પ્રશ્ન 1(અ) [3 ગુણ]

થર્મલ રનઅવે વિગતવાર સમજાવો.

જવાબ:

થર્મલ રનઅવે એ BJT ટ્રાન્ઝિસ્ટરમાં થતી વિનાશક પ્રક્રિયા છે જેમાં તાપમાનમાં વધારો સ્વ-પુનરાવર્તિત ચક્ર બનાવે છે જે ઉપકરણને નુકસાન પહોંચાડે છે.

- ગરમી ઉત્પાદન: સામાન્ય કાર્ય દરમિયાન તાપમાન વધે છે
- **લીકેજ કરંટ**: તાપમાન વધવાથી કલેક્ટર કરંટ Ic વધે છે
- પાવર વ્યય: વધુ પાવર = તાપમાન વધુ વધે છે
- વિનાશક ચક્ર: ટ્રાન્ઝિસ્ટર નાશ પામે ત્યાં સુધી સતત ચક્ર ચાલે છે

મેમરી ટ્રીક: "વધુ તાપમાન, વધુ કરંટ"

પ્રશ્ન 1(બ) [4 ગુણ]

સરળ બ્લોક ડાયાગ્રામ સાથે એમ્પ્લીફાયર વ્યાખ્યાયિત કરો એમ્પ્લીફાયર પરિમાણો લખો.

പ്പാ

એમ્પ્લીફાયર એક ઇલેક્ટ્રોનિક ઉપકરણ છે જે ઇનપુટ સિગ્નલનો પાવર, વોલ્ટેજ અથવા કરંટ વધારે છે.

એમ્પ્લીફાયર પરિમાણ	વર્ણન
વોલ્ટેજ ગેઇન (Av)	આઉટપુટ વોલ્ટેજનો ઇનપુટ વોલ્ટેજ સાથેનો ગુણોત્તર
કરંટ ગેઇન (Ai)	આઉટપુટ કરંટનો ઇનપુટ કરંટ સાથેનો ગુણોત્તર
પાવર ગેઇન (Ap)	વોલ્ટેજ ગેઇન અને કરંટ ગેઇનનો ગુણાકાર
બેન્કવિડ્થ	એમ્પ્લીફાયર હેન્ડલ કરી શકે તેવી ફ્રીક્વન્સીની રેન્જ
ઇનપુટ ઇમ્પીડન્સ	ઇનપુટ સ્ત્રોત દ્વારા જોવામાં આવતો અવરોધ
આઉટપુટ ઇમ્પીડન્સ	એમ્પ્લીફાયરનો આંતરિક અવરોધ

મેમરી ટ્રીક: "VIPS-BIO" (Voltage, Input impedance, Power, Supply, Bandwidth, Impedance Output)

પ્રશ્ન 1(ક) [7 ગુણ]

ટ્રાન્ઝિસ્ટરમાં બાયસિંગ વ્યાખ્યાયિત કરો? બાયસિંગ પદ્ધતિઓના પ્રકારો લખો. વોલ્ટેજ વિભાજક બાયસિંગ પદ્ધતિને વિગતોમાં સમજાવો.

જવાબ:

બાયસિંગ એ ટ્રાન્ઝિસ્ટર માટે DC વોલ્ટેજ આપીને સ્થિર ઓપરેટિંગ પોઈન્ટ (Q-પોઈન્ટ) સ્થાપિત કરવાની પ્રક્રિયા છે.

બાયસિંગ પદ્ધતિ	મુખ્ય લક્ષણો
ફિક્સ્ડ બાયસ	સરળ, ઓછી સ્થિરતા
કલેક્ટર ફીડબેક	સ્વ-સમાયોજિત, વધુ સારી સ્થિરતા
વોલ્ટેજ વિભાજક	શ્રેષ્ઠ સ્થિરતા, વ્યાપકપણે વપરાતી
એમિટર બાયસ	સારી સ્થિરતા, નેગેટિવ ફીડબેક

વોલ્ટેજ વિભાજક બાયસિંગ:

- R1 & R2: બેઝને સ્થિર વોલ્ટેજ આપવા માટે વોલ્ટેજ વિભાજક બનાવે છે
- **RE**: નેગેટિવ ફીડબેક દ્વારા સ્થિરીકરણ પ્રદાન કરે છે
- RC: કલેક્ટર કરંટ અને વોલ્ટેજ ગેઇન નક્કી કરે છે
- સ્થિરતા: તાપમાન ફેરફારો સામે શ્રેષ્ઠ સ્થિરતા

મેમરી ટ્રીક: "વિભાજીત વોલ્ટેજથી ટ્રાન્ઝિસ્ટર સારું વહન કરે"

પ્રશ્ન 1(ક) અથવા [7 ગુણ]

હીટ સિંક સમજાવો.

જવાબ:

હીટ સિંક એ પેસિવ હીટ એક્સચેન્જર છે જે ઇલેક્ટ્રોનિક ઉપકરણોમાંથી ગરમીને આસપાસની હવામાં ટ્રાન્સફર કરે છે.

