Concrete Semantics for Pushdown Analysis

The Essence of Summarization

J. lan Johnson and David Van Horn {ianj,dvanhorn}@ccs.neu.edu
Northeastern University
Boston, MA, USA

Pushdown analysis is easy

Pushdown analysis is easy

You should model your analyses concretely

Pushdown analysis is easy

You should model your analyses concretely

Regular v Pushdown

Store:

(define (id x) x)

(<= (id 0) (id 1))


```
x {0}
(id 0) {0}
```


Store:


```
x {0, 1}
(id 0) {0, 1}
(id 1) {0, 1}
```

Result: true or false

Store:

(define (id x) x)

(<= (id 0) (id 1))

Store:

Result: true

That was first-order [Sharir & Pnueli 1981]

That was first-order [Sharir & Phueli 1981]

We can do higher-order [Vardoulakis & Shivers 2010]

That was first-order [Sharir & Phueli 1981]

We can do higher-order [Vardoulakis & Shivers 2010]

```
Summary, Callers, TCallers, Final \leftarrow \emptyset
                                                            01
                                                            02
                                                                         Seen, W \leftarrow \{(\mathcal{I}(pr), \mathcal{I}(pr))\}
                                                            03
                                                                        while W \neq \emptyset
                                                            04
                                                                            remove (\tilde{\varsigma}_1, \tilde{\varsigma}_2) from W
                                                            05
                                                                             switch \tilde{\zeta}_2
                                                            06
                                                                                 case \tilde{\zeta}_2 of Entry, CApply, Inner-CEval
                                                            07
                                                                                     for each \tilde{\zeta}_3 in succ(\tilde{\zeta}_2) Propagate(\tilde{\zeta}_1, \tilde{\zeta}_3)
                                                            08
                                                                                 case \tilde{\varsigma}_2 of Call
                                                            09
                                                                                     for each \tilde{\zeta}_3 in succ(\tilde{\zeta}_2)
                                                            10
                                                                                         Propagate (\bar{\zeta}_3, \bar{\zeta}_3)
                                                            11
                                                                                         insert (\tilde{\zeta}_1, \tilde{\zeta}_2, \tilde{\zeta}_3) in Callers
                                                            12
                                                                                         for each (\tilde{\zeta}_3, \tilde{\zeta}_4) in Summary Update(\tilde{\zeta}_1, \tilde{\zeta}_2, \tilde{\zeta}_3, \tilde{\zeta}_4)
                                                            13
                                                                                 case \bar{\varsigma}_2 of Exit-CEval
                                                                                     if \tilde{\zeta}_1 = \tilde{\mathcal{I}}(pr) then
                                                            14
                                                                                         Final(\tilde{\varsigma}_2)
                                                                                     else
That was 17
                                                                                         insert (\tilde{\varsigma}_1, \tilde{\varsigma}_2) in Summary
                                                                                         for each (\tilde{\zeta}_3, \tilde{\zeta}_4, \tilde{\zeta}_1) in Callers Update (\tilde{\zeta}_3, \tilde{\zeta}_4, \tilde{\zeta}_1, \tilde{\zeta}_2)
                                                            19
                                                                                         for each (\tilde{\zeta}_3, \tilde{\zeta}_4, \tilde{\zeta}_1) in TCallers Propagate (\tilde{\zeta}_3, \tilde{\zeta}_2)
                                                            20
                                                                                 case \tilde{\zeta}_2 of Exit-TC
                                                            21
                                                                                     for each \tilde{\varsigma}_3 in succ(\tilde{\varsigma}_2)
                                                            22
                                                                                         Propagate (\bar{\zeta}_3, \bar{\zeta}_3)
                                                            23
                                                                                         insert (\tilde{\zeta}_1, \tilde{\zeta}_2, \tilde{\zeta}_3) in TCallers
                                                            24
                                                                                         for each (\tilde{\zeta}_3, \tilde{\zeta}_4) in Summary Propagate (\tilde{\zeta}_1, \tilde{\zeta}_4)
                                                                        Propagate(\tilde{\zeta}_1, \tilde{\zeta}_2) \triangleq
                                                                            if (\tilde{\zeta}_1, \tilde{\zeta}_2) not in Seen then insert (\tilde{\zeta}_1, \tilde{\zeta}_2) in Seen and W
We can
                                                                        Update(\tilde{\varsigma}_1, \tilde{\varsigma}_2, \tilde{\varsigma}_3, \tilde{\varsigma}_4) \triangleq
                                                                                                                                                                                                        is & Shivers 2010]
                                                                            \tilde{\varsigma}_1 of the form ([(\lambda_{l_1}(u_1 \ k_1) \ call_1)], d_1, h_1)
                                                                            \tilde{\zeta}_{2} of the form ([(f e_{2} (\lambda_{\gamma_{2}} (u_{2}) call_{2}))^{l_{2}}], tf_{2}, h_{2})
                                                                            \tilde{\zeta}_3 of the form ([(\lambda_{l_3}(u_3 \ k_3) \ call_3)], \hat{d}_3, h_2)
                                                                            \tilde{\zeta}_4 of the form ([(k_4 \ e_4)^{\gamma_4}], tf_4, h_4)
                                                            29
                                                                            \hat{\mathbf{d}} \leftarrow \bar{A}_u(e_4, \gamma_4, tf_4, h_4)
                                                            30
                                                                            tf \leftarrow \begin{cases} tf_2[f \mapsto \{ [(\lambda_{l_3}(u_3 \ k_3) \ call_3)] \}] & S_?(l_2, f) \\ tf_2 & H_?(l_2, f) \lor Lam_?(f) \end{cases}
                                                            31
                                                                            \tilde{\zeta} \leftarrow ([(\lambda_{\gamma_2}(u_2) \ call_2)], \hat{d}, tf, h_4)
                                                            32
                                                            33
                                                                            Propagate (\tilde{\zeta}_1, \tilde{\zeta})
                                                                        Final(\tilde{\zeta}) \triangleq
                                                            34
                                                                            \tilde{\zeta} of the form ([(ke)^{\gamma}], tf, h)
                                                                            insert (halt, A_u(e, \gamma, tf, h), \emptyset, h) in Final
                                                            35
```

