0.1 应用题

1.	矩阵对角化和表象变换
1.	ハニドナハナハナ ロイロッペッパンペナス

(a) 对角化矩阵 L 就是去找到幺正变换 V,使得 $L=V\Lambda V^\dagger$,其中 Λ 是一个对角矩阵,它的对角元是本征值. V 是一个幺正矩阵,它的列矢量是本征矢,和 Λ 中的本征值一一对应. 找到一个能对角化 **Pauli** 矩阵 $\sigma^x=\begin{pmatrix}0&1\\1&0\end{pmatrix}$ 的幺正矩阵 V,并找到 σ^x 的本征值.

(b) 自旋 1/2 的自旋角动量算符 \vec{S} 的三个分量为 S^x , S^y , S^z . 如果采用 S^z 表象,它们的矩阵表示为 $\vec{S} = \frac{\hbar}{2} \vec{\sigma}$, 其中 $\vec{\sigma}$ 的三个分量为 **Pauli** 矩阵 σ^x , σ^y , σ^z . 现在考采用 S^x 表象,请列出 S^x 表象中你约定的基矢顺序,并求出在该表象下算符 \vec{S} 的三个分量的矩阵表示.

2. 谐振子问题

一维谐振子的哈密顿量为

$$H = \frac{p^2}{2m} + \frac{1}{2}m\omega^2 x^2$$

坐标算符 x 和动量算符 p 满足对易式 $[x,p]=i\hbar$ 对动量算符和坐标算符进行重新标度

$$p = P\sqrt{\hbar m\omega}, \quad x = Q\sqrt{\frac{\hbar}{m\omega}}$$

注意新的坐标算符 Q 和动量算符 P 是无量纲的,哈密顿量重新写为

$$H=\frac{1}{2}\hbar\omega(P^2+Q^2)$$

引入玻色子产生和湮灭算符, a^{\dagger} 和 a.

$$a = \frac{1}{\sqrt{2}} (Q + iP), \quad a^{\dagger} = \frac{1}{\sqrt{2}} (Q - iP)$$

(a) 计算 [Q, P], $[a, a^{\dagger}]$, $[a, a^{\dagger}a]$, $[a^{\dagger}, a^{\dagger}a]$;

(b) 将哈密顿量 H 用 a 和 a^{\dagger} 表示. 并求出全部能级;

(c) 在能量表象中, 计算 a 和 a^{\dagger} 的矩阵元.

3. 角动量耦合

两个大小相等,属于不同自由度的角动量 $\vec{J_1}$ 和 $\vec{J_2}$ 耦合成总角动量 $\vec{J}=\vec{J_1}+\vec{J_2}$,设 $\vec{J_1}^2=\vec{J_2}^2=j(j+1)\hbar^2$, $J=2j,2j-1,\cdots,1,0$. 在总角动量量子数 J=0 的状态下,求 $J_{1,z}$ 和 $J_{2,z}$ 的可能取值及相应概率.

4. 自旋-1 模型

考虑自旋-1 体系,自旋算符为 \vec{S} ,考虑 (\vec{S}^2,S^z) 表象,基矢顺序为 $|1,1\rangle$, $|1,0\rangle$, $|1,-1\rangle$,简记为 $|+1\rangle$, $|0\rangle$, $|-1\rangle$.设 $\hbar=1$. (a) 写出 S^x 和 S^z 的矩阵表示.

(b) 考虑哈密顿量 $H(\lambda) = H_0 + \lambda V$, 其中 $H_0 = (S^z)^2$, $V = S^x + S^z$.	. 考虑为 λV 微扰,利用微扰论计算微扰后的各能级
和各能态,其中能级微扰准确到一阶,能态微扰准确到一阶,	

5. 均匀电子气

考虑三维相互作用均匀电子气, 哈密顿量为 $H=H_0+H_I$. 考虑系统体积为 $V=L^3$, 每个方向的系统尺寸为 L. 采用箱 归一化, 所以 \vec{k} 是离散的, $\vec{k}=\frac{2\pi}{L}(n_x,n_y,n_z)$, n_x , n_y , n_z 为整数. 采用二次量子化的语言, 可给出哈密顿量在动量空间的形式. H_0 为单体部分:

$$H_0 = \sum_{\vec{k}\sigma} \varepsilon_{\vec{k}} c_{\vec{k}\sigma}^{\dagger} c_{\vec{k}\sigma}$$

