- 7.1. Concepto de operación financiera de amortización de capital o préstamos. Tipos.
- 7.2. Métodos de amortización mediante reembolso único.
- 7.3. Método de amortización clásico, progresivo o francés.
- 7.4. Método de amortización americano.
- 7.5. Método de amortización alemán.

7.1. Concepto de operación financiera de amortización de capital o préstamos. Tipos.

a₁, a₂, ..., a_n: Términos amortizativos.

7.1. Concepto de operación financiera de amortización de capital o préstamos. Tipos.

Notaciones utilizadas:

a₁, a₂, ..., a_n: Términos amortizativos.

I_k: Cuota de interés del periodo "k".

M_k: Cuota de amortización del periodo "k".

C_k: Capital pendiente al final del periodo "k".

m_k: Capital amortizado hasta el periodo "k".

i: Tipo de interés.

z: Tipo de interés anticipado.

7.1. Concepto de operación financiera de amortización de capital o préstamos. Tipos.

EXPRESIONES GENERALES:

$$a_k = I_k + M_k$$

$$\left| \mathbf{I}_{\mathbf{k}} - \mathbf{C}_{\mathbf{k}-1} \cdot \mathbf{i} \right|$$

$$\left|\mathbf{I}_{\mathbf{k}}^{*}=\mathbf{C}_{\mathbf{k}}\cdot\mathbf{z}\right|$$

$$C_k = C_{k-1} - M_k$$

$$C_k = C_0 - m_k$$

$$\mathbf{m}_{k} = \mathbf{C}_{0} - \mathbf{C}_{k}$$

$$|\mathbf{m}_{k}| = \mathbf{M}_{1} + \mathbf{M}_{2} + ... + \mathbf{M}_{k}$$

7.1. Concepto de operación financiera de amortización de capital o préstamos. Tipos.

Métodos de amortización mediante reembolso único:

- Reembolso único.
- Reembolso único con pago periódico de intereses.

TIPOS DE PRÉSTAMOS

Métodos de amortización mediante rentas constantes:

- Método de amortización francés, progresivo o clásico.
- Método de amortización alemán.
- Método de amortización americano.

Métodos de amortización mediante rentas variables:

- Método de amortización mediante rentas variables en progresión aritmética. Caso particular: método italiano.
- Método de amortización mediante rentas variables en progresión geométrica.

- 7.2. Métodos de amortización mediante reembolso único.
 - a) Método de amortización mediante reembolso único:

$$|a_{1} = a_{2} = \dots = a_{n-1} = 0$$

$$a_{n} = C_{0} \cdot (1+i)^{n}$$

$$C_{1} = C_{2} = \dots = C_{n-1} = C_{0}$$

$$C_{n} = 0$$

7.2. Métodos de amortización mediante reembolso único.

Ejemplo I:

El Sr. "X" solicita un préstamo de 100.000 euros a amortizar mediante reembolso único en 10 años. Calcular los términos amortizativos si el tipo de interés es el 4%.

7.2. Métodos de amortización mediante reembolso único.

Ejemplo I:

El Sr. "X" solicita un préstamo de 100.000 euros a amortizar mediante reembolso único en 10 años. Calcular los términos amortizativos si el tipo de interés es el 4%.

$$\begin{aligned}
a_1 &= a_2 = \dots = a_9 = 0 \\
a_{10} &= 100.000 \cdot (1 + 0,04)^{10} = 148.024,43 \in \\
C_1 &= C_2 = \dots = C_{n-1} = C_0 = 100.000 \\
C_n &= 0
\end{aligned}$$

- 7.2. Métodos de amortización mediante reembolso único.
 - b) Método de amortización mediante reembolso único con pago periódico de intereses:

$$\begin{aligned} a_k &= I_k = C_0 \cdot i, & k = 1, 2, ..., n - 1 \\ a_n &= I_n + C_0 = C_0 \cdot i + C_0 = C_0 \cdot (1 + i) \\ C_1 &= C_2 = ... = C_{n-1} = C_0 \\ C_n &= 0 \end{aligned}$$

7.2. Métodos de amortización mediante reembolso único.

Ejemplo 2:

El Sr. "X" solicita un préstamo de 100.000 euros a amortizar mediante reembolso único en 10 años con pago periódico de intereses. Calcular los términos amortizativos si el tipo de interés es el 4%.

