Title: "Variation of Pollution Level by Stream Orders" Author: "Harry Huang*, Alex Busato, Mesa Ashton" Date: "April 22, 2019" output: html_document: df_print: paged toc: yes toc_depth: '3' pdf_document: toc: yes toc_depth: 3 editor options: chunk output type: console —

Overview

The question is: How do pollution levels change from low order streams to high order streams?

The **hypothesis** is: Lower order streams (headwaters) will tend to have less pollution than high order streams (large rivers).

The **prediction** is: If pollution levels are directly related to stream order then in low order streams we would expect to find a lower average biotic index whereas higher order streams will have a higher average biotic index.

Data Management

In order to streamline the analysis, the data must be loaded and subsetted for our purposes. The master-sheet was augmented with an average biotic index column (which calculated the average polution tolerance for each location based on values given in the biotix index information sheet) in excel prior to being converted to a CSV file. The names under the "Location" column were made consistent, with the same areas made to be spelled and capatilized the same way so the R program would be able to identify them. "Hufnagle Park" was also corrected to "Bull Run".

```
# this is a code chunk

# remove old variables from your current environment
rm(list = ls())

# check working directory and set
getwd()
```

```
## [1] "C:/Users/Harry Huang/Desktop/BIOL208_Rlab"
```

 $\label{thm:linear_continuous_co$

```
## [1] "C:/Users/Harry Huang/Desktop/BIOL208 Rlab"
```

```
# this is a code chunk

# read in the csv file using read.csv. Note that the filename
# is a character variable and must have quotes!
StreamData <- read.csv("StreamEcology.csv")
StreamData #if loaded properly, typing this should show me the data</pre>
```

#	Date.retrieved.from.water	Group	Leaf.Pack.Number	Location
# 1	4.8.19	NA	397	before natural area
# 2	4/8/2019	NA	113	before natural area
# 3	4/3/2019	NA	224	Buffalo Creek
# 4	4/3/2019	NA	279	Buffalo Creek
# 5	4/3/2019	NA	136	Buffalo Creek
# 6	4/3/2019	NA	309	Buffalo Creek
# 7	4/3/2019	NA	327	Buffalo Creek
# 8		NA	264	Golf Course
# 9	4/3/2019	9	277	Golf Course
# 10	4/3/2019	NA	282	Golf course
# 11	4/4/2019	NA	319	Golf Course
# 12	4/3/2019	NA	391	Golf course
# 13	4/3/2019	NA	392	Golf Course
# 14	4/3/2019	NA	314	Golf Course
# 14 # 15		NA NA	141	Golf Course
	4/3/2019			
# 16 # 17	4/3/2019	NA	199	Bull Run Bull Run
# 17 # 10	4/3/2019	NA	318	
# 18	4/3/2019	NA	256	Bull Run
# 19	4/3/2019	NA	21	Laurel Run
# 20	4/8/2019	20	142	Laurel Run
# 21	4/3/2019	NA	270	Laurel Run
# 22	4/3/2019	NA	226	Laurel Run
# 23	4/3/2019	NA	12	Laurel Run
# 24	4/3/2019	NA	NA	Laurel Run
# 25	4/3/2019	NA	313	Laurel Run
# 26	4/8/2019	NA	118	Miller Run
# 27	4/8/2019	NA	268	Miller Run
# 28	4/8/2019	NA	322	Miller Run
# 29	4/8/2019	NA	227	Miller Run
# 30	4/8/2019	NA	68	Miller Run
# 31	4/8/2019	NA	316	Miller Run
# 32	4/8/2019	NA	147	Miller Run
# 33	4/3/2019	13	162	Miller Run
# 34	4/8/2019	7	166	Miller Run
# 35	4/8/2019	NA	109	Miller Run
# 36	4/8/2019	NA	335	NA Pond
# 37	4/8/2019	NA	394	NA Pond
# 38	4/8/2019	NA	196	NA Pond
# 39		NA	153	NA Pond
# 40	4/8/2019	NA	393	NA Pond
# 41	4/8/2019	NA	112	NA Pond
# 42	4/3/2019	11	792	Spring Run
# 43	4/3/2019	NA	340	Spring Run
# 44	4/3/2019	NA	180	Spring Run
# 45	3-Apr	NA	226	Spring Run
# 46	4/3/2019	NA	312	Spring Run
# 47	4/3/2019	NA	390	Spring Run
# 48	4/3/2019	NA	262	Spring Run
# 49	4/8/2019	NA	32	Stony Run
# 50	4/8/2019	NA	271	Stony Run
# 51	4/7/2019	NA	113	Stony Run
# 52	8-Apr	NA	152	Stony Run
# 53	4/8/2019	NΔ	159	Stony Run

22/2019						ecology_R_la		
##			4/8/201			121		ony Run
								ony Run
##			4/8/201			138		ony Run
##			4/8/201			166	Sto	ony Run
##			4/0/200	NA NA		NA 25.4		#NAME?
##			4/8/201			254		
##			4/8/201			345		
##			4/8/201			306		
##			4/8/201			117		
##	62		4/8/201	L9 NA	1	146		
##		Pond.Creek						
##	1	Bridge						
##		Bridge						
##	3	Creek						
##	4	Creek						
##	5	Creek						
##		Creek						
##		Creek						
##		Pond						
##		Pond						
##		pond						
##		Pond						
##		pond						
##		Pond						
##		Pond						
##		Pond						
##		Creek						
##		creek						
##		Pond						
##		creek						
##		creek						
##		Creek						
##		creek						
##		creek						
##		creek						
##		creek						
##		Bridge						
##		creek						
##		Creek						
##		Creek						
##		Creek						
##		creek						
##		Creek						
##		Creek						
##		creek						
##		Creek						
##		Pond						
##		Pond						
##		Pond						
##		Pond						
##		Pond						
##		Pond						
##		Pond						
##		Pond						
##		Pond						
e·///C·/LI	sere	Harry Huang/Des	kton/BIOL208 RIa	h/Stream ecc	logy R lah html			

