Homework 06

Duplicate this Jupyter Notebook in your week-07 folder (right-click -> Duplicate) and then add your last name to the beginning of it (ie. blevins-hw-06.ipynb - otherwise you risk having all your work overwritten when you try to sync your GitHub repository with your instructor's repository.

Student Name: Kylie Miller

Overview

This homework assignment will help you learn how to use the Pandas library to explore tabular data by applying some of the concepts and lessons from Melanie Walsh, Pandas I to a new dataset.

This week we're going to use a spreadsheet of historical data transcribed by CU Denver history major Ryan Hanlon as part of his final project for the course Introduction to Digital Studies in Spring 2021. The data consists of a passenger list from a steamship that arrived in Boston on April 9, 1884 carrying several hundred immigrants.

The Steamship Grecian

The nine-page passenger list from the *Steamship Grecian* was submitted to authorities at the Port of Boston. This document was later scanned by the Church of Latter Day Saints and made available through its FamilySearch online archive.

Passenger list from the Steamship Grecian

Ryan then transcribed the data in Spring 2021 into a spreadsheet formatted as a CSV (comma separated value) file contained in this folder: boston-passenger-list-1884.csv.

For this homework, you will be following many of Melanie Walsh's steps in Pandas I and then adapting them to fit this new dataset.

1. Import the Pandas library (use the alias pd) and read in the CSV file, storing the contents of the file as a dataframe named passengers_df. Add a second line of code to display the contents of the dataframe (truncated).

In [9]: import pandas as pd
 passengers_df = pd.read_csv('boston-passenger-list-1884.csv', delimiter=",")
 passengers_df

Out[9]:		first_name	last_name	date	age	native_country	destination_city	destination_
	0	Jno	McNab	09 Apr 1884	21	Scotland	Suelpla	Ce
	1	Thos	Campbell	09 Apr 1884	24	Scotland	Suelpla	Ce
	2	Jas	Mitchell	09 Apr 1884	23	Scotland	Detroit	
	3	Don	Cumming	09 Apr 1884	24	Scotland	Detroit	
	4	Jno	McKinlay	09 Apr 1884	24	Scotland	Winnipeg	Ce
	•••			•••				
	510	Mich	Mulkern	09 Apr 1884	15	Ireland	Boston	
	511	Math	Griffins	09 Apr 1884	2	Ireland	Pittsburg	
	512	Т	McDermott	09 Apr 1884	35	United States	Boston	
	513	Wm	Hewitt	09 Apr 1884	25	United States	Boston	
	514	F	Doherty	09 Apr 1884	27	United States	Boston	

515 rows × 9 columns

2. Display the **first 6 rows** of the dataframe.

In [11]: passengers_df[:6]

Out[11]:		first_name	last_name	date	age	native_country	destination_city	destination_sta
	0	Jno	McNab	09 Apr 1884	21	Scotland	Suelpla	Cana
	1	Thos	Campbell	09 Apr 1884	24	Scotland	Suelpla	Cana
	2	Jas	Mitchell	09 Apr 1884	23	Scotland	Detroit	
	3	Don	Cumming	09 Apr 1884	24	Scotland	Detroit	
	4	Jno	McKinlay	09 Apr 1884	24	Scotland	Winnipeg	Cana
	5	John	Wilson	09 Apr 1884	28	Scotland	Boston	1

3. Show a **random sample of 10 rows** from your dataframe.

In [13]: passengers_df.sample(10)

Out[13]:		first_name	last_name	date	age	native_country	destination_city	destination_
	77	Neal	Doherty	09 Apr 1884	2	Ireland	Boston	
	280	Mary	Egan	09 Apr 1884	40	Ireland	St. Louis	
	40	Wm	Martin	09 Apr 1884	26	Scotland	Brookville	
	384	Peter	Saul	09 Apr 1884	7	Ireland	Indianapolis	
	232	Rich	Gethins	09 Apr 1884	30	Ireland	Philadelphia	
	30	Robt	McBride	09 Apr 1884	6	Scotland	Chicago	
	184	Ann	Kearnes	09 Apr 1884	52	Ireland	San Fransisco	
	94	Mary	Hanna	09 Apr 1884	36	Ireland	Boston	
	392	Terence	Marren	09 Apr 1884	42	Ireland	Boston	
	419	Judy	Hession	09 Apr 1884	48	Ireland	Boston	

4. What are **two historical questions** about this list of passengers that you might be able to answer using Pandas?

Your answer here.

