Suites numériques

Idée. Une suite est une liste infinie de nombres, par exemple (1; 3; 5; 7; 9; 11; ...). **Définition.** Une **suite** est une fonction $u: \mathbb{N} \to \mathbb{R}$.

u est définie sur \mathbb{N} (entiers positifs) ou plus généralement, sur tous les entiers à partir d'un entier initial k.

Exemple. La liste des entiers naturels (0; 1; 2; 3; 4; ...) est une suite.

Exemple. La liste des multiples de 3 supérieurs à 6 : (6; 9; 12; 15; ...) est une suite.

Contre-Exemple. (1; 2; 3; 4) n'est pas une suite car c'est une liste finie.

Notations. Le n-ième nombre d'une suite est noté u_n

 u_n est le terme de rang n. Une suite u est aussi notée (u_n) ou plus précisément $(u_n)_{n\geq 0}$.

Attention : Ne pas confondre u_n qui est un nombre et (u_n) qui désigne la suite u.

Exemple. Si u=(1;3;5;7;...) est la suite des entiers impairs, alors $u_0=1$; $u_1=3$; $u_2=5$; $u_3=7$; ... Le rang initial est très souvent 0. Mais on peut aussi définir une suite $(u_n)_{n\geq k}$ avec un rang initial $k\geq 1$.

Vocabulaire. Définir une suite par une formule explicite, c'est donner u_n en fonction de n directement.

Exemples.

Soit la suite (u_n) définie par $u_n = n^2 - 1$ pour tout $n \in \mathbb{N}$. On a u = (-1; 0; 3; 8; 15; 24; ...)Soit la suite $(u_n)_{n \ge 6}$ définie à partir du rang 6 par $u_n = \frac{1}{n-5}$. On a $u = (u_6; u_7; u_8; ...) = \left(1; \frac{1}{2}; \frac{1}{3}; \frac{1}{4}; ...\right)$

Vocabulaire. Définir une suite par récurrence, c'est : donner une relation permettant de calculer un terme à partir d'un ou plusieurs termes précédents <u>ET</u> donner un ou plusieurs premiers termes.

Exemple. Soit la suite (u_n) définie par $\begin{cases} u_0 = -6 \\ u_{n+1} = 3u_n + 15 \\ u_{n+1} = 3u_n + 15 \end{cases}$ (suivant = $3 \times$ courant + 15) $u_1 = 3 \times (-6) + 15 = -3$ (autrement dit, on a remplacé n par $0 : u_1 = u_{0+1} = 3u_0 + 15$) $u_2 = 3 \times (-3) + 15 = 6$ (autrement dit, on a remplacé n par $1 : u_2 = u_{1+1} = 3u_1 + 15$) $u_3 = 3 \times (6) + 15 = 33$

Etc... u = (-6; -3; 6; 33; ...) Pour calculer chaque terme, on doit connaître le précédent.

Vocabulaire. Si le terme <u>courant</u> est u_n alors u_{n+1} est le terme <u>suivant</u>. u_{n-1} est le terme <u>précédent</u>. Remarque. <u>Attention</u> à ne pas confondre u_{n+1} (le terme suivant) et $u_n + 1$ (le terme courant + 1)

Exemple. Soit la suite (u_n) définie par $u_n = n^2 - 1$ pour tout $n \in \mathbb{N}$. Alors $u_{n+1} = (n+1)^2 - 1 = n^2 + 2n + 1 - 1 = n^2 + 2n$ mais $u_n + 1 = (n^2 - 1) + 1 = n^2$

Méthode. Pour représenter une suite dans un repère (voir 1.), on place les points de coordonnées $(n; u_n)$.

Méthode. Si la suite (u_n) est définie par récurrence, $(u_0 \in \mathbb{R} \text{ et } u_{n+1} = f(u_n))$, alors (voir 2.) on peut construire les termes à l'aide de la courbe représentative de la fonction f et de la droite d'équation f et de la droit

1 On considère la suite (u_n) définie par $u_n = 2n - 1$. 2 On considère la suite (u_n) définie par $u_{n+1} = f(u_n)$.

Définition. Une suite (u_n) est **croissante** ssi, pour tout entier $n \in \mathbb{N}$, $u_{n+1} \ge u_n$ **Définition.** Une suite (u_n) est **décroissante** ssi, pour tout entier $n \in \mathbb{N}$, $u_{n+1} \le u_n$ **Définition.** Une suite (u_n) est **constante** ssi, pour tout entier $n \in \mathbb{N}$, $u_{n+1} = u_n$

Si on remplace les inégalités larges par des inégalités strictes, on parle de suite **strictement croissante** ou **strictement décroissante**.

