HKN ECE 313 Exam 2 Review Solutions

Corey Snyder, Kanad Sarkar

Univserity of Illinois at Urbana-Champaign

April 5, 2020

FA15 Problem 2

Obtain
$$P(N_3 = 5)$$
:

$$N_3 \sim \text{Pois}(3\lambda)$$

Obtain $P(N_3=5)$:

$$N_3 \sim \text{Pois}(3\lambda)$$

$$P(N_3 = 3) = \frac{e^{-3\lambda}(3\lambda)^5}{5!}$$

Obtain
$$P(N_7 - N_4 = 3)$$
 and $\mathbb{E}[N_7 - N_4]$:

$$N_7 - N_4 \sim \text{Pois}(3\lambda)$$

Obtain $P(N_7-N_4=3)$ and $\mathbb{E}[N_7-N_4]$:

$$N_7 - N_4 \sim \text{Pois}(3\lambda)$$

$$P(N_7 - N_4 = 5) = P(N_3 = 5) = \frac{e^{-3\lambda}(3\lambda)^5}{5!}$$

$$\mathbb{E}[N_7 - N_4] = 3\lambda \text{ (defn. of Poisson random variable)}$$

$$P(N_7 - N_4 = 5 | N_6 - N_4 = 2) = \frac{P(N_7 - N_4 = 5 \cap N_6 - N_4 = 2)}{P(N_6 - N_4 = 2)}$$

$$P(N_7 - N_4 = 5 | N_6 - N_4 = 2) = \frac{P(N_7 - N_4 = 5 \cap N_6 - N_4 = 2)}{P(N_6 - N_4 = 2)}$$
$$= \frac{P(N_7 - N_6 = 3 \cap N_6 - N_4 = 2)}{P(N_6 - N_4 = 2)}$$

$$P(N_7 - N_4 = 5 | N_6 - N_4 = 2) = \frac{P(N_7 - N_4 = 5 \cap N_6 - N_4 = 2)}{P(N_6 - N_4 = 2)}$$

$$= \frac{P(N_7 - N_6 = 3 \cap N_6 - N_4 = 2)}{P(N_6 - N_4 = 2)}$$

$$= \frac{P(N_7 - N_6 = 3)P(N_6 - N_4 = 2)}{P(N_6 - N_4 = 2)}$$

$$P(N_7 - N_4 = 5 | N_6 - N_4 = 2) = \frac{P(N_7 - N_4 = 5 \cap N_6 - N_4 = 2)}{P(N_6 - N_4 = 2)}$$

$$= \frac{P(N_7 - N_6 = 3 \cap N_6 - N_4 = 2)}{P(N_6 - N_4 = 2)}$$

$$= \frac{P(N_7 - N_6 = 3)P(N_6 - N_4 = 2)}{P(N_6 - N_4 = 2)}$$

$$= P(N_7 - N_6 = 3)$$

$$= P(N_1 = 3)$$

$$= \frac{e^{-\lambda} \lambda^3}{3!}$$

$$P(N_6 - N_4 = 2|N_7 - N_4 = 5)$$

$$= \frac{P(N_7 - N_4 = 5|N_6 - N_4 = 2)P(N_6 - N_4 = 2)}{P(N_7 - N_4 = 5)}$$

$$P(N_6 - N_4 = 2|N_7 - N_4 = 5)$$

$$= \frac{P(N_7 - N_4 = 5|N_6 - N_4 = 2)P(N_6 - N_4 = 2)}{P(N_7 - N_4 = 5)}$$

$$= \frac{P(N_1 = 3)P(N_2 = 2)}{P(N_3 = 5)}$$

$$P(N_6 - N_4 = 2|N_7 - N_4 = 5)$$

$$= \frac{P(N_7 - N_4 = 5|N_6 - N_4 = 2)P(N_6 - N_4 = 2)}{P(N_7 - N_4 = 5)}$$

$$= \frac{P(N_1 = 3)P(N_2 = 2)}{P(N_3 = 5)}$$

$$= \frac{\left(\frac{e^{-\lambda}\lambda^3}{3!}\right)\left(\frac{e^{-2\lambda}(2\lambda)^2}{2!}\right)}{\frac{e^{-3\lambda}(3\lambda)^5}{5!}}$$

