UNISOCIESC Centro universitário	() Prova (X) Exercícios () Prova Modular () Prática de Laboratóri () Exame Final/Exame () Aproveitamento Extra	amada	Nota:
Disciplina: Inteligência Artific	ial	Turma:	
Professor: Claudinei Dias		Data:	
Δίμης (a):			

Sistema de Inferência Fuzzy

Resumo das etapas da implementação:

Para calcular a saída de um FIS (Fuzzy Inference System) dadas as entradas, deve-se percorrer seis etapas:

- 1. Determinar um conjunto de regras fuzzy;
- 2. Fuzzyficar as entradas usando as funções de associação de entrada;
- 3. Combinar as entradas fuzzyficadas de acordo com as regras fuzzy para estabelecer uma "força" de regra;
- 4. Encontrar a consequência da regra combinando a força da regra e a função de pertinência da saída (se for um FIS Mamdani);
- 5. Combinar as consequências para obter uma distribuição de saída;
- 6. Defuzzyficar a distribuição da saída (esta etapa aplica-se somente se uma saída crisp for necessária).

Depois de determinar as entradas e saídas apropriadas para sua aplicação, há três etapas para projetar os parâmetros para um sistema fuzzy:

- 1. Especifique os conjuntos fuzzy a serem associados a cada variável;
- 2. Decida o que as regras fuzzy vão ser;
- 3. Especifique a forma das funções de pertinência.

PARTE 1: implementação pêndulo invertido sobre o carro

Podemos começar a projetar um sistema fuzzy subdividindo-se o problema em duas variáveis de entrada, referentes ao pêndulo invertido (ângulo do pêndulo e velocidade angular), em conjuntos de pertinência.

O ângulo pode ser descrito como:

- 1. Inclinado para a esquerda (N)
- 2. Vertical (Z)
- 3. Inclinado para a direita (P)

A velocidade angular pode ser descrita como:

- 1. Deslocando-se para a esquerda (N)
- 2. Parado (Z)
- 3. Deslocando-se para a direita (P)

Regras fuzzy para inclinação e velocidade angular

- 1. IF pêndulo está inclinado à esquerda AND pêndulo está movendo para a esquerda THEN empurre o carro fortemente para a esquerda;
- 2. IF pêndulo está inclinado à esquerda AND pêndulo não está movendo THEN empurre o carro para a esquerda;
- 3. IF pêndulo está inclinado à esquerda AND pêndulo está movendo para a direita THEN não empurre o carro;
- 4. IF pêndulo não está inclinado AND pêndulo está movendo para a esquerda THEN empurre o carro levemente para a esquerda;
- 5. IF pêndulo não está inclinado AND pêndulo não está movendo THEN não empurre o carro;
- 6. IF pêndulo não está inclinado AND pêndulo está movendo para a direita THEN empurre o carro levemente para a direita;
- 7. IF pêndulo está inclinado à direita AND pêndulo está movendo para a esquerda THEN não empurre o carro;
- 8. IF pêndulo está inclinado à direita AND pêndulo não está movendo THEN empurre o carro para a direita;
- 9. IF pêndulo está inclinado à direita AND pêndulo está movendo para a direita THEN empurre o carro fortemente para a direita.

matriz de regras					
		heta			
		N	Z	Р	
	N	NL	NS	Z	
$\dot{ heta}$	Z	NM	Z	PM	
	Р	Z	PS	PL	

Funções de Pertinência (FPs) da inclinação do pêndulo

vértices trapezoidais					
	N	Р			
Α	-	-0,1	0		
В	-	-0,03	0,1		
С	-0,1	0,03	-		
D	0	0,1	-		

FPs da velocidade angular do pêndulo

V	vértices trapezoidais					
	N	Z	Р			
Α	-	-0,15	0			
В	-	-0,03	0,1			
С	-0,1	0,03	-			
D	0	0,15	-			

FPs da saída do pêndulo

	vértices trapezoidais						
	NL	NM	NS	Z	PS	PM	PL
Α	-200	-80	-10	0	0	0	0
В	-100	-40	-5	0	5	40	100
С	0	0	0	0	10	80	200

PARTE 2: implementação pêndulo invertido sobre o carro

Separadamente, pode-se também subdividir o problema em outras duas variáveis de entrada, referentes ao carro (posição e velocidade linear do carro), em conjuntos de pertinência.

