Government of Karnataka Department of Technical Education Board of Technical Examinations, Bengaluru

Course Title: MECH	ATRONICS	Course Code	: 15EE63A
Semester	: VI	Course Group	: Core
Teaching Scheme (L:T:P)	: 4:0:0 (in Hours)	Credits	: 4 Credits
Type of course	:Lecture +Assignments	Total Contact Hours	: 52
CIE	: 25 Marks	SEE	: 100 Marks
Programme: Diploma in	Electrical and Electronics E	ingg.	

Pre-requisites	: Knowledge on basics of electrical engineering, analog and digital electronics.
Course Objectives	: To understand the various Transducers, Sensors, Actuation system. Also, to introduce the concept of Signal conditioning, data acquisition and data presentation along with PLC and MEMS used in Mechatronics system.

COURSE TOPICS:

Unit No	Unit Name	Hours
1	Introduction to Mechatronics System	05
2	Transducers and Sensors	13
3	Signal Conditioning ,Data Acquisition and data presentation	10
4	Actuation system	08
5	Applications of Mechatronics system	06
6	PLC and MEMS	10
	Total	52

Course Outcomes:

On successful completion of the course, the student will be able to:

- 1. Remember the basics of Mechatronics measurement system
- 2. Understand the working of various Transducers and Sensors
- 3. Perform data acquisition, signal conditioning and data representation
- 4. Analyse the working of various actuation system
- 5. Understand the applications of Mechatronics system
- 6. Illustrate applications of PLC and MEMS

Composition of Educational Components

Questions for CIE and SEE will be designed to evaluate the various educational components (Bloom's Taxonomy) such as:

Sl. No.	Educational Component	Weightage (%)	Total Marks (Out of 145)
1	Remembering	15	15
2	Understanding	70	70
3	Application/ Analysis	60	60
	Total	100	145

Course Outcome linkage to Cognitive Level

Cognitive Level Legend: R- Remember, U- Understand, A- Application

		CL	Linked PO	Teaching Hrs
CO1	Remember the basics of Mechatronics measurement system	R	2,10	05
CO2	Understand the working of various Transducers and Sensors	U/A	2,4,5, 10	13
CO3	Perform data acquisition, signal conditioning and data representation	R/U	2, 4,5,10	10
CO4	Analyse the working of various actuation system	U/A	4,5,10	08
C05	Understand the applications of Mechatronics system	U/A	4,5,8 10	06
C06	Illustrate applications of PLC and MEMS	R/U/A	4,5, 810	10
			52	

Course Content and Blue Print of Marks for SEE:

Un it	Unit Name	R/U/ A	Ho ur	Max. Mar ks per Unit	5 Mar ks Qns.	10 Mar ks Qns.	ar for (5marks)		set ks)) (]	be so	ions to et for narks)	Mar ks Weig htag e (%)
					Part A	Part B	R	U	A	R	U	A	(70)
1	Introdu ction to Mechatron ics System	R	5	10	1	0.5		1				0.5	7
2	Transdu cers and Sensors	U/A	13	35	1	3		1			1	2	24
3	Signal Conditioni ng , Data Acquisitio n and data presentati on	R/U	10	30	2	2	1	1		1	1		21
4	Actuati on system	U/A	8	20	1	1.5		1				1.5	14
5	Applica tions of Mechatron ics system	U/A	6	20	2	1		1	1		1		14
6	PLC and MEMS	R/U/ A	10	30	2	2		1	1		1	1	21
	TOTAL		52	145	9	10	N.	9 (45 Iark		(1		0 Marks)	

Course-PO Attainment Matrix

Course		Programme Outcomes										
	1	2	3	4	5	6	7	8	9	10		
MECHATRONICS		3		3	3			2		3		

Level 3- Highly Addressed, Level 2-Moderately Addressed, Level 1-Low Addressed.

