

Chapter 4

"The new n-grams" — Convolutional Neural Networks

Content of this Chapter

- 1. Modelling Text Flow Sequences of Words and Characters
- 2. Convolutional Neural Networks (in Computer Vision)
 - 1. Components of CNNs
 - 2. Backpropagation in CNNs
- 3. Convolutional Neural Networks in NLP?

4.1 Modelling the Text Flow – Sequences of Words and Characters

- Text is more than just words!
- Models for larger "chunks" needed

Modelling Documents – Bag of Words

- Works rather well...
- ...but loses a lot of information!

Modelling Documents – Sequence of Words

- We need to consider word order!
- \rightarrow A document d is an ordered sequence of words

•
$$d = (d_1, d_2, \dots, d_n)$$

• Now we need to find a good representation for words

Modelling Documents – Sequence of Words

- $d = (d_1, d_2, \dots, d_n)$
- We need to find a good representation for words
 - → Done. Use word embeddings!
- Using a word embedding E of size 300, a document of length l is now an $l \times 300$ matrix d

Modelling Documents - Sequence of Words

$$d = \begin{array}{c} \text{Bees} \\ \text{like} \\ \text{honey} \end{array} = \begin{array}{c} 0.21 \ 0.43 \ 0.35 \\ \dots \\ 0.56 \ 0.75 \ 0.42 \\ \dots \\ 0.38 \ 0.67 \ 0.89 \\ \dots \end{array}$$

- What to do with this? Goal: Some kind of classification, e.g. c(d) = "positive" for sentiment classification
- How to achieve this?
 Some ideas on the following slides

Classifying Documents – SVM

- Support Vector Machine = Classic text classifier
- Usually used with bag-of-words representations
- How to:
 - SVMs take as input a vector → Concatenate all embeddings
 - Loses information about "local contexts" from the matrix

```
0.21 0.43 0.35 ...
0.56 0.75 0.42 ...
                                 0.21 0.43 0.35 ... 0.56 0.75 0.42 ... 0.38 0.67 0.89 ...
0.38 0.67 0.89 ...
```

Tends not to work well in this setting

Bees

d =

Classifying Documents – Fully Connected Network

$$d = \begin{cases} \text{Bees} \\ \text{like} \\ \text{honey} \end{cases} = \begin{cases} 0.21 \ 0.43 \ 0.35 \ \dots \ 0.56 \ 0.75 \ 0.42 \ \dots \ 0.38 \ 0.67 \ 0.89 \ \dots \end{cases}$$

- Let's use neural networks!
- We know fully connected networks...
- ... which still take as input a vector
- →Same problem as SVMs
- →Additionally: Pretty large input (see next slide for an example)!

Classifying Documents – Fully Connected Network

- Document length: l = 300 words
- Embedding size: s = 300
- Size of the first hidden layer: h = 5000

→ Shape of first weight matrix:

$$300 \cdot 300 \times 5000 \Rightarrow 450,000,000$$

Input size

First hidden layer size

- →Float32: 32 bit per number
- \rightarrow 450,000,000 · 32 bit = 1.8 GB for the weights
- \rightarrow And 450,000,000 weights to optimise in a single layer!

Classifying Documents – Fully Connected Network

• Document length: l = 300 words

• Embedding size: s = 300

• Size of the first hidden layer: h = 5000

• Batch size: 1024

→Shape of input data:

$$1024 \times 300 \cdot 300 = 92,160,000$$

Input size

→Float32: 32 bit per number

 \rightarrow 92,160,000 · 32 bit = 0.4 GB for the input

 \rightarrow 1.8 GB + 0.4 GB = 2.2 GB only for the first layer! This is a lot!

Batch size

Classifying Documents – Smarter Ideas

- Using SVMs or fully connected networks does not work well!
- → Use some other network architecture

Convolutional Neural Networks

 Focus on the local neighbourhood (similar to n-grams)

Today!

Recurrent Neural Networks

 Model the sentence as a temporal sequence of words

Next chapter!

Transformers

 Model words of a text as relationships between them

Later in the semester

4.2 Convolutional Neural Networks (in Computer Vision)

- What is the idea behind CNNs?
- Why are they used in computer vision?
- How to do backpropagation on a CNN?

Convolutional Neural Networks

- ... are a type of "partially connected" feedforward networks (details later)
- ... originate from computer vision
- ... are often used for image classification
- ... outperform classical image recognition by a large margin
- ... model features over "areas" of growing size in images:
 - Early layers model local neighbourhoods (detect edges, ...)
 - Later layers combine the features to detect larger objects

CNNs in Computer Vision

- Typical structure of a CNN:

 - 2. Pooling layer
 soon
 - 3. Repeat 1 and 2 as many times as your GPU allows
 - 4. Fully connected layers
 - 5. Softmax

- Intuition:
 - Early layers extract very local features (edges, ...)
 - Later layers combine these to detect larger objects

A Bit of CNN History

• The following slides on the historical development of CNNs have been copied from the Stanford course CS231n by Fei-Fei Li

A bit of history:

Hubel & Wiesel, 1959

RECEPTIVE FIELDS OF SINGLE NEURONES IN THE CAT'S STRIATE CORTEX

1962

RECEPTIVE FIELDS, BINOCULAR INTERACTION AND FUNCTIONAL ARCHITECTURE IN THE CAT'S VISUAL CORTEX

1968...

