Applications of DFS

November 12, 2015

Outline

- Topological Sorting
- 2 Bridges/Articulation Points
- 3 Biconnected Components (BCC)
- 4 Strongly Connected Components (SCC)

Applications of DFS

Basic Algorithm

```
vector < int > visited(n,0);
vector < vector < int > > adj; // adjacency list

void dfs(int v) {
    visited[v] = 1;
    for (int i = 0; i < adj[v].size(); i++) {
        if (!visited[adj[v][i]]) {
            dfs(adj[v][i]);
        }
}
</pre>
```

Problem

Given a directed acyclic graph (DAG), order the vertices as v_1, \ldots, v_n such that for every edge $\overrightarrow{v_i v_j}$, we have $i \leq j$.

Equivalent formulation:

Problem

Given a partially ordered set (V, \leq) , order the elements as v_1, \ldots, v_n such that for every pair $v_i \leq v_j$, we have $i \leq j$.

Equivalent formulation:

Problem

Given a partially ordered set (V, \preceq) , order the elements as v_1, \ldots, v_n such that for every pair $v_i \preceq v_i$, we have $i \leq j$.

■ The resulting order on V is called a linear extension of \leq .

Equivalent formulation:

Problem

Given a partially ordered set (V, \preceq) , order the elements as v_1, \ldots, v_n such that for every pair $v_i \preceq v_i$, we have $i \leq j$.

- The resulting order on V is called a linear extension of \prec .
- Application: dependency resolution.

```
Algorithm (idea):

vector < int > result;

while (there is a minimal element v) {
 result.push_back(v);
 remove v from the graph;
}
```


This idea can be implemented with multiple DFS's:

```
vector<int> result;
vector < int > visited(n,0);
3
  for (int i = 0; i < n; i++) {
   if (!visited[i]) dfs(i);
  }
6
7
  void dfs(int v) {
       if (!visited[v]) {
           visited[v] = 1;
10
           for (int i = 0; i < adj[v].size(); i++) {
11
               if (!visited[adj[v][i]]) dfs(m);
12
           }
13
           result.push_back(v);
14
15
16
```


Result:

Result:

Result:

Result: 3

Result: 3 6

Result: 3 6 1

Result: 3 6 1

Result: 3 6 1

Result: 3 6 1

Result: 3 6 1 5

Result: 3 6 1 5 7

Result: 3 6 1 5 7 2

Result: 3 6 1 5 7 2

Result: 3 6 1 5 7 2 4

- Each vertex and edge is considered only once.
- So the running time of this algorithm is linear (more precisely: O(|V| + |E|)).

II. BCC/Articulation Points/Bridges

Definition

Let G be a simple graph. An articulation point is a vertex of G whose removal separates G into at least two components.

Definition

Let G be a simple graph. An articulation point is a vertex of G whose removal separates G into at least two components.

Definition

Let G be a simple graph. A bridge is an edge of G whose removal separates G into two components.

Definition

A graph G is biconnected if it has no articulation points. A biconnected component of a graph is a maximally biconnected subgraph.

Biconnected components intersect in articulation points.

- Biconnected components intersect in articulation points.
- Bridges are biconnected components of size two.

Using DFS, we can find biconnected components, articulation points, and bridges in linear time.

First, observe that running a DFS from a node creates a spanning tree (the *DFS tree*), as well as some back-edges.

We will compute

- depth[v]: the depth of vertex v in the DFS tree
- low[v]: the lowest-depth neighbor of v or a descendant of v via back-edges in the DFS tree (or v itself if there is no lower-depth neighbor)

In our example, depth and low are as follows:

We can find articulation points:

- The root vertex is an articulation point iff it has more than one child.
- A non-root vertex u is an articulation point iff it has a child v with depth[low[v]] >= depth[u].

We can find bridges:

- All bridges must be edges of the DFS tree.
- A vertex u forms a bridge with a child v iff depth[low[v]] > depth[u].

We can find biconnected components:

- follow the DFS tree from the leaves upwards
- put vertices into the component of the leaf along the way
- stop at articulation points.

It is easy to compute depth and low during the DFS.

```
void dfs(int v, int d) {
     visited[v] = 1:
2
     depth[v] = d; // set depth
3
1 ow[v] = v;
5 for (each child u of v) {
       if (!visited[u]) {
6
         dfs(u, d+1);
         if (depth[low[u]] <= depth[l]) low[v] = low[u];</pre>
8
       } else if (depth[u] < depth[v]-1) low[v] = u;</pre>
10
   }
11
   dfs(0,0); // call like this
12
```

Definition

Let D be a directed graph. Write $u \sim v$ if vertex u can be reached from v and vice-versa. Then

- $lue{}$ \sim is an equivalence relation on V(D), and
- the equivalence classes are called strongly connected components of D.

After contracting each SCC, we are left with a DAG!

How to compute strongly connected components?

- Do a DFS and compute finishig times.
- Compute transposed graph, by reverting all edges.
- Do DFS on transposed graph, prioritizing large finishing times.

How to compute strongly connected components?

- Do a DFS and compute finishig times.
- Compute transposed graph, by reverting all edges.
- Do DFS on transposed graph, prioritizing large finishing times.

The complexity is $\mathcal{O}(|V| \log |V| + |E|)$.

How to compute strongly connected components?

- Do a DFS and compute finishig times.
- Compute transposed graph, by reverting all edges.
- Do DFS on transposed graph, prioritizing large finishing times.

The complexity is $\mathcal{O}(|V| \log |V| + |E|)$.

To get $\mathcal{O}(|V| + |E|)$ you can use Tarjans algorithm which uses low[v].

That's all.