FCC ID: ZRN-AASK2NWBB IC ID: 9797A-AASK2NWBB

Report No.: DRTFCC1108-0296

Total 41 Pages

RF TEST REPORT

Test item

: Bluetooth keyboard

Model No.

: AA-SK2NWBB

Order No.

: 1107-01011

Date of receipt

: 2011-07-21

Test duration

: 2011-07-20 ~ 2011-07-29

Date of issue

: 2011-08-03

Use of report

: FCC & IC Original Grant

Applicant : OKI Electric Technology(Kunshan) Co., Ltd

Park Bao Jia Road, Kunshan Hi-Tech Industrial, Kunshan City, Jiangsu

PRC. 215316 China

Test laboratory : Digital EMC Co., Ltd.

683-3, Yubang-Dong, Cheoin-Gu, Yongin-Si, Kyunggi-Do, 449-080, Korea

Test specification

: FCC Part 15.247 Subpart C

RSS-210, RSS-Gen

Test environment

: See appended test report

Test result

□ Pass

☐ Fail

The test results presented in this test report are limited only to the sample supplied by applicant and the use of this test report is inhibited other than its purpose. This test report shall not be reproduced except in full, without the written approval of Digital EMC Co., Ltd.

Tested by:	Witnessed by:	Reviewed by:
	~	
0		
Engineer	N/A	Manager
S.K.Ryu		W.J. Lee

CONTENTS

1. Equipment information	3
1.1 Equipment description	3
1.2 Ancillary equipment	3
2. Information about test items	4
2.1 Test mode & EUT Position	4
2.2 Auxiliary equipment	4
2.3 Tested frequency	4
2.4 Tested environment	4
2.5 EMI Suppression Device(s)/Modifications	4
3. Test Report	5
3.1 Summary of tests	5
3.2 Transmitter requirements	6
3.2.1 Carrier Frequency Separation	6
3.2.2 Number of Hopping Frequencies	8
3.2.3 20 dB Bandwidth & Occupied Bandwidth(99%)	11
3.2.4 Time of Occupancy (Dwell Time)	14
3.2.5 Peak Output Power	16
3.2.6 Conducted Spurious Emissions	19
3.2.7 Radiated Spurious Emissions	31
3.2.8 AC Line Conducted Emissions	33
3.2.9 Antenna Requirements	34
3.3 Receiver requirements	35
3.3.1 AC Conducted Emissions (Receiver Mode)	35
3.3.2 Out of Band Emissions – Radiated (Receiver Mode)	36
APPENDIX I	38

1. Equipment information

1.1 Equipment description

FCC Equipment Class	Part 15 Spread Spectrum Transmitter(DSS)
FCC ID	ZRN-AASK2NWBB
IC ID	9797A-AASK2NWBB
Equipment type	Bluetooth keyboard
Equipment model name	AA-SK2NWBB
Equipment add model name	AA-SK2NWBB/US, AA-SK2NWBB/CA
Equipment serial no.	Identical prototype
Frequency band	2402 ~ 2480 MHz
Spread Spectrum	Frequency Hopping
Modulation type	GFSK
Transmission rate	1Mbps
Channel Spacing	1.0 MHz
Power	Mercury & Cadmium Battery: DC 3.0 V
Antenna type	Internal Type: Chip Antenna (Max. Peak Gain:3.5 dBi)

1.2 Ancillary equipment

Equipment	Model No.	Serial No.	Manufacturer	Note
-	-	-	-	-
-	-	-	-	-

TRF-RF-202(06)100831 Page 3 / 41

2. Information about test items

2.1 Test mode & EUT Position

This device was tested in maximum duty mode at maximum power of hopping enable / disable mode.

Test Case 1	-
Test Case 2	-
Test Case 3	-

EUT position: refer to Test photo file.