<u>Cat image</u> by CNX OpenStax is licensed under CC BY 4.0; changes made

Hierarchical organization

pathways by Lane McIntosh, copyright CS231n 2017

Simple cells:

Response to light orientation

Complex cells:

Response to light orientation and movement

Hypercomplex cells: response to movement with an end point

No response

Response (end point)

A bit of history:

Neocognitron [Fukushima 1980]

"sandwich" architecture (SCSCSC...)
simple cells: modifiable parameters
complex cells: perform pooling

A bit of history: **Gradient-based learning applied to document recognition**[LeCun, Bottou, Bengio, Haffner 1998]

A bit of history: ImageNet Classification with Deep Convolutional Neural Networks [Krizhevsky, Sutskever, Hinton, 2012]

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

"AlexNet"

Fast-forward to today: ConvNets are everywhere

Classification Retrieval

Figures copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

• To understand CNNs, take a look at their basic building blocks: **Convolutions**

- Convolution = classic tool in image processing (even without machine learning!)
- Intuition: Slide a function over an image, create a modified image
- Can model operations like edge detection, blurring, ...

- In image processing:
 - A convolution M * C "applies" a kernel matrix C to a (usually) larger matrix M by sliding C over M, constructing a new matrix M'
 - C is rotated by 180°
 - Values of M' constructed by summing up neighbouring values, weighted by C:

Convolution vs. Cross Correlation

- Convolution (A * B): Rotate B by 180° and slide it over A
- Cross Correlation (A \otimes B): Slide matrix B over A
- Similar, sometimes the same. When?

$$\rightarrow$$
 If $B = rot_{180^{\circ}}\{B\}$

Convolution vs. Cross Correlation

• Convolution advantage: associative operation

$$(A * B) * C = A * (B * C)$$

→Not important for CNNs: We always have non-linear activation function between convolutions

→ We use Cross Correlations (but call them Convolutions)

- more intuitive
- simpler to work with

$$M'_{a,b} = \sum_{i,j \in \{-1,0,1\}} M_{a-i,b-j} \cdot C_{i,j}$$

Convolutions (Cross Correlation)

$$M'_{a,b} = \sum_{i,j \in \{-1,0,1\}} M_{a+i,b+j} \cdot C_{i,j}$$

• Note: Problems on the edges of the matrix:

35	40	41	45	50
40	40	42	46	52
42	46	50	55	55
48	52	56	58	60
56	60	65	70	75

→ What to do here?

Skip the edges

- Smaller output (M' < M)
- Can quickly become a problem after multiple convolutions

Padding

Add "something" around M

 $M'_{a,b} = \sum M_{a+i,b+j} \cdot C_{i,j}$

 \rightarrow M' is of the same size as MSee next slide

Convolutions — Padding

- ullet Add "something" around M to keep the same size for M'
- What to add?
- → Common Choice: Zeros
- →No influence on resulting value (summing up zeros)

35	40	41	45	50	
40	40	42	46	52	
42	46	50	55	55	
48	52	56	58	60	
56	60	65	70	75	

0	0	0	0	0	0	0
	U	U	U	U	U	0
0	35	40	41	45	50	0
0	40	40	42	46	52	0
0	42	46	50	55	55	0
0	48	52	56	58	60	0
0	56	60	65	70	75	0
0	0	0	0	0	0	0

Effect of Convolutions

• Look at our convolution from before again:

- Can you guess its effect on the image?
- \rightarrow Applying C on M results in an image that is shifted one pixel towards the bottom!

Effect of Convolutions

• Some more convolutions:

Convolutional Layers

Convolutional Layers in Neural Networks

- Main layer type in CNNs
- CNN learns one (or many) convolutions from the data
- Necessary parameters:
 - Number of filters = How many different filters (convolutions) to learn in the layer
 - Filter size = size of the convolution matrix
 - Stride = How many pixels to move right before applying the convolution again
 - Padding (no padding, zero padding, ...)
 - Dilation = Spacing between the filter points
- Example: 1 filter of size 3×3 with a stride of 2 (no padding)

1	O	1	U	1
0	0	0	0	0
1	0	1	0	1
0	0	0	0	0
1	0	1	0	1

35	40	41	45	50
40	40	42	46	52
42	46	50	55	55
48	52	56		60
56	60	65	70	75

Pooling Layers

Pooling Layers in Neural Networks

- Second component of CNNs: Pooling Layers
- Reduce the size of the input image in a predefined manner
- No learned weights! Purely static operation
- Common types:
 - Max Pooling
 - Extract the maximum of $n \times m$ (pool size) entries in the input
 - Move k (stride) entries ahead in the input
 - Average Pooling
 - Similar, but extract average instead of max

35	40	41	45
40	40	42	46
42	46	50	55
48	52	56	58

Pooling Layers

- Why use pooling layers?
- → Reduce the number of parameters in following layers
- →Not all filters activated on all pixels
 - →Only use pixels in a close neighbourhood that provide the strongest signal

