

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCIS15100079004

FCC REPORT (WIFI)

Applicant: MOVILTELCO TRADE, S.L.

Address of Applicant: Street: ABTAO, 25-1Floor A-office MADRID-SPAIN, MADRID,

Spain

Equipment Under Test (EUT)

Product Name: Smartphone

Model No.: A46

Trade mark: mtt

FCC ID: 2ACQKTELCO007

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 21 Oct., 2015

Date of Test: 21 Oct., to 10 Nov., 2015

Date of report issued: 10 Nov., 2015

Test Result: PASS*

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	10 Nov., 2015	Original

Tested by: Zora Lee Date: 10 Nov., 2015

Test Engineer

Reviewed by: Date: 10 Nov., 2015

Project Engineer

3 Contents

			Page
1	CO/	/ER PAGE	1
2	VER	RSION	2
3		NTENTS	
4		ST SUMMARY	
5		NERAL INFORMATION	
၁	GEN	NERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST ENVIRONMENT AND MODE	
	5.4	LABORATORY FACILITY	7
	5.5	LABORATORY LOCATION	7
	5.6	TEST INSTRUMENTS LIST	8
6	TES	T RESULTS AND MEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT:	9
	6.2	CONDUCTED EMISSION	10
	6.3	CONDUCTED OUTPUT POWER	13
	6.4	OCCUPY BANDWIDTH	18
	6.5	POWER SPECTRAL DENSITY	
	6.6	BAND EDGE	
	6.6.	1 Conducted Emission Method	32
	6.6.2	2 Radiated Emission Method	35
	6.7	Spurious Emission	52
	6.7.	1 Conducted Emission Method	52
	6.7.2	2 Radiated Emission Method	61
7	TES	ST SETUP PHOTO	69
Ω	FIIT	CONSTRUCTIONAL DETAILS	70

4 Test Summary

Test Item	Section in CFR 47	Uncertainty	Result
Antenna requirement	15.203/15.247 (c)	/	Pass
AC Power Line Conducted Emission	ed 15.207 ±3.28dB		Pass
Conducted Peak Output Power	15.247 (b)(3)	±1.50dB	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	±1.50dB	Pass
Power Spectral Density	15.247 (e)	±1.50dB	Pass
Band Edge	15.247(d)	±1.50dB	Pass
Spurious Emission	15.205/15.209	±4.88dB	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	MOVILTELCO TRADE, S.L	
Address of Applicant:	Street: ABTAO, 25-1Floor A-office MADRID-SPAIN, MADRID, Spain	
Manufacturer:	Shenzhen Gotron Electronic Co., LTD	
Address of Manufacturer:	518, 5F, R&D building, Tsinghua Hi-Tech Park, Hi-Tech park(North) Nanshan district, Shenzhen, China	
Factory:	Shenzhen Gotron Electronic CO., Ltd Longhua Branch	
Address of Factory:	3F, A building, PengLongPan Industrial Park, ShuNv Road, DaFu Industrial Park, GuanLan Street, LongHua New District, ShenZhen, China	

5.2 General Description of E.U.T.

Product Name:	Smartphone
Model No.:	A46
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20)) 2422MHz~2452MHz (802.11n(H40))
Channel numbers:	11 for 802.11b/802.11g/802.11(H20) 7 for 802.11n(H40)
Channel separation:	5MHz
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum(DSSS)
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps,54Mbps
Data speed (IEEE 802.11n):	Up to 150Mbps
Antenna Type:	Internal Antenna
Antenna gain:	1.0dBi
AC adapter:	Model: APS-M009050100W-G Input:100-240V AC,50/60Hz 0.35A Output:5V DC MAX 1.0A
Power supply:	Rechargeable Li-ion Battery DC3.8V-1900mAh

Operation Frequency each of channel For 802.11b/g/n(H20)							
Channel Frequency Channel Frequency Channel Frequency							
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Operation Frequency each of channel For 802.11n(H40)									
Channel	Channel Frequency Channel Frequency Channel Frequency Channel Frequency								
4 2427MHz 7 2442MHz									
5 2432MHz 8 2447MHz									
3	2422MHz	6	2437MHz	9	2452MHz				

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/802.11g/802.11n (H20)

Channel	Frequency
The lowest channel	2412MHz
The middle channel	2437MHz
The Highest channel	2462MHz

802.11n (H40)

