

V TOMTO SEŠITĚ

Čs. rozhlas a televize jubilují . . 81 MODERNÍ METODY MĚŘENÍ A ZKOLIŠENÍ

Diagnostika
Spolehlivost součástek
Měřič Zenerových diod 88
Hildač maxima odebrané el. energie 88 Pomocné zdroje elektrické energie 96 Indikátor výpadku sítě 98 Souměrný napájecí zdroj 98 Stabilizátory s MA76XX 98 Elektronické odměřování dělek 99
Generator hodinových impulsů 104
Generátor impulsů 1 Hz
Elektronické stolní hodiny 106
Generátor pravoúhlých impulsů 107
Řídicí jednotka pro tyristory 109
Indíkátor modulačních špiček 109 Integrovaný spínač diod LED,
A777D110
Číslicový intervalový spínač stěračů . 112
Zkoušecí přístroi
Převodník z binárního kódu na kód pro sedmisegmentové zobrazovací
iednotky116
Zpoždění zhasnutí světla
tofonu
Přístroj k léčení magnetickým
polem

AMATÉRSKÉ RADIO ŘADA B

Vydává ÚV Svazarmu ve vydavatelství NAŠE VOJSKO, Viadislavova 26, 133 66 Praha 1, tel. 26 06 51–7. Šéfredaktor ing. Jan Klabal, redaktor Luboš Kalousek, OKTFAC. Redakční rada: RNDr. V, Brunnhoter, V. Brzák, K. Donát, V. Gazda, A. Glanc, I. Harminc, M. Háša, Z. Hradiský, P. Horák, J. Hudec, ing. J. T. Hyan, ing. J. Jaroš, doc. ing. dr. M. Joachim, ing. F. Králik, RNDr. L. Kryška, J. Kroupa, ing. E. Môcik, V. Němec, RNDr. Ľ. Ondriš, CSc., ing. F. Smolík, ing. E. Smutný, ing. V. Teska, doc. ing. J. Vackář, laureát st. ceny KG, J. Vorlíček.

Redakce Jungmannova 24, 113 66 Praha 1, tel. 26 06 51–7, šéfredaktor linka 354, redaktor linka 353, sekretářka linka 355. Ročně vyjde 6 čísel. Cena vytisku 5 Kčs, pololetní předplatné 15 Kčs. Rozšířuje PNS, v jednotkách ozbrojených sil vydavatelství NAŠE VOJSKO, administrace Vladislavova 26, Praha 1. Objednávky přijímá každá pošta i doručovatel. Objednávky do zahraničí vyřizuje PNS, úslřední expedice a dovoz tisku, závod 01, Kařkova 9, 160 00 Praha 6. Tiskne NAŠE VOJSKO, n. p., závod 08, 162 00 Praha 6, Vlastina 710.

Za původnost a správnost příspěvku odpovídá autor. Návštěvy v redakci a telefonické dotazy pouze po 14. hodině. Číslo indexu 46 044. /

Toto číslo má vyjít podle plánu 25. 5. 1983

© Vydavatelství NAŠE VOJSKO

ČS. ROZHLAS A TELEVIZE JUBILUJÍ

V letošním roce, který byl vyhlášen organizací OSN Mezinárodním rokem telekomunikací, slaví naše nejrozšířenější a nejmasovější hromadné prostředky svá kulatá jubilea. Československá televize Praha zahájila své pravidelné vysilání 1. května 1953, a o třicet let dříve, 19. května 1923, se začalo s pokusným vysiláním Radiojournalu z vysílacé tehdejšího ministerstva pošt a telegrafů ze Kbel u Prahy. I když každý z obou začínal v jiném společenském systému, jiné historické epoše, přesto byla jejich cesta zejména v té počáteční fázi velmi podobná – byla to cesta od technického zázraku, udivující malý okruh zájemců a nadšenců pro věc, k masovému rozšíření a přechodu k prostředku, ovlivňujícímu svou náplní vědomí i myšlení milionů naších posluchačů a diváků. Svým obsahovým zaměřením působí oba na zvýšení politické a odborné úrovně i rozšíření vzdělání a kultury nejširších mas. Pracují v oblasti citů a emocí a dotvářejí tak komplex formování osobnosti člověka. V nepřetržité rozmanitosti námětů, látek, žánrů, forem i druhů umělecké i politické tvorby zobrazují vztah osobnosti ke společnosti a to především k současné rozvinuté socialistické společnosti, k jejím cílům, úkolům a k realitě dneška.

V počátcích rozvoje rozhlasu vše toto nebylo samozřejmostí. V prvních letech jeho pusobení byly zejména ze strany státních orgánu a institucí obavy. aby se rozhlas nestal pouhou zálibou, ale aby zájny státu byly hned od počátku plně prosazovány a re-spektovány. Však také trvalo dosti dlouho, než bylo všeobecně povoleno vlastnit rozhlasový přijímač. Státní vysílací stanice – Radiojournal, začínala velmi skrovně. Své první zhruba hodinové relace vysítala nejprve z provizorního plátěného stanu postavené-ho za budovou telegrafní stanice u Kbel. Později byla jedna místnost ve stanici vyklízena a z ni bylo improvizováno za pomoci látek a kobercu malé rozhlasové studio. Teprve v roce 1933 se mohla již dosti rozrostlá rozhlasová společnost Radiojournalu přestěhovat do nově postavené a poslání rozhlasu vyhovující budovy na Vinohradské třídě (tehdy Fochova). Úkoly Radiojournalu, který na podnět Špolku českých žurnalistů v Praze vznikl po "pečlivých přípravách a předběžnému studiu rozhlasových poměrů v zahraničí", bylo především chránit zájmy státu a postavit se do služeb kultury, umění, výchovy k češství a zejména budit v českém národě hrdost a vlastenectví. Snahou celého tehdejšího rozhlasoa viasteriecku. Snahou celelo tenegalio tenegalio venegalio venegalio venegalio venegalio viastni ráz, odpovídaly naším odlišným domácím poměrům a pěstovaly v posluchačích národní sebe-vědomí, jak psal tehdejší časopis rozhlasu stejného názvu – Radiojournal. Ale ne vždy uměl "poradní sbor rozhlasový" ze začátku třicátých let řešit pro-gramové otázky objektivně, jak uvádí v jednom ze svých úvodníku časopis Dělnické radio: "Ti, kteří svých uvodníku časopis Delnické řadlo: "II, kterí chtějí usilovati o lepší náš rozhlas, budou míti ještě v dohledné době hodně práce zejměna, aby se rozhlas více přiblížil zájmům dělnictva." V době těžké hospodářské kríze se vedoucí rozhlasoví pracovníci "uvolili přiblížit" se těmto zájmům a v rozhlase zavedli relaci "Trh práce", seznamující posluchače s pracovními příležitostmi. I když to byla velmi chabá náplast na potřeby a požadavky dělnické cnaba napiasi na potreby a pozavavy usinicke třídy, přesto byla velmi poslouchanou a mnohým pomohla zmírnit těžký úděl. Cena rozhlasového přijímače byla v té době značná a pohybovala se mezi 3 až 5 tisíci Kč, což byl několikaměsiční plat zaměstnaného dělníka. Aby se přesto mohl stát přijímač dostupný i těm měně zámožným, vyráběli záktělí zejména meněj vyrobci přijímače co nejledně. někteří, zejména menší výrobci přijímače co nejjednodušší a v prodeji byly i jednoduché stavebnice pro radioamatéry. V rozhlase byl dokonce v r. 1945 zaveden i "populární kurs radiotechniky", aby se mohl rozhlasový přijímač stát opravdu všelidovým. Hlavní podíl na rychlém rozšířování rozhlasu měla jednak jeho atraktivnost a jednak skutečnost, že se s přijímačem dostává do bytů a domácností otoče-ním knoflíku host. Je-li vítán a umí se vetřít svým obsahovým zaměřením, přijímač zůstane zapnutý, ne-lí, jednoduše se buď vypne nebo přeladí na hosta příjemnějšího, což má ovšem i negativní stránku, jak se o této skutečnosti psalo již v r. 1935: "Mnohé lidi nepřipoutává mluvené slovo, otáčejí knoflíkem laděnepripoutava mluvene slovo, otaceji knotikem lade-ní tak dlouho, až zachytí stanici, jejíž právě vysílaný pořad hoví jejich vkusu, náladě, inteligenci. Mají sice celý svět ve svém pokoji, ale vybíraji si z oné spousty dobrého i průměrného mnohdy pouze to, co odpoví-dá jejich vkusu, co je pouze baví. Samozřejmě, že je pak ona stanice skvělá, jiná než Praha. A ozve-li se i tam nějaká přednáška, přeladí se prostě jinam.

Radio vychovává a vzdělává pouze ty, kteří po vzdělání a poznání touží."

l přes tyto negativní rysy zůstává však rozhlas účinným prostředkem, se kterým se počítá při ovlivňování veřejného mínění. Možnost okamžitého rozšíření vyhlášené zprávy je velkou údernou silou rozhlasu, která se zejména projevila při vyhlášení mobilizace v době ohrožení naších hranic hitlerovským fašismem. Právě díky rozhlasu byl průběh mobilizace velmi rychlý, stejně jako smutek a žal, který do českých rodin přineslo vyhlášení protektorátu.

Pražské povstání 5. května 1945, volání rozhlasu o pomoc, celý český národ je díky rozhlasu spoluučastníkem této historické událostí. Liblický a strašnický vysílač, modulovaný z vinohradské budovy rozhlasu, jsou prvými zvěstovateli tohoto boje, rozpoutaného v budově rozhlasu i na všech důležitých místech Prahy. I když letecká puma v neděli 6. května po 17. hodině zastavuje v rozhlasové budové provoz, přesto strašnický vysílač neutichá (liblický se odmičel již dříve). Narychlo instalovaný mikrofon v provozní místnosti a technici vysílače sami hlásí telefonicky došlé zprávy až do ponděli, kdy byl v Husově sboru na Vinohradech zahájen provoz z náhradního studia. A 9. května v 19 hodin byl znovu zapojen v hlavní budově rozhlasu mikrofon, aby sdělil světu, že Československý rozhlas opět zahajuje své pravidelné vysílání.

delné vysílání.

V historických únorových dnech je to opět rozhlas, který hájí socialismus a této své revoluční tradíci zústává věren po celou dobu budování Československé socialistické republiky.

Historie televize začíná u nás, na rozdíl od jiných

Historie televize začíná u nás, na rozdíl od jiných vyspělých zemí, organizovaným rozvojem až po r. 1945 a to především zásluhou Vojenského technického ústavu a o něco později i pardubického n. p. TESLA. Protože však u nás výroba radiotechnických součástek do té doby byla na velmi nízké úrovní, byly experimentální výrobky poznamenány použítím množstvím zahraničních součástek, zejména elektronek. Pokud se však mělo zajistit podle vládního usnesení masové rozšíření televize, znamenalo to zejména zajistit výrobu moderních elektronek a dalších součástek, což vyžadovalo nejen značné finanční nároky, ale i určitý čas. I přes značné potíže (stát mohl jen to, na co byly peníze) se díky elánu a zanícení pro věc stovek inženýrů a techniků dáři v poměrně krátké době vybudovat potřebné kapacity a výroba televizních přijímačů z čistě československých součástek se v r. 1953 rozjíždí naplno. První televizory (i když nikoli nejmodernější koncepce) se svou nejnižší ceňou na světě záhy dostávají do mnohých naších domácností. Povinnost platit polatek za příjem televize je zaveden až od r. 1955.

platek za příjem televize je zaveden až od r. 1955. Zájem o televizní vysílání roste den ode dne. Široká veřejnost by chtěla spolehlivě přijímat televizní signál i v místech, kde síla elektromagnetického pole vysílače k dobrému příjmu nestačí. A zde přicházejí kolektivy radioamatérů-svazarmovců, kteří chtějí použít své odborné vědomosti k zajištění příjmu televize i v místech, kde je signál nedostatečný. Ustřední výbor Svazarmu proto předkládá ministerstvu spojů žádost o povolení ke zřizování retranslačních stanic, ministerstvo dává k jejich stavbě souhlas s tím, že je bude občas kontrolovat, zda je jimi vysílaný signál takový, aby nejakostním přenosem nebyla ohrožena propagace televize, a vypisuje

jimi vysilaný signál takovy, aby nejakostním prenosem nebyla ohrožena propagace televize, a vypisuje pro jejich budování a provoz rámcové podmínky. První povolení zřídit retranslační stanici dostává 31. července 1956 okresní radioklub Svazarmu v Jáchymově a v polovině r. 1957 začíná pokusně vysílat vysílač na Klínovci. Po ní následují další v Liberci, Č. Budějovicích a jinde. 15. listopadu 1955 zahajuje zkušební vysílání ostravské televízní středisko nejorve jen zkušebním

15. listopadu 1955 zahajuje zkušebni vysilani ostravské televizni středisko nejprve jen zkušebním obrazcem a silvestrovským pořadem, pak již nejprve dvakrát v týdnu a později, po zřízení televizní releové trasy z Prahy již denně (kromě ponděli). Koncem roku 1956 zahajuje vysílaní Bratislava a do plánu rozvoje národního hospodářství na léta 1956 až 1960 je vládou uložena výstavba sedmi televizních vysílačů tak, aby bylo pokryto 80 % území republiky – televize se tak stává kvalitativním skokem v kulturním životě měst a zejména venkova.

Televizní obrazovka denně diváky informuje, vzdělává, humanizuje, baví, prostě formuje jejich osobnost. Ve srovnání s ostatními masovými sdělo-

MODERNÍ METODY MĚŘENÍ A ZKOUŠENÍ

Ing. M. Arendáš, ing. M. Ručka

Úvod

Každý z nás očekává od rozvoje elektroniky něco jiného. Dokonce každý v něm vidí něco jiného. Elektronika je obor lidské činnosti, který se celosvětově tak prudce vyvíjí, že ho neodborník prakticky vůbec nemůže sledovat. To, co se nazývá spotřební elektronikou, je dnes jen nepatrný zlomek celého oboru. Zbytek je ukryt v průmyslu, v halách továren, ústavech a vůbec na pracovištích velkou-živatelů. Někteří vidí vrchol elektroniky v podružných věcech, majících jen malý význam, jako jsou konstrukce miniaturních náramkových televizorů nebo pod. Jeden kolega např. tvrdí, že největším objevem elektroniky, na který čekáme, by bylo, kdyby mohl telefonem poslat stovku. Pak by telefon zvedali třeba i v prodejnách nábytku - co by se ušetřilo času! Zkrátka každý se na tento obor dívá svýma očima. Naše elektronika bývá kritizována, že zaostává za světovou špičkou. My se domníváme, že na světové špičce sice není, ale s jejím zaostáváním to zase není tak katastrofální. Už vůbec ne, když ji srovnáme s ostatními obory našeho národního hospodářství. Ne všechny výtky, které se snášejí na naši elektroniku, jsou oprávněné. Zcela nedávno se objevil v našem tisku velice kritický článek ředitele jednoho podniku na téma, že jeho podnik nemůže svoje stroje vybavovát tou nejmodernější mikroprocesorovou elektronikou a svaloval na tento fakt exportní neúspěchy. Přitom jeho závod vyrábí téměř beze změny déle než 15 let číslicově řízené stroje, ke kterým žádná modernější elektronika z nejrůznějších příčin ani nejde. A pokud by byla připojena, bude velice špatně využita. Stroje mají pohony s asynchronními motory, se spojkami a převodovkou, možnost současného pojezdu jen v jedné ose a další, dnes již technické nedokonalosti.

Pravda je taková, že elektronika je pouze technickou nadstavbou nad ostatními obory. Uplatní se v plné šíři pouze tam, kde pro ni vytvoříme předpoklady. Je nesmysl řídit počítačem zemědělské hospodářství tam, kde orají koňmi a trávu sekají kosou. Nebo dát mikropočítač do kotelny, kde topič přikládá ručně. Žádným počítačem, který bude automaticky řídit spalovací proces v motoru, nezlepšíte podstatně technické parametry takového automobilu, jakým je třeba současná škodovka.

Všechny tyto úvahy úzce souvisí s hledáním nových ekonomických cest, které jsou nám všem vnucovány novými celo-

světovými ekonomickými vztahy. V tomto ohledu se nám velice líbil rozhovor s docentem Walterem Komárkem z Ekonomického ústavu ČSAV, který otiskl časopis Květy. Soudruh Komárek říká: "Je zcela naivní se domnívat, že nadále vystačíme s tradičním postupem, kdy ústav základního výzkumu předá své výsledky ústavu aplikovaného výzkumu, ten potom vývoji, pak se dostane dokumentace do výroby a ta začne shánět dosud neznámé dodavatele nových materiálů, součástek, přístrojů a zařízení, a až všechno poshání, pomalu rozjede výrobu . . . Ale můžeme uvažovat i jinak: proč by si určitou unikátní technologii nemohl vyrobit uživatel sám? Každý sice máme své úkoly, ale průzkumy ukazují, že značná část podni-ků má rozsáhlé či dokonce předimenzované plochy i nemalé množství údržbářů, vázané udržováním značného počtu sta-

rých a odepsaných strojů.

Tuto myšlenku můžeme dále rozvést a aplikovat na některé konkrétní problémy elektroniky. U nás i ve světě narůstá specializace, výrobci se snaží vyrábět pouze ekonomicky výhodné výrobky. Ekonomicky výhodným výrobkem je však pouze takový výrobek, který se vyrábí v ekonomicky výhodné sérii u specializovaného výrobce na lince - to platí samozřejmě i v elektronice. Jenže uživatelé potřebují nejrůznější množství elektronických přístrojů a zařízení, pomůcek přizpůsobených na jejich specifické problémy. Uvědomme si, že technický pokrok mnoha oborů současnosti třeba ve strojírenství, sdělovací drátové i bezdrátové technice, vědeckých oborech, ale i třeba v medicíně je dnes plně závislý na zavádění a modernizaci elektroniky. Vzniká paradoxní situace, kdy je sice relativní dostatek elektronických součástek, ale úplný nedostatek speciálních elektronických přístrojů a zařízení, které lze z těchto součástek vyrobit.

Ve světě se tato situace řeší několika způsoby. Kromě mezinárodní spolupráce také tím, že se přístroje dělají stavebnico-vé na bázi mikroprocesorů. Stavebnicové řešení rozšiřuje univerzálnost a množství modifikací, u přístrojů s mikroprocesory se rozsah použití obvykle přesouvá do oblasti programování. V každém případě část technické iniciativy zůstává na odběrateli. V tomto bodě docent Komárek plně vystihuje situaci. Část nové technologie si musí uživatel nebo aplikátor prostě dodělat nebo udělat sám. Koupíte řídicí mikropočítač, možná i některé periférie, ale jen velice těžko se vám podaří dostat softwarové vybavení a celý komplet přizpůsobený na specifické podmínky tak, abyste mohli celek vybalit z bedny jako třeba nový televizor, zapnout a pak pouze koukat, jak "to pracuje"

Možným řešením je dodávat pouhé stavebnice. Tak, jako si mohou u nás pionýři koupit v hračkářství stavebnici rádia, lze, jak jistě obecně známo, v některých státech si koupit mikropočítač: desku s plošnými spoji, součástky v igelitovém pytlíku a knížku rad, jak postupovat při stavbě. Mechanické záležitosti, napájecí zdroj a způsoby aplikace, to je starost toho, kdo si stavebnici koupil.

Domníváme se, že tato cesta by mohla trochu pomoci i naší elektronice. Proč by např. nemohla existovat stavebnice průmyslového číslicového multimetru nebo jednoduché měřicí ústředny, kterou dnes mimochodem v tuzemsku nikdo nevyrábí a vyrábět nechce. Plocha tohoto AR řady B nám vedle ryzích amatérských konstrukcí dovoluje otisknout i dva praktické příklady tohoto typu stavebnic. Je to odměřovací zařízení a zařízení pro měření a hlídání čtvrthodinového maxima výkonu odebírané elektrické energie. U obou těchto zařízení jsou všechny součástky tuzemské výroby a lze je tedy objednat v n. p. TESLA ELTOS. Výrobu desky s plošnými spoji zprostředkovává redakcé AR a lze si ji objednat. Co tedy chybí do úplné stavébnice? Jako autoři býchom byli moc rádi, kdybyste nám k tomuto problému napsali svůj názor. Zároveň bychom byli rádi, aby se toto číslo AR řady B líbilo co největšímu počtu amatérů i profesionálů a aby každý z čtenářů v něm našel alespoň jednu konstrukci, do které se pustí a kterou bude realizovat.

Diagnostika

Diagnostika v elektronice a zejména moderní číslicové technice se stala novým odvětvím. Odvětvím, které neustále přibývá na významu, a s kterým se začínají setkávat amatéři i celá veřejnost. V moderní elektronice není diagnostika jen teoretickým oborem, ale stala se praktickou disciplínou. Co všechno do pojmu diagnostika zahrnujeme? Patří sem spolehlivost, zvětšování spolehlivosti, opravárenství, zejména způsoby vyhledávání závad, diagnostické testy správné i poruchové funkce, prevence, údržba, přístroje, pomůcky a plánování opravárenské činnosti. Je samozřejmé, že pro amatérské použití se hodí pouze část toho, co si nyní řekneme. Nicméně i amatéři si musí své výrobky opravovat, testovat a kontrolovat. Diagnostické testování a diagnos-tiská kontrola nabývá na významu zejména postupným zaváděním a používáním číslicové techniky.

Většinu závad na elektronických zařízeních, ať už jde o rádio, televizor, amatérsky vyrobený přístroj nebo složitý počítač, musíme lokalizovat měřením. Proč termín lokalizovat? Závadu většinou pro účely opravárenství určujeme pouze s určitou přesností. Najdeme přerušený odpor a vyměníme jej a nestaráme se, jde-li ještě opravit nebo ne, ačkoli může být pouze uvolněná čepička. Opravář televizoru vymění celý vysokonapěťový transformátor a nezabývá se převíjením spálené cívky. U pračky se vymění celý programátor, u velkého počítače se při poruše vymění celý modul.

Ü starších elektronkových typů televizorů, kde většina závad byla způsobena poškozenou elektronkou, mnohdy stačilo k odstranění velmi velkého množství závad mít rezervní elektronky a tu vadnou najít zkusmo postupnou výměnou. Odkoukáním této, řekněme melouchářské diagnostické metody a jejím proniknutím do podvědomí veřejnosti vzniká mnoho nedobrého. Ze strany hospodářských vedoucích tím, že podceňují nebo nedoceňují odbornost opravárenské práce. Podle těchto mylných názorů stačí k opravám pouze šroubovák a dostatek výměnných dílů. Veřejnost reaguje velmi podobným způsobem. Např. v opravnách se vyskyťují telefonní dotazy typu: "Prosím Vás, mám na obrazovce televizoru pouze vodorovnou bílou čáru, ale jinak mi zvuk jde dobře. Řekněte mi, co je to za elektronku, já si ji sám vyměním a ušetřím opravářovi cestu." Přitom se při podrobnějším zkoumání stává, že zvídavý agilní zákazník má televizor už celotranzistorový, u něhož uvedenou melouchářskou metodu použít pochopitelně nelze. Závadu lze v takovémto případě identifikovat jen měřením.

Zaváděním nové, stále složitější (ze-jména číslicové) elektroniky se celý pro-blém stává neustále složitějším. Pro ilustraci uvádíme známý příklad z kombinatoriky: máme kontrolovat správnost funkce 32bitové sčítačky. Kdybychom chtěli přivést na její vstupy všechny možné informace, existuje obecně 2^{2n} , což je $2^{64} = 1,8.10^{19}$ vstupních kombinací. K dispozici máme velmi rychlé zkoušecí zařízení, které je schopné přivést na vstup a vyhodnotit 106 informací za sekundu. Stále však by bylo třeba k vyhodnocení celého testu 1,8.1013 sekund, což je více než půl miliónu let. Objem paměťového média potřebného pro zápis takového testu by byl 12.1,8.10¹⁹ = 2.10²⁰ slabik, což je bilión běžných magnetických disků. Tento příklad je samozřejmě pouze akademický. Je známo, že k úplné kontrole správnosti sčítačky, realizované paralel-ním spojením jednobitových úplných sčítaček, stačí 8 až 10 kombinací vstupních informací. Nicméně při použití takového testu se teoreticky mohou vyskytnout poruchy, které jsou velmi nepravděpodobné, ale které nelze tímto testem odhalit. Toto velice drastické zkrácení diagnostického testu je možné v zásadě ze dvou příčin. Jednak se vyloučí poruchy, které jsou statisticky velmi málo pravděpodobné, a jednak se využije toho, že všechny stupně mají přímý výstup a mohou být testovány současně.

Ještě uveďme jeden příklad, který názorně ukazuje, že diagnostika se dostává do jiné úrovně poznávání, že nestačí pouhé přístroje a jednoduchá měření. Ukazuje se, že je zcela nutné mít vypracovaný správný opravárenský postup, nebo jak bychom řekli nověji, správný a úsporný diagnostický test. Tento banální případ se na rozdíl od předchozího může stát každému z nás: Kupujete si obyčejnou kalkulačku a chcete si zkontrolovat všechny její funkce. Pokud byste chtěji postupovat metodou úplné kontroly, tak i při jednoduchém typu kalkulačky vám na úplný test, při němž byste zkontrolovali všechno (tj. tím myslíme, že např. při násobení vyzkoušíte všechny možné kombinace) nebude stačit ani celý život. Sami výrobci kalkulaček ve velké většině

výstupní kontrolu zkracují na minimum a raději riskují případné reklamace. Pro ilustraci tohoto tvrzení: jedna celá série kalkulaček Polytron neuměla vypočítat dekadický logaritmus čísla, které vzniklo např. tím, že se 100 dělilo třemi a opětovně trojkou násobilo. Každému je jasné, že pokud byste měli nějakým testem všechny takovéto závady vyloučit na 100 %, tak test nebude ani krátký, ani jednoduchý. Navíc, čím bude kalkulačka složitější, tím bude i zkušební test delší, příčemž samozřejmě počet možných kombinací případných možných závad neroste přímo úměrně, ale geometrickou řadou.

