Quantum++ v1.0-rc2

Generated by Doxygen 1.8.13

Contents

1	Qua	ntum++																		1
2	Nam	nespace	Index																	7
	2.1	Names	space List						 	 		 		 		 	 	 		 7
3	Hier	archica	l Index																	9
	3.1	Class	Hierarchy				-		 	 	-	 		 	 •	 	 	 		 9
4	Clas	s Index																		11
	4.1	Class	List						 	 		 		 		 	 	 		 11
5	File	Index																		15
	5.1	File Lis	st						 	 		 				 	 	 		 15
6	Nam	nespace	Docume	nta	ıtio	n														17
	6.1	qpp Na	amespace	Re	əfer	end	ce .		 	 		 				 	 	 		 17
		6.1.1	Detailed	D€	escr	ripti	ion		 	 		 		 		 	 	 		 26
		6.1.2	Typedef	Do	cur	ner	ntati	ion	 	 		 				 	 	 		 26
			6.1.2.1	b	oigir	nt .			 	 		 				 	 	 		 26
			6.1.2.2	b	ra				 	 		 		 		 	 	 		 26
			6.1.2.3	С	ma	ıt .			 	 		 				 	 	 		 26
			6.1.2.4	С	plx				 	 		 		 		 	 	 		 26
			6.1.2.5	d	lma	ıt .			 	 		 				 	 	 		 26
			6.1.2.6	d	lyn_	_co	l_ve	ect	 	 		 		 		 	 	 		 27
			6.1.2.7	d	lyn_	_ma	at .		 	 		 		 		 	 	 		 27
			6.1.2.8	d	lvn	rov	w v	ect		 		 				 	 	 		 27

ii CONTENTS

	6.1.2.9	idx	27
	6.1.2.10	ket	28
	6.1.2.11	to_void	28
6.1.3	Function	Documentation	28
	6.1.3.1	apply() [1/5]	28
	6.1.3.2	apply() [2/5]	29
	6.1.3.3	apply() [3/5]	29
	6.1.3.4	apply() [4/5]	30
	6.1.3.5	apply() [5/5]	30
	6.1.3.6	applyCTRL() [1/2]	31
	6.1.3.7	applyCTRL() [2/2]	31
	6.1.3.8	avg()	32
	6.1.3.9	choi2kraus()	32
	6.1.3.10	choi2super()	33
	6.1.3.11	compperm()	33
	6.1.3.12	concurrence()	34
	6.1.3.13	contfrac2x()	34
	6.1.3.14	cor()	34
	6.1.3.15	cov()	35
	6.1.3.16	disp() [1/5]	35
	6.1.3.17	disp() [2/5]	36
	6.1.3.18	disp() [3/5]	36
	6.1.3.19	disp() [4/5]	37
	6.1.3.20	disp() [5/5]	37
	6.1.3.21	egcd()	38
	6.1.3.22	entanglement() [1/2]	38
	6.1.3.23	entanglement() [2/2]	39
	6.1.3.24	entropy() [1/2]	39
	6.1.3.25	entropy() [2/2]	40
	6.1.3.26	factors()	40

CONTENTS

6.1.3.27	gcd() [1/2]	40
6.1.3.28	gcd() [2/2]	41
6.1.3.29	gconcurrence()	41
6.1.3.30	invperm()	42
6.1.3.31	ip() [1/2]	42
6.1.3.32	ip() [2/2]	43
6.1.3.33	isprime()	43
6.1.3.34	kraus2choi()	43
6.1.3.35	kraus2super()	44
6.1.3.36	lcm() [1/2]	44
6.1.3.37	lcm() [2/2]	45
6.1.3.38	load()	45
6.1.3.39	loadMATLAB() [1/2]	46
6.1.3.40	loadMATLAB() [2/2]	46
6.1.3.41	lognegativity() [1/2]	47
6.1.3.42	lognegativity() [2/2]	48
6.1.3.43	marginalX()	48
6.1.3.44	marginalY()	48
6.1.3.45	measure() [1/9]	49
6.1.3.46	measure() [2/9]	49
6.1.3.47	measure() [3/9]	50
6.1.3.48	measure() [4/9]	50
6.1.3.49	measure() [5/9]	51
6.1.3.50	measure() [6/9]	51
6.1.3.51	measure() [7/9]	52
6.1.3.52	measure() [8/9]	53
6.1.3.53	measure() [9/9]	53
6.1.3.54	measure_seq() [1/2]	54
6.1.3.55	measure_seq() [2/2]	55
6.1.3.56	modinv()	55

iv CONTENTS

6.1.3.57	modmul()	56
6.1.3.58	modpow()	56
6.1.3.59	negativity() [1/2]	57
6.1.3.60	negativity() [2/2]	57
6.1.3.61	omega()	57
6.1.3.62	operator""""_i() [1/2]	59
6.1.3.63	operator""""_i() [2/2]	59
6.1.3.64	ptrace() [1/2]	59
6.1.3.65	ptrace() [2/2]	60
6.1.3.66	ptrace1() [1/2]	60
6.1.3.67	ptrace1() [2/2]	61
6.1.3.68	ptrace2() [1/2]	61
6.1.3.69	ptrace2() [2/2]	62
6.1.3.70	ptranspose() [1/2]	62
6.1.3.71	ptranspose() [2/2]	63
6.1.3.72	qmutualinfo() [1/2]	63
6.1.3.73	qmutualinfo() [2/2]	64
6.1.3.74	rand() [1/5]	64
6.1.3.75	rand() [2/5]	65
6.1.3.76	rand() [3/5]	65
6.1.3.77	rand() [4/5]	66
6.1.3.78	rand() [5/5]	66
6.1.3.79	randH()	67
6.1.3.80	randidx()	67
6.1.3.81	randket()	68
6.1.3.82	randkraus()	68
6.1.3.83	randn() [1/4]	68
6.1.3.84	randn() [2/4]	69
6.1.3.85	randn() [3/4]	69
6.1.3.86	randn() [4/4]	70

CONTENTS

6.1.3.87 randperm()	70
6.1.3.88 randprime()	71
6.1.3.89 randprob()	71
6.1.3.90 randrho()	71
6.1.3.91 randU()	72
6.1.3.92 randV()	72
6.1.3.93 renyi() [1/2]	73
6.1.3.94 renyi() [2/2]	73
6.1.3.95 save()	74
6.1.3.96 saveMATLAB() [1/2]	74
6.1.3.97 saveMATLAB() [2/2]	75
6.1.3.98 schmidtA() [1/2]	75
6.1.3.99 schmidtA() [2/2]	76
6.1.3.100 schmidtB() [1/2]	76
6.1.3.101 schmidtB() [2/2]	76
6.1.3.102 schmidtcoeffs() [1/2]	77
6.1.3.103 schmidtcoeffs() [2/2]	77
6.1.3.104 schmidtprobs() [1/2]	78
6.1.3.105 schmidtprobs() [2/2]	78
6.1.3.106 sigma()	79
6.1.3.107 super2choi()	79
6.1.3.108 syspermute() [1/2]	81
6.1.3.109 syspermute() [2/2] 8	81
6.1.3.110 tsallis() [1/2]	82
6.1.3.111 tsallis() [2/2]	82
6.1.3.112 uniform()	83
6.1.3.113 var()	83
6.1.3.114 x2contfrac()	83
Variable Documentation	84
6.1.4.1 chop	84

6.1.4

vi

		6.1.4.2	ee	84
		6.1.4.3	eps	84
		6.1.4.4	infty	85
		6.1.4.5	maxn	85
		6.1.4.6	pi	85
6.2	qpp::ex	xception N	lamespace Reference	85
	6.2.1	Detailed	Description	86
6.3	qpp::ex	xperimenta	al Namespace Reference	87
	6.3.1	Detailed	Description	87
6.4	qpp::in	ternal Nan	mespace Reference	87
	6.4.1	Detailed	Description	88
	6.4.2	Function	Documentation	88
		6.4.2.1	check_cvector()	88
		6.4.2.2	check_dims()	88
		6.4.2.3	check_dims_match_cvect()	89
		6.4.2.4	check_dims_match_mat()	89
		6.4.2.5	check_dims_match_rvect()	89
		6.4.2.6	check_eq_dims()	89
		6.4.2.7	check_matching_sizes()	89
		6.4.2.8	check_nonzero_size()	89
		6.4.2.9	check_perm()	90
		6.4.2.10	check_qubit_cvector()	90
		6.4.2.11	check_qubit_matrix()	90
		6.4.2.12	check_qubit_rvector()	90
		6.4.2.13	check_qubit_vector()	90
		6.4.2.14	check_rvector()	90
		6.4.2.15	check_square_mat()	91
		6.4.2.16	check_subsys_match_dims()	91
		6.4.2.17	check_vector()	91
		6.4.2.18	dirsum2()	91
		6.4.2.19	get_dim_subsys()	91
		6.4.2.20	get_num_subsys()	91
		6.4.2.21	kron2()	92
		6.4.2.22	multiidx2n()	92
		6.4.2.23	n2multiidx()	92
		6.4.2.24	variadic_vector_emplace() [1/2]	92
		6.4.2.25	variadic_vector_emplace() [2/2]	92

CONTENTS vii

7	Clas	s Docu	mentation	93
	7.1	qpp::e	perimental::Bit_circuit Class Reference	93
		7.1.1	Member Function Documentation	94
			7.1.1.1 CNOT()	95
			7.1.1.2 FRED()	95
			7.1.1.3 NOT()	95
			7.1.1.4 reset()	95
			7.1.1.5 SWAP()	95
			7.1.1.6 TOF()	95
			7.1.1.7 X()	95
		7.1.2	Member Data Documentation	96
			7.1.2.1 gate_count	96
	7.2	qpp::B	it_circuit Class Reference	96
		7.2.1	Detailed Description	96
	7.3	qpp::C	odes Class Reference	96
		7.3.1	Detailed Description	97
		7.3.2	Member Enumeration Documentation	97
			7.3.2.1 Type	98
		7.3.3	Constructor & Destructor Documentation	98
			7.3.3.1 Codes()	98
			7.3.3.2 ~Codes()	98
		7.3.4	Member Function Documentation	98
			7.3.4.1 codeword()	98
		7.3.5	Friends And Related Function Documentation	99
			7.3.5.1 internal::Singleton < const Codes >	99
	7.4	qpp::e	cception::CustomException Class Reference	99
		7.4.1	Detailed Description	100
		7.4.2	Constructor & Destructor Documentation	100
			7.4.2.1 CustomException()	101
		7.4.3	Member Function Documentation	101

viii CONTENTS

		7.4.3.1 type_description()
	7.4.4	Member Data Documentation
		7.4.4.1 what 10
7.5	qpp::ex	xception::DimsInvalid Class Reference
	7.5.1	Detailed Description
	7.5.2	Member Function Documentation
		7.5.2.1 type_description()
7.6	qpp::ex	xception::DimsMismatchCvector Class Reference
	7.6.1	Detailed Description
	7.6.2	Member Function Documentation
		7.6.2.1 type_description()
7.7	qpp::ex	xception::DimsMismatchMatrix Class Reference
	7.7.1	Detailed Description
	7.7.2	Member Function Documentation
		7.7.2.1 type_description()
7.8	qpp::ex	xception::DimsMismatchRvector Class Reference
	7.8.1	Detailed Description
	7.8.2	Member Function Documentation
		7.8.2.1 type_description()
7.9	qpp::ex	xception::DimsMismatchVector Class Reference
	7.9.1	Detailed Description
	7.9.2	Member Function Documentation
		7.9.2.1 type_description()
7.10	qpp::ex	xception::DimsNotEqual Class Reference
	7.10.1	Detailed Description
	7.10.2	Member Function Documentation
		7.10.2.1 type_description()
7.11	qpp::in	ternal::Display_Impl_ Struct Reference
	7.11.1	Member Function Documentation
		7.11.1.1 display_impl_()

CONTENTS

7.12	qpp::ex	xperimental::Dynamic_bitset Class Reference
	7.12.1	Member Typedef Documentation
		7.12.1.1 storage_type
		7.12.1.2 value_type
	7.12.2	Constructor & Destructor Documentation
		7.12.2.1 Dynamic_bitset()
	7.12.3	Member Function Documentation
		7.12.3.1 all()
		7.12.3.2 any()
		7.12.3.3 count()
		7.12.3.4 data()
		7.12.3.5 flip() [1/2]
		7.12.3.6 flip() [2/2]
		7.12.3.7 get()
		7.12.3.8 index_()
		7.12.3.9 none()
		7.12.3.10 offset_()
		7.12.3.11 operator"!=()
		7.12.3.12 operator==()
		7.12.3.13 rand() [1/2]
		7.12.3.14 rand() [2/2] 120
		7.12.3.15 reset() [1/2]
		7.12.3.16 reset() [2/2]
		7.12.3.17 set() [1/2]
		7.12.3.18 set() [2/2]
		7.12.3.19 size()
		7.12.3.20 storage_size()
		7.12.3.21 to_string()
	7.12.4	Friends And Related Function Documentation
		7.12.4.1 operator<<

CONTENTS

7	7.12.5	Member Data Documentation	23
		7.12.5.1 N	23
		7.12.5.2 storage_size	23
		7.12.5.3 v	23
7.13 q	pp::Dy	namic_bitset Class Reference	23
7	7.13.1	Detailed Description	23
7.14 c	pp::ex	ception::Exception Class Reference	24
7	7.14.1	Detailed Description	25
7	7.14.2	Constructor & Destructor Documentation	26
		7.14.2.1 Exception()	26
7	7.14.3	Member Function Documentation	26
		7.14.3.1 type_description()	26
		7.14.3.2 what()	26
7	7.14.4	Member Data Documentation	27
		7.14.4.1 where	27
7.15 c	pp::ex	perimental::Bit_circuit::Gate_count Struct Reference	27
7	7.15.1	Member Data Documentation	27
		7.15.1.1 CNOT	27
		7.15.1.2 FRED	27
		7.15.1.3 NOT	28
		7.15.1.4 SWAP	28
		7.15.1.5 TOF	28
		7.15.1.6 X	28
7.16 c	qpp::Ga	ates Class Reference	28
7	7.16.1	Detailed Description	30
7	7.16.2	Constructor & Destructor Documentation	30
		7.16.2.1 Gates()	31
		7.16.2.2 ~Gates()	31
7	7.16.3	Member Function Documentation	31

CONTENTS xi

		7.16.3.2	expandout() [1/3]	 	132
		7.16.3.3	expandout() [2/3]	 	132
		7.16.3.4	expandout() [3/3]	 	133
		7.16.3.5	Fd()	 	133
		7.16.3.6	ld()	 	134
		7.16.3.7	Rn()	 	134
		7.16.3.8	Xd()	 	135
		7.16.3.9	Zd()	 	135
	7.16.4	Friends A	And Related Function Documentation	 	135
		7.16.4.1	internal::Singleton< const Gates >	 	136
	7.16.5	Member	Data Documentation	 	136
		7.16.5.1	CNOT	 	136
		7.16.5.2	CNOTba	 	136
		7.16.5.3	CZ	 	136
		7.16.5.4	FRED	 	136
		7.16.5.5	$H \ldots \ldots \ldots \ldots \ldots$	 	136
		7.16.5.6	ld2	 	137
		7.16.5.7	s	 	137
		7.16.5.8	SWAP	 	137
		7.16.5.9	T	 	137
		7.16.5.10) TOF	 	137
		7.16.5.11	I X	 	137
		7.16.5.12	2 Y	 	138
		7.16.5.13	3 Z	 	138
7.17	qpp::ID	isplay Cla	ss Reference	 	138
	7.17.1	Detailed	Description	 	139
	7.17.2	Construc	etor & Destructor Documentation	 	139
		7.17.2.1	IDisplay() [1/3]	 	139
		7.17.2.2	IDisplay() [2/3]	 	140
		7.17.2.3	IDisplay() [3/3]	 	140

xii CONTENTS

		7.17.2.4 ~IDisplay()	140
	7.17.3	Member Function Documentation	140
		7.17.3.1 display()	140
		7.17.3.2 operator=() [1/2]	140
		7.17.3.3 operator=() [2/2]	141
	7.17.4	Friends And Related Function Documentation	141
		7.17.4.1 operator<<	141
7.18	qpp::In	it Class Reference	141
	7.18.1	Detailed Description	142
	7.18.2	Constructor & Destructor Documentation	142
		7.18.2.1 Init()	142
		7.18.2.2 ~Init()	143
	7.18.3	Friends And Related Function Documentation	143
		7.18.3.1 internal::Singleton< const Init >	143
7.19	qpp::int	ternal::IOManipEigen Class Reference	143
	7.19.1	Constructor & Destructor Documentation	144
		7.19.1.1 IOManipEigen() [1/2]	144
		7.19.1.2 IOManipEigen() [2/2]	144
	7.19.2	Member Function Documentation	144
		7.19.2.1 display()	144
	7.19.3	Member Data Documentation	145
		7.19.3.1 A	145
		7.19.3.2 chop	145
7.20	qpp::int	ternal::IOManipPointer< PointerType > Class Template Reference	145
	7.20.1	Constructor & Destructor Documentation	146
		7.20.1.1 IOManipPointer() [1/2]	147
		7.20.1.2 IOManipPointer() [2/2]	147
	7.20.2	Member Function Documentation	147
		7.20.2.1 display()	147
		7.20.2.2 operator=()	147

CONTENTS xiii

	7.20.3	Member Data Documentation	17
		7.20.3.1 end	8
		7.20.3.2 N __	8
		7.20.3.3 p	8
		7.20.3.4 separator	8
		7.20.3.5 start	8
7.21	qpp::int	ernal::IOManipRange< InputIterator > Class Template Reference	19
	7.21.1	Constructor & Destructor Documentation	50
		7.21.1.1 IOManipRange() [1/2]	50
		7.21.1.2 IOManipRange() [2/2]	50
	7.21.2	Member Function Documentation	50
		7.21.2.1 display()	50
		7.21.2.2 operator=()	51
	7.21.3	Member Data Documentation	51
		7.21.3.1 end	51
		7.21.3.2 first	51
		7.21.3.3 last	51
		7.21.3.4 separator	51
		7.21.3.5 start	51
7.22	qpp::is_	complex < T > Struct Template Reference	52
	7.22.1	Detailed Description	52
7.23	qpp::is_	complex < std::complex < T > > Struct Template Reference	53
	7.23.1	Detailed Description	53
7.24	qpp::is_	iterable < T, typename > Struct Template Reference	54
	7.24.1	Detailed Description	54
7.25		iterable< T, to_void< decltype(std::declval< T >().begin()), decltype(std::declval< T ()), typename T::value_type >> Struct Template Reference	55
	7.25.1	Detailed Description	6
7.26	qpp::is_	matrix_expression < Derived > Struct Template Reference	6
	7.26.1	Detailed Description	57
7.27	qpp::ma	ake_void< Ts > Struct Template Reference	57

xiv CONTENTS

	7.27.1	Detailed Description	157
	7.27.2	Member Typedef Documentation	157
		7.27.2.1 type	157
7.28	qpp::ex	cception::MatrixMismatchSubsys Class Reference	158
	7.28.1	Detailed Description	159
	7.28.2	Member Function Documentation	159
		7.28.2.1 type_description()	159
7.29	qpp::ex	cception::MatrixNotCvector Class Reference	159
	7.29.1	Detailed Description	161
	7.29.2	Member Function Documentation	161
		7.29.2.1 type_description()	161
7.30	qpp::ex	cception::MatrixNotRvector Class Reference	161
	7.30.1	Detailed Description	162
	7.30.2	Member Function Documentation	162
		7.30.2.1 type_description()	162
7.31	qpp::ex	cception::MatrixNotSquare Class Reference	163
	7.31.1	Detailed Description	164
	7.31.2	Member Function Documentation	164
		7.31.2.1 type_description()	164
7.32	qpp::ex	cception::MatrixNotSquareNorCvector Class Reference	165
	7.32.1	Detailed Description	166
	7.32.2	Member Function Documentation	166
		7.32.2.1 type_description()	166
7.33	qpp::ex	cception::MatrixNotSquareNorRvector Class Reference	167
	7.33.1	Detailed Description	168
	7.33.2	Member Function Documentation	168
		7.33.2.1 type_description()	168
7.34	qpp::ex	cception::MatrixNotSquareNorVector Class Reference	169
	7.34.1	Detailed Description	170
	7.34.2	Member Function Documentation	170

CONTENTS xv

		7.34.2.1 type_description()	70
7.35	qpp::ex	cception::MatrixNotVector Class Reference	71
	7.35.1	Detailed Description	72
	7.35.2	Member Function Documentation	72
		7.35.2.1 type_description()	72
7.36	qpp::ex	cception::NoCodeword Class Reference	73
	7.36.1	Detailed Description	74
	7.36.2	Member Function Documentation	74
		7.36.2.1 type_description()	74
7.37	qpp::ex	cception::NotBipartite Class Reference	75
	7.37.1	Detailed Description	76
	7.37.2	Member Function Documentation	176
		7.37.2.1 type_description()	76
7.38	qpp::ex	cception::NotQubitCvector Class Reference	76
	7.38.1	Detailed Description	78
	7.38.2	Member Function Documentation	78
		7.38.2.1 type_description()	78
7.39	qpp::ex	cception::NotQubitMatrix Class Reference	78
	7.39.1	Detailed Description	79
	7.39.2	Member Function Documentation	79
		7.39.2.1 type_description()	79
7.40	qpp::ex	cception::NotQubitRvector Class Reference	80
	7.40.1	Detailed Description	81
	7.40.2	Member Function Documentation	81
		7.40.2.1 type_description()	81
7.41	qpp::ex	cception::NotQubitSubsys Class Reference	82
	7.41.1	Detailed Description	83
	7.41.2	Member Function Documentation	83
		7.41.2.1 type_description()	83
7.42	qpp::ex	cception::NotQubitVector Class Reference	84

xvi CONTENTS

	7.42.1	Detailed Description	185
	7.42.2	Member Function Documentation	185
		7.42.2.1 type_description()	185
7.43	qpp::ex	cception::OutOfRange Class Reference	186
	7.43.1	Detailed Description	187
	7.43.2	Member Function Documentation	187
		7.43.2.1 type_description()	187
7.44	qpp::ex	ception::PermInvalid Class Reference	188
	7.44.1	Detailed Description	189
	7.44.2	Member Function Documentation	189
		7.44.2.1 type_description()	189
7.45	qpp::ex	ception::PermMismatchDims Class Reference	189
	7.45.1	Detailed Description	191
	7.45.2	Member Function Documentation	191
		7.45.2.1 type_description()	191
7.46	qpp::Ra	andomDevices Class Reference	191
	7.46.1	Detailed Description	193
	7.46.2	Constructor & Destructor Documentation	193
		7.46.2.1 RandomDevices()	193
		7.46.2.2 ~RandomDevices()	193
	7.46.3	Member Function Documentation	193
		7.46.3.1 get_prng()	193
		7.46.3.2 load()	193
		7.46.3.3 save()	194
	7.46.4	Friends And Related Function Documentation	194
		7.46.4.1 internal::Singleton < RandomDevices >	194
	7.46.5	Member Data Documentation	194
		7.46.5.1 prng	194
		7.46.5.2 rd	195
7.47	qpp::int	ternal::Singleton< T > Class Template Reference	195

CONTENTS xvii

	7.47.1	Detailed Description	95
	7.47.2	Constructor & Destructor Documentation	96
		7.47.2.1 Singleton() [1/2]	96
		7.47.2.2 Singleton() [2/2]	96
		7.47.2.3 ~Singleton()	96
	7.47.3	Member Function Documentation	96
		7.47.3.1 get_instance()	97
		7.47.3.2 get_thread_local_instance()	97
		7.47.3.3 operator=()	97
7.48	qpp::ex	cception::SizeMismatch Class Reference	97
	7.48.1	Detailed Description	98
	7.48.2	Member Function Documentation	98
		7.48.2.1 type_description()	98
7.49	qpp::St	ates Class Reference	99
	7.49.1	Detailed Description) 1
	7.49.2	Constructor & Destructor Documentation) 1
		7.49.2.1 States()) 1
		7.49.2.2 ~States()) 1
	7.49.3	Member Function Documentation) 1
		7.49.3.1 jn()) 1
		7.49.3.2 mes()	ງ2
		7.49.3.3 minus()	ງ2
		7.49.3.4 one()	03
		7.49.3.5 plus()	03
		7.49.3.6 zero()	03
	7.49.4	Friends And Related Function Documentation	Э4
		7.49.4.1 internal::Singleton < const States >	Э4
	7.49.5	Member Data Documentation	Э4
		7.49.5.1 b00)4
		7.49.5.2 b01	04

xviii CONTENTS

		7.49.5.3 b10	14
		7.49.5.4 b11	14
		7.49.5.5 GHZ	15
		7.49.5.6 pb00	15
		7.49.5.7 pb01	15
		7.49.5.8 pb10	15
		7.49.5.9 pb11	15
		7.49.5.10 pGHZ	15
		7.49.5.11 pW	16
		7.49.5.12 px0	16
		7.49.5.13 px1	16
		7.49.5.14 py0	16
		7.49.5.15 py1	16
		7.49.5.16 pz0	16
		7.49.5.17 pz1	17
		7.49.5.18 W	17
		7.49.5.19 x0	17
		7.49.5.20 x1	17
		7.49.5.21 y0	17
		7.49.5.22 y1	17
		7.49.5.23 z0	18
		7.49.5.24 z1	18
7.50	qpp::ex	cception::SubsysMismatchDims Class Reference	18
	7.50.1	Detailed Description	19
	7.50.2	Member Function Documentation	19
		7.50.2.1 type_description()	19
7.51	qpp::Ti	mer < T, CLOCK_T > Class Template Reference	0
	7.51.1	Detailed Description	1
	7.51.2	Constructor & Destructor Documentation	2
		7.51.2.1 Timer() [1/3]	2

CONTENTS xix

		7.51.2.2 Timer() [2/3]	12
		7.51.2.3 Timer() [3/3]	12
		7.51.2.4 ~Timer()	12
	7.51.3	Member Function Documentation	12
		7.51.3.1 display()	12
		7.51.3.2 get_duration()	13
		7.51.3.3 operator=() [1/2]	13
		7.51.3.4 operator=() [2/2]	13
		7.51.3.5 tic()	14
		7.51.3.6 tics()	14
		7.51.3.7 toc()	14
	7.51.4	Member Data Documentation	14
		7.51.4.1 end	14
		7.51.4.2 start	15
7.52	qpp::ex	cception::TypeMismatch Class Reference	15
	7.52.1	Detailed Description	16
	7.52.2	Member Function Documentation	16
		7.52.2.1 type_description()	16
7.53	qpp::ex	cception::UndefinedType Class Reference	17
	7.53.1	Detailed Description	18
	7.53.2	Member Function Documentation	18
		7.53.2.1 type_description()	18
7.54	qpp::ex	cception::Unknown Class Reference	18
	7.54.1	Detailed Description	20
	7.54.2	Member Function Documentation	20
		7.54.2.1 type_description()	20
7.55	qpp::ex	cception::ZeroSize Class Reference	20
	7.55.1	Detailed Description	21
	7.55.2	Member Function Documentation	21
		7.55.2.1 type_description()	21

CONTENTS

8	File I	Documentation	223
	8.1	classes/codes.h File Reference	223
		8.1.1 Detailed Description	223
	8.2	classes/exception.h File Reference	223
		8.2.1 Detailed Description	225
	8.3	classes/gates.h File Reference	225
		8.3.1 Detailed Description	225
	8.4	classes/idisplay.h File Reference	226
		8.4.1 Detailed Description	226
	8.5	classes/init.h File Reference	226
		8.5.1 Detailed Description	227
	8.6	classes/random_devices.h File Reference	227
		8.6.1 Detailed Description	227
	8.7	classes/states.h File Reference	227
		8.7.1 Detailed Description	228
	8.8	classes/timer.h File Reference	228
		8.8.1 Detailed Description	228
	8.9	constants.h File Reference	228
		8.9.1 Detailed Description	229
	8.10	entanglement.h File Reference	229
		8.10.1 Detailed Description	231
	8.11	entropies.h File Reference	231
		8.11.1 Detailed Description	231
	8.12	experimental/experimental.h File Reference	232
		8.12.1 Detailed Description	232
		8.12.2 Typedef Documentation	232
		8.12.2.1 idx	232
	8.13	functions.h File Reference	233
		8.13.1 Detailed Description	233
	8.14	input_output.h File Reference	233

CONTENTS xxi

	8.14.1 Detailed Description	234
8.15	instruments.h File Reference	234
	8.15.1 Detailed Description	236
8.16	internal/classes/iomanip.h File Reference	236
	8.16.1 Detailed Description	236
8.17	internal/classes/singleton.h File Reference	237
	8.17.1 Detailed Description	237
8.18	internal/util.h File Reference	237
	8.18.1 Detailed Description	239
8.19	MATLAB/matlab.h File Reference	239
	8.19.1 Detailed Description	240
8.20	number_theory.h File Reference	240
	8.20.1 Detailed Description	241
8.21	operations.h File Reference	241
	8.21.1 Detailed Description	243
8.22	qpp.h File Reference	243
	8.22.1 Detailed Description	244
	8.22.2 Macro Definition Documentation	244
	8.22.2.1 QPP_UNUSED	244
8.23	random.h File Reference	244
	8.23.1 Detailed Description	245
8.24	statistics.h File Reference	246
	8.24.1 Detailed Description	246
8.25	traits.h File Reference	247
	8.25.1 Detailed Description	247
8.26	types.h File Reference	248
	8.26.1 Detailed Description	249
8.27	/Users/vlad/Dropbox/programming/cpp/qpp/README.md File Reference	249
Index		251
-		

Chapter 1

Quantum++

Version 1.0-rc2 - 6 September 2017

Build status:

Chat (questions/issues)

Quantum++ is a modern C++11 general purpose quantum computing library, composed solely of template header files. Quantum++ is written in standard C++11 and has very low external dependencies, using only the Eigen 3 linear algebra header-only template library and, if available, the OpenMP multi-processing library.

Quantum++ is not restricted to qubit systems or specific quantum information processing tasks, being capable of simulating arbitrary quantum processes. The main design factors taken in consideration were the ease of use, high portability, and high performance. The library's simulation capabilities are only restricted by the amount of available physical memory. On a typical machine (Intel i5 8Gb RAM) Quantum++ can successfully simulate the evolution of 25 qubits in a pure state or of 12 qubits in a mixed state reasonably fast.

To report any bugs or ask for additional features/enhancements, please submit an issue with an appropriate label.

If you are interesting in contributing to this project, feel free to contact me. Alternatively, create a custom branch, add your contribution, then finally create a pull request. If I accept the pull request, I will merge your custom branch with the latest development branch. The latter will eventually be merged into a future release version. To contribute, you need to have a solid knowledge of C++ (preferably C++11), including templates and the standard library, a basic knowledge of quantum computing and linear algebra, and working experience with Eigen 3.

For additional Eigen 3 documentation see http://eigen.tuxfamily.org/dox/. For a simple Eigen 3 quick ASCII reference see http://eigen.tuxfamily.org/dox/AsciiQuickReference.txt.

Copyright (c) 2013 - 2017 Vlad Gheorghiu, vgheorgh AT gmail DOT com.

Quantum++ is licensed under the MIT license, see COPYING for the full terms and conditions of the license.

2 Quantum++

Building instructions for POSIX-compliant platforms

Configuration

- Compiler: g++ version 5.0 or later (for good C++11 support)
- Eigen 3 linear algebra library. I assume here that the library is installed in \$HOME/eigen, although the location may vary, e.g. if the library was installed using a package manager.
- Quantum++ library located in \$HOME/qpp

Optional

- CMake version 3.0 or later, highly recommended
- MATLAB compiler include header files: /Applications/MATLAB_R2016a.app/extern/include
- MATLAB compiler shared library files: /Applications/MATLAB_R2016a.app/bin/maci64

Building using CMake (version 3.0 or later)

The current version of the repository has a ./CMakeLists.txt configuration file for building examples using CMake. To build an example using CMake, I recommend an out-of-source build, i.e., from the root of the project (where ./include is located), type

```
mkdir ./build
cd ./build
cmake ..
make
```

The commands above build the release version (default) executable qpp, from the source file ./examples/minimal.cpp, without MATLAB support (default), inside the directory ./build.

