Linear Algebra Review

CS221: Introduction to Artificial Intelligence

Carlos Fernandez-Granda

10/11/2011

Index

- Vectors
- Matrices
- Matrix Decompositions
- 4 Application : Image Compression

Vectors

2 Matrices

Matrix Decompositions

4 Application : Image Compression

What is a vector?

What is a vector?

• An ordered tuple of numbers :

$$\mathbf{u} = \begin{pmatrix} u_1 \\ u_2 \\ \dots \\ u_n \end{pmatrix}$$

What is a vector?

An ordered tuple of numbers :

$$\mathbf{u} = \begin{pmatrix} u_1 \\ u_2 \\ \dots \\ u_n \end{pmatrix}$$

• A quantity that has a magnitude and a direction.

• More formally a vector is an element of a vector space.

- More formally a vector is an element of a vector space.
- A vector space ${\mathcal V}$ is a set that contains **all linear combinations** of its elements :

- More formally a vector is an element of a vector space.
- \bullet A vector space ${\cal V}$ is a set that contains all linear combinations of its elements :
 - If vectors \mathbf{u} and $\mathbf{v} \in \mathcal{V}$, then $\mathbf{u} + \mathbf{v} \in \mathcal{V}$.

- More formally a vector is an element of a vector space.
- A vector space ${\mathcal V}$ is a set that contains all linear combinations of its elements :
 - If vectors \mathbf{u} and $\mathbf{v} \in \mathcal{V}$, then $\mathbf{u} + \mathbf{v} \in \mathcal{V}$.
 - If vector $\mathbf{u} \in \mathcal{V}$, then $\alpha \mathbf{u} \in \mathcal{V}$ for any scalar α .

- More formally a vector is an element of a vector space.
- A vector space ${\mathcal V}$ is a set that contains all linear combinations of its elements :
 - If vectors \mathbf{u} and $\mathbf{v} \in \mathcal{V}$, then $\mathbf{u} + \mathbf{v} \in \mathcal{V}$.
 - If vector $\mathbf{u} \in \mathcal{V}$, then $\alpha \mathbf{u} \in \mathcal{V}$ for any scalar α .
 - There exists $\mathbf{0} \in \mathcal{V}$ such that $\mathbf{u} + \mathbf{0} = \mathbf{u}$ for any $u \in \mathcal{V}$.

- More formally a vector is an element of a vector space.
- ullet A vector space ${\cal V}$ is a set that contains **all linear combinations** of its elements :
 - If vectors \mathbf{u} and $\mathbf{v} \in \mathcal{V}$, then $\mathbf{u} + \mathbf{v} \in \mathcal{V}$.
 - If vector $\mathbf{u} \in \mathcal{V}$, then $\alpha \mathbf{u} \in \mathcal{V}$ for any scalar α .
 - There exists $\mathbf{0} \in \mathcal{V}$ such that $\mathbf{u} + \mathbf{0} = \mathbf{u}$ for any $u \in \mathcal{V}$.
- A subspace is a subset of a vector space that is also a vector space.

Examples

• Euclidean space \mathbb{R}^n .

Examples

• Euclidean space \mathbb{R}^n .

 \bullet The span of any set of vectors $\{u_1,u_2,\ldots,u_n\},$ defined as :

$$\mathsf{span}\left(\mathbf{u_1},\mathbf{u_2},\ldots,\mathbf{u_n}\right) = \left\{\alpha_1\mathbf{u_1} + \alpha_2\mathbf{u_2} + \cdots + \alpha_n\mathbf{u_n} \mid \alpha_i \in \mathbb{R}\right\}$$

Subspaces

• A line through the origin in \mathbb{R}^n (span of a vector).

Subspaces

• A line through the origin in \mathbb{R}^n (span of a vector).

• A plane in \mathbb{R}^n (span of two vectors).

• A vector \mathbf{u} is linearly independent of a set of vectors $\{u_1, u_2, \dots, u_n\}$ if it does **not** lie in their **span**.

- A vector \mathbf{u} is linearly independent of a set of vectors $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$ if it does **not** lie in their **span**.
- A set of vectors is linearly independent if every vector is linearly independent of the rest.

- A vector \mathbf{u} is linearly independent of a set of vectors $\{\mathbf{u_1}, \mathbf{u_2}, \dots, \mathbf{u_n}\}$ if it does **not** lie in their **span**.
- A set of vectors is linearly independent if every vector is linearly independent of the rest.
- A basis of a vector space V is a linearly independent set of vectors whose span is equal to V.

- A vector \mathbf{u} is linearly independent of a set of vectors $\{\mathbf{u_1}, \mathbf{u_2}, \dots, \mathbf{u_n}\}$ if it does **not** lie in their **span**.
- A set of vectors is linearly independent if every vector is linearly independent of the rest.
- A basis of a vector space V is a linearly independent set of vectors whose span is equal to V.
- If a vector space has a basis with d vectors, its dimension is d.

- A vector \mathbf{u} is linearly independent of a set of vectors $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$ if it does **not** lie in their **span**.
- A set of vectors is linearly independent if every vector is linearly independent of the rest.
- A basis of a vector space V is a linearly independent set of vectors whose span is equal to V.
- If a vector space has a basis with d vectors, its dimension is d.
- Any other basis of the same space will consist of exactly d vectors.

- A vector \mathbf{u} is linearly independent of a set of vectors $\{\mathbf{u_1}, \mathbf{u_2}, \dots, \mathbf{u_n}\}$ if it does **not** lie in their **span**.
- A set of vectors is linearly independent if every vector is linearly independent of the rest.
- A basis of a vector space V is a linearly independent set of vectors whose span is equal to V.
- If a vector space has a basis with d vectors, its dimension is d.
- Any other basis of the same space will consist of exactly d vectors.
- The dimension of a vector space can be infinite (function spaces).

ullet A norm $||\mathbf{u}||$ measures the **magnitude** of a vector.

- ullet A norm $||\mathbf{u}||$ measures the **magnitude** of a vector.
- \bullet Mathematically, any function from the vector space to $\mathbb R$ that satisfies :

- ullet A norm $||\mathbf{u}||$ measures the **magnitude** of a vector.
- \bullet Mathematically, any function from the vector space to $\mathbb R$ that satisfies :
 - Homogeneity $||\alpha \mathbf{u}|| = |\alpha| \, ||\mathbf{u}||$

- A norm ||u|| measures the magnitude of a vector.
- \bullet Mathematically, any function from the vector space to $\mathbb R$ that satisfies :
 - Homogeneity $||\alpha \mathbf{u}|| = |\alpha| ||\mathbf{u}||$
 - Triangle inequality $||\mathbf{u} + \mathbf{v}|| \le ||\mathbf{u}|| + ||\mathbf{v}||$

- A norm ||u|| measures the magnitude of a vector.
- \bullet Mathematically, any function from the vector space to $\mathbb R$ that satisfies :
 - Homogeneity $||\alpha \mathbf{u}|| = |\alpha| ||\mathbf{u}||$
 - Triangle inequality $||\mathbf{u} + \mathbf{v}|| \le ||\mathbf{u}|| + ||\mathbf{v}||$
 - Point separation $||\mathbf{u}|| = 0$ if and only if $\mathbf{u} = 0$.