$$= \frac{40}{243}$$

$$P(N_6 - N_4 = 2|N_7 - N_4 = 5)$$

$$= \frac{P(N_7 - N_4 = 5|N_6 - N_4 = 2)P(N_6 - N_4 = 2)}{P(N_7 - N_4 = 5)}$$

$$= \frac{P(N_1 = 3)P(N_2 = 2)}{P(N_3 = 5)}$$

$$= \frac{\left(\frac{e^{-\lambda}\lambda^3}{3!}\right)\left(\frac{e^{-2\lambda}(2\lambda)^2}{2!}\right)}{\frac{e^{-3\lambda}(3\lambda)^5}{5!}}$$

$$= \frac{40}{243}$$
Does not depend on λ !

Obtain $P(N_6 - N_4 | N_7 - N_4 = 5)$:

Does not depend on $\lambda!$ Wow!

$$P(N_6 - N_4 = 2|N_7 - N_4 = 5)$$

$$= \frac{P(N_7 - N_4 = 5|N_6 - N_4 = 2)P(N_6 - N_4 = 2)}{P(N_7 - N_4 = 5)}$$

$$= \frac{P(N_1 = 3)P(N_2 = 2)}{P(N_3 = 5)}$$

$$= \frac{\left(\frac{e^{-\lambda}\lambda^3}{3!}\right)\left(\frac{e^{-2\lambda}(2\lambda)^2}{2!}\right)}{\frac{e^{-3\lambda}(3\lambda)^5}{5!}}$$

$$= \frac{40}{243}$$

FA14 Problem 3

Express $\mathbb{E}[N_t N_{t+s}], s, t > 0$ as a function of λ, s , and t:

This is a tricky question that requires a common math trick: adding a clever form of zero and regrouping.

Express $\mathbb{E}[N_t N_{t+s}], s, t > 0$ as a function of λ, s , and t:

This is a tricky question that requires a common math trick: adding a clever form of zero and regrouping.

$$\mathbb{E}[N_t N_{t+s}] = \mathbb{E}[N_t (N_{t+s} - N_t + N_t)]$$

= $\mathbb{E}[N_t (N_{t+s} - N_t) + N_t^2]$

Express $\mathbb{E}[N_t N_{t+s}], s, t > 0$ as a function of λ, s , and t:

This is a tricky question that requires a common math trick: adding a clever form of zero and regrouping.

$$\mathbb{E}[N_t N_{t+s}] = \mathbb{E}[N_t (N_{t+s} - N_t + N_t)]$$
$$= \mathbb{E}[N_t (N_{t+s} - N_t) + N_t^2]$$

Notice that N_t and $N_{t+s}-N_t$ count over disjoint intervals since the latter counts from time t to time t+s! Thus,

Express $\mathbb{E}[N_t N_{t+s}], s, t > 0$ as a function of λ, s , and t:

This is a tricky question that requires a common math trick: adding a clever form of zero and regrouping.

$$\mathbb{E}[N_t N_{t+s}] = \mathbb{E}[N_t (N_{t+s} - N_t + N_t)]$$

= $\mathbb{E}[N_t (N_{t+s} - N_t) + N_t^2]$

Notice that N_t and $N_{t+s} - N_t$ count over disjoint intervals since the latter counts from time t to time t+s! Thus,

$$\mathbb{E}[N_t N_{t+s}] = \mathbb{E}[N_t] \mathbb{E}[N_{t+s} - N_t] + \mathbb{E}[N_t^2]$$
$$= (\lambda t)(\lambda s) + \text{Var}(N_t) + \mathbb{E}^2[N_t]$$
$$= \lambda^2 st + \lambda t + \lambda^2 t^2$$

Let $\lambda=2$ arrivals/hour and assume that customer arrivals are Poisson. Let A be the event three customers arrive from 1-3pm; B, one customer from 2-3pm; and C, one customer from 2-4pm.

```
Compute P(ABC):
```


Let $\lambda=2$ arrivals/hour and assume that customer arrivals are Poisson. Let A be the event three customers arrive from 1-3pm; B, one customer from 2-3pm; and C, one customer from 2-4pm.