ભાગ	รเช้
બેઝ	ડિવાઇસમાંથી ગરમી વહન કરે છે
इ न्स	ગરમી ફેલાવા માટે સરફેસ એરિયા વધારે છે
થર્મલ ઇન્ટરફેસ મટિરિયલ	ડિવાઇસ અને સિંક વચ્ચેનો સંપર્ક સુધારે છે
પ્રકારો	એક્સટૂડેડ, બોન્ડેડ, ફોલ્કેડ, ડાઇ-કાસ્ટ

- થર્મલ રેઝિસ્ટન્સ: ઓછું તે ગરમી ફેલાવા માટે વધુ સારું
- મટિરિયલ: સામાન્ય રીતે એલ્યુમિનિયમ અથવા કોપર સારી કન્ડક્ટિવિટી માટે
- સરફેસ એરિયા: વધુ ફિન્સ એટલે વધુ સારું ફૂલિંગ
- એરફલો: કુશળ ગરમી દૂર કરવા માટે મહત્વપૂર્ણ

મેમરી ટ્રીક: "હીટ સિંક ટ્રાન્ઝિસ્ટરને ઠંડુ રાખે"

પ્રશ્ન 2(અ) [3 ગુણ]

D.C અને A.C. લોડ લાઇનોનું વર્ણન કરો.

જવાબ

લોડ લાઇન્સ ટ્રાન્ઝિસ્ટરનાં સંભવિત ઓપરેટિંગ પોઈન્ટ્સને તેના કેરેક્ટરિસ્ટિક કર્વ પર ગ્રાફિકલી દર્શાવે છે.

0 Vcc

• **DC લોડ લાઇન**: DC સ્થિતિઓ હેઠળ બધા શક્ય ઓપરેટિંગ પોઈન્ટસ બતાવે છે

∘ સમીકરણ: Ic = (VCC - VCE)/RC

o એન્ડપોઈન્ટ્સ: (0, VCC/RC) અને (VCC, 0)

• AC લોડ લાઇન: AC સિગ્નલ હેન્ડલિંગ દરમિયાન ઓપરેટિંગ પોઈન્ટ્સ બતાવે છે

૦ **વધુ તીક્ષ્ણ હાળ**: AC રેઝિસ્ટન્સ DC કરતાં ઓછો હોવાના કારણે

• **Q-પોઈન્ટ પર કેન્દ્રિત**: બાયસિંગ દ્વારા સ્થાપિત ઓપરેટિંગ પોઈન્ટ

મેમરી ટ્રીક: "DC પૂર્ણ આલેખે, AC માર્ગ બદલે"

પ્રશ્ન 2(બ) [4 ગુણ]

એમ્પ્લીફાયરની બેન્ડવિડ્થ અને ગેઇન-બેન્ડવિડ્થ ઉત્પાદનને સંક્ષિપ્તમાં સમજાવો.

જવાબ:

બેન્ડવિડ્થ અને ગેઇન-બેન્ડવિડ્થ ઉત્પાદન એમ્પ્લીફાયર ફ્રીક્વન્સી પરફોર્મન્સ માટેની મુખ્ય વિશેષતાઓ છે.

પેરામીટર	વર્ણન
બેન્કવિડ્થ	ફ્રીક્વન્સી રેન્જ જ્યાં ગેઇન 3dB કરતાં ઓછો ઘટે છે
લોઅર કટઓફ (f₁)	ફ્રીક્વન્સી જ્યાં નીચલા છેડે ગેઇન 3dB ઘટે છે
અપર કટઓફ (f ₂)	ફ્રીક્વન્સી જ્યાં ઉપલા છેડે ગેઇન 3dB ઘટે છે
ગેઇન-બેન્ડવિડ્થ ઉત્પાદન	ગેઇન અને બેન્ડવિડ્થનો ગુણાકાર, સ્થિર રહે છે

• બેન્ડવિડ્થ ફોર્મ્યુલા: BW = f₂ - f₁

• ગેઇન-બેન્ડવિડ્ય: ગેઇન બદલાય ત્યારે પણ સ્થિર રહે છે

• ટ્રેડ-ઓફ: વધુ ગેઇન એટલે ઓછી બેન્ડવિડ્થ

મેમરી ટ્રીક: "સારી બેન્ડવિડ્થ શ્રેષ્ઠ ટ્રાન્સમિશન આપે"

પ્રશ્ન 2(ક) [7 ગુણ]

બે તબક્કાના RC કપલ્ડ એમ્પ્લીકાયરનો આવર્તન પ્રતિભાવ સમજાવો.

જવાબ:

બે-તબક્કાના RC કપલ્ડ એમ્પ્લીફાયરનો આવર્તન પ્રતિભાવ બતાવે છે કે ગેઇન આવર્તન સાથે કેવી રીતે બદલાય છે.

- નીચલા આવર્તન પ્રતિભાવ: કપલિંગ કેપેસિટર્સ દ્વારા મર્યાદિત
 - **રોલ-ઓફ રેટ**: દરેક તબક્કા માટે -20 dB/decade
- **મધ્ય આવર્તન પ્રતિભાવ**: મહત્તમ અને સપાટ ગેઇન પ્રદેશ
 - ૦ **કુલ ગેઇન**: વ્યક્તિગત તબક્કાના ગેઇનનો ગુણાકાર
- ઉચ્ચ આવર્તન પ્રતિભાવ: ટ્રાન્ઝિસ્ટર કેપેસિટન્સ દ્વારા મર્યાદિત
 - **રોલ-ઓફ રેટ**: દરેક તબક્કા માટે -20 dB/decade

મેમરી ટ્રીક: "નીચે કપલિંગ નબળું, ઉપર કેપેસિટન્સ રોકે"

પ્રશ્ન 2(અ) અથવા [3 ગુણ]

ટ્રાન્ઝિસ્ટર બાયસિંગ માટે નિશ્ચિત બાયસ સર્કિટ સમજાવો.

