Lecture 7 bis : Methods for Regression

Lasso estimator

K. Meziani

Dauphine | PSL **★**

Model

Consider the *n*-sample $(\{(x_i, y_i) \in \mathbb{R}^p \times \mathbb{R}\}_{i=1}^n$ such that

$$y_i = x_i^{\top} \beta^* + \epsilon_i$$
 , $i = 1, ..., n$

where $\epsilon_i \stackrel{iid}{\sim} \mathcal{N}(0, \sigma^2)$, $x_i \in \mathbb{R}^p$ and $\beta^* \in \mathbb{R}^p$. Fix $p \ge 2$ and $n \ge 1$.

Matrix form:

$$Y = \sum_{j=1}^{n} \beta_j^* X_j + \epsilon = X \beta^* + \epsilon, \tag{1}$$

where $X_j \in \mathbb{R}^n$, $X = [X_1|\cdots|X_p]$ and $\epsilon \sim \mathcal{N}(\mathbf{0}_n, \sigma^2\mathbb{I}_n)$.

Remark

This lecture is based on the paper of Bickel, Ritov and Tsybakov, Simultaneous analysis of Lasso and Dantzig selector (2009, AOS).

Notations

Sparsity set. For all $\beta \in \mathbb{R}^p$, we denote by $J(\beta)$ the sparsity set, the subset of indices $\{1, \dots, p\}$ where the vector β has non-zero coordinates

$$J(\beta) = \{j : \beta_j \neq 0\}$$

Sparsity of β **.** The sparsity of the vector β is characterized by the value $M(\beta)$, the cardinality of $J(\beta)$:

$$M(\beta) = \sum_{j=1}^{\rho} \mathbb{1}_{\beta_j \neq 0} = |J(\beta)|$$

Notations

Gram matrix:
$$\Psi_n = \frac{X^T X}{n} = \frac{1}{n} \sum_{i=1}^n x_{i,j}^2$$

Some norms. For all $a \in \mathbb{R}^n$, $b \in \mathbb{R}^p$ and $J_0 \subseteq \{1, ..., p\}$, we denote

$$||a||_n^2 = \frac{1}{n} \sum_{i=1}^n a_i^2$$
 , $||b||_1 = \sum_{j=1}^p |b_j|$, $||b||_{2,J_0} = \sqrt{\sum_{j \in J_0} b_j^2}$ and $||b||_{1,J_0} = \sum_{j \in J_0} |b_j|$.

Assumptions ${\cal H}$

- The Gram matrix Ψ_n is such that its diagonal elements are equal to 1.
- The sparsity index is such that $M(\beta^*) \le s$ for $1 \le s \le p$.

Lasso

Definition LASSO

$$\widehat{\beta}^{\lambda,L} = \arg\min_{\beta \in \mathbb{R}^p} \left\{ \|Y - X\beta\|_n^2 + 2\lambda \|\beta\|_1 \right\}$$

where the regularization parameter $\lambda > 0$.

Remarks

We are typically interested in the case where p > n and even $p >> n \Rightarrow$ Gram matrix Ψ_n is degenerate, *i.e*

$$\min_{\substack{\delta \in \mathbb{R}^p \\ \delta \neq 0}} \frac{(\delta^\top \psi_n \delta)^{1/2}}{\sqrt{n} ||\delta||_2} \equiv \min_{\substack{\delta \in \mathbb{R}^p \\ \delta \neq 0}} \frac{||X\delta||_2}{\sqrt{n} ||\delta||_2} = 0$$

OLSE does not work in this case, since it requires positive definiteness of ψ_n , *i.e*

$$\min_{\substack{\delta \in \mathbb{R}^p \\ \delta \neq 0}} \frac{||X\delta||_2}{\sqrt{n}||\delta||_2} > 0$$

The Lasso require much weaker assumptions. Replace

- the min by the minimum over a restricted set of vectors
- the norm $||\delta||_2$ by the ℓ_2 norm of only a part of δ .