Compute P(ABC):

ullet The key is to break arrivals into disjoint intervals. Notice B constrains the second and first halves of events A and C.

Let $\lambda=2$ arrivals/hour and assume that customer arrivals are Poisson. Let A be the event three customers arrive from 1-3pm; B, one customer from 2-3pm; and C, one customer from 2-4pm.

Compute P(ABC):

- ullet The key is to break arrivals into disjoint intervals. Notice B constrains the second and first halves of events A and C.
- Thus, an equivalent set of events would be:
 - A' = two customers arrive between 1 and 2pm.
 - B' = B = one customer arrives between 2 and 3pm.
 - C' = no customers arrives between 3 and 4pm.

Let $\lambda=2$ arrivals/hour and assume that customer arrivals are Poisson. Let A be the event three customers arrive from 1-3pm; B, one customer from 2-3pm; and C, one customer from 2-4pm.

Compute P(ABC):

- ullet The key is to break arrivals into disjoint intervals. Notice B constrains the second and first halves of events A and C.
- Thus, an equivalent set of events would be:
 - A' = two customers arrive between 1 and 2pm.
 - B' = B = one customer arrives between 2 and 3pm.
 - C' = no customers arrives between 3 and 4pm.
- These new events are now disjoint but equivalent s.t. P(ABC) = P(A'B'C') = P(A')P(B')P(C').

Let $\lambda=2$ arrivals/hour and assume that customer arrivals are Poisson. Let A be the event three customers arrive from 1-3pm; B, one customer from 2-3pm; and C, one customer from 2-4pm.

Compute P(ABC):

- ullet The key is to break arrivals into disjoint intervals. Notice B constrains the second and first halves of events A and C.
- Thus, an equivalent set of events would be:
 - A' = two customers arrive between 1 and 2pm.
 - B' = B = one customer arrives between 2 and 3pm.
 - C' = no customers arrives between 3 and 4pm.
- These new events are now disjoint but equivalent s.t. P(ABC) = P(A'B'C') = P(A')P(B')P(C').

$$P(ABC) = \left(\frac{e^{-2}2^2}{2!}\right) \left(\frac{e^{-2}2^1}{1!}\right) \left(\frac{e^02^0}{0!}\right)$$
$$= 4e^{-6}$$

FA15 Problem 4

Given
$$f_{X,Y}(x,y) = \begin{cases} cxy, & 0 \le x \le 1, \ 0 \le y \le 1, \ x+y \le 1 \\ 0, & \text{else} \end{cases}$$

Compute the marginal $f_X(x)$:

Given
$$f_{X,Y}(x,y) = \begin{cases} cxy, & 0 \le x \le 1, \ 0 \le y \le 1, \ x+y \le 1 \\ 0, & \text{else} \end{cases}$$

Compute the marginal $f_X(x)$:

The support of (X, Y) is a triangle with vertices (0,0), (1,0), (0,1).

$$f_X(x) = \int_0^{1-x} cxy dy$$
$$= \frac{c}{2} (xy^2) \Big|_0^{1-x}$$
$$= \frac{c}{2} x (1-x)^2$$

Given
$$f_{X,Y}(x,y) = \begin{cases} cxy, & 0 \le x \le 1, \ 0 \le y \le 1, \ x+y \le 1 \\ 0, & \text{else} \end{cases}$$

Compute c s.t. $f_{X,Y}$ is a valid pdf:

Given
$$f_{X,Y}(x,y) = \begin{cases} cxy, & 0 \le x \le 1, \ 0 \le y \le 1, \ x+y \le 1 \\ 0, & \text{else} \end{cases}$$

Compute c s.t. $f_{X,Y}$ is a valid pdf:

Also works to make $f_X(x)$ a valid marginal pdf.

