Notas de Clase

Juan Montoya

16 de julio de 2025

Resumen

El objetivo de estas notas es ilustrar los postulados fundamentales de la mecánica cuántica mediante el caso de un sistema de espín 1/2 (por ejemplo, átomos de plata) y el uso del aparato de Stern–Gerlach. Se aborda la preparación de estados, la naturaleza probabilística de las mediciones y la evolución temporal bajo un Hamiltoniano simple.

1. Operador S_z espacio de espín

Al observable S_z corresponde el operador S_z , cuyos autovalores son $\pm \hbar/2$. Denotamos por $|+\rangle$ y $|-\rangle$ los autovectores ortonormales:

$$\begin{cases} S_z \mid + \rangle = +\frac{\hbar}{2} \mid + \rangle, \\ S_z \mid - \rangle = -\frac{\hbar}{2} \mid - \rangle, \end{cases}$$
 (A-10)

con

$$\begin{cases} \langle +|+\rangle = \langle -|-\rangle = 1, \\ \langle +|-\rangle = 0, \end{cases}$$
 (A-11)

y la relación de cierre

$$|+\rangle\langle+|+|-\rangle\langle-|=\mathbb{I}.$$
 (A-12)

A-2-b. Los operadores S_x , S_y y S_u

Los operadores S_x , S_y y S_u tienen los mismos autovalores, $+\hbar/2$ y $-\hbar/2$, que S_z . Este resultado era de esperar, ya que siempre es posible girar todo el conjunto del aparato de Stern-Gerlach de modo que el eje definido por el campo magnético quede paralelo a Ox, Oy o \vec{u} . Dado que todas las direcciones del espacio son físicamente equivalentes, los fenómenos observados en la placa no cambian bajo tales rotaciones; así, la medición de S_x , S_y o S_u sólo puede dar como resultado $+\hbar/2$ o $-\hbar/2$.

En cuanto a los autovectores de S_x , S_y y S_u , los denotaremos respectivamente por $|\pm\rangle_x$, $|\pm\rangle_y$ y $|\pm\rangle_u$ (el signo en el ket coincide con el del autovalor correspondiente). Sus desarrollos en la base $\{|+\rangle, |-\rangle\}$ de S_z se escriben:

$$|\pm\rangle_x = \frac{1}{\sqrt{2}} (|+\rangle \pm |-\rangle)$$
 (A-20)

$$|\pm\rangle_y = \frac{1}{\sqrt{2}} (|+\rangle \pm i |-\rangle)$$
 (A-21)

$$\begin{cases} |+\rangle_u = \cos\frac{\theta}{2} \, e^{-i\varphi/2} \, |+\rangle + \sin\frac{\theta}{2} \, e^{i\varphi/2} \, |-\rangle \,, \\ |-\rangle_u = -\sin\frac{\theta}{2} \, e^{-i\varphi/2} \, |+\rangle + \cos\frac{\theta}{2} \, e^{i\varphi/2} \, |-\rangle \,. \end{cases} \tag{A-22a,b}$$

2. Estado general y parámetros esféricos

El estado más general en el espacio de espín es

$$|\psi\rangle = \alpha |+\rangle + \beta |-\rangle,$$
 (A-13)

sujeto a

$$|\alpha|^2 + |\beta|^2 = 1. \tag{A-14}$$

Con la parametrización

$$\alpha = \cos \frac{\theta}{2} e^{-i\varphi/2}, \quad \beta = \sin \frac{\theta}{2} e^{i\varphi/2},$$

podemos asociar cada par (α, β) a un vector unitario en la esfera de Bloch.

3. Mediciones de espín

Para ilustrar la naturaleza probabilística de las mediciones:

- **Experimento 1:** Con ambos aparatos alineados, si se prepara $|+\rangle$ siempre se obtiene $+\hbar/2$.
- Experimento 2: Si se prepara $|+\rangle_u$ (dirección \vec{u}) y se mide S_z , las probabilidades son

$$P(+\frac{\hbar}{2}) = \cos^2\frac{\theta}{2}, \quad P(-\frac{\hbar}{2}) = \sin^2\frac{\theta}{2}.$$

• Experimento 3: Al rotar el analizador, las probabilidades cambian con el ángulo relativo.

El valor medio se corresponde con el resultado clásico:

$$\langle S_z \rangle = \frac{\hbar}{2} \cos \theta.$$

4. Evolución temporal

En un campo magnético uniforme \vec{B}_0 , el Hamiltoniano es

$$\hat{H} = \omega_0 \hat{S}_z, \quad \omega_0 = -\gamma B_0.$$

Sus autoestados $|\pm\rangle$ tienen energías separadas por $\hbar\omega_0$. Si

$$|\psi(0)\rangle = \cos\frac{\theta}{2}e^{-i\varphi/2}|+\rangle + \sin\frac{\theta}{2}e^{i\varphi/2}|-\rangle,$$

entonces la evolución de Schrödinger produce una precesión de Larmor:

$$|\psi(t)\rangle = \cos\frac{\theta}{2}e^{-i(\varphi+\omega_0t)/2}|+\rangle + \sin\frac{\theta}{2}e^{i(\varphi+\omega_0t)/2}|-\rangle.$$

Demostración de la existencia de un vector unitario u

Vamos a mostrar que existe, para todo $|\psi\rangle$, un vector unitario **u** tal que $|\psi\rangle$ es colineal con el ket $|+\rangle_n$. Elegimos por tanto dos números complejos α y β que satisfacen la relación

$$|\alpha|^2 + |\beta|^2 = 1 \tag{B-2}$$

pero que son arbitrarios en lo demás. Teniendo en cuenta (B-2), existe necesariamente un ángulo θ tal que

$$\begin{cases}
\cos\frac{\theta}{2} = |\alpha|, \\
\sin\frac{\theta}{2} = |\beta|.
\end{cases}$$
(B-3)

Si, además, imponemos

$$0 \le \theta \le \pi,\tag{B-4}$$

la ecuación

$$\tan\frac{\theta}{2} = \left|\frac{\beta}{\alpha}\right|$$

determina θ de forma única. Sabemos que sólo la diferencia de fases de α y β influye en las predicciones físicas. Definimos entonces

$$\varphi = Arg(\beta) - Arg(\alpha), \tag{B-5}$$

$$\chi = Arg(\beta) + Arg(\alpha). \tag{B-6}$$

De aquí se sigue

$$Arg(\beta) = \frac{1}{2}\chi + \frac{1}{2}\varphi, \quad Arg(\alpha) = \frac{1}{2}\chi - \frac{1}{2}\varphi.$$
 (B-7)

Con esta notación, el ket $|\psi\rangle$ puede escribirse:

$$|\psi\rangle = e^{i\chi/2} \left[\cos\frac{\theta}{2} e^{-i\varphi/2} |+\rangle + \sin\frac{\theta}{2} e^{i\varphi/2} |-\rangle\right].$$
 (B-8)

Resumen de la Figura 9: Trayectorias clásicas vs. superposición cuántica

Cuando un átomo de plata entra con espín en el estado $|+\rangle$ (Fig. 9-a) o $|-\rangle$ (Fig. 9-b), su función de onda externa está concentrada en un único paquete estrecho cuyo centro recorre una trayectoria que puede describirse clásicamente.

Sin embargo, si el estado de espín es la superposición

$$|\psi\rangle = \cos\frac{\theta}{2}|+\rangle + \sin\frac{\theta}{2}|-\rangle$$
 (B-9)

el paquete de onda inicial se divide en dos subpaquetes (Fig. 9-c), cada uno localizado cerca de los puntos 1 y 2 al llegar a la pantalla. Aunque cada subpaquete sigue siendo muy estrecho, el átomo ya no tiene una sola trayectoria clásica: la probabilidad de detección se reparte entre ambos lugares.

Estos dos subpaquetes corresponden a la misma partícula con distinta fase relativa; de hecho, si no se realiza la medición (quitan- do la pantalla) y se aplica un gradiente de campo magnético inverso, podrían recombinarse en un único paquete.

Comentario:

(i) Si el campo \mathbf{B}_0 es paralelo al vector unitario \mathbf{u} de ángulos polares θ, φ , la ecuación (B-17) debe reemplazarse por

$$H = \omega_0 S_u \tag{B-20}$$

donde $S_u = \mathbf{S} \cdot \mathbf{u}$.

(ii) Para el átomo de plata $\gamma < 0$, luego $\omega_0 > 0$ según (B-16), lo cual explica la disposición de los niveles en la figura.

