

PCT

ORGANISATION MONDIALE DE LA PROPRIÉTÉ INTELLECTUELLE
Bureau international

DEMANDE INTERNATIONALE PUBLIÉE EN VERTU DU TRAITE DE COOPERATION EN MATIERE DE BREVETS (PCT)

(51) Classification internationale des brevets ⁴ : C07K 7/10, 7/06, C12N 15/00 G01N 33/569, A61K 39/21, 37/02		A1	(11) Numéro de publication internationale: WO 88/ 05440 (43) Date de publication internationale: 28 juillet 1988 (28.07.88)
(21) Numéro de la demande internationale: PCT/FR88/00025 (22) Date de dépôt international: 15 janvier 1988 (15.01.88)			(72) Inventeurs; et (75) Inventeurs/Déposants (<i>US seulement</i>): ALIZON, Marc [FR/FR]; 71, rue du Cardinal-Lemoine, F-75005 Paris (FR). MONTAGNIER, Luc [FR/FR]; 21, rue de Malabry, F-92350 Le-Plessis-Robinson (FR). GUETARD, Denise [FR/FR]; 4 B, rue Anselme-Payen, F-75015 Paris (FR). CLAVEL, François [FR/US]; 12103 Portree Drive, Rockville, MD 20852 (US). SONIGO, Pierre [FR/FR]; 23, rue Gutenberg, F-75015 Paris (FR). GUYADER, Mireille [FR/FR]; 68, rue Laugier, F-75017 Paris (FR). TIOLLAIS, Pierre [FR/FR]; 16, rue de la Glacière, F-75013 Paris (FR). CHAKRABARTI, Lisa [FR/FR]; 16, rue des 3 Portes, F-75005 Paris (FR). DESROSIER, Ronald [US/US]; 13 Causeway Street, Udsom, MA 01749 (US).
(31) Numéros des demandes prioritaires: 003,764 87/01739 87/05398			(74) Mandataires: GUTTMANN Ernest etc.; S.C. Ernest Gutmann - Yves Plasserand, 67, boulevard Haussmann, F-75008 Paris (FR).
(32) Dates de priorité: 16 janvier 1987 (16.01.87) 11 février 1987 (11.02.87) 15 avril 1987 (15.04.87)			(81) Etats désignés: AU, DK, JP, KR, US.
(33) Pays de priorité: US FR FR			Publiée <i>Avec rapport de recherche internationale. Avant l'expiration du délai prévu pour la modification des revendications, sera republiée si de telles modifications sont reçues.</i>
(60) Brevet ou demande principal(e) (63) Appartenant(e) par continuation US Déposée le 013,477 (CIP) 11 février 1987 (11.02.87)			
(71) Déposant (<i>pour tous les Etats désignés sauf US</i>): INSTITUT PASTEUR [FR/FR]; 25-28, rue du Dr.-Roux, F-75015 Paris (FR). .			

(54) Title: PEPTIDES HAVING IMMUNOLOGICAL PROPERTIES 2-HIV-2

(54) Titre: PEPTIDES AYANT DES PROPRIÉTÉS IMMUNOLOGIQUES 2-HIV-2

(57) Abstract

Peptides having immunological properties in common with those of the peptidic skeleton of peptides of viruses of the family HIV-2, particularly the envelope glycoprotein of HIV-2, characterized in that they have also a peptidic structure in common with the peptidic skeleton of peptides of SIV, particularly the envelope glycoprotein of SIV. The invention also relates to diagnosis compositions capable of detecting an infection due to HIV-2 and to vaccine compositions.

(57) Abrégé

Peptides ayant des propriétés immunologiques en commun avec celles de l'ossature peptidique des peptides des virus de la classe HIV-2, notamment de la glycoprotéine d'enveloppe de HIV-2, caractérisés en ce qu'ils ont également une structure peptidique en commun avec l'ossature peptidique des peptides de SIV, notamment de la glycoprotéine d'enveloppe de SIV. L'invention concerne des compositions de diagnostic capable de détecter une infection due à HIV-2 et des compositions de vaccin.

UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publant des demandes internationales en vertu du PCT.

AT	Autriche	FR	France	ML	Mali
AU	Australie	GA	Gabon	MR	Mauritanie
BB	Barbade	GB	Royaume-Uni	MW	Malawi
BE	Belgique	HU	Hongrie	NL	Pays-Bas
BG	Bulgarie	IT	Italie	NO	Norvège
BJ	Bénin	JP	Japon	RO	Roumanie
BR	Brésil	KP	République populaire démocratique de Corée	SD	Soudan
CF	République Centrafricaine	KR	République de Corée	SE	Suède
CG	Congo	LI	Liechtenstein	SN	Sénégal
CH	Suisse	LK	Sri Lanka	SU	Union soviétique
CM	Cameroon	LU	Luxembourg	TD	Tchad
DE	Allemagne, République fédérale d'	MC	Monaco	TG	Togo
DK	Danemark	MG	Madagascar	US	Etats-Unis d'Amérique
FI	Finlande				

5

Peptides ayant des propriétés immunologiques de HIV-2

La présente invention est relative à des peptides ayant des propriétés immunologiques, le cas échéant immunogènes, en commun avec des antigènes susceptibles d'être obtenus sous une forme purifiée, à partir de virus capables de provoquer des lymphadénopathies susceptibles d'être relayées ensuite par le syndrome d'immunodéficience acquise (SIDA) chez l'homme.

L'invention concerne en particulier des peptides antigéniques susceptibles d'être reconnus par des anticorps induits chez l'homme par des virus désignés par l'abréviation HIV, selon la nomenclature définie dans NATURE. Elle concerne également des peptides ayant des propriétés immunogènes ou susceptibles d'être rendus immunogènes *in vivo*, cette immunogénicité étant susceptible de se manifester par l'induction *in vivo* d'anticorps reconnaissant des antigènes caractéristiques des virus HIV-2 et même, au moins en ce qui concerne certains de ces peptides, des antigènes issus de HIV-1.

L'invention concerne en outre des applications de ces peptides à la fabrication de compositions pour le diagnostic *in vitro* chez l'homme de potentialité de certaines formes du SIDA et, en ce qui concerne certains d'entre eux, à la production de compositions immunogènes et de compositions vaccinantes contre les rétrovirus HIV.

De même l'invention concerne les applications aux mêmes fins des anticorps susceptibles d'être induits

in vivo par les peptides immunogènes ou rendus immuno-gènes et, pour certains de ces anticorps, leurs applications à la production de principes actifs de médicaments contre ces SIDAS humains.

5 L'invention concerne également la mise en oeuvre de certains de ces peptides dans des procédés pour le diagnostic in vitro chez l'homme de certaines formes du SIDA, ainsi que leur application à la constitution de trousse ou "kits" de diagnostic.

10 Un premier rétrovirus dénommé LAV-1 ou HIV-1 a été isolé et décrit dans la demande de brevet GB.83/24.800 et une demande EP.84/401.834 du 14/09/84. Ce virus a également été décrit par F.Barre Sinoussi et al. dans Science, 220 n° 45-99, 20 pages 868-871.

15 Des variants de ce virus HIV-1 désignés par LAV ELI et LAV MAL, ont également été isolés, caractérisés et décrits dans la demande de brevet EP.84/- 401.834.

20 Les virus HIV-1 et leurs variants possèdent les propriétés suivantes :

- ils ont pour cibles préférentielles les cellules Leu3 (ou lymphocytes T4) humaines et leurs cellules dérivées "immortalisées".

25 - ils ont une activité transcriptase inverse nécessitant la présence d'ions Mg²⁺ et présentent une forte activité pour le poly(adenylate-oligo-deoxythymidylase) poly(A)-oligo(dT)12-18)

- ils ont une densité de 1,16 à 1,17 sur gradient de sucre,

30 - ils ont un diamètre moyen de 139 nanomètres et un noyau de diamètre moyen de 41 nanomètres,

- les lysats de ces virus contiennent une protéine p25 (protéine du noyau) qui ne croise pas immunologiquement avec la protéine p24 de HTLV-1,

35 - ils contiennent une protéine p42 appartenant à leur enveloppe,

- ils contiennent également une glycoprotéine d'enveloppe gp110 d'un poids moléculaire de 110.000.

5 L'isolement et la caractérisation de rétro-virus appartenant à une classe distincte et n'ayant qu'une parenté immunologique réduite avec les précédents, ont été décrits dans la demande de brevet européen n° 87/400.151.4. Ces rétrovirus qui ont été regroupés sous la désignation HIV-2, ont été isolés chez plusieurs malades africains présentant des symptômes d'une lymphadénopathie ou d'un SIDA.

10 Les rétrovirus du type HIV-2 comme les rétro-virus du type HIV-1, se caractérisent par un tropisme pour les lymphocytes T4 humains et par un effet cytopathogène à l'égard de ces lymphocytes, lorsqu'ils s'y multiplient, pour alors causer soit des poly-adénopathies généralisées et persistantes, soit un SIDA.

15 Plus généralement les rétrovirus purifiés par HIV-2 possèdent en général les propriétés suivantes :

- la cible préférentielle des rétrovirus HIV-2 est constituée par les cellules Leu3 (ou lymphocytes T4) humaines et pour des cellules "immortalisées" dérivées de ces lymphocytes T4 ;
- ils sont cytotoxiques pour les lymphocytes T4 humains
- ils ont une activité de transcriptase inverse nécessitant la présence d'ions Mg^{2+} et présentant une forte activité pour le poly(adénylate-oligodéoxythymidylase) (poly(A)-oligo(dT) 12-18) ;
- ils ont une densité de 1,16 dans un gradient de sucrose ;
- ils ont un diamètre moyen de 140 nanomètres et un noyau ayant un diamètre moyen de 41 nanomètres ;
- ils peuvent être cultivés dans des lignées permanentes du type HUT ou exprimant la protéine T4 ;
- ils ne sont pas infectieux pour les lymphocytes T8 ;
- les lysats de ces virus contiennent une protéine p26

qui ne croise pas immunologiquement avec la protéine p24 du virus HTLV-I ou du virus HTLV-II ;

- ces lysats contiennent en outre une protéine p16 qui n'est pas reconnue immunologiquement par la protéine p19 de HTLV-I ou de HTLV-II dans des essais de radioimmuno-précipitation ;

5 - ils contiennent en outre une glycoprotéine d'enveloppe ayant un poids moléculaire de l'ordre de 130.000-140.000 qui ne croise pas immunologiquement avec la gp110 des HIV-1, mais qui en revanche croise immunologiquement avec la glycoprotéine d'enveloppe gp140 de STLV-III (virus isolé chez le singe) ;

10 - ces lysats contiennent encore des antigènes marquables par la ³⁵S-cystéine, dont les poids moléculaires s'étendent entre 32.000 et 42.000-45.000 : ils comprennent notamment un antigène ayant un poids moléculaire de l'ordre de 36.000 et un antigène ayant un poids moléculaire de l'ordre de 42.000, l'un de ces antigènes (p36 et p42) constituant vraisemblablement une glycoprotéine trans-membranaire du virus HIV-2 ;

15 - l'ARN génomique des HIV-2 n'hybride pas avec l'ARN génomique de HIV-1 dans des conditions stringentes ;

- dans des conditions non stringentes, l'ARN génomique de HIV-2 n'hybride, ni avec le gène env et le LTR qui le jouxte, de HIV-1, ni avec des séquences de la région pol du génome de HIV-1 ;

20 - dans des conditions non stringentes, il hybride faiblement avec des séquences de nucléotides de la région de HIV-1.

30 Un autre rétrovirus dénommé SIV-1, cette dénomination remplaçant la dénomination antérieurement connue STLV III, a été isolé chez le singe macaque rhésus. (M.D.Daniel et al. Science 228, 1201 (1985) N.L.Letwin et al, Science 230, 71 (1985) sous l'appellation "STLV-III^{mac}").

35

Un autre rétrovirus, désigné "STLV-III_{AGM}", (ou SIV_{AGM}) a été isolé chez des singes verts sauvages. Mais, contrairement au virus présent chez le singe macaque rhésus, la présence de "STLV-III_{AGM}" ne semble pas induire une maladie du type SIDA chez le singe vert d'Afrique.

Une souche du rétrovirus SIV-1mac a été déposée à la CNCM le 7 Février 1986 sous le n° I-521. Des études ont montré que le rétrovirus SIV-1 comporte certaines protéines possédant une certaine parenté immunologique avec des protéines ou glycoprotéines structurales susceptibles d'être obtenues dans des conditions analogues, à partir de HIV-2. Ce rétrovirus SIV-1, dont on a constaté le caractère infectieux chez les singes, avait été désigné par STL VIII par les chercheurs qui l'ont isolé (références bibliographiques précitées).

Pour la commodité du langage, ces virus ne seront plus désignés dans ce qui suit que par l'expression SIV (l'expression SIV est l'abréviation anglaise de "Simian Immunodeficiency Virus" (virus d'immunodéficience du singe)) éventuellement suivi d'une abréviation désignant l'espèce de singe dont ils sont issus, par exemple, MAC (ou mac) pour le macaque ou AGM pour le singe vert d'Afrique (abréviation de "African Green Monkey").

En mettant en oeuvre les mêmes techniques que celles rappelées plus haut, il a été constaté que l'on pouvait également obtenir à partir de SIV-1mac :

- une protéine principale du noyau p27, ayant un poids moléculaire de l'ordre de 27 kilodaltons,
- une glycoprotéine majeure d'enveloppe, gp140,
- une protéine vraisemblablement transmembranaire p32, qui n'est guère observée en RIPA lorsque le virus a au préalable été marqué par la ³⁵S-cystéine, mais qui peut

être observée dans les essais d'immunoempreintes (Western blots), sous forme de bandes larges.

Des études plus précises ont été réalisées en ce qui concerne les précédents virus HIV-2 et SIV. La poursuite de l'étude des rétrovirus HIV-2 a également conduit à l'obtention de séquences d'ADN complémentaires (ADNc) des ARNs de leurs génomes. La séquence nucléotidique complète de l'ADNc d'un rétrovirus représentatif de la classe HIV-2 (HIV-2 ROD) a été déposée le 21/02/-10 1986 à la CNCM sous le n° I-522, sous le nom de référence LAV-II ROD).

Cette séquence nucléotidique et les phases de lecture ouverte qu'elle contient sont indiqués à la figure 1 A.

En outre, la poursuite de l'étude d'autres rétrovirus a également permis d'aboutir à l'obtention de leurs séquences nucléotidiques complètes. Il en est en particulier ainsi de l'ADNc dérivé de l'ARN génomique de SIV.

Le clonage et le séquençage du virus SIV-1mac qui ont permis l'obtention de sa séquence nucléotidique ont été réalisés dans les conditions suivantes :

L'ADN de cellules HUT 78 infectées par le virus SIV (isolat STLV-III mac 142-83 décrit par Daniel et al. (1985) *Science*, 228, p.1201-1204, digéré partiellement par l'enzyme de restriction Sau3A a été cloné au site BamHI du bactériophage vecteur Lambda EBL3 pour constituer une banque génomique. Les 2 millions de phages recombinants de la banque génomique ainsi constituée ont été criblés in situ en conditions de sécurité P3, à l'aide de séquences du virus HIV2 provenant des clones lambda-ROD4, lambda-ROD35 et E2 (Clavel et al. (1986-*Nature*, 324, p.691.) et nick-translatées.

L'hybridation a été réalisée en 5xSSC à 50°C et les lavages en 2xSSC à 50°C. Un seul clone contenant

l'ensemble des séquences virales a été obtenu. Ce clone est désigné par lambda-SIV-1. L'insérat du phage lambda-SIV-1 mesure 16,5 kb au total et comprend un provirus intégré auquel manquent seulement les 250 premières bases du LTR gauche, alors que le LTR droit est complet.

Le provirus intégré a été séquencé par la méthode des didéoxynucléotides après sous-clonage de fragments aléatoires dans le phage M13mp8. 300 sous-clones ont été analysés.

Des fragments d'ADNc provenant du clone Lambda SIV-1 insérés dans des plasmides pSIV-1.1 et pSIV-1.2 ont été déposés à la CNCM le 15 Avril 1987, sous les numéros I-658 (pSIV-1.1) et I-659 (pSIV-1.2).

Les résultats ont été mentionnés dans les figures décrites ci-après.

La figure 1B représente la séquence nucléotidique du génome viral de SIV et les séquences qui en sont déduites pour les protéines virales correspondant aux produits des gènes gag, pol, env, Q, X, R, tat, art, F.

Les figures 3 à 11 et la figure 1C représentent les comparaisons des produits théoriques des gènes viraux et des LTR entre HIV2 et SIVmac. (λ SIV-1).

L'invention concerne de plus les fragments d'ADNc déduits de l'ADNc issu du génome entier de SIV-1, ces fragments contenant une ou plusieurs séquences issues de la séquence complète d'ADNc et qui codent pour des peptides intéressants de l'invention. Ces séquences sont indiquées à la figure 1B et, à la figure 1C pour ce qui a trait à la séquence LTR du virus,

Les séquences nucléiques de l'ADNc de SIV ont été placées en correspondance avec les séquences nucléiques du virus HIV-2 ROD pour ce qui concerne la séquence LTR (figure 1C). Cette présentation que l'on retrouve pour le génome entier en rapprochant la figure 1B

des figures 3 à 11 permet de repérer ou de déduire les acides nucléiques ayant des éléments de structure essentiels communs aux deux virus.

L'invention concerne naturellement aussi l'utilisation des cADNs issus de SIV ou de leurs fragments (ou de recombinants les contenant) en tant que sondes, pour le diagnostic de la présence ou non de virus HIV-2 dans des échantillons de sérums ou d'autres liquides ou tissus biologiques obtenus à partir de patients suspectés d'être porteurs du virus HIV-2. Ces sondes sont de préférence marquées également (marqueurs radio-actifs, enzymatiques, fluorescents, etc.). Des sondes particulièrement intéressantes pour la mise en œuvre du procédé de diagnostic du virus HIV-2 ou d'un variant de HIV-2 peuvent être caractérisées en ce qu'elles comprennent la totalité ou une fraction de l'ADNc complémentaire du génome du virus SIV ou encore notamment les fragments recombinants contenus dans divers clones.

Les sondes mises en œuvre dans ce procédé de diagnostic du virus HIV-2 et dans les kits de diagnostic ne sont en aucune façon réduites aux sondes décrites précédemment. Elles comprennent au contraire toutes les séquences nucléotidiques issues du génome du virus SIV, d'un variant de SIV ou d'un virus proche par sa structure, dès lors qu'elles permettent la détection dans des fluides biologiques de personnes susceptibles de développer un SIDA, d'anticorps dirigés contre un HIV-2 ou d'un virus qui en est proche.

La détection peut être réalisée de toutes façons en soi connues. Elle peut comprendre une mise en contact de ces sondes soit avec les acides nucléiques obtenus à partir des cellules contenues dans ces sérums ou autres milieux biologiques, par exemple liquides céphalo-rachidiens, salives, etc... Elle peut aussi

comprendre une mise en contact de ces sondes avec ces milieux eux-mêmes dès lors que leurs acides nucléiques ont été rendus accessibles à l'hybridation avec ces sondes, et ce dans des conditions permettant l'hybridation entre ces sondes et ces acides nucléiques. L'étape finale du diagnostic in vitro comprend alors la détection de l'hybridation éventuellement produite. Le susdit diagnostic mettant en jeu des réactions d'hybridation peut également être réalisé à l'aide de mélanges de sondes respectivement originaires d'un HIV-2 et d'un SIV-1 ou d'un HIV-1, d'un HIV-2 et d'un SIV, dès lors qu'il n'est pas nécessaire de faire une différence entre le type de virus recherché.

D'une façon générale, le procédé de diagnostic de la présence ou non du virus HIV-2 ou d'un variant dans des échantillons de sérum ou d'autres liquides ou tissus obtenus à partir de patients suspectés d'être porteurs du virus HIV-2 comprend les étapes suivantes :

1/ au moins une étape d'hybridation conduite dans des conditions stringentes, par mise en contact de l'ADN de cellules de l'échantillon du patient suspect avec l'une des susdites sondes marquées sur une membrane appropriée,

2/ le lavage de ladite membrane avec une solution assurant la conservation de ces conditions stringentes de l'hybridation,

3/ la détection de la présence ou non du virus HIV-2 par une méthode d'immunodétection.

Dans un autre mode de réalisation préféré du procédé selon l'invention l'hybridation précitée est conduite dans des conditions non stringentes et le lavage de la membrane est réalisé dans des conditions adaptées à celles de l'hybridation.

Il va de soi que l'invention concerne les acides nucléiques correspondant à des séquences placées

10

en des régions analogues de variants de SIV ainsi que tous les acides nucléiques dont les modifications résulteraient de la mise à profit de la dégénérescence du code génétique.

5 Les études comparatives qui ont aussi permis d'aboutir à des résultats relatifs aux protéines de noyau (core), ci-après dénommées "protéines gag" et aux protéines d'enveloppes, ci-après dénommées "protéines env", ont également été rapportés dans la demande de brevet européen n° 87/400.151.4, déjà citée. Ces résultats montrent que les protéines du noyau (protéines gag) dans HIV-2 présentent des différences moins accentuées par rapport à celles des virus HIV-1, que les protéines d'enveloppe (protéines env). Globalement les protéines env dans HIV-2 se sont révélées présenter des parentés immunologiques extrêmement faibles, sinon inexistantes, avec les protéines env correspondantes des virus HIV-1.

20 Au contraire des études comparatives effectuées entre les structures des séquences d'ADNc des virus HIV-2 et SIV permettent de mettre en évidence certaines caractéristiques communes qui apparaissent au niveau des protéines.

25 Globalement, les protéines de HIV-2 et de SIV-1 montrent des parentés immunologiques importantes.

La glycoprotéine majeure d'enveloppe de HIV-2 s'est révélée être plus proche immunologiquement de la glycoprotéine majeure d'enveloppe de SIV que de la glycoprotéine majeure d'enveloppe de HIV-1.

30 Ces constatations s'imposent non seulement au niveau des poids moléculaires : 130-140 kilodaltons pour les glycoprotéines majeures de HIV-2 et de SIV contre environ 110 pour la glycoprotéine majeure d'enveloppe de HIV-1, mais aussi au niveau des propriétés immunologiques, puisque des sérums prélevés à partir de malades

11

infectés par HIV-2, et plus particulièrement des anticorps formés contre la gp140 de HIV-2 reconnaissent la gp140 de SIV-1mac, alors que dans des essais semblables les mêmes sérum et les mêmes anticorps de HIV-2 ne reconnaissent pas la gp110 de HIV-1. Mais les sérum anti-HIV-1 qui n'ont jamais réagi avec la gp140 de HIV-2 précipitent une protéine de 26 Kdal marquée par la ³⁵S-cystéine, contenue dans les extraits de HIV-2.

La protéine majeure du noyau (core) de HIV-2 semble présenter un poids moléculaire moyen (environ 26.000) intermédiaire entre celui de la p25 de HIV-1 et la p27 de SIV.

Ces observations résultent des essais réalisés avec des extraits viraux obtenus à partir du HIV-2 isolé à partir de l'un des patients susmentionnés. Des résultats similaires ont été obtenus avec des extraits viraux du HIV-2 isolé à partir du second patient.

Des études plus poussées ont conduit les inventeurs à reconnaître une première classe de peptides ayant des séquences d'aminoacides soit identiques, soit proches de séquences contenues à l'intérieur des structures des protéines gag et env de HIV-2 ou de SIV voire de HIV-1. Ces peptides sont notamment applicables au diagnostic d'une infection chez l'homme par le virus HIV-2 ou de l'un de ses variants.

A cet égard la présente invention concerne également des procédés et des compositions de diagnostic pour la détection in vitro d'anticorps dirigés contre un virus HIV-2 ou de ses variants, plus particulièrement dans des échantillons biologiques, notamment des sérum de patients ayant subi une infection par le virus HIV-2, certains de ces peptides permettant une discrimination particulièrement poussée entre les infections dues à des virus HIV-2 et à des virus HIV-1.

Ces études poussées ont également conduit à la

possibilité de synthétiser des peptides immunogènes ou susceptibles d'être rendus immunogènes, présentant des caractéristiques de structures leur permettant d'induire in vivo la production d'anticorps susceptibles de reconnaître des protéines env à la fois dans HIV-1 et dans 5 HIV-2 et, au moins pour certains de ces peptides, de se fixer tant sur des virus HIV-1 que sur des virus HIV-2, plus particulièrement aux fins de les neutraliser. L'utilisation de ces derniers types de peptides est donc 10 particulièrement indiquée pour la production de principes actifs de vaccins contre les virus HIV, donc contre le SIDA.

Pour désigner ci-après les résidus d'amino-acides entrant dans la constitution des peptides selon l'invention, on aura recours, pour ceux des acides aminés ayant une signification univoque à la nomenclature internationale désignant chaque acide aminé naturel par une lettre unique (lettre majuscule) selon le tableau des correspondances qui suit :

20	M	Méthionine
	L	Leucine
	I	Isoleucine
	V	Valine
	F	Phénylalanine
25	S	Sérine
	P	Proline
	T	Thrénanine
	A	Alanine
	Y	Tyrosine
30	H	Histidine
	Q	Glutamine
	N	Asparagine
	K	Lysine
	D	Acide Aspartique
35	E	Acide glutaminique

C	Cystéine
W	Tryptophane
R	Arginine
G	Glycine

5 Lorsqu'un acide aminé pourra, en raison de sa position au sein de la chaîne d'aminoacides caractéristique d'un peptide déterminé, prendre plusieurs significations, il pourra soit être désigné par un tiret "--", si sa signification peut être quelconque, soit par une lettre minuscule lorsque cet aminoacide pourra présenter un nombre limité de significations préférées, ce nombre étant cependant toujours supérieur à 1. Dans ce dernier cas, les significations possibles de cette lettre minuscule seront toujours précisées en rapport avec le peptide auquel il appartient.

10 15 Afin de faciliter la lecture, ces peptides seront désignés par une abréviation env ou gag suivie d'un indice numérique, par référence à des séquences d'aminoacides contenues, selon le cas, soit dans les protéines env soit dans les protéines gag de certains HIV-1, HIV-2 ou SIV. Il y sera encore fait référence dans ce qui suit.

Enfin dans les définitions qui suivent

- les groupes X représentent soit un groupe NH₂ libre ou amidé, notamment par un ou deux groupes alcoyle comprenant de 1 à 5 atomes de carbone, soit un groupe peptidique comprenant de 1 à 5 aminoacides, dont l'aminoacide N-terminal présente lui-même un groupe NH₂ libre ou amidé comme précédemment indiqué, et
- les groupes Z représentent, soit un groupe -OH libre ou alcoxyle et contenant alors un groupe alcoyle comprenant de 1 à 5 atomes de carbone, soit un groupe peptidique comprenant de 1 à 5 aminoacides, dont l'aminoacide C-terminal présente lui-même un groupe -OH libre ou alcoxyle, comme précédemment indiqué, les

14

groupes de 1 à 5 acides aminés le cas échéant contenus dans X ou Z ou dans les deux à la fois étant tels, que leur présence n'est pas incompatible avec la préservation pour l'essentiel des propriétés immunologiques, le cas échéant immunogènes, des peptides qui en sont dépourvus.

