Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

Idaho Water Supply Outlook Report March 1, 2002

NRCS snow surveyors measure snow at 9300 feet elevation at Fishpole Lake snow course, Big Lost River Mountains, in central Idaho.

Basin Outlook Reports and Federal - State - Private Cooperative Snow Surveys

For more water supply and resource management information, or to subscribe to this publication Contact - - Your local Natural Resources Conservation Service Office

or

Natural Resources Conservation Service Snow Surveys 9173 West Barnes Drive, Suite C Boise, Idaho 83709-1574 (208) 378-5740

Internet Web Address http://idsnow.id.nrcs.usda.gov/

How forecasts are made

Most of the annual streamflow in the western United States originates as snowfall that has accumulated in the mountains during the winter and early spring. As the snowpack accumulates, hydrologists estimate the runoff that will occur when it melts. Measurements of snow water equivalent at selected manual snow courses and automated SNOTEL sites, along with precipitation, antecedent streamflow, and indices of the El Niño / Southern Oscillation are used in computerized statistical and simulation models to prepare runoff forecasts. These forecasts are coordinated between hydrologists in the Natural Resources Conservation Service and the National Weather Service. Unless otherwise specified, all forecasts are for flows that would occur naturally without any upstream influences.

Forecasts of any kind, of course, are not perfect. Streamflow forecast uncertainty arises from three primary sources: (1) uncertain knowledge of future weather conditions, (2) uncertainty in the forecasting procedure, and (3) errors in the data. The forecast, therefore, must be interpreted not as a single value but rather as a range of values with specific probabilities of occurrence. The middle of the range is expressed by the 50% exceedance probability forecast, for which there is a 50% chance that the actual flow will be above, and a 50% chance that the actual flow will be below, this value. To describe the expected range around this 50% value, four other forecasts are provided, two smaller values (90% and 70% exceedance probability) and two larger values (30%, and 10% exceedance probability). For example, there is a 90% chance that the actual flow will be more than the 90% exceedance probability forecast. The others can be interpreted similarly.

The wider the spread among these values, the more uncertain the forecast. As the season progresses, forecasts become more accurate, primarily because a greater portion of the future weather conditions become known; this is reflected by a narrowing of the range around the 50% exceedance probability forecast. Users should take this uncertainty into consideration when making operational decisions by selecting forecasts corresponding to the level of risk they are willing to assume about the amount of water to be expected. If users anticipate receiving a lesser supply of water, or if they wish to increase their chances of having an adequate supply of water for their operations, they may want to base their decisions on the 90% or 70% exceedance probability forecasts, or something in between. On the other hand, if users are concerned about receiving too much water (for example, threat of flooding), they may want to base their decisions on the 30% or 10% exceedance probability forecasts, or something in between. Regardless of the forecast value users choose for operations, they should be prepared to deal with either more or less water. (Users should remember that even if the 90% exceedance probability forecast is used, there is still a 10% chance of receiving less than this amount.) By using the exceedance probability information, users can easily determine the chances of receiving more or less water.

The United States Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, gender, religion, age, disability, political beliefs, sexual orientation, or marital or familial status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at 202-720-2600 (voice and TDD).

To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326-W, Whitten Building, 14th and Independence Avenue, SW, Washington, D.C., 20250-9410, or call (202) 720-5964 (voice and TDD). USDA is an equal employment opportunity provider and employer.

IDAHO WATER SUPPLY OUTLOOK REPORT

March 1, 2002

SUMMARY

The lack of precipitation the past two months is taking its toll on Idaho's frozen liquid gold. Snowpack percents of average are gradually decreasing as a result of the lack of winter storms moving into Idaho. February precipitation ranged from 80% of average in northern Idaho to 40% in the Bear River basin. Snowpack percentages range from 75-110% of average for most basins; most low elevation drainages are reporting an average to well above average snowpack. A near normal snowpack sounds good after last year's snowpack that was only half of normal on April 1, but with most reservoirs reporting much less water than last year, a good snowpack and runoff are critical this year. Streamflow forecasts range from a high of 120% of average in northern Idaho to 42% of average in the Bear River basin. Most streams across central and eastern Idaho are forecast in the 75-85% of average range. Palisades, Jackson Lake and Anderson Ranch reservoirs are not expected to fill based on below normal runoff volumes. Irrigation water supplies will be marginally adequate. Shortages depend upon your water source and water right and are possible in the upper Snake, Bear River, Oakley, Salmon Falls, Big Lost and Little Lost basins.

Water users should monitor conditions closely during the next two months. Spring precipitation can make or break a streamflow forecast, especially in southern Idaho.

SNOWPACK

The lack of new snow is causing Idaho's snowpack to gradually slip to below normal conditions. Most snowpacks range from 75-110% of average. The exceptions are the low elevation snowpacks that are above to well above average. This low elevation snow provides some additional runoff and helps recharge the soil profile, but most of the low snow melts within a few weeks or a month after the snow starts melting. It is more important for the high elevation snowpack to be near normal or better since this is the primary source of Idaho's streamflow. When high elevation snow starts melting, it may take two months or longer to melt the volume of snow in these areas.

Low elevation basins in northern Idaho such as Hayden Lake and Palouse basin are 160% of average. The Owyhee basin snowpack is 132% of average, based on SNOTEL sites and aerial markers. The snowpack in the lower Boise mountains is also above average, while higher sites are only 85% of average. The Camas Creek basin snowpack near Fairfield is 106% of average, while the high elevation of Big Wood basin is only 82%. Eastern Idaho snowpacks are more consistent with all basins reporting in the 75-85% of average range. The lowest snowpacks in the state are 72-77% of average in the Lemhi basin, headwaters of the Snake River in Wyoming, and Bear River basin.

PRECIPITATION

February precipitation took a downward turn and was below normal across the state. The Panhandle Region and Clearwater basin received the most at 80% of average, while the Bear River basin received the least at only 41% of average. Elsewhere, February precipitation ranged from about 55% of average in the Salmon and west-central mountains to 45% in central, eastern and southern Idaho. Water year to date precipitation remains above normal in only the Panhandle Region and Clearwater basin, 119% and 111% of average respectively. Elsewhere, water year to date ranges from 81% of average in the Bear River basin to 99% in the Southside Snake River basins. The 30-day (March) and 60-day (March-May) extended precipitation outlook for Idaho and the Pacific Northwest provided by the National Weather Service remains the same - climatology - which means there is an equal chance (33 percent chance) for above normal, normal, or below normal precipitation to occur. The extended temperature forecast for the same periods is for above normal temperatures for the West.

RESERVOIRS

Reservoir storage varies across the state. The lakes and reservoirs in the Panhandle Region are storing near average or better amounts with the exception of Pend Oreille Lake. Rapid melting of the above average low elevation snow will generate rapid increases in these northern Idaho streams and lake levels. Dworshak Reservoir will fill this year and started making flood control releases in early February. The Payette reservoir system is 76% of average and will fill. The Boise reservoir system is 70% of average - Lucky Peak and Arrowrock will fill, but Anderson Ranch Reservoir is not expected to fill. Owyhee Reservoir is 23% full and will increase rapidly in storage when the low snow melts, but may not fill completely. Magic Reservoir remains low waiting for the near normal snowpack in Camas Creek to pour into the reservoir; hopefully, the Big Wood River can fill Magic reservoir the rest of the way. Mackay Reservoir is 72% of average and will fill. Palisades Reservoir is half of average and Jackson Lake is one-third of average and are not expected to fill. Bear Lake is only 65% of average and will remain low with Bear River forecasted at only 42% of average. Oakley Reservoir storage is less than half of average, while Salmon Falls Reservoir is only a quarter of average. Brownlee Reservoir is 89% of average, 68% full.

Note: NRCS reports reservoir information in terms of usable volumes, which includes both active, inactive and in some cases dead storage. Other operators may report reservoir contents in different terms. For additional information, see the reservoir definitions in this report.

