Clase #03 de 27 Notaciones Algorítmicas, Eficiencia & Tipos

Abril 12, Jueves

Agenda para esta clase

- Resolución de Problemas
- Léxico & Notaciones Algorítmicas
- Trabajo #1 -- Resolución de Problemas Adición
- Intervalo
- Modelo Computacional
- Estilos
- Eficiencia: Espacio & Tiempo
- Introducción a Tipos: En Matemática y en C++
- Trabajo #2

Resolución de Problemas

Problema, Solución y Procesos

- Dominios
 - Dominio del Problema
 - "Qué"
 - Obstáculo a un objetivo
 - Análisis del Problemas
 - Dominio de la Solución
 - "Como"
 - Plan para lograr el objetivo
 - Síntesis en un Diseño

- Proceso
 - Soluciona Problema
 - Qué
 - Establece Forma, método
 - Cómo
 - Entrada de Datos
 - Salida de Resultados
 - Secuencia de Acciones o Pasos
 - Secuencia ≠ Conjunto
 - $(1,2,3) \neq \{1,2,3\}$
 - $(1,2,3) \neq (1,3,2)$
 - $(1,2,3) \neq (1,2,2,3)$
 - ${1,2,3} = {3,2,2,1}.$

Léxico & Notaciones Algorítmicas

Léxico & Notaciones Algorítmicas

- Léxico
 - Define las entidades que manipula el algoritmo
 - Usa notación matemática, no usa un lenguaje de programación
 - El léxico es independiente de las notaciones algorítmicoas

- Textual: Pseudocódigo
- Visual: Chapin / Lindsay / UTN FRBA
- Visual: Nassi-Shneiderman (NS)
 - Estandarizada
- Visual: Diagrama de Flujo
 - Estandarizada
- Textual: C ++
 - Estandarizada.

Secuencia:

Comparación de Notaciones Algorítmicas

Textual: **Pseudocódigo**

Leer a.

Leer b.

Mostrar a+b.

Visual: Diagrama de Flujo

Visual: Chapin / Lindsay / UTN FRBA

Visual: Nassi-Shneiderman

Read a

Read b

Write a + b

```
Textual: C++
```

```
int main(){
   int a, b;
   std::cin >> a;
   std::cin >> b;
   std::cout << a + b;
}</pre>
```

Trabajo #1

Resolución de Problemas — Adición

Trabajo #1 – Resolución de Problemas — Adición

- Carpeta: 01-Adición
 - Readme.md
 - Etapa #1: Análisis Problema
 - Transcripción del problema
 - Refinamiento e Hípótesis de trabajo
 - Modelo IPO
 - Etadap #2: Diseño de la Solución
 - Léxico
 - Represetnaciones del Algoritmo
 - Representación Textual y
 - Representación Visual
 - Adición.cpp

Intervalo

20 minutos

Modelo Computacional

Modelo Computacional

- Modelo de procesamiento
 - Entrada
 - Proceso
 - Salida (y Errores)
 - Modelo IPO
- Arquitectua de Von Neumann (1945)
 - John Von Neumann (1903-1957)
 - Computadora con unidad central de procesamiento que almacena programas y datos en memoria
- Ejemplos
 - Hola.cpp
 - Adición.cpp

Componentes de la Arquitectura von Neumann

- Unidad Central de Procesamiento
 - Registros
 - IR: Registro de instrucción
 - PC: Contador de Programa
 - CA: Aritmético Lógica
 - CC: Unidad de Control Central
- M: Memoria (Principal)
 - Datos
 - Programas
 - Lenguaje Máquina
- I: Entrada
- O: Salida
 - Teclado
 - Pantalla
- R: Memoria Secundaria
- Pros y Cons de Memoria Principal y Secundaria
 - Costo
 - Eficiencia
 - Tamaño
 - Persistencia

Estilos

Comparación Subjetiva

- Legibilidad
- Claridad
- Mantenibilidad
- Los adjetivos "idad" son los atributos de calidad del desarrollo.

```
int a;
cin >> a;
int b;
cin >> b;
                  //4
                  int a;
cout << a+b;
                  cin >> a;
                  int b;
int a, b;
                  cin >> b;
cin >> a >> b; int c = a+b;
cout << a+b;
              cout << c:
//3
                  //5
int a;
                  int a:
int b;
                  cin >> a;
int c;
                  int b;
                  cin >> b;
cin >> a;
                  b = a+b;
cin >> b;
c = a+b;
                  cout << b:
cout << c;
```

Eficiencia: Espacio & Tiempo

Recursos Utilizados – Comparación Objetiva

			Recurso		
			Espacio	Tiempo	
Durante	ante	La traducción del Programa	de memoria secundaria que ocupa el programa fuente; en general, medido en líneas de código (lines of code, LOC).	requerido por el compilador para la traducción del programa en lenguaje de alto nivel a lenguaje máquina.	
	Dur	La Ejecución del Proceso	de memoria principal utilizado durante la ejecución del proceso de memoria secundaria utilizada como área de trabajo.	requerido para finalizar la ejecución del proceso.	