Les peptides selon l'invention, qui ont en commun des propriétés immunologiques avec des antigènes de HIV-2 et, pour certains d'entre eux également avec des antigènes de HIV-1 ou de ses variants, sont caractérisés en ce qu'ils ont également une structure peptidique en commun avec les antigènes de SIV. De façon avantageuse, ces peptides comprennent normalement au plus 40 résidus d'acides aminés.

Des peptides préférés sont les suivants :

env1

XRV-AIEKYL-DQA-LN-WGCAFRQVCZ

env2

X-LE-AQI-QQEKNMYELQKLNZ

env3

XELG DYKLVEITPIG-APT--KR-----Z

env4

X----VTV-YGVP-WK-AT--LFCA-Z

env5

X---QE--L-NVTE-F--W-NZ

env6

XL---S-KPCVKLTPLCV--Z

env7

X---N-S-IT--C-K----Z

env8

X-I---YC-P-G-A-L-C-N-TZ

env9

X-----A-C-----W---Z

env10

35 X-G-DPE-----NC-GEF-YCN-----NZ

15

env11

X----C-IKQ-I-----G---YZ

Plus particulièrement l'invention concerne les peptides suivants :

5 env1

XRV-AIEKYL-DQA-LN-WGCAFRQVCZ

env2

X-LE-AQIQQEKNMYELQKLNZ

env3

10 XELG DYKLVEITPIG-APT--KR-----Z

env4

X----VTV-YGVP-W--AT--LFCA-Z

env5

X----E--L-NVTE-F--W-NZ

15 env6

XL---S-KPCVKL-PLC---Z

env7

X---N-S-I---C-K----Z

env8

20 X-I---YC-P-G-A-L-C-N-TZ

env9

X-----A-C-----W--Z

env10

X-G-DPE-----NC-GEF-YC-----NZ

25 env11

X----C-I-Q-I-----G---YZ

Des peptides avantageux correspondant aux précédents, présentent les formules qui suivent :

env1

30 XRVTAIEKYLQDQARLNSWGCAFRQVCZ, ou

XRVTAIEKYLKDQAAQLNAWGCAFRQVCZ

env2

XSLEQAQIQQEKNMYELQKLN SWZ, ou

XLLEEAQIQQEKNMYELQKLN SWZ

env3

XELG DYKL VEITPIGFAPTKEKRYSSAHZ, ou

XELG DYKL VEITPIGLAPTNVKRYTTG-Z

5 (On remarquera que les peptides env1, env2, env3 attestent de la très grande parenté entre HIV-2 et SIV-1. En effet le premier peptide est inclu dans le génome de HIV-2 et le second, dans celui de SIV-1).

env4

XabcdVTVeYGV PfWogATHilFCAjZ,

10 dans lesquels les lettres de a à j peuvent avoir les significations suivantes :

a est C, E ou D

b est T, K, D, N ou I

c est Q ou L

d est Y ou W

15 e est F ou Y

f est T, V ou A

g est N ou E

h est I ou T

20 i est P ou T

j est T ou S

o est K ou R

env5

XabcoEdeLfNVTEgFhiWjNZ,

25 dans lequel les lettres de a à j peuvent avoir les significations suivantes :

a est D ou P

b est D ou N

c est Y ou P

30 d est I, V, I ou L

e est T, V, E ou A

f est V, G ou E ou -

g est A, N, G ou S

h est D ou N

35 i est A ou M

17

j est N, K ou E

o est Q ou S

env6

XLabcSdKPCVKLoPLCuefKZ,

5 dans lequel les lettres de a à f peuvent avoir les significations suivantes :

a est F ou W

b est E ou D

c est T ou Q

10 d est I ou L

e est A, S ou T .

f est M ou L

o est T ou S

u est V ou I

15 env7

XabCNxSyIocdCeKfghiz,

dans lequel les lettres de a à i et x et y peuvent avoir les significations suivantes :

a est N ou T ou I

20 b est H ou S ou N

c est E ou Q

d est S, A ou C

e est D ou P

f est H, V ou D

25 g est Y ou S

h est W ou F

i est D ou E

x est T ou R

y est V ou A

30 o est T ou Q

env8

XaIbcdYCxPeGfAgLhCiNjTZ,

dans lequel les lettres de a à k et x peuvent avoir les significations suivantes :

a est A ou P
b est R ou P
c est F, I ou C
d est R ou H
e est P ou A
f est Y ou F
g est L ou I
h est R ou K
i est - ou N
j est D ou K
x est A ou T

env9

XwabcxyAdCefghizWjkZ,
dans lequel les lettres de a à k et x à z peuvent avoir
les significations suivantes :

a est K ou - ou E
b est R ou -
c est P ou M ou I
d est W ou H ou Y
e est W ou N ou T ou R
f est F ou I
g est K ou S ou N ou G
h est G ou R ou E
i est - ou A ou T
j est K ou N ou D ou S
k est D ou A ou N ou K ou E
w est N, D ou I
x est R ou G ou K
y est Q ou K ou R
z est K ou E ou Q ou N

env10

XaGbDPEcdefghNCiGEFjYCokxlmnNZ,
dans lequel les lettres de a à n et x peuvent avoir les
significations suivantes :

19

a est K ou - ou G
b est S ou G ou -
c est V ou I
d est A ou V ou T
e est Y ou T ou M ou F
5 f est M ou H
g est W ou S
h est T ou F
i est R ou G
j est L ou F
10 o est N ou K
k est M ou S
l est W ou Q ou K ou G
m est F ou L
n est L ou F
15 x est T ou S ou N
env11
XabCdwCeIoQfIxgyhizGjk1YZ,
dans lequel les lettres de a à l et w à z peuvent avoir
les significations suivantes :
20 a est R ou T ou S ou N
b est N ou I
c est Y ou T
d est A ou L ou V
e est H ou R
25 f est I ou F
g est T ou M
h est H ou Q ou A
i est K ou E
j est R ou K
30 k est N ou A
l est V ou M
w est P ou Q
x est N ou K
y est W ou V
35

z est V ou T ou K

o est K ou R

La structure du peptide antigénique codé par le gène gag et désigné par gag1 est également représentée ci-après :

5 XDCKLVLKGLGaNPTLEEMLTAZ,

dans lequel la lettre a désigne M ou T.

Il sera remarqué que, d'une façon générale, les aminoacides ayant une signification univoque (donc représentés par une lettre majuscule correspondant à la nomenclature internationale) qui interviennent dans les définitions qui précèdent des peptides selon l'invention, se trouvent être la correspondance avec des aminoacides identiques placés dans le même ordre dans les séquences env ou gag correspondantes de la protéine env ou gag d'au moins l'un des HIV, ou de SIV-1.

Les positions de ces séquences sont soulignées et repérées au sein des séquences d'aminoacides des protéines env respectivement de HIV-2 ROD (CNCM n° I-532) et HIV-1 BRU (CNCM n° I-232) représentées à la figure 2. Par ailleurs, les alignements des acides aminés des protéines env et gag respectivement de SIV-1mac (CNCM n° I.521) et de HIV-2 ROD sont présentées à la figure 3 et à la figure 4.

Les traits pleins qui apparaissent en certaines localisations de ces séquences visent à souligner que certains aminoacides contenus dans ces séquences ont été volontairement déletés au plan de la présentation, afin de permettre la mise en alignement d'aminoacides respectivement identiques (alors marqués d'un astérisque) ou de deux points verticaux sur une même ligne verticale dans les séquences des protéines correspondantes de HIV-1 et de HIV-2 d'une part, de SIV et de HIV-2 d'autre part.

21

Outre les peptides précités, l'invention concerne également les peptides modifiés par insertion et/ou délétion et/ou substitution d'un ou plusieurs acides aminés, pour autant que les propriétés antigéniques ou immunogènes desdits peptides ne sont pas modifiées, ou que les propriétés de reconnaissance de l'antigène ou de l'anticorps avec lesdits peptides ne sont pas实质iellement modifiées.

Dans un mode de réalisation particulièrement préféré, l'invention concerne des peptides ayant des propriétés immunologiques en commun avec l'ossature peptidique de la glycoprotéine d'enveloppe des virus de la classe HIV-2, ces peptides contenant un nombre de résidus d'acides aminés n'excédant pas 40.

Ces peptides préférés selon l'invention ont les séquences suivantes :

env1

RVTAIEKYLQDQARLN SWGCAFRQVC

AIEKYLQDQ

20 RVSAIEKYLKDQ AQLNAWGCAFRQVC

AIEKYLKDQ

env2

SLEQAAQIQQEK NMYELQKLNSW

QIQQEK N

25 LLEEAQIQQEK NMYELQKLNSW

env3

ELG DYKLVEITPIGFAPTKEKRYSSAH

YKLVEITPIGFAPTKEK

ELG DYKLVEITPIGLAP TNVK RYT TG-

YKLVEITPIGLAP TNVK

env4

CTQYVTVFYGVPTWK NATIPLFCAT

VTVFYGVPTWK NAT

CIQYVTVFYGVPAWRNATIPLFCAT

VTVFYGVPAWRNAT

22

EKLWVTYYYYGVPVWKEATTLFCAS
VTYYYYGVPVWKEAT
EDLWVTYYYYGVPVWKEATTLFCAS.
VTYYYYGVPVWKEAT
5 DNLWVTYYYYGVPVWKEATTLFCAS
VTYYYYGVPVWKEAT
env5
DDYQEITL-NVTEAFDAWN
L-NVTEAF
10 DDYSELAL-NVTESFDAWEN
L-NVTESF
PNPQEVVVLVNVTENFNMWKN
LVNVTENF
PNPQEIELENVTTEGFNFMWKN
LENVTEGF
15 PNPQEIALENVTENFNMWKN
LENVTENF
env6
ETSIKPCVKLTPLCVAMK
ETSIKPCVKLSPLCITMR
20 DQSLKPCVKLTPLCVSLK
DQSLKPCVKLTPLCVTLN
PCVKLTPLCV
env7
25 NHCNTSVITESCD
NTSVIT
NHCNTSVIQECCD
NTSVIQ
TSCNTSVITQACP
30 NTSVIT
INCNTSVITQACP
NTSVIT
INCNTSAITQACP
NTSAIT

env8

YCAPPGYALLRC-NDT

YCAPAGFAILKCNNKT

YCAPAGFAILKCNDDKK

5 YCAPAGFAILKCRDKK

env9

NKRPRQAWCWFKG-KWKD

NERPKQAWCRFGG-NWKE

N--MRQAHCNISRAKWNA

D--IRRAYCTINETEWDK

10 I--IGQAHCNISRAQWSK

env10

KGSDPEVAYMWTNCRGEFLYCNMTWFLN

NCRGEFLYCN

15 GG-DPEVTFMWTNCRGEFLYCKMNWFLN

NCRGEFLYCK

-GGDPEIVTHSFNCNGEFFYCNSTQLFN

NCGGEFFYCN

-GGDPEITTHSFNCRGEFFYCNTSKLFN

NCRGEFFYCN

20 -GGDPEITTHSFNCNGEFFYCNTSGLFN

NCGGEFFYCN

env11

RNYAPCHIKQIINTWHKVGRNVY

CHIKQII

25 RNYVPCHIRQIINTWHKVGVKNVY

CHIRQII

TITLPCRIKQFINMWQEVGKAMY

CRIKQFI

30 SITLPCRIKQIINMWQKTCKAMY

CRIKQII

NITLQCRIKQIIKVMAGR-KAIY

CRIKQII

gag1

35 DCKLVLKGLGTNPTELLEMLTA

Les peptides selon l'invention peuvent encore avantageusement être préparés par les techniques classiques, dans le domaine de la synthèse des peptides. Cette synthèse peut être réalisée en solution homogène ou en phase solide.

Par exemple, on aura recours à la technique de synthèse en solution homogène décrit par Houbenweyl dans l'ouvrage intitulé "Méthode der Organischen Chemie" (Méthode de la Chimie Organique) édité par E. Wunsch, 10 vol. 15-I et II., THIEME, Stuttgart 1974.

Cette méthode de synthèse consiste à condenser successivement deux-à-deux les aminoacyles successifs dans l'ordre requis, ou à condenser des aminoacyles et des fragments préalablement formés et contenant déjà plusieurs aminoacyles dans l'ordre approprié, ou encore plusieurs fragments préalablement ainsi préparés, étant entendu que l'on aura eu soin de protéger au préalable toutes les fonctions réactives portées par ces aminoacyles ou fragments, à l'exception des fonctions amines de l'un et carboxyles de l'autre ou vice-versa, qui doivent normalement intervenir dans la formation des liaisons peptidiques, notamment après activation de la fonction carboxyle, selon les méthodes bien connues dans la synthèse des peptides. En variante, on pourra avoir recours à des réactions de couplage mettant en jeu des réactifs de couplage classique, du type carbodiimide, tels que par exemple la 1-éthyl-3-(3-diméthyl-amino-propyl)-carbodiimide. Lorsque l'aminoacyle mis en oeuvre possède une fonction acide supplémentaire (notamment dans le cas de l'acide glutamique), ces fonctions seront par exemple protégées, par des groupes t-bustylester.

Dans le cas de la synthèse progressive, acide aminé par acide aminé, la synthèse débute de préférence par la condensation de l'amino-acide C-terminal avec l'aminoacide qui correspond à l'aminoacyle voisin dans

la séquence désirée et ainsi de suite, de proche en proche, jusqu'à l'acide aminé N-terminal. Selon une autre technique préférée de l'invention, on a recours à celle décrite par R.D. MERRIFIELD dans l'article intitulé "Solid phase peptide synthesis" (J. Am. Soc., 5 45, 2149-2154).

Pour fabriquer une chaîne peptidique selon le procédé de MERRIFIELD, on a recours à une résine polymère très poreuse, sur laquelle on fixe le premier acide aminé C-terminal de la chaîne. Cet acide aminé est fixé 10 sur la résine par l'intermédiaire de son groupe carboxylique et sa fonction amine est protégée, par exemple par le groupe t-butyloxycarbonyle.

Lorsque le premier acide aminé C-terminal est 15 ainsi fixé sur la résine, on enlève le groupe protecteur de la fonction amine en lavant la résine avec un acide.

Dans le cas où le groupe protecteur de la fonction amine est le groupe t-butyloxycarbonyle, il peut être éliminé par traitement de la résine à l'aide 20 d'acide trifluoroacétique.

On couple ensuite le deuxième acide aminé qui 25 fournit le second amino-acyle de la séquence recherché, à partir du résidu amino-acyle C-terminal sur la fonction amine déprotégée du premier acide aminé C-terminal fixé sur la chaîne. De préférence, la fonction carboxyle de ce deuxième acide aminé est activée, par exemple par la dicyclohexylcarbodiimide, et la fonction amine est protégée, par exemple par le t-butyloxycarbonyle.

On obtient ainsi la première partie de la 30 chaîne peptidique recherchée, qui comporte deux acide aminés, et dont la fonction amine terminale est protégée. Comme précédemment, on déprotège la fonction amine et on peut ensuite procéder à la fixation du troisième aminoacyle, dans les conditions analogues à celles de l'addition du deuxième acide aminé C-terminal. 35

On fixe ainsi, les uns après les autres, les acides aminés qui vont constituer la chaîne peptidique sur le groupe amine chaque fois déprotégé au préalable de la portion de la chaîne peptidique déjà formée, et qui est rattachée à la résine.

5

Lorsque la totalité de la chaîne peptidique désirée est formée, on élimine les groupes protecteurs des différents acide aminés constituant la chaîne peptidique et on détache le peptide de la résine par exemple à l'aide d'acide fluorydrique.

10

10 L'invention concerne également les oligomères hydrosolubles des peptides monomères sus-indiqués. L'oligomérisation peut provoquer un accroissement de l'immunogénicité des peptides monomères selon l'invention. Sans qu'une telle indication chiffrée puisse être considérée comme limitative, on mentionnera néanmoins que ces oligomères peuvent, par exemple, contenir de 2 à 15 10 unités monomères.

20

Les unités monomères entrant dans cet oligomère sont soit toutes constituées par le polypeptide de séquence 1 ou par le polypeptide de séquence 2, soit par l'un et l'autre de ces polypeptides.

25

On peut avoir recours, pour réaliser l'oligomérisation, à toute technique de polymérisation couramment utilisée dans le domaine des peptides, cette polymérisation étant conduite jusqu'à l'obtention d'un oligomère ou polymère contenant le nombre de motifs monomères requis pour l'acquisition de l'immunogénicité désirée.

30

Une méthode d'oligomérisation ou de polymérisation du monomère consiste dans la réaction de celui-ci avec un agent de réticulation tel que le glutaraldéhyde.

35

On peut également avoir recours à d'autres méthodes d'oligomérisation ou de couplage, par exemple à

celle mettant en jeu des couplages successifs d'unités monomères, par l'intermédiaire de leurs fonctions terminales carboxyle et amine en présence d'agents de couplage homo- ou hétéro- bifonctionnels.

5 On peut également pour la production de molécules comportant un ou plusieurs motifs de 17 acides aminés tels que définis ci-dessus, avoir recours à des techniques du génie génétique mettant en oeuvre des micro-organismes transformés par un acide nucléique déterminé comprenant des séquences nucléotidiques appropriées correspondantes.

10 L'invention concerne également les acides nucléiques contenant une ou plusieurs séquences issues de la séquence de l'ADNc du virus HIV-2 ROD. Ces séquences repérées par la numérotation figurant sur la séquence précédemment décrite, codent pour certains peptides intéressants de l'invention.

15 Séquence codant pour env1 nucléotides 7850 à 7927

	"	"	<u>env2</u>	"	8030 à 8095
20	"	"	<u>env3</u>	"	7601 à 7636
	"	"	<u>env4</u>	"	6170 à 6247
	"	"	<u>env5</u>	"	6294 à 6349
	"	"	<u>env6</u>	"	6392 à 6445
	"	"	<u>env7</u>	"	6724 à 6763
25	"	"	<u>env8</u>	"	6794 à 6838
	"	"	<u>env9</u>	"	7112 à 7162
	"	"	<u>env10</u>	"	7253 à 7336
	"	"	<u>env11</u>	"	7358 à 7426
	"	"	<u>gag1</u>	"	1535 à 1597

30 L'invention concerne enfin les acides nucléiques correspondants du virus SIV, contenant une ou plusieurs séquences issues de l'ADNc du virus SIV-1. Ces séquences codant pour les peptides env1 à env11 et gag1 peuvent être repérés sur la figure 3 par comparaison 35 avec les séquences correspondantes décrites pour HIV-2.

Il va de soi que l'invention concerne les acides nucléiques correspondant à des séquences placées en des régions analogues des ADNc dérivés de variants de HIV-2 ROD ou de SIV, ainsi que tous les acides nucléiques dont les modifications vis à vis des précédents résulteraient de la mise à profit de la dégénérescence du code génétique.

L'invention concerne encore les conjugués obtenus par couplage covalent des peptides selon l'invention (ou des susdits oligomères) à des molécules porteuses (naturelles ou synthétiques), physiologiquement acceptables et non toxiques, par l'intermédiaire de groupements réactifs complémentaires respectivement portés par la molécule porteuse et le peptide. Des exemples de groupements appropriés sont illustrés dans ce qui suit :

A titre d'exemple de molécules porteuses ou supports macromoléculaires entrant dans la constitution des conjugués selon l'invention, on mentionnera des protéines naturelles, telles que l'anatoxine tétanique, l'ovalbulmine, des sérums albumines, des hémocytamines, etc...

A titre de support macromoléculaires synthétiques, on mentionnera par exemple des polylysines ou des poly(D-L-alanine)-poly(L-lysine).

La littérature mentionne d'autres types de supports macromoléculaires susceptibles d'être utilisés, lesquels présentent en général un poids moléculaire supérieur à 20 000.

Pour synthétiser les conjugués selon l'invention, on peut avoir recours à des procédés connus en soi, tels que celui décrit par FRANTZ et ROBERTSON dans *Infect. and Immunity*, 33, 193-198 (1981), ou celui décrit dans *Applied and Environmental Microbiology*, (octobre 1981), vol. 42, n° 4, 611-614 par P.E. KAUFFMAN

en utilisant le peptide et la molécule porteuse appropriée.

Dans la pratique, on utilisera avantageusement comme agent de couplage les composés suivants, cités à titre non limitatif : aldéhyde glutarique, chloroformiate d'éthyle, carbodiimides hydrosolubles [N-éthyl-N'(3-diméthylamino-propyl) carbodiimide, HCl], diisocyanates, bis-diazobenzidine, di- et trichloro-s-triazines, bromures de cyanogène, ainsi que les agents de couplage mentionnés dans Scand. J. Immunol., (1978), vol. 8, p. 7-23 (AVRAMEAS, TERNYNCK, GUESDON).

On peut avoir recours à tout procédé de couplage faisant intervenir d'une part une ou plusieurs fonctions réactives du peptide et d'autre part, une ou plusieurs fonctions réactives de molécules supports. Avantageusement, il s'agit des fonctions carboxyle et amine, lesquelles peuvent donner lieu à une réaction de couplage en présence d'un agent de couplage du genre de ceux utilisés dans la synthèse des protéines, par exemple, le 1-éthyl-3-(3-diméthylaminopropyl)-carbodiimide, le N-hydroxybenzotriazole, etc... On peut encore avoir recours à la glutaraldéhyde, notamment lorsqu'il s'agit de relier entre eux des groupes aminés respectivement portés par le peptide et la molécule support.

Les peptides selon l'invention possèdent des propriétés antigéniques. Ils peuvent donc être utilisés dans des procédés de diagnostic pour la détection d'une infection par le virus HIV-2.

Comme on l'a déjà mentionné, des études ont permis de distinguer deux groupes de peptides pouvant être mis en oeuvre dans des procédés de détection d'anticorps contre le virus HIV-2 dans un fluide biologique humain, notamment un sérum ou un liquide céphalo-rachidien.

30

Un premier groupe (I) comprend les peptides gag. Ces peptides reconnaissent des anticorps anti-HIV-2 et sont donc capables de détecter une infection par HIV-2. Ils reconnaissent également dans une certaine mesure des anticorps anti-HIV-1.

Un second groupe (II) comprend des peptides qui correspondent plus particulièrement à ceux qui sont situés dans la partie transmembranaire et dans la fin de la partie externe de la protéine d'enveloppe. Ces peptides sont ceux précédemment désignés par env1, env2 et env3. Ils permettent la reconnaissance spécifique de la présence d'anticorps contre HIV-2 et permettent donc de discriminer chez une personne les infections passées ou présentes dues à un HIV, plus particulièrement entre celles qui ont été provoquées par un HIV-2 et celles qui l'ont été par un HIV-1.

L'invention concerne également une composition contenant au moins l'un des susdits peptides ou au moins un oligomère de ce peptide, caractérisée en ce qu'elle a la capacité d'être reconnue par des sérum s d'origine humaine contenant des anticorps contre le virus HIV-2.

L'invention concerne un procédé de diagnostic in vitro un ou des peptides selon l'invention pour la détection d'anticorps contre HIV-2 dans des fluides biologiques, en particulier dans des sérum s humains.

D'une façon générale le procédé de diagnostic in vitro ci-dessus comprend les étapes suivantes :

- la mise en contact de ce liquide biologique avec lesdits peptides,
- la détection de la présence éventuelle d'un complexe peptidé-anticorps par des méthodes physiques ou chimiques, dans ledit liquide biologique.

Dans un mode de réalisation préféré de l'invention, la détection du complexe antigène-anticorps est réalisée grâce à des tests immunoenzymatiques (du type

ELISA), immunofluorescents (du type IFA), radioimmunologiques (du type RIA) ou des tests de radioimmunoprécipitation (du type RIPA).

Ainsi l'invention concerne également tout peptide selon 5 l'invention marqué à l'aide d'un marqueur adéquat du type enzymatique, fluorescent, radioactif, etc...

De telles méthodes comprennent par exemple les étapes suivantes :

- dépôt de quantités déterminées d'une 10 composition peptidique selon l'invention dans les puits d'une microplaquette de titration,

- introduction dans lesdits puits de dilutions croissantes du sérum devant être diagnostiqué,

- incubation de la microplaquette,

15 - rinçages répétés de la microplaquette,

- introduction dans les puits de la microplaquette d'anticorps marqués contre des immunoglobulines du sang, le marquage de ces anticorps ayant été réalisé à l'aide d'une enzyme sélectionnée parmi celles qui sont 20 capables d'hydrolyser un substrat en modifiant l'absorption des radiations de ce dernier, au moins à une longueur d'onde déterminée,

- détection, en comparaison avec un témoin de contrôle, de la quantité de substrat hydrolysé.

25 L'invention concerne également des coffrets ou kits pour le diagnostic in vitro de la présence d'anticorps contre les virus HIV-2 et, dans certains cas, HIV-1 dans un milieu biologique qui comprennent :

30 - une composition peptidique selon l'invention,

- les réactifs pour la constitution du milieu propice à la réalisation de la réaction immunologique,

35 - les réactifs permettant la détection du complexe antigènes-anticorps produit par la réaction immunologique. De tels réactifs peuvent également porter

un marqueur, ou être susceptibles d'être reconnus à leur tour par un réactif marqué. Plus particulièrement dans le cas où la composition polypeptidique sus-mentionnée n'est pas marquée.

5 - un tissu fluide biologique de référence dé-pourvu d'anticorps reconnus par la composition polypep-tidique sus-mentionnée,

L'invention concerne les anticorps eux-mêmes formés contre les peptides de l'invention.

10 Il va de soi que cette production n'est pas limitée aux anticorps polyclonaux.

Elle s'applique encore à tout anticorps mono-clonal produit par tout hybridome susceptible d'être formé, par des méthodes classiques, à partir des cel-lules spléniques d'un animal, notamment de souris ou de rat, immunisés contre l'un des peptides de l'invention, d'une part et des cellules d'une lignée de cellule myélome approprié d'autre part, et d'être sélectionné, par sa capacité à produire des anticorps monoclonaux reconnaissant le peptide initialement mis en oeuvre pour l'immunisation des animaux.

25 L'invention concerne également des composi-tions immunogènes pour la production de vaccins dont le principe actif est constitué par au moins un peptide selon l'invention, ou un oligomère de ce peptide, ou un peptide sous forme conjuguée avec une molécule porteuse, caractérisées en ce qu'elles induisent la production d'anticorps contre les susdits peptides en quantité suf-fisante pour aussi inhiber les protéines du rétrovirus HIV-2, voire même le rétrovirus HIV-2 entrant en asso-ciation avec un véhicule pharmaceutiquement acceptable.

30 Les compositions immunogènes pour la produc-tion de vaccins comprennent de façon avantageuse plus particulièremenr au moins l'un des peptides précédemment désignés par env4, env5, env6, env7, env8, env9, env10,

env11 voir des mélanges de ceux-ci.

Parmi ces peptides aptes à constituer des principes actifs de vaccins certains sont particulièrement préférés car ils possèdent une structure de base en acides aminés correspondant à des régions des glycoprotéines d'enveloppe qui présentent un important degré de conservation, non seulement dans les HIV-2, et dans les SIV, mais également dans les HIV-1. Ces peptides particulièrement préférés sont les peptides désignés par env4, certains peptides env5, env6 et env10.

