EEA-21 - 1º LABORATÓRIO

Álgebra de Chaveamento (caso particular da **Álgebra de Boole**)

- Conjunto de 2 elementos: **0** e **1** (F) (V)
- Três operadores: OU (**OR**), E (**AND**) e COMPLEMENTO (**NOT**)

1. IMPLEMENTAÇÃO FÍSICA:

- Elementos 0 e 1:

- Operadores: "Portas Lógicas"

Porta OR

$$y = 0$$
 somente se $a = b = 0$

Porta AND

$$a - b - y$$
 $y = 1$ somente se $a = b = 1$

$$egin{array}{c|c|c|c} a & b & y & y \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ \end{array}$$
 $y = a \cdot b = ab$

Porta NOT

$$y = \overline{a} = a'$$

2. PROPRIEDADES BÁSICAS

2.1. Idempotência

$$\begin{cases} a+a=a\\ a,a=a \end{cases}$$

2.2.

$$\begin{cases} a+1=1 \\ a\cdot 0=0 \end{cases}$$

2.3. Comutatividade

$$\begin{cases} a+b=b+a \\ a.b=b.a \end{cases}$$

2.4. Associatividade

2.5. Complementação

$$\begin{cases} a + \overline{a} = 1 \\ a \cdot \overline{a} = 0 \end{cases}$$

2.6. Identidade

$$\begin{cases} a+0=a\\ a.1=a \end{cases}$$

2.7. Involução

$$\bar{a} = a$$

2.8. Absorção

$$\begin{cases} a + a.b + a.c + a.d ... = a \\ a \cdot (a + b) \cdot (a + c) \cdot (a + d) ... = a \end{cases}$$

2.9.

$$\begin{cases} a + \bar{a}b + \bar{a}c + \bar{a}d \dots = a + b + c + d + \dots \\ a \cdot (\bar{a} + b) \cdot (\bar{a} + c) \cdot (\bar{a} + d) \dots = a.b.c.d\dots \end{cases}$$

2.10. Distributividade

$$a \cdot (b + c) = a.b + a.c$$

 $(a + b) \cdot (a + c) = a.a + a.c + a.b + b.c$
 $= a + b.c$

2.11. Teoremas de De Morgan

$$\begin{cases} \overline{a+b} = \overline{a} \cdot \overline{b} \\ \overline{a \cdot b} = \overline{a} + \overline{b} \end{cases}$$

OBSERVAÇÕES:

Porta NAND:

0

Usando De Morgan:

$$\overline{a+b} = \overline{a} \cdot \overline{b} \Rightarrow$$

$$\equiv \begin{array}{c} a \\ b \end{array} \bigcirc -y$$

$$\overline{a \cdot b} = \overline{a} + \overline{b} \quad \Box$$

$$\begin{array}{c}
a \\
b
\end{array}$$

$$a \rightarrow y$$

Podemos implementar qualquer função usando apenas portas NAND (ou NOR)

3. Portas OU EXCLUSIVO (XOR)

$$y = a \oplus b = a \cdot \overline{b} + \overline{a} \cdot b$$

Propriedades:

Se
$$a \oplus b = c$$
, então $a \oplus c = b$, $b \oplus c = a$, $a \oplus b \oplus c = 0$

4. Portas "NÃO OU EXCLUSIVO" (XNOR)

$$y = \overline{a \oplus b} = a \cdot b + \overline{a} \cdot \overline{b}$$

4.1 Projete e simule um dispositivo digital tem como entrada um número binário de 4 bits, $X_3X_2X_1X_0$, onde X_3 representa o bit mais significativo, e uma única saída f, que detecte se o número pertence à sequência de Fibonacci (1, 1, 2, 3, 5, 8, 13, 21, 34,...): saída f = 1 (um) quando a entrada pertence à sequência; e saída f = 0 (zero) quando a entrada não pertence à sequência.

Obtenha:

- a. A tabela verdade para a função lógica f;
- b. O diagrama lógico (diagrama esquemático) usando apenas portas lógicas de no máximo duas entradas; e
- c. Apresente o resultado da simulação funcional em sua forma de diagrama de temporização.

$$f = \sum (1, 2, 3, 5, 8, 13)$$

$$f = \bar{X}_3 \bar{X}_2 \bar{X}_1 X_0 + \bar{X}_3 \bar{X}_2 X_1 \bar{X}_0 + \bar{X}_3 \bar{X}_2 X_1 X_0 + \bar{X}_3 \bar{X}_2 \bar{X}_1 X_0 + \bar{X}_3 \bar{X}_2 \bar{X}_1 \bar{X}_0 + \bar{X}_3 \bar{X}_1 \bar{X}_0 + \bar{X}_1 \bar{X}_0 + \bar{X}_1 \bar{X}_0 + \bar{X}_1 \bar{X}$$

