MONOTONE σ -COMPLETE RC-GROUPS

DAVID J. FOULIS AND SYLVIA PULMANNOVÁ

Abstract

An RC-group is a unital group G with a distinguished compression base with respect to which G satisfies the Rickart projection and general comparison properties. We prove that a monotone σ -complete RC-group is a union of subgroups each of which is a lattice-ordered Dedekind σ -complete RC-group.

1. Introduction

If L is an orthomodular lattice (OML), then L is covered by its own blocks (maximal compatible subsets of L) and each block in L is a Boolean sublattice of L [24]. In this paper, we obtain an analogous result for an archimedean RC-group G (Definition 4.3 below), the role of the OML blocks being played by certain lattice-ordered unital subgroups of G called C-blocks (Definition 5.1 below). If G is monotone σ -complete, then so are the C-blocks, and each C-block has a representation as a group of functions on a basically disconnected compact Hausdorff space.

The partially ordered additive group $\mathbb{G}(\mathfrak{H})$ of bounded self-adjoint operators on a Hilbert space \mathfrak{H} is an important example of a monotone σ -complete RC-group, and it provides much of the motivation for the developments in this paper. As a partially ordered set, $\mathbb{G}(\mathfrak{H})$ is an anti-lattice, that is, operators $A, B \in \mathbb{G}(\mathfrak{H})$ have an infimum in $\mathbb{G}(\mathfrak{H})$ only if $A \leq B$ or $B \leq A$ [21]. However, $\mathbb{G}(\mathfrak{H})$ (and more generally, the self-adjoint part of any AW*-algebra) is covered by subgroups that are lattice ordered. Recall that there are profound connections between commutativity of operators and lattice-ordered subgroups of operator algebras [29].

A second source of motivation for our work derives from algebraic logic and involves the Lindenbaum–Tarski algebras, called MV-algebras, associated with Lukasiewicz multi-valued logics [4] and employed by Mundici in the classification of AF C*-algebras (see [23, 25]). In [23], Mundici proved that MV-algebras are the same thing as unit intervals in unital ℓ -groups. If the MV-algebra E is the unit interval in a unital ℓ -group G, then by [17, Proposition 16.9], E is monotone σ -complete if and only if G is monotone σ -complete, and by [16], E is a Heyting MV-algebra if and only if G is an RC-group.

In what follows, we use additive notation for abelian groups, we use the terminology of [17] for partially ordered abelian groups, and we adopt the nomenclature in [2] for effect algebras. For background material involving orthomodular posets

Received 26 January 2005; revised 2 August 2005.

²⁰⁰⁰ Mathematics Subject Classification 06F20 (primary), 47A20, 47A10, 03G12, 81P10 (secondary).

The work of the second author was partially supported by the Science and Technology Assistance Agency under contract No. APVT-51-032002, grant VEGA 2/3163/23 and Center of Excellence SAS – Physics of Information.

and orthomodular lattices, see [24]. For the reader's convenience, we give a brief synopsis of pertinent terminology and notation.

Let G be a partially ordered abelian group with positive cone $G^+ = \{g \in G : 0 \leq g\}$. Recall that G is directed if and only if $G = G^+ - G^+$. We say that G is unperforated if and only if, for all $g \in G$ and every $n \in \mathbb{N} := \{1, 2, 3, \ldots\}$, the condition $0 \leq ng$ implies $0 \leq g$. We say that G is archimedean if and only if, whenever $g, h \in G$ and $ng \leq h$ for all $n \in \mathbb{N}$, then $g \leq 0$. An element $u \in G^+$ is called an order unit in G if and only if, for every $g \in G$, there exists $n \in \mathbb{N}$ such that $g \leq nu$. If G has an order unit, then G is directed.

Let X be a partially ordered set (poset). If $a,b,c\in X$, and we write $a\wedge_X b=c$, we mean that the infimum (greatest lower bound) $a\wedge_X b$ of $\{a,b\}$, calculated in X, exists and equals c. A similar convention applies to the supremum (least upper bound) $a\vee_X b$ and to infinite infima and suprema. The poset X is called monotone σ -complete if and only if every ascending (descending) sequence in X that is bounded above (below) in X has a supremum (an infimum) in X. We say that X is Dedekind σ -complete if and only if every sequence in X that is bounded above (below) in X has a supremum (an infimum) in X. If $Y \subseteq X$, we understand that Y carries the induced partial order, that is, that Y is partially ordered by the restriction to Y of the partial order on X.

DEFINITION 1.1. If X is a poset and $Y \subseteq X$, we say that Y is \sup/\inf -closed in X if and only if Y is closed under the calculation of existing suprema and infima in X, that is, whenever $\emptyset \neq Z \subseteq Y$ and $s := \bigvee_X \{z : z \in Z\}$ (respectively, $t := \bigwedge_X \{z : z \in Z\}$) exists in X, then $s \in Y$ (respectively, $t \in Y$).

If Y is sup/inf-closed in X and X is monotone (respectively, Dedekind) σ -complete, then Y is monotone (respectively, Dedekind) σ -complete.

Let G be a partially ordered abelian group. If, as a partially ordered set, G forms a lattice (that is, $g \wedge_G h$ and $g \vee_G h$ exist for all $g, h \in G$), then G is said to be lattice ordered, or an ℓ -group. We shall only be considering abelian partially ordered groups, so by an ℓ -group, we always mean an abelian lattice-ordered group. If G is an ℓ -group, then G is unperforated [17, Proposition 1.22] and, therefore, it is torsion free as an abelian group. As the mapping $g \mapsto -g$ on G is order reversing and of period two, there is a duality on G whereby properties of suprema are converted to properties of infima and vice versa. In particular, G is Dedekind (respectively, monotone) σ -complete if and only if every sequence (respectively, every ascending sequence) in G that is bounded above in G has a supremum in G. Also, if G is directed and monotone σ -complete, then G is Dedekind σ -complete if and only if G is an ℓ -group.

A unital group is a directed abelian group G with a distinguished element $u \in G^+$, called the unit, such that the set $E(G) := \{e \in G : 0 \le e \le u\}$, called the unit interval, generates G^+ in the sense that every element in G^+ is a finite sum of (not necessarily distinct) elements of E(G). If G is understood, we often write E rather than E(G) for the unit interval in G. The unit G in a unital group G is automatically an order unit in G. If G is a unital group, then the unit interval G generates G^+ and $G = G^+ - G^+$, whence G generates G as a group. Obviously, the unit interval G in a unital group G is sup/inf-closed in G, hence, if G is monotone or Dedekind G-complete, then so is E.

The unit interval E in a unital group G with unit u forms an effect algebra with unit u under the restriction of + to E [2], hence we refer to elements of E as effects. An effect $e \in E$ is said to be sharp if and only if the only effect $f \in E$ with $f \leq e$ and $f \leq u - e$ is f = 0 [18].

Let E be the unit interval in a unital group G with unit u. A subset $S \subseteq E$ is a sub-effect algebra of E if and only if (1) $0, u \in S$, (2) $s \in S \Rightarrow u - s \in S$ and (3) for all $s, t \in S$, $s + t \in E \Rightarrow s + t \in S$. If S is a sub-effect algebra of E and $s, t \in S$, then $s \leq t \Leftrightarrow t - s \in S$.

DEFINITION 1.2 [14, Definition 1]. A sub-effect algebra S of the unit interval E in a unital group G is said to be normal if and only if, for all $e, f, d \in E$ with $e + f + d \in E$, we have $e + d, f + d \in S \Rightarrow d \in S$.

If S is a sub-effect algebra of E, we say that elements $s, t \in S$ are Mackey compatible in S, in symbols sC_St , if and only if there are elements $s_1, t_1, d \in S$ such that $s_1 + t_1 + d \in S$, $s = s_1 + d$, and $t = t_1 + d$ [22, p. 70]. If S is a normal sub-effect algebra of E and $s, t \in S$, then $sC_St \Leftrightarrow sC_Et$.

2. Examples

The additive group \mathbb{R} of real numbers, totally ordered as usual, is an archimedean, Dedekind σ -complete, unital ℓ -group with unit 1, with the standard unit interval [0,1] as its unit interval, and with 0 and 1 as its only sharp elements. As totally ordered subgroups of \mathbb{R} , the rational numbers \mathbb{Q} with unit 1 and the integers \mathbb{Z} with unit 1 are archimedean, unital ℓ -groups, and \mathbb{Z} (but not \mathbb{Q}) is Dedekind σ -complete.

The unital groups in Examples 2.1–2.3 below will help to fix ideas and illustrate the ensuing developments.

EXAMPLE 2.1. Let \mathfrak{H} be a Hilbert space and define $\mathbb{G}(\mathfrak{H})$ to be the additive abelian group of all bounded self-adjoint operators on \mathfrak{H} . Under the usual partial order, $\mathbb{G}(\mathfrak{H})$ is an archimedean, unperforated, unital group with the identity operator $\mathbf{1}$ as the unit, and by Vigier's theorem [28, p. 263], it is monotone σ -complete. The unit interval $\mathbb{E}(\mathfrak{H})$ in $\mathbb{G}(\mathfrak{H})$ is called the standard effect algebra on \mathfrak{H} , and the set $\mathbb{P}(\mathfrak{H})$ consisting of all projection operators $P = P^2 = P^*$ on \mathfrak{H} is a normal sub-effect algebra of $\mathbb{E}(\mathfrak{H})$. If $P \in \mathbb{E}(\mathfrak{H})$, then $P \in \mathbb{P}(\mathfrak{H}) \Leftrightarrow P$ is sharp. As an effect algebra in its own right, $\mathbb{P}(\mathfrak{H})$ forms a complete OML. If $P \in \mathbb{P}(\mathfrak{H})$, the mapping $J_P : \mathbb{G}(\mathfrak{H}) \to \mathbb{G}(\mathfrak{H})$ defined by $J_P(A) := PAP$ for all $A \in \mathbb{G}(\mathfrak{H})$ is an order-preserving group endomorphism called the Naimark compression determined by P.

If \mathcal{F} is a field of subsets of a nonempty set X, then, partially ordered by set inclusion, \mathcal{F} is a Boolean algebra under the usual set operations. In the following example, we exhibit an archimedean ℓ -group with unit interval isomorphic to \mathcal{F} .

