4. Статистическое моделирование систем на ЭВМ

4.2 Моделирование случайных воздействий

Исходный материал – СВ, имеющая равномерное распределение на (0, 1).

Основные пути преобразования.

- 1) *Прямой* реализация некоторой операции над x_i , формирующей число y_i , имеющее (точно или приближенно) заданный закон распределения.
- 2) Отсеивание чисел из первоначальной случайной последовательности.
- 3) Моделирование условий соответствующей предельной теоремы теории вероятностей.

Идея построения требуемого преобразования вытекает из следующей теоремы (курс теории вероятностей).

Теорема.

Если СВ η имеет плотность распределения вероятности f(y), то распределение СВ

$$\xi = \int_{0}^{\eta} f(y) dy$$

является равномерным на (0, 1).

• Правило построения возможных значений непрерывной СВ.

Чтобы получить одно из возможных значений \mathbf{y}_i СВ $\boldsymbol{\eta}$, имеющей плотность распределения $\mathbf{f}(\mathbf{y})$, нужно разрешить относительно \mathbf{y}_i уравнение

$$\int_{-\infty}^{y_i} f(y)dy = x_i, \qquad (4.1)$$

где x_i — одно из возможных значений равномерно распределенной CB.

<u>Замечание</u>: (4.1) равносильно $F_{\eta}(y_i) = x_i$.

Это правило называется также **методом обратной** $\phi y + \kappa u u u$ (используется преобразование $\eta = F_{\eta}^{-1}(\xi)$).

В ряде случаев это правило может быть использовано непосредственно.

Пример.

Пусть требуется получить случайные числа **у**_i с показательным законом распределения

$$f(y) = \lambda e^{-\lambda y}$$
 при $y > 0$.

В силу (4.1)

$$\lambda \int_{0}^{y_{i}} e^{-\lambda y} dy = x_{i},$$

где \mathbf{x}_i — случайное число, имеющее равномерное на (0, 1) распределение.

После вычисления интеграла

$$1 - \mathbf{e}^{-\lambda y_i} = \mathbf{x}_i,$$

откуда

$$y_i = -\frac{1}{\lambda} \ln(1-x_i).$$

Окончательно:

$$y_i = -\frac{1}{\lambda} \ln x_i.$$

CB $\xi_1 = 1 - \xi$ также имеет равномерное на (0, 1) распределение

Недостатки рассмотренного метода:

- в большинстве практически важных случаев уравнение (4.1) не решается точно относительно у;
 (пример нормальное распределение);
- □ даже в случаях, когда (4.1) разрешено, требуется достаточно много машинных операций для определения **у**_i (вычисление логарифмов, извлечение корней и т. п.).

• Формирование возможных значений дискретной СВ.

Пусть **η** – дискретная СВ, имеющая конечное (счетное) число возможных значений

$$y_1, y_2, \dots, y_s$$
 $(y_1, y_2, \dots, y_s, \dots),$
 $y_1 < y_2 < \dots < y_s$ $(y_1 < y_2 < \dots < y_s < \dots),$

вероятности которых равны $p_1, p_2, ..., p_s \ (p_1, ..., p_s, ...),$

$$\sum_{k=1}^{s} p_k = 1 \left(\sum_{k=1}^{\infty} p_k = 1\right).$$

$$x_i = F_{\eta}(y_i) = \sum_{k=1}^m p_k.$$

Обозначим

$$l_r = \sum_{k=1}^r p_k$$
, $r = 1, 2, ...$

Правило построения последовательности случайных чисел **у**_i:

- 1) выбрать число **x**_i из исходной квазиравномерной совокупности;
- 2) проверять справедливость неравенств

$$l_{r-1} < x_i \le l_r$$
, (4.2)
 $r = 1, 2, ..., l_0 = 0$;

3) если неравенство (4.2) выполнено при некотором r, то $y_i = y_r$.

Пример.

