- 5. Sea A una matriz de  $n \times n$  tal que A se expresa en la forma A := M N, donde M, N son matrices de  $n \times n$  y M es no singular. Sea  $R := M^{-1}N$ . A fin de resolver el sistema de ecuaciones lineales Ax = b, dado un vector  $x^{(0)} \in \mathbb{R}^n$  arbitrario consideramos la sucesión  $\{x^{(k)}\}_{k\geqslant 0} \subset \mathbb{R}^n$  definida por  $x^{(k+1)} := Rx^{(k)} + c$ , donde  $c = M^{-1}b$ .
  - a) Demostrar que si ||R|| < 1 para alguna norma subordinada, entonces  $x^{(k)}$  converge a una solución del sistema Ax = b.
  - b) Demostrar que si A es singular entonces  $\rho(R) \ge 1$ .

a) 
$$x^{(k+1)} = Rx^{(k)} + C$$
 converge sii  $P(R) < 1$ . Por ejercicio z vimos que  $P(R) \le ||R||$ . Si  $||R|| < 1$  entonces  $P(R) < 1$  y  $x^{(k)}$  converge.

$$X^{(K+1)} = RX^{(K)} + C$$

$$\Rightarrow \times^* = R \times^* + C$$

$$= M^{-1} N \times^* + M^{-1} b$$

$$= M^{-1} (N \times^* + b)$$

$$\iff Mx^* = Nx^* + b$$

$$\iff Mx^* - Nx^* = b$$

$$\iff (M-N)x^* = b$$

$$\langle = \rangle$$
  $A \times^* = b$ 

