Comparaison de fréquences

I – Test du X²

1 – X² d'ajustement = d'adéquation = de conformité

Objectifs:

- comparer des fréquences observées à des fréquences théoriques

 $\mbox{\rm H}_{\mbox{\scriptsize 0}}$: effectifs observés conformes à distribution théorique

H₁: effectifs observés non conformes à distribution théorique

Sous H₀:

Ci (calculés) et Oi (observés)

Si Ci
$$\geq 5$$
: $X_{C^2} = \sum_{i=1}^{n} \frac{(\text{Oi-Ci})^2}{\text{Ci}}$

α

 χ^2_{table}

v = (n-1) ddl

Comparaison:

- Si $X_c^2 > X_t^2$: au risque α , on rejette H_0 : non-conformité
- Si $X_c^2 < X_t^2$: au risque α , on accepte H_0 : on ne montre pas de différence significative entre la distribution observée et la distribution théorique

Exercice 1:

Mendel \rightarrow croise des fleurs blanches et rouges :

n = 100

22 rouges

Rappel: loi de Mendel 1/4 1/2 1/4

46 roses

32 blanches

Ci ≥ 5 donc:

$$X_c^2 = \frac{(22-25)^2}{25} + \frac{(46-50)^2}{50} + \frac{(32-25)^2}{25} = \frac{9}{25} + \frac{16}{50} + \frac{49}{25} = \frac{132}{50} = 2,64$$

 $\alpha = 5\%$

v = (3-1) = 2ddl

 $X_t^2 = 5,99$

 $X_C^2 < X_t^2$: au risque 5%, on accepte H_0 : on ne montre pas que la distribution observée ne suit pas la loi de Mendel

Exercice 2:

Même problème mais n = 400

	Rouges	Roses	Blanches
Oi	88	184	128
Ci	100	200	100

$$X_c^2 = \frac{(88-100)^2}{100} + \frac{(184-200)^2}{200} + \frac{(128-100)^2}{100} = 10,56$$

 $X_C^2 > X_t^2$: au risque 5%, on rejette H_0 : la distribution observée ne suit pas la loi de Mendel

2 – X² d'homogénéité = d'indépendance

Objectifs:

- à utiliser quand plusieurs variables qualitatives
- homogénéité de 2 traitements ? (=indépendance ?)
- effectifs observés comparés entre eux (pas de comparaison de pourcentages)

Exemple:

2 échantillons A, B

G = guéris

	G	G
Α	n_1	n ₂
В	n_3	n ₄

	G	Amélioration	Stabilité	Aggravation
Α				
В				
С				

Tableau: lignes x colonnes

$$Ci = \frac{TI \times TC}{Tg}$$
 avec TI: total ligne; Tc: total colonne; Tg: total grille

	G		\overline{G}		Total
	Oi	Ci	Oi	Ci	
Α	45	38,33	55	61,67	100
В	70	76,67	130	123,33	200
Total	115 115		185 185		300
	1.	15	10	30	

Sous H₀, Ci = effectif théorique guéri avec le traitement A ou B

$$X_{c}{}^{2} = \sum_{i=1}^{n} \frac{(0i\text{-}Ci)^{2}}{Ci} = \frac{(45-38,33)^{2}}{28,33} + \frac{(55-61,67)^{2}}{61,67} + \frac{(70-76,67)^{2}}{76,67} + \frac{(130-123,33)^{2}}{123,33} = 2,82$$

$$\alpha = 5\%$$

$$v = (I-1)(c-1) = (Iigne-1)(colonne-1) = (2-1)(2-1) = 1 ddl$$

(pour les colonnes, Oi et Ci ne comptent que pour 1 colonne et non 2)

 $X_t^2 = 3,84$

 ${\rm X_C}^2$ < ${\rm X_t}^2$: au risque 5%, on accepte ${\rm H}_0$ donc on ne montre pas de différence significative

Exercice:

3 groupes A, B, C atteints de leucémie aiguë 3 traitements différents 1, 2 et 3 Observation des symptômes

traitement délai	-	1	2		3		
	Oi	Ci	Oi	Ci	Oi	Ci	
< 1 mois	35	38,5	41	37,7	36	25,8	112
1 à 1,9 mois	16	20,3	17	19,9	26	18,8	59
2 à 3,9 mois	18	17,9	17	17,5	17	16,6	52
4 à 7,9 mois	20	14,8	17	14,5	6	13,7	43
≥ 8 mois	9	6,5	4	6,4	6	6,1	19
	9	8	9	6	9	1	285

H₀: pas de différence de délai selon le traitement

H₁: il existe une différence de délai

Ci : efficacité théorique si délai :

$$C_{11} = \frac{112 \times 98}{285} = 38,5$$

$$C_{12} = \frac{112 \times 96}{285} = 37,7$$

Ci doit être plus grand que 5 (pas d'importance par contre pour les Oi) donc on regroupe les données pour que tous les Ci ≥ 5.

