Page 2

This listing of claims will replace all prior versions, and listings, of claims in the application:

## **LISTING OF CLAIMS:**

1. (Previously Presented) A galenical formulation comprising paramagnetic perfluoroalkyl and diamagnetic perfluoroalkyl- compounds.

- 2. (Currently amended) A formulation according to claim 1, wherein the ratio of the paramagnetic perfluoroalkyl compound to the diamagnetic perfluoroalkyl-compound is <u>from</u> 5:95 and to 95:5.
- 3. (Previously Presented) A formulation according to claim 1, wherein the paramagnetic perfluoroalkyl and diamagnetic perfluoroalkyl- compounds are present dissolved in an aqueous solvent.
- 4. (Previously Presented) A formulation according to claim 1, wherein the paramagnetic perfluoroalkyl-containing compounds are those of general formula I:

 $R^{F}-A$  I

in which R<sup>F</sup> represents a straight-chain or branched perfluoroalkyl radical with 4 to 30 carbon atoms, and A is a molecule portion that contains 1-6 metal complexes.



- 5. (Previously Presented) A formulation according to claim 4, wherein molecule portion A stands for a group L-M, wherein L stands for a linker and M stands for a metal complex that comprises an open-chain or cyclic chelating agent having a central atom of atomic number 21-29, 39, 42, 44 or 57-83.
- 6. (Withdrawn) A formulation according to claim 5, wherein linker L is a direct bond, a methylene group, an -NHCO group, a group

$$- \left[ (CH_2)_{\underline{u}} - NHCOCH_2 - (CH_2)_{\underline{p}} \right]_{\underline{q}}^{R^1} N - SO_2 - \cdots$$

whereby p means the numbers 0 to 10, q and u,

independently of one another, mean the numbers 0 or 1, and

 $R^1$  means a hydrogen atom, a methyl group, a -CH<sub>2</sub>-OH group, a -CH<sub>z</sub>-CO<sub>2</sub>H group or a  $C_2$ - $C_{15}$  chain, which optionally is interrupted by 1 to 3 oxygen atoms, 1 to 2 > CO groups or an optionally substituted aryl group and/or is substituted with 1 to 4 hydroxyl groups, 1 to 2  $C_1$ - $C_4$  alkoxy groups, 1 to 2 carboxy groups,

or a straight-chain, branched, saturated or unsaturated C<sub>2</sub>-C<sub>30</sub> carbon chain, which optionally contains 1 to 10 oxygen atoms, 1 to 3 -NR<sup>1</sup> groups, 1 to 2 sulfur atoms, a piperazine, a -CONR<sup>1</sup> group, an -NR<sup>1</sup>CO group, an -SO<sub>2</sub> group, an -NR<sup>1</sup>-CO<sub>2</sub> group, 1 to 2 CO groups, a group

$$-CO-N-T-N(R^1)-SO_2-R^F$$
 or 1 to 2

optionally substituted aryls and/or is interrupted by these groups and/or is optionally substituted with 1 to 3 -OR<sup>1</sup> groups, 1 to 2 oxo groups, 1 to 2 -NH-COR<sup>1</sup> groups, 1 to 2 -CONHR<sup>1</sup> groups, 1 to 2 (-CH<sub>2</sub>)<sub>p</sub>-CO<sub>2</sub>H groups, 1 to 2 groups -(CH<sub>2</sub>)<sub>p</sub>-(O)<sub>q</sub>-CH<sub>2</sub>CH<sub>3</sub>-R<sup>F</sup>,

whereby

R1, and p and q have the above-indicated meanings,

and R<sup>1</sup> represents a straight-chain or branched perfluoroalkyl radical with 4 to 30 carbon atoms

T means a  $C_2$ - $C_{10}$  chain, which optionally is interrupted by 1 to 2 oxygen atoms or 1 to 2 -NHCO groups.

7. (Withdrawn) A formulation according to claim 5, wherein metal complex M stands for a complex of general formula II

$$O = C \begin{pmatrix} CH_2CH_2 & \cdots & \\ N & CO_2Z^1 \\ CO_2Z^1 & CO_2Z^1 \end{pmatrix}$$

$$O = C \begin{pmatrix} CH_2CH_2 & \cdots & \\ CO_2Z^1 & \cdots & \\ CO_2Z^$$

in which R3, Z1 and Y are independent of one another, and

 $R^3$  has the meaning of  $R^1$  or  $-(CH_2)_m$ -L- $R^F$ , whereby m is 0, 1 or 2, and L is a direct bond, a methylene group, an -NHCO group, a group

Appl. No.: 09/672,04 September 8, 2003 Reply to Final Office Action of May 7, 2003

