Übungen zur Numerik und Modellierung, Wintersemester 2013/14

9. Serie, 15.01.14

Aufgaben für die Übungsstunde

Aufgabe 33

 $f:]0, \infty[\to \mathbb{R}, f(x) := \ln x + x \text{ besitzt in } I := [0.54, 0.6] \text{ genau eine Nullstelle } x^*.$

a) Zeigen Sie, dass die Nullstelle von f ein Fixpunkt von ϕ ist für die Funktionen

(i) $\phi(x) := e^{-x}$ (ii) $\phi(x) := -\ln x$ (iii) $\phi(x) := \frac{x(1 - \ln x)}{1 + x}$

- b) Für welche der in a) angegebenen Funktionen ϕ ist auf I der Banasche Fixpunktsatz (BFPS) erfüllt?
- c) Führen Sie für die Funktionen, die den BFPS auf I erfüllen, einen Schritt des Iterationsverfahrens $x_{n+1} := \phi(x_n), n \in \mathbb{N}$ mit $x_0 := 0.6$ aus und schätzen Sie danach ab, wie viele Schritte n höchstens nötig sind, um x^* bis auf einen Fehler, der betragsmäßig kleiner als 10^{-3} ist, zu berechnen.
- d) Führen Sie so viele Schritte aus, wie sie in c) berechnet haben.
- e) Berechnen Sie für die Funktionen, die den BFPS auf I erfüllen, die Konvergenzordnung, mit der die Iterationsfolgen konvergieren.

Aufgabe 34

a) Beweisen Sie für die Iterationsabbildung ϕ des Newtonverfahrens zur Bestimmung einer Nullstelle einer zweimal differenzierbaren Funktion f

$$\phi''(x) = \frac{f(x)f'''(x)}{(f'(x))^2} + \frac{f''(x)}{f'(x)} - \frac{2f(x)(f''(x))^2}{(f'(x))^3}$$

b) Untersuchen Sie, ob die Newtonsche Iterationsfolge gegen die Nullstellen $\overline{x} = 0$ sowie $\overline{x} = 1$ von $f: \mathbb{R} \to \mathbb{R}, f(x) := x^4 - x^2$ linear, quaddratisch oder mindestens kubisch konvergieren.

Hausaufgaben

Aufgabe 35

Beweisen Sie, dass die Iterationsfolge $(x_n), x_{n+1} := \phi(x_n), n \in \mathbb{N}_0$ für $\phi : [1, \frac{5}{4}] \to \mathbb{R}, \phi(x) := \frac{1}{4x^2} + 1$ und jeden Startwert $x_0 \in [1, \frac{5}{4}]$ gegen eine Lösung \overline{x} der kubischen Gleichung $4x^3 - 4x^2 - 1 = 0$ konvergiert. Von welcher Ordnung ist die Konvergenz ?

Aufgabe 36

Zeigen Sie, dass die Iterationsfolge (x_n) , definiert durch

$$x_{n+1} := \phi(x_n) := 2x_n - ax_n^2$$
 $(a > 0, n \in \mathbb{N}_0)$

für alle $x_0 \in [\frac{2}{3a}, \frac{4}{3a}]$ konvergiert und bestimmen Sie den Grenzwert der Folge. Von welcher Ordnung ist die Konvergenz?

Aufgabe 37

Bestimmen Sie die Konvergenzordnung (linear, quadratisch, mindestens kubisch) der Newtonschen Iterationsfolge gegen die Nullstelle \overline{x} für $f: \mathbb{R} \to \mathbb{R}, f(x) := x^5 - 4x^3, \overline{x} = 0$ und $\overline{x} = 2$. und führen Sie zur Veranschaulichung jeweils drei Schritte mit den Startwerten $x_0 := \overline{x} + 0.1$ aus.