Chapitre 6

Premier test d'hypothèse

Rappel

1. Population vs. Echantillon

2. Distribution population ——— Probabilité score

3. Distribution normale ———— Probabilité score

Le principe du test d'hypothèse

Le dé est-il truqué ?

Résultat d'un lancé : 6

Probabilité: 1/6 (0,17)

Le principe du test d'hypothèse

Le dé est-il truqué ?

Résultats de dix lancés :

6, 6, 6, 2, 6, 6, 6, 6, 6, 6

Très improbable !!!

Etapes de ce test d'hypothèse

1. Poser une hypothèse:

Le dé est normal -P = 0,17

2. Récolter des observations :

Neuf 6 en dix tirages

3. <u>Calculer la probabilité</u> d'obtenir les résultats que j'ai observé si l'hypothèse posée était correcte

P = 0,0000008

Etapes de ce test d'hypothèse

4. <u>Tirer une conclusion</u> en fonction de la probabilité calculée:

La probabilité d'obtenir neuf 6 est tellement faible avec un dé normal que j'en conclus que le dé doit être truqué

Les étapes du test d'hypothèse

- 1. Poser une hypothèse
- 2. Récolter des observations
- 3. Calculer la probabilité d'obtenir ces observations si l'hypothèse posée est correcte
- 4. Tirer une conclusion en fonction de la probabilité calculée
 - Si la probabilité est très faible : je rejette l'hypothèse.
 - Sinon, je conserve mon hypothèse.

Test d'hypothèse avec la distribution normale

Chapitre 5: Probabilité de scores tirés au hasard dans une population normalement distribuée

Test d'hypothèse avec la distribution normale

Le test d'hypothèse :

Les adultes normaux en bonne santé tapent du doigt à un rythme moyen de 100 tapotements en 20 secondes, avec un écart-type de 20

Les personnes souffrant de troubles neurologiques tapent du doigt avec un rythme plus lent

Un sujet a obtenu un score de 70

Personne lente ou souffrant de troubles neurologiques ?

- 1. <u>Je pose une hypothèse</u>: Le sujet est sain (μ =100, σ =20)
- 2. Récolter des observations : Un score de 70

3. <u>Calculer la probabilité d'obtenir cette</u> <u>observation si l'hypothèse posée est correcte</u>

Probabilité d'obtenir un score aussi petit que 70 si population avec μ=100 et σ=20 ?

$$P(X \le 70) = P(Z < -1,5) = P(Z > 1,5) = 0,0668$$

$$Z = \frac{X - \mu}{\sigma} = \frac{70 - 100}{20} = -1,5$$

4. Tirer une conclusion:

La probabilité pour un sujet normal d'avoir un score aussi faible que 70 est de 0,07 (7%).

Les conventions:

On rejette une hypothèse lorsque la probabilité est inférieure à 0,05 (5%). (= seuil de signification)

4. Tirer une conclusion:

La probabilité calculée est supérieure au seuil de signification: 0,07 > 0,05

Le score du sujet n'est pas suffisamment bas pour affirmer qu'il souffre de troubles neurologiques

L'hypothèse nulle

Pourquoi poser une hypothèse

(appelée hypothèse nulle)

qui va directement à l'encontre de ce que l'on

espère démontrer ?

- Point de vue théorique
- Point de vue pratique = calculs

L'hypothèse nulle

On pose généralement:

Une hypothèse nulle (H₀)

Une hypothèse alternative (H_A)

Exemple d'hypothèse nulle

Alfred a obtenu un score de 40 tapotements en 20 secondes.

Fait-il partie d'une population de sujets atteints de troubles neurologiques dont la vitesse de tapotement est inférieure à 100?

Exemple d'hypothèse nulle

Hypothèse nulle:

Alfred appartient à la population saine ($\mu = 100$)

Hypothèse alternative :

Alfred appartient à une population de sujets affectés d'un trouble neurologique (μ < 100)

Premier test d'hypothèse formel

$$H_0$$
: $\mu = 100$

$$H_{\Delta}: \mu < 100$$

$$\sigma = 20$$

$$P(X \le 40) = P(Z < -3) = P(Z > 3) = 0,0013$$

$$Z = \frac{X - \mu}{\sigma} = \frac{40 - 100}{20} = -3$$

Premier test d'hypothèse formel

Puisque p=0,0013 < 0,05 rejeter H_0

Alfred a un score tellement faible qu'il est très improbable qu'il appartienne à une population saine. J'en conclus donc qu'il appartient à une population souffrant de troubles neurologiques.

