

双因素方差分析

朱宗元

浙江财经大学数据科学学院

双因素方差分析问题提出

提出问题

1 引例1

饮料销售量与包装形式有关,也受价格水平因素的影响。

1 概念

方差分析中研究两种因素的影响时,称为双因素方差分析。

提出问题

1 引例2

2 交互作用

两个因素的不同水平的搭配可能对试验(调查)观察指标产生新的影响,这种现象称为交互作用。

模型分类

提出问题

数据结构表

			A因素各		
		B ₁	B ₂	 B_S	水平之下 的均值
	A_1	X ₁₁	X ₁₂	 X _{1s}	$\frac{}{x}_{1}$.
因 素	A_2	X ₂₁	X ₂₂	 X _{2s}	$\frac{}{x}_{2}$.
素				 	
Α	A _r	X _{r1}		 X _{rs}	$\frac{}{x}_r$.
B因素包 之下的 ^b	5水平 均值	$\frac{-}{x}$.	$\frac{}{x}$.2	 $\frac{}{\mathcal{X}}$.s	${x}$

模型形式

$$X_{ij} = \overline{X} + \alpha_i + \beta_j + e_{ij}$$

$$e_{ij} \sim N(0, S^2),$$

$$i = 1, 2, \cdots, r; j = 1, 2, \cdots, s$$

$$\sum_{j=1}^{r} \alpha_i = 0, \sum_{j=1}^{s} \beta_j = 0$$

无交互作用双因 素方差分析模型

检验形式

分析思路

1 计算中间量

2平方和分解

恒等 关系

$$x_{ij} - \overline{x} = (\overline{x}_{i\cdot} - \overline{x}) + (\overline{x}_{\cdot j} - \overline{x}) + (x_{ij} + \overline{x} - \overline{x}_{i\cdot} - \overline{x}_{\cdot j})$$

平方求和

$$\sum_{i=1}^{r} \sum_{j=1}^{s} (x_{ij} - \overline{x})^{2} = \sum_{i=1}^{r} \sum_{j=1}^{s} (\overline{x}_{i} - \overline{x})^{2} + \sum_{i=1}^{r} \sum_{j=1}^{s} (\overline{x}_{\cdot j} - \overline{x})^{2} + \sum_{i=1}^{r} \sum_{j=1}^{s} (x_{ij} + \overline{x} - \overline{x}_{i} - \overline{x}_{\cdot j})^{2}$$

2平方和分解

$$SS_T = \sum_{i=1}^r \sum_{j=1}^s (x_{ij} - \overline{x})^2, SS_A = \sum_{i=1}^r \sum_{j=1}^s (\overline{x}_{i\cdot} - \overline{x})^2$$

$$SS_{T} = \sum_{i=1}^{r} \sum_{j=1}^{s} (x_{ij} - \overline{x})^{2}, SS_{A} = \sum_{i=1}^{r} \sum_{j=1}^{s} (\overline{x}_{i\cdot} - \overline{x})^{2}$$

$$SS_{B} = \sum_{i=1}^{r} \sum_{j=1}^{s} (\overline{x}_{\cdot j} - \overline{x})^{2}, SS_{E} = \sum_{i=1}^{r} \sum_{j=1}^{s} (x_{ij} + \overline{x} - \overline{x}_{i\cdot} - \overline{x}_{\cdot j})^{2}$$

平方 分解

$$SS_T = SS_A + SS_B + SS_E$$

总离差

A偏差

B偏差

误差偏差

3 构造统计量

分布 理论

$$\overline{S}_{A}^{2} = SS_{A}/(r-1),$$

$$\overline{S}_{B}^{2} = SS_{B}/(s-1),$$

$$\overline{S}_{E}^{2} = SS_{E}/(rs-s-r+1)$$

$$F_A = \overline{S}_A^2 / \overline{S}_E^2$$

$$F_B = \overline{S}_B^2 / \overline{S}_E^2$$

统计 量

4方差分析表

影响因素	偏差平方和	自由度	均方差	F值	拒绝原假设判断
因素A	SS _A	r-1	\overline{S}_{A}^{2}	$F_A = \overline{S}_A^2 / \overline{S}_E^2$	$F_A > F_\alpha (r-1, rs - r - s + 1)$
因素B	SS _B	s-1	\overline{S}_{B}^{2}	$F_B = \overline{S}_B^2 / \overline{S}_E^2$	$F_B > F_\alpha (s-1, rs-r-s+1)$
误差	SS _E	rs-r-s+1	\overline{S}_{E}^{2}		
总和	SS_T	rs-1			

例1

为了认识客户消费时段的特征,新开业的环山市旋门湾咖啡厅按消费时段 统计消费额。每天分为上午、下午和晚上三个时段,每周七天全部营业。 假设营业时段与营业日之间不存在交互作用,因此可只统计一周的数据。 假设没有季节性的差异,也假设消费群体结构不会产生较大的变动, 其他因素可忽略。现在的问题是:周内每天的消费额是否存在差异?一天 之内三个不同时段之间是否存在显著性差异? 分时段的平均消费额见下表。

例1数据

		B因素							
F	付段	周一	周二	周三	周四	周五	周六	周日	平均
Α	上午	4152	4852	3546	5456	3426	6124	5846	4771.71
因 素	下午	6852	5112	5786	6105	3998	10124	9789	6823.71
	晚上	9852	8912	9978	9105	15918	16124	10100	11427.00
	平均	6952	6292	6436.67	6888.67	7780.67	10790.7	8578.33	7674.14

