Practice Problems:

Basis of subspace:

1.

Find a basis and dimension of the subspace W of \mathbb{R}^3 where

- (a) $W = \{(a, b, c) : a + b + c = 0\},$ (b) $W = \{(a, b, c) : (a = b = c)\}$
- (a) Note that $W \neq \mathbb{R}^3$, because, for example, $(1,2,3) \notin W$. Thus, dim W < 3. Note that $u_1 = (1,0,-1)$ and $u_2 = (0,1,-1)$ are two independent vectors in W. Thus, dim W = 2, and so u_1 and u_2 form a basis of W.
- (b) The vector $u = (1, 1, 1) \in W$. Any vector $w \in W$ has the form w = (k, k, k). Hence, w = ku. Thus, u spans W and dim W = 1.

2.

Let V be the vector space of 2×2 matrices over K. Let W be the subspace of symmetric matrices. Show that dim W = 3, by finding a basis of W.

Recall that a matrix $A = [a_{ij}]$ is symmetric if $A^T = A$, or, equivalently, each $a_{ij} = a_{ji}$. Thus, $A = \begin{bmatrix} a & b \\ b & d \end{bmatrix}$

denotes an arbitrary 2×2 symmetric matrix. Setting (i) a = 1, b = 0, d = 0; (ii) a = 0, b = 1, d = 0; (iii) a = 0, b = 0, d = 1, we obtain the respective matrices:

$$E_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \qquad E_2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \qquad E_3 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

We claim that $S = \{E_1, E_2, E_3\}$ is a basis of W; that is, (a) S spans W and (b) S is linearly independent.

- (a) The above matrix $A = \begin{bmatrix} a & b \\ b & d \end{bmatrix} = aE_1 + bE_2 + dE_3$. Thus, S spans W.
- (b) Suppose $xE_1 + yE_2 + zE_3 = 0$, where x, y, z are unknown scalars. That is, suppose

$$x \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + y \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} + z \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} x & y \\ y & z \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Setting corresponding entries equal to each other yields x = 0, y = 0, z = 0. Thus, S is linearly independent. Therefore, S is a basis of W, as claimed.

Interpolation:

- 1. Find a polynomial p(x) of degree 3, such that p(0) = 1, p'(0) = 2, p(1) = 4, p'(1) = 4.
- 2. Find the equation of circle passing through points (2,-2), (3,5) and (-4,6).

Linear Transformation:

- 1. Which of the following map is linear transform:
- $T_1: \mathbb{R}^2 \to \mathbb{R}^2$, $T_1(x, y) = (|x|, 0)$.
- $T_2: \mathbb{P}_2 \to \mathbb{R}^2$, $T_2(a_0 + a_1t + a_2t^2) = (a_0 + a_1, a_2)$
- $T_3: \mathbb{P}_2 \to \mathbb{R}^3$, $T_3(a_0 + a_1t + a_2t^2) = (a_1 a_2, a_0 + 1)$
- $T_4: \mathbb{M}_{2\times 2} \to \mathbb{R}^3, T_4\left(\left[\begin{array}{cc} a & b \\ c & d \end{array}\right]\right) = (a+d,b+c,a).$
- $T_5: \mathbb{M}_{2\times 2} \to \mathbb{R}^3, T_5(A) = A^T.$

