Data 621 Homework 5: Wine

Tommy Jenkins, Violeta Stoyanova, Todd Weigel, Peter Kowalchuk, Eleanor R-Secoquian, Anthony Pagan 12/05/2019

0.1 OVERVIEW

In this homework assignment, we will explore, analyze and model a data set containing information on approximately 12,000 commercially available wines. The variables are mostly related to the chemical properties of the wine being sold. The response variable is the number of sample cases of wine that were purchased by wine distribution companies after sampling a wine. These cases would be used to provide tasting samples to restaurants and wine stores around the United States. The more sample cases purchased, the more likely is a wine to be sold at a high end restaurant. A large wine manufacturer is studying the data in order to predict the number of wine cases ordered based upon the wine characteristics. If the wine manufacturer can predict the number of cases, then that manufacturer will be able to adjust their wine offering to maximize sales.

0.2 Objective:

Our objective is to build a count regression model to predict the number of cases of wine that will be sold given certain properties of the wine. HINT: Sometimes, the fact that a variable is missing is actually predictive of the target. You can only use the variables given to you (or variables that you derive from the variables provided).

Below is a short description of the variables of interest in the data set:

VARIABLE.NAME	DEFINITION	THEORETICAL.EFFECT
INDEX	Identification Variable (do not use)	None
TARGET	Number of Cases Purchased	None
AcidIndex	Proprietary method of testing total acidity of wine by using a weighted average,	
Alcohol	Alcohol Content	
Chlorides	Chloride content of wine	
CitricAcid	Citric Acid Content	
Density	Density of Wine	
FixedAcidity	Fixed Acidity of Wine	
FreeSulfurDioxide	Sulfur Dioxide content of wine	
LabelAppeal	Marketing Score indicating the appeal of label design for consumers. High numbers suggest customers like the label design. Negative numbers suggest customers don't like the design	Many consumers purchase based on the visual appeal of the wine label design. Higher numbers suggest better sales.
ResidualSugar	Residual Sugar of wine	
STARS	Wine rating by a team of experts. 4 Stars = Excellent, 1 Star = Poor	A high number of stars suggests high sales
Sulphates	Sulfate content of wine	
TotalSulfurDioxide	Total Sulfur Dioxide of Wine	
VolatileAcidity	Volatile Acid content of wine	
pН	pH of wine	

1 DATA EXPLORATION

1.1 Data Summary

With over 12,000 observations in our sample, we must look into the data and explore key summary statistics.

TAR

GET <th>FixedAcidity</th> <th>VolatileAcidity</th> <th>CitricAcid</th> <th>ResidualSugar</th> <th>Chlorides</th> <th>FreeSulfurDioxide</th> <th>TotalSulfurDioxide</th> <th>Densi ty <!--<br-->th></th> <th>P H <!--<br-->th></th> <th>Sulphates</th>	FixedAcidity	VolatileAcidity	CitricAcid	ResidualSugar	Chlorides	FreeSulfurDioxide	TotalSulfurDioxide	Densi ty <br th>	P H <br th>	Sulphates
Min. :0.000	Min. :-18.100	Min. :-2.7900	Min. :-3.2400	Min. :-127.800	Min. :-1.1710	Min. :-555.00	Min. :-823.0	Min. :0.8881	Min. :0.480	Min. :-3.1300
1st Qu.:2.000	1st Qu.: 5.200	1st Qu.: 0.1300	1st Qu.: 0.0300	1st Qu.: -2.000	1st Qu.:-0.0310	1st Qu.: 0.00	1st Qu.: 27.0	1st Qu.:0.9877	1st Qu.:2.960	1st Qu.: 0.2800
Median :3.000	Median : 6.900	Median : 0.2800	Median : 0.3100	Median : 3.900	Median : 0.0460	Median : 30.00	Median : 123.0	Median :0.9945	Median :3.200	Median : 0.5000
Mean :3.029	Mean : 7.076	Mean : 0.3241	Mean : 0.3084	Mean : 5.419	Mean : 0.0548	Mean : 30.85	Mean : 120.7	Mean :0.9942	Mean :3.208	Mean : 0.5271
3rd Qu.:4.000	3rd Qu.: 9.500	3rd Qu.: 0.6400	3rd Qu.: 0.5800	3rd Qu.: 15.900	3rd Qu.: 0.1530	3rd Qu.: 70.00	3rd Qu.: 208.0	3rd Qu.:1.0005	3rd Qu.:3.470	3rd Qu.: 0.8600
Max. :8.000	Max.: 34.400	Max. : 3.6800	Max.: 3.8600	Max. : 141.150	Max. : 1.3510	Max.: 623.00	Max. :1057.0	Max. :1.0992	Max. :6.130	Max.: 4.2400
NA	NA	NA	NA	NA's :616	NA's :638	NA's :647	NA's :682	NA	NA's :395	NA's :1210

We also calculate the counts for NA's, 0, negative, and unique values.

