Adversarial Training of Neural Networks against Systematic Uncertainty

Gilles Louppe New York University g.louppe@nyu.edu

Abstract

1 Introduction

[GL: Distinction between statistical and systematic uncertainty.] [GL: Define nuisance parameters.] [GL: We want to build an accurate classifier whose output remains invariant with respect to systematic uncertainties.] [GL: Motivate the criterion (which may not be obvious for the ML crowd). See pivotal quantity motivation.]

2 Problem statement

Let assume a probability space (Ω, \mathcal{F}, P) , where Ω is a sample space, \mathcal{F} is a set of events and P is a probability measure. Let consider the multivariate random variables $X_z:\Omega\mapsto\mathbb{R}^p$ and $Y:\Omega\mapsto\mathcal{Y}$, where X_z denotes a dependence on a nuisance parameter Z whose values $z\in\mathcal{Z}$ define a parameterized family of its systematic uncertainties. That is, X_z and Y induce together a joint probability distribution p(X,Y|z), where the condition on z denotes X_z . For training, let further assume a finite set $\{x_i,y_i,z_i\}_{i=1}^N$ of realizations $X_{z_i}(\omega_i),Y(\omega_i)$, for $\omega_i\in\Omega$ and known values z_i of the nuisance parameter. Our goal is to learn a function $f(\cdot;\theta_f):\mathbb{R}^p\mapsto\mathcal{Y}$ of parameters θ_f (e.g., a neural network-based classifier if \mathcal{Y} is a finite set of classes) and minimizing a loss $\mathcal{L}_f(\theta_f)$. In addition, we require that $f(X_z;\theta_f)$ should be robust to the value z of the nuisance parameter – which remains unknown at test time. More specifically, we aim at building f such that in the ideal case

$$f(X_z(\omega); \theta_f) = f(X_{z'}(\omega); \theta_f) \tag{1}$$

for all samples $\omega \in \Omega$ and all z, z' pairs of values of the nuisance parameter.

Since we do not have training tuples $(X_z(\omega), X_{z'}(\omega))$ (for the same unknown ω), we propose instead to solve the closely related problem of finding a predictive function f such that

$$P(\{\omega|f(X_z(\omega);\theta_f)=y\}) = P(\{\omega'|f(X_{z'}(\omega');\theta_f)=y\}) \text{ for all } y \in \mathcal{Y}.$$
 (2)

In words, we are looking for a predictive function f which is a pivotal quantity [1] with respect to the nuisance parameter. That is, such that the distribution of $f(X_z;\theta_f)$ is invariant with respect to the value z of the nuisance. Note that a function f for which Eqn. 1 is true necessarily satisfies Eqn. 2. The converse is however in general not true, since the sets of samples $\{\omega|f(X_z(\omega);\theta_f)=y\}$ and $\{\omega'|f(X_{z'}(\omega');\theta_f)=y\}$ do not need to be the same for the equality to hold. In order to simplify notations, and as only Eqn. 2 is of direct interest in this work, we denote from here on the pivotal quantity criterion as

$$p(f(X;\theta_f)|z) = p(f(X;\theta_f)|z') \text{ for all } z, z' \in \mathcal{Z}.$$
(3)

Method

Adversarial training was first proposed by [2] as a way to build a generative model capable of producing samples from random noise $z \sim p_Z$. More specifically, the authors pit a generative model $g: \mathcal{Z} \mapsto \mathbb{R}^p$ against an adversary classifier $d: \mathbb{R}^p \mapsto \{0,1\}$ whose antagonistic objective is to recognize real data X from generated data g(Z). Both models g and d are trained simultaneously, in such a way that g learns to produce samples that are difficult to identify by d, while d incrementally adapts to changes in g. At the equilibrium, g models a distribution whose samples can be identified by \hat{d} only by chance. That is, assuming enough capacity in d and g, the distribution $p_{g(Z)}$ eventually converges towards the real distribution p_X .

In this work, we repurpose adversarial training as a means to constraint the predictive model f in order to satisfy Eqn. 3. In particular, we pit f against an adversary classifier $r(\cdot; \theta_r) : \mathbb{R} \mapsto \mathcal{Z}$ of parameters θ_r and associated loss $\mathcal{L}_r(\theta_f, \theta_r)$. Assuming that \mathcal{Z} defines a finite family of nuisance values z_l (for $l = 1, ..., |\mathcal{Z}|$), this classifier takes as input realizations of $f(X; \theta_f)$, for the current value θ_f of f parameters, and produces as output probability estimates $r(f(X;\theta_f);\theta_r)_l = \hat{p}(z_l|f(X;\theta_f))$ that $f(X;\theta_f)$ is generated from the nuisance value z_l . If $p(f(X;\theta_f)|z)$ varies with z, then the corresponding correlation can be captured by r. By contrast, if $p(f(X; \theta_f)|z)$ is invariant with z, as we require, then r should perform poorly and be close to random guessing. Training f such that it additionally minimizes the performance of r therefore acts as a regularization towards Eqn. 3.

