Programowanie mikrokontrolerów Wejścia analogowe

Marcin Engel Marcin Peczarski

Instytut Informatyki Uniwersytetu Warszawskiego

18 listopada 2012

Komparator idealny

Służy do porównywania wartości dwóch napięć elektrycznych.

- Wyjście U_O jest w stanie wysokim, gdy $U_+ > U_-$,
- ▶ a w stanie niskim, gdy $U_+ < U_-$.

Komparator rzeczywisty

Charakterystyka

- Napięcie niezrównoważenia U_{off} wartość różnicy napięć na wejściu, przy której napięcie wyjściowe U_O jest w połowie między poziomem niskim a wysokim.
- ► Typowe wartości | U_{off} | wynoszą kilka mV.
- ▶ Wzmocnienie napięciowe nachylenie charakterystyki w jej środku dla $U_+ U_- = U_{off}$.
- ► Typowe wartości wzmocnienia to 10³ V/V do 10⁶ V/V.

Komparator w ATmega16

- ► |*U*_{off}| nie przekracza 40 mV.
- ▶ Wzmocnienia producent nie podaje w danych katalogowych.
- Wejście U₊ może być podłączone do wyprowadzenia AIN0 (PB2) lub do wewnętrznego napięcia referencyjnego, którego wartość typowa wynosi 1,23 V, a wartość rzeczywista jest w przedziale 1,15 V do 1,35 V.
- Wejście U₋ może być podłączone do wyprowadzenia AIN1 (PB3) lub do jednego z wyprowadzeń PA0 do PA7.

Komparator w ATmega16 - rejestry

ACSR

7	6	5	4	3	2	1	0
ACD	ACBG	ACO	ACI	ACIE	ACIC	ACIS1	ACIS0

SFIOR

7	6	5	4	3	2	1	0
				ACME			

ADCSRA

7	6	5	4	3	2	1	0
ADEN							

ADMUX

7	6	5	4	3	2	1	0
					MUX2	MUX1	MUX0

Komparator w ATmega16 – wybór wejścia

- ► ACBG=0 Wejście U₊ jest podłączone do AINO.
- ► ACBG=1 Wejście U₊ jest podłączone do napięcia referencyjnego.
- ► ACME=0 lub ADEN=1 Wejście U_ jest podłączone do AIN1.
- ► ACME=1 i ADEN=0 Wejście U_− jest podłączone do portu A. Numer wyprowadzenia określają bity MUX2, MUX1, MUX0.

Komparator w ATmega16 – wyjście

- ACO to wyjście komparatora, zawiera wynik porównania.
- ► ACI to znacznik ustawiany, gdy zajdzie zdarzenie, które może wyzwolić przerwanie. Zerowany przez zapisanie 1.
- ► ACIE włącza przerwanie komparatora.
- ► ACIC dołącza wyjście komparatora bezpośrednio do wejścia przechwytującego ICP1 licznika 1.
- ACIS1, ACIS0 wybierają zdarzenie na wyjściu komparatora służące do ustawiania znacznika ACI.

A	CIS1	ACIS0	zdarzenie
	0	0	zmiana poziomu
	0	1	zarezerwowane
	1	0	zbocze opadające
	1	1	zbocze narastające

Komparator w ATmega16 – wyłączanie

- ▶ Bit ACD wyłącza zasilanie komparatora, aby oszczędzać energię, gdy komparator nie jest używany.
- Zmiany bitu ACD powinny odbywać się przy wyłączonym przerwaniu (ACIE=0), gdyż w przeciwnym przypadku może dojść do wyzwolenia fałszywego przerwania.

Przetwornik analogowo-cyfrowy

- ► Zamienia sygnał analogowy na jego reprezentację cyfrową.
- ► Podstawowe parametry:
 - ightharpoonup zakres przetwarzanych napięć wejściowych minimalne U_0 i maksymalne U_1 napięcie wejściowe,
 - ightharpoonup zwykle $U_0 = 0$ V lub $U_0 = -U_1$,
 - rozdzielczość w bitach liczba bitów n wyznaczająca liczbę poziomów kwantowania 2ⁿ,
 - ightharpoonup rozdzielczość napięciowa wielkość kwantu $(U_1-U_0)/2^n$,
 - czas przetwarzania czas potrzebny dla wykonania jednego cyklu przetworzenia,
 - częstotliwość próbkowania maksymalna częstotliwość z jaką mogą być wykonywane kolejne przetworzenia – nie może przekroczyć odwrotności czasu przetwarzania.
- Uwaga: powyższe dotyczy liniowej charakterystyki przetwarzania.
- Istnieją również przetworniki z nieliniową charakterystyką, ale nimi nie będziemy się zajmować.

