Sex and Age but not Body Mass Index (BMI) are Significant Predictors of Serum Retinol Binding Protein 4 (RBP4) and Transthyretin (TTR) Concentrations

Statistical Analysis Code and Output

Aprajita S. Yadav

2025-06-25

Contents

Load Data	2
Determine Normality	2
Determine Variable Correlation	3
RBP4 Model	5
RBP4 Final Model	11
RBP4 Model Plots	12
Post-hoc analysis of RBP4 and eGFR	13
TTR Model	14
TTR Final Model	20
TTR Model Plots	20
Retinol Model	21
Retinol Final Model	26
Retinol Model Plots	27
Sensitivity Analysis of Retinol and BMI	28
Retinol Regressions Omitting Participant with Retinol Deficiency and Apparent Liver Fibrosis $$. $$	28
Genotype effect on Retinol, RBP4, and TTR	33
Table S2, S3	33
Figure 2	34

Load Data

Determine Normality

for Shapiro-Wilk test p-value <0.05 indicates variables does not have normal distribution

Shapiro-Wilk Normality Test			
Variable		p-value	
BMI	0.078		
HOMA-IR	1.56e-05		
Age	0.274		
eGFR	0.606		
Adiponectin	0.008		
Leptin	0.036		
NAFLD-FS	0.927		

Note: data with p-value<0.05 will be log-transformed

Determine Variable Correlation

ANOVA Results with Sex		
Variable	p-value	
ВМІ	8.04e-03	
HOMA-IR	0.54	
Age	0.59	
eGFR	0.63	
Adiponectin	0.92	
Leptin	4.36e-05	
NAFLD-FS	0.67	
	·	

Spearman Correlation		
Variable Pair	rho	p-value
BMI and Adiponectin	-0.35	0.06
BMI and Leptin	0.52	2.94e-03
HOMA-IR and Adiponectin	-0.59	6.19e-04
HOMA-IR and Leptin	0.25	0.17

ANOVA Results		
Variable Pair	p-value	
BMI and Sex	0.008	
HOMA-IR and Sex	0.540	
Age and Sex	0.587	

Sex will be used for model building along with BMI, HOMA-IR, and Age

Spearman Correlation			
Variable Pair	rho	p-value	
BMI and Age	-0.37	0.042	
BMI and HOMA-IR	0.52	0.003	
Age and HOMA-IR	-0.41	0.022	

These variables will be used for model building along with the variable Sex

Scatterplot Matrix of Variables

RBP4 Model

```
#log transform RBP4 concentrations
vao$LRBP4<-log10(vao$RBP4)</pre>
#linear regression with BMI, Sex, Age and HOMAIR
model1=lm(LRBP4~BMI+Sex+Age+LHOMAIR,vao)
vif(model1)
       BMI
                 Sex
                          Age LHOMAIR
## 1.597502 1.292650 1.233974 1.259206
#remove one variable at a time
model2=lm(LRBP4~BMI+Sex+Age,vao) #remove HOMAIR
model3=lm(LRBP4~BMI+Sex+LHOMAIR, vao) #remove Age
model4=lm(LRBP4~BMI+Age+LHOMAIR, vao) #remove Sex
model5=lm(LRBP4~Sex+Age+LHOMAIR, vao) #remove BMI
AIC <- AIC (model1, model2, model3, model4, model5) #summary of AIC
AIC_df<-data.frame(
 Model=c("Model 1: Full Model", "Model 2: No HOMA-IR", "Model 3: No Age",
          "Model 4: No Sex", "Model 5: No BMI"),
 AIC = round(AIC$AIC, 3),
 DF = AIC$df)
aic_table <- AIC_df %>%
 flextable() %>%
  set_header_labels(Model = "Model Description", AIC = "AIC Value",
                    DF="Degrees of Freedom") %>%
  add_header_lines(values = "AIC Comparison of Models") %>%
  align(part="header", align="center" ) %>%
  add_footer_lines(values = "Note: Lower AIC values indicate a better model.") %>%
  fontsize(part = "footer", size = 8) %>%
  set_table_properties(layout = "autofit")
aic_table
```

AIC Comparison of Models			
Model Description	AIC Value Degre	es of Freedom	
Model 1: Full Model	-34.866	6	
Model 2: No HOMA-IR	-36.135	5	
Model 3: No Age	-35.123	5	
Model 4: No Sex	-33.703	5	
Model 5: No BMI	-36.196	5	

Note: Lower AIC values indicate a better model.

```
##remove BMI (lowest AIC), add interaction terms
model6=lm(LRBP4~Sex+Age+LHOMAIR+Age*Sex+LHOMAIR*Sex,vao)
summary(model6)
```

```
##
## Call:
## lm(formula = LRBP4 ~ Sex + Age + LHOMAIR + Age * Sex + LHOMAIR *
##
      Sex, data = vao)
## Residuals:
       Min
                 1Q
                    Median
                                  30
## -0.21429 -0.07825 0.02313 0.06886 0.20592
##
## Coefficients:
##
                  Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                 -0.071668   0.135146   -0.530   0.60058
## SexMale
                  0.507136 0.207240
                                      2.447 0.02177 *
## Age
                  0.008636
                            0.002998
                                       2.880 0.00803 **
## LHOMAIR
                  -0.048056
                            0.045468 -1.057 0.30065
## SexMale:Age -0.009698
                            0.004385 -2.212 0.03636 *
## SexMale:LHOMAIR 0.072444
                             0.113449
                                      0.639 0.52892
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.1123 on 25 degrees of freedom
## Multiple R-squared: 0.4636, Adjusted R-squared: 0.3563
## F-statistic: 4.322 on 5 and 25 DF, p-value: 0.005699
```

