Seminar 11. Calculul compoziției elementare și volumetrice a combustibililor organici

Valorile aproximative ale căldurii de ardere ale combustibilului se pot determina cunoscînd compoziția combustibilului după formula lui Mendeleev:

$$Q_i^{daf} = 0.339C^{daf} + 1.029H^{daf} - 0.109(O^{daf} - S^{daf}).$$
(11.1)

Recalcularea căldurii superioare din cea inferioară și invers se efectuează cu relația:

$$Q_s^r = Q_i^r + 0.225H^r + 0.025W^r$$
, MJ/kg (11.2)

Pentru combustibilii gazoşi se utilizează formula:

$$Q_i^d = \sum_i Q_i K_i / 100 \,,\, \text{MJ/m}^3,$$
 (11.3)

unde: K_i sunt valorile componentelor combustibilului, în %,

Q_i – căldurile de ardere a componentelor gazului, MJ/m³, din Tabelul 11.4;

Tabelul 11.1. Compoziția și caracteristicile combustibililor solizi

Combus-		V ^{daf} ,	Qi ^r ,						
tibil	Cr	H ^r	Sr	$\mathbf{O^r}$	N ^r	Ar	$\mathbf{W}^{\mathbf{r}}$	%	MJ/kg
Combustibili solizi									
Antracit	65-80	1-2	0,5-1,5	0,5-2	0,5-1	8-20	5-10	1-7	22-30
Huilă	50-75	3-5	0,3-3	1,5-10	0,5-1,5	10-40	5-20	10-50	16-27
Lignit	25-50	1-4	0,2-1,5	8-15	0,4-1,3	5-30	15-50	30-60	8-20
Turbă	25	2,5	0,1	15	1	6	50	70	8
Lemn	40	3,5-4,5	-	25-35	0,4	0,5-1,5	10-40	85	10-17
Paie	42,75	5,30	0,08	36,85	0,52	4,50	10,0	78	16

Tabelul 11.2. Compoziția și caracteristicile combustibililor lichizi

Combustibil			Densitate,	Q _i ^r ,				
Combustion	Cr	H ^r	Sr	$O^r + N^r$	A ^r	Wr	kg/m³	MJ/kg
Benzină	80-85	14-15	0,05	0,05-5	1	-	760	42-43,5
Motorină	86,5	13-15	0,3	0,4	0,2	urme	870	42
Păcură	83-87	10-12	0,5-4	0,3-0,7	0,05-0,2	0,3-3		39,3-40,2
GPL	82,5	17,5	ı	1	ı	-	2220	46,06

Tabelul 11.3. Compoziția și caracteristicile combustibililor gazoși

Gazul	Componente, %										ρ, kg/m³	Q _i ^r , MJ/m ³	
Gazui	CH ₄	C_2H_6	C_3H_8	C_4H_{10}	$C_5H_{12}^*$	H_2	H_2S	СО	CO ₂	O_2	N_2	kg/m	1 VIJ/ 111
Natural	62-99	0,2- 14,5	0,1 - 7,6	0 - 3,5	0 - 0,5	0 - 1,1	-	-	0,1- 1,4	-	0,2-30	0,74- 0,95	28-46
Asociat	44-96	3-25	0,8 - 12,6	0,1 - 5	0,1 - 2,2	-	0,5- 0,8	-	0- 1,8	0- 0,4	0,1-27	0,75-1,2	37-47
De gazogen	0,5-3	0,20 - 0,7				7 - 15	0- 1,2	9- 28	5- 9,8	0,2	45-62	1,12- 1,22	4,2-6,5
Biogaz	55-80	-	-	-	-	0-3	ur- me	0-2	20- 40	-	0-3	0,95-1,2	20-30
De furnal	0,3	-	-	-	-	5	-	27	12,5	0,2	55	1,19	3,8
De ra- finărie	7-93	4 - 40**	2 - 35***	0 - 34****	0 - 19	0-9	-	-	-	-	-	0,6-1,6	43-95

^{*-} inclusiv hidrocarburile mai grele;

^{**-} inclusiv etilenul C₂H₄;

^{***-} inclusiv propilenul C₃H₆;

^{****-} inclusiv butilenul C₄H₈.

