

Mathematical Foundations of Data Science

Session 5 – Inferential Statistics 3
Nandan Sudarsanam,
Department of Data Science and AI,
Wadhwani School of Data Science and AI,
Indian Institute of Technology Madras

Rejecting and failing to reject the null hypothesis

Acceptance Matrix for hypothesis tests

		Decision		
		Reject The Null Hypothesis	Fail to Reject the Null hypothesis	
Actual	Null hypothesis is true	Type 1 Error (or Producer Risk, False Positive, alpha-risk)	Correct Decision (1-alpha)	
	Alternate Hypothesis is true	Correct Decision (Power = 1- Beta)	Type 2 Error (Consumer risk, False Negative, Beta risk)	

Type I and Type II Errors

- Prior to any data collection your type 1 error could be as high as alpha (α), and after analysis it is exactly equal to your p-value.
- Type II error (β) is more complicated. Why?
 - It is a function of Delta: $\delta = |\mu \mu_0|$
 - It is a function of standard deviation: σ
 - Often we focus on $d = \delta/\sigma$
 - It is a function of Sample Size: n
 - It is a function of the Type I error: α

OC curves

 A graph of β versus d for a given sample size (n) is known as an OC (Operational Characteristic) curve:

(a) O.C. curves for different values of n for the two-sided normal test for a level of significance $\alpha = 0.05$.

Introduction

- So far statistical inference was confined to input variables that could take up two possible values (two sample tests), or there was no notion of an input variable (single sample tests).
- ANOVA
 - When there are three or more states of a single variable we can use ANOVA
- Chi-Square Test of Independence
 - Can be used when we want to compare multiple proportions

BASICS of ANOVA

- Tests the hypothesis that: $\mu_A = \mu_B = \mu_C = \mu_D$
- Why not multiple pairwise comparisons using t-tests?
- What do you do after a test? Tukey, Bonferroni, Scheffe tests
- Take the table:

	1	2	n
Α	$y_{1,1}$	$y_{1,2}$	$y_{1,n}$
В	$y_{2,1}$	•••	•••
С	***	•••	•••
D			$\mathcal{Y}_{4,n}$

ANOVA OUTPUT

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	F-Stat
Between Treatments	$n\sum_{i=1}^a(\bar{y}_{i.}-\bar{\bar{y}}_{})^2$ or SSB	a-1	MSB = SSB/DoF	F = MSB/MSE
Error within treatments	$\sum_{i=1}^{a} \sum_{j=1}^{n} (y_{i,j} - \bar{y}_{i,j})^2$ or SSE	N-a	MSE = SSE/DoF	
Total	$\sum_{i=1}^{a} \sum_{j=1}^{n} (y_{i,j} - \overline{\overline{y}}_{})^2$ or SST	N-1	MST = SST/DoF	

Compare F calculated against the F-distribution with a-1,N-a degrees of freedom and get a p-value

Why F for difference in means??

- The F is the ratio of two variances (where the samples come from a normal distribution and the null hypothesis is that the variances are equal)
- MSB is a way of calculating total variance
- MSE is a way of calculating total variance
- MSB, MSE and MST will be equal if the null hypothesis is true
- However is the null hypothesis is not, then MSB>MST>MSE

MSB and MSE

MSB and MSE

Chi-Square TOI

- When using categorical variables
- Use this to test:
 - Does the input categorical variable effect the output categorical variable (works 2 or more states of the input or output variable)
 - Independence between two variables
 - Construct a contingency table:

	Smoking habit				
Exercise		Heavy	Regular	Occasional	Never
Frequent		7	9	12	87
Some		3	7	4	84
None		1	1	3	18

Chi Square TOI continued

- Create Theo values for this table in accordance to the assumption of independence
- It can be done row wise or column wise, but each cell gets an expected value
- Then if the null hypothesis is true then the test statistic is:

$$\chi^2 = \sum_{i=1}^r \sum_{j=1}^c \frac{(O_{i,j} - E_{i,j})^2}{E_{i,j}}$$

With (r-1)*(c-1) degrees of freedom (or rc-c-r+1)