

Прогнозирование динамики параметров распространения новых вирусов на основе методов машинного обучения

Выполнил: студент гр.5040103/10301 Курлевский А.А.

Научный руководитель: доцент ВШТМиМФ, к.ф.-м.н. Ле-Захаров А.А.

Консультант: ассистент ВШТМиМФ Перец Д.С.

Цель

• Спрогнозировать динамику параметров распространения COVID-19, используя методы машинного обучения

Задачи

- Провести анализ существующих методов прогнозирования временных рядов.
- Предложить алгоритм машинного обучения для нахождения зависимости между значениями параметров распространения и характеристики динамического баланса(ХДБ).
- На основе сделанного прогноза оценить количество болеющих людей, используя принцип динамического баланса.

Актуальность исследования

Статистика заболеваемости по России на момент 13.05.2023

Методы прогнозирования позволяют оценить нагрузку на систему здравоохранения и помогают принять решение для профилактических мер.

Структура исследования

Использованные технологии

Характеристика динамического баланса (ХДБ)

Задача:

$$\begin{cases} \min_{t_0 \le t \le T} t \\ C(t) \ge R(t) \end{cases}$$

 $\tau(T)$ - решение задачи.

Теорема (принцип динамического баланса). Пусть заданы

значения $t_0 \ge 0$ и $T > t_0$, такие, что $R(T) > C(t_0) > 1$. Тогда:

$$C(\tau(T)) \ge R(T) \ge C(\tau(T) - 1)$$

heta(T) = T - au(T)- характеристика динамического баланса

Следствие: В условиях теоремы функция R(T) представима в виде

$$R(T) = \lambda_T C(\tau(T) - 1) + (1 - \lambda_T) C(\tau(T)), \lambda \in [0, 1]$$

Захаров В. В., Балыкина Ю. Е. Балансовая модель эпидемии COVID-19 на основе процентного прироста //Информатика и автоматизация. — 2021. — Т. 20. — №. 5. — С. 1034-1064.

Балансовая модель эпидемии COVID-19

- C(t) общее количество подтвержденных случаев, I(t) количество инфицированных людей случаев, R(t) количество выздоровевших и умерших, r(t) процентный прирост общего количества выявленных случаев
- C(t) = I(t) + R(t) для любого момента времени

• Балансовая модель CIR:
$$\begin{cases} C(t) = \left(1 + \frac{r(t)}{100}\right)C(t-1) \\ I(t) = C(t) - R(t) \\ R(t) = \lambda_t(C(\tau(t)-1) + (1-\lambda_t)C(\tau(t)) \end{cases}$$

Захаров В. В., Балыкина Ю. Е. Балансовая модель эпидемии COVID-19 на основе процентного прироста //Информатика и автоматизация. — 2021. — Т. 20. — №. 5. — С. 1034-1064.

Основные методы прогнозирования временных рядов

Статистические модели

- ARIMA, SARIMA
- Экспоненциальное сглаживание
- Регрессия
- И другие

Модели с использованием методов машинного обучения

- Рекуррентные нейронные сети: LSTM, GRU
- Деревья решений
- Метод опорных векторов
- И другие

Статистические модели

1. Линейная регрессия с несколькими предикторами:

$$x_t = \alpha_1 x_t^1 + \alpha_2 x_t^2 + \alpha_3 x_t^3$$

2. Полиномиальная регрессия:

$$x_t = \alpha_1 t + \alpha_2 t^2 + \dots + \alpha_n t^n$$

3. Метод тройного экспоненциального сглаживания:

$$L_{t} = \alpha \frac{x_{t}}{S_{t-s}} + (1 - \alpha)(L_{t-1} + T_{t-1}),$$

$$T_{t} = \beta(L_{t} - L_{t-1}) + (1 - \beta)T_{t-1}$$

$$S_t = \gamma \frac{x_t}{L_t} + (1 - \gamma)S_{t-s}, \qquad x_{t+h} = (L_t + hT_t)S_{t-s+h}$$

lpha, eta, γ -параметры сглаживания; s-количество наблюдений, составляющих сезонную вариацию; x_{t+h} -предсказание для периода t+h

Иллюстрация работы простого сглаживания

4. Авторегрессионная модель ARIMA(p,q,d):

$$\Delta^d x_t = c + \sum_{i=1}^p \alpha_i \, \Delta^d x_{t-i} + \sum_{j=1}^q b_j \varepsilon_{t-j} + \varepsilon_t$$

Где p-количество наблюдений в авторегрессионной части; d-порядок разности, которую нужно применить, чтобы привести ряд к стационарному виду; q-количество прошлых ошибок прогноза; ε_t -белый шум; Δ - оператор разности; α_i , b_i и c параметры модели.

