Refer to the array below to answer each question.

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
12	16	10	21	22	2.	21	20	16	47	40	ГΩ	Г1	ГЭ	F 7	60	61	63	72	70	02	0.4	OΓ	00	0.4	07	00
12	Tρ	TΩ	21	22	25	31	39	46	4/	49	50	21	53	5/	bU	ρТ	62	/3	78	83	84	85	90	94	97	99

Question 1. How many comparisons will be performed by an iterative binary search algorithm (as seen on the slides) if searching for 97? (Show your work.)

$$0 + 26 = 26 / 2 = 13$$
 [13] = 53 < 97

$$24 + 26 = 50 / 2 = 25$$
 [25] = 97 < 97 \rightarrow found

Number of comparisons: 4

Question 2. How many comparisons will be performed by an iterative binary search algorithm (as seen on the slides) if searching for 40? (Show your work.)

$$0 + 26 = 26 / 2 = 13$$
 [13] = 53 > 40

$$0 + 12 = 12 / 2 = 6$$
 [6] = 31 < 40

$$7 + 12 = 19 / 2 = 9$$
 [9] = 47 > 40

8 + 7 ← Start is greater than end; function will stop.

Number of comparisons: 5