Package 'poisDoubleSamp'

October 14, 2022

Version 1.1.1					
Title Confidence Intervals with Poisson Double Sampling					
Description Functions to create confidence intervals for ratios of Poisson rates under misclassification using double sampling. Implementations of the methods described in Kahle, D., P. Young, B. Greer, and D. Young (2016). ``Confidence Intervals for the Ratio of Two Poisson Rates Under One-Way Differential Misclassification Using Double Sampling." Computational Statistics & Data Analysis, 95:122–132.					
<pre>URL https://github.com/dkahle/poisDoubleSamp</pre>					
BugReports https://github.com/dkahle/poisDoubleSamp/issues					
LinkingTo Rcpp					
Imports Rcpp, stats					
License MIT + file LICENSE					
RoxygenNote 7.1.2					
Encoding UTF-8					
NeedsCompilation yes					
Author David Kahle [aut, cre] (https://orcid.org/0000-0002-9999-1558), Phil Young [aut], Dean Young [aut]					
Maintainer David Kahle <david@kahle.io></david@kahle.io>					
Repository CRAN					
Date/Publication 2022-05-10 13:10:05 UTC					
R topics documented:					
approxMargMLE approxMargMLECI fullMLE margMLE margMLE					

2 approxMargMLE

2005	oxMargMLF	Cor	M1011	ta	+h.	2 144	ar	ain	al	M	11	7 0	fn	hi									_
Index																							13
	poisDoubleSar profMLECI . waldCI	 																					10

Description

Compute the marginal MLE of the ratio of two Poisson rates in a two-sample Poisson rate problem with misclassified data given fallible and infallible datasets.

Usage

```
approxMargMLE(
  data,
  N1,
  N2,
  N01,
  N02,
  l = 0,
  u = 1000,
  out = c("par", "all"),
  tol = 1e-10
)
```

Arguments

data	the vector of counts of the fallible data (z11, z12, z21, z22) followed by the infallible data (m011, m012, m021, m022, y01, y02)
N1	the opportunity size of group 1 for the fallible data
N2	the opportunity size of group 2 for the fallible data
N01	the opportunity size of group 1 for the infallible data
N02	the opportunity size of group 2 for the infallible data
1	the lower end of the range of possible phi's (for optim)
u	the upper end of the range of possible phi's (for optim)
out	"par" or "all" (for the output of optim)
tol	tolerance parameter for the rmle EM algorithm

Value

a named vector containing the marginal mle of phi

approxMargMLECI 3

References

Kahle, D., P. Young, B. Greer, and D. Young (2016). "Confidence Intervals for the Ratio of Two Poisson Rates Under One-Way Differential Misclassification Using Double Sampling." Computational Statistics & Data Analysis, 95:122–132.

Examples

```
# small example
z11 <- 34; z12 <- 35; N1 <- 10;
z21 <- 22; z22 <- 31; N2 <- 10;
m011 <- 9; m012 <- 1; y01 <- 3; N01 <- 3;
m021 \leftarrow 8; m022 \leftarrow 8; y02 \leftarrow 2; N02 \leftarrow 3;
data <- c(z11, z12, z21, z22, m011, m012, m021, m022, y01, y02)
fullMLE(data, N1, N2, N01, N02)
margMLE(data, N1, N2, N01, N02)
approxMargMLE(data, N1, N2, N01, N02)
## Not run:
# big example :
z11 <- 477; z12 <- 1025; N1 <- 16186;
z21 <- 255; z22 <- 1450; N2 <- 18811;
m011 <- 38; m012 <- 90; y01 <- 15; N01 <- 1500;
m021 <- 41; m022 <- 200; y02 <- 9; N02 <- 2500;
data <- c(z11, z12, z21, z22, m011, m012, m021, m022, y01, y02)
fullMLE(data, N1, N2, N01, N02)
margMLE(data, N1, N2, N01, N02) # ~1 min
approxMargMLE(data, N1, N2, N01, N02)
## End(Not run)
```

 $approx {\tt MargMLECI}$

Compute the profile MLE CI of phi

Description

Compute the profile MLE confidence interval of the ratio of two Poisson rates in a two-sample Poisson rate problem with misclassified data given fallible and infallible datasets. This uses a C++ implemention of the EM algorithm.

