PROBABILITY & STATISTICS

Lecture 3 – Conditional probability

LAST TIME

- Frequentist interpretation of probability
 - Python
 - Practice problems

TODAY

- Multiple events
- Conditional probability
 - The law of total probability
 - Bayes Rule

FLIPPING A COIN 10 TIMES

Which outcome you think is more likely?

HEADS, TAILS, HEADS, TAILS, HEADS, TAILS, HEADS, TAILS

HEADS, HEADS, HEADS, HEADS, HEADS, HEADS

HEADS, HEADS, HEADS, HEADS, TAILS, TAILS, TAILS, TAILS

Independent events

INDEPENDENT EVENTS

 ${f \cdot}$ Two events A and B from the same sample space S are independent if

$$P(A\&B) = P(A) \cdot P(B)$$

$$P(E) = \frac{6}{6 \cdot 6} = \frac{1}{6},$$

$$P(E) = \frac{6}{6 \cdot 6} = \frac{1}{6}, \qquad P(F) = \frac{1}{6},$$

$$P(E) = \frac{6}{6 \cdot 6} = \frac{1}{6}, \qquad P(F) = \frac{1}{6}, \qquad P(EF) = \frac{1}{6}$$

$$P(E) = \frac{6}{6 \cdot 6} = \frac{1}{6}, \qquad P(F) = \frac{1}{6}, \qquad P(EF) = \frac{1}{6 \cdot 6} = \frac{1}{36}$$

$$P(E) = \frac{6}{6 \cdot 6} = \frac{1}{6}, \qquad P(F) = \frac{1}{6}, \qquad P(EF) = \frac{1}{6 \cdot 6} = \frac{1}{36}$$

$$P(EF) = P(E) \cdot P(F) = \frac{1}{36}$$

$$P(E) = \frac{6}{6 \cdot 6} = \frac{1}{6}, \qquad P(F) = \frac{1}{6}, \qquad P(EF) = \frac{1}{6 \cdot 6} = \frac{1}{36}$$

$$P(EF) = P(E) \cdot P(F) = \frac{1}{36} \rightarrow E\&F$$
 are independent!

Practice problems

Google classroom -> Day 3

$$P(E) = P(F) =$$

$$P(EF) =$$

$$P(E) = \frac{C(6,3)}{2^6} = \frac{5}{2^4}, \qquad P(F) =$$

$$P(EF) =$$

$$P(E) = \frac{C(6,3)}{2^6} = \frac{5}{2^4}, \qquad P(F) = \frac{2 \cdot 2^4}{2^6} = \frac{1}{2},$$

$$P(EF) =$$

$$P(E) = \frac{C(6,3)}{2^6} = \frac{5}{2^4}, \qquad P(F) = \frac{2 \cdot 2^4}{2^6} = \frac{1}{2},$$

$$P(EF) = \frac{2 \cdot C(4,2)}{2^6} = \frac{3}{2^4}$$

$$P(E) = \frac{C(6,3)}{2^6} = \frac{5}{2^4}, \qquad P(F) = \frac{2 \cdot 2^4}{2^6} = \frac{1}{2},$$

$$P(EF) = \frac{2 \cdot C(4,2)}{2^6} = \frac{3}{2^4} \neq P(E) \cdot P(F) = \frac{5}{2^5}$$

$$P(E) = \frac{C(6,3)}{2^6} = \frac{5}{2^4}, \qquad P(F) = \frac{2 \cdot 2^4}{2^6} = \frac{1}{2},$$

$$P(EF) = \frac{2 \cdot C(4,2)}{2^6} = \frac{3}{2^4} \neq P(E) \cdot P(F) = \frac{5}{2^5}$$

$$\rightarrow E \& F \text{ aren't independent}$$

$$P(E) =$$

$$P(F) =$$

$$P(EF) =$$

$$P(E) = 1 - 2 \cdot \frac{1}{2^3} = \frac{3}{4}$$

$$P(F) =$$

$$P(EF) =$$

$$P(E) = 1 - 2 \cdot \frac{1}{2^3} = \frac{3}{4}$$

$$P(F) = P(0H) + P(1H) =$$

$$P(EF) =$$

$$P(E) = 1 - 2 \cdot \frac{1}{2^3} = \frac{3}{4}$$

$$P(F) = P(0H) + P(1H) = \frac{1}{2^3} + \frac{3}{2^3} = \frac{1}{2}$$

$$P(EF) =$$

$$P(E) = 1 - 2 \cdot \frac{1}{2^3} = \frac{3}{4}$$

$$P(F) = P(0H) + P(1H) = \frac{1}{2^3} + \frac{3}{2^3} = \frac{1}{2}$$

$$P(EF) = P(1H) =$$

$$P(E) = 1 - 2 \cdot \frac{1}{2^3} = \frac{3}{4}$$

$$P(F) = P(0H) + P(1H) = \frac{1}{2^3} + \frac{3}{2^3} = \frac{1}{2}$$

$$P(EF) = P(1H) = \frac{3}{2^3} = P(E) \cdot P(F)$$

• Let *E* be the event that when a coin is flipped three times, we don't get all heads or all tails. Let *F* be the event that when a coin is flipped three times, heads comes up at most once. Are *E* and *F* independent events?

$$P(E) = 1 - 2 \cdot \frac{1}{2^3} = \frac{3}{4}$$

$$P(F) = P(0H) + P(1H) = \frac{1}{2^3} + \frac{3}{2^3} = \frac{1}{2}$$

$$P(EF) = P(1H) = \frac{3}{2^3} = P(E) \cdot P(F)$$

 $\rightarrow E \& F$ are independent!

