Machine Learning for Graphs and Sequential Data

Sequential Data - Neural Network Approaches

lecturer: Prof. Dr. Stephan Günnemann

www.daml.in.tum.de

Summer Term 2023

Roadmap

- Chapter: Temporal Data / Sequential Data
 - 1. Autoregressive Models
 - Markov Chains
 - 3. Hidden Markov Models
 - 4. Neural Network Approaches
 - a) Word Vectors
 - b) RNNs
 - c) Non-Recurrent Models (ConvNets, Transformer)
 - 5. Temporal Point Processes

- Text is everywhere
- Applying machine learning to textual data to solve machine translation, question answering, sentiment analysis etc.
- Example:

It's a brilliant, honest performance by Nicholson, but the film is an agonizing bore except when the fantastic Kathy Bates turns up.

- Goal: given text predict whether it is positive or negative
- Problem: how to represent words to input them into a subsequent model
- One solution: one-hot encoding
 - High dimensional
 - Too sparse
 - Assumes the words are independent of each other

- Words as vectors while keeping the underlying language properties
- E.g. similar words should have vectors near each other
- Distributional hypothesis words that appear in similar contexts have similar meanings

You shall know a word by the company it keeps.

J. R. Firth

- Example: hotel and motel
 - Can be used interchangeably in many sentences while remaining meaningful
- However: *duck* an animal vs. *duck* to lower head quickly

Illustration of how vectors can represent linguistic concepts
Figure from https://www.tensorflow.org/tutorials/representation/word2vec

Co-occurence Matrix

- To be aware of context we can simply count how many times each word appeared beside other words
- If the text is given with words $\{x_1, ..., x_N\}$, then a window of size l around a word x_i is $\{x_{i-l}, ..., x_{i-1}, x_{i+1}, ..., x_{i+l}\}$
- We slide this window over sentences and count the co-occurences
- Example:

I like dogs. I like cats too. They hate each other.

- For the first sentence the windows (l = 1) are:
 - (Ø, like) (I, dogs) (like, .) (dogs, Ø)

Co-occurence Matrix

• After counting all the pairs we get a co-occurence matrix M:

			Ι	cats	dogs	each	hate	like	other	they	too
		0	0	0	1	0	0	0	1	0	1
	Ι	0	0	0	0	0	0	2	0	0	0
Ca	ats	0	0	0	0	0	0	1	0	0	1
dc	ogs	1	0	0	0	0	0	1	0	0	0
ea	ch	0	0	0	0	0	1	0	1	0	0
ha	ate	0	0	0	0	1	0	0	0	1	0
li	ike	0	2	1	1	0	0	0	0	0	0
oth	ıer	1	0	0	0	1	0	0	0	0	0
$^{ m th}$	ey	0	0	0	0	0	1	0	0	0	0
t	00	1	0	1	0	0	0	0	0	0	0

Pros: similar words have similar vectors

Cons: still high dimensional and sparse

Solution: reduce the dimension to get dense vector of fixed dimension

SVD

- We can reduce the dimension with an SVD decomposition: $M = U\Sigma V^T$
- If we take the first D columns of U we get D-dimensional word vectors
- Applied to the previous example (D = 2):

Problems: slow computation and hard to add new words

Word2Vec

- A different way to get word vectors is with a neural network
- Task: prediction of words based on context
- Two approaches:
 - Continuous bag-of-words (CBOW)
 - Predicts a word from the words surrounding it (window)
 - Not good for rare words because the model might not predict them from context
 - Skip-gram [1]
 - Predicts the surrounding context from the current word
 - Given a rare word it must understand it to predict the context
 - Slower to train but can work well with smaller amounts of data and with rare words

Skip-gram

- Input: one-hot vector with dimension N
- Embedding: project the word to D-dimensional space with $\boldsymbol{U} \in \mathbb{R}^{N \times D}$
 - Since input has zeros everywhere except on ith position, multiplication is equivalent to taking ith row of U
- Prediction: get probabilities of context words by multiplying embedding with $\mathbf{V} \in \mathbb{R}^{D \times N}$ and applying softmax $\{x_{i-2}, x_{i-1}, x_{i+1}, x_{i+2}\}$