જવાબ:

ફિક્સ્ડ બાયસ એ ટ્રાન્ઝિસ્ટર માટેની સૌથી સરળ બાયસિંગ પદ્ધતિ છે, જેમાં બેઝ સાથે જોડાયેલ એક રેઝિસ્ટરનો ઉપયોગ થાય છે.


```
+----+
બેઝ કલેક્ટર
|
E
|
GND
```

• **સર્કિટ તત્વો**: બેઝ રેઝિસ્ટર (RB) અને કલેક્ટર રેઝિસ્ટર (RC)

• ด้วง ระ่อ: IB = (VCC - VBE)/RB

• **કલેક્ટર કરંટ**: IC = β × IB

• નુકસાન: ઓછી સ્થિરતા, તાપમાન ફેરફારોથી અસર પામે છે

મેમરી ટ્રીક: "ફિક્સ બાયસ, ફેસ બર્ડન" (અસ્થિરતાનો)

પ્રશ્ન 2(બ) અથવા [4 ગુણ]

સિંગલ સ્ટેજ એમ્પ્લીફાયરનો આવર્તન પ્રતિભાવ સમજાવો.

જવાબ:

સિંગલ-સ્ટેજ એમ્પ્લીફાયરનો આવર્તન પ્રતિભાવ બતાવે છે કે ગેઇન વિભિન્ન આવર્તનો પર કેવી રીતે બદલાય છે.

આવર્તન રેન્જ	લક્ષણો
નીચલા આવર્તન પ્રદેશ	કપલિંગ કેપેસિટર્સને કારણે ગેઇન ઘટે છે
મધ્ય આવર્તન પ્રદેશ	મહત્તમ અને સ્થિર ગેઇન
ઉચ્ચ આવર્તન પ્રદેશ	ટ્રાન્ઝિસ્ટર કેપેસિટન્સને કારણે ગેઇન ઘટે છે

- નીચલી કટ-ઓફ આવર્તન: કપલિંગ કેપેસિટર્સ દ્વારા નિર્ધારિત
- ઉપલી કટ-ઓફ આવર્તન: આંતરિક ટ્રાન્ઝિસ્ટર કેપેસિટન્સથી મર્યાદિત
- બેન્ડવિડ્થ: નીચલી અને ઉપલી કટ-ઓફ આવર્તનો વચ્ચેની રેન્જ

મેમરી ટ્રીક: "નીચું મધ્ય ઉંચું - કેપેસિટર અહીં મહત્વપૂર્ણ છે"

પ્રશ્ન 2(ક) અથવા [7 ગુણ]

ટ્રાન્સફોર્મર કપલ્ડ એમ્પ્લીફાયર અને RC કપલ્ડ એમ્પ્લીફાયરની સરખામણી કરો

જવાબ:

પેરામીટર	RC કપલ્ડ એમ્પ્લીફાયર	ટ્રાન્સફોર્મર કપલ્ડ એમ્પ્લીફાયર
કપલિંગ તત્વ	રેઝિસ્ટર અને કેપેસિટર	ટ્રાન્સફોર્મર
આવર્તન પ્રતિભાવ	વિશાળ બેન્ડવિડ્થ	મર્યાદિત બેન્ડવિડ્થ
કાર્યક્ષમતા	ઓછી (20-25%)	ઉચ્ચ (50-60%)
કદ & વજન	નાનું અને હલકું વજન	મોટું અને ભારે
કિંમત	સસ્તી	મોંઘી
ઇમ્પીડન્સ મેચિંગ	નબળું મેચિંગ	ઉત્કૃષ્ટ મેચિંગ
વિકૃતિ	ઓછી વિકૃતિ	કોર સેચુરેશનને કારણે વધુ
DC આઇસોલેશન	સાટું આઇસોલેશન	ઉત્કૃષ્ટ આઇસોલેશન
એપ્લિકેશન્સ	સામાન્ય હેતુ	ઓડિયો પાવર એમ્પ્લીફાયર

મેમરી ટ્રીક: "RC વિશાળતા લે, ટ્રાન્સફોર્મર પાવર લે"

પ્રશ્ન 3(અ) [3 ગુણ]

ડાયરેક્ટ કપલ્ડ એમ્પ્લીફાયરને સંક્ષિપ્તમાં સમજાવો.

જવાબ:

ડાયરેક્ટ-કપલ્ડ એમ્પ્લીફાયર તબક્કાઓને કપલિંગ કેપેસિટર્સ અથવા ટ્રાન્સફોર્મર વિના જોડે છે, જે DC સિગ્નલ એમ્પ્લિફિકેશનની મંજૂરી આપે છે.

- DC સિગ્નલ હેન્ડલિંગ: ખૂબ નીચા આવર્તન અને DC એમ્પ્લિફાય કરી શકે છે
- **કોઈ કપલિંગ તત્વો નહીં**: પ્રથમ તબક્કાનું આઉટપુટ સીધું આગલા તબક્કાના ઇનપુટને જોડે છે
- **આવર્તન પ્રતિભાવ**: ઉત્કૃષ્ટ નીચલા આવર્તનનો પ્રતિભાવ
- **નુકસાન**: થર્મલ ડ્રિફ્ટ, બાયસ સ્થિરતાના મુદ્દાઓ

મેમરી ટ્રીક: "સીધું જોડાયેલ, સંપૂર્ણ શૂન્ય આવર્તન સુધી"

પ્રશ્ન 3(બ) [4 ગુણ]

એમ્પ્લીફાયરના ફ્રીક્વન્સી રિસ્પોન્સ પર એમિટર બાયપાસ કેપેસિટર અને કપલિંગ કેપેસિટરની અસરો સમજાવો.

