Tree Data Structure

Trees – A Nonlinear Approach to Data Organization

- Productivity experts often emphasize "nonlinear" thinking as a key to innovation and breakthroughs.
- In computing, trees are a primary example of a nonlinear structure, offering a powerful way to organize and access data more efficiently than linear structures, such as lists.

Trees – A Nonlinear Approach to Data Organization Question: Imagine you're looking for a book in a large library where all the books are arranged in a single row. How efficient would it be to find a specific book if you had to walk through every title one by one?

Ans: This linear arrangement would be slow and impractical. A tree structure would organize the library hierarchically: starting with broad categories (like Fiction and Non-Fiction), then genres (e.g., Mystery, History), and finally individual shelves for each genre. With this structure, you can go directly to the relevant section, saving time and making it easy to find specific books.

Why Trees Are Essential in Data Organization:

- Trees provide a natural hierarchy for organizing data, making them fundamental to systems like file directories, databases, websites, and GUIs.
- With trees, algorithms can be implemented more quickly and efficiently, allowing for faster performance in data-intensive applications.

Understanding Nonlinearity in Trees:

- Trees are "nonlinear" because their structure is hierarchical rather than sequential.
 - In a tree, relationships aren't simply "before" or "after"; instead, they form a hierarchy where some nodes are "above" others (parents) and some are "below" (children).
 - This hierarchy closely resembles family trees, giving rise to terms like parent, child, ancestor, and descendant to define relationships.

Formal Defination of Tree

- Tree: an ADT that stores elements hierarchically
- Each element has
 - A parent element
 - Zero or more child elements
 - Root: top element

Formal Defination of Tree

Definition: A tree T is a set of nodes storing elements and a parent-child relation

If T is non-empty, it has a special node, called ro ot of T, that has no parent

Every non-root node has a unique parent w; every node with parent w is a child of w

Basic Terms

Sibling: two nodes that are children of the sam e parent

External node (leaves): a node v is external if i t has no children

Internal node: a node v is internal if it has one or more children

Ancestor: u is an ancestor of v if u = v or u is a n ancestor of the parent of v

Descendant: v is a descendant of u if u is an a ncestor of v

Basic Terms

Subtree of T rooted at v: the tree consisting of all the descendants of v in T (including v itself)

Edge: an edge of tree T is a pair of nodes (u, v) such that u is the parent of v, or vice versa

Path: a path of T is a sequence of nodes such that any two consecutive sequence form an edge

TREE with 11 nodes and 10 edges

- In any tree with 'N' nodes there will be maximum of 'N-1' edges
- In a tree every individual element is called as 'NODE'

- In any tree, 'Edge' is a connecting link between two nodes.

Here A, B, C, E & G are Parent nodes

- In any tree the node which has child / children is called 'Parent'
- A node which is predecessor of any other node is called 'Parent'

Here B & C are Children of A Here G & H are Children of C Here K is Child of G

descendant of any node is called

Here B & C are Siblings
Here D E & F are Siblings
Here G & H are Siblings
Here I & J are Siblings

- In any tree the nodes which has same Parent are called 'Siblings'
- The children of a Parent are called 'Siblings'

Here D, I, J, F, K & H are Leaf nodes

- In any tree the node which does not have children is called 'Leaf'
- A node without successors is called a 'leaf' node

Here Height of tree is 3

- In any tree, 'Height of Node' is total number of Edges from leaf to that node in longest path.
- In any tree, 'Height of Tree' is the height of the root node.

Here Depth of tree is 3

- In any tree, 'Depth of Node' is total number of Edges from root to that node.
- In any tree, 'Depth of Tree' is total number of edges from root to leaf in the longest path.

 In any tree, 'Path' is a sequence of nodes and edges between two nodes.

Here, 'Path' between A & J is

Here, 'Path' between C & K is C - G - K

Tree Traversal

Tree Traversal

• Tree traversal refers to the process of visiting each node in a tree data structure in a specific order.

Tree Traversal Technique s

Tree Traversal Techniques

Breadth-First Search (BFS)

- BFS explores all nodes at the current depth level before moving on to the next level.
- Use Queue DS

Depth-First Search (DFS)

- DFS explores as far as possible along each branch before backtracking.
- Use Stack Ds

Level Order Traversal (Breadth First Search or BFS)

• Level Order Traversal technique is defined as a method to traverse a Tree such that all nodes present in the same level are traversed completely before traversing the next level.

Output: 1 2 3 4 5

Depth First Search

In-Order Traversal (Left, Root, Right)

Pre-Order Traversal (Root, Left, Right)

Post-Order Traversal (Left, Right, Root)

In-Order Traversal (Left, Root, Right)

 Inorder traversal visits the node in the order: Left -> Root -> Right

Pre-Order Traversal (Root, Left, Right)

 Preorder traversal visits the node in the order: Root -> Left -> Right

Post-Order Traversal (Left, Right, Root)

 Pos-torder traversal visits the node in the order: Left -> Right -> Root

Binary Tree

Binary Tree

 A binary tree is a tree-type non-linear data structure with a maximum of two children for each parent.

