Let \mathcal{X} be a finite set and $x \in \mathcal{X}$. We use $x \leftarrow \mathcal{X}$ to denote that x is chosen uniformly at random from \mathcal{X} .

We show that the bound achieved in the Theorem 1.1 is asymptotically optimal. Let us define the following algorithm.

Algorithm Breaker $\Gamma_H^{(k)}(r_B)$

Oracle: A hint circuit $\Gamma_H^{(k)}$ for the k-wise direct product of DWVP.

Input: A bitstring $r_B \in \{0, 1\}^*$.

 $q \leftarrow Q$

for all $q \in Q \setminus \{q\}$ do:

ask a hint query using oracle Γ_H on q'With probability $\delta^{(k)}$ ask a verification query $(q, (y_1, \dots, y_k))$

We define the following problem poser for a dynamic weakly verifiable puzzle.

Poser Π_{DWVP}

Input: A bitstring $r_{\pi} \in \{0,1\}^n$.

Pick a random permutation $\pi: \{0,1\}^n \to \{0,1\}^n$

Generate hint and verification circuits such that:

 $\Gamma_H(q)$ on input $q \in \{0,1\}^n$ returns $\pi(q)$ or \bot if $q \notin \{0,1\}^n$

 $\Gamma_V(q,(y_1,\ldots,y_k))$ on input $q\in\{0,1\}^n$ returns 1 if for each $1\leq i\leq k$ we have $\pi_i(q)=y_i$ and 0 otherwise.