Análise do Aerossol Atmosférico e de suas Fontes no bairro Africano de Nina, em Acra, capital de Gana.

Thiago Gomes Veríssimo <thiago.verissimo at usp.br>
Orientador: Américo Kerr

Instituto de Físisca

28 de Agosto de 2015

- Projeto
- 2 Experimento
- Metodologia
- 4 Resultados
- Conclusão

Poluição do Ar em Acra, capital de Gana

Projeto Internacional:

Poluição do Ar em Acra: Padrões temporais e espaciais e seus impactos sociais e econômicos.

coordenado pelo Prof. Dr. Majid Ezzati da *Harvard School of Public Health.*

África Subsariana (SSA)

As cidades da SSA tem as seguintes características:

- População predominantemente rural;
- Vias não pavimentadas;
- Maior taxa de crescimento populacional urbano do mundo;
- Não possuem monitoramento de poluição do ar;
- Queima de biomassa para o cozimento de alimentos.

Nima

Fotos do bairro de Nima

Gana

Amostragem

Pontos de amostragem em Nima.

Meteorologia

Distribuição das frequências de direção dos ventos, dados da NOAA.

Análises

- Gravimétrica (determinação da massa);
- Refletância (determinação do Black Carbon);
- Fluorescência de Raios X (determinação da composição química inorgânica);

Fluorescência de Raios X - ED-XRF

Modelamento matemático usado na ED-XRF:

$$N_{ij} \propto \frac{m_{ij}}{A_i} I_i \Delta t_i$$
 (1)

Onde,

- N_{ij} = Contagem de fótons na amostra i para o elemento químico j;
- I_i = Corrente (ampère) na amostra i;
- Δt_i = Tempo vivo (segundos) que a amostra i foi irradiada;
- m_{ij} = Massa (grama) na amostra i para o elemento químico j;
- $A_i = \text{Área } (cm^2)$ irradiada da amostra i.

Calibração: Ajuste do Fator de Resposta

Constante de proporcionalidade: Fator de Resposta:

$$R_j = \frac{A_i}{m_{ij}} \frac{N_{ij}}{I_i \Delta t_i} \tag{2}$$

Erro no Ajuste - Abordagem matricial mínimos quadrados

$$[R] = A[Z] \tag{3}$$

Sendo α o A ajustado, a covariância dos coeficientes V_{α} :

$$V_{\alpha} = (Z^{t} V_{R}^{-1} Z)^{-1} \tag{4}$$

O ajuste de A fica:

$$\alpha = V_{\alpha} Z^{t} V_{R}^{-1} R \tag{5}$$

Calculando-se os novos valores de R a partir de V_{α} :

$$[R_{adjusted}] = \alpha[Z] \tag{6}$$

A incerteza do ajuste é a raiz quadrada da diagonal da matriz de covariância de $R_{adjusted}$:

$$COV_{R_{adjusted}} = ZV_{\alpha}Z^{t}$$
 (7)

Comparação das análises com a da EPA

Modelo receptor

Modelo Receptor é uma abordagem matemática para quantificar o efeito das fontes nas amostras. Determinar as fontes a partir do receptor.

Análise Multivariada reduz as dimensões (variáveis) de um conjunto de dados em um conjunto de dados analítico complexo que poderão ser interpretados como tipo de fontes.

Conservação de massa

Fundamentação do modelo receptor: Conservação de massa. Todos modelos resolvem a mesma equação:

$$x_{ij} = \sum_{p=1}^{P} g_{ip} f_{pj} + \epsilon_{ij}$$
 (8)

- x_{ij} = concentração na amostra i da espécie j;
- f_{pj} = fração da espécie j emitida na fonte p (perfil da fonte, assinatura da fonte ou Factor Loadings);
- $g_{ip} = \text{contribuição da fonte p para amostra i } (Factor Score);$
- $\epsilon = \text{Res}(\text{duo}, \text{ depende do modelo empregado})$.

Análise de Fatores

$$z_j = l_{j1}F_1 + l_{j2}F_2 + l_{j3}F_3 + \dots + \epsilon_{ij}$$
 (9)

- Cálculo da matriz de correlação/covariância
- 3 Extração de autovalores e autovetores (ortogonais).
- Transformada Linear nos novos eixos

Positive Matrix Factorization

Função objeto - Q - é uma função que precisa ser minimizada.

$$Q = \sum_{i=1}^{n} \sum_{j=1}^{m} \left[\frac{x_{ij} - \sum_{p=1}^{P} g_{ip} f_{pj}}{u_{ij}} \right]^{2}$$
 (10)

Diferente da Análise de Fatores, no PMF, a incerteza (u_{ij}) entra na conta.