Page 5

whereby p means the numbers 0 to 10, q and u, independently of one another, mean the numbers 0 or 1, and

means a hydrogen atom, a methyl group, a  $-CH_2-OH$  group, a  $-CH_2CO_2H$  group or a  $C_2-C_{15}$  chain, which optionally is interrupted by 1 to 3 oxygen atoms, 1 to 2 > CO groups or an optionally substituted aryl group and/or is substituted with 1 to 4 hydroxyl groups, 1 to 2  $C_1-C_4$  alkoxy groups, 1 to 2 carboxy groups,

or a straight-chain, branched, saturated or unsaturated C<sub>2</sub>-C<sub>30</sub> carbon chain, which optionally contains 1 to 10 oxygen atoms, 1 to 3 -NR<sup>1</sup> groups, 1 to 2 sulfur atoms, a piperazine, a -CONR<sup>1</sup> group, an -NR<sup>1</sup>CO group, an -SO<sub>2</sub> group, an -NR<sup>1</sup>-CO<sub>2</sub> group, 1 to 2 CO groups, a group

$$-CO - N - T - N(R^1) - SO_2 - R^F$$
 or 1 to 2

optionally substituted aryls and/or is interrupted by these groups and/or is optionally substituted with 1 to 3 -OR<sup>1</sup> groups, 1 to 2 oxo groups, 1 to 2 -NH-COR<sup>1</sup> groups, 1 to 2 -CONHR<sup>1</sup> groups, 1 to 2-(-CH<sub>2</sub>)<sub>p</sub>-CO<sub>2</sub>H groups, 1 to 2 groups -(CH<sub>2</sub>)<sub>p</sub>-(O)<sub>q</sub> CH<sub>2</sub>CH<sub>2</sub>-R<sup>F</sup>,

whereby

R<sup>1</sup>, and p and q have the above-indicated meanings, and R<sup>F</sup> represents a straight-chain or branched perfluoroalkyl radical with 4 to 30 carbon atoms, and A is a molecule portion that contains 1-6 metal complexes,

Kang P

 $R^{1}$ 

Z<sup>1</sup>, independently of one another, mean a hydrogen atom or a metal ion equivalent of atomic numbers 21-29, 39, 42, 44 or 57-83,

Y means -OZ<sup>1</sup> or

$$-N$$
  $R^3$  or  $-N$   $N-SO_2-L-R$ 

whereby  $Z^1$  and  $R^3$  have the above-mentioned meanings.

8. (Withdrawn) A formulation according to claim 5, wherein metal complex M stands for a complex of general formula III

in which

R<sup>3</sup> and Z<sup>1</sup> are independent of one another, and

R<sup>3</sup> has the meaning of R<sup>1</sup> or -(CH<sub>2</sub>)<sub>m</sub>-L-R<sup>1</sup>, whereby m is 0, 1 or 2, and L is a direct bond, a methylene group, an -NHCO group, a group

$$- \left[ (CH_2)_{u} - NHCOCH_2 - (CH_2)_{p} \right]_{q}^{R^1} - SO_2 - \cdots$$

Page 7

whereby p means the numbers 0 to 10, q and u, independently of one another, mean the numbers 0 or 1, and

 $R^1$ 

means a hydrogen atom, a methyl group, a -CH<sub>2</sub>-OH group, a -CH<sub>2</sub>-CO<sub>2</sub>H group or a  $C_2$ - $C_{15}$  chain, which optionally is interrupted by 1 to 3 oxygen atoms, 1 to 2 > CO groups or an optionally substituted aryl group and/or is substituted with 1 to 4 hydroxyl groups, 1 to 2  $C_1$ - $C_4$  alkoxy groups, 1 to 2 carboxy groups,

or a straight-chain, branched, saturated or unsaturated C<sub>2</sub>-C<sub>30</sub> carbon chain, which optionally contains 1 to 10 oxygen atoms, 1 to 3 -NR<sup>1</sup> groups, 1 to 2 sulfur atoms, a piperazine, a -CONR<sup>1</sup> group, an -NR<sup>1</sup>CO group, an -SO<sub>2</sub> group, an -NR<sup>1</sup>-CO<sub>2</sub> group, 1 to 2 CO groups, a group

$$-CO-N-T-N(R^1)-SO_2-R^F \qquad \text{or 1 to 2}$$

optionally substituted aryls and/or is interrupted by these groups and/or is optionally substituted with 1 to 3 -OR<sup>1</sup> groups, 1 to 2 oxo groups, 1 to 2 -NH-COR<sup>1</sup> groups, 1 to 2 -CONHR<sup>1</sup> groups, 1 to 2 (-CH<sub>2</sub>)<sub>p</sub>-CO<sub>2</sub>H groups, 1 to 2 groups -(CH<sub>2</sub>)<sub>p</sub>-(O)<sub>q</sub>-CH<sub>2</sub>CH<sub>2</sub>-R<sup>F</sup>,

whereby

R<sup>1</sup>, and p and q have the above-indicated meanings,

and R<sup>F</sup> represents a straight-chain or branched perfluoroalkyl radical with 4 to 30 carbon atoms, and A is a molecule portion that contains 1-6 metal complexes,

Z<sup>1</sup>, independently of one another, mean a hydrogen atom or a metal ion equivalent of atomic numbers 21-29, 39, 42, 44 or 57-83,

