UNIVERSITEIT TWENTE.

Multiphase Reactor Technology

Fluidization (summary)

Sascha Kersten

Further reading

- Detailed slide packages (blackboard)
- Froment & Bischoff, chapter 13 (blackboard)
- Van Deemter model
- Kuni & Levenspiel

Introduction Phenomenon of fluidization

Application

- Types of reactions: catalytic (heterogeneous) reactions, reacting solids
- Physical processes: drying, heat exchange, adsorption (also chemisorption), coating, granulation
 - ✓ Heat exchange and drying
 - ✓ Coating and granulation
 - ✓ Gas purification via adsorption
 - ✓ Chemical synthesis(acrylonitrile, maleic and phtalic anhydride)
 - ✓ Polymerization of lower olefines(propylene)
 - ✓ Fischer-Tropsch synthesis
 - ✓ Fluid coking and Flexi-Coking
 - ✓ Combustion and incineration
 - ✓ Fluid Catalytic Cracking (FCC)

Fluid Catalytic Cracking (FCC)

Zeolite catalyst (very active)

Reaction takes place in the riser

High conversion in short contact time

Plug flow → high yield of gasoline (no overcracking)

Reactor at 470-550°C up to 3.5 bar Regenerator at 580-700°C up to 4 bar

Riser 1.5 m ID Regenerator 8 m ID

Catalyst circulation rate 15-30tons/min

Characterisation of particulate solids

Equivalent spherical diameter d_{sph}

$$\frac{\pi}{6}d_{sph}^3 = V_{particle}$$

• Sphericity ϕ_s (particle and sphere have same volume):

$$\phi_s = \frac{A_{sphere}}{A_{particle}}$$

Specific surface of particle a'

$$a' = \frac{A_{particle}}{V_{particle}} = \frac{6}{\phi_s d_{sph}}$$

Specific bed surface a:

$$a = \frac{6\left(1 - \varepsilon_b\right)}{\phi_s d_{sph}}$$

Fluidization Regimes Geldart's classification

Four types of fluidization behaviour (A, B, C and D)

Fluidization Regimes Geldart's classification

- Aeratable, or particles with a small size and/or density (<1.4 g/cm³). Group A: Smooth fluidization at low u and controlled bubbling (small bubbles). FCC is a typical example
- Sandlike, most particles of size 40 $\mu m < d_p < 500 \ \mu m$ and density 1.4 $< \rho_s < 4$ Group B: g/cm³. These particles fluidize well with vigorous bubbling action and bubbles that grow large (coalescence)
- Cohesive, or very fine powders. Normal fluidization is extremely Group C: difficult due to strong interparticle forces which exceed the gas drag. Examples: flour and starch
- Spoutable, or large and/or dense particles. Deep beds of these particles Group D: are difficult to fluidize due to "explosive" bubble growth (coalesence). Examples: peas and coffee beans

note: Geldart's classification effectively includes only ρ_s and d_p !!! UNIVERSITEIT TWENTE.

8

Minimum fluidization velocity u_{mf}

F_d>F_g: entrainment

 $F_d=F_g$: fluidization

 $F_d < F_g$: defluidization

Minimum fluidization velocity u_{mf}

Pressure drop ∆p versus fluidization velocity u₀

Incipient or minimum fluidization: weight of particles is equal to the drag force

Minimum fluidization velocity (u_{mf})

drag force due to gas flow = weight of particles

Or

(pressure drop) (cross sectional area) = (volume of bed) (fraction of solid) (specific weight of solid)

$$\Delta p_b A_t = A_t L_{mf} (1 - \varepsilon_{mf}) [(\rho_s - \rho_g)g]$$

Minimum fluidization velocity u_{mf} and terminal velocity u_t

Expression for u_{mf}:

$$\frac{1.75}{\varepsilon_{mf}^3 \phi_s} \left(\frac{d_p u_{mf} \rho_g}{\mu} \right)^2 + 150 \frac{\left(1 - \varepsilon_{mf}\right)}{\varepsilon_{mf}^3 \phi_s^2} \left(\frac{d_p u_{mf} \rho_g}{\mu} \right) = \frac{d_p^3 \rho_g (\rho_s - \rho_g) g}{\mu^2}$$

Dimensionless form:

$$\frac{1.75}{\varepsilon_{mf}^{3}\phi_{s}}\left(Re_{p,mf}\right)^{2} + 150\frac{\left(1-\varepsilon_{mf}\right)}{\varepsilon_{mf}^{3}\phi_{s}^{2}}\left(Re_{p,mf}\right) = Ar$$
Particle Reynolds number