			_ 3/
##	45	Pond	
	46		
		pond	
	47	pond	
##	48	Pond	
##	49	Creek	
##	50	Creek	
##	51	creek	
##	52	Creek	
##	53	Creek	
##	54	Creek	
	55	Creek	
	56	Creek	
		Creek	
	57		
##	58	Creek	
##	59	Creek	
		Creek	
	61	creek	
	62	creek	
	02	CICCK	Cita Dassnintian
##	1		Site.Description
##			briddge over creek
##			bridge over creek
##			Country/farm area under road
##			Creek in country under bridge
##			Creek in country under bridge
##	6		Creek in country under bridge
##	7		Creek in Park
##	8		Golf course pond
##	9		Golf course pond
##	10		golf course pond
##	11		Golf Course Pond
##	12		golf course pond with algae
##	13		Pond on golf course
	14		Pond on golf course
	15		Pond on the golf course
	16		Creek in park
			•
	17		Creek in the park
	18		Pond in park
	19		flowing creek surrounded by woods
	20		creek in a park
	21		Creek in park
##	22		creek in park
##	23		creek in park
##	24		creek in park
##	25		creek in park
##	26		Bridge over creak
##	27		bridge over creek
	28		Bridge over creek
	29		Creek
	30		Creek on campus
	31		Natatorium
	32		On campus near parking lot
	33		Under bridge/Country
	34		bridge over creek
	35	/5	Creek on campus

/22/2019			Stream_ecology_R_lab.html
## 30			Pond in natural area
## 3			Pond in Nature Area
## 38			Pond in Nature Area
## 39			Pond in Nature Area
## 40			Pond in Nature Area
## 4:			Pond in Nature Area
## 43	2		Human impacted pond
## 43	3		Human impacted pond
## 44	4		Human impacted pond
## 4!	5		Human impacted pond
## 40	6		Human impacted pond
## 4	7		Human impacted pond
## 48	8		Human impacted pond
## 49	9		Cold rocky creek
			•
		th hemlock/de	ciduous forest. Minimal human impact.
## 5:			creek
## 53	2		Creek
## 5	3		Creek
## 54	4		creek in park
## 5!	5		Creek on campus
## 50	6		Wooded area with large creeks
## 5	7		
## 58	8		Bridge over creek
## 59	9		bridge over creek
## 60	0		Bridge over creek
## 6:	1		bridge over creek
## 6			brige over creek
##	- Initial.leaf.mass fina	l leaf mass	Who.sorted.
## 1	10g	7.6 g	Belinda Wan
## 2	_	_	Katie McCartney
## 3	10g	8.7 g	Kameron Winters
	10g	7.9g	
## 4	10g	11.3g	Stefan Toomey, Christian Yanes
## 5	10g	6.8g	Jenny Waters and Heather Wetreich
## 6	10g	8.7	Emily Van Beek
## 7	10g	8.1g	Alex Dessoye
## 8	10g	6.7g	Clara Mankowski, Abby Fisher
## 9	10g	6.9g	Casey Morrow
## 10	0 10g	11.6	Sarah Knox
## 1:	1 10g	6.5g	Joshua Mejia
## 1	2 10g	21.5 g	Elyse Nissley
## 13	3 10g	5.4g	Alyssa Peeples
## 14	4 10g	5.9g	Shannon Love
## 1	5 10g	8.1g	10 - Defne Sement , Gryff Griffin
## 10	6 10g	6.7g	Hope, Jon
## 1		7.8	Marcela, Chris
## 18		7.6g	Liam and Jimin
## 19		9.1 g	McKayla Charney
## 20	· ·	8.4 g	maddy desisto
## 2:	_	9.5g	Abike Beke
## 2	· ·	6.2g	Justin Falcone
## 2	· ·	9.639g	Paige Caine
## 2	· ·	_	Dillon Duttera
	· ·	1.3g	
## 2	· ·	9.7	Kyle Fouke
ا2 ## ا اعدا ا/:۵///دوا	6 10 σ rs/Harry Huang/Deskton/BIOI 208 F	12 A g Slah/Stream ecolog	Δhigail McMullin ov R Jahhtml

"" -0	-~ b	·· b	_	2018011 LICHWITTH
## 27	10g	11.0g		Harry Huang
## 28	10g	5g		Mesa Ashton
## 29	10 g	6.52		Ashley Blair
## 30	10g	9.8		Serissa Baxter
## 31	10g	7.3g		payton capes
## 32	10 g	8.0 g		Shawna Vice
## 33	10g	7.22g		Robert, Palma
## 34	10 g	7.4 g		Anna C.
## 35	10g	6.5		Chiara Evans
## 36	10g	7.8g		Bryanna Yost
## 37	10g	6.6 g		Alivia Hunter
## 38	10g	Ö		Rebecca Kelly
## 39	10g	6.7		Isabelle DeZenzo
## 40	10g	6.5		Kara Checke
	_			
## 41	10g	6.7g		Hannah Grillo
## 42	10g	11.2g		Kaitlin Kennedy
## 43	10g	11.7		Megan Maar
## 44	10g	7.3g		Joe Scott
## 45	10g	6.2g		Michael Ling
## 46	10g	8.4g		Liutauras Repsys
## 47	10g	5.9g		Michael Ling
## 48	10g	7.9g		Chase Hoehn
## 49	10g	6.3		Go Ogata
## 50	10g	6.2g		Alex Busato
## 51	10g	2.9g		Lindsey B and Julia B
## 52	10g	6.2		Gabby Kessel
## 53	10g	7.5g		P.J. Strahm
## 54	unmatched	8.8g		Max Malika, Abby Turco
## 55	10g	8.1		Kendyll Hazzard
## 56	10g	7g		Riley McDonnell
## 57				
## 58	10g	9.35		Kelsey Bordash
## 59	10g	21.7	Caroline	Saef and Kristin Smith
## 60	10g	9.2g		Ally Johnson
## 61	10g	6.2g		Sarah Bain
## 62	10g	6.6g		Natalie Slupe
	•			etspinner.caddisflies.
## 1	13	0	0	0
## 2	NA	2	NA	NA
## 3	3	NA	NA 1	NA
## 4	11	NA	1	NA
## 5	8	NA	NA	NA
## 6	0	0	1	0
## 7	1	16	3	NA
## 8	11	NA	NA	NA
## 9	4	NA NA	NA	NA
## 10	NA NA	NA NA	NA 1	NA
## 11	NA 2	NA NA	1	NA
## 12	2	NA NA	NA	NA NA
## 13	1	NA NA	NA	NA NA
## 14	2	NA NA	NA	NA NA
## 15	4	NA	NA	NA
## 16	2	Ø NA	0	0 NA
## 17	N∆ Harry Huang/Deskton/RIOL2	NΔ OR Plah/Stream acal	4	NΔ

