Data Wrangling (3) Reshape and Combine Tables (con'd)

Haohan Chen

POLI3148 Data Science in PPA (The University of Hong Kong)

Last update: October 12, 2023

Data Wrangling (3)

Haohan Chen

Setup

Reshape a Pable

Tubios

Data Wrangling (3)

Haohan Chen

Setup

Reshape a Table

Stack Table:

oin Tables

Setup

Reshape a Table

......

- ▶ Reshape (long <-> wide) with pivot_longer and pivot_wider
- ► Stack tables by row or by column with bind_rows and bind_cols (or, alternatively, cbind and rbind)
- ► Merge two tables with inner_join, full_join, left_join, right_join, semi_join, and anti_join

```
library(tidyverse)
d <- read csv(" DataPublic /vdem/1984 2022/vdem 1984 2022 external.csv")
d \gg print(n = 3)
## # A tibble: 6,789 x 211
##
    country name country text id country id year historical date project
    <chr>
                 <chr>
                                       <dbl> <dbl> <date>
                                                                     <dbl>
##
## 1 Mexico
                 MEX
                                           3 1984 1984-12-31
## 2 Mexico
                 MEX
                                           3 1985 1985-12-31
## 3 Mexico
                 MEX
                                           3 1986 1986-12-31
## # i 6.786 more rows
## # i 205 more variables: historical <dbl>, histname <chr>, codingstart <dbl>,
## #
      codingend <dbl>, codingstart contemp <dbl>, codingend contemp <dbl>.
## #
       codingstart hist <dbl>, codingend hist <dbl>, gapstart1 <dbl>.
## #
       gapstart2 <dbl>, gapstart3 <dbl>, gapend1 <dbl>, gapend2 <dbl>,
## #
      gapend3 <dbl>, gap index <dbl>, COWcode <dbl>, e v2x api 3C <dbl>,
## #
      e_v2x_api_4C <dbl>, e_v2x_api_5C <dbl>, e_v2x_civlib_3C <dbl>, ...
```

Data Wrangling (3)

Haohan Chen

Setup

Reshape a Cable

tack Tables

##

<chr>

i 6,786 more rows

1 MEX 2 MEX

3 MEX

```
d_gdp <- d |>
    select(country_text_id, year, e_gdp, e_gdppc) |>
    rename("gdp" = "e_gdp", "gdppc" = "e_gdppc")

d_gdp |> print(n = 3)

## # A tibble: 6,789 x 4

## country text_id year gdp gdppc
```

1984 93563. 11.7

1985 94259. 11.5

1986 92750. 11.1

Focus on the economic indicators: GDP and GDP per capita.

<dbl> <dbl> <dbl> <dbl>

Reshape a Table

Data Wrangling (3)

Haohan Chen

Setup

Reshape a Table

Stack Tables

```
d_gdp_long <- d_gdp |>
  pivot longer(cols = c("gdp", "gdppc"),
               names to = "variable", values to = "value")
                                                                      Table
d_gdp_long |> print(n = 4)
```

```
## # A tibble: 13,578 x 4
##
    country text id year variable
                                     value
                     <dbl> <chr>
##
    <chr>
                                      <dbl>
## 1 MF.X
                      1984 gdp
                                    93563.
                                       11.7
## 2 MEX
                      1984 gdppc
## 3 MEX
                      1985 gdp
                                    94259.
## 4 MF.X
                      1985 gdppc
                                       11.5
## # i 13.574 more rows
```

Data Wrangling (3)

Haohan Chen

Reshape a

```
d_gdp_wide_1 <- d_gdp_long |>
 pivot wider(names from = "variable", values from = "value")
d gdp wide 1 > print(n = 4)
```

```
## # A tibble: 6.789 \times 4
##
    country text id year
                         gdp gdppc
##
    <chr>
            <dbl> <dbl> <dbl>
                     1984 93563. 11.7
##
  1 MF.X
                     1985 94259 11.5
  2 MEX
  3 MEX
                     1986 92750. 11.1
## 4 MEX
                     1987 93220. 10.9
## # i 6,785 more rows
```

Data Wrangling (3)

Haohan Chen

Reshape a Table

Task: Make year the column variable.