Figure 8: CFA2 workset algorithm

Deriving Pushdown Analyses

• Transform: memoize functions

Deriving Pushdown Analyses

- Transform: memoize functions
- Transform: store return points for ENTIRE states

Deriving Pushdown Analyses

- Transform: memoize functions
- Transform: store return points for ENTIRE states
- Analysis: bound store

$$E[(\lambda x.e \ v)] \mapsto_{\beta \vee} E[e\{x:=v\}]$$

```
ρ ∈ Env = Var → (Value × Env)
κ ∈ Kont = Frame*
```

```
p ∈ Env = Var → (Value × Env)
                     \langle x, \rho, \kappa \rangle \mapsto \langle v, \rho', \kappa \rangle
                                                     if (v, \rho') = \rho(x)
           \langle (e_0 \ e_1), \rho, \kappa \rangle \mapsto \langle e_0, \rho, ar(e_1, \rho) : \kappa \rangle
       \langle v, \rho, ar(e, \rho): \kappa \rangle \mapsto \langle e, \rho, fn(v, \rho): \kappa \rangle
\langle v, \rho, fn(\lambda x.e, \rho'): \kappa \rangle \mapsto \langle e, \rho'', \kappa \rangle
                                                                 where \rho'' = \rho'[x \mapsto (v, \rho)]
```

```
p ∈ Env = Var → Addr
                   \langle x, \rho, \sigma, \kappa \rangle \mapsto \langle v, \rho', \sigma, \kappa \rangle
                                                          if (v, \rho') = \sigma(\rho(x))
             \langle (e_0 \ e_1), \rho, \sigma, \kappa \rangle \mapsto \langle e_0, \rho, \sigma, ar(e_1, \rho) : \kappa \rangle
       \langle v, \rho, \sigma, ar(e, \rho) : \kappa \rangle \mapsto \langle e, \rho, \sigma, fn(v, \rho) : \kappa \rangle
\langle v, \rho, \sigma, fn(\lambda x.e, \rho'): \kappa \rangle \mapsto \langle e, \rho'', \sigma', \kappa \rangle
                                                                     where \rho'' = \rho'[x \mapsto a]
                                                                                     \sigma' = \sigma[a \mapsto (v, \rho)]
```