1 ""	_ ,	1973	ING	-		10/0
##	18	17	NA	NA		NA
##	19	136	0	28		0
	20	66	23	3		NA
	21	14	3	0		NA
	22	22	1	2		NA
##	23	36	3	NA		NA
##	24	25	1	NA		NA
##	25	57	29	12		NA
##	26	1	NA	NA		NA
	27	6	NA	NA		NA
	28	0	0	2		NA
	29					1
		NA	NA	NA		
	30	0	0	0		8
##	31	NA	NA	NA		1
##	32	1	NA	NA		NA
	33	NA	NA	NA		NA
	34	4	NA	NA		NA
	35	NA	NA	2		NA
##	36	NA	NA	NA		NA
##	37	8	3	21		NA
##	38	1	NA	3		NA
##	39	4	NA	NA		NA
	40	NA	NA	1		NA
	41	NA	NA	NA		NA
	42	4	1	NA NA		NA
	43	2	NA	NA		NA
	44	9	NA	NA		NA
##	45	NA	NA	NA		NA
##	46	8	NA	1		NA
##	47	3	NA	NA		NA
##	48	15	NA	NA		NA
	49	6	1	10		4
	50	21	3	5		1
	51	47	2	11		NA
	52	12	3	4		NA
	53	5	16	12		NA
	54	75	NA	8		1
##	55	1	5	23		1
##	56	8	1	38		2
##	57	NA	NA	NA		NA
##	58	1	NA	NA		NA
	59	4	NA	3		NA
	60	NA	NA	NA		NA
	61	NA	NA NA	NA NA		NA
	62	5	NA	NA		NA
##				X.hellgrammites.		
##	1	0	0	0	1	0
##	2	NA	NA	NA	NA	NA
##	3	NA	2	NA	2	NA
##		NA	2	NA	NA	NA
##		NA	1	NA	NA	NA
##		0	3	0	0	NA
	n	Ø)	V	Ø	IVA
		NIA		NΙΛ	NΙΛ	
##	7	NA NA	NA 2	NA NA	NA NA	NA NΔ

22/2019				i_ecology_R_lab.ntml		
##	9	NA	NA	NA		NA
##		1	1	NA		NA
##		NA	NA	NA		NA
##		NA	NA	NA		NA
##		NA NA	NA			NA
##				NA NA		
##		NA	NA NA	NA NA		NA
##		NA Ø	NA Ø	NA Ø		NA
						NA
##		NA	NA	NA		NA
##		NA	5	NA		NA
##		0	0	0	0	0
##		NA	NA	NA		NA
##		2	6	NA		NA
##	22	NA	23	NA	NA	NA
##		4	7	NA		NA
##		NA	NA	NA		NA
##		NA	NA	NA		NA
##	26	NA	3	NA	NA	NA
##	27	NA	NA	NA	NA	NA
##	28	NA	NA	NA	NA	NA
##	29	NA	NA	NA	NA	NA
##	30	0	0	4	0	0
##	31	NA	NA	NA	NA	NA
##	32	NA	NA	NA	NA	NA
##	33	NA	NA	NA	NA	NA
##	34	NA	2	NA	3	NA
##	35	NA	NA	NA	NA	NA
##	36	NA	NA	NA	NA	NA
##	37	NA	5	NA	NA	NA
##	38	NA	NA	NA	NA	NA
##	39	NA	NA	NA	NA	NA
##	40	NA	5	NA	NA	NA
##	41	NA	NA	NA	NA	NA
##	42	NA	NA	NA	NA	NA
##	43	NA	2	NA	NA	NA
##	44	2	NA	NA	NA	NA
##	45	NA	NA	NA	NA	NA
##	46	NA	NA	NA	NA	NA
##	47	NA	NA	NA	NA	NA
##	48	NA	1	NA	NA	NA
##	49	6	0	0	0	0
##	50	0	1	0	0	NA
##	51	NA	11	NA	NA	NA
##	52	0	3	NA	NA	NA
##	53	NA	NA	NA	NA	NA
##	54	NA	NA	NA	22	NA
##	55	0	5	NA	NA	NA
##	56	NA	NA	NA	NA	NA
##	57	NA	NA	NA	NA	NA
##	58	NA	1	NA	NA	NA
##	59	NA	1	NA	NA	NA
##	60	NA	1	NA	NA	1
##	61	NA	4	NA	NA	NA
##	62	ΝΔ	NΔ	ΝΔ	NΔ	NΔ

