HONORS REAL ANALYSIS LECTURE 21

ROHAN KARAMEL

ABSTRACT. This lecture reviews material to prepare for the upcoming second midterm.

Theorem. Let G be a connected d-regular non-Eulerian graph. If \overline{G} is connected, then \overline{G} is Eulerian.

Proof. We know that Eulerian is equivalent to being connected and having all vertices of even degree. Since G is connected and d-regular, we only need to show that d must be even. We also know that we cannot have a odd-regular graph on odd vertices, so n must be even. Thus \bar{G} has n-1-d edges, therefore d must be even as the number of vertices cannot be odd. Thus, \bar{G} is Eulerian.

Theorem. If G - |S| has more than |S| components, then G is not hamiltonian.

Proof. If for all non-adjacent vertices u,v in G, $\deg(u) + \deg(v) \geq n$. Then, $\delta(G) \geq \frac{n}{2} \implies G$ is hamiltonian. \square

Theorem. There exists a graph with $\kappa(G) \geq n$ but G is not hamiltonian.

Proof. Consider $K_{n,n+1}$, $\kappa(G) = n$ but G is not hamiltonian.

Theorem. There exists a graph with $\kappa(G) \geq n$ but G does not contain a hamiltonian path.

Proof. Consider $K_{n,n+2}$ where $\kappa(G) = n$ but G does not contain a hamiltonian path.

Theorem. Every tree has at most 1 perfect matching.

Proof. Recall that a perfect matching is a matching that uses every vertex. Suppose for the sake of contradiction that there exists at least 2 perfect matchings. Then, there must exist a vertex that is matched to 2 different vertices in the 2 perfect matchings. \Box

Theorem. The number of spanning trees is equal to

$$\frac{1}{n}\lambda_1\lambda_2\dots\lambda_{n-1}$$

Example. Consider the adjacency matrix below:

$$\begin{bmatrix} 2 & -1 & 0 & -1 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ -1 & 0 & -1 & 2 \end{bmatrix}$$

Theorem. We know that $\kappa(G) \leq \lambda(G) \leq \delta(G) \leq \lfloor \frac{2m}{n} \rfloor$ If G is a tree, then all terms are equal.

Proof. If G is a tree, then
$$\kappa(G) = \lambda(G) = \delta(G) = n - 1$$
.