B-3. Evolución de un espín 1/2 en un campo magnético uniforme

B-3-a. Hamiltoniano de interacción y ecuación de Schrödinger

Consideremos un átomo de plata en un campo magnético uniforme \mathbf{B}_0 , y tomemos el eje Oz paralelo a \mathbf{B}_0 . La energía potencial clásica del momento magnético $\mathcal{M} = \gamma \mathbf{S}$ es:

$$W = -\mathbf{M} \cdot \mathbf{B}_0 = -\mathcal{M}_z B_0 = -\gamma B_0 S_z \tag{B-15}$$

donde $B_0 = |\mathbf{B}_0|$. Definimos:

$$\omega_0 = -\gamma B_0 \tag{B-16}$$

que tiene dimensión de velocidad angular.

Al cuantizar sólo los grados internos, S_z se reemplaza por el operador \hat{S}_z y la energía (B-15) pasa a ser el Hamiltoniano

$$H = \omega_0 \, \hat{S}_z \tag{B-17}$$

Este operador es independiente del tiempo, por lo que resolver la ecuación de Schrödinger equivale a encontrar los autovalores de H. Sus autovectores son los mismos de \hat{S}_z :

$$\begin{cases} H \mid + \rangle = +\frac{\hbar \omega_0}{2} \mid + \rangle, \\ H \mid - \rangle = -\frac{\hbar \omega_0}{2} \mid - \rangle. \end{cases}$$
 (B-18)

Por tanto, existen dos niveles de energía,

$$E_{+}=+\frac{\hbar\omega_{0}}{2},\quad E_{-}=-\frac{\hbar\omega_{0}}{2},$$

y su separación $\hbar\omega_0$ define la frecuencia de Bohr

$$\nu_{+-} = \frac{1}{h} \left(E_{+} - E_{-} \right) = \frac{\omega_0}{2\pi} \,. \tag{B-19}$$

C-2. Aspecto estático: efecto del acoplamiento en los estados estacionarios del sistema

C-2-a. Expresiones para los autoestados y autoenergías de H

En la base $\{|\varphi_1\rangle, |\varphi_2\rangle\}$, la matriz que representa H es:

$$H = \begin{pmatrix} E_1 + W_{11} & W_{12} \\ W_{21} & E_2 + W_{22} \end{pmatrix}$$
 (C-7)

Su diagonalización conduce a los autoenergías:

$$E_{+} = \frac{1}{2} (E_{1} + W_{11} + E_{2} + W_{22}) + \frac{1}{2} \sqrt{(E_{1} + W_{11} - E_{2} - W_{22})^{2} + 4|W_{12}|^{2}},$$

$$E_{-} = \frac{1}{2} (E_{1} + W_{11} + E_{2} + W_{22}) - \frac{1}{2} \sqrt{(E_{1} + W_{11} - E_{2} - W_{22})^{2} + 4|W_{12}|^{2}}.$$
(C-8)

(si $W_{ij} = 0$, entonces $E_{+} = E_{1}$ y $E_{-} = E_{2}$).

Los autoestados asociados son:

$$|\psi_{+}\rangle = \cos\frac{\theta}{2} e^{-i\varphi/2} |\varphi_{1}\rangle + \sin\frac{\theta}{2} e^{i\varphi/2} |\varphi_{2}\rangle,$$
 (C-9a)

$$|\psi_{-}\rangle = -\sin\frac{\theta}{2} e^{-i\varphi/2} |\varphi_{1}\rangle + \cos\frac{\theta}{2} e^{i\varphi/2} |\varphi_{2}\rangle.$$
 (C-9b)

donde los ángulos θ y φ se definen por:

$$\tan \theta = \frac{2|W_{12}|}{E_1 + W_{11} - E_2 - W_{22}}, \quad 0 \le \theta < \pi, \tag{C-10}$$

$$W_{21} = |W_{21}| e^{i\varphi}. (C-11)$$

C-3. Aspecto dinámico: oscilación del sistema entre los dos estados no perturbados C-3-a. Evolución del vector de estado

Sea el vector de estado en el instante t:

$$|\psi(t)\rangle = a_1(t) |\varphi_1\rangle + a_2(t) |\varphi_2\rangle \tag{C-22}$$

La ecuación de Schrödinger es:

$$i\hbar \frac{d}{dt} |\psi(t)\rangle = (H_0 + W) |\psi(t)\rangle$$
 (C-23)

Proyectando en $|\varphi_1\rangle$ y $|\varphi_2\rangle$, con $W_{11}=W_{22}=0$, obtenemos el sistema acoplado:

$$i\hbar \frac{da_1}{dt} = E_1 a_1 + W_{12} a_2,$$

 $i\hbar \frac{da_2}{dt} = W_{21} a_1 + E_2 a_2.$ (C-24)

La solución se construye descomponiendo $|\psi(0)\rangle$ en los autoestados $|\psi_{+}\rangle$, $|\psi_{-}\rangle$ de $H=H_0+W$:

$$|\psi(0)\rangle = \lambda |\psi_{+}\rangle + \mu |\psi_{-}\rangle ,$$
 (C-25)

y asumiendo la condición inicial

$$|\psi(0)\rangle = |\varphi_1\rangle \ . \tag{C-27}$$

C-3-b. Cálculo de $\mathcal{P}_{12}(t)$: fórmula de Rabi

Expandiendo $|\psi(0)\rangle$ en la base $\{|\psi_{+}\rangle, |\psi_{-}\rangle\}$ (invertir (C-9)), se tiene:

$$|\psi(0)\rangle = |\varphi_1\rangle = e^{i\varphi/2} \left[\cos\frac{\theta}{2} |\psi_+\rangle - \sin\frac{\theta}{2} |\psi_-\rangle\right].$$
 (C-28)

Entonces la evolución temporal es

$$|\psi(t)\rangle = e^{i\varphi/2} \left[\cos\frac{\theta}{2} e^{-iE_{+}t/\hbar} |\psi_{+}\rangle - \sin\frac{\theta}{2} e^{-iE_{-}t/\hbar} |\psi_{-}\rangle\right]. \tag{C-29}$$

La amplitud de probabilidad de hallar el sistema en $|\varphi_2\rangle$ es

$$\langle \varphi_2 | \psi(t) \rangle = e^{i\varphi/2} \left[\cos \frac{\theta}{2} e^{-iE_+ t/\hbar} \langle \varphi_2 | \psi_+ \rangle - \sin \frac{\theta}{2} e^{-iE_- t/\hbar} \langle \varphi_2 | \psi_- \rangle \right], \tag{C-30}$$

y la probabilidad

$$\mathcal{P}_{12}(t) = \left| \langle \varphi_2 | \psi(t) \rangle \right|^2 = \frac{1}{2} \sin^2 \theta \left[1 - \cos((E_+ - E_-) t/\hbar) \right] = \sin^2 \theta \sin^2((E_+ - E_-) t/2\hbar). \quad (C-31)$$

Usando además las expresiones de los ángulos θ y φ [(C-12),(C-13)], se reescribe como

$$\mathcal{P}_{12}(t) = \frac{4|W_{12}|^2}{4|W_{12}|^2 + (E_1 - E_2)^2} \sin^2 \left[t/(2\hbar) \sqrt{4|W_{12}|^2 + (E_1 - E_2)^2} \right]. \tag{C-32}$$

Esta última es la conocida como fórmula de Rabi.

Complemento JIV: Ejercicios

Ejercicio 1

Considera una partícula de espín 1/2 de momento magnético $\mathbf{M} = \gamma \mathbf{S}$. El espacio de estados de espín está generado por los vectores $|+\rangle$ y $|-\rangle$, autovectores de S_z con autovalores $+\hbar/2$ y $-\hbar/2$. En t=0, el estado del sistema es

$$|\psi(0)\rangle = |+\rangle$$
.

- 1. Si en t=0 medimos el observable S_z , ¿qué resultados se pueden obtener y con qué probabilidades?
- 2. En lugar de realizar esa medición, dejamos que el sistema evolucione bajo la acción de un campo magnético uniforme paralelo a Oy, de módulo B_0 . Calcula, en la base $\{|+\rangle, |-\rangle\}$, el estado del sistema en tiempo t.
- 3. En ese instante medimos los observables S_x , S_y y S_z . ¿Qué valores pueden obtenerse y con qué probabilidades? ¿Qué relación debe existir entre B_0 y t para que alguno de los resultados sea absolutamente cierto? Da su interpretación física.

