SQuBOK v3にみる不確実なDX時代の確実な品質技術に向けて

- AI &機械学習、アジャイル&DevOps&オープンソース開発を中心に -

鷲崎 弘宜

早稲田大学グローバルソフトウェアエンジニアリング研究所 国立情報学研究所 客員教授 システム情報 取締役(監査等委員)

エクスモーション 社外取締役

Twitter: @Hiro_Washi washizaki@waseda.jp

http://www.washi.cs.waseda.ac.jp/

デジタルトランスフォーメーション(DX)時代

- DX: デジタル化によりビジネスモデル変革
 - デジタル技術: IoT、クラウド、AI、ソーシャルほか
 - 変革レベル: プロセス→組織→ビジネス領域→社会

• 問題

- 低リスクのオプションを選んで非常に少ない投資
- デジタライゼーションが技術に限った話と誤解
- 顧客が求めた時に直ちに対応できていない
- 規約や標準へ厳格に従うばかりに変化やイノベーションを妨げ

• 解決

- アジリティ、高速・適応的・仮説検証による不確実性の扱い
- データ収集、エビデンスベース
- アドホックから戦略的、複数を束ねるエコシステムへ
- 階層化組織からアジャイル組織、ホラクラシーへ

応用領域担当: 鷲崎 弘宜(取りまとめ)、石川 冬樹、鄭 顕志、松崎 和賢、竹之内 隆夫、長久 勝、伊原 彰紀、森田 純恵ほか

SQuBOK応用領域と品質

人工知能ベースシステムの品質

人工知能システムにおける品質の概念

人工知能シス テムの品質保 証マネジメント 人工知能システムの品質保証技術

- 訓練・テストデー タ品質
- 性能指標
- 頑健性
- 説明可能性
- 機械学習システムの品質

- 疑似オラクル
- メタモルフィックテスティング
- 頑健性検査
- ニューロンカバレッジ
- 説明生成

機械学習によるパラダイム転換

従来のエンジニアリング: 演繹的(モデルが最初に与えられる)

機械学習ベース: 帰納的(モデル・アルゴリズムがデータで決まる)

プロセス〉 プロダクト

機械学習ベース・データ駆動エンジニアリング

機械学習システム

人工知能システムの品質の概念

- データの品質
- モデルの性能
 - 正解率、混同行列
 - ROC, AUC
 - 未学習、過学習
- モデルの頑健性
- ・モデルの説明可能性
- システムの品質
 - KPI

- 仮説検定

未学習

過学習

人工知能システムの品質保証マネジメント

- 試験的・探索的と顧客協力
- 監視と性能劣化検出
- オンライン学習と検証
- 成果物 版管理
 - データ、プログラム、ハイパーパラメータ

バッチ学習

オンライン学習

人工知能システムの品質保証技術

- 疑似オラクル
 - 別の実装や古いバージョンとの比較
 - サーチベースドテスティング
- メタモルフィックテスティング
 - 入力の変化により出力を予想可能な関係によるテスト
 - 例: ノイズを追加しても判定が変わってはならない
- 頑健性検査
- ニューロンカバレッジ
- 説明生成

説明生成: 判断根拠を説明できるか

• 背景: 日本 AI利活用原則、EU GDPR、US DARPA XAI

分類	概要	例	
大域的説明	近似モデル	決定木(Born Again Trees) ルール(defragTrees)	
局所的説明	根拠	特徴量(LIME) データ(influence)	
深層学習モデル の説明	特に画像認識 モデルの根拠	注目領域のハイライト(SmoothGrad) 説明文生成(Visual Explanations)	
説明可能なモデ ル設計	説明可能モデル	シンプルなモデルの採用 ルールセット(Interpretable decision sets)	

原 聡, 私のブックマーク: 機械学習における解釈性, 人工知能 33(5), 2018

原 聡, 私のブックマーク: 説明可能AI, 人工知能 34(4), 2019

AI・機械学習 グループ, アドバンス・トップエスイー 最先端ソフトウェアゼミ成果発表, 2019

大域的の例: defragTrees

説明可能モデルの例: Interpretable decision sets

Making Tree Ensembles Interpretable: A Bayesian Model Selection Approach, AISTATS 2018

局所的の例: LIME

"Why Should I Trust You?" Explaining the Predictions of Any Classifier, KDD 2016

深層学習モデルの説明例: SmoothGrad

Interpretable Decision Sets: A Joint Framework for Description and Prediction, KDD 2016

