ÜBUNGEN ZU "PARTIELLE DIFFERENTIALGLEICHUNGEN" WS 2020 BLATT 7 (12. 11. 2020)

EDUARD NIGSCH, CLAUDIA RAITHEL

1. Zeigen Sie, dass

$$u(x,y) = \ln\left(\ln\frac{1}{\sqrt{x^2 + y^2}}\right) \in H^1(B_{1/2}(0)).$$

- **2.** Sei $\Omega \subset \mathbb{R}^n$ ein beschränktes Gebiet mit $\partial \Omega \in C^1$. Zeigen Sie:
 - (a) Sind $u \in H^k(\Omega)$ $(k \in \mathbb{N})$ und $v \in C^{\infty}(\overline{\Omega})$, so folgt $uv \in H^k(\Omega)$.
 - (b) Sind $u \in H^1(\Omega)$ und $v \in C_0^{\infty}(\Omega)$, so folgt $uv \in H_0^1(\Omega)$.
- **3.** Sei $\Omega = \{(x, y) \in \mathbb{R}^2 : 0 < x < 1, x^{1/5} < y < 1\}.$
 - (a) Finden Sie eine Funktion $u \in H^2(\Omega)$, so dass $u \notin C^0(\overline{\Omega})$. Hinweis: $u(x,y) = y^{\alpha}$.
 - (b) Ist dies nicht ein Widerspruch zur stetigen Einbettung von $H^2(\Omega)$ in $C^0(\overline{\Omega})$ in zweidimensionalen Gebieten?
- 4. Zeigen Sie die 2. poincarésche Ungleichung: Sei $\Omega \subset \mathbb{R}^n$ ein beschränktes Gebiet mit $\partial \Omega \in C^1$. Dann existiert eine Konstante C>0, so dass für alle $u\in H^1(\Omega)$ gilt

$$||u - \overline{u}||_{L^2(\Omega)} \le C||\nabla u||_{L^2(\Omega)},$$

wobei $\overline{u} := \frac{1}{|\Omega|} \int_{\Omega} u(x) dx$. *Hinweis:* Sie dürfen folgende Aussage ohne Beweis verwenden: Sei $\Omega \subset \mathbb{R}^n$ ein beschränktes Gebiet mit $\partial\Omega \in C^1$ und $u \in H^1(\Omega)$ mit $\|\nabla u\|_{L^2(\Omega)} = 0$. Dann folgt, dass u eine konstante Funktion ist.