Devoir sur table nº 4

Correction

Durée : 4h. Calculatrice interdite.

- Mettre le numéro des questions.
- Justifiez vos réponses.

• ENCADREZ vos résultats.

• Utilisez des mots en français entre les assertions mathématiques.

• Numérotez les copies doubles.

• Bon courage!

Questions de cours

1) Étudier le prolongement par continuité aux bornes du domaine de définition de :

$$f(x) = x^{x}$$
 et $g(x) = \frac{x \ln x}{x^{2} - 1}$.

- 2) Soit $f:[0,1] \to [0,1]$ une fonction continue. Montrer que f admet un point fixe.
- 3) Soit $f: E \to F$ une application entre deux ensemble quelconques E et F. Montrer que pour toutes parties A_1 et A_2 de E, on a :

$$f(A_1 \cup A_2) = f(A_1) \cup f(A_2)$$
 et $f(A_1 \cap A_2) \subset f(A_1) \cap f(A_2)$.

Montrer que si f est injective alors la dernière inclusion est une égalité.

Solution.

1) Par définition $f(x) = e^{x \ln x}$ est définie et continue sur \mathbb{R}_+^* . Par croissance comparée, on a $\lim_{x\to 0} x \ln x = 0$ donc $\lim_{x\to 0} f(x) = e^0 = 1$ car l'exponentielle est continue.

Ainsi f est prolongeable par continuité sur \mathbb{R}_+ et son prolongement est défini par

$$f(x) = \begin{cases} x^x & \text{si } x > 0, \\ 1 & \text{sinon.} \end{cases}$$

La fonction g, quant à elle, est définie et continue sur $]0,1[\cup]1,+\infty[$. En 0, on a $\lim_{x\to 0}g(x)=0$ par croissance comparée et en 1, on a

$$g(x) = \frac{x}{x+1} \times \frac{\ln x}{x-1} \xrightarrow[x \to 1]{} \frac{1}{1+1} \times 1 = \frac{1}{2}$$

en utilisant la limite remarquable $\lim_{y\to 0} \frac{\ln(1+y)}{y} = 1$ avec y=x-1.

Ainsi g est prolongeable par continuité sur \mathbb{R}_+ et son prolongement est défini par

$$f(x) = \begin{cases} \frac{x \ln x}{x^2 - 1} & \text{si } x > 0 \text{ et } x \neq 1, \\ 0 & \text{si } x = 0, \\ \frac{1}{2} & \text{si } x = 1. \end{cases}$$

- 2) On pose g(x) = f(x) x. Comme f est à valeurs dans [0,1], on a $g(0) = f(0) \ge 0$ et $g(1) = f(1) 1 \le 0$. Puisque f est continue, le théorème des valeurs intermédiaires assure l'existence d'un $c \in [0,1]$ tel que g(c) = 0 i.e. f(c) = c.
- 3) Soit $y \in F$. On raisonne par équivalence :

$$y \in f(A_1 \cup A_2) \iff \exists x \in A_1 \cup A_2, \ y = f(x)$$

 $\iff \exists x \in A_1, \ y = f(x) \text{ ou } \exists x \in A_2, \ y = f(x)$
 $\iff y \in f(A_1) \text{ ou } y \in f(A_2)$
 $\iff y \in f(A_1) \cup f(A_2).$

D'où la première égalité d'ensemble. On considère maintenant $y \in f(A_1 \cap A_2)$. Il existe alors $x \in A_1 \cap A_2$ tel que y = f(x). En particulier, comme $x \in A_1$, on a $y = f(x) \in f(A_1)$. De même, $y \in f(A_2)$ et finalement $y \in f(A_1) \cap f(A_2)$ ce qui prouve l'inclusion souhaitée.

Dans le cas où f est injective, si on part de $y \in f(A_1) \cap f(A_2)$ alors il existe $x_1 \in A_1$ et $x_2 \in A_2$ tels que $y = f(x_1) = f(x_2)$. Par injectivité de f, on a $x_1 = x_2$ et donc $x_1 \in A_1 \cap A_2$ ce qui prouve que $y \in f(A_1 \cap A_2)$. D'où l'inclusion réciproque.