Dans un mode de réalisation préféré de l'invention les peptides immunogènes (ou fragments de ces peptides) aptes à constituer des principes actifs de vaccins sont choisis parmi ceux dont les formules correspondent à des séquences qui, dans les glycoprotéines d'enveloppe de HIV-2, SIV et HIV-1 présentant une homologie en acides aminés supérieure à 50%, qui appartiennent à la partie externe de l'enveloppe du virus, qui sont dépourvus ou presque de délétions, et qui renferment des résidus de cystéine favorables à la stabilisation des liaisons et à la constitution de boucles d'ancrage.

Les peptides suivants appartiennent à cette catégorie de peptides préférés.

env4

XVTV-YGVP-W--ATZ

env5

XL-NVTE-FZ

env6

30 XKPCVKL-PLC-Z

env7

XN-S-I-Z

env10

XNC-GEF-YC-Z

env11

XC-I-Q-IZ

Des compositions pharmaceutiques avantageuses sont constituées par des solutions, suspensions ou liposomes injectables contenant une dose efficace d'au moins un produit selon l'invention. De préférence, ces solutions, suspensions ou liposomes sont réalisés dans une phase aqueuse stérilisée isotonique, de préférence saline ou glucosée.

L'invention concerne plus particulièrement de telles suspensions, solutions ou forme liposome qui sont aptes à être administrées par injections intradermiques, intramusculaires ou sous-cutanées, ou encore par scarifications.

Elle concerne également des compositions pharmaceutiques administrables par d'autres voies, notamment par voie orale.

Les compositions pharmaceutiques selon l'invention, utilisables en tant que vaccins pour être efficaces dans la production d'anticorps contre le virus HIV-2, peuvent à titre d'exemple être administrées à des doses situées entre 10 et 500 µg/kg, de peptides selon l'invention, de préférence de 50 à 100 µg/kg.

Ces doses sont citées à titre d'exemple et ne possèdent en aucun cas un caractère limitatif.

Comme on l'a déjà indiqué plus haut les différents peptides qui ont été définis peuvent comprendre des modifications qui n'ont pas pour effet de modifier de façon fondamentale leurs propriétés immunologiques. Les peptides équivalents qui en résultent entrent dans le champ des revendications qui suivent. A titre d'exemples de peptides équivalents on mentionnera ceux dont les structures en correspondance avec des régions des ADNc d'autres variants de HIV-2 de SIV ou de HIV-1, lorsque ces régions ont été mises en alignement dans des

35

conditions semblables à celles qui ont été évoquées ci-dessus, à propos de HIV-2 ROD, SIV et HIV-1 BRU. A titre d'autres de ces peptides, on mentionnera ceux dont les structures sont en correspondance avec de telles régions dans les ADNc qui ont fait l'objet de dépôts à la CNCM, notamment sous les numéros I-502, I-642 (HIV-2 IRMO), I-643 (HIV-2 EHO) ainsi que, dans les cas appropriés, des variants de HIV-1 qui ont fait l'objet de dépôts à la CNCM sous les numéros I-232, I-240, I-241, I-550, I-551.

10 Les peptides selon l'invention peuvent encore être définis par les formules suivantes (dans lesquels X, Z et les tirets "--" ont les significations sus-indiquées) :

15

20

25

30

35

36

XRV-AIEKYL-DQA-LN-WGCAFRQVCZ

XAIEKYL-DZ

X-LE-AQIQQEKNMYELQKLNSWZ

5 XQIQQEKNZ

XELG DYKLVEITPIG-APT--KR-----Z

XYKLVEITPIG-APT--KRZ

10 X----VTV-YGVP-W--AT--LFCA-Z

XVTV-YGVP-W--ATZ

X----E--L-NVTE-F--W-NZ

XL-NVTE-FZ

15 XL---S-KPCVKL-PLC----Z

XKPCVKL-PLC-Z

XS-KPCVKL-PLC-Z

20 X---N-S-I---C-Z

XN-S-I-Z

XYC-P-G-A-L-C-N-TZ

25 X-----A-C-----W--Z

NKRPRQAWCWFKG-KWKD

X-G-DPE-----NC-GEF-YC-----NZ

30 X-----C-I-Q-I-----G---YZ

• L'invention concerne également outre les peptides de SIV déjà décrits, les protéines codées par l'ADNc du virus SIV. Elle concerne également les protéines de tout virus immunologiquement étroitement apparenté à SIV-1mac, en particulier tout virus dont les protéines et les glycoprotéines d'enveloppe croisent immunologiquement et dont les ADNc présentent un pourcentage d'homologie d'au moins 95% et de préférence d'au moins 98%.

En particulier l'invention concerne :

10 1/ les protéines et glycoprotéines de l'enveloppe codées par le gène env et représentées à la figure 3,
2/ la protéine GAG représentée à la figure 4,
3/ la protéine POL représentée à la figure 5,
4/ la protéine Q représentée à la figure 6,
15 5/ la protéine R représentée à la figure 7,
6/ la protéine X représentée à la figure 8,
7/ la protéine F représentée à la figure 9,
8/ la protéine TAT représentée à la figure 10,

Les acides aminés des protéines précitées de SIV, ont été représentées en alignement avec les séquences d'acides aminés des protéines correspondantes du virus HIV-2 ; les points verticaux figurant entre les deux séquences correspondent aux acides aminés communs entre les protéines des deux virus.

25 Les séquences d'ADNc codant pour les protéines précitées apparaissent sur la figure 1B. L'invention concerne, outre les séquences nucléiques précitées toute séquence nucléique modifiée, qui code également pour les protéines du rétrovirus SIV ou d'un variant.

30 Ces séquences d'ADNc repérées par la numérotation figurant sur les séquences décrites précédemment (figure 1B) sont les suivantes :

	-séquence codant pour	<u>GAG</u> ,	nucléotides	551 à 2068
	-	"	<u>POL</u> ,	" 1726 à 4893
	-	"	Q,	" 4826 à 5467
	-	"	X,	" 5298 à 5633
5	-	"	R,	" 5637 à 5939
	-	"	F,	" 8569 à 9354
	-	"	TAT-1	" 5788 à 6084
	-	"	ART-1	" 6014 à 6130
	-	"	TAT-2	" 8296 à 8391
10	-	"	ART-2	" 8294 à 8548
	-	"	ENV	" 6090 à 8732

L'invention concerne donc naturellement les protéines précédemment décrites, lorsqu'elles sont obtenues à partir du virus SIV ou lorsqu'elles sont préparées par une méthode de synthèse, notamment par l'une des méthodes déjà citées en rapport avec la synthèse des peptides de plus petite taille.

L'invention concerne également l'utilisation des protéines précédentes pour le diagnostic de la présence éventuelle d'anticorps dirigés contre les protéines de HIV-2, voire contre HIV-2 en entier, ou pour certaines d'entre elles l'utilisation aux fins de diagnostic d'une infection due à l'un des virus HIV. Ainsi le peptide GAG codé par le gène correspondant peut être utilisé pour repérer la présence éventuelle d'anticorps anti-HIV-1 ou anti-HIV-2. Les protéines ENV sont utilisées de préférence pour le diagnostic spécifique d'une infection due à HIV-2 ou un de ses variants, parfois pour le diagnostic d'une infection par HIV-2 ou HIV-1.

L'invention concerne donc également un procédé de diagnostic in vitro de détection d'anticorps contre HIV-2 et éventuellement contre HIV-1 dans des fluides biologiques et en particulier dans des sérum humains. De tels procédés applicables pour l'utilisation des protéines précédentes de SIV comme protéines de diagnostic,

ont déjà été décrits dans la présente invention.

L'invention concerne aussi des coffrets ou "kits" pour le diagnostic in vitro de la présence d'anticorps le virus HIV-2 et dans certains cas contre HIV-1 dans un milieu biologique. De tels kits mettant en oeuvre les peptides précédents ont également été décrits dans la présente invention.

L'invention concerne également des compositions immunogènes pour la production de vaccins, dont le principe actif est constitué de façon avantageuse par au moins la partie de la protéine ENV du virus SIV, cette protéine pouvant être sous forme conjuguée avec une molécule porteuse. Ces compositions immunogènes induisent la production d'anticorps contre le susdit peptide en quantité suffisante pour inhiber les protéines du rétrovirus HIV-2, voire le rétrovirus HIV-2 lui-même.

Toutefois l'utilisation aux fins de diagnostic des protéines de SIV n'est en rien limitée à celle des seuls protéines ENV ou GAG. D'autres protéines parmi celles décrites peuvent être envisagées, pour préparer des compositions de diagnostic voire de vaccin.

25

30

35

REVENDICATIONS

1/ Peptide ayant des propriétés immunologiques en commun avec celles de l'ossature peptidique de la glycoprotéine d'enveloppe des virus de la classe HIV-2, caractérisé en ce qu'il a également une structure peptidique en commun avec l'ossature peptidique de la glycoprotéine de SIV.1.

2/ Peptide ayant des propriétés immunologiques en commun avec celles de l'ossature peptidique de la glycoprotéine d'enveloppe des virus de la classe HIV-2, ces peptides contenant un nombre de résidus d'acides aminés n'excédant pas 40, caractérisé en ce qu'il a également une structure peptidique en commun avec l'ossature peptidique de la glycoprotéine de SIV.1.

15 3/ Peptide selon la revendication 2 caractérisé par l'une des formules :

XRV-AIEKYL-DQA-LN-WGCAFRQVCZ

XAIEKYL-DZ

dans laquelle X et Z sont des groupements OH ou NH₂ ou, dans la mesure où les propriétés immunologiques du peptide dépourvu de ces groupes ne s'en trouvent pas essentiellement modifiées, des groupes comportant de 1 à 5 résidus d'acides aminés, et chacun des tirets correspond à un résidu aminoacyle choisi parmi ceux qui permettent de conserver au peptide sus-défini les propriétés immunologiques de l'une des séquences suivantes :

RVTAIEKYLQDQARLNSWGCAFRQVC

AIEKYLQDQ

RVSAIEKYLKDQAQQLNAWGCAFRQVC

30 AIEKYLKDQ

4/ Peptide selon la revendication 2 caractérisé par l'une des formules :

X-LE-AQIQQEKNMYELQKLNSWZ

XQIQQEKNZ

35 dans laquelle X et Z sont des groupements OH ou NH₂ ou,

41

5 dans la mesure où les propriétés immunologiques du peptide dépourvu de ces groupes ne s'en trouvent pas essentiellement modifiées, des groupes comportant de 1 à 5 résidus d'acides aminés, et chacun des tirets correspond à un résidu aminoacyle choisi parmi ceux qui permettent de conserver au peptide sus-défini les propriétés immunologiques de l'une des séquences suivantes :

SLEQAQIQQEKNMYELQKLN
SW

QIQQEKN

10 LLEEAQIQQEKNMYELQKLN
SW

5/ Peptide selon la revendication 2 caractérisé par l'une des formules :

XELGDYKLVEITPIG-APT--KR-----Z

XYKLVEITPIG-APT--KRZ

15 dans laquelle X et Z sont des groupements OH ou NH₂ ou, dans la mesure où les propriétés immunologiques du peptide dépourvu de ces groupes ne s'en trouvent pas essentiellement modifiées, des groupes comportant de 1 à 5 résidus d'acides aminés, et chacun des tirets correspond à un résidu aminoacyle choisi parmi ceux qui permettent de conserver au peptide sus-défini les propriétés immunologiques de l'une des séquences suivantes :

ELGDYKLVEITPIGFAPTKEKRYSSAH

YKLVEITPIGFAPTKEK

25 ELGDYKLVEITPIGLAPTNVKRYTTG-

YKLVEITPIGLAPTNVK

6/ Peptide selon la revendication 2 caractérisé par l'une des formules :

X---VTV-YGVP-W--AT--LFCA-Z

XVTW-YGVP-W--ATZ

30 dans laquelle X et Z sont des groupements OH ou NH₂ ou, dans la mesure où les propriétés immunologiques du peptide dépourvu de ces groupes ne s'en trouvent pas essentiellement modifiées, des groupes comportant de 1 à 5 résidus d'acides aminés, et chacun des tirets correspond

35

42

à un résidu aminoacyle choisi parmi ceux qui permettent de conserver au peptide sus-défini les propriétés immunologiques de l'une des séquences suivantes :

CTQYVTVFYGVPTWKNATIPLFCAT

5 VTVFYGVPTWKNAT

CIQYVTVFYGVPAWRNATIPLFCAT

VTVFYGVPAWRNAT

EKLWVTVYYGVPVWKEATTTLFCAS

VTVYYGVPVWKEAT

10 7/ Peptide selon la revendication 6 caractérisé par l'une des formules :

CTQYVTVFYGVPTWKNATIPLFCAT

VTVFYGVPTWKNAT

CIQYVTVFYGVPAWRNATIPLFCAT

VTVFYGVPAWRNAT

15 EKLWVTVYYGVPVWKEATTTLFCAS

VTVYYGVPVWKEAT

EDLWVTVYYGVPVWKEATTTLFCAS

VTVYYGVPVWKEAT

20 DN LWVTVYYGVPVWKEATTTLFCAS

VTVYYGVPVWKEAT

8/ Peptide selon la revendication 2 caractérisé par l'une des formules :

X---E--L-NVTE-F--W-NZ

25 dans laquelle X et Z sont des groupements OH ou NH₂ ou, dans la mesure où les propriétés immunologiques du peptide dépourvu de ces groupes ne s'en trouvent pas essentiellement modifiées, des groupes comportant de 1 à 5 résidus d'acides aminés, et chacun des tirets correspond à un résidu aminoacyle choisi parmi ceux qui permettent de conserver au peptide sus-défini les propriétés immunologiques de l'une des séquences suivantes :

DDYQEITL-NVTEAFDAWNN

35 L-NVTE

DDYSELAL-NVTESFDAWEN
PNPQEVVLVNVTENFNMWKN
LVNVTE

9/ Peptide selon la revendication 8 caractérisé
5 par l'une des formules :

DDYQEITL-NVTEAFDAWNN
L-NVTEAF

DDYSELAL-NVTESFDAWEN
L-NVTESF
10 PNPQEVVLVNVTENFNMWKN
LVNVTFNF

PNPQEIELENVTENFGFNMWKN
LENVTEGF
PNPQEIALENVTENFNMWKN
LENVTFNF

15 10/ Peptide selon la revendication 2 caractérisé
par l'une des formules :

XL---S-KPCVKL-PLC----Z
XKPCVKLTPLCVZ
XS-KPCVKLTPLCVZ

20 dans laquelle X et Z sont des groupements OH ou NH₂ ou,
dans la mesure où les propriétés immunologiques du pep-
tide dépourvu de ces groupes ne s'en trouvent pas essen-
tiellement modifiées, des groupes comportant de 1 à 5
25 résidus d'acides aminés, et chacun des tirets correspond
à un résidu aminoacyle choisi parmi ceux qui permettent
de conserver au peptide sus-défini les propriétés immu-
nologiques de l'une des séquences suivantes :

LFETSIKPCVKLTPLCVAMK
LFETSIKPCVKLSPLCITMR
30 LWDQSLKPCVKLTPLCVSLK
KPCVKLTPLCV
KPCVKLSPLCI
SLKPCVKLTPLCV

11/ Peptide selon la revendication 10 caractérisé par l'une des structures suivantes :

LFETSIKPCVKLTPLCVAMK

LFETSIKPCVKLSPLCITMR

5 LWDQSLKPCVKLTPLCVSLK

LWDQSLKPCVKLTPLCVTLN

PCVKLTPLCV

KPCVKLSPLCI

12/ Peptide selon la revendication 2 caractérisé en ce qu'il contient la structure de base :

10 X---N-S-I---C-Z

XN-S-I-Z

dans laquelle X et Z sont des groupements OH ou NH₂ ou, dans la mesure où les propriétés immunologiques du peptide dépourvu de ces groupes ne s'en trouvent pas essentiellement modifiées, des groupes comportant de 1 à 5 résidus d'acides aminés, et chacun des tirets correspond à un résidu aminoacyle choisi parmi ceux qui permettent de conserver au peptide sus-défini les propriétés immunologiques de l'une des séquences suivantes :

20 NHCNTSVITESCD

NTSVIT

NHCNTSVIQECCD

NTSVIQ

25 TSCNTSVITQACP

NTSVIT

13/ Peptide selon la revendication 12 caractérisé par l'une des formules suivantes :

NHCNTSVITESCD

30 NTSVIT

NHCNTSVIQECCD

NTSVIQ

TSCNTSVITQACP

NTSVIT

35 INCNTSVITQACP

NTSVIT

INCNTSAITQACP

NTSAIT

14/ Peptide selon la revendication 2 caractérisé
par l'une des formules suivantes :

5 XYC-P-G-A-L-C-N-TZ

dans laquelle X et Z sont des groupements OH ou NH₂ ou,
dans la mesure où les propriétés immunologiques du
peptide dépourvu de ces groupes ne s'en trouvent pas es-
sentiellement modifiées, des groupes comportant de 1 à 5
10 résidus d'acides aminés, et chacun des tirets correspond
à un résidu aminoacyle choisi parmi ceux qui permettent
de conserver au peptide sus-défini les propriétés immu-
nologiques de l'une des séquences suivantes :

15 YCAPPGYALLRC-NDT

YCAPAGFAILKCNNKT

15/ Peptide selon la revendication 14 caractérisé
par l'une des formules :

YCAPPGYALLRC-NDT

20 YCAPAGFAILKCNNKT

YCAPAGFAILKCNDKK

YCAPAGFAILKCRDKK

16/ Peptide selon la revendication 2 caractérisé
par la formule :

25 X-----A-C-----W--Z

dans laquelle X et Z sont des groupements OH ou NH₂ ou,
dans la mesure où les propriétés immunologiques du
peptide dépourvu de ces groupes ne s'en trouvent pas es-
sentiellement modifiées, des groupes comportant de 1 à 5
30 résidus d'acides aminés, et chacun des tirets correspond
à un résidu aminoacyle choisi parmi ceux qui permettent
de conserver au peptide sus-défini les propriétés immu-
nologiques de l'une des séquences suivantes :

NKRPRQAWCWFKG-KWKD

35 NERPKQAWCRFGG-NWKE

N--MRQAHCNISRAKWNA

17/ Peptide selon la revendication 16 caractérisé par la formule suivante :

NKRPRQAWCWFKG-KWKD

5 NERPKQAWCRFGG-KWKE

N--MRQAHCNISRAKWNA

D--IRRAYCTINETEWDK

I--IGQAHCNISRAQWSK

18/ Peptide selon la revendication 2 caractérisé 10 par la formule suivantes :

X-G-DPE-----NC-GEF-YC-----NZ

XNC-GEF-YC-Z

15 dans laquelle X et Z sont des groupements OH ou NH₂ ou, dans la mesure où les propriétés immunologiques du peptide dépourvu de ces groupes ne s'en trouvent pas essentiellement modifiées, des groupes comportant de 1 à 5 résidus d'acides aminés, et chacun des tirets correspond à un résidu aminoacyle choisi parmi ceux qui permettent de conserver au peptide sus-défini les propriétés immuno- 20 nologiques de l'une des séquences suivantes :

KGS DPEVAYMWTNCRGEFLYCNMTWFLN

NCRGEFLYCN

GG-DPEVTMWTNCRGEFLYCKMNWFLN

NCRGEFLYCK

25 -GGDPEIVTHSFNCGGEFFYCNSTQLFN
NCGGEFFYCN

19/ Peptide selon la revendication 18 caractérisé par l'une des structures suivantes :

KGS DPEVAYMWTNCRGEFLYCNMTWFLN

NCRGEFLYCN

30 GG-DPEVTMWTNCRGEFLYCKMNWFLN

NCRGEFLYCK

-GGDPEIVTHSFNCGGEFFYCNSTQLFN

NCGGEFFYCN

35 -GGDPEITTHSFNCRGEFFYCNTSKLFN

NCRGEFFYCN

-GGDPEITTHSFNCGGEFFYCNTSGLFN

NCGGEFFYCN

20/ Peptide selon la revendication 2 caractérisé

par l'une des formules suivantes :

5 X-----C-I-Q-I-----G---YZ

XC-I-Q-IZ

dans laquelle X et Z sont des groupements OH ou NH₂ ou,
dans la mesure où les propriétés immunologiques du
peptide dépourvu de ces groupes ne s'en trouvent pas es-
sentiellement modifiées, des groupes comportant de 1 à 5
résidus d'acides aminés, et chacun des tirets correspond
à un résidu aminoacyle choisi parmi ceux qui permettent
de conserver au peptide sus-défini les propriétés immu-
nologiques de l'une des séquences suivantes :

15 RNYAPCHIKQIINTWHKVGRNVY

CHIKQII

RNYVPCHIRQIINTWHKVGVKNVY

CHIRQII

20 TITLPCRIKQFINMWQEVGKAMY

CRIKQFI

21/ Peptide selon la revendication 20 caractérisé
par l'une des structures suivantes :

RNYAPCHIKQIINTWHKVGRNVY

CHIKQII

25 RNYVPCHIRQIINTWHKVGVKNVY

CHIRQII

TITLPCRIKQFINMWQEVGKAMY

CRIKQFI

30 SITLPCRIKQIINMWQKTCKAMY

CRIKQII

NITLQCRIKQIIMVAGR-KAIY

CRIKQII

22/ Peptide antigénique gag1, caractérisé par
l'une des structures de base :

35

XDCKLVLKGLGMNPTLEEMLTAZ

XDCKLVLKGLGTNPTLEEMLTAZ

dans lesquelles X et Z sont des groupements OH ou NH₂ ou, dans la mesure où les propriétés immunologiques du peptide dépourvu de ces groupes ne s'en trouvent pas essentiellement modifiées, des groupes comportant de 1 à 5 résidus d'acides aminés, et dans lesquelles chacun des tirets correspond à un résidu aminoacyle choisi parmi ceux qui permettent de conserver au peptide sus-défini les propriétés immunologiques de l'une ou l'autre des séquences suivantes :

DCKLVLKGLGMNPTLEEMLTA

DCKLVLKGLGTNPTLEEMLTA

23/ Séquence nucléotidique caractérisée en ce qu'elle renferme tout ou partie de la séquence d'acides nucléiques définie à la figure 1B.

24/ Séquence nucléotidique caractérisée en ce qu'elle renferme tout ou partie de la séquence d'acides nucléiques définie à la figure 1C.

25/ 25/ Séquence nucléotidique selon la revendication 23, caractérisée en ce qu'elle comprend les séquences nucléotidiques :

GAG s'étendant entre les nucléotides 550 à 2068

POL	"	"	"	1726 à 4893
Q	"	"	"	4826 à 5467
X	"	"	"	5298 à 5633
R	"	"	"	5637 à 5939
F	"	"	"	8569 à 9354
TAT-1	"	"	"	5788 à 6084
ART-1	"	"	"	6014 à 6130
TAT-2	"	"	"	8296 à 8391
ART-2	"	"	"	8294 à 8548
LTR	"	"	"	8950 à 9468 <u>et</u> 1 à 316
ENV	"	"	"	6090 à 8732

26/ Peptide ayant une structure peptidique en commun avec l'ossature peptidique de SIV-1, caractérisé en ce qu'il comprend tout ou partie des séquences d'acides aminés parmi les séquences suivantes :

5 ENV représentée à la figure 3

<u>GAG</u>	"	"	4
<u>POL</u>	"	"	5
Q	"	"	6
R	"	"	7
X	"	"	8
F	"	"	9
TAT	"	"	10
ART	"	"	11

27/ 15 Acide nucléique recombinant caractérisé en ce qu'il comprend la totalité ou une partie d'un ADNc selon 1 une quelconque des revendications 23 à 25, inséré dans un acide nucléique provenant d'un vecteur.

28/ 20 Acide nucléique recombinant selon la revendication 27, caractérisé en ce qu'il est marqué.

29/ 25 Composition antigénique contenant le peptide gag selon la revendication 26 ou 27, au moins un peptide gag1 selon la revendication 22 ou au moins un oligomère de ce peptide, caractérisée en ce qu'elle a la capacité d'être reconnue par des fluides biologiques d'origine humaine, notamment des sérums contenant des anticorps anti-HIV-2 et dans une certaine mesure des anticorps anti-HIV-1.

30/ 30 Composition antigénique contenant le peptide env selon la revendication 26 ou au moins un peptide selon les revendications 3, 4 et 5 ou au moins un oligomère de ce peptide, caractérisée en ce qu'elle reconnaissent spécifiquement la présence d'anticorps contre HIV-2.

31/ 35 Composition immunogène contenant tout ou partie du peptide env selon la revendication 26 ou au moins

un peptide ou au moins un oligomère de ce peptide ou ce peptide sous forme conjuguée avec une molécule porteuse, selon les revendications 6 à 21, en association avec un véhicule pharmaceutique acceptable pour la production de vaccins, caractérisée en ce qu'elle induit la production d'anticorps contre les susdits peptides en quantité suffisante pour inhiber efficacement les protéines du rétrovirus HIV-2, voire même le rétrovirus HIV-2 entier.

32/ Composition immunogène selon la revendication 31 caractérisée en ce qu'elle contient les peptides dont les formules correspondent à des séquences qui, dans les glycoprotéines d'enveloppe de HIV-2, SIV-1 et HIV-1 présentent une homologie en acides aminés supérieure à 50%.

33/ Composition immunogène selon l'une des revendications 31 ou 32, caractérisée en ce qu'elle contient au moins un peptide ou au moins un oligomère de ce peptide ou ce peptide sous forme conjuguée avec une molécule porteuse choisi parmi env4, env5, env6 et env10.

34/ Procédé de diagnostic in vitro de l'infection par HIV-2 dans un liquide biologique comprenant :

- la mise en contact de ce liquide biologique avec au moins un peptide selon l'une des revendications 1, 2, 3, 4, 5, 22 ou un conjugué de ces peptides avec une molécule porteuse ou des peptides gag ou env selon la revendication 26.

- la détection de la présence éventuelle d'un complexe antigène-anticorps par des méthodes physiques ou chimiques, dans ledit liquide biologique.

35/ Procédé de diagnostic in vitro de l'infection par HIV-2 dans un liquide biologique selon la revendication 34, caractérisé en ce que la détection du complexe antigène-anticorps éventuellement formé est réalisée grâce à des tests immunoenzymatiques (du type

51

ELISA) immunofluorescents (du type IFA) radioimmunologiques (du type RIA) ou des tests de radioimmunoprécipitation (du type RIPA).

36/ 5 Kit pour le diagnostic in vitro de l'infection par HIV-2 dans un liquide biologique caractérisé en ce qu'il comprend :

- 10 - une composition peptidique contenant un peptide selon l'une des revendications 1 à 5, 22, ou un mélange de ces peptides, ou un conjugué de ces peptides avec une molécule porteuse, ou les peptides gag ou env selon la revendication 26,
- un réactif pour la constitution du milieu propice à la réalisation d'une réaction immunologique,
- un ou plusieurs réactifs éventuellement marqué pour la détection du complexe antigène-anticorps formé par la réaction immunologique,
- 15. - un liquide biologique de référence dépourvu d'anticorps reconnus par la susdite composition peptidique.

