

(19) Europäisches Patentamt
European Patent Office
Office européen des brevets

(11) EP 1 098 474 A1

(12) EUROPEAN PATENT APPLICATION

(43) Date of publication:
09.05.2001 Bulletin 2001/19

(51) Int Cl.7: H04L 12/24

(21) Application number: 99650102.9

(22) Date of filing: 05.11.1999

(84) Designated Contracting States:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU

MC NL PT SE

Designated Extension States:

AL LT LV MK RO SI

(71) Applicant: Alton Technologies Limited
Dublin 4 (IE)

(72) Inventors:

• Fitzpatrick, Peter
Dublin 6 (IE)

• O'Driscoll, Magnus
Dublin 6 (IE)

(74) Representative: Weldon, Michael James et al
c/o John A. O'Brien & Associates,
Third Floor,
Duncain House,
14 Carysfort Avenue
Blackrock, Co. Dublin (IE)

(54) A telecommunication network modelling system

(57) A telecommunication network modelling system (1) comprises a network information model (2) which performs core network modelling. It generates and maintains a function database (4) and a hardware database (5). These databases are inter-linked and are

used to generate a network model of trails and connections. A modelling controller (3) interacts with one or more modules which utilise the network information model (2) for particular functions such as planning or administration.

Fig. 1.

Description

- [0001] The invention relates to a telecommunication network modelling system of the type comprising a processor connected to user interface and data storage devices, in which the processor is programmed to build and maintain under user instructions a network model, and to generate network planning and administration outputs in response to user queries by interrogating the model.
- [0002] Typically, the administration functions of such a system are to allocate free capacity of different types of demands on a transport network, administer network build and equipment allocation, and perform fault analysis and correlation. For planning, the system is typically used for analysing the impact of demand forecasts on the network utilisation.
- [0003] In general, the existing systems suffer from the problems of being inflexible so that it is time-consuming for the user to program variations in network elements such as variations caused by equipment from different vendors for performing similar specified tasks. Another problem is that the systems are generally configured for responding to queries of a certain type and thus the manner in which the system is used is restricted.
- [0004] It is therefore an object of the invention to provide a modelling system of the type set out above which has a flexible core structure so that it can be adapted by a user at both network build and maintenance stages to variations in a network and equipment of the network.
- [0005] According to the invention, there is provided a telecommunication network modelling system comprising a processor connected to user interface and data storage devices, wherein the processor is programmed to build and maintain under user instructions a network model, and to generate network planning and administration outputs in response to user queries by interrogating the model, characterised in that the processor network build means comprises:
- means for building a dataset defining a plurality of functions;
 - means for building a dataset defining hardware units related to functions on the basis of the capacity of each hardware unit;
 - means for interrogating the datasets with a query comprising requirements for communication trails, for identifying available candidate nodes of the hardware dataset, and for interactively selecting from the set of candidate nodes; and
 - means for generating a network model comprising identifiers of the selected hardware entities which define trail terminations.
- [0006] In one embodiment, each hardware dataset is related to a function or it is related to a plurality of child hardware datasets which are each related to a function.
- [0007] In another embodiment, the function dataset for each function includes:-
- function definition records;
 - point definition records defining interface points to the function;
 - connectivity definition records defining inter-function point connections; and
 - containment definition records defining intra-function point containment.
- [0008] In one embodiment, the function dataset for each function further comprises records identifying points affected by the function.
- [0009] In another embodiment, each hardware dataset comprises point definition records defining network interface points corresponding to function points, and containment definition records defining containment relationships between a hardware unit and sub-units, between points, and between the hardware unit and a function.
- [0010] In a further embodiment, each hardware dataset comprises connectivity definition records defining inter-connectivity of hardware sub-units.
- [0011] In one embodiment, the network model generating means comprises means for populating relational tables with hardware point definition records for trail termination points.
- [0012] In a further embodiment, the network model generating means comprises means for populating the relational tables with hardware point definition records for connections which together form a trail.

[0013] In one embodiment, the network model generating means comprises means for dynamically maintaining a table correlating the equipment model with the network model.

[0014] The invention will be more clearly understood from the following description of some embodiments thereof, given by way of example only with reference to the accompanying drawings in which:-

5

Fig. 1 is an overview schematic diagram of a telecommunication network modelling system of the invention;

10

Fig. 2 is a diagram illustrating part of the network and the manner in which it is modelled; and

15

Figs. 3 and 4 are entity diagrams illustrating relationships of modelling data records.