Exercice 1. On considère la matrice suivante : $A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$.

- 1) Calculer A^2 et montrer que A est inversible. Que vaut A^{-1} ?
- 2) Montrer que pour tout entier $n \ge 1$, il existe deux réels u_n et v_n tels que

$$A^n = u_n A + v_n I_3.$$

et donner une relation entre (u_{n+1}, v_{n+1}) et (u_n, v_n) , valable pour tout $n \in \mathbb{N}^*$.

3) On pose, pour tout $n \in \mathbb{N}^*$,

$$\begin{cases} a_n = 2u_n + v_n, \\ b_n = u_n - v_n. \end{cases}$$

- a) Déterminer une relation entre a_{n+1} et a_n ainsi qu'une relation entre b_{n+1} et b_n .
- b) Exprimer, pour tout $n \in \mathbb{N}^*$, a_n et b_n en fonction de n.
- c) En déduire u_n , v_n puis A^n en fonction de n.
- 4) Déterminer une relation de récurrence double sur la suite $(u_n)_{n\in\mathbb{N}}$ et retrouver le résultat précédent.

Solution.

1) On effectue le produit de A par elle-même, ce qui donne

$$A^2 = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$

On constate alors que $A^2 = 2I_3 + A$, donc

$$A \times \frac{1}{2}(A - I_3) = \frac{1}{2}(A - I_3) \times A = I_3.$$

Par conséquent, A est inversible et son inverse est

$$A^{-1} = \frac{1}{2}(A - I_3) = \frac{1}{2} \begin{pmatrix} -1 & 1 & 1\\ 1 & -1 & 1\\ 1 & 1 & -1 \end{pmatrix}.$$

- 2) Montrons par récurrence sur n que, pour tout $n \in \mathbb{N}$, il existe deux réels u_n et v_n tels que : $A^n = u_n A + v_n I_3$.
 - Initialisation : pour n=0, on a $A^0=I_3$, donc le résultat est vrai au rang 0 avec

$$u_0 = 0$$
 et $v_0 = 1$.

• Héridité : soit $n \in \mathbb{N}$. Supposons qu'il existe deux réels u_n et v_n tels que $A^n = u_n A + v_n I_3$. En multipliant cette relation par la matrice A, il vient

$$A^{n+1} = u_n A^2 + v_n A.$$

Or, d'après la question précédente, $A^2 = 2I_3 + A$, ce qui donne en réinjectant dans la relation précédente :

$$A^{n+1} = 2u_n I_3 + u_n A + v_n A = (u_n + v_n)A + 2u_n I_3.$$

En posant $u_{n+1} = u_n + v_n$ et $v_{n+1} = 2u_n$, on obtient $A^{n+1} = u_{n+1}A + v_{n+1}I_3$, ce qui donne le résultat demandé au rang n+1.

En conclusion,

pour tout $n \in \mathbb{N}$, il existe $(u_n, v_n) \in \mathbb{R}^2$ tels que $A^n = u_n A + v_n I_3$, et l'on a

$$u_0 = 0, \ v_0 = 1 \quad \text{et} : \quad \forall n \in \mathbb{N}, \ \begin{cases} u_{n+1} = u_n + v_n \\ v_{n+1} = 2u_n \end{cases}$$

3) a) Soit $n \in \mathbb{N}$. Alors:

$$a_{n+1} = 2u_{n+1} + v_{n+1}$$
 par définition de a_{n+1}
 $= 2(u_n + v_n) + 2u_n$ d'après la question précédente
 $= 4u_n + 2v_n$
 $= 2a_n$ par définition de a_n .

De même,

$$b_{n+1} = u_{n+1} - v_{n+1}$$
 par définition de b_{n+1}
 $= u_n + v_n - 2u_n$ d'après la question précédente
 $= -u_n + v_n$
 $= -b_n$ par définition de b_n .

