Class Notes

Dustin Leatherman

December 26, 2020

Contents

1	Rev	view & Introduction (2020/04/02)	2					
	1.1	Review	3					
		1.1.1 Distributions by Question	3					
		1.1.2 Independence	4					
	1.2	Introduction	4					
	1.3	Big Questions	5					
	1.4	Example: Interest Rate	5					
	1.5	Example: Estimating Pi	6					
	1.6	Example: Sandwich Shop Profit	6					
		1.6.1 Questions	6					
2	Review & Estimating Integrals (2020/04/09)							
	2.1	Review	7					
		2.1.1 Chebyshev Inequality	7					
		2.1.2 Determining N	7					
	2.2	Estimating Integrals	8					
		2.2.1 Example - Normal Probability	8					
3	Eur	opean Call/Put Options (2020/04/16)	10					
	3.1	Brownian Motion	10					
	3.2		10					
		3.2.1 Examples	10					
		3.2.2 European Options	11					
	3.3	Geometric Brownian Motion	11					
			11					
	3.4							
		<u>-</u>	12					
	3.5		12					

4	Line	ear Congruential Generators $(2020/04/23)$	13			
	4.1	and Inverse Distributions	13			
	4.2	Linear Congruential Generators	13			
		4.2.1 Example 1	13			
	4.3	Tests for Pseudo random numbers	14			
		4.3.1 Collision Test	14			
	4.4	Inverse Distribution	15			
5	GB	M Explanation $(2020/04/30)$	15			
	5.1	Fair European Put Price	16			
6	Rar	dom Number Generation pt 2 $(2020/05/07)$	17			
	6.1	Acceptance-Rejection Method	17			
		6.1.1 Proof	17			
		6.1.2 Application	19			
		6.1.3 Normal Distribution	20			
	6.2	Brownian Motion Time Differencing	21			
		6.2.1 Properties	22			
		6.2.2 Linear Interpolation	22			
		6.2.3 Generating Brownian Sample Paths	22			
7	Types of Options $(2020/05/14)$					
	7.1	Vanilla European Call/Put Option	23			
	7.2	Asian Call/Put Options	24			
		7.2.1 Arithmetic Mean	24			
		7.2.2 Geometric Mean	24			
	7.3	Barrier Options	25			
		7.3.1 Knock-in Barrier Option	25			
	7.4	Lookback Options	26			
8	Cor	trol-Variate Method for Efficiency $(2020/05/21)$	26			

$1\quad Review\ \&\ Introduction\ (2020/04/02)$

Monte Carlo Simulations: A family of computational algorithms using repeated sampling to get numerical results.

Applications

- ullet get deterministic results
- Approximate High Dimension Integration

1.1 Review

Note that since every class has a review period for the first lecture, the notes documented here represent points that were either stressed or that I found particularly interesting

1.1.1 Distributions by Question

Binomial

- How *many* basketball free throws do you make out of a given number of attempts?
- How many people prefer the iPhone to other smart phones?

Poisson

- How many taxis pass by your corner in a given time?
- How many servers crash in a given time?

Gamma Distribution

- How long does it take for the next several taxis to pass by your corner?
- How *long* does it take for the next *several* servers to crash in a given time?

Gaussian

- How far does a stock price move in a given period of time?
- Describe averages

1. Gamma

Time it takes for the next several taxis to pass by.

- $T \ Gamma(\alpha, \beta)$
- β : Average waiting between taxis
- α : number of taxis

I noted this because I haven't used the Gamma distribution too much and I thought this was an intuitive way to describe it.

1.1.2 Independence

If $Y_1 \sim N, Y_2 \sim N$, they are Bivariate Normal If $\sigma_{12} = 0, Y_1, Y_2$ are independent since $\sigma_{12} = cov(Y_1, Y_2) = 0$.

1. Proof

Any Bivariate Normal Random Var can be written as a linear function of two independent Normal R.V.s.

$$x_1 = z_1 x_2 = \sigma_{12} z_1 \pm z_2 \sqrt{1 - \sigma_{12}^2}$$
 (1)

$$cov(x_{1}, x_{2}) = cov(z_{1}, \sigma_{12}z_{1} \pm z_{2}\sqrt{1 - \sigma_{12}^{2}})$$

$$= cov(z_{1}, \sigma_{12}z_{1} \pm z_{2}\sqrt{1 - \sigma_{12}^{2}})$$

$$= cov(z_{1}, \sigma_{12}z_{1}) + cov(z_{1}, z_{2}\sqrt{1 - \sigma_{12}^{2}})$$

$$= \sigma_{12}V(z_{1}) + 0$$

$$= \sigma_{12}$$

$$(2)$$

if $\sigma_{12} \neq 0$, x,y are **not** independent if $\sigma_{12} = 0$,

- $x_1 = z_1$
- $x_2 = z_2$

This implies that x_1 and x_2 are independent.

1.2 Introduction

Metropolis Sampling - important method in Bayesian Statistics

Y represents some interesting quantity

- \bullet result of a game
- payoff of a derivative option
- daily profit

• time taken to travel by car to work

Compute the mean, $E(Y) = \mu$

- probability of winning
- fair price of a derivative option purchased today
- average daily profit

Or Y can be a percentile

The idea is to generate samples of Y with the *same* distribution to compute the sample mean, percentile as estimates of the true quantities.

