

VBF H → Invisible **Approval**

R. Aggleton³, C. Asawatangtrakuldee¹, **J. Brooke³**, O. Buchmueller⁴, D. Colling⁴, P. Dunne⁴, S. Kumar², Q. Li¹, A-M. Magnan⁴, K. Mazumdar², A. Nikitenko⁴, J. Pela⁴, P. Srimanobhas⁵

¹ Peking University, China ² Tata Institute of Fundamental Research, India ³ University of Bristol, UK ⁴ Imperial College of Science, Technology and Medicine, UK ⁵ Chulalongkorn University, Thailand

Motivation

- ► H→invisible only possible in SM via H→ZZ*→νννν (~0.1%)
 - ▶ Visible decays of SM Higgs 125 GeV constrain invisible **BF < 64%**
- ▶ Significant BF(H→invisible) would be a strong sign of physics beyond the SM
 - ▶ H→2LSPs in SUSY
 - ▶ H→graviscalars in the ADD model
 - etc.
- Vector Boson Fusion production has higher cross section than VH and ttH
 - CMS ZH : BF(H→inv) < 75% (observed) 91% (expected) -- HIG-13-018</p>
 - ▶ ATLAS ZH : BF(H→inv) < 65% (observed) 84% (expected) -- ATLAS-CONF-2013-011
 - Expect significantly improved sensitivity from VBF
- ▶ Events are tagged with 2 jets and large missing transverse energy in final state
 - Perform a simple counting experiment
- ▶ Estimate backgrounds using data-driven methods
 - ► Z(→vv)+jets, W+jets and QCD multijet

Event Display

Event 191202:51:82701983

Documentation

▶ PAS-HIG-13-013

- ▶ AN 2012/403 "Analysis A"
 - Documents the main analysis
 - All numbers used in PAS are taken from this AN

▶ AN 2013/205 - "Analysis B"

- Cross-check analysis
- ▶ Replicates all W background estimates, as well as data yield in signal region
- ▶ Same selection & methodology, some differences in object ID
- ► Agreement at O(1%) level
 - ▶ Other than a discrepancy in $W \rightarrow \tau \nu$ which is understood, see later

Trigger

- ▶ Two dedicated triggers implemented for VBF H→invisible
 - HLT_DiPFJet40_PFMETnoMu65_MJJ600VBF_LeadingJets_v*
 - ▶ HLT_DiPFJet40_PFMETnoMu65_MJJ800VBF_AllJets_v*
- Difference is the number of jets considered for tag jet pair, and Mjj threshold
 - ▶ "Leading" uses first 3 jets, "AllJets" searches the full jet list
 - ▶ We use "AllJets" for better efficiency in the V+jets control regions
- Trigger requirements
 - ▶ L1 MET > 40 GeV
 - ▶ Two jets, p_T > 40 GeV
 - ▶ $\eta 1 \cdot \eta 2 < 0$
 - ▶ $\Delta \eta_{jj} > 3.5$
 - M_{jj} > 800 GeV
 - ▶ CaloMET > 65 GeV
 - ▶ PFMET (muons subtracted) > 65 GeV
- ▶ Trigger turn-on measured with single-muon PD
 - Used to derive trigger correction factors for MC

Data

- ▶ Prompt MET PD using golden JSON (19.6 fb⁻¹)
 - Using prompt data for the preliminary result
 - ▶ Re-processed data will be used in future for publication

Table 2: Datasets used in this analysis, with a total integrated luminosity of 19.6 fb^{-1} .

Dataset	Int. Lumi. $[pb^{-1}]$
/MET/Run2012A-recover-06Aug2012-v1/AOD	82
/MET/Run2012A-13Jul2012-v1/AOD	809
/MET/Run2012B-13Jul2012-v1/AOD	4404
/MET/Run2012C-24Aug2012-v1/AOD	495
/MET/Run2012C-PromptReco-v2/AOD	6378
/MET/Run2012C-EcalRecover_11Dec2012-v1/AOD	134
/MET/Run2012D-PromptReco-v1/AOD	7274

