TIP8419 - Tensor Algebra Homework 5

Prof. André de Almeida andre@gtel.ufc.br

2019.1

Kronecker Product Singular Value Decomposition (KPSVD)

Problem 1 Generate a block matrix according to the following structure

$$\mathbf{X} = \begin{pmatrix} \mathbf{X}_{1,1} & \cdots & \mathbf{X}_{1,N} \\ \vdots & \ddots & \vdots \\ \mathbf{X}_{M,1} & \cdots & \mathbf{X}_{M,N} \end{pmatrix}, \quad \mathbf{X}_{i,j} \in \mathbb{C}^{P \times Q}, \ 1 \leq i \leq M, \ 1 \leq j \leq N,$$

Implement the KPSVD for the matrix X by computing σ_k , \mathbf{U}_k , and \mathbf{V}_k such that

$$\mathbf{X} = \sum_{k=1}^{r_{KP}} \sigma_k \mathbf{U}_k \otimes \mathbf{V}_k.$$

Problem 2 In the above problem, set M = N = P = Q = 3 and randomly generate $\mathbf{X}_{i,j} = \operatorname{rand}(P,Q)$, $1 \le i \le M$, $1 \le j \le N$. Then compute the KPSVD and the Kroneckerrank r_{KP} of \mathbf{X} by using your KPSVD prototype function. Consider $r \le r_{KP}$. Compute the nearest rank-r for the matrix \mathbf{X} .