VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

Fakulta elektrotechniky a komunikačních technologií

SEMESTRÁLNÍ PRÁCE

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ

FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION

ÚSTAV TELEKOMUNIKACÍ

DEPARTMENT OF TELECOMMUNICATIONS

APLIKACE PRO GENEROVÁNÍ A OVĚŘOVÁNÍ KONFIGURACÍ SÍŤOVÝCH ZAŘÍZENÍ

APPLICATION GENERATING AND VERIFYING CONFIGURATIONS OF NETWORK DEVICES

SEMESTRÁLNÍ PRÁCE

SEMESTRAL THESIS

AUTOR PRÁCE

Bc. Juraj Korček

AUTHOR

VEDOUCÍ PRÁCE

doc. Ing. Jan Jeřábek, Ph.D.

SUPERVISOR

BRNO 2019

Semestrální práce

magisterský navazující studijní obor **Informační bezpečnost** Ústav telekomunikací

Student:Bc. Juraj KorčekID: 187238Ročník:2Akademický rok: 2019/20

NÁZEV TÉMATU:

Aplikace pro generování a ověřování konfigurací síťových zařízení

POKYNY PRO VYPRACOVÁNÍ:

Seznamte se s problematikou síťových zařízení, síťových operačních systémů, hlavních používaných komunikačních protokolů a způsobů konfigurace těchto zařízení. Dále prostudujte problematiku osvědčených postupů konfigurace, zejména s ohledem na bezpečnost fungování zařízení v síti a také problematiku anonymizace těchto konfigurací. Navrhněte systém či aplikaci, která bude umět pro vybranou množinu síťových zařízení vytvářet přednastavené parametry nastavení, které bude možné na dané síťové zařízení aplikovat. Dále musí daná aplikace umět verifikovat správnost existujících konfigurací, upozornit na případné nedostatky a i konfiguraci modifikovat tak, aby splňovala hlavní bezpečnostní a provozní standardy a doporučení. Fungování aplikace ověřte na testovacích vzorcích síťových konfigurací různých zařízení z několika různých sítí a případně i různých výrobců.

V rámci semestrálního projektu je třeba vypracovat teoretickou část zadání, vybrat vhodné programovací prostředí pro plánovanou aplikaci a navrhnout a popsat strukturu dané aplikace či systému, včetně základního popisu jednotlivých komponent a jejich předpokládané funkcionality. Vlastní řešení mírně rozpracujte.

DOPORUČENÁ LITERATURA:

[1] Stallings W., Network security essentials: applications and standards. 6th ed. Hoboken: Pearson education, 2017, 445 s. ISBN 978-0-13-452733-8.

[2] McMillan, T., CCNA Security Study Guide: Exam 210-260. 2nd ed. USA: Sybex, 2018, 384 s. ISBN 978-1--1-940993-9.

Termín zadání: 23.9.2019 Termín odevzdání: 21.12.2019

Vedoucí práce: doc. lng. Jan Jeřábek, Ph.D.

Konzultant:

prof. Ing. Jiří Mišurec, CSc. předseda oborové rady

UPOZORNĚNÍ:

Autor semestrální práce nesmí při vytváření semestrální práce porušit autorská práva třetích osob, zejména nesmí zasahovat nedovoleným způsobem do cizích autorských práv osobnostních a musí si být plně vědom následků porušení ustanovení § 11 a následujících autorského zákona č. 121/2000 Sb., včetně možných trestněprávních důsledků vyplývajících z ustanovení části druhé, hlavy VI. díl 4 Trestního zákoníku č.40/2009 Sb.

VYHLÁSENIE

Vyhlasujem, že svoju semestrálnú prácu na tému "Aplikace pro generování a ověřování konfigurací síťových zařízení" som vypracoval samostatne pod vedením vedúceho semestrálnej práce, s využitím odbornej literatúry a ďalších informačných zdrojov, ktoré sú všetky citované v práci a uvedené v zozname literatúry na konci práce.

Ako autor uvedenej semestrálnej práce ďalej vyhlasujem, že v súvislosti s vytvorením tejto semestrálnej práce som neporušil autorské práva tretích osôb, najmä som nezasiahol nedovoleným spôsobom do cudzích autorských práv osobnostných a/alebo majetkových a som si plne vedomý následkov porušenia ustanovenia § 11 a nasledujúcich autorského zákona Českej republiky č. 121/2000 Sb., o práve autorskom, o právach súvisiacich s právom autorským a o zmene niektorých zákonov (autorský zákon), v znení neskorších predpisov, vrátane možných trestnoprávnych dôsledkov vyplývajúcich z ustanovenia časti druhej, hlavy VI. diel 4 Trestného zákonníka Českej republiky č. 40/2009 Sb.

Brno	
	podpis autora

Obsah

Ú	vod		9
1	Kyb	pernetická bezpečnosť	10
	1.1	Vybrané pojmy z kybernetickej bezpečnosti	10
	1.2	Ciele sietovej bezpečnosti	11
		1.2.1 Triáda CIA	12
	1.3	Pasívne a aktívne útoky	13
2	Bez	pečnostný audit	16
	2.1	Manažment rizík	17
3	Pre	vádzka a bezpečnosť sietí	19
	3.1	Sietové prvky	19
	3.2	Hierarchický model sietí	20
	3.3	Úrovne sieťových prvkov	21
	3.4	Riadenie a zneužitie prístup	22
	3.5	Smerovacie protokoly	22
	3.6	Identifikácia zariadení, pravidiel a nastavení	23
	3.7	Šifrovanie hesiel	23
	3.8	Logovanie	23
	3.9	Synchronizácia času	23
	3.10	Záloha a zabezpečenie konfigurácií	23
	3.11	Správanie pri vysokom zaťažení	23
	3.12	Monitorovanie výkonu siete	23
	3.13	Problémy vrstvy L2	23
	3.14	First Hop Security	23
	3.15	First Hop Redundancy Protocols	24
	3.16	Tunely	24
	3.17	Mapovanie siete a objavovanie zariadení	24
	3.18	Nepoužívané a nebezpečné služby	24
	3.19	Ostatné	24
4	Náv	rh	25
	4.1	Požiadavky na aplikáciu	25
	4.2	Existujúce riešenia a odlišnosti	25
	4.3	Zoznam odporúčaní	
	4.4	Rozdelenie príkazov	
	4.5	Rozdelenie sietových prvkov	

4.6	Hierarchická štruktúra	37
5 Imp	plementácia	38
5.1	Použité technológie	38
	5.1.1 Python	38
	5.1.2 YAML	38
	5.1.3 Regulárne výrazy	38
5.2	Konfiguračné súbory	38
	5.2.1 Súbor popisujúci zariadenie	38
	5.2.2 Súbor popisujúci modul	38
5.3	Moduly	38
Záver		39
Literat	zúra	40
Zoznar	n symbolov, veličín a skratiek	43
Zoznar	n príloh	44
A Zdr	ojové súbory	45
A.1	Konfiguračné súbory	45
B Che	ecklist	46

Zoznam obrázkov

1.1	Koncept bezpečnosti a vzájomné vzťahy pojmov	11
1.2	Triáda dôvernosť, integrita a dostupnosť	12
1.3	Pasívny útok	13
1.4	Aktívny útok maškaráda	14
1.5	Aktívny útok DOS	14
1.6	Aktívny útok modifikácia správy	14
1.7	Aktívny útok prehratím	15
3.1	Typy sieťových zariadení v lokálnych sieťach	19
3.2	Hierarchické rozdelenie siete na vrstvy	20
3.3	Rozdelenie úrovní v smerovači, tok informácií v jeho vnútri a medzi	
	susednými smerovačmi	22

Zoznam tabuliek

 $4.1\,\,$ Zoznam bezpečnostných a prevádzkových problémov a odporúčaní . . $37\,\,$

Zoznam výpisov

Úvod

Kybernetická bezpečnosť je bezpochyby jednou z hlavných tém 21. storočia. Útoky na infraštruktúru a systémy naberajú nielen na frekvencii, ale čo je ešte horšie na sofistikovanosti. Napriek častému zdôrazňovaniu odborníkov o kladenie čoraz väčšieho dôrazu na bezpečnosť pri návrhu, implementácii a nasadeniu, sa stále stretávame s fatálnymi dôsledkami, ktoré boli spôsobené nedostatočným venovaním pozornosti bezpečnosti.

Problém nedostatočného zabezpečenia nie je ani tak nevedomosť základných bezpečnostných praktík administrátorov alebo programátorov, ale potreba rýchleho nasadenia systému a infraštruktúry s odložením implementácie bezpečnostných praktík na neskôr. Tieto problémy vznikajú aj pri dodatočnej implementácií nových modulov a pridaní novej infraštruktúry, kedy sa nemení celok, ale pridanie jednej časti môže výrazne ovplyvniť a zmeniť stav bezpečnosti celého systému. Z tohto dôvodu je priam žiadúce disponovať nejakým procesom alebo nástrojom na dodatočné zistenie nedostatkov a ich následnú elimináciu. Veľmi silnou motiváciou by malo byť aj to, že dôsledkom bezpečnostných nedostatkov sú globálne miliardové škody a straty reputácií firiem.

Jednou z hlavných častí infraštruktúry, kde dochádza k významným bezpečnostným incidentom je počítačová sieť, bez ktorej by dnes informačné technológie nevedeli fungovať. Preto sa táto práca bude zaoberať práve ňou, keďže je vstupnou bránou do systémov a jej vyradením alebo zneužitím prichádzajú organizácie o finančné prostriedky, citlivé dáta a dôveru užívateľov.

Výsledkom tejto práce bude aplikácia overujúca nastavenia sieťových zariadení prevažne v lokálnej sieti, ktorá umožňuje zjednať nápravu na základe nájdených nedostatkov. Výhodou oproti existujúcim riešeniam bude otvorenosť kódu a modularita, ktorá umožní rozšírenie aplikácie na sieťové zariadenia rôznych výrobcov. Dôležitým výstupom bude taktiež zoznam bezpečnostných a prevádzkových odporučaní vychádzajúcich z rôznych štandardov a odporučaní, ktoré môžu byť v budúcnosti použité ďalšími užívateľmi aplikácie pri zostavovaní modulov pre zariadenia rôznych výrobcov. Jednou z kľúčových vlastností je bezplatnosť, keďže podľa zistení takmer polovica útokov smeruje na malé firmy, ktoré bezpečnosť často neriešia z finančnej náročnosti programov na detekciu bezpečnostných nedostatkov.