Przetwornik analogowo-cyfrowy z przetwarzaniem bezpośrednim

- Napięcie wejściowe jest porównywane bezpośrednio przez 2ⁿ komparatorów z 2ⁿ napięciami odniesienia wytworzonymi za pomocą drabinki rezystorów.
- Metoda jest bardzo szybka.
- Metoda jest bardzo kosztowna zwiększenie rozdzielczości o jeden bit wymaga podwojenia liczby elementów.
- Trudno jest osiągnąć dobrą liniowość przetwarzania rozrzut parametrów poszczególnych komparatorów.

Przetwornik analogowo-cyfrowy z sukcesywną aproksymacją

- Napięcie wejściowe jest porównywane za pomocą komparatora z napięciem wyjściowym przetwornika cyfrowo-analogowego.
- Stosuje się algorytm wyszukiwania binarnego.
- Przetwarzanie podzielone jest na n kroków.
- W każdym kroku wyznacza się kolejny bit przetwarzanej wartości, począwszy od najstarszego do najmłodszego.
- Dokładność przetwarzania zależy od liniowości i dokładności przetwornika cyfrowo-analogowego.

Przetwornik analogowo-cyfrowy całkujący

- Najdokładniejsze przetworniki działają w oparciu o metodę przetwarzania napięcia na czas.
- Czas potrafimy mierzyć bardzo dokładnie.
- Napięcie na kondensatorze wyraża się zależnością

$$u(t) = u(t_0) + \frac{1}{C} \int_{t_0}^t i(\tau) d\tau,$$

gdzie C to wartość pojemności kondensatora, u(t) napięcie w chwili t, i(t) prąd ładujący pojemność w chwili t.

▶ Jeśli $u(t_0) = U_0$ i prąd jest stały, proporcjonalny do zakresu przetwarzanego napięcia $i(t) = (U_1 - U_0)/R$, to

$$u(t) = U_0 + \frac{U_1 - U_0}{RC}(t - t_0).$$

Przetwornik analogowo-cyfrowy z pojedynczym całkowaniem

- Mierzymy czas potrzebny do naładowania kondensatora od napięcia U₀ do napięcia wejściowego U_{in}.
- ► Ten czas zależy liniowo od napięcia wejściowego

$$\frac{U_{in}-U_0}{U_1-U_0}RC.$$

- Do porównywania napięć używamy komparatora.
- Dokładność przetwarzania zależy od dokładności i stabilności stałej czasowej RC oraz napięć U₀ i U₁.

Przetwornik analogowo-cyfrowy z podwójnym całkowaniem

Ładujemy kondensator od napięcia U₀ przez 2ⁿ taktów zegara T prądem proporcjonalnym do napięcia wejściowego U_{in}, dostajemy napięcie

$$U=U_0+\frac{U_{in}}{RC}\cdot 2^n\cdot T.$$

Następnie rozładowujemy go do napięcia początkowego U₀ prądem proporcjonalnym do napięcia odniesienia Uref (z tym samym współczynnikiem proporcjonalności), dostajemy

$$U_0 = U - \frac{U_{ref}}{RC} \cdot x \cdot T.$$

► Czas rozładowania x w taktach jest proporcjonalny do stosunku napięcia wejściowego do napięcia odniesienia

$$x = \frac{U_{in}}{U_{ref}} \cdot 2^n.$$

Przetwornik analogowo-cyfrowy z podwójnym całkowaniem

- Jest to najdokładniejsza metoda przetwarzania.
- ▶ Dokładność opiera się na tym, że wynik nie zależy od wartości bezwzględnych pojemności, rezystancji czy czasu.
- Wynik przetwarzania zależy od stosunku czasów.
- Niedokładności sygnału taktującego i stałej czasowej kompensują się.
- Dokładność zależy przede wszystkim od dokładności i stabilności napięcia odniesienia.