Пусть требуется получить случайные числа **у**_i с распределением Пуассона

$$P(\eta = n) = \frac{a^n}{n!}e^{-a}, \quad n = 0, 1, 2, ...$$

Выберем очередное x_i — случайное число, имеющее равномерное распределение на (0, 1).

Проверим справедливость

$$\sum_{k=0}^{n-1} p_k < x_i \le \sum_{k=0}^{n} p_k ,$$

ИЛИ

$$e^{-a}\sum_{k=0}^{n-1}\frac{a^k}{k!}< x_i \le e^{-a}\sum_{k=0}^n\frac{a^k}{k!}$$
 , $n=0,1,2,\ldots$.

Если неравенство верно, то $y_i = n$.

Полученная таким образом СВ имеет распределение, близкое к распределению Пуассона.

Метод просеивания фон Неймана

Основная идея:

из равномерно распределенной последовательности случайных чисел отбирается подпоследовательность, имеющая заданный закон распределения.

Пусть требуется получить последовательность случайных чисел \boldsymbol{y}_i с функцией плотности $\boldsymbol{f}_{\eta}(\boldsymbol{y})$.

Будем считать, что область определения $f_{\eta}(y)$ ограничена интервалом ($\boldsymbol{a},\;\boldsymbol{b}$);

m – максимальное значение $f_n(y)$.

Пусть

- последовательность *u_i* имеет равномерное распределение на интервале (*a*, *b*),
- последовательность v_i имеет равномерное распределение на интервале (0, m).

Если это неравенство выполнено, то случайное число $\boldsymbol{u_i}$ должно быть отброшено.

Последовательность случайных чисел u_i , которые не были отвергнуты, имеет плотность распределения $f_n(y)$.

Геометрическая иллюстрация.

После просеивания останутся только точки, находящиеся под кривой $\mathbf{v} = \mathbf{f}_n(\mathbf{y})$.

Для таких точек

$$P(U < u_i) = \int_a^{u_i} f(u)du.$$

Геометрическая вероятность попадания в область под кривой левее $U = u_i$

Процедура получения последовательности \mathbf{y}_i , имеющей плотность $\mathbf{f}_n(\mathbf{y})$:

- выбрать пару чисел (x_{2i-1}, x_{2i}) из исходной квазиравномерной совокупности,
- 2) для этих чисел проверить справедливость выполнения неравенства

$$x_{2i} \le \frac{1}{m} f_{\eta} (a + (b - a)x_{2i-1}),$$
 (*) $v_i \le f_{\eta}(u_i),$ $u_i = a + (b - a)x_{2i-1},$ $v_i = m \cdot x_{2i}$

3) если это неравенство выполнено, то очередное число \mathbf{y}_i положить равным

$$y_i = a + (b - a)x_{2i-1}$$
.

Замечания.

- 1. Эффективность данного метода (вероятность принятия числа $u_i = a + (b a)x_{2i-1}$) может быть повышена, если для формирования СВ v_i использовать не равномерный на (0, m) закон распределения, а плотность распределения, близкую к $f_{\eta}(y)$, но имеющую достаточно простой вид (чтобы можно было использовать метод обратных функций).
- 2. В случае использования квазиравномерного распределения (вместо равномерного) появляется систематическая погрешность, вызванная дискретностью исходной совокупности. Ошибка вероятности неравенства (*) всегда отрицательна и ограничена величиной $m\cdot 2^{-k}$.

Моделирование условий предельных теорем теории вероятностей

Такие методы ориентированы на получение последовательностей чисел с конкретным законом распределения (не являются универсальными).

• Моделирование нормально распределенных случайных чисел.

Пусть требуется получить последовательность случайных чисел $\boldsymbol{x_i}$, имеющих нормальное распределение с математическим ожиданием \boldsymbol{m} и средним квадратическим отклонением $\boldsymbol{\sigma}$:

$$f_{\xi}(x) = \frac{1}{\sqrt{2\pi}\sigma} \cdot e^{-\frac{(x-m)^2}{2\sigma^2}}.$$

На основании ЦПТ случайные числа x_i можно построить в виде сумм последовательностей равномерно распределенных на (0, 1) случайных чисел.

