Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.437 INFERENCE AND INFORMATION Spring 2015

Problem Set 4

Issued: Tuesday, March 3, 2015 Due: Tuesday, March 10, 2015

Problem 4.1

- (a) Let $p_y(y; \mathbf{x})$ be a member of the exponential family. Put z = y + a, where a is a known constant. Is $p_z(z; \mathbf{x})$ in the exponential family, as well?
- (b) Let y_1 and y_2 be two independent identically distributed continuous random variables with a distribution $p_y(y;x)$ that is in the canonical (one-parameter) exponential family. That is, $p_y(y;x) = \exp(xy \alpha(x) + \beta(y))$ for some functions α and β . Put $z = y_1 + y_2$.

Show that $p_z(z;x)$ is also in the canonical exponential family. That is, show that $p_z(z;x) = \exp(xz - \tilde{\alpha}(x) + \tilde{\beta}(z))$ for some functions $\tilde{\alpha}$ and $\tilde{\beta}$. Express $\tilde{\alpha}$ in terms of α , and $\tilde{\beta}$ in terms of β .

This result means that the canonical exponential family possesses a kind of stability characteristic.

Problem 4.2

- (a) Let \mathbf{u} be a random variable whose density $p_{\mathbf{u}}(\mathbf{u}; \mathbf{a})$ is parameterized by \mathbf{a} and is in the exponential family. Let \mathbf{v} be a random variable whose density $p_{\mathbf{v}}(\mathbf{v}; \mathbf{b})$ is parameterized by \mathbf{b} and is in the exponential family. Let $\mathbf{y} = (\mathbf{u}, \mathbf{v})$. Show that if \mathbf{u} and \mathbf{v} are independent, then $p_{\mathbf{y}}(\mathbf{y}; \mathbf{a}, \mathbf{b})$ is also in the exponential family.
- (b) Let z be a random variable whose density $p_z(z;x)$ is in the exponential family. Let y be another random variable that we observe in an attempt to infer something about z. Assume that the observation model $p_{y|z}$ does not depend on x. Suppose we observe $y = y_0$. Is it true that the conditional density $p_{z|y}(z \mid y_0; x)$ is in the exponential family?

Problem 4.3

Consider a member of a canonical exponential family $p_y(y;x) = e^{xy-\alpha(x)+\beta(y)}$ with a continuous parameter x.

- (a) Express Fisher information $J_{\nu}(x)$ in terms of $\alpha(\cdot)$ and $\beta(\cdot)$.
- (b) Show that the maximum likelihood estimate of x based on observation y, $\hat{x}_{\text{ML}}(y)$, must satisfy

$$y = F(\hat{x}_{\mathrm{ML}}(y)),$$

and find F in terms of $\alpha(\cdot)$ and $\beta(\cdot)$.

(c) Consider a binary hypothesis test

$$H_0: p_{y|H}(y|H_0) = e^{\beta(y)}$$

$$H_1: p_{y|H}(y|H_1) = e^{xy-\alpha(x)+\beta(y)}$$
 for a known $x > 0$,

where the two hypotheses are equally probable a priori. Show that the likelihood ratio test (LRT) that minimizes the probability of error can be expressed in the form

$$A(x) y + B(x) \stackrel{\hat{H}(y)=H_1}{\underset{\hat{H}(y)=H_0}{\geq}} 0$$

and find A(x) and B(x).

- (d) (**practice**) Now let's assume we do not know the true value of x for H_1 . Instead, we replace x in the LRT of part (c) with the ML estimate $\hat{x}_{\text{ML}}(y)$ to obtain a new decision rule. For this question, assume that the estimate $\hat{x}_{\text{ML}}(y)$ is sufficiently close to the true value x, but $\hat{x}_{\text{ML}}(y) \neq x$. In addition, denote \mathcal{Y} as the alphabet of the values that y can take, and assume that its cardinality satisfies $|\mathcal{Y}| \geq 2$. Our goal is to show that this new decision rule favors hypothesis H_1 more than the true likelihood ratio test.
 - (i) Show that

