УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

	-
Группа К работе допущен 20.03. 2	10 All C.
Студент <i>Патутин Вълдицр Шикайлович</i> Работа выполнена 20.03.	/ //
Преподаватель <i>Минев Въсилий Анександрович</i> Отчет принят	
, 0	
Рабочий протокол и отчет по	
лабораторной работе №3. <i>1</i> 0	
Илучние свобедных замухающих	
электромалнитинос комбаний	
1. Цель работы, учение основных характеристик затухонощих кольбаний. Получние Ттеор и сасынние с Тжет. 2. Задачи, решаемые при выполнении работы. Снятие леказаний с осщинерафа лемучние Ттеор, Тжет, У, П, О, V Построиние графиков	
3. Объект исследования.	
Электроманнимные ремедания	
4. Метод экспериментального исследования.	
5. Рабочие формулы и исходные данные. $ \lambda = \frac{1}{n} \ln \left(\frac{U_i}{U_{i+n}} \right) \qquad Q = \frac{2\pi}{1 - e^{-2\pi}} $ $ \lambda = \pi R \sqrt{\frac{C}{R}} \qquad T = \frac{2\pi}{\sqrt{\frac{1}{4C} - \frac{R^2}{4U^2}}} $ $ R_o = -R_m _{\lambda=0} \qquad C = 0,022 \text{ мк } P $	

-			-
6	MONAGONIA	TOPLULIO	приборы.
U.	VISINGUM	LETIPHDIE	HUNUUUDI.

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Осумограф ОЦЛ-2	упрровой		
2	0 / 1 0	100 100		
3				
4				

Примеры вычисиних
$$\lambda, l, R, Q$$
 для. $R_n = Ooll$
 $\lambda_1 = \frac{1}{n} \ln \left(\frac{U_1}{U_{1+n}} \right) = \frac{1}{3} \ln \left(\frac{4,8 \cdot \frac{1}{2}}{1,2 \cdot \frac{1}{2}} \right) = 0,33$
 $R_1 : R_0 = -R_m|_{\lambda=0} \quad |\Rightarrow R_0 = -(-60) = \frac{60 \, \text{lm}}{4}$
 $L_1 = \frac{C \cdot (\Pi R)^2}{\lambda_1^2} = \frac{0,022 \cdot (3,14 \cdot 60)^2}{0,33^2} = \frac{7,31 \, \text{m/h}}{1-2,7^{\frac{2}{2}033}} = 13,11$
 $Q_1 = \frac{2\Pi}{1-e^{-2\lambda_1}} = \frac{2 \cdot 3,14}{1-2,7^{\frac{2}{2}033}} = 13,11$
 $Q_1 = \sqrt{\left(\frac{\partial l}{\partial C} \, \Delta C\right)^2 + \left(\frac{\partial l}{\partial R} \, \Delta R\right)^2 + \left(\frac{\partial l}{\partial A} \, \Delta l\right)^2} \approx 0,002 \, \text{m/h}}$
 $U_1 = \sqrt{\left(\frac{\partial l}{\partial C} \, \Delta C\right)^2 + \left(\frac{\partial l}{\partial R} \, \Delta R\right)^2 + \left(\frac{\partial l}{\partial R} \, \Delta l\right)^2} \approx 0,002 \, \text{m/h}}$
 $U_1 = \sqrt{\left(\frac{\partial l}{\partial R} \, \Delta C\right)^2 + \left(\frac{\partial l}{\partial R} \, \Delta R\right)^2 + \left(\frac{\partial l}{\partial R} \, \Delta l\right)^2} \approx 0,002 \, \text{m/h}}$
 $U_2 = 0,200 \, \text{m/h}}$
 $U_3 = 0,77 \, \text{m/h}$
 $U_4 = \frac{2}{\sqrt{2}} \, \text{m/h}} = \frac{2}{\sqrt{2}} \, \frac{2}{$

$$T_{200} = 0.10 \text{ µc}$$

 $T_{400} = 0.13 \text{ µc}$
 $T_{ep} = 0.10 \text{ µc}$

не имеет единиц измерения , в таблице измерений

у него нет единиц измерения.