Method is to relate the level of PO with the number of hours devoted to the COs which address the given PO. If \geq 40% of classroom sessions addressing a particular PO, it is considered that PO is addressed at Level 3 If 25 to 40% of classroom sessions addressing a particular PO, it is considered that PO is addressed at Level 2 If 5 to 25% of classroom sessions addressing a particular PO, it is considered that PO is addressed at Level 1 If < 5% of classroom sessions addressing a particular PO, it is considered that PO is considered not-addressed.

Course Content:

Unit –I Introduction to Mechatronics System (5 Hrs)

Definition and scope, Evolution levels, advantages and disadvantages of mechatronics, component of mechatronics system with example. Introduction to measurement system and its applications. Control system- open and closed loop system (Digital closed loop control system), adaptive control system.

Unit -II

Transducers and Sensors (13 Hrs)

Introduction, definition and classification of Transducers. Measurement versus Transduction methods, selection and specifications of transducer. Electromechanical –Resistance transducers (linear and angular motion potentiometer), variable inductor transducer (LVDT), RVDT, synchros, load cells, Capacitive transducer (capacitive tachometer). Piezoelectric transducers-materials, properties and working of piezoelectric device, digital transducers. Advantages and disadvantages of piezoelectric transducers. Piezoelectric accelerometer, Hall effect transducers. Photoelectric transducer – photoelectric tachometer. Strain gauges-types, requirements, wheat stone bridge (null mode). Sensors- definition, types and selection of sensors. Proximity sensor (eddy current proximity sensor), light sensor-digital optical encoder, temperature sensor- bimetallic strips, Resistance Temperature detectors (RTDs), thermistor and thermocouples.

Unit -III

Signal Conditioning, Data Acquisition and data presentation (10 Hrs)

Measurement system components, Necessity of signal conditioning. process adopted in signal conditioning. Function of signal conditioning equipments. AC and DC signal conditioning system. Data acquisition-introduction, DAQ system. Analog to digital conversion (ADC)-digital signal, ADC process, components, A/D converter- successive approximation type. Digital to analog conversion- R -2R ladder DAC. Data presentation-General aspects, electrical indicating instruments, electrical analog and digital instruments, Recorder, printer and display system.

Unit -IV

Actuation system (8 Hrs)

Introduction –types, Mechanical actuators – Kinematic link, Kinematic chain –types, gear drive –introduction, types Gear train –definition, types. Belt and belt drive. Chain and chain drives, bearings. Electrical actuators-types, switching devices –mechanical switches, solid state switches, drives. Solenoid Relays. Hydraulic actuators - components of hydraulic system, hydraulic valves - spool valve, poppet valve. Linear actuators –single rod single acting cylinder, single rod double acting cylinder. Pneumatic actuators- comparison of Hydraulic and Pneumatic actuators, components of pneumatic system, pneumatic valves – types fluid control system, current to pressure converter.

Unit –V Applications of Mechatronics System (6 Hrs)

Introduction to robotics .microprocessor based robotic system, Description of some electrical, electronics, mechanical systems - automatic camera, automatic washing machine, car engine management, pick and place robot.

Unit –VI PLC and MEMS (10 Hrs)

Introduction, features, selection of PLC, architecture of PLC, operation cycle of PLC, advantages and disadvantages of PLC. Programming, ladder diagram-basic logic gates, timers, internal relay, counters. MEMS-advantages, applications, description of MEMS, general block diagram, manufacturing of MEMS. MEMS accelerometer, humidity sensor, smart sensors.

Reference Books:

- 1.A Text Book of Mechatronics, by R.K. Rajput, SChand and Company Ltd, New Delhi.
- 2. Mechatronics (Third Edition), by W. Bolton , Pearson Education , New Delhi.
- 3. Mechatronics Principles, Concepts and Applications, byNitaigourPremchandMahalik, Tata McGraw Hill Publishing Company Ltd, New Delhi.

e-Resources:

- 1. www.allaboutmems.com
- 2. www.mems.org

Course Delivery:

The Course will be delivered through lectures, classroom interaction, animations, group discussion, exercises and student activities, assignments.