1 Kybernetická bezpečnosť

S čoraz na väčšou informatizáciou naprieč všetkými odvetviami života, je nutnosťou riešiť aj zabezpečenie systémov, infraštruktúry a dát. Kybernetická bezpečnosť je bez pochýb jednou z najdiskutovanejších tém 21. storočia.

Podľa zistení z roku 2018 [1] takmer polovica útokov smeruje na malé firmy, ktoré bezpečnosť riešia iba minimálne alebo vôbec. Predpokladá sa [1], že pre rok 2019 bude na kybernetickú bezpečnosť minutých 6 miliárd dolárov, naopak škody spôsobené kybernetickými útokmi presiahnu jednu miliardu dolárov a veľmi záškodné útoky typu Distributed Denial of Service – distribuované odoprenie služby (DDoS) by mali vzrásť až šesťnásobne.

Vyššie zmienené predpovede len potvrdzujú dôležitosť kybernetickej bezpečnosti pri návrhu, implementácie, nasadzovaní a prevádzke informačných technológií.

1.1 Vybrané pojmy z kybernetickej bezpečnosti

- Informačné aktívum (Asset) čokolvek, čo je nutné chránit, napr. dáta, fyzická informačná infraštruktúra, systémy [3].
- Zraniteľnosť (Vulnerability) neprítomnosť alebo nedostatočné opatrenia na zabezpečenie. Zraniteľnosť môže byť prítomná hardvéri, softvéri alebo samotnom užívateľovi [3].
- Hrozba (Threat) vzniká v prípade odhalenia alebo zneužitia zraniteľnosti.
 Zároveň platí, že hrozbou je aj zraniteľnost, ktorá doposiaľ nebola neidentifikovaná [3].
- Útočník (Threat agent) entita, ktorá zneužije zraniteľnosť [3].
- Riziko (Risk) pravdepodobnosť, že útočník využije zraniteľnosť, pričom príde k dopadu na systém alebo infraštruktúru [3].
- Útok na bezpečnosť (Security attack/Explotation) krok, ktorý kompromituje bezpečnosť informačného aktíva [2].
- Bezpečnostný mechanizmus (Security mechanism) proces, ktorý je navrhnutý na detegovanie, prevenciu a zotavenie z útoku na bezpečnosť.

- Protiopatrenie (Countermeasure) ochranné opatrenie, ktoré znižuje riziko [3].
- Expozícia informačného aktíva (Exposure) dochádza k nej ak je aktívum vystavené stratám nedostatočným alebo neprítomným zabezpečením [3].

Obr. 1.1: Koncept bezpečnosti a vzájomné vzťahy pojmov [3]

Na obrázku 1.1 je možné vidieť vzájomnú interakciu medzi pojmami. Zároveň je nutné si uvedomiť, že takýto cyklus nie je v systéme alebo infraštruktúre jeden a taktiež môže vzniknúť niekoľko paralelných cyklov pričom každý môže mať počiatok v inom uzle. Je dobré myslieť na to, že jednotlivé cykly môžu na seba vplývať, napríklad jedno protiopatrenie môže postihnúť viacero útočníkov využívajúcich rôzne hrozby.

1.2 Ciele sieťovej bezpečnosti

Bezpečnosť počítačovej siete, tak ako aj iných podoblastí kybernetickej bezpečnosti je založená na troch základných princípoch známych ako confidentiality, integrity, availability – dôvernosť, integrita, dostupnosť (CIA). Bezpečnosť musí pokryť všetky tri aspekty popísané týmto modelom, pričom narušenie čo i len jednej zložky má za následok nesplnenie celkového zabezpečenia [2].

1.2.1 Triáda CIA

Tri8da CIA pozostáva z nasledujúcich častí [3]:

- Confidentiality (Dôvernost) zabránenie prístupu k dátam alebo informáciám neoprávneným osobám. Na zaistenie tejto požiadavky sa najčastejšie používa šifrovanie, ale aj autentizácia a autorizácia. Jej strata vedie k neoprávnenému zverejnenie informácií.
- Integrity (Integrita) dáta alebo informácie sú zabezpečené proti neautorizovanej modifikácií a poškodeniu. Týmto zaisťujem konzistenciu dát pri prenose alebo uchovaní na médiu. Integritu zaisťujeme hašovacími funkciami prípadne za pomoci Access Control List zoznam pre riadenie prístupu (ACL).
- Availability (Dostupnosť) dáta alebo informácie sú dostupné iba pre určité entity v daný čas a miesto.

Obr. 1.2: Triáda dôvernosť, integrita a dostupnosť demonštrujúca potrebu všetkých troch prvkov na zaistenie bezpečnosti [2]

Aj keď triáda CIA definuje ciele na zaistenie bezpečnosti, tak niektorí odborníci ju nepovažujú za dostatočnú a zavádzajú ďalšie dve podmienky a pojmy [4]:

- Authencity (Autenticita) overenie originálnosti a platnosti správy a identity jej pôvodcovi. Najčastejšie sa na zaistenie tejto podmienky využívajú certifikáty.
- Accountability (Sledovateľnosť) identifikácia prístupu k informáciám a vysledovateľnosť bezpečnostných incidentov v prípade využitia forenznej analýzy. Väčšinou je táto požiadavka zaistená záznamom činnosti v systéme formou logu.

1.3 Pasívne a aktívne útoky

Útoky na bezpečnosť môžu byť rozdelené do dvoch skupín [2]. Jednou skupinou je pasívny útok, kde nepozmeňuje útočník pôvodné dáta a nevplýva na príjemcu týchto dát. Druhou možnosťou je aktívny útok, pri ktorom sú buď pozmenené dáta doručené príjemcovi alebo je obeť nejakým spôsobom ovplyvňovaná, napríklad zasielaním falošných informácií.

Obr. 1.3: Príklad pasívneho útok, pri ktorom útočník odpočúva komunikáciu medzi dvoma uzlami [4]

Pri pasívnom útoku, ktorý je znázornený na obrázku 1.3 ide útočníkovi prevažne o zachytenie prenášanej komunikácie a monitorovanie a analýzu prevádzky. Odposluch a zobrazenie obsahu dát je účinné hlavne pri nepoužití šifrovania správ medzi koncovými bodmi alebo aj pri použití slabých šifier, krátkych kľúčov a nedostatočne bezpečných hesiel. Monitorovanie prevádzky, respektíve analýza komunikácie je možná aj pri použití šifrovania, keďže každá komunikácia je charakteristická určitým vzorom. Pasívne útoky je nesmierne obtiažne detegovať nakoľko nemodifikujú dáta pri prenose. Najúčinnejšia obrana je použitie dostatočne silných šifier na zabezpečenie dát. Jeden z pasívnych útokov sa hojne využíva aj pri prevencii v Intrusion Detection System – systém detekcie narušenia (IDS) a Intrusion Prevention System – systém prevencie prienikov (IPS), kde bez analýzy prevádzky by nebolo možné zabezpečiť sieť. Pasívnymi útokmi sa nespôsobuje škoda na systéme alebo infraštruktúre, ale hrozba spočíva v narušení dôvernosti.

Obr. 1.4: Príklad aktívneho útoku maškarádou, kedy uzol Eva obdrží falošnú správu od útočníka mysliac si, že ide o správu od uzla Bob [4]

Obr. 1.5: Príklad aktívneho útoku DOS, pri ktorom je uzol Eva zahltený nevyžiadanými správami (označené červeno) [4]

Obr. 1.6: Príklad aktívneho útoku modifikáciou správy, pri ktorom je originálna správa presmerovaná cez útočníka, následne pozmenená a prijatá uzlom Eva, ktorý ju považuje za legitímnu [4]

Obr. 1.7: Príklad aktívneho útoku prehratím, pri ktorom príde uzlu Eva legitímna správa (označená modro) a následne po určitom čase aj odchytená správa od útočníka, ktorá je pozmenená (označená červeno) [4]

Aktívne útoky sú sofistikovanejšie ako pasívne, modifikujú dáta alebo vytvárajú falošné, o ktorých prijímateľ predpokladá, že prišli od zdroja, s ktorým pôvodne komunikoval. Hrozby, ktoré môžu týmito útokmi nastať sú strata integrity, teda modifikácia dát a ohrozenie dostupnosti pričom vždy dochádza ku škode na systéme alebo infraštruktúre. Maškaráda je prvým z aktívnych útokov, kde ako je možné vidieť na obrázku 1.4, útočník vytvára falošnú správu, ktorú zasiela obeti a tá sa domnieva, že komunikuje s pôvodným zdrojom, v našom prípade Bobom. Použitím osobných certifikátov na oboch stranách by bolo možné odhaliť, že správa nepochádza od zdroja, ale od útočníka. Príkladom aktívneho útoku je aj útok odoprenia služby 1.5, kde sa vytvárajú falošné dáta generované vysokou frekvenciou za účelom odstaviť systém alebo infraštruktúru, ktorá nezvláda spracovanie toľkých požiadaviek, keďže nebola na takúto záťaž dimenzovaná. Tretím aktívnym útokom 1.6 je modifikácia správy útočníkom pri prechode komunikačným kanálom, ktorý sa realizuje rôznymi technikami podvrhnutia zdroja alebo identity. Komunikácia v tomto prípade prebieha cez útočníka, ktorý tento útok mohol uskutočniť napríklad podvrhnutím smerovania. Posledným útokom je útok prehratím 1.7, čo je útok veľmi podobný predchádzajúcemu, akurát obeť obdrží najprv pôvodnú nepozmenenú správu a následne po určitom čase aj modifikovanú správu od útočníka. Takéto správy môžu byť generované aj ako nežiadúca sieťová prevádzka pri zahltení prvkov alebo pri zlom nastavení smerovania. Citlivé sú najmä tranzakčné systémy napríklad databáze. Zabrániť tomuto útoku je možné pomocou časových pečiatok a jednoznačných identifikátorov.

2 Bezpečnostný audit

Auditovanie je veľmi dôležitým prvkom správy informačných systémov a infraštruktúry, pretože umožňuje zaistiť bezpečnosť týchto informačných aktív porovnávaním s vytvorenými štandardmi, odporúčaniami a predpismi. Zaoberá sa otázkami čo a ako zabezpečiť, vyhodnocovaním a riadením rizík a následným dokazovaním, že náprava znížila riziko hrozby.

