形式言語理論 第1回レポート

司馬博文 J4-190549

2020年10月2日

1

 $f: \mathbb{N} \to \mathbb{N}$ を、定値写像 f = 1 と定める: $\forall x \in \mathbb{N}$, f(x) = 1. すると、例えば $W = \mathbb{N} \setminus \{1\}$ とすれば、 $f(f^{-1}(W)) = f(\emptyset) = \emptyset \neq W$. $f = g, V = \{1\}$ とすれば、 $g^{-1}(g(V)) = g^{-1}(1) = \mathbb{N} \neq V$.

2

- 二項関係 $R \subset X \times Y$ が次の 2 条件を満たせば良い.
 - 1. [右一意性] $\forall (x,y), (x',y') \in R, x = x' \Rightarrow y = y'.$
 - 2. [左全域性] $\forall a \in X$, $\exists (x,y) \in R$, a = x.

3

それぞれの概念の定義を次の通りとする.

定義 (prefix, sufflix, subword, subsequence). アルファベット Σ による 2 つの記号列 $x,y \in \Sigma^*$ について,

- 1. $\exists u \in \Sigma^*, x = yu$ が成り立つ時, y を x の接頭語と言う.
- 2. $\exists u \in \Sigma^*, x = uy$ が成り立つ時, y を x の接尾語と言う.
- 3. $\exists u, w \in \Sigma^*, x = uyw$ が成り立つ時, y を x の部分語と言う.
- 4. $x = x_1 \cdots x_n$ と部分列 $1 \le i_1 < \cdots < i_m \le n$ が存在して、 $y = x_{i_1} \cdots x_{i_m}$ を満たす y を、

部分系列と言う.

prefix 先頭から ε , x_1 ,x[1:2], \cdots ,x[1:n-1],x の n+1 個.

suffix 同様にn+1個.

subword 列 $x_1 \cdots x_n$ に中に 2 本の区切り棒 | を定める定め方は, $_{n+1}C_2 = \frac{n(n+1)}{2}$ 個.

4

