LECTURE 3

Introduction To Microelectronics Fabrication Processes

Semiconductor Manufacturing Processes

- Design
 - Mask info to MASK-SHOP + GDSII file
- Mask making
- Generate runcard
- Wafer Preparation
- Front-end Processes (individual transistor)
 - Deposition
 - Oxidation
 - Diffusion
 - Photolithography
 - Etch (wet and dry)
 - Implantation

Backend Process
 Deposition (oxide, nitride etc)
 Metalization
 Rapid Thermal Process
 Lithography & Etch

- Test (Parametric and Functional)
- Packaging

VLSI DESIGN FLOW

Pattern Preparation

Wafer Preparation

- Silicon Refining
- Crystal Pulling
- Wafer Slicing & Polishing
- Epitaxial Silicon Deposition

Silicon Refining

Chemical Reactions

Silicon Refining: $SiO_2 + 2 C \rightarrow Si + 2 CO$ Silicon Purification: $Si + 3 HCl \rightarrow HSiCl_3 + H_2$ Silicon Deposition: $HSiCl_3 + H_2 \rightarrow Si + 3 HCl$

Reactants

H₂ **Silicon Intermediates**

H₂SiCl₂ HSiCl₃

Polysilicon Ingots

Silicon nugget inside crucible

Crystal Pulling

Czochralski Method

- Silicon quartzite are melted in quartz crucible
- Crucible is placed in high-temperature furnace
- Crystal seed is brought into contact with molten silicon
- The puller is slowly pull-up.
- Deposited silicon melt condenses and large rounded single crystal is formed

Single Crystal Growth

CZ Crystal Pullers (Mitsubishi Materials Silicon)

Single Crystal Silicon Ingot

Wafer Slicing & Polishing

The silicon ingot is sliced into individual wafers, polished, and cleaned.

Wafer Polished

- Grinding
- •Edge Polished
- •Slicing
- •Lapping
- Polished
- ProcessControl

Epitaxial Silicon Deposition

Chemical Reactions

Silicon Deposition: $HSiCl_3 + H_2 \rightarrow Si + 3 HCl$

Process Conditions

Flow Rates: 5 to 50 liters/min

Temperature: 900 to 1,100 degrees C.

Pressure: 100 Torr to Atmospheric

Silicon Sources	Dopants	Etchant
SiH_4	AsH_3	HCl
H_2SiCl_2	B_2H_6	Carriers
HSiCl ₃ *	PH_3	Ar
SiCl ₄ *		H_2 *
		N_2

^{*} High proportion of the total product use

Front-End/Back-end Processes

Front-end

• Fabrication steps up to the formation of individual transistors which electrically isolated

Back-end

Fabrication steps to connect every single transistors until completed

Front-end Process

- OXIDATION
- DIFFUSION
- DEPOSITION
- LITHOGRAPHY
- ION IMPLANTATION

OXIDATION

PURPOSE: TO GROW SILICON OXIDE FILM

WHAT IS OXIDATION?

A PROCESS OF 'GROWING' SILICON OXIDE ON A WAFER, EITHER ON BARE SILICON OR EXISTING SILICON OXIDE LAYER

PROCESS EQUATIONS

 $Si + O_2$ SiO_2 (dry oxidation)

 $Si + 2H_2O$ $SiO_2 + 2H_2$ (wet oxidation)

O₂/H₂O DIFFUSE TO SILICON WAFER/OXIDE LAYER AND REACT WITH Si

WHEN REACTION ON SURFACE IS DONE, THICKER FILM WILL REQUIRE THE REACTANT SPECIES TO DIFFUSE DEEPER INTO SILICON (Deal-Groove Linear - Parabolic Model)

GENERALLY AT HIGH TEMPERATURE OF 600 - 1200 °C.

GASES USED ARE BASICALLY O₂, OR H₂ AND O₂.

