

Pauta Ayudantía 7 Estructuras Algebraicas

Profesor: Pedro Montero

Ayudante: Sebastián Fuentes

4 de mayo de 2023

Problema 1. Sea A = C([0,1]) el anillo de todas las funciones continuas $f:[0,1] \to \mathbb{R}$, y para cada $c \in [0,1]$ sea $I_c = \{ f \in A \mid f(c) = 0 \}$

- 1. Pruebe que I_c es un ideal maximal para cada $c \in [0, 1]$.
- 2. Demuestre que si I es un ideal maximal de A, entonces existe un número real $c \in [0,1]$ tal que $I = I_c$.
- 3. Muestre que si b y c son puntos distintos en [0,1] entonces $I_b \neq I_c$.
- 4. Pruebe que I_c no es igual al ideal principal generado por x-c.
- 5. Demuestre que I_c no es un ideal finitamente generado.

Demostración.

1. Supongamos que J es un ideal tal que $I_c \subsetneq J$ y veamos que J = A. Podemos considerar $f \in J \setminus I_c$, es decir, $f(c) \neq 0$. Entonces $g(x) := f(x)/f(c) \in J$ pues J es un ideal y $1 - g(x) \in I_c$, así que obtenemos

$$1 = q(x) + (1 - q(x)) \in J$$

de donde se sigue que J = A y por lo tanto I_c es maximal.

Alternativamente, para cada $c \in [0, 1]$ podemos definir el morfismo de evaluación:

$$\operatorname{ev}_c:A \twoheadrightarrow \mathbb{R}$$

cuyo kernel es $\ker(\text{ev}_c) = I_c$ y como $A/I_c \cong \mathbb{R}$ es un cuerpo entonces I_c es maximal.

2. Sea $\mathfrak{m} \subseteq A$ ideal maximal y supongamos que $\mathfrak{m} \neq I_c$ para todo $c \in [0,1]$. Para cada $c \in [0,1]$ existe entonces $f_c \in \mathfrak{m}$ tal que $f_c(c) \neq 0$, y como f_c es continua, existe una vecindad abierta V_c de c donde $f_c(x) \neq 0$ para todo $x \in V_c$. Tenemos así un cubrimiento abierto del intervalo compacto [0,1], así que podemos extraer un subcubrimiento finito V_{c_1}, \ldots, V_{c_n} y definir:

$$g(x) = f_{c_1}^2(x) + f_{c_2}^2(x) + \ldots + f_{c_n}^2(x)$$

la cual verifica g(x) > 0 para todo $x \in [0,1]$ y por lo tanto es una unidad en A, pues $\frac{1}{g(x)}$ es su inverso. Vemos entonces que I = A, y entonces no existen ideales maximales distintos de I_c .

- 3. Esto se sigue simplemente de notar que $x b \in I_b$ pero $x b \notin I_c$.
- 4. Suponer que $I_c = \langle x c \rangle$. En particular existe entonces $f(x) \in A$ tal que |x c| = f(x)(x c), así que $f(x) = \frac{|x-c|}{x-c}$ para $x \neq c$. Ahora, notar que f es discontinua en x = c pues su límite izquierdo es $-\infty$ mientras que el derecho es $+\infty$.
- 5. Suponer que I_c es finitamente generado por $\{f_i\}_{1 \leq i \leq n} \subseteq I_c$ y sea $f(x) = \sum_{i=1}^n |f_i(x)|$. Sabemos que $\sqrt{f} \in I_c$ pues es continua y f(c) = 0, así que existe $g_1, \ldots, g_n \in A$ tales que $\sqrt{f} = \sum_{i=1}^n g_i f_i$. Ahora, notar que para cada $d \in [0,1]$ existe $i \in \{1,\ldots,n\}$ tal que $f_i(d) \neq 0$, pues sino h(d) = 0 para todo $h \in I_c$, que sabemos que no es cierto pues $x-c \in I_c$. Por lo tanto el único punto en donde f se anula es c. Ahora, podemos obtener la siguiente estimación:

$$\sqrt{f(x)} = \sum_{i=1}^{n} g_i(x) f_i(x) \le \sum_{i=1}^{n} |g_i(x)| |f_i(x)| \le \sum_{i=1}^{n} |g_i(x)| \sum_{i=1}^{n} |f_i(x)| = g(x) f(x)$$

MAT214 UTFSM

donde $g(x) := \sum_{i=1}^{n} |g_i(x)|$. De la desigualdad anterior vemos que

$$g(x) \ge \frac{1}{\sqrt{f(x)}} \quad \forall x \in [0, 1] \setminus \{c\}$$

Sin embargo, cuando $x \to c$ vemos que $\frac{1}{\sqrt{f(x)}}$ es no acotada y por lo tanto g(x) no está definida en x = c, lo que supone una contradicción pues $g \in A$.

