Ch 9.3-4: Support Vector Machine

Lecture 27 - CMSE 381

Prof. Elizabeth Munch

Michigan State University

::

Dept of Computational Mathematics, Science & Engineering

Mon, Nov 21, 2022

Announcements

Last time:

 9.2 Support Vector Classifier

This lecture:

• 9.3 Support Vector Machine

Announcements:

•						
20	F	Nov 4	Polynomial & Step Functions.	7.1,7.2		
21	М	Nov 7	Step Functions	7.2		
22	W	Nov 9	Basis functions, Regression Splines	7.3,7.4		
23	F	Nov 11	Decision Trees	8.1	HW #7 Due	
24	М	Nov 14	Random Forests	8.2.1, 8.2.2		
25	W	Nov 16	Maximal Margin Classifier	9.1		
26	F	Nov 18	SVC	9.2	HW #8 Due	
27	М	Nov 21	SVM	9.3, 9.4, 9.5		
28	W	Nov 23	Extended virtual office hours			
	F	Nov 25	No class - Thanksgiving			
29	М	Nov 28	Single layer NN	10.1	HW #9 Due	
30	W	Nov 30	Multi Layer NN	10.2		
31	F	Dec 2	CNN	10.3		
32	М	Dec 5	Unsupervised Learning & Clustering	12.1, 12.4	HW #10 Due	
	W	Dec 7	Review			
	F	Dec 9	Midterm #3	non-inter	cheat sheet and a rnet-connected alculator	

2/30

Dr. Munch (MSU-CMSE)

Mon, Nov 21, 2022

Section 1

Last Time

Classification Setup

Data matrix:

$$X = \begin{pmatrix} - & x_1^T & - \\ - & x_2^T & - \\ & \vdots \\ - & x_n^T & - \end{pmatrix}_{n \times p}$$

$$x_1 = \begin{pmatrix} x_{11} \\ \vdots \\ x_{1p} \end{pmatrix}, \cdots, x_n = \begin{pmatrix} x_{n1} \\ \vdots \\ x_{np} \end{pmatrix}$$

Observations in one of two classes, $y_i \in \{-1, 1\}$

$$Y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$

Separate out a test observation

$$x^* = (x_1^* \cdots x_p^*)^T$$

Hyperplane becomes a classifier

If you have a separating hyperplane:

Check

$$f(x^*) = \beta_0 + \beta_1 x_1^* + \beta_2 x_2^* + \dots + \beta_p x_p^*$$

- If positive, assign $\hat{y} = 1$
- If negative, assign $\hat{y} = -1$

Dr. Munch (MSU-CMSE

How do we pick? Old version

Maximal margin classifier

- For a hyperplane, the *margin* is the smallest distance from any data point to the hyperplane.
- Observations that are closest are called *support vectors*.
- The maximal margin hyperplane is the hyperplane with the largest margin
- The classifier built from this hyperplane is the maximal margin classifier.

Issues

No separating hyperplane exists

Choice of hyperplane is sensitive to new points

Support Vector Classifier

$$\max_{\beta_0,\beta_1,\dots,\beta_p,\epsilon_1,\dots,\epsilon_n,M} \max_{\beta_0,\beta_1,\dots,\beta_p,\epsilon_1,\dots,\epsilon_n,M} M$$
subject to
$$\sum_{j=1}^{p} \beta_j^2 = 1,$$

$$y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip}) \ge M(1 - \epsilon_i),$$

$$\epsilon_i \ge 0, \sum_{i=1}^{n} \epsilon_i \le C,$$

8/30

Munch (MSU-CMSE) Mon, Nov 21, 2022

Two formulations side by side

Maximal Margin Classifier

$$\max_{\beta_0,\beta_1,\ldots,\beta_p,M} M$$

subject to
$$\sum_{j=1}^{p} \beta_j^2 = 1$$
,

$$y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip}) \ge M \ \forall \ i = 1, \dots, n$$

Support Vector Classifier

$$\max_{\beta_0,\beta_1,\dots,\beta_p,\epsilon_1,\dots,\epsilon_n,M} M$$

subject to
$$\sum_{j=1}^{p} \beta_j^2 = 1$$
,

$$y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip}) \ge M(1 - \epsilon_i),$$

$$\epsilon_i \ge 0, \quad \sum_{i=1}^n \epsilon_i \le C,$$

So many variables

Limiting factor of SVC

Section 2

Support Vector Machine

. Munch (MSU-CMSE) Mon, Nov 21, 2022

Example of using more features

Want 2p features:

$$X_1, X_1^2, X_2, X_2^2, \cdots, X_p, X_p^2$$

Optimization becomes:

$$\max_{\beta_0,\beta_{11},\beta_{12},\dots,\beta_{p1},\beta_{p2},\epsilon_1,\dots,\epsilon_n,M} M$$
subject to $y_i \left(\beta_0 + \sum_{j=1}^p \beta_{j1} x_{ij} + \sum_{j=1}^p \beta_{j2} x_{ij}^2\right) \ge M(1 - \epsilon_i),$

$$\sum_{i=1}^n \epsilon_i \le C, \quad \epsilon_i \ge 0, \quad \sum_{j=1}^p \sum_{k=1}^2 \beta_{jk}^2 = 1.$$

Dr. Munch (MSU-CMSE) Mon,

Kernels

Or. Munch (MSU-CMSE) Mon, Nov 21, 2022

Inner products

$$\langle a,b\rangle=\sum_{i=1}^r a_ib_i$$

Quick computations

What are the following?