STREAMFLOW

Spring and summer streamflow forecasts decreased 5-20 percentage points across most of the state as a result of the below to well below normal February precipitation. The lowest forecasts in the state are in the Bear River basin at 42% of average. The highest forecasts are in the Panhandle Region, Clearwater basin and Owyhee basin at 100-120% of average. Elsewhere, streams are forecast in the 60-90% of average range. Normal or better precipitation is needed for the remaining winter months and in the spring to ensure adequate water supplies. Below normal spring precipitation like Idaho received the past two seasons will only result in observed streamflow levels below the "Most Probable" or 50% exceedance level.

RECREATION

February brought lots of sunny, clear days. February precipitation was below normal across the state. Cold temperatures have kept the snow light and fluffy, especially in eastern Idaho. Island Park SNOTEL reached -36 degrees Fahrenheit on February 26! With below normal precipitation across most of the state the past two months, snowpack percentages and streamflow forecasts have also decreased. Owyhee River runners should be getting their gear ready; warm temperatures can melt the above average low elevation snow rapidly and generate potentially high peaks especially with a blast of rain. The Bruneau River should have a good boating season too. Northern Idaho river runners will benefit the most from the above average snowpacks with a long boating season. The Middle Fork Salmon River has twice the amount of snow as last year so expect a much longer season this year. The main Salmon River floating season will be long and enjoyable as it always is. The Payette reservoir system will fill and provide excellent flow when the natural snowmelt runoff recedes. Lucky Peak and Arrowrock reservoirs will fill and provide excellent reservoir recreation; irrigation releases will provide adequate tubing levels for floating through the Capitol City. Anderson Ranch Reservoir is not expected to fill. Palisades Reservoir and Jackson Lake are not expected to fill, but should provide good flows for the fishing and recreational boating.

IDAHO SURFACE WATER SUPPLY INDEX (SWSI) As of March 1, 2002

The Surface Water Supply Index (SWSI) is a predictive indicator of surface water availability within a watershed for the spring and summer water use season. The index is calculated by combining pre-runoff reservoir storage (carryover) with forecasts of spring and summer streamflow. SWSI values are scaled from +4.1 (abundant supply) to -4.1 (extremely dry), with a value of zero indicating a median water supply as compared to historical occurrences.

SWSI values are published January through May and provide a more comprehensive outlook of water availability than either streamflow forecasts or reservoir storage figures alone. The SWSI index allows comparison of water availability between basins for drought or flood severity analysis. Threshold SWSI values have been established for most basins to indicate the potential for agricultural water shortages.

The following agencies and cooperators provide assistance in the preparation of the Surface Water Supply Index for Idaho:

US National Weather Service US Bureau of Reclamation Idaho Water Users Association US Army Corps of Engineers Idaho Dept. of Water Resources PacifiCorp

BASIN or REGION	SWSI Value	Most Recent Year With Similar SWSI Value	Agricultural Water Supply Shortage May Occur When SWSI is Less Than
PANHANDLE	1.2	1990/91	NA
CLEARWATER	1.7	1999	NA
SALMON	-0.5	1995	NA
WEISER	0.2	1986	NA
PAYETTE	-1.0	2000	NA
BOISE	-1.5	1985	-2.6
BIG WOOD	-1.6	1981	-1.4
LITTLE WOOD	-0.9	1985	-2.6
BIG LOST	-1.6	1987	-0.8
LITTLE LOST	-0.8	1996	0.0
HENRYS FORK	-2.0	1990/91	-3.3
SNAKE (AMERICAN FALLS)	-2 .9	1987/94	-2.0
OAKLEY	-1.6	1989	0.0
SALMON FALLS	-1.2	1988	0.0
BRUNEAU	-0.9	1985	NA
OWYHEE	-0.9		NA
BEAR RIVER	-3.4	2001	-3.8

SWSI SCALE, PERCENT CHANCE OF EXCEEDANCE, AND INTERPRETATION

-4	-3	-2	-1	0	1		2	;	3	4
 99%	 87%	 75%	- 63%	 50%	 37%		 25%	13	 क्ष	 1%
Much Below	Below Normal		1 	Near Normal Water Supply	7	 	Above Normal	 	Much Above	

Note: The Percent Chance of Exceedance is an indicator of how often a range of SWSI values might be expected to occur. Each SWSI unit represents about 12% of the historical occurrences. As an example of interpreting the above scale, the SWSI can be expected to be greater than -3.0, 87% of the time and less than -3.0, 13% of the time. Half the time, the SWSI will be below and half the time above a value of zero. The interval between -1.5 and +1.5 described as "Near Normal Water Supply," represents three SWSI units and would be expected to occur about one-third (36%) of the time.

Prepared by NRCS Snow Survey, Boise Idaho

3/6/02

PANHANDLE REGION MARCH 1, 2002

WATER SUPPLY OUTLOOK

For the second consecutive month, the Panhandle Region and Clearwater basin received the highest monthly precipitation in the state, 80% of average. Water year to date precipitation is also the highest in the state at 119% of average. Precipitation for this water year has already exceeded the total amount that fell all of last water year. This is good news for an area that had a record low snowpack last year of only 50% of average on April 1. The snowpack in this region is also the highest in the state at 110% of average. The highest snowpack percentages are in the lower elevation areas of Hayden Lake and Palouse basin at 160% of average. Bear Mountain SNOTEL site is 120% of average and has 60 inches of snow water compared to only 20 inches a year ago. The Pend Oreille River basin snowpack is just below normal at 94% of average. Pend Oreille Lake storage remains below normal at 76% of average, while Coeur d'Alene and Priest lakes are near normal or better. Streamflow forecasts range from 90-120% of average for these northern Idaho streams. Water supplies will be adequate and much better than last year.

PANHANDLE REGION Streamflow Forecasts - March 1, 2002

			PANHANDLE I Forecasts	- March 1, 20	002					
			<===== Drier ===== Future Conditions ====== Wetter ====>>							
Forecast Point	Forecast Period	90% 70% (1000AF) (1000AF)		50% (Most	Exceeding * == Probable) (% AVG.)		10% 1000AF)	30-Yr Avg. (1000AF)		
KOOTENAI at Leonia (1,2)	APR-JUL APR-SEP	5669 6630	6399 7407	6730 7760	96 96		7791 3890	7035 8125		
MOYIE RIVER at Eastport	APR-JUL APR-SEP	385 398	416 431	437 453	108 108	458 475	489 508	403 418		
SMITH CREEK	APR-JUL APR-SEP	94 97	108 113	118 124	96 96	128 135	142 151	123 129		
BOUNDARY CREEK	APR-JUL APR-SEP	99 104	113 119	123	100 100	133 139	147 154	123 129		
PEND OREILLE Lake Inflow (2)	APR-JUL APR-SEP	9214 9302	10628 11270	11588 12607	91 91		3962 5912	12700 13900		
PRIEST near Priest River (1,2)	APR-JUL APR-SEP	691 731	787 837	830 885	102 102	873 933	969 1039	814 868		
COEUR D'ALENE at Enaville	APR-JUL APR-SEP	701 740	804 847	875 920	118 118		1049 1100	739 778		
ST. JOE at Calder	APR-JUL APR-SEP	1102 1185	1226 1313	1310 1400	115 116		1518 1615	1136 1205		
SPOKANE near Post Falls (2)	APR-JUL APR-SEP	2519 2620	2853 2965	3080 3200	121 121		3641 3780	2552 2650		
SPOKANE at Long Lake (2)	APR-JUL APR-SEP	2751 2957	3138 3366	3401 3644	119 119		051 331	2851 3072		
	NDLE REGION 000 AF) - End	of Februar	·y			PANHANDLE REGION owpack Analysis	March 1	, 2002		
======================================	Usable Capacity	This	e Storage †	Water	rshed	Number of		ear as % of		
======HUNGRY HORSE	 ====================================	Year ====================================		Nvg ===== =============================	enai ab Bonner	Data Sites 	Last Y ====================================	r Average ====================================		

