Metody Probabilistyczne i Staystyka Wykład 11.

Rozkłady warunkowe zmiennych losowych Warunkowa wartość oczekiwana i warunkowa wariancja

Ewa Frankiewicz

12 maja 2025

Rozkłady warunkowe zmiennych losowych

Przypomnienie

Jeśli A i B są zdarzeniami z tej samej przestrzeni probabilistycznej takimi, że P(B)>0, to

$$P(A|B) = \frac{P(A \cap B)}{P(B)}.$$

Definicja

Niech (X, Y) ma rozkład dyskretny.

Definicja

Niech (X, Y) ma rozkład dyskretny. Jeśli przy ustalonym $y \in S_Y$, dla każdego $x \in S_X$ wyznaczymy

$$P(X = x | Y = y) =$$

Definicja

Niech (X, Y) ma rozkład dyskretny. Jeśli przy ustalonym $y \in S_Y$, dla każdego $x \in S_X$ wyznaczymy

$$P(X = x | Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)},$$

Definicja

Niech (X, Y) ma rozkład dyskretny. Jeśli przy ustalonym $y \in S_Y$, dla każdego $x \in S_X$ wyznaczymy

$$P(X = x | Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)},$$

to otrzymamy funkcję prawdopodobieństwa rozkładu warunkowego zmiennej losowej X pod warunkiem zdarzenia $\{Y=y\}.$

Definicja

Niech (X, Y) ma rozkład dyskretny. Jeśli przy ustalonym $y \in S_Y$, dla każdego $x \in S_X$ wyznaczymy

$$P(X = x | Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)},$$

to otrzymamy funkcję prawdopodobieństwa rozkładu warunkowego zmiennej losowej X pod warunkiem zdarzenia $\{Y=y\}.$

Uwaga:

Przy ustalonym $y \in S_Y$

$$\sum_{x} P(X = x | Y = y) = 1.$$

Przykład 1.

Dwuwymiarowa zmienna losowa (X, Y) ma rozkład dyskretny z

funkcją prawdopodobieństwa

$X \setminus Y$	1	2	3	
0	0.25	0.25	0.25	
1	0	0.25	0	

Wyznaczyć rozkłady warunkowe Y pod warunkiem zdarzeń $\{X=0\}$ i $\{X=1\}$ oraz X pod warunkiem zdarzeń $\{Y=1\}, \{Y=2\}, \{Y=3\}.$

Definicja

Jeśli wektor (X, Y) ma rozkład ciągły,

Definicja

Jeśli wektor (X,Y) ma rozkład ciągły, to **gęstością rozkładu** warunkowego zmiennej losowej X pod warunkiem zdarzenia $\{Y=y\}$ nazywamy funkcję

Definicja

Jeśli wektor (X,Y) ma rozkład ciągły, to gęstością rozkładu warunkowego zmiennej losowej X pod warunkiem zdarzenia $\{Y=y\}$ nazywamy funkcję

$$f_{X|Y}(x|y) =$$

Definicja

Jeśli wektor (X,Y) ma rozkład ciągły, to gęstością rozkładu warunkowego zmiennej losowej X pod warunkiem zdarzenia $\{Y=y\}$ nazywamy funkcję

$$f_{X|Y}(x|y) = \begin{cases} \frac{f_{XY}(x,y)}{f_Y(y)} &, & \text{gdy } f_Y(y) \neq 0 \\ 0 &, & \text{w p.p.} \end{cases}.$$

Definicja

Jeśli wektor (X,Y) ma rozkład ciągły, to gęstością rozkładu warunkowego zmiennej losowej X pod warunkiem zdarzenia $\{Y=y\}$ nazywamy funkcję

$$f_{X|Y}(x|y) = \begin{cases} \frac{f_{XY}(x,y)}{f_Y(y)} &, & gdy \ f_Y(y) \neq 0 \\ 0 &, & w \ p.p. \end{cases}.$$

Przykład 2.

Wektor (X, Y) ma rozkład jednostajny w obszarze $D = \{(x, y) : |x| + |y| < 2\}$. Wyznaczyć gęstość rozkładu warunkowego zmiennej losowej Y pod warunkiem zdarzenia $\{X = x\}$.

Definicja

Jeśli wektor (X,Y) ma rozkład dyskretny i $y_k \in S_Y$ jest ustalone, to

Definicja

Jeśli wektor (X, Y) ma rozkład dyskretny i $y_k \in S_Y$ jest ustalone, to warunkową wartość oczekiwaną zmiennej losowej X pod warunkiem zdarzenia $\{Y = y_k\}$ obliczamy zgodnie ze wzorem

Definicja

Jeśli wektor (X,Y) ma rozkład dyskretny i $y_k \in S_Y$ jest ustalone, to warunkową wartość oczekiwaną zmiennej losowej X pod warunkiem zdarzenia $\{Y=y_k\}$ obliczamy zgodnie ze wzorem

$$E(X|Y=y_k)=$$

Definicja

Jeśli wektor (X,Y) ma rozkład dyskretny i $y_k \in S_Y$ jest ustalone, to warunkową wartość oczekiwaną zmiennej losowej X pod warunkiem zdarzenia $\{Y=y_k\}$ obliczamy zgodnie ze wzorem

$$E(X|Y=y_k)=\sum_{x\in S_X}x\cdot P(X=x|Y=y_k).$$

Definicja

Jeśli wektor (X,Y) ma rozkład dyskretny i $y_k \in S_Y$ jest ustalone, to warunkową wartość oczekiwaną zmiennej losowej X pod warunkiem zdarzenia $\{Y=y_k\}$ obliczamy zgodnie ze wzorem

$$E(X|Y=y_k) = \sum_{x \in S_X} x \cdot P(X=x|Y=y_k).$$

Definicja

Jeśli wektor (X,Y) ma rozkład ciągły, natomiast y jest ustaloną liczbą, dla której $f_Y(y) \neq 0$, to

Definicja

Jeśli wektor (X,Y) ma rozkład dyskretny i $y_k \in S_Y$ jest ustalone, to warunkową wartość oczekiwaną zmiennej losowej X pod warunkiem zdarzenia $\{Y=y_k\}$ obliczamy zgodnie ze wzorem

$$E(X|Y=y_k) = \sum_{x \in S_X} x \cdot P(X=x|Y=y_k).$$

Definicja

Jeśli wektor (X,Y) ma rozkład ciągły, natomiast y jest ustaloną liczbą, dla której $f_Y(y) \neq 0$, to warunkową wartość oczekiwaną zmiennej losowej X pod warunkiem zdarzenia $\{Y=y\}$ obliczamy zgodnie ze wzorem

Definicja

Jeśli wektor (X,Y) ma rozkład dyskretny i $y_k \in S_Y$ jest ustalone, to warunkową wartość oczekiwaną zmiennej losowej X pod warunkiem zdarzenia $\{Y=y_k\}$ obliczamy zgodnie ze wzorem

$$E(X|Y=y_k) = \sum_{x \in S_X} x \cdot P(X=x|Y=y_k).$$

Definicja

Jeśli wektor (X,Y) ma rozkład ciągły, natomiast y jest ustaloną liczbą, dla której $f_Y(y) \neq 0$, to warunkową wartość oczekiwaną zmiennej losowej X pod warunkiem zdarzenia $\{Y=y\}$ obliczamy zgodnie ze wzorem

$$E(X|Y=y) = \int_{-\infty}^{+\infty} x \cdot f_{X|Y}(x|y) \, dx \, .$$