

Description

Features

● 30V,180A

 $R_{DS(ON)}$ < 2.4m Ω @ V_{GS} =10V $R_{DS(ON)}$ < 5m Ω @ V_{GS} =4.5V

- Advanced Trench Technology
- Excellent R_{DS(ON)} and Low Gate Charge
- Lead free product is acquired

Application

- Load Switch
- PWM Application
- Power management

100% UIS 100% ΔVds

Package Marking and Ordering Information

Device Marking	Device	OUTLINE	Device Package	Reel Size	Reel (PCS)	Per Carton (PCS)
VSM180N03-T3	VSM180N03	TAPING	TO-263	13inch	800	4000

Absolute Maximum Ratings (Tc=25℃ unless otherwise specified)

Symbol	I Parameter		Max.	Units
V _{DSS}	Drain-Source Voltage		30	V
V_{GSS}	Gate-Source Voltage		±20	V
I _D	Continuous Drain Current	T _C = 25°C	180	Α
		T _C = 100°C	117	Α
I_{DM}	Pulsed Drain Current note1		720	Α
Eas	Single Pulsed Avalanche Energy note2		240	mJ
P _D	Power Dissipation	T _C = 25℃	130	W
R ₀ JC	Thermal Resistance, Junction to Case		1.15	°C/W
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +175	$^{\circ}$

Electrical Characteristics (Tc=25°C unless otherwise specified)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units
Off Charac	teristic					
V _{(BR)DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V, I _D =250µA	30	_	-	V
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 30V, V_{GS} = 0V,$	-	-	1.0	μA
I _{GSS}	Gate to Body Leakage Current	$V_{DS} = 0V, V_{GS} = \pm 20V$	-	-	±100	nA
On Charac	teristics					
$V_{GS(th)}$	Gate Threshold Voltage	V _{DS} = V _{GS} , I _D =250µA	1.0	1.5	2.5	V
Ъ	Static Drain-Source on-Resistance	V _{GS} =10V, I _D =30A	-	1.95	2.4	m 0
$R_{DS(on)}$	note3	V _{GS} =4.5V, I _D =20A	-	3.5	5	mΩ
Dynamic C	Characteristics					
C_{iss}	Input Capacitance	45)///	-	4930	-	pF
Coss	Output Capacitance	$V_{DS} = 15V, V_{GS} = 0V,$ f = 1.0MHz	-	682	-	pF
C _{rss}	Reverse Transfer Capacitance	1 = 1.0IVIMZ	-	566	-	pF
Qg	Total Gate Charge	\/ 45\/ L 00A	-	70	-	nC
Q _{gs}	Gate-Source Charge	$V_{DS} = 15V, I_{D} = 30A,$ $V_{GS} = 10V$	-	10	-	nC
Q_{gd}	Gate-Drain("Miller") Charge	VGS - 10 V	-	15	-	nC
Switching	Characteristics					
t _{d(on)}	Turn-on Delay Time	1/ 45)/	-	10	-	ns
t _r	Turn-on Rise Time	V _{DS} =15V,	-	6.5	-	ns
t _{d(off)}	Turn-off Delay Time	$I_D=30A$, $R_{GEN}=3\Omega$, $V_{GS}=10V$	-	75	-	ns
t _f	Turn-off Fall Time	VGS-10V	-	18	-	ns
Drain-Soul	rce Diode Characteristics and Maxim	um Ratings				
	Maximum Continuous Drain to Source Diode Forward Current			-	180	А
Is						
I _{SM}	Maximum Pulsed Drain to Source Diode Forward Current			-	720	Α
V_{SD}	Drain to Source Diode Forward Voltage	V _{GS} = 0V, I _S =30A	-	-	1.2	V
trr	Body Diode Reverse Recovery Time			30	-	ns
Qrr	Body Diode Reverse Recovery Charge	I _F =20A,dI/dt=100A/µs	-	15	-	nC

Notes:1. Repetitive Rating: Pulse Width Limited by Maximum Junction Temperature

- 2. EAS condition: TJ=25 $^{\circ}\mathrm{C}$, VDD=15V, VG=10V, L=0.5mH, RG=25 Ω , IAS=31A
- 3. Pulse Test: Pulse Width≤300µs, Duty Cycle≤0.5%

Typical Performance Characteristics

Figure1: Output Characteristics

Figure 3:On-resistance vs. Drain Current

Figure 5: Gate Charge Characteristics

Figure 2: Typical Transfer Characteristics

Figure 4: Body Diode Characteristics

Figure 6: Capacitance Characteristics

Figure 7: Normalized Breakdown Voltage vs. Junction Temperature

Figure 9: Maximum Safe Operating Area

Figure.11: Maximum Effective Transient Thermal Impedance, Junction-to-Case

Figure 8: Normalized on Resistance vs. Junction Temperature

Figure 10: Maximum Continuous Drain Current vs. Case Temperature

Figure1:Gate Charge Test Circuit & Waveform

Figure 2: Resistive Switching Test Circuit & Waveforms

Figure 3:Unclamped Inductive Switching Test Circuit & Waveforms