AIC(model6, model5)

	df	AIC
model6	7	-40.24879
model5	5	-36.19628

```
#remove interaction terms one at a time
model7=lm(LRBP4~Sex+Age+LHOMAIR+LHOMAIR*Age,vao)
model8=lm(LRBP4~Sex+Age+LHOMAIR+Age*Sex,vao)
summary(model7)
```

```
##
## Call:
## lm(formula = LRBP4 ~ Sex + Age + LHOMAIR + LHOMAIR * Age, data = vao)
##
## Residuals:
##
                 1Q
       Min
                     Median
                                   3Q
                                           Max
## -0.24923 -0.06776 0.01125 0.07561 0.20708
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.183427 0.135373 1.355 0.1871
```

```
## SexMale
             0.106354
                        0.047271
                                  2.250
                                         0.0331 *
             0.002726 0.002839 0.960
                                         0.3458
## Age
## LHOMAIR
             -0.156739
                        0.218925 -0.716
                                         0.4804
## Age:LHOMAIR 0.002452
                        0.004827
                                  0.508
                                         0.6157
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.1248 on 26 degrees of freedom
## Multiple R-squared: 0.3113, Adjusted R-squared: 0.2054
## F-statistic: 2.939 on 4 and 26 DF, p-value: 0.03955
summary(model8)
##
## Call:
## lm(formula = LRBP4 ~ Sex + Age + LHOMAIR + Age * Sex, data = vao)
##
## Residuals:
##
       Min
                1Q
                   Median
                                3Q
## -0.21447 -0.05720 0.02090 0.07151 0.20229
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.087232  0.131407 -0.664  0.51264
             0.571891
                        0.178663
                                 3.201 0.00359 **
## SexMale
                                3.035 0.00541 **
## Age
              0.008906 0.002934
            -0.036421
                        0.041179 -0.884 0.38456
## LHOMAIR
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.111 on 26 degrees of freedom
## Multiple R-squared: 0.4549, Adjusted R-squared: 0.371
```

AIC(model6, model7, model8) #remove HOMAIR x Age

F-statistic: 5.424 on 4 and 26 DF, p-value: 0.002596

	df	AIC
model6	7	-40.24879
model7	6	-34.50246
model8	6	-41.74725

AIC Comparison of Models		
Model Description	AIC Value I	Degrees of Freedom
Model 6: Includes interaction terms	-40.249	7
Model 7: Remove Age x Sex	-34.502	6
Model 8: Remove HOMA-IR x Sex	-41.747	6

```
#remove HOMA-IR
model9=lm(LRBP4~Sex+Age+Age*Sex,vao)
summary(model9)
```

```
##
## Call:
## lm(formula = LRBP4 ~ Sex + Age + Age * Sex, data = vao)
## Residuals:
##
       Min
                1Q
                   Median
                                3Q
## -0.21781 -0.06921 0.01956 0.07634 0.19094
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.135948  0.118824 -1.144  0.26262
## SexMale
             0.009749
                        0.002764
                                3.527 0.00152 **
## Age
## SexMale: Age -0.011126  0.003977  -2.798  0.00938 **
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.1106 on 27 degrees of freedom
## Multiple R-squared: 0.4385, Adjusted R-squared: 0.3761
## F-statistic: 7.027 on 3 and 27 DF, p-value: 0.001216
```

AIC(model8, model9) # removing HOMA-IR leads to lower AIC

	df	AIC
model8	6	-41.74725
model9	5	-42.82834

```
model10=lm(LRBP4~Sex+Age+Age*Sex+BMI,vao)
summary(model10)
##
## Call:
## lm(formula = LRBP4 ~ Sex + Age + Age * Sex + BMI, data = vao)
##
## Residuals:
##
        Min
                  1Q
                        Median
                                     3Q
                                             Max
## -0.195947 -0.053725 0.009708 0.071413 0.190375
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.007224  0.187983  -0.038  0.96964
              ## SexMale
              0.008911
                        0.002932
                                 3.040 0.00534 **
## Age
             -0.002252
                        0.002542 -0.886 0.38370
## BMI
## SexMale:Age -0.010792 0.004011 -2.691 0.01229 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.111 on 26 degrees of freedom
## Multiple R-squared: 0.4549, Adjusted R-squared: 0.3711
## F-statistic: 5.425 on 4 and 26 DF, p-value: 0.002593
AIC(model9, model10)
```

#does adding BMI back into the model improve the model?

	df	AIC
model9	5	-42.82834
model10	6	-41.75058

anova (model9, model10) #no, both from ANOVA and AIC, BMI does not improve the model

Res.Df	RSS	Df	Sum of Sq	F	Pr(>F)
27	0.3302089	NA	NA	NA	NA
26	0.3205299	1	0.009679	0.7851149	0.3837037

#does the interaction term improve the model?
model11=lm(LRBP4~Sex+Age,vao)
AIC(model9,model11)

	df	AIC
model9	5	-42.82834
model11	4	-36.93776

anova(model9,model11) #yes

Res.Df	RSS	Df	Sum of Sq	F	Pr(>F)
27	0.3302089	NA	NA	NA	NA
28	0.4259237	-1	-0.0957148	7.82626	0.0093797

```
#is this the simplest model?
model12=lm(LRBP4~Sex, vao) #Sex alone
model13=lm(LRBP4~Age, vao) #Age alone
#summary of AIC
 AICR_3 <- AIC(model9,model12,model13)
AICR_3df <- data.frame(
  Model = c("Age + Sex + Age x Sex", "Age", "Sex"),
  AIC = round(AICR_3$AIC, 3),
   DF = AICR_3 df
 AICR_3df %>% flextable() %>%
   set_header_labels(Model = "Model Description", AIC = "AIC Value",
                    DF = "Degrees of Freedom") %>%
   add_header_lines(values = "AIC Comparison of Models for RBP4") %>%
   align(part = "header", align = "center") %>%
   add footer lines(values = "Note: Lower AIC values indicate a better model.") %%
fontsize(part = "footer", size = 8) %>%
set_table_properties(layout = "autofit")
```

AIC Comparison of Models for RBP4				
Model Description	AIC Value Degree	es of Freedom		
Age + Sex + Age x Sex	-42.828	5		
Age	-34.898	3		
Sex	-33.200	3		

Note: Lower AIC values indicate a better model.

