Artificial Intelligence I 2023/2024 Week 9 Tutorial and Additional Exercises

Uninformed Search

School of Computer Science

21st March 2024

In this tutorial...

In this tutorial we will be covering

- Search problem formulation and components.
- Breadth-First Search (BFS).
- Depth-First Search (DFS).

Formulating a Search Problem

Definition 1 (Search Problem Formulation and Components)

Formulating a search problem is the process to formally define a search for a solution. A search problem has five components:

- Initial state, the state where the agent starts its search;
- **Action set**, the set \mathcal{A} describing the actions that can be executed in any state $s_i \in \mathcal{S}$;
- Transition model, a mapping between states and actions, i.e., the states resulting from executing each action $a_i \in \mathcal{A}$ in every state $s_i \in \mathcal{S}$;
- Goal test, to determine if a state is a goal state;
- Path cost function, which assigns a cost to each path.
- The first three components define the **state space**.
- The state space can take the form of a graph or network.

Solution, Cost and Path

Definition 2 (Solution)

The **solution** of a search problem is the sequence of actions from the initial state to a goal state.

Definition 3 (Cost)

The **cost** of a solution is the sum of the cost of the actions from the initial state to the goal state.

Definition 4 (Path)

A **path** in the state space is a sequence of states connected by a sequence of actions.

- Consider the state space graph for the three-block world, shown to the right.
- There are three blocks and the goal is to go from one particular configuration to another.
- To do so, blocks can be placed on the table and then moved into different configurations.
- Each move costs 1.

Exercise 1 (continued)

- Provide a search problem formulation for the three-block-world.
- Identify the five components in Definition 1 for this search problem.

Exercise 1: Solution

The five components according to Definition 1 are the following:

- Initial state: Any of the 13 states;
- Action set: move(X, Y), meaning move block X on top of block Y, where X, Y ∈ {A, B, C, Table}, with X ≠ Y;
- **Transition model**: A single move of a block. Examples are going from $s_3 \rightarrow s_{13}$ via move(A, C), or going from $s_{11} \rightarrow s_{12}$ via move(B, Table);
- **Goal test**: Check if the state is a goal state.
- Path cost function: Each step costs 1.

Uninformed Search Strategies

Definition 5 (Uninformed search)

Uninformed Search (also called **blind search**) is a term used to define the set of strategies having no additional information about the state space beyond that provided in the problem formulation.

- Uninformed search strategies can only generate successors and distinguish a goal state from a non-goal state.
- The key difference between two uninformed search strategies is the **order** in which nodes are expanded.

Breadth-First Search

Recall the definition of Breadth-First Search.

Definition 6 (Breadth-First search)

 $\mbox{\bf Breadth-First Search}$ (BFS) is an uninformed search strategy in which

- the root node is expanded first;
- then, all the successors of the root node are expanded;
- then, the successors of each of these nodes are expanded;
- until the goal node is placed in the frontier.
- This is equivalent to expanding the shallowest unexpanded node in the frontier.

- Reconsider the three-block world.
- Assume the initial state is s₁₃ and the goal state is s₅.
- Use BFS from Definition 6 to solve this search problem.
- Write the BFS tree, and the sequence of nodes, in the order they are expanded.
- When multiple nodes are at the same level, expand the one with the smallest index.

Exercise 2: Solution

 The BFS tree is the following, where coloured nodes are the ones that were expanded.

- The nodes are expanded in the order: s_{13} , s_1 , s_3 , s_8 , s_2 , s_4 .
- Note that s_7 , s_9 , s_{12} need not be expanded, because BFS stops when s_5 is placed in the frontier, that is, when s_4 is expanded.

- Reconsider the three-block world.
- Assume the initial state is s_{13} and the goal state is s_5 .
- From what we found in Exercise 2 using BFS, write the solution from Definition 2, and the corresponding cost from Definition 3.
- Also write down the path corresponding to that solution, from Definition 4.

Exercise 3: Solution

The solution is the sequence of the following actions

$$move(A, Table), move(B, A), move(C, B).$$

Since each move costs 1, the total cost of this solution is 3.

 The path corresponding to this solution is the sequence of the following states

$$s_{13}, s_8, s_4, s_5.$$

- In this exercise, we consider the well-known 8 queen puzzle.
- We start with an empty 8 × 8 chessboard, and the goal is to place 8 queens on the chessboard, so that there are no conflicts (no two queens attack each other).
- Recall that a queen can move any number of squares, either vertically, horizontally, or diagonally, in one move.
- Placing a queen on an empty square costs 1.
- Provide a search problem formulation for the 8 queen puzzle.
- Identify the five components in Definition 1 for this search problem.