As for generative adversarial networks, we propose to train f and r simultaneously, which we carry out by considering the value function

$$E(\theta_f, \theta_r) = \mathcal{L}_f(\theta_f) - \mathcal{L}_r(\theta_f, \theta_r)$$
(4)

that we optimize by finding the saddle point $(\hat{\theta}_f, \hat{\theta}_r)$ such that

$$\hat{\theta}_f = \arg\min_{\theta_f} E(\theta_f, \hat{\theta}_r),$$

$$\hat{\theta}_r = \arg\max_{\theta_r} E(\hat{\theta}_f, \theta_r).$$
(5)

$$\hat{\theta}_r = \arg\max_{\theta_r} E(\hat{\theta}_f, \theta_r). \tag{6}$$

The adversarial training procedure to obtain $(\hat{\theta}_f, \hat{\theta}_r)$ is formally presented in Algorithm 1 in the case of f being a classifier and of the cross-entropy loss for both \mathcal{L}_f and \mathcal{L}_r . The algorithm consists in using stochastic gradient descent alternatively to optimize Eqn. 5 and 6.

Algorithm 1 Adversarial training of a classifier f against an adversary r.

Inputs: training data $\{x_i, y_i, z_i\}_{i=1}^N$

Outputs: $\hat{\theta}_f, \hat{\theta}_r$

Hyper-parameters: Number T of training iterations, Number K of gradient steps to update r.

- 1: **for** t = 1 to T **do**
- for k = 1 to K do 2:

 \triangleright Update r

- Sample minibatch $\{x_m, z_m\}_{m=1}^M$ of size M; 3:
- 4: With θ_f fixed, update r by ascending its stochastic gradient $\nabla_{\theta_r} E(\theta_f, \theta_r) :=$

$$\nabla_{\theta_r} \sum_{m=1}^{M} \left[\sum_{z_l \in \mathcal{Z}} 1(z_m = z_l) \log r(f(x_m; \theta_f); \theta_r)_l \right];$$

- 5:
- Sample minibatch $\{x_m, y_m, z_m\}_{m=1}^M$ of size M;

With θ_r fixed, update f by descending its stochastic gradient $\nabla_{\theta_f} E(\theta_f, \theta_r) :=$

$$\nabla_{\theta_f} \sum_{m=1}^{M} \left[-\sum_{y_c \in \mathcal{Y}} 1(y_m = y_c) \log f(x_m; \theta_f)_c + \sum_{z_l \in \mathcal{Z}} 1(z_m = z_l) \log r(f(x_m; \theta_f); \theta_r)_l \right];$$

8: end for

4 Theoretical results

In this section, we show that in the setting of Algorithm 1, the procedure converges to a classifier f which is a pivotal quantity in the sense of Eqn. 3. Results below are derived in a non-parametric setting, by assuming that both f and r have enough capacity. To simplify the presentation, we also assume the uniform prior $p(z) = \frac{1}{|\mathcal{Z}|}$ for all $z \in \mathcal{Z}$, e.g. by having the same number of training samples for each modality z of the nuisance parameter.

Proposition 1. Let θ_f be fixed and $\hat{\theta}_r = \arg \max_{\theta_r} E(\theta_f, \theta_r)$. If $r(f(X; \theta_f); \hat{\theta}_r)_l = \frac{1}{|\mathcal{Z}|}$ for all z_l , then f is a pivotal quantity.

Proof. Let us first recall that the cross-entropy for distributions p and q is minimized when p=q. For \mathcal{L}_r defined as the cross-entropy between the true conditional distribution of the nuisance $p_{Z|f(X;\theta_f)}$ and the approximate conditional distribution of the nuisance $p_{r(f(X;\theta_f);\theta_r)|f(X)}$, the optimal parameters $\hat{\theta}_r = \arg\max_{\theta_r} E(\theta_f,\theta_r) = \arg\min_{\theta_r} L_r(\theta_f,\theta_r)$ are therefore such that $p_{r(f(X;\theta_f);\hat{\theta}_r)|f(X)} = p_{Z|f(X;\theta_f)}$.

