Домашнее задание № 4.

- 1. Сравнительный анализ современных методов оптимизации (SGD, NAG, Adagrad, ADAM) на примере многослойного персептрона.
- 2. Использование генетического алгоритма для оптимизации гиперпараметров (число слоев и число нейронов) многослойного персептрона.
- 1. Сравнительный анализ современных методов оптимизации (SGD, NAG, Adagrad, ADAM) на примере многослойного персептрона.
 - 1.1. Stochastic gradient descent (SGD)

$$\theta = \theta - \eta \nabla_{\theta} J(\theta; x^{(i)}; y^{(i)})$$

В отличии от традиционного градиентного метода, метод стохастического градиента позволяет обрабатывать за одну итерацию относительно небольшой набор обучающих данных из всего набора данных (выборки - batch).

Применение этого метода позволяет избежать недостатки традиционного градиентного метода:

- 1) Требуется значительно меньше необходимого объема памяти.
- 2) Повышается скорость сходимости.
- 3) Увеличивается робастность к невыпуклости целевых функций.
- 4) Возможна оптимизация многоэкстремальных целевых функций.

1.1.1. Mini-batch gradient descent

$$\theta = \theta - \eta \nabla \theta J(\theta; x i:i+n; y (i:i+n))$$

За каждую эпоху отбирается n данных (n = 50 - 250) небольшой набор обучающих данных из всего набора данных (выборки - batch). Применение этого метода дает следующие преимущества:

- 1) Уменьшает дисперсию разброса параметров что ведет к более устойчивой сходимости.
- 2) Позволяет использовать матричные и тензорные операции, входящие в состав современных библиотек методов глубокого обучения Все это делает использование SGD на минибатчах очень эффективными для решения задач по глубокому обучению.
 - 1.2. NAG. (Nesterov accelerated gradient)

$$vt = vt-1 + \eta \nabla \theta J(\theta - \gamma vt-1)$$

 $\theta = \theta - v$

Adagrad. (Adapted gradient) 1.3.

Оптимизатор первого порядка. Скорость обучения не постоянна, а зависит от целевой функции. На каждой итерации глобальная скорость обучения делится на l_2 -норму прошлых градиентов вплоть до текущей.

Adagrad. (Adapted gradient)

$$\begin{split} g_{t,i} &= \nabla_{\theta_t} J(\theta_{t,i}) \\ \theta_{t+1,i} &= \theta_{t,i} - \frac{\eta}{\sqrt{G_{t,ii} + \varepsilon}} g_{t,i} \\ G_{t,ii} &= G_{t-1,ii} + g_{t,i}^2 \end{split}$$

Adam. (Adaptive moment estimation)

Описание методов оптимизации можно найти в INTERNETe и в моей лекции № 4.

Adam. (Adaptive moment estimation)
$$\theta_{t+1} = \theta_t - \frac{\eta}{\sqrt{\hat{v}_t + \varepsilon}} \widehat{m}_t .$$

$$m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t.$$

$$v_t = \beta_2 v_{t-1} + (1 - \beta_2) g_t^2.$$

$$\widehat{m}_t = \frac{m_t}{1 - \beta_1^t}.$$

$$\widehat{v}_t = \frac{v_t}{1 - \beta_2^t}.$$

$$\beta_1 = \beta_2 = 0.98.$$

2. <u>Генетический алгоритм.</u> <u>Постановка задачи</u>

Дана целевая функция $f(x) = f(x_1, x_2, ..., x_n)$, определенная на множестве допустимых решений $D \subseteq \mathbb{R}^n$. Требуется найти глобальные минимумы заданных функций f(x) на допустимом множестве D. То есть такую точку

$$x^e = Arg \min_{x \in D} f(x),$$
где $x = (x_1, ..., x_n)^T, D = \{x | x_i \in [\alpha, \beta], i = 1, ..., n.\}.$ (1)

