}$$

Then,

We have two lines:

- Male
- Female

Interpretation:

- $H_0: \beta_3 = 0 \Rightarrow$
- $H_0: \beta_{\frac{1}{2}} = 0 \Rightarrow$

Interpretation

			====	=====			========	
Dep. Variable:				R-squ			0.071	
Model:	OLS				R-squared:		0.065	
Method:		Least Squares					11.74	
Date:	T	Tue, 25 Jul 2023				ic):	2.00e-07	
Time:					Likelihood:		-357.35	
No. Observations	:		463				722.7	
Df Residuals:			459	BIC:			739.3	
Df Model:			3					
Covariance Type:		nonrob	ust					
		coef	s	td err	t	P> t	[0.025	0.975]
Intercept		3.9501		0.118	33.475	0.000	3.718	4.182
gender[T.male]		-0.1835		0.153	-1.196	0.232	-0.485	0.118
bty_avg		0.0306		0.024	1.277	0.202	-0.017	0.078
bty_avg:gender[T	.male]	0.0796		0.032	2.452	0.015	0.016	0.143
Omnibus:		26.	631	Durb	in-Watson:		1.282	
Prob(Omnibus):		0.	000	Jarqu	ue-Bera (JB):	30.276	
Skew:	kew: -0.624				(JB):		2.67e-07	
Kurtosis:		2.	890	Cond	. No.		42.3	
======================================					========			
[1] Standard Erre	ors as:	sume that th	е со	varian	ce matrix of	f the errors	is correctly	specified
	df	sum_sq	me	an_sq	F	PR(>F)	_	
gender	1.0	2.260213	2.2	60213	8.174440	0.004442		
bty_avg	1.0	5.819173	5.8	19173	21.046010	0.000006		
bty_avg:gender	1.0	1.662530	1.6	62530	6.012817	0.014574		
		126.912425		76498	NaN	NaN		

Effects of Multicollinearity

- If predictors are highly correlated amongst themselves, then the estimated regression coefficients and tests can be:
- The regression tests can be difficult to interpret individually
- One variable alone might work just as well as many
- Explore the potential for multicollinearity by examining scatterplots of the response and the predictors (matrix plot)

Variance Inflation Factor (VIF)

- The variance of the coefficients of correlated predictors is inflated
- The Variance Inflation Factor (VIF) reflects
- For each Predictor X_i , regress X_i onto the other predictors. Record R_i^2 .

Then, for the i^{th} predictor,

$$VIF_i = \frac{1}{1 - R_i^2}$$

• Be suspicious of multicollinearity when