Excel – Understanding and navigating cell addresses

The location of data on a spreadsheet may follow a pattern (like in the spreadsheet below) that you need to understand to make your work easier. We'll use the totally fabricated Tennessee student data below to explore some functions that work with cell addresses:

- **ROW()** returns an integer that corresponds to the position of the row, ordering top to bottom
- **COLUMN()** returns an integer that corresponds to the position of the column, ordering left to right
- ADDRESS() returns the cell address in standard excel form given a row and column value; a third optional input directs the function to return as:
 - Absolute reference (1, the default)
 - Row absolute reference (2)
 - Column absolute reference (3)
 - Relative reference (4)

	A	В	С	D	Е	F	G	Н	1	J	K	L	М
1			Nashville			Knoxville					Memphis		
2		K-6	7-9	10-12		K-6	7-9	10-12		K-6	7-9	10-12	
3	Number of students	25038	18219	15622		18788	8765	7504		34099	22430	17878	
4	disabled	247	129	203		110	73	60		266	176	135	
5	gifted	1287	936	611		711	204	178		1308	1021	847	
6	mainstream	23504	17154	14808		17967	8488	7266		32525	21233	16896	
7													
8	Number of courses offered												
9	math	9	6	11		8	6	10		9	5	9	
10	science	7	4	7		7	4	8		7	4	7	
11	english and literature	10	7	9		8	7	10		8	9	8	
12	history and social studies	6	5	9		6	6	8		5	6	7	
13													
14													
15													

Excel returns 3 as the **ROW** position ROW(cell reference) for J3 =ROW(J3) N3 D G Н Ν M Nashville Knoxville Memphis ROW υО 1/6 Z47 /3

ADDRESS(<row number>, <column number>, <level of absoluteness>)

- 1 (or omitted) → Absolute
- 2 -> Absolute row, relative column
- 3 → Relative row, absolute column
- 4 → Relative

=ADDRE	=ADDRESS(N3, O3)														
)	E	F	G	Н	1	J	K	L	M	N	0	Р			
	Knoxville						Memphis			ROW	COLUMN	ABSOLUTE			
-12		K-6	7-9	10-12		K-6	7-9	10-12							
15622		18788	8765	7504		34099	22430	17878		3	10	\$J\$3			
203		110	73	60		266	176	135		4	10	\$J\$4			
611		711	204	178		1308	1021	847		5	10	\$J\$5			
14808		17967	8488	7266		32525	21233	16896		6	10	\$J\$6			

Omitting the level of absoluteness gives the default level (fully absolute)

=ADDRESS(N3, O3, 4)													
D	Е	F	G	Н	1	J	K	L	M	N	0	Р	Q
			Knoxville			Memphis			ROW	COLUMN	ABSOLUTE	RELATIVE	
-12		K-6	7-9	10-12		K-6	7-9	10-12					
15622		18788	8765	7504		34099	22430	17878		3	10	\$J\$3	J3
203		110	73	60		266	176	135		4	10	\$J\$4	J4
611		711	204	178		1308	1021	847		5	10	\$J\$5	J5

Here we set the level of absoluteness to 4 to get a relative address

OFFSET(<cell reference>, <offset rows>, <offset columns>)

Suppose we want to find the average number of high school math courses offered across three cities. We can use offsets to get our second and third values relative to the location of our first value.

	Start at D9 and go down 0 and ov	er 4	Start at	D9 and go d	lown 0 and	d over 8						
B1	\Rightarrow	FSET(D9,0,4),OFF	SET(D9,0,8))									
	Α	В	С	D	Е	F	G	Н	1	J	K	L
1			Nashville				Knoxville				Memphis	
2		K-6	7-9	10-12		K-6	7-9	10-12		K-6	7-9	10-12
3	Number of students	25038	18219	15622		18788	8765	7504		34099	22430	17878
4	disabled	247	129	203		110	73	60		266	176	135
5	gifted	1287	936	611		711	204	178		1308	1021	847
6	mainstream	23504	17154	14808		17967	8488	7266		32525	21233	16896
7												
8	Number of courses offered	32	22	36		29	23	36		29	24	31
9	math	9	6	11		8	6	10		9	5	9
10	science	7	4	7		7	4	8		7	4	7
11	english and literature	10	7	9		8	7	10		8	9	8
12	history and social studies	6	5	9		6	6	8		5	6	7
13												
14												
15	average number of high school maths offered:	10										
16												

Named Regions

It can be useful to assign a name to a range of data. First select the data you want to assign a name to. Next, from the top menu go to Formulas → Define Name

From the

Formulas

menu find

Define Name

Named Regions

Complete the New Name Dialogue Box to give your region a Name and Scope, and set the area.

