KONSEP FREKUENSI-DOMAIN

Gambar 3.5 menunjukkan contoh sinyal s(t) = $\sin (2 f_1 t) + 1/3 \sin (2 (3f_1)t)$. Dari gambar dapat dilihat bahwa :

• frekuensikeduamerupakansuatuperkalianintegraldarifrekuensipertamasehingga frekuensi akhir dinyatakan sebagai frekuensi utama

Gambar 3.5 Penjumlahan dari komponen frekuensi (T= 1/f)

periodetotalsinyalsamadenganperiodedarifrekuensiutama;periodedarisin(2 f₁t)
 adalah T=1/f₁dan periode dari s(t) juga T(lihat gambar 3.5.c).

Jadi semua sinyal apapun dapat dibuat darikomponen-komponen frekuensi, dimana tiap-tiap komponen adalah gelombang sinusoidal. Hal ini dikenal dengananalisis Fourier.

Gambar3.6.amenunjukkanfungsifrekuensi-domain untuksinyaldari gambar 3.5.c dalam hal ini s(f)adalah discrete. Gambar3.6.bmenunjukkan fungsi frekuensi-domain untuk pulsa kotak tunggal yang mempunyai nilai 1 antara -x/2 dan x/2, dan 0 dilain tempat, dalam hal ini s(f) adalah continuous.

Spektrumsinyaladalah daerah frekuensi yang dapat dimuati. Untuk gambar 3.5.c, spektrumnyadari f₁samapi3f₁.**Absolutebandwidth** darisinyal adalah lebar spektrum. Untuk gambar 3.5.c, bandwidthnya adalah 2f₁.

Padagambar3.6.b,terdapatbanyak bandwidth tetapi kebanyakan energi dalam sinyal relatif dimuatdalambandfrekuensirendah.Band ini dinyatakan sebagai **effective bandwidth** atau **bandwidth** saja.

DCcomponentyaitujikasuatusinyaltermasuk suatu komponen frekuensi nol, dimana komponen tersebut adalah dc atau komponen konstan. Contoh lihat gambar 3.7 yang menunjukkan hasil penambahan dc komponenterhadap sinyal pada gambar 3.6.

HUBUNGAN ANTARA DATA RATE DENGAN BANDMIDTH

Mediumtransmisiapapunyangdipakaiakan menyesuaikan dengan band frekuensi yang terbatas. Hal ini menyebabkan data rate yang dapatmelewati medium transmisi, terbatas.

Pada gambar 3.8, diberikan komponen-komponen frekuensi gelombang kotak. Disini terlihat bahwa gelombang kotak terbentuk dari penjumlahan spektrum-spektrum ganjil, sehingga gelombang kotak datap dinyatakan dalam :

$$s(t) = A x 1/k \sin(2kf_1t)$$

$$k=1$$

Gambar 3.6. Perubahan Frequensi Domain

Gambar 3.7. Sinyal dengan komponen DC

Gambar 3.8. Komponen-komponen frekuensi untuk gelombang square(T=1/f₁)

Hubungandataratedanbandwidthdidapatbahwa pengurangan/penambahan bandwidth akan menyebabkan pengurangan/penambahan datarate dengan faktor pengurangan/penambahan yangsama.Contoh(lihatgambar3.8.a):diinginkanbandwidth4MHz.jikaf₁=10cycles/sec=

1 MHz, maka bandwidth:

 $s(t)=\sin((2 \times 10^6)t)+1/3 \sin((2 \times 3 \times 10^6)t)+1/5 \sin((2 \times 5 \times 10^6)t)$

 $=(5x 10^6)-10^6=4 MHz$

periode : $T=1/10^6=1$ sec (karena $f_1=10$, $T=1/f_1$)

Jikagelombanginiterdiridaribitstring'1'dan'0'makatiapbitterjadisetiap0,5secsehingga data rate : $2 \times f_1 = 2 \times 10 = 2 \text{ Mbps}$; dengan demikian bandwidth 4 MHz, data ratenya 2 Mbps.

Gambar 3.9 Efek dari Bandwidth pada suatu sinyal Digital

Semakinterbatasbandwidth,semakinbesardistorsi dan semakin besar kemungkinan error padareceiver. Gambar 3.9menunjukkan bitstream dengan datarate2000bps, maka untuk bandwidth1700sampai2500Hz,hasilnyasudahcukupbagustetapidenganbandwidth4000 Hz, hasilnya lebih bagus lagi.

JadidataratesuatusinyaldigitaladalahWbps,makabandwidthyangpalingbagusadalah 2WHz.

KEKUATAN SINYAL

Sinyal yang melalui medium transmisiyang jauh, akan mengalami kehilangan atau **attenuation** (pelemahan) kekuatan sinyal. Untuk itu perluamplifier yang akan menambah gain sinyal. Kekuatan sinyal dinyatakan dalam decibel (db) yaitu suatu ukuran perbedaan dalam dua level kekuatan, dirumuskan sebagai berikut:

 $Ndb = 10 log_{10}(P_1/P_2)$

dimana :Ndb = besar decibel

P_{1,2}= besar kekuatan