Topics: Laplace Transform

Q.1.If
$$L^{-1} \left[\frac{e^{-\frac{1}{s}}}{\sqrt{s}} \right] = \frac{\cos 2\sqrt{t}}{\sqrt{\pi t}}$$
 then $L^{-1} \left[\frac{e^{-1000/s}}{\sqrt{s}} \right]$?

a)
$$\frac{\cos 2\sqrt{1000t}}{\sqrt{\pi t}}$$

a)
$$\frac{\cos 2\sqrt{1000t}}{\sqrt{\pi t}}$$
 b) $\frac{\cos 2\sqrt{2000t}}{\sqrt{\pi t}}$ c) $\frac{\cos 2\sqrt{3000t}}{\sqrt{\pi t}}$ d) $\frac{\cos 2\sqrt{4000t}}{\sqrt{\pi t}}$

c)
$$\frac{\cos 2\sqrt{3000 t}}{\sqrt{\pi t}}$$

d)
$$\frac{\cos 2\sqrt{4000 \, t}}{\sqrt{\pi t}}$$

Ans. a)
$$\frac{\cos 2\sqrt{1000 t}}{\sqrt{\pi t}}$$

Q.2.Laplace transform of
$$H[(t-900)] = \begin{cases} 0, t < 900 \\ 1, t > 900 \end{cases}$$

a)
$$\frac{e^{-900s}}{s}$$
 b) $\frac{e^{900s}}{s}$ c) $\frac{e^{-1800s}}{s}$

b)
$$\frac{e^{900s}}{s}$$

c)
$$\frac{e^{-1800s}}{s}$$

d)
$$\frac{e^{1800s}}{s}$$

Ans. a)
$$\frac{e^{-900s}}{s}$$

Q.3.Find
$$L^{-1}[\overline{f}(100,s)]$$
?

a)
$$\frac{1}{100} f\left(\frac{t}{100}\right)$$

b)
$$\frac{1}{200} f\left(\frac{t}{200}\right)$$

$$c) - \frac{1}{100} f\left(\frac{t}{100}\right)$$

a)
$$\frac{1}{100} f\left(\frac{t}{100}\right)$$
 b) $\frac{1}{200} f\left(\frac{t}{200}\right)$ c) $-\frac{1}{100} f\left(\frac{t}{100}\right)$ d) $-\frac{1}{200} f\left(\frac{t}{200}\right)$

Ans. a)
$$\frac{1}{100} f\left(\frac{t}{100}\right)$$

Q.4.Find
$$L^{-1} \left[\frac{1}{(s-1000)^2 + 400} \right]$$

a)
$$\frac{1}{20}e^{1000}Sin20t$$

a)
$$\frac{1}{20}e^{1000t}Sin20t$$
 b) $\frac{1}{-20}e^{-1000t}Sin20t$ c) $\frac{1}{10}e^{500t}Sin20t$ d) $\frac{1}{-10}e^{-500t}Sin20t$

c)
$$\frac{1}{10}e^{500t}Sin20t$$

d)
$$\frac{1}{-10}e^{-500t}Sin20t$$

Ans. a)
$$\frac{1}{20}e^{1000t}Sin20t$$

Q.5.Laplace transform of Dirac delta function

- a) 0
- b)1

c) 2

d) 3

Ans. b)1

Q.6.If $L[f(t)] = \overline{f}(s)$ then L[f(500t)]

a)
$$\frac{1}{500}\overline{f}\left(\frac{s}{500}\right)$$

b)
$$\frac{1}{-500}\overline{f}\left(\frac{s}{-500}\right)$$

c)
$$\frac{1}{250}\overline{f}\left(\frac{s}{250}\right)$$

a)
$$\frac{1}{500}\overline{f}\left(\frac{s}{500}\right)$$
 b) $\frac{1}{-500}\overline{f}\left(\frac{s}{-500}\right)$ c) $\frac{1}{250}\overline{f}\left(\frac{s}{250}\right)$ d) $\frac{1}{-250}\overline{f}\left(\frac{s}{-250}\right)$

Ans. a)
$$\frac{1}{500}\overline{f}\left(\frac{s}{500}\right)$$

Q.7. Find
$$L\left(\frac{Cos10t}{t}\right)$$

- a) 0
- b) 1
- c) 2
- d) does not exist

Ans. d) does not exist

Q.8. If $L[f(t)] = \overline{f}(s)$ then $L \left| \int_{0}^{t} f(u) du \right|$

a)
$$\frac{\overline{f}(s)}{s}$$
, $s > 0$ b) $\frac{\overline{f}(s)}{s}$, $s < 0$ c) $\frac{\overline{f}(s)}{s}$, $s = 0$ d) $\frac{\overline{f}(s)}{s}$, $s \le 0$

b)
$$\frac{\overline{f}(s)}{s}$$
, $s < 0$

c)
$$\frac{f(s)}{s}$$
, $s = 0$

d)
$$\frac{\overline{f}(s)}{s}$$
, $s \le 0$

Ans. a)
$$\frac{\overline{f}(s)}{s}$$
, $s > 0$

Q.9.Laplace transform of unit step function

- a) $\frac{e^{-as}}{s}$ b) $\frac{e^{-as}}{s+1}$ c) $\frac{e^{-as}}{s+2}$ d) $\frac{e^{-as}}{s+3}$

