Introduction to Analysis II

Sungchan Yi

Fall 2022

Introduction & Notice

- 7, 8장 나가고 중간고사, 11장 나가고 기말고사
- 연습 시간이 있는 수업 (목 $6:30 \sim 8:20)^1$
- 오늘 연습 시간: 지난학기 배운 내용 중 필요한 내용 복습

¹가능하면 1시간 반 안에 끝내라고 하심 ㅋㅋ

Chapter 7

Sequences and Series of Functions

September 1st, 2022

기본적으로 수열에 관련된 내용, real/complex-valued 수열이 아니라 함수가 주어졌을 때. 함수 들을 모은 'sequence of functions'의 극한을 생각하는 것.

Suppose E is a set¹, and let $f_n: E \to \mathbb{C}$. Then

$$(f_n)_{n=1}^{\infty}$$

is a sequence of (complex-valued) function.

Definition 7.1 (Pointwise Convergence) $(f_n)_{n=1}^{\infty}$ converges **pointwise** on E, if for each $x \in E$ the sequence $(f_n(x))_{n=1}^{\infty}$ converges in \mathbb{C} .

In other words, for each $x \in E$, there exists $a_x \in \mathbb{C}$ and

$$\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ such that } n \geq N \implies |f_n(x) - a_x| < \epsilon.$$

Definition. If (f_n) converges pointwise, we can define a function f by

$$f(x) = \lim_{n \to \infty} f_n(x) \quad (x \in E)$$

We say that

- f is the *limit* or *limit function* of f_n .
- (f_n) to f pointwise on E.

¹사실은 *metric* space 이다.

Definition. If $\sum f_n(x)$ converges (pointwise) for every $x \in E$, we can define

$$f(x) = \sum_{n=1}^{\infty} f_n(x) \quad (x \in E)$$

and the function f is called the *sum* of the series $\sum f_n$.

Recall. $f:(E,d)\to\mathbb{C}$ is continuous on $E\Longleftrightarrow f$ is continuous at all $x\in E$.

Recall. (Theorem 4.6) If $p \in E$ and p is a limit point of E,

$$f$$
 is continuous at $p \iff \lim_{x \to p} f(x) = f(p)$

Question. Suppose (f_n) is a sequence of functions. Does the limit function or the sum of the series preserve important properties?

- (1) If f_n is continus, is f continuous?
- (2) If f_n is differentiable/integrable, is f differentiable/integrable?

For (1), the question is equivalent to the following:

If p is a limit point, does the following hold?

$$\lim_{x \to p} \lim_{n \to \infty} f_n(x) \stackrel{?}{=} \lim_{n \to \infty} \lim_{x \to p} f_n(x)$$

And the answer is **No**.

Example 7.2 Suppose $a_{m,n} = \frac{m}{m+n}$ for $m, n \in \mathbb{N}$. We see that

$$\lim_{n \to \infty} \lim_{m \to \infty} a_{m,n} = 1 \neq 0 = \lim_{m \to \infty} \lim_{n \to \infty} a_{m,n}$$

Example. Define

$$f_n(x) = \begin{cases} 0 & \left(\frac{1}{n} \le x \le 1\right) \\ -nx + 1 & \left(0 \le x < \frac{1}{n}\right) \end{cases}$$

then we can easily see that

$$f(x) = \lim_{n \to \infty} f_n(x) = \begin{cases} 0 & (0 < x \le 1) \\ 1 & (x = 0) \end{cases}$$

Thus f is not continuous at x = 0.

Example. Define $f_n : \mathbb{R} \to \mathbb{R}$ as

$$f_n(x) = \frac{x^2}{(1+x^2)^n}$$
 $(n = 0, 1, 2, ...)$

by direct calculation,

$$f(x) = \sum_{n=0}^{\infty} f_n(x) = \sum_{n=0}^{\infty} \frac{x^2}{(1+x^2)^n} = 1 + x^2 \quad (x \neq 0)$$

since this is a geometric series when $x \neq 0$. If x = 0, f(x) = 0 and f is not continuous.

Does the limit function preserve Riemann integrability?