- A norm $||\mathbf{u}||$ measures the **magnitude** of a vector.
- ullet Mathematically, any function from the vector space to ${\mathbb R}$ that satisfies :
 - Homogeneity $||\alpha \mathbf{u}|| = |\alpha| ||\mathbf{u}||$
 - Triangle inequality $||\mathbf{u} + \mathbf{v}|| \le ||\mathbf{u}|| + ||\mathbf{v}||$
 - Point separation $||\mathbf{u}|| = 0$ if and only if $\mathbf{u} = 0$.
- Examples:
 - Manhattan or ℓ_1 norm : $||\mathbf{u}||_1 = \sum_i |u_i|$.
 - Euclidean or ℓ_2 norm : $||\mathbf{u}||_2 = \sqrt{\sum_i u_i^2}$.

Euclidean

• Inner product between ${\bf u}$ and ${\bf v}$: $\langle {\bf u}, {\bf v} \rangle = \sum_{i=1}^n u_i v_i$.

- Inner product between **u** and **v** : $\langle \mathbf{u}, \mathbf{v} \rangle = \sum_{i=1}^{n} u_i v_i$.
- It is the **projection** of one vector onto the other.

- Inner product between **u** and **v** : $\langle \mathbf{u}, \mathbf{v} \rangle = \sum_{i=1}^{n} u_i v_i$.
- It is the **projection** of one vector onto the other.

• Related to the Euclidean norm : $\langle \mathbf{u}, \mathbf{u} \rangle = ||\mathbf{u}||_2^2$.

The inner product is a measure of **correlation** between two vectors, scaled by the norms of the vectors :

The inner product is a measure of **correlation** between two vectors, scaled by the norms of the vectors :

• If $\langle \mathbf{u}, \mathbf{v} \rangle > 0$, \mathbf{u} and \mathbf{v} are aligned.

The inner product is a measure of **correlation** between two vectors, scaled by the norms of the vectors :

- If $\langle \mathbf{u}, \mathbf{v} \rangle > 0$, \mathbf{u} and \mathbf{v} are aligned.
- If $\langle \mathbf{u}, \mathbf{v} \rangle < 0$, \mathbf{u} and \mathbf{v} are opposed.

The inner product is a measure of **correlation** between two vectors, scaled by the norms of the vectors :

- If $\langle \mathbf{u}, \mathbf{v} \rangle > 0$, \mathbf{u} and \mathbf{v} are aligned.
- If $\langle \mathbf{u}, \mathbf{v} \rangle < 0$, \mathbf{u} and \mathbf{v} are opposed.
- If $\langle \mathbf{u}, \mathbf{v} \rangle = 0$, \mathbf{u} and \mathbf{v} are orthogonal.

Orthonormal Basis

• The vectors in an **orthonormal** basis have unit Euclidean norm and are orthogonal to each other.

- The vectors in an **orthonormal** basis have unit Euclidean norm and are orthogonal to each other.
- To express a vector x in an orthonormal basis, we can just take inner products.

- The vectors in an orthonormal basis have unit Euclidean norm and are orthogonal to each other.
- To express a vector x in an orthonormal basis, we can just take inner products.
- Example : $\mathbf{x} = \alpha_1 \mathbf{b_1} + \alpha_2 \mathbf{b_2}$.

- The vectors in an orthonormal basis have unit Euclidean norm and are orthogonal to each other.
- To express a vector x in an orthonormal basis, we can just take inner products.
- Example : $\mathbf{x} = \alpha_1 \mathbf{b_1} + \alpha_2 \mathbf{b_2}$.
- We compute $\langle \mathbf{x}, \mathbf{b_1} \rangle$:

$$\begin{split} \langle \mathbf{x}, \mathbf{b_1} \rangle &= \langle \alpha_1 \mathbf{b_1} + \alpha_2 \mathbf{b_2}, \mathbf{b_1} \rangle \\ &= \alpha_1 \langle \mathbf{b_1}, \mathbf{b_1} \rangle + \alpha_2 \langle \mathbf{b_2}, \mathbf{b_1} \rangle \quad \text{By linearity.} \\ &= \alpha_1 + 0 \quad \text{By orthonormality.} \end{split}$$

- The vectors in an orthonormal basis have unit Euclidean norm and are orthogonal to each other.
- To express a vector x in an orthonormal basis, we can just take inner products.
- Example : $\mathbf{x} = \alpha_1 \mathbf{b_1} + \alpha_2 \mathbf{b_2}$.
- We compute $\langle \mathbf{x}, \mathbf{b_1} \rangle$:

$$\begin{split} \langle \mathbf{x}, \mathbf{b_1} \rangle &= \langle \alpha_1 \mathbf{b_1} + \alpha_2 \mathbf{b_2}, \mathbf{b_1} \rangle \\ &= \alpha_1 \langle \mathbf{b_1}, \mathbf{b_1} \rangle + \alpha_2 \langle \mathbf{b_2}, \mathbf{b_1} \rangle \quad \text{By linearity.} \\ &= \alpha_1 + 0 \quad \text{By orthonormality.} \end{split}$$

• Likewise, $\alpha_2 = \langle \mathbf{x}, \mathbf{b_2} \rangle$.

Vectors

Matrices

Matrix Decompositions

4 Application : Image Compression

• A linear operator $\mathcal{L}:\mathcal{U}\to\mathcal{V}$ is a map from a vector space \mathcal{U} to another vector space \mathcal{V} that satisfies :

- A linear operator $\mathcal{L}:\mathcal{U}\to\mathcal{V}$ is a map from a vector space \mathcal{U} to another vector space \mathcal{V} that satisfies :
 - $\bullet \ \mathcal{L}\left(u_{1}+u_{2}\right)=\mathcal{L}\left(u_{1}\right)+\mathcal{L}\left(u_{2}\right).$

- A linear operator $\mathcal{L}:\mathcal{U}\to\mathcal{V}$ is a map from a vector space \mathcal{U} to another vector space \mathcal{V} that satisfies :
 - $\mathcal{L}(\mathbf{u}_1 + \mathbf{u}_2) = \mathcal{L}(\mathbf{u}_1) + \mathcal{L}(\mathbf{u}_2)$.
 - $\mathcal{L}(\alpha \mathbf{u}) = \alpha \mathcal{L}(\mathbf{u})$ for any scalar α .

