

PieBridge: Fast and Parameter-Efficient On-Device Training via Proxy Networks

Wangsong Yin¹, Daliang Xu¹, Gang Huang¹, Ying Zhang¹, Shiyun Wei², Mengwei Xu³, Xuanzhe Liu¹

¹Peking University, ²Zhongguancun Laboratory,

³Beijing University of Posts and Telecommunications

ACM SenSys 2024

On-Device Training NNs

Input habit prediction

Training (fine-tuning) NNs on devices maximizes the protection of privacy data!

Popular Paradigm: Parameter-Efficient Training

Parameter-Efficient Training (PET)

Achieving on-par accuracy with training all parameters by only tuning a tiny portion of parameters

Popular Paradigm: Parameter-Efficient Training

Parameter-Efficient Training (PET)

Achieving on-par accuracy with training all parameters by only tuning a tiny portion of parameters

PET Method	Trainable layers	Formula	Trainable Parameters		
Linear Probing	The last linear layer	$y = x \cdot W + b$	0.69%		
Last-K	The last K layers	N/A	≥8.3%		
TS Layers	Task-specific layers (Norm. layers here)	N/A	0.87%-2.80%		
Adapters	The inserted adapters	$y = x + \sigma(x \cdot W_{down}) \cdot W_{up}$	0.71%		

Trainable parameters are very few! (e.g. usually <1%)

Key Problem: Param. Efficiency ≠ Time Efficiency

Daily idle time on mobile devices^[1]

Model	PET Config.	Upd.	Frozer Layers		Trainable Layers		
	B	Paras.	Time (Sec.)	FLOPs (G)	Time (Sec.)	FLOPs (G)	
ViT_base	Linear Probing Adapters (6) Adapters (12)	0.69% 1.75% 2.80%	0.46 0.64 0.84	67.44 134.86 202.31	1.88×10^{-3} 5.44×10^{-3} 1.24×10^{-2}	0.36 0.54 0.71	
ResNet50	Linear Probing Last-K (K=3)	0.81% 14.3%	0.06 0.07	16.53 15.59	4.36×10^{-4} 2.56×10^{-3}	4×10 ⁻² 2.15	

Training time is still too long!

Time breakdown in a PET iteration

Time consumption: Frozen >> trainable blocks!

[1] Mengwei Xu, etc. 2018. Deeptype: On-device deep learning for input personalization service with minimal privacy concern. Proceedings of the ACM on IMWUT (2018), 1–26

Frozen Layer Approximation During Training

Can we *approximate* the frozen blocks for a faster on-device PET?

Frozen Layer Approximation

(Prime Choice: Structural Pruning)

Fast on-device execution

"Proxy" Sub-Neural Networks

Convergence accuracy drops significantly!

Training all samples by a proxy sub-NN with 50% retained compute leads to an accuracy drop of up to 29.11%!

DIfficulty

Importance

Obstructed

Complicated

- Data Difficulty
 - Samples differ in the difficulty level of extracting high quality features.
 - Measure data difficulty by the minimal subnet that captures feature that on-par with the non-approximated network.

$$\phi(x) = \max(n \in \{0, 1, \dots, N\}),$$

$$s.t. \quad \mathcal{F}_n(x) \simeq \mathcal{F}_0(x).$$
(1)

British Shorthair

Tabby Cat 1

Tabby Cat 2

Tabby Cat 3

- **Data Importance**
 - Samples differ in the contribution to model convergence.
 - Measure data importance by loss value.

$$\psi(x,t) = l(x; w_t) = \mathcal{L}[\mathcal{F}(x; w_t), y], \tag{2}$$

Dynamically assign the most suitable approximation for diverse training data!

Our System: PieBridge

Cloud Offline Stage

Generating multi-level subnets

Learning a tiny policy model

Device Online Stage

Perceiving diff./imp. of on-device data Routing training data to proper subnet

How to generate FAST and ACCURATE subnets with fine-grained tradeoffs?

INT8 Quantization

X Limited benefit on the same processor

X Limited support from on-device NN libs

X Too coarse granularity (a whole NN layer)

Ours: structural pruning with heuristic

☑ E2e latency reduction **☑** Fine-grained tradeoff

Identifying and pruning dimensions that are independent to trainable blocks

Multiple level proxy nets for a finegrained approximation

Generating subnets with an even pruning step

Is directly generated (pruned) subnet a good approximation? Not yet!

- Perceiving data diversity online introduces extra
- system level overhead for on-device training…

Needs traversing all proxy subnets

$$\phi(x) = \max(n \in \{0, 1, \dots, N\}),$$

$$s.t. \quad \mathcal{F}_n(x) \simeq \mathcal{F}_0(x).$$
(1)

XUp to 10x slower training!

What is the corresponding proxy subnet of current sample difficulty?

You have to calculate it during training to find out…

Can we offline learn data difficulty for a low overhead online prediction?

