

1 of 72 Page:

FCC Radio Test Report FCC ID: 2AJL9-TW1

Original Grant

TB-FCC161168 Report No.

Kuaiwear Limited **Applicant**

Equipment Under Test (EUT)

KUAIFIT TW1 EUT Name

KUAIFIT TW1 Model No.

N/A Series Model No.

KUAIFIT Brand Name

2018-07-26 **Receipt Date**

2018-07-27 to 2018-08-06 **Test Date**

2018-08-09 **Issue Date**

FCC Part 15: 2017, Subpart C(15.247) **Standards**

Test Method ANSI C63.10: 2013

Conclusions PASS

In the configuration tested, the EUT complied with the standards specified above,

The EUT technically complies with the FCC requirements

Test/Witness Engineer

Engineer Supervisor

: DVRN SV : Loy Lai. **Engineer Manager**

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

Contents

COI	NTENTS	2
1.	GENERAL INFORMATION ABOUT EUT	5
	1.1 Client Information	
	1.2 General Description of EUT (Equipment Under Test)	5
	1.3 Block Diagram Showing the Configuration of System Tested	<i>.</i>
	1.4 Description of Support Units	
	1.5 Description of Test Mode	
	1.6 Description of Test Software Setting	8
	1.7 Measurement Uncertainty	8
	1.8 Test Facility	9
2.	TEST SUMMARY	10
3.	TEST EQUIPMENT	1
4.	CONDUCTED EMISSION TEST	12
	4.1 Test Standard and Limit	12
	4.2 Test Setup	
	4.3 Test Procedure	
	4.4 EUT Operating Mode	13
	4.5 Test Data	
5.	RADIATED EMISSION TEST	14
	5.1 Test Standard and Limit	
	5.2 Test Setup	
	5.3 Test Procedure	16
	5.4 EUT Operating Condition	16
	5.5 Test Data	16
6.	RESTRICTED BANDS REQUIREMENT	17
	6.1 Test Standard and Limit	17
	6.2 Test Setup	
	6.3 Test Procedure	
	6.4 EUT Operating Condition	
	6.5 Test Data	
7.	NUMBER OF HOPPING CHANNEL	19
	7.1 Test Standard and Limit	19
	7.2 Test Setup	
	7.3 Test Procedure	
	7.4 EUT Operating Condition	19
	7.5 Test Data	
8.	AVERAGE TIME OF OCCUPANCY	20
	8.1 Test Standard and Limit	
	8.2 Test Setup	

Report No.: TB-FCC161168
Page: 3 of 72

51	8.3 Test Procedure	20
	8.4 EUT Operating Condition	
_ \		
9.	CHANNEL SEPARATION AND BANDWIDTH TEST	
	9.1 Test Standard and Limit	
	9.2 Test Setup	
	9.3 Test Procedure	
	9.4 EUT Operating Condition	21
	9.5 Test Data	
10.	PEAK OUTPUT POWER TEST	22
	10.1 Test Standard and Limit	22
	10.2 Test Setup	
	10.3 Test Procedure	
	10.4 EUT Operating Condition	
	10.5 Test Data	
11.	ANTENNA REQUIREMENT	
	11.1 Standard Requirement	
	11.2 Antenna Connected Construction	
	11.3 Result	
ATT	ACHMENT A CONDUCTED EMISSION TEST DATA	24
	ACHMENT B RADIATED EMISSION TEST DATA	
	ACHMENT D NUMBER OF HOPPING CHANNEL TEST DATA	
	TACHMENT E AVERAGE TIME OF OCCUPANCY TEST DATA	
	TACHMENT F CHANNEL SEPARATION AND BANDWIDTH TEST DATA	
ATT	ACHMENT G PEAK OUTPUT POWER TEST DATA	69

Page: 4 of 72

Revision History

Report No.	Version	Description	Issued Date
TB-FCC161168	Rev.01	Initial issue of report	2018-08-09
			The same
33	133	The same	
		The state of the s	THE PARTY OF THE P
		10.33	113
	1000	CHILD I	The state of the s
	4000	a Burney	
			3
033	000	The same of the sa	6033
TO DE	a UP	THE WALL	TO THE REAL PROPERTY.
			111 333
TO BE	A GILLES		1000
	13		

Page: 5 of 72

1. General Information about EUT

1.1 Client Information

Applicant		Kuaiwear Limited	
Address	Address : A10 Wong's Building, 33 Hung To Road, Kowloon, Hong Kong, Chi		
Manufacturer : Kuaiwear Limited		Kuaiwear Limited	
Address	3	A10 Wong's Building, 33 Hung To Road, Kowloon, Hong Kong, China	

1.2 General Description of EUT (Equipment Under Test)

EUT Name		KUAIFIT TW1			
Models No.		KUAIFIT TW1			
Model Difference	2	N/A			
MODE		Operation Frequency:	Bluetooth V4.1(BT): 2402~2480 MHz		
		Number of Channel:	Bluetooth: 79 Channels see Note 2		
Product	6	Max Peak Output Power:	Bluetooth: -3.603dBm(π /4-DQPSK)		
Description	*	Antenna Gain:	1.2dBi PCB Antenna		
		Modulation Type:	GFSK (1 Mbps) π/4-DQPSK (2 Mbps)		
Power Supply	:	DC Voltage Supply from UDC Voltage supplied by Li-			
Power Rating		DC 5.0V by USB cable			
		DC 3.7V by 60mAh Li-ion	battery		
Software Version	ŀ	V1			
Hardware Version	?	V1.6			
Connecting I/O Port(S)	•	Please refer to the User's Manual			