 $\mathbf{x}_i^T \mathbf{v}_i^T \mathbf$

Skip-gram

Formally: if $S = [x_{i-l}, ..., x_{i-1}, x_{i+1}, ..., x_{i+l}]$ is a window of size l around the word x_i , and $\theta = (U, V)$ denotes model parameters, the objective is

$$\max_{\boldsymbol{\theta}} \mathbb{E}[P(S|x_i, \boldsymbol{\theta})] = \min_{\boldsymbol{\theta}} (-\mathbb{E}[P(S|x_i, \boldsymbol{\theta})])$$
where $P(S|x_i, \boldsymbol{\theta}) = \prod_{x_k \in S} P(x_k|x_i, \boldsymbol{\theta})$
and $P(x_k|x_i, \boldsymbol{\theta}) = \operatorname{softmax}(\boldsymbol{u_i}\boldsymbol{V})_k$

- lacktriangle The vector $oldsymbol{u}_i$ is the corresponding embedding
- We can choose to set U = V, giving less parameters to optimize but also less expressiveness

Training

Each forward pass computes normalized probabilities over the entire vocabulary

$$P(x_k|x_i, \boldsymbol{\theta}) = \operatorname{softmax}(\boldsymbol{u_i}\boldsymbol{V})_k = \exp(\boldsymbol{u}_i\boldsymbol{v}_k^T) / \sum_{l=1}^N \exp(\boldsymbol{u}_i\boldsymbol{v}_l^T)$$

- Inefficient for large vocabularies
- Alternative: Negative Sampling [3]:
 - In each iteration, sample word p in the context of word i and word(s) n not in this context
 - Binary classification problem: Distinguish positive pair (i,p) from the negative pair(s) (i,n)

$$L = \log(P(x_p|x_i, \boldsymbol{\theta})) + \log(1 - P(x_n|x_i, \boldsymbol{\theta}))$$

$$P(x_k|x_i, \boldsymbol{\theta}) = \operatorname{sigmoid}(\boldsymbol{u}_i \boldsymbol{v}_k^T)$$

References

- [1] Mikolov, Tomas et al. (2013). "Efficient estimation of word representations in vector space". In: arXiv preprint arXiv:1301.3781.
- [2] Morin, Frederic and Yoshua Bengio (2005). "Hierarchical probabilistic neural network language model." In: Aistats. Vol. 5. Citeseer, pp. 246–252.
- [3] Mikolov, Tomas et al. (2013). "Distributed Representations of Words and Phrases and their Compositionality". In: Advances in Neural Information Processing Systems.

Roadmap

- Chapter: Temporal Data / Sequential Data
 - 1. Autoregressive Models
 - 2. Markov Chains
 - 3. Hidden Markov Models
 - 4. Neural Network Approaches
 - a) Word Vectors
 - b) RNNs
 - c) Non-Recurrent Models (ConvNets, Transformer)
 - 5. Temporal Point Processes

- In word embeddings, we learn a representation for every <u>individual word</u>
- How to process an <u>entire sequence</u> with neural networks?
 - In particular if the sequences have varying length?
- We can use Recurrent Neural Networks (RNNs)

RNN Tasks

Different problems can be solved using RNNs:

One to Many:

- Image Captioning

Many to One:

- Sentiment Analysis
- Text Classification

Many to Many

- Machine Translation
- Video Captioning
- Part of Speech Tagging

Definition

- Given a sequence of inputs $\{x^{(1)},...,x^{(N)}\}$ and outputs $\{y^{(1)},...,y^{(N)}\}$ we want to know the probability $P(y^{(t)}|x^{(1)},...,x^{(t)})$
- Represent a sequence $\{x^{(1)}, ..., x^{(t-1)}\}$ with a hidden state $h^{(t-1)}$
- Neural network takes $m{h}^{(t-1)}$ and current input and maps them to a new hidden state $m{h}^{(t)}$ from which we can predict the output at step t
 - Also use $h^{(t)}$ in the next step
- The update equations are

$$\mathbf{z}^{(t)} = \mathbf{W} \mathbf{h}^{(t-1)} + \mathbf{U} \mathbf{x}^{(t)} + \mathbf{b}$$

$$\mathbf{h}^{(t)} = \tanh(\mathbf{z}^{(t)})$$

$$\mathbf{o}^{(t)} = \mathbf{V} \mathbf{h}^{(t)}$$

$$\hat{\mathbf{y}}^{(t)} = \operatorname{softmax}(\mathbf{o}^{(t)})$$

The weights are shared over all time steps

Objective

The negative log-likelihood is

$$L = -\log \prod_{t} p_{\text{model}}(\mathbf{y}^{(t)}|\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(t)})$$

$$= -\sum_{t} \log p_{\text{model}}(\mathbf{y}^{(t)}|\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(t)}) = -\sum_{t} L^{(t)}$$