Φοδροπμος πο κομπυρα ημι ραμινιμές
$$R$$

$$Q_1 = 13,11$$

$$Q_2 = 12,45$$
πος νυπαθα Q qua R_1 u R_2 u spabrum
$$Q_{12} = \frac{1}{R} \cdot \sqrt{\frac{L}{C}} = \frac{4}{60} \sqrt{\frac{7,3 \cdot 10^{-3}}{0,022 \cdot 10^{4}}} = 9,5$$

$$Q_{2.2} = 8,7$$
5 Πρωμερ βον νυσμενικά T_{reop} u δT γνυ $C = 0,022 \cdot 10^{-3}$

$$T_{περ} = \frac{2 \cdot 3,14}{4} = 0,09$$

$$T_{reop} = \frac{2 \cdot 3,14}{4} = 0,089 \text{ μc}$$

$$T_{\text{reop}} = \frac{2 \cdot 3, 14}{\sqrt{\frac{1}{9,13 \cdot 0,022 \cdot 10^3} - \frac{60^2}{4 \cdot 9,13^2}}} = 0,089 \text{ MC}$$

6 BAYLIC LEHUL B, WO U S
$$\beta = \frac{R}{2L} = \frac{60}{2 \cdot 9,13 \cdot 10^{3}} = 3225 \text{ QU/FH}$$

$$\omega_{0} = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{9,13 \cdot 10^{3} \cdot 0,022 \cdot 10^{-6}}} \approx 70 \cdot 10^{3} \frac{1}{\sqrt{\ln 9}}$$

$$\cos \delta = \frac{-\beta}{V_0} | \Rightarrow \delta = \arccos\left(\frac{-3225}{70 \cdot 10^3}\right) = 1,9$$

Yarabue B < Qo bornalessemas

(7) BNOOG: Построены градики зависимостей д от Rm, Q от R, Treep от Тэксп. У махорахорной следует, что пумод не зависит от сопротивления Таблица 1.

$R_{\rm M}$, $O_{\rm M}$	Т, мс	$2U_i$, дел	$2U_{i+n}$, дел	n	λ	Q	R, OM	L , м Γ н
0	0,09	4,8	1,8	3	0,33	13,11	60	7,31
10	0,09	4,6	1,6	3	0,35	1245	70	8,58
20	0,09	4,4	1,2	3	0,43	10,86	80	7,40
30	0,09	4,3	1	3	0,49	10,12	90	7,43
40	0,09	4,2	0,8	3	0,55	9,40	100	7,10
50	0,09	4	0,8	3	0,54	9,56	110	9,12
60	0,09	3,8	0,7	3	0,56	9,30	120	9,82
70	0,09	3,8	1	2	0,67	8,54	130	8,23
80	0,09	3,6	0,8	2	0,75	8,08	140	7,52
90	0,09	3,5	0,8	2	0,74	8,15	150	8,96
100	0,09	3,4	0,7	2	0,72	8,22	160	10,01
200	0,09	2,4	0,7	1	1,10	7,04	260	12,15
300	0,09	1,7	0,3	1	1,73	6,48	360	9,34
400	0,09	1,2	0,2	1	1,79	6,46	460	14,30
			,	,	1,7.5	5,	700	

Таблица 2.

С, мкФ	$T_{ m sken}$, MC	T_{Teop} , MC	$\delta T = \frac{T_{\text{secn}} - T_{\text{reop}}}{T_{\text{reop}}}, \%$
0,022	0,09	0,089	1 %
0,033	0,11	0,109	1 %
0,047	0,13	0,103	0 %
0,47	0,41	0,402	2 %

20.03.20 John

Приложение 1

Схема установки

Обозначим полное электрическое сопротивление контура R, индуктивность катушки L, ёмкость конденсатора C , ЭДС самоиндукции $\mathbf{\mathcal{E}}_{si}$

Графики зависимостей