EXAMPLE 2.2. Let \mathcal{F} be a field of subsets of a nonempty set X, and define $\mathbb{G}(X,\mathcal{F},\mathbb{Z})$ to be the partially ordered additive group, with pointwise addition and partial order, of all bounded functions $f:X\to\mathbb{Z}$ such that $f^{-1}(n)\in\mathcal{F}$ for all $n\in\mathbb{Z}$. Then, with the constant function $1(x)\equiv 1$ as unit, $\mathbb{G}(X,\mathcal{F},\mathbb{Z})$ is

an archimedean unital ℓ -group, and the unit interval $\mathbb{E}(X, \mathcal{F}, \mathbb{Z})$ in $\mathbb{G}(X, \mathcal{F}, \mathbb{Z})$ is isomorphic to the Boolean algebra of sets \mathcal{F} under the mapping $p \mapsto p^{-1}(1)$ for all $p \in \mathbb{E}(X, \mathcal{F}, \mathbb{Z})$. If $p \in \mathbb{E}(X, \mathcal{F}, \mathbb{Z})$, the mapping $J_p : \mathbb{G}(X, \mathcal{F}, \mathbb{Z}) \to \mathbb{G}(X, \mathcal{F}, \mathbb{Z})$ defined by the pointwise product $J_p(f) := pf$ for all $f \in \mathbb{G}(X, \mathcal{F}, \mathbb{Z})$ is an order-preserving group endomorphism called the Boolean compression determined by p.

The unital ℓ -group $\mathbb{G}(X, \mathcal{F}, \mathbb{Z})$ in Example 2.2 is monotone σ -complete if and only if \mathcal{F} , as a Boolean algebra, is σ -complete. If, for every $x \in X$, the singleton set $\{x\}$ belongs to the field \mathcal{F} , then \mathcal{F} is a σ -complete Boolean algebra if and only if \mathcal{F} is a σ -field. If B is a Boolean algebra and X(B) is the Stone space of B, then B is isomorphic to the field \mathcal{F} of compact open subsets of X(B); hence B is isomorphic to the unit interval $\mathbb{E}(X(B), \mathcal{F}, \mathbb{Z})$ in the archimedean ℓ -group $\mathbb{G}(X(B), \mathcal{F}, \mathbb{Z})$.

If X is a topological space, then $C(X,\mathbb{R})$ denotes the set of all continuous functions $f:X\to\mathbb{R}$ organized into a partially ordered real vector space with pointwise operations and pointwise partial order. As an additive abelian group, $C(X,\mathbb{R})$ is an archimedean ℓ -group. The constant function $1(x)\equiv 1$ on X, denoted simply by 1, is an order unit in $C(X,\mathbb{R})$ if and only if all continuous real-valued functions on X are bounded.

EXAMPLE 2.3. If X is a compact Hausdorff space, then $C(X,\mathbb{R})$ is an archimedean unital ℓ -group with unit 1. Denote the unit interval in $C(X,\mathbb{R})$ by E(X) and denote the set of sharp elements in E(X) by P(X). If $p \in C(X,\mathbb{R})$, then $p \in P$ if and only if there is a compact open subset K of X such that $p = \chi_K$ (the characteristic set function of K). The set P(X) is a normal sub-effect algebra of E(X) and, under the mapping $p \mapsto p^{-1}(1)$, P(X) is isomorphic to the Boolean algebra of all compact open subsets of X. If $p \in P(X)$, the mapping $J_p : C(X,\mathbb{R}) \to C(X,\mathbb{R})$ defined by the pointwise product $J_p(f) := pf$ for all $f \in C(X,\mathbb{R})$ is an order-preserving group endomorphism called the p-compression on $C(X,\mathbb{R})$.

Let X be a compact Hausdorff space and let \mathcal{F} be the field of compact open subsets of X. With pointwise operations and the supremum norm, $C(X,\mathbb{R})$ is actually a commutative lattice-ordered Banach algebra. Alternatively, it is a lattice-ordered order-unit Banach space with 1 as the order unit [1, p. 69], and the supremum and order-unit norms coincide. Recall that X is basically disconnected if and only if the closure of every open F_{σ} set in X remains open, and X is extremally disconnected if and only if the closure of every open set in X remains open. We note that extremally disconnected \Rightarrow basically disconnected \Rightarrow totally disconnected. If X is extremally disconnected (respectively, basically disconnected), then \mathcal{F} is a complete (respectively, a σ -complete) Boolean algebra. Conversely, if B is a Boolean algebra and X(B) is the Stone space of B, then B is σ -complete (respectively, complete) if and only if X(B) is basically disconnected (respectively, totally disconnected).

The compact Hausdorff space X is basically disconnected if and only if $C(X,\mathbb{R})$ is monotone σ -complete [17, Corollary 9.3]. (Also, see Theorem 4.8 below.) The compact Hausdorff space X is extremally disconnected if and only if $C(X,\mathbb{R})$ is a commutative AW*-algebra.

3. CB-groups

DEFINITION 3.1. Let G be a unital group with unit u and unit interval E. A mapping $J:G\to G$ is called a retraction with focus p on G if and only if J is an order-preserving group endomorphism, $p=J(u)\in E$, and for all $e\in E$, $e\leqslant p\Rightarrow J(e)=e$. A retraction $J:G\to G$ is said to be direct if and only if $g\in G^+\Rightarrow J(g)\leqslant g$. A retraction J on G is called a compression if and only if $J^{-1}(0)\cap E=\{e\in E:e+J(u)\in E\}$ [11]. Two retractions J and J' on G are called quasicomplements of each other if and only if, for all $g\in G^+$, $J(g)=g\Leftrightarrow J'(g)=0$ and $J'(g)=g\Leftrightarrow J(g)=0$.

If J is a retraction on G, then J is an idempotent, that is, $J \circ J = J$ and its focus is a sharp element of E [11, Lemmas 2.2 and 2.8]. If J and J' are quasicomplements, they are necessarily compressions [11, Lemma 3.2(iii)].

LEMMA 3.2. Let J be a direct retraction on the unital group G and define $J': G \to G$ by J'(q) := q - J(q) for all $q \in G$. Then:

- (i) J' is a direct retraction on G;
- (ii) J and J' are quasicomplementary compressions on G;
- (iii) if \widetilde{J} is a retraction on G with the same focus as J, then $\widetilde{J} = J$.

Proof. Parts (i) and (ii) follow from [11, Theorem 2.8]. To prove (iii), let u be the unit in G, let E be the unit interval in G, let $p := J(u) = \widetilde{J}(u)$ be the common focus of J and \widetilde{J} , and let $e \in E$. As E generates G as a group, it will be sufficient to prove that $J(e) = \widetilde{J}(e)$. As $0 \le J(e) \le J(u) = p$, we have $\widetilde{J}(J(e)) = J(e)$. Also, $0 \le \widetilde{J}(J'(e)) \le \widetilde{J}(J'(u)) = \widetilde{J}(u - J(u)) = \widetilde{J}(u - p) = 0$, hence $\widetilde{J}(J'(e)) = 0$. Consequently, $\widetilde{J}(e) = \widetilde{J}(J(e) + J'(e)) = J(e)$.

DEFINITION 3.3. By a compression base for the unital group G with unit interval E [14, 15], we mean a family $(J_p)_{p\in P}$ of compressions on G, indexed by a normal sub-effect algebra P of E, such that (i) each $p \in P$ is the focus of J_p and (ii) if $p, q, r \in P$ and $p + q + r \in E$, then $J_{p+r} \circ J_{q+r} = J_r$. A compression base $(J_p)_{p\in P}$ for G is proper if and only if every direct compression on G belongs to the family $(J_p)_{p\in P}$; it is direct if and only if it is the family of all direct compressions on G; and it is total if and only if every retraction on G is a compression and belongs to the family $(J_p)_{p\in P}$.

If G is a unital group with unit u and $(J_p)_{p\in P}$ is a compression base for G, then for each $p \in P$, we have $u - p \in P$, and J_{u-p} is the unique compression in the compression base that is a quasicomplement of J_p .

In Example 2.1, if $P \in \mathbb{P}(\mathfrak{H})$, then the Naimark compression J_P is indeed a compression on $\mathbb{G}(\mathfrak{H})$, the family $(J_P)_{P \in \mathbb{P}(\mathfrak{H})}$ is a total compression base for $\mathbb{G}(\mathfrak{H})$, and the only direct compressions on $\mathbb{G}(\mathfrak{H})$ are J_0 and J_1 . In Example 2.2, if $p \in \mathbb{E}(X, \mathcal{F}, \mathbb{Z})$ then the Boolean compression J_p is a direct compression on $\mathbb{G}(X, \mathcal{F}, \mathbb{Z})$ and the family $(J_p)_{p \in \mathbb{E}(X, \mathcal{F}, \mathbb{Z})}$ is a direct and total compression base for $\mathbb{G}(X, \mathcal{F}, \mathbb{Z})$. In Example 2.3, if $p \in P(X)$, then the p-compression J_p is a direct compression on $C(X, \mathbb{R})$ and the family $(J_p)_{p \in P(X)}$ is a direct and total compression base for $C(X, \mathbb{R})$.

DEFINITION 3.4. A compression-based group, for short a CB-group, is a unital group G together with a distinguished compression base $(J_p)_{p\in P}$ for G. If G is a CB-group with compression base $(J_p)_{p\in P}$, then the normal sub-effect algebra P of E is called the set of projections in G. A CB-group with a proper, a direct, or a total compression base is called a proper, a direct, or a total CB-group, respectively.

Every unital group G can be organized into a direct CB-group simply by taking the compression base to consist of all direct compressions on G, indexed by their own foci. (Note that the zero mapping $g\mapsto 0$ and the identity mapping $g\mapsto g$ are direct compressions on G.) In a direct CB-group G, the set P of projections is a Boolean algebra.

DEFINITION 3.5 [10, Definition 3.3]. A compressible group is a unital group for which every retraction is determined by its focus and every retraction has a quasicomplementary retraction.

By [11, Corollary 4.6], the unital group $\mathbb{G}(\mathfrak{H})$ in Example 2.1 is a compressible group. If G is a compressible group, then every retraction on G is a compression, and G is organized into a total CB-group by taking the compression base to be the family of all retractions (hence compressions) on G [14, Theorem 2.3]. Conversely, if G is a total CB-group, then G is necessarily a compressible group.

THEOREM 3.6. Let G be an ℓ -group and let u be an order unit in G. Then:

- (i) with u as the unit, G is a unital group;
- (ii) every retraction on the unital group G is a direct compression, hence G is a compressible group;
- (iii) if J is a (necessarily direct) compression on the unital group G, p := J(u) is the focus of J, $g \in G^+$, $n \in \mathbb{N}$, and $g \leqslant nu$, then $J(g) = g \wedge_G np$;
- (iv) if the unital ℓ -group G is organized into a direct CB-group, then it is a total CB-group, the set P of projections in E coincides with the set of sharp elements in E, and, as a sub-effect algebra of E, P is a Boolean algebra;
- (v) G is monotone σ -complete if and only if its unit interval E is monotone σ -complete.

Proof.	For (i), see [25]. For (ii) and (iv), see [10, Theorem 3.5]. Part (iii) follows
from [17,	Proposition 8.3. For (v), see [17, Proposition 16.9].	

