Exercice 1

Soit $A \in M_n(\mathbb{K})$ une matrice ne possédant qu'une seule valeur propre. Démontrer que A n'est pas diagonalisable, sauf si A est une matrice scalaire (i.e. de la forme λI_n avec $\lambda \in \mathbb{K}$).

Exercice 2

Un joueur dispose d'une urne contenant n boules numérotées de 1 à n. Il en tire successivement et avec remise deux boules, portant les numéros X_1 et X_2 . Calculer la probabilité que $\begin{pmatrix} X_1 & 1 \\ 0 & X_2 \end{pmatrix}$ soit diagonalisable. Quelle est la probabilité qu'elle soit inversible?

Exercice 3 Soit $A = \begin{pmatrix} -2 & 2 & 0 \\ 0 & -1 & 6 \\ 1 & -2 & 3 \end{pmatrix}$.

- 1. Déterminer les éléments propres de A.
- 2. Donner une matrice P telle que $P^{-1}AP$ soit diagonale.
- 3. Calculer A^n

Soit
$$A = \begin{pmatrix} 1 & -3 & 0 \\ -4 & 4 & -4 \\ 1 & -3 & 0 \end{pmatrix}$$
. Le but de l'exercice est de déterminer toutes les

matrices réelles B telles que $B^2 = A$.

- 1. Déterminer des matrices $P \in GL_3(\mathbb{R})$ et $D \in M_3(\mathbb{R})$ diagonale telles que $P^{-1}AP = D.$
- 2. On suppose donnée $B \in M_3(\mathbb{R})$ telle que $B^2 = A$. Démontrer que tout vecteur propre de A est vecteur propre de B. En déduire que $P^{-1}BP$ est diagonale.
- 3. Résoudre le problème.

Exercice 5

Soit a et b des paramètres réels. Déterminer pour quelles valeurs de a et b les matrices réelles suivantes sont diagonalisables.

$$M_1 = \begin{pmatrix} 0 & a \\ 1 & 0 \end{pmatrix}, M_2 = \begin{pmatrix} 0 & 0 & a \\ 0 & b & 0 \\ 1 & 0 & 0 \end{pmatrix}.$$

Exercice 6

On note \mathcal{B} la base canonique du \mathbb{C} -espace vectoriel \mathbb{C}^4 . Soit la matrice de $M_4(\mathbb{C})$:

On note
$$\mathcal{B}$$
 la base canonique du \mathbb{C} -espace vectoriel \mathbb{C}^4 . Soit la matrice de $M_4(\mathbb{C})$:
$$J = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}.$$
 On note g l'endomorphisme de \mathbb{C}^4 de matrice J dans la

- 1. Résoudre dans \mathbb{C} l'équation $z^4 = 1$.
- 2. On note S l'ensemble des valeurs propres de q.
 - (a) Montrer que $S = \{1, i, -1, -i\}$.
 - (b) q est-il diagonalisable?
 - (c) Déterminer une base de chaque sous-espace propre, formée de vecteurs dont la première coordonnée vaut 1.
- 3. Calculer les puissances successives de la matrice J.

Exercice 7

Soit f un endomorphisme de \mathbb{K} -espace vectoriel E de dimension finie. Montrer $0 \notin \operatorname{Sp}(f) \Leftrightarrow f \text{ surjectif.}$

Exercice 8

Soient f un endormophisme d'un K-espace vectoriel E et $n \in \mathbb{N}^*$. On suppose que $0 \in \operatorname{Sp}(f^n)$. Montrer que $0 \in \operatorname{Sp}(f)$.

Exercice 9

Soit u un endormorphisme d'un \mathbb{K} -espace vectoriel E tel que tout vecteur non nul en soit vecteur propre. Montrer que u est une homothétie vectorielle (i.e. $\exists \lambda \in \mathbb{K} \ \forall x \in E \ , u(x) = \lambda x).$

Exercice 10

Soient u et v deux endomorphismes d'un \mathbb{R} -espace vectoriel E de dimension finie. Montrer que si λ est valeur propre de $u \circ v$ alors λ est aussi valeur propre $de v \circ u$.