Considera de nuevo una partícula de espín 1/2 (misma notación).

- 1. En t=0 medimos S_y y hallamos $+\hbar/2$. ¿Cuál es el vector de estado $|\psi(0)\rangle$ inmediatamente tras la medición?
- 2. Inmediatamente después aplicamos un campo magnético uniforme dependiente del tiempo, paralelo a Oz, de modo que

$$H(t) = \omega_0(t) S_z.$$

Supón que $\omega_0(t) = 0$ para t < 0 y t > T, y que crece linealmente de 0 a ω_0 en el intervalo 0 < t < T (siendo T un parámetro de tiempo dado). Demuestra que, en cualquier instante t, el estado puede escribirse

$$|\psi(t)\rangle = \frac{1}{\sqrt{2}} \left[e^{i\theta(t)} |+\rangle + i e^{-i\theta(t)} |-\rangle \right],$$

donde $\theta(t)$ es una función real de t (a calcular).

3. En t = T medimos S_y . ¿Qué resultados pueden hallarse y con qué probabilidades? Determina la relación entre ω_0 y T para garantizar un resultado único. Da su interpretación física.

Solución:

1. Tras medir $S_y = +\hbar/2$ el sistema queda en el autovector correspondiente,

$$|\psi(0)\rangle = |+\rangle_y = \frac{1}{\sqrt{2}} (|+\rangle + i |-\rangle).$$

2. Como [H(t), H(t')] = 0, la evolución es

$$U(t) = \exp\left(-\frac{i}{\hbar} \int_0^t H(t') dt'\right).$$

Dado que $H(t) |\pm\rangle = \pm \frac{\hbar}{2} \omega_0(t) |\pm\rangle$, definimos

$$\theta(t) = \frac{1}{2} \int_0^t \omega_0(t') dt',$$

y se obtiene

$$U(t) |+\rangle = e^{-i\theta(t)} |+\rangle, \qquad U(t) |-\rangle = e^{i\theta(t)} |-\rangle.$$

Aplicando a $|\psi(0)\rangle$:

$$|\psi(t)\rangle = \frac{1}{\sqrt{2}} \Big(e^{-i\theta(t)} |+\rangle + i e^{i\theta(t)} |-\rangle \Big).$$

Redefiniendo $\theta \to -\theta$ recuperamos la forma deseada.

3. Escribimos las proyecciones sobre $|\pm\rangle_{u}$:

$$|+\rangle_y = \tfrac{1}{\sqrt{2}}(|+\rangle + i\,|-\rangle), \quad |-\rangle_y = \tfrac{1}{\sqrt{2}}(|+\rangle - i\,|-\rangle).$$

Entonces

$$P(+\frac{\hbar}{2}) = \left| \langle +_y | \psi(T) \rangle \right|^2 = \cos^2 \theta(T), \quad P(-\frac{\hbar}{2}) = \sin^2 \theta(T).$$

Para que el resultado sea siempre $+\hbar/2$ se pide

$$\cos^2 \theta(T) = 1 \implies \theta(T) = n\pi \implies \int_0^T \omega_0(t) dt = 2n\pi.$$

Si $\omega_0(t) = \frac{\omega_0}{T}t$ en [0,T], entonces $\int_0^T \omega_0(t) dt = \frac{1}{2}\omega_0 T$, y la condición es $\frac{1}{2}\omega_0 T = 2n\pi$, esto es $\omega_0 T = 4n\pi$. Físicamente, equivale a girar el espín alrededor de Oz un número entero de vueltas completas, de modo que el autovector de S_y regresa a sí mismo.

Considera una partícula de espín 1/2 en un campo magnético ${\bf B}_0$ con componentes

$$B_x = \frac{1}{\sqrt{2}} B_0$$
, $B_y = 0$, $B_z = \frac{1}{\sqrt{2}} B_0$.

- 1. Calcula la matriz que representa el Hamiltoniano $H = \gamma \mathbf{S} \cdot \mathbf{B}_0$ en la base $\{ |+\rangle, |-\rangle \}$ de S_z .
- 2. Halla los autovalores y autovectores de H.
- 3. Si en t=0 el sistema está en el estado $|-\rangle$, ¿qué valores de energía se obtienen y con qué probabilidades?
- 4. Determina el vector de estado $|\psi(t)\rangle$ en tiempo t. En ese instante medimos S_x : calcula el valor medio de la medición y explica su interpretación geométrica.

$$H = \frac{\omega_0}{\sqrt{2}} \left(S_x + S_z \right) = \frac{\hbar \,\omega_0}{2\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix}$$

Mientras que las energías y estados pedidos en b son, respectivamente:

$$E_{+} = +\frac{\hbar \omega_{0}}{2}, \quad E_{-} = -\frac{\hbar \omega_{0}}{2}$$

$$|\psi_{+}\rangle = \cos\frac{\theta}{2}|+\rangle + \sin\frac{\theta}{2}|-\rangle = \cos\frac{\pi}{8}|+\rangle + \sin\frac{\pi}{8}|-\rangle$$

$$|\psi_{-}\rangle = -\sin\frac{\theta}{2}|+\rangle + \cos\frac{\theta}{2}|-\rangle = -\sin\frac{\pi}{8}|+\rangle + \cos\frac{\pi}{8}|-\rangle$$

En d, tras propagar, llegamos a

$$|\psi(t)\rangle = \sin\frac{\theta}{2} \, e^{-i\omega_0 t/2} \, |\psi_+\rangle \; + \; \cos\frac{\theta}{2} \, e^{i\omega_0 t/2} \, |\psi_-\rangle$$

Y el valor esperado requerido es

$$\langle S_x \rangle = -\frac{\hbar}{4} (1 - \cos \omega_0 t) = -\frac{\hbar}{4} + \frac{\hbar}{4} \cos \omega_0 t$$

Ejercicio 4

Considera el dispositivo experimental descrito en § B-2-b del Capítulo IV: un haz de átomos de espín 1/2 atraviesa un "polarizador" que selecciona la dirección que forma un ángulo θ con el eje Oz en el plano xOz, y luego un "analizador" que mide la componente S_z . Entre polarizador y analizador, sobre una longitud L del haz, se aplica un campo magnético uniforme $\mathbf{B}_0 \parallel Oz$. Sea v la velocidad de los átomos y T = L/v el tiempo de interacción. Definimos

$$\omega_0 = -\gamma B_0.$$

- 1. ¿Cuál es el vector de estado $|\psi_i\rangle$ de un espín al entrar en el analizador?
- 2. Demuestra que, al medir en el analizador, la probabilidad de encontrar $+\hbar/2$ es

$$\frac{1}{2}(1+\cos\theta\cos\omega_0T),$$

y la de encontrar $-\hbar/2$ es

$$\frac{1}{2} (1 - \cos \theta \cos \omega_0 T).$$

Da una interpretación física.

3. (Esta parte y la siguiente implican el concepto de operador densidad, definido en el Complemento EIV.) Demuestra que la matriz de densidad ρ_1 de una partícula al entrar en el analizador, en la base $\{|+\rangle, |-\rangle\}$, es

$$\rho_1 = \frac{1}{2} \begin{pmatrix} 1 + \cos\theta \cos(\omega_0 T) & \sin\theta + i \cos\theta \sin(\omega_0 T) \\ \sin\theta - i \cos\theta \sin(\omega_0 T) & 1 - \cos\theta \cos(\omega_0 T) \end{pmatrix}.$$

Calcula $Tr(\rho_1 S_x)$, $Tr(\rho_1 S_y)$ y $Tr(\rho_1 S_z)$. ¿Describe ρ_1 un estado puro?

4. Ahora supongamos que la velocidad de un átomo es una variable aleatoria, y por tanto el tiempo de vuelo T sólo se conoce con una incertidumbre ΔT . Además, el campo \mathbf{B}_0 es tan intenso que

$$\omega_0 \Delta T \gg 1$$
.

Los posibles valores del producto $\omega_0 T$ (módulo 2π) son entonces todos los comprendidos entre 0 y 2π , equiprobables.

- a) ¿Cuál es el operador densidad ρ_2 de un átomo en el instante en que entra en el analizador? ¿Corresponde ρ_2 a un estado puro?
- b) Calcula $Tr(\rho_2 S_x)$, $Tr(\rho_2 S_y)$ y $Tr(\rho_2 S_z)$. ¿Cuál es tu interpretación? ¿En qué caso el operador densidad describe un espín completamente polarizado? ¿Uno completamente no polarizado?
- c) Describe cualitativamente los fenómenos observados a la salida del analizador al variar ω_0 desde 0 hasta el régimen $\omega_0 \Delta T \gg 1$.

