Navn:		Skole:	
Klasse: 20		Dato: 23. november 2022	Fag: Matematik A

Opgave 027

Den blå linje, er den rigtige hældning. Og den grå linje er sekanten, som tydeligvis er forkert.

Denne formel kan skrives som

$$a = \frac{f(x_1 + \Delta x) + f(x_1)}{\Delta x}$$

Men som kan ses på ovenstående graf, er der en stor fejl, hvis vi derimod gør Δx mindre, så kan vi se at fejlen bliver mindre.

Navn:		Skole:	
Klasse: 20		Dato: 23. november 2022	Fag: Matematik A

Selvom Δx nu er mindre, kan vi se at der stadig er en fejl. Det betyder at for at få den rigtige hældning bliver Δx nød til at være uendelig lille, dette kan skrives som:

$$a = \lim_{x \to 0} \left(\frac{f(x + \Delta x) + f(x)}{\Delta x} \right)$$

Eksempel på brug

$$f(x) = x^{2}$$

$$a = \lim_{x \to 0} \left(\frac{f(x + \Delta x) + f(x)}{\Delta x} \right)$$

$$f'(x) = \lim_{x \to 0} \left(\frac{f(x + \Delta x) + f(x)}{\Delta x} \right)$$

$$f'(x) = \lim_{x \to 0} \left(\frac{(x + \Delta x)^{2} + x^{2}}{\Delta x} \right)$$

$$f'(x) = \lim_{x \to 0} \left(\frac{x^{2} + \Delta x^{2} + 2 \cdot x \cdot \Delta x - x^{2}}{\Delta x} \right)$$

$$f'(x) = \lim_{x \to 0} \left(\frac{\Delta x^{2} + 2x \cdot \Delta x}{\Delta x} \right)$$

$$f'(x) = \lim_{x \to 0} (\Delta x + 2x)$$

Nu kan vi indsætte 0 på Δx plads, og fjerne lim

$$f'(x) = 2x$$