Utilização de redes neurais artificias para detecção de acidentes por localidade a partir de dados de sensores de velocidade

Adriano

Centro de Informática (CIn)
Universidade Federal de Pernambuco
Recife-PE, Brasil
@cin.ufpb.br

Jair Paulino de Sales

Centro de Informática (CIn)
Universidade Federal de Pernambuco
Recife-PE, Brasil
jps4@cin.ufpb.br

Sara

Centro de Informática (CIn)
Universidade Federal de Pernambuco
Recife-PE, Brasil
@cin.ufpb.br

Resumo-

Index Terms—Previsão de acidentes, redes neurais artificiais, regressão.

I. INTRODUÇÃO

O avanço da produção em série de veículos motorizados no início século XX impulsionou transformações sociais e padrões de consumo, sobretudo nos países desenvolvidos [1]. Entretanto, este processo foi contínuo e não radical, estando completamente associado às novas formas de organização do trabalho desenhadas pós-segunda revolução industrial [2]. Em níveis globais, a taxa de motorização (global motorization rate) apresentou crescimento linear entre 1950 e 2015, passando de 20 veículos por mil habitantes para 153 [3]. Taxas similares são perceptíveis ao se analisar os níveis de produção de automóveis de passageiros. Como consequência, muitas sociedades desevolveram o que Mattiolli et al. (2020) classificam como "sistemas de transporte dependentes de carro" (cardependent transport system).

Em paralelo, o elevado grau de "dependência por carros" tem forçado o desenvolvimento de políticas público-privadas a fim de tornar estes sistemas mais eficientes. Um dos ramos de atuação aponta para a necessidade de se desenvolverem metodologias focadas na detecção em tempo real de acidentes, sob a justificativa de que estas ocorrências, além de trazer consequências negativas sobre a integridade das vítimas - e custos para o sistema de saúde, causam inconvenientes para os usuários da estrada [4]. Alternativas como essa são também úteis para a identificação de variáveis que podem contribuir positiva ou negativamente para o desfecho dos acidentes [5].

Soluções para os problemas associados ao trânsito nas cidades têm sido propostas também pelo movimento das cidades inteligentes (*smart cities*). Este fenômeno surge sob a premissa de que as cidades precisam constantemente se adaptarem à novas realidades, neste caso, o avanço dos meios digitais [6]. No contexto em questão, diversos pesquisadores têm estudado métodos com foco na obtenção de dados (através de sensores), modelagem e tomada de decisão [7]–[9].

Com base no exposto, o presente artigo objetiva desenvolver um método para detecção de acidentes por localidade (bairros) na cidade de Recife-PE a partir de dados provenientes de sensores de velocidade. O restante do artigo está organizado da seguinte forma: No Capítulo 2 apresenta-se o método proposto a partir de um delineamento matemático e metodológico. A seguir, no Capítulo 3, são apresentados os resultados obtidos e sua discussão. Por fim, no Capítulo 4, as considerações finais são apresentadas, sendo pontuadas as limitações do presente trabalho, assim como propostas para futuras investigações.

II. REVISÃO DE LITERATURA

A. Descrição do problema

Os impactos decorrentes do aumento da frota veicular nas médias e grandes cidades brasileiras vêm sendo discutidos há mais de duas décadas [10], [11]. Dentre os pontos apresentados, têm destaque a emissão de poluentes atmosféricos oriundos de combustíveis fósseis, a ocorrências grandes congestionamentos por ausência de políticas eficientes de gestão de tráfego e o aumento na incidência de acidentes de trânsito e sua severidade [12].

No ano de 2018, foram efetivados 1780 pedidos de indenizações por morte através do Seguro DPVAT¹ no estado de Pernambuco, sendo a maior parte delas referente à categoria de transporte 'Motocicletas' [13]. Referindo-se especificamente à cidade Recife-PE, dados do relatório internacional *Traffic Index 2020* [14] (que cobre 416 cidades em 57 países) a coloca em 24ª posição de pior trânsito do mundo, sendo o pior resultado frente às cidades brasileiras investigadas. Um dos esforços por parte da Prefeitura Municipal de Recife tem sido a obtenção de dados relacionados ao tráfego, acidentes e demais variáveis relacionadas ao trânsito. Estes, por sua vez, são disponibilizados publicamente no página da CTTU² [15].

