Aufgaben zu realen Körpern und Hydrodynamik

Christoph Buhlheller, Rebecca Saive, David Franke Florian Hrubesch, Wolfgang Simeth, Wolfhart Feldmeier

13. März 2009

- 1. In einem wasserdurchströmten Venturi-Rohr werde die Querschnittsfläche von A_1 auf A_2 verengt. Der statische Druck vor bzw. bei der Verengung sei p_1 bzw. p_2 . Berechnen Sie aus der Differenz $\Delta p = p_2 p_1$ die Rate $Q := \frac{dV}{dt}$, mit der das Wasser die Anordnung durchströmt!
- 2. Aus einem Wasserhahn strömt stationär und senkrecht nach unten Wasser aus! Der Hahn ist so weit geöffnet, dass ein geschlossener Strahl mit kreisrundem Querschnitt (Radius r_0) mit der Geschwindigkeit v_0 austritt. (Hinweis: Die Geschwindigkeit quer zur Strömungsrichtung kann in dieser Aufgabe näherungsweise als konstant angenommen werden!)
 - a) Berechnen Sie die Strömungsgeschwindigkeit des Wassers in der Tiefe s unter der Öffnung! Betrachten Sie hierfür die Geschwindigkeitsdifferenz eines Wasserteilchens der Masse $\Delta m!$
 - b) Verifizieren Sie das Ergebnis aus a) unter Zuhilfenahme der Bernoulli-Gleichung!
 - c) Bestimmen Sie den Radius des Strahles in der Tiefe s!
 - d) Geben Sie eine Begründung dafür an, warum für größeres s nicht mehr von einem geschlossenen Strahl gesprochen werden kann! Die Rechnung macht somit nur für kleine s Sinn!
- 3. Eine kugelförmige Blase in einer inkompressiblen Flüssigkeit (Dichte ρ) dehnt sich gleichmäßig in alle Richtungen aus. Ihr Volumen nimmt mit einer konstanten Rate $\frac{dV}{dt} =: Q$ zu.

Durch diese Expansion entsteht ein Geschwindigkeitsfeld $\vec{u}(r,t)$ außerhalb der Blase (r: Abstand vom Mittelpunkt der Blase).

- a) Bestimmen Sie mithilfe der Kontinuitätsgleichung das Geschwindigkeitsfeld $\vec{u}!$
- b) Bestimmen Sie den Druck p(r,t) in der Flüßigkeit, wenn weit weg von der Blase der Druck p_0 vorherrscht!

4. Steigrohr

Ein mit Wasser gefüllter Behälter sei mit einem Rohr (Querschnitt A_C) verbunden, über das das Wasser abfließen kann (siehe Abbildung). Am Ende des Rohres tritt das Wasser an die Luft aus. An einer Verdickung des Rohres (Querschnitt A_B) befindet sich ein Steigrohr.

- a) Wie groß ist die Stömungsgeschwindigkeit an der Ausflussöffnung (Punkt C)?
- b) Bestimmen Sie die Strömungsgeschwindigkeit am Punkt B!
- c) Geben Sie einen Ausdruck für die Wasserhöhe h im Steigrohr an!
- 5. Ein elastischer Quader mit quadratischer Grundfläche (Seitenlänge a, Höhe h) erfährt aufgrund einer parallel zur Deckfläche angreifenden Kraft eine Scherung um den Winkel α_0 . Im Mittelpunkt der Deckfläche befindet sich die Masse m. Nach plötzlichem Loslassen beginnt der Quader zu schwingen! (Die Wirkung der Gewichtskraft der Masse m auf den Quader kann hier vernachlässigt werden!)
 - a) Geben Sie einen Ausdruck für die rücktreibende Kraft auf die Masse m in Abhängigkeit von der Auslenkung x aus ihrer Ruhelage an!
 - b) Stellen Sie die Bewegungsgleichung für die Auslenkung x der Masse m auf!
 - c) Bestimmen Sie die Lösung der Bewegungsgleichung und die Periodendauer
- 6. In 5000m Meerestiefe befindet sich eine massive Alluminiumkugel, die über der Meeresoberfläche den Radius R = 5m hat.

Bestimmen Sie den Radius der Kugel in dieser Tiefe!

$$\mu_{Al} = 0.34, E_{Al} = 71 \cdot 10^9 \frac{N}{m^2}$$

 $\mu_{Al}=0.34,~E_{Al}=71\cdot 10^9 \frac{N}{m^2}$ Hinweis: Verwenden Sie die Beziehung $\frac{dV}{dr}=4r^2\pi=3\frac{V}{r}$

- 7. Ein Stahlseil $(E=2\cdot 10^{11}\frac{N}{m^2},\ \rho=7,7\cdot 10^3\frac{kg}{m^3})$ der Länge L= 9km wird einen Schacht hinuntergelassen, sodass es senkrecht hinunterhängt. Berechnen Sie die Länge des hängenden Seiles L'!
- 8. Zwei Wände K und L stehen im Winkel $\alpha \leq 90^{\circ}$ zueinander (Siehe Abbildung!). Dazwischen befindet sich eine Flüssigkeit der Dichte ρ .