2.2 Auxiliary equipment

Equipment	Model No.	Serial No.	Manufacturer	Note
-	-	-	-	-
-	-	-	-	-

2.3 Tested frequency

- Hopping Function: Enable

	TX Frequency (MHz)	RX Frequency (MHz)
Hopping Band	2402 ~ 2480	2402 ~ 2480

- Hopping Function: Disable

	TX Frequency (MHz)	RX Frequency (MHz)
Lowest Channel	2402	2402
Middle Channel	2441	2441
Highest Channel	2480	2480

2.4 Tested environment

Temperature	: 20 ~ 25 °C
Relative humidity content	: 40 ~ 46 % R.H.
Details of power supply	: DC 3.0 V

2.5 EMI Suppression Device(s)/Modifications

EMI suppression device(s) added and/or modifications made during testing \rightarrow None

3. Test Report

3.1 Summary of tests

FCC Part RSS-210 & GEN	Parameter	Limit (Using in 2400 ~ 2483.5MHz)	Test Condition	Status (note 1)
I. Transmit mode ((Tx)			
	Carrier Frequency Separation	>= 20dB BW or >= Two-Thirds of the 20dB BW		С
15.247(a)	Number of Hopping Frequencies	>= 15 hops		С
RSS-210(A8.1)	20 dB Bandwidth	None		С
	Dwell Time	=< 0.4 seconds	Conducted	С
15.247(b) RSS-210(A8.4)	Transmitter Output Power	=< 1Watt , if CHs >= 75 Others =<0.125W		С
15.247(d) RSS-210(A8.5)	Band-edge /Conducted	The radiated emission to any 100 kHz of outband shall be at least 20dB		С
	Conducted Spurious Emissions	below the highest inband spectral density.		С
15.205,15.209 RSS-210(A8.5)	Radiated Emissions	FCC 15.209	Radiated	C Note 2
15.207 RSS-Gen(7.2.4)	AC Conducted Emissions	FCC 15.207	AC Line Conducted	NA Note 3
RSS Gen Issue 3	Occupied Bandwidth (99%)	RSS-Gen(4.6.1)	Conducted	С
15.203 RSS-Gen(7.1.2)	Antenna Requirements	FCC 15.203	-	С
II. Receive mode (Rx)				
RSS-Gen(7.2.4)	AC Conducted Emissions	RSS-Gen(7.2.4 Table 4)	Line Conducted	NA Note 3
RSS-Gen(6)	Receiver Spurious Emissions	RSS-Gen(6 Table 2)	Radiated	C Note 2

Note 1: C=Comply NC=Not Comply NT=Not Tested NA=Not Applicable

Note 2: This test item was performed in each axis. And the worst case data were reported.

These test items were performed at OATS of KOSTEC Co., Ltd.(IC assigned code: 8305A)

Note 3: This test is not applicable. Because the power of this device is supplied from batteries.

The sample was tested according to the following specification: ANSI C-63.4-2003, DA00-705, RSS-Gen Issue 3

3.2 Transmitter requirements

3.2.1 Carrier Frequency Separation

- Procedure:

The carrier frequency separation was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

After the trace being stable, the reading value between the peaks of the adjacent channels using the marker-delta function was recorded as the measurement results.

The spectrum analyzer is set to:

Span = wide enough to capture the peaks of two adjacent channels

RBW = 1% of the span Sweep = auto

VBW = ≥ RBW Detector function = peak

Trace = max hold

- Measurement Data: Comply

Hopping	Peak of center channel	Peak of adjacent Channel	Test Result
Mode	(MHz)	(MHz)	(MHz)
Enable	2439.990	2440.995	1.005

Note 1: See next pages for actual measured spectrum plots.

- Minimum Standard:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW

Carrier Frequency Separation

Hopping mode: Enable

3.2.2 Number of Hopping Frequencies

- Procedure:

The number of hopping frequencies was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

To get higher resolution, four frequency ranges within the 2400 ~ 2483.5 MHz FH band were examined.

The spectrum analyzer is set to:

Span = 25MHz Plot 1: Start Frequency = 2389.5MHz, Stop Frequency = 2414.5 MHz

Plot 2: Start Frequency = 2414.5MHz, Stop Frequency = 2439.5 MHz Plot 3: Start Frequency = 2439.5MHz, Stop Frequency = 2464.5 MHz Plot 4: Start Frequency = 2464.5MHz, Stop Frequency = 2489.5 MHz

RBW = 1% of the span or more Sweep = auto

VBW = ≥ RBW Detector function = peak

Trace = max hold

- Measurement Data: Comply

Hopping mode	Test Result (Total Hops)
Enable	79

Note 1: See next pages for actual measured spectrum plots.

- Minimum Standard:

At least 15 hopes

Number of Hopping Frequencies 1 Hopping mode: Enable

Number of Hopping Frequencies 2 Hopping mode: Enable

Number of Hopping Frequencies 3 Hopping mode: Enable

Number of Hopping Frequencies 4 Hopping mode: Enable

3.2.3 20 dB Bandwidth & Occupied Bandwidth(99%)

- Procedure:

The bandwidth at 20 dB below the highest inband spectral density was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function disabled at the highest, middle and the lowest available channels.