20

25

30

35

FIG. 1.A*i*

HIV2.ROD

R
 GTCGCTCTGGGAGAGGGCTGGCAGATTGAGCCCTGGGAGGTTCTCTCCAGCACTAGCAGG
 TAGAGCCTGGGTGTTCCCTGCTAGACTCTCACCAAGCACTTGGCCGGTGCTGGGCAGACGG
 100 R US
 CCCACCGCTTGCTTAACCTCTTAAATAAGCTGCCAGTTAGAAGCAAGTTAAGT
 CTCTGCTCCCATCTCTCTAGTCGCCGCCGGTCATTGGTGTTCACCTGAGTAACAAGA
 200
 CCCTGGTCTGTTAGGACCCCTTGTGCTTGGAAACCGAGGCAGGAAAATCCCTAGCAGG
 300
 TTGGCGCTGAACAGGGACTTGAAAGAAGACTGAGAAGTCTTGGAACACCGCTGAGTGAAG
 GCAGTAAGGGCGGCAGGAACAAACCACGACGGAGTGCTCTAGAAAGGCAGGGCCGAGG
 400
 TACCAAAGGCAGCGTGTGGAGCGGGAGGAGAAGAGGCGCTCCGGGTGAAGGTAAGTACCTA
 CACCAAAAAACTGTAGCCGAAAGGGCTTGCATCCTACCTTACAGCTAGAAGATTGTG
 500
 MetGlyAlaArgAsnSerValLeuArgGlyLysLysAlaAspGluLeuGluArgIle
 GGAGATGGGCCGAGAAACTCCGTCTGAGAGGGAAAAAGCAGATGAATTAGAAAGAAT
 600
 ArgLeuArgProGlyGlyLysLysTyrArgLeuLysHisIleValTrpAlaAlaAsn
 CAGGTTACGGCCCCGGCGGAAAGAAAAAGTACAGGCTAAACATATTGTGTGGCAGCGAA
 LysLeuAspArgPheGlyLeuAlaGluSerLeuLeuGluSerLysGluGlyCysGlnLys
 TAAATTGGACAGATTCCGATTAGCAGAGAGCCTGTGGAGTCAAAAGAGGGTTCTAAAAA
 700
 IleLeuThrValLeuAspProMetValProThrGlySerGluAsnLeuLysSerLeuPhe
 AATTCTTACAGTTAGATCCAATGGTACCGACAGGTTAGAAAATTAAAAAGTCTTTT
 AsnThrValCysValIleTrpCysIleHisAlaGluGluLysValLysAspThrGluGly
 TAATACTGTCTGCGTCATTGGTGCATACACGCAGAAAGAGAAAGTGAAGAGATACTGAAGG
 800
 AlaLysGlnIleValArgArgHisLeuValAlaGluThrGlyThrAlaGluLysMetPro
 ACCAAAAACAAATACTGCGGAGACATCTAGTGGCAGAAACAGGAAACTGCGAGAGAAAATGCC

FIG. 1A

2/35

SerThrSerArgProThrAlaProSerSerGluLysGlyGlyAsnTyrProValGlnHis
 AAGCACAAAGTAGACCAACAGCACCCTAGCGAGAAGGGAGGAATTACCCAGTGCAACA
 . .
 ValGlyGlyAsnTyrThrHisIleProLeuSerProArgThrLeuAsnAlaTrpValLys
 TGTAGGCAGCAACTACACCCATATACCGCTGAGTCCCCGAAACCTAAATGCCTGGGTAAA
 1000 . .
 LeuValGluGluLysLysPheGlyAlaGluValValProGlyPheGlnAlaLeuSerGlu
 ATTAGTAGAGGAAAAAAAGTTGGGGCAGAAGTAGTGCCAGGATTTCAGGCCTCTCAGA
 . .
 GlyCysThrProTyrAspIleAsnGlnMetLeuAsnCysValGlyAspHisGlnAlaAla
 AGGCTGCACGCCCTATGATATCAACCAAATGCTTAATTGTGTGGGCAGCATCAAGCAGC
 1100 . .
 MetGlnIleIleIleArgGluIleIleAsnGluGluAlaAlaGluTrpAspValGlnHisPro
 CATGCAGATAATCAGGGAGATTATCAATGAGGAAGCAGCAGAATGGGATGTGCAACATCC
 1200 . .
 IleProGlyProLeuProAlaGlyGlnLeuArgGluProArgGlySerAspIleAlaGly
 AATACCAGGCCCTTACCGGGGCAGCTTAGAGAGCCAAGGGATCTGACATAGCAGG
 . .
 ThrThrSerThrValGluGluGlnIleGlnTrpMetPheArgProGlnAsnProValPro
 GACAACAAGCACAGTAGAACAGATCCAGTGGATGTTAGGCCACAAAATCCTGTACC
 1300 . .
 ValGlyAsnIleTyrArgArgTrpIleGlyLeuGlnLysCysValArgMetTyr
 AGTAGGAAACATCTATAGAACATGGATCCAGATAGGATTGAGAAGTGTGTCAGGATGTA
 . .
 AsnProThrAsnIleLeuAspIleLysGlnGlyProLysGluProPheGlnSerTyrVal
 CAACCCGACCAACATCCAGACATAAAACAGGGACCAAAAGGAGCCGTTCAAAGCTATGT
 1400 . .
 AspArgPheTyrLysSerLeuArgAlaGluGlnThrAspProAlaValLysAsnTrpMet
 AGATAGATTCTACAAAGCTTGAGGGCAGAACAAACAGATCCAGCAGTGAAGAATTGGAT
 1500 . .
 ThrGlnThrLeuLeuValGlnAsnAlaAsnProAspCysLysLeuValLeuLysGlyLeu
 GACCCAAACACTGCTAGTACAAATGCCAACCCAGACTGTAAATTAGTGTAAAGGACT
 . .
 GlyMetAsnProThrLeuGluGluMetLeuThrAlaCysGlnGlyValGlyProGly
 AGGGATGAACCTTACCTAGAACAGATGCTGACCGCCCTGTCAGGGGTAGGTGGGCCAGG
 1600 . .
 GlnLysAlaArgLeuMetAlaGluAlaLeuLysGluValIleGlyProAlaProIlePro
 CCAGAAAGCTAGATTATGGCAGAGGCCCTGAAAGAGGTATAGGACCTGCCCTATCCC
 . .
 PheAlaAlaAlaGlnGlnArgLysAlaPheLysCysTrpAsnCysGlyLysGluGlyHis
 ATTEGGCAGCAGCCCAGCAGAGAAAGGCATTAAATGCTGGAACTGTGGAAAGGAAGGGCA
 1700 . .
 SerAlaArgGlnCysArgAlaProArgArgGlnGlyCysTrpLysCysGlyLysProGly
 CTCGGCAAGACAATGCCGAGCACCTAGAACGGCAGGGCTGCTCGAACGTGTGGTAAGCCAGG
 1800 . .
 ThrGlyArgPhePheArgThrGlyProLeuGly
 HisIleMetThrAsnCysProAspArgGlnAlaGlyPheLeuGlyLeuGlyProTrpGly
 ACACATCATGACAAACTGCCAGATAGACAGGCAGGTTTTAGGACTGGGCCCTGGGG
 . .
 LysGluAlaProGlnLeuProArgGlyProSerSerAlaGlyAlaAspThrAsnSerThr
 LysLysProArgAsnPheProValAlaGlnValProGlnGlyLeuThrProThrAlaPro
 AAAAGAGCCCCGCAACTTCCCCGTGGCCCAAGTTCCGCAGGGCTGACACCAACAGCACC
 1900 . .
 ProSerGlySerSerSerGlySerThrGlyGluIleTyrAlaAlaArgGluLysThrGlu
 ProValAspProAlaValAspLeuLeuGluLysTyrMetGlnGlnGlyLysArgGlnArg
 CCCACTGGATCCAGCAGTGGATCTACTGGAGAAATATATGCAGCAAGGGAAAAGACAGAG
 . .
 ArgAlaGluArgGluThrIleGlnGlySerAspArgGlyLeuThrAlaProArgAlaGly
 GluGlnArgGluArgProTyrLysGluValThrGluAspLeuLeuHisLeuGluGlnGly
 AGAGCAGAGAGAGAGACCATAAGGAAGTGACAGAGGACTTACTGCACCTCGAGCAGGG
 (fig. 1A-suite k)

3/35

GlyAspThrIleGlnGlyAlaThrAsnArgGlyLeuAlaAlaProGlnPheSerLeuTrp
 GluThrProTyrArgGluProProThrGluAspLeuLeuHisLeuAsnSerLeuPheGly
 GGAGACACCATAACAGGGAGCCACCAACAGAGGACTTGCTGCACCTCAATTCTCTTTGG
 2100
 LysArgProValValThrAlaTyrIleGluGlyGlnProValGluValLeuLeuAspThr
 LysAspGln
 AAAAGACCAGTAGTCACAGCATAACATTGAGGGTCAGCCAGTAGAAGTCTTGTTAGACACA
 GlyAlaAspAspSerIleValAlaGlyIleGluLeuGlyAsnAsnTyrSerProLysIle
 GGGGCTGACGACTCAATAGTAGCAGGAATAGAGTTAGGAAACAATTATAGCCCCAAAAATA
 2200
 ValGlyGlyIleGlyGlyPheIleAsnThrLysGluTyrLysAsnValGluIleGluVal
 GTAGGGGAATAGGGGATTCAATAAACCAAGGAATAAAATGTAGAAATAGAAGTT
 LeuAsnLysValArgAlaThrIleMetThrGlyAspThrProIleAsnIlePheGly
 CTAAATAAAAAGGTACGGGCCACCATAATGACAGGGACACCCCAATCAACATTGGC
 2300
 ArgAsnIleLeuThrAlaLeuGlyMetSerLeuAsnLeuProValAlaLysValGluPro
 AGAAATATTCTGACAGCCTTAGGCATGTCAATTACCAAGTCGCAAAGTAGAGCCA
 2400
 IleLysIleMetLeuLysProGlyLysAspGlyProLysLeuArgGlnTrpProLeuThr
 ATAAAAATAATGCTAAAGCCAGGGAAAGATGGACCAAAACTGAGACAATGGCCCTTAACA
 LysGluLysIleGluAlaLeuLysGluIleCysGluLysMetGluLysGluGlyGlnLeu
 AAAGAAAAAAATAGAAGCACTAAAAGAAATCTGTAAAAAGAAGGCCAGCTA
 2500
 GluGluAlaProProThrAsnProTyrAsnThrProThrPheAlaIleLysLysAsp
 GAGGAAGCACCTCCAACTAATCCTTATAATACCCCCACATTGCAATCAAGAAAAAGGAC
 LysAsnLysTrpArgMetLeuIleAspPheArgGluLeuAsnLysValThrGlnAspPhe
 AAAAACAAATGGAGGATGCTAATAGATTTCAGAGAACTAAACAGGTAACTCAAGATTTC
 2600
 ThrGluIleGlnLeuGlyIleProHisProAlaGlyLeuAlaLysLysArgArgIleThr
 ACAGAAATTCAAGTTAGGAATTCCACACCCAGCAGGGTTGGCCAAGAAGAGAAGAAATTACT
 2700
 ValLeuAspValGlyAspAlaTyrPheSerIleProLeuHisGluAspPheArgProTyr
 GTACTAGATGTAGGGATGCTTACTTTCCATACCACTACATGAGGACTTAGACCATA
 ThrAlaPheThrLeuProSerValAsnAsnAlaGluProGlyLysArgTyrIleTyrLys
 ACTGCATTTACTCTACCATCAGTGAACAATGCAGAACAGGAAAAAGATACTATATAAA
 2800
 ValLeuProGlnGlyTrpLysGlySerProAlaIlePheGlnHisThrMetArgGlnVal
 GTCTTGCACAGGGATGGAAGGGATCACCAGCAATTTCACACACAATGAGACAGGTA
 LeuGluProPheArgLysAlaAsnLysAspValIleIleGlnTyrMetAspAspIle
 TTAGAACCAATTCAAGAAACAAAGGATGTCATTATCATTCACTGAGTACATGGATGATATC
 2900
 LeuIleAlaSerAspArgThrAspLeuGluHisAspArgValValLeuGinLeuLysGlu
 TTAATAGCTAGTGACAGGGACAGATTAGACATGATAGGGTAGTCCTGCAGCTCAAGGAA
 3000
 LeuLeuAsnGlyLeuGlyPheSerThrProAspGluLysPheGlnLysAspProProTyr
 CTTCTAAATGGCCTAGGATTTCACCCAGATGAGAAGTTCCAAAAAGACCCCTCCATAC
 HisTrpMetGlyTyrGluLeuTrpProThrLysTrpLysLeuGlnLysIleGlnLeuPro
 CACTGGATGGGCTATGAACTATGCCAACTAAATGGAAGTTGCAGAAAATACAGTTGCC
 3100
 GlnLysGluIleTrpThrValAsnAspIleGlnLysLeuValGlyValLeuAsnTrpAla
 CAAAAAGAAATATGGACAGTCAATGACATCCAGAAGCTAGTGGGTGTCTAAATTGGGCA

(fig.1A-suite 2)

4/35

AlaGlnLeuTyrProGlyIleLysThrLysHisLeuCysArgLeuIleArgGlyLysMet
 GCACAACTCTACCCAGGGATAAAAGACCAAACACTTATGTAGGTTAACAGAGAAAAATG
 . . .
 3200 . . .

ThrLeuThrGluGluValGlnTrpThrGluLeuAlaGluAlaGluLeuGluGluAsnArg
 ACACCTCACAGAAGTACAGTGGACAGAATTAGCAGAAGCAGAGCTAGAAGAAAACAGA
 . . .
 3300 . . .

IleIleLeuSerGlnGluGinGluGlyHisTyrTyrGlnGluGluLysGluLeuGluAla
 ATTATCC-TAACGCCAGGAACAAGAGGGACACTATTACCAAGAAGAAAAGAGCTAGAAGCCA

ThrValClnLysAspGluGluAsnGluTrpThrTyrLysIleHisGlnGluGluLysIle
 AGAGTCCAAAAGGATCAAGAGAATGAGTGGACATATAAAATACACCAGGAAGAAAAAATT

LeuLysValGlyLysTyrAlaLysValLysAsnThrHisThrAsnGlyIleArgLeuLeu
 CTAAAAGTAGGAAAATATGCAAAGGTAAAAACACCCATACCAATGGAATCAGATTGTTA

AlaGlnValValGlnLysIleGlyLysGluAlaLeuValIleTrpGlyArgIleProLys
 GCACAGGTAGTTCAAGAAAATAGGAAAAGAACGACTAGTCATTTGGGACGAATACCAAAA
 . . .
 3500 . . .

PheHisLeuProValGluArgGluIleTrpGluGlnTrpTrpAspAsnTyrTrpGlnVal
 TTTCACCTACCAGTACAGAGAGAAAATCTGGGAGCAGTGGTGGGATAACTACTGGCAAGTG
 . . .
 3600 . . .

ThrTrpIleProAspTrpAspPheValSerThrProProLeuValArgLeuAlaPheAsn
 ACATGGATCCCAGACTGGGACTTCGTCTACCCCCACCAGCTCTACACAGATGGATCCTGCAATAGG

LeuValGlyAspProIleProGlyAlaGluThrPheTyrThrAspGlySerCysAsnArg
 CTGGTAGGGGATCCTATACCAGGTGCAGAGACCTCTACACAGATGGATCCTGCAATAGG
 . . .
 3700 . . .

GlnSerLysGluGlyLysAlaGlyTyrValThrAspArgGlyLysAspLysValLysLys
 CAATCAAAAGAAGGAAAAGCAGGATATGTAACAGATAGAGGGAAAGACAAGGTAAAGAAA

LeuGluGlnThrThrAsnGlnGlnAlaGluLeuGluAlaPheAlaMetAlaLeuThrAsp
 CTAGAGCAAACATACCAATCAGCAAGCAGAACTAGAACGCTTGCGATGGCACTAACAGAC
 . . .
 3800 . . .

SerGlyProLysValAsnIleIleValAspSerGlnTyrValMetGlyIleSerAlaSer
 TCGGGTCCAAAAGTTAATATTATAGTAGACTCACAGTATGTAATGGGGATCAGTGCAAGC
 . . .
 3900 . . .

GlnProThrGluSerGluSerLysIleValAsnGlnIleIleGluGluMetIleLysLys
 CAACCAACAGAGTCAGAAAGTAAAATAGTGAACCAGATCATAGAAGAAATGATAAAAAG

GluAlaIleTyrValAlaTrpValProAlaHisLysGlyIleGlyGlyAsnGlnGluVal
 GAAGCAATCTATGTTGCATGGTCCCAGCCCACAAAGGCATAGGGGAAACCAGGAAGTA
 . . .
 4000 . . .

AspHisLeuValSerGlnGlyIleArgGlnValLeuPheLeuGluLysIleGluProAla
 GATCATTAGTGAAGTCAGGGTATCAGACAAGTGTGTTCTGGAAAAAAATAGAGCCCGCT

GlnGluGluHisGluLysTyrHisSerAsnValLysGluLeuSerHisLysPheGlyIle
 CAGGAAGAACATGAAAATATCATAGCAATGTAAAAGAACTGTCTCATAAATTGGAATA
 . . .
 4100 . . .

ProAsnLeuValAlaArgGlnIleValAsnSerCysAlaGlnCysGlnGlnLysGlyGlu
 CCCAATTAGTGGCAAGGCACATGTGCCAATGTCAACAGAAAGGGAA

. . .
 4200 . . .

AlaIleHisGlyGlnValAsnAlaGluLeuGlyThrTrpGlnMetAspCysThrIisLeu
 GCTATACATGGGCAAGTAAATGCAGAACTAGGCACCTGGCAAATGGACTGCACACATT

GluGlyLysIleIleIleValAlaValHisValAlaSerGlyPheIleGluAlaGluVal
 GAAGGAAAGATCATTATAGTAGCAGTACATGTTGCAAGTGGATTATAGAAGCAGAAGTC
 . . .
 4300 . . .

IleProGlnGluSerGlyArgGlnThrAlaLeuPheLeuLysLeuAlaSerArgTrp
 ATCCCACAGGAATCAGGAAGACAAACAGCAGCACTCTCCTATTGAAACTGGCAAGTAGGTGG
 (fig.1A-suite 3)

5/35

ProIleThrHisLeuHisThrAspAsnGlyAlaAsnPheThrSerGlnGluValEysMet
 CCAATAACACACTGCATACAGATAATGGTGCCAACTTCACAGGAGGTGAAGATG
 4400

ValAlaTrpTrpIleGlyIleGluGlnSerPheGlyValProTyrAsnProGlnSerGln
 GTAGCATGGTGGATAGGTATAGAACATCCTTGGAGTACCTTACAATCCACAGAGCCAA
 4500

GlyValValGluAlaMetAsnHisHisLeuLysAsnGlnIleSerGluThrileValLeu
 GGAGTAGTAGAACATGAATCACCATCTAAAAAACCAAATAAGTGAAACAAATAGTACTA
 4600

MetAlaIleHisCysMetAsnPheLysArgArgGlyIleGlyAspMetThrProSer
 ATGGCAATTCAATTGCATGAATTAAAAGAAGGGGGGATAGGGGATATGACTCCATCA
 4700

GluArgLeuIleAsnMetIleThrThrGluGlnGluIleGlnPheLeuGlnAlaLysAsn
 GAAAGATTAATCAATATGATCACCAAGAACAGAGATAACAATTCCCTCCAAGCCAAAAT

SerLysLeuLysAspPheArgValTyrPheArgGluGlyArgAspGlnLeuTrpLysGly
 TCAAAATTAAAAGATTTGGGTCTATTGAGAGAACAGAGATCAGTTGTGGAAAGGA
 4800

ProGlyGluLeuLeuTrpLysGlyGluGlyAlaValLeuValLysValGlyThrAspIle
 CCTGGGGAACTACTGTGGAAAGGAGAAGGAGCAGTCCTAGTCAAGGTAGGAACAGACATA
 4900

LysIleIleProArgArgLysAlaLysIleIleArgAspTyrGlyGlyArgGlnGluMet
 MetGluGluAspLysArgTrp

AAAATAATACCAAGAACAGAAAGCCAAGATCATCAGAGACTATGGAGGAAGACAAGAGATG

AspSerGlySerHisLeuGluGlyAlaArgGluAspGlyGluMetAla
 IleValValProThrTrpArgValProGlyArgMetGluLysTrpHisSerLeuValLys
 GATAGTGGTTCCCACCTGGAGGGTGCCAGGGAGGATGGAGAAATGGCATAGCCTGTCAA
 5000

TyrLeuLysTyrLysThrLysAspLeuGluLysValCysTyrValProHisHisLysVal
 GTATCTAAAATACAAACAAAGGATCTAGAAAAGGTGTGCTATGTTCCCCACCATAAGGT

GlyTrpAlaTrpTrpThrCysSerArgValIlePheProLeuLysGlyAsnSerHisLeu
 GGGATGGGCATGGTGGACTTGCAGCAGGGTAATATTCCCATTAAAAGGAAACAGTCATCT

 5100

GluIleGlnAlaTyrTrpAsnLeuThrProGluLysGlyTrpLeuSerSerTyrSerVal
 AGAGATACAGGCATATTGAACTTAACACCAGAAAAGGATGGCTCCTCTTATTCACT

 5200

ArgIleThrTrpTyrThrGluLysPheTrpThrAspValThrProAspCysAlaAspVal
 AAGAATAACTTGGTACACAGAAAAGTTCTGGACAGATGTTACCCCAGACTGTGCAGATGT

 5300

LeuIleHisSerThrTyrPheProCysPheThrAlaGlyGluValArgArgAlaIleArg
 CCTAATACATAGCACTTTCCCTGCTTACAGCAGGTGAAGTAAGAAGAGCCATCAG

 5400

GlyGluLysLeuLeuSerCysCysAsnTyrProArgAlaHisArgAlaGlnValProSer
 AGGGAAAAGTTATTGTCCTGCTGCAATTATCCCCGAGCTCATAGAGCCAGGTACCGTC

 5500

LeuGlnPheLeuAlaLeuValValValGlnGlnAsnAspArgProGlnArgAspSerThr
 MetThrAspProArgGluThrValPro

ACTTCAATTCTGGCCTTACTGGTAGTGCACACAAAATGACAGACCCAGAGAGACAGTAC

 5600

ThrArgLysGlnArgArgArgAspTyrArgArgGlyLeuArgLeuAlaLysGlnAspSer
 ProGlyAsnSerGlyGluGluThrIleGlyGluAlaPheAlaTrpLeuAsnArgThrVal
 CACCAGGAAACAGCGGCGAAGAGACTATCGGAGAGGCCTTCGCGCTGGCTAAACAGGGACAG

 5700

ArgSerHisLysGlnArgSerSerGluSerProThrProArgThrTyrPheProGlyVal
 GluAlaIleAsnArgGluAlaValAsnHisLeuProArgGluLeuIlePheGlnValTrp
 TAGAAGCCATAAACAGAGAACAGAGACTGAAATCACCTACCCGAGAACTTATTTCAGGTGT

(fig.1A-suite 4)

6/35

AlaGluValLeuGluIleLeuAla
 GlnArgSerTrpArgTyrTrpHisAspGluGlnGlyMetSerGluSerTyrThrLysTyr
 GGCAGAGGTCTGGAGATACTGGCATGATGAACAAAGGGATGTCAGAAAGTTACACAAAGT
 5500
 ArgTyrLeuCysIleIleGlnLysAlaValTyrMetHisValArgLysGlyCysThrCys
 ATAGATATTGTGCATAATACAGAAAGCAGTGTACATGCATGTTAGGAAAGGGTGTACTT
 LeuGlyArgGlyHisGlyProGlyGlyTrpArgProGlyProProProProProPro
 GCCTGGGGAGGGACATGGGCCAGGAGGGTGGAGACCAGGGCTCCTCCTCCCCCTC
 5600
 MetAlaGluAlaProThrGluLeuProProValAspGlyThrProLeu
 GlyLeuVal***
 CAGGTCTGGTCTAATGGCTGAAGCACCAACAGAGCTCCCCCGTGGATGGACCCACT
 ArgGluProGlyAspGluTrpIleIleGluIleLeuArgGluIleLysGluGluAlaLeu
 GAGGGAGCCAGGGATGAGTGGATAATAGAAAATCTTGAGAGAAATAAAAGAAGCTTT
 LysHisPheAspProArgLeuLeuIleAlaLeuGlyLysTyrIleTyrThrArgHisGly
 MetGlu
 AAAGCATTTCGACCTCGCTGCTAATTGCTCTGGCAAATATATCTATACTAGACATGG
 5800
 AspThrLeuGluGlyAlaArgGluIleLysValLeuGlnArgAlaLeuPheThrHis
 ThrProLeuLysAlaProGluSerSerLeuLysSerCysAsnGluProPheSerArgThr
 AGACACCCCTGAAGGCCAGAGAGCTATTAAAGTCTGCAACGAGCCCTTTCACGCA
 PheArgAlaGlyCysGlyHisSerArgIleGlyGlnThrArgGlyGlyAsnProLeuSer
 SerGluGlnAspValAlaThrGlnGluLeuAlaArgGlnGlyGluGluIleLeuSerGln
 CTTCAGAGCAGGATGTGCCACTCAAGAATTGCCAGACAAGGGAGGAAATCCTCTCTC
 5900
 AlaIleProThrProArgAsnMetGln
 LeuTyrArgProLeuGluThrCysAsnAsnSerCysTyrCysLysArgCysCysTyrHis
 AGCTATACCGACCCCTAGAAACATGCAATACTCATGCTATTGTAAGCGATGCTGCTACC
 6000
 MetAsnGluArgAlaAsp
 CysGlnMetCysPheLeuAsnLysGlyLeuGlyIleCysTyrGluArgLysGlyArgArg
 ATTGTAGATGTGTTCTAAACAAGGGCTGGATATGTTATGAACCAAGGGCAGAC
 GluGluGlyLeuGlnArgLysLeuArgLeuIleArgLeuLeuHisGlnThrSerGluTyr
 Met
 ArgArgThrProLysLysThrLysThrHisProSerProThrProAspLys
 GAAGAAGGACTCCAAAGAAAATAAGACTCATCCGCTCCTACACCAGACAAGTGAGTAT
 6100
 AspGluSerAlaAlaTyrCysHisPheIleSer
 MetAsnGlnLeuLeuIleAlaIleLeuLeuAlaSerAlaCysLeuValTyrCysThrGln
 GATGAATCAGCTGCTTATTGCCATTATTAGCTAGTGCTTAGTATATTGCACCCA
 TyrValThrValPheTyrGlyValProThrTrpLysAsnAlaThrIleProLeuPheCys
 ATATGTAACTGTTCTATGGCGTACCCACGTGGAAAAATGCAACCATTCCCCTTTG
 6200
 AlaThrArgAsnArgAspThrTrpGlyThrIleGlnCysLeuProAspAsnAspAspTyr
 TGCAACCAGAAATAAGGGATACTTGGGAACCATAACAGTGCCTGCCTGACAATGATGATTA
 6300
 GlnGluIleThrLeuAsnValThrGluAlaPheAspAlaTrpAsnAsnThrValThrGlu
 TCAGGAAATAACTTGAATGTAACAGAGGCTTGATGCATGGAATAATACAGTAACAGA
 GlnAlaIleGluAspValTrpHisLeuPheGluThrSerIleLysProCysValLysLeu
 ACAAGCAATAGAACAGATGTCTGGCATCTTCAGACATCAATAAAACCATGTGTCAAAC
 6400
 *(fig.1A-suite 5)

7/35

Thr Pro Leu Cys Val Ala Met Lys Cys Ser Ser Thr Glu Ser Ser Thr Gly Asn Asn Thr
 AACACCTTATGTGTAGCAATGAAATGCAGCACAGAGCAGCACAGGGAAACAACAC

Thr Ser Lys Ser Thr Ser Thr Thr Thr Pro Thr Asp Gln Glu Glu Ile Ser
 AACCTCAAAGAGCACAAGCACAAACCACACCCACAGACCAGGGAGAGATAAG
 6500 . . .