Course Assessment and Evaluation:

	What		To Whom	Frequency	Max Marks	Evidence Collected	Course Outcom es	
	CIE tous Internal luation)	Evaluation Continuous Internal Evaluation Student Activity		Three IA tests for Theory: (Average marks of Three Tests to be computed).	20	Blue Books	1 to 6	
Direct Assessment	Continuo	Student Evalue Activity		Students	Student Activity	05	Report of 2 pages	1 to 6
ct As				TOTAL	25			
Direc	SEE (Semester End Examination)	End Exam	Students	End Of the Course	100	Answer Scripts at BTE	1 to 6	
rect	Student Feedback on course End Of Course Survey		ents	Middle Of The Course	Feed B	ack Forms	1 to 6	
Indirect			Students	End Of The Course	Questionnaires		1 to 6	

^{*}CIE – Continuous Internal Evaluation

Note: I.A. test shall be conducted for 20 marks. Average marks of three tests shall be rounded off to the next higher digit.

Note to IA verifier: The following documents to be verified by CIE verifier at the end of semester

- 1. Blue books (20 marks)
- 2. Student suggested activities report for 5 marks evaluated through appropriate rubrics.
- 3. Student feedback on course regarding Effectiveness of Delivery of instructions & Assessment Methods.

^{*}SEE – Semester End Examination

Course Contents with Lecture Schedule:

Lesson No./ Session No.	Contents	Duration						
Unit I	Introduction to Mechatronics System	05 Hours						
1.	Definition and scope, evolution levels, advantages and disadvantages of mechatronics, component of mechatronics system with example	01 Hour						
2.	Introduction to measurement system and list the applications							
3.	Control system- open and closed loop system (Digital closed loop control system)	01 Hour						
4.	Descriptive and block diagram of adaptive control system	01 Hour						
5.	Gain scheduled, self tuning, model reference adaptive control system	01 Hour						
Unit II	Transducers and Sensors	13 Hr						
6.	Introduction, definition and classification of Transducers.	01 Hour						
7.	Measurement versus Transduction methods, selection and specifications of transducer	01 Hour						
8.	Electromechanical – Resistance transducers (linear and angular motion potentiometer),	01Hour						
9.	Linear variable differential transformer (LVDT), Rotary variable differential transformer (RVDT)	01 Hour						
10.	Synchros – practical setup, load cells – construction and working of Hydraulic and strain gauge load cells	01 Hour						
11.	Capacitive transducer (capacitive tachometer) and Introduction to Piezoelectric transducers	01 Hour						
12.	Piezoelectric transducers - materials, properties and working of piezoelectric device, digital transducers.	01Hour						
13.	Advantage and disadvantages of piezoelectric transducers. Piezoelectric accelerometer,	01 Hour						
14.	Hall effect transducers. Photoelectric transducer – photoelectric tachometer.	01 Hour						
15.	Strain gauges - types, requirements, wheat stone bridge (null mode).	01 Hour						
16.	Sensors - definition, types and selection of sensors. Proximity sensor (eddy current proximity sensor),	01 Hour						
17.	Light sensor - digital optical encoder,	01 Hour						
18.	Temperature sensor- bimetallic strips, Resistance Temperature detectors (RTDs), thermistor and thermocouples.	01 Hour						
Unit III	Signal Conditioning, Data Acquisition and data presentation	10 Hr						