If the location of Eigen 3 is not detected automatically by the CMake build script, then the build script will fail (with an error message). In this case the location of Eigen 3 needs to be specified manually in the CMake build command line by passing the <code>-DEIGEN3_INCLUDE_DIR=path_to_eigen3</code> flag, e.g.

```
cmake .. -DEIGEN3_INCLUDE_DIR=/usr/local/eigen3
```

To build a different configuration, e.g. the debug version with MATLAB support, type from the root of the project

```
cd ./build rm -rf \star cmake -DCMAKE_BUILD_TYPE=Debug -DWITH_MATLAB=ON .. make
```

Or, to disable OpenMP support (enabled by default), type

```
cd ./build
rm -rf *
cmake -DWITH_OPENMP=OFF ..
make
```

To change the name of the example file or the location of MATLAB installation, edit the ./CMakeLists.txt file. Inspect also ./CMakeLists.txt for additional fine-tuning options. Do not forget to clean the ./build directory before a fresh build!

Building without an automatic build system

- Example file: \$HOME/qpp/examples/minimal.cpp
- Output executable: \$HOME/qpp/examples/minimal
- You must run the commands below from inside the directory \$HOME/qpp/examples

Release version (without MATLAB support)

```
g++ -pedantic -std=c++11 -Wall -Wextra -Weffc++ -fopenmp \
    -03 -DNDEBUG -DEIGEN_NO_DEBUG \
    -isystem $HOME/eigen -I $HOME/qpp/include \
    minimal.cpp -o minimal
```

Debug version (without MATLAB support)

```
g++ -pedantic -std=c++11 -Wall -Wextra -Weffc++ -fopenmp \
    -g3 -DDEBUG \
    -isystem $HOME/eigen -I $HOME/qpp/include \
    minimal.cpp -o minimal
```

Release version (with MATLAB support)

```
g++ -pedantic -std=c++11 -Wall -Wextra -Weffc++ -fopenmp \
    -03 -DNDEBUG -DEIGEN_NO_DEBUG \
    -isystem $HOME/eigen -I $HOME/qpp/include \
    -I/Applications/MATLAB_R2016a.app/extern/include \
    -L/Applications/MATLAB_R2016a.app/bin/maci64 \
    -lmx -lmat minimal.cpp -o minimal
```

Debug version (with MATLAB support)

```
g++ -pedantic -std=c++11 -Wall -Wextra -Weffc++ -fopenmp \
    -g3 -DDEBUG \
    -isystem $HOME/eigen -I $HOME/qpp/include \
    -I /Applications/MATLAB_R2016a.app/extern/include \
    -L /Applications/MATLAB_R2016a.app/bin/maci64 \
    -lmx -lmat minimal.cpp -o minimal
```

Additional building instructions for particular platforms

Windows via Visual Studio

- Quantum++ contains a full Visual Studio 2017 solution under the folder ./VisualStudio. The solution expects Eigen 3 to be installed under C:\eigen. Use this solution at first to get you started. A unit testing project (qpp_testing) with Google Test 1.8.0 is also included in the solution.
- Visual Studio versions preceding version 2015 do not have full C++11 support. If you decide to use Visual Studio make sure you install version 2015 or later. I recommend using Visual Studio 2017.
- Visual Studio 2015/2017 only supports OpenMP 2.0. Quantum++ uses features from OpenMP 3.0, hence Quantum++ will not compile on Visual Studio 2015/2017 if you #define WITH_← OPENMP_ in your source file and enable OpenMP (disabled by default) in
 - *Project/Properties/Configuration Properties/C_C++/Language/Open MP Support*

4 Quantum++

Windows via Cygwin

• Some earlier versions of Cygwin had a bug related to lack of support for some C++11 math functions, see http://stackoverflow.com/questions/28997206/cygwin-support-for-c11-in-g4-9-2 for more details. Quick fix: patch the standard library header file <cmath> using the provided patch ./cmath_cygwin.patch. Later Cygwin versions seem to have fixed the issue (as of Nov. 2016).

OS X/macOS

- If you want to compile with clang++ version 3.7 or later, I highly recommend to install it via macports. See Additional remarks for more details.
- If you run the program with MATLAB support, make sure that the environment variable DYLD_LIBRARY_← PATH is set to point to the MATLAB compiler library location, see the run_mac_MATLAB script. Otherwise, you get a runtime error similar to

```
> dyld: Library not loaded: @rpath/libmat.dylib.
```

- I recommend running via a script, as otherwise setting the DYLD_LIBRARY_PATH globally may interfere with macports' CMake installation (in case you use CMake from macports). If you use a script, then the environment variable is local to the script and does not interfere with the rest of the system.
- Example of script, assumed to be located in the root directory of Quantum++

```
#!/bin/sh
MATLAB=/Applications/MATLAB_R2016a.app
export DYLD_LIBRARY_PATH=$DYLD_LIBRARY_PATH:$MATLAB/bin/maci64
./build/qpp
```

• If you build a debug version with g++ and use gdb to step inside template functions you may want to add -fno-weak compiler flag. See http://stackoverflow.com/questions/23330641/gnu-gdb-can-not-st for more details about this problem.

Unit testing

Quantum++ was extensively tested under multiple flavours of Linux, OS X/macOS, Windows XP/7/10, Solaris 11.x via a suite of unit tests constructed with Google Test 1.8.0 (included with the project in ./unit_tests/lib/gtest-1.8.0). The source code of the unit tests is provided under ./unit_ \leftarrow tests/tests.

To build and run the unit tests under any POSIX-compliant platform, I strongly recommend to use $\tt CMake$ version 3.0 or later. Assuming you do use $\tt CMake$, switch to the <code>./unit_tests</code> directory, create a build directory inside it, then from the newly created <code>./unit_tests/build</code> type

```
cmake ..
```

The commands above build ./unit_tests/build/tests/qpp_testing, which you then may run. Note that qpp::Timer tests or tests related to random functions such as qpp::rand() may sometime (very rarely) fail, due to timing imprecision or statistical errors. Such behaviour is perfectly normal.

To run the unit tests in Windows under Visual Studio, use the provided solution and run the qpp_testing project from the Solution Explorer.

Note

The CMake configuration file ./unit_tests/CMakeLists.txt defines the same building options and default choices as the main ./CMakeLists.txt of Quantum++. Therefore you can use the same flags as the ones mentioned at the beginning of this document when customizing the build. You should modify ./unit_ctests/CMakeLists.txt accordingly in case your Eigen 3 library or MATLAB include/library files are in a different location than the one assumed in this document.

Additional remarks

• If you use clang++ version 3.7 or later and want to use OpenMP (enabled by default), make sure to modify CLANG_LIBOMP and CLANG_LIBOMP_INCLUDE in CMakeLists.txt so they point to the correct location of the OpenMP library, as otherwise clang++ will not find <omp.h> and the libomp shared library. Under Linux, you may need to modify also -fopenmp=... flag as well. As such, I do not recommend using clang++ with OpenMP due to various platform-dependent issues.

6 Quantum++

Chapter 2

Namespace Index

2.1 Namespace List

Here is a list of all namespaces with brief descriptions:

qpp	
Quantum++ main namespace	17
qpp::exception	
Quantum++ exception hierarchy namespace	85
qpp::experimental	
Experimental/test functions/classes, do not use or modify	87
qpp::internal	
Internal utility functions, do not use them directly or modify them	87

8 Namespace Index

Chapter 3

Hierarchical Index

3.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

qpp::Bit_circuit
qpp::internal::Display_Impl
qpp::internal::IOManipEigen
qpp::experimental::Dynamic_bitset
gpp::experimental::Bit circuit
qpp::Dynamic bitset
std::exception
qpp::exception::Exception
qpp::exception::CustomException
qpp::exception::DimsInvalid
qpp::exception::DimsMismatchCvector
qpp::exception::DimsMismatchMatrix
qpp::exception::DimsMismatchRvector
qpp::exception::DimsMismatchVector
qpp::exception::DimsNotEqual
qpp::exception::MatrixMismatchSubsys
qpp::exception::MatrixNotCvector
qpp::exception::MatrixNotRvector
qpp::exception::MatrixNotSquare
qpp::exception::MatrixNotSquareNorCvector
qpp::exception::MatrixNotSquareNorRvector
qpp::exception::MatrixNotSquareNorVector
qpp::exception::MatrixNotVector
qpp::exception::NoCodeword
qpp::exception::NotBipartite
qpp::exception::NotQubitCvector
qpp::exception::NotQubitMatrix
qpp::exception::NotQubitRvector
qpp::exception::NotQubitSubsys
qpp::exception::NotQubitVector
qpp::exception::OutOfRange
qpp::exception::PermInvalid
qpp::exception::PermMismatchDims
qpp::exception::SizeMismatch
appropriation::SubsysMismatchDims 208

10 Hierarchical Index

qpp::exception::TypeMismatch	. 215
qpp::exception::UndefinedType	. 217
qpp::exception::Unknown	. 218
qpp::exception::ZeroSize	. 220
false_type	
$qpp::is_complex < T > \dots \dots \dots \dots \dots \dots \dots \dots \dots $. 152
qpp::is_iterable < T, typename >	. 154
qpp::experimental::Bit_circuit::Gate_count	
qpp::IDisplay	138
qpp::internal::IOManipEigen	
qpp::internal::IOManipPointer< PointerType >	
qpp::internal::IOManipRange < InputIterator >	
$qpp:Timer < T, CLOCK_T > \ \ldots \$. 210
is_base_of	
qpp::is_matrix_expression< Derived >	
qpp::make_void< Ts >	
qpp::internal::Singleton< T >	
qpp::internal::Singleton < const Codes >	
qpp::Codes	. 96
qpp::internal::Singleton< const Gates >	195
qpp::Gates	. 128
qpp::internal::Singleton< const Init >	195
	. 141
qpp::internal::Singleton< const States >	
qpp::States	
<pre>gpp::internal::Singleton < RandomDevices ></pre>	
qpp::RandomDevices	
" '	. 191
true_type	
qpp::is_complex < std::complex < T >>	
<pre>qpp::is_iterable< T, to_void< decltype(std::declval< T >().begin()), decltype(std::declval< T >() end()) typename T::value_type > ></pre>	
ZITERIOTI IVOERAME I VAINE IVOE 2 2	1:10

Chapter 4

Class Index

4.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

qpp::experimental::Bit_circuit	93
qpp::Bit_circuit	
Classical reversible circuit simulator	96
qpp::Codes	
Const Singleton class that defines quantum error correcting codes	96
qpp::exception::CustomException	
Custom exception	99
qpp::exception::DimsInvalid	
Invalid dimension(s) exception	102
qpp::exception::DimsMismatchCvector	
Dimension(s) mismatch column vector size exception	103
qpp::exception::DimsMismatchMatrix	
Dimension(s) mismatch matrix size exception	105
qpp::exception::DimsMismatchRvector	
Dimension(s) mismatch row vector size exception	107
qpp::exception::DimsMismatchVector	
Dimension(s) mismatch vector size exception	109
qpp::exception::DimsNotEqual	
Dimensions not equal exception	111
qpp::internal::Display_Impl	113
qpp::experimental::Dynamic_bitset	114
qpp::Dynamic_bitset	
Dynamic bitset class, allows the specification of the number of bits at runtime (unlike std←	
::bitset <n>)</n>	123
qpp::exception::Exception	
Base class for generating Quantum++ custom exceptions	124
qpp::experimental::Bit_circuit::Gate_count	127
qpp::Gates	
Const Singleton class that implements most commonly used gates	128
qpp::IDisplay	
Abstract class (interface) that mandates the definition of virtual std::ostream& display(std←	
::ostream& os) const	138
qpp::Init	
Const Singleton class that performs additional initializations/cleanups	141
annuinternal : IOManin Figen	1//

12 Class Index

<pre>qpp::internal::IOManipPointer< PointerType ></pre>	145 149
<pre>qpp::is_complex < T ></pre>	152
qpp::is_complex< std::complex< T > >	
Checks whether the type is a complex number type, specialization for complex types	153
qpp::is_iterable < T, typename > Checks whether T is compatible with an STL-like iterable container	154
qpp::is_iterable< T, to_void< decltype(std::declval< T >().begin()), decltype(std::declval< T >().end()),	
typename T::value type >>	
Checks whether T is compatible with an STL-like iterable container, specialization for STL-like	
iterable containers	155
qpp::is_matrix_expression< Derived >	
Checks whether the type is an Eigen matrix expression	156
qpp::make_void < Ts >	
Helper for qpp::to_void<> alias template	157
qpp::exception::MatrixMismatchSubsys	
Matrix mismatch subsystems exception	158
qpp::exception::MatrixNotCvector	
Matrix is not a column vector exception	159
qpp::exception::MatrixNotRvector	
Matrix is not a row vector exception	161
qpp::exception::MatrixNotSquare	
Matrix is not square exception	163
qpp::exception::MatrixNotSquareNorCvector	
Matrix is not square nor column vector exception	165
qpp::exception::MatrixNotSquareNorRvector	
Matrix is not square nor row vector exception	167
qpp::exception::MatrixNotSquareNorVector	
Matrix is not square nor vector exception	169
qpp::exception::MatrixNotVector	
Matrix is not a vector exception	171
qpp::exception::NoCodeword	
Codeword does not exist exception	173
qpp::exception::NotBipartite	
Not bi-partite exception	175
qpp::exception::NotQubitCvector	470
Column vector is not 2 x 1 exception	1/6
qpp::exception::NotQubitMatrix	170
Matrix is not 2 x 2 exception	1/0
<pre>qpp::exception::NotQubitRvector</pre>	100
	100
qpp::exception::NotQubitSubsys Subsystems are not qubits exception	192
qpp::exception::NotQubitVector	102
Vector is not 2 x 1 nor 1 x 2 exception	184
qpp::exception::OutOfRange	104
	186
qpp::exception::PermInvalid	100
Invalid permutation exception	100
qpp::exception::PermMismatchDims	100
Permutation mismatch dimensions exception	180
qpp::RandomDevices	100
Singleton class that manages the source of randomness in the library	191
app::internal::Singleton < T >	.01
Singleton policy class, used internally to implement the singleton pattern via CRTP (Curiously	
recurring template pattern)	195
	_

4.1 Class List

qpp::exception::SizeMismatch	
Size mismatch exception	197
qpp::States	
Const Singleton class that implements most commonly used states	199
qpp::exception::SubsysMismatchDims	
Subsystems mismatch dimensions exception	208
qpp::Timer< T, CLOCK_T >	
Chronometer	210
qpp::exception::TypeMismatch	
Type mismatch exception	215
qpp::exception::UndefinedType	
Not defined for this type exception	217
qpp::exception::Unknown	
Unknown exception	218
qpp::exception::ZeroSize	
Object has zero size exception	220

14 Class Index

Chapter 5

File Index

5.1 File List

Here is a list of all files with brief descriptions:

constants.h
Constants
entanglement.h
Entanglement functions
entropies.h
Entropy functions
functions.h
Generic quantum computing functions
input_output.h
Input/output functions
instruments.h
Measurement functions
number_theory.h
Number theory functions
operations.h
Quantum operation functions
qpp.h
Quantum++ main header file, includes all other necessary headers
random.h
Randomness-related functions
statistics.h
Statistics functions
traits.h
Type traits
types.h
Type aliases
classes/codes.h
Quantum error correcting codes
classes/exception.h
Exceptions
classes/gates.h
Quantum gates
classes/idisplay.h
Display interface via the non-virtual interface (NVI)
classes/init.h
Initialization

16 File Index

classes/random_devices.h
Random devices
classes/states.h
Quantum states
classes/timer.h
Timing
experimental/experimental.h
Experimental/test functions/classes
internal/util.h
Internal utility functions
internal/classes/iomanip.h
Input/output manipulators
internal/classes/singleton.h
Singleton pattern via CRTP
MATLAB/matlab.h
Input/output interfacing with MATLAB

Chapter 6

Namespace Documentation

6.1 qpp Namespace Reference

Quantum++ main namespace.

Namespaces

exception

Quantum++ exception hierarchy namespace.

experimental

Experimental/test functions/classes, do not use or modify.

internal

Internal utility functions, do not use them directly or modify them.

Classes

· class Bit_circuit

Classical reversible circuit simulator.

class Codes

const Singleton class that defines quantum error correcting codes

class Dynamic_bitset

Dynamic bitset class, allows the specification of the number of bits at runtime (unlike std::bitset<N>)

· class Gates

const Singleton class that implements most commonly used gates

· class IDisplay

Abstract class (interface) that mandates the definition of virtual std::ostream& display(std::ostream& os) const.

class Init

const Singleton class that performs additional initializations/cleanups

• struct is_complex

Checks whether the type is a complex type.

struct is_complex< std::complex< T >>

Checks whether the type is a complex number type, specialization for complex types.

struct is_iterable

Checks whether T is compatible with an STL-like iterable container.

struct is_iterable< T, to_void< decltype(std::declval< T >().begin()), decltype(std::declval< T >().end()), typename T::value_type >>

Checks whether T is compatible with an STL-like iterable container, specialization for STL-like iterable containers.

· struct is_matrix_expression

Checks whether the type is an Eigen matrix expression.

struct make_void

Helper for qpp::to_void<> alias template.

· class RandomDevices

Singleton class that manages the source of randomness in the library.

· class States

const Singleton class that implements most commonly used states

· class Timer

Chronometer.

Typedefs

```
    template<typename... Ts>
        using to_void = typename make_void< Ts... >::type
        Alias template that implements the proposal for void_t.
    using idx = std::size_t
```

• using bigint = long long int

Big integer.

• using cplx = std::complex< double >

Non-negative integer index.

Complex number in double precision.

using ket = Eigen::VectorXcd

Complex (double precision) dynamic Eigen column vector.

• using bra = Eigen::RowVectorXcd

Complex (double precision) dynamic Eigen row vector.

using cmat = Eigen::MatrixXcd

Complex (double precision) dynamic Eigen matrix.

• using dmat = Eigen::MatrixXd

Real (double precision) dynamic Eigen matrix.

template<typename Scalar >
 using dyn_mat = Eigen::Matrix< Scalar, Eigen::Dynamic, Eigen::Dynamic >

Dynamic Eigen matrix over the field specified by Scalar.

```
    template<typename Scalar >
        using dyn_col_vect = Eigen::Matrix< Scalar, Eigen::Dynamic, 1 >
```

Dynamic Eigen column vector over the field specified by Scalar.

```
    template<typename Scalar >
        using dyn_row_vect = Eigen::Matrix< Scalar, 1, Eigen::Dynamic >
```

Dynamic Eigen row vector over the field specified by Scalar.

Functions

```
• constexpr cplx operator"" _i (unsigned long long int x) noexcept
     User-defined literal for complex i = \sqrt{-1} (integer overload)

    constexpr cplx operator" i (long double x) noexcept

      User-defined literal for complex i = \sqrt{-1} (real overload)

    cplx omega (idx D)

     D-th root of unity.

    template<typename Derived >

  dyn_col_vect< double > schmidtcoeffs (const Eigen::MatrixBase< Derived > &A, const std::vector< idx >
     Schmidt coefficients of the bi-partite pure state A.

    template<typename Derived >

  dyn_col_vect< double > schmidtcoeffs (const Eigen::MatrixBase< Derived > &A, idx d=2)
      Schmidt coefficients of the bi-partite pure state A.

    template<typename Derived >

  cmat schmidtA (const Eigen::MatrixBase< Derived > &A, const std::vector< idx > &dims)
     Schmidt basis on Alice side.
template<typename Derived >
  cmat schmidtA (const Eigen::MatrixBase< Derived > &A, idx d=2)
     Schmidt basis on Alice side.

    template<typename Derived >

  cmat schmidtB (const Eigen::MatrixBase< Derived > &A, const std::vector< idx > &dims)
     Schmidt basis on Bob side.

    template<typename Derived >

  cmat schmidtB (const Eigen::MatrixBase< Derived > &A, idx d=2)
     Schmidt basis on Bob side.

    template<typename Derived >

  std::vector< double > schmidtprobs (const Eigen::MatrixBase< Derived > &A, const std::vector< idx >
  &dims)
     Schmidt probabilities of the bi-partite pure state A.
• template<typename Derived >
  std::vector< double > schmidtprobs (const Eigen::MatrixBase< Derived > &A, idx d=2)
      Schmidt probabilities of the bi-partite pure state A.

    template<typename Derived >

  double entanglement (const Eigen::MatrixBase< Derived > &A, const std::vector< idx > &dims)
     Entanglement of the bi-partite pure state A.

    template<typename Derived >

  double entanglement (const Eigen::MatrixBase< Derived > &A, idx d=2)
     Entanglement of the bi-partite pure state A.

    template<typename Derived >

  double gconcurrence (const Eigen::MatrixBase< Derived > &A)
      G-concurrence of the bi-partite pure state A.
• template<typename Derived >
  double negativity (const Eigen::MatrixBase< Derived > &A, const std::vector< idx > &dims)
     Negativity of the bi-partite mixed state A.

    template<typename Derived >

  double negativity (const Eigen::MatrixBase< Derived > &A, idx d=2)
     Negativity of the bi-partite mixed state A.

    template<typename Derived >

  double lognegativity (const Eigen::MatrixBase< Derived > &A, const std::vector< idx > &dims)
     Logarithmic negativity of the bi-partite mixed state A.
```

• template<typename Derived > double lognegativity (const Eigen::MatrixBase< Derived > &A, idx d=2) Logarithmic negativity of the bi-partite mixed state A. template<typename Derived > double concurrence (const Eigen::MatrixBase< Derived > &A) Wootters concurrence of the bi-partite qubit mixed state A. template<typename Derived > double entropy (const Eigen::MatrixBase< Derived > &A) von-Neumann entropy of the density matrix A double entropy (const std::vector< double > &prob) Shannon entropy of the probability distribution prob. template<typename Derived > double renyi (const Eigen::MatrixBase< Derived > &A, double alpha) Renyi- α entropy of the density matrix A, for $\alpha \geq 0$. double renyi (const std::vector< double > &prob, double alpha) Renyi- α entropy of the probability distribution prob, for $\alpha \geq 0$. • template<typename Derived > double tsallis (const Eigen::MatrixBase< Derived > &A, double q) Tsallis- q entropy of the density matrix A, for $q \geq 0$. double tsallis (const std::vector< double > &prob, double q) Tsallis- q entropy of the probability distribution prob, for q > 0. • template<typename Derived > double qmutualinfo (const Eigen::MatrixBase< Derived > &A, const std::vector< idx > &subsysA, const std::vector< idx > &subsysB, const std::vector<math>< idx > &dims)Quantum mutual information between 2 subsystems of a composite system. template<typename Derived > double qmutualinfo (const Eigen::MatrixBase< Derived > &A, const std::vector< idx > &subsysA, const std::vector < idx > &subsysB, idx d=2) Quantum mutual information between 2 subsystems of a composite system. • template<typename Derived > internal::IOManipEigen disp (const Eigen::MatrixBase< Derived > &A, double chop=qpp::chop) Eigen expression ostream manipulator. internal::IOManipEigen disp (cplx z, double chop=qpp::chop) Complex number ostream manipulator. template<typename InputIterator > internal::IOManipRange < InputIterator > disp (InputIterator first, InputIterator last, const std::string &separator, const std::string &start="[", const std::string &end="]") Range ostream manipulator. template<typename Container > internal::IOManipRange< typename Container::const_iterator > disp (const Container &c, const std::string &separator, const std::string &start="[", const std::string &end="]", typename std::enable if < is iterable < Container >::value >::type *=nullptr) Standard container ostream manipulator. The container must support std::begin(), std::end() and forward iteration. • template<typename PointerType > internal::IOManipPointer< PointerType > disp (const PointerType *p, idx N, const std::string &separator, const std::string &start="[", const std::string &end="]") C-style pointer ostream manipulator. template<typename Derived > void save (const Eigen::MatrixBase< Derived > &A, const std::string &fname)

Saves Eigen expression to a binary file (internal format) in double precision.

dyn_mat< typename Derived::Scalar > load (const std::string &fname)

Loads Eigen matrix from a binary file (internal format) in double precision.

template<typename Derived >

• template<typename Derived >

dyn_col_vect< typename Derived::Scalar > ip (const Eigen::MatrixBase< Derived > &phi, const Eigen::←
MatrixBase< Derived > &psi, const std::vector< idx > &subsys, const std::vector< idx > &dims)

Generalized inner product.

template<typename Derived >

dyn_col_vect< typename Derived::Scalar > ip (const Eigen::MatrixBase< Derived > &phi, const Eigen::← MatrixBase< Derived > &psi, const std::vector< idx > &subsys, idx d=2)

Generalized inner product.

• template<typename Derived >

std::tuple< idx, std::vector< double >, std::vector< cmat > > measure (const Eigen::MatrixBase< Derived > &A, const std::vector< cmat > &Ks)

Measures the state A using the set of Kraus operators Ks.

• template<typename Derived >

std::tuple< idx, std::vector< double >, std::vector< cmat > > measure (const Eigen::MatrixBase< Derived > &A, const std::initializer_list< cmat > &Ks)

Measures the state A using the set of Kraus operators Ks.

• template<typename Derived >

std::tuple< idx, std::vector< double >, std::vector< cmat > > measure (const Eigen::MatrixBase< Derived > &A, const cmat &U)

Measures the state A in the orthonormal basis specified by the unitary matrix U.

• template<typename Derived >

std::tuple< idx, std::vector< double >, std::vector< cmat > > measure (const Eigen::MatrixBase< Derived > &A, const std::vector< cmat > &Ks, const std::vector< idx > &subsys, const std::vector< idx > &dims)

Measures the part subsys of the multi-partite state vector or density matrix A using the set of Kraus operators Ks.

template<typename Derived >

std::tuple < idx, std::vector < double >, std::vector < cmat > > measure (const Eigen::MatrixBase < Derived > &A, const std::initializer_list < cmat > &Ks, const std::vector < idx > &subsys, const std::vector < idx > &dims)

Measures the part subsys of the multi-partite state vector or density matrix A using the set of Kraus operators Ks.

ullet template<typename Derived >

std::tuple< idx, std::vector< double >, std::vector< cmat > > measure (const Eigen::MatrixBase< Derived > &A, const std::vector< cmat > &Ks, const std::vector< idx > &subsys, idx d=2)

Measures the part subsys of the multi-partite state vector or density matrix A using the set of Kraus operators Ks.

template<typename Derived >

std::tuple< idx, std::vector< double >, std::vector< cmat > > measure (const Eigen::MatrixBase< Derived > &A, const std::initializer_list< cmat > &Ks, const std::vector< idx > &subsys, idx d=2)

Measures the part subsys of the multi-partite state vector or density matrix A using the set of Kraus operators Ks.

template<typename Derived >

std::tuple< idx, std::vector< double >, std::vector< cmat > > measure (const Eigen::MatrixBase< Derived > &A, const cmat &V, const std::vector< idx > &subsys, const std::vector< idx > &dims)

Measures the part subsys of the multi-partite state vector or density matrix A in the orthonormal basis or rank-1 POVM specified by the matrix V.

• template<typename Derived >

std::tuple< idx, std::vector< double >, std::vector< cmat > > measure (const Eigen::MatrixBase< Derived > &A, const cmat &V, const std::vector< idx > &subsys, idx d=2)

Measures the part subsys of the multi-partite state vector or density matrix A in the orthonormal basis or rank-1 POVM specified by the matrix V.

• template<typename Derived >

std::tuple < std::vector < idx >, double, cmat > measure_seq (const Eigen::MatrixBase < Derived > &A, std::vector < idx > subsys, std::vector < idx > dims)

Sequentially measures the part subsys of the multi-partite state vector or density matrix A in the computational basis.

template<typename Derived >

std::tuple < std::vector < idx >, double, cmat > measure_seq (const Eigen::MatrixBase < Derived > &A, std::vector < idx > subsys, idx d=2)

Sequentially measures the part subsys of the multi-partite state vector or density matrix A in the computational basis.

• template<typename Derived >

std::enable_if< std::is_same< typename Derived::Scalar, cplx >::value, dyn_mat< cplx > >::type loadM← ATLAB (const std::string &mat_file, const std::string &var_name)

Loads a complex Eigen dynamic matrix from a MATLAB .mat file,.

template<typename Derived >

std::enable_if<!std::is_same< typename Derived::Scalar, cplx >::value, dyn_mat< typename Derived::

Scalar > >::type loadMATLAB (const std::string &mat_file, const std::string &var_name)

Loads a non-complex Eigen dynamic matrix from a MATLAB .mat file,.

template < typename Derived >

std::enable_if< std::is_same< typename Derived::Scalar, cplx >::value >::type saveMATLAB (const Eigen::MatrixBase< Derived > &A, const std::string &mat_file, const std::string &var_name, const std::string &mode)

Saves a complex Eigen dynamic matrix to a MATLAB .mat file,.

• template<typename Derived >

std::enable_if<!std::is_same< typename Derived::Scalar, cplx >::value >::type saveMATLAB (const Eigen::MatrixBase< Derived > &A, const std::string &mat_file, const std::string &var_name, const std::string &mode)

Saves a non-complex Eigen dynamic matrix to a MATLAB .mat file,.

• std::vector< int > x2contfrac (double x, idx N, idx cut=1e5)

Simple continued fraction expansion.

double contfrac2x (const std::vector< int > &cf, idx N=idx(-1))

Real representation of a simple continued fraction.

• bigint gcd (bigint a, bigint b)

Greatest common divisor of two integers.

bigint gcd (const std::vector< bigint > &as)

Greatest common divisor of a list of integers.

• bigint lcm (bigint a, bigint b)

Least common multiple of two integers.

bigint lcm (const std::vector< bigint > &as)

Least common multiple of a list of integers.

std::vector< idx > invperm (const std::vector< idx > &perm)

Inverse permutation.

std::vector< idx > compperm (const std::vector< idx > &perm, const std::vector< idx > &sigma)

Compose permutations.

std::vector< bigint > factors (bigint a)

Prime factor decomposition.

• bigint modmul (bigint a, bigint b, bigint p)

Modular multiplication without overflow.

bigint modpow (bigint a, bigint n, bigint p)

Fast integer power modulo p based on the SQUARE-AND-MULTIPLY algorithm.

std::tuple < bigint, bigint, bigint > egcd (bigint a, bigint b)

Extended greatest common divisor of two integers.

bigint modinv (bigint a, bigint p)

Modular inverse of a mod p.

bool isprime (bigint p, idx k=80)

Primality test based on the Miller-Rabin's algorithm.

• bigint randprime (bigint a, bigint b, idx N=1000)

Generates a random big prime uniformly distributed in the interval [a, b].

- template<typename Derived1 , typename Derived2 >

 $\label{lem:dyn_mat} $$ \down_mat< typename Derived1::Scalar > applyCTRL (const Eigen::MatrixBase< Derived1 > \&state, const Eigen::MatrixBase< Derived2 > \&A, const std::vector< idx > \&ctrl, const std::vector< idx > \&subsys, const std::vector< idx > &dims) $$$

Applies the controlled-gate A to the part subsys of the multi-partite state vector or density matrix state.

• template<typename Derived1 , typename Derived2 >

dyn_mat< typename Derived1::Scalar > applyCTRL (const Eigen::MatrixBase< Derived1 > &state, const Eigen::MatrixBase< Derived2 > &A, const std::vector< idx > &ctrl, const std::vector< idx > &subsys, idx d=2)

Applies the controlled-gate A to the part subsys of the multi-partite state vector or density matrix state.

• template<typename Derived1 , typename Derived2 >

```
dyn_mat< typename Derived1::Scalar > apply (const Eigen::MatrixBase< Derived1 > &state, const Eigen ← ::MatrixBase< Derived2 > &A, const std::vector< idx > &subsys, const std::vector< idx > &dims)
```

Applies the gate A to the part subsys of the multi-partite state vector or density matrix state.

template<typename Derived1, typename Derived2 >

```
dyn_mat< typename Derived1::Scalar > apply (const Eigen::MatrixBase< Derived1 > &state, const Eigen ← ::MatrixBase< Derived2 > &A, const std::vector< idx > &subsys, idx d=2)
```

Applies the gate A to the part subsys of the multi-partite state vector or density matrix state.

• template<typename Derived >

```
cmat apply (const Eigen::MatrixBase< Derived > &A, const std::vector< cmat > &Ks)
```

Applies the channel specified by the set of Kraus operators Ks to the density matrix A.

