

INTRO-TO-MACHINE-LEARNING

Unveiling the mysteries behind today's AI

Introduction to Machine Learning

- Overview of ML
- Linear Regression (Univariate)
- Code along

Artificial Intelligence

> Machine Learning

Data Science

Deep Learning

This is traditional programming

This is Machine Learning

Main ML types

Supervised Learning

Learning by examples

Unsupervised Learning

Learning by observation

Reinforcement Learning

Learning by mistakes

Main ML subdivisions

Supervised Learning

Regression

Output is a quantity (number)

Classification

Output is a category

Main ML subdivisions

Unsupervised Learning

Clustering

Group unknown data into groups with similar characteristics

Anomaly Detection

Identifying data points that fall outside the normal range

and more...

Dimensionality Reduction

Reduce dimensions
while keeping
maximum information

Main ML subdivisions

Reinforcement Learning

There's more to learn about

Linear Regression

Linear Regressor model means fitting a straight line to your data.

~ Andrew Ng

Intro to Linear Regression

Linear Regression

$$f_{\alpha,\beta}(x^{(i)}) = \alpha x^{(i)} + \beta$$

Cost Function

The cost function tells us how well the model is doing.

$$J(w,b) = \frac{1}{2m} \sum_{i=1}^{n} L(f_{w,b}(x^{(i)}), y^{(i)})$$
Cost
$$Loss$$

Cost Function

Gradient Descent Algorithm

Initialize:

 $w_0 \leftarrow \text{initial guess for } w$

 $b_0 \leftarrow \text{initial guess for } b$

 $\alpha \leftarrow \text{learning rate}$

Repeat until convergence:

Compute predictions: $\hat{y}^{(i)} = w \cdot x^{(i)} + b$

Compute the cost function: $J(w,b) = \frac{1}{2m} \sum_{i=1}^{m} (\hat{y}^{(i)} - y^{(i)})^2$

Update weights:

$$w \leftarrow w - \alpha \frac{1}{m} \sum_{i=1}^{m} (\hat{y}^{(i)} - y^{(i)}) \cdot x^{(i)}$$

$$b \leftarrow b - \alpha \frac{1}{m} \sum_{i=1}^{m} (\hat{y}^{(i)} - y^{(i)})$$

Gradient Descent Algorithm

Code along

