# Le processus d'apprentissage en CVA

**Dyer, Kagel, Levin, 1989**, "A comparison of naïve and experienced bidders in common value offer auctions: A laboratory analysis", *The Economic Journal*, Vol. 99 pp 108-115

**Garvin, Kagel, 1993**, "Learning in common value auctions: Some initial observations", *Journal of Economic Behavior and Organization*, Vol. 25 pp 351-372



#### Introduction

- Common Value Auctions (enchères en valeur commune)
  - Cas particulier étudié : EVC scellées au premier prix
  - Cf. Jeu du portefeuille vu en cours
- Quel lien avec l'industrie du pétrole ?
  - Vente au prix du marché ~ valeur commune
  - Estimation des ressources du terrain enchéri (e.g. étude sismique) ~ signal
  - Limites de la comparaison
    - Information privée asymétrique (technologies de sondage et d'extraction différentes)
    - Distribution non uniforme
    - Coûts importants

#### Structure du jeu

- Distributions connues, supposées uniformes continues
  - Valeur du bien :  $V \in [\underline{V}; \overline{V}]$
  - Signaux :  $s \in [\underline{s}; \overline{s}] = [V \varepsilon; V + \varepsilon]$  où le bruit  $\varepsilon$  est connu
  - D'où  $V \in [s \varepsilon; s + \varepsilon]$
- Jeu simultané impliquant n joueurs
  - Chaque joueur reçoit  $s_i$  et propose une enchère  $b_i$
  - L'enchère est fonction du signal  $b_i = b(s_i)$

## Equilibre de Nash Symétrique

#### Gain du joueur i :

$$\pi_{i} = \int_{\underline{s_{i}}}^{\overline{s_{i}}} \left(V - b\right) \left(\int_{\underline{s_{j}}}^{b_{j}^{-1}(b)} f(s_{j}) ds_{j}\right)^{n-1} f(V) dV$$

- *i* est un joueur et *j* représente tous les autres. Il y a *n* joueurs en tout
- $b = b_i = b(s_i)$  est l'enchère du joueur i
- $f(\cdot)$  désigne la fonction de distribution de la loi uniforme continue
- (V-b) représente le gain du joueur i lorsqu'il remporte l'enchère
- Le joueur i remporte l'enchère si les autres misent moins :  $b_j(s_j) < b <=> s_j < b_j^{-1}(b)$
- Ainsi  $\left(\int_{s_j}^{b_j^{-1}(b)} f(s_j) ds_j\right)^{n-1}$  désigne la probabilité que le joueur i gagne

## Equilibre de Nash Symétrique

- L'équilibre symétrique se déduit par la maximisation de cette fonction de profit
  - Symétrique = même fonction optimale pour tous les joueurs

Si 
$$s \leq \underline{V} + \varepsilon$$
,  $b^*(s) = \underline{V} + \frac{(s_i - \underline{V} + \varepsilon)}{n+1}$ 

Si 
$$s \in [\underline{V} + \varepsilon; \overline{V} - \varepsilon], \ b^*(s) = s - \varepsilon + \frac{2\varepsilon}{n+1} e^{\frac{n(\underline{V} - s + \varepsilon)}{2\varepsilon}}$$

Si 
$$s \ge \overline{V} - \varepsilon$$
,  $b^*(s) = s + \varepsilon - \left[ \left( \overline{V} - b \left( \overline{V} - \varepsilon \right) \right) P(0) + 2n\varepsilon \int_0^{\frac{s - \overline{V} + \varepsilon}{2\varepsilon}} P(x) dx \right] P^{-1} \left( \frac{s - \overline{V} + \varepsilon}{2\varepsilon} \right)$ 

$$où P(x) = e^{\ln(1-x^n) + n \int \frac{dx}{1-x^n}}$$

#### Winner's Curse

- Tendance des gagnants de l'enchère à perdre de l'argent
  - Raisonnement théorique :
    - Si en moyenne le bien est correctement estimé, l'enchère haute sera > V
- W's-C expérimenté quand  $b > E(V | s_{max})$
- Les joueurs ne savent pas s'ils ont le signal le plus élevé
  - Ils prennent donc en référence leur signal
- Quand  $s_i \in \left[\underline{V} + \varepsilon; \ \overline{V} \varepsilon\right] : E(V \mid s_i) = s_i \varepsilon \frac{(n-1)}{(n+1)}$ 
  - $E(V|s_i) < s_i$  donc miser la valeur du signal est une stratégie perdante
  - Pour Garvin et Kagel (1993) s'il dépasse ce seuil le joueur est inexpérimenté

