Master I d'informatique INFO0705 : info. théorique Pascal Mignot

Devoir sur table 8 novembre 2017

Note : seul l'aide-mémoire fourni est autorisé. L'utilisation de propriétés autres que celles de l'aide-mémoire devront être démontrées.

EXERCICE 1: Soit $\Sigma = \{0, 1\}$. Soit $L_1 = \{w \mid \text{ ne contient pas la chaine } 001\}$.

- ① Donner l'ADF qui reconnait L_1 .
- ② Donner l'expression régulière qui reconnait L_1 .
- ③ Donner ses L_1 -classes d'équivalence
- 4 Pourquoi la grammaire libre de contexte qui accepte L_1 est triviale? On la fournira.
- ⑤ Pourquoi l'automate à pile qui accepte L_1 est trivial? On le fournira.
- © Pourquoi le graphe de la machine de Turing qui accepte L_1 est trivial? On la fournira.

EXERCICE 2: Soit $\Sigma = \{0, 1\}$. Soit $L_2 = \{w \mid \#_0 w = \#_1 w\}$ (= ensemble des mots qui contient le même nombre de 0 et de 1).

- ① si L_2 est régulier alors (a) donner son automate; et (b) donner son expression régulière. sinon démontrer qu'il n'est pas régulier en utilisant (a) le théorème de Myhill-Nérode; puis (b) le lemme de l'étoile.
- ② si L_2 est libre de contexte alors donner (a) sa grammaire; et (b) son automate à pile. sinon démontrer qu'il n'est pas régulier en utilisant le lemme de l'étoile pour les grammaires libres de contexte.
- ③ donner le graphe de la machine de Turing qui reconnait L_2 .

EXERCICE 3: Soit $L_3 = \{0^n 1^{n^2} \mid n > 0\}.$

- ① si L_3 est régulier alors (a) donner son automate; et (b) donner son expression régulière. sinon démontrer qu'il n'est pas régulier en utilisant le lemme de l'étoile.
- ② si L_3 est libre de contexte alors donner (a) sa grammaire; et (b) son automate à pile. sinon démontrer qu'il n'est pas régulier en utilisant le lemme de l'étoile pour les grammaires libres de contexte.
- ③ donner la machine de Turing qui reconnait L_3 .
- 4 L est-il décidable?

Exercice 4: Soit le langage $L = \{w \mid w \text{ est un nombre premier}\}.$

- ① Donner la machine de Turing non déterministe qui reconnaît *L*. Elle devra impérativement utiliser le non déterminisme.
- 2 La machine donnée à la question précédente est-elle décidable?
- 4 Donner alors la machine de Turing non déterministe qui reconnaît \overline{L} . On indiquera comment le non déterminisme est utilisé dans ce cas.

Exercice 5: Soit $\Sigma = \{1\}$. Démontrer qu'il existe des langages de Σ^* qui ne sont pas récursivement énumérables.

Exercice 6: Soit Σ un alphabet. On dit qu'un langage trivial si $L = \emptyset$ ou $L = \Sigma^*$.

- ① Est-il possible de trouver deux langages A et B irréguliers tels que $A \cup B$ soit régulier mais pas trivial? Si oui, on donnera un exemple. Si non, on démontrera pourquoi.
- ② Est-il possible de trouver deux langages A et B non libres de contexte tels A et B que $A \cup B$ soit libre de contexte mais ni trivial ni régulier? Si oui, on donnera un exemple. Si non, on démontrera pourquoi.
- ③ Est-il possible de trouver deux langages A et B récursivement énumérables mais pas décidable tels que $A \cup B$ soit décidable mais pas trivial? Si oui, on donnera un exemple. Si non, on démontrera pourquoi.

Exercice 7: Fermeture par concaténation

On étudie dans cet exercice la fermeture de concaténation des différentes classes de langage.

- ① Démontrer que les langages réguliers sont fermés par concaténation.
- 2 Démontrer que les langages libre de contexte sont fermés par concaténation.
- 3 Démontrer que les langages décidables sont fermés par concaténation.
- 4 Démontrer que les langages récursivement énumérables sont fermés par concaténation.

Exercice 8:

On considère le langage $L = \{ \langle M \rangle \mid \text{ la machine de Turing } M \text{ accepte au moins un mot} \}$.

- ① Montrer que *L* est récursivement énumérable.
- ② Quel est l'ensemble des langages contenus dans \overline{L} le complémentaire de L?
- ③ Peut-on déduire du fait que $E_{\rm MT}$ est indécidable que L est indécidable? Si oui, on le démontrera, sinon on expliquera pourquoi.

Exercice 9: Problème de l'infini

Soit INF = $\{\langle M \rangle \mid \mathcal{L}(M) \text{ est infini}\}\$, à savoir l'ensemble des descriptions de machine de Turing $\langle M \rangle$ telle que le cardinal du langage reconnu par M est n'est pas fini.

- ① Montrer que INF est indécidable par réduction de $A_{\rm MT}$ à INF. On utilisera la méthode suivante :
 - (a) trouver une fonction calculable f qui, à un $\langle M, w \rangle \in A_{MT}$, associe un $\langle M' \rangle \in INF$.
 - (b) démontrer que cette fonction est une réduction de $A_{\rm MT}$ à INF.
 - (c) utiliser cette réduction afin de démontrer que INF est indécidable.
- ② Soit $\overline{\mathsf{INF}} = \{\langle M \rangle \mid \mathcal{L}(M) \text{ est fini} \}$. Montrer que $\overline{\mathsf{INF}}$ est indécidable par réduction de A_{MT} à $\overline{\mathsf{INF}}$. On utilisera la méthode suivante :
 - (a) trouver une fonction calculable f qui, à un $\langle M, w \rangle \in A_{MT}$, associe un $\langle M' \rangle \in \overline{INF}$.
 - (b) démontrer que cette fonction est une réduction de $A_{\rm MT}$ à $\overline{\rm INF}$.
 - (c) utiliser cette réduction afin de démontrer que INF est indécidable.
- 3 Aurait-on pu arriver plus rapidement à ces conclusions? On prendra soin de rédiger une réponse rigoureuse.
- ① Démontrer que (INF est indécidable) \Leftrightarrow (INF est indécidable).
- ⑤ Soit la fonction calculable $f(\langle M, w \rangle)$ qui produit en sortie la machine de Turing suivante : $M_0(\langle y \rangle) = \text{exécuter } |y| \text{ transitions de la MT universelle } U(\langle M, w \rangle)$
 - si U s'est arrêtée au bout de ces |y| transitions alors rejeter sinon accepter Expliquer le fonctionnement de la machine de Turing M_0 en fonction des cas où $\langle M, w \rangle$ appartient ou pas à $\overline{H_{\rm MT}}$.
- 6 Que peut-on alors déduire de la question précédente?