PROBLEM 21

GIVEN: Service tensile loads: PD= 35k, PL=115 k, and Ps=65 k. The connection is through the flange with two lines of three 3/4-in diameter bolts 4 in on center. Use A572 Grade 50 steel. Neglect block shear.

Load Info:	D =	35	kips	L =	115	kips	R=	0	kips	S=	65	kips
	 =	0	kips	Lr=	0	kips	W=	0	kips	E=	0	kips
	Pii=	Ο	kins	Pa=	Ο	kins						

					REFERE	NCE:
<u>Structural</u>	Yield stress	Fy=	50	ksi	table 2-4	page 2-48
A572 Gr50	Ultimate stress	Fu=	65	ksi	table 2-4	page 2-48
<u>Shape</u>	Shape:					page 1-72
<u>Values:</u>	Gross area	Ag=		in^2	table 1-	page 1-72
	xbar	x-=		in	table 1-	p 1-42
	bolt diameter	=	0.75	in	Statemer	nt
	nominal hole dia	=	0.813	in	table J3.3	p 16.1-121
	effective hole dia	h=	0.875	in	B4.3b	p 16.1-18
	length	l=	6	in		
	thickness	tf=	0.285	in	Statemer	nt
	Member Length	L=	20	ft	Statemer	nt
	Number of bolts in A,	N=			Statemer	nt
	Gage	g=	1	in		
	Pitch	s=		in		
	Number of sections,	Ns=				
	Diagonal Factor=	df=	0			

Figure

FIND: Select an ST shape to be used as a 20ft long tension member that will safely support the service tensile loads.

METHOD: 1. Find loads according to AISC p2-10

2. Determine min Ag

2.1) YIELDING STRENGTH

1 Pn=Fy*Ag			D2-1	page 16.1-26
2 LRFD yield strength=Φ*Pn	Φ=	0.9		

3 ASD yield strength= Pn/Ω Ω = 1.67

2.2) RUPTURE STRENGTH:

1 Pn=Fu*Ae D2-1 page 16.1-26

2 LRFD rupture strength= Φ *Pn Φ = 0.75 3 ASD rupture strength= Pn/ Ω Ω = 2.00

WHERE: Effective net area: Ae=An*U D3-1 p 16.1-27

An= net area determined B4.3 U=shear lag factor Table D3.1

3. Determine min r4. Check limit states

SOLUTION: **1. Finding loads:**

1.1) LRFD:

				Unif	orm Load	d Cases	;		
	Load Combinations	D	L+I	Lr	S	R	W	Ε	Sum
1	1.4D	35							35
2	1.2D+1.6L+0.5(Lr or S or R)	42	184	0	32.5	0			259
3	1.2D+1.6(Lr or S or R)+(L* or 0.5W)	42	57.5	0	104	0	0		204
4	1.2D+1.0W+L*+0.5(Lr or S or R)	42	57.5	0	32.5	0	0		132
5	1.2D+1.0E+L* + 0.2S	42	57.5		13			0	113
6	0.9D+1.0W	31.5					0		32
7	0.9D+1.0E	31.5						0	32

*Note: Change Load Factor for 1 for public assembly, live loads in excess of 100 psf and for parking

The governing factored load for design is equal to: **258.5** kips

1.2.) ASD:

-	_			Uni	form Load	l Cases	;		
	Load Combinations	D	L+I	Lr	S	R	W	Ε	Sum
1	D	35							35
2	D+L	35	115						150
3	D+(Lr or S or R)	35		0	65	0			100
4	D+0.75L + 0.75(Lr or S or R)	35	86.25	0	48.75	0			170
5	D+(0.6W OR 0.7E)	35					0	0	35
6 (a)	D+0.75L+0.75(0.6W)+0.75(Lr/S/R)	35	86.25	0	48.75	0	0		170
6 (b)	D+0.75L+0.75(0.7E)+0.75S	35	86.25		48.75			0	170
7	0.6D+0.6W	21					96		117
8	0.6D+0.7E	21						0	21

The governing factored load for design is equal to:	170	kips	
---	-----	------	--

Pu= 258.5 kips	Pa=	170	kips	Ī
•				

2. Determine min Ag

2.1) YIELDING STRENGTH

LRFD: ASD:

 $Ag >= Pu/\phi^*Fy = 5.744 \text{ in 2}$ $Ag >= Pa^*\Omega/Fy = 5.678 \text{ in 2}$

2.2) RUPTURE STRENGTH:

*This assumption should start with smaller number for a

Assuming U = 0.85 larger value of area.

