CÍRCULO UNITARIO

1. Signo de las Funciones Trigonométricas en los cuatro cuadrantes.

De la figura No.1, se sabe que: $sen \theta = \frac{y}{z}$

$$Como: r = 1 \implies sen \theta = \frac{y}{1}$$

$$\therefore \quad sen \ \theta = y \ o \ y = sen \ \theta$$

De igual forma de la fig. No. 1:
$$\cos \theta = \frac{x}{r}$$

$$Como: r = 1 \qquad \implies \cos \theta = \frac{x}{1}$$

$$\therefore \quad x = \cos \theta$$
 (2)

Para la tangente:
$$\tan \theta = \frac{y}{x}$$

Sust. (1)
$$y(2)$$
 : $\tan \theta = \frac{sen \theta}{\cos \theta}$ __(3

Por el teorema de Pitágoras

$$x^2 + y^2 = r^2$$

$$\Rightarrow \cos^2\theta + \sin^2\theta = r^2$$
, $como r = 1$

Identidade Pitagórica :
$$sen^2\theta + cos^2\theta = 1$$
 __4

Signos de las funciones trigonométricas en los 4 cuadrantes

Regla mnemotécnica para identificar en cuáles cuadrantes las funciones son positivas

El triángulo rectángulo en su posición normal en sus cuatro cuadrantes

SIGNO DE LAS FUNCIONES TRIGONOMÉTRICAS

Signos de las funciones trigonométricas en los 4 cuadrantes

Regla mnemotécnica para identificar en cuáles cuadrantes las funciones son positivas

Signos de las funciones trigonométricas en los 4 cuadrantes

CUADRANTE	sen θ	cos θ	tan θ	cot θ	sec θ	csc θ
1	+	+	+	+	+	+
II	+	_	_	_	_	+
III	_	_	+	+	_	_
IV	_	+		_	+	

ÁNGULO EN POSICIÓN NORMAL O ESTÁNDAR

En trigonometría un ángulo está en **posición estándar** si en un sistema cartesiano su vértice está situado en el origen 0, y su lado inicial se extiende a lo largo del eje positivo x.

Ejemplos: Ángulos en posición estándar.

ÁNGULOS COTERMINALES

Existen muchos ángulos diferentes que tiene *los mismos lados* inicial L_1 y terminal L_2 , a estos ángulos se les llama ángulos coterminales. Si θ es un ángulo cualquiera en posición estándar expresado en radianes y k es un número entero, entonces:

$$\theta y \theta + k(360^{\circ}) [\theta y \theta + 2k\pi]$$
 son ángulos coterminales

Ejemplo 1: $160^{\circ} y - 560^{\circ}$

Por tanto: $\theta_1 = 160^{\circ} y \theta_2 = -560^{\circ}$ son ángulos coterminales

Ambos ángulos tiene los mismos lados inicial L_1 y terminal L_2 .

Ejemplo 2: $145^{\circ} y - 215^{\circ}$

Ambos ángulos tiene los mismos lados inicial L_1 y terminal L_2 .

Por tanto: Los ángulos 145° y 215° son coterminales

Ángulos "COTERMINALES"

Ejemplo: Dibujar los siguientes ángulos en posición estándar y calcular el ángulo comprendido entre 0° y 360° coterminal con cada uno.

Solución:

 60° coterminal con 420° 240° coterminal con -120°

180° coterminal con 900°

 135° coterminal con -585°

ÁNGULO DE RFERENCIA

Definición de ángulo de referencia

Sea θ un ángulo no cuadrantal en posición estándar. El **ángulo de referencia** para θ es el ángulo agudo θ_R que el lado terminal de θ forma con el eje x.

La figura 1 ilustra el ángulo de referencia θ_R para un ángulo no cuadrantal θ , con $0^{\circ} < \theta < 360^{\circ}$ o $0 < \theta < 2\pi$, en cada uno de los cuatro cuadrantes.

FIGURA 1 Ángulos de referencia

(a) Primer cuadrante

(b) Segundo cuadrante

$$\theta_{\rm R} = 180^{\circ} - \theta$$

$$= \pi - \theta$$

(c) Tercer cuadrante

$$\theta_{\rm R} = \theta - 180^{\circ}$$

$$= \theta - \pi$$

(d) Cuarto cuadrante

$$\theta_{R} = 360^{\circ} - \theta$$
$$= 2\pi - \theta$$

ÁNGULO DE REFERENCIA

Ejemplos:

Para 135°

Para 205°

Para 315°

y L_1 x y 245° L_2 $p(\cos 45^{\circ}, -sen 45^{\circ})$

Ángulo de referencia es: $heta=45^\circ$ En el segundo cuadrante Ángulo de referencia es : $\theta = 25^{\circ}$ En el tercer cuadrante Ángulo de referencia es: $\theta = 45^{\circ}$ En el cuarto cuadrante

ÁNGULO DE REFERENCIA

$$sen 30^\circ = \frac{1}{2} \qquad cos 30^\circ = \frac{\sqrt{3}}{2}$$

$$sen 45^{\circ} = \frac{\sqrt{2}}{2}$$
 $cos 45^{\circ} = \frac{\sqrt{2}}{2}$

$$sen 60^{\circ} = \frac{\sqrt{3}}{2}$$
 $cos 60^{\circ} = \frac{1}{2}$

$$sen \ 150^{\circ} = \frac{1}{2}$$
 $cos \ 150^{\circ} = -\frac{\sqrt{3}}{2}$

$$sen \ 135^{\circ} = \frac{\sqrt{2}}{2}$$
 $cos \ 135^{\circ} = -\frac{\sqrt{2}}{2}$

$$sen \ 120^{\circ} = \frac{\sqrt{3}}{2}$$
 $cos \ 120^{\circ} = -\frac{1}{2}$

Ejercicio:

Determine el valor del seno y el coseno de los ángulos.

b)
$$1845^{\circ}$$
 c) -1230°

$$d) - 240^{\circ} e) - 45^{\circ}$$

$$e) - 45^{\circ}$$

RAZONES TRIGONOMETRICAS DE ANGULOS CUADRANTALES

Ángulos Cuadrantales

Entenderemos por ángulo cuadrantal a aquel ángulo en posición normal cuyo lado final coincide con cualquier semieje del plano cartesiano.

La medida de este ángulo siempre tendrá la forma " $n \cdot 90^{\circ}$ " ó " $n \cdot \frac{\pi}{2}$ "

ÁNGULOS CUADRANTALES

Son aquellos ángulos que están en posición normal y su lado final coincide con los semiejes coordenados.

Ángulo de 90° y sus múltiplos (0°, 180° y 270°)

RAZONES TRIGONOMETRICAS DE ANGULOS CUADRANTALES

∢	0°, 360°	90°	180°	270°
RAZÓN TRIGONOMÉTRICA	0; 2π	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$
sen	0	1	0	-1
cos	1	0	-1	0
tan	0	No Definido	0	No Definido
cot	No Definido	0	No Definido	0
sec	1	No Definido	-1	No Definido
CSC	No Definido	1	No Definido	-1

LEY DE SENOS Y

LEY DE COSENOS

TRIÁNGULOS OBLICUÁNGULOS

Un *triángulo oblicuángulo* es aquel que *no* contiene ángulo recto. En este tipo de triángulos, los tres ángulos son agudos, o bien, dos de sus ángulos son agudos y el tercero es un ángulo obtuso.

Los datos que determinan un triángulo oblicuángulo pueden darse de una de las tres maneras siguientes:

- 1. Dando sus tres lados
- 2. Dando dos ángulos y un lado
- 3. Dando dos lados y un ángulo

Para resolver este tipo de triángulos se usan, dependiendo de los datos, la ley de los senos y de los cosenos.

LEY DE SENOS

$$\frac{a}{sen \alpha} = \frac{b}{sen \beta} = \frac{c}{sen \gamma}$$

O también se puede escribir como:

$$\frac{sen \alpha}{a} = \frac{sen \beta}{b} = \frac{sen \gamma}{c}$$

LEY DE COSENOS

Es conveniente señalar lo siguiente:

- La ley de los senos: Es aplicable directamente cuando se conoce, de un triángulo oblicuángulo, dos_lados y el ángulo opuesto a uno de ellos, o cuando se conocen dos ángulos y un lado.
- La ley de los coseno: es aplicable directamente cuando se conoce, de un triángulo oblicuángulo, dos lados y el ángulo comprendido entre ellos, o cuando se conocen los tres lados.

$$a^{2} = b^{2} + c^{2} - 2bc \cos \alpha$$

$$b^{2} = a^{2} + c^{2} - 2ac \cos \beta$$

$$c^{2} = a^{2} + b^{2} - 2ab \cos \gamma$$

EJEMPLOS

Ejemplo 7.1

Para el triángulo ABC dado en la figura, calcular las partes restantes, si:

- a) $\alpha = 41^{\circ}$, $\gamma = 77^{\circ}$ y $\alpha = 10.5 \, \text{m}$
- b) β = 20° , γ = 31° y b = 210 m
- c) $\gamma = 81^{\circ}$, c = 11 m y b = 12 m
- d) $\alpha = 60^{\circ}$, $b = 20 \,\text{m}$ y $c = 30 \,\text{m}$
- e) $\beta = 150^{\circ}$, $\alpha = 150 \,\text{M}$ y c = 30 m
- f) $a = 10 \, \text{m}$, $b = 15 \, \text{m}$ y $c = 12 \, \text{m}$

a) Datos: $\alpha = 41^{\circ}, \gamma = 77^{\circ} y \ a = 10.5 \ m$

Solución:

Como
$$\alpha + \beta + \gamma = 180^{\circ} \implies \beta = 180^{\circ} - \alpha - \gamma$$

$$\beta = 180^{\circ} - 41^{\circ} - 77^{\circ}$$

$$\beta = 62^{\circ}$$

Al aplicar la ley de los senos, se tiene:

$$\frac{b}{sen 62^{\circ}} = \frac{10.5}{sen 41^{\circ}} \implies b = \frac{10.5 \ sen 62^{\circ}}{sen 41^{\circ}}$$

$$b = 14.13 \ m$$

Por otro lado:

$$\frac{c}{sen 77^{\circ}} = \frac{14.13}{sen 62^{\circ}} \implies c = \frac{14.13 \ sen 77^{\circ}}{sen 62^{\circ}}$$

$$c = 15.59 \ m$$

Finalmente:

$$a = 10.5 m$$
 $\alpha = 41^{\circ}$
 $b = 14.13 m$ $\beta = 62^{\circ}$
 $c = 15.59 m$ $\gamma = 77^{\circ}$