Exercise 1. An Eulerian circuit of G is a sequence of vertices $v_1v_2 \dots v_\ell$ (a vertex may appear more than once) so that every edge $uw \in E(G)$ appears as v_iv_{i+1} for some i in the sequence, and so that $v_1 = v_\ell$. A Eulerian graph is one which has a Eulerian circuit.

A Hamiltonian cycle of graph G on at least three vertices is an sequence $v_1v_2...v_n$ such that each $u \in V(G)$ appears exactly once, $v_1 = v_2$ and each $v_iv_{i+1} \in E(G)$. A graph is Hamiltonian if it has a Hamiltonian cycle.

- (a) Let \mathcal{A} be the set of Eulerian graphs. Show that \mathcal{A} is not monotone.
- (b) Let \mathcal{B} be the set of Hamiltonian graphs. Is \mathcal{B} monotone?

Exercise 2. A graph G with $n \geq 3$ vertices, denoted C_n , is a cycle if its vertices can be (re)-labelled v_1, \ldots, v_n such that $E(G) = \{v_i v_{i+1} : i \in [n]\}$ where the subscript addition is taken modulo n. For example a cycle on 3 vertices is \triangle and there are three cycles on four vertices \square , \nearrow , \bowtie .

A connected graph is one in which any two vertices uv are connected by a sequence of vertices $v_1 \dots v_\ell$ so that $u = v_1$, $v = v_\ell$ and each $v_i v_{i+1}$ is an edge. For example \mathfrak{r} is connected but \mathfrak{r} is not connected.

- (a) A graph with n vertices and n edges must contain a cycle as a subgraph.
- (b) A connected graph with n vertices and n edges must contain exactly one cycle.
- (c) Give an example to show that the assumption of connectivity is needed for part b.

Exercise 3. Let \mathcal{A}_{\triangle} be the set of all graphs which contain \triangle as a subgraph.

- (a) Show that $\mathbb{P}(G(n, 1/2) \in \mathcal{A}_{\triangle}) \to 1$.
- (b) (optional) Fix a constant $0 , and show that <math>\mathbb{P}(G(n, p) \in \mathcal{A}_{\triangle}) \to 1$.

Exercise 4. Prove the following:

Let X_1, X_2, \ldots be a sequence of random variables each taking non-negative values. If $\mathbb{E}[X_n] \to 0$ then

$$\mathbb{P}(X_n=0)\to 1,$$

and if $\mathbb{E}[X_n] > 0$ for each n, and $\mathbb{V}[X_n]/\mathbb{E}[X_n] \to 0$ then

$$\mathbb{P}(X_n=0)\to 0.$$