Monte-Carlo Samples

Signal

VBF H→Invisible	POWHEG
GluGlu H→Invisible	POWHEG

Background

Z(vv)+jets	MadGraph
W(Iv)+jets	MadGraph
EWK V+2jets	MadGraph
QCD multijet	PYTHIA
DY+jets	MadGraph
WW,WZ,ZZ	PYTHIA
TTJets	MadGraph
Single top	POWHEG

Full details in backup

Reconstruction

Jets

- AK5 PFJETs
- ► L1FastJet+L2+L3 [+L2L3Residual] JEC
- ▶ "Loose" PFJet ID
- Cleaned with veto leptons
- ▶ "Loose" PU jet ID
- ▶ JER is smeared in MC to match data

PFMET

- ▶ Type 0+1 corrections
- Smeared PFMET for MC
- Veto Leptons
 - Loose + PFiso muons
 - ▶ p_T>10 GeV, $|\eta|$ <2.1
 - Veto + PFiso electrons
 - ▶ p_T>10 GeV, |η|<2.5</p>
 - ▶ Exclude gap region

Control region Leptons

- ▶ Tight + PFiso muons
 - p_T>20 GeV, |η|<2.1</p>
- ▶ Tight + PFiso electrons
 - p_T>20 GeV, $|\eta|$ <2.5
 - Exclude gap region

Control region Hadronic Taus

- Tight ID, discriminant : "byTightCombinedIsolationDeltaBetaC orr3Hits"
- ▶ p_T> 20 GeV, $|\eta|$ < 2.3, dZ< 0.2 cm

Selection

▶ Trigger + standard MET and cleaning filters

- ▶ Electron/muon veto
 - ▶ $p_T > 10$ GeV, $\eta < 2.1$

- Reject W/Z backgrounds
- ▶ VBF dijet requirement, applied to two leading jets passing PU jet ID
 - ▶ 2 jets, $E_T > 50$ GeV, $\eta < 4.7$
 - $\rightarrow \eta 1 \cdot \eta 2 < 0$
 - $\rightarrow \Delta \eta_{ii} > 4.2$
 - M_{jj} > 1100 GeV

——— Signal-like topology

- ▶ E_T^{miss} > 130 GeV
- Central jet veto
 - ▶ PU jet ID, $E_T > 30$ GeV, $\eta_{jet1} < \eta < \eta_{jet2}$

Δφ_{ij} < 1.0

Signal Efficiency

m_H [GeV]	yield POWHEG qqH	eff [%] POWHEG qqH	eff [%] PYTHIA qqH	\mid eff [%] powheg $ggH\mid$
110	215.1 ± 9.2	0.607 ± 0.026		0.0047 ± 0.0017
120	-	- \ \ \ \	0.562 ± 0.025	_
125	207.6 ± 8.6	0.673 ± 0.028	<u> </u>	0.0037 ± 0.0014
150	199.0 ± 7.5	0.794 ± 0.030	0.703 ± 0.028	0.0045 ± 0.0015
200	147.1 ± 7.6	0.865 ± 0.044	0.893 ± 0.032	0.0076 ± 0.0021
300	95.6 ± 4.3	1.108 ± 0.050	1.278 ± 0.038	0.0200 ± 0.0034
400	69.8 ± 2.8	1.402 ± 0.056	1.457 ± 0.040	0.0300 ± 0.0042

- Use estimated signal yields from POWHEG
 - ▶ PYTHIA does not model colour flow, and hence central jet properties, well
- Note that contamination from gluon fusion is negligible
 - ▶ For m_H=125 GeV, ggH yield is ~14 events

Background Estimation

- ▶ Main backgrounds arise from V+jets with similar topology to VBF H production
 - ▶ Both EWK and QCD mediated processes
 - ▶ Backgrounds due to Z(→vv)+jets
 - ▶ And W(→Iv)+jets when charged lepton is outside acceptance or not identified
- ▶ Minor backgrounds due to : QCD multijets, di-boson, single top, DY, ttbar
- ▶ Should not expect MC to model backgrounds well in our corner of phase space
- ▶ Estimate V+jets and QCD background using data-driven methods
 - Identify background rich control regions and extrapolate to signal region using factors derived from MC
 - Estimate QCD using ABCD methods
- Estimate remaining minor backgrounds from MC