Calcul du
$$X_c^2$$
:
 $X_c^2 = \frac{\sum_{i=1}^{i} (Oi - Ci)^2}{Ci} = 13,17$

$$\alpha = 5\%$$

$$v = (I-1)(c-1) = 4x2 = 8 ddI$$

$$X_t^2 = 15,51$$

 $X_c^2 < X_t^2$: au risque 5%, on accepte H_0 , on ne montre pas de différence significative

3 – X² corrigé de Yates (pour tableaux 2l x 2c)

Si Ci < 5:

- regrouper les effectifs observés, si cela ne change rien au problème posé
- corrigé de Yates : X_C² surestimé

$$X^{2}_{\text{corrigé}} = \frac{\sum \left[\left|\text{Oi-Ci}\right| - \frac{1}{2}\right]^{2}}{\text{Ci}}$$

Exemple:

n = 20 souris traitées, 8 tumeurs (40%) en théorie, 20% de tumeurs dans la population \mathcal{G}

		Т	Ŧ	
	Oi	8	12	20
_	Ci	4	16	20

H₀: le traitement ne modifie pas le taux de tumeurs

H₁: le traitement modifie le taux de tumeurs

$$X_{C}^{2} = \frac{(|18-4|-0.5)^{2}}{4} + \frac{([12-16|-0.5)^{2}}{16} = 3.83$$

 $\alpha = 5\%$

v = 1 ddl

 $X_t^2 = 3,84$

 $X_c^2 < X_t^2$: au risque 5%, on accepte H_0 , on ne montre pas de différence significative

II – Test de l'écart-réduit

1 – Comparer fréquence observée et fréquence théorique

 p_0 n population fréquence connue

H₀: pas de différence significative

H₁: il existe une différence significative

Sous H₀:

Si np et nq ≥ 5 (p + q = 1), $U_C = \frac{p_0 - p}{\sqrt{\frac{pq}{n}}}$ suit une loi normale $\mathcal{N}(0; 1)$

 α , U_t

Comparaison:

- Si $|U_C| > U_t$: au risque α , on rejette H_0 , on accepte H_1
- Si $|U_c| < U_t$: au risque α , on accepte H_0 : on ne montre pas de différence significative

2 – Comparer 2 fréquences observées

 $\begin{array}{cc} p_A & n_A \\ p_B & n_B \end{array}$

H₀: pas de différence significative

H₁: il existe une différence significative

Sous H₀:

Si
$$n_A p$$
, $n_A q$, $n_B p$, $n_B q \ge 5$, alors $p = \frac{n_A p_A + n_B p_B}{n_A + n_B}$ (et $q = 1 - p$)

et
$$U_C = \frac{p_A - p_B}{\sqrt{\frac{pq}{n_A} + \frac{pq}{n_B}}}$$
 suit une loi normale $\mathcal{N}(0; 1)$

alfa, U_t Comparer |U_c| et U_t

3 - Exercices

Exercice 1:

Population 50% 3, 50% 2

n = 20 4 \circlearrowleft , 16 \circlearrowleft touchés par la maladie

La maladie est-elle en rapport avec le sexe ?

$$p_0 = \frac{16}{20} = 0.8$$

$$p = 0.5$$

$$np = 10$$

 $nq = 10$ test de l'écart-réduit

H₀: la maladie touche autant de filles que de garçons

H₁: la maladie touche différemment les filles et les garçons

Sous H₀:

$$U_{C} = \frac{p_{0} - p}{\sqrt{\frac{pq}{n}}} = \frac{-0.8 + 0.5}{\sqrt{\frac{0.5 \times 0.5}{20}}} = 2.68$$

$$\alpha = 5\% \rightarrow U_t = 1,96$$

 $|U_c| > U_t$: au risque 5%, on rejette H_0 , la maladie touche plus les \mathcal{D} que les \mathcal{D}

