รหัสวิชา 72 ความถนัดทางวิทยาศาสตร์ (PAT 2) หมวดวิชา ฟิสิกส์

แบบปรนัย 4 ตัวเลือก เลือก 1 คำตอบที่ถูกต้องที่สุด จำนวน 28 ข้อ ค่าคงตัวต่าง ๆ ต่อไปนี้ใช้ประกอบการคำนวณในข้อที่เกี่ยวข้อง

$g = 9.8 \text{ m/s}^2$	$c = 1.6 \times 10^{-19} C$
$h = 6.6 \times 10^{-34} \mathrm{J} \cdot \mathrm{s}$	$G = 6.67 \times 10^{-11} \text{m}^3 (\text{kg} \cdot \text{s}^2)$
$e = 3.0 \times 10^8 \text{m/s}$	$\pi = 3.14$
$k_{\rm B} = 1.38 \times 10^{-23} \text{J/K}$	$R = 8.31 \text{ J/(mol \cdot K)}$
$N_{_{ m A}} = 6.02 imes 10^{-23}$ อนุภาค	
$\sqrt{2} = 1.414$	$\sqrt{3} = 1.732$
$\sqrt{5} = 2.236$	$\sqrt{7} = 2.646$
ln 2 = 0.693	$\log 2 = 0.3010$
$\ln 3 = 1.099$	$\log 3 = 0.477$
ln 5 - 1609	$\log 5 - 0.699$

ข้อ 1. [ข้อสอบเข้ามหาวิทยาลัย / PAT 2 มี.ค. 2552]

นักเรียนคนหนึ่งวัดเส้นผ่านศูนย์กลางของวงกลมวงหนึ่งได้ 5.27 เซนติเมตร เขาควรจะบันทึกรัศมี วงกลมวงนี้เป็นกี่เซนติเมตร

1. 3

2. 2.6

3. 2.64

4. 2.635

ข้อ 2. [ข้อสอบเข้ามหาวิทยาลัย / PAT 2 มี.ค. 2552]

ชายคนหนึ่งขับรถบนทางตรงด้วยอัตราเร็ว 40 กิโลเมตรต่อชั่วโมงเป็นระยะทาง 10 กิโลเมตรแล้วขับ ต่อด้วยอัตราเร็ว 60 กิโลเมตรต่อชั่วโมงเป็นระยะทางอีก 10 กิโลเมตร และด้วยอัตราเร็ว 80 กิโลเมตร ต่อชั่วโมงเป็นระยะทางอีก 10 กิโลเมตร อัตราเร็วเฉลี่ยของรถคันนี้เป็นเท่าใด

1. 60 กิโลเมตรต่อชั่วโมง

2. มากกว่า 60 กิโลเมตรต่อชั่วโมง

3. น้อยกว่า 60 กิโลเมตรต่อชั่วโมง

4. ข้อมูลไม่เพียงพอ

ข้อ 3. [ข้อสอบเข้ามหาวิทยาลัย / PAT 2 มี.ค. 2552]

รถยนต์คันหนึ่งเมื่อเคลื่อนที่ด้วยความเร็ว v_0 แล้วเบรกโดยมีระยะเบรกเท่ากับ x_0 ถ้ารถคันนี้ เคลื่อนที่ด้วยความเร็วเป็น 2 เท่าของความเร็วเดิม จะมีระยะเบรกเป็นเท่าใด (กำหนดให้เหยียบเบรก ด้วยแรงเท่ากันทั้งสองครั้ง)

1.	\mathbf{X}_0
	4

 $2. \quad \frac{\mathbf{x}_0}{2}$

3. $2x_0$

4. $4x_0$

ข้อ 4. [ข้อสอบเข้ามหาวิทยาลัย / PAT 2 มี.ค. 2552]

ชายคนหนึ่งปล่อยก้อนหินจากหน้าผาแห่งหนึ่ง เมื่อก้อนหินก้อนแรกตกลงไปเป็น ระยะทาง 2 เมตร เขาก็ปล่อยก้อนหินอีกก้อนหนึ่งที่มีมวลเท่ากันทันที ถ้าไม่คิดแรงต้านของอากาศ ข้อใดถูกต้อง

- 1. ก้อนหินทั้งสองก้อนอยู่ห่างกัน 2 เมตรตลอดเวลาที่ตก
- 2. ก้อนหินทั้งสองก้อนอยู่ห่างกันมากขึ้นเรื่อยๆ
- 3. ก้อนหินก้อนที่สองตกถึงพื้นหลังก้อนแรก 0.4 วินาที
- 4. ก้อนหินก้อนแรกตกถึงพื้นด้วยความเร็วที่มากกว่าก้อนที่สอง

ข้อ 5. [ข้อสอบเข้ามหาวิทยาลัย / PAT 2 มี.ค. 2552]

ออกแรง F ขนานกับพื้นราบลื่นกระทำกับกล่อง A และ B ที่วางติดกัน ดังรูปข้อใดถูกต้อง

- 1. ถ้า $\mathbf{m_A} > \mathbf{m_B}$ แรงที่กล่อง A กระทำกับกล่อง B มีขนาดมากกว่าแรงที่กล่อง B กระทำกับกล่อง A
- 2. ถ้า $\mathbf{m}_{\mathrm{A}}>\mathbf{m}_{\mathrm{B}}$ แรงที่กล่อง A กระทำกับกล่อง B มีขนาดน้อยกว่าแรงที่กล่อง B กระทำกับกล่อง A
- 3. แรงที่กล่อง A กระทำกับกล่อง B มีขนาดเท่ากับแรงที่กล่อง B กระทำกับกล่อง A โดย ไม่ขึ้นกับมวลของกล่องทั้งสอง
- 4. แรงลัพธ์ที่กระทำกับกล่อง A มีขนาดเท่ากับแรงลัพธ์ที่กระทำกับกล่อง B

ข้อ 6. [ข้อสอบเข้ามหาวิทยาลัย / PAT 2 มี.ค. 2552]

วางกล่องใบหนึ่งบนรถกระบะ สัมประสิทธิ์ความเสียดทานสถิตระหว่างกล่องกับพื้นกระบะ เท่ากับ 0.45 ความเร่งสูงสุดของรถกระบะที่ไม่ทำให้กล่องไถลไปบนพื้นกระบะมีค่าเท่าใด

1. 0.046 m/s²

2. 0.45 m/s²

3. 4.4 m/s^2

4. 44 m/s^2

ข้อ 7. [ข้อสอบเข้ามหาวิทยาลัย / PAT 2 มี.ค. 2552]

ชายคนหนึ่งมีมวล 80 กิโลกรัม ขับรถไปตามถนนด้วยอัตราเร็วคงที่ 15 เมตรต่อวินาที ถ้าพื้นถนน มีหลุมที่มีรัศมีความโค้งเท่ากับ 60 เมตร แรงที่เบาะนั่งกระทำกับชายคนนี้ ณ ตำแหน่งต่ำสุดของหลุม เป็นเท่าใด

1. 300 N

2. 484 N

3. 784 N

4. 1084 N

ข้อ 8. โข้อสอบเข้ามหาวิทยาลัย / PAT 2 มี.ค. 2552 1

ถ้างานที่ใช้เร่งวัตถุจากหยุดนิ่งให้มีอัตราเร็ว v เท่ากับ W งานที่ต้องใช้ในการเร่งวัตถุจากอัตราเร็ว v ไปสู่อัตราเร็ว 2v เท่ากับเท่าใด