5. Сезонная модификация авторегрессионной модели — $SARIMA(p,d,q)_{P,D,O,S}$

$$\Delta^{D} X_{t} = c + \sum_{i=1}^{P} A_{is} \Delta^{D} X_{t-is} + \sum_{j=1}^{Q} B_{js} \varepsilon_{t-js} + \varepsilon_{t}$$

Параметры аналогичны, добавляется порядок сезонности *s*. Результат является сумма сезонной части и несезонной

Результат предсказания статистических моделей

Модель	MAPE, %	R ²
Линейная	18.03	0.67
Полиномиальная	21.15	0.13
ARIMA	21.27	0.11
Holter-Winters	38.35	-1.55
SARIMA	64.76	-7.64

Подготовка данных для обучения нейронных сетей

Этапы подготовки данных:

- 1. Разобьем ряд на тренировочную, валидационную и тестовую часть в пропорции 85%, 10%, 5% соответственно
- 2. Характер исследуемой величины имеет ступенчатый вид. Сгладим ряд, используя скользящее среднее с окном в 7 дней.
- 3. Необходимо, чтобы значения лежали в одном диапазоне. Для этого нормализуем их:

$$x_i^{scaled} = \frac{x_i - \min(X)}{\max(X) - \min(X)}$$

4. Полезно знать информацию о частоте исследуемой динамики. Предположим, что сезон равен 210 дней. Результат быстрого преобразования Фурье подтверждает сделанное предположение. Поэтому, кроме имеющейся информации, на вход будем подавать компоненты $\sin(\frac{2\pi}{210}t)$ и $\cos(\frac{2\pi}{210}t)$

Данные для обучения

Подготовка данных для обучения нейронных сетей

На вход модели подается набор окон. Окно характеризуется 2-мя параметрами: количество наблюдений, на основе которых строится прогноз (ширина окна), горизонт предсказания. Окна случайным образом перемешиваются (структура ряда внутри окна сохраняется) и разбиваются на группы. Итого модель на вход получает 3-х мерную структуру данных: (количество групп, ширина окна, количество характеристик)

Метрики качества предсказания

• $MAPE = \frac{1}{n} \sum_{i=1}^{n} \frac{|y_i - \widehat{y_i}|}{y_i}$ - средняя абсолютная ошибка в процентах (количественная мера)

• $R^2 = 1 - \frac{\sum_{i=1}^n (y_i - \widehat{y_i})^2}{\sum_{i=1}^n (y_i - \overline{y})^2}$ - коэффициент детерминации (показывает на сколько хорошо предсказан тренд)

 y_i - фактическое значение, $\widehat{y_i}$ - предсказанное значение, \overline{y} - среднее значение

Рекуррентная нейронная сеть

Развернутая схема рекуррентной сети. А – блок нейронной сети, x_i - входные значения, h_i - выходные значения.

В простейшем случае выход нейронной сети следующим образом:

$$h_i = \tanh(W \cdot [h_{i-1}, x_i] + b)$$

Достоинства:

- Способны запоминать историю данных.
- Адаптируются под множество задач

Недостатки:

- При обучении происходит затухание градиентов ошибок. Из-за этого параметры сети изменяются на слишком малые значения и модель плохо обучается
- Из-за большого количества параметров невозможно объяснить поведение модели

Сеть LSTM

4. Вычисляем скрытое состояние ячейки, которое будем получать на выходе:

$$o_t = \sigma(W_o[h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh(C_t)$$

Порядок выполнения вычислений:

1. Определяем какое количество информации можно убрать

$$f_t = \sigma(W_f \cdot [h_{t-1}, x_t] + b_f)$$

2. Определяем какая часть новой информации будет содержаться в состоянии ячейки

$$i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i)$$

$$\widetilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

3. Пересчитываем новое состояние ячейки:

$$C_t = f_t * C_{t-1} + i_t * \widetilde{C}_t$$

Виды LSTM сетей

- 1. Stacked. Это сети состоящие из нескольких LSTM слоев. В работе показан результат для однослойных и двуслойных моделей. Для большего количества слоев не удалось добиться качественного результата.
- 2. Bi-LSTM. Двунаправленные LSTM сети. Информация при обучении идет как слева направо, так и справа налево.
- 3. Encoder-Decoder. Модели состоят из двух блоков. В блоке Encoder информация кодируется, при этом извлекаются важные признаки. В блоке Decoder информация расшифровывается. В работе рассмотрена модель CNN-LSTM и DA RNN. Про последнюю модель более подробно дальше
- 4. Auto-LSTM. Авторегрессионная LSTM модель. Для предсказания горизонта прогнозирования модель использует уже предсказанные значения в качестве входных данных.