Covering usual difficulty patterns

Cloud learning

Isomorphic to proxy nets yet with much fewer parameters

General pretraining dataset

Tiny policy model

Stage#2: Device Online

Intra mini-batch scheduling proxy nets: inefficient!

Since the mini-batch size is tiny on wimpy mobile devices (e.g. 4/8), lets schedule the proxy network assignment at mini-batch granularity!

Data importance: determined by current training state!

Lets harness it only for backward stage!

Stage#2: Device Online

Stage#2: Device Online

Please refer to the Algo. 1 in our paper for more details…

Implementation and Evaluation

- Datasets
 - Cloud (pre)training
 - ImageNet2012
 - On-device training
 - Caltech101
 - Caltech256
 - DogsvsCats
 - DTD
- Baselines
 - Full parameter training (FT-A11)
 - Parameter efficient training (PET)
 - ResNet50 : Linear Probing
 - MobileNetV3: Last-3
 - ViT_base : Adapters(12)
 - PruneTrain (PT) [1]
 - ElasticTrainer (ET) [2]

- Models
 - MobileNetV3-L
 - ResNet50
 - ViT_base

Name	Processor	Ubuntu 18.04 LTS PyTorch 1.7.1.			
Jetson TX2 [12]	Dual-Core NVIDIA Denver 2 64-Bit CPU, 256-core NVIDIA Pascal™ GPU.				
RPI 4B [14]	Broadcom BCM2711B0 quad-core A72 64-bit @ 1.5GHz CPU.	Raspbian 11, PyTorch 1.7.1.			
MI 10 [10]	2.84GHz Cortex-X1, 3× 2.4GHz Cortex A78, 4× 1.8GHz Cortex A55 CPU.	Android 10, MNN 2.0.0, ONNX 1.13.1.			
Huawei Mate 30 [7]	2x 2.86 GHz ARM Cortex-A76, 2x 2.09 GHz ARM Cortex-A76, 4x 1.86 GHz ARM Cortex-A55 CPU, Kirin 990 NPU.				

Device hardware/software

- [1] Sangkug Lym, etc. 2019. PruneTrain: Fast Neural Network Training by Dynamic Sparse Model Reconfiguration
- [2] Kai Huang, Boyuan Yang, and Wei Gao. 2023. ElasticTrainer: Speeding Up On-Device Training with Runtime Elastic Tensor Selection.

Wall-Clock Training Time

Wall-Clock training time on standalone datasets

- Compared to baselines, PieBridge accelerates on-device training by up to 6.6x
- Compared to vanilla PET, PieBridge accelerates on-device training by 1.4--2.5x

Training Accuracy

Best convergence accuracy on standalone datasets

	MobileNetV3-L				ResNet50				ViT_base						
	FT-All	PET	PT	ET	Ours	FT-All	PET	PT	ET	Ours	FT-All	PET	PT	ET	Ours
C-101	87.66	84.27	87.76	89.20	89.82	91.96	91.13	91.23	91.09	92.03	94.53	96.00	93.98	95.64	96.12
C-256	72.00	72.50	73.08	71.72	73.51	83.93	82.38	82.94	80.81	82.89	85.61	84.93	81.39	81.83	84.91
DVC	95.35	95.50	95.15	95.20	94.60	95.55	95.25	95.25	95.55	95.50	95.40	95.96	95.05	95.50	95.00
DTD	53.19	50.27	50.48	50.69	52.87	60.37	62.93	60.48	60.16	62.23	65.05	66.12	62.55	66.54	67.71

Compared to baselines, PieBridge has no noticeable influence on accuracy (<2%)

Training Accuracy

- Performance under various accuracy budgets
 - There exists a marginal effect of training
 - Under an 85%/90%/95%/99% accuracy budget
 - PieBridge speeds up PET by 1.86/1.89/1.54/1.80x
 - PieBridge speeds up FT-All by 4.17/4.20/5.43/5.82x

Performance on Various Devices

- Performance on various devices
 - Jetson TX2, Raspberry Pi 4B, MI 10 smartphone
 - Speeds up PET by 1.61/1.63/1.72x
 - A clear performance gain on both CPU and GPU devices

Others

- Energy consumption
 - 5.53x lower than FT-All
 - 1.28x lower than PET
- Memory consumption
 - No significant increase of memory consumption compared to baselines

- Other sensitivity analysis
 - # of proxy nets (pruning step)
 - Policy model training data distribution
 - Few-shot learning performance
 - ..

Take Aways

- We present PieBridge, an on-device training framework with both time- and parameter- efficiency.
- PieBridge innovatively leverages training data diversity and proxy subnetwork approximation to reduce the overhead of frozen layers during training.

 PieBridge achieves up to 6.6x training speedup compared to strong baselines, paving the way for personalized on-device Al.

Code:

https://github.com/yinwangsong/PieBridge