For $J_0 = J(\beta^*)$, one of the properties of the Lasso is that the residuals $\delta = \widehat{\beta}^{\lambda,L} - \beta^*$ satisfy, with probability close to 1,

$$||\delta||_{1,J_0^c} \leq 3||\delta||_{1,J_0}.$$

$RE(s, c_0)$ Assumption

```
Restricted Eigenvalues
Specific
Countrat (1 comme on ci-d.fm)
```

For an integer s such that $1 \le s \le p$ and a positive number c_0 , we assume that the following condition is satisfied:

$$\kappa(s,c_0) := \min_{\substack{J_0 \subseteq \{1,\dots,p\}\\ |J_0| \leq s}} \min_{\substack{\delta \neq 0\\ \|\delta\|_{1,J_0} c \leq c_0 \|\delta\|_{1,J_0}}} \frac{\|X\delta\|_2}{\sqrt{n} \|\delta\|_{2,J_0}} > 0. \quad \text{hyribit of white}$$
 and where

Theorem~1

^aConsider model (1). Under \mathcal{H} and RE(s, 3) Assumptions, the estimator $\widehat{\beta}^{\lambda,L}$, for $\lambda = A\sigma \sqrt{\frac{\log(p)}{n}}$, with $A > 2\sqrt{2}$ is such that with probability greater than $1 - p^{1 - \frac{A^2}{8}}$::

$$||X(\widehat{\beta}^{l,L} - \beta^*)||_2^2 \leq \frac{16A^2}{\kappa(s,3)^2} \sigma^2 s \log(p). \tag{2}$$

$$||\widehat{\beta}^{l,L} - \beta^*||_1 \leq \frac{16A}{\kappa(s,3)^2} \sigma s \sqrt{\frac{\log(p)}{n}}, \tag{3}$$

$$M(\widehat{\beta}^{l,L}) \leq \frac{64\phi_{\max}}{\kappa(s,3)^2}, \tag{4}$$
denote the maximal eigenvalue of the Gram matrix ψ_{α} .

$$\|\widehat{\beta}^{l,L} - \beta^*\|_1 \le \frac{16A}{\kappa(s,3)^2} \sigma s \sqrt{\frac{\log(p)}{n}}, \tag{3}$$

$$M(\widehat{\beta}^{l,L}) \leq \frac{64\phi_{\max}}{\kappa(s,3)^2},$$
 (4)

where ϕ_{max} denote the maximal eigenvalue of the Gram matrix ψ_n .

To prove this theorem, we need previous results.

^aBickel, Ritov and Tsybakov, Simultaneous analysis of Lasso and Dantzig selector (2009, AOS)

Lemma~1

Let $V_j := \frac{1}{n} \sum_{i=1}^n \epsilon_i X_{i,j} = \frac{1}{n} X_i^{\top} \epsilon$, we define the set

$$\Omega = \bigcap_{j=1}^p \left\{ 2|V_j| \leq \lambda \right\} = \bigcap_{j=1}^p \left\{ \left| \frac{1}{n} X_j^\top \epsilon \right| \leq \lambda/2 \right\} \qquad \text{for precase the transforment to move the size of the problem in the probl$$

Then for $A > 2\sqrt{2}$ and $\lambda = A\sigma\sqrt{\frac{\log(p)}{n}}$, we have

$$\mathbb{P}(\Omega) > 1 - p^{1 - \frac{A^2}{8}},$$

Proof of Lemma~1

Denote by
$$\eta = \sqrt{n}V_j = \frac{1}{\sqrt{n}}\sum_{i=1}^{n}x_{i,j}\epsilon_i$$
, then

$$\mathbb{E}(\eta) \quad = \quad \frac{1}{\sqrt{n}} \sum_{i=1}^{n} x_{i,j} \mathbb{E}(\epsilon_i) = 0$$

$$\mathbb{V}\mathrm{ar}(\eta) = \frac{1}{n} \sum_{i=1}^n X_{i,j}^2 \mathbb{V}\mathrm{ar}(\epsilon_i) = \frac{\sigma^2}{n} \sum_{i=1}^n X_{i,j}^2 = \frac{\sigma^2}{n} X_j^\top X_j = \sigma^2 \quad \text{by Assumption } \mathcal{H}$$

La élémente diagonous

Then
$$\frac{\eta}{\sigma} \sim \mathcal{N}(0,1)$$
 and

$$\begin{split} \mathbb{P}\left(\Omega^{c}\right) &= \mathbb{P}\left(\bigcup_{j=1}^{p}\left\{2|V_{j}|>\lambda\right\}\right) = \mathbb{P}\left(\bigcup_{j=1}^{p}\left\{2|\eta|>\lambda\sqrt{n}\right\}\right) \leq \sum_{j=1}^{p}\mathbb{P}\left(2|\eta|>\lambda\sqrt{n}\right) \\ &\leq p\mathbb{P}\left(2|\eta|>\lambda\sqrt{n}\right) = p\mathbb{P}\left(|\frac{\eta}{\sigma}|>\frac{\lambda\sqrt{n}}{2\sigma}\right) \leq pe^{-\frac{\lambda^{2}n}{8\sigma^{2}}} = pe^{-A^{2}\frac{\log(p)}{8}} = p^{1-A^{2}/8} \end{split}.$$

Done se est visi avec grande probabilité.

