Distributed Algorithms for Dynamic Networks

March 18, 2014

Welles Robinson

Senior Thesis

Department of Computer Science

Georgetown University

Abstract

Abstract

1 High-Level Description of Goal

Ignore for now - The goal of this paper is to simplify the creation of distributed algorithms for dynamic networks by demonstrating that any algorithm that works for the broadcast variant of the synchronous model with a star topology can be made to work for the broadcast variant of the synchronous model with any topology. We will do so by describing a simulation algorithm that, if run on every node in the broadcast model, will match perfectly the output of the nodes of the centrally controlled model.

2 Models

Synchronous Broadcast Model

The synchronous broadcast model is a variant of the synchronous network model (definition taken from Lynch textbook - how to cite?). The synchronous network model is defined with respect to a directed graph G=(V,E). We define n to denote |V|, the number of nodes in the graph. An algorithm is a set of instructions to be followed by the nodes. When we say the network executes an algorithm a, this means each node in the network is running a copy of the a. (For simplicity, we refer to a copy of the algorithm running on node u as simply node u.) In the execution, the nodes proceed in lock-step repeatedly performing the following two steps:

- 1. Following the algorithm, decide which messages, if any, to send to their neighbors in G.
- 2. Receive and process all incoming messages from their neighbors.

The combination of these two steps is called a round.

The synchronous broadcast model is different from the synchronous network model in two significant ways. First, the synchronous broadcast model is defined with respect to a connected graph G=(V,E) with bi-directional edges. Second, nodes don't pass individual messages directly to their neighbors. Instead, nodes broadcast one message per round that is sent all neighbors.

Additionally, we assume that nodes have comparable unique identifiers and that nodes are in one of two high-level states, active or deactive. When a node is active, it performs the two steps, sending and receiving messages, that constitute a round. When a node is deactive, it performs neither of the two steps that constitute a round. We say a node is activated when its state changes from deactive to active. When a node is activated, it always begins in an initial state such that it has no knowledge of a global round counter. We say a node is deactivated when its state changes from active to deactive. When a node is deactivated, it resets all local variables such that if it activates, it activates in an initial state.

The only restriction that we place on the activation and deactivation of nodes in G is that the active subset of the graph G must always be connected. We emphasize that other than this minimal restriction the activation and deactivation of nodes are uncontrolled by the algorithm.

3 Problem Definition

The reliable broadcast problem provides arbitrary nodes in the broadcast model with messages to send to all active nodes in the network. This problem contains an environment that communicates with individual nodes through a send and receive interface implemented by the node. The environment passes a message to be sent to a node and that node sends a "done" signal to the environment through the send interface. We assume the environment will wait until it has received a done message from a node before giving it another message to send. The receive interface is used by a node to notify the interface that it received a specific message.

An algorithm a that solves the reliable broadcast problem will implement the send and receive interface. An algorithm is said to solve the reliable broadcast problem if it satisfies the following properties:

- 1. Liveness Property: If a node u running algorithm a is passed a message to send through its send interface, it will eventually respond with a "done" signal to the environment.
- 2. Safety Property #1: Assume node u is passed a message m throught its send interface at round r and it replies with a "done" signal in some later

round r_1 . Let $A(r, r_1)$ be the set of nodes that are active in every round in the interval from r to r_1 . It must be the case that every node in $A(r, r_1)$, with the exception of u, passes message m to the environment through its receive interface at some point between rounds r and r_1 .

- 3. Safety Property #2: Assume some node u passes a message m to its environment through its receive interface in some round r and then passes a different message m_1 in a later round r_1 . It follows that there is no node v that passes up message m_1 before message m.
- 4. Safety Property #3: Assume some node u passes a message m to its environment through its receive interface, the following two conditions must hold:
 - (a) u has not previously passed m to the environment
 - (b) some node previously received m from the environment through its send interface

4 Algorithm

- 1. Run unmodified Leader Election without Network Information
 - (a) Nodes have UIDs
 - (b) Each process runs Terminating Synchronous Breadth First Search and the node that manages to terminate elects itself leader and tells the other nodes to terminate

2. The Simulation

- (a) Assume that each and every round of the given algorithm has a finite repetitions of a step, which is comprised of two parts
 - i. The star node sends a broadcast message to all the leaf nodes (Broadcast part)
 - ii. All leaf nodes send a receive message to the star node in response to the broadcast message (Receive part)
- (b) Each step is simulated by the leader node running a modified instance of terminating synchronous BFS
 - i. The search message sent by a parent node to its children nodes is modified to be "search" plus the broadcast message, which is dictated by the output of the input algorithm A1
 - ii. Upon receiving a search message, a node runs the input algorithm A2 on the broadcast message portion and then creates the receive message portion using the output of A2

- iii. The done message sent by a child node to its parent node is modified to be "done" plus both the UID and the receive message of the child node as well as any done messages received by the child node
- iv. Upon receiving a search message, a node writes the broadcast message portion to its communication log
- v. Upon sending a done message, a node writes the receive message portion to its communication log
- vi. The leader simulates sending a search message to itself and then simulates sending a done message back to itself
- vii. This algorithm terminates when the leader has received done messages from all of its children and a simulated done message from itself

Static Model - All the nodes turn on at the same time

Simulation Algorithm takes one input, algorithm A, the algorithm to be simulated. Algorithm A can be broken into two distinct algorithms, A1, the algorithm run by the star process, and A2, the algorithm run by the leaf processes.