Filozofie způsobů testování číslicových zařízení a systémů – zde může jit třeba o jeden integrovaný obvod, modulovou výměnnou desku nebo už celé zařízení např. počítač – je v zásadě podobná. Metodika se pak zaměřuje na:

 Volbu správných a výkonných diagnostických pomůcek, strojů, popřípadě "samotestovacích" postupů (to je příklad programovatelných zařízení, zejména počítačů, do nichž lze zavádět "samotestovací" programy), jejichž pomocí jde realizovat test v minimálním reálném čase;

 zúžení množiny možných poruch zejména tím, že vyloučíme málo pravděpodobné poruchy;

 sestavení diagnostického testu tak, aby byl schopen identifikovat poruchu s potřebnou přesností. Tím se u velkých počítačů rozumí obvykle přesnost na jeden nebo dva výměnné moduly.

Nejvíce jsou v současné době rozvinuty diagnostické metody pro kontrolu a opravy velkých typů počítačů. Bez diagnostických programů a zabezpečení opravárenské činnosti dnes není žádný větší počítač prodejný. U velkých počítačů už také vyniká jistá paralelní podobnost s medicínskou diagnostikou. Funkci diagnostického testu plní podle některých výzkumů lidský sen. Náš mozek se přípravuje a aktivuje na modelové situace, které bude nucen po probuzení patrně řešit. Právě tak dnešní konstruktéři navrhují diagnostické programy, které před zapo-četím práce počítače zkontrolují nejenom technický stav, ale i to, není-li porušen "postprocesor", tedy softwarová část uložená v paměťových médiích počítače. Nebo jinak – zda je počítač schopen vykonávat bezchybně tu či onu určenou pasáž úkolů. Jak bylo uvedeno, specifikou zařízení s vlastní operační pamětí je schopnost (nebo spíše možnost) se v prvních diagnostických krocích prakticky obejít bez přídavných technických zařízení. Lze udělat taková vlastní softwarová opatření, že se závada s určitou přesností odhalí systémem samokontroly, kdy se počítače nechají pracovat podle vypracovaných diagnostických testů. Některé počítače si dokonce mohou při poruchách samy odpojit vadný a připojit dobrý záložní díĺ.

Výměnné desky se obvykle opravují již mimo vlastní zařízení. Existují speciální univerzální testovací zařízení, která jsou do jisté míry univerzální, a s kterými lze pak na příslušné desce najít závadu, opět s pomocí diagnostického testu a s přesností na něktěrou výměnnou součástku. Taková testovací zařízení vyrábí např. TESLA Brno. Nejde ovšem o nic jednoduchého a dovolit si vlastnit takové zařízení mohou pouze specializované opravárenské provozy. Základem testovacího stroje na běžné počítačové výměnné desky je opět počítač střední velikosti. Drahé je nejen zkušební zařízení, ale i vytvoření a sestavení zkušebního programu pro konkrétní kontrolu.

To, že jde o nový obor, jehož některé výsledky lze již nyní převádět sice skromně, ale přece jen přímo do amatérské praxe, dokumentuje i to, že některé firmy zvolily diagnostiku za svůj výrobní program. U nás vedle TESLA Brno je to třeba METRA Blansko. Světově proslulá je např. firma HEWLETT PACKARD. Mezi diagnostické pomůcky patří prakticky celá měřicí technika, jednoúčelová, ale i specializovaná. Novinkou posledních let jsou nejrůznější sondy a analyzátory signálů. Důležitou část tohoto průmyslového odvětví tvoří přístroje určené pro opravy počítačů. Zde nezřídka nejde jen o přistroj, ale i o jeho programové vybavení.

Zálohování náhradními díly

Protože prakticky neexistuje bezporuchové zařízení, je třeba mít k zajištění každého elektronického zařízení náhradní díly. Skladba, množství a počty těchto dílů jsou dnes velmi diskutovaným problémem. Náhradní díly jsou obvykle velmi drahé a pokud je nepoužijeme, jsou mrtvým kapitálem. Zvolit jejich optimální strukturu a počet je velmi obtížný úkol, ke kterému potřebujeme velké množství prvotních informací, které se obvykle velmi dby mezi poruchami, struktury zařízení a druhu součástkové základny.

V obecném pojetí platí, že z hlediska zálohování je ekonomičtější nakupovat strukturálně co nejmenší náhradní díly. Ekonomické hledisko je jasné: když koupíme celou desku, je to několikrát dražší, než když koupíme pouze součástky na její opravu. Soubor náhradních desek je však levnější než celé zařízení. Také z hlediska bezporuchového provozu je výhodnější se zásobit součástkami ná có nejnižší úrovni. Uvedme to na praktickém příkladě. Mějme obecné zařízení, které se skládá ze dvou částí A1 a A2 spojených sériově tak, že když vznikne porucha na jednom, je zařízení jako celek vyřazeno z provozu. Spočtěme, je-li výhodnější zálohovat kaž-dou část zvlášť, nebo mít v záloze celé zařízení.

Zavedeme tyto pojmy: Q... pravděpodobnost poruchy

Q = 1 - R; R je pravděpodobnost bezpečného provozu (je to také spolehlivost, někdy udávaná v %);

exponenciální zákon poruch: $R(t) = e^{-\lambda t}$,

kde λ je intenzita poruch.

Máme-li zařízení se dvěma sériovými členy A_1 a A_2 , u něhož členy mají pravděpodobnost bezporuchového provozu R_1 a R_2 , je výsledné $R_s = R_1R_2$ (pokud porucha jednoho členu znamená poruchu celého systému).

Máme-li člen A₁ se spolehlivostí R₁ zálohovaný paralelním členem A₁ se spolehlivostí rovněž R₁, je výsledná spolehlivost paralelního spojení

$$R_p = 1 - (1 - R_1) (1 - R_1).$$

Uvažujeme pro zjednodušení, že všechny prvky systému A₁ = A'₁ = A₂ = A'₂ mají stejnou spolehlivost R. Pro nezálohovaný systém platí výsledná spolehlivost

$$R_n = R_1 R_2 = R^2$$
.

Zdvojením celého systému je výsledná spolehlivost

$$R_z = 1 - (1 - R)^2 = 2R^2 - R^4$$
.

Máme-li připojenu k části A₁ paralelně zálohu a k části A₂ také, vznikne sérioparalelní systém, pro který platí spolehlivost

$$R_{SP} = (1 - (1 - R)^2)^2 = 4R^2 - 4R^3 + R^4$$
.

Porovnáme-li výsledky R_n , R_z a R_{SP} třeba tak, že za R dosadíme konkrétní číslo pravděpodobnosti bezporuchového provozu, vidíme, že nejhůře na tom bude samozřejmě to zařízení, které není zálohováno vůbec, lépe na tom bude to, u něhož je celé jedno zařízení v rezervě. Nejlépe bude, jsou-li v rezervě jako ná-hradní díl dvě nezávislé části. Čím budeme mít zařízení jaksi "rozdrobeno" na menší náhradní díly, tím bude pravděpodobnost zabezpečení provozu v případě poruchy těmito díly větší. Tento případ platí ve všech oborech. Např. nakoupíme-li součástky pro opravy svého televizoru, je jasné, že některé náhradní díly si vůbec nekoupíme, neboť je velmi malá pravděpodobnost jejich závady, pravděpodobně bychom je vůbec nepoužili. Je to třeba deska s plošnými spoji, zadní stěna, ovládací knoflík, objímka obrazovky apod Jsou to obecně díly, které mají nejdelší dobu života. Některé díly se vyskytují v zařízení vícekrát, jako třeba diody, polovodičové součástky, odpory a kondenzátory. Potom stačí mít v zásobě mnohem menší počet kusů, než kolik jich je v přísteli stroji. "Suma sumárum" to znamená, že pro zabezpečení bezporuchového provo-zu je lépe mít téměř vědecky vybraný počet náhradních dílů (což vyjde mnohokrát levněji), než mít v záloze druhý televizor. Máme-li však celý náhradní televizor, získáme tu výhodu, že při poruše nemusíme čekat na opravu, ale můžeme ho používat téměř okamžitě. Získali jsme tedy časovou výhodu.

U složité řídicí a výpočetní elektroniky také rozhoduje ztrátový čas způsobený čekáním na opravu a čas opravy vzniklý ztrátovým prostojem, zejména proto, že tento prostoj je přinejmenším nesmírně drahý. Drahá je i práce opravářů. Navíc techniky a s ní i elektronického vybavení neustále přibývá a opravářů (nebo, jak říkáme, diagnostiků) ubývá. Jedinou cestou je co největší mechanizace a automatizace jejich práce. Té se dosahuje tím, že se poněkud ustoupí od přísně ekonomických požadavků na co nejmenší prvky a zálohují se výměnné díly, moduly. Tato praxe přechází i do výrobků, u níchž to dříve nebývalo zvykem, např. máme již i modulové televizory. Výměnné moduly by se ovšem po výměně neměly zahazovát, ale opravovat v dílnách. Jejich závady si specializovaná opravna může dovolit určovat i nákladnými diagnostickými zařízeními proto, že tato zařízení dokáže dokonale časově využít. Praxe výměnných modulů je samozřejmě aplikovatelná i v jiných technických oborech a celosvětový technický vývoj k ní spěje. V auto-mobilové opravně vám vymění celý alternátor, i když v něm máte vadnou pouze jednu diodu. Jinou otázkou je, že mnohdy starý alternátor vyhodí a vám účtují cenu nového. To je nepřijatelná praxe a nepo-chopení správných zásad hospodaření s náhradními díly.

Je třeba upozornit, že to, co jsme zde uvedli, je pouhý náznak toho, že i v této oblasti lze postupovat vědecky a že tento vědecký přístup přináší všem obrovské úspory.

Spolehlivost součástek

Teoretickou spolehlivost zařízení lze určit podle známých zásad. Výsledná intenzita poruch každé součástky se stanoví podle vzorce:

$$k_s = k_o o_z o_p$$
.

Pak výsledná spolehlivost je aritmetickým součtem spolehlivosti jednotlivých dílů; ve vztahu pro intenzitu poruch je

- ks výsledná intenzita poruch součástek, která je upravena o činitele zahrnující okolní teplotu a provozní podmínky,
- ko základní numerická hodnota intenzity poruch té určité součástky,
- oz je opravný součinitel pro zvolené zatížení při určité okolní teplotě,
- op opravný součinitel pro zvolené provozní prostředí.

Údaj k_o většinou lze získat od výrobce součástek nebo z pramenů, které vydává Státní zkušební ústav SEČ. Pro ilustraci uvedeme intenzitu poruch k_o pro některé typické součástky, užívané v číslicové technice.

tenzita poruch velká, protože odpor je málo odolný proti navlhání.

maio odoiny proti navinani.

Druhý opravný činitel o_p , který má vyjádřit vliv provozního prostředí, se pro laboratorní podmínky pohybuje od 0,7 (relé) do 0,95 (diody). Pro pevná pozemní zařízení je pro všechny součástky roven jedné. Pohyblivá zařízení v dopravě jsou na tom poměrně o řád hůře, kondenzátory a odpory mají $o_p = 5$, polovodiče 8 až 10, relé 20, elektromechanické součástky 15.

Rozbor uváděných čísel není bez zajímavosti. Přibližně se kryje s praktickými poznatky ovšem pouze tehdy, když uživatel nepoužije zařízení v nevhodném prostředí, např. při přílišné teplotě okolí, příliš agresívním prostředí nebo při velké prašnosti okolí – škodí zejména jemný litinový prach. Teorie se blíží praxi však také jen tehdy, neudělali-li projektanti v zařízení příliš mnoho konstrukčních chyb (např. chybné umístění některých součástek, špatně volené součinitele namáhání, špatný "koloběh" vzduchu uvnitř přístroje apod.). Překvapivé jšou zejména tyto poznatky: křemíkové tranzistory ne-

Orientační intenzita poruch k₀:	
Pálený spoj na konektoru	ı
Ovíjený spoj na konektoru	•
Uhlíkový rezistor 1 W, odpor 4,7 kΩ, typ TR 146	ı
Rezistor s kovovou vrstvou 220 kΩ, 0,25 W, typ TR 151	ı
Stabilní rezistor metalizovaný 120 k Ω , 0,25 W, typ TR 161	i
Drátový rezistor 100 Ω, 1 W, typ TR 635	1
Kondenzátor MP zastříknutý, 15 nF až 2 μF	
noingerization with Zastinitaty, 1911 at 2 pi	ı
při jmenovitém napětí 100 V, typ TC 180	١.
Kondenzator elektrolyticky 1500 µr, pri 12 v, typ 10 304	1
Kondenzátor keramický, 15 pF při 350 V, typ TK 672	
Kondenzátor keramický trubkový, 120 nF	1
pri 250 V, typ 1 K 409	
při 250 V, typ TK 409 2,34 10 ⁻⁵ h- Kondenzátor keramický průchodkový bezarmaturní, 1 nF při 250 V, typ TK 564 2,3 10 ⁻⁴ h- Tranzistor germaniový GC507 při zatížení	1
1 nF při 250 V, typ TK 564	
Tranzistor germaniový GC507 pri zatizení	
1,25 mW a teploté okoli 35 az 38 °C	
Tranzistor křemíkový KC508 při zatížení	
P _c = 120 mW a teplotě okolí 80 °C	ı
Tranzistor křemíkový KF508 při zatížení	
$P = 320 \text{ mW atendate } 80 ^{\circ}\text{C}$ 3 44 $\cdot 10^{-4}\text{h}^{-1}$	1
Tranzistor křemíkový KSY71 při zatížení 330 mW a 35 °C	1
Integrovaný obvod MH7420 při 70 °C a mezním napájecím napětí	1
Přepínač jednopólový, 11 poloh, APM 111	1
Telefonní relé ploché 1.13 · 10 ⁻⁶ h	1
Telefonní relé ploché 1,13 10-6h- Relé jazýčkové 108 cyklů	'n
Tiele jazyokovo	•

Stanovení opravného činitele oz vychází z předpokladu, že u polovodičů je logaritmus intenzity poruch funkcí záporné reciproké absolutní hodnoty teploty polovodičového přechodu. Pro stanovení tohoto činitele byly vytvořeny poměrně složité vztahy, většinou vyjádřené graficky; tento činitel se pohybuje v mezích od 0,1 až 3 podle toho, jak je polovodič tepelně namáhán (což závisí na tepelném odporu mezi přechodem a okolím; tento odpor je tím menší, čím je větší dovolená kolektorová ztráta tranzistoru, na okolní teplotě a velikosti chladiče, případně způsobu chlazení).

Pro ostatní součástky téměř obecně platí, že vliv elektrického namáhání a namáhání okolní teplotou ize zahrnout pod jeden opravný součinitel, neboť mezi vnitřními ztrátami a okolní teplotou platí u většiny součástek vzájemný vztah. Intenzita poruch součástí se zvětšuje s elektrickým namáháním a zvyšující se teplotou okolí. Vliv obou namáhání se sčítá. Zcela "odlehčený" prvek má činitel ozobvykle 0,1, při jmenovitém elektrickém namáhání oz = 1, při přetížení se oz zvětšuje až na 10 až 20. Jsou i výjimky. Např. u rezistorů s velmi velkým odporem, které nejsou plně elektricky namáhané, je in-

jsou obecně spolehlivější než tranzistory germaniové (takže ani zařízení, u kterého byla provedena pouhá "křemikalizace", není řádově spolehlivější – při správných, tj. nízkých provozních teplotách). Relé, která považujeme za jeden z málo spolehlivých prvků, patří podle výsledků testů mezi prvky velmi spolehlivé. Platí to ovšem pouze pro ideální bezprašné a suché prostředí. V praxi, zejména v prašných provozech, patří relé většinou ke slabinám zařízení. Zajímavé je, že ovíjený spoj není spolehlivější než spoj pájený. Jedním z nejméně spolehlivých prvků je kondenzátor.

V případě číslicové techniky je běžné, že mnohdy je skutečná spolehlivost větší než spolehlivost vypočtená. Je to proto, že např. tranzistor se při zkouškách intenzity poruch považuje za zničený, když se jeho zesilovací činitel zmenší o 30 %, u germaniových tranzistorů, zvětší-li se klidový proud 20×. Kdybychom zmenšili nároky na jakost tranzistoru o 50 %, zmenší se intenzita poruch téměř 10×. Přitom se v mnoha zapojeních může zmenšit zesilovací činitel až na desetinu původní velikosti a zařízení je přitom zcela v pořádku.

Nesprávným používáním elektronického zařízení lze jeho spolehlivost značně zhoršit, zejména, používáme-li ho v nesprávném prostředí.

Vezměme opět příklad z našich domácností a běžné praxe. Televizor, který umístíme do obývací stěny tak, že zamezíme přirozenému větrání (proudu vzduchu zadními větracími otvory), se přehřívá a bude mít větší poruchovost.

Většině zařízení vadí i prudké střídání teplot. Je známo, že např. elektronická zařízení, umístěná v automobilu, jsou podstatně méně spolehlivá a mají kratší dobu života než tatáž zařízení zkoušená v laboratorních podmínkách.

Za jistou specialitu elektroniky lze považovat i okolnost, že elektronické součástky mají jistou měřitelnou a relativně velikou intenzitu poruch i tehdy, nejsou-li vůbec zatíženy nebo nejsou-li ani v provozu. Tuto vlastnost mají zejména všechny polovodičové součástky. V praxi se to projevuje zejména tím, že můžeme najít vadnou polovodičovou součástku ve skladu součástek i tehdy, když všechny součástky prošly kontrolou před uskladněním. I u kompletních výrobků se tedy může stát, že zařízení, či nový výrobek, který je delší dobu uskladněn a který chceme po určitém čase použít, má poruchu, která vznikla pouhým skladováním. To je jistě nepříjemná vlastnost, vysvětluje skrytými technologickými vadami, vzniklými zejména při kontaktování (termoelektrické napětí mezi vývodem, pájkou, kontaktní ploškou apod.), dále špatným pouzdřením (vlhkost může pronikat až k polovodičovému systému a vytvářet napěťové články), případně i vadami ve struktuře samotné polovodičové vrstvy, které se mohou chemickými pochody rozšiřovat i tehdy, neprochází-li polovodičovým systémem žádný proud. S těmito otázkami se potýkají prakticky všichni výrobci elektronických součástek na celém světě. Z odborné literatury je známo, že intenzita poruch skladovaných nebo již zapájených, ale nepoužívaných polovodičových součástek je asi 10× až 50× menší než při plném namáhání. Ale i tak je to relativně velké číslo, což zejména u složitých zařízení přináší mnohé potíže.

Zvětšování spolehlivosti

Spolehlivost elektronických zařízení a ostatně spolehlivost praktícky každého vyráběného zařízení je jedním ze základ-ních ukazatelů jakosti. Ta ovšem dnes zajímá každého a honba za co největší jakostí a spolehlivostí je nejenom jakousi celosvětovou módou, ale i technickou nutností. Neodborníkům je třeba zdůraznit, že na světě neexistuje absolutně spolehlivé, bezporuchové technické zařízení. U každého zařízení lze spolehlivost (tj. pravděpodobnost poruchy) vyjádřit ko-nečným číslem právě tak, jako jeho dobu života. Některé praktické průmyslové metody zvětšování spolehlivosti se dají přenést i do amatérské praxe. Jiné naopak jsou předmětem základního výzkumu a jejich uplatnění mohou ovlivnit pouze velké koncerny. Obecně lze říci, že obrovský pokrok v této oblasti pomohla elektronice udělat kosmonautika a "kosmická" technika vůbec, u níž je spolehlivost řídicích elektronických součástek vlastně prvotní podmínkou a použití. jejich nasazení

Základní metody zvětšování spolehlivosti

Jak plyne z výpočtů spolehlivosti, je zařízení tím spolehlivější, čím jsou spolehlivější součástky, z nichž je složeno. Přitom celkový výsledek závisí i na tom, zda v zařízení není nějaký prvek, který je použit mnohokrát, a který je vůči ostatním součástkám výrazně nespolehlivý.

Pro výrobce elektronických zařízení z toho plyne základní zásada: nakupovat co možno nejspolehlivější součástky. Amatéry musíme upozornit na skutečnost, že většina vyráběných polovodičových prvků se vyrábí a prodává ve dvou jakostních třídách, v běžném a průmyslovém provedení. Průmyslové provedení znamená, že součástka je více či méně předimenzována, dokonale proměrena, měkdy i jinak zapouzdřena a chráněna, měla by mít tedy větší spolehlivost a odolnost. Samozřejmě, že prvky s průmyslo-

vou spolehlivostí jsou i dražší.

Výrobci číslicových zařízení dnes běžně kromě nákupu co nejspolehlivějších zařízení dělají i to, že prakticky všechny prvky před pájením do desek s plošnými spojí zkoušejí a dokonale proměřují. Je běžné, že součástky před použitím třídí do jakostních tříd, a podle výsledku dodatečných měření se součástky s nejlepšími parametry dávají na nejexponovanější místa v zařízení. Stejně důležitá jsou mezioperační měření na nehotových kompletech, které včas dokáží odhalit vady, které se mohou vyskytnout při postupujícím technologickém procesu výroby. Z ekonomického hlediska je odhalení vadného integrovaného obvodu před započetím výroby středního počítače 10 až 100× levnější než jeho identifikace a oprava závady při oživování nebo dokonce při opravě u zákazníka. Navíc důsledná předvýrobní a technologická kontrola během výroby mnohokráte zkra-cuje čas nutný k oživování celého zařízení. Podpůrným důvodem je i skutečnost, že součástky a sestavované díly lze většinou kontrolovat automatickými a poloautomatickými jednoduchými testery, obsluhovanými pracovníky s velmi nízkou kvalifikací. Naopak oživování zařízení je velmi náročná "ruční" práce, vhodná pro nejkvalifikovanější elektroniky a inženýry, kterých je všude nedostatek. Tato praxe – přezkoušet a přeměřit všechny součástky dříve, než je zapájíme do zařízení, je velmi rozšířená mezi radioamatéry a vřele ji všem doporučujeme. I pro amatéra platí to, co v průmyslu – odhalit vadný tranzistor (odpor, integrovaný obvod atd.) před zapájením vás stojí vždy mnohonásobně menší úsilí, než odhalit vadný tranzistor (odpor, IO atd.) při oživování.

Běžnou praxí je i tzv. zahořování součástek. Je to poměrně nákladná záležitost, která v praxi znamená, že každou exponovanou součástku zapojíme po několik hodin v takovém pracovním režimu, v jakém bude použita v přístroji a potom ji teprve přeměříme. Někteří výrobci takto zkoušejí, někdy i při zvýšené teplotě, po mnoho desítek hodin i své finální výrobky. Tato relativně velmi stará a velmi nákladná zahořovací technika je postavena na prakticky ověřeném poznatku, že největší množství poruch, které mohou vzniknout v elektronických výrobcích, je způsobeno technologickými vadami použitých součástek, které se projeví v prvních desítkách hodin provozu. A to zejména při provozu za zvýšené okolní teploty.

Spolehlivosť elektronického zařízení velmi ovlivňuje i vlastní konstrukce. Praktickým rozborem spolehlivosti zařízení se dochází k tomu, že stejné součástky mohou mít statisticky různou spolehlivost podle toho, jak s nimi projektant naloží. Jde zejména o volbu správného pracovního režímu každé použité součástky (má-li každá součástka ještě určitou rezervu nebo je-li namáhána až na dovolenou Nevhodné je třeba umístit hřející mez). diody těsně vedle elektrolytického kondenzátoru apod. Velmi důležitý je i správný oběh vzduchu uvnitř přístroje. Prakticky všechny elektronické součástky spotřebovávají jistou elektrickou práci, kterou ve formě tepelných ztrát vyzařují. U integrovaných obvodů TTL se např. počítá průměrná ztráta na jedno hradlo 10 mW. Odvedení, popř. správné rozložení takto vzniklého tepla je základním konstrukčním úkolem. Přitom je třeba, aby se zařízení nepřehřívalo nejenom jako celek, ale aby nevznikaly "tepelné uzly", v nichž by se přehřívaly byť jen některé součástky.

Ke konstrukční dokonalosti patří i to, že všechny součástky na desce s plošnými spoji musí být mechanicky dobře přichyceny. Platí zásada, že připájení za vývody by nemělo být nosnou konstrukcí. Výjimku tvoří samozřejmě integrované obvody s velkým množstvím vývodů. Tranzistor by měl však mít podložku, dioda by jaksi neměla "viset ve vzduchu" atd., tím méně hřející odpory nebo velké zatěžovací elektrolytické kondenzátory, neboť cínové spoje mají relativně malou mechanickou pevnost, která se velmi snadno při otře-

sech poruší.

Jaké jsou další současné způsoby zvy-

šování spolehlivosti?

Jedním z nejzákladnějších je volba co největší integrace. Integrovaný obvod, který někdy nahradí i tisíce nebo desetitisíce součástek (tedy diod a tranzistorů), má řádově stejnou spolehlivost jako jednotlivý tranzistor. To je velmi podstatně a ve svém důsledku to znamená, že čím je větší integrace, tím se relativně zvětšuje

spolehlivost.

