Algorithms and Data Structures

Random Numbers
Congruential Generators

Learning goals

- Linear congruential generator
- Multiplicative congruential generators

LINEAR CONGRUENTIAL GENERATOR

Let $a, c, m \in \mathbb{N}$, then a linear congruential generator (LCG) is defined by

$$x_{i+1}=(ax_i+c)\mod m.$$

Examples:

- Marsaglia II: $m = 2^{32}$, a = 69069, c = 1 has maximum possible period of m.
- Longer I: $m = 2^{48}$, a = 25214903917, c = 11Longer II: $m = 2^{48}$, $a = 5^{17}$, c = 1Longer period, specifically designed for 48-bit fraction-arithmetic.

Special case for c=0: multiplicative congruential generator (MCG)

Let $a, m \in \mathbb{N}$, we consider the sequence

$$x_{i+1} = ax_i \mod m$$
.

- m is a prime,
- $a^{(m-1)/q} \mod m \neq 1$ for all prime factors q from m-1.

/ 2

Example:

• m = 17 (prime number), a = 27, $x_1 = 5$

	1									
0	5	16	7	2	3	13	11	8	12	1
10	10	15	14	4	6	9	5	16	7	2
20	5 10 3	13	11	8	12	1	10	15	14	

At i = 17 the sequence starts from the beginning.

•
$$m = 17, a = 26, x_1 = 5$$

 $26^{16/2} \mod 17 = 1$

1104 17 — 1										
i	1	2	3	4	5	6	7	8	9	10
0	5	11	14	7	12	6	3	10	5	11
10	14	7	12	6	3	10	5 14	11	14	7
20	12	6	3	10	5	11	14	7	12	

The sequence starts already at i = 9 from the beginning, period length = 8.

/ 3

Concrete implementations:

 Very popular for a long time: LEWIS, Goodman Lewis, Goodman, and J. M. Miller 1969 (e.g., IMSL, early Matlab versions, ...):

$$m = 2^{31} - 1, \quad a = 7^5$$

Reason for choosing m: Largest prime number that can be represented as a normal integer on 32-bit machines (period $2^{31} - 2$).

Infamous (very bad!!!): RANDU

$$m=2^{31}, \qquad a=65539=2^{16}+3$$

Period length of 2²⁹ and quickly calculated, but major problems with distribution of consecutive triplets.

/ 4

For RANDU, the relationship of three consecutive numbers is given by (the following lines are to be understood mod 2³¹):

$$x_{i+1} = (2^{16} + 3)x_i$$

$$x_{i+2} = (2^{16} + 3)^2 x_i$$

$$= (2^{32} + 6 \cdot 2^{16} + 9)x_i^{1}$$

$$= (6 \cdot (2^{16} + 3) - 9)x_i$$

$$= 6 \cdot (2^{16} + 3)x_i - 9x_i$$

$$= 6x_{i+1} - 9x_i$$

 $^{^{1}2^{32}}$ is a multiple of $m=2^{31}$, thus canceled out considering mod m

To illustrate the problem, we use RANDU to generate 12000 random numbers and assign three consecutive numbers to each of the three columns of a matrix.

We are going to visualize the *points* in a 3D plot.

Note: It is the same plot from three different perspectives.

/ 2

Further examples for MCGs:

- Park, Miller Park, K. W. Miller, and Stockmeyer 1993: $m = 2^{31} 1$, a = 48271.
- Marsaglia I: $m = 2^{32}$, a = 69069.
- SAS / IMSL: $m = 2^{31} 1$, a = 397204094.
- Fishman-Moore I, II und III: $m = 2^{31} 1$ $a \in \{630360016, 742938285, 950706376\}$ (Winner after extensive statistical investigations).

