§ 2. ПОДПРОСТРАНСТВА ВЕКТОРНОГО ПРОСТРАНСТВА

Подпространство. Пусть \mathcal{V} — векторное пространство над полем \mathcal{F} и $U \subset V$. Множество U называется замкнутым в \mathcal{V} , если оно замкнуто относительно главных операций \mathcal{V} , операций сложения и умножения на скаляры, т. е. для любых a, b из U и любого λ из F $a+b \in U$ и $\lambda a \in U$.

ОПРЕДЕЛЕНИЕ. Подпространством векторного пространства У называется любая подалгебра простран-

ства У, рассматриваемого как алгебра.

Пусть $\mathscr{V} = \langle V, +, \{\omega_{\lambda} | \lambda \in F\} \rangle$ — векторное пространство над \mathscr{F} . Пусть \mathscr{U} — подалгебра пространства \mathscr{V} и U — его основное множество. Тогда U — непустое подмножество множества V, замкнутое в \mathscr{V} . Пусть \bigoplus и ω_{λ}' — ограничения главных операций «+» и ω_{λ} пространства \mathscr{V} множеством U, т. е.

$$a \oplus b = a + b$$
 для любых a , b из U ,

 $\omega_{\lambda}'a = \omega_{\lambda}a = \lambda a$ для любого a из U;

тогда

(1)
$$\mathcal{U} = \langle U, \oplus, \{\omega_{\lambda} \mid \lambda \in F\} \rangle$$
.

Однако вместо записи (1) обычно пишут

$$\mathcal{U} = \langle U, +, \{\omega_{\lambda} | \lambda \in F\} \rangle.$$

Отметим следующие свойства подпространств.

СВОЙСТВО 2.1. Если \mathcal{V} — векторное пространство над полем \mathcal{F} , то любое его подпространство является векторным пространством над \mathcal{F} .

СВОЙСТВО 2.2. Если \mathcal{W} — подпространство векторного пространства \mathcal{U} и \mathcal{U} — подпространство векторного пространства \mathcal{V} , то \mathcal{W} является подпространством пространства \mathcal{V} .

Пересечением подпространстве $\mathcal{U}_1, \ldots, \mathcal{U}_m$ векторного пространства \mathcal{V} называется подпространство \mathcal{V} с основным множеством $U_1 \cap U_2 \cap \ldots \cap U_m$. Аналогично определится пересечение бесконечного множества подпространств пространства \mathcal{V} .

СВОЙСТВО 2.3. Пересечение любого множества подпространств векторного пространства У является под-

пространством пространства %.

Свойства 2.2 и 2.3 следуют из теорем 3.1.7 и 3.1.9 соответственно.

Линейная оболочка множества векторов. Пусть $\{a_1, \ldots, a_n\}$ — конечное множество векторов векторного про-

странства ${}^{\mathfrak{P}}$. Вектор $\lambda_1 a_1 + \ldots + \lambda_n a_n$ называется линейной комбинацией векторов a_1, \ldots, a_n с коэффициентами из F.

ОПРЕДЕЛЕНИЕ. Множество $\{\lambda_1 a_1 + \ldots + \lambda_n a_n \mid \lambda_1, \ldots \}$ $\ldots, \lambda_n \in F$ } всех линейных комбинаций векторов a_1, \ldots, a_n с коэффициентами из F называется линейной оболочкой векторов a_1, \ldots, a_n и обозначается через L (a_1, \ldots, a_n) .

Легко видеть, что линейная оболочка векторов замкнута в %, т. е. замкнута относительно всех главных операций пространства \mathscr{V} (сложения и умножений на скаляры).

ОПРЕДЕЛЕНИЕ. Подпространство векторного пространства \mathscr{V} с основным множеством $L(a_1, \ldots, a_n)$ обозначается через $\mathscr{L}(a_1,\ldots,a_n)$ и называется подпространством, натянутым на векторы a_1, \ldots, a_n , или подпространством, порожденным векторами a_1, \ldots, a_n .