##		vars n	mean	sd	median
##	FixedAcidity	1 12795	7.075717077	6.31764346	6.90000
##	VolatileAcidity	2 12795	0.324103947	0.78401424	0.28000
##	CitricAcid	3 12795	0.308412661	0.86207979	0.31000
##	ResidualSugar	4 12179	5.418733065	33.74937899	3.90000
##	Chlorides	5 12157	0.054822489	0.31846729	0.04600
##	FreeSulfurDioxide	6 12148	30.845571287	148.71455765	30.00000
	TotalSulfurDioxide		120.714232643		
	Density	8 12795	0.994202718		0.99449
	рн	9 12400	3.207628226		
	Sulphates	10 11585	0.527111782		
	Alcohol		10.489236260		
	LabelAppeal		-0.009066041		0.00000
	AcidIndex	13 12795	7.772723720	1.32392637	
	STARS	14 9436	2.041754981	0.90254005	
##		trimm		0.90234003 ad min	
	FixedAcidity		28 3.261720e+0		
	VolatileAcidity		028 3.261720e+0 081 4.299540e-0		3.68000
	CitricAcid)27 4.151280e-(
	ResidualSugar)47 1.571556e+(
	Chlorides		35 1.349166e-0		1.35100
	FreeSulfurDioxide		554 5.633880e+0		
	TotalSulfurDioxide				
	Density		045 9.355206e-0		1.09924
	рН		665 3.854760e-0		
	Sulphates		323 4.447800e-0		
	Alcohol		644 2.372160e+0		
	LabelAppeal		357 1.482600e+0		
##	AcidIndex	7.6431571	.75 1.482600e+0	4.00000	17.00000
	STARS	1.9711258	328 1.482600e+0	1.00000	4.00000
##		range	skew	kurtosis	se
##	FixedAcidity	52.50000	-0.022585961	1.6749987 0.0	0558515162
##	VolatileAcidity	6.47000	0.020379965	1.8322106 0.0	0069311262
##	CitricAcid	7.10000	-0.050307040	1.8379401 0.0	0076212695
##	ResidualSugar	268.95000	-0.053122905	1.8846917 0.3	3058158360
##	Chlorides	2.52200	0.030427175	1.7886044 0.0	0028883621
##	FreeSulfurDioxide	1178.00000	0.006393010	1.8364966 1.3	3492769213
##	TotalSulfurDioxide	1880.00000	-0.007179351	1.6746665 2.3	1071702666
##	Density	0.21115	-0.018693764	1.8999592 0.0	0002346077
##	рН	5.65000	0.044288014	1.6462681 0.0	0061037702
	Sulphates		0.005911895		
	Alcohol		-0.030715836		
	LabelAppeal		0.008429457 -		
	AcidIndex		1.648495945		
	STARS		0.447235292 -		
##	DIUND		0.44/235292 - eg_count zero_c		
	FivedAcidi+"	na_count ne		_	
	FixedAcidity		1621	548	470
	VolatileAcidity	0	2827	9982	815
	CitricAcid	0	2966	9686	602
	ResidualSugar	616	NA	NA	2078
##	Chlorides	638	NA	NA	1664
##	FreeSulfurDioxide	647	NA	NA	1000
##	${\tt TotalSulfurDioxide}$	682	NA	NA	1371
##	Density	0	0	9492	5933
##	рН	395	NA	NA	498
##	Sulphates	1210	NA	NA	631
##	Alcohol	653	NA	NA	402
##	LabelAppeal	0	3640	5617	5
	AcidIndex	0	0	0	14
	STARS	3359	NA	NA	5
			· -	•	-

The dataset consists of two data files: training and evaluation. The training dataset contains 16 columns, and the evaluation dataset also contains 16 columns.

1.2 Missing Data

An important aspect of any dataset is to determine how much, if any, data is missing. We look at all the variables to see which if any have missing data. We look at the basic descriptive statistics as well as the missing data and percentages.

We start by looking at the dataset as a whole and determine how many complete rows, that is rows with data for all predictors we have.

