Analízis II. bizonyítandó tételek

1. A deriválhatóság ekvivalens átfogalmazása lineáris megközelítéssel

Tétel:

Legyen $f \in \mathbb{R} \to \mathbb{R}$ és $a \in \text{int } \mathcal{D}_f$. Ekkor

$$\begin{split} f \in D\{a\} &\iff \exists A \in \mathbb{R} \text{ \'es } \exists \varepsilon: \mathcal{D}_f \to \mathbb{R}, \lim_a \varepsilon = 0: \\ f(x) - f(a) &= A(x-a) + \varepsilon(x)(x-a) \qquad \big(x \in \mathcal{D}_f\big), \end{split}$$

és A = f'(a).

Bizonyítás:

 \Longrightarrow :

$$f \in D\{a\} \Longrightarrow \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f'(a) \in \mathbb{R} \Longleftrightarrow \lim_{x \to a} \left(\frac{f(x) - f(a)}{x - a} - f'(a)\right) = 0$$

Ha

$$\varepsilon(x) \coloneqq \frac{f(x) - f(a)}{x - a} - f'(a) \qquad \quad \left(x \in \mathcal{D}_{\!f} \setminus \{a\}\right),$$

akkor $\lim_a \varepsilon = 0$ és

$$f(x) - f(a) = f'(a) \cdot (x - a) + \varepsilon(x)(x - a) \qquad \quad \big(x \in \mathcal{D}_f\big),$$

ezért a feltétel az A = f'(a) választással teljesül.

 \Leftarrow

TFH $\exists A \in \mathbb{R} \text{ \'es } \exists \varepsilon : D_f \to \mathbb{R}, \lim_a \varepsilon = 0, \text{ hogy}$

$$f(x)-f(a)=A(x-a)+\varepsilon(x)(x-a) \qquad \quad \big(x\in D_f\big).$$

Ebből

$$\frac{f(x) - f(a)}{x - a} = A + \varepsilon(x) \to A, \quad \text{ha } x \to x$$

adódik, ami azt jelenti, hogy $f \in D\{a\}$ és f'(a) = A.

2. A szorzatfüggvény deriválása

Tétel:

TFH, $f,g\in D\{a\}$ valamilyen $a\in \operatorname{int}\ \left(\mathcal{D}_f\cap\mathcal{D}_q\right)$ pontban. Ekkor

$$f \cdot g \in D\{a\}$$
 és $(f \cdot g)'(a) = f'(a) \cdot g(a) + f(a) \cdot g'(a)$

Bizonyítás:

Világos, hogy $a\in \mathrm{int}\mathcal{D}_{f\cdot q}$. Az $f\cdot g$ függvény különbséghányados-függvénye az a pontban

$$\frac{(fg)(x)-(fg)(a)}{x-a} = \frac{f(x)\cdot g(x)-f(a)\cdot g(a)}{x-a} \stackrel{!}{=} \frac{f(x)\cdot g(x)-f(a)\cdot g(x)-f(a)\cdot g(a)+f(a)\cdot g(x)}{x-a} = \frac{f(x)-f(a)}{x-a}\cdot g(x)+f(a)\cdot \frac{g(x)-g(a)}{x-a} \qquad \left(x\in\mathcal{D}_{f\cdot g}\setminus\{a\}\right).$$

Mivel $g \in D\{a\}$, ezért $g \in C\{a\}$, tehát $\lim_{x \to a} g(x) = g(a)$. Így

$$\begin{split} \lim_{x\to a} \frac{(fg)(x)-(fg)(a)}{x-a} = \\ = \lim_{x\to a} \frac{f(x)-f(a)}{x-a} \cdot \lim_{x\to a} g(x) + \lim_{x\to a} f(a) \cdot \lim_{x\to a} \frac{g(x)-g(a)}{x-a} = \\ = f'(a) \cdot g(a) + f(a) \cdot g'(a). \end{split}$$

Ez azt jelenti, hogy $f, g \in D\{a\}$ és

$$(f \cdot g)'(a) = f'(a) \cdot g(a) + f(a) \cdot g'(a).$$

3. A hányadosfüggvény deriválása

Tétel:

TFH, $f,g\in D\{a\}$ valamilyen $a\in \mathrm{int}\ \left(\mathcal{D}_f\cap\mathcal{D}_q\right)$ pontban, és $g(a)\neq 0$. Ekkor

$$\frac{f}{g} \in D\{a\} \text{ es } \left(\frac{f}{g}\right)'(a) = \frac{f'(a) \cdot g(a) - f(a) \cdot g'(a)}{g^2(a)}$$

Bizonyítás:

Először igazoljuk, hogy $a\in \mathrm{int}\mathcal{D}_{\underline{f}}$.

