

Андрей Канашов

Senior Data Scientist

BestDoctor

Проверить, идет ли запись!

Преподаватель

Андрей Канашов

- Senior Data Scientist в BestDoctor
 - Прогнозирование ключевых метрик
 - Мэтчинг медицинских услуг
 - Рекомендации клиник
 - Тарификация и ценообразование

Правила вебинара

Активно участвуем

Задаем вопрос в чат или голосом

Off-topic обсуждаем в Slack #канал группы или #general

Вопросы вижу в чате, могу ответить не сразу

Цели вебинара | После занятия вы узнаете

Перархическая кластеризация

2 DBSCAN

З Силуэтный коэффициент

Применить алгоритмы на практике

Иерархическая кластеризация

Agglomerative clustering Агломеративная кластеризация

- Каждая точка отдельный кластер
- На каждом шаге объединяются два ближайших кластера
- Объединение продолжается до тех пор, пока данные не сольются в один кластер

Divise clustering Дивизивная кластеризация

- Все данные один большой кластер
- На каждом шаге разделяется один из кластеров на две части
- Разделение продолжается до тех пор, пока кластеры не будут состоять из одной точки

Объединение данных

Как определить расстояние между кластерами?

Single linkage

$$D(X,Y) = \min_{x \in X, y \in Y} d(x,y)$$

Average linkage

$$D(X,Y) = \frac{1}{|X|\cdot |Y|} \sum_{x \in X} \sum_{y \in Y} d(x,y)$$

Критерии связи (linkage)

Complete linkage

 $D(X,Y) = \max_{x \in X, y \in Y} d(x,y)$

Centroid linkage

$$D(X,Y) = \|\mathbf{c}_x - \mathbf{c}_y\|$$

Ward linkage

В качестве расстояния между кластерами берётся прирост дисперсии, т.е. суммы квадратов расстояний объектов до центра кластера, получаемого в результате их объединения

$$L_{Ward}(X,Y) = \sum_{x \in X} \sum_{y \in Y} ||x - y||^2$$

Выбор числа кластеров

Плюсы и минусы иерархической кластеризации

Плюсы:

- + простая в реализации
- + иерархия кластеров

Минусы:

- вычислительные ресурсы и память
- не всегда может выделить сложные формы кластеров
- дендрограмма для небольшого объема данных
- выбор критериев связи

DBSCAN

DBSCAN (density-based spatial clustering of applications with noise) - плотностный алгоритм кластеризации пространственных данных с присутствием шума

Параметры:

- eps радиус окрестности
- min_samples минимальное количество точек, которое должно находиться в окрестности eps

<u>Типы точек:</u>

- **core points (ядровые точки)** в радиусе *ерѕ* находится не менее *min_samples* точек
- border points (пограничные точки) находятся в пределах радиуса окрестности ядровых точек, при этом в радиусе своей окрестности имеют меньше min_samples точек
- **noise points (шумовые точки)** в радиусе окрестности *eps* меньше *min_samples* точек и не попадают в окрестность ядровых точек

DBSCAN

Выбирается произвольна точка

- Находятся все точки, удаленные от стартовой точки на расстоянии, не превышающем радиус окрестности eps.
- Если множество точек, находящихся в пределах радиуса окрестности eps, меньше значения min_samples, стартовая точка помечается как шум (noise)
- Если это множество точек больше значения min_samples, стартовая точка помечается как ядровая и ей назначается метка нового кластера.
- Затем посещаются все соседи этой точки (находящиеся в пределах eps). Если они еще не были присвоены кластеру, им присваивается метка только что созданного кластера. Если они являются ядровыми точками, поочередно посещаются их соседи и т.д.

Кластер растет до тех пор, пока не останется ни одной ядерной точки в пределах радиуса окрестности ерѕ. Затем выбирается другая точка, которая еще не была посещена, и повторяется та же самая процедура.

epsilon = 1.00 minPoints = 4

https://www.naftaliharris.com/blog/visualizing-dbscan-clustering/https://cdn-images-1.medium.com/max/640/1*tc8UF-h0nQqUfLC8-0uInQ.gif

Плюсы и минусы DBSCAN

Плюсы:

- + сам определяет количество кластеров
- + выделяет сложные формы кластеров
- + находит выбросы

Минусы:

- выбор параметров
- плохо выделяет кластеры с разной плотностью

Силуэтный коэффициент

Показывает, насколько среднее расстояние до объектов своего кластера отличается от среднего расстояния до объектов других кластеров.

$$s = \frac{b - a}{max(a, b)}$$

 а – среднее расстояние от данного объекта до объектов из того же кластера

b — среднее расстояние от данного объекта до объектов из другого ближайшего кластера

Диапазон коэффициента: [-1,1]

- -1 худший вариант, разрозненная кластеризация
- 0 кластеры пересекаются и накладываются
- 1 лучший вариант, четко выделенные кластеры

Силуэтный коэффициент

Сравнение кластеризации

Дополнительные материалы

Обзор кластеризации из библиотеки sklearn:

https://scikit-learn.org/stable/modules/clustering.html

https://scikit-learn.org/stable/modules/clustering.html#hierarchical-clustering

https://scikit-learn.org/stable/modules/clustering.html#dbscan

Силуэтный коэффициент из библиотеки sklearn:

https://scikit-learn.org/stable/modules/clustering.html#silhouette-coefficient

Визуализация DBSCAN:

https://www.naftaliharris.com/blog/visualizing-dbscan-clustering/

Дополнительные материалы

OPTICS:

https://scikit-learn.org/stable/modules/clustering.html#optics

https://en.wikipedia.org/wiki/OPTICS_algorithm

https://towardsdatascience.com/clustering-using-optics-cac1d10ed7a7

HDBSCAN:

https://hdbscan.readthedocs.io/en/latest/how hdbscan works.html

Spectral clustering:

https://scikit-learn.org/stable/modules/clustering.html#spectral-clustering

https://en.wikipedia.org/wiki/Spectral clustering

Домашнее задание

Сегментация клиентов банка

EDA и Preprocessing

- 1.Скачайте данные по клиентам немецкого банка: https://www.kaggle.com/uciml/german-credit
- 2.Проведите EDA, чтобы познакомиться с признаками
- 3. Преобразуйте все признаки в числовые подходящими методами
- 4.Приведите все данные к одному масштабу (а заодно поясните, почему это необходимая операция при кластеризации)

• Моделирование

- 1.Постройте три варианта кластеризации: k-means, hierarhical и DBSCAN, подберите оптимальное количество кластеров для каждого метода при помощи Elbow method и Silhouette plot
- 2.Также воспользуйтесь различными вариантами сжатия признакового пространства (PCA, UMAP, tSNE) и визуализируйте результаты кластеризации на двумерной плоскости

• Интерпретация

- 1.Теперь ваша задача попытаться проинтерпретировать получившиеся кластеры, начните с простого расчета средних значений признаков для каждого из кластеров, есть ли интересные закономерности?
- 2.Теперь постройте boxplot-ы для каждого признака, сгруппировав значения по кластерам, по каким признакам заметно наибольшее отличие кластеров друг от друга? Можно ли их интерпретировать?

Цели вебинара | Проверка достижения целей

1 Как работает иерархическая кластеризация?

7 Как работает DBSCAN?

З Какие метрики качества кластеризации?

Какой алгоритм кластеризации лучше всех?

Рефлексия

Достигли ли вы цели вебинара?

С какими основными мыслями и инсайтами уходите с вебинара?

Андрей Канашов

Senior Data Scientist

BestDoctor