Metode Numerik: 3 SKS

Materi:

- 1. Galat
- 2. Penyelesaian SPL secara Numerik
- 3. Penyelesaian persamaan nonlinier f(x) = 0 secara numerik
- 4. Interpolasi
- 5. Integrasi Numerik
- 6. Turunan fungsi secara Numerik
- 7. Penyelesaian PDB (masalah nilai awal) Secara Numerik.

Buku referensi:

- 1. Pengantar Komputasi Numerik dengan MATLAB (Sahid, Penerbit ANDI)
- 2. Buku-buku lain tentang Metode Numerik
- 3. Bahan-bahan dari Internet

Alat bantu: Program MATLAB

Mengapa Metode Numerik?

- 1) Berapakah nilai π , e, $\sqrt{2}$?
- 2) Berapakah nilai $\int_0^1 e^x dx$? \rightarrow Jwb: e-1 (berapa ini?)
- 3) Berapakah nilai $\int_0^1 e^{x^2} dx$?
- 4) Pada statistika untuk menghitung nilai fungsi distribusi kumulatif pada distribusi normal

5) Selesaikan persamaan $x^3 - e^x \cdot \sin(x) + x - 5 = 0$!

Dari contoh-contoh permasalahan di atas ternyata bahwa tidak semua masalah Matematika dapat diselesaikan secara eksak, dan tidak semua nilai eksak diketahui secara pasti/persis.

Apakah metode numerik?

Suatu metode untuk menyelesaikan masalahmasalah Matematika yang hanya <u>menggunakan</u> <u>operasi dasar aritmetika</u> (+, -, x, :) pada <u>nilai-nilai</u> <u>yang sudah diketahui</u> secara <u>berulang</u>.

Contoh 1: Tentukan hampiran nilai $\sqrt{2}$ Jawab:

Salah satu metode numerik yang dapat dipakai adalah:

1. Tentukan x_0

2. Hitung
$$x_n = \frac{1}{2} \left(x_{n-1} + \frac{2}{x_{n-1}} \right)$$
, untuk $n = 1, 2, 3, ...$

MATLAB:

Dari hasil iterasi tersebut didapat bahwa $\sqrt{2} \approx$ 1.4142 (sampai 4 angka di belakang koma)

Pertanyaan:

Bagaimana cara menghitung nilai-nilai $x_1, x_2, ..., x_n$ dengan MATLAB tidak secara manual seperti contoh di atas jika nilai-nilai x_0 dan n sudah ditentukan? (misalkan $x_0 = 1, n = 10$)

Contoh 2: $\int_0^1 e^x dx = e - 1 \approx 1.71828182845905$.

$$\int_{0}^{\infty} e^{x} dx \sim \int_{1=0}^{\infty} hy_{i} = h \int_{1=0}^{\infty} e^{x_{i}}$$

$$\int_{0}^{\infty} e^{x} dx \sim \int_{1=0}^{\infty} hy_{i} = h \int_{1=0}^{\infty} e^{x_{i}}$$

$$\int_{0}^{\infty} e^{x} dx \sim \int_{1=0}^{\infty} hy_{i} = h \int_{1=0}^{\infty} e^{x_{i}}$$

$$\int_{0}^{\infty} e^{x} dx \sim \int_{0}^{\infty} hy_{i} = h \int_{0}^{\infty} e^{x}$$

$$\int_{0}^{\infty} e^{x} dx \sim \int_{0}^{\infty} hy_{i} = h \int_{0}^{\infty} e^{x}$$

$$\int_{0}^{\infty} e^{x} dx \sim \int_{0}^{\infty} hy_{i} = h \int_{0}^{\infty} e^{x}$$

$$\int_{0}^{\infty} e^{x} dx \sim \int_{0}^{\infty} hy_{i} = h \int_{0}^{\infty} e^{x}$$

$$\int_{0}^{\infty} e^{x} dx \sim \int_{0}^{\infty} hy_{i} = h \int_{0}^{\infty} e^{x}$$

$$\int_{0}^{\infty} e^{x} dx \sim \int_{0}^{\infty} hy_{i} = h \int_{0}^{\infty} e^{x}$$

$$\int_{0}^{\infty} e^{x} dx \sim \int_{0}^{\infty} hy_{i} = h \int_{0}^{\infty} e^{x}$$

