MRBEE corrects measurement error and sample overlap biases in multivariable Mendelian Randomization

Noah Lorincz-Comi, Yihe Yang, Xiaofeng Zhu, Ph.D.

Department of Population and Quantitative Health St.

Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University njl96@case.edu

INTRO

- MR can estimate causal relationships between phenotypes using GWAS summary statistics
- Classic MR estimators are vulnerable to weak instrument, measurement error (ME), and sample overlap biases
- Bias in IVW:

$$\underbrace{\left(\frac{m}{M}\Sigma_{\beta\beta} + \frac{1}{m}\sum_{i=1}^{m}\Sigma_{UUi}\right)^{-1}}_{\text{weak instrument bias}} \underbrace{\frac{1}{m}\left(\sum_{i=1}^{m}\Sigma_{UVi} - \Sigma_{UUi}\Theta\right)}_{\text{ME \& sample overlap bias}}$$

 MRBEE is the first MR estimator to correct for these biases and allows multiple exposures and outcomes

METHODS

- We developed MRBEE, a multivariable MR estimator that adjusts for all known sources of bias in MR
- We demonstrate MRBEE in real data analysis
- Cardiometabolic risks of CAD in EAS and EUR
- Causal mediation tests using MRBEE
- Pleiotropy testing to identify pathways through which genes associate with CAD
- <u>Data</u>:
- GWAS summary statistics mainly from UKBB, BBJ
- Pleiotropy testing to identify pathways of genetic association with CAD

	East Asian		European	
	GWAS n	h ² _{SNP}	GWAS n	h ² _{SNP}
CAD	212k	0.13	194k	0.08
Height	159k	0.41	361k	0.42
BMI	158k	0.17	695k	0.17
HbA1c	43k	0.11	361k	0.18
LDL	73k	0.07	1.3M	0.10
Triglycerides	106k	0.12	1.3M	0.18
SBP	137k	0.08	758k	0.14
Hemoglobin	109k	0.07	361k	0.15
Uric acid	109k	0.14	361k	0.16
HDL	71k	0.16	1.3M	0.22

DISCUSSION

- MR methods used in practice are subject to bias for which no explicit correction has existed
- MRBEE is a multiple-exposure MR method that can adjust for known sources of bias in MR

Causal effect of BMI on CAD fully mediated by other phenotypes in East Asians but not Europeans

MRBEE

- Where the IVW estimating equation is S_{IVW} , $S_{MRBEE} = S_{IVW} \text{bias}(S_{IVW})$
- MR estimates causal effects Θ in $\hat{B}_i = \Theta^T \hat{A}_i + U_i$

$$\overrightarrow{\widehat{\Theta}}_{MRBEE} \stackrel{D}{\to} N\left(\Theta^0, \frac{1}{m}P^{-1}VP^{-1}\right)$$

Advantages

- Reduces confounding potential by including multiple exposures
- Robust to weak instrument, measurement error, sample overlap, and pleiotropy biases

Pleiotropy test

• Pleiotropy $H_{0i}: \gamma_i^* = 0$ vs $H_{1i}: \gamma_i^* \neq 0$ $SNPi \longrightarrow Exposures \longrightarrow Outcome(s)$ γ_i^*

- Purpose:
 - 1. Reduce bias in MR (remove pleiotropy)
 - 2. Identify pathways of genetic effects
- Can be performed genome-wide
- A SNP significant in GWAS testing but not pleiotropy testing affects CAD through the exposures

Software

github.com/noahlorinczcomi/MRBEE

References (PMIDs)

BBJ: Biobank Japan

(GWAS data) 34594039, 30239722, 34887591, 34887591, 30224653 (MR methods) 33226062, PMC6659377

Acronyms

MR: Mendelian Randomization

IVW: Inverse-variance weighted

IVW*: Pleiotropy-adjusted IVW

CAD: Coronary artery disease

EAS, EUR: East Asian, European

MRBEE: MR with bias-corrected estimating equations

UKBB: UK Biobank