1. W

2. 2W

3. 3W

4. 4W

ข้อ 9. เข้อสอบเข้ามหาวิทยาลัย / PAT 2 มี.ค. 2552 1

จงพิจารณาข้อความต่อไปนี้

- ก. งานที่เกิดจากแรงกระทำในทิศตั้งฉากกับความเร็วของวัตถุมีค่าเป็นศูนย์เสมอ
- ข. เครื่องยนต์ที่ทำงานได้ 4 จูลในเวลา 5 วินาที มีกำลังมากกว่าเครื่องยนต์ที่ทำงานได้ 5 จูลในเวลา 10 วินาที
- ค. เครื่องยนต์ A มีกำลังมากกว่าเครื่องยนต์ B เป็น 2 เท่า แสดงว่าเครื่องยนต์ A ทำงานได้เป็น 2 เท่า ของเครื่องยนต์ B

มีข้อความที่ถูกต้องกี่ข้อความ

1. 1 ข้อความ

2. 2 ข้อความ

3. 3 ข้อความ

4. ไม่มีข้อความใดถูกต้อง

ข้อ 10. โข้อสอบเข้ามหาวิทยาลัย / PAT 2 มี.ค. 2552 ไ

วัตถุก้อนหนึ่งวางอยู่บนพื้นราบ เมื่อแตกออกเป็น 2 ก้อน โดยก้อนหนึ่งมีพลังงานจลน์เป็น 2 เท่าของ อีกก้อนหนึ่ง ก้อนที่มีพลังงานจลน์มากกว่ามีมวลเป็นกี่เท่าของก้อนที่มีพลังงานจลน์น้อยกว่า

1. $\frac{1}{4}$

2. $\frac{1}{2}$

3.

4. 4

ข้อ 11, [ข้อสอบเข้ามหาวิทยาลัย / PAT 2 มี.ค. 2552]

จงพิจารณาข้อความต่อไปนี้

- ก. ทรงกลมตันและทรงกลมกลวงที่มีมวลเท่ากัน มีรัศมีเท่ากัน กลิ้งโดยไม่ไถลด้วยอัตราเร็วเท่ากัน ทรงกลมตันจะมีพลังงานจลน์มากกว่าทรงกลมกลวง
- ข. เมื่อผูกเชือกแขวนค้อนให้สมดุลในแนวระดับได้ แสดงว่าตำแหน่งที่ผูกเชือกนั้นเป็นตำแหน่งที่ มวลด้านซ้ายเท่ากับมวลด้านขวา
- ค. ทุกตำแหน่งบนวัตถุหมุนมีอัตราเร็วเชิงมุมเท่ากันมีข้อความที่ถูกต้องกี่ข้อความ

1. 1 ข้อความ

2. 2 ข้อความ

3. 3 ข้อความ

4. ไม่มีข้อความใดถูกต้อง

ข้อ 12. [ข้อสอบเข้ามหาวิทยาลัย / PAT 2 มี.ค. 2552]

ถังใส่น้ำมีท่อขนาดเล็ก ต่อกับวาล์วที่ปิดไว้ดังรูป ถ้าไม่คิดถึงความหนืดของน้ำ เมื่อเปิดวาล์ว ความดันสัมบูรณ์ที่จุด A จะเป็นดังข้อใด

- 1. เพิ่มขึ้น
- 2. คงเดิม โดยมีค่ามากกว่าความดันบรรยากาศ
- გიგა
- 4. คงเดิม โดยมีค่าเท่ากับความดันบรรยากาศ

ข้อ 13. [ข้อสอบเข้ามหาวิทยาลัย / PAT 2 มี.ค. 2552]

ข้อใดคือพลังงานจลน์ของแก๊สฮีเลียมในถังปิดปริมาตร 10 ลูกบาศก์เมตร ที่อุณหภูมิ 300 เคลวิน เมื่อ แก๊สมีความดันเกจเท่ากับ 3×10⁵ ปาสกาล กำหนดให้ความดัน 1 บรรยากาศเท่ากับ 10⁵ ปาสกาล

1. 3.0×10⁶ จูล

2. 4.0×10⁶ จูล

3. 4.5×10⁶ จูล

4. 6.0×10⁶ จูล

ข้อ 14. [ข้อสอบเข้ามหาวิทยาลัย / PAT 2 มี.ค. 2552]

ถ้าเปรียบเทียบความร้อนกับกระแสไฟฟ้า อุณหภูมิจะเทียบได้กับปริมาณใด

1. ความต้านทานไฟฟ้า

2. ศักย์ไฟฟ้า

3. กำลังไฟฟ้า

4. พลังงานไฟฟ้า

ข้อ 15. [ข้อสอบเข้ามหาวิทยาลัย / PAT 2 มี.ค. 2552]

การแทรกสอดของคลื่นบนผิวน้ำจากแหล่งกำเนิดอาพันธ์ 2 แหล่งทำให้เกิดคลื่นนิ่งพิจารณากรณี ต่อไปนี้

- ก. สันคลื่นซ้อนทับสันคลื่น
- ข. สันคลื่นซ้อนทับท้องคลื่น
- ค. ท้องคลื่นซ้อนทับท้องคลื่นการซ้อนทับกันกรณีใดทำให้เกิดจุดบัพ
 - 1. กและค

2. ข

3. ข และ ค

4. ค

ข้อ 16. [ข้อสอบเข้ามหาวิทยาลัย / PAT 2 มี.ค. 2552]

เมื่อเสียงเดินทางจากแหล่งกำเนิดเสียงที่หยุดนิ่งผ่านตัวกลางหนึ่งเข้าไปในอีกตัวกลางหนึ่ง ปริมาณใด ของเสียงที่ไม่เปลี่ยนแปลง

- 1. ความถื่
- 3. อัตราเร็วคลื่น

- 2. ความยาวคลื่น
- 4. ไม่มีปริมาณใดที่ไม่เปลี่ยนแปลง

ข้อ 17. [ข้อสอบเข้ามหาวิทยาลัย / PAT 2 มี.ค. 2552]

เมื่อแสงแดดผ่านแผ่นเกรตติง ภาพที่ปรากฏบนฉากรับภาพจะเป็นอย่างไร

ข้อ 18. [ข้อสอบเข้ามหาวิทยาลัย / PAT 2 มี.ค. 2552]

มองยอดตึกสูงที่อยู่ใกลออกไป 100 เมตรผ่านเลนส์นูนความยาวโฟกัส 0.15 เมตร และให้เลนส์อยู่ ห่างจากตา 0.60 เมตร ถ้าภาพยอดตึกเมื่อมองด้วยตาเปล่าเป็นดังนี้

ภาพยอดตึกที่เห็นผ่านเลนส์จะเป็นดังข้อใด

ข้อ 19. [ข้อสอบเข้ามหาวิทยาลัย / PAT 2 มี.ค. 2552]

แผ่นโลหะบางขนาดใหญ่มาก 2 แผ่น (A และ B) วางขนานกัน ห่างกันเป็นระยะ d ต่อแผ่นโลหะ ทั้ง สองเข้ากับแหล่งกำเนิดไฟฟ้าที่ให้แรงเคลื่อนไฟฟ้าขนาด V0 โวลต์ ดังรูป

ข้อใดถูกต้อง

- 1. แผ่น A มีศักย์ไฟฟ้าเท่ากับ $+V_0$ โวลต์ แผ่น B มีศักย์ไฟฟ้าเท่ากับศูนย์
- 2. แผ่น A มีศักย์ไฟฟ้าเท่ากับ + V_0 โวลต์ แผ่น B มีศักย์ไฟฟ้าเท่ากับ - V_0 โวลต์
- 3. แผ่น A มีศักย์ไฟฟ้าสูงกว่าแผ่น B อยู่ V_0 โวลต์แต่ไม่ทราบศักย์ไฟฟ้าบนแผ่น A และ B อย่างแน่ชัด
- 4. แผ่น A และ B มีขนาดของศักย์ไฟฟ้าเท่ากันคือ $\frac{V_0}{2}$ โวลต์

