Calculus I Homework Substitution Rule Lecture 22

1. Evaluate the indefinite integral. The answer key has not been proofread, use with caution.

(a)
$$\int (1+3x)^9 dx$$
. (j) $\int x(2x+5)^{2014} dx$. (s) $\int \frac{\sin \sqrt{t}}{\sqrt{t}} dt$. (b) $\int (\sqrt{2x+1}) dx$. (c) $\int (3x+2)^{2\cdot4} dx$. (l) $\int \sqrt{x} \sin\left(2+x^{\frac{3}{2}}\right) dx$. (l) $\int \sqrt{x} \sin\left(2+x^{\frac{3}{2}}\right) dx$. (l) $\int \cos^4 t \sin t dt$. (l) $\int (x-1)\sqrt{2x-x^2} dx$. (m) $\int \frac{\cos\left(\frac{\pi}{x}\right)}{x^2} dx$. (v) $\int \frac{dt}{\cos^2 t\sqrt{1+\tan t}}$. (e) $\int x\sqrt{1-x^2} dx$. (n) $\int \csc^2(2t) dt$. (v) $\int \frac{dt}{\cos^2 t\sqrt{1+\tan t}}$. (v) $\int \frac{dt}{\cos^2 t\sqrt{1+\tan t}}$. (v) $\int \frac{dt}{\cos^2 t\sqrt{1+\tan t}}$. (v) $\int \sqrt{\cot t} \csc^2 t dt$. (v) $\int \sqrt{\cot t} \csc^2 t dt$. (v) $\int \sin t \sec^2(\cos t) dt$.

2. Since we haven't studied \arctan yet, please ignore problem 2.u. You can solve the problem using the formula $\int \frac{1}{1+x^2} dx = \arctan x + C$. The function $\arctan x$ is the arctangent function (the inverse function to the tangent function). Evaluate the integral. The answer key has not been proofread, use with caution.

(z) $\int t \sin(t^2) dt.$

(r) $\int \cot(2t)dt$.

3. Evaluate the definite integral. The answer key has not been proofread, use with caution.

(a)
$$\int_{e}^{e^3} \frac{\mathrm{d}x}{x\sqrt[3]{\ln x}}.$$

(i) $\int x^2 \left(\sqrt{1+x}\right) dx.$

- (b) $\int_{0}^{1} xe^{-x^{2}} dx$.
- (c) $\int_{0}^{1} \frac{e^x + 1}{e^x + x} dx.$
- (d) $\int_{1}^{2} \frac{x}{2x^2 + 1} dx$.
- (e) $\int_{-3}^{-2} \frac{x}{1-x^2} dx$.
- (f) $\int_{-3}^{-2} \frac{3x}{2-x^2} dx$.
- (g) $\int_{0}^{\frac{1}{4}} \frac{x}{\sqrt{1-3x^2}} dx$.