

74AC14 • 74ACT14 Hex Inverter with Schmitt Trigger Input

General Description

The 74AC14 and 74ACT14 contain six inverter gates each with a Schmitt trigger input. They are capable of transforming slowly changing input signals into sharply defined, jitter-free output signals. In addition, they have a greater noise margin than conventional inverters.

The 74AC14 and 74ACT14 have hysteresis between the positive-going and negative-going input thresholds (typically 1.0V) which is determined internally by transistor ratios and is essentially insensitive to temperature and supply voltage variations.

Features

- I_{CC} reduced by 50%
- Outputs source/sink 24 mA
- 74ACT14 has TTL-compatible inputs

Ordering Code:

Order Number	Package Number	Package Description		
74AC14SC	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow		
74AC14SCX_NL (Note 1)	M14A	Pb-Free 14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow		
74AC14SJ	M14D	14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide		
74AC14MTC	MTC14	14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide		
74AC14MTCX_NL (Note 1)	MTC14	Pb-Free 14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide		
74AC14PC	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide		
74ACT14SC	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow		
74ACT14MTC	MTC14	14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide		
74ACT14MTCX_NL (Note 1)	MTC14	Pb-Free 14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide		
74ACT14PC	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide		

Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code. Pb-Free package per JEDEC J-STD-020B.

Note 1: "_NL" indicates Pb-Free package (per JEDEC J-STD-020B). Device available in Tape and Reel only.

 $\mathsf{FACT}^{\scriptscriptstyle\mathsf{TM}}$ is a trademark of Fairchild Semiconductor Corporation.

Logic Symbol

Connection Diagram

Pin Descriptions

Pin Names	Description
In	Inputs
Ō _n	Outputs

Function Table

Input	Output
Α	0
L	Н
Н	L

Absolute Maximum Ratings(Note 2)

Supply Voltage (V $_{CC}$) -0.5V to +7.0V

DC Input Diode Current (I_{IK})

 $\begin{array}{ll} V_{I} = -0.5 V & -20 \text{ mA} \\ V_{I} = V_{CC} + 0.5 V & +20 \text{ mA} \end{array}$

DC Input Voltage (V_I) $-0.5V \text{ to V}_{CC} + 0.5V$

DC Output Diode Current (I_{OK})

 $\begin{aligned} \text{V}_{\text{O}} &= -0.5 \text{V} & -20 \text{ mA} \\ \text{V}_{\text{O}} &= \text{V}_{\text{CC}} + 0.5 \text{V} & +20 \text{ mA} \\ \text{DC Output Voltage (V}_{\text{O}}) & -0.5 \text{V to V}_{\text{CC}} + 0.5 \text{V} \end{aligned}$

DC Output Source

or Sink Current (I_O) ± 50 mA

DC V_{CC} or Ground Current

per Output Pin (I_{CC} or I_{GND}) ± 50 mA storage Temperature (T_{STG}) -65° C to $+150^{\circ}$ C

Storage Temperature (T_{STG})
Junction Temperature (T_{.1})

PDIP 140°C

Recommended Operating Conditions

Supply Voltage (V_{CC})

 $\begin{array}{cccc} AC & 2.0 V \text{ to } 6.0 V \\ ACT & 4.5 V \text{ to } 5.5 V \\ Input \ Voltage \ (V_I) & 0 V \text{ to } V_{CC} \\ Output \ Voltage \ (V_O) & 0 V \text{ to } V_{CC} \\ Operating \ Temperature \ (T_A) & -40 ^{\circ}\text{C to } +85 ^{\circ}\text{C} \\ \end{array}$

Note 2: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation of FACT™ circuits outside databook specifications.

