

UNIVERSIDADE FEDERAL DO ABC

NF317E - Tópicos em Inteligência Artificial: Aprendizagem Profunda

Licia Sales Costa Lima

OTIMIZAÇÃO DE MODELO DE CIRCUITO RETIFICADOR DE RECTENNA USANDO APRENDIZAGEM POR REFORÇO

O que é Wireless Power Transfer

Circuito Rectenna

Caracterização do Diodo

Parâmetro	Valor mínimo	Valor Máximo
Capacitância Parasita (CP)	0.05e-12	0.25e-12
Indutância Parasita (LP)	0.8e-9	20e-9
Corrente de Saturação (Is)	1e-8	1e-4
Resistência Parasita (Rs)	5	30
Capacitância de polarização de junção zero (CJ0)	0.1e-12	0.2e-12
Coeficiente de classificação da junção (M)	0.3	0.5
Potencial de junção (Vj)	0.3	0.65
Energia de ativação (EG)	0.69	0.69
Corrente de ruptura reversa (IBV)	0.1e-3	0.1e-3
Capacitância da carga (CL)	1e-12	100e-12
Resistência da carga (RL)	100	50000

Circuito equivalente para simulação

Curva característica do Diodo

INFLUÊNCIA DA TEMPERATURA

A temperatura é um dos fatores que mais influenciam no funcionamento de um diodo; com o aumento da temperatura a tensão direta (V_D) diminui e a corrente reversa (I_R) aumenta. Isto pode ser observado na figura abaixo.

FIGURA 1.13 Variação nas curvas por influência da temperatura

Eficiência em relação a temperatura

Deep Reinforcement Learning

Advantage Actor Critic agent (A2C)

Pseudo-código usado como base

Algorithm 1: DRiLLS Framework

```
Input : Design, Primitive Transformations
  Output: Optimization_Flow
1 env = Initialize(LS_Env);
2 agent = Initialize(A2C);
3 for episode = 1 to N do
      episode\_design\_states = \Pi;
      optimization\_sequence = [];
      synth\_rewards = \Pi;
      design state = env.reset();
      for iteration = 1 to k do
          opt\_probs = agent.ActorForward(design\_state);
          primitive\_opt = RandomChoice(opt\_prob);
10
          [next\_design\_state, synth\_reward] =
11
          env.perform(primitive_opt);
          episode_design_states.append(design_state);
12
          optimization_sequence.append(primitive_opt);
13
          synth_rewards.append(synth_reward);
14
          design\_state = next\_design\_state;
15
16
      end
      episode_rewards = DiscountRewards(synth_rewards,
17
       gamma)
      loss = agent.OptimizerForward(episode\_design\_states,
18
       optimization_sequence, episode_rewards);
      agent.update(loss);
19
      log(episode);
20
21 end
```

https://github.com/scale-lab/DRiLLS

https://ieeexplore.ieee.org/abstract/document/9045559

Afinal, como foi implementado?

1 – Representação dos Estados:

Os estados representam a reação do ambiente diante de uma otimização sugerida

O Vetor de estados é uma representação do projeto do circuito a uma determinada etapa de otimização.

2 - Espaço de otimização:

O agente explora o espaço de busca = {Parametro_atual, Parametro_atual-z, Eficiencia_atual, Eficiencia_atual -z}.

Essas transformações manipulam o vetor de estado e são usados na função recompensa

3 - Função de recompensa:

Definimos uma função de recompensa lenvando em consideração a Eficiencia media do circuito.

Caso o valor da Eficiencia media aumente, o agente e recompensado, caso a eficiencia diminua, o agente e penalizado, caso a eficiencia se mantenha estagnada, o agente nao e penalizado nem recompensado.

4 - Treinamento do agente A2C:

O agente híbrido tem duas redes, uma baseada em valor e outra baseada em politica, chamada de rede ator e crítico.

Ambas as redes têm uma camada de entrada de tamanho igual ao comprimento do vetor de estados.

A recompensa r é passada para a rede crítica para treinamento e um desconto a recompensa é passada para a rede do ator.

A rede do ator produz a distribuição de probabilidade sobre as transformações disponíveis.

Parâmetros de ambas as redes são atualizados para reduzir a função loss usando um otimizador baseado em gradiente.

A escolha de uma arquitetura híbrida de aprendizagem é adequada para tarefas de otimização combinatória pois dá ao agente a oportunidade de explorar diversas combinações de otimizações

Resultados obtidos

Próximos passos

- - Otimizar o ambiente de simulação para executar em paralelo, se possivel, na GPU
- Atualizar o algoritmo para ter compatibilidade com o TensorFlow 2
- - Incluir os outros parametros de caracterização do diodo na rede
- - Implementar outras estrategias para escolha dos parametros:
- Monte Carlo Cadeia de Markov
- Algoritmo genetico

Monte Carlo-Cadeia de Markov

- 1-Inicia-se em um ponto arbitrário (θ)
- 2-Faz-se uma pequena modificação propondo um novo estado (9*)
- 3-Calcula-se a razão r entre novo estado θ*, e θ:
- (a) r>1: novo estado é aceito.
- (b) R<1: novo estado é aceito com uma probabilidade r.

Obrigada!

Alguma pergunta?

Referências

Trevisoli, Renan, et al. "Modeling Schottky Diode Rectifiers Considering the Reverse Conduction for RF Wireless Power Transfer." IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 69, no. 3, 1 Mar. 2022, pp. 1732–1736, ieeexplore.ieee.org/document/9507537, 10.1109/TCSII.2021.3102576. Accessed 30 Nov. 2022.

https://ieeexplore.ieee.org/document/9507537

Hosny, Abdelrahman, et al. DRiLLS: Deep Reinforcement Learning for Logic Synthesis.

https://ieeexplore.ieee.org/abstract/document/9045559

GitHub DRiLLS https://github.com/scale-lab/DRiLLS

Meu GitHub https://github.com/liciascl/ML-Retifier/tree/master/aprendizagem reforco

