

Table of Contents

01. 02. 03. Introduction Objectives Methodology

04. 05. 06.

Results and Ethical Consideration Future Work Analysis

Introduction

Background

Lung diseases, including pneumonia, tuberculosis, and interstitial lung disease (ILD), pose a severe global health challenge, accounting for over **3 million deaths annually** (WHO).

Chest X-rays are a critical and cost-effective diagnostic tool for identifying lung diseases. Despite their widespread use, the process of interpreting X-rays relies heavily on radiologist expertise, making it prone to human error due to fatigue, workload, and variability in training.

Challenges in Al-based Radiology

Deep learning and artificial intelligence have shown great promise in medical imaging, but their **"black box"** nature limits adoption.

Clinicians often distrust these models due to lack of **interpretability**, leaving them uncertain about the reasoning behind AI predictions.

Other challenges include the **imbalance in medical** datasets, poor representation of rare diseases, and **ethical concerns** such as algorithmic bias and data privacy.

Project Goals

This project addresses the gaps in Al-based radiology by:

1. Developing Accurate Models

 Creating convolutional neural network (CNN)-based systems capable of identifying common lung diseases like pneumonia, pleural effusion, and cardiomegaly with high accuracy.

2. Enhancing Interpretability

Implementing Grad-CAM, a visual explanation tool, to highlight the key regions in chest X-rays that influenced the AI model's predictions.

3. Addressing Dataset Challenges

Using innovative techniques to handle class imbalance and improve the robustness of predictions.

4. Promoting Ethical Al Design

 Focusing on transparency, fairness, and accountability to build clinician trust and ensure safe implementation in clinical environments.

Phase I Overview

Phase 1 Achievements

Exploratory Data Analysis (EDA) and Data Insights:

- Analyzed the CXLSeg dataset (243,324 chest X-ray images).
- Identified Class imbalance and rare disease underrepresentation

Baseline Models:

- Developed Custom CNN as benchmark
- Established performance
 benchmarks for future improvements

Literature Review

Al in Medical Imaging

- Deep learning techniques, particularly CNNs, have significantly enhanced diagnostic accuracy in radiology.
 Studies show CNNs achieve radiologist-level performance, with metrics like AUC often exceeding 0.9.
- Publicly available datasets like the NIH
 Chest X-ray dataset have been instrumental in advancing research by providing large-scale annotated medical images.

Challenges Identified

- Class Imbalance: Medical datasets often overrepresent common conditions while underrepresenting rare but clinically critical diseases, skewing AI predictions.
- Interpretability: Tools like Grad-CAM and LIME improve transparency, but their effectiveness in aligning AI reasoning with clinical understanding remains limited.
- Ethical Concerns: Algorithm bias and privacy issues persist, emphasizing the need for equitable and transparent Al systems.

Exploring the Dataset

Exploring the Dataset

Exploring the Dataset

Methodology

Data Overview and Preparation

- The NIH Chest X-ray dataset was selected for its comprehensive coverage of 14 disease categories and inclusion of unsegmented chest X-rays.
- Preprocessing involved:
 - Normalizing pixel values to a standard range for model compatibility.
 - Resizing images to 224×224 pixels to match model input requirements.
 - Augmenting data with random transformations to address overfitting.
 - Including weighted classes to address class imbalance.

Model Architectures

- **Custom CNN**: A lightweight model built from scratch to serve as a baseline.
- Pretrained ResNet50: A sophisticated model leveraging transfer learning from ImageNet, fine-tuned for chest X-ray classification.

Model Architecture: Custom CNN

Convolutional Layers: Apply filters to detect patterns like edges and textures, reducing spatial dimensions while retaining important features.

Activation Functions: Non-linear activation functions (e.g., ReLU) are used after convolutional layers to enable the network to learn complex patterns.

Pooling Layers: Downsample the output to reduce computational complexity and make the model invariant to small translations and distortions.

