ACÁMICA

¡Bienvenidos/as a Data Science!

Agenda

Presentación del Equipo Docente y de la metodología Acámica

Actividad: Presentación de estudiantes

Carrera: lineamientos, estructura y proyectos

Herramientas a utilizar: plataforma Acámica, Slack, Trello

Break

Introducción a Python

Actividad: instalamos Python y creamos nuestro primer proyecto

Cierre

Equipo Docente

Acámica

Somos una academia tecnológica que acompaña a las personas en su transformación digital.

Buscamos empoderar a las personas para ser protagonistas de la transformación del mundo.

nuestro MINDSET

#Student First

Todas las decisiones que tomamos están enfocadas en mejorar la experiencia de aprendizaje de nuestros estudiantes y darles una educación de primer nivel.

#Tech Driven

Nos apoyamos en la tecnología para dar una educación personalizada a escala, tanto en la distribución de conocimiento como en la interacción con nuestros alumnos y cuerpo de mentores.

#Community Based

Contratamos a mentores que trabajan de lo que enseñan, y diseñamos planes de estudio en función de las necesidades de las empresas de tecnología.

#Global Mindset

Nuestros planes de estudio y metodologías están diseñados para que cualquier persona en cualquier parte del mundo pueda aprender y convertirse en un/a profesional competente en el mundo digital.

Pasión por aprender

Motivación por hacer

Entusiasmo por colaborar

Pasión por aprender

Aprendemos continuamente con curiosidad y humildad.

Desafiamos constantemente nuestros límites.

Capitalizamos aciertos y aprendemos de nuestros errores.

Compartimos información abierta y proactivamente.

Valoramos todos los puntos de vista.

Motivación por hacer

Innovamos para generar valor.

Nos hacemos cargo de los resultados y los problemas.

Inspiramos a otros trabajando con excelencia.

Tomamos decisiones basadas en datos.

Ejecutamos con agilidad.

Entusiasmo por colaborar

Disfrutamos y valoramos trabajar en equipo.

Nos fortalecemos con nuestras diferencias.

Colaboramos de manera organizada e inteligente.

Damos feedback sincero y constructivo.

Reconocemos y celebramos nuestros logros.

Compartimos junto a nuestros estudiantes.

nuestra METODOLOGÍA

Aprendemos haciendo

La creación de productos concretos permite a los/as estudiantes generar soluciones creativas a problemáticas específicas.

Damos feedback que forma

Más allá de certificar que hayan aprendido los contenidos técnicos, buscamos ofrecer un feedback que los ayude a entender sus aciertos y oportunidades de mejora a lo largo del proceso de aprendizaje.

Aprendemos con otros/as

Promovemos clases con multiplicidad de disciplinas en las que se aprende co-creando y colaborando con pares y equipo docente.

Formamos profesionales

Trabajaremos la comunicación, la empatía y la colaboración en distintas instancias para formar egresados que aporten mucho más que saber técnico en los lugares de trabajo a los que ingresen.

Actividad: Nos vamos conociendo...

¿Qué es Data Science?

¿Qué es Data Science?

Es un campo **interdisciplinario** tanto en sus objetivos como en sus metodologías que busca:

DEFINICIÓN

Se definen las preguntas que queremos responder. ¿Cuáles datos necesitamos para responder esas preguntas?

INVESTIGACIÓN

Se obtienen los datos, se "limpian" y se procede a explorarlos.

ANÁLISIS

Los datos obtenidos se analizan con modelos (estadísticos, Machine Learning, etc.). Interpretamos los resultados y transformamos datos en información.

PRESENTACIÓN

Presentamos los resultados obtenidos y las conclusiones a las que llegamos. Puesta en producción.