Auditovanie sa skladá z piatich pilierov [5]:

- 1. Posúdenie
- 2. Prevencia
- 3. Detekcia
- 4. Reakcia
- 5. Zotavenie

Pri posudzovaní si je potreba klásť otázky či sú prístupové práva dostatočne špecifikované, aká je pravdepodobnosť útoku na zraniteľnosť a podobne. Prevencia nespočíva iba v technológiách ako firewall prípadne IDS a IPS, ale aj v politikách, procesoch a povedomí o probléme. Detekcia a reakcia spolu úzko súvisia a je potrebné skrátiť dobu medzi týmito dvoma bodmi, bez dôkladnej detekcie nie je možné vykonať reakciu. Mnohé reakcie na detekciu problému sú už rôznymi technológiami implementované automatizovane. Posledný článkom je zotavenie, ktoré je dôležité pri službách vysokej dostupnosti. Výborným príkladom detekcie, reakcie a zotavenia z problému sú protokoly z rodiny First Hop Redundancy Protocol (FHRP).

Proces auditu pozostáva z niekoľkých fází: [5]

- 1. Plánovanie stanovenie cieľov a predmetu auditu. Definuje sa rozsah, teda čo všetko je v pláne auditom pokryť.
- 2. Výskum vytváranie auditného plánu na základe štandardov a odporúčaní a špeciálnych expertíz. Kontaktujú sa tiež dotknuté strany, ktoré nám môžu byť nápomocné pri plnení cieľov.
- 3. Zbieranie dát vyžiadanie potrebných podkladov a dát na vykonanie auditu, zozbieranie dôkazov. V tejto fáze sa tiež vyberajú rôzne softvérové nástroje na vykonanie auditu a vytvorí sa checklist na základe auditného plánu a zozbieraných dôkazov.
- 4. Analýza dát posúdenie všetkých dôkazových dát pomocou checklistu a softvéru na podporu auditu. Na základe nájdených nedostatkov sa vytvoria odporúčania, ktoré by mali znížiť riziká hrozieb.
- 5. Vytváranie správy súpis nájdených nedostatkov, možných riešení na zníženie rizík do auditnej správy a prezentácia tejto správy dotknutým stranám.

6. Aplikácia opatrení – nasadenie a použitie protiopatrení prezentovaných alebo vyplývajúcich z auditnej správy. Následne sa môže vykonať monitorovanie a hlásenie o úspešnosti zmien.

Typy auditov podľa zistení, hĺbky a rozsahu auditu:

- Bezpečnostná kontrola-je najzákladnejšia forma analýzy bezpečnosti, na základe ktorej sa následne formujú ďalšie aktivity na zaistenie bezpečnosti. Do tejto kategórie spadajú automatizované nástroje na skenovanie zraniteľností a penetračné nástroje, ktoré generujú zoznam potenciálnych zraniteľností, ale je potrebné ďalšie podrobnejšie preskúmanie výsledkov a zistení a stanovenie, ako sa k ním zachovať. Patria sem nástroje ako napríklad Nmap, Nessus a podobne. Za bezpečnostnú kontrolu možno považovať preskúmanie politík alebo architektúry daného systému a infraštruktúry. Dá sa povedať, že ide o akýsi rýchly náhľad na bezpečnosť, ktorého výstupom je poznanie a identifikovanie problému.
- Hodnotenie bezpečnosti je ďalším stupňom, pričom ide o podrobnejší pohľad
 na problém z profesionálnejšieho hľadiska. Kvalifikuje sa riziko k jednotlivým
 zisteniam a stanovuje sa relevantnosť a kritickosť týchto zistení na konkrétnu
 organizáciu a prípad použitia.
- Bezpečnostný audit je štandardizovanou a najdôkladnejšou formou posúdenia bezpečnosti. Bezpečnosť sa porovnáva so štandardmi alebo benchmark-mi, v niektorých prípadoch aj s predpismi dohliadahúcich orgánov. Výsledkom je posúdenie, na koľko je organizácia alebo skúmaný objekt v zhode s porovnávaným štandardom. Typickým príkladom štandardov sú ISO27001 a COBIT.

2.1 Manažment rizík

Manažment rizík je proces pozostávajúci z analýzy rizík a riadenia rizík [3]. Dôležitým faktom je, že riziko nie je možné eliminovať, ale ho iba znížiť.

Pri analýze rizík zisťujeme, aké riziká existujú, ako medzi sebou súvisia a aké škody môžu spôsobiť. Analýza rizík môže byť vykonávaná kvalitatívne a kvantitatívne.

Štandard NIST SP 800-30 [6] definuje nasledujúce kroky pri analýze rizík:

- 1. Identifikácia informačných aktív a ich význam
- 2. Identifikácia hrozieb
- 3. Identifikácia zraniteľností
- 4. Analýza riadenia a kontroly
- 5. Zistenie pravdepodobnosti
- 6. Identifikovanie dopadu
- 7. Definovanie rizika ako súčinu pravdepodobnosti a dopadu
- 8. Odporúčanie na zavedenie riadenia a kontroly na zníženie rizika
- 9. Zdokumentovanie výsledkov

Riadenie rizík má za úlohu minimalizáciu potenciálnych škôd odhalených pri analýze rizík s ohľadom na vyváženie nákladov na riadenie rizika.

Prístupy k nájdenému riziku [2][3][5]:

- Vyhnutie sa riziku-je uplatnené ak prítomnosť a funkčnosť informačného aktíva nestojí za podstúpenie rizika, a teda toto aktívum vôbec nepoužijeme.
 Napríklad vypnutie menej bezpečných a nevyužívaných sieťových služieb.
- Zníženie aplikovanie protiopatrenia na odstránenie hrozby alebo zraniteľnosti prípadne zníženie pravdepodobnosti rizika. Nikdy nie je však možné riziko eliminovat. Príkladom môže byť obmedzenie prístupu k sieťovému prvku.
- Akceptovanie v prípade neexistujúceho protiopatrenia alebo veľmi nízkeho rizika. Častokrát ide o bezpečnostnú chybu softvéru v službe, ktorú využívame a nie je možné ju vypnúť ani aplikovať protiopatrenie.
- Presun riziko je možné presunúť na inú organizáciu, napr. poistenie v prípade škody spôsobenej nedostatočným zabezpečením.
- Ignorácia úplné vypustenie faktu, že dochádza k riziku, tento prístup sa považuje za iracionálny.

Na ohodnotenie rizika slúžia rôzne systémy hodnotenia, jedným z nich je *Common Vulnerability Scoring System* (CVSS), ktorý definuje riziká podľa definovaných metrík na základe dosiahnutého skóre do nasledujúcich tried:

- 0: No issue
- 0,1-3,9: Low
- 4,0-6,9: Medium
- 7.0 8.9: High
- 9,0-10,0: Critical

3 Prevádzka a bezpečnosť sietí

Prevádzka sietových zariadení je proces nielen o monitorovaní incidentov, zabezpečovaní konzistencie a konvergencie siete, ale aj o aktualizáciách softvéru a hardvéru, aplikovaní bezpečnostných zásad a politík. Táto kapitola preto opisuje jednotlivé aspekty s ktorými sa pri prevádzke siete môžeme stretnúť.

3.1 Sieťové prvky

Medzi základné stavebné piliere sietí, bez ktorých nie je možná komunikácia koncových staníc patria smerovače (router) a prepínače (switch). Mimo týchto dvoch základných zariadení sa v Local Area Network (LAN) sietach často vyskytujú prístupové body (access point), firewally, sietové mosty (bridge) a v dnes už ojedinelých prípadoch ešte aj rozbočovače (hub). V súčasnosti však jedno zariadenie môže kombinovať funkcie zariadení, ktoré majú podľa modelov TCP/IP alebo ISO/OSI na starosti inú vrstvu modelu. Preto sa dnes hlavne z finančných dôvodov používajú takzvané L3 prepínače, ktoré s určitými obmedzeniami vedia nahradiť nákladné smerovače. Taktiež smerovače ako aj L3 prepínače umožňujú filtrovanie paketov, takže vedia čiastočne zastať aj základné funkcie firewallu. Značky najpoužívanejších sietových zariadení su vyobrazené na obrázku 3.2 a budú používané v nasledujúcich kapitolách.

Obr. 3.1: Typy sietových zariadení v lokálnych sietach

3.2 Hierarchický model sietí

S postupným nárastom sieťových zariadení a komplexnosti siete dochádza v sieťach bez hierarchie k mnohým problémom ako veľké broadcast domény, vysoká cena za port, vysoké zaťaženia zariadení, neprítomnosť redundancie. Preto sa zaviedol hierarchický model siete, ktorý rieši problémy veľkosti a rozsahu broadcast a kolíznych domén, umožňuje efektívne prideľovanie *Internet Protocol* (IP) adries a oddeľuje zariadenia pracujúce na jednotlivých vrstvách ISO/OSI.

Siete sú spravidla delené do 3 vrstiev s definovanými funkciami [8]:

- Core-tvorí vysokorýchlostnú chrbticu siete, agreguje dáta z distribučnej vrstvy
 a mala by byť redundantná. Nároky na rýchlosť portov a výkon zariadenia sú
 obzvlášť vysoké, a preto sa využívajú prevažne smerovače, ale taktiež ako v
 distribučnej vrstve dnes už aj L3 prepínače.
- Distribučná (Distribution) agreguje dáta z prístupovej vrstvy, vytvára a oddeľuje broadcast domény, riadi smerovanie medzi Virtual LAN (VLAN) a filtrovanie paketov. Táto vrstva kvôli zabezpečeniu dostupnosti využíva agregovanie a redundanciu liniek. Typicky sa skladá zo smerovačov, no v dnešnej dobe hlavne z L3 prepínačov, keďže tie nie sú finančne také náročné.
- Prístupová (Access) vstupný bod do siete, ktorý riadi prístup a politiku pre koncové zariadenia, segmentuje siet, vytvára a separuje kolízne domény. V neposlednej rade zariaďujú prístup k distribučnej vrstve. Je tvorená zariadeniami ako prepínač, rozbočovač alebo prístupový bod.

Obr. 3.2: Hierarchické rozdelenie siete na vrstvy

V menších sieťach prevažne malých firiem sa využíva zlučovanie vrstiev nazývaných

ako collapsed core, ktoré zlučujú distribučnú a core vrstvu, prípadne zlučujú všetky tri vrstvy dokopy.

Cieľom hierarchického modelu a dobre navrhnutej siete je dosiahnutie nasledujúcich vlastností:

- Škálovateľnosť jednoduché a bezproblémové pridanie zariadenia pri raste a rozširovaní siete.
- Redundancia zabezpečenie vysokej dostupnosti viacnásobnými linkami medzi zariadeniami a zálohovanie samotných zariadení ich redundanciou.
- Výkonnost agregovanie liniek a výber dostatočne výkonných zariadení
- Bezpečnost zabezpečenie siete na viacerých úrovniach ako napríklad portoch, oddelením segmentov pomocou VLAN, riadením prístupu, šifrovaním a pod.
- Manažovateľnosť vytvorenie šablón, definovaných štandardov a pravidiel na zaistenie konzistentnosti konfigurácií zariadení na jednoduchšie odhaľovanie chýb.
- Udržovateľnosť schopnosť systému prechádzať zmenami komponentov, služieb a vlastností.