Valóban:
$$g \in D\{a\} \Longrightarrow g \in C\{a\}$$
. Tehát $g(a) \neq 0 \implies \exists K(a) \subset \mathcal{D}_f : g(x) \neq 0 \ (\forall x \in K(a)) \implies a \in \text{int } \mathcal{D}_{\frac{f}{g}}$

Az $\frac{f}{a}$ hányadosfüggvény különbséghányados-függvénye a-ban

$$\begin{split} \frac{\left(\frac{f}{g}\right)(x) - \left(\frac{f}{g}\right)(a)}{x - a} &= \frac{\frac{f(x)}{g(x)} - \frac{f(a)}{g(a)}}{x - a} = \frac{1}{g(a)g(x)} \cdot \frac{f(x) \cdot g(a) - f(a) \cdot g(x)}{x - a} = \\ &= \frac{1}{g(a)g(x)} \cdot \left(\frac{f(x) - f(a)}{x - a} \cdot g(a) - f(a) \cdot \frac{g(x) - g(a)}{x - a}\right) \end{split}$$

Mivel $g \in C\{a\} \Longrightarrow \lim_{x \to a} g(x) = g(a) \neq 0$, ezért

$$\begin{split} \lim_{x\to a} \frac{\left(\frac{f}{g}\right)(x) - \left(\frac{f}{g}\right)(a)}{x-a} &= \\ &= \frac{1}{g(a)\lim_{x\to a} g(x)} \left(\lim_{x-a} \frac{f(x) - f(a)}{x-a} \cdot g(a) - f(a) \cdot \lim_{x\to a} \frac{g(x) - g(a)}{x-a}\right) = \\ &= \frac{1}{g^2(a)} (f'(a)g(a) - f(a)g'(a)). \end{split}$$

4. A lokális szélsőértékre vonatkozó elsőrendű szükséges feltétel

Tétel:

TFH az f függvénynek az $a\in \operatorname{int}\, \mathcal{D}_f$ pontban lokális szélsőértéke van és $f\in D\{a\}$. Ekkor

$$f'(a) = 0$$

Bizonyítás:

TFH f-nek a-ban lokális maximuma van, azaz $\exists r > 0$:

$$\forall x \in (a-r,a+r): \ f(x) \leq f(a) \Longrightarrow f(x) - f(a) \leq 0.$$

Tekintsük az f függvény a-hoz tartozó különbséghányados-függvényét:

$$\frac{f(x)-f(a)}{x-a} \quad \left(x \in \mathcal{D}_{\!f} \setminus \{a\}\right)\!.$$

Ha $a < x < a + r \Longrightarrow x - a > 0$ és $f(x) - f(a) \leq 0 \Longrightarrow$

$$\Longrightarrow \frac{f(x)-f(a)}{x-a} \leq 0 \Longrightarrow \lim_{x\to a+0} \frac{f(x)-f(a)}{x-a} = f'_+(a) \leq 0.$$

Ha $a - r < x < a \Longrightarrow x - a < 0$ és $f(x) - f(a) \le 0 \Longrightarrow$

$$\Longrightarrow \frac{f(x) - f(a)}{x - a} \ge 0 \Longrightarrow \lim_{x \to a - 0} \frac{f(x) - f(a)}{x - a} = f'_{-}(a) \ge 0.$$

Mivel $f \in D\{a\}$, ezért

$$\underbrace{f'_-(a)}_{\geq 0} = \underbrace{f'_+(a)}_{<0} = f'(a) = 0$$

5. A Rolle-féle középértéktétel

Tétel:

Legyen $a, b \in \mathbb{R}$ és a < b. Ekkor

$$\left. \begin{array}{l} f \in C[a,b] \\ f \in D(a,b) \\ f(a) = f(b) \end{array} \right\} \Longrightarrow \exists \xi \in (a,b), \mathrm{hogy} \ f'(\xi) = 0.$$

Bizonyítás:

$$\begin{split} f \in C[a,b] &\Longrightarrow \text{(Weierstrass-tétel)} \ \exists \alpha,\beta \in [a,b]: \\ f(\alpha) &= \min_{[a,b]} f =: m \quad \text{\'es} \quad f(\beta) = \max_{[a,b]} f =: M. \end{split}$$

• 1. eset: m = M.

Ekkor f állandó, így $\forall \xi \in (a,b): f'(\xi) = 0.$

• 2. eset: $m \neq M$.

Mivel f(a)=f(b), ezért α és β közül legalább az egyik (pl. α) (a,b)-be esik. Ekkor $\xi:=\alpha\in {\rm int}\ \mathcal{D}_f=(a,b)$, és f-nek ξ -ben lokális minimuma van. Mivel $f\in D\{\xi\}\Longrightarrow ({\rm az\ els\~orend\~u}\ sz\"uks\'eges\ felt\'etel) f'(\xi)=0.$

6. A Lagrange-féle középértéktétel

Tétel:

Legyen $a, b \in \mathbb{R}$ és a < b. Ekkor

$$\left. \begin{array}{l} f \in C[a,b] \\ f \in D(a,b) \end{array} \right\} \Longrightarrow \exists \xi \in (a,b), \mathrm{hogy} \ f'(\xi) = \frac{f(b) - f(a)}{b-a} \\ \end{array}$$

Bizonyítás:

Az (a, f(a)) és (b, f(b)) pontokon átmenő szelő egyenesének az egyenlete:

$$y=h_{a,b}(x)=\frac{f(b)-f(a)}{b-a}(x-a)+f(a).$$

igazoljuk, hogy az

$$F(x)\coloneqq f(x)-h_{a.b}(x) \quad \ (x\in[a,b])$$

függvény kielégíti a Rolle-féle középértéktétel feltételeit.

Valóban, f és $h_{a,b}$ mindketten folytonosak [a,b]-n és deriválhatók (a,b)-n, ezért a különbségük, F szintén rendelkezik ezekkel a tulajdonságokkal. Továbbá

$$F(a) = f(a) - h_{a,b}(a) = f(a) - f(a) = 0,$$

$$F(b) = f(b) - h_{a,b}(b) = f(b) - \left(\frac{f(b) - f(a)}{b - a}(b - a) + f(a)\right) = 0,$$

tehát F(a) = F(b) is teljesül. A Rolle-féle tétel alapján tehát van olyan $\xi \in (a,b)$ pont, amelyre

$$F'(\xi) = f'(\xi) - h'_{a,b}(\xi) = f'(\xi) - \frac{f(b) - f(a)}{b - a} = 0,$$

következésképpen

$$f'(\xi) = \frac{f(b) - f(a)}{b - a}.$$

7. A Cauchy-féle középértéktétel

Tétel:

Legyen $a, b \in \mathbb{R}$ es a < b. Ekkor

$$\left. \begin{array}{l} f,g \in C[a,b] \\ f,g \in D(a,b) \\ \forall x \in (a,b): g'(x) \neq 0 \end{array} \right\} \Longrightarrow \exists \xi \in (a,b), \text{hogy } \frac{f'(\xi)}{g'(\xi)} = \frac{f(b) - f(a)}{g(b) - g(a)}$$

Bizonyítás:

A Rolle-tételből következik, hogy $g(a) \neq g(b)$.

Valóban, g(a)=g(b)-ből az következne, hogy g deriváltja nulla az (a,b) intervallum legalább egy pontjában, amit kizártunk.