Reservoir St	orage (1000 AF) - End	of Febr	uary		Watershed Snowpack Analysis - March 1, 200					
Reservoir	Usable Capacity	Usable *** Usable Stor Capacity This Last		age ***		Number of	This Yea	ras % of		
		Year	Year	Avg		Data Sites	Last Yr	Average		
HUNGRY HORSE	3451.0	2421.0	2168.0	2047.6	Kootenai ab Bonners Fer	ry 32	199	100		
FLATHEAD LAKE	1791.0	937.5	844.0	802.7	Moyie River	12	182	100		
NOXON RAPIDS	335.0	319.9	305.9	297.5	Priest River	4	203	106		
PEND OREILLE	1561.3	593.6	734.4	778.8	Pend Oreille River	95	154	94		
COEUR D'ALENE	238.5	133.7	26.3	144.9	Rathdrum Creek	4	176	138		
PRIEST LAKE	119.3	58.9	53.0	56.8	Hayden Lake	2	210	164		
					Coeur d'Alene River	9	180	118		
					St. Joe River	4	230	118		
					Spokane River	17	188	124		
					Palouse River	2	195	157		

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

^{(2) -} The value is natural flow - actual flow may be affected by upstream water management.

CLEARWATER RIVER BASIN MARCH 1, 2002

WATER SUPPLY OUTLOOK

The Clearwater and Panhandle Regions received the highest February precipitation in the state for the second month in a row at 80% of average. As a result of the below normal precipitation, snowpack percentages also decreased by about 5 percentage points from a month ago. Snowpacks range from a high of 107% of average in the North Fork Clearwater River to 91% of average in the Lochsa and Selway rivers. Overall, the Clearwater River snowpack is 103% of average. Dworshak Reservoir is 62% of capacity, down 7 percentage points (250,000 acre-feet) from a month ago due to flood control releases. Reservoir storage remains near normal at 96% of average. Dworshak Reservoir inflow is forecast at 112% of average and will fill this year. The Clearwater River at Spalding is forecast at 110% of average. The Selway River and Lochsa River are each forecast at 89% and 96% of average respectively. The March 1 snowpack is still only 81% of its mid-April snow water content peak. More snow and rain the next six weeks would help the numerous water users in Idaho and downstream of Idaho.

CLEARWATER RIVER BASIN Streamflow Forecasts - March 1, 2002

		<<====================================	Drier ===	== Fu	ture Co	nditions =====	== Wetter	====>>	
Forecast Point	Forecast Period	90% (1000AF)	70% (1000AF)	50%	(Most	xceeding * ==== Probable) (% AVG.)	30% (1000AF)	10%	30-Yr Avg. (1000AF)
SELWAY near Lowell	APR-JUL APR-SEP	1553 1634	1723 1818		1839 1942	89 90	1955 2066	2125 2250	2062 2170
LOCHSA near Lowell	APR-JUL APR-SEP	1277 1346	1391 1466		1468 1547	96 96	1545 1628	1659 1748	1530 1609
DWORSHAK RESV INFLOW (1,2)	APR-JUL APR-SEP	2303 2481	2748 2941		2950 3150	112 113	3152 3359	3597 3819	2635 2799
CLEARWATER at Orofino (1)	APR-JUL APR-SEP	4011 4205	4677 4917	1	4980 5240	107 107	5283 5563	5949 6275	4645 4900
CLEARWATER at Spalding (1,2)	APR-JUL APR-SEP	6532 6890	7665 8080		8180 8620	110 110	8695 9160	9828 10350	7435 7850
CLEARWA Reservoir Storage (TER RIVER BASII 1000 AF) - End		y	::::::::::::::::::::::::::::::::::::::	=====	Watershed Snowp		is - March	1, 2002
Reservoir	Usable Capacity	*** Usabl This Year	e Storage * Last Year A	** 	Water		Numbe of Data Si	r This	Year as % of Yr Average
DWORSHAK	3468.0	2156.3 2	016.7 224	7.3	North	Fork Clearwate	r 9	200	107
					Lochs	a River	3	161	91
					Selwa	y River	5	152	91
					Clear	water Basin Tot	al 18	182	103

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

- (1) The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
- (2) The value is natural flow actual flow may be affected by upstream water management.

SALMON RIVER BASIN MARCH 1, 2002

WATER SUPPLY OUTLOOK

The Salmon basin was the dividing line for February precipitation with basins to the north receiving about 80% of normal amounts and basins to the south receiving half or less. Precipitation in the Salmon basins in February was 57% of average. Precipitation for the water year is 91% of average. As a result of the below normal precipitation, snowpack percentages decreased 6-10 percentage points from a month ago. The snow water content amounts range from a high of 97% of average in the low elevation Little Salmon basin to a low of 75% in the Lemhi River basin, one of the lowest snowpacks in the state. The Middle Fork Salmon River basin snowpack is 82% of average and has twice the amount of snow as last year! Overall, the Salmon River snowpack is 85% of average. The April-September streamflow forecast for the Salmon River at Salmon is for 86% of average; the Salmon River at White Bird is forecast at 89% of average. More snow is still needed this season because the snowpack is only 66% of its normal peak that occurs between April 1 and May 1. Last year's streamflow was only about 45% of average, so river runners and water users will see much better runoff than last year!

SALMON RIVER BASIN Streamflow Forecasts - March 1, 2002

						nditions ===				
Forecast Point	Forecast Period	90% (1000AF)	70% (1000AF)	50	% (Most	xceeding * == Probable) (% AVG.)	30% (1000AF)	10%		0-Yr Avg. (1000AF)
======================================	APR-JUL APR-SEP	516 617	667 784		735 860	86 86	803 936	954 1103	=====	857 1000
SALMON at White Bird (1)	APR-JUL APR-SEP	3847 4261	4798 5312		5230 5790	89 89	5662 6268	6613 7319		5851 6482
SALI Reservoir Storage	MON RIVER BASIN (1000 AF) - End	of Februar	======= y	====== 	=222==2	SA Watershed Sno	LMON RIVER Owpack Analy		ch 1,	2002
======================================	Usable Capacity	*** Usabl This Year	e Storage ' Last Year	*** Avg	Water	shed	Numi of Data S	f ==	is Yea ===== st Yr	r as % of
	=======================================		=======	=====	Salmo	n River ab Sa	lmon 1	1 15	 4	81
					Lemhi	River	1	1 11	5	75

Middle Fork Salmon River

South Fork Salmon River

Little Salmon River

Salmon Basin Total

199

205

224

162

3

82

85

97

84

- (1) The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
- (2) The value is natural flow actual flow may be affected by upstream water management.

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

WEISER, PAYETTE, BOISE RIVER BASINS MARCH 1, 2002

WATER SUPPLY OUTLOOK

February precipitation in these west-central Idaho mountains ranged from 30-60% of average. Overall, precipitation in February in these basins was 51% of average and is 96% of average since October 1. Snow water content levels remain above normal in the lower elevations and Boise foothills and decreases to only 80% of average for several SNOTEL sites in the headwaters of the Boise, Payette and Big Wood rivers. Snow water content levels in the Weiser and Mann basins are near normal and have twice the amount of snow as last year. The North Fork Payette River is 96% of average while the South Fork Payette River is 88%; overall the Payette basin is 95% of average. The Boise basin snowpack ranges from 108% of average for Mores Creek to 89% for the Middle and North Forks of the Boise River. The Payette reservoir system is 47% full and should fill. The Payette River near Horseshoe Bend streamflow forecast is for 90% of average, down from last month. The Boise reservoir system is 41% full, up three percentage points from last month. Lucky Peak and Arrowrock reservoirs are projected to fill, but Anderson Ranch Reservoir is not projected to fill. The Boise River near Boise streamflow forecast is projected for 88% of average. Water supplies should be adequate in these basins.