Glu Asp Thr Pro Cys Ala Arg Ala Asp Asn Cys Ser Gly Leu Gly Glu Glu Glu Thr Ile
 TGAGGATACTCCATGCCGACGCCAGACAACACTGCTCAGGATTGGGAGAGGAAGAACGAT
 6600 . . .

Asn Cys Gln Phe Asn Met Thr Gly Leu Glu Arg Asp Lys Lys Lys Gln Tyr Asn Glu Thr
 CAATTGCCAGTTCAATATGACAGGATTAGAAAAGAGATAAGAAAAACAGTATAATGAAAC

Trp Tyr Ser Lys Asp Val Val Cys Gln Glu Thr Asn Asn Ser Thr Asn Gln Thr Gln Cys Tyr
 ATGGTACTCAAAAGATGTGCTTGTGAGACAAATAATAGCACAAATCAGACCCAGTGTAA
 6700 . . .

Met Asn His Cys Asn Thr Ser Val Ile Thr Glu Ser Cys Asp Lys His Tyr Trp Asp Ala
 CATGAACCATTGCAACACATCAGTCATCACAGAACATGTGACAAGCACTATTGGATGC

Ile Arg Phe Arg Tyr Cys Ala Pro Pro Gly Tyr Ala Leu Leu Arg Cys Asn Asp Thr Asn
 TATAAGGTTAGATAACTGTGCACCACCGGGTTATGCCCTATTAAGATGTAATGATACCAA
 6800 . . .

Tyr Ser Gly Phe Ala Pro Asn Cys Ser Lys Val Val Ala Ser Thr Cys Thr Arg Met Met
 TTATTCAAGGCTTGCAACCAACTGTTCTAAAGTAGTAGCTCTACATGCACCAGGATGAT
 6900 . . .

Glu Thr Gln Thr Ser Thr Trp Phe Gly Phe Asn Gly Thr Arg Ala Glu Asn Arg Thr Tyr
 GGAAACGCAAACTCCACATGGTTGGCTTAATGGCACTAGAGCAGAGAATAGAACATA

Ile Tyr Trp His Gly Arg Asp Asn Arg Thr Ile Ile Ser Leu Asn Lys Tyr Tyr Asn Leu
 TATCTATTGGCATGGCAGAGATAATAGAAACTATCATCAGCTTAAACAAATATTATAATCT
 7000 . . .

Ser Leu His Cys Lys Arg Pro Gly Asn Lys Thr Val Lys Gln Ile Met Leu Met Ser Gly
 CAGTTGCATTGTAAGAGGCCAGGGATAAGACAGTGAAACAAATAATGCTTATGTCAGG

His Val Phe His Ser His Tyr Gln Pro Ile Asn Lys Arg Pro Arg Gln Ala Trp Cys Trp
 ACATGTGTTCACTCCCACCTACCAGCCGATCAATAAAAGACCCAGACAAGCATGGTGCTG
 7100 . . .

Phe Lys Gly Lys Trp Lys Asp Ala Met Gln Glu Val Lys Glu Thr Leu Ala Lys His Pro
 GTTCAAAGGCAAATGAAACACCCATGCAGGAGGTGAAGGAAACCTTGCAAAACATCC
 7200 . . .

Arg Tyr Arg Gly Thr Asn Asp Thr Arg Asn Ile Ser Phe Ala Ala Pro Gly Lys Gly Ser
 CAGGTATAGAGGAACCAATGACACAAAGGAATATTAGCTTGCAGCGCCAGGAAAAGGCTC

Asp Pro Glu Val Ala Tyr Met Trp Thr Asn Cys Arg Gly Glu Phe Leu Tyr Cys Asn Met
 AGACCCAGAAGTAGCATACTGTGGACTAACTGCAGAGGAGTTCTACTGCAACAT
 7300 . . .

Thr Trp Phe Leu Asn Trp Ile Glu Asn Lys Thr His Arg Asn Tyr Ala Pro Cys His Ile
 GACTTGGTTCTCAATTGGATAGAGAATAAGACACACCGCAATTATGCACCGTGCCATAT

Lys Gln Ile Ile Asn Thr Trp His Lys Val Gly Arg Asn Val Tyr Leu Pro Pro Arg Glu
 AAAGCAAATAATTACACATGGCATAAGGTAGGGAGAAATGTATATTGCTCCCAGGGA
 7400 . . .

Gly Glu Leu Ser Cys Asn Ser Thr Val Thr Ser Ile Ile Ala Asn Ile Asp Trp Gln Asn
 AGGGGAGCTGCTGCAACTAACAGTAACCAGCATAATTGCTAACATTGACTGGCAAAA
 7500 . . .

Asn Asn Gln Thr Asn Ile Thr Phe Ser Ala Glu Val Ala Glu Leu Tyr Arg Leu Glu Leu
 CAATAATCAGACAAACATTACCTTAGTGCAGAGGTGGCAGAACTATACAGATTGGAGTT

Gly Asp Tyr Lys Leu Val Glu Ile Thr Pro Ile Gly Phe Ala Pro Thr Lys Glu Lys Arg
 GGGAGATTATAAAATTGGTAGAAATAACACCAATTGGCTGCCACCTACAAAAGAAAAAG
 7600 . . .

(fig.1A-suite 6)

8/35

Tyr Ser Ser Ala His Gly Arg His Thr Arg Gly Val Phe Val Leu Gly Phe Leu Gly Phe
 ATACT CCT CTG CTG CTC AC GGG AGA CATA CAAG AGGT GT TCG CTAG GG TT CT GG GT TT
 . . .
 Leu Ala Thr Ala Gly Ser Ala Met Gly Ala Ala Ser Leu Thr Val Ser Ala Glu Ser Arg
 TCT CGC AAC AGC CAG GTT CTG CAAT GGG CG CGT CC CTG ACC GT GT CGG CT CAG T CCG
 700 . . .
 Thr Leu Leu Ala Gly Ile Val Gln Gln Gln Gln Leu Leu Asp Val Val Lys Arg Gln
 GACT TTA CTG GGC CGG GAT AGT GC AG CAAC AG CAAC AG CT GT TG GAC GT GG TCA AG AG A CA
 7800 . . .
 Gln Gln Leu Leu Arg Leu Thr Val Trp Gly Thr Lys Asn Leu Gln Ala Arg Val Thr Ala
 ACA AGA ACT GT TG CG ACT GAC CGT CT GG GG AA CG AAA AC CT CC AGG CA AG AG T CACT GC
 . . .
 Ile Glu Lys Tyr Leu Gln Asp Gln Ala Arg Leu Asn Ser Trp Gly Cys Ala Phe Arg Gln
 TAT AG AGA AGT AC CT AC AGG ACC AGG CG CG CT AA ATT CAT GG GG AT GT GC GT T TAG A CA
 7900 . . .
 Val Cys His Thr Thr Val Pro Trp Val Asn Asp Ser Leu Ala Pro Asp Trp Asp Asn Met
 AGT CT GCC AC ACT ACT GT ACC AT GG GT TA AT GATT CCT TAG CAC CT GACT GG GACA AT AT
 . . .
 Thr Trp Gln Glu Trp Glu Lys Gln Val Arg Tyr Leu Gln Ala Asn Ile Ser Lys Ser Leu
 GAC GT GG CAG GA AT GG GAA AA CA AGT CC GCT AC CT GG AGG CAA AT AT CAG TAA AG T TT
 8000 . . .
 Glu Gln Ala Gln Ile Gln Gln Glu Lys Asn Met Tyr Glu Leu Gln Lys Leu Asn Ser Trp
 AGAAC AGG CACA AA ATT CAG CA AG AGA AA AT AT GT AT GA ACT AC AAA AT TA AG CT G
 8100 . . .
 Asp Ile Phe Gly Asn Trp Phe Asp Leu Thr Ser Trp Val Lys Tyr Ile Gln Tyr Gly Val
 GGAT AT TTT GG CA AT TG GT TT GACT TA AC CT CCT GG GT CA AGT AT ATT CA AT AT GG AGT
 . . .
 Leu Ile Ile Val Ala Val Ile Ala Leu Arg Ile Val Ile Tyr Val Val Gln Met Leu Ser
 Val
 GCT TATA ATAG TAG CAG TA ATAG CTT AAG AAT AGT GAT AT AT GTAG TAC AA AT GT TA AG
 8200 . . .
 Ala Cys Phe Leu Phe Pro Pro Arg Leu Tyr Pro Thr Asp
 Arg Leu Arg Lys Gly Tyr Arg Pro Val Phe Ser Ser Pro Pro Gly Tyr Ile Gln Gln Ile
 Gly Leu Glu Arg Al Ile Gly Leu Phe Ser Leu Pro Pro Pro Val Ile Ser Asn Arg Ser
 TAG GCT TAG AA AGG GCT AT AGG C CT GT TT CT CCT CCC CCG GT TAT AT CC AA CAG AT
 . . .
 Pro Tyr Pro Gln Gly Pro Gly Thr Ala Ser Gln Arg Arg Asn Arg Arg Arg Arg Trp Lys
 His Ile His Lys Asp Arg Gly Gln Pro Ala Asn Glu Glu Thr Glu Glu Asp Gly Gly Ser
 Ile Ser Thr Arg Thr Gly Asp Ser Gln Pro Thr Lys Lys Gln Lys Lys Thr Val Glu Ala
 CCAT AT CC AC AA AGG ACC GGG GAC AG CC AG CC AC GA AG AA AC AGA AGA AG C GGT GGA AG
 8300 . . .
 Gln Arg Trp Arg Gln Ile Leu Ala Leu Ala Asp Ser Ile Tyr Thr Phe Pro Asp Pro Pro
 Asn Gly Gly Asp Arg Tyr Trp Pro Trp Pro Ile Ala Tyr Ile His Phe Leu Ile Arg Gln
 Thr Val Glu Thr Asp Thr Gly Pro Gly Arg
 CAAC CGGT GG AGA CAG AT CT GG CC CT GG CC GAT AGC AT AT AT AC AT TT CCT GAT CC GCA
 8400 . . .
 Ala Asp Ser Pro Leu Asp Gln Thr Ile Gln His Leu Gln Gly Leu Thr Ile Gln Glu Leu
 Leu Ile Arg Leu Leu Thr Arg Leu Tyr Ser Ile Cys Arg Asp Leu Leu Ser Arg Ser Phe
 GCT GAT T CGC CT T TG ACC AG ACT AT AC AGC AT CT GCA AGG GACT T ACT AT CC AGG AG CTT
 . . .
 Pro Asp Pro Pro Thr His Leu Pro Glu Ser Gln Arg Leu Ala Glu Thr
 Leu Thr Leu Gln Leu Ile Tyr Gln Asn Leu Arg Asp Trp Leu Arg Leu Arg Thr Ala Phe
 CCT GAC CCT CCA ACT CAT CT ACC AGA AT CT CAG AG ACT GG CT GAG ACT T AGA AC AG C TT
 8500 . . .
 Leu Gln Tyr Gly Cys Glu Trp Ile Gln Glu Ala Phe Gln Ala Ala Ala Arg Ala Thr Arg
 Met Gly Ala Ser Gly Ser Lys Lys His Ser Arg Pro Pro Arg Gly Leu Gln Glu
 CTT GCA AT AT GG GT GC GAG T GG AT CCA AGA AGC ATT CC AGG CC CG CC GG AGG GCT ACA AG
 (fig. 1A-suite 7)

9/35

GluThrLeuAlaGlyAlaCysArgGlyLeuTrpArgValLeuGluArgIleGlyArgGly
 ArgLeuLeuArgAlaArgAlaGlyAlaCysGlyGlyTyrTrpAsnGluSerGlyGlyGlu
 AGAGACTCTGCCGGCGCGTGCAGGGCTTGAGGGTATTGGAACGAATCGGGAGGGG
 8600
 IleLeuAlaValProArgArgIleArgGlnGlyAlaGluIleAlaLeuLeu
 TyrSerArgPheGlnGluGlySerAspArgGluGlnLysSerProSerCysGluGlyArg
 AATACTCGGGTTCCAAGAAGGATCAGACAGGGAGCAGAAATGCCCTCCTGTGAGGGAC
 8700
 GlnTyrGlnGlnGlyAspPheMetAsnThrProTrpLysAspProAlaAlaGluArgGlu
 GGCAGTATCAGCAGGGAGACTTTATGAATACTCCATGGAAGGACCCAGCAGCAAAGGG
 8800
 LysAsnLeuTyrArgGlnGlnAsnMetAspAspValAspSerAspAspAspAspGlnVal
 AGAAAAATTGTCAGGCAACAAAATATGGATGATGATGAGATTGACATGATGATGACCAAG
 8900
 ArgValSerValThrProLysValProLeuArgProMetThrHisArgLeuAlaIleAsp
 TAAGAGTTCTGTCACACCAAAAGTACCACTAACAGACCAATGACACATAGATTGGCAATAG
 9000
 MetSerHisLeuIleLysThrArgGlyGlyLeuGluGlyMetPheTyrSerGluArgArg
 ATATGTCACATTAATAAAAACAAGGGGGACTGGAAGGGATGTTACAGTGAAAGAA
 9100
 HisLysIleLeuAsnIleTyrLeuGluLysGluGluGlyIleIleAlaAspTrpGlnAsn
 GACATAAAATCTTAAATATACTTAGAAAAGGAAGGATAATTGCAAGATTGGCAGA
 9200
 TyrThrHisGlyProGlyValArgTyrProMetPhePheGlyTrpLeuTrpLysLeuVal
 ACTACACTCATGGGCCAGGAGTAAGATAACCAATGTTCTGGGTGGCTATGGAAGCTAG
 9300
 ProValAspValProGlnGluGlyGluAspThrGluThrHisCysLeuValHisProAla
 TACCACTAGATGTCCCACAAGAAGGGAGGACACTGAGACTCACTGCTTAGTACATCCAG
 9400
 GlnThrSerLysPheAspAspProHisGlyGluThrLeuValTrpGluPheAspProLeu
 CACAAACAAGCAAGTTGATGACCCGATGGGAGACACTAGTCTGGAGTTGATCCCT
 9500
 LeuAlaTyrSerTyrGluAlaPheIleArgTyrProGluGluPheGlyHisLysSerGly
 TGCTGGCTTATAGTTACGAGGCTTTATTGGTACCCAGAGGAATTGGGCACAAGTCAG
 9600
 LeuProGluGluGluTrpLysAlaArgLeuLysAlaArgGlyIleProPheSer
 GCCTGCCAGAGGAAGACTGGAAGGCGAGACTGAAAGCAAGAGGAATACCATTAGTTAAA
 GACAGGAACAGCTATACTTGGTCAGGGCAGGAAGTAACTAACAGAAACAGCTGAGACTGC
 AGGGACTTCCAGAAGGGCTGTAACCAAGGGAGGGACATGGGAGGAGCTGGTGGGAAC
 GGAGAGGCTGGCAGATTGAGGCCCTGGGAGGTTCTCCAGCAGTAGCAGGTAGAGCCTGG
 GTGTTCCCTGCTAGACTCTCACCAAGCACTGGCCGGTGCTGGCAGACGGCCCCACGCTT
 9700
 GCTTGCTTAAAAACCTCCTTAATAAGCTGCCAGTTAGAAGCA

(fig.1A-suite 8)

10/35

FIG 1B

AGTCGCTCTCGGGAGAGGCTGGCAGATTGAGCCCTGGAGGTTCTCTCCAGCACTAGCAG
 GTAGAGCCTGGGTGTTCCCTGCTAGACTCTCACCAAGCACTTGGCCGGTGTGGCAGAGT
 100
 GGCTCCACGCTTGCTTAAAGACCTCTCAATAAGCTGCCATTAGAAGTAAGCTA
 GTGTGTGTTCCCATCTCTCTAGTCGCCCTGGTCAACTCGGTACTCGTAATAAAAAG
 200
 ACCCTGGCTGTTAGGACCCCTGGTCTGTTAGGACCCCTTCTGCTTGGAAACCGAAGCA
 300
 GGAAAATCCCTAGCAGATTGGGCCCGAACAGGGACTTGAAGGGAGAGTGAGAGACTCCTG
 AGTACGGCTGACTGAAGGCAGTAAGGGCGCAGGAACCAACCACGACGGAGTGCTCCTAG
 400
 AAAGGC CGGGT CGGT ACCAG AC GGCG TGAGG AGC GGG GAGAGAAGAGG CTC TGG TTG
 CAGGTAAAGT GCAACACAAAAAGGAAATAGCTGTTTATCCAGGAAGGGATAATAAGAT
 500
 GAGDHETGLYAL AARGASN SERVAL EUSER GLYLYS LYS ALA ASP GLU LEUGLU
 AGAGTGGAGATGGCGCGAGAAACTCCGTCTTGTCAAGGAAGAAAGCAGATGAATTAGA
 600
 LYSILEARGLEUARGPROGLYGLYLYSLYSTYRMETLEULYSHISVALVALTRPALA
 AAAAATTAGACTACGACCCGGCGAACAGAAAAGTACATGTTGAAGCATGTAGTATGGGC
 ALAASNGLULEUASPARGPHEGLYLEUALAGLUSERLEULEUGLUASNLYSGLUGLYCYS
 AGCAAATGAATTAGATAGATTGGATTAGCAGAAAGCCTGTTGGAGAACAAAGAAGGATG
 700
 GLNLYSILEUUSERVALLEUALAPROLEUVALPROTHRGLYSERGLUASNLEULYSSER
 TCAAAAATACTTCCGTCTTAGCTCCATTAGTCCAACAGGCTCAGAAAATTAAAAAG
 LEUTYRASNTHRVALCYSVAL ILETRPCYSILEHISALAGLUGLULYSVALLYSHISTR
 CCTTTATAATACTGTCTGCGTCATCTGGTCATTACCGCAGAACAGAAAGTGAACACAC
 800
 GLUGLUALALYSGLNILEVAL GLNARGHISLEUVALMEI GLUTHRLYTHRALAGLUTHR
 TGAGGAAGCAAAACAGATAGTGCAGAGACACCTAGTGTGAAACAGGAACAGCAGAAC
 900
 MET PROLYSTHR SER AR GPROTHR ALA PROPH E SER GLY ARG GLY GLY AS NTYR PRO VAL
 TATGCCAAAAACAAGTAGACCAACAGCACCATTAGCGGCAGAGGAGGAATTACCCAGT
 GLNGLNILEGLYGLYASNTYRTHR HISLEUPROLEUSERPROARGTHRLEUASNALATRP
 ACAACAAAATAGGTGGTAACTATACCCACCTACCATTAAGCCCCGAGAACATTAATGCCTG
 1000
 VALLYSLUILEGLUGLULYSLYSPHEGLYALAGLULUVALVALSERGLYPHEGLNALALEU
 GGTAAAATTAA TAGAGGGAGAACAGAACATTGGAGCAGAAGTAGTGTCAAGGATTTCAGGCAC
 SERGLUGLYCYSLEUROTYRASPILEASNGLNMETLEUASNCYSVALGLYASPHISGLN
 GTCAGAAGGCTGCCTCCCTATGACATTAATCAGATGTTAAATTGTGTGGAGACCATCA
 1100
 ALAALAMETGLNILEILEARGASPILEILEASNGLUGLUALAALAASPTRPASPLEUGLN
 AGCGGCTATGCAGATCATCAGAGATATTATAATGAGGAGGCTGCAGATTGGACTTGCA
 1200
 HISPROGLNGLNALAPROGLNGLNGLYGLNLEUARGGLUROSERGLYSERASPILEALA
 GCACCCACAACAAGCTCCACAACAAGGACAGCTTAGGGAGCCGTCAAGGATCAGATATTGC
 GLYTHRHR SER THRV ALGLUGLUGLNLIEGLNTRPHETTYRARGGLNGLNASNPROILE
 AGGAACAACTAGTACAGTAGAAGAACAAATCCAGTGGATGTACAGACAACAGAACCCAT
 1300

FIG. 1B-

11/35

PROVALGLYASNILETYRARGARGTRPILEGLNLEUGLYLEUGLNLYSCYSVALARGMET
 ACCAGTAGGCAACATTTACAGGAGATGGATCCAATCGGGTTGAAAAATGTGTCAGAAT
 TYRASNPROTHRASNILELEUASPVALYSGLNGLYPROLYSGLUPROPHEGLNSERTYR
 GTATAACCCAAACAAACATTCTAGATGTAACAGGGCAAAAGGCCATTCAAGAGCTA
 1400
 VALASPARGPHETYRLYSERLEUARGALAGLUGLNTHRASPPRALAVALLYSASNTRP
 TGAGACAGGTTCTACAAAAGTTAACAGCAGAACACAGATCCAGCAGTAAAGAATTG
 1500
 METTHRGLNTHRLEULEUILEGLNASNALAASNPROASPCYSLEUVALLEULYSGLY
 GATGACTCAAACACTGCTGATTCAAAATGCTAACCCAGATTGCAAGCTAGTGCCTGAAGGG
 LEUGLYTHRASNPROTHRLEUGLUGLUMETLEUTHRALACYSGLNGLYVALGLYGLYPRO
 CCTGGGTACGAATCCCACCCAGAAGAAATGCTGACGGCCTGTCAGGAGTAGGGGGCC
 1600
 GLYGLNLYSALAARGLEUMETALAGLUALALEULYSGLUALALEUVALAPROALAPROILE
 AGGACAGAAGGCTAGATTAAATGGCAGAACAGCCCTGAAAGAGAGGCCCTCGCACAGGCCAAT
 POLVALLEUGLULEUTRP
 PROPHEALAAALAAAGLNGLNLYSGLYPROARGLYSPROTLERYSCYSTRPASNCYSGLY
 CCCTTTGCAGCAGCCAAACAGAACAGGACCAAGAAAGCCAATTAAGTGTGAAATTGTGG
 1700
 GLUGLYARGTHRLEUCYSLYSALAMETGLNSERPROLYSLYTHRGLYMETLEUGLUMET
 LYSGLUGLYHISSERALAARGGLNCYSARGALAPROARGARGGLNGLYCYSTRPLYSYS
 GAAGGAAGGACACTCTGCAAGGCAATGCAAGAGGCCAACAGAACAGGAGATGCTGGAAATG
 1800
 TRPLYSASNGLYPROCYSTYRGLYGLNMETPROLYSGLNTHRGLYGLYPHEPHEARGPRO
 GLYLYSMETAPHISVALMETALALYSCYSPROASNARGGLNALAGLYPHELEUGLYLEU
 TGGAAAAATGGACCAGTGTATGCCAAATGCCAACAGACAGGGGGTTTTAGGCCT
 TRPPROLEUGLYLYSGLUALAPROGLNPHEPROHISGLYSERSERALASERGLYALAASP
 GLYPROTRPGLYLYSPROARGASNPHEPROMETALAGLNVALHISGLNGLYLEUTHR
 TGGCCCTGGGAAAGAACCCCCGCAATTCCCCATGGCTCAAGTCATCAGGGCTGAC
 1900
 ALAASNCSYSERPROARGARGTHRSERCYSGLYSERALALYSGLULEUHISALALEUGLY
 PROTHRHALAPROPROGLUGLUPROALAVALASPLEULEULYSASNTYRMETHISLEUGLY
 GCCAACTGCTCCCCAGAACAGAACAGCTGTGGATCTGCTAAAGAAACTACATGCACTGGG
 GLNALAALAGLUGLYSGLNARGGLUALALEUGLNGLYGLYASPARGLYPHEALAALA
 LYSGLNGLNARGGLUSERARGGLYLYSPROTYRLYSGLUVALTHRGLUASPLEUEUHIS
 CAAGCAGCAGAGAGAACAGAGGGAAAGCCTTACAAGGAGGTGACAGAGGAGTTGCTGCA
 2000
 PROGLNPHESERLEUTRPARGPROVALYALTHRHALHISILEGLUGLYGLNPROVAL
 LEUASNSERLEUPHEGLYGLYASPLN
 CCTCAATTCTCTTTGGAGGAGACAGTAGTCACTGCTCATATTGAAGGACAGCCTGTA
 2100
 GLUVALLEULEUASPTHONGLYALAASPASP SERILEVALTHRGLYILEGLULEUGLYPRO
 GAAGTATTATTAGATAACAGGGCTGATGATTCTATTGTAACAGGAATAGAGTTAGGTCCA
 HISTYRTHRPROLYSILEVALGLYGLYILEGLYGLYPHEILEASNTHRRLYSGLUTYRLYS
 CATTATACCCAAAAATAGTAGGAGGAATAGGAGGTTTATTAAACTAAAGAACACAAA
 2200
 ASNVALGLUILEGLUVALLEUGLYLYSARGILELYSGLYTHRILEMETTHRGLYASPTHR
 AATGTAGAAATAGAAGTTTAGGCAAAAGGATTAAAGGGACAATCATGACAGGGGACACC
 PROILEASNILEPHEGLYARGASNLEULEUTHRALALEUGLYMETSERLEUASNLLEUPRO
 CCGATTAAACATTTGGTAGAAATTTACTAACAGCTCTGGGGATGTCCTAAATCTTCCC
 2300
 ILEALALYSVALGLUROVALYSSERPROLEULYSPROGLYLYSASPGLYPROLYSLEU
 ATAGCTAAGGTAGAGCCTGAAAGTCGCCCTAAAGCCAGGAAAGGATGGACCAAAATTG
 2400
 LYSGLNTRPPROLEUSERLYSGLULYSSILEVALAELAEUARGGLUILECYSGLULYSHET
 AAGCAGTGCCATTATCAAAGAAAGATAGTTGCAATTAGAGAAATCTGTGAAAAGATG

(fig. 1B-suite 1)

12 / 35 .