En conclusion,

$$\forall n \in \mathbb{N}, \left\{ \begin{array}{l} a_{n+1} = 2a_n \\ b_{n+1} = -b_n. \end{array} \right.$$

b) La question précédente montre que $(a_n)_n$ est une suite géométrique de raison 2, donc, pour tout entier n, $a_n = 2^n a_0$. De plus,

$$a_0 = 2u_0 + v_0 = 1.$$

De même, la suite $(b_n)_n$ est géométrique de raison -1 et de premier terme

$$b_0 = u_0 - v_0 = -1.$$

On en déduit :

$$\forall n \in \mathbb{N}, \begin{cases} a_n = 2^n \\ b_n = (-1)^{n+1} \end{cases}$$

c) Par définition de $(a_n)_n$ et $(b_n)_n$ on a, pour tout $n \in \mathbb{N}$,

$$\begin{cases} a_n = 2u_n + v_n \\ b_n = u_n - v_n \end{cases}$$

En sommant les deux égalités pour éliminer v_n on obtient

$$a_n + b_n = 3u_n$$
 soit $u_n = \frac{a_n + b_n}{3}$.

De même, en calculant $a_n - 2b_n$ afin d'éliminer u_n , il vient

$$a_n - 2b_n = 3v_n$$
 soit $v_n = \frac{a_n - 2b_n}{3}$.

On conclut à l'aide des expressions trouvées à la question précédente que :

$$\forall n \in \mathbb{N}, \begin{cases} u_n = \frac{2^n + (-1)^{n+1}}{3} \\ v_n = \frac{2^n + 2 \times (-1)^n}{3} \end{cases}$$

4) On a : $u_{n+2} = u_{n+1} + v_{n+1} = u_{n+1} + 2u_n$. On considère alors l'équation caractéristique $r^2 - r - 2 = 0$ dont les solutions (évidentes) sont -1 et 2. On sait alors qu'il existe $\lambda, \mu \in \mathbb{R}$ tels que $u_n = \lambda(-1)^n + \mu 2^n$ pour tout $n \in \mathbb{N}$. Avec les conditions initiales, on obtient

$$\begin{cases} u_0 = 0 \\ u_1 = 1 \end{cases} \iff \begin{cases} \lambda + \mu = 0 \\ -\lambda + 2\mu = 1 \end{cases} \iff \begin{cases} \lambda = -\frac{1}{3} \\ \mu = \frac{1}{3} \end{cases}$$

On retrouve bien le résultat précédent pour u_n . Comme $v_n = u_{n+1} - u_n$, on obtient aussi de nouveau le résultat pour v_n .

Exercice 2. Pour tout entier $n \ge 2$, on considère la fonction f_n définie par : $f_n(x) = x^n - x - 1$.

- 1) Montrer que l'équation $f_n(x) = 0$ admet une unique solution dans $[1, +\infty[$. On notera u_n cette solution et on rappelle que n est pris supérieur ou égal à 2.
- 2) Calculer la valeur exacte de u_2 .
- 3) Déterminer le signe de $f_{n+1}(x) f_n(x)$ pour $x \ge 1$.
- 4) Montrer que $f_{n+1}(u_n) \ge 0$. En déduire le sens de variation de la suite $(u_n)_{n\ge 2}$.
- 5) Montrer que la suite u converge.
- 6) Calculer: $\lim_{n \to +\infty} f_n \left(1 + \frac{1}{n} \right)$.
- 7) En déduire qu'il existe un rang $n_0 \in \mathbb{N}$ à partir duquel : $\forall n \ge n_0, \quad f_n\left(1 + \frac{1}{n}\right) \ge 0.$
- 8) En déduire que : $\forall n \geqslant n_0, \quad 1 \leqslant u_n \leqslant 1 + \frac{1}{n}$.
- 9) Calculer la limite de la suite u ainsi que $\lim_{n\to+\infty}u_n^n$.

Solution.