Example. For m = 1, 2, ..., define

$$f_m(x) = \lim_{n \to \infty} (\cos m! \pi x)^{2n} = \begin{cases} 1 & (m! x \in \mathbb{Z}) \\ 0 & (m! x \notin \mathbb{Z}) \end{cases}$$

We see that $f_m(x)$ is Riemann integrable. However,

Claim.

$$f(x) = \lim_{m \to \infty} f_m(x) = \begin{cases} 1 & (x \in \mathbb{Q}) \\ 0 & (x \in \mathbb{R} \setminus \mathbb{Q}) \end{cases}$$

and f(x) is nowhere continuous thus not Riemann integrable.

Proof. Suppose $x = p/q \in \mathbb{Q}$. $(p, q \in \mathbb{Z})$ If we take $m \geq q$, we see that $m!x \in \mathbb{Z}$. Thus $f_m(x) = 1$. If $x \notin \mathbb{Q}$, m!x can never be in \mathbb{Z} and $f_m(x) = 0$.

Question. Uniform continuity를 할 때 uniform이 어디서 나오죠? 해석학에서 그 점에서 뭐가 성립한다, 그러면 그 점과 그 근방에서만 확인하면 됐었죠. Continuity는 local property죠. 그런데 uniform continuity는 전체가 다 uniform하게 성립한다는 의미입니다.

Recall. $f:(X,d)\to (Y,d)$ is uniformly continuous on X^2 if

$$\forall \epsilon > 0, \exists \, \delta > 0 \text{ such that } d_X(p,q) < \delta \implies d_Y(f(p),f(q)) < \epsilon$$

즉, 모든 점에서 똑같이 잡을 수 있다!

Recall. (Theorem 4.19) If X is compact and f is continuous on X, then f is uniformly continuous on X.

이제부터 나오는 uniform convergence는 sequence에 관한 것입니다!

²Subspace of metric space is also a metric space

³갑자기 왜 uniform continuity 얘기를 하냐, 헷갈리지 말고 기억하시라고!

Definition 7.7 (Uniform Convergence) Suppose $f_n : E \to \mathbb{C}$ is a sequence of functions. $(f_n)_{n=1}^{\infty}$ converges uniformly on E to a function f if

$$\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ such that } \forall x \in E, n \geq N \implies |f_n(x) - f(x)| \leq \epsilon.^4$$

Also, we say that the series $\sum f_n(x)$ converges uniformly on E if the sequence of partial sums $(\sum_{k=1}^n f_k(x))$ converges uniformly on E.

Pointwise convergence의 경우 $N \in \mathbb{N}$ 이 $x \in E$ 에 의존하지만, uniform convergence의 경우 N 이 x와 무관하다!

[똑같은 ϵ -띠를 둘러서 y=f(x) 의 근방 안에 $f_n(x)$ $(n\geq N)$ 가 모두 들어가 있어야 한다]는 의미에서 uniform 이다.

Theorem 7.9 Suppose

$$f(x) = \lim_{n \to \infty} f_n(x) \quad (x \in E)$$

Then $f_n \to f$ converges uniformly on E if and only if

$$\lim_{n \to \infty} \sup_{x \in E} |f_n(x) - f(x)| = 0$$

which can also be written as

$$\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ such that } n \geq N \implies \sup_{x \in E} |f_n(x) - f(x)| \leq \epsilon$$

Notation. $f_n \to f$ uniformly on $E \iff f_n \stackrel{u}{\to} f$ on $E^{.5}$

Theorem 7.8 (Cauchy Criterion for Uniform Convergence) $f_n \stackrel{u}{\to} f$ on $E \iff$

$$\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ such that } n, m \geq N \implies \sup_{x \in E} |f_n(x) - f_m(x)| \leq \epsilon.^6$$

Proof.

 (\Longrightarrow) For given $\epsilon > 0$, fix $x \in E$. Since f_n converges uniformly on E, we can find $N \in \mathbb{N}$ such that for $n, m \geq N$,

$$|f_n(x) - f_m(x)| \le |f_n(x) - f(x)| + |f(x) - f_m(x)| \le \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

(\Leftarrow) Uniform Cauchy property implies that (f_n) is a Cauchy sequence in \mathbb{C} . By the completeness of \mathbb{C} , the limit function f(x) exists. Now we show that this convergence is uniform. For given $\epsilon > 0$ choose $N \in \mathbb{N}$ such that for all $n, m \geq N$,

⁴등호를 붙이는 것이 극한 잡기 편하다???

