Text Mining and Language Analytics

Lecture 7

Naïve Bayes and Sentiment Classification

Dr Stamos Katsigiannis 2023-24

Naïve Bayes (NB) classification

- Simple ("naïve") classification method based on Bayes rule
- Probabilistic classification approach
- Based on the probabilities of a document belonging to a class
- Relies on the Bag of Words representation of a document

I went to watch a movie yesterday but it was terrible. A terrible movie like this should not exist.

Naïve Bayes classifier

University

• For a document d and a class c out of the possible classes C

$$P(c|d) = \frac{P(d|c)P(c)}{P(d)}$$

• Based on the Bayes Rule, a document should be assigned to the class:

$$\hat{c} = \arg\max_{c \in \mathcal{C}} P(c|d) = \arg\max_{c \in \mathcal{C}} \frac{P(d|c)P(c)}{P(d)} = \arg\max_{c \in \mathcal{C}} (P(d|c)P(c))$$

• P(c|d) is computed for all $c \in C$ and the denominator P(d) is dropped because it does not change across classes

Multinomial Naïve Bayes classifier (I)

• $P(c) \rightarrow \text{Prior probability of class } c$

$$P(c) = \frac{\text{Number of documents in class } c}{\text{Number of documents}}$$

- $P(d|c) = P(w_1, w_2, ..., w_n|c) \rightarrow \text{Likelihood}$
 - Bag of Words assumption: Assume that word position does not matter. w_i will represent word identity and not position
 - Conditional Independence assumption: Assume that word probabilities $P(w_i|c)$ are independent given the class c
 - Both assumptions are simplistic and incorrect! Hence the "Naïve" ...

$$P(d|c) = P(w_1, w_2, ..., w_{|V|}|c) = P(w_1|c) \cdot P(w_2|c) \cdot ... \cdot P(w_{|V|}|c)$$

Multinomial Naïve Bayes classifier (II)

Consequently

$$c_{NB} = \arg \max_{c \in C} (P(w_1, w_2, ..., w_{|V|}|c)P(c)) = \arg \max_{c \in C} (P(c) \prod_{w_i \in V} P(w_i|c))$$

 Typically computed in log space to increase speed and avoid underflow:

$$c_{NB} = \arg\max_{c \in C} \left(\log P(c) + \sum_{i=1}^{|V|} \log P(w_i|c) \right)$$

Multinomial Naïve Bayes classifier (III)

- How to compute $P(w_i|c)$?
- Use Maximum Likelihood Estimation

$$P(w_i|c) = \frac{count(w_i,c)}{\sum_{w \in V} count(w,c)} = \frac{\text{Count of word } w_i \text{ in documents of class } c}{\text{Count of words in documents of class } c}$$

- What if a word does not appear in documents of class c?
 - Then $P(w_i|c) = 0$
 - Use Laplace Smoothing (or Add-λ smoothing)

$$P(w_i|c) = \frac{count(w_i,c) + 1}{\sum_{w \in V}(count(w,c) + 1)} = \frac{count(w_i,c) + 1}{|V| + \sum_{w \in V}count(w,c)}$$

NB example: Movie review sentiment (I)

Document	Class	Set
just plain boring	-	
entirely predictable and lacks energy	-	
no surprises and very few laughs	-	Training
very powerful	+	
the most fun film of the summer	+	
predictable with no fun	?	Test

$$P(-) = \frac{N_{-}}{N_{doc}} = \frac{3}{5}$$

$$P(+) = \frac{N_{+}}{N_{+}} = \frac{2}{5}$$

$$|V| = 20$$

$$count(words, -) = 14$$

$$count(words, +) = 9$$

Word	Count All	Count -	Count +
and	2	2	0
boring	1	1	0
energy	1	1	0
entirely	1	1	0
few	1	1	0
film	1	0	1
fun	1	0	1
just	1	1	0
lacks	1	1	0
laughs	1	1	0
most	1	0	1
no	1	1	0
of	1	0	1
plain	1	1	0
powerful	1	0	1
predictable	1	1	0
summer	1	0	1
surprises	1	1	0
the	2	0	2
very	2	1	1

NB example: Movie review sentiment (II)