Note

(1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

Page: 6 of 72

(2) Channel List:

	Bluetooth Channel List						
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)		
00	2402	27	2429	54	2456		
01	2403	28	2430	55	2457		
02	2404	29	2431	56	2458		
03	2405	30	2432	57	2459		
04	2406	31	2433	58	2460		
05	2407	32	2434	59	2461		
06	2408	33	2435	60	2462		
07	2409	34	2436	61	2463		
80	2410	35	2437	62	2464		
09	2411	36	2438	63	2465		
10	2412	37	2439	64	2466		
11	2413	38	2440	65	2467		
12	2414	39	2441	66	2468		
13	2415	40	2442	67	2469		
14	2416	41	2443	68	2470		
15	2417	42	2444	69	2471		
16	2418	43	2445	70	2472		
17	2419	44	2446	71	2473		
18	2420	45	2447	72	2474		
19	2421	46	2448	73	2475		
20	2422	47	2449	74	2476		
21	2423	48	2450	75	2477		
22	2424	49	2451	76	2478		
23	2425	50	2452	77	2479		
24	2426	51	2453	78	2480		
25	2427	52	2454				
26	2428	53	2455				

⁽³⁾ The Antenna information about the equipment is provided by the applicant.

1.3 Block Diagram Showing the Configuration of System Tested

Charging + TX Mode

Page: 7 of 72

TX Mode			
	EUT		

1.4 Description of Support Units

Equipment Information							
Name	Model	FCC ID/VOC	Manufacturer	Used "√"			
Adapter	BSY02D050200V		BSY	√			
	Cable Information						
Number	Shielded Type	Ferrite Core	Length	Note			
Cable 1	NO	NO	0.2M				

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For Conducted Test			
Final Test Mode	Description		
Mode 1	Charging + TX Mode		

For Radiated Test			
Final Test Mode Description			
Mode 1	TX GFSK Mode		
Mode 2	TX Mode(GFSK) Channel 00/39/78		
Mode 3	TX Mode(π /4-DQPSK) Channel 00/39/78		
Mode 4	Hopping Mode(GFSK)		
Mode 5	Hopping Mode(π /4-DQPSK)		

Page: 8 of 72

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate. We have pretested all the test modes above.

According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

TX Mode: GFSK (1 Mbps)
TX Mode: π /4-DQPSK (2 Mbps)

(2) The EUT is considered a portable unit; it was pre-tested on the positioned of each 3 axis, X-plane, Y-plane and Z-plane. The worst case was found positioned on X-plane as the normal use. Therefore only the test data of this X-plane was used for radiated emission measurement test.

1.6 Description of Test Software Setting

During testing channel power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of Bluetooth mode.

Test Software Version	FCCAssist.exe		
Frequency	2402 MHz	2441MHz	2480 MHz
GFSK	DEF	DEF	DEF
π /4-DQPSK	DEF	DEF	DEF

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	±3.42 dB ±3.42 dB
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	±4.60 dB
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	±4.40 dB
Radiated Emission	Level Accuracy: Above 1000MHz	±4.20 dB

Page: 9 of 72

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.

IC Registration No.: (11950A-1)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A-1.

10 of 72 Page:

2. Test Summary

	F	CC Part 15 Subpart C(15.247)/ RSS	247 Issue 2		
Standard S	ection	Test Hom	ludament	Domork	
FCC IC		Test Item	Judgment	Remark	
15.203	9	Antenna Requirement	PASS	N/A	
15.207	RSS-GEN 7.2.2	Conducted Emission	PASS	N/A	
15.205	RSS-Gen 7.2.3	Restricted Bands	PASS	N/A	
15.247(a)(1)	RSS 247 5.1 (2)	Hopping Channel Separation	PASS	N/A	
15.247(a)(1)	RSS 247 5.1 (4)	Dwell Time	PASS	N/A	
15.247(b)(1)	RSS 247 5.4 (2)	Peak Output Power	PASS	N/A	
15.247(b)(1)	RSS 247 5.1 (4)	Number of Hopping Frequency	PASS	N/A	
15.247(d)	RSS 247 5.5	Band Edge	PASS	N/A	
15.247(c)& 15.209	RSS 247 5.5	Radiated Spurious Emission	PASS	N/A	
15.247(a)	RSS 247 5.1 (1)	99% Occupied Bandwidth & 20dB Bandwidth	PASS	99%OBW: GFSK: 821.45kHz π/4-DQPSK: 1157.5kHz	

