MAGNETISM

Natural Magnets: The magnets (i.e., the pieces of lodestone) found in nature are called natural magnets.

- The first known magnet lodestone is an an ore of iron oxide.
- Natural magnets are quite irregular and odd in shapes.
- They are not magnetically strong enough for use.

Artificial Magnets:

- An artificial magnet is a magnetised piece of iron or other magnetic material.
- Bar magnet, horseshoe magnet, magnetic compass needle etc, are some examples of artificial magnets.

Properties of magnets

Directive property -The end of the magnet which points towards the north is called the north seeking pole or simply the **north pole** (N).

- The end which points towards the south is called the south seeking pole or simply the **south pole (S)**.
- A freely suspended magnet always aligns itself in geographic north south direction.

Attractive property – The points of a magnet where the attraction appears to be maximum, are called the poles of the magnet.

- The poles are located slightly inside the magnet and not at the ends. The distance between the poles of a magnet is called its effective length.
- A magnet can attract other magnets or magnetic substances.

Magnetic Poles

- Each magnet has two poles i.e., poles exist in pairs.
- Magnetic monopole does not exist separately.
- Like poles repel each other and unlike poles attract each other.

Induced Magnetism

- The process in which a piece of magnetic material acquires magnetic properties temporarily due to the presence of another magnet near it is called *magnetic* induction.
- A magnetic pole induces opposite polarity on the nearest end and a similar polarity on the farther end of the iron bar.
- Induction precedes attraction.

Magnetic Field

- The space around a magnet in which the needle of a compass rests in a direction other than the geographic north-south direction, is called magnetic field.
- As the distance of a point from the magnet increases, magnetic field decreases.

A magnetic field line is a continuous curve in a magnetic field such that a tangent at any point of it gives the direction of magnetic field at that point.

Properties of Magnetic Field Lines

- They are closed and continuous curves.
- Outside the magnet, they are directed from north pole to south pole.
- The tangent at any point on a field line gives direction of magnetic field at that point.
- They never intersect each other.
- They are crowded near the poles where the magnetic field is stronger, and far separated near the centre of a magnet where the magnetic field is weak.
- Uniform magnetic field is represented by parallel and equi-distant field lines.

Magnetic Field of Earth - Evidences

 A freely suspended magnetic needle always rests in geographic north-south direction.

- An iron rod buried inside earth along N-S direction becomes a magnet.
- Neutral points exist inside the earth.
- A magnetic needle rests with its geometric axis making different angles with the horizontal at different places on earth.
- The two poles where the magnetic needle becomes vertical are called the magnetic poles and the line joining the two places where the magnetic needle becomes horizontal, is called the *magnetic equator*.
- The magnetic field lines of the earth are *normal to* the earth's surface near the magnetic poles and *parallel* to the earth's surface near the magnetic equator.

Plotting uniform magnetic field of earth

Plotting of non-uniform magnetic field of a strong bar magnet

When the given magnet is placed with its north pole pointing towards north

When the given magnet is placed with its south pole pointing towards north

Neutral Points

- Neutral points are the points where the magnetic field of the magnet is equal in magnitude to the earth's horizontal magnetic field, but it in the opposite direction.
- Thus the resultant (or net) magnetic field at the neutral points is zero.
- When the magnet is placed with its north pole pointing towards north, neutral points are obtained in the east – west direction.
- When the magnet is placed with its south pole pointing towards north, neutral points are obtained in the north – south direction.
- Neutral points are situated symmetrically on either side of a magnet at equal distances from the centre of the magnet.