Problema 2. Sea A un anillo, Nil(A) su nilradical. Demuestre que los siguientes hechos son equivalentes:

- 1. A tiene exactamente un ideal primo.
- 2. cada elemento de A es una unidad o nilpotente.
- 3. A/Nil(A) es un cuerpo.

Demostración. $((1) \Rightarrow (2))$. Sabemos que el radical de un ideal corresponde a la intersección de todos los ideales primos que contienen al ideal, así que el nilradical se puede escribir como:

$$\operatorname{Nil}(A) := \sqrt{\langle 0 \rangle} = \bigcap_{\substack{\langle 0 \rangle \subseteq \mathfrak{p} \\ \operatorname{primo}}} \mathfrak{p} = \bigcap_{\substack{\mathfrak{p} \subseteq A \\ \operatorname{ideal primo}}} \mathfrak{p}$$

es decir, corresponde a la intersección de todos los ideales primos de A. Por lo tanto, si A tiene un único ideal primo, entonces este corresponde a Nil(A). Ahora, gracias al Teorema de Krull sabemos que todo ideal $I \neq A$ está contenido en algún ideal maximal, y como todo ideal maximal es primo, entonces Nil(A) es el único ideal maximal de A. Luego si $x \notin \text{Nil}(A)$ entonces x es invertible pues sino su ideal generado estaría contenido en Nil(A), lo que supone una contradicción.

 $((2)\Rightarrow(3))$ Supongamos que todo elemento de A invertible o bien nilpotente. Si consideramos $[x]\in A/\operatorname{Nil}(A)$ tal que $[x]\neq[0]$ entonces sabemos que $x\notin\operatorname{Nil}(A)$ y por lo tanto es invertible, y existe $y\in A$ tal que xy=1 en A. Pasando al cociente tenemos [x][y]=[xy]=[1] y por lo tanto [x] es invertible en $A/\operatorname{Nil}(A)$. Como todo elemento es invertible deducimos que $A/\operatorname{Nil}(A)$ es un cuerpo.

 $((3) \Rightarrow (1))$ Suponer que $A/\operatorname{Nil}(A)$ es un cuerpo. Sabemos que hay una correspondencia biyectiva entre ideales de A conteniendo a $\operatorname{Nil}(A)$ e ideales del cociente $A/\operatorname{Nil}(A)$ mediante la proyección, y más aún, como esta es sobreyectiva preserva ideales primos. Ahora, como $A/\operatorname{Nil}(A)$ es un cuerpo, sus únicos ideales son $\langle 0 \rangle$ y el anillo completo, por lo tanto, A posee un único ideal primo y, más aún, viene dado por $\pi^{-1}(\langle [0] \rangle) = \operatorname{Nil}(A)$.

Problema 3. Sean $I, J \subseteq \mathbb{C}[X_1, \dots, X_n]$ ideales y considere los conjuntos algebraicos afines X := V(I), Y := V(J) de \mathbb{A}^n .

- 1. Pruebe que $V(I) = V(\sqrt{I})$ y $V(J) = V(\sqrt{J})$.
- 2. Utilice el Hilbert Nullstellensatz para demostrar que

$$\sqrt{IJ} = \sqrt{I} \cap \sqrt{J}$$
 y $\sqrt{I+J} = \sqrt{\sqrt{I} + \sqrt{J}}$

Demostración.

- 1. Dado que $I \subseteq \sqrt{I}$ y como tomar V es decreciente tenemos que $V(\sqrt{I}) \subseteq V(I)$. Para ver la inclusión contraria consideramos $x \in V(I)$ y $f \in \sqrt{I}$. Por definición existe $n \in \mathbb{N}^{\geq 1}$ tal que $f^n \in I$, y como $x \in V(\sqrt{I})$ entonces $f^n(x) = 0$. Ahora, como $f^n(x) \in \mathbb{C}$ tenemos entonces que f(x) = 0 y por lo tanto $f \in V(\sqrt{I})$.
- 2. Por definición el producto de ideales corresponde al ideal generado por el producto elemento a elemento, y además sabemos que para $S \subseteq \mathbb{C}[X_1,\ldots,X_n]$ se tiene que $V(S) = V(\langle S \rangle)$, usando el Nullstellensatz calculamos:

$$\sqrt{IJ} = \Im(V(IJ) = \Im(V(I) \cup V(J)) = \Im(X) \cap \Im(Y) = \sqrt{I} \cap \sqrt{J}$$

MAT214 UTFSM

De manera similar, por definición $I+J=\langle I\cup J\rangle$ y calculamos:

$$\begin{split} \sqrt{I+J} &= \Im(V(I+J)) = \Im(V(I\cup J)) \\ &= \Im(V(I)\cap V(J)) \\ &= \Im(V(\sqrt{I})\cap V(\sqrt{J})) \\ &= \Im(V(\sqrt{I}+\sqrt{J})) \\ &= \sqrt{\sqrt{I}+\sqrt{J}} \end{split}$$