GLULYSASPGLYGLNLEUGLUGLUALAPROPROTHRASNPROTYRASNTHRPROTHRHE
 GAAAAAGATGGTCAGTTGGAGGAAGCTCCCCGACCAATCCATATAACACCCCCACATT
 2500
 ALAILELYSLSYSLYSASPLYSASNLYSSTRPARGHETLEUILEASPPHEARGGLULEUASN
 CCTATAAAAGAAAAGGATAAAAACAAATGGAGAATGCTGATAGATTTAGGAACTAAAT
 ARGVALTHRGLNASPPHETHRGLUYALGLNLEUGLYILEPROHISPROALAGLYEUALA
 AGGGTCACTCAAGACTTACCGAAGTCCAATTAGGAATACCACACCCCTGCAGGACTAGCA
 2600
 LYSARGLYSARGILETHRYVALLEUASPILEGLYASPALATYRPHESERILEPROLEUASP
 AAAAGGAAAAGGATTACAGTACTGGATATAGGTGACGCATATTCTCTACCTCTAGAT
 2700
 GLUGLUPHEARGGLNTYRTHRALAPHETHRLEUPROSERVALASNALAGLUPROGLY
 GAAGAATTAGGCAGTACACTGCCCTTACTTACCATCAGTAATAATGCAGAGCCAGGA
 LYSARGTYRILETYRLYSALLEUROGLNGLYTRPLYSGLYSERPRODALAILEPHEGLN
 AAACGATACATTATAAGGTTCTGCCCTCAGGGATGGAAGGGTCAACCAGCCATCTTCCAA
 2800
 TYRTHRMETARGHISVALLEUGLUPROPHEARGLYSALAASNPROASPVALTHRLEUVAL
 TACACTATGAGACATGTGCTAGAACCTTCAGGAAGGCAAATCCAGATGTGACCTTAGTC
 GLNTYRMETASPASPILEUILEALASERASPARGTHRASPLEUGLUHISASPARGVAL
 CAGTATATGGATGACATCTTAATAGCTAGTGACAGGACAGCTGGAACATGACAGGGTA
 2900
 VALLEUGLNLEULYSGLULEULEUASNNSERILEGLYPHESERSERPROGLUGLULYSPHE
 GTTTTACAGTTAAAGAACTCTTAAATAGCATAGGGTTTCACTCCCAGAAGAGAAATT
 3000
 GLNLYSASPPROPROPHEGLNTRPMETGLTYRGLULEUTRPPROTHRHYSTRPLYSLEU
 CAAAAGATCCCCATTCAATGGATGGGTACGAATTGGCCGACAAAATGAAAGTTG
 GLNLYSILEGLULEUPROGLNARGGLUTHRTRPTHRVALASNASPILEGGLNLYSLEUVAL
 CAAAAGATAGAGTTGCCACAAAGAGAGACCTGGACAGTGAAATGATATACAGAAGTTAGTA
 3100
 GLYVALLEUASNTRPAALALAGLNILETYRPROGLYILELYSTHRLYSHISLEUCYSARG
 GGAGTATTAAATTGGGAGCTCAAATTATCCAGGTATAAAACCAAACATCTCTGTAGG
 LEUILEARGLYLYSMETTHRLEUTHRGLUGLUVALGLNTRPTHRGLUMETALAGLUALA
 TTAATTAGAGGAAAATGACTCTAACAGAGGAGTTCACTGGACTGAGATGGCAGAAC
 3200
 GLUTYRGLUGLUASNLYSILEILELEUSERGLNGLUGLNGLUGLYCYSTYRGLNGLU
 GAATATGAGGAAAATAAAATAATTCTCAGTCAGGAACAAGAAGGATGTTTACCAAGAA
 3300
 SERLYSPROLEUGLUALATHRVALILELYSSERGLNAPASNGLNTRPSERTYRLYSILE
 AGCAAGCCATTAGAACGCCACGGTGATAAAAGAGTCAGGACAATCAGTGGTCTTATAAAATT
 HISGLNGLUASPLYSILELEULYSVALGLYLYSPHEALALYSILELYSASNTHRHHISTR
 CACCAAGAACAAACTGAAAGTAGGAAATTGCAAAGATAAAAGAACATCACACATACC
 3400
 ASNGLYVALARGLEULEUALAHISVALILEGLNLYSILEGLYLYSGLUALAILEVALILE
 AATGGAGTTAGACTATTAGCACATGTAAACAGAAAATAGGAAAGCAATAGTGTAC
 TRPGLYGLNVALPROLYSPHEHISLEUPROYALGLULYSASPYALTRPGLUGLNTRP
 TGGGGACAGGTCCC AAAATTCCACTTACCACTGGAGTATGGAAACAGTGGTGG.
 3500
 THRASTYRTRPGLNVALTHRTRPILEPROGLUTRPASPPHEILESERTHRPROPROLEU
 ACAGACTATTGGCAGGTAACTGGATACCGGAATGGGATTCTCAACACCAACATTAA
 3600
 VALARCLEUVALPHEASNLUEUVALLYSASPPROILEGLUGLYGLUGLUTHRTYRTHRVAL
 GTAAGATTAGTCTCAATCTACTGAAGGGACCTATAGAGGGAGAAGAAACCTATTATGTA
 ASPGLYSERCYSERLYSGLN SERLYSGLUGLYLYSALAGLYTYRILETHRASPARGGLY
 GATGGATCATGTAGTAAACAGTCAAAGAACAGGATATCACAGACAGGGC

(fig.1B-suite 2)

13 / 35

3700

LYSASPLYSVALLYSVALLEUGLUGLNTHRTHRASNGLNGLNALAGLULEUGLUALAPHE
AAAGACAAGGTAAAAGTGTAGAACAGACTACTAATCAACAAGCAGAATTGGAAGCATT

LEUMETALALEUTHRASP SERGLYPROLYSALAASNILEILEYALASP SERGLNTYRVAL
CTCATGGCATTGACAGACTCAGGCCAAAGGCAAATTATAGACTACAATATGTT

3800

METGLYILEILETHRGGLYCS PROTHRGGLUSERGLUSERARGLEUVALASNGLNILEILE
ATGGGAATAATAACAGGATGCCCTACAGAACATCAGAGAGCAGGCTAGTTAACCAAATAATA

3900

GLUGLUMETILELYSLYSTHRGLUILETYRVALALATRPVALPROALAHISLYSGLYILE
GAAGAAATGATCAAAAAGACAGAAATTATGGCATGGTACCGACACACAAGGTATA

GLYGLYASNGLNGLUILEASPHISLEUVALSERGLNGLYILEARGGLNVALLEUPHELEU
GGAGGAAACCAAGAAATAGACCACCTAGTTAGTCAGGGATTAGACAAGTTCTTCTTG

4000

GLULYSILEGLUPROALAGLNGLUGLUHISERLYSTYRHISERASNILELYSGLULEU
GAAAAGATAGAGCCAGCACAGAACATAGTAAATACCATAGTAACATAAAAGAATTG

VALPHELYSPHEGLYLEUPRORGLEUVALALALYSGLNILEVALASP THRCYSASPLYS
GTATTCAAATTGGATTACCCAGACTAGTGGCCAACAGATAGTAGACACATGTGATAAA

4100

CYSHISGLNLYSGLYGLUALAILEHISGLYGLNVALASNERSPLEUGLYTHRTRPGLN
TGTCAATCAGGAGAAGCTATACATGGCAGGTAAATTAGACCTAAGGACTGGCAA

4200

METASPCYSTHRHISLEUGLUGLYLISILEVALILEYALALALVALHISVALALASGLY
ATGGATTGTACCCATCTAGAGGAAAAATAGTCATAGTTGCAGTACATGTAGCTAGTGG

PHEILEGLUALAGLUALILEPROGLNGLUTHRGLYARGGLNTHRHALALEUPHELEU
TTCATAGAACAGAACAGTAATTCCACAAAGAACAGGAAGACAGACAGCACTATTCTGTTA

4300

LYSLEUALASERARGTRP PROILETHR HISLEUHISTHRASPASNGLYALAASN PHEAL
AAATTGGCAAGCAGATGCCCTATTACACATCTCACACAGATAATGGCTAAC TTTGCT

SERGLNGLUVALLYSMETYLALALATRPTP ALAGLYILEGLUHISTHRPHEGLYVALPRO
TCGCAAGAACAGTAAGATGGTTGCATGGTGGCAGGGATAGAGCACACCTTGGGTACCA

4400

TYRASNPROGLNSERGLNGLYVALVALGLUALAMETASN HISHISLEULYSASNGLNILE
TACAATCCACAGAGTCAGGGAGTAGTGGAAAGCAATGAATCACCACCTGAAAAATCAAATA

4500

ASPARGILEARGGLUGLNALAASN SERVALGLUTHRILEVALLEUMETALALVALHIS CYS
GATAGAACAGGAAACAAATTCACTAGAAACCATACTATTAAATGGCAGTTCAATTGC

METASNPHELYSARGARGGLYGLYILEGLYASPMETTHR PROALAGL UARGLEUILEASN
ATGAATT TAAAGAACAGGGAGGAATAGGGATATGACTCCAGCAGAAAGATTAATTAAC

4600

METILETHRHTRGGLUGLNGLUILEGLNPHEGLNLSERLYSASNSERLYSPHELYSASN
ATGATCACTACAGAACAAACTACAATTCAACAATCAAAA ACTCAAATTAAAT

PHEARGVALTYRTYRARGGLUGLYARGASPLNLEUTRPLYSGLYPROGLYGLULEU
TTTCGGGTCTATTACAGAGAACGGCAGAGATCAGCTGTGGAAAGGGACCCGGTGAGCTATTG

4700

TRPLYSGLYGLUGLYALAVALILEEULYSVALGLYTHRASPILEYLYSVALVALPROARG
TGGAAAGGGGAAGGGAGGCACTCTAAAGGTAGGAACAGACATTAAGGTAGTACCCAGG

4800

ARGLYSALALYSILEILELYSASPTYRGLYGLYLYSGLUMETASPSERSER SERHIS
QMETGLUGLUGLULYSARGTRPILEVALVALPROTHR
AGAAAGGCTAAATTATCAAAGATTATGGAGGAGGAAAAGAGATGGATAGTAGTCCCAC

METGLUASPTHRGLYGLUALAARGGLUVALALA
TRPARGILEPROGLUARGLEUGLUGLURGTRPHISERLEUILELYSTYRLEULYLYSTYR LYS
ATGGAGGATACCGGAGAGGGCTAGAGAGGTGGCATAGCCTCATAAAATATTGAAATATAA

4900

(fig.1B - suite 3)

THRLYSASPLEUGLNLYSALACYSTYRALPROHISHISLYSVALGLYTRPALATRPTRP
 AACTAAAGATCTACAAAGGCTTGCATGTGCCCATCATAAGTCGGATGGCATGGT
 THRCYSSERARGVALILEPHEPROLEUGLNGLUGLYSERHISLEUGLUVALGLNGLYTYR
 GACCTGCAGCAGAGTAATCTTCCCACATACAGGAAGGAACCCATTAGAAGTACAAGGGTA
 5000
 TRPASNLEUTHRPROGLUARGGLYTRPLEUSERTHRRTYRALAVALARGILETHRTRPTYR
 TTGGAATTGACACCAGAAAGAGGGTGGCTCAGTAATTGCACTGAGGATAACCTGGTA
 5100
 SERLYSASPPHETRPTHRASPVALTHRPROGLUTYRALAASPILEULEUHISSETRH
 CTCAAAGGACTTTGGACAGATGTAACACCAGAATATGCAGATATTTACTGCATAGCAC
 TYRPHEPROCYSPHETHRALAGLYGLUVALARGARGALAILEARGGLYGLUARGLEULEU
 TTATTTCCCTTGCTTACAGCGGGAGAGTGAGAAGGGCCATCAGGGAGAACGACTGCT
 5200
 SERCYSCYSARGPHEPROARGALAHISLYSHISGLNVALPROSERLEUGLNTYRLEUALA
 GTCTTGCCTGCAGGTTCCCAGAGCTCATAAGCACCAGTACAGTCACTGAGTAGCTAG
 LEUARGVALVALSERHISVALARGSERGLNGLYGLUASNPROTHRTRPLYSGLNTRPARG
 X MET SERASPPROARGGLUARGILEPROPROGLYASNSERGLYGLU
 ACTGAGAGTAGTAAGTCATGTCAGATCCCAGGGAGAGAATCCCACCTGGAAACAGTGGAG
 5300
 ARGASPASNARGSERLEUARGVALALALYSGLNASNSERARGGLYASPLYSGLNARG
 GLUTHRILEGLYGLUALAPHEGLUTRPLEUASNARGTHRYALGLUGLUILEASNARGGLU
 AAGAGACAATAGGAGAACCTTCAGTGAGTGGCTAACAGAACAGTAGAGGGAGATAAACAGAG
 5400
 GLYGLYLYSPROPROTHRGLUGLYALAASNPHPROGLYLEUALALYSVALLEUGLYILE
 ALAVALASNHSILEUPROARGGLUEUILEPHEGLNVALTRPGLNARGSERTRPGLUTYR
 AGGCGGTAACACCTACCCAGGGAGCTAATTTCCAGGTTGGCAAAGGTCTTGGGAAT
 LEUALA
 TRPHISASPGUGLNLGYMETSERGLNERTYRTHRLYSTYRARGTYRLEUCYSLEUILE
 ACTGGCATGATGAACAAGGGATGTCACAAAGCTATAACAAAGATACTTGTGTTAA
 5500
 GLNLYSALALEUPHEMETHISCSYSLYSGLYCYSARGCYSLEUGLYGLUGLYHISGLY
 TACAAAAGGCTTATTTATGCAATTGCAAGAAAGGCTGAGATGTCAGGGAAAGGACACG
 ALAGLYGLYTRPARGPROGLYPROPROPROPROPROGLYEUALA R METGLU
 GGGCAGGGGGATGGAGACCAGGACCTCCTCCTCCCCCTCAGGACTAGCATAATGG
 5600
 GLUARGPROPROGLUASNGLUGLYPROGLNARGGLUPROTTPASGLUTRPTVALVALGLU
 AAGAAAGACCTCCAGAAAATGAAGGCCACAAAGGGAAACCATGGGATGAGTGGTAGTGG
 5700
 VALLEULYSGLULEULYSGLUGLUALEULYSHISPHEASPPROARGLEULEUTHRALA
 AAGTTCTGAAAGAACTGAAAGAAGAAGCTTAAAGCATTGATCCTCGGCTCTAACCG
 TATI METGLUTHRPROLEUARGGLUGLNGLUASN
 LEUGLYASNHSILETYRASNARGHISGLYASPTHRLEUUGLUGLYALAGLYGLULEUILE
 CACTTGGTAATCATATCTATAAGACATGGAGACACCCTGAGGGAGCAGGAGAACTCA
 5800
 LEUGLUSERSERASNGLUARGSERERTYRILESERGLUALAALAALAILEPROGLU
 ARGILELEUGLNARGALALEUPHEILEHISPHEARGSERGLYCYSSERHISSEARGILE
 TTAGAACCTCCAACGAGCGCTCTCATACATTCAAGCAGCGGCTCCAGCCATTCCAGAA
 SERALAASNLEUGLYGLUGLUILELEUSERGLNLEUTYRARGPROLEUGLUALACYSTYR
 GLYGLNPROGLYGLYGLYASNPROLEUSERTHRILEPROPROSERARGSERMETLEU
 TCGGCCAACCTGGGGAGGAATCCTCTCTCAACTATACCGCCCTCTAGAACGATGCTAT
 5900
 ASNTHRCYSTYRCYSLYSCYSCYSTYRHISCSYSGLPHECYSPHELEULYSLYSGLY
 AACACATGCTATTGCAAAAGTGTGCTACCATTGCCAGTTTGTCTAAAGGGC
 6000
 LEUGLYILESERTYRGLULYSSERHISARGARGARGTHRPROLYSLYSALALYSALA
 ARTIMETARGSERHISTHRGLYGLUGLUGLUEUARGARGARGLEUARGLEU

TTGGGGATAAGTTATGAGAACTCACACAGGAGAAGAAGAACTCCGAAGAAGGCTAAGCT
 ASNTHR SERSERALASERASNGLU
 ILEHISLEULEUHISGLNTHR SERLYSTYRGLYLEUSERTRPLYSSERALAALATYRARG
 ENV METGLYCYSLEUGLYASNGLNLEULEUILEALA
 AATACATCTTCTGCATCAAACAGTAAGTATGGGTGCTTGAAATCAGCTGTTATCG
 6100
 HISLEULEU
 ILECYSSERLYSCYSLEUTRPILEILECYSILEGLNTYRVALTHRVALPHETYRGLYVAL
 CCATCTGCTCTAAGTGTATGGATTATTGATTCAATATGTCACAGCTTTATGTC
 PROALATRPARGASHNALATHRILEPROLEUPHECYSLAATHRLYSASNARGASPTHRTRP
 TACCACTGGAGGAATGCGACAATTCCCCTCTTCTGTGCAACCAAGAACAGGATACTT
 6200
 GLYTHRTHRGLNCYSLEUPROASPASNASPASP TYRSERGLULEUALALEUASNVALTHR
 GGGGAAACAACTCAGTGCTACCAGATAATGATGATTATTGAGAAATTGCCCTTAATGTTA
 6300
 GLUSERPHEASPALATRPGLUASNTHRVALTHRGLUGLNLALTEGLUA SPVALTRPGLN
 CAGAAAGCTTGATGCTGGAGAACAGTCACAGAACAGGCAATAGAGGACGTATGGC
 LEUPHEGLTHR SERILELYSPROCYSALLYSLEUSERPROLEUCYSILETHR METARG
 AACTCTTGACACCTCAATAAAGCCTTGTGAAAATTATCCCATTATGCAATTACTATGA
 6400
 CYSASNLYSSERGLUTHRASPLYSTRPGLYLEUTHRLYSSERSERTHRTHRTHRALASER
 GATGCAATAAAAGTGAGACAGATAATGGGATTGACAAAATCATCAACAACACAGCAT
 THRTHRTHRTHRTHRALALYSSERVALGLUTHRARGASPILEV ALASNGLUTHR SER
 CAACAAACAACAACAACAGCAAATCAGTAGAGACAAGAGACATAGTCATGAGACTA
 6500
 PROCYSVALVALHISASPASNCYSTHRGLYLEUGLUGLNGLUPROMETILESERCYSLYS
 GTCCCTTGATGTTCATGATAATTGACAGGCTTGAACAAGGCCATGATAAGCTGTA
 6600
 PHEASNMETTHRGLYLEULYSARGASPLYSLYSGLUTYRASNGLUTHRTRP TYRSER
 AATTCAACATGACAGGGTTAAAAGAGACAAGAAAAGAGTACAATGAAACTTGGTACT
 ALAASPLEUVALCYSGLUGLNGLYASNSERTHRGLYASNGLUSERARGCYS TYRMETASN
 CTGCAGATCTGTTTGTAACAAGGAATAGCACTGGTAATGAAAGTAGATGTTACATGA
 6700
 HIS CYSASNTHR SERVALILEGLNGLUCYSCYSASPLYSASPTYRTRPASPA LIEARG
 ATCACTGTAATACTTCTGTTATCCAAGAGTGTTGACAAAGATTATTGGGATGCTATT
 CYSARGTYRCYSLAPROPROGLYTYRALALEUEARGCYSASNASPTHRASNTYRSER
 GATGTAGATATTGTCACCTCCAGGTTATGCTTGCTTAGATGTAATGACACAAATTATT
 6800
 GLYPHEMETPROASNCYSERLYSVALVALVALSERSERCYSTHRARGMETMETGLUTHR
 CAGGCTTATGCCACTGTTCAAGTAGTGGCTCTTCATGCACAAGGATGATGGAGA
 6900
 GLNTHR SERTHRTRPHEARGPHEASNGLYTHRARGALAGLUASNARGTHR TYRILETYR
 CACAGACTTCACTTGGTTTGGTTAATGAAACTAGAGCAGAAAATAGAACCTATATT
 TRPHISGLYARGASPNARGTHRILEILESERLEUASNLYSHISTYRASNLEUTHR MET
 ACTGGCATGGTAGAGATAATAGGACTATAATTAGTCTAAATAAGCATTATACTAACAA
 7000
 LYS CYSARGARGPROGLYASNL YSTHRVALLEUROVALTHRILEMETSERALALEUVAL
 TGAAATGTAAGAACCAAGGAAATAAGACAGTTTACCACTCACCATTATGTCATTG
 PHEHISSERGLNPROVALASNGLUARGPROLYSGLNLA TRPCYSARGPHEGLYGLYASN
 TTTTCCACTACAACCAAGCTCAATGAGAGGCCAAAGCAGGCATGGTGAGGTTGGAGGA
 7100
 TRPLYSGLUALILELYSGLUVALLYSGLNTHRILELEVALLYSHISPROARGTYRTHRGLY
 ATTGGAAGGAGGCAATAAAAGAGGTGAAGCAGACCACTGTCAAACATCCCAGGTACTG
 7200
 THRASNTHRASPLYSILEASNL EUTHRALAPROARGGLYGLYASPPROGLUVALTHR
 GAACTAACAATCTGATAAAATCAATTGACGGCTCCTAGAGGAGGAGATCCGAAGTTA

(fig.1B-suite 5)

16 / 35

PHEMETTRPTHRASNCYSARGGLYGLUPHELEUTYRCYSLYSMETASNTRPPHELEUASN
 CCTTCATGTGGACAAATTGAGAGAGTTCTCTACTGTAAAATGAATTGGTTCTAA
 7300
 TRPVALGLUASPARGSERLEUTHRTHRLNLYSPOLYSGLUARGHISLYSARGASNTYR
 ATTGGTAGAAGATAGGAGTCAACTACCCAGCAAAGGAACGGCATAAAAGGAATT
 VALPROCYSHISILEARGGLNILEILEASNTHRTRPHISLYSVALGLYLYSASNVALTYR
 ACGTACCATGTCAATTAGACAATAATCACACTTGGCATAAAGTAGGAAAAATGTT
 7400
 LEUPROPROARGGLUGLYASPLEUTHRCYSAASNERTHRVALTHR SERLEUILEALAASN
 ATTTGCCTCCAAGAGAGGGAGACCTCACGTAACTCACAGTGACCAGTCTCATAGCAA
 7500
 ILEASNTRPTHRASPLYAASNGLNTHR SERILETHR METSERALAGLUVALALAGLULEU
 ACATAATTGGACTGATGGAAACCAACTAGTATCACCAGTGCAGAGGTGGCAGAAC
 TYRARGLEUGLULEUGLYASPTYRLYSLEUVALGLUILETHRPROILEGLYLEUALAPRO
 TGATCGATTGGAATTGGAGATTATAATTAGTAGAAATCACTCCAATTGGCTTGGCCC
 7600
 THRASNVALLYSARGTYRTHRTHRLYGLYTHR SERARGASHLYSARGCLYVALPHEVAL
 CCACAAATGTGAAGAGGTACACTACTGGTGGCACCTCAAGAAATAAAAGAGGGGTCTTG
 LEUGLYPHELEUGLYPHELEUALATHRALAGLYSERALAMETGLYALAA LASERLEUTHR
 TCCAGGGTTCTGGGTTTCTCGAACGGCAGGTTCTGCAATGGCGCGCGTCGTTGA
 7700
 VALTHR ALAGLN SERARGTHR LEU EULAGLYILEVALGLNLNGLNGLNLNGLNLEULEU
 CCGTGACCGCTCAGTCCCCACTTTATTGGCTGGATAGTCAGCAACAGCAACAGCTGT
 7800
 ASPYVALVALLYSARGGLNGLNGLULEUARGLEUTHRALTRPGLYTHRLYSASNLEU
 TGGACGTGGTCAAGAGACAACAAGAATTGTCGACTGACCGTCTGGGAACAAAGAAC
 GLNTHRARGVALSERALAILEGLULYSTYRLEULYSASPGLNALAGLNLEUASNALATRP
 TCCAGACTAGGGTCTGCCATCGAGAAGTACTTAAAGGACCAGGCGCAGCTAAATGCTT
 7900
 GLYCYSALAPHEARGGLNVALCYSHISTRHRLVALPROTRP PROASNALASERLEUTHR
 GGGGATGTGCGTTAGACAAGTCTGTCACACTACTGTACCATGCCAAATGCAAGTCTAA
 PROASPTRPASNASNGLUTHRTRPGLNGLUTRPGLUARGLYSVALASP PHELEUGLUALA
 CACCAGATTGAAACAATGAGACTTGGCAAGGTGGAGCGGAAGGTTGACTTCTGGAGG
 8000
 ASNILETHR ALALEU EUGLUGLUALAGLNILEGLNLNGLULYSASN METYRGLULEU
 CAAATATAACGGCCCTCTAGAAGAGGCACAAATTCAACAAGAGAAGAACATGTATGAAT
 8100
 GLNLYSLEUASN SERTRPASPTVALPHEGLYASNTRP PHEASPLEUTHRSERTRPILEYLS
 TACAAAAGTTGAATAGCTGGATGTGTTGGCAATTGGTTGACCTTACTCTGGATAA
 TYRILEGLNTYRGLYILETYRILEILEVALGLYVALILELEUARGILEVALILETYR
 AGTATATAACATGGAAATTATATAATTGAGGAGTAACTGTAAAGAATAGTGTACT
 8200
 ILEVALGLNMETLEUALAARGLEUARGGLNGLYTYRARGPROVALPHESER SERPRO
 ATATAGTACAAATGCTAGCTAGGTTAACAGGGGTATAGGCCAGTGTCTCTCCCCAC
 TAT2ARGPROILEPROASNARGILEARGLEUCYGLNPROLYSLYSALA
 ART2VALASPPROTYPTRPOTHRLYSERGLYSERLAASNGLNARGARGGLN
 SERTYRPHGLN***THR HISTHRGLNGLNASPPROALALEU PROTHRLYSGLUGLYLYS
 CCTCTTATTCAGTAGACCCATACCCAAACAGGATCGGCTCTGCCAACAAAGAAC
 8300
 LYSLYSGLUTHRVALGLUALAALAVALALATHRALAPROGLYLEUGLYARG TAT(fin)
 LYSARGARGGTRPARGGLNARGTRPGLNGLNLEULEU ALAASPARGILETYR
 LYSGLYASPTGLYGLYLYSERGLYGLYASNSERSERTRP PROTRPGLNILEGLUTYRILE
 AAAAAGGAGACGGTGGAGGCAGGGTGGCAACAGCTCTGGCTTGGCAGATAGAATATA
 8400

(fig.1B-suite 6)

17 / 35

SERPHEPROASPPROPROTHRASPTHRPROLEUASPLEUALAILEGLNGLNLEUGLNASN
 HISPHELEUILEARGLNLNEUILEARGLEULEUTHRTRPLEUPHESERASNCYSARGTHR
 TTCATTCCTGATCCGCCAACTGATACGCCCTTGAATTGGCTATTCAAGCAACTGCAGAA
 LEUALAILEGLUSERILEPROASPPROPROTHRASNILEPROGLUALALEUCYSASPLEU
 LEULEUSERARGALATYRGLNILELEUGLNPROILEPHEGLNARGLEUSERALATHRTYR
 CCTTGCTATCGAGAGCATACCAGATCCTCCAACCAATTCCAGAGGCTCTCTGCACCT