Przetwornik analogowo-cyfrowy w ATmega16 (1)

- Procesor ATmega16 ma wbudowany przetwornik analogowo-cyfrowy.
- Rozdzielczość 10 bitów rozróżnia 1024 wartości.
- Mierzy wartość napięcia elektrycznego względem masy układu:
 - wartość wyjściowa z przedziału 0 do 1023,
 - określona wzorem

$$\frac{V_{\mathit{IN}} \cdot 1024}{V_{\mathit{REF}}}.$$

- Mierzy różnicę wartości dwóch napięć elektrycznych (opcja nietestowana w obudowie DIP40):
 - ▶ wartość wyjściowa z przedziału −512 do 511 (kod U2),
 - określona wzorem

$$\frac{(V_{POS} - V_{NEG}) \cdot GAIN \cdot 512}{V_{REF}}$$

Przetwornik analogowo-cyfrowy w ATmega16 (2)

- ▶ Jako wejścia V_{IN}, V_{POS}, V_{NEG} można wybrać nogi portu A.
- Współczynnik wzmocnienia GAIN może wynosić 1, 10, 200.
- ▶ Napięcie odniesienia V_{REF}:
 - napięcie zasilania układu;
 - wewnętrzne napięcie odniesienia, nominalnie 2,56 V, wartość rzeczywista między 2,3 a 2,7 V;
 - zewnętrzne napięcie odniesienia podane na nogę AREF.
- Taktowany zegarem od 50 do 200 kHz.
- Przetwarzanie może być wyzwalane jednokrotnie lub automatycznie powtarzane.
- Koniec przetwarzania i gotowość do odczytania wyniku może być zgłaszana przerwaniem.

Przetwornik analogowo-cyfrowy w ATmega16 (3)

- Przed użyciem przetwornik trzeba skonfigurować.
- Rejestr ADMUX określa:
 - źródło napięcia odniesienia V_{REF};
 - sposób prezentacji wyniku;
 - wybór wejścia V_{IN}, V_{POS}, V_{NEG};
 - współczynnik wzmocnienia GAIN.
- Rejestr ADCSR(A) określa:
 - włączenie przetwornika;
 - wybór sposobu wyzwalania;
 - włączenie obsługi przerwania;
 - ustawienie częstotliwości taktowania.
- 3 najstarsze bity rejestru SFIOR określają wybór źródła automatycznego wyzwalania.
- Rejestry ADCL i ADCH zawierają przetworzoną wartość.

Rejestr ADMUX

7	6	5	4	3	2	1	0
REFS1	REFS0	ADLAR	MUX4	MUX3	MUX2	MUX1	MUX0

Bity 7:6

REFS1	REFS0	napięcie odniesienia
0	0	zewnętrzne, podane na nogę AREF
0	1	napięcie zasilania
1	0	wartość zarezerwowana
1	1	wewnętrzne 2,56 V

Bit 5 – rozmieszczenie bitów wyniku

ADLAR		rejestr ADCH							rejestr ADCL							
0	-	9 8				7	6	5	4	3	2	1	0			
1	9	8	7	6	5	4	3	2	1	0	-	-	-	-	-	-

Rejestr ADMUX, cd.

- ▶ Bity 4:0 służą do wyboru wejścia przetwornika.
- Wartości od 0 do 7 wybierają odpowiednio jedno z wejść PA0 do PA7.
- Wartości od 8 do 29 wybierają parę wejść różnicowych i współczynnik wzmocnienia GAIN – szczegóły w dokumentacji.
- Wartości 30 i 31 podłączają wejście przetwornika odpowiednio do stałego napięcia 1,23 V i 0 V (masa).
- Przełączanie wejścia przetwornika między kolejnymi konwersjami umożliwia symultaniczne przetwarzanie kilku wejść.
- Przełączenie wejścia nie ma wpływu na aktualnie rozpoczęte przetwarzanie i będzie widoczne dopiero przy kolejnym przetwarzaniu.
- Przy n wejściach maksymalna częstotliwość próbkowania pojedynczego wejścia jest n razy mniejsza od maksymalnej częstotliwości próbkowania przetwornika.

Rejestr ADCSR(A)

7	6	5	4	3	2	1	0
ADEN	ADSC	ADATE	ADIF	ADIE	ADPS2	ADPS1	ADPS0

- ADEN włączenie przetwornika
- ADSC start konwersji
- ADATE włączenie automatycznego trybu wyzwalania, źródło wyzwalania ustawiane w rejestrze SFIOR
- ADIF znacznik przerwania ustawiany, gdy przetwarzanie zakończone, zerowany automatycznie podczas obłsugi przerwania

Uwaga: jeśli nie używamy przerwania, to zerowanie tego bitu odbywa się przez zapisanie do niego wartości 1!

► ADIE – włączenie przerwania

Rejestr ADCSR(A), cd.