A posição pode ser descrita como:

- 1. À esquerda (N)
- 2. Centro (Z)
- 3. À direita (P)

A velocidade pode ser descrita como:

- 1. Deslocando-se para a esquerda (N)
- 2. Parado (Z)
- 3. Deslocando-se para a direita (P)

Regras fuzzy para posição e velocidade do carro

- 1. IF o carro está na esquerda AND carro está indo para a esquerda THEN empurre o carro fortemente para a direita;
- 2. IF o carro está na esquerda AND carro não está movimentando THEN empurre o carro para a direita;
- 3. IF o carro está na esquerda AND carro está indo para a direita THEN não empurre o carro;
- 4. IF o carro está centralizado AND carro está indo para a esquerda THEN empurre um pouco o carro para a direita;
- 5. IF carro está centralizado AND carro não está movimentando THEN não empurre o carro;
- 6. IF carro está centralizado AND carro está indo para a direita THEN empurre um pouco o carro para a esquerda;
- 7. IF o carro está na direita AND carro está indo para a esquerda THEN não empurre o carro;
- 8. IF o carro está na direita AND carro não está movimentando THEN empurre o carro para a esquerda;

9. IF o carro está na direita AND carro está indo para a direita THEN empurre o carro fortemente para a

matriz de regras x Ν Ζ PLPS Ζ PM Z NMΖ NS

NL

legenda	
N – negativo	
Z – zero	
P – positivo	
L – grande	
M – médio	
S – pequeno	

FPs da posição do carro

Vé	vértices trapezoidais						
	N	Р					
Α	-	-1,5	1				
В	-	-0,5	2				
С	-2	0,5	-				
D	0	1,5	-				

FPs da velocidade do carro

vértices trapezoidais					
	N	Р			
Α	-	-1,5	0		
В	-	-0,5	3		
С	-3	0,5	-		
D	-0	1,5	-		

FPs da saída do carro

	vértices trapezoidais						
	NL	NM	NS	Z	PS	PM	PL
Α	-100	-10	-2	0	0	0	0
В	-50	-5	-1	0	1	5	50
С	0	0	0	0	2	10	100

Defuzzificação

Weighted averange

$$z^* = \frac{\sum \mu_{\mathbb{C}}(\bar{z})z}{\sum \mu_{\mathbb{C}}(\bar{z})}$$

Modelo de simulação

Pêndulo invertido sobre o carro

$$\ddot{x} = \frac{m_p l [\dot{\theta}^2 \sin(\theta) - \ddot{\theta} \cos(\theta)] + F}{m_c + m_p}$$

$$\ddot{\theta} = \frac{m_p l[g \sin(\theta) - \ddot{x} \cos(\theta)]}{I + m_p l^2}$$

• $\dot{ heta}
ightarrow ext{velocidade}$ angular do pêndulo

x → posição do carro

• $\dot{x} \rightarrow \text{velocidade do carro}$

• $l = 0.3 \ m \rightarrow tamanho do pêndulo$

•
$$m_c = 0.5 \ kg$$
, $m_p = 0.2 \ kg$, $g = 9.8 \ m/s^2$

• $I = 0.006 \ kg. \ m^2 \rightarrow momento de inércia do pêndulo$

• F → força aplicada ao carro (em Newtons)

Loop de simulação

•
$$\ddot{x} = calc\ddot{x}(F, \theta_{old}, \dot{\theta}_{old})$$

•
$$\dot{x} = \dot{x}_{old} + h\ddot{x}$$

•
$$x_{new} = x_{old} + h\dot{x}$$

•
$$\ddot{\theta} = calc\ddot{\theta}(\ddot{x}, \theta_{old}, \dot{\theta}_{old})$$

•
$$\dot{\theta} = \dot{\theta}_{old} + h\ddot{\theta}$$

•
$$\theta = \theta_{old} + h\dot{\theta}$$

•
$$h = 0.02$$
 (sugestão)

loop de controle

in: estado out: força

atualiza o sistema in: força out: estado