With these results, if we remove all rows with incomplete rows, there will be a total of 6436 rows out of 12795, or 50% of the total dataset. We create a subset of data with complete cases if needed later in our analysis.

```
## Observations: 6,436
## Variables: 15
                        <int> 5, 3, 6, 0, 3, 4, 5, 4, 3, 2, 3, 4, 4, 3, 4, ...
## $ TARGET
                       <dbl> 7.1, 5.7, 5.5, -17.2, 6.0, -1.3, 10.0, 6.8, 5...
## $ FixedAcidity
## $ VolatileAcidity <dbl> 2.640, 0.385, -0.220, 0.520, 0.330, 0.220, 0....
  $ CitricAcid
                        <dbl> -0.88, 0.04, 0.39, 0.15, -1.06, 2.95, 0.27, -...
                       <dbl> 14.80, 18.80, 1.80, -33.80, 3.00, -53.00, 14...
  $ ResidualSugar
                       <dbl> 0.037, -0.425, -0.277, -0.022, 0.518, 0.541, ...
  $ Chlorides
## $ FreeSulfurDioxide <dbl> 214, 22, 62, 551, 5, -85, -188, -88, 87, 15, ...
  $ TotalSulfurDioxide <dbl> 142, 115, 180, 65, 378, -266, 229, 508, -283,...
## $ Density
                      <dbl> 0.99518, 0.99640, 0.94724, 0.99340, 0.96643, ...
                       <dbl> 3.12, 2.24, 3.09, 4.31, 3.55, 3.61, 3.14, 3.2...
## $ Sulphates
                      <dbl> 0.48, 1.83, 0.75, 0.56, -0.86, 0.82, 0.88, 0....
                       <dbl> 22.0, 6.2, 12.6, 13.1, 3.9, 10.0, 11.0, 18.3,...
## $ Alcohol
                       <int> -1, -1, 0, 1, 1, 0, 1, -1, -1, -1, 0, 0, 1, -...
## $ LabelAppeal
## $ AcidIndex
                        <int> 8, 6, 8, 5, 7, 8, 11, 8, 6, 7, 8, 7, 7, 8, 6,...
## $ STARS
                        <int> 3, 1, 4, 1, 2, 3, 2, 2, 1, 1, 1, 2, 2, 1, 3, ...
```

1.3 Visualization

We consider each variable

1.3.1 Target Variable

The distribution of our target variable is normal with the exception of many 0 Wine count entries. At such a high percentage, the zero scores likely reflect lack of popularity rather than error, especially if they get low human ratings.

1.3.1.1 Histogram

1.3.1.2 Integers

The integer variables have a small range and look normal, similar to TARGET. Stars has the least number of values and has many 0 entries. We will treat these as meaningful due to the percentage of NA's. Decision makers who buy wine are similar to the population who creates the integer variables and the range of values is small, so we choose not to impute these.

1.3.1.3 Doubles

The Double variable types look very similar to one another, and look somewhat normal. These look okay to impute after we've run our diagnostic plots.

1.3.2 Outliers

1.3.2.1 Boxplot

1.3.2.2 Boxplot Without outliers

1.3.2.3 Correlation

We note that the human ratings all have high correlations than do our chemical features.

1.3.2.4 Abnormal Data

Finally, we can visualize data abnormalities by visualizing our previously calculated vNA, Negative, Zero, and Unique counts.

```
ab_wine_desc <- wine_desc[,c(-1:-13)]
stat_chart_data <- ab_wine_desc %>% t() %>% as.data.frame() %>% mutate(.,Stat=rownames(.))
stat_chart_data %>%
  gather("Type", "Value", -Stat) %>%
  ggplot(aes(Stat, Value, fill = Type)) +
  geom_bar(position = "dodge", stat = "identity", na.rm=TRUE) +
  plot_layout(ncol = 1) +
  theme_bw()
```


2 DATA PREPERATION

To begin data preparation, we look at some of our abnormal data and consider transformations.

##		na_count	neg_count	zero_count	unique_count
##	STARS	3359	NA	NA	5
##	Sulphates	1210	NA	NA	631
##	${\tt TotalSulfurDioxide}$	682	NA	NA	1371
##	Alcohol	653	NA	NA	402
##	FreeSulfurDioxide	647	NA	NA	1000
##	Chlorides	638	NA	NA	1664
##	ResidualSugar	616	NA	NA	2078
##	pН	395	NA	NA	498
##	FixedAcidity	0	1621	548	470
##	VolatileAcidity	0	2827	9982	815
##	CitricAcid	0	2966	9686	602
##	Density	0	0	9492	5933
##	LabelAppeal	0	3640	5617	5
##	AcidIndex	0	0	0	14

2.1 NAs

We recall that STARS has a high correlation with TARGET and we see that it has r (wine1["STARS", "na_count"]/nrow(WineTrain))*100 % NA's and no zero's. We change NA to 0 for STARS.

