Data Mining

Regression Analysis Linear Regression

Regression examples

Stock market

\$1.50.000 | ma *BEL 8.475.4607 | \$1.50.000

Weather prediction

Predict the temperature at any given location

Prediction of menu price

(a) METADATA:		
ambience		
dive-y	-0.015	
intimate	-0.013	
trendy	-0.012	
casual	-0.005	
romantic	-0.004	
classy	-7e-6	
touristy	0.058	
upscale	0.099	

(b) MENUDESC:		
cooking		
panfried	-0.094	
chargrilled	-0.029	
cooked	-0.012	
boiled	-0.006	
fried	-0.005	
steamed	0.011	
charbroiled	0.015	
grilled	0.022	
simmered	0.025	
roasted	0.034	
sauteed	0.034	
broiled	0.053	
seared	0.066	
braised	0.068	
stirfried	0.071	
flamebroiled	0.106	

		_
(c) MENUDESC:		
descriptors		
old time favo	orite -0.112	
fashioned	-0.034	
line caught	-0.028	
all natural	-0.028	
traditional	-0.009	
natural	3e-4	
classic	0.002	
free range	0.004	
real	0.004	
fresh	(d) MENUDESC:	
100000000000000000000000000000000000000	_ = "of chicken"	
homemade	slices _	-0.102
authentic	bits _	-0.032
organic	cubes	-0.030
organic	pieces	-0.024
	strips_	-0.001
	chunks	0.015
	morsels	0.025
	A	0.023
	pcs _	
	cuts _	0.042

A regression tree

Regression

Least Mean Squares

Regression for LMS as optimization

Linear regression

- Given an input x we would like to compute an output y
- For example:
 - Predict height from age
 - Predict Google's price from Yahoo's price
 - Predict distance from wall from sensors

Linear regression

- Given an input x we would like to compute an output y
- In linear regression we assume that y and x are related with the following equation:

where w is a parameter and ε represents measurement or other noise

Linear regression

- Our goal is to estimate w from a training data of <x_i,y_i> pairs
- Optimization goal: minimize squared error (least squares):

$$\arg\min_{w} \sum_{i} (y_{i} - wx_{i})^{2}$$

- Why least squares?
- minimizes squared distance between measurements and predicted line

 $y = wx + \varepsilon$

Solving linear regression

To optimize:

We just take the derivative w.r.t. to w

prediction

$$\frac{\partial}{\partial w} \sum_{i} (y_i - wx_i)^2 = 2 \sum_{i} -x_i (y_i - wx_i)$$

Solving linear regression

- To optimize closed form:
- We just take the derivative w.r.t. to w and set to 0:

$$\frac{\partial}{\partial w} \sum_{i} (y_i - wx_i)^2 = 2 \sum_{i} -x_i (y_i - wx_i) \Rightarrow$$

$$2 \sum_{i} x_i (y_i - wx_i) = 0 \Rightarrow 2 \sum_{i} x_i y_i - 2 \sum_{i} wx_i x_i = 0$$

$$\sum_{i} x_i y_i = \sum_{i} wx_i^2 \Rightarrow$$

$$covar(X,Y)/var(X)$$

$$w = \frac{\sum_{i} x_{i} y_{i}}{\sum_{i} x_{i}^{2}}$$

covar(X,Y)/var(X)
if mean(X)=mean(Y)=0

Regression example

• Generated: w=2

Recovered: w=2.03

Noise: std=1

Regression example

• Generated: w=2

Recovered: w=2.05

Noise: std=2

Regression example

• Generated: w=2

Recovered: w=2.08

Noise: std=4

Bias term

- So far we assumed that the line passes through the origin
- What if the line does not?
- No problem, simply change the model to $y = w_0 + w_1x + \varepsilon$
- Can use least squares to determine w₀, w₁

$$w_{1} = \frac{\sum_{i} x_{i}(y_{i} - w_{0})}{\sum_{i} x_{i}^{2}} \qquad w_{0} =$$

$$w_0 = \frac{\sum_i y_i - w_1 x_i}{n}$$

Multivariate regression

- What if we have several inputs?
 - Stock prices for Yahoo, Microsoft and Ebay for the Google prediction task
- This becomes a multivariate regression problem
- Again, its easy to model:

$$y = w_0 + w_1 x_1 + ... + w_k x_k + \varepsilon$$

Yahoo's stock price

Multivariate regression

- What if we have several inputs?
 - Stock prices for Yahoo, Microsoft and Ebay for the Google prediction task
- This becomes a multivariate regression problem
- Again, its easy to model:

$$y = w_0 + w_1 x_1 + ... + w_k x_k + \varepsilon$$

Other functions of x

Not all functions can be approximated by a line/hyperplane...

$$y=10+3x_1^2-2x_2^2+\varepsilon$$

In some cases we would like to use polynomial or other terms based on the input data, are these still linear regression problems?

