

e-Learning

Research

www.professorlima.com

Banco de Dados

Banco de Dados

Natureza de autodescrição de um sistema de banco de dados

- Uma característica fundamental da abordagem de banco de dados é que seu sistema contém não apenas o próprio banco de dados, mas também uma definição ou descrição completa de sua estrutura e restrições.
- Essa definição é armazenada no catálogo do SGBD, que possui informações como a estrutura de cada arquivo, o tipo e o formato de armazenamento de cada item de dados e diversas restrições sobre os dados.
- A informação armazenada no catálogo é chamada de **metadados**, e descreve a estrutura do banco de dados principal
- O catálogo é usado pelo software de SGBD e também pelos usuários do banco de dados que precisam de informações sobre a estrutura do banco de dados.

Natureza de autodescrição de um sistema de banco de dados

• Vamos considerar um exemplo simples ao qual a maioria dos leitores pode estar acostumada: um banco de dados UNIVERSIDADE para manter informações referentes a alunos, disciplinas e notas em um ambiente universitário.

ALUNO

Nome	Numero_aluno	Tipo_aluno	Curso		
Silva	17	1	CC		
Braga	8	2	CC		

DISCIPLINA

Nome_ disciplina	Numero_ disciplina	Creditos	Departamento
Introd. à ciência da computação	CC1310	4	CC
Estruturas de dados	CC3320	4	CC
Matemática discreta	M. Database	3	MAT
Banco de dados	CC3380	3	CC

Natureza de autodescrição de um sistema de banco de dados

TURMA

Identificacao_ turma	Numero_ disciplina	Semestre	Ano	Professor	
85	MAT2410	Segundo	07	Kleber	
92	CC1310	Segundo	07	Anderson	
102	CC3320	Primeiro	08	Carlos	
112	MAT2410	Segundo	80	Chang	
119	CC1310	Segundo	80	Anderson	
135	CC3380	Segundo 08		Santos	

HISTORICO_ESCOLAR

Numero_aluno	Identificacao_turma	Nota
17	112	В
17	119	С
8	85	Α
8	92	Α
8	102	В
8	135	Α

Etapa 1 Análise de requisitos (realidade)

Etapa 2 Projeto lógico

Etapa 2(a) Modelagem de dados conceitual

Etapa 2(b) Integração da visão

Integração das visões do vendedor e do cliente

Etapa 2(c) Transformação do modelo de dados conceitual em tabelas SQL

Cliente						create	table	e cliente		
num-cli	n	ome-cli		(num_cli integer,						
						nome_cli char(15), end_cli char(30),				
nome_vendedor char(15) Produto num_produto integer,										
num-produto	no	me-prod	qtd-estoque			primary key (num_cli), foreign key (nome_vendedo				
						references vendedor foreign key (num_produto)				
references produto); Vendedor										
nome-vende	nome-vendedor endereç		dept		nível-cargo		dia	as-férias		
Pedido Pedido-produto										
num-pedido	nome	e-vendedor	num-cli nu		num-pedid		o num-produto			

Database Designer

Etapa 3

- Etapa 4
 - Projeto Físico
 - Indexação
 - Clustering
 - Particionamento
 - Views Materializadas
 - Desnormalização

o DER tem as seguintes características:

- Também conhecido como Modelo E-R.
- Definido por Peter Chen (1976), com base na teoria relacional criada por E. F. Codd (1970).
- Estudiosos (Theorey, Fry, James Martin e outros) evoluíram e expandiram o "meta-modelo" (visão moderna) > Engenharia da Informação.
- Objetivo: apresentar uma visão única, não redundante e resumida, dos dados de uma aplicação.

• O Diagrama Entidade-Relacionamento (DER) é um modelo conceitual de alto nível, criado na década de 70, e que é empregado no desenvolvimento de projetos de aplicações que vão manipular Banco de Dados. Seu objetivo é o de facilitar a compreensão por parte do usuário, sendo visto como uma ferramenta útil durante o processo de projeto da base de dados, descartando detalhes de como os dados serão armazenados.

Componentes do DER

Um DER é composto pelos seguintes elementos:

- Entidades: objeto do mundo real com identificação distinta e com um significado próprio.
- Atributos: qualificadores de uma entidade (características que a descrevem).
- **Relacionamentos**: dependência entre entidades associadas: quando um atributo de uma entidade refere-se a outra.
- Restrições em relacionamentos: limitam a possibilidade de combinações de entidades que podem participar do relacionamento (restrições estruturais).

Entidades - Uma entidade tem as seguintes características:

• Representa uma classe de dados. Suas instâncias (ocorrências) são a representação desses dados.

• Representação: retângulo com nome em seu interior, sendo que o nome deve estar no singular, representando o conjunto (de instâncias).

- Possui atributos: qualificadores de uma entidade (características que a descrevem).
 - Notação original (Chen, 1976): elipses

 Uma entidade por ser vista como um conjunto de objetos do mundo real que está sendo modelado e sobre o qual desejamos manter informações em um banco de dados.

• Em um DER, uma entidade é representada por meio de um retângulo que contém o nome da entidade que se deseja modelar.

• Uma Entidade pode ser um objeto (livro), uma pessoa (empregado), abstrato (curso), acontecimento (inscrição). O nome depende do contexto (pessoa: Aluno, Professor, Segurado, Contribuinte, Empregado).

DEPARTAMENTO EMPREGADO PROFESSOR AUNO

Atributos

O atributo corresponde a uma dado que é associado a cada ocorrência de uma entidade ou relacionamento. Atributos são representados graficamente conforme ilustrado ao lado.

Na prática, muitas vezes os atributos não são representados graficamente para não sobrecarregar os diagramas, já que entidades podem possuir um grande número de atributos. Nesses casos é preferível o uso de representação textual.

É importante ressaltar que toda entidade deve ter pelo menos um atributo, sendo que deve apresentar atributo identificador:

- Valor sempre distinto para cada instância, caracterizando que não existem objetos repetidos;
 - Restrição de unicidade ou chave primária.
- Não pode ser um valor nulo (vazio, desconhecido);
- Notação original (Chen, 1976): nome sublinhado na elipse.

"Você pode encontrar as coisas que perdeu, mas nunca as que abandonou."

Gandalf

