Versuch 101

Das Trägheitsmoment

 $\label{tabea} Tabea\ Hacheney \\ tabea.hacheney @tu-dortmund.de$

Bastian Schuchardt bastian.schuchardt@tu-dortmund.de

Durchführung: 16.11.2021 Abgabe: 23.11.2021

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	The	orie		3				
2 Durchführung								
3	Auswertung							
	3.1	Winke	elrichtgröße	. 3				
	3.2	Eigent	trägheitsmoment	. 3				
	3.3	Trägh	eitsmoment des Zylinders	. 3				
		3.3.1	Theoretische Werte	. 3				
		3.3.2	Experimentelle Werte	. 3				
	3.4	Trägh	eitsmoment der Kugel	. 4				
		3.4.1	Theoretische Werte	. 4				
		3.4.2	Experimentelle Werte	. 4				
4	Diskussion							
Lit	teratı	ır		4				

1 Theorie

[1]

2 Durchführung

3 Auswertung

3.1 Winkelrichtgröße

Die Winkelrichtgröße wird durch die Formel

$$D = \frac{F \cdot r}{\phi} \tag{1}$$

bestimmt. Die verwendeten Werte sind in 1 angegeben.

Tabelle 1: Messdaten zur Bestimmung der Winkelrichtgröße D

$\overline{F/N}$	ϕ	r/m	D/Nm
0,1	30	0,1	0,000333
$0,\!26$	60	0,1	0,000433
0,41	90	0,1	0,000456
$0,\!56$	120	0,1	0,000467
0,72	150	0,1	0,000480
0,85	180	0,1	0,000472
$0,\!48$	180	0,2	0,000533
$0,\!55$	240	0,2	0,000458
0,63	270	0,2	0,000467
0,69	300	0,2	0,000460

Sowohl der Mittelwert, als auch die Standardabweichung wurden mit Python bestimmt. Daraus ergibt sich der gemittelte Wert

$$D = (0.000456 \pm 0.000048) \,\mathrm{Nm}.$$

3.2 Eigenträgheitsmoment

3.3 Trägheitsmoment des Zylinders

3.3.1 Theoretische Werte

3.3.2 Experimentelle Werte

Der Zylinder wird auf der Drillachse um den Winkel $\phi_{Zyl}=90^\circ$ ausgelenkt und die Zeit nach fünf Schwingungen gestoppt. Durch teilen der Zeitmessungen Z_{Zyl} durch fünf ergeben sich die Schwingungsdauern T_{Zyl} . Diese sind in Tabelle 2 zu finden.

Tabelle 2: Messdaten der Schwingungsdauer des Zylinders

Z_{Zyl}	T_{Zyl}/s
3.94	0.79
3.75	0.75
4.16	0.83
5.78	1.16
3.69	0.74
3.97	0.79
3.85	0.77
3.84	0.77
4.12	0.82
3.88	0.78

Der Mittelwert und die Abweichung wurden wieder mit Python berechnet. Aus den Daten ergibt sich

$$T_{Zyl} = (0.82 \pm 0.12) \, \mathrm{s}.$$

- 3.4 Trägheitsmoment der Kugel
- 3.4.1 Theoretische Werte
- 3.4.2 Experimentelle Werte

4 Diskussion

Literatur

[1] Versuch zum Literaturverzeichnis. TU Dortmund, Fakultät Physik. 2014.