Yes. As long as the *coefficients* are linear the equation is still a linear regression problem!

Non-Linear basis function

- So far we only used the observed values x₁,x₂,...
- However, linear regression can be applied in the same way to functions of these values
 - Eg: to add a term w x₁x₂ add a new variable z=x₁x₂ so each example becomes: x₁, x₂, z
- As long as these functions can be directly computed from the observed values the parameters are still linear in the data and the problem remains a multi-variate linear regression problem

$$y = w_0 + w_1 x_1^2 + \ldots + w_k x_k^2 + \varepsilon$$

Non-Linear basis function

How can we use this to add an intercept term?

Add a new "variable" z=1 and weight w_0

Non-linear basis functions

- What type of functions can we use?
- A few common examples:
 - Polynomial: $\phi_i(x) = x^j$ for j=0 ... n
 - Gaussian:

$$\phi_j(x) = \frac{(x - \mu_j)}{2\sigma_j^2}$$

- Sigmoid:

$$\phi_j(x) = \frac{(x - \mu_j)}{2\sigma_j^2}$$

$$\phi_j(x) = \frac{1}{1 + \exp(-s_j x)}$$

- Logs:

$$\phi_j(x) = \log(x+1)$$

Any function of the input values can be used. The solution for the parameters of the regression remains the same.

General linear regression problem

 Using our new notations for the basis function linear regression can be written as

$$y = \sum_{j=0}^{n} w_j \phi_j(x)$$

- Where $\phi_j(\mathbf{x})$ can be either x_j for multivariate regression or one of the non-linear basis functions we defined
- ... and $\phi_0(\mathbf{x})=1$ for the intercept term

Data Mining

Learning/Optimizing Multivariate Least Squares

Gradient Descent Approach

Gradient Descent for Linear Regression

Goal: minimize the following loss function:

predict with:
$$\hat{y}^i = \sum_{j=1}^n w_j \phi_j(\mathbf{x}^i)$$

$$J_{\mathbf{X},\mathbf{y}}(\mathbf{w}) = \sum_{i} \left(y^{i} - \hat{y}^{i} \right)^{2} = \sum_{i} \left(y^{i} - \sum_{j} w_{j} \phi_{j}(\mathbf{x}^{i}) \right)^{2}$$
sum over *n* examples

sum over *k+1* basis vectors

Gradient descent

The **gradient** is a fancy word for derivative, or the rate of change of a function.

 It's a vector (a direction to move) that points in the direction of greatest increase (or decrease) of a function

 Is zero at a local maximum or local minimum (because there is no single direction of increase)

Gradient Descent for Linear Regression

Goal: minimize the following loss function:

predict with:
$$\hat{y}^i = \sum_{j=1}^n w_j \phi_j(\mathbf{x}^i)$$

$$J_{\mathbf{x},\mathbf{y}}(\mathbf{w}) = \sum_{i} (y^{i} - \hat{y}^{i})^{2} = \sum_{i} (y^{i} - \sum_{j} w_{j} \phi_{j}(\mathbf{x}^{i}))^{2}$$

$$\frac{\partial}{\partial w_{j}} J(\mathbf{w}) = \frac{\partial}{\partial w_{j}} \sum_{i} (y^{i} - \hat{y}^{i})^{2}$$

$$= 2\sum_{i} (y^{i} - \hat{y}^{i}) \frac{\partial}{\partial w_{j}} \hat{y}^{i}$$

$$= 2\sum_{i} (y^{i} - \hat{y}^{i}) \frac{\partial}{\partial w_{j}} \sum_{j} w_{j} \phi_{j}(\mathbf{x}^{i})$$

$$= 2\sum_{i} (y^{i} - \hat{y}^{i}) \phi_{j}(\mathbf{x}^{i})$$

Gradient Descent for Linear Regression

Learning algorithm:

- Initialize weights w=0
- For t=1,... until convergence:
 - Predict for each example \mathbf{x}^i using \mathbf{w} : $\hat{y}^i = \sum w_j \phi_j(\mathbf{x}^i)$
 - Compute gradient of loss: $\frac{\partial}{\partial w_i} J(\mathbf{w}) = 2 \sum_i (y^i \hat{y}^i) \phi_j(\mathbf{x}^i)$
 - This is a vector g
 - Update: w = w λg
 - •λ is the learning rate.

Linear regression is a *convex* optimization problem

so again gradient descent will reach a global optimum

proof: differentiate again to get the second derivative