WEISER, PAYETTE, BOISE RIVER BASINS Streamflow Forecasts - March 1, 2002

		Streamflow	Forecast	:s - Ma	rch 1, 20	02 			
=======================================		<<====================================	Drier ==		Future Co	nditions =====	== Wetter	====>>	
Forecast Point	Forecast Period	90%	70% (1000AF)	5	ance Of E 0% (Most (1000AF)		30%	10% (1000AF)	30-Yr Avg. (1000AF)
WEISER near Weiser (1)	APR-SEP	204	337		397	95	457	590	420
SF PAYETTE at Lowman	APR-JUL APR-SEP	289 328	334 379		3 65 414	83 84	396 449	441 500	438 494
DEADWOOD RESERVOIR Inflow (1,2)	APR-JUL APR-SEP	88 93	108 115		118 125	88 88	128 1 3 5	148 157	134 142
LAKE FORK PAYETTE near McCall	APR-JUL APR-SEP	63 65	71 74		77 80	91 90	83 86	92 95	85 89
NF PAYETTE at Cascade (1,2)	APR-JUL APR-SEP	316 346	414 452		459 500	94 94	504 548	602 654	488 530
NF PAYETTE nr Banks (2)	APR-JUL APR-SEP	422 454	515 553		578 621	90 90	641 689	734 788	643 690
PAYETTE nr Horseshoe Bend (1,2)	APR-JUL APR-SEP	1042 1136	1322 1441		1449 1580	90 90	1576 1719	1856 2024	1610 1 <i>7</i> 55
BOISE near Twin Springs (1)	APR-JUL APR-SEP	426 461	526 570		572 620	90 90	618 670	718 779	6 3 6 691
SF BOISE at Anderson Ranch Dam (1,2)	APR-JUL APR-SEP	317 342	420 451		466 500	86 86	512 549	615 658	542 579
MORES CREEK near Arrowrock Dam	APR-JUL APR-SEP	91 96	114 119		129 135	99 99	144 151	167 174	131 137
BOISE near Boise (1,2)	APR-JUN APR-JUL APR-SEP	830 878 955	1020 1130 1221		1107 1244 1342	88 88 88	1194 1358 1463	1384 1610 1729	1258 1414 1526
WEISER, PAYETTE, E Reservoir Storage (1000			у			WEISER, PAYE Watershed Snowp	back Analysi	is - March	
Poconyoin	Usable		e Storage	***	laton		Number of		Year as % of
Reservoir	Capacity 	This Year	Last Year	Avg	Water	shea	Of Data Sit		
MANN CREEK	11.1	3.0	2.1	6.1	Mann (Creek	2	180	110
CASCADE	693.2	345.3	416.6	438.3	Weise	r River	5	202	108
DEADWOOD	164.0	53.7	93.0	88.5	North	Fork Payette	8	199	95
ANDERSON RANCH	450.2	74.7	278.2	268.0	South	Fork Payette	5	189	88
ARROWROCK	272.2	229.1	153.4	210.4	Payet	te Basin Total	14	190	94
LUCKY PEAK	293.2	112.9	109.6	120.4	Middl	e & North Fork	Boise 6	179	89
LAKE LOWELL (DEER FLAT)	165.2	38.7	97.3	109.1	South	Fork Boise Riv	er 9	172	96

Mores Creek

Canyon Creek

Boise Basin Total

5

16

158

168

187

108

98

141

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

^{(2) -} The value is natural flow - actual flow may be affected by upstream water management.

WOOD and LOST RIVER BASINS MARCH 1, 2002

WATER SUPPLY OUTLOOK

February precipitation was 43% of average, and as a result decreased the water year to date precipitation from 97% of average last month to its current value of 86%. Similarly, snowpack percentages decreased 10-20 percentage points from last month. Snowpacks now range from near normal in the Camas Creek basin to 76% of average in the Little Wood River basin. Other basins in these central Idaho mountains are about 82% of average. The current snow water content is only 67% of its normal peak that usually occur between March 1 and April 15. Magic Reservoir is nearly empty at 10% of capacity; the 50 Percent Exceedance Probability Forecast calls for 78% of average, and water supplies will be marginally adequate at best. Little Wood Reservoir is 37% full and with a streamflow projection of 78% should have adequate irrigation supplies for its users. Mackay Reservoir is half full, and with a Most Probable streamflow forecast of only 77% of average, may experience irrigation water supply shortages. The Little Lost River is projected at 84% of average, irrigation water shortages start occurring when streamflow is below average. Above normal precipitation is needed the next two months to provide additional streamflow for these water users that may experience water supply shortages.

		Streamflow	Forecast	s - Mai	rch 1, 200)2 			
		<<===== 	Drier ==		Future Cor	nditions =====	== Wetter ===	==>>	
Forecast Point	Forecast	=======================================							
	Period	90% (1000AF)	70% (1000AF)		0% (Most Probable) (1000AF) (% AVG.) ====================================		30% 1 (1000AF) (10		30-Yr Avg. (1000AF)
BIG WOOD at Hailey (1)	APR-JUL	118	172		200	78	230	304	256
	APR-SEP	134	195		226	78	260	342	289
BIG WOOD near Bellevue	APR-JUL	74	111		141	75	174	229	188
	APR-SEP	81	120		151	76	185	242	200
CAMAS CREEK near Blaine	APR-JUL	44	65		81	82	99	129	99
	APR-SEP	46	67		83	82	101	132	101
BIG WOOD below Magic Dam (2)	APR-JUL	104	177		227	78	277	350	291
	APR-SEP	112	188	İ	240	78		368	307
LITTLE WOOD near Carey (2)	MAR-JUL	41	61		75	78	89	109	96
	MAR-SEP	45	67		81	78	95	117	104
BIG LOST at Howell Ranch	APR-JUN	74	96		111	83	126	148	134
ord good of honore handle	APR-JUL	87	120		143	83	166	199	172
	APR-SEP	101	139		164	83		227	197
BIG LOST below Mackay Reservoir (2)	APR-JUL	56	87		109	77	131	162	142
,	APR-SEP	73	109		133	77	157	193	173
LITTLE LOST blw Wet Creek	APR-JUL	18.3	23		26	84	29	34	31
	APR-SEP	23	29		33	84	37	43	39
WOOD AND LOST Reservoir Storage (1000			•======= v			WOOD AND Watershed Snowpa	LOST RIVER BA		2002
			e Storage	***		.=========			
Reservoir	Capacity	This	Last		Waters	shed	of	======	
	 	Year ========	Year	Avg =====	 	.========	Data Sites	Last Yr	Average
MAGIC	191.5	18.8	48.2	89.7	Big Wo	ood ab Hailey	8	151	82
LITTLE WOOD	30.0	11.2	16.9	17.7	Camas	Creek	5	178	106
MACKAY	44.4	22.2	23.5	30.8	Big Wo	ood Basin Total	12	158	89
					Little	e Wood River	5	113	76
					Fish C	Creek	3	163	97
					Big Lo	st River	7	129	82

Little Lost River

Camas-Beaver Creeks

Birch-Medicine Lodge Cree 4

139

114

153

81

84

93

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

^{(2) -} The value is natural flow - actual flow may be affected by upstream water management.