Some probabilities are $0 \rightarrow \text{Laplace smoothing}$

$$P("predictable"|-) = \frac{count("predictable", -) + 1}{count(words, -) + |V|} = \frac{1+1}{14+20} = \frac{2}{34}$$

$$P("no"|-) = \frac{count("no", -) + 1}{count(words, -) + |V|} = \frac{1+1}{14+20} = \frac{2}{34}$$

$$P("fun"|-) = \frac{count("fun", -) + 1}{count(words, -) + |V|} = \frac{0+1}{14+20} = \frac{1}{34}$$

$$P("predictable"| +) = \frac{count("predictable", +) + 1}{count(words, +) + |V|} = \frac{0 + 1}{9 + 20} = \frac{1}{29}$$

$$P("no"| +) = \frac{count("no", +) + 1}{count(words, +) + |V|} = \frac{0 + 1}{9 + 20} = \frac{1}{29}$$

$$P("fun"| +) = \frac{count("fun", +) + 1}{count(words, +) + |V|} = \frac{1 + 1}{9 + 20} = \frac{2}{29}$$

Word	Count All	Count -	Count +
and	2	2	0
boring	1	1	0
energy	1	1	0
entirely	1	1	0
few	1	1	0
film	1	0	1
fun	1	0	1
just	1	1	0
lacks	1	1	0
laughs	1	1	0
most	1	0	1
no	1	1	0
of	1	0	1
plain	1	1	0
powerful	1	0	1
predictable	1	1	0
summer	1	0	1
surprises	1	1	0
the	2	0	2
very	2	1	1

Example: Movie review sentiment (III)

Document	Class	Set
just plain boring	-	
entirely predictable and lacks energy	-	
no surprises and very few laughs	-	Training
very powerful	+	
the most fun film of the summer	+	
predictable with no fun	?	Test

$$P("predictable"|-) = \frac{2}{34}$$
$$P("no"|-) = \frac{2}{34}$$

$$P("fun"|-) = \frac{1}{34}$$

$$P("predictable"| +) = \frac{1}{29}$$

$$P("no"|+) = \frac{1}{29}$$

$$P(\text{"fun"}|+) = \frac{2}{29}$$

$$P(-) = \frac{3}{5}$$

$$P(+) = \frac{2}{5}$$

$$P(-)P(S|-) = P(-)P("predictable"|-)P("no"|-)P("fun"|-) = \frac{3}{5} \cdot \frac{2}{34} \cdot \frac{2}{34} \cdot \frac{1}{34} \approx 6.1 \cdot 10^{-5}$$

$$P(+)P(S|+) = P(+)P("predictable"|+)P("no"|+)P("fun"|+) = \frac{2}{5} \cdot \frac{1}{29} \cdot \frac{1}{29} \cdot \frac{2}{29} \approx 3.2 \cdot 10^{-5}$$

NB optimisations: Binary NB (I)

- Occurrence of word matters more than frequency for sentiment classification and some other text classification tasks
- Improve performance by clipping word counts per document to 1
- Binary multinomial Naïve Bayes (Binary NB)

University

Apply similar to regular multinomial Naïve Bayes (NB)

NB optimisations: Binary NB (II)

Four original documents:

- it was pathetic the worst part was the boxing scenes
- no plot twists or great scenes
- + and satire and great plot twists
- + great scenes great film

After per-document binarization:

- it was pathetic the worst part boxing scenes
- no plot twists or great scenes
- + and satire great plot twists
- + great scenes film

	NB		Bin	ary
	Counts		Cot	
	+	_	+	_
and	2	0	1	0
boxing	0	1	0	1
film	1	0	1	0
great	3	1	2	1
it	0	1	0	1
no	0	1	0	1
or	0	1	0	1
part	0	1	0	1
pathetic	0	1	0	1
plot	1	1	1	1
satire	1	0	1	0
scenes	1	2	1	2
the	0	2	0	1
twists	1	1	1	1
was	0	2	0	1
worst	0	1	0	1

|V| = 20

NB counts:

$$count(words, -) = 16$$

$$count(words, +) = 10$$

e.g.
$$P("great"|+) = \frac{3}{10}$$

Binary NB counts:

$$count(words', -) = 14$$

$$count(words', +) = 8$$

e.g.
$$P'("great"|+) = \frac{2}{8}$$

NB optimisations: Negation (I)

- Negation plays an important role in text classification
- Consider the following sentences
 - Example 1:
 - I really like this film
 - I didn't like this film
 - Example 2:
 - Dismiss this film
 - Don't dismiss this film
- Negation expressed by "didn't" and "Don't" completely alters the inferences drawn by "like" and "dismiss"
 - **Example 1:** Positive → Negative
 - **Example 2:** Negative → Positive

NB optimisations: Negation (II)

- Prepend prefix NOT_ to every word after a token of logical negation (-n't, not, no, never,...) until the next punctuation mark
- Simple baseline for text classification for sentiment analysis
- Example:

University

... didn't like this film, but I ...

... didn't NOT_like NOT_this NOT_film, but I ...