Given
$$f_{X,Y}(x,y) = \begin{cases} cxy, & 0 \le x \le 1, \ 0 \le y \le 1, \ x+y \le 1 \\ 0, & \text{else} \end{cases}$$

Compute c s.t. $f_{X,Y}$ is a valid pdf:

Also works to make $f_X(x)$ a valid marginal pdf.

$$\int_{0}^{1} f_{X}(x) = \int_{0}^{1} \frac{c}{2} (x^{3} - 2x^{2} + x) dx$$

$$= \frac{c}{2} \left(\frac{1}{4} x^{4} - \frac{2}{3} x^{3} + \frac{1}{2} x^{2} \right) \Big|_{0}^{1}$$

$$= \frac{c}{24}$$

$$= 1$$

$$\implies c = 24.$$

Given
$$f_{X,Y}(x,y) = \begin{cases} cxy, & 0 \le x \le 1, \ 0 \le y \le 1, \ x+y \le 1 \\ 0, & \text{else} \end{cases}$$

Obtain
$$P\left(X+Y<\frac{1}{2}\right)$$
:

Given
$$f_{X,Y}(x,y) = \begin{cases} cxy, & 0 \le x \le 1, \ 0 \le y \le 1, \ x+y \le 1 \\ 0, & \text{else} \end{cases}$$

Obtain $P\left(X+Y<\frac{1}{2}\right)$:

$$P\left(X + Y < \frac{1}{2}\right) = \int_0^{\frac{1}{2}} \int_0^{\frac{1}{2} - x} 24xy dy dx$$

Given
$$f_{X,Y}(x,y) = \begin{cases} cxy, & 0 \le x \le 1, \ 0 \le y \le 1, \ x+y \le 1 \\ 0, & \text{else} \end{cases}$$

Obtain $P\left(X+Y<\frac{1}{2}\right)$:

$$P\left(X+Y<\frac{1}{2}\right) = \int_0^{\frac{1}{2}} \int_0^{\frac{1}{2}-x} 24xy dy dx$$
$$= \int_0^{\frac{1}{2}} 12x^3 - 12x^2 + 3x dx$$

Given
$$f_{X,Y}(x,y) = \begin{cases} cxy, & 0 \le x \le 1, \ 0 \le y \le 1, \ x+y \le 1 \\ 0, & \text{else} \end{cases}$$

Obtain $P\left(X+Y<\frac{1}{2}\right)$:

$$P\left(X+Y<\frac{1}{2}\right) = \int_0^{\frac{1}{2}} \int_0^{\frac{1}{2}-x} 24xy dy dx$$
$$= \int_0^{\frac{1}{2}} 12x^3 - 12x^2 + 3x dx$$
$$= \frac{1}{16}.$$

Given
$$f_{X,Y}(x,y) = \begin{cases} cxy, & 0 \le x \le 1, \ 0 \le y \le 1, \ x+y \le 1 \\ 0, & \text{else} \end{cases}$$

Are X and Y independent? Why or why not?

Given
$$f_{X,Y}(x,y) = \begin{cases} cxy, & 0 \le x \le 1, \ 0 \le y \le 1, \ x+y \le 1 \\ 0, & \text{else} \end{cases}$$

Are X and Y independent? Why or why not?

X and Y are not independent since $\frac{f_{X,Y}}{f_X}$ is clearly not solely a function of Y. Thus, we cannot have it that $f_{X,Y}=f_Xf_Y$ and X and Y cannot be independent.

SU₁₆ Problem 3

Let $X \sim \mathcal{N}(-1, 16)$.

Express
$$P(X^3 \le -8)$$
 in terms of the Φ function:

Let $X \sim \mathcal{N}(-1, 16)$.

Express $P(X^3 \le -8)$ in terms of the Φ function:

$$P(X^3 \le -8) = P(X \le -2)$$

Let $X \sim \mathcal{N}(-1, 16)$.