Is this the simplest model that fits the data best?					
Models	P-value: Probability >F				
Age+Sex+AgexSex v Age	0.006				
Age+Sex+AgexSex v Sex	0.003				

Note: p<0.05 cut-off for retaining more complex model

```
#lower AIC, and anova p<0.05 for the more complex model of Age + Sex + Age x Sex
##final model##
summary(model9)</pre>
```

```
##
## Call:
## lm(formula = LRBP4 ~ Sex + Age + Age * Sex, data = vao)
##
## Residuals:
##
       Min
                 1Q
                     Median
                                   3Q
                                           Max
## -0.21781 -0.06921 0.01956 0.07634 0.19094
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.135948
                          0.118824 -1.144 0.26262
## SexMale
               0.591144
                          0.176615
                                    3.347 0.00241 **
## Age
               0.009749
                          0.002764
                                    3.527 0.00152 **
## SexMale: Age -0.011126
                          0.003977 -2.798 0.00938 **
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1106 on 27 degrees of freedom
## Multiple R-squared: 0.4385, Adjusted R-squared: 0.3761
## F-statistic: 7.027 on 3 and 27 DF, p-value: 0.001216
```

#variance inflation factors
vif(model9,type=c("predictor")) #because this model has interaction terms we need to use the GVIF

	GVIF	Df	GVIF^(1/(2*Df))	Interacts With	Other Predictors
Sex	1	3	1	Age	_
Age	1	3	1	Sex	_

RBP4 Final Model

RBP4 Final Model: RBP4 \sim Age + Sex + Age x Sex (p=0.009)

RBP4 Model Plots

Post-hoc analysis of RBP4 and eGFR

```
summary(lm(LRBP4~eGFR,vao))
##
## Call:
## lm(formula = LRBP4 ~ eGFR, data = vao)
## Residuals:
##
        Min
                   1Q
                         Median
## -0.277030 -0.051103 0.009991 0.070393 0.232258
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
                          0.222715
## (Intercept) 0.673248
                                    3.023 0.00519 **
## eGFR
              -0.003267
                          0.002029 -1.611 0.11810
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.1364 on 29 degrees of freedom
## Multiple R-squared: 0.0821, Adjusted R-squared: 0.05045
## F-statistic: 2.594 on 1 and 29 DF, p-value: 0.1181
summary(lm(LRBP4~eGFR*Sex,vao))
##
## lm(formula = LRBP4 ~ eGFR * Sex, data = vao)
##
## Residuals:
##
       Min
                 1Q
                     Median
                                   30
## -0.20730 -0.06922 0.01266 0.07022 0.23966
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.832255 0.224461 3.708 0.000954 ***
## eGFR
               -0.005153
                          0.002057 -2.505 0.018573 *
## SexMale
               -0.546204
                           0.470518 -1.161 0.255861
## eGFR:SexMale 0.006133
                           0.004256
                                     1.441 0.161035
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.1206 on 27 degrees of freedom
## Multiple R-squared: 0.3319, Adjusted R-squared: 0.2576
## F-statistic: 4.471 on 3 and 27 DF, p-value: 0.0113
```

TTR Model

```
vao$LTTR<-log10(vao$TTR)</pre>
#linear regression with BMI, Sex, Age and HOMA-IR
Tmodel1=lm(LTTR~BMI+Sex+Age+LHOMAIR,vao)
summary(Tmodel1)
##
## lm(formula = LTTR ~ BMI + Sex + Age + LHOMAIR, data = vao)
## Residuals:
        Min
                   1Q
                         Median
                                       3Q
                                                Max
## -0.221583 -0.037441 0.002198 0.057781 0.207524
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.3295758 0.1437198 9.251 1.04e-09 ***
## BMI
             -0.0021577 0.0023340 -0.924
                                             0.3637
## SexMale
              0.0955022 0.0418519
                                     2.282
                                            0.0309 *
## Age
              0.0007957 0.0019475 0.409 0.6862
## LHOMAIR
             -0.0137659 0.0377648 -0.365 0.7184
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.09806 on 26 degrees of freedom
## Multiple R-squared: 0.3276, Adjusted R-squared: 0.2242
## F-statistic: 3.167 on 4 and 26 DF, p-value: 0.0302
vif(Tmodel1)
##
                Sex
                         Age LHOMAIR
## 1.597502 1.292650 1.233974 1.259206
#remove one variable at a time
Tmodel2=lm(LTTR~BMI+Sex+Age,vao) #remove HOMA-IR
Tmodel3=lm(LTTR~BMI+Sex+LHOMAIR, vao) #remove Age
Tmodel4=lm(LTTR~BMI+Age+LHOMAIR, vao) #remove Sex
Tmodel5=lm(LTTR~Sex+Age+LHOMAIR, vao) #remove BMI
AIC(Tmodel1, Tmodel2, Tmodel3, Tmodel4, Tmodel5) #summary of AIC
```

	df	AIC
Tmodel1	6	-49.45143
Tmodel2	5	-51.29340
Tmodel3	5	-51.25302
Tmodel4	5	-45.79239
Tmodel5	5	-50.44884

