Reporte de practica 2

González Pardo Adrian

Febrero 2020

1. Simulación

Primer parte con valores hexadecimales equivales a valores decimales: $a = 5_{10} \& b = 5_{10}$ con salida $s = A_{16} = 10_{10}$

Segunda parte con valores hexadecimales equivales a valores decimales: $a = C_{16} = 12_{10} \& b = 8_{10} con \ salida \ s = 14_{16} = 20_{10}$

				20.980 ns			
Name	Value	Livi	20.000 ns	21.000 ns	22.000 ns	23.000 ns	24.000 ns
> 😽 a[7:0]	09	0c	(09	
> ⊌ b[7:0]	05	08				05	
¹⊌ cin	0						
> W s[7:0]	0e	14	(0e	
¹⊌ cout	0						

Tercer parte con valores hexadecimales equivales a valores decimales: $a = 9_{10} \& b = 5_{10}$ con salida $s = E_{16} = 14_{10}$

				31.002 ns			
Name	Value	29.000 ns	30.000 ns	31.000 ns	32.000 ns	33. 000 ns	34.000 ns
> W a[7:0]	0a	09	X			0a	
> W b[7:0]	09	05				09	
¹⊌ cin	1						
> 🐻 s[7:0]	01	- Oe	_			01	
1₫ cout	1						

Cuarta parte con valores hexadecimales equivales a valores decimales: $a=A_{16}=10_{10}$, $b=9_{10}$ & $cin=1_{10}$ con salida $s=1_{10}$ y un $cout=1_{10}$

				40.982 ns			
Name	Value		40.000 ns	41.000 ns	42.000 ns	43.000 ns	44.000 ns
> 🚳 a[7:0]	04	Oa Oa	X			04	
> W b[7:0]	02	09	X			02	
¹å cin	0						
> ₩ s[7:0]	06	01	*			06	
¹⊌ cout	0						

Quinta parte con valores hexadecimales equivales a valores decimales: $a=4_{10}$, $b=2_{10}$ & $cin=0_{10}$ con salida $s=6_{10}$

				51.002 ns			
Name	Value		50.000 ns	51.000 ns	52.000 ns	53. 000 ns	54.000 ns
> 🚳 a[7:0]	07	04	X			07	
> 😽 b[7:0]	09	02				09	
¹⊌ cin	1						
> W s[7:0]	fe	06	}			fe	
¹⊌ cout	0						

Sexta parte con valores hexadecimales equivales a valores decimales: $a=7_{10}$, $b=9_{10}$ & $cin=1_{10}$ con salida $s=FE_{16}=254_{10.C2}=-2_{10}$ y un cout $=0_{10}$

				61. 0 12 ns			
Name	Value		60.000 ns	61. 000 ns	62. 000 ns	63. 000 ns	64.000 ns
> W a[7:0]	Of	07	(Of	
> W b[7:0]	Of	09	(0f	
⅓ cin	1						
> W s[7:0]	00	fe				00	
¹⊌ cout	1						

Septima parte con valores hexadecimales equivales a valores decimales: $a=F_{16}=15_{10}$, $b=F_{16}=15_{10}$ & $cin=1_{10}$ con salida $s=0_{10}$ y un $cout=1_{10}$

			71.012 ns				
Name	Value		70.000 ns	71. 000 ns	72.000 ns	73. 000 ns	74.000 ns
> ₩ a[7:0]	0b	Of	(Ор	
> 😻 b[7:0]	08	Of				08	
¹⊌ cin	1						
> 🚳 s[7:0]	03	00				03	
¹⊌ cout	1						

Octava parte con valores hexadecimales equivales a valores decimales: $a=B_{16}=11_{10}$, $b=8_{10}$ & $cin=1_{10}$ con salida $s=3_{10}$ y un $cout=1_{10}$

				8 <mark>0</mark> .992 ns			
Name	Value		80.000 ns	81. 000 ns	82. 00 0 ns	83. 000 ns	84.000 ns
> W a[7:0]	0a	ОР	<u> </u>			0a	
> 😽 b[7:0]	09	08	k			09	
¹⊌ cin	1						
> 🖾 s[7:0]	01	03				01	
¹⊌ cout	1						

Novena parte con valores hexadecimales equivales a valores decimales: $a=A_{16}=10_{10}$, $b=9_{10}$ & $cin=1_{10}$ con salida $s=1_{10}$ y un $cout=1_{10}$

				90.982 ns			
Name	Value		90.000 ns	91. 000 ns	92.000 ns	93. 000 ns	94.000 ns
> 🚳 a[7:0]	01	Oa Oa				01	
> ₩ b[7:0]	04	09	k			04	
l⊌ cin	1						
> W s[7:0]	fd	01	k			fd	
1⊌ cout	0						

Decima parte con valores hexadecimales equivales a valores decimales: $a=1_{10}$, $b=4_{10}$ & $cin=1_{10}$ con salida $s=FD_{16}=253_{10.C2}=-3_{10}$ y un cout $=0_{10}$

2. Tabla de resultados

Operación	A	В	S	Cout
Suma	5	5	10	0
Suma	12	8	20	0
Suma	9	5	14	0
Resta	10	9	1	1
Suma	4	2	6	0
Resta	7	9	254 -C2 = -2	0
Resta	15	15	0	1
Resta	11	8	3	1
Resta	10	9	1	1
Resta	1	4	253 -C2 = -3	0