Properties of CNNs

- Some notable properties of CNNs:
 - Location Invariance:
 Same filters applied at all positions of the image → Location of an edge/feature does not matter
 - Compositionality:

 Pooling layers shrink input → Convolutions of the same size in later stages of the network cover larger areas, they compose the information from earlier layers

CNNs vs. Fully Connected Networks

- Why use CNNs at all?
- → Parameter sharing (as with RNNs)
- → Massively fewer parameters than fully connected networks!
 - Example:
 - 300×300 pixel input, map to hidden layer of same size
 - Fully connected layer: $(300 \cdot 300) \cdot (300 \cdot 300) = 8,100,000,000$ parameters!
 - Convolutional layer with 100 filters of size 3×3 : $100\cdot3\cdot3=900$ parameters \odot
- →Less RAM needed, less prone to overfitting
- → Convolutions heavily used in image processing
 - → Even faster on GPUs than normal matrix multiplications!

Demo Time

- Andrej Karpathy: Implementation of CNNs in JavaScript
- Online-Demo with feature visualisation
- Training a CNN on the MNIST dataset (handwritten digits)

https://cs.stanford.edu/%7Ekarpathy/convnetjs/demo/mnist.html

Backpropagation in CNNs

Backpropagation in CNNs

- Weights in CNNs need to be tuned during training
- → How to do that?
- Strategy:
 Reduce the problem to one that you already know!
- We know Backpropagation for Fully Connected Networks
- A CNN is basically a "partially connected" network (see following slides)

<i>x</i> ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃
<i>x</i> ₂₁	<i>x</i> ₂₂	<i>x</i> ₂₃
<i>x</i> ₃₁	<i>x</i> ₃₂	<i>x</i> ₃₃

From FCNs to CNNs

Fully Connected Network

Convolutional Network

UNIVERSITÄT CNNs as Partially Connected Networks

<i>x</i> ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃	1					
	24			<i>w</i> ₁₁	w_{12}		h_{11}	h_{12}
x_{21}	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	x_{23}	*	W ₂₁	W_{22}	=	h_{21}	h_{22}
<i>x</i> ₃₁	<i>x</i> ₃₂	<i>x</i> ₃₃		21	22		21	

$$h_{11} = w_{11}x_{11} + w_{12} x_{12} + w_{21}x_{21} + w_{22}x_{22}$$

$$h_{12} = w_{11}x_{12} + w_{12} x_{13} + w_{21}x_{22} + w_{22}x_{23}$$

$$h_{21} = w_{11}x_{21} + w_{12} x_{22} + w_{21}x_{31} + w_{22}x_{32}$$

$$h_{22} = w_{11}x_{22} + w_{12} x_{23} + w_{21}x_{32} + w_{22}x_{33}$$

Backpropagation — Update steps

Notation:

To save space, define $\delta_v \coloneqq \frac{\partial L}{\partial v}$ for the following slides (placeholder v will be replaced by x or some other variable)

• Remember:

For each layer, we need to compute two things with Backpropagation:

- 1. The gradient that flows to the previous layer (Propagation)
- 2. The update for the parameters in this layer (Weight Update)

Remember the Network Structure:

<i>x</i> ₁₁	Y42	<i>x</i> ₁₃						
711	7.12	713		W _{1.1}	W_{12}		h_{11}	h_{12}
χ_{21}	<i>x</i> ₂₂	χ_{23}	*	11	12	=	~11	112
	22	23		W_{12}	W_{22}		h_{12}	h_{22}
<i>x</i> ₃₁	<i>x</i> ₃₂	<i>x</i> ₃₃		12	- 22		12	
	32							

$$h_{11} = w_{11}x_{11} + w_{12} x_{12} + w_{21}x_{21} + w_{22}x_{22}$$

$$h_{12} = w_{11}x_{12} + w_{12} x_{13} + w_{21}x_{22} + w_{22}x_{23}$$

$$h_{21} = w_{11}x_{21} + w_{12} x_{22} + w_{21}x_{31} + w_{22}x_{32}$$

$$h_{22} = w_{11}x_{22} + w_{12} x_{23} + w_{21}x_{32} + w_{22}x_{33}$$

Update Step 1: Error Propagation in Partially Conn. Net

- We can do backpropagation just like in a fully connected network!
- But this is element-wise, and thus slow
- → How to do it in a smarter (i.e., faster) way?
- →Let's find some matrix operation that does the trick!

