First Year

Electric Fields

Sheet no. (1)

- 1- Given the vectors $\mathbf{A} = -6\mathbf{a_x} + 2\mathbf{a_y} 4\mathbf{a_z}$ and $\mathbf{B} = 4\mathbf{a_x} + 3\mathbf{a_y} 2\mathbf{a_z}$ Find (a) a unit vector in the direction of $\mathbf{A} + 2\mathbf{B}$; (b) the magnitude of $\mathbf{A} + 2\mathbf{B}$; (c) the vector \mathbf{C} such that $\mathbf{A} + \mathbf{B} + \mathbf{C} = \mathbf{0}$.
- 2- The vectors $\mathbf{A} = 4\mathbf{a_x} + 5\mathbf{a_y} 2\mathbf{a_z}$ and $\mathbf{B} = 2\mathbf{a_x} + 8\mathbf{a_y} + 3\mathbf{a_z}$ are represented by directed line segments that extend outward from the origin of a cartesian coordinate system. (a) What is the separation of their tips? (b) Find a unit vector in the direction of \mathbf{A} . (c) Find a vector \mathbf{C} that is parallel to \mathbf{A} and has the length of \mathbf{B} .
- 3- A certain vector field is specified by:

$$\mathbf{A} = \frac{100 (x - y + z)}{x^2 + y^2 + z^2} \mathbf{a}_x - \text{xyz } \mathbf{a}_y + 8(x + y - z) \mathbf{a}_z$$

For the interval $0 \le x \le 10$ along the line y = 1, z = 2, sketch the variation of (a) A_x versus x; (b) |A| versus x.

- 4- At the point C (2, 30°, 5), a vector **A** is expressed in cylindrical coordinates as $20 \mathbf{a}_{\rho} 30 \mathbf{a}_{\phi} + 10 \mathbf{a}_{z}$. (a) Find |**A**| at C; (b) Calculate the angle between **A** at C and the surface $\rho = 2$.
- 5- The surfaces of a volume are defined by $\rho = 5$ and 12, $\phi = 0.1\pi$ and 0.4π and z = -1 and 3. (a) Find the length of the straight line connecting diametrically opposite corners of the volume. (b) Find the area of the six faces. (c) Find the volume enclosed.
- 6- Express the vector field $\mathbf{W} = (\mathbf{x}^2 \mathbf{y}^2)\mathbf{a_y} + \mathbf{xz} \mathbf{a_z}$ in: (a) cylindrical coordinates at P ($\rho = 6$, $\phi = 60^{\circ}$, z = -4); (b) spherical coordinates at Q (r = 4, $\theta = 30^{\circ}$, $\phi = 120^{\circ}$).
- 7- At point B (r = 5, $\theta = 120^{\circ}$, $\phi = 75^{\circ}$) a vector field has the value $\mathbf{A} = -12 \, \mathbf{a_r} 5 \, \mathbf{a_\theta} + 15 \, \mathbf{a_\phi}$. Find the vector component of \mathbf{A} that is: (a) normal to the surface r = 5, (b) tangent to the surface r = 5, (c) tangent to the cone $\theta = 120^{\circ}$; (d) Find a unit vector that is perpendicular to \mathbf{A} and tangent to the cone $\theta = 120^{\circ}$.
- 8- A field is given in spherical coordinates as $\mathbf{F} = [(\cos\theta) / r^2] \mathbf{a_r} + [(\sin\theta / r] \mathbf{a_\theta}]$. (a) Express \mathbf{F} in terms of x, y, z, $\mathbf{a_x}$, $\mathbf{a_y}$ and $\mathbf{a_z}$. (b) Evaluate \mathbf{F} at (1, 2, 3).
- 9- Two vectors are defined at point P as $\mathbf{F} = 10 \, \mathbf{a_r} 3 \, \mathbf{a_\theta} + 5 \, \mathbf{a_\phi}$ and $\mathbf{G} = 2 \, \mathbf{a_r} + 5 \, \mathbf{a_\theta} + 3 \, \mathbf{a_\phi}$. Determine (a) $\mathbf{F} \cdot \mathbf{G}$; (b) the scalar component of \mathbf{G} in the \mathbf{F} direction at P; (c) the vector component of \mathbf{G} in the \mathbf{F} direction at P; (d) $\mathbf{G} \times \mathbf{F}$; (e) a unit vector perpendicular to both \mathbf{F} and \mathbf{G} at P.