随机变量数字特征

Didnelpsun

目录

1	一维随机变量数字特征			
	1.1	数学期望	1	
		1.1.1 离散型随机变量	1	
		1.1.2 连续型随机变量	1	
		1.1.3 连续型随机变量函数	1	
	1.2	方差	2	
		1.2.1 方差关系	2	
		1.2.2 期望关系	2	
	1.3	切比雪夫不等式	2	
2	二维随机变量数字特征			
	2.1	协方差	2	
3	独立	生与相关性 生与相关性	3	
	3.1	独立性	3	
	3.2	相关性	3	
4	切比	雪夫不等式	3	
	4.1	区间概率	3	

1 一维随机变量数字特征

1.1 数学期望

1.1.1 离散型随机变量

可以根据随机变量分布律的形式拟合出已知的离散型随机变量分布,从而得到已知的期望。

例题: 设随机变量 X 的分布律为 $P\{X=k\}=\frac{1}{2^k k! (\sqrt{e}-1)}$, $k=1,2,\cdots$, 求 EX 。

解:查看分布律中含有 k! 的形式,所以可以考虑转换为泊松分布。泊松分布的标准形式是 $\frac{\lambda^k}{k!}e^{-\lambda}$ 。

$$P\{X = k\} = \frac{1}{2^k k! (\sqrt{e} - 1)} = \frac{\sqrt{e}}{\sqrt{e} - 1} \frac{\left(\frac{1}{2}\right)^k}{k!} e^{-\frac{1}{2}}, \ X \sim \frac{\sqrt{e}}{\sqrt{e} - 1} P\left(\frac{1}{2}\right).$$

$$\therefore EX = \frac{\sqrt{e}}{2\sqrt{e} - 2}.$$

1.1.2 连续型随机变量

例题: 连续型随机变量 X 的概率密度为 $f(x) = \frac{1}{\pi(1+x^2)}(-\infty < x < +\infty)$,求 EX。

解:
$$EX = \int_{-\infty}^{+\infty} x f(x) dx = \int_{-\infty}^{+\infty} x \frac{1}{\pi(1+x^2)} dx = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \frac{d(1+x^2)}{1+x^2} = \frac{1}{2\pi} \ln(1+x^2)|_{-\infty}^{+\infty}$$
。 发散,所以不存在。

1.1.3 连续型随机变量函数

例题: 连续型随机变量 X 的概率密度为 $f(x) = \frac{1}{\pi(1+x^2)}(-\infty < x < +\infty)$,求 $E(\min\{|X|,1\})$ 。

$$\Re \colon E(\min\{|X|,1\}) = \int_{-\infty}^{+\infty} \min\{|x|,1\} \frac{1}{\pi(1+x^2)} dx = \frac{2}{\pi} \int_{0}^{+\infty} \min\{x,1\} \frac{1}{1+x^2} dx = \frac{2}{\pi} \int_{0}^{1} x \frac{1}{1+x^2} dx + \frac{2}{\pi} \int_{1}^{+\infty} 1 \cdot \frac{1}{1+x^2} dx = \frac{1}{\pi} \ln(1+x^2)|_{0}^{1} + \frac{2}{\pi} \arctan x|_{1}^{+\infty} = \frac{1}{\pi} \ln 2 + \frac{1}{2} \circ$$

1.2 方差

1.2.1 方差关系

例题: 相互独立的随机变量 X_1,X_2,\cdots,X_n 具有相同的方差 $\sigma^2>0$,设 $\overline{X}=\frac{1}{n}\sum_{i=1}^n X_i$,求 $D(X_1-\overline{X})$ 。

解: 由题已知
$$DX_i = \sigma_2$$
。

$$D(X_1 - \overline{X}) = D\left(X_1 - \frac{1}{n}\sum_{i=1}^n X_i\right) = D\left(\frac{n-1}{n}X_1 - \frac{1}{n}\sum_{i=2}^n X_i\right) = \left(\frac{n-1}{n}\right)^2$$

$$DX_1 + \frac{1}{n^2}\sum_{i=2}^n DX_i = \frac{n^2 - 2n + 1}{n^2}\sigma^2 + \frac{n-1}{n^2}\sigma^2 = \frac{n-1}{n}\sigma^2.$$

