Equazioni Differenziali Ordinarie	Seconda prova in itinere	3 luglio 2008
Cognome	Nome	Firma
Proff. Furioli, Rossi, Vegni	Matricola	Sezione INF

[©] I seguenti quesiti e il relativo svolgimento sono coperti da diritto d'autore; pertanto essi non possono essere sfruttati a fini commerciali o di pubblicazione editoriale. Ogni abuso sarà perseguito a termini di legge dal titolare del diritto

Esercizio 1.

A) Data l'equazione alle differenze

$$\begin{cases} x_{n+1} = f(x_n), & n \ge 0 \\ x_0 \text{ dato iniziale,} \end{cases}$$

enunciare e dimostrare il criterio di stabilità asintotica per punti di equilibrio iperbolici.

B) È data l'equazione alle differenze

$$\begin{cases} x_{n+1} = f(x_n), & n \ge 0 \\ x_0 \in \mathbb{R} \end{cases}$$

con funzione generatrice $f(x) = xe^{x-3}$.

- a. Trovarne i punti di equilibrio, dopo aver disegnato il grafico di f.
- b. Disegnare con un diagramma a gradino le orbite relative ai dati iniziali $x_0 = -1$, $x_0 = 1$, $x_0 = 4$.
- c. Determinare la natura dei punti di equilibrio ed il loro eventuale bacino di attrazione.

Soluzione.

- A) Consultare il testo Salsa-Squellati, Modelli dinamici e controllo ottimo, pagg. 80-81.
- B) a. La funzione generatrice è di classe $C^{\infty}(\mathbb{R})$, dunque per ogni $x_0 \in \mathbb{R}$ esiste una sola orbita $\{x_n\}_{n\in\mathbb{N}}$ uscente da x_0 . Il grafico di $f(x)=xe^{x-3}$ è riportato in figura.

I punti di equilibrio, che verificano f(x) = x, sono $\bar{x}_1 = 0$ e $\bar{x}_2 = 3$.

b. I diagrammi a gradino sono riportati in figura (attenzione che la scala sugli assi non è la stessa; la retta y = x è in verde)

1

c. Si ha $f'(x) = e^{(x-3)}(1+x)$ da cui

$$f'(0) = e^{-3}, \quad f'(3) = 4.$$

Entrambi i punti di equilibrio sono iperbolici, dunque in base al teorema richiamato al punto A) poiché 0 < f'(0) < 1 si ha che 0 è asintoticamente stabile, mentre essendo f'(3) > 1 si ha che 3 è instabile.

Per determinare il bacino di attrazione di $\bar{x}_1 = 0$, determiniamo i sottointervalli $J \subset \mathbb{R}$ stabili tramite f, cioè tali che $f(J) \subset J$. Si ha

$$f((-\infty,0)) \subset ((-\infty,0)$$
$$f((0,3)) \subset ((0,3))$$
$$f((3,\infty) \subset ((3,\infty))$$

dunque i tre intervalli sono stabili tramite f.

Osserviamo inoltre che per $x \in (-\infty, 0)$ si ha $f(x) \ge x$, per $x \in (0, 3)$ si ha $f(x) \le x$, mentre per $x \in (3, +\infty)$ si ha ancora $f(x) \ge x$.

Studiamo allora l'andamento delle orbite.

(i) Se $x_0 < 0$, si ha $x_{n+1} = f(x_n) < 0$ per ogni $n \ge 0$ (grazie al fatto che l'intervallo è stabile); inoltre per ogni n si ha $x_{n+1} = f(x_n) \ge x_n$, dunque $\{x_n\}$ è monotona crescente, superiormente limitata, quindi ammette limite

$$\lim_{n \to \infty} x_n = l \in (x_0, 0]$$

ma poiché f è continua, il limite deve essere un punto fisso e quindi per forza l = 0 (non ci sono altri punti fissi di f in $(x_0, 0]$).

- (ii) Se $x_0 = 0$, allora $x_n = 0$ per ogni n.
- (iii) Se $x_0 \in (0,3)$, si ha $x_{n+1} = f(x_n) \in (0,3)$ per ogni $n \geq 0$ (grazie al fatto che l'intervallo è stabile); inoltre per ogni n si ha $x_{n+1} = f(x_n) \leq x_n$, dunque $\{x_n\}$ è monotona decrescente, inferiormente limitata, quindi ammette limite

$$\lim_{n \to \infty} x_n = l \in [0, x_0)$$

ma poiché f è continua, il limite deve essere un punto fisso e quindi per forza l = 0 (non ci sono altri punti fissi di f in $[0, x_0)$).

