ASCII TABLE

Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char
0	0	[NULL]	32	20	[SPACE]	64	40	@	96	60	*
1	1	[START OF HEADING]	33	21	1	65	41	Α	97	61	a
2	2	[START OF TEXT]	34	22	II .	66	42	В	98	62	b
3	3	[END OF TEXT]	35	23	#	67	43	C	99	63	c
4	4	[END OF TRANSMISSION]	36	24	\$	68	44	D	100	64	d
5	5	[ENQUIRY]	37	25	%	69	45	E	101	65	e
6	6	[ACKNOWLEDGE]	38	26	&	70	46	F	102	66	f
7	7	[BELL]	39	27	1	71	47	G	103	67	g
8	8	[BACKSPACE]	40	28	(72	48	Н	104	68	h
9	9	[HORIZONTAL TAB]	41	29)	73	49	1	105	69	i
10	Α	[LINE FEED]	42	2A	*	74	4A	J	106	6A	j
11	В	[VERTICAL TAB]	43	2B	+	75	4B	K	107	6B	k
12	C	[FORM FEED]	44	2C	,	76	4C	L	108	6C	1
13	D	[CARRIAGE RETURN]	45	2D	-	77	4D	M	109	6D	m
14	Е	[SHIFT OUT]	46	2E		78	4E	N	110	6E	n
15	F	[SHIFT IN]	47	2F	1	79	4F	0	111	6F	0
16	10	[DATA LINK ESCAPE]	48	30	0	80	50	P	112	70	р
17	11	[DEVICE CONTROL 1]	49	31	1	81	51	Q	113	71	q
18	12	[DEVICE CONTROL 2]	50	32	2	82	52	R	114	72	r
19	13	[DEVICE CONTROL 3]	51	33	3	83	53	S	115	73	s
20	14	[DEVICE CONTROL 4]	52	34	4	84	54	T	116	74	t
21	15	[NEGATIVE ACKNOWLEDGE]	53	35	5	85	55	U	117	75	u
22	16	[SYNCHRONOUS IDLE]	54	36	6	86	56	V	118	76	v
23	17	[ENG OF TRANS. BLOCK]	55	37	7	87	57	W	119	77	w
24	18	[CANCEL]	56	38	8	88	58	X	120	78	X
25	19	[END OF MEDIUM]	57	39	9	89	59	Υ	121	79	у
26	1A	[SUBSTITUTE]	58	3A	:	90	5A	Z	122	7A	z
27	1B	[ESCAPE]	59	3B	;	91	5B	[123	7B	{
28	1C	[FILE SEPARATOR]	60	3C	<	92	5C	\	124	7C	1
29	1D	[GROUP SEPARATOR]	61	3D	=	93	5D	1	125	7D	}
30	1E	[RECORD SEPARATOR]	62	3E	>	94	5E	^	126	7E	~
31	1F	[UNIT SEPARATOR]	63	3F	?	95	5F	_	127	7F	[DEL]
									l		

IEEE Standard
754 za float

<u>Tipovi podataka</u> <u>u C-u</u>

Raspon cjelobrojnih vrijednosti

Preciznost računala

<u>Primjeri</u>

:: Pohrana podataka ::

- Računalo pohranjuje podatke koristeći binarne brojeve (0,1)
- Računalo obavlja pohranu i obradu podataka pretvarajući dvije različite razine napona
- Sklopka može imati dva stanja (broj znamenaka u binarnom brojevnom sustavu)
- Pomoću tranzistora sastavljeni su elektronički sklopovi koji oponašaju mehaničke sklopke
- Bistabil
 - sklop sastavljen od tranzistora
 - ostaje u jednom stanju (0 ili 1) dok se prisilno ne prebaci u drugo stanje
 - Služi za pohranu jednog BIT-a (BInary digiT, 0 ili 1)
- Registar
 - niz od n bistabila (n duljina registra, potencije s bazom 2)
 - služi za pohranu n bitova (n bitni)
- Bajt = 8 bitova
- Memorija
 - skup registara jednake duljine
 - ograničen kapaciet
- Zbog ograničenosti kapaciteta memorije ograničena je i preciznost kojom računala pohranjuju brojeve što može dovesti do nesigurnosti i grešaka u numeričkom računanju
 - Znanstveno računanje u velikoj mjeri upotrebljava realne brojeve
- > Danas dominatan "IEEE Standard 754/854" za reprezentaciju realnih brojeva