AIC Comparison of Models for TTR					
Model Description	AIC Value Degr	ees of Freedom			
Model 1: Full Model	-49.451	6			
Model 2: No HOMA-IR	-51.293	5			
Model 3: No Age	-51.253	5			
Model 4: No Sex	-45.792	5			
Model 5: No BMI	-50.449	5			

```
##remove HOMA-IR (lowest AIC)
#add interaction terms for Age and Sex which are not correlated
Tmodel6=lm(LTTR~Sex+Age+BMI+Age*Sex,vao)
summary(Tmodel6)
```

```
##
## Call:
## lm(formula = LTTR ~ Sex + Age + BMI + Age * Sex, data = vao)
## Residuals:
##
                  1Q
                        Median
## -0.202202 -0.031876 -0.006347 0.048701 0.199926
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.150995 0.151538 7.595 4.61e-08 ***
## SexMale
              0.421700 0.146241 2.884 0.00779 **
## Age
              0.004725 0.002363 1.999 0.05613 .
## BMI
              -0.001957 0.002049 -0.955 0.34846
## SexMale:Age -0.007491 0.003233 -2.317 0.02864 *
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

```
##
## Residual standard error: 0.08951 on 26 degrees of freedom
## Multiple R-squared: 0.4398, Adjusted R-squared: 0.3537
## F-statistic: 5.104 on 4 and 26 DF, p-value: 0.003592
```

AIC(Tmodel6,Tmodel2)

	df	AIC
Tmodel6	6	-55.11268
Tmodel2	5	-51.29340

anova(Tmodel6,Tmodel2)

Res.Df	RSS	Df	Sum of Sq	F	Pr(>F)
26	0.2082919	NA	NA	NA	NA
27	0.2513029	-1	-0.043011	5.368841	0.0286386

```
##inclusion of interaction term improves model
###Model now TTR~Sex+BMI+Age+Age*Sex
#remove terms
Tmodel7=lm(LTTR~Sex+Age+Age*Sex,vao) # remove BMI
Tmodel8=lm(LTTR~Sex+BMI,vao) # remove Age
Tmodel9=lm(LTTR~Age+BMI,vao) #remove Sex
AICT_iterm<-AIC(Tmodel6, Tmodel7, Tmodel8, Tmodel9) #summary of AIC
AICT_iterm_df<-data.frame(
 Model=c("Full Model: Sex+Age+BMI+AgexSex",
          "Remove BMI: Sex+Age+AgexSex",
          "Remove Age: Sex+BMI",
          "Remove Sex: Age+BMI"),
 AIC = round(AICT_iterm$AIC,3), DF = AICT_iterm$df)
aicT_iterm_table <- AICT_iterm_df %>%
  flextable() %>%
  set_header_labels(Model = "Model Description", AIC = "AIC Value",
                    DF="Degrees of Freedom") %>%
  add_header_lines(values = "AIC Comparison of Models for TTR") %>%
  align(part="header", align="center" ) %>%
  add_footer_lines(values = "Note: Lower AIC values indicate a better model.") %>%
  fontsize(part = "footer", size = 8) %>%
  set_table_properties(layout = "autofit")
aicT_iterm_table
```

AIC Comparison of Models for TTR					
Model Description					
Full Model: Sex+Age+BMI+AgexSex	-55.113	6			

AIC Comparison of Models for TTR						
Model Description	AIC Value Deg	rees of Freedom				
Remove BMI: Sex+Age+AgexSex	-56.044	5				
Remove Age: Sex+BMI	-52.979	4				
Remove Sex: Age+BMI	-47.742	4				

#lowest AIC removing BMI
#confirm with anova
anova(Tmodel7,Tmodel8)

Res.Df	RSS	Df	Sum of Sq	F	Pr(>F)
27	0.2155956	NA	NA	NA	NA
28	0.2538616	-1	-0.038266	4.792217	0.0374116

anova(Tmodel6, Tmodel7) # removing BMI leads to lower AIC, stat. sig.

Res.Df	RSS	Df	Sum of Sq	F	Pr(>F)
26	0.2082919	NA	NA	NA	NA
27	0.2155956	-1	-0.0073038	0.911693	0.3484596

```
###Model now TTR ~ Sex + Age + Age * Sex

#does adding HOMA-IR back into the model improve the model?
Tmodel10=lm(LTTR~Sex+Age+Age*Sex+LHOMAIR,vao)
summary(Tmodel10)
```

```
##
## Call:
## lm(formula = LTTR ~ Sex + Age + Age * Sex + LHOMAIR, data = vao)
## Residuals:
##
        Min
                   1Q
                         Median
## -0.219463 -0.034099 -0.000104 0.048686 0.205280
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 1.060046 0.107323 9.877 2.74e-10 ***
## SexMale
               0.442935 0.145917
                                    3.036
                                          0.0054 **
              0.005092 0.002397
                                           0.0433 *
## Age
                                    2.124
## LHOMAIR
             -0.015603
                          0.033632 -0.464
                                            0.6465
## SexMale:Age -0.007621
                          0.003279 -2.324 0.0282 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.09069 on 26 degrees of freedom
```

```
## Multiple R-squared: 0.425, Adjusted R-squared: 0.3365
## F-statistic: 4.803 on 4 and 26 DF, p-value: 0.004906
```

AIC(Tmodel7, Tmodel10)

	df	AIC
Tmodel7	5	-56.04428
Tmodel10	6	-54.29986

anova(Tmodel7, Tmodel10) #no, both from ANOVA and AIC, HOMA does not improve the model

Res.Df	RSS	Df	Sum of Sq	F	Pr(>F)
27	0.2155956	NA	NA	NA	NA
26	0.2138255	1	0.0017702	0.2152428	0.6465498

#does the interaction term improve the model?
Tmodel11=lm(LTTR~Sex+Age,vao)
AIC(Tmodel7,Tmodel11)

	df	AIC
Tmodel7	5	-56.04428
Tmodel11	4	-51.95223

anova(Tmodel7,Tmodel11) #yes

Res.Df	RSS	Df	Sum of Sq	F	Pr(>F)
27	0.2155956	NA	NA	NA	NA
28	0.2624138	-1	-0.0468181	5.863243	0.022454

