Graph Datenbanken -Neue & aktuelle Neo4j Tools für den schnellen Einstieg in Neo4j

Marco De Luca Neo4j Field Engineering 21. November 2022

Folien, Daten und Datenmodelle finden Sie auf: github.com/luzidl/it-novum-webinar-112022

Agenda

- Neo4j Graph Datenbank Was oft unklar ist
- Knowledge Graph als Grundlage f
 ür weiter Mehrwerte
- Vorgehensweise Aufbau eines Knowledge Graphen (KG)
- Tools f
 ür den Einstieg in Neo4j
 - Daten Modellierung
 - Daten laden
 - Data analysieren
- Demo: Neo4j Workspace*

Neo4j Graph Datenbank - Was oft unklar ist

Neo4j ist eine <u>NORMALE</u> Datenbank (DB)

- Vergleichbar mit anderen DBs wie Postgres, MySQL / MariaDB, Oracle, HANA DB, etc.
- Daten sicher speichern, verwalten und abfragen
- Backup + Recovery
- Hoch skalierbar

Neo4j Graph Datenbank - Was oft unklar ist

Neo4j ist eine <u>NORMALE</u> Datenbank (DB)

- Vergleichbar mit anderen DBs wie Postgres, MySQL / MariaDB, Oracle, HANA DB, etc.
- Daten sicher speichern, verwalten und abfragen
- Backup + Recovery
- Hoch skalierbar

Neo4j ist "ACID compliant" und somit transaktionssicher

- Auf deutsch AKID konform
- Daten werden auf Transaktionsebene sicher gespeichert ohne Verlust bei Ausfällen
- AKID Atomarität,
 Konsistenz, Isolation
 und Dauerhaftigkeit

Neo4j Graph Datenbank - Was oft unklar ist

Neo4j ist eine <u>NORMALE</u> Datenbank (DB)

- Vergleichbar mit anderen DBs wie Postgres, MySQL / MariaDB, Oracle, HANA DB, etc.
- Daten sicher speichern, verwalten und abfragen
- Backup + PiT Recovery
- Hoch skalierbar durch Clustering

Neo4j ist "ACID compliant" und somit transaktionssicher

- Auf deutsch AKID konform
- Daten werden auf Transaktionsebene sicher gespeichert ohne Verlust bei Ausfällen
- AKID Atomarität, Konsistenz, Isolation und Dauerhaftigkeit

Neo4j wird zu 80%+ für OLTP Workloads genutzt

- > 80% der Kunden nutzen Neo4j in erster Instanz als normale Datenbank
- Daten speichern, ändern und löschen
- Mit gleicher oder oft besserer Performance als bei relationale DBs

Aber was macht eine <u>native</u> Graph-Datenbank anders?

Die Speicherung der Daten

- Daten werden verknüpft gespeichert
- Daten liegen auf der Platte nah "beieinander" Stichwort: "Index-free Adjacency"
- Sie speichert Knoten und Verbindungen statt
 Zeilen und Spalten
- Semantik ist abbildbar!

Aber was macht eine <u>native</u> Graph-Datenbank anders?

Die Speicherung der Daten

- Daten werden verknüpft gespeichert
- Daten liegen auf der Platte nah "beieinander" Stichwort: "Index-free Adjacency"
- Sie speichert Knoten und Verbindungen statt
 Zeilen und Spalten
- <u>Semantik</u> ist abbildbar!

Die Abfragen der Daten

(:Product) -[:CONTAINS] ->(:Part)

- Cypher Query Language statt SQL (ISO -> GQL)
- Einfacher, weniger
 Code-Zeilen, besser
 lesbar
- Abfragen bis in Tiefen von 100+ Hops, vergleichbar von SQL Joins über 100+ Tabellen!

Aber was macht eine <u>native</u> Graph-Datenbank anders?

Die Speicherung der Daten

- Daten werden verknüpft gespeichert
- Daten liegen auf der Platte nah "beieinander" Stichwort: "Index-free Adjacency"
- Sie speichert Knoten und Verbindungen statt
 Zeilen und Spalten
- Semantik ist abbildbar!

