Лабораторная работа №3

Разрешимость по Тьюрингу

Задание. Для заданного языка, в котором предполагается, что КС-грамматика, регулярное выражение или ДКА определены над алфавитом $\{0,1\}$,

- 1. построить описание МТ, решающей его;
- 2. реализовать данную МТ в виде программы.

Варианты

- 1. $C_{CFG} = \{ \langle G, k \rangle \colon G \text{KC-грамматика, } \operatorname{card}((L(G)) = k, k \in \mathbb{N} \cup \{0, \infty\} \};$
- 2. $C = \{\langle G, x \rangle \colon G \text{KC-грамматика}, \exists y, z \in \Sigma^* \colon yxz \in L(G)\};$
- 3. $A = \{ \langle R \rangle : R$ регулярное выражение, $\exists x, y \in \Sigma^* : x111y \in L(R) \};$
- 4. $INFINITE_{DFA} = \{\langle A \rangle : A \coprod KA$ и L(A) бесконечный язык $\}$;
- 5. $A_{\varepsilon,CFG} = \{ \langle G \rangle : G \text{KC-грамматика и } \varepsilon \in L(A) \};$
- 6. $ALL_{DFA} = \{\langle A \rangle : A ДКА \ и \ L(A) = \Sigma^* \};$
- 7. $BAL_{DFA} = \{\langle M \rangle : M ДКА,$ который допускает некоторую строку состоящую из одинакового числа 0 и 1 $\}$;
- 8. $PAL_{DFA} = \{ \langle M \rangle : M \text{ДКА}, который допускает некоторый палиндром} \};$
- 9. $E = \{\langle M \rangle \colon M Д K A$, который допускает некоторую строку, в которой 1 больше, чем $0\}$;
- 10. $E_{DFA} = \{\langle A \rangle : A \text{ДКА и } L(A) = \emptyset \};$
- 11. $A = \{\langle G \rangle : G \text{KC-грамматика и } 1^* \subset L(G)\};$
- 12. $S = \{ \langle M \rangle : M ДКА \ \text{и} \ w \in L(M) \iff w^{\mathcal{R}} \in L(M) \};$
- 13. $A = \{ \langle M \rangle : M ДКА,$ который не допускает строки, сожержащие нечетное число $1 \};$
- 14. $EQ_{DFA} = \{ \langle M_1, M_2 \rangle : M_1, M_2 \coprod KA \text{ if } L(M_1) = L(M_2) \};$
- 15. $A_{REX} = \{\langle R, w \rangle \colon R$ регулярное выражение и $w \in L(R)\}$.