

# Цикл лекций по теме «Сети Петри» Лекция №2

автор – д.т.н., профессор Лисицына Л.С.

## Содержание



- 1. Понятие и структура СП
- 2. Классификация СП по структуре
- 3. Алгоритм преобразования СП в ординарную

#### 4. Функционирование СП

- 5. Покрывающее дерево СП
- 6. Классификация СП по динамическим свойствам
- 7. Динамические свойства автоматных СП
- 8. Динамические свойства синхрографов
- 9. Метод анализа динамических свойств СП на основе покрывающих деревьев



## Функционирование СП

университет итмо

**Разрешенный переход** — это такой переход  $t_i \in T$ , для которого при заданном векторе маркировки выполняется следующее условие:

$$\forall p_k \in I(t_i) : \mu_k \ge \#(p_k, I(t_i))$$

**Срабатывание разрешенного перехода**  $t_i \in T$ — это неделимое локальное действие, в результате которого ёмкости позиций пересчитываются по следующему правилу:

$$\forall p_k \in P : \mu_k' = \mu_k - \#(p_k, I(t_i)) + \#(p_k, O(t_i))$$

**Тупиковая маркировка** — это такой вектор  $\mu = (\mu_1, ..., \mu_n)$  , при котором в СП нет ни одного разрешенного перехода.

**Функционирование сети Петри** – это процесс последовательного срабатывания разрешенных переходов, в ходе которого происходит изменение емкостей позиций до тех пор, пока не будет получена тупиковая маркировка.  $\mu[t_i>\mu']$ 



# Пример функционирования СП











$$(1,1,0)[t_2 > (0,0,3)]$$



$$(0,0,3)[t_3 > (2,0,2)]$$

(2,0,0)[t1,t2,t3>(2,0,2)



## Правила срабатывания переходов



- 1. Очередность срабатывания переходов.
- 2. Разрешение конфликтов.
- 3. Возможность одновременного срабатывания нескольких переходов.





| $(1,0,0,1,1,1,0)[t_1,t_4,t_6>(0,1,0,0,2,0)]$ | 0,1) | ) |
|----------------------------------------------|------|---|
|----------------------------------------------|------|---|

$$(1,0,0,1,1,1,0)[t_1+t_4+t_6>(0,1,0,0,2,0,1)]$$

| Переход $t_i$ | $\mathbf{M}$ ножество $I(t_i)$ | $\mathbf{M}$ ножество $O(t_i)$ |
|---------------|--------------------------------|--------------------------------|
| $t_1$         | $\{p_1\}$                      | {p <sub>2</sub> }              |
| $t_4$         | {p <sub>4</sub> }              | $\{p_5\}$                      |
| $t_6$         | {p <sub>6</sub> }              | $\{p_{\gamma}\}$               |



## Содержание



- 1. Понятие и структура СП
- 2. Классификация СП по структуре
- 3. Алгоритм преобразования СП в ординарную
- 4. Функционирование СП

#### 5. Покрывающее дерево СП

- 6. Классификация СП по динамическим свойствам
- 7. Динамические свойства автоматных СП
- 8. Динамические свойства синхрографов
- 9. Метод анализа динамических свойств СП на основе покрывающих деревьев



### Покрывающее дерево СП



**Покрывающее дерево СП** — это модель функционирования сети, представляющее собой корневое дерево, в котором вершины моделируют вектора маркировки, а дуги — разрешенные переходы.





**Множество достижимости СП** — это множество  $R(C, \mu_0)$ , включающее все вектора маркировок, достижимых в сети Петри в процессе ее функционирования.

$$R(C, \mu_0) = \{(1,0,0,0), (0,1,0,0), (0,0,1,0), (0,1,1,0), (0,0,2,0), (0,0,0,1)\}$$



## Содержание



- 1. Понятие и структура СП
- 2. Классификация СП по структуре
- 3. Алгоритм преобразования СП в ординарную
- 4. Функционирование СП
- 5. Покрывающее дерево СП

#### 6. Классификация СП по динамическим свойствам

- 7. Динамические свойства автоматных СП
- 8. Динамические свойства синхрографов
- 9. Метод анализа динамических свойств СП на основе покрывающих деревьев



### Безопасность

**Безопасная СП** — это маркированная сеть Петри, в процессе функционирования которой емкости позиций могут быть только 0 или 1. В противном случае СП называется **небезопасной**.





 $R(C, \mu_0) = \{(1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1)\}$ 



### Ограниченность



**Ограниченная СП** — это маркированная сеть Петри, в процессе функционирования которой емкости позиций не превышают некоторого числа  $k = \max_{i=1}^n \max_{\mu \in R(C,\mu_0)} \mu(p_i)$ . В противном случае СП называется **неограниченной**.



ограниченная с k=1





## Сохраняемость



**Строго сохраняющаяся СП** — это маркированная сеть Петри, в процессе функционирования которой общее количество маркеров в сети остается постоянным, т.е.  $\forall \mu \in R(C, \mu_0) : \sum \mu_0(p_i) = \sum \mu(p_i)$ 





Если СП не является строго сохраняющейся, то требуется продолжить исследование сохраняемости сети.



## Сохраняемость



#### Сохраняющаяся СП – это маркированная сеть Петри, для которой существует такой

ненулевой вектор  $c = (c_1, ..., c_n)$  , что  $\forall \mu \in R(C, \mu_0) : \sum_{i=1}^n \mu_0(p_i) \times c_i = \sum_{i=1}^n \mu(p_i) \times c_i$ 





$$R(C, \mu_0) = \{(0,0,1), (1,1,0)\}$$

$$0 \times c_1 + 0 \times c_2 + 1 \times c_3 = a$$

$$1 \times c_1 + 1 \times c_2 + 0 \times c_3 = a$$

$$c = (1,1,2)$$



### Живость



**Живая СП** — это маркированная сеть Петри, в процессе функционирования которой для любого перехода  $t_i \in T$  сохраняется потенциальная возможность для срабатывания после маркировки  $\mu_0$ . В противном случае сеть **неживая.** 

Отсутствие тупиковых маркировок является необходимым условием живости сети.









### Пример: динамические свойства СП





- 1. Небезопасная, т.к. емкость в позиции р3 может принимать значение 2
- 2. **Ограниченная**, k=2
- 3. Несохраняющаяся, т.к. система линейных уравнений не имеет решений
- 4. Неживая, т.к. есть тупиковые маркировки



# Спасибо за внимание!

www.ifmo.ru

ITSMOre than a UNIVERSITY