Lecture Comprehension, Degrees of Freedom of a Rigid Body (Chapter 2 through 2.1)

TOTAL POINTS 5

1.	Which of the following are possible elements of robots in this specialization? Select all that apply.	0/1 point
	Rigid bodies.	
	This specialization focuses on robots that consist of rigid bodies and joints. Soft, flexible bodies.	
	Joints.	
	You didn't select all the correct answers	
2.	The number of degrees of freedom of a robot is (select all that apply):	1 l 1 point
	the dimension of its configuration space.	
	Correct	
	the number of real numbers needed to specify its configuration.	
	✓ Correct	
	the number of points on the robot.	
	the number of joints of the robot.	
	the number of bodies comprising the robot.	
	the number of freedoms of the bodies minus the number of independent constraints between the bodies.	

 A rigid body in n-dimensional space has m total degrees of freedom. How many of these m degrees of freedom are angular (not linear)? Select all that apply.

m-n

Correct

n linear coordinates specify the location of one point of the rigid body, and the remaining m-n coordinates are subject to radius constraints (as described in the video), and hence can be thought of as angular coordinates.

$$n(n-1)/2$$

Correct

This is equivalent to m-n.

None of the above.