Geometria de Distâncias

Guilherme Philippi

30 de abril de 2020

Sumário

1	Geometria de Distâncias Euclidianas		
	1.1	Como tudo Começou	. 1
\mathbf{R}	e ferê :	encias	3
Δ	Méi	tricas	4

1 Geometria de Distâncias Euclidianas

Apresenta-se nesta seção uma introdução a Geometria de Distâncias Euclidianas. O nome "Geometria de Distâncias" diz respeito ao conceito desta geometria basear-se em distâncias ao invés de pontos. A palavra "Euclidiana" é importante para caracterizar as arestas — elementos fundamentais associados as distâncias — como segmentos, sem restringir seus ângulos de incidência [1].

1.1 Como tudo Começou

Por volta de 300 AC, Euclides de Alexandria organizou o conhecimento de sua época acerca da Geometria em uma obra composta por treze volumes, onde construiu, a partir de um pequeno conjunto de axiomas fortemente baseado nos conceitos de pontos e linhas, a chamada Geometria Euclidiana [2]. Em contraponto a visão original de Euclides, os primeiros conceitos geométricos usando apenas distâncias costumam estar associados aos trabalhos de Heron de Alexandria (10 a 80 DC) [1], com o desenvolvimento de um teorema que leva seu nome, como segue:

Teorema de Heron: Sejam s o semiperímetro de um triângulo (se p é o perímetro, $s = \frac{p}{2}$) e a, b e c os comprimentos dos três lados deste triangulo. Então, a área A do triângulo é

$$A = \sqrt{s(s-a)(s-b)(s-c)}$$
. (Fórmula de Heron)

Pode-se dizer que esse foi o nascimento da Geometria de Distâncias (GD).

Algumas centenas de anos depois, em 1841, Arthur Cayley (1821 a 1895) generalizou a Fórmula de Heron através da construção de um determinante que cal-

cula o conteúdo (volume n-dimensional) de um simplex¹ em qualquer dimensão [3]. Um século depois, em 1928, o matemático austríaco Karl Menger (1902 a 1985) re-organizou as ideias de Cayley e trabalhou em uma construção axiomática da geometria através de distâncias [4] — donde a alteração no nome do determinante de Cayley para como é conhecido hoje: "Determinante de Cayley-Menger".

Definição: Sejam A_0, A_1, \ldots, A_n n+1 pontos que definem os vértices de um n-simplex em um espaço euclidiano k-dimensional, onde $n \le k$, e seja d_{ij} a distância entre os vértices A_i e A_j , onde $0 \le i < j \le n$. Então, o conteúdo v_n desse n-simplex é

$$v_n^2 = \frac{(-1)^{n+1}}{(n!)^2 2^n} \begin{vmatrix} 0 & d_{01}^2 & d_{02}^2 & \dots & d_{0n}^2 & 1 \\ d_{01}^2 & 0 & d_{12}^2 & \dots & d_{1n}^2 & 1 \\ d_{02}^2 & d_{12}^2 & 0 & \dots & d_{2n}^2 & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ d_{0n}^2 & d_{1n}^2 & d_{2n}^2 & \dots & 0 & 1 \\ 1 & 1 & 1 & \dots & 1 & 0 \end{vmatrix}.$$
 (Determinante de Cayley-Menger)

Mas foi só com Leonard Blumenthal (1901 - 1984) que, em 1953, o termo Geometria de Distâncias foi cunhado — com a publicação de seu livro "Theory and Applications of Distance Geometry" [5]. Blumenthal dedicou sua vida de trabalho para clarificar, organizar e traduzir as obras originais em alemão [1]. Ele acreditava que o problema mais importante nesta área era o "Problema de Subconjunto" (ou Subset Problem, originalmente), que consistia em encontrar condições necessárias e suficientes a fim de decidir quando uma matriz simétrica era, de fato, uma matriz de distâncias²

¹Um simplex é uma generalização do conceito de triangulo a outras dimensões, i.e.: O θ -simples é um ponto, 1-simplex é um segmento de reta, 2-simplex é um triangulo e o 3-simplex é um tetraedro.

²Seja o par (\mathcal{X}, d) um espaço métrico (vide Apêndice A), onde $\mathcal{X} = \{x_1, \dots, x_n\}$. Uma matriz de distância sobre \mathcal{X} é uma matriz quadrada $D_{n \times n} = (d_{uv})$ onde, para todo $u, v \leq n$, temos $d_{uv} = d(x_u, x_v)$ [6].

Referências

- [1] Leo Liberti and Carlile Lavor. Euclidean Distance Geometry. Springer, 2017.
- [2] Irineu Bicudo et al. Os elementos. Unesp, 2009.
- [3] Arthur Cayley. A theorem in the geometry of position. Cambridge Mathematical Journal, 2:267–271, 1841.
- [4] Karl Menger. Untersuchungen über allgemeine metrik. *Mathematische Annalen*, 100(1):75–163, 1928.
- [5] Leonard M Blumenthal. Theory and applications of distance geometry. 1953.
- [6] Leo Liberti, Carlile Lavor, Nelson Maculan, and Antonio Mucherino. Euclidean distance geometry and applications. Society for Industrial and Applied Mathematics, 56(1):3–69, February 2014.

A Métricas

Como esse texto utiliza fortemente o conceito de distância, é necessário e bem vindo que se gaste algum espaço para uma construção formal dessa ideia. A noção de distância está relacionada com o conceito de *métrica*, como segue.

Seja \mathcal{X} um espaço vetorial k-dimensional sobre \mathbb{R} . $M\'{e}trica$ é uma função de dois argumentos que mapeia pares ordenados de elementos em \mathcal{X} para um número real não negativo. Precisamente, para todo x, y e $z \in \mathcal{X}$, uma função $d(\cdot, \cdot) : \mathcal{X} \times \mathcal{X} \longrightarrow \mathbf{R}$ é uma métrica se satisfaz os seguintes axiomas:

- 1. d(x,y) = 0 se, e somente se, x = y;
- 2. d(x,y) = d(y,x);
- 3. $d(x,z) \le d(x,y) + d(y,z)$;
- 4. $d(x,y) \ge 0$

Nesse trabalho, sempre que não é especificado qual métrica se está usando, fica implícita a utilização da *Métrica Euclidiana*, definida in função da *Norma Euclidiana*:

$$\forall x, y \in \mathcal{X}, d(x, y) = \|x - y\|_2 = \sqrt{\langle x, y \rangle} = \sqrt{\sum_{i=1}^k (x_i - y_i)^2}.$$
 (Norma Euclidiana)

O par (\mathcal{X}, d) é chamado espaço métrico. A noção de métrica não depende de espaços vetoriais, donde pode ser facilmente generalizada fazendo \mathcal{X} um conjunto qualquer.