1) f_n est définie et dérivable sur $[1, +\infty[$ comme polynôme. Pour $x \ge 1$, on a $f'_n(x) = nx^{n-1} - 1$. Or, $x \ge 1 \Rightarrow x^{n-1} \ge 1 \Rightarrow nx^{n-1} \ge n$ car n est positif. Ainsi, puisque $n \ge 2$, on a $f'_n(x) \ge n - 1 > 0$ sur $[1, +\infty[$.

La fonction f_n est donc <u>continue</u> et <u>strictement croissante</u> sur $[1, +\infty[$. D'après le théorème de la bijection, elle réalise une bijection de $[1, +\infty[$ dans $f_n([1, +\infty[) = [f_n(1), \lim_{+\infty} f_n[= [-1, +\infty[$. En particulier, comme $0 \in [-1, +\infty[$, la fonction f_n s'annule exactement une fois sur $[1, +\infty[$.

- 2) u_2 est la solution supérieure à 1 de l'équation : $x^2 x 1 = 0$. On résout cette équation. On trouve deux solutions : $x_1 = \frac{1 + \sqrt{5}}{2}$ et $x_2 = \frac{1 + \sqrt{5}}{2} < 0$. Donc $u_2 = x_1 = \frac{1 + \sqrt{5}}{2}$.
- 3) $f_{n+1}(x) f_n(x) = x^{n+1} x 1 (x^n x 1) = x^n(x 1)$. Ainsi : $f_{n+1}(x) - f_n(x) \ge 0$ pour $x \ge 1$.
- 4) Comme $u_n \ge 1$, en prenant $x = u_n$ dans l'inéquation précédente, on obtient : $f_{n+1}(u_n) f_n(u_n) \ge 0$. Or, $f_n(u_n) = 0$ donc $f_{n+1}(u_n) \ge 0 = f_{n+1}(u_{n+1})$. Comme f_{n+1} est strictement croissante, on a $u_n \ge u_{n+1}$. La suite est décroissante.
- 5) La suite est décroissante et minorée par 1 donc elle converge.

6)
$$f_n\left(1+\frac{1}{n}\right) = \left(1+\frac{1}{n}\right)^n - \left(1+\frac{1}{n}\right) - 1 = \left(1+\frac{1}{n}\right)^n - \frac{1}{n} - 2$$
. Or,
$$\left(1+\frac{1}{n}\right)^n = e^{\frac{\ln(1+\frac{1}{n})}{1/n}} \to e^1$$

car l'exponentielle est continue et en utilisant que $\lim_{x\to 0} \frac{\ln(1+x)}{x} = 1$. Ainsi,

$$\lim_{n \to +\infty} f_n\left(1 + \frac{1}{n}\right) = e - 2.$$

- 7) On constate que : $\lim_{n\to+\infty} f_n\left(1+\frac{1}{n}\right) = e-2 > 0$. Une suite qui converge vers un nombre strictement positif est positive à partir d'un certain rang.

 Donc à partir d'un certain rang, $f_n\left(1+\frac{1}{n}\right)$ est positif.
- 8) On sait que $f_n(1) = -1 < 0$ et $f_n\left(1 + \frac{1}{n}\right) \geqslant 0$ pour $n \geqslant n_0$. Donc, d'après le théorème des valeurs intermédiaires, f_n s'annule entre 1 et $1 + \frac{1}{n}$ pour $n \geqslant n_0$. Ainsi : $\forall n \geqslant n_0, \quad 1 \leqslant u_n \leqslant 1 + \frac{1}{n}$.
- 9) Comme $\lim_{n\to+\infty}1+\frac{1}{n}=1$, le théorème des gendarmes appliqué à l'inégalité précédente donne :

$$\lim_{n \to +\infty} u_n = 1.$$

D'un autre côté, on sait que $f_n(u_n) = 0$ i.e. $u_n^n - u_n - 1 = 0$. Ainsi, $u_n^n = u_n + 1 \underset{n \to +\infty}{\longrightarrow} 1 + 1$. D'où : $\lim_{n \to +\infty} u_n^n = 2$.

