Introduction To Memory (ROM) Read-Only Memory

Akilesh Praveen — CMSC398E

UMD

March 6, 2020

Agenda

- Announcements
 - Class Cancelled

- 2 Introduction to Memory
 - Introduction

Announcements

3 / 17

Class cancelled next week!

- We won't be having class next week :)
- Go enjoy your spring break!!

Extension Policy

- It's fine to ask for extensions, but please do so reasonably and beforehand.
- We're already pretty lenient with grading in this class, but we will draw a line somewhere.
- Note: If you have a medical note or a university excusal, this policy can be overriden.

Read Only Memory

What is Read Only Memory?

- It's a pretty simple type of memory to understand, so we'll start off with it
- Memory that you can write once, but you can only read from after
- When you power off the machine, the memory you wrote will still remain the way you set it

Why Read Only Memory?

- ROM has a lot of uses in modern electronics
 - Things like BIOS in computers + other startup functions
 - Calculators for startup routines + repeated values
 - Put to heavy use in gaming consoles
 - Things like digital clocks and hair dryers also will have a fair bit of this stuff if you take them apart

Why Read Only Memory?

- Incidentally, this is also the easiest memory to build
- We get the concept- and it turns out, there are easy ways to represent ROM as a set of functions

Some types of ROM

- ROM → Read Only Memory
 - Data assigned during the manufacturing process
- PROM → Programmable Read Only Memory
 - Programmed after manufacture
- EPROM → Erasable Programmable Read Only Memory
 - Same as above, but can be erased (UV)
- EEPROM → Electrically Erasable Programmable Read Only Memory
 - Can be erased electrically, unlike above

Let's make ROM

- Remember decoders?
- Turns out, ROM can be thought of as a basic decoder, but with custom outputs

ROM Example

Read Only Memory (ROM)

ROM Example

Inputs					Outputs								
14	13	I ₂	<i>I</i> ₁	10	A ₇	A ₆	A_5	A_4	A ₃	A ₂	A ₁	A_0	
0	0	0	0	0	1	0	1	1	0	1	1	0	
0	0	0	0	1	0	0	0	1	1	1	0	1	
0	0	0	1	0	1	1	0	0	0	1	0	1	
0	0	0	1	1	1	0	1	1	0	0	1	0	
		:											
1	1	1	0	0	0	0	0	O	1	O	0	1	
1	1	1	0	1	1	1	1	0	0	0	1	0	
1	1	1	1	0	0	1	0	0	1	0	1	0	
1	1	1	1	1	0	0	1	1	0	0	1	1	

Disadvantages of ROM

- Real Life
 - Can never be changed
 - Only realistic to manufacture in huge batches, and takes a lot of R&D to get right
 - No software patches
- Minecraft
 - Can't be changed with outside influence (as easily)
 - In that sense, lines can never be repurposed without manual reconfiguration

Other types of ROM

- PROM, EPROM, EEPROM
- "Finally, a PROM that all computer science/engineering majors can enjoy"
 - -Aki, probably
- Essentially, these are just QOL improvements upon ROM
- EPROM and EEPROM are the same in functionality, it's just that one is erased via ultraviolet light and electrical signals

PROM Advantages

- PROMs are highly versatile, and it turns out that they are highly useful to implement minimum functions
- e.g. ¬ AB+AB can be minimized to B
- We can explore this further using Karnaugh Maps
 - Karnaugh Maps and minimization will be covered in an online video (this is a 1 credit class)

Grading / Open OH / Project 5