In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

In [2]:

a=pd.read_csv(r"C:\Users\user\Downloads\fiat500_VehicleSelection_Dataset (1).csv")
a

Out[2]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	
0	1.0	lounge	51.0	882.0	25000.0	1.0	44.907242	8.6115
1	2.0	pop	51.0	1186.0	32500.0	1.0	45.666359	12.241
2	3.0	sport	74.0	4658.0	142228.0	1.0	45.503300	11
3	4.0	lounge	51.0	2739.0	160000.0	1.0	40.633171	17.634
4	5.0	pop	73.0	3074.0	106880.0	1.0	41.903221	12.495
			•••	•••				
1544	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
1545	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
1546	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Null
1547	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
1548	NaN	NaN	NaN	NaN	NaN	NaN	NaN	

1549 rows × 11 columns

In [3]:

```
b=a.head(100)
b
```

Out[3]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	
0	1.0	lounge	51.0	882.0	25000.0	1.0	44.907242	8.61155
1	2.0	рор	51.0	1186.0	32500.0	1.0	45.666359	12.2418
2	3.0	sport	74.0	4658.0	142228.0	1.0	45.503300	11.4
3	4.0	lounge	51.0	2739.0	160000.0	1.0	40.633171	17.6346
4	5.0	pop	73.0	3074.0	106880.0	1.0	41.903221	12.4956
95	96.0	sport	51.0	4292.0	165600.0	1.0	44.715408	11.3083
96	97.0	pop	51.0	1066.0	28000.0	1.0	41.769051	12.6628
97	98.0	sport	51.0	2009.0	86000.0	2.0	40.633171	17.6346
98	99.0	lounge	51.0	456.0	18592.0	2.0	45.393600	10.4822
99	100.0	pop	51.0	731.0	41558.0	2.0	45.571220	9.15913
100 rows × 11 columns								

In [4]:

b.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 100 entries, 0 to 99
Data columns (total 11 columns):

#	Column	Non-Null Count	Dtype	
0	ID	100 non-null	float64	
1	model	100 non-null	object	
2	engine_power	100 non-null	float64	
3	age_in_days	100 non-null	float64	
4	km	100 non-null	float64	
5	previous_owners	100 non-null	float64	
6	lat	100 non-null	float64	
7	lon	100 non-null	object	
8	price	100 non-null	object	
9	Unnamed: 9	0 non-null	float64	
10	Unnamed: 10	0 non-null	object	

dtypes: float64(7), object(4)
memory usage: 8.7+ KB

In [5]:

b.describe()

Out[5]:

	ID	engine_power	age_in_days	km	previous_owners	lat
count	100.000000	100.000000	100.000000	100.000000	100.000000	100.000000
mean	50.500000	53.010000	1935.300000	58812.180000	1.180000	43.612648
std	29.011492	6.014284	1414.251278	44728.034639	0.500101	2.083451
min	1.000000	51.000000	366.000000	4000.000000	1.000000	38.218128
25%	25.750000	51.000000	723.500000	19781.750000	1.000000	41.744165
50%	50.500000	51.000000	1446.000000	44032.000000	1.000000	44.831066
75%	75.250000	51.000000	3265.500000	95075.750000	1.000000	45.396568
max	100.000000	74.000000	4658.000000	188000.000000	3.000000	46.176498
4)

In [6]:

```
c=b.dropna(axis=1)
```

Out[6]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	
0	1.0	lounge	51.0	882.0	25000.0	1.0	44.907242	8.61155
1	2.0	рор	51.0	1186.0	32500.0	1.0	45.666359	12.2418
2	3.0	sport	74.0	4658.0	142228.0	1.0	45.503300	11.4
3	4.0	lounge	51.0	2739.0	160000.0	1.0	40.633171	17.6346
4	5.0	рор	73.0	3074.0	106880.0	1.0	41.903221	12.4956
95	96.0	sport	51.0	4292.0	165600.0	1.0	44.715408	11.3083
96	97.0	рор	51.0	1066.0	28000.0	1.0	41.769051	12.6628
97	98.0	sport	51.0	2009.0	86000.0	2.0	40.633171	17.6346
98	99.0	lounge	51.0	456.0	18592.0	2.0	45.393600	10.4822
99	100.0	рор	51.0	731.0	41558.0	2.0	45.571220	9.15913
100 rows × 9 columns								

In [7]:

```
c.columns
```

Out[7]:

In [8]:

```
sns.pairplot(c)
```

Out[8]:

<seaborn.axisgrid.PairGrid at 0x11c24fc1cd0>

In [9]:

```
sns.distplot(c['age_in_days'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure -level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[9]:

<AxesSubplot:xlabel='age_in_days', ylabel='Density'>

In [10]:

In [11]:

```
sns.heatmap(f.corr())
```

Out[11]:

<AxesSubplot:>

In [12]:

In [13]:

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.5)
```

In [14]:

```
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
```

Out[14]:

LinearRegression()

In [15]:

```
print(lr.intercept_)
```

7165.510059169973

In [16]:

```
r=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
r
```

Out[16]:

	Co-efficient
ID	-0.616914
engine_power	27.432007
km	0.005680
previous_owners	299.350722
lat	-48.495682
lon	-86.333966
price	-0.518771

In [17]:

```
u=lr.predict(x_test)
plt.scatter(y_test,u)
```

Out[17]:

<matplotlib.collections.PathCollection at 0x11c275e8df0>

In [18]:

```
print(lr.score(x_test,y_test))
```

0.7682041262486937

In [19]:

```
lr.score(x_train,y_train)
```

Out[19]:

0.8920352363226728

RIDGE REGRESSION

```
In [20]:
from sklearn.linear_model import Ridge,Lasso

In [21]:
rr=Ridge(alpha=10)
rr.fit(x_train,y_train)

Out[21]:
Ridge(alpha=10)
In [22]:
rr.score(x_test,y_test)

Out[22]:
0.7855916998020599

LASSO REGRESSION
In [23]:
```

```
In [23]:
la=Lasso(alpha=10)
la.fit(x_train,y_train)

Out[23]:
Lasso(alpha=10)

In [24]:
la.score(x_test,y_test)

Out[24]:
0.7763901359381123

In [ ]:
```