Lemma~2

Consider model (1). Under $\mathcal H$ Assuptions, The estimator $\widehat{\beta}^{l,L}$ for $\lambda = A\sigma\,\sqrt{\frac{\log(p)}{n}}$, with $A>2\,\sqrt{2}$ is such that with probability greater than $1-p^{1-\frac{A^2}{8}}$:

$$\|X(\widehat{\beta}^{\lambda,L} - \beta^*)\|_n^2 + \lambda \|\widehat{\beta}^{\lambda,L} - \beta^*\|_1 \le 4\lambda \|\widehat{\beta}^{\lambda,L} - \beta^*\|_{1,J_0}, \tag{5}$$

where $J_0 = J(\beta^*)$.

The proof will be given last

 $\delta = -\hat{\beta}^2 - \rho^4$ Lemma 2 = $\| \| \times \delta \|_{2}^2 + \lambda \| \delta \|_{2} \le + \lambda \| \delta \|_{2}$

Consequence of the Lemma~2

With probability> $1 - p^{1 - \frac{A^2}{8}}$, we have

$$\lambda \|\widehat{\beta}^{\lambda,L} - \beta^*\|_1 \leq \|\widehat{X}(\widehat{\beta}^{\lambda,L} - \beta^*)\|_n^2 + \lambda \|\widehat{\beta}^{\lambda,L} - \beta^*\|_1$$

$$\Rightarrow \lambda \|\widehat{\beta}^{\lambda,L} - \beta^*\|_1 \leq 4\lambda \|\widehat{\beta}^{\lambda,L} - \beta^*\|_{1,J_0}$$

$$\Rightarrow \|\widehat{\beta}^{\lambda,L} - \beta^*\|_1 \leq 4\|\widehat{\beta}^{\lambda,L} - \beta^*\|_{1,J_0}$$

$$\Rightarrow \|\widehat{\beta}^{\lambda,L} - \beta^*\|_{1,J_0} + \|\widehat{\beta}^{\lambda,L} - \beta^*\|_{1,J_0} \leq 4\|\widehat{\beta}^{\lambda,L} - \beta^*\|_{1,J_0}$$

$$\downarrow \lambda_{\text{numb}} \lambda_{\text{total}} \lambda_{$$

.....

how To hopman the Joe

Then

$$\|\widehat{\beta}^{l,L} - \beta^*\|_{1,J_0^c} \le 3\|\widehat{\beta}^{l,L} - \beta^*\|_{1,J_0}. \tag{6}$$

11 544.5 53 168 2.50

KKT Conditions

Consider (1). Under \mathcal{H} assumption, any Lasso solution $\widehat{\beta}^L$ satisfies the following necessary and sufficient condition (KKT)

$$\begin{cases} \frac{1}{n}X_j^\top(Y - X\widehat{\beta}^{l,L}) = \lambda \ \text{sign}(\widehat{\beta}_j^{l,L}) & \text{if} \quad \widehat{\beta}_j^{l,L} \neq 0 \\ \frac{1}{n}|X_j^\top(Y - X\widehat{\beta}^{l,L})| \leq \lambda & \text{if} \quad \widehat{\beta}_j^{l,L} = 0 \end{cases}$$

KKT Conditions - Proof

$$\widehat{\beta}^{\lambda,L} = \arg\min_{\beta \in \mathbb{R}^p} \left\{ \underbrace{\|Y - X\beta\|_n^2 + 2\lambda \|\beta\|_1}_{\text{0. duals } \delta_{\lambda} \text{ hierare}} \right\} := \arg\min_{\beta \in \mathbb{R}^p} f(\beta),$$

The lasso solution is not differentiable at any point where β_i is equal to zero. (\rightarrow use the concept of a *subdifferential*).