You can change these later if you need to in the Name Manager.

You can use the named region in place of referencing a cell range. In the example below, a named region (student_counts) has been created for B3:L3

region

=MAX(B3	:L3)										
	В	С	D	Ε	F	G	Н	1	J	K	L
		Nashville				Knoxville				Memphis	
	K-6	7-9	10-12		K-6	7-9	10-12		K-6	7-9	10-12
	25038	18219	15622		18788	8765	7504		34099	22430	17878
	247	129	203		110	73	60		266	176	135
	1287	936	611		711	204	178		1308	1021	847
	23504	17154	14808		17967	8488	7266		32525	21233	16896
	32	22	36		29	23	36		29	24	31
	9	6	11		8	6	10		9	5	9
1	7	4	7		7	4	8		7	4	7
nax cohort1 is	10	7	9		8	7	10		8	9	8
	6	5	9		6	6	8		5	6	7
alculated using	the										
ell range	max cohort1: =	MAX(B3:L3)									
eniange	max cohort2:										

	В	С	D	E	F	G	Н	l J	K	L
		Nashville			Knoxville				Memphis	
	K-6	7-9	10-12		K-6	7-9	10-12	K-6	7-9	10-12
	25038	18219	15622		18788	8765	7504	34099	22430	17878
	247	129	203		110	73	60	266	176	135
	1287	936	611		711	204	178	1308	1021	847
	23504	17154	14808		17967	8488	7266	32525	21233	16896
	32	22	36		29	23	36	29	24	31
	9	6	11		8	6	10	9	5	ć
	7	4	7		7	4	8	7	4	7
max cohort2 is	10	7	9		8	7	10	8	9	8
I . I . I	6	5	9		6	6	8	5	6	7
calculated using the										
name created for that	max cohort1:	34099								
	max cohort2:	34099								

MATCH(<lookup value>, <lookup range>, <match type>)

match type = 1 (exact or next smallest)

match type = 0 (exact)

match type = -1 (exact or next largest)

Note: Match returns a *position*

Where is science on the list of course types?

4	A	В	С	D	
1		1	Nashville		
2		K-6	7-9	10-12	
3	Number of students	25038	18219	15622	
4	disabled	247	129	203	
5	gifted	1287	936	611	
6	mainstream	23504	17154	14808	
7					
8	Number of courses offered	32	22	36	
9	math	9	6	11	
0	science	7	4	7	
.1	english and literature	10	7	9	
12	history and social studies	6	5	9	
.3					
.4					
.5	average number of high school maths offered:	10			
6		6			
.7					
18	Position of Science in List of course types:	2			

The MATCH() function is especially powerful when combined with INDEX(). INDEX() returns a value at a known position in either one or two dimensions:

INDEX(<data>, MATCH(<value>, <lookup region>, <type of match>)

- **1.** Match() the specified value in the lookup region and return its position.
- 2. Use that position as the second input to lookup the value with Index()

Exercises

Use the metro_budget spreadsheet to answer the following questions.

- 1. What is the row position for the Sports Authority 2018 Budget?
- 2. What is the column position for the Emergency Communication Center's 2019 Actual Spending?
- 3. What is the Address of the Mayor's Office actual spending for 2017?
- 4. Create a new column at the end of the data called Avg_diff. Use the OFFSET() function to find the average budget/actual differences across all three years. Note that a negative number means that the department spent more than was budgeted. Copy this formula down to get the average diff for all departments. Do you see a trend?
- 5. Create the table below at the bottom of the spreadsheet to report on budget/actual spending differences for select boards and commissions. Use Index() and Match together to fill in the cells.

53					
54					
55	Department	FY17_diff	FY18_diff	FY19_diff	
56	Community Education Commission				
57	Community Oversight Board				
58	Election Commission				
59	Historical Commission				
60	Human Relations Commission				
61	Planning Commission				
62					
63					
64					
65					