Cyclic Group Exercises

1. Find all generators of the cyclic group $G = \langle g \rangle$ if:

(a) |g| = 5 (b) |g| = 10 (c) |G| = 16 (d) |G| = 20

2. Find all generators of:

(a) \mathbb{Z}_5

(b) \mathbb{Z}_{10}

(c) \mathbb{Z}_{16} (d) \mathbb{Z}_{20}

3. In each case determine whether G is cyclic.

(a) G = U(7) (b) G = U(12) (c) G = U(16) (d) G = U(11)

4. Let |g| = 20 in a group G. Compute:

(a) $|g^2|$ (b) $|g^8|$ (c) $|g^5|$ (d) $|g^3|$

5. In each case find all the subgroups of $G = \langle g \rangle$ and draw the lattice diagram.

(a) |g| = 8

(b) |g| = 10 (c) |g| = 18

(d) $|g| = p^3$, where p is prime.

(e) |g| = pq, where p and q are distinct primes.

(f) $|g| = p^2 q$, where p and q are distinct primes.

6. In each case, find the subgroup $H = \langle x, y \rangle$ of G.

(a) $G = \langle a \rangle$ is cyclic, $x = a^4$, $y = a^3$.

(b) $G = \langle a \rangle$ is cyclic, $x = a^6$, $y = a^8$.

(c) $G = \langle a \rangle$ is cyclic, $x = a^m$, $y = a^k$, gcd(m, k) = d.

(d) G = S(3), x = (1, 2), y = (2, 3).