Bity 2:0 – ustalenie częstotliwości taktowania przetwornika

ADPS2	ADPS1	ADPS0	współczynnik podziału
0	0	0	2
0	0	1	2
0	1	0	4
0	1	1	8
1	0	0	16
1	0	1	32
1	1	0	64
1	1	1	128

Wybór częstotliwości taktowania

- Przetwornik należy taktować z częstotliwością między 50 kHz a 200 kHz.
- ▶ Dla częstotliwość zegara systemowego 8 MHz wybieramy współczynnik podziału 64 lub 128.
- Jeśli nie zależy nam na dużej częstotliwości próbkowania, wybieramy 128.
- Daje to nam częstotliwość taktowania przetwornika równą 62,5 kHz.
- Typowa konwersja trwa 13 cykli, więc możemy osiągnąć próbkowanie z częstotliwością ok. 4,8 kHz.

Rejestr SFIOR

7	6	5	4	3	2	1	0
ADTS2	ADTS1	ADTS0					

Gdy ADATE=1 bity ADTS2, ADTS1, ADTS0 wybierają zdarzenie wyzwalające konwersję.

ADTS2	ADTS1	ADTS0	zdarzenie
0	0	0	zakończenie poprzedniej konwersji
0	0	1	komparator
0	1	0	wejście INT0
0	1	1	licznik 0 porównanie
1	0	0	licznik 0 przepełnienie
1	0	1	licznik 1 porównanie B
1	1	0	licznik 1 przepełnienie
1	1	1	licznik 1 przechwycenie

Co się dzieje po włączeniu konwersji?

- ▶ Układ zajmuje się przetwarzaniem (w tle).
- ▶ Po jego zakończeniu ustawia bit ADIF w rejestrze ADCSR (i ewentualnie zgłasza przerwanie).
- ► Można teraz odczytać wartość w ADCH:ADCL i (jeśli robimy to poza przerwaniem) wyzerować bit ADIF.
- ▶ Wyzerowanie ADIF odbywa się przez ustawienie go na ...1!

Odczyt wyniku konwersji

Jeśli potrzebujemy odczytać oba rejestry, to najpierw czytamy ADCL, a potem ADCH.

```
in r16, ADCL in r17, ADCH
```

Możemy też odczytać tylko sam rejestr ADCH, gdy np. ADLAR=1.

```
in r17, ADCH
```

Przykłady konfiguracji rejestru ADMUX

▶ Napięcie odniesiena równe napięciu zasilania, wyrównanie wyniku do prawej, korzystamy z wejścia PA7:

```
ldi r16, 1 << REFSO | PA7 out ADMUX, r16
```

Wewnętrzne napięcie odniesienia 2,56 V, wyrównanie do lewej, wejście PA0:

Przykład – aktywne czekanie na zakończenie konwersji

Włączenie przertwornika, współczynnik podziału 128

Włączenie konwersji

```
sbi ADCSR, ADSC
```

Aktywne czekanie na jej zakończenie

```
czekaj:
  sbis ADCSR, ADIF
  rjmp czekaj
```

Odczyt wyniku konwersji

```
in r16, ADCL in r17, ADCH
```

Wyzerowanie znacznika zdarzenia

```
sbi ADCSR, ADIF
```

Przykład – przerwanie po każdej konwersji

Pojedyncza konwersja

```
ldi r16, 1 << ADEN | 1 << ADSC | 1 << ADIE | 1 << ADPS0 | 1 << ADPS1 | 1 << ADPS2 out ADCSR, r16
```

 Kolejna konwersja startuje natychmiast po zakończeniu poprzedniej

► Konwersja startuje za każdym razem, gdy zajdzie zdarzenie zgodnego porównania licznika 0

Obsługa przerwania (1)

```
;skok w wektorze przerwań
.org ADCCaddr
  jmp ADC_interrupt
;procedura obsługi przerwania
ADC_interrupt:
  ; odłożenie na stos używanych rejestrów
  ; i rejestru znaczników
  push r16
  in r16, SREG
  push r16
  push r17
  ; wczytanie wartości napięcia
  in r16, ADCL
  in r17, ADCH
```

Obsługa przerwania (2)

```
; kod korzystający z wczytanej wartości
; odtworzenie wartości rejestrów
; i rejestru znaczników
pop r17
pop r16
out SREG, r16
pop r16
; powrót z przerwania
reti
```

Konfiguracja w VMLAB

- ➤ Źródła mierzonego napięcia możemy symulować za pomocą suwaków (emulujących potencjometry) w Control Panel.
- Przykład suwak 1 podłączony do wyprowadzenia PA0, zmieniający wartość napięcia w zakresie od 0 do 5 V:
 VO PAO VSS SLIDER 1(0 5)

Potencjometry w zestawie uruchomieniowym

- Zestaw uruchomieniowy zawiera dwa potencjometry obrotowe oznaczone POT2 i POT1, znajdujące się w prawym dolnym rogu płytki między przyciskami RESET a SW0.
- Napięcia na ich wyjściach można zmieniać w zakresie od 0 V do napięcia zasilania – zwykle 5 V.
- Wyjścia potencjometrów są podłączone odpowiednio do pinów ADJ0 i ADJ1 w grupie MISC.