Channel	Frequency
The lowest channel	2422MHz
The middle channel	2437MHz
The Highest channel	2452MHz

Peport No: CCIS15100079004

5.3 Test environment and mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Operation mode	Keep the EUT in continuous transmitting with modulation			

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate
802.11b	1Mbps
802.11g	6Mbps
802.11n(H20)	6.5Mbps
802.11n(H40)	13.5Mbps

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11g, 6.5Mbps for 802.11n(H20) and 13.5 Mbps for 802.11n(H40). Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.5 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.6 Test Instruments list

Radiated Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017
2	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	03-28-2015	03-28-2016
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	03-28-2015	03-28-2016
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
5	Amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2015	03-31-2016
6	Amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2015	03-31-2016
7	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2015	03-31-2016
8	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2015	03-31-2016
9	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A
10	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A
11	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP	CCIS0023	03-28-2015	03-28-2016
12	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	03-28-2015	03-28-2016
13	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2015	03-31-2016

Cond	Conducted Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	11-10-2012	11-09-2015	
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-28-2015	03-28-2016	
3	LISN	CHASE	MN2050D	CCIS0074	03-28-2015	03-28-2016	
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2015	03-31-2016	
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The WiFi antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 1.0 dBi.

6.2 Conducted Emission

	~				
Test Requirement:	FCC Part 15 C Section 15.207	FCC Part 15 C Section 15.207			
Test Method:	ANSI C63.4: 2009	ANSI C63.4: 2009			
Test Frequency Range:	150 kHz to 30 MHz	150 kHz to 30 MHz			
Class / Severity:	Class B				
Receiver setup:	RBW=9 kHz, VBW=30 kHz				
Limit:	5	Limit (c	dBuV)		
	Frequency range (MHz)	Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
Test procedure	* Decreases with the logarithm 1. The E.U.T and simulators				
	a line impedance stabiliza 50ohm/50uH coupling im 2. The peripheral devices at through a LISN that provi with 50ohm termination. (test setup and photograp 3. Both sides of A.C. line an interference. In order to fi positions of equipment ar changed according to AN measurement.	pedance for the measure also connected to the ides a 500hm/50uH co (Please refer to the blows). e checked for maximum ind the maximum emised all of the interface contents.	uring equipment. ne main power upling impedance ock diagram of the m conducted sion, the relative ables must be		
Test setup:	LISN 40cm		er — AC power		
Test Instruments:	Refer to section 5.6 for details	3			
Test mode:	Refer to section 5.3 for details	3			
Test results:	Passed				

Measurement Data

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Neutral:

Trace: 17

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL Site Condition

EUT : Smartphone Model : A46

Test Mode : Wifi mode Power Rating : AC120/60Hz Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Zora

emark	:							
	Freq	Read Level	LISN Factor	Cable Loss		Limit Line		Remark
	MHz	dBu∜	₫₿	₫₿	dBu₹	dBu₹	dB	
1	0.299	19.16	0.26	10.74	30.16	50.28	-20.12	Average
2	0.582	35.32	0.24	10.77	46.33	56.00	-9.67	QP
3	0.582	23.61	0.24	10.77	34.62	46.00	-11.38	Average
4	0.690	21.85	0.19	10.77	32.81	46.00	-13.19	Average
5	0.724	33.43	0.18	10.78	44.39	56.00	-11.61	QP
6	2.384	36.08	0.29	10.94	47.31	56.00	-8.69	QP
7	2.384	24.20	0.29	10.94	35.43	46.00	-10.57	Average
8	3.454	23.61	0.29	10.91	34.81	46.00	-11.19	Average
1 2 3 4 5 6 7 8 9 10	3.491	36.08	0.29	10.90	47.27	56.00	-8.73	QP
10	3.860	34.79	0.29	10.89	45.97	56.00	-10.03	QP
11	6.769	33.26	0.26	10.81	44.33	60.00	-15.67	QP
12	6,805	24.02	0.26	10.80	35.08	50.00	-14.92	Average

Line:

Trace: 19

: CCIS Shielding Room

Site Condition : FCC PART15 B QP LISN LINE

EUT : Smartphone Model : A46

Test Mode : Wifi mode Power Rating : AC120/60Hz

Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Zora

MHz	dBu∜	₫₿	₫B	dBu₹	dBu√	₫B	
0.170	33.39	0.27	10.77	44.43	64.94	-20.51	QP
0.299	26.94	0.26	10.74	37.94	60.28	-22.34	QP
0.299	14.32	0.26	10.74	25.32	50.28	-24.96	Average
0.585	29.63	0.26	10.77	40.66	56.00	-15.34	QP
0.585	15.85	0.26	10.77	26.88	46.00	-19.12	Average
0.724	29.43	0.22	10.78	40.43	56.00	-15.57	QP
0.727	15.24	0.22	10.78	26.24	46.00	-19.76	Average
2.346	15.73	0.26	10.94	26.93	46.00	-19.07	Average
2.371	30.09	0.26	10.94	41.29	56.00	-14.71	QP
3.472	15.88	0.28	10.91	27.07	46.00	-18.93	Average
6.698	32.64	0.32	10.81	43.77	60.00	-16.23	QP
6.698	17.55	0.32	10.81	28.68	50.00	-21.32	Average
	Freq 0.170 0.299 0.299 0.585 0.585 0.724 0.727 2.346 2.371 3.472 6.698	Read Freq Level MHz dBuV 0.170 33.39 0.299 26.94 0.299 14.32 0.585 29.63 0.585 15.85 0.724 29.43 0.727 15.24 2.346 15.73 2.371 30.09 3.472 15.88 6.698 32.64	Read LISN Freq Level Factor MHz dBuV dB 0.170 33.39 0.27 0.299 26.94 0.26 0.299 14.32 0.26 0.585 29.63 0.26 0.585 15.85 0.26 0.724 29.43 0.22 0.727 15.24 0.22 2.346 15.73 0.26 2.371 30.09 0.26 3.472 15.88 0.28 6.698 32.64 0.32	Read LISN Cable Level Factor Loss MHz dBuV dB dB	Read LISN Cable Freq Level Factor Loss Level MHz dBuV dB dB dB dBuV 0.170 33.39 0.27 10.77 44.43 0.299 26.94 0.26 10.74 37.94 0.299 14.32 0.26 10.74 25.32 0.585 29.63 0.26 10.77 40.66 0.585 15.85 0.26 10.77 40.66 0.585 15.85 0.26 10.77 26.88 0.724 29.43 0.22 10.78 40.43 0.727 15.24 0.22 10.78 40.43 0.727 15.24 0.22 10.78 26.24 2.346 15.73 0.26 10.94 26.93 2.371 30.09 0.26 10.94 41.29 3.472 15.88 0.28 10.91 27.07 6.698 32.64 0.32 10.81 43.77	Read LISN Cable Limit Freq Level Factor Loss Level Line MHz dBuV dB dB dB dBuV dBuV 0.170 33.39 0.27 10.77 44.43 64.94 0.299 26.94 0.26 10.74 37.94 60.28 0.299 14.32 0.26 10.74 25.32 50.28 0.585 29.63 0.26 10.77 40.66 56.00 0.585 15.85 0.26 10.77 26.88 46.00 0.724 29.43 0.22 10.78 40.43 56.00 0.724 29.43 0.22 10.78 40.43 56.00 0.727 15.24 0.22 10.78 26.24 46.00 2.346 15.73 0.26 10.94 26.93 46.00 2.371 30.09 0.26 10.94 41.29 56.00 3.472 15.88 0.28 10.91 27.07 46.00 6.698 32.64 0.32 10.81 43.77 60.00	Read LISN Cable Limit Over

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)		
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 9.2.2		
Limit:	30dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data

	Maximum Conducted Output Power (dBm)					
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(dBm)	Result
Lowest	13.52	12.86	12.06	11.09		
Middle	14.03	13.58	12.52	11.32	30.00	Pass
Highest	14.07	13.47	12.64	11.32		

Test plot as follows:

Test mode: 802.11b

Lowest channel

Middle channel

Highest channel

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(H20)

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(H40)

Lowest channel

Middle channel

Highest channel

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)		
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 8.1		
Limit:	>500kHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data

٠.	ododiomont De						
	-						
	Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(kHz)	Result
	Lowest	10.15	15.54	16.14	35.49		
	Middle	10.15	15.50	16.70	35.33	>500	Pass
	Highest	10.15	15.47	17.14	35.49		

T		99% Occupy		5 "		
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(kHz)	Result
Lowest	12.63	16.38	17.58	35.72		
Middle	12.67	16.46	17.58	35.88	N/A	N/A
Highest	12.67	16.42	17.58	35.72		

Test plot as follows:

6dB EBW

Test mode: 802.11b

Lowest channel

Middle channel

Highest channel

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(H20)

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(H40)

Lowest channel

Middle channel

Highest channel

99% OBW

Test mode: 802.11b

Middle channel

Highest channel

Test mode: 802.11g

Date: 22.0CT.2015 11:53:36

Lowest channel

16.383616384 MHz

Date: 22.0CT.2015 11:53:09

Middle channel

Highest channel

Test mode: 802.11n(H20)

Lowest channel

Mai al all a cala a caca

Highest channel

Test mode: 802.11n(H40)

Lowest channel

Middle channel

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)		
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 10.2		
Limit:	8dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data

T		Power Spec		5 "		
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(dBm)	Result
Lowest	3.62	-1.83	-1.83	-6.85		
Middle	4.26	0.38	0.52	-3.18	8.00	Pass
Highest	4.40	-1.16	-1.22	-6.46		

Test plot as follows:

Test mode: 802.11b

Lowest channel

Middle channel

Highest channel

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(H20)

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(H40)

Lowest channel

Middle channel

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)		
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 13		
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Test plot as follows:

Lowest channel Highest channel

Lowest channel Highest channel

Lowest channel Highest channel

Lowest channel Highest channel

6.6.2 Radiated Emission Method

0.0.2	Nadiated Lillission Wi									
	Test Requirement:	FCC Part 15 C Section 15.209 and 15.205								
	Test Method:	ANSI C63.10: 2009 and KDB 558074v03r03 section 12.1								
	Test Frequency Range:	2.3GHz to 2.5GHz								
	Test site:	Measurement Distance: 3m								
	Receiver setup:									
		Frequency	Detector	RBW	VBW	Remark				
		Above 1GHz	Peak	1MHz 1MHz	3MHz 3MHz	Peak Value				
	Limit:		RMS	I IVITZ SIVITZ		Average Value				
	LIIIII.	Freque	ency	Limit (dBuV/m @3m)		Remark				
		Above 1		54.00		Average Value				
			Peak Value e 0.8 meters above							
	Toot cotup:	 the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. 								
	Test setup:	Grisund fisherna Plane Test Receiver								
	Test Instruments:	Refer to section 5.6 for details								
	Test mode:	Refer to section 5.3 for details								
	Test results:	Passed								

802.11b

Test channel: Lowest

Horizontal:

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Smartphone

: A46 Model

Test mode : Wifi-b-L Mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Zora

REMARK

	Set 10	Read	Antenna	Cable	Preamp		Limit	Over	
	Freq						Line	Limit	Remark
	MHz	dBu∀	dB/m	₫B	−−−dB	dBuV/m	dBuV/m	dB	
1	2390.000			6.63					Peak

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL

EUT : Smartphone

Model : A46

Test mode : Wifi-b-L Mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Zora

REMARK

mu.	41 .								
					Preamp		Limit		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∜	dB/m	dB	dB	dBu∀/m	dBuV/m	₫B	
sä	2390.000	19.77	27.58	6.63	0.00	53.98	74.00	-20.02	Peak
2	2390.000	8.83	27.58	6.63	0.00	43.04	54.00	-10.96	Average

Remark:

1 2

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Smartphone

: A46 Model

Test mode : Wifi-b-H Mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55% Test Engineer: Zora

REMARK

Д	w :								
		Read	Ant enna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	₫₿u₹	dB/m	dB	dB	dBu√/m	dBuV/m	₫B	
	2483.500 2483.500		27.52 27.52			55.30 43.31			Peak Average

Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL

EUT : Smartphone Model : A46

Test mode : Wifi-b-H Mode Power Rating : AC 120V/60Hz

Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Zora

REMARK

		Read	Ant enna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∀	dB/m	dB	d₿	dBuV/m	dBuV/m	dB	
1 2	2483, 500 2483, 500		27.52 27.52						

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11q

Test channel: Lowest

Horizontal:

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Smartphone

: A46 Model

Test mode : Wifi-g-L Mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Zora

REMARK

		Read	Ant enna	Cable	Preamp		Limit	Over		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
	MHz	dBu∜	dB/m	−−−dB	<u>dB</u>	dBu√/m	dBuV/m	dB		
,	2390.000 2390.000		27.58 27.58		0.00				Peak Average	

Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

: 3m chamber Site

: FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : Smartphone

: A46 Model Test mode : Wifi-g-L Mode Power Rating : AC 120V/60Hz Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Zora REMARK :