```
align(part="header", align="center" ) %>%
add_footer_lines(values="Note: Lower AIC values indicate a better model.") %>%
fontsize(part = "footer", size = 8) %>%
set_table_properties(layout = "autofit")
aicT2_table
```

AIC Comparison of Models for TTR				
Model Description	AIC Value Degree	es of Freedom		
Sex + Age + Sex x Age	-56.044	5		
Sex + Age	-51.952	4		
Sex	-52.919	3		
Age	-44.500	3		

Is this the simplest model that fits the data best?				
Models P-value: Probability				
Age+Sex+AgexSex v Age+Sex	0.022			
Age+Sex+AgexSex v Age	0.045			
Age+Sex+AgexSex v Sex	0.001			

Note: p<0.05 cut-off for retaining more complex model

```
##final model for TTR
summary(Tmodel7)
```

```
##
## Call:
## lm(formula = LTTR ~ Sex + Age + Age * Sex, data = vao)
##
```

```
## Residuals:
##
        Min
                         Median
                                       30
                                                Max
                   10
  -0.219703 -0.039820
                      0.003317 0.047080
                                           0.200418
##
##
##
  Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept)
               1.039175
                          0.096013
                                   10.823 2.53e-11 ***
## SexMale
                                     3.162 0.00385 **
               0.451183
                          0.142710
## Age
               0.005453
                          0.002233
                                     2.442
                                            0.02145 *
## SexMale:Age -0.007781
                          0.003213
                                    -2.421 0.02245 *
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.08936 on 27 degrees of freedom
## Multiple R-squared: 0.4202, Adjusted R-squared: 0.3558
## F-statistic: 6.522 on 3 and 27 DF, p-value: 0.00184
```

#variance inflation factors

vif(Tmodel7, type=c("predictor")) #because this model has interaction terms we need to use the GVIF

	GVIF	Df	GVIF^(1/(2*Df))	Interacts With	Other Predictors
Sex	1	3	1	Age	_
Age	1	3	1	Sex	_

TTR Final Model

TTR Final Model: TTR \sim Age + Sex + Age x Sex (p=0.02)

TTR Model Plots

Retinol Model

```
vao$LROL<-log10(vao$Sretinol)

#linear regression with BMI, Sex, Age and HOMAIR
Rmodel1=lm(LROL~BMI+Sex+Age+LHOMAIR,vao)
vif(Rmodel1)

## BMI Sex Age LHOMAIR
## 1.597502 1.292650 1.233974 1.259206

#remove one variable at a time
Rmodel2=lm(LROL~BMI+Sex+Age,vao) #remove HOMA-IR
Rmodel3=lm(LROL~BMI+Sex+LHOMAIR, vao) #remove Age
Rmodel4=lm(LROL~BMI+Age+LHOMAIR, vao) #remove Sex
Rmodel5=lm(LROL~Sex+Age+LHOMAIR, vao) #remove BMI

AIC(Rmodel1,Rmodel2,Rmodel3,Rmodel4,Rmodel5) #summary of AIC</pre>
```

	df	AIC
Rmodel1	6	-37.11641
Rmodel2	5	-38.95172
Rmodel3	5	-37.12858
Rmodel4	5	-37.23750
Rmodel5	5	-38.03374

```
AICR <- AIC (Rmodel1, Rmodel2, Rmodel3, Rmodel4, Rmodel5) #summary of AIC
AICR_df<-data.frame(
  Model=c("Model 1: Full Model", "Model 2: No HOMA-IR", "Model 3: No Age",
          "Model 4: No Sex", "Model 5: No BMI"),
 AIC = AICR$AIC,
 DF = AICR$df)
aicR_table <- AICR_df %>%
  flextable() %>%
  set_header_labels(Model = "Model Description", AIC = "AIC Value",
                    DF="Degrees of Freedom") %>%
  add header lines(values = "AIC Comparison of Models for Retinol") %>%
  align(part="header", align="center" ) %>%
  add_footer_lines(values = "Note: Lower AIC values indicate a better model.") %>%
  fontsize(part = "footer", size = 8) %>%
  set_table_properties(layout = "autofit")
aicR_table
```

AIC Comparison of Models for Retinol				
Model Description	AIC Value Degrees of	Freedom		
Model 1: Full Model	-37.11641	6		
Model 2: No HOMA-IR	-38.95172	5		

AIC Comparison of Models for Retinol					
Model Description	AIC Value Degrees of Freedom				
Model 3: No Age	-37.12858 5				
Model 4: No Sex	-37.23750 5				
Model 5: No BMI	-38.03374 5				

```
##remove HOMA-IR (lowest AIC), add interaction term
Rmodel6=lm(LROL~Age+BMI+Sex+Age*Sex,vao)
summary(Rmodel6)
```