• The subdifferential of the ℓ_1 penalty at point β is the vector with components

$$\partial(|\cdot|)(\beta_j) = \begin{cases} \text{sisgn}(\beta_j), & \text{if } \beta_j \neq 0 \\ \text{sign}(\beta_j), & \text{if } \beta_j = 0 \end{cases}$$

• We know that the gradient of the first terms at point β is

$$-\frac{2}{n}X^{T}(Y-X\beta).$$

Any Lasso solution $\widehat{\beta}^{\rm L}$ satisfies the following necessary and sufficient condition (KKT)

$$\overrightarrow{0} \in \partial(f)(\widehat{\beta}^{L}) \Leftrightarrow \mathsf{KKT} \mathsf{Conditions}$$

Theorem~1

^aConsider model (1). Under \mathcal{H} and RE(s, 3) Assumptions, the estimator $\widehat{\beta}^{\lambda,L}$, for $\lambda = A\sigma\sqrt{\frac{\log(p)}{n}}$, with $A>2\sqrt{2}$ is such that with probability greater than $1-p^{1-\frac{A^2}{8}}$::

$$\begin{split} \|X(\widehat{\beta}^{\lambda,L} - \beta^*)\|_2^2 & \leq & \frac{16A^2}{\kappa(s,3)^2} \sigma^2 s \log(p). \\ \|\widehat{\beta}^{\lambda,L} - \beta^*\|_1 & \leq & \frac{16A}{\kappa(s,3)^2} \sigma s \sqrt{\frac{\log(p)}{n}}, \\ M(\widehat{\beta}^{\lambda,L}) & \leq & \frac{64\phi_{\text{max}}}{\kappa(s,3)^2}, \end{split}$$

where ϕ_{\max} denote the maximal eigenvalue of the Gram matrix ψ_n .

^aBickel, Ritov and Tsybakov, *Simultaneous analysis of Lasso and Dantzig selector* (2009, AOS)

Proof of Theorem~1: the prediction bound

By Lemma~2, for $\lambda = A\sigma \sqrt{\frac{\log(\rho)}{n}}$, with $A > 2\sqrt{2}$ is s.t. w.h.p.

$$\begin{split} \|X(\widehat{\beta}^{\lambda,L}-\beta^*)\|_n^2 + \lambda \|\widehat{\beta}^{\lambda,L}-\beta^*\|_1 &\leq 4\lambda \|\widehat{\beta}^{\lambda,L}-\beta^*\|_{1,J_0} \\ \text{By Cauchy Schwarz, and for } M(\beta^*) &\leq s : \\ \|X(\widehat{\beta}^{\lambda,L}-\beta^*)\|_n^2 + \lambda \|\widehat{\beta}^{\lambda,L}-\beta^*\|_1 &\leq 4\sqrt{s}\lambda \|\widehat{\beta}^{\lambda,L}-\beta^*\|_{2,J_0} \\ \text{By RE(s,3) assumption, for } \delta &= \widehat{\beta}^{\lambda,L}-\beta^* \text{ and } \kappa := \kappa(s,3) \\ \kappa \|\widehat{\beta}^{\lambda,L}-\beta^*\|_{2,J_0} &\leq \frac{1}{\sqrt{n}} \|X\widehat{\beta}^{\lambda,L}-\beta^*\|_2 = \|X\widehat{\beta}^{\lambda,L}-\beta^*\|_{n}. \end{split}$$

Then using (7) and (8)

$$\begin{split} \|X(\widehat{\beta}^{\lambda,L} - \beta^*)\|_n^2 & \leq & \|X(\widehat{\beta}^{\lambda,L} - \beta^*)\|_n^2 + \lambda \|\widehat{\beta}^{\lambda,L} - \beta^*\|_1 \leq 4 \sqrt{s} \lambda \|\widehat{\beta}^{\lambda,L} - \beta^*\|_{2,J_0} \\ & \leq & \frac{4 \sqrt{s} \lambda}{\kappa} \|X(\widehat{\beta}^{\lambda,L} - \beta^*)\|_n. \end{split}$$

By simplifying by $\|X\widehat{\beta}^{\lambda,L} - \beta^*\|_n$ and squaring, we have

$$||X(\widehat{\beta}^{1,L} - \beta^*)||_n^2 \leq \frac{16s\lambda^2}{\kappa^2}.$$
 (9)

For $\lambda = A\sigma \sqrt{\frac{\log(p)}{n}}$, we get (2).

