目 录

一、	电磁	兹场与电磁波概论
	1.1	电磁现象与受关注的典型问题
	1.2	揭示电磁规律的里程碑事件与启示
	1.3	学习的任务、挑战与对策
	1.4	学习的主要内容
_,	物理	里场的分析方法
	2.1	物理量与场及其形象化表达
		2.1.1 物理量的类别
		2.1.2 物理量的场
		2.1.3 场的形象化表示
	2.2	标量场分析
		2.2.1 方向导数
		2.2.2 梯度
	2.3	矢量场分析
		2.3.1 矢量场的通量与散度
		2.3.2 矢量场的环流与旋度
		2.3.3 矢量场分类
		2.3.4 矢量场与源的因果关系——亥姆霍兹定理
	2.4	物理量分析的数学基础
		2.4.1 矢量代数
		2.4.2 泰勒级数展开
		2.4.3 复合函数求导
		2.4.4 正交坐标系
		2.4.5 矢量分析中的恒等关系
三、	电磁	兹场的基本规律
	3.1	电荷守恒定律
		3.1.1 产生电磁场的源
		3.1.2 电荷的空间分布形式
		3.1.3 电流的空间分布形式
		3.1.4 电荷守恒定律
	3.2	电磁场的因果规律
		3.2.1 电磁场的分类
		3.2.2 真空中电磁场的因果规律
		3.2.2.1 静电场
		3.2.2.2 恒定磁场
		3.2.2.3 时变电磁场
		3.2.3 物质空间中电磁场的因果规律
		3.2.3.1 物质空间中电磁场规律的分析思想
		3.2.3.2 物质的电磁效应
		3.2.3.3 麦克斯韦方程组
		3.2.3.4 电磁辅助位其及因果关系

	3.3 电磁能量守恒定理
	3.3.1 能量守恒法则
	3.3.2 电磁能量守恒——玻印廷定理
四、	电磁场问题求解与应用
	4.1 电磁场的唯一性定理
	4.1.1 静态电磁场的唯一性定理
	4.1.2 静态场辅助位的唯一性定理
	4.1.3 时变电磁场的唯一性定理
	4.2 静态电磁场求解与应用
	4.2.1 静电场
	4.2.1.1 静电场求解的基本方法
	4.2.1.2 导体与电容
	4.2.1.3 静电储能与静电场力
	4.2.2 恒定电场
	4.2.2.1 恒定电场求解的基本方法
	4.2.2.2 导体与电阻
	4.2.2.3 导体功耗
	4.2.3 恒定磁场
	4.2.3.1 恒定磁场求解的基本方法
	4.2.3.2 磁通与电感
	4.2.3.3 磁储能与磁力
	4.2.4 简化复杂问题的等效求解——镜像法
	4.2.5 高维问题的解析求解——分离变量法
	4.2.6 复杂问题的数值求解——有限差分法
	4.3 时谐电磁场求解与应用
	4.3.1 时谐电磁场分析基础
	4.3.2 似稳电磁场分析
	4.3.3 时谐电磁波的空间传播
	4.3.3.1 电磁波的分类
	4.3.3.2 均匀平面波在无界媒质空间中的传播
	4.3.3.3 电磁波的极化特性
	4.3.3.4 均匀平面波在平面分层媒质空间中的传播
	4.3.4 时谐电磁波的导行传播
	4.3.4.1 导行电磁波概论
	4.3.4.2 矩形波导
	4.3.4.3 圆柱波导
	4.3.4.4 同轴线
	4.3.4.5 谐振腔
	4.3.4.6 传输线
	4.3.5 电磁辐射与天线 4.3.5.1 电流线元的辐射
	4.3.5.1 电流线无时辐射 4.3.5.2 电流小环的辐射
	4.3.5.3 辐射场分区
	4.3.5.4 线天线
	4.0.0.4 汉八汉

4.3.5.5	面天线
	天线阵
4.3.5.4	对偶原理与电偶极子和磁偶极子的辐射
4.3.5.5	镜像原理
	互易原理与接收天线
	惠更斯原理与口径辐射
	辐射传输公式与雷达方程
	天线应用
	7 (7A)II 1

二、物理场的分析方法

- 2.1 物理量与场
- 2.1.1 物理量的类别

根据物理量大小取值与方向取向的属性,物理量可主要分为二类:

