Unit 3: Receive Filtering

EL-GY 6013: DIGITAL COMMUNICATIONS

PROF. SUNDEEP RANGAN

This Unit

Learning Objectives

- ☐ Describe the steps in recovering symbols for a linearly modulated signal
 - Determine the matched filter response
- □ Determine MF for known gain and delay in the channel
- □ Compute the effective discrete-time channel given
 - Channel response, TX an RX filter
 - Time-domain or frequency-domain method
- ☐ Determine if there is ISI
- □ Compute the frequency response using digital RX filtering and downsampling
- ☐ Determine specifications on the digital and analog filters

Outline

Receiver filtering and sampling

Perfect reconstruction with orthonormal modulation

General channels: Time-domain analysis

General channels: Frequency-domain analysis

Practical RX filter design

Channel sounding

Sparse channel reconstruction (Advanced)

Receiver Problem

- ☐ Transmit steps so far:
 - Symbols s[n]
 - Linearly modulate: $u(t) = \sum s[n]p_{tx}(t nT)$
 - Baseband equivalent channel $r(t) = h_{chan}(t) * u(t)$
- □ Question at the receiver: Can we recover the transmitted symbols?
- \square Want a mapping that input r(t) to samples r[n]
- $\Box \text{Ideally } r[n] = s[n]$

Simple Idea: Sampling

- ☐ Take samples with an ideal A/D: r[n] = r(nT)
- ☐ This could work: Example
 - \circ Suppose $p_{tx}(t) = Rect\left(\frac{t}{T}\right)$ (Ideal zero-order-hold D/A)
 - $h_{chan}(t) = \delta(t)$ (no channel effect)
 - Then: $r(t) = u(t) = \sum_{n} s[n] Rect(\frac{t-nT}{T})$
 - \circ So, r(nT) = s[n]
 - \circ Hence, if we sample at exactly the right time, we can recover s[n]

Problems with Ideal Sampling

- ☐ Three problems in implementing an ideal A/D
- ☐ Problem 1: No circuit exactly samples at one instant
 - Most circuits integrate over some period
 - Ex: Charge fills a capacitor at the input to the A/D
- □ Problem 2: Out-of-band emissions ("blockers")
 - The received signal may contain signals at neighboring frequencies
 - Ex: Transmissions in other wireless channels
 - The system may not have control over these
 - Without filtering, these will be aliased into r[n]

0

Problems with Ideal Sampling

- ☐Three problems in implementing an ideal A/D
- ☐ Problem 3: No noise filtering
 - Suppose that in some symbol period: $r(t) = s[n] + w(t), \quad t \in [nT, (n+1)T)$
 - r(t) = "desired signal" + "noise".
 - Noise w(t) will appears in any sample.
 - But, suppose we average: $r_{avg}[n] = \frac{1}{T} \int_{nT}^{(n+1)T} r(t) dt = s[n] + v[n]$
 - Effective noise is $v[n] = \frac{1}{T} \int_{nT}^{(n+1)T} w(t) dt$
 - This will, in general, have a lower variance
 - We will describe this more next unit

Two Step Receiver

- □ Discussion motivates a two step process
- □ Step 1: Receive filter: $v(t) = p_{rx}(t) * r(t)$
 - $p_{rx}(t)$ is the RX filter response
- \square Step 2: Sample r[n] = v(nT)
- ☐ Filter is useful to:
 - Model imperfections in the sampling
 - Filter out blockers. Anti-aliasing
 - Average out noise (more on this later)

Outline

- ☐ Receiver filtering and sampling
- Perfect reconstruction with orthonormal modulation
 - ☐ General channels: Time-domain analysis
 - ☐ General channels: Frequency-domain analysis
 - ☐ Practical RX filter design
 - ☐ Channel sounding
 - □ Sparse channel reconstruction (Advanced)

End-to-end TX and RX Chain so Far

■Steps:

- Impulse D/A: $u_{\delta}(t) = \sum s[n]\delta(t nT)$
- TX pulse shape: $u(t) = u_{\delta}(t) * p_{tx}(t) = \sum s[n]p_{tx}(t nT)$
- Channel: $r(t) = u(t) * h_{chan}(t)$
- RX filter: $v(t) = r(t) * p_{rx}(t)$
- Sampling A/D: r[n] = v(nT)