- A linear operator $\mathcal{L}:\mathcal{U}\to\mathcal{V}$ is a map from a vector space \mathcal{U} to another vector space \mathcal{V} that satisfies :
 - $\mathcal{L}(\mathbf{u}_1 + \mathbf{u}_2) = \mathcal{L}(\mathbf{u}_1) + \mathcal{L}(\mathbf{u}_2)$.
 - $\mathcal{L}(\alpha \mathbf{u}) = \alpha \mathcal{L}(\mathbf{u})$ for any scalar α .
- If the dimension n of \mathcal{U} and m of \mathcal{V} are finite, \mathcal{L} can be represented by an $m \times n$ matrix \mathbf{A} .

$$\mathbf{A} = \begin{pmatrix} A_{11} & A_{12} & \dots & A_{1n} \\ A_{21} & A_{22} & \dots & A_{2n} \\ & & \dots & \\ A_{m1} & A_{m2} & \dots & A_{mn} \end{pmatrix}$$

$$\mathbf{A}\mathbf{u} = \begin{pmatrix} A_{11} & A_{12} & \dots & A_{1n} \\ A_{21} & A_{22} & \dots & A_{2n} \\ & & \dots & \\ A_{m1} & A_{m2} & \dots & A_{mn} \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \\ \dots \\ u_n \end{pmatrix} = \begin{pmatrix} v_1 \\ v_2 \\ \dots \\ v_m \end{pmatrix}$$

$$\mathbf{A}\mathbf{u} = \begin{pmatrix} A_{11} & A_{12} & \dots & A_{1n} \\ A_{21} & A_{22} & \dots & A_{2n} \\ & & \dots & \\ A_{m1} & A_{m2} & \dots & A_{mn} \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \\ \dots \\ u_n \end{pmatrix} = \begin{pmatrix} v_1 \\ v_2 \\ \dots \\ v_m \end{pmatrix}$$

$$\mathbf{A}\mathbf{u} = \begin{pmatrix} A_{11} & A_{12} & \dots & A_{1n} \\ A_{21} & A_{22} & \dots & A_{2n} \\ & & \dots & \\ A_{m1} & A_{m2} & \dots & A_{mn} \end{pmatrix} \begin{pmatrix} \mathbf{u}_1 \\ \mathbf{u}_2 \\ \dots \\ \mathbf{u}_n \end{pmatrix} = \begin{pmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \dots \\ \mathbf{v}_m \end{pmatrix}$$

$$\mathbf{A}\mathbf{u} = \begin{pmatrix} A_{11} & A_{12} & \dots & A_{1n} \\ A_{21} & A_{22} & \dots & A_{2n} \\ & & \dots & \\ A_{m1} & A_{m2} & \dots & A_{mn} \end{pmatrix} \begin{pmatrix} \mathbf{u}_1 \\ \mathbf{u}_2 \\ \dots \\ \mathbf{u}_n \end{pmatrix} = \begin{pmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \dots \\ \mathbf{v}_m \end{pmatrix}$$

Applying two linear operators $\bf A$ and $\bf B$ defines another linear operator, which can be represented by another matrix $\bf AB$.

$$\mathbf{AB} = \begin{pmatrix} A_{11} & A_{12} & \dots & A_{1n} \\ A_{21} & A_{22} & \dots & A_{2n} \\ & & \dots & \\ A_{m1} & A_{m2} & \dots & A_{mn} \end{pmatrix} \begin{pmatrix} B_{11} & B_{12} & \dots & B_{1p} \\ B_{21} & B_{22} & \dots & B_{2p} \\ & & \dots & \\ B_{n1} & B_{n2} & \dots & B_{np} \end{pmatrix}$$

$$= \begin{pmatrix} AB_{11} & AB_{12} & \dots & AB_{1p} \\ AB_{21} & AB_{22} & \dots & AB_{2p} \\ & & \dots & \\ AB_{m1} & AB_{m2} & \dots & AB_{mp} \end{pmatrix}$$

Applying two linear operators $\bf A$ and $\bf B$ defines another linear operator, which can be represented by another matrix $\bf AB$.

$$\mathbf{AB} = \begin{pmatrix} A_{11} & A_{12} & \dots & A_{1n} \\ A_{21} & A_{22} & \dots & A_{2n} \\ & & \dots & \\ A_{m1} & A_{m2} & \dots & A_{mn} \end{pmatrix} \begin{pmatrix} B_{11} & B_{12} & \dots & B_{1p} \\ B_{21} & B_{22} & \dots & B_{2p} \\ & & \dots & \\ B_{n1} & B_{n2} & \dots & B_{np} \end{pmatrix}$$

$$= \begin{pmatrix} AB_{11} & AB_{12} & \dots & AB_{1p} \\ AB_{21} & AB_{22} & \dots & AB_{2p} \\ & & \dots & \\ AB_{m1} & AB_{m2} & \dots & AB_{mp} \end{pmatrix}$$

Applying two linear operators $\bf A$ and $\bf B$ defines another linear operator, which can be represented by another matrix $\bf AB$.

$$\mathbf{AB} = \begin{pmatrix} A_{11} & A_{12} & \dots & A_{1n} \\ A_{21} & A_{22} & \dots & A_{2n} \\ & & \dots & \\ A_{m1} & A_{m2} & \dots & A_{mn} \end{pmatrix} \begin{pmatrix} B_{11} & B_{12} & \dots & B_{1p} \\ B_{21} & B_{22} & \dots & B_{2p} \\ & & \dots & \\ B_{n1} & B_{n2} & \dots & B_{np} \end{pmatrix}$$

$$= \begin{pmatrix} AB_{11} & AB_{12} & \dots & AB_{1p} \\ AB_{21} & AB_{22} & \dots & AB_{2p} \\ & & \dots & \\ AB_{m1} & AB_{m2} & \dots & AB_{mp} \end{pmatrix}$$

Applying two linear operators $\bf A$ and $\bf B$ defines another linear operator, which can be represented by another matrix $\bf AB$.

$$\mathbf{AB} = \begin{pmatrix} A_{11} & A_{12} & \dots & A_{1n} \\ A_{21} & A_{22} & \dots & A_{2n} \\ & & \dots & \\ A_{m1} & A_{m2} & \dots & A_{mn} \end{pmatrix} \begin{pmatrix} B_{11} & B_{12} & \dots & B_{1p} \\ B_{21} & B_{22} & \dots & B_{2p} \\ & & \dots & \\ B_{n1} & B_{n2} & \dots & B_{np} \end{pmatrix}$$

$$= \begin{pmatrix} AB_{11} & AB_{12} & \dots & AB_{1p} \\ AB_{21} & AB_{22} & \dots & AB_{2p} \\ & & \dots & \\ AB_{m1} & AB_{m2} & \dots & AB_{mp} \end{pmatrix}$$

Applying two linear operators $\bf A$ and $\bf B$ defines another linear operator, which can be represented by another matrix $\bf AB$.

$$\mathbf{AB} = \begin{pmatrix} A_{11} & A_{12} & \dots & A_{1n} \\ A_{21} & A_{22} & \dots & A_{2n} \\ & & \dots & \\ A_{m1} & A_{m2} & \dots & A_{mn} \end{pmatrix} \begin{pmatrix} B_{11} & B_{12} & \dots & B_{1p} \\ B_{21} & B_{22} & \dots & B_{2p} \\ & & \dots & \\ B_{n1} & B_{n2} & \dots & B_{np} \end{pmatrix}$$

$$= \begin{pmatrix} AB_{11} & AB_{12} & \dots & AB_{1p} \\ AB_{21} & AB_{22} & \dots & AB_{2p} \\ & & \dots & \\ AB_{m1} & AB_{m2} & \dots & AB_{mp} \end{pmatrix}$$

Applying two linear operators $\bf A$ and $\bf B$ defines another linear operator, which can be represented by another matrix $\bf AB$.

