1.	1. A method comprising:
2	forming a protective coating on an exposed
3	surface of an electronic device, including forming the
ر م	protective coating on a conductive termination connected to
	a circuit element in the electronic device; and
5	a circuit element in the electionic device, and
6	making a window in the protective coating to
7	expose the termination.

- 1 2. The method of claim 1 wherein the coating is uniform in thickness.
- 1 3. The method of claim 1 wherein the coating 2 conforms to the geometric configuration of the electronic 3 device.
- 1 4. The method of claim 1 wherein coating the 2 electronic device comprises vapor deposition.
- 1 5. The method of claim 1 wherein the protective 2 layer comprises a polymer.
- 1 6. The method of claim 5 wherein the polymer 2 comprises poly-para-xylylene.
- 7. The method of claim 1 wherein the electronic device comprises an integrated power device (IPD).
- 1 8. The method of claim 1 wherein the circuit 2 element comprises a semiconductor.
- 1 9. The method of claim 1 wherein the circuit element comprises a power semiconductor.

1

2

1

2

- 11. The method of claim 10 wherein the laser comprises a stroke marking laser.
- 12. The method of claim 10 wherein the laser comprises a mask marking laser.
- 1 \ 13. The method of claim 10 wherein the laser 2 comprises a fixed-beam laser.
- 14. The method of claim 10 wherein making a window 2 in the protective coating comprises using a predetermined 3 pattern.
- 1 15. The method of claim 14 wherein the 2 predetermined pattern comprises a pattern of parallel 3 strokes for removing strips of the protective coating.
- 16. The method of claim 1 wherein making a window in the protective coating comprises making a perimeter cut with a laser to outline the area of the protective coating to be removed and removing the outlined area of the protective coating.
- 17. The method of claim 16 wherein removing the outlined area of protective coating comprises peeling the protective coating away from the surface of the electronic device.

2 material comprises polyurea.

1	18. The method of claim 17 wherein peeling the
2	protective coating comprises passing a gas over the surface
3	of the protective coating until the protective coating
4	dislodges from the electronic device.
1 /	19. The method of claim 18 wherein the gas
2 /	comprises compressed air.
ļ	
1	20. The method of claim 18 wherein the gas
2	comprises an inert gas.
1	21. The method of claim 1 further comprising:
2	applying solder to the portion of the
3	conductive termination exposed by the window in the
4	protective coating.
1	22. The method of claim 21 wherein applying solder
2	comprises reflow soldering.
1	23. The method of claim 1 further comprising:
2	encapsulating the electronic device in a
3	potting material.
	and the second state of the sections
1	24. The method of claim 23 wherein the potting
2	material comprises a silicone resin.
	25. The method of claim 23 wherein the potting
1	25. The method of claim 23 wherein the potting

	ac/ a mothod comprising:
1	26. A method comprising: forming a protective coating of poly-para-
2	forming a protective contains integrated power
3	xylylene on an exposed surface of an integrated power
4	device, including forming the protective coating on a
5	conductive termination connected to a semiconductor in the
6	power device; and
7	cutting a window in the protective coating
8	using a laser to expose the termination.
1	27. A method comprising: forming a protective coating on an exposed
2	forming a protective coating on an exposed
3	surface of an electronic device, including forming the
4	protective coating on a conductive termination connected to
5	a circuit element in the electronic device;
6	making a window in the protective coating to
7	expose the termination;
8	applying solder to the portion of the
9	conductive termination exposed by the window in the
10	protective coating; and
11	encapsulating the electronic device in a
12	potting material.
12	
1	28. A method for use with an electronic device having a conductive termination pad and an electronic
2	having a conductive termination pad and an electronic
	to the method comprising:
3	protective coating to surfaces of
4	the electronic component;
5	the protective coating to
6	and
7	squaring golder into the window to make
8	between the solder pad and a circuit.
9	electrical connection between the solder pad and a

1	29. A circuit comprising:
2	a circuit board;
3	an electronic device comprising
4	a substrate,
5	a conductive termination pad formed on the
6	substrate,
7	an electronic component mounted on the
8	substrate and connected to the termination pad,
9	a protective coating on the pad and the
10	electronic component, and
11	a window formed in the protective coating
12	to expose the conductive termination pad; and
13	solder connecting the termination pad to the
. 14	circuit board via the window.
1	30. An apparatus comprising: an electronic device;
2	an electronic device;
3	a protective, conformal coating on the surface
4	of the electronic device containing conductive terminations;
5	and .
6	a window in the protective coating to expose
7	the conductive terminations.