Andrea Augello Department of Engineering, University of Palermo, Italy

Alberi di decisione

Introduzione

Introduzione

- ▶ Gli alberi di decisione sono un metodo di apprendimento supervisionato
- Sono utilizzati per la classificazione e la regressione
- ▶ Sono un modello di apprendimento interpretabile e facilmente visualizzabile
- Utilizzano semplici regole di decisione inferite dai dati di addestramento

Vantaggi e svantaggi

- Vantaggi
 - Semplice da capire e interpretare
 - ► Richiede poca preparazione dei dati
 - Può gestire sia dati numerici che categorici
 - Non necessita di assunzioni sulle distribuzioni dei dati
 - Può gestire problemi multi-classe
 - Richiede poche risorse per l'inferenza

Vantaggi e svantaggi

Vantaggi

- Semplice da capire e interpretare
- Richiede poca preparazione dei dati
- Può gestire sia dati numerici che categorici
- Non necessita di assunzioni sulle distribuzioni dei dati
- Può gestire problemi multi-classe
- Richiede poche risorse per l'inferenza

Svantaggi

- Sono facilmente soggetti all'overfitting
- Possono essere instabili, piccole variazioni nei dati possono portare a grandi variazioni nella struttura dell'albero
- Necessitano di classi bilanciate
- L'output non è continuo, ma a step

Come funziona?

Come funziona?

- ► All'arrivo di un vettore di input, l'albero di decisione esegue una serie di test per determinare la classe di appartenenza.
- Le decisioni sono tipicamente binarie, del tipo "feature $x_i \leq \alpha$?" quindi ogni nodo dell'albero ha due figli. (Esistono anche altri tipi di alberi)
- Divisioni successive dello spazio delle feature creano regioni corrispondenti alle classi. (Non tutte le feature vengono necessariamente utilizzate)

Algoritmo di inferenza

```
Funzione PREDICI (x, albero)

Output: Classe predetta

1: nodo ← radice dell'albero

2: while nodo non è una foglia do

3: if x[nodo.feature] ≤ nodo.soglia then

4: nodo ← figlio sinistro del nodo

5: else

6: nodo ← figlio destro del nodo

7: end if

8: end while
```

9: return etichetta associata al nodo

Non ha una label associata

Algoritmo di addestramento

```
Funzione Addestra (dataset, features)
Output: Albero di decisione
 1. if STOPCONDITION then
     return Nodo foglia con classe più appropriata
 3. end if
 4: feature, soglia \leftarrow SCEGLISPLIT(dataset, features)
 5. for e \in Dataset do
     if e[feature] < soglia then
        dataset_1 \leftarrow e
    else
     dataset_2 \leftarrow e
10: end if
11: end for
12: nodo \leftarrow NUOVONODO(feature, soglia)
13: nodo.figlio_1 \leftarrow ADDESTRA(dataset_1, features)
14: nodo.figlio_2 \leftarrow ADDESTRA(dataset_2, features)
15 return nodo
```

Scelte implementative

Ad ogni step di divisione dell'albero ci sono delle scelte da fare:

- Come si sceglie la feature da utilizzare per lo split successivo?
- ► Come si sceglie il valore di soglia?
- ► Come si determina quando fermarsi?
- Come si determina la classe di un nodo foglia?

Esistono diverse strategie per rispondere a queste domande, che portano a diverse implementazioni di alberi di decisione.

Soglie

- Per ogni feature x_i , ogni possibile valore di soglia α può determinare uno split differente.
- ▶ Potenzialmente quindi ci sono infiniti split possibili tra cui scegliere.
- In pratica ci si limita ad i valori di soglia che corrispondono ai punti medi tra due valori consecutivi di x_i osservati nel dataset.
- ▶ I possibili punti di scelta ad ogni nodo sono quindi dati dal numero di feature moltiplicato per la cardinalità del dataset.

Come scegliere quale tra questi punti di scelta utilizzare?

Criterio di split

- Ogni divisione di un nodo genera due discendenti.
- ▶ È ragionevole voler scegliere la divisione che genera i discendenti più omogenei possibile rispetto alla divisione originale.

Criterio di split

- Ogni divisione di un nodo genera due discendenti.
- ▶ È ragionevole voler scegliere la divisione che genera i discendenti più omogenei possibile rispetto alla divisione originale.
- Due i criteri più utilizzati: Indice di Gini

Entropia di Shannon

$$Gini = 1 - \sum_{i=1}^{n} p_i^2$$

$$H = -\sum_{i=1}^{n} p_i \log_2 p_i$$

La diminuzione dell'impurità di un nodo è data dalla somma pesata delle impurità dei nodi figli.

$$\Delta I = I_{parent} - \frac{N_1}{N} I_1 - \frac{N_2}{N} I_2$$

Criterio di split

- Ogni divisione di un nodo genera due discendenti.
- ▶ È ragionevole voler scegliere la divisione che genera i discendenti più omogenei possibile rispetto alla divisione originale.
- Due i criteri più utilizzati:

Entropia di Shannon

$$Gini = 1 - \sum_{i=1}^{n} p_i^2$$

$$H = -\sum_{i=1}^{n} p_i \log_2 p_i$$

La diminuzione dell'impurità di un nodo è data dalla somma pesata delle impurità dei nodi figli.

$$\Delta I = I_{parent} - \frac{N_1}{N} I_1 - \frac{N_2}{N} I_2$$

► Tra i possibili punti di scelta si sceglie quello che massimizza la diminuzione dell'impurità.

Quando fermarsi?