- Network fully differentiable train with a gradient based method
- Unrolling of the RNN graph

Backpropagation through time

■ All functions used in the update equations are differentiable (linear, tanh, softmax) → We can compute the derivative w.r.t the parameters:

$$\frac{\partial L}{\partial \mathbf{V}} = \sum_{t} (\hat{\mathbf{y}}^{(t)} - \mathbf{y}^{(t)}) (\mathbf{h}^{(t)})^{T} \qquad \mathbf{z}^{(t)} = \mathbf{W} \mathbf{h}^{(t-1)} + \mathbf{U} \mathbf{x}^{(t)} + \mathbf{b}$$

$$\frac{\partial L}{\partial \mathbf{W}} = \sum_{t} \operatorname{diag} (1 - (\mathbf{h}^{(t)})^{2}) \frac{\partial L}{\partial \mathbf{h}^{(t)}} (\mathbf{h}^{(t-1)})^{T} \qquad \mathbf{h}^{(t)} = \tanh(\mathbf{z}^{(t)})$$

$$\frac{\partial L}{\partial \mathbf{U}} = \sum_{t} \operatorname{diag} (1 - (\mathbf{h}^{(t)})^{2}) \frac{\partial L}{\partial \mathbf{h}^{(t)}} (\mathbf{x}^{(t)})^{T}$$

$$\mathbf{z}^{(t)} = \mathbf{W} \mathbf{h}^{(t-1)} + \mathbf{U} \mathbf{x}^{(t)} + \mathbf{b}$$

$$\mathbf{h}^{(t)} = \tanh(\mathbf{z}^{(t)})$$

$$\mathbf{o}^{(t)} = \mathbf{V} \mathbf{h}^{(t)}$$

$$\hat{\mathbf{y}}^{(t)} = \operatorname{softmax}(\mathbf{o}^{(t)}) \text{ or } \mathbf{o}^{(t)}$$

 Since parameters are shared over the steps, final derivative are a sum of all the contributions at every step t.

Backpropagation through time

The hidden state $h^{(t)}$ recursively depends on all previous hidden states $h^{(t-1)}$,..., $h^{(0)}$ i.e.

$$\mathbf{h}^{(t)} = \tanh(\mathbf{W}\mathbf{h}^{(t-1)} + \mathbf{U}\mathbf{x}^{(t)} + \mathbf{b})$$

■ The gradient $\frac{\partial L}{\partial \boldsymbol{h}^{(t)}}$ depends on future times

$$\frac{\partial L}{\partial \boldsymbol{h}^{(t)}} = \boldsymbol{V}^T (\widehat{\boldsymbol{y}}^{(t)} - \boldsymbol{y}^{(t)}) + \boldsymbol{W}^T \operatorname{diag} \left(1 - \left(\boldsymbol{h}^{(t+1)} \right)^2 \right) \frac{\partial L}{\partial \boldsymbol{h}^{(t+1)}}$$

■ The impact of future times might **vanish** or **explode** (e.g. 1-D example: W > 1 or $W < 1) \rightarrow$ RNN cannot retain information for many steps.

$$\frac{\partial L}{\partial h^{(t)}} = \sum_{s=t}^{N} \frac{\partial L}{\partial h^{(s)}} \frac{\partial h^{(s)}}{\partial h^{(t)}} = \sum_{s=t}^{N} \frac{\partial L}{\partial h^{(s)}} \prod_{t+1 \le k \le s} \frac{\partial h^{(k)}}{\partial h^{(k-1)}} = \sum_{s=t}^{N} \frac{\partial L}{\partial h^{(s)}} \prod_{t \le k \le s} W \left(1 - \left(h^{(k)}\right)^{2}\right)$$