Data

```
d_gdp_wide_2 <- d_gdp_long |>
 pivot_wider(names_from = "year", values_from = "value")
d gdp wide 2 |> print(n = 2)
## # A tibble: 362 x 41
##
    country text id variable '1984' '1985' '1986' '1987' '1988' '1989' '1990'
                    <chr>>
                            <dbl> <dbl> <dbl> <dbl>
                                                      <dbl>
                                                              <db1> <db1> <db1>
##
    <chr>>
## 1 MEX
                    gdp
                            93563. 94259. 92750. 93220. 94687. 9.81e4 1.03e5
                                                               10.8 1.10e1 1.14e1
## 2 MEX
                    gdppc
                                11.7
                                        11.5
                                               11.1
                                                       10.9
## # i 360 more rows
## # i 32 more variables: `1991` <dbl>, `1992` <dbl>, `1993` <dbl>, `1994` <dbl>,
      `1995` <dbl>, `1996` <dbl>, `1997` <dbl>, `1998` <dbl>, `1999` <dbl>,
## #
## #
      '2000' <dbl>, '2001' <dbl>, '2002' <dbl>, '2003' <dbl>, '2004' <dbl>,
      `2005` <dbl>, `2006` <dbl>, `2007` <dbl>, `2008` <dbl>, `2009` <dbl>,
## #
## #
      '2010' <dbl>, '2011' <dbl>, '2012' <dbl>, '2013' <dbl>, '2014' <dbl>,
## #
      '2015' <dbl>, '2016' <dbl>, '2017' <dbl>, '2018' <dbl>, '2019' <dbl>, ...
```

Task: Make country text id the column variable.

```
d_gdp_wide_3 <- d_gdp_long |>
      pivot wider(names from = "country text id", values from = "value")
d gdp wide 3 > print(n = 2)
## # A tibble: 78 x 183
##
                  vear variable
                                                                            MEX
                                                                                                   SUR.
                                                                                                                         SWE
                                                                                                                                               CHE
                                                                                                                                                                      GHA
                                                                                                                                                                                            ZAF
                                                                                                                                                                                                                   JPN
                                                                                                                                                                                                                                          MMR.
                                                                                                                                                                                                                                                                RUS
               <dbl> <br/> <dbl> <br/> 
##
## 1
                   1984 gdp 93563. 286. 2.35e4 2.31e4 3.02e3 3.15e4 2.87e5 4.18e3 3.49e5
## 2
                   1984 gdppc
                                                                        11.7 7.43 2.66e1 3.32e1 2.20e0 9.03e0 2.26e1 1.10e0 1.65e1
## # i 76 more rows
## # i 172 more variables: ALB <dbl>, EGY <dbl>, YEM <dbl>, COL <dbl>, POL <dbl>,
                      BRA <dbl>, USA <dbl>, PRT <dbl>, SLV <dbl>, YMD <dbl>, BGD <dbl>,
## #
## #
                      BOL <dbl>, HTI <dbl>, HND <dbl>, MLI <dbl>, PAK <dbl>, PER <dbl>,
## #
                      SEN <dbl>, SSD <dbl>, SDN <dbl>, VNM <dbl>, AFG <dbl>, ARG <dbl>,
                      ETH <dbl>, IND <dbl>, KEN <dbl>, PRK <dbl>, KOR <dbl>, XKX <dbl>,
## #
## #
                     LBN <dbl>, NGA <dbl>, PHL <dbl>, TZA <dbl>, TWN <dbl>, THA <dbl>, ...
```

oin Tables

- ► For data cleaning: Sometime it is much easier to clean the data after reshaping
- ▶ For data visualization: Some data visualization functions only take tables shaped in a specific way
- ▶ For data sharing: Sometimes you want to export the data for human readers (e.g., data coding/ labeling)

"But I am sure Excel can do the same thing!" It can do it for HUGE data reliably and fast. And the process is replicable.