Minimum bubbling velocity

Characteristics of selected particles

	Size, d _p (mm)						
Particles	0,02	0,05	0,07	0,1	0,2	0,3	0,4
Sharp sand,Φ _s =0,67	-	0,6	0,59	0,58	0,54	0,5	0,49
Round sand, Φ_s =0,86	-	0,56	0,52	0,48	0,44	0,42	-
Mixed round sand	-	-	0,42	0,42	0,41	-	-
Coal and glass powder	0,72	0,67	0,64	0,62	0,57	0,56	-
Anthracite coal, Φ _s =0,63	-	0,62	0,61	0,6	0,56	0,53	0,51
Absorption carbon	0,74	0,72	0,71	0,69	-	-	-
Fischer-Tropsch catalyst, Φ_s =0,58	-	-	-	0,58	0,56	0,55	-
Carborundum	-	0,61	0,59	0,56	0,48	-	-

Terminal velocity u_t

Terminal velocity of particle of size dp falling through a fluid :

$$u_t = \left[\frac{4d_p(\rho_s - \rho_g)g}{3\rho_g C_d}\right]^{\frac{1}{2}}$$

■ Drag coefficient C_d given by: Powder Technology 58 (1989) 63

$$C_d = \frac{24}{Re_p} \left[1 + \left(8.1716e^{-4.0655\phi_s} \right) Re_p^{0.0964 + 0.5565\phi_s} \right] + \frac{73.69Re_p e^{-5.0748\phi_s}}{Re_p + 5.378e^{6.2122\phi_s}}$$

Drag coefficient for spherical particles (φ_s=1):

$$C_d = \frac{24}{Re_p} + 3.3643Re_p^{0.3471} + \frac{0.4607Re_p}{Re_p + 2682.5} \qquad Re_p = \frac{d_{sph}u_t\rho_g}{\mu}$$

Terminal velocity u_t

Graphical determination of terminal velocity

Fluidization Regimes

Ratio of terminal velocity u_t and minimum fluidization velocity u_{mf}

To avoid carryover of particles the velocity should be between u_{mf} and u_{t}

 Useful velocity range for large particles is much smaller than that for small particles (reflected in applications)

High velocity fluidization

Fluidization Regimes

• Void fraction ϵ_{f} and fluidization regimes as a function of the superficial gas velocity \mathbf{u}_0 for

Bubbling fluidized beds

- Are bubbles actually bubbles?
- Bubbles are actually void fractions through which gas flows
 - This flow is characterized by a mass transfer K

$$K = \frac{volumetric\ flow\ through\ bubble\ m^3/s}{m^3\ bubble}$$

$$K = \frac{volumetric\ flow\ through\ bubble\ m^3/s}{m^3\ bed}$$

Unit is 1/s

Schematic representation

Gas in bubble = PFR, Gas in emulsion CSTR to PFR Solids is CSTR – axially dispersed with / without circulation flow

Gas dispersion and gas exchange

Gas exchange between bubble and emulsion phase

U_b is the bubble rise velocity = linear velocity V_b = bubble volume[#]

Definitions of gas exchange: Local parameter

$$-\frac{1}{V_b}\frac{dN_{Ab}}{dt} = -u_b\frac{dC_{ab}}{dz} = K_{be}(C_{Ab} - C_{Ae}) = K_{bc}(C_{Ab} - C_{Ac}) = K_{ce}(C_{Ac} - C_{Ae})$$

Relationship between interchange coefficients:

$$\frac{1}{K_{be}} = \frac{1}{K_{bc}} + \frac{1}{K_{ce}}$$

Bubble flow patterns

Gas distributors

Pressure drop over distributor needs to be ~ 50% of pressure drop over bed
UNIVERSITEIT TWENTE.
6-12-2016

25

Gas distributor design

Initial bubble diameter (cm) for distributor with N_{or} orifices per unit area (cm⁻²) of plate where distance between orifices equals I_{or}:

$$d_{bo} = \frac{1.30}{g^{0.2}} \left[\frac{u_0 - u_{mf}}{N_{or}} \right]^{0.4}$$

$$d_{bo} = \frac{2.78}{g} (u_0 - u_{mf})^2$$

low gas flow rate
non-touching bubbles
$$d_{bo} < l_{or}$$

high gas flow rate touching bubbles $d_{bo}>l_{or}$

Emulsion gas flow and voidage

$$\left(\frac{\varepsilon_e}{\varepsilon_{mf}}\right)^3 = \frac{1 - \varepsilon_{mf}}{1 - \varepsilon_e} = \left(\frac{u_e}{u_{mf}}\right)^{0.7}$$