જવાબ:

કેપેસિટર	รเช่	આવર્તન પ્રતિભાવ પર અસર
એમિટર બાયપાસ કેપેસિટર	RE આસપાસ AC બાયપાસ કરે છે	મધ્ય અને ઉચ્ચ આવર્તનો પર ગેઇન વધારે છે
કપલિંગ કેપેસિટર	DC અવરોધે, AC પસાર કરે	નીચલી કટ-ઓફ આવર્તન નક્કી કરે છે

• એમિટર બાયપાસ કેપેસિટર:

- ૦ વિના: નેગેટિવ ફીડબેકને કારણે ઓછો ગેઇન
- ૦ **સાથે**: AC સિગ્નલ માટે RE બાયપાસ થવાથી ઉચ્ચ ગેઇન

• કપલિંગ કેપેસિટર:

- ૦ **ખૂબ નાનું**: નબળો નીચલા-આવર્તન પ્રતિભાવ
- ૦ **મોટું મૂલ્ય**: વધુ સારો નીચલા-આવર્તન પ્રતિભાવ

મેમરી ટ્રીક: "કપલિંગ નીચા નિયંત્રણ કરે, બાયપાસ બધાને વધારે"

પ્રશ્ન 3(ક) [7 ગુણ]

ટ્રાન્ઝિસ્ટર ટુ પોર્ટ નેટવર્ક દોરો અને તેના માટે h-પેરામીટર્સનું વર્ણન કરો. હાઇબ્રિડ પરિમાણોના ફાયદા લખો.

જવાલ:

બે-પોર્ટ નેટવર્ક એ h-પેરામીટર્સ (હાઇબ્રિડ પેરામીટર્સ)નો ઉપયોગ કરીને ટ્રાન્ઝિસ્ટર વર્તનનું વિશ્લેષણ કરવા માટેનું મોડેલ છે.

H-પેરામીટર	વ્યાખ્યા	ભોતિક અર્થ
h ₁₁ (h _{ie})	આઉટપુટ શોર્ટ-સર્કિટેડ સાથે ઇનપુટ ઇમ્પીડન્સ	બેઝ-એમિટર રેઝિસ્ટન્સ
h ₁₂ (h _{re})	ઇનપુટ ઓપન-સર્કિટેડ સાથે રિવર્સ વોલ્ટેજ ગેઇન	આઉટપુટથી ઇનપુટ તરફ ફીડબેક
h ₂₁ (hf _e)	આઉટપુટ શોર્ટ-સર્કિટેડ સાથે ફોરવર્ડ કરંટ ગેઇન	કરંટ ગેઇન (β)
h ₂₂ (ho _e)	ઇનપુટ ઓપન-સર્કિટેડ સાથે આઉટપુટ એડમિટન્સ	આઉટપુટ કન્ડકટન્સ

H-પેરામીટર્સના ફાયદા:

- સરળતાથી માપી શકાય: સરળ સર્કિટ્સ સાથે સીધા માપન
- મિશ્રિત એકમો: વોલ્ટેજ અને કરંટના ગુણોત્તરનો ઉપયોગ કરે છે
- મોડેલ ચોકસાઈ: ટ્રાન્ઝિસ્ટર વર્તનની નજીકની એપ્રોક્સિમેશન
- ગાણિતિક સરળતા: વિશ્લેષણ માટે લીનિયર સમીકરણો

મેમરી ટ્રીક: "ઇનપુટ, રિવર્સ, ફોરવર્ડ, આઉટપુટ - IRFO પેરામીટર્સ"

પ્રશ્ન 3(અ) અથવા [3 ગુણ]

એમ્પ્લીફાયરનો ફ્રીક્વન્સી રિસ્પોન્સ દોરો અને પ્રતિસાદ પર એમ્પ્લીફાયરની અપર કટ-ઓફ ફ્રીક્વન્સી, લોઅર કટ-ઓફ ફ્રીક્વન્સી, બેન્ડવિડ્ય અને મિડ ફ્રીક્વન્સી ગેઇન સૂચવો.

જવાબ:

ફ્રીક્વન્સી રિસ્પોન્સ ગ્રાફ એમ્પ્લીફાયર માટે આવર્તન સાથે ગેઇન કેવી રીતે બદલાય છે તે બતાવે છે.

• મિડ-ફ્રીક્વન્સી ગેઇન (Av): સપાટ ક્ષેત્રમાં મહત્તમ ગેઇન

- **લોઅર કટ-ઓફ ફ્રીકવન્સી (f₁)**: આવર્તન જ્યાં ગેઇન 0.707×Av (-3dB) સુધી ઘટે છે
- અપર કટ-ઓફ ફ્રીક્વન્સી (f₂): આવર્તન જ્યાં ગેઇન 0.707×Av (-3dB) સુધી ઘટે છે
- **બેન્ડવિડ્થ**: અપર અને લોઅર કટ-ઓફ આવર્તનો વચ્ચેનો તફાવત (f₂ f₁)

મેમરી ટ્રીક: "લોઅર બેન્ડવિડ્થ અપર એમ્પ્લીફાયર પ્રતિસાદ બનાવે"

પ્રશ્ન 3(બ) અથવા [4 ગુણ]

ટ્યુન કરેલ એમ્પ્લીફાયર તરીકે ઉપયોગમાં લેવાતા ટ્રાન્ઝિસ્ટરનું વર્ણન કરો.

જવાબ:

ટ્યુન્ડ એમ્પ્લીફાયર યોક્કસ આવર્તનો પર સિગ્નલને પસંદગીપૂર્વક એમ્પ્લિફાય કરવા માટે LC રેઝોનન્ટ સર્કિટનો ઉપયોગ કરે છે.

