Ciphers.

Cipher is an algorithm for encrypting and decrypting data to conceal its meaning.

Basic working scheme of ciphers

Substitution cipher: Replace each letter of the alphabet by some other letter.

Example.

encryption/decryption key

message: TOP SECRET

ancyption: TOP SECRET

Problem: Very easy to break by looking at letter frequencies and patters.

Hill cipher: Use matrix multiplication

Example.

$$A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 2 & 1 \end{bmatrix}$$

encryption key invertible matrix

$$A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 2 & 1 \end{bmatrix} \qquad A^{-1} = \begin{bmatrix} 1 & 1 & -1 \\ -1 & 0 & 1 \\ 2 & 0 & -1 \end{bmatrix}$$

decryption key matrix inverse

message: TOP SECRET

Encryption:

1) Replace letters by numbers:

_	Α	В	С	D	Ε	F	G	Н	1	J	K	L	М	Ν	0	Р	Q	R	S	Т	U	V	W	X	Υ	Z
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26

- 2) Since the key is a 3×3 matrix split the number sequence numbers in vectors with 3 entries each.
- 3) Multiply each vector by the encryption matrix A.

TOP SECRET X X get a vector
$$\begin{bmatrix} 20 \\ 15 \\ 16 \end{bmatrix}$$
 $\begin{bmatrix} 0 \\ 19 \\ 5 \end{bmatrix}$ $\begin{bmatrix} 3 \\ 18 \\ 5 \end{bmatrix}$ $\begin{bmatrix} 20 \\ 24 \\ 24 \end{bmatrix}$

A.
$$\begin{bmatrix} 20 \\ 15 \\ 16 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & Z & 1 \end{bmatrix} \begin{bmatrix} 20 \\ 15 \\ 16 \end{bmatrix} = \begin{bmatrix} 31 \\ 35 \\ 46 \end{bmatrix}$$

A. $\begin{bmatrix} 0 \\ 19 \\ 5 \end{bmatrix} = \begin{bmatrix} 24 \\ 19 \\ 43 \end{bmatrix} = \begin{bmatrix} 2 \\ 18 \\ 5 \end{bmatrix} = \begin{bmatrix} 23 \\ 21 \\ 41 \end{bmatrix} = \begin{bmatrix} 48 \\ 44 \\ 72 \end{bmatrix}$

4) Write the new vectors as a sequence of numbers.

We can do better, but the next part will not work with an arbitrary invertible matrix A. It will work though e.g. if all entries of A and A^{-1} are integers.

5) Reduce all numbers obtained in step 4 modulo 27. That is, add or subtract from each number a multiple of 27 to get a number between 0 and 26.

$$31-27=4$$
 $35-27=8$
 $46-27=19$
 $24=24$
 $19=19$
 $43-27=16$
 $23=23$
 $21=21$
 $41-27=14$
 $48-27=21$
 $44-27=17$

6) Replace numbers by letters.

Decryption.

1) Replace letters by numbers, split into vectors, and multiply each vector by A^{-1}

$$A' \cdot \begin{bmatrix} 4 \\ 8 \\ 19 \end{bmatrix} = \begin{bmatrix} 1 & 1 & -1 \\ -1 & 0 & 1 \\ 2 & 0 & -1 \end{bmatrix} \cdot \begin{bmatrix} 4 \\ 8 \\ 19 \end{bmatrix} = \begin{bmatrix} -7 \\ 15 \\ -11 \end{bmatrix}$$

$$A' \cdot \begin{bmatrix} 24 \\ 19 \\ 16 \end{bmatrix} = \begin{bmatrix} 27 \\ -8 \\ 32 \end{bmatrix} \cdot A' \cdot \begin{bmatrix} 23 \\ 21 \\ 14 \end{bmatrix} = \begin{bmatrix} 30 \\ -9 \\ 32 \end{bmatrix}$$

$$A' \cdot \begin{bmatrix} 21 \\ 17 \\ 18 \end{bmatrix} = \begin{bmatrix} 20 \\ -3 \\ 24 \end{bmatrix}$$

2) Write the new vectors as a sequence of numbers, reduce each number modulo 27.

$$-7$$
 15 -11 27 -8 32 30 -9 32 20 -3 24
 \downarrow mod 27
20 15 16 0 19 5 3 18 5 20 24 24
 \downarrow
T 0 P - S E C R E T X X

3) Replace numbers by letters