		ي د		na na		٠,
	##		X.beetles.	Atherdicidaewatersnipe.flies.	Chironomidaemidges.	
	##	1	1	0	4	
	##	2	NA	NA	NA	
	##	3	NA	NA	1	
	##	4	NA	NA	NA	
	##	5	NA	NA	NA	
	##	6	0	0	3	
	##	7	NA	NA	NA	
	##	8	NA	NA	11	
	##	9	NA	NA	NA	
	##		NA	NA	5	
	##		NA	NA	NA	
	##		NA	NA	2	
	##	13	NA	NA	NA	
	##	14	NA	NA	NA	
	##		NA	NA	NA	
	##	16	0	0	0	
	##		2	NA	NA	
	##	18	NA	NA	8	
	##	19	0	0	0	
	##	20	NA	NA	NA	
	##	21	NA	NA	NA	
	##	22	NA	NA	1	
	##	23	NA	NA	NA	
	##	24	NA	NA	NA	
	##	25	NA	NA	NA	
	##	26	NA	NA	5	
	##	27	NA	NA	NA	
	##	28	1	NA	NA	
	##	29	NA	NA	NA	
	##	30	0	0	0	
	##	31	2	4	NA	
	##	32	NA	NA	4	
	##	33	NA	NA	14	
	##	34	NA	NA	2	
	##	35	NA	NA	NA	
	##		NA	NA	NA	
	##		3	NA	NA	
	##		5	NA	NA	
	##		NA	NA	NA	
	##		15	NA	NA	
	##		NA	NA	NA	
	##		NA	NA	2	
	##		NA	NA	NA	
	##		NA	NA	3	
	##		NA	NA	10	
	##		NA	NA NA	NA 13	
	##		NA NA	NA NA	13	
	##		NA	NA	1	
	##		0	0	NA a	
	##		4 NA	Ø NA	0 NA	
	##		NA NA	NA NA	NA NA	
	## ##		NA NA	NA NA	NA NA	
ا - ا				מוז skton/BIOL208 Rlah/Stream ecology R lah htr		

22/2019			Stream_ecolog	gy_R_iab.numi	
##	54	NA	NA NA		NA
##		NA	NA		NA
##		NA	NA		NA
##		NA	NA		NA
##		NA	NA		NA
##		NA	NA		1
##	60	NA	NA		NA
##	61	NA	NA		NA
##	62	NA	NA		NA
##		${\tt Simuliidaeblack.flies.}$	${\tt Tipulidaecrane.flies.}$	Unknown.type	X.scuds.
##	1	0	0	0	12
##	2	NA	NA	NA	2
##		NA	NA	NA	9
##	4	NA	NA	NA	10
##	5	NA	NA	NA	7
##	6	0	0	0	33
##	7	NA	NA	NA	NA
##	8	NA	NA	NA	1
##	9	NA	NA	NA	8
##	10	NA	NA	1	1
##	11	NA	NA	NA	NA
##	12	NA	NA	NA	NA
##	13	NA	NA	NA	9
##	14	NA	NA	4	NA
##		NA	NA	NA	NA
##		0	0	0	36
##		NA	3	NA	1
##		NA	NA	NA	NA
##		0	0	1	0
##		NA NA	NA NA	NA	NA 1
##		NA NA	NA NA	NA NA	1 NA
##		NA NA	NA NA	NA NA	NA 9
##		NA NA	NA NA	NA NA	NA
##		NA NA	NA NA	NA NA	NA
##		NA	NA NA	NA	NA
##		NA	NA	NA	NA
##		NA	NA	NA	12
##		NA	NA	NA	4
##	30	0	0	6	0
##	31	NA	NA	12	NA
##	32	NA	NA	NA	20
##	33	NA	NA	NA	4
##	34	NA	NA	NA	NA
##	35	NA	NA	NA	17
##	36	NA	NA	NA	NA
##		NA	NA	NA	NA
##		NA	NA	NA	NA
##		NA	NA	NA	NA
##		NA	NA	NA	28
##		NA	NA	NA	12
##		NA	NA	NA	NA
##		NA	NA	NA	NA
##	44	NΔ	NΔ	NΔ	7

NA

2 NA NA NA

			13/53		_ 37		
##	45		1		NA		1
##	46		NA		NA		NA
##			NA		NA		NA
##			NA		NA		NA
##			NA		NA		2
##			0		2		0
##			NA		NA		NA
##			NA		1		NA
##	53		NA		NA		1
##	54		NA		NA		NA
##	55		NA		NA		NA
##	56		NA		NA		NA
##	57		NA		NA		NA
##	58		NA		NA		NA
##			NA		NA		NA
##			NA		NA		4
##	61		NA		NA		NA
##	62		NA		NA		NA
##		<pre>X.aquatic.sowbug.</pre>	X.crayfish.	X.Worms.	X.leeches.	Χ	X.snails.
##	1	8	1	5	1	0	0
##	2	NA	NA	2	2	NA	NA
##	3	16	NA	2	NA	NA	1
##	4	11	NA	NA	1	NA	NA
##	5	9	NA	NA	NA	1	NA
##	6	6	0	0	0	0	3
	7	NA	NA	NA		NA	NA
##		NA	NA	2		NA	NA
##		NA	NA	8		NA	NA
##		NA	NA	3		NA	NA
##		NA	NA NA	NA NA		NA	2
	12	NA 1	NA NA	NA 1		NA	NA NA
##		1	NA	1	NA		NA
##		NA	NA	NA		NA	5
##		NA	NA	2	NA	3	NA
##		0	0	4	0	0	0
##		1	NA	5		NA	NA
##		NA	NA	5		NA	NA
##	19	0	0	3	0	0	0
##	20	NA	NA	NA	NA	NA	1
##	21	NA	NA	1	NA	NA	NA
##	22	NA	1	NA	NA	NA	NA
##	23	NA	NA	NA	NA	NA	NA
##	24	NA	NA	NA	NA	NA	NA
##	25	NA	NA	NA	NA	NA	NA
##	26	6	NA	NA	NA	NA	4
##		3	NA	NA		NA	5
##		NA	NA	3		NA	NA
##		NA	NA	4		NA	6
##		1	0	1	0	0	0
##		NA	NA	NA	NA		4
##		3	NA NA	5		NA	NA
##		NA NA	NA NA	4		NA	NA NA
##							
		13	NA NA	1		NA	NA o
## ///C:/U		2 Harry Huang/Deskton/RIOI/	NA	NA Nacional R		NΔ	8