The state of

and R2

means a hydrogen atom, a methyl group, a -CH<sub>2</sub>-OH group, a -CH<sub>2</sub>-CO<sub>2</sub>H group or a  $C_2$ - $C_{15}$  chain, which optionally is interrupted by 1 to 3 oxygen atoms, 1 to 2 > CO groups or an optionally substituted aryl group and/or is substituted with 1 to 4 hydroxyl groups, 1 to 2  $C_1$ - $C_4$  alkoxy groups, 1 to 2 carboxy groups,

or a straight-chain, branched, saturated or unsaturated C<sub>2</sub>-C<sub>30</sub> carbon chain, which optionally contains 1 to 10 oxygen atoms, 1 to 3 -NR<sup>1</sup> groups, 1 to 2 sulfur atoms, a piperazine, a -CONR<sup>1</sup> group, an -NR<sup>1</sup>CO group, an -SO<sub>2</sub> group, an -NR<sup>1</sup>-CO<sub>2</sub> group, 1 to 2 CO groups, a group

$$-CO-N-T-N(R^1)-SO_2-R^F$$
 or 1 to 2

optionally substituted aryls and/or is interrupted by these groups and/or is optionally substituted with 1 to 3 -OR<sup>1</sup> groups, 1 to 2 oxo groups, 1 to 2 -NH-COR<sup>1</sup> groups, 1 to 2 -CONHR<sup>1</sup> groups, 1 to 2 (-CH<sub>2</sub>)<sub>p</sub>-CO<sub>2</sub>H groups, 1 to 2 groups -(CH<sub>2</sub>)<sub>p</sub> (O)<sub>q</sub>-CH<sub>2</sub>CH<sub>2</sub>-R<sup>F</sup>.

9. (Withdrawn) A formulation according to claim 5, wherein metal complex M stands for a metal complex of general formula IV

$$Z^{1}O_{2}C$$
 $CO_{2}Z^{1}$ 
 $CO_{2}Z^{1}$ 

Ting?

in which Z<sup>1</sup>

independently of one another, mean a hydrogen atom or a metal ion equivalent of atomic numbers 21-29, 39, 42, 44 or 57-83.

10. (Withdrawn) A formulation according to claim 5, wherein metal complex M stands for a metal complex of general formula V

$$z^{1}O_{2}C$$
 $N$ 
 $CO_{2}Z^{1}$ 
 $CO_{2}Z^{1}$ 

in which Z<sup>1</sup>

independently of one another, mean a hydrogen atom or a metal ion equivalent of atomic numbers 21-29, 39, 42, 44 or 57-83,

and o and q stand for numbers 0 or 1, and yields the sum o + q = 1.

11. (Withdrawn) A formulation according to claim 5, wherein metal complex M stands for a metal complex of general formula VI

Phy

in which Z<sup>1</sup>

independently of one another, mean a hydrogen atom or a metal ion equivalent of atomic numbers 21-29, 39, 42, 44 or 57-83.

12. (Withdrawn) A formulation according to claim 5, wherein metal complex M stands for a metal complex of general formula VII

$$z^1O_2C$$
 $CO_2Z^1$ 
 $CO_2$ 

in which  $Z^1$  independently of one another, mean a hydrogen atom or a metal ion equivalent of atomic numbers 21-29, 39, 42, 44 or 57-83,

and Y means -OZ1 or

$$-N \underbrace{\overset{\mathsf{CH_2CH_2}}{\mathsf{-L-R^F}}}_{\mathsf{R^3}} \qquad \text{or} \qquad \qquad -N \underbrace{\overset{\mathsf{N-so_2-L-R^F}}{\mathsf{-R^F}}}_{\mathsf{N-so_2-L-R^F}}$$

Ling.

13. (Withdrawn) A formulation according to claim 5, wherein metal complex M is a complex of general formula VIII

$$CO_2C$$
 $CO_2Z^1$ 
 $CO_2Z^1$ 
 $CO_2Z^1$ 
 $CH_2CH_2$ 
 $CO_2Z^1$ 
 $CO_2Z^1$ 

in which

 $R^1$ 

 $R^3$  has the meaning of  $R^1$  or  $-(CH_2)_m$ -L- $R^1$ , whereby m is 0, 1 or 2, and L is a direct bond, a methylene group, an -NHCO group, a group

$$-CO-N-T-N(R^1)-SO_2-R^F$$
 or 1 to 2

whereby p means the numbers 0 to 10, q and u,

independently of one another, mean the numbers 0 or 1, and

means a hydrogen atom, a methyl group, a  $-CH_2-OH$  group, a  $-CH_2-CO_2H$  group or a  $C_2-C_{15}$  chain, which optionally is interrupted by 1 to 3 oxygen atoms, 1 to 2 > CO groups or an optionally substituted aryl group and/or is substituted with 1 to 4 hydroxyl groups, 1 to 2  $C_1-C_4$  alkoxy groups, 1 to 2 carboxy groups,

or a straight-chain, branched, saturated or unsaturated C<sub>2</sub>-C<sub>30</sub> carbon chain, which optionally contains 1 to 10 oxygen atoms, 1 to 3 -NR<sup>1</sup> groups, 1 to 2 sulfur atoms, a piperazine, a -CONR<sup>1</sup> group, an -NR<sup>1</sup>CO group, an -SO<sub>2</sub> group, an -NR<sup>1</sup>-CO<sub>2</sub> group, 1 to 2 CO groups, a group