ЦПТ для одинаково распределенных СВ:

если независимые СВ $\xi_1, \, \xi_2, \, \dots$ имеют одно и то же распределение с одним и тем же мат. ожиданием m_1 и средним квадратическим отклонением σ_1 , то СВ

$$\xi = \xi_1 + \xi_2 + \dots + \xi_n$$

имеет асимптотически нормальное распределение с параметрами $m=n\cdot m_1$ и $\sigma=\sigma_1\sqrt{n}$.

Расчеты показывают:

сумма **ξ** имеет распределение, близкое к нормальному, даже при сравнительно небольших **n** (практически достаточно **n** = 8 ÷ 12).

Для СВ ξ_i , имеющих равномерное распределение $m_1 = 0.5; \quad \sigma_1 = \frac{1}{2\sqrt{3}}$ на (0, 1),

сумма *п* слагаемых будет иметь мат. ожидание и с.к.о.

$$m_n = \frac{n}{2}; \quad \sigma_n = \frac{1}{2}\sqrt{\frac{n}{3}}.$$

Для квазиравномерного распределения

$$m_1^* = 0.5; \quad \sigma_1^* = \frac{1}{2\sqrt{3}} \sqrt{\frac{2^k+1}{2^k-1}},$$

И

$$m_n^* = \frac{n}{2}; \quad \sigma_n = \frac{1}{2}\sqrt{\frac{n}{3}}\cdot\sqrt{\frac{2^k+1}{2^k-1}}.$$

Способы приближения закона распределения СВ $\xi = \xi_1 + \xi_2 + ... + \xi_n$ к нормальному:

- увеличение *n*;
- использование специальных преобразований.

$$\eta = \frac{1}{\sqrt{n}} \sum_{i=1}^n \xi_i ,$$

где $\boldsymbol{\xi_i}$ равномерно распределены на $(-\boldsymbol{h},\ \boldsymbol{h}),$

TO CB
$$\xi = \eta - \frac{1}{20n} \left(3\eta - \eta^3 \right)$$

имеет распределение, достаточно близкое к нормальному, уже при n = 5.

• Моделирование случайных чисел, распределенных по закону Пуассона.

Пусть требуется получить последовательность случайных чисел \mathbf{y}_i , имеющих распределение Пуассона с математическим ожиданием a:

$$P(\xi=k)=\frac{a^k}{k!}\cdot e^{-a}.$$

Можно использовать предельную теорему Пуассона.

Теорема Пуассона:

если p — вероятность наступления события A при одном испытании, то вероятность наступления k событий в n независимых испытаниях

при
$$n \to \infty$$
, $p \to 0$ и $np = a$ асимптотически равна
$$P(k) = \frac{a^k}{k!} \cdot e^{-a} \; .$$

Процедура получения последовательности у;

1) выбрать достаточно большое *п*, чтобы

$$p_n = \frac{a}{n} < 1,$$
 Для п p_n до более

Для практических целей p_n должно быть не более 0,1–0,2

- 2) из совокупности равномерно распределенных на (0, 1) случайных чисел \mathbf{x}_i выбирать серии по \mathbf{n} значений;
- 3) в серии с номером i подсчитывать число y_i случаев выполнения неравенства $x_i < p_n$.

Количество наступлений события *А* в *п* независимых испытаниях

Числа y_i имеют распределение, близкое к распределению Пуассона (тем точнее, чем больше n).

Пусть

- имеются случайные числа x_i возможные значения случайной величины ξ, равномерно распределенной в интервале (0, 1).
- необходимо реализовать случайное событие **A**, наступающее с заданной вероятностью **p**.

Определим \boldsymbol{A} как событие, состоящее в том, что выбранное значение $\boldsymbol{x_i}$ случайной величины $\boldsymbol{\xi}$ удовлетворяет неравенству

$$x_i \leq p$$
.