Dalším možným způsobem, jak zvětšit spolehlivost, je redundantní zálohování. Volí se takové sérioparalelní spojování stejných součástek, aby při poruše jedné z nich zůstala funkce zařízení zachována. Tento problém je dnes vlastně samostatným vědním odvětvím, rozvíjejícím se zejména na základě nároků, které na spolehlivost klade kosmonautika, raketová technika a letecký průmysl. Ukážeme si alespoň základní filozofické směry, kterými se tato odvětví ubírají. Pro výchozí výpočet se vlastně hodí již to, co jsme si řekli o zálohování náhradními díly. Z hlediska spolehlivosti je nejlépe zálohovat na co nejnižším stupni. Lépe je mít v záloze každou jednotlivou součástku, než celý sestavený díl. Pokryjeme tak mnohem větší množství možných poruch. Můžeme-li přepnout při poruše celý náhradní díl, pokryjeme tak při automatickém přepínání pouze jednu poruchu, je-li každá součástka několikrát "zparalelizována" pokryjeme takovou redundancí již velké procento poruch a spolehlivost se nezvět-ší pouze dvakrát, ale mnohokrát. Potíž je pouze v tom, jak automaticky přepínat paralelně řazené součástky. Začněme u elementárních případů: máme-li spínací kontakt relé a přidáme-li druhý kontakt paralelně, vyloučili jsme pouze část poruch - jen ty, které vznikly tím, že se u prvního kontaktu neúměrně zvětšil přechodový odpor. Když chceme vyloučit i vady vzniklé přepálením cívky a "speče-ným" kontaktem, musíme jedno relé nahradit nezávislými čtyřmi relé. Pak při poruše jednoho relé zůstane funkce celku zachována. Stejným případem je, chceme-li zvětšit spolehlivost diody (viz obr. 1a) nebo např. tlačítka nebo spínače (obr. 1b). Vznikné tak čtveřicová struktura, při které porucha jednoho prvku ještě neznamená závadu funkční, závadu celku. Při jisté konstelaci pak může systém čtyř prvků pracovat i při poruše dvou nebo dokonce tří prvků. Každý ovšem vidí, že čtveřicová struktura znamená znásobení ceny celého zařízení a podstatné zvětšení jeho objemu. Částečně lze tuto nevýhodu potlačit již v prvovýrobě, kdy se čtveřice diod zapouzdří do jednoho pouzdra. Pak cena "diody" není samozřejmě čtyřnásobná, ale mnohem menší.

Obr. 1. Redudantní zálohování a) diody, b) tlačítka

U funkčních celků s logickými integrovanými obvody lze např. nechat hradla pracovat paralelně. Nicméně nejmenší počet "paralelizovaných" prvků jsou tři. Na výstupu paralelního členu musí být vždy majoritní rozhodovací člen, který rozhoduje většinovou metodou o tom, který z výstupních signálů je při poruše jednoho prvku správný. I tento způsob je "objemově" a finančně velmi nákladný, nicméně se také používá.

K zajištění kosmické spolehlivosti zejména u počítačů se používá také mnohonásobné zálohování celých funkčních celků, přičemž počítač si dokáže automaticky diagnostikovat vadný díl a automaticky si připnout dobrý díl záložní. Za obrovskou cenu se pro účely kosmonautiky vyrábějí počítače, které mají zaručeny desítky let bezporuchového automatického provozu.

Poruchovost elektronického zařízení lze částečně ovlivnit i správným uživatelským přístupem. Elektronická zařízení ve velké většině nesnášejí dlouhodobé skladování ve vlhkém agresívním prostředí. Vlhkost dokáže ve velmi krátké době prakticky zničit všechny kontakty jak relé, tak spinačů, tlačítek a jiných elektromechanických dílů. Mezi plošnými spoji pak vytváří polovodivé můstky a svody.

Poměrnou zvláštností, zejména z hlediska ostatní techniky, je skutečnost, že elektronika, zejména číslicová technika, vyrobená na bázi integrovaných obvodů, nepotřebuje, žádnou preventivní údržbu. Výjimku tvoří některé elektromechanické části jako čtečky děrné pásky a děrovače, nebo elektrické psací stroje. Samotné elektronické díly je však pouze nutno chránit a zbavovat prachu. Žádná jiná preventivní údržba není možná.

Je již tradicí, že se velké počítače umisťují do klimatizovaných místností. Je ale na druhé straně faktem, že do "skleníkového" prostředí nemůžeme umístitvšechny elektronické přístroje. Vrátíme-li se však do domácnosti každého z nás, tak ten již na počátku vzpomínaný televizor postavíme tak, aby kolem něho mohl proudit vzduch. Když už nemáme možnost umístit ho jinam, než do jedné ze

skříněk dnes tak moderní obývací stěny, musíme koloběh vzduchu zajistit kolem zadní stěny TVP. U barevných televizorů obvykle navíc nestačí "zadní průchod", ale je vhodné zajistit umělý oběh studeného vzduchu, který vytvoříme např. větrákem Mezaxial, který fouká studený vzduch do zadních větracích otvorů zadní stěny TVP. Je ho možné zapínat natrvalo, nebo bimetalovým kontaktním teploměrem, když teplota uvnitř přístroje přesáhne 30 °C.

Co říci o diagnostice závěrem? Je to relativně nový obor, jehož praktické výsledky mohou přinášet užitek jak jednotlivcům, tak i organizacím. Vždyť jen postavit opravárenství na vědeckou racionální úroveň a vyřešit v některých oborech nedostatek náhradních dílů, zrychlit a zracionalizovat opravy, zvětšit spolehlivost výrobků – to jsou cíle mnohých výrobních i nevýrobních organizací. I když naše povídání o diagnostice nebylo vševyčerpávající, jistě alespoň ukázalo, jakými prostředky je možno těchto dílů dosáhnout.

Diagnostické pomůcky

Diagnostika je dnes prakticky vědeckou disciplínou. Přesto nemusí být všechny diagnostické pomůcky a přístroje samy o sobě složité a drahé. Je známo, že mnoho poruch a závad lze odhalit nebo lokalizovat a pak tedy i opravit velice primitivními prostředky. V každé laboratoři, elektronickém pracovišti i dílně se vyskytují jednoduché pomůcky i amatérsky zhotovené přístroje, které každý rád a často používá. Dokonce bychom mohli říci, že některé tyto pomůcky svým způsobem uvedená pracoviště charakterizují. Krátkou vizitku neobvyklých pomůcek z našeho pracoviště vám předkládáme:

Na fotografii (obr. 2) jsou přípravky k určování čísel na špičkách konektorů FRB, když jsou špičky tak "obloženy" vodiči, že již nelze jejich čísla, ani zahlédnout. Přípravek, jak je patrné z fotografie, je proužek organického skla tloušťky 3 mm. Pro konektor FRB o 62 špičkách má rozměr 85 × 25 mm. Zářezy v kraji proužku souhlasí s roztečí špiček na konektoru a vygravírovaná čísla samozřejmě s čísly konektoru. Ještě jednodušší pomůcky s podobným cílem dodává firma Siemens k systémům NC. Jde o proužky z plastické hmoty tloušťky papíru, které mají vyděrované díry. Ty jsou svým umístěním totožné se špičkami na konektoru. Proužek tedy můžeme přes zapájený konektor převléci. Nepřehledná změť vodičů zůstane pod proužkem, děrami v proužku přesahují špičky konekto-rů. Na proužku jsou čísla špiček vytištěná a ještě barevně rozlišena. Na vyčnívajících

Obr. 3. Orientační zkoušeč tranzistorů; a) zjednodušené schéma, b) skutečné zapojení

špičkách můžeme snadno měřit s menším rizikem zkratů, navíc máme velmi dobrou orientaci. Proužek lze samozřejmě přemisťovat na všechny konektory v zařízení.

Jednou z šikovných pomůcek je zcela primitivní orientační zkoušeč tranzistorů. Jeho schéma je na obr. 3. Vlastní zařízení je tvořeno jedním kondenzátorem, dvěma rezistory R₁, R₂, telefonním sluchátkem a jednou tužkovou baterií. Vše se pohodlně vejde do čtvercové zásuvkové krabice 220 V na zeď (obr. 4, 5). Oba tranzistory T₁ a T₂ jsou vloženy do nožů z konektoru URS vně přístroje. Přístroj zapneme tak, že zkratujeme svorky K1 a K2. Tranzistory jsou zapojeny jako oscilátor a ve sluchátku se ozývá tón asi 600 Hz. Při zkoušení vyjmeme "etalonový" tranzistor a nahradime ho tranzistorem, který testujeme. Protože oscilátor je tvořen dvěma typy tranzistorů – p-n-p a n-p-n, můžeme vlastně testovat bez jakéhokoli přepínače tranzistory obou polarit (a to téměř všech typů), dokonce lze částečně zkontrolovat i jejich jakost, neboť výška tónu ve sluchátku závisí i na zesilovacím činiteli použitých tranzistorů, takže podle ní můžeme určit, je-li zkoušený tranzistor lepší než tranzistor "etalonový". Přístrojem lze zkoušet i propustnost diod nebo vodivé propojení jako jednoduchým "zkratme-

Technickou módou posledních let jsou nejrůznější zkušební sondy. Dva neobvyklé tvoy uvádíme.

lé typy uvádíme.
První typ, obr. 6, je nejprimitivnější zařízení, které v této oblasti měření můžeme používat. Jde o dva stejné obvody

Obr. 2. Přípravky k určování čísel na špičkách konektorů FRB

Obr. 4. Celkový pohled na zkoušeč tranzistorů

Obr. 5. Vnitřní uspořádání zkoušeče tranzistorů

Obr. 6. Jednoduchá logická sonda

s obrácenými typy tranzistorů. Tranzistor T_2 rozsvítí svítivou diodu D_2 tehdy, je-li na hrotu sondy dolní úroveň logického napětí, tj. log. 0. Mez, kdy zhasne dioda D_2 , nastavíme trimrem R_4 . Horní úroveň logického napětí vyhodnocuje obvod tranzistoru T_1 prakticky stejným způsobem. Svítivá dioda D_1 typu LQ101 se rozsvítí tehdy,

zvětší-li se na hrotu sondy napětí nad mez, určenou napětím na emitoru tranzistoru. Je samozřejmé, že v konkrétním provedení můžeme sondu ještě zjednodušit tím, že každý z odporových trimrů nahradíme po nastavení přístroje pevným rezistorem. Vstupní impedance sondy je dána odporem omezovacích rezistorů, odporem rezistoru v emitoru a zesilovacím činitelem použitých tranzistorů T₁ a T₂. Část odporu trimru mezi emitorem a přívodem napájecího napětí určuje i kolektorový proud tranzistoru, pokud je ovšem tranzistor otevřen do saturace. Proto musíme dbát při nastavování trimrů i na to, aby tento proud nepřesáhl dovolený proud diodou LED. Touto jednoduchou sondou lze samozřejmě zjišťovat pouze statické úrovně logických napětí u obvodů TTL.

Druhý typ sondy (obr. 7) je již trochu složitější zařízení. Je to také svým způsobem již méně univerzální přístroj. Hodí se pro opravy a oživování zařízení obsluhující integrované obvody TTL tam, kde je třeba kontrolovat a zkoušet obvody pracující s impulsy. Podobné zařízení si pod označením PP 13 pro potřebu vývojových laboratoří vyrábějí pracovníci VÚAP Praha (č. zlepšovacího návrhu 33/75) nebo pracovníci ZPA Košíře (č. přípravku 30-641/1). V těchto podnicích mohou profesionální zájemci dostat pro svůj podnik i další informace o sondě (např. o desce s plošnými spoji apod.).

s plošnými spoji apod.).
Čítačová sonda podle obr. 7 může ve své podstatě plnit dvě základní funkce: indikovat na svém výstupu úroveň logických napětí a počítat impulsy na zkušebním hrotu, pouze však do 10². Vestavěný

Obr. 7. Schéma čítačové sondy

čítač má elektrické hradlování a ruční nulování. Základem čítačové oblasti jsou dva dekadické čítače MH7490, které vlastně určují i dynamické vlastnosti sondy. Sonda je schopna zjišťovat impulsy až do kmitočtu 15 MHz s minimální šířkoú 50 ns. Přívod k sondě by při těchto krajních podmínkách neměľ být delší než 0,5 m. Za každým čítačem je přípojen dekodér BCD na kód 1 z 7 typu SN 7447, který můžeme nahradit dnes u nás běžně dostupným obvodem z NDR typu D147. Na výstupech dekodérů jsou připojeny v obou dekádách sedmisegmentové zobrazovací jed-notky TIL303. Pokud použijeme záměnné LQ410 TESLA nebo VQB71 z NDR, musíme v takovém případě jinak upravit přívody k jednotlivým segmentům čísel. Orientujeme se podle vývodů z dekodérů, které v každém případě zůstávají stejné. Čítač jde spouštět a blokovat logickým signálem – blokovací vstup je vyveden na hradlo H₃. Pozor! Tento vstup nemá žádnou ochranu proti přetížení nebo ne-správnému připojení. Čítač se ručně nulu-je tlačítkem Tl. Pro měřicí nebo kontrolní účely lze ovšem i tento vstup ovládat logickým signálem, pokud si ho vyvedeme na zdířku vně sondy.

Logickou část sondy tvoří soubor kaskádně zapojených tranzistorů T₁ až T₄. Dolní vyhodnocovaná úroveň, tj. log. 0, se nastavuje trimrem R6 tak, aby v pásmu od 0 do asi 0,8 V svítila tečka na zobrazovací dekádě 101. Při překročení napětí 0,8 V musí tečka zhasnout. Odporovým trimrem R₉ se stejným způsobem nastaví práh indikace úrovně log. 1 tak, aby při zvětšování napětí od 0 začala svítit desetinná tečka na druhé zobrazovací dekádě 100 až od dolní meze log. 1, tj. asi od +2 V.

Tato sonda má oproti předchozímu typu primitivní sondy i ochranu proti přetížení a částečnou ochranu proti nesprávnému připojení napájecích napětí. Tvoří je rezistor R₁ a obě diody D₁ a D₂. Je jasné, že tato ochrana je pouze částečná, při připojení sondy přímo na 220 V přístroj chráněn samozřejmě nebude.

Měřič Zenerových diod

Mezi zcela primitivní testery patří i měřič Zenerových diod podle obr. 8. Funkce je jednoduchá. Přístroj je vlastně jedno-

Obr. 8. Měřič Zenerových diod

duchým zdrojem proudu s napěťovým omezením, daným napájecím napětím. Proud Zenerovou diodou určíme tak, že stiskneme jedno nebo určitou kombinaci tlačítek Tl. Tak dostaneme tuto kombinační řadu proudů:

TI ₁	2,22 mA	
TI ₂	6 mA	
Tl ₃	22,2 mA	
$TI_1 + TI_2$	8.2 mA	
$TI_1 + TI_2$	24,4 mA	
$Tl_2 + Tl_3$	28.2 mA	
$Tl_1 + Tl_2 + Tl_3$	30,4 mA	

Tuto tabulku pak používáme při zkoušení. Potřebujeme-li proudy větší, musíme přidat další tlačítko s menším emitorovým rezistorem R tranzistoru T1. Pak se samo-

zřejmě rozšíří i počet kombinací. Když není stisknuto žádné tlačítko, diodou žádný proud neteče. Voltmetr je součástí přístroje. Můžeme však také pochopitelně používat voltmetr vnější. Vhodný je voltmetr s potlačenou nulou. Základní předností celého přístroje je skutečnost, že zcela jednoduchým, rychlým a primitivním způsobem můžeme změřit Zenerovo napětí a zároveň i určit druhý základní parametr – dynamický odpor Zenerovy diody v měřeném pracovním bodě. Dynamický odpor diody v praxi určime tak, že změříme Zenerova napětí alespoň při dvou různých proudech a zjistíme rozdíl mezi odpovídajícími Zenerovými napětími. Dynamický odpor je pak:

$$R_{d} = \frac{U_{Z1} - U_{Z2}}{I_1 - I_2}$$
 [\Omega; V, A],

kde U_{Z1} je Zenerovo napětí při proudu I_1 a U_{Z2} při I_2 .

Hlídače maxima odebrané elektrické energie

O tom, jak je dnes nezbytné šetřit všemi druhy energie včetně elektrické, není nutno psát. Také je známo, že elektrickou energií nestačí pouze šetřit co do množství spotřeby, ale že je nutno dodržovat určitá pravidla odběrů během dne. Rovnoměrnost odběru je důležitá nejen z hle-diska tzv. "špiček", během nichž elektrár-ny nemusí stačit požadavkům odběratelů, ale také z hlediska možnosti rozvodu elektrické energie. Stavět vedení a transformátory na maximální možnou velikost odběru není nejen možné, ale ani ekono-

Proto musí odběratelé dodržovat harmonogramy odběru, které závisí na mnoha podmínkách a jsou součástí smlouvy mezi výrobcem a odběratelem elektrické energie.

Tuto část AR považujeme za příspěvek řešení problematiky hospodaření s energií. Chceme, aby inspiroval amatéry i profesionály v oblasti, která nás všechny stále více zneklidňuje, aby bylo využito amatérského hnutí a umu i pro řešení problémů v hospodářské oblasti formou zlepšovacích návrhů v místě zaměstnání

Hlídání spotřeby elektrické energie patří dnes mezi nejvýznamnější úkoly energetiků v podnikové sféře. Pro jednotlivé odběratele jsou předepisovány maximální odběry v průběhu jednotlivých dnů a aby nebyly překročený, jsou u velkoodběratelů instalovány speciální měřicí přístroje – obvykle typu Maxiprint. Tyto přístroje pravidelně po uplynutí každé čtvrthodiny zaznamenají na speciální pásku množství elektrické energie, které bylo v této čtvrthodině spotřebováno. Jsou zaplombovány a pravidelně je distri-butorem elektrické energie kontrolován skutečný průběh odběru. Tento průběh se

stisknuto tlačítko proud Zenerovou diodou kontroluje na přístrojích, které samočin-ně vyhodnotí obsah pásky vyjmuté z Maxiprintu a porovnají získané údaje s povo-lenou spotřebou v příslušných časových úsecích. Přístroj vypíše každé překročení předepsaných hodnot a spočítá i pokutu, kterou musí odběratel za nekázeň v odběru elektrické energie zaplatit. Tyto pokuty bývají značné a finanční postih se podle platných předpisů projeví i na mzdových prostředcích podniku. Přitom bývá nejvíce finančně postihován energetik spolu

s vedoucími pracovníky podniku. Udržet výrobu na potřebné výši a přitom nepřekročit harmonogram odběru elektrické energie není pro energetiky jednoduché. V rozvodnách se nepřetržitě sleduje průběh spotřeby a v případě jejího značného překročení je nutné vypínat některá méně důležitá zařízení nebo provozy. V období špičkové zátěže se omezuje příkon kalíren, odpojují se boilery, omezuje se osvětlení atd.

Dále popíšeme některé ze způsobů indikace mezní spotřeby elektrické energie, vhodné pro menší velkoodběratele nebo cechy větších podniků. U velkých moderních podniků se obvykle řeší tento problém komplexně rozsáhlou sítí indi-kačních přístrojů spotřeby napojenou na počítač. Podle programu potom počítač nejen indikuje překračování spotřeby, ale samočinně odpojuje podle okamžité si-tuace ve výrobě méně důležité uzly spotřeby.

Jednotka signalizace bez obsluhy

Tento přístroj je nejvhodnější pro odběratele elektrické energie, kteří mají přede-psané pouze maximální množství čtvrthodinové spotřeby bez ohledu na denní dobu, nebo mají předepsanou max. spo-třebu v ranní a odpolední "špičce". Spotřeba je kontrolována obvykle pří-

strojem typu ET 401, popř. kombinací tohoto přístroje se spínacími hodinami např. typu H3DM.

Funkce přístroje

Při překročení nastavené hodnoty odebrané elektrické energie v průběhu 1 minuty se spustí akustická nebo optická signalizace, která je v činnosti pouze po určitou dobu. Jakmile se odběr v některé z následujících minut zmenší pod nastavenou hodnotu, přeruší se i signalizace. Vnitřní podnikové předpisy musí stanovit postup pracovníků při spuštění signalizace tak, aby se účelně zmenšil odběr elektrické energie. Nepředpokládá se tedy zásah specializovaného pracovníka rozvodny, ale jakási "samoobsluha" v dílně či cechu. Zařízení je vhodné pro provo-zy, v nichž není odběr elektrické energie příliš nerovnoměrný. Doba měření je 1 minuta a tato doba se projevila jako dostačující pro odeznění různých proudových nárazů při provozu v dílně. Je zřejmé, že právě z tohoto důvodu je nevyhovující hlídání okamžitého špičkového odběru elektrické energie. Informací o spotřebě elektrické energie je množství impulsů, které vysílá elektroměr. Lze vy-užít buď impulsního elektroměru, nebo běžného elektroměru doplněného snímačem, jak bude dále popsáno.

ceni, jak bude dale popsano.
Elektroměr je v obvodu spotřebitele
zaplombován a proto je nutno při použití
upraveného elektroměru připojit tento
podružný elektroměr až za hlavní elektroměr včetně příslušných měřicích transformátorů. Úprava je síce nepříjemná, ale lze ji realizovat vlastními silami odběratele, ovšem pouze v oblasti nízkého napětí.

Obr. 9. Úprava kotoučku elektroměru

Obr. 10. Přímé a reflexní fotoelektrické čidlo

Pro úpravu elektroměru lze použít libovolný elektroměr s otočným kotoučkem, který odpovídá rozsahem (včetně potřebných transformátorů) požadovaným odběrům elektrické energie. Elektroměr musí být zapojen stejným způsobem jako kontrolní měřicí přístroj, tj. do stejných fází. Impulsy získáme fotoelektrickým čidlem, a to buď přímým nebo reflexním. Přímé čidlo vyžaduje mechanickou úpravu kotoučku elektroměru. Při použití reflexního čidla postačí na povrchu kotoučku nakreslit matnou optickou černí potřebný počet proužků. Úpravy kotoučku jsou zřejmé z obr. 9a, b.

Na obr. 10a, b jsou znázorněny principy přímého a reflexního čidla. Čidla se sklá-

Obr. 11. Reflexní čidlo

Obr. 12. Zapojení fotoelektrického čidla

dají ze svítivé diody nebo žárovky jako zdroje světla a fototranzistoru jako světlocitlivého prvku.

Na fotografii (obr. 11) je reflexní čidlo používající svítivou diodu CQY17 a fototranzistor KP101. Z fotografie je patrné mechanické uspořádání včetně způsobu upevnění čidla. V blízkosti fotoelektrických prvků je destička s plošnými spoji, na níž jsou umístěny potřebné pasívní prvky obvodu. Je to rezistor R₁ (obr. 12), omezující proud svítivou diodou, rezistor R₂ zapojený v sérii s fototranzistorem a kondenzátor C, zamezující rozkmitání obvodu. Čidlo je nutno konstruovat tak, aby bylo nejen galvanicky, ale i kapacitně odděleno od kovových částí elektroměru. Čidlo připojíme stíněným kabelem, jehož

stínění je galvanicky opět odděleno od elektroměru a uzemněno až uvnitř přístroje. Toto opatření je nutné proto, že v rozvodně vznikají velké špičkové indukční proudy, které by mohly ohrozit nejen správnou funkci přístroje, ale i zničit použité polovodičové prvky.

Impulsy z elektroměru jsou přivedeny ke vstupním svorkám obvodu, který je na obr. 13. Signál je zesílen tranzistorem T₁ a dvojíce negujících hradel, vázaných rezistorem R₄, upravuje náběžnou a sestupnou hranu impulsů. Čítače IO₃₂ a IO₄₂ tvoří kmitočtový dělič. Úkolem tohoto děliče je přizpůsobit počet vstupních impulsů z pomocného elektroměru za 1 minutu hodnotě, která je číselně rovná skutečnému odběru energie v kWh. Proto jsou u čítačů vyvedeny všechny vývody na volné špičky a propojeny s následujícími obvody podle konstanty použitého elektroměru a proudových transformátorů. U upraveného elektroměru je nutno zvolit počet děr u kotoučku (nebo počet čar při použití reflexního čidla) tak, aby číselná hodnota odpovídala spolu s dělicím poměrem kmitočtu číselné velikosti spotře-bované energie. Tento postup zjednodušuje další práci s jednotkou signalizace, neboť odpadá nutnost vzájemně přepočítávat velikost předvolby a předepsané hodnoty. Pokud dělicí poměr nevyhovuje přesně našim požadavkům, lze k jemnému nastavení využít brzdicího elektro-

Obr. 14. Jednotka signalizace

troměr. Přístroj nastavíme při rovnoměr-ném odběru. Šroubovákem natáčíme magnet tak dlouho, až souhlasí číselná hodnota na displeji zařízení s hodnotou zaplombovaného elektroměru, s hodnotou, kterou tiskne Maxiprint. Výstupní impulsy z děliče přivedeme ke vstupu univerzálního čtyřdekádového čítače se zobrazovací jednotkou, který byl popsán v AR B3/1981. Tento čítač je umístěn v přední části jednotky signalizáce pod krytem z červeného organického skla (obr. 14). Schéma čítače je na obr. 15. V čítači není nutné osazovať integrované obvody MH7475, potom je však nutné propojit na desce s plošnými spoji všechny vstupy s odpovídajícími výstupy tohoto IÓ. Za čítačem je deska s pomocnými

obvody, jejíž schéma je na obr. 13. Ke stavbě je použita deska s plošnými spoji z obr. 16, na níž nejsou osazeny všechny součásti. Osazení desky s plošnými spoji je na obr. 17. Vzhledem k tomu, že tuto desku s plošnými spoji lze využít ještě k další funkci, nejsou součástky číslovány postupně a některé číselné hodnoty v pořadí chybí.

