32768-word × 8-bit High Speed CMOS Static RAM

Features

- High speed: Fast access time 85/100/120/150 ns (max)
- · Low power standby and low power operation
 - Standby: 200 μ W (typ)/ 10 μ W (typ) (L-/L-SL-version)
 - Operation: 40 mW (typ) (f = 1 MHz)
- Single 5 V supply
- Completely static RAM: No clock or timing strobe required
- Equal access and cycle time
- Common data input and output, three-state output
- Directly TTL compatible—all inputs and outputs
- Battery back up operation capability (L-/L-SL-version)

Ordering Information

Type No.	Access time	Package
HM62256P-8	85 ns	600-mil 28-pin
HM62256P-10	100 ns	Tplastic DIP (DP-28)
HM62256P-12	120 ns	_
HM62256P-15	150 ns	
HM62256LP-8	85 ns	
HM62256LP-10	100 ns	
HM62256LP-12	120 ns	
HM62256LP-15	150 ns	
HM62256LP-10SL	100 ns	
HM62256LP-12SL	120 ns	_
HM62256LP-15SL	150 ns	_

Туре No.	Access time	Package
HM62256FP-8T	85 ns	28-pin plastic
HM62256FP-10T	100 ns	"SOP (FP-28DA)
HM62256FP-12T	120 ns	_
HM62256FP-15T	150 ns	_
HM62256LFP-8T	85 ns	_
HM62256LFP-10T	100 ns	
HM62256LFP-12T	120 ns	_
HM62256LFP-15T	150 ns	_
HM62256LFP-10SLT	100 ns	_
HM62256LFP-12SLT	120 ns	_
HM62256LFP-15SLT	150 ns	_

Pin Arrangement

Note: This device is not available for new application.

www.DataSheet4U.com

Block Diagram

Truth Table

CS_	ŌE	WE	Mode	V _{CC} current	I/O pin	Reference cycle
Н	×	x	Not selected	I _{SB} , I _{SB1}	High Z	
L	L	Н	Read	Icc	Dout	Read cycle No. 1–3
L	Н	L	Write	Icc	Din	Write cycle No. 1
L	L.	L	Write	lcc	Din	Write cycle No. 2

Note: x means H or L

Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit	
Voltage on any pin relative to V _{SS}	V _T	-0.5 * to +7.0	V	
Power dissipation	P _T	1.0	w	
Operating temperature	T _{opr}	0 to +70	°C	
Storage temperature	T _{stg}	-55 to +125	°C	
Temperature under bias	T _{bias}	-10 to +85	°C	

Note: -3.0 V min for pulse width ≤ 50 ns

Recommended DC Operating Conditions (Ta = 0 to $+70^{\circ}$ C)

Parameter	Symbol	Min	Тур	Max	Unit	
Supply voltage	V _{CC}	4.5	5.0	5.5	V	
	V _{SS}	0	0	0	V	
Input voltage	V _{IH}	2.2		6.0	V	
	V _{IL}	- 0.5		0.8	V	

Note: -3.0 V min for pulse width ≤ 50 ns

DC Characteristics ($V_{CC} = 5 \text{ V} \pm 10\%$, $V_{SS} = 0 \text{ V}$, $Ta = 0 \text{ to } +70^{\circ}\text{C}$)