Page: 11 of 72

3. Test Equipment

					Cal. Due
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jul. 18, 2018	Jul. 17, 2019
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jul. 18, 2018	Jul. 17, 2019
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jul. 18, 2018	Jul. 17, 2019
LISN	Rohde & Schwarz	ENV216	101131	Jul. 18, 2018	Jul. 17, 2019
Radiation Emissio	n Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 18, 2018	Jul. 17, 2019
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jul. 18, 2018	Jul. 17, 2019
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar.16, 2018	Mar.15, 2019
Bilog Antenna	ETS-LINDGREN	3142E	00117542	Mar.16, 2018	Mar.15, 2019
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar.16, 2018	Mar.15, 2019
Horn Antenna	ETS-LINDGREN	3117	00143209	Mar.16, 2018	Mar.15, 2019
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jul. 14, 2018	Jul. 13, 2019
Pre-amplifier	Sonoma	310N	185903	Mar.16, 2018	Mar.15, 2019
Pre-amplifier	HP	8449B	3008A00849	Mar.16, 2018	Mar.15, 2019
Cable	HUBER+SUHNER	100	SUCOFLEX	Mar.16, 2018	Mar.15, 2019
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A
Antenna Conducte	ed Emission				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 18, 2018	Jul. 17, 2019
Spectrum Analyzer	Rohde & Schwarz	ESCI	100010/007	Jul. 18, 2018	Jul. 17, 2019
MXA Signal Analyzer	Agilent	N9020A	MY49100060	Oct. 26, 2017	Oct. 25, 2018
Vector Signal Generator	Agilent	N5182A	MY50141294	Oct. 26, 2017	Oct. 25, 2018
Analog Signal Generator	Agilent	N5181A	MY50141953	Oct. 26, 2017	Oct. 25, 2018
3 - 6	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO26	Oct. 26, 2017	Oct. 25, 2018
DE D 100	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO29	Oct. 26, 2017	Oct. 25, 2018
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO31	Oct. 26, 2017	Oct. 25, 2018
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO33	Oct. 26, 2017	Oct. 25, 2018

Page: 12 of 72

4. Conducted Emission Test

4.1 Test Standard and Limit

4.1.1Test Standard FCC Part 15.207

4.1.2 Test Limit

Conducted Emission Test Limit

Eroguanav	Maximum RF Line Voltage (dBμV)				
Frequency	Quasi-peak Level	Average Level			
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *			
500kHz~5MHz	56	46			
5MHz~30MHz	60	50			

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2 Test Setup

4.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

Page: 13 of 72

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis

The bandwidth of EMI test receiver is set at 9kHz, and the test frequency band is from 0.15MHz to 30MHz.

4.4 EUT Operating Mode

Please refer to the description of test mode.

4.5 Test Data

Please refer to the Attachment A.

Page: 14 of 72

5. Radiated Emission Test

5.1 Test Standard and Limit

5.1.1 Test Standard FCC Part 15.209

5.1.2 Test Limit

Radiated Emission Limit (9 kHz~1000MHz)

Frequency (MHz	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Radiated Emission Limit (Above 1000MHz)

Frequency	Distance of 3m (dBuV/m)				
(MHz)	Peak	Average			
Above 1000	74	54			

Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission Level (dBuV/m)=20log Emission Level (uV/m)

Page: 15 of 72

5.2 Test Setup

Below 30MHz Test Setup

Below 1000MHz Test Setup

Page: 16 of 72

Above 1GHz Test Setup

5.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

5.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power in TX mode.

5.5 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

Please refer to the Attachment B.

Page: 17 of 72

6. Restricted Bands Requirement

6.1 Test Standard and Limit

6.1.1 Test Standard FCC Part 15.209 FCC Part 15.205

6.1.2 Test Limit

Restricted Frequency	Distance of 3m (dBuV/m)				
Band (MHz)	Peak	Average			
2310 ~2390	74	54			
2483.5 ~2500	74	54			

6.2 Test Setup

6.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.

Report No.: TB-FCC161168
Page: 18 of 72

(3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.

- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with AVG Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

6.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

6.5 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

All restriction bands have been tested, only the worst case is reported.

Please refer to the Attachment C.

Page: 19 of 72

7. Number of Hopping Channel

7.1 Test Standard and Limit

6.1.1 Test Standard FCC Part 15.247 (a)(1)

6.1.2 Test Limit

Section	Test Item	Limit
15.247	Number of Hopping Channel	>15

7.2 Test Setup

7.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting: RBW=100 KHz, VBW=100 KHz, Sweep time= Auto.

7.4 EUT Operating Condition

The EUT was set to the Hopping Mode by the Customer.

7.5 Test Data

Please refer to the Attachment D.

Page: 20 of 72

8. Average Time of Occupancy

8.1 Test Standard and Limit

8.1.1 Test Standard FCC Part 15.247 (a)(1)

8.1.2 Test Limit

Section	Test Item	Limit
15.247(a)(1)	Average Time of Occupancy	0.4 sec

8.2 Test Setup

8.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting: RBW=1MHz, VBW=1MHz.
- (3) Use video trigger with the trigger level set to enable triggering only on full pulses.
- (4) Sweep Time is more than once pulse time.
- (5) Set the center frequency on any frequency would be measure and set the frequency span to zero.
- (6) Measure the maximum time duration of one single pulse.
- (7) Set the EUT for packet transmitting.
- (8) Measure the maximum time duration of one single pulse.

8.4 EUT Operating Condition

The average time of occupancy on any channel within the Period can be calculated with formulas:

 $\{Total \ of \ Dwell\} = \{Pulse \ Time\} * (1600 / X) / \{Number \ of \ Hopping \ Frequency\} * \{Period\} = 0.4s * \{Number \ of \ Hopping \ Frequency\}$

Note: X=2 or 4 or 6 (1DH1=2, 1DH3=4, 1DH5=6. 2DH1=2, 2DH3=4, 2DH5=6. 3DH1=2, 3DH3=4, 3DH5=6)

The lowest, middle and highest channels are selected to perform testing to record the dwell time of each occupation measured in this channel, which is called Pulse Time here.