MAR	, i	Read	Antenna	Cable	Preamo		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
-	MHz	dBu∀	dB/m	dB	dB	dBuV/m	dBuV/m	dB	
1	2390,000	20.35							
2	2300 000	8 87	27 52	6 63	0.00	43 02	54 00	-10 92	Arrerage

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Smartphone

Model : A46

Test mode : Wifi-g-H Mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Zora REMARK

7		Read	Readânt enna		Preamp		Limit	Over		
	Freq		Factor				Line	Limit	Remark	
-	MHz	dBu∜	dB/m	dB	dB	dBuV/m	dBuV/m	d₿		
	2483, 500 2483, 500	10.000 00.000 00.000	27.52 27.52	6.85		62.43 45.79			Peak Average	

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : Smartphone

Model : A46
Test mode : Wifi-g-H Mode
Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55% Test Engineer: Zora

REMA

Al	KK :	Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu₹	dB/m	−−−dB	d₿	dBuV/m	dBuV/m	<u>dB</u>	
	2483.500 2483.500								

Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n (H20)

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Smartphone

Model : A46

Test mode : Wifi-n20-L Mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni:55%

Test Engineer: Zora REMARK :

	Freq			a Cable r Loss m dB	Factor	Line	Limit	Remark
	MHz	dBm	<u>dB/m</u>					
1 2	2390.000 2390.000							

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: Smartphone EUT

Model : A46

Test mode : Wifi-n20-L Mode Power Rating : AC 120V/60Hz Environment : Temp: 25.5°C Huni:55%

Test Engineer: Zora REMARK

PAT A									
			Antenna				Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBm	dB/m	dB	dB	dBm/m	dBm/m	<u>dB</u>	
1	2390, 000 2390, 000		27.58 27.58	6.63		56.55			Peak Average
-	2390.000	9.10	21.00	0.03	0.00	43.31	04.00	-10.09	Average

Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

EUT : Smartphone

Model : A46

Test mode : Wifi-n20-H Mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Zora

REMARK

THE T		Road	Ant enna	Cable	Draamn		Limit	Over	
	Freq								Remark
	MHz	dBm	dB/m	dB	d₿	dBm/m	dBm/m	₫B	
1 2	2483.500 2483.500		27.52 27.52			62.51 47.00			Peak Average

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : Smartphone

Model : A46

Test mode : Wifi-n20-H Mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55% Test Engineer: Zora

REMARK

THE THE									
			Antenna Factor			Level	Limit Line		Remark
-	MHz	dBa	dB/m	dB	dB	dBm/m	dBn/m	<u>dB</u>	
1	2483.500	25.70		6.85				-13.93	
2	2483.500	10.97	27.52	6.85	0.00	45.34	54.00	-8.66	Average
3	2484.876	26.56	27.52	6.85	0.00	60.93	74.00	-13.07	Peak
4	2484.876	11.01	27.52	6.85	0.00	45.38	54.00	-8.62	Average

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n (H40)

Test channel: Lowest

Horizontal:

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

EUT : Smartphone

Model A46

Test mode : Wifi-n40-L Mode Power Rating : AC 120V/60Hz

Environment: Temp: 25.5°C Huni: 55%

Test Engineer: Zora REMARK :

	2 20	Read. Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line		
-	MHz	dBn	dB/m	d₿	<u>d</u> B	dBm/m	dBm/m	<u>d</u> B	
2	2388, 584 2388, 584 2390, 000 2390, 000	11.23 29.46	27.58 27.58	6.63 6.63 6.63	0.00	45.44 63.67	54.00 74.00	-10.33	Average

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : Smartphone

Model : A46

: Wifi-n40-L Mode Test mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Zora

THE STATE OF									
	Freq		Antenna Factor			Level	Limit Line	2000 2000 2000 2000	
	MHz	dB _m	$\overline{-dB/m}$	dB	<u>dB</u>	dBm/m	dBm/m	<u>dB</u>	
1	2387.787	24.80	27.58	6.63	0.00	59.01		-14.99	
2	2387.787	10.33	27.58	6.63	0.00	44.54	54.00	-9.46	Average
3	2390.000	24.00	27.58	6.63	0.00	58.21	74.00	-15.79	Peak
4	2390.000	10.07	27.58	6.63	0.00	44.28			Average

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Smartphone

Model : A46

Test mode : Wifi-n40-H Mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55% Test Engineer: Zora REMARK :