a fresh

```
p ∈ Env = Var → Addr
                     \circ ∈ Store = Addr \rightarrow \wp(Value × Env)
                         \langle x, \rho, \sigma, \kappa \rangle \mapsto \langle v, \rho', \sigma, \kappa \rangle
                                                               if (v, \rho') \in \sigma(\rho(x))
              \langle (e_0 \ e_1), \rho, \sigma, \kappa \rangle \mapsto \langle e_0, \rho, \sigma, ar(e_1, \rho) : \kappa \rangle
        \langle v, \rho, \sigma, ar(e, \rho) : \kappa \rangle \mapsto \langle e, \rho, \sigma, fn(v, \rho) : \kappa \rangle
\langle v, \rho, \sigma, fn(\lambda x.e, \rho'): \kappa \rangle \mapsto \langle e, \rho'', \sigma', \kappa \rangle
                                                                            where \rho'' = \rho'[x \mapsto a]
                                                                                             \sigma' = \sigma \sqcup [a \mapsto \{(v, \rho)\}]
                                                        a = alloc(\varsigma)
```

```
p ∈ Env = Var → Addr
              \sigma ∈ Store = Addr \rightarrow \wp(Value × Env)
                 \langle x, \rho, \sigma, \kappa \rangle \mapsto \langle v, \rho', \sigma, \kappa \rangle
                                          if (v, \rho') \in \sigma(\rho(x))
                   (1) memoize functions
          ⟨(e₀ e₁),ρ,σ,κ
     (v, p
                                    (ν,ρ,σ, fr
                                                   where \rho'' = \rho'[x \mapsto a]
                                                              \sigma' = \sigma \sqcup [a \mapsto \{(v, \rho)\}]
                                      a = alloc(\varsigma)
```

```
p ∈ Env = Var → Addr
                     \sigma ∈ Store = Addr \rightarrow \wp(Value × Env)
                         \langle x, \rho, \sigma, \kappa \rangle \mapsto \langle v, \rho', \sigma, \kappa \rangle
                                                               if (v, \rho') \in \sigma(\rho(x))
              \langle (e_0 \ e_1), \rho, \sigma, \kappa \rangle \mapsto \langle e_0, \rho, \sigma, ar(e_1, \rho) : \kappa \rangle
        \langle v, \rho, \sigma, ar(e, \rho) : \kappa \rangle \mapsto \langle e, \rho, \sigma, fn(v, \rho) : \kappa \rangle
\langle v, \rho, \sigma, fn(\lambda x.e, \rho'): \kappa \rangle \mapsto \langle e, \rho'', \sigma', \kappa \rangle
                                                                            where \rho'' = \rho'[x \mapsto a]
                                                                                             \sigma' = \sigma \sqcup [a \mapsto \{(v, \rho)\}]
                                                        a = alloc(\varsigma)
```

```
p ∈ Env = Var → Addr
                     \sigma ∈ Store = Addr \rightarrow \wp(Value × Env)
                         \langle x, \rho, \sigma, \kappa \rangle \mapsto \langle v, \rho', \sigma, \kappa \rangle
                                                               if (v, \rho') \in \sigma(\rho(x))
              \langle (e_0 \ e_1), \rho, \sigma, \kappa \rangle \mapsto \langle e_0, \rho, \sigma, ar(e_1, \rho) : \kappa \rangle
        \langle v, \rho, \sigma, ar(e, \rho) : \kappa \rangle \mapsto \langle e, \rho, \sigma, fn(v, \rho) : \kappa \rangle
\langle v, \rho, \sigma, fn(\lambda x.e, \rho'): \kappa \rangle \mapsto \langle e, \rho'', \sigma', \kappa \rangle
                                                                            where \rho'' = \rho'[x \mapsto a]
                                                                                             \sigma' = \sigma \sqcup [a \mapsto \{(v, \rho)\}]
                                                        a = alloc(\varsigma)
```

```
p ∈ Env = Var → Addr