DILUTED PROCESS WHERE SMALL AMOUNT OF O₂ WITH N₂ AS DILUTER TO GET LOWER GROWTH RATE (FOR BETTER CONTROL OF VERY THIN OXIDE)

O₂ ALONE IS CALLED DRY OXIDATION

H₂ AND O₂ IS CALLED WET OXIDATION

FURNACE SYSTEM FOR OXIDATION

VERTICAL FURNACE

FURNACE SYSTEM FOR OXIDATION

HORIZONTAL FURNACE

DIFFUSION

PURPOSE: TO DRIVE IN DOPANT INTO CERTAIN DEPTH IN SEMICONDUCTOR

SUBSTRATE AFTER ION IMPLANTATION PROCESS OR SPIN ON

DOPANT TECHNIQUE

Epitaxial CVD Growth

DEPOSITION

PURPOSE: TO DEPOSIT MATERIALS SUCH AS NITRIDE, OXIDE, POLYSI ETC

METHODS

PECVD

LPCVD

SACVD

PVD

EVAPORATION

Chemical Reactions

Nitride Deposition: $3 \text{ SiH}_4 + 4 \text{ NH}_3 \rightarrow \text{Si}_3 \text{N}_4 + 12 \text{ H}_2$

Polysilicon Deposition: $SiH_4 \rightarrow Si + 2 H_2$

Process Conditions (Silicon Nitride LPCVD)

Flow Rates: 10 - 300 sccm Temperature: 600 degrees C.

Pressure: 100 mTorr

Polysilicon Nitride

•	
H_2	NH ₃ *
N_2	H ₂ SiCl ₂ *
SiH ₄ *	N_2
AsH_3	SiH ₄ *
B_2H_6	$SiCl_4$
PH_3	·

^{*} High proportion of the total product use

PHOTOLITHOGRAPHY

- A process for producing highly accurate, microscopic, two dimensional patterns in a photosensitive material.
- These patterns are replicas of master pattern on a durable photomask, typically made of a thin patterned layer of chromium on a transparent glass plate.
- The process is repeated many times to build an integrated circuit

Photolithography Process Flow

Nine basic microlithographic process steps

Photoresist Patterning

Photomask

After etch

After development

Photolithography room

- Photolithography area is yellowlighted to prevent exposure of photoresist coated wafers to the light.
- It is a class-10 clean room and is the highest level of cleanliness in the clean room suite.

Photoresist Coating Processes

Photoresists

Negative Photoresist *
Positive Photoresist *

Other Ancillary Materials (Liquids)

Edge Bead Removers *

Anti-Reflective Coatings *

Adhesion Promoters/Primers (HMDS) *

Rinsers/Thinners/Corrosion Inhibitors *

Contrast Enhancement Materials *

Developers

TMAH *

Specialty Developers *

Inert Gases

Ar

 N_2

Exposure Processes

Expose

 $Kr + F_2 (gas) *$

Inert Gases

 N_2

Ion Implantation

To introduce impurities into substrate by bombardments of ions

- Well Implants
- Channel Implants (Vt adjust)
- Source/Drain Implants

Ion Implantation

Process Conditions

Flow Rate: 5 sccm Pressure: 10⁻⁵ Torr

Accelerating Voltage: 5 to 200 keV

Gases	Solids
Ar	Ga
AsH_3	In
$B^{11}F_3$ *	Sb
Не	Liquids
N_2	$Al(CH_3)_3$
PH_3	3. 3
SiH_4	
SiF_4	
GeH_4	

Etch

- Conductor Etch
 - Poly Etch and Silicon Trench Etch
 - Metal Etch
- Dielectric Etch

Conductor Etch

Chemical Reactions

Silicon Etch: $Si + 4 HBr \rightarrow SiBr_4 + 2 H_2$

Aluminum Etch: $Al + 2 Cl_2 \rightarrow AlCl_4$

Process Conditions

Flow Rates: 100 to 300 sccm Pressure: 10 to 500 mTorr

RF Power: 50 to 100 Watts

Polysilicon Etches

HBr *
C₂F₆
SF₆ *
NF₃ *
O₂

Aluminum Etches

BCl₃*
Cl₂

Diluents

Ar He N₂

* High proportion of the total product use

Dielectric Etch

Chemical Reactions

Oxide Etch: $SiO_2 + C_2F_6 \rightarrow SiF_4 + CO_2 + CF_4 + 2 CO$

Process Conditions

Flow Rates: 10 to 300 sccm

Pressure: 5 to 10 mTorr

RF Power: 100 to 200 Watts

Plasma Dielectric Etches Diluents

CHF ₃ *	CO_2	Ar
CF_4	O_2	He
C_2F_6	$\overline{SF_6}$	N_2
C_3F_8	SiF_4	
CO*	·	

* High proportion of the total product use

Cleaning

- Critical Cleaning
- Photoresist Strips
- Pre-Deposition Cleans

Critical Cleaning

Process Conditions

Temperature: Piranha Strip is 180 degrees C.