Exemples. (1;3;5;19;33;200;...) est le début d'une suite strictement croissante. (-11;-3;5;5;5;6;8;8;10;11;...) est le début d'une suite croissante (mais pas strictement). (6;2;0;-1;-3;-10;...) est le début d'une suite décroissante. (1;-1;2;-2;3;-3;...) n'est ni croissante, ni décroissante.

Méthode. Pour étudier les variations d'une suite, on peut comparer $u_{n+1} - u_n$ à 0.

Exemple. Soit (u_n) la suite définie par $u_0 = 5$ et, pour tout $n \in \mathbb{N}$, $u_{n+1} = u_n + n^2 + 1$. Soit $n \in \mathbb{N}$. $u_{n+1} - u_n = n^2 + 1 \ge 1 > 0$. Donc la suite (u_n) est strictement croissante.

Méthode. Pour étudier les variations d'une suite <u>à valeurs positives</u>, on peut comparer $\frac{u_{n+1}}{u_n}$ à 1.

Exemple. La suite (u_n) définie par $u_n=2^n$ pour tout $n\in\mathbb{N}$, est croissante. En effet :

Soit
$$n \in \mathbb{N}$$
. $\frac{u_{n+1}}{u_n} = \frac{2^{n+1}}{2^n} = 2 \text{ donc } \frac{u_{n+1}}{u_n} > 1$. (Donc $u_{n+1} > u_n$ puisque $u_n > 0$)

Méthode. Pour montrer qu'une suite n'est pas croissante, il suffit de trouver un n tel que $u_n > u_{n+1}$

Exemple. On note $u_n = (-1)^n$ pour $n \in \mathbb{N}$. $(u_n) = (1; -1; 1; -1; 1; -1; 1; ...)$

 (u_n) n'est pas croissante car pour n=0 on a : $u_0=1>u_1=-1$

 (u_n) n'est pas décroissante car pour n=1 on a : $u_1=-1 < u_2=1$

Exemples. Allure d'une suite croissante, d'une suite décroissante.

Remarque. La suite définie par $u_n = (-1)^n$ n'est pas croissante ni décroissante

Suites et limites

Idée. Soit l un réel. Une suite (u_n) a pour limite finie l si les termes u_n deviennent tous aussi proches de l que l'on veut en prenant n suffisamment grand. On dit aussi que (u_n) converge vers l, ou encore que u_n tend vers l quand n tend vers $+\infty$, et on note $\lim u_n = l$

Exemple.

On observe que les termes successifs de (u_n) semblent se rapprocher de 4. On peut conjecturer que (u_n) converge vers 4.

$$\lim_{n\to\infty}u_n=4$$

On observe que les termes successifs de (u_n) semblent se rapprocher de -2. On peut conjecturer que (u_n) converge vers -2.

$$\lim_{n\to\infty}u_n=-2$$

Idée.

Une suite (u_n) **a** pour limite $+\infty$ si les termes u_n deviennent tous aussi grands que l'on veut en prenant n suffisamment grand.

ldée.

Une suite (u_n) **a** pour limite $-\infty$ si les termes u_n deviennent tous aussi négativement grands que l'on veut en prenant n suffisamment grand.

On dit aussi:

 (u_n) diverge vers $+\infty$ u_n tend vers $+\infty$ quand ntend vers $+\infty$

On note : $\lim u_n = +\infty$

On dit aussi: (u_n) diverge vers $-\infty$ u_n tend vers $-\infty$ quand ntend vers $+\infty$

On note : $\lim u_n = -\infty$

Remarque. Une suite (u_n) peut n'avoir aucune limite. $(-1)^n$ n'a pas de limite quand n tend vers $+\infty$. Les termes ne deviennent ni de plus en plus grand, ni de plus en plus petits, ni ne se rapprochent d'un réel.

