Instituto Federal de Educação Ciência e Tecnologia de São Paulo Curso de Graduação em Engenharia Eletrônica

Resistores

Relatório da disciplina Laboratório de Eletrônica 1 com o Prof^o. Gilberto Cuarelli e o Prof^o. Haroldo Guibu.

Gustavo Senzaki Lucente Luís Otávio Lopes Amorim SP303724X SP3034178

SUMÁRIO

1	INTRODUÇÃO TEÓRICA	
1.1	Objetivos	8
1.2	Materiais e Equipamentos	8
2	PROCEDIMENTOS EXPERIMENTAIS	ç
2.1	Leitura do código de cores	Ğ
2.2	Medição com Multímetro	10
3	QUESTÕES	11
3.1	Exercício 1: Sequência de Cor e Série	11
3.2	Exercício 2: Estrutura dos resistores	12
3.2.1	Resistor de Fio	12
3.2.2	Resistor de Filme Metálico	13
3.3	Exercício 3: Potenciômetros	13
3.3.1	Potenciometro Linear	13
3.3.2	Potenciômetro Logarítmico	14
3.4	Exercício 4: Valores de Referência	14
4	CONCLUSÃO	15
	REFERÊNCIAS	16

LISTA DE FIGURAS

Figura 1 –	Tabela de Cores	7
Figura 2 –	Simbolos de Resistor	8
Figura 3 –	Resistor de Fio	2
Figura 4 –	Resistor de Filme Metálico	13
Figura 5 –	Potenciômetro Linear (Estrutura Externa)	4
Figura 6 –	Potenciômetro Linear (Estrutura Interna)	4

LISTA DE TABELAS

Tabela 1 $-$	Valores das Cores	9
Tabela 2 –	Resistores Medidos	10
Tabela 3 –	Tabela evercício 1	11

1 INTRODUÇÃO TEÓRICA

Na eletrônica existem três tipos de componente: os Ativos, Passivos e Eletromecânicos. Como um componente passivo, o resistor tem como função interagir com a energia do circuito criando assim uma resistência no fluxo da corrente elétrica. São um dos componentes fundamentais para o funcionamento de qualquer circuito eletrônico e por isso são encontrados em todas as placas eletrônicas. A resistência tem o $Ohm~\Omega$ como unidade de medida, e um Ohm é a resistência que ocorre quando a corrente de um Ampére passa pelo resistor com uma queda de um volt entre seus terminais (PRODUZA, 2017).

Os resistores são usados para várias aplicações, como por exemplo: geração de calor, limitação de corrente, divisão de tensão, ganho de controle. Podem também serem utilizados como freios elétricos para dissipar a energia cinética de trens (freios dinâmicos). Estão disponíveis no mercado com valores de mais de nove digitos de magnitude, e podendo serem menores que um milimetro para uso eletrônico. (EEPOWER, 2020).

Otis Frank Boykin desenvolveu em 1959 o resistor ao qual conhecemos hoje. O desenvolvimento que Boykin fez proporcionou em um alto avanço tecnológico no mundo eletrônico apartir da década de 1960. Boykin também contribui com a criação do capacitor em 1965 e do capacitor de resistência elétrica em 1967. (TRIBUNE, 2017)

Ao longo do tempo, foram sendo criados outros tipos de resistores que possuem funções especificas e funcionamentos interessantes. Hoje em dia os resistores podem ser divididos por seu tipo de construção, com também pelo seu material de resistência.

É possível dividir entre:

- Resistores Fixos
- Resistores Variáveis:
 - Potenciômetro
 - Reostato
 - Trimpot

As resistências também dependem de quantidades físicas como:

- Termistores (NTC ou PTC) que resultam na mudança de sua resistência conforme sua temperatura muda. (NTC significa Negative Temperature Coefficient, ou seja, sua resistência aumenta conforme a temperatura diminui e PTC Positive Temperature Coefficient aumenta sua resistência conforme a temperatura aumenta.)(EEPOWER, 2020)
- Fotorresistor (LDR) funciona conforme o nivel de luminosidade muda (LDR = Light Dependent Resistor).(EEPOWER, 2020)
- Varistor (VDR = Voltage Dependent Resistor), este funciona de forma que sua resistência diminui quando a tensão aumenta, e a resistência aumenta quando a tensão diminui.(EEPOWER, 2020)
- Resistor Magnético (MDR = Magnetic Dependent Resistor), o resistor magnético depende da variação na força do campo magnético para que haja um aumento ou diminuição.(EEPOWER, 2020)
- Medição de tensões por conta de cargas mecânicas.