- (iv) Se $x_0 = 3$, allora $x_n = 3$ per ogni n.
- (v) Se $x_0 \in (3, \infty)$, allora $x_n \in (3, \infty)$ per ogni n e $x_{n+1} = f(x_n) \ge x_n$ per ogni n, dunque $\{x_n\}$ è monotona crescente e quindi ammette limite, finito oppure infinito. Se ammettesse limite finito, esso dovrebbe essere un punto fisso per f, ma non esistono punti fissi per f in $(3, \infty)$. Dunque, $\lim_{n \to +\infty} x_n = +\infty$.

In definitiva, $\bar{x}_1 = 0$ è asintoticamente stabile e il suo bacino di attrazione è $(-\infty, 3)$.

 Equazioni Differenziali Ordinarie
 Seconda prova in itinere
 3 luglio 2008

 Cognome
 Nome
 Firma

 Proff. Furioli, Rossi, Vegni
 Matricola
 Sezione INF

© I seguenti quesiti e il relativo svolgimento sono coperti da diritto d'autore; pertanto essi non possono essere sfruttati a fini commerciali o di pubblicazione editoriale. Ogni abuso sarà perseguito a termini di legge dal titolare del diritto

Esercizio 2. Studiare il sistema conservativo ad un grado di libertà generato dall'equazione

$$x'' = -5x^4 + 8x^3 - 3x^2.$$

In particolare:

- a. scrivere il sistema equivalente e determinarne i punti di equilibrio;
- b. determinare l'energia potenziale (disegnandone il grafico) e l'energia totale del sistema;
- c. disegnare le traiettorie nel piano delle fasi, specificando il verso di percorrenza;
- d. determinare i livelli energetici corrispondenti a traiettorie periodiche e precisare se esistono traiettorie illimitate.

Soluzione.

a. Il sistema di due equazioni del primo ordine equivalente all'equazione del secondo ordine proposta è

$$\begin{cases} x' = y \\ y' = -5x^4 + 8x^3 - 3x^2 \end{cases}$$

i cui punti critici sono $O = (0,0), A = (1,0) \in B = (\frac{3}{5},0).$

Osserviamo inoltre che f(x,y)=y e $g(x,y)=-5x^4+8x^3-3x^2$ sono funzioni $C^{\infty}(\mathbb{R}^2)$, dunque per ogni $t_0 \in \mathbb{R}$ e per ogni $(x_0,y_0) \in \mathbb{R}^2$ esiste un'unica soluzione $x=\phi(t), y=\psi(t)$ definita in un intorno di t_0 tale che $\phi(t_0)=x_0$ e $\psi(t_0)=y_0$.

b. L'energia totale del sistema è

$$E(x,y) = \frac{1}{2}y^2 - \int_{x_0}^x (-5t^4 + 8t^3 - 3t^2) \,dt, \quad x_0 \in \mathbb{R}$$

e scegliendo $x_0 = 0$ si ottiene

$$E(x,y) = \frac{1}{2}y^2 + x^5 - 2x^4 + x^3.$$

In particolare l'energia potenziale è $U(x)=x^5-2x^4+x^3$ e sappiamo già dal teorema che i punti di minimo forte dell'energia potenziale sono punti di equilibrio stabile ma non asintoticamente per il sistema. Per altro, l'unico punto di minimo forte (locale) per U(x) è x=1. Il punto x=0 è un punto di flesso, mentre il punto $x=\frac{3}{5}$ è un punto di massimo locale.

- c. I versi di percorrenza delle orbite sono specificati in figura.
- d. Poiché l'energia totale E(x, y) è un integrale primo per il sistema, sappiamo che le linee di livello sono unioni di orbite e che ogni orbita si trova su una linea di livello dell'energia. Studiamo quindi le curve nel piano x, y corrispondenti a $E(x, y) = c, c \in \mathbb{R}$. Si ha

$$\frac{1}{2}y^{2} + x^{5} - 2x^{4} + x^{3} = c$$

$$\iff y = \pm \sqrt{2(c - (x^{5} - 2x^{4} + x^{3}))}$$

$$\iff y = \pm \sqrt{2(c - U(x))}, \quad c - U(x) \ge 0$$

Dobbiamo quindi studiare il dominio di tali funzioni $c \geq U(x)$ al variare di $c \in \mathbb{R}$.

In base al grafico di U(x) riportato in figura si hanno i casi seguenti:

A) se c < 0 esiste un'unica orbita illimitata corrispondente al livello di energia c;

