Bayesian Linear Regression

Guest lecture at KTH 2024

Mattias Villani

Department of Statistics Stockholm University

Lecture overview

- Bayesian inference (see Timo's lecture)
- [Recap: the normal model with known variance]
- Linear regression
- Regularization priors
- Outlook: Bayes in complex problems

Slides on course page and at: https://mattiasvillani.com/news

Rough draft book at: https://github.com/mattiasvillani/BayesianLearningBook

Am I really getting my 20Mbit/sec?

- Internet connection should be at least 20Mbit/sec on average.
- **Data**: x = (15.77, 20.5, 8.26, 14.37, 21.09) Mbit/sec.
- Model: Normal data with known variance

$$X_1, ..., X_n | \theta \stackrel{iid}{\sim} N(\theta, \sigma^2).$$

- Measurement errors: $\sigma = 5 \ (\pm 10 \text{Mbit with } 95\% \text{ probability})$
- **Likelihood function** is proportional to $N(\bar{x}, \sigma^2/n)$ density.

Great theorems make great tattoos

Bayes theorem

$$p(\theta|\mathsf{Data}) = \frac{p(\mathsf{Data}|\theta)p(\theta)}{p(\mathsf{Data})}$$

All you need to know:

$$p(\theta|\text{Data}) \propto p(\text{Data}|\theta)p(\theta)$$

Posterior ∝ Likelihood · Prior

- \blacksquare A probability distribution for θ is extremely useful:
 - Predictions including uncertainty
 - Decision making
 - Regularization

Normal data, known variance - normal prior

Prior

$$\theta \sim N(\mu_0, \tau_0^2)$$

Posterior

$$p(\theta|x_1,...,x_n) \propto p(x_1,...,x_n|\theta,\sigma^2)p(\theta)$$

$$\propto N(\theta|\mu_n,\tau_n^2),$$

where the posterior mean is

$$\mu_n = w\bar{x} + (1 - w)\mu_0$$

$$w = \frac{\frac{n}{\sigma^2}}{\frac{n}{\sigma^2} + \frac{1}{\tau_0^2}}.$$

- Define: Precision $\equiv 1/\text{Variance}$.
- Posterior precision = Data precision + Prior precision

$$\frac{1}{\tau_n^2} = \frac{n}{\sigma^2} + \frac{1}{\tau_0^2}$$

Interactive - Bayes for Gaussian iid model

Linear regression

The linear regression model in matrix form

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}_{(\mathbf{n} \times \mathbf{1})} + \boldsymbol{\varepsilon}_{(\mathbf{n} \times \mathbf{1})}$$

- First column of X is the unit vector and β_1 is the intercept.
- Normal errors: $\varepsilon_i \stackrel{iid}{\sim} N(0, \sigma^2)$, so $\varepsilon \sim N(0, \sigma^2 I_n)$.
- Likelihood

$$y|\beta, \sigma^2, X \sim N(X\beta, \sigma^2 I_n)$$

Linear regression - uniform prior

Standard non-informative prior: uniform on $(\beta, \log \sigma^2)$

$$p(\beta, \sigma^2) \propto \sigma^{-2}$$

Joint posterior of β and σ^2 :

$$\beta | \sigma^2, y \sim N \left[\hat{\beta}, \sigma^2 (X^T X)^{-1} \right]$$

 $\sigma^2 | y \sim \text{Inv-} \chi^2 (n - k, s^2)$

where
$$\hat{\beta} = (X^\top X)^{-1} X^\top y$$
 and $s^2 = \frac{1}{n-k} (y - X \hat{\beta})^\top (y - X \hat{\beta})$.

- Simulate from the joint posterior by simulating from
 - $ightharpoonup p(\sigma^2|y)$
 - $ightharpoonup p(\beta|\sigma^2, y)$
- **Marginal posterior** of β :

$$eta | \mathsf{y} \sim t_{n-k} \left[\hat{eta}, s^2 (X^ op X)^{-1}
ight]$$

Interactive - Scaled Inv- χ^2

Linear regression - conjugate prior

Joint prior for β and σ^2

$$\beta | \sigma^2 \sim N \left(\mu_0, \sigma^2 \Omega_0^{-1} \right)$$

 $\sigma^2 \sim \text{Inv} - \chi^2 \left(\nu_0, \sigma_0^2 \right)$

Posterior

$$\begin{split} \beta | \sigma^2, \mathbf{y} &\sim \textit{N}\left[\mu_{\textit{n}}, \sigma^2 \Omega_{\textit{n}}^{-1}\right] \\ \sigma^2 | \mathbf{y} &\sim \text{Inv} - \chi^2\left(\nu_{\textit{n}}, \sigma_{\textit{n}}^2\right) \end{split}$$