Stack Tables

Data Wrangling (3)

Haohan Chen

Setup

Reshape a Table

Stack Tables

Stack Tables

- Let's say we want to merge your GDP data d_gdp with some additional datasets that you know you can just safely stack together.
- Example
 - ▶ Merge with GDP data from 1906 to 1983
 - ▶ Merge with education and Freedom House data from 1984 to 2022

i 6.080 more rows

Data

Wrangling (3)

Stack Tables

```
d gdp 1945 <-
 read csv(" DataPublic /vdem/1945 1983/vdem 1945 1983 external.csv") |>
  select(country text id, year, e gdp, e gdppc) |>
 rename("gdp" = "e_gdp", "gdppc" = "e_gdppc")
d gdp 1906 <-
 read_csv("_DataPublic_/vdem/1906_1944/vdem_1906_1944_external.csv") |>
  select(country_text_id, year, e_gdp, e_gdppc) |>
 rename("gdp" = "e_gdp", "gdppc" = "e_gdppc")
d gdp 1945 \mid> print(n = 2)
## # A tibble: 6.082 x 4
##
    country_text_id year gdp gdppc
    <chr> <dbl> <dbl> <dbl> <dbl>
##
## 1 MEX 1945 7827. 3.08
## 2 MEX
          1946 8331 3 17
```

from two previous time periods (1945 to 1983 and 1906-1944).

To demonstrate how to stack data horizontally, I make two subsets of d — one

bind rows

[76] 2020 2021 2022

```
d gdp 1945 2022 <- bind rows(d gdp, d gdp 1945)
d_gdp_1945_2022 > print(n = 3)
## # A tibble: 12.871 x 4
##
    country_text_id year
                            gdp gdppc
##
    <chr>
                    <dbl>
                           <dbl> <dbl>
## 1 MEX
                     1984 93563 11.7
## 2 MEX
                     1985 94259. 11.5
## 3 MEX
                     1986 92750. 11.1
## # i 12,868 more rows
unique(d_gdp_1945_2022$year) |> sort()
```

[1] 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 [16] 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 [31] 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 [46] 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 [61] 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

```
Data
Wrangling (3)
```

Haohan Chen

Setup

eshape a able

Stack Tables

```
Haohan Chen
d gdp 1906 2022 <- bind rows(d gdp, d gdp 1945, d gdp 1906) # can take multiple data frames
d gdp 1906 2022 \rightarrow print(n = 3)
## # A tibble: 18,559 x 4
##
     country text id year
                              gdp gdppc
                                                                                             Stack Tables
                     <dbl>
                            <dbl> <dbl>
##
     <chr>>
## 1 MEX
                      1984 93563. 11.7
## 2 MEX
                      1985 94259. 11.5
## 3 MEX
                      1986 92750. 11.1
## # i 18,556 more rows
unique(d gdp 1906 2022$vear) |> sort()
     [1] 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
##
    [16] 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
##
    [31] 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
##
##
    [46] 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
    [61] 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
##
    [76] 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
##
##
    [91] 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
```

[106] 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

bind cols

##

##

[1] "country_text_id"

[7] "fh_CivilLiberty"

[4] "gdppc"

[10] "fh Status"

```
d_gdp_edu_fh <- bind_cols(d_gdp, d_edu, d_fh) # can take multiple data frames
d_gdp_edu_fh |> print(n = 3)
## # A tibble: 6.789 x 10
    country_text_id year
                           gdp gdppc edu_15 edu_gini fh_CivilLiberty
##
              <dbl> <dbl> <dbl> <dbl> <dbl>
                                                <dbl>
                                                                <dbl>
##
    <chr>
## 1 MEX
                    1984 93563. 11.7
                                                 32.7
                                        6.08
## 2 MEX
                   1985 94259. 11.5 6.22
                                                 32.4
## 3 MEX
                     1986 92750. 11.1
                                        6.36
                                                 31.9
## # i 6,786 more rows
## # i 3 more variables: fh_PoliticalRight <dbl>, fh_RuleOfLaw <dbl>,
      fh Status <dbl>
## #
names(d_gdp_edu_fh)
```

"fh_PoliticalRight" "fh_RuleOfLaw"

"gdp"

"edu_gini"

"vear"

"edu 15"

```
Data
Wrangling (3)
```

Haohan Chen

Setup

eshape a able

Stack Tables

!! WARNING!!

