EnCase Seminar #1 (Hardware and File System)

FORENSIC-PROOF.COM

PRONEER

Welcome to EnCase Seminar!!

Security is a people problem....

Goals

- ✓ 디지털포렌식에 대한 이해 (하드웨어, 파일시스템, 사고 대응)
- ✓ 능동적인 디지털포렌식 증거 획득 기술 습득
- ✓ 디지털포렌식 증거 분석 기술 습득
- ✓ EnCase를 통한 전문적인 분석 기술 습득

Reference

✓ EnCE – The Official EnCase Certified Examiner STUDY GUIDE (second edition)

Outline

- ✓ Week 1 : Hardware and File system Analysis (Chapter 1, 2)
- ✓ Week 2 : Acquiring Digital Evidence (Chapter 4)
- ✓ Week 3 : EnCase Concepts and Environment (Chapter 5, 6)
- ✓ Week 4 : Actual Test
- ✓ Week 5 : Actual Test
- ✓ Week 6 : Actual Test
- ✓ Week 7 : Actual Test
- **√** ..
- ✓ PS : EnScripting

Guidance Software (http://guidancesoftware.com)

Certification Programs

Certification Programs

Guidance Software offers certification programs for private and public sector professionals in the use of EnCase® digital investigation software and their proficiency in industry best practices.

Since 2001, Guidance Software has certified over 2,100 computer forensic investigative professionals with the industry standard EnCase® Certified Examiner (EnCE)® designation.

The EnCase® Certified eDiscovery Practitioner (EnCEP™) program likewise enables eDiscovery practitioners to demonstrate their skills, training and experience in the proper handling of electronically stored information for legal purposes.

Certification candidates must meet professional requirements and pass a rigorous testing program to earn an EnCase certification. The certifications are valid for three years, and require continuing education for renewal.

Please select the desired certification for specific program information, frequently asked questions, professional referrals, and forms for certification application or renewal.

File System

- **✓** MBR
- ✓ FAT
- ✓ NTFS

Addressing

Addressing

- ✓ <u>CHS (Cylinder, Head, Sector)</u> 방식
 - 디스크의 물리적인 구조에 기반한 방식
 - 초기 ATA 표준과 BIOS의 지원 비트의 차이로 인해 최대 504MB까지만 지정 가능
 - 이후 BIOS 비트 확장으로 8.1GB 까지 지원
 - ATA-6부터 표준에서 제외, LBA 방식이 새롭게 대두

Addressing

- ✓ LBA (Logical Block Addressing) 방식
 - 디스크의 0번 실린더, 0번 헤드, 1번 섹터를 첫 번째 블록으로 지정
 - 디스크의 마지막 섹터까지 순차적으로 주소를 지정
 - 물리적인 구조를 정보 불필요
 - ROM BIOS에 의해 자동적으로 변환

Cluster

- ✓ 디스크 I/O 작업을 줄이기 위한 목적
- ✓ 4MB 데이터를 저장하는데 4K(1,024번), 512Byte(8,192번)

Cluster

FAT32

Volume Size	Cluster Size
32MB – 8GB	4KB
8GB – 16GB	8KB
16GB – 32GB	16KB
32GB -	32KB

NTFS

Volume Size	Cluster Size					
- 512MB	512 Byte					
512MB – 1GB	1KB					
1GB – 2GB	2KB					
2GB -	4KB					

Slack Space

- ✓ 물리적인 구조와 논리적인 구조의 차이로 발생하는 낭비 공간
- ✓ 파일에 할당된 공간이지만 사용되지 않는 낭비 공간
 - RAM Slack (Sector Slack)
 - File Slack (Drive Slack)
 - File System Slack
 - Volume Slack

Slack Space (RAM Slack & File Slack)

Slack Space (File System Slack & Volume Slack)