After the trace being stable, Use the marker-to-peak function to set the marker to the peak of the emission. Use the marker-delta function to measure 20dB down one side of the emission. Reset the marker-delta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 20 dB bandwidth of the emission.

The spectrum analyzer is set to:

Center frequency = the highest, middle and the lowest Frequencies

Span = approximately 2 or 3 times of the 20 dB bandwidth

RBW = 1% of the 20dB bandwidth or more Sweep = auto

VBW = ≥ RBW Detector function = peak

Trace = max hold

- Measurement Data: Comply

iououromone Butur Compri							
Hopping mode	Tested Channel	Test Results(MHz)					
Hopping mode	rested Charmer	20dB Bandwidth	Occupied Bandwidth(99%)				
	Lowest	0.934	0.882				
Disable	Middle	0.931	0.877				
	Highest	0.929	0.878				

Note 1: See next pages for actual measured spectrum plots.

Min	imum	Ctan	dard:

٠.	
ı	
	None
	None

TRF-RF-202(06)100831 Page 11 / 41

20dB Bandwidth

Lowest Channel

20dB Bandwidth

Middle Channel

20dB Bandwidth

Highest Channel

3.2.4 Time of Occupancy (Dwell Time)

- Procedure:

The dwell time was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

The spectrum analyzer is set to:

Center frequency = 2441 MHz Span = zero RBW = 1 MHz VBW = \geq RBW

Trace = max hold Detector function = peak

- Measurement Data: Comply

Hopping mode	Packet Type	Burst On Time (ms)	Period (ms)	Number of hopping Channels	Test Result (s)
Enable	DH 5	3.05	3.75	79	0.325

Note 1: Each new transmission event begins on the next channel in the hopping sequence after the final channel used in the previous transmission event.

DWELL TIME=(0.4 x Number of hopping Channels) x Burst On time / (period x Number of hopping Channels)

Note 2: See next pages for actual measured spectrum plots.

- Minimum Standard:

No greater than 0.4 seconds

Time of Occupancy

Hopping mode: Enable

3.2.5 Peak Output Power

- Procedure:

The peak output power was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function disabled at the highest, middle and the lowest available channels.

After the trace being stable, Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power.

The spectrum analyzer is set to:

Center frequency = the highest, middle and the lowest Frequencies

Span = approximately 5 times of the 20 dB bandwidth

RBW = greater than the 20dB bandwidth of the emission being measured VBW = ≥ RBW Detector function = peak

Trace = max hold Sweep = auto

- Measurement Data: Comply

modedi oment Data: Compi				
Hanning made	Tested Channel	Test Results		
Hopping mode	rested Channel	dBm	mW	
	Lowest	4.51	2.825	
Disable	Middle	4.23	2.649	
	Highest	3.67	2.328	

Note 1: See next pages for actual measured spectrum plots.

- Minimum Standard:

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: **1 Watt**. For all other frequency hopping systems in the 2400-2483.5 MHz band: **0.125 Watts**

TRF-RF-202(06)100831 Page 16 / 41

Peak Output Power

Lowest Channel

Peak Output Power

Middle Channel

Peak Output Power

Highest Channel

3.2.6 Conducted Spurious Emissions

- Procedure:

The bandwidth at 20dB down from the highest inband spectral density is measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function disabled at the highest, middle and the lowest available channels.

After the trace being stable, Use the marker-to-peak function to measure 20 dB down both sides of the intentional emission.

For Band-edge testing the spectrum analyzer is set to:

Tested frequency = the highest and the lowest Frequencies

Center frequency = 2400MHz, 2483.5MHz

Span = 10MHz Detector function = peak

RBW = 1% of the span $VBW = \ge RBW$ Trace = max hold Sweep = auto

For spurious testing the spectrum analyzer is set to:

Tested frequency = the highest, middle and the lowest Frequencies

RBW = 100 kHz $VBW = \ge RBW$ Detector function = peak Sweep = auto

Trace = max hold

- Measurement Data: Comply

Note 1: See next pages for actual measured spectrum plots.