Z→vv Background

▶ Estimate the $Z(\rightarrow \nu\nu)$ background from $Z(\rightarrow \mu\mu)$ control sample

$$N(Z \to \nu \nu) = \frac{(N_{obs}^c - N_{bkg}^c)}{\varepsilon_{\mu\mu}\varepsilon_{VBF}^C} \varepsilon_{VBF}^S \frac{\sigma(Z \to \nu \nu)}{\sigma(Z/\gamma^* \to \mu \mu)}$$
total # Z \to µµ

- \triangleright Z($\rightarrow \mu\mu$) control region is defined as for signal region, with changes :
 - ▶ 2 tight muons, with $60 < M_{\mu\mu} < 120 \text{ GeV}$
 - Veto any additional leptons (ie. not from Z)
 - ▶ Redefine MET to exclude Z and require > 130 GeV
- ▶ Background in the control region (N^C_{bkg}) is estimated using MC
- ▶ Calculate transfer factor using MC
 - Z→νν selection efficiency in signal region : ε^S_{VBF}
 - ▶ Z→μμ selection efficiency in control region : ε^C_{VBF}
 - Dimuon selection efficiency : εμμ

Z→vv Background

▶ Estimate the $Z(\rightarrow \nu\nu)$ background from $Z(\rightarrow \mu\mu)$ control sample

$$N(Z \to \nu \nu) = \frac{(N_{obs}^c - N_{bkg}^c)}{\varepsilon_{\mu\mu}\varepsilon_{VBF}^C} \varepsilon_{VBF}^S \frac{\sigma(Z \to \nu \nu)}{\sigma(Z/\gamma^* \to \mu \mu)}$$

MC factors

- ▶ Ratio of BF = 5.626 (MCFM)
- \bullet $\epsilon^{C}_{VBF} = 3.85 \pm 0.42 \text{ (stat) x } 10^{-6}$
- \bullet ϵ ^S_{VBF} = 1.66 ± 0.15 (stat) x 10⁻⁶
- $\epsilon_{\mu\mu} = 0.280 \pm 0.007 \text{ (stat)}$

Results

- ▶ $N^{C}_{obs} = 12$
- $N^{C}_{bkg} = 0.22 \pm 0.11$
- $N^{S} = 102 \pm 30 \text{ (stat)}$
- ▶ Plot shows loose control region
 - M_{jj} > 1000 GeV, no cuts on Δη_{jj}, Δφ_{jj}, CJV

MC normalisation discussed later!

W→e/µ Background

▶ Estimate the W(\rightarrow Iv) background from a W(\rightarrow ev) and W(\rightarrow μ v) control samples

$$N_{\ell}^{s} = (N_{obs}^{c} - N_{bkg}^{c}) \cdot (\epsilon_{VBF}^{S} / \epsilon_{VBF}^{C}) \frac{1 - \epsilon_{\ell-veto}}{\epsilon_{\ell}}$$

$$N_{\ell}^{s} = (N_{obs}^{c} - N_{bkg}^{c}) \cdot \frac{N_{WMC}^{s}}{N_{WMC}^{c}}$$

- ▶ Background in the control region is subtracted using MC
- Calculate transfer factor using MC
 - ▶ N^S_{VBF} W+jets MC yield in signal region
 - ▶ N^C_{VBF} W+jets MC yield in control region
- ▶ $W(\rightarrow lv)$ control region is defined as for signal region, with following changes :
 - ▶ 1 tight muon/electron
 - Veto any additional leptons (ie. not from W)
 - For muon channel only, redefine MET to exclude W muon and require > 130 GeV

W→e/µ Background

► Estimate the W(\rightarrow Iv) background from W(\rightarrow ev) and W(\rightarrow μ v) control samples

$$N_{\ell}^{s} = (N_{obs}^{c} - N_{bkg}^{c}) \cdot (\epsilon_{VBF}^{S} / \epsilon_{VBF}^{C}) \frac{1 - \epsilon_{\ell-veto}}{\epsilon_{\ell}}$$

$$N_{\ell}^{s} = (N_{obs}^{c} - N_{bkg}^{c}) \cdot \frac{N_{WMC}^{s}}{N_{WMC}^{c}}$$

MC normalisation discussed later!