Na desce s plošnými spoji je kromě již popsaného obvodu pro fotočidlo s děliči kmitočtu umístěn generátor minutových impulsů, který se skládá z krystalového oscilátoru a z řady děličů. Na výstupu 3 integrovaného obvodu lO₂₄ vzniká každou minutu krátký impuls. Na výstupu 8 lO₂₄ je tento minutový impuls logicky vynásoben nulovacím impulsem a výsledný impuls je

využit k nulování univerzálního čítače, jak je zřejmé z celkového schematu jednotky signalizace na obr. 18. Obsah čítače se tedy plní impulsy, jejichž množství odpovídá spotřebované elektrické energii, každou minutu znovu od nulové hodnoty.

Obvod komparace s číslicovými přepínači hlídá, zda nebylo dosaženo předvolené hodnoty. Pokud ano, objeví se na vstupu KOMPARACE impuls, který uvede do činnosti obvod signalizace. Tento obvod se skládá z klopného obvodu R-S (IO₂₆), na jehož vstup 9 je přiveden negovaný komparační impuls z obvodu IO14, součinového hradla IO27 (špičky 1, 2, s invertorem IO₁₇ a ze spínacího tranzistoru (T₅) pro relé signalizačního obvodu. Klopný obvod R-S je signálem KOMPA-RACE sepnut tak dlouho, dokud není překlopen zpět buď z výstupu 9 1014, nebo pokud není stisknuto tlačítko NULOVÁNÍ. které sepne mj. i tranzistor T₃. Integrovaný obvod lO₁₄ zdé má funkci časovače, který zaručí, že varovný signál trvá vždy ale-spoň 1 minutu od okamžiku, kdy čítač dosáhl kritické hodnoty. Každý kompa-rační impuls nuluje čítač IO14 a teprve po generování dvou minutových impulsů za posledním komparačním impulsem překlopí zpět klopný obvod R-S a signalizace ustane. Kondenzátor C3 a dioda D1 mají za úkol nastavit klopný obvod R-S po zapnutí síťového napětí tak, aby nebyla signalizace v činnosti.

Konstrukce zařízení je patrna z fotografií na obr. 14, 19 a 20. Bylo použito desky s plošnými spoji univerzálního čítače (P 218) a neúplně osazené desky s plošnými spoji R203 podle obr. 16, v níž byly drátem doplněny propojky tak, aby zapojení odpovídalo obr. 13. Celkové zapojení přístroje je patrné ze schématu na obr. 18.

Použitý transformátor je na kostře El 25×25 . Primární vinutí $220 \text{ V}-1600 \text{ závitů drátu o } \emptyset 0,21 \text{ mm CuL, sekundární vinutí } 2 \times 8 \text{ V} - 2 \times 63 \text{ závitů drátu}$

o Ø 0,7 mm CuL, 18 V – 142 závitů drátu o Ø 0,3 mm CuL.

Mechanická konstrukce se skládá z plechového krytu podle obr. 21 a z krycího organického skla rozměru 150 × 300 mm. Nejlépe je použít červené organické sklo, popř. Ize použít červené organické sklo, které zespodu přestříkneme např. černou barvou s výjimkou okénka pro displej ze sedmisegmentových zobrazovacích prvků LQ410. V organickém sklu jsou ve čtyřech řadách vyvrtány větrací díry o Ø 4,5 mm a díry pro přišroubování šesti zapuštěnými šroubby M3. Tyto díry předvrtáme společně s plechovým krytem zařízení vrtákem o Ø 2,4 mm.

Číslicový přepínač je upevněn na výřezu, který umožní snadnou sestavu a vodiče lze připojit k přepínači mimo kostru. Díry v bočních stěnách slouží k přivedení vodiče se síťovým napětím, k připojení signalizace a čidla a k umístění síťové pojistky.

Na závěr ještě upozorňujeme, že není vhodné použít k signalizaci houkačku na 220 V s přerušovačem, neboť ta vyvolává silné rušivé pole, které ruší činňost přístroje.

Někdy se může stát, že potřebujeme instalovat hlídač maxima v provozu, kde jsou zapojeny dva nebo několik okruhů. Máme tedy několik elektroměrů, z nichž musíme sčítat potřebné impulsy. Pro dva elektroměry je součtový obvod nakreslen na schématu v obr. 22.

Funkce obvodu: signál z fototranzistoru snímače prvního elektroměru je připojen ke vstupu 1 a signál fototranzistoru z druhého elektroměru ke vstupu 2. Tak jako v jednotce signalizace s jediným vstupem je každý signál nejdříve zesílen tranzistorem (T₁ a T₂) a tvarován obvodem s dvěma negujícími hradly s odporovou vazbou (R₁ a R₂). Upravený signál je přiveden na vstup integrovaného obvodu MH7474, který obsahuje dva klopné obvody.

První z klopných obvodů má vstup 2 a výstup 5, druhý vstup 12 a výstup 9.

B/3 Amatérské! AD (1)

Obr. 18. Jednotka signalizace – celkové schéma

Obr. 21. Plechový kryt jednotky signalizace

Obr. 19. Jednotka signalizace – mechanické uspořádání

Obr. 20. Jednotka signalizace – mechanické uspořádání

Logická úroveň vstupu je "přepsána" na výstup s náběžnou hranou impulsu, který je připojen na vstup 3 (první klopný obvod) a na vstup 11 (druhý klopný obvod). Připojme nyní bod označený A na výstup čítače 1048 na desce s plošnými spoji pomocných obvodů (obr. 13). Na výstupu jsou hodinové impulsy pravoúhlého průběhu a tak je zaručeno, že první z klopných obvodů je aktivován v jiném okamžiku, než obvod druhý, neboť vstup 11 je připojen přes negující hradlo. I když se na-vstupu 1 a vstupu 2 objeví signály současně, je zaručeno, že se na výstupy 5 a 9 (IO MH7474) "přepíší" impulsy v jinou dobu. K výstupům je připojen tvarovací obvod, který po každé sestupné hraně výstupního impulsu vytvoří krátký impuls, určený časovou konstantou, závislou na kondenzátoru 100 pF a 470 \Omega. Poslední hradlo má otevřený kolektor, takže na výstupu získáme součtový signál. Počet krátkých impulsů na výstupu je tedy součtem impulsů na vstupech 1 a 2 bez ohledu na jejich časový sled. Tento součtový signál připojíme k děliči kmitočtu na desce pomocných obvodů (obr. 13), tj. vývodu 14 1032.

Může nastat situace, že je rozvodna s elektroměrem značně vzdálena od místa, kde můžeme spotřebu elektrické energie ovlivnit, např. od cechu s největším odběrem energie nebo ód kanceláře dispečera či energetika. Přitom je výhodné, je-li jednotka signalizace umístěna zde, neboť se v průběhu dne mění velikost předvolby a je tedy možno sledovat na zobrazovací jednotce i průběh spotřeby.

Obr. 22. Obvod pro součet impulsů ze dvou elektroměrů

Obr. 23. Galvanické oddělení pomocí relé

však propojeny drátem s odpovídajícími body výstupů.

Jákmile obsah prvního z čítačů odpovídá předvolené hodnotě na přepínačích předvolené pastěna opět signalizace. Zapojení celého přístroje je na obr. 26. Signalizací přivolaná obsluha může na panelu přístroje zjistit velikost spotřeby v předešlé čtvrthodině a dále vidí, která minuta právě probíhá. Podle toho může obsluha upravit odběr tak, aby během probíhající čtvrthodiny nebyl překročen odběr povoleného množství elektrické energie.

Z elektroměru v rozvodně, na němž je umístěn fotoelektrický snímač, potřebujeme přivést impulsy do poměrně vzdáleného místa. Při vzdálenosti delší než 5 m je vhodné oddělit galvanicky signál ze snímače od jednotky signalizace. Zabrání se tím jednak rušivým signálům, které by znehodnotily měření a jednak se zlepší bezpečnost proti úrazu elektrickým proudem. Nejjednoduššeji toho dosáhneme oddělovacími relé. Snímač na elektroměru musí mít samozřejmě vlastní napájecí zdroj. Zapojení je na obr. 23. Kolektor fototranzistoru je připojen k tranzistoru, který spíná malé relé typu LUN. Dioda s rezistorem a kondenzátorem v bázi tohoto snímacího tranzistoru má za úkol prodloužit dobu sepnutí relé. Kontakt relé je připojen k vedení, které může být až několik set metrů dlouhé, na jehož konci je cívka dalšího relé. Toto relé je napájeno z jednotky signalizace. Kontakty tohoto druhého relé jsou připojeny ke klopnému obvodu R-S ze dvou hradel integrovaného obvodu MH7474. Výstup jednoho z hradel již můžeme připojit přímo ke vstupu 14 děliče kmitočtu IO₃₂ na desce pomocných obvodů (obr. 13).

KP101

KF506

Složitější jednotka signalizace

Desku s plošnými spoji podle obr. 16, která byla v jednotce signalizace bez obsluhy osazena pouze částečně, lze použít ještě jiným způsobem. V dále popsaném zařízení je použita jedna deska s plošnými spoji pomocných obvodů osa-zená podle obr. 24 (schéma je na obr. 25) a dvě desky s plošnými spojí univerzální-ho čtyřdekádového čítače. První z čítačů registruje podobně, jako tomu bylo v jednotce signalizace bez obsluhy, impulsy z elektroměru v průběhu každé minuty. K druhému čítači jsou přes dělič kmitočtu s dělicím poměrem 1:15 přivedeny tytéž impulsy. Čítač je však plněn těmito impul-sy po dobu 15 minut. Poté je současně s tiskem přístroje Maxiprint přepsán obsah čítače do klopných obyodů MH7475 a vzápětí je čítač nulován. Na zobrazovací jednotce tohoto čítače je tedy možno číst spotřebu elektrické energie v předešlé čtvrthodině. To je výhodné tam, kde je přístroj vzdálen od přístroje Maxiprint, neboť obsluha může zjistiť, jaké údaje Maxiprint tiskl. Údaj je také užitečný při cejchování pomocného elektroměru s přístrojem Maxiprint. Na desce s plošnýelektroměru mi spoji pomocných obvodů jsou také hodiny se zobrazovací jednotkou, udávající minutu, která od posledního tisku přístroje Maxiprint probíhá. Dvě dekády udávají hodnotu 0 až 14.

První z čítačů je připojen k přepínačům předvolby a nemusí mít osazeny integrované obvody MH7475. Body pro vstupy těchto integrovaných obvodů musí být

Obr. 26. Celkové zapojení složitější jednotky signalizace

Obr. 27. Celková mechanická sestava složitější jednotky signalizace

Obr. 28. Informativní rozměry skříně složitější jednotky signalizace

Celková mechanická sestava přístroje je patrná z fotografie na obr. 27. Všechny desky s plošnými spoji jsou v rozích plíšky a nýtky spojeny tak, že tvoří jednu desku. Jednotlivé desky jsou podle schématu na obr. 26 propojeny vodiči. Sestava podle fotografie je osazena

Sestava podle fotografie je osazena pouze pro tři dekády, což obvykle pro potřeby hlídání odběru elektrické energie postačuje. Také předvolba je pouze třídekádová. Tato úsporná verze byla zvolena hlavně z důvodu nedostatku sedmisegmentových zobrazovacích jednotek typu LQ410. Zde je namístě zmínit se o poměrně značné poruchovosti těchto jednotek a doporučit jejich umístění do objímek (2× 7 in-line), umožňujících snadnou výměnu. U běžně dodávaných objímek čes-

koslovenské výroby je nutno odříznout

nebo ubrousit lem objímky, neboť obvod

LQ410 je větší než obvod běžných integrovaných obvodů.

Nulovací tlačítko na panelu přístroje na obr. 27, které slouží k synchronizaci přístroje s přístrojem Maxiprint, je vhodné použít zamykací, aby nebyl možný zásah nepovolané osoby. Další tlačítko slouží ke zrušení signalizace.

Schéma desky pomocných obvodů v plném osazení je na obr. 25. Minutový impuls je připojen ke vstupu 1 s 1022. Tento obvod je vystupem připojen k čítači IO₃₀. V obvodu IO₂₁ jsou dekódovány jednotky časového údaje. Ty jsou zobrazeny sedmisegmentovkou LQ410 (IO₄₁). IO₂₀ slouží k dekódování jedničky v desítkové dekádě (IO₄₀) a k nulování čítačů hodin po stisknutí tlačítka NULOVÁNÍ. IO23 s částí IO33 a invertorem 1043 slouží jako dělič kmitočtu 1:15 pro čtvrthodinový čítač. Na rozdíl od předchozího zapojení má IO14 v tomto obvodu funkci děliče kmitočtu (s částí IO33 a IO24) pro generování čtvrthodinového impulsu. Minutový impuls je připojen ke vstupu A a čtvrthodinový k vstupu B. Úlohou IO18 a IO28, ke kterým jsou tyto impulsy připojeny, je generovať po sobě jdoucí zapisovací a nulovací impuls do univerzálního čítače. Zapisovací impuls uchová obsah čítačů MH7490 v klopných obvodech pro zobrazení a nulovací impuls čítače nuluje. U minutového čítače není tato funkce nutná a proto lze neosadit 10 MH7475 (nutno propojit vstupy a výstupy pro IO drátovými spojkami).

Při komparaci mezi hodnotou nastavenou na přepínačích předvolby a mezi obsahem čítače se na výstupu z univerzálního čítače objeví log. 1 na výstupu KOMPARACE. Tato logická úroveň je přivedena na vstup 13 lO₁₅ (z minutového čítače) nebo vstup 11 lO₁₅ (ze čtvrthodinového čítače). Tímto signálem se překlopí odpovídající klopný obvod R-S lO₂₆ a přislušný tranzistor (T₅ nebo T₆) spíná přerušovaně signalizační relé. Pokud nepoužijeme předvolbu u čtvrthodinového čítače, neosadíme na desce B univerzálního čítače integrované obvody UCY7486 a MH7405. Funkce ostatních součástí na desce pomocných obvodů je totožná s funkcí v zapojení podle obr. 13 s výjimkou tranzistorů T₂ a T₃, které slouží ke generování opakovaných zapisovacích a nulovacích impulsů při stisknutí tlačítka NULOVÁNÍ, tedy k vynulování obvodu čítačů.

Závěrem upozorňujeme na to, že použití jednotek signalizace závisí na místních poměřech v každé rozvodně. Desky s plošnými spoji byly navrženy tak, aby je bylo možno použít univerzálně. Do desky s plošnými spoji pomocných obvodů je ještě možnost zapájet další dva integrované obvody a drátovými propojkami upravit funkci zapojení. Je možné upravit počet dekád v čítačích a upravit funkci hodin pro rozsah "jedňa hodina" (0 až 59 minut)

Pro instalaci přístroje platí samozřejmě

příslušné vyhlášky a proto je návod určen pro pracovníky s odpovídající kvalifikací.

Přístroje lze využít i pro jiné účely než pro hlídání odběru elektrické energie. Přivedeme-li např. misto signálu z fotoelektrického snímače z elektroměru na vstup impulsy z otáčkoměru nebo průtokoměru, můžeme hlídat kritické otáčky nebo průtoky atd.

Je samozřejmé, že se při použití dvou univerzálních čítačů mění i mechanické rozměry celého přístroje. Pro informaci je na obr. 28 rozměr potřebné skříně, avšak rozměry otvoru pro dekadické přepínače předvolby závisí na konkrétním zapojení.

Vzhledem k tomu, že plně osazený čítač odebírá ze zdroje proud asi 400 mA, musíme být opatrní při připojení a dimenzování napájecího zdroje.

Celkový odběr přístroje je asi 1,5 A (5 V), je však nutno počítat s určitou rezervou a zdroj dobře filtrovat. Napětí +11 V není nutno filtrovat, ale je nutno počítat s odběrem asi 800 mA.

Pomocné zdroje elektrické energie

Se zhoršujícím se nedostatkem elektrické energie se stále více vyskytují eko-nomické úvahy na téma "čím svítit". Praxe ukazuje, že jedním ze současných nejekonomičtějších a nejperspektivnějších zdrojů světla je zářivka. Lze říci, že zářivka prožívá v současné době období znovuobjevování, jakousi technickou renesanci, neboť klasická žárovka má malou účinnost a zvětšovat její účinnost znamená zkracovat dobu jejího života. Halogenové žárovky zakotvily napevno v motorových vozidlech, pro běžné svícení se však jaksi nehodí, navíc mají poměrně krátkou dobu života a vysokou teplotu, což jsou značné technické, dosud nepřekonané problémy. Zářivka má ze všech běžně používaných světelných zdrojů nejlepší účinnost přeměny elektrické energie na světelnou – je to studený, velkoplošný zdroj vhodný i k osvětlování velkých pro-stor. Dnes se daří vyrábět zářivky, které mají dobu života delší než 10 000 hodin.

V některých zemích se začínají hromadně používat i malé kapesní svítilny se zářivkovými trubicemi (obr. 29), které nejsou větší než běžná cigareta. Takové

Amatérske! A 1 11 B/3

trubice se samozřejmě hodí k lecčemus. Nejenže nad nimi jásají modeláři, ale mohou být použity při osvětlení stupnic, palubních desek letadel i automobilů nebo nejrůznějších přístrojů. Japonští výrobci si od těchto miniaturních zářivek slibují, že jimi vytlačí miniaturní žárovky.

Pro nás je nejmenší dosažitelnou zářívkovou trubicí TESLA o příkonu 20 W a délce 60 cm: Ukazuje se, že zářivka je ekonomickým zdrojem světla i v případě, nemáme-li k dispozici síťové napětí a jako zdroj elektrické energie používáme olově-

ný akumulátor 12 V.

Běžná zářivková trubice potřebuje k rozsvícení velké napětí. Zcela jednodu-chý měnič 12 V – 220 V pro zářivkovou trubici 20 W, poskytující toto napětí, je na obr. 30. Základem je generátor pravoúhlých impulsů, postavený z jednoho obvodu MH7400 (nebo MH7404), který generuje impulsy o kmitočtu asi 2500 Hz. Těmito impulsy se přes oddělovací diodu D₁ budí spínací člen, tvořený dvěma, v kaskádě zapojenými tranzistory T₁ a T₂. Náš zkušební vzorek měl zcela běžný síťový transformátor 12 V/220 V/50 W ze starého elektronkového rozhlasového přijímače Spínací výkonový tranzistor To "v rytmu" generátoru spojuje přes primární vinutí transformátoru napětí +12 V z baterie se zemí. Proto vinutím protéká stejnosměrný pulsující proud a napětí 12 V se transformuje na větší napětí. Zářívku připojíme na sekundární vinutí 220 V přímo bez omezovací tlumivky ototěna boz o hodovací tlumivky o hod zovací tlumivky, startéru a kondenzátoru. Oba vývody zářivky na patici trubice na každém konci zářivky vzájemně spojíme. Uvážíme-li skutečnost, že střídač vlástně nahradí ostatní obslužné obvody zářivky běžné při napájení 220 V, není zařízení

Střídačů existuje velké množství nejrůznějších typů. Schéma na obr. 31 ukazuje poněkud dokonalejší typ, vhodnější

Obr. 31. Střídač pro zářivku 40 W

pro zářivku 40 W. Stejně jako u prvního typu je zdrojem napájecího napětí akumulátor 12 V. Oba výkonové tranzistory T_1 a T_2 pracují "do vinutí" L_1 a L_2 v protitaktu. Zářivková trubice je stejně jako u předchozího typu střídače připojena na sekundární straně transformátoru. Ani tato zářivka nemusí mít pochopitelně startér, tlumivku a kondenzátor. Nasazují-li oscilace generátoru "neochotně", je vhodné zapojit mezi báze tranzistorů T_1 a T_2 doplňkový kondenzátor C_2 o kapacitě 68 nF. Stejně jako v předchozím případě izde nezapomeneme u výkonových tranzistorů na důkladné chladiče. Rezistory R_1 a R_2 jsou na zatížení 1 W, postačí drátové, např. TR 520. Transformátor Tr

má vinutí L_1 a L_2 (2 × 7 V) 2 × 21 závitů drátem o Ø 0,8 mm, sekundární vinutí L_3 je navinuto přes vinutí L_1 a L_2 a má 750 závitů drátu o Ø 0,4 mm CuL. Jádro transformátoru je složeno z plechů El 32 × 32 mm.

Nevýhodou zářivek je zkracující se doba jejich života při častém zapínání a vypínání. TESLA Holešovice uvádí u svých výrobků, že se doba života zářivky v hodinách zkrátí o 40 %, jestliže ji zapínáme na hodinu provozu a na půl hodiny vypínáme. Dále je třeba upozornit na to, že při nízkých teplotách (poď +5 °C) je nutno používat speciální typy zářivek

(TESLA je značí NT).

Jistou nevýhodou měničů a střídačů všech konstrukcí je jejich závislost na druhu zátěže. Jen málokteré typy pracují stejně při nejrůznějších typech spotřebíčů. Velice jednoduše to lze pochopit ze skutečnosti, že u takových zcela primitiv-ních zářízení, která používají transformátor nejenom k transformaci přerušovaného stejnosměrného napětí, ale obvykle také jako součást oscilátoru potřebného střídače, má změna impedance na sekundární straně přímý vliv na činnost oscilátoru. Takovým typickým jednoúčelovým zařízením je měnič, jehož schéma je na obr. 32. Je určen pouze pro holicí strojky vyzkoušen byl s typy strojků Charkiv a Braun. Lze ho mít pevně vestavěn např. pod palubní deskou v osobním automobilu. Základem jeho funkce je blokovací

Obr. 32. Měnič napětí 12 V/220 V pro holicí strojek

oscilátor s tranzistorem T, kmitající na kmitočtu přibližně 50 Hz. Transformátor Tr je skládán z plechů El 32 × 32 mm, L₁ 35 z drátu o Ø 0,8 mm, L₂ 35 z drátu o Ø 0,2 mm, L₃ 1400 z drátu o Ø 0,2 mm, odběr naprázdno je 0,8 A, při zatížení holicím strojkem 1,5 A. Napětí naprázdno může být v rozsahu 350 až 600 V. Měnič je vhodný napájet automobilovou baterií. Pro připojení u osobního automobilu můžeme přívod +12 V z baterie zakončit konektorem, určeným pro montážní svítilnu, pro jejíž připojení má většina osobních automobilů pod palubní deskou konektor. Z mechanického hlediska je třeba upozornit na nutnost umístit tranzistor KU605 na chladič o minimální ploše 30 cm².

Poslední z řady pomocných elektrických zdrojů je zařízení, jehož elektrické schéma je na obr. 33. Je to automaticky ovládaný pomocný zdroj 220 V asi 100 W, který se zapíná automaticky při výpadku sítě. Vlastní náhradní zdroj je tvořen střídačem se dvěma tranzistory T_4 a T_5 a transformátorem Tr_2 . Zdroj je napájen z akumulátoru 12 V, zapíná se pouze při výpadku sítě přes kontakty hlídacího stykače Re_1 . Transformátor Tr_2 by měl být asi pro 150 VA. Sekundární vinutí 220 V musí být navrženo pro proud asi 1 A. Vinutí primární části pro 10 V dimenzujeme na proud 6 A, pro 3 V postačí na 1 A. Oba výkonové tranzistory jsou na chladičích o ploše minimálně 300 cm². Vlastní náhradní zdroj pak může sloužit pro některé účely, ze známých důvodů z něj nemůžeme napájet např. síťový televizor (protože u něj je synchronizační kmitočet závislý

na kmitočtu sítě apod.).

Kromě střídače má nouzový zdroj ještě automatiku pro dobíjení akumulátoru 12 V. Jde vlastně o jednoduchý nabíječ, který má proudové a napěťové omezení. Funkce tohoto systému je patrná opět ze schématu na obr. 33. Nabíjecí proud odebíráme ze sekundárního vinutí síťového transformátoru Tr₁, které má napětí 18 V (6 A). Následuje běžný můstkový usměrňovač. Celý nabíjecí proud připojené baterie prochází výkonovým regulač-ním tranzistorem T₂. Napěťové omezení, tedy uzavření regulačního tranzistoru, a úplně omezení nabíjecího proudu zajišťuje operační zesilovač MAA741. Jakmile na jeho invertujícím vstupu bude kladné napětí větší než je napětí dané použitou Zenerovou diodou D5 na druhém vstupu, regulační tranzistor se uzavře. Toto napětí, které by mělo souhlasit i s maximálním napětím, které můžeme mít na nabitém připojeném akumulátoru, nastavíme odporovým trimrem R5. Proud je omezován

Obr. 33. Automaticky spínaný nouzový zdroj 220 V

zcela jednoduchým omezovačem, tvořeným omezovacím sériovým rezistorem R₆ o odporu 0,1 Ω a tranzistorem T₃. Nabíjecím proudem se vytváří na R6 napěťový úbytek. Jakmile tento napěťový úbytek dosáhne velikosti napětí U_{BE} tranzistoru T₆, tranzistor se začíná otevírat a zavírá regulační tranzistor T₂ tak, že přes oddělovací diodu D₆ připojí bázi T₁ na co možno nejmenší kladné napětí. Pro nastavení maximálního nabíjecího proudu nemáme, jak jasně plyne z předchozího, žádný regulační prvek. Proud, daný použitými součástkami (pokud jej chceme změnit) musíme měnit jen změnou odporu rezistoru R₆. Při daných součástkách a $R_6 = 0.1 \Omega$ je maximální nabíjecí proud asi 4 až 6 A. Přepínačem Př můžeme připojovat náhradní baterii nebo ji také pouze nabíjet a celek použít jeň jako nabíječ. Pojistky Po₁ a Po₂ lze nahradit "natahovacími" jističi, které kromě jisticí funkce mohou pracovat i jako vypínače. Vypnutím jednoho jističe (Po₁) vypneme nabíjecí část zdroje, vypnutím druhého zrušíme funkci střídače

Rozsah tohoto čísla RK nám nedovoluje tuto problematiku rozšířit tak, aby uspokojila všechny zájemce. Ty, co mají o podobné přístroje hlubší zájem, upozorňujeme na knihu Elektronika v domácnosti a na chatě, kterou připravuje v roce 1984 nakladatelství SNTL Praha.

