DATA SHEET

74ABT162245A 74ABTH162245A

16-Bit bus transceiver with 30Ω series termination resistors (3-State)

Product specification Supersedes data of 1996 Nov 20 IC23 Data Handbook

16-bit bus transceiver with 30 Ω series termination resistors (3-State)

74ABT162245A 74ABTH162245A

FEATURES

- 16-bit bidirectional bus interface
- Power-up 3-State
- Multiple V_{CC} and GND pins minimize switching noise
- 3-State buffers
- Output capability: +12mA/-32mA
- Latch-up protection exceeds 500mA per JEDEC Std 17
- ESD protection exceeds 2000 V per MIL STD 883 Method 3015 and 200V per Machine Model
- Same part as 74ABT16245A-1
- 74ABTH162245A incorporates bus hold data inputs which eliminate the need for external pull-up resistors to hold unused inputs
- Bus-hold data inputs eliminate the need for external pull-up resistors to hold unused inputs

DESCRIPTION

The 74ABT162245A high-performance BiCMOS device combines low static and dynamic power dissipation with high speed.

The 74ABT162245A device is a 16-bit transceiver featuring non-inverting 3-State bus compatible outputs in both send and receive directions. The control function implementation minimizes external timing requirements. The device features two Output Enable (10E, 20E) inputs for easy cascading and two Direction (1DIR, 2DIR) inputs for direction control.

The 74ABT162245A is designed with 30 ohm series resistance in both the upper and lower output structures on both A and B ports. This design reduces line noise in applications such as memory address drivers, clock drivers, and bus receiver/transmitters.

The 74ABT162245A is the same as the 74ABT16245A-1. The part number has been changed to reflect industry standards

Two options are available, 74ABT162245A which does not have the bus hold feature and the 74ABTH162245A which incorporates the bus hold feature.

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS T _{amb} = 25°C; GND = 0V	TYPICAL	UNIT
t _{PLH} t _{PHL}	Propagation delay nAx to nBx or nBx to nAx	$C_L = 50pF; V_{CC} = 5V$	2.0 3.0	ns
C _{IN}	Input capacitance	$V_I = 0V \text{ or } V_{CC}$	3	pF
C _{I/O}	I/O pin capacitance	$V_O = 0V$ or V_{CC} ; 3-State	7	pF
I _{CCZ}	Quiescent supply current	Outputs disabled; V _{CC} = 5.5V	300	nA
I _{CCL}	Quicocont supply current	Outputs Low; V _{CC} = 5.5V	10	mA

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	NORTH AMERICA	DWG NUMBER
48-Pin Plastic SSOP Type III	-40°C to +85°C	74ABT162245A DL	BT162245A DL	SOT370-1
48-Pin Plastic TSSOP Type II	-40°C to +85°C	74ABT162245A DGG	BT162245A DGG	SOT362-1
48-Pin Plastic SSOP Type III	-40°C to +85°C	74ABTH162245A DL	BH162245A DL	SOT370-1
48-Pin Plastic TSSOP Type II	-40°C to +85°C	74ABTH162245A DGG	BH162245A DGG	SOT362-1

16-bit bus transceiver with 30Ω series termination resistors (3-State)

PIN CONFIGURATION

PIN DESCRIPTION

SYMBOL	PIN NUMBER	NAME AND FUNCTION		
1DIR, 2DIR	1, 24	Direction control inputs (Active-High)		
1A0 – 1A7, 2A0 – 2A7 47, 46, 44, 43 41, 40, 38, 37 36, 35, 33, 32 30, 29, 27, 26		Data inputs/outputs (A side)		
1B0 – 1B7 2B0 – 2B7	2, 3, 5, 6 8, 9, 11, 12 13, 14, 16, 17 19, 20, 22, 23	Data inputs/outputs (B side)		
10E, 20E	48, 25	Output enables		
GND	4, 10, 15, 21 28, 34, 39, 45	Ground (0V)		
V _{CC}	7, 18, 31, 42	Positive supply voltage		

LOGIC SYMBOL

FUNCTION TABLE

INP	JTS	INPUTS/OUTPUTS				
nOE	nDIR	nAx	nBx			
L	L	A = B	Inputs			
L	Н	Inputs	B = A			
Н	Х	Z	Z			

H = HIGH voltage level

L = LOW voltage level

X = D0n't care

Z = High impedance "off" state

16-bit bus transceiver with 30Ω series termination resistors (3-State)

LOGIC SYMBOL (IEEE/IEC)

SCHEMATIC OF EACH OUTPUT

16-bit bus transceiver with 30Ω series termination resistors (3-State)

ABSOLUTE MAXIMUM RATINGS^{1, 2}

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT	
V _{CC}	DC supply voltage		-0.5 to +7.0	V	
I _{IK}	DC input diode current	V _I < 0	-18	mA	
VI	DC input voltage ³		-1.2 to +7.0	V	
lok	DC output diode current	V _O < 0	-50	mA	
V _{OUT}	DC output voltage ³	output in Off or High state	-0.5 to +5.5	V	
	DC output ourront	output in Low state	128	m^	
Гоит	DC output current	output in High state	-64	mA	
T _{stg}	Storage temperature range		-65 to 150	°C	

NOTES

1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability. The maximum junction temperature of this integrated circuit should not exceed 150°C.

3. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIM	UNIT	
STWIBUL	PARAMETER	Min	Max	UNII
V _{CC}	DC supply voltage	4.5	5.5	V
VI	Input voltage	0	V _{CC}	V
V _{IH}	High-level input voltage	2.0		V
V _{IL}	Low-level Input voltage		0.8	V
Іон	High-level output current		-32	mA
I _{OL}	Low-level output current		12	mA
Δt/Δν	Input transition rise or fall rate	0	10	ns/V
T _{amb}	Operating free-air temperature range	-40	+85	°C

16-bit bus transceiver with 30Ω series termination resistors (3-State)

DC ELECTRICAL CHARACTERISTICS

				LIMITS					
SYMBOL	PARAMETER	TEST CONDITIONS	Ta	_{mb} = +25	5°C	T _{amb} =	: –40°C 85°C	UNIT	
			Min	Тур	Max	Min	Max	1	
V _{IK}	Input clamp voltage	V _{CC} = 4.5V; I _{IK} = -18mA		-0.9	-1.2		-1.2	٧	
		$V_{CC} = 4.5V$; $I_{OH} = -3mA$; $V_I = V_{IL}$ or V_{IH}	2.5	2.9		2.5		٧	
V_{OH}	High-level output voltage	$V_{CC} = 5.0V$; $I_{OH} = -3mA$; $V_I = V_{IL}$ or V_{IH}	3.0	3.4		3.0		٧	
		$V_{CC} = 4.5V$; $I_{OH} = -32mA$; $V_I = V_{IL}$ or V_{IH}	2.0	2.4		2.0		٧	
	Low-level output voltage	V_{CC} = 4.5V; I_{OL} = 8mA; V_I = V_{IL} or V_{IH}		0.46	0.65		0.65	٧	
V_{OL}	Low-level output voltage	$V_{CC} = 4.5V$; $I_{OL} = 12mA$; $V_I = V_{IL}$ or V_{IH}		0.50	0.80		0.80	V	
I _I	Input leakage current	$V_{CC} = 5.5V; V_I = GND \text{ or } 5.5V$ Control pins		±0.01	±1.0		±1.0	μА	
	Bus hold current	V _{CC} = 4.5V; V _I = 0.8V	50			50			
I_{HOLD}	A and B inputs ⁴ 74ABTH162245A	V _{CC} = 5.5V; V _I = 2.0V	-75			-75		μА	
	74AD1H102243A	$V_{CC} = 5.5V$; $V_I = 0$ to 5.5V						<u> </u>	
I _{OFF}	Power-off leakage current	$V_{CC} = 0.0V$; V_O or $V_1 \le 4.5V$		±5.0	±100		±100	μΑ	
I_{PU}/I_{PD}	Power-up/down 3-State output current ³	V_{CC} = 2.0V; V_{O} = 0.5V; V_{I} = GND or V_{CC} ; V_{OE} = Don't care		±5.0	±50		±50	μА	
I _{IH} +I _{OZH}	3-State output High current	$V_{CC} = 5.5V; V_O = 5.5V; V_I = V_{IL} \text{ or } V_{IH}$		0.5	10		10	μА	
I _{IL} +I _{OZL}	3-State output Low current	V_{CC} = 5.5V; V_O = 0.0V; V_I = V_{IL} or V_{IH}		-0.5	-10		-10	μΑ	
I _{CEX}	Output high leakage current	V_{CC} = 5.5V; V_O = 5.5V; V_I = GND or V_{CC}		5.0	50		50	μΑ	
ΙΟ	Output current ¹	V _{CC} = 5.5V; V _O = 2.5V	-50	-92	-180	-50	-180	mA	
I _{CCH}		V_{CC} = 5.5V; Outputs High, V_I = GND or V_{CC}		0.3	0.70		0.70	mA	
I _{CCL}	Quiescent supply current	V_{CC} = 5.5V; Outputs Low, V_I = GND or V_{CC}		10	19		19	mA	
I _{CCZ}		V_{CC} = 5.5V; Outputs 3-State; V_{I} = GND or V_{CC}		0.3	0.70		0.70	mA	
		Outputs enabled, one data input at 3.4V, other inputs at V_{CC} or GND; $V_{CC} = 5.5V$		400	700		700	μА	
	Additional cure la current	Outputs 3-State, one data input at 3.4V, other inputs at V_{CC} or GND; V_{CC} = 5.5V 74ABT162245A		1.0	50		50	μΑ	
Δl _{CC}	Additional supply current per input pin ²	Outputs 3-State, one data input at 3.4V, other inputs at V_{CC} or GND; V_{CC} = 5.5V 74ABTH162245A		100	250		250	μΑ	
		Control pins, outputs disabled, one enable input at 3.4V, other inputs at V _{CC} or GND; V _{CC} = 5.5V		400	700		700	μА	