THAT	= 2		Antenna Factor						
	MHz	dBm	dB/m	dB	d₿	dBπ/m	dBm/m	dB	
1 2	2483.500 2483.500					67.63 45.81			

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : Smartphone

Model : A46

Test mode : Wifi-n40-H Mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Zora REMARK

MAR	w :	Read	Ant enna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level			Remark
	MHz	dBm	dB/m	dB	dB	dBm/m	dBm/m	dB	
1	2483.500	25.73	27.52	6.85		60.10			Peak

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report. 2.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)
Test Method:	ANSI C63.10:2009 and KDB558074 section 11
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	
	Spectrum Analyzer
	Non-Conducted Table
	Ground Reference Plane
Test Instruments:	Refer to section 5.6 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Test plot as follows:

Date: 28.OCT.2015 02:01:57

30MHz~25GHz

Middle channel

Date: 28.OCT.2015 02:03:06

30MHz~25GHz

Highest channel

Date: 28.OCT.2015 02:04:12

30MHz~25GHz

Date: 28.0CT.2015 02:09:21

30MHz~25GHz

Middle channel

Date: 28.OCT.2015 02:08:38

30MHz~25GHz

Highest channel

Date: 28.OCT.2015 02:07:43

30MHz~25GHz

Test mode: 802.11n(H20) Lowest channel

Date: 28.OCT.2015 02:09:55

30MHz~25GHz

Middle channel

Date: 28.OCT.2015 02:10:31

30MHz~25GHz

Highest channel

Date: 28.OCT.2015 02:11:06

30MHz~25GHz

Test mode: 802.11n(H40) Lowest channel

Date: 28.OCT.2015 02:11:47

30MHz~25GHz

Middle channel

Date: 28.OCT.2015 02:12:24

30MHz~25GHz

Page 59 of 70

Highest channel

Date: 28.OCT.2015 02:13:20

30MHz~25GHz

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205											
Test Method:	ANSI C63.10:2009											
Test Frequency Range:	9KHz to 25GHz											
Test site:	Measurement D	istance: 3m										
Receiver setup:												
	Frequency	Frequency Detector RBW VBW Remark 30MHz-1GHz Quasi-peak 120KHz 300KHz Quasi-peak Value										
	30MHz-1GHz Quasi-peak 120KHz 300KHz Quasi-peak Value											
	Above 1GHz	Peak	1MHz	3MHz	Peak Value							
	ABOVE TOTIZ	RMS	1MHz	3MHz	Average Value							
Limit:												
	Freque		Limit (dBuV/	•	Remark							
	30MHz-8		40.0		Quasi-peak Value							
	88MHz-21		43.5		Quasi-peak Value							
	216MHz-9		46.0 54.0		Quasi-peak Value							
	960MHz-	IGHZ	54.0 54.0		Quasi-peak Value Average Value							
	Above 1	GHz	74.0		Peak Value							
Test Procedure:	the ground degrees to 2. The EUT wantenna, watower. 3. The antennathe ground Both horizon make the make the make the maters and to find the material find	at a 3 meter of determine the vas set 3 meter of hich was mount a height is vant to determine ontal and vertice assurement. Uspected emissionen the antenial the rota table maximum reacciver system and width with sion level of the cified, then to would be reported the sould be reported to the sou	the top of a rechamber. The eposition of the position of the eposition of the rechamber of the maximum cal polarization was turned the was turned the was turned the was turned for the eposition of the polarization was set to Polarization was set	otating table table was ne highest r the interfer op of a varia meter to for value of the ons of the an T was arran to heights to from 0 degr eak Detect old Mode. lik mode wa oe stopped a vise the emi one by one	e 0.8 meters above rotated 360 adiation. ence-receiving able-height antenna our meters above e field strength. Intenna are set to aged to its worst from 1 meter to 4 ees to 360 degrees							

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL Condition

: Smartphone EUT Model : A46

: Wifi Mode Test mode Power Rating: AC 120V/60Hz Environment: Temp:25.5°C Huni:55% Test Engineer: Zora