Update Step 1: Error Propagation as Convolution

- Now that we know the intuition behind this, let's derive the general rule mathematically!
- Given a CNN, we want to know how the gradient flows through a convolutional layer
- In the example on the right, we already know how to get $\frac{\partial L}{\partial a}$ using backpropagation
- \rightarrow Derive a formula for $\frac{\partial L}{\partial x}$

Input

Conv Layer

 \boldsymbol{x}

a

Update Step 1: Error Propagation

- ullet The input to a CNN is usually a matrix x
- Thus:
 - Get a gradient for each entry in x
 - Each value $x_{a,b}$ influences its "neighbours" in the output matrix h.
 - For a kernel of size 3×3 , $x_{a,b}$ will have influence on

$$h_{a-1,b-1}$$
, $h_{a-1,b}$, $h_{a-1,b+1}$, $h_{a,b-1}$, $h_{a,b}$, $h_{a,b+1}$, $h_{a+1,b-1}$, $h_{a+1,b}$, $h_{a+1,b+1}$

• Next slide: derivation of a formula for $\frac{\partial L}{\partial x}$

$$\frac{\partial \mathbf{L}}{\partial x_{a,b}} = \sum_{m=-H'_{\mathbf{W}}}^{H'_{\mathbf{W}}} \sum_{n=-W'_{\mathbf{W}}}^{W'_{\mathbf{W}}} \delta_{a+m,b+n} \frac{\partial h_{a+m,b+n}}{\partial x_{a,b}}$$

$$\frac{\partial \mathbf{L}}{\partial x_{a,b}} = \sum_{m=-H'_{\mathbf{W}}}^{H'_{\mathbf{W}}} \sum_{n=-W'_{\mathbf{W}}}^{W'_{\mathbf{W}}} \delta_{a+m,b+n} \frac{\partial h_{a+m,b+n}}{\partial x_{a,b}}$$
Derivative from the flext layer convolution of the convolution of th

Simplify the red expression:

with the red expression:
$$\frac{\partial h_{a+m,b+n}}{\partial x_{a,b}} = \frac{\partial}{\partial x_{a,b}} \sum_{m'=-H'_{w}}^{H'_{w}} \sum_{n'=-W'_{w}}^{W'_{w}} w_{m'+H'_{w}+1,n'+W'_{w}+1} \cdot x_{a+m+m',b+n+n'}$$

 $h_{a+m,b+n}$

0.5 height of the filter matrix,
$$H'_{W} = \begin{bmatrix} \frac{height}{2} \end{bmatrix}$$
 0.5 width of the filter matrix

$$\frac{\partial \mathbf{L}}{\partial x_{a,b}} = \sum_{m=-H'_{\mathbf{W}}}^{H'_{\mathbf{W}}} \sum_{n=-W'_{\mathbf{W}}}^{W'_{\mathbf{W}}} \delta_{a+m,b+n} \frac{\partial h_{a+m,b+n}}{\partial x_{a,b}}$$
Derivative of the convolution's output w.r.t its input.
$$h_{a+m,b+n} \text{ are all outputs depending on } x_{a,b}.$$

Simplify the red expression:

$$\frac{\partial h_{a+m,b+n}}{\partial x_{a,b}} = \frac{\partial}{\partial x_{a,b}} \sum_{m'=-H'_{w}}^{H'_{w}} \sum_{n'=-W'_{w}}^{W'_{w}} w_{m'+H'_{w}+1,n'+W'_{w}+1} \cdot x_{a+m+m',b+n+n'}$$

 $h_{a+m,b+n}$

$$= W_{-m+H'_W+1,-n+W'_W+1}$$

All other $w_{...}$ are not multiplied with $x_{a,b}$ and thus disappear!

$$0.5 \text{ height of the filter matrix, } H'_{W} = \begin{bmatrix} \frac{height}{2} \end{bmatrix} \begin{array}{c} 0.5 \text{ width of the} \\ \hline \\ \text{filter matrix} \end{array} \begin{array}{c} w_{21} & w_{22} & w_{23} \\ \hline \\ 0 & x_{21} & x_{22} & x_{23} \\ \hline \\ 0 & 0 & 0 & 0 \\ \hline \\ \end{array} \begin{array}{c} w_{21} & w_{22} & w_{23} \\ \hline \\ w_{31} & w_{31} & w_{33} \\ \hline \\ \end{array} \begin{array}{c} w_{31} & h_{32} & h_{33} \\ \hline \\ \end{array}$$

$$\frac{\partial L}{\partial x_{a,b}} = \sum_{m=-H'_{W}}^{H'_{W}} \sum_{n=-W'_{W}}^{W'_{W}} \delta_{a+m,b+n} \frac{\partial h_{a+m,b+n}}{\partial x_{a,b}}$$
Derivative from the next layer

("Nachdifferenzieren")

Derivative of the convolution's output w.r.t its input.

 $h_{a+m,b+n}$ are all out depending on $x_{a,b}$.

Derivative of the convolution's output $h_{a+m,b+n}$ are all outputs

Simplify the red expression:

$$\frac{\partial h_{a+m,b+n}}{\partial x_{a,b}} = \frac{\partial}{\partial x_{a,b}} \sum_{m'=-H'_{w}}^{H'_{w}} \sum_{n'=-W'_{w}}^{W'_{w}} w_{m'+H'_{w}+1,n'+W'_{w}+1} \cdot x_{a+m+m',b+n+n'}$$

