Gradient Optimization

Evgenii Egorov

Plan

- We would like to make predictions with <w, x>!
 - o What is x?
 - o How to measure the error?
- We would like to minimize this error over w!
 - o How to find the best one?
- Machine learning is not just optimization!
 - How this affects optimization routine?

$$a(x) = \langle w, x \rangle + w_0$$

- For each object we have its feature representation: x
- We can do simple predictions:
 - Multiple each coordinate with weight and sum them all
- Benefits of such model?
 - * Your suggestions here * ("Simple" means nothing)

$$a(x) = \langle w, x \rangle + w_0$$

- For each object we have its feature representation: x
- We can do simple predictions:
 - Multiple each coordinate with weight and sum them all
- Benefits of such model?
 - Predictions = 1 vector product -> fast
 - Linear change of input/weight -> Linear change in output
 - Interpretation and diagnostic
 - o Online learning, sparsity, closed form solution (in many cases), effective training ...

$$a(x) = \langle w, x \rangle + w_0$$

- Two frequent statements:
 - Linear assumption is to restrictive
 - Linear models are robust and avoid overfitting
- Are they correct?
 - *Your suggestions here *

$$a(x) = \langle w, x \rangle + w_0$$

- Linear assumption is to restrictive
 - Take a big enough "feature space" and be happy
 - Fourier basis, polynomial basis
 - Random Functions
- Linear models are robust and avoid overfitting
 - Take number of features greater than number of objects:)
 - But for *linear model* we can design a way to find robust w:
 - Because number of non-zero weights and complexity of model is "the same"
 - Introducing bias (or prior knowledge) is clear because of linear response

$$a(x) = \langle w, x \rangle + w_0$$

- Main restriction for linear model:
 - You should know how to extract features from object
 - (Before deep learning) Computer vision, natural language answer this question for particular domain and particular task in particular domain
 - Most popular algorithms are all about how to avoid hand-crafting

$$a(x) = \langle w, x \rangle + w_0$$

- How to make a suitable representation for categorical feature?
 - * Your suggestions here *
- What features we can extract from text?
 - * Your suggestions here *

$$a(x) = \langle w, x \rangle + w_0$$

- I have a training dataset!
 - And I extract features
- How to measure the error?

$$MSE(a, X) = \frac{1}{\ell} \sum_{i=1}^{\ell} (a(x_i) - y_i)^2$$

$$ext{MAE}(a,X) = rac{1}{\ell} \sum_{i=1}^{\ell} |a(x_i) - y_i|$$

- We can minimize an error measure over the weights!
 - o Is it important what to minimize? What if we weight samples?
 - Is model is how to predict or what to minimize?

$$a(x) = \langle w, x \rangle + w_0$$

- Let's derive closed-form solution:
 - Vanila -> with regularization
 - And discuss it a bit
- * Go to whiteboard*

$$a(x) = \langle w, x \rangle + w_0$$

- Closed-form solution is nice to have!
 - Study algorithm properties from it
 - Or derive updates for 1-new object arriving

$$a(x) = \langle w, x \rangle + w_0$$

- Closed-form solution is nice to have!
- But it is not always available:
 - o For some cases we just don't have it
 - Some cases is nearly all cases
 - Due computational restrictions

$$a(x) = \langle w, x \rangle + w_0$$

- Closed-form solution is nice to have!
- But it is not always available:
 - For some cases we just don't have it
 - Some cases is nearly all cases
- Let's go to the iterative methods!

Optimization

- General idea:
 - Start from somewhere
 - Try to modify in some direction
- Question:
 - o How to select direction?
 - O * Your suggestions here *

Optimization

- Let's go to white-board and derive some algorithms
 - Algorithm =
 - Direction + step size in this direction
 - What information about function it uses
 - And assumptions for convergence