Q1 知识点梳理

•	Prove a function is bijective
	1. Injective (1-1)
	2. Surjective (Onto)
•	Cardinality
	→ Definition:
	ightharpoonup Definition 10.1.7 - Equal cardinality (same cardinality):
	→ 证明 same cardinality 的方法:
	1. 构造一个 bijection
	2. 使用传递性
•	Definition of Countable

• Finite sequences of elements of set A

Q2 知识点梳理

• RRT

If $\frac{m}{n}$ is a rational root of the polynomial $a_k x^k + a_{k-1} x^{k-1} + \cdots + a_1 x + a_0$, where a_j are integers and m and n are relatively prime, then m divides a_0 and n divides a_k .

- Check 是否是 field 的四个条件:
 - 1.
 - 2.
 - 3.
 - 4.
- Tower of fields

A tower of fields is a finite sequence F_0 , F_1 , \cdots , F_n of subfields of \mathbb{R} such that $F_0 = \mathbb{Q}$ and for each i from 1 to n, there is a positive number r_i in F_{i-1} such that $\sqrt{r_i}$ is not in F_{i-1} and $F_i = F_{i-1}(\sqrt{r_i})$.

• Field Extension:

Q3 知识点梳理

• De Moivre's Theorem

For every natural number n,

$$(r(\cos\theta + i\sin\theta))^n = r^n(\cos(n\theta) + i\sin(n\theta)).$$

• n^{th} Roots of Unity

• Method of 12.4.12

Solve $z^7=1$ without De Moivre's Theorem

• Axioms of Greek Construction

- → Axiom 1: any two points can be joined to create a line segment
- → Axiom 2: Any line segment can be extended to a line
- → Axiom 3: given any point and any line segment (length), we can draw a circle that has the point as its center and the length as its radius.
- Axiom 4: The only way points are born is of the intersection of two lines, two circles, or lines and circles.
- 基础作图 1 垂直平分线段

• 基础作图 2 - 角平分线

• 基础作图 3 - 复制一条线段

• 基础作图 4 - 复制一个角度

Q4 知识点梳理

• Theorem 9.3.4

If r is a complex number and p(z) is a non-constant polynomial with complex coefficients, then there exists a polynomial q(z) and a constant c such that

$$p(z) = (z - r)q(z) + c$$

- Theorem 9.3.5. Divisibility relation for polynomial
- Theorem 9.3.6 The Factor Theorem

The complex number r is a root of a polynomial p(z) if and only if z - r is a factor of p(z).

• Long division of Polynomial