$$\int_{0}^{\infty} e^{x} dx \sim \int_{0}^{\infty} hy_{i} = h \int_{0}^{\infty} e^{x}$$

$$\int_{0}^{\infty} e^{x} dx \sim \int_{0}^{\infty} hy_{i} = h \int_{0}^{\infty} e^{x}$$

$$\int_{0}^{\infty} hy_{i} = h \int_{0}^{\infty} hy_{i}$$

$$\int_{0}^{\infty} hy_{i} = h \int_{0}^{\infty} h$$

Perhatikan, semakin besar nilai n, nilai jumlah Riemann akan mendekati 1.71828182845905, yang merupakan hampiran untuk nilai $\int_0^1 e^x dx = e - 1$.

Latihan mengulang penggunaan MATLAB:

Hitunglah dengan MATLAB:

1.71830041988251

- 1. Nilai-nilai $f_n = f_{n-1} + f_{n-2}$ untuk n = 2, 3, 4, ... jika f_0 , f_1 , n ditentukan sebelumnya (misalkan $f_0 = 1$, $f_1 = 1$, n = 20)
 - a. dengan menggunakan indeks
 - b. tanpa menggunakan indeks

2. Jumlah
$$1 + 2 + 3 + \cdots + n$$
 untuk n tertentu (misalkan $n = 100$)

a. dengan menggunakan loop

b. tanpa menggunakan loop

3. Jumlah
$$1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$
 untuk n tertentu (misalkan $n = 100$)

a. dengan menggunakan loop

b. tanpa menggunakan *loop*

4. Jumlah
$$x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots + \frac{(-1)^{(n+1)}x^{2n-1}}{(2n-1)!}$$
 untuk n tertentu dan x diketahui (misalkan $x = 5$, $n = 10$)

a. dengan menggunakan loop

b. tanpa menggunakan *loop*

5. Jumlah
$$1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots + \frac{(-1)^{n+1}x^{2(n-1)}}{(2(n-1))!}$$
 untuk n tertentu dan x diketahui (misalkan $x = 5$, $n = 10$)

a. dengan menggunakan *loop*

b. tanpa menggunakan loop

Galat Numerik

Galat: selisih antara nilai eksak dan nilai hampiran.

Jika \bar{x} adalah suatu hampiran untuk nilai eksak x, maka galatnya adalah $e_{\bar{x}} = x - \bar{x}$.

Galat mutlak: nilai mutlak suatu galat

Galat relatif: perbandingan antara galat (mutlak) dan nilai eksak ($r_{\bar{x}} = \frac{e_{\bar{x}}}{x}$).

Jadi, dari contoh-contoh sebelumnya, kita dapat menuliskan

$$\pi = 3.14 + galat$$

$$e = 2.7183 + galat$$

$$\sqrt{2} = 1.4142 + galat$$

 $\int_0^1 e^x dx = e - 1 = 1.71828182845905 + galat$

Untuk mengetahui besar galat suatu hampiran untuk nilai suatu nilai eksak dapat digunakan banyaknya angka signifikan.

Misalkan suatu hampiran untuk nilai eksak x dinyatakan sebagai

$$\overline{x} = \pm d_n d_{n-1} ... d_2 d_1 ... d_0 d_{-1} d_{-2} ... d_{-m} = \pm \sum_{k=-m}^n d_k 10^k$$

Apabila $d_k > 0$ dan $d_j = 0$ untuk j > k, maka digit-digit d_k , d_{k-1} , ..., d_{-m} dikatakan digit-digit (angka-angka) signifikan.

Contoh:

- 1. Hampiran $\bar{x} = 0.0320$ memunyai 3 angka signifikan
- 2. Hampiran $\bar{x} = 0.032$ memunyai 2 angka signifikan
- 3. Hampiran $\bar{x} = 130.0320$ memunyai 7 angka signifikan

Nilai \bar{x} dikatakan menghampiri nilai eksak x sampai kangka signifikan apabila galat relatifnya tidak melebihi $\frac{10^{-k}}{2}$ dengan k adalah **bilangan bulat positif terbesar**

yang memenuhi
$$r_{\bar{x}} \le \frac{10^{-k}}{2} = 0.00 \dots 0.5$$
.