Indikátor výpadku sítě

V některých případech je užitečné, ať v domácnosti či v průmyslových provozech, indikovat výpadek síťového napětí. Jde o připady, kdy např. přestane pracovat chladicí zařízení nebo čerpadlo a při déle trvajícím výpadku je nutno nějakým zásahem zabránit případným ztrátám nebo havárii.

V takovém případě lze samozřejmě využít k sepnutí signalizace klidového kontaktu relé, jehož cívka je napájena ze sítě. Vzhledem k tomu, že výpadek sítě není obvykle běžným jevem, není kontakt relé spolehlivým spínačem. Je vhodnější použít bezkontaktní mechanický způsob; na obr. 34 je zapojení, které má všechny požadované vlastnosti.

Obvod je napájen z baterie s dlouhou dobou života, jejíž kapacitu a stav je přesto nutno pravidelně kontrolovat. Při výpadku sítě se ozvou z reproduktoru střídavé tóny dvou kmitočtů. Tóny zní tak dlouho, pokud není v síti opět napětí, nebo pokud obsluha nevypne ručně spí-

Obvod generátoru se skládá ze tří integrovaných obvodů CMOS typu MHB4011.

Prostřední generátor střídavě propouští signály zbývajících dvou generátorů (horního a spodního) na vstup tranzistorů T₃ a T₄, které tvoří zesilovač pro reproduktor.

Pokud nedojde k výpadku sítě, není prakticky z baterie odebírán žádný proud, neboť napětím na kondenzátoru C_1 jsou tranzistory T_1 a T_2 zavřeny. Teprve při výpadku sítě přestane protékat kondenzátorem C_1 , rezistorem 10 k Ω a diodou D_1 proud, kondenzátor se vybije a tranzistory se otevřou.

Proudem přes tranzistory T₁ a T₂ je napájen reproduktor se zesilovačem a připojeno napájecí napětí pro integrované obvody. Tím je uveden obvod do provozu a ozve se varovný signál.

Zařízení je v obvodu síťového napětí a proto se musíme postarat o bezpečnost osob, které s ním mohou přijit do styku. Všechny prvky obvodu chráníme příslušným krytím, tj. uzavřeme je do pevné skříňky z izolantu tak, aby se žádná osoba nemohla ani běžným nástrojem dotknout vodivých (živých) částí obvodu. Pokud je to možné, připojíme fázové napětí sítě na horní svorku (ke kondenzátoru 0,1 μF). Funkschau 1979, č. 11

Souměrný napájecí zdroj

Na obr. 35 je souměrný napájecí zdroj pro odběr proudu od 0 do 1 A. Souměrné výstupní napětí lze přepínat přepínačem Př po skocích 9, 12 a 15 V. Vlastnosti zdroje jsou určeny parametry integrovaného stabilizátoru MA7815, zapojeného v kladné napájecí větvi. Vstupní napětí U_{vst} musí být filtrované, maximálně ±40 V. Integrovaný stabilizátor má automatické hlídání překročení mezního výstupního proudu a tedy i překročení mezního dovoleného ztrátového výkonu. Je samozřejmé, že čím lépe stabilizátor chladíme, tím větších mezních hodnot lze dosáhnout,

Obr. 35. Souměrný napájecí zdroj

takže i u tohoto stabilizátoru, stejně jako u výkonových regulačních tranzistorů v klasických zdrojích, nesmíme zapomenout na důkladný chladič.

V záporné větví zdroje je zapojen sledovací regulační zesilovač s MAA741, který výstupním zesíleným chybovým signálem přímo regulaje regulační výkonový tranzistor T₁. Tato záporná větev má vlivem regulační zpětné vazby, zavedené do obou vstupů rozdílového operačního zesilovače, výstupní napětí stejné jako větev kladná – pouze s tím rozdílem, že není chráněna ani proti zkratu, ani proti přetížení. Když tedy bude přetížena zatěžovacím proudem mezi svorkami +U_{wist} a –U_{vist} (a zatěžovací proud prochází integrovaným stabilizátoru a výstupní proud bude omezen. Pokud ovšem bude přetížena pouze záporná větev (svorky –U_{vist} a 0 V), bude přetížen regulační tranzistor T₁ a může se zničit.

Skoková regulace napětí s přepínačem Př je společná pro obě větve výstupního napětí. Pracuje na základě skutečnosti, že se u všech výkonových stabilizátorů MAA78XX (tedy 05, 12, 15 i 24) zmenší výstupní napětí o úroveň referenčního napětí přivedeného na kolektor. V praxi ani nemusíme toto referenční napětí odebírat přímo z diody. S rizikem částečného zhoršení stabilizačních parametrů lze do kolektoru stabilizatoru přivádět i proměnlivé referenční napětí z běžce potenciometru.

Stabilizátory s MA78XX

Každý, kdo začne stavět jakékoli elektronické zařízení, se musí setkat s problémem kolem napájecího zdroje. Je zcela přirozené, že se napájecí zdroj snažíme vytvořit co nejjednodušší a nejlepší. Proto jsme všichni uvitali řadu integrovaných výkonových stabilizátorů MA78XX, u nichž podle typu můžeme získat stabilizované výstupní napětí 5, 12 a 24 V, bohužel pouze do odběru 1 A. Zapojení podle obr. 36 je jakýmsi hybridem. Využívá většiny dobrých vlastností uvedeného integrovaného stabilizátoru, tedy i to-

ho, že je chráněn vnitřními obvody před přetížením. Každopádně má použití integrovaného stabilizátoru MA78XX v uvedeném zapojení své oprávnění – zjednodušuje značně konstrukci. V zapojení podle obr. 36 nejsou uvedeny údaje součástek. To proto, že pro každý druh napáječe je musíme upravit podle tabulky:

Výstupní napětí: 1 Zatížení (max.): 5 Transformátor: 2	5 A	5 V 3 A 220 V/10 V/4 A
IO N R ₁ 2 R ₂ 3 R ₃ 1 C ₁ 4 C ₂ , C ₃ 1	3,9 až 4,4 Ω, 50 W 10 Ω, 2 W 4700 μF/25 V 1 μF/100 V, svit.	KY708 MA7805 15 Ω, 15 W 4,7 Ω, 40 W 10 Ω, 2 W 2200 μF/16 V 1 μF/100 V, svit. KD607

Elektronické odměřování délek

Číslicové řízení obráběcích strojů je dnes jedním z nejprogresívnějších oborů technické kybernetiky. Současný stav této techniky je takový, že na světových trzích není prodejný ani ten nejjednodušší obráběcí stroj (tedy třeba i pouhá stojanová vrtačka), která nemá alespoň elektronické odměřování délek. Ostatní automatizační elektronické prvky již tvoří další nadstavbu. Potřebný řídicí počítač nebo řídicí systém NC používá odměřovací impulsy jako základní informační údaje, které od stroje dostává. Zároveň je odmě řování svou přesností jedním z důležitých parametrů, které určují celkovou přes-nost a tedy jakost obráběcího stroje. Určování délky je v podstatě elektromechanická záležitost. Výstup pro počítač a zobrazení odměřované délky jsou dnes vždy číslicové. Samotný princip převodu délky na elektronickou číslicovou informaci je různý. V poslední době se využívá zejměna: induktosynových lineárních nebo i rotačních pravítek, skleněných pravítek s optoelektrickým snímáním vyrytých ry sek, resolverů a induktosynů, rotačních fotoelektrických snímačů v kombinaci s přesnými odměřovacími hřebeny nebo kuličkovými šrouby. Dosud nejpřesnější laserové interferometry se používají jen v některých náročnějších aplikacích. Óbvykle dosud nejsou pevnou součástí stroje, ale slouží spíše jako laboratorní nebo nověji i přenosná etalonová měřidla.

Technicky propracované a velice přesné elektronické odměřování délek umožnilo vznik měřících přístrojů. Měřící stroj je novinka posledních několika let a jak se ukazuje, pevně zakotví jako nezbytný přístroj ve všech strojírenských závodech. Měřicí stroj nahradí desítky nejrůznějších měřicích jednoúčelových pomůcek, kterými bylo vybaveno prakticky každé pracoviště OTK. Navíc dokáže měřit s vynikající přesností i věci, které žádnými klasickými metodami měřit vůbec nešly. Bez elektronického odměřování se neobejdou ani dnes tak populární roboti. K tomu, aby robot uměl někam sáhnout, musí si toto místo umět "změřit" a pak teprve "pamatovat"

Levná integrovaná elektronika umožňuje, že dnes můžeme údaj elektronického posuvného měřítka či elektronického mikrometru apod. "vidět". Zajímavé je, že principy odměřování délek se začínají uplatňovat i v nestrojírenských oborech. To proto, že délka je jednou ze základních veličin, která může být přímo úměrná i jiné fyzikální nebo chemické veličině, kterou potřebujeme určit. Abychom uvedli prak-

tický příklad: teplota se dnes měří teploměry, které ve velké většině využívají toho, že délková tepelná roztažnost látek je v jisté oblasti přímo úměrná teplotě. Takže teplotu měříme jako délku, o kterou se určité médium "roztáhlo". Jako zajímavost uvádíme skutečnost, že dále popisovaný délkový měřič byl svým původem určený do přístroje MH-2, který slouží k stanovení množství tuku v surovinách.

To, co v současné době brání beze zbytku přenést kompletně principy a způsoby odměřování mezi amatéry, je skutečnost, že prakticky všechny používané principy mají poměrně složitou mechanickou část, kterou nelze žádnými jednoduchými prostředky nahradiť tak, aby zůstala zachována nezbytná přesnost měření. Přesto se odvažujeme řešení jednoduchého odměřování publikovat v amatérsky zaměřeném časopise. Domníváme se, že celý úkol ukazuje na možnosti, jaké má naše amatérské hnutí při hledání rezerv v našem hospodářství. A také proto, že podobné přístroje jsou použitelné zcela univerzálně v nejrůznějších technických i netechnických oborech.

Mechanickou část odměřovacího přístroje tvoří tzv. fotoelektrický snímač. Je to skříňka v mechanicky solidním pouzdru s konektorem pro připojení napájecích napětí a vývody signálu. Na jejím konci je otočný hřídel s ozubeným pastorkem. Čelek připomíná motorek. Jeho úkolem je "vyrobit" na výstupu určitý počet impulsů, který odpovídá natočení hřídele. Dnes je zcela obvyklé, že odběratelé vyžadují, aby na jednu otáčku dával fotoelektrický snímač dekadický počet impulsů, aby dále připojené elektrické obvody již nemusely obsahovat ani násobičky, ani děličky impulsů.

V naší republice vyrábějí fotoelektrické snímače dva výrobci, TESLA Kolín pod označením IME 2 VN a ZPA Košíře pod označením IRC. Nejrůznější podtypy se liší počty impulsů na otáčku, provedením hřídelů apod. Základní uspořádání podle obr. 37 zůstává však stejné pro všechny druhy.

V ohnisku parabolického zrcadla (2) je umístěna osvětlovací žárovka (1). Parabolické zrcadlo upravuje její světelný tok na rovnoběžné paprsky, které rovnoměrně

Obr. 37. Mechanické uspořádání fotoelektrického snímače

osvětlují rastr odměřovacího kotouče (3). Světelný tok, procházející rotorem (3) a statorem (4) je soustřeďován sběrnými čočkami (5) na fototranzistory (6), které vytvářejí elektrické signály.

vytvářejí elektrické signály. Odměřovací kotouč rotoru (3) je umístěn přímo na vstupním hřídeli (7).

Na odměřovacím kotoučí jsou tři stopy s rastrem. První stopa, umístěná na obvodu kotouče, je určena k vytváření signálu o poloze a má pravidelné dělení s poměrem šířky průhledné a neprůhledné čárky 1:1.

Druhá a třetí stopa jsou určeny pro generování nulového impulsu. To je impuls, který přichází jednou za otáčku rotoru. Je nezbytný pro určení absolutního místa odměřování. K indikaci polohy se obvykle využívá pouze čítačů, takže údaj o absolutní poloze se vypnutím stroje ztratí. Nulový impuls určuje spolu s koncovým spínačem na stroji místo tzv. referenčního bodu, nebo srozumitelněji řečeno, místo počátku odměřování. Tento nulový impuls v našem zařízení nepoužíváme.

Elektrické schéma fotoelektrického snímače je na obr. 38. Otáčí-li se rotorem rovnoměrně ve směru hodinových ručiček, mají impulsy z odměřovacího zařízení průběh podle obr. 39. Signál A je tvořen tranzistory, prvním a třetím fototranzistorem a signál B druhým a čtvrtým fototranzistorem. V průběhu A jsou zdůrazněny náběžné a sestupné hrany signálu šipkami. V okamžiku t_1 se rotor zastaví a průběh A bude mít trvale úroveň 1 a průběh B trvale úroveň 0. Začne-li se v okamžiku t_2 otáčet rotorem v opačném smyslu,

Obr. 38. Elektrické schéma fotoelektrického snímače

Obr. 39. Výstupní impulsy z fotoelektrického snímače

Obr. 42. Průběhy signálů v obvodech rozlišení směru pro – směr otáčení

hřebenu nebo kuličkovém šroubu. Vlastní elektronika nesmí žádné impulsy, zejména při změně smyslu otáčení pastorku, "ztrácet". Kritické případy mohou nastat až při větších rychlostech otáčení hřídele snímače. Pak se může stát, že použité integrované obvody již kmitočtově "nestačí". Za kritickou mez se dnes považuje asi 50 ot/s. Musíme si uvědomit, že tento kritický stav může nastat také při začátku odměřování, kdy se může snadno značně zvětšovat rychlost otáčení hřídele.

Konkrétní konstrukce, jak je patrné z fotografie (obr. 43) a z nákresu desky s plošnými spoji ukazuje, že lze celé zařízení postavit na jediné desce s plošnými spoji o velikosti 180 × 155 mm (obr. 44a, b, c). K desce s plošnými spoji musíme připojit nejen fotoelektrický snímač polohy, ale i vnější napájecí napětí a nulovací tlačítko, jímž lze vynulovat při počátku odměřování celý displej. Celek se

napájí ze zdroje nestabilizovaného napětí 9 až 12 V/2 A. Na desce s plošnými spoji jsou i dva integrované stabilizátory typu MAA7805. První slouží k napájení elektroníky na desce s plošnými spoji, výstupní napětí druhého lze regulovat a je určeno k napájení elektroníky v připojeném fotoelektrickém snímači délky. Oba by měly mít alespoň malé chladiče.

V čem je přínos celého zařízení? Je to zejména v jednoduchosti. Z ní plynou prakticky všechny výhody. Celek je i proti profesionálně vyráběným podobným zařízením podstatně menší a kompaktnější. Protože jsou všechny součástky (včetně obvodů stabilizace i zobrazovacích prvků) na jedné desce s plošnými spoji, je snadná i mechanická konstrukce a montáž.

Profesionálně vyráběné indikátory délky jsou ve světě i u nás jedněmi z nejhledanějších přístrojů. ZPA Košíře vyráběl známou NS 100, TESLA Kolín NS 110, nyní

Obr. 44.

Obr. 45. NS 113, indikace délky, výrobce TESLA Kolín

NS 113 (obr. 45) a NS 114. Ta má 6 odměřovaných dekád, nulování, předvolbu, předvolovací přepínače umožňující zápis libovolného čísla polohy, od kterého začínáme odměřovat. Také má znaménko smyslu odměřování. Při zapnutí se indikace automaticky vynuluje. Odměřování pracuje tak, že se při průchodu nulou směrem k záporným hodnotám nejprve objeví samé 9 a číslo se neustále zmenšuje. Ve strojírenství se požaduje, aby se změnilo znaménko smyslu pohybu a začínalo se nejmenším odměřovaným inkrementem směrem stále k větším záporným hodnotám. Všechny tyto složitosti znamenají, že i pouhá indikace je relativně složité zařízení. Zajímavé jsou i orientační ceny. NS 113 z n. p. TESLA Kolín stojí 17 300 Kčs, NS 114 12 000 Kčs. Materiál pro popsané zařízení se ve velkoobchodních cenách pohybuje kolem 1200 Kčs. Práce s osazením jedné desky s plošnými spoji není tak velká. Uvedená zjednodušení tedy znamenají přibližně 5 až 10násobnou úsporu. Ukazuje se, že taková úspora je dnes zajímavá i pro bohatší socialistický podnik.

Generátor hodinových impulsů

Podobných zapojení bylo již a dokonce i na stránkách AR řady A i B otištěno několik. Zajímavostí našeho přístroje, jehož kompletní schéma je na obr. 46 (je zcela standardní), je možnost realizovat generátor na jednostranně plátované desce s plošnými spoji (obr. 47). Sám fakt, že generátor tvořený sedmi integrovanými obvody TTL je umístěn na jednoduchém a jednostranném "plošném spoji", který lze i amatérsky snadno realizovat,

stojí za pozornost. K funkčnímu popisu zařízení postačí několik vět. Základem je krystalový generátor 1 MHz. Sériovým, nejlépe vzduchovým kondenzátorovým trimrem, lze ještě kmitočet krystalového generátoru měnit v rozsahu asi 50 Hz. Výstupní impulsy 1 MHz na výstupu 3 hradla H₃, svorka A¸ přivádíme na první dělicí člen, což je vstup 14 desítkového čítače v kódu BČD typu MH7490. Na spojených výstupech 1 a 12 tohoto obvodu dostaneme impulsy, jejichž kmitočet je poloviční (na desce s plošnými spoji to je svorka B, 500 kHz). Na výstupu 11 jsou impulsy o kmitočtu 100 kHz. Série (spojení) šesti čítačů MH7490 umožní získat výstupní impulsy o kmitočtu 1 Hz. Na výstupech A až M desky s plošnými spojí je pak celá škála hodinových impulsů o přesných kmitoč-tech v řadě 1 MHz, 500 kHz, 100 kHz až 1 Hz. Hradlo H₄ integrovaného obvodu MH7400 na desce s plošnými spoji "jaksi vybylo", jeho vývody jsou vyvedeny, a lze ho použít v následném zařízení.

Tento generátor hodinových impulsů je univerziálně použitelné zařízení, které se hodí nejen ke stavbě digitálních hodin, ale i ke konstrukci mnoha celků s číslicovými obvody.

Pro napájení generátoru hodinových impulsů použijeme napájecí zdroj s výstupním napětím +5 V/0,5 A.

Generátor impulsů 1 Hz

Na obr. 48 je zapojení generátoru 1 Hz, jenž je odvozen od kmitočtu sítě. Je to zapojení zcela zřejmě jednodušší a tedy

Obr. 47. Deska s plošnými spoji R205 generátoru hodinových impulsů

i podstatně levnější než generátor, jehož základní kmitočet je odvozen z krystalového oscilátoru. Funkce je zcela primitivní. Síťové napětí na sekundární straně transformátoru jednocestně usměrníme diodou D₁. Pak je použita omezovací Zenerova dioda D₂, která chrání vstup integrovaného obvodu před napěťovým

přetížením a omezuje vstupní napětí impulsů asi na +5 V, které je předepsáno pro obvody TTL. Použijeme-li polovinu obvodu 7413, ušetříme si stavbu monostabilního klopného obvodu a co hlavní, potřebné kondenzátory a rezistory. Tvarované impulsy o kmitočtu 50 Hz zavedeme do vstupu prvního čítače 7490, na jeho

Obr. 48. Generátor 1 Hz synchronizovaný kmitočtem sítě

výstupu D dostaneme impulsy o kmitočtu 10 Hz, další čítač 7490 dělí kmitočet impulsů desetkrát, takže na výstupu je kmi-

točet impulsů 1 Hz.

Hodiny s takovým generátorem se používají v levnějších typech stolních hodin, budíků a zejména spínacích hodin u elektroměrů apod. Avšak bohužel pouze v cizině. U nás, jak mnozí buď víme, nebo jsme se o tom přesvědčili, když jsme takové levné hodiny přivezli, podobný generátor použít nelze. Nezjistili to pouze jednotlivci, na základní neznalost této problematiky doplatily i některé podniky. Naše norma dovoluje výrobcům elektrické energie určitý rozptyl kmitočtu sítě, což se na hodinách synchronizovaných s kmitočtem sítě projevuje jako zpoždění o 5 až 15 minut za 24 hodin. Normy ve státech např. západní Evropy sice dovolují také kmitočtový rozdíl od jmenovitého kmitočtu, ale stanovují výrobcům elektrické energie, že musí během 24 hodin "dát do sítě" i určitý přesný počet period. Takže pokud se kmitočet sítě v době špičky snižuje, musí ho výrobce v ostatních částech dne či noci zvýšením kompenzovat tak, aby průměr za 24 hodin byl přesně 50 Hz.

U nás jsou podobné generátory vhodné pro hodiny, které neukazují absolutní čas. Tedy pro stopky, pro šachové hodiny

apod.

Doplněk k rozhlasovému přijímači s hodinami a budíkem

Mnozí z těch, kteří si přivezli ze zahraničí rozhlasový přijímač s hodinami, byli zklamáni. Hodiny v tomto poměrně atraktivním přístroji bývají totiž většinou řízeny kmitočtem síťového napětí (a to především u levnějších přístrojů) a proto se značně pozdí (viz předchozí článek). Když potom majitele budíček těchto hodin s rádiem vzbudí o 10 minut později, než si s přesností 1 minuty na digitálních hodinách nastavil, a navíc musí hodiny denně nastavovat, aby byly jakž takž použitelné, začne se shánět po kladivu nebo stejně naivním kupci. Nedávno se na jednoho kolegu obrátil jeden jeho známý právě se žádostí, aby "s tím něco udělal" – protože se "operace" povedla, předkládáme řešení čtenářům AR.

V přijímači s hodinami typu RF 472B byl použit hodinový obvod TLR4192 se zobrazovací jednotkou MM5457, jak je vidět ze schématu na obr. 49. Ze síťového transformátoru byla napájena zobrazovací jednotka a na vstupy 26 a 29 hodinového obvodu TLR4192 byly přiváděny impulsy získané jednocestným usměrněním a částečným vyfiltrováním síťového napětí. Impulsy byly v protifázi, neboť transformátor měl dvojité vinutí.

Protože je zobrazovací jednotka MM5457 řízena multiplexním způsobem, nestačilo přivést signál správného kmitočtu pouze k hodinovému obvodu, ale

i k této jednotce.

Na obr. 50 je zapojení upraveného obvodu hodin. Na vstup do báze tranzistoru T₃ je přiveden signál pravoúhlého průběhu o kmitočtu 50 Hz. Z kolektorů tranzistorů T₁a T₂ jsou získávány v protifázi impulsy pro hodinový obvod a z kolektoru tranzistoru T₃ potřebný synchronní signál pro zobrazovací jednotku.

Problémem bylo, jak co nejjednodušeji získat signál přesného kmitočtu 50 Hz pro bázi tranzistoru T₃. V uvedeném případě byla použita integrovaná "hodinová" dělička MOS typu C1115 s krystalovým oscilátorem (v obr. 50 čárkovaně). Získat tento nebo podobný obvod však není snadné a potom nezbude, než použít čítače TTL (MH7490 nebo MH7493) s příslušným

krystalovým oscilátorem, nebo časovač s monostabilním multivibrátorem, např. s IO NE555. První z uvedených způsobů je náročnější na prostor a na spotřebu proudu. Neobejdeme se patrně bez přídavného zdroje. Odměnou za to bude však poměrně velká přesnost hodin. Zapojení krystalového oscilátoru, děliče kmitočtu a stabilního klopného obvodu s NE555 je běžně známé a čtenář je najde např. v AR B3, ročník 1981, str. 104 a 105. Toto řešení má však jednu podstatnou nevýhodu: signál oscilátoru s NE555 proniká do obvodů přijímače a ruší příjem rozhlasu; odfiltrovat ho je v některých případech téměř nemožné a tato práce je vždy časově velmi náročná a nemusí se přitom setkat se žádaným výsledkem.

Úprava délky impulsů

Schéma na obr. 51 znázorňuje dva v sérii zapojené monostabilní klopné obvody. Každý monostabilní klopný obvod je tvořen třemi dvouvstupovými hradly TTL a jedním oddělovacím tranzistorem, který je vlastně pouze impedančním oddělovacím členem, určeným k tomu, aby malá vstupní impedance použitých hradel TTL neovlivňovala velikost konstanty článku RC. Doba překlopení monostabilního obvodu je dána touto konstantou, článek RC je tvořen kondenzátorem C₁ (C₄ u druhého obvodu) a sériovou kombinací R₃, R₂. Parazitní je v tomto případě vstupní impedance tranzistoru T₁, která by samozřejmě v ideálním případě měla být mnohem větší, než impedance prvků tvořících zpožďovací člen RC. Zapojení umožňuje realizovat fázová zpoždění až řádu 10 ms, což je větší zpoždění, než jaké je ve většině aplikací třeba. Horní mez velikosti fázového zpoždění je dána kmitočtovými vlastnostmi použitých aktivních prvků,

,

tranzistorů a hradel. Obvyklá hranice je asi 50 ns.

Použijeme-li článek RC podle schématu, tj. $C_1=5000$ pF, $R_2=22$ k Ω a $R_1=1$ k Ω , jsou fázově posouvány hrany výstupních impulsů v rozsahu 5 až 30 μ s, podle natočení potenciometru R_2 .

Jak plyne ze schématu, jsou vstupní impulsy H₅ řízeny tak, že jejich kmitočet je určen kmitočtem nutných vstupních synchronizačních impulsů. Náběžná kladná hrana impulsů na výstupu H₅ se fázově posouvá natočením potenciomet-

15 9 10 11 10n 8 12 13 15 16 17 18 19 20 21 9 10 sit CD201 TLR4192 26 Ī **ј** ЗЗ 200 mA 1k5 1k5 8k2 100r 39k 100n 2×KF506 KC508 C1115

ru R₂, sestupná záporná hrana se nezávisle na posouvání náběžné hrany fázově posouvá natáčením R₂. Pokud vstupní synchronizační impulsy svým kmitočtem nepřesahují tyto fázové posuvy, můžeme na výstupu dostat impulsy, jejichž tvar lze plynule nastavit oběma potenciometry.

