GÖRÜNTÜ İŞLEME

GÖRÜNTÜ İŞLEMEDE KULLANILAN TEMEL YÖNTEMLER

Bölüm Hedefi

- Bu bölümde sayısallaştırılmış görüntüler üzerinde uygulanabilecek temel yöntemler ve bu yöntemlerin nasıl gerçekleştirildiğinden bahsedilecektir.
- Böylece görüntüler üzerinde sıkça yapılan işlemler ve arka planındaki çalışma mantığını öğretmek hedeflenmektedir.

Görüntünün Negatifi

- Bir görüntüyü koordinat düzlemi üzerinde iki boyutlu bir matris gibi düşünürsek, bu matrisin her bir elemanı görüntüdeki bir piksele karşılık gelmektedir.
- O zaman resimde (x,y) koordinatında bulunan piksel l(x,y) ile gösterilebilir. l(x,y)=a ifadesindeki a ise (x,y) koordinatındaki pikselin değerini göstermektedir.

Bir görüntünün negatifini almak için piksel değeri 255'ten çıkarılır. I(x,y)=a ise negatifini alınca oluşacak görüntünün piksel değerleri I'(x,y)=255-a olmalıdır.

Görüntünün negatifi

Görüntü Ters Çevirme

- Koordinat sisteminde bir matris gibi düşündüğümüz görüntüde;
 - en üstteki satır en alta en alttaki satır ise en üste getirilecek şekilde, satırlar tersten düzenlenirse görüntü ters çevrilmiş olacaktır.
 - Bunu x eksenine göre simetri olarak da düşünebiliriz.
- Formal olarak ifade etmek istersek
 H yüksekliğe sahip bir görüntüde
 (x,y) koordinatındaki piksel

I'(H-x,y) = I(x,y)

koordinatına taşınmalıdır.

Ters çevrilmiş görüntü

Görüntü Aynalama

- Görüntüyü ters çevirme işlemine çok benzemektedir.
 - Bu durumda; en sağdaki sütun en sola, en soldaki sütun ise en sağa gelecek şekilde tersten düzenlenmelidir.
 - Bunu y eksenine göre simetri olarak da düşünebilirsiniz.
- Formal olarak ifade etmek istersek
 W genişliğe sahip bir görüntüde (x,y)
 koordinatındaki piksel

(x,W-y)

koordinatına taşınmalıdır.

Aynalanmış görüntü

Görüntü Döndürme

 Görüntünün merkez noktasına (x₀,y₀) göre θ derece döndürülmesi ile (x,y) koordinatında bulunan bir noktanın (x₁,y₁) noktasına taşındığını düşünürsek, aradaki ilişki şu şekilde olacaktır:

$$x_1 = \cos \theta (x - x_0) - \sin \theta (y - y_0) + x_0$$
$$y_1 = \sin \theta (x - x_0) + \cos \theta (y - y_0) + y_0$$

• Burada θ = 180 seçilirse, görüntü ters çevrilmiş olacaktır.

Görüntü Öteleme

- Bir görüntünün yatayda A, dikeyde B piksel taşınması (ötelenmesi) isteniyorsa; tüm pikseller (A,B) miktar kaydırılır.
- Yani (x,y) koordinatında bulunan bir piksel (x+A, y+B) noktasına taşınmış olmalıdır.

Görüntü öteleme

Görüntü Yakınlaştırma

- Görüntü yakınlaştırma işlemi günlük hayatta çok sık kullanılan işlemlerden biridir. Amaç görüntünün olduğundan biraz daha büyük gösterilmesini sağlamaktadır.
- Yazılımsal olarak yapılan yakınlaştırma işlemi, yakınlaştırma durumuna göre görüntülerde bozulmalara yol açar.
- Uygulanacak yöntemlerin birinde bir piksel, büyütülen resimde çevresindeki piksellere yetiştirilir.