Bubble size correlation due to Mori and Wen (size in cm):

$$\frac{d_{bm} - d_b}{d_{bm} - d_{bo}} = e^{-0.3\left(\frac{z}{d_t}\right)} \qquad \text{with} \qquad d_{bm} = 0.65 \left[\frac{\pi}{4} d_t^2 (u_0 - u_{mf})\right]^{0.4}$$

range of experimental conditions:

$$d_t <= 1.3 \text{ m}$$
 0.5<= $u_{mf} <= 20 \text{ cm/s}$
 $60 <= d_p <= 450 \text{ } \mu\text{m}$ $u_o - u_{mf} <= 48 \text{ } cm/s$

Bubble size correlation due to Werther (size in cm):

$$d_b = 0.853 \left[1 + 0.272 \left(u_0 - u_{mf} \right) \right]^{\frac{1}{3}} (1 + 0.0684z)^{1.21}$$

range of experimental conditions (valid for porous plate)

$$d_t>=20 \text{ cm}$$
 1<= $u_{mf}<=8 \text{ cm/s}$
100<= $d_p<=350 \text{ }\mu\text{m}$ 5<= u_0 - $u_{mf}<=30 \text{ cm/s}$

 Werther correlation can be adapted for gas distributor with orifices (initial bubble size not zero in this case):

- Bubble rise velocity (linear velocity) correlations
 - Geldart A solids with d_t<=1 m (velocity in m/s):</p>

$$u_b = 1.55\{(u_0 - u_{mf}) + 14.1(d_b + 0.005)\}d_t^{0.32} + u_{br}$$

Geldart B solids with d_t<= 1m (velocity in m/s):</p>

$$u_b = 1.6\{(u_0 - u_{mf}) + 1.13d_b^{0.5}\}d_t^{1.35} + u_{br}$$

Note that u_{br} denotes the rise velocity of single bubbles, given by:

$$u_{br} = 0.711 \sqrt{gd_b}$$

Gas exchange: models / correlations

- Estimation of gas exchange coefficients (Bubble model + Higbie penetration model)
 - bubble to cloud exchange coefficient K_{bc}:

$$K_{bc} = 4.5 \left(\frac{u_{mf}}{d_b}\right) + 5.85 \left(\frac{D^{\frac{1}{2}}g^{\frac{1}{4}}}{\frac{5}{d_b^{\frac{1}{4}}}}\right)$$

cloud to emulsion exchange coefficient K_{ce}:

$$K_{ce} = 6.77 \left(\frac{D\varepsilon_{mf} (0.711) (gd_b)^{\frac{1}{2}}}{d_b^3} \right)^{\frac{1}{2}} = 6.77 \left(\frac{D\varepsilon_{mf} u_{br}}{d_b^3} \right)^{\frac{1}{2}}$$

note: K_{bc} contains both convective and diffusive contributions

Gas exchange: RTD measurements

- Mass balances for two-zone model
 - bubble phase:

$$\frac{\partial C_{Ab}}{\partial t} + u_b \frac{\partial C_{Ab}}{\partial z} = K_{be}(C_{Ab} - C_{Ae})$$

emulsion phase:

$$\frac{\partial C_{Ae}}{\partial t} + \frac{u_e}{\varepsilon_e} \frac{\partial C_{Ae}}{\partial z} = \frac{\delta}{1 - \delta} K_{be} (C_{Ab} - C_{Ae})$$

integral balance:
$$u_0 = \delta u_b + (1 - \delta)u_e$$

empirical information on bubble velocity u_b , emulsion velocity u_e , emulsion voidage ε_e and bubble holdup δ required (from integral balance one of the quantities can be computed from the others)

Gas dispersion

Steady state experiment for D_{gv} in a gas-fluidized bed Height Steady state

Differential equation governing the axial dispersion process

$$D_{gv}\frac{d^2C_A}{dz^2} - u_0\frac{dC_A}{dz} = 0$$

$$\frac{C_A}{C_{Ai}} = \exp\left[\frac{-u_0(z_i - z)}{D_{gv}}\right]$$

At Umf, we measure the dispersion in the emulsion phase

Gas

Particle-to-gas mass transfer

Experimental findings on mass transfer in fluidized beds

Note: Sh_{bed} does not approach 2 at low Re_p

Heat transfer

- Correlations for (see detailed slides)
 - Particle to gas
 - Immersed object to bed
 - Bed to wall

Models for BFB reactors

- Kuni & Levenspiel
- Bubble/clould/emulsion
- Bubble is pfr
- U_b from theory / correlation
- K_{be} from theory / correlation
- U_b & K_{be} are / can be a function of the height of the bed
- Emulsion gas: pfr with zero velocity