- Words of positive sentiment with the prefix NOT_ will occur more often in negative documents and act as cues for negative sentiment
 - e.g. NOT_like, NOT_recommend
- Words of negative sentiment with the prefix NOT_ will acquire positive associations
 - e.g. NOT_bored, NOT_dismiss

NB optimisations: Unknown words (I)

- What about words in the test set that don't exist in the training set?
- Option 1 → Ignore them
 - What about test documents with many unknown words?
- Option 2 \rightarrow Add an extra word w_{ν} to the vocabulary
 - w_u : the "unknown" word
 - Count unknown words as occurrences of w_u

•
$$V' = \{V, w_u\}, |V'| = |V| + 1$$

•
$$P(w_u|c) = \frac{count(w_u,c)+1}{\sum_{w \in V}(count(w,c)+1)} = \frac{0+1}{(\sum_{w \in V},count(w,c))+|V'|} = \frac{1}{(\sum_{w \in V}count(w,c))+|V|+1}$$

NB optimisations: Unknown words (II)

Document	Class	Set
just plain boring	-	
entirely predictable and lacks energy	-	
no surprises and very few laughs	-	Training
very powerful	+	
the most fun film of the summer	+	
predictable with no fun	?	Test

$$|V| = 20$$

$$\sum_{w \in V} count(w, -) = 14$$

$$\sum_{w \in V} count(w, +) = 9$$

$$P(\text{"with"}, c) = P(w_u, c) = \frac{1}{(\sum_{w \in V} count(w, c)) + |V| + 1}$$

$$P(\text{"with"}, -) = P(w_u, -) = \frac{1}{14 + 20 + 1} = \frac{1}{35} \approx 0.0285$$

$$P(\text{"with"}, +) = P(w_u, +) = \frac{1}{9 + 20 + 1} = \frac{1}{30} \approx 0.0333$$

NB optimisations: Lexicons (I)

- What if we have insufficient labelled training data for sentiment analysis?
- We can use sentiment lexicons!
 - General Inquirer^(Stone et al., 1966)
 - LIWC(Pennebaker et al., 2007)
 - Hu and Liu lexicon (Hu and Liu, 2004)
 - MPQA subjectivity lexicon(Wilson et al., 2005)
 - ...
- Sentiment lexicon → List of words annotated with positive or negative sentiment
- Example from MPQA:
 - +: admirable, beautiful, confident, dazzling, ecstatic, favour, glee, great
 - - : awful, bad, bias, catastrophe, cheat, deny, envious, foul, harsh, hate

⁻ Stone, P., Dunphry, D., Smith, M., and Ogilvie, D. (1966). The General Inquirer: A Computer Approach to Content Analysis. Cambridge, MA: MIT Press.

⁻ Pennebaker, J. W., Booth, R. J., and Francis, M. E. (2007). Linguistic Inquiry and Word Count: LIWC 2007. Austin, TX.

⁻ Hu, M. and Liu, B. (2004a). Mining and summarizing customer reviews. In KDD, 168–177.

⁻ Wilson, T., Wiebe, J., and Hoffmann, P. (2005). Recognizing contextual polarity in phrase-level sentiment analysis. In HLT-EMNLP-05, 347–354.

NB optimisations: Lexicons (II)

- How can we use the sentiment lexicons for classification with Naïve Bayes?
- Consider a lexicon with $\mathcal C$ sentiment classes and n_c words in class $\mathcal C$
 - Total words in lexicon $\rightarrow N = \sum_{c \in C} n_c$
 - Vocabulary size |V| = N
 - Prior probabilities of each class $\rightarrow P(c) = \frac{n_c}{N}$
 - Number of words in class $c \to \sum_{w \in V} count(w, c) = n_c$

Assuming that a word can belong only to one class and there are no duplicate words

•
$$count(w_i, c) = \begin{cases} 1, & \text{if } w_i \text{ in } c \\ 0, & \text{if } w_i \text{ not in } c \end{cases}$$

•
$$P(w_i|c) = \frac{count(w_i,c)+1}{(\sum_{w \in V} count(w,c))+|V|} = \frac{count(w_i,c)+1}{n_c+N}$$

NB optimisations: Lexicons (III)

Example

• Consider the following sentiment lexicon and the sentence

I had a great, almost amazing, night but the movie was terrible.