Exercice 3. Dans cet exercice, on étudie quelques propriétés du déterminant, définie sur $\mathcal{M}_2(\mathbb{R})$ par

$$\det : \quad \mathcal{M}_2(\mathbb{R}) \quad \longrightarrow \quad \mathbb{R}$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \quad \longmapsto \quad ad - bc$$

- 1) Soit $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}).$
 - a) Rappeler une condition nécessaire et suffisante sur a, b, c, d pour que A soit inversible et donner, dans ce cas, une expression de A^{-1} .
 - b) Démontrer le résultat précédent.
- 2) Soient $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ et $M' = \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix}$. Montrer que $\det(MM') = \det(M) \times \det(M')$.
- 3) On considère $\mathcal{M}_2(\mathbb{Z})$ l'ensemble des matrices de taille 2×2 à coefficients entiers :

$$\mathcal{M}_2(\mathbb{Z}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid (a, b, c, d) \in \mathbb{Z}^4 \right\}$$

On dit que $M \in \mathcal{M}_2(\mathbb{Z})$ est inversible <u>dans</u> $\mathcal{M}_2(\mathbb{Z})$ si M est inversible et que M^{-1} est à coefficients dans \mathbb{Z} .

- a) Montrer que M est inversible dans $\mathcal{M}_2(\mathbb{Z})$ si et seulement si $\det(M) = 1$ ou $\det(M) = -1$.
- b) Montrer que si $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ est inversible dans $\mathcal{M}_2(\mathbb{Z})$ alors a et b sont premiers entre eux.

Solution.

- 1) a) A est inversible si et seulement si $ad bc \neq 0$. Dans ce cas, $A^{-1} = \frac{1}{ad bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$.
 - b) On pose : $B = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$. On constate : $AB = BA = (ad bc)I_2$. Si $ad - bc \neq 0$ alors $A \times \frac{1}{ad - bc}B = I_2$. Donc A est inversible d'inverse $\frac{1}{ad - bc}B$. Si ad - bc = 0 alors $AB = 0_2$ donc $A = 0_2$ ou $B = 0_2$ ou A n'est pas inversible. Comme $B = 0_2 \Rightarrow A = 0_2$, on obtient dans tous les cas que A n'est pas inversible.
- 2) D'une part : det(M) det(M') = (ad bc)(a'd' b'c') = ada'd' adb'c' bca'd' + bcb'c'. D'autre part : $MM' = \begin{pmatrix} aa' + bc' & ab' + bd' \\ ca' + dc' & cb' + dd' \end{pmatrix}$. Donc

$$\det(MM') = (aa' + bc')(cb' + dd') - (ab' + bd')(ca' + dc')$$

$$= aa'cb' + aa'dd' + bc'cb' + bc'dd' - ab'ca' - ab'dc' - bd'ca' - bd'dc'$$

$$= aa'dd' + bc'cb' - ab'dc' - bd'ca'.$$

On retrouve bien : det(MM') = det(M) det(M')

3) a) Si $det(M) = \pm 1$ alors d'après la question 1, M est inversible d'inverse

$$M^{-1} = \frac{1}{\det(M)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \pm \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

qui est donc bien à coefficients entiers. Ainsi, M est inversible dans $\mathcal{M}_2(\mathbb{Z})$.

Réciproquement, si M est inversible dans $\mathcal{M}_2(\mathbb{Z})$ alors $MM^{-1}=I_2$ donc, en passant au déterminant :

$$\det(MM^{-1}) = \det(I_2) \iff \det(M)\det(M^{-1}) = 1$$

d'après la question précédente. Or M et M^{-1} appartiennent à $\mathcal{M}_2(\mathbb{Z})$ donc leurs déterminants sont *entiers*. La relation précédente montre qu'ils divisent 1 mais les seuls diviseurs de 1 sont 1 et -1. Ainsi, $\lceil \det(M) = \pm 1. \rceil$

b) Soit $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ inversible dans $\mathcal{M}_2(\mathbb{Z})$. On a $\det(M) = ad - bc = \pm 1$ d'après ce qui précède. Soit n un diviseur commun (positif) de a et b. Alors, il divise aussi ad - bc. Donc n divise ± 1 i.e. n = 1. Ainsi, a et b sont premiers entre eux.