- 1. What was the most common country of origin of immigrants on the Steamship Grecian on April 9, 1884?
- 2. What was the most common occupation of immigrants on the Steamship Grecian on April 9, 1884?

Analyzing the Data

5. Calculate "summary statistics" for the passenger data.

In [18]: passengers_df.describe(include='all')

Out[18]:

		first_name	last_name	date	age	native_country	destination_city	d€
	count	512	515	515	515.000000	515	515	
	unique	102	170	1	NaN	3	56	
	top	Mary	Doherty	09 Apr 1884	NaN	Ireland	Boston	
	freq	59	12	515	NaN	461	107	
	mean	NaN	NaN	NaN	21.440777	NaN	NaN	
	std	NaN	NaN	NaN	13.115392	NaN	NaN	
	min	NaN	NaN	NaN	0.000000	NaN	NaN	
	25%	NaN	NaN	NaN	11.000000	NaN	NaN	
	50%	NaN	NaN	NaN	20.000000	NaN	NaN	
	75%	NaN	NaN	NaN	28.000000	NaN	NaN	
	max	NaN	NaN	NaN	64.000000	NaN	NaN	

- 6. Looking at the summary statistics, answer the following questions:
- · What is the most frequently occuring last name?
- How often does the most frequently occuring last name appear?
- How many different kinds of occupations are listed in the data?
- How old is the oldest passenger?

Your answers here:

- What is the most frequently occuring last name? *Doherty*
- How often does the most frequently occuring last name appear? *12 times*
- How many different kinds of occupations are listed in the data? *9 unique occupations*
- How old is the oldest passenger? *64 years old*
- 7. Write code to answer: what was the **median** age of the passengers?
- In [22]: print(f"The median age of passengers was {passengers_df['age'].median()}.")

The median age of passengers was 20.0.

8. What were the **ten most frequent cities** that passengers were traveling to and how many of them were going to each of these cities?

```
passengers_df['destination_city'].value_counts()[:10]
In [24]:
Out[24]: destination_city
          Boston
                          107
          Pittsburg
                           52
          Chicago
                           36
          Scranton
                           30
          New York
                           26
          Brooklyn
                           26
          Portland
                           23
          Philadelphia
                           17
          St. Louis
                           15
          Fonda
                           11
          Name: count, dtype: int64
```

9. Follow Walsh's example and adapt her code to make a bar chart of the top ten most frequent destination cities based on how many passengers were going to each of them.

```
In [26]: passengers_df['destination_city'].value_counts()[:10].plot(kind='bar', figsi
Out[26]: <Axes: title={'center': 'Steamship Grecian 1884:\nTop Ten Most Frequent Des
    tination Cities'}, xlabel='Destination City', ylabel='Number of Passenger
    s'>
```


10. Where were passengers coming from? Print out the most frequent countries they were immigrating from and how many passengers were coming from each country. Hint: use value_counts() and index.

11. Make a pie chart showing **how many passengers were coming from each country**. Adapt Walsh's example.

```
In [30]: passengers_df['native_country'].value_counts().plot(kind='pie', ylabel='', t
Out[30]: <Axes: title={'center': 'Steamship Grecian 1884:\nNative Countries'}>
```

Steamship Grecian 1884: Native Countries

12. Create a new variable called children_filter and assign it a True/False statement to that variable that specifies passengers who were children. Then use this new children_filter to create a new dataframe called children_df that only contains passengers who were children. Display a sample of five random rows from this new dataframe. Hint: look under the occupation column in your dataframe. Hint: Walsh example.

```
In [32]: children_filter = passengers_df['occupation'] == 'Child'
    children_df = passengers_df[children_filter]
    children_df.sample(5)
```

Out[32]:		first_name	last_name	date	age	native_country	destination_city	destination_
	186	Bgt	Kearnes	09 Apr 1884	1	Ireland	San Fransisco	
	475	Barb	Adley	09 Apr 1884	11	Ireland	Portland	
	134	Edw	Odonnell	09 Apr 1884	9	Ireland	Scranton	
	75	Cath	Doherty	09 Apr 1884	6	Ireland	Boston	
	26	Cath	McBride	09 Apr 1884	11	Scotland	Chicago	

