OBSESS model description

Rémi Dekimpe

March 2021

1 System performance model

1.1 General description

The model uses the MIT-BIH database for evaluating the impact of AFE and DBE on final inference performance. The model executes on a record basis, which can be repeated multiple times for concatenating results.

1.2 Opening a record

Opening a record from the MIT-BIH database consists in loading the data, approximating the analog signal ¹.

A few comments about the database signals:

- Actual signals from the electrodes are differential while the database provides a single-ended signal.
- Signals are already clean in the database, i.e. common-mode signals are removed and electrode impedance impact is not taken into account.
- Signals are provided at 360Hz, with 11-bit resolution over a ± 5 mV range.
- Signals are recorded in a clinical setting, but still sometimes contain segments with noise or artifacts

1.2.1 Signal recovery process (databaselopenRecord)

All signals are stored locally. Each record can be accessed using its index (44 records between [100, 234]). The signals in the database contain 2 leads for each record, MLII and either V1/V2/V4/V5 (cfr. Fig. 1), as detailed in Annex A.

Annotations are loaded with the signal and the timestamp is converted from index position to a time value. PhysioNet annotations are converted to AAMI classes as in Table ??². Annotations that do not correspond to heartbeats are removed.

If a resampling frequency is specified in the parameters, the database signal is interpolated (smooth spline approximation).

The output data is a 2xN array with approximated analog ECG signal in mV, float type, at 360Hz or specified resampling frequency.

 $^{^1}$ Information about the database can be found here: https://archive.physionet.org/physiobank/database/html/mitdbdir/mitdbdir.htm

²Description of PhysioNet annotations is available here https://archive.physionet.org/physiobank/annotations.shtml

Figure 1: ECG lead placement

Table 1: MIT-BIH database information

Value	Class	PhysioNet annotations
1	N = any heartbeat not in S, V, F or Q	N, L, R, B, e, j, n
2	S = supraventricular ectopic beat	A, a, J, S
3	V = ventricular ectopic beat	V, r, E
4	F = fusion beat	F
5	Q = unknown or paced beat	/, f, Q
-1	Other annotation	

1.3 Executing the model

The model takes as input a 2xN array with the ECG lead data as provided by the database (cfr. Section ??.

A MIT-BIH database information

Tables 2 and 3 summarize the record information 3 .

³Records 102, 104, 107 and 217 are skipped as they contain paced beats.

Table 2: MIT-BIH database information

Record	Length	Leads	Age	Sex	Info
100	30min	MLII + V5	69	M	
101	30min	MLII + V1	75	Щ	
103	30min	MLII + V2	<i>~</i> .	Σ	
105	30min	MLII + V1	73	ഥ	The PVCs are uniform. The predominant feature of this tape is high-grade noise and arti-
					fact.
106	30min	MLII + V1	24	Щ	The PVCs are multiform.
108	30min	MLII + V1	87	Щ	There is borderline first degree AV block and sinus arrhythmia. The PVCs are multiform.
					The lower channel exhibits considerable noise and baseline shifts.
109	30min	MLII + V1	64	Σ	There is first degree AV block. The PVCs are multiform.
111	30min	MLII + V1	47	Щ	There is first degree AV block. There are short bursts of both baseline shifts and muscle
					noise, but in general, the quality is excellent.
112	30min	MLII + V1	54	Σ	There is S-T segment depression in the upper channel.
113	30min	MLII + V1	24	Щ	The variation in the rate of normal sinus rhythm is possibly due to a wandering atrial
					pacemaker.
114	30min	$MLII + V5^a$	72	Щ	The PVCs are uniform.
115	30min	MLII + V1	36	Щ	
116	30min	MLII + V1	89	Σ	There are two PVC forms.
117	30min	MLII + V2	69	Σ	
118	30min	MLII + V1	69	Σ	The PVCs are multiform.
119	30min	MLII + V1	51	Щ	The PVCs are uniform.
121	30min	MLII + V1	83	щ	
122	30min	MLII + V1	51	Σ	The lower channel has low-amplitude high-frequency noise throughout.
123	30min	MLII + V5	63	Щ	The PVCs are uniform and interpolated.
124	30min	MLII + V4	1	Σ	The PVCs are multiform. The junctional escape beats follow PVCs.
200	30min	MLII + V1	64	Σ	The PVCs are multiform. There are occasional bursts of high-frequency noise in the upper
(;	(,	channel, and severe noise and artifact in the lower channel.
201	30mm	MLII + VI	89	Ξ	The PVCs are uniform and late-cycle. Junctional escape beats occur following episodes of
202	30min	MI II + V1	8	Σ	ventricular trigeminy. The PVCs are uniform and late-cycle. This record was taken from the same analog tane as
			3	•	record 201.
203	30min	MLII + V1	43	Σ	The PVCs are multiform. There are QRS morphology changes in the upper channel due
					to axis shifts. There is considerable noise in both channels, including muscle artifact and
100	20.00	171 1 174	Ū	7	baseline shifts. This is a very difficult record, even for humans!
202	30min	MLII + V1	8	Ĭμ	The FVCs are of two forms, one of which is much more common than the other. This is an extremely difficult record. The predominant rhythm is normal sinus with first.
)	4	degree AV block and left bundle branch block. There are periods when the conduction
					block changes to a right bundle branch block pattern. The PVCs are multiform. Idioven-
					tricular rhythm appears following the longest episode of ventricular flutter. The record
					ends during the episode of SVIA.