COROLLARY 3.7. If G is a unital ℓ -group and also a CB-group, then G is proper $\Leftrightarrow G$ is direct $\Leftrightarrow G$ is total.

In what follows, we shall refer to a unital ℓ -group that is a proper (hence direct and total) CB-group as a proper ℓ -group. For instance, the unital ℓ -groups $\mathbb{G}(X, \mathcal{F}, \mathbb{Z})$ in Example 2.2 and $C(X, \mathbb{R})$ in Example 2.3 are proper (hence direct and total) ℓ -groups with compression bases $(J_p)_{p \in \mathbb{E}(X, \mathcal{F}, \mathbb{Z})}$, and $(J_p)_{p \in P(X)}$, respectively.

STANDING ASSUMPTION 3.8. Henceforth we assume that G is a CB-group with unit u, unit interval E, and projection base $(J_p)_{p \in P}$.

Organized into an effect algebra in its own right, P is an orthomodular poset (OMP) [14, Theorem 2]. The notion of compatibility in the following definition is closely related to Mackey compatibility (see Theorem 3.11).

Definition 3.9 [10, Definition 2.6].

- (i) If $p \in P$, let $C(p) := \{g \in G : g = J_p(g) + J_{u-p}(g)\}$. Elements $g \in C(p)$ are said to be compatible with the projection p.
 - (ii) If $\emptyset \neq M \subseteq P$, define $C(M) := \bigcap_{p \in M} C(p)$.

In Example 2.1, a self-adjoint operator is compatible with a projection if and only if it commutes with that projection. In Examples 2.2 and 2.3, every element is compatible with every projection.

Lemma 3.10.

- (i) If $p \in P$, then J_p is a direct compression on G if and only if G = C(p).
- (ii) If G is an ℓ -group, then G = C(P).
- (iii) G is a direct CB-group if and only if G is a proper CB-group and G = C(P).

Proof. (i) If J_p is a direct compression on G and $g \in G$, then $g \in C(p)$ by Lemma 3.2. Conversely, if G = C(p) and $g \in G^+$, then $0 \leq J_{u-p}(g)$, hence $J_p(g) \leq J_p(g) + J_{u-p}(g) = g$, so J_p is direct. Part (ii) follows from (i) and Theorem 3.6, and (iii) also follows from (i).

Let $p \in P$ and $\emptyset \neq M \subseteq P$. Then C(p) is a subgroup of G, C(p) = C(u-p), and $0, u, p, u-p \in C(p)$. In fact, C(p) is a unital group with unit u, and the family of all restrictions to C(p) of compressions J_q with $q \in P \cap C(p)$ is a compression base for C(p) [15, Theorem 3.3]. Also, C(M) is a subgroup of G, $u \in C(M)$, and since u is an order unit in G, it is also an order unit in C(M), hence C(M) is directed. However, there is no a priori reason to assume that C(M) is a unital group unless it happens that the unit interval $E \cap C(M)$ in C(M) generates $C(M)^+ = G^+ \cap C(M)$.

THEOREM 3.11. If $p, q \in P$, then the following conditions are mutually equivalent: (i) $J_p \circ J_q = J_q \circ J_p$; (ii) $J_p(q) = J_q(p)$; (iii) $J_p(q) \leqslant q$; (iv) pC_Eq ; (v) pC_Pq ; (vi) $\exists r \in P$ such that $J_p \circ J_q = J_r$; (vii) $J_p(q) \in P$; (viii) $q \in C(p)$; (ix) $p \in C(q)$.

Proof. See [15, Theorem 2.7].

As a consequence of Theorem 3.11, if $p, q \in P$, then $p \in C(q)$ if and only if p and q are Mackey compatible in P, or equivalently, in E. Therefore, for $p, q \in P$ we usually write the condition $p \in C(q)$ in the form pCq. In what follows, we shall be focusing on the OMP P and its properties, so we shall write existing suprema and infima in P without using subscripts. (We continue to use subscripts to signify existing suprema and infima in other subsets of G.)

COROLLARY 3.12. Let $p, q \in P$. Then:

- (i) $pCq \Leftrightarrow qCp$;
- (ii) if pCq, then $p \wedge q$ exists in P, and it is also the infimum $p \wedge_E q$ of p and q in E;
- (iii) if pCq, then $J_p \circ J_q = J_q \circ J_p = J_{p \wedge q}$ and $J_p(q) = J_q(p) = p \wedge q$;
- (iv) $p \leqslant q \Leftrightarrow J_p \circ J_q = J_q \circ J_p = J_p$.

THEOREM 3.13. Let $p_1, p_2, \ldots, p_n \in P$ with $p := \sum_{i=1}^n p_i$. Then:

- (i) if $p \in E$ and $g \in \bigcap_{i=1}^{n} C(p_i)$, then $p \in P$, $g \in C(p)$, $J_p(g) = \sum_{i=1}^{n} J_{p_i}(g)$, and $p = p_1 \vee p_2 \vee \ldots \vee p_n$;
- (ii) if p_1, p_2, \ldots, p_n are pairwise compatible, then $p_1 \wedge p_2 \wedge \ldots \wedge p_n$ and $p_1 \vee p_2 \vee \ldots \vee p_n$ exist in P and

$$\bigcap_{i=1}^{n} C(p_i) \subseteq C(p_1 \wedge p_2 \wedge \ldots \wedge p_n) \cap C(p_1 \vee p_2 \vee \ldots \vee p_n).$$

Proof. See [15, Theorems 2.9 and 2.10].

THEOREM 3.14. If $p, q, r \in P$, pCq, pCr, and qCr, then $pC(q \lor r)$, $(p \land q)C(p \land r)$, and $p \land (q \lor r) = (p \land q) \lor (p \land r)$.

Proof. By Theorem 3.13, we have $pC(q \vee r)$ and $pC(q \wedge r)$, hence $J_p(q \vee r) = p \wedge (q \vee r)$ and $J_p(q \wedge r) = p \wedge q \wedge r$ by Corollary 3.12. As qCr, there are projections $q_1, r_1, d \in P$ such that $q = q_1 + d$, $r = r_1 + d$, $q \vee r = q_1 + r_1 + d \in P$, and $d = q \wedge r \in P$. Therefore, $J_p(d) = J_p(q \wedge r) = p \wedge q \wedge r$. By Corollary 3.12 again, $p \wedge q = J_p(q) = J_p(q_1) + J_p(d) = J_p(q_1) + (p \wedge q \wedge r)$ and $p \wedge r = J_p(r) = J_p(r_1) + J_p(d) = J_p(r_1) + (p \wedge q \wedge r)$, and it follows that $J_p(q_1) = (p \wedge q) - (p \wedge q \wedge r) \in P$ and $J_p(r_1) = (p \wedge r) - (p \wedge q \wedge r) \in P$. Therefore, $J_p(q_1) + J_p(r_1) + J_p(d) = J_p(q_1 + r_1 + d) = J_p(q \vee r) = p \wedge (q \vee r) \leqslant u$ with $p \wedge q = J_p(q_1) + J_p(d)$ and $p \wedge r = J_p(r_1) + J_p(d)$, so $(p \wedge q)C(p \wedge r)$ and $(p \wedge q) \vee (p \wedge r) = p \wedge (q \vee r)$.

By Theorems 3.13 and 3.14, the OMP P is regular [20] in the sense that sets of pairwise compatible elements of P belong to Boolean sub-effect algebras of P.

LEMMA 3.15. If $p \in P$, then $J_p(G) = \{g \in G : J_p(g) = g\}$ is sup/inf-closed in G.

Proof. As J_p is idempotent, we have $J_p(G) = \{g \in G : J_p(g) = g\}$. Let $\emptyset \neq H \subseteq J_p(G)$ and suppose that $s := \bigvee_G \{h : h \in H\}$ exists in G. Since $h \leqslant s$ for all $h \in H$, we have $h = J_p(h) \leqslant J_p(s)$ for all $h \in H$, whence $s \leqslant J_p(s)$. Choose and fix $h_0 \in H$. Then $0 \leqslant s - h_0 \leqslant J_p(s) - h_0 = J_p(s - h_0)$, whence $0 \leqslant J_{u-p}(s - h_0) \leqslant J_{u-p}(J_p(s - h_0)) = 0$, that is, $J_{u-p}(s - h_0) = 0$. Therefore, $s - h_0 = J_p(s - h_0) = J_p(s) - h_0$, and it follows that $s = J_p(s) \in J_p(G)$. The fact that $J_p(G)$ is closed under the calculation of infima in G follows by duality. \square

THEOREM 3.16. Let G be monotone σ -complete, let $\emptyset \neq M \subseteq P$, and suppose that $(g_i)_{i \in \mathbb{N}}$ is an ascending sequence in C(M) that is bounded above in G. Then $\bigvee_G \{g_i : i \in \mathbb{N}\} \in C(M)$. Therefore, C(M) is monotone σ -complete.

Proof. It will suffice to prove the theorem for the case $M = \{p\}$ with $p \in P$. Thus, assume that $(g_i)_{i \in \mathbb{N}}$ is an ascending sequence in C(p) and $g_i \leq b \in G$ for all $i \in \mathbb{N}$. For each $i \in \mathbb{N}$, define $h_i := J_p(g_i)$ and $k_i := J_{u-p}(g_i)$. Since $g_i \in C(p)$, we have $g_i = h_i + k_i$ for all $i \in \mathbb{N}$. Also, $(h_i)_{i \in \mathbb{N}}$ is an ascending sequence in $J_p(G)$, bounded above in G by $J_p(b)$, and $(k_i)_{i \in \mathbb{N}}$ is an ascending sequence in $J_{u-p}(G)$, bounded above in G by $J_{u-p}(b)$. As G is monotone σ -complete, the suprema $h := \bigvee_G \{h_i : i \in \mathbb{N}\}$ and $k := \bigvee_G \{k_i : i \in \mathbb{N}\}$ exist in G. By Lemma 3.15, $h = J_p(h)$

and $k = J_{u-p}(k)$, whence $J_{u-p}(h) = J_{u-p}(J_p(h)) = 0$ and $J_p(k) = J_p(J_{u-p}(k)) = 0$, and it follows that $J_p(h+k) + J_{u-p}(h+k) = h+k$, that is, $h+k \in C(p)$.

Clearly, h + k is an upper bound in G for $\{h_i + k_i : i \in \mathbb{N}\}$. Suppose $c \in G$ with $h_i + k_i \leq c$ for all $i \in \mathbb{N}$. Fix $i \in \mathbb{N}$. If $j \in \mathbb{N}$ and $m = \max\{i, j\}$, then $h_i + k_j \leq h_m + k_m \leq c$, whence $k_j \leq c - h_i$, and it follows that $k \leq c - h_i$, so $h_i \leq c - k$. But i is an arbitrary positive integer, and therefore $h \leq c - k$ (that is, $h + k \leq c$), and we conclude that $h + k = \bigvee_G \{h_i + k_i : i \in \mathbb{N}\} = \bigvee_G \{g_i : i \in \mathbb{N}\}$, so $\bigvee_G \{g_i : i \in \mathbb{N}\} \in C(p)$.

