Solvent suppression in NMR

Finn Aachmann

Problem

Normal we use solvent which is invisible in the NMR spectrum

-But what if We can not?

Water as solvent $(10\%D_2O/90\%H_2O)$:

~100 M of proton signal – Compound X 0.001 M 100 000:1

Problem

Water

Two major problems:

- ➤ Dynamic range problem intense signal → lower receiver gain and insensitive
- The solvent peak becomes very broad and in addition solvent line increased due to radiation damping

Radiation damping:

Precessing magnetization induces a voltage in the RF coil this is our NMR signal

Signals of interest

[ppm]

1H

Ideal solvent signal Suppresion

- Wishlist to

- Takes no time
- Affects only the solvent resonance and not the solute resonances
- Does not interfere with the pluse sequence
- Simple to setup

Solvent suppression – methods overview

- 1. Saturation based methods
 - a) Discrimination by Frequency

- b) Discrimination by relaxation times
- 2. Methods Avoiding Solvent Saturation
- 3. Magnetization Destruction based methods

- 4. Coherence Selection
- 5. Post acquisitional methods

Solution 1: Presaturation

Solution 1: Presaturation

Summary