ОПРЕДЕЛЕНИЕ. Линейной оболочкой множества М. $M \subset V$, называется совокупность L(M) всех линейных комбинаций векторов из M с коэффициентами из F. Линейной оболочкой пустого множества называется мно-

жество $\{0\}$.

Линейная оболочка множества M замкнута в \mathscr{V} .

ОПРЕДЕЛЕНИЕ. Подпространство пространства У с основным множеством L(M) обозначается через $\mathcal{L}(M)$ и называется подпространством, натянутым на множество М, или подпространством, порожденным множеством М.

Сумма подпространств. Пусть $\mathcal{U}_1, \ldots, \mathcal{U}_m$ — подпростран-множества. Множество

$$\{a_1 + \ldots + a_m \mid a_1 \in U_1, \ldots, a_m \in U_m\}$$

обозначается через $U_1 + ... + U_m$. Легко проверить,

это множество замкнуто в пространстве %.

ОПРЕДЕЛЕНИЕ. Подпространство пространства У с основным множеством $U_1 + \ldots + U_m$ называется суммой nodn ространств $\mathcal{U}_1, \ldots, \mathcal{U}_m$ и обозначается через $\mathcal{U}_1 + \ldots$ $\ldots + \mathcal{U}_m$.

Отметим следующие свойства суммы подпространств, легко вытекающие из ее определения.

СВОЙСТВО 2.4. Если \mathscr{L} и \mathscr{U} — подпространства век-

торного пространства \mathscr{V} , то $\mathscr{U} + \mathscr{L} = \mathscr{L} + \mathscr{U}$. СВОЙСТВО 2.5. Если \mathscr{L} , \mathscr{U} — подпространства векторного пространства \mathcal{V} , то $\mathcal{L}+(\mathcal{U}+\mathcal{U})=(\mathcal{L}+\mathcal{U})+\mathcal{U}$. СВОЙСТВО 2.6. Если $\mathscr{L}-$ подпространство пространства \mathscr{U} , то $\mathscr{L}+\mathscr{U}=\mathscr{U}$.

Пусть $\mathscr{L}_1, \ldots, \mathscr{L}_m$ — подпространства векторного про-

странства %.

ОПРЕДЕЛЕНИЕ. Сумма $\mathscr{L}_1 + \ldots + \mathscr{L}_m$ называется прямой суммой подпространств $\mathscr{L}_1, \ldots, \mathscr{L}_m$ и обозначается через $\mathscr{L}_1 \oplus \ldots \oplus \mathscr{L}_m$, если любой вектор a из $L_1 + \ldots + L_m$ можно единственным образом представить в виде

$$a=a_1+\ldots+a_m$$
, где $a_1\in L_1,\ldots,a_m\in L_m$.

Другими словами, сумма $\mathcal{L}_1 + \ldots + \mathcal{L}_m$ называется *прямой*, если для любых a_1,b_1 из L_1,\ldots,a_m,b_m из L_m равенство $a_1 + \ldots + a_m = b_1 + \ldots + b_m$ влечет равенства $a_1 = b_1,\ldots$, $a_m = b_m$.

TEOPEMA 2.1. Сумма подпространств \mathcal{L} и \mathcal{U} векторного пространства является прямой тогда и только тогда,

когда $L \cap U = \{0\}.$

 \mathcal{L} оказательство. Предположим, что $\mathcal{L} + \mathcal{U} = \mathcal{L} \oplus \mathcal{U}$. Тогда для любого элемента c из $L \cap U$ верно равенство c + 0 = 0 + c, из которого следует равенство c = 0, так как сумма $\mathcal{L} + \mathcal{U}$ прямая. Следовательно, $L \cap U = \{0\}$.

