Programowanie Egzamin zasadniczy 16 czerwca 2003 **Deklaracja przystąpienia do egzaminu** Nr zawodnika: 00

W poniższe pole proszę bardzo starannie wpisać swoje imię i nazwisko.					

Proszę uważnie przeczytać i podpisać poniższą deklarację.

Oświadczam, że przystępuję do egzaminu zasadniczego z przedmiotu "Programowanie". Mam świadomość, iż podczas egzaminu nie wolno korzystać z żadnych notatek, książek itp., ani pomocy innych osób i nie wolno odpisywać rozwiązań od innych osób, również w sytuacji, gdy będzie to możliwe bez zwrócenia uwagi egzaminatora. Przyjmuję też do wiadomości, że w razie gdybym oszukiwał i zostało to wykryte (zarówno w czasie egzaminu, jaki i sprawdzania pracy), otrzymam ocenę niedostateczną i sprawa zostanie skierowana do Dziekana.

Podpis zdającego

Nr zawodnika: $\,\,$

Programowanie Egzamin zasadniczy 16 czerwca 2003 **Brudnopis**

Proszę nie rozpinać i nie odwracać tych kartek przed ogłoszeniem rozpoczęcia egzaminu.

Egzamin trwa trzy godziny zegarowe. Za każde z czterech zadań można otrzymać od -5 do 25 punktów, zatem za cały egzamin można otrzymać do 100 punktów. Za rozpoczęcie zadania otrzymuje się -5 punktów (dlatego podane w treści punkty za każde zadanie sumują się do 30). Za brak rozwiązania zadania otrzymuje się 0 punktów. Punkty z egzaminu zasadniczego przeliczają się na oceny następująco: mniej niż 33: ndst, od 33 do 45: dst, od 46 do 58: dst+, od 59 do 71: db, od 72 do 84: db+, od 85: bdb. Ocena z egzaminu zasadniczego jest wystawiana na podstawie sumy punktów z egzaminu i punktów bonusowych. Liczba punktów bonusowych jest częścią całkowitą ilorazu: (C-40)/10, gdzie C oznacza całkowitą liczbę punktów uzyskanych na zaliczenie ćwiczeń. Punkty bonusowe z ćwiczeń dolicza się tylko do wyników egzaminu zasadniczego i tylko w przypadku, gdy ćwiczenia te zaliczono w tym samym semestrze, w którym odbywa się egzamin. Zatem za ćwiczenia zaliczone w poprzednich latach punktów bonusowych nie dopisuje się.

Proszę pisać rozwiązania zadań bezpośrednio na kartkach z ich treścią we wskazanych miejscach. Uwaga: *nie ma* dodatkowego papieru. Odpowiedzi proszę zmieścić w podanych polach. Imienia, nazwiska i numeru indeksu proszę **nie** wpisywać na kartkach z rozwiązaniami. Na zakończenie egzaminu proszę oddać do sprawdzenia tylko kartki z rozwiązanymi zadaniami. Brudnopis proszę zatrzymać.

Powodzenia!

Programowanie
Egzamin zasadniczy
16 czerwca 2003
Z adanie 1 (25 pkt)

Proszę uzupełnić, wypełniając zaznaczone pola, podane poniżej reguły wnioskowania dla częściowej poprawności programów w języku D (po 2 pkt. za każdą regułę).

			(przypisanie)
$\bigg] \bigg\}$	X = e	$\{\phi\}$	

$\Big\{ igcup \Big\} C \{\phi$	} (while)
	(winc)

(it	f-else)

$$\{\phi\}$$
 if (b) C_1 else $C_2\{\psi\}$

Pomiędzy wiersze programu proszę wpisać asercje tak, by można z nich było odtworzyć formalny dowód poprawności tego programu (20 pkt). Na prawo od każdej asercji proszę podać nazwę reguły (napisanej na poprzedniej stronie), której użyto, by wywnioskować daną asercję. Uwaga: pomiędzy sąsiednimi wierszami programu jest miejsce dla dwóch asercji, co nie oznacza, że wszędzie należy wpisywać po dwie asercje — w niektórych miejscach wystarczy jedna.

{true}	
R = X;	
Q = 0;	
while (R >= Y) (
R = R - Y;	
Q = Q + 1;	
)	
$\frac{1}{\{X = Q * Y + R \land R < Y\}}$	

Nr zawodnika: 00

Programowanie Egzamin zasadniczy 16 czerwca 2003 **Zadanie 2** (25 pkt)

Rozważmy język programowania ML++ opisany następującą składnią abstrakcyjną:

```
typy: \sigma ::= int |\sigma \to \tau | \sigma \times \tau

stałe całkowitoliczbowe: n

zmienne: x

operatory arytmetyczne: \oplus ::= + |-| < | orelse | and also

wyrażenia: e ::= n |x| e_1 \oplus e_2 |(\lambda x : \sigma.e) |(e_1e_2) |(e_1, e_2) |

let x = e_1 in e_2 | if e_1 then e_2 else e_3
```

Język ten jest typowany *explicite* i monomorficznie (tak jak Pascal). Operatory porównania i logiczne są, podobnie jak w języku C, operatorami arytmetycznymi (wartość zero oznacza fałsz, wartość różna od zero oznacza prawdę). Tak jak w SML-u język jest wartościowany gorliwie do słabej czołowej postaci normalnej. Wyjątkiem są wyrażenia orelse, andalso i if, wartościowane leniwie. Wyrażenie let jest nierekurencyjne. Nie ma ograniczeń na typy parametrów i wyników funkcji — same mogą być dowolnie skomplikowanymi funkcjami.