Contoh:

$$1.\pi \approx 3.14 => r_{\bar{x}} = \frac{\pi - 3.14}{\pi} \approx 0.000507 \approx \frac{10^{-3}}{2}$$

рi $e \ x = pi - 3.14$

r_x=e_x/ pi

3.14159265358979

```
e_x =
    0.00159265358979

r_x =
    5.069573828972128e-004
```

Jadi hampiran 3.14 untuk nilai π memunyai 3 angka signifikan.

Dengan kata lain, 3.14 menghampiri nilai π sampai 3 angka signifikan.

$$2.e \approx 2.7183 => r_{\bar{x}} = \frac{e^{-2.7183}}{e} \approx 0.0000067 \approx \frac{10^{-5}}{2}$$

$$exp(1)$$

$$e_x = abs(exp(1) - 2.7183)$$

$$r_x = e_x/exp(1)$$

$$ans = 2.71828182845905$$

$$e_x = 1.817154095462570e^{-005}$$

$$r_x = 6.684936331611679e^{-006}$$

Jika galat mutlak dan galat relatif tidak terlalu jauh berbeda, maka keduanya dapat digunakan untuk menentukan banyaknya angka signifikan hampiran yang bersangkutan.

- 3. Misalkan nilai $\bar{x} = 99997$ digunakan sebagai hampiran untuk x = 100000, maka
 - \triangleright Galat mutlaknya: $e_{\bar{x}} = 100000 99997 = 3$
 - ➤ Galat relatifnya:

$$r_{\bar{\chi}} = \frac{3}{100000} = 0.00003 < 0.00005 = \frac{10^{-4}}{2}$$

Jadi nilai $\bar{x} = 99997$ menghampiri nilai x = 100000 sampai 4 angka signifikan.

- 4. Misalkan nilai $\bar{x} = 0.00009$ digunakan sebagai hampiran untuk x = 0.00012, maka
 - ➤ Galat mutlaknya:

$$e_{\bar{x}} = 0.00012 - 0.00009 = 0.00003$$

➤ Galat relatifnya:

$$r_{\bar{x}} = \frac{0.00003}{0.00012} = 0.25 < 0.5 = \frac{10^{-0}}{2}$$

Dalam contoh ini galat mutlaknya kecil tetapi galat relatifnya "sangat" besar. Di sini nilai hampiran $\bar{x} = 0.00009$ tidak memunyai angka asignifikan.

Pertanyaan:

- **1.** Nilai $\bar{x} = 0.00015$ menghampiri nilai x = 0.00012 sampai berapa angka signifikan?
- **2.**Nilai 0.9999 menghampiri nilai 1 sampai berapa angka signifikan?
- **3.**Nilai 0.999987 menghampiri nilai 1 sampai berapa angka signifikan?

Bilangan Titik Mengambang Normal (normalized floating-point)

$$x = \sigma \times m \times \beta^p$$

dengan σ : tanda (+1 atau -1)

m: mantis, $\beta^{-1} \leq m < 1$

 β : basis

p: pangkat (bilangan bulat)

Untuk $\beta=2$ disebut bilangan titik mengambang normal biner, untuk $\beta=10$ disebut bilangan titik mengambang normal desimal.

Secara umum, bilangan **titik mengambang normal biner** dapat dinyatakan sebagai

$$x = \pm 0.1 b_1 b_2 b_3 \dots b_k b_{k+1} \dots \times 2^p$$
 dengan $b_i \in \{0,1\}$.

Bilangan **titik mengambang normal desimal** dapat dinyatakan sebagai

$$x = \pm 0. d_1 d_2 d_3 \dots d_k d_{k+1} \dots \times 10^p$$

dengan $1 \le d_1 \le 9$, dan $0 \le d_i \le 9$ untuk j > 1.

Komputer hanya dapat menyimpan berhingga banyaknya angka signifikan pada mantis, sehingga setiap bilangan selalu disimpan dalam berhingga digit mantis.