Theorem~1

^aConsider model (1). Under \mathcal{H} and RE(s, 3) Assumptions, the estimator $\widehat{\beta}^{\lambda,L}$, for $\lambda = A\sigma\sqrt{\frac{\log(p)}{n}}$, with $A>2\sqrt{2}$ is such that with probability greater than $1-p^{1-\frac{A^2}{8}}$::

$$\begin{split} \|X(\widehat{\beta}^{\lambda,L} - \beta^*)\|_2^2 & \leq & \frac{16A^2}{\kappa(s,3)^2} \sigma^2 s \log(p). \\ \|\widehat{\beta}^{\lambda,L} - \beta^*\|_1 & \leq & \frac{16A}{\kappa(s,3)^2} \sigma s \sqrt{\frac{\log(p)}{n}}, \\ M(\widehat{\beta}^{\lambda,L}) & \leq & \frac{64\phi_{\text{max}}}{\kappa(s,3)^2}, \end{split}$$

where ϕ_{\max} denote the maximal eigenvalue of the Gram matrix ψ_n .

^aBickel, Ritov and Tsybakov, Simultaneous analysis of Lasso and Dantzig selector (2009, AOS)

Proof of Theorem~1: the estimation bound

Under RE(s,3), for $\delta = \widehat{\beta}^{\lambda,L} - \beta^*$ and $\kappa := \kappa(s,3)$,

$$\|\widehat{\beta}^{\lambda,L} - \beta^*\|_{2,J_0} \le \frac{1}{\kappa} \|X\widehat{\beta}^{\lambda,L} - \beta^*\|_n. \tag{10}$$

Using the previous prediction bound (9) $\iint_{\mathbb{R}} \chi \int_{\mathbb{R}} \frac{\psi \sqrt{s}}{k} \lambda$

$$\|\widehat{\beta}^{\lambda,L} - \beta^*\|_{2,J_0} \le \frac{1}{\kappa} \|X\widehat{\beta}^{\lambda,L} - \beta\|_{n} \le \frac{4\sqrt{s}\lambda}{\kappa^2}. \tag{11}$$

As $|\widehat{\beta}^{l,L} - \beta^*|_{1,J_0^c} \leq 3|\widehat{\beta}^{l,L} - \beta^*|_{1,J_0}$, a consequence of Lemma~2

$$\begin{split} ||\widehat{\beta}^{l,L} - \beta^*||_1 &= ||\widehat{\beta}^{l,L} - \beta^*||_{1,J_0} + ||\widehat{\beta}^{l,L} - \beta^*||_{1,J_0^c} \le 4||\widehat{\beta}^{l,L} - \beta^*||_{1,J_0} \\ &\le 4\sqrt{s}||\widehat{\beta}^{l,L} - \beta^*||_{2,J_0} \quad \text{Cauchy Sch. inequ.} \\ &\le \frac{16s\lambda}{\kappa^2} \quad \text{by eq.} (11) \end{split}$$

for $\lambda = A\sigma \sqrt{\frac{\log(p)}{n}}$, we get (3).

Theorem~1

^aConsider model (1). Under \mathcal{H} and RE(s, 3) Assumptions, the estimator $\widehat{\beta}^{\lambda,L}$, for $\lambda = A\sigma\sqrt{\frac{\log(p)}{n}}$, with $A>2\sqrt{2}$ is such that with probability greater than $1-p^{1-\frac{A^2}{8}}$::

$$\begin{split} \|X(\widehat{\beta}^{\lambda,L} - \beta^*)\|_2^2 & \leq & \frac{16A^2}{\kappa(s,3)^2} \sigma^2 s \log(p). \\ \|\widehat{\beta}^{\lambda,L} - \beta^*\|_1 & \leq & \frac{16A}{\kappa(s,3)^2} \sigma s \sqrt{\frac{\log(p)}{n}}, \\ M(\widehat{\beta}^{\lambda,L}) & \leq & \frac{64\phi_{\text{max}}}{\kappa(s,3)^2}, \end{split}$$

where ϕ_{max} denote the maximal eigenvalue of the Gram matrix ψ_n .

^aBickel, Ritov and Tsybakov, *Simultaneous analysis of Lasso and Dantzig selector* (2009, AOS)

Proof of Theorem~1: the estimation support bound

On Ω, w.h.p with high probe

$$\left|\frac{1}{n}X_j^{\mathsf{T}}\epsilon\right| \le \lambda/2, \quad \forall j = 1, \cdots, p$$
 (12)

Moreover, the Lasso estimator $\widehat{\beta}^{\lambda,L}$ satisfies the KKT condition:

$$\begin{cases} \frac{1}{n} X_j^\top (Y - X \widehat{\beta}^{l,L}) = \lambda \ \text{sign}(\widehat{\beta}_j^{l,L}) & \text{if} \quad \widehat{\beta}_j^{l,L} \neq 0 \\ \frac{1}{n} |X_j^\top (Y - X \widehat{\beta}^{l,L})| \leq \lambda & \text{if} \quad \widehat{\beta}_j^{l,L} = 0 \end{cases}$$