- Minimum Standard:

Minimum Standard: > 20 dBc

Low Band-edge Hopping mode: Disable

Low Band-edge Hopping mode: Enable

High Band-edge Hopping mode: Disable

5GHz ~ 10GHz Conducted Spurious Emissions Lowest Channel

10GHz ~ 15GHz Conducted Spurious Emissions Lowest Channel

15GHz ~ 20GHz Conducted Spurious Emissions Lowest Channel

Reference for limit

Middle Channel

30MHz ~ 5GHz Conducted Spurious Emissions Middle Channel

5GHz ~ 10GHz Conducted Spurious Emissions Middle Channel

10GHz ~ 15GHz Conducted Spurious Emissions Middle Channel

15GHz ~ 20GHz Conducted Spurious Emissions Middle Channel

20GHz ~ 25GHz Conducted Spurious Emissions Middle Channel

5GHz ~ 10GHz Conducted Spurious Emissions Highest Channel

10GHz ~ 15GHz Conducted Spurious Emissions Highest Channel

15GHz ~ 20GHz Conducted Spurious Emissions Highest Channel

20GHz ~ 25GHz Conducted Spurious Emissions Highest Channel & 1Mbps

3.2.7 Radiated Spurious Emissions

- Procedure:

The EUT was placed on a 0.8m high wooden table inside a shielded enclosure. An antenna was placed near the EUT and measurements of frequencies and amplitudes of field strengths were recorded for reference during final measurements. For final radiated testing, measurements were performed in OATS. Measurements were performed with the EUT oriented in 3 orthogonal axis and rotated 360 degrees to determine worst-case orientation for maximum emissions.

The spectrum analyzer is set to:

Tested frequency = Low, Middle, High Frequencies

Frequency Range = 30 MHz ~ 10th harmonic.

RBW and VBW =

1. Frequency range: 30MHz ~ 1GHz RBW = 120KHz / VBW = ≥ RBW

2. Frequency range: 1GHz ~ 10th harmonics

Peak mode: RBW = 1MHz / VBW = ≥ RBW Average mode: RBW = 1MHz / VBW = 10Hz

Detector function = Peak

Sweep = auto

Trace = max hold

- Measurement Data: Comply

Note 1: See next pages for actual measured spectrum plots and data.

Note 2: These test items were performed at OATS of KOSTEC Co., Ltd.(IC assigned code: 8305A)

- Minimum Standard:

- FCC Part 15.209(a) and (b)

Frequency (MHz)	Limit (uV/m) @ 3m
30 ~ 88	100 **
88 ~ 216	150 **
216 ~ 960	200 **
Above 960	500

^{**} Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88MHz, 174-216MHz or 470-806MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

• FCC Part 15.205 (a): Only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	MHz	GHz	GHz
0.009 ~ 0.110	8.41425 ~ 8.41475	108 ~ 121.94	1300 ~ 1427	3600 ~ 4400	14.47 ~ 14.5
0.495 ~ 0.505	12.29 ~ 12.293	123 ~ 138	1435 ~ 1626.5	4.5 ~ 5.15	15.35 ~ 16.2
2.1735 ~ 2.1905	12.51975 ~ 12.52025	149.9 ~ 150.05	1645.5 ~ 1646.5	5.35 ~ 5.46	17.7 ~ 21.4
4.125 ~ 4.128	12.57675 ~ 12.57725	156.52475 ~ 156.52525	1660 ~ 1710	7.25 ~ 7.75	22.01 ~ 23.12
4.17725 ~ 4.17775	13.36 ~ 13.41	156.7 ~ 156.9	1718.8 ~ 1722.2	8.025 ~ 8.5	23.6 ~ 24.0
4.20725 ~ 4.20775	16.42 ~ 16.423	162.0125 ~ 167.17	2200 ~ 2300	9.0 ~ 9.2	31.2 ~ 31.8
6.215 ~ 6.218	16.69475 ~ 16.69525	167.72 ~ 173.2	2310 ~ 2390	9.3 ~ 9.5	36.43 ~ 36.5
6.26775 ~ 6.26825	16.80425 ~ 16.80475	240 ~ 285	2483.5 ~ 2500	10.6 ~ 12.7	Above 38.6
6.31175 ~ 6.31225	25.5 ~ 25.67	322 ~ 335.4	2655 ~ 2900	13.25 ~ 13.4	
8.291 ~ 8.294	37.5 ~ 38.25	399.90 ~ 410	3260 ~ 3267		
8.362 ~ 8.366	73 ~ 74.6	608 ~ 614	3332 ~ 3339		
8.37625 ~ 8.38675	74.8 ~ 75.2	960 ~ 1240	3345.8 ~ 3358		

[•] FCC Part 15.205(b): The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.