Fully Connected Layers: Combine features extracted by convolutions to make final predictions, using softmax or sigmoid for classification.

Model Architecture: ResNet 50

Residual Connections: Skip connections allow gradients to flow more easily, mitigating the vanishing gradient problem and helping deep networks learn efficiently.

Residual Blocks: Consist of multiple convolutional layers with skip connections that add the input to the output, improving learning.

Deep Architecture: ResNet models are very deep (e.g., ResNet-50, ResNet-101), enabling the network to learn complex features without performance degradation.

Efficient Training: Residual connections allow deeper models to be trained effectively, overcoming issues with vanishing gradients and improving accuracy.

Results

ResNet50 Performance

- Accuracy: 7.66%AUC-ROC: 0.46
- Grad-CAM visualizations lacked clinical focus, limiting interpretability.

Custom CNN Performance

- Accuracy: 11.59%AUC-ROC: 0.53
- Grad-CAM visualizations showed slightly better alignment but were still not clinically impactful.

Reasons for Suboptimal Performance

- 1. Dataset Limitations:
 - Only a **5% sample** of the NIH dataset was used, reducing diversity and disease representation.
 - Severe **class imbalance** made it challenging to train models, particularly for rare diseases.
- 2. Computational Constraints:
 - Limited resources restricted the use of advanced architectures and extended training epochs.
- 3. Transfer Learning Challenges:
 - ResNet50 struggled to generalize effectively due to the **small dataset size** and insufficient augmentation.

CNN

ResNet

Key Findings

Model Performance

 Our custom CNN outperformed the ResNet50 across all metrics, demonstrating its ability to generalize better and identify rare diseases with higher accuracy.

Interpretability

- Grad-CAM proved essential for building clinician trust by offering visual insights into the Al's decision-making process.
- It is also crucial in helping us fine-tuning future models, understanding which sections to augment, crop or pre-process the image for better accuracy.

Dataset Challenges

 Weighted loss functions partially addressed class imbalance, but certain rare conditions remain difficult to classify.

Ethical Considerations

- Dataset Imbalance: Overrepresentation of certain classes skews predictions, potentially leading to biased outcomes and unequal care.
- **Demographic Diversity**: Limited dataset diversity affects the model's ability to generalize across different patient populations.
- **Transparency**: The use of AI in healthcare requires trust from clinicians. Without clear explanations for AI predictions, clinicians may hesitate to adopt these tools.

Limitations

- 1. Limited Representation of Rare Conditions: Rare diseases like fibrosis and hernia were underrepresented in the dataset, reducing the model's ability to generalize and affecting prediction accuracy for less common conditions.
- 2. Computational Constraints: Limited resources restricted the use of advanced architectures and larger datasets, impacting model sophistication and overall performance.
- 3. **Generalizability**: Training on a specific dataset may limit the model's accuracy in diverse real-world settings. Broader validation on varied datasets is needed for better applicability and reliability.

Future Work

Dataset Enhancements

• Incorporate more diverse datasets, such as MIMIC-CXR, to improve generalizability across healthcare settings.

Model Advancements

• Investigate attention-based models and ensemble learning for improved performance and interpretability.

Ethical Improvements

Conduct fairness audits and enhance compliance with evolving regulatory standards.

Real-World Integration

• Collaborate with clinicians to refine deployment strategies and integrate Al into existing workflows.

Conclusion

- This project successfully developed interpretable deep learning models capable of classifying chest X-ray abnormalities, addressing critical challenges in healthcare diagnostics.
- By emphasizing transparency and ethical Al design, the research bridges the gap between artificial intelligence and clinical practice, fostering trust and usability among clinicians.
- The foundation of this work allows for scalability, where larger datasets and computationally advanced resources can be integrated to achieve more robust and clinically impactful results in the
- These contributions pave the way for the development of safer, reliable, and widely adoptable Al
 tools, transforming diagnostic workflows and improving healthcare outcomes globally.

