Advanced Database Management Systems

Lecture 17
Query Processing: Chapter 15

Using Indexes for Queries

Database Instance and Available Indexes:

Table	Entries	Number of Entries per Block	Number of Blocks	Index Fields	Index Type	Keys per Node	Depth of B+ Tree
Customer	10,000	10	1,000	accountId	B+ tree and ordered se- quential file	100	3
ohm Live				lastName	B+ tree	50	3
ins of the				zipcode	hash	100	
Rental	1,000,000	100	10,000	accountId	B+ tree	100	3
				movieId	B+ tree	100	3
remo				date	B+ tree	100	2
Movie	10,000	20	500	movieId	B+ tree and ordered se- quential file	100	3
editors of				title	B tree	20	4
doole Se L				genre	Hash	100	

Examples from: Principles of Database Systems by Greg Riccardi, Addison Wesley, 2001

select * from Customer where accountId = 101

select * from Customer where accountId >= 101 and accountId < 300

select * from Customer where lastName < 'D'

Query Processing

Query Optimization

- Query optimization determines the most efficient (or sufficiently efficient) process for executing the query
- Optimization reorganizes

 an expression tree for a query
 using algebraic transformation rules
- Information used:
 - implementation techniques for algebra operators
 - algebraic transformation rules
 - heuristic rules
 - cost estimates

Algebraic Transformations

- Commutative: $\sigma \bowtie x \cup \cap$
- Associative: ⋈ x ∪ ∩
- Cascades of select:
 - $\sigma_{c1 \text{ AND } c2 \text{ AND } ... \text{ AND } cn}(R) \equiv \sigma_{c1}(\sigma_{c2}(...\sigma_{cn}(R))...))$
 - selects can then be commuted
- Cascades of project:
 - $\pi_{L_1}(\pi_{L_2}(\dots \pi_{L_n}(R))\dots)) \equiv \pi_{L_1}(R)$
 - projects cannot be commuted

Algebraic Transformations

Commuting select and project:

$$\bullet \ \pi_{A_1,A_2,...,A_n}(\sigma_c(R)) \equiv \sigma_c(\pi_{A_1,A_2,...,A_n}(R))$$

valid when selection condition only involves attributes in projection list

Converting select/cross-product into join:

•
$$\sigma_c(R \times S) \equiv R \bowtie_c S$$

Algebraic Transformations

- Commuting select and join or cross-product:
 - $\sigma_c(R \bowtie S) \equiv \sigma_c(R) \bowtie S$ valid when selection condition involves only attributes in R
- Commuting project with join or cross-product:
 - $\pi_L(R \bowtie_c S) \equiv (\pi_{A_1,A_2,...,A_n}(R)) \bowtie_c (\pi_{B_1,B_2,...,B_n}(S))$ where A1,...,An \subseteq L are attributes of R, and B1,...,Bn \subseteq L are attributes of S, and A1,...,An, B1,...,Bn are involved in C (slightly more complicated if C contains attributes not in L)

Optimization Heuristics

- Break up conjunctive select conditions into a cascade of selects
 - more flexibility in moving selects
- Push selects as early as possible, using commutativity of select with other operators
- Reorder sub-expressions such that most restrictive selects are done first
- Combine select/cross-product into join
- Push projects as early as possible
 - keep only necessary attributes

Example Query Plan

Microsoft SQL Server

Optimization Processor

- Enumerate the query plans
 - Apply algebraic transformations & heuristics to get all reasonable trees
- Estimate the cost of each plan
 - Account for size of relations, available indexes, information about file layout, info about value distributions ...
- Choose the best (fastest) plan

select e.lname, e.fname, w.pno, w.hours
from employee e, works_on w
where e.ssn = w.essn and w.hours > 20;

 $\sigma_{\text{e.ssn=w.essn AND w.hours}}$

Heuristic:

of selects

Conjunctive

select → cascade

π_{e.Iname}, e.fname, w.pno, w.hours $\sigma_{\text{w.hours}} > 20$ Note: selects could commute σ_{e.ssn=w.essn} Employee e works on w

π_{e.lname}, e.fname, w.pno, w.hours $\sigma_{\text{w.hours}} > 20$ Employee e works on w

Heuristic:

Combine select

and cross → join

π_{e.Iname}, e.fname, w.pno, w.hours Heuristic: Push selects as early as possible Employee e $\sigma_{\text{w.hours}} > 20$ works_on w

π_{e.lname}, e.fname, w.pno, w.hours

π_{e.ssn}, e.lname, e.fname, w.essn, w.pno, w.hours

Heuristic:
Push projects as
early as possible

⋈_{e.ssn=w.essn}

First cascade projects to get attributes needed to push through join

Employee e

 $\sigma_{\text{w.hours}} > 20$

works on w

Heuristic:

- At this point we've generated nine different query plans for the same query
- Adding strategies/algorithms for implementing individual operations would add even more potential plans
- Next Step: Estimate the cost of executing each plan