3.3 Úrovne sieťových prvkov

Sietové prvky sú zodpovedné nielen za preposielanie dát medzi koncovými stanicami, ale aj za mnohé riadiace dáta medzi sebou, bez ktorých by sieť nebola funkčná. Preto sa jednotlivé protokoly a služby rozdeľujú troch rovín alebo úrovní, a to management, control a data plane. Tieto pojmy sa využívajú vo väčšej miere v softvérovo definovaných sieťach, no sú platné aj v klasickej koncepcii.

Úroveň management plane je zodpovedná za konfiguráciu zariadení a riadenie prístupu ku konfiguráciám. Typickými príkladmi protokolov pracujúcich na tejto úrovni sú Simple Network Management Protocol (SNMP), Authentication Authorization Accounting (AAA), Syslog, Secure Shel (SSH) a mnohé ďalšie [7]. Druhá úroveň, control plane má na starosti prevažne smerovanie, teda kadiaľ budú pakety smerované a prenáša riadiace a signalizačné informácie pre protokoly ako napríklad, Open Shortest Path First (OSPF), Spanning tree, FHRP [7]. Poslednou úrovňou je data plane nazývaná často aj forwarding plane, ktorá prepína pakety na daný port na základe rozhodnutie z control plane. Táto časť sieťových prvkov musí byť veľmi rýchla, aby zaistila nízku odozvu a dostatočne vysoké prenosové rýchlosti. Nižšie uvedený obrázok 3.3 reflektuje tok dát z jednej úrovne do druhej a tiež medzi dvoma susednými zariadeniami. Úroveň management plane zodpovedná za konfi-

guráciu zariadenia a nastavuje úroveň control plane, v tomto prípade smerovanie z zariadení. Po výmene informácií so susednými smerovačmi sa vytvoria príslušné tabuľky a nakoniec smerovacia tabuľka, ktorá sa využíva pri rozhodovaní prepínania paketov v úrovni data plane.

Obr. 3.3: Rozdelenie úrovní v smerovači, tok informácií v jeho vnútri a medzi susednými smerovačmi [9]

3.4 Riadenie a zneužitie prístup

AAA, username, accounts, enable psswd, ssh, ACL(data plane, je to data plane?) 92, 111, 112, bannery plus logovanie neuspesnych pristupov

3.5 Smerovacie protokoly

autentizacia, passive, ip source routing, urpf

3.6 Identifikácia zariadení, pravidiel a nastavení

host, domainname, acl remark, int description, vlan description

3.7 Šifrovanie hesiel

3.8 Logovanie

syslog, snmp nastavenie oboch, plus co logovat, teda accouting a logovanie deny pravidiel, 93

3.9 Synchronizácia času

ntp + amplifikacne utoky

3.10 Záloha a zabezpečenie konfigurácií

archive, tftp, scp, delete protection, logovanie zmien, mozno netreba, ak je AAA accounting

3.11 Správanie pri vysokom zaťažení

68-71, storm control

3.12 Monitorovanie výkonu siete

SPAN NETFLOW

3.13 Problémy vrstvy L2

access, max, hopping, double tagging, blackhole, default access a trunk, dtp, spanning tree, dot1x, vtp

3.14 First Hop Security

130 - 138 140 144-148 aj mac spoof a mac floof, teda spanning tree prikazy!!! http://isp-servis.com/?p=191

3.15 First Hop Redundancy Protocols

3.16 Tunely

3.17 Mapovanie siete a objavovanie zariadení

proxy arp, 88-91, lldp, cdp, 139

3.18 Nepoužívané a nebezpečné služby

3.19 Ostatné

source interfaces loopback shutdown

4 Návrh

4.1 Požiadavky na aplikáciu

O kĺúčových vlastnostiach, pridaj este zmienku o kontrole aktualnej verzie. Cisco ma API na to

4.2 Existujúce riešenia a odlišnosti

4.3 Zoznam odporúčaní

určite ako vznikal, rozobrať facility, severity, prečo rozdelenie podľa vrstiev a prečo nie podľa facility, citacie k jednotlivym riadkom, prejst este raz planes, eliminovat viac riadkov s loopback, skratky z tabulky treba vypisat

Útok / Problém	Mitigácia / Konfi-	Plane	Severity	Facility	Facility layer
,	gurácia typu "Best	[DATA]	[CRITICAL]	[R L3SW	[ACC DIST
	practise"	CONTROL	HIGH	L2SW]	CORE/EDGE
		MANAGEMENT]	MEDIUM		COLALL
			LOW		COLDISTACC
			NOTIFY][3]		COLCOREDIST]
Nepovolený prí-	Vytvoriť a aplikovať	Management	CRITICAL	VŠETKY	VŠETKY
stup k manažova-	ACL pre OOB,				
niu zariadenia	Telnet, SSH a pod.				
	a zaznamenať v				
	logu prístupy				
Nemožná identifi-	Vytvoriť hostname	Management	LOW	VŠETKY	VŠETKY
kácia zariadenia					
Nemožnosť vzdia-	Vytvoriť doménové	Management	LOW	VŠETKY	VŠETKY
leného prístupu	meno				
Neautorizovaný	Vypnúť nepoužívané	Management	HIGH	VŠETKY	VŠETKY
prístup cez ne-	protokoly na prístup				
používané a	k manažovaniu				
nezabezpečené	zariadení (telnet a				
protokoly na ma-	pod.)				
nažment zariadení					
Prítup bez poža-	Nakonfigruovanie	Management	CRITICAL	VŠETKY	VŠETKY
dovaných prístu-	protokolov na ma-				
pových údajov	nažment zariadení,				
	aby požadovali				
	prístupové údaje				
	(telnet a pod.)				
Nepoužívanie	Zapnutie SSH	Management	CRITICAL	VŠETKY	VŠETKY
zabezpečeného					
protokolu na					
manažment zaria-					
dení môže viesť k					
odposluchu					
Nebezpečná ver-	SSH verzia 2	Management	CRITICAL	VŠETKY	VŠETKY
zia 1 protokolu					
SSH					

τίς Ι. / D. ΙΙζ	Marie C . T. C	DI	G ''	D :1:4	D 111 1
Útok / Problém	Mitigácia / Konfi-	Plane	Severity	Facility	Facility layer
	gurácia typu "Best	[DATA]	[CRITICAL]	[R L3SW	[ACC DIST
	practise"	CONTROL	HIGH	L2SW]	CORE/EDGE
		MANAGEMENT]	MEDIUM		COLALL
			LOW		COLDISTACC
			NOTIFY][3]		COLCOREDIST]
Útok na krátky	Dĺžka RSA kľúča	Management	CRITICAL	VŠETKY	VŠETKY
RSA kĺúč	minimálne 2048				
	bitov				
Dlhé neaktívne	SSH čas vypršania	Management	MEDIUM	VŠETKY	VŠETKY
sedenie môže	sedenia				
byť zneužité					
alebo aj fyzický					
prístup útočníka					
k aktívnemu					
sedeniu môže					
viesť k zmene					
konfigurácie					
Hádanie hesla k	SSH maximálny	Management	HIGH	VŠETKY	VŠETKY
RSA kľúču	počet neúspešných			,	
10011 Mided	pokusov				
Útok hrubou	Špecifikovať čas po	Management	HIGH	VŠETKY	VŠETKY
silou na zistenie	ktorý nie je možné	Wanagement	mon	VSETICI	VOETICI
prihlasovacích	po N pokusoch sa				
údajov	prihlásiť	M .	MEDIUM	VŠETKY	vápmizv
Prihlásenie na	Povolenie prístupu	Management	MEDIUM	VSETKY	VŠETKY
zariadenie nie	administrátorovi na				
je možné kvôli	základe IP adresy,				
zablokovaniu	keď je protokol na				
pre príliš veľa	manažovanie za-				
neúspešných	riadení nedostupný				
pokusov	kvôli DOS útoku				
Dlhé neaktívne	Čas vypršania se-	Management	MEDIUM	VŠETKY	VŠETKY
sedenie môže	denia pre protokol				
byť zneužité	na manažovanie				
alebo aj fyzický	zariadení				
prístup útočníka					
k aktívnneum					
sedeniu môže					
viesť k zmene					
konfigurácie					
Možné prihlásenie	Zakázať telnet ak je	Management	CRITICAL	VŠETKY	VŠETKY
do zariadenia	SSH aktívne				
cez telnet keď je					
prítomné SSH					
Útočník nie je	Právne upozorne-	Management	LOW	VŠETKY	VŠETKY
informovaný o	nie pri prístupe k				
právnych násled-	zariadeniu				
koch					
Možnosť prečítať	Zašifrovanie hesiel v	Management	CRITICAL	VŠETKY	VŠETKY
heslá z uniknu-	otvorenej podobe				
tých konfigurácií					
Nepovolená	Vytvorenie hesla na	Management	CRITICAL	VŠETKY	VŠETKY
zmena konfigu-	editovanie konfigu-				
rácie zariadenia	rácie zariadenia				
L	I.	I	1		L