ข้อ 20. [ข้อสอบเข้ามหาวิทยาลัย / PAT 2 มี.ค. 2552]

ตัวนำทรงกลมมีรัศมีเท่ากับ R และมีประจุเท่ากับ Q พลังงานสะสมในตัวเก็บประจุตัวนำทรงกลม เท่ากับ Eo ถ้าประจุบนตัวนำเพิ่มขึ้นเป็น 2Q พลังงานสะสมในตัวเก็บประจุนี้มีค่าเท่าใด

2.
$$2 E_0$$

ข้อ 21. [ข้อสอบเข้ามหาวิทยาลัย / PAT 2 มี.ค. 2552]

ในเส้นลวดโลหะขนาดสม่ำเสมอเส้นหนึ่ง ภายในเวลา t วินาที มีประจุ $+Q_1$ คูลอมบ์และ $-Q_2$ คูลอมบ์ เคลื่อนที่สวนทางกันผ่านพื้นที่หน้าตัดขนาด A ตารางเมตรของเส้นลวด กระแสไฟฟ้าในเส้นลวด โลหะนี้คือข้อใด

2.
$$|+Q_1|+|-Q_2|$$

ข้อ 22. [ข้อสอบเข้ามหาวิทยาลัย / PAT 2 มี.ค. 2552]

กัลวานอมิเตอร์ตัวหนึ่งมีความต้านทาน 200 โอห์ม รับกระแสได้สูงสุด 10 มิลลิแอมแปร์ นำ กัลวานอมิเตอร์ดังกล่าวมาดัดแปลงเป็นโอห์มมิเตอร์ ดังรูป

ก่อนการใช้งานต้องนำปลาย X และ Y มาแตะกันและปรับค่า Ro เป็นกี่โอห์ม

- 1. เท่าใดก็ได้ที่ทำให้เข็มกัลป์วานอมิเตอร์กระดิก
- 2. 700

3. 900

4. 1,100

ข้อ 23. [ข้อสอบเข้ามหาวิทยาลัย / PAT 2 มี.ค. 2552]

ขดลวดวางอยู่บนโต๊ะที่มีสนามแม่เหล็กสม่ำเสมอพุ่งขึ้นในทิศตั้งฉากกับโต๊ะพิจารณากรณีต่อไปนี้

ก. วงขดลวดกำลังเล็กลง

- ข. วงขดลวดกำลังใหญ่ขึ้น
- ค. สนามแม่เหล็กกำลังลดลง
- ง. สนามแม่เหล็กกำลังเพิ่มขึ้น

กรณีใดที่ผสมกันแล้วทำให้เกิดแรงเคลื่อนไฟฟ้ามากที่สุดในทิศตามเข็มนาฬิกา (เมื่อมองโต๊ะจาก ด้านบน)

1. ก และ ค

2. ก และ ง

3. ข และ ค

4. ข และ ง

ข้อ 24. [ข้อสอบเข้ามหาวิทยาลัย / PAT 2 มี.ค. 2552]

นำตัวเก็บประจุ ตัวต้านทาน และแหล่งกำเนิดไฟฟ้ากระแสสลับชนิดที่ให้แรงเคลื่อนไฟฟ้ายังผลคงที่ มาต่ออนุกรมกันทั้งหมดตามลำดับ ถ้าความถี่ของแหล่งกำเนิดไฟฟ้าเพิ่มขึ้น กระแสไฟฟ้ายังผลใน วงจรอนุกรมดังกล่าวจะเป็นอย่างไร

1. เพิ่มขึ้น

2. คงเดิม

3. ลดลง

4. ไม่สามารถระบุได้ ขึ้นกับค่าของตัวเก็บประจุและตัวต้านทาน

ข้อ 25. [ข้อสอบเข้ามหาวิทยาลัย / PAT 2 มี.ค. 2552]

คลื่นแม่เหล็กไฟฟ้ากำลังเคลื่อนที่ไปในทิศ +z ที่ตำแหน่งหนึ่งและเวลาหนึ่งคลื่นแม่เหล็กไฟฟ้ามีทิศ ของสนามไฟฟ้าในทิศ -x ที่ตำแหน่งและเวลาดังกล่าวจะมีทิศของสนามแม่เหล็กในทิศใด

1. +x

2. +v

3. **-**y

4. -z

ข้อ 26. [ข้อสอบเข้ามหาวิทยาลัย / PAT 2 มี.ค. 2552]

เมื่อฉายแสงความถี่ 5.48 x 10¹⁴ เฮิรตซ์ลงบนโลหะชนิดหนึ่ง ทำให้อิเล็กตรอนหลุดออกมาด้วย พลังงานจลน์สูงสุด 0.79 อิเล็กตรอนโวลต์ เมื่อฉายแสงที่มีความถี่ 7.39 x 10¹⁴ เฮิรตซ์ลงบนโลหะเดิม พบว่าอิเล็กตรอนที่หลุดออกมามีพลังงานจลน์สูงสุด 1.55 อิเล็กตรอนโวลต์ จากผลการทดลองนี้จะ ประมาณค่าคงตัวของพลังค์ได้เท่าใด

1. 3.98×10^{-34} จูล.วินาที่

2. 6.37×10^{-34} จูล.วินาที่

 $3.~6.51 \times 10^{-34}~$ จูล.วินาที

4. 6.63 x 10⁻³⁴ จูล.วินาที

ข้อ 27. [ข้อสอบเข้ามหาวิทยาลัย / PAT 2 มี.ค. 2552]

ธาตุกัมมันตรังสีชนิดหนึ่งมีจำนวนนิวเคลียสเริ่มต้นเท่ากับ N เมื่อเวลาผ่านไปครึ่งหนึ่งของครึ่งชีวิต จะมีจำนวนนิวเคลียสเหลืออยู่เท่าใด

1.
$$\frac{N_0}{4}$$

3.
$$\frac{3N_0}{4}$$

2.
$$\frac{N_0}{\sqrt{2}}$$

2.
$$\frac{N_0}{\sqrt{2}}$$
4. $\frac{7N_0}{8}$

ข้อ 28. [ข้อสอบเข้ามหาวิทยาลัย / PAT 2 มี.ค. 2552]

ถ้าต้องการให้หลอดไฟขนาด 100 วัตต์ 1 ดวงสว่างเป็นเวลา 1 วันโดยใช้พลังงานจากปฏิกิริยาฟิชชั้น โดยที่การเกิดฟิชชันแต่ละครั้งให้พลังงาน 200 เมกะอิเล็กตรอนโวลต์และประสิทธิภาพในการเปลี่ยน พลังงานนิวเคลียร์เป็นพลังงานไฟฟ้าเท่ากับ 30% จะต้องใช้ยูเรเนียม -235 กี่มิลลิกรัม

- 1. 0.038
 - 3. 0.11

- 2. 0.096

เฉลยข้อสอบ PAT 2

ข้อ 1. เฉลยข้อ3

นักเรียนคนหนึ่งวัดเส้นผ่านศูนย์กลางของวงกลมวง<u>หนึ่งได้ 5.27 เซนติเมตร</u> เขาควรจะบันทึกรัศมี วงกลมวงนี้เป็นกี่เซนติเมตร

รัศมี =
$$\frac{\text{เส้นผ่านศูนยก์ลาง}}{\frac{2}{2}}$$
 = $\frac{5.27}{2}$ = 2.635 = 2.64 cm

