

EXPERIMENT NO 6

To perform acid base titration pH metrically

- · Procedure for pH- metric titration:-
- 1) Clean the electrode by distilled water & Calibrate equipment.
- 2) Take 25 ml of given acid solution by pipette in a 50 ml beaker and immerse the electrode. Note down the pH meter reading for zero ml base addition.
- 3) Fill the burette with standard base solution (0.1N NaOH). Remove air bubble and adjust zero level.
- 4) Add Standard base solution gradually from the burette i.e. 0.5 ml at a time to acid solution, stir the same for 1 minute. Note the corresponding value of pH. Record readings in table given

Font 🖫 Paragraph 🖫 Drawing 🖫 Editin

EXPERIMENT NO 6: To perform acid base titration pH metrically

Volume of 0.1N NaOH added in ml	Observed pH	Ax	ДрН	ΔρΗ/Δν	$\Delta 2$ pH/ Δv^2
0	1.87				
1	1.88	1.0 (1-0=1)	0.01 (1.88-1.87-0.01)	0.01 (0.01/1.0)	0.04 (0.05-0.01=0.04)
2	1.93	1.0	0.05 (1.93-1.88=0.05)	0.05	0.01
3	1.99	1.0	0.06	0.06	0.05
4	2.10	1.0	0.11	0.11	0.09
5	2.31	1.0	0.20	0.20	0.33
6	2.88	1.0	0.53	0.53	7.57
7	10.98	1.0	8.10	8.10	-7.46
8	11.62	1.0	0.64	0.64	-0.42
9	11.84	1.0	0.22	0.22	-0.08
10	11.98	1.0	0.14	0.14	

EXPERIMENT NO 6

To perform acid base titration pH metrically

Volume of 0.1N NaOH added in ml	Observed pH		
0	1.87		
1	1.88		
2	1.93		
3	1.99		
4	2.1		
5	2.31		
6	2.88		
7	10.98		
8	11.62		
9	11.84		
10	11.98		

EXPERIMENT NO 6

To perform acid base titration pH metrically

CALCULATION:

```
Equivalence point from graph. a) = 6.5 ml b)= 7.0 ml c)= 6.5 ml
```

Normality of Acid = N1V1 =
$$N2V2 = 0.1 \times 6.5 / 25$$

Result: 1) Normality of Acid

0.026 N

2) pH range at equivalence point 2.88 to 10.98

3) Type of acid base titration Strong Acid Vs Strong Base