We have that, $Pu = Fu^*Ae = or Ag >= Pu/f^*Fu^*U + 0.15Ag$

LRFD: ASD:

 $Ag >= Pu/\phi *Fu*U*0.85 = 7.339 in2$ $Ag >= Pa*\Omega/Fu*U*0.85 : 5.68 in2$

LRFD: ASD:

Thus the governing minimum Ag \geq 7.339 5.678 in^2

3. Determining Slenderness Ratio Limitation

r >= L / 300 in >= 0.8 in

r >= 0.8 in

*Make other used cases sheet.

4. Trials

TRIA	L SHAPE	-	Ag>	r>	SHEAR LAG: CASE 2		SHEAR LAG: CASE 7 (a)		Ag,r	Sat*	Umax	
<u>TYPE</u>		WGT	7.339	0.8	х-	U	bf	d	U			
ST	7.5	25	7.34	2.35	2.25	0.625	5.64	7.5	0.9	8.1547	0	0.9
ST	9	27.35	8.02	2.79	2.51	0.582	6	9	0.9	8.1547	0	0.9
ST	10	33	9.7	3.1	2.81	0.532	6.26	10	0.85	8.6343	1	0.9
						1		0	0.9	7.3392	0	1
						1		0	0.9	7.3392	0	1
						1		0	0.9	7.3392	0	1
						1		0	0.9	7.3392	0	1
						1		0	0.9	7.3392	0	1

<u>Sat*:</u> 1- Mean if the area gross used given the shape used still satisfy the possibly new maximum minimum area.

0- New area does not satisfied whichever new maximum minimum area.

Min Area that satisfy

Smallest section to start check=

5. Checking Limit States

SECTION STRENGTH

5.1. YIELD

				LRFD		ASD		
				Pn'	* ф=	Pn/	′Ω=	
				Fy*	Ag*φ	Fy* <i>F</i>	\g $^*\Omega$	
TRIA	L SHAPE		Ag>	Pn*φ	Pn*∳>	Pn/Ω	Pn/ Ω >	
<u>TYPE</u>		WGT	0	ΡΠΨ	Pu	P11/52	Pa	
ST	7.5	25	7.34	330.3	1	219.8	1	<
ST	9	27.35	8.02	360.9	1	240.1	1	ΤI
ST	10	33	9.7	436.5	1	290.4	1	rc
0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	

<- Given the sort this is the best option.</p>
The are organized accordingly till the last row.

5.1. RUPTURE

IF STAGGERED (use diagonal

factor):

	**An=	Ag - N*	h*tf		LRF	D	ASD				
	Ae=An	*U						Pn*φ= Fι	1 *	Pn/s	Ω=
								Pπ Ψ- π	и не ф	Fu*A	e/ Ω
TRIA	L SHAPE	-	Ag>	An**	U	Ae	Pn	Pn*ø	Pn*φ	Pn/Ω	${\sf Pn}/\Omega$
<u>TYPE</u>		WGT	0	AII	U	Ae	PII	ΡΙΙ Ψ	>Pu	P11/52	>Pa
ST	7.5	25	7.34	7.34	0.9	6.606	429.4	322.04	1	214.7	1
ST	9	27.35	8.02	8.02	0.9	7.218	469.2	351.88	1	234.59	1
ST	10	33	9.7	9.7	0.85	8.245	535.9	401.94	1	267.96	1
0	0	0	0	0	1	0	0	0	0	0	0
0	0	0	0	0	1	0	0	0	0	0	0
0	0	0	0	0	1	0	0	0	0	0	0
0	0	0	0	0	1	0	0	0	0	0	0
0	0	0	0	0	1	0	0	0	0	0	0

- <u>Sat*:</u> 1- Mean if the area gross used given the shape used still satisfy the possibly new maximum minimum area.
 - 0- New area does not satisfied whichever new maximum minimum area.
 - Given the sort filter applied the top rows represents the best options

Given these two values the choice of section is:	ST	10X	33	
--	----	-----	----	--