$$h_{a+m,b+n}$$

$$= w_{-m+H'_{w}+1,-n} + W'_{w}+1$$

$$= W_{-m+H'_{w}+1,-n} + W'_{w}+1$$

$$= W_{-m+H'_{w}+1,-n} + W'_{w}+1$$

$$= M'_{w}$$

$$= M'_{w$$

$$0.5 \text{ height of the filter matrix, } H'_{W} = \begin{bmatrix} \frac{height}{2} \end{bmatrix} \begin{array}{c} 0.5 \text{ width of the} \\ \hline 0 & x_{11} & x_{12} & x_{23} & 0 \\ \hline 0 & x_{21} & x_{22} & x_{23} & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline \end{array} \begin{array}{c} w_{21} & w_{22} & w_{23} \\ \hline w_{31} & w_{31} & w_{33} & w_{33} \\ \hline \end{array} \begin{array}{c} h_{21} & h_{22} & h_{23} \\ \hline h_{31} & h_{32} & h_{33} \\ \hline \end{array}$$

$$\frac{\partial L}{\partial x_{a,b}} = \sum_{m=-H'_{\rm W}}^{H'_{\rm W}} \sum_{n=-W'_{\rm W}}^{W'_{\rm W}} \delta_{a+m,b+n} \frac{\partial h_{a+m,b+n}}{\partial x_{a,b}}$$
Derivative from the next layer

("Nachdifferenzieren")

Derivative of the convolution is a convolution in the convolution of the convolution o

Derivative of the convolution's output $h_{a+m,b+n}$ are all outputs depending on $x_{a,h}$.

Simplify the red expression:

$$\frac{\partial h_{a+m,b+n}}{\partial x_{a,b}} = \frac{\partial}{\partial x_{a,b}} \sum_{m'=-H'_{w}}^{H'_{w}} \sum_{n'=-W'_{w}}^{W'_{w}} w_{m'+H'_{w}+1,n'+W'_{w}+1} \cdot x_{a+m+m',b+n+n'}$$

$$h_{a+m,b+n}$$

$$= w_{-m+H'_{w}+1,-n} + W'_{w}+1$$
 All other $w_{...}$ are not multiplied with $x_{a,b}$

All other *w* are not

This is the "rotated"
$$\frac{\partial L}{\partial x_{a,b}} = \sum_{m=-H'_{w}}^{H'_{w}} \sum_{n=-W'_{w}}^{W'_{w}} \delta_{a+m,b+n} w_{-m+H'_{w}+1,-n+W'_{w}+1}$$
 and thus disappear!
$$lution \ from \\ before! = \delta_{a-H'_{w}:a+H'_{w},b-W'_{w}:b+W'_{w}} * rot_{180^{\circ}}\{w\}$$

Backpropagation — Update steps

Notation:

To save space, define $\delta_v \coloneqq \frac{\partial L}{\partial v}$ for the following slides

• Remember:

For each layer, we need to compute two things with Backpropagation:

- 1. The gradient that flows to the previous layer (**Propagation**)
- 2. The update for the parameters in this layer (Weight Update)

Update Step 2: Weights

- Up next: Updating the weights
- → Same procedure as for the error propagation:
 - Derive the update as an element-wise operation
 - Generalise to a matrix operation

Update Step 2: Weight Update in Partially Conn. Net

$$h_{11} = w_{11}x_{11} + w_{12} x_{12} + w_{21}x_{21} + w_{22}x_{22}$$

$$h_{12} = w_{11}x_{12} + w_{12} x_{13} + w_{21}x_{22} + w_{22}x_{23}$$

$$h_{21} = w_{11}x_{21} + w_{12} x_{22} + w_{21}x_{31} + w_{22}x_{32}$$

$$h_{22} = w_{11}x_{22} + w_{12} x_{23} + w_{21}x_{32} + w_{22}x_{33}$$

$$\delta_{w_{11}} = x_{11}\delta_{h_{11}} + x_{12}\delta_{h_{12}} + x_{21}\delta_{h_{21}} + x_{22}\delta_{h_{22}}$$

$$\delta_{w_{12}} = x_{12}\delta_{h_{11}} + x_{13}\delta_{h_{12}} + x_{22}\delta_{h_{21}} + x_{23}\delta_{h_{22}}$$

$$\delta_{w_{21}} = x_{21}\delta_{h_{11}} + x_{22}\delta_{h_{12}} + x_{31}\delta_{h_{21}} + x_{32}\delta_{h_{22}}$$

$$\delta_{w_{22}} = x_{22}\delta_{h_{11}} + x_{23}\delta_{h_{12}} + x_{32}\delta_{h_{21}} + x_{33}\delta_{h_{22}}$$

Update Step 2: Weight Update as Convolution

$\delta_{w_{11}}$	$\delta_{w_{12}}$
$\delta_{w_{21}}$	$\delta_{w_{22}}$

<i>x</i> ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃
x ₂₁	x ₂₂	<i>x</i> ₂₃
<i>x</i> ₃₁	<i>x</i> ₃₂	<i>x</i> ₃₃

$$\begin{split} \delta_{w_{11}} &= x_{11}\delta_{h_{11}} + x_{12}\delta_{h_{12}} + x_{21}\delta_{h_{21}} + x_{22}\delta_{h_{22}} \\ \delta_{w_{12}} &= x_{12}\delta_{h_{11}} + x_{13}\delta_{h_{12}} + x_{22}\delta_{h_{21}} + x_{23}\delta_{h_{22}} \\ \delta_{w_{21}} &= x_{21}\delta_{h_{11}} + x_{22}\delta_{h_{12}} + x_{31}\delta_{h_{21}} + x_{32}\delta_{h_{22}} \\ \delta_{w_{22}} &= x_{22}\delta_{h_{11}} + x_{23}\delta_{h_{12}} + x_{32}\delta_{h_{21}} + x_{33}\delta_{h_{22}} \end{split}$$