• Faculty board, consisting of 15 professors (10 men and 5 women) and 10 students (5 men and 5 women), is randomly choosing a candidate to represent the faculty at the visiting day.

$$E_1 = \{man\}, \qquad E_2 = \{professor\}$$

• Faculty board, consisting of 15 professors (10 men and 5 women) and 10 students (5 men and 5 women), is randomly choosing a candidate to represent the faculty at the visiting day.

$$E_1 = \{man\}, \qquad E_2 = \{professor\}$$

$$P(E_1) =$$

• Faculty board, consisting of 15 professors (10 men and 5 women) and 10 students (5 men and 5 women), is randomly choosing a candidate to represent the faculty at the visiting day.

$$E_1 = \{man\}, \qquad E_2 = \{professor\}$$

$$P(E_1) = \frac{15}{25} = \frac{3}{5}$$

• Faculty board, consisting of 15 professors (10 men and 5 women) and 10 students (5 men and 5 women), is randomly choosing a candidate to represent the faculty at the visiting day.

$$E_1 = \{man\}, \qquad E_2 = \{professor\}$$

$$P(E_1) = \frac{15}{25} = \frac{3}{5}, \qquad P(E_2) =$$

• Faculty board, consisting of 15 professors (10 men and 5 women) and 10 students (5 men and 5 women), is randomly choosing a candidate to represent the faculty at the visiting day.

$$E_1 = \{man\}, \qquad E_2 = \{professor\}$$

$$P(E_1) = \frac{15}{25} = \frac{3}{5}, \qquad P(E_2) = \frac{15}{25} = \frac{3}{5}$$

• Faculty board, consisting of 15 professors (10 men and 5 women) and 10 students (5 men and 5 women), is randomly choosing a candidate to represent the faculty at the visiting day.

$$E_1 = \{man\}, \qquad E_2 = \{professor\}$$

$$P(E_1) = \frac{15}{25} = \frac{3}{5}, \qquad P(E_2) = \frac{15}{25} = \frac{3}{5}, \qquad P(E_1 \cap E_2) = \frac{15}{25} = \frac{3}{5}$$

• Faculty board, consisting of 15 professors (10 men and 5 women) and 10 students (5 men and 5 women), is randomly choosing a candidate to represent the faculty at the visiting day.

$$E_1 = \{man\}, \qquad E_2 = \{professor\}$$

$$P(E_1) = \frac{15}{25} = \frac{3}{5}, \qquad P(E_2) = \frac{15}{25} = \frac{3}{5}, \qquad P(E_1 \cap E_2) = \frac{10}{25} = \frac{2}{5}$$

• Faculty board, consisting of 15 professors (10 men and 5 women) and 10 students (5 men and 5 women), is randomly choosing a candidate to represent the faculty at the visiting day.

$$E_{1} = \{man\}, \qquad E_{2} = \{professor\}$$

$$P(E_{1}) = \frac{15}{25} = \frac{3}{5}, \qquad P(E_{2}) = \frac{15}{25} = \frac{3}{5}, \qquad P(E_{1} \cap E_{2}) = \frac{10}{25} = \frac{2}{5}$$

$$P(E_{1} \cap E_{2}) \qquad P(E_{1}) \cdot P(E_{2})$$

FACULTY BOARD

• Faculty board, consisting of 15 professors (10 men and 5 women) and 10 students (5 men and 5 women), is randomly choosing a candidate to represent the faculty at the visiting day.

Are the following events independent?

$$E_{1} = \{man\}, \qquad E_{2} = \{professor\}$$

$$P(E_{1}) = \frac{15}{25} = \frac{3}{5}, \qquad P(E_{2}) = \frac{15}{25} = \frac{3}{5}, \qquad P(E_{1} \cap E_{2}) = \frac{10}{25} = \frac{2}{5}$$

$$P(E_{1} \cap E_{2}) \neq P(E_{1}) \cdot P(E_{2})$$

FACULTY BOARD

• Faculty board, consisting of 15 professors (10 men and 5 women) and 10 students (5 men and 5 women), is randomly choosing a candidate to represent the faculty at the visiting day.

Are the following events independent?

$$E_1 = \{man\}, \qquad E_2 = \{professor\}$$

$$P(E_1) = \frac{15}{25} = \frac{3}{5}, \qquad P(E_2) = \frac{15}{25} = \frac{3}{5}, \qquad P(E_1 \cap E_2) = \frac{10}{25} = \frac{2}{5}$$

$$P(E_1 \cap E_2) \neq P(E_1) \cdot P(E_2) \rightarrow$$

the events are not independent

$$P(Sat \& Sun) =$$

$$P(Sat \& Sun) = P(Sat) \cdot P(Sun) =$$

$$P(Sat \& Sun) = P(Sat) \cdot P(Sun) = \frac{1}{4}$$

Conditional probability

- In Czechia, 46% of the population is male, and 54% is female.
- 14% of the population aged 65+.
- Among them, 31% are male and 69% is female.

- In Czechia, 46% of the population is male, and 54% is female.
- 14% of the population aged 65+.
- Among them, 31% are male and 69% is female.

• So, men aged 65+ are % of the population.

- In Czechia, 46% of the population is male, and 54% is female.
- 14% of the population aged 65+.
- Among them, 31% are male and 69% is female.
- So, men aged 65+ are 4.3% $(0.31 \cdot 0.14 = 0.0434)$ of the population.

- In Czechia, 46% of the population is male, and 54% is female.
- In Czechia, 46% of the The probability to be male is 0.46.

- 14% of the population aged 65+.
- Among them, 31% are male and 69% is female.
- So, men aged 65+ are 4.3% $(0.31 \cdot 0.14 = 0.0434)$ of the population.

- In Czechia, 46% of the The probability to be male is 0.46. population is male, and 54% is female.

- 14% of the population aged 65+.
- The probability to be aged 65+ is 0.14.
- Among them, 31% are male and 69% is female.
- So, men aged 65+ are 4.3% $(0.31 \cdot 0.14 = 0.0434)$ of the population.

- In Czechia, 46% of the population is male, and 54% is female.
- In Czechia, 46% of the The probability to be male is 0.46.

- 14% of the population aged 65+.
- The probability to be aged 65+ is 0.14.
- Among them, 31% are male and 69% is female.
- So, men aged 65+ are 4.3% $(0.31 \cdot 0.14 = 0.0434)$ of the population.
- Joint probability of being a man and aged 65+ is 0.0434.

- In Czechia, 46% of the population is male, and 54% is female.
- 14% of the population aged 65+.
- Among them, 31% are male and 69% is female.
- So, men aged 65+ are 4.3% $(0.31 \cdot 0.14 = 0.0434)$ of the population.

- In Czechia, 46% of the The probability to be male is 0.46.
 - The probability to be aged 65+ is 0.14.
 - The conditional probability of being a male given age 65+ is 0.31.
 - Joint probability of being a man and aged 65+ is 0.0434.