Usage

```
approxMargMLECI(
  data,
  N1,
  N2,
  N01,
  N02,
  conf.level = 0.95,
  l = 0.001,
  u = 1000,
  tol = 1e-10
)
```

Arguments

data	the vector of counts of the fallible data (z11, z12, z21, z22) followed by the infallible data (m011, m012, m021, m022, y01, y02)
N1	the opportunity size of group 1 for the fallible data
N2	the opportunity size of group 2 for the fallible data
NØ1	the opportunity size of group 1 for the infallible data
N02	the opportunity size of group 2 for the infallible data
conf.level	confidence level of the interval
1	the lower end of the range of possible phi's (for optim)
u	the upper end of the range of possible phi's (for optim)
tol	tolerance used in the EM algorithm to declare convergence

Value

a named vector containing the marginal mle of phi

References

Kahle, D., P. Young, B. Greer, and D. Young (2016). "Confidence Intervals for the Ratio of Two Poisson Rates Under One-Way Differential Misclassification Using Double Sampling." Computational Statistics & Data Analysis, 95:122–132.

Examples

```
# small example
z11 <- 34; z12 <- 35; N1 <- 10;
z21 <- 22; z22 <- 31; N2 <- 10;
m011 <- 9; m012 <- 1; y01 <- 3; N01 <- 3;
m021 <- 8; m022 <- 8; y02 <- 2; N02 <- 3;
data <- c(z11, z12, z21, z22, m011, m012, m021, m022, y01, y02)
waldCI(data, N1, N2, N01, N02)
```

fullMLE 5

```
margMLECI(data, N1, N2, N01, N02)
profMLECI(data, N1, N2, N01, N02)
approxMargMLECI(data, N1, N2, N01, N02)

## Not run:

# big example :
z11 <- 477; z12 <- 1025; N1 <- 16186;
z21 <- 255; z22 <- 1450; N2 <- 18811;
m011 <- 38; m012 <- 90; y01 <- 15; N01 <- 1500;
m021 <- 41; m022 <- 200; y02 <- 9; N02 <- 2500;
data <- c(z11, z12, z21, z22, m011, m012, m021, m022, y01, y02)

waldCI(data, N1, N2, N01, N02)
margMLECI(data, N1, N2, N01, N02)
profMLECI(data, N1, N2, N01, N02)
approxMargMLECI(data, N1, N2, N01, N02)

### End(Not run)</pre>
```

fullMLE

Compute the full MLEs

Description

Compute the MLEs of a two-sample Poisson rate problem with misclassified data given fallible and infallible datasets.

Usage

```
fullMLE(data, N1, N2, N01, N02)
```

Arguments

data	the vector of counts of the fallible data (z11, z12, z21, z22) followed by the infallible data (m011, m012, m021, m022, y01, y02)
N1	the opportunity size of group 1 for the fallible data
N2	the opportunity size of group 2 for the fallible data
NØ1	the opportunity size of group 1 for the infallible data
N02	the opportunity size of group 2 for the infallible data

Details

These are the closed-form expressions for the MLEs.

6 margMLE

Value

a named vector containing the mles of each of the parameters (phi, la12, la21, la22, th1, and th2)

References

Kahle, D., P. Young, B. Greer, and D. Young (2016). "Confidence Intervals for the Ratio of Two Poisson Rates Under One-Way Differential Misclassification Using Double Sampling." Computational Statistics & Data Analysis, 95:122–132.

Examples

```
# small example
z11 <- 34; z12 <- 35; N1 <- 10;
z21 <- 22; z22 <- 31; N2 <- 10;
m011 <- 9; m012 <- 1; y01 <- 3; N01 <- 3;
m021 <- 8; m022 <- 8; y02 <- 2; N02 <- 3;
data <- c(z11, z12, z21, z22, m011, m012, m021, m022, y01, y02)
fullMLE(data, N1, N2, N01, N02)
## Not run:
# big example :
z11 <- 477; z12 <- 1025; N1 <- 16186;
z21 <- 255; z22 <- 1450; N2 <- 18811;
m011 <- 38; m012 <- 90; y01 <- 15; N01 <- 1500;
m021 <- 41; m022 <- 200; y02 <- 9; N02 <- 2500;
data <- c(z11, z12, z21, z22, m011, m012, m021, m022, y01, y02)
fullMLE(data, N1, N2, N01, N02)
## End(Not run)
```

margMLE

Compute the marginal MLE of phi

Description

Compute the marginal MLE of the ratio of two Poisson rates in a two-sample Poisson rate problem with misclassified data given fallible and infallible datasets.

Usage

```
margMLE(data, N1, N2, N01, N02, l = 0.001, u = 1000, out = c("par", "all"))
```

margMLE 7

Arguments

data	the vector of counts of the fallible data (z11, z12, z21, z22) followed by the infallible data (m011, m012, m021, m022, y01, y02)
N1	the opportunity size of group 1 for the fallible data
N2	the opportunity size of group 2 for the fallible data
N01	the opportunity size of group 1 for the infallible data
N02	the opportunity size of group 2 for the infallible data
1	the lower end of the range of possible phi's (for optim)
u	the upper end of the range of possible phi's (for optim)
out	"par" or "all" (for the output of optim)

Value

a named vector containing the marginal mle of phi

References

Kahle, D., P. Young, B. Greer, and D. Young (2016). "Confidence Intervals for the Ratio of Two Poisson Rates Under One-Way Differential Misclassification Using Double Sampling." Computational Statistics & Data Analysis, 95:122–132.