File System

- ✓ MBR
- ✓ FAT
- ✓ NTFS

***** MBR called by BIOS

- ✓ 디스크의 첫 번째 섹터(LBA 0)에 위치하는 512Byte 크기의 영역
- ✓ Boot Code, Partition Table, Signature

MBR Structure

Boot Code (446 Byte)

Partition Table (64 Byte)

Signature (2 Byte)

MBR Dump

```
7D 55
                                                         w#r.9F.s.?..
                                                        E.F.?sCCtN2?
                                                        V • 2 β € • ` ₹U € •
   13 72 36 81 FB 55
272 01 6A 10 B4 42 8B
                                                        2?V·?#alInva
   32 E4 8A 56 00 CD 13 EB
304 6C 69 64 20 70 61
   00 00 00 00 00 00
   00 00 00 00 00 00
                       00 00
```

Partitions

- ✓ MBR 구조에 따르면 4개의 파티션만 생성 가능
- ✓ 멀티 부팅을 위해서라면 4개 모두 주 파티션으로 설정
- ✓ 3개의 주 파티션과 하나의 확장 파티션 생성
- ✓ 확장 파티션 내부의 논리 파티션 생성
- ✓ MS-DOS 환경에서는 기본적으로 30개의 논리 파티션 지원

Partitions

File System

- **✓** MBR
- ✓ <u>FAT</u>
- ✓ NTFS

Structure

Reserved Area	FAT Area	Data Area
------------------	----------	-----------

Structure – Reserved Area

✓ FAT12/16 : 1 Sector(default)

✓ FAT32 : 32 Sectors(default)

Structure – Reserved Area

Structure – Reserved Area

- ✓ 0, 6 : Volume Boot Sector
- √ 1, 7 : File System Information(FSINFO) Structure
- ✓ 2, 8 : Bootstrap code

Volume Boot Sector

FAT Format	Byte Range	Description				
FAT12/16	0 – 2	Jump				
FAT32	0-2	command to boot code				
FAT12/16	3 – 61	BIOS				
FAT32	3 – 89	Parameter Block(BPB)				
FAT12/16	62 – 509	Boot code				
FAT32	90 – 509	Error message				
FAT12/16	F10 F11	Signature				
FAT32	510 - 511	(0x55AA)				

```
000EB 58 90 4D 53 44 4F 53 35 2E 30 00 02 08 26 00
                                                              3ɎѾô
                                                   {ŽÁŽŮ¾·|^N·ŠV@´·
        C1 8E D9 BD 00 7C 88 4E 02 8A 56 40 B4 08
                                                   Í·s·¹ÿÿŠñf·¶Æ@f·
208EE AO FB 7D EB E5 AO F9 7D EB E0 98 CD 16 CD 19
25641 BB AA 55 8A 56 40 CD 13 OF 82 1C 00
4646B 20 65 72 72 6F 72 FF 0D 0A 50 72 65 73 73 20
48061 6E 79 20 6B 65 79 20
49672 74 0D 0A 00 00 00 00 00 AC CB D8 00 00 55 AA
```

File System Information (FAT32)

Byte Range	Description						
0-3	Signature (0x41615252)						
4 – 483	Not Used						
484-487	Signature (0x61417272) Number of free cluster						
488-491							
492-495	Next free cluster						
496-507	Not used						
508-511	Signature (0xAA550000)						

00052	52	61	41	00	00	00	00	00	00	00	00	00	00	00	00	RRaA·····
01600	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
03200	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
04800	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
06400	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
08000	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
09600	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
11200	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
12800	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
14400	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
16000	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
17600	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
19200	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
20800	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
22400	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
24000	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
25600	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
27200	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
28800	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
30400	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
32000	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
33600	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
35200	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
36800	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
38400	00	00	00	0.0	00	00	00	00	00	00	00	00	00	00	00	
40000	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
41600	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
43200	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
44800	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
46400	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
48000	00	00	00	72	72	41	61	70	2D	03	00	E1	48	00	00	····rrAap-··áH··
49600	00	00	00	00	00	00	00	00	00	00	00	00	00	55	AA	Ω*