- W→ev results
 - $N^{C}_{obs} = 65$
 - $N^{C}_{bkg} = 5.4 \pm 1.4$
 - $N^{S}_{WMC} / N^{C}_{WMC} = 1.14 \pm 0.15$
 - $N^{S} = 68.2 \pm 9.2 \text{ (stat)}$
- ▶ W→µv results
 - $N^{C}_{obs} = 223$
 - $N^{C}_{bkg} = 23.9 \pm 3.0$
 - $N^{S}_{WMC} / N^{C}_{WMC} = 0.338 \pm 0.035$
 - $N^{S} = 67.2 + / -5.0 \text{ (stat)}$

M^W_T [GeV]

W→Thad Background

- Subtle difference, since do not apply an explicit veto on hadronic tau
- ▶ Define W→ τ_{had} control region as for signal region, with :
 - ▶ Require tight tau with $p_T > 20$ GeV, eta < 2.3, dz < 0.2 cm
 - No central jet veto requirement
- ▶ Background is then estimated using :

CJV efficiency on W(
$$\tau_{had}$$
) events (MC)
$$N_{W \to \tau_{had}}^{S} = \frac{(N_{obs}^{C} - N_{bkg}^{C})}{\uparrow \epsilon_{\tau}} \cdot \varepsilon_{CJV}^{W \to \tau_{had}}$$

Total number of W(τ_{had}) events before CJV

▶ Where ϵ_{T} and $\epsilon_{\mathsf{T}}^{\mathsf{CJV}}$ are estimated from $\mathsf{W} \! \to \! \tau_{\mathsf{had}} \, \mathsf{MC}$

W→Thadronic Background

CJV efficiency on $W(\tau_{had})$ events (MC)

$$N_{W \to \tau_{had}}^{S} = \frac{(N_{obs}^{C} - N_{bkg}^{C})}{\bigwedge \varepsilon_{\tau}} \cdot \varepsilon_{CJV}^{W \to \tau_{had}}$$

Total number of $W(\tau_{had})$ events before CJV

- MC factors
 - Tau selection efficiency, $ε_τ = 0.16 \pm 0.03$ (stat)
 - ► CJV efficiency, $\epsilon^{T}_{CJV} = 0.423 \pm 0.043$ (stat)
- $N^{C}_{obs} = 32$
- $N^{C}_{bkg} = 12.9$
- $NS_T = 54 \pm 16 \text{ (stat)}$

V+Jets Uncertainty

▶ All V+jets estimates rely on factors estimated from MadGraph MC, relating control region yields to signal region yields

$$N(Z \to \nu \nu) = \frac{(N_{obs}^c - N_{bkg}^c)}{\varepsilon_{\mu\mu}\varepsilon_{VBF}^C} \varepsilon_{VBF}^S \frac{\sigma(Z \to \nu \nu)}{\sigma(Z/\gamma^* \to \mu \mu)}$$

- Compare MadGraph factors with MCFM
 - ▶ Parton (and parton jet) level selection
 - Calculate VBF selection efficiency for Z(→νν)jj and Z(→μμ)jj
 - \blacktriangleright Compare ratio $\epsilon^{\text{S}}_{\text{VBF}}$ / $\epsilon^{\text{C}}_{\text{VBF}}$ between Madgraph and MCFM

cuts	σ MCFM NLO(LO), fb	ϵ_{VBF} MCFM	$\epsilon_{ extsf{VBF}}$ MadGraph
$Z_{ ext{vvjj}}$	9300+/-100 (7940)	LO: 5.4e-3	
Z_{vvjj} +VBF	45+/-3 (43)	NLO: (4.8+/-0.5) e-3	(4.6+/-0.3)e-3
$\mathbf{Z}_{\mu\mu\mathbf{jj}}$	5700+/-100 (4770)	LO: 4.2 e-3	(3.8+/-0.3)e-3
Z _{μμjj} +VBF	24+/-2 (20)	NLO: (4.2+/-0.8)e-3	
Ratio of VBF efficiencies $Z_{\nu\nu jj}/Z_{\mu\mu jj}$:		LO: 1.28; NLO:1.14	1.20+/- 0.2