                     \sigma ∈ Store = Addr \rightarrow \wp(Value × Env)
                         \langle x, \rho, \sigma, \kappa \rangle \mapsto \langle v, \rho', \sigma, \kappa \rangle
                                                               if (v, \rho') \in \sigma(\rho(x))
              \langle (e_0 \ e_1), \rho, \sigma, \kappa \rangle \mapsto \langle e_0, \rho, \sigma, ar(e_1, \rho) : \kappa \rangle
        \langle v, \rho, \sigma, ar(e, \rho) : \kappa \rangle \mapsto \langle e, \rho, \sigma, fn(v, \rho) : \kappa \rangle
\langle v, \rho, \sigma, fn(\lambda x.e, \rho'): \kappa \rangle \mapsto \langle e, \rho'', \sigma', \kappa \rangle
                                                                            where \rho'' = \rho'[x \mapsto a]
                                                                                             \sigma' = \sigma \sqcup [a \mapsto \{(v, \rho)\}]
                                                        a = alloc(\varsigma)
```

```
p ∈ Env = Var → Addr
                     \sigma ∈ Store = Addr \rightarrow \wp(Value × Env)
                         \langle x, \rho, \sigma, \kappa \rangle \mapsto \langle v, \rho', \sigma, \kappa \rangle
                                                               if (v, \rho') \in \sigma(\rho(x))
              \langle (e_0 \ e_1), \rho, \sigma, \kappa \rangle \mapsto \langle e_0, \rho, \sigma, ar(e_1, \rho) : \kappa \rangle
        \langle v, \rho, \sigma, ar(e, \rho) : \kappa \rangle \mapsto \langle e, \rho, \sigma, fn(v, \rho) : \kappa \rangle
\langle v, \rho, \sigma, fn(\lambda x.e, \rho'): \kappa \rangle \mapsto \langle e, \rho'', \sigma', \kappa \rangle
                                                                            where \rho'' = \rho'[x \mapsto a]
                                                                                             \sigma' = \sigma \sqcup [a \mapsto \{(v, \rho)\}]
                                                        a = alloc(\varsigma)
```

```
p ∈ Env = Var → Addr
                     \sigma ∈ Store = Addr \rightarrow \wp(Value × Env)
                         \langle x, \rho, \sigma, \kappa \rangle \mapsto \langle v, \rho', \sigma, \kappa \rangle
                                                               if (v, \rho') \in \sigma(\rho(x))
              \langle (e_0 \ e_1), \rho, \sigma, \kappa \rangle \mapsto \langle e_0, \rho, \sigma, ar(e_1, \rho) : \kappa \rangle
        \langle v, \rho, \sigma, ar(e, \rho) : \kappa \rangle \mapsto \langle e, \rho, \sigma, fn(v, \rho) : \kappa \rangle
\langle v, \rho, \sigma, fn(\lambda x.e, \rho'): \kappa \rangle \mapsto \langle e, \rho'', \sigma', \kappa \rangle
                                                                            where \rho'' = \rho'[x \mapsto a]
                                                                                             \sigma' = \sigma \sqcup [a \mapsto \{(v, \rho)\}]
                                                        a = alloc(\varsigma)
```

```
p ∈ Env = Var → Addr

σ ∈ Store = Addr → ℘(Value × Env)

                        \langle x, \rho, \sigma, \kappa \rangle \mapsto \langle v, \rho', \sigma, \kappa \rangle
                                                              if (v, \rho') \in \sigma(\rho(x))
              \langle (e_0 \ e_1), \rho, \sigma, \kappa \rangle \mapsto \langle e_0, \rho, \sigma, ar(e_1, \rho) : \kappa \rangle
        \langle v, \rho, \sigma, ar(e, \rho) : \kappa \rangle \mapsto \langle e, \rho, \sigma, fn(v, \rho) : \kappa \rangle
\langle v, \rho, \sigma, fn(\lambda x.e, \rho'): \kappa \rangle \mapsto \langle e, \rho'', \sigma', \kappa \rangle
                                                                          where \rho'' = \rho'[x \mapsto a]