Paramete	r	Symbol	Min	Тур *1	Max	Unit	Test condition
Input leaka	age current		_	_	2	μА	V _{IN} = V _{SS to} V _{CC}
Output leakage current		I _{LO}	_	-	2	μА	$\overline{CS} = V_{IH}$ or $\overline{OE} = V_{IH}$ or $\overline{WE} = V_{IL}$ $V_{I/O} = V_{SS}$ to V_{CC}
Operating supply cur	•	I_{CC} — 8 15 mA $\overline{CS} = V_{iL}$, $I_{i/O} =$		$\overline{\text{CS}} = V_{\text{IL}}, \ I_{\text{I/O}} = 0 \text{ mA}$			
Average	HM62256-8	l _{CC1}	_	50	70	mA	Min. cycle, duty = 100%,
operating power	HM62256-10		_	40	70	mA	$\overline{CS} = V_{IL}$, $I_{I/O} = 0$ mA
supply current	HM62256-12	_	_	35	70	mA	
WWW	HM62256-15	com.	_	33	70	mA	
		I _{CC2}		8	15	mA	$\overline{\text{CS}} = \text{V}_{\text{IL}}, \text{VIH} = \text{V}_{\text{CC}}, \text{V}_{\text{IL}} = \text{OV},$ $\text{I}_{\text{I/O}} = \text{0 mA } f = \text{1 MHz}$

DC Characteristics ($V_{CC} = 5 \text{ V} \pm 10\%$, $V_{SS} = 0 \text{ V}$, $Ta = 0 \text{ to } +70^{\circ}\text{C}$) (cont)

Parameter	Symb	ol Min	Typ *1	Max	Unit	Test condition
Standby power supply current	I _{SB}	_	0.5	3	mA	CS = V _{IH}
	I _{SB1}		0.04	2	mA	<u>CS</u> ≥ V _{CC} – 0.2V, 0V ≤ V _{IN}
		— 2°2 100°2 μA				
			2*3	50 ^{*3}		
Output voltage	V _{OL}			0.4	٧	I _{OL} = 2.1 mA
	V _{OH}	2.4			٧	I _{OH} = -1.0 mA

- Notes: 1. Typical values are at $V_{CC} = 5.0 \text{ V}$, $Ta = 25^{\circ}\text{C}$ and specified loading.
 - 2. These characterisitcs are guaranteed only for L-version.
 - 3. These characterisites are guaranteed only for L-SL version.

Capacitance (Ta = 25°C, f = 1 MHz)

Parameter	Symbol	Тур	Max	Unit	Test Condition
Input capacitance	C _{IN}		6	pF	V _{IN} = 0 V
Input/output capacitance	C _{I/O}		8	pF	V _{I/O} = 0 V

Note: These parameters are sampled and not 100% tested.

AC Characteristics ($V_{CC} = 5 \text{ V} \pm 10\%$, Ta = 0 to +70°C unless otherwise noted)

AC Test Conditions:

- Input pulse levels: 0.8 V to 2.4 V
- Input and output timing reference levels: 1.5 V
- Input rise and fall times: 5 ns
- Output load: 1TTL gate and $C_L = 100 \text{ pF}$ (including scope and jig)

Read Cycle

HM62256-8 HM62256-10 HM62256-12 HM62256-15

Parameter	Symbol	Min	Max	·Min	Max	Min	Max	Min	Max	Unit
Read cycle time	t _{RC}	85	_	100		120		150		ns
Address access time	t _{AA}	_	85		100		120		150	ns
Chip select access time	t _{ACS}	_	85	_	100	_	120		150	ns
Output enable to output valid	toE		45		50		60		70	ns
Output hold from address change	t _{OH}	5		10		10		10	_	ns
Chip selection to output in low Z	tcLZ	10	_	10	_	10	_	10	_	ns
Output enable to output in low Z	tolz	5		5		5	_	5	_	ns
Chip deselection to output in high Z	^t cHZ	0	30	0	35	0	40	0	50	ns
Output disable to output in high Z	t _{OHZ}	0	30	0	35	0	40	0	50	ns

Read Timing Waveform (1)

Read Timing Waveform (2)

Read Timing Waveform (3)

