Universidade Federal da Bahia UFBA

Departamento de

MAT174 Cálculo Numérico

Trabalho Final

Autores - T05

Felipe Guimarães Izidoro Freire "Joãozinho" "Beltrano"

Professora

Michelle Larissa Luciano Carvalho

Conteúdo

1	I Introdução					
2	Sistemas					
	2.1 Métodos de Gauss-Jacobi	2				
	2.2 Métodos de Gauss-Seidel	3				
3	Resultados Finais	3				

1 Introdução

Neste relatório sera apresentado como foi confeccionado a resolução de sistemas de equações lineares por métodos numéricos. Esse sistemas trabalhados são conhecidos como Métodos de Gauss-Jacobi e Métodos de Gauss-Seidel.

As resoluções serão baseadas no sistema a seguir:

$$\begin{cases} 2x_1 + 5x_2 = 3\\ 3x_1 + x_2 = 2 \end{cases} \tag{1}$$

2 Sistemas

Nesta sessão será ilustrada a composição e os passos seguidos para o encontro do resultado do sistemas com seus respectivos métodos. O erro escolhido pelos integrantes foi de: $\epsilon = 0,05$.

2.1 Métodos de Gauss-Jacobi

Para que o metodo seja efetivo e nos ao resultado, temos que permutar a linhas do sistema de tal forma que em cada linha n, o termo que acompanha x_n seja o maior da parte direita da equação. Logo o sistema (1) fica da seguinte maneira:

$$\begin{cases} 3x_1 + x_2 = 2\\ 2x_1 + 5x_2 = 3 \end{cases}$$
 (2)

Assim sendo o sistema acima consegue ser permutado para que matriz derivada fica diagonalmente dominante.

Portanto, após o sistema ser diagonalmente dominante, isolamos os x_n , para sua respectivas n linhas, obtendo:

$$\begin{cases} fx_1 = \frac{2-x_2}{3} \\ fx_2 = \frac{-3-2x_1}{5} \end{cases}$$
 (3)

Por fim, para obtermos o resultado do sitema (2), seguiremos os seguintes passos:

- 1. Obtemos o caso inicial (x_1^0, x_2^0) atribuindo "0" a todas variaveis de (3).
- 2. Após conseguirmos o resultado inicial, atribuimos novamente as variveis de (3), onde encontramos $x_1^1 = x_1^0$, e $x_2^1 = x_2^0$.
- 3. Encontramos o erro ϵ correpondente a: $\epsilon_n = x_n^i = x_n^{i-1}$.
- 4. Redefinimos valores para a proxima iteração, ou seja, o x_1^i, x_2^i serão os "casos iniciais".
- 5. Encontramos o maximo entre os *erros*, e o maximo entre os x_n^i , e definimos uma variavel qualquer "dr" da seguinte forma:

$$dr = \frac{\text{maximo dos erros}}{\text{maximo dos } x_n^i}$$

6. Se "dr" for menor que o erro, paramos o processo, caso não, retornamos ao passo 2.

Resultados obtidos pelo processo acima: (It. = 0, corresponde aos casos iniciais)

It.	x_1	x_2	Erro:	e_1	e_2
0	0.666667	-0.600000		0.666667	0.600000
1	0.866667	-0.866667		0.200000	0.266667
2	0.955556	-0.946667		0.088889	0.080000
3	0.982222	-0.982222		0.026667	0.035556

A solução do sistema (2) é : $x_1 = 0.982222, x_2 = -0.982222$

2.2 Métodos de Gauss-Seidel

3 Resultados Finais