	_			m_coology_rt_lab	
## 36	12	NA	NA	7 NA	6
## 37	7	NA NA	5	4 6	2
## 38	22	NA	3	15 NA	NA
## 39	NA	NA	NA	3 4	4
## 40	7	NA	NA	1 13	5
## 41	16	NA	3	17 NA	1
## 42	NA	NA	NA	NA NA	NA
## 43	NA	NA	NA	NA NA	NA
## 44	NA	NA	NA	NA NA	1
## 45	NA	NA	NA	NA NA	NA
## 46	NA	NA	NA	NA 7	NA
## 47	5	NA	2	NA NA	NA
## 48	NA	NA	3	NA NA	NA
## 49	1	NA	3	NA NA	NA
## 50	0	0	2	0 0	0
## 51	NA	NA	NA	NA NA	NA
## 52	NA	NA	2	NA NA	NA
## 53	NA	NA	NA	NA NA	NA
## 54	NA	NA	NA	NA NA	NA
## 55	21	NA	NA	NA 3	NA
## 56	NA	NA	NA	NA NA	NA
## 57	NA	NA	NA	NA NA	NA
## 58	NA	NA	NA	2 NA	NA
## 59	2	NA	NA	NA NA	NA
## 60	- NA	NA		NA 1	NA
## 61	14	NA		5 NA	NA
## 62	2	NA NA	NA NA		1
				NA NA	
##	X.1	Leech.Eggs	Biotic.Index	NA NA	1
## ## 1		Leech.Eggs 0	Biotic.Index 5.862222222	NA NA	1
## ## 1 ## 2	X.1	Leech.Eggs 0 NA	Biotic.Index 5.862222222 5.75	NA NA	1
## ## 1 ## 2 ## 3	X.1	Leech.Eggs 0 NA NA	Biotic.Index 5.862222222 5.75 6.772222222	NA NA	1
## 1 ## 2 ## 3 ## 4	X.1	Leech.Eggs Ø NA NA	Biotic.Index 5.862222222 5.75 6.772222222 5.9	NA NA	1
## 1 ## 2 ## 3 ## 4 ## 5	X.1	Leech.Eggs 0 NA NA NA	Biotic.Index 5.862222222 5.75 6.772222222 5.9 6.069230769	NA NA	1
## 1	X.1	Leech.Eggs 0 NA NA NA NA	Biotic.Index 5.862222222 5.75 6.772222222 5.9 6.069230769 6.302040816	NA NA	1
## 1	X.1	Leech.Eggs 0 NA NA NA	Biotic.Index 5.862222222 5.75 6.772222222 5.9 6.069230769	NA NA	1
## 1	X.1	Leech.Eggs 0 NA NA NA NA	Biotic.Index 5.862222222 5.75 6.772222222 5.9 6.069230769 6.302040816	NA NA	1
## 1	X.1	Leech.Eggs Ø NA NA NA NA	Biotic.Index 5.862222222 5.75 6.772222222 5.9 6.069230769 6.302040816 1.4	NA NA	1
## 1	X.1	Leech.Eggs 0 NA NA NA NA NA	Biotic.Index 5.862222222 5.75 6.772222222 5.9 6.069230769 6.302040816 1.4 5.244444444	NA NA	1
## 1	X.1	Leech.Eggs 0 NA NA NA NA NA NA	Biotic.Index 5.862222222 5.75 6.772222222 5.9 6.069230769 6.302040816 1.4 5.244444444	NA NA	1
## 1	X.1	Leech.Eggs Ø NA NA NA NA NA NA	Biotic.Index 5.862222222 5.75 6.772222222 5.9 6.069230769 6.302040816 1.4 5.244444444 6.32 6.416666667	NA NA	1
## 1 1	X.1	Leech.Eggs Ø NA NA NA NA NA NA NA	Biotic.Index 5.862222222 5.75 6.772222222 5.9 6.069230769 6.302040816 1.4 5.244444444 6.32 6.416666667 5.6	NA NA	1
## 1	X.1	Leech.Eggs 0 NA NA NA NA NA NA NA NA NA	Biotic.Index 5.862222222 5.75 6.772222222 5.9 6.069230769 6.302040816 1.4 5.24444444 6.32 6.416666667 5.6 4.8 6.1333333333	NA IVA	-
## 1	X.1	Leech.Eggs Ø NA NA NA NA NA NA NA NA NA	Biotic.Index 5.862222222 5.75 6.772222222 5.9 6.069230769 6.302040816 1.4 5.24444444 6.32 6.416666667 5.6 4.8 6.1333333333	NA INA	-
## 1	X.1	Leech.Eggs Ø NA NA NA NA NA NA NA NA NA	Biotic.Index 5.862222222 5.75 6.772222222 5.9 6.069230769 6.302040816 1.4 5.244444444 6.32 6.416666667 5.6 4.8 6.133333333 5.585714286 6.044444444	NA INA	
## 1	X.1	Leech.Eggs 0 NA NA NA NA NA NA NA NA NA NA	Biotic.Index 5.862222222 5.75 6.772222222 5.9 6.069230769 6.302040816 1.4 5.244444444 6.32 6.416666667 5.6 4.8 6.133333333 5.585714286 6.0444444444	NA INA	
## 1 1	X.1	Leech.Eggs Ø NA NA NA NA NA NA NA NA NA NA	Biotic.Index 5.862222222 5.75 6.772222222 5.9 6.069230769 6.302040816 1.4 5.244444444 6.32 6.416666667 5.6 4.8 6.133333333 5.585714286 6.044444444 6.076190476 5.3	NA INA	-
## 1 1	X.1 Ø	Leech.Eggs Ø NA	Biotic.Index 5.862222222 5.75 6.772222222 5.9 6.069230769 6.302040816 1.4 5.244444444 6.32 6.416666667 5.6 4.8 6.133333333 5.585714286 6.044444444 6.076190476 5.3 5.262857143	NA INA	-
## 1	X.1 0	Leech.Eggs Ø NA NA NA NA NA NA NA NA NA	Biotic.Index 5.862222222 5.75 6.772222222 5.9 6.069230769 6.302040816 1.4 5.244444444 6.32 6.416666667 5.6 4.8 6.133333333 5.585714286 6.044444444 6.076190476 5.3 5.262857143 3.55952381	NA INA	
## 1 1	X.1 Ø	Leech.Eggs Ø NA	Biotic.Index 5.862222222 5.75 6.772222222 5.9 6.069230769 6.302040816 1.4 5.244444444 6.32 6.416666667 5.6 4.8 6.133333333 5.585714286 6.04444444 6.076190476 5.3 5.262857143 3.55952381 2.967741935	NA INA	
## 1 1	X.1 0	Leech. Eggs Ø NA NA NA NA NA NA NA NA NA	Biotic.Index 5.862222222 5.75 6.772222222 5.9 6.069230769 6.302040816 1.4 5.244444444 6.32 6.416666667 5.6 4.8 6.133333333 5.585714286 6.044444444 6.076190476 5.3 5.262857143 3.55952381 2.967741935 4.335714286	NA INA	
## 1	X.1 0	Leech. Eggs Ø NA NA NA NA NA NA NA NA NA	Biotic.Index 5.862222222 5.75 6.772222222 5.9 6.069230769 6.302040816 1.4 5.244444444 6.32 6.416666667 5.6 4.8 6.133333333 5.585714286 6.044444444 6.076190476 5.3 5.262857143 3.55952381 2.967741935 4.335714286 5.156	NA INA	
## ## 1	X.1 0	Leech. Eggs Ø NA NA NA NA NA NA NA NA NA	