DevOpsとアジャイル開発における品質

DevOpsとアジャイル開発における品質の概念

- DevOpsにおける品質特性と品質維持技法
- アジャイル開発 の品質指標

DevOpsとアジャイル開発の品質保証マネジメント

- 伝統的な品質保証 (QA)からアジャイ ル品質(AQ)への 転換
- アジャイルスキル 体系

DevOpsとアジャイル開発の品 質保証技術

- 品質ダッシュ ボード
- ・ ツール類

テスト技術

- アジャイルテスト
- 継続的テスト
- シフトレフトテスト
- シフトライトテスト
- カナリアテスト

DevOpsにおける品質特性と品質維持技法。

特性	品質を高めるためのテクニック
反復可能性	アクティビティのトレースを残す。すべてのもののバージョンを管理する等。
処理性能(パ フォーマンス)	プロセスのボトルネックを明らかにするための計測を行う。使っていない環境を解体 する等。
信頼性	さまざまなサービスのエラー率を明らかにする。エラー率の高いサービスをミラーリングする等。
回復可能性	スクリプトに例外処理を組み込む。モニタリングサービスに情報を提供する。適切な 診断を生成してデバッグ作業が早く終わるようにする。
相互運用性	安定したインタフェースを柔軟なスクリプト機能をもつツールを選ぶ。パイプライン のさまざまなフェーズデータモデルの一貫性を保つ。
テスト可能性	専用ツールのために単体,インテグレーションテストを行う。テストケースとモニタリング規則を調和させる。
変更可能性	ツールの予想される変更に基づいてスクリプトをモジュール化する。アクティビティ を小さなモジュールにカプセル化し、モジュール同士の結合は疎になるようにする

Dev

Ops

Len Bass, Ingo Weber, Liming Zhu, 長尾高広(訳), DevOps教科書, 日経BP社, 2016

QA (Quality Assurance) to AQ (Agile Quality)

J. Yoder, R. Wirfs-Brock, A.Aguilar, "QA to AQ: Patterns about transitioning from Quality Assurance to Agile Quality," AsianPLoP 2014

14 🍩

- J. Yoder and R. Wirfs-Brock, "QA to AQ Part Two: Shifting from Quality Assurance to Agile Quality," PLoP 2014
- J. Yoder, R. Wirfs-Brock, H. Washizaki, "QA to AQ Part Three Tearing Down the Walls," SugarLoafPLoP 2014
- J. Yoder, R. Wirfs-Brock, H. Washizaki, "QA to AQ Part Four Prioritizing Qualities and Making them Visible," PLoP 2015
- J. Yoder, R. Wirfs-Brock, H. Washizaki, "QA to AQ Part Six Being Agile at Quality," PLoP 2016

つプロセスへの品質の組み入れ例

可視化: バックログ上の品質検討 Qualify the Backlog

Product	To Do	Doing	Done		
	セキュアに・・・・				
			技術的負債を・・・		

品質シナリオのバックログ項目を追加 (システムの品質に関連するアーキテクチャの作業も含めて)

✓ 品質ダッシュボードと品質ラジエータ

G: 一定の機能性を確保できている

||修止済み欠陥数

テスト技術の拡充

- アジャイルテスト
 - 顧客・プログラマ・テスタ対話、イテレーション単位
- 継続的テスト
 - コード変更の都度、テスト自動実行
- ・シフトレフトテスト
 - 早い段階(仕様、設計など)でのテスト
- シフトライトテスト
 - 本番稼働後のテスト
 - 例: カオステスト、カナリアテスト
- カナリアテスト
 - 本番環境やユーザの一部でテストしてから展開

オープンソース開発における品質

オープンソース 開発における品 質の概念

- OSSの定義
- OSS開発の 特徴
- OSS開発に おける品質の 概念

オープンソース 開発利活用の品 質マネジメント

- プロジェクト の組織管理
- コミュニケー ション管理
- 再利用OSS 管理

オープンソース開発の品質保証技術

- プルリクエスト駆動開発
- OSS健全性 評価メトリクス

CHAOSS (Community Health Analytics Open Source Software)

- 多様性の組み入れ Diversity-Inclusion
 - OSS組織の多様性、組織に参加する個人の多様性、組織体制 の観点で公平な協調作業を実践しているか
 - 例: 参加者性別、年齢、スキル、貢献者人数、昇格
- 成長-成熟-衰退 Growth-Maturity-Decline
 - 不具合解決、プログラム実装、組織の成熟度、また、組織の発 展過程、衰退傾向
 - 例: 不具合解決数、解決時間、変更数、参加者数
- リスク Risk
 - 人的要因、ライセンス、脆弱性の観点で組織が負うリスク
 - 例: ライセンスの内容、脆弱性数
- 価値 Value
 - 組織に参加する価値
 - 例: 市場価値、ダウンロード数、製品への導入数

SQuBOK 2020 乞うご期待&ご意見歓迎!

・ 技術・プロセスのポータル

