Part B

	z	Tc, °	°K	Pc, Mpa	W	yi	
nC6		0,33	507,4	3,012	0,305	0,615	
nC7		0,33	540,3	2,736	0,349	0,264	
nC8		0,34	568,8	2,486	0,396	0,121	
					_	1,000	
		sum	ı xK	0,9999997	7		
		nC6		1,8635616	5		
		nC7		0,7993923	3		
		nC8		0,3565438	3		
		Tem	np °K	363	Solve for su	ım xK = 1 by varying	TK
		P M	ра	0,1	L		

Equations

$$K_{i} = \frac{P_{i}^{sat}}{P} \approx \frac{P_{c,i} 10}{P}$$
Shortcut K-ratio
$$\sum_{i} y_{i} = \sum_{i} K_{i} x_{i} = 1$$

$$\sum_{i} y_i = \sum_{i} K_i x_i = 1$$

T(°C)

90,2

Part B							
	Z	Т	c, °K	Pc, Mpa	W	xi	
nC6		0,33	507,4	3,012	0,305	0,1213732	
nC7		0,33	540,3	2,736	0,349	0,272383	
nC8		0,34	568,8	2,486	0,396	0,6062389	
		S	um y/K	0,9999951	L		
		n	ıC6	2,7188867	7		
		n	iC7	1,2115294	1		
		n	ıC8	0,560835	5		
		Т	emp °K	378	Solve for si	um y/K = 1 by varyii	ng TK
		Р	Мра	0,1	1		

Equations

$$K_{i} = \frac{P_{i}^{sat}}{P} \approx \frac{P_{c,i} 10^{\frac{7}{3}(1+\omega)\left(1-\frac{1}{T_{r,i}}\right)}}{P}$$
 Shortcut K-ratio
$$\sum_{i} x_{i} = \sum_{i} (y_{i}/K_{i}) = 1$$

$$\sum_{i} x_i = \sum_{i} (y_i / K_i) = 1$$

Heat Capacity Const	ants	TI	K Cp in J/mol-	K		nC6
	Α	В	C	;	D	nC7
methanol ig		21,15	7,09E-02	2,59E-05	-2,85E-08	nC8
ethanol ig		9,014	2,14E-01	-8,39E-05	1,37E-09	
methanl Liq		111,7	-0,4264	1,09E-03		
ethanol Liq		281,6	-1,435	2,90E-03		
Heat of Vaporization	on at 760) mmHg				
	TbC	D	Hvap kJ/mcT	b at 50°C		
Methanol		64,7	38,278			
Ethanol		78,5	38,58			

Q Calculation	Q = HL+HV-Hfe	ed	Hfeed=0 L at 50°C and 0.2 Mpa (1520 mmHg)				
	Methanol Et	thanol	Total	Ti (°C)			
HL	378,45926	966,82367	1345,2829		50		
HV with L/F	549,5117	1228,6966	1778,2083	Ti (°K)			
HV with V/F	183,14994 -	111,49939	71,650554		323		
Change Hv	15932,276	12991,951	28924,227				
	To	otal Q =	20348,039 J/molF				
			20,348039 kJ/molF				

If not given DHvap at Initial Temp

Methanol Ethanol Total
re Hv (J/mol) #iNUM! #iNUM!

Change Hv (J/mol) #iNUM! #iNUM! #iNUM! #iNUM! Tr ($^{\circ}$ K)

Z	Т	c, °K	Pc, Mpa	W	xi	yi	
	0,33	507,4	3,012	0,305		0,173	0,416
	0,33	540,3	2,736	0,349		0,318	0,337
	0,34	568,8	2,486	0,396		0,509	0,247
						1,000	1,000
	SI	um D	-2,24E-07				
	nC6		2,41				
	nC7		1,06				
	nC8		0,48		T °C		
	T	emp °K	373			100	
	Р	Мра	0,1				
	V/F		0,646	Solve for su	um D = 0	by varying V/F	

0,354

Equations

L/F

$$\sum_i \frac{z_i (1 - K_i)}{1_i + (V/F)(K_i - 1)} = 0$$

$$\sum_{i} x_{i} - \sum_{i} y_{i} = \sum_{i} D_{i} = \sum_{i} \frac{z_{i}(1 - K_{i})}{1 + (V/F)(K_{i} - 1)}$$

Methanol Ethanol 107,23772 118,05556 $0 = \left(\sum_{i} z_{i} H_{i}^{F} + \Delta H_{mix}^{F}\right) - \left(1 - \frac{V}{F}\right) \left(\sum_{i} x_{i} H_{i}^{L} + \Delta H_{mix}^{L}\right) - \frac{V}{F}\left(\sum_{i} x_{i} H_{i}^{L} + \Delta H_{mix}^{L}\right) - \frac{V}{F}\left(\sum_{i} x_{i} H_{i}^{L} + \sum_{i} H_{i}^{L}\right) + \frac{V}{F}\left(\sum_{i} x_{i} H_{i}^{L}\right) + \frac{V}{F}\left(\sum_{$

Tr > 0,5 For test to be valid

If not given DHvap at Initial Temp

$$\frac{\Delta H^{vap}}{RT_c} \approx 7(1-T_r)^{0.354} + 11\omega(1-T_r)^{0.456}$$

$$\sum_{i} y_{i} H_{i}^{V} + \Delta H_{mix}^{V} + \frac{\dot{Q}}{F}$$

Part a

Antoine Equation

log10(Psat[mmHg])=A-B/(T[oC]+C)

Compound	Α		В	С	Tmin (°C)	Tmax (°C)	T (°K)
n-Octane		4	1355	-63,63			373

K (Antoine) 0,467

FUGACITY PREOS

F= 1 at T (°K) 373 Psat (Mpa) 0,0470

K (Preos) 0,470

Using Fugacity Ratio

T (°K) 373 P (Mpa) 0,1

f (L) 0,0460 f (V) 0,0946

K (Ratio) 0,487

Short-cut Method

 w
 0,396

 T(°K)
 373
 Tc (°K)
 569

 P (Mpa)
 0,1
 Pc (Mpa)
 2,49

K (Short-cut) 0,485

De Priester

K 0,0765

*	1
50	-
60	1
70) -
80	1
100	,]
150	,
200	,
300	
400	
500	-
600	-
700	

10-dend	ALLIANTE AND
Sundania .	The state of the s
	The state of the s
marine Land	
Methane Land	Ethana Propylene Lung

Bobulane angle 8

Soperiane in the state of the s

n-Hexane

Psat (Bar)

Psat (MPa)

0,466800416

0,046680042

General K equation

K= Psat /P

General K equation

K= Psat /P

General K equation

K = f(L)/f(V)

General K equation

$$K_{i} = \frac{P_{i}^{sat}}{P} \approx \frac{P_{c, i} 10}{P} \frac{\frac{7}{3}(1+\omega)\left(1 - \frac{1}{T_{r, i}}\right)}{P}$$

Shortcut K-ratio