▶ Based on these results, we assign a **20% theoretical uncertainty** to all V+jets estimate

V+Jets Consistency : Z→µµ from W→µ

- ▶ Use $W \rightarrow \mu$ control sample to predict yields in other control regions
 - Z→μμ, W→e, W→τ
- ▶ In all cases, scale $W \rightarrow \mu$ yield by the ratio between regions in MC
- \blacktriangleright Do this in bins of $\Delta \varphi$ to give several additional independent samples
 - ▶ Fit constant to fractional difference to measure closure within uncertainties

V+Jets Consistency: W→e from W→µ

- Good agreement for signal region (low $\Delta \phi$)
- Discrepancy at high Δφ
 - Compatible with QCD contamination in the W \rightarrow e control sample at high $\Delta \phi$
 - We subtract backgrounds from control regions using MC
 - ▶ But QCD MC statistics are insufficient, so we cannot account for this

V+Jets Consistency: W→τ from W→μ

- ightharpoonup Reasonable agreement for signal region (low $\Delta \phi$)
- Discrepancy at high Δφ
 - Again compatible with QCD contamination in the W $\to \tau$ control sample at high $\Delta \phi$
 - Larger discrepancy than observed for W→e, but we expect greater QCD contamination in **T** sample than electron sample

V+Jets Consistency: Mjj

For W→e from W→µ, we have sufficient statistics to look at other variables

V+Jets Consistency : MET

V+Jets Consistency: Lepton η

Lepton η is of interest since we extrapolate from within lepton acceptance to outside it

V+Jets Consistency: central jet E_T

QCD Background

- ABCD method based on CJV and MET cuts
 - ▶ A fail MET, fail CJV
 - ▶ B pass MET, fail CJV
 - ▶ C fail MET, pass CJV
 - ▶ D pass MET, pass CJV (signal region)
- ▶ Below MET distribution for CJV pass/fail samples
 - Assign 35% uncertainty based on fractional difference

QCD Background

- Closure test using $\Delta \phi > 2.6$ control region
 - Counts are data minus BG (from MC)
 - ▶ Prediction in region D : 2603 ± 58 (stat)
 - ▶ Observation in region D : 2993
 - ▶ ~10% difference

- ▶ Results for $\Delta \phi$ <1.0 signal region
 - ▶ Counts are data minus BG (from MC)
 - ▶ Prediction in region $D = 36.8 \pm 5.6$ (stat)

QCD Cross-check

- We cross-check the QCD method using a modified ABCD method based on MET/Δφ
 - \blacktriangleright A MET < 120, $\Delta \phi$ > 2.6
 - ▶ B MET > 120, $\Delta \phi$ > 2.6
 - ▶ C MET < 130, $\Delta \phi$ > 1.0
 - \blacktriangleright D MET > 130, $\Delta \phi$ < 1.0 (signal region)

QCD Cross-check

- ▶ Closure test using events that fail CJV
 - Counts are data minus BG (from MC)
 - ▶ Prediction in region D : 201 ± 4 (stat)
 - ▶ Observation in region D : 252
 - ▶ Assign 25% systematic based on this difference

- Prediction in signal region (pass CJV)
 - ▶ Prediction in region D : 31 ± 7.8 (stat) ± 7.8 (syst)
 - ▶ Good agreement with main method :
 - \rightarrow 36.8 ± 5.6 (stat) ± 12.9 (syst)
- ▶ This is a *cross-check* does not enter final result

Minor Backgrounds

Process	N _{est} (MC)
VV	3.9 ± 1.4
single t	3.1 ± 1.7
DY	2.1 ± 1.8
ttbar	1.4 ± 1.2
Total	10.4 ± 3.1

- ▶ Minor backgrounds are estimated directly from MC
- ▶ Uncertainties include MC statistics and JES/JER