1.3 Big Questions

- How do we generate the Y_i with a complicated distribution? Often $Y_i = f(X)$, where $X = (X_{i1}, ..., X_{id})$ is easy to generate and f is known
- How do we generate X_i above?
- How large does n need to be?
- Can we reduce n(time, cost) by being clever? Yes, by choosing Y_i more carefully?

if $cov(Y_i, Y_j) = \rho$:

$$V(\bar{Y}) = \frac{\sigma^2}{n} + \frac{2n(n-1)}{n^2} cov(Y_i, Y_j)$$

$$= \frac{\sigma^2}{n} + \frac{n(n-1)}{n^2} \rho \sigma^2$$
(3)

1.4 Example: Interest Rate

 $k = number of times per year interest is compounded <math>r_k = interest rate per year compounded k times per year <math>r_1 = annualized percentage rate (APR)$ r = interest rate per year compounded continuously

$$r_1 = \left(1 + \frac{r_k}{k}\right)^k - 1 = e^r - 1$$

$$r = k \ln\left(1 + \frac{r_k}{k}\right) = \ln(1 + r_1)$$
(4)

$$\lim_{n \to \infty} (1 + \frac{1}{n})^n = e$$

$$\lim_{n \to \infty} (1 + \frac{0.05}{n})^n = \lim_{n \to \infty} (1 + \frac{0.05}{n})^{\frac{n}{0.05}} = e^{0.05}$$
(5)

1.5 Example: Estimating Pi

Assume the following:

- a piece of 1 x 1 square wood with a circle in it
- infinite darts

How to estimate the value of π ? Area of square: $1 \ r = 0.5$ Area of a circle: $\pi r^2 = \frac{\pi}{4}$ $\hat{\pi} = 4 \times \frac{\# \text{ of darts in circle}}{\# \text{ of darts in square}}$

1.6 Example: Sandwich Shop Profit

$$\begin{split} D_{ij} \sim U(5,...,35), i &= 1,...,n, j = 1,...,d\\ \text{j: day i: random variable} \\ \text{profit: } P_{ij} &= \min(D_{ij},O)R - OW\\ \text{average daily profit over d days: } \bar{P}_i &= \frac{1}{d}(P_{i1} + ... + P_{id}), i = 1,...,n \end{split}$$

$$\hat{\mu} = \frac{1}{n} (\bar{P}_1 + \dots + \bar{P}_n) = \frac{1}{nd} \sum_{i,j=1}^{n,d} P_{ij}$$

$$\hat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^{n} (\bar{P}_i - \hat{\mu})^2$$

$$\hat{\mu} \pm 2.58 \frac{\hat{\sigma}}{\sqrt{n}}$$
(6)

2.58 is p = 0.005 for a 99% C.I.

1.6.1 Questions

- What size order gives the maximum average daily profit? Why? Have you tried other order sizes?
- How accurately can you know the average daily profit from the simulation? How does this depend on the number of days for your simulation?

- How does the answer vary as you change your model assumptions?
- Plot daily profit and average daily profit with the number of days

2 Review & Estimating Integrals (2020/04/09)

2.1 Review

$$\begin{split} MSE(\hat{\mu}) &= Var(\hat{\mu}) + [bias(\hat{\mu})]^2 \\ bias(\hat{\mu}) &= E(\hat{\mu}) - \mu \\ \textbf{Simple Monte Carlo Simulator: } \hat{\mu} &= \bar{Y} = \frac{1}{n}(\Sigma Y_i) \end{split}$$

2.1.1 Chebyshev Inequality

When working with an unknown distribute, the Chebyshev inequality can be used to construct Confidence Intervals (albeit wide).

$$P(|Y - \mu| < k\sigma) \ge 1 - \frac{1}{k^2}$$

$$P(|Y - \mu| > k\sigma) \le \frac{1}{k^2}$$

2.1.2 Determining N

$$\left|\frac{Z_{1-\alpha/2}\hat{\sigma}}{\sqrt{n}}\right| \le \epsilon \to n \ge \left(\frac{Z_{1-\alpha/2}\hat{\sigma}}{\alpha}\right)^2 \tag{7}$$

 $\hat{\sigma}$: Unbiased estimate of σ

 α : Error tolerance.

In this class so far, $\alpha = 0.01$

1. Steps

- (a) Choose a small sample size $(n_0 = 1000)$. Then generate n_0 random samples from an underlying probability distribution
- (b) Calculate $\hat{\sigma}$
- (c) Calculate n
- (d) Generate another sample of size n from the underlying probability distribution.
- (e) Compute $\hat{\mu}$ with error $\pm Z_{1-\alpha/2} \frac{\hat{\sigma}_n}{\sqrt{n}}$

2.2 Estimating Integrals

$$\mu = \int_{R^d} g(x)dx = ?$$

Let $f(x) = \frac{g(x)}{\rho(x)}$ where $\rho(x)$ is a probability density function (PDF) and g(x) is the function of interest to be estimated. Then,

$$\mu = \int_{R^d} f(x)\rho(x)dx = E(Y)$$

where Y = f(X)

2.2.1 Example - Normal Probability

$$\mu = \int_0^1 \frac{1}{\sqrt{2\pi}} exp(\frac{-x^2}{2}) dx = \Phi(1) - \Phi(0)$$

$$RMSE(\hat{\mu}) = \sqrt{Var(\hat{\mu}) + [bias(\hat{\mu})]^2}$$

Summary

Estimator($\hat{\mu}$)	$\operatorname{bias}(\hat{\mu})$	$\operatorname{Var}(\hat{\mu})$	$\mathrm{RMSE}(\hat{\mu})$
$\hat{\mu}_{MC1}$	0	$0.0023345~\mathrm{n}^{\text{-}1}$	$0.048420 \ n^{-\frac{1}{2}}$
$\hat{\mu}_{MC2}$	0	$0.22483~{\rm n}^{\text{-}1}$	$0.47416 \ n^{\frac{-1}{2}}$
$\hat{\mu}_{MC3}$	$O(n^{-1})$	0	$O(n^{-1})$
$\hat{\mu}_{MC4}$	0	$O(n^{-3})$	$O(n^{\frac{-3}{2}})$

