Vecchia's Approximation for Gaussian Processes

June 19, 2020

Contents

0.1	Likelihood Estimation for Gaussian Processes	1
0.2	Vecchia's Approximate Likelihood	1
0.3	Vecchia's Approximation of the Restricted Likelihood	2
0.4	Bordered Cholesky	3

0.1 Likelihood Estimation for Gaussian Processes

Let $A \subset \mathbb{R}^d$ and let $\{Y(\mathbf{x}) : \mathbf{x} \in A\}$ be a Gaussian process with mean function $\mu_{\boldsymbol{\beta}}(\mathbf{x}) = \boldsymbol{m}(\mathbf{x})^T \boldsymbol{\beta}$, where $\boldsymbol{m} : \mathbb{R}^d \to \mathbb{R}^p$ and $\boldsymbol{\beta} \in \mathbb{R}^p$, and covariance function $K_{\boldsymbol{\theta}}$. Let $\mathbf{x}_1, \dots, \mathbf{x}_n \in A$ and suppose we observe $Y_1 = Y(\mathbf{x}_1), \dots, Y_n = Y(\mathbf{x}_n)$. Let $\mathbf{Y} = (Y_1, \dots, Y_n)^T$, $\mathbf{X} = (\boldsymbol{m}(\mathbf{x}_1), \dots, \boldsymbol{m}(\mathbf{x}_n))^T$ and let $\boldsymbol{\Sigma}(\boldsymbol{\theta})$ be an $n \times n$ matrix with i, jth entry given by $K_{\boldsymbol{\theta}}(\mathbf{x}_i, \mathbf{x}_j)$. Then we have

$$\mathbf{Y} \sim \mathcal{N}(\mathbf{X}\boldsymbol{\beta}, \boldsymbol{\Sigma}(\boldsymbol{\theta})).$$
 (1)

The density of \mathbf{Y} is

$$p(\mathbf{y}, \boldsymbol{\beta}, \boldsymbol{\theta}) = (2\pi)^{-n/2} |\mathbf{\Sigma}(\boldsymbol{\theta})|^{-1/2} \exp\left(-\frac{1}{2} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^T \mathbf{\Sigma}(\boldsymbol{\theta})^{-1} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})\right)$$
(2)

which is called the likelihood of β , θ when y is fixed and it is viewed as a function of the parameters. Maximum likelihood estimates of the parameters can be obtained by maximizing the log of the likelihood function

$$\log p(\mathbf{y}, \boldsymbol{\beta}, \boldsymbol{\theta}) = -\frac{n}{2} \log(2\pi) - \frac{1}{2} \log |\mathbf{\Sigma}(\boldsymbol{\theta})| - \frac{1}{2} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^T \mathbf{\Sigma}(\boldsymbol{\theta})^{-1} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})$$
(3)

From now one we will suppress the dependence of Σ on θ . If Σ has no exploitable structure, the the standard way of calculating $\log p(\mathbf{y}, \boldsymbol{\beta}, \boldsymbol{\theta})$ is to first compute the lower Cholesky factor \mathbf{L} of Σ . Then $|\Sigma| = \prod_{i=1}^n \mathbf{L}_{ii}^2$. For the quadratic form, we first solve $\mathbf{L}\mathbf{z} = \mathbf{y} - \mathbf{X}\boldsymbol{\beta}$ and then compute $\mathbf{z}^T\mathbf{z}$. Computing \mathbf{L} requires $\mathcal{O}(n^3)$ operations, which can be prohibitive for large large n.

0.2 Vecchia's Approximate Likelihood

For j = 2, ..., n, let $\mathbf{Y}_{(j-1)} := (Y_1, ..., Y_{j-1})^T$. Then we can write (3) as

$$\log p(\mathbf{y}; \boldsymbol{\beta}, \boldsymbol{\theta}) = p(y_1; \boldsymbol{\beta}, \boldsymbol{\theta}) + \sum_{j=1}^{n} \log p(y_j | \mathbf{y}_{(j-1)}; \boldsymbol{\beta}, \boldsymbol{\theta}).$$
 (4)