Data Wrangling (3)

Haohan Chen

Setup

Reshape a Table

Stack Tables

Join Tables

These are error-prone operations

- ▶ Do bind_rows and bind_cols ONLY WHEN you know for sure that there will not be a mismatch!
- ▶ If you have any slightest doubt, don't use them.

Data Wrangling (3)

Haohan Chen

Setup

Reshape a Pable

Stack Tables

Join Tables

left-hand-side table.

Understand the behavior of different join functions

Wrangling (3) Haohan Chen

Join Tables

right join: Merge and only keep observations that appear in the

right-hand-side table. inner join: Merge and only keep observations that appear in both

▶ left_join: Merge and only keep observations that appear in the

tables.

▶ full join: Merge and keep observations that appear either table.

▶ anti_join: Filter out observations that does appears in the right-hand-side table

semi join: Filter out observations that does not appear in the right-hand-side table

Task 1: The Case

Join two datasets from the V-Dem data using the above different join_functions

- ► *GDP* data from 2000-2022
- ► GDP per capita data from 1984 to 2010

Data Wrangling (3)

Haohan Chen

Setup

Reshape a Table

tack Tables

```
Task 1: Setup
```

i 4.639 more rows

```
d_gdp_2000_2022 <- d |> filter(year %in% 2000:2022) |>
 select(country text id, year, e gdp) |> rename("gdp" = "e gdp")
d_gdppc_1984_2010 <- d |> filter(year %in% 1984:2010) |>
 select(country text id, year, e gdppc) |> rename("gdppc" = "e gdppc")
d gdp 2000 2022 |> print(n = 2)
## # A tibble: 4,099 x 3
##
    country_text_id year
                        gdp
    <chr> <dbl> <dbl> <dbl>
##
## 1 MEX 2000 145206.
## 2 MEX 2001 146993.
## # i 4.097 more rows
d_gdppc_1984_2010 > print(n = 2)
## # A tibble: 4,641 x 3
##
    country_text_id year gdppc
    <chr> <dbl> <dbl>
##
## 1 MEX 1984 11.7
## 2 MEX 1985 11.5
```

Data
Wrangling (3)

Haohan Chen

etup

leshape a 'able

.....

left join

```
d li <- d gdp 2000 2022 |>
 left_join(d_gdppc_1984_2010, by = c("country_text_id", "year"))
d li |> print(n = 2)
## # A tibble: 4,099 x 4
    country_text_id year gdp gdppc
    <chr> <dbl> <dbl> <dbl> <
##
                 2000 145206. 13.7
## 1 MEX
## 2 MEX
                2001 146993. 13.6
## # i 4,097 more rows
unique(d_lj$year) |> sort()
   [1] 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
   [16] 2015 2016 2017 2018 2019 2020 2021 2022
```

Data Wrangling (3)

Haohan Chen

Setup

leshape a 'able

JUGOTE TUDIO

right join

```
d ri <- d gdp 2000 2022 |>
  right_join(d_gdppc_1984_2010, by = c("country_text_id", "year"))
d ri > print(n = 2)
## # A tibble: 4,641 x 4
    country_text_id year
##
                         gdp gdppc
                         <dbl> <dbl>
##
    <chr> <dbl>
                 2000 145206. 13.7
## 1 MEX
## 2 MEX
                 2001 146993. 13.6
## # i 4,639 more rows
unique(d_rj$year) |> sort()
    [1] 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
```

[16] 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Data Wrangling (3)