UPPER SNAKE RIVER BASIN MARCH 1, 2002

WATER SUPPLY OUTLOOK

Precipitation in February was 48% of average, the lowest month percentages since last August and September. Precipitation for the water year is 85% of average. Soil moisture deficits are probably still present as a result of the lack of fall rains. Several inches of snowmelt water may be needed to recharge the soil moisture profile, thus effectively reducing the runoff potential of this year's snowpack. Snowpack percentages decreased about 10 percentage points from last month and now range from 75-85% of average for these basins. The lowest snowpacks in the state are located in eastern Idaho and headwaters of the Snake River basin. The snow water content at Lewis Lake Divide SNOTEL in Yellowstone National Park is 74% of average. Out of 11 other years with similar snow water content on March 1, the snow has never returned to average by April 1. The best it has ended on April 1 of these 11 years is 90% of average. If no more snow falls this winter, snowpack in the Snake River above Palisades Reservoir basin would be only 59% of average mid-April, while the Henry's Fork and Teton basins would be 66% of average. Last year on April 1, the snowpack was about 55% of average. The combined storage for the 8 major reservoirs in the upper Snake basin is 46% full, 65% of average. This is about 1 million acre-feet less than a year ago. Streamflow forecasts decreased from a month ago and now range from 60-80% of average. Palisades and Jackson reservoirs will not fill based on these below normal projections. Surface irrigation supplies will be marginally adequate at best. Water users should be prepared for possible shortages and remain in contact with their local irrigation districts for more specific information.

UPPER SNAKE RIVER BASIN Streamflow Forecasts - March 1, 2002

		 <<====	Drier ====	== Future Co	nditions ==	==== Wetter	· ===>>		
Forecast Point	Forecast Period	90% (1000AF)	70% (1000AF)	= Chance Of E 50% (Most (1000AF)		30% (1000AF)	30-Yr Avg. (1000AF)		
HENRYS FORK near Ashton (2)	APR-JUL	361	411	445	78	479	529	571	
	APR-SEP	495	553	593	78	633	691	763	
HENRYS FORK near Rexburg (2)	APR-JUL	712	873	982	63	1091	1252	1559	
	APR-SEP	956	1137	1260	63	1383	1564	2013	
FALLS near Squirrel (1,2)	APR-JUL	232	286	310	80	334	388	386	
	APR-SEP	276	332	357	78	382	438	456	
TETON near Driggs	APR-JUL	92	117	135	82	153	178	165	
	APR-SEP	120	151	172	82	193	224	210	
TETON near St. Anthony	APR-JUL	226	283	322	80	361	418	403	
	APR-SEP	276	341	385	80	429	494	482	
SNAKE near Moran (1,2)	APR-SEP	546	669	725	80	781	904	904	
PACIFIC CREEK at Moran	APR-SEP	105	126	140	79	154	175	178	
SNAKE above Palisades (2)	APR-JUL	1578	1767	1896	80	2025	2214	2370	
	APR-SEP	1827	2042	2188	80	2334	2549	2735	
GREYS above Palisades	APR-JUL	188	227	254	75	281	320	338	
	APR-SEP	221	265	295	75	325	369	394	
SALT near Etna	APR-JUL	172	226	263	77	300	354	342	
	APR-SEP	216	280	323	77	366	430	419	
PALISADES RESERVOIR INFLOW (1,2)	APR-JUL	1923	2364	25 <i>6</i> 5	77	2766	3207	3331	
	APR-SEP	2267	2757	2980	77	3203	3693	3875	
SNAKE near Heise (2)	APR-JUL	2160	2485	2706	76	2927	3252	3561	
	APR-SEP	2554	2921	3170	76	3419	3786	4159	
BLACKFOOT RESV INFLOW	APR-JUN	49	72	87	73	102	125	120	
SNAKE nr Blackfoot (1,2)	APR-JUL	2562	3365	3730	71	4095	4898	5262	
	APR-SEP	3344	4220	4617	71	5014	5890	6538	
PORTNEUF at Topaz	MAR-JUL	52	62	69	78	76	86	89	
	MAR-SEP	64	76	84	77	92	104	109	
AMERICAN FALLS RESV INFLOW (1,2)	APR-JUL	702	1574	1970	61	2366	3238	3242	
	APR-SEP	685	1684	2138	61	2592	3591	3505	

Reservoir Sto	orage (1000 AF) - End	of Febru	uary	I	Watershed Snowpack	Analysis -	March 1,	2002
Reservoir	Usable Capacity	Capacity This Last		age ***	Watershed	Number of	This Year as % of	
		Year	Year	Avg	D	ata Sites	Last Yr	Average
HENRYS LAKE	90.4	55.8	86.2	84.4	Henrys Fork-Falls River	12	151	85
ISLAND PARK	135.2	95.4	111.5	107.1	Teton River	8	112	74
GRASSY LAKE	15.2	9.6	12.8	12.0	Henrys Fork above Rexbur	g 20	135	81
JACKSON LAKE	847.0	153.4	638.3	494.0	Snake above Jackson Lake	9	136	76
PALISADES	1400.0	528.0	695.6	1033.1	Gros Ventre River	4	123	77
RIRIE	80.5	30.7	43.2	38.5	Hoback River	6	118	75
BLACKFOOT	348.7	110.9	210.1	224.7	Greys River	5	119	75
AMERICAN FALLS	1672.6	1127.1	1382.6	1271.1	Salt River	5	115	75
				1	Snake above Palisades	30	125	75
					Willow Creek	7	116	85
					Blackfoot River	5	125	77
					Portneuf River	6	138	81
					Snake abv American Falls	45	124	77

UPPER SNAKE RIVER BASIN

UPPER SNAKE RIVER BASIN

 $[\]star$ 90%, 70%, 30%, and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table. The average is computed for the 1971-2000 base period.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.(2) - The value is natural flow - actual flow may be affected by upstream water management.

SOUTHSIDE SNAKE RIVER BASINS MARCH 1, 2002

WATER SUPPLY OUTLOOK

February precipitation was only 45% of average. As a result, water year to date precipitation has now dropped to 99% of average. Snowpack percentages also dropped 10-20 percentage points during February and now range from 105-110% of average in the Raft, Oakley, Salmon Falls and Bruneau basins. The low elevation Owyhee basin remains well above average at 132% of average, the highest since 1997. Warm temperatures or rain can rapidly melt this snowpack and may generate rapid increases in streamflows on the Owyhee River. Owyhee Reservoir is only 23% full and should have room to handle whatever Mother Nature delivers. Salmon Falls Reservoir remains nearly empty at 8% of capacity, inflows are forecast at 81% of average. Oakley Reservoir is 19% of capacity with inflows projected at 76% of average. There is still a good low elevation snowpack in the Oakley basin; ranchers are plowing snow in the pastures or moving cattle to open fields in order to feed them. This low elevation snow is not monitored by our snow survey network, but it will provide some runoff and help recharge the soil. The Snake River at Hells Canyon is forecast at 64% of average. Oakley and Salmon Falls water users should prepare for irrigation water shortages especially if spring precipitation is below normal like the last two years.

