Algebra Lineare

Enrico Bragastini

 $22~\mathrm{marzo}~2021$

Indice

1	Matrici		
	1.1	Introd	luzione alle Matrici
		1.1.1	Dimensioni di una matrice (forma)
		1.1.2	Vettore riga e Vettore colonna
		1.1.3	Matrice quadrata
		1.1.4	Diagonali di una matrice quadrata
		1.1.5	Posto in una matrice
		1.1.6	Notazione generica
		1.1.7	Matrici uguali
	1.2	Matri	ci particolari
		1.2.1	Matrice nulla
		1.2.2	Matrice opposta
		1.2.3	Matrice identità
	1.3	Opera	zioni con le matrici
		1.3.1	Somma tra matrici
		1.3.2	Moltiplicazione per uno scalare

Matrici

1.1 Introduzione alle Matrici

Una **Matrice** è una tabella numerica a doppia entrata con i coefficienti ordinati per righe e per colonne

1.1.1 Dimensioni di una matrice (forma)

Si dice che una matrice è $m \times n$ se ha m righe e n colonne. Per esempio, date le seguenti due matrici:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \quad B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

- La matrice A è 2×3 perché ha 2 righe e 3 colonne.
- La matrice B è 2×2 perché ha 2 righe e 2 colonne

1.1.2 Vettore riga e Vettore colonna

Esistono due particolari tipologie di matrici distinte dalla loro forma:

• Vettore riga

Si tratta di una matrice composta da una sola riga. Un vettore riga è quindi una matrice di forma $1 \times n$.

$$A = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$$

• Vettore colonna

Si tratta di una matrice composta da una sola colonna. Un vettore colonna è quindi una matrice di forma $m \times 1$.

$$A = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

1.1.3 Matrice quadrata

Una Matrice si dice **quadrata** quando il numero delle righe è uguale al numero delle colonne, ovvero quando m = n. In tale caso, n è chiamato **ordine** della matrice.

Esempio:

La matrice
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 è quadrata di ordine pari a 2.

1.1.4 Diagonali di una matrice quadrata

Una matrice quadrata presenta due diagonali:

- Diagonale principale, costituita dagli elementi che attraversano centralmente la matrice, a partire dall'angolo superiore sinistro a quello inferiore destro
- Diagonale secondaria, costituita dagli elementi che attraversano centralmente la matrice, a partire dall'angolo inferiore sinistro a quello superiore destro

Esempio:

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

Gli elementi della matrice in rosso fanno parte della diagonale principale. Gli elementi della matrice in blu fanno parte della diagonale secondaria

1.1.5 Posto in una matrice

Ogni elemento di una matrice è univocamente determinato dal posto che occupa nella tabella. L'unico elemento di posto (i, j) è l'elemento che si trova nella i-esima riga e nella j-esima colonna.

Esempio:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

Nella matrice A:

- 1 è l'elemento di posto (1, 1)
- 2 è l'elemento di posto (1, 2)
- 6 è l'elemento di posto (2, 3)

1.1.6 Notazione generica

Una matrice A di forma $m \times n$, ovvero una matrice del tipo:

$$A = \begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{bmatrix}$$

può essere indicata mediante la sua notazione generica:

$$A = [a_{i,j}] \qquad 1 \le i \le m$$
$$1 \le j \le n$$

1.1.7 Matrici uguali

Due matrici si dicono **uguali** se hanno:

- 1. **Stessa forma**: stesso numero di righe e <u>stesso numero di colonne</u>
- 2. Stessi coefficienti

Esempio 1:

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \neq \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$$

Le due matrici sono diverse perché la prima è 2×3 mentre la seconda è 3×2 .

Esempio 2:

$$A = \begin{bmatrix} 1 & 2 \\ 4 & 5 \end{bmatrix} \neq \begin{bmatrix} 1 & 2 \\ 3 & 0 \end{bmatrix} = B$$

Le due matrici sono diverse perché $A_{2,2} \neq B_{2,2}$.

1.2 Matrici particolari

1.2.1 Matrice nulla

La matrice nulla è una matrice $m \times n$ del tipo

$$O_{mn} = [0] \quad \begin{aligned} 1 &\le i \le m \\ 1 &\le j \le n \end{aligned}$$

tale che

$$A + O_{mn} = A$$

1.2.2 Matrice opposta

La **matrice opposta** di una matrice $A = [a_{i,j}]^{-1 \le i \le m \atop 1 \le j \le n}$ si denota con -A ed è la matrice con la stessa forma di A (ovvero $m \times n$) tale che

$$A + (-A) = O_{mn}$$

1.2.3 Matrice identità

La **Matrice identità** è una matrice I tale che AI = A, dove A è una matrice $n \times m$. Definiamo quindi la *matrice identità* come la matrice quadrata $n \times n$ composta da tutti 1 sulla diagonale principale e 0 altrove.

$$I_n = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

Delta di Kronecker In matematica per *delta di Kronecker* si intende una funzione di due variabili discrete che vale 1 se i loro valori coincidono, mentre vale 0 in caso contrario.

$$\delta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

Di conseguenza è possibile definire la **matrice identità** sfruttando questa funzione:

$$I_n = [\delta_{i,j}] \quad 1 \le i \le m$$
$$1 \le j \le n$$

Esempio:

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

1.3 Operazioni con le matrici

1.3.1 Somma tra matrici

Se A e B sono due matrici $m \times n$, allora si può definire la loro somma, che viene denotata con A + B.

$$A = [a_{i,j}] \quad 1 \le i \le m$$

$$1 \le j \le n$$

$$A + B = [c_{i,j}] \quad 1 \le i \le m$$

$$1 \le i \le m$$

$$1 \le i \le m$$

$$1 \le j \le n$$

$$1 \le j \le n$$

La somma di due matrici (con la stessa forma) si fa **posto per posto**.

Esempio:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} B = \begin{bmatrix} 1 & 0 & 3 \\ 2 & 1 & 0 \end{bmatrix}$$
$$A + B = \begin{bmatrix} 2 & 2 & 6 \\ 6 & 6 & 6 \end{bmatrix}$$

1.3.2 Moltiplicazione per uno scalare

Sia $\alpha \in \mathbb{R}$ uno scalare. Consideriamo $A = [a_{i,j}]$ $\begin{cases} 1 \leq i \leq m \\ 1 \leq j \leq n \end{cases}$ allora αA denota la matrice con la stessa forma di A (ovvero $m \times n$) e con termine generico $b_{i,j} = \alpha a_{i,j}$

Esempio:

$$\alpha = 2$$

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \quad 2 \times 2$$

$$\alpha A = \begin{bmatrix} 2 & 4 \\ 6 & 8 \end{bmatrix} \quad 2 \times 2$$

Data $A = [a_{i,j}]$ $\begin{cases} 1 \leq i \leq m \\ 1 < j < n \end{cases}$, allora ci sono 3 casi particolari:

- $0 \cdot A = O_{m,n} \ (matrice \ nulla)$
- $1 \cdot A = A$
- $(-1) \cdot A = -A \ (matrice \ inversa)$