

Formale Grundlagen der Informatik

5

Satz von Myhill-Nerode Minimierung von DEAs

Folgerung 4.3:

 $\mathcal{L}(\mathsf{DEA}) = \mathcal{L}(\mathsf{NEA}) = \mathcal{L}(\varepsilon\mathsf{-NEA}) = \mathcal{L}(\mathsf{REG})$

$$\mathcal{L}(\varepsilon\text{-NEA}) = \{ L \mid L = L(A) \text{ für einen } \varepsilon\text{-NEA } A \}$$

 $\mathcal{L}(\text{REG}) = \{ L \mid L = L(r) \text{ für einen regulären Ausdruck } r \}$

Mehrdeutigkeit von Mechanismen

- Es gibt viele verschiedene DEA, NEA, RA für jede Sprache L, z, B.:
 - > DEAs: Hinzufügen von nutzlosen Zuständen
 - NEAs: "Verschieben/Beseitigen des Nichtdeterminismus"
 - > RA: siehe Ergebnisse der Konstruktion aus einem DEA

■ Ziele:

- 1. Nachweis, dass zu jeder Sprache ein eindeutig bestimmter DEA mit minimaler Zustandsanzahl existiert (bis auf Isomorphie)
- 2. Methode für den Nachweis, dass gewisse Sprachen <u>nicht</u> regulär sind

- Eine binäre Relation $R \subseteq M \times M$ ist eine Äquivalenzrelation, wenn sie
 - reflexiv ist, also $\forall x \in M. xRx$,
 - transitiv ist, also $\forall x \in M. \forall y \in M. \forall z \in M. (xRy \land yRz) \Rightarrow xRz$,
 - symmetrisch ist, also $\forall x \in M. \forall y \in M. xRy \Rightarrow yRx.$
- Eine Äquivalenzrelation $R \subseteq M \times M$ definiert eine Zerlegung M/R der Menge M in (paarweise disjunkte, nicht leere) Äquivalenzklassen: Die Klasse mit einem Element $x \in M$ enthält alle Elemente aus M, die zu x äquivalent sind. Bezeichnung: $[x]_R$
- Der Index von R ist die Anzahl der Äquivalenzklassen in M/R.

$$M = \mathbb{N}$$

- $\blacksquare xRy \Leftrightarrow x \mod 3 = y \mod 3$
- [0]_{mod 3}, [1]_{mod 3}, [2]_{mod 3} sind die Äquivalenzklassen dieser Relation (Klassen sind immer unabhängig von der Wahl des Repräsentanten)
- \triangleright R hat Index 3

- Seien Σ ein Alphabet und $L \subseteq \Sigma$.
- Definieren folgende Äquivalenzrelation R_L (Nerode-Äquivalenz): Für $x,y \in \Sigma^*$ sei xR_Ly gdw. $(\forall z \in \Sigma^*. xz \in L \Leftrightarrow yz \in L)$.
- Beispiel: $L = L((ab)^*)$ Index von R_L ist 3
 - $\varepsilon R_L ab$, $abR_L abab$, ...
 - \blacksquare aR_Laba , $abaR_Lababa$, ...
 - bR_Laa , bR_Lba , bR_Lbb , ...

$$[\varepsilon]_{R_I} = \{ (ab)^n \mid n \ge 0 \}$$

$$[a]_{R_L} = \{ (ab)^n a \mid n \ge 0 \}$$

$$[b]_{R_L} = \{ w \mid w \notin [\varepsilon] \cup [a] \}$$

- Für jede formale Sprache $L \subseteq \Sigma^*$ ist R_L rechts-invariant bezüglich der Konkatenation:
- Für alle Wörter $x, y, w \in \Sigma^*$ gilt $xR_L y \Rightarrow xwR_L yw$

Beweis:

- xR_Ly gdw. für alle $z \in \Sigma^*$ gilt, dass $xz \in L \Leftrightarrow yz \in L$
- $ightharpoonup xR_Ly$ gdw. für alle $v\in \Sigma^*$ gilt, dass $xwv\in L \Leftrightarrow ywv\in L$
- $\rightarrow xwR_Lyw$

Äquivalenzrelation durch einen DEA

- Sei $A = (Q, \Sigma, \delta, q_0, F)$ ein DEA.
- Für $x, y \in \Sigma^*$ gelte $xR_A y$ gdw. $\hat{\delta}(q_0, x) = \hat{\delta}(q_0, y)$.
- Für jeden DEA A ist R_A rechts-invariant bezüglich der Konkatenation: Für alle Wörter $x,y,z\in \Sigma^*$ mit xR_Ay gilt

$$\hat{\delta}(q_0, xz) = \hat{\delta}(\hat{\delta}(q_0, x), z) = \hat{\delta}(\hat{\delta}(q_0, y), z) = \hat{\delta}(q_0, yz)$$

also xzR_Ayz .

• $\ddot{U}A$: Für alle $q \in Q$ und $x, z \in \Sigma^*$ gilt $\hat{\delta}(q_0, xz) = \hat{\delta}(\hat{\delta}(q_0, x), z)$.

Satz 5.1: Die folgenden drei Aussagen sind äquivalent:

- 1. Die Sprache L wird von einem endlichen Automaten akzeptiert.
- 2. Die Sprache L ist die Vereinigung von einigen Äquivalenzklassen einer rechts-invarianten Äquivalenzrelation mit endlichem Index.
- 3. Die Äquivalenzrelation R_L hat endlichen Index.

- $1. \longrightarrow 2.$
- 1. besagt L = L(A) für einen DEA $A = (Q, \Sigma, \delta, q_0, F)$.
- Die Relation R_A ist eine rechts-invariante Äquivalenzrelation.
- Sie hat (höchstens) so viele Äquivalenzklassen wie |Q|, also endlichen Index.
- Da $L = \{ w \mid \hat{\delta}(q_0, w) \in F \}$, gilt $w \in L$ gdw. w gehört zu einer Äquivalenzklasse $[x]_{R_A}$ von R_A , für die $\hat{\delta}(q_0, x) \in F$ gilt.
- $\succ L$ ist die Vereinigung all dieser Äquivalenzklassen, die "zu F gehören"

- $2. \longrightarrow 3.$
- Sei Σ ein Alphabet und $E \subseteq \Sigma^* \times \Sigma^*$ eine rechts-invariante Äquivalenzrelation mit endlichem Index.
- Die Sprache $L \subseteq \Sigma^*$ sei Vereinigung einiger Äquivalenzklassen von E.
- Gelte xEy. Dann gilt $x \in L \Leftrightarrow y \in L$. Da E rechts-invariant, gilt für jedes $z \in \Sigma^*$, dass xzEyz. Somit gilt $xz \in L \Leftrightarrow yz \in L$ und es folgt xR_Ly .
- Deshalb gilt $[x]_E \subseteq [x]_{R_L}$ für alle $x \in \Sigma^*$.
- \triangleright Der Index von R_L kann nicht größer sein, als der Index von E.

- 3. \longrightarrow 1. Definieren einen DEA $A' = (Q', \Sigma, \delta', q'_0, F')$:
- lacktriangle Sei Q' die endliche Menge der Äquivalenzklassen von R_L .
- Definieren $\delta': Q' \times \Sigma \to Q'$ vermöge $\delta'([x], a) = [xa]$. Die Definition ist repräsentantenunabhängig, da R_L rechts-invariant ist:
 - Für jedes $y \in [x]$ und jedes $z \in \Sigma^*$ gilt $xz \in L \Leftrightarrow yz \in L$, mit z = az' gilt insbesondere auch $xaz' \in L \Leftrightarrow yaz' \in L$.
 - Da z beliebig war, gilt $xaz' \in L \Leftrightarrow yaz' \in L$ für jedes $z' \in \Sigma^*$.
 - Folglich xaR_Lya , also [xa] = [ya].
- Setzen $q_0' = [\varepsilon]$ und $F' = \{ [x] \mid x \in L \}$.
- Da $\hat{\delta}'(q_0', x) = [x]$ folgt $x \in L(A') \Leftrightarrow [x] \in F$.