D_{Sp}

D₂₀

05

D, 7

hradla: 6×7400 3×7430

1x 7420

3×7404

Kvalita náběžných a sestupných hran impulsů je prakticky určena parametry použitých hradel TTL.

Elektronické stolní hodiny

Existují některé konstrukce, které touží každý správný radioamatér alespoň jednou za život postavit. Jsou to zejména rozhlasové přijímače, nabíječky, zesilovače a z moderní číslicové techniky např. elektronické hodiny. Jasné je, že v některých státech existují takové integrované obvody, že sestavit uvedené konstrukce je velmi jednoduché. My se však budeme držet naší domácí součástkové základny. Potom, chceme-li postavit např. elektrické hodiny, jde o poměrně složitou elektronickou konstrukci. Konstrukční novinkou našeho návodu je skutečnost, že sekundy indikuje na hodinách 60 LED diod LQ101, které nahrazují vlastně analogovou sekundovou ručku. Konstrukčně je třeba uspořádat diody do kruhu, přičemž každou pátou diodu volíme v odlišné barvě. V celém poli šedesáti diod se rozsvěcí vždy po řadě pouze jedna dioda, samozřejmě, že v sekundových intervalech.

Elektrické schéma stolních hodin se sekundovým ciferníkem je na obr. 52. Jako zdroj časových impulsů používáme generátor hodinových impulsů, jehož schéma je na obr. 46. Obvody TTL mají stabilizované napájecí napětí +5 V/1 A.

Svítící displej složený z polovodičových sedmisegmentových prvků LQ410 je napájen nestabilizovaným napětím +10 V. Ti, kteří by chtěli hodiny postavit, jistě začnou ihned pátrat po desce s plošnými spoji. Tu jsme v tomto případě neměli sílu navrhnout, zkušební vzorek byl postaven na univerzální desce s plošnými spoji.

Funkce hodin je zcela zřejmá. Jejich chod je určen impulsy 1 Hz, které dodává krystalový generátor. Přesnost hodin je v podstatě určena přesností výstupního signálu tohoto generátoru. Jenom na okraj bychom chtěli upozornit na skutečnost, že běžné typy krystalů s řezem AT mají stabilitu kmitočtu obvykle asi 10⁻⁷/°C. Uvážíme-li ještě tepelnou nestálost impedancí připojených elektrických obvodů, snadno se dopracujeme k tomu, že při větších nárocích na stabilitu by měl být generátor hodinových impulsů s krystalem uložen v termostatu, jichž několik bylo již v AR publikováno.

Impulsy přivádíme na vstupní přepínač Př. Pracovní polohou tohoto přepínače je nakreslená poloha c, ve které hodinové impulsy 1 Hz procházejí hradlem H₁. Přepínač slouží pouze k nastavování hodin-ze jím volit impulsy vyššího kmitočtu, které se pak převádějí místo řídicích impulsů 1 Hz na vstupy čítačů. Tlačítko Tl₁ a hradla H₁ až H₄ mají funkci "stop" obvodu. Při stlačení Tl₁ zahradlujeme všechny impulsy přicházející z generátoru hodinových impulsů a hodiny se zastaví. Zahradlování a tedy zastavení hodin tlačítkem používáme ve chvíli, kdy čekáme s přednastavenými hodinami na časový signál, při kterém tlačítko Tl₁ uvolníme hodiny se rozběhnou.

Základem celé konstrukce jsou čítače impulsů, IO₁ a IO₂ čítají sekundy do šedesáti, IO₃ a IO₆ minuty také do šedesáti a dvě hodinové dekády jsou tvořeny obvody IO₉ a iO₁₂. Kromě hodinové dekády jsou všechny čítače typu MH74192. Na výstup oboto obvodu je nutno připojit dekodér D147, který převádí výstupní informaci z kódu BCD na kód 1 z 7, potřebný pro displej ze sedmisegmentových prvků LQ410. Omezovací rezistory R₆ až R₃ mezi dekodéry a LQ410 určují jas jednotlivých segmentů a tedy i odběr z nestabilizovaného zdroje napětí +10 V, který je napátí.

Protože je pro čítání nejvyšší hodinové dekády čítač MH74192 luxusem, bylo zvoleno jiné řešení. Potřebné tři stavy 0, 1, 2 zvládne dvojice klopných obvodů v jednom pouzdře, MH7474. Funkci dekodéru pro čísla 0, 1, 2 pak zvládla hradla H₁₃ až H₁₆ jednoho integrovaného obvodu MH7400

Sekundový ciferník tvoří šedesát diod, které jsou připojeny přes dva dekodéry na první čítače IO₁ a IO₂. Oba tyto dekodéry, bohužel, musíme realizovat ze základních hradel, neexistují v integrované podobě. V kruhovém ciferníku jsou seřazeny svítivé diody tak, jak je máme číslovány od D1 do D₆₀. Aktivní impuls na výstupu prvního dekodéru (H₁₇ až H₂₆) má úroveň log. 0, aktivní impuls druhého dekodéru na vý stupech H₄₀ až H₄₅ má úroveň log. 1. Kdýž se zobrazuje prvních deset sekund, tak je na výstupu H₄₀ log. 1 (na H₄₁ až H₄₅ log. 0). V první sekundě je log. 0 na výstupu H₁₇ svítí dioda D₁, ve druhé na výstupu H₁₈ a svítí D₂ atd., až je úroveň log. 0 na výstupu H₂₆ a svítí D₁₀. V druhé desítce sekund je log. 0 již na H₄₀ a log. 1 "se přestěhovala" na další linii, což je výstup H41. Pak se v sekundových intervalech rozsvěcují diody D₁₁ až D₂₀. Proud tekoucí svítivými diodami D₁ až D₆₀ a tím i jejich jas je určen odporem rezistorů R₂ až Ř₇.

Ostatní obvody, tedy hradla H₆ až H₁₁, a obě tlačítka Tl₂ a Tl₃ slouží k nastavování hodin. Stisknutím tlačítka Tl₂ vynulujeme čítače IO₁ až IO₆, tedy spolu s nimi i sekundové a minutové displeje. Stisknutím tlačítka Tl₃ přivedeme na vstup IO₉ sekundové impulsy, takže lze nastavit displej hodin. V celé konstrukci zabírají obvody určené pro práci hodin při nastavování relativně velký prostor. Přesto jsou nutné. Bylo by sice možno počet obvodů redukovat, ale bylo by to na úkor snadného nastavování hodin.

Všechny součástky, které se v konstrukci používají, jsou tuzemské výroby. Bohužel, alespoň v době, kdy dopisujeme tento rukopis, lze jen s velkými obtížemi sehnat zobrazovací prvky LQ410, tyto displeje lze ovšem snadno nahradit typem VQB71, vyráběným v NDR, kde je jejich maloobchodní cena asi 10 M. Použijete-li VQB71, zůstávají dekodéry D147 stejné, VQB71 má pouze mírné rozdíly v zapojení vývodů.

Naše LQ410 jde zasadit do objímky dual-in-line se čtrnácti vývody, určené pro integrované obvody.

Co říci závěrem? I když je konstrukce hodin ještě poměrně složitá, zjednodušil se návrh zejména použitím svítivých polovodičových displejů. Hodiny jsou rozměrově menší a elektricky jednodušší.

Generátor pravoúhlých impulsů

Generátor pravoúhlých impulsů je jednou z nejběžnějších pomůcek pro práci v elektrolaboratoři. Generátor na obr. 53 splňuje většinu standardních požadavků pro práci s obvody TTL.

Základní technické údaje

Napájení: +5 V/1 A, -5 V/250 mA. Základní kmitočet: lze regulovat plynule v pěti rozsazích do 10 ms.

Střída impulsů: reguluje se plynule ve čtyřech rozsazích od 10 µs do 10 ms.

Strmost náběžné hrany: lepší než 15 ns. Výstup: 75 Ω s přeplnatelnou polaritou ±5 V.

Základem celého zařízení je generátor základních impulsů, tvořený hradly H₁ a H₂ a tranzistorem T₁ (obr. 53). Opakovací kmitočet tohoto generátoru je určen časovou konstantou článků *RC*, tvořených některým z kondenzátorů C₁ až C₅ a sérioparalelní kombinací rezistorů R₁ až R₄. Rozsah se hrubě předvoluje přepínačem Př₁ a volbou příslušného kondenzátoru, plynule lze kmitočet měnit potenciometrem R₃, jehož hřídel je vyveden na přední panel přístroje. Trimrem R₄ nastavujeme začátek a konec plynulého "ladění" pouze při oživování celého přístroje. Hřídel potenciometru R₃ opatříme knoflíkem a podložíme orientační stupnicí.

Z tohoto generátoru základních impulsů jsou vyvedeny tři výstupy. První, přímý, jde přes hradlo H₃ na konektor K₂ a tudy ven z přístroje. Je určen jako výstup synchronizačního signálu pro externí synchronizaci osciloskopu nebo pro podobné účely. Druhý výstup je přiveden na tvarovací obvod H₁₀ a H₁₁. Hradla jsou zapojena jako bistabilní klopný obvod.

Obr. 54. Deska s plošnými spoji R206 generátoru pravoúhlých impulsů

Pokud je připojen Př₅ do polohy b, dostane se signál základního kmitočtu až do výstupního koncového stupně a jím až na souosý výstup celého zařízení (konektor

K₂).
Třetí výstup z generátoru signálu základních kmitočtů je přiveden na svorku a přepínače Př₂. U tohoto přepínače jde přes vazební kondenzátor C6 signál základního kmitočtu do dvou shodných, v sérii zapojených monostabilních tvarovacích obvodů. Každý z těchto obvodů je tvořen vždy dvěma dvouvstupovými hrádly TTL a jedním tranzistorem, zapojeným jako impedanční oddělovací člen. Ják již bylo uvedeno, tvarovacím obvo-dem je monostabilní klopný obvod, který

je startován sestupnou hranou přicházejících impulsů. U prvního tvarovacího obvodu jsou řídicími "startovacími" hranami sestupné hrany impulsů základního generátoru, přicházejících do vstupu 13 hradla H₄. Výstup z prvního tvarovacího obvodu je na vazebním kondenzátoru C11. Na něm jsou impulsy, jejichž vzestupná hrana odpovídá sestupné hraně řídicích impulsů a sestupná hrana je fázově posouvána. Fázový posuv je určen volbou konstanty RC v rozmezí 0,01 ms až 10 ms. zde, stejně jako u základního generátoru. Ize velikost časové konstanty RC na-stavit po skocích přepínačem Př₃, kte-rým se volí příslušný kondenzátor C₇ až C₁₀. Plynule lze časovou konstantu nastavovat v daném rozsahu potenciometrem R₈, jehož hřídel je vyveden na panel přístroje.

R 207

Druhý tvarovací obvod je zapojen stejně jako první - jde o stejný monostabilní obvod tvořený hradly H₆, H₇ a tranzistorem T₃. Má i stejné parametry – spouští se sestupnou hranou vstupních impulsů a délku výstupního impulsu lze nastavit ve stejném rozmezí (od 0,01 ms až do 10 ms) voľbou kondenzátoru C₁₂ až C₁₅ a nastavením potenciometru R₁₃.

Činnost sériově zapojených monostabilních obvodů se nejlépe sleduje při pozorování výstupních impulsů celého zařízení na osciloskopu. Díváme-li se na výstupní impulsy, tak změnou nastavova-cích prvků prvního monostabilního klopného obvodu posouváme fázově první vzestupnou hranu výstupních impulsů, nastavováním druhého monostabilního klopného obvodu se posouvá fázově druhá, sestupná hrana výstupních impulsů. To ve svém důsledku znamená, že při libovolně zvoleném kmitočtu základního generátoru můžeme nastavovacími prvky monostabilních klopných obvodů nastavit při zvoleném kmitočtu libovolnou šířku impulsu (nebo také možno říci libovolný tvar mezery mezi impulsy). Šířka impulsu a mezery při určeném opakovacím kmi-točtu jsou vzájemně závislé veličiny.

Je-li přepínáč Př₂ přepnut do polohy b, dostáváme na výstupu pouze jednotlivé impulsy. Každý impuls se startuje tlačítkem Tl. Hradla H₁₂ a H₁₃ jsou v známém zapojení, které upravuje napětí, vznikající při stisknutí tlačítka, na tvarově správný impuls. Jde v podstatě o bistabilní klopný obvod, který se překlápí shodně s přelo-

žením kontaktů tlačítka.

Impuls z výstupu 3 hradla H₁₃ se přes vazební kondenzátor C3 přivede na oba tvarovací obvody. Na výstupu zařízení pak dostaneme jednotlivý impuls nastaveného tvaru. Počátek tohoto jednotlivého impulsu je i na "synchronizačním" konektoru K₁.

Základem konstrukce je deska s oboustrannými plošnými spoji podle obr. 54 o rozměrech 145×53 mm. Vývody z desky s plošnými spoji jsou na celkovém schématu obr. 53 označeny značkou Ø před číslem.

Jednoúčelovost generátoru pro obvody typu TTL určuje jeho výstupní napětí, dané konstrukcí koncového stupně. Pro toho, kdo hodlá používat generátor i jinak a potřebuje impulsy jiných napěťových úrovní, nebude jistě problémem koncový stupeň upravit. Nejjednodušším způsobem je použít místo T₄ a T₅ tranzistory o větším výkonu. Napájecí napětí koncového stupně zvětšíme podle toho, jaké napěťové úrovně mají mít výstupní impulsy. Rezistory R₁₇ a R₁₈ nahradíme odporo-vým děličem. Dvojpólový přepínač Př₆ nahradíme přepínačem vícepolohovým. Vývody z odporového děliče pak tímto přepínačem připojujeme přímo na výstup zařízení a tím měníme i výstupní napětí.

Na předním panelu přístroje jsou tyto ovládací prvky: výstupní souosý konektor 75 Ω označený K₂ a souosý konektor 75 Ω pro vývod externích synchronizačních impulsů pro osciloskop. Jednotlivé impulsy startujeme tlačítkem TI (při přepínači Př₂ v odpovídající poloze). Dvojpólovým přepínačem Př₂ volíme impulsy buď jed-notlivé (tlačítko Tl), nebo jejich sled ze základního generátoru. Kmitočet základního generátoru volíme přepínačem Př₁ v rozsazích hrubě a plynule potenciometrem R₃. Šířkově neupravované impulsy základního generátoru dostaneme až na výstupní konektor K_2 při přepnutí pře-pínače Př₅ do polohy b. Při Př₅ v poloze a a Př₂ v poloze a, což značí automatický režim, je zapojena šířková úprava impulsů. Jak již bylo popsáno, opticky se to jeví jako nezávislý fázový posuv přední hrany impulsů (posuv realizujeme přepínačem

Př₃ hrubě a plynule potenciometrem R₈). Sestupnou hranu výstupních impulsů fázově posouváme hrubě přepínačem Př₄ a plynule potenciometrem R₁₃. Přepínače Př₁, Př₃ a Př₄ mají označení poloh: Př₁, poloha a: 10 ms, b: 1 ms, c: 100 μs,

d: 10 μs, e: 1 μs;

Př₃ a Př₄ jsou shodné, poloha a: 10 ms, dále polohy b až d mají označení 1 ms, 100 µs a 10 µs.

Potenciometry R₃, R₈ a R₁₃, přiřazené k příslušným přepínačům, jsou opatřeny pouze orientačními stupnicemi s desetinným dělením.

Elektronický přepínač – vypínač ví signálu

Číslicové obvody se dnes používají prakticky ve všech typech elektronických přístrojů, dokonce i v přístrojích, které byly donedávna "výsadním územím" analogové techniky. Uvedený přístroj používá číslicové obvody pro ovládání vysokofrekvenčního signálu.

Princip činnosti přístroje je zřejmý z obr. 56. Jakmile je na výstupu hradla +5 V, tj. log. 1, prochází na výstup celý vysokofrekvenční signál ze vstupu. Pochopitelně jednocestně usměrněný a zmenšený o úbytek na diodě D₁. Změnou výstupní úrovně z log. 1 na log. 0 se průchozí cesta zkratuje. Je použito pouze

Obr. 56. Elektronický přepínač ví signálu – princip

jedno hradlo s otevřeným kolektorem, ovládací signál je pochopitelně pouze v logických úrovních.

Na skutečném schématu zapojení (obr. 57) je použit stejný princip ke konstrukci číslicově ovládaného elektronického přepínače vf signálu. Při kmitočtu 10 MHz je potlačení signálu při průchozí cestě 1,3 dB. Při vypnutí 40 dB. Výstupní a vstupní impedance je souměrná a rovná

Obr. 57. Skutečné schéma elektronického přepínače vf signálu

Obr. 58. Řídicí jednotka pro tyristory

Řídicí jednotka pro tyristory

Zapojení řídicí jednotky pro řízení tyristorů nebo triaků podle obr. 58 je sice použitelné samostatně, ale vhodné je zejména pro zařízení, v nichž se používají průmyslové obvody DTL.

Řídicí integrovaný obvod MZK105 je vyráběn v řadě logických integrovaných obvodů DTL. Je v pouzdře dual-in-line se 14 vývody, patří do řady MZ100 s napájecím napětím do 218 V. Funkčně je MZK105 monostabilní klopný obvod určený pro zpoždění počátků impulsů, pro spínání a zkracování impulsů. Popis funkce je velmi jednoduchý. Na řídicí vstup přivádíme dvojcestně usměrněné napětí fázově shodné se střídavým napětím, které hodláme řídit v silové části zařízení ovládáním tyristorů nebo triaků. V našem konkrétním případě přivádíme na řídicí vstup nestabilizované napětí 12 až 15 V. Rezistor R₁ a Zenerova dioda D₁ tvoří omezovač; takže na spojené vstupy 8 a 9 integrovaného obvodu přichází signál pravouhlého průběhu o kmitočtu sítě a napětím daném Zenerovým napětím diody D₁. Na výstupu 7 tohoto obvodu jsou pravouhlé impulsy o kmitočtu sítě, jejichž střída se mění otáčením potenciómetru R₂, tedy v závislosti na změně časové konstanty článku *RC*; C₁R₂R₃. Těmito impulsy se ovládá blokovací oscilátor tvořený tranzistorem T1. Řídicí elektrody tyristorů jsou pak ovládány přes vinutí L3 a L4 transformátoru blokovacího oscilátoru. Transformátor má hrníčkové jádro o \emptyset 26×16 mm, H22, $A_L = 400 \,\mu\text{H/z}^2$, L_1 = 43 z drátu o Ø 0,1 mm CuL, L₂ = 193 z drátu o Ø 0,2 mm CuL, L_3 a $L_4 = 50$ z drátu o Ø 0,2 mm CuL.

Indikátor modulačních "špiček" pro nf techniku

Indikátor modulačních špiček podle obr. 59 lze používat v koncových zesilovačích, směšovacích pultech, magnetofonech atd. Připojen ke koncovému stupni stereofonního výkonového zesilovače ukazuje modulační špičky, případně přebuzení. Zapojení je trochu inspirováno způsobem, jakým se indikují impulsy v logických zkoušecích sondách. Na vstupu je prahový indikátor, který propustí impulsy až do určité nastavitelné napěťové úrovně. Pak následuje monostabilní klopný obvod, který se prošlými impulsy startuje, takže na výstupu můžeme pozorovat okamžiky, kdy se monostabilní obvod překlápí třeba jen náhodnými špičkami. Indikační prvek (v našem konkrétním případě dioda LED), mrká". Je-li vstup trvale přebuzen silným signálem, indikační dioda LED svítí trvale.

Na vstupu jsou dvě diody D₁ a D₂, které zaručují vzájemné oddělení levého L a pravého P kanálu zesilovače. Pokud je to nutné, můžeme k nim do série připojit i vazební kondenzátory. Indikovanou modulační úroveň nastavíme trimrem R₁. Zapojení je souměrné, takže indikujeme vlastně stejnou napěťovou úroveň v levém i v pravém kanálu.

Generátor 100 Hz řízený sítí

Generátor podle obr. 60 je vhodný všude tam, kde jsou třeba impulsy přesně sfázované elektrovodnou sítí. Je to zejména u tyristorových regulátorů střídavého napětí. Generátor pracuje jako detektor průběhu napětí nulou. Pracuje souměrně se střídavým vstupním napětím. Impuls na výstupu fázově i kmitočtově odpovídá průchodu střídavého napětí nu-

Obr. 60. Generátor 100 Hz řízený sítí

Obr. 59. Indikátor modulačních špiček

lovou úrovní. Impulsy na výstupu jsou krátké, dané prakticky poměrem vstupního napětí diod D_1 a D_2 . Čím je tento poměr větší, tím jsou impulsy kratší. V konkrétním případě, pokud je na vstupu střídavé-ho síťového napětí 24 V, je šířka impulsů

Zapojení pracuje souměrně, tj. impulsy na výstupu jsou stejné jak při kladné, tak pří záporné půlperiodě střídavého průběhu. Je-li na vstupu U_N nulové napětí, jsou T₁ a T₂ uzavřeny a neteče jimi žádný kolektorový proud. Předpokládáme, že příchází kladná půlperioda střídavého napětí. Ta přes diodu D1 otevře tranzistor T1 až do oblasti nasycení. Tranzistor T₂ je zapojen jako emitorový sledovač, takže zapojen jako emitorovy siedovac, także pouze "kopíruje" průběh napětí na kolektorovém odporu R₅. Záporná půlperioda napětí přes diodu D₂ vytvoří "záporný" úbytek napětí na R₆ a tím také otevře tranzistor T₁, právě tak jako kladná půlperioda přes D. Diody D₂ a Zaporova dioda rioda přes D₁. Diody D₃ a Zenerova dioda D₄ jsou pouze ochranné. Chrání přechod báze-emitor tranzistoru T₁ před proražením větším napětím.

Zapojení pracuje už od napájecího napětí 4,5 V, takže je můžeme použít prakticky bez úpravy v obvodech TTL. Dokonce pak v takovém případě můžeme oddělovací stupeň s T2 nahradit hradlem.

Integrovaný spínač diod LED

Jednou z mnoha elektronických novinek posledních let jsou optoelektronické prvky. Vedle již dříve používaných fotodiod, fototranzistorů, hradlových fotoelektrických článků jsou to nejrůznější displeje z tekutých krystalů, svítivé diody, polovodičové i klasické digitrony a mnohé další. Elektronika posledních let se vyvíjí tak, že vznik každého nového prvku váže na sebe vznik dalších speciálních prvků, světlovodů, integrovaných obvodů, dekodérů apod. Tuzemský sortiment těchto součástek a možno říci, že v dnešní elektronice nezbytných součástek, je mírně řečeno velmí chudičký. Mnoho v současné době očekáváme od připravované mezinárodní kooperace RVHP v elektro-Pokud posuzujeme optoelektronických součásték ve státech RVHP, jsou na tom např. naši sousedi v NDR mnohem lépe. Rozvoj jejich elektroniky vzbuzuje v současné době téměř závist. Jednou z polovodičových novinek v NDR z přelomu let 1981/82 je specializo-vaný integrovaný obvod A277D, určený jako analogově – číslicový spínač dvanác-ti svítivých diod LED. Tento obvod je ekvivalentní mezi amatéry velmi populárního UAA180 (Siemens). Populárního proto, že s ním lze vymyslet celé desítky nejrůznějších aplikací vhodných pro amatérské konstrukce.

Nejprve co je A277D. Je to analogový integrovaný obvod v pouzdru dual in-line s osmacti vývody. Má vestavěný stabili-zátor napětí, takže ho lze napájet ze zdroje nestabilizovaného napětí +5,5 až +18 V. Napájecí napětí se přivádí mezi vývody 1 (0 V) a 18 (+U_N). Vstupní napětí může být v rozsahu 0 až 6,2 V a přivádíme ho na vývod 17. Integrovaný obvod má ještě dva další vstúpy pro připojení refe-renčních napětí. Dolní mezní referenční napětí přivádíme na vývod 16, horní mezní referenční napětí na vývod 3. Specialitou obvodu je vývod 2 – napětím na tomto vývodu řídíme proud připojenými diodami LED a tedy i jejich svítivost. Rozsah

výstupního proudu je od 0 do 10 mA. Na obr. 61 jsou oba možné způsoby řízení. Svítivost diod nastavíme buď pevným děličem nebo potenciometrem R₃. Pokud chceme automatickou regulaci svitivosti, připojíme mezi vývod 2 a napájecí napětí fototranzistor. Prahovou svítivost pak nastavíme potenciometrem R₃. Za tmy, kdy dopadá na fototranzistor nejmenší množství světla, svítí diody připojené na výstupu integrovaného obvodu nejméně. Úměrně s tím, kolik dopadá na fototranzistor vnějšího světla, fototranzistor se otevírá, na vývodu 2 se zvětšuje kladné napětí a zvětšuje se výstupní proud připojenými diodamí.

Pokud chceme tuto automatiku vvnechat, spojujeme vývod 2 s kladným napá-jecím napětím. Pak je výstupní proud 10 mA, což prakticky znamená, že diody připojujeme k výstupům bez omezova-cích rezistorů. Závislost vstupního napětí přiváděného na vstup 17 a výstupního proudu protékajícího diodami LED D₁ až D₁₂ je na obr. 62. Tento graf byl změřen při základním zapojení celého obvodu podle obr. 63. V tomto základním zapojení je vstup pro dolní mez 16 spojen s nulovou úrovní napájecího napětí. Horní mez vstupního napětí je dána děličem R₁ a R₂. Z grafu plyne, že v tomto zapojení se diody zapínají v závislosti na velikosti vstupního napětí postupně. Existuje celá řada zapojení a aplikací, které právě tohoto zapojení využívají pro indikaci úrovně napětí, jako měřicí sondy, ale i indikátory nf signálu v rozhlasových přijímačích, magnetofonech apod.