MMNN									
	Freq	Read. Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	
-	MHz	dBu₹	-dB/m	₫B	₫B	dBuV/m	dBuV/m	₫B	
1	95.762	42.18	12.90	0.93	29.55	26.46	43.50	-17.04	QP
1 2 3 4 5	102.001	44.75	12.97	0.98	29.51	29.19	43.50	-14.31	QP
3	107.888	46.01	12.44	1.03	29.47	30.01	43.50	-13.49	QP
4	163.755	38.11	8.77	1.34	29.10	19.12	43.50	-24.38	QP
5	202.810	39.94	10.64	1.39	28.81	23.16	43.50	-20.34	QP
6	285.978	37.21	12.78	1.73	28.47	23.25	46.00	-22.75	QP

Site 3m chamber

Condition : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL

EUT : Smartphone

Model : A46 : Wifi Mode Test mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55% Test Engineer: Zora REMARK :

THANKS									
	Freq		Antenna Factor				Limit Line	Over Limit	Remark
22	MHz	dBuV	$-\overline{dB/m}$	₫B	<u>d</u> B	dBuV/m	dBu√/m	dB	
1	89.590	44.65	11.76	0.91	29.57	27.75	43.50	-15.75	QP
2	104.536	41.31	12.73	1.00	29.50	25.54	43.50	-17.96	QP
2 3 4 5 6	133.151	43.76	8.67	1.21	29.31	24.33	43.50	-19.17	QP
4	141.330	43.75	8.20	1.27	29.27	23.95	43.50	-19.55	QP
5	386.754	46.92	13.15	1.79	28.47	33.39	46.00	-12.61	QP
6	547.098	36.22	17.51		29.09	27.17	46.00	-18.83	QP

Above 1GHz

Test mode: 80	02.11b		Test char	nnel: Lowest		Remark: Peak			
Frequency	Read	Antenna	Cable	Preamp	Level	Limit Line	Over	.	
(MHz)	Level	Factor	Loss	Factor	(dBuV/m)	(dBuV/m)	Limit	Polar.	
4004.00	(dBuV)	(dB/m)	(dB)	(dB)	40.05	74.00	(dB)	Marthael	
4824.00	46.95	31.54	10.58	40.22	48.85	74.00	-25.15	Vertical	
4824.00	48.49	31.54	10.58	40.22	50.39	74.00	-23.61	Horizontal	
Test mode: 80	02.11b		Test channel: Lowest			Remark: Ave	erage		
Frequency	Read	Antenna	Cable	Preamp	Level	Limit Line	Over		
(MHz)	Level	Factor	Loss	Factor	(dBuV/m)	(dBuV/m)	Limit	Polar.	
(1411 12)	(dBuV)	(dB/m)	(dB)	(dB)	(aba v/III)	(abav/iii)	(dB)		
	(' ' /	\ ' ' /							
4824.00	37.25	31.54	10.58	40.22	39.15	54.00	-14.85	Vertical	

Test mode: 80	02.11b		Test char	nnel: Middle		Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	47.32	31.57	10.64	40.15	49.38	74.00	-24.62	Vertical	
4874.00	49.10	31.57	10.64	40.15	51.16	74.00	-22.84	Horizontal	
Test mode: 80	02.11b		Test channel: Middle			Remark: Ave	rage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	38.20	31.57	10.64	40.15	40.26	54.00	-13.74	Vertical	
4874.00	40.40	31.57	10.64	40.15	42.46	54.00	-11.54	Horizontal	

Test mode: 80	02.11b		Test char	nnel: Highest		Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	48.26	31.61	10.70	40.08	50.49	74.00	-23.51	Vertical	
4924.00	47.01	31.61	10.70	40.08	49.24	74.00	-24.76	Horizontal	
Test mode: 80	02.11b		Test channel: Highest			Remark: Ave	rage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	38.62	31.61	10.70	40.08	40.85	54.00	-13.15	Vertical	
4924.00	38.47	31.61	10.70	40.08	40.70	54.00	-13.30	Horizontal	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 80)2.11g		Test channel: Lowest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	48.63	31.54	10.58	40.22	50.53	74.00	-23.47	Vertical	
4824.00	49.52	31.54	10.58	40.22	51.42	74.00	-22.58	Horizontal	
Test mode: 80	02.11g		Test char	nel: Lowest		Remark: Ave	rage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	38.54	31.54	10.58	40.22	40.44	54.00	-13.56	Vertical	
4824.00	38.78	31.54	10.58	40.22	40.68	54.00	-13.32	Horizontal	