```
##
## Call:
## lm(formula = LROL ~ Age + BMI + Sex + Age * Sex, data = vao)
##
## Residuals:
##
                 1Q Median
       \mathtt{Min}
                                   3Q
                                           Max
## -0.23533 -0.07032 0.00921 0.05459 0.24907
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.005764 0.197897 -0.029
                                            0.9770
## Age
               0.005830
                         0.003086
                                   1.889
                                            0.0701 .
                          0.002676 -1.026
## BMI
              -0.002747
                                            0.3142
## SexMale
              0.281136
                          0.190980
                                   1.472
                                            0.1530
                          0.004222 -1.178
                                            0.2494
## Age:SexMale -0.004974
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.1169 on 26 degrees of freedom
## Multiple R-squared: 0.3144, Adjusted R-squared: 0.2089
## F-statistic: 2.98 on 4 and 26 DF, p-value: 0.03764
```

#can we justify inclusion of interaction terms? AIC(Rmodel6,Rmodel2)

	df	AIC
Rmodel6	6	-38.56389
Rmodel2	5	-38.95172

anova(Rmodel6,Rmodel2)

Res.Df	RSS	Df	Sum of Sq	F	Pr(>F)
26	0.3552323	NA	NA	NA	NA
27	0.3741953	-1	-0.0189629	1.387927	0.2494263

```
#cannot justify interaction terms
#remove each term
Rmodel7=lm(LROL~Age+BMI, vao) #remove Sex
Rmodel8=lm(LROL~Age+Sex,vao) # remove BMI
Rmodel9=lm(LROL~BMI+Sex,vao) # remove Age
p_values<-data.frame(</pre>
  Comparison=c("Age+Sex+BMI v Age+BMI", "Age+Sex+BMI v Age+Sex",
               "Age+Sex+BMI v BMI+Sex"),
  P_value=c(round(anova(Rmodel2,Rmodel7)$"Pr(>F)"[2],3),
            round(anova(Rmodel2,Rmodel8)$"Pr(>F)"[2],3),
            round(anova(Rmodel2,Rmodel9)$"Pr(>F)"[2],3)))
  p_values %>% flextable() %>%
    set_header_labels(Comparison="Comparison", P_value="P-value: Probability >F") %>%
    add_header_lines(values="ANOVA Comparison") %>%
    align(part="header", align="center" ) %>%
    set_table_properties(layout = "autofit") %>%
    add_footer_lines(values = "Note: p<0.05 cut-off for retaining more complex model") %>%
    fontsize(part = "footer", size = 8)
```

ANOVA Comparison			
Comparison	P-value: Probability >F		
Age+Sex+BMI v Age+BMI	0.213		
Age+Sex+BMI v Age+Sex	0.267		
Age+Sex+BMI v BMI+Sex	0.152		

Note: p<0.05 cut-off for retaining more complex model

AIC Comparison of Models for Retinol			
Model Description AIC Value Degrees of Freedom			
Age + BMI + Sex	-38.95172	5	
Age + BMI	-39.14023	4	
Age + Sex	-39.50958	4	
BMI + Sex	-38.55048	4	

```
#Age and Sex has the lowest AIC
#single regressions
Rmodel10=lm(LROL~Age,vao)
Rmodel11=lm(LROL~Sex,vao)
AIC(Rmodel11, Rmodel10,Rmodel8)
```

	df	AIC
Rmodel11	3	-37.36999 -37.28122
Rmodel10 Rmodel8	4	-37.28122 -39.50958

anova(Rmodel10,Rmodel8) #not better than Age alone

Res.Df	RSS	Df	Sum of Sq	F	Pr(>F)
29	0.4493028	NA	NA	NA	NA
28	0.3920143	1	0.0572885	4.09189	0.0527329

anova(Rmodel11,Rmodel8) #not better than Sex alone

Res.Df	RSS	Df	Sum of Sq	F	Pr(>F)
29	0.4480181	NA	NA	NA	NA
28	0.3920143	1	0.0560038	4.000128	0.0552816

summary(Rmodel10)

```
##
## Call:
## lm(formula = LROL ~ Age, data = vao)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.31522 -0.04495 0.01325 0.06391 0.26545
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
```

```
## (Intercept) -0.040082
                          0.097843 -0.410
                                   2.107 0.0438 *
                          0.002225
## Age
               0.004689
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.1245 on 29 degrees of freedom
## Multiple R-squared: 0.1328, Adjusted R-squared: 0.1029
## F-statistic: 4.441 on 1 and 29 DF, p-value: 0.04385
summary(Rmodel11)
##
## Call:
## lm(formula = LROL ~ Sex, data = vao)
##
## Residuals:
##
       Min
                 1Q
                    Median
                                  3Q
                                          Max
## -0.32125 -0.04191 0.00414 0.05189 0.23507
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.12539
                          0.02779 4.512 9.83e-05 ***
## SexMale
              0.09938
                          0.04666
                                   2.130 0.0418 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.1243 on 29 degrees of freedom
## Multiple R-squared: 0.1353, Adjusted R-squared: 0.1055
## F-statistic: 4.537 on 1 and 29 DF, p-value: 0.04178
#what about BMI alone
Rmodel12=lm(LROL~BMI, vao)
summary(Rmodel12)
##
## Call:
## lm(formula = LROL ~ BMI, data = vao)
##
## Residuals:
        Min
                   1Q
                         Median
## -0.254853 -0.039187 0.007799 0.053518 0.304417
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.382573
                          0.089540
                                   4.273 0.00019 ***
                          0.002274 -2.555 0.01615 *
## BMI
              -0.005809
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.1208 on 29 degrees of freedom
## Multiple R-squared: 0.1837, Adjusted R-squared: 0.1555
## F-statistic: 6.526 on 1 and 29 DF, p-value: 0.01615
```