$$\mathbf{AB} = \begin{pmatrix} A_{11} & A_{12} & \dots & A_{1n} \\ A_{21} & A_{22} & \dots & A_{2n} \\ & & \dots & \\ A_{m1} & A_{m2} & \dots & A_{mn} \end{pmatrix} \begin{pmatrix} B_{11} & B_{12} & \dots & B_{1p} \\ B_{21} & B_{22} & \dots & B_{2p} \\ & & \dots & \\ B_{n1} & B_{n2} & \dots & B_{np} \end{pmatrix}$$

$$= \begin{pmatrix} AB_{11} & AB_{12} & \dots & AB_{1p} \\ AB_{21} & AB_{22} & \dots & AB_{2p} \\ & & \dots & \\ AB_{m1} & AB_{m2} & \dots & AB_{mp} \end{pmatrix}$$

Applying two linear operators $\bf A$ and $\bf B$ defines another linear operator, which can be represented by another matrix $\bf AB$.

$$\mathbf{AB} = \begin{pmatrix} A_{11} & A_{12} & \dots & A_{1n} \\ A_{21} & A_{22} & \dots & A_{2n} \\ & & \dots & \\ A_{m1} & A_{m2} & \dots & A_{mn} \end{pmatrix} \begin{pmatrix} B_{11} & B_{12} & \dots & B_{1p} \\ B_{21} & B_{22} & \dots & B_{2p} \\ & & \dots & \\ B_{n1} & B_{n2} & \dots & B_{np} \end{pmatrix}$$

$$= \begin{pmatrix} AB_{11} & AB_{12} & \dots & AB_{1p} \\ AB_{21} & AB_{22} & \dots & AB_{2p} \\ & & \dots & \\ AB_{m1} & AB_{m2} & \dots & AB_{mp} \end{pmatrix}$$

Applying two linear operators $\bf A$ and $\bf B$ defines another linear operator, which can be represented by another matrix $\bf AB$.

$$\mathbf{AB} = \begin{pmatrix} A_{11} & A_{12} & \dots & A_{1n} \\ A_{21} & A_{22} & \dots & A_{2n} \\ & & \dots & \\ A_{m1} & A_{m2} & \dots & A_{mn} \end{pmatrix} \begin{pmatrix} B_{11} & B_{12} & \dots & B_{1p} \\ B_{21} & B_{22} & \dots & B_{2p} \\ & & \dots & \\ B_{n1} & B_{n2} & \dots & B_{np} \end{pmatrix}$$

$$= \begin{pmatrix} AB_{11} & AB_{12} & \dots & AB_{1p} \\ AB_{21} & AB_{22} & \dots & AB_{2p} \\ & & \dots & \\ AB_{m1} & AB_{m2} & \dots & AB_{mp} \end{pmatrix}$$

Applying two linear operators $\bf A$ and $\bf B$ defines another linear operator, which can be represented by another matrix $\bf AB$.

$$\mathbf{AB} = \begin{pmatrix} A_{11} & A_{12} & \dots & A_{1n} \\ A_{21} & A_{22} & \dots & A_{2n} \\ & & \dots & \\ A_{m1} & A_{m2} & \dots & A_{mn} \end{pmatrix} \begin{pmatrix} B_{11} & B_{12} & \dots & B_{1p} \\ B_{21} & B_{22} & \dots & B_{2p} \\ & & \dots & \\ B_{n1} & B_{n2} & \dots & B_{np} \end{pmatrix}$$

$$= \begin{pmatrix} AB_{11} & AB_{12} & \dots & AB_{1p} \\ AB_{21} & AB_{22} & \dots & AB_{2p} \\ & & \dots & \\ AB_{m1} & AB_{m2} & \dots & AB_{mp} \end{pmatrix}$$

Applying two linear operators A and B defines another linear operator, which can be represented by another matrix AB.

$$\mathbf{AB} = \begin{pmatrix} A_{11} & A_{12} & \dots & A_{1n} \\ A_{21} & A_{22} & \dots & A_{2n} \\ & & \dots & \\ A_{m1} & A_{m2} & \dots & A_{mn} \end{pmatrix} \begin{pmatrix} B_{11} & B_{12} & \dots & B_{1p} \\ B_{21} & B_{22} & \dots & B_{2p} \\ & & \dots & \\ B_{n1} & B_{n2} & \dots & B_{np} \end{pmatrix}$$

$$= \begin{pmatrix} AB_{11} & AB_{12} & \dots & AB_{1p} \\ AB_{21} & AB_{22} & \dots & AB_{2p} \\ & & \dots & \\ AB_{m1} & AB_{m2} & \dots & AB_{mp} \end{pmatrix}$$

$$\mathbf{A}^{T} = \begin{pmatrix} A_{11} & A_{21} & \dots & A_{n1} \\ A_{12} & A_{22} & \dots & A_{n2} \\ & & \dots & & \\ A_{1m} & A_{2m} & \dots & A_{nm} \end{pmatrix}$$

 The transpose of a matrix is obtained by flipping the rows and columns.

$$\mathbf{A}^{T} = \begin{pmatrix} A_{11} & A_{21} & \dots & A_{n1} \\ A_{12} & A_{22} & \dots & A_{n2} \\ & & \dots & \\ A_{1m} & A_{2m} & \dots & A_{nm} \end{pmatrix}$$

Some simple properties :

$$\mathbf{A}^{T} = \begin{pmatrix} A_{11} & A_{21} & \dots & A_{n1} \\ A_{12} & A_{22} & \dots & A_{n2} \\ & & \dots & \\ A_{1m} & A_{2m} & \dots & A_{nm} \end{pmatrix}$$

- Some simple properties :
 - $\bullet \ \left(\mathbf{A}^T \right)^T = \mathbf{A}$

$$\mathbf{A}^{T} = \begin{pmatrix} A_{11} & A_{21} & \dots & A_{n1} \\ A_{12} & A_{22} & \dots & A_{n2} \\ & & \dots & \\ A_{1m} & A_{2m} & \dots & A_{nm} \end{pmatrix}$$

- Some simple properties :

$$\mathbf{A}^{T} = \begin{pmatrix} A_{11} & A_{21} & \dots & A_{n1} \\ A_{12} & A_{22} & \dots & A_{n2} \\ & & \dots & \\ A_{1m} & A_{2m} & \dots & A_{nm} \end{pmatrix}$$

- Some simple properties :
 - $\bullet \ \left(\mathbf{A}^T \right)^T = \mathbf{A}$
 - $\bullet (\mathbf{A} + \mathbf{B})^T = \mathbf{A}^T + \mathbf{B}^T$
 - $\bullet (AB)^T = B^T A^T$

$$\mathbf{A}^{T} = \begin{pmatrix} A_{11} & A_{21} & \dots & A_{n1} \\ A_{12} & A_{22} & \dots & A_{n2} \\ & & \dots & \\ A_{1m} & A_{2m} & \dots & A_{nm} \end{pmatrix}$$

- Some simple properties :
 - $\bullet \ (\mathbf{A}^T)^T = \mathbf{A}$
 - $\bullet (\mathbf{A} + \mathbf{B})^T = \mathbf{A}^T + \mathbf{B}^T$
 - $\bullet (AB)^T = B^T A^T$
- The inner product for vectors can be represented as $\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{u}^T \mathbf{v}$.

