

The Evolution of Access Technologies for Industrial IoT

Patrick Grossetete
BRKIOT-2008

Infrastructure Expansion for IIOT

Securely connecting Things in IP world

Enables business outcomes

Market Trends and Technology's Impacts in IIOT

- Indoor/Outdoor use cases
 - Fixed/Mobile Devices
 Flexibility
- Best Effort/Mission Critical
 - Public/Private

- Wired and wireless
- Owned or managed services
- Standards, interoperability
 & certification
 - Eco-system
 - Scalability

- Sunset of PSTN services
- High data rate wireless
- New spectrum regulations
- Private cellular

- · Capex & Opex
- Legacy devices and Backward Compatibility
- Ease of operations
- Cybersecurity

Use case & Devices dictates Technology's requirements

Device's single stream vs overall bandwidth capacity

Planning for 10Gbs path in Industrial IOT

Automation

Analytics

Managing the Sunset of PSTN Services

SCADA Protocol Translation

(IOS or IOx protocol translation)

or

Raw Socket

(IP Serial redirection on SCADA server)

Transportation

Utilities

BRKIOT-2008

Communities

Oil & Gas

No Change

Autonomous and Connected Devices In Today's Life

Wireless technologies are key pillars of loT, but one size does not fit

While Ethernet has always been the foundation for wired connectivity in industrial IoT spaces, how to select the appropriate wireless technologies?

Wireless provides the flexibility and agility to upgrade, deploy and reconfigure a network with less operational downtime, while integrating autonomous devices

As organizations expand their IoT deployments, the need to manage multiple access technologies will grow.

Manufacturing

Parking Lot

Warehouse

Gas Station

Roadways

Kiosk

Oil & Gas

Airport

Fleet

Seaport

Distribution Center

#CiscoLive

BRKIOT-2008

© 2021 Cisco and/or its affiliates, All rights reserved. Cisco Public

Industry and use-case driven technology selection criteria

Customer Use Case:

AGV/AMR, Train to Trackside, Autonomous mining, Remote Crane operations

MFG

Transportation

Mining

Utilities

Roadways

What are the devices to connect?

What are the applications requirements?

Deployment Scenarios?

What are the potential technology options?

What are the CapEx and OpEx Implication?

Devices

Local and global Eco-system

Handhelds, AGV/AMR, Dozer, Cranes, Rail

Resiliency

Latency, Reliability, Scalability, Ease of operations, throughput...

Deployment

Regional regulations: spectrum? Specify Environment: Indoor / Outdoor Access / backhaul Cyber-security

Technology

Wired: Ethernet, serial,DSL Wireless: Wi-Fi & Fluidmesh, Cellular, Wi-SUN, LoRaWAN,...

Spectrum:

Unlicensed, Licensed: Private, Public, Shared

TCO

Product costs?
Operational costs?
Complexity?
Training?
Backward compatibility?

Topology Options

Backhaul	and/or	Access
Indoor	and/or	Outdoor
Private	Infrastructure Or	Public
Licensed	Spectrum <i>OT</i>	Unlicensed

Point-to-Multi-Point

On-the-Move

Infrastructure: Public & Private

Spectrum: unlicensed sub-GHz ISM bands (EU868) Data rate: 250 bit/sec - 5.4 kbit/sec (EU868),

Use cases: batteries

LoRaWAN Architecture

WirelessHart & ISA100 Overview

Industrial measurements use cases

	WirelessHart	ISA100.11a
Frequency bands	IEEE 802.15.4-2006 2.4GHz, 16 channels	IEEE 802.15.4-2006 2.4GHz, 16 channels
Data Rate	250kbs	250kbs
Standard	IEC 62591	IEC 62734
Topology	TDMA/CSMA based wireless mesh	TDMA/CSMA star, mesh, star-mesh topologies
Channel hopping	fixed channel hopping table 10 msec time slot	multiple channel hopping tables variable slot time, default 10 msec
	Based on HART addressing	6LoWPAN, IPv6 and UDP
Vendors	Emerson, ABB, Siemens, Endress+Hauser	Honeywell, Yokogawa, GE
Specifications	https://fieldcommgroup.org/hart- specifications	https://www.isa.org/store/products/product-detail/?productId=118261