8500 F MET GLY GLY ALA

ARG ARG ILE ARG ARG SER PRO GLN NALA • ART2 (fin)
 GLY GLU PHE GLY GLU VAL LEU ARG LEU GLU L U E U H R T Y R L E U G L N T Y R C L Y T R P S E R T Y R
 A C G G A G A A T C G G A G A A G T C C T C A G G C T T G A C T G A C C T A C C T A C A A T A T G G G T G G A G C T
 I L E S E R L Y S L Y S A R G S E R L Y S P R O P R O G L U I L E C Y S A S P A R G A S P S E R C Y S C L Y A R G V A L
 P H E G L N G L U A L A V A L G L N N A L A A L A A R G A S P L E U A R G G L N A R G L E U L E U A R G A L A A R G G L Y
 A T T C C A A G A A G C G G T C A A G C C G C C A G A G A T C T G C G A C A G A G A C T C T T G C G G G C C G T G

8600

GLY ARG AS P N T Y R C L Y A R G L E U P H E L Y S G L Y V A L G L U A S P G L Y S E R S E R G L N S E R L E U G L Y
 G L U L Y S L E U T R P C L U A L A E U G L N A R G G L Y G L Y A R G T R P I L E U L A I L E P R O A R G A R G
 G G G A G A A T T A T G G G A G G C T C T T C A A A G G G T G G A A G A T G G A T C C T C G C A A T C C T A G G A

8700

G L Y L E U A S P L Y S G L Y L E U S E R S E R L E U S E R C Y S G L U G L Y G L N L Y S T Y R A S N G L N G L Y G L U
 I L E A R G G L N G L Y L E U G L U L U E U H R L E U L E U
 G G A T T A G A C A A G G G C T T G A G C T C A C T C T T G T G A G G G C C A A A A A T C A A T C A G G G A G A A

T Y R M E T A S N T H R P O T R P A R G A S N P R O A L A G L U G L U A R G L Y S L E U P R O T Y R A R G L Y S
 T A C A T G A A T A C T C C A T G G A G A A A C C C A G C T G A A G A G A G G A A A A A T T A C C A T A C A G A A A A

8800

G L N A S N I L E A S P A S P I L E A S P G L U G L U A S P A S P A S P L E U V A L G L Y I L E P R O V A L G L U A L A
 C A A A A T A T A G A T A T A G A T G A G G A A G A T G A T G A C T T G G T A G G G A T A C C A G T T G A G G C C

A R G V A L P R O L E U A R G T H R M E T S E R T Y R L Y S L E U A L A I L E A S P M E T S E R H I S P H E I L E L Y S
 A G A G T T C C C C T A A G A A C A A T G A G T T A C A A A T T G G C A A T A G A T A T G T C T C A T T T T A T A A A A

8900

G L U L Y S G L Y G L Y L E U G L U G L Y I L E T Y R T Y R S E R A L A A R G A R C H I S A R G I L E U A S P I L E
 G A A A A G G G G G A C T G G A A G G G A T T T A T T A C A G T G C A A G A A G A C A T A G A A T C T T A G A C A T A

9000

T Y R L E U G L U L Y S G L U G L U G L Y I L E I L E P R O A S P T R P G L N I L E H I S S E R G L Y P R O G L Y I L E
 T A C T T A G A A A A G G A A G G C A T C A T C C A G A T T G G C A G A T A C A T C C G G A C C A G G A A T T

A R G T Y R L E U L Y S H E P H E G L Y T R P L E U T R P L Y S L E U I L E P R O V A L A S N V A L S E R A S P G L U
 A G A T A C C T A A A G A T G T T T G G C T G G C T A T G G A A A T T A T C C C T G T A A T G T A T C A G A T G A G

9100

A L A G L N G L U A S P G L U G L U H I S T Y R L E U V A L H I S P R O A L A G L N T H R S E R G L N T R P A S P A S P
 G C A C A G G G A G G T G A G G G C A T T A T T A G T G C A C C C A G C T C A A A C T T C C A G T G G G A T G A C

P R O T R P G L Y G L U V A L L E U A L A T R P L Y S P H E A S P P R O T H R L E U A L A T Y R T H R T Y R G L U A L A
 C C T T G G G G A G G G T T C A G C A T G G A A G T T G A T C C A A C T C T A G C C T A C A C T T A T G A G G C A

9200

T Y R I L E A R G T Y R P R O G L U G L U P H E G L Y S E R L Y S S E R G L Y L E U S E R G L U L Y S G L U V A L L Y S
 T A T A T T A G A T A C C C A G A A G A G T T G G A A G C A A G T C A G G C C T G T C A G A G A A A G G G T T A A A

9300

A R G A R G L E U A L A A L A A R G G L Y L E U L E U G L U M E T A L A A S P A R G L Y S G L U T H R S E R
 A G A A G G C T A G C C G C A A G A G G C T T C T T G A A A T G G C T G A C A G G A A G G A A C T A G C T G A G A C

A G C A G G G A C T T C C A C A A G G G G A T G T C A T G G G G A G G T A C T G G G G A G G G A G C C G G T T G G G A A
 C A C C C A C T T C T T G A T G T A A A T A T C A C T G C A T T C G C T C T G T A T T C A G T C G C T C T G C G

9400

G A G A G G C T G G C A G A T T G A G G C C T G G G A G G T T C T C C A G C A C T A G C A G G T A G A G C C T G G G
 9500

T G T T C C C T G C T A G A C T C T C A C C A G C A C T T G G C C G G T G C T G G C A G A G T G G C T C C A C G C T T
 9600

(fig.1B-suite 7)

18 / 35

FIG. 1C

séquence LTR
 CIVET
 versus
 HIV-2 ROD

X	8960	8970	8980	8990	9000	9010
TGGAAGGGATTTATTACAGTGCAAGAAGACATAGAACATCTTAGACATATACTTAGAAAAGG						
:	:::::	:::	:::::	:::	:::	:::::
TGGAAGGGATGTTTACAGTGAAAGAACATAAAATCTTAAATATATACTTAGAAAAGG						
X	8950	8960	8970	8980	8990	
	9020	9030	9040	9050	9060	
AAGAAGGCATCATACCAGATTGGCAGATACTCCGGA---CCAGGAATTAGATACCTAA						
:	:::	::	:::::	::	::	::
AAGAAGGGATAATTGCAGATTGGCAGAACTACACTCATGGGCCAGGAGTAAGATAACCCAA						
9010	9020	9030	9040	9050		
	9080	9090	9100	9110	9120	
AGATGTTGGCTGGCTATGGAAATTAATCCCTGTAAATGTATCAGATGAGGCACAGGAGG						
:	::	::	::	::	::	::
TGTCTTGGGTGGCTATGGAGCTAGTACCAAGTAGATGTCCCACAAGAAGGGGAGGACA						
9070	9080	9090	9100	9110		
	9140	9150	9160	9170	9180	
ATGAGGAGCATTATTTAGTGCACCCAGCTCAAACCTCCCAGTGGATGACCCCTGGGGAG						
:	::	::	::	::	::	::
CTGAGACTCACTGCTTAGTACATCCAGCACAAACAAGCAAGTTGATGACCCGATGGGG						
9130	9140	9150	9160	9170		
	9200	9210	9220	9230	9240	
AGGTTCTAGCATGGAAGTTGATCCAACCTCTAGCCTACACTTATGAGGCATATATTAGAT						
:	::	::	::	::	::	::
AGACACTAGTCTGGAGTTGATCCCTGGCTGGCTTATAGTTACGAGGCTTTTATTGGT						
9190	9200	9210	9220	9230		
	9260	9270	9280	9290	9300	
ACCCAGAGAGTTGGAAGCAAGTCAGGCCTGTCAGAGAACAGAGTTAAAAGAACGGCTAG						
:	::	::	::	::	::	::
ACCCAGAGGAATTTGGGCACAAGTCAGGCCTGCCAGAGAACAGTGGAAAGCGAGACTGA						
9250	9260	9270	9280	9290		
	9320	9330	9340	9350		
CCGCAAGAGGCCTTCTTGAAATGGCT-GACAGGAAGGAAACT-----						
:	::	::	::	::		
AAGCAAGAGGAATACCATTTAGTTAAAGAACAGGAACAGCTATACTTGGTCAGGGCAGGAA						
9310	9320	9330	9340	9350		

FIG. 1C

19 / 35

9360	9370	9380	9390	
-----AGCTGAGACAGCAGGGACTTCCACAAGGGATGTATG--GGGA				
::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::				
GTAACATAACAGAAACAGCTGAGACTGCAGGGACTTCCAGAAGGGCTGTAAACCAAGGGA				
9370	9380	9390	9400	9410
9400 9410 9420 9430 9440 9450				
GGTACTGGGGAGGGAGCCGGTGGAACACCCCACTTCTTGATGTATAAATATCACTGCAT				
:: : : ::::: :: : ::::: :: : : : ::::: :: : :				
GGGACATGGGAGGGAGCTGGTGGGAACGCCCTCATATTCTCTGTATAAATATACCGCTA				
9430	9440	9450	9460	9470
9460 XX 10 20 30 40				
TTCGCTCTGTA--TTCTGGAAGGGATTATTACAGTGCAGAACAGACATAGAACATCTTAGAC				
: ::::: :: : ::::: ::::: ::::: ::::: ::::: :				
GCTTGCATTGTACTTCTGGAAGGGATGTTACAGTGAAGAGAACATAAAATCTTAAAT				
9490	XX	10	20	30
40				
50 60 70 80 90				
ATATACTTAGAAAAGGAAGAACGGCATCATACCAAGATTGGCAGATACACTCCGGA---CCA				
::: ::::: ::::: ::::: :: : :: ::::: :: : : :: :				
ATATACTTAGAAAAGGAAGAACGGATAATTGCAGATTGGCAGAACATACACTCATGGGCCA				
50	60	70	80	90
100				
110 120 130 140 150				
CGAATTAGATACTAAAGATGTTGGCTGGCTATGAAATTAAATCCCTGTAAATGTATCA				
:: : : ::::: :: : : ::::: ::::: :: : : :: : :: :				
GGAGTAAGATAACCAATGTTCTTGGGTGGCTATGAAAGCTAGTACCAAGTAGATGTCCCCA				
110	120	130	140	150
160				
170 180 190 200 210				
GATGAGGGCACAGGAGGATGAGGAGCATTATTTAGTGCACCCAGCTCAAACCTTCCCAGTGG				
: : : : : :: : : : :: : :: : :: : :: : :				
CAAGAAGGGGAGGACACTGAGACTCACTGCTTAGTACATCCAGCACAAACAAGCAAGTT				
170	180	190	200	210
220				
230 240 250 260 270				
GATGACCCCTGGGGAGAGGTTCTAGCATGGAAGTTGATCCAACCTCTAGCCTACACTTAT				
::: :: : :: : :: : :: : :: : :: : :: : :: :				
GATGACCCCGCATGGGGAGACACTAGTCTGGGAGTTGATCCCTGGCTTATAGTTAC				
230	240	250	260	270
280				
290 300 310				
GAGGCATATATTAGATAACCCAGAACAGAGTTGGAAGCA				
:: : :: : :				
GAGGCTTTATCCGG				
290				

(fig.1C-suite 1)

20 / 35

(HIV-2.P
 (versus
 (HIV-1.P

FIG. 2

..... env4

HIV2-----	-----	0	20	30	40	50
HIV1-----	M	H	Q	L	I	A
HIV2-----	-----	---	---	---	Y	C
HIV1-----	M	R	V	K	E	Y

..... env5

HIV2-----	PLFCATRNR	DT	60	70	80	90	100
HIV1-----	-----	-----	W	G	T	I	N
HIV2-----	-----	-----	-----	-----	Y	O	E
HIV1-----	T	L	F	C	A	S	D

..... env6

HIV2-----	TEQAIEDVWH	LFETSIKPCV	KLTPLCVAMKIC	CSSTESSTGN	NTTSKSTSTT	110	120	130	140	150
HIV1-----	-----	-----	-----	-----	-----	**	*	*	*	*
HIV2-----	-----	-----	-----	-----	-----	**	**	**	**	**
HIV1-----	V	E	Q	M	H	E	D	I	I	S

..... env7

HIV2-----	--TTTPTDQE	QEISEDTPCA	RADNC SGLGE	SETINCQFNM	TGLERDKKKQ	160	170	180	190	200
HIV1-----	-----	-----	-----	-----	-----	*	*	***	*	*
HIV2-----	-----	-----	-----	-----	-----	**	**	**	**	**
HIV1-----	S	S	S	G	E	M	M	M	E	K

..... env8

HIV2-----	YCAPPGYALL	RC-NDT-NYS	GFAPNC SKVV	ASTCTRMMET	QTSTWF-GFN	260	270	280	290	300
HIV1-----	-----	-----	-----	-----	-----	****	**	**	**	**
HIV2-----	-----	-----	-----	-----	-----	*	*	*	*	*
HIV1-----	Y	C	A	P	A	G	F	A	I	L

..... env9

HIV2-----	MLMS--GHVF	HSHYQPINKR	PROAWCWFKG	-KVKDAMQEV	KETLAKHPRY	360	370	380	390	400
HIV1-----	-----	-----	-----	-----	-----	*	*	***	*	*
HIV2-----	-----	-----	-----	-----	-----	**	**	**	**	**
HIV1-----	R	I	Q	R	G	P	G	R	A	S

FIG. 2

21 / 35

	410	↓	420	env10	430	440	450	
	RGTNDTRNIS FAAPGKGS DP EVAYHWTNCR GEFLYCNMTW FLH--WI--							
	HIV2-----	*	*	*	*	*	*	
	HIV1-----	FGNNKT-II FKQSS-GGDP EIVTHSFNCG GEFFYCNSTQ LFNSTWFNST						
.....								
	460	↓	470	env11	480	490	500	
5	HIV2-----	EN KTHRN YAPCH IKOII INTWHK VGRNVYLP PR EGELSCNSTV						
	*	*	*	*	*	*	*	
	HIV1-----	WSTEGBNNTE GS DTITLPCR IKQF INNWQE VGKAMYAPPI SGQIRCSSNI						
.....								
	510	520	530	540	550			
	HIV2-----	TSIIANIDWQ	NNNQTNITFS	AEV AELYRL-	—ELGDYKLV	EITPIGFAPT		
	*	*	***	*	**	***		
10	HIV1-----	TGLLLTRDGG	NNNN GSEIFR	PGCGDHRDNW	RSELYKYKV	KIEPLGVAPT		
.....								
	env3	560	570	580	590	600		
	HIV2-----	<u>KEKRYSSAHG</u>	RHTRGVFVLG	—FLGFLATA	GSAMGAAS	LTVSAQSRTL		
	*	**	*	*	***	***		
	HIV1-----	KAKRR--VVQ.	REKRAVGI-G	ALFLGFLGAA	GSTMGARSMT	LTVQA--RQL		
.....								
15								
	610	620	630	↓	640	env1	650	
	HIV2-----	LAGIVQQQQQ	LLDVVKRQQE	LLRLTVWGTK	<u>NLQARVTAIE</u>	<u>KYLODOARLN</u>		
	*	*****	**	***	***	***		
	HIV1-----	LSGIVQQQNN	LLRAIEAQHQ	LLQLT VWGIK	QLQARILAVE	RYLK DQQLLG		
.....								
20								
	660	670	680	690	700			
	HIV2-----	<u>SWGCAFROVC</u>	HTTV PW	VNDSLAPDWD	NMTWQEWEKQ	VRYLEANISK		
	*	***	*	**	***	**		
	HIV1-----	IWGCSGK LIC	TTAVZKHSI	SNKSLEQIWN	NMTWMEWDRE	INNYTSLHS		
.....								
25								
	710	720	730	740	750			
	HIV2-----	<u>SLEQAQIQQE</u>	<u>KNMYELOKLN</u>	<u>SDIFGNWFD</u>	LTSWVKYIQY	GVLIIVAVIA		
	*	***	**	***	***	**		
	HIV1-----	LIEESQNQQE	KNEQELLED	KWASLWNWFN	ITNWLWYIKI	FIMIVGGLVG		
.....								

(fig.2 - suite 1)

22 / 35

	760	770	780	790	800
	LRIVIYVVQM LSRLRKGYRP V-FSSPPGYI QQIHIHKDRG QPANEETEED				
	*** * * * * *				
	** * * * *				
	LRIVFAVLSI VNVRVRQGYSP LSFQT — HLPTPRG PDRPEGIEEE				
HIV2-----					
HIV1-----					
.....					
	810	820	830	840	850
	GGSNNGDRYW PWPIAYIRFL IRQLIRLLT — LYSIC RDLLSRSFLT				
	** ** * * *				

	GERDRDRSI RLVNGSLA-L IWDDLRSCL FSYHRL — RDLLLIVTRI				
HIV2-----					
HIV1-----					
.....					
	860	870	880	890	900
	LQLIYQNLRD WLRLRTA—F LQYGCEWIQE AFQ — AAA RATRETL				
	* * * ***				
	* * * *				
	VELLG--RRG WEALKYWWNL LQYWSQELKN SAVSILLNATA IAVAEGTDRV				
HIV2-----					
HIV1-----					
.....					
	910	920	930	938	
	— AGACRG LWRVLERIGR GILAVPRRIR QGAEIALL				
	** ***** * * *				
	— IRHIPRRIR QGLERILL				
HIV2-----					
HIV1-----					
.....					

(fig. 2 - suite 2)

23/35

FIG. 3 (ENV-mac
 versus
 ENV-ROD

10	20	30	40	50	
MGCLGNOLLIAIC--SKCLWIICIQQVTVFYGVPAHRNATIPLFCATKNRDTWGTQCL					
: : :: :: :					
MM---NOLLIAILLASACLVY-CTQVVTVFYGVPTWKNATIPLFCATRNRDTHGTIQL					
10	20	30	40	50	
60	70	80	90	100	110
PDNDYSELALNVTESFDAWENTVTEQAIEDVWOLFETSIKPCVKLSPLCITMRCNKSET					
: : :: :: : : : : : : : : : : : : : : : : :					
PDNDYQEITLNVTTEAFDAWNNTVTEQAIEDVWHLFETSIKPCVKLTPLCVAMKCSSTES					
60	70	80	90	100	110
120	130	140	150	160	170
DKHGLTKSSTTTASTTTTAKSVETRDIYNETS--PCVVDHNCTGLEQEPMISCKFNM					
: :					
STGNNTTSKST--STTTTP----T-DQEQEISEDTPCARADNCGLGEEETINCQFNM					
120	130	140	150	160	
180	190	200	210	220	230
TGLKRDKKKEYNETWYSADLVCEQGNSTGNESRCYMNHCNTSVIQECCDKDYWDAILYCRY					
: :					
TGLERDKKKQYNETWYSKDVVCETNNST-NOTQCYMNHCNTSVITESCDKHWDAILYFRY					
170	180	190	200	210	220
240	250	260	270	280	290
CAPPGYALLRCNDTNYSGFMPNCSKVVSCTRMMETQTSTWFRFNGTRAENRTYIYHHG					
: :					
CAPPGYALLRCNDTNYSGFAPNCSKYVASTCTRMMETQTSTWFGFNGTRAENRTYIYHHG					
230	240	250	260	270	280
300	310	320	330	340	350
RDNRTIISLNKHYNLTMKRRPGNKTLPVTIMSALVFHS--QPVNERPKQAHCRFGGNW					
: :					
RDNRTIISLNKYYNLSLHCKRPGNKTVKQIMLMSGHVFHSHYQPINKRPRQAWCHFKGKH					
290	300	310	320	330	340
360	370	380	390	400	
KEAIKEVKQTIVKHPRYTGTNNTDKINLTAPRGG-DPEVTFMHTNCRGEFLYCKMNWFLN					
: :					
KDAMQEYKETLAKHPYRGTNDTRNISFAAPGKGSDPEVAYMHTNCRGEFLYCNMTWFLN					
350	360	370	380	390	400

FIG. 3

24 / 35

420	430	440	450	460
HVEDRSLTQKPKERHKRNYVPC H IRQIINTWHKV G KNVYLPPREGDLTCNSTVTS I AN				
: :				
WIEN-----KT-H-RNYAPCHIKQIINTWHKVGRNVYLPPREGELSCNSTVTS I AN				
410	420	430	440	450
480	490	500	510	520
INWTDGNQTSITMSAEVAELYRLELGOYKLVEITPIGLAPTNVKRYTTG-GTSRNKRGVF				
: :				
IDWQNNNQTNITFSAEVAELYRLELGDYKLVEITPIGFAPTKEKRYSSAHG--RHTRGVF				
460	470	480	490	500
510				
540	550	560	570	580
VLGFLGFLATAGSAMGAASLT V TAQSRTLLAGIVQQQQQLLDVVKRQOELLRLTVWGTKN				
: :				
VLGFLGFLATAGSAMGAASLT V SAQSRTLLAGIVQQQQQLLDVVKRQOELLRLTVWGTKN				
520	530	540	550	560
570				
600	610	620	630	640
LQTRYSAIEKYLKDQAOLNAWGC A FROYC T TTVPWPNASLTPDWNNNETWQEWERKVDFLE				
: :				
LQARYTAIEKYLQDQARLN S WGCAFROYC T TTVPW N DSLAPDWDNM T WQEWEKQVRYLE				
580	590	600	610	620
630				
660	670	680	690	700
ANITALLEEAQIQQEK N MYELQKLNSWDVFGNWF D LTS W KYI Q YGIYIIVGVILLRIVI				
: :				
ANISKSLEQAQIQQEK N MYELQKLNS W DIFGNWF D LTS W KYI Q YGVLIIVAYIALRIVI				
640	650	660	670	680
690				
720	730	740	750	760
YIVQMLARLRQGYRPVFSSPPSYFQ*THTQQDPALPTKEGKKGDGGSGGNSSWPHQIEY				
: :				
YVVQMLSRLRKGYRPVFSSPPGYIQQIHIHKDRGQPANEETEEDGGSNGGD R YWP W PIAY				
700	710	720	730	740
750				
780	790	800	810	820
IHFLIRQLIRLLTWLF S NCRTLLSRAYQILQ P IFQRLSATYGEFGEV L RELT Y LO Y GWS				
: :				
IHFLIRQLIRLLTRLYSICRD L LSRSFLTLQ I YONLRDW-----LRLRTAFLQYGCE				
760	770	780	790	800
810	820	830	840	850
860	870	880		
YFOEAQAA-RDLRQRLLRA-RGEKLWEALQRGGRWILAIPRR I ROGLE L LL				
: :				
WIQEAFQAAARATRETLAGACRG--LWRVLERIGRGILAVPRRI R QAEIALL				
810	820	830	840	850

(fig. 3-suite 1)

25 / 35

FIG. 4 (GAG-mac
 versus
 (GAG-ROD

10	20	30	40	50	
VOHKKEIAVFYPGRDNKIEWEMGARNSVLSGKKADELEKIRLRPGGKKYMLKHVVWAAN					
::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::					
MGARN SVL RGKKADELERIRLRPGGKKYRLKHIWVAAN					
10	20	30	40	50	
70	80	90	100	110	
ELDRFGLAESLLENKEGCQKILSYLAPLVPTGSENLKSLYNTVCVIWCIAEEKVKHTEE					
::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::					
KLD RFGLAESLLESKEGCQKILTVLDPMVPTGSENLKSLFNTVCVIWCIAEEKVKDTEG					
40	50	60	70	80	90
130	140	150	160	170	
AKQIVQRHLVMETGTAETMPKTSRPTAPFSGRGGNYPVQQIGGNYTHLPLSPRTLNAWVK					
::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::					
AKQIVRRHLVAETGTAEKMPSTSRTAPSSEKGGNYPVQHVGGNYTHIPLSPRTLNAWVK					
100	110	120	130	140	150
190	200	210	220	230	
LIEEKKFGAEVVSGFQALSEGCLPYDI NQMLNCVGDHQAMQIIRDIIINEEAADHDLQHP					
::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::					
LVEEKKFGAEVVPGFQALSEGCTPYDI NQMLNCVGDHQAMQIIREIIINEEAAEWDVQHP					
160	170	180	190	200	210
250	260	270	280	290	
QQAPQQ-GQLREPSGSIDIAGTTSTYEEQI QWMYRQQNPIPVGNIYRRWIQLGLQKCVRMY					
::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::					
IPGPLPAGQLREPRGSIDIAGTTSTYEEQI QWMFRPQNPPVGNIYRRWIQIGLQKCVRMY					
220	230	240	250	260	270
300	310	320	330	340	350
NPTNILDYKQGPKEPFQSYVDRFYKSLRAEQTDPAVKNWMTOTLLIONANPDCKLVLKGL					
::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::					
NPTNILDYKQGPKEPFQSYVDRFYKSLRAEQTDPAVKNWMTOTLLVQANANPDCKLVLKGL					
280	290	300	310	320	330
360	370	380	390	400	410
GTNPTELLEM LTACQGVGGPGQKARLMAEALKEALAPAPIFAAAQQKGPRKPIKCHNCGK					
::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::					
GMNPTTELLEM LTACQGVGGPGQKARLMAEALKEVIGPAPIFAAAQQ---RKAFKCHNCGK					
340	350	360	370	380	390

FIG. 4

(fig.4 - suite 1)

27/35

FIG.5 (POL-mac
 (versus
 (POL-ROD

10	20	30	40	50	
VLELWEGRTLCKAMQSPKKTGMLEMWKNGPCYQGQMPKQTGGFFRPWPLGKEAPQFPHGSS					
					10 20
70	80	90	100		
ASGADANCSPRRTSCGSAKELHALGQAAERKOREALQGGDRGF-----					
30	40	50	60	70	80
110	120	130	140	150	160
-AAPQFSLWRRPVVTAHIEGQPVEVLLDTGADDSIVTGIELGPHYTPKIVGGIGGFINTK					
90	100	110	120	130	140
170	180	190	200	210	220
EYKNVEIEVLGKRIKGTIMGDTPINIFGRNLLTALGMSLNLPPIAKVEPVKSPLKPGKDG					
150	160	170	180	190	200
230	240	250	260	270	280
PKLKQWPLSKEKIVALREICEKMEKDQLEEAPPTNPYNTPTFAIKKKDKNKWRMLIDFR					
210	220	230	240	250	260
290	300	310	320	330	340
ELNRVTQDFTEVQLGIPHPAGLAKRKRITYLDIGDAYFSIPLDEEFRQYTAFTLPSVNNA					
270	280	290	300	310	320
350	360	370	380	390	400
EPGKRYIYKVLPQGWKGSPAIFQYTHMRHVLEPFRKANPDVTLYQYMDDILIASDRTDLEH					
330	340	350	360	370	380

FIG.5

28 / 35

410 420 430 440 450 460
 DRVVLQLKELLNSIGSSPEEKFKDOPPFQWMGYELWPTKWKLOKIELPQRETWTYNDIQ
 ::::::::::::::: :::: : ::::::: ::::::::::::: :::: : :::::::
 DRVVLQLKELLNGLFSTPDEKFQKDPPYHWMGYELWPTKWKLOKIQLPQKEIWTVNDIQ
 390 400 410 420 430 440

 470 480 490 500 510 520
 KLVGVLNHAAQIYPGIKTKHLCRLIRGKMLTEEVQWTEMAAEYEENKIIILSQEDEGCY
 ::::::::::::::: ::::::::::::::: ::::::::::::: :::: : :::::::
 KLVGVLNHAAOLYPIKTKHLCRLIRGKMLTEEVQWTELAAELEENRITLSQEDEGHY
 450 460 470 480 490 500