- Van Deemter / Van Swaaij
- Bubble/emulsion
- Bubble is pfr
- Gas exchange from RTD / tracer tests
- Disperson from RTD / tracer tests
- Gas exchange and dispersion are constant
- Emulsion gas axial dispersed with/without gas flow

Kuni & Levenspiel fine particle model

$$u_{o}/u_{mf}>>1$$
 and $u_{b}/u_{mf}>>1$

- ✓ Fresh entering feed gas containing reactant A enters bed and on contact with
 the fine catalyst powder reacts according to a first order reaction
- ✓ Bed consists of three regions: bubble [b], cloud [c] and emulsion [e] region (bubble wake is part of the cloud)
- ✓ All feed gas passes through the bed as bubbles (u₀>>umf)
- \checkmark gas interchange rate between bubble and cloud and between cloud and emulsion are given by K_{bc} and K_{ce} respectively

Dense Fluidized Beds Conversion of gas due to catalytic reactions

definition of solids distribution in bubble, cloud and emulsion:

 γ_b , γ_c and γ_e denote respectively volume of solids dispersed in bubble, cloud and emulsion divided by volume of bubble

Balance formulation for reactant A:

```
transfer to
overall disappearance
                          reaction
                           in bubble
      in bubble
                                               cloud-wake
                          reaction in
                                               transfer to
      transfer to
                          cloud-wake
                                               emulsion
      cloud-wake
     transfer to
                          reaction in
     emulsion
                           emulsion
```

Dense Fluidized Beds Conversion of gas due to catalytic reactions (1st order)

■ Mass balance for reactant A:
$$-\frac{dC_{A,b}}{dt} = -u_b \frac{dC_{A,b}}{dz} = \gamma_b K_r C_{A,b} + K_{b,c} (C_{A,b} - C_{A,c})$$

additional equations

$$K_{b,c}(C_{A,b} - C_{A,c}) = \gamma_c K_r C_{A,c} + K_{c,e}(C_{A,c} - C_{A,e})$$

$$K_{c,e}(C_{A,c} - C_{A,e}) = \gamma_e K_r C_{A,e}$$

Upon eliminating concentrations of A in emulsion and cloud we get:

$$-u_{b} \frac{dC_{A,b}}{dz} = K_{f}C_{A,b}$$

$$K_{f} = \gamma_{b}K_{r} + \frac{1}{\frac{1}{K_{b,c}} + \frac{1}{\gamma_{c}K_{r} + \frac{1}{\frac{1}{K_{c,e}} + \frac{1}{\gamma_{e}K_{r}}}}$$

K_f represents an overall rate constant for chemical reaction accounting for all relevant mass transfer resistances in fine particle gas-fluidized beds

Inspection: combination of resistances in series/parallel

Dense Fluidized Beds Conversion of gas due to catalytic reactions

• Integration of mass balance between inlet and certain position in bed:

$$\frac{C_{A,b}}{C_{A,inlet}} = \frac{C_{A,b}}{C_{A,i}} = \exp\left[-K_f \frac{z}{u_b}\right]$$
 assumption: bubble size remains approximately constant in bed

Since "all" gas fed to the bottom of the bed passes in the form of bubbles we can write for the reactor as a whole:

$$1 - X_A = \frac{C_{A,0}}{C_{A,i}} = \exp\left[-K_f \frac{z}{u_b}\right]$$
 contribution of emulsion is negligible (not valid for coarse particles)

 Note that all parameters (except Kr of course) can be obtained from the Kunii and Levenspiel (K-L) model discussed before in detail !!!

estimates of extent of conversion can be made for fine particle beds

Experimental findings (fine particles)

Van Deemter / van Swaaij model

$$N_T = \frac{k_m L}{U_0} \qquad \qquad H = \frac{L}{N}$$

$$N_E = \frac{U_0 L}{D_e}$$

$$N_R = \frac{K_r \rho_c f_s L}{U_0} \qquad f_s = \frac{m^3 \ solids \ in \ bed}{m_{bed}^3}$$

First order reaction, no gas through dense phase

$$\frac{dC^{b}}{d\theta} = -\frac{k_{m}L}{U_{0}}(C^{b} - C^{d}) = -N_{T}(C^{b} - C^{d})$$

$$0 = \frac{1}{N_{F}}\frac{d^{2}C^{d}}{d\theta^{2}} + N_{T}(C^{b} - C^{d}) - N_{R}C^{d}$$

Riser (CFB)

- Simples model:
 - Plug flow for fluid
 - Plug flow for solids
 - Hold-up of solids from correlations
 - Sh & Nu relations with Re_p based on slip velocity (V_f-V_s)
- In reality:
 - Radial velocity profiles, radial solids profiles, uniform solids hold-up → clusters.