The remaining NA counts include continuous variables which we can impute via a statistical method.

```
##
## iter imp variable
## 1 1 ResidualSugar Chlorides FreeSulfurDioxide TotalSulfurDioxide pH Sulphates Alcohol
```

2.2 Negatives

While the negative ratings make the data irregular to work with, it is unlikely that so many people

(r (wine1["STARS", "neg_count"]/nrow(WineTrain))*100 %) accidentally used a negative rating. We can consider these for normalization only.

```
##
                         na_count neg_count zero_count unique_count
                      0 3640
## LabelAppeal
                              0
## Chlorides
                                        3378
                                                    12617
## Chlorides v ....
## ResidualSugar 0 3289
## FreeSulfurDioxide 0 3198
                                                                  2077
                                                 142
                                                                   999
                                                      11
## CitricAcid 0 2966
## VolatileAcidity 0 2827
## TotalSulfurDioxide 0 2642
## Sulphates 0 2586
## FixedAcidity 0 1621
## Alcohol 0 124
## Density 0 0
## PH 0 0
                                                    9686
                                                                    602
                                                    9982
                                                                    815
                                                      7
                                                    9213
                                                                   630
                                                     548
                                                                    470
                                                       77
                                                                     401
                                                      9492
                                                                     5933
                                     0
0
0
                                                       55
                                                                      497
## AcidIndex
                            0
                                                        0
                                                                       14
## STARS
                                                      3359
                                                                        5
```

2.3 Zeros

By the same logic we will leave the zero counts alone. We can exclude the TARGET variable unless we will be normalizing it specifically in our later analysis.

##	na_co	unt ne	g_count ze	ero_count	unique_count	
## Chlorides		0	3378	12617	1663	
## VolatileAcidity	7	0	2827	9982	815	
## CitricAcid		0	2966	9686	602	
## Density		0	0	9492	5933	
## Sulphates		0	2586	9213	630	
## LabelAppeal		0	3640	5617	5	
## STARS		0	0	3359	5	
## FixedAcidity		0	1621	548	470	
## ResidualSugar		0	3289	142	2077	
## Alcohol		0	124	77	401	
## pH		0	0	55	497	
## FreeSulfurDioxi	ide	0	3198	11	999	
## TotalSulfurDiox	kide	0	2642	7	1370	
## AcidIndex		0	0	0	14	

2.4 Uniques

We want to take a look at the least unique counts next, and by a large margin LabelAppeal, STARS, and AcidIndex show low unique counts. We see that AcidIndex is a proprietary weighted method for measuring Acid, so we decide not to perform any transformation on AcidIndex.

##	na_count	neg_count	zero_count	unique_count
## LabelAppeal	0	3640	5617	5
## STARS	0	0	3359	5
## AcidIndex	0	0	0	14
## Alcohol	0	124	77	401
## FixedAcidity	0	1621	548	470
## pH	0	0	55	497
## CitricAcid	0	2966	9686	602
## Sulphates	0	2586	9213	630
## VolatileAcidity	0	2827	9982	815
## FreeSulfurDioxide	0	3198	11	999
## TotalSulfurDioxide	9 0	2642	7	1370
## Chlorides	0	3378	12617	1663
## ResidualSugar	0	3289	142	2077
## Density	0	0	9492	5933

2.5 Data Finalization

We've finalized our dataset for analysis.

##	TARGET	FixedAcidity	VolatileAcidity	CitricAcid
##	Min. :0.000	Min. :-18.100	Min. :-2.7900	Min. :-3.2400
##	1st Qu.:2.000	1st Qu.: 5.200	1st Qu.: 0.1300	1st Qu.: 0.0300
##	Median :3.000	Median : 6.900	Median : 0.2800	Median : 0.3100
##	Mean :3.029	Mean : 7.076	Mean : 0.3241	Mean : 0.3084
##	3rd Qu.:4.000	3rd Qu.: 9.500	3rd Qu.: 0.6400	3rd Qu.: 0.5800
##	Max. :8.000	Max. : 34.400	Max. : 3.6800	Max. : 3.8600
##	ResidualSugar	Chlorides	FreeSulfurDi	oxide
##	Min. :-127.80	00 Min. :-1.1710	00 Min. :-555	.00
##	1st Qu.: -2.00	00 1st Qu.:-0.0330	00 1st Qu.: 0	.00
##	Median: 3.85	0.0460 Median : 0.0460	00 Median: 30	.00
##	Mean : 5.42	22 Mean : 0.0545	59 Mean : 30	.53
##	3rd Qu.: 15.80	00 3rd Qu.: 0.1520	00 3rd Qu.: 70	.00
##	Max. : 141.15	50 Max. : 1.3510	00 Max. : 623	.00
##	TotalSulfurDiox	kide Density	рН	Sulphates
##	Min. :-823.0	Min. :0.8881	Min. :0.480	Min. :-3.1300
##	1st Qu.: 27.0	1st Qu.:0.9877	1st Qu.:2.960	1st Qu.: 0.2900
##	Median : 124.0	Median :0.9945	Median :3.200	Median : 0.5000
##	Mean : 120.8	Mean :0.9942	Mean :3.208	Mean : 0.5304
##	3rd Qu.: 208.0	3rd Qu.:1.0005	3rd Qu.:3.470	3rd Qu.: 0.8700
##	Max. :1057.0	Max. :1.0992	Max. :6.130	Max. : 4.2400
##	Alcohol	LabelAppeal	AcidIndex	STARS
##	Min. :-4.7	Min. :-2.000000	Min. : 4.000	Min. :0.000
##	1st Qu.: 9.0	1st Qu.:-1.000000	1st Qu.: 7.000	1st Qu.:0.000
##	Median :10.4	Median : 0.000000	Median : 8.000	Median :1.000
##	Mean :10.5	Mean :-0.009066	Mean : 7.773	Mean :1.506
##	3rd Qu.:12.4	3rd Qu.: 1.000000	3rd Qu.: 8.000	3rd Qu.:2.000
##	Max. :26.5	Max. : 2.000000	Max. :17.000	Max. :4.000

