Mondes Virtuels

Eric Maisel

ENIB

Automne 2019

Objectifs

- Savoir créer un monde virtuel
- Prendre en main une bibliothèque 3d

Mondes virtuels

Pour la réalité virtuelle

Réalité Virtuelle (Wikipedia)

Technologie informatique qui simule la présence physique d'un utilisateur dans un monde artificiellement généré par des logiciels.

Mondes (Larousse)

Ensemble de choses ou d'êtres formant un tout à part, organisé, un microcosme.

Virtuel

- En devenir, potentiel
- Par opposition à actuel.

Mondes virtuels

Mondes virtuels (Wikipedia)

Monde créé artificiellement par logiciel, pouvant héberger une communauté d'utilisateurs sous forme d'avatars ayant la capacité de s'y **déplacer** et d'y **interagir**.

La représentation de ce monde est 2D ou 3D

Un monde virtuel peut **simuler** le monde réel avec ses **lois physiques** ou tout au contraire être régie par d'autres. Les **lois humaines** peuvent également être reproduites.

3D et Web

Pourquoi?

- Facilité d'installation
- Base pour RV distribuée

Avec quoi?

- WebGL
- Three.js, Babylonjs
- AFrame

Vers la RV

WebVR

Un peu de 3D

Une base : le rendu visuel

- Canvas : zône où placer l'image dans le navigateur
- Renderer : procédure de calcul des images
- Scene : collection d'objets 3d
- Camera : point de vue d'où sont calculées les images

Eric Maisel (ENIB) Mondes Virtuels Automne 2019 6 / 35

Un peu de 3D

Une base : le rendu visuel

- Scene = collection d'objets 3D
- Objet 3D =
 - Géométrie
 - Matériau
 - Pose (position, orientation)


```
var scene, camera, renderer, cube;
function initThree(){
 scene = new THREE.Scene() :
 var 1, h = window.innerWidth, window.innerHeight ;
  camera = new PerspectiveCamera(0.50,1/h,0.1,1000.0);
  camera.position.set(2,1.7,5);
  camera.lookAt(new THREE.Vector3(0,1,0));
 renderer = new THREE.WebGLRenderer() :
 renderer.setSize(1,h);
 document.body.appendChild(renderer.domElement) ;
```

```
function initScene(){
  // Ajout d'une source lumineuse
  var light = new THREE.HemisphereLight(0xfffffff,0xff00ff,1)
  light.position.set(-2,5,5);
  scene.add(light) ;
  // Ajout d'un cube
  var geo = new THREE.BoxGeometry(1,1,1);
  var mat = new THREE.MeshStandardMaterial({color:0xee3333})
  cube = new THREE.Mesh(geo, mat) ;
  scene.add(cube) :
```

```
function animer(){
  requestAnimationFrame(animer) ;

  cube.rotation.y += 0.0001 ;
  cube.rotation.x += 0.0005 ;

  renderer.render(scene, camera) ;
}
```

```
function main(){
  initThree();
  initScene();
  animer();
}
main();
```

Graphe de scène

Eric Maisel (ENIB) Mondes Virtuels Automne 2019 12 / 35

Graphe de scène


```
var cube1 = creerCube({taille:1,couleur:0xff0000});
var cube2 = creerCube({taille:1,couleur:0x0000ff});
var gr = new THREE.Group();
scene.add(gr);
gr.add(cube1); // transfo: T1T3
gr.add(cube2); // Transfo: T2T3
```

Graphe de scène

Méthodes de Object3d

.add(fils)

Propriétés de Object3d

- isVisible
- position
- rotation

Textures

Placage de texture

Textures

Images avec transparences

Placage de textures avec transparence

Eric Maisel (ENIB) Mondes Virtuels Automne 2019 17 / 35

Images avec transparences

```
const material = {
  color,
  map : loader.load(url),
  opacity : 0.5,
  transparent : true,
  side : THREE.DoubleSide
}
```


- Placements de plusieurs objets
- Effets lumineux : brouillard, ombres portées

Eric Maisel (ENIB) Mondes Virtuels Automne 2019 19 / 35

Couches rectangulaires

- Espace <-> Structure tabulaire (tableau, image, chaînes)
- Nature et placement des objets spécifiés par les éléments de la structure

Génération procédurale

Utilisation d'algorithmes pour placer des objets de façon semi-aléatoire

Editeur

- Utilisation d'outils externes
- Fichier exporté (ex/ en JSON)

Brouillard

Brouillard exponentiel

```
scene.fog = new THREE.Fog2(0x9db3b5,0.002) ;
```

Brouillard linéaire

```
scene.fog = new THREE.Fog(0x9db3b5,0,200) ;
```

Ombres portées


```
renderer.shadowMapEnabled = true ;
light.castShadow = true ;
cube.castShadow = true ;
sphere.castShadow = true ;
plane.receiveShadow = true ;
```

```
var chrono = new THREE.Clock() :
chrono.start() :
function animer(){
  var dt = chrono.getDelta() ;
  temps += dt ;
  cube.rotation.y += dt ;
  cube.rotation.x += 2*dt ;
  renderer.render(scene, camera);
  requestAnimationFrame(animer) ;
```

Architecture pour l'animation

Architecture: 1ere forme

Acteur : controleur d'objets 3d

• Interface : update(dt) appelé régulièrement

Animation par la dynamique

Lois de Newton

Schéma d'intégration

$$\begin{cases} P(t+dt) &= P(t) + V(t)dt \\ V(t+dt) &= V(t) + \gamma(t)dt \\ \gamma(t) &= \frac{1}{m} \sum F_i \end{cases}$$

Dynamique pour l'animation

Dynamique pour l'animation

```
Monde.prototype.update = function(dt){
  var i ;
  for(i=0; i<this.genForces; i++)</pre>
    this.genforces[i].update(dt);
  for(i=0; i<this.acteurs; i++)</pre>
    this.acteurs[i].update(dt);
  this.acteurs[i].force.set(0,0,0);
GenForce.prototype.update = function(dt){
  var f = this.computeForce() ;
  for(var i=0; i<this.acteurs;length;i++)</pre>
```

this.acteurs[i].force.accumuler(f) ;

Animation contrôlée par steering

Principe

- Objectif $\rightarrow V_d$
- $F = V_d V_c$

Passer par un point

$$V_d = V_m \frac{PC}{||PC||}$$

Autres objectifs

s'arréter en un point, suivre une trajectoire, suivre un mur, éviter un objet,

...

Animation contrôlée par steering

Animation conditionnée par sélection

Principe

- Création d'un rayon
- Calcul d'intersection rayon/objets

document.addEventListener("click",onMouseClick,false) ;

Animation conditionnée par sélection

Implémentation

```
= new THREE.Raycaster();
var raycaster
                       = new THREE. Vector2():
var mouse
var selectedObject = null ;
function onMouseClick(e){
  mouse.x = (e.clientX/window.innerWidth)*2-1;
  mouse.y = -(e.clientY/window.innerHeight)*2+1;
  raycaster.setFromCamera(mouse,camera) ;
  var intersectedObjects =
            raycaster.intersectObjects(scene.children) ;
  if(intersectedObjects.length > 0){
    selectedObject = intersectedObjects[0] ;
```

Animation conditionnée par trigger

- Mise en oeuvre 3d d'une structure conditionnelle
- Motif Observateur/Observé : notification d'evts à des observateurs abonnés
- Test sur la situation dans une région de l'espace
 - On objet est présent dans la région
 - Un objet entre dans la région
 - Un objet sort de la région

Animation conditionnée par trigger

