PRACTICA 1

PROBABILIDAD II, EST 233, FECHA DE ENTREGA 20 DE FEBRERO DE 2025

Docente: Lic. Raúl Delgado Álvarez

Auxiliar: Univ. Grover Huanca Flores

- 1. Sea (x,y) una variable aleatoria bivariante discreta con función de probabilidad conjunta dada por P(x,y)=kxy x=1,2,3,4 y=1,2,3,4
 - (1) Halle la constante k, para que sea función de probabilidad conjunta legitima
 - (2) Calcule (a) $P(x > \frac{1}{3}, y < 4)$ (b) P(x = 3, y > 2) (c) $P(x \ge 2, y > 1)$ (d) $P(x + y \le 3)$
- 2. Sea (x,y) una variable aleatoria bivariante continua con función de densidad conjunta dada por $f(x,y)=k\ (cos x+cos y),\ 0\leq x\leq \frac{\pi}{2},\ 0\leq y\leq \frac{\pi}{2})$
 - (a) Halle k, b) Calcule: $P(x < \frac{1}{3}; y < \frac{1}{6})$ c) $P(x \le \frac{1}{8}; y > \frac{1}{5})$ d) $P(x \ge \frac{\pi}{6}; y \ge \pi/3)$ e) P(x + y > 1)

Halle las funciones de probabilidad o densidad marginales y condicionales de los ejercicios 1, y 2

- 3. Si (x,y) una variable aleatoria bivariante continua cuya función de densidad conjunta es $f(x,y)=\frac{1}{x}e^{-\left(x+\frac{y}{x}\right)}$, x>0, $y\geq0$
 - (a) Halle la distribución condicional de Y dado x (y/x), además CalculeE[Y/x] V[Y/x]
- 4. Si (x, y) una variable aleatoria bivariante continua con densidad conjunta dada por $f(x, y) = (x + 1)^{y^x}$, $0 \le x \le 1$, $0 \le y \le 1$
 - (a) Halle la función de densidad condicional de Y dado X
 - (b) E[Y/x], $E[Y^2/x]$
- 5. Sea (x,y) una variable aleatoria bivariante discreta con función de probabilidad conjunta dada por $P(x,y)=\frac{2}{n(n+1)}$; x=1,2,...,n y=1,2,...,x
 - (a) Halle las distribuciones condicionales P(X/y); P(Y/x)
 - (b) Halle E[Y/x], E[X/y], $\rho[x,y]$
- 6. Sea X una variable aleatoria marginal con funcion de probabilidad dada por:

$$P(X = x) = \frac{1}{6}x$$
; con $x = 1, 2, 3$.

y sea la funcion condicional $Y|X: P(Y|X) = \frac{y}{\sum_{i=1}^{x} j}$; y = 1, 2, 3, ..., x

- a) Determinar la funcion de probabilidad conjunta discreta P(x,y)
- b) Calcular las funcion marginal de Y
- c) Calcular la probabilidad P(Y = 2|X = 3) y $P(X + Y \le 2)$
- 7. Sea la funcion de probabilidad conjunta continua dada por:

$$f(x,y) = Cye^{-x}$$
 con $0 \le y \le x < \infty$

- a) Determinar el valor de C, para que la funcion sea valida
- b) Hallar las funciones marginales de X e Y.
- c) Calcular $P(XY \ge 2)$
- d) Hallar las funciones condicionales de X|Y e Y|X.
- 8. Sea la funcion conjunta dada por : $f(x,y) = \frac{x^4 e^{-x(y+1)}}{6}$, $x \ge 0$, $y \ge 0$, hallar:
 - a) Las funciones marginales $f_x(x)y f_y(y)$
 - b) Hallar E(x), E(y), V(x) y V(y).
 - c) Hallar las distribuciones condicionales de X|Y e Y|X.
- 9. Dada la funcion conjunta:

$$f(x,y) = \frac{1}{2\pi} e^{-\frac{1}{2}(x^2+y^2)}, \quad x^2 + y^2 \le 4$$

- a) Demostrar que es valida la funcion
- b) Encontrar $f_x(x)$ y $f_y(y)$
- c) Hallar P(X > 1|Y = 0) y P(Y < 1|X = -1)
- 10. Dada la funcion conjunta discreta: $P(x,y) = \frac{y}{a}$, $1 \le x \le 5$, $1 \le y \le x + 1$
 - a) determinar el valor de "a"
 - b) Hallar $P_x(x)$ $P_v(y)$
 - c) calcular P(y > 2 | x = 4) y P(x = 3 | y = 4)

EJERCICIO OPCIONAL.

X\Y	1	2	3
1	0.1	0.2	0.1
2	0.1	0.2	0.3

- a) Hallar las funciones marginales
- b) Calcular la probabiliad $P(x + y \le 3)$
- c) Calcular la probabilidad P(y = 2 | x = 1)