Folgerung 5.2: Für jede reguläre Sprache L existiert (bis auf Isomorphie) ein eindeutig bestimmter DEA mit minimaler Anzahl von Zuständen.

Beweis:

- $L \subseteq \Sigma^*$ regulär $\Rightarrow L = L(A)$ für einen DEA $A = (Q, \Sigma, \delta, q_0, F)$
- Die ÄR R_A ist rechts-invariant und hat endlichen Index, so dass L eine Vereinigung gewisser Äquivalenzklassen von R_A ist. $xR_Ay \Leftrightarrow \hat{\delta}(q_0,x) = \hat{\delta}(q_0,y)$
- Beweis von 5.1: R_A ist eine **Verfeinerung** von R_L , d.h. für alle $x \in \Sigma^*$ gilt $[x]_{R_A} \subseteq [x]_{R_L}$
- ightharpoonup Sei $A'=(Q',\Sigma,\delta',q_0',F')$ der DEA aus dem Beweis von 5.1. $\Rightarrow |Q'|\leq |Q|$.

Folgerung 5.2: Für jede reguläre Sprache L existiert (bis auf Isomorphie) ein eindeutig bestimmter DEA mit minimaler Anzahl von Zuständen.

Beweis: (Fortsetzung)

- $|Q'| \le |Q|$. Bei Gleichheit kann jeder Zustand aus Q mit einem aus Q' identifiziert werden:
 - Für jedes $q \in Q$ gibt es ein $x \in \Sigma^*$, so dass $\hat{\delta}(q_0, x) = q$. (Sonst: q streichen!)
 - Falls $\hat{\delta}(q_0, x) = \hat{\delta}(q_0, y) = q$, dann gilt nach dem Beweis von 5.1, dass $y \in [x]_{R_L}$
 - Somit gilt $\hat{\delta}'(q_0', x) = \hat{\delta}'(q_0', y)$.
- \triangleright Der DEA A' ist der Minimalautomat. Er ist bis aus Isomorphie eindeutig.

15

```
Beispiel: L = L((ab)^*)
```

 $\varepsilon R_L ab$, $abR_L abab$, ...

 aR_Laba , $abaR_Lababa$, ...

 bR_Laa , bR_Lba , bR_Lbb , ...

$$[\varepsilon]_{R_L} = \{ (ab)^n \mid n \ge 0 \}$$
$$[a]_{R_L} = \{ (ab)^n a \mid n \ge 0 \}$$

$$[b]_{R_L} = \{ w \mid w \notin [\varepsilon] \cup [a] \}$$

Ein Minimierungsalgorithmus

- Sei $A = (Q, \Sigma, \delta, q_0, F)$ ein DEA.
- O.B.d.A.: A hat keine nutzlosen (von q_0 nicht erreichbaren) Zustände
- Zwei Zustände p und q von A heißen unterscheidbar (durch x), falls es ein $x \in \Sigma^*$ gibt, so dass $\hat{\delta}(p,x) \in F$ gdw. $\hat{\delta}(q,x) \notin F$.
- Zustände $p, q \in Q$ sind **äquivalent**, $p \equiv q$, wenn <u>nicht</u> unterscheidbar
- Idee:
 Identifizieren (Zusammenlegen) von nicht unterscheidbaren Zuständen

Identifizieren unterscheidbarer Zustände

für alle (p,q) mit $p \in F \land q \in (Q \setminus F)$ oder $p \in (Q \setminus F) \land q \in F$ markiere (p,q)

solange mindestens ein Zustandspaar markiert worden ist führe aus:

für alle noch nicht markierten (p, q)

für alle $a \in \Sigma$

falls $\left(\delta(p,a),\delta(q,a)\right)$ oder $\left(\delta(q,a),\delta(p,a)\right)$ markiert markiere (p,q)