Basic Questions

- ☐ Under what circumstances can we construct transmitted signals.
- \square That is, how do we select $p_{rx}(t)$ such that r[n] = s[n]?
- ☐ We first analyze this for a simple case:
 - Orthonormal pulse shapes
 - No channel impairments

Inner Products and Orthonormal Signals

- \square Let f(t), g(t) be two complex-valued signals
- \square Definition 1: The inner product of f, g is:

$$\langle f, g \rangle = \int_{-\infty}^{\infty} f^*(t)g(t)dt$$

- Here $f^*(t)$ =complex-conjugate of f(t)
- □ Definition 2: We say f(t), g(t) are orthogonal if $\langle f, g \rangle = 0$
 - \circ We will write this as $f \perp g$
- □ Definition 3: The signal energy is $||f||^2 := \langle f, f \rangle = \int_{-\infty}^{\infty} |f(t)|^2 dt$
- ☐ We will discuss this in much more detail in the next unit on signal spaces

Example Problem

- $\square \text{Suppose } f(t) = aRect\left(\frac{t}{T}\right), g(t) = (b + ct)Rect\left(\frac{t}{T}\right)$
 - Complex a, b, c with $a \neq 0$
- \square Compute $\langle f, g \rangle$
- \square When is $f \perp g$?
- Solution:
 - $\langle f,g\rangle = \int_{-\infty}^{\infty} f^*(t)g(t)dt = \int_{-T/2}^{T/2} a^*(b+ct)dt = a^*bT$
 - Therefore $f \perp g = 0 \Leftrightarrow \langle f, g \rangle = a^*bT = 0$.
 - Since $a, T \neq 0, f \perp g = 0 \Leftrightarrow b = 0$

Orthogonality in Frequency Domain

- ■Sometimes it is more convenient to evaluate inner products in frequency domain
- \square Parseval's Theorem: Let f(t), g(t) be any two signals. Then:

$$\langle f, g \rangle = \int f^*(t)g(t)dt = \int F^*(f)G(f)df$$

 \square This is useful whenever the Fourier transforms F(f), G(f) are simple to work out.

Example

- $\Box \text{Suppose } f(t) = A \operatorname{sinc}\left(\frac{t}{T}\right), \ g(t) = B \operatorname{sinc}\left(\frac{t-\tau}{T}\right)$
- \square Compute $\langle f, g \rangle$. When are they orthogonal?
- Solution:
 - Do this in frequency domain
 - $F(f) = AT Rect(fT), G(f) = BTRect(fT)e^{-2\pi i f \tau}$
 - $^{\circ}$ From Parseval's Theorem: Let $f_0 = 1/(2T)$

$$\langle f, g \rangle = \langle F, G \rangle = \int F^*(f)G(f)df = ABT^2 \int_{-f_0}^{f_0} e^{-2\pi i f \tau} df$$

$$= \frac{ABT^2}{2\pi i \tau} \left[e^{2\pi i f_0 \tau} - e^{-2\pi i f_0 \tau} \right] = ABT \operatorname{sinc}(2f_0 \tau) = ABT \operatorname{sinc}\left(\frac{\tau}{T}\right)$$

 $\langle f, g \rangle = 0$ when $\tau = kT$ for some integer k

Orthonormal Signals

- \square Let $\phi_n(t)$, n=0,1,... be a set of signals
 - This can be indexed from $n = -\infty$ to ∞ as well
- \square Definition: The set $\phi_n(\cdot)$ is orthonormal if:
 - $||\phi_n|| = 1$ for all n (all signals have unit energy)
 - $\langle \phi_n, \phi_m \rangle = 0$ for all $n \neq m$ (different signals are orthogonal)

- ☐ This generalizes the concept of orthonormal vectors
- ☐ We will discuss orthonormal sets much more in signal space theory

Orthonormal Pulses and Matched Filtering

- □ Consider the linear modulation: $u(t) = \sum_{n} s[n]p_{tx}(t nT)$
- □ Definition 1: We will say that the modulation is orthogonal if

$$\phi_n(t) = p_{tx}(t - nT), \qquad n = \cdots, -2, -1, 0, 1, 2, \dots$$

is an orthonormal set.

