Sentiment Analysis A Probabilistic Approach

S. A. Gieske S. Laan D. S. Ten Velthuis C. R. Verschoor A. J. Wiggers

Faculty of Science (FNWI) University of Amsterdam

February 3, 2012

- 1 The goal
- 2 Approach
- 3 Data Preprocessing
- 4 Classification
- 5 Webserver Framework
- 6 Conclusion

- 1 The goal
- 2 Approach
- 3 Data Preprocessing
- 4 Classification
- 5 Webserver Framework
- 6 Conclusion

The goal of the project

The goal

Project Description

Performing sentiment analysis on messages about the EO

- Classification Sentiment vs. Non Sentiment
- Classification Positive vs. Negative

- 1 The goa
- 2 Approach
- 3 Data Preprocessing
- 4 Classification
- 5 Webserver Framework
- 6 Conclusion

Approach

- Preprocessing of the data
- Perform machine learning algorithms on data
- Use best algorithms to classify real time on server

Hierarchical Classification

- 1 The goal
- 2 Approach
- 3 Data Preprocessing
- 4 Classification
- 5 Webserver Framework
- 6 Conclusion

- 3 Data Preprocessing
 - Dataset Analysis
 - Data Cleaning
 - Data Reduction

Dataset Analysis

Dataset Analysis

Dataset messages EO

10.000 messages, 19 features per message

Ony 3 features used:

- Source
- Sentiment
- Message contents

Data Cleaning

Data Cleaning

- Shorten words, e.g. 'saaaaaaai' to 'saaai'
- Stemmer

Data Reduction

Data Reduction

- Only use Twitter messages (83% of all messages)
- Remove articles, reference words and prepositions
- Substitute smileys with words
- Remove some punctuation marks (e.g. not!?)

- 1 The goa
- 2 Approach
- 3 Data Preprocessing
- 4 Classification
- 5 Webserver Framework
- 6 Conclusion

- 4 Classification
 - Weighted Sum Probability
 - Perceptron
 - Support Vector Machine
 - Naive Bayes
 - Multiclassification with Perceptron
 - Entropy
 - Neural Network

Classification

000

Weighted Sum Probability

- Extract features
- Assign sentiment probabilities to features

$$P(feature) = \frac{\sum feature \in C_1}{\sum feature \in C_1 \cup C_2}$$
 (1)

Assign sentiment probabilities to sentences

$$P(s) = \frac{1}{n} \sum_{f \in s} P(f) \tag{2}$$

Weighted Sum Probability

WSP: Neutral vs Non-Neutral

Weighted Sum Probability

WSP:Positive vs Negative

Perceptron

Perceptron

Algorithm

Train linear treshold

Input: Sentence probabilities, sentence values

Output: Treshold

Perceptron

Results & Conclusion

Results: High precision OR recall, never both

Conclusion: Linear threshold not good enough

Support Vector Machine

Support Vector Machine

Algorithm

Fit in featurespace that binds features to classes

Input: Features in vector

Output: Number belonging to class

Support Vector Machine

Results & Conclusion

Results: Not very good recall/precision/accuracy

Conclusion: Fit can not be made on these features

or more data needed to find clear boundary

Naive Bayes

Naive Bayes

Algorithm

Prior and likelihood lead to posterior

Input: Features from sentence

Output: Probability

Naive Bayes

Results & Conclusion

			Recall	Accuracy	Precision
Results	:	Positive	0.43	0.81	0.39
		Negative	0.40	0.71	0.17
		Neutral	0.61	0.59	0.79

11

Conclusion: Low recall and precision

Multiclassification with Perceptron

Multiclassification with Perceptron

Algorithm

Specialized perceptron for each class, one vs. all

Input: Sentence probability for class

Output: Most likely class

Classification

Results & Conclusion

Results:

Conclusion:

Entropy

Entropy

Algorithm

Words with highest likelihood for classes

Input: Corpus

Output:

Entropy

Results & Conclusion

Results:
Conclusion:

•0

Neural Network

Neural Network

Algorithm

Backpropagation

Input: Features from sentence

Output: Value for outputnodes (classes)

0

Neural Network

Results & Conclusion

Results: Training time = 2.85377444 hours.

Test \Real	True	False
True	14	6
False	40	94

Conclusion: Still many messages with sentiment incorrectly classified.

Possible cause: ratio of messages with sentiment and nonsentiment.

- 1 The goa
- 2 Approach
- 3 Data Preprocessing
- 4 Classification
- 5 Webserver Framework
- 6 Conclusion

Webserver Framework

 $\mathsf{Request} \to \mathsf{Server} \; (\mathsf{PHP/PYTHON}) \to \mathsf{Result} \; (\mathsf{XML})$

Request http://url.com/?dataset=1&message=De EO is cool!

Result XML File (Containing: Status, Message, Sentiment, Accuracy, Precision, Recall)

Action...

Webserver Framework

- 1 The goa
- 2 Approach
- 3 Data Preprocessing
- 4 Classification
- 5 Webserver Framework
- 6 Conclusion

Conclusion

- All learning algorithms have their (dis)advantages
- No satisfying results
- Not enough data

Questions?

Conclusion