การคูณ และ หาร เลขนัยสำคัญ

วิธีการ "ให้คูณ หรือ หารตามปกติ แต่ผลลัพธ์ที่ได้ต้องมีจำนวนตัวเลขนัยสำคัญ เท่ากับจำนวนเลขนัยสำคัญของตัวตั้งที่มีจำนวนเลขนัยสำคัญน้อยที่สุด"

ข้อ2. เฉลยข้อ 3

ชายคนหนึ่งขับรถบนทางตรงด้วยอัตราเร็ว 40 กิโลเมตรต่อชั่วโมงเป็นระยะทาง 10 กิโลเมตรแล้วขับ ต่อด้วยอัตราเร็ว 60 กิโลเมตรต่อชั่วโมงเป็นระยะทางอีก 10 กิโลเมตร และด้วยอัตราเร็ว 80 กิโลเมตร ต่อชั่วโมงเป็นระยะทางอีก 10 กิโลเมตร อัตราเร็วเฉลี่ยของรถคันนี้เป็นเท่าใด

ระยะทางรวมสามช่วงเท่ากับ $30~\mathrm{km}$ เวลาแต่ละช่วงหาได้จากสูตร $t = rac{\mathrm{S}}{\mathrm{V}}$

(อัตราเร็วคงตัว) จึงใช้เวลาทั้งหมด =
$$\frac{10}{40} + \frac{10}{60} + \frac{10}{80} = \frac{13}{24}$$
 อัตราเร็วเฉลี่ย $V = \frac{S}{t} = \frac{30}{\left(\frac{13}{24}\right)} = 55.4 \text{ km/h}$

ดังนั้น อัตราเร็วเฉลี่ย น้อยกว่า 60 กิโลเมตรต่อชั่วโมง

ข้อ 3. เฉลยข้อ 4

รถยนต์คันหนึ่งเมื่อเคลื่อนที่ด้วยความเร็ว v_0 แล้วเบรกโดยมีระยะเบรกเท่ากับ \mathbf{x}_0 ถ้ารถคันนี้ เคลื่อนที่ด้วยความเร็วเป็น 2 เท่าของความเร็วเดิม จะมีระยะเบรกเป็นเท่าใด (กำหนดให้เหยียบเบรก ด้วยแรงเท่ากันทั้งสองครั้ง)

$$\frac{1}{2}mu_1^2 = fS_1 \dots 0$$

$$\frac{1}{2}mu_2^2 = fS_2 \dots 0$$

$$\frac{\frac{1}{2}mu_2^2}{\frac{1}{2}mu_1^2} = \frac{fS_2}{fS_1}$$

$$\begin{split} \frac{u_{2}^{2}}{u_{1}^{2}} &= \frac{S_{2}}{S_{1}} \\ &= \frac{\left(2v_{0}\right)^{2}}{\left(v_{0}\right)^{2}} = \frac{S_{2}}{x_{0}} \\ S_{2} &= 4x_{0} \end{split}$$

ข้อ 4.เฉลยข้อ 2

ชายคนหนึ่งปล่อยก้อนหินจากหน้าผาแห่งหนึ่ง เมื่อก้อนหินก้อนแรกตกลงไปเป็น ระยะทาง 2 เมตร เขาก็ปล่อยก้อนหินอีกก้อนหนึ่งที่มีมวลเท่ากันทันที ถ้าไม่คิดแรงต้านของอากาศ ข้อใดถูกต้อง

ตัวเลือกข้อ 1. ก้อนหินทั้งสองก้อนอยู่ห่างกัน 2 เมตรตลอดเวลาที่ตกผิดตัวเลือกข้อ 2. ก้อนหินทั้งสองก้อนอยู่ห่างกันมากขึ้นเรื่อยๆ

ถูก อาจสรุปได้โดยง่ายว่าระยะห่างจะเพิ่มขึ้นเรื่อย ๆ เพราะขณะปล่อยก้อนที่สอง ก้อนแรกกำลังเคลื่อนที่ด้วยความเร็วค่าหนึ่ง ดังนั้นตลอดช่วงการตกก้อนแรกจะมีความเร็วมากกว่า ก้อนที่สอง (เนื่องจากความเร่งเท่ากัน) ระยะห่างจึงเพิ่มขึ้นเรื่อยๆ

ตัวเลือกข้อ 3. ก้อนหินก้อนที่สองตกถึงพื้นหลังก้อนแรก 0.4 วินาที

ผิด เวลา $\mathbf{t}_{_{0}}$ หาได้จากการตกของก้อนแรกในระยะ $\mathbf{2} \ \mathbf{m}$ จากสูตร

$$S = ut + \frac{1}{2}gt^2$$
จึงได้ $S = ut + \frac{1}{2}gt^2$
 $2 = \frac{1}{2}(9.8)t_0^2$
หรือ $t_0 = \sqrt{\frac{20}{49}} \approx \sqrt{0.4} s$

ดังนั้น ก้อนที่สองตกถึงพื้นหลังก้อนแรกเป็นเวลา $\sqrt{0.4}~{
m s}$

ตัวเลือกข้อ 4. ก้อนหินก้อนแรกตกถึงพื้นด้วยความเร็วที่มากกว่าก้อนที่สอง ผิดเนื่องจากทั้งสองก้อนตกจากตำแหน่งเดียวกันจึงมีอัตราเร็วถึงพื้นเท่ากัน

คือ
$$v^2 = \varkappa^2 + 2gh$$

 $v = \sqrt{2gh}$

ข้อ 5. เฉลยข้อ3

แรงที่กล่อง A กระทำกับกล่อง B มีขนาดเท่ากับแรงที่กล่อง B กระทำกับกล่อง A โดย ไม่ขึ้นกับมวลของกล่องทั้งสอง

โดยไม่ขึ้นกับมวลของกล่องทั้งสอง

แรงที่กล่อง A กระทำต่อกล่อง B มีขนาดเท่ากับแรงที่กล่อง B กระทำต่อกล่อง A แต่ทิศทางตรงข้ามเพราะเป็นแรงกิริยาและแรงปฏิกิริยา ไม่ขึ้นกับมวลของกล่อง A และมวลของ กล่อง B ตามกฎข้อที่ 3 ของนิวตัน

ข้อ 6. เฉลยข้อ 3

วางกล่องใบหนึ่งบนรถกระบะ สัมประสิทธิ์ความเสียดทานสถิตระหว่างกล่องกับพื้นกระบะ เท่ากับ 0.45 ความเร่งสูงสุดของรถกระบะที่ไม่ทำให้กล่องไถลไปบนพื้นกระบะมีค่าเท่าใด ขณะรถและกล่องเคลื่อนที่ไปพร้อมกัน (กล่องไม่ไถล) ด้วยความเร่ง a แรงลัพธ์

ที่กระทำต่อกล่อง คือ แรงเสียดทานสถิต f_s ที่ดันกล่องไปด้านหน้า แต่ $f_s \leq \mu_s N$ แสดงว่า กล่องมีความเร่งได้มากที่สุด a_{max} ซึ่งหาได้จากสมการ

$$f_{s \text{ max}} = ma_{max}$$

$$\mu_{s} mg = ma_{max}$$

$$a_{max} = \mu_{s}g = 0.45(9.8) = 4.4 \text{ m/s}^{2}$$

แสดงว่า ความเร่งสูงสุดของรถกระบะที่กล่องไม่โถลไปบนพื้นกระบะเท่ากับ $4.4~\mathrm{m/s}^2$

