A Simple Framework for Contrastive Learning of Visual Representations

2023.05.26

SimCLR (2020, ICML)

❖ A Simple Framework for Contrastive Learning of Visual Representations

- 2020년에 ICML에 게재되었으며, 2023년 05월 26일 기준 10119회 인용됨
- 많은 실험을 통해 SimCLR의 우수성을 보여주는 것이 본 논문에서의 특이점
- 간단한 프레임워크를 사용해 기존 대조 학습 방법론 대비 우수한 성능을 보임
- 대조 학습을 사용해 유용한 표현을 학습할 수 있는 요인을 이해하기 위해 크게 세 가지 연구 진행
 - 1. 데이터 증강의 구성은 효과적인 예측 작업에 중요한 역할을 하는 것을 확인하는 연구
 - 2. 비선형 변환을 도입하여 학습된 표현의 품질을 크게 향상하는 연구
 - 3. 더 큰 배치 사이즈와 더 많은 훈련 단계에서 지도 학습보다 더 많은 benefit이 있는 것을 확인하는 연구

A Simple Framework for Contrastive Learning of Visual Representations

Ting Chen 1 Simon Kornblith 1 Mohammad Norouzi 1 Geoffrey Hinton 1

Background

- ❖ MoCo(2020,CVPR) vs SimCLR(2020,ICML) 차이점
 - MoCo: memory bank를 사용하고 target network를 업데이트할 때 momentum update (EMA)를 사용
 - SimCLR: memory bank를 사용하지 않고 동일한 encoder를 사용함

o SimCLR

Proposed Method

Overall Architecture

- 동일한 encoder(f), projection network(g)를 사용
- minibatch 내에서 뽑은 데이터(x)에 서로 다른 데이터 증강 기법을 적용한 데이터 $(\tilde{x}_i, \tilde{x}_j)$ 외에 나머지를 negative samples로 간주함

SimCLR

Proposed Method

Overall Architecture – loss function

SimCLR

Proposed Method

- ❖ Experiment 1: color distortion의 strength에 따른 SimCLR와 지도 학습(ResNet-50) 성능 비교
 - 본 실험의 목적은 color augmentation의 중요성을 설명하기 위함
 - 단순 분류 task(linear evaluation)에서 color distortion의 정도 강해짐에 따라 SimCLR의 성능 향상
 - 반면에, 지도 학습은 color distortion이 강해짐에 따라 성능이 개선되지도 떨어지지도 않음
 - 결론: 비지도 대조 학습이 지도 학습보다 Stronger (color) data augmentation을 사용했을 때 더 많은 benefit 이 있음
 - 참고 1) SimCLR의 backbone은 ResNet-50
 - 참고 2) Auto Augment는 지도 학습을 사용해 찾은 정교한 데이터 증강 기법인데, 비지도 대조 학습에서 간단한 cropping + (stronger) color distortion에 비해 성능이 좋지 않음

Methods	1/8	1/4	1/2	1	1 (+Blur)	AutoAug
SimCLR	59.6	61.0	62.6	63.2	64.5	61.1
SimCLR Supervised	77.0	76.7	76.5	75.7	75.4	77.1

- ❖ Experiment 2: backbone 모델이 더 커질 수록 비지도 대조 학습의 성능이 우수해짐
 - 본 실험의 목적은 모델이 커질 수록 비지도 대조 학습에 끼치는 영향을 확인하기 위함
 - 간단한 분류 task에서 모델의 depth와 width가 커질 수록 성능이 향상하고 지도 학습과 거의 유사한 성능을 보임
 - 결론: depth와 width가 커질 수록 성능 향상됨
 - 참고) 초록색 점은 90 epoch동안 학습된 지도 학습 ResNET / 빨간색 선은 1000 epoch 동안 학습된 SimCLR / 파란색 점은 100 epoch 동안 학습된 SimCLR