3 BUILD MODEL

3.1 Model 1: Poisson Regression (all predictors)

For the first model, we used the Poisson regression and all of the predictors.

```
## Call:
## glm(formula = TARGET ~ ., family = poisson, data = WineTrain)
##
## Deviance Residuals:
            1Q Median
   -2.9733 -0.7218 0.0695
                            0.5768
##
## Coefficients:
##
                      Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                     1.536e+00 1.953e-01 7.866 3.67e-15 ***
                    -3.108e-04 8.205e-04 -0.379 0.704814
  VolatileAcidity -3.376e-02 6.517e-03 -5.181 2.20e-07 ***
## CitricAcid
                     7.871e-03 5.891e-03 1.336 0.181505
                     7.776e-05 1.507e-04 0.516 0.605963
## ResidualSugar
                    -4.661e-02 1.595e-02 -2.922 0.003476 **
## FreeSulfurDioxide 1.285e-04 3.433e-05 3.743 0.000182 ***
## TotalSulfurDioxide 8.288e-05 2.215e-05
                                           3.741 0.000183 ***
## Density
                    -2.840e-01 1.920e-01 -1.479 0.139027
                    -1.811e-02 7.513e-03 -2.410 0.015932 *
## pH
                    -1.200e-02 5.475e-03 -2.192 0.028405 *
## Sulphates
                     2.116e-03 1.375e-03 1.538 0.123987
## Alcohol
                     1.332e-01 6.063e-03 21.965 < 2e-16 ***
                    -8.705e-02 4.549e-03 -19.136 < 2e-16 ***
## STARS
                     3.112e-01 4.534e-03 68.633 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
   (Dispersion parameter for poisson family taken to be 1)
      Null deviance: 22861 on 12794 degrees of freedom
## Residual deviance: 14723 on 12780 degrees of freedom
## ATC: 46695
##
## Number of Fisher Scoring iterations: 5
```


3.2 Model 2: Poisson Regression (reduced predictors)

For the second model, based on model 1, we reduced the number of predictors.

```
##
## Call:
## glm(formula = TARGET ~ VolatileAcidity + CitricAcid + Chlorides +
       FreeSulfurDioxide + TotalSulfurDioxide + Density + pH + Sulphates +
       Alcohol + LabelAppeal + AcidIndex + STARS, family = poisson,
##
       data = WineTrain)
##
##
   Deviance Residuals:
                1Q
                    Median
                                  3Q
   -2.9785 -0.7233
                    0.0696
                             0.5767
                                       3.2385
##
## Coefficients:
##
                       Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                      1.537e+00 1.953e-01 7.868 3.60e-15 ***
                     -3.380e-02 6.517e-03 -5.187 2.13e-07 ***
## VolatileAcidity
## CitricAcid
                      7.829e-03 5.891e-03
                                            1.329 0.183856
## Chlorides
                     -4.661e-02 1.595e-02 -2.922 0.003473 **
## FreeSulfurDioxide 1.285e-04 3.432e-05 3.743 0.000182 ***
## TotalSulfurDioxide 8.323e-05 2.215e-05 3.758 0.000171 ***
                     -2.844e-01 1.920e-01 -1.482 0.138462
## pH
                     -1.805e-02 7.512e-03 -2.403 0.016276 *
                     -1.206e-02 5.474e-03 -2.203 0.027623 *
## Sulphates
                      2.100e-03 1.375e-03 1.527 0.126697
## Alcohol
                      1.332e-01 6.063e-03 21.971 < 2e-16 ***
## LabelAppeal
## AcidIndex
                     -8.729e-02 4.501e-03 -19.394 < 2e-16 ***
                      3.112e-01 4.533e-03 68.647 < 2e-16 ***
##
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
   (Dispersion parameter for poisson family taken to be 1)
       Null deviance: 22861 on 12794 degrees of freedom
## Residual deviance: 14723 on 12782 degrees of freedom
## AIC: 46691
##
## Number of Fisher Scoring iterations: 5
```


