PROBLEM SET 4: PROOF TECHNIQUES, MATHEMATICAL INDUCTION

CS 198-087: Introduction to Mathematical Thinking

UC BERKELEY EECS FALL 2018

This homework is due on Monday, October 1st, at 6:30PM, on Gradescope. As usual, this homework is graded on participation, but it is in your best interest to put full effort into it. This is a good opportunity to learn how to use LaTeX.

- 1. a. Prove, using induction, that $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$.
 - b. Prove, using induction, that $(\sum_{i=1}^n i)^2 = \sum_{i=1}^n i^3$. (Hint: In lecture, we showed that $\sum_{i=1}^n i = \frac{n(n+1)}{2}$.)
- 2. Recall the power rule for derivatives:

$$\frac{d}{dx}x^n = nx^{n-1}$$

Prove this rule for all $n \in \mathbb{N}_0$ using induction. (Hint: You will need to use the product rule for derivatives.)

3. De Moivre's theorem gives us a way to exponentiate complex numbers of the form $R(\cos t + i \sin t)$:

$$(R(\cos t + i\sin t))^n = R^n(\cos nt + i\sin nt)$$

We can prove this using Euler's theorem, which tells us that $\cos t + i \sin t = e^{it}$.

$$(R(\cos t + i\sin t))^n = (Re^{it})^n = R^n e^{int} = R^n(\cos nt + i\sin nt)$$

Prove De Moivre's theorem, using induction. (*Hint: You will need the trignometric identities* $\cos(a+b) = \cos a \cos b - \sin a \sin b$ and $\sin(a+b) = \sin a \cos b + \cos a \sin b$.)

4. Consider the following inequality:

$$|\bigcup_{i=1}^{n} A_i| \le \sum_{i=1}^{n} |A_i|$$

In other words, $|A_1 \cup A_2 \cup ... \cup A_n| \le |A_1| + |A_2| + ... + |A_n|$.

- a. Draw a picture and reason about why this is true intuitively.
- b. Prove this using induction.
- 5. Prove that for $n \ge 3$, the sum of the interior angles of a polygon with n vertices is 180(n-2). (Attempt this problem, but don't spend too long on it, and don't worry if you don't get it. Hint: Drawing pictures will help.)
- 6. Note: This problem may seem very long, but most of it is reading. The work you have to do is relatively little.

In this problem, we will look at a new way to derive formulas for sums of the form $1^k + 2^k + \dots + n^k$ for any $k \in \mathbb{Z}^+$. You already proved these formulas in the first problem.

Consider the sum

$$(2-1) + (3-2) + (4-3) + (5-4) + \dots + (100-99)$$

We can rewrite it as

$$-1 + (2 - 2) + (3 - 3) + (4 - 4) + \dots + (99 - 99) + 100$$

Then, all of the terms other than -1 and 100 cancel out, giving us that the value of this sum is -1 + 100 = 99. Such a sum, where part of term i cancels out with part of term i + 1 and i - 1, is known as a **telescoping sum**. The act of cancelling these terms is called the **Method of Differences**.

Another example:

$$\sum_{k=1}^{100} (\cos(k) - \cos(k-1)) = (\cos 1 - \cos 0) + (\cos 2 - \cos 1) + \dots + (\cos 100 - \cos 99)$$
$$= -\cos 0 + (\cos 1 - \cos 1) + (\cos 2 - \cos 2) + \dots + (\cos 99 - \cos 99) + \cos 100$$
$$= \cos 100 - \cos 0$$

How can we use this to get formulas for sums of the form $\sum_{i=1}^{n} i^{k}$?

Consider $(i+1)^2 = i^2 + 2i + 1$. We can rearrange this to have $(i+1)^2 - i^2 = 2i + 1$. Then, on the left hand side we have something that resembles a telescoping sum. Since both the left hand side and right hand side are equal, if I sum both sides from i=1 to i=n, the results should be the same.

$$\sum_{i=1}^{n} ((i+1)^2 - i^2) = \sum_{i=1}^{n} (2i+1)$$

$$(2^2 - 1^2) + (3^2 - 2^2) + \dots + ((n+1)^2 - n^2) = 2\sum_{i=1}^{n} + \sum_{i=1}^{n} 1$$

$$(n+1)^2 - 1^2 = 2\sum_{i=1}^{n} + n$$

We used the fact that $\sum 2x = 2 \sum x$ and $\sum_{i=1}^{n} 1 = 1 + 1 + ... + 1 = n$.

Now, we can simply rearrange for $\sum_{i=1}^{n}$:

$$(n+1)^{2} - 1^{2} = 2\sum_{i=1}^{n} + n$$

$$2\sum_{i=1}^{n} = (n+1)^{2} - n - 1$$

$$\sum_{i=1}^{n} = \frac{n^{2} + 2n + 1 - n - 1}{2}$$

$$= \frac{n(n+1)}{2}$$

as we've seen before.

Suppose we wanted to use this technique to find an expression for $\sum_{i=1}^{n} i^2$. We would have to start with the expansion of $(i+1)^3 = i^3 + 3i^2 + 3i + 1$, rearrange to have $(i+1)^3 - i^3 = 3i^2 + 3i + 1$, and take the sum on both sides. This will yield

$$\sum_{i=1}^{n} ((i+1)^3 - i^3) = 3\sum_{i=1}^{n} i^2 + 3\sum_{i=1}^{n} i + \sum_{i=1}^{n} 1$$

The left hand side will evaluate to be $-1^3+(n+1)^3$. The right hand side has both $\sum_{i=1}^n i^2$, which we are trying to find, and also $\sum_{i=1}^n i$, which we already know. To proceed, you will have to substitute the value $\sum_{i=1}^n i = \frac{n(n+1)}{2}$ and rearrange to find $\sum_{i=1}^n i^2$.

- a. Determine the value of $\sum_{i=1}^{n} \frac{1}{n(n+1)}$. (Hint: How can you rewrite $\frac{1}{n(n+1)}$ as the difference of two terms?)
- b. Derive $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$ using a telescoping sum. Most of this has already been done for you!
- c. Derive $\sum_{i=1}^{n} i^3 = \left(\frac{n(n+1)}{2}\right)^2$ using a telescoping sum.