ساختمان دادهها و الگوريتمها

 $f(n) = \Theta(g(n))$

بادآوری جلسه سوم تعلیل هائیی سید امیرعلی مقدسی

در جلسه قبل، به طور مختصر در رابطه با نمادهای مجانبی O و Ω و Θ صحبت کردیم. برای دو تابع g(n) و g(n) و با ورودی و خروجی طبیعی)، این نمادها به صورت زیر تعریف می شوند:

- رابطهی $n \geq n$ و جود داشته باشد n و n به گونهای که برای هر f(n) = O(g(n)) و رابطهی $f(n) \leq cg(n)$
- $n \geq n$. و به گونهای که برای هر $n \geq n$ و $n \geq n$ و به گونهای که برای هر $f(n) = \Omega(g(n))$ و رابطه ی $f(n) \geq cg(n)$ برقرار باشد.
- $n \geq n$. اگر وجود داشته باشد c_1 و c_1 و c_1 و اگر باشد $f(n) = \Theta(g(n))$ رابطه ی $c_1 g(n) \leq f(n) \leq c_1 g(n)$ برقرار باشد.

f(n) = O(g(n)) فرض کنید $f(n) = x^{\intercal}$ و $f(n) = x^{\intercal}$ میخواهیم ثابت کنیم $f(n) = x^{\intercal}$ و $f(n) = x^{\intercal}$ کند؛ یعنی: برای حل این مثال کافی است $f(n) = x^{\intercal}$ و $f(n) = x^{\intercal}$

 $\forall n \geq n$. $\forall x^{\mathsf{Y}} \leq cx^{\mathsf{Y}}$

کافی است $\mathbf{r} = \mathbf{r}$ و $\mathbf{r} = \mathbf{r}$ را در نظر بگیریم.

مثال ۲) فرض کنید a_i مثبت هستند. میخواهیم ثابت کنیم $g(n)=n^k$ و g(n)=a مثبت هستند. میخواهیم ثابت کنیم مثبت a_i فرض کنید a_i که به ازای هر a_i مقدار $a_i \geq 0$ است، داریم:

$$a \cdot + a_1 n + a_7 n^7 + \dots + a_k n^k \ge a_k n^k$$

 $\forall n \geq a_k \quad cg(n) \leq f(n)$. داریم: $n \cdot = 1$ و $c = a_k$ بنابراین برای

مثال $x \geq 1$ میخواهیم نشان دهیم به ازای هر $x \geq 1$ داریم: $x \geq 1$ داریم: $x \geq 1$ داریم نشان دهیم به ازای هر $x \geq 1$ داریم: $x \geq 1$ داریم نشان دهیم به ازای هر $x \geq 1$ داریم:

 $\exists n \centerdot, c_{\mathsf{1}}, c_{\mathsf{Y}} \quad \forall n \geq n \ldotp \quad c_{\mathsf{1}} \log_{\mathsf{Y}} n \leq \log_{x} n \leq c_{\mathsf{Y}} \log_{\mathsf{Y}} n.$

 $\log_x \Upsilon$ را میتوانیم برابر با ۱ بگیریم (چرا؟). همچنین میدانیم که $\log_x \Upsilon$ را میتوانیم برابر با ۱ بگیریم (چرا؟). همچنین میدانیم که $\log_x \Upsilon$ را میتوانیم برابر با ۱ بگیریم (چرا؟). همچنین میدان برقرار خواهد بود. دقت کنید که این رابطه برای هر مقدار ثابت n برقرار است و تنها محدود به $1 \geq x$ نمی شود.

پرسش: تابع $g(n) = n^{\gamma}$ و $f(n) = n^{\gamma} + 1 \forall n + n^{\gamma}$ را در نظر بگیرید. مقادیر $g(n) = n^{\gamma}$ را به گونهای انتخاب کنید که نشان دهد $g(n) = n^{\gamma}$ مقادیر $g(n) = n^{\gamma}$ را به گونهای انتخاب کنید که نشان دهد $g(n) = n^{\gamma}$ را به گونهای خود را تا قبل از شروع کلاس به این آدرس ارسال کنید.