MTH20014 Mathematics 3B. Tutorial 7

- 1. Check if the following vector fields have a scalar potential and, if yes, find it:
 - (a) $\mathbf{F} = e^{xy}(y, x)$,
- (b) $\mathbf{F} = (3x^2y y^2, x^3 2xy),$
- (a) $\mathbf{F} = e^{-3}(y, x),$ (c) $\mathbf{F} = (3x^2 + xy, -x^3 y),$
- (e) $\mathbf{F} = (x^2 y^2, y^2 2xy),$ (g) $\mathbf{F} = (y^3 y, 3xy^2 x),$
- (b) $\mathbf{F} = (3x^2y y^2, x^3 2)$ (d) $\mathbf{F} = (e^{-x} + y, x + e^y),$ (f) $\mathbf{F} = (\sin(xy), \cos(xy)),$
- (h) $\mathbf{F} = (y\cos(xy), x\cos(xy)).$
- 2. Calculate $\nabla \times \mathbf{F}$ for the following vector fields:
 - (a) $\mathbf{F} = (x, 2y, 3z),$
 - (b) $\mathbf{F} = (3x^2 y^2, x^2 2xy, 3z),$
 - (c) $\mathbf{F} = (3x^2, y^2, z^2),$
 - (d) $\mathbf{F} = (xy, yz, xz),$
 - (e) $\mathbf{F} = (yz, -zx, xy),$
 - (f) $\mathbf{F} = (e^{-x}, xe^{-y}, xy),$
 - (g) $\mathbf{F} = (2xy + 3x^2z, x^2 3z^2, x^3 6uz).$
 - (h) $\mathbf{F} = (3x^2y + z^2, x^3 + 6y^2z, 2xz + 2y^3).$
- 3. Given that the vector field $\mathbf{F} = (x^2 + 3y + az, bx 3y z, 4x + cy + 2z^2)$ is irrotational find a, b and c.
- 4. Check if the following vector fields have a scalar potential and, if yes, find it:
 - (a) $\mathbf{F} = (y, -2x, x),$ (c) $\mathbf{F} = (yz, xz, xy),$

- (b) $\mathbf{F} = (4xyz, 2x^2z + 3, 2x^2y),$ (d) $\mathbf{F} = (2x z^3, 2yz, y^2 3xz^2).$
- 5. Calculate the Laplacian $\nabla^2 \phi$ for the following functions:
 - (a) $\phi = x^2 + y^2 + z^2$.
 - (b) $\phi = 3x^2y 3xy^2 + 2z^2$,
 - (c) $\phi = 2x^2yz + 3zy^2 2xyz^2$
 - (d) $\phi = e^x \sin y ze^x \cos y$,
 - (e) $\phi = \frac{1}{x^2 + u^2 + z^2}$,
 - (f) $\phi = \exp(-r), r = \sqrt{x^2 + y^2 + z^2},$
 - (g) $\phi = x^2 y^2 z^3$,
 - (h) $\phi = \frac{1}{r}$, $r = \sqrt{x^2 + y^2 + z^2}$.

6. For the following vector field indicate regions where you expect the curl to be positive, negative or approximately zero:

Answers

1. (a) $\phi=e^{xy}+C$, (b) $\phi=x^3y-xy^2+C$, (c) no potential function exists, (d) $\phi=e^y-e^{-x}+xy+C$, (e) $\phi=\frac{1}{3}(x^3+y^3)-xy^2+C$, (f) no potential function exists, (g) $\phi=xy^3-xy+C$, (h) $\phi=\sin(xy)+C$.

		${f abla} imes {f F}$
	(a)	0
	(b)	(0, 0, 2x)
	(c)	0
2.	(d)	(-y, -z, -x)
	(e)	(2x,0,-2z)
	(f)	$(x, -y, e^{-y})$
	(g)	0
	(h)	0

- 3. a = 4, b = 3, c = -1.
- 4. (a) no potential function exists, (b) $\phi=2x^2yz+3y+C$, (c) $\phi=xyz+C$, (d) $\phi=x^2+y^2z-xz^3+C$.
- 5. (a) 6;
 - (b) 6y 6x + 4;
 - (c) -4xy + 6z + 4yz;
 - (d) 0;
 - (e) $\frac{2}{(x^2+y^2+z^2)^2}$;
 - (f) $e^{-r} \left(1 \frac{2}{r}\right);$
 - (g) $2z^3(x^2+y^2)+6x^2y^2z$;
 - (h) 0.

6.