UWO CS2214

Tutorial #3

Problem 1 Let a, b, q_1, r_1, q_2, r_2 be non-negative integer numbers such that $b \neq 0$ and we have

Thus we have: $a = bq_1 + r_1 = bq_2 + r_2$ as well as $0 \le r_1 < b$ and $0 \le r_2 < b$. Prove that $q_1 = q_2$ and $r_1 = r_2$ necessarily both hold

Solution 1 Let $a = bq_1 + r_1 = bq_2 + r_2$, with $0 \le r_1 < b$ and $0 \le r_2 < b$, where a, b, q_1, r_1, q_2, r_2 are non-negative integers. We wish to show that $q_1 = q_2$ and $r_1 = r_2$.

Assume that $r_1 \neq r_2$. Then, without loss of generality, assume that $r_2 > r_1$. We then have that

$$bq_1 - bq_2 = r_2 - r_1$$

$$\Rightarrow b(q_1 - q_2) = r_2 - r_1$$
(2)

Since $0 \le r_1 < b$ and $0 \le r_2 < b$, and $r_2 > r_1$, it must be that

$$0 < (r_2 - r_1) < b, (3)$$

since the largest difference has $r_2 = b - 1$ and $r_1 = 0$, and $r_1 \neq r_2$ by assumption (so $r_2 - r_1 \neq 0$). But equation (2) implies that b divides $r_2 - r_1$, which cannot be given equation (3), because the multiples of b are $0, \pm b, \pm 2b, \ldots$. This is a contradiction, and we conclude that $r_1 = r_2$.

Since we have shown that $r = r_1 = r_2$, it follows that

$$bq_1 - bq_2 = r - r$$

$$\Rightarrow b(q_1 - q_2) = 0$$
(4)

But equation (4) implies either that b=0 or $q_1-q_2=0$. Since $b\neq 0$ by the assumptions of the division theorem, we conclude that it must be that $q_1-q_2=0$, meaning that $q_1=q_2$, which is what we set out to prove. QED

Problem 2 In the previous exercise, if a, b, q_1, q_2 , are non-negative integer numbers satisfying $a = bq_1 + r_1 = bq_2 + r_2$ while r_1, r_2 are integers satisfying $-b < r_1 < b$ and $-b < r_2 < b$. Do we still reach the same conclusion? Justify your answer.

Solution 2 No, we do not. Indeed, with a=7 and b=3, we then have two possible divisions:

Problem 3 Consider the set of ordered pairs (x, y) where x are y are real numbers. Such a pair can be seen as a point in the plane equipped with Cartesian coordinates (x, y). For each of the following functions determine a (2×2) -matrix A so that the point of coordinates (x, y) is sent to the point (x', y') when we have

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = A \begin{pmatrix} x \\ y \end{pmatrix} \tag{5}$$

where

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \tag{6}$$

1.
$$F_1(x,y) = (x,y)$$

2.
$$F_2(x,y) = (x,0)$$

3.
$$F_3(x,y) = (0,y)$$

4.
$$F_4(x,y) = (y,x)$$

Solution 3

1.
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$2. \ A = \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right)$$

$$3. \ A = \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right)$$

$$4. \ A = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)$$

Problem 4 Following up on the previous problem, determine which of the above functions F is injective? surjective?

Solution 4

- 1. F_1 is injective: Indeed, for all (x_1, y_1) and (x_2, y_2) if $F_1(x_1, y_1) = F_1(x_2, y_2)$ holds then we have $(x_1, y_1) = (x_2, y_2)$, which exactly means that F_1 is injective. F_1 is surjective: Indeed, every (x', y') has a preimage by F_1 , namely itself, since $F_1(x', y') = (x', y')$ holds.
- 2. F_2 is not njective: Indeed, we have $F_2(0,1) = (0,0) = F_2(0,2)$, thus two different points, namely (0,1) and (0,2) have the same image by F_2 , namely (0,0). F_2 is not surjective: Indeed, (1,1) has no pre-image by F_2 .
- 3. For similar reasons as those for F_2 , F_3 is neither injective nor surjective.
- 4. F_4 is injective: Indeed, for all (x_1, y_1) and (x_2, y_2) if $F_4(x_1, y_1) = F_4(x_2, y_2)$ holds then we have $(y_1, x_1) = (y_2, x_2)$ that is, $y_1 = y_2$ and $x_1 = x_2$, thus $(x_1, y_1) = (x_2, y_2)$, which exactly means that F_1 is injective. F_4 is surjective: Indeed, every (x', y') has a pre-image by F_4 , namely (y', x'), since $F_1(y', x') = (x', y')$ holds.