7.2. Métodos de amortización mediante reembolso único.

Ejemplo 2:

El Sr. "X" solicita un préstamo de 100.000 euros a amortizar mediante reembolso único en 10 años con pago periódico de intereses. Calcular los términos amortizativos si el tipo de interés es el 4%.

$$\begin{aligned} \mathbf{a}_1 &= \mathbf{a}_2 = \dots = \mathbf{a}_9 = \mathbf{C}_0 \cdot \mathbf{i} = 100.000 \cdot 0, 04 = 4.000 \in \\ \mathbf{a}_{10} &= \mathbf{I}_{10} + \mathbf{M}_{10} = \mathbf{C}_0 \cdot \mathbf{i} + \mathbf{C}_0 = \mathbf{C}_0 \cdot (1 + \mathbf{i}) = \\ &= 100.000 \cdot (1 + 0, 04) = 104.000 \in \end{aligned}$$

7.3. Método de amortización clásico, progresivo o francés.

a) Equivalencia financiera en el origen:

$$\mathbf{C}_0 = \mathbf{a} \cdot \mathbf{a}_{\overline{\mathbf{n}}|\mathbf{i}}$$

b) Relación entre dos cuotas de amortización consecutivas:

$$\begin{vmatrix} a = I_{k+1} + M_{k+1} = C_k \cdot i + M_{k+1} \\ a = I_k + M_k = C_{k-1} \cdot i + M_k \end{vmatrix} 0 = (C_k - C_{k-1}) \cdot i + M_{k+1} - M_k$$

$$M_{k+1} = M_k \cdot (1+i)$$

- 7.3. Método de amortización clásico, progresivo o francés.
- c) Capital pendiente al final del periodo "k":

$$C_{k} = a \cdot a_{\overline{n-k}|_{i}}$$

d) Capital amortizado hasta el periodo "k":

$$\begin{split} m_{k} &= C_{0} - C_{k} \\ m_{k} &= M_{1} + M_{2} + ... + M_{k} = \\ &= M_{1} + M_{1} \cdot (1+i) + ... + M_{1} \cdot (1+i)^{k-1} = M_{1} \cdot S_{\overline{k}|i} \\ m_{n} &= M_{1} \cdot S_{\overline{n}|i} = C_{0} \end{split}$$

7.3. Método de amortización clásico, progresivo o francés.

Cuadro de amortización:

n	a_k	l _k	M _k	m_k	C_k
0	•••	• • •	•••	•••	C_0
	a	C ₀ ·i	a-l _l	M _I	C ₀ -M ₁
2	a	C _I ·i	a-l ₂	M ₁ +M ₂	C ₁ -M ₂
n	a	C _{n-1} ·i	a-I _n	$M_1 + M_2 + + M_n = C_0$	$C_{n-1}-M_n=0$

7.3. Método de amortización clásico, progresivo o francés.

Ejemplo 3:

E. Sr. "X" solicita un préstamo de 12.000 euros a amortizar mediante términos amortizativos anuales constantes durante 5 años. Construir el cuadro de amortización si el tipo de interés de la operación es el 3%.

7.3. Método de amortización clásico, progresivo o francés.

n	a _k	l _k	M_k	m_k	C_k
0					12.000,00
1	2.620,25	360,00	2.260,25	2.260,25	9.739,75
2	2.620,25	292,19	2.328,06	4.588,32	7.411,68
3	2.620,25	222,35	2.397,90	6.986,22	5.013,78
4	2.620,25	150,41	2.469,84	9.456,06	2.543,94
5	2.620,25	76,32	2.543,94	12.000,00	0,00

7.4. Método de amortización americano.

Operación de amortización:

Tipo de interés:

Operación de constitución:

Tipo de interés:

7.4. Método de amortización americano.

Operación de amortización:

Tipo de interés:

$$a_1 = a_2 = ... = a_{n-1} = C_0 \cdot i$$

 $a_n = C_0 \cdot i + C_0 = C_0 \cdot (1+i)$

$$C_1 = C_2 = ... = C_{n-1} = C_0$$
 $M_1 = M_2 = ... = M_{n-1} = 0$
 $C_n = 0$
 $M_n = C_0$

$$\mathbf{M}_{1} = \mathbf{M}_{2} = \dots = \mathbf{M}_{n-1} = 0$$
$$\mathbf{M}_{n} = \mathbf{C}_{0}$$

7.4. Método de amortización americano.

Operación de constitución:

Tipo de interés:

a) Cuantía periódica destinada a la constitución del fondo:

$$f \cdot S_{\overline{n}|i'} = C_0 \Longrightarrow f = \frac{C_0}{S_{\overline{n}|i'}}$$

7.4. Método de amortización americano.

Operación de constitución:

Tipo de interés:

b) Fondo constituido en los "k" primeros periodos:

$$F_{k} = f \cdot S_{\overline{k}|i'} = C_{0} \cdot \frac{S_{\overline{k}|i'}}{S_{\overline{n}|i'}}$$