 $^{^5}$ 교수님: 책에서는 나중에 $\|f_n(x)-f(x)\|_\infty o 0$ 으로 적었던 것 같은데...

⁶Uniform Cauchy Property

$$\sup_{x \in E} |f_n(x) - f_m(x)| \le \epsilon$$

Then

$$|f_n(x) - f(x)| = |f_n(x) - f_m(x) + f_m(x) - f(x)| \le |f_n(x) - f_m(x)| + |f_m(x) - f(x)|$$

$$\le |f_m(x) - f(x)| + \epsilon$$

Fix $n \geq N$ and let $m \to \infty$. Observe that $|f_m(x) - f(x)| \to 0$ due to pointwise convergence. Therefore for every $x \in E$,

$$n \ge N \implies |f_n(x) - f(x)| \le \epsilon$$

September 1st, 2022 (Practice)

해석개론 1 복습

1. Real Number System

Let $A \subseteq \mathbb{R}$.

- $b \in \mathbb{R}$ is an upper bound of $A: \forall a \in A \implies a \leq b$.
- $b \in \mathbb{R}$ is a lower bound of $A: \forall a \in A \implies a \ge b$.
- Least uppoer bound is denoted as $\sup A$.
- Greatest lower bound is denoted as $\inf A$.
- Least upper bound property: If $A \neq \emptyset$, $\exists \sup A$.
- Extended Real Numbers: $\overline{\mathbb{R}} = \mathbb{R} \cup \{\infty, -\infty\}$
- Now, if $\emptyset = A \subseteq \overline{\mathbb{R}}$, sup $A = -\infty$.

2. Metric Spaces

Metric space: (X, d_X) where $d_X : X \times X \to \mathbb{R}$. For all $x, y, z \in X$ the following must hold.

- $(1) \ d_X(x,y) = 0 \iff x = y.$
- (2) $d_X(x,y) = d_X(y,x)$ (Symmetric)
- (3) $d_X(x,y) + d_X(y,z) > d_X(x,z)$

Notation. (Neighborhood) Ball of radius r, centered at p is denoted as

$$B_r(p) = \{x \in X \mid d_X(x, p) < r\}$$

- $U \subseteq X$ is open $\iff \forall p \in U, \exists r > 0$ such that $B_r(p) \subseteq U$.
- $C \subseteq X$ is closed \iff C contains every limit point of C. Or alternatively, C^C is open.
- Union of open sets is open, <u>finite</u> intersection of open sets is open.
- $p \in B \subseteq X$ is a limit point of $B \iff \forall r \geq 0, (B_r(p) \setminus \{p\}) \cap B \neq \emptyset$.
- A' is the set of limit points of A.

 $^{^{7}}$ 임의의 근방에서 자기자신을 제외하고 B의 점이 존재한다.

- $\overline{A} = A \cup A'$, which is the smallest closed set containing A.
- $A \subseteq X$ is dense in $X \iff \overline{A} = X$.
- $A \subseteq X$ is bounded $\iff \exists r > 0$ such that $A \subseteq B_r(p)$ for some $p \in X$.
- Sets A and B are separated $\iff \overline{A} \cap B = \emptyset = A \cap \overline{B}$.
- Set C is disconnected $\iff \exists$ non-empty separated sets A, B such that $C \subseteq A \cup B$.

Suppose $\{U_{\alpha}\}$ is a collection of open sets in X.

- $\{U_{\alpha}\}$ is an open cover of $A \iff A \subseteq \bigcup_{\alpha} U_{\alpha}$.
- $K \subseteq X$ is compact \iff for every open cover of K, there exists a finite subcover of K.

$$\exists \alpha_1, \alpha_2, \dots, \alpha_n \text{ such that } K \subseteq \bigcup_{k=1}^n U_{\alpha_k}$$

- (Heine-Borel) In \mathbb{R}^n , compact \iff bounded and closed.
- If K is compact and $A \subseteq K$ is closed, then A is also compact.
- If $\{K_{\alpha}\}$ is a collection of compact sets and $\bigcap_{\alpha} K_{\alpha} = \emptyset$, then

$$\exists \alpha_1, \alpha_2, \dots, \alpha_n \text{ such that } \bigcap_{k=1}^n K_{\alpha_k} = \emptyset.$$

3. Sequences

A sequence $a : \mathbb{N} \to A$, is a function. We write $a(i) = a_i$, and we usually consider sequences in metric spaces.