Update Step 2: Weight Update as Convolution

Pooling Layer

- Pooling layers do not have any weights, no calculation needed
- Error is passed on to previous layer:
 - ullet For max pooling, the largest input receives the gradient δ backpropagated from the next layer, all other inputs have gradient 0
 - For average pooling with pooling size $n \times m$, all inputs receive gradient $\frac{\delta}{m \cdot n}$

4.3 Convolutional Neural Networks in NLP

- Are CNNs useful in NLP?
- If yes, how are they used?

CNNs in NLP

- So far: Only described use in Computer Vision...
- ... but this is an NLP lecture!
- More recently, CNNs became popular in NLP, too:
 - Kalchbrenner et al., 2014: A Convolutional Neural Network for Modelling Sentences
 - Kim, 2014: Convolutional Neural Networks for Sentence Classification
 - Nguyen and Grishman, 2015: Relation Extraction: Perspective from Convolutional Neural Networks

•

CNNs for Sentence Classification

- Kim, 2014 (EMNLP)
- Very simple CNN model...
- ... with **very** good results!
- Beats previous state-of-the-art in several tasks
 - Sentiment Analysis
 - Subjectivity Detection*
 - Question Answering

^{*} didn't beat state-of-the-art, but came very close

CNNs for Sentence Classification

• Input representation: Concatenated word embeddings

- Convolutions over full embeddings!
- \rightarrow Filter size $n \times m$ (n = variable, m = length of the embeddings)

CNNs for Sentence Classification

- Network architecture:
 - No stacked convolutional layers!
 - One layer of convolutions
 - Different filter sizes: $n \in \{3,4,5\}$
 - Each with ~100-600 filters
 - Stride 1 → Do not skip any words/n-grams
 - Concatenate the output of all filters along the depth axis
 - "Max-over-time-pooling":
 Max Pooling over the full filter output → Select the highest output for each filter
 - Fully connected layer
 - Dropout
 - Softmax

CNN for Sentence Classification — Word Embeddings

- Word embeddings used to encode the input
- Evaluates multiple variants:
 - Randomly initialise embeddings, train with model (cnn-rand)
 - Initialise word embeddings with Word2Vec, keep fixed (cnn-static)
 - Initialise word embeddings with Word2Vec, train with model (cnn-nonstatic)

• Finding:
Using pre-trained embeddings and further optimising them for the task at hand works best!

CNN for Sentence Classification — Word Embeddings

- Trick: Multi-channel word embeddings (cnn-multichannel)
 - Represent input as 3-dimensional matrix
 - 3rd dimension: different, independent word embedding vectors
 - Convolutions computed slightly differently (see papers for details), general ideas still apply
 - During training:
 - keep one dimension fixed
 - train the other
 - Effect:
 Keep information from original embeddings,
 but also include "extra" for the task/dataset

	w	112	W	122			w	142	
w_1	111	w_1				w_1		242	
W_2	211	W_2	221					342	
W ₃	311	w_3	321				341		
								n42	
W_{i}	ı11	W_{γ}	າ21		·	W_{i}	141		

CNN for Sentence Classification — Regularisation

- Multiple regularisation methods used:
 - Dropout
 - Apply Dropout after the fully connected layer
 - L2-maxnorm constraint
 - Set a hard limit s on 12-norm for weights w of the fully connected layer
 - If, after the update step, $||w||_2 > s$, rescale w to $||w||_2 = s$
 - Prevents single weights from getting too large

CNN for Sentence Classification — Evaluation

- Evaluation conducted on multiple standard datasets for different tasks
- We take a closer look at the following:
 - Question Classification: TREC (Li and Roth, 2002)
 - Sentiment Analysis: Stanford Sentiment Treebank (SST; Socher et al., 2013)

- Question Classification: TREC (Li and Roth, 2002)
 - Given a question, classify it into one of 6 types (questions about abbreviations, entities, descriptions, humans, locations or numerical values)

• Training set: 5952 questions

• Test set: 500 questions

Question	Label
What films featured the character Popeye Doyle?	Entity
How many Community Chest cards are there in Monopoly?	Numerical value
Where do the adventures of ``The Swiss Family Robinson " take place?	Location
How can I register my website in Yahoo for free?	Description