Test du X²:

$$X_C^2 = 2,68^2 = U_C^2$$

	9	8	
Oi	16	4	20
Ci	10	10	20

$$X_C^2 = \frac{(16-10)^2}{10} + \frac{(4-10)^2}{10} = 7,2$$

$$\alpha$$
 = 5% \rightarrow X_t^2 = 3,84

 $X_C^2 > X_t^2$: au risque 5%, on rejette H_0

Exercice 2:

n = 927 enfants malades

 $408 \, \overline{T} \rightarrow 104 \, \text{complications} \rightarrow 304 \, \text{sans complications}$

519 T \rightarrow 166 complications \rightarrow 353 sans complications

Est-ce que le traitement est efficace?

$$n_A = 408$$

$$n_A = 408$$
 $p_A = \frac{104}{408} = 0.255$

$$n_B = 519$$

$$n_B = 519$$
 $p_B = \frac{166}{519} = 0.320$

H₀: la fréquence de complication est la même avec ou sans traitement

H₁: la fréquence de complication est différente avec ou sans traitement

Sous H₀:

$$U_{C} = \frac{p_{A} - p_{B}}{\sqrt{\frac{pq}{n_{A}} + \frac{pq}{n_{B}}}} = -2,16$$

$$\alpha$$
 = 5% \rightarrow U_t = 1,96

 $|U_c| > U_t$: au risque 5%, on rejette H_0 , il existe une différence de fréquence de complication avec ou sans traitement

Autre méthode : test X² (homogénéité)

		С		C	
	Oi	Ci	Oi	Ci	
Т	166	157,16	353	357,83	519
Ŧ	104	118,83	304	289,16	408
	2	70	6	57	927

$$X_{c}^{2} = 4,67$$

$$\alpha$$
 = 5% \rightarrow X_t^2 = 3,84

 $X_c^2 > X_t^2$: au risque 5%, on rejette H_0 , il existe une différence de fréquence de complication avec ou sans traitement

III – Test de Mac-Nemar

Variables qualitatives, résultats sur même sujet avant et après traitement donc pas indépendants.

avant	positif	négatif
positif	n_1	n_2
négatif	n_3	n ₄

N = nombre total de patients = $n_1 + n_2 + n_3 + n_4$

2 fréquences non comparables directement, puisque même personne avant et après traitement.

H₀: pas de différence significative entre les fréquences

H₁: il existe une différence significative entre les fréquences

$$\frac{n_2}{n_2 + n_3}$$
 ou $\frac{n_3}{n_2 + n_3}$

$$U_{c} = \frac{\frac{n_{2}}{n_{2} + n_{3}} - 0.5}{\sqrt{\frac{0.5 \times (1 - 0.5)}{n_{2} + n_{3}}}} = \frac{n_{2} - n_{3}}{\sqrt{n_{2} + n_{3}}}$$

$$\alpha$$
 = 5% \rightarrow U_t = 1,96

Comparaison:

- Si $|U_c| > U_t$: au risque α , on rejette H_0 donc le traitement est efficace
- Si $|U_c| < U_t$: au risque α , on accepte H_0

Test avec X²:

Oi	n ₂	n ₃
Ci	$\frac{n_2 + n_3}{2}$	$\frac{n_2 + n_3}{2}$

$$X_{c^{2}} = \frac{\left(n_{2} - \frac{n_{2} + n_{3}}{2}\right)^{2}}{\frac{n_{2} + n_{3}}{2}} + \frac{\left(n_{3} - \frac{n_{2} + n_{3}}{2}\right)^{2}}{\frac{n_{2} + n_{3}}{2}} = \frac{\left(n_{2} - n_{3}\right)^{2}}{\left(n_{2} + n_{3}\right)}$$

$$X_{t^{2}} \rightarrow \alpha, v = 1 \text{ ddl}$$

$$X_{c^{2}} = 11c^{2}$$

Exemple:

Patients asthmatiques Test d'un aérosol Etude de la gêne respiratoire Effectifs dépendants : pas X²

Pas de gêne avant, pas de gêne après = 30 Pas de gêne avant, gêne après = 12 Gêne avant, pas de gêne après = 40 Gêne avant, gêne après = 18

$$U_{C} = \frac{12-40}{\sqrt{12+40}} = -3,88$$
 ou $U_{t} = 1,96$

avant après	gêne	pas gêne
gêne	18	12
pas gêne	40	30

$$X_C^2 = \frac{(12-40)^2}{12+40} = 15,08$$

 $X_C^2 = 3.84$

 $\left. \begin{array}{l} |U_c| > U_t \\ X_c{}^2 > X_t{}^2 \end{array} \right\} \quad \text{au risque 5\%, on rejette H_0, il existe une différence avec ou sans traitement => efficacité}$