Test mode: 80	02.11g		Test char	nel: Middle		Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	47.10	31.57	10.64	40.15	49.16	74.00	-24.84	Vertical	
4874.00	48.38	31.57	10.64	40.15	50.44	74.00	-23.56	Horizontal	
Test mode: 80	02.11g		Test char	nel: Middle		Remark: Ave	rage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	38.49	31.57	10.64	40.15	40.55	54.00	-13.45	Vertical	
4874.00	39.74	31.57	10.64	40.15	41.80	54.00	-12.20	Horizontal	

Test mode: 8	Test mode: 802.11g		Test channel: Highest			Remark: Peak				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4924.00	49.10	31.61	10.70	40.08	51.33	74.00	-22.67	Vertical		
4924.00	47.63	31.61	10.70	40.08	49.86	74.00	-24.14	Horizontal		
Test mode: 8	Test mode: 802.11g			Test channel: Highest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4924.00	38.13	31.61	10.70	40.08	40.36	54.00	-13.64	Vertical		
4924.00	37.68	31.61	10.70	40.08	39.91	54.00	-14.09	Horizontal		

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 802.11n(H20)			Test channel: Lowest			Remark: Peak				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4824.00	47.52	31.54	10.58	40.22	49.42	74.00	-24.58	Vertical		
4824.00	47.85	31.54	10.58	40.22	49.75	74.00	-24.25	Horizontal		
Test mode: 80	Test mode: 802.11n(H20)			Test channel: Lowest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4824.00	38.21	31.54	10.58	40.22	40.11	54.00	-13.89	Vertical		
4824.00	37.49	31.54	10.58	40.22	39.39	54.00	-14.61	Horizontal		

Test mode: 80	Test mode: 802.11n(H20)			Test channel: Middle			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4874.00	48.20	31.57	10.64	40.15	50.26	74.00	-23.74	Vertical		
4874.00	47.56	31.57	10.64	40.15	49.62	74.00	-24.38	Horizontal		
Test mode: 80	Test mode: 802.11n(H20)			Test channel: Middle			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4874.00	37.46	31.57	10.64	40.15	39.52	54.00	-14.48	Vertical		
4874.00	37.19	31.57	10.64	40.15	39.25	54.00	-14.75	Horizontal		

Test mode: 802.11n(H20)			Test channel: Highest			Remark: Peak				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4924.00	47.10	31.61	10.70	40.08	49.33	74.00	-24.67	Vertical		
4924.00	46.95	31.61	10.70	40.08	49.18	74.00	-24.82	Horizontal		
Test mode: 80	Test mode: 802.11n(H20)			Test channel: Highest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4924.00	37.25	31.61	10.70	40.08	39.48	54.00	-14.52	Vertical		
4924.00	37.62	31.61	10.70	40.08	39.85	54.00	-14.15	Horizontal		

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 802.11n(H40)			Test channel: Lowest			Remark: Peak				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4844.00	46.92	31.55	10.61	40.19	48.89	74.00	-25.11	Vertical		
4844.00	46.32	31.55	10.61	40.19	48.29	74.00	-25.71	Horizontal		
Test mode: 80	Test mode: 802.11n(H40)			Test channel: Lowest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4844.00	37.18	31.55	10.61	40.19	39.15	54.00	-14.85	Vertical		
4844.00	37.45	31.55	10.61	40.19	39.42	54.00	-14.58	Horizontal		

Test mode: 802.11n(H40)			Test channel: Middle			Remark: Peak				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4874.00	48.02	31.57	10.64	40.15	50.08	74.00	-23.92	Vertical		
4874.00	47.26	31.57	10.64	40.15	49.32	74.00	-24.68	Horizontal		
Test mode: 80	Test mode: 802.11n(H40)			Test channel: Middle			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4874.00	37.06	31.57	10.64	40.15	39.12	54.00	-14.88	Vertical		
4874.00	36.58	31.57	10.64	40.15	38.64	54.00	-15.36	Horizontal		

Test mode: 802.11n(H40)			Test channel: Highest			Remark: Peak				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4904.00	47.54	31.59	10.67	40.10	49.70	74.00	-24.30	Vertical		
4904.00	46.83	31.59	10.67	40.10	48.99	74.00	-25.01	Horizontal		
Test mode: 80	Test mode: 802.11n(H40)			Test channel: Highest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4904.00	37.45	31.59	10.67	40.10	39.61	54.00	-14.39	Vertical		
4904.00	37.29	31.59	10.67	40.10	39.45	54.00	-14.55	Horizontal		

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.