- The probability to be male is 0.46:
- The probability to be aged 65+ is 0.14:

- The probability to be male is 0.46: P(M) = 0.46
- The probability to be aged 65+ is 0.14: P(65 +) = 0.14

- The probability to be male is 0.46: P(M) = 0.46
- The probability to be aged 65+ is 0.14: P(65 +) = 0.14
- The conditional probability of being a male given age 65+ is 0.31:

- The probability to be male is 0.46: P(M) = 0.46
- The probability to be aged 65+ is 0.14: P(65 +) = 0.14
- The conditional probability of being a male given age 65+ is 0.31:

$$P(M|65 +) = 0.31$$

- The probability to be male is 0.46: P(M) = 0.46
- The probability to be aged 65+ is 0.14: P(65 +) = 0.14
- The conditional probability of being a male given age 65+ is 0.31:

$$P(M|65 +) = 0.31$$

• Joint probability of being a man and aged 65+ is 0.0434:

- The probability to be male is 0.46: P(M) = 0.46
- The probability to be aged 65+ is 0.14: P(65 +) = 0.14
- The conditional probability of being a male given age 65+ is 0.31:

$$P(M|65 +) = 0.31$$

• Joint probability of being a man and aged 65+ is 0.0434:

$$P(M \& 65 +) = 0.0434$$

- The probability to be male is 0.46: P(M) = 0.46
- The probability to be aged 65+ is 0.14: P(65 +) = 0.14
- The conditional probability of being a male given age 65+ is 0.31:

$$P(M|65 +) = 0.31$$

• Joint probability of being a man and aged 65+ is 0.0434:

$$P(M \& 65 +) = 0.0434$$

Note:
$$P(M \& 65 +) = P(M | 65 +) \cdot P(65 +)$$

• A man rolls a pair of dice. For the game, it is important that he rolls a sum of 7. What's the probability of that?

• A man rolls a pair of dice. For the game, it is important that he rolls a sum of 7. What's the probability of that?

$$P(X_1 + X_2 = 7) =$$

• A man rolls a pair of dice. For the game, it is important that he rolls a sum of 7. What's the probability of that?

$$P(X_1 + X_2 = 7) = \frac{6}{6 \cdot 6} = \frac{1}{6} \approx 0.167$$

• A man rolls a pair of dice. For the game, it is important that he rolls a sum of 7. What's the probability of that?

$$P(X_1 + X_2 = 7) = \frac{6}{6 \cdot 6} = \frac{1}{6} \approx 0.167$$

• A man rolls a pair of dice. For the game, it is important that he rolls a sum of 7. What's the probability of that?

$$P(X_1 + X_2 = 7) = \frac{6}{6 \cdot 6} = \frac{1}{6} \approx 0.167$$

$$P(X_1 + X_2 = 7 | multiple \ spots) =$$

• A man rolls a pair of dice. For the game, it is important that he rolls a sum of 7. What's the probability of that?

$$P(X_1 + X_2 = 7) = \frac{6}{6 \cdot 6} = \frac{1}{6} \approx 0.167$$

$$P(X_1 + X_2 = 7 | multiple \ spots) = \frac{4}{5 \cdot 5} =$$

• A man rolls a pair of dice. For the game, it is important that he rolls a sum of 7. What's the probability of that?

$$P(X_1 + X_2 = 7) = \frac{6}{6 \cdot 6} = \frac{1}{6} \approx 0.167$$

$$P(X_1 + X_2 = 7 | multiple \ spots) = \frac{4}{5 \cdot 5} = \frac{4}{25} = 0.16$$

CONDITIONAL PROBABILITY

• Let A and B be events in a sample space S with P(B) > 0.

CONDITIONAL PROBABILITY

- Let A and B be events in a sample space S with P(B) > 0.
- Then the conditional probability of the event A given that event B has occurred is

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

CONDITIONAL PROBABILITY

- Let A and B be events in a sample space S with P(B) > 0.
- Then the conditional probability of the event A given that event B has occurred is

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(AB)}{P(B)} = \frac{P(A \& B)}{P(B)}$$

• A coin is flipped 4 times. What is the probability that heads comes up exactly twice given that heads comes up on the first flip?

- A coin is flipped 4 times. What is the probability that heads comes up exactly twice given that heads comes up on the first flip?
 - A H comes up twice
 - B H comes up on the 1st flip

- A coin is flipped 4 times. What is the probability that heads comes up exactly twice given that heads comes up on the first flip?
 - A H comes up twice
 - B H comes up on the 1st flip
 - AB H comes up twice incl. on the 1st flip

• A coin is flipped 4 times. What is the probability that heads comes up exactly twice given that heads comes up on the first flip?

$$A - H$$
 comes up twice

$$P(A) =$$

B - H comes up on the 1st flip

AB – H comes up twice incl. on the 1st flip

• A coin is flipped 4 times. What is the probability that heads comes up exactly twice given that heads comes up on the first flip?

$$A - H$$
 comes up twice

$$P(A) = \frac{C(4,2)}{2^4} = \frac{3}{8}$$

B - H comes up on the 1st flip

AB – H comes up twice incl. on the 1st flip

• A coin is flipped 4 times. What is the probability that heads comes up exactly twice given that heads comes up on the first flip?

$$A - H$$
 comes up twice

$$P(A) = \frac{C(4,2)}{2^4} = \frac{3}{8}$$

$$B - H$$
 comes up on the 1st flip

$$P(B) =$$

AB – H comes up twice incl. on the 1st flip

• A coin is flipped 4 times. What is the probability that heads comes up exactly twice given that heads comes up on the first flip?

$$A - H$$
 comes up twice

$$P(A) = \frac{C(4,2)}{2^4} = \frac{3}{8}$$

$$B-H$$
 comes up on the 1st flip

$$P(B) = \frac{2^3}{2^4} = \frac{1}{2}$$

AB – H comes up twice incl. on the 1st flip

• A coin is flipped 4 times. What is the probability that heads comes up exactly twice given that heads comes up on the first flip?

$$A - H$$
 comes up twice

$$P(A) = \frac{C(4,2)}{2^4} = \frac{3}{8}$$

$$B-H$$
 comes up on the 1st flip

$$P(B) = \frac{2^3}{2^4} = \frac{1}{2}$$

$$AB$$
 – H comes up twice incl. on the 1st flip

$$P(AB) =$$

• A coin is flipped 4 times. What is the probability that heads comes up exactly twice given that heads comes up on the first flip?