$$[A(\hat{x}_{\mathrm{ML}}(y)) \ y + B(\hat{x}_{\mathrm{ML}}(y))] - [A(x) \ y + B(x)] = \gamma (\hat{x}_{\mathrm{ML}}(y) - x)^{2} + o((\hat{x}_{\mathrm{ML}}(y) - x)^{2}),$$

where γ is a constant, independent of x and y. o(z) denotes terms that decrease faster than z as $z \to 0$. Find γ in terms of $\alpha(\cdot)$, $\beta(\cdot)$, and \hat{x}_{ML} .

- (ii) Prove that $\gamma > 0$.
- (iii) Let the decision regions for H_1 corresponding to using x and $\hat{x}_{ML}(y)$ be \mathcal{Y}_1^x and $\mathcal{Y}_1^{\hat{x}_{ML}}$, respectively. Show that for $\hat{x}_{ML}(y)$ sufficiently close to x, $\mathcal{Y}_1^x \subseteq \mathcal{Y}_1^{\hat{x}_{ML}}$.

Problem 4.4 (practice)

In this problem, let's recall Problem 3.4 in Problem Set 3 and associate it with exponential families. Let y be an exponentially distributed random variable with parameter x, where x is in turn an exponentially distributed random variable with parameter μ .

In Problem 3.4, we have obtained that the distribution of y is

$$p_{y}(y; \mu) = \frac{\mu}{(\mu + y)^{2}}, \text{ for } y > 0.$$

In addition, we have established that the maximum likelihood (ML) estimator of μ given observation y = y is not unbiased and thus not efficient.

In this problem, determine whether $p_y(y; \mu)$ is a member of an exponential family. If it is, then find the parameters of the family. If not, explain.

Problem 4.5 (practice)

Let x be a Bernoulli random variable with parameter p, i.e.,

$$p_{\mathsf{x}}(x;p) = p^{x}(1-p)^{1-x}.$$

Let y be a scalar random variable whose distribution is in an exponential family $E(\lambda, t(\cdot), \beta(\cdot))$:

$$p_{y|x}(y|x;\lambda_0,\lambda_1) = \exp\{\lambda_x t(y) - \alpha(\lambda_x) + \beta(y)\}$$
 for $x = 0, 1$.

(a) Let $\mathbf{z} = (y, x)$ be the random vector obtained by combining the observation y and the binary label x. Show that $p_{\mathbf{z}}(\mathbf{z}; \lambda_0, \lambda_1, p)$ is a member of a 3-parameter exponential family, i.e.,

$$p_{\mathbf{z}}(\mathbf{z} = (y, x); \lambda_0, \lambda_1, p) = \exp\left\{\sum_{i=1}^3 \eta_i(\lambda_0, \lambda_1, p) u_i(y, x) - \alpha_{\mathbf{z}}(\lambda_0, \lambda_1, p) + \beta_{\mathbf{z}}(y, x)\right\},\,$$

and determine the natural parameters $\eta_1(\cdot)$, $\eta_2(\cdot)$, $\eta_3(\cdot)$, the natural statistics $u_1(\cdot)$, $u_2(\cdot)$, $u_3(\cdot)$, the log base distribution $\beta_{\mathbf{z}}(\cdot)$ and the log partition function $\alpha_{\mathbf{z}}(\cdot)$. Your answer may depend on $t(\cdot)$, $\beta(\cdot)$, λ_0 , λ_1 , and p.