```
#best p-value for BMI alone
{AICR_3<-AIC(Rmodel7,Rmodel8,Rmodel9,Rmodel10,Rmodel11,Rmodel12) #summary of AIC
AICR_3df<-data.frame(
  Model=c("Age + BMI", "Age + Sex",
          "BMI + Sex", "Age", "Sex", "BMI"),
  AIC = AICR_3$AIC, DF = AICR_3$df)
aicR_3_table <- AICR_3df %>%
  flextable() %>%
  set_header_labels(Model = "Model Description", AIC = "AIC Value",
                    DF="Degrees of Freedom") %>%
  add_header_lines(values = "AIC Comparison of Models for Retinol") %>%
  align(part="header", align="center" ) %>%
  add_footer_lines(values = "Note: Lower AIC values indicate a better model.") %>%
  fontsize(part = "footer", size = 8) %>%
  set_table_properties(layout = "autofit")}
aicR_3_table
```

AIC Comparison of Models for Retinol				
Model Description AIC Value Degrees of Freedom				
Age + BMI	-39.14023	4		
Age + Sex	-39.50958	4		
BMI + Sex	-38.55048	4		
Age	-37.28122	3		
Sex	-37.36999	3		
ВМІ	-39.15575	3		

```
#BMI alone also has lowest AIC
##final model is ROL ~ BMI
```

Retinol Final Model

Retinol Final Model: Retinol ~ BMI (p=0.016)

Retinol Model Plots

Sensitivity Analysis of Retinol and BMI

```
vaono23 <-vao %>% filter(ID!= "51-3523") #omit 23 from data set
Rmodel12no23<-lm(LROL~BMI, vaono23)
summary(Rmodel12no23)
##
## Call:
## lm(formula = LROL ~ BMI, data = vaono23)
##
## Residuals:
##
                         Median
                   1Q
## -0.258376 -0.049593 0.003565 0.047807 0.293192
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.321821
                                     3.735 0.000852 ***
                          0.086169
## BMI
              -0.003968
                          0.002226 -1.783 0.085468 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.1114 on 28 degrees of freedom
## Multiple R-squared: 0.1019, Adjusted R-squared: 0.06987
## F-statistic: 3.178 on 1 and 28 DF, p-value: 0.08547
```

Omission of participant with liver fibrosis and overt retinol deficiency from the regression model increased the p-value of correlation between BMI and retinol to p=0.09

Retinol Regressions Omitting Participant with Retinol Deficiency and Apparent Liver Fibrosis

```
Rno23model1=lm(LROL~BMI+Sex+Age+LHOMAIR,vaono23)
summary(Rno23model1)
##
## lm(formula = LROL ~ BMI + Sex + Age + LHOMAIR, data = vaono23)
##
## Residuals:
##
                          Median
        Min
                    1Q
                                        3Q
                                                 Max
## -0.255391 -0.062874 -0.002688 0.052888 0.230952
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0639189 0.1612890
                                       0.396
## BMI
               -0.0008989 0.0027014 -0.333
                                                0.742
## SexMale
               0.0677670 0.0466130
                                       1.454
                                                0.158
## Age
               0.0028660 0.0021708
                                       1.320
                                                0.199
```

-0.0193169 0.0420587 -0.459

LHOMAIR

##

0.650

```
## Multiple R-squared: 0.2294, Adjusted R-squared: 0.1061
## F-statistic: 1.86 on 4 and 25 DF, p-value: 0.1489
#remove one variable at a time
Rno23model2=lm(LROL~BMI+Sex+Age, vaono23) #remove HOMAIR
Rno23model3=lm(LROL~BMI+Sex+LHOMAIR, vaono23) #remove Age
Rno23model4=lm(LROL~BMI+Age+LHOMAIR, vaono23) #remove Sex
Rno23mode15=lm(LROL~Sex+Age+LHOMAIR, vaono23) #remove BMI
AICR <- AIC (Rno23model1, Rno23model2, Rno23model3, Rno23model4, Rno23model5) #summary of AIC
AICR df<-data.frame(
 Model=c("Model 1: Full Model", "Model 2: No HOMA-IR", "Model 3: No Age",
          "Model 4: No Sex", "Model 5: No BMI"),
 AIC = AICR$AIC,
 DF = AICR$df)
aicR table <- AICR df %>%
  flextable() %>%
  set header labels (Model = "Model Description", AIC = "AIC Value",
                    DF="Degrees of Freedom") %>%
  add_header_lines(values = "AIC Comparison of Models for Retinol (Omitting 23)") %>%
  align(part="header", align="center" ) %>%
  add_footer_lines(values = "Note: Lower AIC values indicate a better model.") %>%
  fontsize(part = "footer", size = 8) %>%
  set_table_properties(layout = "autofit")
aicR_table
```

Residual standard error: 0.1092 on 25 degrees of freedom

AIC Comparison of Models for Retinol (Omitting 23)			
Model Description	AIC Value Degrees of	Freedom	
Model 1: Full Model	-41.21348	6	
Model 2: No HOMA-IR	-42.96142	5	
Model 3: No Age	-41.19143	5	
Model 4: No Sex	-40.77869	5	
Model 5: No BMI	-43.08092	5	

Note: Lower AIC values indicate a better model.

```
#remove BMI, add interaction terms
Rno23mode16=lm(LROL~Sex+Age+LHOMAIR+Sex*Age,vaono23)
Rno23mode17=lm(LROL~Sex+Age+Sex*Age,vaono23) #remove HOMA
Rno23mode18=lm(LROL~Sex+Age,vaono23) #remove HOMA and Sex * Age
Rno23mode19=lm(LROL~Sex+LHOMAIR,vaono23) #remove Age
Rno23mode110=lm(LROL~Age+LHOMAIR,vaono23) #remove Sex

AIC(Rno23mode15, Rno23mode16,Rno23mode17,Rno23mode18,Rno23mode19,Rno23mode110)
```

	df	AIC
Rno23model5	5	-43.08092

	df	AIC
Rno23model6	6	-42.14048
Rno23model7	5	-43.85300
Rno23model8	4	-44.68606
Rno23model9	4	-42.70304
Rno23model10	4	-41.45723