3.3 Model 3: Gaussian Regression (significant predictors)

```
## Call:
## glm(formula = TARGET ~ VolatileAcidity + FreeSulfurDioxide +
      TotalSulfurDioxide + Chlorides + Density + pH + Sulphates +
      LabelAppeal + AcidIndex + STARS, family = gaussian, data = WineTrain)
## Deviance Residuals:
              1Q Median
                                  3Q
                                         Max
##
   -4.5472 -0.9528
                     0.0617
                                       6.0152
                             0.9068
##
## Coefficients:
                       Estimate Std. Error t value Pr(>|t|)
                      4.147e+00 4.470e-01 9.277 < 2e-16 ***
## VolatileAcidity
                    -1.000e-01 1.498e-02 -6.680 2.49e-11 ***
## FreeSulfurDioxide 3.202e-04 7.915e-05 4.045 5.27e-05 ***
## TotalSulfurDioxide 2.248e-04 5.061e-05 4.441 9.04e-06 ***
## Chlorides
                     -1.383e-01 3.667e-02 -3.772 0.000163 ***
                     -8.210e-01 4.419e-01 -1.858 0.063203 .
                     -4.140e-02 1.725e-02 -2.401 0.016373 *
## Sulphates
                     -3.215e-02 1.257e-02 -2.558 0.010544 *
                      4.321e-01 1.367e-02 31.615 < 2e-16 ***
## LabelAppeal
## AcidIndex
                     -2.082e-01 9.050e-03 -23.000 < 2e-16 ***
                     9.786e-01 1.044e-02 93.744 < 2e-16 ***
## STARS
  Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
   (Dispersion parameter for gaussian family taken to be 1.753742)
##
       Null deviance: 47477 on 12794 degrees of freedom
## Residual deviance: 22420 on 12784 degrees of freedom
## Number of Fisher Scoring iterations: 2
```


Model 3 shows a better Q-Q plot than the previous two models.

3.4 Model 4: Negative Binomial Regression

```
##
## Call:
## glm(formula = TARGET ~ VolatileAcidity + TotalSulfurDioxide +
       pH + Sulphates + LabelAppeal + AcidIndex + STARS, family = negative.binomial(1),
       data = WineTrain)
##
##
## Deviance Residuals:
                        Median
   -1.82623 -0.39491
                      0.00259
                                 0.29971
## Coefficients:
##
                       Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                      1.454e+00 4.969e-02 29.267 < 2e-16 ***
## VolatileAcidity
                     -4.567e-02 7.454e-03 -6.127 9.21e-10 ***
## TotalSulfurDioxide 1.280e-04 2.521e-05
                                            5.080 3.82e-07 ***
                     -2.955e-02 8.581e-03 -3.444 0.000576 ***
                     -1.758e-02 6.254e-03 -2.811 0.004950 **
## Sulphates
                      1.186e-01 6.837e-03 17.352 < 2e-16 ***
## LabelAppeal
## AcidIndex
                     -1.175e-01 4.774e-03 -24.610 < 2e-16 ***
                      3.659e-01 5.170e-03 70.773 < 2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
   (Dispersion parameter for Negative Binomial(1) family taken to be 0.3104983)
       Null deviance: 9042.5 on 12794 degrees of freedom
## Residual deviance: 6764.5 on 12787 degrees of freedom
## AIC: 55512
##
## Number of Fisher Scoring iterations: 6
```


4 SELECT MODEL

4.1 Pick the best regression model

	Model 1	Model 2	Model 3	Model 4
AIC	46694.5977996685	46691.0158133176	43511.2443254015	55511.7198722206
BIC	46806.4499458974	46787.9543400493	43600.7260423846	55571.3743502094

With 4 models computed, we select the model with the lowest combination of AIC and BIC. From the table, we can see the model to pick is model 3

5 CONCLUSION

Model 3 showed the best result. We can observe its performance by plotting the datasets TARGET values against the predicted values. One thing we observe is that the model doesn't predict a TARGET of 8.

Other models, although of worse performace according to our selection metric, do show results of TARGET 8, but as can be seen in the graph below, they do not corresponde to real TARGET 8 classifications.