4. The Rickart projection and general comparability properties

We maintain our Standing Assumption 3.8, so that G is a CB-group with unit u, unit interval E, and compression base $(J_p)_{p \in P}$.

DEFINITION 4.1. The CB-group G has the Rickart projection property if and only if there is a mapping $': G \to P$, called the Rickart mapping, such that, for all $g \in G$ and all $p \in P$, $p \leq g' \Leftrightarrow g \in C(p)$ with $J_p(g) = 0$.

In Example 2.1, the compressible group $\mathbb{G}(\mathfrak{H})$ has the Rickart projection property, the Rickart mapping being given by $A \mapsto A'$, where A' is the projection onto the null space of $A \in \mathbb{G}(\mathfrak{H})$. In Example 2.2, $\mathbb{G}(X, \mathcal{F}, \mathbb{Z})$ has the Rickart projection property, the Rickart mapping being given by $f \mapsto f' = \chi_K$, where χ_K is the characteristic set function of $K := f^{-1}(0)$ for all $f \in \mathbb{G}(X, \mathcal{F}, \mathbb{Z})$.

THEOREM 4.2. Suppose that G has the Rickart projection property. Then we have the following.

- (i) P is an orthomodular lattice (OML) and, for $p, q \in P$, $p \wedge q = J_p((J_p(q'))')$.
- (ii) If $e \in E$, then e'' := (e')' is the smallest element in $\{p \in P : e \leq p\}$.
- (iii) P is sup/inf-closed in E.
- (iv) If the unit interval E is monotone σ -complete, then P is a σ -complete OML.
- (v) Let $\emptyset \neq M \subseteq P$. Then if the supremum $s := \bigvee \{p : p \in M\}$ exists in P (respectively, if the infimum $t := \bigwedge \{p : p \in M\}$ exists in P), then $C(M) \subseteq C(s)$ (respectively, $C(M) \subseteq C(t)$).

Proof. (i) See [15, Theorem 5.4]. (ii) See [15, Theorem 5.3 (viii)]. (iii) Let $\emptyset \neq M \subseteq P$ and suppose that $t = \bigwedge_E \{p : p \in M\}$. As $t \leqslant p$ for all $p \in M$, (ii) implies that $t'' \leqslant p$ for all $p \in M$, whence $t'' \leqslant t$. But, by (ii) again, $t \leqslant t''$, so $t = t'' \in P$. That P is closed under the computation of suprema in E follows by duality. Property (iv) follows from (iii) and the fact that P is a lattice. (v) Suppose $s := \bigvee \{p : p \in M\}$ exists in P, and $g \in C(M)$. We have to prove that $g \in C(s)$. Let $h := g + J_{u-s}(g) - J_s(g)$ and let $p \in M$. As $p \leqslant s$, we have pCs, pC(u - s), $p \wedge s = p$, and $p \wedge (u - s) = 0$, whence $J_p(h) = 0$. Now pC(u - s) implies that (u - p)C(u - s), hence, since $g \in C(p)$, we have

$$J_p(J_{u-s}(g)) + J_{u-p}(J_{u-s}(g)) = J_{u-s}(J_p(g)) + J_{u-s}(J_{u-p}(g))$$

= $J_{u-s}(J_p(g) + J_{u-p}(g)) = J_{u-s}(g),$

that is, $J_{u-s}(g) \in C(p)$. Similarly, since pCs and $g \in C(p)$, it follows that $J_s(g) \in C(p)$. As $g, J_{u-s}(g), J_s(g) \in C(p)$, we have $h \in C(p)$. Therefore, as $J_p(h) = 0$,

the Rickart projection property implies that $p \leq h' \in P$. Since p is an arbitrary element of M, it follows that $s = \bigvee\{p : p \in M\} \leq h'$, whence that $h \in C(s)$ and $J_s(h) = 0$. But then $h = J_s(h) + J_{u-s}(h) = J_{u-s}(h) = 2J_{u-s}(g)$ (that is, $g + J_{u-s}(g) - J_s(g) = 2J_{u-s}(g)$), whereupon $g = J_s(g) + J_{u-s}(g)$ (that is, $g \in C(s)$). By duality and the fact that C(r) = C(u-r) for all $r \in P$, we also have $t = \bigwedge\{p : p \in M\} \Rightarrow C(M) \subseteq C(t)$.

Definition 4.3 [15, Definition 4.1]. Let $g \in G$.

- (i) $CPC(g) := C(\{p \in P : g \in C(p)\}).$
- (ii) $P^{\pm}(g) := \{ p \in P \cap CPC(g) : g \in C(p) \text{ and } J_{u-p}(g) \leq 0 \leq J_p(g) \}.$
- (iii) G has the general comparability property or, for short, is a comparability group if and only if $P^{\pm}(g) \neq \emptyset$ for all $g \in G$. If G is a comparability group and also an ℓ -group, then we call G a comparability ℓ -group.
- (iv) G is an RC-group if and only if it has both the Rickart property and the general comparability property. If G is an RC-group and also an ℓ -group, then we call G an $RC\ell$ -group.

In Example 2.1, if $A \in \mathbb{G}(\mathfrak{H})$, then $B \in CPC(A)$ if and only if B 'double commutes' with A, that is, if and only if B commutes with every bounded operator on \mathfrak{H} that commutes with A. Of course, if G = C(P) (for example, in Example 2.2), we have G = CPC(g) for all $g \in G$.

If $p \in P^{\pm}(g)$, then p 'splits' $g = J_p(g) + J_{u-p}(g)$ into a 'positive part' $J_p(g) \ge 0$ and a 'negative part' $J_{u-p}(g) \le 0$. If G is a comparability group and $p, q \in P^{\pm}(g)$, then $J_p(g) = J_q(g)$ and $J_{u-p}(g) = J_{u-q}(g)$ [15, Theorem 4.2], hence we can and do define $g^+ := J_p(g), g^- := -J_{u-p}(g)$, and $|g| := g^+ + g^-$ for any choice of $p \in P^{\pm}(g)$. Thus, if G is a comparability group and $g \in G$, we have $g^+, g^-, |g| \in G^+$ with $g = g^+ - g^-$.

Consider the total CB-group $\mathbb{G}(\mathfrak{H})$ in Example 2.1. Let $A \in \mathbb{G}(\mathfrak{H})$ and let A = |A|S = S|A| be the polar decomposition of A, where $|A| = \sqrt{A^2}$, S is self-adjoint, and $S^2 \in \mathbb{P}(\mathfrak{H})$ is the projection onto the orthogonal complement of the null space of A. Then $P := (S^2 + S)/2 \in \mathbb{P}(\mathfrak{H})$, P double commutes with A, and $J_{1-P}(A) = (1-P)A \leq 0 \leq PA = J_P(A)$, so $\mathbb{G}(\mathfrak{H})$ has the general comparability property, and it follows that $\mathbb{G}(\mathfrak{H})$ is an RC-group. We note that $A^+ = (|A| + A)/2$ and $A^- = (|A| - A)/2$.

It is easy to see that the proper ℓ -group $\mathbb{G}(X, \mathcal{F}, \mathbb{Z})$ in Example 2.2 is an RC ℓ -group.

Theorem 4.4. Let G be a comparability group. Then:

- (i) if $p \in E$, then $p \in P \Leftrightarrow p$ is sharp;
- (ii) G is unperforated and torsion free;
- (iii) G is archimedean if and only if for all $a, b \in G^+$, $na \leq b$ for all positive integers n only if a = 0;
- (iv) if G is monotone σ -complete, then G is archimedean;
- (v) G is a proper CB-group.

Proof. For (i), see [15, Lemma 6.9], and for (ii) and (iii), see [15, Lemma 4.6]. To prove (iv), we use (iii). Thus, assume that $a, b \in G^+$ and $na \leq b$ for all $n \in \mathbb{N}$. Then $(na)_{n \in \mathbb{N}}$ is an ascending sequence bounded from above in G, therefore the

supremum $s := \bigvee_G \{ na : n \in \mathbb{N} \}$ exists in G. But na = a + (n-1)a implies s = a + s, hence a = 0. To prove (v), suppose that J is a direct compression with focus p on G. Then p is a sharp element of E, so $p \in P$ by (i), and it follows from Lemma 3.2(iii) that $J = J_p$.

COROLLARY 4.5. Every comparability ℓ -group is a proper ℓ -group, hence it is a direct and a total CB-group.

Proof. Combine Theorem 4.4(v) and Theorem 3.6.

Theorem 4.6. Let G be a proper ℓ -group. Then:

- (i) P is sup/inf-closed in G;
- (ii) if G is monotone σ -complete, then G is an $RC\ell$ -group.
- Proof. (i) By Theorem 3.6, every sharp effect is the focus of a direct compression on G and by Corollary 3.7, G is a total ℓ -group. Let $M \subseteq P$ and suppose that $s = \bigvee_G \{p : p \in M\}$ exists in G. Evidently, $s \in E$, hence it will be sufficient to prove that s is sharp. Thus, suppose $e \in E$ with $e \leqslant s$ and $e \leqslant u-s$. Every ℓ -group satisfies the generalized distributive law, so $e = e \land_G s = \bigvee_G \{e \land_G p : p \in M\}$. For each $p \in M$, J_p is a direct compression on G, hence $e \land_G p = J_p(e)$ by Theorem 3.6(iii). But, for each $p \in M$, $0 \leqslant e \leqslant u-s \leqslant u-p$, so $e \land_G p = J_p(e) = 0$, and it follows that e = 0.
- (ii) Let G be monotone σ -complete. By [17, Theorem 9.9] and Theorem 3.6(iv), G is a comparability group. By [17, Lemma 9.8], for each $h \in G^+$, there exists a projection $h^\# \in P$ such that $J_{h^\#}(h) = h$ and, for every projection $q \in P$, $J_q(h) = h \Rightarrow h^\# \leqslant q$. If $q \in P$ and $h^\# \leqslant q$, then by Corollary 3.12, $J_q(h) = J_q(J_{h^\#}(h)) = J_{h^\#}(h) = h$, hence $h^\# \leqslant q \Leftrightarrow J_q(h) = h$. Define $h' := u h^\#$. If $p \in P$, then, replacing q by u p, we find that $p \leqslant h' \Leftrightarrow J_{u-p}(h) = h \Leftrightarrow J_p(h) = 0$. Now let $g \in G$ and put g' := |g|'. By [10, Lemma 6.2(viii)], we have $p \leqslant g' \Leftrightarrow J_p(|g|) = 0 \Leftrightarrow g \in C(p)$ with $J_p(g) = 0$, hence G has the Rickart projection property.