[0015] Referring to Fig. 1, there is shown a telecommunication network modelling system 1. The system 1 comprises a network information model 2 which comprises a modelling controller 3 connected to a function database 4 and a hardware database 5. The databases 4 and 5 are inter-related. The system 1 also comprises modular tools for performing tasks using the network information model 2. These include a planning module 6 connected to a planning user interface 7 and an administration module 8 connected to an administration user interface 9.

[0016] The network information model 2 is generated by initially creating the function database 4 by defining each function as a dataset, which in this embodiment is a set of related tables. For example, a function may be multiplexing of four 2 Mb/s inputs to provide a single 8 Mb/s output. When the function database has been built, the hardware database 5 is generated. Each hardware unit is associated with a function defined in the database 4, or it comprises sub-units which are themselves each associated with a function of the database 4. Building of a hardware dataset is simplified by automatically allocating parameter values according to the associated function dataset. The build process involves creating datasets both for the hardware units and the sub-units. Completion of the network information model involves mapping the hardware datasets to network node data to instantiate network nodes and their links.

[0017] As stated above, each function is defined by a database which comprises a set of related tables. The first such table is a function definition function_def table such as set out below.

Field Names	Sample 1	Reference or Foreign Key Table
FUNCTION_DEF_ID	24152	Affected_by_def,
USER_LABEL	STM-1/AU4 BID	
START_DATE	0	
START_STATUS	I	Ref_status_code
END_DATE	99999999	
END_STATUS	P	Ref_status_code

[0018] The function_def_id field is a unique key into the function_def table. It also serves a key into an affected_by_def table in which all points affected by the function_def are listed. The user_label field is a user-generated description uniquely identifying the function definition.

[0019] Referring now to Fig. 2, the context in which a model is generated is illustrated by way of a particular simple example. Part of a network is illustrated in Fig. 2 which comprises a remote line terminal 21 connected by a fibre optic link 22 to a local line terminal 23. The line terminal 23 is in turn connected to a 32-128 multiplexer 24. This is in turn connected to four 8-32 multiplexers 25, each of which is in turn connected to four 2-8 multiplexers 26. The 2-8 multiplexer 26 receives four 2 Mb/s inputs. These are multiplexed to provide an 8 Mb/s output. The 8-32 multiplexer 25 receives four 8 Mb/s inputs which it multiplexes to provide a 32 Mb/s output. The 32-128 multiplexer 24 receives four 32 Mb/s inputs which it multiplexes to provide a single 128 Mb/s output fed to the line terminal 23. An important aspect of the invention is the fact that there is a single function defined for each of the multiplexing and line terminal parts of the network shown in Fig. 2. Thus, the 2-8 multiplexer 26 is defined as a single function as is the 8-32 multiplexer 25. However, the hardware database 5 defines hardware units both as overall units such as 2 Mb/s to 128 Mb/s and also as sub-units such as 2 Mb/s to 8 Mb/s multiplexers.

[0020] Returning now to building the function database 4, referring to Fig. 3, an entity model for the function dataset is illustrated. As is clear from this diagram, a function is affected by one or more point definitions. A point definition is an interface point between a function and a link which is external to it. For example, in Fig. 2 there are points 27 which are output points for the different multiplexing stages. In addition, there are input points 28 to these functions. The process of building the function database 4 involves generating a table which identifies points which are affected by the current function. The next step involves generating a connectivity table ("connectivity_def"), such as illustrated

below.

Field Names	Sample 1	Sample 2	Reference or Foreign Key Table
UP_STREAM_POINT_DEF_ID	24154	24155	Point_def
DOWN_STREAM_POINT_DEF_ID	24156	24157	Point_def
START_DATE	0	0	
START_STATUS	I	I	Ref_status_code
END_DATE	99999999	99999999	
END_STATUS	I	I	Ref_status_code

[0021] Connectivity definitions are made between points of different functions. For example, the output point 27 of the multiplexer 26 is connected to one of the input points 28 of the multiplexer 25. This table includes up-stream and down-stream indicators to indicate the direction in relation to network traffic.

[0022] A containment definition table ("contains_def") such as set out below is then generated.

