

Class Policies

Lecture 0

Course Overview

DSA 8020 Statistical Methods II

Whitney Huang Clemson University

Class Policies

Class Overview

About the Instructor

- Fourth year Assistant Professor of Statistics
- Born in Laramie, Wyoming, grew up in Taiwan

 Got a B.S. in Mechanical Engineering, switched to Statistics in graduate school

 Ph.D. in Statistics at Purdue, two-year postdoc at Research Triangle, NC and Victoria, Canada

About the Instructor

How to reach me?

About the Instructor

Class Overview

• Email: wkhuang@clemson.edu

Office: O-221 Martin Hall

 Office Hours: Wednesdays 8:00pm - 9:00pm ET via Zoom and by appointment

Class Policies

Logistics

• There will be three projects. The (tentative) due dates are:

• Project I: Mar. 2, Thursday

• Project II: Apr. 6, Thursday

Project III: May 4, Thursday

- There will be weekly R Labs:
 - To be uploaded to Canvas by 11:59 pm ET on the due dates
 - Worst grade will be dropped
- No lectures in the week Mar. 20-24 (Spring Break)

About the Instructor

Class Policies

Class Overview

Course Materials at CANVAS

About the Instructor

- Course syllabus / Announcements
- Lecture slides/notes/videos
- R Labs/Projects
- Data sets for lectures and labs

Reference Books

 An Introduction to Statistical Learning: with Applications in R, 2_{nd} Edition, Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani, 2021 [Link] About the Instructor

Class Policies

Class Overview

- Linear Models with \mathbb{R} , 2_{nd} Edition, Julian Faraway, 2014 [Link]
- Extending the Linear Model with \mathbb{R} , 2_{nd} Edition, Julian Faraway, 2016 [Link]
- A First Course in Design and Analysis of Experiments, Gary Oehlert, 2010 [Link]
- Design and Analysis of Experiments, 2_{nd} Edition, Angela Dean, Daniel Voss, and Danel Draguljic, 2017 [Link]

Evaluation

Grades will be weighted as follows:

R Labs	25%
Project I	25%
Project II	25%
Project III	25%

Final course grades will be assigned using the following grading scheme:

>= 90.00	Α
88.00 ~ 89.99	A-
85.00 ~ 87.99	B+
80.00 ~ 84.99	В
78.00 ~ 79.99	B-
75.00 ~ 77.99	C+
70.00 ~ 74.99	С
68.00 ~ 69.99	C-
<= 67.99	F

About the Instructor

Computing

We will use software to perform statistical analyses. Specifically, we will be using R/Rstudio R/ Studio

- a free/open-source programming language for statistical analysis
- available at https://www.r-project.org/(R); https://rstudio.com/(Rstudio)
- We will use R Markdown for homework assignments

Class Policies

Class Overview

Class Overview

Class Policies

Class Overview

Multiple Linear Regression

Class Policies

Class Overview

- Multiple Linear Regression
- Regression with Quantitative and Qualitative Predictors

Olaca Daliaina

- Multiple Linear Regression
- Regression with Quantitative and Qualitative Predictors
- Nonlinear and Non-parametric Regression

About the Instructor

- Multiple Linear Regression
- Regression with Quantitative and Qualitative Predictors
- Nonlinear and Non-parametric Regression
- Ridge Regression and Lasso

- Multiple Linear Regression
- Regression with Quantitative and Qualitative Predictors
- Nonlinear and Non-parametric Regression
- Ridge Regression and Lasso
- Logistic Regression and Poisson Regression

Introduction to Experimental Design

About the Instructor

- Introduction to Experimental Design
- Completely Randomized Designs, Block Designs, Nested and Split-Plot Designs

Class Policies

Class Overview

- Introduction to Experimental Design
- Completely Randomized Designs, Block Designs, Nested and Split-Plot Designs
- Random and Mixed Effects Models

About the Instructor

- Introduction to Experimental Design
- Completely Randomized Designs, Block Designs, Nested and Split-Plot Designs
- Random and Mixed Effects Models
- Computer Experiments

Part III: Spatial and Time Series Analysis (Week 13 - Week 16)

- Stationary Processes, Autocovariance Function
- Autoregressive Integrated Moving Average (ARIMA) Models and Seasonal Models
- Stationarity and Isotropy, Covariance Function
- Gaussian Process Spatial Interpolation (aka Kriging)