Ejercicio 5. Operador de evolución de un espín 1/2 (Complemento FIII)

Considera un espín 1/2 de momento magnético $\mathbf{M} = \gamma \mathbf{S}$ en un campo magnético \mathbf{B}_0 de componentes

 $B_x = -\frac{\omega_x}{\gamma}, \quad B_y = -\frac{\omega_y}{\gamma}, \quad B_z = -\frac{\omega_z}{\gamma}.$

Definimos

$$\omega_0 = \sqrt{\omega_x^2 + \omega_y^2 + \omega_z^2} \,.$$

1. Demuestra que el operador de evolución es

$$U(t,0) = \exp(iMt),$$

donde

$$M = \frac{1}{\hbar} (\omega_x S_x + \omega_y S_y + \omega_z S_z) = \frac{1}{2} (\omega_x \sigma_x + \omega_y \sigma_y + \omega_z \sigma_z).$$

Calcula la matriz de M en la base $\{|+\rangle, |-\rangle\}$ de autovectores de S_z , y muestra que

$$M^2 = \frac{1}{4} \left(\omega_x^2 + \omega_y^2 + \omega_z^2 \right) = \left(\frac{\omega_0}{2} \right)^2.$$

2. Escribe U(t,0) en la forma

$$U(t,0) = \cos\frac{\omega_0 t}{2} - \frac{2i}{\omega_0} M \sin\frac{\omega_0 t}{2}.$$

3. Supón que en t=0 el espín está en $|\psi(0)\rangle=|+\rangle$. La probabilidad de hallarlo en $|+\rangle$ a tiempo t es

$$\mathcal{P}_{++}(t) = |\langle +| U(t,0) |+\rangle|^2.$$

Usando la forma de U(t,0), demuestra que

$$\mathcal{P}_{++}(t) = 1 - \frac{\omega_x^2 + \omega_y^2}{\omega_0^2} \sin^2 \frac{\omega_0 t}{2}.$$

Proporciona una interpretación geométrica de este resultado.

Considera el sistema de dos espines 1/2, \mathbf{S}_1 y \mathbf{S}_2 , en la base de cuatro vectores $\{|+,+\rangle, |+,-\rangle, |-,+\rangle, |-,-\rangle\}$ definida en el Complemento DIV. En t=0, el estado del sistema es

$$|\psi(0)\rangle = \frac{1}{2}|+,+\rangle + \frac{1}{2}|+,-\rangle + \frac{1}{\sqrt{2}}|-,-\rangle.$$

- 1. En t=0 se mide S_{1z} : ¿cuál es la probabilidad de obtener $-\hbar/2$? ¿Cuál es el vector de estado tras la medición? Si a continuación medimos S_{1x} , ¿qué resultados pueden obtenerse y con qué probabilidades? Responde de igual forma si la medición de S_{1z} hubiera dado $+\hbar/2$.
- 2. Cuando el sistema está en el estado $|\psi(0)\rangle$, se miden simultáneamente S_{1x} y S_{2z} . ¿Cuál es la probabilidad de encontrar resultados opuestos? ¿Y resultados idénticos?
- 3. En lugar de las mediciones anteriores, dejamos que el sistema evolucione bajo el Hamiltoniano

$$H = \omega_1 \, S_{1z} + \omega_2 \, S_{2z}.$$

Determina el estado $|\psi(t)\rangle$ a tiempo t. Calcula en ese instante los valores medios $\langle S_1\rangle$ y $\langle S_2\rangle$. Da una interpretación física.

4. Demuestra que las longitudes de los vectores $\langle S_1 \rangle$ y $\langle S_2 \rangle$ son menores que $\hbar/2$. ¿Qué forma debe tener $|\psi(0)\rangle$ para que cada una de esas longitudes sea exactamente $+\hbar/2$?

Ejercicio 7

Considera el mismo sistema de dos espines 1/2 del ejercicio anterior; el espacio de estados está generado por la base $\{|\pm,\pm\rangle\}$.

- 1. Escribe la matriz 4×4 que representa, en esta base, el operador S_{1y} . ¿Cuáles son sus autovalores y autovectores?
- 2. El estado normalizado del sistema es

$$|\psi\rangle = \alpha |+,+\rangle + \beta |+,-\rangle + \gamma |-,+\rangle + \delta |-,-\rangle$$

con $\alpha, \beta, \gamma, \delta \in \mathbb{C}$. Se miden simultáneamente S_{1x} y S_{2y} . ¿Qué resultados pueden hallarse y con qué probabilidades? ¿Cómo cambian estas probabilidades si $|\psi\rangle$ es un producto tensorial de un estado del primer espín y un estado del segundo espín?

- 3. Repite las preguntas del apartado anterior para una medición de S_{1y} y S_{2y} .
- 4. En lugar de realizar las mediciones anteriores, medimos sólo S_{2y} . Calcula, primero a partir de los resultados del apartado b) y luego de los del c), la probabilidad de encontrar $-\hbar/2$.

Ejercicio 8

Considera un electrón en una molécula lineal triatómica formada por tres átomos equidistantes:

$$A - B - C$$

Usamos $|\varphi_A\rangle$, $|\varphi_B\rangle$, $|\varphi_C\rangle$ para denotar tres estados ortonormales localizados en los núcleos de los átomos A, B y C. Nos restringimos al subespacio generado por $\{|\varphi_A\rangle, |\varphi_B\rangle, |\varphi_C\rangle\}$. Si despreciamos el salto del electrón entre núcleos, su energía viene dada por

$$H_0 |\varphi_A\rangle = E_0 |\varphi_A\rangle, \quad H_0 |\varphi_B\rangle = E_0 |\varphi_B\rangle, \quad H_0 |\varphi_C\rangle = E_0 |\varphi_C\rangle.$$

El acoplamiento entre estos estados lo describe un Hamiltoniano adicional W:

$$W|\varphi_A\rangle = -a|\varphi_B\rangle, \quad W|\varphi_B\rangle = -a(|\varphi_A\rangle + |\varphi_C\rangle), \quad W|\varphi_C\rangle = -a|\varphi_B\rangle,$$

donde a > 0 es una constante real. El Hamiltoniano total es

$$H = H_0 + W.$$

- 1. Calcula las energías y los estados estacionarios (autovectores) de H.
- 2. Si en t = 0 el electrón está en el estado $|\varphi_A\rangle$, discute cualitativamente su localización en tiempos posteriores. Hay instantes t en que esté perfectamente localizado en A, B o C?
- 3. Sea el observable D cuyos autovectores son $|\varphi_A\rangle$, $|\varphi_B\rangle$, $|\varphi_C\rangle$ con autovalores -d, 0, +d, respectivamente. Si se mide D en tiempo t, ¿qué valores pueden obtenerse y con qué probabilidades?
- 4. Si el estado inicial es arbitrario, ¿cuáles son las frecuencias de Bohr que aparecen en la evolución de $\langle D \rangle$? Da una interpretación física de estas frecuencias como las de las radiaciones electromagnéticas que la molécula puede absorber o emitir.

Ejercicio 9.a Definición y espectro de R

Sea $\{|\varphi_n\rangle\}_{n=1}^6$ una base ortonormal. Definimos el operador R por:

$$R |\varphi_1\rangle = |\varphi_2\rangle$$
, $R |\varphi_2\rangle = |\varphi_3\rangle$, ..., $R |\varphi_6\rangle = |\varphi_1\rangle$.

Buscamos $\lambda \in \mathbb{C}$ y $|\psi\rangle \neq 0$ tales que

$$R |\psi\rangle = \lambda |\psi\rangle$$
.

Si escribimos $|\psi\rangle = \sum_{n=1}^6 c_n |\varphi_n\rangle$, la ecuación anterior da el sistema

$$c_1 = \lambda c_6, \quad c_2 = \lambda c_1, \dots, c_6 = \lambda c_5.$$

De ello se deduce $\lambda^6 = 1$, es decir

$$\lambda_k = e^{2\pi i k/6}, \quad k = 0, 1, \dots, 5.$$

Los autovectores normalizados son

$$|\psi_k\rangle = \frac{1}{\sqrt{6}} \sum_{n=1}^{6} e^{-2\pi i k(n-1)/6} |\varphi_n\rangle,$$

que forman un sistema ortonormal y completo en el espacio de estados.