Field Names	Sample 1	Sample 2	Reference or Foreign Key Table
PARENT_DEF_ID	24155	24154	Point_def
PARENT_CODE	406	406	Ref_nw_object_code
CHILD_DEF_ID	24158	24158	Point_def
CHILD_CODE	407	407	Ref_nw_object_code
START_DATE	0	0	
START_STATUS	I	I	Ref_status_code
END_DATE	99999999	99999999	
END_STATUS	P	P	Ref_status_code

[0023] Containment defines linking of parent and child points within a function. For example, the output point 27 of the multiplexer 25 contains the four 8 Mb/s interface points of the same function.

[0024] The connectivity and containment tables relate to points and these are defined by a point definition table ("point_def"). This table defines the characteristics of each point.

[0025] A point_def_id field provides a key into many other database tables, the main ones are connection_def, contains_def, connectivity_def, affected_by_def.. A charinfo field is a key into the ref_ct_charinfo table, which contains all the characteristic information codes which refer to the capacity of a point.

[0026] An order_no field is used to internally order groups of points associated with a hardware unit. A term_point_code field is a key into a ref_term_point_code table which contains all the possible termination point codes, i.e. TTP, CTP,GTP. A term_type_code field is a key into the ref_term_code table which contains all the possible termination point type codes, i.e. SOURCE, SINK, BID, UNDEF. Finally, an interface_code field is a key into the ref_interface_code table which contains all the possible interface codes, i.e. coaxial, fibre optic etc

[0027] It will be appreciated from the above that the function database comprises a dataset for each function in which, as set out in Fig. 3, point definitions are affected by functions, points are contained within points, and points are connected to points of different functions.

[0028] A hardware unit or sub-unit is defined when the network is being built, and on an on-going basis as new hardware is defined. Each hardware dataset is associated with a pre-defined function, or it may comprise sub-units which are themselves associated with a function. A hardware dataset is automatically allocated new points and containment relationships based on the associated function. Initially, a hardware definition (hardware_def) table such as the following is generated.

Field Names	Sample Entry	Sample Entry	Reference or Foreign Key Table
HARDWARE_DEF_ID	1098080	1098182	Hardware_def_inst
HARDWARE_FUNC	1611	1611	Ref.hardware_func

(continued)

Field Names	Sample Entry	Sample Entry	Reference or Foreign Key Table
USER_LABEL	SMA4 LWA1 STMle	SMA4 LWÄ2 STMle	
MANUFACTURER_ID	0	0	
START_DATE	0	0	
START_STATUS	I	I	Ref_status_code
END_DATE	99999999	99999999	
END_STATUS	P	P	Ref_status_code

[0029] This table is updated every time a new hardware unit or sub-unit is defined, and the most recently defined pieces of equipment can be found in the bottom rows of the table. The hardware_def_id value can be used to key the hardware_def_inst table. The hardware_func value can be used to key the ref_hardware_func table. For example a hardware_func value of 1611 references a hardware function description 'Aggregate Card'. The user_label field is created by the user.

[0030] A hardware definition instruction table (hardware_def_inst) is then generated. An example is as follows.

Field Name	Sample Entry	Sample Entry	Reference or Foreign Key Table
HARDWARE_DEF_INST_ID	1098081	1102145	Affected_by_def Contains_def
HARDWARE_DEF_ID	1098080	1098080	Hardware_def
ORDER_NO	0	1	
HARDWARE_DEF_IND	1	0	

[0031] The hardware_def_inst table is closely related to the hardware_def table as for every entry in hardware_def there may be one or more entries in hardware_def_inst. The hardware_def_inst_id references the affected_by_def and the contains_def table as the parent_def_id. The order_no field indicates the ordering of sub-hardware which make up a piece of equipment as the user defined them. For example if a hardware has an order_no of 3 this means that it is a sub-unit in a hardware unit already present in the hardware_def_inst table, and that it is defined as being the third piece of sub hardware which makes up that hardware. A hardware_def_ind of 1 indicates that this instance is the original and hence first instance of the definition. 0 indicates that the instance is a subsequent instance of the definition.

[0032] A table is then generated which records the groupings of point definitions which are related to hardware definition or to function definition. An example is as follows.

Field Names	Sample 1	Sample 2	Reference or Foreign Key Table
PARENT_DEF_ID	1098081	1098081	Hardware_def_inst
PARENT_CODE	402	402	Ref_nw_object_code
CHILD_DEF_ID	1098178	1098180	Point_def
CHILD_CODE	407	407	Ref_nw_object_code
START_DATE	0	0	
START_STATUS	I	I	Ref_status_code
END_DATE	99999999	99999999	
END_STATUS	P	P	Ref_status_code

[0033] This table records the groupings of point definitions which are related to a hardware definition or to a function definition. The hardware definition for a piece of equipment determines the number of points in a group that are affected by that hardware.