Appl. No.: 09/672,049 September 8, 2003

Reply to Final Office Action of May 7, 2003

Page 12

$$-CO-N-T-N(R^1)-SO_2-R^F$$
 or 1 to 2

optionally substituted aryls and/or is interrupted by these groups and/or is optionally substituted with 1 to 3  $\cdot$ OR<sup>1</sup> groups, 1 to 2 oxo groups, 1 to 2  $\cdot$ NH-COR<sup>1</sup> groups, 1 to 2  $\cdot$ CONHR<sup>1</sup> groups, 1 to 2 ( $\cdot$ CH<sub>2</sub>)<sub>p</sub>-CO<sub>2</sub>H groups, 1 to 2 groups  $\cdot$ (CH<sub>2</sub>)<sub>p</sub>-(O)<sub>q</sub>-CH<sub>2</sub>CH<sub>2</sub>-R<sup>F</sup>,

whereby

R<sup>1</sup>, and p and q have the above-indicated meanings,

and R<sup>F</sup> represents a straight-chain or branched perfluoroalkyl radical with 4 to 30 carbon atoms, and A is a molecule portion that contains 1-6 metal complexes, and

Z<sup>1</sup>, independently of one another, mean a hydrogen atom or a metal ion equivalent of atomic numbers 21-29, 39, 42, 44 or 57-83,

and R2

means a hydrogen atom, a methyl group, a  $-CH_2$ -OH group, a  $-CH_2$ -CO<sub>2</sub>H group or a  $C_2$ - $C_{15}$  chain, which optionally is interrupted by 1 to 3 oxygen atoms, 1 to 2 > CO groups or an optionally substituted aryl group and/or is substituted with 1 to 4 hydroxyl groups, 1 to 2  $C_1$ - $C_4$  alkoxy groups, 1 to 2 carboxy groups,

or a straight-chain, branched, saturated or unsaturated C<sub>2</sub>-C<sub>30</sub> carbon chain, which optionally contains 1 to 10 oxygen atoms, 1 to 3 -NR<sup>1</sup> groups, 1 to 2 sulfur atoms, a piperazine, a -CONR<sup>1</sup> group, an -NR<sup>1</sup>CO group, an -SO<sub>2</sub> group, an -NR<sup>1</sup>-CO<sub>2</sub> group, 1 to 2 CO groups, a group

 $-CO-N-T-N(R^1)-SO_2-R^F$  or 1 to 2

optionally substituted aryls and/or is interrupted by these groups and/or is optionally substituted with 1 to 3 -OR<sup>1</sup> groups, 1 to 2 oxo groups, 1 to 2 -NH-COR<sup>1</sup> groups, 1 to 2 -CONHR<sup>1</sup> groups, 1 to 2 (-CH<sub>2</sub>)<sub>p</sub>-CO<sub>2</sub>H groups, 1 to 2 groups -(CH<sub>2</sub>)<sub>p</sub>-(O)<sub>q</sub>-CH<sub>2</sub>CH<sub>2</sub>-R<sup>F</sup>.

14. (Withdrawn) A formulation according to claim 5, wherein metal complex M is a complex of general formula IX

$$Z^{1}O_{2}C$$
 $CO_{2}Z^{1}$ 
 $OH$ 
 $CO_{2}Z^{1}$ 
 $R^{3}$ 
 $CO_{2}Z^{1}$ 
 $CO_{2}Z^{1}$ 

in which

R<sup>3</sup> has the meaning of R<sup>1</sup> or -(CH<sub>2</sub>)<sub>m</sub>-L-R<sup>F</sup>, whereby m is 0, 1 or 2, and L is a direct bond, a methylene group, an -NHCO group, a group

$$-CO-N-T-N(R^1)-SO_2-R^F$$
 or 1 to 2

whereby p means the numbers 0 to 10, q and u,

independently of one another, mean the numbers 0 or 1, and

 $R^1$  means a hydrogen atom, a methyl group, a -CH<sub>2</sub>-OH group, a -CH<sub>2</sub>-CO<sub>2</sub>H group or a C<sub>2</sub>-C<sub>15</sub> chain, which optionally is interrupted by 1 to 3 oxygen atoms, 1 to 2 > CO groups or an optionally substituted aryl group and/or is

Appl. No.: 09/672,049
September 8, 2003
Reply to Final Office Action of May 7, 2003

Page 14

substituted with 1 to 4 hydroxyl groups, 1 to 2 C<sub>1</sub>-C<sub>4</sub> alkoxy groups, 1 to 2 carboxy groups,

or a straight-chain, branched, saturated or unsaturated C<sub>2</sub>-C<sub>30</sub> carbon chain, which optionally contains 1 to 10 oxygen atoms, 1 to 3 -NR<sup>1</sup> groups, 1 to 2 sulfur atoms, a piperazine, a -CONR<sup>1</sup> group, an -NR<sup>1</sup>CO group, an -SO<sub>2</sub> group, an -NR<sup>1</sup>-CO<sub>2</sub> group, 1 to 2 CO groups, a group

$$-CO-N-T-N(R^1)-SO_2-R^F$$
 or 1 to 2

optionally substituted aryls and/or is interrupted by these groups and/or is optionally substituted with 1 to 3 -OR<sup>1</sup> groups, 1 to 2 oxo groups, 1 to 2 -NH-COR<sup>1</sup> groups, 1 to 2 -CONHR<sup>1</sup> groups, 1 to 2 (-CH2)<sub>p</sub>-CO<sub>2</sub>H groups, 1 to 2 groups -(CH<sub>2</sub>)<sub>p</sub>-(O)<sub>q</sub>-CH<sub>2</sub>CH<sub>2</sub>-R<sup>1</sup>,

whereby

 $R^1$ , and p and q have the above-indicated meanings, and  $R^F$  represents a straight-chain or branched perfluoroalkyl radical with 4 to 30 carbon atoms, and A is a molecule portion that contains 1-6 metal complexes, and