- $T_6: \mathbb{P}_3 \to \mathbb{P}_2, T_6(p(t)) = \frac{d}{dt}p(t).$
- 2. Check the invertibility of the following linear transformations and also find the inverse transform if exist:
 - $T_1: \mathbb{R}^2 \to \mathbb{R}^2$, $T_1(x, y) = (x + y, x y)$
 - $T_2: \mathbb{R}^3 \to \mathbb{R}^3$, $T_2(x, y, z) = (2x + 3y, z 4y, x + z)$
 - $T_3: \mathbb{P}_2 \to \mathbb{R}^3$, $T_3(a_0 + a_1t + a_2t^2) = (a_0 a_1, 0, a_1 a_2)$.
 - $T_4: \mathbb{P}_2 \to \mathbb{R}^3$, $T_4(a_0 + a_1t + a_2t^2) = (0, a_2 a_0, a_1 a_3)$.
 - $T_5: \mathbb{P}_2 \to \mathbb{R}^3$, $T_5(p(t)) = T_3(p(t)) + T_4(p(t))$.
- 3. Find the matrix of transformation of the following linear transformations:
 - $T_1: \mathbb{P}_2 \to \mathbb{R}^3$, $T_1(a_0 + a_1t + a_2t^2) = (a_0 a_1, 0, a_1 a_3)$. Find $[T]^{\beta}_{\alpha}$, α and β are the standard basis of \mathbb{P}_2 and
 - $T_2: \mathbb{R}^3 \to \mathbb{R}^4$, $T_2(x, y, z) = (x + 2y, y + 3z, y z, x + z)$. find $[T]^{\beta}_{\alpha}$ and $[T]^{\gamma}_{\alpha}$, where α is the standard basis of \mathbb{R}^3 , β is the standard basis of \mathbb{R}^4 and $\gamma = \{(1, 1, 1, 1), (1, 1, 1, 0), (1, 1, 0, 0), (1, 0, 0, 0)\}$.
 - $T_3: \mathbb{R}^4 \to \mathbb{R}^4$, $T_3(x, y, z, w) = (x + 2y, y + 3z, w + y z, x + z)$. Find $[T]_{\alpha}$ and hence find $[T]_{\beta}$ using similarity transform, where α is the standard basis of \mathbb{R}^4 and $\beta = \{(1, 1, 1, 1), (1, 1, 1, 0), (1, 1, 0, 0), (1, 0, 0, 0)\}$.
 - Given $T_4: \mathbb{R}^3 \to \mathbb{R}^3$, $T_4(x, y, z) = (2x, y + z, 3y)$ and $T_5: \mathbb{R}^3 \to \mathbb{R}^3$, $T_5(x, y, z) = (-x, y z, 4y)$. Also α are β are the bases of \mathbb{R}^3 , where α is the standard basis and $\beta = \{(1, 0, 1), (0, 1, 1), (1, 1, 0)\}$. Then find (i) $[T_4]_{\alpha}^{\beta}$ (ii) $[T_5]_{\alpha}^{\beta}$ (iii) $[T_4 + T_5]_{\alpha}^{\beta}$ (iv) $[T_4^{-1}]_{\alpha}^{\beta}$ (v) $[T_5^{-1}]_{\alpha}^{\beta}$ (vi) $[(T_4 + T_5)^{-1}]_{\alpha}^{\beta}$.

Gram-Schmidt ortho-normalization process:

- 1. $\alpha = \{(2,3,1,1), (1,0,2,5), (2,1,3,0), (1,1,1,1)\}$ is a basis of \mathbb{R}^4 . Use the Gram-Schmidt ortho-normalization process to transform α into orth-onormal basis.
- 2. $\beta = \{2+t, 2t^2, 3-t^2\}$ is a basis of \mathbb{P}_2 . Use the G-S ortho-normalization process to transform β into orthonormal basis.

Matrix representation of linear transform:

- 1. $(\mathbb{R}^3, \langle \rangle)$ is an inner product space with $\{(1,0,0), (1,1,1), (1,1,0)\}$ as basis of \mathbb{R}^3 . Find the matrix representation of the inner product.
- 2. $(\mathbb{P}_2,\langle \rangle)$ is an inner product space with $\{1+t,t,2t^2\}$ as basis of \mathbb{R}^3 . Find the matrix representation of the inner product.

2

QR-Decomposition/Factorization:

1. Find the QR factorization of the following matrices

(i)
$$\begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & 0 \\ 2 & 3 & -1 \end{bmatrix}$$

(i)
$$\begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & 0 \\ 2 & 3 & -1 \end{bmatrix}$$
 (ii)
$$\begin{bmatrix} 1 & -1 & 0 & 1 \\ -1 & 2 & -1 & 2 \\ 4 & 2 & 2 & 1 \end{bmatrix}$$
.