Summary of Uncertainties

Background	Source	Uncertainty	
$Z o \nu \nu$			
	Statistics in control region	29%	
	MC statistics	14%	
	Theory uncertainty	20%	
	Jet/MET scale/resolution	5%	
$W \rightarrow \mu \nu$			
	Statistics in control region	5%	
	MC statistics	10%	
	Theory uncertainty	20%	
	Jet/MET scale/resolution	4%	
$W \rightarrow e \nu$			
	Statistics in control region	10%	
	MC statistics	10%	
	Theory uncertainty	20%	
	Jet/MET scale/resolution	+5 % -11 %	
W o au u			
	Statistics in control region	30%	
	MC statistics	20%	
	Theory uncertainty	20%	
	Jet/MET scale/resolution	+16 ₀ / ₀	
	Tau ID efficiency	8%	
	Electron contamination	5%	

QCD		
	Statistics in control region	2%
	MC stats (background)	2%
	Jet/MET scale/resolution	$^{+45}_{-75}$ %
	 ℤ _T shape	35%
Other backgrounds		
	Luminosity	4%
	MC statistics	10%
	Jet/MET scale/resolution	28-81%
	Cross-section uncertainty	8-20%
Signal		
	MC statistics	10%
	Jet/MET scale/resolution	11%
	PDF uncertainty	5%
	QCD Scale uncertainty	4%

Results

PAS Table 1

Background	N_{est}
$Z \rightarrow \nu \nu$	$102 \pm 30 ({ m stat.}) \pm 26 ({ m syst.})$
$W \rightarrow \mu \nu$	$67.2 \pm 5.0 (\mathrm{stat.}) \pm 15.1 (\mathrm{syst.})$
$W \rightarrow e \nu$	$68.2 \pm 9.2 (\mathrm{stat.}) \pm 18.1 (\mathrm{syst.})$
$W \rightarrow \tau \nu$	$54\pm16\mathrm{(stat.)}\pm18\mathrm{(syst.)}$
QCD multijet	$36.8 \pm 5.6 (\mathrm{stat.}) \pm 30.6 (\mathrm{syst.})$
Other SM	$10.4 \pm 3.1 (\text{syst.})$
Total	$339 \pm 36 ({\rm stat.}) \pm 50 ({\rm syst.})$
Observed	390

Observed yield in very good agreement with prediction ~0.5 sigma difference

Limit Setting

- Use standard Higgs combination tool to perform a single bin counting experiment
 - ▶ Asymptotic CLs
 - ▶ Use --noFitAsimov option (ensure expected limit is independent of Nobs)
- ▶ 6 backgrounds
 - ▶ Z, W→e, W→ μ , W→ τ_{had} , QCD, other SM
- ▶ 8 nuisance parameters
 - Lumi uncertainty (log-normal)
 - Z control region statistics (Gamma-normal)
 - ▶ 6 x BG uncertainties (log-normal)
 - Signal uncertainty (log-normal)

Limit Plots

Limit Plots

Issues during ARC Review

- Add V+jets closure tests done
- ▶ Add closure test and systematic for QCD cross-check method done
- W→T_{had} synchronisation resolved
 - We observed a ~15% discrepancy between two analyses in W→τ_{had} estimate
 - ► Analysis A = 54.4 events, Analysis B = 64.6 events
 - ▶ This was traced to a difference in QCD W+jets MC yields
 - ▶ Resulting from different handling of JER smearing for jets with no match at gen level
 - Analysis A applies Gaussian smearing, analysis B does not smear
 - ▶ Chose to use analysis A (for consistency) prior to unblinding, no reason to change
- ▶ Investigate MC normalisation presented here
 - ▶ Re-weight MadGraph to MCFM using weights derived for FSQ-12-036
 - Derive MC scale factors from data in sidebands to control regions

QCD V+jets Re-weighting

- ▶ Re-weight DY+Jets using procedure developed for VBF Z+jets analysis
 - ► FSQ-12-036, AN 2013/170
 - ▶ The authors derive event weights to correct MadGraph to MCFM
 - ▶ Weights calculated in bins of 2 variables : $y^* = y_z 0.5(y_{jet1} + y_{jet2})$ and M_{jj}
- ▶ We have applied these weights to our MC
 - ▶ < 1% change to V+jets BG estimates, but also minimal change to control plots

QCD V+jets Re-weighting

- Derive normalisation using sidebands to the W (e/ μ) control regions
 - ▶ 900 < M_{ij} < 1100, M_T>40 GeV
 - ▶ Also possible with Z, but very low statistics 9 data events in sideband region
- ▶ Calculate data/MC for these sidebands and apply as overall normalisation to all V+jets MC
 - \rightarrow W \rightarrow e data/MC = 25.7476/32.987 = **0.781**
 - \rightarrow W \rightarrow µ data/MC = 110.296/147.364 = **0.748**
 - ▶ Mean (used for scaling) = 0.765

more in backup!