- B) se c=0, esistono quattro orbite corrispondenti al livello c=0: l'orbita stazionaria in O, l'orbita illimitata situata nel semipiano y>0 percorsa verso il punto stazionario e l'orbita illimitata situata simmetricamente nel semipiano y<0 percorsa in verso uscente dal punto stazionario O (il punto stazionario O risulta quindi instabile) e il punto stazionario O (il punto stazionario O).
- C) se $c \in (0, U(\frac{3}{5}))$, esistono due orbite: un'orbita illimitata e un'orbita chiusa, simmetrica rispetto all'asse x che racchiude il punto critico A e corrisponde a una soluzione periodica.
- D) se $c = U(\frac{3}{5})$, esistono quattro orbite: l'orbita stazionaria in $B = (\frac{3}{5}, 0)$, l'orbita illimitata situata nel semipiano y > 0 percorsa verso il punto stazionario B e l'orbita illimitata situata simmetricamente nel semipiano y < 0 percorsa in verso uscente dal punto stazionario B (il punto stazionario B risulta quindi instabile) e l'orbita limitata ma aperta (non corrispondente ad una soluzione periodica) che circonda il punto stazionario A. Il punto A risulta quindi un centro, come previsto.
- E) se $c > U(\frac{3}{5})$ esiste un'unica orbita aperta, simmetrica rispetto all'asse x e illimitata che racchiude al suo interno i tre punti critici.

Equazioni Differenziali Ordinarie	Seconda prova in itinere	3 luglio 2008
Cognome	Nome	Firma
Proff. Furioli, Rossi, Vegni	Matricola	Sezione INF

© I seguenti quesiti e il relativo svolgimento sono coperti da diritto d'autore; pertanto essi non possono essere sfruttati a fini commerciali o di pubblicazione editoriale. Ogni abuso sarà perseguito a termini di legge dal titolare del diritto

Esercizio 3. Sia dato il sistema non lineare

$$\begin{cases} \dot{x} = y - x(9 - x^2 - y^2)(1 - 4x^2 - 4y^2) \\ \dot{y} = -x - y(9 - x^2 - y^2)(1 - 4x^2 - 4y^2). \end{cases}$$

- a. Trovarne i punti critici.
- b. Studiare la natura dei punti critici tramite linearizzazione.
- c. Scrivere il sistema in coordinate polari.
- d. Disegnare il ritratto di fase in base allo studio del sistema in coordinate polari, precisando l'esistenza di eventuali cicli limite e la loro eventuale stabilità.

Soluzione.

a. Osserviamo innanzi tutto che $f(x,y) = y - x(9 - x^2 - y^2)(1 - 4x^2 - 4y^2) \in C^{\infty}(\mathbb{R}^2)$ e $g(x,y) = -x - y(9 - x^2 - y^2)(1 - 4x^2 - 4y^2) \in C^{\infty}(\mathbb{R}^2)$, dunque per ogni $t_0 \in \mathbb{R}$ e per ogni $(x_0,y_0) \in \mathbb{R}^2$ esiste un'unica soluzione $x = \phi(t)$, $y = \psi(t)$ definita in un intorno di t_0 tale che $\phi(t_0) = x_0$ e $\psi(t_0) = y_0$.

I punti critici si trovano risolvendo

$$\begin{cases} y - x(9 - x^2 - y^2)(1 - 4x^2 - 4y^2) = 0 \\ -x - y(9 - x^2 - y^2)(1 - 4x^2 - 4y^2) = 0 \end{cases}$$

$$\iff \{(x, y) = (0, 0)\} \cup \begin{cases} x \neq 0 \\ (9 - x^2 - y^2)(1 - 4x^2 - 4y^2) = \frac{y}{x} \\ -x - y\frac{y}{x} = 0 \end{cases}$$

$$\iff \{(x, y) = (0, 0)\} \cup \begin{cases} x \neq 0 \\ -\frac{x^2 + y^2}{x} = 0 \\ (9 - x^2 - y^2)(1 - 4x^2 - 4y^2) = \frac{y}{x} \end{cases}$$

per cui l'unico punto critico è (0,0).

b. Il sistema linearizzato nell'intorno dell'origine è

$$\begin{cases} \dot{x} = -9x + y \\ \dot{y} = -x - 9y \end{cases}$$

ed essendo gli autovalori della matrice Jacobiana $\lambda_{1,2} = -9 \pm i$ si ha che l'origine è un vortice asintoticamente stabile per il sistema linearizzato e resta quindi un vortice asintoticamente stabile anche per il sistema non lineare.

c. Il sistema in coordinate polari si trova tramite le relazioni dinamiche:

$$\begin{cases} \rho \dot{\rho} = x\dot{x} + y\dot{y} \\ \rho^2 \dot{\theta} = x\dot{y} - y\dot{x} \end{cases}$$

che nel nostro caso diventano:

$$\begin{cases} \rho \dot{\rho} = -\rho^2 (9 - \rho^2) (1 - 4\rho^2) \\ \rho^2 \dot{\theta} = -\rho^2. \end{cases}$$

_

d. Le soluzioni sono quindi $\rho(t)=0$ che corrisponde al punto di equilibrio (0,0)e

$$\begin{cases} \dot{\rho} = -\rho(9 - \rho^2)(1 - 4\rho^2) \\ \theta(t) = -t + c, \quad c \in \mathbb{R} \end{cases}$$

da cui deduciamo che le orbite si avvolgono intorno all'origine in senso orario e che esistono due cicli limite

$$\rho(t) = 3, \quad \rho(t) = \frac{1}{2}.$$

Dallo studio del segno di $\dot{\rho}$ deduciamo che il ciclo $\rho(t)=\frac{1}{2}$ è instabile, mentre il ciclo $\rho(t)=3$ è asintoticamente stabile.

