Esercizi di Fondamenti di Automatica - 4 Corso di Laurea in Ingegneria Elettronica A.A. 2020/2021

Esercizio 1. Con riferimento a ciascuno dei seguenti modelli ingresso/uscita

1.
$$\frac{d^2y(t)}{dt^2} - y(t) = 3\frac{du}{dt} - 3u(t);$$

2.
$$0.01\frac{d^2y(t)}{dt^2} + 1.01\frac{dy}{dt} + y(t) = 0.1\frac{du}{dt} + u(t);$$

3.
$$0.01\frac{d^2y(t)}{dt^2} + 1.01\frac{dy}{dt} + y(t) = -\frac{du}{dt} + u(t);$$

4.
$$\frac{d^2y(t)}{dt^2} + 20\frac{dy}{dt} + 100y(t) = \frac{du}{dt} + 100u(t);$$

5.
$$\frac{d^2y(t)}{dt^2} + 6\frac{dy}{dt} + 5y(t) = -\frac{du}{dt} + u(t);$$

6.
$$\frac{d^2y(t)}{dt^2} + 2\frac{dy}{dt} + 2y(t) = u(t);$$

7.
$$\frac{d^2y(t)}{dt^2} + 2\frac{dy}{dt} + 2y(t) = 2\frac{du}{dt} + 2u(t)$$
,

validi per $t \geq 0$, si determini:

- i) la risposta al gradino, evidenziandone tempo di salita, tempo di assestamento e sovraelongazione (se esistono);
- ii) la risposta in frequenza, evidenziandone banda passante (a 3 dB), pulsazione di risonanza e picco di risonanza relativo (se esistono).

Inoltre

- iii) si determini il tipo del sistema e
- iv) si traccino l'andamento (approssimativo) della risposta al gradino e il diagramma di Bode delle ampiezze della risposta in frequenza.

Esercizio 2. Con riferimento alle seguenti funzioni di trasferimento

1.
$$W(s) = \frac{s-1}{(1+s)^2}$$
;

2.
$$W(s) = \frac{s+1}{s^2 + 0.2s + 1};$$

3.
$$W(s) = \frac{0.2s + 1}{s^2 + 0.2s + 1}$$
;

4.
$$W(s) = \frac{1}{(s+1)^2}$$
;

5.
$$W(s) = \frac{1-s}{(1+s)(1+0.1s)}$$
,

se ne determini il tipo k e l'errore di regime permanente $e_{rp}^{(k+1)} := \lim_{t \to +\infty} [\delta_{-(k+1)}(t) - w_{-(k+1)}(t)]$, in corrispondenza al segnale canonico $\delta_{-(k+1)}(t) := \frac{t^k}{k!} \delta_{-1}(t)$.

1

Soluzioni numeriche di alcuni esercizi

Esercizio 1. 1. La risposta al gradino è $w_{-1}(t) = 3[1 - e^{-t}]\delta_{-1}(t)$, ed ha tempo di salita $t_r = \ln 10 \approx 2.3$ sec. $t_s = t_r$, mentre la sovraelongazione non è definita. Il grafico della risposta al gradino è il seguente:

Time offset: 0

La risposta in frequenza del sistema è descritta dal seguente diagramma di Bode:

non ha pulsazione né picco di risonanza, mentre la banda passante è $B_p = 1$ rad/s. Il tipo del sistema è 0.

2. La risposta al gradino è $w_{-1}(t) = [1 - (10/11)e^{-t} - (1/11)e^{-100t}]\delta_{-1}(t)$, ed ha tempo di salita $t_r \approx 2.3$ sec. $t_s = t_r$, mentre la sovraelongazione non è definita. Il grafico della risposta al gradino è il seguente:

La risposta in frequenza del sistema è descritta dal seguente diagramma di Bode:

non ha pulsazione né picco di risonanza, mentre la banda passante è $B_p=1~\mathrm{rad/s.}$ Il tipo del sistema è 1.

Esercizio 2. 1. Tipo 0 ed $e_{rp}(1) = 2$. 2. Tipo 1 ed $e_{rp}(2) = -0.8$. 3. Tipo 2 ed $e_{rp}(3) = 1$.