RCA Clean

SC1 Clean
$$(H_2O + NH_4OH + H_2O_2)$$
 *
* SC2 Clean $(H_2O + HCl + H_2O_2)$ *

Piranha Strip

* H₂SO₄ + H₂O₂ *

Nitride Strip

Dry Strip

$$N_2O$$
 O_2
 $CF_4 + O_2$
 O_3

Solvent Cleans

NMP Proprietary Amines (liquid)

Dry Cleans

HF O_2 Plasma $Alcohol + O_3$

Back-end Process

- CVD Dielectrics
- CVD Tungsten
- PVD Metal
- Planarization
 - local (deposit-etch)
 - global (CMP)

Thin Films

- Chemical Vapor Deposition
 (CVD) Dielectric
- CVD Tungsten
- Physical Vapor Deposition (PVD)
- Chamber Cleaning

Chemical Vapor Deposition (CVD) Dielectric

Chemical Reactions

 $Si(OC_2H_5)_4 + 9O_3 \rightarrow SiO_2 + 5CO + 3CO_2 + 10H_2O$

Process Conditions (ILD)

Flow Rate: 100 to 300 sccm

Pressure: 50 Torr to Atmospheric

CVD Dielectric

 O_2

TEOS*

TMP*

* High proportion of the total product use

Chemical Vapor Deposition (CVD) Tungsten

Chemical Reactions

 $WF_6 + 3 H_2 \rightarrow W + 6 HF$

Process Conditions

Flow Rate: 100 to 300 sccm

Pressure: 100 mTorr

Temperature: 400 degrees C.

CVD Dielectric

WF₆ *

Ar

 H_2

 N_2

* High proportion of the total product use

Physical Vapor Deposition (PVD)

Process Conditions

Pressure: < 5 mTorr

Temperature: 200 degrees C.

RF Power:

Barrier Metals

SiH₄

Ar

 N_2

 N_2

Ti PVD Targets *

^{*} High proportion of the total product use

Chamber Cleaning

Chemical Reactions

Oxide Etch: $SiO_2 + C_2F_6 \rightarrow SiF_4 + CO_2 + CF_4 + 2 CO$

Process Conditions

Flow Rates: 10 to 300 sccm Pressure: 10 to 100 mTorr RF Power: 100 to 200 Watts

Chamber Cleaning

C₂F₆ * NF₃ ClF₃

Chamber Wall Cross-Section

* High proportion of the total product use

Planarization

- Oxide Planarization
- Metal Planarization

Chemical Mechanical Planarization (CMP)

Process Conditions (Oxide)

Flow: 250 to 1000 ml/min Particle Size: 100 to 250 nm

Concentration: 10 to 15%, 10.5 to 11.3 pH

Process Conditions (Metal)

Flow: 50 to 100 ml/min

Particle Size: 180 to 280 nm

Concentration: 3 to 7%, 4.1 - 4.4 pH

Backing (Carrier) Film CMP (Oxide)

Polyurethane

Pad

Polyurethane

Pad Conditioner

Abrasive

Silica Slurry *

KOH *

NH₄OH

 H_2O

CMP (Metal)

Alumina * FeNO₃

Test and Assembly

- Electrical Test Probe
- Die Cut and Assembly
- Die Attach and Wire Bonding
- Final Test

Individual integrated circuits are tested to distinguish good die from bad ones.

Die Cut and Assembly

Die Attach and Wire Bonding

Final Test

References

- 1. CMOS Process Flow in Wafer Fab, Semiconductor Manufacturing Technology, DRAFT, Austin Community College, January 2, 1997.
- 2. Semiconductor Processing with MKS Instruments, Inc.
- 3. Worthington, Eric. "New CMP architecture addresses key process issues," *Solid State Technology*, January 1996.
- 4. Leskonic, Sharon. "Overview of CMP Processing," SEMATECH Presentation, 1996.
- 5. Gwozdz, Peter. "Semiconductor Processing Technology" SEMI, 1997.
- 6. CVD Tungsten, Novellus Sales Brochure, 7/96.
- 7. Fullman Company website. "Fullman Company The Semiconductor Manufacturing Process," http://www.fullman.com/semiconductors/index.html, 1997.
- 8. Barrett, Craig R. "From Sand to Silicon: Manufacturing an Integrated Circuit," *Scientific American Special Issue: The Solid State Century*, January 22, 1998.