Binomial Heaps

Chiranjeev Kumar

IIT(ISM), Dhanbad

Slides from Prof. Jim Anderson, California State University, Northridge

Binomial Heaps

- A way to implement mergeable heaps.
 - Useful in scheduling algorithms and graph algorithms.

Operations:

- Make-Heap().
- Insert(H, x), where x is a node H.
- Minimum(H).
- Extract-Min(H).
- Union (H_1, H_2) : merge H_1 and H_2 , creating a new heap.
- Decrease-Key(H, x, k): decrease x.key (x is a node in H) to k. (It's assumed that $k \le x.$ key.)

Definitions

Binomial Heap: Collection of binomial trees (satisfying some properties).

Binomial Trees

Definition is inductive.

Base Case: B_0 = single node is a binomial tree.

Inductive Step:

Examples B_0 B_2 B_3 # nodes depth B_4 6

Another Way to Look at B_k

Properties of Binomial Trees

Lemma: For the binomial tree B_k ,

- **1.** There are 2^k nodes.
- 2. Tree height is k.
- 3. $\binom{k}{i}$ nodes at depth i, i = 0, 1, ..., k [binomial coefficients].
- **4.** Root has degree k, other nodes have smaller degree. i^{th} child of root is root of subtree B_i , where i = k-1, k-2, ..., 0 [k-1 is LM, 0 is RM].

Proof:

```
1. Induction on k.

# nodes in B_k

= 2(# nodes in B_{k-1})

= 2(2^{k-1})

= 2^k
```

2. Induction on k.

height of B_k $= 1 + \text{height of } B_{k-1}$ = 1 + (k-1) = k

Proof (Continued)

3. Let D(k,i) = # nodes at depth i in B_k . Want to show $D(k,i) = \binom{k}{i}$.

Proof (Continued)

4. Root degree of $B_k = 1 + \text{root degree of } B_{k-1}$ = 1 + k-1, induction hypothesis = k

The maximum degree in an n-node binomial tree is lg n.

Binomial Heaps

- Set of binomial trees satisfying binomial-heap properties:
 - 1 **Heap ordered:**
 - Implies root of a binomial tree has the smallest key in that tree.
 - 2 Set includes at most one binomial tree whose root is a given degree.
 - Implies B.H. with n nodes has at most $\lfloor \lg n \rfloor + 1$ B.T.'s. Think of n in binary: $\langle b_{\lfloor \lg n \rfloor}, \ldots, b_0 \rangle$, i.e.,

B.H contains B_i iff b_i is 1.

$$n = \sum_{i=1}^{\lfloor \lg n \rfloor} b_i 2^i$$

Representing Binomial Heaps

Binomial Heap: Implementation

• Implementation.

Binomial Heap

- Represent trees using left-child, right sibling pointers.
 - three links per node (parent, left, right)
- Roots of trees connected with singly linked list.

Linking Two Binomial Heaps

```
Link(y,z)

p[y] := z;

sibling[y] := child[z];

child[z] := y;

degree[z] := degree[z] + 1
```


Union

First, simply merge the two root lists by root degree (like merge sort).

Remaining Problem: Can have two trees with the same root degree.

Binomial Heap: Union

- Create heap H that is union of heaps H' and H".
 - "Mergeable heaps."
 - Easy if H' and H" are each order k binomial trees.
 - connect roots of H' and H"
 - choose smaller key to be root of H

Binomial Heap: Union

$$19 + 7 = 26$$

Binomial Heap: Union

Union (Continued)

Union traverses the new root list like this:

Depending on what x, next-x, and sibling[next-x] point to, Union links trees with the same root degree.

Note: We may temporarily create three trees with the same root degree.

Analogy

Like binary addition:

1 1 1 (carries)
0 0 1 1 1
1 0 0 1 1
1 1 0 1 0

temporarily have three trees of this degree

Code for Union

```
Union(H_1, H_2)
     H := new heap;
     head[H] := merge(H_1, H_2); /* simple merge of root lists */
     if head[H] = NIL then return H fi;
     prev-x := NIL;
     x := head[H];
     next-x := sibling[x];
     while next-x \neq NIL do
           if (degree[x] \neq degree[next-x]) or
              (sibling[next-x] \neq NIL and degree[sibling[next-x]] = degree[x]) then
Cases 1,2 \begin{cases} prev-x := x; \\ x := next-x; \end{cases}
        else
   Case 3  \begin{cases} if key[x] \le key[next-x] then \\ sibling[x] := sibling[next-x]; \\ Link(next-x, x) \end{cases} 
                  if prev-x = NIL then head[H] := next-x else sibling[prev-x] := next-x fi
Link(x, next-x);
x := next-x
           fi:
           next-x := sibling[x]
     od;
     return H
```

Union Example

Extract-Min

Extract-Min (Continued)

Insert and Extract-Min

```
Insert(H, x)

H' := Make-B-H();

p[x] := NIL;

child[x] := NIL;

sibling[x] := NIL;

degree[x] := 0;

head(H') := x;

H := Union(H, H')
```

```
Extract-Min(H)

remove minimum key root x from

H's root list;

H' := Make-B-H();

root list of H' = x's children in

reverse order;

H := Union(H, H');

return x
```

Decrease-Key Example

Decrease-Key Example (Continue)

Decrease-Key

```
Decrease-Key(H, x, k)

if k > \text{key}[x] then "error" i;

key[x] := k;

y := x;

z := p[y];

while z \neq \text{NIL} and key[y] < key[z] do

exchange key[y] and key[z];

y := z;

z := p[y]

od
```

Delete

```
Delete(H, x)
Decrease-Key(H, x, -\infty);
Extract-Min(H)
```