$$\mu_n = W\hat{\beta} + (I - W)\mu_0$$

$$W = \left(X^{\top}X + \Omega_0\right)^{-1}X^{\top}X$$

$$\Omega_n = X^{\top}X + \Omega_0$$

Posterior Precision Ω_n = Data Precision $\mathsf{X}^{ op}\mathsf{X}$ + Prior Precision Ω_0


```
# Define the scaled-inverse-chi-squared distribution.
ScaledInverseChiSq(v,\tau^2) = InverseGamma(v/2,v*\tau^2/2)
Qmodel function linear_regression(X, y, \mu_0, \Omega_0, \nu_0, \sigma_0^2)
     # Priors
     \sigma^2 \sim \text{ScaledInverseChiSq}(v_0, \sigma_0^2)
     \beta \sim MvNormal(\mu_o, \sigma^2 * inv(\Omega_o))
     return v ~ MvNormal(X*β, σ²*I)
end
# Simulate from posterior using HMC
n, p = size(X)
\mu_o = zeros(p)
\Omega_0 = 0.1 \times I
v_0 = p+1
\sigma_0^2 = 1
model = linear regression(X, y, \mu_0, \Omega_0, \nu_0, \sigma_0^2)
chain = sample(model, NUTS(0.65), 3000)
```

Bike share data

- **Bike share data**. Predict the number of bike rides.
- Response variable: number of rides on 731 days.

variable	description	data type	values	comment
nrides	number of rides	counts	{0, 1,}	min= 22, max= 8714
feeltemp	perceived temp	continuous	[0, 1]	min= 0.07, max= 0.85
hum	humidity	continuous	[0, 1]	min= 0.00, max= 0.98
wind	wind speed	continuous	[0, 1]	min= 0.02, max= 0.51
year	year	binary	$\{0,1\}$	year $2011 = 0$
season	season	categorical	{1, 2, 3, 4}	$winter \to fall$
weather	weather	ordinal	{1, 2, 3}	$clear \to rain/snow$
weekday	day of week	categorical	$\{0, 1,, 6\}$	$sunday \to saturday$
holiday	holiday	binary	{0, 1}	holiday = 1

Prior:

- $ightharpoonup \mu_0 = (1000, 0, ..., 0)^{\top}$
- $m \Omega_0 = rac{\kappa_0}{n} m X^ op m X$ with $\kappa_0 = 1$ (unit information prior)
- $\sigma_0^2 = 1000^2$ and $\nu_0 = 5$.

Bike share data

Bike share data - marginal posteriors of eta

Bike share data - joint posteriors of eta

Interactive - Bayesian regression

Ridge regression = iid normal prior

Smoothness/shrinkage/regularization prior $[\Omega_0 = \lambda I]$

$$\beta_i | \lambda, \sigma^2 \stackrel{\text{iid}}{\sim} N\left(0, \frac{\sigma^2}{\lambda}\right)$$

Posterior mean is the ridge regression estimator

$$\mu_n = \left(\mathsf{X}^\top \mathsf{X} + \lambda I \right)^{-1} \mathsf{X}^\top \mathsf{y}$$

Shrinkage toward zero

As
$$\lambda \to \infty$$
, $\mu_n \to 0$

When $X^TX = I$

$$\mu_n = (1 - \phi)\hat{\beta}, \qquad \text{for } \phi = \frac{\lambda}{1 + \lambda}$$

Shrinkage factor $\phi \in [0, 1]$.

Learning the optimal shrinkage

- Cross-validation is often used to determine λ .
- Bayesian: λ is unknown \Rightarrow use a prior for λ .
- lacksquare $\lambda^{-1}\sim {
 m Inv}$ - $\chi^2(\omega_0,\psi_0^2).$ The user specifies ω_0 and $\psi_0^2.$
- Joint posterior

$$p(\beta, \sigma^2, \lambda | \mathbf{y}, \mathbf{X})$$

- Marginal posterior λ .
- Gibbs sampling

Learning the optimal shrinkage

Gibbs sampling linear regression - L2 regularization prior

The posterior for the linear regression model

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \varepsilon, \, \varepsilon \sim N(\mathbf{0}, \sigma^2 I_n),$$
 (11.16)

with hierarchical L2 regularization prior

$$\beta | \sigma^2, \lambda \sim N(\mathbf{0}, (\sigma^2/\lambda) I_p)$$

$$\sigma^2 \sim \text{Inv} - \chi^2(\tau_0^2, \nu_0)$$

$$\lambda^{-1} \sim \text{Inv} - \chi^2(\omega_0, \psi_0^2).$$

can be sampled by a two-block Gibbs sampler:

$$\begin{aligned} \text{Block1}: \ \pmb{\beta}|\sigma^2, \lambda, \mathbf{y} &\sim N\big(\hat{\pmb{\beta}}_{L_2}, \sigma^2(\mathbf{X}^\top\mathbf{X} + \lambda I_p)^{-1}\big) \\ \sigma^2|\lambda, \mathbf{y} &\sim \text{Inv} - \chi^2(\tau_n^2, \nu_n) \end{aligned}$$

Block2:
$$\lambda^{-1}|\boldsymbol{\beta}, \sigma^2, \mathbf{y} \sim \text{Inv} - \chi^2(\omega_n, \psi_n^2)$$
,

Mattias Villani Bayesian Linear Regression

Lasso regression = Laplace prior

Lasso is equivalent to posterior mode under Laplace prior

$$\beta_i | \lambda, \sigma^2 \stackrel{\text{iid}}{\sim} \text{Laplace}\left(0, \frac{\sigma^2}{\lambda}\right)$$

Laplace prior:

- heavy tails
- ▶ many β_i close to zero, but some β_i can be very large.