Biotic.Index 5.862222222 5.75 6.772222222 5.9 6.069230769 6.302040816 1.4 5.244444444 6.32 6.416666667 5.6 4.8 6.133333333 5.585714286 6.04444444 6.076190476 5.3 5.262857143 3.55952381 2.967741935 4.335714286 5.156 4.26440678	NA INA	
## 1	X.1 0	Leech. Eggs Ø NA NA NA NA NA NA NA NA NA	Biotic.Index 5.862222222 5.75 6.772222222 5.9 6.069230769 6.302040816 1.4 5.244444444 6.32 6.416666667 5.6 4.8 6.133333333 5.585714286 6.044444444 6.076190476 5.3 5.262857143 3.55952381 2.967741935 4.335714286 5.156 4.26440678 3.5	NA INA	
## ## 1	X.1 0	Leech. Eggs Ø NA NA NA NA NA NA NA NA NA	Biotic.Index 5.862222222 5.75 6.772222222 5.9 6.069230769 6.302040816 1.4 5.244444444 6.32 6.416666667 5.6 4.8 6.133333333 5.585714286 6.04444444 6.076190476 5.3 5.262857143 3.55952381 2.967741935 4.335714286 5.156 4.26440678	NA INA	

```
7
## 27
                                   NA
                                            6.0375
                                       5.976470588
## 28
                                   NA
                                       6.86666667
## 29
                                   NA
## 30
                                   NA
                                                5.2
## 31
                                   NA
                                       6.166666667
## 32
                                   NA
                                       6.502857143
## 33
                                       6.363636364
                                   NA
## 34
                                   NA
                                              6.576
## 35
                                       6.193103448
                                   NA
                                               7.76
## 36
                                   NA
## 37
                                   NA
                                       5.173770492
                                       7.545454545
## 38
                                   54
## 39
                                   NA
                                               6.56
## 40
                                   NA
                                       6.813333333
## 41
                                   86
                                       7.489795918
## 42
                                       3.914285714
                                   NA
## 43
                                                5.3
                                   NA
## 44
                                       4.881818182
                                   NA
## 45
                                   NA
## 46
                                   NA
                                              5.475
## 47
                                   NA
                                       6.295652174
## 48
                                   NA
                                               4.55
## 49
                                   NA
                                                4.2
## 50 1 Salamander Larva
                                       3.617142857
                                   NA
## 51
                                   NA
                                       3.929577465
## 52
                                   NA
                                              3.896
## 53
                                       2.274285714
                                   NA
## 54
                                       3.635849057
                                   NA
## 55
                                   NA
                                       5.169491525
## 56
                                   NA
                                       2.983673469
## 57
                                           #DIV/0!
                                   NA
## 58
                                   NA
                                               6.65
## 59
                                       4.907692308
                                   NA
## 60
                                   NA
                                       6.228571429
## 61
                                   NA
                                       7.826086957
## 62
                                   NA
                                              5.125
```

```
# load in dplyr
library(dplyr)

##
## Attaching package: 'dplyr'

## The following objects are masked from 'package:stats':
##
## filter, lag

## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
```