La conclusion du test d'hypothèse

Si probabilité < seuil de signification: rejet H₀

Si probabilité > seuil de signification:

non-rejet de $H_0 \neq H_0$ est vraie

Résultats de 10 tirages sur un dé:

6, 5, 2, 6, 4, 3, 6, 6, 5, 1

Résultats de 10 tirages sur un dé:

6, 5, 2, 6, 4, 3, 6, 6, 5, 1

Probabilité sous H₀: 0,07

0.07 > 0.05 non rejet de H₀

Conclusion: pas de preuves suffisantes pour affirmer que le dé est truqué

Sujet ayant obtenu un score de 70 tapotements

Probabilité sous H₀: 0,07

0.07 > 0.05 non rejet de H₀

Conclusion: pas suffisamment de preuves pour rejeter l'hypothèse selon laquelle ce sujet appartient à la population saine

Lors d'un test statistique, on peut commettre deux types d'erreur:

1. Rejeter H_0 vraie = faux positif

2. Ne pas rejeter H_0 fausse = faux négatif

Sujets à tester

Sujets sains

5% classés comme troubles neurologiques

Rejeter l'hypothèse H₀ alors qu'elle est vraie

- = erreur de première espèce
- = probabilité α (alpha)
- = faux positif

Le seuil de signification est fixé en référence au risque d'erreur de première espèce que l'on veut maintenir à 5%

En diminuant le seuil de signification (exemple 0,01)

On diminue le risque d'erreurs a

Mais on augmente le risque d'erreurs β

Ne pas rejeter H₀ lorsqu'elle est fausse

- = erreur de seconde espèce
- = probabilité β (bêta)
- = faux négatif

Exemple d'erreur de seconde espèce:

Classer un sujet malade dans la population saine

Calcul des probabilités a et \beta

Si on fixe le seuil de signification à 0,05:

$$\alpha = 0.05$$

Calculer β nécessite de connaître la moyenne de la population alternative

Sujets à tester

Sujets sains

0.05 = P(Z<-1.645)=P(X<67.1)

Superposition des deux populations

Superposition des deux populations

Erreurs a et \beta

Superposition des deux populations

Calculer la probabilité β lorsque H_A : $\mu = 80$

= Calculer probabilité que X > 67,1 avec μ=80 et σ=20

$$P(X>67,1) = P(Z>-0.645) = P(Z<0.645) = 0.74$$

$$Z = \frac{X - \mu}{\sigma} = \frac{67,1 - 80}{20} = \frac{-12,9}{20} = -0,645$$

Donc probabilité de commettre une erreur de seconde espèce

$$= \beta = 0.74$$

J'ai 74% de chance de ne pas diagnostiquer un sujet souffrant de troubles neurologiques

Que se passe-t-il si je fixe α à 0,01 ?

La limite de rejet pour H₀ est maintenant:

53,5

0.01 = P(Z<-2.325) = P(X<53.5)

Erreurs a et \beta

Superposition des deux populations

Calculer probabilité que X > 53,5 avec μ =80 et σ =20

$$P(X>53,5) = P(Z>-1,325) = P(Z<1,325) = 0,91$$

$$Z = \frac{X - \mu}{\sigma} = \frac{53,5 - 80}{20} = \frac{-26,5}{20} = -1,325$$

Donc probabilité de commettre une erreur de seconde espèce si α devient 0,01

$$= \beta = 0.91$$

J'ai 91% de chance de ne pas diagnostiquer un sujet souffrant de troubles neurologiques

Résumé

Les étapes du calcul de la probabilité β:

- 1. Calculer la limite de rejet de H₀
- calculer la valeur de X en dessous de laquelle
 H₀ serait rejetée
- 2. Calculer la probabilité pour un sujet de la population altenative d'avoir un score supérieur à cette limite

Exemple

Calculer la probabilité β si la population des personnes souffrant de troubles neurologiques ont une moyenne de 50 et si α est fixé à 0,01