Tipo/local	n	Média	Desvio Padrão	Mediana	OMS
$MP_{2.5}$ bairro	197	83.28	18.12	29.43	66.5 %
MP_{10} bairro	197	113.77	11.55	58.72	59.9 %
$MP_{2.5}$ Avenida	200	76.42	9.47	36.36	92 %
MP_{10} Avenida	199	133.99	11.63	72.72	90.95 %

Diretrizes da Organização Mundial de Saúde (OMS):

- Média diária $MP_{2.5}$: só 1% dos dias pode ultrapassar 25 ug/m^3 ;
- Média anual $MP_{2.5}$: 10 ug/m^3 ;
- Média diária MP_{10} : só 1% pode ultrapassar 50 ug/m^3 ;
- Média anual MP_{10} : 20 ug/m^3 .

autovalor

variância

variância acum.

variância fat.

9.13

0.51

0.51

0.58

2.04

0.11

0.62

0.71

Análise de Entores: MPo e bairro La: comunalidade: b: singularidade: c: complexidade

Analise de Fatore	S. IVIP 2.5	bairro a: cc	munanda	ide; b: singt	ilaridade;	c: compi	exidade.	
Espécie	Solo	Biomassa	Mar	Veículo	Zn	a	Ь	С
Al	0.98	0.11	-0.06	0.07	0.05	0.99	0.01	1.05
Si	0.98	0.12	-0.05	0.05	0.04	0.99	0.01	1.05
Ti	0.98	0.11	-0.07	0.07	0.07	0.99	0.01	1.05
Fe	0.98	0.11	-0.07	0.08	0.08	0.99	0.01	1.06
Mn	0.98	0.13	-0.06	0.09	0.07	0.99	0.01	1.07
Ca	0.98	0.12	-0.02	0.06	0.09	0.98	0.02	1.06
Mg	0.96	0.12	0.08	0.08	0.02	0.95	0.05	1.06
mass	0.92	0.27	-0.01	0.17	0.11	0.96	0.04	1.27
V	0.78	0.05	0.07	0.30	-0.03	0.71	0.29	1.31
K	0.65	0.59	0.12	0.26	0.12	0.87	0.13	2.48
S	0.06	0.87	0.42	0.01	0.08	0.94	0.06	1.47
P	0.44	0.80	0.00	0.02	0.00	0.84	0.16	1.56
Na	-0.28	0.19	0.81	-0.08	0.05	0.77	0.23	1.39
CI	0.41	-0.04	0.76	-0.06	0.24	0.81	0.19	1.79
Br	-0.13	0.20	0.66	0.26	-0.06	0.56	0.44	1.61
BC	0.14	0.15	-0.16	0.78	0.19	0.71	0.29	1.35
Pb	0.22	-0.08	0.31	0.75	0.05	0.72	0.28	1.57
Zn	0.12	0.09	0.13	0.21	0.93	0.94	0.06	1.20