• template<typename Derived >

```
cmat apply (const Eigen::MatrixBase< Derived > &A, const std::vector< cmat > &Ks, const std::vector< idx
> &subsys, const std::vector< idx > &dims)
```

Applies the channel specified by the set of Kraus operators Ks to the part subsys of the multi-partite density matrix A.

template<typename Derived >

```
cmat apply (const Eigen::MatrixBase< Derived > &A, const std::vector< cmat > &Ks, const std::vector< idx
> &subsys, idx d=2)
```

Applies the channel specified by the set of Kraus operators Ks to the part subsys of the multi-partite density matrix A.

cmat kraus2super (const std::vector< cmat > &Ks)

Superoperator matrix.

cmat kraus2choi (const std::vector< cmat > &Ks)

Choi matrix.

std::vector< cmat > choi2kraus (const cmat &A)

Orthogonal Kraus operators from Choi matrix.

cmat choi2super (const cmat &A)

Converts Choi matrix to superoperator matrix.

cmat super2choi (const cmat &A)

Converts superoperator matrix to Choi matrix.

• template<typename Derived >

```
dyn_mat< typename Derived::Scalar > ptrace1 (const Eigen::MatrixBase< Derived > &A, const std ← ::vector < idx > &dims)
```

Partial trace.

• template<typename Derived >

```
dyn_mat< typename Derived::Scalar > ptrace1 (const Eigen::MatrixBase< Derived > &A, idx d=2)
```

Partial trace.

 $\bullet \ \ \mathsf{template}{<}\mathsf{typename} \ \mathsf{Derived}>$

```
dyn_mat< typename Derived::Scalar > ptrace2 (const Eigen::MatrixBase< Derived > &A, const std ← ::vector < idx > &dims)
```

Partial trace.

ullet template<typename Derived >

```
\frac{dyn\_mat}{<} typename \ Derived::Scalar > \underbrace{ptrace2} \ (const \ Eigen::MatrixBase < Derived > \&A, \ idx \ d=2)
```

Partial trace.

template<typename Derived >

```
dyn_mat< typename Derived::Scalar > ptrace (const Eigen::MatrixBase< Derived > &A, const std::vector<
idx > &subsys, const std::vector< idx > &dims)
```

Partial trace.

• template<typename Derived >

dyn_mat< typename Derived::Scalar > ptrace (const Eigen::MatrixBase< Derived > &A, const std::vector
idx > &subsys, idx d=2)

Partial trace.

• template<typename Derived >

Partial transpose.

template < typename Derived >

dyn_mat< typename Derived::Scalar > ptranspose (const Eigen::MatrixBase< Derived > &A, const std ← ::vector < idx > &subsys, idx d=2)

Partial transpose.

• template<typename Derived >

Subsystem permutation.

• template<typename Derived >

dyn_mat< typename Derived::Scalar > syspermute (const Eigen::MatrixBase< Derived > &A, const std ← ::vector < idx > &perm, idx d=2)

Subsystem permutation.

double rand (double a, double b)

Generates a random real number uniformly distributed in the interval [a, b)

• bigint rand (bigint a, bigint b)

Generates a random big integer uniformly distributed in the interval [a, b].

idx randidx (idx a=std::numeric_limits< idx >::min(), idx b=std::numeric_limits< idx >::max())

Generates a random index (idx) uniformly distributed in the interval [a, b].

• template<typename Derived >

Derived rand (idx rows, idx cols, double a=0, double b=1)

Generates a random matrix with entries uniformly distributed in the interval [a, b)

• template<>

dmat rand (idx rows, idx cols, double a, double b)

Generates a random real matrix with entries uniformly distributed in the interval [a, b), specialization for double matrices (qpp::dmat)

template<>

cmat rand (idx rows, idx cols, double a, double b)

Generates a random complex matrix with entries (both real and imaginary) uniformly distributed in the interval [a, b), specialization for complex matrices (qpp::cmat)

• template<typename Derived >

Derived randn (idx rows, idx cols, double mean=0, double sigma=1)

Generates a random matrix with entries normally distributed in N(mean, sigma)

template<>

dmat randn (idx rows, idx cols, double mean, double sigma)

Generates a random real matrix with entries normally distributed in N(mean, sigma), specialization for double matrices (qpp::dmat)

template<>

cmat randn (idx rows, idx cols, double mean, double sigma)

Generates a random complex matrix with entries (both real and imaginary) normally distributed in N(mean, sigma), specialization for complex matrices (qpp::cmat)

• double randn (double mean=0, double sigma=1)

Generates a random real number (double) normally distributed in N(mean, sigma)

cmat randU (idx D=2)

Generates a random unitary matrix.

• cmat randV (idx Din, idx Dout)

Generates a random isometry matrix.

• std::vector< cmat > randkraus (idx N, idx D=2)

Generates a set of random Kraus operators.

cmat randH (idx D=2)

Generates a random Hermitian matrix.

ket randket (idx D=2)

Generates a random normalized ket (pure state vector)

• cmat randrho (idx D=2)

Generates a random density matrix.

std::vector< idx > randperm (idx N)

Generates a random uniformly distributed permutation.

std::vector< double > randprob (idx N)

Generates a random probability vector uniformly distributed over the probability simplex.

std::vector< double > uniform (idx N)

Uniform probability distribution vector.

std::vector< double > marginalX (const dmat &probXY)

Marginal distribution.

std::vector< double > marginalY (const dmat &probXY)

Marginal distribution.

• template<typename Container >

double avg (const std::vector< double > &prob, const Container &X, typename std::enable_if< is_iterable< Container >::value >::type *=nullptr)

Average.

template<typename Container >

double cov (const dmat &probXY, const Container &X, const Container &Y, typename std::enable_if< is_← iterable< Container >::value >::type *=nullptr)

Covariance.

 $\bullet \ \ \text{template}{<} \text{typename Container} >$

double var (const std::vector< double > &prob, const Container &X, typename std::enable_if< is_iterable< Container >::value >::type *=nullptr)

Variance.

• template<typename Container >

double sigma (const std::vector< double > &prob, const Container &X, typename std::enable_if< is_← iterable< Container >::value >::type *=nullptr)

Standard deviation.

• template<typename Container >

double cor (const dmat &probXY, const Container &X, const Container &Y, typename std::enable_if< is_← iterable< Container >::value >::type *=nullptr)

Correlation.

Variables

constexpr double chop = 1e-10

Used in qpp::disp() for setting to zero numbers that have their absolute value smaller than qpp::chop.

• constexpr double eps = 1e-12

Used to decide whether a number or expression in double precision is zero or not.

• constexpr idx maxn = 64

Maximum number of allowed qubits/qudits (subsystems)

constexpr double pi = 3.141592653589793238462643383279502884

 π

constexpr double ee = 2.718281828459045235360287471352662497

Base of natural logarithm, e.

constexpr double infty = std::numeric limits<double>::max()

Used to denote infinity in double precision.

6.1.1 Detailed Description

Quantum++ main namespace.

6.1.2 Typedef Documentation

6.1.2.1 bigint

```
using qpp::bigint = typedef long long int
```

Big integer.

6.1.2.2 bra

```
using qpp::bra = typedef Eigen::RowVectorXcd
```

Complex (double precision) dynamic Eigen row vector.

6.1.2.3 cmat

```
using qpp::cmat = typedef Eigen::MatrixXcd
```

Complex (double precision) dynamic Eigen matrix.

6.1.2.4 cplx

```
using qpp::cplx = typedef std::complex<double>
```

Complex number in double precision.

6.1.2.5 dmat

```
using qpp::dmat = typedef Eigen::MatrixXd
```

Real (double precision) dynamic Eigen matrix.

```
6.1.2.6 dyn_col_vect
```

```
template<typename Scalar >
using qpp::dyn_col_vect = typedef Eigen::Matrix<Scalar, Eigen::Dynamic, 1>
```

Dynamic Eigen column vector over the field specified by Scalar.

Example:

```
// type of colvect is Eigen::Matrix<float, Eigen::Dynamic, 1>
dyn_col_vect<float> colvect(2);
```

6.1.2.7 dyn_mat

```
template<typename Scalar >
using qpp::dyn_mat = typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic>
```

Dynamic Eigen matrix over the field specified by Scalar.

Example:

```
// type of mat is Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic>
dyn_mat<float> mat(2, 3);
```

6.1.2.8 dyn_row_vect

```
template<typename Scalar >
using qpp::dyn_row_vect = typedef Eigen::Matrix<Scalar, 1, Eigen::Dynamic>
```

Dynamic Eigen row vector over the field specified by Scalar.

Example:

```
// type of rowvect is Eigen::Matrix<float, 1, Eigen::Dynamic>
dyn_row_vect<float> rowvect(3);
```

6.1.2.9 idx

```
using qpp::idx = typedef std::size_t
```

Non-negative integer index.

6.1.2.10 ket

```
using qpp::ket = typedef Eigen::VectorXcd
```

Complex (double precision) dynamic Eigen column vector.

6.1.2.11 to_void

```
template<typename... Ts>
using qpp::to_void = typedef typename make_void<Ts...>::type
```

Alias template that implements the proposal for void_t.

See also

```
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3911
```

6.1.3 Function Documentation

6.1.3.1 apply() [1/5]

Applies the gate A to the part subsys of the multi-partite state vector or density matrix state.

Note

The dimension of the gate A must match the dimension of subsys

Parameters

state	Eigen expression
Α	Eigen expression
subsys	Subsystem indexes where the gate A is applied
dims	Dimensions of the multi-partite system

Returns

Gate A applied to the part subsys of state

6.1.3.2 apply() [2/5]

Applies the gate A to the part subsys of the multi-partite state vector or density matrix state.

Note

The dimension of the gate A must match the dimension of *subsys*

Parameters

state	Eigen expression
Α	Eigen expression
subsys	Subsystem indexes where the gate A is applied
d	Subsystem dimensions

Returns

Gate A applied to the part subsys of state

6.1.3.3 apply() [3/5]

Applies the channel specified by the set of Kraus operators Ks to the density matrix A.

Parameters

A Eigen expression	
Ks	Set of Kraus operators

Returns

Output density matrix after the action of the channel

6.1.3.4 apply() [4/5]

Applies the channel specified by the set of Kraus operators *Ks* to the part *subsys* of the multi-partite density matrix *A*.

Parameters

Α	Eigen expression
Ks	Set of Kraus operators
subsys	Subsystem indexes where the Kraus operators Ks are applied
dims	Dimensions of the multi-partite system

Returns

Output density matrix after the action of the channel

6.1.3.5 apply() [5/5]

Applies the channel specified by the set of Kraus operators *Ks* to the part *subsys* of the multi-partite density matrix *A*.

Parameters

Α	Eigen expression
Ks	Set of Kraus operators
subsys	Subsystem indexes where the Kraus operators Ks are applied
d	Subsystem dimensions

Returns

Output density matrix after the action of the channel

6.1.3.6 applyCTRL() [1/2]

Applies the controlled-gate A to the part subsys of the multi-partite state vector or density matrix state.

See also

```
qpp::Gates::CTRL()
```

Note

The dimension of the gate A must match the dimension of *subsys*. Also, all control subsystems in *ctrl* must have the same dimension.

Parameters

state	Eigen expression
Α	Eigen expression
ctrl	Control subsystem indexes
subsys	Subsystem indexes where the gate A is applied
dims	Dimensions of the multi-partite system

Returns

CTRL-A gate applied to the part subsys of state

6.1.3.7 applyCTRL() [2/2]

```
template<typename Derived1 , typename Derived2 > dyn_mat<typename Derived1::Scalar> qpp::applyCTRL ( const Eigen::MatrixBase< Derived1 > & state, const Eigen::MatrixBase< Derived2 > & A, const std::vector< idx > & ctrl, const std::vector< idx > & subsys, idx d = 2)
```

Applies the controlled-gate A to the part subsys of the multi-partite state vector or density matrix state.

See also

```
qpp::Gates::CTRL()
```

Note

The dimension of the gate A must match the dimension of subsys

Parameters

state	Eigen expression
Α	Eigen expression
ctrl	Control subsystem indexes
subsys	Subsystem indexes where the gate A is applied
d	Subsystem dimensions

Returns

CTRL-A gate applied to the part subsys of state

6.1.3.8 avg()

Average.

Parameters

pro	ob	Real probability vector representing the probability distribution of X
X		Real random variable values represented by an STL-like container

Returns

Average of X

6.1.3.9 choi2kraus()

Orthogonal Kraus operators from Choi matrix.

See also

qpp::kraus2choi()

Extracts a set of orthogonal (under Hilbert-Schmidt operator norm) Kraus operators from the Choi matrix A

Note

The Kraus operators satisfy $Tr(K_i^\dagger K_j) = \delta_{ij}$ for all $i \neq j$

Parameters

A Choi matrix	
---------------	--

Returns

Set of orthogonal Kraus operators

6.1.3.10 choi2super()

Converts Choi matrix to superoperator matrix.

See also

qpp::super2choi()

Parameters

Returns

Superoperator matrix

6.1.3.11 compperm()

Compose permutations.

Parameters

perm	Permutation
sigma	Permutation

Returns

Composition of the permutations $perm \circ sigma = perm(sigma)$

6.1.3.12 concurrence()

Wootters concurrence of the bi-partite qubit mixed state A.

Parameters

```
A Eigen expression
```

Returns

Wootters concurrence

6.1.3.13 contfrac2x()

Real representation of a simple continued fraction.

See also

```
qpp::x2contfrac()
```

Note

If N is greater than the size of cf (by default it is), then all terms in cf are considered.

Parameters

cf	Integer vector containing the simple continued fraction expansion
Ν	Number of terms considered in the continued fraction expansion.

Returns

Real representation of the simple continued fraction

6.1.3.14 cor()

```
template<typename Container >
double qpp::cor (
```

```
const dmat & probXY,
const Container & X,
const Container & Y,
typename std::enable_if< is_iterable< Container >::value >::type * = nullptr )
```

Correlation.

Parameters

probXY	Real matrix representing the joint probability distribution of X and Y in lexicographical order (X labels the rows, Y labels the columns)
X	Real random variable values represented by an STL-like container
Υ	Real random variable values represented by an STL-like container

Returns

Correlation of X and Y

6.1.3.15 cov()

Covariance.

Parameters

probXY	Real matrix representing the joint probability distribution of X and Y in lexicographical order (X labels the rows, Y labels the columns)
X	Real random variable values represented by an STL-like container
Y	Real random variable values represented by an STL-like container

Returns

Covariance of X and Y

Eigen expression ostream manipulator.

Parameters

Α	Eigen expression
chop	Set to zero the elements smaller in absolute value than <i>chop</i>

Returns

Instance of qpp::internal::IOManipEigen

Complex number ostream manipulator.

Parameters

Z	Complex number (or any other type implicitly cast-able to std::complex <double>)</double>
chop	Set to zero the elements smaller in absolute value than chop

Returns

Instance of qpp::internal::IOManipEigen

Range ostream manipulator.

first	Iterator to the first element of the range
last	Iterator to the last element of the range
separator	Separator
start	Left marking
end	Right marking

Returns

Instance of qpp::internal::IOManipRange

Standard container ostream manipulator. The container must support std::begin(), std::end() and forward iteration.

Parameters

С	Container
separator	Separator
start	Left marking
end	Right marking

Returns

Instance of qpp::internal::IOManipRange

C-style pointer ostream manipulator.

р	Pointer to the first element
N	Number of elements to be displayed
separator	Separator
start	Left marking
end	Right marking

Returns

Instance of qpp::internal::IOManipPointer

6.1.3.21 egcd()

Extended greatest common divisor of two integers.

See also

```
qpp::gcd()
```

Parameters

а	Integer
b	Integer

Returns

Tuple of: 1. Integer m, 2. Integer n, and 3. Non-negative integer gcd(a,b) such that ma + nb = gcd(a,b)

6.1.3.22 entanglement() [1/2]

Entanglement of the bi-partite pure state A.

Defined as the von-Neumann entropy of the reduced density matrix of one of the subsystems

See also

```
qpp::entropy()
```

Α	Eigen expression
dims	Dimensions of the bi-partite system

Returns

Entanglement, with the logarithm in base 2

Entanglement of the bi-partite pure state A.

Defined as the von-Neumann entropy of the reduced density matrix of one of the subsystems

See also

```
qpp::entropy()
```

Parameters

Α	Eigen expression
d	Subsystem dimensions

Returns

Entanglement, with the logarithm in base 2

von-Neumann entropy of the density matrix A

Parameters

```
A Eigen expression
```

Returns

von-Neumann entropy, with the logarithm in base 2

Shannon entropy of the probability distribution prob.

Parameters

```
prob Real probability vector
```

Returns

Shannon entropy, with the logarithm in base 2

6.1.3.26 factors()

Prime factor decomposition.

Note

Runs in $\mathcal{O}(\sqrt{n})$ time complexity

Parameters

```
a Integer different from 0, 1 or -1
```

Returns

Integer vector containing the factors

Greatest common divisor of two integers.

See also

qpp::lcm()

Parameters

а	Integer
b	Integer

Returns

Greatest common divisor of a and b

Greatest common divisor of a list of integers.

See also

qpp::lcm()

Parameters

```
as List of integers
```

Returns

Greatest common divisor of all numbers in as

6.1.3.29 gconcurrence()

G-concurrence of the bi-partite pure state A.

Note

Both local dimensions must be equal

Uses qpp::logdet() to avoid overflows

See also

qpp::logdet()

Parameters

```
A Eigen expression
```

Returns

G-concurrence

6.1.3.30 invperm()

```
\label{eq:std:vector} $$ std::vector < idx > qpp::invperm ( $$ const std::vector < idx > & perm ) [inline]
```

Inverse permutation.

Parameters

perm	Permutation
------	-------------

Returns

Inverse of the permutation perm

6.1.3.31 ip() [1/2]

Generalized inner product.

Parameters

phi	Column vector Eigen expression
psi	Column vector Eigen expression
subsys	Subsystem indexes over which phi is defined
dims	Dimensions of the multi-partite system

Returns

Inner product $\langle \phi_{subsys} | \psi \rangle$, as a scalar or column vector over the remaining Hilbert space

Generalized inner product.

Parameters

phi	Column vector Eigen expression
psi	Column vector Eigen expression
subsys	Subsystem indexes over which phi is defined
d	Subsystem dimensions

Returns

Inner product $\langle \phi_{subsys} | \psi \rangle$, as a scalar or column vector over the remaining Hilbert space

6.1.3.33 isprime()

```
bool qpp::isprime ( bigint p, idx k = 80 ) [inline]
```

Primality test based on the Miller-Rabin's algorithm.

Parameters

р	Integer different from 0, 1 or -1
k	Number of iterations. The probability of a false positive is 2^{-k} .

Returns

True if the number is (most-likely) prime, false otherwise

6.1.3.34 kraus2choi()

Choi matrix.

See also

```
qpp::choi2kraus()
```

Constructs the Choi matrix of the channel specified by the set of Kraus operators Ks in the standard operator basis $\{|i\rangle\langle j|\}$ ordered in lexicographical order, i.e. $|0\rangle\langle 0|$, $|0\rangle\langle 1|$ etc.

Note

The superoperator matrix S and the Choi matrix C are related by $S_{ab,mn}=C_{ma,nb}$

Parameters

```
Ks Set of Kraus operators
```

Returns

Choi matrix

6.1.3.35 kraus2super()

Superoperator matrix.

Constructs the superoperator matrix of the channel specified by the set of Kraus operators Ks in the standard operator basis $\{|i\rangle\langle j|\}$ ordered in lexicographical order, i.e. $|0\rangle\langle 0|$, $|0\rangle\langle 1|$ etc.

Parameters

```
Ks Set of Kraus operators
```

Returns

Superoperator matrix

Least common multiple of two integers.

See also

qpp::gcd()

Parameters

а	Integer
b	Integer

Returns

Least common multiple of a and b

Least common multiple of a list of integers.

See also

qpp::gcd()

Parameters

```
as List of integers
```

Returns

Least common multiple of all numbers in as

6.1.3.38 load()

Loads Eigen matrix from a binary file (internal format) in double precision.

See also

```
qpp::save()
```

The template parameter cannot be automatically deduced and must be explicitly provided, depending on the scalar field of the matrix that is being loaded.

Example:

```
// loads a previously saved Eigen dynamic complex matrix from "input.bin" cmat mat = load<cmat>("input.bin");
```

Parameters

fname Ou	tput file name
----------	----------------

```
6.1.3.39 loadMATLAB() [1/2]
```

Loads a complex Eigen dynamic matrix from a MATLAB .mat file,.

See also

```
qpp::saveMATLAB()
```

The template parameter cannot be automatically deduced and must be explicitly provided

Example:

```
// loads a previously saved Eigen ket
// from the MATLAB file "input.mat"
ket psi = loadMATLAB<ket>("input.mat");
```

Template Parameters

Derived	Complex Eigen type
---------	--------------------

Parameters

mat_file	MATALB .mat file
var_name	Variable name in the .mat file representing the matrix to be loaded

Returns

Eigen dynamic matrix

6.1.3.40 loadMATLAB() [2/2]

Loads a non-complex Eigen dynamic matrix from a MATLAB .mat file,.

See also

qpp::saveMATLAB()

The template parameter cannot be automatically deduced and must be explicitly provided

Example:

```
// loads a previously saved Eigen dynamic double matrix
// from the MATLAB file "input.mat"
dmat mat = loadMATLAB<dmat>("input.mat");
```

Template Parameters

Derived Non-c	omplex Eigen type
---------------	-------------------

Parameters

mat_file	MATALB .mat file
var_name	Variable name in the .mat file representing the matrix to be loaded

Returns

Eigen dynamic matrix

6.1.3.41 lognegativity() [1/2]

Logarithmic negativity of the bi-partite mixed state A.

Parameters

Α	Eigen expression
dims	Dimensions of the bi-partite system

Returns

Logarithmic negativity, with the logarithm in base 2

6.1.3.42 lognegativity() [2/2]

```
template<typename Derived > double qpp::lognegativity ( const Eigen::MatrixBase< Derived > & A, idx d = 2)
```

Logarithmic negativity of the bi-partite mixed state A.

Parameters

Α	Eigen expression
d	Subsystem dimensions

Returns

Logarithmic negativity, with the logarithm in base 2

6.1.3.43 marginalX()

Marginal distribution.

Parameters

probXY	Real matrix representing the joint probability distribution of X and Y in lexicographical order (X labels	
	the rows, Y labels the columns)	

Returns

Real vector consisting of the marginal distribution of X

6.1.3.44 marginalY()

Marginal distribution.

probXY	Real matrix representing the joint probability distribution of X and Y in lexicographical order (X labels
	the rows, Y labels the columns)

Real vector consisting of the marginal distribution of Y

Measures the state A using the set of Kraus operators Ks.

const std::vector< cmat > & Ks)

Parameters

Α	Eigen expression
Ks	Set of Kraus operators

Returns

Tuple of: 1. Result of the measurement, 2. Vector of outcome probabilities, and 3. Vector of post-measurement normalized states

6.1.3.46 measure() [2/9]

Measures the state A using the set of Kraus operators Ks.

Parameters

Α	Eigen expression
Ks	Set of Kraus operators

Returns

Tuple of: 1. Result of the measurement, 2. Vector of outcome probabilities, and 3. Vector of post-measurement normalized states

6.1.3.47 measure() [3/9]

Measures the state A in the orthonormal basis specified by the unitary matrix U.

Parameters

Α	Eigen expression
U	Unitary matrix whose columns represent the measurement basis vectors

Returns

Tuple of: 1. Result of the measurement, 2. Vector of outcome probabilities, and 3. Vector of post-measurement normalized states

6.1.3.48 measure() [4/9]

Measures the part subsys of the multi-partite state vector or density matrix A using the set of Kraus operators Ks.

See also

```
qpp::measure_seq()
```

Note

The dimension of all Ks must match the dimension of *subsys*. The measurement is destructive, i.e. the measured subsystems are traced away.

Parameters

Α	Eigen expression
Ks	Set of Kraus operators
subsys	Subsystem indexes that are measured
dims	Dimensions of the multi-partite system

Tuple of: 1. Result of the measurement, 2. Vector of outcome probabilities, and 3. Vector of post-measurement normalized states

6.1.3.49 measure() [5/9]

Measures the part subsys of the multi-partite state vector or density matrix A using the set of Kraus operators Ks.

See also

```
qpp::measure_seq()
```

Note

The dimension of all *Ks* must match the dimension of *subsys*. The measurement is destructive, i.e. the measured subsystems are traced away.

Parameters

Α	Eigen expression
Ks	Set of Kraus operators
subsys	Subsystem indexes that are measured
dims	Dimensions of the multi-partite system

Returns

Tuple of: 1. Result of the measurement, 2. Vector of outcome probabilities, and 3. Vector of post-measurement normalized states

6.1.3.50 measure() [6/9]

Measures the part subsys of the multi-partite state vector or density matrix A using the set of Kraus operators Ks.

See also

```
qpp::measure_seq()
```

Note

The dimension of all Ks must match the dimension of *subsys*. The measurement is destructive, i.e. the measured subsystems are traced away.

Parameters

Α	Eigen expression
Ks	Set of Kraus operators
subsys	Subsystem indexes that are measured
d	Subsystem dimensions

Returns

Tuple of: 1. Result of the measurement, 2. Vector of outcome probabilities, and 3. Vector of post-measurement normalized states

6.1.3.51 measure() [7/9]

Measures the part subsys of the multi-partite state vector or density matrix A using the set of Kraus operators Ks.

See also

```
qpp::measure_seq()
```

Note

The dimension of all Ks must match the dimension of *subsys*. The measurement is destructive, i.e. the measured subsystems are traced away.

Parameters

Λ	Figur ayaraasian
A	Eigen expression
Ks	Set of Kraus operators
subsys	Subsystem indexes that are measured
d	Subsystem dimensions

Tuple of: 1. Result of the measurement, 2. Vector of outcome probabilities, and 3. Vector of post-measurement normalized states

Measures the part *subsys* of the multi-partite state vector or density matrix *A* in the orthonormal basis or rank-1 POVM specified by the matrix *V*.

See also

```
qpp::measure_seq()
```

Note

The dimension of *V* must match the dimension of *subsys*. The measurement is destructive, i.e. the measured subsystems are traced away.

Parameters

Α	Eigen expression
V	Matrix whose columns represent the measurement basis vectors or the bra parts of the rank-1 POVM
subsys	Subsystem indexes that are measured
dims	Dimensions of the multi-partite system

Returns

Tuple of: 1. Result of the measurement, 2. Vector of outcome probabilities, and 3. Vector of post-measurement normalized states

const std::vector< idx > & subsys,

Measures the part *subsys* of the multi-partite state vector or density matrix *A* in the orthonormal basis or rank-1 POVM specified by the matrix *V*.

6.1.3.53 measure() [9/9]

idx d = 2)

See also

```
qpp::measure_seq()
```

Note

The dimension of V must match the dimension of subsys. The measurement is destructive, i.e. the measured subsystems are traced away.

Parameters

Α	Eigen expression
V	Matrix whose columns represent the measurement basis vectors or the bra parts of the rank-1 POVM
subsys	Subsystem indexes that are measured
d	Subsystem dimensions

Returns

Tuple of: 1. Result of the measurement, 2. Vector of outcome probabilities, and 3. Vector of post-measurement normalized states

std::vector< idx > subsys,
std::vector< idx > dims)

Sequentially measures the part *subsys* of the multi-partite state vector or density matrix *A* in the computational basis.

See also

qpp::measure()

Parameters

Α	Eigen expression
subsys	Subsystem indexes that are measured
dims	Dimensions of the multi-partite system

Returns

Tuple of: 1. Vector of outcome results of the measurement (ordered in increasing order with respect to *subsys*, i.e. first measurement result corresponds to the subsystem with the smallest index), 2. Outcome probability, and 3. Post-measurement normalized state

Sequentially measures the part *subsys* of the multi-partite state vector or density matrix *A* in the computational basis.

See also

qpp::measure()

Parameters

Α	Eigen expression
subsys	Subsystem indexes that are measured
d	Subsystem dimensions

Returns

Tuple of: 1. Vector of outcome results of the measurement (ordered in increasing order with respect to *subsys*, i.e. first measurement result corresponds to the subsystem with the smallest index), 2. Outcome probability, and 3. Post-measurement normalized state

6.1.3.56 modinv()

Modular inverse of a mod p.

See also

qpp::egcd()

Note

a and p must be co-prime

Parameters

а	Non-negative integer
р	Non-negative integer

```
Modular inverse a^{-1} \mod p
```

6.1.3.57 modmul()

Modular multiplication without overflow.

Computes $ab \bmod p$ without overflow

Parameters

а	Integer
b	Integer
р	Positive integer

Returns

 $ab \bmod p$ avoiding overflow

6.1.3.58 modpow()

Fast integer power modulo p based on the SQUARE-AND-MULTIPLY algorithm.

Note

Uses qpp::modmul() that avoids overflows

Computes $a^n \mod p$

Parameters

а	Non-negative integer
n	Non-negative integer
р	Strictly positive integer

```
a^n \bmod p
```

6.1.3.59 negativity() [1/2]

Negativity of the bi-partite mixed state A.

Parameters

Α	Eigen expression
dims	Dimensions of the bi-partite system

Returns

Negativity

6.1.3.60 negativity() [2/2]

```
template<typename Derived > double qpp::negativity ( const Eigen::MatrixBase< Derived > & A, idx d = 2)
```

Negativity of the bi-partite mixed state A.

Parameters

Α	Eigen expression
d	Subsystem dimensions

Returns

Negativity

6.1.3.61 omega()

```
cplx qpp::omega (
         idx D ) [inline]
```

D-th root of unity.

```
Parameters
```

```
D Non-negative integer
```

D-th root of unity $\exp(2\pi i/D)$

```
6.1.3.62 operator""" _i() [1/2]
constexpr cplx qpp::operator"" _i (
              unsigned long long int x ) [inline], [noexcept]
User-defined literal for complex i = \sqrt{-1} (integer overload)
Example:
cplx z = 4_i; // type of z is std::complex<double>
6.1.3.63 operator""" _i() [2/2]
constexpr cplx qpp::operator"" _i (
              long double x ) [inline], [noexcept]
User-defined literal for complex i = \sqrt{-1} (real overload)
Example:
cplx z = 4.5_i; // type of z is std::complex<double>
6.1.3.64 ptrace() [1/2]
template<typename Derived >
dyn_mat<typename Derived::Scalar> qpp::ptrace (
             const Eigen::MatrixBase< Derived > & A,
             const std::vector< idx > & subsys,
              const std::vector< idx > & dims )
Partial trace.
```

Partial trace of the multi-partite state vector or density matrix over a list of subsystems

qpp::ptrace1(), qpp::ptrace2()

See also

Parameters

Α	Eigen expression
subsys	Subsystem indexes
dims	Dimensions of the multi-partite system

Returns

Partial trace $Tr_{subsys}(\cdot)$ over the subsytems *subsys* in a multi-partite system, as a dynamic matrix over the same scalar field as A

Partial trace.

See also

```
qpp::ptrace1(), qpp::ptrace2()
```

Partial trace of the multi-partite state vector or density matrix over a list of subsystems

Parameters

Α	Eigen expression
subsys	Subsystem indexes
d	Subsystem dimensions

Returns

Partial trace $Tr_{subsys}(\cdot)$ over the subsytems *subsys* in a multi-partite system, as a dynamic matrix over the same scalar field as A

const std::vector< idx > & dims)

Partial trace.

See also

```
qpp::ptrace2()
```

Partial trace over the first subsystem of bi-partite state vector or density matrix

Parameters

Α	Eigen expression
dims	Dimensions of the bi-partite system

Returns

Partial trace $Tr_A(\cdot)$ over the first subsytem A in a bi-partite system $A\otimes B$, as a dynamic matrix over the same scalar field as A

6.1.3.67 ptrace1() [2/2]

Partial trace.

See also

qpp::ptrace2()

Partial trace over the first subsystem of bi-partite state vector or density matrix

Parameters

Α	Eigen expression
d	Subsystem dimensions

Returns

Partial trace $Tr_A(\cdot)$ over the first subsystem A in a bi-partite system $A\otimes B$, as a dynamic matrix over the same scalar field as A

6.1.3.68 ptrace2() [1/2]

Partial trace.

See also

qpp::ptrace1()

Partial trace over the second subsystem of bi-partite state vector or density matrix

Parameters

Α	Eigen expression
dims	Dimensions of the bi-partite system

Returns

Partial trace $Tr_B(\cdot)$ over the second subsytem B in a bi-partite system $A\otimes B$, as a dynamic matrix over the same scalar field as A

```
6.1.3.69 ptrace2() [2/2]
```

Partial trace.