1. First Estimator - Simple Monte Carlo Estimator

$$f(x) = \frac{1}{\sqrt{2\pi}} exp(\frac{-x^2}{2})$$
$$X_i \sim U[0, 1]$$
$$Y = f(X)$$

$$\hat{\mu}_{MC1} = E(Y) = \frac{1}{n} \sum f(X_i) = \frac{1}{n} \sum \frac{1}{\sqrt{2\pi}} exp(\frac{-X_i^2}{2})$$

$$MSE_{MC1} = Var(\hat{\mu}_{MC1}) + 0$$

$$= \frac{Var(Y)}{N}$$

$$= n^{1}Var(Y) \propto n^{-1}$$

$$= O(n^{-1})$$
(8)

2. Second Estimator - Standard Normal R.V.

$$f(x) = 1_{[0,1]}(x) = \begin{cases} 1, & x \in [0,1] \\ 0, & else \end{cases}$$

$$\mu = E(Y), Y = f(X), X_i \sim N(0, 1)$$

$$\hat{\mu}_{MC2} = \frac{1}{n} \Sigma Y_i = \frac{1}{n} f(X_i) = \frac{1}{n} 1_{[0,1]}(X_i)$$

In this case, $Y \sim Bernoulli(p)$. Thus E(Y) = p and $\bar{Y} = \hat{p}$

$$Var(Y) = p(1 - p)$$

$$= (\Phi(1) - \Phi(0))(1 - (\Phi(1) - \Phi(0)))$$

$$= 0.2248$$
(9)

$$MSE_{MC2} = Var(\bar{Y}) = n^{-1}Var(Y) = 0.2248n^{-1}$$

3. Third Estimator - Left Rectangle Rule Let $x_i = \frac{i-1}{n}$

$$\hat{\mu}_{Rect} = \frac{1}{n} \sum \frac{1}{\sqrt{2\pi}} exp(\frac{-x_i^2}{2})$$

Deterministic, thus $Var(\hat{\mu}) = 0$. Not a R.V.

$$MSE_{MC3} = (\hat{\mu} - \mu)^2 + 0$$

Let error
$$\epsilon = \left| \int_0^1 \frac{1}{\sqrt{2\pi}} exp(\frac{-x^2}{2}) - \hat{\mu} \right|$$

Let
$$k = max|f(x)|$$
 for $x \in [0,1]$

$$\epsilon \le \frac{k(1-0)}{2n}$$

$$\mu - \hat{\mu} \le \frac{k}{2n} = O(n^{-1})$$

$$MSE_{\hat{\mu}} = O(n^{-2})$$
(10)

4. Fourth Estimator - Stratified Sampling Estimator Simulates a random sample for each stratum.

Let
$$x_i = \frac{(i-1+U_i)}{n}$$
, U_i iid $U[0,1]$

$$\hat{\mu}_{MC4} = \frac{1}{n} \sum \frac{1}{\sqrt{2\pi}} exp(\frac{-x^2}{2})$$

$$MSE = Bias^2 + Var(\hat{\mu}) = 0 + O(n^{-3})$$

- 3 European Call/Put Options (2020/04/16)
- 3.1 Brownian Motion
- 3.2 Options

Call Option: Contract that gives the buyer of the option the right to buy an asset at a specific price at a specific time.

Put Option: Contract that gives the buyer the right to sell an asset at a specific price at a specific time.

European Option: This is a type of option that allows execution time to be at the expiration/maturity date.

Strike Price: The predetermined price that the holder can buy or sell. Premium: Expected value of the return at maturity.

3.2.1 Examples

1. Call Option

Premium: \$4 Strike price: \$50 Expiration: 3 Months

Three month

(a) Stock Market Price = \$100 pay \$4, then can buy for \$50 when its 100

\|----\| 50 100

The buyer executes. The return is 100 - 50 - 4 = \$46 dollars

(b) Stock market price is \$20

\|-----\| 50 20

The buyer does **not** execute. Buyer loses \$4.

2. Put Option

(a) Stock Price is \$100

The buyer does ${f not}$ execute because selling for \$50 is a loss. Loses \$4.

(b) Stock price is \$20

The buyer executes. The return is 50 - 20 - 4 = \$26

3.2.2 European Options

t= time in years S(t)= the price of the asset at time t T= time to expiry (maturity) of the contract K= strike price (the price decided at t=0) r= risk-neutral interest rate

Discounted Euro Call payoff: $max(S(T) - K, 0)e^{-rT}$

Discounted Euro Put payoff: $max(K - S(T), 0)e^{-rT}$

We only need to model S(T) not S(.). The fair call/put option prices are $\mu = E(Y)$, where Y is the discounted call/put payoff.

3.3 Geometric Brownian Motion

A simple model for asset prices

$$S(t) = S(0)exp((r - \sigma^2/2)t + \sigma B(t)), \ t \ge 0$$

 $B_t \sim N(0,t)$: Brownian Motion. This produces wave-like noise that fans wider as t increases.

 σ : volatility. Measure the spread of an asset. Determined by no arbitrary principle. i.e. the return cannot be greater than the interest rate if there is no risk.