Ada 2 cara untuk melakukan pembatasan banyaknya digit mantis:

1. Dengan pemotongan/pemangkasan mantis (chopping)

 $fl_{chop}(x) = \pm 0. d_1 d_2 d_3 \dots d_k \times 10^p$ dengan $1 \le d_1 \le 9$, dan $0 \le d_i \le 9$ untuk j > 1. Galat yang terjadi akibat pemotongan tersebut adalah

 $e_{fl_{chop}(x)} = 0.d_{k+1}d_{k+2} \dots \times 10^{p-k} \le 10^{p-k}$ Galat relatifnya:

$$r_{fl_{chop}(x)} = \frac{\dot{e}_{fl_{chop}(x)}}{x} \le \frac{10^{p-k}}{10^{-1} \times 10^p} = 10^{-k+1}.$$

Jadi jika dilakukan pemangkasan mulai digit ke-(k+1) pada mantis, maka galat relatifnya tidak akan melebihi nilai tempat digit ke-(k-1).

$$e_{\bar{x}} = 0.00000056... \le 0.000001 = 10^6$$

Contoh:

x=1.41421356237310... dihampiri dengan $\bar{x}=1.414213.6$ $\bar{x} = 1.414213$. Galat mutlaknya tidak melebihi $0.000001 = 10^{-6}$. Galat relatifnya tidak lebih besar daripada $10^{-6} = 0.000001$.

Pertanyaan:

Tentukan maksimum galat mutlak dan galat relatif jika nilai x=312.31456237 dihampiri dengan $\bar{x}=312.3145$.

2. Dengan pembulatan (rounding)

$$fl_{round}(x) = \pm 0. d_1 d_2 d_3 \dots r_k \times 10^p$$
 dengan
$$r_k = \begin{cases} d_k \text{ jika } d_{k+1} < 5 \\ d_k + 1 \text{ jika } d_{k+1} \ge 5 \end{cases}$$

Galat yang terjadi akibat pembulatan tersebut adalah

$$e_{fl_{round}(x)} \leq 0.0 \dots 05 \times 10^{p}$$

$$= 5 \times 10^{p-k-1} = \frac{10^{p-k}}{2}.$$

$$X = 0.d_1d_2d_3 \dots d_kd_{k+1}d_{k+2} \dots \times 10^{p}$$

$$\overline{X} = 0.d_1d_2d_3 \dots \Gamma_k$$

Galat relatifnya

$$r_{fl_{round}(x)} = \frac{e_{fl_{round}(x)}}{x} \le \frac{\frac{10^{p-k}}{2}}{10^{-1} \times 10^p} = \frac{10^{-k+1}}{2}.$$

Pertanyaan:

Tentukan batas maksimum galat mutlak dan galat relatif jika nilai x = 312.31456237 dihampiri dengan $\bar{x} = 312.3146$.

 $e_{\bar{x}} = 0.0000$ \(\frac{10}{2}\)

Jadi, jika mantis **dibulatkan** sampai k angka signifikan, maka:

- 1) galat mutlaknya tidak akan melebihi $\frac{1}{2} \times 10^{p-k}$ (p= pangkat pada bentuk mengambang normal desimalnya), dan
- 2) galat relatifnya tidak akan melebihi setengah dari nilai tempat digit ke-(k-1).

Dari sifat ini, jika kita menuliskan nilai hampiran sampai sejumlah angka signifikan tertentu, maka batas-batas nilai sesungguhnya dapat ditentukan.

Kesimpulan:

Galat pembulatan lebih kecil daripada galat pemotongan.

Contoh:

- 1. Jika $\bar{x} = 3.14$, maka $x = 3.14 \pm 0.005$ atau $3.135 \le x \le 3.145$.
- 2. Jika $\bar{x} = 3.140$, maka $x = 3.140 \pm 0.0005$
- 3. Jika $\bar{x} = 3.14 \text{ dan } \bar{y} = 2.7183$, maka:

a. ..? ...
$$\leq x + y \leq$$
? $\leq e_{x+\bar{y}} \leq$? $\leq e_{x-\bar{y}} \leq$? $\leq e_{x-\bar{y}} \leq$? $\leq e_{x-\bar{y}} \leq$ $\leq e_{x-\bar{y}} \leq$..