DC Electrical Characteristics for AC

Symbol	Parameter	V _{CC}	$T_A = +25^{\circ}C$		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	Units	Conditions
Cymbol		(V)	Тур	Gua	ranteed Limits	Oilita	
V _{OH}	Minimum HIGH Level	3.0	2.99	2.9	2.9		I _{OUT} = -50 μA45
	Output Voltage	4.5	4.49	4.4	4.4	V	
		5.5	5.49	5.4	5.4		
		3.0		2.56	2.46		I _{OH} = 12
		4.5		3.86	3.76	V	I _{OH} = 24 mA
		5.5		4.86	4.76		I _{OH} = 24 mA (Note)
V _{OL}	Maximum LOW Level	3.0	0.002	0.1	0.1		I _{OUT} = 50 μA
	Output Voltage	4.5	0.001	0.1	0.1	V	
		5.5	0.001	0.1	0.1		
		3.0		0.36	0.44		I _{OL} = 12
		4.5		0.36	0.44	V	I _{OL} 24 mA
		5.5		0.36	0.44		I _{OL} = 24 mA (Note)
I _{IN} (Note)	Maximum Input Leakage Current	5.5		±0.1	±1.0	μА	$V_I = V_{CC}$, GND
V_{t+}	Maximum Positive	3.0		2.2	2.2		T _A = Worst Case
	Threshold	4.5		3.2	3.2	V	
		5.5		3.9	3.9		
V _{t-}	Minimum Negative	3.0		0.5	0.5		T _A = Worst Case
	Threshold	4.5		0.9	0.9	V	
		5.5		1.1	1.1		
V _{H(MAX)}	Maximum Hysteresis	3.0		1.2	1.2		T _A = Worst Case
		4.5		1.4	1.4	V	
		5.5		1.6	1.6		
V _{H(MIN)}	Minimum Hysteresis	3.0		0.3	0.3		T _A = Worst Case
		4.5		0.4	0.4	V	
		5.5		0.5	0.5		
I _{OLD}	Minimum Dynamic	5.5			75	mA	V _{OLD} = 1.65V Max
I _{OHD}	Output Current (Note)	5.5			-75	mA	V _{OHD} = 3.85V Min
I _{CC}	Maximum Quiescent	5.5		2.0	20.0	μА	$V_{IN} = V_{CC}$
(Note)	Supply Current						or GND

Note 3: All outputs loaded; thresholds on input associated with output under test.

Note 4: Maximum test duration 2.0 ms, one output loaded at a time.

Note 5: I_{IN} and I_{CC} @ 3.0V are guaranteed to be less than or equal to the respective limit @ 5.5V V_{CC} .

AC Electrical Characteristics for AC

Symbol	Parameter	v _{cc} (v)		$T_A = +25$ °C $C_L = 50 \text{ pF}$		T _A = -40°	C to +85°C 50 pF	Units
		(Note)	Min	Тур	Max	Min	Max	
t _{PLH}	Propagation Delay	3.3	1.5	9.5	13.5	1.5	15.0	ns
		5.0	1.5	7.0	10.0	1.5	11.0	115
t _{PHL}	Propagation Delay	3.3	1.5	7.5	11.5	1.5	13.0	ns
		5.0	1.5	6.0	8.5	1.5	9.5	115

Note 6: Voltage Range 3.3 is $3.3V \pm 0.3V$ $\label{eq:Voltage Range 5.0} Voltage Range 5.0 is 5.0V \pm 0.5V$

