Shervine Amidi About Blog Afshine Amidi About Projects

Distribution tables

Standard Normal distribution **Notations** Distribution table

t distribution Notations

Distribution table

Chi-squared distribution Notations Distribution table

Want more content like this? **Subscribe here** to be notified of new releases!

CME 106 - Introduction to Probability and Statistics for Engineers

English

Distribution tables

By Afshine Amidi and Shervine Amidi

Standard Normal distribution

Notations

Let us note the random variable Z that follows the standard normal distribution, i.e. which is such that:

$$Z \sim \mathcal{N}(0,1)$$

We note z_{lpha} as follows:

$$z_lpha = \Phi_Z^{-1}(1-lpha) \quad ext{i.e} \quad lpha = \int_{z_lpha}^{+\infty} f_Z(z) dz = 1 - \Phi_Z(z_lpha)$$

with Φ_Z the cumulative distribution of Z

Distribution table

For one-tailed tests, the value of interest is z_{α} , whereas for two-tailed tests, we have to look at $z_{\frac{\alpha}{2}}$

Confidence level	80%	85%	90%	95%	98%	99%	99.5%	99.9%
α	0.20	0.15	0.10	0.05	0.02	0.01	0.005	0.001
z_{lpha}	0.842	1.036	1.282	1.645	2.054	2.326	2.576	3.090
${\cal Z}_{rac{lpha}{2}}$	1.282	1.440	1.645	1.960	2.326	2.576	2.807	3.291

t distribution

Notations

Let us note the random variable T that follows a t distribution of n degrees of freedom, i.e. which is such that:

$$T\sim t_n$$

We note t_{lpha} as follows:

$$t_lpha = \Phi_T^{-1}(1-lpha) \quad ext{i.e} \quad lpha = \int_{t_lpha}^{+\infty} f_T(t) dt = 1 - \Phi_T(t_lpha)$$

with Φ_T the cumulative distribution of T

Distribution table

$\alpha \setminus n$	1	2	3	4	5	6	7	8	9	10	11	12	13
0.20	1.38	1.06	0.98	0.94	0.92	0.91	0.90	0.89	0.88	0.88	0.88	0.87	0.87
0.10	3.08	1.89	1.64	1.53	1.48	1.44	1.41	1.40	1.38	1.37	1.36	1.36	1.35
0.05	6.31	2.92	2.35	2.13	2.02	1.94	1.89	1.86	1.83	1.81	1.80	1.78	1.77
0.025	12.7	4.30	3.18	2.78	2.57	2.45	2.36	2.31	2.26	2.23	2.20	2.18	2.16
0.01	31.8	6.96	4.54	3.75	3.36	3.14	3.00	2.90	2.82	2.76	2.72	2.68	2.65
0.005	63.7	9.92	5.84	4.60	4.03	3.71	3.50	3.36	3.25	3.17	3.11	3.05	3.01
0.001	318.3	22.3	10.2	7.17	5.89	5.21	4.79	4.50	4.30	4.14	4.03	3.93	3.85
$\alpha \setminus n$	15	18	20	22	24	26	28	30	40	50	100	200	$+\infty$
0.20	0.87	0.86	0.86	0.86	0.86	0.86	0.85	0.85	0.85	0.85	0.85	0.84	0.84
0.10	1.34	1.33	1.33	1.32	1.32	1.31	1.31	1.31	1.30	1.30	1.29	1.29	1.28
0.05	1.75	1.73	1.72	1.72	1.71	1.71	1.70	1.70	1.68	1.68	1.66	1.65	1.65
0.025	2.13	2.10	2.09	2.07	2.06	2.06	2.05	2.04	2.02	2.01	1.98	1.97	1.96
0.01	2.60	2.55	2.53	2.51	2.49	2.48	2.47	2.46	2.42	2.40	2.36	2.35	2.33
0.005	2.95	2.88	2.85	2.82	2.80	2.78	2.76	2.75	2.70	2.68	2.63	2.60	2.58
0.001	3.73	3.61	3.55	3.50	3.47	3.43	3.41	3.39	3.31	3.26	3.17	3.13	3.09

χ^2 distribution

Notations

Let us note the random variable K that follows a χ^2 distribution of n degrees of freedom, i.e. which is such that:

$$K \sim \chi_n^2$$

We note q the quantile of the distribution.

Distribution table

$q \setminus n$	1	2	3	4	5	6	7	8	9	10	11	13
0.005	0.00	0.01	0.07	0.21	0.41	0.68	0.99	1.34	1.73	2.16	2.60	3.57
0.01	0.00	0.02	0.11	0.30	0.55	0.87	1.24	1.65	2.09	2.56	3.05	4.11
0.025	0.00	0.05	0.22	0.48	0.83	1.24	1.69	2.18	2.70	3.25	3.82	5.01
0.05	0.00	0.10	0.35	0.71	1.15	1.64	2.17	2.73	3.33	3.94	4.57	5.89
0.95	3.84	5.99	7.81	9.49	11.07	12.59	14.07	15.51	16.92	18.31	19.68	22.36
0.975	5.02	7.38	9.35	11.14	12.83	14.45	16.01	17.53	19.02	20.48	21.92	24.74
0.99	6.63	9.21	11.34	13.28	15.09	16.81	18.48	20.09	21.67	23.21	24.72	27.69
0.995	7.88	10.60	12.84	14.86	16.75	18.55	20.28	21.95	23.59	25.19	26.76	29.82
$q \setminus n$	15	18	20	22	24	26	28	30	40	50	100	

$q \setminus n$	15	18	20	22	24	26	28	30	40	50	100
0.005	4.60	6.26	7.43	8.64	9.89	11.16	12.46	13.79	20.71	27.99	67.33
0.01	5.23	7.01	8.26	9.54	10.86	12.20	13.56	14.95	22.16	29.71	70.06
0.025	6.26	8.23	9.59	10.98	12.40	13.84	15.31	16.79	24.43	32.36	74.22
0.05	7.26	9.39	10.85	12.34	13.85	15.38	16.93	18.49	26.51	34.76	77.93
0.95	25.00	28.87	31.41	33.92	36.42	38.89	41.34	43.77	55.76	67.50	124.34
0.975	27.49	31.53	34.17	36.78	39.36	41.92	44.46	46.98	59.34	71.42	129.56
0.99	30.58	34.81	37.57	40.29	42.98	45.64	48.28	50.89	63.69	76.15	135.81
0.995	32.80	37.16	40.00	42.80	45.56	48.29	50.99	53.67	66.77	79.49	140.17