$$A - H$$
 comes up twice

$$P(A) = \frac{C(4,2)}{2^4} = \frac{3}{8}$$

$$B-H$$
 comes up on the 1st flip

$$P(B) = \frac{2^3}{2^4} = \frac{1}{2}$$

AB – H comes up twice incl. on the 1st flip

$$P(AB) = \frac{C(3,1)}{2^4} = \frac{3}{16}$$

• A coin is flipped 4 times. What is the probability that heads comes up exactly twice given that heads comes up on the first flip?

$$A - H$$
 comes up twice

$$B-H$$
 comes up on the 1st flip

AB – H comes up twice incl. on the 1st flip

$$P(A) = \frac{C(4,2)}{2^4} = \frac{3}{8}$$

$$P(B) = \frac{2^3}{2^4} = \frac{1}{2}$$

$$P(AB) = \frac{C(3,1)}{2^4} = \frac{3}{16}$$

$$P(A|B) = \frac{P(AB)}{P(B)} =$$

• A coin is flipped 4 times. What is the probability that heads comes up exactly twice given that heads comes up on the first flip?

$$A - H$$
 comes up twice

$$P(A) = \frac{C(4,2)}{2^4} = \frac{3}{8}$$

$$B-H$$
 comes up on the 1st flip

$$P(B) = \frac{2^3}{2^4} = \frac{1}{2}$$

$$AB$$
 – H comes up twice incl. on the 1st flip

$$P(AB) = \frac{C(3,1)}{2^4} = \frac{3}{16}$$

$$P(A|B) = \frac{P(AB)}{P(B)} = \frac{3 \cdot 2}{16 \cdot 1} = \frac{3}{8}$$

- There are two bowls: bowl A contains 2 blue and 3 red balls, and bowl B contains 1 blue and 4 red balls. You randomly chose a bowl and then pick one ball from it.
- What is the probability of picking a blue ball?

• What is the probability of picking a blue ball if we chose bowl A?

What is the probability of picking a blue ball if we chose bowl B?

- There are two bowls: bowl A contains 2 blue and 3 red balls, and bowl B contains 1 blue and 4 red balls. You randomly chose a bowl and then pick one ball from it.
- What is the probability of picking a blue ball?

What is the probability of picking a blue ball if we chose bowl A?

$$P(Blue|A) =$$

• What is the probability of picking a blue ball if we chose bowl B?

- There are two bowls: bowl A contains 2 blue and 3 red balls, and bowl B contains 1 blue and 4 red balls. You randomly chose a bowl and then pick one ball from it.
- What is the probability of picking a blue ball?

- What is the probability of picking a blue ball if we chose bowl A? $P(Blue|A) = \frac{2}{5}$
- What is the probability of picking a blue ball if we chose bowl B?

- There are two bowls: bowl A contains 2 blue and 3 red balls, and bowl B contains 1 blue and 4 red balls. You randomly chose a bowl and then pick one ball from it.
- What is the probability of picking a blue ball?

- What is the probability of picking a blue ball if we chose bowl A? $P(Blue|A) = \frac{2}{5}$
- What is the probability of picking a blue ball if we chose bowl B?

$$P(Blue|B) =$$

- There are two bowls: bowl A contains 2 blue and 3 red balls, and bowl B contains 1 blue and 4 red balls. You randomly chose a bowl and then pick one ball from it.
- What is the probability of picking a blue ball?

• What is the probability of picking a blue ball if we chose bowl A?

$$P(Blue|A) = \frac{2}{5}$$

• What is the probability of picking a blue ball if we chose bowl B?

$$P(Blue|B) = \frac{1}{5}$$

The law of total probability

https://youtu.be/U3_783xznQI

• What is the probability to pick an apple given that you've chosen box A?

• What is the probability to pick an apple given that you've chosen box A?

$$P(apple|A) =$$

• What is the probability to pick an apple given that you've chosen box A?

$$P(apple|A) = \frac{5}{10} = 0.5$$

• What is the probability to pick an apple given that you've chosen box B?

• What is the probability to pick an apple given that you've chosen box B?

$$P(apple|B) = \frac{3}{12} = 0.25$$

• What is the probability to pick an apple?

THE LAW OF TOTAL PROBABILITY

Suppose that the sample space S is split into n disjoint events:

$$S = E_1 \cup E_2 \cup \cdots \cup E_n,$$

$$E_1 \cap E_2 \cap \cdots \cap E_n = \emptyset$$

THE LAW OF TOTAL PROBABILITY

Suppose that the sample space S is split into n disjoint events:

$$S = E_1 \cup E_2 \cup \cdots \cup E_n,$$

$$E_1 \cap E_2 \cap \cdots \cap E_n = \emptyset$$

Then P(A) can be computed as follows:

$$P(A) = P(A, E_1) + P(A, E_2) + \dots + P(A, E_n) =$$

$$= P(A|E_1) \cdot P(E_1) + P(A|E_2) \cdot P(E_2) +$$

$$+ \dots + P(A|E_n) \cdot P(E_n)$$

• What is the probability to pick an apple?

$$P(apple) =$$

• What is the probability to pick an apple?

$$P(apple) = P(apple|A) \cdot P(A) + P(apple|B) \cdot (B) =$$

What is the probability to pick an apple?

$$P(apple) = P(apple|A) \cdot P(A) + P(apple|B) \cdot (B) =$$

= $0.5 \cdot 0.5 + 0.25 \cdot 0.5 = 0.375$

What is the probability to pick an orange?

