MAU11601:Introduction To Programming - Tutorial 6 Gaussian Elimination

Liam Burke School Of Mathematics, Trinity College Dublin

November 12, 2022

Question 1

NOTE: Part (c) of this question can be done simultaneously with parts (a) and/or (b) to help debug your code.

• (a) Write a MATLAB function

which takes in an $n \times n$ matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ and a vector $\mathbf{b} \in \mathbb{R}^n$ and performs Gaussian elimination on the augmented matrix $\begin{bmatrix} \mathbf{A} & \mathbf{b} \end{bmatrix}$. The relevant row operations can be done on both the matrix \mathbf{A} and \mathbf{b} separately without explicitly constructing the augmented matrix. The function should overwrite the matrix \mathbf{A} with an upper triangular matrix and should also overwrite the vector \mathbf{b} . The function should return \mathbf{A} and \mathbf{b} .

Perform an error check to ensure the matrix input is square.

• (b) Write another MATLAB function

which takes in an $n \times n$ upper triangular matrix **U** and a vector $\mathbf{v} \in \mathbb{R}^n$ and solves the linear system $\mathbf{U}\mathbf{x} = \mathbf{v}$ using backward substitution. The function should return the solution in the vector $\mathbf{x} \in \mathbb{R}^n$.

• (c) Create a run script run.m which solves the linear system

$$2x_1 - 3x_2 - x_3 = 7$$
$$3x_1 + 5x_2 - 3x_3 = -2$$
$$4x_1 - x_2 + 2x_3 = 17$$

using a function call to both functions created in (a) and (b).

You should get as a solution $x_1 = 3, x_2 = -1$ and $x_3 = 2$.