Ainda na cidade de Recife-PE, Mendonça et al. [16] realizaram um estudo ecológico a partir de dados disponibilizados

¹Seguro Obrigatório de Danos Pessoais Causados por Veículos Automotores de Vias Terrestres, ou por sua Carga, a Pessoas Transportadas ou Não.

²Autarquia de Trânsito e Transporte Urbano do Recife.

pelo SAMU³ no período de 01 de janeiro a 30 de junho de 2015. Os autores avaliaram variáveis como sexo, faixa etária, tipo de colisão, dia da semana e horário dos acidentes. Como conclusões, houve predomínio do sexo masculino (76,8%), faixa etária entre 20 e 29 anos (31,5%), colisão (59,9) o tipo de acidente mais comum e motocicletas (61,6%) a categoria de transporte mais recorrente.

B. Trabalhos relevantes

Com base nos dados disponibilizados pela CTTU, Costa, Freitas e Pinheiro [17] utilizaram ferramentas de mineração de dados para auxiliar na construção de modelos com foco na previsão de acidentes na cidade de Recife-PE considerando o período entre junho de 2015 e março de 2019. Os autores avaliaram modelos lineares (regressão linear), random forest, máquina de vetores de suporte (do inglês, *support vector machine* - SVM) e redes neurais artificias de múltiplas camadas pra modelagem e previsão dos dados. Como resultados, de forma geral, todos os modelos criados subestimaram a incidência real (quantidade de acidentes). Como propostas, os autores sugerem a adoção de informações geográficas e alterações na granularidade dos dados.

Método similar foi proposto por Torcate et al. [18]. Neste caso, os autores utilizaram técnicas de mineração de dados para modelar a ocorrência de infrações de trânsito a partir de dados da CTTU no período entre os anos de 2017 e 2018. Foram utilizados modelos de previsão de séries temporais (autorregressivos e de suavização exponencial), regressão linear, random forest, redes MLP e modelos combinados. Neste caso as redes MLP obtiveram melhores resultados.

Com o objetivo de prever riscos de acidentes em rodovias pernambucanas, Sousa, Araújo e Azevedo [19] utilizaram modelos lineares generalizados, árvores de decisão, random forest e XGBoost para modelagem e previsão dos dados. Neste caso, o modelo de random forest obteve melhor desempenho.

III. MÉTODO PROPOSTO

A. Desenho experimental

IV. RESULTADOS E DISCUSSÃO

V. Considerações finais

REFERÊNCIAS

- M. Vilar-Rodríguez and R. Vallejo-Pousada, "Automobiles and tourism as indicators of development in spain, 1918–1939," *The Historical Journal*, pp. 1–24, 2021.
- [2] G. Mom, Atlantic automobilism: emergence and persistence of the car, 1895-1940, vol. 1. Berghahn Books, 2014.
- [3] G. Mattioli, C. Roberts, J. K. Steinberger, and A. Brown, "The political economy of car dependence: A systems of provision approach," *Energy Research & Social Science*, vol. 66, p. 101486, 2020.
- [4] A. B. Parsa, H. Taghipour, S. Derrible, and A. K. Mohammadian, "Real-time accident detection: coping with imbalanced data," *Accident Analysis & Prevention*, vol. 129, pp. 202–210, 2019.
- [5] A. B. Parsa, A. Movahedi, H. Taghipour, S. Derrible, and A. K. Mohammadian, "Toward safer highways, application of xgboost and shap for real-time accident detection and feature analysis," *Accident Analysis & Prevention*, vol. 136, p. 105405, 2020.

