DESIGN OF RECTANGULAR PATCH ANTENNA ARRAY FOR 5G WIRELESS COMMUNICATION

Semester-V

Antennas and Wave Propagation

Sourish Vijayamadhavan (2020105045) Anantharamanan R S (2020105507) Poorvajha G (2020105562)

Aim:

We have planned to design a two-element array antenna for 5G wireless communication using HFSS software. The antenna operating frequency is chosen as 28GHz. Our final design must contain two rectangular patches on a Roger RT-5880 LZ, dielectric constant ϵ_r =1.96.

Process:

- Implementation of a single patch antenna (was already submitted in update-1 but results are included to illustrate the comparison).
- 2. Implementation of a two-element antenna array.
- 3. Implementation of Koch snowflake iteration-1

Theory:

- Fractals antennas are widely preferred for wireless communication systems as they are of small size, light weight, low profile, low cost, and are easy to fabricate and assemble.
- The Koch snowflake geometry drew the attention of researchers as it is smaller than other patch geometries.
- The Koch snowflake has many interesting properties. It is an example of a figure that is self-similar, meaning that it looks the same on any scale.
- The resonant frequency increases with increase in the number of iterations.
- The multiband behaviour is obtained as the numbers of iterations are increased.
- The return losses improve as the number of iterations increase.

- The bandwidth of the antenna gets increased too with increase in the number of iterations.
- Improvement in VSWR is also observed with increase in iterations.

Fig. 1. Basic Steps construction of a Koch snowflake fractal

1.Implementation of a single patch antenna:

Dimensions:

Patch:

Patch width X= 0.4403 cm

Patch length Y= 0.31535 cm

Substrate:

Substrate material: Rogers RT-5880

Dielectric constant: 1.96

Substrate thickness: 0.0762 cm

Substrate width X: 2.7 cm

Substrate length Y: 3.18 cm

Feed:

Edge feed width: 0.0366 cm

Edge feed length: 0.267 cm

Feed Width: 0.2738 cm

Feed length: 1.07 cm

Frequency: 28GHz

Results:

Input impedance:

	Freq [GHz]	dB(PeakDirectivity) ATK_Solution : FF_Sweep
1	14.000000	3.484804
2	28.000000	9.596694
3	42.000000	8.757609

2.Implementation of a two-element antenna array:

Dimensions

The width and length of each rectangular patch is similar to the single patch antenna.

Patch:

Patch width= 0.4403 cm

Patch length= 0.31535 cm

Substrate:

Substrate material= Rogers RT-5880

Dielectric constant = 1.96

Substrate thickness= 0.0762 cm

Substrate width X= 1.5 cm

Substrate length Y= 1.8 cm

Feed:

a1= 1.0753 cm

a2= 0.2738 cm

b1 = 0.267 cm

b2= 0.6634 cm

Results:

Freq [GHz]	dB(PeakDirectivity) ATK_Solution: LastAdaptive		
1 28.000000	10.300910		

3.Implementation of Koch snowflake iteration-1:

Results:

Directivity Table 1

RectEdge_ATK Ansys
2022 R2
STUDENT

	Theta [deg]	DirTotal ATK_Solution : LastAdaptive Freq='28GHz' Phi='-180deg'	DirTotal ATK_Solution : LastAdaptive Freq='28GHz' Phi='-178deg'	DirTotal ATK_Solution : LastAdaptive Freq='28GHz' Phi='-176deg'	DirTotal ATK_Solution : LastAdaptive Freq='28GHz' Phi='-174deg'	DirTotal ATK_Solution : LastAdaptive Freq='28GHz' Phi='-172deg'	DirTotal ATK_Solution : LastAdaptive Freq='28GHz' Phi='-170deg'	DirTotal ATK_Sol Freq='28
1	0.000000	10.721718	10.721718	10.721718	10.721718	10.721718	10.721718	10.721718
2	2.000000	10.670990	10.670985	10.670825	10.670511	10.670044	10.669429	10.668668
3	4.000000	10.500972	10.500984	10.500411	10.499263	10.497551	10.495289	10.492496
4	6.000000	10.217053	10.217223	10.216146	10.213847	10.210359	10.205720	10.199974
5	8.000000	9.828357	9.828921	9.827401	9.823848	9.818328	9.810918	9.801706
6	10.000000	9.347260	9.348508	9.346729	9.342014	9.334476	9.324246	9.311474
7	12.000000	8.788738	8.790963	8.789193	8.783568	8.774262	8.761475	8.745437
8	14.000000	8.169588	8.173033	8.171572	8.165401	8.154760	8.139935	8.121248
9	16.000000	7.507590	7.512402	7.511528	7.505222	7.493801	7.477637	7.457157
10	18.000000	6.820657	6.826845	6.826766	6.820733	6.809132	6.792428	6.771154
11	20.000000	6.126036	6.133450	6.134269	6.128855	6.117662	6.101236	6.080211
2	22.000000	5.439618	5.447943	5.449631	5.445085	5.434813	5.419432	5.399660
13	24.000000	4.775378	4.784143	4.786535	4.782982	4.774034	4.760356	4.742732
14	26.000000	4.144986	4.153594	4.156392	4.153826	4.146465	4.135003	4.120260

Observation:

Comparison between single patch antenna and antenna array:

In the 2-element antenna array,

- the directivity and the gain has been increased
- the minor lobes are reduced
- the signal strength is increased
- better performance is obtained

Comparison between antenna array and Koch fractal antenna array:

The Koch fractal antenna array has,

- larger bandwidth
- improved VSWR
- increased efficiency

Future design:

We are planning to increase the iterations in the Koch snowflake.

Then we are going to include a partial ground.

Application:

- We have used Roger RT-5880 which is a flexible material.
 Hence our antenna can be used in wearable devices.
- We can also implement point to point digital radio antennas because radio system uses antenna array to allow bi-directional data flow.
- The antenna can be used in Commercial airline telephones.
- Due to isotropic property and uniformity of Roger material it can be used for satellite application.
- The Koch fractal has the advantage of multiband application.