Write Cycle

HM62256-8 HM62256-10 HM62256-12 HM62256-15

Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Write cycle time	twc	85		100		120	_	150		ns
Chip selection to end of write	tcw	75	_	80	_	85		100	_	ns
Address valid to end of write	t _{AW}	75	_	80		85	_	100	_	ns
Address set up time	tas	0	_	0		0	_	0	_	ns
Write pulse width	t _{WP}	60		60		70		90		ns
Write recovery time	t _{WR}	10	_	0		0	_	0		ns
Write to output in high Z	t _{WHZ}	0	30	0	35	0	40	0	50	ns
Data to write time overlap	t _{DW}	40		40		50		60		ns
Data hold from write time	^t DH	0	_	0		0	_	0	_	ns
Output disable to output in high Z	t _{OHZ}	.0	30	0	35	0	40	0	50	ns
Output active from end of write	tow	5	_	5		5		5		ns

Write Timing Waveform (1) (OE Clock)

- Notes: 1. A write occurs during the overlap (twp) of a low CS and a low WE.
 - 2. t_{WR} is measured from the earlier of CS or WE going high to the end of write cycle.
 - 3. During this period, I/O pins are in the output state. Out of phase input signals must not be applied.

Write Timing Waveform (2) (OE Fixed Low)

Notes: 1. A write occurs during the overlap (twp) of a low CS and a low WE.

- 2. twn is measured from the earlier of CS or WE going high to the end of write cycle.
- 3. During this period, I/O pins are in the output state. The input signals out of phase must not be applied.
- 4. If the CS low transistion occurs simultaneously with the WE low transition or after the WE low transition, outputs remain in a high impedance state.
- 5. Dout is in the same phase of written data of this write cycle.
- 6. Dout is the read data of next address.
- 7. If CS is low during this period, I/O pins are in the output state. Out of phase input signals must not be appplied to I/O pins.

Low V_{CC} Data Retention Characteristics (Ta = 0 to +70°C)

These characteristics are guaranteed only for L- and L-SL version.

Parameter	Symbol	Test Conditions	Min	Тур	Max	Ünit	
V _{CC} for data retention V _{DR}		<u>CS</u> ≥ V _{CC} – 0.2 V	2.0		_	٧	
Data retention current	ICCDR	V _{CC} = 3.0 V, CS ≥ 2.8 V	_		50 *2	μΑ	
		0 V ≤ V _{IN}	_		10 '3		
Chip deselect to data retention time	t _{CDR}	See retention waveform	0	<u></u>	_	ns	
Operation recovery time	t _R	See retention waveform	t _{RC} *1			ns	

Notes: 1. t_{RC} = read cycle time

- 2. These characteristics are guaranteed only for L-version, $V_{IL} = -0.3 \text{ V min}$, 20 μ A max. at Ta = 0 to 40°C.
- 3. These characteristics are guaranteed only for L-SL version, V_{IL} = -0.3 V min, 3 μ A max. at Ta = 0 to 40°C.

Low V_{CC} Data Retention Waveform

Note: In data retention mode, $\overline{\text{CS}}$ controls the address, $\overline{\text{WE}}$, $\overline{\text{OE}}$, and Din buffers. V_{in} for these inputs can be in high impedance state in data retention mode.

Characteristic Curves

Supply Current vs. Supply Voltage (1)

Supply Current vs. Supply Voltage (2)

Supply Current vs. Supply Voltage (3)

Supply Current vs. Ambient Temperature (1)

Supply Current vs. Ambient Temperature (2)

Supply Current vs. Ambient Temperature (3)

Access Time vs. Supply Voltage

Access Time vs. Ambient Temperature

Standby Current vs. Supply Voltage

Standby Current vs. Ambient Temperature

Supply Current vs. Frequency (Read)

Supply Current vs. Frequency (Write)

nput high voltage VIH min (normalized) 1.3 Ta = 25°C 1.2 1.1 1.0 0.9 0.8 0.7 4.75 4.50 5.00 5.25 5.50 Supply voltage V_{CC} (V)

Input Low Voltage vs. Supply Voltage

Input High Voltage vs. Supply Voltage

Output Current vs. Output Voltage (High)

Output Current vs. Output Voltage (Low)

Access Time vs. Load Capacitance