

Predicting Kickstarter Project Success

Erick Cantu Perez, Su Wong 30.06.2022

Mr. Jacoby Stevens

- Retired entrepreneur
- Likes supporting crowdfunding projects
- Wants to give back to the community
- Wants to support the projects most likely to succeed
- Would like us to predict for him the likelihood of success or failure

• Founded in 2009, is a crowdfunding website

Has an all-or-nothing funding model

 A project is only funded if it meets its goal amount; otherwise no money is given by backers to a project

 Dataset consists of 209222 projects between April 22 2009 and March 14 2019.

 5 different outcomes for projects on Kickstarter: successful, failed, live, canceled, suspended. Only successful and failed projects were used to train our model.

 Taking only successful/failed projects and eliminating duplicate projects left us with 168979 projects.

Exploratory Data Analysis findings

The predictors for our model are:

- Category (e.g. Art, Food, Technology)
- Country
- Fundraising goal in USD
- Campaign Duration
- Was the project selected by the staff as "staff pick"

Exploratory Data Analysis findings

Overall success rate of all projects is 56%

Goal ranged between 0.1 and 15.23M USD(\$)

Baseline Model

Baseline Model:

We think that projects based in USA are likely to be successful

Evaluation Metric:

We train the model based on precision. Precision is the ratio of *correctly* predicted positives out of *all* of the results that were predicted positive.

Score for baseline model:

Precision = 57.8%, Accuracy* = 55.2%

*Accuracy is the percentage of all correctly predicted outcomes

Machine Learning models

Because our data has more categorical variables, we decided to focus more on tree-based supervised machine learning models:

- 1. Logistic regression
- 2. Decision Trees
- 3. Random forests
- 4. XGBoost
- 5. Adaboost

XGBoost gives the best results "out of the box"

	Logistic Regression	Decision Tree	Random Forest	XGBoost	Adaboost
Precision*	69.5%	70.0%	70.5%	72.2%	69.4%
Accuracy**	69.6%	66.6%	68.4%	72.1%	67.7%

After optimizing the parameters:

Final precision: 72.1% (Accuracy: 71.9%)

^{*} Precision is the ratio of correctly predicted positives out of all of the results that were predicted positive.

^{**} Accuracy is the percentage of all correctly predicted outcomes

Error Analysis

Our model is only 72% accurate. How can we improve this number?

- Actual success rate from 2009 to 2013 is around 80%, which is not captured by the model.
- Reduction in success rate from 2013 to 2014 not captured
- Success rate from 2014 to 2017 is around 50%
- Success rate increases again in 2018 and 2019

Recommendations

- Projects picked as "staff picks" have a high success rate
- Hong Kong, Japan, Great Britain are top 3 countries with highest success rate

Recommendations

.....

Takeaways and Future Work

- Improvement in accuracy from 55.2% to 72.0% over the baseline model
- Best projects to invest in:
 - Comics, dance or publishing categories
 - Projects featured as "staff pick" when launched
 - Projects from Hong Kong, Japan or Great Britain
- Worst projects to invest in are technology and food and they also have the highest donation goals
- Future work: Explore underlying trends in the data by year or month,
 subcategory information

Thanks!

Questions?

Erick Cantu Perez github.com/eaunaicr97

Su Leen Wong github.com/suleenwong

Project repository:

https://github.com/eaunaicr97/ds-ml-project-kickstarter

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**

Exploratory Data Analysis findings

- Failed projects tend to have higher goals
- Project goal log transformed
- 0.523% observations are outside 3.5 std deviations
- 0.002 % successful projects >\$1.97
- 0.049 % failed projects < 10.2

Error Analysis

Precision on train data: 0.738 Accuracy on train data: 0.738

Precision on test data: 0.7215 Accuracy on test data: 0.7185

Accuracy on train and test data is quite similar, therefore there is no significant overfitting

Classification report:

- · · · · · · · · · · · · · · · · · · ·				
	precision	recall	f1-score	support
0	0.71	0.60	0.65	22260
1	0.72	0.81	0.76	28434
			0. 50	50504
accuracy			0.72	50694
macro avg	0.72	0.71	0.71	50694
weighted avg	0.72	0.72	0.71	50694
1				