Model	MR	SST-1	SST-2	Subj	TREC	CR	MPQA
CNN-rand	76.1	45.0	82.7	89.6	91.2	79.8	83.4
CNN-static	81.0	45.5	86.8	93.0	92.8	84.7	89.6
CNN-non-static	81.5	48.0	87.2	93.4	93.6	84.3	89.5
CNN-multichannel	81.1	47.4	88.1	93.2	92.2	85.0	89.4
RAE (Socher et al., 2011)	77.7	43.2	82.4	_	_	-	86.4
MV-RNN (Socher et al., 2012)	79.0	44.4	82.9	_	-	-	_
RNTN (Socher et al., 2013)		45.7	85.4	_	-	1-	_
DCNN (Kalchbrenner et al., 2014)	_	48.5	86.8	_	93.0	-	_
Paragraph-Vec (Le and Mikolov, 2014)	_	48.7	87.8	_	-	-	_
CCAE (Hermann and Blunsom, 2013)	77.8	_		_	-	-	87.2
Sent-Parser (Dong et al., 2014)	79.5	_	_	_	-	-	86.3
NBSVM (Wang and Manning, 2012)	79.4	_	_	93.2	-	81.8	86.3
MNB (Wang and Manning, 2012)	79.0	_	_	93.6	-	80.0	86.3
G-Dropout (Wang and Manning, 2013)	79.0	_	_	93.4	-	82.1	86.1
F-Dropout (Wang and Manning, 2013)	79.1	_	-	93.6	_	81.9	86.3
Tree-CRF (Nakagawa et al., 2010)	77.3	_	_	_	-	81.4	86.1
CRF-PR (Yang and Cardie, 2014)	_	_	_	_	_	82.7	_
SVM_S (Silva et al., 2011)	_	_	-	_	95.0	-	1-1

Table 2: Results of our CNN models against other methods. RAE: Recursive Autoencoders with pre-trained word vectors from Wikipedia (Socher et al., 2011). MV-RNN: Matrix-Vector Recursive Neural Network with parse trees (Socher et al., 2012). RNTN: Recursive Neural Tensor Network with tensor-based feature function and parse trees (Socher et al., 2013). DCNN: Dynamic Convolutional Neural Network with k-max pooling (Kalchbrenner et al., 2014). Paragraph-Vec: Logistic regression on top of paragraph vectors (Le and Mikolov, 2014). CCAE: Combinatorial Category Autoencoders with combinatorial category grammar operators (Hermann and Blunsom, 2013). Sent-Parser: Sentiment analysis-specific parser (Dong et al., 2014). NBSVM, MNB: Naive Bayes SVM and Multinomial Naive Bayes with uni-bigrams from Wang and Manning (2012). G-Dropout, F-Dropout: Gaussian Dropout and Fast Dropout from Wang and Manning (2013). Tree-CRF: Dependency tree with Conditional Random Fields (Nakagawa et al., 2010). CRF-PR: Conditional Random Fields with Posterior Regularization (Yang and Cardie, 2014). SVM_S: SVM with uni-bi-trigrams, wh word, head word, POS, parser, hypernyms, and 60 hand-coded rules as features from Silva et al. (2011).

- Sentiment Analysis: Stanford Sentiment Treebank (Socher et al., 2013)
 - Dataset of movie reviews annotated for polarity
 - Specialty: Provides annotations for all subtrees of the parse trees!
 Very large number of samples
 - Introduced along with a new type of network:
 Recursive Neural Tensor Networks (RNTN)
 - Network with a structure to model compositionality over parse trees

- Sentiment Analysis: Stanford Sentiment Treebank (Socher et al., 2013)
 - Variant SST-1:
 - Given a sentence from a movie review, classify it into one of 5 classes (very positive, positive, neutral, negative, very negative)
 - Training set: 11855 sentences or 215154 phrases (phrases are also used in training to have more training data)
 - Test set: 2210 sentences (phrases are **not** used for testing to get a more accurate estimate of the performance)

- Sentiment Analysis: Stanford Sentiment Treebank (Socher et al., 2013)
 - Variant SST-2:
 - Given a sentence from a movie review, classify it into one of 2 classes (positive, negative)
 - Dropped neutral samples, merged positive and negative classes
 - Training set: 9613 sentences or phrases
 - Test set: 1821 sentences

Model	MR	SST-1	SST-2	Subj	TREC	CR	MPQA
CNN-rand	76.1	45.0	82.7	89.6	91.2	79.8	83.4
CNN-static	81.0	45.5	86.8	93.0	92.8	84.7	89.6
CNN-non-static	81.5	48.0	87.2	93.4	93.6	84.3	89.5
CNN-multichannel		47.4	88.1	93.2	92.2	85.0	89.4
RAE (Socher et al., 2011)	77.7	43.2	82.4	_	_	_	86.4
MV-RNN (Socher et al., 2012)	79.0	44.4	82.9	_	_	_	_
RNTN (Socher et al., 2013)		45.7	85.4	_	_	_	-
DCNN (Kalchbrenner et al., 2014)	-	48.5	86.8	_	93.0	-	_
Paragraph-Vec (Le and Mikolov, 2014)	-	48.7	87.8	_	_	_	_
CCAE (Hermann and Blunsom, 2013)	77.8	_	-	_	-	1-1	87.2
Sent-Parser (Dong et al., 2014)	79.5	_	_	_	_	_	86.3
NBSVM (Wang and Manning, 2012)	79.4	_	-	93.2	_	81.8	86.3
MNB (Wang and Manning, 2012)	79.0	_	_	93.6	_	80.0	86.3
G-Dropout (Wang and Manning, 2013)	79.0	_	_	93.4	_	82.1	86.1
F-Dropout (Wang and Manning, 2013)	79.1	_	_	93.6	-	81.9	86.3
Tree-CRF (Nakagawa et al., 2010)		-	-	_	_	81.4	86.1
CRF-PR (Yang and Cardie, 2014)	_	_	_	-	_	82.7	_
SVM_S (Silva et al., 2011)		_	1-1		95.0	1 - 1	1 - 1