- Z<sup>1</sup>, independently of one another, mean a hydrogen atom or a metal ion equivalent of atomic numbers 21-29, 39, 42, 44 or 57-83,
- 15. (Withdrawn) A formulation according to claim 5, wherein metal complex M is a complex of general formula X

King ?

Appl. No.: 09/672,049
September 8, 2003
Reply to Final Office Action of May 7, 2003

Page 15

$$z^{1}O_{2}C$$
 $CO_{2}z^{1}$ 
 $CO_{2}z^{1}$ 

Kiff

in which

R<sup>3</sup> has the meaning of R<sup>1</sup> or -(CH<sub>2</sub>)<sub>m</sub>-L-R<sup>1</sup>, whereby m is 0, 1 or 2, and L is a direct bond, a methylene group, an -NHCO group, a group

$$-CO-N-T-N(R^1)-SO_2-R^F$$
 or 1 to 2

whereby p means the numbers 0 to 10, q and u, independently of one another, mean the numbers 0 or 1, and

 $R^1$ 

means a hydrogen atom, a methyl group, a  $-CH_2$ -OH group, a  $-CH_2$ -CO<sub>2</sub>H group or a  $C_2$ - $C_{15}$  chain, which optionally is interrupted by 1 to 3 oxygen atoms, 1 to 2 > CO groups or an optionally substituted aryl group and/or is substituted with 1 to 4 hydroxyl groups, 1 to 2  $C_1$ - $C_4$  alkoxy groups, 1 to 2 carboxy groups,

or a straight-chain, branched, saturated or unsaturated  $C_2$ - $C_{30}$  carbon chain, which optionally contains 1 to 10 oxygen atoms, 1 to 3 -NR<sup>1</sup> groups, 1 to 2 sulfur atoms, a piperazine, a -CONR<sup>1</sup> group, an -NR<sup>1</sup>CO group, an -SO<sub>2</sub> group, an -NR<sup>1</sup>-CO<sub>2</sub> group, 1 to 2 CO groups, a group

$$-CO-N-T-N(R^1)-SO_2-R^F$$
 or 1 to 2

optionally substituted aryls and/or is interrupted by these groups and/or is optionally substituted with 1 to 3 -OR<sup>1</sup> groups, 1 to 2 oxo groups, 1 to 2 -NH- $COR^1$  groups, 1 to 2 -CONHR<sup>1</sup> groups, 1 to 2 (-CH<sub>2</sub>)<sub>p</sub>-CO<sub>2</sub>H groups, 1 to 2 groups -(CH<sub>2</sub>)<sub>p</sub>-(O)<sub>q</sub>-CH<sub>2</sub>CH<sub>2</sub>-R<sup>F</sup>,

whereby

R1, and p and q have the above-indicated meanings,

and R<sup>F</sup> represents a straight-chain or branched perfluoroalkyl radical with 4 to 30 carbon atoms, and A is a molecule portion that contains 1-6 metal complexes, and

Z<sup>1</sup>, independently of one another, mean a hydrogen atom or a metal ion equivalent of atomic numbers 21-29, 39, 42, 44 or 57-83.

16. (Previously Presented) A formulation according to claim 5, wherein metal complexM is a complex of general formula XI

in which

Z<sup>1</sup>, independently of one another, mean a hydrogen atom or a metal ion equivalent of atomic numbers 21-29, 39, 42, 44 or 57-83,

and whereby p means the numbers 0 to 10, q and u,

independently of one another, mean the numbers 0 or 1, and

means a hydrogen atom, a methyl group, a -CH<sub>2</sub>-OH group, a -CH<sub>2</sub>-CO<sub>2</sub>H group or a C<sub>2</sub>-C<sub>15</sub> chain, which optionally is interrupted by 1 to 3 oxygen atoms, 1 to 2 -CO- groups or an optionally substituted aryl group and/or is substituted with 1 to 4 hydroxyl groups, 1 to 2 C<sub>1</sub>-C<sub>4</sub> alkoxy groups, 1 to 2 carboxy groups.