- $\{a_n\}$ converges to $\alpha \iff \forall \epsilon > 0, \exists N \in \mathbb{N} \text{ such that } n \geq N \implies d_X(a_n, \alpha) < \epsilon.$
- (Cauchy Sequence) $\{a_n\}$ is Cauchy $\iff \forall \epsilon > 0, \exists N \in \mathbb{N} \text{ such that } n, m \geq N \implies d_X(a_n, a_m) < \epsilon.$
- (X, d) is complete \iff every Cauchy sequence converges.
- $\limsup_{n \to \infty} a_n = \lim_{n \to \infty} \sup \{a_k : k \ge n\}.$
- $\liminf_{n \to \infty} a_n = \lim_{n \to \infty} \inf \{ a_k : k \ge n \}.$

⁸정의로 쉽게 보일 수 있다?

⁹수렴하면 코시 수열이지만, 모든 코시 수열이 수렴하지는 않는다. Consider any sequence of rational numbers converging to an irrational real number.

- $\lim a_n = \alpha \iff \lim \sup a_n = \lim \inf a_n = \alpha \ (\alpha \in \mathbb{R}).$
- For power series $\sum a_n x^n$, the radius of convergence $R \in \overline{R}$ is calculated as

$$\frac{1}{R} = \limsup_{n \to \infty} \sqrt[n]{|a_n|}.$$

• Absolute convergence implies convergence.

4. Limit of Functions

Given metric spaces X, Y, define a function $f : E \subseteq X \to Y$.

• If $p \in E'^{10}$ then we can define $\lim_{x \to p} f(x) = \alpha$ as

$$\forall \epsilon > 0, \exists \delta > 0 \text{ such that } 0 < d_X(x, p) < \delta \implies d_Y(f(x), \alpha) < \epsilon.$$

Or equivalently, for any sequence $\{a_n\}$ in X with $a_n \neq p$,

if
$$\lim_{n\to\infty} a_n = p$$
 then $\lim_{n\to\infty} f(a_n) = \alpha$.

• f is continuous at $p \in E^{11} \iff$

$$\forall \epsilon > 0, \exists \delta > 0 \text{ such that } x \in E, d_X(x, p) < \delta \implies d_Y(f(x), f(p)) < \epsilon.$$

Or equivalently, for any sequence $\{a_n\}$ in X, ¹²

if
$$\lim_{n\to\infty} a_n = p$$
 then $\lim_{n\to\infty} f(a_n) = f(p)$.

- f is continuous \iff for any open set $V \subseteq Y$, $f^{-1}(V)$ is open in X.
- Suppose that f is continuous.
 - If $K \subseteq E$ is compact, f(K) is also compact.
 - If $C \subseteq E$ is connected, f(C) is also connected.
- (Extreme Value Theorem) Suppose $K \subseteq E$ is compact and $f: K \to \mathbb{R}$ is continuous. Because f(K) is a compact set in \mathbb{R} , it is a closed interval. Hence f has a maximum/minimum.
- (Uniform Continuity) f is uniformly continuous on $E \iff$

$$\forall \epsilon > 0, \exists \delta > 0 \text{ such that } \forall x, \forall y \in E, d_X(x,y) < \delta \implies d_Y(f(x), f(y)) < \epsilon.$$

¹¹Limit point가 아니어도 정의할 수 있으며, 고립점에서는 연속이다.

 $^{^{12}}$ 여기서는 $a_n \neq p$ 조건이 빠진다.

• If $f: E \subseteq X \to Y$ is continuous and E is compact, f is uniformly continuous.

5. Differentiation

Function $f:[a,b]\to\mathbb{R}$ is differentiable at $x\in[a,b]\Longleftrightarrow$

the limit
$$f'(x) = \lim_{t \to x} \frac{f(t) - f(x)}{t - x}$$
 exists.

