Lezione 15 Limiti di funzione

Limiti di funzioni

Questo avgomento e molto simile oi limiti di successioni, ma se in quel caso i limitendevono solo and infinito, in questo caso tondono ouche a -200 n.

Voglianno studiare il comportamento di una funzione finitorno ad un suo punto del suo dominio 0 a ± 00.

Es:
$$\int (x) = \frac{\sin x}{x}$$

ES:
$$f(x) = \frac{\sin x}{x}$$
 D: $x \neq 0 = 0$ D= $\left\{x \in \mathbb{R} / x \neq 0\right\} = \frac{\mathbb{R} - \left\{0\right\}}{x}$

Quando mi auvicino a 0, cosa succede alla funzione?

Definizione:
$$\lim_{X\to X_0} f(x) = \ell$$
 $\rightleftharpoons D$ $\forall (x_n)_n$ / $x_n\to x_0$ Si ha che $\lim_{N\to +\infty} f(x_n) = \ell$

successione x_n contentia

Che Significa?

In X_0 non so $\cos a$ faccia la funzione, qui ndi considero per comi successione $X_0-b \times o$, quindi pre ndo una successione che pion piono si ouvicina en xo, o da Dx o de Sx

=D Se calcolo f sui punti della succ $\frac{1}{n}$, Quindi prendo x_n e calcolo $f(x_n)$;

Continuo con colondo f su f tutti i punti della Successione.

Dal con colondo capisco dove "va a f inire" $f(x_n)$.

Quando considero $f(x_n) = \frac{1}{n} = n$ Questa e una successione! Visto che sa ppiomo calcolore i limiti delle successioni, $\frac{1}{n}$ possiomo calcolore il lim della succ; Per definizione, se il risultato del lim = e, allora il $\lim_{x\to x_0} f(x) = e$.

lim n = +∞ Questa funzione tende a +∞ da Destra

$$\lim_{X\to P} \frac{1}{O^+} = \frac{1}{O^+} = +\infty$$

$$\lim_{X\to P} \frac{1}{O^-} = \frac{1}{O^-} = -\infty$$

 $\lim_{X\to 0^+} \frac{1}{X} = \frac{1}{0^+} = +\infty$ Siccome il lim Dx e Sx hanno due ri sultati diversi, si dice $\lim_{X\to 0^-} \frac{1}{X} = \frac{1}{0^-} = -\infty$ Che il limite non esiste.

$$\lim_{X\to PO} \frac{1}{X^2} = +\infty$$

ES:
$$f(x) = \frac{1}{X^2} = D$$
 $\lim_{X \to 0} \frac{1}{X^2} = +\infty$ Perche'? $\lim_{X \to 00^+} \frac{1}{X^2} = \frac{1}{0^+} = +\infty$ Stesso risultato! $\lim_{X \to 00^-} \frac{1}{X^2} = \frac{1}{(0^-)^2} = +\infty$

Il metodo riportato sopra e un metodo puramente TEORICO usato per calcolore i limiti delle funzioni tronite i limiti di successioni.

La $\mathfrak D$ e la def viste rulla pg. precedente. La $\mathfrak Q$ dice che quondo fisso un $\mathfrak E$ piccolo a piacere esiste un numero $\mathfrak f$ tale che $\mathfrak x\in (\mathfrak x_0-\mathfrak f,\mathfrak x_0+\mathfrak f)$, calcolo $\mathfrak f(\mathfrak x)$ e $\mathfrak f(\mathfrak x_0)=\mathfrak e$, abbi anno che la distanza da $\mathfrak f(\mathfrak x)$ ad $\mathfrak e$ (calcolata tramite il valore assoluto della differenza), quindi $|\mathfrak f(\mathfrak x)-\mathfrak e|$ e piu piccolo $\mathfrak E$ che quevo $\mathfrak f(\mathfrak x)$ inizial mente.

L'Intorno

Si dice intorno di X_0 di semiormpiezza \mathcal{J} , un qualunque intervallo aperto contenente X_0 , con centro in X_0 e semiormp. \mathcal{J} .

1:00