Berechnen Sie die Kraft, die auf ein Rechteck mit den Eckpunkten A und B, das

in die Blattebene hinein die Länge L hat, wirkt.

Berechnen Sie außerdem den durchschnittlichen Druck p, der auf das Rechteck ausgeübt wird.

- 9. Wie groß ist die Arbeit, die man aufwenden muss, um einen Vollwürfel aus Stahl mit der Kantenlänge a vom Boden eines Schwimmbades mit der Wassertiefe hanzuheben bis in eine Höhe, bei der die Unterseite gerade an der Wasseroberfläche ist?
- 10. Eine gläserne Hohlkugel vom Radius R hat am Südpol eine kreiseförmige Ausflussöffnung mit Radius r < R und am Nordpol eine kleine verschließbare Luftöffnung.
 Die Kugel ist komplett mit Wasser gefüllt! Nach Öffnen der Luftzufuhr (t = 0) beginnt das Wasser auszuströmen. Berechnen Sie, wie lange es dauert, bis die Kugel
 leer ist. (Die Strömung ist als laminar und reibungsfrei anzunehmen!)
 Hinweis: Die Geschwindigkeit an der Wasseroberfläche darf gleich 0 gesetzt werden
 Tipp: Überlegen Sie, was passiert, wenn der Wasserstand um dh sinkt, und welche
 Volumenmenge in dieser Zeit dt aus der Kugel strömt. Verwenden Sie dabei die
 Kontinuitätsgleichung!</p>
- 11. Ein mit einer Flüssigkeit (Dichte ρ_1 , Viskosität η) gefülltes Gefäß steht auf einer elektrischen Waage. In diesem Zustand zeigt die Waage 0 an.

Nun wird zur Zeit t=0 eine kleine Kugel (Radius R, Masse m, Dichte ρ_2) in die Flüssigkeit geworfen.

Nehmen Sie an, die Kugel befinde sich zur Zeit t=0 an der Wasseroberfläche und bewege sich mit der Geschwindigkeit v_0 senkrecht nach unten.

Desweiteren gelte $\rho_1 < \rho_2$.

- a) Bestimmen Sie die Kräfte, die auf die Kugel wirken!
- b) Stellen Sie die Bewegungsgleichung für die Kugel auf!
- c) Wie groß ist die maximal erreichbare Geschwindigkeit?
- d) Geben Sie den Betrag der Kraft an, die die Waage zur Zeit t anzeigt!
- 12. Zwei Flüssigkeitsbehälter sind auf Höhe der Grundfläche mit einem zylindrischen Rohr vom Radius R verbunden.

Die Behälter sind bis zu einer Höhe h_1 bzw h_2 mit einem Newtonschon Fluid (Dichte ρ) der Viskosität η gefüllt.

Geben Sie mithilfe des Hagen-Poiseuille Gesetzes einen Zusammenhang zwischen h_1 und h_2 an, wenn am Anfang die Flüssigkeit mit der durschnittlichen Geschwindigkeit v überströmt.

- 13. Zwei Rohre mit den Radien r_1 und r_2 werden von Wasser mit den Geschwindigkeiten v_1 bzw. v_2 durchströmt. Sie laufen zu einem Rohr mit Radius R zusammen, in dem das Wasser mit der Geschwindigkeit v strömt.
 - Gehen Sie von einer stationären, reibungsfreien Strömung aus und berechnen Sie den Radius R in Abhängigkeit von den anderen Größen!
- 14. In der gezeigten Anordnung herrscht der konstante Druck p_T im geschlossenen Teil des Gefäßes über der Flüssigkeit. Das Gefäß wird von Luft bei Normaldruck p_A umgeben. Die Schwerkraft wirke in vertikaler Richtung. Das Strömungsverhalten sei charakteristisch für eine ideale Flüssigkeit.
 - a) Wie groß muss der Druck p_T mindestens sein, damit die Flüssigkeit ausläuft? (Gehen Sie von der einfachst möglichen Annahme über das Verhalten der Flüssigkeit am Ausfluss aus.)
 - b) Wenn der Druck in einer strömenden Flüssigkeit unter den Dampfdruck p_D fällt, kommt es zur Bildung von Blasen. Diskutieren Sie unter Angabe der relevanten Gleichungen, wo und für welche Werte von $p_T > p_D$ es im gezeigten System beim Auslaufen zuerst zu einer Blasenbildung kommt. (Die Geschwindigkeit des Wassers im Behälter selbst sei vernachlässigbar.)