                                                                                           \sigma' = \sigma \sqcup [a \mapsto \{(v, \rho)\}]
                                                       a = alloc(\varsigma)
```

```
p ∈ Env = Var → Addr
                     \sigma ∈ Store = Addr \rightarrow \wp(Value × Env)
                         \langle x, \rho, \sigma, \kappa \rangle \mapsto \langle v, \rho', \sigma, \kappa \rangle
                                                               if (v, \rho') \in \sigma(\rho(x))
              \langle (e_0 \ e_1), \rho, \sigma, \kappa \rangle \mapsto \langle e_0, \rho, \sigma, ar(e_1, \rho) : \kappa \rangle
        \langle v, \rho, \sigma, ar(e, \rho) : \kappa \rangle \mapsto \langle e, \rho, \sigma, fn(v, \rho) : \kappa \rangle
\langle v, \rho, \sigma, fn(\lambda x.e, \rho'): \kappa \rangle \mapsto \langle e, \rho'', \sigma', \kappa \rangle
                                                                            where \rho'' = \rho'[x \mapsto a]
                                                                                             \sigma' = \sigma \sqcup [a \mapsto \{(v, \rho)\}]
                                                         a = alloc(\varsigma)
```

```
p ∈ Env = Var → Addr
                     \sigma ∈ Store = Addr \rightarrow \wp(Value × Env)
                         \langle x, \rho, \sigma, \kappa \rangle \mapsto \langle v, \rho', \sigma, \kappa \rangle
                                                               if (v, \rho') \in \sigma(\rho(x))
              \langle (e_0 e_1), \rho, \sigma, \kappa \rangle \mapsto \langle e_0, \rho, \sigma, ar(e_1, \rho) : \kappa \rangle
        \langle v, \rho, \sigma, ar(e, \rho) : \kappa \rangle \mapsto \langle e, \rho, \sigma, fn(v, \rho) : \kappa \rangle
\langle v, \rho, \sigma, fn(\lambda x.e, \rho'): \kappa \rangle \mapsto \langle e, \rho'', \sigma', \kappa \rangle
                                                                            where \rho'' = \rho'[x \mapsto a]
                                                                                             \sigma' = \sigma \sqcup [a \mapsto \{(v, \rho)\}]
                                                        a = alloc(\varsigma)
```

```
p ∈ Env = Var → Addr

σ ∈ Store = Addr → ℘(Value × Env)

                         \langle x, \rho, \sigma, \kappa \rangle \mapsto \langle v, \rho', \sigma, \kappa \rangle
              \langle (e_0 \ e_1), \rho, \sigma, \kappa \rangle \mapsto \langle e_0, \rho, \sigma, ar(e_1, \rho) : \kappa \rangle
       \langle v, \rho, \sigma, ar(e, \rho) : \kappa \rangle \mapsto \langle e, \rho, \sigma, fn(v, \rho) : \kappa \rangle
\langle v, \rho, \sigma, fn(\lambda x.e, \rho'): \kappa \rangle \mapsto \langle e, \rho'', \sigma', \kappa \rangle
                                                                          where \rho'' = \rho'[x \mapsto a]
                                                                                            \sigma' = \sigma \sqcup [a \mapsto \{(v, \rho)\}]
```

```
 \langle v, \rho, \sigma, fn(\lambda x.e, \rho') : \kappa \rangle \mapsto \langle e, \rho'', \sigma', \kappa \rangle   \text{where } \rho'' = \rho' [x \mapsto a]   \sigma' = \sigma \sqcup [a \mapsto \{(v, \rho)\}]
```

```
 \langle v, \rho, \sigma, fn(\lambda x.e, \rho'):K \rangle \mapsto \langle e, \rho'', \sigma', K \rangle   where \ \rho'' = \rho'[x \mapsto a]   \sigma' = \sigma \sqcup [a \mapsto \{(v, \rho)\}]
```

```
 \langle v, \rho, \sigma, fn(\lambda x.e, \rho') : \kappa \rangle \mapsto \langle e, \rho'', \sigma', \kappa \rangle   where \ \rho'' = \rho'[x \mapsto a]   \sigma' = \sigma \sqcup [a \mapsto \{(v, \rho)\}]
```