SOUTHSIDE SNAKE RIVER BASINS Streamflow Forecasts - March 1, 2002

		<<====================================	Drier ====	== Future Co	nditions ==	==== Wetter	====>>		
Forecast Point	Forecast Period	90%	70% (1000AF)	= Chance Of E 50% (Most (1000AF)	Probable) (% AVG.)	30%	10% (1000AF)	30-Yr Avg.	
OAKLEY RESV INFLOW	MAR-JUL	16.7	22	26	77	30	37	34	
	MAR-SEP	18.2	24	28	76	33	40	37	
DAKLEY RESV STORAGE	MAR-31	16.2	17.4	18.2	51	19.0	20	36	
	APR-30 MAY-31	19.5 18.9	22 23	24	58 58	25 29	28 33	41 45	
					i	07	400		
SALMON FALLS CREEK nr San Jacinto	MAR-JUN MAR-JUL	49 50	62 64	72 75	81 81	83 87	100 105	89 93	
	MAR-SEP	53	68	79	81	91	110	98	
SALMON FALLS RESV STORAGE	MAR-31	16.5	21	24	34	27	31	70	
	APR-30	27	33	37	42	41	47	89	
	MAY-31	48	57	64	63	71	80	101	
RUNEAU near Hot Spring	MAR-JUL	143	185	216	91	250	304	237	
	MAR-SEP	149	192	225	91	260	316	248	
DWYHEE near Gold Creek (2)	MAR-JUL	19.8	27	32	100	38	48	32	
WYHEE nr Owyhee (2)	APR-JUL	43	68	84	102	101	125	82	
WYHEE near Rome	MAR-JUL	436	526	592	102	662	772	580	
WYHEE RESV INFLOW (2)	MAR-JUL	460	552	619	101	690	801	613	
	MAR-SEP	489	582	649	101	720	832	643	
SUCCOR CK nr Jordan Valley	MAR-JUL	7.1	12.9	16.9	100	21	27	16.9	
NAKE RIVER at King Hill (1,2)	APR-JUL			1840	60			3045	
NAKE RIVER near Murphy (1,2)	APR-JUL			1855	60			3092	
NAKE RIVER at Weiser (1,2)	APR-JUL			3630	63			5765	
NAKE RIVER at Hells Canyon Dam (1,	2 APR-JUL			4180	64			6493	
SNAKE blw Lower Granite Dam (1,2)	APR-JUL	12430	17429	19700	91	21971	26970	21550	
SOUTHSIDE SNAI Reservoir Storage (100			·	<u></u>	SOUTHS Watershed Sno	IDE SNAKE RIV		1. 2002	
	Usable		, ======== e Storage *		=======================================	Numbe		======================================	
Reservoir	Capacity	This Year	Last	Water	shed	of Data Si		=========	

			mater shed showpack Allacys is a march 1, 2002					
Usable Capacity			======================================	Number of	This Year as % of			
	Year	Year Avg			Data Sites	Last Yr	Average	
74.5	14.0	25.6	31.4	Raft River	6	152	109	
182.6	14.6	20.0	59.8	Goose-Trapper Creeks	5	185	110	
71.5	22.0	36.1	40.1	Salmon Falls Creek	5	141	99	
715.0	166.2	292.6	489.1	Bruneau River	8	149	107	
1419.3	972.0	1308.0	1090.5	Owyhee Basin Total	20	173	132	
	74.5 182.6 71.5 715.0	Capacity This Year 74.5 14.0 182.6 14.6 71.5 22.0 715.0 166.2	Capacity This Last Year Year 74.5 14.0 25.6 182.6 14.6 20.0 71.5 22.0 36.1 715.0 166.2 292.6	Capacity This Last Year Avg Year Year Avg 74.5 14.0 25.6 31.4 182.6 14.6 20.0 59.8 71.5 22.0 36.1 40.1 715.0 166.2 292.6 489.1	Capacity This Last Year Avg 74.5 14.0 25.6 31.4 Raft River 182.6 14.6 20.0 59.8 Goose-Trapper Creeks 71.5 22.0 36.1 40.1 Salmon Falls Creek 715.0 166.2 292.6 489.1 Bruneau River	Capacity This Last Year Avg Data Sites 74.5 14.0 25.6 31.4 Raft River 6 182.6 14.6 20.0 59.8 Goose-Trapper Creeks 5 71.5 22.0 36.1 40.1 Salmon Falls Creek 5 715.0 166.2 292.6 489.1 Bruneau River 8	Capacity This Year Last Year Watershed of Data Sites Last Yr 74.5 14.0 25.6 31.4 Raft River 6 152 182.6 14.6 20.0 59.8 Goose-Trapper Creeks 5 185 71.5 22.0 36.1 40.1 Salmon Falls Creek 5 141 715.0 166.2 292.6 489.1 Bruneau River 8 149	

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

^{(2) -} The value is natural flow - actual flow may be affected by upstream water management.

BEAR RIVER BASIN MARCH 1, 2002

WATER SUPPLY OUTLOOK

February precipitation was the lowest in the state for the second consecutive month, only 41% of average. Precipitation for the water year dropped 10 percentage points from a month ago to 81% of average, also the lowest in the state. Snowpack percentages mirrored the lack of precipitation and decreased 10-20 percentage points during February. The snowpack percentages are some of the lowest in the state ranging from 72% of average in Montpelier Creek basin to 82% for Cub River basin. The Bear River basin snowpack above the Idaho-Utah state line is 75% of average. Trail Lake SNOTEL station, in the headwaters of the Bear River in Utah at 9,960 feet, is only 65% of average and has only half of its peak snow water content that occurs in mid-April. If no more snow falls in the Bear River basin, the snowpack would be 59% of average on April 1. Last year on April 1 the snowpack was only 45% of average. Storage in Bear Lake remains low at only 42% of capacity, 65% of average. Montpelier Creek Reservoir is 25% of capacity, 59% of average. Streamflow forecasts decreased significantly from last month and call for much below normal runoff volumes at only 42% of average for the Bear River below Stewart Dam. Bear Lake irrigators can expect water supply shortages, especially if future conditions remain dry. Irrigators should remain in contact with their local irrigation districts.

BEAR RIVER BASIN Streamflow Forecasts - March 1, 2002

		 <<====	Drier =		Future Co	onditions ===	==== W	etter	====>>	
Forecast Point	Forecast Period	90% (1000AF)	70% (1000AF	5	0% (Most	Exceeding * == Probable) (% AVG.)	305	%	10% (1000AF)	30-Yr Avg. (1000AF)
Bear R nr UT-WY State Line	APR-SEP	61	73	=== ===	83	66		94	112	125
BEAR R nr Woodruff, UT	APR-SEP	57	80		102	66	1:	29	183	154
BEAR R nr Randolph, UT	APR-JUL APR-SEP	1.0 4.0	35 38		63 69	55 55		91 00	132 147	115 125
SMITHS FK nr Border, WY	APR-JUL APR-SEP	40 47	49 58		57 66	56 56		66 76	81 92	102 118
THOMAS FK nr WY-ID State Line (Disc.	APR-JUL				Much Bel	low Average				33
BEAR R blw Stewart Dam nr Montpelier	APR-JUL APR-SEP	16.0 18.0	78 88		120 1 3 5	42 41		62 82	224 252	288 327
MONTPELIER CK nr Montpelier (Disc)(2	APR-JUL				Much Bel	low Average				12.2
CUB R nr Preston	APR-JUL				Much Bel	low Average				47
BEAR RIV Reservoir Storage (1000	AF) - End	of Februar	У			Watershed Sno	BEAR RIVI Dwpack A			1, 2002
Reservoir	Usable Capacity	*** Usabl This Year	e Storag Last Year	e *** Avg	 Water	shed		Number of ta Sit		Year as % of
BEAR LAKE	1421.0	59 3. 1	893.4	910.7	Smith	ns & Thomas Fo	rks	4	113	74
MONTPELIER CREEK	4.0	1.0	1.4	1.7	Bear	River ab WY-I	D line	14	111	72
					Montp	œlier Creek		2	115	72
					Mink	Creek		3	116	72
					Cub R	tiver		3	129	82
					Bear	River ab ID-U	T line	24	117	75
					Malac	d River		3	121	77
					1					

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

^{(2) -} The value is natural flow - actual flow may be affected by upstream water management.