19.	Measurement system components, Necessity of signal conditioning, process adopted in signal conditioning	01 Hour
20.	Function of signal conditioning equipments. AC and DC signal conditioning system.	01 Hour
21.	Data acquisition -introduction, DAQ system – Data logger, computer with plug in boards	01 Hour
22.	Analog to digital conversion (ADC) - digital signal, ADC process, components, A/D converter- successive approximation type	01 Hour
23.	Digital to analog conversion (DAC) - R -2R ladder DAC	01 Hour
24.	Data presentation / Display - General aspects, electrical indicating instruments	01 Hour
25.	Analog and digital instruments	01 Hour
26.	Recorders – types, X-Y recorder, UV recorder, magnetic tape	01 Hour
27.	Printers –dot matrix, Laser and ink jet type	01 Hour
28.	Display system – Light indicators, LED display,5 by 7 dot matrix LED display	01 Hour
Unit IV	Actuation system	08 Hours
29.	Introduction –types, Mechanical actuators – Kinematic link, Kinematic chain –types	01 Hour
30.	Gear drive –introduction, types, Gear train –definition, types. Belt and belt drive. Chain and chain drives, bearings.	01 Hour
31.	Electrical actuators-types, switching devices —mechanical switches ,Solid state switches ,Solenoid Relays.	01 Hour
32.	Drives – Electric motors- AC and DC servo motors, characteristics, types and applications.	01 Hour
33.	Hydraulic actuators - components of hydraulic system, hydraulic valves - spool valve, poppet valve.	01 Hour
34.	Linear actuators –single rod single acting cylinder, single rod double acting cylinder.	01 Hour
35.	Pneumatic actuators- comparison of Hydraulic and Pneumatic	01 Hour
	actuators, components of pneumatic system,	
36.	Pneumatic valves – types fluid control system, current to pressure converter	01 Hour
36. Unit V	Pneumatic valves - types fluid control system, current to	01 Hour 06 Hr
	Pneumatic valves – types fluid control system, current to pressure converter	
Unit V	Pneumatic valves – types fluid control system, current to pressure converter Applications of Mechatronics System Introduction to robotics – definition, functions, advantage and	06 Hr

40.	Automatic washing machine	01 Hour
41.	Car engine management,	01 Hour
42.	Pick and place robot and Temperature measurement system	01 Hour
Unit VI	PLC and MEMS	09 Hr
43.	Introduction, features, selection of PLC	01 Hour
44.	Architecture of PLC, operation cycle of PLC, advantages and disadvantages of PLC.	01 Hour
45.	Programming, ladder diagram - basic logic gates	01 Hour
46.	Programming using Timers, internal relay and counters	01 Hour
47.	Programming, ladder diagram - basic logic gates	01 Hour
48.	Programming using Timers, internal relay and counters	01 Hour
49.	MEMS –Introduction, advantages, applications, description of MEMS	01 Hour
50.	General block diagram, manufacturing of MEMS.	01 Hour
51.	Construction and working MEMS accelerometer	01 Hour
52.	Construction and working of Humidity sensor, smart sensors	01 Hour
	TOTAL:	52 HOURS

Student Activity (any one to be submitted with 3 pages self HAND WRITTEN report):

- 1. Study and identify the components of a open and closed loop control system with examples
- 2. List different kinds of transducers and sensors apart from the curriculum. Explain any two in detail.
- 3. Develop one hardware for simple data acquisition system
- 4. List different kinds of Mechanical Actuation system apart from the curriculum. Explain any two in detail.
- 5. Perform the market survey and write brief comparative report on any one mechatronics application
- 6. List the various types of PLC's and briefly write the description on any two branded PLC
- 7. List the various types of MEMS sensors and briefly write the description on any two branded MEMS sensors

MODEL OF RUBRICS / CRITERIA FOR ASSESSING STUDENT ACTIVITY (Course Coordinator)

Dimen		Scale							Students score					
sion						(Group of five								
						students)								
	1	2	3	4	5	1	2	3	4	5				
	Unsatisfactory	Developing	Satisfactory	Good	Exemplary									
1	Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	3								
2	Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	2								
3	Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	5								
4	Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	4								
	Note: Concerned	l faculty (Cou	rse coordinat	or) must devis	e appropriate	14/4				_				
	ru	brics/criteria	for assessing	Student activi	ty for 5 marks	=3.5								
One a	activity on any one (CO (course outco	ome) may be gi	ven to a group o	f FIVE students	≈4								
				Grand	Average/Total									