what does the data Look Like?
dim(StreamData) #gives the dimensions of the dataset (rows, columns)

[1] 62 34

summary(StreamData)

```
Date.retrieved.from.water
                                                                       Location
##
                                   Group..
                                              Leaf.Pack.Number
                                       : 7
                                                     : 12.0
                                                                Miller Run :10
##
    4/3/2019:27
                                Min.
                                              Min.
##
    4/8/2019:27
                                1st Qu.: 9
                                              1st Qu.:145.0
                                                                Stony Run
                                                                Laurel Run : 7
##
                                Median :11
                                              Median :240.5
##
             : 1
                                Mean
                                        :12
                                              Mean
                                                     :237.2
                                                                Golf Course: 6
    3-Apr
    4.8.19
                                3rd Qu.:13
                                              3rd Qu.:314.5
                                                                NA Pond
##
            : 1
                                                                            : 6
##
    4/4/2019: 1
                                Max.
                                       :20
                                              Max.
                                                     :792.0
                                                                Spring Run: 6
##
    (Other): 2
                                NA's
                                       :57
                                              NA's
                                                     :2
                                                                (Other)
                                                                            :19
                              Site.Description Initial.leaf.mass
##
      Pond.Creek
           :21
                  Human impacted pond: 7
                                                          : 1
##
    Creek
                  creek in park
                                                          : 5
##
    Pond
            :18
                                                10 g
    creek
           :11
                  Pond in Nature Area: 5
##
                                                10g
                                                          :54
##
    pond
           : 4
                  Bridge over creek
                                                10g
                                                          : 1
    Bridge: 3
                  bridge over creek
                                                unmatched: 1
##
                                      : 3
##
    creek: 2
                  Creek
                                      : 3
##
    (Other): 3
                  (Other)
                                      :36
##
    final.leaf.mass
                                                   Who.sorted.
                                                                 X.mayflies.
                                                          : 2
                                                                Min.
##
    6.2g
           : 4
                     Michael Ling
                                                                       :
                                                                          0.0
                                                                1st Qu.:
           : 3
##
    6.7g
                                                          : 1
                                                                           2.0
##
           : 2
                     10 - Defne Sement , Gryff Griffin : 1
                                                                Median :
           : 2
##
    5.9g
                     Abigail McMullin
                                                          : 1
                                                                Mean
                                                                        : 14.6
##
    6.5
           : 2
                     Abike Beke
                                                          : 1
                                                                3rd Qu.: 13.5
                     Alex Busato
                                                                        :136.0
##
    7.3g
           : 2
                                                          : 1
                                                                Max.
##
    (Other):47
                     (Other)
                                                          :55
                                                                NA's
                                                                        :15
##
    X.stoneflies.
                      X.caddisflies.
                                        X.netspinner.caddisflies.
##
    Min.
            : 0.000
                      Min.
                              : 0.000
                                        Min.
                                                :0.000
##
    1st Qu.: 0.500
                      1st Qu.: 1.000
                                        1st Ou.:0.000
    Median : 2.000
                      Median : 3.000
                                        Median :1.000
##
##
    Mean
           : 4.913
                      Mean
                              : 7.107
                                        Mean
                                                :1.583
##
    3rd Ou.: 3.000
                      3rd Ou.:10.250
                                        3rd Ou.:1.250
    Max.
           :29.000
                              :38.000
                                                :8.000
##
                      Max.
                                        Max.
                      NA's
                                        NA's
##
    NA's
            :39
                              :34
                                                :50
##
    X.dragonflies.
                     X.damselflies.
                                       X.hellgrammites. X.alderflies.
    Min.
            :0.000
                     Min.
                             : 0.000
                                               :0.0000
##
                                       Min.
                                                          Min.
                                                                 : 0.000
##
    1st Qu.:0.000
                     1st Qu.: 1.000
                                       1st Qu.:0.0000
                                                          1st Qu.: 0.000
    Median :0.000
                     Median : 2.000
                                       Median :0.0000
                                                         Median : 0.500
##
    Mean
            :1.154
                     Mean
                            : 3.345
                                               :0.5714
##
                                       Mean
                                                          Mean
                                                                 : 2.667
##
    3rd Ou.:2.000
                     3rd Ou.: 5.000
                                       3rd Ou.:0.0000
                                                          3rd Ou.: 2.250
##
    Max.
            :6.000
                     Max.
                             :23.000
                                       Max.
                                               :4.0000
                                                          Max.
                                                                 :22.000
##
    NA's
            :49
                     NA's
                             :33
                                       NA's
                                               :55
                                                          NA's
                                                                 :50
                     X.beetles.
##
      Dobsonfly
                                     Atherdicidae..watersnipe.flies.
##
    Min.
            :0.0
                          : 0.000
                                     Min.
                                             :0.0
                   Min.
    1st Qu.:0.0
                   1st Qu.: 0.000
                                     1st Qu.:0.0
##
    Median :0.0
                   Median : 1.000
                                     Median :0.0
##
##
    Mean
            :0.2
                   Mean
                           : 2.538
                                     Mean
                                             :0.5
    3rd Qu.:0.0
                   3rd Qu.: 3.000
                                     3rd Qu.:0.0
##
##
    Max.
            :1.0
                   Max.
                           :15.000
                                     Max.
                                             :4.0
##
    NA's
            :57
                   NA's
                           :49
                                     NA's
                                             :54
    Chironomidae..midges. Simuliidae..black.flies. Tipulidae..crane.flies.
##
##
    Min.
           : 0.000
                           Min.
                                   :0.0000
                                                      Min.
                                                              :0.00
                                                      1st Qu.:0.00
    1st Qu.: 1.000
                            1st Qu.:0.0000
##
                                                      Median :0.00
##
    Median : 2.500
                           Median :0.0000
                                                              :0.75
##
    Mean
            : 4.091
                           Mean
                                   :0.1429
                                                      Mean
```