COROLLARY 4.7. If G is a monotone σ -complete proper ℓ -group, then P is a σ -complete Boolean algebra.

Proof. Assume the hypotheses. By Corollary 3.7, G is a direct CB-group, hence by Theorem 3.6(iv), P is a Boolean algebra. By Theorem 4.6(ii), G has the Rickart projection property. As G is monotone σ -complete, so is E, hence P is σ -complete by Theorem 4.2(iv).

THEOREM 4.8. If X is a compact Hausdorff space, then the following conditions are mutually equivalent:

- (i) X is basically disconnected;
- (ii) $C(X,\mathbb{R})$ (Example 2.3) is monotone σ -complete;
- (iii) $C(X, \mathbb{R})$ is an $RC\ell$ -group.

Proof. By [17, Corollary 9.3], we have (i) \Leftrightarrow (ii). By Theorem 4.6, (i) \Rightarrow (iii). To prove that (iii) \Rightarrow (i), assume that $C(X,\mathbb{R})$ is an RC-group and let F be an open F_{σ} subset of X. We have to show that the closure \overline{F} of F is open.

By [19, Theorem C, p. 217], there exists $f \in E(X)$ such that $F = \{x \in X : 0 < f(x)\}$. There is a compact open set $D \subseteq X$ such that $f'' = \chi_D$, the characteristic set function of D. As $f \in E(X)$, we have $f \leqslant f'' = \chi_D$ [15, Theorem 5.3(vii)], hence $F \subseteq D$, so $\overline{F} \subseteq D$. As D is open, it will be sufficient to prove that $D \subseteq \overline{F}$.

Suppose there exists $d \in D$ such that $d \notin \overline{F}$. Then there exists an open $U \subseteq X$ such that $d \in U$ and $U \cap F = \emptyset$, that is, f = 0 on U. By Urysohn's lemma, there exists $g \in E(X)$ such that g(d) = 1 and g = 0 on $X \setminus U$. As $C(X, \mathbb{R})$ satisfies general comparability, there is a compact open subset K of X such that $g \leqslant f$ on K and $f \leqslant g$ on $X \setminus K$. Now $x \in F \Rightarrow x \notin U \Rightarrow g(x) = 0$, whence $x \in F \Rightarrow g(x) < f(x) \Rightarrow x \notin X \setminus K \Rightarrow x \in K$. Therefore, $f \leqslant \chi_K$, and it follows that $\chi_D = f'' \leqslant \chi_K$ [15, Theorem 5.3(viii)]; hence $D \subseteq K$. Thus, we arrive at the contradiction $1 = g(d) \leqslant f(d) = 0$.

Without a requirement that ensures the existence of a good supply of projections, for example, general comparability, the Rickart projection property per se may not be a very stringent condition. For instance, if $[0,1] \subseteq \mathbb{R}$ is the standard unit interval, then $C([0,1],\mathbb{R})$ is a direct ℓ -group with $\{J_0,J_1\}$ as the (total) compression base, and $C([0,1],\mathbb{R})$ has the Rickart projection property, but [0,1] is not basically disconnected.

5. Blocks and C-blocks

We maintain our Standing Assumption 3.8, so that G is a CB-group with unit u, unit interval E, and compression base $(J_p)_{p \in P}$.

DEFINITION 5.1. A subset B of P is called a block in P if and only if B is a maximal set of pairwise compatible elements of P. A subgroup of G having the form C(B), where B is a block in P, is called a C-block.

Lemma 5.2. Let $B \subseteq P$ be a block. Then:

- (i) B is a normal sub-effect algebra of E;
- (ii) B is a Boolean algebra and, for $p, q \in B$, u p is the Boolean complement of p in B, $p \wedge_B q = p \wedge q$, and $p \vee_B q = p \vee q$;
- (iii) if G has the Rickart projection property, then B is sup/inf-closed in P, E, and G;
- (iv) if G is monotone σ -complete and has the Rickart projection property, then P is a σ -complete OML and B is a σ -complete Boolean algebra.

Proof. (i) Obviously, $0, u \in B$. If $p \in B$, then pCq for all $q \in B$, hence (u-p)Cq for all $q \in B$, hence the maximality of B implies that $u-p \in B$. Suppose $p, q \in B$ and $p+q \le u$. Then, as $p, q \in P$ and P is an OMP, we have $p+q=p \lor q$; hence by Theorem 3.13 and the maximality of B, it follows that $p+q \in B$. Therefore, B is a sub-effect algebra of E. Suppose that $e, f, d \in E$ with $e+f+d \le u, p := e+d \in B$, and $q := f+d \in B$. As $p, q \in P$ and P is a normal sub-effect algebra of E, it follows that $d \in P$, hence that $e=p-d, f=q-d \in P$. As P is an OMP, we have $d=p \land q$, hence $d \in B$ by Theorem 3.13 and the maximality of B, hence B is a normal sub-effect algebra of E.

Part (ii) follows directly from Theorems 3.13 and 3.14.

- (iii) Suppose $M \subseteq B$ and $p = \bigvee \{b : b \in M\}$ exists in P. Then by Theorem 4.2(v), $B \subseteq C(M) \subseteq C(p)$, so $p \in B$ by maximality, and it follows that B is sup/inf-closed in P. By Theorem 4.2(iii), P is sup/inf-closed in E, whence E is sup/inf-closed in E. As E is always sup/inf-closed in E, it follows that E is sup/inf-closed in E.
- (iv) Assume the hypotheses of (iv). By (iii), B is sup/inf-closed in G, hence B is monotone σ -complete. But a monotone σ -complete Boolean algebra is a σ -complete Boolean algebra.

In Example 2.1, the C-blocks in $\mathbb{G}(\mathfrak{H})$ are the intersections with $\mathbb{G}(\mathfrak{H})$ of the maximal commutative self-adjoint subalgebras of the algebra $\mathbb{B}(\mathfrak{H})$ of all bounded linear operators on \mathfrak{H} .

Lemma 5.3. Let $B \subseteq P$ be a block. Then:

- (i) $0, u \in B \subseteq C(B)$ and C(B) is a directed subgroup of G;
- (ii) $P \cap C(B) = B$;
- (iii) $p \in B \Rightarrow J_p(C(B)) \subseteq C(B)$;
- (iv) $g \in C(B) \Rightarrow P \cap CPC(g) \subseteq B$.

Proof. (i) The fact that $0, u \in B \subseteq C(B)$ is clear, and since u is an order unit in G, it is an order unit in C(B), hence C(B) is directed. (ii) Obviously, $B \subseteq P \cap C(B)$, and $P \cap C(B) \subseteq B$ follows from the maximality of B. (iii) Let $p, q \in P \cap C(B) = B$ and let $g \in C(B)$. Then, by Corollary 3.12, $J_q(J_p(g)) + J_{u-q}(J_p(g)) = J_p(J_q(g) + J_{u-q}(g)) = J_p(g)$, hence $J_p(g) \in C(B)$. (iv) If $g \in C(B)$ and $p \in P \cap CPC(g)$, then for all $q \in B$, we have $g \in C(q)$, hence pCq, and $p \in B$ follows from the maximality of B. □

If G is a comparability group and $g, h \in G$, then the pseudo meet $g \sqcap h$ and pseudo join $g \sqcup h$ are defined by $g \sqcap h := g - (g - h)^+$ and $g \sqcup h := g + (h - g)^+$ [13, Definition 5.2].

THEOREM 5.4. Let G be a comparability group, let $B \subseteq P$ be a block, and let $g, h \in C(B)$. Then:

- (i) $g^+, g^-, |g|, g \sqcap h, g \sqcup h \in C(B)$;
- (ii) C(B) is a unital ℓ -group with unit u, hence a direct ℓ -group;
- (iii) $g \wedge_{C(B)} h = g \sqcap h \text{ and } g \vee_{C(B)} h = g \sqcup h;$
- (iv) the family $(\bar{J}_p)_{p\in B}$ of restrictions \bar{J}_p to C(B) of compressions J_p with $p\in B$ is a compression base for C(B);
- (v) C(B) is a comparability group with respect to the compression base $(\bar{J}_p)_{p \in B}$;
- (vi) the compression base $(\bar{J}_p)_{p\in B}$ coincides with the direct compression base for the proper ℓ -group C(B);
- (vii) if G is a RC-group, then C(B) is a RC ℓ -group;
- (viii) if G is monotone σ -complete, then C(B) is a Dedekind σ -complete proper ℓ -group.

Proof. (i) Let $p \in P^{\pm}(g)$. By Lemma 5.3(iv), $p \in B$, hence $g^{+} = J_{p}(g) \in C(B)$ by Lemma 5.3(iii). Thus, $g^{-} = (-g)^{+} \in C(B)$, $|g| = g^{+} + g^{-} \in C(B)$, $g \sqcap h = g - (g - h)^{+} \in C(B)$ and $g \sqcup h = g + (h - g)^{+} \in C(B)$.

- (ii) Let $g,h \in C(B)$ and choose $p \in P^{\pm}(g-h)$. By Lemma 5.3(iv), $p \in B$, hence $g,h \in C(p)$. By Lemma 5.3(iii), $J_p(h), J_{u-p}(g) \in C(B)$. Since $J_{u-p}(g-h) \leqslant 0 \leqslant J_p(g-h)$, we have $J_{u-p}(g) \leqslant J_{u-p}(h)$ and $J_p(h) \leqslant J_p(g)$. Let $a := J_p(h) + J_{u-p}(g)$. Then $a \in C(B)$, $a \leqslant J_p(g) + J_{u-p}(g) = g$ and $a \leqslant J_p(h) + J_{u-p}(h) = h$, so a is a lower bound in C(B) for g and h. Suppose that $b \in C(B)$ and $b \leqslant g,h$. Then $J_p(b) \leqslant J_p(h)$ and $J_{u-p}(b) \leqslant J_{u-p}(g)$, so $b = J_p(b) + J_{u-p}(b) \leqslant a$. Thus a is the infimum of g and h in C(B), and it follows that C(B) is an ℓ -group. As u is an order unit in C(B), it follows that C(B) is a unital ℓ -group with unit u, hence it is a proper ℓ -group.
- (iii) By [15, Theorem 6.6(iii)], $g \sqcap h$ is a maximal lower bound in G for g and h, hence, since $g \sqcap h \in C(B)$ by (i), we have $g \land_{C(B)} h = g \sqcap h$. Likewise, $g \lor_{C(B)} h = g \sqcup h$.
- (iv) The unit interval in the compressible CB-group C(B) is $E \cap C(B)$. By Lemma 5.2(i), B is a normal sub-effect algebra of E, hence B is a normal sub-effect algebra of $E \cap C(B)$. If $p \in B$, then by Lemma 5.3(iii), $\bar{J}_p : C(B) \to C(B)$, and it is obvious that \bar{J}_p is a retraction on C(B), hence, since C(B) is an ℓ -group, \bar{J}_p is a direct compression on C(B). Clearly, $(\bar{J}_p)_{p \in B}$ is a compression base for C(B).
- (v) If $q \in B$ and $g \in C(B)$, then $g \in C(q)$, hence $g = J_q(g) + J_{u-q}(g) = \bar{J}_q(g) + \bar{J}_{u-q}(g)$ and, therefore, g is compatible with q in the CB-group C(B) with compression base $(\bar{J}_p)_{p \in B}$. For $g \in C(B)$ choose $p \in P^{\pm}(g)$. By Lemma 5.3(iv), $p \in B$, and we have $\bar{J}_{u-p}(g) \leq 0 \leq \bar{J}_p$. Therefore, with respect to the compression base $(\bar{J}_p)_{p \in B}$, C(B) is a comparability group.
- (vi) As C(B) is an ℓ -group and a comparability group, Corollary 4.5 implies that $(\bar{J}_p)_{p \in B}$ coincides with the direct compression base for C(B).
- (vii) By [15, Theorem 6.10(i)], $g' \in CPC(g)$ for all $g \in G$, whence $g \in C(B) \Rightarrow g' \in B$, and it is clear that the restriction to C(B) of the Rickart mapping $g \mapsto g'$ on G is a Rickart mapping for C(B).
 - (viii) Follows from (ii) and Theorem 3.16.