3.3.1 Properties

- B(0) = 0 with probability one
- $B(\tau)$ and $B(t) B(\tau)$ independent for $0 \le \tau \le t$
- $B(t) B(\tau) \sim N(0, t \tau) \forall 0 \le \tau \le t$
- $cov(B(t), B(\tau)) = min(t, \tau)$ for $0 < t, \tau$

3.4 Black-Sholes Formula for Option Prices

Fair European Call Price:

$$S(0)\Phi(\frac{\ln(S(0)/K) + (r + \sigma^2/2)T}{\sigma\sqrt{T}}) - Ke^{-rT}\Phi(\frac{\ln(S(0)/K) + (r - \sigma^2/2)T}{\sigma\sqrt{T}})$$

$$Ke^{-rT}\Phi(\frac{\ln(K/S(0)) - (r - \sigma^2/2)T}{\sigma\sqrt{T}}) - S(0)\Phi(\frac{\ln(K/S(0)) - (r + \sigma^2/2)T}{\sigma\sqrt{T}})$$

3.4.1 Assumptions

- 1. The stock underlying call/put options provides no dividends during the call/put lifetime.
- 2. There are no transaction costs for the sale/purchase of stock.
- 3. Risk free interest rate (r) is constant during the option time

Put-call parity: Fair European call price - fair European put price = $S(0) - k \exp(-rT)$

3.5 Monte Carlo Computation of European Put

- 1. Generate $X_1, ..., X_n$ by a normal pseudo-random number generator.
- 2. Compute the sample ending stock prices: $S_i(T) = S(0) \exp((r \sigma^2/2)T + \sigma\sqrt{T}X_i)$
- 3. Compute sample discounted payoffs, $Y_i = max(K S_i(T), 0)e^{-rT}$
- 4. Average the discounted payoffs,

Fair European Put Price

$$\mu = E(Y) \approx \frac{1}{n} \sum_{i=1}^{n} max(K - S_i(T), 0)e^{-rT}$$

Estimated error = $\pm \frac{2.58\hat{\sigma}}{\sqrt{n}}$ where $\hat{\sigma}$ is the sample standard deviation of the discounted payoffs.

4 Linear Congruential Generators (2020/04/23)

4.1 and Inverse Distributions

4.2 Linear Congruential Generators

Random numbers aren't truly random.

"Anyone who considers arithmetic methods of producing random digits is, of course, in a state of sin." - John Neumann

M: A large Integer

a: large primitive root of M $(amod M \neq 0)$

i = 1, ..., M - 1

 m_0 : integer seed

$$m_i = a \ m_{i-1} mod M, \ x_i = \frac{m_i}{M}, \ i = 1, 2, \dots$$

 $x_i \neq x_j \text{ for } j = i + 1, ..., i + M - 2$

M-1: Period

$$m_i = a \ m_{i-1} \ mod \ M$$
$$= m_0 \ a^i \ mod \ M$$
 (11)

a is a primary root of M if $a^i \bmod {\mathcal M} > 0$ for i=1,...,M-1

$$m_{i} = a[m_{o}a^{i-1} \mod M] \mod M$$

$$= a[m_{0}a^{i-1} - (\frac{m_{o}a^{i-1}}{m}) \cdot M] \mod M$$

$$= (m_{o}a^{i} - a[\frac{m_{o}a^{i-1}}{m}] M)$$

$$= m_{o}a^{i} \mod M$$
(12)

4.2.1 Example 1

$$M - 1 = 16$$

a = 5

 $m_n = 5 \ m_{n-1} mod 16$

$$m_0 = 5$$
 $m_1 = 10$
 $m_2 = 3$
...
 $m_5 = 6$
 $m_6 = 15$
...
(13)

 $0 \le \frac{m_i}{16} \le 1$

at m_16 , it starts over again

<u>period length</u>: any linear congruential generator will eventually repeat itself.

reproducability: Using the same seed can produce the same random

4.3 Tests for Pseudo random numbers

A given M may have primary roots, a, but not all may produce good sequences of random numbers.

The numbers should fill the d-dim hypercube.

Spectral Tests

Quantitative measure of how well the points

 $(x_i, x_{i+1}, ..., x_{i+d-1})$ fill $[0, 1]^d$.

This test, l(0, M, d) is the largest possible distance between planes covering the points.

4.3.1 Collision Test

 $Y_1, ..., Y_n$ iid R.V. with the common cumulative prob distr. function F so $x_i = F(Y_i) \sim iidU[0, 1]$

$$Z_i = (X_{(i-1)d+1}, ..., X_{id}), i = 1, ..., k = \frac{n}{d}$$

 $Z_i \sim iid[0,1]^d$

W = # of Bins with more than one point. (collisions)

Break the cube $[0,1]^d$ into 1 non overlapping Bins

Check if the points are uniformly random.

 $\lim_{n \to \infty} W \sim Poisson$

$$\lambda = \frac{k^2}{l}$$

If W is much smaller than λ or much larger than λ , then it is not pseudo random.

4.4 Inverse Distribution

Y with CDF F(Y)

$$0 \le F(Y) \le 1$$

Define a new R.V. X: $X = F(Y) \sim Unif(0,1)$

$$P(X < x) = P(F(Y) < X)$$

$$= P(Y < F^{-1}(x))$$

$$= F(F^{-1}(x))$$

$$= x$$
(14)

5 GBM Explanation (2020/04/30)

Geometric + Random term to model that the price is always increasing. GBM model used to simulate stock prices at a given time.

$$S(t) = S(0)exp((-r - \sigma^2/2)t + \sigma B(t))$$
(15)

Random log Return between t1 and t2

$$R(t_1, t_2) = \ln(\frac{S(t_2)}{S(t_1)}) = (r - \sigma^2/2)(t_2 - t_1) + \sigma[B(t_2) - B(t_1)]$$
 (16)

$$B(t_2) - B(t_1) \sim N(0, t_2 - t_1)$$

Risk Free investment (no volatility or money in the bank) ($\sigma = 0$)

E(S(t)) = S(0)exp(rt)

 $exp(-\sigma^2t/2)$: comes from <u>no arbitrage principle</u>. The mean return is the return on a risk-free investment.

