# ボストンの住宅データセット (ボストン市の住宅価格)

- 設定
  - ボストンの住宅データセットを線形回帰モデルで分析する。
  - 適切な査定結果が必要。
    - 。 高すぎても安すぎても会社に損害がある。
- 課題
  - 部屋数が4で犯罪率が0.3の物件はいくらになるか?

### In [65]:

```
from sklearn.datasets import load_boston
import pandas as pd
import numpy as np
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
import matplotlib.pyplot as plt
%matplotlib inline
```

#### In [3]:

```
boston = load_boston()
```

### In [4]:

```
print(f'boston.data.shape: {boston.data.shape}') # 説明変数 (住宅価格以外の変数) print(f'boston.target.shape: {boston.target.shape}') # 目的変数 (住宅価格)
```

boston.data.shape: (506, 13) boston.target.shape: (506,)

### In [5]:

```
print(type(boston.data)) # 型を確認する
```

<class 'numpy.ndarray'>

```
In [6]:
```

```
boston.data[:5]
```

```
Out[6]:
```

```
array([[6.3200e-03, 1.8000e+01, 2.3100e+00, 0.0000e+00, 5.3800e-01, 6.5750e+00, 6.5200e+01, 4.0900e+00, 1.0000e+00, 2.9600e+02, 1.5300e+01, 3.9690e+02, 4.9800e+00], [2.7310e-02, 0.0000e+00, 7.0700e+00, 0.0000e+00, 4.6900e-01, 6.4210e+00, 7.8900e+01, 4.9671e+00, 2.0000e+00, 2.4200e+02, 1.7800e+01, 3.9690e+02, 9.1400e+00], [2.7290e-02, 0.0000e+00, 7.0700e+00, 0.0000e+00, 4.6900e-01, 7.1850e+00, 6.1100e+01, 4.9671e+00, 2.0000e+00, 2.4200e+02, 1.7800e+01, 3.9283e+02, 4.0300e+00], [3.2370e-02, 0.0000e+00, 2.1800e+00, 0.0000e+00, 4.5800e-01, 6.9980e+00, 4.5800e+01, 6.0622e+00, 3.0000e+00, 2.2200e+02, 1.8700e+01, 3.9463e+02, 2.9400e+00], [6.9050e-02, 0.0000e+00, 2.1800e+00, 0.0000e+00, 4.5800e-01, 7.1470e+00, 5.4200e+01, 6.0622e+00, 3.0000e+00, 2.2200e+02, 1.8700e+01, 3.9690e+02, 5.3300e+00]])
```

#### In [7]:

```
boston.target[:5]
```

#### Out[7]:

array([24., 21.6, 34.7, 33.4, 36.2])

#### In [8]:

```
boston.feature_names # カラム名
```

### Out[8]:

```
array(['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT'], dtype='<U7')
```

### In [37]:

```
y_train = boston.target
```

#### In [9]:

### # DataFrameに変換

df\_train = pd.DataFrame(boston.data, columns=boston.feature\_names)

# In [10]:

```
df_train.head()
```

# Out[10]:

|   | CRIM    | ZN   | INDUS | CHAS | NOX   | RM    | AGE  | DIS    | RAD | TAX   | PTRATIO | В      |
|---|---------|------|-------|------|-------|-------|------|--------|-----|-------|---------|--------|
| 0 | 0.00632 | 18.0 | 2.31  | 0.0  | 0.538 | 6.575 | 65.2 | 4.0900 | 1.0 | 296.0 | 15.3    | 396.90 |
| 1 | 0.02731 | 0.0  | 7.07  | 0.0  | 0.469 | 6.421 | 78.9 | 4.9671 | 2.0 | 242.0 | 17.8    | 396.90 |
| 2 | 0.02729 | 0.0  | 7.07  | 0.0  | 0.469 | 7.185 | 61.1 | 4.9671 | 2.0 | 242.0 | 17.8    | 392.83 |
| 3 | 0.03237 | 0.0  | 2.18  | 0.0  | 0.458 | 6.998 | 45.8 | 6.0622 | 3.0 | 222.0 | 18.7    | 394.63 |
| 4 | 0.06905 | 0.0  | 2.18  | 0.0  | 0.458 | 7.147 | 54.2 | 6.0622 | 3.0 | 222.0 | 18.7    | 396.90 |

