3.2.11

Yoshita J - EE25BTECH11065

September 8,2025

Question

Draw an Right angle triangle $\triangle ABC$ in which BC = 12 cm, AB = 5 cm, and $\angle B = 90^{\circ}$.

Table

Variable	Value
ВС	12 cm
AB	5 cm
∠B	90°

Table:

Theoretical Solution

$$AB^2 = 5^2 = 25, (1)$$

$$BC^2 = 12^2 = 144. (2)$$

The squared length of AC is just the vector AC dotted with itself. In matrix form, that means multiplying the row vector (transpose) of AC with the column vector AC.

Theoretical Solution

$$AC^2 = (\mathbf{AC})^T (\mathbf{AC}) \tag{3}$$

$$= \left(12 - 5\right) \begin{pmatrix} 12 \\ -5 \end{pmatrix} \tag{4}$$

$$= (12 \times 12) + (-5 \times -5) \tag{5}$$

$$= 144 + 25 = 169 \tag{6}$$

Thus, the length of AC is:

$$AC = \sqrt{169} = 13 \text{ cm}.$$
 (7)

Theoretical Solution

Let's put the triangle on the coordinate plane. Since $\angle B$ is a right angle, we put B at the origin.

$$\mathbf{B} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\mathbf{A} = \begin{pmatrix} 0 \\ 5 \end{pmatrix}$$
 because $AB = 5$ cm on the y-axis
$$\mathbf{C} = \begin{pmatrix} 12 \\ 0 \end{pmatrix}$$
 because $BC = 12$ cm on the x-axis

C Code

```
#include <stdio.h>
#include <math.h>
double calculateHypotenuse(double side1, double side2) {
   return sqrt((side1 * side1) + (side2 * side2));
}
```

```
import numpy as np
import matplotlib.pyplot as plt
# --- Problem Definition ---
# Draw a line segment of length 7.6 cm and divide it in the ratio
     5:8.
# Measure the two parts.
# --- Calculations ---
total length = 7.6
ratio_a = 5
ratio_b = 8
total_ratio_parts = ratio_a + ratio_b
```

```
# Calculate the length of each part
 length part1 = (ratio a / total ratio parts) * total length
 length part2 = (ratio b / total ratio parts) * total length
 # Print the calculated measurements to the console
 print(fTotal length of the line segment: {total_length} cm)
 print(fRatio of division: {ratio_a}:{ratio_b})
 print(- * 30)
 print(fCalculated length of the first part (5 parts): {
     length part1:.2f} cm)
print(fCalculated length of the second part (8 parts): {
     length part2:.2f} cm)
 print(fVerification (Sum of parts): {length part1 + length part2
     :.2f} cm)
```

```
# --- Visualization Setup ---
# Define the coordinates for the line segment and the division
    point
# Let's place the line segment on the x-axis for simplicity
A = np.array([0, 0])
B = np.array([total length, 0])
P = np.array([length part1, 0]) # The point of division
# Create a figure and axis for the plot
plt.figure(figsize=(10, 4))
ax = plt.gca()
# --- Plot the Line and Points ---
# Plot the main line segment from A to B
plt.plot([A[0], B[0]], [A[1], B[1]], 'b-', lw=2, label=f'Total
    Length = {total_length} cm')
```

```
# Mark the start, end, and division points with red dots
points = {'A': A, 'P': P, 'B': B}
for label, point in points.items():
    plt.scatter(point[0], point[1], color='red', zorder=5)
    # Add labels below the points
    plt.text(point[0], point[1] - 0.2, f'{label}', ha='center',
       fontsize=12)
# --- Add Annotations and Labels ---
# Add labels for the two measured parts above the line segments
plt.text((A[0] + P[0]) / 2, 0.2, f'{length_part1:.2f} cm', ha='
    center', va='bottom', fontsize=10, color='darkgreen')
plt.text((P[0] + B[0]) / 2, 0.2, f'{length_part2:.2f} cm', ha='
    center', va='bottom', fontsize=10, color='purple')
```

```
# --- Set Plot Properties ---
plt.xlabel('Length (cm)')
plt.ylabel('')
plt.title('Line Segment of Length 7.6 cm Divided in the Ratio 5:8
plt.legend(loc='best')
plt.grid(True, linestyle='--', alpha=0.6)
# Set axis limits for better viewing and remove y-axis ticks
plt.xlim(-0.5, 8.5)
plt.ylim(-1, 1)
ax.yaxis.set_major_locator(plt.NullLocator()) # Hide y-axis ticks
     as they are not needed
```

```
# Ensure the aspect ratio is not distorted
ax.set_aspect('equal', adjustable='box')

# Save the plot to a file
plt.savefig('divided_line_segment.png', bbox_inches='tight')

# Display the plot
plt.show()
```

Plot

Fig. 0.1