Mathematics 258 - Harmonic Analysis

Fall 2023

Instructor: Ruixiang Zhang

Problem Set 2

Due: 7 days after we finish Ch.4 or November 1, whichever date is later

In the problems below, when $x \in \mathbb{R}^n \setminus \{0\}$, we denote $x' = \frac{x}{|x|}$.

1. Find the Riesz transform of the Poisson kernel $Q_t^{(j)}(x) = R_j(P_t)(x)$.

2. Let $1 \leq p, q \leq \infty$. Assuming that T is a linear operator defined on \mathscr{S} that is bounded from $L^p(\mathbb{R}^n)$ to $L^q(\mathbb{R}^n)$ and that T commutes with all translations. Prove that: (i) There exists a unique $K \in \mathscr{S}'(\mathbb{R}^n)$ such that Tf = K * f; (ii) T can be extended to a bounded linear operator from $L^{q'}(\mathbb{R}^n)$ to $L^{p'}(\mathbb{R}^n)$; (iii) T=0 if p>qand (iv) $\hat{K} \in L^{\infty}(\mathbb{R}^n)$ if p = q = 2.

3. For $0 < \alpha < n$, define the fractional integral operator I_{α} on $\mathscr{S}(\mathbb{R}^n)$ to be

$$\widehat{I_{\alpha}f}(\xi) = (2\pi|\xi|)^{-\alpha}\widehat{f}(\xi).$$

Prove that I_{α} is strong (p,q) and weak $(1,\frac{n}{n-\alpha})$ where $1 and <math>\frac{1}{q} = \frac{1}{p} - \frac{\alpha}{n}$. 4. For a C^1 function $f: \mathbb{R}^2 \to \mathbb{C}$ with compact support, prove that

$$\left\| \frac{\partial f}{\partial x_1} \right\|_p + \left\| \frac{\partial f}{\partial x_2} \right\|_p \lesssim_p \left\| \frac{\partial f}{\partial x_1} + i \frac{\partial f}{\partial x_2} \right\|_p, 1$$

5. Assuming the support of $u \in \mathscr{S}'(\mathbb{R}^n)$ is $\{0\}$. Prove that there exists $K \in \mathbb{Z}^+$ and $a_{\alpha} \in \mathbb{C}$ such that

$$u = \sum_{|\alpha| \leqslant K} a_{\alpha} \partial^{\alpha} \delta$$

where δ is the Dirac delta at the origin.

6. (optional) For $f \in \mathcal{S}(\mathbb{R})$, prove that H(f')(x) = (Hf)'(x) and that

$$|H(f')(x)| \lesssim_f |x|^{-2}, \forall |x| \geqslant 1.$$

7. (optional) Find the Hilbert transform of $\chi_{[a,b]}$.

8. (optional) Assuming $f \in \mathscr{S}(\mathbb{R})$. Prove that $Hf \in L^1(\mathbb{R})$ if and only if $\int_{\mathbb{R}} f dx =$ 0.

9. (optional) Find a way to define Hf for $f \in L^{\infty}$ that is canonical up to the addition of a constant.

10. (optional) For $f(x) = (x^2 + 1)^{\frac{1}{4}}$, prove $H(f') \in L^{\infty}$.

11. (optional) Define the translation operator $\tau_h f(x) = f(x+h), h \in \mathbb{R}$, the dilation operator $\delta_{\rho}f(x) = f(\rho x), \rho > 0$ and the involution operator f(x) = f(-x). For a bounded linear operator T on $L^2(\mathbb{R})$, assuming $\tau_h(Tf) = T(\tau_h f)$, $\delta_\rho(Tf) = T(\delta_\rho f)$

and $\widetilde{T}f = -T(\widetilde{f})$. Prove that T = CH for some constant C. Can you generalize this conclusion to a statement involving the Riesz transforms in \mathbb{R}^n ?

12. (optional) Let $1 . Prove that a real-valued function <math>f \in L^p(\mathbb{R})$ if and only if there exists an analytic function F(x+iy) on the upper half plane such that

$$\sup_{y>0} \int_{-\infty}^{\infty} |F(x+\mathrm{i}y)|^p \mathrm{d}x < \infty$$

and

$$\lim_{y \to 0+} \Re F(x + iy) = f(x), a.e.x \in \mathbb{R}.$$

- 13. (optional) Prove that a multiplier T_m is bounded on $L^1(\mathbb{R}^n)$ if and only if $m = \hat{\mu}$ where μ is a bounded Borel measure. Moreover prove that if such μ exists,
- then the operator norm of T_m on L^1 is equal to the total variation of μ . 14. (optional) Assuming for some $\Omega \in L^1(S^{n-1})$ that is not identically zero, the singular integral $Tf = \text{p.v.} \frac{\Omega(x')}{|x|^n} * f$ is bounded from $L^p(\mathbb{R}^n)$ to $L^q(\mathbb{R}^n)$, prove that
- 15. (optional) Let $P_k(x), k \ge 1$ be a homogeneous harmonic polynomial of degree k on \mathbb{R}^n , prove that
 - $(P_k(x)e^{-\pi|x|^2})(\xi) = i^{-k}P_k(\xi)e^{-\pi|\xi|^2}$. $\int_{S^{n-1}} P_k(x')d\sigma(x') = 0$.

 - p.v. $\frac{P_k(x)}{|x|^{n+k}}$ has Fourier transform $m(\xi) = \mathrm{i}^{-k} \pi^{\frac{n}{2}} \frac{\Gamma(\frac{k}{2})}{\Gamma(\frac{n+k}{2})} \frac{P_k(\xi)}{|\xi|^k}$.
- 16. (optional) Assuming $\phi \ge 0$ is in $L^1(\mathbb{R}^n)$ and satisfies that $\phi(rx)$ is decreasing in $r \in (0, \infty)$, $\forall x \in \mathbb{R}^n$. Prove that

$$M_{\phi}f(x) = \sup_{0 < t < \infty} |\phi_t * f(x)|$$

is bounded on $L^p(\mathbb{R}^n)$, 1 .

17. (optional) Assuming an even function $\Omega \in L \log L(S^{n-1})$ and has zero average. Prove that the singular integral operator $Tf = \text{p.v.} \frac{\Omega(x')}{|x|^n} * f$ is bounded on $L^p(\mathbb{R}^n), 1 < \infty$ $p < \infty$. Moreover prove that the maximal singular integral operator

$$T^*f(x) = \sup_{0 < \varepsilon < R < \infty} \int_{\varepsilon < |y| < R} \frac{\Omega(y')}{|y|^n} f(x - y) dy$$

is bounded on $L^p(\mathbb{R}^n)$, 1 .

- 18. (optional) Find a function $G \in \mathscr{S}'(\mathbb{R}^n)$ such that $\Delta(G) = \delta$. Here δ is the Dirac delta at the origin.
- 19. (optional) Let $m(\xi)$ be the Fourier transform of p.v. $\frac{\Omega(x')}{|x|^n}$. Prove that $\Omega(x') \in$ $C^{\infty}(S^{n-1})$ if and only if $m(\xi) \in C^{\infty}(\mathbb{R}^n \setminus \{0\})$.