See also

qpp::ptrace1()

Partial trace over the second subsystem of bi-partite state vector or density matrix

Parameters

Α	Eigen expression
d	Subsystem dimensions

Returns

Partial trace $Tr_B(\cdot)$ over the second subsytem B in a bi-partite system $A\otimes B$, as a dynamic matrix over the same scalar field as A

```
6.1.3.70 ptranspose() [1/2]
```

```
template<typename Derived >
dyn_mat<typename Derived::Scalar> qpp::ptranspose (
```

```
const Eigen::MatrixBase< Derived > & A,
const std::vector< idx > & subsys,
const std::vector< idx > & dims)
```

Partial transpose.

Partial transpose of the multi-partite state vector or density matrix over a list of subsystems

Parameters 4 8 1

Α	Eigen expression
subsys	Subsystem indexes
dims	Dimensions of the multi-partite system

Returns

Partial transpose $(\cdot)^{T_{subsys}}$ over the subsytems *subsys* in a multi-partite system, as a dynamic matrix over the same scalar field as A

6.1.3.71 ptranspose() [2/2]

Partial transpose.

Partial transpose of the multi-partite state vector or density matrix over a list of subsystems

Parameters

Α	Eigen expression
subsys	Subsystem indexes
d	Subsystem dimensions

Returns

Partial transpose $(\cdot)^{T_{subsys}}$ over the subsytems *subsys* in a multi-partite system, as a dynamic matrix over the same scalar field as A

6.1.3.72 qmutualinfo() [1/2]

```
template<typename Derived >
double qpp::qmutualinfo (
```

```
const Eigen::MatrixBase< Derived > & A,
const std::vector< idx > & subsysA,
const std::vector< idx > & subsysB,
const std::vector< idx > & dims )
```

Quantum mutual information between 2 subsystems of a composite system.

Parameters

A Eigen expression	
subsysA	Indexes of the first subsystem
subsysB	Indexes of the second subsystem
dims	Dimensions of the multi-partite system

Returns

Mutual information between the 2 subsystems

6.1.3.73 qmutualinfo() [2/2]

Quantum mutual information between 2 subsystems of a composite system.

Parameters

Α	Eigen expression
subsysA	Indexes of the first subsystem
subsysB	Indexes of the second subsystem
d	Subsystem dimensions

Returns

Mutual information between the 2 subsystems

Generates a random real number uniformly distributed in the interval [a, b)

Parameters

а	Beginning of the interval, belongs to it
b	End of the interval, does not belong to it

Returns

Random real number (double) uniformly distributed in the interval [a, b)

Generates a random big integer uniformly distributed in the interval [a, b].

Note

To avoid ambiguity with double qpp::rand(double, double) cast at least one of the arguments to qpp::bigint

Parameters

а	Beginning of the interval, belongs to it
b	End of the interval, belongs to it

Returns

Random big integer uniformly distributed in the interval [a, b]

Generates a random matrix with entries uniformly distributed in the interval [a,b)

If complex, then both real and imaginary parts are uniformly distributed in [a, b)

This is the generic version that always throws qpp::Exception::Type::UNDEFINED_TYPE. It is specialized only for qpp::dmat and qpp::cmat

Generates a random real matrix with entries uniformly distributed in the interval [a, b), specialization for double matrices (qpp::dmat)

The template parameter cannot be automatically deduced and must be explicitly provided

Example:

```
// generates a 3 x 3 random Eigen::MatrixXd,
// with entries uniformly distributed in [-1,1)
dmat mat = rand<dmat>(3, 3, -1, 1);
```

Parameters

rows	Number of rows of the random generated matrix
cols	Number of columns of the random generated matrix
а	Beginning of the interval, belongs to it
b	End of the interval, does not belong to it

Returns

Random real matrix

Generates a random complex matrix with entries (both real and imaginary) uniformly distributed in the interval [a, b), specialization for complex matrices (qpp::cmat)

The template parameter cannot be automatically deduced and must be explicitly provided

Example:

```
// generates a 3 x 3 random Eigen::MatrixXcd,
// with entries (both real and imaginary) uniformly distributed in [-1,1)
cmat mat = rand<cmat>(3, 3, -1, 1);
```

Parameters

rows Number of rows of the random generated matr	
cols	Number of columns of the random generated matrix
a Beginning of the interval, belongs to it	
b	End of the interval, does not belong to it

Returns

Random complex matrix

6.1.3.79 randH()

```
cmat qpp::randH (
    idx D = 2 ) [inline]
```

Generates a random Hermitian matrix.

Parameters

D Dimension of the Hilbert space

Returns

Random Hermitian matrix

6.1.3.80 randidx()

```
idx qpp::randidx (
        idx a = std::numeric_limits<idx>::min(),
        idx b = std::numeric_limits<idx>::max() ) [inline]
```

Generates a random index (idx) uniformly distributed in the interval [a, b].

Parameters

а	Beginning of the interval, belongs to it
b	End of the interval, belongs to it

Returns

Random index (idx) uniformly distributed in the interval [a, b]

6.1.3.81 randket()

```
ket qpp::randket (
    idx D = 2 ) [inline]
```

Generates a random normalized ket (pure state vector)

Parameters

```
D Dimension of the Hilbert space
```

Returns

Random normalized ket

6.1.3.82 randkraus()

```
std::vector<cmat> qpp::randkraus (
    idx N,
    idx D = 2 ) [inline]
```

Generates a set of random Kraus operators.

Note

The set of Kraus operators satisfy the closure condition $\sum_i K_i^\dagger K_i = I$

Parameters

Ν	Number of Kraus operators
D	Dimension of the Hilbert space

Returns

Set of N Kraus operators satisfying the closure condition

6.1.3.83 randn() [1/4]

Generates a random matrix with entries normally distributed in N(mean, sigma)

If complex, then both real and imaginary parts are normally distributed in N(mean, sigma)

This is the generic version that always throws qpp::Exception::Type::UNDEFINED_TYPE. It is specialized only for qpp::dmat and qpp::cmat

Generates a random real matrix with entries normally distributed in N(mean, sigma), specialization for double matrices (qpp::dmat)

The template parameter cannot be automatically deduced and must be explicitly provided

Example:

```
// generates a 3 x 3 random Eigen::MatrixXd,
// with entries normally distributed in N(0,2)
dmat mat = randn<dmat>(3, 3, 0, 2);
```

Parameters

rows	Number of rows of the random generated matrix
cols	Number of columns of the random generated matrix
mean Mean	
sigma	Standard deviation

Returns

Random real matrix

```
6.1.3.85 randn() [3/4]

template<>>
cmat qpp::randn (
         idx rows,
         idx cols,
         double mean,
         double sigma ) [inline]
```

Generates a random complex matrix with entries (both real and imaginary) normally distributed in N(mean, sigma), specialization for complex matrices (qpp::cmat)

The template parameter cannot be automatically deduced and must be explicitly provided

Example:

```
// generates a 3 x 3 random Eigen::MatrixXcd, // with entries (both real and imaginary) normally distributed in N(0,2) cmat mat = randn<cmat>(3, 3, 0, 2);
```

Parameters

rows	Number of rows of the random generated matrix	
cols	Number of columns of the random generated matrix	
mean	mean Mean	
sigma	Standard deviation	

Returns

Random complex matrix

Generates a random real number (double) normally distributed in N(mean, sigma)

Parameters

mean	Mean
sigma	Standard deviation

Returns

Random real number normally distributed in N(mean, sigma)

6.1.3.87 randperm()

```
std::vector<idx> qpp::randperm (
    idx N ) [inline]
```

Generates a random uniformly distributed permutation.

Uses Knuth shuffle method (as implemented by std::shuffle), so that all permutations are equally probable

Parameters

N Size of the permutation

Random permutation of size N

6.1.3.88 randprime()

Generates a random big prime uniformly distributed in the interval [a, b].

Parameters

а	Beginning of the interval, belongs to it
b	End of the interval, belongs to it
Ν	Maximum number of candidates

Returns

Random big integer uniformly distributed in the interval [a, b]

6.1.3.89 randprob()

```
std::vector<double> qpp::randprob (
    idx N ) [inline]
```

Generates a random probability vector uniformly distributed over the probability simplex.

Parameters

N Size of the probability vector

Returns

Random probability vector

6.1.3.90 randrho()

```
cmat qpp::randrho (
    idx D = 2 ) [inline]
```

Generates a random density matrix.

Parameters

D Dimension of the Hilbert space

Returns

Random density matrix

6.1.3.91 randU()

```
cmat qpp::randU (
          idx D = 2 ) [inline]
```

Generates a random unitary matrix.

Parameters

D Dimension of the Hilbert space

Returns

Random unitary

6.1.3.92 randV()

Generates a random isometry matrix.

Parameters

Din	Size of the input Hilbert space
Dout	Size of the output Hilbert space

Returns

Random isometry matrix

Renyi- α entropy of the density matrix A, for $\alpha \geq 0$.

Note

When $\alpha \to 1$ the Renyi entropy converges to the von-Neumann entropy, with the logarithm in base 2

Parameters

Α	Eigen expression
alpha	Non-negative real number, use qpp::infty for $\alpha=\infty$

Returns

Renyi- α entropy, with the logarithm in base 2

Renyi- α entropy of the probability distribution *prob*, for $\alpha \geq 0$.

Note

When $\alpha \to 1$ the Renyi entropy converges to the Shannon entropy, with the logarithm in base 2

Parameters

prob	Real probability vector
alpha	Non-negative real number, use qpp::infty for $\alpha = \infty$

Returns

Renyi- α entropy, with the logarithm in base 2

6.1.3.95 save()

Saves Eigen expression to a binary file (internal format) in double precision.

See also

qpp::load()

Parameters

Α	Eigen expression
fname	Output file name

6.1.3.96 saveMATLAB() [1/2]

Saves a complex Eigen dynamic matrix to a MATLAB .mat file,.

See also

qpp::loadMATLAB()

Template Parameters

Complex	Eigen type

Parameters

Α	Eigen expression over the complex field
mat_file	MATALB .mat file
var_name	Variable name in the .mat file representing the matrix to be saved
mode	Saving mode (append, overwrite etc.), see MATLAB matOpen() documentation for details

6.1.3.97 saveMATLAB() [2/2]

Saves a non-complex Eigen dynamic matrix to a MATLAB .mat file,.

See also

qpp::loadMATLAB()

Template Parameters

Parameters

Α	Non-complex Eigen expression
mat_file	MATALB .mat file
var_name	Variable name in the .mat file representing the matrix to be saved
mode	Saving mode (append, overwrite etc.), see MATLAB matOpen() documentation for details

6.1.3.98 schmidtA() [1/2]

Schmidt basis on Alice side.

Parameters

Α	Eigen expression
dims	Dimensions of the bi-partite system

Returns

Unitary matrix \boldsymbol{U} whose columns represent the Schmidt basis vectors on Alice side.

6.1.3.99 schmidtA() [2/2]

Schmidt basis on Alice side.

Parameters

Α	Eigen expression
d	Subsystem dimensions

Returns

Unitary matrix \boldsymbol{U} whose columns represent the Schmidt basis vectors on Alice side.

6.1.3.100 schmidtB() [1/2]

Schmidt basis on Bob side.

Parameters

Α	Eigen expression
dims	Dimensions of the bi-partite system

Returns

Unitary matrix ${\cal V}$ whose columns represent the Schmidt basis vectors on Bob side.

6.1.3.101 schmidtB() [2/2]

Schmidt basis on Bob side.

Parameters

Α	Eigen expression
d	Subsystem dimensions

Returns

Unitary matrix ${\cal V}$ whose columns represent the Schmidt basis vectors on Bob side.

6.1.3.102 schmidtcoeffs() [1/2]

Schmidt coefficients of the bi-partite pure state A.

Note

The sum of the squares of the Schmidt coefficients equals 1

See also

qpp::schmidtprobs()

Parameters

Α	Eigen expression
dims	Dimensions of the bi-partite system

Returns

Schmidt coefficients of A, ordered in decreasing order, as a real dynamic column vector

6.1.3.103 schmidtcoeffs() [2/2]

Schmidt coefficients of the bi-partite pure state A.

Note

The sum of the squares of the Schmidt coefficients equals 1

See also

qpp::schmidtprobs()

Parameters

Α	Eigen expression
d	Subsystem dimensions

Returns

Schmidt coefficients of A, ordered in decreasing order, as a real dynamic column vector

6.1.3.104 schmidtprobs() [1/2]

Schmidt probabilities of the bi-partite pure state A.

Defined as the squares of the Schmidt coefficients. The sum of the Schmidt probabilities equals 1.

See also

qpp::schmidtcoeffs()

Parameters

Α	Eigen expression
dims	Dimensions of the bi-partite system

Returns

Real vector consisting of the Schmidt probabilites of A, ordered in decreasing order

6.1.3.105 schmidtprobs() [2/2]

```
template<typename Derived >
std::vector<double> qpp::schmidtprobs (
```

```
const Eigen::MatrixBase< Derived > & A, idx d = 2)
```

Schmidt probabilities of the bi-partite pure state A.

Defined as the squares of the Schmidt coefficients. The sum of the Schmidt probabilities equals 1.

See also

qpp::schmidtcoeffs()

Parameters

Α	Eigen expression
d	Subsystem dimensions

Returns

Real vector consisting of the Schmidt probabilites of A, ordered in decreasing order

6.1.3.106 sigma()

Standard deviation.

Parameters

prob	Real probability vector representing the probability distribution of X
Χ	Real random variable values represented by an STL-like container

Returns

Standard deviation of X

6.1.3.107 super2choi()

Converts superoperator matrix to Choi matrix.

See also

qpp::choi2super()

Parameters

```
Superoperator matrix
```

Returns

Choi matrix

```
6.1.3.108 syspermute() [1/2]
{\tt template}{<}{\tt typename \ Derived} >
dyn_mat<typename Derived::Scalar> qpp::syspermute (
             const Eigen::MatrixBase< Derived > & A,
              const std::vector< idx > & perm,
              const std::vector< idx > & dims )
```

Subsystem permutation.

Permutes the subsystems of a state vector or density matrix. The qubit perm[i] is permuted to the location i.

Parameters

Α	Eigen expression
perm	Permutation
dims	Dimensions of the multi-partite system

Returns

Permuted system, as a dynamic matrix over the same scalar field as A

```
6.1.3.109 syspermute() [2/2]
```

```
template<typename Derived >
dyn_mat<typename Derived::Scalar> qpp::syspermute (
            const Eigen::MatrixBase< Derived > & A,
            const std::vector< idx > & perm,
            idx d = 2)
```

Subsystem permutation.

Permutes the subsystems of a state vector or density matrix. The qubit *perm[i]* is permuted to the location *i*.

Parameters

Α	Eigen expression
perm	Permutation
d	Subsystem dimensions

enerated by Doxygen

Permuted system, as a dynamic matrix over the same scalar field as A

```
6.1.3.110 tsallis() [1/2]  \begin{tabular}{ll} template < typename Derived > \\ double qpp::tsallis ( & const Eigen::MatrixBase < Derived > & A, \\ double $q$ ) \end{tabular}
```

Tsallis- q entropy of the density matrix A, for $q \ge 0$.

Note

When $q \to 1$ the Tsallis entropy converges to the von-Neumann entropy, with the logarithm in base e

Parameters

Α	Eigen expression
q	Non-negative real number

Returns

Tsallis- q entropy

Tsallis- q entropy of the probability distribution prob, for $q \ge 0$.

Note

When $q \to 1$ the Tsallis entropy converges to the Shannon entropy, with the logarithm in base e

Parameters

prob	Real probability vector
q	Non-negative real number

Tsallis- q entropy

6.1.3.112 uniform()

```
std::vector<double> qpp::uniform (
    idx N ) [inline]
```

Uniform probability distribution vector.

Parameters

N | Size of the alphabet

Returns

Real vector consisting of a uniform distribution of size N

6.1.3.113 var()

Variance.

Parameters

prob	Real probability vector representing the probability distribution of X
Χ	Real random variable values represented by an STL-like container

Returns

Variance of X

6.1.3.114 x2contfrac()

Simple continued fraction expansion.

See also

qpp::contfrac2x()

Parameters

Х	Real number
Ν	Maximum number of terms in the expansion
cut	Stop the expansion when the next term is greater than cut

Returns

Integer vector containing the simple continued fraction expansion of x. If there are M less than N terms in the expansion, a shorter vector with M components is returned.

6.1.4 Variable Documentation

6.1.4.1 chop

```
constexpr double qpp::chop = 1e-10
```

Used in qpp::disp() for setting to zero numbers that have their absolute value smaller than qpp::chop.

6.1.4.2 ee

```
constexpr double qpp::ee = 2.718281828459045235360287471352662497
```

Base of natural logarithm, e.

6.1.4.3 eps

```
constexpr double qpp::eps = 1e-12
```

Used to decide whether a number or expression in double precision is zero or not.

Example:

```
if(std::abs(x) < qpp::eps) // x is zero</pre>
```

6.1.4.4 infty

```
constexpr double qpp::infty = std::numeric_limits<double>::max()
```

Used to denote infinity in double precision.

6.1.4.5 maxn

```
constexpr idx qpp::maxn = 64
```

Maximum number of allowed qubits/qudits (subsystems)

Used internally to allocate arrays on the stack (for performance reasons):

6.1.4.6 pi

```
constexpr double qpp::pi = 3.141592653589793238462643383279502884
```

 π

6.2 qpp::exception Namespace Reference

Quantum++ exception hierarchy namespace.

Classes

class CustomException

Custom exception.

· class DimsInvalid

Invalid dimension(s) exception.

class DimsMismatchCvector

Dimension(s) mismatch column vector size exception.

· class DimsMismatchMatrix

Dimension(s) mismatch matrix size exception.

· class DimsMismatchRvector

Dimension(s) mismatch row vector size exception.

· class DimsMismatchVector

Dimension(s) mismatch vector size exception.

· class DimsNotEqual

Dimensions not equal exception.

class Exception

Base class for generating Quantum++ custom exceptions.

class MatrixMismatchSubsys

Matrix mismatch subsystems exception.

class MatrixNotCvector

Matrix is not a column vector exception.

· class MatrixNotRvector

Matrix is not a row vector exception.

· class MatrixNotSquare

Matrix is not square exception.

• class MatrixNotSquareNorCvector

Matrix is not square nor column vector exception.

· class MatrixNotSquareNorRvector

Matrix is not square nor row vector exception.

· class MatrixNotSquareNorVector

Matrix is not square nor vector exception.

· class MatrixNotVector

Matrix is not a vector exception.

class NoCodeword

Codeword does not exist exception.

· class NotBipartite

Not bi-partite exception.

class NotQubitCvector

Column vector is not 2 x 1 exception.

· class NotQubitMatrix

Matrix is not 2 x 2 exception.

class NotQubitRvector

Row vector is not 1 x 2 exception.

· class NotQubitSubsys

Subsystems are not qubits exception.

class NotQubitVector

Vector is not 2 x 1 nor 1 x 2 exception.

· class OutOfRange

Parameter out of range exception.

class PermInvalid

Invalid permutation exception.

· class PermMismatchDims

Permutation mismatch dimensions exception.

class SizeMismatch

Size mismatch exception.

· class SubsysMismatchDims

Subsystems mismatch dimensions exception.

class TypeMismatch

Type mismatch exception.

class UndefinedType

Not defined for this type exception.

class Unknown

Unknown exception.

· class ZeroSize

Object has zero size exception.

6.2.1 Detailed Description

Quantum++ exception hierarchy namespace.

6.3 qpp::experimental Namespace Reference

Experimental/test functions/classes, do not use or modify.

Classes

- class Bit_circuit
- · class Dynamic_bitset

6.3.1 Detailed Description

Experimental/test functions/classes, do not use or modify.

6.4 qpp::internal Namespace Reference

Internal utility functions, do not use them directly or modify them.

Classes

- struct Display Impl
- class IOManipEigen
- · class IOManipPointer
- class IOManipRange
- · class Singleton

Singleton policy class, used internally to implement the singleton pattern via CRTP (Curiously recurring template pattern)

Functions

- void n2multiidx (idx n, idx numdims, const idx *const dims, idx *result) noexcept
- idx multiidx2n (const idx *const midx, idx numdims, const idx *const dims) noexcept
- $\bullet \ \ {\it template}{<} {\it typename Derived}>$

bool check_square_mat (const Eigen::MatrixBase< Derived > &A)

• template<typename Derived >

bool check_vector (const Eigen::MatrixBase< Derived > &A)

 $\bullet \ \ {\it template}{<} {\it typename Derived}>$

bool check_rvector (const Eigen::MatrixBase< Derived > &A)

• template<typename Derived >

bool check_cvector (const Eigen::MatrixBase< Derived > &A)

• template<typename T >

bool check_nonzero_size (const T &x) noexcept

• template<typename T1 , typename T2 >

bool check_matching_sizes (const T1 &lhs, const T2 &rhs) noexcept

- bool check_dims (const std::vector < idx > &dims)
- $\bullet \ \ {\it template}{<} {\it typename Derived}>$

bool check dims_match_mat (const std::vector< idx > &dims, const Eigen::MatrixBase< Derived > &A)

 $\bullet \ \ \mathsf{template} \mathord{<} \mathsf{typename} \ \mathsf{Derived} >$

 $bool\ check_dims_match_cvect\ (const\ std::vector < idx > \&dims,\ const\ Eigen::MatrixBase < Derived > \&A)$

- template<typename Derived >
 bool check_dims_match_rvect (const std::vector< idx > &dims, const Eigen::MatrixBase< Derived > &A)
- bool check_eq_dims (const std::vector< idx > &dims, idx dim) noexcept
- bool check_subsys_match_dims (const std::vector< idx > &subsys, const std::vector< idx > &dims)
- template<typename Derived >
 bool check_qubit_matrix (const Eigen::MatrixBase< Derived > &A) noexcept
- template<typename Derived >
 bool check_qubit_cvector (const Eigen::MatrixBase< Derived > &A) noexcept
- template<typename Derived >
 bool check_qubit_rvector (const Eigen::MatrixBase< Derived > &A) noexcept
- template<typename Derived >
 bool check_qubit_vector (const Eigen::MatrixBase< Derived > &A) noexcept
- bool check_perm (const std::vector < idx > &perm)
- template<typename Derived1, typename Derived2 >
 dyn_mat< typename Derived1::Scalar > kron2 (const Eigen::MatrixBase< Derived1 > &A, const Eigen::
 MatrixBase< Derived2 > &B)
- template<typename Derived1 , typename Derived2 >
 dyn_mat< typename Derived1::Scalar > dirsum2 (const Eigen::MatrixBase< Derived1 > &A, const Eigen
 ::MatrixBase< Derived2 > &B)
- template<typename T >
 void variadic_vector_emplace (std::vector< T > &)
- template<typename T , typename First , typename ... Args> void variadic_vector_emplace (std::vector< T > &v, First &&first, Args &&... args)
- idx get_num_subsys (idx sz, idx d)
- idx get_dim_subsys (idx sz, idx N)

6.4.1 Detailed Description

Internal utility functions, do not use them directly or modify them.

6.4.2 Function Documentation

6.4.2.1 check_cvector()

6.4.2.2 check_dims()

```
bool qpp::internal::check_dims (  const \ std::vector < \ idx \ > \ \& \ dims \ ) \quad [inline]
```

6.4.2.3 check_dims_match_cvect()

```
template < typename Derived >
bool qpp::internal::check_dims_match_cvect (
            const std::vector< idx > & dims,
             const Eigen::MatrixBase< Derived > & A )
6.4.2.4 check_dims_match_mat()
template<typename Derived >
bool qpp::internal::check_dims_match_mat (
            const std::vector< idx > & dims,
             const Eigen::MatrixBase< Derived > & A )
6.4.2.5 check_dims_match_rvect()
template<typename Derived >
bool qpp::internal::check_dims_match_rvect (
            const std::vector< idx > & dims,
             const Eigen::MatrixBase< Derived > & A )
6.4.2.6 check_eq_dims()
bool qpp::internal::check_eq_dims (
            const std::vector< idx > & dims,
             idx dim ) [inline], [noexcept]
6.4.2.7 check_matching_sizes()
template<typename T1 , typename T2 >
bool qpp::internal::check_matching_sizes (
            const T1 & lhs,
             const T2 & rhs ) [noexcept]
6.4.2.8 check_nonzero_size()
template<typename T >
```

bool qpp::internal::check_nonzero_size (

const T & x) [noexcept]

```
6.4.2.9 check_perm()
bool qpp::internal::check_perm (
             const std::vector< idx > & perm ) [inline]
6.4.2.10 check_qubit_cvector()
template < typename Derived >
bool qpp::internal::check_qubit_cvector (
             const Eigen::MatrixBase< Derived > & A ) [noexcept]
6.4.2.11 check_qubit_matrix()
template<typename Derived >
bool qpp::internal::check_qubit_matrix (
            const Eigen::MatrixBase< Derived > & A ) [noexcept]
6.4.2.12 check_qubit_rvector()
template<typename Derived >
bool qpp::internal::check_qubit_rvector (
             const Eigen::MatrixBase< Derived > & A ) [noexcept]
6.4.2.13 check_qubit_vector()
template<typename Derived >
bool qpp::internal::check_qubit_vector (
            const Eigen::MatrixBase< Derived > & A ) [noexcept]
6.4.2.14 check_rvector()
template<typename Derived >
bool qpp::internal::check_rvector (
```

const Eigen::MatrixBase< Derived > & A)

6.4.2.15 check_square_mat()

```
template<typename Derived >
bool qpp::internal::check_square_mat (
            const Eigen::MatrixBase< Derived > & A )
6.4.2.16 check_subsys_match_dims()
bool qpp::internal::check_subsys_match_dims (
            const std::vector< idx > & subsys,
            const std::vector< idx > & dims ) [inline]
6.4.2.17 check_vector()
template<typename Derived >
bool qpp::internal::check_vector (
            const Eigen::MatrixBase< Derived > & A )
6.4.2.18 dirsum2()
template<typename Derived1 , typename Derived2 >
dyn_mat<typename Derived1::Scalar> qpp::internal::dirsum2 (
            const Eigen::MatrixBase< Derived1 > & A,
             const Eigen::MatrixBase< Derived2 > & B )
6.4.2.19 get_dim_subsys()
idx qpp::internal::get_dim_subsys (
             idx sz,
             idx N ) [inline]
6.4.2.20 get_num_subsys()
idx qpp::internal::get_num_subsys (
            idx sz,
            idx d ) [inline]
```

6.4.2.21 kron2()

```
template<typename Derived1 , typename Derived2 >
dyn_mat<typename Derived1::Scalar> qpp::internal::kron2 (
            const Eigen::MatrixBase< Derived1 > & A,
             const Eigen::MatrixBase< Derived2 > & B )
6.4.2.22 multiidx2n()
idx qpp::internal::multiidx2n (
             const idx *const midx,
             idx numdims,
             const idx *const dims ) [inline], [noexcept]
6.4.2.23 n2multiidx()
void qpp::internal::n2multiidx (
             idx n,
             idx numdims,
             const idx *const dims,
             idx * result ) [inline], [noexcept]
6.4.2.24 variadic_vector_emplace() [1/2]
template<typename T >
void qpp::internal::variadic_vector_emplace (
             std::vector< T > & )
6.4.2.25 variadic_vector_emplace() [2/2]
template<typename T , typename First , typename ... Args>
void qpp::internal::variadic_vector_emplace (
            std::vector< T > & v,
             First && first,
             Args &&... args )
```

Chapter 7

Class Documentation

7.1 qpp::experimental::Bit_circuit Class Reference

#include <experimental/experimental.h>

Inheritance diagram for qpp::experimental::Bit_circuit:

Collaboration diagram for qpp::experimental::Bit_circuit:

Classes

struct Gate_count

Public Member Functions

- Bit_circuit & X (idx pos)
- Bit_circuit & NOT (idx pos)
- Bit_circuit & CNOT (const std::vector< idx > &pos)
- Bit_circuit & TOF (const std::vector< idx > &pos)
- Bit_circuit & SWAP (const std::vector< idx > &pos)
- Bit_circuit & FRED (const std::vector< idx > &pos)
- Bit_circuit & reset () noexcept

Public Attributes

• struct qpp::experimental::Bit_circuit::Gate_count gate_count

Additional Inherited Members

7.1.1 Member Function Documentation

```
7.1.1.1 CNOT()
Bit_circuit& qpp::experimental::Bit_circuit::CNOT (
            const std::vector< idx > & pos ) [inline]
7.1.1.2 FRED()
Bit_circuit& qpp::experimental::Bit_circuit::FRED (
           const std::vector< idx > & pos ) [inline]
7.1.1.3 NOT()
Bit_circuit& qpp::experimental::Bit_circuit::NOT (
             idx pos ) [inline]
7.1.1.4 reset()
Bit_circuit& qpp::experimental::Bit_circuit::reset ( ) [inline], [noexcept]
7.1.1.5 SWAP()
Bit_circuit& qpp::experimental::Bit_circuit::SWAP (
            const std::vector< idx > & pos ) [inline]
7.1.1.6 TOF()
Bit_circuit& qpp::experimental::Bit_circuit::TOF (
           const std::vector< idx > & pos ) [inline]
7.1.1.7 X()
```

Bit_circuit& qpp::experimental::Bit_circuit::X (
 idx pos) [inline]

7.1.2 Member Data Documentation

7.1.2.1 gate_count

struct qpp::experimental::Bit_circuit::Gate_count qpp::experimental::Bit_circuit::gate_count

The documentation for this class was generated from the following file:

• experimental/experimental.h

7.2 qpp::Bit_circuit Class Reference

Classical reversible circuit simulator.

#include <experimental/experimental.h>

7.2.1 Detailed Description

Classical reversible circuit simulator.

The documentation for this class was generated from the following file:

• experimental/experimental.h

7.3 qpp::Codes Class Reference

const Singleton class that defines quantum error correcting codes

#include <classes/codes.h>

Inheritance diagram for qpp::Codes:

Collaboration diagram for qpp::Codes:

Public Types

• enum Type { Type::FIVE_QUBIT = 1, Type::SEVEN_QUBIT_STEANE, Type::NINE_QUBIT_SHOR }

Code types, add more codes here if needed.

Public Member Functions

ket codeword (Type type, idx i) const
 Returns the codeword of the specified code type.

Private Member Functions

• Codes ()

Default constructor.

Default destructor.

• \sim Codes ()=default

Friends

class internal::Singleton < const Codes >

Additional Inherited Members

7.3.1 Detailed Description

const Singleton class that defines quantum error correcting codes

7.3.2 Member Enumeration Documentation

7.3.2.1 Type

```
enum qpp::Codes::Type [strong]
```

Code types, add more codes here if needed.

See also

```
qpp::Codes::codeword()
```

Enumerator

FIVE_QUBIT	[[5,1,3]] qubit code
SEVEN_QUBIT_STEANE	[[7,1,3]] Steane qubit code
NINE_QUBIT_SHOR	[[9,1,3]] Shor qubit code

7.3.3 Constructor & Destructor Documentation

7.3.3.1 Codes()

```
qpp::Codes::Codes ( ) [inline], [private]
```

Default constructor.

7.3.3.2 ∼Codes()

```
qpp::Codes::~Codes ( ) [private], [default]
```

Default destructor.

7.3.4 Member Function Documentation

7.3.4.1 codeword()

Returns the codeword of the specified code type.

See also

qpp::Codes::Type

Parameters

type	Code type
i	Codeword index

Returns

i-th codeword of the code type

7.3.5 Friends And Related Function Documentation

7.3.5.1 internal::Singleton < const Codes >

```
friend class internal::Singleton< const Codes > [friend]
```

The documentation for this class was generated from the following file:

classes/codes.h

7.4 qpp::exception::CustomException Class Reference

Custom exception.

#include <classes/exception.h>

Inheritance diagram for qpp::exception::CustomException:

Collaboration diagram for qpp::exception::CustomException:

Public Member Functions

• CustomException (const std::string &where, const std::string &what)

Private Member Functions

• std::string type_description () const override Exception type description.

Private Attributes

std::string what_{{}}

7.4.1 Detailed Description

Custom exception.

Custom exception, the user must provide a custom message

7.4.2 Constructor & Destructor Documentation

7.4.2.1 CustomException()

7.4.3 Member Function Documentation

7.4.3.1 type_description()

```
std::string qpp::exception::CustomException::type_description ( ) const [inline], [override],
[private], [virtual]
```

Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

7.4.4 Member Data Documentation

7.4.4.1 what_

```
std::string qpp::exception::CustomException::what_ {} [private]
```

The documentation for this class was generated from the following file:

· classes/exception.h

7.5 qpp::exception::DimsInvalid Class Reference

Invalid dimension(s) exception.

