FIRST ORDER LOGIC AND PROBABILISTIC INFERENCING

Inference in Belief Networks

- - Q the query variable
 - **E** set of evidence variables

$$P(q \mid \mathbf{e}) = \frac{P(q, \mathbf{e})}{P(\mathbf{e})}$$

 $X_1,..., X_n$ are network variables except Q, **E**

$$P(q, e) = \sum_{X_1,...,X_n} P(q, e, x_1,..., x_n)$$

Basic Inference

$$P(b) = ?$$

Product Rule

S	$T \Rightarrow $	none	benign	malignant
no		0.768	0.024	0.008
light		0.132	0.012	0.006
heavy		0.035	0.010	0.005

Marginalization

$S \downarrow C \Rightarrow$	none	benign	malig	total	_
no	0.768	0.024	0.008	.80	P(Smo
light	0.132	0.012	0.006	.15	
heavy	0.035	0.010	0.005	.05	
total	0.935	0.046	0.019		J

P(Cancer)

Basic Inference

Inference in trees

$$P(x) = \sum_{y_1, y_2} P(x \mid y_1, y_2) P(y_1, y_2)$$

$$y_1, y_2$$
because of independence of Y_1, Y_2 :

=
$$\sum_{y_1, y_2} P(x | y_1, y_2) P(y_1) P(y_2)$$

y₁, y₂

Inference with continuous variables

- □ Gaussian networks: polynomial time inference regardless of network structure
- Conditional Gaussians:
 - discrete variables cannot depend on continuous

These techniques do not work for general hybrid networks.

Computational complexity

☐ Theorem: Inference in a multi-connected Bayesian network is NP-hard.

Boolean 3CNF formula $\phi = (u \lor v \lor w) \land (u \lor w \lor y)$

9

Summary

- Bayesian networks provide a natural representation for (causally induced) conditional independence
- □ Topology + CPTs = compact representation of joint distribution
- ☐ Generally easy for domain experts to construct

Gaussian (normal) distributions

Gaussian networks

$$Y \sim N(ax+b,\sigma_Y^2)$$

Each variable is a linear function of its parents, with Gaussian noise

Joint probability density functions:

D-Separation

- X is d-separated from Y if, for all paths between X and Y there exists an intermediate node Z for which:
 - The connection is serial or diverging and there is evidence for Z.
 - The connection is converging and Z (nor any of its descendants) have received any evidence.
- X is independent of Y given Z for some conditional probabilities if and only if X is d-separated from Y given Z.

Example of Independence Questions

- ☐ If there was evidence for B, which probabilities would change?
- If there was evidence for N, which probabilities would change?
- If there was evidence for M and N, which variables probabilities would change?
- □ Etc...