7.4. Método de amortización americano.

Operación de constitución:

c) Relación entre dos cuotas de constitución consecutivas:

$$F_{k+1} = F_{k} \cdot (1+i') + f \} F_{k+1} - F_{k} = (F_{k} - F_{k-1}) \cdot (1+i')$$

$$F_{k} = F_{k-1} \cdot (1+i') + f \} \Delta_{k+1} = \Delta_{k} \cdot (1+i')$$

d) Cuantía total a desembolsar en cada periodo:

$$\mathbf{a'} = \mathbf{C}_0 \cdot \mathbf{i} + \mathbf{f} = \mathbf{C}_0 \cdot \mathbf{i} + \frac{\mathbf{C}_0}{\mathbf{S}_{\overline{\mathbf{n}}|\mathbf{i'}}}$$

e) Capital pendiente de constituir después de "k" periodos:

$$C_{k} = C_{0} - F_{k}$$

7.4. Método de amortización americano.

Cuadro de amortización:

n	a´	l _k	f	F_k	C′ _k	C_k
0	•••	• • •	• • •	•••	C_0	C_0
ı	I ₁ + f	C ₀ ·i	f	f	$C_0 - f$	C_0
2	l ₂ + f	C ₀ ·i	f	F _I · (I+i') + f	C′ _I – f	C_0
n	l _n + f	C ₀ ·i	f	$F_{n-1} \cdot (1+i') + f = C_0$	$C'_{n-1} - f = 0$	0

7.4. Método de amortización americano.

Ejemplo 4:

E. Sr. "X" solicita un préstamo de 12.000 euros a amortizar mediante términos amortizativos anuales constantes durante 5 años por el método americano. Construir el cuadro de amortización y de constitución si el tipo de interés de la operación de amortización es el 3% y el de la operación de constitución el 4%.

7.4. Método de amortización americano.

n	a´	f	l _k	F _k	C′ _k	C_k
0						12.000,00
ı	2.575,53	2.215,53	360,00	2.215,53	9.784,47	12.000,00
2	2.575,53	2.215,53	360,00	4.519,67	7.480,33	12.000,00
3	2.575,53	2.215,53	360,00	6.915,98	5.084,02	12.000,00
4	2.575,53	2.215,53	360,00	9.408,15	2.591,85	12.000,00
5	2.575,53	2.215,53	360,00	12.000,00	0,00	0,00

7.5. Método de amortización alemán.

a) Equivalencia financiera en el origen:

$$C_0 - C_0 \cdot z = C_0 \cdot (1 - z) = a \cdot (1 - z) + a \cdot (1 - z)^2 + \dots + a \cdot (1 - z)^n$$

$$C_0 = a + a \cdot (1 - z) + \dots + a \cdot (1 - z)^{n-1} = a \cdot \frac{1 - (1 - z)^{n-1} \cdot (1 - z)}{1 - (1 - z)}$$

$$C_0 = a \cdot \frac{1 - (1 - z)^n}{z}$$

- 7.5. Método de amortización alemán.
- b) Relación entre dos cuotas de amortización consecutivas:

$$a = I_{k+1}^* + M_{k+1} = C_{k+1} \cdot z + M_{k+1}$$

$$a = I_k^* + M_k = C_k \cdot z + M_k$$

$$0 = (C_{k+1} - C_k) \cdot z + M_{k+1} - M_k$$

$$M_k = M_{k+1} \cdot (1-z)$$

c) Capital pendiente al final del periodo "k":

$$C_k = a \cdot \frac{1 - (1 - z)^{n - k}}{z}$$

- 7.5. Método de amortización alemán.
- d) Capital amortizado hasta el periodo "k":

$$\begin{split} m_k &= C_0 - C_k \\ m_k &= a \cdot \frac{1 - (1 - z)^n}{z} - a \cdot \frac{1 - (1 - z)^{n - k}}{z} = \\ &= \frac{a}{z} \cdot \left[(1 - z)^{n - k} - (1 - z)^n \right] \\ m_k &= M_1 + M_2 + ... + M_k \\ m_n &= M_1 + M_2 + ... + M_n = C_0 \end{split}$$

7.5. Método de amortización alemán.

Cuadro de amortización:

n	a _k	l _k	M_k	m_k	C_k
0	$C^0 \cdot z$	$C_0 \cdot z$	•••	•••	$C_1 + M_1 = C_0$
1	a	C _I ·z	a-l _l	m ₂ - M ₂	$C_2 + M_2$
2	a	$C_2 \cdot z$	a-l ₂	m ₃ - M ₃	C ₃ + M ₃
		1			
n-I	a	$C^{n-I} \cdot z$	a-I _{n-I}	m _n -M _n	$C_n + M_n = C_{n-1}$
n	a		$a = M_n$	C_0	0

7.5. Método de amortización alemán.

Ejemplo 5:

E. Sr. "X" solicita un préstamo de 12.000 euros a amortizar mediante términos amortizativos anuales constantes durante 5 años. Construir el cuadro de amortización si el tipo de interés anticipado de la operación es el 3%.

7.5. Método de amortización alemán.

n	a_k	l _k	M_k	m _k	C _k
0	360,00	360,00			12.000,00
ı	2.548,38	292,32	2.256,07	2.256,07	9.743,93
2	2.548,38	222,54	2.325,84	4.581,91	7.418,09
3	2.548,38	150,61	2.397,77	6.979,68	5.020,32
4	2.548,38	76,45	2.471,93	9.451,62	2.548,38
5	2.548,38	•••	2.548,38	12.000,00	0,00