• What is the probability to pick an orange?

$$P(orange) =$$

• What is the probability to pick an orange?

$$P(orange | A) \cdot P(A) + P(orange | B) \cdot P(B) =$$

• What is the probability to pick an orange?

$$P(orange|A) \cdot P(A) + P(orange|B) \cdot P(B) = \frac{1}{2} \cdot \frac{1}{2} + \frac{7}{12} \cdot \frac{1}{2} = \frac{1}{4} + \frac{7}{24} = \frac{13}{24}$$

$$P(banana) =$$

$$P(banana) = P(banana|A) \cdot P(A) + P(banana|B) \cdot P(B) =$$

$$P(banana) = P(banana|A) \cdot P(A) + P(banana|B) \cdot P(B) = 0 \cdot \frac{1}{2} + \frac{2}{12} \cdot \frac{1}{2} = \frac{1}{12}$$

$$P(\leq 6) =$$

$$P(\leq 6) = P(\leq 6 \text{ and Male}) + P(\leq 6 \text{ and Female}) =$$

$$P(\le 6) = P(\le 6 \text{ and } Male) + P(\le 6 \text{ and } Female) =$$

= $P(\le 6|M) \cdot P(M) + P(\le 6|F) \cdot P(F) =$

HEIGHTS

• In a class, 40% of students are male and 60% are female. It's known that 60% of the males and 10% of the females are taller than 6 feet. What % of the class is not taller than 6 feet?

$$P(\le 6) = P(\le 6 \text{ and Male}) + P(\le 6 \text{ and Female}) =$$

$$= P(\le 6|M) \cdot P(M) + P(\le 6|F) \cdot P(F) =$$

$$= (1 - 0.6) \cdot 0.4 + (1 - 0.1) \cdot 0.6 = 0.7$$

• A box contains 3 coins with a head on each side, 4 coins with a tail on each side, and 2 fair coins. One of these nine coins is selected at random and tossed once. What is the probability that a head will be obtained?

 E_H – a coin with 2 H is selected

 E_T – a coin with 2 T is selected

• A box contains 3 coins with a head on each side, 4 coins with a tail on each side, and 2 fair coins. One of these nine coins is selected at random and tossed once. What is the probability that a head will be obtained?

 E_H – a coin with 2 H is selected

 E_T – a coin with 2 T is selected

$$P(H) = P(H|E_H) \cdot P(E_H) + P(H|E_T) \cdot P(E_T) + P(H|E_F) \cdot P(E_F) =$$

• A box contains 3 coins with a head on each side, 4 coins with a tail on each side, and 2 fair coins. One of these nine coins is selected at random and tossed once. What is the probability that a head will be obtained?

 E_H – a coin with 2 H is selected

 E_T – a coin with 2 T is selected

$$P(H) = P(H|E_H) \cdot P(E_H) + P(H|E_T) \cdot P(E_T) + P(H|E_F) \cdot P(E_F) =$$

• A box contains 3 coins with a head on each side, 4 coins with a tail on each side, and 2 fair coins. One of these nine coins is selected at random and tossed once. What is the probability that a head will be obtained?

$$E_H$$
 – a coin with 2 H is selected $P(E_H) =$

 E_T – a coin with 2 T is selected

$$P(H) = P(H|E_H) \cdot P(E_H) + P(H|E_T) \cdot P(E_T) + P(H|E_F) \cdot P(E_F) =$$

• A box contains 3 coins with a head on each side, 4 coins with a tail on each side, and 2 fair coins. One of these nine coins is selected at random and tossed once. What is the probability that a head will be obtained?

$$E_H$$
 – a coin with 2 H is selected

$$P(E_H) = \frac{3}{3+4+2} = \frac{1}{3}$$

 E_T – a coin with 2 T is selected

$$P(H) = P(H|E_H) \cdot P(E_H) + P(H|E_T) \cdot P(E_T) + P(H|E_F) \cdot P(E_F) =$$

• A box contains 3 coins with a head on each side, 4 coins with a tail on each side, and 2 fair coins. One of these nine coins is selected at random and tossed once. What is the probability that a head will be obtained?

$$E_H$$
 – a coin with 2 H is selected $P(E_H) = \frac{3}{3+4+2} = \frac{1}{3}$

$$E_T$$
 – a coin with 2 T is selected $P(E_T) =$

$$P(H) = P(H|E_H) \cdot P(E_H) + P(H|E_T) \cdot P(E_T) + P(H|E_F) \cdot P(E_F) =$$

$$E_H$$
 – a coin with 2 H is selected

$$E_T$$
 – a coin with 2 T is selected

$$E_F$$
 — a fair coin is selected

$$P(E_H) = \frac{3}{3+4+2} = \frac{1}{3}$$
$$P(E_T) = \frac{4}{3+4+2} = \frac{4}{9}$$

$$P(H) = P(H|E_H) \cdot P(E_H) + P(H|E_T) \cdot P(E_T) + P(H|E_F) \cdot P(E_F) =$$

$$E_H$$
 – a coin with 2 H is selected $P(E_H) = \frac{3}{3+4+2} = \frac{1}{3}$
 E_T – a coin with 2 T is selected $P(E_T) = \frac{4}{3+4+2} = \frac{4}{9}$
 E_F – a fair coin is selected $P(E_H) = P(H|E_H) \cdot P(E_H) + P(H|E_T) \cdot P(E_T) + P(H|E_F) \cdot P(E_F) = \frac{4}{3+4+2} = \frac{1}{3}$

$$E_H$$
 – a coin with 2 H is selected $P(E_H) = \frac{3}{3+4+2} = \frac{1}{3}$
 E_T – a coin with 2 T is selected $P(E_T) = \frac{4}{3+4+2} = \frac{4}{9}$
 E_F – a fair coin is selected $P(E_H) = \frac{2}{3+4+2} = \frac{2}{9}$
 $P(H) = P(H|E_H) \cdot P(E_H) + P(H|E_T) \cdot P(E_T) + P(H|E_F) \cdot P(E_F) = \frac{2}{3+4+2}$

$$E_H$$
 — a coin with 2 H is selected $P(E_H) = \frac{3}{3+4+2} = \frac{1}{3}$
 E_T — a coin with 2 T is selected $P(E_T) = \frac{4}{3+4+2} = \frac{4}{9}$
 E_F — a fair coin is selected $P(E_H) = \frac{2}{3+4+2} = \frac{2}{9}$
 $P(H) = P(H|E_H) \cdot P(E_H) + P(H|E_T) \cdot P(E_T) + P(H|E_F) \cdot P(E_F) = \frac{1}{3} + 0 + \frac{1}{2} \cdot \frac{2}{9} = \frac{1}{3}$

$$E_H$$
 – a coin with 2 H is selected $P(E_H) = \frac{3}{3+4+2} = \frac{1}{3}$
 E_T – a coin with 2 T is selected $P(E_T) = \frac{4}{3+4+2} = \frac{4}{9}$
 E_F – a fair coin is selected $P(E_H) = \frac{2}{3+4+2} = \frac{2}{9}$
 $P(H) = P(H|E_H) \cdot P(E_H) + P(H|E_T) \cdot P(E_T) + P(H|E_F) \cdot P(E_F) = \frac{1}{3} + \frac{1}{9} = \frac{4}{9}$