17. (Withdrawn) A formulation according to claim 5, wherein metal complex M is a complex of general formula XII

$$C - N - SO_2 - M$$
 $C - N - SO_2 - M$ 
 $C - N - SO_2 - M$ 
 $C - N - SO_2 - L - R^F$ 
 $C - N - SO_2 - L - R^F$ 
 $C - N - SO_2 - M$ 
 $C - N - SO_2 - M$ 

in which L is a direct bond, a methylene group, an -NHCO group, a group

$$-CO-N-T-N(R^1)-SO_2-R^F \qquad \text{or 1 to 2}$$

$$R^1$$

whereby p means the numbers 0 to 10, q and u,

independently of one another, mean the numbers 0 or 1, and

R<sup>1</sup> means a hydrogen atom, a methyl group, a -CH<sub>2</sub>-OH group, a -CH<sub>2</sub>-CO<sub>2</sub>H group or a C<sub>2</sub>-C<sub>15</sub> chain, which optionally is interrupted by 1 to 3 oxygen

atoms, 1 to 2 > CO groups or an optionally substituted aryl group and/or is substituted with 1 to 4 hydroxyl groups, 1 to 2  $C_1$ - $C_4$  alkoxy groups, 1 to 2 carboxy groups,

or a straight-chain, branched, saturated or unsaturated C<sub>2</sub>-C<sub>30</sub> carbon chain, which optionally contains 1 to 10 oxygen atoms, 1 to 3 -NR<sup>1</sup> groups, 1 to 2 sulfur atoms, a piperazine, a -CONR<sup>1</sup> group, an -NR<sup>1</sup>CO group, an -SO<sub>2</sub> group, an -NR<sup>1</sup>-CO<sub>2</sub> group, 1 to 2 CO groups, a group

$$-CO-N-T-N(R^1)-SO_2-R^F$$
 or 1 to 2

optionally substituted aryls and/or is interrupted by these groups and/or is optionally substituted with 1 to 3  $-OR^1$  groups, 1 to 2 oxo groups, 1 to 2  $-NH-COR^1$  groups, 1 to 2  $-CONHR^1$  groups, 1 to 2 groups  $-CONHR^1$  groups -CON

whereby

R<sup>1</sup>, and p and q have the above-indicated meanings,

R<sup>F</sup> represents a straight-chain or branched perfluoroalkyl radical with 4 to 30 carbon atoms, and A is a molecule portion that contains 1-6 metal complexes, and Z<sup>1</sup>, independently of one another, mean a hydrogen atom or a metal ion equivalent of atomic numbers 21-29, 39, 42, 44 or 57-83.

18. (Withdrawn) A formulation according to claim 5, wherein metal complex M is a complex of general formula XIII

Page 19

$$CO_2Z^1$$
 $CO_2Z^1$ 
 $CO_2Z^1$ 

in which  $Z^1$ , independently of one another, mean a hydrogen atom or a metal ion equivalent of atomic numbers 21-29, 39, 42, 44 or 57-83.

19. (Withdrawn) A formulation according to claim 4, wherein molecule portion A has the following structure:

whereby

- q<sup>1</sup> is a number 0, 1, 2 or 3,
- K stands for a complexing agent or metal complex or salts thereof of organic and/or inorganic bases or amino acids or amino acid amides,
- X is a direct bond for the perfluoroalkyl group, a phenylene group or a C<sub>1</sub>-C<sub>10</sub> alkyl chain, which optionally contains 1-15 oxygen atoms, 1-5 sulfur atoms, 1-10 carbonyl

groups, 1-10 (NR) groups, 1-2 NRSO<sub>2</sub> groups, 1-10 CONR groups, 1 piperidine group, 1-3 SO<sub>2</sub> groups, 1-2 phenylene groups or optionally is substituted by 1-3 radicals R<sup>F</sup>, in which R stands for a hydrogen atom, a phenyl, benzyl or a C<sub>1</sub>-C<sub>15</sub> alkyl group, which optionally contains 1-2 NHCO groups, 1-2 CO groups, 15 oxygen atoms and optionally is substituted by 1-5 hydroxy, 1-5,methoxy, 1-3 carboxy, 1-3 R<sup>F</sup> radicals,

• Y is a direct bond or a chain of general formula II<sup>1</sup> or III<sup>1</sup>

$$\beta - N - (CH_2)_k - (Z^1)_1 - (CH_2)_m - C - \alpha$$

$$R^{1a}$$
(II<sup>1</sup>)

in which

- R<sup>la</sup> is a hydrogen atom, a phenyl group, a benzyl group or a C<sub>1</sub>-C<sub>7</sub> alkyl group, which optionally is substituted with a carboxy group, a methoxy group or a hydroxy group,
- Z<sup>1</sup> is a direct bond, a polyglycol ether group with up to 5 glycol units or a molecule portion of general formula IV<sup>1</sup>

$$-CH(R^{2a})- (IV1)$$

in which R<sup>2a</sup> is a C<sub>1</sub>-C<sub>7</sub> carboxylic acid, a phenyl group,

a benzyl group or a -(CH2)1 5-NH-K group,

- α represents the binding to the nitrogen atom of the skeleton chain, β represents
   the binding to the complexing agent or metal complex K,
- and in which variables k and m stand for natural numbers between 0 and 10, and 1 stands
   for 0 or 1,

and whereby

• G is a CO or SO<sub>2</sub> group.

