Seoul National University

M1522.000900 Data Structure

Homework 2: Algorithm Analysis (Chapter 3)

Computer Science & Engineering

2017-18538 Hwang Sun Young

Question 1

$$n! \rightarrow 3 \cdot 2^n \rightarrow 6n^2 \rightarrow 20 n \rightarrow log_2 n \rightarrow log_2 log_2 n \rightarrow 2^{10}$$

 2^n is in O(n!), n^2 is in $O(2^n)$, n is in $O(n^2)$, $\log n$ is in O(n).

Because $log \ n$ is in O(n), $log \ log \ n$ is in O($log \ n$). 1 is in O($log \ log \ n$)

Question 2

(1)
$$f(n) = log n^2$$
 and $g(n) = log n + 5$

$$f(n) = \log n^2 = 2 \log n$$

(a)
$$f(n) = O(g(n))$$
 since 2 log $n < 2$ (log $n + 5$)

(b)
$$f(n) = \Omega(g(n))$$
 since 2 log $n \ge \log n + 5$ for all $n > n_0 = 32$ (n_0 is positive constant)

(c) Because big-Oh and Ω coincide, $f(n) = \Theta(g(n))$

(2)
$$f(n) = \sqrt{n}$$
 and $g(n) = log n^2$

$$f(n) = \sqrt{n} = \sqrt[4]{n^{\frac{1}{2}}} \ge \frac{1}{4} \log n^2$$

c and n_0 are positive constants.

(a)
$$f(n) \neq O(g(n))$$
 since $\sqrt{n} \geq \log n^c$ for any c and any $n > n_0$.

(b) f(n) =
$$\Omega(g(n))$$
 since $\sqrt{n} = \sqrt[4]{n^{\frac{1}{2}}} \ge \frac{1}{4} \log n^2$

(c) Because $f(n) = \Omega(g(n))$ but $f(n) \neq O(g(n))$, $f(n) \neq \Theta(g(n))$.

(3) f(n) = n and $g(n) = log^2 n$

c and n_0 are positive constants.

$$g(n) = log^2 n = 2 log n$$

$$\sqrt{n} \ge \log \sqrt{n} = \frac{1}{2} \log n$$

$$n \geq \frac{1}{4}log^2n$$

- (a) $f(n) \neq O(g(n))$ since $n \geq c \log n$ for any c and any $n > n_0$.
- (b) $f(n) = \Omega(g(n))$ since $n \ge \frac{1}{4} log^2 n$.
- (c) Because $f(n) = \Omega(g(n))$ but $f(n) \neq O(g(n))$, $f(n) \neq \Theta(g(n))$.
- (4) $f(n) = log n^2$ and $g(n) = log^2 n$

c and n_0 are positive constants

$$f(n) = log n^2 = 2 log n, g(n) = log^2 n = (log n)^2$$

- (a) f(n) = O(g(n)) since $\log n \le c(\log n)^2$ for any c and any $n > n_0$.
- (b) $f(n) \neq \Omega(g(n))$ since $\log n \leq c(\log n)^2$ for any c and any $n > n_0$.
- (c) Because f(n) = O(g(n)) and $f(n) \neq \Omega(g(n))$, $f(n) \neq \Theta(g(n))$.

Question 3

- (1) 1^{st} for-loop is in $\Theta(N)$, 2^{nd} for-loop is in $\Theta(M)$ for time complexity. So the time complexity of following code is $\Theta(N+M)$. In terms of space complexity, $\Theta(1)$. Because, a occupy 1, b occupy 1, i and j occupies 1. (total 3)
- (2) this code is double for-loop. Outer loop is in $\Theta(n)$ and inner loop is in $\Theta(\log n)$. So the time complexity of the following code is $\Theta(n \log n)$.
- (3) (b) X will always be a better choice for large inputs.

Question 4

$$(1) T(0) = c$$

$$T(n) = 3T(n-1) + 2$$

$$= 3(3T(n-2) + 2) + 2$$

$$= 3^{2}T(n-2) + 3 \cdot 2 + 2$$

$$= 3^{2}(3T(n-3) + 2) + 3 \cdot 2 + 2$$

$$= 3^{3}T(n-3) + 3^{3}2 + 3 \cdot 2 + 2$$
Then,
$$T(n) = 3^{n}T(n-n) + (3^{n} + 3^{n-1} + \dots + 3 + 1) \cdot 2$$

$$= 3^{n}T(n-n) + 3^{n} - 1$$

$$= 3^{n}(T(0) + 1) - 1$$

$$= 3^{n}(c + 1) - 1$$

Then, T(n) is in Θ (3ⁿ).

(2)

n: size of input that can be processed in t second in machine X

N: size of input that can be processed in t second in machine Y

f(s): number of operations for input of size s

$$f(N) = 27f(n) = 3^3f(n) = 3^{n+3} (f(n) = 3^n)$$

machine Y takes t seconds for n+3 inputs.

Question 5

(1)
$$T(n) = T(n-1) + 1$$
, $T(0) = 1$.

$$T(n) = T(n-1) + 1 = T(n-2) + 2 = \cdots = T(n-n) + n = n + 1$$

T(n) is in O(n) since T(n) = n + 1 < 2n.

$$T(n)$$
 is in Ω (n) since $T(n) = n + 1 > n$.

Then T(n) is in $\Theta(n)$.

(2)
$$T(n) = T(\frac{n}{2}) + 3$$
, $T(0) = 1$.

According to the Figure 2, T(1) = T(0) = 1.

$$T(n) = T(\frac{n}{2}) + 3 = T(\frac{n}{2^2}) + 2*3 = \dots = T(\frac{n}{2^{logn}}) + (\log n)*3 = T(1) + 3 \log n = 3 \log n + 1$$

T(n) is in $O(\log n)$ since $T(n) = 3 \log n + 1 < 4 \log n$.

$$T(n)$$
 is in Ω (log n) since $T(n) = 3 \log n + 1 > 3 \log n$.

Then T(n) is in $\Theta(\log n)$.