Let $m \ll n$. For $j = 2, \ldots, m+1$, let $\mathbf{S}_{(j-1)} = \mathbf{Y}_{(j-1)}$. For j > m+1 let $\mathbf{S}_{(j-1)} \subset \mathbf{Y}_{(j-1)}$ such that $\mathbf{S}_{(j-1)}$ has m entries. Then $\log p(y_j|\mathbf{y}_{(j-1)};\boldsymbol{\beta},\boldsymbol{\theta}) \approx \log p(y_j|\mathbf{s}_{(j-1)};\boldsymbol{\beta},\boldsymbol{\theta})$, and with $p(y_1|\mathbf{s}_{(0)};\boldsymbol{\beta},\boldsymbol{\theta}) := p(y_1;\boldsymbol{\beta},\boldsymbol{\theta})$ we have

$$\log p(\mathbf{y}; \boldsymbol{\beta}, \boldsymbol{\theta}) \approx \sum_{j=1}^{n} \log p(y_j | \mathbf{s}_{(j-1)}; \boldsymbol{\beta}, \boldsymbol{\theta}).$$
 (5)

Let us write down the formula for $p(y_j|\mathbf{s}_{(j-1)};\boldsymbol{\beta},\boldsymbol{\theta})$:

- 1. Let $\Sigma_{(j-1)}$ denote the covariance matrix for $\mathbf{S}_{(j-1)}$.
- 2. Let $\mathbf{X}_{(j-1)}$ denote the design matrix for for $\mathbf{S}_{(j-1)}$.

- 3. Let \mathbf{k}_j denote the vector of covariances between $\mathbf{S}_{(j-1)}$ and Y_j .
- 4. Let \mathbf{X}_j denote the jth row of \mathbf{X}
- 5. Let σ_i^2 denote the variance of Y_i .

The conditional density is given by

$$p(y_j|\mathbf{s}_{(j-1)};\boldsymbol{\beta},\boldsymbol{\theta}) = -\frac{1}{2}\log(2\pi) - \frac{1}{2}\log\left(\sigma_j^2 - \mathbf{k}_j^{\top}\boldsymbol{\Sigma}_{j-1}^{-1}\mathbf{k}_j\right)$$
$$-\frac{1}{2}\frac{\left(\left(y_j - \mathbf{k}_j^{\top}\boldsymbol{\Sigma}_{j-1}^{-1}(\mathbf{y}_{(j-1)} - \mathbf{X}_{(j-1)}\boldsymbol{\beta})\right) - \mathbf{X}_j\boldsymbol{\beta}\right)^2}{\sigma_j^2 - \mathbf{k}_j^{\top}\boldsymbol{\Sigma}_{j-1}^{-1}\mathbf{k}_j}.$$

Let m_j denote the number of entries in $(\mathbf{S}_{(j-1)}, Y_j)^T$ (note that $m_j = m+1$ when j > m+1).

Lemma 1. Let the $m_i \times m_i$ matrix Γ^j be the inverse of the lower Cholesky factor of

$$\operatorname{Cov}\begin{pmatrix}\mathbf{S}_{(j-1)}\\Y_j\end{pmatrix} = \begin{pmatrix}\mathbf{\Sigma}_{(j-1)} & \mathbf{k}\\\mathbf{k}^{\top} & \sigma_j^2\end{pmatrix}$$

Then the last row of Γ^j is given by

$$\mathbf{\Gamma}_{m_j}^j = \left(-\mathbf{k}_j^\top \mathbf{\Sigma}_{j-1} \left(\sigma_j^2 - \mathbf{k}_j^\top \mathbf{\Sigma}_{j-1}^{-1} \mathbf{k}_j \right)^{-1/2} \quad \left(\sigma_j^2 - \mathbf{k}_j^\top \mathbf{\Sigma}_{j-1}^{-1} \mathbf{k}_j \right)^{-1/2} \right)$$

Proof.

The last lemma implies

$$\log p(y_j|\mathbf{s}_{(j-1)};\boldsymbol{\beta},\boldsymbol{\theta}) = -\frac{1}{2} \left(\log(2\pi) + 2\log \mathbf{L}_{m_j,m_j}^j + \left(\mathbf{\Gamma}_{m_j}^j \left((\mathbf{S}_{(j-1)}, Y_j)^\top - \mathbf{X}_{(j)} \boldsymbol{\beta} \right) \right)^2 \right).$$

0.3 Vecchia's Approximation of the Restricted Likelihood

Suppose that the $n \times p$ matrix \mathbf{X} is full rank. To carry out REML estimation, we need to first write down the joint density of a set of contrasts \mathbf{KY} where \mathbf{K} any $n-p\times n$ full rank matrix such that $\mathbb{E}(\mathbf{KY})=0$. Suppose that the first p rows of \mathbf{X} are linearly independent, and let $\mathbf{Y}_{(j)}$ denote $(Y_1,\ldots,Y_j)^T$. Then the BLUP of Y_{p+j} given $\mathbf{Y}_{(p+j-1)}$ exists for $j=1,\ldots,n-p$.