计算均方误差

$$S_A^2 = SS_A/(r-1) = 80584204$$

天内营业时 段(因素A)

$$S_B^2 = SS_B/(s-1) = 7560880$$

周内营业日 (因素B)

$$S_E^2 = SS_E/(rs - s - r + 1) = 4643544$$

方差分析表

影响因素	偏差平方和	自由度	均方差	F值	0.05临界值
因素A	161168407.12	2	80584203.56	17.354	3.89
因素B	45365282.16	6	7560880	1.6283	3.00
误差	55722525.29	12	4643544		
总和	262256214.57	20	13112811		

分析结论

5%显著性水平下,因素A是显著的,而因素B并不显著。

一天内不同时段咖啡消费量有显著差异,但一周不同天无明显差异。

提出问题

检验形式

$$H_{01}: \alpha_{1.} = \alpha_{2.} = \cdots = \alpha_{r} = 0$$

$$H_{02}: \beta_{1.} = \beta_{2.} = \cdots = \beta_{s} = 0$$

B因素 检验

$$H_{03}: \gamma_{ij} = 0 (i = 1, 2, \dots, r; j = 1, 2, \dots, s)$$

3构造统计量

分布 理论

统计 检验

$$\overline{S}_{A}^{2} = SS_{A}/(r-1), \overline{S}_{B}^{2} = SS_{B}/(s-1),$$

$$\overline{S}_{A\times B}^{2} = SS_{A\times B}/(rs-s-r+1)$$

$$\overline{S}_{E}^{2} = SS_{E}/(rsn-rs).$$

$$H_{01}, F_{A} = \overline{S}_{A}^{2} / \overline{S}_{E}^{2},$$

$$H_{02}, F_{B} = \overline{S}_{B}^{2} / \overline{S}_{E}^{2},$$

$$H_{03}, F_{A \times B} = \overline{S}_{A \times B}^{2} / \overline{S}_{E}^{2}.$$

方差分析表

影响因素	偏差平方和	自由度	均方差	F值	拒绝原假设的判断
因素A	SS _A	r-1	\overline{S}_{A}^{2}	$F_A = \overline{S}_A^2 / \overline{S}_E^2$	$F_A > F_\alpha (r-1, rsn - rs)$
因素B	SS _B	s-1	\overline{S}_{B}^{2}	$F_B = \overline{S}_B^2 / \overline{S}_E^2$	$F_B > F_\alpha (s-1, rsn - rs)$
交互作用	$SS_{A imesB}$	(r-1)(s-1)	$\overline{S}^{2}_{A \times B}$	$F_{A\times B} = \overline{S}_{A\times B}^2 / \overline{S}_E^2$	$F_{A\times B} > F_{\alpha}(rs-r-s-1,rsn-rs)$
误差	SS _E	rs(n-1)	\overline{S}_{E}^{2}		
总和	SS _T	rsn-1			

双因素方差分析

例2

在例1中假设了因素A和因素B不存在交互作用。如果取消该假设,即不确定是否存在交互效应。现按消费时段,对开业8周的咖啡消费额进行了统计,数据见下表。请做有交互作用的双因素方差分析。

周次		日期								
		周一	周二	周三	周四	周五	周六	周日		
	1	4151	4852	3546	5456	3426	6124	5846		
上午										
	8	3968	4568	5541	4879	3895	6123	5680		
	1	6852	5112	5786	6105	3998	10124	9789		
下午										
	8	7581	6124	7001	5261	5097	14121	14589		
晚上	1	9852	8912	9978	9105	15918	16124	10100		
				•••						
, 5	8	12781	11029	9989	9123	16444	16879	11589		

双因素方差分析

(1) 计算中间量

8	B因素							时段 总平均	
		周一	周二	周三	周四	周五	周六	周日	
Α	上午	4876.25	5306.88	4079.38	4636.75	5297.50	7911.25	7265.75	5624.82
因	下午	6309.38	6785.88	4626.38	6031.50	6180.00	12734.88	12741.75	7915.68
素	晚上	10365.50	9975.38	15490.88	10262.1	9454.50	15570.50	10941.13	11722.9
E	总平均	7183.71	7356.04	8065.54	6976.79	6977.33	12072.21	10316.21	8421.12

双因素方差分析

(2)方差分析表

方差来源	平方和	自由度	均方差	F值	F检验5%显著性 水平临界点
因素A(日时段)	1062668594.333	2	531334297.167	503.787	$F_{0.05}(2,147) = 19.5$
因素B(周时段)	573226212.536	6	95537702.089	90.585	$F_{0.05}(6.147) = 3.67$
交互效应A×B	399549054.500	12	33295754.542	31.570	$F_{0.05}(12,147) = 2.3$
误差	155037898.250	147	1054679.580		
总和	2190481759.619	167			

- ➤ 经检验,因素A、因素B及两者的交互作用A×B,对实验(观察)指标都有显著影响。
- ➤即一天之内的不同时段(上午、下午、晚上)咖啡消费量存在显著差异;周一至周日各天消费也存在显著差异,且一周七天不同时段咖啡消费量差异的规律也不完全相同。

谢 谢

日期: 17/08/5