Matematičke metode fizike 3 Vježbe 2015/16

754 za float

IEEE Standard

Tipovi podataka u C-u

Raspon cjelobrojnih vrijednosti

Preciznost računala

<u>Primjeri</u>

:: IEEE Standard 754 za float::

➤ IEEE (Institute of Electrical and Electronics Engineers) standard 754 za pohranu realnih brojeva (float, 32 bita)

Normalizirani broj $(-1)^P \cdot 1$. Mantisa $\cdot 2^{be}$ P Karakteristika Mantisa

31 30

2322

- Predznak (P=1 negativan, P=0 pozitivan)
- Karakteristika = binarni eksponent (be) + 127 (zbog pohrane negativnih)
 - raspon karakteristike :: [0,255]
 - raspon binarnog eksponenta :: [-126,127]
- Mantisa znamenke iza 1.
 - K=0 i svi bitovi mantise nula : : 0
 - K=0 i postoje frakcije u mantisi :: denormalizirani broj
 - K=255 i svi bitovi mantise nula :: $\pm \infty$
 - K=255 i postoje binarne frakcije u mantisi :: NaN

	$-1.75_{(10)} = -1.11_{(2)} = (-1)^1 \cdot 1.11 \cdot 2_{(2)}^0$	$+13.625_{(10)} = 1101.101_{(2)} = (-1)^{0} \cdot 1.101101 \cdot 2_{(2)}^{3}$
P ::	1	0
K ::	$127+0_{(10)} = 01111111_{(2)}$	127 +3 ₍₁₀₎ = 10000010 ₍₂₎
M ::	11	101101
IEEE	1 0111111 1100000000000000000000000000	0 10000010 101101000000000000000000

<u>Pohrana</u> podataka

TEEE Standard 754 za float

Tipovi podataka u C-u

Raspon cjelobrojnih vrijednosti

Preciznost računala

Primjeri

:: Raspon cjelobrojnih vrijednosti ::

- Prefiksi ili kvalifikatori
 - short smanuje raspon cjelobrojnih vrijednosti koje varijabla može sadržavati
 - long povećava raspon cjelobrojnih vrijednosti koje varijabla može sadržavati
 - signed dozvoljava pridruživanje pozitivnih i negativnih vrijednosti
 - unsigned dozvoljava pridruživanje samo pozitivnih vrijednosti
- Primjer preljeva znamenaka: raspon.c

bez predznaka - (Unsigned)					
8 bita	unsigned char	0 do 255			
16 bita	unsigned short	0 do 65535			
32 bita	unsigned long	0 do 4 294 967 295			
64 bita	unsigned long long	0 do 18 446 744 073 709 551 615			
int može biti short ili long ovisno o računalu i kompajleru					

s predznakom - (Signed)						
8 bita	signed char	-128	do	+127		
16 bita	short	-32768	do	+32767		
32 bita	long	-2 147 483 648	do	+2 147 483 647		
64 bita	long long	-9 223 372 036 854 775 808	do	+9 223 372 036 854 775 807		
int može biti short ili long ovisno o računalu i kompajleru						

Matematičke metode fizike 3 Vježbe 2015/16

<u>1EEE Standard</u> <u>754 za float</u>

Tipovi podataka u C-u

Raspon cjelobrojnih vrijednosti

Preciznost računala

<u>Primjeri</u>

:: Preciznost računala ::

