Homework #2 Introduction to Algorithms/Algorithms 1 600.363/463 Spring 2017

Due on: Tuesday, February 14th, 5pm
Late submissions: will NOT be accepted
Format: Please start each problem on a new page.
Where to submit: On Gradescope, a single PDF file.
Please type your answers; handwritten assignments will not be accepted.
To get full credit, your answers must be explained clearly, with enough details and rigorous proofs.

February 16, 2017

1 Problem 1 (20 points)

1.1 (10 points)

Give tight asymptotic bounds (Θ) for T(n) in each of the following recurrences. If you cannot provide tight bounds, provide upper and lower bounds, making them as tight as possible. Assume that T(n) is a constant for $n \leq 8$ or other appropriately chosen small constant. Provide a short proof or justification of your answer. (Applying the master theorem is a proof.)

- $T(n) = T(3n/4) + 2n \log n 4$
- $T(n) = 4T(n/2) + n^2 \log_{10} n + 10n \log n$
- $T(n) = 4T(n/3) + n\log^2 n$

1.2 (10 points)

Given a set A of n integers and an integer T, design an algorithm to test whether k of the integers in A add up to T. Prove the correctness of your algorithm and

analyze the running time. (Note: full credit will be given to an $O(n^{k-1}\log n)$ algorithm).

2 Problem 2 (20 points)

Given an array (length > k) with positive and negative numbers, find the maximum average subarray whose length should be greater or equal to given length k. For example, given an array = $\{2,11,-7,-6,51,3\}$, and k=3, the maximum average subarray of length 3 begins at item -6, and the maximum average is (-6+51+3)/3=16. Please justify the correctness of your algorithm and analyze the running time.