ข้อ 7. เฉลยข้อ 4

ชายคนหนึ่งมี<u>มวล 80 กิโลกรัม</u> ขับรถไปตามถนนด้วย<u>อัตราเร็วคงที่ 15 เมตรต่อวินาที</u> ถ้าพื้นถนน มีหลุมที่มีรัศมี<u>ความโค้งเท่ากับ 60 เมตร</u> แรงที่เบาะนั่งกระทำกับชายคนนี้ ณ ตำแหน่งต่ำสุดของหลุม เป็นเท่าใด ขณะที่รถอยู่ในหลุม คนกำลังเคลื่อนที่เป็นวงกลมโดยมีแรงสู่ศูนย์กลาง ความเร่งมีทิศเข้าสู่ศูนย์กลาง

$$N - mg = \frac{mv^2}{R}$$

ได้แรงที่เบาะกระทำต่อคน

$$N = \frac{mv^{2}}{R} + mg$$

$$= \frac{80(15)^{2}}{60} + 80(9.8)$$

$$= 300 + 784$$

$$= 1084 \text{ N}$$

ขั้นตอนการคำนวณเกี่ยวกับวงกลม มีดังนี้

ข้อ 8. เฉลยข้อ 3

ถ้างานที่ใช้เร่งวัตถุจากหยุดนิ่งให้มีอัตราเร็ว v เทากับ W งานที่ต้องใช้ในการเร่งวัตถุจากอัตราเร็ว v ไปสู่อัตราเร็ว 2v เท่ากับเท่าใด

$$\sum W = \Delta E_k = \frac{1}{2} m v_2^2 - \frac{1}{2} m v_1^2$$
 จากอัตราเร็ว 0 เป็น v ต้องทำงาน
$$W = -\frac{1}{2} m v^2 - 0 = -\frac{1}{2} m v^2$$
 จากอัตราเร็ว v เป็น $2v$ ต้องทำงาน
$$W' = -\frac{1}{2} m (2v)^2 - \frac{1}{2} m v^2$$

$$= -\frac{3}{2} m v^2$$
 แสดงว่า
$$W' = -3W$$

ข้อ 9. เฉลยข้อ 2

จงพิจารณาข้อความต่อไปนี้

ก. งานที่เกิดจากแรงกระทำในทิศตั้งฉากกับความเร็วของวัตถุมีค่าเป็นศูนย์เสมอ

ถูกต้อง เพราะ
$$\frac{1}{v}=\frac{1}{\Delta t}$$
 ดังนั้น ถ้า $\frac{1}{r}$ ตั้งฉากกับ $\frac{1}{v}$ จะได้ $\frac{1}{r}$

ตั้งฉากกับ $\Delta \bar{\mathbf{J}}$ จึงไม่เกิดงานตามนิยาม $\Delta \mathbf{W} = \mathbf{F}\Delta\mathbf{S}\cos\theta = \mathbf{0}$ เมื่อ $\theta =$ ข. เครื่องยนต์ที่ทำงานได้ 4 จูลในเวลา 5 วินาที มีกำลังมากกว่าเครื่องยนต์ที่ทำงานได้ 5 จูลในเวลา 10 วินาที

ถูกต้อง เพราะกำลัง เฉลี่ย
$$P=rac{W}{t}$$
 จึงได้ $P_1=rac{4}{5}=0.8~W$ และ $P_2=rac{5}{10}=0.5~W$ นั่นคือ $P_1>P_2$

ค. เครื่องยนต์ A มีกำลังมากกว่าเครื่องยนต์ B เป็น 2 เท่า แสดงว่าเครื่องยนต์ A ทำงานได้เป็น 2 เท่า
 ของเครื่องยนต์ B

ไม่ถูกต้อง เพราะ
$$P=rac{W}{t}$$
 งาน $W=Pt$ การที่จะสรุปว่า เมื่อกำลังเป็นสองเท่าจะได้ งานเป็นสองเท่าต้องกำหนดด้วยว่าในช่วงเวลาเท่ากัน

ข้อ 10.เฉลยข้อ 2

วัตถุก้อนหนึ่งวางอยู่บนพื้นราบ <u>เมื่อแตกออกเป็น 2 ก้อน</u> โดย<u>ก้อนหนึ่งมีพลังงานจลน์เป็น 2 เท่าของ</u> อีกก้อนหนึ่ง ก้อนที่มีพลังงานจลน์มากกว่ามี<u>มวลเป็นกี่เท่าของก้อนที่มีพลังงานจลน์น้อยกว่า</u> ตามหลักอนุรักษ์โมเมนตัมของการระเบิดที่ใ้ม่มีแรงภายนอกจะได้ว่า

ข้อ 11. เฉลยข้อ 4

จงพิจารณาข้อความต่อไปนี้

ก. ทรงกลมตันและทรงกลมกลวงที่มีมวลเท่ากัน มีรัศมีเท่ากัน กลิ้งโดยไม่ไถลด้วยอัตราเร็วเท่ากัน ทรงกลมตันจะมีพลังงานจลน์มากกว่าทรงกลมกลวง

ผิด เพราะเมื่อกลิ้งโดยไม่ไถลพลังงานจลน์รวมของวัตถุ คือ

จากสูตร
$$extbf{E}_{ ext{k}} = rac{1}{2} ext{m} ext{v}^2 + rac{1}{2} ext{I}\omega^2$$
 โดยที่ $ext{v} = \omega ext{R}$

ถ้าทรงกลมตันและทรงกลมกลวงมี \mathbf{m},\mathbf{v} และ ω เท่ากัน ทรงกลมกลวง จะมีพลังงานจลน์มากกว่า เพราะมีโมเมนต์ความเฉื่อย I มากกว่า โมเมนต์ความเฉื่อยของทรงกลมตันและทรงกลมกลวงรอบแกนที่ผ่านศนย์

กลางเท่ากับ
$$\frac{2}{5}\,\mathrm{mr}^2$$
 และ $\frac{2}{3}\,\mathrm{mr}^2$ ตามลำดับ

ข. เมื่อผูกเชือกแขวนค้อนให้สมดุลในแนวระดับได้ แสดงว่าตำแหน่งที่ผูกเชือกนั้นเป็นตำแหน่งที่ มวลด้านซ้ายเท่ากับมวลด้านขวา

ผิด เพราะจุดศูนย์กลางมวลไม่ได้แบ่งมวลเป็นสองส่วนเท่ากัน แต่จะอยู่ใน ตำแหน่งที่ค่อนไปทางที่มวล มากกว่า ในกรณีแขวนค้อนให้สมดลด้วยเชือก มวลด้านหัวค้อนจะมากกว่ามวลด้านด้ามค้อน

ค. ทุกตำแหน่งบนวัตถุหมุนมีอัตราเร็วเชิงมุมเท่ากัน

ผิด เพราะ อัตราเร็วเชิงมุมของทุกตำแหน่ง จะเท่า กันก็ต่อเมื่อเป็นวัตถูแข็งเกร็ง (Rigid Body) ซึ่งเป็นวัตถุที่ไม่เปลี่ยนแปลงรูปร่าง ถ้าไม่ใช่วัตถุแข็ง เกร็งอัตราเร็วเชิงมุมแต่ละจุดจะแตกต่างกันได้ เช่น น้ำ ในแก้วที่กำลังหมน คนกำลังขยับขาหมนรอบตัวเอง เป็นต้น

ข้อ 12. เฉลยข้อ 3

เมื่อของไหล เคลื่อนที่ ความดัน สัมบูรณ์ จะมีค่าลดลงจาก ขณะที่อยู่นิ่ง ซึ่งพิสูจน์ได้ด้วยสมการของแบร์นูลลี

$$P_1 + \rho g h_1 + \frac{1}{2} \rho v_1^2 = P_2 + \rho g h_2 + \frac{1}{2} \rho v_2^2$$