Table 2: Results of our CNN models against other methods. RAE: Recursive Autoencoders with pre-trained word vectors from Wikipedia (Socher et al., 2011). MV-RNN: Matrix-Vector Recursive Neural Network with parse trees (Socher et al., 2012). RNTN: Recursive Neural Tensor Network with tensor-based feature function and parse trees (Socher et al., 2013). DCNN: Dynamic Convolutional Neural Network with k-max pooling (Kalchbrenner et al., 2014). Paragraph-Vec: Logistic regression on top of paragraph vectors (Le and Mikolov, 2014). CCAE: Combinatorial Category Autoencoders with combinatorial category grammar operators (Hermann and Blunsom, 2013). Sent-Parser: Sentiment analysis-specific parser (Dong et al., 2014). NBSVM, MNB: Naive Bayes SVM and Multinomial Naive Bayes with uni-bigrams from Wang and Manning (2012). G-Dropout, F-Dropout: Gaussian Dropout and Fast Dropout from Wang and Manning (2013). Tree-CRF: Dependency tree with Conditional Random Fields (Nakagawa et al., 2010). CRF-PR: Conditional Random Fields with Posterior Regularization (Yang and Cardie, 2014). SVM_S: SVM with uni-bi-trigrams, wh word, head word, POS, parser, hypernyms, and 60 hand-coded rules as features from Silva et al. (2011).

- General findings:
 - Model performs very well!
 - Using pre-trained word embeddings is better than randomly initialising
 - No clear tendency for using cnn-static, cnn-nonstatic or cnn-multichannel

CNNs for Sentence Classification — Parameter Study

- Kim performed some hyper-parameter search
- Follow-up paper by Zhang and Wallace (2015):
 - Very extensive parameter studies!
 - Further improve results on some datasets
 - Main findings:
 - Pay attention to statistical variation! Training the same model on the same data can lead to results differing up to 1.5 percentage points!
 - Different word embeddings (Word2Vec/GloVe) perform differently for different tasks
 - Filter sizes have large influence on the results
 - Max-over-time-pooling outperforms other strategies, no need to tune
 - Regularisation has little effect on this model

CNNs for Sentence Classification — Parameter Advise

- Empirical advise from Zhang and Wallace (2015):
 - Use a single filter size at first. Tune by line search, then explore the neighbourhood (e.g., if size 7 works well, add filters of size 6 and 8)
 - A number of filters per size in the range of 100-600 usually works well
 - Try Dropout rates in the range 0 0.5. In case of strong overfitting, use higher rates
 - Try different activation functions. Tanh and ReLU usually work best
 - Use max-over-time-pooling
 - Again: Pay attention to statistical variance!

Our research with TextCNN: Emote-Controlled

- Unsupervised Sentiment Analysis on Twitch.tv comments
- Use **emotes** as sentiment indicators
- Lexicon-based approach creates weak labels for TextCNN

Other goodies:

- We computed emote embeddings and were able to calculate intensifications
- We were able to show that the Diablo Immortal announcement was not wellreceived by the audience

ur research with TextCNN: Emote-Controlled

Intensification of emotes

№ LUL relates to ○ OMEGALUL as X to Y				
X	Y	Explanation		
	≪ FeelsAmazingMan	Approval/satisfaction intensifies to amazement		
₽ FeelsBadMan	🕯 PepeHands	Sadness is intensified by crying		
\cong EZ	POGGERS	Extraordinary moves and moments in the (game) stream		
<i>⊗</i> cmonBruh	● HYPERBRUH	An emote that is mostly used if the streamer's commentary can be interpreted as racist intensifies to an emote that is used in situations of clear racism.		
WutFace	🐞 (puke)	Puking often follows disgust		
₹ 4Head	♦ 4House	Intensifications in the emote text representations		
ॐ 4House	4Mansion			

Konstantin Kobs, Albin Zehe, Armin Bernstetter, Julian Chibane, Jan Pfister, Julian Tritscher, and Andreas Hotho. 2020.

Emote-Controlled: Obtaining Implicit Viewer Feedback Through Emote-Based Sentiment Analysis on Comments of Popular Twitch.tv Channels.

Trans. Soc. Comput. 3, 2, Article 7 (April 2020), 34 pages. DOI:https://doi.org/10.1145/3365523

UNIVERSITÄT Our research with TextCNN: Where to Submit?

- Use title, abstract, and keywords of a scientific publication to guess the conference or journal
- Make the output **interpretable** by highlighting which words were important for the classification (gradients w.r.t. to input)

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. . . .

→ NAACL

Web demo: https://wheretosubmit.ml