The EUT was set to the Hopping Mode by the Customer.

8.5 Test Data

Please refer to the Attachment E.

Page: 21 of 72

9. Channel Separation and Bandwidth Test

9.1 Test Standard and Limit

9.1.1 Test Standard FCC Part 15.247

9.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
Bandwidth	<=1 MHz (20dB bandwidth)	2400~2483.5
Channel Separation	>25KHz or >two-thirds of the 20 dB bandwidth Which is greater	2400~2483.5

9.2 Test Setup

9.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting:

Channel Separation: RBW=100 kHz, VBW=100 kHz.

Bandwidth: RBW=30 kHz, VBW=100 kHz.

- (3) The bandwidth is measured at an amplitude level reduced 20dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst –case (i.e the widest) bandwidth.
 - (4) Measure the channel separation the spectrum analyzer was set to Resolution Bandwidth:30 kHz, and Video Bandwidth:100 kHz. Sweep Time set auto.

9.4 EUT Operating Condition

The EUT was set to the Hopping Mode for Channel Separation Test and continuously transmitting for the Bandwidth Test.

9.5 Test Data

Please refer to the Attachment F.

Page: 22 of 72

10. Peak Output Power Test

10.1 Test Standard and Limit

10.1.1 Test Standard FCC Part 15.247 (b) (1)

10.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
Peak Output Power	Hopping Channels>75 Power<1W(30dBm)	2400~2483.5
(10)	Other <125 mW(21dBm)	(3)

10.2 Test Setup

10.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting:

Peak Detector: RBW=1 MHz, VBW=3 MHz for bandwidth less than 1MHz. RBW=3 MHz, VBW ≥ RBW for bandwidth more than 1MHz.

10.4 EUT Operating Condition

The EUT was set to continuously transmitting in the max power during the test.

10.5 Test Data

Please refer to the Attachment G.

Page: 23 of 72

11. Antenna Requirement

11.1 Standard Requirement

11.1.1 Standard FCC Part 15.203

11.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

11.2 Antenna Connected Construction

The gains of the antenna used for transmitting is 1.2dBi, and the antenna connector is de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

11.3 Result

The EUT antenna is a PCB Antenna. It complies with the standard requirement.

	Antenna Type
U V	⊠Permanent attached antenna
The state of the s	Unique connector antenna
	☐Professional installation antenna

Page: 24 of 72

Attachment A-- Conducted Emission Test Data

25℃ 55% Temperature: **Relative Humidity:** AC 120V/60 Hz **Test Voltage:** Terminal: Neutral Test Mode: Mode 1 Remark: Only worse case is reported 80.0 dBuV QP: AVG: AVG -20 0.5 30.000 0.150 (MHz) Reading Correct Measure-Limit Over No. Mk. Freq. Level Factor ment MHz dBuV dB dBuV dBuV dB Detector 0.1580 19.12 9.64 28.76 65.56 -36.80 QΡ 1 2 0.1580 2.33 9.64 11.97 55.56 -43.59 AVG 3 0.2020 14.80 9.65 63.52 -39.07 QΡ 24.45 4 0.2020 0.36 9.65 10.01 53.52 -43.51 AVG 61.24 -38.50 QP 5 0.2660 13.14 9.60 22.74 0.2660 AVG 6 -0.329.60 9.28 51.24 -41.96 7 0.3980 11.39 9.58 57.89 -36.92 QP 20.97 8 0.3980 -0.359.58 9.23 47.89 -38.66AVG QP 9 0.4620 16.62 26.20 56.66 -30.46 9.58 2.25 9.58 46.66 -34.83 AVG 10 0.4620 11.83 56.00 -37.22 QP 11 0.7060 9.19 9.59 18.78 12 0.7060 AVG -1.849.59 7.75 46.00 -38.25

Page: 26 of 72

Page: 27 of 72

Page: 28 of 72

Attachment B-- Radiated Emission Test Data

9KHz~30MHz

From 9KHz to 30MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB

below the permissible value has no need to be reported.

