Rīgas Tehniskā Universitāte

Datorzinātnes un Informācijas Tehnoloģijas fakultāte

Lietišķo datorsistēmu institūts

"Datorgrafikas un attēlu apstrādes pamati" Kontroldarbs Nr.3 "Elipses līnijas veidošanas algoritms"

D.I.T.F RDB 1.kurss 14.grupa Sergejs Terentjevs Studenta apl. 061RDB140

1.Darba uzdevums

Izmantojot elipses līnijas veidošanas algoritmu, izstrādāt programmu, kura konstruē elipsi visas oktantās.

2.Teorētriskais pamatojums Elipses zīmēšanas principi:

Lai attēlotu elipsi, sadalīsim elipsi astoņas simetrijas, pieņemsim, ka mums jāattēlo pirmais kvadrants:

Uzskatīsim, ka r _x<r _y un sadalīsim pirmo kvadrantu divas daļas, sāksim veidot elipsi no sākumpunkta B līdz punktam A, kura pieskares slīpums būs vienāds ar -1.Tādejādi slīpumam paliekot mazākam par -1 veidosim uz y virzienu līdz punktam C

Turpmāk no 1 daļas var atrast simetriskus punktus daļai 4,5,8, no 2 daļas punktus 3,6,7 (r _x>r _y).

Elipses veidošanas algoritma pamatojums:

- 1. jānosaka rādiusus x un y un centru (xc=0,yc=0), tādejādi sākotnēja punkta koordinātes būs (o, r _v).
- 2. Definējam slīpumus (Rx2y:=2*Rx2*y, Ry2x:=2*Ry2*x) un rēķinām sākotnējo vērtību risinošam parametram pirmā daļā (p:=Ry2-Rx2+0.25*Rx2).
- 3. Katram x_k (k=0), pārbaudīsim:
 - ❖ Jā p1_k <0, tad nākamais pikselis būs (x_k+1,y_k) un p1 _{k+1}:=p+Ry2x+Ry2;
 - Citādi nākamais pikselis būs (x_k+1,y_k-1) un $p1_{k+1}:=p+Ry2x-Rx2y+Ry2$.

- 4. Jā pieskares slīpums ir -1, tad aprēķinām sākotnējo vērtību risinājušam parametram otra daļā p2₀:=Ry2*sqr(x+0.5)+Rx2*sqr(y-1)-Rx2*Ry2, kur x ,y gala punkts pirmā daļā.
- 5. Katra y_k (k=0), pārbaudīsim:
 - ❖ Jā $p2_k > 0$, tad nākamais pikselis būs $(x_k, y_k 1)$ un $p2_{k+1} := p-Rx2y+Rx2$;
 - Citādi nākamais pikselis būs $(x_k +1, y_k -1)$ un p2 $_{k+1} := p+Ry2x-Rx2y+Rx2;$
- 6. Meklējam simetriskos punktus citos kvadrantos.

3. Programmas kods

```
procedure Zimet(x,y,xc,yc:Integer);
begin
       Form1.Canvas.Pixels[x+xc,y+yc]:=$000000;
       Form 1. Canvas. Pixels [-x+xc, y+yc] := \$000000;
       Form1.Canvas.Pixels[x+xc,-y+yc]:=$000000;
       Form1. Canvas. Pixels [-x+xc,-y+yc]:=$000000;
end;
procedure Elipse (xc,yc,rx,ry:Integer);
var x,y:Integer;
Rx2y,Ry2x,Rx2,Ry2,p:Real;
begin
       x := -1;
       y := Ry;
       Rx2:=sqr(Rx);
       Rv2:=sqr(Rv);
       Rx2y:=2*Rx2*y;
       Ry2x:=2*Ry2*x;
       p := Ry2 - Rx2 + 0.25 * Rx2;
       While Ry2x<=Rx2y do
       begin
       if p<0 then
       begin
       x := x+1;
       Ry2x:=2*Ry2*x;
       p:=p+Ry2x+Ry2;
end
else
begin
       x := x+1;
       y := y-1;
       Rx2y:=2*Rx2*y;
       Ry2x:=2*Ry2*x;
       p := p + Ry2x - Rx2y + Ry2;
end;
Zimet(x,y,xc,yc);
end;
       p:=Ry2*sqr(x+0.5)+Rx2*sqr(y-1)-Rx2*Ry2;
while y>=0 do
begin
       If p>0 then
       begin
       y := y-1;
```

```
Rx2y:=2*Rx2*y;\\ p:=p-Rx2y+Rx2;\\ end\\ else\\ begin\\ x:=x+1;\\ y:=y-1;\\ rx2y:=2*Rx2*y;\\ ry2x:=2*Ry2*x;\\ p:=p+Ry2x-Rx2y+Rx2;\\ end;\\ Zimet(x,y,xc,yc);\\ end;\\ end;\\ end;
```

4. secinājumi

Pielietojot elipses līnijas veidošanos algoritmu ir iegūta strādājoša programma, kurā zīme elipsi visās astoņas simetrijas.