- 1. A, B を集合, $U \subset B$ を部分集合とする. また, $f: A \to B$ を写像とする. このとき $f^{-1}(U)$ の定義を答えよ.
- 2. A, B を集合, $b \in B$ とする. また, $f: A \to B$ を写像とする. このとき $f^{-1}(b)$ の定義を答えよ.
- 3. $(X, d_X), (Y, d_Y)$ を距離空間とする. 写像 $f: X \to Y$ が点 $x_0 \in X$ で連続であることと

任意の
$$\varepsilon > 0$$
 に対して、ある $\delta_{\varepsilon} > 0$ が存在して、 $U(x_0, \delta_{\varepsilon}) \subset f^{-1}(U(f(x_0), \varepsilon))$

が成り立つことは同値であることを示せ.

 $4. (X, d_X), (Y, d_Y)$ を距離空間とする. 写像 $f: X \to Y$ が連続写像ならば

$$(X,d_X)$$
 の任意の点列 $\{x_n\}_{n\geq 1}$ に対して、 $\lim_{n\to\infty}x_n=x$ ならば $\lim_{n\to\infty}f(x_n)=f(x)$

が成り立つことを示せ. (実は逆も成り立つ. 次回講義内で証明します.)