Ejercicio 9.b Hamiltoneano de «benceno» y conmutación con R

Despreciando el salto del electrón entre átomos, el Hamiltoniano no perturbado es

$$H_0 |\varphi_n\rangle = E_0 |\varphi_n\rangle, \quad n = 1, \dots, 6.$$

La perturbación que permite el salto sólo entre vecinos se escribe

$$W|\varphi_1\rangle = -a(|\varphi_6\rangle + |\varphi_2\rangle), \quad W|\varphi_2\rangle = -a(|\varphi_1\rangle + |\varphi_3\rangle), \ldots, \quad W|\varphi_6\rangle = -a(|\varphi_5\rangle + |\varphi_1\rangle).$$

El Hamiltoniano total es $H = H_0 + W$. Como R permuta cíclicamente los $|\varphi_n\rangle$ y H_0 es trivial en esa base, se comprueba fácilmente que

$$[R, H] = 0.$$

Por tanto, los autovectores comunes de R y H son precisamente los $|\psi_k\rangle$ hallados en el apartado anterior. Sus energías son

$$E_k = E_0 + \langle \psi_k | W | \psi_k \rangle = E_0 - 2a \cos \frac{2\pi k}{6}, \quad k = 0, 1, \dots, 5.$$

En ninguno de estos estados el electrón queda localizado en un solo átomo; su función de onda se extiende a todo el anillo. Estos resultados son esenciales para explicar el comportamiento electrónico del benceno.

A-3. Propiedades generales del Hamiltoniano cuántico

En mecánica cuántica, las coordenadas clásicas x y p se reemplazan por los operadores \hat{X} y \hat{P} , que cumplen la relación de conmutación:

$$[\hat{X}, \hat{P}] = i\hbar \tag{A-14}$$

Partiendo de la forma clásica

$$H = \frac{p^2}{2m} + \frac{1}{2} m\omega^2 x^2,$$

se obtiene el operador Hamiltoniano

$$\hat{H} = \frac{\hat{P}^2}{2m} + \frac{1}{2}m\omega^2 \hat{X}^2. \tag{A-15}$$

Al ser \hat{H} independiente del tiempo, resolvemos la ecuación de autovalores

$$\hat{H}\left|\varphi\right\rangle = E\left|\varphi\right\rangle \tag{A-16}$$

que en representación x toma la forma

$$\left[-\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + \frac{1}{2} m\omega^2 x^2 \right] \varphi(x) = E \varphi(x).$$
 (A-17)

De aquí se deducen las siguientes propiedades:

1. Los valores propios de \hat{H} son positivos, pues si $V(x) \geq V_m$ entonces

$$E > V_m. (A-18)$$

2. Las autofunciones tienen paridad definida, dado que el potencial es par:

$$V(-x) = V(x). \tag{A-19}$$

3. El espectro es discreto, ya que el movimiento queda confinado en una región limitada del eje x.

B-1. Notación y operadores adimensionales

Para simplificar la resolución, definimos los operadores adimensionales

$$\hat{X} = \sqrt{\frac{m\omega}{\hbar}} \, \hat{x}, \quad \hat{P} = \frac{1}{\sqrt{m\hbar\omega}} \, \hat{p},$$
 (B-1)

que satisfacen el conmutador canónico

$$[\hat{X}, \hat{P}] = i. \tag{B-2}$$

El Hamiltoniano se factoriza como

$$H = \hbar\omega \,\hat{H},\tag{B-3}$$

donde el operador adimensional es

$$\hat{H} = \frac{1}{2} (\hat{X}^2 + \hat{P}^2). \tag{B-4}$$

Buscamos las soluciones de la ecuación de autovalores

$$\hat{H} |\varphi_n\rangle = \varepsilon_n |\varphi_n\rangle. \tag{B-5}$$

B-1-a. Operador $a^{\dagger}a$ y Hamiltoniano adimensional

Partiendo de las definiciones

$$a = \frac{1}{\sqrt{2}}(\hat{X} + i\hat{P}), \quad a^{\dagger} = \frac{1}{\sqrt{2}}(\hat{X} - i\hat{P}),$$

calculamos primero

$$a^{\dagger} a = \frac{1}{2} (\hat{X} - i\hat{P})(\hat{X} + i\hat{P})$$

$$= \frac{1}{2} (\hat{X}^2 + \hat{P}^2 + i[\hat{X}, \hat{P}])$$

$$= \frac{1}{2} (\hat{X}^2 + \hat{P}^2 - 1)$$
(B-10)

Comparando con la forma adimensional del Hamiltoniano $\hat{H} = \frac{1}{2}(\hat{X}^2 + \hat{P}^2)$ (Ecuación (B-4)), obtenemos

$$\hat{H} = a^{\dagger} a + \frac{1}{2} = \frac{1}{2} (\hat{X} - i\hat{P})(\hat{X} + i\hat{P}) + \frac{1}{2}$$
(B-11)

y, de manera análoga,

$$\hat{H} = a \, a^{\dagger} - \frac{1}{2}.$$
 (B-12)

Introducimos entonces el operador número

$$N = a^{\dagger} a, \tag{B-13}$$

que es hermítico, pues

$$N^{\dagger} = (a^{\dagger}a)^{\dagger} = a^{\dagger}a = N. \tag{B-14}$$

Por tanto, de (B-11) se sigue

$$\hat{H} = N + \frac{1}{2}.$$
 (B-15)

B-1-b. Operadores $a, a^{\dagger} \mathbf{y} N$

Si intentáramos factorizar $\hat{X}^2 + \hat{P}^2$ como si \hat{X}, \hat{P} fuesen números, fallaríamos por la no conmutatividad. En su lugar, definimos

$$a = \frac{1}{\sqrt{2}}(\hat{X} + i\hat{P}),\tag{B-6a}$$

$$a^{\dagger} = \frac{1}{\sqrt{2}}(\hat{X} - i\hat{P}). \tag{B-6b}$$

Invertir estas relaciones da

$$\hat{X} = \frac{1}{\sqrt{2}}(a^{\dagger} + a),\tag{B-7a}$$

$$\hat{P} = \frac{i}{\sqrt{2}}(a^{\dagger} - a). \tag{B-7b}$$

Su conmutador se calcula con (B-6) y la relación canónica $[\hat{X},\hat{P}]=i$:

$$[a, a^{\dagger}] = \frac{1}{2} [\hat{X} + i\hat{P}, \hat{X} - i\hat{P}]$$

= $\frac{i}{2} [\hat{P}, \hat{X}] - \frac{i}{2} [\hat{X}, \hat{P}] = 1.$ (B-8)

Es decir,

$$[a, a^{\dagger}] = 1, \tag{B-9}$$

que es equivalente a la conmutación canónica $[\hat{X},\hat{P}]=i\hbar$."

B-1-a. Operador $a^{\dagger}a$ y Hamiltoniano adimensional

Partiendo de las definiciones

$$a = \frac{1}{\sqrt{2}}(\hat{X} + i\hat{P}), \quad a^{\dagger} = \frac{1}{\sqrt{2}}(\hat{X} - i\hat{P}),$$

calculamos primero

$$a^{\dagger} a = \frac{1}{2} (\hat{X} - i\hat{P})(\hat{X} + i\hat{P})$$

$$= \frac{1}{2} (\hat{X}^2 + \hat{P}^2 + i[\hat{X}, \hat{P}])$$

$$= \frac{1}{2} (\hat{X}^2 + \hat{P}^2 - 1)$$
(B-10)

Comparando con la forma adimensional del Hamiltoniano $\hat{H} = \frac{1}{2}(\hat{X}^2 + \hat{P}^2)$ (Ecuación (B-4)), obtenemos

$$\hat{H} = a^{\dagger} a + \frac{1}{2} = \frac{1}{2} (\hat{X} - i\hat{P})(\hat{X} + i\hat{P}) + \frac{1}{2}$$
(B-11)

y, de manera análoga,

$$\hat{H} = a \, a^{\dagger} - \frac{1}{2}.$$
 (B-12)

Introducimos entonces el operador número

$$N = a^{\dagger} a, \tag{B-13}$$

que es hermítico, pues

$$N^{\dagger} = (a^{\dagger}a)^{\dagger} = a^{\dagger}a = N. \tag{B-14}$$

Por tanto, de (B-11) se sigue

$$\hat{H} = N + \frac{1}{2}.$$
 (B-15)