Express $P(X^3 \le -8)$ in terms of the Φ function:

$$P(X^{3} \le -8) = P(X \le -2)$$
$$= P\left(\frac{X+1}{4} \le \frac{-2+1}{4}\right)$$

Let $X \sim \mathcal{N}(-1, 16)$.

Express $P(X^3 \le -8)$ in terms of the Φ function:

$$\begin{split} P(X^3 \le -8) &= P(X \le -2) \\ &= P\left(\frac{X+1}{4} \le \frac{-2+1}{4}\right) \\ &= P\left(\hat{X} \le -\frac{1}{4}\right) \\ &= \Phi\left(-\frac{1}{4}\right) \end{split}$$

Let $X \sim \mathcal{N}(-1, 16)$.

Let $X \sim \mathcal{N}(-1, 16)$.

- The key piece here is to mark important points.
- Recall that a Gaussian is fully explained by its μ and σ^2 .

Let $X \sim \mathcal{N}(-1, 16)$.

- The key piece here is to mark important points.
- Recall that a Gaussian is fully explained by its μ and σ^2 .
- \bullet μ locates the mean.
- ullet σ^2 determines the height of the Gaussian
 - height $=\frac{1}{\sqrt{2\pi\sigma^2}}$.

Let $X \sim \mathcal{N}(-1, 16)$.

- The key piece here is to mark important points.
- Recall that a Gaussian is fully explained by its μ and σ^2 .
- ullet μ locates the mean.
- ullet σ^2 determines the height of the Gaussian
 - height $=\frac{1}{\sqrt{2\pi\sigma^2}}$.
- ullet By our linear transformation formulas: $Y \sim \mathcal{N}(\mu_Y, \sigma_Y^2)$
 - $\mu_Y = \frac{1}{2}\mu_X + \frac{3}{2} = 1$
 - $\bullet \ \sigma_Y^2 = \left(\frac{1}{2}\right)^2 \sigma_X^2 = 4$

Let
$$X \sim \mathcal{N}(-1, 16)$$
.

- The key piece here is to mark important points.
- Recall that a Gaussian is fully explained by its μ and σ^2 .
- ullet μ locates the mean.
- ullet σ^2 determines the height of the Gaussian
 - height $=\frac{1}{\sqrt{2\pi\sigma^2}}$.
- ullet By our linear transformation formulas: $Y \sim \mathcal{N}(\mu_Y, \sigma_Y^2)$
 - $\bullet \ \mu_Y = \frac{1}{2}\mu_X + \frac{3}{2} = 1$
 - $\sigma_Y^2 = (\frac{1}{2})^2 \, \sigma_X^2 = 4$
- Draw a Gaussian centered at μ_Y , indicate the height is $\frac{1}{\sqrt{2\pi\sigma_Y^2}}$ and you're all good!

Let $X \sim \mathcal{N}(-1, 16)$.

Express
$$P\left(Y \geq \frac{1}{2}\right)$$
 in terms of the Φ function:

Let $X \sim \mathcal{N}(-1, 16)$.

$$P\left(Y \ge \frac{1}{2}\right) = P\left(\frac{Y-1}{2} \ge \frac{\frac{1}{2}-1}{2}\right)$$

Let $X \sim \mathcal{N}(-1, 16)$.

$$P\left(Y \ge \frac{1}{2}\right) = P\left(\frac{Y-1}{2} \ge \frac{\frac{1}{2}-1}{2}\right)$$
$$= P\left(\hat{Y} \ge -\frac{1}{4}\right)$$

Let $X \sim \mathcal{N}(-1, 16)$.

$$P\left(Y \ge \frac{1}{2}\right) = P\left(\frac{Y-1}{2} \ge \frac{\frac{1}{2}-1}{2}\right)$$
$$= P\left(\hat{Y} \ge -\frac{1}{4}\right)$$
$$= Q\left(-\frac{1}{4}\right)$$

Let $X \sim \mathcal{N}(-1, 16)$.

$$P\left(Y \ge \frac{1}{2}\right) = P\left(\frac{Y-1}{2} \ge \frac{\frac{1}{2}-1}{2}\right)$$
$$= P\left(\hat{Y} \ge -\frac{1}{4}\right)$$
$$= Q\left(-\frac{1}{4}\right)$$
$$= \Phi\left(\frac{1}{4}\right)$$

SP15 Problem 4

Identify support of X and Y, sketch $f_X(x)$ and g(Y)

- $X \in [0,1]$
- $Y \in [0, 1]$
- Y is continuous.

