Computer Science 112 Data Structures

Lecture 13:

More AVL Trees

Review: AVL Trees

- Binary Search Tree
- Almost balanced
 - At every node, subtree heights same +/- 1

Labeling an AVL Tree

Label each node as

- left & right subtrees equally high
- \ right subtree one higher

AVL Node

- As in BSTNode
 - left subtree, right subtree, data
- · Also:
 - label
 - parent (may be convenient)
 - height (may be convenient)

Rebalancing

Problem: insert/delete -> not balanced

Rotation

Rotation

CS112: Slides for Prof. Steinberg's lecture

113-More-AVL.odp

Rotation

Mirror Image Rotation

• Case 1: Highside child of A has same label as A

Case 1

Case 1, mirror image

• Case 2: Highside child of A has opposite label from A

- Two rotations: BC, then AC

Rebalancing

- Case 2: Highside child of A has opposite label from A
 - Two rotations: BC, then <u>AC</u>

Example

• insert 10, 20, 30, 25, ...

Example

• insert ..., 24, ...

Example

• insert ..., 23, ...

Big-O for insert

climb tree adjusting balance factors:

worst case: O(height of tree)

rotate once or twice

worst case: O(1)

- worst case total: O(height)
- worst case height: O(log(number of nodes))
- worst case insert: O(log(number of nodes))

Big-O for AVL Tree

- insert: as in BST then rebalance O(log(n))
- search: just like Binary Search Tree O(log(n))
- Delete: delete as in BST, then rebalance O(log(n))