DEFINICIÓN

INVESTIGACIÓN

ANÁLISIS

PRESENTACIÓN

Obtención de datos

Adecuación de datos

Exploración de datos

Herramientas fundamentales de un DATA SCIENTIST

- 1 Conocimientos de matemática y estadística
- 2 Conocimientos de **programación**
- 3 Algunos conocimientos del **tema específico**
- 4 Habilidad de **comunicar** resultados

Parientes y amigos

Probabilidad y Estadística

Bases de Datos

Data Mining, Big Data

Machine Learning - Aprendizaje Automático

Deep Learning - Redes Neuronales

Inteligencia Artificial

Carrera

- 6 meses
- 2 encuentros por semana
- 4 proyectos (7 entregas)

Cronograma de carrera

fase	BLOQUE 1 ADQUISICIÓN Y EXPLORACIÓN		BLOQUE 2 MODELADO				BLOQUE 3 DEPLOY
entrega	Exploración de datos	Feature Engineering	Regresión	Optimización de parámetros	Procesam. del lenguaje natural	Sistema de recomendación	Publicación de modelos
od	SEM 1	SEM 5	SEM 7	SEM 11	SEM 13	SEM 18	SEM 22
tiempo	SEM 2	SEM 6	SEM 8	SEM 12	SEM 14	SEM 19	SEM 23
	SEM 3		SEM 9		SEM 15	SEM 20	SEM 24
	SEM 4		SEM 10		SEM 16	SEM 21	
					SEM 17		

¿Tengo que saber algo de antemano?

- 1) Probabilidad y estadística (básico)
- 2) Programar (cualquier lenguaje, básico)
- 3) Usar la terminal (Windows, Mac, Ubuntu, etc.)

Saber leer inglés

Cursada · Modalidad

ENCUENTROS

Teoría & Ejercitación práctica
Repaso de temas vistos en encuentros
anteriores y/o en plataforma

Diremos lo que tienen que ver en plataforma para el encuentro siguiente + tareas adicionales según corresponda

PLATAFORMA

Teoría introductoria
Guías y checklists para realizar
proyectos
Entrega de proyectos

Proyectos · ¿Cómo me gradúo en Acámica?

Para graduarse / certificarse, ES OBLIGATORIO tener aprobados todos los proyectos de la carrera.

Proyectos · Condiciones de aprobación

Los/as evaluadores/as considerarán una entrega como **Aprobada** cuando el/la estudiante haya cumplido satisfactoriamente el 100% de los puntos que pide el checklist (aunque no los haya hecho a todos perfectos).

Caso contrario, el/la evaluador/a considerará la entrega como Para rehacer.

Nota: no hay un límite de iteraciones (el/la estudiante puede tener que rehacer su trabajo todas las veces que sea necesario hasta aprobar).

Proyectos · Evaluadores

Sus proyectos serán corregidos por evaluadores externos con el fin de:

- Asegurar una evaluación uniforme respecto de estas habilidades técnicas, que mantenga los estándares acordados en los programas académicos definidos por Acámica
- Emular metodologías laborales en las cuales quien recepciona los trabajos finales no es parte del equipo que desarrolló el proyecto
- Sumar otra voz profesional en el proceso de aprendizaje de la persona evaluada
- Promover un sistema de evaluación justo, neutral, a la vez que preciso y profundo

Proyectos · Evaluadores

¿Tienes dudas sobre la corrección de alguno de tus proyectos?

- Si no comprendes algo de la evaluación que recibiste, podrás escribirle al evaluador/a que corrigió tu proyecto por Slack para despejar dudas. Nota: no es responsabilidad del evaluador/a hacer mentoreo sobre los proyectos o contestar preguntas no relacionadas a una entrega corregida por él/ella.
- Si consideras que tu evaluación debe ser revisada, envía un correo a hola@acamica.com solicitando la revisión.
- Si la devolución de una entrega que realizaste tarda más de 5 días hábiles, escribe a
 hola@acamica.com para elevar el reclamo (si sabes el nombre del evaluador/a que tomó
 tu proyecto, puedes también escribirle por Slack para ver el estado de la evaluación).