Exemple

1. Calculer la limite de rejet de H₀

$$0.01 = P(Z<-2.325) = P(X<53.5)$$

Limite de rejet = 53,5

Calculer probabilité que X > 53,5 avec $\mu=50$ et $\sigma=20$

$$P(X>53,5) = P(Z>0,175) = 0,43$$

$$Z = \frac{X - \mu}{\sigma} = \frac{53,5 - 50}{20} = 0,175$$

Donc $\beta = 0.43$

J'ai 43% de chance de ne pas diagnostiquer un sujet souffrant de troubles neurologiques si la moyenne de ces sujets est 50

Etat réel des choses

H₀ vraie

H₀ fausse

Décision

Rejet de H₀

Non-rejet de

Erreur de première
espèce

$$p = \alpha$$

Décision correcte

$$p = 1 - \alpha$$

Décision correcte $p = 1-\beta = puissance$

Erreur de seconde espèce

$$p = \beta$$

Tests unilatéraux et bilatéraux

Test unilatéral:

On rejette H₀ quand les scores s'éloignent de la moyenne dans une seule direction

Test bilatéral:

On rejette H_0 aussi bien lorsqu'un score est anormalement bas que lorsqu'il est anormalement haut

Test unilatéral

Exemple:

Vitesse de tapotement excessivement faible et excessivement rapide sont signes de troubles neurologiques

Deux changements majeurs:

- 1. Calculer la probabilité d'être + grand et + petit
- 2. Adapter le α = diviser α par 2

Exemple:

Henry a obtenu un score de tapotement de 58. Quel diagnostic ?

Pour être exhaustif, il faudrait tester:

```
P(X<58) < α/2 ?
et
P(X>58) < α/2 ?
```

Exemple:

Henry a obtenu un score de tapotement de 58. Quel diagnostic ?

Dans la pratique, on teste:

 $P(X<58) < \alpha/2$?

$$P(X<58) = P(Z<-2,1) = P(Z>2,1)$$

= 0,0179

$$Z = \frac{X - \mu}{\sigma} = \frac{58 - 100}{20} = -2,1$$

$$P(X<58) = 0.0179$$

0,0179 < 0,025, Rejeter H₀

Henry a un score tellement faible qu'il appartient vraisemblablement à une population dont les scores sont <u>inférieurs</u> à la population saine

Fred a obtenu un score de tapotement de 160

$$P(X>160) = P(Z>3) = 0,0013$$

$$Z = \frac{X - \mu}{\sigma} = \frac{160 - 100}{20} = 3$$

$$P(X>160) = 0.0013$$

0,0013 < 0,025, Rejeter H₀

Fred a un score tellement grand qu'il appartient vraisemblablement à une population dont les scores sont <u>supérieurs</u> à la population saine

Plutôt que calculer précisément la probabilité p associée aux données, on peut réaliser un test d'hypothèse en se basant sur les valeurs critiques de Z

Test habituel: $X \rightarrow Z \rightarrow p$ comparé à α

Avec la valeur critique: $X \rightarrow Z$ comparé à $Z_{critique}$

α	Valeur critique de Z	Valeur critique de Z
0,10	-1,28	1,28
0,05	-1,645	1,645
0,025	-1,96	1,96
0,01	-2,32	2,32
0,005	-2,57	2,57

Comment obtient-on les valeurs de ce tableau?

Exemple: $Z_{0.05} = 1,645$

1,645 est la valeur de Z qui donne p=0,05

Utilisation de la table

Z	Probabilité inférieur à Z	Probabilité supérieur à Z
1,62	0,9474	0,0526
1,63	0,9484	0,0516
1,64	0,9495	0,0505
1,65	0,9505	0,0495
1,66	0,9515	0,0485
1,67	0,9525	0,0475
1,68	0,9535	0,0465
1,69	0,9545	0,0455
1,70	0,9554	0,0446

Utilisation de la table

Z	Probabilité inférieur à Z	Probabilité supérieur à Z
1,62	0,9474	0,0526
1,63	0,9484	0,0516
1,64	0,9495	0,0505
1,65	0,9505	0,0495
1,66	0,9515	0,0485
1,67	0,9525	0,0475
1,68	0,9535	0,0465
1,69	0,9545	0,0455
1,70	0,9554	0,0446