B-1-b. Operadores $a, a^{\dagger} \mathbf{y} N$

Si intentáramos factorizar $\hat{X}^2+\hat{P}^2$ como si \hat{X},\hat{P} fuesen números, fallaríamos por la conmutatividad. En su lugar, definimos

$$a = \frac{1}{\sqrt{2}}(\hat{X} + i\hat{P}),\tag{B-6a}$$

$$a^{\dagger} = \frac{1}{\sqrt{2}}(\hat{X} - i\hat{P}). \tag{B-6b}$$

Invertir estas relaciones da

$$\hat{X} = \frac{1}{\sqrt{2}}(a^{\dagger} + a),\tag{B-7a}$$

$$\hat{P} = \frac{i}{\sqrt{2}}(a^{\dagger} - a). \tag{B-7b}$$

Su conmutador se calcula con (B-6) y la relación canónica $[\hat{X},\hat{P}]=i$:

$$[a, a^{\dagger}] = \frac{1}{2} [\hat{X} + i\hat{P}, \hat{X} - i\hat{P}]$$

= $\frac{i}{2} [\hat{P}, \hat{X}] - \frac{i}{2} [\hat{X}, \hat{P}] = 1.$ (B-8)

Es decir,

$$[a, a^{\dagger}] = 1, \tag{B-9}$$

que es equivalente a la conmutación canónica $[\hat{X}, \hat{P}] = i\hbar$.

B-2. Determinación del espectro

Cuando se resuelve la ecuación de autovalores de N,

$$N |\varphi_{\nu}\rangle = \nu |\varphi_{\nu}\rangle,$$
 (B-18)

se demuestra que $|\varphi_{\nu}\rangle$ es también autovector de \hat{H} con autovalor

$$E_{\nu} = (\nu + \frac{1}{2})\hbar,$$
 (B-19)

pues $\hat{H} = N + \frac{1}{2}$ [Ecuaciones (B-3) y (B-15)].

B-2-a. Lemas

Lema I (propiedad de los autovalores de N). Los autovalores ν de $N=a^{\dagger}a$ son no negativos. De hecho, para cualquier autovector $|\varphi_{\nu}\rangle$ de N:

$$\|a|\varphi_{\nu}\rangle\|^{2} = \langle \varphi_{\nu}|a^{\dagger}a|\varphi_{\nu}\rangle = \langle \varphi_{\nu}|N|\varphi_{\nu}\rangle = \nu\,\langle \varphi_{\nu}|\varphi_{\nu}\rangle \ge 0.$$
 (B-20,B-21)

Como $\langle \varphi_{\nu} | \varphi_{\nu} \rangle > 0$, se obtiene $\nu \geq 0$.

Lema II (propiedades de $a |\varphi_{\nu}\rangle$). Sea $|\varphi_{\nu}\rangle \neq 0$ autovector de N con autovalor ν ; definamos $|\chi\rangle = a |\varphi_{\nu}\rangle$. Entonces: (i) Si $\nu = 0$, $||\chi\rangle||^2 = \nu||\varphi_{\nu}||^2 = 0$ y $|\chi\rangle = 0$. (ii) Si $\nu > 0$, $||\chi\rangle||^2 > 0$ y, usando [N, a] = -a [(B-17a)],

$$N|\chi\rangle = (aN + [N, a])|\varphi_{\nu}\rangle = (\nu - 1)|\chi\rangle , \qquad (B-27)$$

de modo que $|\chi\rangle$ es un autovector de N con autovalor $\nu-1$.

Lema III (propiedades de $a^{\dagger} |\varphi_{\nu}\rangle$ **).** Sea $|\varphi_{\nu}\rangle \neq 0$ autovector de N con $\nu \geq 0$; definamos $|\chi'\rangle = a^{\dagger} |\varphi_{\nu}\rangle$. Entonces: (i) $||\chi'\rangle||^2 = \langle \varphi_{\nu}| a a^{\dagger} |\varphi_{\nu}\rangle = (\nu + 1) ||\varphi_{\nu}||^2 > 0$, luego $|\chi'\rangle \neq 0$. (ii) Con $[N, a^{\dagger}] = a^{\dagger}$ [(B-17b)] se halla

$$N|\chi'\rangle = (a^{\dagger}N + [N, a^{\dagger}])|\varphi_{\nu}\rangle = (\nu + 1)|\chi'\rangle. \tag{B-29}$$

B-2-b. El espectro de N son enteros no negativos

Sea ν un autovalor de N y $|\varphi_{\nu}\rangle$ su autovector.

- Si $\nu \notin \mathbb{Z}$, existe $k \in \mathbb{Z}$ tal que $\nu k < 0$ (). Aplicando sucesivamente a a $|\varphi_{\nu}\rangle$, por el lema II se obtienen autovectores de autovalores $\nu 1, \nu 2, \dots, \nu k < 0$, lo cual contradice el lema I.
 - Si $\nu = n \in \{0, 1, 2, \dots\}$, la cadena

$$|\varphi_n\rangle, \ a |\varphi_n\rangle, \dots, \ a^n |\varphi_n\rangle, \ a^{n+1} |\varphi_n\rangle = 0$$
 (B-31,B-33)

termina en cero y no produce autovalores negativos.

Por tanto, los únicos autovalores posibles son los enteros $\nu = 0, 1, 2, \dots$

B-2-c. Interpretación de los operadores a y a^{\dagger}

Partiendo de un autovector $|\varphi_n\rangle$ de N (y por tanto de \hat{H}) con

$$\hat{H} |\varphi_n\rangle = (n + \frac{1}{2})\hbar |\varphi_n\rangle,$$

la acción de a y a^{\dagger} satisface:

$$a |\varphi_n\rangle \propto |\varphi_{n-1}\rangle, \qquad a^{\dagger} |\varphi_n\rangle \propto |\varphi_{n+1}\rangle.$$

Así, a "aniquila" un quantum \hbar de energía y a^{\dagger} lo "crea", de ahí su nombre de operadores de destrucción y creación.

B-2-d. Niveles de energía

De lo anterior y la relación (B-19) se concluye que los niveles de energía del oscilador armónico 1-D son

$$E_n = \hbar\omega \left(n + \frac{1}{2}\right), \quad n = 0, 1, 2, \dots$$
 (B-34)

con separación $\Delta E = \hbar \omega$ y nivel de cero punto $E_0 = \frac{1}{2}\hbar \omega$.""

B-2. Determinación del espectro

Cuando se resuelve la ecuación de autovalores de N,

$$N |\varphi_{\nu}\rangle = \nu |\varphi_{\nu}\rangle,$$
 (B-18)

se demuestra que $|\varphi_{\nu}\rangle$ es también autovector de \hat{H} con autovalor

$$E_{\nu} = (\nu + \frac{1}{2})\hbar,$$
 (B-19)

pues $\hat{H} = N + \frac{1}{2}$ [Ecuaciones (B-3) y (B-15)].

B-2-a. Lemas

Lema I (propiedad de los autovalores de N). Los autovalores ν de $N=a^{\dagger}a$ son no negativos. De hecho, para cualquier autovector $|\varphi_{\nu}\rangle$ de N:

$$\|a|\varphi_{\nu}\rangle\|^{2} = \langle \varphi_{\nu}|a^{\dagger}a|\varphi_{\nu}\rangle = \langle \varphi_{\nu}|N|\varphi_{\nu}\rangle = \nu\,\langle \varphi_{\nu}|\varphi_{\nu}\rangle \ge 0.$$
 (B-20,B-21)

Como $\langle \varphi_{\nu} | \varphi_{\nu} \rangle > 0$, se obtiene $\nu \geq 0$.

Lema II (propiedades de $a |\varphi_{\nu}\rangle$ **).** Sea $|\varphi_{\nu}\rangle \neq 0$ autovector de N con autovalor ν ; definamos $|\chi\rangle = a |\varphi_{\nu}\rangle$. Entonces: (i) Si $\nu = 0$, $||\chi\rangle||^2 = \nu||\varphi_{\nu}||^2 = 0$ y $|\chi\rangle = 0$. (ii) Si $\nu > 0$, $||\chi\rangle||^2 > 0$ y, usando [N, a] = -a [(B-17a)],

$$N|\chi\rangle = (aN + [N, a])|\varphi_{\nu}\rangle = (\nu - 1)|\chi\rangle$$
, (B-27)

de modo que $|\chi\rangle$ es un autovector de N con autovalor $\nu-1$.