					1
Útok / Problém	Mitigácia / Konfigurácia typu "Best practise"	Plane [DATA CONTROL MANAGEMENT]	Severity [CRITICAL HIGH MEDIUM LOW NOTIFY][3]	Facility [R L3SW L2SW]	Facility layer [ACC DIST CORE/EDGE COLALL COLDISTACC COLCOREDIST]
Nepovolený prí- stup k manaž- mentu konfigurá- cie zariadenia	Lokálne zabezpe- čené účty	Management	CRITICAL	VŠETKY	VŠETKY
Centrálna správa prihlásení a do- hľadateľnosť zmien v konfigu- rácií	Definovanie a povo- lenie AAA serveru na prihlásenie a de- finovanie záložného prihlásenia	Management	HIGH	VŠETKY	VŠETKY
Centrálna správa prihlásení a do- hľadateľnosť zmien v konfigu- rácií	Definovanie a povo- lenie AAA serveru na editáciu konfigu- rácií a definovanie záložného prihláse- nia	Management	MEDIUM	VŠETKY	VŠETKY
Hádanie prístupo- vých údajov	Definovanie ma- ximálneho počtu neúspešných poku- sov o prihlásenie a následné zablokova- nie účtu	Management	нідн	VŠETKY	VŠETKY
Prihlásenie bez prihlasovacích údajov	Zakázať záložné prihlásenie bez po- skynutia autentizač- ných prostriedkov	Management	CRITICAL	VŠETKY	VŠETKY
AAA používa primárne lokálne účty namiesto centralizovaných na serveri	AAA nesmie po- užívať ako prvú možnosť prihlásenia lokálny účet	Management	HIGH	VŠETKY	VŠETKY
Používateľ prihlá- sený do zariade- nia môže spúšťať akékoľvek príkazy	Nastavenie AAA autorizácie pre spúštanie príkazov. V prípade výpadku AAA serveru, bude užívateľ odhlásený a následne prihlásený podľa záložného prihlásenia, aby mu nebolo pridelené vysoké oprávnenie umožňujúce vyko- návať príkazy, na ktoré nemá právo	Management	HIGH	VŠETKY	VŠETKY
Administrátor vloží zlý príkaz a po čase je ho nemožné dohľadať a zjednať nápravu	Nastavenie AAA účtovania respektíve logovania pripo- jení a vykonaných príkazov	Management	HIGH	VŠETKY	VŠETKY
AAA zdrojové rozhranie nie je rovnaké pri každom reštarte	Definovanie loop- back zdrojového rozhrania pre AAA	Management	MEDIUM	VŠETKY	VŠETKY

THE LANGE	M:: / : / TZ C	DI	G	T) 1111	D 1111 1
Útok / Problém	Mitigácia / Konfi-	Plane	Severity	Facility	Facility layer
	gurácia typu "Best	[DATA]	[CRITICAL]	[R L3SW	[ACC DIST
	practise"	CONTROL	HIGH	L2SW]	CORE/EDGE
		MANAGEMENT]	MEDIUM		COLALL
			LOW		COLDISTACC
			NOTIFY][3]		COLCOREDIST]
Odpočúvanie	Použitie SNMP	Management	CRITICAL	VŠETKY	VŠETKY
SNMP verzie 1 a	verie 3 pokiaľ je				
2c	SNMP používané				
Modifikovanie	Obmedzenie SNMP	Management	CRITICAL	VŠETKY	VŠETKY
konffigurácie	iba na čítanie				
pomocou SNMP					
Neoprávnený	Obmedzenie SNMP	Management	HIGH	VŠETKY	VŠETKY
prístup k SNMP	iba pre vybrané IP				
informáciám	adresy				
Administrátor	Povolenie asynch-	Management	MEDIUM	VŠETKY	VŠETKY
nemá povedomie	rónnych správ				
o problémoch na	SNMP TRAP				
zariadení					
Odpočúvanie	Vytvorenie SNMP	Management	CRITICAL	VŠETKY	VŠETKY
SNMP sedenie z	verzie 3 užívateľa s	1.10110501110110		, 52 1111	, , , , , , , , , , , , , , , , , , , ,
dôvodu slabého	minimálnym šifrova-				
šifrovania a has-	ním AES 128 bit a				
hovacej funkcie	hashovacou funkciou				
novacej funkcie	SHA				
Sťažená identi-	Definovanie lokácie	Management	LOW	VŠETKY	VŠETKY
fikácia SNMP	SNMP serveru	Management	LOW	VSETKI	VSEIKI
	Siving serveru				
správ z rôznych IP					
SNMP zdrojové	Definovanie loop-	Management	MEDIUM	VŠETKY	VŠETKY
rozhranie nie	_	Management		VSEIKI	VSETKT
	back zdrojového ro-				
je rovnaké pri	zhrania pre SNMP				
každom reštarte	CNIMED 1 1114		HIGH	v čenera.	NATION (N
Zmeny názvov	SNMP statické	Management	HIGH	VŠETKY	VŠETKY
rozhraní medzi	nemenné meno				
reštartami a ne-	rozhrania aj po				
možnosť monito-	reštarte zariadenia				
rovanie pomocou					
SNMP			****		
Administrátor	Povolenie logova-	Management	HIGH	VŠETKY	VŠETKY
nemá povedomie	nia protokolom				
o problémoch na	SYSLOG a špecifi-				
zariadení	kovanie IP adresy				
	SYSLOG serveru				
Neprijímanie	Špecifikovanie dô-	Management	MEDIUM	VŠETKY	VŠETKY
všetkých dôleži-	ležitosti oznámenií				
tých incidentov	SYSLOG na IN-				
na zariadení z	FORMATIONAL				
protokolu SYS-					
LOG					
SYSLOG zdro-	Definovanie lo-	Management	MEDIUM	VŠETKY	VŠETKY
jové rozhranie	opback zdrojo-				
nie je rovnaké pri	vého rozhrania pre				
každom reštarte	SYSLOG				

1 1 1 1 1 1 1 1 1 1	3500 (3 (75) 0	- D1	I a I		
Útok / Problém	Mitigácia / Konfigurácia typu "Best practise"	Plane [DATA CONTROL MANAGEMENT]	Severity [CRITICAL HIGH MEDIUM LOW NOTIFY][3]	Facility [R L3SW L2SW]	Facility layer [ACC DIST CORE/EDGE COLALL COLDISTACC COLCOREDIST]
Nedostatočné a neštandardné formáty času v logovacích správach	Definovanie formátu času pre logovacie a ladiace výstupy	Management	MEDIUM	VŠETKY	VŠETKY
Administrátor nevidí dôležité incidenty pri prihlásení a kon- figurovaní cez konzolu	Vypisovanie SYSLOG správ CRITICAL a dôleži- tejších do terminálu	Management	MEDIUM	VŠETKY	VŠETKY
Malá vyrovná- vacia pamäť pre SYSLOG je dôvo- dom zahadzovanie správ	Definovanie veľkosti SYSLOG buffera dôležitosti oznámení na INFORMATI- ONAL	Management	HIGH	VŠETKY	VŠETKY
Neprístupný SYSLOG ser- ver spôsobuje zahadzovanie dô- ležitých syslog správ	Definovanie do- časného úložiska SYSLOG správ v prípade nedostup- nosti servera	Management	нісн	VŠETKY	VŠETKY
Skenovanie a zistenie informácií o sieti za pomoci protokolu CDP a využitie bezpečnostných chýb	Zakázanie protokolu CDP	Management	CRITICAL	VŠETKY	VŠETKY
Skenovanie a zistenie informácií o sieti za pomoci protokolu LLDP a využitie bezpečnostných chýb	Zakázanie protokolu LLDP	Management	CRITICAL	VŠETKY	VŠETKY
Nekonzistencia časov v logoch a problém pri- členenia logov k relevantným incidentom	Nastavenie NTP serveru pre aktuálny čas v logoch	Management	HIGH	VŠETKY	VŠETKY
Pripojenie servera s rovnakou IP adresou, ale falošným časom	Nastavenie NTP autentizácie	Management	HIGH	VŠETKY	VŠETKY
NTP zdrojové rozhranie nie je rovnaké pri každom reštarte	Definovanie loop- back zdrojového rozhrania pre NTP	Management	MEDIUM	VŠETKY	VŠETKY
Väčšia bezpečnosť (pub/priv key) NTP a podpora IPv6	Použitie NTP verzie 4	Management	MEDIUM	VŠETKY	VŠETKY

Útok / Problém	Mitigácia / Konfigurácia typu "Best practise"	Plane [DATA CONTROL MANAGEMENT]	Severity [CRITICAL HIGH MEDIUM LOW NOTIFY][3]	Facility [R L3SW L2SW]	Facility layer [ACC DIST CORE/EDGE COLALL COLDISTACC COLCOREDIST]
Falošný čas od podvrhnutého NTP zdroja	Nastavenie NTP peer s inými sieťo- vými zariadeniami na krížovú validáciu času a záložný zdroj času	Management	MEDIUM	VŠETKY	VŠETKY
Útočník s fyzic- kým prístupom k zariadeniu alebo portu môže od- počúvať alebo posielať škodlivý obsah	Explicitne zakázať nepoužívané porty	Data	CRITICAL	VŠETKY	VŠETKY
Zdrojové rozhra- nie pre manage- ment a control protokoly	Vytvorť Loopback rozhranie s IP adre- sou	Control	MEDIUM	VŠETKY	VŠETKY
Identifikácia pravidla v ACL	Popis každého pravidla v ACL pre lepšiu identifikáciu	Management	LOW	VŠETKY	VŠETKY
Indentifikácia rozhrania	Popis každého rozhrania	Management	LOW	VŠETKY	VŠETKY
SSH zdrojové rozhranie nie je rovnaké pri každom reštarte	Definovanie loop- back zdrojového rozhrania pre SSH	Management	MEDIUM	VŠETKY	VŠETKY
DOS útok na štandardný SSH port 22	Špecifikovanie iného portu pre SSH ako štandardného alebo aplikovanie port knocking	Management	HIGH	VŠETKY	VŠETKY
Nepovolený prí- stup k manaž- mentu konfigurá- cie zariadenia	Vypnutie odchádza- júcich spojení pre protokoly na ma- nažment zariadení pokiaľ sa nepouží- vajú (telnet a pod.)	Management	HIGH	VŠETKY	VŠETKY
Odpočuvanie konfigurácií zariadení pri zálohe	Zapnutie zabezpeče- nej zálohy na server (SFTP, SCP)	Management	HIGH	VŠETKY	VŠETKY
Vymazanie konfi- gurácie	Zapnutie ochrany pred výmazom konfigurácie	Management	HIGH	VŠETKY	VŠETKY
Možnosť urobiť diff zmien kon- figurácií a jej návrat	Periodické zálohovanie konfigurácie a logovanie jej zmien	Management	MEDIUM	VŠETKY	VŠETKY
DOS útok alebo pokus o prístup k tomu, čo nie je povolené	Logovanie pravidiel zahodenia paketov v ACL	Management	MEDIUM	VŠETKY	VŠETKY