Układ LM35

- Zestaw uruchomieniowy wyposażony jest w przetwornik temperatura-napięcie LM35.
- ▶ Może on być zasilany napięciem między 4 V a 30 V.
- ▶ Wytwarza na wyjściu napięcie równe $t \cdot 10$ mV, gdzie t jest temperaturą w stopniach Celsjusza.
- Zakres mierzonych temperatur: -55°C do 150°C (w przypadku pomiaru temperatur ujemnych jest potrzebne symetryczne napięcie zasilania).
- ► Gwarantowana dokładność w temperaturze 25°C wynosi ±0,5°C lub ±1°C w zależności od grupy selekcji.
- Gwarantowana dokładność w pełnym zakresie temperatur wynosi odpowiednio ±1°C lub ±2°C.
- Typowe dokładności są około dwa razy lepsze.
- Odnośnik do dokumentacji znajduje się na stronie przedmiotu.

Budujemy termometr cyfrowy

- Napięcie z wyjścia układu LM35 podajemy na wejście przetwornika analogowo-cyfrowego.
- Załóżmy, że chcemy mierzyć temperatury dodatnie do 150°C.
- Spodziewamy się zatem napięć V_{IN} spełniających zależność

$$0 \leqslant V_{IN} \leqslant 10 \text{ mV} \cdot 150 = 1.5 \text{ V}.$$

Wygodnie jest wybrać wewnętrzne napięcie odniesienia o wartości 2,56 V – bity 7:6 rejestru ADMUX:

REFS1	REFS0	napięcie odniesienia
1	1	wewnętrzne 2,56 V

Wówczas otrzymana w wyniku konwersji wartość będzie równa

$$\frac{V_{\textit{IN}} \cdot 1024}{V_{\textit{RFF}}} = \frac{V_{\textit{IN}} \cdot 1024}{2,56} = 400 \cdot V_{\textit{IN}} = 400 \cdot 0,01 \cdot t = 4t.$$

Jak to wygląda na bitach?

- ▶ Niech t = 102,5, wtedy 4t = 410.
- ▶ Jeśli 4t zapiszemy na 10 bitach w naturalnym kodzie binarnym

п							3			l .
	0	1	1	0	0	1	1	0	1	0

- to część całkowita t znajdzie się w ośmiu najstarszych bitach, a dwa najmłodsze bity będą reprezentować część ułamkową t z dokładnością do ¹/₄.
- Ze względu na dokładność LM35 ograniczymy się do podania temperatury z dokładnością do jednego stopnia.
- Uwaga: dokładność naszego termometru jest zdeterminowana tolerancją wewnętrznego źródła napięcia odniesienia wynoszącą ok. 10%.
- Aby w pełni wykorzystać dokładność oferowaną przez układ LM35, trzeba zastosować dokładne i stabilne zewnętrzne źródło napięcia odniesienia.

Błędy przetwarzania

- Uwaga: błędy związane z nieliniowością przetwarzania wynoszą typowo 1,5 LSB, a maksymalnie nawet 4 LSB, co oznacza, że najmłodsze dwa bity wyniku przetwarzania mogą być niepewne.
- Podsumowując, interesuje nas zatem jedynie 8 najstarszych bitów wyniku konwersji.
- Idealne dla nas jest wyrównanie do lewej! Odczytamy po prostu rejestr ADCH. Konfiguruje się to bitem ADLAR w rejestrze ADMUX:

ADLAR		rejestr ADCH								rejestr ADCL								
1	9	8	7	6	5	4	3	2	1	0	-	-	-	-	-	-		

- Uwaga: uzyskanie lepszej dokładności pomiaru wymaga:
 - zastosowania wyselekcjonowanego układu LM35,
 - zastosowania stabilnego, regulowanego źródła napięcia odniesienia.
 - wykonania kalibracji układu.

Schemat połączeń w zestawie

- Napięcie wyjściowe termometru LM35 jest wyprowadzone na pin TEM w grupie MISC.
- Napięcie to musimy podać na wejście przetwornika, czyli na jedną z nóg PA0, PA1, ..., PA7 mikrokontrolera.
- Jeśli zdecydujmy się na PA0 łączymy kabelkiem pin TEM z pinem PA0.
- UWAGA: wyprowadzenie mikrokontrolera AREF nie może być z niczym połączone! Tam pojawi się napięcie odniesienia 2,56 V!