Pengurangan Angka Signifikan

Pengurangan angka signifikan akan terjadi jika kita melakukan pengurangan dua bilangan yang hampir sama nilainya;

Contoh:

 $\bar{x}=0.31245702$, memunyai 8 angka signifikan $\bar{y}=0.312462$, memunyai 6 angka signifikan $\bar{x}-\bar{y}=-0.00000498$, memunyai 3 angka signifikan

```
x=0.215; x2=x^2
y=0.125; y2=y^2
selisih1=round(1000*x^2)/1000-round(1000*y^2)/1000
hasil1=round (1000*(x-y)*(x+y))/1000
hasil=(x-y)*(x+y)
                          f(x) = x(\sqrt{x+1} - \sqrt{x}) = \frac{x}{\sqrt{x+1} + \sqrt{x}}
f(500) = 500(22.3830 - 22.3607) = 11.1500
f(500) = \frac{500}{22.3830 + 22.3607} = 11.1748
hasil=x^2-y^2
x2 =
    0.0462
selisih1 =
    0.0300
hasil1 =
    0.0310
hasil =
    0.0306
hasil = 0.0306

Apa yang dapat Anda simpulkan? (x) = (x - 1 - x), x \neq 0
```

Perhitungan deret

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$

```
x=pi/2;
n=1:5;
s=(-1).^(n-1).*x.^(2*n-1)./factorial(2*n-1);
sum(s) %sin(x)dihitung sampai n suku
sin(x)
galat=abs(sum(s)-sin(x))
ans =
    1.00000354258429
ans =
    1
galat =
    3.542584286142514e-006
```

Berapa suku pertama paling sedikit yang harus dijumlahkan agar galatnya kurang dari 10^{-6} ?

```
1. sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots

x=2;

n=1:7;

s=(-1).^{(n-1)}.*x.^{(2*n-1)}./factorial(2*n-1);

sum(s) % sin(x) dihitung sampai n suku

sin(x)

galat=abs(sum(s)-sin(x))

ans = 0.90929745151967

ans = 0.90929742682568

galat = 2.469399207338796e-008
```

Rangkuman hasil perhitungan:

Hasil perhitungan $sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$ dengan mengambil n suku pertama untuk beberapa nilai x agar galatnya kurang dari 10^{-6} .

aman a see apar man na again garanny a man ang alan n = 0					
×	n	Jumlah n suku	Nilai sin (x)	Galat	
1	5	0.84147100970018	0.84147098480790	$2.489227990398746 \times 10^{-8}$	
π/2	6	0.99999994374105	1	$5.625894905492146 \times 10^{-8}$	
2	7	0.90929745151967	0.90929742682568	$2.469399207338796 \times 10^{-8}$	
π	8	$-7.727858894306387 \times 10^{-7}$	$1.224646799147353 \times 10^{-16}$	$7.727858895531034 \times 10^{-7}$	
5	11	-0.95892383209100	-0.95892427466314	$4.425721366052571 \times 10^{-7}$	
10	18	-0.54402179124237	-0.54402111088937	$6.803529986054713 \times 10^{-7}$	

Kesimpulan:

Semakin besar nilai x, semakin banyak suku yang harus dihitung agar galatnya kurang dari yang ditentukan. Hal ini sesuai teorema dalam kalkulus lanjut, bahwa jika kita menghitung suatu deret Taylor sampai suku ke-n, maka galatnya tidak akan melebihi harga mutlak suku ke-(n+1).

Lakukan hal yang sama untuk menghitung nilai-nilai e^x , $\cos x$, $\ln x$ (untuk x=1, 2, $\frac{\pi}{2}$, π , 5, 10) dengan menggunakan deret. \rightarrow Untuk tugas.

Sajikan hasil perhitungan Anda dengan MATLAB dalam bentuk tabel seperti contoh di atas!

2.
$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$
, $-\infty < x < \infty$

Program/fungsi MATLAB deretexponen

```
function hasil=deretexponen(x,n);
% for i=1:n, faktorial(i)=factorial(i-1); end % untuk MATLAB 6.x
m=1:n;
s=x.^(m-1)./factorial(m-1);
% s=x.^(m-1)./faktorial; % untuk MATLAB 6.x
hasil=[sum(s) exp(x) abs(sum(s)-exp(x))];
```

```
deretexponen (1,10)
deretexponen (pi/2,12)
deretexponen (2,14)
deretexponen (pi, 17)
deretexponen (5,23)
deretexponen (10,37)
  2.71828152557319 2.71828182845905
                                       0.00000030288585
  4.81047684582843 4.81047738096535
                                       0.00000053513692
ans =
  7.38905588238922 7.38905609893065
                                       0.00000021654144
 23.14069167160282 23.14069263277927
                                       0.00000096117645
 1.0e+002 *
  1.48413158521648 1.48413159102577
                                       0.0000000580929
 1.0e+004 *
  2.20264657938238
                     2.20264657948067
                                       0.00000000009829
```