Α	В	C
D	E	F
G	Н	1

A	A	В	В	С	С
A	A	В	В	С	С
D	D	Е	E	F	F
D	D	Е	Е	F	F
G	G	Н	Н	1	I
G	G	Н	Н	I	1

Görüntü yakınlaştırma

Örnek yakınlaştırılmış görüntü

Görüntü Yakınlaştırma

 Bahsedilen yöntemde, görüntü oldukça hızlı bozulur ve keskin geçişler yaşanır. Bunu önleyebilmek için yandaki gibi bir işlem yapılabilir. Böylece bozulma oranı daha az belli olacak şekilde yapılmış olur:

	_	
A	В	C
D	Ε	F
G	н	1

A	$\frac{A+B}{2}$	В	$\frac{B+C}{2}$	С
$\frac{A+D}{2}$	$\frac{A+B+D+E}{4}$	$\frac{B+E}{2}$	$\frac{B+C+E+F}{4}$	$\frac{C+F}{2}$
D	$\frac{D+E}{2}$	E	$\frac{E+F}{2}$	F
$\frac{D+G}{2}$	$\frac{D+E+G+H}{4}$	$\frac{E+H}{2}$	$\frac{E+F+H+I}{4}$	$\frac{F+I}{2}$
G	$\frac{G+H}{2}$	н	$\frac{H+I}{2}$	1

Yakınlaştırmada bozulmayı önleyebilmek için yapılan işlem

Örnek yakınlaştırılmış görüntü

Bozulmanın giderildiği görüntü örneği

Görüntü Uzaklaştırma

Görüntü uzaklaştırma, bir resmin olduğundan küçük gösterilmesi işlemidir. Bu işlemde pikseller arasındaki ilişkiye göre yeni piksel değerleri belirlenir. Böylece görüntü boyutu küçültülmüş olur.

A	В	С	D
E	F	G	Н
I	J	K	L
М	N	0	P

A+B+E+F	C+D+G+H
$\frac{4}{I+J+M+N}$	4 K+L+O+P
4	4

Küçültme işlemi için kullanılan matris

Yandaki matriste küçültme işleminin nasıl olacağı gösteril-mektedir:

Görüntü eğriltme (shear)

original

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & a & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$a = \cot \theta (\theta)$$

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ b & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Original image

Image sheared in x direction

Shear Matrix = [1 0.5; 0 1]

Shear Matrix = [1 -0.5; 0 1]

Shear Matrix = [1 0; -0.5 1]

Shear Matrix = [1 0; 0.5 1]

FLIPUD and Shear Matrix = [1 0.5; 0 1]

FLIPLR and Shear Matrix = [1 0; 0.5 1]

Matrisel olarak

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ d & e \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} c \\ f \end{bmatrix} \Rightarrow \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Kare matris formuna genişletirsek

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \Rightarrow \begin{bmatrix} x' \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$x' = ax + by + c$$
$$y' = dx + ey + f$$

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & k & 0 \\ m & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Birleşik dönüşümler

 Birleşik dönüşüm matrisleri her bir dönüşüm matrislerinin ard arda çarpılması ile elde edilir.

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 4 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -4 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Aritmetik İşlemler

- Görüntüleri matris olarak da düşünebildiğimiz için, aritmetik işlemleri anlamak çok zor olmayacaktır.
- Görüntülerin karşılıklı olarak aynı koordinata denk gelen piksellerin değerleri arasında işlemler yapılır.
- Bunu $I_3(x,y) = I_1(x,y) + I_2(x,y)$ şeklinde ifade edebiliriz (Burada toplama dışında diğer işlemlerde yapılabilir).

10	5	7]	4	5	10		14	10	17
3	6	3	+	7	9	12	=	10	15	15
4	5	20		21	5	33		25	10	53

Görüntülerin toplanması

Toplanma işlemi gerçekleştirilmiş görüntü örneği

Mantıksal İşlemler

- Arka planın 0, ön planın 1 ile ifade edildiği ikili resimlerde mantık işlemlerini uygulayabiliriz.
- Uygulayacağımız işlemler VE, VEYA ve DEĞİL'dir. VE ile VEYA işlemlerinde matrislerin karşılıklı koordinatlarında bulunan pikseller bu işlemlere tabi tutulur.
- DEĞİL işleminde ise matristeki tüm sıfırlar bir, tüm birler sıfır olarak ayarlanır.

$I_1(x,y)$	$I_2(x,y)$	$I_1(x,y)$ VE $I_2(x,y)$
0	0	0
0	1	0
1	0	0
1	1	1

$I_1(x,y)$	$l_2(x,y)$	$I_1(x,y)$ VEYA $I_2(x,y)$
0	0	0
0	1	1
1	0	1
1	1	1

Mantıksal operatörler

Ve işlemi uygulanmış görüntü