2.03

0.11

0.73

0.84

1.03

0.06

0.88

1

1.52

0.08

0.82

0.93

Análise de Fatores: MP2.5 avenida a: comunalidade; b: singularidade; c: complexidade.								
Espécie	Solo	Biomassa	Mar	Veículo	Lixo Sólido	a	b	С
Fe	0.98	0.13	-0.02	0.09	0.02	1.00	0.00	1.06
Ti	0.98	0.13	-0.03	0.07	0.01	0.99	0.01	1.05
Ca	0.98	0.13	0.02	0.09	0.03	0.99	0.01	1.06
Mn	0.98	0.13	-0.02	0.08	0.02	0.99	0.01	1.05
Si	0.98	0.16	-0.04	0.05	0.02	0.98	0.02	1.06
Al	0.97	0.16	-0.05	0.06	0.01	0.98	0.02	1.07
mass	0.95	0.15	0.02	0.18	0.10	0.97	0.03	1.15
Mg	0.94	0.19	0.06	0.06	0.03	0.93	0.07	1.10
V	0.87	0.13	0.03	0.21	0.07	0.83	0.17	1.18
K	0.84	0.28	0.06	0.27	0.20	0.90	0.10	1.57
Pb	0.68	-0.02	0.16	0.40	0.30	0.74	0.26	2.18
Zn	0.68	0.02	0.21	0.33	0.19	0.64	0.36	1.86
P	0.33	0.88	-0.10	0.08	-0.01	0.90	0.10	1.32
S	0.18	0.85	0.25	0.08	0.31	0.92	0.08	1.57
Na	-0.34	0.18	0.85	-0.06	0.10	0.88	0.12	1.47
Cl	0.48	-0.08	0.76	0.00	0.13	0.83	0.17	1.78
BC	0.21	0.12	-0.08	0.92	0.03	0.92	0.08	1.16
Br	0.08	0.20	0.16	0.06	0.94	0.96	0.04	1.17
autovalor	10.48	1.87	1.48	1.32	1.19			
variância	0.58	0.1	0.08	0.07	0.07			
variância acum.	0.58	0.69	0.77	0.84	0.91			
variância fat.	0.64	0.76	0.85	0.93	1			

Impacto do Harmatã

Score para fator que representa solo/Harmatã e Queima de Biomassa, respectivamente.

Perfil e Contribuição das fontes(%) no bairro para $MP_{2.5}$:

	Veículo leve	Biomassa	Mar	Solo	Veículo pesado
BC	72.3				27.7
Zn	55.3	11.2	11.6		17
Pb	55		10.5		27.3
K	48.1	20.1		12.5	12.9
mass	46.5	10.1		23.9	13.4
Br	43.9	20.5	33.2		
Mn	35.3			53.3	10.8
V	31.7	13.3		25.1	25.2
Al	20.4			72.6	
S	19.2	49.1	16.4		
Si	18.7			74.6	
Fe	17.6			62.2	17.2
Ti	15.1			67.3	14.1
Р		60.1		18.4	16.1
Na		40.1	58.2		
Ca		13.6		48	31.6
Mg		11.4	19.4	69.2	
cĭ			81.8	10.1	

Contribuição	Incerteza
46.51	1.62
10.13	0.76
5.99	0.45
23.94	5.23
13.43	1.16
	46.51 10.13 5.99 23.94

Perfil e Contribuição das fontes(%) na Avenida para $MP_{2.5}$:

	Veículo pesado	Biomassa	Solo	Mar	Veículo leve
BC	40.6				59.4
Р	34.4	50.8	14.9		
Pb	31.7			13.1	41.9
V	27.7		32.7		24.7
Zn	26.1	15			40.4
Ca	24.8		60.8	14.4	
K	21.5	28	17		32.3
S	20.2	55.4			
mass	16.9	15.7	32.8		31.8
Fe	11.3		72		11.2
Br		47.1		15.6	31.1
Na		44.8		55.2	
Mg		14	72.2	13.7	
Si			81.6		11.6
Al			79.6		13
Ti			75.9		10
Mn			63.6		22
CI			12.4	86.2	

	Contribuição	Incerteza
Veículo pesado	16.93	1.10
Biomassa	15.68	0.99
Solo	32.77	8.03
Mar	2.80	0.20
Veículo leve	31.81	1.49

Conclusão

- Os níveis de concentração de material particulados são 10 vezes maiores que os recomendados pela OMS;
- Identificou-se as seguintes fontes principais:
 - Bairro residencial (média 83.28 ug/m³ e 66.5 % de ultrapassgens):
 veículo leve (46%), solo (24%), veículo pesado (13%), biomassa (10%) e mar (6%);
 - Avenida principal (média 76.42 ug/m³ e 92 % de ultrapassgens):
 solo (33%), veículo leve (32%), veículo pesado(17%), biomassa(16%), mar (3%).

A redução e controle da poluição do ar em cidades da África Subsariana requerem políticas públicas de planejamento urbano, tais como:

- Estratégia de uso de Gás
- Pavimentação das vias
- Transporte coletivo

com devida atenção aos impactos sociais das medidas.

Próximas Etapas

- Avaliação do Material Particulado Grosso MP_{2.5-10};
- Inclusão da análise detalhada dos dados meteorológicos;

Projeto Experimento Metodologia Resultados Conclusão

Muito Obrigado!