30MHz~1GHz

Temperatur	e:	25°	C	Colores of the last	1		Relativ	e Humi	dity:	5	5%	1	1
Test Voltage) :	DC	3.7	'V	dist.	1000		1 W			M	18	}
Ant. Pol.		Hor	rizo	ntal			THE		A	W	M		
Test Mode:		TX	GF	SK Mo	de 2402N	1Hz	To be		10)			04
Remark:		Onl	y w	orse ca	ase is rep	orted		Killing					
80.0 dBuV/m													
			+										
								ſB	FIFCC 1	5C 3M	Radiati	on	
									,		Margin		
								2					
			\perp					Î					6
30										4	5 X-A	/r	Ĭ
1		_	_					مرم ل	3	MAN.	~~~	garan.	-
Mark Mark						1	wardenson	Jank	•••				
	mun	Year war	معهد	why	a partition of the second section of the section of the second section of the section of the second section of the se	4-44-c							
-20 <u> </u>													 000.00
	50	60	70	80	Į.	MHz)		300 40	00 5	6 00	00 700) 10	
	50	60	70				Measure-		00 5	6 00	00 700) 10	-
No. M		Freq.		Readi Leve	ng Corr	rect	Measure- ment			oo 6 Over) 10	-
	1k. F			Readi	ing Corr el Fac	rect			(tector	-
	lk. F	Freq.		Readi Leve	ing Corr el Fac	rect ctor	ment	Limit	m	Over	De		-
No. M	1k. F	Freq.		Readi Leve	ing Correl Fac / dB/ 1 -16.	rect ctor m	ment dBu∀/m	Limit dBu∀/	m D -:	Over	De	tector	- - -
No. M	1k. F 34. 301	req. MHz .2760	0	Readi Leve	ing Corr el Fac / dB/ 1 -16. 0 -16.	rect ctor m 22	ment dBuV/m 13.09	Limit	m D -/	Over dB 26.9	De 1 (tector QP	- - -
No. M	1k. F 34. 301 422	req. MHz .2760	0 24 77	Readi Leve dBu/ 29.3 55.7	ng Correl Fac / dB// 1 -16. 0 -16. 9 -12.	rect ctor m 22 16	ment dBuV/m 13.09 39.54	Limit dBuV// 40.00	m D	Over dB 26.9	De 1 (6)	dector QP QP QP	- - -
No. M	1k. F 34. 301 422 558	Treq. MHz .2760 .422 2.057	0 24 77 02	Readi Leve dBu/ 29.3 55.7 30.5	ng Correl Fac / dB// 1 -16. 0 -16. 9 -12. 2 -9.0	rect ctor 22 16 14	ment dBuV/m 13.09 39.54 18.45 21.01	Limit dBu\/// 40.00 46.00 46.00	m O O O O O	Over dB 26.9 -6.46 27.5 24.9	De 1 (6) (5) (7) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9	tector QP QP QP	- - - -
No. M	34. 301 422 558	req. MHz .2760 .422	0 24 77 02 14	Readi Leve dBu\ 29.3 55.7 30.5	ing Corr Fac / dB// 1 -16. 0 -16. 9 -12. 2 -9.0 8 -7.0	rect etor m 22 16 14 01	ment dBuV/m 13.09 39.54 18.45	Limit dBuV// 40.00 46.00	m 0 -2 0 -2 0 -2 0 -2	Over dB 26.9 -6.46 27.5	De 1 (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	dector QP QP QP	- - - -

Page: 29 of 72

	e: 25°C	25 [℃] Relative Humidity: 55%						
Test Voltage	e: DC 3.7\			(m)	11:32	2 PAT	نال	
Ant. Pol.	Vertical	Alle		A B		133		
Test Mode:	TX GFS	K Mode 24	02MHz		a W	1	9	
Remark:	Only wo	rse case is	s reported					
80.0 dBuV/m							_	
							7	
					(RF)FCC	: 15C 3M Radiation	1	
						Margin -6 dB	£	
							1	
30								
				3	3	5 6 4 × × × ×	m	
1 X.			2		- Warner Ward	L. War	T	
Education who was	June 1 mars	mm	man variable	March March March	⊢		\dashv	
	MANAMANA		- "				4	
							_	
-20								
30.000 40	50 60 70	80	(MHz)	:	300 400	500 600 700 100	00.00	
		Reading	Correct	Measure-				
No. N	/lk. Freq.	Level	Factor	ment	Limit	Over		
	MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB Detector		
1	30.4238	27.82	-13.32	14.50	40.00	-25.50 QP		
2	187.0958	30.66	-19.92	10.74	43.50	-32.76 QP		
3	299.3158	39.18	-16.21	22.97	46.00	-23.03 QP		
4	531.9635	30.00	-9.67	20.33	46.00	-25.67 QP		
5	714.1734	30.77	-6.75	24.02	46.00	-21.98 QP		
_		29.73	-5.25	24.48	46.00	-21.52 QP		
6 *	857.0247	20.10						

Page: 30 of 72

Above 1GHz(Only worse case is reported)

Temperature:	25℃	55%					
Test Voltage:	DC 3.7V		THU.				
Ant. Pol.	Horizontal						
Test Mode:	TX GFSK Mode 2402MHz		100				
Remark: No report for the emission which more than 10 dB below the prescribed limit.							

No.	. Mk	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4803.252	42.88	14.42	57.30	74.00	-16.70	peak
2	*	4804.688	29.34	14.44	43.78	54.00	-10.22	AVG

Page: 31 of 72

25℃	Relative Humidity:	55%					
DC 3.7V	WHI I	A LIVE					
Vertical	Vertical						
TX GFSK Mode 2402MHz		Nill Wall					
No report for the emission which more than 10 dB below the							
	DC 3.7V Vertical TX GFSK Mode 2402MHz	DC 3.7V Vertical TX GFSK Mode 2402MHz No report for the emission which more than 10 dB					

No	. Mk	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4803.916	43.05	14.43	57.48	74.00	-16.52	peak
2	*	4804.684	28.66	14.44	43.10	54.00	-10.90	AVG

Page: 32 of 72

Temperature:	25℃	Relative Humidity:	55%					
Test Voltage:	DC 3.7V	WILLIAM STATE	O'NO					
Ant. Pol.	Horizontal	Horizontal						
Test Mode:	TX GFSK Mode 2441MH	Z						
Remark:	No report for the emission which more than 10 dB below the							
	prescribed limit.	1						

