Exercise: Analyze and interpret ALL of the peaks in the proton NMR spectrum of formamide below:

Problem R-82K. Interpret the 11.1 MHz ¹⁵N NMR spectrum of formamide below. Determine coupling constants.

The broad doublet centered at δ 8.2 is from the ¹⁴NH₂ protons. They are broadened by residual coupling to the ¹⁴N. The two protons are diastereotopic (slow rotation around O=C-N bond, and slow intermolecular exchange of N-H protons). On the surface of the broad peaks are a series of small sharp peaks (a ddd, J = 91.4, 2.7, 1.8; ddd, J = 87.9, 13.4, 2.7) corresponding the 0.36% of ¹⁵NH₂ in the sample.

The formyl proton should be a dd from coupling to the two NH₂ protons, but only the larger *trans* coupling is resolved. The 13 C satellites of the formyl proton are visible, $^{1}J_{C-H} = 190$ Hz.

Problem R-82K. Interpret the 11.1 MHz ¹⁵N NMR spectrum of formamide below. Determine coupling constants.

Problem R-82K (CH₃NO)

50.68 MHz ¹⁵N NMR spectrum

Source: Ferris, T. D.; Lee, P. T.; Farrar, T. C MRC, 1997, 35, 571 (Reich digitized hard copy) g