Задача поиска максимума целевой функции f(X) сводится к задаче поиска минимума путем замены знака перед функцией на противоположный:

$$f(x^e) = \max_{x \in D} f(x) = -\min_{x \in D} [-f(x)].$$

Стратегия поиска

Генетические алгоритмы имитируют природные способы оптимизации, присущие процессам эволюции живых систем. А именно:

- генетическое наследование;
- изменчивость;
- естественный отбор.

f(x) соответствует природному понятию *приспособленности* Целевая функция живого организма. Вектор переменных $x = (x_1, ..., x_n)^T$ целевой функции называется **фенотипом**, а отдельные его параметры – **признаками** i = 1, 2, ..., n.

Любой живой организм может быть представлен своим генотипом и фенотипом.

Генотип — это совокупность наследственных признаков, информация о которых заключена в хромосомном наборе генов.

Фенотип — совокупность всех признаков и свойств организма, формирующихся в процессе взаимодействия его генотипа и внешней среды. Каждый ген имеет своё отражение в фенотипе.

Генетические алгоритмы ведут поиск решения на уровне генотипа. Каждую координату x_i вектора $x = (x_1,...,x_n)^T \in D$ представляют в некоторой форме s_i , удобной для использования в генетическом алгоритме и называется геном. Для этого необходимо выполнить преобразование, в общем случае не взаимно однозначное, вектора переменных $x = (x_1,...,x_n)^T \in D$ в некоторую структуру $s = (s_1,s_2,...,s_n)^T \in S$, называемую хромосомой

(генотипом, особью): $D \xrightarrow{e} S$, где e функция кодирования, S - пространство представлений (как правило $D \neq S$).

Для того, чтобы восстанавливать по хромосоме решение, необходимо задать обратное преобразование $S \stackrel{e^{-1}}{\longrightarrow} D$, где e^{-1} - функция декодирования.

В пространстве представлений S вводится так называемая *функция приспособленности* (*функция фитнеса*) $\mu(s): S \stackrel{\mu}{\longrightarrow} R$, где R - множество вещественных чисел, аналогичная целевой функции f(x) на множестве D. Функция $\mu(s)$ может быть любая функция, удовлетворяющая условию:

$$\forall x^1, x^2 \in D : s^1 = e(x^1), s^2 = e(x^2), s^1 \neq s^2, eclu \ f(x^1) > f(x^2), mo \ \mu(s^1) > \mu(s^2)$$
.

При решении используются конечные наборы:

$$I = \{s^k = (s_1^k, s_2^k, ..., s_n^k)^T, k = 1, 2, ..., m\} \subset S$$

Возможных решений, называемых *популяциями*, где s^k - хромосомы с номером k , m - размер популяции, s_i^k - ген с номером i k - той популяции.

Затем осуществляется обратное преобразование:

$$x^e = e^{-1}(s^*).$$

Различают два способа кодирования:

- 3. Бинарное кодирование.
- 4. Вещественное кодирование.

Будем использовать второй вариант кодирования. В этом случае целевая функция может использоваться непосредственно как функция фитнеса. Тогда в качестве функции фитнеса $\mu(x)$ получается как преобразование целевой функции, т.е. функция фитнеса

 $\mu(x): D \xrightarrow{\mu} R$, где R - множество вещественных чисел, аналогична целевой функции f(x).

Функцией $\mu(x)$ может быть любая функция, удовлетворяющая следующему условию:

$$\forall x^1, x^2 \in D: x^1 \neq x^2, eclu \ f(x^1) > f(x^2), mo \ \mu(x^1) > \mu(x^2)$$
.

Решение исходной оптимизационной задачи $f(x^*) = \min_{x \in D} f(x)$ сводится к поиску решения x_u^* другой оптимизационной задачи:

$$\mu(x_{\mu}^{*}) = \max_{x \in D} \mu(x)$$
. (2)

В силу выбора функции $\mu(x)$, решение задач (1) и (2) (хромосома) совпадают:

$$x^{e} = x^{*} = Arg \min_{x \in D} f(x) = Arg \max_{x \in D} \mu(x) = x_{\mu}^{*}.$$
 (3)

При решении задачи (2) используются конечные наборы $I = \left\{ x^k = \left(x_1^k, ..., x_n^k \right)^T, \, k = 1, 2, ..., Mp \right\} \subset D$ возможных решений, называемых *популяциями*, где x^k - хромосома с номером k , M - размер популяции, x_i^k - ген с номером i .