* 1 / D 11/	7500 (757 0	DI.		T	
Útok / Problém	Mitigácia / Konfi- gurácia typu "Best practise"	Plane [DATA CONTROL MANAGEMENT]	Severity [CRITICAL HIGH MEDIUM LOW NOTIFY][3]	Facility [R L3SW L2SW]	Facility layer [ACC DIST CORE/EDGE COLALL COLDISTACC COLCOREDIST]
Nízky stav voľnej pamäte	Nastavenie notifiká- cie pri dochádzaní pamäte	Management	MEDIUM	VŠETKY	VŠETKY
Logovacie správy nemôžu byť za- znamenané kvôli nedostatku pa- mäte	Rezervovanie pa- mäte pre kritické notifikácie pri ne- dostatku pamäte	Management	HIGH	VŠETKY	VŠETKY
Vysoké zaťaženie CPU	Nastavenie noti- fikácie vysokom zaťažení CPU	Management	MEDIUM	VŠETKY	VŠETKY
Vysoké zaťaže- nie zariadenia spôsobilo nemož- nosť prihlásenia k nemu	Rezervovanie pa- mäte preprotokoly na manažment zariadení pri nedos- tatku pamäte	Management	HIGH	VŠETKY	VŠETKY
Pretečenie pa- mäte	Povolit mechanizmy na detekciu preteče- nia pamäte	Management	MEDIUM	VŠETKY	VŠETKY
Načítanie škodlivej konfigurácie zo siete počas bootovania	Vypnutie načítania operačného systému alebo konfigurácie zo siete pokiaľ to nie je nutné	Management	MEDIUM	VŠETKY	VŠETKY
Proxy ARP môže viesť k obídeniu PVLAN a roz- širuje broadcast doménu	Vypnutie Proxy ARP	Control	CRITICAL	R, L3SW	CORE/EDGE, DIST, COLCOREDIST, COLDISTACC, COLALL
DOS útok na sta- nicu, cez ktorú bola špecifiko- vaná cesta a teda nemožnosť komunikácie s koncovým bodom. Alebo zosnovanie MITM útoku	Vypnutie IP source routing	Control	CRITICAL	R, L3SW	CORE/EDGE, DIST, COLCOREDIST, COLDISTACC, COLALL
DOS útok pomo- cou podvrhnutej IP adresy alebo vzdialený útok na smerovací protokol	Zapnutie reverse path forwarding strict/loose mode	Control	HIGH	R, L3SW	CORE/EDGE, DIST, COLCOREDIST, COLDISTACC, COLALL
Nepoužívané, staré a nezabez- pečené služby môžu byť použité na škodlivé účely	Vypnutie nepou- žívaných služieb z bezpečnostných dô- vodov a na šetrenie CPU a pamäte	Záleží na výrob- covi a zariadení	HIGH	Záleží na výrobcovi a zariadení	Záleží na výrobcovi a zariadení

			1		I
Útok / Problém	Mitigácia / Konfi-	Plane	Severity	Facility	Facility layer
	gurácia typu "Best	[DATA]	[CRITICAL]	[R L3SW	[ACC DIST
	practise"	CONTROL	HIGH	L2SW]	CORE/EDGE
		MANAGEMENT]	MEDIUM		COLALL
			LOW		COLDISTACC
*** * * * * * * * * * * * * * * * * * *	**	<u> </u>	NOTIFY][3]	D 1 00111	COLCOREDIST]
Útočník môže zis-	Vypnutie spáv	Data	HIGH	R, L3SW	CORE/EDGE, DIST,
tit, že IP adresa,	ICMP Unreachable				COLCOREDIST,
na ktorú skušal					COLDISTACC,
ping je nesprávna					COLALL
Útočník môže	Vypnutie spáv	Data	HIGH	R, L3SW	CORE/EDGE, DIST,
zistiť masku	ICMP Mask reply				COLCOREDIST,
podsiete pomocou					COLDISTACC,
ICMP Mask reply					COLALL
Umožňuje DOS	Vypnutie ICMP	Data	CRITICAL	R, L3SW	CORE/EDGE, DIST,
Smurf útok, ma-	echo správ na bro-				COLCOREDIST,
povanie siete	adcast adresu, vy-				COLDISTACC,
pomocou ping na	pnutie directed				COLALL
broadcast adresu	broadcasts				
vzdialenej siete					
Útočník môže	Vypnutie spáv	Data	HIGH	R, L3SW	CORE/EDGE, DIST,
zistiť smerovacie	ICMP Redirects				COLCOREDIST,
informácie alebo					COLDISTACC,
vyťažiť CPU					COLALL
Nekonzistenia	Povolit súčasne	Management	HIGH	VŠETKY	VŠETKY
konfiguračných	iba jednému ad-				
súborov pri zme-	ministrátorovi vy-				
nách konfigurácie	konávanie zmien v				
viac ako jedným	konfigurácii				
administrátorom					
Problém identi-	Pridanie sekvenč-	Management	LOW	VŠETKY	VŠETKY
fikácie SYSLOG	ného čísla ku každej				
správ s rovnakou	syslog správe				
časovou značkou					
Nemožnosť pri-	Terminovanie za-	Management	MEDIUM	VŠETKY	VŠETKY
hlásenia pri za-	seknutého TCP				
seknutom TCP	spojenia				
spojení					
Vloženie a ma-	Autentizácia sme-	Control	HIGH	R, L3SW	CORE/EDGE, DIST,
nipulácia so	rovacích protokolov				COLCOREDIST,
smerovacími	(nie heslá v otvore-				COLDISTACC,
informáciami	nej podobe)				COLALL
OSPF virtuálne	Vypnutie virtu-	Control	HIGH	R, L3SW	CORE/EDGE, DIST,
linky degradujú	álnych liniek pre				COLCOREDIST,
výkon	OSPF				COLDISTACC,
					COLALL
Koncové zaria-	Špecifikovanie roz-	Control	HIGH	R, L3SW	CORE/EDGE, DIST,
denie, užívateľ	hraní, ktoré nebudú				COLCOREDIST,
a útočník môžu	prijímať routovacie				COLDISTACC,
vidiet smerovacie	informácie				COLALL
správy a topo-					
lógiu siete alebo					
pripojenie škodli-					
vého zariadenia,					
ktoré vysielať a					
prijímať smerova-					
cie správy					

Útok / Problém	Mitigácia / Konfi- gurácia typu "Best practise"	Plane [DATA CONTROL MANAGEMENT]	Severity [CRITICAL HIGH MEDIUM	Facility [R L3SW L2SW]	Facility layer [ACC DIST CORE/EDGE COLALL
			LOW NOTIFY][3]		COLDISTACC COLCOREDIST]
Nemožnosť spre- vádzkovať procesy smerovacích pro- tokolov v určitých prípadoch pri použití IPv6	Špecifikovanie iden- tifikátorov smerova- cích protokolov pre každý router (router ID)	Control	MEDIUM	R, L3SW	CORE/EDGE, DIST, COLCOREDIST, COLDISTACC, COLALL
Vysledovateľnosť nefunkčnosti routovacieho pro- tokolu a nespráv- neho nastavenia	Zaznamenie zmeny v logu pri zmenách v smerovaní	Control	MEDIUM	R, L3SW	CORE/EDGE, DIST, COLCOREDIST, COLDISTACC, COLALL
Škodlivé vloženie smerovacích infor- mácií informácií, vzdialený útok	TTL security	Control	HIGH	R, L3SW	CORE/EDGE, DIST, COLCOREDIST, COLDISTACC, COLALL
Nesprávne sme- rovanie kvôli sumarizácií	Vypnutie automa- tickej sumarizácie smerovacích proto- kolov	Control	HIGH	R, L3SW	CORE/EDGE, DIST, COLCOREDIST, COLDISTACC, COLALL
Packety budú spracovávané v CPU, ktoré môže byť pretažené a môže byť zmenené smerovanie na obídenie bezpečnostnej kontroly	Zahadzovanie IPv4 paketov s rozšíre- nou hlavičkou (IP Options filtering)	Control	CRITICAL	R, L3SW	CORE/EDGE, DIST, COLCOREDIST, COLDISTACC, COLALL
Odpočúvanie komunikácie cez nezabezpečené tunely	Vypnúť tunely ktoré nie sú zabezpečené alebo zabezpečiť tunely	Data	CRITICAL	R, L3SW	CORE/EDGE, DIST, COLCOREDIST, COLDISTACC, COLALL
Môže byť zneužité odpočúvanie pokiaľ sa používa monitorovanie prevádzky a monitorovanie prevádzky kvôli legislatívnym potrebám	Monitorovanie vý- konnosti siete a zber sietového prenosu kvôli legislatívnym potrebám	Control	NOTICE	VŠETKY	VŠETKY
IP spoofing	Špecifikácia ACL na zakázanie a logovanie privátnych a špeciálnych IP adries z RFC 1918, RFC 3330	Control	CRITICAL	R, L3SW	CORE/EDGE, COLCOREDIST, COLALL
IP spoofing	Špecifikácia ACL na zakázanie a logova- nie špeciálnych IPv6 adries z RFC 5156	Control	CRITICAL	R, L3SW	CORE/EDGE, COLCOREDIST, COLALL

Útok / Problém	Mitigácia / Konfi-	Plane	Severity	Facility	Facility layer
Ctok / Troblem	gurácia typu "Best	[DATA]	[CRITICAL]	[R L3SW	[ACC DIST
	practise"	·	HIGH	L2SW]	CORE/EDGE
	practise	CONTROL	'	L25 W]	
		MANAGEMENT]	MEDIUM		COLALL
			LOW		COLDISTACC
D +1:1	D +1 :1	G + 1	NOTIFY][3]	LOCIAL	COLCOREDIST]
Rogue root bridge	Rogue root bridge	Control	CRITICAL	L3SW,	DIST, COLDISTACC,
	protection (root			L2SW	ACC
	guard)		GD IMIG LI	T OCTAT	Dram Gor Dram Go
Pripojenie pripí-	BPDU protection	Control	CRITICAL	L3SW,	DIST, COLDISTACC,
naču na koncový	(BPDU guard)			L2SW	ACC
prístupový port					
Rýchlosť konver-	Prístupové porty by	Control	HIGH	L3SW,	DIST, COLDISTACC,
gencie	sa nemali podielať			L2SW	ACC
	na STP procese				
Unidirectional	Špeciálne konfi-	Control	CRITICAL	L3SW,	DIST, COLDISTACC,
communication	gurácie zaisťujúce			L2SW	ACC
between swit-	bezslučkovú topoló-				
ches can lead to	giu pomocou STP				
loop topology/	keď nastane jedno-				
Jednosmerná ko-	smerná komunikácia				
munikácia medzi	(Loop Guard)				
prepínačmi môźe					
viesť k topoógií					
so slučkami					
Nemožnosť iden-	Pridanie mena k	Control	LOW	L3SW,	DIST, COLDISTACC,
tifikácie účelu	VLAN			L2SW	ACC
VLAN					
Špeciálna VLAN	Vytvorenie sepa-	Control	MEDIUM	L3SW,	DIST, COLDISTACC,
pre manažment	rátnej VLAN pre			L2SW	ACC
na obmedzenie	manažment				
prístupu iba pre					
administrátorov					
Útočníkovi s fy-	Vytvorenie špe-	Control	CRITICAL	L3SW,	DIST, COLDISTACC,
zickým prístupom	ciálnej black hole			L2SW	ACC
k portu môže byť	VLAN pre nevy-				
pridelený prístup	užité porty				
do časti siete,					
ktorá zodpovedá					
príslušnej VLAN					
Predvolenej	Odobrať všetky	Control	CRITICAL	L3SW,	DIST, COLDISTACC,
VLAN je povo-	porty z predvolenej			L2SW	ACC
lené prepnute na	VLAN				
akýkoľvek port,					
VLAN hopping,					
double tagging					
Predvolenej	Vytvorenie natívnej	Control	CRITICAL	L3SW,	DIST, COLDISTACC,
VLAN je povo-	VLAN rozdielnej			L2SW	ACC
lené byť prepnutá	ako predvolená,			,	1100
na akýkoľvek	priradeni k trunk				
port, VLAN	portu a povolenie				
hopping, double	iba potrebných				
tagging	portov				
ч455 ¹¹¹ 5	Porto				