1,645 est la valeur de Z qui donne p=0,05

Tout Z supérieur à 1,645 donnera p<0,05 et rejet de H_0

Tout Z inférieur à 1,645 donnera p>0,05 et non rejet de H_0

Alfred a obtenu un score de tapotement de 40

$$H_0$$
: $\mu = 100$

$$H_A: \mu < 100 \qquad \sigma = 20$$

$$Z = \frac{X - \mu}{\sigma} = \frac{40 - 100}{20} = -3$$

 $Z_{obs} = -3 < Z_{0,05} = -1,645$ donc p<0,05, rejeter H₀

Alphonse a un QI de 150

$$H_0$$
: $\mu = 100$

$$H_A: \mu \neq 100 \qquad \sigma = 15$$

$$Z = \frac{X - \mu}{\sigma} = \frac{150 - 100}{15} = 3,33$$

 $Z_{obs} = 3.33 > Z_{0.025} = 1.96$ donc p<0.025, rejeter H₀

Technique alternative au test d'hypothèse

Reprenons l'exemple de Henry qui a un score de tapotement de 58

Nous avons rejeté l'hypothèse H₀ Donc Henry n'appartient pas à la population μ=100

A quelle population Henry appartient-il?

On pourrait essayer de deviner et tester nos hypothèses:

$$\mu = 98$$
 ?

 H_0 : $\mu = 98$

 $H_A: \mu \neq 98$

P(X<58) = P(Z<-2) = 0,0228

0,0228 < 0,025, rejeter H_0

$$Z = \frac{X - \mu}{\sigma} = \frac{58 - 98}{20} = -2$$

On pourrait essayer de deviner et tester nos hypothèses:

```
\mu = 98: rejeter H_0
```

 $\mu = 80$: ne pas rejeter H_0

 $\mu = 70$: ne pas rejeter H_0

 $\mu = 60$: ne pas rejeter H_0

Etc....

Finalement, on aurait une réponse du type:

Si α est fixé à 0,05:

On rejette H₀ pour toutes les moyennes <18 et >97

La technique de l'intervalle de confiance permet d'obtenir la même information beaucoup plus facilement

Utilisation de la table

Z	Probabilité inférieur à Z	Probabilité supérieur à Z
1,90	0,9713	0,0287
1,91	0,9719	0,0281
1,92	0,9726	0,0274
1,93	0,9732	0,0268
1,94	0,9738	0,0262
1,95	0,9744	0,0256
1,96	0,9750	0,0250
1,97	0,9756	0,0244
1,98	0,9761	0,0239

Utilisation de la table

Z	Probabilité inférieur à Z	Probabilité supérieur à Z
1,90	0,9713	0,0287
1,91	0,9719	0,0281
1,92	0,9726	0,0274
1,93	0,9732	0,0268
1,94	0,9738	0,0262
1,95	0,9744	0,0256
1,96	0,9750	0,0250
1,97	0,9756	0,0244
1,98	0,9761	0,0239

On sait maintenant que les limites de rejet de H₀ pour Z sont –1,96 et +1,96

En transformant la formule du Z, on peut retrouver les moyennes que l'on accepterait

$$Z = \frac{X - \mu}{\sigma}$$

devient

$$\mu = X - Z\sigma$$

Pour notre sujet avec un score de 58:

Limite inférieure

$$\mu = X - Z\sigma = 58 - (1.96 \times 20) = 18.8$$

Limite supérieure

$$\mu = X - Z\sigma = 58 - (-1.96 \times 20) = 97.2$$

En résumé, on écrira:

 $18,8 < \mu < 97,2$

Nous pouvons affirmer avec une certitude de 95% que Henry appartient à une population dont la moyenne se trouve entre les valeurs de 18,8 et 97,2

Formule complète:

$$IC_{0,95} = X \pm Z_{\alpha/2}\sigma$$

IC_{0.95} signifie l'intervalle de confiance à 95%

X est le score du sujet

 $Z_{\alpha/2}$ est la limite d'exclusion sur la distribution normale réduite σ est l'écart-type de la population

L'intervalle de confiance permet de répondre aux mêmes questions que le test d'hypothèse