Exercice 4. Le but de l'exercice est d'étudier la suite d'intégrales définie, pour tout $n \in \mathbb{N}$, par

$$I_n = \int_1^e \frac{(\ln t)^n}{t^2} dt.$$

On rappelle la définition de la factorielle : 0! = 1 et, pour tout $n \in \mathbb{N}^*$,

$$n! = \prod_{k=1}^{n} k = 1 \times 2 \times \dots \times n.$$

Question préliminaire

1) Montrer que pour tout $n \in \mathbb{N}^*$, $n! \ge 2^{n-1}$. En déduire la limite de n! lorsque $n \to +\infty$.

Signe et monotonie de $(I_n)_{n\in\mathbb{N}}$

Pour tout $n \in \mathbb{N}$, on note

$$f_n: x \mapsto \frac{(\ln x)^n}{x^2}.$$

- 2) Déterminer le domaine de définition de f_n et justifier l'existence de I_n .
- 3) La fonction f_n est-elle prolongeable par continuité aux bornes de son domaine de définition?
- 4) Calculer I_0 puis I_1 (on pourra faire une intégration par parties).
- 5) Faire l'étude complète de f_n . On dressera son tableau de variations avec limites aux bornes. En déduire le signe de I_n .
- 6) Montrer que pour tout $x \in [1, e]$, $f_{n+1}(x) \leq f_n(x)$. En déduire la monotonie de la suite $(I_n)_{n \in \mathbb{N}}$.

Convergence de $(I_n)_{n\in\mathbb{N}}$

- 7) Déterminer une relation entre I_{n+1} et I_n pour tout $n \in \mathbb{N}$.
- 8) Calculer I_2 .
- 9) Effectuer le changement de variable $y = \ln t$ dans I_n .
- 10) En déduire que pour tout $n \in \mathbb{N}$,

$$0 \leqslant I_n \leqslant \frac{1}{n+1}.$$

La suite $(I_n)_{n\in\mathbb{N}}$ est-elle convergente (si oui, on précisera sa limite)?

Une expression de $(I_n)_{n\in\mathbb{N}}$

11) Montrer qu'il existe une suite **d'entiers naturels** $(b_n)_{n\in\mathbb{N}}$ telle que, pour tout $n\in\mathbb{N}$,

$$I_n = n! - \frac{b_n}{e}.$$

On déterminera b_0, b_1, b_2 ainsi qu'une relation entre b_n et b_{n+1} pour tout $n \in \mathbb{N}$.

- 12) Déterminer la limite de $(b_n)_{n\in\mathbb{N}}$ puis la limite de $(b_n/n!)_{n\in\mathbb{N}}$.
- 13) Montrer que, pour tout $n \in \mathbb{N}$,

$$b_n = n! \sum_{k=0}^{n} \frac{1}{k!}.$$

14) Déterminer la limite de la suite $(e_n)_{n\in\mathbb{N}}$ définie par

$$\forall n \in \mathbb{N}, \quad e_n = \sum_{k=0}^n \frac{1}{k!}.$$

Solution.

1) Montrons, par récurrence sur $n \in \mathbb{N}^*$ que pour tout $n \in \mathbb{N}^*$, $n! \ge 2^{n-1}$. Pour n = 1, $n! = 1! = 1 \ge 1 = 2^{n-1}$. Soit $n \in \mathbb{N}^*$. On suppose que $n! \ge 2^{n-1}$. Comme $n + 1 \ge 2$, on a

$$(n+1)! = n! \times (n+1) \ge 2^{n-1} \times 2 = 2^n$$

ce qui achève la récurrence.

