4.5.1 Гелий-неоновый лазер

Цель работы: Изучение основных принципов работы гелий-неонового лазера, свойств лазерного излучения и измерение усиления лазерной трубки.

В работе используются: объект исследования — активный элемент от гелий-неонового лазера ЛГ-75 с блоком питания, дополнительный He–Ne-лазер для юстировки и измерений, модулятор излучения (обтюратор), фотодиоды, зеркала, поляроид, компьютер со звуковой картой.

Теоретическая часть:

Экспериментальная установка:

Рис. 1: Схема экспериментальной установки. Штриховыми линиями показано положение зеркал при получении лазерной генерации на исследуемой трубке

Ход работы:

Измерение коэффициента усиления

После тщательной настройки зеркал измеряем коэффициент усиления лазера — мерим интенсивноть до усиления на фотодиоде 1 и после усиления на фотодиоде 2. Считаем отношение этих величин при включенном и выключенном лазере, а затем считаем отношение этих двух величин.

1. При включенном лазере:

X_{max}	X_{min}	Y_{max}	Y_{min}	отношение k					
140,8	-67,8	61,3	-24,1	2,44					
140,8	-65,8	61,3	-24,1	2,42					
138,8	-67,8	61,3	-26,1	2,36					

$$\bar{k_1} = 2.41 \pm 0.04$$

2. При выключенном лазере:

X_{max}	$T_{max} \mid X_{min} \mid Y_{max}$		Y_{min}	отношение k	
132,8	-63,8	55,4	-26,1	2,41	
128,9	-67,8	53,4	-26,1	2,47	
138,9	-71,8	55,4	-28,1	2,52	
134,8	-63,8	57,4	-24,1	2,44	

$$\bar{k_2} = 2.46 \pm 0.05$$

3. Итоговый коэффициент усиления:

$$k = 1.02 \pm 0.03$$

Проверка поляризации излучения

Излучение, генерируемое лазером в теории должно быть поляризованным. Для проверки этого можно пропускать луч через поляризатор и наблюдать за изменением интенсивности пучка после прохода через поляризатор при его повороте. Если излучение поляризовано, то должна получится синусоида.

φ	I_1	I_2	I_3	I_4	I_5	I
0	40,63	41,64	41,39	35,1	37,61	39,274
20	45,87	40,75	40,45	43,29	40,92	42,256
40	62,41	62,72	63,93	63,5	59,64	62,44
60	92,3	94,2	94,01	93,75	91,29	93,11
80	109,92	108,22	116,61	111,63	111,1	111,496
100	103,46	107,3	114,81	108,44	107,56	108,314
120	82,78	81,57	81,48	80,02	82,9	81,75
140	51,49	59,44	50,92	50,13	49,53	52,302
160	35,63	39,23	41,64	37,17	39,73	38,68
180	37,26	31,78	34,57	32,14	33,01	33,752
200	41,58	40,28	38,58	37,18	41,78	39,88
220	60,23	60,29	61,01	61,01	62,54	61,016
240	92,91	89,47	91,77	91,07	97,06	92,456
260	108,64	115,57	107,98	108,83	109,92	110,188
280	113,39	107,73	114,86	113,21	111,68	112,174
300	90,22	83,76	86,26	88,39	86,06	86,938
320	53,13	53,62	55,49	52,72	55,94	54,18
340	32,34	36,1	35,32	42,36	41,65	37,554

Тогда график зависимости интенсивности света от угла поворота поляризатора выглядит следующим образом:

Рис. 2: Синусоида: $y = 40 \sin(2x + 0.1) + 70$

График хорошо аппроксимируется синусоидой, как и ожидалось.

Вывод:

в данной работе мы ознакомились с принципами работы гелий-неонового лазера, установили его коэффициент усиления $k=1,02\pm0,03,$ убедлились в том, что генерируемое узлучение является поляризованным.