Bootstrap code

Structure – FAT Area

Structure – FAT Area

FAT Dump

```
01605 00 00 00 06 00 00 00 07 00 00 00 08 00 00 00
032 FF FF FF 0F 0A 00 00 00 FF FF FF 0F 0C 00 00 00
0480D 00 00 00 0E 00 00 0F 00 00 00 10 00 00 00
064FF FF FF 0F 12 00 00 00 13 00 00 00 14 00 00 00
08015 00 00 00 16 00 00 00 17 00 00 00 18 00 00 00
09619 00 00 00 1A 00 00 00 1B 00 00 00 1C 00 00 00
1121D 00 00 00 1E 00 00 00 1F 00 00 00 FF FF FF 0F
14425 00 00 00 26 00 00 00 27 00 00 00 28 00 00 00
16029 00 00 00 2A 00 00 00 2B 00 00 00 2C 00 00 00
1762D 00 00 00 2E 00 00 00 2F 00 00 00 30 00 00 00
19231 00 00 00 32 00 00 00 33 00 00 00 34 00 00 00
20835 00 00 00 36 00 00 00 37 00 00 00 38 00 00 00 5...6...7...
22439 00 00 00 3A 00 00 00 3B 00 00 00 3C 00 00 00
2403D 00 00 00 3E 00 00 00 3F 00 00 00 40 00 00 00 |-...>...?...@...
25641 00 00 00 42 00 00 00 43 00 00 00 44 00 00 00
27245 00 00 00 46 00 00 00 47 00 00 00 48 00 00 00
28849 00 00 00 4A 00 00 00 4B 00 00 00 4C 00 00 00
3044D 00 00 00 4E 00 00 00 4F 00 00 00 50 00 00 00 M···N···O···P···
32051 00 00 00 52 00 00 00 53 00 00 00 54 00 00 00
33655 00 00 00 56 00 00 00 57 00 00 00 58 00 00 00
35259 00 00 00 5A 00 00 00 5B 00 00 00 5C 00 00 00 Y · · · Z · · · [ · · · \ · · ·
3685D 00 00 00 5E 00 00 00 5F 00 00 00 60 00 00 00
38461 00 00 00 62 00 00 00 63 00 00 00 64 00 00 00
40065 00 00 00 66 00 00 00 67 00 00 00 68 00 00 00 e...f...q...h...
41669 00 00 00 6A 00 00 00 6B 00 00 00 6C 00 00 00 |i···j···k···l··
4326D 00 00 00 6E 00 00 00 6F 00 00 00 70 00 00 00 m...n...o..
44871 00 00 00 72 00 00 00 73 00 00 00 74 00 00 00
46475 00 00 00 76 00 00 00 77 00 00 00 78 00 00 00 u...w..
48079 00 00 00 7A 00 00 00 7B 00 00 00 7C 00 00 00 v···z···{···|···
4967D 00 00 00 7E 00 00 00 7F 00 00 00 80 00 00 00 |}···~··□···€···
```