30MHz ~ 25GHz Radiated Spurious Emissions

Lowest Channel

Freq. (MHz)	ANT Pol	The worst case EUT Position	Detector Mode	Reading (dBuV)	T.F (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
319.967	Н	Z axis	QP	34.10	-7.00	27.10	46.00	18.90
2369.920	Н	Z axis	PK	53.49	-11.07	42.42	74.00	31.58
2370.000	Н	Z axis	AV	45.03	-11.07	33.96	54.00	20.04
4804.078	Н	Z axis	PK	63.18	-1.47	61.71	74.00	12.29
4803.895	Н	Z axis	AV	54.01	-1.47	52.54	54.00	1.46

Middle Channel

Freq. (MHz)	ANT Pol	The worst case EUT Position	Detector Mode	Reading (dBuV)	T.F (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
319.967	Н	Z axis	QP	33.70	-7.00	26.70	46.00	19.30
4881.892	Н	Z axis	PK	60.61	-0.93	59.68	74.00	14.32
4881.904	Н	Z axis	AV	53.00	-0.93	52.07	54.00	1.93

Highest Channel

• i lignesi	- nighest Chailliei							
Freq. (MHz)	ANT Pol	The worst case EUT Position	Detector Mode	Reading (dBuV)	T.F (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
320.015	Н	Z axis	QP	33.80	-7.00	26.80	46.00	19.20
2483.530	V	Y axis	PK	64.33	-10.26	54.07	74.00	19.93
2483.500	٧	Y axis	AV	45.84	-10.26	35.58	54.00	18.42
4960.141	Н	Z axis	PK	57.27	-0.40	56.87	74.00	17.13
4959.862	Н	Z axis	AV	49.38	-0.40	48.98	54.00	5.02

Note.

- 1. No other spurious and harmonic emissions were reported greater than listed emissions on above table.
- 2. Sample Calculation.

 $\begin{aligned} & \text{Margin = Limit - Result} & \text{/} & \text{Result = Reading + T.F} & \text{/} & \text{T.F = AF + CL - AG} \\ & \text{Where, T.F = Total Factor,} & \text{AF = Antenna Factor,} & \text{CL = Cable Loss,} & \text{AG = Amplifier Gain,} \end{aligned}$

3.2.8 AC Line Conducted Emissions

- Procedure:

The conducted emissions are measured in the shielded room with a spectrum analyzer in peak hold. While the measurement, EUT had its hopping function disabled at the middle channels in line with Section 15.31(m). Emissions closest to the limit are measured in the quasi-peak and average detector mode with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation and Exerciser operation. The highest emissions relative to the limit are listed.

- Measurement Data: NA

- Minimum Standard: FCC Part 15.207(a)/EN 55022

Frequency Range	Conducted Limit (dBuV)				
(MHz)	Quasi-Peak	Average			
0.15 ~ 0.5	66 to 56 *	56 to 46 *			
0.5 ~ 5	56	46			
5 ~ 30	60	50			

^{*} Decreases with the logarithm of the frequency

3.2.9 Antenna Requirements

- Procedure:

Describe how the EUT complies with the requirement that either its antenna is permanently attached, or that it employs a unique antenna connector, for every antenna proposed for use with the EUT.

- Conclusion: Comply

The antenna is permanently attached by soldering. (Refer to Internal Photo file.)

- Minimum Standard:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions.

TRF-RF-202(06)100831 Page 34 / 41

3.3 Receiver requirements

3.3.1 AC Conducted Emissions (Receiver Mode)

- Procedure:

The conducted emissions are measured in the shielded room with a spectrum analyzer in peak hold. While the measurement, EUT had its receiving function. Emissions closest to the limit are measured in the quasi-peak mode (QP) and average mode (AV) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation and Exerciser operation. The highest emissions relative to the limit are listed.