NOTES:

- 1. Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
- This is the increase in supply current for each input at 3.4V.
 This parameter is valid for any V_{CC} between 0V and 2.1V, with a transition time of up to 10msec. From V_{CC} = 2.1V to V_{CC} = 5 ±10% a

transition time of up to 100 µsec is permitted.

4. This is the bus hold overdrive current required to force the input to the opposite logic state.

AC CHARACTERISTICS

GND = 0V; t_R = t_F = 2.5ns; C_L = 50pF, R_L = 500 Ω

SYMBOL	PARAMETER	WAVEFORM	T _a	_{imb} = +25° 'CC = +5.0'	C V	T _{amb} = -40° V _{CC} = +5	UNIT	
			Min	Тур	Max	Min	Max	
t _{PLH} t _{PHL}	Propagation delay nAx to nBx or nBx to nAx	1	1.0 1.5	2.0 3.0	3.3 4.5	1.0 1.5	3.5 4.9	ns
t _{PZH} t _{PZL}	Output enable time to High and Low level	2	1.5 2.0	3.1 5.0	4.3 6.1	1.5 2.0	5.0 7.0	ns
t _{PHZ}	Output disable time from High and Low level	2	1.7 1.5	3.5 3.2	4.8 4.5	1.7 1.5	5.4 4.9	ns

AC WAVEFORMS

 $V_M = 1.5V$, $V_{IN} = GND$ to 3.0V

Waveform 1. Input to Output Propagation Delays

Waveform 2. 3-State Output Enable and Disable Times

16-bit bus transceiver with 30Ω series termination resistors (3-State)

TEST CIRCUIT AND WAVEFORMS

TEST	SWITCH
t _{PLZ}	closed
t _{PZL}	closed
All other	open

DEFINITIONS

R_L = Load resistor; see AC CHARACTERISTICS for value.

 $C_L = Load$ capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.

 R_T = Termination resistance should be equal to Z_{OUT} of pulse generators.

FAMILY	IN	INPUT PULSE REQUIREMENTS							
FAMILI	Amplitude	Rep. Rate	t _W	t _R	t _F				
74ABT/H16	3.0V	1MHz	500ns	2.5ns	2.5ns				

SA00018

16-Bit bus transceiver with 30Ω series termination resistors (3-State)

74ABT162245A 74ABTH162245A

SSOP48: plastic shrink small outline package; 48 leads; body width 7.5 mm

SOT370-1

UNIT	A max.	A ₁	A ₂	A ₃	bр	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	2.8	0.4 0.2	2.35 2.20	0.25	0.3 0.2	0.22 0.13	16.00 15.75	7.6 7.4	0.635	10.4 10.1	1.4	1.0 0.6	1.2 1.0	0.25	0.18	0.1	0.85 0.40	8° 0°

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	RENCES	EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	EIAJ	PROJECTION	ISSUE DATE
SOT370-1		MO-118AA			93-11-02 95-02-04

16-Bit bus transceiver with 30Ω series termination resistors (3-State)

74ABT162245A 74ABTH162245A

TSSOP48: plastic thin shrink small outline package; 48 leads; body width 6.1mm

SOT362-1

1998 Feb 25 10

16-Bit bus transceiver with 30Ω series termination resistors (3-State)

74ABT162245A 74ABTH162245A

NOTES

16-Bit bus transceiver with 30Ω series termination resistors (3-State)

74ABT162245A 74ABTH162245A

Data sheet status

Data sheet status	Product status	Definition [1]
Objective specification	Development	This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice.
Preliminary specification	Qualification	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make chages at any time without notice in order to improve design and supply the best possible product.
Product specification	Production	This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

^[1] Please consult the most recently issued datasheet before initiating or completing a design.

Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 © Copyright Philips Electronics North America Corporation 1998 All rights reserved. Printed in U.S.A.

print code Date of release: 05-96

Document order number: 9397-750-03487

Let's make things better.

Philips Semiconductors