Identity Operator

$$\mathtt{I} = egin{pmatrix} 1 & 0 & \dots & 0 \ 0 & 1 & \dots & 0 \ & & \dots & & \ 0 & 0 & \dots & 1 \end{pmatrix}$$

Identity Operator

$$\mathtt{I} = egin{pmatrix} 1 & 0 & \dots & 0 \ 0 & 1 & \dots & 0 \ & & \dots & & \ 0 & 0 & \dots & 1 \end{pmatrix}$$

• For any matrix \mathbf{A} , $\mathbf{AI} = \mathbf{A}$.

Identity Operator

$$\mathtt{I} = egin{pmatrix} 1 & 0 & \dots & 0 \ 0 & 1 & \dots & 0 \ & & \dots & & \ 0 & 0 & \dots & 1 \end{pmatrix}$$

- For any matrix \mathbf{A} , $\mathbf{A}I = \mathbf{A}$.
- I is the **identity operator** for the matrix product.

• Let **A** be an $m \times n$ matrix.

- Let **A** be an $m \times n$ matrix.
- Column space :

- Let **A** be an $m \times n$ matrix.
- Column space :
 - Span of the columns of A.

- Let **A** be an $m \times n$ matrix.
- Column space :
 - Span of the columns of A.
 - Linear subspace of \mathbb{R}^m .

- Let **A** be an $m \times n$ matrix.
- Column space :
 - Span of the columns of A.
 - Linear subspace of \mathbb{R}^m .
- Row space :

- Let **A** be an $m \times n$ matrix.
- Column space :
 - Span of the columns of A.
 - Linear subspace of \mathbb{R}^m .
- Row space :
 - Span of the rows of A.

- Let **A** be an $m \times n$ matrix.
- Column space :
 - Span of the columns of A.
 - Linear subspace of \mathbb{R}^m .
- Row space :
 - Span of the rows of A.
 - Linear subspace of \mathbb{R}^n .

- Let **A** be an $m \times n$ matrix.
- Column space :
 - Span of the columns of A.
 - Linear subspace of \mathbb{R}^m .
- Row space :
 - Span of the rows of A.
 - Linear subspace of \mathbb{R}^n .
- Important fact :

The column and row spaces of any matrix have the same dimension.

- Let **A** be an $m \times n$ matrix.
- Column space :
 - Span of the columns of A.
 - Linear subspace of \mathbb{R}^m .
- Row space :
 - Span of the rows of A.
 - Linear subspace of \mathbb{R}^n .
- Important fact :

The column and row spaces of any matrix have the same dimension.

• This dimension is the rank of the matrix.

• Let **A** be an $m \times n$ matrix.

- Let **A** be an $m \times n$ matrix.
- Range:

- Let **A** be an $m \times n$ matrix.
- Range:
 - Set of vectors equal to $\mathbf{A}\mathbf{u}$ for some $\mathbf{u} \in \mathbb{R}^n$.

- Let **A** be an $m \times n$ matrix.
- Range :
 - Set of vectors equal to $\mathbf{A}\mathbf{u}$ for some $\mathbf{u} \in \mathbb{R}^n$.
 - Linear subspace of \mathbb{R}^m .

- Let **A** be an $m \times n$ matrix.
- Range:
 - Set of vectors equal to $\mathbf{A}\mathbf{u}$ for some $\mathbf{u} \in \mathbb{R}^n$.
 - Linear subspace of \mathbb{R}^m .
- Null space :

- Let **A** be an $m \times n$ matrix.
- Range:
 - Set of vectors equal to $\mathbf{A}\mathbf{u}$ for some $\mathbf{u} \in \mathbb{R}^n$.
 - Linear subspace of \mathbb{R}^m .
- Null space :
 - \mathbf{u} belongs to the null space if $\mathbf{A}\mathbf{u} = 0$.

- Let **A** be an $m \times n$ matrix.
- Range:
 - Set of vectors equal to $\mathbf{A}\mathbf{u}$ for some $\mathbf{u} \in \mathbb{R}^n$.
 - Linear subspace of \mathbb{R}^m .
- Null space :
 - \mathbf{u} belongs to the null space if $\mathbf{A}\mathbf{u} = 0$.
 - Subspace of \mathbb{R}^n .

- Let **A** be an $m \times n$ matrix.
- Range :
 - Set of vectors equal to $\mathbf{A}\mathbf{u}$ for some $\mathbf{u} \in \mathbb{R}^n$.
 - Linear subspace of \mathbb{R}^m .
- Null space :
 - \mathbf{u} belongs to the null space if $\mathbf{A}\mathbf{u} = 0$.
 - Subspace of \mathbb{R}^n .
 - Every vector in the null space is orthogonal to the rows of **A**. The **null space** and **row space** of a matrix are **orthogonal**.

Range and Column Space

Another interpretation of the matrix vector product $(A_i$ is column i of A):

$$\mathbf{A}\mathbf{u} = \begin{pmatrix} \mathbf{A}_1 & \mathbf{A}_2 & \dots & \mathbf{A}_n \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \\ \dots \\ u_n \end{pmatrix}$$
$$= u_1 \mathbf{A}_1 + u_2 \mathbf{A}_2 + \dots + u_n \mathbf{A}_n$$

Range and Column Space

Another interpretation of the matrix vector product $(A_i$ is column i of A):

$$\mathbf{A}\mathbf{u} = \begin{pmatrix} \mathbf{A}_1 & \mathbf{A}_2 & \dots & \mathbf{A}_n \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \\ \dots \\ u_n \end{pmatrix}$$
$$= u_1 \mathbf{A}_1 + u_2 \mathbf{A}_2 + \dots + u_n \mathbf{A}_n$$

• The result is a linear combination of the columns of A.

Range and Column Space

Another interpretation of the matrix vector product $(A_i$ is column i of A):

$$\mathbf{A}\mathbf{u} = \begin{pmatrix} \mathbf{A}_1 & \mathbf{A}_2 & \dots & \mathbf{A}_n \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \\ \dots \\ u_n \end{pmatrix}$$
$$= u_1 \mathbf{A}_1 + u_2 \mathbf{A}_2 + \dots + u_n \mathbf{A}_n$$

- The result is a linear combination of the columns of A.
- For any matrix, the range is equal to the column space.

• For an $n \times n$ matrix A : rank + dim(null space) = n.

- For an $n \times n$ matrix A : rank + dim(null space) = n.
- If dim(null space)=0 then A is full rank.

- For an $n \times n$ matrix A : rank + dim(null space) = n.
- If dim(null space)=0 then **A** is **full rank**.
- In this case, the action of the matrix is invertible.

- For an $n \times n$ matrix A : rank + dim(null space) = n.
- If dim(null space)=0 then **A** is **full rank**.
- In this case, the action of the matrix is invertible.
- The inversion is also linear and consequently can be represented by another matrix \mathbf{A}^{-1} .