20. (Withdrawn) A formulation according to claim 5, in which linker L stands for a molecule portion according to general formula XIV

in which

**B**1

N represents a nitrogen atom,

means a hydrogen atom, a straight-chain or branched C<sub>1</sub>-C<sub>30</sub> alkyl group, which optionally is interrupted by 1-15 oxygen atoms and/or optionally is substituted with 1-10 hydroxy groups, 1-2 COOH groups, a phenyl group, a benzyl group and/or 15 -OR<sup>4</sup> groups, with R<sup>4</sup> in the meaning of a hydrogen atom or a C<sub>1-C7</sub> alkyl radical, or B1-R<sup>1</sup>,

means a straight-chain or branched C<sub>1</sub>-C<sub>30</sub> alkylene group that optionally is interrupted by 1-10 oxygen atoms, 1-5 -NH-CO groups, 1-5 -CO-NH groups, by a phenylene group (that is optionally substituted by a COOH group), 1-3 sulfur atoms, 1-2 -N(B2)-SO<sub>2</sub> groups, and/or 1-2 -SO<sub>2</sub>-N(B2) groups with B2 in the meaning of Al, an NHCO group, a CONH group, an N(B2)-SO<sub>2</sub> group, or an -SO<sub>2</sub>N(B2) group and/or optionally is substituted with radical R<sup>F</sup> a straight or branched perfluoroalkyl radical with 4 to 30 carbon atoms,

and in which a represents the binding to metal complex M, and b

represents the binding to a straight or branched perfluoroalkyl radical with 4 to 30 carbon atoms.

21. (Withdrawn) A formulation according to claim 5, wherein metal complex M stands for a metal complex of general formula XV

$$\begin{array}{c|c} COOR^1 \\ \hline \\ N \\ N \\ \hline \\ COOR^1 \\ \end{array}$$

whereby

 $\mathbb{R}^1$ 

stands for a hydrogen atom or a metal ion equivalent of atomic numbers 21-29, 31, 32, 37-39, 42-44, 49 or 57-83,

(XV)

 $R^2$  and  $R^3$  stand for a hydrogen atom, a  $_{CI-C7}$  alkyl group, a benzyl group, a phenyl group,  $-CH_2OH$  or  $-CH_2-OCH_3$ ,

U stands for radical L, in which radical L stands for a molecule portion according to general formula XIV

in which

N

represents a nitrogen atom,

A1 means a hydrogen atom, a straight-chain or branched  $C_1$ - $C_{30}$  alkyl group, which optionally is interrupted by 1-15 oxygen atoms and/or optionally is substituted with 1-10 hydroxy groups, 1-2 COOH groups, a phenyl group, a benzyl group and/or 1-5 -OR<sup>1</sup> groups, with R<sup>4</sup> in the meaning of a hydrogen

atom or a C<sub>1</sub>-C<sub>7</sub> alkyl radical, or B1-R<sup>F</sup>

high s

**B**1

means a straight-chain or branched C<sub>1</sub>-C<sub>30</sub> alkylene group that optionally is interrupted by 1-10 oxygen atoms, 1-5 -NH-CO groups, 1-5 -CO-NH groups, by a phenylene group (that is optionally substituted by a COOH group), 1-3 sulfur atoms, 1-2 -N(B2)-SO<sub>2</sub> groups, and/or 1-2 -SO<sub>2</sub>-N(B2) groups with B2 in the meaning of Al, an NHCO group, a CONH group, an N(B2)-SO<sub>2</sub> group, or an -SO<sub>2</sub>N(B2) group and/or optionally is substituted with radical R<sup>F</sup> a straight or branched perfluoroalkyl radical with 4 to 30 carbon atoms,

Chit

and in which a represents the binding to metal complex M, and b
represents the binding to a straight or branched perfluoroalkyl radical

with 4 to 30 carbon atoms.

whereby L and U, independently of one another, can be the same or different, however.

- 22. (Withdrawn) A formulation according to claim 1, wherein the central atom of the metal complex is a gadolinium atom (atomic number 64).
- 23. (Previously presented) A formulation according to claim 1, wherein the diamagnetic, perfluoroalkyl-containing substances are those of general formula XVI:

$$R^{F}-L^{1}-B^{2} \tag{XVI}$$

in which R<sup>F</sup> represents a straight-chain or branched perfluoroalkyl radical with 4 to 30 carbon atoms, L stands for a linker, and B<sup>2</sup> stands for a hydrophilic group.

Reply to Final Office Action of May 7, 2003

**24.** (**Previously presented**) A formulation according to claim 23, wherein linker L<sup>1</sup> is a direct bond, an -SO<sub>2</sub> group or a straight-chain or branched carbon chain with up to 20 carbon atoms, which can be substituted with one or more -OH, -COO, -SO<sub>3</sub> groups and/or optionally contains one or more -O-, -S-, -CO-, -CONH-, -NHCO-, -CONR-, -NRCO-, -SO<sub>2</sub>-, -PO<sub>4</sub>-, -NH, - NR groups, an aryl ring or a piperazine, whereby R stands for a C<sub>1</sub> to C<sub>20</sub> alkyl radical, which in turn can contain one or more 0 atoms and/or can be substituted with -COO or SO<sub>3</sub> groups.