Rangkuman hasil perhitungan:

Hasil perhitungan	$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!}$	$\frac{1}{x} + \cdots, -\infty < x < \infty$	∞ denga	n mengambil n suku	
pertama untuk beberapa nilai $ imes$ agar galatnya kurang dari 10^{-6} .					

per rama arran perer apa mar n agar garamya narang aarr 10 .					
X	n	Jumlah n suku	Nilai e ^x	Galat	
1	10	2.71828152557319	2.71828182845905	0.00000030288585	
π/2	12	4.81047684582843	4.81047738096535	0.00000053513692	
2	14	7.38905588238922	7.38905609893065	0.00000021654144	
π	17	23.14069167160282	23.14069263277927	0.00000096117645	
5	23	148.413158521648	148.413159102577	0.000000580929	
10	37	22026.4657938238	22026.4657948067	0.0000009829	

Kesimpulan:

Semakin besar nilai x, semakin banyak suku yang harus dihitung agar galatnya kurang dari yang ditentukan.

3.
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots, -\infty < x < \infty$$

Program/fungsi MATLAB deretcosinus

```
function hasil=deretcosinus(x,n);
%for i=1:n, faktorial(i)=factorial(2*(i-1)); end; %untuk MATLAB 6.x
m=1:n;
s=(-1).^(m-1).*x.^(2*(m-1))./factorial(2*(m-1));
%s=(-1).^(m-1).*x.^(2*(m-1))./faktorial(2*(m-1)); %untuk MATLAB 6.x
hasil=[sum(s) cos(x) abs(sum(s)-cos(x))];
```

```
deretcosinus (1,5)
deretcosinus (pi/2,6)
deretcosinus (2,7)
deretcosinus (pi, 9)
deretcosinus (5,12)
deretcosinus (10,19)
  0.00000027349694
ans =
 1.0e-006 *
 0.46476600842731
 -0.41614665170221 -0.41614683654714
                                 0.00000018484494
 -0.99999986473956 -1.00000000000000
                                 0.00000013526044
  0.28366209297231 0.28366218546323
                                 0.00000009249092
ans =
 -0.83907134946059 -0.83907152907645
                                 0.00000017961586
```

Rangkuman hasil perhitungan:

10 | **19** | -0.83907134946059

Hasil perhitungan $\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots, -\infty < x < \infty$ dengan mengambil n suku					
pertama untuk beberapa nilai \times agar galatnya kurang dari 10^{-6} .					
X	n	Jumlah n suku	Nilai cos (x)	Galat	
1	5	0.54030257936508	0.54030230586814	0.00000027349694	
π/2	6	-0.46476600836608×10 ⁻⁶	0.00000000006123×10 ⁻⁶	$0.46476600842731 \times 10^{-6}$	
2	7	-0.41614665170221	-0.41614683654714	0.00000018484494	
π	9	-0.99999986473956	-1.00000000000000	0.00000013526044	
5	12	0.28366209297231	0.28366218546323	0.00000009249092	

-0.83907152907645

Kesimpulan:

Semakin besar nilai x, semakin banyak suku yang harus dihitung agar galatnya kurang dari yang ditentukan.

0.00000017961586

4.
$$\ln x = \ln(1 - (1 - x)) = -(1 - x) - \frac{(1 - x)^2}{2} - \frac{(1 - x)^3}{3} - \dots, 0 < x \le 2$$

Program/fungsi MATLAB deretln

```
function hasil=deretln(x,n);
m=1:n;
s=(-1)*(1-x).^m./m;
hasil=[sum(s) log(x) abs(sum(s)-log(x))];
```

```
deretln(1,1)
deretln(5/4,8)
deretln(pi/2,18)
deretln(2,500000)
deretln(pi/2,500000) + deretln(2,500000)
2*deretln(2,1000000)+deretln(5/4,1000000)
3*deretln(2,1500000)+deretln(5/4,1500000)
  ans = 0.22314320518857
                          0.22314355131421
                                            0.00000034612564
  ans = 0.45158189922284 0.45158270528945
                                            0.00000080606661
  ans = 0.69314618056100 0.69314718055995
                                            0.00000099999894
  ans = 1.14472888585046 1.14472988584940
                                            0.00000099999894
  ans = 1.60943691243471 1.60943791243410
                                            0.00000099999939
  ans =
        2.30258409299462
                          2.30258509299405
                                            0.000000999999434
```