- If f is differentiable at x = p, then f is continuous at x = p.
- If f is differentiable at x = p and $g : f([a, b]) \to \mathbb{R}$ is differentiable at x = f(p) $\implies g \circ f$ is differentiable at x = p and

$$(g \circ f)'(p) = g'(f(p))f'(p).$$

- (Fermat) If f is differentiable and has a local extremum at x = a, then f'(a) = 0.
- (Mean Value Theorem) If f is continuous on [a,b] and differentiable on (a,b), there exists $c \in (a,b)$ such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

6. Integration

Given a <u>bounded</u> function $f:[a,b] \to \mathbb{R}$, a partition $P = \{a = x_0 < x_1 < \dots < x_n = b\}$ and a monotonically increasing function $\alpha:[a,b] \to \mathbb{R}$, define

$$U(P, f, \alpha) = \sum_{i=0}^{n-1} \sup_{x \in [x_i, x_{i+1}]} f(x) (\alpha(x_{i+1}) - \alpha(x_i))$$

$$L(P, f, \alpha) = \sum_{i=0}^{n-1} \inf_{x \in [x_i, x_{i+1}]} f(x) (\alpha(x_{i+1}) - \alpha(x_i))$$

We define upper integral and lower integral as follows:

$$\overline{\int_a^b} f \, d\alpha = \inf_{P \in \mathcal{P}[a,b]} U(P,f,\alpha) \qquad \int_a^b f \, d\alpha = \sup_{P \in \mathcal{P}[a,b]} L(P,f,\alpha).$$

f is Stieltjes integrable with respect to $\alpha \iff$

$$\forall \epsilon > 0, \exists P \in \mathcal{P}[a, b] \text{ such that } U(P, f, \alpha) - L(P, f, \alpha) < \epsilon.$$

Or equivalently, $\overline{\int_a^b} f \, d\alpha = \underline{\int_a^b} f \, d\alpha$. We write $f \in \mathcal{R}(\alpha)$.

Supplementary Material

F is a field for this section.

Definition. (Vector Space) A set V with addition $+: V \times V \to V$ and scalar multiplication $\cdot: F \times V \to V$ is a vector space over F if the following properties hold.

- (1) (Associativity of +) u + (v + w) = (u + v) + w for all $v, w, u \in V$.
- (2) (Commutativity of +) v + w = w + v for all $v, w \in V$.
- (3) (Identity of +) $\exists 0_V \in V$ such that v + 0 = 0 + v = v for all $v \in V$.
- (4) (Inverse of +) For each $v \in V$, $\exists x \in V$ such that $v + x = x + v = 0_V$.
- (5) (Identity of \cdot) 1v = v for $v \in V$, where $1 \in F$ is the multiplicative identity in F.
- (6) (Distributive Property of \cdot w.r.t. Vector +) For $a \in F$ and $v, w \in V$, a(v+w) = av + aw.
- (7) (Distributive Property of · w.r.t. Field +) For $a, b \in F$ and $v \in V$, (a + b)v = av + bv.
- (8) (Compatibility of \cdot w.r.t. +) a(bv) = (ab)v for $a, b \in F, v \in V$.

We write $V = (V, +, \cdot)$.

Definition. (Normed Vector Space) A vector space V with a norm $\|\cdot\|: V \to \mathbb{R}$ if a normed vector space if the following properties hold.

- (1) $||v|| \ge 0$ for all $v \in V$.
- (2) $||v|| = 0 \iff v = 0.$
- (3) For all $\alpha \in F$ and $v \in V$, $\|\alpha v\| = |\alpha| \|v\|$.
- (4) (Triangle Inequality) For all $v, w \in V$, $||v + w|| \le ||v|| + ||w||$.

For inner product spaces, $F = \mathbb{C}$ or $F = \mathbb{R}$.

Definition. (Inner Product Space) A vector space V with an inner product $\langle \cdot, \cdot \rangle : V \times V \to F$ is an inner product space if the following properties hold.

- (1) (Linearity in the first argument) For $x, y, z \in V$ and $a, b \in F$, $\langle ax + by, z \rangle = a \langle x, z \rangle + b \langle y, z \rangle$.
- (2) (Conjugate Symmetry) For $x, y \in V$, $\langle x, y \rangle = \overline{\langle y, x \rangle}$.
- (3) (Positive Definiteness) If $0 \neq x \in V$, $\langle x, x \rangle > 0$.

Remark. An inner product can induce a norm by $||v|| = \sqrt{\langle v, v \rangle}$. With norm as the distance metric, the following holds.