Результат предсказания на валидационном наборе

Предсказание XДБ с помощью RNN моделей на валидационном наборе

Результат предсказания на тестовом наборе

Предсказание ХДБ с помощью RNN моделей на тестовом наборе

Метрики качества прогноза

На валидационном наборе

Модель	MAPE, %	R^2
LSTM-2	13.89	-2.07
Auto-LSTM	15.79	-2.39
Bi-LSTM	17.46	-1.87
LSTM	18.25	-2.93
CNN-LSTM	23.04	-2.58

На тестовом наборе

Модель	MAPE, %	R^2
Bi-LSTM	12.03	-5.20
CNN-LSTM	12.63	-5.39
LSTM	12.91	-4.92
LSTM-2	17.36	-12.08
Auto-LSTM	20.55	-12.53

Dual-Stage Attention-Based RNN модель

Qin Y. et al. A dual-stage attention-based recurrent neural network for time series prediction //arXiv preprint arXiv:1704.02971. – 2017.

Входной механизм внимания

Рассмотрим работу механизма на примере x^k окна. На вход механизм получает скрытое состояние ячейки $h_{t-1} \in \mathbb{R}^m$ и состояние ячейки $s_{t-1} \in \mathbb{R}^m$ с предыдущего шага:

Где $v_e \in \mathbb{R}^T, \ W_e \in \mathbb{R}^{T \times 2m}, U_e \in \mathbb{R}^{T \times T}$ – параметры для обучения, m — количество ячеек в кодировщике

Затем вычисляются весовые коэффициенты:

$$\alpha_t^k = \frac{\exp(e_t^k)}{\sum_{i=1}^n \exp(e_t^i)}$$

Получаем вектор взвешенных наблюдений:

$$\widetilde{x_t} = (\alpha_t^1 x_t^1, \alpha_t^2 x_t^2, \dots, \alpha_t^n x_t^n)^{\mathsf{T}}$$

Временной механизм внимания

Логика такая же как и во входном механизме. Разница заключается в следующем: после того, как получены весовые коэффициенты β_t^i , вычисляется взвешенная сумма скрытых состояний кодировщика $c_t = \sum_{i=1}^T \beta_t^i h_i$ и вместе с целевым значением отправляется в полносвязный слой: $\tilde{y}_{t-1} = \tilde{w}^{\mathsf{T}}[y_{t-1}; c_{t-1}] + \tilde{b}$ \tilde{y}_{t-1} используется для обновления скрытого состояния декодировщика.

Предсказание DA RNN на валидационном наборе

Предсказание ХДБ с помощью RNN моделей на валидационном наборе

Предсказание DA RNN на тестовом наборе

Метрики качества прогноза

На валидационном наборе

Модель	MAPE, %	R^2
LSTM-2	13.89	-2.07
DA-RNN	14.66	-1.95
Auto-LSTM	15.79	-2.39
Bi-LSTM	17.46	-1.87
LSTM	18.25	-2.93
CNN-LSTM	23.04	-2.58

На тестовом наборе

Модель	MAPE, %	R^2
DA-RNN	6.23	-0.77
Bi-LSTM	12.03	-5.20
CNN-LSTM	12.63	-5.39
LSTM	12.91	-4.92
LSTM-2	17.36	-12.08
Auto-LSTM	20.55	-12.53

Оценка количества инфицированных людей, основанная на модели CIR

Заключение

Цели	Результат
Провести анализ существующих методов прогнозирования временных рядов.	Из классических моделей лучшей оказалась линейная модель (МАРЕ=18.03%). Используя рекуррентную нейронную сеть Bi-LSTM, удалось уменьшить ошибку (МАРЕ=12.03%)
Предложить алгоритм машинного обучения для нахождения зависимости между значениями параметров распространения и характеристики динамического баланса(ХДБ).	Реализованная модель DA-RNN снизила ошибку предсказания в 2 раза (MAPE=6.23%)
На основе сделанного прогноза оценить количество болеющих людей, используя принцип динамического баланса	Построенный прогноз ХДБ позволил уменьшить ошибку на 2% при оценке количества инфицированных людей в модели СІК (МАРЕ=2.72% с использованием предсказанного значения, МАРЕ=4.47% при использовании константного значения)