Examples

```
# small example
z11 <- 34; z12 <- 35; N1 <- 10;
z21 <- 22; z22 <- 31; N2 <- 10;
m011 <- 9; m012 <- 1; y01 <- 3; N01 <- 3;
m021 <- 8; m022 <- 8; y02 <- 2; N02 <- 3;
data <- c(z11, z12, z21, z22, m011, m012, m021, m022, y01, y02)
fullMLE(data, N1, N2, N01, N02)
margMLE(data, N1, N2, N01, N02)
## Not run:
# big example :
z11 <- 477; z12 <- 1025; N1 <- 16186;
z21 <- 255; z22 <- 1450; N2 <- 18811;
m011 <- 38; m012 <- 90; y01 <- 15; N01 <- 1500;
m021 <- 41; m022 <- 200; y02 <- 9; N02 <- 2500;
data <- c(z11, z12, z21, z22, m011, m012, m021, m022, y01, y02)
fullMLE(data, N1, N2, N01, N02)
margMLE(data, N1, N2, N01, N02)
```

8 margMLECI

```
## End(Not run)
```

	rg	M	-	\sim T
IIIA	ro	VΙΙ	_	

Compute the marginal MLE confidence interval for the phi

Description

Compute the marginal MLE confidence interval of the ratio of two Poisson rates in a two-sample Poisson rate problem with misclassified data given fallible and infallible datasets.

Usage

```
margMLECI(data, N1, N2, N01, N02, conf.level = 0.95, l = 1e-10, u = 1e+10)
```

Arguments

data	the vector of counts of the fallible data (z11, z12, z21, z22) followed by the infallible data (m011, m012, m021, m022, y01, y02)
N1	the opportunity size of group 1 for the fallible data
N2	the opportunity size of group 2 for the fallible data
NØ1	the opportunity size of group 1 for the infallible data
NØ2	the opportunity size of group 2 for the infallible data
conf.level	confidence level of the interval
1	the lower end of the range of possible phi's (for optim)
u	the upper end of the range of possible phi's (for optim)

Value

a named vector containing the lower and upper bounds of the confidence interval

References

Kahle, D., P. Young, B. Greer, and D. Young (2016). "Confidence Intervals for the Ratio of Two Poisson Rates Under One-Way Differential Misclassification Using Double Sampling." Computational Statistics & Data Analysis, 95:122–132.

poisDoubleSamp 9

Examples

```
# small example
z11 <- 34; z12 <- 35; N1 <- 10;
z21 <- 22; z22 <- 31; N2 <- 10;
m011 <- 9; m012 <- 1; y01 <- 3; N01 <- 3;
m021 \leftarrow 8; m022 \leftarrow 8; y02 \leftarrow 2; N02 \leftarrow 3;
data <- c(z11, z12, z21, z22, m011, m012, m021, m022, y01, y02)
waldCI(data, N1, N2, N01, N02)
margMLECI(data, N1, N2, N01, N02)
profMLECI(data, N1, N2, N01, N02)
approxMargMLECI(data, N1, N2, N01, N02)
## Not run:
# big example :
z11 <- 477; z12 <- 1025; N1 <- 16186;
z21 <- 255; z22 <- 1450; N2 <- 18811;
m011 <- 38; m012 <- 90; y01 <- 15; N01 <- 1500;
m021 <- 41; m022 <- 200; y02 <- 9; N02 <- 2500;
data <- c(z11, z12, z21, z22, m011, m012, m021, m022, y01, y02)
waldCI(data, N1, N2, N01, N02)
margMLECI(data, N1, N2, N01, N02)
profMLECI(data, N1, N2, N01, N02)
approxMargMLECI(data, N1, N2, N01, N02)
## End(Not run)
```

poisDoubleSamp

poisDoubleSamp: Confidence intervals with Poisson double sampling

Description

Functions to create confidence intervals for ratios of Poisson rates under misclassification using double sampling. Implementations of the methods described in Kahle, D., P. Young, B. Greer, and D. Young (2016). "Confidence Intervals for the Ratio of Two Poisson Rates Under One-Way Differential Misclassification Using Double Sampling." Computational Statistics & Data Analysis, 95:122–132.