Figure 1: PDF of X and Y = g(X).

SP15 Problem 4: Step 1(b)

SP15 Problem 4: Step 1(b)

Take a deep breath!


```
Use defin. of CDF to find F_Y(c):
```


Use defn. of CDF to find $F_Y(c)$:

$$F_Y(c) = P(Y \le c)$$

Use defn. of CDF to find $F_Y(c)$:

$$F_Y(c) = P(Y \le c)$$

$$= P(2|X - \frac{1}{2}| \le c)$$

$$= P\left(\frac{-c+1}{2} \le X \le \frac{c+1}{2}\right)$$

Use defn. of CDF to find $F_Y(c)$:

$$F_Y(c) = P(Y \le c)$$

$$= P(2|X - \frac{1}{2}| \le c)$$

$$= P\left(\frac{-c+1}{2} \le X \le \frac{c+1}{2}\right)$$

$$= \int_{\frac{-c+1}{2}}^{\frac{c+1}{2}} f_X(x) dx$$

$$= \begin{cases} 0, & c < 0 \\ c, & 0 \le c < 1 \\ 1, & c \ge 1 \end{cases}$$

Differentiate the CDF of Y to find the PDF:

$$f_Y(c) = \frac{dF_Y(c)}{dc}$$

$$= \begin{cases} 1, & 0 \le c \le 1 \\ 0, & \text{else} \end{cases}$$

 $Y \sim \mathrm{Uni}(0,1)!$

FA15 Problem 3

Let $X \in [0,1]$ be a CRV. Under H_0 , $X \sim f_0 = cx$ and under $X \sim f_1 = c(1-x)$. We have $\pi_0 = 0.6$ and $\pi_1 = 0.4$.

Find the value of c.

$$\int_0^1 f_0(x)dx = \int_0^1 cx dx$$
$$= \frac{1}{2}cx^2 \Big|_0^1$$
$$= \frac{1}{2}c$$
$$= 1$$
$$\implies c = 2$$

Let $X \in [0,1]$ be a CRV. Under H_0 , $X \sim f_0 = cx$ and under $X \sim f_1 = c(1-x)$. We have $\pi_0 = 0.6$ and $\pi_1 = 0.4$.

Let $X \in [0,1]$ be a CRV. Under H_0 , $X \sim f_0 = cx$ and under $X \sim f_1 = c(1-x)$. We have $\pi_0 = 0.6$ and $\pi_1 = 0.4$.

$$\Lambda(k) \mathop{}_{\mathop{<}\limits_{H_0}}^{H_1} \tau$$

Let $X \in [0,1]$ be a CRV. Under H_0 , $X \sim f_0 = cx$ and under $X \sim f_1 = c(1-x)$. We have $\pi_0 = 0.6$ and $\pi_1 = 0.4$.

$$\Lambda(k) \overset{H_1}{\underset{K_0}{\geq}} \tau$$
$$\frac{f_1(k)}{f_0(k)} \gtrsim \frac{\pi_0}{\pi_1}$$

Let $X \in [0,1]$ be a CRV. Under H_0 , $X \sim f_0 = cx$ and under $X \sim f_1 = c(1-x)$. We have $\pi_0 = 0.6$ and $\pi_1 = 0.4$.

$$\Lambda(k) \overset{H_1}{\underset{H_0}{\gtrless}} au$$
 $\frac{f_1(k)}{f_0(k)} \gtrsim \frac{\pi_0}{\pi_1}$
 $\frac{2-2k}{2k} \gtrsim \frac{3}{2}$
 $k \overset{H_0}{\underset{H_1}{\gtrless}} \frac{2}{5}$

Let $X \in [0,1]$ be a CRV. Under H_0 , $X \sim f_0 = cx$ and under $X \sim f_1 = c(1-x)$. We have $\pi_0 = 0.6$ and $\pi_1 = 0.4$.