COROLLARY 5.5. Let G be a monotone σ -complete comparability group and let $(p_i)_{i\in\mathbb{N}}$ be a sequence of projections in P such that, for each $n\in\mathbb{N}$, $p_1\vee p_2\vee\ldots\vee p_n$ exists in P. Then $s:=\bigvee_G\{p_i:i\in\mathbb{N}\}$ exists in G and $s=\bigvee\{p_i:i\in\mathbb{N}\}\in P$.

Proof. For each $n \in \mathbb{N}$, let $q_n := p_1 \vee p_2 \vee \ldots \vee p_n$. Then $(q_n)_{n \in \mathbb{N}}$ is an ascending sequence in P, so $\bigvee_G \{q_n : n \in \mathbb{N}\}$ exists in G, and it is clear that $\bigvee_G \{p_i : i \in \mathbb{N}\} = \bigvee_G \{q_n : n \in \mathbb{N}\}$, so let $s := \bigvee_G \{q_n : n \in \mathbb{N}\}$. As $(q_n)_{n \in \mathbb{N}}$ is an ascending sequence in P, we have $q_n C q_m$ for all $n, m \in \mathbb{N}$, so by Zorn's lemma, there is a maximal set B of pairwise compatible projections, that is, a block in P, with $q_n \in B$ for all $n \in \mathbb{N}$. By Theorem 3.16, $s = \bigvee_G \{q_n : n \in \mathbb{N}\} \in C(B)$, and therefore $s = \bigvee_{C(B)} \{q_n : n \in \mathbb{N}\}$. By Theorem 5.4, C(B) is an ℓ -group, hence by Theorem 4.6 applied to the ℓ -group C(B), we have $s \in B \subseteq P$.

DEFINITION 5.6. Let G be a RC-group and let $g \in G$. If $\lambda \in \mathbb{Q}$, write $\lambda = m/n$ with $m, n \in \mathbb{Z}$, n > 0, and define $p_{g,\lambda} := ((ng - mu)^+)'$. By [12, Lemma 4.1], $p_{g,\lambda} \in P$ is well-defined, and we refer to the family $(p_{g,\lambda})_{\lambda \in \mathbb{Q}}$ as the rational spectral resolution of g in G.

In Example 2.1, if $A \in \mathbb{G}(\mathfrak{H})$, and if $(P_{\lambda})_{{\lambda} \in \mathbb{R}}$ is the spectral resolution of A, then $(P_{\lambda})_{{\lambda} \in \mathbb{Q}}$ is the rational spectral resolution of A in $\mathbb{G}(\mathfrak{H})$.

THEOREM 5.7. Let G be an archimedean RC-group, let $g \in G$, and let $(p_{g,\lambda})_{\lambda \in \mathbb{Q}}$ be the rational spectral resolution of g in G. Then:

- (i) $\lambda \in \mathbb{Q} \Rightarrow p_{q,\lambda} \in CPC(g)$ and $g \in C(p_{q,\lambda})$;
- (ii) if $p \in P$, then $pCp_{q,\lambda}$ for all $\lambda \in \mathbb{Q}$ if and only if $g \in C(p)$;
- (iii) there is a block B in P such that $p_{g,\lambda} \in B$ for all $\lambda \in \mathbb{Q}$, and for any such block B, we have $g \in C(B)$.

Proof. (i) See [12, Theorem 4.5(i)]. (ii) See [12, Theorem 4.9].

(iii) By (i), the projections in the family $(p_{g,\lambda})_{\lambda\in\mathbb{Q}}$ are pairwise compatible, hence by Zorn's lemma, there is a block B containing the family $(p_{g,\lambda})_{\lambda\in\mathbb{Q}}$. Furthermore, if B is any such block and $p \in B$, then $g \in C(p)$, and it follows that $g \in C(B)$. \square

Let G be an archimedean RC-group, let $g \in G$, and let $q \in P$. By [12, Theorems 4.12 and 5.9(iii)] the rational spectral resolution of q is given by $p_{q,\lambda} = 0$ if $\lambda < 0$, $p_{q,\lambda} = u - q$ if $0 \le \lambda < 1$, and $p_{q,\lambda} = u$ if $1 \le \lambda$, for all $\lambda \in \mathbb{Q}$. Therefore, $g \in C(q)$ if and only if $p_{g,\lambda}Cp_{q,\mu}$ for all $\lambda, \mu \in \mathbb{Q}$. Hence we can and do extend the notion of compatibility as follows.

DEFINITION 5.8. Let G be an archimedean RC-group and let $g, h \in G$. We say that g and h are compatible and write gCh if and only if $p_{g,\lambda}Cp_{h,\mu}$ for all $\lambda, \mu \in \mathbb{Q}$.

THEOREM 5.9. Let G be an archimedean RC-group. Then a subset of G is a C-block if and only if it is a maximal set of pairwise compatible elements of G.

Proof. Let B be a block in P. If $g \in C(B)$, then $p \in B \Rightarrow g \in C(p) \Rightarrow pCp_{g,\lambda}$ for all $\lambda \in \mathbb{Q}$, whence $p_{g,\lambda} \in B$ for all $\lambda \in \mathbb{Q}$ by the maximality of B. Consequently, any two elements of C(B) are compatible. If $h \in G$ and hCg for all $g \in C(B)$, then hCp for all $p \in B$, so $h \in C(B)$. Therefore, C(B) is a maximal set of pairwise compatible elements of G.

Conversely, suppose H is a maximal set of pairwise compatible elements of G, and let $B:=H\cap P$. If $g\in H$ and $\lambda\in\mathbb{Q}$, then $p_{g,\lambda}Ch$ for all $h\in H$, so $p_{g,\lambda}\in H$ by maximality. Conversely, if $g\in G$ and $p_{g,\lambda}\in H$ for all $\lambda\in\mathbb{Q}$, then gCh for all $h\in H$, whence $g\in H$ by maximality. Therefore, $g\in H\Leftrightarrow p_{g,\lambda}\in H$ for all $\lambda\in\mathbb{Q}$, and it follows that H=C(B) where $B:=H\cap P$.

The following theorem summarizes our main results.

Theorem 5.10. If G is an archimedean RC-group, then P is an OML, P is covered by its blocks, the blocks in P are the maximal Mackey compatible subsets of P, and they are Boolean algebras. Likewise, G is covered by its C-blocks, which are in bijective correspondence with the blocks in P; the C-blocks in G are the maximal compatible subsets of G and are archimedean lattice-ordered RC-groups. If G is a monotone G-complete G-group, then G is archimedean and the G-blocks in G are Dedekind G-complete archimedean total G-groups. Furthermore, every monotone G-complete proper G-group is a Dedekind G-complete archimedean total G-group.

6. Dedekind σ -complete proper ℓ -groups

In [17, Chapter 9], a faithful continuous-function representation is given for Dedekind σ -complete unital ℓ -groups, hence for the C-blocks in a monotone σ -complete RC-group. Our purpose in this final section is to indicate how this develops and to sketch an alternative but related representation in terms of g-tribes. We maintain our Standing Assumption 3.8, so that G is a CB-group with unit u, unit interval E, and compression base $(J_p)_{p \in P}$. To avoid triviality, we also assume that $G \neq \{0\}$ (that is, $u \neq 0$).

If X is a nonempty set, we understand that the function space \mathbb{R}^X consisting of all functions $f \colon X \to \mathbb{R}$ is organized into a locally convex, archimedean, partially ordered, directed, and lattice-ordered real topological vector space with pointwise operations, pointwise partial order, and the topology of pointwise convergence.

DEFINITION 6.1. A state on G is an order-preserving additive group homomorphism $\omega \colon G \to \mathbb{R}$ such that $\omega(u) = 1$ [17, p. 60]. The state space of G is the convex subset $\Omega \subseteq \mathbb{R}^G$ consisting of all states on G, with the relative topology inherited from \mathbb{R}^G . A state $\omega \in \Omega$ is said to be discrete if and only if $\omega(G)$ is an additive cyclic subgroup of \mathbb{R} [17, p. 70]. A state $\omega \in \Omega$ is said to be σ -additive if and only if, whenever $(g_n)_{n \in \mathbb{N}}$ is an ascending sequence in G and G is an additive follows that G is an ascending sequence in G and G is an additive set G called the extreme boundary of G is denoted by G and it is understood that G carries the relative topology inherited from G (that is, the topology of pointwise convergence).

By [17, Corollary 4.4 and Proposition 6.7], Ω is a nonempty convex compact Hausdorff space. By [17, Theorem 4.14], G is archimedean if and only if $G^+ = \{g \in G : 0 \leq \omega(g) \text{ for all } \omega \in \Omega\}$. As a consequence of the Krein–Mil'man theorem, Ω is the closed convex hull of $\partial_e \Omega$.

Suppose that B is a block in P. In the literature, there are a number of different (topologically equivalent) definitions of the Stone space of the Boolean algebra B. For our purposes, we define the Stone space X(B) of B to be the set of all functions $\gamma \in \mathbb{R}^B$ such that $\gamma(B) \subseteq \{0,1\}$, $\gamma(u)=1$, and $\gamma(p+q)=\gamma(p)+\gamma(q)$ whenever $p,q,p+q\in B$. The functions $\gamma \in X(B)$ are in bijective correspondence with the maximal proper ideals in B under $\gamma \leftrightarrow \gamma^{-1}(0)$. With the topology of pointwise convergence inherited from \mathbb{R}^B , the Stone space X(B) is a compact Hausdorff totally-disconnected topological space, and B is isomorphic to the field of compact open subsets of X(B) under the correspondence $p \leftrightarrow \{\gamma \in X : \gamma(p) = 1\}$ for all $p \in B$.