Member Variables - maxID (UID); parent (UID); totalChildren (int); child-Count (int); wait (int); Message has a root (a round, the UID); a id of the sender (UID); a type search, choose, done; a receiver (UID), defaults to NULL;

Dynamic Addition Model - Nodes turn on at various times but they don't turn off The leader elected will be the node with the highest UID out of all of the nodes that turned on at round 1

Variables - maxRoot - (a round, the UID); parent (UID); totalChildren (int); childCount (int); wait (int); Message has a root (a round, the UID); a id of the sender (UID); a type search, choose, done; a receiver (UID);

5 Analysis

Lemma 5.1. For the given network, a node will eventually set leader to true and no more than one node will have leader equal to true at the beginning of any round r.

Proof. One node will eventually set leader to true (Lemma 5.4). No more than one node will have leader set to true at any point (Lemma 5.2). \Box

Definition 1. Let u_{max} be the ID of the process with the maximum UID in the network.

Definition 2. Let BFS instance b_i refer to an instance of the terminating breadth-first search protocol initiated by process with ID i.

Lemma 5.2. For every round r, at most one node has leader = true at the beginning of round r.

Proof. A node with ID i will only set leader = true if the BFS instance b_i terminates. A BFS tree b_i will terminate only if i equals u_{max} (Lemma 5.3). Only the process with ID u_{max} , will set leader = true.

Lemma 5.3. A BFS instance b_i will only terminate if i equals u_{max} .

Proof. Termination of a BFS instance b_j requires all other processes in the network to send a done message to b_j . Given BFS instance b_j where $j < u_{max}$, there is at least one process, the process with ID u_{max} , that will never reply done to b_j . Therefore, b_j will never terminate.

Lemma 5.4. One node will eventually set its variable leader to true.

Proof. A BFS instance b_i will eventually terminate if every node in the network runs b_i . Every node in the network will eventually run $b_{u_{max}}$ so $b_{u_{max}}$ will eventually terminate and the process with ID u_{max} will set leader = true.

Definition 3. For a given node, define r_t as the consecutive rounds of the main execution that directly map to round t of the reference execution.

Lemma 5.5. For a given node and any round t in the reference execution, r_t exists.

Proof. For the star node in the reference execution, the simulation of one round of its execution is defined as beginning when u_{max} broadcasts its message and ending when u_{max} has received messages from all of its children. For any given child node a in the reference execution, the simulation of one round of its execution is defined as between when a broadcasts its message and when a receives the leader's message from its parent.

Definition 4. For a given node a in the reference execution, define s_a as the node in the main execution that simulates a.

Lemma 5.6. By induction, the main execution correctly simulates the reference execution for any round g.

Proof. By Induction.

Base Case q=0: Before round 0, the main execution has correctly simulated the reference execution because all the communication logs are empty and therefore equivalent.

Inductive Hypothesis: Suppose the theorem holds for all values of q up to k.

Inductive Step: Let q = k + 1. In round k of the reference execution, the star node sends message m to every child node and records 'sent m' in its log. In the main execution, u_{max} broadcasts m and records 'sent m' in its log. In the reference execution, every child node receives m and records 'received m' in its

log. In the main execution, the children of u_{max} receive m, record 'received m' in its log, and broadcast m to their children. Eventually, every node in the main execution network receives m and records 'received m' in its log.

In the reference execution, a given child node a sends message m_1 to the star node and records 'sent m_1 ' in its log. The star node receives m_1 and records 'received m_1 ' in its log. In the main execution, a eventually broadcasts m_1 to its parent and records sent m_1 in its log. a's parent receives m_1 , which is broadcasted up the network until it eventually reaches u_{max} , which records 'received m_1 ' in its log.

After round k + 1, the list of the logs of the reference execution will be equivalent to that of the main execution. So the theorem holds for q = k + 1. By the principle of mathematical induction, the theorem holds for all rounds in the execution.