Haohan Chen

setup

teshape a Fable

JURCK TRIFFE

```
d ij <- d gdp 2000 2022 |>
 inner_join(d_gdppc_1984_2010, by = c("country_text_id", "year"))
d ij > print(n = 2)
## # A tibble: 1,951 x 4
##
    country_text_id year gdp gdppc
          <dbl> <dbl> <dbl> <
##
    <chr>
## 1 MEX 2000 145206. 13.7
## 2 MEX
                    2001 146993. 13.6
## # i 1,949 more rows
unique(d_ij$year) |> sort()
```

```
## [1] 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
```

Data Wrangling (3)

Haohan Chen

Setup

leshape a 'able

tack Tables

full join

```
d_fj <- d_gdp_2000_2022 |>
 full_join(d_gdppc_1984_2010, by = c("country_text_id", "year"))
d_fj \mid > print(n = 2)
## # A tibble: 6,789 x 4
##
    country_text_id year
                          gdp gdppc
    <chr> <dbl> <dbl> <dbl> <dbl>
##
## 1 MEX
                 2000 145206 13.7
## 2 MEX
                    2001 146993 13.6
## # i 6.787 more rows
unique(d fi$vear) |> sort()
```

```
# [1] 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
# [16] 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
# [31] 2014 2015 2016 2017 2018 2019 2020 2021 2022
```

Data Wrangling (3)

Haohan Chen

Setup

Reshape a Fable

Stack Table:

```
d si <- d gdp 2000 2022 |>
 semi_join(d_gdppc_1984_2010, by = c("country_text_id", "year"))
d si > print(n = 2)
## # A tibble: 1,951 x 3
##
    country_text_id year
                         gdp
##
    <chr>
          <db1>
                          <dbl>
## 1 MEX 2000 145206.
## 2 MEX
                   2001 146993.
## # i 1,949 more rows
unique(d_sj$year) |> sort()
```

etup

Reshape a Table

tack Tables

```
## [1] 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
```

```
d ai <- d gdp 2000 2022 |>
 anti_join(d_gdppc_1984_2010, by = c("country_text_id", "year"))
d = 1 > print(n = 2)
## # A tibble: 2,148 x 3
##
    country_text_id year
                         gdp
##
    <chr>
          <db1>
                          <dbl>
## 1 MEX 2011 185824.
## 2 MEX
                   2012 192272.
## # i 2,146 more rows
unique(d_aj$year) |> sort()
```

[1] 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

Data Wrangling (3)

Haohan Chen

Setup

leshape a Table

tack rables

If the identifiers have different names, you have two options

- ▶ Rename it beforehand
- ► Specify the by = part differently.

```
d_gdppc_1984_2010_t <- d_gdppc_1984_2010 |>
 rename("country_id" = "country_text_id")
# Above, I make an artificial example whose variable name of a matching
# identifier is different from d qdp 2020 2022.
# Option 1: Rename the variables beforehand
d_aj_t <- d_gdp_2000_2022 |>
 rename("country id" = "country text id") |>
  anti_join(d_gdppc_1984_2010_t, by = c("country_id", "year"))
# Option 2: Specify the "by =" argument with a *named vector*
d_aj_t_2 <- d_gdp_2000_2022 |>
  anti_join(d_gdppc_1984_2010_t,
            by = c("country_text_id" = "country_id",
                   "year" = "year"))
```

Data Wrangling (3)

Haohan Chen

Many-to-One Join: Repeat!

d_lj_ManyToOne |> print(n = 2)

1 AFG

2 AGO

2 MEX

Calculate each country's average 1984-2010 GDP per capita and merge it with our annual GDP data from 2000 to 2022.

```
d gdppc 1984 2010 avg <- d gdppc 1984 2010 |> group by(country text id) |>
  summarise(gdppc_1984to2010 = mean(gdppc, na.rm = TRUE))
d_gdppc_1984_2010_avg |> print(n = 2)
```

```
## # A tibble: 180 x 2
     country_text_id gdppc_1984to2010
##
##
     <chr>>
                                 <db1>
```

```
3.35
## # i 178 more rows
d_lj_ManyToOne <- d_gdp_2000_2022 |>
  left_join(d_gdppc_1984_2010_avg, by = "country_text_id")
```

1.22

```
## # A tibble: 4.099 x 4
    country_text_id year gdp gdppc_1984to2010
##
##
    <chr>
          <dbl>
                          <dbl>
                                         <dbl>
                                         12.8
## 1 MEX
                   2000 145206.
```

```
2001 146993.
                                                12.8
## # i 4,097 more rows
```

Data Wrangling (3) Haohan Chen

Joining tables is also error-prone.