Example only: MODEL OF RUBRICS / CRITERIA FOR ASSESSING STUDENT ACTIVITY- Task given- Industrial visit and report writing									
Dimensi	Scale				Students score				
on						(Five stud	den	ts)	
	1 Unsatisfactory	2 Developing	3 Satisfactory	4 Good	5 Exemplary	1	2	3 4	5
1.Organi sation	Has not included relevant info	Has included few relev ant info	Has included some relev ant info	Has included many relev ant info	Has included all relevant info needed	3			
2. Fulfill team's roles & duties	perform any	Performs very little duties	Performs partial duties	Performs nearly all duties	Performs all duties of assigned team roles	2			
3.Conclu sion	Poor	Less Effective	Partially effective	Summarise s but not exact.	Most Effective	5			
4.Conve nsions	Frequent Error	More Error	Some Error	Occasional Error	No Error	4			
					Total marks	14/4=3.5 ≈4			

FORMAT OF I A TEST QUESTION PAPER (CIE)

Ti	ime	Semester/year	Course/Course C	oue	IVIZ	Max Marks	
Ex: I test/6 th week		VI SEM		20			
of sem	10-11 Am	Year:					
	Name of Course coordinator: Units: CO's:						
Questio		Question		MARKS	CL	СО	PO
n no		Question			CL		10
1							
2							
2							

Note: Internal Choice may be given in each CO at the same cognitive level (CL).

Test/Date and

4

MODEL QUESTION PAPER (CIE)

Test/Date and Time	Semester/year	Course/Course Code	Max Marks	
1 st Test/6 th week,	VI SEM, E & E Engg	MECHATRONICS	20	
9 Feb 16, 10-11 AM	Year: 2016-17	Course code:15EE63A		

Name of Course coordinator:

Units Covered :1 and 2 Course Outcomes : 1 and 2

Instruction :(1). Answer all questions (2). Each question carries five marks

Question No.	Question	CL	CO	PO	
1	Define Mechatronics with examples.	R	1	2, 10	
2	Describe closed loop control system with example	R	1	2 10	
	OR Describe self tuning control system with block diagram	R	1	2, 10	
3	Relate any 5 measurement versus transduction methods OR	U	2	2 10	
	State the factor to considered for selection of sensors	U	2	2, 10	
4	Explain the working of digital optical encoder with a diagram	A	2	2, 10	
CL: Cognitive Level, R-Remember, U-Understand, A-Application, PO: Program Outcomes					

MODEL QUESTION PAPER BANK:

Course Title: MECHTRONICS Course Code: 15EE63A

CO1- Remember the basics of Mechatronics measurement system Unit 1 -Introduction to Mechatronics System

Cognitive Level: REMEMBER

- 1) Define Mechatronics with examples.
- 2) List the advantage and disadvantages of Mechatronics.
- 3) State and explain the evolution level of Mechatronics
- 4) List the components of mechatronics system
- 5) Label the components of mechatronics system in a block diagram
- 6) Enumerate and explain briefly the elements of measuring system
- 7) Describe open loop control system with example
- 8) Describe closed loop control system with example
- 9) Describe adaptive control system with block diagram for velocity feedback
- 10) Describe adaptive control system with descriptive diagram for velocity feedback
- 11) Describe gain schedule control system with block diagram
- 12) Describe self tuning control system with block diagram
- 13) Describe model reference adaptive control system with block diagram

CO2- Understand the working of various Transducers and Sensors Unit 2 -Transducers and Sensors

Cognitive Level: UNDERSTAND

- 14) Define and classify transducer.
- 15) Enumerate any 5 measurement versus transduction methods.
- 16) State the advantage and disadvantages of piezoelectric transducers
- 17) List different types of Strain gauges
- 18) Define and classify sensors
- 19) State the factor to considered for selection of sensors
- 20) List different types of Proximity sensor
- 21) List different types of Light sensor
- 22) List different types of temperature sensor

