政府新闻分析工具 gov_news_analysis 用户手册

崔冠宇 / Guanyu Cui (cuiguanyu@ruc.edu.cn)

December, 2020

简介

gov_news_analysis 是由崔冠宇开发的一套政府新闻分析工具包, 实现了文本分析与实体提取、社交网络构建以及多种网络指标的计算 功能,具有良好的通用性与可用性。

目录

安装依赖包			3
导入	gov_n	news_analysis 模块	4
调用	所需要	的函数	5
3.I	数据预	页处理相关函数	5
	3.I.I	<pre>gov_news_analysis.fetch_entities</pre>	5
	3.1.2	<pre>gov_news_analysis.most_frequently_entities_topk</pre>	6
	3.1.3	<pre>gov_news_analysis.build_social_network</pre>	6
	3.1.4	<pre>gov_news_analysis.preprocess</pre>	7
3.2	图的基	基础分析相关函数	7
	3.2.I	<pre>gov_news_analysis.strongest_neighbors_topk</pre>	7
	3.2.2	<pre>gov_news_analysis.graph_statistics</pre>	8
	3.2.3	<pre>gov_news_analysis.pagerank_influence_topk</pre>	9
	3.2.4	<pre>gov_news_analysis.basic_analysis</pre>	9
3.3	图的进	性阶分析相关函数	IO
	导入 调用 3.I	导入 gov_r 调用所需要 3.I 数据到 3.I.I 3.I.2 3.I.3 3.I.4 3.2 图的基 3.2.I 3.2.2 3.2.3 3.2.4	导入 gov_news_analysis 模块 调用所需要的函数 3.I 数据预处理相关函数

	3.3.I	gov_news_analysis.smallworld_validate(未实现)	IO
	3.3.2	gov_news_analysis.ternary_closure_validate(未实	
		现)	10
	3.3.3	<pre>gov_news_analysis.community_detection</pre>	10
	3.3.4	<pre>gov_news_analysis.centrality_topk</pre>	ΙI
	3.3.5	${\tt gov_news_analysis.clustering_coefficient_topk} .$	12
	3.3.6	${\sf gov_news_analysis.structural_holes_detection}$ (未实	
		现)	12
	3.3.7	<pre>gov_news_analysis.optional_analysis</pre>	Ι3
4	实际案例演	<u></u>	13
•	> 11.4 > 14 h 4 15 4		,

I 安装依赖包 3

使用流程图

I 安装依赖包

本工具依赖下列 Python 包:

- 1. jieba¹
- 2. pkuseg²
- 3. thulac³
- 4. lac4
- 5. networkx⁵
- 6. python-louvain⁶
- 7. pandas⁷

Ihttps://github.com/fxsjy/jieba

²https://github.com/lancopku/pkuseg-python

³https://github.com/thunlp/THULAC-Python

⁴https://github.com/baidu/lac

⁵https://github.com/networkx/networkx

⁶https://github.com/taynaud/python-louvain

⁷https://github.com/pandas-dev/pandas

8. tabulate⁸

您可以在终端中使用下面的 pip 命令来安装各依赖包:

```
$ pip install jieba pkuseg thulac lac networkx python-louvain pandas tabulate
```

如果您需要更详细的说明或帮助,请参阅这些包的 github 页面。

2 导入 gov_news_analysis 模块

- I. 将 gov_news_analysis.py 文件放在您需要调用本模块的 Python 文件所在的目录;
- 2. 在您的 Python 文件头部加入下列代码:

```
import gov_news_analysis as gna
```

如图1所示:

图 1: 在 Python 文件中导入模块

⁸https://github.com/astanin/python-tabulate

请注意:由于 gov_news_analysis 模块并非以 pip 方式安装,因此一定要将 gov_news_analysis.py 文件与您的代码放置在同一个目录下。或者您也可以 自行将 gov_news_analysis.py 文件拷贝到您的 Python 包的安装目录下。