Jedna ze zvláštních aplikací, postavených na činnosti obvodu A277D, je na obr. 64. Jde o plošný, téměř obrazovkový displej, složený z maticově zapojených diod LED, které jsou mechanicky složeny jako rovnoměrně rozmístěné body, tvořící

> A277D SP201(KP101)

Obr. 61. Zapojení pro řízení výstupního proudu u A277D

Obr. 62. Závislost vstupního napětí a výstupního proudu u A277D

plochu. V konkrétním případě jde o plo-chu tvořenou 12×12 diodami LED, které jsou umístěny v průsečících dvanácti řádků a dvanáctí sloupců. Sloupce jsou přímo napájeny z výstupů A277Ď, řádky prostřednictvím dvanácti spínacích tranzistorů T₁ až T₁₂. Zapojení se tedy chová stejně jako osciloskopická obrazovka, svítí pouze jeden bod v ploše, který odpovídá vertikálnímu a horizontálnímu "vychýlení", tedy napětí na obou vstupech integrovaných obvodů A277D. Citlivost je dána vlastnostmi obvodu a nastavením referenčních napětí. V každém případě lze tímto způsobem nahradit jednoduchý pomaluběžný osciloskop. Je známo mnoho aplikací, kdy osciloskop používáme pouze jako kontrolní prvek k indikaci, např. přítomnosti některého důležitého signálu. Jistou překážkou, zejména u nás, je současná cena svítivých diod LED. K tomu, abychom vytvořili pole o mnoha stech svítivých bodech, bychom totiž potřebovali poměrně značné finační prostředky

Jak jistě víte, je měření intenzity zvuku, popř. měření hlučnosti současným problémem. Schéma na obr. 65 není sice měřicí přístroj, ale zcela jednoduchý indi-kátor, který může sloužit pouze,k orientační ochraně. Jeho předností je však poměrná jednoduchost. Zvuk snímáme buď dynamickým mikrofonem, nebo reproduktorem, připojeným přes vazební kondenzátor. Následuje jednoduchý detektor. Výsledný stejnosměrný signál pak přivádíme na vstup A277D. Citlivost celého zařízení nastavujeme potenciometrem R₄. Na výstupu je připojeno dvanáct svítivých diod ve třech pásmech. Ideální je odlišit tato pásma různou barvou diod.

Typicky amatérskou konstrukcí je otáčkoměr do osobního vozu, který využívá dvou integrovaných obvodů z NDR, A277D a A301D. Otáčkoměr tak, jak je nakreslen na obr. 66, je určen pro čtyřdobý čtyřválcový automobil s elektrickou výzbrojí 12 V a se záporným pólem baterie na kostře. Odběr celého zařízení je asi 100 mA. Otáčkoměr je připojen přes trubičkovou ochrannou pojistku bez vypína-če, protože předpokládáme, že je ve voze v činnosti trvale, Zenerova dioda D₁₄ se Zenerovým napětím 18 V zapojená v napájecím přívodu nestabilizuje, ale chrání celé zařízení před možnými napěťovými špičkami nebo před možným přepětím. To může vzniknout např. tehdy, odpojíme-li přívod (nebo přeruší-li se nějakou závadou) k baterii a dodává-li do palubní sítě napětí při chodu motoru pouze alternátor. Oba používané integrované obvody mají vestavěnou stabilizaci napětí, takže je lze napájet z elektronického rozvodu automobilu.

Otáčkoměr je připojen přes rezistor R₁ ke kontaktu přerušovače v rozdělovači spalovacího motoru. Integrovaný obvod A301D je mnohoúčelový analogový inte-grovaný obvod, obsahující třístupňový zesilovač, prahový spínač, koncový stu-peň a stabilizátor napětí. V našem kon-

krétním případě je tento obvod zapojen jako monostabilní klopný obvod. Ten upraví vstupní impulsy, které mají nedefinovaný tvar, protože je získáváme na kontaktu otáčkoměru. Přeměňuje je na impulsy o konstantním napětí a konstantní šířce asi 2,5 ms. Tyto impulsy o napětí

2,9 V jsou jednak na přímém výstupu, vývod 6, jednak negované, na negovaném výstupu, vývod 10, integrovaného obvodu A301D. Za tímto monostabiřním obvodem následuje diskriminátor, který převádí kmitočet impulsů lineárně na stejnosměrné napětí. Je to v podstatě integrační

obvod, který integruje plochu vstupních impulsů a mění je na odpovídající stejnosměrné napětí. Protože impulsy mají na výstupu 6 (a 10), jak jsme uvedli, konstantní šířku 2,5 ms a konstantní napěťovou úroveň, je proto integrovaná plocha impulsů (a tedy i výstupní stejnosměrné napětí) přímo úměrná kmitočtu. Diskriminátor je tvořen tranzistorem T₁ a diodou D₁. Výstupní stejnosměrné napětí je přímo úměrné rychlosti otáčení motoru a má (orientačně) velikost 0 až +1,8 V. Změřit ho lze na kondenzátoru C₅, který je přímo spojen se vstupem 17. integrovaného obvodu A277D.

Všechny diody na výstupu jsou seřazeny do tří barevně odlišných řad. První řada (žluté diody) indikuje malé rychlosti otáčení motoru od 500 ot/min do 2500 ot/min. Druhá řada diod (zelené), D₆ až D₉, svítí v pracovních otáčkách motoru od 2500 ot/min do 4000 ot/min, větší až kritické rychlosti otáčení, tedy od 4500 až do 6000 ot/min, indikují červené diody D₁₀ až D₁₃. Celý přístroj se cejchuje dvěma nastavovacími prvky. Předem je třeba předeslat, že oba jsou na sobě trochu vzájemně závislé, takže nastavovací postup musíme několikrát opakovat.

stup musíme několikrát opakovat.

Citlivost diskriminátoru se nastavuje odporovým trimrem R₈. Předběžně ho nastavíme asi do poloviny odporové dráhy a pak nastavujeme trimr R₁₁ tak, aby se při 500 ot/min rozsvítila příslušná dioda (D₂). Pak se trimrem R₁₁ nastavuje horní mez rychlosti otáčení – měla by se rozsvítit dioda D₁₃ "kritických otáček". Pak se pastavuje trimr R₂ zpovu R₂₁ atd

mez rycniosti otaceni – mela by se rozsvitit dioda D₁₃ "kritických otáček". Pak se nastavuje trimr R₈, znovu R₁₁ atd.
Fototranzistor T₂ a trimr R₁₂, jak již bylo popsáno, slouží k automatické regulaci svítivosti. Za světla diody svítí naplno. Za tmy, kdy je fototranzistor T₂ uzavřen, svítí diody málo. Pokud tuto regulaci nepotřebujeme, spojíme vývod 2 s přívodem napájecího napětí a prvky R₁₃, R₁₂, C₆ i fototranzistor T₂ vypustíme.

Za oba integrované obvody není v současné době žádná tuzemská náhrada. Tranzistor T₁ lze nahradit tuzemským KF517. Fototranzistor SP201 je "elektricky" shodný s KP101 výrobce TESLA.

Číslicový intervalový spínač stěračů

Cyklovač, neboli intervalový spínač stěračů, by měl patřit ke standardní výbavě každého automobilu. Protože se stále vyskytují výrobci, kteří tuto zásadu nerespektují, je intervalový spínač stěračů neustále oblíbenou amatérskou konstrukcí. Pro amatérské zájemce existují celé desítky nejrůznějších zapojení jak ryze amatérských, tak profesionálních. Téměř všechna mají z "vnějšího pohledu" stejné ovládání: potenciometr se spínačem, kterým jednak cyklovač zapneme a jednak nastavíme časový interval spínání. Jedno z velmi jednoduchých, dnes již téměř otřelých zapojení je na obr. 67.

Činnost tohoto zapojení je zřejmá. Spínač S₁ může i nemusí být součástí potenciometru R2. Ten je sice lineární, ale každý, kdo začne cyklovač používat, zjistí, že lineární průběh není ideální. (Lepší by bylo, kdyby byl logaritmický, avšak s obráceným průběhem, než jaký mají prodávané logaritmické potenciometry.) Přes tento potenciometr R₂ a rezistor R₁ se nabíjí kondenzátor C₁. Ve chvíli, kdy se na C₁ a tedy i na bázi T₁ napětí zvětší na úroveň o něco vyšší, než je Zenerovo napětí diody D2, se otevře tranzistor T1. Přes tento otevřený tranzistor, diodu D₂ a rezistor R₄ se otevře tyristor Ty. Přes tyristor se dostane napájecí napětí na motorek stěrače a ten se rozběhne. Každý správný stěrač je vybaven tzv. "doběhovým" kontaktem S₂, který při běžných pracovních podmínkách ponechá zapnutý motorek stěračů i při vypnutí spínače tak dlouho, dokud se stěrač nedostane mechanicky do výchozí polohy na okně automobilu. Nám poslouží i k tomu, že po rozběhu motorku stěrače při automatickém sepnutí ještě celé zapojení vlastně zkratuje. Tyristor se uzavře a kondenzátor C₁ se vybije přes R3 a diodu D1. Jakmile se pak stěrač dostane do výchozí "mechanické" polohy a doběhový spínač se rozpojí, může popisovaný děj začít opět od počáteční fáze. Dobá periody, tedy okamžik, kdy znovu sepne tyristor a rozběhne se motorek, je určena časovou konstantou článku RC, C₁R₁R₂, což v našem konkrétním případě je maximálně asi 40 s.

Náročnějšího radioamatéra takový intervalový spínač neuspokojuje. Jednak ho může vlastnit nebo postavit každý, jednak toužíme u každé elektronické konstrukce po perfektnějším, "číslicovém" provedení. Uznáváme, že číslicové řešení je poněkud složitější, ale má zato mnohé jiné výhody.

U amatéra jistě trocha práce navíc nevadí, velkovýrobce si nechá celé zařízení integrovat do jednoho pouzdra – včetně výstupního tyristoru i možného vstupního senzorového tlačítka. Podle předběžného odhadu pak takové zařízení vyjde levněji. než jakékoli klasické provedení. Zejména proto, že ušetříme nastavovací potenciometr, což je dnes ve světových cenách nejdražší součástka celého cyklovače. Navíc integrovaný obvod, vyráběný ve velkých sériích (a ty jsou u automobilového příslušenství vždy zaručeny), je až překvapivě levný.

Obr. 67. Klasické zapojení intervalového spínače

R, 688 D, R, 688

Obr. 68. Elektronický cyklovač

Jak pracuje nový typ číslicového intervalového spínače stěračů? Jediným ovládacím prvkem, kromě hlavního spínače, je tlačítko. Toto tlačítko funkčně nahrazuje nastavovací potenciometr cyklovače stěračů. Jakmile cyklovač zapneme a stiskneme tlačítko, stěrač ihned vykoná jeden cykl – jednou setře automobilové okno. Kapky deště na skle automobilu houstnou a nastane chvíle, kdy potřebujeme sklo znovu otřít. Stiskneme znovu tlačítko, motorek stěračů se opět na jeden cykl spustí a znovu otře okno. Elektronika cyklovače si nyní již pamatuje čas, který uplynul mezi těmíto dvěma cykly stírání od této chvíle ve stejném časovém intervalu již spouští motorek sama. V případě, že tento "automatický" interval potřebujeme zkrátit, stačí pouze v době, kdy si přejeme, aby již stěrač setřel okno, stisknout znovu tlačítko. Elektronika se přenastaví na kratší časový interval, který sme určili novým stisknutím tlačítka a posledním automatickým pohybem sběrátka. V případě, že doba cyklování je naopak příliš krátká, stiskneme ovládací tlačítko krátce za sebou dvakrát. Tím jsme nastavený časový interval úplně zrušili. Nový čas cyklování pak určíme novým stiskem tlačítka. Výhodou je, že prakticky jediným stiskem tlačítka, které by nás při jízdě vůbec nemělo rozptylovat, nastaví-me ihned bez nutných korekcí správný interval stírání tak, aby odpovídal momentální situaci. Odpadá pracná manipulace s nastavováním potenciometru. Jak jistě víte, při nastavování klasického cyklovače nejprve nastavíte potenciometr a pak musíte čekat celou nastavenou dobu, vyhovíli zvolený interval požadavkům. Teprve pak můžete udělat dodatečnou korekci.

Elektrické schéma popisovaného číslicového cyklovače je na obr. 68, část – koincidenční obvod se nám již na toto schéma nevešel – je na obr. 69.

Nejprve princip činnosti. Základem jsou dva čítače, které se plní impulsy z generátoru. Nepracují najednou, ale střídavě. Když jeden z čítačů dosáhne stejné hodnoty, jaká je načítána na druhém, dostaneme na koincidenčním obvodu impuls, který druhý čítač vynuluje a uvolní tak jeho vstup pro impulsy. První čítač je pro vstupní impulsy v této době uzavřen. Při koincidenci – tedy stejných kombinacích výstupů – se tento děj samozřejmě periodicky opakuje. Stisknutí tlačítka má shodný následek jako vznik impulsu koincidence – převrátí funkci obou čítačů. Doba, za kterou jeden čítač dosáhne hodnoty, kterou načítal druhý čítač v předešlé periodě, je vlastně nástaveným časem cyklovače.

V naší jednoduché verzi máme k dispozici dva čítače MH7493, které mají, jak známo, pouze 16 stavů. Aby nejdelší možný nastavený čas celého zařízení byl asi 20 s, musí být perioda vyráběných impulsů delší než 1 s. Časové impulsy vyrábí generátor impulsů tvořený hradly H₁ a H₄. Kmitočet tohoto generátoru je určen volbou C₁R₃ a C₂R₄. V našem konkrétním případě je opakovací doba asi 1,2 až 1,3 s. Tento generátor pracuje stále, když je zařízení zapnuto. Jeho činnost podmiňuje činnost celého zařízení a proto svítivá dioda D₁ typu LQ101 připojená na jeho výstupu indikuje střídavým zapínáním a vypínáním v periodě změny výstupního napětí jeho činnost. Zároveň plní i funkci indikátoru zapnutí celého přístroje.

Výstupní impulsy z generátoru, který, jak jsme již řekli, pracuje nepřetržitě, jsou vedeny na vstupy 14 obou čítačů MH7493 ještě přes rozhodovací hradla H₁₁ a H₁₂. Tato hradla jsou řízena z klopného bistabilního obvodu tvořeného IO MH7472. Ten svými výstupy Q a Q otvírá střídavě hradla. H₁₁ nebo H₁₂ a zároveň nulovací vstupy R₀ obou čítačů. Bistabilní klopný obvod MH7472 je ovládán (do vstupu T) signálem přes hradlo H₇, složeným ze dvou napěťově odlišných signálů. První přichází z obvodu tlačítka, druhý z obvodů koincidence. Tlačítko Tl ovládá hradla H₂ a H₃, která jsou nutná zejména pro potlačení hazardních a parazitních impulsů, které vznikají při každém sepnutí mechanického kontaktu. Na výstupu 6 hradla H₃ je trvale úroveň log. 1, která se při stisku tlačítka změní na log. 0. Tato změna vytvoří impuls, který přes hradla He H₇ překlopí bistabilní klopný obvod MH7472 do druhé polohy. Prakticky to samé se stane, když dojde ke koincidenci výstupu z koincidenčního obvodu. Na výstupu Z je trvale úroveň log. 0, která se koincidencí změní na log. 1. Z výstupu 3 hradla H, se kromě impulsu, nutného pro překlopení MH7472, spouští i monostabilní klopný obvod, tvořený hradly H₈ a H₉, který v okamžiku změny na výstupu H dodá krátký impuls, který přes invertor H₁₀ vynuluje jeden z čítačů. My chceme, aby cyklovač spustil motorek stěrače v době, kdy se mění činnost čítačů. Proto je přes rezistor R5 na výstup 8 hradla H8 připojena báze tranzistoru T₁. Jakmile dochází ke změně at už tím, že stiskneme tlačítko, nebo že došlo ke koincidenci, objeví se na bázi T1 kladné napětí, které sepne tranzistor a tím i výstupní relé Re.

Koincidenční obvod je na zvláštním schématu (obr. 69). Má celkem 2× 4 vstupy a dva výstupy V a Z. Úkolem koincidenčního. obvodu je porovnávat vzájemně výstupy QA, QB, QC a QD obou čítačů MH7493 a změnou výstupního napětí oznámit jejich logickou identitu, tedy koincidenci. Na přímém výstupu V je trvale log. 0, která se na dobu koincidence logických vstupních úrovní změní na log. 1. Toto kladné napětí přes RB ovládá bázi tranzistoru T2. Ten stejně jako T1 spíná relé Re, které je vlastně výstupním členem celého zařízení. Koincidenční obvod je tvořen obvodem UCY7486N, invertory

MH7404, "spojovacím" hradlém MH7420 a výstupním hradlem, které pouze neguje výstupní signál. Pro správnou činnost celého zařízení je nutný ještě automatizační výstup koincidenčního obvodu, který jsme označili písmenem Z. Ten je zablokován přes jednoduchý porovnávací obvod tak, že nelze dosáhnout koincidence pro stavy, kdy oba čítače mají na výstupech Q_B, Q_C a Q_D úroveň log. 0. To je proto, abychom nemohli celý cyklovač, zejména při dvojím stisknutí tlačítka, dostat do stavu, kdy bude vyhodnocovat koincidenci pro velmi krátký hazardní impuls, při kterém je třeba na výstupech čítače stav 0001 nebo třeba pouze 0000.

Proč jsme popsali tak důkladně celou činnost číslicového intervalového spínače obvod po obvodu? Je to proto, že jeho návrh je klasickou ukázkou toho, co umožňuje číslicová technika. Navíc lze u tohoto zařízení navrhnout téměř nekonečné množství dalších variant. Nejenom funkčních – kdy částečně pozměníme činnost celku – tedy např. automaticky připojujeme při cyklování ostříkovač – ale zejména provedení. Po této stránce můžeme návrh pozměnit podle toho, jaké druhy obvodů máme k dispozici. Např. pro konstrukci koincidenčního obvodu můžeme místo UCY7486N použít úplnou sčítačku, rozsah lze rozšířit i přidáním dalších dekád čítačů. Pokud budeme mít k dispozici integrované obvody CMOS,

bude konstrukce zcela jiná. Elegantně lze řešit uvedenou myšlenku pomocí mikre-procesoru, nebo ji přímo realizovat pouze programově na některém malém mikro-počítači. Předpokládáme, že čtenáři tyto varianty použijí a nebudou se ve velké většině otrocky držet našeho konkrétního návrhu. Mnozí třeba místo mechanického tlačítka použijí na vstupu senzor a napíší nám své zkušenosti "v dlouhých pochvalných dopisech".

Poslední schéma, obr. 70, které se týká číslicového cyklovače, je nutné pro připo-jení číslicového intervalového spínače stěračů na vůz ŠKODA 105 nebo 120. U ostatních amatérů, vlastníků ostatních typů vozidel, předpokládáme, že si kon-krétní připojení navrhnou již sami. Zejména pro ně platí to, že výstupní relé může být samozřejmě nahrazeno jiným spínačem, tedy třeba při vhodné úpravě zapojení i tyristorem. Pro škodovku, když nechceme provádět velké zásahy v elektrické výzbroji vozu, je relé Re vlastně nejpohodlnějším řešením. Najdeme svorkovnici motorku stěrače a oběma výstupními kontakty relé Re ovládáme motorek. Elektroniku musíme napájet přes stabilizátor +5 V, prakticky nejelegantnější je použít integrovaný stabilizátor MA7805. Jeho vstup připojíme na nestabilizované kladné napětí z automobilové baterie přes ochrannou tavnou pojistku asi 0,5 až 1 A.

Zkoušecí přístroj

Pro zkoušení žáků ve škole, přezkušování řidičů nebo určených pracovníků, ale i pro různé testy či k zábavě může sloužit přístroj, který je na obr. 71. Jedná se o přístroj, který usnadňuje práci zkoušejícímu a zvyšuje objektivitu zkoušky vyloučením vlivu vzájemných sympatií mezi zkoušejícím a zkoušeným. Přístroj není rozměrově velký a je postaven z běžně dostupných součástek.

Použití přístroje

Zkoušející předá zkoušenému test, který vybere buď sám, nebo nechá vybrat z osmi možných testů. Každý test obsahuie 15 otázek.

Poznámka: Přístroj lze rozšířit pro větší počet testů buď mechanickým vyměňováním pamětí nebo mechanickou úpravou s doplňujícím přepínačem a objimkami pro další paměti.

Každá otázka má tři odpovědi označené A, B a C, z nichž je jedna správná. Po zapnutí přístroje síťovým spínačem se obvody samočinně nastaví do výchozího stavu. Zkoušený nebo zkoušejicí nastaví tlačítky pod zobrazovací jednotkou číslo

Obr. 70. Připojení cyklovače ve voze Š 105, 120

Obr. 71. Zkoušecí přístroj – celkový pohled

testu. V poli svítivých diod označených "OTÁZKA" svítí dioda LED označená číslem 1

Stisknutím tlačítka A, B nebo C odpoví zkoušený na text otázky, přístroj zaregistruje správnost odpovědi a rozsvítí se svítivá dioda, označená 2. Bylo-li stisknuto tlačítko správné odpovědi, započítá čítač bodů počet získaných bodů, který je uložen v paměti. Při nesprávné odpovědi se nezapočítává žádný bod.

Maximální počet získaných bodů je 30 a toto číslo se zobrazí na dvoudekádové zobrazovací jednotce po skončení testu a stisknutí tláčítka pod krytem (obr. 72), označeného D. Ovládací prvky pod tímto krytem jsou určeny pouze pro zkoušejícího, je tu kromě síťového spínače ještě řada tří tlačítek. Když není stisknuto první tlačítko vlevo, které je aretační a je označeno písmenem T, probíhá testování tak, jak bylo popsáno. Po stisknutí tlačítka do polohy N se funkce přístroje rozšíří o mož-nosti testování tří testů za sebou. Po skončení poslední otázky prvního testu se opět rozsvítí svítivá dioda 0. Nyní zvolíme tlačítky 1 až 5 další test a můžeme pokra-čovat. Tímtéž způsobem pokračujeme v testu číslo 3. Počet bodů se sčítá a může být až 99.

Počet kombinací, tj. celkový počet 8 testů, zůstává zachován.

Prostřední tlačítko označeno D a slouží k rozsvěcení zobrazovací jednotky. Během testování je vypnuto a zkoušený tedy nemá možnost kontrolovat dílčí bodování a odpověď opravit. Při stisknutí tlačítka T do polohy N, kdy se zařadí tři testy za sebou, je tlačítko ZPĚT vyřazeno z činnosti a je možno nechat zobrazovací jednotku počtu bodů zapnutou

Třetí tlačítko v řadě je nulovací a nuluje všechny obvody přístroje čítače bodů. Je označeno N.

Dále jsou pod krytem umístěny dvě objímky pro paměti, do nichž jsou zapsány správné odpovědi a počet získaných bodů v jednotlivých otázkách. Počet testů (formulářů) lze tedy zvětšit, pokud zacho-

váme stejná umístění správných odpovědí a přířadíme ve stejném pořadí správně zodpovězeným otázkám stejný počet bodů. Časté vyměňování paměti v objímkách nelze doporučit pro možné mechanické poškození vývodů paměti.

Na formuláři otázek je vhodné jednotně vyznačit způsob označení testu a popsat

zacházení s přístrojem. Schéma přístroje je na obr. 73. Přístroj se skládá z těchto obvodů:

Tlačítkové obvody, které jsou tvořeny klopnými obvody R-S. Zajišťují, že při stisknutí tlačítka nebude vyslán nesprávný počet impulsů (nedokonalostí mechanického kontaktu). Jsou použity invertory MH7404 (IO₁ a část IO₂). Aby při stisknutí několika tlačítek současně nedošlo k "zmatení" přístroje, následu-je obvod z 3/4 IO₃ a 1/3 IO₄, který tomu zabrání.

Součtový kombinační obvod (3/4 IO₅ a 1/3 IO₄), který při stisknutí správné odpovědi odblokuje vstup CU do čítače bodů a nastartuje generátor předvole-né dávky impulsů. Předvolenou dávku impulsů započítá do čítače bodů.

Komparátor dávky impulsů, tj. bodového hodnocení správné odpovědi (2/3 1O₉).

Startovací obvod s nulováním (IO13). Tento obvod zaručuje vhodnou kvalitu impulsů do pomocného čítače kompa-rátoru a do čítače počtu bodů.

Pomocný čítač komparátoru (IO₁₄). Generátor impulsů (1/2 IO₂). Přechodná paměť (IO₁₅), která slouží k přečtení informace o bodovém hodnocení otázky a k "zapamatování" tohoto čísla pro případ, že bude stisknuto tlačítko ZPĚT a bude nutno získaný počet bodů případně odečíst. Výstupy z klopných obvodů tohoto IO tvoří porovnávací údaj pro komparátor (2/3

Čítač otázek (IO12) s dekodéry (IO10 a IO11), jejichž výstupy jsou připojeny ke svítivým diodám LQ110, umístěným na

panelu. Čítač získaných bodů (IO₁₈ a IO₁₉) s dekodéry (IO₂₀ a IO₂₁) a zobrazovacími jednotkami (IO₂₄ a IO₂₅).

