국가별 음주 데이터 분석하기

step1. 탐색: 데이터의 기초 정보 살펴보기

In [1]:

#라이브러리 임포트

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

In [2]:

file_path = '.../data/drinks.csv' # 불러올 파일을 상대 경로를 지정, ../는 부모폴더 drinks = pd.read_csv(file_path) # read_csv() 함수로 데이터를 데이터 프레임 형태로 불러옴 drinks.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 193 entries, 0 to 192
Data columns (total 6 columns):
                     Non-Null Count Dtype
# Column
                    193 non-null object
0 country
1 beer_servings
                       193 non-null int64
2 spirit_servings
                       193 non-null int64
                       193 non-null int64
3 wine servings
4 total_litres_of_pure_alcohol 193 non-null float64
                     170 non-null object
5 continent
dtypes: float64(1), int64(3), object(2)
memory usage: 9.2+ KB
```

In [3]:

#파일을 위에서 10개만 보여줌 drinks.head(10)

Out[3]:

	country	beer_servings	spirit_servings	wine_servings	total_litres_of_pure_alcohol
0	Afghanistan	0	0	0	0.0
1	Albania	89	132	54	4.9
2	Algeria	25	0	14	0.7
3	Andorra	245	138	312	12.4
4	Angola	217	57	45	5.9
5	Antigua & Barbuda	102	128	45	4.9
6	Argentina	193	25	221	8.3
7	Armenia	21	179	11	3.8
8	Australia	261	72	212	10.4
9	Austria	279	75	191	9.7
4					•

In [4]:

피처의 통계형 수치적 정보 (갯수, 평균, 표준편차, 최소값, 최대값) drinks.describe()

Out[4]:

	beer_servings	spirit_servings	wine_servings	total_litres_of_pure_alcohol
count	193.000000	193.000000	193.000000	193.000000
mean	106.160622	80.994819	49.450777	4.717098
std	101.143103	88.284312	79.697598	3.773298
min	0.000000	0.000000	0.000000	0.000000
25%	20.000000	4.000000	1.000000	1.300000
50%	76.000000	56.000000	8.000000	4.200000
75%	188.000000	128.000000	59.000000	7.200000
max	376.000000	438.000000	370.000000	14.400000

Step2. 인사이트의 발견: 탐색과 시각화하기

피처 간의 상관관계

beer_servings, wine_servings 두 피처 간의 상관 계수 계산

1) 피어슨 상관계수(pearson correlation coefficient,PCC): 두 변수 X,Y 간의 선형 상관 관계를 계량화한 수치

corr() 함수로 피처 간의 상관 계수를 매트릭스(행렬, 숫자, 기호 등을 가로, 세로로 나열)형태로 출력할 수 있다

2) 스피어먼 상관계수: 두 변수 순위 사이의 통계적 의존성을 측정하는 비모수적인 척도

피처간의 상관 관계를 통계적으로 탐색하는 방법

- 단순 상관 분석방법: 피처가 2개 일때 상관 계수를 계산하는 방법
- 다중 상관 분석 방법: 피처가 여러 개일 때 상호간의 연관성을 분석하는 방법

In [5]:

```
#단순 상관 분석방법
#beer_servings', 'wine_servings 두 개의 상관관계
corr = drinks[['beer_servings', 'wine_servings']].corr(method = 'pearson')
corr
```

Out[5]:

	beer_servings	wine_servings
beer_servings	1.000000	0.527172
wine_servings	0.527172	1.000000

여러 피처의 상관관계 분석하기 피처 간의 상관 계수 행렬을 구한다

In [6]:

```
# 다중 상관 분석방법
corr1=drinks.corr(method='pearson') #피어슨
#corr1=[['beer_servings', spirit_servings', 'wine_servings', 'total_litres_of_pure_alco
#drinks.corr(method='spearman') #스피어만
corr1
```

Out[6]:

	beer_servings	spirit_servings	wine_servings	total_litres_of_pu
beer_servings	1.000000	0.458819	0.527172	
spirit_servings	0.458819	1.000000	0.194797	
wine_servings	0.527172	0.194797	1.000000	
total_litres_of_pure_alcohol	0.835839	0.654968	0.667598	

[seaborn 시각화 라이브러리 활용]

- 히트맵(heatmap), 페어플롯(pairplot)기법 사용하기
- 히트맵: 히트와 지도를 뜻하는 맵을 결합시킨 단어로 색상으로 표현할 수 있는 다양한 정보를 일정한 이미지 위에 열분포 형태의 그래픽으로 출력

In [7]:

!pip install seaborn #seaborn 설치 ERROR: Invalid requirement: '#seaborn'

In [8]:

#seaborn 임포트 import seaborn as sns import matplotlib.pyplot as plt

In [9]:

```
#set() 폰트 사이즈 지정
sns.set(font scale = 1) #label 폰트의 크기
# 그래프 출력을 위한 cols의 이름 지정
cols_view = ['beer', 'spirit', 'wine', 'alcohol']
# seaborn의 hearmap(),의 파라미터1번째는 어떤 값을 가져오는지 그 다음은 형태
hm = sns.heatmap(corr1.values, #히트맵에 출력하고자 하는 값(다중상관 관계 프레임값)
    cbar = True. # 히트맵 오른쪽 바 표시
    annot = True, #네모 위의 값 표시(상관계수 출력 여부)
    square = True, #사각형의 형태(True 는 정사각형 False는 직사각형)
    fmt = '.2f', #소숫점 자릿수, 두 자리까지 표시
    annot_kws = {'size':15}, #사각형 안 글자 크기(상관계수 폰트 크기)
    yticklabels = cols_view, # cols_view가 y을 레이블명
    xticklabels = cols_view, # cols_view가 x을 레이블명
    linewidths= 1.5, # 상관 변수 사이에 흰색 전
    cmap="YlGnBu", # 컬러맵
    cbar_kws={"orientation": "horizontal"}) #cbar를 가로로 표시
plt.tight_layout()
plt.show()
```


-pairplot 그래프

페어플롯은 데이터 프레임을 파라미터로 넣어줌

In [10]:

인사이트 도출 1. 대륙별 평균 wine_servings 탐색

In [25]:

#대륙별 평균을 구한 후 wine_servings 인사이트 도출
wineAve = drinks.groupby('continent').mean()['wine_servings'] #방법1
wineAve
#wineAve = drinks.groupby('continent')['wine_servings'].mean() #방법2

Out[25]:

Continent

AF 16.264151

AS 9.068182

EU 142.222222

OC 35.625000

SA 62.416667

Name: wine_servings, dtype: float64

▼

인사이트 도출2. 전체 평균보다 적은 알코올을 섭취하는 대륙

In [35]:

#대륙 알콜 평균(totalmean) 과 대륙별 알콜 전체 섭취량(continent_mean totalmean = drinks.total_litres_of_pure_alcohol.mean()	ე) 비교
continent_mean = drinks.groupby('continent')['total_litres_of_pure #continent_mean = drinks.groupby('continent').mean()['total_litres	e_alcohol'].mean(s_of_pure_alcoho
#index.tolist() 인덱스만 추출해서 리스트로 만드는 함수 # 대륙 알콜 평균이 전체 평균보다 작은 값의 인덱스만 뽑아서 리스트로 만들어 continent_under_mean = continent_mean[continent_mean < totaln	
#values.tolist() 값을 추출해서 리스트로 만드는 함수 continent_under_mean = continent_mean[continent_mean < totaln continent_under_mean	nean].values.tolis
Out[35]:	
[3.0075471698113208, 2.1704545454545454, 3.38125]	
In []:	
In []:	