 530 540 550 560 570 580
 YQESKPLEATVIKSODNQWSYKIHQEDKILKVGKFAKIKNTHTNGYRLLAHVIQKIGKEA
 :::: : ::::: : : ::::: ::::::: ::::::: :::: : :::::::
 YQEEKELEATVQKDQENQHTYKIHQEEKILKVGKYAKVKNTHTNGIRLLAQVYQKIGKEA
 510 520 530 540 550 560

 590 600 610 620 630 640
 IVIHWGQVPKFHLPPVEKDYWEQWHTDYHOVTWIPEDFISTPPLYRFLVFNLYKDPIEGEET
 ::::: ::::::: ::::: ::::::: ::::: ::::::: ::::: :::::
 LVIWGRIPKFHLPPVEREIWEQWHDNYWQVTWIPDWDFVSTPPLYRFLAFNLVGDPIPAGET
 570 580 590 600 610 620

 650 660 670 680 690 700
 YYVDGSCSKQSKEGKAGYITDRGKDVKVLEQTTNOQAELEAFMALTDGPKANIIVDS
 ::::: ::::::: ::::::: ::::::: ::::::: ::::::: :::::::
 FYTDGSCNRQSKEGKAGYVTDRGKDVKKLEQTTNOQAELEAFAMALTDGPKYNIIIVDS
 630 640 650 660 670 680

 710 720 730 740 750 760
 QYVMGIITGCPTESESRLYNQIEEMIKKTEIYYAHVPAHKIGGGNQEIDHLYSOGIRQV
 ::::::: ::::::: ::::::: ::::::: ::::::: ::::::: :::::::
 QYVMGISASQPTESESKIVNQIEEMIKKEAIYYAHVPAHKIGGGNQEVDHLYSOGIRQV
 690 700 710 720 730 740

 770 780 790 800 810 820
 LFLEKIEPAQEEHSKYHSNIKELVFKGLPRLVAKQIVDTCDKCHQGEAIHGQVNSDLG
 ::::::: ::::::: ::::: ::::: ::::: ::::: ::::::: :::::
 LFLEKIEPAQEEHEKYHSNVKELSHKGIPNLYARQIVNSCAQCQQKGEAIHGQVNAELG
 750 760 770 780 790 800

 830 840 850 860 870 880
 TWQMDCTHLEGKIVIVAVHVASGFIEAEVIPQETGRQTAFLKLASRWPITHLHTDNGA
 ::::::: ::::::: ::::::: ::::::: ::::::: ::::::: :::::::
 TWQMDCTHLEGKIIIIVAVHVASGFIEAEVIPQESGRQTAFLKLASRWPITHLHTDNGA
 810 820 830 840 850 860

 890 900 910 920 930 940
 NFASQEYKMHAWHAGIEHTFGVPYNPQSQGVYEAHHHLKNQIDRIREQANSVETIVLMA
 ::::::: ::::: ::::::: ::::::: ::::::: ::::::: :::::::
 NFTSQEYKHYAWHIGIEQSFGVVPYNPQSQGVYEAHHHLKNQISRIREQANTIEIVLMA
 870 880 890 900 910 920

 950 960 970 980 990
 VHC MNF KRRGGIGDMTPAERL INMITTEQEIQFOQSKNSKFKNFRVYREGRDQLWKPG
 ::::::: ::::::: ::::::: ::::::: ::::::: ::::::: :::::::
 IHCMNF KRRGGIGDMTPSERL INMITTEQEIQFLQAKNSKLKDFRVYREGRDQLWKPG
 930 940 950 960 970 980

 1010 1020 1030 1040 1050
 ELLWKGEAVILKVGTDIKVVPRRKAKIIKDYGGCKEMDSSHMEDTGEAREVA

(fig.5-suite 1)

29 / 35

::::::: ::::::: ::::::: ::::: ::::: :: : ::
ELLWKGEAVLVKGTDIKIIPRRKAKIIRDYGGRQEMDSGSHLEGAREDGE MA
990 1000 1010 1020 1030

(fig. 5-suite 2)

30 / 35

FIG. 6 (Q.mac
 (versus
 (Q.ROD

10 20 30 40 50
MEEEKRHIVVVPTWRIPERLERWHSLIKYLKYKTKDLQKACYYPHHKVGHAWHTCSRVIFF
::: :::::::::: : : : ::::::::::::: : :::::::::::::::::::::
MEEDKRHIVVVPTWRVPGRMEKWHSLVKYLKYKTKDLEKVCYYPHHKVGHAWHTCSRVIFF
10 20 30 40 50

70 80 90 100 110
LQEGSHLEVQGYWNLTPERGHLSTYAVRITHYSKDFWTDVTPNEYADILLHSTYFPCFTAG
: :: : ::::::: : :: : ::::::: : ::::::: : :: : ::::::: :::
LKGNSHLEIQAYWNLTPEKGHLSSYSVRITWYTEKFWTDVTPDCADVLIHSTYFPCFTAG
70 80 90 100 110

130 140 150 160 170
EVRRAIRGERLLSCCRFPRAHKHQVPSLQYLALRVVSHV-RSQGENPTWKQWRRDNRRSL
: ::::::: ::::: : :: : ::::::: :: : : : : :: : : : :
EVRRAIRGEKLLSCCNYPRAHRAQVPSLQFLALVVVQONDPRQRDSTTRKQRRRDYRRGL
130 140 150 160 170

180 190 200 210
RYAKQNSRGDKQRGGKPPTEGANFPGLAKVLGILA
: :: : :: : :: : :: : :: : :: :
RLAKQDSRSRKQRSSESPTPRTYFFGVAEYLEILA
190 200 210

FIG. 6

31 / 35

(R.mac
FIG. 7 (versus
--- (R.ROD

10 20 30 40 50
ME---ERPPENEGPQREPWDEHYVEVLKELKEEALKHFDPRLLTALGNHIYNRHDOTLE
:
MAEAPTELPPVDTPLREPGDEHIIIEILREIKEEALKHFDPRLLIALGKYIYTRHDOTLE
10 20 30 40 50

60 70 80 90 100
GAGELIRILQRALFIHFRSGCSHSRIGQPGGGNPLSTIPPSRSML
:
GARELIKVLQRALFTHFRAGCGHSRIGQTRGNPLSAIPTPRNMQ
70 80 90 100

FIG. 7

32 / 35

FIG. 8 (X.mac
 (versus
 (X.ROD

10 20 30 40 50
MSDPRERIPPGNSGEETIGEAEFEWLNRTVEEINREAVNHLPRELIFQVWQRSWEYWHDEQ
::: :::::::::::::::::::: ::::::: :::::::::::::::::::: :::::::
MTDPRETYPGPNSEETIGEAFAWLNRTVEAINREAVNHLPRELIFQVWQRSWRYWHDEQ
10 20 30 40 50
70 80 90 100 110
GMSOSYTKYRYLCLIQKALFMHCKKGCRCLGEGHGAGGWWRPGPPPPPPGLA
::: :::::::::::::::::::: :::: :::: :::: ::::::::::::::::::::
GMSESYTKYRYLCIIQKAVYMHVRKGCTCLGRGHGPWGWRPGPPPPPPGLV
70 80 90 100 110

33 / 35

FIG. 9 (F.mac
versus
(F.ROD

FIG. 9

34 / 35

FIG. 10 (TAT.mac
 (versus
 (TAT.ROD

10	20	30	40	50
METPLREQENSLESSNERSYYISEAAAAIPESANLGEELSQLYRPLEACYNTCYCKKC ::::: : :: : :: : :: : :: : :: : :: : :: : :: : :: : :: : :: :				
METPLKAPESSLKSCNEPFSRTSEQDVATOELARQGEEILSQLYRPLE[CNNSCYCKRCC				
10	20	30	40	50
70	80	90	100	110
YHCQFCFLKKGLGISYEKSHRRRTPKAKANTSSASNERP---IPNRIRLCQPKKAKKE ::::: :::: ::::: :: : ::::::: : : : : : : : : :				
YHCQMCFLNKGLGICYERKGRRRTPKKTTHPSPT----POKSISTRTGDSQPTKKQKK				
70	80	90	100	110
120	130			
TVEAAVATAPGLGR. :::: : : : ::				
TVEATVETDTGPGR				
120	130			

FIG. 10

35 / 35

FIG. 11 { ART.mac
versus
ART.ROD

10	20	30	40	50
MRSHTGEEELRRRLRLIHLLHQTSKYGLSWKSAAYRHL	VDPYPTGS	GSANQRRQK	RW	
: :: : : :::: : :::::	::: :	: : A::	:::	
MNERADEEGLQRKLRLIRLLHQTN-----	PYPQCPGTAS	QRRNRRRRW		
10	20		30	40
70	80	90	100	110
RQRHQQLLALADRIYSFPDPPTDTPLDLAIQQLQNLAI	ESIPDPPTNIPEALCDLRRIRR			
:::: : ::::: :: ::::: : ::: :: : : : ::::: ::				
KQRWRQILALADSIYTFPDP PADSPLDQTIQHLQGLTIQELPDPPTHLPESQRLAET				
50	60	70	80	90
				100

SPQA

FIG. 11

INTERNATIONAL SEARCH REPORT PCT/FR 88/00025

International Application No

I. CLASSIFICATION OF SUBJECT MATTER (If several classification symbols apply, indicate all) ⁶

According to International Patent Classification (IPC) or to both National Classification and IPC
 4 C 07 K 7/10, 7/06, C 12 N 15/00, G 01 N 33/569,
 Int. Cl. : A 61 K 39/21, A 61 K 37/02

II. FIELDS SEARCHED

Minimum Documentation Searched ⁷

Classification System	Classification Symbols
Int. Cl. ⁴	A 61 K 39/00, A 61 K 37/00, C 07 K 7/00, G 01 N 33/00, C 12 N 15/00

Documentation Searched other than Minimum Documentation
to the Extent that such Documents are Included in the Fields Searched ⁸

III. DOCUMENTS CONSIDERED TO BE RELEVANT⁹

Category ¹⁰	Citation of Document, ¹¹ with indication, where appropriate, of the relevant passages ¹²	Relevant to Claim No. ¹³
X, Y	WO, A, 86/02383 (PASTEUR) 24 April 1986, see pages 21-34, 55-60; claims 1-16 --	1-36
X, Y	US, A, 4629783 (W.L. COSANT) 16 December 1986, see columns 15,16; claims 1-42 --	1-36
X	EP, A, 0199301 (HOFFMANN-LA ROCHE & CO.) 29 October 1986, see columns 27-42; claims 1-42 --	1,2,6-12,14-21,24
X	EP, A, 0187041 (GENENTECH) 9 July 1986, see pages 79-81, claims 1-18; pages 82,83, claims 24-38 --	1,2,6-12,14-21,24
Y	Science, vol. 232, 1985, American Association for the Advancement of Science, (Washington, DC, US) P.J. Kanki et al.: "New human T-lymphotropic retrovirus related to simian T-lymphotropic virus type III (STLV-III ^{AGM}) pages 238-243 see the whole document --	1-36
Y	Science, vol. 233, 18 July 1986, American Association for the Advancement of Science, --	1-36

* Special categories of cited documents: ¹⁰

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

IV. CERTIFICATION

Date of the Actual Completion of the International Search	Date of Mailing of this International Search Report
10 June 1986 (10.06.86)	7 July 1988 (07.07.88)
International Searching Authority EUROPEAN PATENT OFFICE	Signature of Authorized Officer

III. DOCUMENTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEET)		
Category *	Citation of Document, with indication, where appropriate, of the relevant passages	Relevant to Claim No
	(Washington, DC, US) F. Clavel et al.: "Isolation of a new human retrovirus from West African patients with AIDS", pages 343-346 see the whole document --	
Y	Nature, vol. 324, 18/25 December 1986, MacMillan Eds. (Londres, GB) F. Clavel et al.: "Molecular cloning and polymorphism of the human immune deficiency virus type 2", pages 691-695 see the whole document --	1-36
Y	Nature, vol. 321, 22 May 1986 MacMillan Eds. (Londres, GB) M. Murphey-Corb et al.: "Isolation of an HTLV-III-related retrovirus from macaques with simian AIDS and its possible origin in asymptomatic mangabeys", pages 435-437 see the whole document --	1-36
P,X	WO, A, 87/02038 (ONCOGEN) 9 April 1987, see pages 114-117; claims 31-55 --	1,2,6-12,14-21,24
P,X	Journal of Cellular Biochemistry, Supplement 11D, Ucla Symposia on Molecular & Cellular Biology, 29 March - 1 May 1987, Symposium on human retroviruses, 16th Annual Meeting UCLA, see page 44, abstract Pl12: "Human retroviruses, cancer and AIDS: approaches to prevention and therapy" --	1-36
P,Y	FR, A, 2593189 (PASTEUR) 24 July 1987, see page 8, lines 17-26; pages 13-15, claims 1-18 --	1-36
P,Y	Nature, vol. 326, No. 6113, 9-15 April 1987, MacMillan Eds. (Londres, GB) H. Kornfeld et al.: "Cloning of HTLV-4 and its relation to simian and human immunodeficiency viruses" pages 610-613, see the whole document --	1-36
P,Y	Nature, vol. 326, 16 April 1987, MacMillan Eds. (Londres, GB) M. Guyader et al.: "Genome organization and transactivation of the human immunodeficiency virus type 2, pages 662-669, see the whole document --	1-36
P,Y	FEBS Letters, vol. 218, No. 2, June 1987, Eds. Elsevier Siencc Publishers B.V. (Biomedical Division), 1987 Federation of European Biochemical Societies M.J.E. Sternberg et al.: "Prediction of antigenic determinants and secondary structures of the major AIDS virus proteins", pages 231-237 --	1-36

FURTHER INFORMATION CONTINUED FROM THE SECOND SHEET

	see the whole document	
--	------------------------	--

V. OBSERVATIONS WHERE CERTAIN CLAIMS WERE FOUND UNSEARCHABLE¹

This International search report has not been established in respect of certain claims under Article 17(2) (a) for the following reasons:

1. Claim numbers because they relate to subject matter not required to be searched by this Authority, namely:

2. Claim numbers, because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. Claim numbers....., because they are dependent claims and are not drafted in accordance with the second and third sentences of PCT Rule 6.4(a).

VI. OBSERVATIONS WHERE UNITY OF INVENTION IS LACKING²

This International Searching Authority found multiple inventions in this International application as follows:

Claims 1,2,6-21,23-36

Claims 1,2,6-21,23-36 all in part 3-5

Claims 23,25-28,34-36 all in part 22,24,29

1. As all required additional search fees were timely paid by the applicant, this International search report covers all searchable claims of the International application.

2. As only some of the required additional search fees were timely paid by the applicant, this International search report covers only those claims of the International application for which fees were paid, specifically claims:

3. No required additional search fees were timely paid by the applicant. Consequently, this International search report is restricted to the invention first mentioned in the claims; it is covered by claim numbers:

4. As all searchable claims could be searched without effort justifying an additional fee, the International Searching Authority did not invite payment of any additional fee.

Remark on Protest

The additional search fees were accompanied by applicant's protest.

No protest accompanied the payment of additional search fees.

**ANNEX TO THE INTERNATIONAL SEARCH REPORT
ON INTERNATIONAL PATENT APPLICATION NO.**

FR 8800025
SA 20445

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report.
The members are as contained in the European Patent Office EDP file on 23/06/88.
The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO-A- 8602383	24-04-86	FR-A-	2571968	25-04-86
		AU-A-	5061785	02-05-86
		EP-A-	0201540	20-11-86
		JP-T-	62500592	12-03-87
		WO-A-	8604336	31-07-86
		AU-A-	5320086	13-08-86
		EP-A-	0211022	25-02-87
		JP-T-	62502095	20-08-87
US-A- 4629783	16-12-86	EP-A-	0201716	20-11-86
		WO-A-	8606414	06-11-86
		AU-A-	5572786	16-10-86
		AU-A-	5773386	18-11-86
		EP-A-	0220273	06-05-87
		JP-T-	62502617	08-10-87
		AU-B-	571128	31-03-88
EP-A- 0199301	29-10-86	AU-A-	5636386	23-10-86
		JP-A-	62012799	21-01-87
EP-A- 0187041	09-07-86	JP-A-	61233700	17-10-86
WO-A- 8702038	09-04-87	AU-A-	6299286	09-04-87
		BE-A-	905492	25-03-87
		GB-A-	2181435	23-04-87
		FR-A-	2587720	27-03-87
		SE-A-	8604007	26-03-87
		NL-A-	8602422	16-04-87
		FR-A-	2593519	31-07-87
		JP-A-	63068075	26-03-88
FR-A- 2593189	24-07-87	WO-A-	8704459	30-07-87
		AU-A-	6891187	14-08-87
		EP-A-	0239425	30-09-87

RAPPORT DE RECHERCHE INTERNATIONALE

Demande internationale N° PCT/FR 88/00025

I. CLASSEMENT DE L'INVENTION (si plusieurs symboles de classification sont applicables, les indiquer tous) *

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB
 CIB⁴: C 07 K 7/10, 7/06, C 12 N 15/00, G 01 N 33/569,
 A 61 K 39/21, A 61 K 37/02

II. DOMAINES SUR LESQUELS LA RECHERCHE A PORTÉ

Documentation minimale consultée *

Système de classification	Documentation minimale consultée *	Symboles de classification
CIB ⁴	A 61 K 39/00, A 61 K 37/00, C 07 K 7/00, G 01 N 33/00, C 12 N 15/00	

Documentation consultée autre que la documentation minimale dans la mesure où de tels documents font partie des domaines sur lesquels la recherche a porté *

III. DOCUMENTS CONSIDÉRÉS COMME PERTINENTS¹⁰

Catégorie *	Identification des documents cités, ¹¹ avec indication, si nécessaire, des passages pertinents ¹²	N° des revendications visées ¹³
X,Y	WO, A, 86/02383 (PASTEUR) 24 avril 1986, voir pages 21-34, 55-60; revendications 1-16 --	1-36
X,Y	US, A, 4629783 (W.L. COSANT) 16 décembre 1986, voir colonnes 15,16; revendications 1-42 --	1-36
X	EP, A, 0199301 (HOFFMANN-LA ROCHE & CO.) 29 octobre 1986, voir colonnes 27-42; revendications 1-42 --	1,2,6-12, 14-21,24
X	EP, A, 0187041 (GENENTECH) 9 juillet 1986, voir pages 79-81, revendications 1-18; pages 82,83, revendications 24-38 --	1,2,6-12, 14-21,24
Y	Science, vol. 232, 1985, American Association for the Advancement of Science, (Washington, DC, US) P.J. Kanki et al.: "New human T-lymphotropic retrovirus related to simian T-lymphotropic virus type III (STLV-IIIAGM)"	1-36

* Catégories spéciales de documents cités: ¹¹

- « A » document définissant l'état général de la technique, non considéré comme particulièrement pertinent
- « E » document antérieur, mais publié à la date de dépôt international ou après cette date
- « L » document pouvant jeter un doute sur une revendication de priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée)
- « O » document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens
- « P » document publié avant la date de dépôt international, mais postérieurement à la date de priorité revendiquée

« T » document ultérieur publié postérieurement à la date de dépôt international ou à la date de priorité et n'appartenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'invention

« X » document particulièrement pertinent: l'invention revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité inventive

« Y » document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinaison étant évidente pour une personne du métier.

« & » document qui fait partie de la même famille de brevets

IV. CERTIFICATION

Date à laquelle la recherche internationale a été effectivement achevée

10 juin 1986

Date d'expédition du présent rapport de recherche internationale

- 7 JUL 1988

Administration chargée de la recherche internationale

OFFICE EUROPEEN DES BREVETS

Signature du fonctionnaire autorisé

P.C.G. VAN DER PUTTEN

III. DOCUMENTS CONSIDÉRÉS COMME PERTINENTS		(SUITE DES RENSEIGNEMENTS INDICUÉS SUR LA DEUXIÈME FEUILLE)
Catégorie *	Identification des documents cités, avec indication, si nécessaire, des passages pertinents	N° des revendications visées
	pages 238-243 voir le document en entier --	
Y	Science, vol. 233, 18 juillet 1986, American Association for the Advancement of Science, (Washington, DC, US) F. Clavel et al.: "Isolation of a new human retrovirus from West African patients with AIDS", pages 343-346 voir le document en entier --	1-36
Y	Nature, vol. 324, 18/25 décembre 1986, MacMillan Eds. (Londres, GB) F. Clavel et al.: "Molecular cloning and polymorphism of the human immune deficiency virus type 2", pages 691-695 voir le document en entier --	1-36
Y	Nature, vol. 321, 22 mai 1986, MacMillan Eds. (Londres, GB) M. Murphey-Corb et al.: "Isolation of an HTLV-III-related retrovirus from macaques with simian AIDS and its possible origin in asymptomatic mangabeys", pages 435-437 voir le document en entier --	1-36
P,X	WO, A, 87/02038 (ONCOGEN) 9 avril 1987, voir apges 114-117; revendicaions 31-55 --	1,2,6-12, 14-21,24
P,X	Journal of Cellular Biochemistry, Supplement 11D, Ucla Symposia on Molecular & Cellular Biology, 29 mars - 1 mai 1987, Symposium on human retroviruses, 16th Annual Meeting UCLA, voir page 44, abrégé P112: "Human retroviruses, cancer and AIDS: approaches to prevention and therapy" --	1-36
P,Y	FR, A, 2593189 (PASTEUR) 24 juillet 1987, voir page 8, lignes 17-26; pages 13-15, revendications 1-18 --	1-36
P,Y	Nature, vol. 326, no. 6113, 9-15 avril 1987, MacMillan Eds.(Londres, GB) H. Kornfeld et al.: "Cloning of HTLV-4 and its relation to simian and human immunodeficiency viruses" pages 610-613, voir le document en entier --	1-36

III. DOCUMENTS CONSIDÉRÉS COMME PERTINENTS		(SUITE DES RENSEIGNEMENTS INDICUÉS SUR LA DEUXIÈME FEUILLE)
Catégorie *	Identification des documents cités, avec indication, si nécessaire, des passages pertinents	N° des revendications visées
P,Y	Nature, vol. 326, 16 avril 1987, MacMillan Eds. (Londres, GB) M. Guyader et al.: "Genome organization and transactivation of the human immuno- deficiency virus type 2, pages 662-669, voir le document en entier	1-36
P,Y	FEBS Letters, vol. 218 ⁻ , no. 2, juin 1987, Eds. Elsevier Siencc Publishers B.V. (Biomedical Division), 1987 Federation of European Biochemical Societies M.J.E. Sternberg et al.: "Prediction of antigenic determinants and secondary structures of the major AIDS virus proteins", pages 231-237 voir le document en entier	1-36

SUITE DES RENSEIGNEMENTS INDIQUÉS SUR LA DEUXIÈME FEUILLE

V. OBSERVATIONS LORSQU'IL A ÉTÉ ESTIMÉ QUE CERTAINES REVENDICATIONS NE POUVAIENT PAS FAIRE L'OBJET D'UNE RECHERCHE¹

Selon l'article 17.2) a) certaines revendications n'ont pas fait l'objet d'une recherche pour les motifs suivants:

1. Les revendications numéros se rapportent à un objet à l'égard duquel la présente administration n'a pas l'obligation de procéder à la recherche, à savoir:

2. Les revendications numéros se rapportent à des parties de la demande internationale qui ne remplissent pas les conditions prescrites dans une mesure telle qu'une recherche significative ne peut être effectuée, précisément:

3. Les revendications numéros sont des revendications dépendantes et ne sont pas rédigées conformément à la deuxième et à la troisième phrases de la règle 6.4.a) du PCT.

VI. OBSERVATIONS LORSQU'IL Y A ABSENCE D'UNITÉ DE L'INVENTION²

L'administration chargée de la recherche internationale a trouvé plusieurs inventions dans la présente demande internationale, c'est-à-dire:

Revendications 1,2,6-21,23-36

Revendications 1,2,6-21,23-36 toutes partiellement 3-5

Revendications 23,25-28,34-36 toutes partiellement 22,24,29

1. Comme toutes les taxes additionnelles demandées ont été payées dans les délais, le présent rapport de recherche internationale couvre toutes les revendications de la demande internationale pouvant faire l'objet d'une recherche.

2. Comme seulement une partie des taxes additionnelles demandées a été payée dans les délais, le présent rapport de recherche internationale couvre seulement celles des revendications de la demande pour lesquelles les taxes ont été payées, c'est-à-dire les revendications:

3. Aucune taxe additionnelle demandée n'a été payée dans les délais par le déposant. En conséquence, le présent rapport de recherche internationale est limité à l'invention mentionnée en premier dans les revendications; elle est couverte par les revendications numéros:

4. Etant donné que toutes les revendications susceptibles de faire l'objet d'une recherche le pouvaient sans effort particulier justifiant une taxe additionnelle, l'administration chargée de la recherche internationale n'a sollicité le paiement d'aucune taxe additionnelle.

Remarque quant à la réserve

Les taxes additionnelles de recherche étaient accompagnées d'une réserve du déposant.

Aucune réserve n'a été faite lors du paiement des taxes additionnelles de recherche.

**ANNEXE AU RAPPORT DE RECHERCHE INTERNATIONALE
RELATIF A LA DEMANDE INTERNATIONALE NO.**

FR 8800025
SA 20445

La présente annexe indique les membres de la famille de brevets relatifs aux documents brevets cités dans le rapport de recherche international visé ci-dessus.

Lesdits membres sont contenus au fichier informatique de l'Office européen des brevets à la date du 23/06/88.
Les renseignements fournis sont donnés à titre indicatif et n'engagent pas la responsabilité de l'Office européen des brevets.

Document brevet cité au rapport de recherche	Date de publication	Membre(s) de la famille de brevet(s)	Date de publication
WO-A- 8602383	24-04-86	FR-A- 2571968 AU-A- 5061785 EP-A- 0201540 JP-T- 62500592 WO-A- 8604336 AU-A- 5320086 EP-A- 0211022 JP-T- 62502095	25-04-86 02-05-86 20-11-86 12-03-87 31-07-86 13-08-86 25-02-87 20-08-87
US-A- 4629783	16-12-86	EP-A- 0201716 WO-A- 8606414 AU-A- 5572786 AU-A- 5773386 EP-A- 0220273 JP-T- 62502617 AU-B- 571128	20-11-86 06-11-86 16-10-86 18-11-86 06-05-87 08-10-87 31-03-88
EP-A- 0199301	29-10-86	AU-A- 5636386 JP-A- 62012799	23-10-86 21-01-87
EP-A- 0187041	09-07-86	JP-A- 61233700	17-10-86
WO-A- 8702038	09-04-87	AU-A- 6299286 BE-A- 905492 GB-A- 2181435 FR-A- 2587720 SE-A- 8604007 NL-A- 8602422 FR-A- 2593519 JP-A- 63068075	09-04-87 25-03-87 23-04-87 27-03-87 26-03-87 16-04-87 31-07-87 26-03-88
FR-A- 2593189	24-07-87	WO-A- 8704459 AU-A- 6891187 EP-A- 0239425	30-07-87 14-08-87 30-09-87