```
#model 8 has the lowest AIC
#Sex + Age
summary(Rno23model8)
```

```
##
## Call:
## lm(formula = LROL ~ Sex + Age, data = vaono23)
## Residuals:
       Min
                 1Q Median
                                   ЗQ
## -0.26566 -0.06596 -0.01165 0.04795 0.21500
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.004218  0.085347 -0.049
                                            0.9609
## SexMale
              0.076579
                          0.040293 1.901
                                            0.0681 .
               0.003450
                          0.001926
                                   1.791
                                          0.0845 .
## Age
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.106 on 27 degrees of freedom
## Multiple R-squared: 0.2157, Adjusted R-squared: 0.1576
## F-statistic: 3.713 on 2 and 27 DF, p-value: 0.03763
#how does this compare to the predictors alone
Rno23model11=lm(LROL~Sex, vaono23) #Sex alone
Rno23model12=lm(LROL~Age,vaono23) #Age alone
AIC(Rno23model8, Rno23model11, Rno23model12)
```

	df	AIC
Rno23model8	4	-44.68606
Rno23model11	3	-43.31838
Rno23model12	3	-42.91924

anova(Rno23model8,Rno23model11) #not better than Sex alone

Res.Df	RSS	Df	Sum of Sq	F	Pr(>F)
27	0.3033459	NA	NA	NA	NA
28	0.3393832	-1	-0.0360373	3.207581	0.0845163

anova(Rno23model8,Rno23model12) #not better than Age alone

Res.Df	RSS	Df	Sum of Sq	F	Pr(>F)
27	0.3033459	NA	NA	NA	NA
28	0.3439287	-1	-0.0405828	3.612165	0.0680846

summary(Rno23model11) #p>0.05

```
##
## Call:
## lm(formula = LROL ~ Sex, data = vaono23)
##
## Residuals:
##
        Min
                   1Q
                         Median
                                       3Q
                                                Max
## -0.287994 -0.050487 0.001027 0.044673 0.235073
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
                          0.02526
                                    5.634 4.92e-06 ***
## (Intercept) 0.14230
                                    1.977 0.0579 .
## SexMale
               0.08247
                          0.04171
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.1101 on 28 degrees of freedom
## Multiple R-squared: 0.1225, Adjusted R-squared: 0.09117
## F-statistic: 3.909 on 1 and 28 DF, p-value: 0.05794
```

summary(Rno23model12) #p>0.05

```
##
## Call:
## lm(formula = LROL ~ Age, data = vaono23)
##
## Residuals:
                                      3Q
##
        Min
                   1Q
                        Median
## -0.291619 -0.052172 0.005761 0.063472 0.261440
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.010978 0.088847 0.124
                                           0.9025
## Age
              0.003749
                        0.002007
                                   1.868 0.0723.
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.1108 on 28 degrees of freedom
## Multiple R-squared: 0.1108, Adjusted R-squared: 0.079
## F-statistic: 3.488 on 1 and 28 DF, p-value: 0.07233
```

summary(lm(LROL~BMI,vaono23))

```
##
## Call:
## lm(formula = LROL ~ BMI, data = vaono23)
##
## Residuals:
##
        Min
                   1Q
                         Median
                                       3Q
                                                Max
## -0.258376 -0.049593 0.003565 0.047807 0.293192
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
                          0.086169
## (Intercept) 0.321821
                                    3.735 0.000852 ***
## BMI
              -0.003968
                          0.002226 -1.783 0.085468 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.1114 on 28 degrees of freedom
## Multiple R-squared: 0.1019, Adjusted R-squared: 0.06987
## F-statistic: 3.178 on 1 and 28 DF, p-value: 0.08547
```

No significant correlates for retinol after omission participant with gross morphology of liver fibrosis and overt retinol deficiency

Genotype effect on Retinol, RBP4, and TTR

ANOVA Results Table				
SNP	p-value			
TTRsnp	0.63			
RBP4snp	0.86			
TTRsnp	0.48			
RBP4snp	0.70			
TTRsnp	0.64			
RBP4snp	0.36			
	SNP TTRsnp RBP4snp TTRsnp RBP4snp TTRsnp			

Table S2, S3

Analyte Conc. Stratified by <i>RBP4</i> Genotype (rs10882272)				
Genotype	RBP4 (µM)	TTR (µM)	Retinol (μM)	
1/1	1.91 (1.00, 3.16)	19.20 (10.37, 26.61)	1.35 (0.71, 2.88)	
1/2	2.15 (1.19, 3.24)	21.27 (13.07, 29.81)	1.52 (1.00, 2.16)	
2/2	2.10 (0.95, 3.18)	20.24 (12.03, 29.55)	1.42 (0.64, 1.97)	

Concentrations shown as geometric mean and range

For the RBP4 genotype, 1/1 refers to T/T, 1/2 to T/C and 2/2 to C/C for single nucleotide polymorphism in the 3' untranslated region

Analyte Conc. Stratified by TTR Genotype (rs1667255)				
Genotype	RBP4 (µM)	TTR (µM)	Retinol (µM)	
1/1	1.88 (0.95, 3.16)	18.84 (12.03, 26.61)	1.42 (0.64, 2.88)	
1/2	2.10 (1.00, 3.04)	20.39 (10.37, 29.81)	1.38 (0.71, 1.69)	
2/2	2.27 (1.50, 3.24)	22.27 (16.46, 29.79)	1.56 (1.21, 2.16)	

Concentrations shown as geometric mean and range

For the TTR genotype, 1/1 refers to A/A, 1/2 to A/C and 2/2 to C/C for intronic single nucleotide polymorphism

Figure 2

