Systèmes à base de règles

en logique du 1^{er} ordre

Un aperçu des objets de base (HAI710I)

Rappels de logique du premier ordre

- Cette logique décrit des objets et les relations entre ces objets
- Les objets sont appelés termes : variables ou constantes (pas de fonctions ici)
- Les relations sont appelées des prédicats

 Tout prédicat a une arité (nombre d'arguments, qui est fixe)
- Atome p(e₁...e_k)
 où p est un prédicat (ou relation)
 les e_i sont des termes
- Les variables sont quantifiées universellement ou existentiellement
- On ne raisonne que sur des formules fermées : toute variable est dans la portée d'un quantificateur

Règles (conjonctives) positives et faits

```
Règle: \forall x_1 ... \forall x_n (H \rightarrow C) où:
```

- H est une conjonction d'atomes et C est un atome
- $x_1 ... x_n$ sont les variables de H
- toutes les variables de C apparaissent dans H

```
\forall x \forall y ((Pays(x) \land FaitPartie(x, UE) \land PermisValable(y,x)) \rightarrow PermisValable(y, F))
```

Notation simplifiée (on omet les quantificateurs) :

Pays(x) \wedge FaitPartie(x, UE) \wedge PermisValable (y,x) \rightarrow PermisValable (y, F)

Un fait correspond à une règle à hypothèse vide : c'est donc un atome instancié (sans variables)

Pays(Danemark), FaitPartie(Danemark, UE), ...

Exemple (permis de conduire) K = (BF,BR)

F1 : Ville(Copenhague) F2 : Pays(Danemark)

F3 : FaitPartie(Copenhague, Danemark) F4 : FaitPartie(Danemark,UE)

F5: LieuObtentionPermis(Ingrid, Copenhague)

F6 : Pays(F) F7 : FaitPartie(F, UE)

R1 : Ville(x1) \land Pays(y1) \land FaitPartie(x1,y1) \land LieuObtentionPermis(z1,x1)

→ PermisValable(z1,y1)

"Si z1 obtient un permis (de conduire) dans une ville qui fait partie d'un certain pays, alors z1 a un permis valable dans ce pays"

R2 : Pays(x2) \land FaitPartie(x2, UE) \land PermisValable (y2,x2)

→ PermisValable (y2,F)

"Les permis valables dans un pays de l'UE sont valables en France"

R3: PermisValable(x3,y3) \rightarrow PeutConduire(x3,y3)

"Si on a un permis valable pour un certain lieu, on peut conduire dans ce lieu »

Interrogation d'une base de connaissances

Requête conjonctive: conjonction d'atomes (vue comme un ensemble)

- Si instanciée (sans variables) : réponse oui / non
- Sinon, on veut toutes les valeurs possibles pour les variables dans la base de connaissances

Idée:

- 1) Calculer la base de faits saturée BF*
- 2) Interroger BF*

Saturation par retour à la logique des propositions

Idée : se ramener à des règles d'ordre 0 en instanciant les variables de toutes les façons possibles

Ex: R3 : PermisValable(x3,y3) \rightarrow PeutConduire(x3,y3)

instanciée par les 6 constantes apparaissant dans K

=> 36 règles :

PermisValable(Cop,Cop) → PeutConduire (Cop,Cop)

...

PermisValable(Ingrid,France) → PeutConduire (Ingrid,France)

Chaque atome instancié est ensuite vu comme un symbole propositionnel :

Ville_Copenhague

PermisValable_Ingrid_France

On peut donc appliquer le chaînage avant propositionnel pour calculer la base de faits saturée

Pas de miracle : la base de règles propositionnalisée est exponentiellement plus grande que la base d'origine

Interrogation d'une base de connaissances

Requête conjonctive : conjonction (ou ensemble) d'atomes

- Si instanciée (sans variables) : réponse oui / non
- Sinon, on veut toutes les valeurs possibles pour les variables dans la base de connaissances

Idée:

- 1) Calculer la base de faits saturée BF*
- 2) Interroger BF*

Interrogation d'une base de faits

Oublions les règles pour l'instant

BF

$$Q = \{ p(x,y), p(y,z), q(z,x) \}$$

Réponses à Q dans BF?

$$x \mapsto b$$
 $x \mapsto b$
 $y \mapsto a$ $y \mapsto a$
 $z \mapsto c$ $z \mapsto b$

Un homomorphisme h de Q dans BF est une application des variables de Q dans les constantes de BF telle que :

$$h(Q) \subseteq BF$$

où h(Q) est obtenu à partir de Q en substituant chaque variable x par h(x)