- ► Threshold di impurità
- Numero minimo di esempi in un nodo
- Profondità massima dell'albero

Cosa fare se un nodo foglia non è puro?

► Assegnare la classe più frequente

Dataset di esempio

- ▶ Due feature x_1 e x_2
- ► Tre classi
- ▶ 10 esempi

x_1	x_2	y
1	1	$\frac{g}{1}$
1	2	1
2	1	1
2	2	1
2	3	1
3	1	2
3	2	2
4	1	2
4	2	3
4	3	3

Dataset di esempio

- ▶ Due feature x_1 e x_2
- ► Tre classi
- ▶ 10 esempi

x_1	x_2	y
1	1	1
1	2	1
2	1	1
2	2	1
2	3	1
3	1	2
3	2	2
4	1	2
4	2	3
4	3	3

Inidice di Gini iniziale:
$$1-\left(\frac{5}{10}\right)^2-\left(\frac{3}{10}\right)^2-\left(\frac{2}{10}\right)^2=0.62$$

Possibili split:

Possibili split:

$$\Delta I = 0.62 - \frac{7}{10}0.40 - \frac{3}{10} \cdot 0.44 = 0.21$$

$$\begin{array}{l}
\Delta I = \\
0.62 - \frac{6}{10} \cdot 0.61 -
\end{array}$$

$$\Delta I = 0.62 \frac{2}{10} \cdot 0.5 - \frac{8}{10} \cdot 0.59 = \mathbf{0.05}$$

Possibili split:

$$\Delta I = 0.62 - \frac{2}{10} \cdot 0 - \frac{8}{10} \cdot 0.66 = 0.09$$

$$\Delta I = 0.62 - \frac{5}{10} \cdot 0 - \frac{5}{10} \cdot 0.48 =$$
0.38

$$\Delta I = 0.62 - \frac{7}{10} \cdot 0.40 - \frac{3}{10} \cdot 0.44 = 0.21$$

$$\Delta I = 0.62 - \frac{6}{10} \cdot 0.61 - \frac{4}{10} \cdot 0.5 = 0.05$$

Il maggior quadagno di informazione si ottiene con lo split sulla feature x_0 con soglia $\alpha = 2.5$.

Primo split:

- ightharpoonup Scegliamo la feature x_0
- lacktriangle Scegliamo il valore di soglia lpha=2.5

Effetto:

- ▶ Inidice di Gini iniziale: 0.62 $G = 1 \left(\frac{5}{10}\right)^2 \left(\frac{3}{10}\right)^2 \left(\frac{2}{10}\right)^2 = 0.62$
- ▶ Indice di Gini nodo sinistro: $G_1 = 0$
- ► Indice di Gini nodo destro: $G_2 = 1 \left(\frac{3}{5}\right)^2 \left(\frac{2}{5}\right)^2 = 0.48$
- $\Delta I = 0.62 \frac{5}{10} \cdot 0 \frac{5}{10} \cdot 0.48 = 0.38$

Secondo split (sul figlio destro, il sinistro è puro):

- ightharpoonup Scegliamo la feature x_0
- ▶ Scegliamo il valore di soglia $\alpha = 3.5$

Effetto:

- ▶ Indice di Gini iniziale: G = 0.48
- ▶ Indice di Gini nodo sinistro: $G_1 = 0$
- ► Indice di Gini nodo destro: $G_2 = 1 - \left(\frac{1}{2}\right)^2 - \left(\frac{2}{2}\right)^2 = 0.66$

Ultimo split:

- ightharpoonup Scegliamo la feature x_1
- lacktriangle Scegliamo il valore di soglia lpha=1.5

Effetto:

- Indice di Gini iniziale: G = 0.66
- ▶ Indice di Gini nodo sinistro: $G_1 = 0$
- ▶ Indice di Gini nodo destro: $G_2 = 0$
- $\Delta H = 0.66 \frac{1}{3} \cdot 0 \frac{2}{3} \cdot 0 = 0.66$

Implementazione

Dataset

Implementazione

```
import utils
from manual_tree import DecisionTree
def main():
   X,y = utils.load_data("dataset.dat")
   tree = DecisionTree(max_depth=3)
   tree.fit(X, v)
   utils.classification_stats(y, tree(X))
   utils.plot(X,y, tree, pause=True)
   for depth in range (1,9):
       tree = DecisionTree(
                               # Creazione del classificatore
               max_depth=depth) # Profondità massima
       tree.fit(X, v, quiet=True) # Addestramento
       print(f"Depth: {depth}")
       utils.classification_stats(y, tree(X))
       utils.plot(X,y, tree, title=f"Depth: {depth}")
if name == " main ":
   main()
```

Implementazione

Sistema di decisione multilivello:

```
x_1 <= 0.20
| x_0 <= -0.59
| | class: 0
| | class: 1
| x_0 <= 1.64
| | class: 0
| | class: 1</pre>
```


Visualizzare lo spazio delle feature

Valutare la bontà della classificazione

- lacktriangle Accuratezza: $\frac{TP+TN}{TP+TN+FP+FN}$
- ▶ Precisione: $\frac{TP}{TP+FP}$
- ightharpoonup Recall: $\frac{TP}{TP+FN}$
- ightharpoonup F1: $2 \cdot \frac{Precision \cdot Recall}{Precision + Recall}$

Non rimane che implementare l'albero

```
class Node():
        def __init__():
        def __str__():
        def forward():
        def _gini():
        def _best_split():
        def fit():
class DecisionTree(Node):
        def __init__(self, max_depth=3):
        def fit(self, X, y):
        def __call__():
```