

k-Nearest Neighbors in Uncertain Graphs

Student: Mengzi ZHAO

Professor: Mr. Fabian Suchanek, Mr. Silviu Maniu

Summary

- Context
- Problem
- Motivation
- Approach
- Conclusion

Context

Complex networks : uncertainty => probabilistic graphs

Problem

 k-nearest neighbor queries (k-NN): compute the k closest nodes to some specific node in a probabilistic graphs

- a): probabilistic graph
- nb of edges: 5
- nb of possible worlds :
 2^5
- b): one of possible world sampled from graph a

Probability of G :

0.3

1-0.4

1-0.7

•
$$Pr[G] = p(AB) * p(BD) * (1-p(AD)) * (1 - p(BC) * (1 - p(CD))$$

- from B to D
 - possible paths:
 BD, BCD, BAD

Reliability: at least one of possible paths between B and D exist

$$R = 1 - (1-p(BD))*(1-p(BAD))*(1-p(BCD)) = 0.56$$

MostProbPath distance: the length of the most probable path Distribution of the shortest path distance between B and D: (distance, probability) $(1,0.3),(2,0.26),(\infty,0.44)$

P(BD) = 0.3

- Limitations of MostProbPath function
 - The shortest path probability: may be arbitrarily small
 - ex: (1,0.02), (2,0.34), $(\infty,0.64)$
 - Probability that it is indeed the shortest path: arbitrarily small
 - ex: $(1,0.2),(2,0.1),(3,0.2),(4,0.2),(5,0.1),(\infty,0.2)$

$$\mathbf{p}_{s,t}(d) = \sum_{G \mid d_G(s,t)=d} \Pr[G].$$

- G: possible world sampled from a graph
- $p_{s,t}(d)$: sum of the probabilities of all the worlds in which the shortest path distance between s and t is exactly d

$$d_{\mathrm{M}}(s,t) = rg \max_{D} \left\{ \sum_{d=0}^{D} \mathbf{p}_{s,t}(d) \leq rac{1}{2}
ight\}.$$

- Median-Distance $d_M(s,t)$
 - median shortest-path distance among all possible worlds

$$d_{\mathrm{J}}(s,t) = \arg\max_{d} \mathbf{p}_{s,t}(d).$$

- Majority-Distance: the shortest-path distance that is most likely to be observed
- ex: (distance, $p_{s,t}(d)$)
 - $(1,0.4), (2,0.25), (\infty,0.35)$
 - $d_I(s,t)=1$

$$d_{\mathrm{ER}}(s,t) = \sum_{d \mid d < \infty} d \cdot \frac{\mathbf{p}_{s,t}(d)}{1 - \mathbf{p}_{s,t}(\infty)}$$

- Expected-Reliable Distance:
 - distance in all worlds in which there exists a path between s and t

KNN problem

- find set of k nodes $T_k = \{ t_1 \ldots, t_k \}$
 - distance between source and $t_i = <$ distance between source and any other node in the graph

Computing distance functions

- Difficulty of Median-Distance :
 - execute algorithm in every world and taking the median
- Way to overcome : approximate Median-Distance using sampling
 - (i) sample r possible graphs according to probability of edges
 - (ii) compute the median distances for the sample graphs

- input:
 - probabilistic graph G, node s, number of samples r, number of nearest-neighbor k, distance increment x
- output : T_k
 - result of KNN query
- Dijkstra: visite nodes in sampled graph

- $T_k \leftarrow \emptyset$, D \leftarrow 0
- suppose k = 2, x = 2, r = 2, s is node 1
- r: initiate r executions of Dijkstra from node 1

• 2 sampled graph from the main graph:

•
$$|T_k| < k, D = D + x = 0 + 2 = 2$$

- for 2 sampled graphs:
 - continue executing Dijkstra until reaching the distance D

• every node visited : update or instantiate $p_{D,s,t}$

$$\mathbf{p}_{D,s,t}(d) = \begin{cases} \mathbf{p}_{s,t}(d) & \text{if } d < D\\ \sum_{x=D}^{\infty} \mathbf{p}_{s,t}(x) & \text{if } d = D\\ 0 & \text{if } d > D \end{cases}$$

- in this case
- we have : $p_{2,1,2}$; $p_{2,1,3}$; $p_{2,1,4}$

- for all nodes t who has pD,s,t and who doesn't exist in Tk:
 - If d of median(pD,s,t) < D, add the node in Tk
- |Tk| < k?, if NO => algorithm is finished

Qualitative analysis

- ROC : Receiver Operating Characteristic
- x : false positive rate
- y: true positive rate

TPR = nb true positives detected / nb all true positive FPR = nb false positives detected / nb all true negative

Efficiency analysis

Figure 5: MSE vs. worlds. 200 worlds are enough.

- BIOMINE, FKICKR: datasets with a large amount of data
- •MSE : converge to 0
- 200 worlds: enough to do answer KNN queries in the datasets with tens of millions of edges

KNN pruning

Table 1: Pruning Speedup.

	0 1				
Median, 200 Worlds					
$oldsymbol{k}$	5	10	20	50	
DBLP	269	267	208	185	
BIOMINE	(247)	183	121	95	
FLICKR	111	102	81	66	
MAJORITY, 10-NN					
Worlds	20	50	100	200	
DBLP	18	22	22	23	
BIOMINE	55	59	59	65	
FLICKR	3.6	3.6	3.8	4.0	

KNN pruning

Table 1: Pruning Speedup.

5	10	20	50
	10		<u>50</u>
	267	208	185
247	183	121	95
111	102	81	66
20	50	100	200
18	22	22	23
55	59	59	65
3.6	3.6	3.8	4.0
	20 18 55	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	269 267 208 247 183 121 111 102 81 20 50 100 18 22 22 55 59 59

Conclusion

- problem : KNN queries in large probabilistic graphs
- distance functions
- approximation algorithms based on sampling
- algorithms KNN pruning
- result is better than their competitors

Thanks for your attention!