Обоснование:
$$P(A) = \int\limits_0^p f(x) dx = \int\limits_0^p dx = p \ .$$
 Плотность распределения СВ ξ

Противоположное событие $ar{m{A}}$ состоит в том, что

$$X_i > p$$

его вероятность равна 1-p.

Процедура моделирования испытаний:

- 1) выбор значений x_i и сравнение их с величиной p;
- 2) если выполняется неравенство $x_i \leq p$, то исходом испытания считается наступление события A; в противном случае исходом испытания считается наступление события \bar{A} .

Обобщение на группу событий.

Пусть A_1, A_2, \dots, A_s — полная группа событий, наступающих с вероятностями p_1, p_2, \dots, p_s .

Определим A_m как событие, состоящее в том, что выбранное значение x_i случайной величины ξ удовлетворяет неравенству

$$l_{m-1} < \mathbf{x}_i \leq l_m ,$$

где

$$l_r = \sum_{i=1}^r p_i.$$

Обоснование:
$$P(A_m) = \int_{l_{m-1}}^{l_m} dx = p_m$$
.

Процедура моделирования испытаний:

- 1) выбор значений $oldsymbol{x_i}$ и сравнение их с величинами $oldsymbol{l_r}$;
- 2) исходом испытания считается наступление события A_m , если выполняется неравенство

$$l_{m-1} < X_i \le l_m .$$

Эта процедура называется определением исхода испытания по жребию с вероятностями p_1, p_2, \dots, p_s .

Эта же процедура – при формировании реализации дискретной СВ η , принимающей возможные значения y_1, y_2, \dots, y_s с вероятностями p_1, p_2, \dots, p_s

Рассмотренные правила моделирования справедливы в предположении, что для испытаний применяются случайные числа x_i , имеющие равномерное распределение в интервале (0, 1).

Можно показать:

при использовании *k*-разрядных псевдослучайных чисел с квазиравномерным распределением ошибка в определении вероятности события не превосходит

величины
$$\frac{1}{2^k-1}$$

В процессе моделирования функционирования систем необходимо бывает осуществить испытания, при которых искомый результат является сложным событием, зависящим от двух или нескольких простых событий.

• Пусть A и B — <u>независимые</u> события, вероятности наступления которых равны p_A и p_B .

Возможные исходы совместных испытаний:

$$AB$$
, $\overline{A}B$, $A\overline{B}$, $\overline{A}\overline{B}$

с вероятностями

$$p_A p_B$$
, $(1-p_A)p_B$, $p_A(1-p_B)$, $(1-p_A)(1-p_B)$.

Для моделирования совместных испытаний могут быть использованы две процедуры.

 Последовательная проверка выполнения неравенств, аналогичных неравенству x_i ≤ p, относительно событий A и B.

Требует использования 2 случайных чисел и 2 сравнений

2. Определение одного из исходов AB, $\overline{A}B$, $A\overline{B}$, $\overline{A}B$ по жребию с соответствующими вероятностями.

Достаточно 1 случайного числа, но сравнений может потребоваться больше

В практическом моделировании выбор процедуры определяется соображениями

- удобства построения алгоритма,
- экономией количества операций и оперативной памяти.

 В среднем первая процеду

В среднем первая процедура более экономна, чем вторая

• Пусть события **А** и **В** не являются независимыми.

Пусть условная вероятность P(B|A) известна.

Описанные выше процедуры могут быть модифицированы следующим образом.

 Аналог процедуры 1 для независимых событий А и В.

Процедура моделирования испытаний:

1) из совокупности x_i выбрать очередное число x_n и сравнить его с величиной p_A ;

Событие А наступило

- 2) если выполняется неравенство $\mathbf{x}_n \leq \mathbf{p}_A$, то
 - 2.1) для очередного числа x_{n+1} проверить условие $x_{n+1} \le P(B|A);$

в зависимости от того, выполнено оно или нет, исходом испытания будет ${m A}{m B}$ или ${m A}{m \overline{B}}$.