TABELA VERDADE

#	<i>x3</i>	<i>x</i> 2	x1	x0	f
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	1
3	0	0	1	1	1
4	0	1	0	0	0
5	0	1	0	1	1
6	0	1	1	0	0
7	0	1	1	1	0
8	1	0	0	0	1
9	1	0	0	1	0
10	1	0	1	0	0
11	1	0	1	1	0
12	1	1	0	0	0
13	1	1	0	1	1
14	1	1	1	0	0
15	1	1	1	1	0

4.2 Analise o circuito combinacional abaixo.

Obtenha:

- a. A expressão lógica simplificada.
- b. Simule o circuito acima e apresente o diagrama de temporização.
- c. Simule o circuito obtido a partir da expressão lógica simplificada do item a.
- d. Compare os resultados das simulações obtidas.

$$x = (\overline{b} + \underline{d}) + ac = \overline{b}\overline{d} + ac$$

$$z = \overline{bx} = b.(\overline{b}\overline{d} + ac) = \overline{abc} = \overline{a} + \overline{b} + \overline{c}$$

$$y = \overline{a} \oplus x = \overline{a} \oplus (\overline{b}\overline{d} + ac) = \overline{a}.(\overline{b}\overline{d} + ac) + a.(\overline{b}\overline{d} + ac) =$$

$$= \overline{a}.(\overline{b}\overline{d}.\overline{ac}) + a\overline{b}\overline{d} + ac =$$

$$= \overline{a}.(\overline{a}b + \overline{a}d + b\overline{c} + \overline{c}d) + a\overline{b}\overline{d} + ac =$$

$$= \overline{a}b + \overline{a}d + \overline{a}b\overline{c} + \overline{a}\overline{c}d + a\overline{b}\overline{d} + ac =$$

$$= \overline{a}b + \overline{a}d + a\overline{b}\overline{d} + ac$$

$$a\bar{b}$$
 c
 $a\bar{b}$ d
 $a\bar{b}$ d

$$\begin{array}{cccc}
a & - & \overline{a} \\
b & - & \overline{b} \\
d & - & \overline{d}
\end{array}$$

4.3 Um circuito digital desconhecido possui três entradas e gera uma única saída digital F. Para sintetizar este circuito montou-se no laboratório a seguinte configuração:

Nesta montagem o gerador de palavras digitais gera uma palavra de três bits (bits A, B e C) a cada 100 ns. O diagrama de temporização obtido através do analisador lógico e apresentado abaixo.

Considerando as informações acima Projete e Simule o circuito combinacional que satisfaz este diagrama usando apenas portas NAND de duas entradas.

Obtenha:

entradas

- a. A expressão lógica.
- b. O diagrama esquemático e a simulação deste circuito obtido, comparando com a figura dada.
- c. Justifique o aparecimento de um deslocamento temporal $\Delta \tau$ no diagrama temporal da saída F.

TABELA VERDADE

Outra maneira:

4.4 Usando somente portas NAND de duas entradas, projete e simule a função multiplexadora (MUX) 4x1 minimizada, na forma de soma de produto.

Obtenha:

- a. O diagrama esquemático; e
- b. O diagrama temporal da simulação funcional.

Outra maneira:

4.5 Seja a função:

$$F = \sum (2,3,5,7,8,11,13)$$

Projete e simule F utilizando apenas um MUX 8x1 e uma inversora.

Obtenha o diagrama esquemático e o resultado da simulação.

Obs.: F é uma função com entrada de 4 bits e sua saída vale 1 (um) quando a entrada representa um dos valores da lista acima.

	_			
# A B C D 0 0 0 0 0	F 0 1 F - 0	0	× ₀	= -
1 0001	$\begin{cases} 0 \\ 0 \end{cases} F = 0$	1	x_1	
2 0010	1 F = 1			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 7	<i>D</i>	X ₂	
$egin{array}{c cccc} 4 & 0 & 1 & 0 & 0 \\ \hline 5 & 0 & 1 & 0 & 1 \\ \hline \end{array}$	$\begin{bmatrix} 0 \\ 1 \end{bmatrix} F = D$	D	$x_3 \bigvee \bigcup \bigvee Q$	F
6 0110	0 $F = D$	<u></u>	X ₄	
7 0 1 1 1	15	D	x_5 $\langle \rangle$	
$egin{array}{c ccccccccccccccccccccccccccccccccccc$	$\left\{\begin{array}{c} 1\\0\end{array}\right\} F = \overline{D}$		7 - 1	
10 1 0 1 0	0 $F = D$	В —	X ₆	
11 1 0 1 1	$\begin{cases} 0 \\ 1 \end{cases} F = D$	o —	X ₇	
12 1 1 0 0	0 > F = D	L	S_2 S_1 S_0	
$egin{array}{c ccccccccccccccccccccccccccccccccccc$	0 7 5 - 0	$D \longrightarrow \overline{D}$		
15 1 1 1 1	$\begin{bmatrix} 0 \\ 0 \end{bmatrix} F = 0$		A B C	