1	X					
2		X				
3	X	X	X			
4	X	X	X	X		
5	X	X	X		X	
	0	1	2	3	4	5

$$\longrightarrow$$
 0 \equiv 2 und 3 \equiv 5

Äquivalenzklassen: {0,2}, {1}, {3,5}, {4}

Startzustand: $\{0,2\}$ (da $q_0 = 0$ in $\{0,2\}$)

akzeptierend: $\{0,2\}$ (da $\{0,2\} \cap F \neq \emptyset$)

Formale Grundlagen der Informatik

Gegeben $(Q, \Sigma, \delta, q_0, F)$:

Äquivalenzklassen: {0,2}, {1}, {3,5}, {4}

Startzustand: $\{0,2\}$ (da $q_0 = 0$ in $\{0,2\}$)

akzeptierend: $\{0,2\}$ (da $\{0,2\} \cap F \neq \emptyset$)

```
Konstruieren (Q', \Sigma, \delta', q'_0, F') mit Q' = \{ [q] \mid q \text{ erreichbar von } q_0 \} q'_0 = [q_0] F' = \{ [q] \mid q \in F \} \delta'([q], a) = [\delta(q, a)]
```


Minimalautomat - Korrektheit

Satz 5.3: Der Minimierungsalgorithmus konstruiert für jeden DEA A den Minimalautomaten A' für L(A).

Beweis:

- Aus $p \equiv q$ folgt für alle $a \in \Sigma$, dass $\delta'(p,a) \equiv \delta'(q,a)$, denn wenn $\delta'(p,a)$ und $\delta'(q,a)$ unterscheidbar durch das Wort x, dann wären p und q unterscheidbar durch das Wort ax.
- $\hat{\delta}'([q_0], w) = [\hat{\delta}(q_0, w)]$ für alle $w \in \Sigma^*$ (Induktion über |w|)
- $\triangleright L(A') = L(A)$

Satz 5.3: Der Minimierungsalgorithmus konstruiert für einen DEA A den Minimalautomaten A' für L(A).

- noch z.z.: A' hat nicht mehr Zustände als R_L Äquivalenzklassen für die Sprache L=L(A):
 - Seien x,y Wörter mit xR_Ly und $\hat{\delta}(q_0,x)=p$ und $\hat{\delta}(q_0,y)=q$.
 - Da R_L rechts-invariant ist, gilt für alle $z \in \Sigma^*$, dass xzR_Lyz , also $xz \in L \Leftrightarrow yz \in L$.
 - Somit gilt für alle $z \in \Sigma^*$, dass $\hat{\delta}(q_0, xz) \in F \Leftrightarrow \hat{\delta}(q_0, yz) \in F$.
 - Daher gilt $p \equiv q$.
 - \triangleright Die Relation \equiv hat keinen größeren Index als R_L .

Folgerung 5.4: Es gibt einen Algorithmus, der das

Äquivalenzproblem für DEAs

Eingabe: zwei DEAs A und B

Frage: Gilt L(A) = L(B)?

entscheidet.

Folgerung 5.5: Es gibt Algorithmen, die das Äquivalenzproblem für zwei Mechanismen entscheidet, die in der Menge aller DEAs, NEAs, ε -NEAs und RAs enthalten sind.

Folgerung 5.6: Es gibt eine Sprache L, die nicht regulär ist.

Beweis: Sei $L = \{ a^n b^n \mid n \ge 0 \}.$

Für jedes $n \ge 0$ gilt $(a^n, a^{n+1}) \notin R_L$,

 $\operatorname{da} a^n b^n \in L \text{ und } a^{n+1} b^n \notin L.$

Daher hat R_L keinen endlichen Index.

Nach Satz 5.1 existiert kein DEA, der L akzeptiert, somit ist L keine reguläre Sprache.