

Machine learning: lecture 10

Tommi S. Jaakkola MIT CSAIL tommi@csail.mit.edu

Topics

- Combination of classifiers
- voted combination of stumps
- loss, modularity, and weights
- AdaBoost, properties

Tommi Jaakkola, MIT CSAIL

Voted combination of classifiers

- The general problem here is to try to combine many simple "weak" classifiers into a single "strong" classifier
- ullet We consider voted combinations of simple binary ± 1 component classifiers

$$h_m(\mathbf{x}) = \alpha_1 h(\mathbf{x}; \theta_1) + \ldots + \alpha_m h(\mathbf{x}; \theta_m)$$

where the (non-negative) votes α_i can be used to emphasize component classifiers that are more reliable than others

CSAIL

Components: decision stumps

 \bullet Consider the following simple family of component classifiers generating ± 1 labels:

$$h(\mathbf{x};\theta) = \operatorname{sign}(w_1 x_k - w_0)$$

where $\theta = \{k, w_1, w_0\}$. These are called *decision stumps*.

 Each decision stump pays attention to only a single component of the input vector

Tommi Jaakkola, MIT CSAIL 4

Tommi Jaakkola, MIT CSAIL

Voted combination cont'd

• We need to define a loss function for the combination so we can determine which new component $h(\mathbf{x};\theta)$ to add and how many votes it should receive

$$h_m(\mathbf{x}) = \alpha_1 h(\mathbf{x}; \theta_1) + \ldots + \alpha_m h(\mathbf{x}; \theta_m)$$

 While there are many options for the loss function we consider here only a simple exponential loss

$$\exp\{-y\,h_m(\mathbf{x})\}$$

Modularity, errors, and loss

ullet Consider adding the m^{th} component:

$$\sum_{i=1}^{n} \exp\{-y_i[h_{m-1}(\mathbf{x}_i) + \alpha_m h(\mathbf{x}_i; \theta_m)]\}$$

$$= \sum_{i=1}^{n} \exp\{-y_i h_{m-1}(\mathbf{x}_i) - y_i \alpha_m h(\mathbf{x}_i; \theta_m)\}$$

Tommi Jaakkola, MIT CSAIL

Tommi Jaakkola, MIT CSAIL

ь

Modularity, errors, and loss

• Consider adding the m^{th} component:

$$\sum_{i=1}^{n} \exp\{-y_i[h_{m-1}(\mathbf{x}_i) + \alpha_m h(\mathbf{x}_i; \theta_m)]\}$$

$$= \sum_{i=1}^{n} \exp\{-y_i h_{m-1}(\mathbf{x}_i) - y_i \alpha_m h(\mathbf{x}_i; \theta_m)\}$$

$$= \sum_{i=1}^{n} \underbrace{\exp\{-y_i h_{m-1}(\mathbf{x}_i)\}}_{\text{fixed at stage } m} \exp\{-y_i \alpha_m h(\mathbf{x}_i; \theta_m)\}$$

Tommi Jaakkola, MIT CSAIL

Modularity, errors, and loss

• Consider adding the m^{th} component:

$$\sum_{i=1}^{n} \exp\{-y_i[h_{m-1}(\mathbf{x}_i) + \alpha_m h(\mathbf{x}_i; \theta_m)]\}$$

$$= \sum_{i=1}^{n} \exp\{-y_i h_{m-1}(\mathbf{x}_i) - y_i \alpha_m h(\mathbf{x}_i; \theta_m)\}$$

$$= \sum_{i=1}^{n} \underbrace{\exp\{-y_i h_{m-1}(\mathbf{x}_i)\}}_{\text{fixed at stage } m} \exp\{-y_i \alpha_m h(\mathbf{x}_i; \theta_m)\}$$

$$= \sum_{i=1}^{n} W_i^{(m-1)} \exp\{-y_i \alpha_m h(\mathbf{x}_i; \theta_m)\}$$

So at the m^{th} iteration the new component (and the votes) should optimize a weighted loss (weighted towards mistakes).

