EMINES - UM6P CI1A 2022-2023

TD 1 - Calcul Intégral

13 Septembre 2022

Exercice 1

On définit la suite $(x_n)_{n\geq 1}$ par :

$$\forall n > 1, \ x_n = n^{\sin\left(\frac{n\pi}{2}\right)}$$

Calculer $\overline{\lim} x_n$ et $\underline{\lim} x_n$.

Exercice 2

1. On considère la suite $(b_n)_n$ définie par :

$$\forall n \in \mathbb{N}, \ b_{2n} = 1 - \frac{1}{n+1} \ \text{et} \ b_{2n+1} = -1 + \frac{1}{n+1}$$

On pose $\forall n \in \mathbb{N}, B_n =]-\infty, b_n]$. Calculer $\overline{\lim} B_n$ et $\underline{\lim} B_n$.

2. Soient X un ensemble non-vide (quelconque) et $F, G, H \in \mathcal{P}(X)$. On considère $(A_n)_n$ la suite de $\mathcal{P}(X)$ définie par :

$$A_{3n} = F$$
; $A_{3n+1} = G$; $A_{3n+2} = H$

Calculer $\overline{\lim} A_n$ et $\underline{\lim} A_n$.

Exercice 3

Soit $f \colon X \to Y$ une application. Montrer que les propriétés suivantes sont équivalentes

- 1. f est surjective.
- 2. $\forall B \in \mathcal{P}(Y), f(f^{-1}(B)) = B.$
- 3. $\forall A \in \mathcal{P}(X), \ \overline{f(A)} \subset f(\overline{A}).$

Exercice 4

Soient X un ensemble non-vide et $(A_n)_n$ une suite de $\mathcal{P}(X)$.

- 1. Calculer $\mathbf{1}_{\bigcap_{n\geq 0}A_n}$, $\mathbf{1}_{\bigcup_{n\geq 0}A_n}$, $\mathbf{1}_{\varlimsup A_n}$, $\mathbf{1}_{\varliminf A_n}$ à l'aide de $\mathbf{1}_{A_n}$.
- 2. En déduire que $(\overline{\lim} A_n)^c = \lim (A_n^c)$.
- 3. Montrer que $\overline{\lim} A_n = \left\{ \sum_{n \geq 0} \mathbf{1}_{A_n} = +\infty \right\}$, et en déduire que $\underline{\lim} A_n = \left\{ \sum_{n \geq 0} \mathbf{1}_{A_n^c} < +\infty \right\}$

Exercice 5

Soit $f:[a,b]\to\mathbb{R}$ une fonction càdlàg et croissante. Montrer que l'ensemble des points de discontinuité de f est dénombrable.

Définition: Une fonction f est dite **càdlàg** (continue à droite, limite à gauche) lorsque f est continue à droite en tout point et admet une limite finie en tout point à gauche.