Return is a Gaussian random variable. May be positive or negative

$$ln(\frac{S(t+\Delta)}{S(t)}) = (r - \sigma^2/2)\Delta + \sigma[B(t+\Delta) - B(t)]$$
 (17)

$$B(t + \Delta) - B(t) \sim N(0, \Delta)$$

GBM
$$S(t) = S(0)exp((r - \sigma^2/2)t + \sigma B(t))$$

$$E(S(t)) = E[S(0)exp((r - \sigma^2/2)t + \sigma B(t))]$$

$$= S(0)exp((r - \sigma^2/2)t)E(exp(\sigma B(t)))$$
(18)

The moment generating function for $N(0, \sigma^2)$ is $M_x(t) = exp(\frac{\sigma^2 t^2}{2})$

$$E[exp(\sigma B(t))] = \sigma^2/2 \tag{19}$$

Cancels out the term in E[S(t)]

Fair European Put Price

E[discounted payoff at time T]

$$E[\max(K - S(T, X), 0)e^{-rT}] = \int_{-\infty}^{\infty} \max(K - S(T, X), 0)e^{-rT}dx$$

$$= \int_{-\infty}^{\infty} \max(K - S(T, X), 0)e^{-rT}f(x)dx$$

$$= \int_{-\infty}^{\infty} \max(K - S(0)\exp((r - \sigma^{2}/2)T + \sigma\sqrt{T}X), 0)e^{-rT}f(x)dx$$

$$= \int_{-\infty}^{X_{hi}} K - S(0)\exp((r - \sigma^{2}/2)T + \sigma\sqrt{T}X)e^{-rT}f(x)dx + \int_{X_{hi}}^{\infty} 0$$

$$= \int_{-\infty}^{X_{hi}} Ke^{-rT}f(x)dx - \int_{-\infty}^{X_{hi}} S(0)\exp((r - \sigma^{2}/2)T + \sigma\sqrt{T}X - rT)f(x)dx$$

$$= kexp(-rT)\Phi(X_{hi}) - S(0) \int_{-\infty}^{X_{hi}} \exp(r - \sigma^{2}/2)T + \sigma\sqrt{T}X - \frac{1}{\sqrt{2\pi}}\exp(-x^{2}/2)$$

$$= ke^{-rT}\Phi(X_{hi}) - S(0) \int_{-\infty}^{X_{hi}} \frac{1}{\sqrt{2\pi}}\exp(-\sigma^{2}T/2 + \sigma\sqrt{T}X - X^{2}/2)$$

$$= ke^{-rT}\Phi(X_{hi}) - S(0)\Phi(X_{hi} - \sigma\sqrt{T})$$
(20)

Need to find out when this becomes 0. $K - S(0)exp((r - \sigma^2/2)T +$ $\sigma\sqrt{T}X) \le 0$ $X_{\text{hi }}X \ge \frac{\ln(k/S(0)) - (r - \sigma^2/2)T}{\sigma\sqrt{T}}$

$$X_{hi} X \ge \frac{\ln(k/S(0)) - (r - \sigma^2/2)T}{\sigma\sqrt{T}}$$

6 Random Number Generation pt 2 (2020/05/07)

6.1 Acceptance-Rejection Method

 $Y_i, \ W_i \sim iidR.V$ $Y_i \sim \text{common PDF}, \ f_Y$ $W_i \sim U[0,1]$ Let $c \leq 1$ s.t. $\frac{cf_Z(z)}{f_Y(z)}$ f_Z : PDF of the Random variable we want to generate.
We want C to be as close to 1 as possible. It is generally found by calculation $\frac{1}{c} = \sup_Z \frac{f_Z(z)}{f_Y(z)} == \frac{f_Y(y)}{c} = \sup_Z f_Z(y)$ 1/c is the largest value of the ratio between $f_Z(y)$, $f_Y(y)$ $\sup = \sup_Z f_Z(y)$ $\sup_X f_Z(y) = \sup_X f_Z(y)$ $\sup_X f_Z(y) = \sup_X f_Z(y)$ $\sup_X f_Z(y) = \sup_X f_Z(y)$ $\lim_X f_Z(y) = \sup_X f_Z$

What we know

We can simulate random samples $V_1 = V_1$ from $f_{X_1}(u)$ since $f_{X_2}(u)$ is

We can simulate random samples $Y_1, ..., Y_n$ from $f_Y(y)$ since $f_Y(y)$ is known and has the same support as Z. The support being the domain of a R.V where the pdf is non-zero. For example, values using the Beta distr. PDF is between 0 and 1, so is U[0,1]

We can simulate random samples from a Uniform Distribution:

$$W_1, ..., W_n \sim U[0, 1]$$

6.1.1 Proof

How do we know whether the accepted samples are sufficient for a random sample?

Figure 1: Acceptance-Rejection method using two distributions

$$\lim_{\Delta \to 0} \frac{P(Y \in [y,y+\Delta]| \text{ Y accepted to be Z})}{\Delta} = f_Z(y)$$

$$\lim_{\Delta \to 0} \frac{P(Y \in [y,y+\Delta] \cap \text{ Y accepted to be Z})}{\Delta \cdot P(\text{Y accepted to be Z})}$$

$$\lim_{\Delta \to 0} \frac{f_Y(y) \times P(W \le c f_Z(y)/f_Y(y))}{\Delta \cdot c}$$
 Using definition for P(Y is Z)

$$\lim_{\Delta \to 0} \frac{f_Y(y) \times cf_Z(y)/f_Y(y)}{c} = f_Z(y)$$
(21)

$$P(Y \text{ accepted to be Z}) = \lim_{n \to \infty} \sum_{i=1}^{n} P(w \le \frac{cf_Z(y_i)}{f_Y(y_i)}) f_Y(y_i) \cdot \Delta$$

$$= \lim_{n \to \infty} \sum_{i=1}^{n} P(\text{accept } y_i | y_i) \cdot P(y_i)$$

$$= \int_{\Omega} \frac{cf_Z(y_i)}{f_Y(y_i)} \cdot f_Y(y_i) dy$$

$$= c \int_{\Omega} f_Z(y) dy$$

$$= c \cdot 1 = c$$

$$(22)$$

 Ω : Support of Y and Z

- You must know the PDF function f_Y , f_Z explicitly
- Generating $Y_1, Y_2,...$ with PDF f_Y may be done using the inverse transformation method.

