Introduction to Machine Learning

Linear Regression

Varun Chandola

Computer Science & Engineering State University of New York at Buffalo Buffalo, NY, USA chandola@buffalo.edu

Outline

Basics

Linear Regression

Problem Formulation Learning Parameters Matrix Calculus Basics Machine Learning as Optimization Convex Optimization Gradient Descent Issues with Gradient Descent Stochastic Gradient Descent

Basics

▶ Data - scalar (x), vector (x), Matrix (X)

Scalars

- ▶ Numeric $(x \in \mathbb{R})$
- ► Categorical (e.g., $x \in \{0, 1\}$)
- Constants will be denoted as D, M, etc.

Vector

- ► Length of a vector $\mathbf{x} \in \mathbb{R}^D$
- Vector dot product (x · y)
- Norm of a vector $(|\mathbf{x}|, \|\mathbf{x}\|, \|\mathbf{x}\|_p)$

Matrix

- Size of a matrix $(\mathbf{X} \in \mathbb{R}^{M \times N})$
- ► Transpose of a matrix (X^T)
- Matrix product (XY))

▶ A vector is a special matrix with only one column

$$\mathbf{x} \cdot \mathbf{y} \equiv \mathbf{x}^{\top} \mathbf{y}$$

CSE 474

Linear Regression

- ► There is one scalar **target** variable *y*
- ► There is one vector **input** variable *x*
- ► Inductive bias:

$$y = \mathbf{w}^{\top} \mathbf{x}$$

Linear Regression Learning Task

Learn **w** given training examples, $\langle \mathbf{X}, \mathbf{y} \rangle$.

Geometric Interpretation

Fitting a straight line to d dimensional data

$$y = \mathbf{w}^{\top} \mathbf{x}$$

 $y = \mathbf{w}^{\top} \mathbf{x} = w_1 x_1 + w_2 x_2 + \ldots + w_d x_d$

- ► Will pass through origin
- Add intercept

$$y = w_0 + w_1 x_1 + w_2 x_2 + \ldots + w_d x_d$$

► Equivalent to adding another column in **X** of 1s.

Incorporating Bias/Intercept

Explicit Bias

$$\mathbf{x} \equiv \{x_1, x_2, \dots, x_d\}$$

$$\mathbf{w} \equiv \{w_1, w_2, \dots, w_d\}$$

$$\mathbf{y} = w_0 + \mathbf{w}^{\top} \mathbf{x}$$

Implicit Bias

$$\mathbf{x} \equiv \{1, x_1, x_2, \dots, x_d\}$$

$$\mathbf{w} \equiv \{w_0, w_1, w_2, \dots, w_d\}$$

$$\mathbf{y} = \mathbf{w}^{\top} \mathbf{x}$$

Learning Parameters - Least Squares Approach

► Minimize *squared loss*

$$J(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{N} (y_i - \mathbf{w}^{\top} \mathbf{x}_i)^2$$

- ▶ Make prediction $(\mathbf{w}^{\top}\mathbf{x}_i)$ as close to the target (y_i) as possible
- ► Least squares estimate

$$\widehat{\boldsymbol{\mathsf{w}}} = (\boldsymbol{\mathsf{X}}^{\top}\boldsymbol{\mathsf{X}})^{-1}\boldsymbol{\mathsf{X}}^{\top}\boldsymbol{\mathsf{y}}$$

▶ We will derive this expression in class.

CSE 474

Matrix Calculus Basics

$$\frac{\partial \mathbf{a}^{\top} \mathbf{b}}{\partial \mathbf{a}} = \frac{\partial \mathbf{b}^{\top} \mathbf{a}}{\partial \mathbf{a}} = \mathbf{b}$$
$$\frac{\partial \mathbf{a}^{\top} \mathbf{M} \mathbf{a}}{\partial \mathbf{a}} = 2\mathbf{M} \mathbf{a}$$

where \mathbf{M} is a symmetric matrix.

