CONTENTS

	Preface	xi
Chapter 1	Vector Analysis	1
Chapter 1	1.1. Scalars and Vectors	
	1.1. Scalars and Vectors 1.2. Vector Algebra	2 3
	1.3. The Cartesian Coordinate System	4
	1.4. Vector Components and Unit Vectors	6
	1.5. The Vector Field	9
	1.6. The Dot Product	10
	1.7. The Cross Product	13
	1.8. Other Coordinate Systems: Circular Cylindrical	
	Coordinates	15
	1.9. The Spherical Coordinate System	20
Chapter 2	Coulomb's Law and Electric Field Intensity	27
	2.1. The Experimental Law of Coulomb	28
	2.2. Electric Field Intensity	31
	2.3. Field Due to a Continuous Volume Charge Distribution	36
	2.4. Field of a Line Charge	38
	2.5. Field of a Sheet Charge	44
	2.6. Streamlines and Sketches of Fields	46
Chapter 3	Electric Flux Density, Gauss' Law, and Divergence	53
	3.1. Electric Flux Density	54
	3.2. Gauss' Law	57
	3.3. Applications of Gauss' Law: Some Symmetrical Charge	
	Distributions	62
	3.4. Application of Gauss' Law: Differential Volume Element	67
	3.5. Divergence	70
	3.6. Maxwell's First Equation (Electrostatics)	73
	3.7. The Vector Operator ∇ and the Divergence Theorem	74
Chapter 4	Energy and Potential	83
	4.1. Energy and Potential in a Moving Point Charge in an	
	Electric Field	84
	4.2. The Line Integral	85
	4.3. Definition of Potential Difference and Potential	91
	4.4 The Potential Field of a Point Charge	93

	4.5. The Potential Field of a System of Charges: Conservative	
	Property	95
	4.6. Potential Gradient	99
	4.7. The Dipole	106
	4.8. Energy Density in the Electric Field	110
Chapter 5	Conductors, Dielectrics, and Capacitance	119
	5.1. Current and Current Density	120
	5.2. Continuity of Current	122
	5.3. Metallic Conductors	124
	5.4. Conductor Properties and Boundary Conditions	129
	5.5. The Method of Images	134
	5.6. Semiconductors	136
	5.7. The Nature of Dielectric Materials	138
	5.8. Boundary Conditions for Perfect Dielectric Materials	144
	5.9. Capacitance	150
	5.10. Several Capacitance Examples	154
	5.11. Capacitance of a Two-Wire Line	157
Chapter 6	Experimental Mapping Methods	169
	6.1. Curvilinear Squares	170
	6.2. The Iteration Method	176
	6.3. Current Analogies	183
	6.4. Physical Models	186
Chapter 7	Poisson's and Laplace's Equations	195
	7.1 Poisson's and Laplace's Equations	196
	7.2. Uniqueness Theorem	198
	7.3. Examples of the Solution of Laplace's Equation	200
	7.4. Example of the Solution of Poisson's Equation	207
	7.5. Product Solution of Laplace's Equation	211
Chapter 8	The Steady Magnetic Field	224
	8.1. Biot-Sayart Law	225
	8.2. Ampere's Circuital Law	232
	8.3. Curl	232
	8.4. Stokes' Theorem	246
	8.5. Magnetic Flux and Magnetic Flux Density	251
	8.6. The Scalar and Vector Magnetic Potentials	254
	8.7. Derivation of the Steady-Magnetic-Field Laws	261

Chapter 9	Magnetic Forces, Materials and Inductance	274
	9.1. Force on a Moving Charge	275
	9.2. Force on a Differential Current Element	276
	9.3. Force Between Differential Current Elements	280
	9.4. Force and Torque on a Closed Circuit	283
	9.5. The Nature of Magnetic Materials	288
	9.6. Magnetization and Permeability	292
	9.7. Magnetic Boundary Conditions	297
	9.8. The Magnetic Circuit	299
	9.9. Potential Energy and Forces on Magnetic Materials	306
	9.10. Inductance and Mutual Inductance	308
Chapter 10	Time-Varying Fields and Maxwell's Equations	322
	10.1. Faraday's Law	323
	10.2. Displacement Current	329
	10.3. Maxwell's Equations in Point Form	334
	10.4. Maxwell's Equations in Integral Form	336
	10.5. The Retarded Potentials	338
Chapter 11	The Uniform Plane Wave	348
	11.1. Wave Propagation in Free Space	348
	11.2. Wave Propagation in Dielectrics	356
	11.3. The Poynting Vector and Power Considerations	365
	11.4. Propagation in Good Conductors: Skin Effect	369
	11.5. Wave Polarization	376
CI 10		
Chapter 12	Plane Waves at Boundaries and in Dispersive Media	387
	12.1. Reflection of Uniform Plane Waves at Normal Incidence	388
	12.2. Standing Wave Ratio	395
	12.3. Wave Reflection from Multiple Interfaces	400
	12.4. Plane Wave Propagation in General Directions	408
	12.5. Plane Wave Reflection at Oblique Incidence Angles	411
	12.6. Wave Propagation in Dispersive Media	421
Chapter 13	Transmission Lines	435
	13.1. The Transmission-Line Equations	436
	13.2. Transmission-Line Parameters	442
	13.3. Some Transmission-Line Examples	448
	13.4. Graphical Methods	452
	13.5. Several Practical Problems	460
	13.6. Transients on Transmission Lines	463

CONTENTS ix

X CONTENTS

Chapter 14	Waveguide and Antenna Fundamentals	484
	14.1. Basic Waveguide Operation	485
	14.2. Plane Wave Analysis of the Parallel-Plate Waveguide	488
	14.3. Parallel-Plate Guide Analysis Using the Wave Equation	497
	14.4. Rectangular Waveguides	501
	14.5. Dielectric Waveguides	506
	14.6. Basic Antenna Principles	514
Appendix A	Vector Analysis	529
Appendix B	Units	534
Appendix C	Material Constants	540
Appendix D	Origins of the Complex Permittivity	544
Appendix E	Answers to Selected Problems*	
	Index	551

^{*}To find Appendix E, please visit the expanded website: www.mhhe.com/engcs/electrical/haytbuck