Tabelul 11.4. Densitatea și căldura de ardereale unor gaze

Gazul	Densitatea,	Căldura de		
	kg/m ³	ardere,		
		MJ/m ³		
Hidrogen H ₂	0,090	10,784		
Azot N ₂	1,251	-		
Oxigen O ₂	1,428	-		
Oxid de carbon	1,250	12,620		
CO				
Dioxid de	1,964	-		
carbon CO ₂				
Hidrogen	1,520	23,354		
sulfurat H ₂ S				
Metan CH ₄	0,716	35,774		
Etan C ₂ H ₆	1,342	63,669		
Propan C ₃ H ₈	1,967	91,138		
Butan C ₄ H ₁₀	2,593	118,498		
Pentan C ₅ H ₁₂	3,218	145,896		
Etilen C ₂ H ₄	1,251	58,990		
Propilen C ₂ H6	1,877	85,894		
Butilen C ₄ H ₈	2,503	113,367		
Benzol C ₆ H ₆	3,458	140,200		
Acetilenă C ₂ H ₂	1,161	56,870		

Pentru a determina cantitatea de aer necesar pentru ardere se utilizează următoarele relații:

a) pentru combustibil lichid şi solid:

$$V_{aer}^{o} = 0.0889(C^{r} + 0.375S^{r}) + 0.266H^{r} - 0.0333O^{r}, m^{3}/kg,$$
(11.4)

b) pentru combustibil gazos:

$$V_{aer}^{o} = 0.0476 \left[0.5CO + 0.5H_2 + 1.5H_2S + \sum \left(m + \frac{n}{4} \right) C_m H_n - O_2 \right], m^3 / m^3$$
 (11.5)

Pentru o mai bună amestecare a combustibilului cu aerul, în zona de ardere se introduce o cantitate mai mare de aer decît cea teoretic necesară - V_{aer} . Raportul dintre aceste 2 mărimi se numește *coeficient de exces de aer*:

$$\alpha = \frac{V_{aer}}{V_{aer}^{o}} > 1. \tag{11.6}$$

Pentru a determina volumul gazelor de ardere se utilizează următoarele relații:

a) pentru combustibil solid şi lichid:

$$V_{RO_2}^o = 0.0187(C^r + 0.375S^r), m^3 / kg.$$
 (11.7)

$$V_{R_{3}}^{o} = 0.79V_{aer}^{o} + 0.008N^{r}. {11.8}$$

Unii din cei mai toxici oxizi la arderea sunt oxizii nitrici, de aceea pentru diminuarea lor se introduce apă în cazan:

$$V_{H_2O}^o = 0.0124(9H^r + W^r) + 0.00161V_{aer}^o + V_{intr}^{vap}.$$
 (11.9)

Astfel volumul gazelor de ardere va fi:

$$V_{ga}^{o} = V_{RO_2}^{o} + V_{R_2}^{o} + V_{H_2O}^{o}. {11.10}$$

b) pentru combustibil gazos

$$V_{RO_2}^o = 0.01 \left[CO_2 + CO + H_2 S + \sum_m C_m H_n \right], m^3 / m^3.$$
 (11.11)

$$V_{R_2}^o = 0.79 V_{aer}^o + 0.01 N_2 . {(11.12)}$$

$$V_{H_2O}^o = 0.01 \left[H_2 S + H_2 + \sum_{n=0}^{\infty} \frac{n}{2} C_m H_n + 0.124d \right] + 0.0161 V_{aer}^o.$$
 (11.12)

Volumul total de gaze, atât pentru combustibilii solizi şi lichizi cât şi pentru cei gazoşi se determină ca suma volumelor componentelor şi a aerului excesiv:

$$V_g = V_{RO2} + V_{N2} + V_{H2O}^0 + (\alpha - 1)V_{aer}^0, \, \text{m}^3/\text{m}^3.$$
 (11.13)