

Roadmap

Classification

Object Detection

Instance Segmentation

CAT

CAT

CAT, DOG, DUCK

CAT, DOG, DUCK

Single object

Multiple objects

State-of-the-art Detection Method

• YOLO v2 (CVPR'18)

Object Category Detection

- Focus on object search: "Where is it?"
- Build templates that quickly differentiate object patch from background patch

Challenges in modeling the object class

Illumination

my variationol 言

Object pose

Clutter

Occlusions

Intra-class appearance

Viewpoint

Challenges in modeling the non-object class

True Detections

Bad Localization

Confused with Similar Object

Misc. Background

Confused with Dissimilar Objects

General Process of Object Detection

Specify Object Model

What are the object parameters?

왕고자· 대상특제 대는 78일

target object rush &11

Generate Hypotheses

Score Hypotheses

Resolve Detections

Specifying an object model

- 1. Statistical Template in Bounding Box
 - Object is somewhere (x,y,w,h) in image
 - Features defined w.r.t. bounding box coordinates

 ংগে ১৮ ৩ চি এ এপদ

 কুন্দ্র এপ' ইং কান্দায়ে পুলান ইংস্থা এপ

Image

gradient 24

Template Visualization

Specifying an object model

2. Articulated parts model

- Object is configuration of parts
- Each part is detectable

Afre constraint & 71212 object define

How to model spatial relations?

Specifying an object model

3. Hybrid template/ parts model

Detection results

Template Visualization

root filters pa

part filters finer resolution

deformation models

Felzenszwalb et al. 2008

General Process of Object Detection

Specify Object Model

化树 만듦

Generate Hypotheses

Propose object candidates in the given image

姓 object가 국어인 이미지미너 각 방면되는지

Score Hypotheses

Resolve Detections

Generating hypotheses

1. Sliding window

Test patch at each location and scale

Generated hypotheses

candidate >object 95 324

Generating hypotheses

Region-based proposal

मिर्ध मुखारा अन्ह

Endres Hoiem 2010

General Process of Object Detection

Specify Object Model

Generate Hypotheses

弘松份

Score Hypotheses

디서의 유사도 흑자 (ex) 유클리디앤 distance Similarity

Resolve Detections

Compare hypotheses and the trained models (templates).

Traditional classifiers/Neural nets

General Process of Object Detection

Specify Object Model

Generate Hypotheses

Score Hypotheses

Resolve Detections

四分十 optimal 312 %元 四知 到21日 201

Resolving detection scores

- Non-max suppression (NMS) ជួយុខម មកា
 - Find local maxima

Object category detection in computer vision

Goal: detect all pedestrians, cars, monkeys, etc in image

Sliding window: a simple alignment solution

25 (1/2/50) (201° 2/52) 3/4-

Each window is separately classified

가 (andidate 에서 디서 岩아서 유사도 측정

Design challenges

- How to efficiently search for likely objects
 - Even simple models require searching hundreds of thousands of positions and scales শুনা মুখ্
- Feature design and scoring
 - How should *appearance* be modeled? What features correspond to the object? এই মুধ্যান্ত মুহ্ন মুধ্য আস
- How to deal with different viewpoints?
 - Often train different models for a few different viewpoints
- Implementation details
 - Window size
 - Aspect ratio
 - Translation/scale step size
 - Non-maxima suppression

Example: Dalal-Triggs detector

- 1. Extract fixed-sized (64x128 pixel) window at each position and scale
- 3. Score the window with a linear **SVM classifier** 나가 가지고 있는 띠서만 유사도 속정
- 4. Perform *non-maxima suppression* to remove overlapping detections with lower scores

feature extraction overall flow >

Tested with

Gamma Normalization and Compression

- Square root
 Very slightly better performance vs. no adjustment
- Log

Histogram of gradient orientations

Orientation: 9 bins (for unsigned angles)

Histograms in 8x8 pixel cells

- Votes weighted by magnitude
- Bilinear interpolation between cells

Normalize with respect to surrounding cells

$$L2-norm: v \longrightarrow v/\sqrt{||v||_2^2+\epsilon^2}$$

cells # normalizations by neighboring cells

$$0.16 = w^T x - b$$

$$sign(0.16) = 1$$

Detection examples

Viola-Jones sliding window detector

Fast detection through two mechanisms

- Quickly eliminate unlikely windows
- Use *features that are fast* to compute

Cascade approach

- Choose threshold for low false negative rate
 - Avoid rejecting facial images
- Fast classifiers early stage
- Slow classifiers later, but most examples don't get there

Cascaded Classifier

The cascaded classifier is almost 10 times faster since only positive examples are considered in the subsequent stages

- We need to determine
 - The number of stages
 - Weak classifiers (features) in each stage.
 - The threshold of each stage
- Finding the optimal parameter is extremely difficult.

Characteristics of AdaBoost

- Training AdaBoost is the procedure to find
 - A set of weak classifiers with associated features
 - The weight of each weak classifier
- A collection of weak classifiers
 - Each rectangle feature is used to construct a weak classifier
 - The strong classifier is simply a set of weak classifiers
- An iterative training procedure
 - AdaBoost performs a series of trials.
 - A new weak classifier with associated weight is selected in a greedy manner in each iteration
 - Jointly find weak classifiers and extract features

Top 2 selected features

 These two-feature classifier can be adjusted to detect 100% of the faces with a false positive rate of 50%

Viola Jones Results

Speed = 15 FPS (in 2001)

False detections							
Detector	10	31	50	65	78	95	167
Viola-Jones	76.1%	88.4%	91.4%	92.0%	92.1%	92.9%	93.9%
Viola-Jones (voting)	81.1%	89.7%	92.1%	93.1%	93.1%	93.2 %	93.7%
Rowley-Baluja-Kanade	83.2%	86.0%	-	-	-	89.2%	90.1%
Schneiderman-Kanade	-	-	-	94.4%	-	-	-
Roth-Yang-Ahuja	-	-	-	1	(94.8%)	-	-

Viola Jones Results

Thank you!

