enhanced jigsaw, breakable, arc=0mm, boxrule=1pt, boxsep=5pt, after=, colback=white, colframe=black

Middle East Technical University

Department of Computer Engineering

Discrete Computational Structures Take Home Exam 1

Derya TINMAZ 2380947

Question 1 (7 pts)

a) Construct a truth table for the following compound proposition.

$$(q \to \neg p) \leftrightarrow (p \leftrightarrow \neg q)$$

(3.5/7 pts)

p	q	$\neg p$	$\neg q$	$q \to \neg p$	$p \leftrightarrow \neg q$	$(q \to \neg p) \leftrightarrow (p \leftrightarrow \neg q)$
T	Т	F	F	F	F	Т
T	F	F	Т	Т	Τ	Т
F	Т	Т	F	Т	Т	Т
F	F	Т	Т	Т	F	F

b) Show that whether the following conditional statement is a tautology by using a truth table.

$$[(p \vee q) \wedge (r \to p) \wedge (r \to q)] \to r$$

(3.5/7 pts)

Truth Table for $a \to r$ where $a = (p \lor q) \land (r \to p) \land (r \to q)$

p	q	r	$\neg p$	$\neg q$	$\neg r$	$p \lor q$	$r \rightarrow p$	$r \rightarrow q$	$(p \lor q) \land (r \to p)$	a	$a \rightarrow r$
T	Т	T	F	F	F	Т	Т	Τ	T	Т	Т
T	Т	F	F	F	Т	Т	Т	Т	T	Т	F
T	F	Т	F	Т	F	Т	Т	F	T	F	Т
Т	F	F	F	Т	Τ	Т	T	Т	T	Т	F
F	Т	Т	Т	F	F	Т	F	Т	F	F	Т
F	Т	F	Т	F	Т	Т	Т	Т	T	Т	F
F	F	Т	Т	Т	F	F	F	F	F	F	Т
F	F	F	Т	Т	Т	F	Т	Т	F	F	Т

Therefore, the conditional statement is not a tautology.

Question 2 (8 pts)

Show that $(p \to q) \land (p \to r)$ and $(\neg q \lor \neg r) \to \neg p$ are logically equivalent. Use tables 6,7 and 8 given under the section "Propositional Equivalences" in the course textbook and give the reference to the table and the law in each step.

$(p \to q) \land (p \to r)$	$(\neg q \vee \neg r) \to \neg p$
$(\neg p \lor q) \land (\neg p \lor r) \text{ (Table 7)}$	$\neg(\neg q \lor \neg r) \lor \neg p \text{ (Table 7)}$
$\neg p \lor (q \land r)$ (Table 6 - Distributive laws)	$(q \wedge r) \vee \neg p$ (Table 6 - De Morgan's laws)
$(q \wedge r) \vee \neg p$ (Table 6 -Commutative laws)	

$$(q \land r) \lor \neg p \equiv (q \land r) \lor \neg p$$
 Therefore, $(p \to q) \land (p \to r) \equiv (\neg q \lor \neg r) \to \neg p$.

Question 3

(30 pts, 2.5 pts each)

Let F(x, y) mean that x is the father of y; M(x, y) denotes x is the mother of y. Similarly, H(x, y), S(x, y), and B(x, y) say that x is the husband/sister/brother of y, respectively. You may also use constants to denote individuals, like Sam and Alex. You can use $\vee, \wedge, \rightarrow, \neg, \forall, \exists$ rules and quantifiers. However, you are not allowed to use any predicate symbols other than the above to translate the following sentences into predicate logic. \exists ! and exclusive-or (XOR) quantifiers are forbidden:

[label=0)]Everybody has a mother. Everybody has a father and a mother. Whoever has a mother has a father. Sam is a grandfather. All fathers are parents. All husbands are spouses. No uncle is an aunt. All brothers are siblings. Nobody's grandmother is anybody's father. Alex is Ali's brother-in-law. Alex has at least two children. Everybody has at most one mother.