Then, we have
$$\left|\frac{1}{n}X_{j}^{T}(Y-X\widehat{\beta}^{\lambda,L})\right|=\lambda$$
 if $\widehat{\beta}_{j}^{\lambda,L}\neq0$ (13)

Combining (12) and (13), and as $X\beta^* = Y - \epsilon$, we have

$$\begin{split} \left| \frac{1}{n} X_j^\top (X \beta^* - X \widehat{\beta}^{\lambda, L}) \right| &= \left| \frac{1}{n} X_j^\top (Y - X \widehat{\beta}^{\lambda, L} - \epsilon) \right| \ge \left| \frac{1}{n} X_j^\top (Y - X \widehat{\beta}^{\lambda, L}) \right| - \left| \frac{1}{n} X_j^\top \epsilon \right| \\ &\ge \lambda - \lambda/2 = \lambda/2 \quad \text{if} \quad \widehat{\beta}_j^{\lambda, L} \ne 0 \end{split}$$

Proof of Theorem~1: the estimation support bound

$$\left|\frac{1}{n}X_{j}^{\mathsf{T}}(X\beta^{*} - \widehat{X\beta^{\mathsf{l},\mathsf{L}}})\right| \geq \lambda/2 \quad \text{if} \quad \widehat{\beta_{j}^{\mathsf{l},\mathsf{L}}} \neq 0 \tag{14}$$

Denote by $\widehat{J} = J(\widehat{\beta}^{\lambda,L})$ and $M(\widehat{\beta}^{\lambda,L})$ the cardinal of \widehat{J} , then

$$\sum_{j=1}^{p} \left(\frac{1}{n} X_{j}^{\top} (X \beta^{*} - X \widehat{\beta}^{l,L}) \right)^{2} \geq \sum_{j \in \widehat{J}} \left(\frac{1}{n} X_{j}^{\top} (X \beta^{*} - X \widehat{\beta}^{l,L}) \right)^{2} \geq \sum_{j \in \widehat{J}} (\lambda/2)^{2} \text{ by eq.} (14)$$

$$= M \widehat{\beta}^{l,L} \lambda^{2} / 4$$

$$(15)$$

First note that $\frac{XX^{\P}}{n}$ and $\frac{XX^{T}}{n}$ have same maximal eigenvalue ϕ_{\max} . Then,

$$\sum_{j=1}^{p} \left(\frac{1}{n} X_{j}^{\top} (X \beta^{*} - X \widehat{\beta}^{l,L}) \right)^{2} = \frac{1}{n} \left(X \beta^{*} - X \widehat{\beta}^{l,L} \right)^{\top} \frac{X X^{\top}}{n} \left(X \beta^{*} - X \widehat{\beta}^{l,L} \right)$$

$$\leq \frac{1}{n} \left(X \beta^{*} - X \widehat{\beta}^{l,L} \right)^{\top} \phi_{\max} \left(X \beta^{*} - X \widehat{\beta}^{l,L} \right)$$

$$= \phi_{\max} \frac{1}{n} ||X \beta^{*} - X \widehat{\beta}^{l,L}||_{2}^{2}$$

$$(16)$$

Proof of Theorem~1: the estimation support bound

Combining (15) and (16), it comes

$$M(\widehat{\beta}^{\lambda,L}) \leq \frac{4\phi_{\max}}{\lambda^2} ||X\beta^* - X\widehat{\beta}^{\lambda,L}||_n^2$$
 (17)

Using prediction bound (9),

$$M(\widehat{\beta}^{\lambda,L}) \leq \frac{4\phi_{\text{max}}}{\lambda^2} \frac{16s\lambda^2}{\kappa^2} = \frac{64\phi_{\text{max}}s}{\kappa^2}.$$
 (18)

Lemma~2

Consider model (1). Under $\mathcal H$ Assuptions, The estimator $\widehat{\beta}^{\lambda,L}$ for $\lambda = A\sigma\,\sqrt{\frac{\log(p)}{n}}$, with $A>2\,\sqrt{2}$ is such that with probability greater than $1-p^{1-\frac{A^2}{8}}$:

$$\|X(\widehat{\beta}^{l,L} - \beta^*)\|_n^2 + \lambda \|\widehat{\beta}^{l,L} - \beta^*\|_1 \le 4\lambda \|\widehat{\beta}^{l,L} - \beta^*\|_{1,J_0}, \tag{19}$$

where $J_0 = J(\beta^*)$.