Tommi Jaakkola, MIT CSAIL 8

Empirical exponential loss cont'd

- ullet To increase modularity we'd like to further decouple the optimization of $h(\mathbf{x}; \theta_m)$ from the associated votes α_m
- ullet To this end we select $h(\mathbf{x}; \theta_m)$ that optimizes the rate at which the loss would decrease as a function of α_m

$$\frac{\partial}{\partial \alpha_m}\big|_{\alpha_m=0} \, \sum_{i=1}^n \, W_i^{(m-1)} \, \exp\{-y_i \alpha_m h(\mathbf{x}_i;\theta_m) \,\} =$$

Empirical exponential loss cont'd

- To increase modularity we'd like to further decouple the optimization of $h(\mathbf{x};\theta_m)$ from the associated votes α_m
- ullet To this end we select $h(\mathbf{x}; \theta_m)$ that optimizes the rate at which the loss would decrease as a function of α_m

$$\begin{split} \frac{\partial}{\partial \alpha_m} \Big|_{\alpha_m = 0} & \sum_{i=1}^n W_i^{(m-1)} \exp\{-y_i \alpha_m h(\mathbf{x}_i; \theta_m)\} = \\ & \left[\sum_{i=1}^n W_i^{(m-1)} \exp\{-y_i \alpha_m h(\mathbf{x}_i; \theta_m)\} \cdot \left(-y_i h(\mathbf{x}_i; \theta_m)\right) \right]_{\alpha_m = 0} \end{split}$$

Tommi Jaakkola, MIT CSAIL

9

11

Tommi Jaakkola, MIT CSAIL

Empirical exponential loss cont'd

- To increase modularity we'd like to further decouple the optimization of $h(\mathbf{x};\theta_m)$ from the associated votes α_m
- To this end we select $h(\mathbf{x};\theta_m)$ that optimizes the rate at which the loss would decrease as a function of α_m

$$\frac{\partial}{\partial \alpha_m}\Big|_{\alpha_m=0} \sum_{i=1}^n W_i^{(m-1)} \exp\{-y_i \alpha_m h(\mathbf{x}_i; \theta_m)\} = \left[\sum_{i=1}^n W_i^{(m-1)} \exp\{-y_i \alpha_m h(\mathbf{x}_i; \theta_m)\} \cdot \left(-y_i h(\mathbf{x}_i; \theta_m)\right)\right]_{\alpha_m=0} = \left[\sum_{i=1}^n W_i^{(m-1)} \left(-y_i h(\mathbf{x}_i; \theta_m)\right)\right]$$

Empirical exponential loss cont'd

• We find $h(\mathbf{x}; \hat{\theta}_m)$ that minimizes

$$-\sum_{i=1}^{n} W_i^{(m-1)} y_i h(\mathbf{x}_i; \theta_m)$$

Tommi Jaakkola, MIT CSAIL

Tommi Jaakkola, MIT CSAIL

12

Empirical exponential loss cont'd

• We find $h(\mathbf{x}; \hat{\theta}_m)$ that minimizes

$$-\sum_{i=1}^{n} W_i^{(m-1)} y_i h(\mathbf{x}_i; \theta_m)$$

We can also normalize the weights:

$$-\sum_{i=1}^{n} \frac{W_i^{(m-1)}}{\sum_{j=1}^{n} W_j^{(m-1)}} y_i h(\mathbf{x}_i; \theta_m)$$
$$= -\sum_{i=1}^{n} \tilde{W}_i^{(m-1)} y_i h(\mathbf{x}_i; \theta_m)$$

so that $\sum_{i=1}^{n} \tilde{W}_{i}^{(m-1)} = 1$.

Tommi Jaakkola, MIT CSAIL

13

Selecting a new component: summary

• We find $h(\mathbf{x}; \hat{\theta}_m)$ that minimizes

$$-\sum_{i=1}^{n} \tilde{W}_{i}^{(m-1)} y_{i} h(\mathbf{x}_{i}; \theta_{m})$$

where $\sum_{i=1}^{n} \tilde{W}_{i}^{(m-1)} = 1$.