No). N	Λk.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	-	4882.264	28.86	14.91	43.77	54.00	-10.23	AVG
2			4882.520	43.20	14.91	58.11	74.00	-15.89	peak

Page: 33 of 72

Temperature:	25℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V		THU:				
Ant. Pol.	Vertical						
Test Mode:	TX GFSK Mode 2441MHz		1				
Remark:	Remark: No report for the emission which more than 10 dB below the						
	prescribed limit.	The same of the sa					

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4881.296	43.28	14.91	58.19	74.00	-15.81	peak
2	*	4882.368	28.86	14.91	43.77	54.00	-10.23	AVG

Page: 34 of 72

Temperature:	25 ℃	Relative Humidity:	55%						
Test Voltage:	DC 3.7V	DC 3.7V							
Ant. Pol.	Horizontal	Horizontal							
Test Mode:	TX GFSK Mode 2480MHz		TIE A						
Remark:									

N	o. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4960.052	29.19	15.39	44.58	54.00	-9.42	AVG
2		4960.496	43.99	15.40	59.39	74.00	-14.61	peak

Page: 35 of 72

Temperature:	25℃ Relative Humidity: 55%					
Test Voltage:	DC 3.7V		ON THE			
Ant. Pol.	Vertical		133			
Test Mode:	TX GFSK Mode 2480MHz	The same of the				
Remark: No report for the emission which more than 10 dB below the						
	prescribed limit.	The same of the sa				

N	o. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4959.948	29.25	15.39	44.64	54.00	-9.36	AVG
2		4960.516	43.45	15.40	58.85	74.00	-15.15	peak

Page: 36 of 72

Temperature:	25℃	Relative Humidity:	55%			
Test Voltage:	DC 3.7V					
Ant. Pol.	Horizontal					
Test Mode:	TX π /4-DQPSK Mode 2402MHz					
Remark:	No report for the emission which more than 10 dB below the prescribed limit.					

No.	Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4803.104	28.67	14.42	43.09	54.00	-10.91	AVG
2		4804.756	42.89	14.44	57.33	74.00	-16.67	peak

Page: 37 of 72

Temperature:	25℃	Relative Humidity:	55%					
Test Voltage:	DC 3.7V	CILLIA DE	THE PARTY OF THE P					
Ant. Pol.	Vertical	Vertical						
Test Mode:	TX π /4-DQPSK Mode	2402MHz	Nill Comment					
Remark:	No report for the emission which more than 10 dB below the							
	prescribed limit.							

N	No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		*	4803.000	28.67	14.42	43.09	54.00	-10.91	AVG
2			4804.980	43.35	14.44	57.79	74.00	-16.21	peak

Page: 38 of 72

Temperature:	25℃	Relative Humidity:	55%					
Test Voltage:	DC 3.7V	OC 3.7V						
Ant. Pol.	Horizontal							
Test Mode:	TX π /4-DQPSK Mode 2441	MHz						
Remark:	Remark: No report for the emission which more than 10 dB below the prescribed limit.							

No	o. Mk	. Freq.			Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4882.476	28.86	14.91	43.77	54.00	-10.23	AVG
2		4882.920	43.59	14.91	58.50	74.00	-15.50	peak

Page: 39 of 72

Temperature:	25℃	Relative Humidity:	55%					
Test Voltage:	DC 3.7V	DC 3.7V						
Ant. Pol.	Vertical							
Test Mode:	TX π /4-DQPSK Mode 2441	MHz						
Remark:	No report for the emission w	No report for the emission which more than 10 dB below the						
	prescribed limit.							

No	. Mk	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4881.800	43.14	14.91	58.05	74.00	-15.95	peak
2	*	4882.264	28.88	14.91	43.79	54.00	-10.21	AVG

Page: 40 of 72

Temperature:	25℃	Relative Humidity:	55%					
Test Voltage:	DC 3.7V		A DIVI					
Ant. Pol.	Horizontal							
Test Mode:	TX π /4-DQPSK Mode 2480M	Hz	1					
Remark:	No report for the emission wh	No report for the emission which more than 10 dB below the						
	prescribed limit.	The same of the sa						

No	0.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1	-	*	4960.264	29.18	15.39	44.57	54.00	-9.43	AVG
2			4960.356	42.91	15.40	58.31	74.00	-15.69	peak

Page: 41 of 72

25℃	Relative Humidity:	55%				
DC 3.7V		A DIVI				
Vertical	/ertical					
TX π /4-DQPSK Mode 2480N	Hz	1				
No report for the emission which more than 10 dB below the prescribed limit.						
	DC 3.7V Vertical TX ¹ /4-DQPSK Mode 2480M No report for the emission wh	DC 3.7V Vertical TX π /4-DQPSK Mode 2480MHz No report for the emission which more than 10 dB be				

No	. Mk	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4881.660	43.38	14.91	58.29	74.00	-15.71	peak
2	*	4883.000	28.87	14.91	43.78	54.00	-10.22	AVG

Page: 42 of 72

(1) Conducted Emission Test Data

GFSK(DH1)

2441 MHz

GFSK(DH1)