- 1) $\forall y \exists x M(x,y)$
- 2) $\forall y [\exists x M(x,y) \land \exists z F(z,y)]$
- 3) $\forall y [\exists x M(x,y) \rightarrow \exists z F(z,y)]$
- 4) $\exists y [F(Sam, y) \land ((\exists x M(y, x) \lor \exists z F(y, z))]$
- 5) $\forall x [\exists y F(x,y) \rightarrow \exists z (F(x,z) \vee \exists t M(t,z))]$
- 6) $\forall x \exists y [H(x,y) \rightarrow (H(x,y) \lor H(y,x))]$
- 7) $\forall x \exists y \exists z \exists t \exists m [(B(x,y) \land (F(y,z) \lor M(y,z))) \rightarrow \neg (S(x,t) \land (F(t,m) \lor M(t,m)))]$
- 8) $\forall x \forall y \exists t \exists z [B(x,y) \rightarrow ((M(t,x) \land M(t,y)) \lor (F(z,x) \land F(z,y)))]$
- 9) $\forall x \exists y \exists t \exists z \exists m [(M(x,y) \land (M(y,t) \lor F(y,z))) \rightarrow \neg F(x,m)]$
- $10)\exists x[H(Alex,x) \land B(Ali,x)]$
- $11)\exists x\exists y[F(Alex,x) \land F(Alex,y)]$
- $12) \forall z \exists x \exists y [M(x,z) \land \neg M(y,z)]$

Question 4 (25 pts)

Prove the following claim by natural deduction. Use only the natural deduction rules \vee , \wedge , \rightarrow , \neg introduction and elimination. If you attempt to make use of a lemma or equivalence, you need to prove it by natural deduction too.

a)
$$p \to q, r \to s \vdash (p \lor r) \to (q \lor s)$$
 (12.5/25 pts)

	1:	$p \rightarrow q$		Premise
	2:	$r \rightarrow s$		Premise
		3:p	Assumption	
		4:r	Assumption	
1 0 .		5:q	$1{,}3\rightarrow e$	
		6:s	$2,4 \rightarrow e$	
		$7: p \lor r$	$3,4 \ \lor i$	
		$8: q \vee s$	$5,6 \ \lor i$	
	9:	$(p \vee r) \to ($	$q \lor s)$	$38 \rightarrow i$

b)
$$(p \rightarrow (r \rightarrow \neg q)) \rightarrow ((p \land q) \rightarrow \neg r)$$

(12.5/25 pts)

1:	$(p \to (r \to \neg q)) \to ($	$(p \land q) \rightarrow \neg r)$	Assumption
2:	$p \to (r \to \neg q)$	(4 1)	Assumption
3:	$(p \land q) \rightarrow \neg r$		$1{,}2{\rightarrow}~\mathrm{e}$
	4:p	Assumption	
	5:q	Assumption	
	6:r	Assumption	
	$7:p\wedge q$	$4,5 \land i$	
	$8: \neg r$	$3.7 \rightarrow e$	
	9: ⊥	6,8 ¬ e	
	$10: \neg r$	$6,8,9 \neg e$	
	$11: (p \land q) \to \neg r$	$7,10 \rightarrow i$	
12:	$(p \to (r \to \neg q)) \to ($	$(p \land q) \to \neg r)$	$2,\!4\text{-}11 \rightarrow i$

Question 5 (30 pts)

Prove the following claim by natural deduction. Use only the natural deduction rules \vee , \wedge , \rightarrow , \neg introduction and elimination. If you attempt to make use of a lemma or equivalence, you need to prove it by natural deduction too.

a)
$$\forall x P(x) \lor \forall x Q(x) \vdash \forall x (P(x) \lor Q(x))$$
 (12.5/25 pts)

$$\begin{array}{|c|c|c|c|}\hline 1: & \forall x P(x) \vee \forall x Q(x) & \text{Premise} \\ \hline 2: a|P(a) & 1 \forall xe \\ 3: a|Q(a) & 1 \forall xe \\ 4: a|P(a) \vee Q(a) & 2,3 \vee e \\ \hline 5: & \forall x (P(x) \vee Q(x)) & 2-4 \ \forall xi \\ \hline \end{array}$$

b)
$$\forall x P(x) \to S \vdash \exists x (P(x) \to S)$$
 (17.5/25 pts)

$$\begin{array}{|c|c|c|c|}\hline 1: & \forall x P(x) \to S & \text{Premise} \\ & 2: a | P(a) & 1 \ \forall xe \\ & 3: a | P(a) \to S & 1, \to e \\ \hline 4: & \exists x (P(x) \to S) & 2,3 \ \exists xi \\ \hline \end{array}$$