Esercitazione 8

Metodi Numerici per la Soluzione di Equazioni Differenziali Ordinarie del Primo Ordine

Metodi numerici per la soluzione del problema di Cauchy

Dato un generico problema di Cauchy:

$$\begin{cases} y'(t) = f(t, y) & t_0 < t \le t_{max}, \\ y(t_0) = y_0, \end{cases}$$
 (1)

i metodi numerici utilizzati per risolvere il problema (1) si basano sulla seguente strategia:

- 1. stabilire un passo di avanzamento temporale h;
- 2. suddividere l'intervallo temporale $[t_0, t_{max}]$ in un numero N_h di sottointervalli $N_h = (t_{max} t_0)/h$ di egual ampiezza h;
- 3. per ogni istante temporale discreto $t_n = t_0 + n h$, per $n = 0, ..., N_h$, si calcola il valore incognito u_n che approssima la soluzione di (1) $y_n = y(t_n)$.

L'insieme dei valori $\{u_0 = y_0, u_1, \dots, u_{N_h}\}$ rappresenta la soluzione numerica di (1).

Metodi di Eulero in avanti, Eulero all'indietro, Crank-Nicolson e Heun

• Il metodo di Eulero in avanti calcola la soluzione numerica $\{u_n\}$ di (1) con il seguente algoritmo:

$$\begin{cases} u_{n+1} = u_n + h f(t_n, u_n) & n = 0, \dots, N_h - 1, \\ u_0 = y_0, & \end{cases}$$

Osserviamo che tale metodo è esplicito e ad un passo in quanto, ad ogni passo temporale, la soluzione numerica u_{n+1} dipende soltanto dalla soluzione al passo temporale precedente u_n .

• Il metodo di *Eulero all'indietro* calcola invece la soluzione numerica $\{u_n\}$ di (1) con il seguente algoritmo:

$$\begin{cases} u_{n+1} = u_n + h f(t_{n+1}, u_{n+1}) & n = 0, \dots, N_h - 1, \\ u_0 = y_0, & \end{cases}$$

Tale metodo è implicito e ad un passo, in quanto, ad ogni passo temporale, la soluzione numerica u_{n+1} dipende dalla stessa soluzione incognita u_{n+1} , oltre che da u_n . Quindi se f(t,y) è una funzione non lineare nel secondo argomento, ad ogni istante temporale, si deve risolvere un'equazione non lineare nell'icognita u_{n+1} . Infatti, u_{n+1} è lo zero della funzione

$$F_{EI,n}(w) = w - u_n - hf(t_{n+1}, w)$$
 per $n = 0, ..., N_h - 1.$ (2)

Utilizzando il metodo di Newton per risolvere questa equazione non lineare per ogni $n = 0, \ldots, N_h - 1$, scriviamo allora:

$$\begin{cases} w^{(0)} = u_n, \\ w^{(k+1)} = w^{(k)} - \frac{F_{EI,n}(w^{(k)})}{F'_{EI,n}(w^{(k)})} & \text{per } k = 0, 1, \dots \text{ fino a criterio d'arresto soddisfatto,} \\ u_{n+1} = w^{(k+1)}, \end{cases}$$
 (3)

dove $F'_{EI,n}(w) = 1 - h \frac{\partial f}{\partial y}(t_{n+1}, w)$. Notiamo quindi che per costruire le iterate del metodo di Newton, sarà necessario fornire in input alla funzione l'espressione di $\frac{\partial f}{\partial y}(t, y)$.

Alternativamente è possibile utilizzare il metodo delle *iterazioni di punto fisso* per risolvere l'equazione non lineare (2), introducendo la funzione di iterazione seguente

$$\phi_{EI,n}(w) = u_n + hf(t_{n+1}, w)$$
 per $n = 0, \dots, N_h - 1$.