 \square Definition 2: Given any transmit pulse, $p_{tx}(t)$, the matched filter RX pulse is:

$$p_{rx}(t) = p_{tx}^*(-t)$$

- The pulse that is complex conjugate and flipped in time
- Note that if TX filter is causal, RX filter is anti-causal

Reconstruction With Orthonormal Pulses

- ☐ Theorem: Suppose that:
 - $p_{tx}(t)$ generates orthonormal pulse at sample rate $\frac{1}{T}$
 - $h_{chan}(t) = \delta(t)$ (i.e. r(t) = u(t) so there are no channel impairments)
 - $p_{rx}(t) = p_{tx}^*(-t)$ (RX uses matched filter)

Then the receiver will exactly recover the TX samples in that r[n] = s[n]

- ☐ Theorem answers our question. We can reconstruct the RX samples
 - Under several assumptions

Proof of Reconstruction Theorem

- \square TX signal is: $u(t) = \sum_{n} s[n] p_{tx}(t nT)$
- □Since $h_{chan}(t) = \delta(t) \Rightarrow r(t) = h_{chan}(t) * u(t) = u(t) = \sum_{n} s[n]p_{tx}(t nT)$
- \square RX filtered signal is: $v(t) = p_{rx}(t) * u(t) = \sum_{n} s[n](p_{rx} * p_{tx})(t nT)$
- $\square \text{Sampling is: } r[m] = v(mT) = \sum_{n} s[n] (p_{rx} * p_{tx}) ((m-n)T)$
- Now look at convolution:

$$(p_{rx} * p_{tx})(t) = \int p_{rx}(t-s)p_{tx}(s)ds = \int p_{tx}^*(s-t)p_{tx}(s)ds$$

- \square But $\phi_k(t) = p_{tx}(t kT)$ is an orthonormal set
- $\square \text{So, } (p_{rx} * p_{tx})(kT) = \langle \phi_k, \phi_0 \rangle = \delta_k$
- □ Hence: $r[m] = v(mT) = \sum_{n} s[n] \delta_{m-n} = s[m]$

"Practical" Orthogonal Pulses

- ☐ There are two important "practical" orthonormal pulses
- \square Rectangles: $p_{tx}(t) = \frac{1}{\sqrt{T}} \operatorname{Rect}\left(\frac{t}{T}\right)$
 - Orthonormal since $p_{tx}(t-nT)$ and $p_{tx}(t-mT)$ do not overlap when $n \neq m$
 - \circ Scaling by $\frac{1}{\sqrt{T}}$ ensures they are normalized
 - This can be achieved (with some scaling) by a zero-order hold ADC
- $\square \text{Sinc pulses: } p_{tx}(t) = \frac{1}{\sqrt{T}} \operatorname{Sinc}\left(\frac{t}{T}\right)$
 - Use similar frequency domain calculation as before to prove these are orthonormal
 - This would arise with ideal filtering at the TX and RX.
 - No filter is exactly ideal.
 - But, practical filters get quite close to this response.

Outline

- ☐ Receiver filtering and sampling
- ☐ Perfect reconstruction with orthonormal modulation
- General channels: Time-domain analysis
- ☐ General channels: Frequency-domain analysis
- ☐ Practical RX filter design
- ☐ Channel sounding
- □ Sparse channel reconstruction (Advanced)

Modeling the End-to-End System

- ■We have seen so far that when:
 - Pulse shapes are matched
 - Modulation is orthonormal
 - No channel impairments
- □What happens when these conditions fail?

Channel Gain

- \square Consider simple deviation: Channel gain r(t) = Gu(t)
 - Gain can be due to attenuation in wire, for example.
- □Suppose, as before, that:
 - $p_{tx}(t-nT)$ are orthonormal for different n
 - $p_{rx}(t) = p_{tx}^*(-t)$, i.e. matched filter
- - Proof on board
 - Simply scales symbols.
 - \circ Can recover symbols from r[n]/G
- ☐ But, requires that gain is known. More on this later

Channel Gain and With Known Delay

■Now consider gain and delay

$$\circ \ r(t) = Gu(t - \tau)$$

- $\Box \text{Then, } r(t) = \sum G s_n p_{tx}(t \tau nT)$
- ■Suppose gain and delay are known
- ☐ Use shifted and scaled receive filter

$$p_{rx}(t) = \frac{1}{G}p_{tx}^*(-t+\tau)$$

- - Proof on board
- □RX filter is shifted to delay
 - Must know the gain and delay
 - Requires synchronization