8 / 20

Machine Learning as Optimization Problem¹

Learning is optimization

Chandola@UR

- Faster optimization methods for faster learning
- Let $\mathbf{w} \in \mathbb{R}^d$ and $S \subset \mathbb{R}^d$ and $f_0(\mathbf{w}), f_1(\mathbf{w}), \dots, f_m(\mathbf{w})$ be real-valued functions.
- Standard optimization formulation is:

CSE 474

¹Adapted from http://ttic.uchicago.edu/~gregory/courses/ml2012/lectures/tutorial_optimization.pdf. Also see, http://www.stanford.edu/~boyd/cvxbook/ and http://scipy-lectures.github.io/advanced/mathematical_optimization/.

Solving Optimization Problems

- Methods for general optimization problems
 - ► Simulated annealing, genetic algorithms
- Exploiting *structure* in the optimization problem
 - Convexity, Lipschitz continuity, smoothness

Chandola@UB CSE 474 10 / 20

Convexity

Convex Optimization

Optimality Criterion

minimize
$$f_0(\mathbf{w})$$
 subject to $f_i(\mathbf{w}) \leq 0, i = 1, \dots, m.$

where all $f_i(\mathbf{w})$ are **convex functions**.

- \mathbf{w}_0 is feasible if $\mathbf{w}_0 \in Dom \ f_0$ and all constraints are satisfied
- A feasible \mathbf{w}^* is optimal if $f_0(\mathbf{w}^*) \leq f_0(\mathbf{w})$ for all \mathbf{w} satisfying the constraints

12 / 20

CSE 474

Gradient of a Function

 Denotes the direction of steepest ascent

$$abla J(\mathbf{w}) = \left[egin{array}{c} rac{\partial J}{\partial w_0} \ rac{\partial J}{\partial w_1} \ dots \ rac{\partial J}{\partial w_d} \end{array}
ight]$$

Finding Extremes of a Single Variable Function

1. Set derivative to 0

$$\nabla J(\mathbf{w}) = 0$$

2. Check second derivative for minima or maxima or saddle point

Finding Extremes of a Multiple Variable Function - Gradient Descent

- 1. Start from any point in variable space
- 2. Move along the direction of the steepest descent (or ascent)
 - ▶ By how much?
 - ightharpoonup A learning rate (η)
 - What is the direction of steepest descent?
 - Gradient of J at w

Training Rule for Gradient Descent

$$\mathbf{w} = \mathbf{w} - \eta \nabla J(\mathbf{w})$$

For each weight component:

$$w_j = w_j - \eta \frac{\partial J}{\partial w_j}$$

4□ > 4□ > 4 = > 4 = > = 900

Chandola@UB CSE 474 15 / 20

Convergence Guaranteed?

- Error surface contains only one global minimum
- ► Algorithm *will* converge
 - Examples need not be linearly separable
- $ightharpoonup \eta$ should be *small enough*
- ▶ Impact of too large η ?
- ▶ Too small η ?

16 / 20

Issues with Gradient Descent

- ► Slow convergence
- ► Stuck in local minima

Stochastic Gradient Descent [1]

- Update weights after every training example.
- ightharpoonup For sufficiently small η , closely approximates Gradient Descent.

Gradient Descent	Stochastic Gradient Descent
Weights updated after summing er-	Weights updated after examining
ror over all examples	each example
More computations per weight up-	Significantly lesser computations
date step	
Risk of local minima	Avoids local minima

Chandola@UB CSE 474 18 / 20

Gradient Descent Based Method

▶ Minimize the squared loss using *Gradient Descent*

$$J(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{N} (y_i - \mathbf{w}^{\top} \mathbf{x}_i)^2$$

► Why?

References

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel. Backpropagation applied to handwritten zip code recognition.

Neural Comput., 1(4):541-551, Dec. 1989.

20 / 20