GRU

- Solution: change the RNN architecture so it can keep information longer
- Main idea: not every input should be fully taken into account when updating the hidden state – update partially with a gating mechanism
- Gated Recurrent Unit (GRU) [2]

$$\begin{split} & \boldsymbol{z}^{(t)} = \sigma \big(\boldsymbol{W}_{\boldsymbol{z}} \big[\boldsymbol{h}^{(t-1)}, \boldsymbol{x}^{(t)} \big] \big) \\ & \boldsymbol{r}^{(t)} = \sigma \big(\boldsymbol{W}_{\boldsymbol{r}} \big[\boldsymbol{h}^{(t-1)}, \boldsymbol{x}^{(t)} \big] \big) \\ & \widetilde{\boldsymbol{h}}^{(t)} = \tanh \left(\boldsymbol{W} \left[\boldsymbol{r}^{(t)} \odot \boldsymbol{h}^{(t-1)}, \boldsymbol{x}^{(t)} \right] \right) \\ & \boldsymbol{h}^{(t)} = \underbrace{ (1 - \boldsymbol{z}^{(t)}) \odot \boldsymbol{h}^{(t-1)} + \boldsymbol{z}^{(t)} \odot \widetilde{\boldsymbol{h}}^{(t)} } \end{split}$$

Simple RNN update – gives candidate state

How much to take from previous state vs. candidate state

LSTM

- More powerful architecture: Long Short-Term Memory (LSTM) [3]
- Introduces a cell state $c^{(t)}$ in addition to $h^{(t)}$ we have two states

Forget gate

$$\boldsymbol{i}^{(t)} = \sigma\left(\boldsymbol{W}_{i}\left[\boldsymbol{h}^{(t-1)}, \boldsymbol{x}^{(t)}\right]\right) \quad \text{Input gate}$$

$$\boldsymbol{o}^{(t)} = \sigma\left(\boldsymbol{W}_{o}\left[\boldsymbol{h}^{(t-1)}, \boldsymbol{x}^{(t)}\right]\right) \quad \text{Output gate}$$

$$\boldsymbol{c}^{(t)} = \boldsymbol{f}^{(t)} \odot \boldsymbol{c}^{(t-1)} + \boldsymbol{i}^{(t)} \odot \tanh\left(\boldsymbol{W}\left[\boldsymbol{h}^{(t-1)}, \boldsymbol{x}^{(t)}\right]\right)$$

$$\boldsymbol{h}^{(t)} = \boldsymbol{o}^{(t)} \odot \tanh(\boldsymbol{c}^{(t)})$$

 $\mathbf{f}^{(t)} = \sigma\left(\mathbf{W}_f \left| \mathbf{h}^{(t-1)}, \mathbf{x}^{(t)} \right| \right)$

Simple RNN update

– LSTM treats it as
an input

Update hidden state (now the output) using a cell state

Summary

- LSTM and GRU are two examples of improvements to the basic RNN
- Gating enables skipping some inputs to capture long-term dependencies
 - Actually, since it uses an element-wise product, it can remember or forget per individual dimension of a hidden state
 - Avoids gradient problems that RNN has
- It is fully differentiable so we can derive gradients for all the parameters as in the RNN and train it with, e.g., gradient descent
- Many variations on LSTM architecture
 - E.g. *peephole LSTM* replaces $m{h}^{(t)}$ with $m{c}^{(t)}$ in all the equations

References

- [1] Cho, Kyunghyun et al. (2014). "Learning phrase representations using RNN encoder-decoder for statistical machine translation". In: arXiv preprint arXiv:1406.1078.
- [2] Pascanu, Razvan, Tomas Mikolov, and Yoshua Bengio (2013). "On the difficulty of training recurrent neural networks". In: International conference on machine learning, pp. 1310–1318.
- [3] Hochreiter, Sepp and Jürgen Schmidhuber (1997). "Long short-term memory". In: Neural computation 9.8, pp. 1735–1780.
- [4] Peters, Matthew E., Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettlemoyer. "Deep contextualized word representations." arXiv preprint arXiv:1802.05365 (2018).