- For an $n \times n$ matrix A : rank + dim(null space) = n.
- If dim(null space)=0 then A is full rank.
- In this case, the action of the matrix is invertible.
- The inversion is also linear and consequently can be represented by another matrix \mathbf{A}^{-1} .
- ullet ${f A}^{-1}$ is the only matrix such that ${f A}^{-1}{f A}={f A}{f A}^{-1}={f I}$.

• An **orthogonal** matrix **U** satisfies $\mathbf{U}^T\mathbf{U} = \mathbf{I}$.

- An orthogonal matrix U satisfies $U^TU = I$.
- Equivalently, **U** has **orthonormal columns**.

- An orthogonal matrix U satisfies $U^TU = I$.
- Equivalently, U has orthonormal columns.
- Applying an orthogonal matrix to two vectors does not change their inner product:

$$\langle Uu, Uv \rangle = (Uu)^T Uv$$

$$= u^T U^T Uv$$

$$= u^T v$$

$$= \langle u, v \rangle$$

- An orthogonal matrix U satisfies $U^TU = I$.
- Equivalently, U has orthonormal columns.
- Applying an orthogonal matrix to two vectors does not change their inner product:

$$\langle Uu, Uv \rangle = (Uu)^T Uv$$

= $u^T U^T Uv$
= $u^T v$
= $\langle u, v \rangle$

Example: Matrices that represent rotations are orthogonal.

• The trace is the sum of the diagonal elements of a square matrix.

- The trace is the sum of the diagonal elements of a square matrix.
- \bullet The determinant of a square matrix \boldsymbol{A} is denoted by $|\boldsymbol{A}|.$

- The trace is the sum of the diagonal elements of a square matrix.
- The **determinant** of a square matrix A is denoted by |A|.
- For a 2 \times 2 matrix $\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$:

- The trace is the sum of the diagonal elements of a square matrix.
- The **determinant** of a square matrix A is denoted by |A|.
- For a 2 × 2 matrix $\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$:
 - $\bullet |\mathbf{A}| = ad bc$

- The trace is the sum of the diagonal elements of a square matrix.
- The **determinant** of a square matrix A is denoted by |A|.
- For a 2 \times 2 matrix $\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$:
 - |A| = ad bc
 - The absolute value of $|\mathbf{A}|$ is the area of the parallelogram given by the rows of \mathbf{A} .

• The definition can be generalized to larger matrices.

- The definition can be generalized to larger matrices.
- $\bullet |\mathbf{A}| = |\mathbf{A}^T|.$

- The definition can be generalized to larger matrices.
- $\bullet |\mathbf{A}| = |\mathbf{A}^T|.$
- |AB| = |A||B|

- The definition can be generalized to larger matrices.
- $\bullet |\mathbf{A}| = |\mathbf{A}^T|.$
- |AB| = |A||B|
- |A| = 0 if and only if A is not invertible.

- The definition can be generalized to larger matrices.
- $\bullet |\mathbf{A}| = |\mathbf{A}^T|.$
- |AB| = |A||B|
- |A| = 0 if and only if A is not invertible.
- ullet If ${f A}$ is invertible, then $\left|{f A}^{-1}\right|=rac{1}{|{f A}|}.$

- Vectors
- 2 Matrices
- Matrix Decompositions
- 4 Application : Image Compression

ullet An eigenvalue λ of a square matrix ${f A}$ satisfies :

$$\mathbf{A}\mathbf{u} = \lambda \mathbf{u}$$

ullet An **eigenvalue** λ of a square matrix ${f A}$ satisfies :

$$\mathbf{A}\mathbf{u} = \lambda \mathbf{u}$$

for some vector **u**, which we call an **eigenvector**.

• Geometrically, the operator A expands $(\lambda > 1)$ or contracts $(\lambda < 1)$ eigenvectors but does not rotate them.

ullet An **eigenvalue** λ of a square matrix $oldsymbol{\mathsf{A}}$ satisfies :

$$\mathbf{A}\mathbf{u} = \lambda \mathbf{u}$$

- Geometrically, the operator **A expands** $(\lambda > 1)$ or **contracts** $(\lambda < 1)$ eigenvectors but **does not rotate** them.
- If u is an eigenvector of A, it is in the null space of $A \lambda I$, which is consequently **not invertible**.

ullet An **eigenvalue** λ of a square matrix $oldsymbol{\mathsf{A}}$ satisfies :

$$\mathbf{A}\mathbf{u} = \lambda \mathbf{u}$$

- Geometrically, the operator **A expands** $(\lambda > 1)$ or **contracts** $(\lambda < 1)$ eigenvectors but **does not rotate** them.
- If u is an eigenvector of A, it is in the null space of $A \lambda I$, which is consequently **not invertible**.
- ullet The eigenvalues of ${f A}$ are the roots of the equation $|{f A}-\lambda{f I}|=0$.

• An eigenvalue λ of a square matrix **A** satisfies :

$$\mathbf{A}\mathbf{u} = \lambda \mathbf{u}$$

- Geometrically, the operator **A expands** $(\lambda > 1)$ or **contracts** $(\lambda < 1)$ eigenvectors but **does not rotate** them.
- If u is an eigenvector of A, it is in the null space of $A \lambda I$, which is consequently **not invertible**.
- ullet The eigenvalues of ${f A}$ are the roots of the equation $|{f A}-\lambda{f I}|=0$.
- Not the way eigenvalues are calculated in practice.

ullet An **eigenvalue** λ of a square matrix $oldsymbol{\mathsf{A}}$ satisfies :

$$\mathbf{A}\mathbf{u} = \lambda \mathbf{u}$$

- Geometrically, the operator **A expands** $(\lambda > 1)$ or **contracts** $(\lambda < 1)$ eigenvectors but **does not rotate** them.
- If u is an eigenvector of A, it is in the null space of A $-\lambda$ I, which is consequently **not invertible**.
- The eigenvalues of **A** are the roots of the equation $|\mathbf{A} \lambda \mathbf{I}| = 0$.
- Not the way eigenvalues are calculated in practice.
- Eigenvalues and eigenvectors can be complex valued, even if all the entries of A are real.

• Let **A** be an $n \times n$ square matrix with n linearly independent eigenvectors $\mathbf{p}_1 \dots \mathbf{p}_n$ and eigenvalues $\lambda_1 \dots \lambda_n$.

- Let **A** be an $n \times n$ square matrix with n linearly independent eigenvectors $\mathbf{p}_1 \dots \mathbf{p}_n$ and eigenvalues $\lambda_1 \dots \lambda_n$.
- We define the matrices :

$$\mathbf{P} = \begin{pmatrix} \mathbf{p}_1 & \dots & \mathbf{p}_n \end{pmatrix}$$

$$\Lambda = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ & & \dots & \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$$

- Let **A** be an $n \times n$ square matrix with n linearly independent eigenvectors $\mathbf{p}_1 \dots \mathbf{p}_n$ and eigenvalues $\lambda_1 \dots \lambda_n$.
- We define the matrices :

$$\mathbf{P} = \begin{pmatrix} \mathbf{p}_1 & \dots & \mathbf{p}_n \end{pmatrix}$$

$$\mathbf{\Lambda} = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ & & \dots & \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$$

• A satisfies $AP = P\Lambda$.

