Data Representation Test

1.	Briefly describe why binary code is commonly used in computer hardware[1]	14.	Calculate the following binary sum:[1]
2.	How many bits in a byte?[1]		+ 11011 15. Show the binary representations for –13 ₁₀ in a. signed magnitude and b. two's complement[2]
3.	In the binary number 10101010 ₂ what is the value of the MSB? [1]	15.	
4.	Make a table counting upwards from 0 to 16 ₁₀ in decimal, binary, octal and hexadecimal[3]	16.	
5.	Briefly explain the difference between value and representation, giving an example [3]		
6.	Which of the following are not valid hex values? a. FEC ₁₆ b. DEAD ₁₆ c. FUN ₁₆ d. 1234 ₁₆ e. EGAD ₁₆ [1]	17.	 17. Do the following statements describe fixed or floating point representations, both or neither? a. It's fast b. Provides the best resolution c. Copes with a wide range of numbers d. Implementation is complicated e. Can't represent some values f. Is described by an international standard g. Can represent any value h. Allows simple multiplication by two [4]
7.	What is 2742 ₈ in binary? [1]		
8.	Convert 1011001011111001 ₂ to hex[1]		
9.	Convert 42 ₁₀ to binary[1]		
10.	Convert 73 ₈ to hex[1]	18.	Using 4 bit binary arithmetic, illustrate overflow error with
11.	Convert 1101100100 ₂ to decimal[1]		an example[1]
12.	Convert 4000 ₁₀ to octal [1]	19.	Describe IEEE 754 single precision floating point representation using a labelled diagram. [3]
13.	Calculate the following binary sum:[1] 10100111 + 01110001		

Data Representation Test

Answers:

- 1. Os and 1s can be represented easily with voltage levels.
- 2. 8.
- 3. 1 (or 128).
- 4. See Tanenbaum page 635 or Information lecture 1 slide 7.
- 5. Looking for these three points (although there are probably more):
 - A representation is a way of using or describing a value
 - There can be many representations for one value
 - For example, the representations X, 1010₂, A₁₆ and 10₁₀ all denote the same value.
- 6. c) FUN and e) EGAD.
- 7. 010|111|100|010₂ (possibly omit the leading 0).
- 8. B2F9₁₆
- 9. 1010102
- 10.3B₁₆
- 11.868₁₀
- 12.76408
- 13.1|0001|10002
- 14.11|00102
- 15.a) 11101_{2SM},
 - b) 11110011_{2TC} (or omit leading 1s, to get answer 10011_{2TC})
- 16.a) +12 = 1100_{2TC} , -10 = 11110110_{2TC} b)×00001100

- + <u>11110110</u> 00000010 111111
- 17.a) Fixed
 - b) Fixed (all bits are mantissa)
 - c) Float
 - d) Float
 - e) Both
 - f) Float
 - g) Neither
 - h) Both (by shifting bits left)

