Observation of anisotropy-independent magnetization dynamics in spatially disordered Heisenberg spin systems

T. Franz, 1.2.* S. Geier, 1.* C. Hainaut, 1.3 A. Braemer, 1 N. Thaicharoen, 1.4 M. Hornung, 1 E. Braun, 1 M. Gärttner, 5 G. Zürn, 1 and M. Weidemüller, 1.7

¹Physikalisches Institut, Universität Heidelberg, Im Neuenheimer Feld 226, 69120 Heidelberg, Germany

²Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, 85748 Garching, Germany

³Universite de Lille, CNRS, UMR 8523-PhLAM-Laboratoire de Physique des Lasers Atomes et Molecules, F-59000 Lille, France

⁴Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand

⁵Institut für Festkörpertheorie und Optik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena, Germany

(Received 28 September 2022; accepted 20 June 2024; published 5 August 2024)

An important step towards a comprehensive understanding of far-from-equilibrium dynamics of quantum many-body systems is the identification of unifying features that are independent of microscopic details of the system. We experimentally observe such robust features in the magnetization relaxation dynamics of disordered Heisenberg XX, XXZ, and Ising Hamiltonians. We realize these Heisenberg spin models with tunable anisotropy parameter and power-law interactions in an ensemble of Rydberg atoms by encoding the spin in suitable Rydberg state combinations. We consistently observe stretched-exponential relaxation of magnetization for all considered spin models, collapsing onto a single curve after appropriate rescaling of time. This robust short-time relaxation behavior is explained by a perturbative treatment that exploits the strong disorder in pairwise couplings, which leads to a description in terms of approximately independent pairs of spins. In numerical simulations of small systems, we show that these pairs of spins constitute approximate local integrals of motion, which remain at least partially conserved on a timescale exceeding the duration of the relaxation dynamics of the magnetization.

DOI: 10.1103/PhysRevResearch.6.033131

I. INTRODUCTION

Far-from-equilibrium dynamics of isolated quantum systems after a quench displays a wide range of emergent phenomena, such as dynamical phase transitions [1,2], quantum many-body scars [3–5], and many-body localization (MBL) [6–10]. The time evolution of these systems generally depends strongly on the type of interactions and the distribution of interaction strengths between the particles [11]. A notable exception are systems showing (metastable) prethermal phases, where relaxation dynamics can show universal behavior, i.e., the dynamics become independent of details of the microscopic model [12–17].

When considering the role of disorder for the dynamics of quantum many-body systems, a striking characteristic of the dynamics is that they can be nonergodic [18], which is found for example in spin glasses where relaxation becomes extremely slow [19] or in MBL systems where the dynamics might be completely frozen [20]. Anomalously slow relaxation was also observed in disordered quantum spin systems

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Open access publication funded by Max Planck Society.

that feature subexponential dynamics [21–25]. Remarkably, in all these different classical and quantum systems, in the strong disorder regime, the subexponential dynamics are well described by the same functional form, the stretched exponential law. This raises the question of the origin of this robust behavior and whether it is affected by the modification of symmetry properties of the Hamiltonian.

In classical systems, the answer to these questions is provided by the seminal work of Klafter and Shlesinger, who found that a scale-invariant distribution of timescales is the common underlying mathematical structure that induces stretched-exponential relaxation [26]. Indeed, the authors proposed an intuitive understanding by considering the *parallel channels* model where an ensemble of initially fully polarized spins are coupled to an external bath at a different strength sampled from a scale-invariant distribution. Due to the coupling to the bath, each spin decays exponentially on a different timescale. Thus, the global polarization of the system yields a stretched exponential form resulting from the averaging over all the spins.

For isolated quantum systems, where the dynamics are unitary, there is no notion of decay due to a bath. However, in a disordered system where the spins are randomly positioned in space, the interaction strengths between the spins can be distributed scale invariantly. For example, it was shown analytically for the dynamics of the quantum Ising model that this scale-invariant distribution of coupling strengths induces a stretched exponential relaxation [27]. The derivation of the analytic solution is only possible because the Ising model

^{*}These authors contributed equally to this work.

[†]Contact author: weidemueller@uni-heidelberg.de