Introduction to Computational Neuroscience

Prof. Richard Granger

Readings:

Readings including class handouts and published articles (list attached), to be posted on blackboard No required textbook for the class.

Course introduction

The mind is what the brain does, and the brain is becoming understood computationally. Just as scientific understanding of physics brings with it the ability to manipulate and alter materials and environments and even to create entirely new physical entities, and scientific understanding of biology has enabled the creation of medicines, cures, and even new biological organisms, so a scientific understanding of the brain will confer the ability not only to describe and characterize the mind, but to modify it, enhance it, diagnose and treat its illnesses, and, eventually, to imitate its operation. Computational neuroscience has as its twin goals the scientific and engineering tasks of understanding of how brain computes mind, and using that understanding to characterize and reconstruct these computations.

Brain circuits are just circuits, albeit highly unusual ones from an engineering standpoint. Enormous advances over the past decade have provided data on brain architecture and mechanism, advancing hypotheses of how thought arises from neural operation, and enabling initial derivation and formal analysis of candidate constituent algorithms carried out by these circuits.

Your brain is composed of low-precision (\sim 2 bit), slow (milliseconds per operation), sparsely connected (p(connection) < 0.001) computing elements, yet it far outperforms any extant computer on most complex signal processing tasks that humans and other animals perform readily. Whereas most mammals can recognize complex visual and auditory signals, navigate complex locales and terrains, and perform real-time goal-directed tasks, our ability to construct systems to do so is still surprisingly limited, especially in light of the high level of effort that has been aimed at accomplishing these ends. Indeed, the best current artificial systems that process images or voices, such as face recognition and automated telephone operator systems, are surprisingly limited – yet the only reason that we know that these industrial systems can be outperformed is that humans do so.

This course will introduce concepts of brain circuits including engineering characteristics of cells, anatomical design and organization of telencephalic (mammalian forebrain) circuitry, physiological operating rules of synapses, cells and networks, synaptic long-term potentiation (LTP); and basics of the mathematical field of "neural networks," including the delta rule for single-layer feedforward networks, the generalized delta rule (backpropagation) for multi-layer networks, dynamic and Hopfield nets, unsupervised learning and competitive learning. The class is intended for students from many different backgrounds. Lectures will include brief but self-contained background on all necessary mathematical tools for the class, including tools from statistics, calculus, and linear algebra. Finally, these neural network analyses will be applied to selected telencephalic structures to illustrate candidate emergent computations from these primary mammalian brain circuits.

REOUIREMENTS:

This class integrates knowledge of computer science, engineering, psychology, and neuroscience. The prerequisites are Comp Sci 1 or 4 (or old CS 5), or Engineering 20; or Psych 1 or 6.

Lectures are required; the majority of material for the class will be contained solely in the lectures. There will also be a series of readings from the literature and via handouts. Note that readings do not substitute for the lectures.

GRADING:

There will be three exams (20% each), a programming assignment (20%), and a final project (20%).

OUTLINE OF KEY TOPICS

Part I. Brain: Neuroscience data and mechanism

Introduction: Brain. Mind. Intelligence. Artificial intelligence

Anatomy of cells, synapses, and circuits

Physiology of excitatory and inhibitory neurons and synapses

Brain chemistry and pharmacology

Composition of telencephalic circuits

Synaptic plasticity; long-term potentiation

Variants of synaptic plasticity in different circuits

Potentially useful websites containing pointers to background information on neurobiology.

http://www.neuroguide.com

http://brainmuseum.org/circuitry/index.html

http://sig.biostr.washington.edu/projects/da/

http://faculty.washington.edu/chudler/facts.html

Part II. Computational approaches: Artificial neural networks

Classes of networks and their architectures

Math of network operations I [Linear Algebra]

Perceptrons, delta rule, backpropagation

Math of network operations II [Calculus]

Recurrent dynamic networks, Hopfield nets

Competitive learning networks

Math of network operations III [Statistics]