- ❖ Experiment 3: 데이터 증강 기법의 구성에 따른 성능 확인 (ImageNet top-1 accuracy)
 - 본 실험의 목적은 데이터 증강 기법이 단일로 사용되었을 때, 두 개의 구성으로 이루어졌을 때 성능 확인
 - 대각선이 단일로 데이터 증강 기법을 적용하였을 때 성능
 - 대각선을 제외한 나머지는 두 데이터 증강 기법을 함께 적용했을 때 성능 / 마지막 열은 각 행의 평균
 - 결론: 단일 변환을 사용해서는 좋은 표현을 학습하기에 충분하지 않지만 두 개 데이터 증강 기법을 함께 적용 했을 때 task가 더 어려워졌지만 더 질 좋은 표현을 학습함

- ❖ Experiment 4: 더 큰 batch size와 더 오랜 학습 시간에 따른 성능 확인
 - 결론: batch size가 커질 수록 학습 시간이 길어질 수록 더 좋은 성능을 보임

- ❖ Experiment 5 & 6: ImageNet 데이터 셋을 사용해 다른 방법과 성능 비교
 - "SimCLR is better than others"

다른자기 지도학습 방법과 비교

Method	Architecture	Param (M)	Top 1	Top 5					
Methods using ResNet-50:									
Local Agg.	ResNet-50	24	60.2	-					
MoCo	ResNet-50	24	60.6	-					
PIRL	ResNet-50	24	63.6	-					
CPC v2	ResNet-50	24	63.8	85.3					
SimCLR (ours)	ResNet-50	24	69.3	89.0					
Methods using other architectures:									
Rotation	RevNet-50 $(4\times)$	86	55.4	-					
BigBiGAN	RevNet-50 (4×)	86	61.3	81.9					
AMDIM	Custom-ResNet	626	68.1	-					
CMC	ResNet-50 (2 \times)	188	68.4	88.2					
MoCo	ResNet-50 $(4\times)$	375	68.6	-					
CPC v2	ResNet-161 (*)	305	71.5	90.1					
SimCLR (ours)	ResNet-50 (2 \times)	94	74.2	92.0					
SimCLR (ours)	ResNet-50 (4×)	375	76.5	93.2					

Label의 사용을 조절해 자기 지도학습 및 준지도 학습과 성능 비교

Method	Architecture	Label fraction 1% 10% Top 5							
Supervised baseline	ResNet-50	48.4	80.4						
Methods using other label-propagation:									
Pseudo-label	ResNet-50	51.6	82.4						
VAT+Entropy Min.	ResNet-50	47.0	83.4						
UDA (w. RandAug)	ResNet-50	-	88.5						
FixMatch (w. RandAug)	ResNet-50	-	89.1						
S4L (Rot+VAT+En. M.)	ResNet-50 (4 \times)	-	91.2						
Methods using representation learning only:									
InstDisc	ResNet-50	39.2	77.4						
BigBiGAN	RevNet-50 $(4\times)$	55.2	78.8						
PIRL	ResNet-50	57.2	83.8						
CPC v2	ResNet-161(*)	77.9	91.2						
SimCLR (ours)	ResNet-50	75.5	87.8						
SimCLR (ours)	ResNet-50 (2 \times)	83.0	91.2						
SimCLR (ours)	ResNet-50 (4 \times)	85.8	92.6						

❖ Experiment 7: 여러 데이터 셋을 활용해 SimCLR와 지도 학습 간의 성능 비교

	Food	CIFAR10	CIFAR100	Birdsnap	SUN397	Cars	Aircraft	VOC2007	DTD	Pets	Caltech-101	Flowers
Linear evaluation SimCLR (ours) Supervised		95.3 95.7	80.2 81.2	48.4 56.4	65.9 64.9	60.0 68.8	61.2 63.8	84.2 83.8	78.9 78.7	89.2 92.3	93.9 94.1	95.0 94.2
Fine-tuned: SimCLR (ours) Supervised Random init	89.4 88.7 88.3	98.6 98.3 96.0	89.0 88.7 81.9	78.2 77.8 77.0	68.1 67.0 53.7	92.1 91.4 91.3	87.0 88.0 84.8	86.6 86.5 69.4	77.8 78.8 64.1		94.1 94.2 72.5	97.6 98.0 92.5