- Measurement Data: NA

- Minimum Standard: FCC Part 15.207(a)/EN 55022

Fragues Dange (MIII-)	Conducted Limit (dBuV)				
Frequency Range (MHz)	Quasi-Peak	Average			
0.15 ~ 0.5	66 to 56 *	56 to 46 *			
0.5 ~ 5	56	46			
5 ~ 30	60	50			

^{*} Decreases with the logarithm of the frequency

3.3.2 Out of Band Emissions - Radiated (Receiver Mode)

- Procedure:

The EUT was placed on a 0.8m high wooden table inside a shielded enclosure. An antenna was placed near the EUT and measurements of frequencies and amplitudes of field strengths were recorded for reference during final measurements. For final radiated testing, measurements were performed in a OATS. Measurements were performed with the EUT oriented in 3 orthogonal axis and rotated 360 degrees to determine worst-case orientation for maximum emissions.

The spectrum analyzer is set to:

Frequency Range = 30 MHz ~ 10th harmonic.

RBW = $120 \text{ kHz} (30 \text{MHz} \sim 1 \text{ GHz})$

= 1 MHz (1 GHz \sim 10th harmonic)

Trace = max hold

Sweep = auto

VBW = 10Hz (Average), VBW ≥ RBW (Peak)

Detector function = peak

- Measurement Data: Comply (Refer to the Next page)

Note 1: See next pages for actual measured spectrum plots and data.

Note 2: This test item was performed in each axis. and the worst case data were reported.

Note 3: These test items were performed at OATS of KOSTEC Co., Ltd.(IC assigned code: 8305A)

- Minimum Standard: FCC Part 15.109(a)

Frequency (MHz)	Limit (uV/m) @ 3m
30 ~ 88	100 **
88 ~ 216	150 **
216 ~ 960	200 **
Above 960	500

^{**} Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88MHz, 174-216MHz or 470-806MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

TRF-RF-202(06)100831 Page 36 / 41

30MHz ~ 25GHz Radiated Spurious Emissions

Lowest Channel

Freq. (MHz)	ANT Pol	The worst case EUT Position	Detector Mode	Reading (dBuV)	T.F (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
319.872	Н	Z axis	QP	32.26	-7.00	25.26	46.00	20.74
5439.112	Н	X axis	PK	42.10	6.10	48.20	74.00	25.80
5439.112	Н	X axis	AV	28.00	6.10	34.10	54.00	19.90

Middle Channel

Freq. (MHz)	ANT Pol	The worst case EUT Position	Detector Mode	Reading (dBuV)	T.F (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
319.883	Н	Z axis	QP	31.64	-7.00	24.64	46.00	21.36
5639.429	V	X axis	PK	42.30	6.10	48.40	74.00	25.60
5639.429	V	X axis	AV	27.80	6.10	33.90	54.00	20.10

Highest Channel

Freq. (MHz)	ANT Pol	The worst case EUT Position	Detector Mode	Reading (dBuV)	T.F (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
320.078	Н	Z axis	QP	32.57	-7.00	25.57	46.00	20.43
5735.582	V	X axis	PK	42.10	5.80	47.90	74.00	26.10
5735.582	V	X axis	AV	27.10	5.80	32.90	54.00	21.10

Note.

- 1. No other spurious and harmonic emissions were reported greater than listed emissions on above table.
- 2. Sample Calculation.

Margin = Limit – Result / Result = Reading + T.F / T.F = AF + CL – AG Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain,

APPENDIX I

TEST EQUIPMENT FOR TESTS

To facilitate inclusion on each page of the test equipment used for related tests, each item of test equipment.