Preciznost računala definiramo kao maksimalni pozitivni broj $\epsilon_{\rm m}$ koji možemo dodati broju pohranjenom kao $1_{\rm c}$, a da se pohranjeni broj ne promijeni

$$1_c + \varepsilon_m = 1_c$$

- primjer: preciznost.c
- \triangleright Stvarni broj x i broj pohranjen u kompjutoru x_c vezani su relacijom

$$x_c = x(1+\varepsilon)$$
; $|\varepsilon| \le \varepsilon_m$

- Broj x_c aproksimira broj x
 - apsolutna greška $|x_c x|$
 - relativna greška aproksimacije $\left| \frac{x_c x}{x} \right|$
- \triangleright Broj $x_c ≈ x$ s točnošću ε

$$|x_c - x| \le \varepsilon$$

- > Greške možemo podijeliti na:
 - neotklonjive greške (netočnost ulaznih podataka i sl.)
 - greške zaokruživanja
 - ✓ poništenje oduzimanjem (dva vrlo bliska broja)

$$a = b - c \implies \frac{a_c}{a} = 1 + \varepsilon_b \frac{b}{a} - \varepsilon_c \frac{c}{a}$$

✓ poništenje množenjem

$$a = b \times c \Rightarrow \frac{a_c}{a} = \frac{(1 + \varepsilon_b)(1 + \varepsilon_c)}{(1 + \varepsilon_a)} \approx 1 + \varepsilon_b + \varepsilon_c$$

• greške metode

:: Primjeri ::

✓ raspon.c

Tipovi podataka u C-u

IEEE Standard 754 za float

Raspon cjelobrojnih vrijednosti

Preciznost računala

Primjeri

A) 10 prirodnih	brojeva koji	slijede	iza 32762:
short	long	unsigned	short
32763 32764 32765 32766 32767 -32768 -32767 -32766 -32765 -32764	32763 32764 32765 32766 32767 32768 32769 32770 32771 32772		32763 32764 32765 32766 32767 32768 32769 32770 32771 32772

```
suma m najmanjih prirodnih brojeva vecih od 32762:
    sum-short
                 sum-long
                            sum-unsg.shrt
      32763.0
                  32763.0
                                   32763.0
 1234567
      65527.0
                                   65527.0
      98292.0
                  98292.0
     131058.0
     163825.0
      131057.0
      98290.0
                                  229362.0
 8
      65524.0
                                  262132.0
      32759.0
                 294903.0
                                  294903.0
          -5.0
                 327675.0
                                  327675.0
```

Vježbe 2015/16

- (http://www.cplusplus.com/reference/climits/) granica.c
- preciznost.c

Pohrana podataka **IEEE Standard** 754 za float **Tipovi podataka** u C-u Raspon cjelobrojnih vrijednosti **Preciznost** računala Primjeri metode fizike 3 Vježbe 2015/16

:: Primjeri ::

- Skripta: Leandra Vranješ Markić Matematičke metode fizike I
- Primieri:
 - 1. Napisati program koji računa funkciju e^{-x} na tri različita načina:
 - a) preko reda $e^{-x} = \sum_{k=0}^{\infty} (-1)^k \frac{x^k}{k!};$ b) rekurzivnom formulom $e^{-x} = \sum_{k=0}^{\infty} s_k$ i $s_k = -s_{k-1} \cdot \frac{x}{k};$

 - c) izračunati e^x i onda $1/e^x$.

Diskutirati rezultate i definirati preciznost svakog rezultata. Napraviti ispis za 10 vrijednosti x = 0, 10, 20..., 100, u tablici, koja sadrži x, e^{-x} i broj članova ili iteracija kojom se za zadanu preciznost dobio rezultat. Napravite testove:

- Nadite rezultate koristeći zapise sa float i double tipom varijabla.
- Izračunajte rezultate za nižu i višu zadanu preciznost. Neka je početna preciznost 10^{-10} .
- Za vrijednost x = 20 ispišite sve članove u redu ili sve korake iteracije. Diskutirajte pogrešku.