13. Create a **new CSV file** named passenger-list-children.csv that only contains records for passengers who were children. Hint: you'll be printing the contents of children_df to a CSV file using to_csv() method. Walsh example. To check to make sure you successfully created the file, add a line of code that reads in the newly created CSV file using pd.read_csv().

```
In [34]: children_df.to_csv("passenger-list-children.csv", encoding='utf-8', index=Fa
pd.read_csv("passenger-list-children.csv")
```

Out[34]:		first_name	last_name	date	age	native_country	destination_city	destination_
	0	Alex	McBride	09 Apr 1884	12	Scotland	Chicago	
	1	Cath	McBride	09 Apr 1884	11	Scotland	Chicago	
	2	Wm	McBride	09 Apr 1884	9	Scotland	Chicago	
	3	Agnes	McBride	09 Apr 1884	7	Scotland	Chicago	
	4	Maggie	McBride	09 Apr 1884	4	Scotland	Chicago	
	•••				•••			
	127	Ellen	Deran	09 Apr 1884	8	Ireland	Pittsburg	
	128	Pat	Kyne	09 Apr 1884	9	Ireland	Portland	
	129	John	Kyne	09 Apr 1884	3	Ireland	Portland	
	130	Mich	Kyne	09 Apr 1884	0	Ireland	Portland	
	131	Math	Griffins	09 Apr 1884	2	Ireland	Pittsburg	

132 rows × 9 columns

Bonus Questions

What was the cut-off age for classifying a passenger as a child? Ie. What was **the oldest** a passenger could be to still be considered a child? Write code that prints out the answer to this question.

```
In [37]: children_df['age'].max()
```

Out[37]: 12

Age Comparison: Calculate and write print() statements that show:

- The average age of passengers from Ireland
- The average age of passengers from **Scotland**.
- The difference in years between these average

```
ireland_filter = passengers_df['native_country'] == 'Ireland'
ireland_passengers = passengers_df[ireland_filter]
averageage_ireland = ireland_passengers['age'].mean()
print(f"The average age of passengers from Ireland was {averageage_ireland}"

scotland_filter = passengers_df['native_country'] == 'Scotland'
scotland_passengers = passengers_df[scotland_filter]
averageage_scotland = scotland_passengers['age'].mean()
print(f"The average age of passengers from Scotland was {averageage_scotland:
    print(f"On average, Irish passengers were {averageage_ireland-averageage_else:
    print(f"On average, Scottish passengers were {averageage_scotland-averageage})
```

The average age of passengers from Ireland was 20.98698481561822
The average age of passengers from Scotland was 25.098039215686274
On average, Scottish passengers were 4.111054400068053 years older than Scottish passengers.

Save a Filtered Dataset: Create a new CSV file that contains data for: only adult passengers (**age 18 and over**) who were heading to **Boston**.

```
In [41]: boston_filter = passengers_df['destination_city'] == 'Boston'
boston_passengers_df = passengers_df[boston_filter]
over18_filter = boston_passengers_df['age'] >= 18
bostonpassengers_over18_df = boston_passengers_df[over18_filter]
bostonpassengers_over18_df.to_csv("passenger-list-bostonover18.csv", encodir
pd.read_csv("passenger-list-bostonover18.csv")
```

Out[41]:

		first_name	last_name	date	age	native_country	destination_city	destination_s
2	0	John	Wilson	09 Apr 1884	28	Scotland	Boston	
	1	Rob	Watson	09 Apr 1884	20	Scotland	Boston	
	2	Thos.B	Watson	09 Apr 1884	23	Scotland	Boston	
	3	NaN	Roberts	09 Apr 1884	40	Scotland	Boston	
	4	Robt	Chalmers	09 Apr 1884	23	Scotland	Boston	
	91	Bgt	Adley	09 Apr 1884	20	Ireland	Boston	
	92	Ned	Flaherty	09 Apr 1884	22	Ireland	Boston	
	93	Т	McDermott	09 Apr 1884	35	United States	Boston	
	94	Wm	Hewitt	09 Apr 1884	25	United States	Boston	
	95	F	Doherty	09 Apr 1884	27	United States	Boston	

96 rows × 9 columns

In []:				
---------	--	--	--	--