Nuclear Physics - Summary - Nuclear reactions

by Dr. Helga Dénes (hdenes@yachaytech.edu.ec)

This summary is based on the book: Kenneth Krane - Introductory Nuclear Physics, Chapters 13 - 14.

1 Nuclear Reactions

Nuclear reactions are **induced** by energetic particles. \Leftrightarrow Decays are spontaneous processes.

The two main types are:

- fission
- fusion

Typical reaction:

$$a + X \rightarrow Y + b$$

where a is the projectile and X is the target. Typically a and b are light particles and X and Y are heavy particles. Another notation: X(a,b)Y or (a,b)

2 Nuclear Fission

- Fission is the result of the competition between the Coulomb force (Z^2) and the strong nuclear force (A). This is very similar to α decay.
- A general method is to bombard heavy particles with neutrons.
- Neutron induced fission: $(n,n) \to \text{produces more } n \to \text{chain reaction}$
- There are two types of chain reactions:
 - controlled
 - uncontrolled

2.1 Theoretical explanation

- Heavy elements sit high in the potential well and the fission products can easily escape the well if there is a bit of energy supplied to the system. This energy is called the **activation energy**.
- The released energy gets carried away mostly by the fission products in the form of kinetic energy.
- Fission is more likely if the released energy is high.
- Spontaneous fission is possible too, but it is vary rare and only relevant for the heaviest elements (A > 230).

2.2 Characteristics

- For low energy fission we usually get a heavy and a light fission product.
- Fission products are not uniquely determined, but follow a distribution with a heavier and lighter element.
- fission products tend to be radio active and fission is often followed by β decays.
- There are two types of emitted n:
 - prompt n: the fission products are very n rich \rightarrow they emit ns immediately after the decay.
 - delayed n from β delayed n emission.
- The distribution is symmetric between the heavy and the light product.
- \bullet The number of emitted prompt n follows a Gaussian distribution.
- The average number of prompt n is ν
- We also distinguish neutrons based on their energy:
 - thermal n: low energy → they have a kinetic energy that is equivalent to the energy of the ambient medium.
 - high energy n n produced in fission have high energies

2.3 Energy

$$^{235}U + n \rightarrow ^{236}U^*$$

 $^{236}U^*$ is in an excited state.

$$E_{ex} = [m(^{236}U^*) - m(^{236}U))]c^2$$
$$m(^{236}U^*) = m(^{235}U) + m_n$$

The E_{ex} needs to be larger than the activation energy \rightarrow fission.

- There is a difference in excitation energies for different isotopes.
- n capture by an odd N nucleus \rightarrow easier to induce fission

2.4 Energy release

- most of the energy ($\sim 80\%$) gets carried away by the fission products, due to the Coulomb repulsion
- The carried energy depends on the inverse of the mass ratios
- \bullet a small amount of energy gets carried by the n
- Other energy release:
 - prompt $\gamma {\rm rays}$
 - $-\beta$ decay of fragments
 - $-\gamma$ decay of fragments

2.5 Controlled fission reactions

- \bullet controlling the number of n in the reaction
- neutron reproduction factor $k_{\rm inf}$
 - $-k=1 \rightarrow \text{pile}$ is critical $\rightarrow \text{steady}$ reaction rate
 - $-k < 1 \rightarrow$ pile is subcritical \rightarrow reactions will eventually stop, however nuclear reactors usually aim for this for the prompt n, the reactions keep going because of the extra delayed n
 - $-k > 1 \rightarrow \text{pile}$ is supercritical \rightarrow increasing number of reactions
- $k_{\text{inf}} = \eta \epsilon p f$
 - $-\eta$ mean number of fission produced fast n
 - $-\epsilon$ fast fission fraction (fast n fission with ^{238}U)
 - p resonance capture probability by ^{238}U
 - f thermal utilisation factor (available thermal n)

The **timescales** for n multiplication (τ) :

$$N(t) = N_0 e^{(k-1)t/\tau}$$

which indicates an exponential decrease or increase in the number of n over time.