Integer Delays

- $\square Suppose: r(t) = Gs(t \tau)$
 - \circ Delay is an integer multiple of the sample period: $\tau = k_0 T$
- ■Suppose, as before:
 - TX uses orthonormal modulation
 - \circ MF receiver $p_{rx}(t)=p_{rx}^*(-t)$ (but, not shifted and scaled)
- - Channel delay of $\tau = k_0 T \Rightarrow$ Symbol delay of k_0
 - Proof on board

Integer Delays visualized

- □ Suppose TX uses orthonormal modulation and RX uses matched filter
- □ Suppose sample rate is $T = 0.1 \,\mu s$ ($f = 10 \,\text{Msym/s}$)

Baseband channel impulse response

Effective discrete-time channel

$$\begin{array}{c}
G \\
k = 0
\end{array}$$

$$\begin{array}{c}
G \\
k = 40
\end{array}$$

General case

- \square Define channel impulse response with filtering $g(t) = p_{tx}(t) * h_{chan}(t) * p_{rx}(t)$
 - Represents path from DAC output to ADC input
- □ Theorem: Mapping from r[n] to s[n] is LTI with impulse response is h[n] = g(nT),
- \square Receive symbols will be given by $r[n] = \sum_{k=-\infty}^{\infty} h[k] s[n-k]$

Example 1: Rectangular Pulse

- \square Suppose that $p_{tx}(t) = p_{rx}(t) = Rect(t/T)$
- \square If channel is $r(t) = Gu(t \tau)$, what is effective DT channel h[n]
- Solution:
 - Impulse response is $h_{chan}(t) = \delta(t \tau)$
 - Impulse response from $u_{\delta}(t) \mapsto v(t)$ is $g(t) = p_{tx}(t) * p_{rx}(t) * h_{chan}(t) = GT \operatorname{Tri}(t \tau)$
 - Then h[n] = g(nT)

Example 2 Illustrated

- Channel response with filtering $g(t) = GT \ Tri(t \tau)$
- ☐ Effective discrete-time channel:

$$h[n] = g(nT)$$

- \square Plot to right: GT = 1, T = 1
 - $\circ g(t)$: Blue dashed
 - \circ h[n]: Red stem
- \square When $\tau = kT$ is an integer:
 - $h[n] = \delta_{n-k}$
 - Single tap
- □When τ ∈ (kT, (k + 1)T)
 - $\circ h[n]$ has two taps

Example 2: Exponential

- $\square \text{Suppose that } p_{tx}(t) = \delta(t), p_{rx}(t) = T\delta(t)$
- □ Baseband channel is: $\frac{dr(t)}{dt} = \frac{\alpha}{T}(u(t) r(t))$
- \square Find filtered channel response g(t) and effective discrete-time response h[n]
- Solution:
 - Take Laplace transform of differential eqn: $R(s) = \frac{c}{s+c}U(s)$, $c = \frac{\alpha}{T}$
 - Using inverse Laplace transform: $r(t) = h_{chan}(t) * u(t)$ where $h_{chan}(t) = ce^{-ct} 1_{[0,\infty)}(t)$
 - Filtered channel response: $g(t) = p_{tx}(t) * p_{rx}(t) * h_{chan}(t) = cTe^{-ct}1_{[0,\infty)}(t)$
 - \circ Discrete-time response: $h[n]=g(nT)=cTe^{-cnT}1_{\{n\geq 0\}}=\alpha e^{-\alpha n}1_{\{n\geq 0\}}$

Example 2: Exponential Illustrated

- $\square \text{Suppose that } p_{tx}(t) = \delta(t), p_{rx}(t) = T\delta(t)$
- □ Baseband channel is: $\frac{dr(t)}{dt} = \frac{\alpha}{T}(u(t) r(t))$
- ☐ From previous slide:
 - Filtered channel response: $g(t) = cTe^{-ct}1_{[0,\infty)}(t)$
 - Discrete-time response: $h[n] = g(nT) = \alpha e^{-\alpha n} 1_{\{n \ge 0\}}$

Effective Discrete-Time Channel

□ Lack of synchronization causes channel of the form

$$r[n] = \sum_{k=-\infty}^{\infty} h[k]s[n-k]$$

- $\square h[k]$ called the effective discrete-time channel
- □Inter-symbol interference:
 - Whenever $h[k] \neq 0$ for $k \neq 0$
 - Other symbols interfere with one another
- □ ISI occurs for many reasons:
 - Lack of synchronization
 - Channel impairments

ISI and Equalization

■Effective discrete-time channel is:

$$r[n] = \sum_{k=-\infty}^{\infty} h[k]s[n-k]$$

- □ System has inter-symbol interference (ISI):
 - Multiple symbols s[n-k] effect r[n]
- ☐ The receiver must undo this ISI.
- ☐ This process is called equalization
- We will discuss this later.

