PSYCH308D - Data Analysis (DA03)

Brady C. Jackson

2025/04/19

Contents

I	Libraries	T
2	Metadata	2
3	Part 1: Data Cleaning	3
	3.1 Load the Data	3
	3.2 Handle Missing Data for all Variables	3
	3.3 Detect Outliers and Handle Accordingly	3
	3.4 Convert Categorical Variables	3
	3.5 Rename the Variables "exam1" and "exam2"	3
	3.6 Check the Alpha for "exam1" and "exam2"	3
	3.7 Combine Exam Grades for Each Classes	3
	3.8 Reorder the Columns	4
	3.9 Construct Reverse Codes	4
	3.10 Standardize the Exam and Interpersonal Scores	4
	3.11 Dummy Code Location	4
4	Part 2: Queries	4
	4.1 What is the average overall grade for each level of school?	4
	4.2 What is the average exam 2 grade for math classes?	
	4.3 Calculate the overall average exam grade for all classes	
	4.4 Create a new data frame with only classes from CA	4

1 Libraries

Load all requisite libraries here.

```
# Load packages. Set messages and warnings to FALSE so I don't have to see the
# masking messages in the output.
library(jmv)
                  # for descriptive
library(ggplot2)
library(dplyr)
library(corrplot)
                     # For fancy covariance matrix plots
                     # For Word formatted tables
library(apaTables)
library(car)
                     # for ncvTest (Breusch Pagan)
library(tidyverse)
library(jmv)
                     # for descriptives
library(ggplot2)
```

```
library(dplyr)
library(psych)
library(corrplot)
                     # For fancy covariance matrix plots
library(car)
                     # for ncvTest (Breusch Pagan)
library(stringr)
                     # for sub_str operations
library(Hmisc)
                     # for fun.dat substitution
                     # for outliers analysis
library(see)
library(magrittr)
library(foreign)
library(broom)
library(robmed)
library(mediation)
                     # For mediation analysis
library(multilevel)
library(GGally)
library(lsr)
library(car)
library(mvnTest)
                     # Multivariate Normality
library(lm.beta)
library(lavaan)
                     # Structural Equation Modeling
library(haven)
library(foreign)
library(parallel)
# library(AER)
library(janitor)
                      # Data cleaning
library(naniar)
                      # Data cleaning
library(performance) # Data cleaning
library(mice)
                     # Data cleaning
```

2 Metadata

This section of code is to setup some general variables that we'll use throughout the code (e.g. figure colors, etc)

```
# First we'll defines some meta-data to use in all of our plots so they're nice and clean
font color = "#4F81BD"
grid_color_major = "#9BB7D9"
grid_color_minor = "#C8D7EA"
back_color = "gray95"
rb colmap = colorRampPalette( c("firebrick", "grey86", "dodgerblue3") )(200)
# I'm going to try to save off my preferred ggplot theme combinations as a unqiue theme object that I c
# later in the code....totally unclear if ggplot works this way....
my_gg_theme = theme_minimal() +
              theme( plot.title = element_text(size = 12, face = "italic", color = font_color),
                     axis.title.x = element_text(color = font_color),
                     axis.title.y = element_text(color = font_color),
                     axis.text.x = element_text(color = font_color),
                     axis.text.y = element_text(color = font_color),
                     legend.title = element_text(color = font_color),
                     legend.text = element_text(color = font_color),
                     panel.grid.minor = element_line(color = grid_color_minor),
                     panel.grid.major = element_line(color = grid_color_major),
                     panel.background = element_rect(fill = back_color, color = font_color)
```

3 Part 1: Data Cleaning

Download the dataset posted on canvas called "308A.DA3.Data.csv" and create an RMarkdown file. This DA consists of three categories of tasks for you to complete – data cleaning (complete in RStudio), data querying (complete in RStudio and respond to questions below), and a code investigation (respond below). Upload both a word document with your completed questions and your knitted RMarkdown file in either word or pdf format.

The dataset contains data regarding average grades for Exam 1 and 2 for various classes, each case is classified by school level (elem, midd, high), subject, year, and location.

3.1 Load the Data

```
# Load the assignment data from CSV
raw_dat = read.csv("./308D.DA3.Data.csv")

# Rename columns to lower because why not
colnames(raw_dat) <- tolower( colnames(raw_dat) )

# Ensure that the numbers of each subject in the study are unique to prevent any duplicate data
# if the size of the unique-entries only is the same as the whole vector then there are no duplicate su
# NOTE: This fails if the colname of the subject ID is input wrong. So make sure you UPDATE the "test_c"
# entry below
test_colname = "x"

test_unique = ( length( unique( raw_dat[test_colname] ) ) == length(raw_dat[test_colname]))
if(!test_unique){
    print("WARNING: There are duplicate data entries in the raw data")
}else{
    print("No duplicate entries detected in raw data")
}</pre>
```

[1] "No duplicate entries detected in raw data"

- 3.2 Handle Missing Data for all Variables
- 3.3 Detect Outliers and Handle Accordingly.
- 3.4 Convert Categorical Variables

Convert School Level, Subject, Year, and Location to categorical variables

- 3.5 Rename the Variables "exam1" and "exam2"
- 3.6 Check the Alpha for "exam1" and "exam2"

Check the Alpha for "exam1" and "exam2" to see if we can make a composite score.

3.7 Combine Exam Grades for Each Classes

Create 1 variable for exam grade for each class (average of the two)

3.8 Reorder the Columns

Reorder the Columns so all categories (level, subject, year, location) are listed first, followed by Interpersonal, Exam 1, Exam 2, and average Exam

3.9 Construct Reverse Codes

There was an error in qualtrics and the scores for Interpersonal skills were not set up with reverse coding. Reverse code the Interpersonal scores using R.

3.10 Standardize the Exam and Interpersonal Scores

Standardize the Exam and Interpersonal Scores for ease of comparison.

3.11 Dummy Code Location

Dummy Code the location variable with CA as the reference group.

4 Part 2: Queries

- 4.1 What is the average overall grade for each level of school?
- 4.2 What is the average exam 2 grade for math classes?
- 4.3 Calculate the overall average exam grade for all classes.
- 4.4 Create a new data frame with only classes from CA.

What is the average exam 1 score?