Get To Know Your Right Customers

By G7 Consultancy Liu Yue & Zhu Yilin

Motivation of G7's CAPS <u>Customer Acquisition Prioritization System</u>

Customer Acquisition Prioritization

Marketers ask...

Who are my potential new customers?

How to get access to them?

External data sources!

Customer Acquisition Prioritization

Marketers ask the following questions

Which segment of potential customer is more profitable?

Their demographics?

Their preferences?

Likelihood to become one?

Professional Data Analytics!

Our Missions

To get you a larger *customer base*,

To save your marketing budget,

To help you attain greater *profits*,

With our *analytics* service.

Our Beliefs

Customer purchase behaviours extend from *past* to the *future*.

Your *competitors*' customers may become yours.

You can always **strengthen** on your specializations.

Our Data Science

- Descriptive Analytics
- Recommender Algorithms
- Dataset
- Tools
- Models

Descriptive Analytics

Descriptive Analysis - Company

Recommender Algorithms

Non-personalized

- Popularity-Based Recommendations
 - Customers who spend more in the past, are likely to spend more in the future
 - "人傻,钱多,快来!" (marketers pursue for customers with high value)

Personalized for a company

- Popularity-Based Recommendations (proven accuracy)
- User-kNN (traditional)
- SVD popular (popular)
- Co-Clusters (dynamic, near real-time)

DATASET

Household purchasing data, January, 2005 - December, 2007

2.5 million households, 36+million-record database for 207 companies

3 main data files

DMEFLines3Dataset2.csv -- Line orders

DMEF3YrBase.csv -- ZIP Code for all households

MajorCatReference.csv -- More detailed classification of the product purchased

Datasource Credit: Marketing_EDGE Data, Data Set 11

TOOLS

MongoDB v3.4.2

- Original csv files are large with useless columns
- Easy to dump and access data
- Relatively faster to load data than MySQL + XAMPP

Python v3.5.2

Scikit-Surprise v1.0.2

Ploty v2.0.7

MongoDB Screenshot

```
In [2]: from pymongo import MongoClient
        client = MongoClient('mongodb://localhost:27017/')
        db = client.BT4221 DB
        orders = db.Orders
In [3]: import pprint
        pprint.pprint(orders.find one())
        {'Channel': 'C',
         'CompanyID': 837,
         'Dollars': 116,
         'HH ID': 1,
         'OrderDate': 20051212,
         'OrderNum': 2604929,
         'PaymentType': '',
         '_id': ObjectId('58bc3802bbc6d9a22238d61e')}
```

Models

Standard Collaborative Filtering

- Score: \$, log(\$), scale(\$), scale_log(#)
 - User-kNN
 - Co-Clustering
 - SVD [with #, log(#)]

Popularity-Based Recommendations

Not Weighted, or Weighted by by the Company's Product Type

User-kNN

Aim:

- Predict a **worthiness score** for each potential customer

$$\hat{r}_{ui} = rac{\sum\limits_{v \in N_i^k(u)} ext{sim}(u,v) \cdot r_{vi}}{\sum\limits_{v \in N_i^k(u)} ext{sim}(u,v)}$$

Training data:

- Total \$ spent / Total # of purchases
- Actual number / Log scale

User-kNN

Model Setup:

- k=40: The max number of neighbors to take into account for aggregation.

- Similarity measures:

cosine	Compute the cosine similarity between all pairs of users
msd	Compute the Mean Squared Difference similarity between all pairs of users
pearson	Compute the Pearson correlation coefficient between all pairs of users
pearson_baseline	Compute the (shrunk) Pearson correlation coefficient between all pairs of users using baselines for centering instead of means

SVD

Aim:

- Predict a **worthiness score** for each potential customer

$$\hat{r}_{ui} = \mu + b_u + b_i + q_i^T p_u$$

By minimizing regularised error via SGD

$$\sum_{r_{ui} \in R_{train}} (r_{ui} - \hat{r}_{ui})^2 + \lambda \left(b_i^2 + b_u^2 + ||q_i||^2 + ||p_u||^2
ight)$$

CF based on Co-Clustering

Aim:

- Predict a **worthiness score** for each potential customer

$$\hat{r}_{ui} = \overline{C_{ui}} + (\mu_u - \overline{C_u}) + (\mu_i - \overline{C_i}),$$

- $\overline{\frac{C_{ui}}{C_u}}$ average rating of co-cluster average rating of uu's cluster $\overline{\frac{C_u}{C_i}}$ average rating of ii's cluster

Parameters setting

- Users and items are assigned 3 clusters and co-clusters.

DATA PROCESSING - CF

Collaborative Filtering --Training Data

Line orders of training period (20050101 - 20070630)

Aggregate Dollars and OrderNum by HH_ID over the period, and transform to log scale

	HH_ID	CompanyID	OrderNum	Dollars	logOrder	logDollar
0	1	837	3	268	1.098612	5.590987
1	3	661	1	24	0.000000	3.178054
2	3	837	3	173	1.098612	5.153292

DATA PROCESSING

Collaborative Filtering --Testing Data

Line orders of from 20070701 to 20071231 for CompanyID = 36

For HH_ID being a customer for companies other than CompanyID = 36 in training period,

aggregate Dollars and OrderNum by HH_ID over the period, and transform to log scale

	HH_ID	CompanyID	OrderNum	Dollars	logOrder	logDollar
3	343	36	1.0	28.0	0.000000	3.332205
0	338	36	0.0	0.0	-inf	-inf
4	346	36	0.0	0.0	-inf	-inf