Page: 43 of 72

Page: 44 of 72

Attachment C-- Restricted Bands Requirement Test Data

(2) Radiation Test

Page: 45 of 72

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		2390.000	41.90	2.82	44.72	74.00	-29.28	peak
2		2390.000	29.19	2.82	32.01	54.00	-21.99	AVG
3	*	2402.200	68.44	2.87	71.31	Fundamental Frequency		peak
4		2402.200	42.13	2.87	45.00	Fundamental Frequency		AVG

Page: 46 of 72

No	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	2480.000	70.83	3.38	74.21	Fundamental	Frequency	peak
2		2480.000	43.08	3.38	46.46	Fundamental	Frequency	AVG
3		2483.500	42.16	3.41	45.57	74.00	-28.43	peak
4		2483.500	30.11	3.41	33.52	54.00	-20.48	AVG

Page: 47 of 72

Page: 48 of 72

Page: 49 of 72

Page: 50 of 72

Page: 51 of 72

Page: 52 of 72

(3) Conducted Test

Attachment D-- Number of Hopping Channel Test Data

	Temperature:	25°	C		Relative Humidity:	55%
	Test Voltage:	DC	3.7V			ر دو
	Test Mode:	Hop	oping Mode	BAIL		
	Frequency Range		Test Mode	Qu	antity of Hopping Channel	Limit
	2402MHz~2480MHz		GFSK		79	>15
			π /4-DQPSK	/4-DQPSK 79		/15
				CECK MA	- d -	

Page: 57 of 72

Attachment E-- Average Time of Occupancy Test Data

Temper	ature:	25°	C	55%	MILL		
Test Voltage: DC 3.7V							
Test Mode: Hopping Mode (GFSK)							
Test	Test Channel		Pulse	Total of Dwe	ell Period Time	Limit	Result
Mode	(MH	z)	Time (ms)	(ms)	(s)	(ms)	Result
1DH1	244	1	0.408	130.56	31.60	400	PASS
1DH3	244	1	1.664	266.24	31.60	400	PASS

1DH1 Total of Dwell= Pulse Time*(1600/2)*31.6/79

1DH3 Total of Dwell= Pulse Time*(1600/4)*31.6/79

1DH5 Total of Dwell= Pulse Time*(1600/6)*31.6/79

GFSK Hopping Mode 1DH1

GFSK Hopping Mode 1DH5

Page: 59 of 72

Temperature:	25℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V		

Test Mode: Hopping Mode (π /4-DQPSK)

Test	Channel	Pulse	Total of Dwell	Period Time	Limit	Dogult
Mode	(MHz)	Time (ms)	(ms)	(s)	(ms)	Result
2DH1	2441	0.418	133.76	31.60	400	PASS
2DH3	2441	1.670	267.20	31.60	400	PASS
2DH5	2441	2.917	311.15	31.60	400	PASS

2DH1 Total of Dwell= Pulse Time*(1600/2)*31.6/79

2DH3 Total of Dwell= Pulse Time*(1600/4)*31.6/79

2DH5 Total of Dwell= Pulse Time*(1600/6)*31.6/79

π /4-DQPSK Hopping Mode 2DH1

π /4-DQPSK Hopping Mode 2DH5

Page: 61 of 72

Attachment F-- Channel Separation and Bandwidth Test Data

mperature:	25℃		(7)1111	Relative H	umidity:	55%	
st Voltage:	DC 3.	7V	6.30				Miles
st Mode:	TX M	ode (GFSK)		Alle		A 15	
nannel freque (MHz)	ncy	99% OB (kHz)	W	20dB Baı (kH		Bandv	0dB vidth *2/ kHz)
2402		821.45	;	839	.2		
2441		814.89)	835	5.7		
2480		817.23	3	836	5.2		
	1	G	FSK TX N	ode			
			0.400 141				
Center Fred	m Analyzer - Occup RF 75 Ω 1 2.402000	DOO GHz #FGain:Low	SENSE:INT Center Freq: 2.4 Trig: Free Run #Atten: 10 dB	ALIGN AUTO	Radio 0/10	11:37:09 AM Aug 06, 20 o Std: None Device: BTS	
Center Fred	RF 75 Ω γ 2.402000 1	DOO GHz #FGain:Low	SENSE:INT Center Freq: 2.4 Trig: Free Run	ALIGN AUTO D2000000 GHz	Radio 0/10	11:37:09 AM Aug 06, 20 Std: None	
Center Fred	RF 75 Ω γ 2.402000 1	DOO GHz #FGain:Low	SENSE:INT Center Freq: 2.4 Trig: Free Run	ALIGN AUTO D2000000 GHz	Radio 0/10	11:37:09 AM Aug 06, 20 Std: None	
15 dB/div Log 5.00 -10.0 -25.0 -40.0 -65.0 -70.0	Ref 20.00	DOO GHz #FGain:Low	SENSE:INT Center Freq: 2.4 Trig: Free Run	ALIGN AUTO D2000000 GHz Avg Hold:>1	0/10 Radio	11:37:09 AM Aug 06, 20 Std: None	12
15 dB/div Log 5.00 -10.0 -25.0 -70.0 -85.0 -100 -115 Center 2.40 #Res BW 30	Ref 20.00 (idth 821.45 kHz	SENSE:INT Center Freq: 2.4 Teig: Free Run #Atten: 10 dB #VBW Total Powe	ALIGN AUTO D2000000 GHz Avg Hold:>/	0/10 Radio	11:37:09 AM Aug 06, 20 o Std: None o Device: BTS	12
15 dB/div Log 5.00 -10.0 -25.0 -70.0 -85.0 -100 -115 Center 2.40 #Res BW 30	Ref 20.00 (Ref 20.00 (Article) Ref 20.00 (Arti	idth 821.45 kHz	SENSE:INT Center Freq: 2.7 Trig: Free Run #Atten: 10 dB	ALIGN AUTO D2000000 GHz Avg Hold:>/	0/10 Radio Radio	11:37:09 AM Aug 06, 20 o Std: None o Device: BTS	12