ยรร	รเช้
LC ટેન્ક સર્કિટ	ચોક્કસ આવર્તન પર રેઝોનેટ કરે છે
ટ્રાન્ઝિસ્ટર	એમ્પ્લિફિકેશન પ્રદાન કરે છે
રેઝોનન્સ આવર્તન	f = 1/(2π√LC)
ક્વોલિટી ફેક્ટર (Q)	બેન્ડવિડ્થ નક્કી કરે છે

- ઉચ્ચ પસંદગી: રેઝોનન્ટ આવર્તન પર સિગ્નલ એમ્પ્લિફાય કરે છે
- **એપ્લિકેશન્સ**: RF રિસીવર્સ, ટ્રાન્સમિટર્સ, કમ્યુનિકેશન્સ
- પ્રકારો: સિંગલ-ટ્યુન્ડ, ડબલ-ટ્યુન્ડ, સ્ટેગર-ટ્યુન્ડ
- બેન્ડવિડ્ય: Q ફેક્ટરના વ્યસ્ત પ્રમાણમાં

મેમરી ટ્રીક: "ટ્યુનિંગ LC સિગ્નલ્સ યોકસાઈથી પસંદ કરે"

પ્રશ્ન 3(ક) અથવા [7 ગુણ]

બે પોર્ટ નેટવર્કમાં h પરિમાણોનું મહત્વ વર્ણવો. CE એમ્પ્લીફાયર માટે h-પેરામીટર્સ સર્કિટ દોરો.

જવાબ:

H-પેરામીટર્સ ટ્રાન્ઝિસ્ટર સર્કિટ્સને બે-પોર્ટ નેટવર્ક તરીકે વિશ્લેષણ કરવા માટે સંપૂર્ણ ગાણિતિક મોડેલ પ્રદાન કરે છે.

h-પેરામીટર્સનું મહત્વ:

પાસું	મહત્વ
સર્કિટ વિશ્લેષણ	જટિલ સર્કિટ્સ માટે સરળીકૃત સમીકરણો
ડિઝાઇન ગણતરીઓ	ગેઇન, ઇનપુટ/આઉટપુટ ઇમ્પીડન્સની આગાહી
મેન્યુફેક્ચરર સ્પેક્સ	ટ્રાન્ઝિસ્ટર લક્ષણો નિર્દિષ્ટ કરવાની માનક રીત
સ્થિરતા વિશ્લેષણ	સ્થિરતા શરતો નક્કી કરો
આવર્તન પર આદ્યાર	આવર્તનો પર વર્તણૂકનું મોડેલ

CE એમ્પ્લીફાયર h-પેરામીટર સમતુલ્ય સર્કિટ:

• hie: ઇનપુટ ઇમ્પીડન્સ (બેઝ-એમિટર રેઝિસ્ટન્સ)

• hre: રિવર્સ વોલ્ટેજ ફીડબેક રેશિયો

• **hfe**: ફોરવર્ડ કરંટ ગેઇન (β)

• hoe: આઉટપુટ એડમિટન્સ

મેમરી ટ્રીક: "ઇનપુટ રેઝિસ્ટન્સ, ફીડબેક રેશિયો, ફોરવર્ડ ગેઇન, આઉટપુટ કન્ડક્ટન્સ"

પ્રશ્ન 4(અ) [3 ગુણ]

જરૂરી ડાયાગ્રામ સાથે ડાયોડ ક્લિપર સર્કિટનું વર્ણન કરો.

જવાબ:

ક્લિપર સર્કિટ ઇનપુટ સિગ્નલના તે ભાગને મર્યાદિત કરે છે અથવા કાપી નાખે છે જે ચોક્કસ વોલ્ટેજ લેવલથી વધી જાય છે.

• ઓપરેશન: ડાયોડ વોલ્ટેજ થ્રેશોલ્ડથી વધી જાય ત્યારે કન્ડક્ટ કરે છે

• પ્રકારો:

o **પોઝિટિવ ક્લિપર**: પોઝિટિવ હાફ-સાયકલ્સ ક્લિપ કરે છે

o **નેગેટિવ ક્લિપર**: નેગેટિવ હાફ-સાયકલ્સ ક્લિપ કરે છે

• **બાયસ્ડ ક્લિપર**: શૂન્ય સિવાયના વોલ્ટેજ લેવલ પર ક્લિપ કરે છે

મેમરી ટ્રીક: "નિશ્ચિત પોઈન્ટ પર ભાગોને કાપી નાખે"

પ્રશ્ન 4(બ) [4 ગુણ]

LDR પર ટૂંકી નોંધ સમજાવો.

જવાબ:

LDR (લાઇટ ડિપેન્ડન્ટ રેઝિસ્ટર) એ ફોટોરેઝિસ્ટર છે જેનો રેઝિસ્ટન્સ પ્રકાશની તીવ્રતા વધવાથી ઘટે છે.

ગુણદાર્મ	વર્ણન
રચના	કેડમિયમ સલ્ફાઇડ (CdS) અથવા કેડમિયમ સેલેનાઇડ (CdSe)
રેઝિસ્ટન્સ રેન્જ	1ΜΩ (અંધકાર) થી થોડા ΚΩ (તેજ પ્રકાશ)
પ્રતિસાદ સમય	સામાન્ય રીતે 10-100ms
સ્પેક્ટ્રલ પ્રતિસાદ	વૃશ્યમાન સ્પેક્ટ્રમમાં શ્રેષ્ઠ સંવેદનશીલતા

• પ્રકાશનું શોષણ: મુક્ત વાહકો ઉત્પન્ન કરે છે

• રેઝિસ્ટન્સ: પ્રકાશની તીવ્રતાના વ્યસ્ત પ્રમાણમાં

• એપ્લિકેશન્સ: લાઇટ સેન્સર, ઓટોમેટિક લાઇટિંગ, કેમેરા એક્સપોઝર કંટ્રોલ

• સિમ્બોલ: અંદર પોઇન્ટિંગ એરો સાથે વેરિએબલ રેઝિસ્ટર

મેમરી ટ્રીક: "પ્રકાશ રેઝિસ્ટન્સ ઘટાડે"

પ્રશ્ન 4(ક) [7 ગુણ]

ડાર્લિંગ્ટન જોડી અને તેની એપ્લિકેશનો સમજાવો.