Ans. a)
$$\frac{e^{-as}}{s}$$

Q.10. Value of
$$\int_{0}^{\infty} \left(\frac{e^{-1000t} - e^{-2000t}}{t} \right) dt$$

- a) log2
- b) log 3

- c) log 4
- d) log 5

Ans. a) log2

Q.11. Find
$$L\left[\frac{1}{\sqrt{t}}\right]$$

- a) $\sqrt{\frac{\pi}{s}}$, s > 0 b) $\sqrt{\frac{\pi}{s+1}}$
- c) $\sqrt{\frac{\pi}{n+2}}$

Ans. a)
$$\sqrt{\frac{\pi}{s}}$$
, $s > 0$

Q.12. For existence of L.T. which is correct?

- a) Sectionally continuous function
- b) Function of exponential order

c) Function of class A

d) Function of inerrable

Ans. c) Function of class A

Q.13. Value of $L\left[e^{100t}Cos200t\right]$

a)
$$\frac{s-100}{(s-100)^2+40000}$$
 b) $\frac{s+100}{(s+100)^2-40000}$ c) $\frac{s-50}{(s-50)^2+1000}$ d) $\frac{s+50}{(s+50)^2-1000}$

b)
$$\frac{s+100}{(s+100)^2-40000}$$

c)
$$\frac{s-50}{(s-50)^2+1000}$$

d)
$$\frac{s+50}{(s+50)^2-1000}$$

Ans. a)
$$\frac{s-100}{(s-100)^2+40000}$$

Q.14. Lapace Transform is a

- a) Linear transform these
- b) binomial transform
- c) canonical transform
- d) none of

Ans. a) Linear Transform

Q.15. Which function have Laplace Transform even it is not piecewise continuous in the range

a)
$$\frac{1}{\sqrt{t}}$$

b)
$$\frac{1}{\sqrt{t^2}}$$

c)
$$\frac{1}{\sqrt{t^3}}$$

d) all of these

Ans. d) all of these

Q.16. If $L[f(t)] = \overline{f}(s)$ then $L\left(\frac{f(t)}{t}\right) = \int_{0}^{\infty} \overline{f}(u)du$, provided that

a)
$$\lim_{t\to\infty} \frac{f(t)}{t}$$
 exist

a)
$$Lim_{t\to\infty} \frac{f(t)}{t}$$
 exist b) $Lim_{t\to\infty} \frac{f(t)}{t}$ does not exist c) $Lim_{t\to\infty} \frac{f(t)}{t} = 1$

c)
$$\lim_{t\to\infty} \frac{f(t)}{t} = 1$$
 d

$$Lim_{t\to\infty}\frac{f(t)}{t}=0$$

Ans. a)
$$\lim_{t\to\infty} \frac{f(t)}{t}$$
 exist

Q.17. which is the convolution property of L.T.?

a)
$$f * g = \int_{0}^{t} f(u)g(t-u)du$$

b)
$$f * g = \int_{0}^{t} f(u)g(t+u)du$$

c)
$$f * g = \int_{0}^{t} f(t-u)g(t-u)du$$

d)
$$f * g = \int_{0}^{t} f(u)g(t)du$$

Ans. a)
$$f * g = \int_0^t f(u)g(t-u)du$$

Q.18. Value of $L\left(\frac{1}{s^n}\right)$, n = 2,3,4...

a)
$$\frac{t^n}{!(n-1)}$$

b)
$$\frac{t^n}{!(n+1)}$$

a)
$$\frac{t^n}{!(n-1)}$$
 b) $\frac{t^n}{!(n+1)}$ c) $\frac{t^n}{!(n-2)}$

d)
$$\frac{t^n}{!(n+2)}$$

Ans. a) $\frac{t^n}{(n-1)}$

Q.19. If
$$f(t) = \begin{cases} \sin t, & 0 < t < \pi \\ -\sin t, & \pi < t < 2\pi \end{cases}$$
 then fined L {f(t)}

a)
$$\int_{0}^{\pi} e^{-\pi s} \sin t \, dt$$
 b) $\int_{0}^{\pi} e^{\pi s} \sin t \, dt$ c) $\int_{0}^{\pi} e^{-\pi s} \sin t \, dt$ d) $\int_{0}^{\pi} e^{-\pi s} \sin t \, dt$ d) $\int_{0}^{\pi} e^{-\pi s} \sin t \, dt$