Reinforcement & sequence networks

Potentially useful websites with background/review on ANNs

http://www.gc.ssr.upm.es/inves/neural/ann1/anntutorial.html

http://diwww.epfl.ch/mantra/tutorial/english/

http://www.learnartificialneuralnetworks.com/

Part III. Computational neuroscience: Analysis of brain circuits

Paleocortex and unsupervised clustering

Striatal complex and reinforcement learning

Thalamocortical loops and sequence learning

Cortico-striatal and other loops; allometry of brain growth

Predictions, extrapolations

Potentially useful websites with background/review on computational neuroscience

http://home.earthlink.net/~perlewitz/

Tentative schedule

Sept	
17	Introduction
	Course outline, goals, requirements
	Multidisciplinary fields
19	Introduction to neuroanatomy
	Organization of brain structures
	Introduction to telencephalon; brain evolution
	Reading: Striedter (2006); Anatomy handout
24	Introduction to genomics
	Introduction to biochemistry I
	neurotransmitters and receptors
	Reading: Genomics handout; physiology I
26	Introduction to biochemistry II
	Physiology & pharmacology:
	excitatory & inhibitory neurons; synapses & local circuits
	Reading: Physiology II
Oct	
1	Synaptic plasticity
	Long-term potentiation
	Reading: LTP handout
	Hebb (1949); Intro pp. xi-xix, and Ch. 4. pp 60-78.
	Martinez & Derreck (1996); Lynch (2003)
3	Review & discussion
8	Exam 1
RT II. C	omputational tools; Artificial neural networks
10	Introduction to artificial neural networks (ANNs)
	Simulation and modeling; mathematics of ANNs
	Linear algebra I: vectors & matrices
	Reading: Linear algebra handout
15	Linear algebra II: vector combination; inner product
	Perceptrons; delta learning rule
	Reading: Perceptron handout
	Reading: Matlab handout
17	Extension of perceptrons to multiple layers
1 /	Extension of perceptrons to multiple layers Extension of delta rule; Backpropagation of error

	Reading: Backpropagation handout; Rumelhart et al. (1986)
	Introduction to matlab; neural net simulation; simulating backprop
22	Introduction to Hopfield networks
	Analysis of dynamical systems
	Reading: Hopfield, 1982
	Introduction to unsupervised learning systems
	Final project proposal discussion
2.4	
24	Clustering, winner-take-all mechanisms
	Competitive networks
	Reading: Zipser & Rumelhart, 1985
29	Review and discussion [Final project proposals DUE]
31	Exam 2
ART III: Bra	in and computation
Nov 5	Paleocortex; olfactory circuits [Matlab assignment DUE]
	Simple telencephalic organization
	Reading: Granger 2003
7	Clustering; hierarchical clustering
/	Computational costs; scaling; predictions & experiments
	Computational costs, scaring, predictions & experiments
12	Striatal complex / basal ganglia
	Reinforcement learning
	Reading: Niv 2009
	Redding. 1417 2009
14	Thalamocortical loops
	Unsupervised and supervised classification
	Reading: Rodriguez et al., 2004;
	Reading: Chandrashekar et al., 2012
	Memory storage and retrieval; data structures; capacity
19	Implications
	Experimental questions for psychology & neuroscience
	Applications: software, hardware, robotics, embedded AI
	Review & discussion
	Reading: Granger 2011
Exam week	Evam 3
LAGIII WCCK	LAMII 5
	[Final projects DUE]

Readings:

Chandrashekar A, Granger R (2012) Derivation of a novel efficient supervised learning algorithm from cortical-subcortical loops. Front. Comp Neuro, 5(50): 1-17. doi: 10.3389/fncom.2011.00050

Granger R (2003) Neural Computation: Olfactory cortex as a model for telencephalic processing. Learning & Memory (J.Byrne, Ed.), pp.445-450.

Granger R (2006) Engines of the brain. AI Magazine 27: 15-32.

Granger R (2011). How brains are built: Principles of computational neuroscience. Cerebrum; The Dana Foundation. http://dana.org/news/cerebrum/detail.aspx?id=30356

Granger R Wiebe S, Taketani M, Lynch G (1996) Distinct circuits composing the hippocampal region Hippocampus 6:567-578.

Hebb D (1949). The organization of behavior. New York: Wiley.

Hopfield, J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci, 79: 2554-2558.

Lynch (2003) Long-term potentiation in the Eocene. Phil. Trans R. Soc. Lond B 358:625-628.

Martinez & Derreck (1996) Long-term potentiation and learning Ann. Rev. Psych. 47:173-203.

Rodriguez A, Whitson J, Granger R (2004) Derivation and analysis of basic computational operations of thalamocortical circuits J Cog Neurosci., 16:856-877.

Rumelhart D, Zipser D (1985). Feature discovery by competitive learning. Cognitive Sci, 9:75-112.

Rumelhart D, Hinton G, Williams R (1986). Learning internal representation by error propagation. Nature 323: 533-536.

Striedter G (2006) Precis of Principles of Brain Evolution, Behav & Brain Sci, 29:1-36.