Proof of Lemme~2

By definition of $\widehat{\beta}^{l,L}$, we have for all $\beta \in \mathbb{R}^p$

$$\|Y-X\widehat{\beta}^{\lambda,L}\|_n^2+2\lambda||\widehat{\beta}^{\lambda,L}||_1\leq \|Y-X\beta\|_n^2+2\lambda||\beta||_1$$

As $Y = X\beta^* + \epsilon$, it comes

$$\begin{split} \|X\beta^* - X\widehat{\beta}^{\lambda,L} + \epsilon\|_n^2 + 2\lambda \|\widehat{\beta}^{\lambda,L}\|_1 &\leq \|X\beta^* - X\beta + \epsilon\|_n^2 + 2\lambda \|\beta\|_1 \\ \|\xi\|_{\bullet}^{\bullet} + \|X\beta^* - X\widehat{\beta}^{\lambda,L}\|_n^2 + \frac{2}{n}\langle X\beta^* - X\widehat{\beta}^{\lambda,L}, \epsilon \rangle + 2\lambda \|\widehat{\beta}^{\lambda,L}\|_1 &\leq \|X\beta^* - X\beta\|_n^2 + \frac{2}{n}\langle X\beta^* - X\beta, \epsilon \rangle + 2\lambda \|\beta\|_1 + \|\xi\|_{\bullet}^{\bullet} \end{split}$$

In particular for $\beta = \beta^*$ and $V_j := \frac{1}{n} \sum_{i=1}^n \epsilon_i x_{i,j}$, we have

$$\begin{split} \|X\beta^* - X\widehat{\beta}^{l,L}\|_n^2 + \frac{2}{n} \langle X\beta^* - X\widehat{\beta}^{l,L}, \epsilon \rangle + 2\lambda \|\widehat{\beta}^{l,L}\|_1 &\leq 2\lambda \|\beta^*\|_1 \\ \Leftrightarrow \|X\beta^* - X\widehat{\beta}^{l,L}\|_n^2 &\leq 2\lambda \left(\|\beta^*\|_1 - \|\widehat{\beta}^{l,L}\|_1\right) + \frac{2}{n} \langle X\widehat{\beta}^{l,L} - X\beta^*, \epsilon \rangle \\ \Leftrightarrow \|X\beta^* - X\widehat{\beta}^{l,L}\|_n^2 &\leq 2\lambda \left(\|\beta^*\|_1 - \|\widehat{\beta}^{l,L}\|_1\right) + \frac{2}{n} \sum_{j=1}^p \sum_{i=1}^n \epsilon_i x_{i,j} (\widehat{\beta}_j^{l,L} - \beta_j^*) \\ \Leftrightarrow \|X\beta^* - X\widehat{\beta}^{l,L}\|_n^2 &\leq 2\lambda \left(\|\beta^*\|_1 - \|\widehat{\beta}^{l,L}\|_1\right) + 2 \sum_{j=1}^p V_j (\widehat{\beta}_j^{l,L} - \beta_j^*) \end{split}$$

Proof of Lemme~2

Then w.h.p >
$$1 - p^{1 - \frac{A^2}{8}}$$
, on $\Omega = \bigcap_{j=1}^p \left\{ 2|V_j| \le \lambda \right\}$

$$\|X\beta^* - X\widehat{\beta}^{\lambda,L}\|_n^2 \le 2\lambda \left(\|\beta^*\|_1 - \|\widehat{\beta}^{\lambda,L}\|_1\right) + 2\sum_{j=1}^p V_j(\widehat{\beta}_j^{\lambda,L} - \beta_j^*)$$

$$\Leftrightarrow \quad \|X\beta^* - X\widehat{\beta}^{\lambda,L}\|_n^2 \le 2\lambda \left(\|\beta^*\|_1 - \|\widehat{\beta}^{\lambda,L}\|_1\right) + \lambda \sum_{i=1}^p (\widehat{\beta}_j^{\lambda,L} - \beta_j^*)$$

$$\Leftrightarrow ||X\beta^* - X\widehat{\beta}^{l,L}||_n^2 \le 2\lambda \left(||\beta^*||_1 - ||\widehat{\beta}^{l,L}||_1\right) + \lambda ||\widehat{\beta}^{l,L} - \beta^*||_1$$