Structure – Data Area

✓ 모든 파일과 디렉터리는 Directory Entry로 표현됨

Structure – Data Area

LFN – Long File Name

File Allocation Table

Root Directory


```
00043 4F 46 45 45 20 20 20 20 20 08 00 00 00 00
01600 00 00 00 00 00 0E 71 24 3B 00 00 00 00 00 00
032E5 44 45 4C 54 45 4D 50 20 20 20 22 00 80 17 5A ADELTEMP
04824 3B 24 3B 00 00 05 71 24 3B 03 00 00 70 60 3D
064E5 53 00 44 00 45 00 4C 00 54 00 0F 00 81 45 00
0804D 00 50 00 31 00 00 00 FF FF 00 00 FF FF FF FF
096E5 44 45 4C 54 45 7E 31 20 20 20 22 00 17 04 71
                           24 3B 00 00 00 00 00 00
128E5 53 00 44 00 45 00 4C 00 4D 00 0F 00 5D 46 00
14454 00 30 00 30 00 30 00 30 00 00 00 30 00 30 00
160E5 44 45 4C 4D 46 7E 31 20 20 20 22 00 1A 04 71
17624 3B 24 3B 00 00 05 71 24 3B 00 00 00 00 00 00
19242 49 4E 20 20 20 20 20 20 20 10 08 A0 0D 71
                                                   BIN
                                                   $;$; · · · q$; ·
                           45 58 45 20 18 B2 15 71
                                                   RUNNER
24024 3B 2A 3B 03 00 AC 90 55 38 FE 00 69 60 0A 00
25643 37 00 32 00 38 00 32 00 38 00 0F 00 CA 00 00
30430 00 39 00 30 00 39 00 30 00 00 00 34 00 31 00
38452 45 43 59 43 4C 45 52 20 20 20 17
40028 3B 28 3B 00 00 83 7E
                          28 3B
                                                   (;(;··f~(;∐H····
41641 55 54 4F 52 55 4E 20 49 4E 46 27 18 A8 83 7E
                                                   AUTORUN INF' · "f~
43228 3B 2B 3B 00 00 8B 7E 28 3B 85 48 1A 01 00 00
448E5 49 00 6D 00 6A 00 69 00 6E 00 0F 00 8C 2E 00
46462 00 6D 00 70 00 00 FF FF 00 00 FF FF FF FF
```

File System

- **✓** MBR
- ✓ FAT
- ✓ NTFS

Characteristics

- ✓ Update Sequence Number (USN) Journal
- ✓ Alternate Data Stream (ADS)
- ✓ Sparse File
- ✓ File Compression
- ✓ Volume Shadow Copy (VSS)
- ✓ Encrypting File System (EFS)
- ✓ Quotas
- ✓ Supporting Unicode
- ✓ Dynamic Bad Cluster Allocation

Structure

Volume Boot	Master File Table	Data Area
Record		

Structure – Volume Boot Record (VBR)

Cluster Size	VBR Size
512Byte	1
1KB	2
2KB	4
4KB	8

✓ VBR : Volume Boot Sector + Bootstrap code

Volume Boot Sector

Byte Range	Description
0-2	Jump Instruction
3 – 10	OEM ID
11 – 83	BIOS Parameter Block
84 – 509	Boot Code
510 - 511	Signature

