Suites de fonctions

I. Modes de convergence

I.1. Convergence simple

Définition. Soit (f_n) une suite de fonctions définies sur un intervalle I, à valeurs dans $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . On dit que la suite (f_n) converge simplement sur I vers une fonction f si, pour tout $t \in I$, la suite numérique $(f_n(t))$ a pour limite le nombre f(t).

I.2. Convergence uniforme

Définition. Soit (f_n) une suite de fonctions définies sur un intervalle I, à valeurs dans \mathbb{K} . On dit que la suite (f_n) converge uniformément sur I vers une fonction f si elle vérifie

$$\forall \varepsilon > 0 \quad \exists n_0 \in \mathbb{N} \quad \forall n \geqslant n_0 \quad \forall t \in I \quad |f(t) - f_n(t)| \leqslant \varepsilon$$

Théorème I.1. Si la suite (f_n) converge uniformément sur I vers f, alors elle converge simplement sur I vers f.

Définition. Soit g une fonction bornée sur un intervalle I. On note $||g||_{\infty}$ le nombre $\sup\{|g(t)| \ ; \ t \in I\}$.

Proposition I.2. Soient $g: I \longrightarrow \mathbb{K}$ une fonction bornée, et $M \in \mathbb{R}$; alors:

- $\forall t \in I \quad |g(t)| \leq ||g||_{\infty}$;
- $[\forall t \in I \ |g(t)| \leqslant M] \iff ||g||_{\infty} \leqslant M.$

Théorème I.3. La suite (f_n) converge vers f uniformément sur I si et seulement si

- ullet les fonctions f_n-f sont bornées sur I à partir d'un certain rang;
- la suite $(\|f_n f\|_{\infty})$ a pour limite θ .

Théorème I.4. La suite (f_n) converge vers f uniformément sur I si et seulement si il existe une suite réelle (a_n) et un rang n_0 tels que

- $\forall n \geqslant n_0 \quad \forall t \in I \quad |f(t) f_n(t)| \leqslant a_n$;
- la suite (a_n) a pour limite θ .

Proposition I.5. S'il existe une suite (t_n) d'éléments de I telle que $f(t_n) - f_n(t_n)$ ne tende pas vers 0, alors la convergence n'est pas uniforme sur I.

Proposition I.6. Si $I = I_1 \cup I_2$, et si (f_n) converge vers f uniformément sur I_1 et sur I_2 , alors elle converge uniformément sur I; en particulier, si (f_n) converge vers f uniformément sur [a,b[et si $f_n(b)$ tend vers f(b), alors la convergence est uniforme sur [a,b].

II. Conséquences de la convergence uniforme

II.1. Fonctions continues

Théorème II.1. Soit $t_0 \in I$. On suppose que

- la suite de fonctions (f_n) converge vers f uniformément sur I;
- chaque fonction f_n est continue en t_0 (respectivement sur I).

Alors, f est continue en t_0 (respectivement sur I).

L'hypothèse de convergence uniforme sur I peut être remplacée par la convergence uniforme sur un voisinage de t_0 (respectivement au voisinage de chaque point de I).

II.2. Théorème de la double limite

Théorème II.2 (de la double limite). On suppose que :

- la suite (f_n) converge vers f uniformément sur I;
- a est un point adhérent à I (éventuellement $a = \pm \infty$);
- chaque fonction f_n admet une limite finie λ_n en a.

Alors la suite (λ_n) admet une limite finie λ , et f a pour limite λ en a.

II.3. Intégration

Théorème II.3. Soit $a \in I$. On suppose que :

- la suite (f_n) converge vers f uniformément sur tout segment inclus dans I;
- chaque fonction f_n est continue sur I.

Pour tout n, soit $F_n: x \longmapsto \int_a^x f_n(t) dt$. Alors, la suite (F_n) converge simplement sur I vers la fonction $F: x \longmapsto \int_a^x f(t) dt$. De plus, la convergence est uniforme sur chaque segment inclus dans I.

En particulier, si la suite (f_n) converge uniformément sur le segment [a,b], alors $\int_a^b f_n(t) dt \underset{n \to +\infty}{\longrightarrow} \int_a^b f(t) dt$.

II.4. Dérivation

Théorème II.4. On suppose que :

- chaque fonction f_n est de classe C^1 sur I;
- la suite (f_n) converge vers f simplement sur I;
- la suite (f'_n) converge vers une fonction g, uniformément sur tout segment inclus dans I.

Alors, f est de classe C^1 sur I, g = f', et la convergence de (f_n) vers f est uniforme sur tout segment.

Théorème II.5. Soit $p \in \mathbb{N}^*$. On suppose que :

- chaque fonction f_n est de classe C^p sur I;
- pour tout $k \in [0, p-1]$, la suite $(f_n^{(k)})$ converge vers une fonction g_k simplement sur I:
- la suite $(f_n^{(p)})$ converge vers une fonction g_p , uniformément sur tout segment inclus dans I.

Alors, en posant $f = g_0 = \lim f_n$, f est de classe C^p sur I, et $g_k = f^{(k)}$ pour tout $k \in [1, p]$.

III. Approximation des fonctions

III.1. Approximation des fonctions continues par morceaux

Théorème III.1. Si f est une fonction continue par morceaux sur un segment [a,b], alors il existe une suite (φ_n) de fonctions en escaliers qui converge vers f uniformément sur [a,b].

III.2. Théorème de Weierstrass

Théorème III.2 (de Weierstrass). Si f est une fonction continue sur un segment [a,b], alors il existe une suite (P_n) de fonctions polynômes qui converge vers f uniformément sur [a,b].