Streamflow Adjustment List For All Forecasts Published in Idaho Basin Outlook Report

Streamflow Adjustment List For All Forecasts Published in Idaho Basin Outlook Report

influences from upstream reservoirs or diversions. These values are referred to as natural or adjusted flows. To make these adjustments, changes in reservoir storage, diversions, and inter-basin transfers are added or subtracted from the observed (actual) streamflow volumes. The following list documents the adjustments made to each forecast point in this report. (Revised 12/2000),

Panhandle River Basins KOOTENAI R AT LEONIA, ID

BOUNDARY CREEK NEAR PORTHILL, ID - No Corrections SMITH CREEK NEAR PORTHILL, ID - No Corrections MOYIE RIVER AT EASTPORT, ID - No Corrections + LAKE KOOCANUSA (STORAGE CHANGE) CLARK FORK AT WHITEHORSE RAPIDS, ID

+ HUNGRY HORSE (STORAGE CHANGE)

+ FLATHEAD LAKE (STORAGE CHANGE)

+ NOXON RAPIDS RESV (STORAGE CHANGE) PEND OREILLE LAKE INFLOW, ID

+ PEND OREILLE R AT NEWPORT, WA

+ HUNGRY HORSE (STORAGE CHANGE)

+ FLATHEAD LAKE (STORAGE CHANGE)

+ NOXON RAPIDS (STORAGE CHANGE

+ PEND OREILLE LAKE (STORAGE CHANGE)

+ PRIEST LAKE (STORAGE CHANGE) PRIEST R NR PRIEST R, ID

COEUR D'ALENE R AT ENAVILLE, ID - No Corrections + PRIEST LAKE (STORAGE CHANGE) ST. JOE R AT CALDER, ID - No Corrections SPOKANE R NR POST FALLS, ID

+ COEUR D'ALENE LAKE (STORAGE CHANGE) SPOKANE R AT LONG LAKE, WA

+ COEUR D'ALENE LAKE (STORAGE CHANGE) + LONG LAKE, WA (STORAGE CHANGE)

Clearwater River Basin

DWORSHAK RESERVOIR INFLOW, ID

+ DWORSHAK RESV (STORAGE CHANGE)

- CLEARWATER R AT OROFINO, ID

+ CLEARWATER R NR PECK, ID

CLEARWATER R AT OROFINO, ID - No Corrections SELWAY RIVER NR LOWELL - No Corrections LOCHSA RIVER NR LOWELL - No Corrections CLEARWATER R AT SPALDING, ID

+ DWORSHAK RESV (STORAGE CHANGE)

Salmon River Basin

SALMON R AT WHITE BIRD, ID - No Corrections SALMON R AT SALMON, ID - No Corrections

Weiser, Payette, Boise River Basins

SF PAYETTE R AT LOWMAN, ID - No Corrections WEISER R NR WEISER, ID - No Corrections DEADWOOD RESERVOIR INFLOW, ID

+ DEADWOOD R BLW DEADWOOD RESV NR LOWMAN

+ DEADWOOD RESV (STORAGE CHANGE)

LAKE FORK PAYETTE RIVER NR MCCALL, ID - No Corrections NF PAYETTE R AT CASCADE, ID

+ CASCADE RESV (STORAGE CHANGE)

NF PAYETTE R NR BANKS, ID

+ CASCADE RESV (STORAGE CHANGE)

PAYETTE R NR HORSESHOE BEND, ID

+ DEADWOOD RESV (STORAGE CHANGE)

BOISE R NR TWIN SPRINGS, ID - No Corrections + CASCADE RESV (STORAGE CHANGE)

SF BOISE R AT ANDERSON RANCH DAM, ID

+ ANDERSON RANCH RESV (STORAGE CHANGE) BOISE R NR BOISE, ID

+ ANDERSON RANCH RESV (STORAGE CHANGE)

+ ARROWROCK RESV (STORAGE CHANGE) + LUCKY PEAK RESV (STORAGE CHANGE)

BIG WOOD R NR BELLEVUE, ID - No Corrections Wood and Lost River Basins BIG WOOD R AT HAILEY, ID - No Corrections

BIG WOOD R BLW MAGIC DAM NR RICHFIELD, ID CAMAS CREEK NEAR BLAINE - No Corrections

+ MAGIC RESV (STORAGE CHANGE)

LITTLE WOOD R NR CAREY, ID

+ LITTLE WOOD RESV (STORAGE CHANGE)

BIG LOST R AT HOWELL RANCH NR CHILLY, ID - No Corrections BIG LOST R BLW MACKAY RESV NR MACKAY, ID

+ MACKAY RESV (STORAGE CHANGE)

LITTLE LOST R BLW WET CK NR HOWE, ID - No Corrections

Upper Snake River Basin

HENRYS FORK NR ASHTON, ID

+ HENRYS LAKE (STORAGE CHANGE)

+ ISLAND PARK RESV (STORAGE CHANGE)

HENRYS FORK NR REXBURG, ID

+ HENRYS LAKE (STORAGE CHANGE)

+ ISLAND PARK RESV (STORAGE CHANGE)

+ DIV FM HENRYS FK BTW ASHTON & ST. ANTHONY, ID

+ DIV FM HENRYS FK BTW ST. ANTHONY & REXBURG, ID

+ GRASSY LAKE (STORAGE CHANGE)

FALLS R ABV YELLOWSTONE CANAL NR SQUIRREL, ID + GRASSY LAKE (STORAGE CHANGE) TETON R ABV SO LEIGH CK NR DRIGGS, ID - No Corrections TETON R NR ST. ANTHONY, ID

+ SUM OF DIVERSIONS ABV GAGE - CROSS CUT CANAL

SNAKE R NR MORAN, WY

+ JACKSON LAKE (STORAGE CHANGE)

PALISADES RESERVOIR INFLOW, ID

+ JACKSON LAKE (STORAGE CHANGE) + SNAKE R NR IRWIN, ID

+ PALISADES RESV (STORAGE CHANGE)

SNAKE R NR HEISE, ID

+ JACKSON LAKE (STORAGE CHANGE)

+ PALISADES RESV (STORAGE CHANGE)

BLACKFOOT RESVERVOR INFLOW, ID

- + BLACKFOOT RIVER
- + BLACKFOOT RESERVOIR (STORAGE CHANGE
 - SNAKE R NR BLACKFOOT, ID
- + PALISADES RESV (STORAGE CHANGE)
 - + JACKSON LAKE (STORAGE CHANGE)
- + DIV FM SNAKE R BTW HEISE AND SHELLY GAGES
 - + DIV FM SNAKE R BTW SHELLY AND BLACKFT, ID

AMERICAN FALLS RESERVOIR INFLOW, ID PORTNEUF R AT TOPAZ, ID - No Corrections

- + SNAKE RIVER AT NEELEY
- + ALL CORRECTIONS MADE FOR HENRYS FK NR REXBURG, ID
- + JACKSON LAKE (STORAGE CHANGE)
- + PALISADES RESV (STORAGE CHANGE)
- + DIV FM SNAKE R BTW HEISE AND SHELLY GAGES
- + DIV FM SNAKE R BTW SHELLY AND BLACKFT GAGES

Southside Snake River Basins OAKLEY RESERVOR INFLOW, ID

- + GOOSE CK ABV TRAPPER CK NR OAKLEY, ID
- + TRAPPER CK NR OAKLEY, ID

SALMON FALLS CK NR SAN JACINTO, NV - No Corrections BRUNEAU R NR HOT SPRINGS, ID - No Corrections

- OWYHEE R NR GOLD CK, NV
- + WILDHORSE RESV (STORAGE CHANGE)
 - OWYHEE R NR OWYHEE, NV
- + WILDHORSE RESV (STORAGE CHANGE)
 - OWYHEE R NR ROME, OR No Corrections OWYHEE RESERVOIR INFLOW, OR
- + OWYHEE R BLW OWYHEE DAM, OR
- + OWYHEE RESV (STORAGE CHANGE)
- SUCCOR CK NR JORDAN VALLEY, OR No Corrections + DIV TO NORTH AND SOUTH CANALS
 - SNAKE R NR MURPHY, ID No Corrections SNAKE R - KING HILL, ID - No Corrections
- SNAKE R AT WEISER, ID No Corrections
 - SNAKE R AT HELLS CANYON DAM, ID
- + BROWNLEE RESV (STORAGE CHANGE)

Bear River Basin

- BEAR R NR RANDOLPH, UT
- + SULPHUR CK RESV (STORAGE CHANGE)
- + CHAPMAN CANAL DIVERSION
- + WOODRUFF NARROWS RESV (STORAGE CHANGE)

