→ TALLER NRO. 2, PANDAS + MATPLOTLIB

▼ Integrantes

- Luis Febres
- Luis Jaramillo
- Renato Balcázar

```
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
from datetime import datetime
custom date parser = lambda x: datetime.strptime(x, "%Y%m%d")
# Importar ambas tablas de datos en python usando pandas. Poner la columna del índice en "MESS DATUM" y analizar los valo
garmisch = pd.read csv(
    'data/garmisch.txt',
    sep=';',
    index col=['MESS DATUM'],
    parse dates=['MESS DATUM'],
    date_parser=custom_date_parser)
zugspitze = pd.read csv(
    'data/zugspitze.txt',
    sep=';',
    index_col=['MESS_DATUM'],
    parse_dates=['MESS_DATUM'],
    date parser=custom date parser)
garmisch
```

₽		STATIONS_ID	QN_3	FX	FM	QN_4	RSK	RSKF	SDK	SHK_	TAG	NM	VPM	PM	TMK	UPM	TXK	TNK	TGK
	MESS_DATUM																		

MESS_DATUM																	
2017-10-10	1550	10	5.6	1.0	3	0.0	6	2.300	0	7.5	9.4	937.40	9.3	82.50	15.7	4.6	3.0
2017-10-11	1550	10	-999.0	-999.0	3	0.0	0	9.533	0	2.6	9.1	938.41	9.2	81.04	18.5	2.9	1.4
2017-10-12	1550	10	-999.0	-999.0	3	0.0	0	9.483	0	1.9	9.0	941.30	10.6	75.92	22.2	3.1	1.1
2017-10-13	1550	10	-999.0	-999.0	3	0.0	0	9.483	0	3.8	10.3	944.63	10.7	82.04	19.5	4.8	2.9
2017-10-14	1550	10	-999.0	-999.0	3	0.0	0	9.617	0	0.3	9.9	944.99	11.2	78.67	21.4	3.9	1.9
2019-04-08	1550	1	4.4	0.9	1	4.1	6	0.000	0	7.8	9.1	926.83	6.9	91.04	8.9	5.5	4.8
2019-04-09	1550	1	7.6	1.5	1	21.7	6	1.767	0	7.8	9.2	925.75	8.4	84.38	13.8	4.6	3.5
2019-04-10	1550	1	6.2	1.3	1	1.5	6	0.000	0	7.8	9.5	925.77	7.6	91.13	9.7	6.0	5.9
2019-04-11	1550	1	7.4	1.8	1	0.0	6	0.000	0	7.9	8.6	930.73	5.7	93.21	7.1	4.5	3.9
2019-04-12	1550	1	5.8	1.6	1	0.0	6	0.000	0	8.0	6.8	933.15	4.4	80.63	6.2	3.0	2.9

550 rows × 18 columns

Recorta las tablas a el año 2018 [1P]
garmisch = garmisch.loc['2018']
zugspitze = zugspitze.loc['2018']

Volver a muestrear los datos de temperatura a promedios mensuales (" TMK") y los datos de precipitaciones a sumas mensua
garmisch_agg = garmisch.loc[:, [' TMK', ' RSK']].resample('1m').agg({' TMK': 'mean', ' RSK': 'sum'})
garmisch_agg

TMK RSK

MESS_DATUM		
2018-01-31	0.806452	220.4
2018-02-28	-3.353571	55.2
2018-03-31	2.132258	50.4
2018-04-30	12.393333	34.0
2018-05-31	14.138710	114.8
2018-06-30	16.263333	152.4
2018-07-31	18.038710	99.0
2018-08-31	18.738710	199.9
2018-09-30	14.163333	118.9
2018-10-31	9.803226	65.7
2018-11-30	3.486667	11.3
2018-12-31	0.332258	166.5

```
zugspitze_agg = zugspitze.loc[:, [' TMK', ' RSK']].resample('1m').agg({' TMK': 'mean', ' RSK': 'sum'})
zugspitze_agg
```

TMK **RSK MESS DATUM** 2018-01-31 -8.732258 295.6 2018-02-28 -14.764286 86.0 -9.822581 148.4 2018-03-31 2018-04-30 -1.906667 34.1 0.358065 149.8 2018-05-31 2018-06-30 2.076667 142.5 # Define una función de trazado que dibuja un simple diagrama climático # Agrega los argumentos como se menciona en la lista de documentos abajo [1P] # Establece el rango de temperatura por defecto de -15°C a 20°C y el rango de precipitaciones de 0mm a 370mm [1P] def crear diagrama climatico(df, temp col, prec_col, title, filename, temp min=-15, temp max=20, prec_min=0, prec max=370): Dibuja un diagrama climático. Parametros

df : pd.DataFrame

Dataframe de datos con valores para graficar
temp col : str

```
comp out a ser
    Nombre de la columna de temperatura
prec col : str
    Nombre de la columna de precipitación
title : String
    El título para la figura
filename : String
    El nombre de la figura de salida
temp min : Number
    El valor mínimo de temperatura a mostrar
temp max : Number
    El valor máximo de temperatura a mostrar
prec min : Number
    El valor mínimo de precipitación a mostrar
prec max : Number
    El valor máximo de precipitación a mostrar
Returns
_ _ _ _ _ _
La figura
0.00
fig = plt.figure(figsize=(10,8))
plt.rcParams['font.size'] = 16
ax2 = fig.add subplot(111)
ax1 = ax2.twinx()
# Dibuja los valores de temperatura como una línea roja y los valores de precipitación como barras azules: [1P]
# Pista: Revisa la documentación de matplotlib cómo trazar gráficos de barras (plt.bar?). Intenta establecer directama
# etiquetas del eje X (nombres cortos de los meses)
ax2.bar(df.index.strftime("%b"), df.loc[:,prec col].values, color="blue")
ax1.plot(df.index.strftime("%b"), df.loc[:,temp col].values, c="red")
# Establezca los límites apropiados para cada eje Y usando los argumentos de la función: [1P]
```

```
ax2.set ylim([prec min, prec max])
    ax1.set ylim([temp min, temp max])
    # Ponga las etiquetas apropiadas a cada eje Y: [1P]
    ax2.set ylabel("Precipitación")
    ax1.set ylabel("Temperatura")
   # Dale a tu diagrama el título de los argumentos proporcionados: [1P]
    plt.title(title)
   # Guarda la figura como imagen png en la carpeta "output" con el nombre de archivo dado. [1P]
   #...
    final filneame = ("output/%s.png" %(filename))
    plt.savefig(final filneame)
    return fig
# Utilice esta función para dibujar un diagrama climático para 2018 para ambas estaciones y guarde el resultado: [1P]
crear diagrama climatico(df=garmisch agg,
        temp col=' TMK',
        prec col=' RSK',
        title='Garmishc',
        filename='garmisch figure',
        temp min=-15,
        temp_max=20,
        prec min=0,
        prec max=370);
```


prec_max=370);