Legyen

$$F(x) := f(x) - f(a) - \frac{f(b) - f(a)}{g(b) - g(a)} (g(x) - g(a)) \qquad (x \in [a, b])$$

Az F függvény folytonos [a,b]-n, deriválható (a,b)-n és F(a)=F(b)=0. Így a Rolle-tétel szerint létezik olyan $\xi\in(a,b)$, amelyre $F'(\xi)=0$. Ekkor

$$0 = F'(\xi) = f'(\xi) - \frac{f(b) - f(a)}{g(b) - g(a)}g'(\xi).$$

Mivel a feltételeink szerint $g(\xi) \neq 0$, ezért azt kapjuk, hogy

$$\frac{f'(\xi)}{g'(\xi)} = \frac{f(b) - f(a)}{g(b) - g(a)}$$

8. Nyílt intervallumon értelmezett deriválható függvények esetében a monotonitás és a derivált kapcsolata.

Tétel:

Legyen $(a, b) \subset \mathbb{R}$ egy nyílt intervallum.

TFH $f \in D(a, b)$. Ekkor

1.
$$f \nearrow [\searrow] (a,b)$$
-n $\iff f' \ge 0 \ [f' \le 0] \ (a,b)$ -n;

2. ha
$$f' > 0$$
 $[f' < 0]$ (a, b) -n $\Longrightarrow f \uparrow [\downarrow](a, b)$ -n.

Bizonyítás:

1.

 \Longrightarrow :

Ha $f \nearrow (a,b)$ -n és $t \in (a,b)$ egy tetszőleges pont, akkor

$$\frac{f(x) - f(t)}{x - t} \ge 0 \quad (t < x < b),$$

hiszen x-t>0 és a monotonitás miatt $f(x)-f(t)\geq 0$. Mivel $f\in D\{t\}$, így

$$f'(t) = f'_+(t) = \lim_{x \to t+0} \frac{f(x) - f(t)}{x - t} \ge 0.$$

⇐=:

Ha $\forall x \in (a,b): f'(x) \geq 0$, akkor legyen $x,y \in (a,b), x < y$ két tetszőleges pont. Ekkor $f \in C[x,y], f \in D(x,y)$, és így a Lagrange-féle középértéktétel szerint

$$\exists \xi \in (x,y): \frac{f(y)-f(x)}{y-x} = f'(\xi) \geq 0 \Longrightarrow f(x) \leq f(y).$$

Ezért $f \nearrow (a,b)$ -n.

Az állítás hasonlóan igazolható monoton csökkenő függvények esetén is.

2.

Alkalmazzunk "éles" egyenlőtlenségeket 1.-ben a ← irányban.

9. A lokális szélsőértékre vonatkozó elsőrendű elégséges feltétel.

Tétel:

Legyen $-\infty < a < b < +\infty$ és $f:(a,b) \to \mathbb{R}$ TFH

- $f \in D(a,b)$
- egy $c \in (a, b)$ pontban f'(c) = 0
- az f' deriváltfüggvény előjelet vált c-ben.

Ekkor

- 1. ha az f függvénynek c-ben (-,+) előjelváltása van, akkor c az f függvénynek szigorú lokális minimumhelye.
- 2. ha az f függvénynek c-ben (+,-) előjelváltása van, akkor c az f függvénynek szigorú lokális maximumhelye.

Bizonyítás:

Az állítás azonnal következik a monotonitás és a derivált kapcsolatáról szóló tételből, hiszen ha az f függvénynek c-ben (-,+) előjelváltása van, akkor

$$\exists \delta > 0 \text{ úgy hogy}$$

$$f' < 0 \ (c - \delta, c)$$
-n és

$$f' > 0 \ (c, c + \delta)$$
-n

Ezért

$$f\downarrow(c-\delta,c]$$
-n, és

$$f \uparrow [c, c + \delta)$$
-n.

Emiatt $\forall x \in (c - \delta, c + \delta) : f(x) > f(c)$, tehát c az f függvénynek szigorú lokális minimumhelye.

Az állítás hasonlóan igazolható (+,-) előjelváltás esetén.

10. A konvexitás jellemzése a deriváltfüggvénnyel.

Tétel:

TFH $I \subset \mathbb{R}$ nyílt intervallum és $f \in D(I)$. Ekkor

$$f$$
 konvex I -n \iff $f' \nearrow I$ -n.