3 调用所需要的函数

3.I 数据预处理相关函数

在对社交网络进行统计分析前,需要先对新闻文本文件进行预处理,包括分词、实体识别与提取和社交网络构建等步骤。下面介绍有关数据预处理的函数:

3.1.1 gov_news_analysis.fetch_entities

- 原型: fetch_entities(news_file, save_file = 'default_entity_file.txt', mode = 'jieba')
- 功能:对按一定格式存储的新闻文本文件进行分词和实体识别,将实体及 其词频以及每条新闻出现的人物保存至文本文件中,供进一步处理。

• 参数:

- news_file(string) 新闻文本文件,格式为每行一条记录,包括新闻链接 (url)、发表时间 (date)、来源 (meta)、标题 (title) 以及正文内容 (text) 五个字段,各个字段用水平制表符 (\t)隔开;
- save_file(*string*, default: 'default_entity_file.txt') 生成的实体文件的文件名;
- mode(*string*, default: 'jieba') 分词所用的中文处理包,可用的值有'jieba'、'pkuseg'、'thulac' 以及'baidu'。

• 返回值:

- entity_freq(dict) 实体 (string) 到词频 (integer) 的字典。
- set_news_people(dict) 新闻编号 (integer) 到人物集合 (set) 的字典。
- 备注:请尽量存储为 txt 格式的文件。

3.1.2 gov_news_analysis.most_frequently_entities_topk

- 原型: most_frequently_entities_topk(entity_freq, top_k = 10, return_tabulate = True)
- 功能:根据得到的实体-词频字典,返回词频前k高的实体。
- 参数:
 - entity_freq(dict) 实体-词频字典;
 - top_k(integer, default: 10) 求词频前 k 高的实体;
 - return_tabulate(*bool*, default: True) 是否以表格形式返回。若是,返回 tabulate 对象;否则返回词频前 *k* 高的实体-词频字典。

• 返回值:

- (若 return_tabulate 传入 True) tabulate 词频前 k 高的实体-词频表格。
- (若 return_tabulate 传入 False) topk_entities_dict(dict) 词频前 k 高的实体-词频字典。
- 备注: 无。

3.1.3 gov_news_analysis.build_social_network

- 原型: build_social_network(set_news_people)
- 功能:根据得到的新闻编号-人物集合字典,返回建立的社交网络图。
- 参数:
 - set_news_people(dict) 新闻编号-人物集合字典;
- 返回值:
 - G(NetworkX graph) 社交网络图。
- 备注: 无。

3.1.4 gov_news_analysis.preprocess

- 原型: preprocess(news_file, entity_file = 'default_entity_file.txt', network_file = 'default_network_file.txt', cut_mode = 'jieba')
- 功能:对新闻文本文件执行上述三个函数,打印中间结果,保存建立的社 交网络图为邻接表文件,并且返回社交网络图。

• 参数:

- news_file(string) 新闻文本文件,格式为每行一条记录,包括新闻链接(url)、发表时间(date)、来源(meta)、标题(title)以及正文内容(text)五个字段,各个字段用水平制表符(\t)隔开;
- entity_file(*string*, default: 'default_entity_file.txt') 实体文件的文件名 (若文件存在,则会读取该文件,跳过分词与实体提取过程);
- network_file(*string*, default: 'default_network_file.txt') 图的邻接表文件的文件名(若文件存在,则会读取该文件,跳过社交网络构建过程);
- cut_mode(*string*, default: 'jieba') 分词所用的中文处理包,可用的值有 'jieba'、'pkuseg'、'thulac' 以及'baidu'。

• 返回值:

- G(NetworkX graph) 社交网络图。
- 备注:若实体文件存在,则会利用该文件,跳过分词与实体提取过程;若 图的邻接表文件存在,则会利用该文件,跳过社交网络构建过程。

3.2 图的基础分析相关函数

在构建完社交网络图后,还需要对图的基础指标进行计算和分析,主要包括与某节点联系最强的若干节点、图的基本统计数据以及 PageRank 影响力最高的若干节点等功能。下面介绍有关图的基础分析的函数:

${\tt 3.2.I \quad gov_news_analysis.strongest_neighbors_topk}$

• 原型: strongest_neighbors_topk(graph, node, top_k = 10, return_tabulate = True)

- 功能: 返回图上与某节点关系(按权重,即共现次数计)最强的 k 个节点。
- 参数:
 - graph(NetworkX graph) 社交网络图;
 - node(string) 节点名称;
 - top_k(*integer*, default: 10) 求共现次数前 k 高的节点;
 - return_tabulate(*bool*, default: True) 是否以表格形式返回。若是,返回 tabulate 对象;否则返回词频前 k 高的节点-共现次数字典。

• 返回值:

- (若 return_tabulate 传入 True) tabulate 共现次数前 k 高的节点-共现次数表格。
- (若 return_tabulate 传入 False) topk_neighbor_dict(dict) 共现次数前 k 高的节点-共现次数字典。
- 备注: 若传入的参数中的节点在图上不存在, 则输出提示信息并返回 None。

3.2.2 gov_news_analysis.graph_statistics

- 原型: graph_statistics(graph)
- 功能:打印并返回图的统计数据,包括节点数、边数、连通分量数以及最大连通分量节点个数。
- 参数:
 - graph(NetworkX graph) 社交网络图;
- 返回值:
 - nodes(integer) 图的节点数;
 - edges(integer) 图的边数;
 - components(integer) 图的连通分量数;
 - largest_comp(integer) 图的最大连通分量的节点数;
- 备注: 无。

3.2.3 gov_news_analysis.pagerank_influence_topk

- 原型: pagerank_influence_topk(graph, top_k = 20, return_tabulate = True)
- 功能: 返回图上 PageRank 值最高的 k 个节点。
- 参数:
 - graph(NetworkX graph) 社交网络图;
 - top_k(*integer*, default: 20) 求 PageRank 前 k 高的节点;
 - return_tabulate(*bool*, default: True) 是否以表格形式返回。若是,返回 tabulate 对象;否则返回 PageRank 前 *k* 高的节点-PageRank 字典。

• 返回值:

- (若 return_tabulate 传入 True) tabulate PageRank 值前 k 高的节点-PageRank 表格。
- (若 return_tabulate 传入 False) topk_influence_dict(dict) PageR-ank 值前 k 高的节点-PageRank 字典。
- 备注: 无。

3.2.4 gov_news_analysis.basic_analysis

- 原型: basic_analysis(graph)
- 功能:对构建出的社交网络图执行上述三个函数,并且打印中间结果。
- 参数:
 - graph(NetworkX graph) 社交网络图;
- 返回值: 无。
- 备注: 无。

3.3 图的进阶分析相关函数

在上面的图的基础分析部分,仅仅统计分析了图的简单指标,下面还可以对图的结构进行深入研究,主要包括小世界理论验证、三元闭包验证、社区挖掘、中介中心性计算、聚集系数计算以及结构洞挖掘等步骤。下面介绍有关图的进阶分析的函数:

3.3.1 gov_news_analysis.smallworld_validate(未实现)

- 原型: smallworld_validate(graph)
- 功能:验证图是否满足小世界现象。
- 参数:
 - graph(NetworkX graph) 社交网络图;
- 返回值: 无。
- 备注: 无。

3.3.2 gov_news_analysis.ternary_closure_validate(未实现)

- 原型: ternary_closure_validate(graph)
- 功能:验证图是否满足三元闭包性质。
- 参数:
 - graph(NetworkX graph) 社交网络图;
- 返回值: 无。
- 备注: 无。

3.3.3 gov_news_analysis.community_detection

- 原型: community_detection(graph, top_k = 5, print_all = False, mode = 'louvain')
- 功能: 打印并返回图中最大的 k 个社区。
- 参数:

- graph(NetworkX graph) 社交网络图;
- top_k(*integer*, default: 5) 求最大的 k 个社区;
- print_all(*bool*, default: False) 是否打印社区内的所有节点。若是,对每个社区输出所有节点;否则对每个社区输出一个代表元。
- mode(*string*, default: 'louvain') 社区检测算法,可用的值有'louvain'、'asyn_lpa' 以及'lpa'。

• 返回值:

- (若 mode == 'louvain') partition(dict) 节点-所属社区字典。
- (若 mode 为其它两种) partition_gen(generator) 社区节点生成器。
- 备注: 在 print_all == False 时,每个社区的代表元指 PageRank 值最大的节点。

3.3.4 gov_news_analysis.centrality_topk

- 原型: centrality_topk(graph, sample_ratio = 0.05, top_k = 10, return_tabulate = True)
- 功能: 返回图上中介中心性最高的 k 个节点。
- 参数:
 - graph(NetworkX graph) 社交网络图;
 - sample_ratio(*float*, default: 0.05) 近似求解时的节点采样率;
 - top_k(integer, default: 10) 求中介中心性前 k 高的节点;
 - return_tabulate(*bool*, default: True) 是否以表格形式返回。若是, 返回 tabulate 对象; 否则返回中介中心性前 *k* 高的节点-中介中心性字典。

• 返回值:

- (若 return_tabulate 传入 True) tabulate 中介中心性前 k 高的节点-中介中心性表格。
- (若 return_tabulate 传入 False) topk_centrality_dict(*dict*) 中介中心性前 *k* 高的节点-中介中心性字典。
- 备注: 无。

3.3.5 gov_news_analysis.clustering_coefficient_topk

- 原型: clustering_coefficient_topk(graph, top_k = 10, return_tabulate = True)
- 功能: 返回图上聚集系数最高的 k 个节点。
- 参数:
 - graph(NetworkX graph) 社交网络图;
 - top_k(integer, default: 10) 求聚集系数前 k 高的节点;
 - return_tabulate(*bool*, default: True) 是否以表格形式返回。若是,返回 tabulate 对象;否则返回聚集系数前 *k* 高的节点-聚集系数字典。
- 返回值:
 - (若 return_tabulate 传入 True) tabulate 聚集系数前 k 高的节点-聚集系数表格。
 - (若 return_tabulate 传入 False) topk_cc_dict(*dict*) 聚集系数前 *k* 高的节点-聚集系数字典。
- 备注: 无。

3.3.6 gov_news_analysis.structural_holes_detection(未实现)

- 原型: structural_holes_detection(graph)
- 功能: 挖掘图上的结构洞。
- 参数:
 - graph(NetworkX graph) 社交网络图;
- 返回值: 无。
- 备注: 无。

4 实际案例演示 13

3.3.7 gov_news_analysis.optional_analysis

- 原型: optional_analysis(graph)
- 功能: 对构建出的社交网络图执行上述六个函数,并且打印中间结果。
- 参数:
 - graph(NetworkX graph) 社交网络图;
- 返回值: 无。
- 备注: 在执行社区检测算法时, 测试三种不同算法的效果。

4 实际案例演示

下面用政府新闻社交网络分析的示例演示如何调用本模块。新建一个 Python 文件,键入下列代码(路径请替换为您的文件放置位置):

```
import networkx as nx
  import gov_news_analysis as gna
4 print('一、数据预处理:')
5 G = gna.preprocess(
      news_file = '../../data/gov_news.txt',
      entity_file = '../../data/
     entities_data_baidu.txt',
      network_file = '../../data/
    network_data_baidu.txt',
     cut_mode = 'baidu')
10 print('保存gexf文件中...')
nx.write_gexf(G, '../../data/graph.gexf')
12 print('保存完成')
13 print('')
14 print('二、基础分析:')
15 gna.basic_analysis(G)
16 print('')
17 print('三、可选分析:')
```

4 实际案例演示 14

```
18 gna.optional_analysis(G)
```

然后执行 Python 程序, 发现可以正常运行, 能输出结果。如图 2 所示。

图 2: 政府新闻社交网络分析案例运行测试