Guía de Trabajos Prácticos IV – Programación Funcional

- 1. Convierta las siguientes expresiones aritméticas en expresiones Scheme y evalúelas:
 - \bullet 7 + (2 * -1/3) + -10.7
 - $(7/3 * 5/9) \div (5/8 2/3)$
 - $1 + 3 \div (2 + 1 \div (5 + 1/2))$
 - $1 \times -2 \times 3 \times -4 \times 5 \times -6 \times 7$
- 2. Determine el valor de las siguientes expresiones. Use el DrScheme para verificar su respuesta
 - (cons 'car '+)
 - (list 'esto '(es muy fácil))
 - (cons 'pero '(se está complicando...))
 - (cons '(y ahora no se que) 'hizo)
 - (quote (+ 7 2))
 - (cons '+ '(10 3))
 - (car '(+ 10 3))
 - (cdr '(+ 10 3))
 - cons
 - (quote (cons (car (cdr (7 4)))))
 - (quote cons)
 - (car (quote (quote cons)))
 - (+23)
 - (+ '2 '3)
 - (+ (car '(2 3)) (car (cdr '(2 3))))
 - ((car (list + * /)) 2 3)
- 3. (car (car '((a b) (c d)))) devuelve a. Determine que composición de car y cdr aplicados a ((a b) (c d)) devuelven b, c y d.

- El comportamiento de (car (car '((a b c) (d))))) no está definido porque (car '((a b c) (d))) es (a b c), (car '(a b c)) es a, y (car 'a) no está definido.
 Determine todas las combinaciones legales de car y cdr aplicables a ((a b) (c d)).
- 5. Describa los pasos necesarios para evaluar la siguiente expresión: ((car (cdr (list + * /)))) 5 5)
- 6. Obtenga el elemento x de las siguientes listas:
 - 1. '(abc.x)
 - 2. '(a b c x)
 - 3. '((a.x)b)
 - 4. '(x.a)
 - 5. '(a.x)