Find error probabilities $p_{\rm fa}, p_{\rm miss}$ and p_e for the MAP rule:

Let $X \in [0,1]$ be a CRV. Under H_0 , $X \sim f_0 = cx$ and under $X \sim f_1 = c(1-x)$. We have $\pi_0 = 0.6$ and $\pi_1 = 0.4$.

Find error probabilities $p_{\mathrm{fa}}, p_{\mathrm{miss}}$ and p_e for the MAP rule:

$$p_{\text{fa}} = P(\text{Say } H_1 | H_0 \text{ true}) = P_{H_0} \left(X \le \frac{2}{5} \right)$$
$$= \int_0^{\frac{2}{5}} 2x dx = \frac{4}{25}$$

Let $X \in [0,1]$ be a CRV. Under H_0 , $X \sim f_0 = cx$ and under $X \sim f_1 = c(1-x)$. We have $\pi_0 = 0.6$ and $\pi_1 = 0.4$.

Find error probabilities $p_{\mathrm{fa}}, p_{\mathrm{miss}}$ and p_e for the MAP rule:

$$p_{\text{fa}} = P(\text{Say } H_1 | H_0 \text{ true}) = P_{H_0} \left(X \le \frac{2}{5} \right)$$
$$= \int_0^{\frac{2}{5}} 2x dx = \frac{4}{25}$$
$$p_{\text{miss}} = P(\text{Say } H_0 | H_1 \text{ true}) = P_{H_1} \left(X > \frac{2}{5} \right)$$
$$= \int_{\frac{2}{5}}^1 2 - 2x dx = \frac{9}{25}$$

Let $X \in [0,1]$ be a CRV. Under H_0 , $X \sim f_0 = cx$ and under $X \sim f_1 = c(1-x)$. We have $\pi_0 = 0.6$ and $\pi_1 = 0.4$.

Find error probabilities $p_{\mathrm{fa}}, p_{\mathrm{miss}}$ and p_e for the MAP rule:

$$p_{\text{fa}} = P(\text{Say } H_1 | H_0 \text{ true}) = P_{H_0} \left(X \le \frac{2}{5} \right)$$

$$= \int_0^{\frac{2}{5}} 2x dx = \frac{4}{25}$$

$$p_{\text{miss}} = P(\text{Say } H_0 | H_1 \text{ true}) = P_{H_1} \left(X > \frac{2}{5} \right)$$

$$= \int_{\frac{2}{5}}^1 2 - 2x dx = \frac{9}{25}$$

$$p_e = \pi_0 p_{\text{fa}} + \pi_1 p_{\text{miss}} = \frac{6}{25}$$

FA12 Problem 6

Given
$$f_{X,Y}(u,v) = \begin{cases} \frac{3}{2}, & u > 0, \ u^2 < v < 1 \end{cases}$$

Are X and Y independent? Explain your answer:

Given
$$f_{X,Y}(u,v) = \begin{cases} \frac{3}{2}, & u > 0, \ u^2 < v < 1 \end{cases}$$
 of the second of the secon

Are X and Y independent? Explain your answer:

X and Y are **not independent** since their support does not form a product set. We can prove this with (a,b)=(1,1) and (c,d)=(0,0) that lie in the support of (X,Y). These points fail the swap property since $(a,d)=(1,0)\notin \operatorname{supp}(X,Y)$, thus X and Y are dependent.

