udzielono powiedzi nkty: 1,00

Oflaguj tanie Klucz otwiera się w chwili t=0. Dobierz wartość indukcyjności (w Henrach), by stała czasowa przedstawionego obwodu wynosiła 1 ms. Dane: R= 23 kΩ, J_Z = 40 mA.

Odpowiedź:

Pytanie 3

Nie udzielono odpowiedzi

Punkty: 1,00

♥ Oflaguj pytanie

Pytanie 4

Nie udzielono odpowiedzi

Punkty: 1,00

P Oflaguj pytanie Po jakim czasie (w milisekundach) od otwarcia klucza napięcie $u_C(t)$ na kondensatorze osiągnie wartość 2 V?

Dane: J_Z = 2 mA, C = 1,4 μ F, R = 50 Ω .

Odpowiedź:

Nie udzielono odpowiedzi

Punkty: 1,00

P Oflaguj pytanie Bezstratna linia długa została załączona w chwili t=0 na źródło napięcia stałego E i szeregową rezystancję. Jaka będzie wartość napięcia (w **V**) na początku linii o długości l=10 m po upływie 80 ns od załączenia?

Dane: E = 3,8 V, R = 100 Ω , L_I = 0.5 μ H/m, C_I = 50 pF/m.

Pytanie 6

Nie udzielono odpowiedzi

Punkty: 1,00

♥ Oflaguj pytanie Dla pewnej częstotliwości f zaobserwowano, że wskazania amperomierzy A_1 i A_2 były następujące: $|I_{A1}|=39$ mA; $|I_{A2}|=208$ mA.

Następnie częstotliwość pracy zwiększono czterokrotnie, tzn. do 4f. Jakie będzie wskazanie amperomierza A (w miliamperach), jeśli dla obu częstotliwości wskazania woltomierza były identyczne?

Odpowiedź:

Pytanie 7

Nie udzielono odpowiedzi

Punkty: 1,00

P Oflaguj pytanie Podaj moc czynną wydzielaną w podanym układzie (w mW) zasilanym SPM o wartości skutecznej 1,9 mA. R = $10 \text{ k}\Omega$, $X_C = X_L = 7,3 \text{ k}\Omega$. Pozostały czas 1:33:12

Odpowiedź:

Nie udzielono odpowiedzi

Punkty: 1,00

P Oflaguj pytanie

Ile wynosi różnica (w Watach) między mocą wydawaną przez źródło napięcia w stanie ustalonym, a mocą wydawaną przez źródło w chwili początkowej po zamknięciu klucza, tzn. $\Delta P = p(\infty) - p(0_+) ?$

Dane: E = 10 V, R₁ = 100 Ω , R₂ = 522 Ω , R₃ = 133 Ω , L = 100 mH, C= 10 μ F.

Odpowiedź:

Pytanie 9 Nie udzielono odpowiedzi

Punkty: 1,00

♥ Oflaguj pytanie

Na wejście idealnego układu całkującego o stałej T podano impuls napięcia o wysokości 2E i czasie trwania τ=2T. Naszkicuj napięcie wyjściowe Uwy.

E inna

Co

Wybierz jedną odpowiedź:

- 00
- O Nie udzielam odpowiedzi (0 punktów)
- O D
- OE

Pytanie 11

Nie udzielono odpowiedzi

Punkty: 1,00

P Oflaguj pytanie Wskaż równanie transmitancji $K(j\omega)$ o charakterystyce amplitudowej Bodego przedstawionej na rysunku.

A)
$$20 \frac{1+j\frac{\omega}{1000}}{1+j\frac{\omega}{100}}$$

B)
$$10 \frac{1+j\frac{\omega}{100}}{1+j\frac{\omega}{1000}}$$

c)
$$20 \frac{1 + j\omega \cdot 1000}{1 + j\omega \cdot 100}$$
 D) 1

D)
$$10 \frac{1+j\frac{\omega}{1000}}{1+j\frac{\omega}{100}}$$

E) brak poprawnej odpowiedzi

