- 1. Suppose that we have an ordered file with 30,000 records stored on a disk with block size 1,024 bytes. File records are of fixed size with record length 100 bytes.
- a) Find the number of block accesses required to search for a record using a binary search.
- b) Suppose that the search key field of the file is 9 bytes long, a pointer is 6 bytes long, and a primary index is constructed for the file with one index entry per data block. Find the number of block accesses required to search for a record using the index.
- c) How many levels are required to construct a multilevel index on the primary index in b) such that there is only one index block at the top level? Find the number of block accesses required to search for a record using the multilevel index.
- 2. Consider a disk with block size 512 bytes. Suppose that the search key field of a file is 9 bytes long and a pointer is 6 bytes long. We want to construct a B⁺-tree index for the file and a node of the B⁺-tree is made to be the same size as a disk block.

a) Masistighentintentlu Piroj te ettre Exam Help

b) What are the largest and the least number of search key values that can be stored at the leaf level of a 4-level B⁺-tree?

https://powcoder.com

Consider a B⁺-tree and a given function find (V), which returns leaf node C and index i such that C profits to the record with carrel by which is the record exists. Write a pseudocode for a procedure printRange (L, U) to find and print all records with search key values in a specified range (L, U), assuming both L and U exist in the tree and the number of keys in a leaf node is known. Such queries are called *range queries*.