- [6] A. Visvizi and M. D. Lytras, "Rescaling and refocusing smart cities research: From mega cities to smart villages," *Journal of Science and Technology Policy Management*, 2018.
- [7] B. K. Dar, M. A. Shah, S. U. Islam, C. Maple, S. Mussadiq, and S. Khan, "Delay-aware accident detection and response system using fog computing," *Ieee Access*, vol. 7, pp. 70975–70985, 2019.
- [8] F. Bhatti, M. A. Shah, C. Maple, and S. U. Islam, "A novel internet of things-enabled accident detection and reporting system for smart city environments," *Sensors*, vol. 19, no. 9, p. 2071, 2019.
- [9] F. Ali, A. Ali, M. Imran, R. A. Naqvi, M. H. Siddiqi, and K.-S. Kwak, "Traffic accident detection and condition analysis based on social networking data," *Accident Analysis & Prevention*, vol. 151, p. 105973, 2021
- [10] L. Marín and M. S. Queiroz, "A atualidade dos acidentes de trânsito na era da velocidade: uma visão geral," *Cadernos de Saúde Pública*, vol. 16, pp. 7–21, 2000.
- [11] M. P. Queiroz, C. F. G. Loureiro, and Y. Yamashita, "Metodologia de análise espacial para identificação de locais críticos considerando a severidade dos acidentes de trânsito," 2004.
- [12] Y. M. Castro, E. T. Peregrino, S. Schreiner, and M. G. Pina, "Análise dos impactos financeiros causados pelos acidentes de trânsito: Um estudo de caso na cidade do recife,"
- [13] LIDER, "Taxa de mortalidade no trânsito: relatório especial 10 anos," 2019.
- [14] TOMTOM, "Traffic Index 2020." https://www.tomtom.com/en $_gb/traffic-index/ranking/$, 2021. [Online; accessed20-Ago-2021].
- [15] CTTU, "Autarquia de Trânsito e Transporte Urbano do Recife - CTTU." http://dados.recife.pe.gov.br/organization/companhia-detransito-e-transporte-urbano-do-recife-cttu, 2021. [Online; accessed 20-Ago-2021].
- [16] M. F. S. d. Mendonça, A. P. d. S. C. Silva, and C. C. L. d. Castro, "Análise espacial dos acidentes de trânsito urbano atendidos pelo serviço de atendimento móvel de urgência: um recorte no espaço e no tempo," *Revista Brasileira de Epidemiologia*, vol. 20, pp. 727–741, 2017.
- [17] A. de Melo Costa, A. G. O. de Freitas, and R. P. Pinheiro, "Mineração de dados na construção de modelo de predição de acidentes com vítimas em recife," *Revista de Engenharia e Pesquisa Aplicada*, vol. 6, no. 3, pp. 70–80, 2021.
- [18] A. S. Torcate, M. H. L. F. da Silva, F. S. Fonseca, M. A. S. Galindo, et al., "Mineração de dados para análise e predição das infrações de trânsito na cidade do recife," Revista de Engenharia e Pesquisa Aplicada, vol. 6, no. 3, pp. 1–11, 2021.
- [19] R. da Silva Sousa, D. Araújo, and V. M. de Azevedo, "Um sistema para predição de risco de acidentes em rodovias de pernambuco," *Revista de Engenharia e Pesquisa Aplicada*, vol. 5, no. 2, pp. 18–26, 2020.

