How do we estimate average magnitudes?

Jennifer Lee, Wei Ji Ma

Center for Neural Science, New York University

Introduction

- Representing numbers on a "number line" [1] allows us to more quickly and accurately estimate average magnitudes.
- Empirical evidence suggests magnitudes may be abstractly represented along a "mental number line" which is in some cases logarithmic or nonlinearly compressive [2], and which may be thought of as a generalized magnitude system common to time, space, and quantity [3].
- We propose an iterative algorithm which estimates the average spatial location of a set of points by making noisy distance measurements from each point to an imagined reference point, where sensory noise scales with distance.
- We ask whether subjects leverage this distance-based representational schema to make estimates of numeric averages

Experimental design

10 subjects were asked to estimate the spatial or numeric average of a set of items.

Spatial averaging task

 Subjects were asked to find the average position of 2-6 vertical lines on a horizontal axis.

2) Numeric averaging task

 Subjects were asked to report a "quick and dirty" estimate of the average of 2-6 numbers presented simultaneously.

Subjects receive a reward if the true mean falls within the confidence range, but reward magnitude decreases exponentially with range size.

Results

• Error increases over stimulus variance on both tasks, with larger errors on the number task

 Confidence reflects error, stimulus variance, and number of elements

Proposed algorithm

We test an iterative "distance"-based algorithm where the subject...

1) Makes a noisy estimate of the distance of each observation with respect to a reference point, where sensory noise scales with distance (Weber's law)

2) Infers the posterior of the average of those distances

3) Updates the reference point to the new posterior mean

- 4) Repeats (1-3) until a convergence criterion is met
- 5) Picks a confidence range that maximizes expected utility, depending on both expected reward and the probability of catching the stimulus in that range

Preliminary modelling

- The proposed algorithm can reproduce similar trends in mean estimates...

- ... and confidence intervals

Mouse-tracking trajectory lengths suggest there may be utility in iteratively updating a visual reference point for the spatial (but not numeric) task

Discussion & next steps

- An iterative distance-based algorithm might account for the mental operations involved in quick averaging
- Weber's law is a perceptual phenomenon operating over stimulus space—but mental representations may also obey Weber's law in performing further cognitive operations like averaging
- Aim to make a common distance-based algorithm which can be parameterized to account for both spatial and numeric averaging tasks
- Compare mouse trajectory length (on the spatial task) and reaction times (on the numeric task) as possible model explananda

References

1.Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of experimental psychology: General, 122(3), 371. Mauris orci mi, varius id diam id, egestas auctor enim

2.Longo, M. R., & Lourenco, S. F. (2007). Spatial attention and the mental number line: Evidence for characteristic biases and compression. Neuropsychologia, 45(7), 1400-1407.

3. Walsh, V. (2003). A theory of magnitude: common cortical metrics of time, space and quantity. Trends in cognitive sciences, 7(11), 483-488. Aenean et est sem. Phasellus nec lectus bibendum, posuere