EE2000 Logic Circuit Design

Chapter 6 – Programmable logic devices

Outline

- 6.1 Programmable logic devices
- 6.2 ROM and PROM
- 6.3 Fuse-Programmable Arrays
- 6.4 Programming Logic Array (PLA)
- 6.5 Programmable Array Logic (PAL)
- 6.6 Field Programmable Gate Array Logic (FPGA)

6.1 Programmable logic devices

- Implementation technologies introduced so far are not programmable
 - Fixed integrated circuits
- Programmable Logic Device (PLD)
 - Integrated circuit with internal logic gates connected together
 - These internal connections can be reconfigured (erased / programmed) to form a specific logic circuit
- Three types of basic PLDs
 - ROM, PLA, PAL

6.2.1 Read-Only Memory (ROM)

- An essential memory device in which permanent binary information is stored (even when the power is turned off, the information is still there).
- k-bit address inputs and n-bit data outputs
 Inputs: address for the memory
 Outputs: the word (n data bits) stored in ROM selected by the k-bit input address
- k address input can specify 2^k words
 - $\blacksquare k$ address input can specify 2^k words

- Features:
- advantage of simple and less connections
- disadvantage of doubling the size with an additional input
- cheap for mass production but expensive for development

Other ROMs

- ROM usually works as a lookup table
- No data inputs as ROM does not have a write operation (only read operation)
- ROMs that can be written / rewritten PROM
 EPROM (Erasable PROM)
 EEPROM (Electrically Erasable PROM)
 FEPROM (Field Erasable PROM)
 FLASH Memory

6.2.2 PROM

- Programmable Read-Only Memory
- Perform same functions as ROM
- Oldest programmable logic device
- Fuse or anti-fuse programmed
- One-time writing process has been deferred to the end-user
- Advantage: easy programming and inexpensive
- Disadvantage: non-reprogrammable

6.3 Fuse-Programmable Arrays

Programmable AND Arrays

Closed connection Open connection

. -

Example: 8 x 4 PROM

- Realize the following functions with a 8 x 4 PROM
 - $\blacksquare f_3(a, b, c) = \Sigma m(2, 3, 5)$
 - $\blacksquare f_2(a, b, c) = \Sigma m(0, 1, 3, 6, 7)$
 - $\blacksquare f_1(a, b, c) = \Sigma m(1, 2, 4, 5, 6)$
 - $\blacksquare f_0(a, b, c) = \Sigma m(1, 3, 5, 6)$

Programmable OR array

6.4 Programming Logic Array (PLA)

- Programmable device similar to PROM but with different internal structure
- The device is used to implement logic function in the form of sum-of- product terms

Example: PLA

- Implement these 2 functions with a PLA
 - $\blacksquare f_1(a, b, c) = ab' + ac + a'bc'$
 - $\blacksquare f_2(a, b, c) = (ac + bc)'$ Programmable OR array

• How many product terms for f_1 and f_2 ?

Minimization in PLA

- Reduce the number of distinct product terms, so as to Minimize the number of AND gates
 Minimize the size of PLA
- Step 1) Simplify the Boolean functions, and also their complementary functions to minimum number of terms
- Step 2) Find the combination to produce the minimum number of distinct product terms (or maximum common terms)

- Implement these 2 functions with a PLA
 - $\blacksquare f_1(a, b, c) = \Sigma m(3, 5, 6, 7)$
 - $\blacksquare f_2(a, b, c) = \Sigma m(0, 2, 4, 7)$
- Step 1) Simplify by K-map first:

Now find the simplified complementary functions

$$f_2' = a'c + b'c + abc'$$

- Since there are two functions f₁ and f₂
- There are 4 complemented and uncomplemented combinations (why?)
 - \blacksquare (i) f_1 and f_2
 - \blacksquare (ii) f_1 and f_2
 - \blacksquare (iii) f_1 ' and f_2
 - \blacksquare (iv) f_1 ' and f_2 '
- We may implement design (i), (ii), (iii), or (iv)
 - How to choose?
 - The design (iii) give the min. no. of distinct product terms (shared 2 common terms)

- Tabular the result of last step in the PLA programming table
 - Design (iii): f_1 ' and f_2

	Product Term	Inputs a b c	Outputs f_1 f_2
a'c'	1	0 – 0	1 1
b'c'	2	-00	1 1
a'b'	3	00-	1 -
abc	4	111	- 1
			СТ

T: Uncomplemented output

C: Complemented output

The final resulting PLA fuse map

6.5 Programmable Array Logic (PAL)

- PLA: both the AND and the OR arrays are programmable
- PAL: the AND array is programmable and the OR array is fixed
- PLA is a general design for implementing sumof-product terms, whereas the PAL has fixed sum-of-product terms
- Design for PAL device is easier, but not as flexible as that for PLA