000EB	52	90	4E	54	46	53	20	20	20	20	00	02	08	00	00	ëRONTFS ·····
01600	00	00	00	00	F8	00	00	3F	00	FF	00	3F	00	00	00	ø?.ÿ.?
03200	00	00	00	80	00	80	00	61	04	53	07	00	00	00	00	€.€.a.S
04800	00	0C	00	00	00	00	00	46	30	75	00	00	00	00	00	·····F0u····
064F6	00	00	00	01	00	00	00	A7	69	67	B8	BC	67	B8	96	ö······§ig,Œg,-
08000	00	00	00	FA	33	C0	8E	D0	вс	00	7C	FB	В8	C0	07	····ú3ÀŽĐ‰· û¸À·
0968E	D8	E8	16	00	В8	00	0D	8E	C0	33	DB	C6	06	0E	00	ŽØè∵, ŽÀ3ÛÆ···
11210	E8	53	00	68	00	0D	68	6A	02	CB	8A	16	24	00	B4	·èS·h· hj·ËŠ·\$·′
12808	CD	13	73	05	В9	FF	FF	8A	F1	66	0F	В6	C6	40	66	·Í·s·¹ÿÿŠñf·¶Æ@f
1440F	В6	D1	80	E2	3F	F7	E2	86	CD	C0	ED	06	41	66	0F	•¶Ñ€â?÷â†ÍÀí•Af•
160B7	C9	66	F7	E1	66	A3	20	00	C3	B4	41	BB	AA	55	8A	·Éf÷áf£ ·Ã´A»ªUŠ
17616	24	00	CD	13	72	0F	81	FB	55	AA	75	09	F6	C1	01	·\$·Í·r·□ûUªu öÁ·
19274	04	FE	06	14	00	C3	66	60	1E	06	66	A1	10	00	66	t·þ···Ãf`··f;··f
20803	06	1C	00	66	3B	06	20	00	0F	82	ЗА	00	1E	66	6A	····f;· ··,:··fj
22400	66	50	06	53	66	68	10	00	01	00	80	3E	14	00	00	·fP·Sfh····€>···
2400F	85	0C	00	E8	вз	FF	80	3E	14	00	00	0F	84	61	00	·è³ÿ€>····"a·
256B4	42	8A	16	24	00	16	1F	8B	F4	CD	13	66	58	5B	07	'BŠ·\$···‹ôÍ·fX[·
27266	58	66	58	1F	EB	2D	66	33	D2	66	0F	В7	0E	18	00	fXfX·ë-f30f····
28866	F7	F1	FΕ	C2	8A	CA	66	8B	D0	66	C1	ΕA	10	F7	36	f÷ñþŠÊf<ÐfÁê·÷6
3041A	00	86	D6	8A	16	24	00	8A	E8	C0	E4	06	0A	CC	B8	··+ÖŠ·\$·ŠèÀä· Ì,
32001	02	CD	13	0F	82	19	00	8C	CO	05	20	00	8E	CO	66	··í··,··ŒÀ· ·ŽÀf
336FF	06	10	00	FF	0E	0E	00	0F	85	6F	FF	07	1F	66	61	ÿ···ÿ···oÿ··fa
352C3																Ãø·è· û·è··ûëþ
368B4	01	8B	F0	AC	ЗC	00	74	09	B4	0E	BB	07	00	CD	10	^·<ð¬<·t ^·»··Í·
384EB	F2	C3	0D	0A	41	20	64	69	73	6B	20	72	65	61	64	ëòÃ A disk read
40020	65	72	72	6F	72	20	6F	63	63	75	72	72	65	64	00	error occurred.
4160D	0A	4E	54	4C	44	52	20	69	73	20	6D	69	73	73	69	NTLDR is missi
432 6E	67	00	0D	0A	4E	54	4C	44	52	20	69	73	20	63	6F	ng· NTLDR is co
448 6D	70	72	65	73	73	65	64	00	0D	0A	50	72	65	73	73	mpressed Press
46420	43	74	72	6C	2B	41	6C	74	2B	44	65	6C	20	74	6F	Ctrl+Alt+Del to
48020	72	65	73	74	61	72	74	0D	0A	00	00	00	00	00	00	restart ·····
49600	00	00	00	00	00	00	00	83	A0	вз	C9	00	00	55	AA	

Structure – Master File Table (MFT)

MFT Layout

Entry Number	Entry File Name	Description						
0	\$MFT	NTFS 상의 모든 파일들의 MFT 레코드 정보						
1	\$MFTMirr	MFT 파일의 일부 백업본						
2	\$LogFile	메타데이터의 트랜잭션 저널 정보						
3	\$Volume	볼륨의 레이블, 식별자, 버전 등의 정보						
4	\$AttrDef	속성의 식별자, 이름, 크기 등의 정보						
5	•	볼륨의 루트 디렉터리						
6	\$Bitmap	볼륨의 클러스터 할당 정보						
7	\$Boot	부팅 가능할 경우 부트섹터 정보						
8	\$BadClus	배드섹터를 가지는 클러스터 정보						
9	\$Secure	파일의 보안, 접근제어와 관련된 정보						
10	\$Upcase	모든 유니코드 문자의 대문자						
11	\$Extend	\$ObjID, \$Quota, \$Reparse points, \$UsnJrnl의 추가적 인 레코드를 위해 사용						
12 – 15		미래를 위해 예약						
-	\$ObjId	파일 고유의 ID 정보 (Windows 2000 -)						
-	\$Quota	사용자별 할당량 정보 (Windows 2000 -)						
-	\$Reparse	Reparse Point 에 대한 정보 (Windows 2000 -)						
-	\$UsnJrnl	파일, 디렉터리의 변경 정보 (Windows 2000 -)						

