6 代数拡大

K:体、A:K-代数とする。

定義 6.1. $x \in A$ が K 上代数的、代数的数 (algebraic)とは

 $\exists f \ (\neq 0) \in K[X] : K$ 係数多項式 $s.t. \ f(x) = 0$

となることで代数的でないときこれを超越的、超越的数 (transcendental)という。

命題 6.2. $x \in A$ に対して以下は同値

- (1) 1, x, x^2 , \cdots が K 上一次独立ではない
- (2) K[x] が有限次元
- (3) x は K 上代数的

Proof. $3 \Rightarrow 1$

x が代数的なので、ある $f=\sum_{i=0}^n a_i X^i \in K[X]$ $(0 \neq a_i \in K)$ において $f(x)=\sum_{i=0}^n a_i x^i=0$ より $1,x,x^2,\cdots$ は一次独立ではない。

$1 \Rightarrow 3$

一次独立でないのである有限な m で $\sum_{i=0}^m a_i x^i = 0$ となる全ては 0 ではない $a_i \in K$ が存在するのでこれを $f = \sum_{i=0}^m a_i X^i$ とすれば $f \in K[X], f(x) = 0$ となるため x は K 上代数的である。

$2 \Leftrightarrow 3$

 $x \in A$ に対し写像 $\phi: K[X] \longrightarrow A, X \longmapsto x$ は環準同型であり、 $\exists f \in K[X], \ker(\phi) = (f)$ となる。このとき x:代数的 $\Leftrightarrow f \neq 0$ が定義より言える。したがって環準同型定理より $\mathrm{Im}\phi = K[x] \cong K[X]/(f)$ となる。そして K[X]/(f) は $\deg(f) = n$ 以上の次数の多項式を割り算によりその次数以下にするから $K[X]/(f) = \{a_0 + a_1x + \dots + a_{n-1}x^{n-1} | a_i \in K\}$ で表せるので K[x] も同型より有限次元である。

とくに $1,x,\cdots,x^{n-1}$ は n-1 次以下の K[x] の元が一次結合で表わせ、一次独立であるから K 上の K[x] における基底となる。

定義 6.3. x が K 上代数的数のとき f(x)=0 となる $f(\neq 0)\in K[X]$ のうち次数が最小で monic (最高次の係数が 1) であるものを x の K における最小多項式 (minimal polynomial) という。 $\deg(f)$ を x の次数ともいう。

例 6.4. $a\in\mathbb{Q}$ で平方数でないものにおいて $\sqrt{a}\in\mathbb{C}$ の \mathbb{Q} の最小多項式は $X^2-a\in\mathbb{Q}[X]$ である。 e,π は \mathbb{Q} 上超越的である。