Bizonyítás:

⇒:

Legyen

 $u, v \in I$

u < v tetszőleges

 $x \in (u, v)$ is tetszőleges

TFH f konvex I-n. Ekkor

$$f(x) \le \frac{f(v) - f(u)}{v - u}(x - u) + f(u) \quad \text{és} \quad f(x) \le \frac{f(v) - f(u)}{v - u}(x - v) + f(v)$$

$$\frac{f(x) - f(u)}{x - u} \le \frac{f(v) - f(u)}{v - u} \le \frac{f(x) - f(v)}{x - v}$$

Vegyük itt az $x \to u$ ill. az $x \to v$ határátmenetet:

$$f'(u) \leq \frac{f(v) - f(u)}{v - u} \leq f'(v)$$

Tehát $f' \nearrow I$ -n.

⇐:

TFH $f' \nearrow I$ -n.

Legyen

 $u, v \in I$

u < v tetszőleges

 $x \in (u, v)$ is tetszőleges

Ekkor a Lagrange-féle középértéktétel szerint

 $\exists \xi_1 \in (u, x) \text{ \'es } \exists \xi_2 \in (x, v)$

$$f'(\xi_1) = \frac{f(x) - f(u)}{x - u}$$
 és $f'(\xi_2) = \frac{f(v) - f(x)}{v - x}$

Mivel $f' \nearrow I$ -n, ezért $f'(\xi_1) \le f'(\xi_2)$ vagyis

$$\frac{f(x)-f(u)}{x-u} \leq \frac{f(v)-f(x)}{v-x} \Longleftrightarrow f(x) \leq \frac{f(v)-f(u)}{v-u}(x-u) + f(u)$$

Tehát f konvex I-n.

11. A véges pontbeli $\frac{0}{0}$ határérték esetre vonatkozó L'Hospital-szabály.

Tétel:

Legyen $-\infty \le a < b < +\infty$ és $f,g \in D(a,b)$.

TFH

$$\exists \lim_{a \to 0} f = \lim_{a \to 0} g = 0$$

•
$$g(x) \neq 0$$
 és $g'(x) \neq 0$ $\forall x \in (a, b)$

$$\exists \lim_{a+0} \frac{f'}{g'} \in \overline{\mathbb{R}}$$

Ekkor

$$\exists \lim_{a \to 0} \frac{f}{g} \in \overline{\mathbb{R}} \quad \text{és} \quad \lim_{a \to 0} \frac{f}{g} = \lim_{a \to 0} \frac{f'}{g'} \in \overline{\mathbb{R}}$$

Bizonyítás:

1. eset $a > -\infty$ (véges)

Legyen $A \coloneqq \lim_{a \to 0} \frac{f'}{g'} \in \overline{\mathbb{R}}$, azaz

$$\forall \varepsilon > 0, \exists \delta > 0 : \forall y \in (a, a + \delta) \subset (a, b) : \frac{f'(y)}{g'(y)} \in K_{\varepsilon}(A)$$

Igazoljuk hogy:

$$\forall \varepsilon > 0, \exists \delta > 0: \forall x \in (a, a + \delta) \subset (a, b): \frac{f(x)}{g(x)} \in K_{\varepsilon}(A)$$

Legyen

$$f(a) := 0$$
 és $g(a) := 0$

Ekkor a $\lim_{a+0} f = \lim_{a+0} g = 0$ feltételből következik, hogy $f,g \in C[a,a+\delta)$

Legyen most $x \in (a, a + \delta)$ tetszőleges pont. A Cauchy-féle középértéktétel feltételei az f és a g függvényre az [a, x] intervallumon teljesülnek. Így $\exists \varepsilon_x \in (a, x)$, amelyre

$$\frac{f(x)}{g(x)} = \frac{f(x) - f(a)}{g(x) - g(a)} = \frac{f'(\varepsilon_x)}{g'(\varepsilon_x)} \in K_\varepsilon(A)$$

Tehát $\exists \lim_{a+0} \frac{f}{g}$ és $\lim_{a+0} \frac{f}{g} = A$

2. eset $a=-\infty$

nem bizonyítjuk.