Lexicon

Words list	Class
great, amazing, excellent, impressive	+
worst, disaster, bad, terrible, boring	-

Let's ignore the unknown words:

- I, had, a, almost, night, but, the, movie, was
- P(S|c) = P(c)P("great"|c)P("amazing"|c)P("terrible"|c)

$$P(-) = \frac{5}{9}$$

$$P(+) = \frac{4}{9}$$

$$|V| = 9$$

$$\sum_{w \in V} count(w, -) = 5$$

$$\sum_{w \in V} count(w, +) = 4$$

$$P(\text{great}|-) = \frac{count("\text{great"},-)+1}{(\sum_{w \in V} count(w,-))+|V|} = \frac{0+1}{5+9} = \frac{1}{14}$$

$$P(\text{great}|+) = \frac{count("\text{great"},+)+1}{(\sum_{w \in V} count(w,+))+|V|} = \frac{1+1}{4+9} = \frac{2}{13}$$

$$P("\text{amazing"}|-) = \frac{0+1}{5+9} = \frac{1}{14} \qquad P("\text{amazing"}|+) = \frac{1+1}{4+9} = \frac{2}{13}$$

$$P("\text{terrible"}|-) = \frac{1+1}{5+9} = \frac{2}{14} \qquad P("\text{terrible"}|+) = \frac{0+1}{4+9} = \frac{1}{13}$$

$$P(-) \cdot P(S|-) = \frac{5}{9} \cdot \frac{1}{14} \cdot \frac{1}{14} \cdot \frac{2}{14} \approx 4 \cdot 10^{-4}$$
$$P(+) \cdot P(S|+) = \frac{4}{9} \cdot \frac{2}{13} \cdot \frac{2}{13} \cdot \frac{1}{13} \approx 8 \cdot 10^{-4}$$

Measuring classification performance

- How to evaluate the performance of a machine learning model?
- Use the model on a labelled test set!
- The labels of the test set are referred as gold labels or ground truth
- Compare the model's output with the ground truth
- Always keep the training and test data separate!

Example:

	Prediction	Actual	Sample	
Wrong	-	+	1	
Correct	+	+	2	
Correct	-	-	3	
Correct	-	-	4	

The confusion matrix (I)

2-class (binary) problem

		Actual class	
		Р	N
Predicted class	Р	TP	FP
	N	FN	TN

TP: True Positive

TN: True Negative

FP: False Positive

FN: False Negative

Multi-class problem

		Actual class				
		Class 1	Class 2	Class 3		Class N
	Class 1	C(1,1)	C(1,2)	C(1,3)		C(1,N)
	Class 2	C(2,1)	C(2,2)	C(2,3)		C(2,N)
Predicted class	Liass 3	C(3,1)	C(3,2)	C(3,3)		C(3,N)
CidSS					C(i,i)	
	Class N	C(N,1)	C(N,2)	C(N,3)		C(N,N)

C(x,y): Count of samples of class y that were predicted as class x

The confusion matrix (II)

Example:

Sample	Actual	Prediction
1	+	-
2	+	+
3	-	-
4	-	-

		Actual class	
		+	-
Predicted class	+	1	0
	-	1	2

Classification performance metrics (I)

Accuracy

• Proportion of correct predictions

Precision

• Proportion of correct positive identifications

Recall / Sensitivity / True positive Rate

• Proportion of actual positives that were identified correctly

Specificity / True Negative Rate

• Proportion of actual negatives that were identified correctly

F1-score

Classification performance metrics (II)

		Actual class	
		Р	N
Predicted class	Р	TP	FP
	N	FN	TN

TP: True Positive

TN: True Negative

FP: False Positive

FN: False Negative

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

$$Precision = \frac{TP}{TP + FP}$$

$$Sensitivity(Recall) = \frac{TP}{TP + FN}$$

$$Specificity = \frac{TN}{TN + FP}$$

$$F1 = 2 \cdot \frac{Precision \cdot Recall}{Precision + Recall}$$

Classification performance metrics (III)

Example:

		Actual class	
		+	-
Predicted class	+	1	0
	-	1	2

Actual positives = TP + FN Actual negatives = TN + FP

$$Accuracy = \frac{1+2}{1+2+0+1} = 75\%$$

$$Precision = \frac{1}{1+0} = 100\%$$

$$Recall = \frac{1}{1+1} = 50\%$$

$$Specificity = \frac{2}{2+0} = 100\%$$

$$F1 = 2 \cdot \frac{1 \cdot 0.5}{1 + 0.5} = \frac{1}{1.5} \approx 66.66\%$$

Classification performance metrics (IV)

- The former definitions apply to binary classification!
- What about multi-class classification?

$$Accuracy = \frac{Sum\ of\ diagonal\ of\ confusion\ matrix}{Sum\ of\ all\ elements\ of\ confusion\ matrix}$$

- For the other metrics:
 - Create multiple confusion matrices, each considering one class as positive and all the others as negative
 - Compute metrics for each class
 - Compute the mean metrics across classes

Questions?

