

ANÁLISIS DEL RETO

Manuela Rivas, 202021971, m.rivas2@uniandes.edu.co Lucas Nieto, 202012861, l.nietom@uniandes.edu.co Diego Londoño, 202012494, d.londonob@uniandes.edu.co

Ambientes de pruebas

	Máquina
Procesadores	AMD RYZEN R5
Memoria RAM (GB)	8
Sistema Operativo	Windows 10

Requerimiento 1: Listar películas estrenadas en un periodo de tiempo

Descripción

Entrada	Ingresa el catálogo general de películas, un año inferior y otro
	superior para delimitar el rango de búsqueda
Salidas	Retorna ordenada la cantidad de películas estrenadas en ese rango,
	además de la información de las primeras y últimas 3.
Implementado (Sí/No)	Implementado correctamente por Manuela Rivas y Lucas Nieto.

Análisis de complejidad

Pasos	Complejidad
Crear una lista llamada 'element'.	O(1)
Comparar N veces que la película se encuentre entre los años de entrada.	O(1)
Agregar N veces a elemente las películas que cumplan con el criterio.	O(N)
TOTAL	O(N)

Muestra de datos (N)	Tiempo de respuesta (s)
small (N = 228)	0.001778
5% (N = 1148)	0.002164
10% (N = 2298)	0.010810
20% (N = 4598)	0.040707
30% (N = 6898)	0.074988
50% (N = 11498)	0.112024
80% (N = 18397)	0.178170
large (N = 22998)	0.233040

Análisis

La tendencia que mejor ajusta los datos de las pruebas de este requerimiento es una recta, por lo cual se puede concluir que el orden de complejidad temporal del requerimiento 1 es lineal y concuerda con el análisis teórico previo.

Requerimiento 2: Listar programas de televisión agregados en un periodo de tiempo

Descripción

Entrada	 Fecha inicial del periodo (con formato "%B %d, %Y"). Fecha final del periodo (con formato "%B %d, %Y").
Salidas	El número total de programas de TV estrenados en ese periodo,
	adicionalmente imprime la información de los primeros y últimos 3 programas de la lista ya ordenada.
Implementado (Sí/No)	Implementado correctamente por Manuela Rivas y Diego Londoño.

Análisis de complejidad

Pasos	Complejidad
Crear una lista vacía	O(1)
Comparación !=	O(N)
Comparación entre fecha de estreno y el parámetro de	O(N)
fecha inicial y final (peor caso).	
AddLast si el elemento cumple con estar dentro del rango.	O(N)
TOTAL	O(N)

Muestra de datos (N)	Tiempo de respuesta (s)
small (N = 228)	0.008021

5% (N = 1148)	0.064018
10% (N = 2298)	0.124308
20% (N = 4598)	0.243063
30% (N = 6898)	0.229470
50% (N = 11498)	0.544406
80% (N = 18397)	1.021451
large (N = 22998)	1.554120

Análisis

La tendencia que mejor ajusta los datos de las pruebas de este requerimiento es una recta, por lo cual se puede concluir que el orden de complejidad temporal del requerimiento 1 es lineal y concuerda con el análisis teórico previo.

Requerimiento 3: Encontrar contenido donde participa un actor Descripción

Entrada	Un string con el nombre de un actor del cual el usuario quiere encontrar contenido
Salidas	Dos tablas, la primera contiene conteos del contenido en el que ha participado el actor y la segunda la información ordenada de los primeros y últimos 3 títulos de ese actor.
Implementado (Sí/No)	Implementado correctamente por Diego Londoño.