Bayes' rule

$$P(A|apple) =$$

BAYES' RULE

$$P(A|B) = \frac{P(AB)}{P(B)} = \frac{P(B|A) \cdot P(A)}{P(B)}$$

$$P(A|apple) =$$

$$P(A|apple) = \frac{P(apple|A) \cdot P(A)}{P(apple)} =$$

$$P(A|apple) = \frac{P(apple|A) \cdot P(A)}{P(apple)} = \frac{P(apple|A) \cdot P(A)}{P(apple|A) \cdot P(A)} = \frac{P(apple|A) \cdot P(A)}{P(apple|A) \cdot P(A) + P(apple|B) \cdot P(B)} = \frac{P(apple|A) \cdot P(A)}{P(apple|A) \cdot P(A) + P(apple|B) \cdot P(B)} = \frac{P(apple|A) \cdot P(A)}{P(apple|A) \cdot P(A)} = \frac{P(apple|A) \cdot P(A)}{P(A)} = \frac{P(apple|A) \cdot P(A)}{P(A)} = \frac{P(apple|A) \cdot P(A)}{P(A)} = \frac{P(apple|A)}{P(A)} = \frac{P(apple|A)}{P(A)} = \frac{P(apple|A)}{P(A)} =$$

• What is the probability that you chose box A given that you picked an apple?

$$P(A|apple) = \frac{P(apple|A) \cdot P(A)}{P(apple)} =$$

$$= \frac{P(apple|A) \cdot P(A)}{P(apple|A) \cdot P(A) + P(apple|B) \cdot P(B)} = \frac{0.5 \cdot 0.5}{0.5 \cdot 0.5 + 0.25 \cdot 0.5} = \frac{2}{3}$$

Probability & Statistics - January 2023

$$P(B|banana) =$$

$$P(B|banana) = \frac{P(banana|B) \cdot P(B)}{P(banana)} =$$

$$P(B|banana) = \frac{P(banana|B) \cdot P(B)}{P(banana)} =$$

$$= \frac{P(banana|B) \cdot P(B)}{P(banana|A) \cdot P(A) + P(banana|B) \cdot P(B)} =$$

$$= \frac{P(banana|B) \cdot P(B)}{P(banana|B) \cdot P(B)} =$$

$$P(B|banana) = \frac{P(banana|B) \cdot P(B)}{P(banana)} =$$

$$= \frac{P(banana|B) \cdot P(B)}{P(banana|A) \cdot P(A) + P(banana|B) \cdot P(B)} = 1$$
Probability & Statistics - January 2023

$$P(A|orange) =$$

$$P(A|orange) = \frac{P(orange|A) \cdot P(A)}{P(orange)} =$$

$$P(A|orange) = \frac{P(orange|A) \cdot P(A)}{P(orange)} = \frac{P(orange|A) \cdot P(A)}{P(orange|A) \cdot P(A)} = \frac{P(orange|A) \cdot P(A)}{P(orange|A) \cdot P(A) + P(orange|B) \cdot P(B)} = \frac{0.5 \cdot 0.5}{0.5 \cdot 0.5 + 7/12 \cdot 0.5}$$

DRUG TEST

• 0.5% of the population are using drugs. If a person taking the test has used drugs, the test will show a positive result with a 98% chance, and if they haven't used drugs, the test will be negative with a 98% probability. A random person tests positive. What is the probability that this person has actually used drugs?

• 0.5% of the population are using drugs.

- 0.5% of the population are using P(D) = 0.005drugs.

- 0.5% of the population are using P(D) = 0.005drugs.
- If a person uses drugs, the test will be positive with a 98% chance.

- 0.5% of the population are using P(D) = 0.005drugs.
- If a person uses drugs, the test will be positive with a 98% chance.

• P(+|drugs) = 0.98

- 0.5% of the population are using drugs.
- If a person uses drugs, the test will be positive with a 98% chance.
- if they don't use drugs, the test will be negative with a 98% probability.

• P(D) = 0.005

• P(+|drugs) = 0.98

- 0.5% of the population are using drugs.
- P(+|drugs) = 0.98

• P(D) = 0.005

- If a person uses drugs, the test will be positive with a 98% chance.
- $P(-|no\ drugs) = 0.98$
- if they don't use drugs, the test will be negative with a 98% probability.

- 0.5% of the population are using drugs.
- If a person uses drugs, the test will be positive with a 98% chance.
- if they don't use drugs, the test will be negative with a 98% probability.
- What is the probability that this person has actually used drugs?

• P(D) = 0.005

• P(+|drugs) = 0.98

• $P(-|no\ drugs) = 0.98$

DRUGS

- 0.5% of the population are using drugs.
- P(D) = 0.005

- If a person uses drugs, the test will be positive with a 98% chance.
- P(+|drugs) = 0.98

- if they don't use drugs, the test will be negative with a 98% probability.
- $P(-|no\ drugs) = 0.98$

- What is the probability that this person has actually used drugs?
- P(drugs | +) = ?