A typical nuclear reactor has the following main components:

- fuel: uranium or plutonium
- moderator: graphite
- control rods: cadmium
- cooling system: water or heavy water

Reactors can be **used for**:

- energy generation: extracting heat from the reactor \rightarrow power a steam turbine \rightarrow electricity
- research
- conversion (breeder reactor)

There is one known natural fission reactor in Oklo (Gabon), where sustained natural fission happened ~ 1.7 billion years ago.

3 Nuclear Fusion

- Fusing light nuclei to gain energy.
- Need to overcome the nuclear Coulomb barrier (very similar to a reverse α decay)
- If we add energy to the system by heating \rightarrow thermonuclear reaction.
- Another option to add energy to the system is particle acceleration.

3.1 Basic fusion process

There is natural fusion only in the stars.

The most simple reaction is **deuterium fusion**:

$${}^{1}H + {}^{1}H \rightarrow {}^{2}H + e^{+} + \nu$$

The deuterium-deuterium (D-D) reaction:

$$^2H + ^2H \rightarrow ^3He + n$$

or:

$$^2H + ^3H \rightarrow ^2H + p$$

The more stable the end product \rightarrow the larger the energy release. \rightarrow 4He is the most stable light element, which is the ideal product for fusion.

The deuterium-tritium (**D-T**) reaction:

$$^{2}H + ^{3}H \rightarrow ^{4}He + n$$

The D-T reaction is most often used in fusion experiments. It needs a similar input energy as the D-D reaction (Coulomb barrier is the same), but it has a larger energy release (more stable end product). Issues: tritium is rare and expensive and most kinetic energy goes to the n, which is difficult to extract energy from.

Typical fusion in the Sun:

- $4^1H \rightarrow^4 He$ (net reaction).
- This can happen trough various reaction chains: pp chain or CNO cycle. However, the Sun only uses the pp chain.
- In practice we always have two particles reacting. It is very difficult and unlikely to get three particles into the same location for fusion.

In **high mass stars** (more mass compared to the Sun), He and heavier element fusion is possible. However, the higher Coulomb barrier (from more protons) means that these reactions require more energy input \rightarrow higher temperature.

3.2 Energy release

- reacting particles have relatively small kinetic E \sim 1-10 kev compared to $Q \sim \text{MeV}$
- ullet the energy release and the final total energy of the particles will be equal to Q

$$\frac{1}{2}m_bv_b^2 + \frac{1}{2}m_Yv_Y^2 \approx Q$$

Final momenta:

$$m_b v_b \approx m_Y v_Y$$

The energy gets distributed based on the mass ratio:

$$\frac{\frac{1}{2}m_b v_b^2}{\frac{1}{2}m_Y v_Y^2} = \frac{m_Y}{m_b}$$

The lighter particle gets most of the energy. For a D-T reaction the n gets 80% of Q. For a D-D reaction the n gets $\sim 75\%$ of the energy.

The reaction rate depends on:

- The probability of fusion, which depends on the Coulomb barrier \rightarrow an exponential function of $Z_a Z_X$
- Temperature

We can get information about the solar fusion from the ν s produced during the fusion.

- continuous spectrum from ${}^{1}H + {}^{1}H \rightarrow D + \nu_{e} + e^{+}$
- discrete spectrum from ${}^7Be + e^- \rightarrow {}^7Li + \nu_e$
- continuous spectrum from $^8B \rightarrow ^8Be + e^+ + \nu_e$

The $B \to Be$ is the most important for Solar models.

3.3 Controlled fusion reactors

Plasma confinement:

- ullet magnetic confinement
 - tokamak (torus shaped chamber)
 - magnetic mirror (linear chamber)
- inertial confinement
 - lasers
 - particle beams
- Nuclear fusion reactors are in the experimental phase.
- \bullet mostly use the D-T reaction for energy gain
- alternate options for reactions: $-{}^{1}H + {}^{11}B \rightarrow 3^{4}He$ $-D + {}^{3}He \rightarrow {}^{4}He + {}^{1}H$