testG

Table of Contents

Generate sample data	1
Call algorithm	1
Plot results	2

Example for algorithm testG. Algorithm is usefull only for testing QWTB toolbox. It calculates maximal and minimal value of the record. GUF is calculated by wrapper.

See also gwtb

Generate sample data

Two quantities are prepared: x and y.

```
x = []; y = [];
x.v = [1:20];
y.v = [1:14 13:-1:8];

All uncertainties are set to 1.

x.u = x.v.*0 + 1;
y.u = y.v.*0 + 1;

Set degrees of freedom.

x.d = x.v.*0 + 60;
y.d = y.v.*0 + 9;

Quantities are put into data input structure DI.

DI = [];
```

Create calculation settings CS and set uncertainty calculation method to GUM uncertainty framework.

```
CS = [];
CS.unc = 'guf';
```

Call algorithm

DI.x = x;DI.y = y;

Use QWTB to apply algorithm testG to data DI with calculation settings CS.

```
DO = qwtb('testG', DI, CS);

QWTB: default correlation matrix generated for quantity `x`

QWTB: default correlation matrix generated for quantity `y`

QWTB: uncertainty calculation by means of wrapper or algorithm
```

Plot results

Plot input data and calculated maximal and minimal values as a red and green lines with uncertainties represented by dashed lines.

```
figure
hold on
errorbar(DI.x.v, DI.y.v, DI.y.u, 'xb')
plot([DI.x.v(1) DI.x.v(end)], [DO.max.v DO.max.v], '-r', 'linewidth', 3)
plot([DI.x.v(1) DI.x.v(end)], [DO.max.v - DO.max.u DO.max.v - DO.max.u], '--r', 'l
plot([DI.x.v(1) DI.x.v(end)], [DO.min.v DO.min.v], '-g', 'linewidth', 3)
plot([DI.x.v(1) DI.x.v(end)], [DO.min.v - DO.min.u DO.min.v - DO.min.u], '--g', 'l
plot([DI.x.v(1) DI.x.v(end)], [DO.max.v + DO.max.u DO.max.v + DO.max.u], '--r', 'l
plot([DI.x.v(1) DI.x.v(end)], [DO.min.v + DO.min.u DO.min.v + DO.min.u], '--g', 'l
legend('original data (DI.x.v, DI.y.v)', 'line at maximum value (DO.max.v)', 'unce
xlabel('quantity x')
ylabel('quantity y')
title('input data and results of testG algorithm')
hold off
```


Published with MATLAB® R2013a