Inner Product Space \implies Normed Vector Space \implies Metric Space

If the inner product space is complete with respect to the distance metric, it is said to be a Hibert space.

September 6th, 2022

More examples.

Example 7.5 Consider $f_n(x) = \frac{\sin nx}{\sqrt{n}}$ for $x \in \mathbb{R}$.

$$f(x) = \lim_{n \to \infty} f_n(x) \equiv 0$$

but,

$$f'_n(x) = \sqrt{n}\cos nx \implies f'_n(0) = \sqrt{n}.$$

As $n \to \infty$, $f'_n(0)$ does not converge to f'(0).

Example 7.6 Consider $f_n(x) = nx(1-x^2)^n$ for $x \le 0 \le 1$. Note that

$$f_n(0) = 0, f_n(1) = 0.$$

When 0 < x < 1, $f_n \to f \equiv 0$. (Theorem 3.20 (d)) Thus $\lim_{n \to \infty} f_n(x) = 0$ for $0 \le x \le 1$.

But

$$\int_0^1 nx(1-x^2)^n dx = \left[\frac{-n}{2n+2}(1-x^2)^{n+1}\right]_0^1 = \frac{n}{2n+2},$$

and thus

$$\lim_{n \to \infty} \int_0^1 f_n(x) \, dx = \frac{1}{2} \neq 0 = \int_0^1 f(x) \, dx.$$

Definition. $\sum_{n=1}^{\infty} f_n$ converges uniformly on $E \iff \left(\sum_{k=1}^n f_k\right)$ converges uniformly on E.

Theorem 7.10 (Weierstrass M-test) Suppose $f_n : E \to \mathbb{C}$ and that for every $n, \exists M_n \in \mathbb{R}$ such that

$$|f_n(x)| \le M_n, \quad (x \in E)$$

and $\sum_{n=1}^{\infty} M_n < \infty$. Then the series $\sum_{n=1}^{\infty} f_n$ converges uniformly on E.

Proof. We want to show that the series is Cauchy.

For m > n, we have

$$\left| \sum_{k=n}^{m} f_k(x) \right| \le \sum_{k=n}^{m} |f_k(x)| \le \sum_{k=n}^{m} M_k.$$

Given $\epsilon > 0$, choose $m, n \in \mathbb{N}$ such that for $m, n \geq N$, $\sum_{k=n}^{m} M_k < \epsilon$. Then we get

$$\left| \sum_{k=n}^{m} f_k(x) \right| < \epsilon, \text{ for all } m, n \ge N.$$

By Theorem 7.8, $\sum f_n$ converges uniformly.

Theorem 7.11 Given metric space (Y, d) and $E \subseteq Y$, suppose that $f_n \stackrel{u}{\to} f$ on E and $x \in E'$. If

$$\lim_{t \to x} f_n(t) = A_n \in \mathbb{C}, \quad \text{(limit exists)}$$

then the sequence (A_n) converges, and

$$\lim_{n \to \infty} A_n = \lim_{t \to x} f(t).$$

In conclusion,

$$\lim_{n \to \infty} \lim_{t \to x} f_n(t) = \lim_{t \to x} \lim_{n \to \infty} f_n(t).$$

Proof.

 $((A_n) \text{ converges in } \mathbb{C})$ Since \mathbb{C} is complete, we will show that (A_n) is a Cauchy sequence. Let $\epsilon > 0$. Since $f_n \stackrel{u}{\to} f$ on E,

$$\exists N \in \mathbb{N} \text{ such that } n, m \geq N \implies |f_n(t) - f_m(t)| \leq \epsilon. \ (\forall t \in E)$$

From $\lim_{t\to x} f_n(t) = A_n$, we can choose t arbitrarily close to x, such that for $n, m \ge N$,

$$|f_n(t) - A_n| < \epsilon$$
 and $|f_m(t) - A_m| < \epsilon$.

Therefore for all $n, m \geq N$,

$$|A_n - A_m| = |A_n - f_n(t) + f_n(t) - A_m + f_m(t) - f_m(t)|$$

$$\leq |f_n(t) - A_n| + |f_m(t) - A_m| + |f_n(t) - f_m(t)| < 3\epsilon,$$

and thus (A_n) is a Cauchy Sequence.