Page: 63 of 72

Temperature:	25℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V		
Test Mode:	TX Mode (π/4-DQPSK)		(3)
			20dB

Channel frequency (MHz)	99% OBW (kHz)	20dB Bandwidth (kHz)	20dB Bandwidth *2/3 (kHz)
2402	1157.5	1209	806.00
2441	1155.0	1207	804.67
2480	1156.6	1211	807.33

π /4-DQPSK TX Mode

Page: 64 of 72

Page: 65 of 72

Temperature:	25℃		Relative Humidity:		55%	
Test Voltage:	DC 3.7V	THE PARTY OF	1 6	A	(3)	
Test Mode:	Hopping	Mode (GFSK)		11/1		
Channel free	quency	Separation Read Value (kHz)		Sep	Separation Limit	
(MHz)				(kHz)		
2402		990		839.2		
2441		990		835.7		
2480		1000		836.2		
		GFSK Hoppin	g Mode			
		2402 MF	17			

Page: 67 of 72

4 Be 100							
Temperature:	25℃		Relative Humidity	/ : 55%			
Test Voltage:	DC 3.7V	1	133				
Test Mode:	Hopping Mode (π /4-DQPSK)						
Channel frequency		Separation Re	ad Value	Separation Limit			
(MHz)		(kHz)		(kHz)			
2402		990		806.00			
2441		1000		804.67			
2480		1000		807.33			
π /4-DQPSK Hopping Mode							
		2402 MI	Нz				

Page: 68 of 72

Attachment G-- Peak Output Power Test Data

mperature:	25℃		R	elative H	umidity	7: 5:	5%
st Voltage:	DC 3.7V	BHILL		187			13
st Mode:	TX Mode	(GFSK)	ALL OF	3	a V		
nannel frequer	ncy (MHz)	Test I	Result (dE	3m)		Limi	t (dBm)
2402			-4.978				
2441			-4.816				30
2480			-5.509				
		GFS	K TX Mod	de			
		2	402 MHz				
Keysight Spectrum A (X) R RF Center Freq 2		PNO: Fast	Trig: Free Run	ALIGN AUTO Avg Type: L Avg Hold:>	og-Pwr 100/100	TR	AM Aug 06, 2018 ACE 1 2 3 4 5 6 TYPE M WWWW.
Def	Office 2 61 dD	IFGain:Low	Atten: 30 dB		Mkr		
Ref 10 dB/div Ref Log	Offset 3.61 dB ⁷ 23.61 dBm	IFGain:Low	Atten: 30 dB		Mkr	1 2.402	014 GHz 978 dBm
10 dB/div Ref	Offset 3.61 dB 23.61 dBm	IFGain:Low	Atten: 30 dB		Mkr	1 2.402	014 GHz
10 dB/div Ref	Offset 3.61 dB 23.61 dBm	IFG8In:LOW			Mkr	1 2.402	014 GHz
10 dB/div Ref	Offset 3.61 dB 23.61 dBm	IFG8In:Low	Arten: 30 dB		Mkr	1 2.402	014 GHz
10 dB/div Ref	Offset 3.61 dB 23.61 dBm	IFG8In:LOW			Mkr	1 2.402	014 GHz
10 dB/div Ref	Offset 3.61 dB 23.61 dBm	IFGain:Low			Mkr	1 2.402	014 GHz
13.6 3.61 -6.39 -16.4 -26.4	Offset 3.61 dBm	IFG8In:Low			Mkr	1 2.402	014 GHz
10 dB/div Ref	Offset 3.61 dB 23.61 dBm	IFGBIRLOW			Mkr	1 2.402	014 GHz
13 6 1 13	Offset 3.61 dBm	IFGBIRLOW			Mkr	1 2.402	014 GHz
13.6 13.6 13.6 146.4 146.4 146.4	Offset 3.61 dB 23.61 dBm	IFGBIRLOW			Mkr	1 2.402	014 GHz
13.6 1 13	Offset 3.61 dB 23.61 dBm	IFGBIRLOW			Mkr	1 2.402	014 GHz

Page: 70 of 72

Page: 71 of 72

Temperature: 25°C			Relative Humidity:	55%
Test Voltage:	DC 3.7V			A PHONE
Test Mode:	TX Mode	(π /4-DQPSK)		133
Channel frequen	cy (MHz)	Test Result	(dBm) L	imit (dBm)
2402		-3.720		
2441		-3.603		21
2480		-4.318		
		# /4 DOBSK T	V Modo	

π /4-DQPSK TX Mode

Report No.: TB-FCC161168 Page: 72 of 72

----END OF REPORT----