NOTES ON NEAR-PERFECT NUMBERS

Theorem 1. The number of near-perfect $n \le x$ is at most $x^{5/6+o(1)}$, as $x \to \infty$.

The proof of Theorem 1 requires some preparation. We begin by recalling Gronwall's determination of the maximal order of the sum-of-divisors function [1, Theorem 323].

Lemma 1 (Gronwall). As $n \to \infty$, we have $\limsup \frac{\sigma(n)}{n \log \log n} = e^{\gamma}$, where $\gamma = 0.57721...$ is the Euler-Mascheroni constant.

The next proposition, which asserts that $gcd(n, \sigma(n))$ is small on average, is extracted from [2, Theorem 1.3].

Proposition 1. For each $x \geq 3$, we have

$$\sum_{n \le x} \gcd(n, \sigma(n)) \le x^{1 + C/\sqrt{\log \log x}},$$

where C is an absolute positive constant.

The next lemma concerns solutions to the congruence $\sigma(n) \equiv a \pmod{n}$. For a given a, we divide the solutions n to this congruence into two classes: by a *trivial solution*, we mean a natural number

(1) n = pm, where p is a prime not dividing m, $m \mid \sigma(m)$, and $\sigma(m) = a$.

(It is straightforward to check that all such n satisfy $\sigma(n) \equiv a \pmod{n}$.) All other solutions are called *sporadic*. Pomerance [5, Theorem 3] showed that for each fixed a, the number of sporadic solutions to $\sigma(n) \equiv a \pmod{n}$ with $n \leq x$ is at most

(2)
$$x/\exp((1/\sqrt{2} + o(1))\sqrt{\log x \log \log x}),$$

as $x \to \infty$. Theorem 1 requires a stronger bound, with attention paid to uniformity in a.

Proposition 2. Let $x \geq 3$, and let a be an integer with $|a| < x^{2/3}$. Then the number of sporadic solutions $n \leq x$ to the congruence $\sigma(n) \equiv a \pmod{n}$ at most $x^{2/3+o(1)}$. Here the o(1) term decays to 0 as $x \to \infty$, uniformly in a.

Remark. In addition to the congruence $\sigma(n) \equiv a \pmod{n}$, Pomerance [5] also treats the congruence $n \equiv a \pmod{\phi(n)}$, proving the same upper bound (2) for the number of non-trivial solutions $n \leq x$. He returned to this latter congruence in the papers [3], [4], which sharpen the upper bound to $x^{2/3+o(1)}$ and $x^{1/2+o(1)}$ (again, for each fixed a). Our proof of Proposition 2 relies on the method of [3]. It would be interesting to improve the exponent to 2/3 to 1/2, as in [4], but this seems somewhat more difficult than might be expected.

Proof. We may assume that the squarefull part of n is bounded by $x^{2/3}$, since the number of $n \le x$ for which this condition fails is

$$\ll x \sum_{\substack{m>x^{2/3} \text{squarefull}}} \frac{1}{m} \ll x^{2/3}.$$

(We use here that the counting function of the squarefull numbers is $\ll x^{1/2}$.) We also assume, as is clearly permissible, that $n > x^{2/3}$.

Consider first the case when the largest prime factor p of n satisfies $p > x^{1/3}$. Say that n = mp, so that $m \le x^{2/3}$. By our condition on the squarefull part of n, we see that $p \nmid m$. Write $\sigma(n) = nq + a$, where q is a nonnegative integer; from Lemma 1, $q \ll \log \log x$. Observe that

$$\sigma(m)(p+1) = \sigma(mp) = qmp + a,$$

so that

(3)
$$p(\sigma(m) - qm) = a - \sigma(m).$$

If $\sigma(m) - qm = 0$, then (3) implies that $a = \sigma(m)$; referring back to the definitions we see that n is a trivial solution to the congruence $\sigma(n) \equiv a \pmod{n}$, contrary to hypothesis. Thus, $\sigma(m) - qm \neq 0$, and now (3) shows that p is uniquely determined given m and q. Since the number of possibilities for m is at most $x^{2/3}$, while $q \ll \log \log x$, the number of n that arise in this manner is $\ll x^{2/3} \log \log x$, which is acceptable for us.