标量: 是指只有大小量值的物理量。如温度、高度、电位等。

矢量:是指不但有一定大小量值,还有一定方向指向的物理量。如速度、作用力、电场、磁场等。

为了便于分析,通常用不同的符号或字母来表达不同的标量和矢量。如对于标量,用 T 表示温度,H 表示高度, φ 表示电位等;对于矢量,常用黑体字母或字母加上划线表示,如用 \mathbf{F} 或 \mathbf{F} 表示作用力。

矢量在一定坐标系下可用 3 个为标量的坐标分量完整表示。例如,在直角坐标系下

$$F = e_x F_x + e_y F_y + e_z F_z$$

式中 4、4、和 4为直角坐标系的坐标单位矢量。

另外,除了标量和矢量,物理学中还有一种称为张量的物理量,其结果与测量该物理量的方向有关。如等离子体的电磁特性参数就是一种张量。张量常用符号或字母加双上划线来表示。一般来讲,在一定坐标系下,1个张量的结果可由9个独立的标量给出,并常以矩阵的方式列出相应的9个标量。例如,各向异性电介质的介电常数张量,可表示为

$$ar{ar{arepsilon}} = egin{bmatrix} oldsymbol{arepsilon}_{xx} & oldsymbol{arepsilon}_{xy} & oldsymbol{arepsilon}_{xz} \ oldsymbol{arepsilon}_{xx} & oldsymbol{arepsilon}_{yy} & oldsymbol{arepsilon}_{yz} \ oldsymbol{arepsilon}_{zx} & oldsymbol{arepsilon}_{zy} & oldsymbol{arepsilon}_{zz} \end{bmatrix}$$

2.1.2 物理量的场

物理量的场,指的是物理量在空间中分布存在的形式。也即,在空间一定区域中的不同位置,都有一个该物理量存在于此处。如:空间中温度分布形成温度场,河道里的水流形成流速场,空间中的电位分布形成电位场等。

物理量的场函数:表示物理量场的数学函数,称为该物理量的场函数。如:温度场T(x,y,z)也叫温度(场)函数,高度场H(x,y,z)也叫高度函数,电位场 $\varphi(x,y,z)$ 也叫电位函数等。

根据物理量的类别以及其与时间的关系,可对物理量的场进行分类。

按物理量的不同类别,场可分为:标量场,矢量场。在一定坐标系下,矢量场可用三个标量函数对应的坐标分量关系完整表达。如,

$$F(x,y,z)=e_xF_x(x,y,z)+e_yF_y(x,y,z)+e_zF_z(x,y,z)$$

按物理量与时间的关系可将场分为:静态场,时变场,时谐场等。例如,静电荷产生的电场 E(x,y,z) 即为静电场;电磁波搭载的电场 E(x,y,z;t) 即为时变电场。

2.1.3 场的形象化表示

用函数来表达物理量场的空间分布,具有利于通过数学分析获得场分布特性的优点。但 是场的函数表达具有一定的抽象性,不利于直观地感受和形象地领会场分布特性。因此,对 标量场和矢量场分别建立形象化的表示方式,可有助于具体直观地认识和理解场分布的规律和特征。

(一) 标量场的形象化表示方法

对于标量场而言,常用等值线或等值面来形象化反映标量场的空间分布情况。等值线(面)的数学表达,为标量场函数取常数值时所得到的曲线(曲面)方程。即,对于二维场函数u(x,y),等值线方程为u(x,y)=C,对于三维场函数u(x,y,z),等值面方程为u(x,y,z)=C。通过等值线(面)

方程中常数 C 的不同取值,可得到如图所示反映物理量 **U**在空间不同位置区域为相应取值所形成的平面曲线簇或三维曲面簇,并且不同等值线(面)互不相交,标量场沿等值线(面)的变化为零(不变化)。因此,如此形成的等值曲线(面)簇,可形象化直观地反映出标量场的空间分布规律和特征。例如,

在反映地形图的等高线中,H(x,y)=600的曲线直观地指明

了高度为 600 米的空间位置区域。同时,通过由全部等高线构成的地形图,可直观地看到不同程度高差变化的区域。由此可见,以等值线(面)来形象化表示标量场空间分布变化情况的基本思想方法,是"以不变应万变"。