Para cada um desses tipos existe um símbolo padrão. Outro jeito de dividir os resistores por características é baseada em seus materiais e processo de fabricação.

- Composto por Carbono
- Filme de Carbono
- Filme de Metal
- Filme de Metal Oxidado
- Fios Enrolado

O valor da resistência de resistores fixos são geralemente demonstrados através de um padrão de cores, por isso uma tabela foi criada para demonstrar o valor de cada cor como demonstrado na figura 1 a seguir.

1º faixa 2º faixa 3º faixa Multiplicador Tolerância Coef. de Temperatura Сог Preto 0 0 ×10⁰ Marrom ×10¹ ±1% (F) 100 ppm /°C ×10³ 15 ppm /°C Laranja 4 Amarelo ×10⁴ 25 ppm /°C Verde ×10⁵ ±0.5% (D) Azul ×10⁶ ±0.25% (C) 10 ppm /9C √ioleta ±0.1% (B) 5 ppm /°C ×10⁷ ×10⁸ 1 ppm /°C 8 ±0.05% (A) Cinza 9 ×10⁹ Branco ×0.1 ±5% (J) Ouro Prata ×0.01 ±10% (K) ±20% (M) Sem cor

Figura 1 – Tabela de Cores

Fonte: Tabela de Cores

Como existem vários tipos de resistores e alguns com funções espcificas, existe uma diferença simbólica para diferenciar os tipos através dos diagramas de circuitos. Como demonstrado na figura 2.

Figura 2 – Simbolos de Resistor

Fonte:Pinterest

1.1 Objetivos

O objetivo deste experimento é aprender a fazer a leitura dos valores nominais de resistores através do código de cores e utilizar o múltimetro para medir a resistência dos mesmos.

1.2 Materiais e Equipamentos

- Resistores
- 1 Multímetro
- 1 Protoboard

2 PROCEDIMENTOS EXPERIMENTAIS

2.1 Leitura do código de cores

Inicialmente, lemos os valores correspondentes de cada cor nos resistores e anotamos na tabela 1 que foi estruturada pelos integrantes do grupo.

Tabela 1 – Valores das Cores

	1ªBanda	2ªBanda	3ºBanda	Tolerância	Valor Nominal (Ω)	Valor Mínimo (Ω)	Valor Máximo (Ω)
R1	1	0	10^-2	5%	0,1	0,095	0,105
R2	1	1	10^0	5%	11	10,45	11,55
R3	1	2	10^1	5%	120	114	126
R4	1	3	10^2	5%	1300	1235	1365
R5	1	5	10^3	5%	15000	14250	15750
R6	1	6	10^4	5%	160000	152000	168000
R7	1	8	10^5	5%	1800000	1710000	1890000
R8	2	0	10^6	5%	20000000	19000000	21000000
R9	2	2	10^0	5%	22	20,9	23,1
R10	2	4	10^1	5%	240	228	252
R11	2	7	10^2	5%	2700	2565	2835
R12	3	0	10^3	5%	30000	28500	31500
R13	3	3	10^4	5%	330000	313500	346500
R14	3	6	10^5	5%	3600000	3420000	3780000
R15	3	9	10^6	5%	39000000	37050000	40950000
R16	4	3	10^0	5%	43	40,85	45,15
R17	4	7	10^1	5%	470	446,5	493,5
R18	5	1	10^2	5%	5100	4845	5355
R19	5	6	10^3	5%	56000	53200	58800
R20	6	2	10^4	5%	620000	589000	651000
R21	6	8	10^5	5%	6800000	6460000	7140000
R22	7	5	10^0	5%	75	71,25	78,75
R23	8	2	10^1	5%	820	779	861
R24	9	1	10^2	5%	9100	8645	9555

Fonte: Elaborada pelos autores

2.2 Medição com Multímetro

Após a leitura das cores dos 24 resistores, foram selecionados oito resistores com os valores de: 1Ω , 10Ω , 100Ω , $1K\Omega$, $10K\Omega$, $100K\Omega$, $1M\Omega e 10M\Omega$.