#include <classes/exception.h>

Inheritance diagram for qpp::exception::DimsInvalid:

Collaboration diagram for qpp::exception::DimsInvalid:

Public Member Functions

std::string type_description () const override
 Exception type description.

7.5.1 Detailed Description

Invalid dimension(s) exception.

std::vector<idx> of dimensions has zero size or contains zeros

7.5.2 Member Function Documentation

7.5.2.1 type_description()

std::string qpp::exception::DimsInvalid::type_description () const [inline], [override],
[virtual]

Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

• classes/exception.h

7.6 qpp::exception::DimsMismatchCvector Class Reference

Dimension(s) mismatch column vector size exception.

#include <classes/exception.h>

Inheritance diagram for qpp::exception::DimsMismatchCvector:

Collaboration diagram for qpp::exception::DimsMismatchCvector:

Public Member Functions

• std::string type_description () const override Exception type description.

7.6.1 Detailed Description

Dimension(s) mismatch column vector size exception.

Product of the elements of std::vector<idx> of dimensions is not equal to the number of elements of the Eigen::

Matrix (assumed to be a column vector)

7.6.2 Member Function Documentation

7.6.2.1 type_description()

std::string qpp::exception::DimsMismatchCvector::type_description () const [inline], [override],
[virtual]

Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

· classes/exception.h

7.7 qpp::exception::DimsMismatchMatrix Class Reference

Dimension(s) mismatch matrix size exception.

#include <classes/exception.h>

Inheritance diagram for qpp::exception::DimsMismatchMatrix:

Collaboration diagram for qpp::exception::DimsMismatchMatrix:

Public Member Functions

std::string type_description () const override
 Exception type description.

7.7.1 Detailed Description

Dimension(s) mismatch matrix size exception.

Product of the elements of std::vector<idx> of dimensions is not equal to the number of rows of the Eigen::Matrix (assumed to be a square matrix)

7.7.2 Member Function Documentation

7.7.2.1 type_description()

std::string qpp::exception::DimsMismatchMatrix::type_description () const [inline], [override],
[virtual]

Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

· classes/exception.h

7.8 qpp::exception::DimsMismatchRvector Class Reference

Dimension(s) mismatch row vector size exception.

#include <classes/exception.h>

Inheritance diagram for qpp::exception::DimsMismatchRvector:

Collaboration diagram for qpp::exception::DimsMismatchRvector:

Public Member Functions

std::string type_description () const override
 Exception type description.

7.8.1 Detailed Description

Dimension(s) mismatch row vector size exception.

Product of the elements of std::vector<idx> of dimensions is not equal to the number of elements of the Eigen::

Matrix (assumed to be a row vector)

7.8.2 Member Function Documentation

7.8.2.1 type_description()

std::string qpp::exception::DimsMismatchRvector::type_description () const [inline], [override],
[virtual]

Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

· classes/exception.h

7.9 qpp::exception::DimsMismatchVector Class Reference

Dimension(s) mismatch vector size exception.

#include <classes/exception.h>

Inheritance diagram for qpp::exception::DimsMismatchVector:

Collaboration diagram for qpp::exception::DimsMismatchVector:

Public Member Functions

std::string type_description () const override
 Exception type description.

7.9.1 Detailed Description

Dimension(s) mismatch vector size exception.

Product of the elements of std::vector<idx> of dimensions is not equal to the number of elements of the Eigen::

Matrix (assumed to be a row/column vector)

7.9.2 Member Function Documentation

7.9.2.1 type_description()

std::string qpp::exception::DimsMismatchVector::type_description () const [inline], [override],
[virtual]

Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

· classes/exception.h

7.10 qpp::exception::DimsNotEqual Class Reference

Dimensions not equal exception.

#include <classes/exception.h>

Inheritance diagram for qpp::exception::DimsNotEqual:

Collaboration diagram for qpp::exception::DimsNotEqual:

Public Member Functions

• std::string type_description () const override Exception type description.

7.10.1 Detailed Description

Dimensions not equal exception.

Local/global dimensions are not equal

7.10.2 Member Function Documentation

7.10.2.1 type_description()

std::string qpp::exception::DimsNotEqual::type_description () const [inline], [override],
[virtual]

Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

classes/exception.h

7.11 qpp::internal::Display_Impl_ Struct Reference

```
#include <internal/util.h>
```

Inheritance diagram for qpp::internal::Display_Impl_:

Public Member Functions

template<typename T >
 std::ostream & display_impl_ (const T &A, std::ostream &os, double chop=qpp::chop) const

7.11.1 Member Function Documentation

7.11.1.1 display_impl_()

The documentation for this struct was generated from the following file:

• internal/util.h

7.12 qpp::experimental::Dynamic_bitset Class Reference

#include <experimental/experimental.h>

Inheritance diagram for qpp::experimental::Dynamic_bitset:

Collaboration diagram for qpp::experimental::Dynamic_bitset:

Public Types

• using value_type = unsigned int

Type of the storage elements.

using storage_type = std::vector< value_type >

Type of the storage.

Public Member Functions

• Dynamic bitset (idx N)

Constructor, initializes all bits to false (zero)

const storage_type & data () const

Raw storage space of the bitset.

· idx size () const

Number of bits stored in the bitset.

• idx storage_size () const

Size of the underlying storage space (in units of value_type, unsigned int by default)

- · idx count () const noexcept
- bool get (idx pos) const
- · bool none () const noexcept
- bool all () const noexcept
- · bool any () const noexcept
- Dynamic_bitset & set (idx pos, bool value=true)
- Dynamic_bitset & set () noexcept
- Dynamic bitset & rand (idx pos, double p=0.5)
- Dynamic_bitset & rand (double p=0.5)
- Dynamic_bitset & reset (idx pos)
- Dynamic_bitset & reset () noexcept
- Dynamic_bitset & flip (idx pos)
- · Dynamic bitset & flip () noexcept
- bool operator== (const Dynamic_bitset &rhs) const noexcept
- bool operator!= (const Dynamic_bitset &rhs) const noexcept
- template<class CharT = char, class Traits = std::char_traits<CharT>, class Allocator = std::allocator<CharT>> std::basic_string< CharT, Traits, Allocator > to_string (CharT zero=CharT('0'), CharT one=CharT('1')) const

Protected Member Functions

• idx index_ (idx pos) const

Index of the pos bit in the storage space.

idx offset_ (idx pos) const

Offset of the pos bit in the storage space relative to its index.

Protected Attributes

idx storage size

Storage size.

idx N

Number of bits.

std::vector< value_type > v_

Storage space.

Friends

• std::ostream & operator<< (std::ostream &os, const Dynamic_bitset &rhs)

7.12.1 Member Typedef Documentation

```
7.12.1.1 storage_type
```

```
using qpp::experimental::Dynamic_bitset::storage_type = std::vector<value_type>
```

Type of the storage.

7.12.1.2 value_type

```
using qpp::experimental::Dynamic_bitset::value_type = unsigned int
```

Type of the storage elements.

7.12.2 Constructor & Destructor Documentation

7.12.2.1 Dynamic_bitset()

Constructor, initializes all bits to false (zero)

Parameters

Number of bits in the bitset

7.12.3 Member Function Documentation

```
7.12.3.1 all()
```

```
bool qpp::experimental::Dynamic_bitset::all ( ) const [inline], [noexcept]
```

```
7.12.3.2 any()
bool qpp::experimental::Dynamic_bitset::any ( ) const [inline], [noexcept]
Returns
7.12.3.3 count()
idx qpp::experimental::Dynamic_bitset::count ( ) const [inline], [noexcept]
Returns
7.12.3.4 data()
const storage_type& qpp::experimental::Dynamic_bitset::data ( ) const [inline]
Raw storage space of the bitset.
Returns
     Const reference to the underlying storage space
7.12.3.5 flip() [1/2]
Dynamic_bitset& qpp::experimental::Dynamic_bitset::flip (
             idx pos ) [inline]
Parameters
 pos
```

```
7.12.3.6 flip() [2/2]
Dynamic_bitset& qpp::experimental::Dynamic_bitset::flip ( ) [inline], [noexcept]
Returns
7.12.3.7 get()
bool qpp::experimental::Dynamic_bitset::get (
             idx pos ) const [inline]
Parameters
 pos
Returns
7.12.3.8 index_()
idx qpp::experimental::Dynamic_bitset::index_ (
              idx pos ) const [inline], [protected]
Index of the pos bit in the storage space.
Parameters
 pos
       Bit location
Returns
     Index of the pos bit in the storage space
7.12.3.9 none()
```

bool qpp::experimental::Dynamic_bitset::none () const [inline], [noexcept]

7.12.3.10 offset_()

Offset of the *pos* bit in the storage space relative to its index.

Parameters

```
pos Bit location
```

Returns

Offset of the pos bit in the storage space relative to its index

7.12.3.11 operator"!=()

Parameters

rhs

Returns

7.12.3.12 operator==()

Parameters

rhs

7.12.3.13 rand() [1/2]

Parameters

pos	
р	

Returns

```
7.12.3.14 rand() [2/2]
```

```
\label{eq:double_p} $$\operatorname{Dynamic\_bitset\& } \operatorname{qpp::experimental::Dynamic\_bitset::rand (} $$\operatorname{double} \ p = 0.5 ) [inline]
```

Parameters

Returns

7.12.3.15 reset() [1/2]

Parameters


```
7.12.3.16 reset() [2/2]
Dynamic_bitset& qpp::experimental::Dynamic_bitset::reset ( ) [inline], [noexcept]
Returns
7.12.3.17 set() [1/2]
Dynamic_bitset& qpp::experimental::Dynamic_bitset::set (
             idx pos,
             bool value = true ) [inline]
Parameters
 pos
 value
Returns
7.12.3.18 set() [2/2]
Dynamic_bitset& qpp::experimental::Dynamic_bitset::set () [inline], [noexcept]
Returns
7.12.3.19 size()
idx qpp::experimental::Dynamic_bitset::size ( ) const [inline]
Number of bits stored in the bitset.
Returns
```

Generated by Doxygen

Number of bits

7.12.3.20 storage_size()

```
idx qpp::experimental::Dynamic_bitset::storage_size ( ) const [inline]
```

Size of the underlying storage space (in units of value_type, unsigned int by default)

Returns

Size of the underlying storage space

7.12.3.21 to_string()

Template Parameters

CharT	
Traits	
Allocator	

Parameters

zero	
one	

Returns

7.12.4 Friends And Related Function Documentation

7.12.4.1 operator <<

Parameters

os	
rhs	

Returns

7.12.5 Member Data Documentation

```
7.12.5.1 N_
idx qpp::experimental::Dynamic_bitset::N_ [protected]
Number of bits.

7.12.5.2 storage_size_
idx qpp::experimental::Dynamic_bitset::storage_size_ [protected]
Storage size.

7.12.5.3 v_
std::vector<value_type> qpp::experimental::Dynamic_bitset::v_ [protected]
```

The documentation for this class was generated from the following file:

• experimental/experimental.h

Storage space.

7.13 qpp::Dynamic_bitset Class Reference

Dynamic bitset class, allows the specification of the number of bits at runtime (unlike std::bitset<N>)

```
#include <experimental/experimental.h>
```

7.13.1 Detailed Description

Dynamic bitset class, allows the specification of the number of bits at runtime (unlike std::bitset<N>)

The documentation for this class was generated from the following file:

experimental/experimental.h

7.14 qpp::exception::Exception Class Reference

Base class for generating Quantum++ custom exceptions.

#include <classes/exception.h>

Inheritance diagram for qpp::exception::Exception:

Collaboration diagram for qpp::exception::Exception:

Public Member Functions

- Exception (const std::string &where)
 - Constructs an exception.
- virtual const char * what () const noexcept override
 - Overrides std::exception::what()
- virtual std::string type_description () const =0

Exception type description.

Private Attributes

· std::string where_

7.14.1 Detailed Description

Base class for generating Quantum++ custom exceptions.

Derive from this class if more exceptions are needed, making sure to override qpp::exception::Exception::type_ description() in the derived class and to inherit the constructor qpp::exception::Exception::Exception(). Preferably keep your newly defined exception classes in the namespace qpp::exception.

Example:

7.14.2 Constructor & Destructor Documentation

7.14.2.1 Exception()

Constructs an exception.

Parameters

where	Text representing where the exception occurred
-------	--

7.14.3 Member Function Documentation

7.14.3.1 type_description()

```
std::string qpp::exception::Exception::type_description ( ) const [inline], [pure virtual]
```

Exception type description.

Returns

Exception type description

Implemented in qpp::exception::CustomException, qpp::exception::UndefinedType, qpp::exception::SizeMismatch, qpp::exception::TypeMismatch, qpp::exception::OutOfRange, qpp::exception::NoCodeword, qpp::exception::\to NotBipartite, qpp::exception::NotQubitSubsys, qpp::exception::NotQubitVector, qpp::exception::NotQubitRvector, qpp::exception::NotQubitCvector, qpp::exception::NotQubitMatrix, qpp::exception::PermMismatchDims, qpp\tilde{:exception::PermInvalid, qpp::exception::SubsysMismatchDims, qpp::exception::DimsMismatchVector, qpp\tilde{:exception::DimsMismatchRvector, qpp::exception::DimsMismatchCvector, qpp::exception::DimsMismatchSubsys, qpp\tilde{:exception::MatrixNotSquareNorVector, qpp::exception::MatrixNotSquareNorRvector, qpp::exception::Unknown.

7.14.3.2 what()

```
virtual const char* qpp::exception::Exception::what ( ) const [inline], [override], [virtual],
[noexcept]
```

Overrides std::exception::what()

Returns

Exception description

7.14.4 Member Data Documentation

```
7.14.4.1 where_
std::string qpp::exception::Exception::where_ [private]
```

The documentation for this class was generated from the following file:

· classes/exception.h

7.15 qpp::experimental::Bit_circuit::Gate_count Struct Reference

```
#include <experimental/experimental.h>
```

Public Attributes

- idx NOT = 0
- idx & X = NOT
- idx CNOT = 0
- idx SWAP = 0
- idx FRED = 0
- idx TOF = 0

7.15.1 Member Data Documentation

7.15.1.1 CNOT

```
idx qpp::experimental::Bit_circuit::Gate_count::CNOT = 0
```

7.15.1.2 FRED

```
idx qpp::experimental::Bit_circuit::Gate_count::FRED = 0
```

7.15.1.3 NOT

```
idx qpp::experimental::Bit_circuit::Gate_count::NOT = 0
```

7.15.1.4 SWAP

```
idx qpp::experimental::Bit_circuit::Gate_count::SWAP = 0
```

7.15.1.5 TOF

```
idx qpp::experimental::Bit_circuit::Gate_count::TOF = 0
```

7.15.1.6 X

```
idx& qpp::experimental::Bit_circuit::Gate_count::X = NOT
```

The documentation for this struct was generated from the following file:

• experimental/experimental.h

7.16 qpp::Gates Class Reference

const Singleton class that implements most commonly used gates

```
#include <classes/gates.h>
```

Inheritance diagram for qpp::Gates:

Collaboration diagram for qpp::Gates:

Public Member Functions

- cmat Rn (double theta, const std::vector< double > &n) const
 - Qubit rotation of theta about the 3-dimensional real (unit) vector n.
- cmat Zd (idx D=2) const

Generalized Z gate for qudits.

• cmat Fd (idx D=2) const

Fourier transform gate for qudits.

• cmat Xd (idx D=2) const

Generalized X gate for qudits.

• template<typename Derived = Eigen::MatrixXcd>

Derived Id (idx D=2) const

Identity gate.

• template<typename Derived >

 $\frac{dyn_mat}{dx} = \frac{CTRL}{(const Eigen::MatrixBase} = \frac{Eigen::MatrixBase}{(const Eig$

Generates the multi-partite multiple-controlled-A gate in matrix form.

 $\bullet \ \ {\it template}{<} {\it typename Derived} >$

dyn_mat< typename Derived::Scalar > expandout (const Eigen::MatrixBase< Derived > &A, idx pos, const
std::vector< idx > &dims) const

Expands out.

template<typename Derived >

 $\frac{dyn_mat}{dyn_mat} < typename\ Derived::Scalar > \underbrace{expandout\ (const\ Eigen::MatrixBase} < Derived > \&A, idx\ pos, const\ std::initializer_list < idx > \&dims)\ const$

Expands out.

template<typename Derived >

dyn_mat< typename Derived::Scalar > expandout (const Eigen::MatrixBase< Derived > &A, idx pos, idx N,
idx d=2) const

Expands out.

Public Attributes

• cmat Id2 {cmat::Identity(2, 2)}

Identity gate.

cmat H {cmat::Zero(2, 2)}

```
Hadamard gate.
```

cmat X {cmat::Zero(2, 2)}

Pauli Sigma-X gate.

cmat Y {cmat::Zero(2, 2)}

Pauli Sigma-Y gate.

cmat Z {cmat::Zero(2, 2)}

Pauli Sigma-Z gate.

cmat S {cmat::Zero(2, 2)}

S gate.

cmat T {cmat::Zero(2, 2)}

T gate.

cmat CNOT {cmat::ldentity(4, 4)}

Controlled-NOT control target gate.

• cmat CZ {cmat::Identity(4, 4)}

Controlled-Phase gate.

• cmat CNOTba {cmat::Zero(4, 4)}

Controlled-NOT target control gate.

• cmat SWAP {cmat::Identity(4, 4)}

SWAP gate.

• cmat TOF {cmat::ldentity(8, 8)}

Toffoli gate.

• cmat FRED {cmat::Identity(8, 8)}

Fredkin gate.

Private Member Functions

• Gates ()

Initializes the gates.

• ~Gates ()=default

Default destructor.

Friends

class internal::Singleton < const Gates >

Additional Inherited Members

7.16.1 Detailed Description

const Singleton class that implements most commonly used gates

7.16.2 Constructor & Destructor Documentation

7.16.2.1 Gates()

```
qpp::Gates::Gates ( ) [inline], [private]
```

Initializes the gates.

7.16.2.2 ∼Gates()

```
qpp::Gates::~Gates ( ) [private], [default]
```

Default destructor.

7.16.3 Member Function Documentation

7.16.3.1 CTRL()

Generates the multi-partite multiple-controlled-A gate in matrix form.

See also

```
qpp::applyCTRL()
```

Note

The dimension of the gate A must match the dimension of subsys

Parameters

Α	Eigen expression
ctrl	Control subsystem indexes
subsys	Subsystem indexes where the gate A is applied
N	Total number of subsystems
d	Subsystem dimensions

Returns

CTRL-A gate, as a matrix over the same scalar field as A

Expands out A as a matrix in a multi-partite system. Faster than using qpp::kron(I, I, ..., I, A, I, ..., I).

Parameters

Α	Eigen expression
pos	Position
dims	Dimensions of the multi-partite system

Returns

Tensor product $I \otimes \cdots \otimes I \otimes A \otimes I \otimes \cdots \otimes I$, with A on position pos, as a dynamic matrix over the same scalar field as A

```
7.16.3.3 expandout() [2/3]
```

Expands out.

See also

qpp::kron()

Expands out A as a matrix in a multi-partite system. Faster than using qpp::kron(I, I, ..., I, A, I, ..., I).

Note

The std::initializer_list overload exists because otherwise, in the degenerate case when *dims* has only one element, the one element list is implicitly converted to the element's underlying type, i.e. qpp::idx, which has the net effect of picking the wrong (non-vector) qpp::expandout() overload

Parameters

Α	Eigen expression
pos	Position
dims	Dimensions of the multi-partite system

Returns

Tensor product $I\otimes\cdots\otimes I\otimes A\otimes I\otimes\cdots\otimes I$, with A on position pos, as a dynamic matrix over the same scalar field as A

7.16.3.4 expandout() [3/3]

Expands out.

See also

qpp::kron()

Expands out A as a matrix in a multi-partite system. Faster than using qpp::kron(I, I, ..., I, A, I, ..., I).

Parameters

Α	Eigen expression
pos	Position
Ν	Number of subsystems
d	Subsystem dimension

Returns

Tensor product $I\otimes\cdots\otimes I\otimes A\otimes I\otimes\cdots\otimes I$, with A on position pos, as a dynamic matrix over the same scalar field as A

7.16.3.5 Fd()

```
cmat qpp::Gates::Fd (
    idx D = 2 ) const [inline]
```

Fourier transform gate for qudits.

Note

Defined as
$$F = \sum_{j,k=0}^{D-1} \exp(2\pi \mathrm{i} jk/D) |j\rangle\langle k|$$

Parameters

D Dimension of the Hilbert space

Returns

Fourier transform gate for qudits

7.16.3.6 ld()

```
template<typename Derived = Eigen::MatrixXcd>
Derived qpp::Gates::Id (
    idx D = 2 ) const [inline]
```

Identity gate.

Note

Can change the return type from complex matrix (default) by explicitly specifying the template parameter

Parameters

D Dimension of the Hilbert space

Returns

Identity gate on a Hilbert space of dimension D

7.16.3.7 Rn()

Qubit rotation of *theta* about the 3-dimensional real (unit) vector *n*.

Parameters

theta	Rotation angle
n	3-dimensional real (unit) vector

Returns

Rotation gate

7.16.3.8 Xd()

```
cmat qpp::Gates::Xd (
    idx D = 2 ) const [inline]
```

Generalized X gate for qudits.

Note

```
Defined as X=\sum_{j=0}^{D-1}|j\oplus 1\rangle\langle j|, i.e. raising operator X|j\rangle=|j\oplus 1\rangle
```

Parameters

D Dimension of the Hilbert space

Returns

Generalized X gate for qudits

7.16.3.9 Zd()

```
cmat qpp::Gates::Zd (
    idx D = 2 ) const [inline]
```

Generalized Z gate for qudits.

Note

Defined as
$$Z = \sum_{j=0}^{D-1} \exp(2\pi \mathrm{i} j/D) |j\rangle\langle j|$$

Parameters

D Dimension of the Hilbert space

Returns

Generalized Z gate for qudits

7.16.4 Friends And Related Function Documentation

```
7.16.4.1 internal::Singleton < const Gates >
friend class internal::Singleton< const Gates > [friend]
7.16.5 Member Data Documentation
7.16.5.1 CNOT
cmat qpp::Gates::CNOT {cmat::Identity(4, 4)}
Controlled-NOT control target gate.
7.16.5.2 CNOTba
cmat qpp::Gates::CNOTba {cmat::Zero(4, 4)}
Controlled-NOT target control gate.
7.16.5.3 CZ
cmat qpp::Gates::CZ {cmat::Identity(4, 4)}
Controlled-Phase gate.
7.16.5.4 FRED
cmat qpp::Gates::FRED {cmat::Identity(8, 8)}
Fredkin gate.
7.16.5.5 H
```

cmat qpp::Gates::H {cmat::Zero(2, 2)}

Hadamard gate.

```
7.16.5.6 ld2
cmat qpp::Gates::Id2 {cmat::Identity(2, 2)}
Identity gate.
7.16.5.7 S
cmat qpp::Gates::S {cmat::Zero(2, 2)}
S gate.
7.16.5.8 SWAP
cmat qpp::Gates::SWAP {cmat::Identity(4, 4)}
SWAP gate.
7.16.5.9 T
cmat qpp::Gates::T {cmat::Zero(2, 2)}
T gate.
7.16.5.10 TOF
cmat qpp::Gates::TOF {cmat::Identity(8, 8)}
Toffoli gate.
7.16.5.11 X
cmat qpp::Gates::X {cmat::Zero(2, 2)}
Pauli Sigma-X gate.
```

7.16.5.12 Y

```
cmat qpp::Gates::Y {cmat::Zero(2, 2)}
```

Pauli Sigma-Y gate.

7.16.5.13 Z

```
cmat qpp::Gates::Z {cmat::Zero(2, 2)}
```

Pauli Sigma-Z gate.

The documentation for this class was generated from the following file:

· classes/gates.h

7.17 qpp::IDisplay Class Reference

Abstract class (interface) that mandates the definition of virtual std::ostream& display(std::ostream& os) const.

```
#include <classes/idisplay.h>
```

Inheritance diagram for qpp::IDisplay:

Public Member Functions

• IDisplay ()=default

Default constructor.

IDisplay (const IDisplay &)=default

Default copy constructor.

• IDisplay (IDisplay &&)=default

Default move constructor.

IDisplay & operator= (const IDisplay &)=default

Default copy assignment operator.

• IDisplay & operator= (IDisplay &&)=default

Default move assignment operator.

virtual ∼IDisplay ()=default

Default virtual destructor.

Private Member Functions

virtual std::ostream & display (std::ostream &os) const =0
 Must be overridden by all derived classes.

Friends

std::ostream & operator<< (std::ostream &os, const IDisplay &rhs)
 Overloads the extraction operator.

7.17.1 Detailed Description

Abstract class (interface) that mandates the definition of virtual std::ostream& display(std::ostream& os) const.

This class defines friend inline std::ostream& operator<< (std::ostream& os, const qpp::IDisplay& rhs). The latter delegates the work to the pure private virtual function qpp::IDisplay::display() which has to be overridden by all derived classes.

7.17.2 Constructor & Destructor Documentation

```
7.17.2.1 | IDisplay() [1/3]

qpp::IDisplay::IDisplay ( ) [default]
```

Default constructor.

Default copy constructor.

Default move constructor.

```
7.17.2.4 \simIDisplay() virtual qpp::IDisplay::\simIDisplay ( ) [virtual], [default]
```

Default virtual destructor.

7.17.3 Member Function Documentation

Must be overridden by all derived classes.

The actual stream extraction processing is performed by the overriden member function in the derived class. This function is automatically invoked by friend inline std::ostream& operator<<(std::ostream& os, const IDisplay& rhs).

Implemented in qpp::internal::IOManipEigen, qpp::Timer< T, CLOCK_T >, qpp::internal::IOManipPointer< PointerType >, and qpp::internal::IOManipRange< InputIterator >.

Default copy assignment operator.

```
7.17.3.3 operator=() [2/2]
```

Default move assignment operator.

7.17.4 Friends And Related Function Documentation

7.17.4.1 operator <<

Overloads the extraction operator.

Delegates the work to the virtual function qpp::IDisplay::display()

The documentation for this class was generated from the following file:

· classes/idisplay.h

7.18 qpp::Init Class Reference

const Singleton class that performs additional initializations/cleanups

```
#include <classes/init.h>
```

Inheritance diagram for qpp::Init:

Collaboration diagram for qpp::Init:

Private Member Functions

• Init ()

Additional initializations.

• ∼Init ()

Cleanups.

Friends

- class internal::Singleton < const Init >

Additional Inherited Members

7.18.1 Detailed Description

const Singleton class that performs additional initializations/cleanups

7.18.2 Constructor & Destructor Documentation

```
7.18.2.1 Init()
```

```
qpp::Init::Init ( ) [inline], [private]
```

Additional initializations.

```
7.18.2.2 ∼Init()
```

qpp::Init::~Init () [inline], [private]

Cleanups.

7.18.3 Friends And Related Function Documentation

7.18.3.1 internal::Singleton < const Init >

friend class internal::Singleton< const Init > [friend]

The documentation for this class was generated from the following file:

· classes/init.h

7.19 qpp::internal::IOManipEigen Class Reference

#include <internal/classes/iomanip.h>

Inheritance diagram for qpp::internal::IOManipEigen:

Collaboration diagram for qpp::internal::IOManipEigen:

Public Member Functions

template<typename Derived >
 IOManipEigen (const Eigen::MatrixBase< Derived > &A, double chop=qpp::chop)
 IOManipEigen (const cplx z, double chop=qpp::chop)

Private Member Functions

std::ostream & display (std::ostream &os) const override
 Must be overridden by all derived classes.

Private Attributes

- · cmat A_
- · double chop_

7.19.1 Constructor & Destructor Documentation

7.19.2 Member Function Documentation

Must be overridden by all derived classes.

The actual stream extraction processing is performed by the overriden member function in the derived class. This function is automatically invoked by friend inline std::ostream& operator<<(std::ostream& os, const IDisplay& rhs).

Implements qpp::IDisplay.

7.19.3 Member Data Documentation

7.19.3.1 A_

```
cmat qpp::internal::IOManipEigen::A_ [private]
```

7.19.3.2 chop_

```
double qpp::internal::IOManipEigen::chop_ [private]
```

The documentation for this class was generated from the following file:

• internal/classes/iomanip.h

7.20 qpp::internal::IOManipPointer< PointerType > Class Template Reference

```
#include <internal/classes/iomanip.h>
```

Inheritance diagram for qpp::internal::IOManipPointer< PointerType >:

Collaboration diagram for qpp::internal::IOManipPointer< PointerType >:

Public Member Functions

- IOManipPointer (const PointerType *p, idx N, const std::string &separator, const std::string &start="[", const std::string &end="]")
- IOManipPointer (const IOManipPointer &)=default
- IOManipPointer & operator= (const IOManipPointer &)=default

Private Member Functions

std::ostream & display (std::ostream &os) const override
 Must be overridden by all derived classes.

Private Attributes

- const PointerType * p_
- idx N_
- std::string separator_
- std::string start_
- std::string end_

7.20.1 Constructor & Destructor Documentation

7.20.1.1 IOManipPointer() [1/2]

7.20.1.2 IOManipPointer() [2/2]

7.20.2 Member Function Documentation

7.20.2.1 display()

Must be overridden by all derived classes.

The actual stream extraction processing is performed by the overriden member function in the derived class. This function is automatically invoked by friend inline std::ostream& operator<<(std::ostream& os, const IDisplay& rhs).

Implements qpp::IDisplay.

7.20.2.2 operator=()

7.20.3 Member Data Documentation

```
7.20.3.1 end_
template<typename PointerType>
std::string qpp::internal::IOManipPointer< PointerType >::end_ [private]
7.20.3.2 N_
template<typename PointerType>
idx qpp::internal::IOManipPointer< PointerType >::N_ [private]
7.20.3.3 p_
template<typename PointerType>
const PointerType* qpp::internal::IOManipPointer< PointerType >::p_ [private]
7.20.3.4 separator_
template<typename PointerType>
std::string qpp::internal::IOManipPointer< PointerType >::separator_ [private]
7.20.3.5 start_
template<typename PointerType>
std::string qpp::internal::IOManipPointer< PointerType >::start_ [private]
```

The documentation for this class was generated from the following file:

• internal/classes/iomanip.h

7.21 qpp::internal::IOManipRange < InputIterator > Class Template Reference

#include <internal/classes/iomanip.h>

Inheritance diagram for qpp::internal::IOManipRange< InputIterator >:

 $Collaboration\ diagram\ for\ qpp::internal::IOManipRange < Input Iterator >:$

Public Member Functions

- IOManipRange (InputIterator first, InputIterator last, const std::string &separator, const std::string &start="[", const std::string &end="]")
- IOManipRange (const IOManipRange &)=default
- IOManipRange & operator= (const IOManipRange &)=default

Private Member Functions

std::ostream & display (std::ostream &os) const override
 Must be overridden by all derived classes.

Private Attributes

- InputIterator first_
- InputIterator last
- std::string separator
- · std::string start_
- · std::string end_

7.21.1 Constructor & Destructor Documentation

```
7.21.1.1 IOManipRange() [1/2]
```

7.21.1.2 IOManipRange() [2/2]

7.21.2 Member Function Documentation

7.21.2.1 display()

Must be overridden by all derived classes.

The actual stream extraction processing is performed by the overriden member function in the derived class. This function is automatically invoked by friend inline std::ostream& operator<<(std::ostream& os, const IDisplay& rhs).

Implements qpp::IDisplay.

7.21.2.2 operator=()

7.21.3 Member Data Documentation

```
7.21.3.1 end
template<typename InputIterator>
std::string qpp::internal::IOManipRange< InputIterator >::end_ [private]
7.21.3.2 first_
template<typename InputIterator>
InputIterator qpp::internal::IOManipRange< InputIterator >::first_ [private]
7.21.3.3 last_
template<typename InputIterator>
InputIterator qpp::internal::IOManipRange< InputIterator >::last_ [private]
7.21.3.4 separator_
template<typename InputIterator>
std::string qpp::internal::IOManipRange< InputIterator >::separator_ [private]
```

The documentation for this class was generated from the following file:

std::string qpp::internal::IOManipRange< InputIterator >::start_ [private]

• internal/classes/iomanip.h

template<typename InputIterator>

7.21.3.5 start_

7.22 qpp::is_complex< T > Struct Template Reference

Checks whether the type is a complex type.

```
#include <traits.h>
```

Inheritance diagram for qpp::is_complex< T >:

Collaboration diagram for qpp::is_complex< T >:

7.22.1 Detailed Description

template < typename T > struct qpp::is_complex < T >

Checks whether the type is a complex type.