Comparación Objetiva

Tiempo

- Las declaraciones no insumen tiempo de ejecución, salvo cuando tienen incialización de una variable automática
- Cantidad de operaciones (aproximación)

```
>>+
```

Notación O Grande

- Eje x: cantidad de datos, n
- Eje y: tiempo de procesamiento, t
- Funciones
 - O(n): Líneal
 - O(1): Constante
- Espacio
 - Cantidad de variables

```
int a;
int b:
cin >> a:
cin >> b;
cout << a+b;
int a, b;
cin >> a >> b;
cout << a+b:
int a;
int b:
int c;
cin >> a;
cin >> b;
c = a+b;
cout << c;
```

```
//4
int a;
int b;
cin >> a;
cin >> b;
int c = a+b;
cout << c;

//5
int a;
int b;
cin >> a;
cin >> b;
b = a+b;
cout << b;</pre>
```

Introducción a Tipos

En Matemática y en C++

¿Qué es un Tipo de Dato?

- Buscar una definición
- Buscar ejemplos
- Representación
- Valores que almacena
- Operaciones que se pueden realizar
- Definición
 - Un tipo de dato, o simplemente tipo, es un conjunto de valores y un conjunto de operaciones sobre esos valores.

Tipos de Datos – Conjunto de Valores Niveles de abstracción y Ejemplos

Matemática		C++		Microprocesador (general)
Con- junto	Valores	Tipo de Dato	Valores	Representación electrónica
\mathbb{B}	VF	lood	true false	Registro: Bit (o ó 1)
Σ	A B Ñ! (finito) ≈ ASCII	char	'a' 'A' '1' '+' '@' '\''	Registro: Byte (8 bytes)
N	Semirecta	unsigned	0 1 2 96 	Registro: Word (n bytes)
Z	Recta	int	1 -2 1024 	Registro: Word (n bytes)
R	Recta	double	1.5 1.0 1e5	Registro: Floating point 80-bits
Σ^*	A ABA AÑABA	string	"a" "aA" "abab" "" 	Bloque contiguo de memoria

Tipos de Datos – Conjunto de Operaciones Niveles de abstracción y Ejemplos

Mater	nática	C++	
Tipo	(Algunas) Operaciones	Tipo	(Algunas) Operaciones
\mathbb{B}	= ≠ ∨ ∧ ¬	bool	== != or and not
Σ	= ≠	char	== != <= >= + - * / -
N, Z	= ≠ ≤ ≥ + - • / - resto	unsigned int	%
R	= ≠ ≤ ≥ + - • / -	double	== != <= >= + - * / -
Σ^*	= ≠ •	string	== != <= >= + length

Tipos de Datos Más Abstractos

- Ejemplos Comunes
 - String
 - Date
 - Money o Currency
 - Números Complejos
 - Compuestos
- ¿Qué carácterística comparten?
- No tienen representación directa en máquina
 - Un int puede ser almacenado en un registros del microprocesador, un string no.
- No son estándar en los lenguajes de programación

Trabajo #2

Ejemplos de Valores y Operaciones de Tipos de Datos

Trabajo #2 – Ejemplos de Valores y Operaciones de Tipos de Datos

- Carpeta: o2-EjemploTipos
 - EjemploTipos.cpp

Términos de la clase #03

Definir cada término con la bibliografía

- Resolución de Problemas
 - Dominio del Problema
 - Análisis
 - Dominio de la Solcuión
 - Síntesis en un Diseño
 - Definición de Proceso
 - Secuencia vs. Conjunto
- Léixco & Notaciones Algorítmicas
 - Léxico
 - Pseudocódigo
 - Lindsay / Chapin/ UTN FRBA
 - Nassi-Shneiderman (NS)
 - Diagrama de Flujo
 - C++
- Modelo Computacional
 - Arquitectura de John von Neumann
 - Recursos
 - Memoria para datos y programas
 - Registros
 - Memoria principal
 - Memoria secundaria
- Estilos
 - Legibilidad
 - Claridad
 - Mantenibilidad

- Atributos de calidad
- Eficiencia: Espacio & Tiempo
 - Tiempo
 - Espacio
 - Durante la traducción del programa
 - Duratne la ejecuón del proceso
 - Notación O Grande
 - O(n)
 - O(1)
- Introducción a Tipos
 - Definción
 - B
 - $\Sigma = ASCII$
 - N
 - Z
 - R
 - ∑*
 - bool
 - char
 - unsigned
 - int
 - double
 - string
 - Representación literal o constante de valores
 - Bit

- byte
- word
- Floating-point
- Bloque de memoria
- Operaciones
- Resto
- Módulo
- Norma o Longitud de una cadena
- Operadores binarios
- Operadores unarios
- Tipo de Datos Más Abstractos

Tareas para la próxima clase

- 1. Trabajo #1 Resolución de Problemas Adición
- Trabajo #2 Ejemplos de Valores y Operaciones de Tipos de Datos

¿Consultas?

Fin de la clase