Considerando il metodo delle iterazioni di punto fisso, applichiamo dunque, per ogni $n=0,\ldots,N_h-1$:

$$\begin{cases}
w^{(0)} = u_n, \\
w^{(k+1)} = \phi_{EI,n}(w^{(k)}) & \text{per } k = 0, 1, \dots \text{ fino a criterio d'arresto soddisfatto,} \\
u_{n+1} = w^{(k+1)}.
\end{cases}$$
(4)

Le proprietà di convergenza locali del metodo delle iterazioni di punto fisso dipenderanno dunque da $\phi'_{EI,n}(w) = h \frac{\partial f}{\partial y}(t_{n+1}, w)$.

• Il metodo di Crank-Nicolson calcola la soluzione numerica $\{u_n\}$ di (1) con il seguente algoritmo:

$$\begin{cases} u_{n+1} = u_n + \frac{h}{2} \left[f(t_n, u_n) + f(t_{n+1}, u_{n+1}) \right] & n = 0, \dots, N_h - 1, \\ u_0 = y_0. \end{cases}$$

Osserviamo che anche tale metodo è implicito in quanto, ad ogni passo temporale la soluzione numerica u_{n+1} dipende dalla stessa soluzione incognita u_{n+1} . Analogamente a quanto visto per il metodo di Eulero all'indietro, ad ogni istante temporale si deve risolvere un'equazione non lineare:

$$F_{CN,n}(w) = w - u_n - \frac{h}{2} [f(t_n, u_n) + f(t_{n+1}, w)]$$
 per $n = 0, \dots, N_h - 1$.

È possibile utilizzare il metodo di Newton analogamente a (3), utilizzando $F_{CN,n}(w)$ e $F'_{CN,n}(w) = 1 - \frac{h}{2} \frac{\partial f}{\partial y}(t_{n+1}, w)$, oppure il metodo delle iterazioni di punto fisso (4) con la funzione di iterazione:

$$\phi_{CN,n}(w) = u_n + \frac{h}{2} [f(t_n, u_n) + f(t_{n+1}, w)]$$
 per $n = 0, \dots, N_h - 1$.

• Il metodo di Heun calcola la soluzione numerica $\{u_n\}$ di (1) con il seguente algoritmo:

$$\begin{cases} u_{n+1}^* = u_n + h f(t_n, u_n), \\ u_{n+1} = u_n + \frac{h}{2} \left[f(t_n, u_n) + f \left(t_{n+1}, u_{n+1}^* \right) \right] & n = 0, \dots, N_h - 1, \\ u_0 = y_0. \end{cases}$$

Osserviamo che anche tale metodo è esplicito in quanto, ad ogni passo temporale, la soluzione numerica u_{n+1} soltanto dalla soluzione al passo temporale precedente u_n .

Esercizio 1

Si consideri il problema di Cauchy:

$$\begin{cases} y'(t) = \cos(2y(t)) & 0 < t \le 6 \\ y(0) = 0 \end{cases}$$
 (5)

Qui la funzione $f(t,y) = \cos(2y)$. La soluzione esatta nell'intervallo limitato $t \in [0,6]$ è

$$y(t) = \frac{1}{2}\arcsin\left(\frac{e^{4t} - 1}{e^{4t} + 1}\right)$$
 per $t \ge 0$.

- 1. Rappresentare graficamente la soluzione esatta nell'intervallo considerato.
- 2. Implementare i metodi di Eulero in avanti, Eulero all'indietro, Crank-Nicolson e Heun nelle funzioni Matlab[®] di cui si riporta l'intestazione:

```
function [t_h,u_h] = eulero_avanti(f,t_max,y_0,h)
function [t_h,u_h,iter_nwt] = eulero_indietro(f,df,t_max,y_0,h)
function [t_h,u_h,iter_nwt] = crank_nicolson(f,df,t_max,y_0,h)
function [t_h,u_h] = heun(f,t_max,y_0,h)
```

Si consideri in particolare il *metodo di Newton* per i metodi impliciti di Eulero all'indietro e Crank-Nicolson con un criterio d'arresto basato sulla differenza tra iterate successive.

