Notes on Wall-crossing Formula

Hu Xiao

October 31, 2022

Contents

l	Graded Lie Algebra, Central Charge and Strict Cones	
2	Nilpotent and Pro-nilpotent Lie Alegbra	
	Abstract	

This short note aims to write down all the details of the wall-crossing formula as explicitly as possible. If you find any errors or typos in this article, please tell me in time to correct them.

1 Graded Lie Algebra, Central Charge and Strict Cones

Let $\Gamma := \mathbb{Z}^n$ be a free abelian group with rank $n \in \mathbb{N}$, we say a Γ -graded \mathbb{Q} -vector space $\mathfrak{g} = \bigoplus_{\gamma \in \Gamma} \mathfrak{g}_{\gamma}$ is a Γ -graded Lie alegbra over \mathbb{Q} if there exists is a bilinear function $[-,-]: \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$, such that for every element $\alpha, \beta \in \Gamma$, we have:

$$[\mathfrak{g}_{\alpha},\mathfrak{g}_{\beta}]\subset\mathfrak{g}_{\alpha+\beta},\tag{1}$$

and for every vector x, y and z in g, the followings hold:

$$[x,y] = [y,z], \tag{2}$$

$$[x, [y, z]] + [y, [z, x]] + [z, [y, x]] = 0.$$
(3)

We often refer the equality (3) a **Jacobi identity**.

A **central charge** $Z \colon \Gamma \to \mathbb{C}$, is a group homomorphism from Γ to \mathbb{C} . We may regard a central chage as an elements in \mathbb{C}^n . Let $\{e_1, \dots, e_n\}$ be the set of generators of $\Gamma \simeq \mathbb{Z}^n$, a group homomorphism from \mathbb{Z}^n to \mathbb{C} is uniquely determined by the image of e_1, \dots, e_n in \mathbb{C} . Therefore we may treat the central charge Z as a vector $(z_1, \dots, z_n) \in \mathbb{C}^n$ if there is no ambiguity.

Let $\Gamma_{\mathbb{R}} := \Gamma \otimes \mathbb{R} \simeq \mathbb{R}^n$ be the *n*-dimensional real vector space associated to the free ableian group Γ .

2 Nilpotent and Pro-nilpotent Lie Alegbra