- 1. Let $\Sigma_{(p+j-1)}$ denote the covariance matrix for $\mathbf{Y}_{(p+j-1)}$.
- 2. Let $\mathbf{X}_{(p+j-1)}$ denote the design matrix for for $\mathbf{Y}_{(p+j-1)}$.
- 3. Let \mathbf{k}_j denote the vector of covariances between $\mathbf{Y}_{(p+j-1)}$ and Y_{p+j} .
- 4. Let \mathbf{X}_i denote the jth row of \mathbf{X} .

For j = 1, ..., n - p, let λ_j be the first p + j - 1 entries of the vector

$$\begin{pmatrix} \mathbf{\Sigma}_{(p+j-1)} & \mathbf{X}_{(p+j-1)} \\ \mathbf{X}_{(p+j-1)}^T & 0 \end{pmatrix}^{-1} \begin{pmatrix} \mathbf{k}_j \\ \mathbf{X}_j \end{pmatrix}$$

Let **K** be an $n - p \times n$ where the *j*th row is given by $(-\lambda_j^T, 1, 0, ..., 0)$. Then **K** is full rank and $\mathbb{E}(\mathbf{KY}) = 0$, so **W** is a suitable set of contrasts. The *j*th entry of **W** = **KY** is just the error of the BLUP of Y_{p+j} based on $\mathbf{Y}_{(p+j-1)}$. Consequently, the entries of **W** are uncorrelated with each other. Since they are also jointly normal, they are independent. Let $\mathbf{V} = \mathbf{K} \mathbf{\Sigma} \mathbf{K}^T$. If $r(\mathbf{w}; \boldsymbol{\beta}, \boldsymbol{\theta})$ denotes the joint density of **W**, then

$$\log r(\mathbf{w}; \boldsymbol{\beta}, \boldsymbol{\theta}) = -\frac{n-p}{2} \log(2\pi) - \frac{1}{2} \log |\mathbf{V}| - \frac{1}{2} \mathbf{W}^T \mathbf{V}^{-1} \mathbf{W}$$
 (6)

$$= \sum_{j=1}^{n-p} \frac{1}{2} \left(-\log(2\pi) - \log \mathbf{V}_{jj} - \mathbf{V}_{jj}^{-1} \mathbf{W}_{j}^{2} \right)$$
 (7)

Note that V_{jj} is just the variance of the error of the BLUP of Y_{p+j} based on $Y_{(p+j-1)}$, or equivalently, the mse of the BLUP . Now let $\mathbf{S}_{(p+j-1)} \subset \mathbf{Y}_{(p+j-1)}$ have $\mathbf{b} = \min(p+j-1,m)$ entries for $j = 1, \ldots, n-p$ where $m \ll n-p$ (b corresponds to bsize-1 in the code). Vecchia's approximation of (6) is

$$\log r(\mathbf{w}; \boldsymbol{\beta}, \boldsymbol{\theta}) \approx \sum_{j=1}^{n-p} -\frac{1}{2} \left(\log(2\pi) + \log \mathbf{V}_{jj} + \mathbf{V}_{jj}^{-1} \mathbf{W}_{j}^{2} \right)$$
(8)

where \mathbf{W}_j is the error of the BLUP of Y_{p+j} based on $\mathbf{S}_{(p+j-1)}$ and \mathbf{V}_{jj} is the variance of this error. We can obtain \mathbf{W}_j and \mathbf{V}_{jj} as follows:

- 1. Let $\Sigma_{(p+j-1)}$ denote the covariance matrix for $S_{(p+j-1)}$.
- 2. Let $\mathbf{X}_{(p+j-1)}$ denote the design matrix for for $\mathbf{S}_{(p+j-1)}$.
- 3. Let \mathbf{k}_j denote the vector of covariances between $\mathbf{S}_{(p+j-1)}$ and Y_{p+j} .
- 4. Let \mathbf{X}_j denote the jth row of \mathbf{X} .