REFERÊNCIAS

- [1] M. Vilar-RodrÍguez and R. Vallejo-Pousada, "Automobiles and tourism as indicators of development in spain, 1918–1939," *The Historical Journal*, pp. 1–24, 2021.
- [2] G. Mom, Atlantic automobilism: emergence and persistence of the car, 1895-1940, vol. 1. Berghahn Books, 2014.
- [3] G. Mattioli, C. Roberts, J. K. Steinberger, and A. Brown, "The political economy of car dependence: A systems of provision approach," *Energy Research & Social Science*, vol. 66, p. 101486, 2020.
- [4] A. B. Parsa, H. Taghipour, S. Derrible, and A. K. Mohammadian, "Real-time accident detection: coping with imbalanced data," *Accident Analysis & Prevention*, vol. 129, pp. 202–210, 2019.
- [5] A. B. Parsa, A. Movahedi, H. Taghipour, S. Derrible, and A. K. Mohammadian, "Toward safer highways, application of xgboost and shap for real-time accident detection and feature analysis," *Accident Analysis & Prevention*, vol. 136, p. 105405, 2020.
- [6] A. Visvizi and M. D. Lytras, "Rescaling and refocusing smart cities research: From mega cities to smart villages," *Journal of Science and Technology Policy Management*, 2018.
- [7] B. K. Dar, M. A. Shah, S. U. Islam, C. Maple, S. Mussadiq, and S. Khan, "Delay-aware accident detection and response system using fog computing," *Ieee Access*, vol. 7, pp. 70975–70985, 2019.
- [8] F. Bhatti, M. A. Shah, C. Maple, and S. U. Islam, "A novel internet of things-enabled accident detection and reporting system for smart city environments," *Sensors*, vol. 19, no. 9, p. 2071, 2019.

³Serviço de Atendimento Móvel de Urgência.

- [9] F. Ali, A. Ali, M. Imran, R. A. Naqvi, M. H. Siddiqi, and K.-S. Kwak, "Traffic accident detection and condition analysis based on social networking data," *Accident Analysis & Prevention*, vol. 151, p. 105973, 2021
- [10] L. Marín and M. S. Queiroz, "A atualidade dos acidentes de trânsito na era da velocidade: uma visão geral," *Cadernos de Saúde Pública*, vol. 16, pp. 7–21, 2000.
- [11] M. P. Queiroz, C. F. G. Loureiro, and Y. Yamashita, "Metodologia de análise espacial para identificação de locais críticos considerando a severidade dos acidentes de trânsito," 2004.
- [12] Y. M. Castro, E. T. Peregrino, S. Schreiner, and M. G. Pina, "Análise dos impactos financeiros causados pelos acidentes de trânsito: Um estudo de caso na cidade do recife,"
- [13] LIDER, "Taxa de mortalidade no trânsito: relatório especial 10 anos," 2019
- [14] TOMTOM, "Traffic Index 2020." https://www.tomtom.com/en $_gb/traffic-index/ranking/$, 2021. [Online; accessed20-Ago-2021].
- [15] CTTU, "Autarquia de Trânsito e Transporte Urbano do Recife CTTU." http://dados.recife.pe.gov.br/organization/companhia-detransito-e-transporte-urbano-do-recife-cttu, 2021. [Online; accessed 20-Ago-2021].
- [16] M. F. S. d. Mendonça, A. P. d. S. C. Silva, and C. C. L. d. Castro, "Análise espacial dos acidentes de trânsito urbano atendidos pelo serviço de atendimento móvel de urgência: um recorte no espaço e no tempo," *Revista Brasileira de Epidemiologia*, vol. 20, pp. 727–741, 2017.
- [17] A. de Melo Costa, A. G. O. de Freitas, and R. P. Pinheiro, "Mineração de dados na construção de modelo de predição de acidentes com vítimas em recife," *Revista de Engenharia e Pesquisa Aplicada*, vol. 6, no. 3, pp. 70–80, 2021.
- [18] A. S. Torcate, M. H. L. F. da Silva, F. S. Fonseca, M. A. S. Galindo, et al., "Mineração de dados para análise e predição das infrações de trânsito na cidade do recife," Revista de Engenharia e Pesquisa Aplicada, vol. 6, no. 3, pp. 1–11, 2021.
- [19] R. da Silva Sousa, D. Araújo, and V. M. de Azevedo, "Um sistema para predição de risco de acidentes em rodovias de pernambuco," Revista de Engenharia e Pesquisa Aplicada, vol. 5, no. 2, pp. 18–26, 2020.