12. A Taylor-formula a Lagrange-féle maradéktaggal.

Tétel:

Legyen $n \in \mathbb{N}$

TFH $f \in D^{n+1}(K(a))$

Ekkor $\forall x \in K(a)$ ponthoz \exists olyan a és x közé eső ξ szám, hogy

$$f(x)-T_{a,n}f(x)=\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-a)^{n+1}$$

Bizonyítás:

Cauchy-féle középértéktétellel.

Legyen

$$F(x)\coloneqq f(x)-T_{a,n}f(x) \quad \ (x\in K(a))$$

A $T_{a,n}f$ polinom definíciójából következik, hogy

$$F^{(i)}(a) = f^{(i)}(a) - \left(T_{a,n}f\right)^{(i)}(a) = 0 \hspace{0.5cm} (i = 0,1,...,n).$$

Továbbá, $F^{(n+1)}(x)=f^{(n+1)}(x)$, hiszen $\left(T_{n,a}f\right)^{(n+1)}\equiv 0$, mert $T_{a,n}f$ egy legfeljebb n-edfokú polinom.

Másrészt, legyen $G(x) \coloneqq (x-a)^{n+1} \quad (x \in K(a)).$

Ekkor

$$\begin{aligned} \forall x \in K(a): \\ G'(x) &= (n+1)(x-a)^n, \\ G''(x) &= n(n+1)(x-a)^{n-1}, \\ &\dots, \\ G^{(n)}(x) &= (n+1)!(x-a). \end{aligned}$$

amiből következik, hogy

$$G^{(i)}(a) = 0$$
 $(i = 0, 1, ..., n)$, és $G^{(n+1)}(x) = (n+1)!$

TFH $x \in K(a)$ és például x > 0.

Az F és G függvényekre az [a,x] intervallumon alkalmazható a Cauchy-féle középértéktétel:

$$\exists \xi_1 \in (a,x) : \frac{F'(\xi_1)}{G'(\xi_1)} = \frac{F(x) - F(a)}{G(x) - G(a)} = \frac{F(x)}{G(x)} = \frac{f(x) - T_{a,n}f(x)}{(x-a)^{n+1}}$$

A Cauchy-féle középértéktételt most az F' és a G' függvényekre az $[a,\xi_1]$ intervallumon alkalmazzuk:

$$\exists \xi_2 \in (a,\xi_1) \subset (a,x) : \frac{F''(\xi_2)}{G''(\xi_2)} = \frac{F'(\xi_1) - F'(a)}{G'(\xi_1) - G'(a)} = \frac{F'(\xi_1)}{G'(\xi_1)}$$

Ha a fenti gondolatmenetet n-szer megismételjük, akkor a k-dik lépésben (k = 1, 2, ..., n):

$$\begin{split} \exists \xi_{k+1} \in (a, \xi_k) \subset (a, x) : \\ \frac{F^{(k+1)}(\xi_{k+1})}{G^{(k+1)}(\xi_{k+1})} &= \frac{F^{(k)}(\xi_k) - F^{(k)}(a)}{G^{(k)}(\xi_k) - G^{(k)}(a)} = \frac{F^{(k)}(\xi_k)}{G^{(k)}(\xi_k)}. \end{split}$$

az n számú lépés után kapott egyenlőségeket egybevetve azt kapjuk, hogy

$$\frac{f(x) - T_{a,n}(f,x)}{(x-a)^{n+1}} = \frac{F(x)}{G(x)} = \frac{F'(\xi_1)}{G'(\xi_1)} = \ldots = \frac{F^{(n)}(\xi_n)}{G^{(n)}(\xi_n)} = \frac{F^{(n+1)}(\xi_{n+1})}{G^{(n+1)}(\xi_{n+1})} = \frac{f^{(n+1)}(\xi_{n+1})}{(n+1)!},$$

hiszen $\forall x \in K(a) : F^{(n+1)}(x) = f^{(n+1)}$ és $G^{(n+1)}(x) = (n+1)!$.

A konstrukcióból látható, hogy ξ_{n+1} az a pont és x között van, ezért a $\xi:=\xi_{n+1}$ választással a bizonyítandó állítást kapjuk.