$$\int_{0}^{\pi} e^{\pi s} \sin t \, ds$$
b)
$$\frac{1}{1 + e^{-s\pi}}$$

c)
$$\int_{0}^{\infty} e^{-s\pi} \sin t \, dt$$

$$\frac{1}{2 - e^{-s\pi}}$$

$$\int_{0}^{\pi} e^{-\pi s} \sin t \, dt$$
d)
$$\frac{1}{2 + e^{-s\pi}}$$

Ans. a)
$$\int_{0}^{\pi} e^{-\pi s} \sin t \, dt$$

$$1 - e^{-s\pi}$$

Q.20. If
$$[f(t)] = L^{-1}[\overline{f}(s)]$$
 then $L^{-1}(\overline{\frac{f(s)}{s^n}})$

a)
$$\iint_{0}^{t} \dots \int_{0}^{t} f(t)dt^{n}$$

b)
$$\int_{0}^{t} \int_{0}^{t} \dots \int_{0}^{t} f(t+1)dt'$$

c)
$$\int_{0}^{t} \int_{0}^{t} \dots \int_{0}^{t} f(t+2)dt$$

a)
$$\iint_{0}^{t} \dots \iint_{0}^{t} f(t)dt^{n}$$
 b)
$$\iint_{0}^{t} \dots \iint_{0}^{t} f(t+1)dt^{n}$$
 c)
$$\iint_{0}^{t} \dots \iint_{0}^{t} f(t+2)dt^{n}$$
 d)
$$\iint_{0}^{t} \dots \iint_{0}^{t} f(t+3)dt^{n}$$

Ans. a)
$$\int_{0}^{t} \int_{0}^{t} \dots \int_{0}^{t} f(t)dt^{n}$$

Q.21. Value of
$$L\left(\frac{\sin 100t}{t}\right)$$

a)
$$\sin^{-1}\left(\frac{100}{s}\right)$$
 b) $\cos^{-1}\left(\frac{100}{s}\right)$ c) $\tan^{-1}\left(\frac{100}{s}\right)$ d) $\cot^{-1}\left(\frac{100}{s}\right)$

b)
$$\cos^{-1}\left(\frac{100}{s}\right)$$

c)
$$\tan^{-1}\left(\frac{100}{s}\right)$$

d)
$$\cot^{-1}\left(\frac{100}{s}\right)$$

Ans. c)
$$\tan^{-1}\left(\frac{100}{s}\right)$$

Q.22. If
$$L[f(t)] = \overline{f}(s)$$
, then $L[e^{400t} f(t)]$

a)
$$\overline{f}(s-400)$$

b)
$$\overline{f}(s + 400)$$
 c) $\overline{f}(s - 200)$

c)
$$\overline{f}(s-200)$$

d)
$$\overline{f}(s+200)$$

Ans. a)
$$\overline{f}(s-400)$$

Q.23. Value of $L(\cosh 200t)$

a)
$$\frac{s}{s^2 - 40000}$$

a)
$$\frac{s}{s^2 - 40000}$$
 b) $\frac{s}{s^2 + 40000}$ c) $\frac{s}{s^2 - 20000}$ d) $\frac{s}{s^2 + 20000}$

c)
$$\frac{s}{s^2 - 20000}$$

d)
$$\frac{s}{s^2 + 20000}$$

Ans. a)
$$\frac{s}{s^2 - 40000}$$

Q.24.If
$$g(t) = \begin{cases} \overline{f}(t-1000), t > 1000 \\ 0, t < 1000 \end{cases}$$
 then L{g(t)

a)
$$e^{10^2 s} \overline{f}(s)$$

b)
$$e^{10s} \overline{f}(s)$$

a)
$$e^{10^2s}\overline{f}(s)$$
 b) $e^{10s}\overline{f}(s)$ c) $e^{-10^2s}\overline{f}(s)$ d) $e^{-10s}\overline{f}(s)$

d)
$$e^{-10s} \overline{f}(s)$$

Ans. a)
$$e^{10^2 s} \overline{f}(s)$$

Q.25. If
$$f(t) = L^{-1}\{\overline{f}(s)\}$$
 then $L^{-1}(\overline{f}(50s + 100))$

a)
$$\frac{1}{50}e^{-2t}f\left(\frac{t}{50}\right)$$

b)
$$\frac{1}{50}e^{-2t}f\left(\frac{t}{100}\right)$$

a)
$$\frac{1}{50}e^{-2t}f\left(\frac{t}{50}\right)$$
 b) $\frac{1}{50}e^{-2t}f\left(\frac{t}{100}\right)$ c) $\frac{1}{100}e^{-2t}f\left(\frac{t}{50}\right)$ d) $\frac{1}{10}e^{-2t}f\left(\frac{t}{10}\right)$

d)
$$\frac{1}{10}e^{-2t}f\left(\frac{t}{10}\right)$$

Ans. a)
$$\frac{1}{50}e^{-2t}f\left(\frac{t}{50}\right)$$