Signal Processing - 1 by One

Sibi Raj B. Pillai Dept of Electrical Engineering IIT Bombay

Outline

- So Far: Sampling, Fourier Analysis
- Previous Week: DTFT, DFT and Circular Convolution
- Previous Class: Discrete Fourier Transform
- Today: Fast Fourier Transform (FFT)

Outline

- So Far: Sampling, Fourier Analysis
- Previous Week: DTFT, DFT and Circular Convolution
- Previous Class: Discrete Fourier Transform
- Today: Fast Fourier Transform (FFT)

8-point FFT

	1	1	1	1	1	1	1	1
	1	α^1	α^2	α^3	α^4	α^5	α^{6}	α^7
	1	α^2	α^4	α^{6}	α^{0}	α^2	α^4	α^{6}
	1	α^3	α^{6}	α^1	α^4	α^7	α^2	α^5
F =	1	1 α^{1} α^{2} α^{3} α^{4} α^{5} α^{6}	α^0	α^4	α^{0}	α^4	α^{0}	α^4
	1	α^5	α^2	α^7	α^4	α^1	α^{6}	α^3
	1	α^{6}	α^4	α^2	α^{0}	α^{6}	α^4	α^2
	1	α^7	α^{6}	α^5	α^4	α^3	α^2	α^1

Break it Up

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & \alpha^4 & \alpha^2 & \alpha^6 \\ 1 & \alpha^0 & \alpha^4 & \alpha^4 \end{bmatrix}$$

$$FX = \begin{bmatrix} 1 & \alpha^0 & \alpha^0 & \alpha^0 \\ 1 & \alpha^4 & \alpha^2 & \alpha^6 \end{bmatrix}$$

$$\begin{bmatrix} 1 & \alpha^0 & \alpha^4 & \alpha^4 \end{bmatrix}$$

 X_0 *X*₄ X_2 *X*₆

X₁X₅X₃X₇

Butterflies in the Belly

Transmission Media and Bandwidth

Transmission Media and Bandwidth

Wireless Communication

Spectrum is a costly resource, centrally allocated usually.

Application	Bandwidth			
AM Radio	10kHz			
2G	200kHz - 1MHz			
3G	5MHz			
4G	10 – 20MHz			
5G	≈ 100MHz			

Data (video/audio/file) should be sent within the bandwidth.

Wireless Communication

Spectrum is a costly resource, centrally allocated usually.

Application	Bandwidth			
AM Radio	10kHz			
2G	200kHz - 1MHz			
3G	5MHz			
4G	10 – 20MHz			
5G	≈ 100MHz			

Data (video/audio/file) should be sent within the bandwidth.

$$X(f) = 0 \text{ if } \{|f| \le f_C - \frac{\beta}{2}\} \text{ OR } \{|f| \ge f_C + \frac{\beta}{2}\}.$$

Discrete-time Input and Response:

GNURADIO: Generate a baseband signal with bandwidth 10kHz

A Discrete World

A Discrete World

$$y(t) = h(t) * x(t) = \sum_{k \in \mathbb{Z}} \frac{1}{\beta} h\left(\frac{k}{\beta}\right) x(t - \frac{k}{\beta}).$$

Tapped Delay Line

Tapped Delay Line