2.3. Генетический алгоритм.

Ш.1. Формирование исходной популяции.

- Ш.1.1. Задается номер популяции t=0, максимальное количество популяций Np, номер итерации цикла k=1, размер популяции Mp.
- Ш.1.2. Случайным образом выбирается начальная точка x^0 исходная хромосома. Она может быть выбрана как внутренняя точка гиперкуба области допустимых значений D. Из этой точки формируется исходная популяция. Для этого с помощью равномерного распределения на единичном отрезке [0,1] Mp раз генерируется последовательность из n случайных точек $\{P_i^{0k}\}_{i=1,n}^{k-1,Mp}, i=1,...,n; k=1,...,Mp$. Используя линейное преобразование, каждая точка отображается на соответствующий ей промежуток $[\alpha,\beta]\colon P_i^k=(\beta_i-\alpha_i)P_i^{0k}+\alpha_i$. Составляя векторы из точек последовательности $\{P_i^k\}$ при фиксированных k , получаем Mp начальных векторов $x^k=\left(x_1^k,...,x_n^k\right)^T, x_i^k=P_i^k, i=1,...,n$, координаты которых x_i имеют равномерное распределение на отрезках $[\alpha_i,\beta_i], i=1,...,n$. Таким образом может быть сформирована начальная популяция $I_0=\left\{x^k,k=1,...,Mp\ \middle|\ x^k=\left(x_1^k,x_2^k,...,x_n^k\right)\in D\right\}$.
 - Ш.1.3. Вычисляется значение функции фитнеса для каждой особи $_{M_D}$

$$x^k \in I_0: \mu_k = \mu(x^k), k = 1,..., Mp$$
 и популяции I_0 в целом $\mu = \sum_{k=1}^{Mp} \mu_i$.

Ш.2. Отбор (селекция).

Селекция — это операция, которая осуществляет отбор особь (хромосом) x^k в соответствии со значениями функции фитнеса $\mu(x^k)$ для последующего их скрещивания.

- Ш.2.1. Вычислить кумулятивную вероятность $q_i = \sum_{j=1}^i \mu_j(x^j), i = 1,2,...,Mp$.
- Ш.2.2. Сформировать случайное действительное число r в интервале (0, Mp].
- Ш.2.3. Выбрать i ю хромосому x^i $(1 \le i \le Mp)$ так, чтобы $q_{i-1} < r \le q_i$.
- Ш.2.4. Перейти на Ш.2.2. до тех пор, пока не будет сформирована новая популяция ($while(i \le Mp)$).

Ш.3. Кроссинговер (скрещивание).

Скрещивание – это операция, при которой из нескольких, обычно двух хромосом (особей), называемых родителями, порождается одна или несколько новых, называемых потомками.

- Ш.3.1. Определяется параметр $Pc \in (0,1]$ как вероятность кроссинговера. Эта вероятность дает ожидаемое число $Pc \cdot Mp$ хромосом, подвергаемых операции кроссинговера.
- Ш.3.2. Для операции кроссинговера выполняется процесс, повторяющийся от i=1 до $Pc \cdot Mp$: формируется случайное действительное число r из сегмента [0,1], при этом, если r < Pc, то хромосома x^i выбирается как родительская.