Tutti i metodi richiedono in input la funzione f che descrive il problema di Cauchy definita come anonymous function ($f = \emptyset (t,y) \ldots$), l'istante finale t_max dell'intervallo temporale di soluzione (l'istante iniziale è sempre $t_0 = 0$), il dato iniziale del problema di Cauchy y_0 0 e il passo di discretizzazione temporale h. Tutti i metodi restituiscono in output il vettore t_0 degli istanti temporali e il vettore u_0 contenente la soluzione numerica del problema di Cauchy.

Per i soli metodi impliciti è necessario fornire in input l'espressione della funzione df (definita come anonymous function df = @(t,y) ...) che contiene l'espressione di $\frac{\partial}{\partial y} f(t,y)$, necessaria per utilizzare il metodo di Newton. I metodi impliciti restituiscono in output anche il vettore iter_nwt che contiene il numero di iterazioni che il metodo di Newton compie per risolvere l'equazione non lineare ad ogni istante temporale.

- 3. Risolvere numericamente il problema (5) utilizzando le funzioni eulero_avanti, eulero_indietro, crank_nicolson e heun con un passo di discretizzazione temporale h=0.5.
 - Rappresentare sullo stesso grafico le soluzioni numeriche ottenute e confrontarle con la soluzione esatta.
- 4. Risolvere numericamente il problema con i quattro metodi precedenti utilizzando i passi di discretizzazione temporale: h = [0.4, 0.2, 0.1, 0.05, 0.025, 0.0125]. Al variare di h, si valuti per ogni metodo il massimo modulo dell'errore compiuto approssimando la soluzione esatta $y_n = y(t_n)$ con la soluzione numerica u_n :

$$e_h = \max_{t_n \in [t_0, t_{max}]} |y_n - u_n|.$$

- 5. Riportare, su un grafico in scala logaritmica su entrambi gli assi, l'andamento di e_h al variare di h per i quattro metodi considerati. Verificare che ci sia accordo con gli ordini di convergenza teorici dei metodi; ricordiamo che se $y \in C^2([t_0, t_f])$ i metodi di Eulero sono accurati di ordine p = 1, mentre se $y \in C^3([t_0, t_f])$ i metodi di Crank-Nicolson e Heun sono accurati di ordine p = 2.
- 6. Si ripeta il punto 2 implementando gli algoritmi dei metodi di Eulero all'indietro e Crank-Nicolson usando ora il metodo delle *iterazioni di punto fisso* per risolvere le equazioni non lineari a ogni passo temporale. Si considerino le seguenti intestazioni:

```
function [t_h, u_h, iter_ptofis] = eulero_indietro_ptofis(f, t_max, y_0, h)
function [t_h, u_h, iter_ptofis] = crank_nicolson_ptofis(f, t_max, y_0, h)
```

La funzione di iterazione corrispondente ai due metodi $(\phi_{EI,n}(w) \in \phi_{CN,n}(w))$ andrà definita all'interno delle funzioni come anonymous function phi = @ (w) ...). Le funzioni restituiscono in output anche il vettore iter_ptofis che contiene il numero di iterazioni che il metodo delle iterazioni di punto fisso compie per risolvere l'equazione non lineare ad ogni istante temporale.

- 7. Si ripeta il punto 3 utilizzando le funzioni eulero_indietro_ptofis e crank_nicolson_ptofis implementate al punto 6.
- 8. Si utilizzi opportunamente la funzione Matlab[®] ode23 per risolvere il problema (5). Si rappresenti su un grafico la soluzione numerica ottenuta.

Esercizio 2

Si consideri il problema di Cauchy lineare (problema modello):

$$\begin{cases} y'(t) = \lambda y & t > 0 \\ y(0) = y_0. \end{cases}$$
 (6)

1. Risolvere il problema (6) nel caso $\lambda = -2$ con i metodi di Eulero in avanti e di Eulero all'indietro. Scegliere come istante finale $t_{max} = 10$, dato inziale $y_0 = 1$ e utilizzare il passo di discretizzazione temporale h = 0.1. Rappresentare sullo stesso grafico le soluzioni numeriche ottenute e confrontarle con la soluzione esatta:

$$y(t) = y_0 e^{\lambda t}$$
 per $t \ge 0$.