જવાબ:

ડાર્લિંગ્ટન જોડીમાં બે ટ્રાન્ઝિસ્ટર એવી રીતે જોડાયેલા હોય છે કે પ્રથમ દ્વારા એમ્પ્લિફાઇડ કરેલો કરંટ બીજા દ્વારા વધુ એમ્પ્લિફાય થાય છે.

લક્ષણ	વર્ણન
કરંટ ગેઇન	β_total = β ₁ × β ₂ (ખૂબ ઊંચો)
ઇનપુટ ઇમ્પીડન્સ	ખૂબ ઊંચું (β ₂ × R_e1)
આઉટપુટ ઇમ્પીડન્સ	નીચું
સ્વિચિંગ સ્પીડ	સિંગલ ટ્રાન્ઝિસ્ટર કરતાં ધીમી

એપ્લિકેશન્સ:

• પાવર એમ્પ્લીફાયર: ઉચ્ચ કરંટ ગેઇન એપ્લિકેશન્સ

• ઓડિયો એમ્પ્લીફાયર: ઉચ્ચ ઇનપુટ ઇમ્પીડન્સ સ્ટેજ

• **બફર સર્કિટ્સ**: લોડિંગ ઇફેક્ટ્સ ઘટાડવા

• મોટર કંટ્રોલ: ઉચ્ચ-કરંટ લોડ ચલાવવા

• ટચ સેન્સિટિવ સ્વિચ: ઉચ્ચ ગેઇનને કારણે ઉચ્ચ સંવેદનશીલતા

મેમરી ટ્રીક: "બમણા ટ્રાન્ઝિસ્ટર ખૂબ વધારે એમ્પ્લિફાય કરે"

પ્રશ્ન 4(અ) અથવા [3 ગુણ]

જરૂરી ડાયાગ્રામ સાથે ડાયોડ ક્લેમ્પર સર્કિટનું વર્ણન કરો.

જવાબ:

ક્લેમ્પર સર્કિટ સમગ્ર વેવફોર્મને તેના આકારને બદલ્યા વિના DC ઘટક ઉમેરીને ઉપર અથવા નીચે શિફ્ટ કરે છે.

- **ઓપરેશન**: કેપેસિટર એક હાફ-સાયકલ દરમિયાન ચાર્જ થાય છે, DC લેવલ જાળવે છે
- પ્રકારો:
 - o **પોઝિટિવ ક્લેમ્પર**: વેવફોર્મને ઉપર શિફ્ટ કરે છે
 - o નેગેટિવ ક્લેમ્પર: વેવફોર્મને નીચે શિફ્ટ કરે છે
 - **બાયસ્ક કલેમ્પર**: યોક્કસ DC લેવલ પર શિફ્ટ કરે છે

મેમરી ટ્રીક: "પીક્સને સતત નીચે જકડે"

પ્રશ્ન 4(બ) અથવા [4 ગુણ]

OLED નું કાર્ય અને એપ્લિકેશન સમજાવો.

જવાબ

OLED (ઓર્ગેનિક લાઇટ એમિટિંગ ડાયોડ) એ ડિસ્પ્લે ટેકનોલોજી છે જે ઓર્ગેનિક કમ્પાઉન્ડનો ઉપયોગ કરે છે જે ઇલેક્ટ્રિક કરંટ પસાર થવાથી પ્રકાશ ઉત્સર્જિત કરે છે.

લેચર	ธเน้
કેથોડ	ઇલેક્ટ્રોન્સ ઇન્જેક્ટ કરે છે
એમિસિવ લેયર	ઓર્ગેનિક મટિરિયલ જે પ્રકાશ ઉત્સર્જિત કરે છે
કન્ડક્ટિવ લેચર	એનોડથી હોલ્સ વહન કરે છે
એનોડ	હોલ્સ ઇન્જેક્ટ કરે છે (સામાન્ય રીતે પારદર્શક)

- કાર્ય સિદ્ધાંત: ઇલેક્ટ્રોન-હોલ રિકોમ્બિનેશન ફોટોન્સ બનાવે છે
- **સ્વ-પ્રકાશિત**: LCD ની વિપરીત બેકલાઇટની જરૂર નથી
- પ્રકારો: PMOLED (પેસિવ મેટ્રિક્સ) અને AMOLED (એક્ટિવ મેટ્રિક્સ)
- ફાયદાઓ: પાતળા, હલકા, વિશાળ દ્રશ્ય કોણ, વધુ સારો કોન્ટ્રાસ્ટ

એપ્લિકેશન્સ:

- સ્માર્ટફોન અને ટેબ્લેટ
- ટેલિવિઝન સ્ક્રીન
- ડિજિટલ કેમેરા ડિસ્પ્લે
- વેરેબલ ડિવાઇસ
- લાઇટિંગ પેનલ

મેમરી ટ્રીક: "ઓર્ગેનિક લેયર્સ ડાયોડ-પ્રકાશ ઉત્સર્જિત કરે"

પ્રશ્ન 4(ક) અથવા [7 ગુણ]

રિલે ડ્રાઇવર તરીકે વપરાતા ટ્રાન્ઝિસ્ટરનું વર્ણન કરો.