[0034] Every entry that has the same parent_def_id value is affected by the same hardware definition. The

parent_def_id field has the same value as the hardware_def_inst_id value for a hardware, when the parent_code is 402. The child_code may be 407 (CTP) or 406(TTP). The child_def_id is a key into the point_def table where all point definition information is stored.

[0035] The parent_code and child_code fields are both references into the Ref_nw_code_table. This table contains a description of the type of object, for example whether an object is a CTP or TTP or hardware or function. In Sample 1 and 2 above the parent_code of 402 indicates hardware objects, while the child_code of 407 indicates CTP point objects.

[0036] A containment definition table ("contains_def") is then generated:

	Field Names	Sample 1	Sample 2	Sample 3	Reference or Foreign Key Table
10	PARENT_DEF_ID	1098081	1098114	1095811	Hardware_def_inst, Point_def,
15	PARENT_CODE	402	407	402	Ref_nw_object_code
20	CHILD_DEF_ID	24160	1098178	1095803	Function_def, Hardware_def_inst, Point_def
25	CHILD_CODE	408	407	402	Ref_nw_object_code
30	START_DATE	0	0	0	
35	START_STATUS	I	I	I	Ref_status_code
40	END_DATE	99999999	99999999	99999999	
45	END_STATUS	P	P	P	Ref_status_code

[0037] This table records the following containment relationships

- between hardware units and sub-units
- between two points
- between hardware and a function

[0038] When the user defines the containment for a particular equipment it is this table which will be updated.

[0039] The parent_def_id and the parent_code together define the parent part of the containment relationship. For example if the parent_code is 402 this indicates a hardware object and that the parent_def_id is a key into the hardware_def_inst table. To find the sub-hardwares which make up a piece of equipment, the contains_def table can be referenced using the hardware_def_inst table as the parent_def_id. The child_code_ids in the contains_def table are themselves hardware_def_inst_ids keys in the hardware_def_inst table.

[0040] The child_def_id and the child_code together define the child part of the containment relationship. For example if the child_code is 407 this indicates a CTP object and that the child_def_id is a key into the point_def table.

[0041] Sample 1 details the containment relationship between hardware and a function. The parent_def_id value is a key into the hardware_def_inst table, the child_def_id value is a key into the function_def table. The parent_code 402 indicates hardware, while the child_code 408 indicates a function. The piece of equipment is said to contain a function, meaning that it will behave according to a particular function.

[0042] Sample 2 details a containment relationship between a level TUG-2 CTP point and three other level TU-12 CTP points, (only one of which is shown above). The CTP levels can be checked by referencing the point_def table to get the level type and then referencing the ref_ct_level table to determine the level of each point.

[0043] Sample 3 details the containment relationship that exists between hardware items, if the piece of equipment contains one or more items (one of which is shown above). The affected_by points for each sub-hardware in the list can be obtained by referencing the child_def_id from the contains_def tables as parent_def_id in the affected_by_def table.

[0044] Finally, a hardware point definition table is generated as follows.

	Field Names	Sample 1	Sample 2	Sample 3	Reference or Foreign Key Table
55	POINT_DEF_ID	1098082	1098178	1098180	Connection_def,

(continued)

Field Names	Sample 1	Sample 2	Sample 3	Reference or Foreign Key Table
				Connectivity_def, Contains_def, Affected_by_def
LEVEL_TYPE	1036	1022	1022	Ref_ct_level
CHARINFO	1	14	14	Ref_ct_charinfo
ORDER_NO	1	61	62	
CHANNEL_NO	0	1	2	
TERM_POINT_CODE	701	702	702	Ref_term_point_code
TERM_TYPE_CODE	603	603	603	Ref_term_type_code
INTERFACE_CODE	202	205	205	Ref_interface_code
START_DATE	0	0	0	
START_STATUS	I	I	I	Ref_status_code
END_DATE	99999999	99999999	99999999	
END_STATUS	P	P	P	Ref_status_code

[0045] This table contains the individual characteristics of every point in the database. The point_def_id field provides a key into many other database tables, such as connection_def, contains_def, connectivity_def, affected_by_def. [0046] The level_type field is a key into the ref_ct_level table which contains SDH level codes for trails and connections. The point described in Sample 2 has a level_type value of 1022. This can be used to reference the ref_ct_level table where it indicates that the point level is TU-12. The point described in Sample 1 has a level_type of 1036 indicating that it is an MEDT point.