• α_m is subsequently chosen to minimize

$$\sum_{i=1}^{n} \tilde{W}_{i}^{(m-1)} \exp\{-y_{i}\alpha_{m}h(\mathbf{x}_{i};\hat{\theta}_{m})\}$$

Tommi Jaakkola, MIT CSAIL

The AdaBoost algorithm

0) Set $\tilde{W}_{i}^{(0)} = 1/n$ for i = 1, ..., n

The AdaBoost algorithm

0) Set $\tilde{W}_{i}^{(0)} = 1/n$ for i = 1, ..., n

1) At the m^{th} iteration we find (any) classifier $h(\mathbf{x}; \hat{\theta}_m)$ for which the weighted classification error ϵ_m

$$\epsilon_m = 0.5 - \frac{1}{2} \left(\sum_{i=1}^n \tilde{W}_i^{(m-1)} y_i h(\mathbf{x}_i; \hat{\theta}_m) \right)$$

is better than chance.

Tommi Jaakkola, MIT CSAIL

15

Tommi Jaakkola, MIT CSAIL

The AdaBoost algorithm

0) Set $\tilde{W}_{i}^{(0)} = 1/n$ for i = 1, ..., n

1) At the m^{th} iteration we find (any) classifier $h(\mathbf{x}; \hat{\theta}_m)$ for which the weighted classification error ϵ_m

$$\epsilon_m = 0.5 - \frac{1}{2} \left(\sum_{i=1}^n \tilde{W}_i^{(m-1)} y_i h(\mathbf{x}_i; \hat{\theta}_m) \right)$$

is better than chance.

2) The new component is assigned votes based on its error:

$$\hat{\alpha}_m = 0.5 \log((1 - \epsilon_m)/\epsilon_m)$$

which minimizes the weighted loss when $h(\mathbf{x}; \theta) \in \{-1, 1\}$

$$\sum_{i=1}^{n} \tilde{W}_{i}^{(m-1)} \exp\{-y_{i}\alpha_{m}h(\mathbf{x}_{i};\hat{\theta}_{m})\}$$

Tommi Jaakkola, MIT CSAIL

17

The AdaBoost algorithm

0) Set $\tilde{W}_{i}^{(0)} = 1/n$ for i = 1, ..., n

1) At the m^{th} iteration we find (any) classifier $h(\mathbf{x}; \hat{\theta}_m)$ for which the weighted classification error ϵ_m

$$\epsilon_m = 0.5 - \frac{1}{2} \left(\sum_{i=1}^n \tilde{W}_i^{(m-1)} y_i h(\mathbf{x}_i; \hat{\theta}_m) \right)$$

is better than chance.

2) The new component is assigned votes based on its error:

$$\hat{\alpha}_m = 0.5 \log((1 - \epsilon_m)/\epsilon_m)$$

3) The weights are updated according to (Z_m) is chosen so that the new weights $\tilde{W}_i^{(m)}$ sum to one):

$$\tilde{W}_{i}^{(m)} = \frac{1}{Z_{m}} \cdot \tilde{W}_{i}^{(m-1)} \cdot \exp\{-y_{i}\hat{\alpha}_{m}h(\mathbf{x}_{i};\hat{\theta}_{m})\}$$

Tommi Jaakkola, MIT CSAIL

Boosting: example

Tommi Jaakkola, MIT CSAIL

Adaboost properties: exponential loss

 After each boosting iteration, assuming we can find a component classifier whose weighted error is better than chance, the combined classifier

$$\hat{h}_m(\mathbf{x}) = \hat{\alpha}_1 h(\mathbf{x}; \hat{\theta}_1) + \ldots + \hat{\alpha}_m h(\mathbf{x}; \hat{\theta}_m)$$

is guaranteed to have a lower exponential loss over the training examples

Tommi Jaakkola, MIT CSAIL 20

Adaboost properties: training error

• The boosting iterations also decrease the classification error of the combined classifier

$$\hat{h}_m(\mathbf{x}) = \hat{\alpha}_1 h(\mathbf{x}; \hat{\theta}_1) + \ldots + \hat{\alpha}_m h(\mathbf{x}; \hat{\theta}_m)$$

over the training examples.

