Logik I Übungsblatt 7

Aufgabe 1. Zeigen Sie, dass ZF beweist, dass das Auswahlaxiom und das Zorn'sche Lemma äquivalent sind.

Aufgabe 2. Beweisen Sie ohne Auswahlaxiom¹ den Satz von Cantor-Bernstein: Seien $f:A\to B$ und $g:B\to A$ Injektionen. Dann gibt es eine Bijektion $h:B\to A$. *Hinweis:* Wir können annehmen, dass A eine Teilmenge von B und f die Inklusionsabbildung ist. Sei $C=\{g^n(x)\mid n\in\omega,\,x\in B\setminus A\}$. Setze h(c)=g(c) für $c\in C$ und h(y)=y für $y\in B\setminus C$.

Aufgabe 3. Zeigen Sie, dass die Menge der reellen Zahlen und die Potenzmenge von ω gleichmächtig sind.

Aufgabe 4. Sei α eine Ordinalzahl. Zeigen Sie, dass es eine Kardinalzahl $\kappa \geqslant \alpha$ gibt, die ein \aleph -Fixpunkt ist: $\aleph_{\kappa} = \kappa$.

Hinweis: Betrachten Sie die Folge definiert mittels $\alpha_0 = \alpha$ und $\alpha_{n+1} = \aleph_{\alpha_n}$, und nehmen Sie $\kappa = \sup_{n \in \omega} \alpha_n$.

¹ Insbesondere ohne Lemma 2.54, das (in der Definition der Mächtigkeit) das Auswahlaxiom verwendet.