

INTRODUCCIÓN A LA ESTADÍSTICA DESCIPTIVA

Aliados:

DEFINITIONS

ESTADÍSTICA **INFERENCIAL**

TYPES OF VARIABLES

CATEGORICAL

Nominal

- Gender
- Color
- Blood type

Ordinal

- Education level (elementary, secondary, college)
- Pain level (mild,moderate,severe)
- Satisfaction level (dissatisfied, neutral, satisfied)

NUMERICAL

Discrete

- Number of students present
- Number of red marbles in a jar
- Number of red cars

Continuous

- Height of students in class
- Time it takes to get to school
- Distance traveled between classes

HISTOGRAMS

2, 3, 3, 5, 8, 10, 11

(2+3+3+5+8+10+11)/7= 6

MEDIA = 6

2, 3, 3, 5, 8, 10, 11

MED = 5

2, 2, 3, 3, 5, 7, 8, 130

2, 2, 3, 3, 5, 7, 8, 130

(2+2+3+3+5+7+8+130)/8= 20

(3+5)/2=4

MEDIA = 20

MED = 4

 Order your data from smallest to largest

2. Find the data point that has an equal amount of values above it, and below it

MEDIAN

Is the middle value

Outliers have a smaller effect on the median

Median	Odd
	23
	21
	18
	16
	15
	13
	12
	12
	10
	10
	10 9
	10 9 7

Median Even	
	40
	38
	35
	33
	32
	30
28	29
20	27
	26
	24
	23
	22
	19

Mod	le
	5
	5
	5
	4
	4
	3
	2
	2
	1

į	
	No Mode
	122.275
	109.085
	103.079
	102.691
	98.228
	96.221
	94.724
	92.619
	89.483
	75.762

MODE

Most frequent value in your categorical data

QUARTILE

- Divides the number of data points into four parts
- Data must be ordered from smallest to largest to compute quartiles

IDEOLOGY (CT = 3, D = small [~normal])

IDEOLOGY (CT = 3, D = modest [~normal])

IDEOLOGY (CT = 3, D = large [uniform])

RANGE

Difference between the highest and lowest scores in a data set

$$(85 - 23 = 62)$$

VARIANCE

How far each observation falls from the mean of the distribution

$$S^2 x = \frac{\sum (x - \overline{x})^2}{N - 1}$$

STANDAR DEVIATION

$$Sx = \sqrt{S^2}x$$

square root of the variance

DEMO

See Jupyter Notebook

Q&A

Vigilada Mineducación

Workshop #1

https://github.com/santyjara/Data-science-workshops

Lab capitulo #1

Primera actividad evaluativa

Vigilada Mineducación