10 profMLECI

profMLECI

Compute the profile MLE CI of phi

Description

Compute the profile MLE confidence interval of the ratio of two Poisson rates in a two-sample Poisson rate problem with misclassified data given fallible and infallible datasets. This uses a C++ implemention of the EM algorithm.

Usage

```
profMLECI(
   data,
   N1,
   N2,
   N01,
   N02,
   conf.level = 0.95,
   l = 0.001,
   u = 1000,
   tol = 1e-10
)
```

Arguments

data	the vector of counts of the fallible data (z11, z12, z21, z22) followed by the infallible data (m011, m012, m021, m022, y01, y02)
N1	the opportunity size of group 1 for the fallible data
N2	the opportunity size of group 2 for the fallible data
N01	the opportunity size of group 1 for the infallible data
N02	the opportunity size of group 2 for the infallible data
conf.leve	confidence level of the interval
1	the lower end of the range of possible phi's (for optim)
u	the upper end of the range of possible phi's (for optim)
tol	tolerance used in the EM algorithm to declare convergence

Value

a named vector containing the marginal mle of phi

References

Kahle, D., P. Young, B. Greer, and D. Young (2016). "Confidence Intervals for the Ratio of Two Poisson Rates Under One-Way Differential Misclassification Using Double Sampling." Computational Statistics & Data Analysis, 95:122–132.

waldCI 11

Examples

```
# small example
z11 <- 34; z12 <- 35; N1 <- 10;
z21 <- 22; z22 <- 31; N2 <- 10;
m011 \leftarrow 9; m012 \leftarrow 1; y01 \leftarrow 3; N01 \leftarrow 3;
m021 <- 8; m022 <- 8; y02 <- 2; N02 <- 3;
data <- c(z11, z12, z21, z22, m011, m012, m021, m022, y01, y02)
waldCI(data, N1, N2, N01, N02)
margMLECI(data, N1, N2, N01, N02)
profMLECI(data, N1, N2, N01, N02)
approxMargMLECI(data, N1, N2, N01, N02)
## Not run:
# big example :
z11 <- 477; z12 <- 1025; N1 <- 16186;
z21 <- 255; z22 <- 1450; N2 <- 18811;
m021 <- 41; m022 <- 200; y02 <- 9; N02 <- 2500;
data <- c(z11, z12, z21, z22, m011, m012, m021, m022, y01, y02)
waldCI(data, N1, N2, N01, N02)
margMLECI(data, N1, N2, N01, N02)
profMLECI(data, N1, N2, N01, N02)
approxMargMLECI(data, N1, N2, N01, N02)
## End(Not run)
```

waldCI

Compute the Wald confidence interval

Description

Compute the Wald confidence interval of a two-sample Poisson rate with misclassified data given fallible and infallible datasets.

Usage

```
waldCI(data, N1, N2, N01, N02, conf.level = 0.95)
```

12 waldCI

Arguments

data	the vector of counts of the fallible data (z11, z12, z21, z22) followed by the infallible data (m011, m012, m021, m022, y01, y02)
N1	the opportunity size of group 1 for the fallible data
N2	the opportunity size of group 2 for the fallible data
NØ1	the opportunity size of group 1 for the infallible data
N02	the opportunity size of group 2 for the infallible data
conf.level	confidence level of the interval

Value

a named vector containing the lower and upper bounds of the confidence interval

Examples

```
# small example
z11 <- 34; z12 <- 35; N1 <- 10;
z21 <- 22; z22 <- 31; N2 <- 10;
m011 \leftarrow 9; m012 \leftarrow 1; y01 \leftarrow 3; N01 \leftarrow 3;
m021 \leftarrow 8; m022 \leftarrow 8; y02 \leftarrow 2; N02 \leftarrow 3;
data <- c(z11, z12, z21, z22, m011, m012, m021, m022, y01, y02)
waldCI(data, N1, N2, N01, N02)
margMLECI(data, N1, N2, N01, N02)
profMLECI(data, N1, N2, N01, N02)
approxMargMLECI(data, N1, N2, N01, N02)
## Not run:
# big example :
z11 <- 477; z12 <- 1025; N1 <- 16186;
z21 <- 255; z22 <- 1450; N2 <- 18811;
m011 \leftarrow 38; m012 \leftarrow 90; y01 \leftarrow 15; N01 \leftarrow 1500;
m021 \leftarrow 41; m022 \leftarrow 200; y02 \leftarrow 9; N02 \leftarrow 2500;
data <- c(z11, z12, z21, z22, m011, m012, m021, m022, y01, y02)
waldCI(data, N1, N2, N01, N02)
margMLECI(data, N1, N2, N01, N02)
profMLECI(data, N1, N2, N01, N02)
approxMargMLECI(data, N1, N2, N01, N02)
## End(Not run)
```

Index