6.1.2 Application

Generate a Sequence of 1000 random numbers.

$$f_Z(z) = 20z(1-z)^3, \ 0 < z < 1, \ z \sim Beta(\alpha = 2, \beta = 4)$$

 $f_Y \sim U[0, 1]$

- 1. The candidate distribution $f_Y(y) = 1, \ 0 < y < 1$
- 2. What is the value of C?

$$\frac{1}{c} = \sup \frac{f_Z(y)}{f_Y(y)}$$

 $Q = \frac{f_Z(y)}{f_Y(y)} = \frac{20z(1-z)^3}{1}$. Need to find max of Q

$$\frac{dQ}{dz} = 20z(1-z)^3 - 60z(1-z)^2 \tag{23a}$$

$$= (1-z)^2 (20(1-z) - 60z)$$
 (23b)

$$=(1-z)^2(20-80z)=0$$
 (23c)

$$z = 1, \frac{1}{4} \tag{23d}$$

Since $\frac{1}{4}$ is the smallest,

$$\frac{20(0.25)(1-0.25)^3}{1} = \frac{135}{64} \to \frac{1}{c} \to c = \frac{64}{135}$$

3. How many random samples are required?

Let N be the number of iterations required.

$$E(N) = \frac{1000}{c} = \frac{1000 \cdot 135}{64} = \frac{135000}{64}$$

 $N = 1.1 \cdot E(N) = 2321$ random samples

- 4. How to simulate
 - (a) Sim N random samples from U[0,1] Y
 - (b) Sim N random samples from U[0,1] W
 - (c) Make decision. if $W_i < \frac{cf_Z(y)}{f_Y(y)}$ then reject

6.1.3 Normal Distribution

$$f_Z(z) = \frac{1}{\sqrt{2\pi}} exp(-z^2/2), -\infty \le z \le \infty$$

 $f_Z(z) = \frac{1}{\sqrt{2\pi}} exp(-z^2/2), -\infty \le z \le \infty$ Want to simulate a Normal Z but we need to find a candidate distribution with the same support. No other distributions have the same support as the Normal but many have the support $0 \le y < \infty$.

$$|z| < \infty$$

$$P(|z| \le z) = P(-z \le Z \le z)$$

$$= \Phi(z) - \Phi(-z)$$

$$= \Phi(z) - (1 - \Phi(z))$$

$$= 2\Phi(z) - 1$$
(24)

$$f_{|z|}(z) = \frac{2}{\sqrt{2\pi}} exp(-z^2/2)$$

$$P(z<0) = P(z \ge 0) = 0.5$$

$$P(z<0) = P(z \ge 0) = 0.5$$

We will need to simulate random samples from |z|.

1. What is the candidate distr. for Y?

$$Y \sim exp(1), \quad f_Y(z) = exp(-z), \quad 0 \le z < \infty$$

2. What is the value of c?

$$Q = \frac{1}{c} = \frac{f_Z(z)}{f_Y(z)} = \frac{\frac{2}{\sqrt{2\pi}}exp(-z^2/2)}{exp(-z)} = \frac{2}{\sqrt{2\pi}}exp(-z^2/2 + z)$$

Maximize Q which means maximize $-z^2/2 + z$ (z = 1)

$$\begin{split} Q &= \frac{2}{\sqrt{2\pi}} exp(0.5) = \sqrt{\frac{2e}{\pi}} = \frac{1}{6} \\ c &= \sqrt{\frac{\pi}{2e}} \\ Q &= \frac{1}{c} = \frac{cf_Z(y)}{f_Y(y)} = sqrt\frac{\pi}{2e} \cdot \sqrt{\frac{2}{\pi}} exp(-z^2/2 + z) = exp(-z^2/2 + z - 0.5) \\ c\frac{f_Z(y)}{f_Y(y)} &= exp(-\frac{y^2}{2} + y - 0.5) = exp(-\frac{1}{2}(y - 1)^2) \end{split}$$

3. How many random samples?

$$E(N) = \frac{1000}{c} \approx 1316$$

$$N = 1.1 \cdot 1316 = 1448 \text{ random samples}$$

- 4. Simulate
 - (a) Simulate R.S U[0, 1] W
 - (b) Simulate \$.S from $Y \sim exp(1)$ Inverse transformation method yields $Y_i = -log(x_i)$

$$F_Y(y) = 1 - e^{-1}$$

$$F_Y^{-1}(x) = -\log(x_i)OR - \log(1 - x_i)$$
(25)

- (c) If $W_i \le exp(-0.5(y-1)^2)$, accept.
- (d) Simulate R.S $V_i \sim U[0, 1]$ $Z_k = sign(V_i - 0.5)Y_i$

6.2 Brownian Motion Time Differencing

Sometimes instead of a scalar, we want to generate random functions, B.

6.2.1 Properties

- B(0) = 0
- $B(\tau)$ and $B(t) B(\tau)$ are indep for all $0 \le \tau \le t$
- $B(t) B(\tau) \sim N(0, t \tau)$
- B(t) and $B(\tau)$ are <u>not</u> independent. $cov(t,\tau) = min(t,\tau) = \tau$
- May be generated at discrete times, $0 = t_0 < t_1 < ... < t_{\alpha} = T$ $B(0) = 0, B(t_k) = B(t_{k-1}) + X_k \sqrt{t_k t_{k-1}}, k = 1, ..., d$ $X_1, ..., X_d \text{ are iid.}$

6.2.2 Linear Interpolation

Figure 2: Linear Interpolation

6.2.3 Generating Brownian Sample Paths

d: number of time nodes

$$0,\frac{T}{d},\frac{2T}{d},...,\frac{(d-1)T}{d},\frac{dT}{d}=T$$

to generate sample paths of brownian motion.