	Туре	Manufacturer	Model	Cal.Date (yy/mm/dd)	Next.Cal.Date (yy/mm/dd)	S/N
\boxtimes	Spectrum Analyzer	Agilent	E4440A	10/09/30	11/09/30	MY45304199
	Spectrum Analyzer	Rohde Schwarz	FSQ26	11/01/11	12/01/11	200445
	Spectrum analyzer	Agilent	E4404B	11/03/08	12/03/08	US41061134
	Spectrum Analyzer(RE)	H.P	8563E	10/10/04	11/10/04	3551A04634
	MXA Signal Analyzer	Agilent Technologies, Inc	N9020A	11/01/07	12/01/07	MY49100833
	Power Meter	H.P	EPM-442A	11/07/01	12/07/01	GB37170413
	Power Sensor	H.P	8481A	11/07/01	12/07/01	3318A96332
	Wideband Power Sensor	Rohde Schwarz	NRP-Z81	11/06/04/	12/06/04	1137.9009.02- 101001
	Power Divider	Agilent	11636B	10/10/05	11/10/05	56471
	4-Way Power Divider	ET Industries	D-0526-4	10/12/24	11/12/24	210195001
	Power Splitter	Anritsu	K241B	10/10/05	11/10/05	020611
	Power Splitter	Anritsu	K241B	11/07/01	12/07/01	017060
	Power Splitters & Dividers	Aeroflex/Weinschel	1594	11/02/21	12/02/21	1177
	Frequency Counter	H.P	5342A	11/07/01	12/07/01	2119A04450
	TEMP & HUMIDITY Chamber	JISCO	KR-100/J-RHC2	10/10/04	11/10/04	30604493/021031
\boxtimes	Digital Multimeter	H.P	34401A	11/03/07	12/03/07	3146A13475, US36122178
	Multifunction Synthesizer	HP	8904A	10/10/11	11/10/11	3633A08404
\boxtimes	Signal Generator	Rohde Schwarz	SMR20	11/03/08	12/03/08	101251
\boxtimes	Signal Generator	H.P	ESG-3000A	11/07/01	12/07/01	US37230529
	Vector Signal Generator	Rohde Schwarz	SMJ100A	11/01/11	12/01/11	100148
	Vector Signal Generator	Rohde Schwarz	SMBV100A	11/01/11	12/01/11	255571
	Audio Analyzer	H.P	8903B	11/07/02	12/07/02	3011A09448
	Modulation Analyzer	H.P	8901B	11/07/01	12/07/01	3028A03029
	8960 Series 10 Wireless Comms. Test Set	Agilent	E5515C	11/03/07	12/03/07	GB43461134
	Universal Radio communication Tester	Rohde Schwarz	CMU200	11/03/07	12/03/07	106760
\boxtimes	Bluetooth Tester	TESCOM	TC-3000B	11/07/01	12/07/01	3000B640046
	Thermo hygrometer	BODYCOM	BJ5478	11/01/13	12/01/13	090205-3
\boxtimes	Thermo hygrometer	BODYCOM	BJ5478	11/01/13	12/01/13	090205-2
	Thermo hygrometer	BODYCOM	BJ5478	11/01/13	12/01/13	090205-4
	AC Power supply	DAEKWANG	5KVA	11/03/08	12/03/08	20060321-1
\boxtimes	DC Power Supply	HP	6622A	11/03/07	12/03/07	3448A03760
	DC Power Supply	HP	6633A	11/03/07	12/03/07	3524A06634
	DC Power Supply	Protek	PWS-3010D	10/10/04	11/10/04	4072702
	DC Power Supply	SM techno	SDP30-5D	11/05/20	12/05/20	305DKA013
	BAND Reject Filter	Microwave Circuits	N0308372	10/10/05	11/10/05	3125-01DC0352
	BAND Reject Filter	Wainwright	WRCG1750	10/10/05	11/10/05	2
	High-Pass Filter	ANRITSU	MP526D	10/10/04	11/10/04	M27756
	High-pass filter	Wainwright	WHNX2.1	N/A	N/A	1
\boxtimes	High-pass filter	Wainwright	WHNX3.0	N/A	N/A	9
	High-pass filter	Wainwright	WHNX5.0	N/A	N/A	8