6 APPENDIX

Code used in analysis

```
knitr::opts_chunk$set(echo = FALSE, warning = FALSE, fig.align='center')
require(knitr)
library(MASS)
library(psych)
library(kableExtra)
library(tidyverse)
library(faraway)
library(gridExtra)
library(reshape2)
library(leaps)
library(caret)
library(naniar)
library(pander)
library(pROC)
library(corrplot)
library(jtools)
library(mice)
#devtools::install_github("thomasp85/patchwork")
WineTrain <- read.csv("https://raw.githubusercontent.com/pkowalchuk/CUNY621-HW5/master/wine-training-data.csv",na.strings
="",header=TRUE)
WineTrain1 <- WineTrain
WineEval <- read.csv("wine-evaluation-data.csv",na.strings="",header=TRUE)
kable_styling(kable(textbook<-data.frame(VARIABLE.NAME=c("INDEX","TARGET","",","AcidIndex","Alcohol","Chlorides","Citric
\verb|Acid", "Density", "FixedAcidity", "FreeSulfurDioxide", "LabelAppeal", "ResidualSugar", "STARS", "Sulphates", "TotalSulfurDioxide", "ResidualSugar", "ResidualSugar, 
e", "VolatileAcidity", "pH"), DEFINITION=c("Identification Variable (do not use)", "Number of Cases Purchased", "", "", "Proprie
tary method of testing total acidity of wine by using a weighted average,","Alcohol Content","Chloride content of wine",
"Citric Acid Content", "Density of Wine ", "Fixed Acidity of Wine", "Sulfur Dioxide content of wine", "Marketing Score indica
ting the appeal of label design for consumers. High numbers suggest customers like the label design. Negative numbers sug
gest customers don't like the design", "Residual Sugar of wine", "Wine rating by a team of experts. 4 Stars = Excellent, 1
 Star = Poor", "Sulfate content of wine", "Total Sulfur Dioxide of Wine", "Volatile Acid content of wine", "pH of wine"), THEO
RETICAL.EFFECT=c("None","None","","","","","","","","","","","","Many consumers purchase based on the visual appeal of the wine
label design. Higher numbers suggest better sales.","","A high number of stars suggests high sales","","","",""))), boots
trap_options = c("striped"))
#glimpse(WineTrain)
#colnames(WineTrain[-1])<-"INDEX"</pre>
WineTrainVars <- WineTrain[-1]</pre>
WineTrainFeatures <- WineTrain[-c(1:2)]</pre>
kable styling(kable(summary(WineTrainVars)))
var_stats<- function(WineTrainVars){</pre>
   wt <- WineTrainVars
   wine1 <- describe(wt)
  winel$na_count <- sapply(wt, function(y) sum(is.na(y)))</pre>
   wine1$neg_count <- sapply(wt, function(y) sum(y<0))</pre>
   wine1$zero_count <- sapply(wt, function(y) sum(as.integer(y)==0))</pre>
   wine1$unique_count <- sapply(wt, function(y) sum(n_distinct(y)))</pre>
   return(winel)
wine_desc <- var_stats(WineTrainFeatures)</pre>
wine_desc %>% as.data.frame()
colsTrain<-ncol(WineTrain)</pre>
colsEval<-ncol(WineEval)
missingCol<-colnames(WineTrain)[!(colnames(WineTrain) %in% colnames(WineEval))]</pre>
cc<-summary(complete.cases(WineTrainVars))</pre>
cWineTrain<-subset(WineTrainVars, complete.cases(WineTrainVars))</pre>
vis miss(WineTrainVars)
gg_miss_upset(WineTrainVars)
glimpse(cWineTrain)
#WineTrain1$INDEX <- NULL
hist(WineTrainVars$TARGET, col='darkblue', xlab = " Target ", main = "Wine Counts")
```

```
WineTrainVars %>%
   keep(is.integer) %>%
   gather() %>%
   ggplot(aes(value), main="") +
   facet_wrap(~ key, scales = "free") +
    geom_histogram(color='darkblue') +
    plot_layout(ncol = 1)
WineTrainFeatures %>%
   keep(is.double) %>%
   gather() %>%
   ggplot(aes(value)) +
   facet_wrap(~ key, scales = "free") +
  geom_density(color='purple', fill='purple') +
   plot_layout(ncol = 1)
