# CodeCheck Report: training8Y5B2B-N8E

Test Name:

Summary Timeline





### Tasks Details



MissingInteger
 Find the smallest positive integer that does not occur in a given sequence.



### Task description

This is a demo task.

Write a function:

def solution(A)

that, given an array A of N integers, returns the smallest positive integer (greater than 0) that does not occur in A.

For example, given A = [1, 3, 6, 4, 1, 2], the function should return 5.

Given A = [1, 2, 3], the function should return 4.

Given A = [-1, -3], the function should return 1.

Write an **efficient** algorithm for the following assumptions:

- N is an integer within the range [1..100,000];
- each element of array A is an integer within the range [-1,000,000..1,000,000].

Copyright 2009–2022 by Codility Limited. All Rights Reserved. Unauthorized copying, publication or disclosure prohibited.

#### Solution



## Task timeline



| Co. | de: 20:37:48 UTC, py, final, score: show code in pop-up |
|-----|---------------------------------------------------------|
| 1   | # you can write to stdout for debugging purposes, e.g.  |
| 2 3 | <pre># print("this is a debug message")</pre>           |
| 4   | <pre>def solution(A):</pre>                             |
| 5   | # write your code in Python 3.6                         |
| 6   | if max(A)<1:                                            |
| 7   | return 1                                                |
| 8   | else:                                                   |
| 9   | A.sort()                                                |
| 10  | lastnegative = -1                                       |
| 11  | <pre>for i in range(len(A)):</pre>                      |
| 12  | if A[i]>0:                                              |
| 13  | <pre>if i == lastnegative+1:</pre>                      |
| 14  | if A[i]>1:                                              |
| 15  | return 1                                                |
| 16  | else:                                                   |
| 17  | if A[i]-A[i-1] > 1:                                     |
| 18  | return A[i-1]+1                                         |
| 19  | else:                                                   |
| 20  | <pre>lastnegative = i</pre>                             |
| 21  | return A[len(A)-1]+1                                    |

## Analysis summary

The solution obtained perfect score.

## Analysis



| expanc   | d all Example tests                                     |          |    |
|----------|---------------------------------------------------------|----------|----|
| <b>•</b> | example1 first example test                             | ~        | OK |
| •        | example2<br>second example test                         | •        | OK |
| •        | example3<br>third example test                          | •        | OK |
| expanc   | d all Correctness tes                                   | ts       |    |
| •        | extreme_single a single element                         | •        | OK |
| •        | simple simple test                                      | <b>✓</b> | OK |
| •        | extreme_min_max_value minimal and maximal values        | <b>✓</b> | OK |
| •        | positive_only shuffled sequence of 0100 and then 102200 | ~        | OK |
| •        | negative_only<br>shuffled sequence -1001                | ~        | OK |
| expanc   | d all Performance tes                                   | sts      |    |
| •        | medium chaotic sequences length=10005 (with minus)      | ~        | OK |
| •        | large_1 chaotic + sequence 1, 2,, 40000 (without minus) | <b>~</b> | OK |
| •        | large_2 shuffled sequence 1, 2,, 100000 (without minus) | <b>✓</b> | OK |
| <b>•</b> | large_3                                                 | ~        | OK |
|          |                                                         |          |    |

chaotic + many -1, 1, 2, 3 (with minus)