Trigger corrections

Low QCD MC stats

Trigger corrections

Low QCD MC stats

Summary

- ▶ Searched for invisible decays of a Higgs boson in the vector boson fusion channel
- ▶ Dominant backgrounds predicted using data-driven methods
- ▶ Background closure tests show excellent agreement with data
- ▶ Predict a background of 339 ± 36 ± 50 events in the signal region
- Observe 390 events
- No evidence for a signal
- ▶ Place limits on the invisible BF of the 125 GeV Higgs at 69% (53% expected)

Backup

Trigger Turn-on Curves

Samples
Single mu PD
W+jets MC
HLT_IsoMu24_eta2p1

0.8

0.6

0.4

Data

NC

0 50 100 150 200 250 300 350 400

MET [GeV]

MET turn-on curves

L1ETm40 turn-on curves

Jet2Pt turn-on curves

Mjj turn-on curves

Scaled MC

Z control plots - $M_{\mu\mu}$, p_T^Z

Jim Brooke (Univ. of Bristol)

Z control plots - M_{jj}, MET

Z control plots - Δη, Δφ

W control plots - M_T

W control plots - Mjj

W control plots - MET

W control plots - Δη

Jim Brooke (Univ. of Bristol)

W control plots - Δφ

Comparison of variables in Z control region between prompt and re-reco

	Prompt	Jan22	
Z	$102 \pm 30 \pm 26$	111 ± 31 ± 30	
W→e	67.2 ± 5.0 ± 15.1	$71.9 \pm 9.4 \pm 19.2$	
W→µ	68.2 ± 9.2 ± 18.1	$78.4 \pm 5.5 \pm 17.7$	
W→τ	54 ± 16 ± 18	n/a	
QCD	$36.8 \pm 5.6 \pm 30.6$	$49.2 \pm 5.3 \pm 40.9$	
VV	3.9 ± 1.4	3.8 ± 1.4	
single t	3.1 ± 1.7 2.7 ± 1.6		
DY	2.1 ± 1.8	1.7 ± 1.6	
tt	1.4 ± 1.2	1.4 ± 1.3	
Total	$349 \pm 36 \pm 50$	$374 \pm 39 \pm 63$	

Using prompt estimate for $W \rightarrow \tau$

W→e control plots - M_T

W→µ control plots - M_T

Z control plots - central jet E_T

N-1 Plots

With V+Jets Scaling

ARC Slides

Limit Uncertainty Bands

- ▶ Large error bands due to bug in plot making code...
 - ▶ Fixed plot below (includes 35% uncertainty on QCD
- ▶ Kink in limit plot appears to be due to statistical fluctuation in signal efficiency (below)
 - ▶ Use linear fit to signal efficiency to smooth this in progress
 - May need to interpolate between MC points

QCD Background - Closure Test

▶ MET distribution for CJV pass/fail in closure test region, $\Delta \phi$ >2.6

QCD "MET/DPhi" Closure Test

- Cross-check of QCD background
- ▶ ABCD method based on MET and dphi
 - ▶ A : MET<120, $\Delta \phi$ >2.6
 - ▶ B : MET>120, $\Delta \phi$ >2.6
 - ▶ C : MET<130, $\Delta \phi$ <1.0
 - ▶ D : MET>130, $\Delta \phi$ <1.0 signal region
- Construct a closure test using the "CJV fail" region
 - Prediction : 201 ± 4 (stat)
 - ▶ Observation : 253 ± 32 (stat)
- Propose we assign 25% systematic to this method
 - ▶ Signal region : 31.0 ± 7.8 (stat) ± 7.8 (syst)
 - of Method 3 : 36.8 ± 5.6 (stat) ± 12.9 (syst)

Different MET cuts account for observed shift in MET distribution between $\Delta \phi > 2.6$ and $\Delta \phi < 1.0$