Exercise 4: Solution

The five components according to Definition 1 are the following:

- **Initial state**: An empty 8 × 8 chessboard;
- Action set: place(XY), meaning place a queen on the empty square XY, where $X \in \{a, b, ..., h\}$, and $Y \in \{1, 2, ..., 8\}$;
- Transition model: The resulting board after taking an action;
- Goal test: All eight queens placed on the board with no conflicts;
- Path cost function: Each step costs 1.

- Reconsider the 8 queen puzzle.
- Discuss how you can apply BFS to find one possible solution.
- Draw the BFS tree for the formulation you propose.
- One such solution is shown below.

Exercise 5: Solution

We give one possible formulation as follows.

- Define s_0 the initial state with the empty chessboard.
- Define s_1, s_2, \ldots, s_{64} the states where the first queen is placed on $a1, a2, \ldots, h8$ respectively.
- Define $s_{65}, s_{66}, \ldots, s_{127}$ the successors of s_1 , that is the states where one queen is already on a1, and the second queen is placed on $a2, a3, \ldots, h8$ respectively.
- Define $s_{128}, s_{129}, \ldots, s_{190}$ the successors of s_2 , that is the states where one queen is already on a2, and the second queen is placed on $a1, a3, \ldots, h8$ respectively.
- Similarly, define the successors of all nodes s_3, \ldots, s_{64} .
- Repeat this labeling to define the successors for the nodes in the second level, s₆₅, s₆₆,..., and so on, until the final level has all eight queens placed.

Exercise 5: Solution (continued)

• With this formulation, the BFS tree will be the following (only the first levels are shown).

Measuring Performance

 Recall some quantities for graphs, that are used to measure the performance in a search problem.

Definition 7 (Branching factor)

The **branching factor** of a graph is the maximum number of successors among its nodes.

Definition 8 (Depth)

The depth of a graph is the minimum level among its goal nodes.

Definition 9 (Maximum length)

The **maximum length** of a graph is the maximum level among its nodes.

- Reconsider the 8 queen puzzle, and the graph formulation we gave in Exercise 5.
- Find the branching factor from Definition 7, the depth from Definition 8, and maximum length from Definition 9, of this graph.

Exercise 6: Solution

- The root node has 64 successors, as there are 64 possible choices to place the first queen.
- Each of the 64 nodes on the first level has 63 successors, as there are 63 possible choices to place the second queen.
- Similarly, each node on the second level has 62 successors, and so on, until the seventh level, which they have 56.
- The branching factor equals 64. In fact, the only root that has 64 successors is the root node. Every other node has fewer successors.
- The depth equals 8, as the goal nodes can only be on the eighth level, where all eight queens are placed.
- The maximum length also equals 8, as there is no level past the eighth.

Depth-First Search

• Recall the definition of Depth-First Search.

Definition 10 (Depth-First search)

- the root node is expanded first;
- then, the first (or one at random) successor of the root node is expanded;
- then, the deepest node in the current frontier is expanded;
- until the goal node is visited.
- This is equivalent to expanding the deepest unexpanded node in the frontier.
- Note that for a DFS to terminate, the goal node must be visited, not just appear in the frontier, unlike BFS.

- Reconsider the three-block world.
- Assume the initial state is s₁ and the goal state is s₆.
- Use DFS from Definition 10 to solve this search problem.
- Write the DFS tree, and the sequence of nodes, in the order they are expanded.
- When multiple nodes are at the same level, expand the one with the smallest index.

Exercise 7: Solution

 The DFS tree is the following, where coloured nodes are the ones that were expanded.

- The nodes are expanded in the order:
 - $S_1, S_{13}, S_3, S_2, S_8, S_4, S_5, S_7, S_6.$
- DFS stops when s₆ is visited.

- Reconsider the three-block world.
- Assume the initial state is s₁ and the goal state is s₁₃.
- From what we found in Exercise 7 using DFS, write the solution from Definition 2, and the corresponding cost from Definition 3.
- Also write down the path corresponding to that solution, from Definition 4.

Exercise 8: Solution

• The solution is the sequence of the following actions

$$move(B, Table), move(A, Table), move(B, C), move(A, B).$$

Since each move costs 1, the total cost of this solution is 4.

 The path corresponding to this solution is the sequence of the following states

$$s_1, s_{13}, s_8, s_7, s_6.$$

Any questions?

Until the next time...

Thank you for your attention!