Suites arithmétiques et géométriques

Idée. Une suite (u_n) est **arithmétique** si on ajoute toujours le <u>même</u> nombre pour passer au terme suivant **Définition.** Une suite (u_n) est **arithmétique** s'il existe un réel r, tel que pour tout $n \in \mathbb{N}$, $u_{n+1} = u_n + r$ r est appelé **raison de la suite arithmétique** (u_n) .

Exemple. La suite (u_n) définie par $u_0 = -2$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = u_n + 3$ est la suite arithmétique de raison r = 3 et de premier terme $u_0 = -2$.

Propriété. Terme général d'une suite arithmétique. Soit (u_n) une suite arithmétique de raison r. Pour tout $n \in \mathbb{N}$, $u_n = u_0 + nr$ Deux termes distants de n rangs diffèrent de n fois la raison

Pour tout $n \in \mathbb{N}$, $u_n = u_1 + (n-1)r$

Pour tout $n \in \mathbb{N}$ et tout $p \in \mathbb{N}$, $u_n = u_p + (n-p)r$

Exemple. Soit (v_n) la suite définie par $v_0 = 3$ et pour tout $n \in \mathbb{N}$, $v_{n+1} = v_n - 0.5$.

Cette suite est arithmétique de raison r = -0.5 et de premier terme $v_0 = 3$.

Donc, pour tout $n \in \mathbb{N}$, $v_n = v_0 + r \times n = 3 - 0.5n$.

Remarque. Soit (u_n) une suite arithmétique de raison r.

La suite est strictement croissante si r > 0, strictement décroissante si r < 0, et constante si r = 0.

Idée. (u_n) est **géométrique** si on multiplie toujours par le <u>même</u> nombre pour passer au terme suivant **Définition.** (u_n) est **géométrique** s'il existe un réel q, tel que pour tout $n \in \mathbb{N}$, $u_{n+1} = u_n \times q$ est appelé **raison de la suite géométrique** (u_n) .

Exemple. La suite (u_n) définie par $u_0 = 0.5$ et, pour tout $n \in \mathbb{N}$, $u_{n+1} = 2u_n$ est la suite géométrique de raison q = 2 et de premier terme $u_0 = 0.5$.

Propriété. Terme général d'une suite géométrique. Soit (u_n) une suite géométrique de raison q. Pour tout $n \in \mathbb{N}$, $u_n = u_0 \times q^n$

Remarque. Si le rang initial est 1 il faut adapter la formule. Pour tout $n \in \mathbb{N}$, $u_n = u_1 \times q^{n-1}$

Remarque. Si le rang initial est p il faut adapter la formule. Pour tout $n \in \mathbb{N}$ et tout $p \in \mathbb{N}$, $u_n = u_p \times q^{n-p}$ **Exemple.** La suite (u_n) définie par $u_0 = 0.5$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = 2u_n$ est géométrique de raison q = 2 et de premier terme $u_0 = 0.5$, donc, pour tout $n \in \mathbb{N}$, $u_n = u_0 \times q^n = 0.5 \times 2^n$.

Propriété. Somme des n premiers entiers. Pour tout entier $n \ge 1$, on a $1 + 2 + \cdots + n = \frac{n(n+1)}{2}$

Propriété.

Somme de termes <u>consécutifs</u> d'une suite <u>arithmétique</u> = nombre de termes $\times \frac{(1^{er} \text{ terme} + \text{dernier terme})}{2}$

Exemple.
$$10 + 13 + 16 + 19 + 22 + 25 = 6 \times \frac{10+25}{2} = 105$$

Propriété. Somme des n premières puissances d'un réel différent de 1.

Soit q un réel $\neq 1$. Pour tout entier $n \geq 1$, $1 + q + q^2 + \dots + q^n = \frac{1 - q^{n+1}}{1 - q}$

Propriété. Somme de termes <u>consécutifs</u> d'une suite <u>géométrique</u> = 1^{er} terme $\times \frac{1-raison^{nombre de termes}}{1-raison}$

Exemple. $8 + 16 + 32 + 64 + 128 = 8 \times \frac{1-2^5}{1-2} = 8 \times \frac{-31}{-1} = 248$