3rd Out :1.25

3rd Ou. : 0. 0000

3rd Ou. : 5,000

```
J. W WW.....
##
            :14.000
                                    :1.0000
                                                               :3.00
    Max.
                            Max.
                                                       Max.
    NA's
            :40
                            NA's
                                    :55
                                                       NA's
                                                               :54
##
##
     Unknown.type
                          X.scuds.
                                         X.aquatic.sowbug.
                                                             X.crayfish.
            : 0.000
                              : 0.000
                                         Min.
                                                 : 0.0
                                                            Min.
##
    Min.
                      Min.
                                                                    :0.0000
##
    1st Ou.: 0.000
                      1st Qu.: 1.000
                                         1st Ou.: 1.5
                                                             1st Ou.:0.0000
##
    Median : 1.000
                      Median : 7.000
                                         Median: 6.0
                                                            Median :0.0000
            : 2.462
                              : 9.111
                                                 : 7.0
##
    Mean
                      Mean
                                         Mean
                                                            Mean
                                                                    :0.2857
##
    3rd Qu.: 4.000
                      3rd Qu.:12.000
                                         3rd Qu.:11.5
                                                            3rd Qu.:0.5000
##
    Max.
            :12.000
                              :36.000
                                                 :22.0
                      Max.
                                         Max.
                                                            Max.
                                                                    :1.0000
    NA's
            :49
                      NA's
                                         NA's
                                                            NA's
##
                              :35
                                                 :35
                                                                    :55
##
       X.Worms.
                    X.leeches.
                                           Χ
                                                         X.snails.
    Min.
            :0
                          : 0.000
                                            : 0.000
                                                               :0.000
##
                  Min.
                                    Min.
                                                       Min.
    1st Qu.:2
                  1st Qu.: 0.250
                                    1st Qu.: 0.000
##
                                                       1st Qu.:1.000
    Median :3
                                    Median : 1.000
##
                  Median : 2.000
                                                       Median :2.000
##
    Mean
            :3
                  Mean
                          : 3.444
                                    Mean
                                            : 3.133
                                                       Mean
                                                               :2.682
##
    3rd Qu.:4
                  3rd Qu.: 3.750
                                     3rd Qu.: 5.000
                                                       3rd Qu.:4.750
##
    Max.
                          :17.000
                                            :13.000
                                                               :8.000
            :8
                  Max.
                                    Max.
                                                       Max.
    NA's
            :34
                  NA's
                                    NA's
                                                       NA's
##
                          :44
                                            :47
                                                               :40
##
                     X.1
                                Leech.Eggs
                                                  Biotic.Index
##
                        :57
                              Min.
                                      : 0
                                            5.3
                                                        : 2
##
    0
                        : 2
                              1st Qu.: 0
                                            #DIV/0!
    1 crainfly larva
##
                       : 1
                              Median :27
                                            1.4
                                                        : 1
##
    1 Salamander Larva: 1
                              Mean
                                      :35
                                            2.274285714: 1
##
    7
                              3rd Qu.:62
                                            2.732653061: 1
                        : 1
##
                                      :86
                                            2.967741935: 1
                              Max.
##
                              NA's
                                      :58
                                            (Other)
                                                        :55
```

```
##
           Location Biotic.Index
      Buffalo Creek 6.772222222
## 1
## 2
      Buffalo Creek
                             5.9
## 3
      Buffalo Creek 6.069230769
## 4
      Buffalo Creek 6.302040816
## 5
      Buffalo Creek
## 6
           Bull Run 6.076190476
## 7
           Bull Run
                             5.3
## 8
           Bull Run 5.262857143
## 9
                      3.55952381
         Laurel Run
## 10
         Laurel Run
                     2.967741935
                     4.335714286
## 11
         Laurel Run
## 12
         Laurel Run
                           5.156
## 13
         Laurel Run
                      4.26440678
## 14
         Laurel Run
                             3.5
## 15
         Laurel Run
                     2.732653061
## 16
         Spring Run
                     3.914285714
## 17
         Spring Run
                             5.3
## 18
         Spring Run 4.881818182
## 19
         Spring Run
## 20
         Spring Run
                           5.475
## 21
         Spring Run
                     6.295652174
## 22
          Stony Run
                             4.2
## 23
          Stony Run 3.617142857
## 24
          Stony Run
                     3.929577465
## 25
          Stony Run
                           3.896
## 26
          Stony Run 2.274285714
## 27
          Stony Run 3.635849057
## 28
          Stony Run
                     5.169491525
## 29
          Stony Run 2.983673469
```

Results

Figure 1 Average biotic index of different streams. Higher biotic index indicates higher pollution tolerance.

The biotic indexes of the selected streams shows clear distinctions in the average biotic index of each stream. Buffalo Creek, a second order stream, has the highest biotic index of all five streams. The rest of the streams are first order streams. Bull Run and Spring Run had very similar average biotic indicies, both falling just short of Buffalo Creek. Laurel Run and Stony Run had very similar biotic indexes and was well below Buffalo Creek (Figure 1).

Discussion

It is widely accepted that the type of macroinvertebrates can serve as indicators of environmental quality (Muralidharan, et. al, 2010) and stream pollution (Goodnight, 1973) through classification in a biotic index that indentifies the pollution tolerance of macroinvertebrates. Graphical analysis of the average biotic indicies of the streams showed that the second order creek had the highest biotic index when compared to four first order streams (figure 1). The data supports the hypothesis. While two of the first order streams, Bull Run and Spring Run, were close in biotic index, two other streams, Laurel Run and Stony Run, were not. The study is limited by the lack of data on other second order streams and by the ambiguity surrounding classifications of stream order. Stream order classification is relative and stream orders in this study were assigned by visual assessments of size and connected streams on Google Maps, introducing an element of human error. Additionally, stream order classification in this study did not take into account gradiations and exist at discreet levels due to the difficulties in classification. Pennslyvannia is also known for areas of mining which may unevenly affect certain streams through siltation and heavy metal contamination (Brun, 2005).

Works Cited

Muralidharan, M., Selvakumar, C., Sundar, S. and Raja, M., 2010. Macroinvertebrates as potential indicators of environmental quality. International Journal of Biological Technology, 1, pp.23-28.

Goodnight, C., 1973. 'The Use of Aquatic Macroinvertebrates as Indicators of Stream Pollution'. Transactions of the American Microscopical Society Vol. 92, No. 1 (Jan., 1973), pp. 1-13 (13 pages)

Bruns, D.A., 2005. Macroinvertebrate response to land cover, habitat, and water chemistry in a mining-impacted river ecosystem: A GIS watershed analysis. Aquatic Sciences, 67(4), pp.403-423.