Tommi Jaakkola, MIT CSAIL

21

23

19

Adaboost properties: training error cont'd

• The training classification error has to go down exponentially fast if the weighted errors of the component classifiers, ϵ_k , are strictly better than chance $\epsilon_k < 0.5$

$$\operatorname{err}(\hat{h}_m) \leq \prod_{k=1}^m 2\sqrt{\epsilon_k(1-\epsilon_k)}$$

Tommi Jaakkola, MIT CSAIL 22

Adaboost properties: weighted error

• Weighted error of each new component classifier

$$\epsilon_k = 0.5 - \frac{1}{2} \left(\sum_{i=1}^n \tilde{W}_i^{(k-1)} y_i h(\mathbf{x}_i; \hat{\theta}_k) \right)$$

tends to increase as a function of boosting iterations.

Tommi Jaakkola, MIT CSAIL

"Typical" performance

• Training and test errors of the combined classifier

$$\hat{h}_m(\mathbf{x}) = \hat{\alpha}_1 h(\mathbf{x}; \hat{\theta}_1) + \ldots + \hat{\alpha}_m h(\mathbf{x}; \hat{\theta}_m)$$

 Why should the test error go down after we already have zero training error?

Tommi Jaakkola, MIT CSAIL

24

AdaBoost and margin

 We can write the combined classifier in a more useful form by dividing the predictions by the "total number of votes":

$$\hat{h}_m(\mathbf{x}) = \frac{\hat{\alpha}_1 h(\mathbf{x}; \hat{\theta}_1) + \ldots + \hat{\alpha}_m h(\mathbf{x}; \hat{\theta}_m)}{\hat{\alpha}_1 + \ldots + \hat{\alpha}_m}$$

• This allows us to define a clear notion of "voting margin" that the combined classifier achieves for each training example:

$$margin(\mathbf{x}_i) = y_i \cdot \hat{h}_m(\mathbf{x}_i)$$

The margin lies in $\left[-1,1\right]$ and is negative for all misclassified examples.

Tommi Jaakkola, MIT CSAIL

AdaBoost and margin

• Successive boosting iterations still improve the majority vote or margin for the training examples

$$\mathrm{margin}(\mathbf{x}_i) \ = \ y_i \left[\frac{\hat{\alpha}_1 h(\mathbf{x}_i; \hat{\theta}_1) + \ldots + \hat{\alpha}_m h(\mathbf{x}_i; \hat{\theta}_m)}{\hat{\alpha}_1 + \ldots + \hat{\alpha}_m} \right]$$

Cumulative distributions of margin values:

Tommi Jaakkola, MIT CSAIL 26

AdaBoost and margin

 Successive boosting iterations still improve the majority vote or margin for the training examples

$$\operatorname{margin}(\mathbf{x}_i) \ = \ y_i \left[\frac{\hat{\alpha}_1 h(\mathbf{x}_i; \hat{\theta}_1) + \ldots + \hat{\alpha}_m h(\mathbf{x}_i; \hat{\theta}_m)}{\hat{\alpha}_1 + \ldots + \hat{\alpha}_m} \right]$$

• Cumulative distributions of margin values:

Tommi Jaakkola, MIT CSAIL

25

27

Can we improve the combination?

 \bullet As a result of running the boosting algorithm for m iterations, we essentially generate a new feature representation for the data

$$\phi_i(\mathbf{x}) = h(\mathbf{x}; \hat{\theta}_i), i = 1, \dots, m$$

 Perhaps we can do better by separately estimating a new set of "votes" for each component. In other words, we could estimate a linear classifier of the form

$$f(\mathbf{x}; \alpha) = \alpha_1 \phi_1(\mathbf{x}) + \dots + \alpha_m \phi_m(\mathbf{x})$$

where each parameter α_i can be now any real number (even negative). The parameters would be estimated jointly rather than one after the other as in boosting.

Tommi Jaakkola, MIT CSAIL 28

Can we improve the combination?

• We could use SVMs in a postprocessing step to reoptimize

$$f(\mathbf{x}; \alpha) = \alpha_1 \phi_1(\mathbf{x}) + \dots + \alpha_m \phi_m(\mathbf{x})$$

with respect to α_1,\ldots,α_m . This is not necessarily a good idea.

29

Tommi Jaakkola, MIT CSAIL