For j = 1, ..., n - p, let λ_j be the first b entries of the vector

$$\begin{pmatrix} \mathbf{\Sigma}_{(p+j-1)} & \mathbf{X}_{(p+j-1)} \\ \mathbf{X}_{(p+j-1)}^T & 0 \end{pmatrix}^{-1} \begin{pmatrix} \mathbf{k}_j \\ \mathbf{X}_j \end{pmatrix}$$

Then $\mathbf{W}_j = (-\boldsymbol{\lambda}_j^T, 1)\mathbf{S}_{(p+j)}$ and $\mathbf{V}_{jj} = (-\boldsymbol{\lambda}_j^T, 1)\boldsymbol{\Sigma}_{(p+j)}(-\boldsymbol{\lambda}_j^T, 1)^T$. We can embed $(-\boldsymbol{\lambda}_j^T, 1)$ in an *n*-row-vector of zeros \mathbf{C}_j to make $\mathbf{W}_j = \mathbf{C}_j\mathbf{Y}$. Let \mathbf{C} be an $n \times (n-p)$ matrix with rows \mathbf{C}_j . Then $\mathbf{W} := (\mathbf{W}_{11}, \dots, \mathbf{W}_{n-p,n-p})^T = \mathbf{C}\mathbf{Y} \sim \mathcal{N}(0, \mathbf{C}\boldsymbol{\Sigma}\mathbf{C}^T)$ where $\mathbf{V} := \mathbf{C}\boldsymbol{\Sigma}\mathbf{C}^T$ is a diagonal matrix with diagonal entries \mathbf{V}_{jj} . There are formulas for obtaining \mathbf{V}_{jj} directly.

The formula for the gradient is contained in the Stein et al. paper :

$$\frac{\partial}{\partial \theta_k} rl(\theta, w) = -\frac{1}{2} \left(\left(\mathbf{V}_{jj}^{-1} \cdot \frac{\partial}{\partial \theta_k} \mathbf{V}_{jj} \right) + \left(2 \mathbf{W}_j \cdot \mathbf{V}_{jj}^{-1} \cdot \frac{\partial}{\partial \theta_k} \mathbf{W}_j \right) - \left(\mathbf{W}_j^2 \cdot \mathbf{V}_j^{-2} \cdot \frac{\partial}{\partial \theta_k} \mathbf{V}_j \right) \right)$$

The Fisher Information matrix can be obtained using the fact that $\mathbf{W} \sim \mathcal{N}(0, \mathbf{C} \mathbf{\Sigma} \mathbf{C}^T)$:

$$\mathcal{I}_{kl} = \frac{1}{2} \sum_{j=1}^{n-p} \left(\mathbf{V}_{jj}^{-1} \cdot \frac{\partial}{\partial \theta_k} \mathbf{V}_{jj} \cdot \mathbf{V}_{jj}^{-1} \cdot \frac{\partial}{\partial \theta_l} \mathbf{V}_{jj} \right).$$

The restricted likelihood, gradient and Fisher Information can be computed in one pass through the data.

Bordered Cholesky

Theorem 1. Suppose $A \in \mathbb{R}^{n \times n}$ is symmetric positive definite and $B \in \mathbb{R}^{n \times p}$ is full rank. Then

$$\begin{pmatrix} A & B \\ B^T & 0 \end{pmatrix} = \begin{pmatrix} L_{11} & 0 \\ L_{21} & -L_{22} \end{pmatrix} \begin{pmatrix} L_{11} & 0 \\ L_{21} & L_{22} \end{pmatrix}^T \tag{9}$$

Proof. We can write (9) as

$$\begin{pmatrix} L_{11} & 0 \\ L_{21} & -L_{22} \end{pmatrix} \begin{pmatrix} L_{11}^T & L_{21}^T \\ 0 & L_{22}^T \end{pmatrix} = \begin{pmatrix} L_{11}L_{11}^T & L_{11}L_{21}^T \\ L_{21}L_{11}^T & L_{21}L_{21}^T - L_{22}L_{22}^T \end{pmatrix}$$
(10)

Let $L_{11}L_{11}^T$ be the Cholesky decomposition of A. Define $L_{21} = (L_{11}^{-1}B)^T$. Then $B^T = L_{21}L_{11}^T$. Furthermore, $L_{21}L_{21}^T = B^TL^{-T}L^{-1}B = B^TA^{-1}B$ is symmetric. Let z be a nonzero vector in \mathbb{R}^p . Since B is full rank, $Bz \neq 0$, and then $z^TB^TA^{-1}Bz > 0$ since A^{-1} is positive definite. Thus, $B^TA^{-1}B$ has a Cholesky decomposition $L_{22}L_{22}^T$, and $L_{21}L_{21}^T - L_{22}L_{22}^T -$ $L_{22}L_{22}^T = 0.$