[0047] The charinfo field is a key into the ref_ct_charinfo table, which contains all the characteristic information codes which refer to the capacity of a point.

[0048] The order_no field is used to internally order groups of points associated with a hardware. For example Sample 2 and 3 show two members of the TU-12 points that may be ordered 1-63. The order_no is displayed in TNAS whenever the points for a hardware are to be wired.

[0049] The term_point_code field is a key into the ref_term_point_code table which contains all the possible termination point codes such as TTP, CTP, GTP. The term_type_code field is a key into the ref_term_type_code table which contains all the possible termination point type codes, i.e. SOURCE, SINK, BID, UNDEF. The interface_code field is a key into the ref_interface_code table which contains all the possible interface codes, i.e. coaxial, fibre optic etc.

[0050] A connectivity definition table is then generated such as set out below.

Field Names	Sample	Reference or Foreign Key Table
UP_STREAM_POINT_DEF_ID	11110255	Point_def
DOWN_STREAM_POINT_DEF_ID	11110211	Point_def
START_DATE	0	
START_STATUS	I	
END_DATE	99999999	
END_STATUS	I	

[0051] This table is updated when a connectivity relationship is defined by the user between two points belonging to different subhardwares when defining a composite hardware. It is also updated with connectivity values for a hardware definition based on a function definition with connectivity relationships.

[0052] This table can be referenced by checking the point_def_ids of points known to be affected by each equipment against the up_stream_point_def_id and the down_stream_point_def_id fields of this table.

[0053] If two bi-directional points have connectivity with each other, there are two rows inserted into the table, each

point definition will be the UP_STREAM_POINT_DEF_ID in one connectivity definition and DOWN_STREAM_POINT_DEF_ID in the other connectivity definition. Again, connectivity defines interconnection of points between different functions i.e. inter-function.

[0054] Referring now to Fig. 4, a hardware entity diagram provides an overview of relationships between the parts of the hardware database and links between it and the function database. In practice, the hardware_def table stores a user name for an item of hardware, and the hardware_def_int tables relate to particular system code for different versions of that hardware item. The second level of the entity diagram illustrates how a hardware unit may comprise sub-units. Very importantly the third level illustrates the fact that a hardware unit contains one or more functions. As for functions, points contain points. Points are also affected by a hardware unit or sub-unit, and points are connected to points.

[0055] The process of building the model involves generating the function database 4 initially and subsequently generating the hardware database in which hardware definitions incorporate definitions of the associated function. Taking the network section shown in Fig. 2, once a function dataset has been generated for each of the multiplexing and line terminal stages, a set of hardware datasets are then generated. A hardware dataset is created for each multiplexing stage and subsequently a dataset is created for the overall multiplexing from 2 Mb/s to 128 Mb/s.

[0056] The function and hardware databases are instantiated to complete the network model 2 of Fig. 1. These two databases together form an equipment model of datasets linked as described above. The equipment model is interrogated to locate nodes which are capable of performing required tasks for network trails. This reveals a set of candidate nodes for making connections to complete the trail. As candidate nodes are selected the start and end points of the equipment model are populated in network model tables. Thus, a network model is gradually built up to define trails comprising connections with reference to the nodes of the equipment model. The nodes are points as described with reference to Fig. 2. A single table correlates entities of the equipment model and entities of the network model. In the network model, trails are uniquely identified.

[0057] The equipment model is developed on the basis of what functions can be performed and hardware units of the database 5 are mapped on this basis. This ensures that problems do not arise from changes to capacities and functions in hardware specifications. Also, the point definitions provide an excellent basis for defining trails for the network model. Thus the network model provides an excellent foundation for operations such as equipment allocation, fault analysis and correlation.

[0058] The invention is not limited to the embodiments described, but may be varied in construction and detail within the scope of the claims.

Claims

35 1. A telecommunication network modelling system comprising a processor connected to user interface and data storage devices, wherein the processor is programmed to build and maintain under user instructions a network model; and to generate network planning and administration outputs in response to user queries by interrogating the model, characterised in that the processor network build means comprises:

40 means for building a dataset defining a plurality of functions;

means for building a dataset defining hardware units related to functions on the basis of the capacity of each hardware unit;

45 means for interrogating the datasets with a query comprising requirements for communication trails, for identifying available candidate nodes of the hardware dataset, and for interactively selecting from the set of candidate nodes; and

50 means for generating a network model comprising identifiers of the selected hardware entities which define trail terminations.