IW 6300

Mesh architecture support based on 802.11 AC Wave 2

WirelessHart and ISA100 as add-on module from partners

WirelessHart on IW6300

ISA100 on IW6300

Introducing Fluidmesh Technology

Extend networks infrastructure through innovative wireless backhaul technologies

FIXED Architecture

MOBILITY Architecture

BRKIOT-2008

Where will it be deployed?

- 1. Country? Spectrum? Regulations? Certifications, Compliancy?
- 2. Scale number of sites? Size?
- 3. Industry compliance, certifications, hardening?
- 4. Eco-system existing devices, cost?

Wireless Technologies - Spectrum

- Unlicensed: also known as ISM bands, generally free of charge, public, and private infrastructures, but regulated.
 - · Shared between technologies; co-existence definition in specifications
- Licensed: dedicated to SP (public services) or industries (private, critical infrastructures, i.e. U.S. Firstnet,...), paid license, allocated for several years.
 - · Including Shared license model.

5G Spectrum Landscape

Source: TMG/GSMA

Snapshot of LTE Bands when deploying Globally

P-LTEA-EA (Cat 6) (Multicarrier - U.S, Canada, Europe), B1-5, 7, 12, 13, 20, 25, 26, 29, 30, and 41

P-LTEA-LA (Cat 6) (APJC, LATAM) B1, 3, 5, 7, 8, 18, 19, 21, 28, 38, 39, 40, and 41

P-LTE-US (Cat 4) (AT&T) B2, 4, 5, 12 & 3G

P-LTE-VZ (Cat 4) (Verizon) B4 and 13

P-LTE-GB (Cat 4) (Europe) B1, 3, 7, 8, 20, 28 & 3G, 2G

Cisco IR1101
Auto-SIM
Carrier Aggregation
Private LTE
U.S. FirstNet

P-LTE-MNA (Cat 4) (Multicarrier-US) (Multicarrier - Global) B2,B4,B5,B12,B13,B14(FirstNet),17,66

P-LTEAP18-GL (Cat 18) (Multicarrier - Global) B 1, 2, 3, 4, 5, 7, 8, 12, 13, 14 (FirstNet) 17, 18, 19 20, 25, 26, 28, 29, 30, 32, 38, 39, 40, 41, 42, 43, 46, 48 (CBRS), 66, 71

Evaluating Cellular Throughput Capacity

- Throughput capacity is dependent from several characteristics
 - band, configuration, bandwidth, modulation, MiMo, options...
- Cellular capacity is mostly asymmetric
 - Downstream greater than upstream

19

BRKIOT-2008

IOT Wireless Technologies in Unlicensed Bands

FCC added 1200MHz to Unlicensed Spectrum

cisco Life!

Wi-Fi6E and CEPT - 500MHz in 6GHz Band

CEPT Report 75 - Nov. 2020

→ Start: 5925 MHz + 20 MHz guard channel + 10 MHz to get the center of the first 20 MHz channel

Private LTE/5G Network Framework

Managed Services

Fully Private

- Internet/Intranet data flow
- Local data flow for low latency

Data Center

Peer-to-Peer data Flow

Cisco 5G UE

Local Application

Server

Cisco Autonomous Mobile Robot (AMR) Testbed

- Enabled with dual path connectivity:
 - WiFi 6
 - Private LTE (CBRS B48)
 - 5G NR and Fluidmesh upgrade coming soon
- Achieve higher reliability with dual path in industrial venues that may suffer from interference

View demo at:

https://www.youtube.com/watch?v=M1LuTkgG4yU&feature=youtu.be

Blog:

Testing Wi-Fi 6, Fluidmesh, private LTE, 5G – with the help of robots

IoT Networking + Security Portfolio

Management & Automation

Field Network Director, Industrial Network Director, IoT Operations Center

Cisco Secured Industrial IOT Networks Baseline

Born for IP

Richest IPv4 & IPv6
feature set
Next Gen Crypto
HW Crypto
acceleration
Multi-access layers
neutrality

Operations at Scale

Automation
Segmentation
and isolation
Protocols'
optimization
Telemetry

Secure

Trusted Devices
Secure OS
Network security
Apps environment
Cyber security
CSDL
PSIRT

Edge-to-Cloud Operations

Zero Touch
Deployment
Sensors
Workflows mgnt
eCVD
Support & Services

Innovate

Cisco HW design
Cisco IOS-XE
Cisco IOX
Wi-SUN, TSN
Cybervision
Edge Intelligence
Fluidmesh

Cisco IOT Networking Hardware - Built for Harsh Environments

Size, weight, form factor, shock, vibration, temperature (-40 - +75°C), fanless, industry certifications & compliances...

BRKIOT-1225

Industries and IOT Wireless

From bits/sec to gigabits/sec			
Industries	Use Cases	Wireless Technologies Access (A) or Backhaul (B)	
Manufacturing, Warehouse, Distribution Center	Industrial automation, industrial security, plant efficiency, workforce enablement	LoRaWAN (A), Wi-Fi(A/B), 4G (B), 5G (A/B)	
Transportation	Passenger experience, data operations, operational efficiency, safety and compliance, traffic operations, roadway safety, sustainable mobility, sensor modernization	LoRaWAN (A), Wi-Fi (A/B), DSRC (A), Fluidmesh (B), 4G (B), 5G (A/B)	
Cities	Cities operations, public safety and security, citizen services, economic sustainability	LoRaWAN (A), Resilient Mesh (A), Wi-Fi (A/B), Fluidmesh (B), 4G (B), 5G (B)	
Mining	Field operations, industrial security, workforce enablement	LoRaWAN, (A) WirelessHart (A), ISA100.11a (A), Wi-Fi (A/B), Fluidmesh (B) 4G (B), p-LTE (A/B), 5G (B)	
Oil & Gas	Plant and field operations, industrial security, workforce enablement	LoRaWAN, (A) WirelessHart (A), ISA100.11a (A), Wi-Fi (A/B), Fluidmesh(B) 4G (B), p-LTE (A/B), 5G (B)	
Utilities	Connected substations, distribution grid management, workforce enablement, grid safety, production plants	LoRaWAN (A), Resilient Mesh (A), Wi-Fi (A/B), 4G (B), P-LTE (B), 5G (B)	

https://www.cisco.com/c/m/en_us/solutions/industries/portfolio-explorer.html

To Conclude

Use Case Driven

Need to start from the problem use cases are looking to solve, not force-fit technology

Technology Differentiation

Every technology has its best applicable domain, but overall End-to-End is IPv4/v6 traffic

TCO Matters

Need to consider both Opex and Capex

Multiple Technologies Will Coexist

Diverse use cases will often lead to multiple wireless technologies – even in a single enterprise

References

Additional Resources

5G and Wi-Fi 6 IOT Papers

- <u>Testing Wi-Fi 6</u>, private <u>LTE</u>, and soon, <u>5G</u> with the help of robots
- For your industrial IoT deployment: A four-step guide to selecting a wireless
- How 5G/Wi-Fi 6 will transform multi-access networks in industrial IoT
- What-does-5g-look-like-for-industrial-iot

Alliances

- LoRa https://lora-alliance.org/
- Wi-Fi https://www.wi-fi.org/
- Wi-SUN https://www.wi-sun.org/
- CBRS https://www.cbrsalliance.org/

Thank you