- 2) Lorsque n = 0, la fonction f_n est définie sur \mathbb{R}^* . Lorsque $n \in \mathbb{N}^*$, la fonction f_n est définie sur \mathbb{R}^*_+ . De plus, pour tout $n \in \mathbb{N}$, la fonction f_n est continue sur [1, e] ce qui justifie l'existence de l'intégrale I_n .
- 3) On a $\lim_{x\to 0} f_n(x) = \pm \infty$ (ce n'est pas une forme indéterminée). Ainsi, f_n n'admet pas de limite finie en 0 donc elle n'est pas prolongeable par continuité en ce point.

4) On a

$$I_0 = \int_1^e \frac{1}{t^2} dt = \left[-\frac{1}{t} \right]_1^e = \frac{e-1}{e}$$

et, par intégration par parties :

$$I_1 = \int_1^e \frac{\ln t}{t^2} dt = \left[-\frac{1}{t} \ln t \right]_1^e - \int_1^e \frac{-1}{t} \times \frac{1}{t} dt = \frac{-1}{e} + I_0 = \frac{e-2}{e}.$$

5) Soit $n \in \mathbb{N}^*$. La fonction f_n est, par quotient, dérivable sur $]0, +\infty[$ et, pour tout $x \in]0, +\infty[$:

$$f'_n(x) = \frac{(\ln x)^{n-1}}{x^3} (n - 2\ln x).$$

Le signe de la dérivée dépend de la parité de n.

• Si n est pair, n-1 est impair donc, pour tout $n \in \mathbb{R}_+^*$, $f'_n(x)$ est du signe de $(n-2\ln x)\ln x$. Comme $x \mapsto n-2\ln x$ est décroissante et s'annule lorsque $n-2\ln x=0 \iff x=e^{\frac{n}{2}}$, on obtient le tableau de variations suivant.

x	0		1		$e^{\frac{n}{2}}$		$+\infty$
$\ln x$	-	_	0	+		+	
$(n-2\ln x)$	-	+		+	0	_	
$f'_n(x)$	-	_	0	+	0	_	
$f_n(x)$	$+\infty$	\	0		$\left(\frac{n}{2}\right)^n e^-$	n	~ 0

En effet, par opération et croissance comparée : $\lim_{n \to \infty} f_n = +\infty$ et $\lim_{n \to \infty} f_n = 0$.

• Si n est impair alors $f_n'(x)$ est du signe de $(n-2\ln x)$. On obtient alors, de façon analogue, le tableau suivant.

x	$0 \qquad e^{\frac{n}{2}}$	$+\infty$
$f'_n(x)$	+ 0	_
$f_n(x)$	$-\infty$	0

D'après les tableaux, pour tout $n \in \mathbb{N}^*$, la fonction f_n est positive sur [1, e] (c'est clair pour n pair et, pour n impair, on remarque que $f_n(1) = 0$) donc, par positivité de l'intégrale, I_n est positif. Le calcul de I_0 donne la positivité de I_n pour tout $n \in \mathbb{N}$.

6) Soit $n \in \mathbb{N}$. Pour tout $t \in [1, e]$, $\ln t \in [0, 1]$ donc $(\ln t)^n \geqslant (\ln t)^{n+1}$ ce qui donne $f_n(t) \geqslant f_{n+1}(t)$. On obtient, par croissance de l'intégrale, pour tout $n \in \mathbb{N}$,

$$I_n = \int_1^e f_n(t) dt \geqslant \int_1^e f_{n+1}(t) dt = I_{n+1}$$

donc $(I_n)_{n\in\mathbb{N}}$ est décroissante.

