En los problemas 15 al 18, con $\mathbf{u} = (5, -4)$ y $\mathbf{v} = (-3, 1)$ encuentre

15.
$$-3v$$

16.
$$-2u + 3v$$

17.
$$5v + 4u$$

18.
$$-2(\mathbf{u} + \mathbf{v})$$

En los problemas 19 al 22, con $\mathbf{u} = 2\mathbf{i} + 6\mathbf{j}$ y $\mathbf{v} = -3\mathbf{i} - 4\mathbf{j}$ encuentre

20.
$$2u + 3v$$

21.
$$2v + 4u$$

22.
$$-5u + 6v$$

En los ejercicios 23 al 31 encuentre un vector unitario que tenga la misma dirección que el vector dado

23.
$$v = i + j$$

24.
$$v = 3i - 4j$$

25.
$$\mathbf{v} = -2\mathbf{i} + 3\mathbf{j}$$

26.
$$\mathbf{v} = \pi \mathbf{i} - 2\mathbf{j}$$

27.
$$\mathbf{v} = -7\mathbf{i} + 3\mathbf{j}$$

28.
$$v = 3i + 4j$$

29.
$$v = 8i - 9i$$

30.
$$v = -2i - 4i$$

31.
$$\mathbf{v} = 3\sqrt{3}\mathbf{i} + 2\sqrt{2}\mathbf{j}$$

32. Si
$$\mathbf{v} = 4\mathbf{i} - 7\mathbf{j}$$
 encuentre sen θ y cos θ , donde θ es la dirección de \mathbf{v} .

33. Encuentre un vector unitario con la dirección opuesta a
$$\mathbf{v} = -3\sqrt{2}\mathbf{i} + 2\sqrt{3}\mathbf{j}$$
.

34. Encuentre dos vectores unitarios ortogonales a
$$\mathbf{v} = -3\mathbf{i} + 4\mathbf{j}$$
.

35. Encuentre un vector unitario con la dirección opuesta a la de
$$\mathbf{v} = -\frac{5}{2}\mathbf{i} - \frac{1}{\sqrt{3}}\mathbf{j}$$
.

En los ejercicios 36 al 40 encuentre un vector v que tenga la magnitud y dirección dadas.

36.
$$|\mathbf{v}| = 2; \quad \theta = \frac{\pi}{3}$$

37.
$$|\mathbf{v}| = 6; \quad \theta = \frac{2\pi}{3}$$

38.
$$|\mathbf{v}| = 3; \quad \theta = \frac{5\pi}{4}$$

39.
$$|\mathbf{v}| = \frac{3}{2}$$
; $\theta = \frac{\pi}{2}$

40.
$$|\mathbf{v}| = 7; \quad \theta = \frac{5\pi}{6}$$

En los ejercicios 41 al 45 calcule el producto escalar de los dos vectores y el coseno del ángulo entre ellos.

41.
$$\mathbf{u} = 11\mathbf{i} + 4\mathbf{j}$$
; $\mathbf{v} = -12\mathbf{i} + 9\mathbf{j}$

42.
$$\mathbf{u} = -4\mathbf{i} - \mathbf{j}$$
; $\mathbf{v} = 4\mathbf{i} - 4\mathbf{j}$

43.
$$\mathbf{u} = -3\mathbf{i}$$
; $\mathbf{v} = \mathbf{i}\sqrt{3} - \mathbf{i}$

44.
$$\mathbf{u} = 11\mathbf{i} + 4\mathbf{i}$$
: $\mathbf{v} = 6\mathbf{i} + 6\mathbf{i}$

45.
$$\mathbf{u} = -\mathbf{i} - 2\mathbf{j}$$
; $\mathbf{v} = 4\mathbf{i} + 5\mathbf{j}$

En los ejercicios 46 al 53 determine si los vectores dados son ortogonales, paralelos o ninguno de los dos. Después bosqueje cada par.

46.
$$\mathbf{u} = 2\mathbf{i} - 6\mathbf{j}$$
; $\mathbf{v} = -\mathbf{i} + 3\mathbf{j}$

47.
$$\mathbf{u} = -3\mathbf{i} + 3\mathbf{j}$$
; $\mathbf{j} = -7\mathbf{i} + 6\mathbf{j}$

48.
$$\mathbf{u} = -\frac{\sqrt{3}}{2}\mathbf{i} + \frac{1}{2}\mathbf{j}; \quad \mathbf{v} = \mathbf{i}\sqrt{3} - \mathbf{j}$$

49.
$$\mathbf{u} = -\frac{\sqrt{5}}{2}\mathbf{i} + \frac{1}{2}\mathbf{j}$$
; $\mathbf{v} = \mathbf{i}\sqrt{5} + 5\mathbf{j}$

50.
$$\mathbf{u} = -12\mathbf{i} - 6\mathbf{j}$$
; $\mathbf{j} = -9\mathbf{i} - 8\mathbf{j}$

51.
$$\mathbf{u} = -7\mathbf{i} - 7\mathbf{j}$$
; $\mathbf{v} = -\mathbf{i} + \mathbf{j}$

52.
$$\mathbf{u} = 3\mathbf{i} + 7\mathbf{j}$$
; $\mathbf{v} = 2\mathbf{i} + \mathbf{j}$

53.
$$\mathbf{u} = -7\mathbf{i} - 7\mathbf{j}$$
; $\mathbf{v} = -\mathbf{i} - \mathbf{j}$

54. Sean
$$\mathbf{u} = -\frac{\sqrt{5}}{2}\mathbf{i} + \frac{1}{2}\mathbf{j}$$
 y $\mathbf{v} = 4\mathbf{i} + \alpha\mathbf{j}$. Determine α tal que

- a) u y v sean ortogonales.
- b) u y v sean paralelos.
- c) El ángulo entre **u** y **v** sea $\frac{\pi}{4}$.
- d) El ángulo entre **u** y **v** sea $\frac{\pi}{6}$