4226. $\int_C e^{\sqrt{x^2+y^2}} ds$, где C—выпуклый контур, ограинченный кривыми r=a, $\phi=0$, $\phi=\frac{\pi}{4}$ (r и ϕ —полярные координаты).

4227. $\int_{C} |y| ds$, где C — дуга лемнискаты

$$(x^2 + y^2)^2 = a^2 (x^2 - y^2).$$

4228. $\int_C x \, ds$, где C — часть логарифмической спирали $r = ae^{k\phi} \, (k > 0)$, находящаяся внутри круга $r \leqslant a$. 4229. $\int_C \sqrt{x^2 + y^2} \, ds$, где C — окружность $x^2 + y^2 = ax$. 4230. $\int_C \frac{ds}{y^2}$, где C — цепиая линия $y = a \operatorname{ch} \frac{x}{a}$.

Найти длины дуг пространственных кривых (параметры положительны):

4231. x = 3t, $y = 3t^2$, $z = 2t^3$, or O(0, 0, 0) A(3, 3, 2).

4232. $x = e^{-t} \cos t$, $y = e^{-t} \sin t$, $z = e^{-t}$, npm $0 < t < +\infty$.

4233. $y = a \arcsin \frac{x}{a}$, $z = \frac{a}{4} \ln \frac{a-x}{a+x}$ or O(0, 0, 0) go $A(x_0, y_0, z_0)$.

4234. $(x-y)^2 = a(x+y)$, $x^2 - y^2 = \frac{9}{8}z^2$ or O(0, 0, 0) go $A(x_0, y_0, z_0)$.

4235. $x^2 + y^3 = cz$, $\frac{y}{x} = \operatorname{tg} \frac{z}{c}$ or O(0, 0, 0) go $A(x_0, y_0, z_0)$.

4236. $x^2 + y^2 + z^2 = a^2$, $\sqrt{x^2 + y^2} \operatorname{ch} \left(\operatorname{arctg} \frac{y}{x} \right) = a$ от точки A(a, 0, 0) до точки B(x, y, z).

Вычислить криволинейные интегралы 1-го рода, взятые вдоль пространственных кривых:

4237. $\int\limits_C (x^2+y^2+z^2) \ ds$, где C — часть винтовой линии

 $x = a \cos t$, $y = a \sin t$, z = bt $(0 \le t \le 2\pi)$.