Esses oito resistores foram dispostos em uma protoboard para serem medidos com um multímetro no software *TinkerCad*. Após realizada a leitura, foi criada uma tabela com os nomes das cores respectivas de cada valor e seu valor medido, como demonstrado na tabela 2.

Tabela 2 – Resistores Medidos

Cores	Valor Medido(Ω)
Marrom Preto Cinza	1
Marrom Preto Preto	10
Marrom Preto Marrom	100
Marrom Preto Vermelho	1K
Marrom Preto Laranja	10K
Marrom Preto Amarelo	100K
Marrom Preto Verde	1M
Marrom Preto Azul	10M

Fonte: Elaborada pelos autores

Nosso objetivo era aprender a utilizar e saber o valor de cada cor nos resistores que foram selecionados, para que tenhamos capacidade de identificar os valores resistivos, sem medir. E foi o que obtivemos, como no programa TinkerCad não existe variação no valor do resistor, todos os valores foram nominais, mas foi possível obter um bom e rápido aprendizado com relação ao valor de cada cor na tabela de cores.

3 QUESTÕES

Além das leituras dos resistores os professores levantaram algumas questões para os alunos.

3.1 Exercício 1: Sequência de Cor e Série

Foi disposto uma tabela com o valor numérico dos resistores com suas tolerâncias. Junto da tabela de cores fomos capazes de completar as lacunas de *cores e série* de cada resistor da tabela após analisar seu valor resistivo e seu valor de tolerância na tabela 3.

Tabela 3 – Tabela exercício 1

Resistor	Cores	Série
180kΩ ±5%	Marrom Cinza Laranja Ouro	E24
0,91Ω ±2%	Branco Marrom Prata Vermelho	E48
47MΩ ±10%	Amarelo Violeta Azul Prata	E12
6,8Ω ±1%	Azul Cinza Ouro Marrom	E96
220kΩ ±5%	Vermelho Vermelho Amarelo Ouro	E24
11kΩ ±1%	Marrom Marrom Laranja Marrom	E96

Fonte: Elaborada pelos autores

Capítulo 3. Questões 12

3.2 Exercício 2: Estrutura dos resistores

Existem vários tipos de resistores e dentre eles o resistor de fio e o resistor de filme metálico.

3.2.1 Resistor de Fio

A estrutura de um resistor de fio é constituída por um núcleo de cerâmica ou porcelanato enquanto à sua volta está enrolado um fio como demonstrado na figura . O valor resistivo neste tipo de estrutura só irá mudar conforme o comprimento, número de voltas e diâmetro do fio. Os resistores de fio são bastante usados em aplicações onde terá um alto fluxo de corrente e também pode ser utilizado como amperimetro de alta precisão desde que tenha uma impedância muito baixa. (MASTER, 2020)

Abaixo na figura 3 é demonstrado a estrutura externa de um resistor de fio.

Figura 3 – Resistor de Fio

Fonte: Eletropeças

Capítulo 3. Questões 13

3.2.2 Resistor de Filme Metálico

A estrutura do resistor de filme metálico é composta por um cilindro de cerâmica que é envolto por uma película metálica, o valor da resistência neste tipo de resistor é determinado pela largura e espessura do filme metálico. Por conta do filme ser constituído por uma liga metálica entre Níquel, Cromo e Ferro, a tolerância do ressitor com esse filme é de $\pm 1\%$ o que garante maior precisão do valor resistivo. Este é um dos tipos de resistores mais utilizados em circuitos eletrônicos de No-Breaks.(ELETRICA, 2020)

Abaixo na figura 4 é demonstrado a estrutura interna de um resistor de filme metálico.

Figura 4 – Resistor de Filme Metálico

Fonte: Mundo da Elétrica

3.3 Exercício 3: Potenciômetros

Potenciometros são resistores variáveis que podem ter seu valor resistivo variado. A seguir demonstramos as estruturas e aplicações dos potenciômetros lineares e logarítmicos.

