

Introduction to Genetic Algorithms (GAs)

Speaker: Nick S.H. Chung PhD (HKU), MPhil (HKU), BEng (HKU)

Lecturer: The Hong Kong Polytechnic University Email: mfnick@inet.polyu.edu.hk

2012-07

Example:

Allocation of Boxes into container

Objective: Maximum Profit

Constraints: Weight - 2100 lbs

capacity - 12 m³

Cargo	Volume (m ³)	Weight (lb)	Value (\$1000)
1	3	400	3
2	4	500	6
3	6	200	4
4	5	600	9
5	2	250	4
6	1	300	2
7	2	350	5

Design Factors

Excel Solver

Demonstration of Idea

Genetic Evolution Example: 1 Gene

Initial	1	0	0	1	0	0	0] =	Profit 12
Evolutin 1	1	0	0	1	1	0	0] =	16
2	1	0	0	1	1	0	1	l =	21
3	0	0	0	1	1	0	1	' =	18
4	0	0	0	1	1	1	1	·] =	20
5	0	0	0	1	0	1	1] =	16
6	0	1	0	1	0	1	1] =	22

Demonstration of Idea

Genetic Evolution

Example: More genes (certain part)

Design Factors

- (I) Design Chromosome
- (II) Fitness Value
- (III) Evolution Process
 - Mating Pool
 - Crossover
 - Mutation
- (IV) Stopping Condition

Introduction

GAs was proposed by Holland in 1975

Idea of GAs

- To mimic a biological evolutionary process.

Two main Parts:

- Chromosome Design
- Genetic Operators Design

Encoding of chromosome

- The first step in GAs is to design and encode a chromosome.

Chromosome function

- Represents a feasible solution of the problem.
- Consists of a number of Genes
- The length of a chromosome depends on the problem and the designer of the GAs.

Gene

- Binary integer: 0 or 1.
- Real number.

Allocation Example

- Each gene represents 1 cargo.
- The chromosome consists of 7 genes
- If the cargo is in, then represents by 1 otherwise 0.

Decoding of Chromosome

- It means how to interrupt the chromosome.
 - -Explain how to convert the chromosome into a solution.

Allocation Example

Validation

- Check the chromosome validity.
- A chromosome is valid if it does not violate the constraints.

Allocation Example

Cargo	Volume (m³)	Weight (lb)
1	3	400
2	4	500
3	6	200
4	5	600
5	2	250
6	1	300
7	2	350

Cargo	Volume	Weight
1	3	400
4	5	600
5	2	250
Total	10	1250

Constraints 12	2100
----------------	------

Valid

Question

Can we design the chromosome by using Real Value?

Encoding with Real Value

- Cargo's sequence to put in the container.
- Count until the constraints violated.

Cargo	Volume (m³)	Weight (lb)
1	3	400
2	4	500
3	6	200
4	5	600
5	2	250
6	1	300
7	2	350

3	1	7	4	2	6	5

Cargo	3
Volume	6
Weight	200
Value	4

Cargo	3,1
Volume	9
Weight	600
Value	7

Cargo	3,1,7
Volume	11
Weight	950
Value	12

Summary: Encoding of Chromosome

Skills:

Real/Binary Value

Sequence/Position

Avoid: Lengthy chromosome

Dutline: GA

Initial Pool

Formation of Initial Pool

- Evolution started based on the initial pool.
- A Pool of chromosomes

Ways of Forming:

- Totally Random.
- Rules

Allocation Example

- Highest Profit
- Smallest Size
- Lightest Weight

Cargo	Volume (m³)	Weight (lb)
1	3	400
2	4	500
3	6	200
4	5	600
5	2	250
6	1	300
7	2	350

Initial Pool

Allocation Example

- Initial Pool Size: 4

Initial Pool

Pool Size

- Commonly around 10 to 100

Fitness Value

Fitness value

- Represents the strength/goodness of the chromosome.
- It means how good this solution is.
- A large fitness value, meaning a good chromosome

Allocation Example

Fitness Value = 3k + 9k + 4k = 16k

Cargo	Value (\$1000)
1	3
2	6
3	4
4	9
5	4
6	2
7	5

Fitness Value

Allocation Example

Forming Mating Pool

Purpose of Mating Pool

Crossover and Mutation

Remark

- Number of chromosomes in Mating Pool = Number of chromosomes in Initial Pool.

Forming Method

Roulette Wheel Selection.

Forming Mating Pool

Roulette Wheel Selection

- Mimic the idea of survive of the best

Fitness Value

Allocation Example

Question: Design for Production Scheduling

- Chromosome
- Fitness Value

Problem

10 Jobs and 3 Machines Minimize Makespan

Job	PT	Job	PT
1	12	6	5
2	15	7	12
3	16	8	17
4	11	9	21
5	17	10	15

Setup Time	1	2	3	4	5	6	7	8	9	10
1	-	12	4	2	5	6	4	12	5	3
2	5	-	3	6	7	3	2	4	6	4
3	3	1	-	1	3	4	6	7	8	8
4	7	4	2	-	12	3	3	1	3	5
5	12	3	6	3	-	12	3	3	12	6
6	4	1	8	3	4	-	6	7	2	8
7	6	9	5	3	2	1	-	9	4	3
8	12	4	7	3	9	4	10	-	2	6
9	1	2	7	4	9	3	12	15	-	4
10	9	6	2	6	8	11	3	8	6	24_

Possible Answer

Chromosome Encoding

Fitness Value of Chromosome i = 1-1/makespan of i

Fitness Value

Skills

MIN		=1-f/max	=1-f/Sum
Chromo.		FV	FV
1	12	0.760	0.934
2	14	0.720	0.923
3	16	0.680	0.912
4	20	0.600	0.890
5	8	0.840	0.956
6	4	0.920	0.978
7	32	0.360	0.823
8	50	0.000	0.724
9	7	0.860	0.961
10	18	0.640	0.901