The Stand

- 25. (Previously presented) A formulation according to claim 23, wherein the hydrophilic group is a monosaccharide or a disaccharide, one or more adjacent -COO or -SO<sub>3</sub> groups, a dicarboxylic acid, an isophthalic acid, a picolinic acid, a benzenesulfonic acid, a tetrahydropyrandicarboxylic acid, a 2,6-pyridinecarboxylic acid, a quaternary ammonium ion, an aminopolycarboxylic acid, an aminodipolyethyleneglycosulfonic acid, an aminopolyethylene glycol group, an SO<sub>2</sub>-(CH<sub>2</sub>)<sub>2</sub>-OH group, a polyhydroxyalkyl chain with at least two hydroxyl groups or one or more polyethylene glycol chains with at least two glycol units, whereby the polyethylene glycol chains are terminated by an -OH or -OCH<sub>3</sub> group.
- 26. (Withdrawn) A formulation according to claim 1, wherein the diamagnetic perfluoroalkyl containing substances are conjugates that consist of  $\alpha$ -,  $\beta$ -, or  $\gamma$ -cyclodextrin and compounds of general formula XVIII:

$$A^{1}-L^{3}-R^{F} (XVIII)$$

in which A<sup>1</sup> stands for an adamantane, biphenyl or anthracene molecule, L<sup>3</sup> stands for a linker and R<sup>F</sup> stands for a straight-chain or branched perfluoroalkyl radical with 4 to 30

carbon atoms; and whereby linker  $L^3$  is a straight-chain hydrocarbon chain with 1 to 20 carbon atoms, which can be interrupted by one or more oxygen atoms, one or more CO-, SO<sub>2</sub>-, CONH-, NHCO-, CONR-, NRCO-, NH-, NR groups or a piperazine, whereby R is a  $C_1$ - $C_5$  alkyl radical.

King .

- 27. (Withdrawn) A formulation according to claim 1, wherein the perfluoroalkyl chains of the perfluoroalkyl-containing metal complex and the other perfluoroalkyl-containing compounds contain 6 to 12 carbon atoms.
- 28. (Withdrawn) A formulation according to claim 1, wherein the perfluoroalkyl chains contain 8 carbon atoms in each case.
- 29. (Withdrawn) A formulation according to claim 1, wherein it has a metal concentration of 50 to 250 mmol/ 1.
- 30. (Withdrawn) A substance of general formula XVII

$$R^{F}-X^{1}$$
 (XVII)

in which  $R^F$  represents a straight-chain or branched perfluoroalkyl radical with 4 to 30 carbon atoms, and  $X^I$  is a radical that is selected from the group of the following radicals (in this case, n is a number between 1 and 10):

Page 26

31. (Withdrawn) A conjugate that consist of  $\alpha$ -,  $\beta$ -, or  $\gamma$ -cyclodextrin and compounds of general formula XVIII

$$A^{1}-L^{3}-R^{F} (XVIII)$$

in which  $A^1$  stands for an adamantane, biphenyl or anthracene molecule,  $L^3$  stands for a linker and  $R^1$  stands for a straight-chain or branched perfluoroalkyl radical with 4 to 30 carbon atoms, and whereby linker  $L^3$  is a straight-chain hydrocarbon chain with 1 to 20 carbon atoms, which can be interrupted by one or more oxygen atoms, one or more CO-,  $SO_2$ -, CONH-, NHCO-, CONR-, NRCO-, NH-, NR groups or a piperazine, whereby R is a  $C_1$ - $C_5$  alkyl radical.

- 32. (Withdrawn) A process for the production of galenical formulations according to claim 1, wherein the paramagnetic and diamagnetic perfluoroalkyl-containing compounds are dissolved in a solvent while being stirred vigorously.
- 33. (Withdrawn) A process for the production of galenical formulations according to claim 1, wherein the paramagnetic and diamagnetic perfluoroalkyl-containing compounds are dissolved in a solvent while being treated simultaneously with ultrasound.
- 34. (Withdrawn) A process for the production of galenical formulations according to claim 1, wherein the paramagnetic and diamagnetic perfluoroalkyl-containing compounds are dissolved in a solvent while being treated simultaneously with microwaves.

35. (Withdrawn) A process for the production of galenical formulations according to claim 1, wherein the paramagnetic and diamagnetic perfluoroalkyl-containing compounds are dissolved in two different solvents, both solutions are added together, and one of the two solvents is distilled off.

36. (Withdrawn) A solid formulation according to claim 1, wherein it is produced by freezedrying a solution, which contains paramagnetic and diamagnetic perfluoroalkyl-containing substances.

37. (Withdrawn) Contrast media for nuclear spin tomography comprising galenical formulations according to claim 1.

38. (Withdrawn) Contrast media for visualizing lymph nodes or a blood-pool comprising galenical formulations according to claim 1.

- 39. (Currently amended) A formulation according to claim 2, wherein the ratio of the paramagnetic perfluoroalkyl compound to the diamagnetic perfluoroalkyl compound is <u>from</u> 40:60 and to 60:40.
- 40. (Previously Presented) A formulation according to claim 2, wherein the diamagnetic perfluoroalkyl-compound is from 5-40%.

Conta

41. (New) A method of magnetic resonance imaging comprising administering to a patient a contrast agent which is a galenical formulation of claim 1 and taking a H-based, T<sub>1</sub>-weighted magnetic resonance image of the patient.