Lema III (propiedades de $a^{\dagger} |\varphi_{\nu}\rangle$ **).** Sea $|\varphi_{\nu}\rangle \neq 0$ autovector de N con $\nu \geq 0$; definamos $|\chi'\rangle = a^{\dagger} |\varphi_{\nu}\rangle$. Entonces: (i) $||\chi'\rangle||^2 = \langle \varphi_{\nu}| a a^{\dagger} |\varphi_{\nu}\rangle = (\nu + 1) ||\varphi_{\nu}||^2 > 0$, luego $|\chi'\rangle \neq 0$. (ii) Con $[N, a^{\dagger}] = a^{\dagger}$ [(B-17b)] se halla

$$N |\chi'\rangle = (a^{\dagger}N + [N, a^{\dagger}]) |\varphi_{\nu}\rangle = (\nu + 1) |\chi'\rangle . \tag{B-29}$$

B-2-b. El espectro de N son enteros no negativos

Sea ν un autovalor de N y $|\varphi_{\nu}\rangle$ su autovector.

– Si $\nu \notin \mathbb{Z}$, existe $k \in \mathbb{Z}$ tal que $\nu - k < 0$ (). Aplicando sucesivamente a a $|\varphi_{\nu}\rangle$, por el lema II se obtienen autovectores de autovalores $\nu - 1, \nu - 2, \dots, \nu - k < 0$, lo cual contradice el lema I.

- Si $\nu = n \in \{0, 1, 2, \dots\}$, la cadena

$$|\varphi_n\rangle, \ a |\varphi_n\rangle, \dots, \ a^n |\varphi_n\rangle, \ a^{n+1} |\varphi_n\rangle = 0$$
 (B-31,B-33)

termina en cero y no produce autovalores negativos.

Por tanto, los únicos autovalores posibles son los enteros $\nu = 0, 1, 2, \dots$

B-2-c. Interpretación de los operadores a y a^{\dagger}

Partiendo de un autovector $|\varphi_n\rangle$ de N (y por tanto de \hat{H}) con

$$\hat{H} |\varphi_n\rangle = (n + \frac{1}{2})\hbar |\varphi_n\rangle,$$

la acción de a y a^{\dagger} satisface:

$$a |\varphi_n\rangle \propto |\varphi_{n-1}\rangle, \qquad a^{\dagger} |\varphi_n\rangle \propto |\varphi_{n+1}\rangle.$$

Así, a "aniquila" un quantum \hbar de energía y a^{\dagger} lo "crea", de ahí su nombre de operadores de destrucción y creación.

B-2-d. Niveles de energía

De lo anterior y la relación (B-19) se concluye que los niveles de energía del oscilador armónico 1-D son

$$E_n = \hbar\omega \left(n + \frac{1}{2}\right), \quad n = 0, 1, 2, \dots$$
 (B-34)

con separación $\Delta E = \hbar \omega$ y nivel de cero punto $E_0 = \frac{1}{2} \hbar \omega$.

Complemento MV: Ejercicios

Considere un oscilador armónico de masa m y frecuencia angular ω . En t=0, el estado del oscilador es

$$|\psi(0)\rangle = \sum_{n=0}^{\infty} c_n |\varphi_n\rangle,$$

donde $\{|\varphi_n\rangle\}$ son estados estacionarios con energías $E_n = (n + \frac{1}{2})\hbar\omega$.

- 1. ¿Cuál es la probabilidad \mathcal{P} de que una medición de la energía realizada en un tiempo arbitrario t > 0 dé un resultado mayor que $2\hbar\omega$? Cuando $\mathcal{P} = 0$, ¿qué coeficientes c_n son distintos de cero?
- 2. A partir de ahora, suponga que sólo c_0 y c_1 son distintos de cero. Escriba la condición de normalización para $|\psi(0)\rangle$ y exprese el valor medio $\langle H\rangle$ de la energía en función de c_0 y c_1 . Con el requisito adicional $\langle H\rangle = \hbar\omega$, calcule $|c_0|^2$ y $|c_1|^2$.
- 3. Dado que el estado normalizado $|\psi(0)\rangle$ está definido sólo hasta un factor de fase global, fijamos este factor eligiendo c_0 real y positivo. Sea

$$c_1 = |c_1| e^{i\theta_1}.$$

Suponemos además que $\langle H \rangle = \hbar \omega$ y que $\langle X \rangle = \frac{1}{2} \sqrt{\hbar/(m\omega)}$. Calcule el ángulo de fase θ_1 .

4. Con $|\psi(0)\rangle$ así determinado, escriba $|\psi(t)\rangle$ para t>0 y calcule el valor de θ_1 en el instante t. Deduzca a partir de ello la evolución del valor medio $\langle X \rangle(t)$ de la posición.

Ejercicio 2. Oscilador armónico anisótropo en tres dimensiones

En un problema tridimensional, considere una partícula de masa m y con energía potencial

$$V(X, Y, Z) = \frac{m\omega^2}{2} \left[\left(1 + \frac{2\lambda}{3} \right) (X^2 + Y^2) + \left(1 - \frac{4\lambda}{3} \right) Z^2 \right],$$

donde $\omega \ge 0$ y $0 \le \lambda < \frac{3}{4}$.

- 1. ¿Cuáles son los estados propios del Hamiltoniano y las energías correspondientes?
- 2. Calcule y discuta, en función de λ , la variación de la energía, la paridad y el grado de degeneración del estado fundamental y de los dos primeros estados excitados.

Ejercicio 3. Oscilador armónico: dos partículas

Dos partículas de la misma masa m, con posiciones X_1, X_2 y momentos P_1, P_2 , se encuentran sometidas al mismo potencial unidimensional

$$V(X) = \frac{1}{2} m\omega^2 X^2.$$

Las partículas no interactúan entre sí.

1. Escriba el operador Hamiltoniano H del sistema de dos partículas. Demuestre que

$$H = H_1 + H_2,$$

donde H_1 actúa sólo en el espacio de estados de la partícula 1 y H_2 sólo en el de la partícula 2. Calcule los niveles de energía del sistema, sus grados de degeneración y las funciones de onda correspondientes.

- 2. ¿Forma H un conjunto completo de operadores que se conmutan mutuamente (C.S.C.O.)? ¿Y el conjunto $\{H_1, H_2\}$? Denotemos por $|\Phi_{n_1, n_2}\rangle$ los autovectores comunes de H_1 y H_2 . Escriba las relaciones de ortonormalidad y de cierre para los estados $\{|\Phi_{n_1, n_2}\rangle\}$.
- 3. Consideremos un sistema que, en t=0, está en el estado

$$|\psi(0)\rangle = \frac{1}{2}(|\Phi_{0,0}\rangle + |\Phi_{1,0}\rangle + |\Phi_{0,1}\rangle + |\Phi_{1,1}\rangle).$$

¿Qué resultados pueden obtenerse, y con qué probabilidades, si en ese instante medimos:

- \blacksquare la energía total del sistema H,
- la energía de la partícula 1 (H_1) ,
- la posición o la velocidad de la partícula 1?

Ejercicio 4 (continuación)

El sistema de dos partículas, en t=0, se encuentra en el mismo estado $|\psi(0)\rangle$ definido en el ejercicio anterior.

- 1. En t=0 se mide la energía total H y el resultado hallado es $2\hbar\omega$.
 - a) Calcule los valores medios de la posición, del momento y de la energía de la partícula 1 para un tiempo arbitrario t > 0. Repita para la partícula 2.
 - b) Para t > 0 se mide la energía de la partícula 1. ¿Qué valores pueden encontrarse y con qué probabilidades? Haga la misma pregunta para la medición de la posición de la partícula 1 y dibuje la densidad de probabilidad resultante.
- 2. En lugar de medir la energía total H, en t=0 se mide la energía H_2 de la partícula 2 y el resultado es $\frac{1}{2}\hbar\omega$. ¿Cómo cambian las respuestas a los apartados α) y β) del punto a)?

Ejercicio 5. Operador de intercambio de dos partículas

Denotemos por $\{|\Phi_{n_1,n_2}\rangle\}$ los autovectores comunes de H_1 y H_2 , con autovalores $(n_1 + \frac{1}{2})\hbar\omega$ y $(n_2 + \frac{1}{2})\hbar\omega$. Definimos el operador de "intercambio" de partículas P_e mediante

$$P_e |\Phi_{n_1,n_2}\rangle = |\Phi_{n_2,n_1}\rangle$$
.