 $(\lim_{n\to\infty} A_n = \lim_{n\to\infty} f(t))$ Let $A = \lim_{n\to\infty} A_n$. We want to show that for all $\epsilon > 0$,

$$\exists \, \delta > 0 \text{ such that } 0 < d(t, x) < \delta \implies |f(t) - A| < \epsilon.$$

Now,

$$|f(t) - A| \le \sup_{s \in E} |f(s) - f_n(s)| + |f_n(t) - A_n| + |A_n - A|.$$

Given $\epsilon > 0$, choose $N \in \mathbb{N}$ such that for $n \geq N$,

$$\sup_{s \in E} |f(s) - f_n(s)| < \frac{\epsilon}{3} \text{ and } |A_n - A| < \frac{\epsilon}{3}.$$

Fix such N and choose δ such that for $0 < d(x,t) < \delta$ and $t \in E$,

$$|f_N(t) - A_N| \le \frac{\epsilon}{3}.$$

Thus for $t \in E$ and $0 < d(x, t) < \delta$,

$$|f(t) - A| \le \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon.$$

Theorem 7.12 Suppose $f:E \to \mathbb{C}$ is continuous on E and $f_n \stackrel{u}{\to} f$ on E. Then f is continuous on E.

Proof. Let $x \in E$. If $x \in E'$, f is continuous at x by Theorem 7.11. If x is an isolated point (not a limit point), f is continuous at x by definition of continuity.

앞으로는 E를 전부 metric space라고 가정할게요.

이 정리는 언제 uniformly converge 하는지 알려줍니다.

Theorem 7.13 Given a compact metric space K, suppose that

- (1) f_n and $f: K \to \mathbb{C}$ are continuous on K.
- (2) $f_n \to f$ pointwise.
- (3) $f_n(x) > f_{n+1}(x)$ for $x \in K$.¹³

Then $f_n \stackrel{u}{\to} f$ on K.

Proof. Let $g_n(x) = f_n(x) - f(x)$. Then $g_n(x)$ is continuous, decreasing and $g_n \to 0$ as $n \to \infty$ for all $x \in K$. Let $\epsilon > 0$ be given.

Claim. There exists $N \in \mathbb{N}$ such that $0 \leq g_n(x) < \epsilon$ for all $x \in K$.

Proof. Let $K_n = \{x \in K : g_n(x) \ge \epsilon\}$. Then $K_n = K \cap g_n^{-1}([\epsilon, \infty))$. Since g_n is decreasing, $K_{n+1} \subseteq K_n$, but because $g_n \to 0$, $\bigcap_{n=1}^{\infty} K_n = \emptyset$. By Theorem 2.36, there exists $N \in \mathbb{N}$ such that $K_N = \emptyset$, and then $K_n = \emptyset$ for $n \ge N$. Thus, $0 \le g_n(x) < \epsilon$ for $\forall x \in K, \forall n \ge N$.

Remark. Compactness is necessary here. Consider $f_n(x) = \frac{1}{nx+1}$ on $x \in E = (0,1)$. f_n does not converge to 0 uniformly.

Proof. Suppose $f_n \stackrel{u}{\to} 0$, and take $\epsilon = 1/2$. Then,

$$\exists N \in \mathbb{N} \text{ such that } x \in (0,1) \implies \frac{1}{Nx+1} < \frac{1}{2}.$$

This gives a contradiction because the equation above gives Nx > 1, but we can choose x arbitrarily close to 0.

 $^{^{13}}f_n$ only needs to be monotone. See Dini's Theorem.

¹⁴Closed subset of a compact set is also compact, and the inverse image of closed set is closed if the function is continuous

Definition. Let (X, d) be a metric space. Define

$$C(X,\mathbb{C}) = \{ f: X \to \mathbb{C} \mid f \text{ is continuous and bounded} \}.$$

If there is no ambiguity, we write $C(X) = C(X, \mathbb{C})$.

Let $||f|| = \sup_{x \in X} |f(x)|$. Then $||\cdot||$ is a norm on C(X).

- $(1) ||f|| = 0 \iff f \equiv 0.$
- (2) $||f|| < \infty$.
- (3) $||f + g|| \le ||f|| + ||g||$.

Define d(f,g) = ||f - g||, then (C(X),d) is a metric space.

Therefore, $f_n \stackrel{u}{\to} f \iff f_n \to f \text{ in } (C(X), d).$