Solutions of Equations in One Variable Chapter 2 - Numerical Analysis (Burden et al.)

Prof. Ana Isabel Castillo

Julho 2025

Introdução

Objetivo

Explorar métodos numéricos para resolver equações em uma variável do Capítulo 2, com 10 exercícios resolvidos.

- Métodos: Bisseção, Falsa Posição, Newton-Raphson, Secante.
- Convergência e erros.
- Aplicação prática com exemplos.

Métodos-Chave

Tópicos Principais

- Bisseção: Intervalo com mudança de sinal.
- Falsa Posição: Interpolação linear.
- Newton-Raphson: Derivadas para iteração.
- Secante: Aproximação sem derivada.
- Foco em precisão e eficiência.

Exercício 1: Bisseção

Enunciado

Use o método da bisseção para encontrar uma raiz de $f(x) = x^2 - 2$ em [1,2] com erro < 0.1.

Solução

- f(1)=-1, f(2)=2, muda de sinal. - Meio: x=1.5, f(1.5)=0.25, novo intervalo [1,1.5]. - Aprox. $x\approx 1.4$ após poucas iterações.

Figure: Método da Besseção, Raiz aproximada: 1.4375 após 3 iterações

Exercício 2: Falsa Posição

Enunciado

Aplique o método da falsa posição para $f(x) = x^3 - x - 2$ em [1, 2] com 3 iterações.

Solução

f(1)=-2, f(2)=4, interseção linear. - $1^{\underline{a}}$ iteração: xpprox 1.666, f(1.666)pprox -0.37. - Continua refinando.

Figure: Método da Falsa Posição

lteração 1: x=1.333333, f(x)=-0.962963 lteração 2: x=1.333333, f(x)=-0.962963 lteração x=1.3333333, x=1.333333333, x=1.33333333, x=1.33333333, x=1.33333333, x=1.333333333, x=1.33333333

Exercício 3: Newton-Raphson

Enunciado

Use Newton-Raphson para resolver $f(x) = x^2 - 4$ com $x_0 = 1$ até 3 iterações.

Solução

-
$$f'(x) = 2x$$
, $x_1 = 1 - \frac{1-4}{2} = 2.5$. - $x_2 = 2.5 - \frac{6.25-4}{5} \approx 2.1$, e assim por diante.

Figure: Método de Newton-Raphson

Iteração 1: x=2.500000, f(x)=2.250000 Iteração $_{\mathbb{P}}2: x_{\mathbb{E}}$, $_{\mathbb{E}}$, $_{\mathbb{E}}$, $_{\mathbb{E}}$

Exercício 4: Secante

Enunciado

Aplique o método da secante para $f(x) = e^x - 3x$ com $x_0 = 0$, $x_1 = 1$ até 3 iterações.

Solução

- f(0)=1, $f(1)\approx 1.718$, $x_2\approx 0.419$. - Refina iterativamente.

Figure: Método da Secante

Iteração 1: x = 0.780203, f(x) = -0.158694 Iteração 2: x = 0.496679, f(x) = 0.153218 Iteração 3: x = 0.635952, f(x) = 0.153218

Exercício 5: Ponto Fixo

Enunciado

Reescreva $x = e^{-x}$ como $g(x) = e^{-x}$ e use ponto fixo com $x_0 = 0.5$ por 3 iterações.

Solução

- $x_1 = e^{-0.5} \approx 0.606$, $x_2 \approx 0.567$, etc.

Figure: Método do Ponto Fixo

Iteração 1: x=0.606531 Iteração 2: x=0.545239 Iteração 3: x=0.579703 Ponto fixo aproximado após 3 iterações: 0.579703 0.579703

Exercício 6: Bisseção com Tolerância

Enunciado

Encontre uma raiz de $f(x) = x^3 - 7$ em [1,3] com erro < 0.05.

Solução

- f(1)=-6, f(3)=20, meio $x\approx 2$. - Refina até $x\approx 1.9$.

Figure: Método da Bisseção com Tolerância

Iteração 1: x = 2.000000, f(x) = 1.000000 Iteração 2: x = 1.500000, f(x) = -3.625000 Iteração 3: x = 1.750000, f(x) = -1.640625 Iteração 4: x = 1.875000, f(x) = -0.408203 Iteração 5:

Exercício 7: Falsa Posição Avançada

Enunciado

Use falsa posição para $f(x) = \sin x - x/2$ em [0,1] por 4 iterações.

Solução

- f(0)=0, $f(1)\approx -0.341$, interseção ajustada.

Figure: Método da Falsa Posição Avançada

Iteração 1: x = 0.000000, f(x) = 0.000000 Raiz aproximada após 4 iterações: 0.000000

Exercício 8: Newton-Raphson com Derivada

Enunciado

Resolva $f(x) = x^2 - \cos x$ com $x_0 = 1$ por 3 iterações.

Solução

- $f'(x) = 2x + \sin x$, $x_1 \approx 0.75$, refina.

Figure: Método de Newton-Raphson com Derivada

Iteração 1:
$$x = 0.838218$$
, $f(x) = 0.033822$ Iteração 2: $x = 0.824242$, $f(x) = 0.000261$ Iteração 3: $x = 0.824132$, $f(x) = 0.000000$ Raiz aproximada após 3 iterações: 0.824132

Exercício 9: Secante com Intervalo

Enunciado

Aplique secante para $f(x) = x^3 - 2x + 2$ com $x_0 = 0$, $x_1 = 1$ por 3 iterações.

Solução

- $x_2 \approx 0.5$, refina iterativamente.

Figure: Método da Secante com Intervalo

Iteração 1: x = 2.000000, f(x) = 6.000000 Iteração 2: x = 0.800000, f(x) = 0.912000 Iteração 3: x = 0.584906, f(x) = 0.912000Prof. Ana Isabel Castillo Solutions of Equations in One Variable

Exercício 10: Convergência de Ponto Fixo

Enunciado

Teste $g(x) = \sqrt{x+1}$ para x = 0 com 3 iterações.

Solução

- $x_1 \approx 1$, $x_2 \approx 1.414$, converge pra $\sqrt{2}$.

Figure: Convergência do Método do Ponto Fixo

Iteração 1: x=1.000000 Iteração 2: x=1.414214 Iteração 3: x=1.553774 Ponto fixo aproximado após 3 iterações: 1,553774 , 300000

Conclusão

Resumo

- Capítulo 2 oferece ferramentas para resolver equações.
- Exercícios mostram aplicação de métodos numéricos.
- Agradeço pela atenção! Perguntas?