	Туре	Manufacturer	Model	Cal.Date (yy/mm/dd)	Next.Cal.Date (yy/mm/dd)	S/N
	High-Pass Filter	Wainwright	WHKX8.5	N/A	N/A	1
	High-Pass Filter	Wainwright	D82346	N/A	N/A	9
	Tunable Notch Filter	Wainwright	WRCT800.0 /960.0-0.2/40-8SSK	N/A	N/A	32
	Tunable Notch Filter	Wainwright	WRCD1700.0 /2000.0-0.2/40- 10SSK	N/A	N/A	53
	Tunable Notch Filter	Wainwright	WRCT1900.0/ 2200.0-5/40-10SSK	N/A	N/A	30
	HORN ANT	ETS	3115	10/10/04	11/10/04	21097
\boxtimes	HORN ANT	ETS	3115	11/03/22	12/03/22	6419
	HORN ANT	A.H.Systems	SAS-574	11/03/25	13/03/25	154
	HORN ANT	A.H.Systems	SAS-574	11/03/25	13/03/25	155
	HORN ANT	SCHWARZBECK	BBHA9120A	10/04/13	12/04/13	322
	Dipole Antenna	Schwarzbeck	VHA9103	10/11/29	11/11/29	2116
	Dipole Antenna	Schwarzbeck	VHA9103	10/11/29	11/11/29	2117
	Dipole Antenna	Schwarzbeck	UHA9105	10/11/29	11/11/29	2261
	Dipole Antenna	Schwarzbeck	UHA9105	10/11/29	11/11/29	2262
	LOOP Antenna	ETS	6502	10/11/29	11/11/29	3471
	Coaxial Fixed Attenuators	Agilent	8491B	11/07/02	12/07/02	MY39260700
	Attenuator (3dB)	WEINSCHEL	56-3	10/10/05	11/10/05	Y2342
	Attenuator (3dB)	WEINSCHEL	56-3	10/10/05	11/10/05	Y2370
	Attenuator (10dB)	WEINSCHEL	23-10-34	10/10/01	11/10/01	BP4386
	Attenuator (10dB)	WEINSCHEL	23-10-34	11/01/11	12/01/11	BP4387
	Attenuator (10dB)	WEINSCHEL	86-10-11	10/10/05	11/10/05	446
	Attenuator (10dB)	WEINSCHEL	86-10-11	10/10/05	11/10/05	408
	Attenuator (20dB)	WEINSCHEL	86-20-11	10/10/05	11/10/05	432
	Attenuator (30dB)	JFW	50FH-030-300	11/03/07	12/03/07	060320-1
	Attenuator (40dB)	WEINSCHEL	57-40-33	10/10/01	11/10/01	NN837
	Termination	H.P	HP-909D	11/07/02	12/07/02	02750
	Termination	H.P	HP-909D	11/07/02	12/07/02	02702
	Type N Coaxial CIRCULATOR	NOVA MICROWAVE	0088CAN	11/07/01	12/07/01	788
	Type N Coaxial CIRCULATOR	NOVA MICROWAVE	0185CAN	11/07/01	12/07/01	790
	Amplifier (30dB)	Agilent	8449B	11/03/07	12/03/07	3008A01590
	Amplifier (30dB)	H.P	8449B	11/03/07	12/03/07	3008A00370
	Amplifier	EMPOWER	BBS3Q7ELU	10/10/04	11/10/04	1020
	RF Power Amplifier	OPHIRRF	5069F	11/07/01	12/07/01	1006
	EMI TEST RECEIVER	R&S	ESU	11/01/20	12/01/20	100014
	BILOG ANTENNA	SCHAFFNER	CBL6112B	10/07/14	12/07/14	2737
	Amplifier (22dB)	H.P	8447E	11/01/11	12/01/11	2945A02865
	EMI TEST RECEIVER	R&S	ESCI	11/03/08	12/03/08	100364

	Туре	Manufacturer	Model	Cal.Date (yy/mm/dd)	Next.Cal.Date (yy/mm/dd)	S/N
	BICONICAL ANT.	Schwarzbeck	VHA 9103	10/11/29	11/11/29	91032789
	LOG-PERIODIC ANT.	Schwarzbeck	UHALP9108A1	10/11/29	12/11/29	1098
	BICONICAL ANT.	Schwarzbeck	VHA 9103	10/12/21	12/12/21	91031946
	LOG-PERIODIC ANT.	Schwarzbeck	UHALP9108A1	10/07/07	12/07/07	0590
	Low Noise Pre Amplifier	TSJ	MLA-100K01-B01-2	11/03/07	12/03/07	1252741
\boxtimes	Low Noise Pre Amplifier	TSJ	MLA-00108-B02-36	11/01/11	12/01/11	1518831
	Amplifier (25dB)	Agilent	8447D	11/03/07	12/03/07	2944A10144
	Amplifier (25dB)	Agilent	8447D	11/07/01	12/07/01	2648A04922
	Spectrum Analyzer(CE)	H.P	8591E	11/03/07	12/03/07	3649A05889
	LISN	Kyoritsu	KNW-407	11/01/11	12/01/11	8-317-8
	LISN	Kyoritsu	KNW-242	11/07/02	12/07/02	8-654-15
	CVCF	NF Electronic	4420	11/03/08	12/03/08	304935/337980
	50 ohm Terminator	НМЕ	CT-01	11/01/11	12/01/11	N/A
	RFI/FIELD Intensity Meter	Kyoritsu	KNM-2402	11/07/02	12/07/02	4N-170-3
	Wideband Radio Communication Tester	R&S	CMW500	10/10/21	11/10/21	100988