

motion of s'wirts	As seen in S:
motion of object seen	
5' 04 5.	
	$U^2 = C dy i d T$ $U^3 = C dy i d T$
5	
For example: U1 = C dx dt - C Vx	Something
$-ds^{2} = dr^{2} = c^{2}dt^{2} - dx^{2} - dy^{2} - dz^{2}$ $dt^{2} = \frac{1}{c^{2} - v^{2}} = \frac{1}{c^{2}(1 - \beta^{2})} = \frac{1}{c^{2}}$	$dv^2 = c^2 - V^2$
dt ² - 4 - 1 - 1 ²	at^2
$\frac{1}{dT^2} \frac{C^2 - V^2}{C^2 \left(1 - \beta^2\right)} \frac{C^2}{C^2}$	dt c.
In this case U"= Yc]	
Moneran: P= m U= (mcY) =>	pu mc
	V
For $\frac{\sqrt{2}}{c}$ $= 1 + \frac{1}{2} \cdot \frac{\sqrt{2}}{c^2} + \dots \Rightarrow 0$	$DM = \left(\frac{1}{C} \left(mc^2 + \frac{1}{2} m U^2 + \dots \right) \right)$
and Pu = (- Energy relativistic) = Prelativistic	Erest = Mc ²
relandistic	
Since PM is a vector, Pupm is a	scalar.
Pu= (-mYc, mYV)	
In particular $P_{\mu}P^{\mu} = -m^2C^2 = \frac{E^2}{C^2}$	- pt, and finally we get:
$E^2 - \rho^2 c^2 = m^2 c^4$	
$\int \langle D m^2 \rangle D$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
10 m ~20.	