	MET<120 (130)	MET>120 (130)	
Δφ>2.6	147588 ± 387	6052 ± 83	
Δφ<1.0	4904 ± 74	253 ± 32	

W→tau synchronisation

- We have two analysis codes (A and B) to cross-check the calculations
 - ▶ Generally very good agreement (<1%) between A and B</p>
 - ▶ Except for W→tau, where A = 54.4 and B = 64.6, discrepancy of ~20%
- ▶ See very good agreement between A & B in W→tau control region yields
- ▶ Differences arises from MC ratio between W→tau control region and signal region, calculated from W+jets MC
 - Comparing a few events, we saw that the differences arise in MET and low pT jets
- Known differences between A and B
 - ▶ Different versions of PU jet ID MVA training between A and B
 - Different handling of unmatched jets in JER smearing
- Smear MC jets such that JER matches data (and propagate this to MET)
 - ▶ Match each RECO jet to generator jet, and smear the RECO deterministically
 - For unmatched jets
 - Analysis A applies a Gaussian smearing (using runMetUncertainties tool in PAT)
 - Analysis B does not apply any smearing

W→tau synchronisation

- ▶ Ran both analyses with JER smearing and PU jet ID turned off
 - Example for one control region below tau ID required, CJV not required

W MC		PU on JER on	PU on JER off	PU off JER off
QCD	A	24.7	18.9	19.1
	В	20.1	19.2	19.2
EWK	A	9.6	9.1	9.1
	В	9.3	9.2	9.2
QCD+EWK	A	34.3	28.0	28.2
	В	29.4	28.4	28.4

Discrepancy between A and B

Good agreement when JER off shows this is source of discrepancy

W→tau synchronisation

- Note Condition of GL to unblind was to fix which analysis to use for W→tau
- ▶ We chose analysis A for consistency with the other backgrounds
 - No reason to change this
- ▶ Added a systematic to cover the difference between A and B (18%)
 - Propose to remove this

Unblinding

- ▶ Predict 339 ± 36 (stat) ± 56 (syst) background
- Observe 390 events in data
 - ▶ Less than 1 sigma above prediction
- ▶ Observed limit on $\sigma \times BF(H \rightarrow inv) = 70\%$ for m_H=125 GeV
 - ▶ Expected limit is 53%
- ▶ While unblinding we found and fixed two minor bugs in limit setting card files
 - Non-dominant systematics in Z and W→tau were not being included
 - Expected limit has risen slightly as a result
- ▶ Above numbers include the **additional 18% systematic** for W-tau discrepancy
 - ▶ Reducing this to 12% results in observed limit of 69%
 - ▶ No change in expected (52.7% to 52.5%)

Monte-Carlo Samples

Summer12 53X Monte Carlo

- Summer12_DR53X-PU_S10_START53_V7A
 - /ZJetsToNuNu_*_HT_*_TuneZ2Star_8TeV_madgraph/
 - /ZVBF_Mqq-120_8TeV-madgraph
 - /W*JetsToLNu_TuneZ2Star_8TeV-madgraph/
 - /L*Nu*VBF_Mqq-120_8TeV-madgraph/
 - /DYJetsToLL_M-50(PtZ-100)_TuneZ2Star_8TeV-madgraph-tarball/
 - /DYJJ01JetsToLL_M-50_MJJ-200_TuneZ2Star_8TeV-madgraph_tauola/
 - /VV_TuneZ2star_8TeV_pythia6_tauola/
 - /TTJets_MassiveBinDECAY_TuneZ2star_8TeV-madgraph-tauola/
 - /Tbar_*-channel-DR_TuneZ2star_8TeV-powheg-tauola/
 - /T_*-channel-DR_TuneZ2star_8TeV-powheg-tauola/
 - /QCD Pt-*to* TuneZ2star_8TeV_pythia6/
 - ▶ /VBF_HToInvisible_M-*_8TeV-powheg-pythia6
 - ▶ /GluGlu_HToInvisible_M-*_8TeV-powheg-pythia6

N-1 Plots

No V+Jets Scaling

jet2 p_T

Trigger corrections

Mjj

Trigger corrections

Central Jet E_T

Missing QCD