Now suppose that the largest prime factor of n does not exceed $x^{1/3}$. We claim that n has a unitary divisor m from the interval $(x^{1/3}, x^{2/3}]$. The claim obviously holds if every prime power divisor of n is bounded by $x^{1/3}$. Otherwise, $p^e \parallel n$ for some prime power $p^e > x^{1/3}$ (with e > 1). In this case, $p^e \le x^{2/3}$ by our restriction on the squarefull part of n, and so we can take $m = p^e$.

Since m is a unitary divisor of n, it follows that

$$\sigma(n) \equiv 0 \pmod{\sigma(m)}$$
 and $\sigma(n) \equiv a \pmod{m}$.

This places $\sigma(n)$ is a uniquely-defined residue class modulo $[m, \sigma(m)]$. Thus, summing over $m \in (x^{1/3}, x^{2/3}]$, we have that the number of values $\sigma(n)$ that can arise this way is at most

$$\sum_{x^{1/3} < m \le x^{2/3}} \left(\frac{x}{\operatorname{lcm}[m, \sigma(m)]} + 1 \right) \le x^{2/3} + x \sum_{x^{1/3} < m \le x^{2/3}} \frac{\gcd(m, \sigma(m))}{m\sigma(m)} \\
\le x^{2/3} + x \sum_{x^{1/3} < m < x^{2/3}} \frac{\gcd(m, \sigma(m))}{m^2}.$$
(4)

Letting $A(t) = \sum_{m \le t} \gcd(m, \sigma(m))$, the final sum in (4) is given by

$$\int_{x^{1/3}}^{x^{2/3}} \frac{1}{t^2} dA(t) \le A(x^{2/3}) x^{-4/3} + 2 \int_{x^{1/3}}^{x^{2/3}} A(t) t^{-3} dt$$

$$< x^{-2/3 + o(1)} + x^{-1/3 + o(1)} = x^{-1/3 + o(1)},$$

where we use the estimate of Proposition 1 for A(t). Referring back to (4), we see that the number of values $\sigma(n)$ that can arise is at most $x^{2/3+o(1)}$. Since $\sigma(n)=qn+a$, the values $\sigma(n)$ and q uniquely determine n. Since the number of possible values of q is $\ll \log \log x = x^{o(1)}$ (as above), and there are only $x^{2/3+o(1)}$ possible values of $\sigma(n)$, there are also only $x^{2/3+o(1)}$ possible values of n.

Proof of Theorem 1. We can assume that $n > x^{5/6}$. Write $\sigma(n) = 2n + d$, where d is a proper divisor of n. If $d > x^{1/6}$, then $\gcd(n, \sigma(n)) = d > x^{1/6}$. By Proposition 1, the number of such $n \le x$ is at most $x^{5/6 + o(1)}$.

So suppose that $d \leq x^{1/6}$. In this case, we observe that $\sigma(n) \equiv d \pmod{n}$ and apply Proposition 2. Let us check that our near-perfect number n is not a trivial solution to this congruence. If it were, then we could write n in the form (1), with 'd' in place of 'a'. Then

$$(p+1)d = (p+1)\sigma(m) = \sigma(mp) = 2mp + d,$$

so that d=2m. But then d and pm have the same number of prime factors (counted with multiplicity), contradicting that d is a proper divisor of n. So n is a sporadic solution, and thus the number of possibilities for n, given d, is at most $x^{2/3+o(1)}$. Summing over values of $d \le x^{1/6}$, we see the number of n that arise in this way is at most $x^{5/6+o(1)}$.

References

- [1] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, sixth ed., Oxford University Press, Oxford, 2008.
- [2] P. Pollack, On the greatest common divisor of a number and its sum of divisors, Michigan Math. J. **60** (2011), no. 1, 199–214.
- [3] C. Pomerance, On composite n for which $\varphi(n)n-1$, Acta Arith. 28 (1975/76), no. 4, 387–389.
- [4] _____, On composite n for which $\varphi(n) \mid n-1$. II, Pacific J. Math. **69** (1977), no. 1, 177–186.
- [5] Carl Pomerance, On the congruences $\sigma(n) \equiv a \pmod{n}$ and $n \equiv a \pmod{\varphi(n)}$, Acta Arith. **26** (1974/75), no. 3, 265–272.