Assignment 5 MAT 457

Q3: We first claim that $\mu_1 \leq \mu_2 \leq \mu_3$. Let $E \in \mathcal{M}$. Suppose $E_1 \dots E_n$ are disjoint with $\bigcup_{n=1}^N E_n = E$. Then if $\{F_i\}_{i=1}^{\infty}$ are a disjoint sequence with $\bigcup_{i=1}^{\infty} F_i = E$ we have that

$$\sum_{n=1}^{N} |\nu(E_n)| \le \sum_{n=1}^{\infty} |\nu(F_n)|$$

Taking supremums yields that $\mu_1(E) \leq \mu_2(E)$. We now claim that $\mu_2(E) \leq \mu_3(E)$. Take any E_1, E_2, \ldots pairwise disjoint with $\bigcup_{n=1}^{\infty} E_n = E$. We have that

$$\sum_{n=1}^{\infty} |\nu(E_n)| = \sum_{n=1}^{\infty} |\int_{E_n} d\nu| = |\int_E d\nu| \le \mu_3(E)$$

Hence we have $\mu_2(E) \leq \mu_3(E)$. Thus we have the chain of inequalities $\mu_1 \leq \mu_2 \leq \mu_3$. We now claim that $\mu_3(E) = |\nu|(E)$. By prop 3.13 from Folland, we have that

$$\mu_3(E) \le \sup \left\{ \int_E |f|d|\nu| : |f| \le 1, f \text{ measurable} \right\} = \int_X \chi_E d|\nu| = |\nu|(E),$$

by approximating |f| with simple functions. We can also check that

$$|\nu|(E) = \left| \int_{E} 1d|\nu| \right|$$

$$= \left| \int_{E} \left| \frac{d\nu}{d|\nu|} |d|\nu| \right| \qquad \text{(by prop 3.13)}$$

$$= \left| \int_{E} \frac{d\nu}{d|\nu|} \cdot \frac{d\nu}{d|\nu|} d|\nu| \right| \qquad \text{(by definition of modulus)}$$

$$= \left| \int_{E} \frac{d\nu}{d|\nu|} d\nu \right|$$

$$\leq \mu_{3}(E) \qquad \text{(since } \left| \frac{d\nu}{d|\nu|} \right| = \left| \frac{d\nu}{d|\nu|} \right| = 1 \text{ a.e. by prop 3.13)}$$

Hence $|\nu|(E) = \mu_3(E)$. Finally we will show that $\mu_3 \leq \mu_1$, which will prove the result. Let $E \in \mathcal{M}$, f be any measurable function with $|f| \leq 1$, and let $\{E_n\}_{n=1}^N$ be any partition of E. Choose a simple function $\phi = \sum_{n=1}^N a_n \chi_{E_n}$ with $|a_n| \leq 1$ so that $\int_E |\phi - f| < \varepsilon$. It is sufficient to show that the result holds for ϕ . We have that

$$\left| \int_{E} \phi d\nu \right| = \left| \sum_{n=1}^{N} \int_{X} a_{n} \chi_{E_{n}} d\nu \right| \leq \sum_{n=1}^{N} |a_{n}| \left| \int_{E_{n}} 1 d\nu \right| = \sum_{n=1}^{N} |a_{n}| |\nu(E_{n})| \leq \sum_{n=1}^{N} |\nu(E_{n})|$$

Taking supremums yields the desired inequality. Hence we have that

$$|\nu| \le \mu_1 \le \nu_2 \le |\nu|$$

and conclude that

$$|\nu| = \mu_1 = \mu_2$$