RÉPONDRE À UNE REQUÊTE CONJONCTIVE (Q) DANS UNE BF

 Si Q est sans variable : la réponse à Q est oui si Q ⊆ BF (autrement dit, il existe un homomorphisme « vide » de Q dans BF)

Traduction logique : $BF \models Q$

• De façon générale :

tout homomorphisme h de Q dans BF définit une réponse à Q

Traduction logique : $BF \models h(Q)$

où h est un homomorphisme de Q dans BF

Remarque : comme <mark>Q n'est pas une formule fermée</mark>, BF ⊨ Q n'aurait pas de sens ; on considère donc les formules fermées obtenues en appliquant les homomorphismes

EXEMPLE: BASE DE CONNAISSANCES (PISTES CYCLABLES)

BF

Direct(A,B)

Direct(B,C)

Direct(C,D)

Direct(D,B)

Requêtes

Direct(A,C)? Direct(x,B) \wedge Direct(B,y)?

Comment demander s'il y a un chemin de A à C?

BR

 $Direct(x,y) \rightarrow Chemin(x,y)$

Direct(x,y) \land Chemin(y,z) \rightarrow Chemin(x,z)

Requête Q = Chemin(A,C)?

Pour répondre aux requêtes, on va considérer la base de faits saturée BF*

CHAÎNAGE AVANT (LOGIQUE D'ORDRE 1)

BF

Direct(A,B)

Direct(B,C)

Direct(C,D)

Direct(D,B)

BR

Direct(x,y) \rightarrow Chemin(x,y) Direct(x,y) \wedge Chemin(y,z) \rightarrow Chemin(x,z)

Une règle R : H → C est applicable à BF s'il existe un homomorphisme h de H dans BF

- Cette application est utile si h(C) ∉ BF
- Appliquer R à BF consiste à ajouter h(C) dans BF
- BF est saturée (par rapport à BR)
 si aucune application d'une règle de BR à BF n'est utile

ALGORITHME DE CHAÎNAGE AVANT (ORDRE 1)

```
Algorithme ForwardChaining (K)
                                       // Données : K = (BF, BR)
Début
                                       // Résultat : BF saturée par BR
Fin ← faux
Tant que non fin
     nouvFaits ← ∅ // ensemble des nouveaux faits obtenus à cette étape
     Pour toute règle R : H \rightarrow C \in BR
          Pour tout (nouvel) homomorphisme S de H dans BF
              Si S(C) ∉ (BF UnouvFaits)
                                                           Une règle peut s'appliquer
                   Ajouter S(C) à nouvFaits
                                                           plusieurs fois
    Si nouvFaits = \emptyset
          Fin ← vrai
     Sinon Ajouter les éléments de nouvFaits à BF
```

Fin

BF* peut être exponentielle en la taille de BF (l'exposant est l'arité maximale des prédicats) La complexité de FC(K) n'est plus polynomiale

ADÉQUATION ET COMPLÉTUDE DU CHAÎNAGE AVANT

Le chaînage avant est adéquat pour les règles positives :

Pour tout atome instancié A, si $A \in BF^*$ alors BF, $BR \models A$

Le chaînage avant est complet pour les règles positives :

Pour tout atome instancié A, si BF, BR ⊨ A alors A ∈ BF*

Soit Q une requête conjonctive et s une substitution des variables de Q par des constantes

BF, BR \models s(Q) ssi s(Q) \subseteq BF*

autrement dit : ssi s est un homomorphisme de Q dans BF*

EXEMPLE (PISTES CYCLABLES)

BF

Direct(A,B)

Direct(B,C)

Direct(C,D)

Direct(D,B)

BR

 $Direct(x,y) \rightarrow Chemin(x,y)$

 $Direct(x,y) \land Chemin(y,z) \rightarrow Chemin(x,z)$

 $Q = Chemin(A,x) \land Chemin(x,D)$

« trouver tous les x qui sont sur un chemin de A à D »

On cherche les homomorphismes de Q dans BF*

Réponses:

 $x \mapsto B$

 $x \mapsto C$

 $x \mapsto D$

On peut aussi définir la requête comme une règle dont la conclusion collecte les réponses :

Chemin(A,x) \land Chemin(x,D) \rightarrow Answer(x)

SYNTHÈSE (RÈGLES CONJONCTIVES POSITIVES EN ORDRE 1)

- Il faut instancier les règles pour pouvoir les appliquer sur une base de faits
- Ceci peut se faire :
 - « a priori » en instanciant les variables des règles par toutes les constantes de la base de connaissances
 - « à la volée » par des tests d'homomorphisme
- Le chaînage avant est plus complexe mais il reste adéquat et complet (par rapport à la conséquence logique)
- Les réponses à une requête conjonctive q sur une base de faits F sont obtenues en recherchant les homomorphismes de q dans F