# 単回帰分析

### In [38]:

```
X_train = df_train[['RM']].values # RM: 部屋数
```

# In [39]:

```
X_train[:5]
```

# Out[39]:

```
array([[6.575],
[6.421],
[7.185],
[6.998],
[7.147]])
```

# In [18]:

```
model = LinearRegression() # 回帰モデル
```

# In [40]:

```
model.fit(X_train, y_train)
```

# Out[40]:

LinearRegression()

### In [41]:

```
y_pred = model.predict([[4]]) # 部屋数4の住宅価格を予測する
```

# In [42]:

```
y_pred # 住宅価格の予測値
```

# Out[42]:

array([1.73781515])

# In [43]:

```
plt.scatter(X_train, y_train)
plt.xlabel('RM')
plt.ylabel('PRICE')
plt.show()
```



# 重回帰分析(2変数)

# In [44]:

```
X_train = df_train[['CRIM', 'RM']]
```

# In [45]:

X\_train.head()

# Out[45]:

|   | CRIM    | RM    |
|---|---------|-------|
| 0 | 0.00632 | 6.575 |
| 1 | 0.02731 | 6.421 |
| 2 | 0.02729 | 7.185 |
| 3 | 0.03237 | 6.998 |
| 4 | 0.06905 | 7.147 |

# In [36]:

```
model2 = LinearRegression()
```

```
In [46]:
```

```
model2.fit(X_train, y_train)
```

### Out[46]:

LinearRegression()

#### In [51]:

```
# 部屋数が4で犯罪係数が0.3の住宅価格を予測する
y_pred = model2.predict([[0.3, 4]])
```

### In [52]:

```
y_pred # 住宅価格の予測値を出力
```

### Out[52]:

array([4.24007956])

# 係数と切片の値を確認

### In [57]:

```
# 単回帰の回帰係数と切片の値を出力する
print(f'回帰係数: {model.coef_}, 切片: {model.intercept_}')
```

回帰係数: [9.10210898], 切片: -34.670620776438554

### In [58]:

```
# 重回帰の回帰係数と切片の値を出力する print(f'回帰係数: {model2.coef_}, 切片: {model2.intercept_}')
```

回帰係数: [-0.26491325 8.39106825], 切片: -29.244719451930013

### モデルの検証

# In [60]:

```
# 80%を学習用、20%を検証用データにするよう分割 (シード値はサンプルコードと同じにした)
X_train, X_test, y_train, y_test = train_test_split(
boston.data, boston.target, test_size=0.2, random_state=666)
```

# In [61]:

```
model = LinearRegression() # 回帰モデル
model.fit(X_train, y_train) # 回帰モデルを学習
```

#### Out[61]:

LinearRegression()

### In [62]:

```
# 作成したモデルから予測を行う
y_train_pred = model.predict(X_train) # 学習用データ
y_test_pred = model.predict(X_test) # テストデータ
```

### In [63]:

```
# 学習用、検証用それぞれで残差(Residuals)をプロット
plt.scatter(y_train_pred, y_train_pred - y_train, c='blue', marker='o', label='Train Data')
plt.scatter(y_test_pred, y_test_pred - y_test, c='lightgreen', marker='s', label='Test Data')
plt.xlabel('Predicted Values')
plt.ylabel('Residuals')
plt.legend(loc='upper left')
# y = のに直線を引く
plt.hlines(y=0, xmin=-10, xmax=50, lw=2, color='red')
plt.show()
```



### In [67]:

```
# 平均二乗誤差(MSE)を出力する
mse_train = mean_squared_error(y_train, y_train_pred)
mse_test = mean_squared_error(y_test, y_test_pred)
print(f'【平均二乗誤差】Train: {mse_train:.3f}, Test: {mse_test:.3f}')
```

【平均二乗誤差】Train: 20.797, Test: 27.206

上記の学習用データとテストデータの平均二乗誤差を比較すると、 mse\_train < mse\_test となっている。 これは、学習用データにフィットしすぎており、 **過学習** であると言える。

### In [68]:

```
# 決定係数(R^2 スコア)を出力
# scikit-learn の r2_score 関数でも同様にスコアを出力できる
r2_train = model.score(X_train, y_train)
r2_test = model.score(X_test, y_test)
print(f'【決定係数】Train: {r2_train:.3f}, Test: {r2_test:.3f}')
```

【決定係数】Train: 0.761, Test: 0.634

上記学習用データとテストデータの決定係数を比較すると、 r2\_train > r2\_test となっている。 これは、未知のデータへの当てはまりが良くないといえる。