- Ш.3.3. Отбираются пары родительских хромосом (x^i, x^j) , где $i \neq j$. Действие оператора кроссинговера осуществляется следующим образом:
- Ш.3.4. Формируется случайное число $c \in (0,1)$, затем оператор кроссинговера, действующий на исходные пары (x^i, x^j) , производит две хромосомы потомки X и Y:

$$X = c \cdot x^{i} + (1 - c) \cdot x^{j}, \quad Y = (1 - c) \cdot x^{i} + c \cdot x^{j}.$$

III.3.5. Если допустимое множество является выпуклым, то кроссинговер обеспечивает допустимость обоих потомков, в случае если допустимы оба родителя. Следует проверить допустимость каждого потомка перед тем, как он будет включен в новую популяцию. Если оба потомка являются допустимыми, тогда родители заменяются этими потомками. Если это не так, сохраняется допустимый потомок, если он существует, а затем вновь выполняется оператор кроссинговера с новым значением случайного числа c до тех пор, пока не будут получены два новых допустимых потомка или не будет превышено заданное число циклов. В этом случае осуществляется замена родителей только теми (сохраненными ранее) потомками, которые оказались допустимыми.

Ш.4. Мутация.

Мутация – это преобразование хромосомы, случайно изменяющее один или несколько из её генов. Оператор мутации предназначен для того, чтобы поддерживать разнообразие особей в популяции.

- Ш.4.1. Определим параметр $Pm \in (0,1]$ как вероятность мутации. Эта вероятность дает ожидаемое число $Pm \cdot Mp$ хромосом, подвергаемых операции мутации.
- Ш.4.2. Для операции мутации выполняется процесс, повторяющийся от i=1 до $Pm\cdot Mp$: формируется случайное действительное число r из сегмента [0,1], при этом, если r < Pm, то хромосома x^i выбирается как родительская для операции мутации Для каждой выбранной родительской хромосомы x^i , обозначенной как $Z = (x_1, x_2, ..., x_n)$, производится мутация.
- Ш.4.3. Поочередно рассматривается каждый потомок из ожидаемого числа $Pm \cdot Mp$ хромосом. Среди генов выбранной родительской хромосомы $Z = (x_1, x_2, ..., x_n)$ случайно (с вероятностью 1/n) выбирается один с номером $p \in (1,2,...,n)$ подлежащий замене. Его новое значение x_p^M случайным образом выбирается из промежутка $\left[\alpha_p, \beta_p\right]$ изменения выбранной координаты x_p .

Ш.5. Формирование новой популяции.

- Ш.5.1. С равной вероятностью из потомков мутантов предыдущего шага выбирается один $x^M = (x_1, x_2, ..., x_n^M, ..., x_n)$.
- Ш.5.2. Выбранный потомок добавляется в популяцию вместо хромосомы, которой соответствует наименьшее значение функции фитнеса (наихудшее из допустимых значений).
 - Ш.5.3 Вычисляется значение функции фитнеса для мутантного потомка $\mu_{\scriptscriptstyle M} = \mu(x^{\scriptscriptstyle M})$.
 - Ш.5.4. Проверка условий:
 - Ш.5.4.1. Если k < Mp, то k = k + 1 и переход на Ш.2.
 - Ш.5.4.2. Если k = Mp, то t = t + 1 и переход на Ш.6.

Ш.б. Проверка условия останова генетического алгоритма.

Условием окончания работы генетического алгоритма является формирование заданного количества популяций t=Np .

Ш.6.1. Если условие не выполнено, то полагаем k = 1 и переход на Ш.2.

Ш.6.2. Если условие окончания работы выполнено, то в качестве решения (приближенного) задачи $\mu(x_{\mu}^*) = \max_{x \in D} \mu(x)$ выбирается особь с лучшим значением функции фитнеса из текущей популяции: $x_{\mu}^* \cong x_{\mu}^e = Arg \max \mu(x^k)$, а по нему определяется приближенное решение поставленной задачи $f(x^*) = \min f(x)$: $x^* = x_{\mu}^*$.

Замечание 2. Обычно размер популяции выбирают в пределах 30-60 особей. **Замечание 3.** Вероятность кроссинговера принимается равной Pc = 0.3 - 0.5, вероятность мутации Pm = 0.05 - 0.2.