1.2.2 期望关系

例题: 已知随机变量 X_1 , X_2 相互独立,且都服从正态分布 $N(\mu, \sigma^2)$ ($\sigma > 0$),求 $D(X_1X_2)$ 。

解:
$$X_1$$
, X_2 服从 $N(\mu, \sigma^2)$, 则 $EX_1 = EX_2 = \mu$ 。
$$D(X_1X_2) = E[(X_1X_2)^2] - [E(X_1X_2)]^2 = E(X_1^2X_2^2) - (EX_1EX_2)^2$$
。若 X_1 , X_2 相互独立则 X_1^2 , X_2^2 相互独立,则 $= EX_1^2EX_2^2 - \mu^4$ 。又 $EX_1^2 = EX_2^2 = DX_1 + (EX_1)^2 = DX_2 + (EX_2)^2 = \sigma^2 + \mu^2$ 。
$$(\sigma^2 + \mu^2)^2 - \mu^4 = \sigma^4 + 2\sigma^2\mu^2$$
。

1.3 切比雪夫不等式

$$P\{|X-EX| \leqslant \epsilon\} \leqslant \frac{DX}{\epsilon^2} \ \ \vec{\boxtimes} \ P\{|X-EX| < \epsilon\} \geqslant 1 - \frac{DX}{\epsilon^2}.$$

2 二维随机变量数字特征

2.1 协方差

$$Cov(X,Y) = E(XY) - E(X)E(Y)$$
.

例题: 设随机变量 X_1, X_2, \cdots, X_n 独立同分布,且方差 $\sigma^2 > 0$, $Y_1 = \sum_{i=2}^n X_i$ 和 $Y_2 = \sum_{j=1}^{n-1} X_j$,求 Y_1 和 Y_n 的协方差 $Cov(Y_1, Y_n)$ 。

解:
$$Y_1 = \sum_{i=2}^n X_i$$
, $Y_2 = \sum_{j=1}^{n-1} X_j$, $DX_i = \sigma^2$ 。

3 独立性与相关性

独立范围小于不相关范围。所以我们一般先用数字特征判断相关性再用分布判断独立性。

$$Cov(X,Y) = E(XY) - EXEY$$

$$\begin{cases} \neq 0 \Leftrightarrow XY \text{ 相关} \Rightarrow X = Y \text{ 不独立} \\ = 0 \Leftrightarrow XY \text{ 不相关}, \text{ 分布} \\ XY \text{ 独立} \\ XY \text{ 不独立} \end{cases}$$

3.1 独立性

通过分布来确定独立性。如独立条件是 $f(x,y) = f_X(x)f_Y(y)$, $P\{X = x_i, Y = y_i\} = P\{X = x_i\}P\{Y = y_j\}$ 。

3.2 相关性

通过数字特征来判断相关性。如不相关性条件是 $\rho_{XY}=0$ 、Cov(X,Y)=0、E(XY)=EXEY、 $D(X\pm Y)=DX+DY$ 。

4 切比雪夫不等式

切比雪夫不等式用于估算随机变量在区间的概率,证明收敛性问题。

4.1 区间概率

常用变式 $P\{|Z-EZ| \ge \epsilon\} \le \frac{DZ}{\epsilon^2}$ 或 $P\{|Z-EZ| < \epsilon\} \ge 1 - \frac{DZ}{\epsilon^2}$, Z = f(X)。 **例题**: 已知随机变量 XY, EX = EY = 2、DX = 1、DY = 4, $\rho_{XY} = 0.5$,估计概率 $P\{|X-Y| \ge 6\}$ 。

解:已知 $\rho_{XY}=0.5=\frac{Cov(X,Y)}{\sqrt{DX}\sqrt{DY}}=\frac{Cov(X,Y)}{2}$, Cov(X,Y)=1=E(XY)-EXEY, E(XY)=5。

 $\diamondsuit X-Y=Z, \ EZ=EX-EY=0, \ DZ=DX+DY-2Cov(X,Y)=1+4-2=3.$

取 $\epsilon=6$,由切比雪夫不等式得 $P\{|X-Y|\geqslant 6\}=P\{|Z-0|\geqslant 6\}\leqslant \frac{DZ}{\epsilon^2}=\frac{3}{6^2}=\frac{1}{12}$ 。