$$\langle v, \rho, \sigma, fn(\lambda x.e, \rho'): \kappa \rangle \mapsto \langle e, \rho'', \sigma', \kappa \rangle$$

$$where \ \rho'' = \rho'[x \mapsto a]$$

$$\sigma' = \sigma \sqcup [a \mapsto \{(v, \rho)\}]$$

$$\langle v, \rho, \sigma, fn(\lambda x.e, \rho'): \kappa \rangle \mapsto \langle e, \rho'', \sigma', \kappa \rangle$$
 where $\rho'' = \rho'[x \mapsto a]$
$$\sigma' = \sigma \sqcup [a \mapsto \{(v, \rho)\}]$$

$$\langle v, \rho, \sigma, fn(\lambda x.e, \rho'): K \rangle \mapsto \langle e, \rho'', \sigma', K \rangle$$

where
$$\rho'' = \rho'[x \mapsto a]$$

$$\sigma' = \sigma \sqcup [a \mapsto \{(v, \rho)\}]$$

$$\langle v, \rho, \sigma, fn(\lambda x.e, \rho'): K \rangle \mapsto \langle e, \rho'', \sigma', K \rangle$$

where
$$\rho'' = \rho'[x \mapsto a]$$

$$\sigma' = \sigma \sqcup [a \mapsto \{(v, \rho)\}]$$

$$\langle v, \rho, \sigma, fn(\lambda x.e, \rho'): K \rangle \mapsto \langle e, \rho'', \sigma', K \rangle$$

where
$$\rho'' = \rho'[x \mapsto a]$$

$$\sigma' = \sigma \sqcup [a \mapsto \{(v, \rho)\}]$$

$$\langle v, \rho, \sigma, fn(\lambda x.e, \rho'): K \rangle \mapsto \langle e, \rho'', \sigma', K \rangle$$

where
$$\rho'' = \rho'[x \mapsto a]$$

$$\sigma' = \sigma \sqcup [a \mapsto \{(v, \rho)\}]$$

$$\langle v, \rho, \sigma, fn(\lambda x.e, \rho'): K \rangle \mapsto \langle e, \rho'', \sigma', K \rangle$$

where
$$\rho'' = \rho'[x \mapsto a]$$

$$\sigma' = \sigma \sqcup [a \mapsto \{(v, \rho)\}]$$

$$\langle v, \rho, \sigma, fn(\lambda x.e, \rho'): \kappa \rangle \mapsto \langle e, \rho'', \sigma', \kappa \rangle$$

where
$$\rho'' = \rho'[x \mapsto a]$$

$$\sigma' = \sigma \sqcup [a \mapsto \{(v, \rho)\}]$$

$$\langle v, \rho, \sigma, fn(\lambda x.e, \rho'): \kappa \rangle \mapsto \langle e, \rho'', \sigma', \kappa \rangle$$

where
$$\rho'' = \rho'[x \mapsto a]$$

$$\sigma' = \sigma \sqcup [a \mapsto \{(v, \rho)\}]$$

$$\langle v, \rho, \sigma, fn(\lambda x.e, \rho'):\kappa, M \rangle \mapsto \langle e, \rho'', \sigma', rt(ctx):\kappa, M \rangle$$
 or
$$\langle v', \rho, \kappa, M \rangle \text{ if } v' \in M(ctx)$$

$$\text{where } \rho'' = \rho'[x \mapsto a]$$

$$\sigma' = \sigma \sqcup [a \mapsto \{(v, \rho)\}]$$

$$\text{ctx} = (e, \rho'', \sigma')$$

```
\langle v, \rho, \sigma, fn(\lambda x.e, \rho'): \kappa, M \rangle \mapsto \langle e, \rho'', \sigma', rt(ctx): \kappa, M \rangle
                                                            or \langle v', \rho, \kappa, M \rangle if v' \in M(ctx)
                                                                                 where \rho'' = \rho'[x \mapsto a]
                                                                                                    \sigma' = \sigma \sqcup [a \mapsto \{(v, \rho)\}]
                                                                                                    ctx = (e, \rho'', \sigma')
\langle v, \rho, \sigma, rt(ctx): \kappa, M \rangle \mapsto \langle v, \rho, \sigma, \kappa, M' \rangle
```