Provides the constant member *value* which is equal to *true*, if the type is a complex type, i.e. *std::complex<T>*

The documentation for this struct was generated from the following file:

traits.h

7.23 qpp::is_complex < std::complex < T > > Struct Template Reference

Checks whether the type is a complex number type, specialization for complex types.

```
#include <traits.h>
```

Inheritance diagram for qpp::is_complex < std::complex < T > :

Collaboration diagram for qpp::is_complex< std::complex< T >>:

7.23.1 Detailed Description

```
template<typename T> struct qpp::is_complex< std::complex< T > >
```

Checks whether the type is a complex number type, specialization for complex types.

The documentation for this struct was generated from the following file:

· traits.h

7.24 qpp::is_iterable < T, typename > Struct Template Reference

Checks whether T is compatible with an STL-like iterable container.

```
#include <traits.h>
```

Inheritance diagram for qpp::is_iterable < T, typename >:

Collaboration diagram for qpp::is_iterable < T, typename >:

7.24.1 Detailed Description

template<typename T, typename = void> struct qpp::is_iterable< T, typename >

Checks whether T is compatible with an STL-like iterable container.

Provides the constant member *value* which is equal to *true*, if *T* is compatible with an iterable container, i.e. provides at least *begin()* and *end()* member functions. Otherwise, *value* is equal to *false*.

The documentation for this struct was generated from the following file:

· traits.h

7.25 qpp::is_iterable< T, to_void< decltype(std::declval< T >().begin()), decltype(std... ::declval< T >().end()), typename T::value_type > > Struct Template Reference

Checks whether *T* is compatible with an STL-like iterable container, specialization for STL-like iterable containers.

```
#include <traits.h>
```

Inheritance diagram for qpp::is_iterable < T, to_void < decltype(std::declval < T >().begin()), decltype(std::declval < T >().end()), typename T::value_type > >:

Collaboration diagram for qpp::is_iterable< T, to_void< decltype(std::declval< T >().begin()), decltype(std:: \leftarrow :declval< T >().end()), typename T::value_type > >:

7.25.1 Detailed Description

```
template < typename \ T > \\ struct \ qpp::is\_iterable < \ T, \ to\_void < \ decltype(std::declval < \ T > ().begin()), \ decltype(std::declval < \ T > ().end()), \ typename \ T \leftarrow \\ ::value\_type > >
```

Checks whether *T* is compatible with an STL-like iterable container, specialization for STL-like iterable containers.

The documentation for this struct was generated from the following file:

· traits.h

7.26 qpp::is_matrix_expression < Derived > Struct Template Reference

Checks whether the type is an Eigen matrix expression.

```
#include <traits.h>
```

Inheritance diagram for qpp::is_matrix_expression< Derived >:

Collaboration diagram for qpp::is matrix expression< Derived >:

7.26.1 Detailed Description

```
template < typename Derived > struct qpp::is_matrix_expression < Derived >
```

Checks whether the type is an Eigen matrix expression.

Provides the constant member *value* which is equal to *true*, if the type is an Eigen matrix expression of type *Eigen ∷MatrixBase Oerived >*. Otherwise, *value* is equal to *false*.

The documentation for this struct was generated from the following file:

· traits.h

7.27 qpp::make_void < Ts > Struct Template Reference

```
Helper for <a href="mailto:qpp::to_void">qpp::to_void<>> alias template.</a>
```

```
#include <traits.h>
```

Public Types

· typedef void type

7.27.1 Detailed Description

```
template<typename... Ts> struct qpp::make_void< Ts>
```

Helper for qpp::to_void<>> alias template.

See also

```
qpp::to_void<>
```

7.27.2 Member Typedef Documentation

7.27.2.1 type

```
template<typename... Ts>
typedef void qpp::make_void< Ts >::type
```

The documentation for this struct was generated from the following file:

· traits.h

7.28 qpp::exception::MatrixMismatchSubsys Class Reference

Matrix mismatch subsystems exception.

#include <classes/exception.h>

Inheritance diagram for qpp::exception::MatrixMismatchSubsys:

Collaboration diagram for qpp::exception::MatrixMismatchSubsys:

Public Member Functions

std::string type_description () const override
 Exception type description.

7.28.1 Detailed Description

Matrix mismatch subsystems exception.

Matrix size mismatch subsystem sizes (e.g. in qpp::apply())

7.28.2 Member Function Documentation

7.28.2.1 type_description()

std::string qpp::exception::MatrixMismatchSubsys::type_description () const [inline], [override],
[virtual]

Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

· classes/exception.h

7.29 qpp::exception::MatrixNotCvector Class Reference

Matrix is not a column vector exception.

#include <classes/exception.h>

Inheritance diagram for qpp::exception::MatrixNotCvector:

Collaboration diagram for qpp::exception::MatrixNotCvector:

Public Member Functions

• std::string type_description () const override Exception type description.

7.29.1 Detailed Description

Matrix is not a column vector exception.

Eigen::Matrix is not a column vector

7.29.2 Member Function Documentation

7.29.2.1 type_description()

std::string qpp::exception::MatrixNotCvector::type_description () const [inline], [override],
[virtual]

Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

· classes/exception.h

7.30 qpp::exception::MatrixNotRvector Class Reference

Matrix is not a row vector exception.

#include <classes/exception.h>

Inheritance diagram for qpp::exception::MatrixNotRvector:

Collaboration diagram for qpp::exception::MatrixNotRvector:

Public Member Functions

• std::string type_description () const override Exception type description.

7.30.1 Detailed Description

Matrix is not a row vector exception.

Eigen::Matrix is not a row vector

7.30.2 Member Function Documentation

7.30.2.1 type_description()

std::string qpp::exception::MatrixNotRvector::type_description () const [inline], [override],
[virtual]

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

· classes/exception.h

7.31 qpp::exception::MatrixNotSquare Class Reference

Matrix is not square exception.

#include <classes/exception.h>

Inheritance diagram for qpp::exception::MatrixNotSquare:

Collaboration diagram for qpp::exception::MatrixNotSquare:

Public Member Functions

• std::string type_description () const override Exception type description.

7.31.1 Detailed Description

Matrix is not square exception.

Eigen::Matrix is not a square matrix

7.31.2 Member Function Documentation

7.31.2.1 type_description()

std::string qpp::exception::MatrixNotSquare::type_description () const [inline], [override],
[virtual]

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

· classes/exception.h

7.32 qpp::exception::MatrixNotSquareNorCvector Class Reference

Matrix is not square nor column vector exception.

#include <classes/exception.h>

Inheritance diagram for qpp::exception::MatrixNotSquareNorCvector:

Collaboration diagram for qpp::exception::MatrixNotSquareNorCvector:

Public Member Functions

• std::string type_description () const override Exception type description.

7.32.1 Detailed Description

Matrix is not square nor column vector exception.

Eigen::Matrix is not a square matrix nor a column vector

7.32.2 Member Function Documentation

7.32.2.1 type_description()

std::string qpp::exception::MatrixNotSquareNorCvector::type_description () const [inline],
[override], [virtual]

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

· classes/exception.h

7.33 qpp::exception::MatrixNotSquareNorRvector Class Reference

Matrix is not square nor row vector exception.

#include <classes/exception.h>

Inheritance diagram for qpp::exception::MatrixNotSquareNorRvector:

Collaboration diagram for qpp::exception::MatrixNotSquareNorRvector:

Public Member Functions

• std::string type_description () const override Exception type description.

7.33.1 Detailed Description

Matrix is not square nor row vector exception.

Eigen::Matrix is not a square matrix nor a row vector

7.33.2 Member Function Documentation

7.33.2.1 type_description()

std::string qpp::exception::MatrixNotSquareNorRvector::type_description () const [inline],
[override], [virtual]

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

· classes/exception.h

7.34 qpp::exception::MatrixNotSquareNorVector Class Reference

Matrix is not square nor vector exception.

#include <classes/exception.h>

Inheritance diagram for qpp::exception::MatrixNotSquareNorVector:

Collaboration diagram for qpp::exception::MatrixNotSquareNorVector:

Public Member Functions

std::string type_description () const override
 Exception type description.

7.34.1 Detailed Description

Matrix is not square nor vector exception.

Eigen::Matrix is not a square matrix nor a row/column vector

7.34.2 Member Function Documentation

7.34.2.1 type_description()

std::string qpp::exception::MatrixNotSquareNorVector::type_description () const [inline],
[override], [virtual]

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

· classes/exception.h

7.35 qpp::exception::MatrixNotVector Class Reference

Matrix is not a vector exception.

#include <classes/exception.h>

Inheritance diagram for qpp::exception::MatrixNotVector:

Collaboration diagram for qpp::exception::MatrixNotVector:

Public Member Functions

std::string type_description () const override
 Exception type description.

7.35.1 Detailed Description

Matrix is not a vector exception.

Eigen::Matrix is not a row or column vector

7.35.2 Member Function Documentation

7.35.2.1 type_description()

std::string qpp::exception::MatrixNotVector::type_description () const [inline], [override],
[virtual]

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

• classes/exception.h

7.36 qpp::exception::NoCodeword Class Reference

Codeword does not exist exception.

#include <classes/exception.h>

Inheritance diagram for qpp::exception::NoCodeword:

Collaboration diagram for qpp::exception::NoCodeword:

Public Member Functions

• std::string type_description () const override Exception type description.

7.36.1 Detailed Description

Codeword does not exist exception.

Codeword does not exist, thrown when calling qpp::Codes::codeword() with an invalid index

7.36.2 Member Function Documentation

7.36.2.1 type_description()

std::string qpp::exception::NoCodeword::type_description () const [inline], [override],
[virtual]

Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

· classes/exception.h

7.37 qpp::exception::NotBipartite Class Reference

Not bi-partite exception.

#include <classes/exception.h>

Inheritance diagram for qpp::exception::NotBipartite:

Collaboration diagram for qpp::exception::NotBipartite:

Public Member Functions

std::string type_description () const override
 Exception type description.

7.37.1 Detailed Description

Not bi-partite exception.

std::vector<idx> of dimensions has size different from 2

7.37.2 Member Function Documentation

7.37.2.1 type_description()

std::string qpp::exception::NotBipartite::type_description () const [inline], [override],
[virtual]

Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

• classes/exception.h

7.38 qpp::exception::NotQubitCvector Class Reference

Column vector is not 2 x 1 exception.

#include <classes/exception.h>

Inheritance diagram for qpp::exception::NotQubitCvector:

Collaboration diagram for qpp::exception::NotQubitCvector:

Public Member Functions

• std::string type_description () const override Exception type description.

7.38.1 Detailed Description

Column vector is not 2 x 1 exception.

Eigen::Matrix is not 2 x 1

7.38.2 Member Function Documentation

7.38.2.1 type_description()

std::string qpp::exception::NotQubitCvector::type_description () const [inline], [override],
[virtual]

Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

· classes/exception.h

7.39 qpp::exception::NotQubitMatrix Class Reference

Matrix is not 2 x 2 exception.

#include <classes/exception.h>

Inheritance diagram for qpp::exception::NotQubitMatrix:

Collaboration diagram for qpp::exception::NotQubitMatrix:

Public Member Functions

std::string type_description () const override
 Exception type description.

7.39.1 Detailed Description

Matrix is not 2 x 2 exception.

Eigen::Matrix is not 2 x 2

7.39.2 Member Function Documentation

7.39.2.1 type_description()

std::string qpp::exception::NotQubitMatrix::type_description () const [inline], [override],
[virtual]

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

· classes/exception.h

7.40 qpp::exception::NotQubitRvector Class Reference

Row vector is not 1 x 2 exception.

#include <classes/exception.h>

Inheritance diagram for qpp::exception::NotQubitRvector:

Collaboration diagram for qpp::exception::NotQubitRvector:

Public Member Functions

• std::string type_description () const override Exception type description.

7.40.1 Detailed Description

Row vector is not 1 x 2 exception.

Eigen::Matrix is not 1 x 2

7.40.2 Member Function Documentation

7.40.2.1 type_description()

std::string qpp::exception::NotQubitRvector::type_description () const [inline], [override],
[virtual]

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

· classes/exception.h

7.41 qpp::exception::NotQubitSubsys Class Reference

Subsystems are not qubits exception.

#include <classes/exception.h>

Inheritance diagram for qpp::exception::NotQubitSubsys:

Collaboration diagram for qpp::exception::NotQubitSubsys:

Public Member Functions

• std::string type_description () const override Exception type description.

7.41.1 Detailed Description

Subsystems are not qubits exception.

Subsystems are not 2-dimensional (qubits)

7.41.2 Member Function Documentation

7.41.2.1 type_description()

std::string qpp::exception::NotQubitSubsys::type_description () const [inline], [override],
[virtual]

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

· classes/exception.h

7.42 qpp::exception::NotQubitVector Class Reference

Vector is not 2 x 1 nor 1 x 2 exception.

#include <classes/exception.h>

Inheritance diagram for qpp::exception::NotQubitVector:

Collaboration diagram for qpp::exception::NotQubitVector:

Public Member Functions

• std::string type_description () const override Exception type description.

7.42.1 Detailed Description

Vector is not 2 x 1 nor 1 x 2 exception.

Eigen::Matrix is not 2 x 1 nor 1 x 2

7.42.2 Member Function Documentation

7.42.2.1 type_description()

std::string qpp::exception::NotQubitVector::type_description () const [inline], [override],
[virtual]

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

• classes/exception.h

7.43 qpp::exception::OutOfRange Class Reference

Parameter out of range exception.

#include <classes/exception.h>

Inheritance diagram for qpp::exception::OutOfRange:

Collaboration diagram for qpp::exception::OutOfRange:

Public Member Functions

• std::string type_description () const override Exception type description.

7.43.1 Detailed Description

Parameter out of range exception.

Parameter out of range

7.43.2 Member Function Documentation

7.43.2.1 type_description()

std::string qpp::exception::OutOfRange::type_description () const [inline], [override],
[virtual]

Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

classes/exception.h

7.44 qpp::exception::PermInvalid Class Reference

Invalid permutation exception.

#include <classes/exception.h>

Inheritance diagram for qpp::exception::PermInvalid:

Collaboration diagram for qpp::exception::PermInvalid:

Public Member Functions

std::string type_description () const override
 Exception type description.

7.44.1 Detailed Description

Invalid permutation exception.

std::vector<idx> does note represent a valid permutation

7.44.2 Member Function Documentation

7.44.2.1 type_description()

```
std::string qpp::exception::PermInvalid::type_description ( ) const [inline], [override],
[virtual]
```

Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

• classes/exception.h

7.45 qpp::exception::PermMismatchDims Class Reference

Permutation mismatch dimensions exception.

#include <classes/exception.h>

Inheritance diagram for qpp::exception::PermMismatchDims:

Collaboration diagram for qpp::exception::PermMismatchDims:

Public Member Functions

• std::string type_description () const override Exception type description.

7.45.1 Detailed Description

Permutation mismatch dimensions exception.

Size of the std::vector<idx> representing the permutation is different from the size of the std::vector<idx> of dimensions

7.45.2 Member Function Documentation

7.45.2.1 type_description()

std::string qpp::exception::PermMismatchDims::type_description () const [inline], [override],
[virtual]

Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

· classes/exception.h

7.46 qpp::RandomDevices Class Reference

Singleton class that manages the source of randomness in the library.

```
#include <classes/random_devices.h>
```

Inheritance diagram for qpp::RandomDevices:

Collaboration diagram for qpp::RandomDevices:

Public Member Functions

• std::mt19937 & get_prng ()

Returns a reference to the internal PRNG object.

• std::istream & load (std::istream &is)

Loads the state of the PRNG from an input stream.

• std::ostream & save (std::ostream &os) const

Saves the state of the PRNG to an output stream.

Private Member Functions

• RandomDevices ()

Initializes and seeds the random number generators.

∼RandomDevices ()=default

Default destructor.

Private Attributes

std::random_device rd_

used to seed std::mt19937 prng_

std::mt19937 prng_

Mersenne twister random number generator.

Friends

class internal::Singleton < RandomDevices >

Additional Inherited Members

7.46.1 Detailed Description

Singleton class that manages the source of randomness in the library.

Consists of a wrapper around an std::mt19937 Mersenne twister random number generator engine and an std ∴ ::random_device engine. The latter is used to seed the Mersenne twister.

Warning

This class DOES NOT seed the standard C number generator used by Eigen::Matrix::Random(), since it is not thread safe. Do not use Eigen::Matrix::Random() or functions that depend on the C style random number engine, but use qpp::rand() instead!

7.46.2 Constructor & Destructor Documentation

7.46.2.1 RandomDevices()

```
qpp::RandomDevices::RandomDevices ( ) [inline], [private]
```

Initializes and seeds the random number generators.

7.46.2.2 ∼RandomDevices()

```
qpp::RandomDevices::~RandomDevices ( ) [private], [default]
```

Default destructor.

7.46.3 Member Function Documentation

7.46.3.1 get_prng()

```
std::mt19937& qpp::RandomDevices::get_prng ( ) [inline]
```

Returns a reference to the internal PRNG object.

Returns

Reference to the internal PRNG object

7.46.3.2 load()

Loads the state of the PRNG from an input stream.

Do					
Pа	ra	m	eı	re.	rs

is	Input stream
----	--------------

Returns

The input stream

```
7.46.3.3 save()
```

Saves the state of the PRNG to an output stream.

Parameters

```
os Output stream
```

Returns

The output stream

7.46.4 Friends And Related Function Documentation

```
7.46.4.1 internal::Singleton < RandomDevices >
```

```
\label{lem:class} \mbox{friend class internal::Singleton} < \mbox{RandomDevices} > \mbox{ [friend]}
```

7.46.5 Member Data Documentation

```
7.46.5.1 prng_
```

```
std::mt19937 qpp::RandomDevices::prng_ [private]
```

Mersenne twister random number generator.

```
7.46.5.2 rd
```

```
std::random_device qpp::RandomDevices::rd_ [private]
```

used to seed std::mt19937 prng

The documentation for this class was generated from the following file:

· classes/random_devices.h

7.47 qpp::internal::Singleton < T > Class Template Reference

Singleton policy class, used internally to implement the singleton pattern via CRTP (Curiously recurring template pattern)

```
#include <internal/classes/singleton.h>
```

Static Public Member Functions

- static T & get_instance () noexcept(std::is_nothrow_constructible < T >::value)
- static T & get_thread_local_instance () noexcept(std::is_nothrow_constructible < T >::value)

Protected Member Functions

- Singleton () noexcept=default
- Singleton (const Singleton &)=delete
- Singleton & operator= (const Singleton &)=delete
- virtual ∼Singleton ()=default

7.47.1 Detailed Description

```
template<typename T>
class qpp::internal::Singleton< T>
```

Singleton policy class, used internally to implement the singleton pattern via CRTP (Curiously recurring template pattern)

To implement a singleton, derive your class from qpp::internal::Singleton, make qpp::internal::Singleton a friend of your class, then declare the constructor and destructor of your class as private. To get an instance, use the static member function qpp::internal::Singleton::get_instance() (qpp::internal::Singleton::get_thread_local_cinstance()), which returns a reference (thread_local_reference) to your newly created singleton (thread-safe in C++11).

Example:

See also

Code of qpp::Codes, qpp::Gates, qpp::Init, qpp::RandomDevices, qpp::States or qpp.h for real world examples of usage.

7.47.2 Constructor & Destructor Documentation

7.47.3 Member Function Documentation

7.47.3.1 get_instance()

```
template<typename T>
static T& qpp::internal::Singleton< T >::get_instance ( ) [inline], [static], [noexcept]
```

7.47.3.2 get_thread_local_instance()

```
template<typename T>
static T& qpp::internal::Singleton< T >::get_thread_local_instance ( ) [inline], [static],
[noexcept]
```

7.47.3.3 operator=()

The documentation for this class was generated from the following file:

• internal/classes/singleton.h

7.48 qpp::exception::SizeMismatch Class Reference

Size mismatch exception.

```
#include <classes/exception.h>
```

Inheritance diagram for qpp::exception::SizeMismatch:

Collaboration diagram for qpp::exception::SizeMismatch:

Public Member Functions

• std::string type_description () const override Exception type description.

7.48.1 Detailed Description

Size mismatch exception.

Sizes do not match

7.48.2 Member Function Documentation

7.48.2.1 type_description()

std::string qpp::exception::SizeMismatch::type_description () const [inline], [override],
[virtual]

Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

· classes/exception.h

7.49 qpp::States Class Reference

const Singleton class that implements most commonly used states

#include <classes/states.h>

Inheritance diagram for qpp::States:

Collaboration diagram for qpp::States:

Public Member Functions

• ket mes (idx d=2) const

Maximally entangled state of 2 qudits.

• ket zero (idx n, idx d=2) const

Zero state of n qudits.

• ket one (idx n, idx d=2) const

One state of n qudits.

• ket jn (idx j, idx n, idx d=2) const

 $|j\rangle^{\otimes n}$ state of n qudits

• ket plus (idx n) const

Plus state of n qubits.

• ket minus (idx n) const

Minus state of n qubits.

Public Attributes

```
    ket x0 {ket::Zero(2)}

      Pauli Sigma-X 0-eigenstate |+>

    ket x1 {ket::Zero(2)}

      Pauli Sigma-X 1-eigenstate |->

    ket y0 {ket::Zero(2)}

      Pauli Sigma-Y 0-eigenstate |y+>

    ket y1 {ket::Zero(2)}

      Pauli Sigma-Y 1-eigenstate |y->

    ket z0 {ket::Zero(2)}

      Pauli Sigma-Z 0-eigenstate |0>

    ket z1 {ket::Zero(2)}

      Pauli Sigma-Z 1-eigenstate | 1>

    cmat px0 {cmat::Zero(2, 2)}

      Projector onto the Pauli Sigma-X 0-eigenstate |+><+|.
• cmat px1 {cmat::Zero(2, 2)}
      Projector onto the Pauli Sigma-X 1-eigenstate |-><-|.

    cmat py0 {cmat::Zero(2, 2)}

      Projector onto the Pauli Sigma-Y 0-eigenstate |y+\rangle < y+|.

    cmat py1 {cmat::Zero(2, 2)}

      Projector onto the Pauli Sigma-Y 1-eigenstate |y-><y-|.

    cmat pz0 {cmat::Zero(2, 2)}

      Projector onto the Pauli Sigma-Z 0-eigenstate |0><0|.

    cmat pz1 {cmat::Zero(2, 2)}

      Projector onto the Pauli Sigma-Z 1-eigenstate | 1><1|.

    ket b00 {ket::Zero(4)}

      Bell-00 state (following the convention in Nielsen and Chuang)
ket b01 {ket::Zero(4)}
      Bell-01 state (following the convention in Nielsen and Chuang)

    ket b10 {ket::Zero(4)}

      Bell-10 state (following the convention in Nielsen and Chuang)

    ket b11 {ket::Zero(4)}

      Bell-11 state (following the convention in Nielsen and Chuang)

    cmat pb00 {cmat::Zero(4, 4)}

      Projector onto the Bell-00 state.

    cmat pb01 {cmat::Zero(4, 4)}

      Projector onto the Bell-01 state.

    cmat pb10 {cmat::Zero(4, 4)}

      Projector onto the Bell-10 state.

    cmat pb11 {cmat::Zero(4, 4)}

      Projector onto the Bell-11 state.
ket GHZ {ket::Zero(8)}
      GHZ state.
ket W {ket::Zero(8)}
      W state.
cmat pGHZ {cmat::Zero(8, 8)}
      Projector onto the GHZ state.
cmat pW {cmat::Zero(8, 8)}
```

Projector onto the W state.

Private Member Functions

- States ()
- ∼States ()=default

Default destructor.

Friends

class internal::Singleton < const States >

Additional Inherited Members

7.49.1 Detailed Description

const Singleton class that implements most commonly used states

7.49.2 Constructor & Destructor Documentation

```
7.49.2.1 States()

qpp::States::States ( ) [inline], [private]

Initialize the states

7.49.2.2 ~States()

qpp::States::~States ( ) [private], [default]

Default destructor.
```

7.49.3 Member Function Documentation

 $|j\rangle^{\otimes n}$ state of *n* qudits

Parameters

j	Non-negative integer
n	Non-negative integer
d	Subsystem dimensions

Returns

```
|j\rangle^{\otimes n} state of n qudits
```

7.49.3.2 mes()

```
ket qpp::States::mes (
idx d = 2 ) const [inline]
```

Maximally entangled state of 2 qudits.

Parameters

d Subsystem dimensions

Returns

Maximally entangled state $\frac{1}{\sqrt{d}} \sum_{j=0}^{d-1} |jj\rangle$ of 2 qudits

7.49.3.3 minus()

```
ket qpp::States::minus (
        idx n ) const [inline]
```

Minus state of *n* qubits.

Parameters

n Non-negative integer

Returns

Minus state $|-\rangle^{\otimes n}$ of n qubits

7.49.3.4 one()

```
ket qpp::States::one (
         idx n,
         idx d = 2) const [inline]
```

One state of *n* qudits.

Parameters

n	Non-negative integer
d	Subsystem dimensions

Returns

One state $|1\rangle^{\otimes n}$ of n qudits

7.49.3.5 plus()

```
ket qpp::States::plus (
        idx n ) const [inline]
```

Plus state of *n* qubits.

Parameters

```
n Non-negative integer
```

Returns

Plus state $|+\rangle^{\otimes n}$ of n qubits

7.49.3.6 zero()

Zero state of *n* qudits.

Parameters

n	Non-negative integer
d	Subsystem dimensions

Returns

```
Zero state |0\rangle^{\otimes n} of n qudits
```

7.49.4 Friends And Related Function Documentation

```
7.49.4.1 internal::Singleton < const States >
friend class internal::Singleton < const States > [friend]
```

7.49.5 Member Data Documentation

```
7.49.5.1 b00
ket qpp::States::b00 {ket::Zero(4)}
```

Bell-00 state (following the convention in Nielsen and Chuang)

```
7.49.5.2 b01
ket qpp::States::b01 {ket::Zero(4)}
```

Bell-01 state (following the convention in Nielsen and Chuang)

```
7.49.5.3 b10
```

```
ket qpp::States::b10 {ket::Zero(4)}
```

Bell-10 state (following the convention in Nielsen and Chuang)

```
7.49.5.4 b11
```

ket qpp::States::b11 {ket::Zero(4)}

Bell-11 state (following the convention in Nielsen and Chuang)

```
7.49.5.5 GHZ
ket qpp::States::GHZ {ket::Zero(8)}
GHZ state.
7.49.5.6 pb00
cmat qpp::States::pb00 {cmat::Zero(4, 4)}
Projector onto the Bell-00 state.
7.49.5.7 pb01
cmat qpp::States::pb01 {cmat::Zero(4, 4)}
Projector onto the Bell-01 state.
7.49.5.8 pb10
cmat qpp::States::pb10 {cmat::Zero(4, 4)}
Projector onto the Bell-10 state.
7.49.5.9 pb11
cmat qpp::States::pb11 {cmat::Zero(4, 4)}
Projector onto the Bell-11 state.
7.49.5.10 pGHZ
```

Generated by Doxygen

Projector onto the GHZ state.

cmat qpp::States::pGHZ {cmat::Zero(8, 8)}

```
7.49.5.11 pW
cmat qpp::States::pW {cmat::Zero(8, 8)}
Projector onto the W state.
7.49.5.12 px0
cmat qpp::States::px0 {cmat::Zero(2, 2)}
Projector onto the Pauli Sigma-X 0-eigenstate |+><+|.
7.49.5.13 px1
cmat qpp::States::px1 {cmat::Zero(2, 2)}
Projector onto the Pauli Sigma-X 1-eigenstate |-><-|.
7.49.5.14 py0
cmat qpp::States::py0 {cmat::Zero(2, 2)}
Projector onto the Pauli Sigma-Y 0-eigenstate |y+><y+|.
7.49.5.15 py1
cmat qpp::States::py1 {cmat::Zero(2, 2)}
Projector onto the Pauli Sigma-Y 1-eigenstate |y-><y-|.
7.49.5.16 pz0
cmat qpp::States::pz0 {cmat::Zero(2, 2)}
```

Projector onto the Pauli Sigma-Z 0-eigenstate |0><0|.

```
7.49.5.17 pz1
cmat qpp::States::pz1 {cmat::Zero(2, 2)}
Projector onto the Pauli Sigma-Z 1-eigenstate |1><1|.
7.49.5.18 W
ket qpp::States::W {ket::Zero(8)}
W state.
7.49.5.19 x0
ket qpp::States::x0 {ket::Zero(2)}
Pauli Sigma-X 0-eigenstate |+>
7.49.5.20 x1
ket qpp::States::x1 {ket::Zero(2)}
Pauli Sigma-X 1-eigenstate |->
7.49.5.21 y0
ket qpp::States::y0 {ket::Zero(2)}
Pauli Sigma-Y 0-eigenstate |y+>
7.49.5.22 y1
ket qpp::States::y1 {ket::Zero(2)}
Pauli Sigma-Y 1-eigenstate |y->
```

7.49.5.23 z0

```
ket qpp::States::z0 {ket::Zero(2)}
```

Pauli Sigma-Z 0-eigenstate |0>

7.49.5.24 z1

```
ket qpp::States::z1 {ket::Zero(2)}
```

Pauli Sigma-Z 1-eigenstate |1>

The documentation for this class was generated from the following file:

· classes/states.h

7.50 qpp::exception::SubsysMismatchDims Class Reference

Subsystems mismatch dimensions exception.

```
#include <classes/exception.h>
```

Inheritance diagram for qpp::exception::SubsysMismatchDims:

Collaboration diagram for qpp::exception::SubsysMismatchDims:

Public Member Functions

std::string type_description () const override
 Exception type description.

7.50.1 Detailed Description

Subsystems mismatch dimensions exception.

std::vector<idx> of subsystem labels has duplicates, or has entries that are larger than the size of the std ::vector<idx> of dimensions

7.50.2 Member Function Documentation

7.50.2.1 type_description()

std::string qpp::exception::SubsysMismatchDims::type_description () const [inline], [override],
[virtual]

Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

• classes/exception.h

7.51 qpp::Timer < T, CLOCK_T > Class Template Reference

Chronometer.

```
#include <classes/timer.h>
```

Inheritance diagram for qpp::Timer < T, CLOCK_T >:

Collaboration diagram for qpp::Timer < T, CLOCK_T >:

Public Member Functions

· Timer () noexcept

Constructs an instance with the current time as the starting point.

· void tic () noexcept

Resets the chronometer.

· const Timer & toc () noexcept

Stops the chronometer.

· double tics () const noexcept

Time passed in the duration specified by T.

• template<typename U = T>

U get_duration () const noexcept

Duration specified by U.

• Timer (const Timer &)=default

Default copy constructor.

• Timer (Timer &&)=default

Default move constructor.

• Timer & operator= (const Timer &)=default

Default copy assignment operator.

• Timer & operator= (Timer &&)=default

Default move assignment operator.

virtual ∼Timer ()=default

Default virtual destructor.

Protected Attributes

- CLOCK_T::time_point start_
- CLOCK_T::time_point end_

Private Member Functions

 std::ostream & display (std::ostream &os) const override *qpp::IDisplay::display() override*

7.51.1 Detailed Description

 $template < typename\ T = std::chrono::duration < double >, typename\ CLOCK_T = std::chrono::steady_clock > class\ qpp::Timer < T,\ CLOCK_T >$

Chronometer.

Template Parameters

T	Tics duration, default is std::chrono::duration <double, 1="">, i.e. seconds in double precision</double,>
CLOCK↔	Clock's type, default is std::chrono::steady_clock, not affected by wall clock changes during runtime
_ <i>T</i>	

7.51.2 Constructor & Destructor Documentation

Constructs an instance with the current time as the starting point.

```
7.51.2.2 Timer() [2/3]
```

Default copy constructor.

```
7.51.2.3 Timer() [3/3]
```

Default move constructor.

```
7.51.2.4 \simTimer()
```

```
template<typename T = std::chrono::duration<double>, typename CLOCK_T = std::chrono::steady 
_clock>
virtual qpp::Timer< T, CLOCK_T >::~Timer ( ) [virtual], [default]
```

Default virtual destructor.

