Physics 4310 Homework #5

5 problems

Due by Monday, February 29

> 1.

Evaluate $a_+\psi_1$ to find the n=2 eigenstate of the harmonic oscillator. Give the correct normalization (which you can find in the text).

> 2.

Considering the harmonic oscillator again.

- (a) Show that the average position $\langle x \rangle$ and momentum $\langle p \rangle$ of every energy eigenstate ψ_n is zero. (Hint: Use Eq. 2.69, where the x and p operators are written in terms of the raising and lowering operators.)
- (b) Find the average kinetic energy $\langle T \rangle$ of the *n*th eigenstate ψ_n .

> **3.**

A particle is in the ground state of the harmonic oscillator with frequency ω , when suddenly the spring constant quadruples, so that $\omega' = 2\omega$, without initially changing the wave function.

- (a) What is the probability that a measurement of the energy would still return the value $\hbar\omega/2$?
- (b) Show that the probability that it returns a value of $\hbar\omega$ is 0.943.

> 4.

In the analytic derivation of the harmonic oscillator, use the recursion relation

$$a_{j+2} = \frac{-2(n-j)}{(j+1)(j+2)}a_j$$

to work out $H_5(\xi)$ and $H_6(\xi)$. To fix the overall constant, invoke the convention that the coefficient of the highest power of ξ is 2^n .

5.

The Gaussian wave packet. A free particle has the initial wave function

$$\Psi(x,0) = Ae^{-ax^2}$$

where A and a are constants (and a is real and positive).

- (a) Find A to normalize $\Psi(x,0)$
- (b) Write an expression for $\Psi(x,t)$.
- (c) Find a simple expression for $|\Psi(x,t)|^2$ (that is, do out all the integrals). You can use software to do out the integral, or see Griffiths problem 2.22 for a hint of how to do the integral by hand. You may find it helpful to use the change of variables $\xi = \sqrt{ax}$ and $\tau = \frac{2\hbar a}{m}t$, or something similar, to get all the constants out of the way as you do the math.
- (d) Describe what $|\Psi(x,t)|^2$ does over time, qualitatively. You can figure this out by graphing the function at a few different times. You needn't include the graphs with your homework, though.