where
$$M' = M \sqcup [ctx \mapsto \{(v, p)\}]$$

```
\langle v, \rho, \sigma, fn(\lambda x.e, \rho'): \kappa, M \rangle \mapsto \langle e, \rho'', \sigma', rt(ctx): \kappa, M \rangle
                                                or \langle v', \rho, \kappa, M \rangle if v' \in M(ctx)
                                                                 where p'' = p'[x \mapsto a]
                          (2) store return points
                                                                                                   {(v,p)}]
\langle v, \rho, \sigma, rt(ctx): \kappa, M \rangle \mapsto \langle v, \rho, \sigma, \kappa, M' \rangle
                                            where M' = M \sqcup [ctx \mapsto \{(v, \rho)\}]
```

```
\langle v, \rho, \sigma, fn(\lambda x.e, \rho'): \kappa, M, \Xi \rangle \mapsto \langle e, \rho'', \sigma', rt(ctx), M, \Xi' \rangle
                                                             or \langle v', \rho, \kappa, M, \Xi' \rangle if v' \in M(ctx)
                                                                                  where \rho'' = \rho'[x \mapsto a]
                                                                                                     \sigma' = \sigma \sqcup [a \mapsto \{(v, \rho)\}]
                                                                                                     ctx = (e, \rho'', \sigma')
                                                                                                     \Xi' = \Xi \sqcup [\operatorname{ctx} \mapsto \{\kappa\}]
\langle v, \rho, \sigma, rt(ctx), M, \Xi \rangle \mapsto \langle v, \rho, \sigma, \kappa, M', \Xi \rangle
                                                         if \kappa \in \Xi(ctx)
                                                       where M' = M \cup [ctx \mapsto \{(v, \rho)\}]
```

How does this look?

Store in rt:N/A

```
Store in rt:\sigma_1 Contexts \langle (f \ y) \ \rho_1 \ \sigma_1 \rangle (let* (... [n1 •] ...)
```

Store in rt:02

```
\langle x \rho_1 \sigma_2 \rangle
```

Store in rt:02

```
\langle x \rho_1 \sigma_2 \rangle 1 \langle (f y) \rho_1 \sigma_1 \rangle 1
```

Store in rt:01

Store: 03

```
fo id
yo 1
xo 1
n1o 1
```

Memo

```
\langle x \rho_1 \sigma_2 \rangle 1 \langle (f y) \rho_1 \sigma_1 \rangle 1
```

Store in rt:N/A

```
\langle (f \ y) \ \rho_1 \ \sigma_1 \rangle (let* (... [n1 •] ...) ...) \langle x \ \rho_1 \ \sigma_2 \rangle (let* (... [app (\lambda (f y) •)] ...) ...)
```

```
(let* ([id (\lambda (x) x)]
        [app (\lambda (f y) (f y))]
        [n1 (app id 1)]
        [n2 (app id 2)])
  (+ n1 n2)
```

Store: 04

```
f_0, f_1 id
yo
```

Memo

```
\langle x \rho_1 \sigma_2 \rangle 1
\langle (f y) \rho_1 \sigma_1 \rangle 1
```

Store in rt:04

```
\langle (f y) \rho_1 \sigma_1 \rangle (let* (... [n1 \bullet] ...) ...)
\langle x \ \rho_1 \ \sigma_2 \rangle (let* (... [app (\lambda (f y) •)] ...) ...)
\langle (f y) \rho_4 \sigma_4 \rangle (let* (... [n2 \bullet]) ...)
```

```
(let* ([id (\lambda (x) x)] Store:\sigma_5 [app (\lambda (f y) (f y))] f_0,f_1 id [n1 (app id 1)] [n2 (app id 2)]) (+ n1 n2)) x_0 1

Memo n_1 \sigma_2 1 m_2 \sigma_3 1 m_3 \sigma_4 2 m_3 \sigma_4 1
```