ข้อ 13 เฉลยข้อ 4

ข้อใดคือพลังงานจลน์ของแก๊สฮีเลียมในถังปิด<u>ปริมาตร 10 ลูกบาศก์เมตร</u> ที่<u>อุณหภูมิ 300 เคลวิน</u> เมื่อ แก๊สมีความดันเกจเท่ากับ 3×10^5 ปาสกาล กำหนดให้ความดัน 1 บรรยากาศเท่ากับ 10^5 ปาสกาล พลังงานจลน์ของแก๊สฮีเลียมเป็นผลรวมพลังงานจลน์ของทุก ๆ โมเลกุล เรียกว่า

พลังงานภายใน
$$\cup$$
 โดยที่ ($P=$ ความดันสัมบูรณ์ $=P_{\text{in}}+P_{\text{บรรยากาศ}}$)

$$E_{K} = \frac{3}{2}PV = \frac{3}{2}(3\times10^{5}+10^{5})(10)$$
 $= 6\times10^{6} \text{ J}$
พลังงานจลน์โมเลกุลแก๊ส

พลังงา
$$E_{K}=\Delta U=rac{3}{2}PV=rac{3}{2}nRT=rac{3}{2}NK_{B}T$$

เมื่อ E_k = พลังงานจลน์เฉลี่ย ของโมเลกล แก๊ส (J) (มีค่าเป็นพลังงานจลน์ของแก๊ส 1 โมเลกล)

$$k_B = 1.38 \times 10^{-23} \text{ N.m / mol.k}$$

$$T =$$
อุณหภูมิ (K) $P =$ ความดัน (N/m²)

$$V = ปริมาตร (m^3)$$
 $N = จำนวนโมเลกุลแก๊ส$

ความร้อนไหลจากอุณหภูมิสูงไปสู่อุณหภูมิต่ำ ในขณะที่กระแสไฟฟ้าไหลจากศักย์ สูงไปศักย์ต่ำ ดังนั้น อุณหภูมิจึงเทียบได้กับศักย์ไฟฟ้า

ข้อ 15.เฉลยข้อ 2

การซ้อนทับกันสันคลื่นซ้อนทับท้องคลื่นทำให้เกิดจุดบัพ (Node)
การซ้อนทับกันสันคลื่นซ้อนทับสันคลื่น ท้องคลื่นซ้อนทับท้องคลื่น ทำให้เกิดจุดปฏิบัพ (Antinode)
การแทรกสอด (Interference)การแทรกสอดเกิดจากคลื่น 2 คลื่นหรือมากกว่า 2 คลื่นเคลื่อนที่มาเจอกัน เมื่อ
คลื่น 2 อันเคลื่อนที่มาเจอกัน การกระจัดของอนุภาคของคลื่นลัพธ์ มีค่าเท่ากับผลบวกของการกระจัดของ
อนุภาคของคลื่น 2 ขบวนรวมกัน และหลังจากที่คลื่นเคลื่อนผ่านพ้นกันไปแล้วคลื่นแต่ละอันก็ยังมีรูปร่างและ
ขนาดเหมือนเดิม คือ แหล่งกำเนิดคลื่นสองแหล่งที่ให้คลื่นที่มีความเร็ว ความถี่ และความยาวคลื่นที่เท่ากัน

จุดบัพเกิดจากการซ้อนทับแบบหักล้างกันระหว่างสันคลื่นกับท้องคลื่น ในขณะที่

จุดปฏิบัพเกิดจากการซ้อนทับแบบเสริมกันระหว่างท้องคลื่นกับท้องคลื่น หรือสันคลื่นกับสันคลื่น ข้อ 16. เฉลยข้อ 1

เมื่อคลื่นเสียง (หรือคลื่นใด ๆ) เดินทางผ่านจากตัวกลางหนึ่งไปยังอีกตัวกลางหนึ่ง จะเกิดการเปลี่ยนแปลงอัตราเร็วและความยาวคลื่นโดยที่ความถี่ไม่เปลี่ยนแปลง

ข้อ 17. เฉลยข้อ 3

แสงแดดเป็นแสงขาวประกอบด้วยสเปกตรัมต่อเนื่องของแสงสีม่วงถึงสีแดง เมื่อผ่าน แผ่นเกรตติงจะเกิดการเลี้ยวเบนแยกสี โดยสีม่วง ที่มีความยาวคลื่นสั้นสุด จะมีมุมเบี่ยงเบนน้อยที่สุด

สมการของแถบสว่างอันดับที่ n ของแสดงความยาวคลื่น λ คือ $\sin heta = n \lambda$

จะได้
$$heta=\sin^{-1}\!\left(\,rac{n\lambda}{d}\,
ight)$$
 นั้นคือ λ มากมุม $heta$ ใหญ่

ซึ่งสังเกตว่าอันดับของสเปกตรัมชุดเดียวกัน λ สั้น จะมีมุม heta เล็กกว่า λ ยาว

ข้อ18. เฉลยข้อ

เนื่องจากตึกอยู่ไกลกว่าความยาวโฟกัสมาก จึงอาจประมาณว่าภาพของตึกเป็นภาพ จริงหัวกลับขนาดย่ออยู่ใกล้ ๆ กับจุดโฟกัส

$$\frac{y'}{v} = \frac{S'}{S}$$

เนื่องจากระยะวัตถุมีค่ามาก เราจึงเห็นภาพมีขนาดย่อย ๆ

ผู้มองอยู่ด้านหลังภาพจึงรับแสงจากภาพได้ ดังนั้นผู้มองจะเห็นภาพหัวกลับ โดยกลับ ทั้งแนวราบและแนวดิ่ง

ข้อ 19. เฉลยข้อ 3

แผ่นโลหะบางขนาดใหญ่มาก 2 แผ่น (A และ B) วางขนานกัน ห่างกันเป็นระยะ d ต่อแผ่นโลหะ ทั้ง สองเข้ากับแหล่งกำเนิดไฟฟ้าที่ให้แรงเคลื่อนไฟฟ้าขนาด V0 โวลต์ ดังรูป

แผ่น A มีศักย์ไฟฟ้าสูงกว่าแผ่น B อยู่ V_0 โวลต์แต่ไม่ทราบศักย์ไฟฟ้าบนแผ่น A และ B อย่างแน่ชัด เมื่อต่อแผ่นตัวนำ A และ B เข้ากับแหล่งกำเนิดไฟฟ้าแรงเคลื่อน V_0 จะทำให้ทราบว่าแผ่น A และ B อย่างแน่นอน แต่โจทย์ไม่สามารถกำหนดไม่ได้กำหนดแต่ละแผ่นมีศักย์ไฟฟ้า เท่าใด เพราะไม่ได้กำหนดจุดอ้างอิงเทียบกับศักย์ไฟฟ้าที่เป็นศูนย์ เช่น ถ้ากำหนดว่าแผ่น B มีศักย์ไฟฟ้าเป็น ศูนย์ แผ่น A จะมีศักย์ไฟฟ้า $+V_0$ แต่ถ้ากำหนดแผ่น A มีศักย์ไฟฟ้าเป็นศูนย์ จะได้แผ่น B มีศักย์ไฟฟ้า $-V_0$

ข้อ 20. เฉลยข้อ 3

ตัวนำทรงกลมมีรัศมี<u>เท่ากับ R</u> และมี<u>ประจุเท่ากับ O</u> พลังงานสะสมในตัวเก็บประจุตัวนำทรงกลม
 <u>เท่ากับ E₀ ถ้าประจุบนตัวนำเพิ่มขึ้นเป็น 2O</u> พลังงานสะสมในตัวเก็บประจุนี้มีค่าเท่าใด
 พลังงานศักย์ไฟฟ้าที่สะสมบนตัวนำทรงกลมหาได้จากสูตรเดียวกับพลังงานภายใน