Наступило событие Ā

если выполняется $X_n > p_A$, то

2.2) найти условную вероятность $P(B|\bar{A})$:

T. K.
$$p_B = p_A \cdot P(B|A) + P(\bar{A}) \cdot P(B|\bar{A}),$$

TO
$$P(B|\bar{A}) = \frac{p_B - p_A \cdot P(B|A)}{1 - p_A};$$

2.3) для очередного числа x_{n+1} проверить выполнение условия $x_{n+1} \leq P(B|\bar{A})$;

в зависимости от того выполняется оно или нет, исходом испытания будет $\overline{A} B$ или $\overline{A} \overline{B}$.

2. Определение исхода по жребию (аналог процедуры 2 для независимых событий **A** и **B**).

События AB, $A\overline{B}$, $\overline{A}B$ и $\overline{A}\overline{B}$ образуют полную группу и имеют вероятности, соответственно,

$$p_A\cdot P(B|A),\quad p_A\cdot (1-P(B|A)), \ (1-p_A)\cdot P(B|ar{A}),\quad (1-p_A)\cdot (1-P(B|ar{A})),$$
где $Pig(B\,|\,ar{A}ig)=rac{p_B-p_A\cdot Pig(B\,|\,Aig)}{1-p_A}.$

Задание (5 баллов): составить блок-схемы моделирующих алгоритмов для процедур 1 и 2 (для независимых и зависимых событий **A** и **B**).

Простая однородная цепь Маркова определяется матрицей переходов

$$P = egin{pmatrix} p_{11} & p_{12} & \dots & p_{1K} \ p_{21} & p_{22} & \dots & p_{2K} \ \dots & \dots & \dots & \dots \ p_{K1} & p_{K2} & \dots & p_{KK} \end{pmatrix}$$
 рероятность перехода системы из состояния \mathbf{z}_i в состояние \mathbf{z}_j

В данном случае исход испытания — переход системы в одно из состояний $\mathbf{z_1}, \mathbf{z_2}, \dots \mathbf{z_K}$ — наступление одного из событий $\mathbf{A_1}, \mathbf{A_2}, \dots \mathbf{A_K}$.

 p_{ij} — условная вероятность наступления события A_j в данном испытании при условии, что результатом предыдущего испытания было наступление события A_i .

Моделирование такой цепи – последовательный выбор событий $\boldsymbol{A_j}$ по жребию в соответствии с вероятностями $\boldsymbol{p_{ij}}$.

Процедура моделирования испытаний.

1) Выбрать начальное состояние, определяемое начальными вероятностями $p_{01}, p_{02}, \dots p_{0K}$: выбрать случайное число x_n и проверить выполнение неравенств

$$l_{m-1} < \mathbf{x}_n \le l_m$$
, где $l_r = \sum_{i=1}^r p_{0i}$;

если для некоторого номера m_0 выполняется

$$l_{m_0-1} < \mathbf{x}_n \leq l_{m_0} \,,$$

то начальное событие данной реализации цепи — событие $m{A}_{m_0}$.

2) Выбрать следующее случайное число x_{n+1} и выполнить проверку условий

$$l'_{m-1} < \mathbf{x}_{n+1} \le l'_{m}$$
, где $l'_{r} = \sum_{i=1}^{r} p_{m_{0}i}$;

если для некоторого номера m_1 выполняется

$$l_{m_1-1} < X_{n+1} \le l_{m_1}$$
,

то следующее событие данной реализации цепи – событие $m{A}_{m_1}$.

Ит.д.

Каждый номер m_i определяет

- очередное событие A_{m_i} формируемой реализации;
- распределение вероятностей $m{p}_{m_{i\!1}}, \, m{p}_{m_{i\!2}}, \, \dots \, m{p}_{m_{i\!K}}$ для выбора следующего номера $m{m}_{i\!+\!1}$.

Замечание.

Для эргодической цепи Маркова в качестве значений p_{01} , p_{02} , ..., p_{0K} могут быть выбраны произвольные значения, например,

$$p_{01} = p_{02} = \dots = p_{0K} = 1/K$$