- Implement these functions with a PAL
 - $\blacksquare w(a, b, c, d) = \Sigma m(2, 12, 13)$
 - $\blacksquare x(a, b, c, d) = \Sigma m(7, 8, 9, 10, 11, 12, 13, 14, 15)$
 - $\mathbf{I}y(a, b, c, d) = \Sigma m(0, 2, 3, 4, 5, 6, 7, 8, 10, 11, 15)$
 - $\square z(a, b, c, d) = \Sigma m(1, 2, 8, 12, 13)$
- Analysis
 - ■4 inputs (*a*, *b*, *c*, *d*), 4 outputs (*w*, *x*, *y*, *z*)

- Simplify the functions to minimum number of terms (steps omitted here)
 - \blacksquare w(a, b, c, d) = abc' + a'b'cd'
 - x(a, b, c, d) = a + bcd
 - y(a, b, c, d) = a'b + cd + b'd'
 - z(a, b, c, d) = abc' + a'b'cd' + ac'd' + a'b'c'd
 - Note: z is sum of 4 product terms
 - By considering output w as an input variable
 - $\blacksquare z(a, b, c, d, \underline{w}) = w + ac'd' + a'b'c'd$
 - Now z is SOP of 3 product terms!

■ Tabular the result of last step in the PAL programming table

Product Term		AND Inputs abcdw	Outputs
1	abc'	110	
2	a'b'cd'	0010-	w = abc' + a'b'cd'
3			4 2 34
4	а	1	
5	bcd	-111-	x = a + bcd
6			
7	a'b	01	
8	cd	11-	y = a'b + cd + b'd'
9	b'd'	-0-0-	2 4
10	W	1	
11	ac'd'	1 – 0 0 –	z = w + ac'd' + a'b'c'd
12	a'b'c'd	0001-	4.00

■ The final result

■ Reuse w

PAL 16R6

A PAL device with 16 inputs, 6 outputs with D-latch (1-bit memory device), and 2 unbuffered outputs

(8 inputs are feedback from outputs)

This device can be used for designing sequential circuit.

6.6 Field Programmable Gate Array Logic (FPGA)

- FPGAs consist of a large number of logic blocks with programmable interconnects in matrix form.
- Programmable:
 - > The logic block can be "configured" to create the circuit.
 - The interconnects can also be "configured" to connect logic blocks together as well as to connect the FPGA pin through I/O blocks.

FPGA – Configurable Logic Block

- A configurable logic block (CLB) consists of a look-up-table (LUT)
- The LUT is for implementing the truth table of a logic function
- Additional elements are for control or other functions

FPGA – Programmable Interconnects

- FPGAs use switch matrices to provide interconnects for logic blocks
- The connections between logic blocks are achieved by programming the switch matrices to form routing paths

FPGA – I/O Standard

- The FPGA output may be connected to device with different electrical characteristics.
- The FPGA pin I/O standard must be specified.
- I/O Standards:
 - LVTTL: low-voltage transistor-transistor logic; 3.3-V standard that can tolerate 5-V signals.
 - PCI: peripheral component interconnect; has 5-V and 3.3-V versions.
 - LVCMOS: low-voltage complementary metal-oxide semiconductor;
 LVCMOS2, a 2.5-V standard that can tolerate 5-V signals.
 - LVPECL: low-voltage positive emitter-coupled logic
 - SSTL: stub-series terminated logic
 - AGP: advanced graphics port
 - CTT: center tap terminated
 - GTL: gunning transceiver logic
 - HSTL: high-speed transceiver logic

FPGA – Design Tools (Lab Session)

- FPGA is a programmable device
- Use HDL (hardware description language) to describe the circuitry
- Doesn't behave like "normal" programming language 'C/C++'
- Describe Logic as collection of Processes operating in Parallel
- Language Constructs for Synchronous Logic
- VHDL and Verilog are common HDLs
- VHDL and Xilinx Vivado are used in this course

FPGA – Design Flow

- 1. Create a behavioral, RTL, or structural model of the design in a hardware description language such as VHDL or Verilog.
- 2. Simulate and debug the design.
- Synthesize the design targeting the desired device.
- 4. Run a mapping/partitioning program.
- 5. Run an automatic place and route program.
- 6. Run a program that will generate the bit pattern necessary to program the FPGA.
- 7. Download the bit pattern into the internal configuration cells in the FPGA, and test the operation of the FPGA.

FPGA – Top-Down Design

- FPGA is particular suitable for digital system design.
- A complex system can be made simpler by using hierarchical approach
- Split the design in two or more simple design in order to easy handle the complexity

FPGA – VHDL Structural Modeling

Use VHDL module to describe each simple design

FPGA – VHDL Module

 Use Entity and Architecture to describe the each module (circuit)

FPGA – System on chip (SoC)

Advanced FPGA chip is integrated with CPU and peripheral controllers for advanced system design.

Programmable logic is provided for customer design.

Zynq-7000 (with two ARM Cortex-A9 processors)