- Let **A** be an $n \times n$ square matrix with n linearly independent eigenvectors $\mathbf{p}_1 \dots \mathbf{p}_n$ and eigenvalues $\lambda_1 \dots \lambda_n$.
- We define the matrices :

$$\mathsf{P} = \begin{pmatrix} \mathsf{p}_1 & \dots & \mathsf{p}_n \end{pmatrix}$$

$$\mathsf{\Lambda} = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ & & \dots & \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$$

- A satisfies $AP = P\Lambda$.
- P is full rank. Inverting it yields the eigendecomposition of A :

$$A = P\Lambda P^{-1}$$

• Not all matrices are diagonalizable (have an eigendecomposition). Example : $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.

- Not all matrices are diagonalizable (have an eigendecomposition). Example : $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.
- Trace(A) = Trace(Λ) = $\sum_{i=1}^{n} \lambda_i$.

- Not all matrices are diagonalizable (have an eigendecomposition). Example : $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.
- Trace(\mathbf{A}) = Trace(Λ) = $\sum_{i=1}^{n} \lambda_i$.
- $|\mathbf{A}| = |\Lambda| = \prod_{i=1}^n \lambda_i$.

- Not all matrices are diagonalizable (have an eigendecomposition). Example : $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.
- Trace(A) = Trace(Λ) = $\sum_{i=1}^{n} \lambda_i$.
- $|\mathbf{A}| = |\Lambda| = \prod_{i=1}^n \lambda_i$.
- The rank of A is equal to the number of nonzero eigenvalues.

- Not all matrices are diagonalizable (have an eigendecomposition). Example : $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.
- Trace(\mathbf{A}) = Trace($\mathbf{\Lambda}$) = $\sum_{i=1}^{n} \lambda_{i}$.
- $|\mathbf{A}| = |\Lambda| = \prod_{i=1}^n \lambda_i$.
- The rank of A is equal to the number of nonzero eigenvalues.
- If λ is a nonzero eigenvalue of \mathbf{A} , $\frac{1}{\lambda}$ is an eigenvalue of \mathbf{A}^{-1} with the same eigenvector.

- Not all matrices are diagonalizable (have an eigendecomposition). Example : $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.
- Trace(\mathbf{A}) = Trace(Λ) = $\sum_{i=1}^{n} \lambda_i$.
- $|\mathbf{A}| = |\Lambda| = \prod_{i=1}^n \lambda_i$.
- The rank of A is equal to the number of nonzero eigenvalues.
- If λ is a nonzero eigenvalue of \mathbf{A} , $\frac{1}{\lambda}$ is an eigenvalue of \mathbf{A}^{-1} with the same eigenvector.
- The eigendecomposition makes it possible to compute matrix powers efficiently:

$$\mathbf{A}^m = (\mathbf{P} \Lambda \mathbf{P}^{-1})^m = \mathbf{P} \Lambda \mathbf{P}^{-1} \ \mathbf{P} \Lambda \mathbf{P}^{-1} \ \dots \mathbf{P} \Lambda \mathbf{P}^{-1} = \mathbf{P} \Lambda^m \mathbf{P}^{-1}.$$

Matlab Example

• If $A = A^T$ then A is symmetric.

- If $A = A^T$ then A is symmetric.
- The eigenvalues of symmetric matrices are **real**.

- If $A = A^T$ then A is symmetric.
- The eigenvalues of symmetric matrices are real.
- The eigenvectors of symmetric matrices are orthonormal.

- If $A = A^T$ then A is symmetric.
- The eigenvalues of symmetric matrices are real.
- The eigenvectors of symmetric matrices are orthonormal.
- Consequently, the eigendecomposition becomes : $\mathbf{A} = \mathbf{U}\Lambda\mathbf{U}^T$ for Λ real and \mathbf{U} orthogonal.

- If $A = A^T$ then A is symmetric.
- The eigenvalues of symmetric matrices are real.
- The eigenvectors of symmetric matrices are orthonormal.
- Consequently, the eigendecomposition becomes : $\mathbf{A} = \mathbf{U} \Lambda \mathbf{U}^T$ for Λ real and \mathbf{U} orthogonal.
- The eigenvectors of **A** are an orthonormal **basis** for the **column space** (and the row space, since they are equal).

• The action of a symmetric matrix on a vector $\mathbf{A}\mathbf{u} = \mathbf{U}\Lambda\mathbf{U}^T\mathbf{u}$ can be decomposed into :

- The action of a symmetric matrix on a vector $\mathbf{A}\mathbf{u} = \mathbf{U}\Lambda\mathbf{U}^T\mathbf{u}$ can be decomposed into :
 - **1** Projection of \mathbf{u} onto the column space of \mathbf{A} (multiplication by \mathbf{U}^T).

- The action of a symmetric matrix on a vector $\mathbf{A}\mathbf{u} = \mathbf{U}\Lambda\mathbf{U}^T\mathbf{u}$ can be decomposed into :
 - **1** Projection of \mathbf{u} onto the column space of \mathbf{A} (multiplication by \mathbf{U}^T).
 - ② Scaling of each coefficient $\langle \mathbf{U}_i, \mathbf{u} \rangle$ by the corresponding eigenvalue (multiplication by Λ).

- The action of a symmetric matrix on a vector $\mathbf{A}\mathbf{u} = \mathbf{U}\Lambda\mathbf{U}^T\mathbf{u}$ can be decomposed into :
 - **1** Projection of \mathbf{u} onto the column space of \mathbf{A} (multiplication by \mathbf{U}^T).
 - **②** Scaling of each coefficient $\langle \mathbf{U}_i, \mathbf{u} \rangle$ by the corresponding eigenvalue (multiplication by Λ).
 - Solution Linear combination of the eigenvectors scaled by the resulting coefficient (multiplication by U).

- The action of a symmetric matrix on a vector $\mathbf{A}\mathbf{u} = \mathbf{U}\Lambda\mathbf{U}^T\mathbf{u}$ can be decomposed into :
 - Projection of \mathbf{u} onto the column space of \mathbf{A} (multiplication by \mathbf{U}^T).
 - ② Scaling of each coefficient $\langle \mathbf{U}_i, \mathbf{u} \rangle$ by the corresponding eigenvalue (multiplication by Λ).
 - Solution Linear combination of the eigenvectors scaled by the resulting coefficient (multiplication by U).
- Summarizing:

$$\mathbf{A}\mathbf{u} = \sum_{i=1}^{n} \lambda_{i} \left\langle \mathbf{U}_{i}, \mathbf{u} \right\rangle \mathbf{U}_{i}$$

- The action of a symmetric matrix on a vector $\mathbf{A}\mathbf{u} = \mathbf{U}\Lambda\mathbf{U}^T\mathbf{u}$ can be decomposed into :
 - Projection of \mathbf{u} onto the column space of \mathbf{A} (multiplication by \mathbf{U}^T).
 - ② Scaling of each coefficient $\langle \mathbf{U}_i, \mathbf{u} \rangle$ by the corresponding eigenvalue (multiplication by Λ).
 - Solution Linear combination of the eigenvectors scaled by the resulting coefficient (multiplication by U).
- Summarizing :

$$\mathbf{A}\mathbf{u} = \sum_{i=1}^{n} \lambda_{i} \left\langle \mathbf{U}_{i}, \mathbf{u} \right\rangle \mathbf{U}_{i}$$