2. A system as claimed in claim 1, wherein each hardware dataset is related to a function or it is related to a plurality of child hardware datasets which are each related to a function.

55 3. A system as claimed in any preceding claim, wherein the function dataset for each function includes:-

function definition records;

point definition records defining interface points to the function;
connectivity definition records defining inter-function point connections; and
5 containment definition records defining intra-function point containment.

4. A system as claimed in claim 3, wherein the function dataset for each function further comprises records identifying points affected by the function.
- 10 5. A system as claimed in any preceding claim, wherein each hardware dataset comprises point definition records defining network interface points corresponding to function points, and containment definition records defining containment relationships between a hardware unit and sub-units, between points, and between the hardware unit and a function.
- 15 6. A system as claimed in claim 4 or 5, wherein each hardware dataset comprises connectivity definition records defining inter-connectivity of hardware sub-units.
- 20 7. A system as claimed in any of claims 3 to 6, wherein the network model generating means comprises means for populating relational tables with hardware point definition records for trail termination points.
- 25 8. A system as claimed in claim 7, wherein the network model generating means comprises means for populating the relational tables with hardware point definition records for connections which together form a trail.
9. A system as claimed in any preceding claim, wherein the network model generating means comprises means for dynamically maintaining a table correlating the equipment model with the network model.
10. A telecommunication network modelling system substantially as described with reference to the drawings.
11. A computer program product comprising software code for completing a system as claimed in claim 1 when run 30 on a digital computer.

35

40

45

50

55

Fig. 1.

Fig. 2

Fig. 3

Fig. 4

European Patent
Office

EUROPEAN SEARCH REPORT

Application Number
EP 99 65 0102

DOCUMENTS CONSIDERED TO BE RELEVANT			
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (InCL7)
A	FREDERICKS A A ET AL: "MASE- AN INTEGRATED ENVIRONMENT FOR MODELING, ANALYSIS AND ENGINEERING OF COMPUTER / COMMUNICATIONS SYSTEMS" IEEE GLOBAL TELECOMMUNICATIONS CONFERENCE (GLOBECOM), US, NEW YORK, IEEE, 1995, pages 1688-1692, XP000633580 ISBN: 0-7803-2510-9 * abstract * * figure 2 * * paragraph '00II! *	1-11	H04L12/24
A	KNUTSON C D: "BUILDING THE MODEL NETWORK" BYTE, US, McGRAW-HILL INC. ST PETERBOROUGH, vol. 21, no. 10, 1 October 1996 (1996-10-01), pages 101-102, 104, XP000683574 ISSN: 0360-5280 * the whole document *	1-11	
A	WO 98 47265 A (BLACKWELL ROBERT EDWARD ; BUTCHER JASON (GB); BRITISH TELECOMM (GB)) 22 October 1998 (1998-10-22) * abstract * * page 1, line 16 - page 2, line 12 * * page 5, line 9 - page 6, line 21 * * claims 1,2,4 * * figures 1-3 *	1-3,5, 9-11	TECHNICAL FIELDS SEARCHED (InCL7) H04L
A	ISHIWA N ET AL: "AN EXPERT SYSTEM FOR PLANNING PRIVATE NETWORKS" NEC RESEARCH AND DEVELOPMENT, JP, NIPPON ELECTRIC LTD. TOKYO, vol. 35, no. 3, 1 July 1994 (1994-07-01), pages 306-314, XP000468662 ISSN: 0547-051X * the whole document *	1-3,5, 9-11	
The present search report has been drawn up for all claims			
Place of search	Date of completion of the search	Examiner	
THE HAGUE	2 February 2000	Cichra, M	
CATEGORY OF CITED DOCUMENTS		T : theory or principle underlying the invention E : earlier patent document, but published on, or after the filing date D : document cited in the application L : document cited for other reasons & : member of the same patent family, corresponding document	
X : particularly relevant if taken alone Y : particularly relevant if combined with another document of the same category A : technological background O : non-written disclosure P : intermediate document			

ANNEX TO THE EUROPEAN SEARCH REPORT
ON EUROPEAN PATENT APPLICATION NO.

EP 99 65 0102

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report.
The members are as contained in the European Patent Office EDP file on
The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

02-02-2000

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 9847265 A	22-10-1998	AU 7060698 A EP 0976223 A	11-11-1998 02-02-2000

EPO FORM P049

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82