Complejidad función count_by (usada en 3, 4, 5 y 6)

Pasos	Complejidad
Asigna variable	O(1)
Asigna valor a element	O(N)
Compara != y ==	O(N)
Addlast peor caso	O(N)
TOTAL	O(N)

Análisis de complejidad

Pasos	Complejidad	
Crea una lista	O(1)	
Asigna valor a element	O(N)	
Comparación !=	O(N)	
Split	O(N)	
Addlast peor caso	O(N)	
Asigna variable y hace Strip	O(1)	
Comparación ==	O(1)	
Usa count_by	O(N)	
TOTAL	O(N)	

Pruebas Realizadas

Muestra de datos (N)	Tiempo de respuesta (s)
small (N = 228)	0.007996
5% (N = 1148)	0.015346
10% (N = 2298)	0.002376
20% (N = 4598)	0.015997
30% (N = 6898)	0.032023
50% (N = 11498)	0.047660
80% (N = 18397)	0.080035
large (N = 22998)	0.096048

Graficas

Análisis

La tendencia que mejor ajusta los datos de las pruebas de este requerimiento es una recta, por lo cual se puede concluir que el orden de complejidad temporal del requerimiento 1 es lineal y concuerda con el análisis teórico previo.

Requerimiento 4: Encontrar contenido por género

Descripción

Entrada	Un string que contiene al género que el usuario está interesado en buscar
Salidas	La cantidad de contenido correspondiente a este género y una tabla
	ordenada con los 3 primeros y últimos títulos correspondientes a este
	género.
Implementado (Sí/No)	Implementado correctamente por Lucas Nieto.

Análisis de complejidad

Pasos	Complejidad
Crea una lista	O(1)
Asigna valor a element	O(N)
Comparación !=	O(N)
Split	O(N)
Addlast peor caso	O(N)
Asigna variable y hace Strip	O(1)
Comparación ==	O(1)
Usa count_by	O(N)
TOTAL	O(N)

Pruebas Realizadas

Muestra de datos (N)	Tiempo de respuesta (s)
small (N = 228)	0.00001
5% (N = 1148)	0.007001
10% (N = 2298)	0.007996
20% (N = 4598)	0.016022
30% (N = 6898)	0.027566
50% (N = 11498)	0.048006
80% (N = 18397)	0.073025
large (N = 22998)	0.096006

Graficas

Análisis

La tendencia que mejor ajusta los datos de las pruebas de este requerimiento es una recta, por lo cual se puede concluir que el orden de complejidad temporal del requerimiento 1 es lineal y concuerda con el análisis teórico previo.

Requerimiento 5: Encontrar contenido producido en un país Descripción

Entrada	Un String que contenga el país del cual el usuario quiere encontrar contenido.
Salidas	Los títulos y el tipo de contenido que se ha producido en dicho país.
Implementado (Sí/No)	Implementado correctamente por Manuela Rivas. (Falto formatear con tabulate la impresión)

Complejidad find_by usada en Requerimiento 5

Pasos	Complejidad
Crea una lista	O(1)
Asigna valor a element	O(N)
Comparación != y ==	O(N)
AddLast peor caso	O(N)
TOTAL	O(N)

Análisis de complejidad

Pasos	Complejidad
Usa count_by	O(N)
Usa find_by	O(N)
TOTAL	O(N)

Muestra de datos (N)	Tiempo de respuesta (s)
small (N = 228)	0.000001
5% (N = 1148)	0.000001
10% (N = 2298)	0.007998
20% (N = 4598)	0.008017
30% (N = 6898)	0.008019
50% (N = 11498)	0.008001
80% (N = 18397)	0.016003
large (N = 22998)	0.016024

Análisis

Esta vez la expectativa teórica no se ajusta tan bien a la realidad, ni la tendencia lineal ni logarítmica ajustan bien estos datos, es posible que sea un orden linearítmico o que la terminal no se reinició al hacer estas pruebas.

Requerimiento 6: Encontrar contenido con un director involucrado

Descripción

Entrada	Un string con el nombre de un director del cual el usuario quiere
	encontrar contenido
Salidas	Un reporte con la cantidad de películas o programas de TV que ha
	dirigido el director buscado y detallado por nombre de los títulos,
	plataformas, etc.
Implementado (Sí/No)	Implementado correctamente por Manuela Rivas. (Falto formatear
	con tabulate la impresión)

Análisis de complejidad

Pasos	Complejidad
Crea una lista	O(1)
Asigna valor a ammount	O(cte)
Agrega contenido a una lista	O(cte)
Usa count_by	O(N)
TOTAL	O(N)

Muestra de datos (N)	Tiempo de respuesta (s)
small (N = 228)	0.000001
5% (N = 1148)	0.000001

10% (N = 2298)	0.000001
20% (N = 4598)	0.008009
30% (N = 6898)	0.007999
50% (N = 11498)	0.008020
80% (N = 18397)	0.015998
large (N = 22998)	0.020161

Análisis

Nuevamente la expectativa teórica no se ajusta tan bien a la realidad, ni la tendencia lineal ni logarítmica ajustan bien estos datos, es posible que sea un orden linearítmico o que la terminal no se reinició al hacer estas pruebas.