Hint: The likelihood of y can also be written as

$$p_{y|x}(y|x;\lambda_0,\lambda_1) = [p_{y|x}(y|1;\lambda_0,\lambda_1)]^x [p_{y|x}(y|0;\lambda_0,\lambda_1)]^{1-x}.$$

(b) Let $\mathbf{z}^{(N)} = \{(x_1, y_1), \dots, (x_N, y_N)\}$ be a sequence of N independent, identically distributed samples generated from the distribution $p_{\mathbf{z}}(\mathbf{z}; \lambda_0, \lambda_1, p)$. Let $\hat{\lambda}_{0_{\text{ML}}}$ be the maximum likelihood estimate of the parameter λ_0 from the observations $\mathbf{z}^{(N)}$. Let \hat{q} be the corresponding member of the exponential family, i.e., $\hat{q}(y) = \exp\left\{\hat{\lambda}_{0_{\text{ML}}}t(y) - \alpha(\hat{\lambda}_{0_{\text{ML}}}) + \beta(y)\right\}$. Show that

$$\mathbb{E}_{\hat{q}}\left[t(\mathbf{y})\right] = C \sum_{i \in \mathcal{S}} t(y_i),$$

where $\mathbb{E}_{p(\cdot)}[w]$ denotes the expectation of a random variable w computed with respect to a probability distribution $p(\cdot)$, C is a constant, and S is a set of indices, $S \subseteq \{1,\ldots,N\}$. Determine the constant C and the set S in terms of observations $\mathbf{z}^{(N)} = \{(x_1,y_1),\ldots,(x_N,y_N)\}$.

This result implies that for exponential families, performing maximum likelihood estimation can be viewed as matching the *expected value* of the natural statistic to a particular function of the *observed values* of natural statistic.

(c) For most models, the marginal distribution $p_y(\cdot; \lambda_0, \lambda_1, p)$ of the random variable y cannot be represented as an exponential family, but showing it is quite challenging. Here we consider a limited example.

Let the distribution of y conditioned on x = x be a unit-variance Gaussian distribution with mean λ_x , i.e.,

$$p_{y|x}(y|x;\lambda_0,\lambda_1) = \frac{1}{\sqrt{2\pi}} e^{-\frac{(y-\lambda_x)^2}{2}}$$
 for $x = 0, 1$,

and, further, let p = 1/2 and $\lambda_1 = -\lambda_0$. You are to prove by contradiction that $p_y(\cdot; \lambda_0, -\lambda_0, 1/2)$ is not a full 1-parameter exponential family of distributions. In particular,

i) First, suppose that $p_y(\cdot; \lambda_0, -\lambda_0, 1/2)$ is a full 1-parameter exponential family $E(\theta(\cdot), \tilde{t}(\cdot), \tilde{\beta}(\cdot))$, i.e., for all λ_0 ,

$$p_{y}(y; \lambda_{0}, -\lambda_{0}, \frac{1}{2}) = \exp\left\{\theta(\lambda_{0})\tilde{t}(y) - \tilde{\alpha}(\lambda_{0}) + \tilde{\beta}(y)\right\}.$$

Show that this implies that for all λ_0 and all y

$$\theta'(\lambda_0) \,\tilde{t}(y) - \tilde{\alpha}'(\lambda_0) + \lambda_0 = yF(y\lambda_0).$$

for some function $F(\cdot)$. Determine $F(\cdot)$.

ii) Use the result of part i) above to prove that $p_y(\cdot; \lambda_0, -\lambda_0, 1/2)$ cannot be a full 1-parameter exponential family.

Problem 4.6

Suppose that y_1 and y_2 are independent random variables each uniformly distributed between x and x + 1. Let $s = \max(y_1, y_2)$ and $r = y_1 - y_2$.

- (a) Show that **s** is not a sufficient statistic for $p_{y_1,y_2}(y_1,y_2;x)$.
- (b) An ancillary statistic is one whose distribution does not depend on the parameters of the model. Show that r is an ancillary statistic for $p_{\gamma_1,\gamma_2}(y_1,y_2;x)$.
- (c) Is $\mathbf{u} = \begin{bmatrix} s \\ r \end{bmatrix}$ a sufficient statistic for $p_{y_1,y_2}(y_1,y_2;x)$?

Now consider a general model $p_{y}(y;x)$.

(d) Suppose t = t(y) is a complete sufficient statistic for $p_y(y; x)$, and that r = r(y) is an ancillary statistic for $p_y(y; x)$. Show that t and r are independent. Clearly indicate where you use each of the facts that 1) t is sufficient; 2) t is complete; and 3) r is ancillary.