Given
$$f_{X,Y}(u,v) = \begin{cases} \frac{3}{2}, & u > 0, \ u^2 < v < 1 \\ 0, & \text{else} \end{cases}$$

Determine $f_X(u)$:

Given
$$f_{X,Y}(u,v) = \begin{cases} \frac{3}{2}, & u > 0, \ u^2 < v < 1 \\ 0, & \text{else} \end{cases}$$

Determine $f_X(u)$:

$$f_X(u) = \int_{u^2}^1 f_{X,Y}(u,v) dv$$

Given
$$f_{X,Y}(u,v) = \begin{cases} \frac{3}{2}, & u > 0, \ u^2 < v < 1 \\ 0, & \text{else} \end{cases}$$

Determine $f_X(u)$:

$$f_X(u) = \int_{u^2}^1 f_{X,Y}(u, v) dv$$
$$= \int_{u^2}^1 \frac{3}{2} dv$$
$$= \frac{3}{2} (1 - u^2), \ 0 < u < 1$$

Given
$$f_{X,Y}(u,v) = \begin{cases} \frac{3}{2}, & u > 0, \ u^2 < v < 1 \end{cases}$$

For what values of u is $f_{Y|X}(v|u)$ well defined?

Given
$$f_{X,Y}(u,v) = \begin{cases} \frac{3}{2}, & u > 0, \ u^2 < v < 1 \end{cases}$$

For what values of u is $f_{Y|X}(v|u)$ well defined?

Since $f_{Y|X}(v|u) = \frac{f_{X,Y}}{f_X}$, we need $f_X > 0$ for the conditional pdf to be well defined. From part (a), we see this means $u \in (0,1)$.

Given
$$f_{X,Y}(u,v) = \begin{cases} \frac{3}{2}, & u > 0, \ u^2 < v < 1 \\ 0, & \text{else} \end{cases}$$

Determine $f_{Y|X}(v|u)$:

Given
$$f_{X,Y}(u,v) = \begin{cases} \frac{3}{2}, & u > 0, \ u^2 < v < 1 \end{cases}$$

Determine $f_{Y|X}(v|u)$:

$$f_{Y|X}(v|u) = \frac{f_{X,Y}(u,v)}{f_X(u)}$$

Given
$$f_{X,Y}(u,v) = \begin{cases} \frac{3}{2}, & u > 0, \ u^2 < v < 1 \end{cases}$$

Determine $f_{Y|X}(v|u)$:

$$f_{Y|X}(v|u) = \frac{f_{X,Y}(u,v)}{f_X(u)}$$

$$= \frac{\frac{3}{2}}{\frac{3}{2}(1-u^2)}$$

$$= \frac{1}{1-u^2}, \ 0 < u < 1$$

Given
$$f_{X,Y}(u,v) = \begin{cases} \frac{3}{2}, & u > 0, \ u^2 < v < 1 \end{cases}$$

Determine P(Y > X)

Given
$$f_{X,Y}(u,v) = \begin{cases} \frac{3}{2}, & u > 0, \ u^2 < v < 1 \end{cases}$$

Determine P(Y > X)

Given
$$f_{X,Y}(u,v) = \begin{cases} \frac{3}{2}, & u > 0, \ u^2 < v < 1 \end{cases}$$

Determine P(Y > X)

Area of support
$$\,\times\,$$
 Weight of PDF $\,=\,1$ Area of support $\,=\,\frac{2}{3}$

Given
$$f_{X,Y}(u,v) = \begin{cases} \frac{3}{2}, & u > 0, \ u^2 < v < 1 \end{cases}$$

Determine P(Y > X)

Area of support
$$\times$$
 Weight of PDF = 1
Area of support = $\frac{2}{3}$
Area of $Y > X = \frac{1}{2}(1)(1) = \frac{1}{2}$

Given
$$f_{X,Y}(u,v) = \begin{cases} \frac{3}{2}, & u > 0, \ u^2 < v < 1 \end{cases}$$

Determine P(Y > X)

Area of support
$$\times$$
 Weight of PDF = 1
Area of support = $\frac{2}{3}$
Area of $Y>X=\frac{1}{2}(1)(1)=\frac{1}{2}$
$$P(Y>X)=\frac{1/2}{2/3}=\frac{3}{4}$$

The End

Thanks everyone! Stay safe, stay sane! Good luck studying!