જવાબ:

રિલે ડ્રાઇવર એક ટ્રાન્ઝિસ્ટરનો ઉપયોગ કરીને રિલેને નિયંત્રિત કરે છે, જે ઓછા-કરંટ કંટ્રોલ સિગ્નલને ઉચ્ચ-કરંટ લોડ સ્વિય કરવાની મંજૂરી આપે છે.

ยรร	รเช่
ટ્રાન્ઝિસ્ટર	રિલે ચલાવવા માટે કંટ્રોલ સિગ્નલને એમ્પ્લિફાય કરે છે
ફ્લાયબેક ડાયોડ	બેક EMF થી ટ્રાન્ઝિસ્ટરને સુરક્ષિત કરે છે
બેઝ રેઝિસ્ટર	બેઝ કરંટ મર્યાદિત કરે છે
રિલે કોઇલ	ઇલેક્ટ્રોમેગ્નેટિક સ્વિય

એપ્લિકેશન્સ:

- મોટર કંટ્રોલ સર્કિટ્સ
- ઔદ્યોગિક ઓટોમેશન
- ઓટોમોટિવ ઇલેક્ટ્રોનિક્સ
- હોમ એપ્લાયન્સ કંટ્રોલ
- પાવર ડિસ્ટ્રિબ્યુશન સિસ્ટમ

મેમરી ટ્રીક: "નાનું મોટા રિલે ચલાવે"

પ્રશ્ન 5(અ) [3 ગુણ]

LM317 IC નો ઉપયોગ કરીને વેરિયેબલ પાવર સપ્લાયનો સર્કિટ ડાયાગ્રામ દોરો.

જવાબ:

LM317 એક એડજસ્ટેબલ વોલ્ટેજ રેગ્યુલેટર છે જેનો ઉપયોગ વેરિયેબલ પાવર સપ્લાય બનાવવા માટે થઈ શકે છે.

• ઘટકો:

• LM317: એડજસ્ટેબલ વોલ્ટેજ રેગ્યુલેટર IC

o **R1**: ફિક્સ્ડ 240Ω રેઝિસ્ટર

R2: વેરિયેબલ રેઝિસ્ટર (પોટેન્શિયોમીટર)

o C1, C2: ફિલ્ટર કેપેસિટર

• **આઉટપુટ વોલ્ટેજ**: VOUT = 1.25 × (1 + R2/R1)

મેમરી ટ્રીક: "LM317 વોલ્ટેજ એડજસ્ટેબલ બનાવે"

પ્રશ્ન 5(બ) [4 ગુણ]

યુપીએસની કામગીરી સમજાવો.

જવાબ:

UPS (અનઇન્ટરપ્ટિબલ પાવર સપ્લાય) મુખ્ય પાવર ફેઇલ થાય ત્યારે ઇમરજન્સી પાવર પ્રદાન કરે છે.

UPS yeic	ઓપરેશન	
ઓફલાઇન/સ્ટેન્ડબાય	પાવર ફેઇલ થાય ત્યારે બેટરી પર સ્વિચ કરે છે	
લાઇન-ઇન્ટરેક્ટિવ	વોલ્ટેજ રેગ્યુલેટ કરે છે અને બેટરી પર સ્વિય કરે છે	
ઓનલાઇન/ડબલ-કન્વર્ઝન	હંમેશા બેટરીથી પાવર આપે છે, સતત ચાર્જ થાય છે	

- **મુખ્ય ઘટકો**: રેક્ટિફાયર, બેટરી, ઇન્વર્ટર, કંટ્રોલ સર્કિટ
- કાર્યો:
 - ૦ પાવર કન્ડિશનિંગ
 - ૦ વોલ્ટેજ રેગ્યુલેશન

- ૦ સર્જ પ્રોટેક્શન
- ૦ બેટરી બેકઅપ

મેમરી ટ્રીક: "અવિરત પાવર બ્લેકઆઉટ દરમિયાન આપે"

પ્રશ્ન 5(ક) [7 ગુણ]

SMPS બ્લોક ડાયાગ્રામ દોરો અને સમજાવો.

જવાબ:

SMPS (સ્વિચ મોડ પાવર સપ્લાય) ઇલેક્ટ્રિકલ પાવરને કુશળતાથી રૂપાંતરિત કરવા માટે સ્વિચિંગ રેગ્યુલેશનનો ઉપયોગ કરે છે.

બ્લોક	รเช้	
EMI ફિલ્ટર	ઇલેક્ટ્રોમેગ્નેટિક ઇન્ટરફેરન્સ ઘટાડે છે	
રેક્ટિફાયર & ફિલ્ટર	AC ને DC માં રૂપાંતરિત કરે છે અને સ્મૂધ કરે છે	
સ્વિચિંગ સર્કિટ	DC ને ઉચ્ચ આવર્તન પર ચોપ કરે છે	
ટ્રાન્સફોર્મર	આઇસોલેશન અને વોલ્ટેજ રૂપાંતરણ પ્રદાન કરે છે	
આઉટપુટ રેક્ટિફાયર	ઉચ્ચ-આવર્તન AC ને પાછું DC માં રૂપાંતરિત કરે છે	
ફીડબેક સર્કિટ	આઉટપુટ વોલ્ટેજ નિયંત્રિત કરે છે	