Outline

- ☐ Receiver filtering and sampling
- ☐ Perfect reconstruction with orthonormal modulation
- ☐ General channels: Time-domain analysis
- General channels: Frequency-domain analysis
 - ☐ Practical RX filter design
 - ☐ Channel sounding
 - □ Sparse channel reconstruction (Advanced)

Digital Channel Frequency Response

 \square We saw that effective digital channel from $s[n] \mapsto u[n]$ is:

$$r[n] = \sum_{k} h[k]s[n-k], \quad h[k] = g(kT), \qquad g(t) = p_{rx}(t) * h_{chan}(t) * p_{tx}(t)$$

□ Question: What is the frequency response?

$$R(\Omega) = H(\Omega)S(\Omega)$$

Frequency Response of DT Filter

 \square Fact from signals and systems: If h[n] = g(nT)

$$H(\Omega) = \frac{1}{T} \sum_{k=-\infty}^{\infty} G\left(\left(\frac{\Omega}{2\pi} + k\right) \frac{1}{T}\right)$$

- \square Shifted copies of G(f)
- \Box Continuous frequency f mapped to DT frequency $\Omega = 2\pi f/f_{S}$, $f_{S} = 1/T$
- □Can obtain coefficients from inverse DTFT:

$$h[n] = \frac{1}{2\pi} \int_0^{2\pi} H(\Omega) e^{jn\Omega} d\Omega$$

Computing Effective DT Frequency Response Summary

- \Box Compute frequency response of channel with filtering $G(f) = P_{rx}(f)H_{chan}(f)P_{tx}(f)$
- ☐ Effective DT channel response is:

$$H(\Omega) = \frac{1}{T} \sum_{k=-\infty}^{\infty} G\left(\left(\frac{\Omega}{2\pi} + k\right) \frac{1}{T}\right)$$

- Scale G(f) vertically by 1/T
- Map continuous-time frequency f to $\Omega = 2\pi f T = \frac{2\pi f}{f_S}$
- \circ Create shifted versions every 2π
- Shifted versions may overlap if there is aliasing

Bandlimited Channel

- \square Suppose one of P_{rx} , P_{tx} or G bandlimited to $|f| < \frac{1}{2T}$,
- ☐ Effective discrete-time channel reduces to

$$H(\Omega) = \frac{1}{T} P_{rx} \left(\frac{\Omega}{2\pi T} \right) P_{tx} \left(\frac{\Omega}{2\pi T} \right) H_{chan} \left(\frac{\Omega}{2\pi T} \right)$$
 for $|\Omega| < \pi$

- ☐ If TX and RX filters are ideal low-pass:
 - $P_{rx}(f) = P_{tx}(f) = \sqrt{T} \operatorname{Rect}(fT)$
 - $\circ \ H(\Omega) = G\left(\frac{\Omega}{2\pi T}\right)$

Example: Sinc Pulses

■Suppose that

•
$$p_{rx}(t) = p_{tx}(t) = \frac{1}{\sqrt{T}} sinc\left(\frac{t}{T}\right)$$

• $H_{chan}(f) = 1$ (no impairments)

☐Then,

$$P_{rx}(f) = P_{tx}(f) = \sqrt{T}rect(fT)$$

$$\circ$$
 $H(\Omega) = 1$

- $\Box \text{Hence, } R(\Omega) = S(\Omega).$
- ☐ Recover symbols exactly. No ISI

Example: Sinc Pulses with Delay

- $\Box \text{Suppose that } p_{rx}(t) = p_{tx}(t) = \frac{1}{\sqrt{T}} sinc\left(\frac{t}{T}\right)$
- □ Channel has gain and delay: $r(t) = Gu(t \tau)$
- $\Box H_{chan}(f) = Ge^{-2\pi jf\tau}$
- ☐Then,

$$P_{rx}(f) = P_{tx}(f) = \sqrt{T}rect(fT)$$

$$H(\Omega) = H_{chan}\left(\frac{\Omega}{2\pi T}\right) = Ge^{-j\Omega\tau/T}$$

 $\square \text{Similar calculation as before: } h[n] = sinc\left(\frac{\tau n}{T}\right)$