- 1. Generate d standard normal random numbers $X_1, ..., X_d$
- 2. Brownian motion at time $\frac{kT}{d}$, k = 1, 2, ..., d

 $_{\it Relationship}$ between Brownian Motion and Geometric Brownian Motion

They are the same thing.

Brownian Motion

$$S(T) = S(0)exp(rT - T\frac{\sigma^2}{2} + \sigma B(T))$$

Geometric Brownian Motion

$$S(T) = S(0)exp(T(r - \frac{\sigma^2}{2}) + \sigma B(T))$$

7 Types of Options (2020/05/14)

7.1 Vanilla European Call/Put Option

Asset path not important for European options

Review

$$S(t) = S(0)exp(r - \sigma^2/2)t + \sigma B(t) = S(0)exp(r - \sigma^2/2)t + \sigma \sqrt{t}X$$

$$\sqrt{T}X \approx B(t)$$
 where $X \sim N(0, 1)$
$$E(S(t)) = S(0)exp(rt)$$

$$S(\frac{t}{d}) = S(0)exp(r - \sigma^2/2)\frac{t}{d} + \sigma\sqrt{\frac{t}{d}}X_1$$

$$S(\frac{2t}{d}) = S(0)exp(r - \sigma^2/2)\frac{2t}{d} + \sigma\sqrt{\frac{t}{d}}(X_1 + X_2)$$

$$S(\frac{3t}{d}) = S(0)exp(r - \sigma^2/2)\frac{3t}{d} + \sigma\sqrt{\frac{t}{d}}(X_1 + X_2 + X_3)$$

$$(26)$$

 $S(t) = S(0)exp(r - \sigma^2/2)t + \sigma B(t) = S(0)exp(r - \sigma^2/2)t + \sigma \sqrt{t}X$

More generically,

$$S(\frac{kt}{d}) = S(0)exp(r - \sigma^2/2)\frac{kt}{d} + \sigma\sqrt{\frac{t}{d}}\sum_{i=1}^{k} X_i$$

where $\sum_{i}^{k} X_{i} \sim N(0, \frac{kt}{d})$

d: Number of increments. It can be years, days, hours, etc. In previous discussions, d was years. In this case, it is days.

Simulation Steps

- 1. Simulate independent Std. Norm R.V.s $n \times d$
- 2. Generate Brownian Motion Path for each sample $\sqrt{\frac{t}{d}} \cdot cumsum(x)$
- 3. Generate Geometric Brownian Motion using formula above (asset price path) payoff = max(K-S(t), 0) discounted payoff = max(K-S(t), 0)exp(-rt)

7.2 Asian Call/Put Options

Uses the average price of the asset from purchase to maturity instead of the asset price at maturity.

European Option = Arithmetic or Geometric Asian Option where d = 1.

$$\bar{S}_{aeo} \leq \bar{S}_{ari}$$

7.2.1 Arithmetic Mean

call payoff =
$$\max(\frac{1}{d}\sum_{j=1}^{d}S(\frac{jT}{d})-K,0)$$

put payoff = $\max(K-\frac{1}{d}\sum_{j=1}^{d}S(\frac{jT}{d}),0)$
European options will be a higher payout because of higher volatility.

7.2.2Geometric Mean

$$\sqrt{ab}$$

$$\bar{S}_{geo} = [\Pi_1^d S(\frac{jT}{d})]^{1/d}$$

$$S(\frac{T}{d}) = S(0)exp((r - \sigma^2/2)\frac{T}{d} + \sigma\sqrt{\frac{T}{d}}X_1)$$

$$S(\frac{2T}{d}) = S(0)exp((r - \sigma^2/2)\frac{2T}{d} + \sigma\sqrt{\frac{T}{d}}(X_1 + X_2))$$
...
$$S(T) = S(0)exp((r - \sigma^2/2)T + \sigma\sqrt{\frac{T}{d}}\sum_{i=1}^{d}X_i)$$
(27)

$$[\Pi_1^d S(\frac{jT}{d})]^{1/d} = [S(0)exp(d(r-\sigma^2/2)\frac{(1+2+\ldots+d)T}{d} + \sigma\sqrt{\frac{T}{d}}[X_1 + (d-1)X_2 + (d-2)X_3 + \ldots + X_d]$$

$$= S(0)[exp((r-\sigma^2/2)\frac{d(d+1)}{d} \cdot \frac{T}{d} + \sigma\sqrt{\frac{T}{d}}W)]$$
(28)

$$\begin{split} W &= dX_1 + (d-1)X_2 + \ldots + x_0 d \sim N(0, \frac{d(d+1)(d+2)}{6}) \\ V(W) &= d^2 + (d-1)^2 + \ldots + 1^2 = \frac{d(d+1)(d+2)}{6} \\ \text{We replace W with } \sqrt{\frac{d(d+1)(d+2)}{6}} X \\ T &= (\frac{d+1}{2d})T = (\frac{1}{2} + \frac{1}{d})T \leq T \\ \bar{\sigma}^2 &= \frac{\sigma^2(2 + \frac{1}{d})}{3} = (\frac{2}{3} + \frac{1}{3d})\sigma^2 \leq \sigma^2 \\ r &= r + (\bar{\sigma}^2 - \sigma^2)/2 \leq r \end{split}$$

7.3 Barrier Options

There may be a barrier price, b, which one must cross to trigger the option (one way or another).

7.3.1 Knock-in Barrier Option

Knock-out is the opposite of Knock-in. I.e. option no longer valid if the barrier is crossed.

- 1. Up-and-in If barrier is met during the time to maturity, the option is activated.
- 2. Down-and-out

Figure 3: Barrier Options: Up and In

7.4 Lookback Options

Minimum or maximum value of the asset price before expiry acts as a strike price.