#### Adaptation au Winner's Curse

- John Kagel, données expérimentales
  - Les joueurs évoluent quand les CVA sont répétées
- Mesure stratégique : **Discount rate**  $DR_i = \frac{s_i b_i}{\varepsilon}$ 
  - Si > 0 : mise inférieure au signal et inversement
  - Joueur expérimenté si  $DR_i > \frac{s_i E(V \mid s_{max})}{\varepsilon} \Leftrightarrow$  profit moyen positif
  - Le DR est une mesure normalisée par  $\varepsilon$ , son évolution décrit l'évolution de la stratégie du joueur

### Comment les joueurs apprennent?

- Dyer, Kagel et Levin (1989) réplication de CVA en laboratoire
  - Groupe naïf (étudiants) vs groupe expert (professionnels)
- Les deux groupes sont sujets au W's-C
  - Groupe expert attentif et réactif aux signaux et conditions du jeu, rémunération potentielle conséquente => jeu pris au sérieux
- Leurs stratégies ne reflètent pas celles qu'ils utilisent dans leur métier
  - Rejet de l'hypothèse de comportement maximisateur
- Conclusion : les joueurs apprennent par la pratique dans un jeu spécifique

## Deux formes d'apprentissage

- Garvin et Kagel (1993) analyse économétrique de données expérimentales (CVA en laboratoire avec des étudiants)
  - Variable dépendante : DR
  - Savoir commun : V et  $s_{max}$  révélés après chaque enchère
- Apport principal : deux mécanismes d'apprentissage
  - **Experiential learning** : adaptation suite à un gain ou une perte quand le joueur remporte l'enchère (déjà reporté auparavant dans la littérature)
  - **Observational learning**: adaptation par l'observation du savoir commun quand le joueur ne remporte pas l'enchère (contribution originale)

### Apprentissage par l'observation

- Résultat hypothétique : résultat considéré en appliquant sa stratégie (DR) au signal maximal
- Interprétation de l'analyse économétrique
  - Un gain hypothétique a un effet quasi nul sur le DR comme un gain réel
  - Une perte hypothétique a un effet positif important et très significatif sur le DR, légèrement inférieur à l'effet d'une perte réelle
- L'observation explique l'adaptation rapide au W's-C

# Rôle de l'observation dans la vitesse d'adaptation au W's-C

- Simulation de CVA répétées 100 fois
  - = 10 joueurs; stratégies initiales hétérogènes : DR  $\sim$  N(0, 0.2)
  - $V \in [1000, 2000]$ ;  $\varepsilon = 100$
  - Distribution de V et s uniforme, pas de variation 0.1
  - Les joueurs ont une richesse initial de 5000
  - Par soucis de simplification pour le calcul du RNNE, le signal maximal ne dépasse pas 1900

#### Sans apprentissage

- Richesse
- DR = stratégie
- Evolution des mises
  - Equilibre
  - Seuil du W's-C
- Expérience des joueurs



# Ajout de l'expérience

- Une perte de 1% (ROI) induit une hausse du DR de 0.08
- Un gain de 1% (ROI) induit une baisse du DR de 0.01
- ~ 90 périodes pour que tous deviennent expérimentés



# Ajout de l'obervation

- Une perte hypothétique de 1% (ROI) induit une hausse du DR de 0.07
- Un gain hypothétique de 1% (ROI) induit une baisse du DR de 0.01
- ~ 8 périodes pour que tous deviennent expérimentés
- ~ 10 fois plus rapide



#### Conclusion

- Joueurs d'abord inexpérimentés -> W's-C
- Learning by doing
- Sensibilité aux pertes plus importante
- Adaptation au W's-C
  - Experiential Learning
  - Observational Learning plus rapide
- Approche incomplète pour étudier les enchères pétrolières
  - Coûts, info privée asymétrique, modèle d'équilibre plus flexible