1) fi A -ie", fis c' with If(a) = 0 tacA.

By InvFT, f^{-1} exists and $B \subset \mathbb{R}^n$ in which f^{-1} is cont. Assume $f(A) \subset B$ is not open, therefore for some $b \in f(A)$ we have $B(b; \epsilon) \notin f(A) \vee \epsilon > 0$. Since f is invertible we con get a with f^{-1} s.t. f(a) = b and since A is open $= 16 \times 0$ s.t. $B(a; \delta) \subset A$. Since f^{-1} is continuous and $B(a; \delta)$ is $= 16 \times 0$ of $= 16 \times 0$ s.t. $= 16 \times 0$ s.t. = 1

2) $g(x,y) = (x,y)^{2}, 2(x+y)$ $v(x,y) = (x+y)^{2}$ v(x,y) = 2(x+y) v(x,y) = 2(x+

3) a) $f(x_1y_1) = (v_1y_1)$, $v = x - 2y_1$ $v = 2x - y_2$ $v = 2x - y_2$ $v = 2x - y_3$ $v = 2x - y_4$ $v = 2x - y_4$ v =

c) (0.0) = f(0.0) $(-1.12) = f(\frac{5}{3}, \frac{4}{3})$ (2.1) = f(0.-1)or (0.14)place

place

leggions $(0.21) = \frac{1}{3}(20-4)$