$$P(drugs|+) =$$

$$P(drugs | +) = \frac{P(drugs \text{ and } +)}{P(+)} =$$

$$P(drugs|+) = \frac{P(drugs \text{ and } +)}{P(+)} = \frac{P(+|drugs) \cdot P(drugs)}{P(+)} = \frac{P(+|drugs) \cdot P(+|drugs)}{P(+)} = \frac{P(+|drugs)}{P(+)} = \frac{P(+|drugs) \cdot P(+|drugs)}{P(+)} = \frac{P(+|drugs)}{P(+)} = \frac{P(+|drugs)}{P(+)} = \frac{P(+|drugs)}{P($$

$$P(drugs|+) = \frac{P(drugs \text{ and } +)}{P(+)} = \frac{P(+|drugs) \cdot P(drugs)}{P(+)} = \frac{P(+|drugs) \cdot P(+|drugs)}{P(+)} = \frac{P(+|drugs)}{P(+)} = \frac{P(+|drugs) \cdot P(+|drugs)}{P(+)} = \frac{P(+|drugs)}{P(+)} = \frac{P(+|drugs)}{P(+)} = \frac{P(+|drugs)}{P($$

$$= \frac{P(+|drugs) \cdot P(drugs)}{P(+|drugs) \cdot P(drugs) + P(+|no|drugs) \cdot P(no|drugs)}$$

$$P(drugs|+) = \frac{P(+|drugs) \cdot P(drugs)}{P(+|drugs) \cdot P(drugs) + P(+|no|drugs) \cdot P(no|drugs)} =$$

$$P(drugs|+) = \frac{P(+|drugs) \cdot P(drugs)}{P(+|drugs) \cdot P(drugs) + P(+|no drugs) \cdot P(no drugs)} = \frac{0.98 \cdot 0.005}{0.98 \cdot 0.005 + (1 - 0.98) \cdot (1 - 0.005)} \approx 0.2$$

Practice Problems

• A coin is flipped 4 times. What is the probability of getting an equal number of heads and tails given that the outcomes on the first and the last flips are not the same?

- A coin is flipped 4 times. What is the probability of getting an equal number of heads and tails given that the outcomes on the first and the last flips are not the same?
 - A equal number of H and T
 - B different results on the first and last flips

- A coin is flipped 4 times. What is the probability of getting an equal number of heads and tails given that the outcomes on the first and the last flips are not the same?
 - A equal number of H and T
 - B different results on the first and last flips
 - AB different results on the first and last flips equal number of H and T

- A coin is flipped 4 times. What is the probability of getting an equal number of heads and tails given that the outcomes on the first and the last flips are not the same?
 - A equal number of H and T
 - B different results on the first and last flips P(B) =
 - AB different results on the first and last flips equal number of H and T

- A coin is flipped 4 times. What is the probability of getting an equal number of heads and tails given that the outcomes on the first and the last flips are not the same?
 - A equal number of H and T
 - B- different results on the first and last flips

$$P(B) = \frac{2^3}{2^4} = \frac{1}{2}$$

AB — different results on the first and last flips equal number of H and T

- A coin is flipped 4 times. What is the probability of getting an equal number of heads and tails given that the outcomes on the first and the last flips are not the same?
 - A equal number of H and T
 - B- different results on the first and last flips $P(B)=\frac{2^3}{2^4}=\frac{1}{2}$
 - AB different results on the first and last flips P(AB) = equal number of H and T

- A coin is flipped 4 times. What is the probability of getting an equal number of heads and tails given that the outcomes on the first and the last flips are not the same?
 - A equal number of H and T
 - B different results on the first and last flips

$$P(B) = \frac{2^3}{2^4} = \frac{1}{2}$$

AB — different results on the first and last flips equal number of H and T

$$P(AB) = \frac{2^2}{2^4} = \frac{1}{4}$$

 A coin is flipped 4 times. What is the probability of getting an equal number of heads and tails given that the outcomes on the first and the last flips are not the same?

A — equal number of H and T

B — different results on the first and last flips

$$P(B) = \frac{2^3}{2^4} = \frac{1}{2}$$

AB — different results on the first and last flips equal number of H and T

$$P(B) = \frac{2^3}{2^4} = \frac{1}{2}$$
$$P(AB) = \frac{2^2}{2^4} = \frac{1}{4}$$

$$P(A|B) = \frac{P(AB)}{P(B)} =$$

• A coin is flipped 4 times. What is the probability of getting an equal number of heads and tails given that the outcomes on the first and the last flips are not the same?

A — equal number of H and T

 $B-{\rm different}$ results on the first and last flips

$$P(B) = \frac{2^3}{2^4} = \frac{1}{4}$$
$$P(AB) = \frac{2}{2^4} = \frac{1}{8}$$

AB – different results on the first and last flips equal number of H and T

$$P(A|B) = \frac{P(AB)}{P(B)} = \frac{1}{2}$$

$$P(X_1 = 2|X_1 + X_2 = 5) =$$

$$P(X_1 = 2|X_1 + X_2 = 5) = \frac{P(X_1 = 2, X_1 + X_2 = 5)}{P(X_1 + X_2 = 5)} =$$

$$P(X_1 = 2|X_1 + X_2 = 5) = \frac{P(X_1 = 2, X_1 + X_2 = 5)}{P(X_1 + X_2 = 5)} =$$

$$P(X_1 = 2 \text{ and } X_1 + X_2 = 5) =$$

$$P(X_1 = 2|X_1 + X_2 = 5) = \frac{P(X_1 = 2, X_1 + X_2 = 5)}{P(X_1 + X_2 = 5)} =$$

$$P(X_1 = 2 \text{ and } X_1 + X_2 = 5) = P(X_1 = 2 \text{ and } X_2 = 3) =$$

$$P(X_1 = 2|X_1 + X_2 = 5) = \frac{P(X_1 = 2, X_1 + X_2 = 5)}{P(X_1 + X_2 = 5)} =$$

$$P(X_1 = 2 \text{ and } X_1 + X_2 = 5) = P(X_1 = 2 \text{ and } X_2 = 3) = \frac{1}{6 \cdot 6}$$

$$P(X_1 = 2|X_1 + X_2 = 5) = \frac{P(X_1 = 2, X_1 + X_2 = 5)}{P(X_1 + X_2 = 5)} =$$

$$P(X_1 = 2 \text{ and } X_1 + X_2 = 5) = P(X_1 = 2 \text{ and } X_2 = 3) = \frac{1}{6 \cdot 6}$$