	3500 (777 0	- D1	I a I		
Útok / Problém	Mitigácia / Konfigurácia typu "Best practise"	Plane [DATA CONTROL MANAGEMENT]	Severity [CRITICAL HIGH MEDIUM LOW NOTIFY][3]	Facility [R L3SW L2SW]	Facility layer [ACC DIST CORE/EDGE COLALL COLDISTACC COLCOREDIST]
DTP útok, Switch spoofing útok	Vypnutie dynamic- kého trunkovacieho protokolu a expli- citne určiť porty ako prístupové a trunk	Control	CRITICAL	L3SW, L2SW	DIST, COLDISTACC, ACC
MAC Spoofing, MAC Flooding	Definovanie ma- ximálne 1 MAC adresy na port, priradenie MAC adresy na port	Control	CRITICAL	L3SW, L2SW	DIST, COLDISTACC, ACC
MAC Spoofing, MAC Flooding	Nastavenie režimu narušenia, ktorý vypne port alebo informuje správcu o pripojení nepovole- ného zariadenia	Control	HIGH	L3SW, L2SW	DIST, COLDISTACC, ACC
Nový prepínač s vyšším číslom revízie, ale s nesprávnou VLAN databázou môže šíriť falošné VLAN identifikátory a spôsobiť nefunkčnosť siete, veľa možnéh VTP útokov kvöli zraniteľnostiam	Vypnutie MVRP. MRP, GARP, VTP po úspešnej propa- gácií VLAN	Control	CRITICAL	L3SW, L2SW	DIST, COLDISTACC, ACC
VTP musí byť používané	Use VTP v3 with set password and enable VTP prun- ning when VTP must be enabled/ Uprednostnit VTP verzie 3, špecifikovat skryté heslo a za- pnút VTP prunning pokiaľ musí byt VTP zapnuté	Control	CRITICAL	L3SW, L2SW	DIST, COLDISTACC, ACC
Vysoké zaťaženie linky	Poslanie notifiká- cie pri prekročení prahovej hodnoty zaťaženia linky	Control	MEDIUM	VŠETKY	VŠETKY
Využívanie siete nepovolenými používateľmi	Zapnutie 802.1x	Control	HIGH	L3SW, L2SW	DIST, COLDISTACC, ACC
Útok hrubou silou hádaním prístupových údajov pre 802.1x	Limitovanie ma- ximálneho počtu neúspešných poku- sov o autentizáciu 802.1x	Control	HIGH	L3SW, L2SW	DIST, COLDISTACC, ACC

Ť, l / D ll/	Marie C / TZ C	DI	G ''	D :1:4	D 1111 1
Útok / Problém	Mitigácia / Konfi-	Plane	Severity	Facility	Facility layer
	gurácia typu "Best	[DATA]	[CRITICAL]	[R L3SW	[ACC DIST
	practise"	CONTROL	HIGH	L2SW]	CORE/EDGE
		MANAGEMENT]	MEDIUM		COLALL
			LOW		COLDISTACC
			NOTIFY][3]		COLCOREDIST]
IPv6 ND Spo-	IPv6 ND Inspection	Control	CRITICAL	L3SW,	DIST, COLDISTACC,
ofing				L2SW	ACC
Rogue RARA	RA Guard	Control	CRITICAL	L3SW,	DIST, COLDISTACC,
FloodRoute In-				L2SW	ACC
formation Option					
injectionRA Rou-					
terLifeTime=0					
DHCP spoofing	DHCP snooping,	Control	CRITICAL	L3SW,	DIST, COLDISTACC,
	IPv6 Snooping,			L2SW	ACC
	DHCPv6 Guard				1.50
Příliš veľa DHCP	Odmedziť počet	Control	MEDIUM	L3SW,	DIST, COLDISTACC,
paketov, zapla-	DHCP paketov na	Common	WILLDIOWI	L2SW	ACC
venie DHCP	nedôverihodných			L25 W	ACC
	rozhraniach				
paketmi		G + 1	CDIMICAL	LOCIN	Diam COI Diam CO
ARP Spoofing	Dynamic ARP	Control	CRITICAL	L3SW,	DIST, COLDISTACC,
TD 0	Inspection	G . 1	GD IMIG LI	L2SW	ACC
IP spoofing	IPv4/IPv6 Source	Control	CRITICAL	L3SW,	DIST, COLDISTACC,
	Guard			L2SW	ACC
IPv6 Next Header	ACL blokujúce	Control	CRITICAL	VŠETKY	VŠETKY
a IPv6 Fragmen-	nerozpoznateľne				
tation útok	rozšírené hlavičky				
Mapovanie sete	ACL blokujúce	Control	MEDIUM	L3SW,	DIST, COLDISTACC,
pomocou pingu	ICMP echo request			L2SW	ACC
na multicast	na multicast adresu				
adresu všetkých	všetkých uzlov a				
uzlov a MLD	MLD Query na prí-				
Query Overload a	stupových portoch				
Smurf útok					
Mobilné zaria-	RA Throttling	Control	LOW	L3SW,	DIST, COLDISTACC,
denia pripojené				L2SW	ACC
bezdôtovo spot-					
rebovávajú veľa					
energie kvôli čas-					
tým RA správam					
Zlyhanie zaria-	Povolenie FHRP	Control	MEDIUM	R, L3SW	CORE/EDGE,
denia alebo linky	s autentizáciou a				COLCOREDIST,
môže viest k ne-	aktuálnou verziou				COLALL
funkčnosti siete					
Vyčerpanie cache	Statický záznam pre	Control	CRITICAL	L3SW,	DIST, COLDISTACC,
susedov	kritické zariadenia			L2SW	ACC
	(servery) spájajúce				
	IP a MAC adresu a				
	VLAN				
	VLIMIN				

Útok / Problém	Mitigácia / Konfi-	Plane	Severity	Facility	Facility layer
Otok / Froblem	_ ,			, v	
	gurácia typu "Best practise"	[DATA]	[CRITICAL]	[R L3SW	[ACC DIST CORE/EDGE
	practise	CONTROL	HIGH	L2SW]	' '
		MANAGEMENT]	MEDIUM		COLALL
			LOW		COLDISTACC
			NOTIFY][3]		COLCOREDIST]
Vyčerpanie cache	Na zabránenie	Control	CRITICAL	R, L3SW	CORE/EDGE,
susedov	vzdialeného útoku				COLCOREDIST,
	na cache susedov				COLALL
	cez internet je po-				
	treba nastaviť ACL,				
	kde povolujeme				
	iba komunikáciu				
	s cieľovými IPv6				
	adresami, ktoré sa				
	nachádzajú v našej				
	sieti				
Vyčerpanie cache	IP destination Gu-	Control	CRITICAL	L3SW,	DIST, COLDISTACC,
susedov	ard (First Hop			L2SW	ACC
	Security)				
Vyčerpanie cache	Limitovanie počtu	Control	CRITICAL	L3SW,	DIST, COLDISTACC,
susedov	IPv6 adries v cache			L2SW	ACC
	susedov				
Vyčerpanie cache	Limitovanie času	Control	CRITICAL	L3SW,	DIST, COLDISTACC,
susedov	IPv6 adresy v cache			L2SW	ACC
	susedov				
Vyčerpanie cache	Skrátenie IPv6	Control	CRITICAL	R, L3SW	CORE/EDGE,
susedov	prefixu, aplikova-			,	COLCOREDIST,
	teľné iba pr použití				COLALL
	DHCPv6				
SYN Flood	Nastavenie zachytá-	Control	CRITICAL	R, L3SW	CORE/EDGE,
	vanie firewallom pre			,	COLCOREDIST,
	útok flagu SYN				COLALL
Komplexné bez-	Nastavenie IDS/IPS	Control	HIGH	R, L3SW	CORE/EDGE,
pečnostné hrozby					COLCOREDIST,
a narušenie bez-					COLALL
pečnosti					
Poemosu					

Tab. 4.1: Zoznam bezpečnostných a prevádzkových problémov a odporúčaní

4.4 Rozdelenie príkazov

pavuk na GDRIVE z draw.io, krátke príklady k jednotlivym prvkom pavuka a vysvetliť komplikácie

4.5 Rozdelenie sieťových prvkov

4.6 Hierarchická štruktúra

Stromová štruktúra a koncept fungovania, Možno fungovanie cez nejaký UML diagram (sekvenčný?) alebo skôr niečo zjednodušené

5 Implementácia

5.1 Použité technológie

5.1.1 Python

niečo o pythone, výhody, prečo je vhodný a bol vybraný

5.1.2 YAML

čo je, porovnať s XML, JSON, vlastnou syntaxou, prečo je YAML vhodný

5.1.3 Regulárne výrazy

nejaký obkec okolo (krátko), prečo sú vhodné, ako budú použité

5.2 Konfiguračné súbory

možno do implmentácie, automaticke zistovaine niektorych atributov

5.2.1 Súbor popisujúci zariadenie

device.yaml

5.2.2 Súbor popisujúci modul

module.yaml

5.3 Moduly

Záver

Zhrnutie práce.

