Interpreting Code

With Natural Language Processing

Eileen Cai

Data Scientist

The problem

Problem

Spread of child sexual abuse material online and other harmful content, such as, cyber bullying, drug sales and hate speech.

Solution

Guardian of virtue: upholding digital ethics.

 Use machine learning to automatically detect harmful texts.

Impact

Social impact on teen's mental health.

Companies benefit from:

- Sentiment Analysis
- Hate Speech Detection
- Content Moderation

Preprocessing Procedures

Train / Test Split

Re-sampling

Count Vectorization

Split data into train & test for modeling.

To counter for class imbalance.

Transform text into numbers.

	count	hate_speech_count	offensive_language_count	neither_count	class	tweet
0	3	0	0	3	2	!!! RT @mayasolovely: As a woman you shouldn't
1	3	0	3	0	1	!!!!! RT @mleew17: boy dats coldtyga dwn ba
2	3	0	3	0	1	!!!!!!! RT @UrKindOfBrand Dawg!!!! RT @80sbaby
3	3	0	2	1	1	!!!!!!!!! RT @C_G_Anderson: @viva_based she lo
4	6	0	6	0	1	!!!!!!!!!!!! RT @ShenikaRoberts: The shit you

Target: class Feature: tweet

Data source: Huggingface hate_speech_offensive

EDA

Class Imbalance

- class 0 (6%) hate speech
- class 1 (77%) offensive language
- class 2 (17%) neither

Baseline models

Model	Parameters	Train Accuracy (%)	Test Accuracy (%)	Notes
Logistic Regression	C=0.1	84.4	81.3	No overfitting
Decision Tree	max_depth=10	80	78.4	No overfitting
KNN	n/a	89.6	80	Slight overfitting

Evaluation Metrics

	precision	recall	f1-score	support
0 1 2	0.24 0.97 0.60	0.50 0.77 0.97	0.33 0.86 0.74	357 4798 1041
accuracy macro avg weighted avg	0.60 0.87	0.75 0.78	0.78 0.64 0.81	6196 6196 6196

Questions