Catatan:

Karena deret untuk ln(x) hanya berlaku untuk $0 < x \le 2$, untuk menghitung nilai-nilai ln(x) untuk x>2 digunakan sifat-sifat logaritma:

1.
$$\ln(\pi) = \ln\left(2 \times \frac{\pi}{2}\right) = \ln(2) + \ln\left(\frac{\pi}{2}\right)$$

2.
$$\ln(5) = \ln\left(2^2 \times \frac{5}{4}\right) = 2 \times \ln(2) + \ln\left(\frac{5}{4}\right)$$

3.
$$\ln(10) = \ln\left(2^3 \times \frac{5}{4}\right) = 3 \times \ln(2) + \ln\left(\frac{5}{4}\right)$$

Rangkuman hasil perhitungan:

Hasil perhitungan $\ln x = \ln (1-(1-x)) = -(1-x) - \frac{(1-x)^2}{2} - \frac{(1-x)^3}{3} - \cdots, 0 < x \le 2$ dengan mengambil n suku pertama untuk beberapa nilai x agar galatnya kurang dari 10^{-6} .

X	N	Jumlah n suku	Nilai In (x)	Galat
1	1	0	0	0
5/4	8	0.22314320518857	0.22314355131421	0.00000034612564
π/2	18	0.45158189922284	0.45158270528945	0.00000080606661
2	500000	0.69314618056100	0.69314718055995	0.00000099999894
π	500000	1.14472888585046	1.14472988584940	0.000000999998944
5	1000000	1.60943691243471	1.60943791243410	0.000000999999394
10	1500000	2.30258409299462	2.30258509299405	0.000000999999434

Kesimpulan:

Semakin besar nilai x, mendekati 2 dan lebih semakin **banyak sekali** suku yang harus dihitung agar galatnya kurang dari yang ditentukan.

Tugas dikumpulkan (Senin, 4 Oktober 2010)-22 28 Maret 2011

Hitunglah nilai-nilai integral tentu di bawah ini dengan menggunakan deret. Tentukan berapa suku minimal yang harus dihitung agar galat hasil perhitungannya kurang dari 0.000001 untuk setiap nilai a yang diberikan.

- 1. $\int_0^a e^x dx$ (untuk a= 1, 2, 5, 10)
- 2. $\int_0^a e^{-x^2} dx$ (untuk a= 1, 5, 10, 20)
- 3. $\int_0^a \sin(x^2) dx$ (untuk a= 1, $\pi/2$, π , 5)

Untuk setiap integral, tuliskan

- (i) deret tak hingganya
- (ii) fungsi MATLAB untuk menghitung nilai integral tentu tersebut (untuk suatu nilai a) menggunakan deretnya dengan mengambil n suku pertama.
- (iii) contoh tampilan MATLAB untuk menentukan nilai n (untuk suatu nilai a) agar galatnya kurang dari yang diminta
- (iv) tabel rangkuman hasil perhitungan, seperti contoh-contoh di atas.
- (v) kesimpulan yang Anda dapatkan.

<u>Peringatan</u>: untuk soal 2 & 3, nilai eksaknya tidak dapat dihitung. Bagaimana Anda mengetahui galat perhitungannya kurang dari 0.000001? Silakan pikirkan!

Petunjuk Mengumpulkan Tugas:

- 1. Yang Anda kumpulkan adalah hasil pekerjaan Anda sendiri.
- 2. Jika ditulis tangan, gunakan tulisan tangan yang rapih, mudah dibaca, dengan kertas dobel folio.
- 3. Jika diketik, gunakan kertas HVS ukuran A4
- 4. Setiap kali mengerjakan tugas, nomor urut harus sesuai dengan nomor urut soal/pertanyaan.
- 5. Kumpulkan tugas melalui ketua kelas, pekerjaan diurutkan sesuai NIM.