Requerimiento 7: Listar el TOP (N) de géneros con más contenido

Descripción

Entrada	Un número entero que represente la cantidad de elementos a considerar en el top
Salidas	Tabla del top de géneros con más contenido con sus respectivos conteos por tipo de contenido y plataforma
Implementado (Sí/No)	Implementado correctamente por Manuela Rivas y Lucas Nieto.

Análisis de complejidad

Pasos	Complejidad	
Crea un diccionario	O(1)	
Asigna un valor a element	O(N)	
Comparación !=	O(N)	
Asigna una variable y hace strip	O(N)	
Comparación not it	O(N)	

Crea llave y suma plataforma y tipo	O(cte)
Suma plataforma, tipo y género en peor caso	O(N-1)
Crea una lista	O(1)
Addlast	O(cte)
TOTAL	O(N)

Pruebas Realizadas

Muestra de datos (N)	Tiempo de respuesta (s)
small (N = 228)	0.008024
5% (N = 1148)	0.011252
10% (N = 2298)	0.016651
20% (N = 4598)	0.042801
30% (N = 6898)	0.071868
50% (N = 11498)	0.080710
80% (N = 18397)	0.122828
large (N = 22998)	0.140014

Graficas

Análisis

La tendencia que mejor ajusta los datos de las pruebas de este requerimiento es una recta, por lo cual se puede concluir que el orden de complejidad temporal del requerimiento 1 es lineal y concuerda con el análisis teórico previo.

Requerimiento 8: Listar el TOP (N) de actores con más participación en contenido

Descripción

Entrada	Un número entero que represente la cantidad de elementos a
	considerar en el top

Salidas	Un reporte del top N de actores con mayor contenido, y otro con
	detalles específicos de conteos por plataforma o por tipo de
	contenido para cada actor del top.
Implementado (Sí/No)	Implementado correctamente por Manuela Rivas. (Falto formatear
	con tabulate la impresión)

Complejidad de Collabs usada en Requerimiento 8

Pasos	Complejidad
Is present	O(1)
Comparación !=	O(1)
Comparación != y ==. Peor caso	O(N)
Comparación != y not in. Peor caso	O(N)
Agrega llaves o suma en ya existentes de un diccionario	O(N)
TOTAL	O(N)

Análisis de complejidad

Pasos	Complejidad
Organiza datos	O(NlogN)
Crea diccionario	O(1)
Asigna valor a element	O(N)
Comparación !=	O(N)
Split peor caso	O(N)
Crea lista	O(1)
Agrega elemento en lista	O(cte)
Define actor y hace strip	O(N)
Crea llaves	O(M) donde M es el número de actores totales en los datos, al poder ser un valor demasiado alto retrasa el código en orden M pero sigue siendo un valor constante porque no hay recorridos dobles.
Suma valores en las llaves	O(M*N)
Compara !=	O(M)
Crea una lista	O(1)
Addlast	O(M)
Usa Collabs	O(N)
TOTAL	O(N*M)

Muestra de datos (N)	Tiempo de respuesta (s)
small (N = 228)	0.140850
5% (N = 1148)	0.529994
10% (N = 2298)	1.240304
20% (N = 4598)	1.993882
30% (N = 6898)	2.532223
50% (N = 11498)	4.555136
80% (N = 18397)	7.010084
large (N = 22998)	7.308019

Análisis

La tendencia que mejor ajusta los datos de las pruebas de este requerimiento es una recta, por lo cual se puede concluir que el orden de complejidad temporal del requerimiento 1 es lineal y concuerda con el análisis teórico previo.