地形图的等高线

等值面簇

(二) 矢量场的形象化表示方法

对于建立矢量场的形象化表示方法而言,将涉及两个方面的问题,一是形象化地表示矢量,一是形象化地表示矢量场(矢量的空间分布)。在实际问题的分析应用中,常用有向线段来表示矢量,用矢量线来表示矢量场的空间分布情况。

在用有向线段表示矢量时,是用线段的长度表示矢量的大小,用有向线段的指向表示矢

量的方向。即对于单位矢量为 e_A ,大小(或模)为A的矢量

 $A=e_A|A$,图中用以表示A的有向线段,其长度取为|A|,指向取为 e_A 。

 $\mathrm{d}ec{r}$

矢量线

矢量线是英国科学家法拉第为分析认识电磁场空间分布规律,而 首先提出的一种形象化表示矢量场空间分布的方法。如图所示,该方法用带指向的空间曲线 簇来反映矢量场的空间分布情况,并用矢量线间的疏密表示相应位置处矢量的大小,且矢量 线上每点的切线指向与该点矢量的方向一致。

根据矢量线的定义,可得出表示矢量场F(x,y,z)的空间曲线方程,即矢量线方程。如图所示,由于任意位置处代表矢量F的有向线段与该处矢量线的切线段dx共线平行,即 $F\times dx=0$,因此可得矢量线方程为

$$\frac{dx}{F_x} = \frac{dy}{F_y} = \frac{dz}{F_z}$$

2.2 标量场分析

分析物理场的主要目的,是通过分析物理量在空间分布的变化规律,认识和获悉物理量的特征、场分布的特性、分布变化的结果,以及物理量结果间的关系(如因果关系)等。分析物理量的空间分布变化,可从物理量的场函数表达入手,利用数学分析中对函数求微分或导数的方法,得到场函数的空间变化规律。

对于标量场而言,当相应的物理问题为一维空间的问题时,则表达该标量场的标量函数为一元函数 f(x)。此时,任意位置 x处的标量 f 仅会沿 x方向发生改变,其变化的结果可由该处一元函数 f(x)的导数得出,即 df(x)。然而,当物理问题为二维或三维的高维问题时,表达标量场的标量函数则通常为二元或三元函数。如平面区域内的场函数为 f(x,y),三维空间中的场函数为 f(x,y,z)。此时,不同于一元函数的变化,多元函数在空间某处变化的结果不仅与其具体位置有关,还与该处其变化的方向有关。因此,要分析高维问题中多元标量函数物理场的空间分布变化,一般来说需要按不同方向分别回答相应方向的变化情况。

2.2.1 标量场的方向导数

(一) 方向导数的定义

定义:标量场 $\nu(M)$ 在空间任意位置 M_0 处,沿着从 M_0 引出的射线l方向,离开单位距离所产生的变化率,称为该标量场于 M_0 处沿l方向的方向导数。

根据方向导数的定义可写出其数学表达式,

$$\frac{\partial u}{\partial l}\Big|_{M_0} = \lim_{\Delta \to 0} \frac{u(M) - u(M_0)}{\Delta l}$$

由此可见,标量场的方向导数既与空间位置有关,也与所在位置 的变化方向有关。当方向导数结果为正时,表明标量场在相应位 置沿着相应方向增加;当方向导数结果为负时,表明标量场在相 应位置沿着相应方向减小;当方向导数结果为零时,表明标量场 在相应位置沿着相应方向不变。

(二)方向导数的计算

根据方向导数的定义式,结合多元复合函数的导数运算法则,可得出其在直角坐标系下的计算式,即

$$\frac{\partial l}{\partial t}\Big|_{M_0} = \frac{\partial l(x,y,z)}{\partial t}\Big|_{M_0} = \frac{\partial l}{\partial x}\frac{dx}{dt} + \frac{\partial l}{\partial y}\frac{dy}{dt} + \frac{\partial l}{\partial x}\frac{dz}{dt} = \frac{\partial l}{\partial x}\cos\alpha + \frac{\partial l}{\partial y}\cos\beta + \frac{\partial l}{\partial z}\cos\gamma$$

式中, α β γ 为射线l分别与x y z 坐标轴的夹角; $\cos \alpha$ $\cos \beta$ $\cos \gamma$ 称为l 方向的方向余弦,即可将t 的单位矢量表示为 $e_l = \cos \alpha e_x + \cos \beta e_y + \cos \gamma e_z$ 。