2. Si ripeta il punto precedente ora con h=0.9 e h=1.1. Cosa si osserva? Si motivi il risultato ottenuto.

Esercizio 3

Si consideri il problema di Cauchy lineare:

$$\begin{cases} y'(t) = \cos(t) e^{-t/2} - \frac{1}{2}y(t) & 0 < t \le 10, \\ y(0) = 0, \end{cases}$$
 (7)

dove $f(t,y) = \cos(t) e^{-t/2} - \frac{1}{2}y$ è lineare nel secondo argomento y. La soluzione esatta di tale problema è :

$$y(t) = \sin(t) \exp(-t/2)$$
 per $t \ge 0$.

Si desidera risolvere tale problema tramite i metodi di Eulero implicito e di Crank-Nicolson. Essendo la funzione f(t,y) lineare rispetto ad y, si può scrivere nella forma f(t,y) = a(t)y(t) + b(t). In tal caso, anche per i metodi impliciti, è possibile ottenere una formulazione esplicita manipolando le equazioni; infatti, scrivendo il passo di aggiornamento, mediante alcuni calcoli, si può ricavare un'espressione esplicita rispetto a u_{n+1} . Nel caso di Eulero implicito, per f(t,y) = a(t)y(t) + b(t), abbiamo:

$$u_{n+1} = u_n + h [a(t_{n+1})u_{n+1} + b(t_{n+1})],$$

da cui:

$$u_{n+1} = \frac{1}{1 - h \, a(t_{n+1})} \, \left[u_n + h \, b(t_{n+1}) \right].$$

Invece, nel caso di Crank-Nicolson, abbiamo:

$$u_{n+1} = u_n + \frac{h}{2} \left[a(t_n)u_n + b(t_n) + a(t_{n+1})u_{n+1} + b(t_{n+1}) \right],$$

da cui:

$$u_{n+1} = \frac{1}{1 - \frac{h}{2} a(t_{n+1})} \left[\left(1 + \frac{h}{2} a(t_n) \right) u_n + \frac{h}{2} (b(t_n) + b(t_{n+1})) \right].$$

1. Si scriva la formulazione dei due metodi applicati al problema in esame. Sfruttando la linearità della funzione f(t,y) rispetto al secondo argomento, riportare la forma esplicita di entrambi gli schemi.

- 2. Si rappresenti con Matlab[®] la soluzione esatta y(t) nell'intervallo [0, 10].
- 3. Si implementino i metodi di Eulero implicito e di Crank-Nicolson per il problema in esame, sfruttando la formulazione ottenuta per la funzione f(t,y) lineare nel secondo argomento. Si risolva numericamente il problema con un passo h=0.2 e si confrontino graficamente le soluzioni approssimate con la soluzione esatta.

Esercizio 4

tratto dall'ESAME del 21/06/2023

Il problema di Cauchy

$$\begin{cases} y'(t) = 7y(t)^2 t^3 & 0 < t \le 0.5, \\ y(0) = 1, \end{cases}$$
 (8)

ammette la soluzione esatta $y_{ex}(t) = -4/(7x^4 - 4)$. La si approssimi con il metodo di Crank-Nicolson (con Newton come solutore non lineare) e si scelga l'affermazione corretta:

- scegliendo h = 4/256, la soluzione numerica è qualitativamente equivalente a quella esatta e le iterazioni di Newton convergono sempre entro 3 passi;
- scegliendo h = 4/64, la soluzione numerica presenta un massimo in x = 0.5 del valore di circa 1.25;
- il metodo di Newton non converge per h = 4/64 e restituisce un risultato molto inaccurato;
- scegliendo h=4/256, la soluzione numerica ha un minimo pari a 0.85 circa;
- scegliendo h=4/256, il metodo di Newton va sostituito con uno schema di punto fisso per migliorare le capacit $\tilde{\mathbf{A}}$ di convergenza ed evitare oscillazioni spurie.