\verb|ggplot(melt(WineTrainVars)|, aes(x=as.factor(variable)), y=value, fill=as.factor(variable)))| + facet\_wrap(~variable, scale=as.factor(variable))| + facet\_wrap(~variable)| + facet\_wrap(~variabl
"free") + geom boxplot()
ggplot(melt(WineTrainVars), aes(x=as.factor(variable), y=value, fill=as.factor(variable))) + facet_wrap(~variable, scale=
"free") + geom_boxplot(outlier.shape=NA)
corrplot(as.matrix(cor(WineTrainVars, use = "pairwise.complete")),method = "shade")
ab_wine_desc <- wine_desc[,c(-1:-13)]
stat_chart_data <- ab_wine_desc %>% t() %>% as.data.frame() %>% mutate(.,Stat=rownames(.))
stat_chart_data %>%
   gather("Type", "Value", -Stat) %>%
   ggplot(aes(Stat, Value, fill = Type)) +
   geom_bar(position = "dodge", stat = "identity", na.rm=TRUE) +
  plot_layout(ncol = 1) +
   theme bw()
WineTrainTrans <- WineTrain[-c(1)]
ab_wine_desc <- var_stats(WineTrainTrans)[-c(1),c(-1:-13)]</pre>
print(ab_wine_desc[order(-ab_wine_desc$na_count),])
\label{thm:wineTrainTrans} $$TARS <- sapply(WineTrainTrans$STARS, \textbf{function}(x) if else(is.na(x),0,x))$$
#WineTrain<-as.factor(WineTrain)
WineTrainTrans<-complete(mice(WineTrainTrans, m=1, maxit=1),1)
ab_wine_desc <- var_stats(WineTrainTrans)[-c(1),c(-1:-13)]</pre>
print(ab_wine_desc[order(-ab_wine_desc$neg_count),])
ab_wine_desc <- var_stats(WineTrainTrans)[-c(1),c(-1:-13)]</pre>
print(ab_wine_desc[order(-ab_wine_desc$zero_count),])
ab_wine_desc <- var_stats(WineTrainTrans)[-c(1),c(-1:-13)]</pre>
print(ab_wine_desc[order(ab_wine_desc$unique_count),])
#WineTrainTrans$STARS<-as.factor(WineTrainTrans$LabelAppeal)
#WineTrainTrans$STARS<-as.factor(WineTrainTrans$STARS)
#WineTrainTrans$STARS<-as.factor(WineTrainTrans$AcidIndex)
WineTrain<-WineTrainTrans
summary(WineTrain)
WineTrain %>%
   keep(is.numeric) %>%
   gather() %>%
   ggplot(aes(value), main="") +
   facet_wrap(~ key, scales = "free") +
   geom_histogram(color='darkblue') +
   plot_layout(ncol = 1)
corrplot(as.matrix(cor(WineTrain %>% keep(is.numeric), use = "pairwise.complete")),method = "shade")
m1 <- glm(TARGET ~ ., family = poisson, data = WineTrain)</pre>
#m1 <- glm(TARGET ~ ., family = poisson, data = WineTrain)
summary(m1)
par(mfrow = c(2,2))
plot(m1)
m2 <- glm(TARGET ~ VolatileAcidity + CitricAcid + Chlorides + FreeSulfurDioxide
                                           + TotalSulfurDioxide + Density + pH + Sulphates + Alcohol + LabelAppeal
```

```
+ AcidIndex + STARS, family = poisson, data = WineTrain)
summary(m2)
par(mfrow = c(2,2))
plot(m2)
m3 <- glm(TARGET ~ VolatileAcidity + FreeSulfurDioxide + TotalSulfurDioxide + Chlorides + Density + pH + Sulphates + Labe
lAppeal + AcidIndex + STARS, family=gaussian, data = WineTrain)
par(mfrow = c(2,2))
plot(m3)
m4 <- glm(TARGET ~ VolatileAcidity + TotalSulfurDioxide +
    pH + Sulphates + LabelAppeal + AcidIndex + STARS, family = negative.binomial(1),
    data = WineTrain)
summary(m4)
par(mfrow = c(2,2))
plot(m4)
mlAIC <- AIC(m1)
m1BIC <- BIC(m1)
m2AIC <- AIC(m2)
m2BIC <- BIC(m2)
m3AIC <- AIC(m3)
m3BIC <- BIC(m3)
m4AIC <- AIC(m4)
m4BIC <- BIC(m4)
AIC <- list(mlAIC, m2AIC, m3AIC, m4AIC)
BIC <- list(m1BIC, m2BIC, m3BIC, m4BIC)
kable(rbind(AIC, BIC), col.names = c("Model 1", "Model 2", "Model 3", "Model 4")) %>%
 kable_styling(full_width = T)
eval_p<-predict(m3,WineEval, type = "response")</pre>
write.csv(eval_p,"predicted_eval_values.csv")
train_p<-predict(m3,WineTrain, type = "response")</pre>
plot(train_p,WineTrain$TARGET)
train_p<-predict(m2,WineTrain, type = "response")</pre>
plot(train_p,WineTrain$TARGET)
```