ตัวเก็บประจุ คือ
$$U = \frac{1}{2}QV = \frac{1}{2}CV^2 = \frac{1}{2}\frac{Q^2}{C}$$

เพราะตัวนำทรงกลมถือได้ว่าเป็นตัวเก็บประจุ โดยศักย์ไฟฟ้าของตัวนำทรงกลม

ที่มีประจุ Q หาได้จากศักย์ไฟฟ้าที่ผิว คือ
$$V=\frac{kQ}{R}$$
 จึงได้ $U=\frac{1}{2}QV=\frac{1}{2}Q\frac{kQ}{R}=\frac{1}{2}\frac{kQ^2}{R}$
$$U_1=\frac{1}{2}\frac{kQ_1^2}{R_1}....$$

$$U_2=\frac{1}{2}\frac{kQ_2^2}{R_2}....$$

$$U_1/U_2=\frac{1}{2}\frac{kQ_1^2}{R_1}/\frac{1}{2}\frac{kQ_2^2}{R_2}$$

$$\boxed{\frac{\mathbf{U}_1}{\mathbf{U}_2} = \left(\frac{\mathbf{Q}_1}{\mathbf{Q}_2}\right)^2 \frac{\mathbf{R}_2}{\mathbf{R}_1}}$$

พลังงานสะสมในตัวเก็บประจุตัวนำทรงกลม <u>เท่ากับ E_o ถ้าประจุบนตัวนำเพิ่มขึ้นเป็น 20</u> **พลังงานสะสมใน ตัวเก็บประจ**ุนี้มีค่าเท่าใด

$$\frac{E_0}{U_2} = \left(\frac{1}{2}\right)^2 \frac{R}{R}$$

$$U_2 = 4E_0$$

แสดงว่าพลังงานแปรโดยตรงกับ \mathbf{Q}^2 ดังนั้นถ้าเพิ่มประจุจาก Q เป็น 2Q จะได้พลังงาน เพิ่มจาก จาก \mathbf{E}_0 เป็น $4\mathbf{E}_0$

ข้อ 21. เฉลยข้อ 1

ในเส้นลวดโลหะขนาดสม่ำเสมอเส้นหนึ่ง ภายในเวลา t วินาที มีประจุ $+Q_1$ คูลอมบ์และ $-Q_2$ คูลอมบ์ เคลื่อนที่สวนทางกันผ่านพื้นที่หน้าตัดขนาด A ตารางเมตรของเส้นลวด กระแสไฟฟ้าในเส้นลวด

โลหะนี้คือ กระแสไฟฟ้าเกิดจากการเคลื่อนที่ของประจุทั้งบวกและลบ โดยพิศทางกระแสมี พิศเดียวกับการเคลื่อนที่ของประจุบวกแต่ตรงข้ามกับพิศการเคลื่อนที่ของประจุลบ ในกรณีที่ ประจุบวกและประจุลบเคลื่อนที่สวนกันจะได้กระแสพิศทางเดียวกัน ให้นำขนาดมาบวกกัน

กระแสไฟฟ้า
$$I = I_+ + I_-$$

$$= \frac{\left|+Q_1\right|}{t} + \frac{\left|-Q_2\right|}{t}$$

$$= \frac{\left|+Q_1\right| + \left|-Q_2\right|}{t}$$

ข้อ 22. เฉลยข้อ 2

กัลวานอมิเตอร์ตัวหนึ่งมีความต้านทาน 200 โอห์ม รับกระแสได้สูงสุด 10 มิลลิแอมแปร์ นำ กัลวานอมิเตอร์ดังกล่าวมาดัดแปลงเป็นโอห์มมิเตอร์ ดังรูป

ก่อนการใช้งานต้องนำปลาย X และ Y มาแตะกันและปรับค่า R_0 เป็นกี่โอห์ม

ก่อนใช้โอห์มมิเตอร์ต้องนำปลาย \times กับ Y มาแตะกันเพื่อให้เข็มของกัลวานอมิเตอร์ เบนเต็มสเกลไปชี้ที่ศูนย์โอห์ม $\left(R_{xy}=0\right)$ ซึ่งขณะนี้มีกระแสในวงจรเท่ากับ I_{g} ตามรูป ทำให้กระแสในวงจรเท่ากับ $I_{g}=10~\text{mA}$ โดยการปรับค่า R_{0}

จากวงจรได้
$$I_g = \frac{\Sigma E}{\Sigma R}$$

$$10\times10^{-3} = \frac{9}{R_0+200}$$

$$R_0+200 = \frac{9}{10^{-2}}$$

$$R_0+200 = 900$$

$$R_0 = 700\,\Omega$$

ข้อ 23. เฉลยข้อ 4

กระแสเหนี่ยวนำในวงขดลวดเกิดจากการเปลี่ยนแปลงของฟลักซ์แม่เหล็กภายในวง ขดลวด โดยกระแสเหนี่ยวนำจะเกิดขึ้นในทิศทางที่สร้างฟลักซ์แม่เหล็กต่อต้านการเพิ่มขึ้นหรือ ลดลงของฟลักซ์แม่เหล็กจากภายนอก (Lenz's Law)

ก. วงขดลวดกำลังเล็กลง

วงขดลวดเล็กลงแสดงว่าฟลักซ์ แม่เหล็ก พุ่งออกลดลง กระแสจึงไหล **ทวนเข็ม**สร้างฟลักซ์พุ่งออกชดเชยที่ลดลง การหาทิศของสนามแม่เหล็กที่สร้างจากกระแสทำได้โดย
วนนิ้วทั้งสี่ตามทิศกระแส หัวแม่มือที่ตั้งฉากแสดงทิศของสนามภายในวงขดลวด

ข. วงขดลวดกำลังใหญ่ขึ้น

วงขดลวดใหญ่ขึ้นทำให้ฟลักซ์พุ่งออกเพิ่มขึ้นจึงได้กระแสไหล**ตามเข็ม**สร้าง ฟลักซ์พุ่งเข้าต้านการเพิ่มฟลักซ์ แม่เหล็ก

ค. สนามแม่เหล็กกำลังลดลง

ฟลักซ์พุ่มออกลดลงได้กระแสไหล**ทวนเข็ม**

ง. สนามแม่เหล็กกำลังเพิ่มขึ้น

ฟลักซ์พุ่งออกเพิ่มขึ้นได้กระแสไหล**ตามเข็ม**

สรุป เมื่อ ข. และ ง. เกิดพร้อมกันจะได้กระแสรวมและแรงเคลื่อนเหนี่ยวนำรวม มากที่สุดในทิศตามเข็มนาฬิกา

** หลัก Lenz (ใช้หาทิศ I เหนี่ยวนำ)

"เมื่อมีเส้นแรงแม่เหล็กเปลี่ยนแปลงกระทำที่ขดลวดจะเกิดกระแสไฟฟ้าเหนี่ยวนำขั้นในขดลวดนั้น และเกิดขั้วแม่เหล็ก ที่จะต้านการเปลี่ยนแปลงสนามแม่เหล็กเดิม เช่น

ถ้าพุ่งขั้ว N เข้าหาขดลวด, ขดลวดจะเกิด N ต้านไม่ให้เข้า

ถ้าพุ่งขั้ว S เข้าหาขดลวด, ขดลวดจะเกิด S ต้านไม่ให้เข้า

ถ้าพุ่งขั้ว N ออกจากขดลวด, ขคลวดจะเกิด S ดูดไม่ให้ออก

ถ้าพุ่งขั้ว S ออกจากขคลวด, ขคลวดจะเกิด N ดูดไม่ให้ออก

หลักลัด, ใช้มือซ้ายหาทิศ I

ถ้าพุ่งนิ้วโป้งมือซ้ายตามทิศที่พุ่งขั้ว N (ทิศ $\Delta \overline{
m B}$) นิ้วที่งอจะเป็นทิศ m I เหนี่ยวนำที่เกิดขึ้นในขดลวด