7.51.3 Member Function Documentation

```
7.51.3.1 display()
```

qpp::IDisplay::display() override

Parameters

```
os Output stream
```

Returns

Writes to the output stream the number of tics (specified by T) that passed between the instantiation/reset and invocation of qpp::Timer::toc().

Implements qpp::IDisplay.

7.51.3.2 get_duration()

```
template<typename T = std::chrono::duration<double>, typename CLOCK_T = std::chrono::steady 
_clock>
template<typename U = T>
U qpp::Timer< T, CLOCK_T >::get_duration ( ) const [inline], [noexcept]
```

Duration specified by U.

Template Parameters

U Duration, default is T, which defaults to std::chrono::duration<double, 1>, i.e. seconds in double precision

Returns

Duration that passed between the instantiation/reset and invocation of qpp::Timer::toc()

7.51.3.3 operator=() [1/2]

Default copy assignment operator.

7.51.3.4 operator=() [2/2]

Default move assignment operator.

7.51.3.5 tic()

```
 \begin{tabular}{ll} template < type name T = std::chrono::duration < double>, type name CLOCK_T = std::chrono::steady & clock> \\ void qpp::Timer < T, CLOCK_T >::tic ( ) [inline], [noexcept] \\ \end{tabular}
```

Resets the chronometer.

Resets the starting/ending point to the current time

7.51.3.6 tics()

```
 \begin{tabular}{ll} template < typename T = std::chrono::duration < double >, typename CLOCK_T = std::chrono::steady \leftarrow \_clock > \\ double qpp::Timer < T, CLOCK_T >::tics ( ) const [inline], [noexcept] \\ \end{tabular}
```

Time passed in the duration specified by T.

Returns

Number of tics (specified by T) that passed between the instantiation/reset and invocation of qpp::Timer::toc()

7.51.3.7 toc()

```
 \begin{tabular}{ll} template < type name $T = std::chrono::steady \leftarrow \_clock > \\ const $Timer\& $qpp::Timer < T, $CLOCK_T > ::toc ( ) [inline], [noexcept] \end{tabular}
```

Stops the chronometer.

Set the current time as the ending point

Returns

Current instance

7.51.4 Member Data Documentation

7.51.4.1 end

```
template<typename T = std::chrono::duration<double>, typename CLOCK_T = std::chrono::steady←
   _clock>
CLOCK_T::time_point qpp::Timer< T, CLOCK_T >::end_ [protected]
```

7.51.4.2 start_

```
template<typename T = std::chrono::duration<double>, typename CLOCK_T = std::chrono::steady
_clock>
CLOCK_T::time_point qpp::Timer< T, CLOCK_T >::start_ [protected]
```

The documentation for this class was generated from the following file:

· classes/timer.h

7.52 qpp::exception::TypeMismatch Class Reference

Type mismatch exception.

```
#include <classes/exception.h>
```

Inheritance diagram for qpp::exception::TypeMismatch:

Collaboration diagram for qpp::exception::TypeMismatch:

Public Member Functions

 std::string type_description () const override Exception type description.

7.52.1 Detailed Description

Type mismatch exception.

Scalar types do not match

7.52.2 Member Function Documentation

7.52.2.1 type_description()

std::string qpp::exception::TypeMismatch::type_description () const [inline], [override],
[virtual]

Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

· classes/exception.h

7.53 qpp::exception::UndefinedType Class Reference

Not defined for this type exception.

#include <classes/exception.h>

Inheritance diagram for qpp::exception::UndefinedType:

Collaboration diagram for qpp::exception::UndefinedType:

Public Member Functions

• std::string type_description () const override Exception type description.

7.53.1 Detailed Description

Not defined for this type exception.

Templated specialization is not defined for this type

7.53.2 Member Function Documentation

7.53.2.1 type_description()

```
std::string qpp::exception::UndefinedType::type_description ( ) const [inline], [override],
[virtual]
```

Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

• classes/exception.h

7.54 qpp::exception::Unknown Class Reference

Unknown exception.

#include <classes/exception.h>

Inheritance diagram for qpp::exception::Unknown:

Collaboration diagram for qpp::exception::Unknown:

Public Member Functions

• std::string type_description () const override Exception type description.

7.54.1 Detailed Description

Unknown exception.

Thrown when no other exception is suitable (not recommended, it is better to define another suitable exception type)

7.54.2 Member Function Documentation

7.54.2.1 type_description()

```
std::string qpp::exception::Unknown::type_description ( ) const [inline], [override], [virtual]
```

Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

· classes/exception.h

7.55 qpp::exception::ZeroSize Class Reference

Object has zero size exception.

```
#include <classes/exception.h>
```

Inheritance diagram for qpp::exception::ZeroSize:

Collaboration diagram for qpp::exception::ZeroSize:

Public Member Functions

• std::string type_description () const override Exception type description.

7.55.1 Detailed Description

Object has zero size exception.

Zero sized object, e.g. empty Eigen::Matrix or std::vector with no elements

7.55.2 Member Function Documentation

7.55.2.1 type_description()

std::string qpp::exception::ZeroSize::type_description () const [inline], [override], [virtual]
Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

· classes/exception.h

Chapter 8

File Documentation

8.1 classes/codes.h File Reference

Quantum error correcting codes.

Classes

• class qpp::Codes

const Singleton class that defines quantum error correcting codes

Namespaces

• qpp

Quantum++ main namespace.

8.1.1 Detailed Description

Quantum error correcting codes.

8.2 classes/exception.h File Reference

Exceptions.

This graph shows which files directly or indirectly include this file:

224 File Documentation

Classes

class qpp::exception::Exception

Base class for generating Quantum++ custom exceptions.

· class qpp::exception::Unknown

Unknown exception.

class qpp::exception::ZeroSize

Object has zero size exception.

class gpp::exception::MatrixNotSquare

Matrix is not square exception.

· class qpp::exception::MatrixNotCvector

Matrix is not a column vector exception.

class qpp::exception::MatrixNotRvector

Matrix is not a row vector exception.

class qpp::exception::MatrixNotVector

Matrix is not a vector exception.

class qpp::exception::MatrixNotSquareNorCvector

Matrix is not square nor column vector exception.

• class qpp::exception::MatrixNotSquareNorRvector

Matrix is not square nor row vector exception.

class qpp::exception::MatrixNotSquareNorVector

Matrix is not square nor vector exception.

class qpp::exception::MatrixMismatchSubsys

Matrix mismatch subsystems exception.

· class qpp::exception::DimsInvalid

Invalid dimension(s) exception.

· class qpp::exception::DimsNotEqual

Dimensions not equal exception.

class qpp::exception::DimsMismatchMatrix

Dimension(s) mismatch matrix size exception.

· class qpp::exception::DimsMismatchCvector

Dimension(s) mismatch column vector size exception.

class qpp::exception::DimsMismatchRvector

Dimension(s) mismatch row vector size exception.

class qpp::exception::DimsMismatchVector

Dimension(s) mismatch vector size exception.

class qpp::exception::SubsysMismatchDims

Subsystems mismatch dimensions exception.

• class qpp::exception::PermInvalid

Invalid permutation exception.

· class qpp::exception::PermMismatchDims

Permutation mismatch dimensions exception.

class qpp::exception::NotQubitMatrix

Matrix is not 2 x 2 exception.

· class qpp::exception::NotQubitCvector

Column vector is not 2 x 1 exception.

class qpp::exception::NotQubitRvector

Row vector is not 1 x 2 exception.

class qpp::exception::NotQubitVector

Vector is not 2 x 1 nor 1 x 2 exception.

class qpp::exception::NotQubitSubsys

Subsystems are not qubits exception.

• class qpp::exception::NotBipartite

Not bi-partite exception.

• class qpp::exception::NoCodeword

Codeword does not exist exception.

class qpp::exception::OutOfRange

Parameter out of range exception.

class qpp::exception::TypeMismatch

Type mismatch exception.

class qpp::exception::SizeMismatch

Size mismatch exception.

class qpp::exception::UndefinedType

Not defined for this type exception.

• class qpp::exception::CustomException

Custom exception.

Namespaces

• qpp

Quantum++ main namespace.

• qpp::exception

Quantum++ exception hierarchy namespace.

8.2.1 Detailed Description

Exceptions.

8.3 classes/gates.h File Reference

Quantum gates.

Classes

· class qpp::Gates

const Singleton class that implements most commonly used gates

Namespaces

qpp

Quantum++ main namespace.

8.3.1 Detailed Description

Quantum gates.

226 File Documentation

8.4 classes/idisplay.h File Reference

Display interface via the non-virtual interface (NVI)

This graph shows which files directly or indirectly include this file:

Classes

· class qpp::IDisplay

Abstract class (interface) that mandates the definition of virtual std::ostream& display(std::ostream& os) const.

Namespaces

qpp

Quantum++ main namespace.

8.4.1 Detailed Description

Display interface via the non-virtual interface (NVI)

8.5 classes/init.h File Reference

Initialization.

This graph shows which files directly or indirectly include this file:

Classes

· class qpp::Init

const Singleton class that performs additional initializations/cleanups

Namespaces

• qpp

Quantum++ main namespace.

8.5.1 Detailed Description

Initialization.

8.6 classes/random_devices.h File Reference

Random devices.

Classes

• class qpp::RandomDevices

Singleton class that manages the source of randomness in the library.

Namespaces

qpp

Quantum++ main namespace.

8.6.1 Detailed Description

Random devices.

8.7 classes/states.h File Reference

Quantum states.

Classes

· class qpp::States

const Singleton class that implements most commonly used states

228 File Documentation

Namespaces

• qpp

Quantum++ main namespace.

8.7.1 Detailed Description

Quantum states.

8.8 classes/timer.h File Reference

Timing.

Classes

class qpp::Timer < T, CLOCK_T >
 Chronometer.

Namespaces

• qpp

Quantum++ main namespace.

8.8.1 Detailed Description

Timing.

8.9 constants.h File Reference

Constants.

This graph shows which files directly or indirectly include this file:

Namespaces

• qpp

Quantum++ main namespace.

Functions

• constexpr cplx qpp::operator"" _i (unsigned long long int x) noexcept

User-defined literal for complex $i = \sqrt{-1}$ (integer overload)

• constexpr cplx qpp::operator"" _i (long double x) noexcept

User-defined literal for complex $i = \sqrt{-1}$ (real overload)

• cplx qpp::omega (idx D)

D-th root of unity.

Variables

• constexpr double qpp::chop = 1e-10

Used in qpp::disp() for setting to zero numbers that have their absolute value smaller than qpp::chop.

• constexpr double qpp::eps = 1e-12

Used to decide whether a number or expression in double precision is zero or not.

• constexpr idx qpp::maxn = 64

Maximum number of allowed qubits/qudits (subsystems)

• constexpr double qpp::pi = 3.141592653589793238462643383279502884

 π

• constexpr double qpp::ee = 2.718281828459045235360287471352662497

Base of natural logarithm, e.

constexpr double qpp::infty = std::numeric_limits<double>::max()

Used to denote infinity in double precision.

8.9.1 Detailed Description

Constants.

8.10 entanglement.h File Reference

Entanglement functions.

Namespaces

• qpp

Quantum++ main namespace.

Functions

```
    template<typename Derived >

  dyn col vect< double > qpp::schmidtcoeffs (const Eigen::MatrixBase< Derived > &A, const std::vector<
  idx > &dims)
      Schmidt coefficients of the bi-partite pure state A.

    template<typename Derived >

  dyn_col_vect< double > qpp::schmidtcoeffs (const Eigen::MatrixBase< Derived > &A, idx d=2)
      Schmidt coefficients of the bi-partite pure state A.

    template<typename Derived >

  cmat qpp::schmidtA (const Eigen::MatrixBase< Derived > &A, const std::vector< idx > &dims)
      Schmidt basis on Alice side.

    template<typename Derived >

  cmat qpp::schmidtA (const Eigen::MatrixBase< Derived > &A, idx d=2)
      Schmidt basis on Alice side.

    template<typename Derived >

  cmat qpp::schmidtB (const Eigen::MatrixBase< Derived > &A, const std::vector< idx > &dims)
      Schmidt basis on Bob side.

    template<typename Derived >

  cmat qpp::schmidtB (const Eigen::MatrixBase< Derived > &A, idx d=2)
      Schmidt basis on Bob side.
• template<typename Derived >
  std::vector< double > qpp::schmidtprobs (const Eigen::MatrixBase< Derived > &A, const std::vector< idx
  > &dims)
      Schmidt probabilities of the bi-partite pure state A.

    template<typename Derived >

  std::vector< double > qpp::schmidtprobs (const Eigen::MatrixBase< Derived > &A, idx d=2)
      Schmidt probabilities of the bi-partite pure state A.
• template<typename Derived >
  double qpp::entanglement (const Eigen::MatrixBase< Derived > &A, const std::vector< idx > &dims)
      Entanglement of the bi-partite pure state A.
• template<typename Derived >
  double qpp::entanglement (const Eigen::MatrixBase< Derived > &A, idx d=2)
      Entanglement of the bi-partite pure state A.

    template<typename Derived >

  double <a href="mailto:qpp::gconcurrence">qpp::gconcurrence</a> (const Eigen::MatrixBase</a> Derived > &A)
      G-concurrence of the bi-partite pure state A.

    template<typename Derived >

  double qpp::negativity (const Eigen::MatrixBase< Derived > &A, const std::vector< idx > &dims)
      Negativity of the bi-partite mixed state A.
• template<typename Derived >
  double qpp::negativity (const Eigen::MatrixBase< Derived > &A, idx d=2)
     Negativity of the bi-partite mixed state A.
• template<typename Derived >
  double qpp::lognegativity (const Eigen::MatrixBase< Derived > &A, const std::vector< idx > &dims)
     Logarithmic negativity of the bi-partite mixed state A.
template<typename Derived >
  double qpp::lognegativity (const Eigen::MatrixBase< Derived > &A, idx d=2)
     Logarithmic negativity of the bi-partite mixed state A.

    template<typename Derived >

  double <a href="mailto:qpp::concurrence">qpp::concurrence</a> (const Eigen::MatrixBase</a> Derived > &A)
      Wootters concurrence of the bi-partite qubit mixed state A.
```

8.10.1 Detailed Description

Entanglement functions.

8.11 entropies.h File Reference

Entropy functions.

Namespaces

• qpp

Quantum++ main namespace.

Functions

template<typename Derived >
 double qpp::entropy (const Eigen::MatrixBase< Derived > &A)

von-Neumann entropy of the density matrix A

double qpp::entropy (const std::vector< double > &prob)

Shannon entropy of the probability distribution prob.

• template<typename Derived >

double qpp::renyi (const Eigen::MatrixBase< Derived > &A, double alpha)

Renyi- α entropy of the density matrix A, for $\alpha \geq 0$.

double qpp::renyi (const std::vector< double > &prob, double alpha)

Renyi- α entropy of the probability distribution prob, for $\alpha \geq 0$.

• template<typename Derived >

double qpp::tsallis (const Eigen::MatrixBase< Derived > &A, double q)

Tsallis- q entropy of the density matrix A, for $q \geq 0$.

double qpp::tsallis (const std::vector< double > &prob, double q)

Tsallis- q entropy of the probability distribution prob, for $q \geq 0$.

• template<typename Derived >

double qpp::qmutualinfo (const Eigen::MatrixBase< Derived > &A, const std::vector< idx > &subsysA, const std::vector< idx > &subsysB, const std::vector< idx > &dims)

Quantum mutual information between 2 subsystems of a composite system.

template<typename Derived >

double qpp::qmutualinfo (const Eigen::MatrixBase< Derived > &A, const std::vector< idx > &subsysA, const std::vector< idx > &subsysB, idx d=2)

Quantum mutual information between 2 subsystems of a composite system.

8.11.1 Detailed Description

Entropy functions.

8.12 experimental/experimental.h File Reference

Experimental/test functions/classes.

```
#include <algorithm>
#include <cassert>
#include <climits>
#include <cstddef>
#include <random>
#include <utility>
#include <vector>
```

Classes

- · class qpp::experimental::Dynamic_bitset
- class qpp::experimental::Bit_circuit
- struct qpp::experimental::Bit_circuit::Gate_count

Namespaces

• qpp

Quantum++ main namespace.

· qpp::experimental

Experimental/test functions/classes, do not use or modify.

Typedefs

```
• using idx = std::size_t
```

8.12.1 Detailed Description

Experimental/test functions/classes.

8.12.2 Typedef Documentation

```
8.12.2.1 idx
```

```
using idx = std::size_t
```

8.13 functions.h File Reference

Generic quantum computing functions.

This graph shows which files directly or indirectly include this file:

8.13.1 Detailed Description

Generic quantum computing functions.

8.14 input_output.h File Reference

Input/output functions.

This graph shows which files directly or indirectly include this file:

Namespaces

qpp

Quantum++ main namespace.

Functions

template<typename Derived >
 internal::IOManipEigen qpp::disp (const Eigen::MatrixBase< Derived > &A, double chop=qpp::chop)

Eigen expression ostream manipulator.

internal::IOManipEigen qpp::disp (cplx z, double chop=qpp::chop)

Complex number ostream manipulator.

template<typename InputIterator >
 internal::IOManipRange< InputIterator > qpp::disp (InputIterator first, InputIterator last, const std::string &separator, const std::string &start="[", const std::string &end="]")

Range ostream manipulator.

template<typename Container >
 internal::IOManipRange< typename Container::const_iterator > qpp::disp (const Container &c, const std
 ::string &separator, const std::string &start="[", const std::string &end="]", typename std::enable_if< is_←
 iterable< Container >::value >::type *=nullptr)

Standard container ostream manipulator. The container must support std::begin(), std::end() and forward iteration.

template<typename PointerType >
 internal::IOManipPointer< PointerType > qpp::disp (const PointerType *p, idx N, const std::string &separator, const std::string &start="[", const std::string &end="]")

C-style pointer ostream manipulator.

template < typename Derived > void qpp::save (const Eigen::MatrixBase < Derived > &A, const std::string &fname)

Saves Eigen expression to a binary file (internal format) in double precision.

template<typename Derived >
 dyn_mat< typename Derived::Scalar > qpp::load (const std::string &fname)

Loads Eigen matrix from a binary file (internal format) in double precision.

8.14.1 Detailed Description

Input/output functions.

8.15 instruments.h File Reference

Measurement functions.

Namespaces

dbb

Quantum++ main namespace.

Functions

template<typename Derived >
 dyn_col_vect< typename Derived::Scalar > qpp::ip (const Eigen::MatrixBase< Derived > &phi, const Eigen::MatrixBase< Derived > &psi, const std::vector< idx > &subsys, const std::vector< idx > &dims)

• template<typename Derived >

dyn_col_vect< typename Derived::Scalar > qpp::ip (const Eigen::MatrixBase< Derived > &phi, const Eigen::MatrixBase< Derived > &psi, const std::vector< idx > &subsys, idx d=2)

Generalized inner product.

Generalized inner product.

• template<typename Derived >

std::tuple< idx, std::vector< double >, std::vector< cmat > > qpp::measure (const Eigen::MatrixBase< Derived > &A, const std::vector< cmat > &Ks)

Measures the state A using the set of Kraus operators Ks.

template<typename Derived >

std::tuple< idx, std::vector< double >, std::vector< cmat > > qpp::measure (const Eigen::MatrixBase< Derived > &A, const std::initializer_list< cmat > &Ks)

Measures the state A using the set of Kraus operators Ks.

template<typename Derived >

std::tuple< idx, std::vector< double >, std::vector< cmat > > qpp::measure (const Eigen::MatrixBase< Derived > &A, const cmat &U)

Measures the state A in the orthonormal basis specified by the unitary matrix U.

• template<typename Derived >

std::tuple< idx, std::vector< double >, std::vector< cmat > > qpp::measure (const Eigen::MatrixBase< Derived > &A, const std::vector< cmat > &Ks, const std::vector< idx > &subsys, const std::vector< idx > &dims)

Measures the part subsys of the multi-partite state vector or density matrix A using the set of Kraus operators Ks.

• template<typename Derived >

std::tuple< idx, std::vector< double >, std::vector< cmat > > qpp::measure (const Eigen::MatrixBase< Derived > &A, const std::initializer_list< cmat > &Ks, const std::vector< idx > &subsys, const std::vector< idx > &dims)

Measures the part subsys of the multi-partite state vector or density matrix A using the set of Kraus operators Ks.

• template<typename Derived >

std::tuple< idx, std::vector< double >, std::vector< cmat > > qpp::measure (const Eigen::MatrixBase< Derived > &A, const std::vector< cmat > &Ks, const std::vector< idx > &subsys, idx d=2)

Measures the part subsys of the multi-partite state vector or density matrix A using the set of Kraus operators Ks.

• template<typename Derived >

std::tuple< idx, std::vector< double >, std::vector< cmat > > qpp::measure (const Eigen::MatrixBase< Derived > &A, const std::initializer_list< cmat > &Ks, const std::vector< idx > &subsys, idx d=2)

Measures the part subsys of the multi-partite state vector or density matrix A using the set of Kraus operators Ks.

 $\bullet \ \ \text{template}{<} \text{typename Derived} >$

std::tuple < idx, std::vector < double >, std::vector < cmat > > qpp::measure (const Eigen::MatrixBase < Derived > &A, const cmat &V, const std::vector < idx > &subsys, const std::vector < idx > &dims)

Measures the part subsys of the multi-partite state vector or density matrix A in the orthonormal basis or rank-1 POVM specified by the matrix V.

template<typename Derived >

std::tuple< idx, std::vector< double >, std::vector< cmat > > qpp::measure (const Eigen::MatrixBase< Derived > &A, const cmat &V, const std::vector< idx > &subsys, idx d=2)

Measures the part subsys of the multi-partite state vector or density matrix A in the orthonormal basis or rank-1 POVM specified by the matrix V.

• template<typename Derived >

std::tuple< std::vector< idx >, double, cmat > qpp::measure_seq (const Eigen::MatrixBase< Derived > &A, std::vector< idx > subsys, std::vector< idx > dims)

Sequentially measures the part subsys of the multi-partite state vector or density matrix A in the computational basis.

template<typename Derived >
 std::tuple< std::vector< idx >, double, cmat > qpp::measure_seq (const Eigen::MatrixBase< Derived > &A,
 std::vector< idx > subsys, idx d=2)

Sequentially measures the part subsys of the multi-partite state vector or density matrix A in the computational basis.

8.15.1 Detailed Description

Measurement functions.

8.16 internal/classes/iomanip.h File Reference

Input/output manipulators.

This graph shows which files directly or indirectly include this file:

Classes

- class qpp::internal::IOManipRange
 InputIterator >
- class qpp::internal::IOManipPointer< PointerType >
- class qpp::internal::IOManipEigen

Namespaces

• qpp

Quantum++ main namespace.

• qpp::internal

Internal utility functions, do not use them directly or modify them.

8.16.1 Detailed Description

Input/output manipulators.

8.17 internal/classes/singleton.h File Reference

Singleton pattern via CRTP.

This graph shows which files directly or indirectly include this file:

Classes

class qpp::internal::Singleton< T >

Singleton policy class, used internally to implement the singleton pattern via CRTP (Curiously recurring template pattern)

Namespaces

qpp

Quantum++ main namespace.

• qpp::internal

Internal utility functions, do not use them directly or modify them.

8.17.1 Detailed Description

Singleton pattern via CRTP.

8.18 internal/util.h File Reference

Internal utility functions.

This graph shows which files directly or indirectly include this file:

Classes

• struct qpp::internal::Display_Impl_

Namespaces

• qpp

Quantum++ main namespace.

qpp::internal

Internal utility functions, do not use them directly or modify them.

Functions

- void qpp::internal::n2multiidx (idx n, idx numdims, const idx *const dims, idx *result) noexcept
- idx qpp::internal::multiidx2n (const idx *const midx, idx numdims, const idx *const dims) noexcept
- template<typename Derived >
 bool qpp::internal::check_square_mat (const Eigen::MatrixBase< Derived > &A)
- template<typename Derived >
 bool qpp::internal::check_vector (const Eigen::MatrixBase< Derived > &A)
- template<typename Derived >
 bool qpp::internal::check_rvector (const Eigen::MatrixBase< Derived > &A)
- template<typename Derived >
 bool qpp::internal::check_cvector (const Eigen::MatrixBase< Derived > &A)
- template<typename T >
 bool qpp::internal::check_nonzero_size (const T &x) noexcept
- template<typename T1, typename T2 >
 bool qpp::internal::check_matching_sizes (const T1 &lhs, const T2 &rhs) noexcept
- bool qpp::internal::check_dims (const std::vector< idx > &dims)
- template<typename Derived >
 bool qpp::internal::check_dims_match_mat (const std::vector< idx > &dims, const Eigen::MatrixBase< Derived > &A)
- template<typename Derived >
 bool qpp::internal::check_dims_match_cvect (const std::vector< idx > &dims, const Eigen::MatrixBase< Derived > &A)

- template<typename Derived >
 bool qpp::internal::check_dims_match_rvect (const std::vector< idx > &dims, const Eigen::MatrixBase< Derived > &A)
- bool qpp::internal::check_eq_dims (const std::vector< idx > &dims, idx dim) noexcept
- bool qpp::internal::check_subsys_match_dims (const std::vector< idx > &subsys, const std::vector< idx > &dims)
- template<typename Derived >
 bool qpp::internal::check_qubit_matrix (const Eigen::MatrixBase< Derived > &A) noexcept
- template<typename Derived >
 bool qpp::internal::check_qubit_cvector (const Eigen::MatrixBase< Derived > &A) noexcept
- template<typename Derived >
 bool qpp::internal::check_qubit_rvector (const Eigen::MatrixBase< Derived > &A) noexcept
- template<typename Derived >
 bool qpp::internal::check_qubit_vector (const Eigen::MatrixBase< Derived > &A) noexcept
- bool qpp::internal::check_perm (const std::vector< idx > &perm)
- template<typename Derived1, typename Derived2 >
 dyn_mat< typename Derived1::Scalar > qpp::internal::kron2 (const Eigen::MatrixBase< Derived1 > &A,
 const Eigen::MatrixBase< Derived2 > &B)
- template<typename Derived1, typename Derived2 >
 dyn_mat< typename Derived1::Scalar > qpp::internal::dirsum2 (const Eigen::MatrixBase< Derived1 > &A,
 const Eigen::MatrixBase< Derived2 > &B)
- template<typename T >
 void qpp::internal::variadic_vector_emplace (std::vector< T > &)
- template<typename T, typename First, typename ... Args>
 void qpp::internal::variadic_vector_emplace (std::vector< T > &v, First &&first, Args &&... args)
- idx qpp::internal::get num subsys (idx sz, idx d)
- idx qpp::internal::get_dim_subsys (idx sz, idx N)

8.18.1 Detailed Description

Internal utility functions.

8.19 MATLAB/matlab.h File Reference

Input/output interfacing with MATLAB.

```
#include "mat.h"
#include "mex.h"
```

Namespaces

qpp

Quantum++ main namespace.

Functions

template<typename Derived >
 std::enable_if < std::is_same < typename Derived::Scalar, cplx >::value, dyn_mat < cplx > >::type qpp
 ::loadMATLAB (const std::string &mat_file, const std::string &var_name)

Loads a complex Eigen dynamic matrix from a MATLAB .mat file,.

template<typename Derived >

std::enable_if<!std::is_same< typename Derived::Scalar, cplx >::value, dyn_mat< typename Derived::

Scalar > >::type qpp::loadMATLAB (const std::string &mat_file, const std::string &var_name)

Loads a non-complex Eigen dynamic matrix from a MATLAB .mat file,.

• template<typename Derived >

std::enable_if< std::is_same< typename Derived::Scalar, cplx >::value >::type qpp::saveMATLAB (const Eigen::MatrixBase< Derived > &A, const std::string &mat_file, const std::string &var_name, const std::string &mode)

Saves a complex Eigen dynamic matrix to a MATLAB .mat file,.

• template<typename Derived >

std::enable_if<!std::is_same< typename Derived::Scalar, cplx >::value >::type qpp::saveMATLAB (const Eigen::MatrixBase< Derived > &A, const std::string &mat_file, const std::string &var_name, const std::string &mode)

Saves a non-complex Eigen dynamic matrix to a MATLAB .mat file,.

8.19.1 Detailed Description

Input/output interfacing with MATLAB.

8.20 number_theory.h File Reference

Number theory functions.

Namespaces

dbb

Quantum++ main namespace.

Functions

std::vector< int > qpp::x2contfrac (double x, idx N, idx cut=1e5)

Simple continued fraction expansion.

double qpp::contfrac2x (const std::vector< int > &cf, idx N=idx(-1))

Real representation of a simple continued fraction.

• bigint qpp::gcd (bigint a, bigint b)

Greatest common divisor of two integers.

bigint qpp::gcd (const std::vector< bigint > &as)

Greatest common divisor of a list of integers.

bigint qpp::lcm (bigint a, bigint b)

Least common multiple of two integers.

bigint qpp::lcm (const std::vector< bigint > &as)

Least common multiple of a list of integers.

std::vector< idx > qpp::invperm (const std::vector< idx > &perm)
 Inverse permutation.

std::vector < idx > qpp::compperm (const std::vector < idx > &perm, const std::vector < idx > &sigma)
 Compose permutations.

std::vector< bigint > qpp::factors (bigint a)

Prime factor decomposition.

• bigint qpp::modmul (bigint a, bigint b, bigint p)

Modular multiplication without overflow.

• bigint qpp::modpow (bigint a, bigint n, bigint p)

Fast integer power modulo p based on the SQUARE-AND-MULTIPLY algorithm.

std::tuple < bigint, bigint, bigint > qpp::egcd (bigint a, bigint b)

Extended greatest common divisor of two integers.

• bigint qpp::modinv (bigint a, bigint p)

Modular inverse of a mod p.

• bool qpp::isprime (bigint p, idx k=80)

Primality test based on the Miller-Rabin's algorithm.

• bigint qpp::randprime (bigint a, bigint b, idx N=1000)

Generates a random big prime uniformly distributed in the interval [a, b].

8.20.1 Detailed Description

Number theory functions.

8.21 operations.h File Reference

Quantum operation functions.

Namespaces

• qpp

Quantum++ main namespace.

Functions

template<typename Derived1 , typename Derived2 >
 dyn_mat< typename Derived1::Scalar > qpp::applyCTRL (const Eigen::MatrixBase< Derived1 > &state,
 const Eigen::MatrixBase< Derived2 > &A, const std::vector< idx > &ctrl, const std::vector< idx > &subsys,
 const std::vector< idx > &dims)

Applies the controlled-gate A to the part subsys of the multi-partite state vector or density matrix state.

template<typename Derived1, typename Derived2 >
 dyn_mat< typename Derived1::Scalar > qpp::applyCTRL (const Eigen::MatrixBase< Derived1 > &state,
 const Eigen::MatrixBase< Derived2 > &A, const std::vector< idx > &ctrl, const std::vector< idx > &subsys,
 idx d=2)

Applies the controlled-gate A to the part subsys of the multi-partite state vector or density matrix state.

template<typename Derived1 , typename Derived2 >
 dyn_mat< typename Derived1::Scalar > qpp::apply (const Eigen::MatrixBase< Derived1 > &state, const
 Eigen::MatrixBase< Derived2 > &A, const std::vector< idx > &subsys, const std::vector< idx > &dims)

Applies the gate A to the part subsys of the multi-partite state vector or density matrix state.

• template<typename Derived1 , typename Derived2 >

dyn_mat< typename Derived1::Scalar > qpp::apply (const Eigen::MatrixBase< Derived1 > &state, const Eigen::MatrixBase< Derived2 > &A, const std::vector< idx > &subsys, idx d=2)

Applies the gate A to the part subsys of the multi-partite state vector or density matrix state.

• template<typename Derived >

cmat qpp::apply (const Eigen::MatrixBase< Derived > &A, const std::vector< cmat > &Ks)

Applies the channel specified by the set of Kraus operators Ks to the density matrix A.

