Bayes' Theorem:

- Bayes' theorem is also known as Bayes' Rule or Bayes' law, which is used to determine the probability of a hypothesis with prior knowledge. It depends on the conditional probability.
- The formula for Bayes' theorem is given as:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Where,

P(A|B) is Posterior probability: Probability of hypothesis A on the observed event B.

P(B|A) is Likelihood probability: Probability of the evidence given that the probability of a hypothesis is true.

P(A) is Prior Probability: Probability of hypothesis before observing the evidence.

P(B) is Marginal Probability: Probability of Evidence.

Working of Naïve Bayes' Classifier:

Working of Naïve Bayes' Classifier can be understood with the help of the below example:

Suppose we have a dataset of **weather conditions** and corresponding target variable "**Play**". So using this dataset we need to decide that whether we should play or not on a particular day according to the weather conditions. So to solve this problem, we need to follow the below steps:

- 1. Convert the given dataset into frequency tables.
- 2. Generate Likelihood table by finding the probabilities of given features.
- 3. Now, use Bayes theorem to calculate the posterior probability.

Problem: If the weather is sunny, then the Player should play or not?

Solution: To solve this, first consider the below dataset:

Good Luck!

	Outlook	Play
0	Rainy	Yes
1	Sunny Good Lack!	Yes
2	Overcast	Yes
3	Overcast	Yes
4	Sunny	No
5	Rainy	Yes
6	Sunny	Yes
7	Overcast	Yes
8	Rainy	No
9	Sunny	No
10	Sunny	Yes
11	Rainy Good Prick!	No
12	Overcast	Yes
13	Overcast	Yes

Frequency table for the Weather Conditions:

Weather	Yes	No	
Overcast	5	0	
Rainy	2	2	
Sunny	3	2	
Total	10	4	

Good Luck!

Likelihood table weather condition:

Weather	No	Yes	
Overcast	0	5	5/14= 0.35
Rainy	2	2	4/14=0.29
Sunny	2	3	5/14=0.35
All	4/14=0.29	10/14=0.71	

Applying Bayes'theorem:

P(Yes|Sunny) = P(Sunny|Yes)*P(Yes)/P(Sunny)

P(Sunny|Yes) = 3/10 = 0.3

P(Sunny) = 0.35

P(Yes) = 0.71

So P(Yes|Sunny) = 0.3*0.71/0.35 = 0.60

P(No|Sunny) = P(Sunny|No)*P(No)/P(Sunny)

P(Sunny|NO) = 2/4 = 0.5

P(No) = 0.29

P(Sunny) = 0.35

So P(No|Sunny)= 0.5*0.29/0.35 = **0.41**

So as we can see from the above calculation that P(Yes|Sunny)>P(No|Sunny)

Hence on a Sunny day, Player can play the game.