In other words, for all $z_l \in \mathcal{Z}$, we have $r(f(X;\theta_f);\hat{\theta}_r)_l = p(z_l|f(X;\theta_f))$. By assumption, $r(f(X;\theta_f);\hat{\theta}_r)_l = \frac{1}{|\mathcal{Z}|}$, and therefore $p(z_l|f(X;\theta_f)) = \frac{1}{|\mathcal{Z}|}$. Using the Bayes' rule, we write

$$p(f(X; \theta_f)|z_l) = \frac{p(z_l|f(X; \theta_f))p(f(X; \theta_f))}{p(z_l)}$$

$$= \frac{\frac{1}{|\mathcal{Z}|}p(f(X; \theta_f))}{\frac{1}{|\mathcal{Z}|}}$$

$$= p(f(X; \theta_f)),$$

which holds for all $z_l \in \mathcal{Z}$ and implies that f is a pivotal quantity.

Proposition 2. If there exists a saddle point $(\hat{\theta}_f, \hat{\theta}_r)$ for Eqn. 5 and 6 such that $E(\hat{\theta}_f, \hat{\theta}_r) = H(p_{Y|X}) - \log |\mathcal{Z}|$, then $f(\cdot; \hat{\theta}_f)$ is both an optimal classifier and a pivotal quantity.

Proof. For fixed θ_f , the adversary r is optimal at $\hat{\theta}_r = \arg\max_{\theta_r} E(\theta_f, \theta_r) = \arg\min_{\theta_r} L_r(\theta_f, \theta_r)$, in which case $p_{r(f(X;\theta_f);\hat{\theta}_r)|f(X)} = p_{Z|f(X;\theta_f)}$ and L_r reduces to the entropy $H(p_{Z|f(X;\theta_f)})$ of the conditional distribution of the nuisance. The value function E can therefore be rewritten as

$$E'(\theta_f) = L_f(\theta_f) - H(p_{Z|f(X;\theta_f)}).$$

In particular, we have the lower bound $H(p_{Y|X}) - \log |\mathcal{Z}| \le L_f(\theta_f) - H(p_{Z|f(X;\theta_f)})$ where the equality holds at $\hat{\theta}_f = \arg \min_{\theta_f} E'(\theta_f)$ only when

- $\hat{\theta}_f$ corresponds to the parameters of an optimal classifier, in which case the log-loss L_f reduces to its minimum value $H(p_{Y|X})$,
- all outcomes of $Z|f(X;\hat{\theta}_f)$ are equally likely, in which case $p(z_l|f(X;\hat{\theta}_f)) = \frac{1}{|\mathcal{Z}|}$ for all $z_l \in \mathcal{Z}$ and $H(p_{Z|f(X;\hat{\theta}_f)}) = -\sum_{z_l \in \mathcal{Z}} p(z_l|f(X;\hat{\theta}_f)) \log p(z_l|f(X;\hat{\theta}_f)) = -\sum_{z_l \in \mathcal{Z}} \frac{1}{|\mathcal{Z}|} \log \frac{1}{|\mathcal{Z}|} = \log |\mathcal{Z}|.$

Accordingly, the second condition implies that $r(f(X; \hat{\theta}_f); \hat{\theta}_r)_l = \frac{1}{|\mathcal{Z}|}$ and therefore that at this point, because of Proposition 1, the optimal classifier $f(\cdot; \hat{\theta}_f)$ is also a pivotal quantity.

Proposition 3. [GL: It remains to prove that the procedure of Algorithm 1 converges towards that saddle point. The proof should be similar to the proof of convergence in the GAN paper.]

[GL: We should further discuss that in practice, the equality in Prop 2 may never hold. We should discuss in which circumstances. In such case, the pivotal quantity constraint can however be enforced by outweighting the L_r term, resulting in a trade-off between classifier optimality and pivotality.]

[GL: This seems to naturally extend to the case where Z takes continuous value, where L_r could be a continuous version of the cross-entropy?]

5 Experiments

6 Related work

[GL: Similar to domain adaptation, but with infinitely many domains, as parameterized by Z, also related to transfer learning.]

[GL: Other applications: removing implicit bias in data (e.g. gender bias).]

7 Conclusions

Acknowledgments

References

- [1] M. H. Degroot and M. J. Schervish, *Probability and statistics*. 4 ed., 2010.
- [2] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, "Generative adversarial nets," in *Advances in Neural Information Processing Systems*, pp. 2672–2680, 2014.