Die Abfragen der Daten

(:Product) - [:CONTAINS] -> (:Part)

- Cypher Query Language statt SQL (ISO -> GQL)
- Einfacher, weniger
 Code-Zeilen, besser
 lesbar
- Abfragen bis in Tiefen von 100+ Hops, vergleichbar von SQL Joins über 100+ Tabellen!

Komplexe Datennetzwerke speichern

- Speicherung und Analyse von komplexen Zusammenhängen
- Auswertung von Daten, die bis jetzt nie/unzureichend miteinander verknüpft wurden
- Erweiterbar mit Data Science Algorithmen

Was und Warum - Knowledge Graphen

"Ist meine Wissensbasis."

(Datenbank als Graph gespeichert)

"Beantwortet viele grundsätzlichen Fragen."

(einfache bis komplexe Queries)

"Verknüpft meine "Kronjuweldaten" in einem Daten- pool."

(Daten aus verschiedensten Quellen!)

"**Semantik** zur Erweiterung des Wissens."

> "Wissen weiterentwickelt zur Basis für Entscheidungen ..."

"... und dann bis hin zur Erstellung von Vorhersagen mit maschinellem Lernen."

Vorgehensweise - Aufbau eines Knowledge Graphen (grob)

- 1. Prüfung des Problems Ist Graph die Lösung?
- 2. Fachbereich + IT Personal Anforderungen niederschreiben
- 3. Aus den Anforderungen ein Datenmodell ableiten

Vorgehensweise - Aufbau eines Knowledge Graphen (grob)

- 1. Prüfung des Problems Ist Graph die Lösung?
- 2. Fachbereich + IT Personal Anforderungen niederschreiben
- 3. Aus den Anforderungen ein Datenmodell ableiten

- 4. Daten präparieren und laden
- 5. Fragen/Anforderungen versuchen zu beantworten
- 6. Datenmodell überarbeiten, für bessere/schnellere Antworten

Vorgehensweise - Aufbau eines Knowledge Graphen (grob)

- 1. Prüfung des Problems Ist Graph die Lösung?
- 2. Fachbereich + IT Personal Anforderungen niederschreiben
- 3. Aus den Anforderungen ein Datenmodell ableiten

- 4. Daten präparieren und laden
- 5. Fragen/Anforderungen versuchen zu beantworten
- 6. Datenmodell überarbeiten, für bessere/schnellere Antworten

- 7. ETL Pipeline aufbauen
- 8. Skripte, Monitoring und ggf. Applikation entwickeln/einkaufen

Daten laden

Daten modellieren

arrows.app

Neo4j Workspace*

Daten speichern

<u>Daten analysieren</u>

Daten modellieren

arrows.app

Neo4j Workspace*

Daten laden

- -> Cypher CSV Load
- -> APOC Library
- -> neo4j admin import
- -> ETL Tool
- -> Python API

Daten laden, etc.

Neo4j Workspace*

Daten speichern

Daten analysieren

Daten modellieren

arrows.app

Neo4j Workspace*

Daten laden

- -> Cypher CSV Load
- -> APOC Library
- -> neo4j admin import
- -> ETL Tool
- -> Python API

Daten laden, etc.

Neo4j Workspace*

Daten speichern

Neo4j Aura

Neo4j Desktop

Daten analysieren

Daten modellieren

arrows.app

Neo4j Workspace*

Daten laden

- -> Cypher CSV Load
- -> APOC Library
- -> neo4j admin import
- -> ETL Tool
- -> Python API

Daten laden, etc.

Neo4j Workspace*

Daten speichern

Neo4j Aura

Neo4j Desktop

Daten analysieren

Neo4j Bloom

Neo4j Workspace*

DEMO TIME!

NEO4j Workspace (Preview) NEO4j Aura (SaaS)

NEO4j Desktop

Demo Daten, Folien, Datenmodelle, etc. auf Github unter:

github.com/luzidl/it-novum-webinar 112022

Danke!

Contact us at marco.deluca@neo4j.com heiko.schoenfelder@neo4j.com