Napisz poniżej zestaw reguł typowania wyrażeń języka ML++ (8 pkt).

oiga dalam na odunosia

Ciąg dalszy zadania 2.

pisz poniże							
					· <u>-</u>		
efiniuj poni u z osobna	iżej semantyk musisz mieć	cę denotacyji osobną dzie	ną języka N dzinę inter	ЛL++ (14 р pretacji.	kt). Zauwa	ż, że dla wy	vrażeń każd
efiniuj poni u z osobna	żej semantyk musisz mieć	kę denotacyji osobną dzie	ną języka N edzinę inter	ЛL++ (14 р pretacji.	kt). Zauwaz	ż, że dla wy	vrażeń każd
efiniuj poni u z osobna	żej semantył musisz mieć	cę denotacyj osobną dzie	ną języka M edzinę inter	/IL++ (14 p pretacji.	kt). Zauwa:	ż, że dla wy	vrażeń każd
efiniuj poni u z osobna	żej semantył musisz mieć	kę denotacyj osobną dzie	ną języka N edzinę inter	ЛL++ (14 р pretacji.	kt). Zauwa:	ż, że dla wy	vrażeń każć
efiniuj poni u z osobna	żej semantył musisz mieć	κę denotacyj ∶osobną dzie	ną języka N edzinę inter	ЛL++ (14 р pretacji.	kt). Zauwa:	ż, że dla wy	vrażeń każd
efiniuj poni u z osobna	żej semantył musisz mieć	kę denotacyj osobną dzie	ną języka M edzinę inter	/IL++ (14 p pretacji.	kt). Zauwa:	ż, że dla wy	vrażeń każc
efiniuj poni u z osobna	żej semantył musisz mieć	kę denotacyj osobną dzie	ną języka N edzinę inter	ЛL++ (14 р pretacji.	kt). Zauwa	ż, że dla wy	rażeń każc
efiniuj poni u z osobna	żej semantył musisz mieć	kę denotacyji osobną dzie	ną języka N edzinę inter	ЛL++ (14 р pretacji.	kt). Zauwa:	ż, że dla wy	vrażeń każo
efiniuj poni u z osobna	żej semantył musisz mieć	kę denotacyj osobną dzie	ną języka Nedzinę inter	/IL++ (14 p	kt). Zauwa	ż, że dla wy	vrażeń każc
efiniuj poni ou z osobna	żej semantył musisz mieć	kę denotacyji osobną dzie	ną języka N edzinę inter	AL++ (14 p pretacji.	kt). Zauwa	ż, że dla wy	vrażeń każo
efiniuj poni ou z osobna	żej semantył musisz mieć	kę denotacyji osobną dzie	ną języka Nedzinę inter	ЛL++ (14 р pretacji.	kt). Zauważ	ż, że dla wy	vrażeń każo
efiniuj poni ou z osobna	żej semantył musisz mieć	kę denotacyji osobną dzie	ną języka Nedzinę inter	ΔL++ (14 p pretacji.	kt). Zauwa:	ż, że dla wy	vrażeń każo
efiniuj poni ou z osobna	żej semantył musisz mieć	kę denotacyj cosobną dzie	ną języka Nedzinę inter	AL++ (14 ppretacji.	kt). Zauwa	ż, że dla wy	rażeń każo

	\cap	\cap
Nr zawodnika:	U	U

Programowanie Egzamin zasadniczy 16 czerwca 2003 Zadanie 3 (25 pkt)	Nr zawodnika: 00
Rozważmy algebrę $\mathcal{W}=\langle\{0,1\}^*,\cdot,\epsilon\rangle$ słów nad alfabeter wem pustym ϵ .	m {0, 1} wraz z operacją konkatenacji · i sło-
Napisz poniżej, co to oznacza, że język $L\subseteq\{0,1\}^*$ jest $L\subseteq\{0,1\}^*$	regularny (3 pkt).
Napisz poniżej, co to oznacza, że odwzorowanie $h:\{0,$ bry \mathcal{W} w nią samą (3 pkt).	$\{0,1\}^* \rightarrow \{0,1\}^*$ jest homomorfizmem alge-
Napisz poniżej (24 pkt) dowód następującego twierdzeni nym, a $h: \{0, 1\}^* \to \{0, 1\}^*$ homomorfizmem, to język h	

ąg dalszy dowodu twierdzenia							

Napisz poniżej (5 pkt), co to jest graf redukcji lambda wyrażenia.

Napisz poniżej (5 pkt), przykład zamkniętego lambda wyrażenia M, którego graf redukcji ma następujący kształt:

Udowodnij poniżej (20 pkt), że nie istnieje lambda wyrażenie M, którego graf redukcji miałby następujący kształt:

ąg dalszy dowodu twierdzenia							