Representation of Binary Tree

Each node in a Binary Tree has three parts:

- Data
- Pointer to the left child
- Pointer to the right child


```
class Node {
int key;
Node left, right;
public Node(int item) {
key = item;
left = right = null;
```


Why use binary trees

- Efficiency in Search Operations
 - Binary Search Tree (BST)
- Simplified Traversals
 - Binary trees have a clear structure with a left and right child for each node.
 - allows for efficient tree traversals (in-order, pre-order, post-order, and level-order)
- Memory Efficiency
 - In binary trees, each node typically contains two pointers to its children whereas general trees may require a more complex structure
- Balanced Tree Structures for Sorting
 - AVL and Red Black Tree for efficient sorting algorithms

Full Binary Tree

 A full binary tree is a binary tree with either zero or two child nodes for each node.

Degenerate Binary Tree

Every **non-leaf node** has just **one** child in a binary tree known as a **Degenerate Binary tree**. The tree effectively transforms into a linked list as a result, with each node linking to its **single** child.

Degenerate Binary Tree

Degenerate Binary tree is of two types:

- Left-skewed Tree: If all the nodes in the degenerate tree have only a left child.
- Right-skewed Tree: If all the nodes in the degenerate tree have only a right child.

Skewed Binary Tree

A skewed binary tree is a type of binary tree in which all the nodes have only either one child or no child.

Complete Binary Tree

A complete binary tree is a special type of binary tree where all the levels of the tree are filled completely except the lowest level nodes which are filled from as left as possible.

Perfect Binary Tree

A perfect binary tree is a special type of binary tree in which all the leaf nodes are at the same depth, and all non-leaf nodes have two children.

Balanced Binary Tree

• It is a type of binary tree in which the difference between the height of the left and the right subtree for each node is either 0 or 1.

Balanced Binary Tree

Unbalanced Binary Tree

Depth of a node (d) = [height of left child - height of right child]

Binary Search Tree

- A Binary Search Tree (or BST) is a data structure used in computer science for organizing and storing data in a sorted manner.
- Each node in a Binary Search Tree has at most two children, a left child and a right child
- left child containing values less than the parent node and the right child containing values greater than the parent node.

Binary Search Tree

- A Binary Search Tree (or BST) is a data structure used in computer science for organizing and storing data in a sorted manner.
- Each node in a Binary Search Tree has at most two children, a left child and a right child
- left child containing values less than the parent node and the right child containing values greater than the parent node.

Binary Search Tree

 This hierarchical structure allows for efficient searching, insertion, and deletion operations on the data stored in the tree.

AVL Tree

An AVL tree defined as a self-balancing Binary Search Tree (BST) where the difference between heights of left and right subtrees for any node cannot be more than one.

- Rotating the subtrees in an AVL Tree:
- An AVL tree may rotate in one of the following four ways to keep itself balanced:
 - Left Rotation
 - Right Rotation
 - Left-Right Rotation
 - Right-Left rotation

Red-Black Tree

- A **Red-Black Tree** is a self-balancing <u>binary search tree</u> where each node has an additional attribute: a color, which can be either **red** or **black**.
- The primary objective of these trees is to maintain balance during insertions and deletions, ensuring efficient data retrieval and manipulation.

Red-Black Tree

Red-Black Tree

Properties of Red-Black Trees: A <u>Red-Black Tree</u> have the following properties:

- Node Color: Each node is either red or black.
- Root Property: The root of the tree is always black.
- Red Property: Red nodes cannot have red children (no two consecutive red nodes on any path).
- Black Property: Every path from a node to its descendant null nodes (leaves) has the same number of black nodes.
- Leaf Property: All leaves (NIL nodes) are black.

Red Black Tree

Example of Red-black Tree

A inorrect Red-black Tree

A correct Red-black Tree

We will discuss the following Binary tree types in detail:

- Binary Search Tree
- AVL Tree
- Red Black Tree

Binary Search Tree

Binary Search Tree

- A binary search tree follows some order to arrange the elements.
- •In a Binary search tree, the value of left node must be smaller than the parent node, and the value of right node must be greater than the parent node.
- •This rule is applied recursively to the left and right subtrees of the root.

Binary Search Tree

 Suppose if we change the value of node 35 to 55 in the above tree, check whether the tree will be binary search tree or not.

Binary Search Tree

Advantages of Binary search tree

- Searching an element in the Binary search tree is easy as we always have a hint that which subtree has the desired element.
- As compared to array and linked lists, insertion and deletion operations are faster in BST.

Example of creating a binary search tree

Now, let's see the creation of binary search tree using an example.

