Наилучшее равномерное приближение многочленом первой степени

Условие

Построить наилучшее равномерное приближение функции $f(x) = 2^x$, $x \in [-1,1]$ с помощью многочлена первой степени. Найти наилучшее приближение.

Алгоритм решения

Все последующие действия справедливы лишь при предположении, что исходная функция выпуклая (по свойствам степенной функции).

Для построения наилучшего равномерного приближения многочленом первой степени понадобятся следующие формулы:

1. многочлен наилучшего равномерного приближения в общем виде

$$P_1(x) = c_0 + c_1 x \tag{1}$$

2. необходимое и достаточное условие существования и единственности многочлена

$$f(x_i) - P_n(x_i) = (-1)^i \alpha \Delta, \quad \Delta = ||f(x) - P_n(x)||, \quad i = 0, \dots, n+1,$$
 (2)

где $\alpha = 1$ или $\alpha = -1$, а x_i — точки чебышевского альтернанса.

Также необходимо определить точки чебышевского альтернанса x_0, x_1, x_2 (точки, в которых задана исходная функция, но которые находятся дальше всего от приближающего многочлена). Две из них (первую и последнюю) мы можем задать на концах:

$$\begin{cases} x_0 = -1, \\ x_2 = 1. \end{cases}$$

Для оставшейся точки мы сформулируем условие следующим образом. Вследствие выпуклости функция $f(x) - P_n(x)$ может иметь только одну внутреннюю точку экстремума. Эту точку и возьмем в качестве оставшейся точки альтернанса. То есть, если функция f(x) дифференцируема, то

$$f'(x_1) - P_1'(x_1) = 0. (3)$$

Таким образом, имея 3 условия из (2) и условие (3), составляем систему:

$$\begin{cases} f(x_0) - P_1(x_0) = \alpha \Delta, \\ f(x_1) - P_1(x_1) = -\alpha \Delta, \\ f(x_2) - P_1(x_2) = \alpha \Delta, \\ f'(x_1) - P'_1(x_1) = 0. \end{cases}$$
(4)

Подставим известные нам значения:

$$\begin{cases} f(-1) - (c_0 + c_1 \cdot (-1)) = \alpha \Delta, \\ f(x_1) - (c_0 + c_1 \cdot x_1) = -\alpha \Delta, \\ f(1) - (c_0 + c_1 \cdot 1) = \alpha \Delta, \\ f'(x_1) - c_1 = 0. \end{cases} \Rightarrow \begin{cases} \frac{1}{2} - (c_0 - c_1) = \alpha \Delta, \\ 2^{x_1} - (c_0 + c_1 \cdot x_1) = -\alpha \Delta, \\ 2 - (c_0 + c_1) = \alpha \Delta, \\ 2^{x_1} \ln 2 - c_1 = 0. \end{cases}$$

Вычислим c_1 , отняв от третьего уравнения первое:

$$\frac{3}{2} - 2c_1 = 0 \Rightarrow c_1 = \frac{3}{4}.$$

Вычислим x_1 , подставив в последнее уравнение значение c_1 :

$$x_1 = \log_2 \frac{3}{4 \ln 2} \approx 0.11373.$$

Сложим второе и третье уравнение, чтобы найти c_0 :

$$\frac{3}{4\ln 2} + 2 - 2c_0 - \frac{3}{4} - \frac{3}{4}\log_2\frac{3}{4\ln 2} = 0 \Rightarrow c_0 = \frac{3}{8\ln 2} + \frac{5}{8} - \frac{3}{8}\log_2\frac{3}{4\ln 2} \approx 1.12336.$$

Остается найти $\alpha\Delta$. Мы можем найти это значение как из 1, так и из 3 уравнения. К примеру, возьмем третье уравнение:

$$\alpha \Delta = 2 - \frac{3}{8 \ln 2} - \frac{5}{8} + \frac{3}{8} \log_2 \frac{3}{4 \ln 2} \approx 0.87664.$$

Соответственно $\alpha=1,\,\Delta\approx0.87664$ и многочлен наилучшего равномерного приближения имеет вид

$$P_1(x) = 0.75x + 1.12336.$$

Графически это будет выглядеть следующим образом:

Function Approximation