Recomendaciones para proyectos

- 1) No podrás entregar un proyecto si no entregaste el anterior.
- 2) Agenda las fechas de entrega en tu calendario para no atrasarte en la clase.
- 3) Descarga los "Checklist" antes de comenzar tus proyectos para tener claridad sobre qué esperamos que entregues.
- 4) Los "Checklist" son la base. ¡Recomendamos ejercitar tu creatividad y personalizar los proyectos con tu impronta!

Extra: durante la cursada incentivamos el trabajo en proyectos propios, ya sea de forma individual o grupal, y la práctica de presentaciones orales.

Bibliografía MUY útil

Introducción a python:

https://learnxinyminutes.com/docs/python3/

Introducción a algunas de las librerías (y *bastante* más): https://jakevdp.github.io/PythonDataScienceHandbook/ Más en https://github.com/acamica/biblio-ds

Libro Divulgativo/Introductorio pero muy cercano a los contenidos de la carrera: *big data*, de Walter Sosa Escudero

Herramientas

slack

VIDEOS Y RECURSOS

Aquí podrán ver videos con contenido teórico de la carrera, y materiales para realizar los proyectos.

REPOSITORIO DE MATERIAL DE ENCUENTROS

Aquí subimos lo visto en encuentros, el Plan de estudios, links, bibliografía.

COMUNICACIÓN CLASE

¡Aquí nos comunicamos!

VIDEOS Y RECURSOS

Aquí podrán ver videos con contenido teórico de la carrera, y materiales para realizar los proyectos.

REPOSITORIO DE MATERIAL DE ENCUENTROS

Aquí subimos lo visto en encuentros, el Plan de estudios, links, bibliografía.

COMUNICACIÓN CLASE

¡Aquí nos comunicamos!

¿Tienen acceso?

¿Cómo dar feedback sobre tu experiencia en Acámica?

¡Queremos escucharte!

Tu equipo docente

Puedes plantearles tus dudas, sugerencias o reportar problemas que tengas con los encuentros, contenidos, sedes, conectividad... ¡ESTAMOS PARA ACOMPAÑARTE!

Encuestas

Haremos 4 encuestas de satisfacción a lo largo de la carrera:

- **1 checkpoint** en 2 semanas, para saber cómo comenzó tu experiencia
- 3 encuestas modulares (al finalizar cada bloque)

Community Care

Escríbenos a hola@acamica.com si tienes dudas o problemas que excedan a los encuentros o no puedas resolver con los docentes.

¿Qué es programar?

"Programar es darle instrucciones a la computadora para que realice una función específica." "Programar es darle instrucciones a la computadora para que realice una función específica."

¡ESTO NO ES UNA CARRERA DE PROGRAMACIÓN!

¿Y cómo lo vamos a hacer en esta carrera?

General purpose and high level programming language.

- Fácil de usar
- Rápido y eficiente
- Gran comunidad online
- Amplia cantidad de librerías específicas (¡pronto veremos qué son!)

1. Instalar Python

Vamos a instalar una distribución particular: Miniconda.

Si ya tienen instalado Anaconda está perfecto. Si tienen otra distribución, instalar Miniconda preferiblemente.

1) Ir al link y descargar la versión correspondiente a su sistema operativo. Importante: Python 3

Miniconda %

	Windows	Mac OS X	Linux
Python 3.7	64-bit (exe installer)	64-bit (bash installer)	64-bit (bash installer)
	32-bit (exe installer)	64-bit (.pkg installer)	32-bit (bash installer)

- 2) ¡Instalar!
- 3) Poner que "sí" a las preguntas que les haga

2. Comprobar instalación

Vamos a instalar una distribución particular: Miniconda.

1) Abrir una terminal (¡¿Qué es eso?!)

```
❷ ■ tele@locadelosgatos: ~
tele@locadelosgatos:~$ python
```

- 2) Tipear "python"
- 3) Fijarse qué versión de Python les aparece
- 4) Poner "2+5"

3. Abrir entorno de trabajo en Jupyter

Como trabajar desde la terminal es incómodo, vamos a usar notebooks de Jupyter:

4. Crear un environment

Conda nos permite crear ambientes (environments) de trabajo e instalar librerías.