SMITHS FORK NR BORDER, WY - No Corrections

- THOMAS FORK NR WY-ID STATELINE No Corrections (Disc) BEAR R BLW STEWART DAM, ID
- + SULPHUR CK RESV (STORAGE CHANGE)
 - + CHAPMAN CANAL DIVERSION
- + WOODRUFF NARROWS RESV (STORAGE CHANGE)
 - + DINGLE INLET CANAL
- + RAINBOW INLET CANAL

DEAD+ACTIVE

0.21

MONTPELIER CREEK

MONTPELIER CK AT IRR WEIR NR MONTPELIER, ID (Disc) + MONTPELIER CK RESV (STORAGE CHANGE)

CUB R NR PRESTON, ID - No Corrections

RESERVOIR CAPACITY DEFINITIONS (Units in 1,000 acre-feet, KAF)

Reservoir storage terms include dead, inactive, active, and surcharge storage. This table Different agencies use various definitions when reporting reservoir capacity and contents. lists these volumes for each reservoir, and defines the storage volumes NRCS uses when reporting capacity and current reservoir storage. In most cases, NRCS reports usable storage, which includes active and inactive storage. (Revised January 2002)

BASIN/ RESERVOIR STORAGE STORAGE PANHANDLE REGION HUNGRY HORSE FLATHEAD LAKE UNKNOWN NOXON RAPIDS PEND OREILLE COEUR D'ALENE CASCADE CASCAD	E ACTIVE SURCHARGE SIORAGE STORAGE	GE NRCS CAPACITY 1971.0 135.0 135.0 1561.3 135.0 164.0 450.1 164.0 450.1 164.0 450.1 165.2 165.2 165.2 165.2 165.2 165.2 165.2 165.2 165.2 165.2 165.2 165.2 165.2 165.2 175.2 170.0 17	NRCS CAPACITY INCLIDES ACTIVE ACTIVE BEAD-INACTIVE+ACTIVE INACTIVE+ACTIVE ACTIVE INACTIVE+ACTIVE ACTIVE INACTIVE+ACTIVE ACTIVE INACTIVE ACTIVE
--	------------------------------------	--	--

Interpreting Streamflow Forecasts

ntroduction

ach month, five forecasts are issued for each forecast point and each forecast period. Unless otherwise pecified, all streamflovy forecasts are for streamflow volumes that would occur naturally without any upstream fluences. Water users need to know what the different forecasts represent if they are to use the information orrectly when making operational decisions. The following is an explanation of each of the forecasts.

ost Probable (50 Percent Chance of Exceeding) Forecast. This forecast is the best estimate of streamflow olume that can be produced given current conditions and based on the outcome of similar past situations, There a 50 percent chance that the streamflow volume will exceed this forecast value. There is a 50 percent chance at the streamflow volume will be less than this forecast value.

he most probable forecast will rarely be exactly right, due to errors resulting from future weather conditions and e forecast equation itself. This does not mean that users should not use the most probable forecast; it means at they need to evaluate existing circumstances and determine the amount of risk they are willing to take by ccepting this forecast value.

o Decrease the Chance of Having Too Little Water

users want to make sure there is enough water available for their operations, they might determine that a 50 ercent chance of the streamflow volume being lower than the most probable forecast is too much risk to take. o reduce the risk of not having enough water available during the forecast period, users can base their perational decisions on one of the forecasts with a greater chance of being exceeded (or possibly some point inetween). These include:

70 Percent Chance of Exceeding Forecast. There is a 70 percent chance that the streamflow volume will exceed this forecast value.

There is a 30 percent chance the streamflow volume will be less than

this forecast value.

90 Percent Chance of Exceeding Forecast. There is a 90 percent

chance that the streamflow volume will exceed this forecast value. There is a 10 percent chance the streamflow volume will be less than this forecast value.

o Decrease the Chance of Having Too Much Water

users want to make sure they don't have too much water, they might determine that a 50 percent chance of the treamflow being higher than the most probable forecast is too much of a risk to take. To reduce the risk of

having too much water available during the forecast period, users can base their operational decisions on one of the forecasts with a smaller chance of being exceeded. These include:

30 Percent Chance of Exceeding Forecast. There is a 30 percent chance that the streamflow volume will exceed this forecast value. There is a 70 percent chance the streamflow volume will be less than this forecas value.

10 Percent Chance of Exceeding Forecast, there is a 10 percent chance that the streamflow volume will exceed this forecast value. There is a 90 percent chance the streamflow volume will be less than this forecas value.

Using the forecasts - an example

Using the Most Probable Forecast. Using the example forecasts shown below, users can reasonably expect 36,000 acre-feet to flow past the gaging station on the Mary's River near Death between March I and July 31.

Using the Higher Exceedence Forecasts. If users anticipate a somewhat drier trend in the future (monthly and seasonal weather outlooks are available from the National Weather Service every two weeks), or if they are operating at a level where an unexpected shortage of water could cause problems, they might want to plan on receiving only 20,000 acre-feet (from the 70 percent chance of exceeding forecast). In seven out of ten years with similar conditions, streamflow volumes will exceed the 20,000 acre-foot forecast.

If users anticipate extremely dry conditions for the remainder of the season, or if they determine the risk of using the 70 percent chance of exceeding forecast is too great, then they might plan on receiving only 5000 acre-feet (from the 90 percent chance of exceeding forecast). Nine out of ten years with similar conditions, streamflow volumes will exceed the 5000 acre-foot forecast.

Using the Lower Exceedance Forecasts. If users expect wetter future conditions, or if the chance that five out of every ten years with similar conditions would produce streamflow volumes greater than 36,000 acre-feet was more than they would like to risk, they might plan on receiving 52,000 acre-feet (from the 30 percent chance of exceeding forecast) to minimize potential flooding problems. Three Out of ten years with similar conditions, streamflows will exceed the 52,000 acre-foot forecast.

In years when users expect extremely wet conditions for the remainder of the season and the threat of severe flooding and downstream damage exists, they might choose to use the 76,000 acre-foot (10 percent chance of exceeding) forecast for their water management operations. Streamflow volumes will exceed this level only one year out of ten.

WEISER, PAYETTE, BOISE RIVER BASINS Streamflow Forecasts

		===>>	Drier ===	<pre><<===== Drier ===== Future Conditions</pre>		Wetter>	— - - -	
Forecast Point	Period	90% (1000AF)	5	Chance Of Exceeding 7 50% (Most Probable (1000AF) (% AVG.	nce of Exceeding " === 50% (Most Probable) (1000AF) (% AVG.)	30% 1 (1000AF) (10	10% (1000AF)	30-Yr Avg. (1000AF)
SF PAYETTE RIVER at Lowman	APR-JUL APR-SEP	329 369	414 459	471 521	109 107	528 583	613 673	887 735
BOISE RIVER near Twin Springs (1)	APR-JUL APR-SEP	567 743	610 670	750	109	760	927 1005	631

For more information concerning streamflow forecasting ask your local NRCS field office for a copy of "A Field Office Guide for Interpreting Streamflow Forecasts" or visit our Web page.

OFFICIAL BUSINESS

Issued by
Pearlie S. Reed, Chief
Natural Resources Conservation Service
Washington, DC

Released by
Richard Sims, State Conservationist
Natural Resources Conservation Service
Boise, Idaho

Prepared by
Snow Survey Staff
Ron Abramovich, Water Supply Specialist
Philip Morrisey, Hydrologist
Kelly Vick, Data Analyst
Bill Patterson, Electronics Technician
Jeff Graham, Electronics Technician

Cooperative funding for printing provided by Idaho Department of Water Resources

Numerous other agencies provide funding and/or cooperative support. Their cooperation is greatly appreciated.

G12345678

NATIONAL AGRICULTURAL LIBRARY

CURRENT SERIAL RECORDS / ROOM 00

10301 BALTIMORE AVENUE

BELTSVILLE MD 20705-2351