1. Demuestra que $P_e^{-1}=P_e$ y que P_e es unitario. ¿Cuáles son los autovalores de P_e ? Sea B un observable cualquiera y definamos

$$B' = P_e B P_e^{\dagger}.$$

Muestra que la condición B' = B (invarianza de B bajo el intercambio) es equivalente a $[B, P_e] = 0$.

2. Prueba que

$$P_e H_1 P_e^{\dagger} = H_2, \quad P_e H_2 P_e^{\dagger} = H_1.$$

¿Conmuta el Hamiltoniano total $H=H_1+H_2$ con P_e ? Calcula la acción de P_e sobre los observables X_1,P_1,X_2,P_2 .

3. Construye una base de autovectores comunes a H y P_e . ¿Forman estos operadores un C.S.C.O.? ¿Qué sucede con el espectro de H y la degeneración de sus autovalores si se conservan únicamente los autovectores $|\Phi\rangle$ de H que satisfacen

$$P_e |\Phi\rangle = - |\Phi\rangle$$
?

Ejercicio 6. Oscilador armónico cargado en un campo eléctrico variable

Consideremos un oscilador armónico unidimensional de masa m, carga q y potencial

$$V(X) = \frac{1}{2} m\omega^2 X^2.$$

Si se aplica un campo eléctrico $\mathcal{E}(t) \parallel Oz$, el término de interacción es

$$W(t) = -q \mathcal{E}(t) X.$$

- 1. Exprese el Hamiltoniano total $H(t) = H_0 + W(t)$ en términos de los operadores de creación y aniquilación a, a^{\dagger} . Calcule los conmutadores [a, H(t)] y $[a^{\dagger}, H(t)]$.
- 2. Sea

$$\alpha(t) = \langle \psi(t) | a | \psi(t) \rangle$$
,

donde $|\psi(t)\rangle$ es el estado normalizado de la partícula. Muestre, usando a), que

$$\frac{d}{dt} \alpha(t) = -i \omega \alpha(t) + i \lambda(t), \quad \lambda(t) = \frac{q}{\sqrt{2m\hbar\omega}} \mathcal{E}(t).$$

Integre esta ecuación diferencial. A partir de $\alpha(t)$, determine los valores medios de la posición $\langle X \rangle(t)$ y del momento $\langle P \rangle(t)$.

3. Sea $|\psi(t)\rangle$ el estado normalizado de un oscilador armónico en un campo eléctrico variable, y definamos

$$\alpha(t) = \langle \psi(t) | a | \psi(t) \rangle$$
.

4. Definimos el «ket desplazado»

$$|\phi(t)\rangle = [a - \alpha(t)] |\psi(t)\rangle.$$

Donde $\alpha(t)$ es el valor calculado en el apartado b
). Usando los resultados de a) y b) demuestre que

$$i\hbar \frac{d}{dt} |\phi(t)\rangle = [H(t) + \hbar\omega] |\phi(t)\rangle.$$

¿Cómo varía con el tiempo la norma de $|\phi(t)\rangle$?

5. Suponga que $|\psi(0)\rangle$ es autovector de a con autovalor $\alpha(0)$. Demuestre que $|\psi(t)\rangle$ sigue siendo autovector de a y calcule su autovalor $\alpha(t)$. A continuación, en t calcule el valor medio del Hamiltoniano no perturbado

$$H_0 = H(t) - W(t)$$

en función de $\alpha(0)$. Dé además las desviaciones cuadráticas RMS ΔX , ΔP y ΔH_0 . ¿Cómo dependen de t?

6. Suponga que en t=0 el oscilador está en el estado fundamental $|\varphi_0\rangle$. El campo eléctrico actúa entre 0 y T y luego se anula.

18

- a) Para t > T, ¿cómo evolucionan los valores medios $\langle X \rangle(t)$ y $\langle P \rangle(t)$?
- b) Aplicación: suponga que durante 0 < t < T el campo es

$$\mathcal{E}(t) = \mathcal{E}_0 \cos(\omega' t).$$

Discuta el fenómeno de resonancia en función de $\Delta \omega = \omega' - \omega$. Si para t > T se mide la energía, ¿qué resultados pueden encontrarse y con qué probabilidades?

Sea un oscilador armónico unidimensional con hamiltoniano H y estados estacionarios $\{|\varphi_n\rangle\}$, tales que

$$H |\varphi_n\rangle = (n + \frac{1}{2})\hbar\omega |\varphi_n\rangle.$$

Definimos el operador de traslación

$$U(k) = e^{ikX},$$

con $k \in \mathbb{R}$.

1. ¿Es U(k) unitario? Demuestre que, para todo n, sus elementos de matriz satisfacen

$$\sum_{n'} \left| \left\langle \varphi_n \right| U(k) \left| \varphi_{n'} \right\rangle \right|^2 = 1.$$

2. Exprese U(k) en términos de los operadores a y a^{\dagger} . Utilice la fórmula de Glauber (fórmula (63) del Complemento BII) para escribir U(k) como producto de exponentes:

$$U(k) = \exp(A a^{\dagger}) \exp(B a) \exp(C),$$

determinando las constantes A, B, C.

3. Pruebe las siguientes identidades, para un parámetro $\lambda \in \mathbb{C}$:

$$e^{\lambda a} |\varphi_0\rangle = |\varphi_0\rangle, \qquad \langle \varphi_n| e^{\lambda a^{\dagger}} |\varphi_0\rangle = \frac{\lambda^n}{\sqrt{n!}}.$$

4. Encuentre la expresión, en términos de

$$E_k = \frac{\hbar^2 k^2}{2m}$$
 y $E_\omega = \hbar \omega$,

para el elemento de matriz

$$\langle \varphi_0 | U(k) | \varphi_n \rangle$$
.

¿Qué sucede cuando $k \to 0$? ¿Se podía haber predicho este resultado de forma directa?

Ejercicio 8. Operador de evolución del oscilador armónico

Definimos

$$U(t,0) = e^{-\frac{i}{\hbar}Ht}, \qquad H = \hbar\omega \left(a^{\dagger}a + \frac{1}{2}\right).$$

1. Defina los operadores en Heisenberg

$$\widetilde{a}(t) = U^{\dagger}(t,0) a U(t,0), \quad \widetilde{a}^{\dagger}(t) = U^{\dagger}(t,0) a^{\dagger} U(t,0).$$

Calculando su acción sobre los autovectores $|\varphi_n\rangle$ de H, obtenga las expresiones de $\widetilde{a}(t)$ y $\widetilde{a}^{\dagger}(t)$ en función de a y a^{\dagger} .

2. Calcule los operadores

$$\widetilde{X}(t) = U^\dagger(t,0)\,X\,U(t,0), \quad \widetilde{P}(t) = U^\dagger(t,0)\,P\,U(t,0).$$

¿Cómo pueden interpretarse físicamente las relaciones obtenidas?

3. Demuestre que

$$U^{\dagger}\left(\frac{\pi}{2\omega},0\right)|x\rangle$$

es un autovector del momento P y especifique su autovalor. De igual modo, pruebe que

$$U^{\dagger}\left(\frac{\pi}{2\omega},0\right)|p\rangle$$

es un autovector de la posición X.

4. En t=0, la función de onda del oscilador es $\psi(x,0)$. ¿Cómo puede obtenerse a partir de $\psi(x,0)$ la función de onda $\psi(x,t_q)$ en los tiempos

$$t_q = \frac{q\pi}{2\omega}, \qquad q \in \mathbb{N}^+?$$

- 5. Elija para $\psi(x,0)$ la función de onda $\varphi_n(x)$ correspondiente a un estado estacionario. A partir de la pregunta anterior, derive la relación que debe existir entre $\varphi_n(x)$ y su transformada de Fourier $\widetilde{\varphi}_n(p)$.
- 6. Describa cualitativamente la evolución de la función de onda en los siguientes casos: (i) $\psi(x,0) = e^{ikx}$ con $k \in \mathbb{R}$. (ii) $\psi(x,0) = e^{-\rho x}$ con $\rho > 0$.

$$\psi(x,0) = \begin{cases} \frac{1}{\sqrt{a}}, & -\frac{a}{2} \le x \le \frac{a}{2}, \\ 0, & \text{en otro caso.} \end{cases}$$

(iv)
$$\psi(x,0) = e^{-\rho^2 x^2} \text{ con } \rho \in \mathbb{R}.$$

Conclusión

El estudio del espín 1/2 ejemplifica claramente los postulados de la mecánica cuántica: preparación de estados, probabilidades de medición y evolución temporal gobernada por el Hamiltoniano.