MFT Layout

MFT Entry (File Record)

- ✓ MFT Entry : 파일, 디렉터리에 대한 속성 정보
- ✓ Attribute: 해당 속성을 표현하는 구조 (파일이름, 시간정보, 크기, 소유자, 데이터 등)
- 각 데이터 특성에 따라 MFT Entry는 다양한 속성으로 구성

MFT Entry (File Record)

- ✓ \${uppercase}: 속성을 의미 (단, \$MFT 제외)
- ✓ 기본적인 파일은 3가지 속성을 가짐
 - \$STANDARD_INFORMATION
 - \$FILE_NAME
 - \$DATA

Attributes

Attr Type Num	Attr Name	Description						
16	\$STANDARD_INFORMATION	최근 접근 시간, 생성 시간, 소유자, 보안 아이디						
32	\$ATTRIBUTE_LIST	속성을 찾을 수 있는 속성 리스트						
48	\$FILE_NAME	파일 이름(유니코드)						
64	\$VOLUME_VERSION	볼륨 정보, 오직 1.2 버전에만 존재 (Windows NT)						
64	\$OBJECT_ID	16바이트로 이루어진 파일, 디렉터리의 고유 값, 3.0 이상에서만 존재						
80	\$SECURITY_DESCRIPTOR	파일의 접근 제어와 보안 속성						
96	\$VOLUME_NAME	볼륨 이름과 관련 정보						
112	\$VOLUME_INFORMATION	파일 시스템의 버전과 여러 FLAG						
128	\$DATA	파일의 내용						
144	\$INDEX_ROOT	인덱스 트리의 루트 노드						
160	\$INDEX_ALLOCATION	인덱스 트리와 연결된 노드						
176	\$BITMAP	할당 정보를 관리하는 속성						
192	\$SYMBOLIC_LINK	심볼릭 링크 정보, 오직 1.2 버전에만 존재 (Windows NT)						
192	\$REPARSE_POINT	심볼릭 링크에서 사용하는 reparse의 위치 정보, 3.0 이상에서만 존재						
208	\$EA_INFORMATION	OS/2 응용 프로그램과 호환성을 위해 사용						
224	\$EA	OS/2 응용 프로그램과 호환성을 위해 사용						
256 page 47	\$LOGGED_UTILITY_STREAM	암호화된 속성의 정보와 Key 값 (Windows 2000 이상)						

Attributes

Attr Type Num	Attr Name	Description
16	\$STANDARD_INFORMATION	최근 접근 시간, 생성 시간, 소유자, 보안 아이디
32	\$ATTRIBUTE_LIST	속성을 찾을 수 있는 속성 리스트
48	\$FILE_NAME	파일 이름(유니코드)
64	\$VOLUME_VERSION	볼륨 정보, 오직 1.2 버전에만 존재 (Windows NT)
64	\$OBJECT_ID	16바이트로 이루어진 파일, 디렉터리의 고유 값, 3.0 이상에서만 존재
80	\$SECURITY_DESCRIPTOR	파일의 접근 제어와 보안 속성
96	\$VOLUME_NAME	볼륨 이름과 관련 정보
112	\$VOLUME_INFORMATION	파일 시스템의 버전과 여러 FLAG
128	\$DATA	파일의 내용
144	\$INDEX_ROOT	인덱스 트리의 루트 노드
160	\$INDEX_ALLOCATION	인덱스 트리와 연결된 노드
176	\$BITMAP	할당 정보를 관리하는 속성
192	\$SYMBOLIC_LINK	심볼릭 링크 정보, 오직 1.2 버전에만 존재 (Windows NT)
192	\$REPARSE_POINT	심볼릭 링크에서 사용하는 reparse의 위치 정보, 3.0 이상에서만 존재
208	\$EA_INFORMATION	OS/2 응용 프로그램과 호환성을 위해 사용
224	\$EA	OS/2 응용 프로그램과 호환성을 위해 사용
256 page 48	\$LOGGED_UTILITY_STREAM	암호화된 속성의 정보와 Key 값 (Windows 2000 이상)