- ફાયદા: ઉચ્ચ કાર્યક્ષમતા (70-90%), નાનું કદ, ઓછું વજન
- **ઓપરેશન**: 20-200 kHz પર PWM (પલ્સ વિડ્થ મોડ્યુલેશન)નો ઉપયોગ કરે છે
- પ્રકારો: ફોરવર્ડ, ફ્લાયબેક, પુશ-પુલ, હાફ બ્રિજ, ફુલ બ્રિજ
- **એપ્લિકેશન્સ**: કમ્પ્યુટર્સ, ટીવી, મોબાઇલ ચાર્જર્સ, LED ડ્રાઇવર્સ

મેમરી ટીક: "સ્વિચ પાવરને સ્થિર બનાવે"

પ્રશ્ન 5(અ) અથવા [3 ગુણ]

IC નો ઉપયોગ કરીને +15 v પાવર સપ્લાય માટે સર્કિટ ડાયાગ્રામ દોરો અને ટૂંકમાં સમજાવો

જવાબ

+15V પાવર સપ્લાય 7815 વોલ્ટેજ રેગ્યુલેટર IC નો ઉપયોગ કરીને બનાવી શકાય છે.

ઘટકો:

• **7815**: ફિક્સ્ડ +15V વોલ્ટેજ રેગ્યુલેટર IC

o બ્રિજ રેક્ટિફાયર: AC ને પલ્સેટિંગ DC માં રૂપાંતરિત કરે છે

ο **C1**: ઇનપુટ ફિલ્ટર કેપેસિટર (1000-2200μF)

o **C2**: આઉટપુટ ફિલ્ટર કેપેસિટર (10-100µF)

• **કાર્ય**: AC રેક્ટિફાય કરે છે, ફિલ્ટર કરે છે, પછી સ્થિર +15V DC માં રેગ્યુલેટ કરે છે

ਮੇਮਰੀ ਟ੍ਰੀs: "7815 Fixes Voltage To Fifteen"

પ્રશ્ન 5(બ) અથવા [4 ગુણ]

સૌર બેટરી ચાર્જર સર્કિટનું કાર્ય સમજાવો.

જવાબ:

સોલર બેટરી યાર્જર સૂર્યપ્રકાશને ઇલેક્ટ્રિકલ એનર્જીમાં રૂપાંતરિત કરીને બેટરીને ચાર્જ કરે છે.

ยรร	รเช่
સોલર પેનલ	સૂર્યપ્રકાશને વીજળીમાં રૂપાંતરિત કરે છે
બ્લોકિંગ ડાયોડ	રાત્રે પેનલ મારફતે બેટરી ડિસ્ચાર્જ થતી અટકાવે છે
ચાર્જ કંટ્રોલર	ચાર્જિંગ વોલ્ટેજ અને કરંટને નિયંત્રિત કરે છે
બેટરી	ઇલેક્ટ્રિકલ એનર્જી સંગ્રહ કરે છે

• ઓપરેટિંગ મોડ્સ:

o **બલ્ક ચાર્જિંગ**: ~80% ચાર્જ થાય ત્યાં સુધી મહત્તમ કરંટ

o **એલ્સોર્પશન**: સ્થિર વોલ્ટેજ, ઘટતો કરંટ

o ક્લોટ/ટ્રિકલ: પૂર્ણ ચાર્જ જાળવે છે

• સુરક્ષા ફીચર્સ: ઓવરચાર્જ, ઓવર-ડિસ્ચાર્જ, રિવર્સ પોલારિટી

મેમરી ટ્રીક: "સૂર્ય બેટરી સુરક્ષિત યાર્જ કરે"

પ્રશ્ન 5(ક) અથવા [7 ગુણ]

લિનિયર રેગ્યુલેટેડ પાવર સપ્લાય સાથે સ્વિચ મોડ પાવર સપ્લાયની સરખામણી ચર્ચા કરો.

જવાબ:

પેરામીટર	લિનિયર પાવર સપ્લાય	સ્વિચ મોડ પાવર સપ્લાય
ઓપરેટિંગ સિદ્ધાંત	સતત વોલ્ટેજ રેગ્યુલેશન	ઉચ્ચ-આવર્તન સ્વિચિંગ
รเช็ลหดเ	નીચી (30-40%)	ઉચ્ચ (70-90%)
કદ & વજન	મોટું અને ભારે	કોમ્પેક્ટ અને હલકું વજન
ગરમી વિસર્જન	ઉચ્ચ	નીચું
આઉટપુટ નોઇઝ	ખૂબ નીચું	ઉચ્ચ (સ્વિચિંગ નોઇઝ)
પ્રતિસાદ સમય	ઝડપી	ધીમું
ઘટક સંખ્યા	ઓછી	વધુ
કિંમત	ઓછી પાવર માટે ઓછી	ઉચ્ચ પાવર માટે ઓછી
જટિલતા	સરળ ડિઝાઇન	જટિલ ડિઝાઇન
ЕМІ	નીચું	ઉચ્ચ (ફિલ્ટરિંગની જરૂર)

એપ્લિકેશન્સ:

• **લિનિચર**: ઓડિયો ઇક્વિપમેન્ટ, લેબોરેટરી ઇન્સ્ટ્રુમેન્ટ્સ, સંવેદનશીલ સર્કિટ્સ

• SMPS: કમ્પ્યુટર્સ, ટીવી, મોબાઇલ ચાર્જર્સ, ઔદ્યોગિક પાવર સપ્લાય

મેમરી ટ્રીક: "લિનિયર ઓછા નોઇઝને પસંદ કરે, સ્વિચિંગ કદ બચાવે"