CETACEAN MACROEVOLUTION

Lecture 14 21 October 2010 CSCI 7000-003 Inference, Models and Simulation for Complex Systems

Prof. Aaron Clauset University of Colorado

MACROEVOLUTIONARY MODEL

three mechanisms

CLADOGENESIS

model features

- size-dependent fluctuations
- Cope's rule
- size-dependent extinction rate
- lower limit x_{\min}

ANALYTIC VERSION

reaction-diffusion-convection equation:

$$\frac{\partial c}{\partial t} + v \frac{\partial c}{\partial x} = D \frac{\partial^2 c}{\partial x^2} + (k - A - Bx)c$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$
drift term diffusion speciation (Cope's rule) term and extinction

3 parameters:
$$\beta=B/D$$

$$\mu=v/D$$
 estimated from fossil data

SIZE DIVERSIFICATION

SIZE DIVERSIFICATION

[North Am. terrestrial mammals]

SIZE DIVERSIFICATION

model dynamics

model time

agrees with molecular-clocks for genetic diversification

CETACEAN MACROEVOLUTION

Southern Right whale (photo credit: Brian Skerry)

CETACEAN BODY SIZES

Terrestrial mammals

out-of-sample test

- estimate parameters for terrestrial mammals
- change $x_{\min} \approx 20 \text{kg}$
- compare predicted pdf for aquatic mammals to empirical data

CETACEAN BODY SIZES

Terrestrial mammals

Aquatic mammals

 $x_{\rm min} \approx 20 {\rm kg}$

but, do the dynamics agree?

need fossil data to test

FOSSIL WHALES

FOSSIL WHALES

Rodhocetus kasrani (47 Ma)

data we can get from fossils:

- length of skeleton L
- length of skull CbL
- width of skull OcW

data we want:

body mass M

A MODEL

- measure L, CbL,
 OcW & M for
 extant Cetaceans
- build model
- estimate M for fossil species

A MODEL

- measure L, CbL,
 OcW & M for
 extant Cetaceans
- build model
- estimate M for fossil species

95% CI:
$$\alpha \in (2.64, 3.01)$$

$$M = \left(\frac{4}{3}\pi abc\right)\rho = \left(\frac{4\pi L^3}{24k_1k_2}\right)(10^6[g/m^3])$$

A MODEL

- measure L, CbL,
 OcW & M for
 extant Cetaceans
- build model
- estimate M for fossil species

FOSSIL WHALE DATA

list of species:

The Paleobiology Database

size measurements:

primary literature (200+ papers)

796 measurements

214 extinct species (of 403 known)

78 extant species

FOSSIL WHALE DIVERSITY

FOSSIL WHALE SIZES

SIZE DISPARITY

FITTING THE MODEL

fit disparity

disparity(t) =
$$\frac{x_{\text{max}}(t)}{x_{\text{min}}}$$

where

$$\frac{1}{n(t)} = \int_{x_{\text{max}}(t)}^{\infty} \Pr(x, t) dx$$

parameters: $\beta = B/D$ $\mu = v/D$ from terrestrial model

 x_{\min}

for aquatic mammals

n(t)

simulated & empirical

MORPHOLOGICAL DIVERSIFICATION DYNAMICS

MORPHOLOGICAL DIVERSIFICATION DYNAMICS

maximum disparity coincides with maximum diversity

SOME GENERAL INSIGHTS

MORPHOLOGICAL DIVERSIFICATION DYNAMICS