$$\Leftrightarrow \quad \|X\beta^* - X\widehat{\beta}^{\lambda,L}\|_n^2 + \lambda \|\widehat{\beta}^{\lambda,L} - \beta^*\|_1 \leq 2\lambda \left(\|\beta^*\|_1 - \|\widehat{\beta}^{\lambda,L}\|_1\right) + \lambda \|\widehat{\beta}^{\lambda,L} - \beta^*\|_1 + \lambda \|\widehat{\beta}^{\lambda,L} - \beta^*\|_1$$

$$\Leftrightarrow ||X\beta^* - X\widehat{\beta}^{l,L}||_{n}^{2} + \lambda ||\widehat{\beta}^{l,L} - \beta^*||_{1} \le 2\lambda (||\beta^*||_{1} - ||\widehat{\beta}^{l,L}||_{1} + ||\widehat{\beta}^{l,L} - \beta^*||_{1})$$
(20)

Morover $p = J_0 \cup J_0^c$, where $J_0 = J(\beta^*) = \{j : \beta_i^* \neq 0\}$, we have

$$\left\{ \begin{array}{l} ||\beta^*||_1 = ||\beta^*||_{1,J_0} + ||\beta^*||_{1,J_0^c} = ||\beta^*||_{1,J_0} \\ ||\widehat{\beta}^{\lambda,L}||_1 = ||\widehat{\beta}^{\lambda,L}||_{1,J_0} + ||\widehat{\beta}^{\lambda,L}||_{1,J_0^c} \\ ||\widehat{\beta}^{\lambda,L} - \beta^*||_1 = ||\widehat{\beta}^{\lambda,L} - \beta^*||_{1,J_0} + ||\widehat{\beta}^{\lambda,L} - \beta^*||_{1,J_0^c} \end{array} \right.$$

Proof of Lemme~2

As $||a|| - ||b|| \le ||a - b||$, we have

$$\begin{split} &\|\beta^*\|_1 - \|\widehat{\beta}^{\lambda,L}\|_1 + \|\widehat{\beta}^{\lambda,L} - \beta^*\|_1 \\ &= \|\beta^*\|_{1,J_0} - \|\widehat{\beta}^{\lambda,L}\|_{1,J_0} - \|\widehat{\beta}^{\lambda,L}\|_{1,J_0^c} + \|\widehat{\beta}^{\lambda,L} - \beta^*\|_{1,J_0} + \|\widehat{\beta}^{\lambda,L} - \beta^*\|_{1,J_0^c} \\ &= [\|\beta^*\|_{1,J_0} - \|\widehat{\beta}^{\lambda,L}\|_{1,J_0}] - \|\widehat{\beta}^{\lambda,L}\|_{1,J_0^c} + \|\widehat{\beta}^{\lambda,L} - \beta^*\|_{1,J_0} + \|\widehat{\beta}^{\lambda,L} - \beta^*\|_{1,J_0^c} \\ &\leq \|\widehat{\beta}^{\lambda,L} - \beta^*\|_{1,J_0} - \|\widehat{\beta}^{\lambda,L}\|_{1,J_0^c} + \|\widehat{\beta}^{\lambda,L} - \beta^*\|_{1,J_0} + \|\widehat{\beta}^{\lambda,L} - \beta^*\|_{1,J_0^c} \\ &\leq 2\|\widehat{\beta}^{\lambda,L} - \beta^*\|_{1,J_0} + \|\widehat{\beta}^{\lambda,L} - \beta^*\|_{1,J_0^c} \\ &\leq 2\|\widehat{\beta}^{\lambda,L} - \beta^*\|_{1,J_0} + \|\widehat{\beta}^{\lambda,L} - \beta^*\|_{1,J_0^c} \\ &\leq 2\|\widehat{\beta}^{\lambda,L} - \beta^*\|_{1,J_0} + \|\widehat{\beta}^{\lambda,L} - \beta^*\|_{1,J_0^c} \end{split}$$

Then w.h.p. $> 1 - p^{1 - \frac{A^2}{8}}$, on Ω and eq. (20):

$$\begin{split} \|X\beta^* - X\widehat{\beta}^{\lambda,L}\|_n^2 + \lambda \|\widehat{\beta}^{\lambda,L} - \beta^*\|_1 & \leq 2\lambda (\|\beta^*\|_1 - \|\widehat{\beta}^{\lambda,L}\|_1 + \|\widehat{\beta}^{\lambda,L} - \beta^*\|_1) \\ & \leq 4\lambda \|\widehat{\beta}^{\lambda,L} - \beta^*\|_{1,J_0} \end{split}$$