DC Electrical Characteristics for ACT

Symbol	Parameter	V _{CC}	T _A =	+25°C	$T_A = -40^{\circ}C$ to $+85^{\circ}C$	Units	Conditions
Oymboi		(V)	Тур	Gua	ranteed Limits	Ullis	Conditions
V _{IH}	Minimum HIGH Level	4.5	1.5	2.0	2.0	V	V _{OUT} = 0.1V
	Input Voltage	5.5	1.5	2.0	2.0	V	or V _{CC} – 0.1V
V _{IL}	Maximum LOW Level	4.5	1.5	0.8	0.8	V	V _{OUT} = 0.1V
	Input Voltage	5.5	1.5	0.8	0.8	V	or V _{CC} – 0.1V
V _{OH}	Minimum HIGH Level	4.5	4.49	434	4.4	V	I _{OUT} = -50μA
	Output Voltage	5.5	5.49	5.4	5.4	V	
							$V_{IN} = V_{IL}$ or V_{IH}
		4.5		3.86	3.76	V	$I_{OH} = -24 \text{ mA}$
		5.5		4.86	4.76		I _{OH} = -24 mA (Note 7)
V _{OL}	Maximum LOW Level	4.5	0.001	0.1	0.1	V	I _{OUT} = 50 μA
	Output Voltage	5.5	0.001	0.1	0.1	V	
							V _{IN} = V _{IL} or V _{IH}
		4.5		0.36	0.44	V	I _{OL} = 24 mA
		5.5		0.36	0.44		I _{OL} = 24 mA (Note 7)
I _{IN}	Maximum Input Leakage Current	5.5		±0.1	±1.0	μА	$V_I = V_{CC}$, GND
V _{H(MAX)}	Maximum Hysteresis	4.5		1.4	1.4	V	T _A = Worst Case
		5.5		1.6	1.6	V	
V _{H(MIN)}	Minimum Hysteresis	4.5		0.4	0.4	V	T _A = Worst Case
		5.5		0.5	0.5	V	
V_{t+}	Maximum Positive	4.5		2.0	2.0	V	T _A = Worst Case
	Threshold	5.5		2.0	2.0	V	
V _{t-}	Minimum Negative	4.5		0.8	0.8	V	T _A = Worst Case
	Threshold	5.5		0.8	0.8	V	
I _{CCT}	Maximum I _{CC} /Input	5.5	0.6		1.5	mA	V _I = V _{CC} - 2.1V
I _{OLD}	Minimum Dynamic	5.5			75	mA	V _{OLD} = 1.65V Max
I _{OHD}	Output Current (Note 8)	5.5			-75	mA	V _{OHD} = 3.85V Min
Icc	Maximum Quiescent	5.5		2.0	20.0	μА	$V_{IN} = V_{CC}$
	Supply Current						or GND

Note 7: All outputs loaded; thresholds on input associated with output under test.

Note 8: Maximum test duration 2.0 ms, one output loaded at a time.

AC Electrical Characteristics for ACT

Symbol	Parameter	V _{CC} (V)		$T_A = +25^{\circ}C$ $C_L = 50 \text{ pF}$,,	C to +85°C 50 pF	Units
		(Note 9)	Min	Тур	Max	Min	Max	
t _{PLH}	Propagation Delay	5.0	3.0	8.0	10.0	3.0	11.0	ns
	Data to Output							
t _{PHL}	Propagation Delay	5.0	3.0	8.0	10.0	3.0	11.0	ns
	Data to Output							

Note 9: Voltage Range 5.0 is 5.0V $\pm~0.5\text{V}$

Capacitance

Symbol	Parameter	Тур	Units	Conditions	
C _{IN}	Input Capacitance	4.5	pF	V _{CC} = OPEN	
C _{PD}	C _{PD} Power Dissipation Capacitance for AC		pF	V50V	
	for ACT	80	ρi	V _{CC} = 5.0V	

Physical Dimensions inches (millimeters) unless otherwise noted

14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Package Number M14A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

LAND PATTERN RECOMMENDATION

DIMENSIONS ARE IN MILLIMETERS

NOTES:

- A. CONFORMS TO EIAJ EDR-7320 REGISTRATION, ESTABLISHED IN DECEMBER, 1998.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.

M14DRevB1

14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide Package Number M14D

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

NOTES:

- A. CONFORMS TO JEDEC REGISTRATION MO-153, VARIATION ABREF NOTE 6, DATED 7/93
- B. DIMENSIONS ARE IN MILLIMETERS
- C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS D. DIMENSIONING AND TOLERANCES PER ANSI Y14-5M, 1982

MTC14revD

14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC14

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N14A

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use

provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of terms

Datasheet Identification	Product Status	Definition				
•		This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.				
, i		This datasheet contains preliminary data, and supplementary data we be published at a later date. Fairchild Semiconductor reserves the rig to make changes at any time without notice in order to improve design				
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.				
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.				