ข้อ 24.เฉลยข้อ 1

ตามโจทย์เป็นวงจรอนุกรม RC ซึ่งมีความต้านทานเชิงซ้อน

$$Z = \sqrt{R^2 + X_C^2} = \sqrt{R^2 + \left(\frac{1}{\omega C}\right)^2} = \sqrt{R^2 + \left(\frac{1}{2\pi f C}\right)^2}$$
โดยที่กระแสยังผล $I_{ms} = \frac{V_{ms}}{Z}$

ดังนั้น เมื่อเพิ่มความถี่เชิงมุม ω จะทำให้ Z ลดลง จึงได้กระแสยังผล I เพิ่มขึ้น

ข้อ 25.เฉลยข้อ 3

เมื่อฉายแสงความถี่ 5.48 x 10¹⁴ เฮิรตซ์ลงบนโลหะชนิดหนึ่ง ทำให้อิเล็กตรอนหลุดออกมาด้วย พลังงานจลน์สูงสุด 0.79 อิเล็กตรอนโวลต์ เมื่อฉายแสงที่มีความถี่ 7.39 x 10¹⁴ เฮิรตซ์ลงบนโลหะเดิม พบว่าอิเล็กตรอนที่หลุดออกมามีพลังงานจลน์สูงสุด 1.55 อิเล็กตรอนโวลต์ จากผลการทดลองนี้จะ ประมาณค่าคงตัวของพลังค์ได้เท่าใด

พลังงานของแสงหรือโฟตอน จะคำนวณได้จาก

$$E = hf = \frac{hc}{\lambda}$$

หรือคำนวณจากสูตรลัด

$$E_{(eV)} = \frac{1240}{\lambda_{nm}}$$

สูตรของปรากฏการณ์โฟโตอิเล็กทริก จะเป็นดังนี้

$$eV_s = E_K = hf - W$$

$$W = hf_0 = rac{hc}{\lambda_0}$$

เมื่อ $V_{_{\scriptscriptstyle S}}$ คือ ความต่างศักย์หยุดยั้ง

W คือ ฟังก์ชั่นงาน หรือพลังงานยึดเหนี่ยว

🗢 จะเกิดปรากฏการณ์โฟโตอิเล็กทริกได้เมื่อ

E ของแสงมีค่า > W หรือ f แสง \geq $f_{_0}$ หรือ λ แสง \leq $\lambda_{_0}$

🗢 จะไม่เกิดปรากฏการณ์โฟโตอิเล็กทริกเมื่อ

E ของแสงมีค่า < W หรือ f แสง < f_0 หรือ λ แสง > λ_0

สมการพลังงานจลน์สูงสุด $\mathbf{E}_{\mathbf{k}}$ ของโฟโตอิเล็กตรอนจากปรากฏการณ์โฟโตอิเล็กตริก

คือ $\mathbf{E_k} = \mathbf{E} - \mathbf{W}$ เมื่อ \mathbf{hf} เป็นพลังงานโฟตอนและ \mathbb{W} เป็นฟังก์ชั่นงานซึ่งขึ้นกับชนิดของโลหะ เมื่อใช้แสงความถี่ $\mathbf{f_1}$ และ $\mathbf{f_2}$ ฉายบนโลหะชนิดหนึ่งโดยพลังงานจลน์สูงสุดของอิเล็ก ตรอน

ที่หลุดออกมาเป็น $E_{\mathbf{k}_1}$ และ $E_{\mathbf{k}_2}$

จะได้สมการ $E=W+E_{\mathrm{k}}$

$$E_{k_2} = hf_2 - W \qquad \dots$$

้ ดังนั้น ผลต่างของพลังงานจลน์ คือ

$$E_{k_2} - E_{k_1} = h(f_2 - f_1)$$

จากโจทย์ แทนค่าพลังงานจลน์ในหน่วยจูลและความถี่ได้ ดังนี้

$$\left(1.6 \times 10^{-19}\right) \! \left(1.55 - 0.79\right) \ = \ h \! \left(7.39 \times 10^{14} - 5.48 \times 10^{14}\right)$$

$$1.216 \times 10^{-19} = h \left(1.91^{14} \times 10^{14} \right)$$
$$h = 6.37 \times 10^{-34} \text{ J} \cdot \text{s}$$

ข้อ 27. เฉลยข้อ 2

ธาตุกัมมันตรังสีชนิดหนึ่งมีจำนวนนิวเคลียสเริ่มต้นเท่ากับ N เมื่อเวลาผ่านไปครึ่งหนึ่งของครึ่งชีวิต จะมีจำนวนนิวเคลียสเหลืออยู่เท่าใด

เมื่อเวลาผ่านไป t จำนวนนิวเคลียสของสารกัมมันตรังสีจะลดลงจาก $N_{
m o}$ เหลือ N โดยที่

สูตร
$$N=\frac{N_0}{2^n}$$
 (เมื่อ $n=\frac{t}{T},\ T=$ ครึ่งชีวิต) เมื่อเวลาผ่านไปครึ่งหนึ่งของชีวิตแสดงว่า $n=\frac{t}{T}=\frac{1}{2}$ จึงได้ $N=\frac{N_0}{2^{1/2}}=\frac{N_0}{\sqrt{2}}$

ข้อ 28. เฉลยข้อ 4

ถ้าต้องการให้หลอดไฟ<u>ขนาด 100 วัตต์</u> 1 ดวงสว่างเป็น<u>เวลา 1 วัน</u>โดยใช้พลังงานจากปฏิกิริยาฟิชชัน โดยที่การเกิดฟิชชันแต่ละครั้งให้<u>พลังงาน 200 เมกะอิเล็กตรอนโวลต์</u>และประสิทธิภาพในการเปลี่ยน พลังงานนิวเคลียร์เป็นพลังงานไฟฟ้าเท่ากับ 30% จะต้องใช้ยูเรเนียม -235 กี่มิลลิกรัม ให้ E เป็นพลังงานจากหลอดไฟที่กำลัง P ในเวลา 1 วัน และ $Q=200~{
m MeV}$ เป็นพลังงานจากปฏิกิริยานิวเคลียร์ฟิชชัน 1 ปฏิกิริยา เมื่อเกิด N ปฏิกิริยา

จากโจทย์ได้ว่า
$$E=\frac{30}{100}\,\mathrm{NQ}$$
 งาน $E=\frac{30}{100}\,\mathrm{NQ}=\mathrm{Pt}$ จะได้ $\mathrm{N}=\frac{\mathrm{Pt}}{(0.3)\mathrm{Q}}$ $=\frac{(100)(24)(3600)}{(0.3)\left(200\times10^6\times1.6\times10^{-19}\right)}=9\times10^{17}$

จำนวนนิวเคลียสของ 235 U ที่ต้องใช้เท่ากับจำนวนปฏิกิริยา คือ 9×10^{17} นิวเคลียส(อะตอม)

คิดเป็นมวลได้ ดังนี้ จากสูตร
$$\frac{m}{M}=\frac{N}{N_A}$$
 $m=\frac{N}{N_A}M$ $=\frac{9{\times}10^7}{6.02{\times}10^{23}} (235)$ กรัม $=3.5{\times}10^{-4}$ $=0.35$ มิลลิกรัม