Attributes – Resident & Non-resident

- ✓ Resident: \$DATA 속성 내용에 데이터가 기록 (700Byte 이하)
- ✓ Non-resident : 데이터 700Byte 이상일 경우 별도의 클러스터를 할당하여 저장

Attributes – Cluster Runs

Alternate Data Stream

- ✓ 파일, 디렉터리에 포함되는 추가적인 데이터 속성
- ✓ ADS 속성은 반드시 속성 이름이 있어야 함 (기본적인 \$DATA는 없어도 됨)
- ✓ ADS 속성은 파일 크기에 포함되지 않음 (첫 번째 \$DATA 속성만 포함)

Analysis Consideration

- ✔ Resident MFT Entry가 재할당 될 경우 이전 데이터는 복구 어려움
- ✓ Non-resident MFT Entry가 재할당 될 경우 Application-level에서 파일 복구 가능

File Search Example (\dir\file1.dat)

- ✓ MBR
- ✓ FAT
- **✓** NTFS

Unallocated Clusters Analysis

- ✓ 대용량의 하드디스크 사용으로 많은 양의 공간이 비할당 영역일 가능성
- ✓ 비할당된 클러스터는 이전 데이터가 남아 있을 가능성
 - 포맷하기 이전의 데이터
 - 포맷한 후 할당되었다가 삭제된 데이터

- ✓ 비할당 클러스터 판별
 - FAT: FAT 영역에서 0x00 값을 갖는 클러스터
 - NTFS: 클러스터 비트맵에서 0x00 값을 갖는 클러스터

Deleted Files Analysis

삭제한 파일은 다른 파일보다 우선 분석

- ✓ 삭제된 파일 판별 판별
 - FAT: Root Directory부터 삭제된 Directory Entry 검색(value: 0xE5, offset: 0x00)
 - NTFS: \$MFT 내의 MFT Entry bitmap에서 0x00 값을 가지는 MFT Entry 조사

Slack Space Analysis

- ✓ File Slack: 이전에 할당되었던 데이터가 남아 있을 가능성
- ✓ File System Slack, Volume Slack: 마찬가지
- ✓ 의도적으로 데이터를 은닉할 가능성

Timestamp Analysis

- ✓ 사건이 발생한 시점을 중심으로 데이터 분석
- ✓ 시간의 흐름 파악이 중요
- ✓ 시간의 역전 및 의도적인 조작이 발생했는지 파악

- ✓ 시간 정보 위치

 - ✓ NTFS: 해당 파일의 속성 (\$STANDARD_INFORMATION, \$FILE_NAME)

Signature Analysis

- ✓ 파일 시그니처와 확장자가 일치하는지 검사
- ✔ 확장자 변경을 통해 의도적으로 파일을 은폐할 가능성

- ✓ 확장자 위치
 - ✓ FAT : 해당 파일의 Directory Entry
 - ✓ NTFS: 해당 파일의 \$FILE_NAME 속성

- ✓ <u>MBR</u>
- ✓ FAT
- **✓** NTFS

Boot Code Analysis

- ✓ 사용자에 의해 의도적인 boot code 수정
- ✓ 실제 부트 코드를 특정 위치에 백업
- ✓ 의도한 작업 실행 후 실제 부트 코드가 실행되도록 수정