7) Soit $n \in \mathbb{N}$. On effectue une intégration par parties pour obtenir :

$$I_{n+1} = \int_{1}^{e} \frac{(\ln t)^{n+1}}{t^{2}} dt = \left[-\frac{1}{t} (\ln t)^{n+1} \right]_{1}^{e} + \int_{1}^{e} \frac{1}{t} \times (n+1) \frac{1}{t} (\ln t)^{n} dt = \frac{-1}{e} + (n+1) I_{n}$$
ce qui s'écrit
$$I_{n+1} = \frac{-1}{e} + (n+1) I_{n}.$$

- 8) On obtient, avec la relation précédente, $I_2 = 2I_1 \frac{1}{e} = \frac{2e-5}{e}$.
- 9) Soit $n \in \mathbb{N}$. On fait le changement de variable $y = \ln t$ donc $t = e^y$ et $dt = e^y dy$. Ainsi,

$$I_n = \int_1^e \frac{(\ln t)^n}{t^2} dt = \int_0^1 \frac{y^n}{e^{2y}} e^y dy = \int_0^1 y^n e^{-y} dy.$$

10) Pour tout $y \in \mathbb{R}_+$, $0 \le e^{-y} \le 1$ donc, pour tout $n \in \mathbb{N}$,

$$0 = \int_0^1 y^n \times 0 dy \leqslant I_n = \int_0^1 y^n e^{-y} dy \leqslant \int_0^1 y^n dy = \frac{1}{n+1}$$

ce qui est bien l'inégalité demandée. Comme $\frac{1}{n+1}$ tend vers 0, par le théorème des gendarmes, la suite $(I_n)_{n\in\mathbb{N}}$ est convergente et de limite nulle.

11) Posons, pour tout $n \in \mathbb{N}$,

$$b_n = e\left(n! - I_n\right).$$

On a, avec les calculs de I_0 , I_1 et I_2 ,

$$b_0 = 1$$
, $b_1 = 2$ et $b_2 = 5$.

De plus, avec la relation de récurrence sur la suite $(I_n)_{n\in\mathbb{N}}$, on a, pour tout $n\in\mathbb{N}$,

$$b_{n+1} = e\left((n+1)! - I_{n+1}\right) = (n+1)e\left(n! - I_n\right) + 1 = (n+1)b_n + 1.$$

Montrons par récurrence que pour tout $n \in \mathbb{N}$, $b_n \in \mathbb{N}$. Le nombre $b_0 = 1$ est un entier naturel. Soit $n \in \mathbb{N}$. Supposons que $b_n \in \mathbb{N}$. En tant que produit et somme d'entier naturels,

$$b_{n+1} = (n+1)b_n + 1 \in \mathbb{N}$$

ce qui achève la récurrence. En conclusion il existe une suite d'entiers naturels $(b_n)_{n\in\mathbb{N}}$ tel que, pour tout $n\in\mathbb{N},\,I_n=n!-\frac{b_n}{e}$.

12) Comme (I_n) tend vers 0, par opérations, comme (n!) tend vers $+\infty$, la suite (b_n) tend vers $+\infty$. On a la relation, pour tout $n \in \mathbb{N}$,

$$\frac{b_n}{n!} = e - \frac{I_n}{n!}$$

donc, à nouveau par opérations, $(b_n/n!)_{n\in\mathbb{N}}$ tend vers e.

13) Montrons, par récurrence sur $n \in \mathbb{N}$ que pour tout $n \in \mathbb{N}$,

$$b_n = n! \sum_{k=0}^{n} \frac{1}{k!}.$$

Avec la question précédente, $b_0 = 1 = 0! \sum_{k=0}^{0} \frac{1}{k!}$.

Soit $n \in \mathbb{N}$. On suppose que

$$b_n = n! \sum_{k=0}^n \frac{1}{k!}.$$

On a, avec la question précédente,

$$b_{n+1} = (n+1)b_n + 1 = (n+1)n! \sum_{k=0}^{n} \frac{1}{k!} + 1 = (n+1)! \left(\sum_{k=0}^{n} \frac{1}{k!} + \frac{1}{(n+1)!} \right)$$

d'où

$$b_{n+1} = (n+1)! \sum_{k=0}^{n+1} \frac{1}{k!}.$$

14) On a, pour tout $n \in \mathbb{N}$, $e_n = b_n/n!$ donc avec la question précédente, $(e_n)_n$ converge vers e.