Call Payoff

$$S(T) - \min_{j=1,\dots,d} S(jT/d)$$
 or $S(T) - \min_{0 < t \le T} S(t)$

Put Payoff

$$\max_{j=1,\dots,d} S(jT/d) - S(T) \text{ or } \max_{0 < t \leq T} S(t) - S(T)$$

8 Control-Variate Method for Efficiency (2020/05/21)

Suppose we want to estimate estimate $\mu = E(Y)$. Possible estimators

ullet \bar{Y}

Figure 4: Barrier Options: Down and Out

- *Y*₁
- $Y_1 + \frac{Y_2 + Y_3}{2}$

 $\hat{\mu}$ is a point estimator of μ .

How do we evaluate a point estimator? MSE

$$MSE = E((\hat{\mu} - \mu)^2)$$

= $Var(\hat{\mu}) + Bias^2(\hat{\mu})$ (29)

Let Y be a R.V. whose μ you want to estimate. Let X be a R.V. whose μ_x you already know.

Example

A student takes two tests. We would like to estimate the score of the second test. We know the distribution and score of the first test. The second test is *correlated* with the score of the first. For example, if they do well on the first exam, it is likely that they will do well on the second exam.

$$X \sim N(85, 5^2), \ W \sim N(0, 3^2)$$

 $Y = X + W$

X in this case is the **variate**. The **Control Variate** means Control X. Let (X_i, Y_i) , i = 1, ..., n be iid draws of (X, Y) which are not independent of each other.

$$\hat{Y} = \bar{Y} + \beta(\mu_X - \bar{X})E(\hat{Y}) = \mu$$

Without X, \bar{Y} is an unbiased estimator for μ . $V(\bar{Y}) = \frac{\sigma^2}{n}$

$$V(\bar{Y}) = \frac{\sigma^2}{n}$$

$$V(\hat{Y}) = V(\bar{Y}) + \beta(\mu_X - \bar{X})$$

We would like to choose β such that $Var(\hat{Y})$ is minimized.

$$\hat{Y} = \frac{Y_1 + \dots + Y_n}{n} + \frac{\beta(\mu_X - (x_1 + \dots + x_n))}{n}$$

$$= \frac{1}{n} \sum_{i=1}^{n} Y_i + \beta(\mu_X - X_i)$$
(30)

Adjust $\mu_X - X_i$ to be closer to the mean. This reduces variance of the point estimator.

$$V(\hat{Y}) = V(\bar{Y} + \beta(\mu_X - \bar{X}))$$

$$= V(\bar{Y}) + V(\beta(\mu_X + \bar{X})) + 2cov(\hat{Y}, \beta(\mu_X - \bar{X}))$$

$$= \frac{\sigma^2}{n} + \beta^2 \frac{\sigma_X^2}{n} - 2\beta cov(\bar{Y}, \bar{X} - \mu_X)$$
(31)

$$cov(\bar{Y}, \bar{X}) = cov(\frac{Y_1 + \dots + Y_n}{n}, \frac{X_1 + \dots + X_n}{n})$$

$$= \frac{n}{n^2} cov(X, Y)$$

$$= \frac{cov(X, Y)}{n} = \frac{corr(X, Y)\sigma_x \sigma_y}{n}$$
(32)

$$\frac{\partial V(\hat{Y})}{\partial \beta} = \frac{2\beta\sigma_X^2}{n} - \frac{2corr(X,Y)\sigma_x\sigma_Y}{n} = 0$$

$$\beta = \frac{corr(X,Y)\sigma_X\sigma_Y}{\sigma_X} = \frac{cov(X,Y)}{\sigma_X^2} = \frac{\sigma_{xy}^2}{\sigma_x^2}$$

$$\begin{split} V(\hat{Y}) = & \frac{\sigma_Y^2}{n} + (\frac{\sigma_{xy}^2}{\sigma_X})^2 \frac{\sigma_X^2}{n} - \frac{2\sigma_{xy}^2}{\sigma_X^2} - \frac{\sigma_{xy}^2}{n} \\ = & \frac{\sigma_Y^2}{n} + \frac{\sigma_{xy}^4}{\sigma_X}^4 \cdot \frac{\sigma_X^2}{n} - \frac{2\sigma_{xy}^4}{n\sigma_X^2} \\ = & \frac{\sigma_Y^2}{n} + \frac{\sigma_{xy}^4}{n\sigma_X^2} \\ = & \frac{\sigma_Y^2}{n} [1 - \frac{\sigma_{xy}^4}{\sigma_Y^2 \sigma_Y^2}] = \frac{\sigma_Y^2}{n} [1 - corr(X, Y)] \end{split} \tag{33}$$

The larger the correlation, the **better**.

$$V(\bar{Y}) = \frac{\sigma_Y^2}{n}$$

$$RMSE(\hat{Y}) = \sqrt{Var(\hat{Y})} = \frac{\sigma_Y}{\sqrt{n}} [1 - corr^2(X, Y)]^{1/2}$$

Choosing the Control Variate, X, to mark $\operatorname{Corr}(X,\,Y)$ as close to ± 1 as possible.

$$\hat{Y} = \bar{Y} + \hat{\beta}(\mu_X - \bar{X}) = \bar{Y} + \frac{(\mu_X - \bar{X})\sum_{1}^{n}(X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{1}^{n}(X_i\bar{X})^2}$$

$$= \sum_{1}^{n} W_i Y_i \text{ where } w_i = \frac{1}{n} + \frac{(\mu_X - \bar{X})(X_i - \bar{X})}{\sum_{1}^{n}(X_i - \bar{X})^2}$$
(34)

If $X_i < \bar{X}$ and $\mu_X > \bar{X}$, then opposite side of \bar{X} has a negative weight. Otherwise, its positive.

Remarks

- X,Y must be highly correlated
- All pairs of X,Y must be independent
- Reduces MSE but doesn't necessarily lead to a more accurate estimator.