Tříbitový posuvný registr (IO₂₂ a 1/2 IO₂₃), který při přepnutí přepínače 1 – N do polohy N dovolí trojnásobný prů-

chod čítači otázek 10₁₂, takže se postupně rozsvítí svíticí diody otázek i až 15, potom znovu od 1 do 15 a potřetí opět a u čísla 1 se čítač zastaví. V tomto režimu přístroje je blokováno tlačítko

Blokovací obvody (IO17), které mají následující úkol: první část slouží k tomu, aby se při stisknutí tlačítka ZPĚT (přepínač 1 - N v poloze 1) odečetla ta hodnota bodového hodnocení, která byla získána při posledním stisknutí tlačítka odpovědi (A až C). Obvod zamezuje tomu, aby se odečetla hodnota získaná dříve, neboť nuluje přechodnou paměť. Druhá část zaručuje, že lze použít tlačítka ZPĚT vždy pouze 1× a poté musí následovat alespoň jedno stisknutí některého z tlačítek A až C

Paměť (IO26 a IO27). Je použito elektricky pamětí programovatelných MH74188, které jsou organizovány do 32 slov po osmi bitech. Aby bylo využito všech bitů, přepínají se výstupy přepívsech blid, přepřinalise výstupy přepřinačí pro výběr testu postupně po čtyřech bitech. Při dvou pamětech MH74188 (16 výstupů) tak získáme čtyři kombinace testů odpovídající tlačítkům 1 až 4. Tlačítkem A/B odblokujeme pátým vstupem druhou polovinu obou pamětí. Celkem tedy získáme kombinace pro 8 různých hodnocení testů. Paměti MH74188 naprogramujeme podle návodu výrobce. Stručně je způsob programování popsán v AR B3/

1981, str. 113. Síťový napájecí zdroj. Skládá se z transformátoru, můstkového usměrňovače a výkonového integrovaného stabilizátoru napětí WSH914 (MA7805) pro získání napájecího napětí pro integrované obvody.

Činnost přístroje

Činnost přístroje prakticky vysvítá z popisu jednotlivých obvodů. Ještě lze připojit pár poznámek:

Po zapnutí sítě pomocí kondenzátorových nulovacích obvodů vynulují čítače i klopné obvody samočinně. Přechodová

Obr. 72. Zkoušecí přístroj s otevřeným krytem

paměť IO₁₅ si "zapamatuje" počet bodů při správné odpovědi vždy, ale pokud není stisknuto správné tlačítko, odblokuje se výstup ze součtového obvodu (špička 8 IO₄), čítač zápisu bodů. V tomto případě se nenastaví první klopný obvod IO₁₇, ale nastaví se druhý klopný obvod tohoto IO. Při stisknutí tlačítka ZPĚT se žádný bod neodečte, neboť nebyl žádný přičten.

Derivační člen (RC) na výstupu prvního klopného obvodu IO₁₇ nuluje přechodnou paměť IO₁₅.

Správnou odpověď lze hodnotit 1 až 3 body. Vždy jen jedna odpověď je správná.

Mechanická konstrukce přistroje je zřejmá z fotografií na obr. 71, 72, 74 a 75. Nebylo použito desky s plošnými spoji, ale univerzální desky pro integrované obvody. Integrovaný výkonový stabilizátor napětí WSH914 (MA7805) je nutno umístit na chladič s plochou alespoň 200 cm².

Převodník z binárního kódu na kód pro sedmisegmentové zobrazovací jednotky v hexadecimálním vyjádření

V číslicové výpočetní technice je často užitečné zobrazit čtyřbitovou binární informaci hexadecimálně, protože vyjádření v bitech je nepřehledné. Na našem trhu není k dostání obvod, který by tento převod jednoduše umožnil. Na tabulce v obr. 76 je přehledně znázorněno přiřazení binárních čísel hexadecimálním a způsob jejich zobrazení na sedmisegmentové zobrazovací jednotce. Chceme-

0 123456789A6cdEF 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Obr. 75. Zadní stěna zkoušecího přístroje

Obr. 77. Převodník z binárního kódu na kód pro zobrazení v hexadecimálním vyjádření

	_			
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4.	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
Α	1	0	1	0
В	1	0	1	1
С	1	1	0	0
D	1	1	0	1
Ε	1	1	1	0
F	1	1	1	1

Obr. 76. Přiřazení binární hodnoty hexadecimální

li realizovat dekodér podle této tabulky, máme prakticky 2 možnosti:

 Použít k dekódování bipolární, elektricky programovatelnou paměť PROM typu MH74188, kterou naprogramujeme tak, aby odpovídala tabulce. Segmenty, které mají svítit, musí při odpovídající vstupní kombinaci binárního čísla mít na odpovídajícím výstupu paměti úroveň log. 0. Výstupy z paměti jsou připojeny k segmentům přes odpory.

Ačkóli je toto řešení velice elegantní a z rozměrových hledisek ideální, má i určité nevýhody. Jednak jsou paměti typu MH74188 méně dostupné a drahé a jejich naprogramování nemusí být pro každého jednoduchou záležitostí už i vzhledem k tomu, že každá chyba při programování znamená obvykle zničení paměti.

Druhou nevýhodou je, že přípustná velikost maximálního napětí na výstupu

je 5,5 V a maximální výstupní proud je 12 mA. Pokud tedy chceme obvod použít v multiplexním provozu nebo ke spínání segmentů s větším napájecím napětím, nemusejí tyto parametry vyhovovat.

2. Jinou možností je využít integrovaného obvodu pro zobrazovací jednotky z kódu BCD typu D147C, který se k nám dováží z NDR. Tento dekodér umožňuje spínat výstupní napětí až 15 V a proud až 40 mA, musíme ho však doplnit dalšími integrovanými obvody podle schématu na obr. 77

Většina obvodů jsou běžné obvody TTL typu MH7400, MH7404 a MH7410. Pokud nám postačí výstupní obvody na 5,5 V, můžeme použít na místě výstupních hradel NAND se dvěma vstupy a otevřeným kolektorem z PLR dovážené dostupné obvody UCY7401N. Vhodnější je místo nich použít obvod D126D, ktérý lze zakoupit v NDR, nebo použít na výstupech tranzistory. Tranzistory však negují logický signál a proto musíme použít místo obvodů NAND – UCY7401N (D126D) – obvody s logickou funkcí AND typu UCY7408,

Výstupní svorky jsou se segmenty zobrazovacího prvku spojeny přes re-zistory, omezující proud. Pro sedmisegmentové zobrazovací jednotky se světelnými diodami LED typu LQ410 a pro napětí 5 V mají tyto rezistory odpor asi 570 Ω .

Převodník z kódu pro sedmisegmentové zobrazovací jednotky na kód BCD

Mnoho dnešních zařízení, jejichž základem jsou obvody LSI, má výstupy pro zpracování sedmisegmentovým disple-jem. Jedná se například o kalkulačky. Pokud však chceme výstupní informaci ještě dále zpracovávat, je pro nás toto uspořádání nevhodné. Na obr. 78 je schéma zapojení pro dekódování na běžný kód BCD, se kterým už umíme pracovat. Ob-

Obr. 80. Zpožděné zhasnutí světla

Obr. 79.

vod se skládá ze čtyř integrovaných obvodů, dvou diod a rezistoru. Jsou použity obvody MOS, ale vzhledem k tomu, že spínače pro sedmisegmentové zobrazovací jednotky jsou obvykle výkonové, lze použít i běžné obvody TTL.

Vstupy a až g odpovídají segmentům zobrazovací jednotky podle obr. 79. Segment, který svítí, odpovídá vstupní úrovni log. 1. Výhodou zapojení je, že u obvodů LSI bývá potlačena 0 na vyšších řádech než je nejvyšší řád platné číslice rozdílné od nuly. I v tomto případě, kdy jsou na všech vstupech úrovně log. 0, dává dekodér hodnotu 0 v kódu BCĎ

Na místě H₁ až H₆ lze použít MHB4049, popř. MH7404,

H₇ až H₁₄ lze použít MHB4011, popř. MH7400.

H₁₅ až H₁₇ lze použít 4023, popř. MH7410.

Funkschau č. 17/1979

Zpoždění zhasnutí světla

Zapojení podle obr. 80 je vhodné použít tam, kde po vypnutí světla potřebujeme, aby ještě po určitou dobu světlo ztlumeně svítilo, např. trvá-li chvíli, než zapneme další světlo na chodbě, ve sklepě nebo v garáži. Neocenitelnou službu nám takové zapojení prokáže, připojíme-li ho paralelně k časovému relé domovního osvětlení, neboť doby potřebné k zhasnutí žárovek využijeme k vyhledání dalšího tlačítka

schodišťového osvětlení.

Činnost obvodu je následující: Po vypnutí spínače S záčne protékat diodou jednocestně usměrněný proud, který protéká rezistorem R₁, kondenzátorem C₁ a řídicí elektrodou tyristoru Ty. Tyristor vede a žárovka svítí, neboť je napájena iednocestně usměrněným síťovým

napětím.

Po určité době – asi po 5 sekundách – se kondenzátor C₁ nabije natolik, že proud, který teče do řídicí elektrody tyristoru není dostatečně velký a tyristorem přestane téci proud. Žárovka zhasne. Po sepnutí spínače S se kondenzátor vybije přes odpor R₂ a přístroj je opět připraven k použití. Tlumivka L s kondenzátorem C2 tvoří filtr proti rušivým signálům vznikajícím na tyristoru.

Funkamateur č. 8/1981

Samočinné vypnutí kazetového magnetofonu

Nevýhodou mnoha kazetových magnetofonů, které mají jinak dobré parametry, je nevybavenost obvodem tzv. autostopu. Tento obvod samočinně magnetofon vypne při převinutí kazety. Některé magnetofony sice mají automatické vypínání, ale tento obvod nepůsobí při rychlém převíjení. Uvedený nedostatek je příčinou rychlejšího vybíjení baterií a znamená nutnost větší pozornosti obsluhy. Může se stát, že magnetofon zapomeneme zapnutý a protože jsou kazetové magnetofony téměř nehlučné a není na nich okem patrný pohyb pásku, zůstane zapnut mnoho hodin. Naváděcí kousek pásku má sice speciální vlastnosti pro tento účel, tj. neprodře se hnacím hřídelem pohonného mechanismu, ale poškození není vyloučené. Obzvláště snadno přehlédnemé zapnutý autopřehrávač ve složité dopravní situací. Necháme-li potom několik hodin magnetofon zapnutý v zaparkovaném automobilu, který má na slunečném místě teplotu i přes 60°C, mohou se nejen mechanicky poškodit pásek, ale i zničit elektronické obvody přehrávače.

Princip popisovaného obvodu je následující: na některé části magnetofonu, která se při odvíjení pásku otáčí, je umístěno kontaktní přerušovací čidlo. Toto čidlo se skládá z kotoučku, zhotoveného technikou plošných spojů z materiálu, např, cuprextitu, který má vyleptány segmenty podle obr. 81. Pružné kontakty, které po segmentech klouzají, jsou zhotoveny z fosforbronzu a tvoří elektrické

Obr. 78. Zapojení převodníku (na spoj mezi a a katodou diody je přes rezistor 1 kΩ (MH74 . .) nebo 100 kΩ (MHB40 . .) přivedeno kladné napájecí napětí)

Obr. 81. Přerušovač

přívody přerušovače. Při otáčení kotoučku je proud protékající kontakty a segmentem přerušován. Umístění kotoučku závisí na mechanickém uspořádání magnetofonu. Pokud jej umístíme pod kazetu na hřídel, z něhož se pásek odvíjí, tj. hřídel, který při nahrávání, přehrávání a převíjení je pouze brzděn třecí spojkou. potom popisovaný obvod reaguje při převinutí nebo přetržení pásky. Upevníme-li kotouček přerušovače na hřídel, který pásek navíjí, reaguje obvod při převíjení pásku i při poruše v páskové dráze, kdy se pásek např. začne navíjet na unášecí hřídel nebo přítlačnou kladku. Každopádně je nutno kotouček přerušovače upev-nit tak, aby se otáčel současně s cívkou kazety, tj. až za třecí spojkou. Tvar upevňovacího otvoru přizpůsobíme typu použitého kazetového magnetofonu

Přerušovač je připojen k obvodu, jehož schéma je na obr. 82. Po zapnutí některého z tlačítek, které vyvodí pohyb magnetofonu (nebo po zapnutí hlavního spínače) se tranzistor T1 na chvili otevře a motor se může rozběhnout. Tento tranzistor je otevřen, neboť průchodem proudu kondenzátorem C1 a rezistory R1, R2 a R3 jsou po určitou dobu otevřeny i tranzistory T2 a T3. Začne-li se vzápětí otáčet kotouček přerušovače, je neustálým nabíjením a vybíjením kondenzátoru C2 otevírán tranzistor T₃ proudem, který prochází diodou D₁. Přestane-li se kotouček otáčet, ustálí se napětí na C₁ a C₂ a tranzistory nepovedou. Motorek a připojené obvody se odpojí od

napájecího napětí.

V některých případech např. u autopřehrávačů je výhodné odpojovat tranzistorem T₁ celý magnetofon od rozvodu 12 V. Chceme-li pak po výměně kazety uvést magnetofon znovu do provozu, postačí ho znovu zapnout zasunutím kazetv. U stolních kazetových magnetofonů musíme odpojovat pouze obvody, které jsou v činnosti při otáčení motorku, neboť by se pravidelně v krátkých časových intervalech přerušovalo napájecí napětí v případě, že bychom nestačili během asi 2 s po zapnutí magnetofonu uvést pohybový mechanismus do provozu. Dioda D2 a kondenzátor C3 mají za úkol odstranit případné rušení přerušovacím kontak-

Přívody přerušovače vyrobíme z fosforbronzových drátů o průměru asi 0,2 mm, nebo z fosforbronzového pásku tlouštky 0.1 mm a šířky 1 až 2 mm. Kontaktní pásky upevníme pájením nebo lepením. Při pájení je nutno dát pozor na vyžíhání kontáktu. Konstrukce je naznačena na obr. 81. Funkschau č. 11/77

Samočinné přepínání reproduktorů

Mnozí z nás to znají. Koupíte nebo si zhotovíte zesilovač a gramofon a k tomu kvalitní reproduktorové soustavy. Po určité době si k tomu pořídíte kvalitní přijímač nebo tuner, magnetofon a televizor a už je to tady! Za skříněmi se začne hromadit spousta síťových šňůr a rozboček, reproduktorových šňůr atd. Když chcete hrát na magnetofon, musíte k tomu zapnout ještě přijímač, gramofon nebo zesilovač. Musíte zmáčknout spoustu tlačítek a přepnout spoustu přepínačů. Lahůdkou pak je, když si navíc pořídíte několik reproduktorových soustav do dalších místností a sluchátka. Pak se vám snadno stane, že si chcete pustit o půlnoci hudbu k dobré náladě a než se vám to podaří, vzbudíte půl baráku. Někdy je ještě nutno v rámci této činnosti přepojovat konektory na zadních panelech přístrojů, přičemž některé kombinace jsou zcela nepřípustné.

Obsluha takového "soustrojí" potom vyžaduje značnou kvalifikaci a pro ostatní členy rodiny jsou naše zařízení nepouži-telná. Ale nejen to. Často se stane, že zapomenete vypnout některý z přístrojů, což může mít i následky, zajímající požár-

Řešením problému jsou stavebnicové přístroje, tzv. "věže", řady výrobců, které bude vyrábět i k. p. TESLA, a u nichž je na tuto problematiku obvykle pamatováno.

tomto příspěvku, bohužel, nepopíšeme univerzální řešení tohoto problému, neboť kombinací, použití a konstrukcí jednotlivých přístrojů, ze kterých se náš hi-fi koutek může skládat, je neomezeně, ale popíšeme určitý způsob řešení

Především je vhodné si pořídit krabici se zásuvkami s hlavním vypínačem, jističem a pojistkami a optickou indikací zapnutého stavu. Může to být samostatný přístroj s panelem, na kterém se nachází hlavní spínač, spínače a pojistky jednotlivých zásuvek, signálka a přepínače pro reproduktory a nf signály. Takový přístroj může mít obrysy shodné např. s gramofo-nem a být umístěn pod ním.

Při konstrukci je nutno dbát na vzájemné oddělení síťového napětí od napětí nízkofrekvenčního a obvodů reproduktorů. Problematiku lze však řešit ještě jiným způsobem, který si popíšeme na obvodu automatického přepínání reproduktorů. Princip je na obr. 83.

Jednotlivé přístroje jsou připojeny k síťovému rozvodu přes obvod podle obr. 84. Tento obvod obsahuje čtveřici diod, triak a odpor. Na diodách se po zapnutí

Obr. 83. Princip indikačniho obvodu

přístroje (např. přijímače) vytvoří úbytek napětí asi 1,5 V pravoúhlého průběhu, který použijeme pro sepnutí triaku, v jehož obvodu je relé na střídavé napětí 220 V. Kontakty relé připojí reproduktory k výstupu zapnutého přístroje. Zapnemeli náhodou nebo záměrně dva nebo několik přístrojů současně, potom jsou reproduktory připojeny pouze k přístroji, který je nejvíce vpravo, neboť kontakty jednotlivých relé zaručují tuto prioritu.

Pořadí přístrojů bylo zvoleno náhodně a každý si ho může přizpůsobit svým potřebám. Kontakty reléjsou pro přehlednost kresleny pouze pro jeden reproduktor a pro stereofonní reprodukci je nutno použít samozřejmě dva. Tam, kde je sig-nál pouze monofonní (z televizoru), lze připojit podle impedance reproduktorů buď obě soupravy paralelně nebo sériově, nebo připojit pouze jednu z nich. Nemusíme se také omezit pouze na připojování reproduktorů, ale stejného principu lze využít pro spínání síťového relé podružného přístroje např. zesilovače a přepojovat potřebné nízkofrekvenční vstupy atd.

Je samozřejmé, že nepoužijeme stejný svazek pro spínání síťového napětí a nízkofrekvenčního signálu nebo reproduktorů. V takovém případě použijeme z bezpečnostních důvodů a z důvodů vzájemného rušení několik relé, jejichž cívky jsou zapojeny paralelně.

Vzhledem k možnosti poruchovosti triaků použijeme však stejně společný hlav-

ní spínač se signálkou.

Přístroj k léčení magnetickým polem

Pokusy s léčbou magnetickým polem isou ve světě stále aktuální. Před časem se v celém světě propagovalo nošení magnetických náramků. Ačkoli se o jejich léčebných účincích vedly spory, je faktem, že je mnozí užívají dodnes. Zastánci těchto přístrojů poukazují na skutečnost, že na podobných principech pracují zařízení pro magnetizaci vody a výsledky s magnetizovanou vodou jsou dnes technicky nesporné.

V součásné době se v některých zemích objevily přístroje, které se mohou nosit podobně jako magnetické náramky, ale působí na organismus střídavým magne-

Obr. 84. Připojení jednotlivých přístrojů

tickým tokem. Mnozí si je přivážejí ze svých prázdninových nebo služebních cest. My skromnější, kteří nemáme tyto možnosti, si musíme přístroj zhotovit sami. Uvádím návod, na němž je vidět, že jde v zásadě o velmi primitivní zařízení, které není žádným problémem realizovat.

Nechceme polemizovat o jeho léčebných účincích. Zaměříme se na technickou stránku problému. Amatérský časopis "Elektor" 4/79, podle kterého je náš návod upraven, v článku "Campi magnetici in medicina" uvádí, že tento přístroj se hodí stejně jako běžný magnetický. náramek při bolestech hlavy a při migréně, jako uklidňovač žaludečních neuróz, proti únavě a proti reumatickým bolestem apod. Kmitočet lze nastavit individuálně, každý si může vyhledat takový kmitočet výstupního signálu, při němž se cítí nejlépe. Obecně platí, že nižší kmitočty jsou vhodnější pro reumatiky, vyšší k odstranění únavy a bolestí hlavy. Minimální doba používání je asi 15 minut denně. Přístroj je přenosný, můžeme jej připevnit páskem na hodinky za zápěstí nebo na kotník nohy, případně i na jinou část těla.

Technicky, jak je patrné ze schématu na obr. 85, jde o dva generátory, které jsou tvořeny z jediného ČMOS integrovaného obvodu 4011 (jehož výroba pod označením MHB4011 se připravuje i u nás). My jsme ve zkušebním vzorku použili typ TP4011 (Intel). IO 4011 je čtveřice součinových hradel s negovaným výstupem. Pro oba generátory lze samozřejmě použít i jiné aktivní prvky a upravit zapojení. Přístroj pak bude ale větší s větší spotřebou proudu.

Zapojení je zcela primitivní. Hradla H₁ a H₂ tvoří generátor pravoúhlých impulsů o kmitočtu asi 1,2 Hz, které se trvale přivádějí na bázi tranzistoru T. U druhého generátoru (v zásadě stejného zapojení) lze volit kmitočet a to stisknutím aretovacích tlačítek ISOSTAT tak, aby se připojily různé kombinace kondenzátorů C₂ až C₄.

Na výstupu lze pak obdržet celkem 7 kombinací kmitočtů přístroje:

stisknuta tlačítka	kmitočet
$TI_1 + TI_2 + TI_3$	1,2 Hz
$TI_1 + TI_2$	2,5 Hz
$TI_1 + TI_3$	3 Hz
$Tl_2 + Tl_3$	5,8 Hz
Tl ₁	4,4 Hz
Tl ₂	9,7 Hz
TI ₃	14,2 Hz

Na obr. 86 je obrazec desky s plošnými spoji a vkládací schéma součástek. Rozměr desky je 50 × 64 mm. Kostra cívky má rozměry Ø 6 × 35 mm, na ní je navinuto 600 závitů drátem o Ø 0,2 mm CuL. Jádro je z magneticky měkého materiálu. Dokonce to v krajním případě může být i šroub, který do jádra běžné vf cívky našroubujeme.

Napájecí napětí je 9 V (destičková baterie) a odběr proudu je menší než 20 mA.

Silniční semafor

Náš návod není určen "malým" národním výborům, aby si realizovaly toto zařízení svépomocí na rušné křižovatce v obci, ale modelářům. Modelářská technika ve světě i u nás se stále více vybavuje moderní elektronikou. Toto zařízení je toho důkazem.

Silniční semafor je umístěn na křižovatce dvou silnic I a II. Každá z nich musí mít pro oba směry kombinaci totožně svítících postupně zapínaných žárovek – čer-

Obr. 85. Přístroj pro léčení magnetickým polem

Obr. 86. Deska s plošnými spoji R208 pro léčení magnetickým polem

Obr. 87. Silniční semafor

vená, žlutá, zelená barva. Tedy pro každý směr tři, pro oba směry stejné vozovky šest a pro obě vozovky celkem dvanáct žárovek \tilde{Z}_1 až \tilde{Z}_{12} , umístěných v jednom kvádru, zavěšeném nad křižovatkou. Použity jsou-miniaturní barevné modelářské žárovičky 5 V/50 mA, které, pokud připojíme ochranný odpor 10 Ω, můžeme přímo spínat výkonovým integrovaným spí-načem 7417. Místo žárovek lze použít i barevné diody LED.

Pokud musíme z nějakého důvodu použít místo obvodu 7417 šestici spína-cích tranzistorů, např. KC508, zapojení upravíme tak, že místo 7417 zapájíme do desky s plošnými spoji běžnou šestici invertorů TTL, což je integrovaný obvod 7404. Na jeho výstupy připojíme báze šesti spínacích tranzistorů a těmi pak můžete spínat dvojice žárovek. Žárovky umístíme do kolektoru tranzistorů, emitory tranzis-

torů uzemníme.

Základem celého zapojení podle obr. 87 jsou dva generátory, tvořené dvěma astabilními multivibrátory, integrovanými v jednom pouzdře 74123. Délku svícení zelených světel na vozovkách I a II nasta-vujeme potenciometry P₁ a P₁₂ (v rozmezí asi 5 až 45 s). Tlačítky Tl₁ a Tl₂ lze zastavit oba generátory buď po jednom nebo současně, což je také stav, při němž budou světla na semaforu svítit beze změny. IO 7413 je dvojitý Schmittův obvod, jehož první poloviny je využito jako tvarovače. Impulsy z tohoto obvodu jsou zavedeny na vstup 14 čítače 7490. Výstupy CBA čítače jsou přivedeny na lógické pole, složené z hradel TTL, které měnicí se kombinaci logických signálů na výstupech čítače přeměňuje na postupné rozsvícení žároviček podle těchto vzorců:

- červená = BC,
- II. červená = BC
- I. žlutá = ABC + ABC = ABC · ABC,
- II. žlutá = ABC + ABC = ABC · ABC,
- I. zelená = A + B + C = ABC
- II. zelená = A + B + C = ABC

Výsledek je graficky znázorněn na obr. 88. Jak plyne z tohoto grafu a uvedených vzorců, střídají se barvy v posloupnosti: zelená - žlutá - červená - červená žlutá současně - zelená atd.

Přepínačem Př přepínáme semafor do

Obr. 88. Časové průběhy u silničního semaforu

Obr. 89. Deska R209 s plošnými spoji silničního semaforu

stavu "pozor", kdy na všechny žluté žárovky přivádíme napětí pravoúhlého průběhu z druhé půlky obvodu 7413, která je tentokráte zapojena jako astabilní multi-vibrátor. Časová konstanta přerušovaného spínání je pevně určena odporem R2 a kondenzátorem C2. V poloze "a" nač Př tedy na semaforu svítí přerušovaně

a shodně všechny žluté žárovky. Ostatní žárovky mají odpojeno napájecí napětí.

Celý semafor, kromě tlačítek TI, potenciometrů, přepínače Př a napájecího zdroje 5 V se vejde na desku s plošnými spoji o rozměru 95 × 72. Obrazec desky s plošnými spoji a potřebné vkládací schéma je na obr. 89.

NEZAPOMENTE KONKURS AR

Uzávěrka je 15. 9. 1983