■ Normal prior:

- light tails
- ▶ all β_i 's are similar in magnitude and no β_i very large.

Horseshoe prior

- Normal and Laplace one global shrinkage parameter λ .
- Global-Local shrinkage: global + local shrinkage for each β_j .
- Horseshoe prior:

$$eta_j | \lambda_j^2, au^2 \sim N\left(0, au^2 \lambda_j^2
ight) \ \lambda_j \sim C^+(0, 1) \ au \sim C^+(0, 1)$$

lacksquare The posterior mean for eta satisfies approximately

$$\mu_{\emph{n},\emph{j}} pprox (1-\phi_\emph{\emph{j}}) \hat{\pmb{eta}}_\emph{\emph{\emph{j}}}, ext{ where } rac{1}{1+(\emph{n}/\sigma^2) au^2\lambda_\emph{\emph{\emph{\emph{j}}}}^2}$$

Spike-and-slab prior

■ Spike-and-slab prior

$$\beta_{j}|\sigma^{2}, \lambda, I_{j} \sim \begin{cases} 0 & \text{if } I_{j} = 0 \\ N\left(0, \sigma^{2}\omega\right) & \text{if } I_{j} = 1 \end{cases}$$

Prior for the variable selection indicators

$$I_j \stackrel{iid}{\sim} \text{Bernoulli}(\pi)$$

■ This is a mixture prior for the β_j

$$p(\beta_j) = (1 - \pi)\delta_0(\beta_j) + (1 - \pi)N(\beta_j|\mu_j, \sigma^2\omega^2)$$

■ Gibbs sampling gives Bayesian variable selection

$$m{eta}|m{y},m{X},\sigma^2,I_1,\ldots,I_n\sim ext{Normal}$$

$$\sigma^2|m{y},m{X},I_1,\ldots,I_n\sim ext{Inv}-\chi^2$$
 $I_j|m{y},m{X},I_{-j},m{eta},\sigma^2\sim ext{Bernoulli}(ar{\pi}_j), ext{ for } j=1,\ldots,n$

Polynomial regression

Polynomial regression is linear in β :

$$f(x_i) = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + ... + \beta_k x_i^k.$$

 $y = X\beta + \varepsilon$, where $X = (1, x, x^2, ..., x^k)$.

- Problem: higher order polynomials can overfit the data.
- Solution: shrink higher order coefficients harder:

$$\beta | \sigma^2 \sim \textit{N} \left[0, \left(\begin{array}{cccc} 100 & 0 & 0 & \cdots & 0 \\ 0 & \frac{1}{\lambda} & 0 & \cdots & 0 \\ 0 & 0 & \frac{1}{2\lambda} & & & \\ \vdots & \vdots & & \ddots & \\ 0 & 0 & 0 & \cdots & \frac{1}{\lambda\lambda} \end{array} \right) \right]$$

Polynomial regression mtcars data

Bayes is easy to use

- Substantially more complex models can be analyzed by
 - ► Markov Chain Monte Carlo (MCMC) simulation
 - ► Hamiltonian Monte Carlo (HMC) simulation
 - Variational inference optimization
- Deep Learning. Bayes quantifies uncertainty ⇒ Probabilistic predictions ⇒ Decisions under uncertainty.
- Ongoing research on making Bayes more scalable to large data.
 My own contributions: https://mattiasvillani.com/research
- Probabilistic programming languages make Bayes easy:
 - Stan (R and more)
 - ► Turing.jl (Julia)
 - Pyro (Python)
- Bayesian Learning course at SU (March-April): https://github.com/mattiasvillani/BayesLearnCourse Engineers welcome!

Poisson regression in Turing.jl (Julia)

Poisson regression:

```
y_i | \theta_i \sim \text{Pois}\left(\exp(\theta_i)\right), \quad \text{for } i = 1, \dots, n
\theta_i = \boldsymbol{x}_i^{\top} \boldsymbol{\beta}
\boldsymbol{\beta} \sim \mathcal{N}(0, \tau_0^2 I)
```

```
# Bayesian poisson regression model in Turing.jl (model poisson_reg(x, y, \tau_0) = begin n = length(y)  
\beta_0 \sim \text{Normal}(\theta, \tau_0^2)  
\beta_1 \sim \text{Normal}(\theta, \tau_0^2)  
\beta_2 \sim \text{Normal}(\theta, \tau_0^2)  
\beta_2 \sim \text{Normal}(\theta, \tau_0^2)  
for i = 1:n  
\theta = \beta_0 + \beta_1 * X[i, 1] + \beta_2 * X[i, 2] + \beta_3 * X[i, 3]  
y[i] \sim \text{Poisson}(\exp(\theta))  
end end 
# Simulate from the posterior using HMC with NUTS tuning sample(poisson_reg(X, y, 10), NUTS(200, 0.65), 2500)
```

Deep Neural Net in Turing.jl: https://turing.ml/dev/tutorials/03-bayesian-neural-network/.