Hint: Consider an arbitrary function g, and let

$$\mu(x) = \mathbb{E}[g(\mathbf{r})] = \int g(r(y))p_{\mathbf{y}}(y;x) \,\mathrm{d}y.$$

Moreover, let $\phi(t; x) = \mathbb{E}[g(r) - \mu(x) \mid t]$.

Now we consider a different model. Instead of uniformly distributed over the interval [x, x + 1], the independent random variables y_1 and y_2 in the new model are each uniformly distributed on the interval [0, x] where $x \ge 0$. In addition, $s = \max(y_1, y_2)$.

(e) Determine whether s is a sufficient statistic for $p_{y_1,y_2}(y_1,y_2;x)$ in the new model.

Problem 4.7

Let $\mathbf{y} = [y_1 \ y_2]^T$ be a vector random variable whose components are i.i.d. Bernoulli random variables with parameter x, 0 < x < 1, i.e., $\mathbb{P}(y_i = 1) = x$, i = 1, 2.

- (a) Show that $t(\mathbf{y}) = y_1 + y_2$ is a sufficient statistic.
- (b) Let $\hat{x}(\mathbf{y}) = y_1$ be an estimator of the parameter x from the observation \mathbf{y} . Find $\mathrm{MSE}_{\hat{x}}(x)$, the mean-square error of this estimator.
- (c) Let $\hat{x}'(t) = \mathbb{E}\left[\hat{x}(\mathbf{y})|t=t\right]$ be an estimator of the parameter x that uses the sufficient statistic t instead of the observations \mathbf{y} .
 - (i) Show that $\hat{x}'(t)$ is a valid estimator, i.e., it does not depend on x.
 - (ii) Show that $MSE_{\hat{x}'}(x) = \gamma MSE_{\hat{x}}(x)$ and find the constant γ .
- (d) We now consider a generalization of this problem. Let \mathbf{y} be a random variable generated by a distribution $p_{\mathbf{y}}(\cdot;x)$ and $\mathbf{t}(\mathbf{y})$ be a sufficient statistic. Let $\hat{x}(\mathbf{y})$ be an estimator of the parameter x based on the observation \mathbf{y} . We define an alternate estimator $\hat{x}'(\mathbf{t}) = \mathbb{E}\left[\hat{x}(\mathbf{y})|\mathbf{t} = \mathbf{t}\right]$.
 - (i) Show that $\hat{x}'(\mathbf{t})$ is a valid estimator, i.e., it does not depend on x.
 - (ii) Show that for any cost function $C(x, \hat{x})$ that is convex in \hat{x} , the following inequality holds:

$$\mathbb{E}[C(x, \hat{x}'(\mathbf{t}))] \le \mathbb{E}[C(x, \hat{x}(\mathbf{y}))].$$

Hint: You may find Jensen's inequality useful: If $\phi(\cdot)$ is a convex function and \mathbf{v} is a random variable, then

$$\mathbb{E}\left[\phi(\mathbf{v})\right] \geq \phi\left(\mathbb{E}\left[\mathbf{v}\right]\right).$$

Problem 4.8

Prove that in binary hypothesis testing, the likelihood ratio is a sufficient statistic.

Problem 4.9 (practice)

Determine the mildest conditions you can think of under which the natural statistics for the general k-parameter exponential family are minimal sufficient statistics.

Hint: Consider the conditions on λ and \mathbf{t} for complete sufficient statistics (and think Laplace transforms).

Problem 4.10 (practice)

Let x be a deterministic unknown parameter, and denote y as a random variable with distribution $p_y(y;x)$. Let t(y) be a sufficient statistic for x given y. Determine whether the following statement is true or false:

 $J_{\nu}(x) = J_{t}(x)$, where $J_{\nu}(x)$ and $J_{t}(x)$ are the corresponding Fisher information.

Prove if it is true and give a counter example if it is not necessarily true.