THEOREM 6.2. Let G be a proper ℓ -group with state space Ω , let P be the Boolean algebra of projections in E, and let X(P) be the Stone space of P. If $\omega \in \partial_{\mathbf{e}} \Omega$, let $\omega|_P$ be the restriction of ω to P. Then:

- (i) $\omega \in \partial_{\mathbf{e}}\Omega \Rightarrow \omega|_{P} \in X(P)$;
- (ii) if G is a RC ℓ -group, then the mapping $\omega \mapsto \omega|_P$ is a homeomorphism of $\partial_e \Omega$ onto X(P), hence $\partial_e \Omega$ is a compact subset of Ω ;
- (iii) if G is monotone σ -complete, then G is a $RC\ell$ -group and both $\partial_e\Omega$ and X(P) are basically disconnected.

Proof. (i) See [17, Lemma 8.10(d)]. (ii) See [17, Theorem 8.14]. Part (iii) follows from (ii) and Theorems 4.2 and 4.6. \Box

DEFINITION 6.3. Denote by $\operatorname{Aff}(\Omega)$ the vector subspace of $C(\Omega, \mathbb{R})$ consisting of the affine functions on Ω , that is, $\operatorname{Aff}(\Omega)$ is the vector space over \mathbb{R} of all continuous functions $f: \Omega \to \mathbb{R}$ such that, for all $t \in [0,1] \subseteq \mathbb{R}$ and all $\alpha, \beta \in \Omega$, $f(t\alpha + (1-t)\beta) = tf(\alpha) + (1-t)f(\beta)$. If $g \in G$, define $\widehat{g} \in \operatorname{Aff}(\Omega)$ by evaluation (that is, $\widehat{g}(\omega) := \omega(g)$ for all $\omega \in \Omega$), and define \widetilde{g} to be the restriction of \widehat{g} to $\partial_e \Omega$. Also define $\widehat{G} := \{\widehat{g} : g \in G\}$ and $\widetilde{G} := \{\widehat{g} : g \in G\}$.

As is easily verified, $\mathrm{Aff}(\Omega)$ is a (supremum) norm-closed vector subspace of the real Banach space $C(\Omega,\mathbb{R})$, hence $\mathrm{Aff}(\Omega)$ is a real Banach space. Under pointwise partial order, $\mathrm{Aff}(\Omega)$ is an archimedean partially ordered real vector space, and the constant function 1 is an order unit in $\mathrm{Aff}(\Omega)$, hence $\mathrm{Aff}(\Omega)$ is directed. If $0 \le f \in \mathrm{Aff}(\Omega)$, there exists $n \in \mathbb{N}$ with $f \le n \cdot 1$, so with e := (1/n)f, we have $0 \le e \le 1$ and $f = e + e + \ldots + e$ (n summands), hence $\mathrm{Aff}(\Omega)$ is an archimedean unital group under addition. As such, $\mathrm{Aff}(\Omega)$ has its own state space; however, by [17, Theorem 7.1], nothing new is achieved by passing to the state space of $\mathrm{Aff}(\Omega)$ as it is affinely homeomorphic to Ω under a natural evaluation mapping. With 1 as the order unit, $\mathrm{Aff}(\Omega)$ is an order-unit Banach space [1, p. 69], and the order-unit norm coincides with the supremum norm.

THEOREM 6.4. Both the mappings $g \mapsto \widehat{g}$ from G to $Aff(\Omega)$ and $g \mapsto \widetilde{g}$ from G to $C(\partial_e(\Omega), \mathbb{R})$ are order-preserving additive group homomorphisms. Moreover, the following conditions are mutually equivalent:

- (i) G is archimedean;
- (ii) $g \mapsto \widehat{g}$ is an isomorphism of G onto \widehat{G} (as ordered groups);
- (iii) $g \mapsto \widetilde{g}$ is an isomorphism of G onto \widetilde{G} (as ordered groups).

Proof. See [17, Theorem 7.7].

If G is archimedean, the isomorphism $g \mapsto \widehat{g}$ of G onto $\widehat{G} \subseteq \mathrm{Aff}(\Omega)$ and the isomorphism $g \mapsto \widetilde{g}$ of G onto $\widetilde{G} \subseteq C(\partial_{\mathrm{e}}\Omega,\mathbb{R})$ provide faithful function-representations for G, and the compression base for G can be reproduced faithfully both in \widehat{G} and in \widetilde{G} . This raises the question of how to give a perspicuous intrinsic characterization of \widehat{G} in $\mathrm{Aff}(\Omega)$ and of \widetilde{G} in $C(\partial_{\mathrm{e}}(\Omega),\mathbb{R})$. Unfortunately, answers to these questions are known only 'under fairly restrictive hypotheses on G' [17, p. 118]. However, for the situation of interest to us here, the answers are known for the case in which G is a Dedekind σ -complete proper ℓ -group.

Theorem 6.5. Let G be a Dedekind σ -complete proper ℓ -group. Then:

- (i) $\widehat{G} = \{ f \in Aff(\Omega) : f(\omega) \in \omega(G) \text{ for all discrete } \omega \in \Omega \};$
- (ii) $\widetilde{G} = \{ f \in C(\partial_{\mathbf{e}}\Omega, \mathbb{R}) : f(\omega) \in \omega(G) \text{ for all discrete } \omega \in \partial_{\mathbf{e}}\Omega \}.$

Proof. See [17, Corollaries 9.14 and 9.15].

Suppose G is a Dedekind σ -complete proper ℓ -group. Even with Theorem 6.5 at our disposal, there remains the issue of how to calculate existing suprema and

infima of countably infinite subsets of \widehat{G} or \widetilde{G} , since these are not necessarily the pointwise suprema and infima. We shall now sketch an alternative representation for G in terms of a g-tribe of functions (first introduced in [6]) in which existing suprema and infima are calculated pointwise. (The 'g' in g-tribe stands for 'group'.)

DEFINITION 6.6. Let X be a nonempty set. A g-tribe on X is a subgroup T of \mathbb{R}^X such that (i) every function $f \in T$ is bounded; (ii) $1 \in T$; and (iii) whenever $(f_n)_{n \in \mathbb{N}}$ is a sequence in T and there exists $f \in T$ with $f_n \leqslant f$ for all $n \in \mathbb{N}$, then $\bigvee_{F(X)} \{f_n : n \in \mathbb{N}\} \in T$.

Note that Definition 6.6 does not require that T is a sup/inf-closed subgroup of \mathbb{R}^X since the condition that $(f_n)_{n\in\mathbb{N}}$ is bounded by $f\in T$ is stronger than the condition that it is bounded by $f\in\mathbb{R}^X$. With the partial order induced from \mathbb{R}^X (that is, the pointwise partial order), a g-tribe T on X is a Dedekind σ -complete unital ℓ -group, hence we can and do organize it into a proper ℓ -group in such a way that the Boolean algebra P_T of projections in T is the set of all sharp elements of T. As T is Dedekind σ -complete, P_T is a σ -complete Boolean algebra. A projection in P_T necessarily has the form χ_A , where $A\subseteq X$, and the set $\mathcal{B}(T):=\{A\subseteq X:\chi_A\in P_T\}$ is a σ -field of subsets of X isomorphic to P_T under $A\mapsto \chi_A$.

The following theorem [6; 8, Theorem 7.1.24] can be regarded as a generalization of the Loomis–Sikorski representation theorem for σ -complete Boolean algebras.

THEOREM 6.7. Let (G, u) be a Dedekind σ -complete unital ℓ -group with unit u and let T be the g-tribe on $\partial_e \Omega$ generated by \widetilde{G} . Then there is a uniquely determined surjective order-preserving group homomorphism $\eta \colon T \to G$ such that $\eta(1) = u$, η preserves all existing countable suprema and infima, and, if $f \in T$, $g \in G$, then $\eta(f) = g$ if and only if $\{\omega \in \partial_e \Omega : f(\omega) \neq \widetilde{g}(\omega)\}$ is a meager subset of $\partial_e \Omega$.

Let G be a Dedekind σ -complete proper ℓ -group. The triple $(\partial_e \Omega, T, \eta)$ in Theorem 6.7 is called the *canonical representation* of G. In the next two propositions, we describe some properties of canonical representations. First we need a lemma.

LEMMA 6.8. Let T be a g-tribe. Then for every $f \in T$ and every characteristic function $\chi_A \in T$ we have $f \cdot \chi_A \in T$ (here '·' means the pointwise multiplication of functions).

Proof. Assume first that $0 \le f \le 1$. Then $f \cdot \chi_A = f \wedge \chi_A \in T$. Now assume that $f \ge 0$. Since T is a unital ℓ -group, we have $f = f_1 + f_2 + \ldots + f_n$, $0 \le f_i \le 1$, $i = 1, 2, \ldots, n$. Then $f \cdot \chi_A = \sum_{i=1}^n f_i \cdot \chi_A \in T$. Since T is directed, for any $f \in T$, $f = f_1 - f_2$, $f_1, f_2 \in T^+$, hence $f \cdot \chi_A = f_1 \cdot \chi_A - f_2 \cdot \chi_A \in T$.

PROPOSITION 6.9. Let (G, u) be a Dedekind σ -complete unital ℓ -group with unit u, and let $(\partial_e \Omega, T, \eta)$ be its canonical representation (obtained by the Loomis–Sikorski Theorem 6.7). Then $\eta(T^+) = G^+$.

Proof. Since η is order preserving, we have $\eta(T^+) \subseteq G^+$. To prove the inverse inclusion, we need to prove that every $g \in G^+$ has a representative $f \in T^+$ such that $\eta(f) = g$. Let $g \in G^+$. Since η is surjective, there is $f_1 \in T$ such that $\eta(f_1) = g$. Put $M := \{\omega \in \partial_e \Omega : f_1(\omega) < 0\}$. Then $f_1 = f_1 \cdot \chi_M + f_1 \cdot \chi_{M^c}, f_1 \cdot \chi_M < 0, f_1 \cdot \chi_{M^c} \geqslant 0$,

and $f_1 \cdot \chi_M$, $f_1 \cdot \chi_{M^c} \in T$ by Lemma 6.8. Let $p := \eta(\chi_M)$. Since η preserves lattice operations, p is a characteristic element of G and, by [27], $J_p(g) = \eta(f_1 \cdot \chi_M) \leq 0$, while $J_{u-p}(g) = \eta(f_1 \cdot \chi_{M^c}) \geq 0$. So we have $g^- = -J_p(g)$, $g^+ = J_{u-p}(g)$, and since $g \in G^+$, we have $g^- = 0$. It follows that $\eta(f_1 \cdot \chi_M) = 0$. Therefore, we may replace f_1 by $f := f_1 \cdot \chi_{M^c} \in T^+$, and $\eta(f) = g$.