• It would be great to generalize this to all matrices...

$$A = U\Sigma V^T$$

• Every matrix has a singular value decomposition :

$$A = U\Sigma V^T$$

 The columns of U are an orthonormal basis for the column space of A.

$$A = U\Sigma V^T$$

- The columns of U are an orthonormal basis for the column space of A.
- The columns of V are an orthonormal basis for the row space of A.

$$A = U\Sigma V^T$$

- The columns of U are an orthonormal basis for the column space of A.
- The columns of V are an orthonormal basis for the row space of A.
- Σ is diagonal. The entries on its diagonal $\sigma_i = \Sigma_{ii}$ are positive real numbers, called the **singular values** of **A**.

$$A = U\Sigma V^T$$

- The columns of U are an orthonormal basis for the column space of A.
- The columns of V are an orthonormal basis for the row space of A.
- Σ is diagonal. The entries on its diagonal $\sigma_i = \Sigma_{ii}$ are positive real numbers, called the **singular values** of **A**.
- The action of **A** on a vector **u** can be decomposed into :

$$\mathbf{A}\mathbf{u} = \sum_{i=1}^{n} \sigma_{i} \left\langle \mathbf{V}_{i}, \mathbf{u} \right\rangle \mathbf{U}_{i}$$

Properties of the Singular Value Decomposition

 The eigenvalues of the symmetric matrix A^TA are equal to the square of the singular values of A:

$$\mathbf{A}^T \mathbf{A} = \mathbf{V} \mathbf{\Sigma} \mathbf{U}^T \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T = \mathbf{V} \mathbf{\Sigma}^2 \mathbf{V}^T$$

Properties of the Singular Value Decomposition

 The eigenvalues of the symmetric matrix A^TA are equal to the square of the singular values of A:

$$\mathbf{A}^T \mathbf{A} = \mathbf{V} \mathbf{\Sigma} \mathbf{U}^T \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T = \mathbf{V} \mathbf{\Sigma}^2 \mathbf{V}^T$$

 The rank of a matrix is equal to the number of nonzero singular values.

Properties of the Singular Value Decomposition

 The eigenvalues of the symmetric matrix A^TA are equal to the square of the singular values of A:

$$\mathbf{A}^T \mathbf{A} = \mathbf{V} \mathbf{\Sigma} \mathbf{U}^T \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T = \mathbf{V} \mathbf{\Sigma}^2 \mathbf{V}^T$$

- The rank of a matrix is equal to the number of nonzero singular values.
- The largest singular value σ_1 is the solution to the optimization problem :

$$\sigma_1 = \max_{\mathbf{x} \neq 0} \frac{||\mathbf{A}\mathbf{x}||_2}{||\mathbf{x}||_2}$$

Properties of the Singular Value Decomposition

 The eigenvalues of the symmetric matrix A^TA are equal to the square of the singular values of A:

$$\mathbf{A}^T \mathbf{A} = \mathbf{V} \mathbf{\Sigma} \mathbf{U}^T \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T = \mathbf{V} \mathbf{\Sigma}^2 \mathbf{V}^T$$

- The rank of a matrix is equal to the number of nonzero singular values.
- The largest singular value σ_1 is the solution to the optimization problem :

$$\sigma_1 = \max_{\mathbf{x} \neq \mathbf{0}} \frac{\left|\left|\mathbf{A}\mathbf{x}\right|\right|_2}{\left|\left|\mathbf{x}\right|\right|_2}$$

• It can be verified that the largest singular value satisfies the properties of a norm, it is called the **spectral norm** of the matrix.

Properties of the Singular Value Decomposition

 The eigenvalues of the symmetric matrix A^TA are equal to the square of the singular values of A:

$$\mathbf{A}^T \mathbf{A} = \mathbf{V} \mathbf{\Sigma} \mathbf{U}^T \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T = \mathbf{V} \mathbf{\Sigma}^2 \mathbf{V}^T$$

- The rank of a matrix is equal to the number of nonzero singular values.
- The largest singular value σ_1 is the solution to the optimization problem :

$$\sigma_1 = \max_{\mathbf{x} \neq \mathbf{0}} \frac{\left|\left|\mathbf{A}\mathbf{x}\right|\right|_2}{\left|\left|\mathbf{x}\right|\right|_2}$$

- It can be verified that the largest singular value satisfies the properties of a norm, it is called the **spectral norm** of the matrix.
- In statistics analyzing data with the singular value decomposition is called **Principal Component Analysis**.

Vectors

2 Matrices

Matrix Decompositions

4 Application : Image Compression

 The singular value decomposition can be viewed as a sum of rank 1 matrices:

 The singular value decomposition can be viewed as a sum of rank 1 matrices:

$$\mathbf{A} = \begin{bmatrix} \sigma_1 & & & +\sigma_2 & & & +\sigma_R & & \\ & \mathbf{v}_1^\mathsf{T} & & & \mathbf{v}_2^\mathsf{T} & & & \\ & \mathbf{u}_1 & & & \mathbf{u}_2 & & & \mathbf{u}_R \end{bmatrix} \mathbf{v}_R^\mathsf{T}$$

• If some of the singular values are very small, we can discard them.

 The singular value decomposition can be viewed as a sum of rank 1 matrices:

$$\mathbf{A} = \begin{bmatrix} \sigma_1 & \cdots & +\sigma_2 & \cdots & +\sigma_R \\ & \mathbf{v}_1^{\mathsf{T}} & \mathbf{v}_2^{\mathsf{T}} & \mathbf{v}_2^{\mathsf{T}} & \mathbf{v}_R^{\mathsf{T}} \\ & \mathbf{u}_1 & \mathbf{u}_2 & \mathbf{u}_R \end{bmatrix}$$

- If some of the singular values are very small, we can **discard** them.
- This is a form of lossy compression.

 Truncating the singular value decomposition allows us to represent the matrix with less parameters.

• For a 512×512 matrix :

- For a 512×512 matrix :
 - Full representation : $512 \times 512 = 262 \ 144$

- For a 512×512 matrix :
 - Full representation : $512 \times 512 = 262 \ 144$
 - Rank 10 approximation : $512 \times 10 + 10 + 512 \times 10 = 10$ **250**

- For a 512×512 matrix :
 - Full representation : $512 \times 512 = 262 \ 144$
 - Rank 10 approximation : $512 \times 10 + 10 + 512 \times 10 = 10$ **250**
 - Rank 40 approximation : $512 \times 40 + 40 + 512 \times 40 = 41000$

- For a 512×512 matrix :
 - Full representation : $512 \times 512 = 262 \ 144$
 - Rank 10 approximation : $512 \times 10 + 10 + 512 \times 10 = 10$ **250**
 - Rank 40 approximation : $512 \times 40 + 40 + 512 \times 40 = 41000$
 - Rank 80 approximation : $512 \times 80 + 80 + 512 \times 80 = 82 \ 000$