Cognitive Level: APPLICATION/ANALYSIS

23) Explain different factor to be considered for selection of transducer

- 24) Explain linear and angular motion potentiometer resistance transducer
- 25) Explain Linear variable differential transformer (LVDT) with a diagram.
- 26) Explain Rotary variable differential transformer (RVDT) with a diagram.
- 27) Describe practical setup of Synchros with a neat diagram.
- 28) Explain construction and working of Hydraulic and strain gauge load cells
- 29) Explain capacitive pick up tachometer with diagram.
- 30) Explain the working of piezoelectric device.
- 31) Explain the working of piezoelectric accelerometer with a diagram.
- 32) Explain Hall effect transducer
- 33) Explain photoelectric tachometer with diagram.
- 34) Explain the working of wheat stone bridge as strain-gauge in null mode
- 35) Explain the working of eddy current proximity sensor with diagram.
- 36) Explain the working of digital optical encoder with a diagram
- 37) Briefly explain bimetallic strips with diagram
- 38) Write a short note on RTD(Resistance Temperature detectors)
- 39) Explain thermistors
- 40) Explain thermocouples.

CO3- Perform data acquisition, signal conditioning and data representation Unit 3 -Signal Conditioning, Data Acquisition And Data Presentation

Cognitive Level: UNDERSTAND

- 41) Identify the components of Measurement system
- 42) List different function of signal conditioning equipments
- 43) Describe data acquisition system.
- 44) Differentiate ADC and DAC
- 45) Classify Data presentation methods.
- 46) List different types of recorders
- 47) List different types of printers
- 48) List different types of display systems.

Cognitive Level: APPLICATION/ANALYSIS

- 49) Write the block diagram of Measurement system components and explain.
- 50) Discuss the necessity of signal conditioning
- 51) Explain the process adopted in signal conditioning
- 52) Explain the function of signal conditioning equipments
- 53) Explain AC signal conditioning system with a diagram
- 54) Explain DC signal conditioning system with a diagram
- 55) Explain the DAQ system with a diagram
- 56) Explain successive approximation type ADC with a neat diagram.
- 57) Write R-2R ladder DAC diagram and explain.
- 58) Explain briefly different types of data presentation methods.

CO4- Analyse the working of various actuation system

Unit 4 - Actuation system

Cognitive Level: UNDERSTAND

- 59) List the different types of Mechanical actuators
- 60) Write a short note on Kinematic link and Kinematic chain
- 61) Define gear drive and List the different types of Gear drive
- 62) Differentiate belt drive and chain drives
- 63) List the different types of bearings.
- 64) List the different types of electrical actuators
- 65) List the different types of servomotors
- 66) applications AC and DC servo motors, characteristics, types and applications
- 67) List the different types of hydraulic actuators
- 68) Define linear actuators and List the different types of linear actuators
- 69) Compare of Hydraulic and Pneumatic actuators
- 70) List the different types of Pneumatic valves

Cognitive Level: APPLICATION

- 71) Explain the advantage of solid state switch over mechanical switch
- 72) Sketch and explain the working of solenoid relay.
- 73) Explain the components of hydraulic system with a neat diagram.
- 74) Describe the working of spool valve with a sketch.
- 75) Describe the working of poppet valve with a sketch.
- 76) Explain the working of single rod single acting cylinder
- 77) Explain the working of single rod double acting cylinder
- 78) Explain components of pneumatic system with a diagram.
- 79) Explain the fluid control system with a diagram
- 80) Explain current to pressure converter with a diagram.