Предположим теперь, что $L \cap U = \{0\}$. Для любых векторов a_1 , b_1 из L и a_2 , b_2 из U равенство $a_1 + a_2 = b_1 + b_2$ влечет соотношения $a_1 - b_1 = a_2 - b_2 \in L \cap U = \{0\}$, поэтому $a_1 = b_1$ и $a_2 = b_2$. Следовательно, сумма $\mathcal{L} + \mathcal{U}$ является прямой. \square

ТЕОРЕМА 2.2. Сумма подпространств $\mathcal{L}_1, \ldots, \mathcal{L}_m$ векторного пространства является прямой суммой, если для любых векторов a_1 из L_1, \ldots, a_m из L_m равенство

(1)
$$a_1 + \ldots + a_m = 0$$
 влечет равенства

(2)
$$a_1 = 0, \ldots, a_m = 0.$$

Доказательство. Предположим, что сумма $\mathcal{L}_1+...+\mathcal{L}_m$ прямая. Тогда из равенства (1), которое можно записать в виде $a_1+...+a_m=0+...+0$, следуют равенства $a_1=0,...$..., $a_m=0$.

Предположим теперь, что для любых векторов a_1, \ldots, a_m соответственно из L_1, \ldots, L_m равенство (1) влечет равенства (2). Каковы бы ни были векторы b_1 , c_1 из L_1 , ..., b_m , c_m из L_m , равенство

(3)
$$b_1 + \ldots + b_m = c_1 + \ldots + c_m$$

влечет $(b_1-c_1)+\ldots+(b_m-c_m)=0$, из которого, по условию, следуют равенства

$$b_1-c_1=0, \ldots, b_m-c_m=0.$$

Таким образом, из (3) следуют равенства

$$b_1=c_1,\ldots,b_m=c_m.$$

Следовательно, сумма $\mathcal{L}_1 + \ldots + \mathcal{L}_m$ является прямой. \square Линейные многообразия. Пусть \mathcal{L} — подпространство векторного пространства $\mathscr V$ и L — его основное множество. На множестве V определим бинарное отношение \sim , считая, что $a \sim b$ тогда и только тогда, когда $a - b \in L$. Назовем это бинарное отношение *отношением* сравнения по \mathcal{L} .

ПРЕДЛОЖЕНИЕ 2.3. Отношение сравнения на множестве V по $\mathscr L$ является отношением эквивалентности на V.

Доказательство. Отношение сравнения по \mathscr{L} , очевидно, рефлексивно. Отношение по \mathscr{L} симметрично, так как из $a-b \in L$ следует $b-a \in L$. Отношение сравнения по \mathscr{L} транзитивно, так как для любых a, b, $c \in V$ из $a-b \in L$ и $b-c \in L$ следует, что $a-c = (a-b) + (b-c) \in L$. Следовательно, отношение сравнения по \mathscr{L} является отношением эквивалентности на множестве V. \square

Отношение эквивалентности \sim на V определяет раз-

биение множества V на классы эквивалентности.

ОПРЕДЕЛЕНИЕ. Пусть \mathscr{L} — подпространство векторного пространства \mathscr{V} . Любой класс эквивалентности отношения сравнения по \mathscr{L} называется линейным многообразием пространства \mathscr{V} с направлением \mathscr{L} .

Пример. Множество всех решений совместной системы линейных уравнений с n переменными является линейным многообразием с направлением \mathcal{L} n-мерного арифметического векторного пространства, где \mathcal{L} — пространство решений соответствующей однородной системы уравнений.

Из приведенного выше определения вытекают свойства 2.7 и 2.8.

СВОЙСТВО 2.7. Два вектора векторного пространства \mathcal{V} принадлежат одному и тому же линейному многообразию с направлением \mathcal{L} тогда и только тогда, когда их разность принадлежит L.

СВОЙСТВО 2.8. Любые два линейных многообразия векторного пространства $\mathcal V$ с направлением $\mathcal E$ либо совпадают, либо не пересекаются. Объединение всех линейных