6

```
initVariables();
for round 1 \dots r do
   for each message m in Inbox do
       if m.maxID > maxID then
           updateMaxRoot();
       end
       if m.maxID == maxID then
           if m.type == choose \ AND \ receiver == myUID \ \mathbf{then}
               childCount++ ;
               totalChildren++;
           end
           \mathbf{if} \ \ \mathit{m.type} == \mathit{done} \ \mathit{AND} \ \mathit{receiver} == \mathit{myUID} \ \mathbf{then}
               childCount-;
               if childCount == 0 then
                | sendDoneMsg();
               end
           \quad \text{end} \quad
       end
       if m.maxID < maxID then
           msg = (type=search, sender=myUID, maxID=maxID));
           Outbox.enqueue(msg);
       end
   end
   if wait != 0 \ AND \ childCount == 0 \ then
       wait-;
       if wait == 0 then
           \operatorname{sendDoneMsg}(\ );
       end
   end
   {\bf for} \ each \ message \ m \ in \ Outbox \ {\bf do}
    broadcast(m);
   \mathbf{end}
   myRound++;
end
        Algorithm 1: Simulation Algorithm for Static Model
```

```
\label{eq:myRound} \begin{split} & myRound == 0 \ ; \\ & maxID = myUID \ ; \\ & message \ m = (type=search, sender=myUID, maxID=maxID) \ ; \\ & \textbf{Algorithm 2: } initVariables \ method \end{split}
```

```
maxID = m.maxID;
parent = m.sender;
childCount = totalChildren = 0; msg1 = (type=choose, sender=myUID,
maxID=maxID, receiver=m.sender) ;
Outbox.enqueue(msg1);
msg2 = (type=search, sender=myUID, maxID=maxID);
Outbox.enqueue(msg2);
wait = 3;
              Algorithm 3: updateMaxRoot method
msg = ( type=done, sender=myUID, maxID=maxID );
Outbox.enqueue( msg );
               Algorithm 4: sendDoneMsg method
for each action in A1 do
   \mathbf{if} \ \ \mathit{leader} == \mathit{true} \ \mathbf{then}
      message = (type=r.action, sender=myUID);
      broadcast ( message );
      msg = (response to message);
      commLog.write (response to message);
   end
   for each round r do
      for each message m in Inbox do
          if m.sender == parent then
          forwardMsgToChildren();
          end
          if m.receiver == myUID then
             add m to msg;
             childCount-;
             if childCount == 0 then
                Outbox.enqueue(msg);
             end
          end
       \mathbf{end}
      for each message m in Outbox do
          broadcast(m);
      end
   end
\mathbf{end}
```

Algorithm 5: Static Simulation Algorithm

```
\begin{split} & msg = (response \ to \ m, \ receiver = parent) \ ; \\ & commLog.write(response \ to \ m) \ ; \\ & \textbf{if} \ \ totalChildren == 0 \ \textbf{then} \\ & | \ \ Outbox.enqueue(msg) \ ; \\ & \textbf{else} \\ & | \ \ forwardMsg = (type = m.type, \ sender=myUID) \ ; \\ & | \ \ Outbox.enqueue(forwardMsg) \ ; \\ & \textbf{end} \end{split}
```

 ${\bf Algorithm~6:}~{\bf forwardMsgToChildren}$

```
initVariables();
for round 1...r do
   for each message m in Inbox do
      if m.root > maxRoot then
         updateMaxRoot();
      end
      if m.root == maxRoot then
         if m.type == choose \ AND \ receiver == myUID \ \mathbf{then}
            childCount++;
            totalChildren++;
         end
         if m.type == done \ AND \ receiver == myUID \ \mathbf{then}
            childCount-;
            if childCount == 0 then
               sendDoneMsg();
            \mathbf{end}
         end
      end
      if m.root < maxRoot then
         msg = (type=search, sender=myUID, root=(r=maxRoot.r+1,
         id=maxRoot.id);
         Outbox.enqueue(msg);
      end
   end
   if wait != 0 AND childCount == 0 then
      wait-;
      if wait == 0 then
         sendDoneMsg();
      end
   end
   for each message m in Outbox do
   broadcast(m);
   end
   myRound++;
   \max Root = (r = \max Root.r + 1, id = \max Root.id);
end
Algorithm 7: Simulation Algorithm for the Dynamic Addition Model
myRound == 0;
maxRoot = (r=myRound, sender=myUID);
message m = (type=search, id=myUID, root=maxRoot);
  Algorithm 8: initVariables method for Dynamic Addition Model
```

```
\begin{split} \max & Root = m.root; \\ parent = m.sender; \\ childCount = totalChildren = 0; msg1 = (type=choose, sender=myUID, \\ root=& (r=maxRoot.r+1, id=maxRoot.id), receiver=m.id); \\ Outbox.enqueue(msg1); \\ msg2 = & (type=search, sender=myUID, root=& (r=maxRoot.r+1, id=maxRoot.id)); \\ Outbox.enqueue(msg2); \\ wait = 3; \end{split}
```

Algorithm 9: updateMaxRoot method for Dynamic Addition Model

```
\label{eq:msg} \begin{array}{l} msg = (\ type=done,\ sender=myUID,\ root=(r=maxRoot.r+1,\ id=maxRoot.id),\ receiver=parent\ )\ ;\\ Outbox.enqueue(\ msg\ )\ ; \end{array}
```

Algorithm 10: sendDoneMsg method for Dynamic Addition Model