No es obligatorio para trabajar con Python, pero sí conveniente.

Al principio parece un poco oscuro. No se preocupen, ya va a quedar más claro.

4. Crear un environment (cont.)

¿Cómo se hace?

- 1. Poner en la terminal "conda create --name datascience".
- 2. Activar el ambiente: "conda activate datascience"
- Instalar las librerías Jupyter, Notebook y JupyterLab: "conda install jupyter notebook jupyterlab"
- 4. Comprobar que anduvo: "jupyter lab". Debería abrirles una pestaña en su navegador.

4. Crear un environment (cont.)

1. Crear un Notebook vacío

- 1. Crear un Notebook vacío
- 1. Crear una variable nombre y asignarle su nombre
 ¿Qué ocurre si no ponemos las comillas?¿Y si en lugar de comillas simples usamos dobles?

- 1. Crear un Notebook vacío
- 1. Crear una variable nombre y asignarle su nombre []: nombre = 'Esteban'
 ¿Qué ocurre si no ponemos las comillas?¿Y si en lugar de comillas simples usamos dobles?
- 1. Crear una variable edad y asignarle su edad ¿Qué ocurre si ponemos el número entre comillas?¿Cuál será la diferencia?¿Y si ponemos un número "con coma"?

- 1. Crear un Notebook vacío
- 1. Crear una variable nombre y asignarle su nombre []: nombre = 'Esteban'
 ¿Qué ocurre si no ponemos las comillas?¿Y si en lugar de comillas simples usamos dobles?
- 1. Crear una variable edad y asignarle su edad [1: edad = 31]
 ¿Qué ocurre si ponemos el número entre comillas?¿Cuál será la diferencia?¿Y si ponemos un número "con coma"?
- 1. Imprimir en pantalla su nombre y edad

 ¿Alguna forma es mejor?

 []: print('Mi nombre es', nombre,'. Mi edad es ', edad, 'anios')

 []: print('Mi nombre es {}. Mi edad es {} anios'.format(nombre, edad))

Hands-on training: Ejercicio de código

Hands-on training

1. La edad de mi compañer@

Copiar la edad del compañero/a que esté más cerca.

- 1. Obtener la diferencia entre tu edad y la de él/ella.
- 2. Decidir (usando Python) cuál edad es mayor.
 - Sumarle 50 años a la edad menor
 []: edad = edad + 50

 Supusimos que la edad menor era edad

 Supusimos que la edad menor era edad

[]: edad < edad compa</pre>

Hands-on training

2. Lista numérica

1. Imprimir en pantalla los primeros 10 números naturales (0,...,9)

¿Siempre tendremos que escribir los números en una lista "a mano"?

```
[]: primeros_10 = [0,1,2,3,4,5,6,7,8,9]
```

2. Imprimir únicamente los cinco primeros números pares.

¿Habrá una forma mejor de hacerlo?

Recomendaciones para programar

- 1) Comentar el código en voz alta ayuda a aprender y a entender lo que estás haciendo.
- 2) No tengas miedo de hacer, romper y arreglar.
- 3) La frustración es una buena señal ("Get things done").
- 4) Pedir la opinión de tus compañeros/as y mentores/as sobre tu código.
- 5) Busca crecer en comunidad (Medium, Github, Slack Stackoverflow, etc).
- 6) Pide ayuda a tu mejor amigo:

Para la próxima

- 1) Suscribirse a los canales (Plataforma, Trello y Slack)
- 2) Ver los videos de la plataforma hasta Herramientas de Data Science (nivel II)
- Si no lo hicieron, instalar una versión de Python y crear el ambiente.
 - a) Abrir un entorno de trabajo en Jupyter