- ▶ You want to have a clear mind about which variables from which datasets are kept in your final merged data.
- ▶ Failing to do so can cause difficulty with replication.

Some advice based on personal experience

- ▶ Add suffixes or prefixes indicating data sources
- Add binary indicators (1/0) indicating from in which dataset is each observation available

Join Tables

```
# The d adp 2000 2022 data are from V-Dem
d_gdp_2000_2022_t <- d_gdp_2000_2022 |> mutate(source_vdem = 1)
# *Pretend* that the d gdppc 1984 2010 data are from the World Bank
d_gdppc_1984_2010_t <- d_gdppc_1984_2010 |> mutate(source_wb = 1)
d fi habit <- d gdp 2000 2022 t |>
 full join(d gdppc 1984 2010 t, by = c("country text id", "year"))
d_fj_habit |> print(n = 3)
## # A tibble: 6,789 x 6
    country text id year gdp source vdem gdppc source wb
##
    <chr>
          <db1>
                          <dbl>
                                  <db1> <db1>
                                                    <db1>
##
              2000 145206.
                                         1 13.7
## 1 MEX
## 2 MEX 2001 146993. 1 13.6
```

Add binary indicators about data availability in each sources.

```
2002 148549. 1 13.6
## 3 MEX
## # i 6.786 more rows
```

```
What can you do with these binary indicators? We can know the overlaps of
multiple sources.
d_fj_habit |>
```

```
# A tibble: 3 x 3
              source_vdem, source_wb [3]
  # Groups:
     source_vdem source_wb
##
           <dbl>
                     <dbl> <int>
##
                             1951
## 1
## 2
                         NΑ
                             2148
## 3
              NA
                             2690
```

group by(source vdem, source wb) |>

count()

If the overlap looks weird to you, you will know that you need to re-examine the data merging process.

Good Habit: Add Availability Indicators

Question: Why not just check NA in each variables?

Answer: An observation can be missing for two reasons

- ▶ It is in the one of the tables but it does not contain a value.
- ▶ It is not in any of the tables at all.

 ${\tt join_}$ make it hard to distinguish between the two scenarios.

Data Wrangling (3)

Haohan Chen

Setup

eshape a able

tack Tables

Good Habit: Add prefix or suffix to variable names

Data Wrangling (3)

Haohan Chen

Setup

Reshape a Pable

tack Tables

- ▶ My previous advice: Give informative names to variable
- New advice: Add the source of the variables as part of their names if your final dataset is a combination of many different datasets

```
d gdp 2000 2022 rn <- d gdp 2000 2022 |>
 rename("vdem gdp" = "gdp")
  # rename at(vars(-c("country text id", "year")), ~str c("vdem ". .))
d gdppc 1984 2010 rn <- d gdppc 1984 2010 |>
 rename("wb_gdppc" = "gdppc")
  # rename at(vars(-c("country text id", "year")), ~str c("wb ", .))
d fi habit 2 <- d gdp 2000 2022 rn |>
 full join(d gdppc 1984 2010 rn, by = c("country text id", "year"))
d fi habit 2 |> print(n = 3)
## # A tibble: 6,789 x 4
    country_text_id year vdem_gdp wb_gdppc
##
    <chr>>
                <dbl>
                             <dbl>
                                      <dbl>
##
                     2000
                           145206. 13.7
## 1 MEX
                           146993.
                                   13.6
## 2 MEX
                     2001
## 3 MEX
                     2002
                           148549.
                                   13.6
## # i 6.786 more rows
```

Data Wrangling (3)

Haohan Chen

erup

leshape a 'able

tack Tables