Les questions de cours portent sur ce qui est entre accolades et en gras. On attend une maîtrise de l'intégralité des notions abordées.

Cours: analyse asymptotique

Développements limités

Notion de développement limité à l'ordre n d'une fonction en a. Unicité en cas d'existence. Partie régulière. Troncature d'un développement limité. Cas des fonctions paires, impaires pour un développement limité en 0. Formule de Taylor-Young, sous hypothèse de classe C^{n-1} sur I, n dérivabilité en a. Contre-exemple à la réciproque. Primitivation, dérivation des DL (sous hypothèse de dérivabilité), linéarité, produit, composition. Quotient sur des exemples. [Catalogue des développements limités usuels en 0, $\exp(x)$, $\sin(x)$, $\cos(x)$, $\sinh(x)$, $\cosh(x)$, $(1+x)^{\alpha}$, $\ln(1+x)$, arctan(x) à un ordre quelconque, $\tan(x)$ à l'ordre 5]. Application à l'étude locale de fonctions, position relative locale du graphe d'une fonction par rapport à une tangente au voisinage d'un point réel, à une asymptote au voisinage de $\pm\infty$.

Cours: espaces vectoriels

 \mathbb{K} est un corps fixé. Notion de \mathbb{K} -ev. [Règles de calcul dans les espaces vectoriels]. Espace \mathbb{K}^n , E^X , surcorps de \mathbb{K} . Espace nul. Espace $\mathcal{M}_{n,p}(\mathbb{K})$. Produit d'espaces vectoriels. Notion de sous-espace vectoriel définie par : F partie de E stable par les deux lois qui, munie des lois induites, est un \mathbb{K} -espace vectoriel. [Caractérisation des sous-espaces vectoriels : F sev de E ssi $O_E \in F$ et $\forall (x,y) \in F^2 \forall \lambda \in \mathbb{K}, x + \lambda y \in F$.] Variante : F non vide et $\forall (x,y) \in F^2$, $\forall (\lambda,\mu) \in \mathbb{K}^2$, $\lambda x + \mu y \in F$. L'intersection de sev est un sev. Espace vectoriel engendré par une partie A, noté V vectA. [VectA] est le plus petit sev de E qui contient E]. E sev de E ssi E sev de E ssi E sev de E ssi E vectE0.

Exercices

Les exercices porteront sur les développements limités et les développements asymptotiques.

* * * * *