Lineární algebra

Zadáno 29.1.2018

Příklad 21

Distribuční funkce:

$$F(x) = \sum_{k=0}^{x} \frac{\lambda^k e^{-\lambda}}{k!}$$

Střední hodnota:

$$\mathbb{E}(x) = \lambda$$

Rozptyl:

$$\sigma^2(x)=\lambda$$

Příklad 23

Využijeme faktu, že $\mathbb{E}[XY] = \mathbb{E}X$ $\mathbb{E}Y$, platný pro nezávislé veličiny. Dále využijeme faktu, že var(X+Y) = var(X) + var(Y), platný pro nezávislé veličiny. Posldní fakt je, že $cov[X_i, X_i]$ pro $i, j \in \mathbb{R}$ & $i \neq j$ a zároveň nezávislé veličiny X_i, X_j je roven nule.

Z toho získámerovnost na nezávislých jevech:

$$Var\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} Var[X_i]$$

A nyní to upravíme tak abychom mohly být jevy závislé. Jev je závislý pokud nesplňuje: $P(A \cap B) = P(A) * P(B)$ Tudíž rozložme rovnici

$$Var(X+Y) = \mathbb{E}[X^2] - (\mathbb{E}X)^2 + \mathbb{E}[Y^2] - (\mathbb{E}Y)^2 + 2(\mathbb{E}[XY*] - \mathbb{E}X*\mathbb{E}Y)$$

Z toho nám vznikne Var(X) + Var(Y) + 2 * Cov[X, Y], pro dvě náhodné veličiny.

Což lze velice snadno převést na případ o *n* veličinách, tak, že se porovnáva kovariace každého prvku s každým.