R15

Code No: 123AH

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, April/May - 2018 **MATHEMATICS – III**

(Common to EEE, ECE, EIE, ETM)

Time: 3 Hours Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit.

Each question carries 10 marks and may have a, b, c as sub questions. PART-A **(25 Marks)** Find the particular integral of $x^2 \frac{d^2y}{dx^2} - 6x \frac{dy}{dx} + 10y = x^2$. 1.a) [2] Find the singular points of the differential equation b) $x^{3}(x-1)\frac{d^{2}y}{dx^{2}} + 2(x-1)\frac{dy}{dx} + y = 0.$ [3] Prove that $P'_{n}(1) = \frac{1}{2}n(n+1)$. c) [2] Express $J_3(x)$ in terms of J_0 and J_1 . d) [3] Find the analytic function whose real part is xy. e) [2] Evaluate $\int_0^{1+i} (x^2 - iy) dz$ along the path $y = x^2$. f) [3] Find the zeros of the function $\sin\left(\frac{1}{z}\right)$ [2] g) Show that the function e^z has an essential singularity at $z = \infty$. [3] h) Find the fixed points of the transformation $w = \frac{z-1+i}{z+2}$. i) [2] Find the points at which $w = \cosh z$ is not conformal. **i**) [3] **PART-B** (50 Marks) Solve the equation in series $x^2y'' + xy' + (x^2 - 4)y = 0$. **OR** 2. [10] Solve $(x + a)^2 \frac{d^2y}{dx^2} - 4(x + a) \frac{dy}{dx} + 6y = x$ 3. [10] State and prove the generating function for $P_n(x)$. 4. [10] Prove that $(n + 1)P_{n+1}(x) = (2n + 1)xP_n(x) - nP_{n-1}(x)$. Prove that $\frac{d}{dx}(J_0(x)) = -J_1(x)$. b) [5+5]State and prove Cauchy's intergral formula. [10]

5.a)

6.

Verify Cauchy's theorem for the integral of z^3 taken over the boundary of the rectangle 7. with vertices -1, 1, 1+i, -1+i. [10]

8. State and prove Laurent series for the function f(z). [10]

OR

- 9. Evaluate $\int_0^{2\pi} \frac{\sin^2 \theta}{a + b \cos \theta} d\theta$; (a>b>0). [10]
- Find the bilinear transform which maps the points z = 0, -i, -1 into the points w = i, 1, 0. Find the image of the line y = mx under this transformation. [10]

OR

11. Determine the region of the w -plane into which the region bounded by $\frac{1}{2} \le x \le 1$ and $\frac{1}{2} \le y \le 1$ is mapped under the transformation $w = z^2$. [10]