PROPOSITION 6.10. Let (G, u) be a Dedekind σ -complete unital ℓ -group with unit u and let $(\partial_e \Omega, T, \eta)$ be its canonical representation. Then $H := \ker(\eta)$ is an ℓ -ideal of T and G is isomorphic with the quotient T/H.

Proof. By [17, Definition, p. 8], an ideal of a partially ordered group G is any directed convex subgroup of G. Let $H:=\ker(\eta)=\{f\in T:\eta(f)=0\}$. Since η is an order-preserving group homomorphism, H is a convex subgroup of T. Moreover, if $(g_i)_{i\in\mathbb{N}}$ is a nondecreasing sequence of elements in H, bounded above by an $f\in T$, then $\bigvee g_i=:g$ exists in T and belongs to H.

To prove that H is directed, take $h \in H$. Since T is directed, we have $h = f_1 - f_2$ for some $f_1, f_2 \in T^+$. We have to prove that there are $h_1, h_2 \in T^+ \cap H$ such that $h = h_1 - h_2$. By the Loomis–Sikorski Theorem 6.7, $h \in H$ if and only if $\chi_{N(h)} \in H$ (equivalently, if and only if N(h) is a meager set), where $N(h) = \{\omega : f(\omega) \neq 0\}$ is the carrier of h. We may write $h = h \cdot \chi_{N(h)}$, since h = 0 on $N(h)^c$. By Lemma 6.8, $h \cdot \chi_{N(h)} \in T$, and $h = h \cdot \chi_{N(h)} = f_1 \cdot \chi_{N(h)} - f_2 \cdot \chi_{N(h)}$, $f_1 \cdot \chi_{N(h)}$, $f_2 \cdot \chi_{N(h)} \in T$. Observe that for any $g, \chi_A \in T$, there is n > 0 such that $-n\chi_A \leqslant g \cdot \chi_A \leqslant n\chi_A$, so that $\chi_A \in H$ implies $g \cdot \chi_A \in H$.

Applying this observation and the fact that $\chi_{N(h)} \in H$, we obtain that $f_1 \cdot \chi_{N(h)}, f_2 \cdot \chi_{N(h)} \in H \cap T^+$, which entails that H is directed, hence an ideal of T. According to [17, Corollary 1.14], G/H is a lattice-ordered group. We have, for $x, y \in T$, that $x \sim_H y$ if and only if $x - y \in H$, which is equivalent with $N(x - y) \in H$. This yields $x \sim_H y$ if and only if $\eta(x) = \eta(y)$, and hence $T/H \equiv G$.

For the canonical representation $(\partial_e \Omega, T, \eta)$, we have $\eta(P_T) = P$ (see [7]). By a generalization of the Butnariu–Klement theorem [5], every $f \in T$ is $\mathcal{B}(T)$ -measurable. Suppose that m is a σ -additive state on T, and define the σ -additive probability measure μ on the σ -field $\mathcal{B}(T)$ by $\mu(A) := m(\chi_A)$ for all $A \in \mathcal{B}(T)$. Then, by [9],

$$f \in T \Rightarrow m(f) = \int_{\partial_{\sigma}\Omega} f(\omega)\mu(d\omega).$$

If \mathcal{F} is the σ -field of real Borel sets, then a (sharp real) observable for G is a mapping $\Lambda \colon \mathcal{F} \to P$ such that (i) $\Lambda(\mathbb{R}) = u$ and (ii) if $(M_n)_{n \in \mathbb{N}}$ is a sequence of pairwise disjoint sets in \mathcal{F} , then $\Lambda(\bigcup_{n \in \mathbb{N}} M_n) = \bigvee_P \{\Lambda(M_n) : n \in \mathbb{N}\}$. Each such observable Λ is uniquely determined by its spectral resolution; that is, the mapping $\mathbb{R} \to P$ defined by $\lambda \mapsto \Lambda((-\infty, \lambda])$. For the general theory of observables (sharp and unsharp), see $[\mathbf{3}, \mathbf{24}, \mathbf{30}]$.

THEOREM 6.11. Let G be a Dedekind σ -complete proper ℓ -group and let $(\partial_e \Omega, T, \eta)$ be the canonical representation of G. Then we have the following.

(i) G is a total RC-group, P is the set of sharp elements in E, and P is a σ -complete Boolean algebra.

(ii) The Rickart mapping on G is given by

$$g' = \eta(\widetilde{g}^{-1}(0))$$
 for every $g \in G$.

(iii) For every $g \in G$, there exists a sharp real observable Λ_g on G such that, for every σ -additive state ω on G,

$$\omega(g) = \int_{\mathbb{R}} \lambda \omega(\Lambda_g(d\lambda)),$$

and this observable is determined by its spectral resolution

$$\Lambda_q((-\infty,\lambda]) = \eta(\widetilde{g}^{-1}(-\infty,\lambda])$$
 for every $\lambda \in \mathbb{R}$.

- (iv) If $\lambda \in \mathbb{Q}$, then $p_{g,\lambda} = \Lambda_g((-\infty,\lambda])$. Moreover, if $\lambda = m/n$ with $m \in \mathbb{Z}$, $n \in \mathbb{N}$, then λ is a rational eigenvalue of Λ_g ; that is, $\Lambda_g(\{\lambda\}) \neq 0$, if and only if $(ng mu)' \neq 0$.
- (v) For all $g, h \in G$, $\Lambda_{g+h} = \Lambda_g + \Lambda_h$, $\Lambda_{g \wedge h} = \Lambda_g \wedge \Lambda_h$, $\Lambda_{g \vee h} = \Lambda_g \vee \Lambda_h$, where the operations on the right-hand sides are defined by the functional calculus for observables.
- *Proof.* (i) By Corollary 3.7, G is total; by Theorem 3.6(iv) P is the set of sharp effects in G; and by Corollary 4.7, P is a σ -complete Boolean algebra.
 - (ii) Follows from [27, Theorem 4.2].
- (iii) The mapping $\Lambda_g(X) = \eta(\tilde{g}^{-1}(X))$, where X is a real Borel set, defines a sharp real observable with the desired properties ([27, Theorem 1.2]).
 - (iv) Follows from [27, Theorem 4.4].
 - (v) See [26, 27].

References

- 1. E. M. Alfsen, Compact convex sets and boundary integrals (Springer, New York, 1971).
- M. K. Bennett and D. J. Foulis, 'Interval and scale effect algebras', Adv. in Appl. Math. 19 (1997) 200–215.
- P. Busch, P. J. Lahti and P. Mittelstaedt, The quantum theory of measurement, Lecture Notes in Physics, m2 (Springer, Berlin-Heidelberg-New York, 1991).
- C. C. Chang, 'Algebraic analysis of manyvalued logics', Trans. Amer. Math. Soc. 88 (1958) 467–490.
- D. Butnariu and E. Klement, 'Triangular-norm-based measures and their Markov kernel representation', J. Math. Anal. Appl. 162 (1991) 111–143.
- A. DVUREČENSKIJ, 'Loomis-Sikorski theorem for σ-complete MV-algebras and ℓ-groups', J. Aust. Math. Soc., Ser. A 68 (2000) 261–277.
- A. DVUREČENSKIJ, 'MV-observables and MV-algebras', J. Math. Anal. Appl. 259 (2001) 413–428.
- 8. A. DVUREČENSKIJ and S. PULMANNOVÁ, New trends in quantum structures (Kluwer Academic, Dordrecht and Ister Science, Bratislava, 2000).
- A. DVUREČENSKIJ and S. PULMANNOVÁ, 'Conditional probability on σ-MV-algebras', Fuzzy Sets and Systems 155 (2005) 102–118.
- 10. D. J. Foulis, 'Compressible groups', Math. Slovaca 53 (2003) 433–455.
- D. J. FOULIS, 'Compressions on partially ordered abelian groups', Proc. Amer. Math. Soc. 132 (2004) 3581–3587.
- D. J. FOULIS, 'Spectral resolution in a Rickart comgroup', Rep. Math. Phys. 54 (2004) 319–340.
- D. J. FOULIS, 'Compressible groups with general comparability', Math. Slovaca 55 (2005) 409–429.
- 14. D. J. FOULIS, 'Compression bases in unital groups', Internat. J. Theoret. Phys., to appear.
- 15. D. J. Foulis, 'Comparability groups', Demonstratio Math. 39 (2006) 15-32.
- 16. D. J. Foulis, 'The universal group of a Heyting effect algebra', Studia Logica, to appear.

- 17. K. R. GOODEARL, Partially ordered abelian groups with interpolation, Mathematical Surveys and Monographs 20 (American Mathematical Society, Providence, RI, 1986).
- 18. S. P. Gudder, 'Examples, problems, and results in effect algebras', Internat. J. Theoret. Phys. 35 (1996) 2365–2376.
- 19. P. R. Halmos, Measure theory (Van Nostrand, New York, 1950).
- 20. J. HARDING, 'Regularity in quantum logic', Internat. J. Theoret. Phys. 37 (1998) 1173–1212.
- 21. R. V. KADISON, 'Order properties of bounded self-adjoint operators', *Proc. Amer. Math. Soc.* 2 (1951) 505–510.
- G. W. Mackey, The mathematical foundations of quantum mechanics (Benjamin, New York, 1963).
- D. MUNDICI, 'Interpretation of AF C*-algebras in Lukasiewicz sentential calculus', J. Funct. Anal. 65 (1986) 15–63.
- 24. P. PTÁK and S. PULMANNOVÁ, Orthomodular structures as quantum logics (Kluwer, Dordrecht-Boston-London, 1991).
- S. Pulmannová, 'Effect algebras with the Riesz decomposition property and AF C*-algebras', Found. Phys. 29 (1999) 1389–1401.
- **26.** S. Pulmannová, 'A spectral theorem for σ-MV-algebras', Kybernetika 41 (2005) 361–374.
- 27. S. Pulmannová, 'Spectral resolutions in Dedekind σ -complete ℓ -groups', J. Math. Anal. Appl. 309 (2005) 322–335.
- 28. F. RIESZ and B. Sz.-NAGY, Functional Analysis (Ungar, New York, 1955).
- 29. D. M. TOPPING, 'Vector lattices of self-adjoint operators', Trans. Amer. Math. Soc. 115 (1965)
- 30. V. S. VARADARAJAN, Geometry of quantum theory (Springer, New York, 1985).

David J. Foulis
Emeritus Professor of Mathematics
and Statistics
University of Massachusetts
1 Sutton Court
Amherst
MA 01002
USA

foulis@math.umass.edu

Sylvia Pulmannová Mathematical Institute Slovak Academy of Sciences Štefánikova 49 SK-814 73 Bratislava Slovakia

pulmann@mat.savba.sk