"Signals sometimes need to be reordered to have MLII first

Table 3: MIT-BIH database information (continued)

The PVCs are uniform.	Ħ	56	MLII + V1	30min	234
The PVCs are multiform.	Ζ	57	MLII + V1	30min	233
_					
The rhythm is compatible with sick sinus syndrome. There is underlying sinus bradycar-	Ħ	76	MLII + V1	30min	232
and right bundle branch block which appears to be rate-related. The couplet is probably					
AV conduction is quite abnormal with periods of 2:1 AV block, examples of Mobitz II block,	Ħ	72	MLII + V1	30min	231
	\leq	32	MLII + V1	30min	230
of tape slippage with a maximum duration of 2.2 seconds.					
There is first degree AV block. The PVCs are multiform. There are three short occurrences	Ħ	80	MLII + V1	30min	228
to 105 bpm) and bidirectional.					
The PVCs are multiform. The two longest episodes of ventricular tachycardia are slow (100	Z	73	MLII + V1	30min	223
beats. There are several intervals of high-frequency noise/artifact in both channels.					
The episodes of paroxysmal atrial flutter/fibrillation are usually followed by nodal escape	Ħ	84	MLII + V1	30min	222
The PVCs are multiform, but one form is much more common than the others.	Z	83	MLII + V1	30min	221
	H	87	MLII + V1	30min	220
to 3 seconds in duration. The PVCs are multiform.					
Following some conversions from atrial fibrillation to normal sinus rhythm are pauses up	Z	٠,	MLII + V1	30min	219
than one second in duration).					
The PVCs are multiform. There are two very short occurrences of tape slippage (each less	Z	81	MLII + V1	30min	215
occurrence of tape slippage.					
The PVCs are multiform. There are two episodes of artifactual amplitude decrease and one	Z	53	MLII + V1	30min	214
PVCs.					
morphology of the fusion PVCs varies from almost normal to almost identical to that of the					
The PVCs are multiform and usually late-cycle, frequently resulting in fusion PVCs. The	Z	61	MLII + V1	30min	213
approximately 90 bpm.					
There is rate-related right bundle branch block which appears when the heart rate exceeds	Ħ	32	MLII + V1	30min	212
The PVCs are multiform.	\leq	89	MLII + V1	30min	210
	\leq	62	MLII + V1	30min	209
in a bigeminal pattern. The triplets each consist of two PVCs and a fusion PVC.					
The PVCs are uniform. The couplets, many of which include a fusion PVC, are often seen	Ħ	23	MLII + V1	30min	208
Info	Sex	Age	Leads	Length	Record