

Notes of

REAL AND FUNCTIONAL ANALYSIS

for the Master in Mathematical Engineering held by Prof. G. Verzini ${\rm a.a.}\ 2023/2024$

Edited by Teo Bonfa

Indice

I I	Introduction	1
0 C	Course structure	3
1 S	et Theory	5
II	Real Analysis	7
2		9
3		11
4		13
5		15
6		17
7		19
8		21
9		23
10		25
III	Functional Analysis	27
11		29
12		31
13		33
14		35
15		37
16		39
17		41
18		43
IV	Esercitazioni	45
19		47

20	49
21	51
22	53
23	55
24	57
25	59
26	61
27	63
28	65

Parte I Introduction

Course structure

This course is splitted in two parts:

- 1. Real Analysis \rightarrow measure and integration theory, in particular:
 - Collections and sequences of sets
 - Measurable space, measure, outer measure
 - Generation of an outer measure
 - Carathéodory's condition, measure induced by an outer measure
 - Lebesgue's measure on \mathbb{R}^n
 - Measurable functions
 - The Lebesgue integral
 - Abstract integration
 - Monotone convergence theorem, Fatou's Lemma, Lebesgue's dominated convergence theorem
 - Comparison between the Lebesgue and Riemann integrals
 - Different types of convergence
 - $\bullet\,$ Derivative of a measure and the Radon-Nikodym theorem
 - Product measures and the Fubini-Tonelli theorem
 - \bullet Functions of bounded variation and absolutely continuous functions
- 2. Functional Analysis \sim in finte dimensional linear algebra, in particular:
 - $\bullet\,$ Metric spaces, completeness, separability, compactness
 - $\bullet\,$ Normed spaces and Banach spaces
 - Spaces of integrable functions
 - Linear operators
 - Uniform boundedness theorem, open mapping theorem, closed graph theorem
 - Dual spaces and the Hahn-Banach theorem
 - Reflexivity
 - Weak and weak* convergences
 - Banach-Alaoglu theorem
 - Compact operators
 - Hilbert spaces
 - Projection theorem, Riesz representation theorem
 - Orthonormal basis, abstract Fourier series

- Spectral theorem for compact symmetric operators
- ullet Fredholm alternativ

The foundation of this theory is the $Set\ Theory$, that is going to be explained in the next chapter. Enjoy!

NB: this page will be updated with more details and maybe the list of proofs.

Set Theory

Equipotent, finite/infinite, countable/uncountable sets, cardinality of continoum

Let X, Y be sets.

Def — Equipotent sets.

X, Y are equipotent if there exists a bijection $f: X \to Y$ (1-1 injective + onto surjective).

If X, Y are equipotent, then they have the same cardinality. On the other hand, X has cardinality \geq than Y if there exists $f: X \to Y$ onto. For example, for

$$X = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \qquad Y = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

exists $f: X \to Y$ s.t. $\forall y \in Y \ \exists \ x \in X$ s.t. f(x) = y (f takes all the elements of the codomain), but doesn't exist $g: Y \to X$ s.t. $\forall x \in X \ \exists \ y \in Y$ s.t. g(y) = x (g doesn't take all the elements of the codomain).

Def — Finite/infinite sets.

X is finite if it is equipotent to $Y = \{1, 2, ..., k\}$ for some $k \in \mathbb{N}$. X is infinite otherwise.

Prop. X is infinite iff it is equipotent to a proper subset, i.e. if exists a bijection between X and one of his subsets.

For example, between the integers set $\mathbb{Z} = \{0, \pm 1, \pm 2, ...\}$ and the even integers set $\{0, \pm 2, \pm 4, ...\}$ there exists f s.t. f(z) = 2z which is a bijection.

Def — Countable/uncountable (infinite) sets.

X inifinite is countable if it is equipotent to \mathbb{N} . It is uncountable otherwise, in which case is more than countable (countable sets are the smallest among infinite sets).

Def — Cardinality of continuum.

X has the cardinality of continuum if it is equipotent to \mathbb{R} . Any such set is uncountable.

For example:

- $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$ are countable
- $\mathbb{R}, \mathbb{R}^N, (0,1), (0,1)^N$ have the cardinality of continuum
- countable unions of countable sets are countable

Parte II Real Analysis

Parte III Functional Analysis

Parte IV Esercitazioni