3.3.1 Potenciometro Linear

O potenciômetro linear tem uma estrutura com três terminais onde a resistência é ajustada por meio mecânico, girando ou deslizando um eixo móvel. O potenciômetro linear tem um elemento de largura e espessura constante e por conta disso, com a variação da resistividade a tensão é alterada de forma linear, ou seja, o potencial elétrico que é medido no cursor é alterado por uma razão constante, por isso é chamado de potenciômetro linear. Esse tipo de potenciômetro é bastante utilizado em amplificadores de aúdio, eletrodomésticos, instrumentos musicais e equipamentos industriais.

Abaixo nas figuras 5 e 6 demonstramos as estruturas externa e interna de um potenciômetro.

Capítulo 3. Questões 14

Figura 5 – Potenciômetro Linear (Estrutura Externa)

Fonte: Bóson Treinamentos

Figura 6 – Potenciômetro Linear (Estrutura Interna)

Fonte: Bóson Treinamentos

3.3.2 Potenciômetro Logarítmico

O potenciômetro logarítmico não possui um elemento resistivo linear como o potenciômetro linar, e por isso quando ele sofre uma alteração, a tensão medida sofre uma variação de forma não constante, por que a tensão varia de acordo com o logaritmo do ângulo de rotação do cursor. Esse tipo de potenciômetro é utilizado principalmente em dispositivos de áudio e controles de volume, pois a audição do homem responde ao som de uma forma logarítmica.

Os potenciômetros logarítmicos possuem as mesmas características visuais que o linear, exceto pelo elemento resistivo ser ou não linear.

3.4 Exercício 4: Valores de Referência

Os Valores de Referência de cada série de resistores são determinados através de uma progressão geométrica que é determinada pela seguinte equação:

$$N = 10 \times (\frac{n-1}{k})$$

Onde N é o valor nominal da resistência na posição n, e k é um coeficiente relacionado à tolerância do resistor. Cada série corresponde a uma tolerância pré-determinada.

4 CONCLUSÃO

Nesse experimento observou-se que os resistores são um dos componentes base para a criação e funcionamento de qualquer circuito eletrônico, como: computadores, smartphones, televisões, chuveiros, instrumentos musicais. E por ter um uso muito abrangente, há no mercado vários tipos de resistores. Desde aqueles com usos gerais como aqueles com uso extremamente específicos, como por exemplo: resistores de fio, filme metálico, filme de carbono, varistores, magnéticos, LDR's.

Uma peculiaridade é que os resistores não são usados de maneiras tão diversas que até mesmo telas com tecnologias touch tem uma camada resistiva que ao ser precionada e fechar o circuito de corrente, efetua a ação do "toque" de nossos dedos, ou também são utilizados como sensores térmicos em industrias.

E com a finalização deste experimento, foi possível aos integrantes do grupo aprender a ler cores em resistores, seus tipos, usos e como calcular seu valor resistivo.

REFERÊNCIAS

EEPOWER. What is a resistor? 2020. Disponível em: https://eepower.com/ resistor-guide/resistor-fundamentals/what-is-a-resistor/#>. Acesso em: 10 de out. de 2020. Citado 2 vezes nas páginas 5 e 6.

ELETRICA, M. da. **Ressitores fixos**. 2020. Disponível em: Acesso em: 10 de out. de 2020. Citado na página 13.

MASTER, T. **Resistor de fio**. 2020. Disponível em: https://www.tubemaster.com.br/resistor-fio#:~:text=Basicamente%2C%20um%20resistor%20de%20fio,e%20do%20di%C3%A2metro%20do%20fio. Acesso em: 10 de out. de 2020. Citado na página 12.

PRODUZA. O QUE SÃO COMPONENTES PASSIVOS, ATIVOS E ELETROMECÂNICOS? 2017. Disponível em: https://produza.ind.br/tecnologia/componentes-passivos/>. Acesso em: 10 de out. de 2020. Citado na página 5.

TRIBUNE, T. P. Otis Boykin: Invented an Improved Electrical Resistor. 2017. Disponível em: Acesso em: 10 de out. de 2020. Citado na página 5.