Store in rt:05

```
(let* ([id (\lambda (x) x)]
                                                         Store: 05
            [app (\lambda (f y) (f y))]
                                                         f_0, f_1 id
            [n1 (app id 1)]
                                                        y<sub>0</sub> 1
            [n2 (app id 2)])
   (+ n1 n2)
                                                        X0 1
                                                         n1<sub>0</sub> 1
Memo
\langle x \rho_1 \sigma_2 \rangle 1
                                                        y<sub>1</sub> 2
\langle (f y) \rho_1 \sigma_1 \rangle 1
                                                        X<sub>1</sub> 2
\langle x \rho_5 \sigma_5 \rangle 2
```

Store in rt:05

```
(let* ([id (\lambda (x) x)]
                                                        Store: 05
            [app (\lambda (f y) (f y))]
                                                        f_0, f_1 id
            [n1 (app id 1)]
                                                       y<sub>0</sub> 1
            [n2 (app id 2)])
   (+ n1 n2)
                                                        X0 1
                                                        n1<sub>0</sub> 1
Memo
\langle x \rho_1 \sigma_2 \rangle 1
                                                       y<sub>1</sub> 2
\langle (f y) \rho_1 \sigma_1 \rangle 1
                                                        X<sub>1</sub> 2
\langle x \rho_5 \sigma_5 \rangle 2
\langle (f y) \rho_4 \sigma_4 \rangle 2
                                                        Store in rt: 54
Contexts
\langle (f y) \rho_1 \sigma_1 \rangle (let* (... [n1 \bullet] ...) ...)
\langle x \ \rho_1 \ \sigma_2 \rangle (let* (... [app (\lambda (f y) •)] ...) ...)
\langle (f y) \rho_4 \sigma_4 \rangle (let* (... [n2 •]) ...)
\langle x \rho_5 \sigma_5 \rangle (let* (... [app (\lambda (f y) \bullet)] ...)
```

```
(let* ([id (\lambda (x) x)] Store:\sigma_6 [app (\lambda (f y) (f y))] \sigma_0 [n1 (app id 1)] [n2 (app id 2)]) (+ n1 n2)) \sigma_0 1

Memo \sigma_0 \sigma_1 \sigma_2 1 \sigma_2 1 \sigma_1 1 \sigma_2 2 \sigma_2 2
```

Store in rt:N/A

Contexts

 $\langle (f y) \rho_4 \sigma_4 \rangle 2$

$\langle \mathbf{e}, \mathbf{\rho}, \mathbf{\sigma}, \mathbf{K}, \mathbf{M}, \mathbf{\Xi} \rangle$

```
ho \in Env = Var 
ightarrow Addr
\sigma \in Store = Addr 
ightarrow \wp(Value \times Env)
M \in Memo = Expr \times Env \times Store 
ightarrow \wp(Value)
Expr \times Env \times Store 
ightarrow \wp(Kont)
```

Two things:

Pushdown analysis is easy

You should model your analyses concretely

F doesn't contain any resets

Deriving Pushdown Analyses

- Transform: memoize functions / continuations
- Transform: store return points for ENTIRE states
- Analysis: bound store

• Design: Model abstract mechanisms concretely

- Design: Model abstract mechanisms concretely
- Pushdown: Memo and local continuation tables

- Design: Model abstract mechanisms concretely
- Pushdown: Memo and local continuation tables
- Works for control operators / GC (not shown)

- Design: Model abstract mechanisms concretely
- Pushdown: Memo and local continuation tables
- Works for control operators / GC (not shown)

https://github.com/ianj/pushdown-shift-reset

Thank you

Garbage collection

Read root addresses of κ through Ξ

$$\mathscr{T}(\mathsf{rt}(\mathsf{e},\ \mathsf{\rho},\ \mathsf{\sigma})) = \bigcup \{\mathscr{T}(\mathsf{\kappa}) : \mathsf{\kappa} \in \Xi(\mathsf{e},\ \mathsf{\rho},\ \mathsf{\sigma})\}$$