Suppose the data elements are - 45, 15, 79, 90, 10, 55, 12, 20, 50

- First, we have to insert 45 into the tree as the root of the tree.
- Then, read the next element; if it is smaller than the root node, insert it as the root of the left subtree, and move to the next element.
- Otherwise, if the element is larger than the root node, then insert it as the root of the right subtree.

sertion Algorithm

```
Algorithm Insert(root, key)
  Input: root - root node of the binary search tree
      key - integer value to be inserted into the tree
  Begin
    // Step 1: If the tree is empty, create a new node and return it
    If root is null Then
       Return new Node(key)
    End If
    // Step 2: If the key already exists in the tree, return the root node
    If root.key == key Then
       Return root
    End If
    // Step 3: Recur down the tree
    If key < root.key Then
       root.left = Insert(root.left, key)
    Else
      root.right = Insert(root.right, key)
    End If
    // Step 4: Return the unchanged root node
    Return root
  End
```

Pseudocode

 Pseudocode is a way of representing an algorithm in a structured, plain-language format that's easy to understand, regardless of programming language.

Searching in Binary search tree

Searching means to find or locate a specific element or node in a data structure. In Binary search tree, searching a node is easy because elements in BST are stored in a specific order. The steps of searching a node in Binary Search tree are listed as follows –

- First, compare the element to be searched with the root element of the tree.
- If root is matched with the target element, then return the node's location.

0

- If it is not matched, then check whether the item is less than the root element, if it is smaller than the root element, then move to the left subtree.
- If it is larger than the root element, then move to the right subtree.
- Repeat the above procedure recursively until the match is found.
- If the element is not found or not present in the tree, then return NULL.

Searching in Binary search tree

We are taking the binary search tree formed above.
 Suppose we have to find node 20 from the below tree.

Searching in Binary search Tree

Algorithm to search an element in Binary search tree

```
Search (root, item)
Step 1 - if (item = root \rightarrow data) or (root = NULL)
return root
else if (item < root → data)
return Search(root → left, item)
else
return Search(root → right, item)
END if
Step 2 - END
```

In a binary search tree, we must delete a node from the tree by keeping in mind that the property of BST is not violated. To delete a node from BST, there are three possible situations occur –

- The node to be deleted is the leaf node, or,
- The node to be deleted has only one child, and,
- The node to be deleted has two children

When the node to be deleted is the leaf node

• It is the simplest case to delete a node in BST. Here, we have to replace the leaf node with NULL and simply free the allocated space.

When the node to be deleted has only one child

• In this case, we have to replace the target node with its child, and then delete the child node. suppose we have to delete the node 79,

When the node to be deleted has two children

- This case of deleting a node in BST is a bit complex among other two cases.
- In such a case, the steps to be followed are listed as follows –
 - 1. First, find the inorder successor of the node to be deleted.
 - 2. After that, replace that node with the inorder successor until the target node is placed at the leaf of tree.
 - 3. And at last, replace the node with NULL and free up the allocated space.

In-order successor

In a binary search tree (BST), the **inorder successor** of a node is the node that would come directly after it in an **inorder traversal** (left-root-right traversal) of the tree.

In simple terms:

1. Definition: The in-order successor of a node is the smallest node that is larger than the given node.

If the node has a **right subtree**, the in-order successor is the **leftmost node in the right subtree**.

Algorithm

Time Complexity

Operations	Best Case	Average Case	Worst Case
Insertion	O(logn)	O(logn)	O(n)
Deletion	O(logn)	O(logn)	O(n)
Search	O(logn)	O(logn)	O(n)

AVL Tree

AVL Tree

- An **AVL tree** defined as a self-balancing <u>Binary Search Tree</u> (BST) where the difference between heights of left and right subtrees for any node cannot be more than one.
- The difference between the heights of the left subtree and the right subtree for any node is known as the **balance factor** of the node.
- The AVL tree is named after its inventors, Georgy Adelson-Velsky and Evgenii Landis, who published it in their 1962 paper "An algorithm for the organization of information".

AVL Tree : Example

Operations on an AVL Tree:

Searching [It is similar to performing a search in BST]

Rotating the subtrees in an AVL Tree:

- An AVL tree may rotate in one of the following four ways to keep itself balanced:
 - Left Rotation
 - 2. Right Rotation
 - 3. Left Right Rotation
 - 4. Right Left Rotation

AVL Tree: Left Rotation

• When a node is added into the right subtree of the right subtree, if the tree gets out of balance, we do a single left

rotation.

AVL Tree: Right Rotation

• If a node is added to the left subtree of the left subtree, the AVL tree may get out of balance, we do a single right rotation.

AVL Tree

AVL Tree: Left-Right Rotation

• A left-right rotation is a combination in which first left rotation takes place after that right rotation executes.

AVL Tree: Right-Left-Rotation

• A right-left rotation is a combination in which first right rotation takes place after that left rotation executes.

vantages

AVL trees can self-balance themselves and therefore provides time complexity as O(Log n) for search, insert and delete.

It is a BST only (with balancing), so items can be traversed in sorted order.

Since the balancing rules are strict compared to Red Black Tree, AVL trees in general have relatively less height and hence the search is faster.

AVL tree is relatively less complex to understand and implement compared to Red Black Trees.

It is difficult to implement compared to normal BST and easier compared to Red Black

Less used compared to Red-Black trees.

Due to its rather strict balance, AVL trees provide complicated insertion and removal operations as more rotations are performed.

Red-Black Tree