Literatúra

- [1] MILKOVICH, Devon. 13 Alarming Cyber Security Facts and Stats. In: Cybint [online]. 3.12.2018 [cit. 2019-11-08]. Dostupné z: https://www.cybintsolutions.com/cyber-security-facts-stats/
- [2] VYNCKE, Eric a Christopher PAGGEN. LAN switch security: What hackers know about your switches. Indianapolis, IN: Cisco Press, 2008. ISBN :978-1-58705-256-9.
- [3] MCMILLAN, Troy. CCNA security study guide: exam 210-260. Indianapolis, Indiana: Sybex, a Wiley Brand, 2018. ISBN 978-111-9409-939.
- [4] STALLINGS, William. Network security essentials: applications and standards. 4th ed. Boston: Prentice Hall, 2011. ISBN 978-0-13-610805-4.
- [5] JACKSON, Chris. Network security auditing. Indianapolis, IN: Cisco Press, 2010. Cisco Press networking technology series. ISBN 978-1-58705-352-8.
- [6] Guide for Conducting Risk Assessments: NIST Special Publication 800-30. In: NIST [online]. 2012 [cit. 2019-11-08]. Dostupné z: https://nvlpubs.nist.g ov/nistpubs/Legacy/SP/nistspecialpublication800-30r1.pdf
- [7] SINGH, Shashank. Cisco Guide to Harden Cisco IOS Devices. In: Cisco [online]. 2018 [cit. 2019-11-02]. Dostupné
 z: https://www.cisco.com/c/en/us/support/docs/ip/access-lists/13608-21.html
- [8] LAMMLE, Todd. CCNA: routing and switching: study guide. Indianapolis, Indiana: SYBEX, [2013]. ISBN 978-1-118-74961-6.
- [9] PEPELNJAK, Ivan. Management, Control and Data Planes in Network Devices and Systems. In: IpSpace [online]. 2013 [cit. 2019-11-17]. Dostupné z: https://blog.ipspace.net/2013/08/management-control-and-data-planes-in.html
- [10] ALSADEH, Ahmad. Augmented SEND: Aligning Security, Privacy, and Usability. In: RIPE NCC [online]. 12.5.2015 [cit. 2019-11-02]. Dostupné z: https://ripe70.ripe.net/presentations/67-RIPE70-SEND.pdf
- [11] PODERMAŃSKI, Tomáš a Matěj GRÉGR. Bezpečné IPv6: zkrocení zlých směrovačů. In: ROOT.CZ [online]. 12.2.2015 [cit. 2019-11-02]. Dostupné z: https://www.root.cz/clanky/bezpecne-ipv6-zkroceni-zlych-smerovacu/
- [12] KHANDELWAL, Manjul. OSPF Security: Attacks and Defenses. In: SANOG [online]. 2016 [cit. 2019-11-04]. Dostupné z: https://www.sanog.org/resources/sanog28/SANOG28-Tutorial_OSPF-Security-Attacks-and-Defences-Manjul.pdf
- [13] PODERMAŃSKI, Tomáš a Matěj GRÉGR. Bezpečné IPv6: když dojde keš obrana. In: ROOT.CZ [online]. 19.3.2015 [cit. 2019-11-02]. Dostupné z: https://www.root.cz/clanky/bezpecne-ipv6-kdyz-dojde-kes-obrana/
- [14] PODERMAŃSKI, Tomáš a Matěj GRÉGR. Bezpečné IPv6: když dojde keš. In: ROOT.CZ [online]. 12.3.2015 [cit. 2019-11-02]. Dostupné z: https://www.root.cz/clanky/bezpecne-ipv6-kdyz-dojde-kes/
- [15] PODERMAŃSKI, Tomáš a Matěj GRÉGR. Bezpečné IPv6: trable s multicastem. In: ROOT.CZ [online]. 5.3.2015 [cit. 2019-11-02]. Dostupné z: https://www.root.cz/clanky/bezpecne-ipv6-trable-s-multicastem/
- [16] GRÉGR, Matěj a Tomáš PODERMAŃSKI. Bezpečné IPv6: vícehlavý útočník. In: ROOT.CZ [online]. 26.2.2015 [cit. 2019-11-02]. Dostupné z: https://www.root.cz/clanky/bezpecne-ipv6-vicehlavy-utocnik/
- [17] PODERMAŃSKI, Tomáš a Matěj GRÉGR. Bezpečné IPv6: trable s hlavičkami. In: ROOT.CZ [online]. 19.2.2015 [cit. 2019-11-02]. Dostupné z: https://www.root.cz/clanky/bezpecne-ipv6-trable-s-hlavickami/
- [18] GRÉGR, Matěj a Tomáš PODERMAŃSKI. Bezpečné IPv6 : směrovač se hlásí. In: ROOT.CZ [online]. 5.2.2015 [cit. 2019-11-02]. Dostupné z: https://www.root.cz/clanky/bezpecne-ipv6-smerovac-se-hlasi/
- $[19] \ \ IPv6 \ \ First-Hop\ Security\ \ Configuration\ \ Guide.\ \ In:\ \ \textit{Cisco}\ \ [online].\ \ San\ \ Jose\ \ [cit.\ 2019-11-02].\ \ Dostupn\'e\ z: \\ https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/ipv6_fhsec/configuration/15-1sg/ip6f-15-1sg-book.pdf$

- [20] BOUŠKA, Petr. Cisco IOS 12 IEEE 802.1x a pokročilejší funkce [online]. In: . 2007 [cit. 2019-11-02]. Dostupné z: https://www.samuraj-cz.com/clanek/cisco-ios-12-ieee-802-1x-a-pokrocilejsi-funkce/
- [21] MOLENAAR, René. Cisco IOS features that you should disable or restrict. In: NetworkLessons.com [online].
 [cit. 2019-11-02]. Dostupné z: https://networklessons.com/uncategorized/cisco-ios-features-that-you-should-disable-or-restrict
- [22] BOUŠKA, Petr. Cisco IOS 23 Autentizace uživatele na switchi vůči Active Directory. In: SAMURAJ-cz [online]. 2009 [cit. 2019-11-02]. Dostupné z: https://www.samuraj-cz.com/clanek/cisco-ios-23-autentizace-uzivatele-na-switchi-vuci-active-directory/
- [23] BARKER, Elaine Allen ${\bf ROGINSKY}.$ Transitioning $_{
 m the}$ Useof Cryptographic gorithms and Key Lengths. In: NIST[online]. 2019 [cit. 2019-11-02]. Dostupné https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar2.pdf
- [24] VYNCKE, Erik. ND on wireless links and/or with sleeping nodes. In: *IETF* [online]. [cit. 2019-11-02]. Dostupné z: https://www.ietf.org/proceedings/89/slides/slides-89-v6ops-3.pdf
- [25] CIS Cisco IOS 15 Benchmark. In: Center For Internet Security [online]. 2015 [cit. 2019-11-02]. Dostupné z: https://www.cisecurity.org/benchmark/cisco/
- [26] GRAESSER, Dana. Cisco Router Hardening Step-by-Step. In: SANS Institute [online]. 2001 [cit. 2019-11-02]. Dostupné z: https://www.sans.org/reading-room/whitepapers/firewalls/paper/794
- [27] PILIHANTO, Atik. A Complete Guide on IPv6 Attack and Defense. In: SANS Institute [online]. SANS Institute, 2012 [cit. 2019-11-02]. Dostupné z: https://www.sans.org/reading-room/whitepapers/detection/paper/33904
- [28] REY, Enno, Antonios ATLASIS a Jayson SALAZAR. MLD Considered Harmful. In: RIPE NCC [online]. 2016 [cit. 2019-11-02]. Dostupné z: https://ripe72.ripe.net/presentations/74-ERNW_RIPE72_MLD_Considered_Harmful_v1_light_web.pdf
- [29] VYNCKE, Erik. IPv6 First Hop Security: the IPv6 version of DHCP snooping and dynamic ARP inspection. In: Slidde Share [online]. 2012 [cit. 2019-11-02]. Dostupné z: https://www.slideshare.net/IKTNorge/eric-vyncke-layer2-security-ipv6-norway
- [31] GREGR, Matej, Petr MATOUSEK, Miroslav SVEDA a Tomas PODERMANSKI. Practical IPv6 monitoring-challenges and techniques. In: 12th IFIP/IEEE International Symposium on Integrated Network Management (IM 2011) and Workshops. IEEE, 2011, 2011, s. 650-653. DOI: 10.1109/INM.2011.5990647. ISBN 978-1-4244-9219-0. Dostupné také z: http://ieeexplore.ieee.org/document/5990647/
- [32] PODERMAŃSKI, Tomáš a Matějj GRÉGR. Deploying IPv6 practical problems from the campus perspective [online]. In: . [cit. 2019-11-02].
- [33] MARTIN, Tim. IPv6 Sys Admin Style. In: SlideShare [online]. 2016 [cit. 2019-11-02]. Dostupné z: https://www.slideshare.net/tjmartin2020/ipv6-sysadmins-63071235
- [34] Cisco SAFE Reference Guide. In: CIsco [online]. San Jose, CA, 8 Júl 2018 [cit. 2019-11-02]. Dostupné z: https://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/Security/SAFE_RG/SAFE_rg.pdf
- [35] SAFE Overview Guide: Threats, Capabilities, Security Reference Arand chitecture. Cisco[online]. Január 2018cit. 2019-11-02]. Dostupné In: https://www.cisco.com/c/dam/en/us/solutions/collateral/enterprise/design-zone-security/safe-overview-
- [36] AKIN, Thomas. Hardening Cisco routers. Sebastopol: O'Reilly, 2002. ISBN 05-960-0166-5.

- [37] HUCABY, Dave, Steve MCQUERRY, Andrew WHITAKER a Dave HUCABY. Cisco router configuration handbook. 2nd ed. Indianapolis, IN: Cisco Press, 2010. ISBN 978-1-58714-116-4.
- [38] SATRAPA, Pavel. *IPv6: internetový protokol verze 6.* 4. aktualizované a rozšířené vydání. Praha: CZ.NIC, z.s.p.o., 2019. CZ.NIC. ISBN 978-808-8168-430.

Zoznam symbolov, veličín a skratiek

CIA confidentiality, integrity, availability – dôvernosť, integrita, dostupnosť

DDoS Distributed Denial of Service – distribuované odoprenie služby

DoS Denial of Service – odoprenie služby

 ${f ACL}$ Access Control List – zoznam pre riadenie prístupu

CVSS Common Vulnerability Scoring System

IDS Intrusion Detection System – systém detekcie narušenia
 IPS Intrusion Prevention System – systém prevencie prienikov

FHRP First Hop Redundancy Protocol
SNMP Simple Network Management Protocol
AAA Authentication Authorization Accounting

SSH Secure Shel

OSPF Open Shortest Path First
LAN Local Area Network
IP Internet Protocol
VLAN Virtual LAN

Zoznam príloh

A Zdrojové súbory				
	A.1 Konfiguračné súbory	45		
В	Checklist	46		

A Zdrojové súbory

A.1 Konfiguračné súbory

B Checklist