在实际问题的分析与应用中,标量场在空间任意位置处的最大变化率及其对应的方向,往往是标量场分析中最受关注的问题。这是由于就方向导数来说,任何方向的方向导数结果,均可通过最大变化率方向的方向导数朝着相应方向投影得到。这正是下一节的知识内容重点。

2.2.2 标量场的梯度

(一) 梯度的定义

定义: M_0 处标量场的最大变化率及其相应方向所构成的矢量,称为标量场在 M_0 处的梯度。

如果用缩写的英文短句 grad u表示梯度 (grad 为 gradient 的缩写),则由定义,

$$grad u = e_n \frac{\partial u}{\partial l} \Big|_{max}$$

式中分为相应最大变化方向的单位矢量。

根据梯度的定义,可通过对方向导数的运算分析,得出标量场在任意位置处的最大变化率及其方向,从而得到梯度的数学计算式。

(二) 梯度的计算

在直角坐标系中,对标量场u在(x,y,z)处的方向导数计算式加以整理,可得,

$$\frac{\partial u(x,y,z)}{\partial t} = \frac{\partial u}{\partial x}\cos\alpha + \frac{\partial u}{\partial y}\cos\beta + \frac{\partial u}{\partial z}\cos\gamma = A \cdot e_t = A\cos(\Omega)$$

其中,

$$A = \frac{\partial u}{\partial x} e_x + \frac{\partial u}{\partial y} e_y + \frac{\partial u}{\partial z} e_z, \quad e_t = \cos \alpha e_x + \cos \beta e_y + \cos \gamma e_z$$

由于 $|\mathbf{e}_i|$ =1,所以, $A\cdot\mathbf{e}_i$ = $A\cos(\Omega)$ ≤A。 Ω 为矢量A 与单位矢量 \mathbf{e}_i 的夹角。

$$grad u = e_n \frac{\partial u}{\partial t}\Big|_{max} = A = \frac{\partial u}{\partial x} e_x + \frac{\partial u}{\partial y} e_y + \frac{\partial u}{\partial z} e_z = \left(\frac{\partial}{\partial x} e_x + \frac{\partial}{\partial y} e_y + \frac{\partial}{\partial z} e_z\right) u$$

在场函数分析中,常用哈密顿算符" ∇ "(读作"de1"),来表示上式中的矢性微分运算,即在直角坐标系下, $\nabla = e_x \frac{\partial}{\partial x} + e_y \frac{\partial}{\partial y} + e_z \frac{\partial}{\partial z}$,因此标量场 \boldsymbol{u} 的梯度计算式为

$$grad u = \nabla u$$

需要注意,在不同坐标系下哈密顿算符 ∇ 具有不尽相同的算符运算形式。在圆柱坐标系和球坐标系中,按照类似于直角坐标系下的分析过程,可分别得到,

$$grad u = \nabla u = \left(e_{\rho} \frac{\partial}{\partial \rho} + e_{\phi} \frac{\partial}{\rho \partial \phi} + e_{z} \frac{\partial}{\partial z}\right) u$$

$$grad u = \nabla u = \left(e_{\rho} \frac{\partial}{\partial r} + e_{\theta} \frac{\partial}{r \partial \theta} + e_{\phi} \frac{\partial}{r \sin \theta \partial \phi}\right) u$$

- (三) 梯度的数学物理特性
- (1)标量场的梯度是矢量场,称为梯度场,可全面反映标量场的空间变化规律和特性。 其在空间中某处的大小表示相应标量场在该处的最大变化率,方向表示相应标量场在该处的 最大变化方向;
 - (2) 任意位置处标量场沿 4 方向的方向导数等于该处梯度在该方向上的投影,即

$$\frac{\partial u}{\partial t} = \nabla u \cdot e_t$$

- (3) 任意位置 M处梯度 ∇u 的方向,为垂直于该处标量场等值线(面)的法向,且指向 u(M)增加的方向。
 - (4) 梯度的基本运算关系:

$$\nabla C = 0$$

$$\nabla (Gu) = C\nabla u$$

$$\nabla (u \pm v) = \nabla u \pm \nabla v$$

$$\nabla (uv) = u\nabla v + v\nabla u$$

$$\nabla f(u) = f'(u)\nabla u$$

其中C为常数,uv为标量场函数。