CS561 - ARTIFICIAL INTELLIGENCE LAB

ASSIGNMENT-5: Simulated Annealing

(Read all the instructions carefully & adhere to them.)

Date: 4th September, 2023 Deadline: 10th September 2023

Total Credit: 30

Instructions:

- 1. The assignment should be completed and uploaded by 10 Sept. 2023, 11:59 PM IST.
- 2. Markings will be based on the correctness and soundness of the outputs. Marks will be deducted in case of plagiarism.
- 3. Proper indentation and appropriate comments are mandatory.
- 4. You should zip all the required files and name the zip file as: roll_no_of_all_group_members .zip , eg. 2121cs11_2211cs03_2121cs05.zip.
- 5. Upload your assignment (**the zip file**) in the following link: https://www.dropbox.com/request/LZfosQPAkMjeDNnyfLur

For any queries regarding this assignment, you can contact: Ramakrishna Appicharla (ramakrishnaappicharla@gmail.com), Arpan Phukan (arpanphukan@gmail.com) and, Sandeep Kumar (sandeep.kumar82945@gmail.com)

Questions

Simulated Annealing:

Start state:

5	В	8
4	2	1
7	3	6

Goal State (Fixed):

1	2	3
4	5	6
7	8	В

Please use the following details as specifications for SA implementations:

- A. **Input:** Input should be taken from an input file and processed as a matrix. Other inputs are Temperature variable T, heuristic function, neighborhood generating function, probability function to decide state change, and a cooling function.
- B. Objective functions to be checked:
 - a. h1 (n)= Number of displaced titles.
 - b. h2 (n)= Total Manhattan distance.

Questions and instructions:

- 1. The output should have the following information:
 - a. On success:
 - i. Success Message
 - ii. Start State / Goal State
 - iii. Total number of states explored
 - iv. Total number of states to the optimal path
 - v. Optimal Path
 - vi. Optimal Path Cost
 - vii. Time taken for execution

b. On failure:

- i. Failure Message
- ii. Start State / Goal State

- iii. Total number of states explored before termination
- 2. Discuss the results obtained obtained in the Simulated Annealing implementations.
 - **a.** Take multiple examples (at least 3) of the same start state and goal state combinations and compare both algorithms.
 - **b.** Analyze the results obtained with proper justifications.
 - **c.** Describe your results on both algorithms and *state the reasons for the difference of approach in both algorithms.*
 - **d.** Describe your views on what algorithm should have performed better for this particular problem and does your intuition match the results?

b. On failure:

- i. Failure Message
- ii. Start State / Goal State
- iii. Total number of states explored before termination
- 3. Compare your results obtained in the Simulated Annealing implementations with hill climbing.
 - **a.** Take multiple examples (at least 3) of the same start state and goal state combinations and compare both algorithms.
 - **b.** Analyze the results obtained with proper justifications.
 - c. Describe your results on which algorithm performed better and why?
 - **d.** Describe your views on what algorithm should have performed better for this particular problem and does your intuition match the results?