CO5- Understand the applications of Mechatronics system Unit 5 - Applications of Mechatronics System

Cognitive Level: UNDERSTAND

- 81) Define robotic system.
- 82) List the advantages and disadvantages of robotic

Cognitive Level: APPLICATION

- 83) Write classification of robotic
- 84) Explain the functions of robotics
- 85) Explain the robotic system
- 86) Explain microprocessor based robotic system with a block diagram

- 87) Explain the working of automatic camera with a block diagram
- 88) Explain the working of automatic washing machine with a block diagram
- 89) Explain the working of car engine management with a block diagram
- 90) Explain the working of pick and place robot with a block diagram
- 91) Explain the working of temperature measurement system with a block diagram

CO6- Illustrate applications of PLC and MEMS

Unit 6 - PLC and MEMS

Cognitive Level: REMEMBER

- 92) Define PLC and List the applications.
- 93) List the features of PLC.
- 94) List the advantages and disadvantages of PLC
- 95) List different programming methods of PLC and explain briefly.
- 96) Define MEMS.
- 97) List the applications of MEMS.
- 98) List the advantages of MEMS.

Cognitive Level: UNDERSTAND

- 99) Explain the Architecture of PLC with a block diagram.
- 100) Explain different operation cycles of PLC
- 101) Explain the counter in PLC.
- 102) Explain the timer in PLC.
- 103) Explain the internal relay in PLC.
- 104) Write the general block diagram of MEMS.
- 105) Explain the different techniques employed for manufacturing of MEMS

Cognitive Level: APPLICATION

- 106) Explain how to select PLC for particular application.
- 107) Analyse ladder diagram for basic logic gates.
- 108) Explain the assembly language programming for basic gates in PLC.
- 109) Differentiate on delay and off delay timer in PLC
- 110) Differentiate up counter and down counter in PLC
- 111) Explain construction and working MEMS accelerometer with a diagram.
- 112) Explain construction and working of Humidity sensor with a diagram
- 113) Explain construction and working of smart sensors with a block diagram

Model Question Paper:

Code: 15EE63A

VI Semester Examination Diploma in Electrical and Electronics Engg.

Time: 3 Hours Max Marks: 100

Note: i) Answer any SIX questions from PART - A. Each question caries 5 marks.

ii) Answer any SEVEN Questions from PART - B. Each question caries 10 marks.

PART – A

- 1) List the advantage and disadvantages of Mechatronics
- 2) State the factor to considered for selection of sensors
- 3) Explain Hall effect transducer
- 4) Classify Data presentation methods.
- 5) Explain the data acquisition system with a diagram
- 6) Compare of Hydraulic and Pneumatic actuators
- 7) List the advantages and disadvantages of robotic
- 8) Define PLC and List the applications
- 9) Analyse ladder diagram for basic logic gates

PART-B

10) (a) (b) 11) (a) (b)	Describe closed loop control system with example . Enumerate any 5 measurement versus transduction methods Explain the working of wheat stone bridge as strain -gauge in null mode Briefly explain bimetallic strips	(5 M) (5 M) (7 M) (3 M)
12) (a) (b)	Explain Linear variable differential transformer (LVDT) with a diagram. List different types of Light sensor	(8 M) (2 M)
13) (a) (b)	List different Function of signal conditioning equipment Differentiate ADC and DAC	(6 M) (4 M)
14) (a) (b) 15) (a) (b)	Explain successive approximation type ADC with a neat diagram Discuss the necessity of signal conditioning List the different types of Mechanical actuators Sketch and explain the working of solenoid relay.	(7 M) (3 M) (5 M) (4 M)
16) (a) (b)	Describe the working of spool valve with a sketch. Explain the working of single rod single acting cylinder	(5 M) (5M)

17)	Explain the working of automatic camera with a block diagram	(10M)
		(3 M)
18) (a)	Explain the Architecture of PLC with a block diagram	(6 M)
(b)	Explain different operation cycles of PLC	(4 M)
19) (a)	Write the general block diagram of MEMS.	(3 M)
(b)	Explain construction and working MEMS accelerometer with a diagram	(7 M)