- ✓ 방지 대책
 - ✓ boot code 분석을 통해 오프셋 0x00의 값이 0x80을 갖는 파티션의 시작 위치로 점프하는지 판별

Partition Table Analysis

- ✓ 각 파티션의 크기의 합과 전체 디스크 볼륨의 차이를 계산
- ✓ Volume Slack이 존재할 가능성

✓ Volume Slack이 존재할 경우 해당 영역을 대상으로 실행 코드나 실행파일 검색

- ✓ MBR
- ✓ FAT
- √ NTFS

Wasted Area Analysis

- ✓ MBR과 Reserved Area 간의 낭비되는 공간 조사
- ✓ Reserved Area 내의 낭비되는 섹터 (0,1,2,6,7,8 섹터 제외) 조사
- ✓ Reserved Area 내의 bootstrap code 영역 조사 (2, 8 섹터)
- ✓ FSINFO의 Not Used 영역 조사

- ✓ MBR
- ✓ FAT
- ✓ <u>NTFS</u>

Wasted Area Analysis

- ✓ MBR과 Volume Boot Record 간의 낭비되는 공간 조사
- ✓ Volume Boot Record에서 boot sector를 제외한 bootstrap code 영역 조사
- ✓ MFT Entry 12-15번 영역 조사

\$BadClus Entry Analysis

- ✓ \$BadClus Entry(8)는 배드 섹터가 포함된 클러스터를 관리
- ✓ 정상적인 클러스터를 \$BadClus에 등록 후 의도한 데이터 저장
- ✓ \$BadClus에 등록된 클러스터는 할당된 클러스터로 표시

\$Boot Entry Analysis

- ✓ \$Boot는 보통 boot sector의 내용을 저장
- ✓ \$Boot의 데이터크기는 무제한
- ✓ \$Boot의 \$DATA 의 크기를 늘려 데이터 숨김

- ✓ 탐지 방안
 - boot sector의 내용과 \$Boot의 \$DATA 내용을 비교

\$LogFile Entry Analysis

- ✓ \$LogFile은 메타데이터의 트랜잭션 정보의 로그 저장
- ✓ \$LogFile을 통해 최근 사용자가 수행한 작업을 재 구성

Encrypting File System(EFS) Analysis

- ✓ 암호화된 파일은 다른 파일보다 우선 분석
- ✓ 사용자의 private key는 login password에 의해 암호화되어 registry 저장,
- ✓ login password (brute force)
- ✓ 암호화 작업 동안 임시 plaintext 파일 생성(EFS0.TMP) 후 삭제 → 복구 가능

- ✓ 암호화 설정 확인
 - 해당 파일의 \$STANDARD_INFORMATION 속성

Alternate Data Stream Analysis

- ✓ ADS(Alternate Data Stream) 파일은 Explorer를 통해 확인 불가
- ✓ 의도적으로 숨기기 위해 활용할 가능성

- ✓ ADS 파일 조사 방안
 - 전체 MFT Entry를 대상으로 \$DATA 속성이 두 개 이상인 파일을 검색

Conclusion

This week

```
Week 1: Hardware and File system Analysis (Chapter 1, 2)
 Week 2: Acquiring Digital Evidence (Chapter 4)
 Week 3: EnCase Concepts and Environment (Chapter 5, 6)
 Week 4: Actual Test
 Week 5 : Actual Test
 Week 6: Actual Test
 Week 7: Actual Test
 PS: EnScripting
```

Conclusion

- Next week
 - **Veek 1: Hardware and File system Analysis (Chapter 1, 2)**
 - ✓ Week 2 : Acquiring Digital Evidence (Chapter 4)
 - ✓ Booting a Computer Using the EnCase Boot Disk
 - ✓ Drive-to-Drive DOS Acquisition
 - ✓ Network Acquisitions
 - ✓ FastBloc Acquisitions
 - ✓ FastBloc SE Acquisitions
 - ✓ LinEn Acquisitions
 - ✓ Enterprise and FIM Acquisitions

Question and Answer

