Scheduling for Uplink Transmissions with Point Coordination Function

Dongni Han, Ping-Chun Hsieh, and Tao Zhao

March 31, 2016

Uplink Transmissions

- One AP and N clients
- 1 slot = 10ms; 1 interval = T slots
- Packets generated in the beginning of each interval
- Number of packets follows Unif{N_{min}, N_{max}}
- Real-time and non-real-time traffic

- N = 3 and T = 6
- $p_1 = p_2 = p_3 = 0.5$
- Real-time traffic
- $X_n(k)$ = queue length at the start of the k-th interval

• Phase 1: AP polls X_n in a round-robin manner

Phase 1: AP polls X_n in a round-robin manner

• Phase 1: AP polls X_n in a round-robin manner

- Phase 2: AP schedules a client based on Max-Weight policy
- Max-Weight: select the client that maximizes p_nX_n

- Phase 2: AP schedules a client based on Max-Weight policy
- Max-Weight: select the client that maximizes p_nX_n

- Phase 2: AP schedules a client based on Max-Weight policy
- Max-Weight: select the client that maximizes p_nX_n

• What if Poll-X or X_1 is not delivered?

What if Poll-X or X₁ is not delivered?

- Re-transmit Poll-X until the AP receives X_n
- Option: just set $X_n = 0$

- How does a client know the DATA packet is delivered?
- Do we need an application-layer "ACK" for AP?

Discussion 2

- How does a client know the DATA packet is delivered?
- Do we need an application-layer "ACK" for AP?

Put "expected packet ID" in Poll-DATA packets

- For non-real-time traffic, what does " X_n " mean?
- There is no application-layer ACK from AP

- For non-real-time traffic, what does "X_n" mean?
- There is no application-layer ACK from AP

- X_n := total number of packets generated by client n
- Y_n := total delivery of data packets from client n (maintained by AP)
- Max-Weight: choose n that maximizes $p_n(X_n Y_n)$

NS-2 Implementation: Packet Types

- AP: Poll-X and Poll-DATA
- Client: X-Uplink and DATA-Uplink

NS-2 Implementation: State Machine

AP is controlled by the state machine as follows.

Pros and Cons

Pros:

- Simple polling scheme
- AP is work-conserving in phase 2

Cons:

- Overhead due to polling
- Channel utilization for data packets is low
- Not practical when N is large

- N = 2 and T = 10
- Reliable channel: $p_1 = p_2 = 1$ (symmetric)
- N_{max} ranges from 1 to 12
- Non-real-time traffic

- N = 2 and T = 10
- Reliable channel: $p_1 = p_2 = 1$ (symmetric)
- N_{max} ranges from 1 to 20
- Real-time traffic

- N = 2
- Unreliable channel: $p_1 = p_2 \approx 0.57$ (distance 1000 m)
- T ranges from 4 to 16
- Non-real-time traffic

- N = 2
- Unreliable channel: $p_1 = p_2 \approx 0.57$ (distance 1000 m)
- T ranges from 4 to 16
- Real-time traffic

- Fix *T* = 10
- Unreliable channel: $p_1 = p_2 \approx 0.57$ (distance 1000 m)
- N ranges from 1 to 5
- Non-real-time traffic

- Fix *T* = 10
- Unreliable channel: $p_1 = p_2 \approx 0.57$ (distance 1000 m)
- N ranges from 1 to 5
- Real-time traffic