PERFORMANCE - CF

	dol		dol_scale		dol_log		dol_log_scale	
	RMSE	Time	RMSE	Time	RMSE	Time	RMSE	Time
kNN	9.9981	31:58	0.0166	06:49	4.3425	07:19	1.4845	04:33
SVD	9.9993	27:26	0.0155	39:31	3.7073	43:19	1.2045	30:50
Co-clustering	9.5782	21:18	0.0156	33:16	3.5792	34:53	0.9245	21:57

Table 1. Performance for algorithms under each expenditure/revenue-related rating design

CF - IMPROVEMENT

SVD

Unscaled ratings - #, log(#)

KNN

- Unscaled ratings #, log(#)
- Different similarity measures
 - cosine, msd, pearson, pearson_baseline

To see more in interactive Demo

Popularity

Aim:

- Predict a **worthiness score** for each potential customer

Description:

- Non-personalized baseline
- General Popularity Score =

sum (\$ spent in the past 30 months for a customer)

Customised Popularity_By Area

Aim:

- Predict a **worthiness score** for each potential customer

Description:

- Select top **3 of 10** areas by company revenue
- TopThreeArea Popularity Score =
 - sum (\$ spent in the past 30 months for a customer in a area)
 - * Percentage revenue of the Company in a area

Customised Popularity_By Category

Aim:

- Predict a **worthiness score** for each potential customer

Description:

- Select top **10 of 69** categories by company revenue
- TopTenCategory Popularity Score =
 - sum (\$ spent in the past 30 months for a customer in a category)
 - * Percentage revenue of the Company in a category

DATA PROCESSING - Popularity

Company Revenue Sources

Aggregate Dollars by CompanyID, Area/Category, compute revenue% in each Area/Category.

	Others	Gift Wrapping	Audio/music	Baby Furniture	Baby Gear	Bar & Cigar	Bath/closet	Bathroom Linens	Beauty	Bedroom Decor	
CompanyID					3						0 0
27	0.001347	0.000000	0.000000	0.0	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
32	0.005267	0.000089	0.001875	0.0	0.004999	0.015582	0.007081	0.011475	0.002188	0.000168	
36	0.011430	0.000000	0.000983	0.0	0.003481	0.001181	0.020015	0.010541	0.001687	0.000463	

DATA PROCESSING - Popularity

Household Spendings

Aggregate Dollars by HH_ID [, Area, Category] in training period (20050101 to 20070630) for the selected top 3 Area/ 10 Category in the Company Description

	CraftsandHobbies	Furniture	Garden	HomeDecor	HouseholdItems	PatioYard	Toys	WallDecor	WomensApparel
HH_ID									
411835	0.0	30.0	0.0	105.0	33.0	10.0	0.0	0.0	345.0
1285805	15.0	0.0	30.0	0.0	50.0	0.0	0.0	0.0	0.0
1026883	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1586.0

DATA PROCESSING - Popularity

Compare computed score with actual CompanyRevenue in the testing period:

TestingRevenue =

Aggregate Dollars by HH_ID for CompanyID = 36 in testing period (20070701 to 20071231)

	HH_ID	TopTenCategoryPopularity	TestingRevenue
45150	53255	5067.966423	0.0
1373900	1792511	4858.641617	0.0
1003992	1286456	3954.722506	0.0

Top n percentile of predicted households ranked by household spending

More on customer's details:

Conclusions

Limitation & Discussion

PopPerSQM

PctUrban

- Subset of customers for SlopOne and Item-kNN
 - Computationally expensive: 2.5 million * 2.5 million household similarity matrix
- Better design of worthiness score of households
 - Possible additional data: US census data by ZIP code

PctUnemployed

	% Urban Population	Persons Per Sq Mile	% Unemployed Persons	Average Household Income	Average House Value	% Under 5	% 5 to 17
601	57.8	287	30.9	15,892	\$63,884	7.7	24.4
602	100	1358.8	22.1	18,915	\$66,312	7.7	22.1
604	100	1920 7	27.3	18 756	\$77.088	7.3	10.5

AvgHHInc

AvgHValue

PctAge0 4 PctAge5 17

604	100	1829.7	27.3	18,756 \$77,088	7.3	19.5
606	44	176.1	28.9	16,959 \$53,833	8	24.3
610	89.8	755.4	23.2	19,598 \$69,374	7.7	20.8

610	89.8	755.4	23.2	19,598 \$69,374	1.1	20.8
613	93.4	980.3	19.1	21,194 \$78,974	7.2	19.1
616	88.2	668.4	24.8	17,101 \$58,048	6.8	19.6

616	88.2	668.4	24.8	17,101 \$58,048	6.8	19.6
617	95.2	1086.9	24	20,425 \$61,228	8.6	20.9
622	46.6	273.1	15.9	24,769 \$85,508	7.1	16.5

Limitation & Discussion

- GridSearch for better parameters in Co-Clustering
 - More user clusters, item clusters and co-clusters, computationally costly

class surprise.evaluate.GridSearch(algo_class, param_grid, measures=[u'rmse', u'mae'], verbose=1) The GridSearch class, used to evaluate the performance of an algorithm on various combinations of parameters, and extract the best combination. It is analogous to GridSearchCV from scikitlearn. Parameters: algo_class (AlgoBase) - A class object of the algorithm to evaluate. param_grid (dict) – The dictionary has algo_class parameters as keys (string) and list of parameters as the desired values to try. All combinations will be evaluated with desired algorithm. measures (list of string) – The performance measures to compute. Allowed names are function names as defined in the accuracy module. Default is ['rmse', 'mae'].

THANK YOU

Questions&Answer