Il ritratto di fase è riportato in figura.

Equazioni Differenziali Ordinarie	Seconda prova in itinere	3 luglio 2008
Cognome	Nome	Firma
Proff. Furioli, Rossi, Vegni	Matricola	Sezione INF

© I seguenti quesiti e il relativo svolgimento sono coperti da diritto d'autore; pertanto essi non possono essere sfruttati a fini commerciali o di pubblicazione editoriale. Ogni abuso sarà perseguito a termini di legge dal titolare del diritto

Esercizio 4. Sia dato il sistema non lineare

$$\begin{cases} \dot{x} = -x^3 + y^3 \\ \dot{y} = -x^2y - x^3y^2. \end{cases}$$

- a. Determinarne i punti critici.
- b. Determinare le nullcline orizzontali e verticali ed il verso di percorrenza delle traiettorie nel piano delle fasi.
- c. Studiare la natura dell'origine utilizzando una opportuna funzione di Liapunov.
- d. Si poteva studiare la natura dell'origine tramite il metodo di linearizzazione?
- e. Disegnare un possibile ritratto di fase in base alle informazioni ricavate ai punti precedenti.

Soluzione.

a. Come sempre, osserviamo innanzi tutto che $f(x,y) = -x^3 + y^3 \in C^{\infty}(\mathbb{R}^2)$ e $g(x,y) = -x^2y - x^3y^2 \in C^{\infty}(\mathbb{R}^2)$, dunque per ogni $t_0 \in \mathbb{R}$ e per ogni $(x_0, y_0) \in \mathbb{R}^2$ esiste un'unica soluzione $x = \phi(t), y = \psi(t)$ definita in un intorno di t_0 tale che $\phi(t_0) = x_0$ e $\psi(t_0) = y_0$.

I punti critici si trovano risolvendo

$$\begin{cases} x^3 = y^3 \\ -x^2y - x^3y^2 = 0 \end{cases} \iff \begin{cases} x = y \\ -x^3(1+x^2) = 0 \end{cases}$$

dunque l'unico punto critico è (0,0).

- b. Le nullcline orizzontali si trovano ponendo $\dot{y}=0$ cioè $x=0,\ y=0$ e $y=-\frac{1}{x}$, mentre quelle verticali si trovano ponendo $\dot{x}=0$ cioè y=x. Il campo delle direzioni è riportato in figura.
- c. Ricerchiamo una funzione di Liapunov del tipo $V(x,y)=ax^{2m}+by^{2n}$ con a,b>0 e $m,n\in\mathbb{N}$ (che quindi è definita positiva nell'intorno dell'origine).

Poiché

$$\dot{V}(x,y) = \partial_x V(x,y) f(x,y) + \partial_y V(x,y) g(x,y) = -2max^{2m+2} + 2max^{2m-1}y^3 - 2nby^{2n}x^2 - 2nbx^3y^{2n+1} + 2nby^{2n}x^2 - 2nby^{$$

se

$$2m-1=3 \iff m=2$$

 $2n+1=3 \iff n=1$
 $4a=2b$ (ad esempio $b=2,\ a=1$)

avremo $V(x, y) = x^4 + 2y^2$ e

$$\dot{V}(x,y) = -4x^6 - 4x^2y^2 \le 0, \quad \forall (x,y) \in \mathbb{R}^2.$$

Grazie al teorema sulle funzioni di Liapunov, possiamo dedurre che O è stabile. Tuttavia la derivata di Lie di V non è definita negativa e infatti

$$\dot{V}(x,y) = -4x^6 - 4x^2y^2 = -4x^2(x^4 + y^2) = 0 \iff x = 0$$

dunque si annulla su tutto l'asse y.

Tuttavia si può osservare che per (x,y)=(0,y) con $y\neq 0$ si ha $\dot{x}=y^3\neq 0$ dunque i semiassi y>0 e y<0 non sono positivamente invarianti (cioè le orbite che passano per punti dei semiassi ne escono subito); sempre dai teoremi sulle funzioni di Liapunov, si può dedurre che O è asintoticamente stabile e il suo bacino d'attrazione è \mathbb{R}^2 .

d. Poiché la matrice Jacobiana nell'origine è

$$J(0,0) = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

l'origine è punto singolare, dunque non si sarebbe potuto studiare tale punto tramite il metodo di linearizzazione.

e. Il ritratto di fase è riportato in figura.