Flat Channels

■Suppose that

$$P_{rx}(f) = P_{tx}(f) = \sqrt{T}rect(fT)$$

$$G(f) \approx G_0 \text{ in } |f| < \frac{1}{2T}$$

- "Flat" over the channel.
- ☐ Then, effective discrete-time channel is

$$\circ$$
 $H(f) = G_0$

$$\circ r[n] = G_0 s[n]$$

- No ISI
- □ Conclusion: When channel is "flat" over band, equalization is not needed

Outline

- ☐ Receiver filtering and sampling
- ☐ Perfect reconstruction with orthonormal modulation
- ☐ General channels: Time-domain analysis
- ☐ General channels: Frequency-domain analysis
- Practical RX filter design
 - ☐ Channel sounding
 - □ Sparse channel reconstruction (Advanced)

Problems with Analog Filtering

- □Up to now, we have considered two stage filtering
 - Filtering: $v(t) = p_{rx}(t) * r(t)$
 - Sampling / ADC: r[n] = v(nT)
- ☐ Problem: Filtering is performed in analog
 - Desire sharp filters to remove close adjacent carrier
 - Difficult to design sharp filters

Typical Digital Implementation of RX Filtering

RX complex baseband

RX complex symbols, Symbol rate = f_s

- ☐ Use combination of analog and digital filtering in four steps:
- \square Step 1. Analog filtering $v_1(t) = h_{ana}(t) * r(t)$
- □ Step 2. Sample at M times symbol rate: $v_2[k] = v_1(kT/M)$
 - ∘ *M* = oversampling ratio
- \square Step 3. Digitally filter: $v_3[k] = h_{dig}[k] * v_2[k]$
- Step 4. Decimate: $r[n] = v_3[nM]$.
 - Takes one every *M* samples

Frequency Domain Analysis

- $\Box \text{Step 1: } V_1(f) = H_{ana}(f)R(f)$
- $\Box \text{Step 2: Sampling at } \frac{T}{M} : V_2(\Omega) = \frac{M}{T} \sum_{k=-\infty}^{\infty} V_1\left(\left(\frac{\Omega}{2\pi} + k\right) \frac{M}{T}\right)$
- □ Step 3: Digital filtering: $V_3(Ω) = V_2(Ω)H_{dig}(Ω)$
- Step 4: Decimate: $R(\Omega) = \frac{1}{M} \sum_{m=0}^{M-1} V_3 \left(\frac{\Omega + 2\pi m}{M} \right)$
- \square Assuming no aliasing: Effective RX pulse shape is $P_{rx}(f) = H_{ana}(f)H_{dig}\left(\frac{2\pi f}{f_SM}\right)$

Sample problem (Solution on board)

- \square Received passband signal $R_p(f)$ as shown
- ☐ Two components:
 - Desired signal
 - Nearby adjacent carrier signal
- ☐ Draw the following:
 - Complex baseband R(f) after mixing at f_{c1}
 - \circ Response after analog filtering with cutoff $|f| \leq 20$ MHz
 - Sampling at 40 Ms/s
 - \circ Digital filtering with $|\Omega| \le \pi/2$
 - Downsampling by 2

$$f_{c1} = 2.3 \text{ GHz}$$
 $f_{c2} = 2.5 \text{ GHz}$ $W = 12 \text{ MHz}$ $W = 12 \text{ MHz}$

Filter Design

- $\Box \text{ Effective pulse shape: } P_{rx}(f) = H_{ana}(f)H_{dig}\left(\frac{2\pi f}{f_SM}\right)$
- \square Want $P_{rx}(f)$ to be low-pass with cutoff $f = \frac{1}{T}$
- ☐ Typical design for analog filter
 - $H_{ana}(f)$ passband up to $\frac{1}{2T}$, Stopband $\frac{2M-1}{2T}$
 - Removes images before sampling
 - Large transition region. Easy to design
- ☐ Design spec for digital filter
 - \circ Low pass with digital cut-off frequency π/M
 - Typically very sharp to remove close adjacent carrier

Outline

- ☐ Receiver filtering and sampling
- ☐ Perfect reconstruction with orthonormal modulation
- ☐ General channels: Time-domain analysis
- ☐ General channels: Frequency-domain analysis
- ☐ Practical RX filter design
- Channel sounding
 - □ Sparse channel reconstruction (Advanced)