• template<typename Derived >

cmat qpp::apply (const Eigen::MatrixBase< Derived > &A, const std::vector< cmat > &Ks, const std::vector< idx > &subsys, const std::vector< idx > &dims)

Applies the channel specified by the set of Kraus operators Ks to the part subsys of the multi-partite density matrix A.

template<typename Derived >

cmat qpp::apply (const Eigen::MatrixBase< Derived > &A, const std::vector< cmat > &Ks, const std ← ::vector< idx > &subsys, idx d=2)

Applies the channel specified by the set of Kraus operators Ks to the part subsys of the multi-partite density matrix A.

cmat qpp::kraus2super (const std::vector< cmat > &Ks)

Superoperator matrix.

cmat qpp::kraus2choi (const std::vector< cmat > &Ks)

Choi matrix.

std::vector < cmat > qpp::choi2kraus (const cmat &A)

Orthogonal Kraus operators from Choi matrix.

• cmat qpp::choi2super (const cmat &A)

Converts Choi matrix to superoperator matrix.

cmat qpp::super2choi (const cmat &A)

Converts superoperator matrix to Choi matrix.

template<typename Derived >

 $\label{lem:dyn_mat} $$ dyn_mat< typename Derived::Scalar > qpp::ptrace1 (const Eigen::MatrixBase< Derived > &A, const std $$::vector < idx > &dims)$$

Partial trace.

• template<typename Derived >

dyn_mat< typename Derived::Scalar > qpp::ptrace1 (const Eigen::MatrixBase< Derived > &A, idx d=2)

Partial trace.

template<typename Derived >

Partial trace.

• template<typename Derived >

dyn_mat< typename Derived::Scalar > qpp::ptrace2 (const Eigen::MatrixBase< Derived > &A, idx d=2)

Partial trace.

template<typename Derived >

 $\label{lem:dyn_mat} $$ dyn_mat< typename Derived::Scalar > qpp::ptrace (const Eigen::MatrixBase< Derived > &A, const std::vector< idx > &subsys, const std::vector< idx > &dims) $$$

Partial trace.

• template<typename Derived >

Partial trace.

• template<typename Derived >

dyn_mat< typename Derived::Scalar > qpp::ptranspose (const Eigen::MatrixBase< Derived > &A, const std::vector< idx > &subsys, const std::vector< idx > &dims)

Partial transpose.

```
    template<typename Derived >
        dyn_mat< typename Derived::Scalar > qpp::ptranspose (const Eigen::MatrixBase< Derived > &A, const std::vector< idx > &subsys, idx d=2)
```

Partial transpose.

• template<typename Derived >

dyn_mat< typename Derived::Scalar > qpp::syspermute (const Eigen::MatrixBase< Derived > &A, const std::vector< idx > &perm, const std::vector< idx > &dims)

Subsystem permutation.

template<typename Derived >

dyn_mat< typename Derived::Scalar > qpp::syspermute (const Eigen::MatrixBase< Derived > &A, const std::vector< idx > &perm, idx d=2)

Subsystem permutation.

8.21.1 Detailed Description

Quantum operation functions.

8.22 qpp.h File Reference

Quantum++ main header file, includes all other necessary headers.

```
#include <algorithm>
#include <cassert>
#include <chrono>
#include <cmath>
#include <complex>
#include <cstdlib>
#include <cstring>
#include <exception>
#include <fstream>
#include <functional>
#include <initializer_list>
#include <iomanip>
#include <iterator>
#include <limits>
#include <memory>
#include <numeric>
#include <ostream>
#include <random>
#include <sstream>
#include <stdexcept>
#include <string>
#include <tuple>
#include <type_traits>
#include <utility>
#include <vector>
#include <Eigen/Dense>
#include <Eigen/SVD>
#include "types.h"
#include "classes/exception.h"
#include "constants.h"
#include "traits.h"
#include "classes/idisplay.h"
```

```
#include "internal/util.h"
#include "internal/classes/iomanip.h"
#include "input_output.h"
#include "internal/classes/singleton.h"
#include "classes/init.h"
#include "functions.h"
```

Namespaces

• qpp

Quantum++ main namespace.

Macros

• #define QPP_UNUSED_

8.22.1 Detailed Description

Quantum++ main header file, includes all other necessary headers.

8.22.2 Macro Definition Documentation

8.22.2.1 QPP_UNUSED_

#define QPP_UNUSED_

8.23 random.h File Reference

Randomness-related functions.

Namespaces

• qpp

Quantum++ main namespace.

Functions

double qpp::rand (double a, double b)

Generates a random real number uniformly distributed in the interval [a, b)

bigint qpp::rand (bigint a, bigint b)

Generates a random big integer uniformly distributed in the interval [a, b].

idx qpp::randidx (idx a=std::numeric_limits < idx >::min(), idx b=std::numeric_limits < idx >::max())

Generates a random index (idx) uniformly distributed in the interval [a, b].

template<typename Derived >

Derived qpp::rand (idx rows, idx cols, double a=0, double b=1)

Generates a random matrix with entries uniformly distributed in the interval [a, b)

template<>

dmat qpp::rand (idx rows, idx cols, double a, double b)

Generates a random real matrix with entries uniformly distributed in the interval [a, b), specialization for double matrices (qpp::dmat)

template<>

cmat qpp::rand (idx rows, idx cols, double a, double b)

Generates a random complex matrix with entries (both real and imaginary) uniformly distributed in the interval [a, b), specialization for complex matrices (qpp::cmat)

template<typename Derived >

Derived qpp::randn (idx rows, idx cols, double mean=0, double sigma=1)

Generates a random matrix with entries normally distributed in N(mean, sigma)

• template<>

dmat qpp::randn (idx rows, idx cols, double mean, double sigma)

Generates a random real matrix with entries normally distributed in N(mean, sigma), specialization for double matrices (qpp::dmat)

template<>

cmat qpp::randn (idx rows, idx cols, double mean, double sigma)

Generates a random complex matrix with entries (both real and imaginary) normally distributed in N(mean, sigma), specialization for complex matrices (qpp::cmat)

• double qpp::randn (double mean=0, double sigma=1)

Generates a random real number (double) normally distributed in N(mean, sigma)

cmat qpp::randU (idx D=2)

Generates a random unitary matrix.

cmat qpp::randV (idx Din, idx Dout)

Generates a random isometry matrix.

std::vector< cmat > qpp::randkraus (idx N, idx D=2)

Generates a set of random Kraus operators.

cmat qpp::randH (idx D=2)

Generates a random Hermitian matrix.

ket qpp::randket (idx D=2)

Generates a random normalized ket (pure state vector)

cmat qpp::randrho (idx D=2)

Generates a random density matrix.

std::vector< idx > qpp::randperm (idx N)

Generates a random uniformly distributed permutation.

std::vector< double > qpp::randprob (idx N)

Generates a random probability vector uniformly distributed over the probability simplex.

8.23.1 Detailed Description

Randomness-related functions.

8.24 statistics.h File Reference

Statistics functions.

Namespaces

• qpp

Quantum++ main namespace.

Functions

std::vector< double > qpp::uniform (idx N)

Uniform probability distribution vector.

std::vector< double > qpp::marginalX (const dmat &probXY)

Marginal distribution.

std::vector< double > qpp::marginalY (const dmat &probXY)

Marginal distribution.

• template<typename Container >

double qpp::avg (const std::vector< double > &prob, const Container &X, typename std::enable_if< is_ \leftarrow iterable< Container >::value >::type *=nullptr)

Average.

• template<typename Container >

double qpp::cov (const dmat &probXY, const Container &X, const Container &Y, typename std::enable_if< is_iterable< Container >::value >::type *=nullptr)

Covariance.

• template<typename Container >

double qpp::var (const std::vector< double > &prob, const Container &X, typename std::enable_if< is_ \leftarrow iterable< Container >::value >::type *=nullptr)

Variance.

• template<typename Container >

double qpp::sigma (const std::vector< double > &prob, const Container &X, typename std::enable_if< is_ \leftarrow iterable< Container >::value >::type *=nullptr)

Standard deviation.

• template<typename Container >

double qpp::cor (const dmat &probXY, const Container &X, const Container &Y, typename std::enable_if is_iterable Container >::value >::type *=nullptr)

Correlation.

8.24.1 Detailed Description

Statistics functions.

8.25 traits.h File Reference 247

8.25 traits.h File Reference

Type traits.

This graph shows which files directly or indirectly include this file:

Classes

- struct qpp::make_void< Ts >
 - Helper for qpp::to_void<> alias template.
- struct qpp::is_iterable
 T, typename
 - Checks whether T is compatible with an STL-like iterable container.
- struct qpp::is_iterable < T, to_void < decltype(std::declval < T >().begin()), decltype(std::declval < T >().← end()), typename T::value_type > >

Checks whether T is compatible with an STL-like iterable container, specialization for STL-like iterable containers.

- struct qpp::is_matrix_expression< Derived >
 - Checks whether the type is an Eigen matrix expression.
- struct qpp::is_complex< T >
 - Checks whether the type is a complex type.
- struct qpp::is_complex< std::complex< T >>

Checks whether the type is a complex number type, specialization for complex types.

Namespaces

• qpp

Quantum++ main namespace.

Typedefs

```
    template < typename... Ts>
        using qpp::to_void = typename make_void < Ts... > ::type
        Alias template that implements the proposal for void_t.
```

8.25.1 Detailed Description

Type traits.

8.26 types.h File Reference

Type aliases.

This graph shows which files directly or indirectly include this file:

Namespaces

qpp

Quantum++ main namespace.

Typedefs

```
• using qpp::idx = std::size_t
```

Non-negative integer index.

• using qpp::bigint = long long int

Big integer.

using qpp::cplx = std::complex < double >

Complex number in double precision.

• using qpp::ket = Eigen::VectorXcd

Complex (double precision) dynamic Eigen column vector.

• using qpp::bra = Eigen::RowVectorXcd

Complex (double precision) dynamic Eigen row vector.

• using qpp::cmat = Eigen::MatrixXcd

Complex (double precision) dynamic Eigen matrix.

using qpp::dmat = Eigen::MatrixXd

Real (double precision) dynamic Eigen matrix.

• template<typename Scalar >

```
using qpp::dyn_mat = Eigen::Matrix< Scalar, Eigen::Dynamic, Eigen::Dynamic >
```

Dynamic Eigen matrix over the field specified by Scalar.

template<typename Scalar >

```
using qpp::dyn_col_vect = Eigen::Matrix< Scalar, Eigen::Dynamic, 1 >
```

Dynamic Eigen column vector over the field specified by Scalar.

template<typename Scalar >

```
using qpp::dyn_row_vect = Eigen::Matrix< Scalar, 1, Eigen::Dynamic >
```

Dynamic Eigen row vector over the field specified by Scalar.

Type aliases.

8.27 /Users/vlad/Dropbox/programming/cpp/qpp/README.md File Reference

Index

$/Users/vlad/Dropbox/programming/cpp/qpp/READM {\leftarrow}$	qpp::experimental::Bit_circuit::Gate_count, 127
E.md, 249	CTRL
\sim Codes	qpp::Gates, 131
qpp::Codes, 98	check_cvector
~Gates	qpp::internal, 88
qpp::Gates, 131	check_dims
\sim IDisplay	qpp::internal, 88
qpp::IDisplay, 140	check_dims_match_cvect
\sim Init	qpp::internal, 88
qpp::Init, 142	check_dims_match_mat
\sim RandomDevices	qpp::internal, 89
qpp::RandomDevices, 193	check_dims_match_rvect
\sim Singleton	qpp::internal, 89
qpp::internal::Singleton, 196	check_eq_dims
~States	qpp::internal, 89
qpp::States, 201	check_matching_sizes
\sim Timer	qpp::internal, 89
qpp::Timer, 212	check_nonzero_size
11.1	qpp::internal, 89
A_	•••
qpp::internal::IOManipEigen, 145	check_perm
all	qpp::internal, 89
qpp::experimental::Dynamic bitset, 116	check_qubit_cvector
any	qpp::internal, 90
qpp::experimental::Dynamic_bitset, 116	check_qubit_matrix
apply	qpp::internal, 90
qpp, 28–30	check_qubit_rvector
applyCTRL	qpp::internal, 90
qpp, 30, 31	check_qubit_vector
	qpp::internal, 90
qpp, 32	check_rvector
4ρρ, 32	qpp::internal, 90
b00	check_square_mat
qpp::States, 204	qpp::internal, 90
b01	check_subsys_match_dims
qpp::States, 204	qpp::internal, 91
dppσιαίες, 204 b10	check_vector
	qpp::internal, 91
qpp::States, 204	choi2kraus
b11	qpp, 32
qpp::States, 204	choi2super
bigint	qpp, 33
qpp, 26	
bra	chop
qpp, 26	qpp, 84
ONOT	chop_
CNOTba	qpp::internal::IOManipEigen, 145
qpp::Gates, 136	classes/codes.h, 223
CNOT	classes/exception.h, 223
qpp::Gates, 136	classes/gates.h, 225
gpp::experimental::Bit_circuit, 94	classes/idisplay.h. 226

classes/init.h, 226	end_
classes/random_devices.h, 227	qpp::Timer, 214
classes/states.h, 227	qpp::internal::IOManipPointer, 147
classes/timer.h, 228	qpp::internal::IOManipRange, 151
cmat	entanglement
qpp, 26	qpp, 38, 39
Codes	entanglement.h, 229
qpp::Codes, 98	entropies.h, 231
codeword	entropy
qpp::Codes, 98	qpp, 39
compperm	eps
qpp, 33	qpp, 84
concurrence	Exception
qpp, 33	qpp::exception::Exception, 126
constants.h, 228	expandout
contfrac2x	qpp::Gates, 132, 133
qpp, 34	experimental.h
cor	idx, 232
qpp, 34	experimental/experimental.h, 232
count	
qpp::experimental::Dynamic_bitset, 117	FRED
COV	qpp::Gates, 136
qpp, 35	qpp::experimental::Bit_circuit, 95
cplx	qpp::experimental::Bit_circuit::Gate_count, 127
qpp, 26	factors
CustomException	qpp, 40
qpp::exception::CustomException, 100	Fd
CZ	qpp::Gates, 133
qpp::Gates, 136	first_
data	qpp::internal::IOManipRange, 151
qpp::experimental::Dynamic_bitset, 117	flip
dirsum2	qpp::experimental::Dynamic_bitset, 117
qpp::internal, 91	functions.h, 233
disp	
qpp, 35–37	GHZ
display	qpp::States, 204
qpp::IDisplay, 140	gate_count
qpp::Timer, 212	qpp::experimental::Bit_circuit, 96
gpp::internal::IOManipEigen, 144	Gates
qpp::internal::IOManipPointer, 147	qpp::Gates, 130
qpp::internal::IOManipRange, 150	gcd
display_impl_	qpp, 40, 41
qpp::internal::Display_Impl_, 113	gconcurrence
dmat	qpp, 41
qpp, 26	
	get
dyn_col_vect	qpp::experimental::Dynamic_bitset, 118
	qpp::experimental::Dynamic_bitset, 118 get_dim_subsys
dyn_col_vect	qpp::experimental::Dynamic_bitset, 118 get_dim_subsys qpp::internal, 91
dyn_col_vect qpp, 26	qpp::experimental::Dynamic_bitset, 118 get_dim_subsys
dyn_col_vect	qpp::experimental::Dynamic_bitset, 118 get_dim_subsys
dyn_col_vect qpp, 26 dyn_mat qpp, 27	qpp::experimental::Dynamic_bitset, 118 get_dim_subsys
dyn_col_vect qpp, 26 dyn_mat qpp, 27 dyn_row_vect	qpp::experimental::Dynamic_bitset, 118 get_dim_subsys
dyn_col_vect qpp, 26 dyn_mat qpp, 27 dyn_row_vect qpp, 27	qpp::experimental::Dynamic_bitset, 118 get_dim_subsys
dyn_col_vect	qpp::experimental::Dynamic_bitset, 118 get_dim_subsys

Н	qpp::internal::IOManipRange, 151
qpp::Gates, 136	lcm
	qpp, 44, 45
IDisplay	load
qpp::IDisplay, 139, 140	qpp, 45
IOManipEigen	qpp::RandomDevices, 193
qpp::internal::IOManipEigen, 144	loadMATLAB
IOManipPointer	qpp, 46
qpp::internal::IOManipPointer, 146, 147	lognegativity
IOManipRange	qpp, 47
qpp::internal::IOManipRange, 150	
Id	MATLAB/matlab.h, 239
qpp::Gates, 134	marginalX
ld2	qpp, 48
qpp::Gates, 136	marginalY
idx	qpp, 48
experimental.h, 232	maxn
qpp, 27	qpp, 85
index_	measure
qpp::experimental::Dynamic_bitset, 118	qpp, 49–53
infty	measure_seq
qpp, 84	qpp, 54
Init	mes
qpp::Init, 142	qpp::States, 202
input_output.h, 233	minus
instruments.h, 234	qpp::States, 202
internal/classes/iomanip.h, 236	modinv
internal/classes/singleton.h, 237	qpp, 55
internal/util.h, 237	modmul
internal::Singleton < const Codes >	qpp, 56
qpp::Codes, 99	modpow
internal::Singleton < const Gates >	qpp, 56
qpp::Gates, 135	multiidx2n
internal::Singleton < const Init >	qpp::internal, 92
qpp::Init, 143	
internal::Singleton < const States >	n2multiidx
qpp::States, 204	qpp::internal, 92
internal::Singleton < RandomDevices >	N_
qpp::RandomDevices, 194	qpp::experimental::Dynamic_bitset, 123
invperm	qpp::internal::IOManipPointer, 148
qpp, 42	NOT
ip	qpp::experimental::Bit_circuit, 95
qpp, 42, 43	qpp::experimental::Bit_circuit::Gate_count, 127
isprime	negativity
qpp, 43	qpp, 57
	none
jn	qpp::experimental::Dynamic_bitset, 118
qpp::States, 201	number_theory.h, 240
ket	offset_
qpp, 27	qpp::experimental::Dynamic_bitset, 118
kraus2choi	omega
qpp, 43	qpp, 57
kraus2super	one
qpp, 44	qpp::States, 202
kron2	operations.h, 241
qpp::internal, 91	operator!=
	qpp::experimental::Dynamic_bitset, 119
last_	operator<<

qpp::IDisplay, 141	apply, <mark>28–30</mark>
qpp::experimental::Dynamic_bitset, 122	applyCTRL, 30, 31
operator=	avg, 32
qpp::IDisplay, 140	bigint, 26
qpp::Timer, 213	bra, 26
qpp::internal::IOManipPointer, 147	choi2kraus, 32
qpp::internal::IOManipRange, 150	choi2super, 33
qpp::internal::Singleton, 197	chop, 84
operator==	•
qpp::experimental::Dynamic_bitset, 119	cmat, 26
operator"" i	compperm, 33
· —	concurrence, 33
qpp, 59	contfrac2x, 34
	cor, 34
P	cov, <mark>35</mark>
qpp::internal::IOManipPointer, 148	cplx, 26
pGHZ	disp, 35–37
qpp::States, 205	dmat, 26
pb00	dyn_col_vect, 26
qpp::States, 205	dyn_mat, 27
pb01	dyn_row_vect, 27
qpp::States, 205	ee, 84
pb10	
qpp::States, 205	egcd, 38
pb11	entanglement, 38, 39
qpp::States, 205	entropy, 39
pi	eps, 84
qpp, 85	factors, 40
plus	gcd, 40, 41
·	gconcurrence, 41
qpp::States, 203	idx, 27
prng_	infty, 84
qpp::RandomDevices, 194	invperm, 42
ptrace	ip, 42, 43
qpp, 59, 60	isprime, 43
ptrace1	ket, 27
qpp, 60, 61	kraus2choi, 43
ptrace2	
qpp, 61, 62	kraus2super, 44
ptranspose	lcm, 44, 45
qpp, 62, 63	load, 45
Wq	loadMATLAB, 46
qpp::States, 205	lognegativity, 47
px0	marginalX, 48
qpp::States, 206	marginalY, 48
px1	maxn, 85
•	measure, 49-53
qpp::States, 206	measure_seq, 54
py0	modinv, 55
qpp::States, 206	modmul, 56
py1	modpow, 56
qpp::States, 206	•
pz0	negativity, 57
qpp::States, 206	omega, 57
pz1	operator"" _i, 59
qpp::States, 206	pi, <mark>85</mark>
	ptrace, 59, 60
QPP_UNUSED_	ptrace1, 60, 61
qpp.h, 244	ptrace2, 61, 62
qmutualinfo	ptranspose, 62, 63
qpp, 63, 64	qmutualinfo, 63, 64
qpp, 17	rand, 64–66
ALL:	rana, or oo

randH, 67	Z, 138
randidx, 67	Zd, 135
randket, 67	qpp::IDisplay, 138
randkraus, 68	∼IDisplay, 140
randn, 68–70	display, 140
randperm, 70	IDisplay, 139, 140
randprime, 71	operator<<, 141
randprob, 71	operator=, 140
randrho, 71	qpp::lnit, 141
randU, 72	∼Init, 142
randV, 72	Init, 142
renyi, 72, 73	internal::Singleton< const Init >, 143
save, 73	qpp::RandomDevices, 191
saveMATLAB, 74	~RandomDevices, 193
schmidtA, 75	get_prng, 193
schmidtB, 76	internal::Singleton< RandomDevices >, 194
schmidtcoeffs, 77	load, 193
schmidtprobs, 78	prng_, 194
sigma, 79	RandomDevices, 193
super2choi, 79	rd_, 194
syspermute, 81	save, 194
to_void, 28	qpp::States, 199
tsallis, 82	∼States, 201
uniform, 83	b00, 204
var, 83	b01, 204
x2contfrac, 83	b10, 204
qpp.h, 243	b11, 204
QPP_UNUSED_, 244	GHZ, 204
qpp::Bit_circuit, 96	internal::Singleton< const States >, 204
qpp::Codes, 96	jn, 201
~Codes, 98	mes, 202
Codes, 98	minus, 202
codeword, 98	one, 202
internal::Singleton< const Codes >, 99	pGHZ, 205
Type, 97	pb00, 205
qpp::Dynamic_bitset, 123	pb01, 205
qpp::Gates, 128	pb10, 205
∼Gates, 131	pb11, 205
CNOTba, 136	plus, 203
CNOT, 136	pW, 205
CTRL, 131	px0, 206
CZ, 136	px1, 206
expandout, 132, 133	py0, 206
FRED, 136	py1, 206
Fd, 133	pz0, 206
Gates, 130	pz1, 206
H, 136	States, 201
ld, 134	W, 207
ld2, 136	x0, 207
internal::Singleton< const Gates >, 135	x1, 207
Rn, 134	y0, 207
S, 137	y1, 207
SWAP, 137	z0, 207
T, 137	z1, 208
TOF, 137	zero, 203
X, 137	qpp::Timer
Xd, 135	\sim Timer, 212
Y, 137	display, 212

end_, 214	type_description, 183
get_duration, 213	qpp::exception::NotQubitVector, 184
operator=, 213	type_description, 185
start_, 214	qpp::exception::OutOfRange, 186
tic, 213	type_description, 187
tics, 214	qpp::exception::PermInvalid, 188
Timer, 212	type_description, 189
toc, 214	qpp::exception::PermMismatchDims, 189
qpp::Timer< T, CLOCK_T >, 210	type_description, 191
qpp::exception, 85	qpp::exception::SizeMismatch, 197
qpp::exception::CustomException, 99	type_description, 198
CustomException, 100	qpp::exception::SubsysMismatchDims, 208
type_description, 101	type_description, 209
what_, 101	qpp::exception::TypeMismatch, 215
qpp::exception::DimsInvalid, 102	type_description, 216
type_description, 103	qpp::exception::UndefinedType, 217
qpp::exception::DimsMismatchCvector, 103	type_description, 218
type_description, 105	qpp::exception::Unknown, 218
qpp::exception::DimsMismatchMatrix, 105	type_description, 220
type_description, 106	qpp::exception::ZeroSize, 220
qpp::exception::DimsMismatchRvector, 107	type_description, 221
type_description, 108	qpp::experimental, 87
qpp::exception::DimsMismatchVector, 109	qpp::experimental::Bit_circuit, 93
type_description, 110	CNOT, 94
qpp::exception::DimsNotEqual, 111	FRED, 95
type_description, 112	gate_count, 96
qpp::exception::Exception, 124	NOT, 95
Exception, 126	reset, 95
type_description, 126	SWAP, 95
what, 126	TOF, 95
where_, 127	X, 95
qpp::exception::MatrixMismatchSubsys, 158	qpp::experimental::Bit_circuit::Gate_count, 127
type_description, 159	CNOT, 127
qpp::exception::MatrixNotCvector, 159	FRED, 127
type description, 161	NOT, 127
qpp::exception::MatrixNotRvector, 161	SWAP, 128
type_description, 162	TOF, 128
qpp::exception::MatrixNotSquare, 163	X, 128
type_description, 164	qpp::experimental::Dynamic_bitset, 114
qpp::exception::MatrixNotSquareNorCvector, 165	all, 116
type_description, 166	any, 116
qpp::exception::MatrixNotSquareNorRvector, 167	count, 117
type_description, 168	data, 117
qpp::exception::MatrixNotSquareNorVector, 169	Dynamic_bitset, 116
type description, 170	flip, 117
qpp::exception::MatrixNotVector, 171	get, 118
type_description, 172	index , 118
qpp::exception::NoCodeword, 173	N_, 123
type_description, 174	none, 118
qpp::exception::NotBipartite, 175	offset_, 118
type_description, 176	operator!=, 119
qpp::exception::NotQubitCvector, 176	•
	operator << , 122
type_description, 178	operator==, 119
qpp::exception::NotQubitMatrix, 178	rand, 119, 120
type_description, 179	reset, 120
qpp::exception::NotQubitRvector, 180	set, 121
type_description, 181	size, 121
qpp::exception::NotQubitSubsys, 182	storage_size, 121

	0: 11 100
storage_size_, 123	~Singleton, 196
storage_type, 116	get_instance, 196 get thread local instance, 197
to_string, 122	operator=, 197
v_, 123	Singleton, 196
value_type, 116	qpp::internal::Singleton< T >, 195
qpp::internal, 87	qpp::is_complex< std::complex< $T > >$, 153
check_cvector, 88 check_dims, 88	qpp::is_complex $<$ T $>$, 152
check_dims_match_cvect, 88	qpp::is_complex T >, 132 qpp::is_iterable < T, to void < decltype(std::declval < T
check_dims_match_mat, 89	$>$ ().begin()), decltype(std::declval< T >(). \leftrightarrow
check_dims_match_rvect, 89	end()), typename T::value_type > >, 155
check_eq_dims, 89	qpp::is_iterable< T, typename >, 154
check_matching_sizes, 89	qpp::is_matrix_expression< Derived >, 156
check_nonzero_size, 89	qpp::make_void
check_perm, 89	type, 157
check qubit cvector, 90	qpp::make_void< Ts >, 157
check qubit matrix, 90	"" = ',
check_qubit_rvector, 90	rand
check qubit vector, 90	qpp, 64–66
check_rvector, 90	qpp::experimental::Dynamic_bitset, 119, 120
check square mat, 90	randH
check_subsys_match_dims, 91	qpp, 67
check_vector, 91	randidx
dirsum2, 91	qpp, 67
get_dim_subsys, 91	randket
get_num_subsys, 91	qpp, 67
kron2, 91	randkraus
multiidx2n, 92	qpp, 68
n2multiidx, 92	randn
variadic_vector_emplace, 92	qpp, 68–70
qpp::internal::Display_Impl_, 113	random.h, 244
display_impl_, 113	RandomDevices
qpp::internal::IOManipEigen, 143	qpp::RandomDevices, 193
A_, 145	randperm
chop_, 145	qpp, 70 randprime
display, 144	qpp, 71
IOManipEigen, 144	randprob
qpp::internal::IOManipPointer	qpp, 71
display, 147	randrho
end_, 147	qpp, 71
IOManipPointer, 146, 147	randU
N_, 148	qpp, 72
operator=, 147	randV
p_, 148	qpp, 72
separator_, 148	rd_
start_, 148	qpp::RandomDevices, 194
qpp::internal::IOManipPointer< PointerType >, 145	renyi
qpp::internal::IOManipRange	qpp, 72, 73
display, 150	reset
end_, 151	qpp::experimental::Bit_circuit, 95
first_, 151	qpp::experimental::Dynamic_bitset, 120
IOManipRange, 150	Rn
last_, 151	qpp::Gates, 134
operator=, 150	C
separator_, 151	S
start_, 151	qpp::Gates, 137
qpp::internal::IOManipRange< InputIterator >, 149	SWAP
qpp::internal::Singleton	qpp::Gates, 137

qpp::experimental::Bit_circuit, 95	qpp, 28
<pre>qpp::experimental::Bit_circuit::Gate_count, 128</pre>	toc
save	qpp::Timer, 214
qpp, 73	traits.h, 247
qpp::RandomDevices, 194	tsallis
saveMATLAB	qpp, 82
qpp, 74	Туре
schmidtA	qpp::Codes, 97
qpp, 75	type
schmidtB	qpp::make_void, 157
qpp, 76	type_description
schmidtcoeffs	qpp::exception::CustomException, 101
qpp, 77	qpp::exception::DimsInvalid, 103
schmidtprobs	qpp::exception::DimsMismatchCvector, 105
qpp, 78	qpp::exception::DimsMismatchMatrix, 106
separator_	qpp::exception::DimsMismatchRvector, 108
gpp::internal::IOManipPointer, 148	qpp::exception::DimsMismatchVector, 110
qpp::internal::IOManipRange, 151	qpp::exception::DimsNotEqual, 112
set	qpp::exception::Exception, 126
qpp::experimental::Dynamic bitset, 121	qpp::exception::MatrixMismatchSubsys, 159
sigma	qpp::exception::MatrixNotCvector, 161
qpp, 79	qpp::exception::MatrixNotevector, 161
Singleton	qpp::exception::MatrixNotSquare, 164
qpp::internal::Singleton, 196	qpp::exception::MatrixNotSquare, 104 qpp::exception::MatrixNotSquareNorCvector, 166
size	
	qpp::exception::MatrixNotSquareNorRvector, 168
qpp::experimental::Dynamic_bitset, 121	qpp::exception::MatrixNotSquareNorVector, 170
start_	qpp::exception::MatrixNotVector, 172
qpp::Timer, 214	qpp::exception::NoCodeword, 174
qpp::internal::IOManipPointer, 148	qpp::exception::NotBipartite, 176
qpp::internal::IOManipRange, 151	qpp::exception::NotQubitCvector, 178
States	qpp::exception::NotQubitMatrix, 179
qpp::States, 201	qpp::exception::NotQubitRvector, 181
statistics.h, 246	qpp::exception::NotQubitSubsys, 183
storage_size	qpp::exception::NotQubitVector, 185
qpp::experimental::Dynamic_bitset, 121	qpp::exception::OutOfRange, 187
storage_size_	qpp::exception::PermInvalid, 189
qpp::experimental::Dynamic_bitset, 123	qpp::exception::PermMismatchDims, 191
storage_type	qpp::exception::SizeMismatch, 198
qpp::experimental::Dynamic_bitset, 116	qpp::exception::SubsysMismatchDims, 209
super2choi	qpp::exception::TypeMismatch, 216
qpp, 79	<pre>qpp::exception::UndefinedType, 218</pre>
syspermute	qpp::exception::Unknown, 220
qpp, 81	qpp::exception::ZeroSize, 221
_	types.h, 248
T	
qpp::Gates, 137	uniform
TOF	qpp, 83
qpp::Gates, 137	
qpp::experimental::Bit_circuit, 95	V_
<pre>qpp::experimental::Bit_circuit::Gate_count, 128</pre>	qpp::experimental::Dynamic_bitset, 123
tic	value_type
qpp::Timer, 213	qpp::experimental::Dynamic_bitset, 116
tics	var
qpp::Timer, 214	qpp, 83
Timer	variadic_vector_emplace
qpp::Timer, 212	qpp::internal, 92
to_string	n 1 / - / -
qpp::experimental::Dynamic_bitset, 122	W
to_void	qpp::States, 207

```
what
     qpp::exception::Exception, 126
what_
    qpp::exception::CustomException, 101
where_
    qpp::exception::Exception, 127
Χ
     qpp::Gates, 137
     qpp::experimental::Bit_circuit, 95
     qpp::experimental::Bit_circuit::Gate_count, 128
x0
     qpp::States, 207
х1
     qpp::States, 207
x2contfrac
     qpp, <mark>83</mark>
Xd
     qpp::Gates, 135
Υ
     qpp::Gates, 137
y0
     qpp::States, 207
у1
    qpp::States, 207
Ζ
     qpp::Gates, 138
z0
     qpp::States, 207
z1
     qpp::States, 208
Zd
     qpp::Gates, 135
zero
    qpp::States, 203
```