- $\langle (1,1), (0,3) \rangle$
- $\langle (1,1), (3,2) \rangle$
- $\langle (2,3), (0,3) \rangle$
- $\langle (2,3), (3,2) \rangle$

SVC via inner products

$$f(x) = \beta_0 + \beta_1 x_1 + \cdots + \beta_p x_p = \beta_0 + \langle \beta, x \rangle$$

Example

$$-2\sqrt{2}+\frac{\sqrt{2}}{2}X_1+\frac{\sqrt{2}}{2}X_2=0$$

$$-2\sqrt{2}+\frac{\sqrt{2}}{18}\langle (X_1,X_2),(0,3)\rangle+\frac{\sqrt{2}}{6}\langle (X_1,X_2),(3,2)\rangle=0$$

What are the α_i s?

Data point	$ \alpha_i $
(3,4)	
(2.5, 3.5)	
(3,2)	
(3,0)	
(0,3)	
(1, 1)	
(0.5, 1.25)	

What α_i 's are needed to write the hyperplane

$$-2\sqrt{2}+\frac{\sqrt{2}}{18}\langle (\textbf{\textit{X}}_{1},\textbf{\textit{X}}_{2}),(\textbf{0},\textbf{3})\rangle+\frac{\sqrt{2}}{6}\langle (\textbf{\textit{X}}_{1},\textbf{\textit{X}}_{2}),(\textbf{3},\textbf{2})\rangle$$

of the previous page in the form

$$f(x) = \beta_0 + \sum_{i \in \mathcal{S}} \alpha_i \langle x, x_i \rangle?$$

SVC via inner products of support vectors

$$f(x) = \beta_0 + \sum_{i \in S} \alpha_i \langle x, x_i \rangle$$

The kernel

$$K(x_i, x_i')$$

$$f(x) = \beta_0 + \sum_{i \in \mathcal{S}} \alpha_i K(x, x_i)$$

A polynomial kernel

$$\mathcal{K}(x_i,x_{i'}) = \left(1 + \sum_{j=1}^p x_{ij}x_{i'j}
ight)^d$$

A radial kernel

$$\mathcal{K}(x_i, x_i') = \exp\left(-\gamma \sum_{j=1}^p (x_{ij} - x_{i'j})^2\right)$$

Dr. Munch (MSU-CMSE) Mon, No

Support Vector Machine

$$f(x) = \beta_0 + \sum_{i \in \mathcal{S}} \alpha_i K(x, x_i)$$

Coding

Or. Munch (MSU-CMSE) Mon, Nov 21, 2022

Section 3

SVM with more than two classes

r. Munch (MSU-CMSE) Mon, Nov 21, 2022

One-Vs-One Classification

Also called all-pairs

Or. Munch (MSU-CMSE) Mon, Nov 21, 2022

One-Vs-All Classification

Dr. Munch (MSU-CMSE) Mon, Nov 21, 2022

TL;DR

Kernels

Linear

$$K(x_i,x_{i'}) = \sum_{j=1}^p x_{ij}x_{i'j}$$

Polynomial

$$\mathcal{K}(x_i, x_{i'}) = \left(1 + \sum_{j=1}^p x_{ij} x_{i'j}\right)^d$$

Radial

$$\mathcal{K}(\mathsf{x}_i,\mathsf{x}_i') = \exp\left(-\gamma\sum_{j=1}^p(\mathsf{x}_{ij}-\mathsf{x}_{i'j})^2\right)$$

Next time

20	F	Nov 4	Polynomial & Step Functions.	7.1,7.2	
21	M	Nov 7	Step Functions	7.2	
22	W	Nov 9	Basis functions, Regression Splines	7.3,7.4	
23	F	Nov 11	Decision Trees	8.1	HW #7 Due
24	M	Nov 14	Random Forests	8.2.1, 8.2.2	
25	W	Nov 16	Maximal Margin Classifier	9.1	
26	F	Nov 18	SVC	9.2	HW #8 Due
27	M	Nov 21	SVM	9.3, 9.4, 9.5	
28	W	Nov 23	Extended virtual office hours		
	F	Nov 25	No class - Thanksgiving		
29	M	Nov 28	Single layer NN	10.1	HW #9 Due
30	W	Nov 30	Multi Layer NN	10.2	
31	F	Dec 2	CNN	10.3	
32	M	Dec 5	Unsupervised Learning & Clustering	12.1, 12.4	HW #10 Due
	W	Dec 7	Review		
	F	Dec 9	Midterm #3	Bring your cheat sheet and a non-internet-connected calculator	

Dr. Munch (MSU-CMSE) Mon, Nov 21, 2022