 $P(X_1 + X_2 = 5) =$

$$P(X_1 = 2|X_1 + X_2 = 5) = \frac{P(X_1 = 2, X_1 + X_2 = 5)}{P(X_1 + X_2 = 5)} =$$

$$P(X_1 = 2 \text{ and } X_1 + X_2 = 5) = P(X_1 = 2 \text{ and } X_2 = 3) = \frac{1}{6 \cdot 6}$$
$$P(X_1 + X_2 = 5) = \frac{4}{36} = \frac{1}{9}$$

$$P(X_1 = 2|X_1 + X_2 = 5) = \frac{P(X_1 = 2, X_1 + X_2 = 5)}{P(X_1 + X_2 = 5)} = \frac{1}{4}$$

$$P(X_1 = 2 \text{ and } X_1 + X_2 = 5) = P(X_1 = 2 \text{ and } X_2 = 3) = \frac{1}{6 \cdot 6}$$

$$P(X_1 + X_2 = 5) = \frac{4}{36} = \frac{1}{9}$$

$$P(P) =$$

$$P(P) = P(P|A) \cdot P(A) + P(P|\overline{A}) \cdot P(\overline{A}) =$$

$$P(P) = P(P|A) \cdot P(A) + P(P|\overline{A}) \cdot P(\overline{A}) =$$

$$= P(P|M \cup T) \cdot P(M \cup T) + P(P|\overline{M \cup T}) \cdot P(\overline{M \cup T}) =$$

$$P(P) = P(P|A) \cdot P(A) + P(P|\overline{A}) \cdot P(\overline{A}) =$$

$$= P(P|M \cup T) \cdot P(M \cup T) + P(P|\overline{M \cup T}) \cdot P(\overline{M \cup T}) =$$

$$P(M \cup T) =$$

$$P(P) = P(P|A) \cdot P(A) + P(P|\overline{A}) \cdot P(\overline{A}) =$$

$$= P(P|M \cup T) \cdot P(M \cup T) + P(P|\overline{M \cup T}) \cdot P(\overline{M \cup T}) =$$

$$P(M \cup T) = P(M) + P(T) - P(M \cap T) =$$

$$P(P) = P(P|A) \cdot P(A) + P(P|\overline{A}) \cdot P(\overline{A}) =$$

$$= P(P|M \cup T) \cdot P(M \cup T) + P(P|\overline{M \cup T}) \cdot P(\overline{M \cup T}) =$$

$$P(M \cup T) = P(M) + P(T) - P(M \cap T) = 0.02 + 0.2 - 0.01 = 0.21$$

$$P(P) = P(P|A) \cdot P(A) + P(P|\overline{A}) \cdot P(\overline{A}) =$$

$$= P(P|M \cup T) \cdot P(M \cup T) + P(P|\overline{M} \cup T) \cdot P(\overline{M} \cup T) =$$

$$= \frac{1}{3} \cdot 0.21 + 0.1 \cdot (1 - 0.21) =$$

$$P(M \cup T) = P(M) + P(T) - P(M \cap T) = 0.02 + 0.2 - 0.01 = 0.21$$

$$P(P) = P(P|A) \cdot P(A) + P(P|\overline{A}) \cdot P(\overline{A}) =$$

$$= P(P|M \cup T) \cdot P(M \cup T) + P(P|\overline{M} \cup T) \cdot P(\overline{M} \cup T) =$$

$$= \frac{1}{3} \cdot 0.21 + 0.1 \cdot (1 - 0.21) = 0.07 + 0.079 = 0.149$$

$$P(M \cup T) = P(M) + P(T) - P(M \cap T) = 0.02 + 0.2 - 0.01 = 0.21$$

$$P(A|blue) =$$

$$P(A|blue) = \frac{P(blue|A) \cdot P(A)}{P(blue)} =$$

$$P(A|blue) = \frac{P(blue|A) \cdot P(A)}{P(blue)} =$$

$$= \frac{P(blue|A) \cdot P(A)}{P(blue|A) \cdot P(A) + P(blue|B) \cdot P(B)} =$$

$$P(A|blue) = \frac{P(blue|A) \cdot P(A)}{P(blue)} = \frac{P(blue|A) \cdot P(A)}{P(blue|A) \cdot P(A)} = \frac{P(blue|A) \cdot P(A)}{P(blue|A) \cdot P(A) + P(blue|B) \cdot P(B)} = \frac{0.4 \cdot 0.5}{0.4 \cdot 0.5 + 0.2 \cdot 0.5} = \frac{0.2}{0.3} = \frac{2}{3}$$

$$E_H$$
 – a coin with 2 H is selected $P(E_H) = \frac{3}{3+4+2} = \frac{1}{3}$ E_T – a coin with 2 T is selected $P(E_T) = \frac{4}{3+4+2} = \frac{4}{9}$ E_F – a fair coin is selected $P(E_F) = \frac{2}{3+4+2} = \frac{2}{9}$

$$E_H$$
 — a coin with 2 H is selected
$$P(E_H) = \frac{3}{3+4+2} = \frac{1}{3}$$
 E_T — a coin with 2 T is selected
$$P(E_T) = \frac{4}{3+4+2} = \frac{4}{9}$$
 E_F — a fair coin is selected
$$P(E_F) = \frac{2}{3+4+2} = \frac{2}{9}$$

$$P(H) = \frac{4}{9},$$

$$E_H$$
 – a coin with 2 H is selected $P(E_H) = \frac{3}{3+4+2} = \frac{1}{3}$ E_T – a coin with 2 T is selected $P(E_T) = \frac{4}{3+4+2} = \frac{4}{9}$ E_F – a fair coin is selected $P(E_F) = \frac{2}{3+4+2} = \frac{2}{9}$

$$P(H) = \frac{4}{9}, \qquad P(E_F|H) =$$

$$E_H$$
 – a coin with 2 H is selected $P(E_H) = \frac{3}{3+4+2} = \frac{1}{3}$ E_T – a coin with 2 T is selected $P(E_T) = \frac{4}{3+4+2} = \frac{4}{9}$ E_F – a fair coin is selected $P(E_F) = \frac{2}{3+4+2} = \frac{2}{9}$

$$P(H) = \frac{4}{9}, \qquad P(E_F|H) = \frac{P(H|E_F) \cdot P(E_F)}{P(H)} =$$

$$E_H$$
 – a coin with 2 H is selected $P(E_H) = \frac{3}{3+4+2} = \frac{1}{3}$ E_T – a coin with 2 T is selected $P(E_T) = \frac{4}{3+4+2} = \frac{4}{9}$ E_F – a fair coin is selected $P(E_F) = \frac{2}{3+4+2} = \frac{2}{9}$

$$P(H) = \frac{4}{9}, \qquad P(E_F|H) = \frac{P(H|E_F) \cdot P(E_F)}{P(H)} = \frac{\frac{1}{2} \cdot \frac{2}{9}}{\frac{4}{9}} = \frac{1}{4}$$