其中 $\varepsilon_{\vec{k}}=\frac{\hbar^2\vec{k}^2}{2m}$ 是自由电子的色散关系. 用 ε_F 表示费米能, k_F 表示费米波矢的大小. H_I 为两体相互作用部分,

$$H_{I} = \frac{1}{2V} \sum_{\vec{k}_{1}, \vec{k}_{2}, \vec{q}} \sum_{\sigma \sigma'} v(q) c_{\vec{k}_{1} + \vec{q}, \sigma}^{\dagger} c_{\vec{k}_{2} - \vec{q}, \sigma'}^{\dagger} c_{\vec{k}_{2} \sigma'} c_{\vec{k}_{1} \sigma}$$

v(q) 是相互作用 v(x) 的傅里叶变换形式, $q=|\vec{q}|$, $x=|\vec{x}|$,

$$v(q) = \frac{1}{V} \int v(x) e^{-i\vec{q}\cdot\vec{x}} \mathrm{d}^3\vec{x}$$

这里我们考虑短程势, 也就是说 v(q=0) 不发散.

自由电子气零温下处于电子填充到费米能 ε_F 的费米海态(Fermi sea state), 简记为 FS, 利用费米子产生算符作用到真空态上可以表示 FS 态为

$$|\mathbf{FS}\rangle = \prod_{k < k_F, \sigma} c_{\vec{k}\sigma}^{\dagger} |0\rangle$$

	数密度 n 的函数.		
(b)	计算能量的一阶修正 $E^{(1)} = \langle \mathbf{FS} H_I \mathbf{FS} \rangle$.		

(a) 考虑零温下的自由电子气, 计算总粒子数 N 和粒子数密度 n, 计算总能量 $E^{(0)}$ 并把总能量密度 $E^{(0)}/V$ 表示成粒子

(c) 利用 Hatree Fock 平均场近似,并假设平均场参数是自旋对角	
们期待 $\left\langle c_{ec{k}\sigma}^{\dagger}c_{ec{k}'\sigma'} ight angle = \left\langle c_{ec{k}\sigma}^{\dagger}c_{ec{k}\sigma} ight angle \delta_{ec{k},ec{k}'}\delta_{\sigma,\sigma'}$,以及 $\left\langle c_{ec{k}\uparrow}^{\dagger}c_{ec{k}\uparrow} ight angle = \left\langle c_{ec{k}\downarrow}^{\dagger}\right\rangle$	$ c_{ec k \perp}\rangle$. 计算系统总能量,并与 $E^{(0)}+E^{(1)}$ 比较大小.

6. 量子转子模型

量子转子的角度坐标 $\theta \in [0,2\pi)$, 注意 $\theta \pm 2\pi$ 和 θ 是等价的. 用 $|\theta\rangle$ 表现 $\hat{\theta}$ 算符的本征态, $|\theta \pm 2\pi\rangle$ 和 $|\theta\rangle$ 是相同的态. 定义量子转子的转动算符为 $\hat{R}(\alpha)$,

$$\hat{R}(\alpha) = \int_0^{2\pi} d\theta |\theta - \alpha\rangle\langle\theta|$$

所以 $\hat{R}(\alpha)|\theta\rangle = |\theta - \alpha\rangle$, 并且 $\hat{R}(2\pi)$ 是单位算符.

转动算符 $\hat{R}(\alpha)$ 是一个幺正算符,它的产生子为厄米算符 \hat{N} ,与量子转子的角动量算符 \hat{L} 的关系为 $\hat{L}=\hbar\hat{N}$,所以 $\hat{R}(\alpha)=e^{i\hat{N}\alpha}$,在 $\hat{\theta}$ 表象下可求得 $\hat{N}=-i\frac{\partial}{\partial\theta}$.

考虑一个特定的量子转子模型,它的哈密顿量为

$$H = \frac{1}{2} \left(\hat{N} - \frac{1}{2} \right)^2 - g \cos \left(2\hat{\theta} \right)$$

其中 $g\cos\left(2\hat{\theta}\right)$ 是一个小的外势,可以当成微扰处理。假设 $|N\rangle$ 是算符 \hat{N} 的本征态,本征值为 N,即 $\hat{N}|N\rangle=N|N\rangle$. 可计算出 $|N\rangle$ 用 $|\theta\rangle$ 展开为

$$|N\rangle = \frac{1}{\sqrt{2\pi}} \int_0^{2\pi} e^{iN\theta} |\theta\rangle$$

(a) 利用 $\hat{R}(2\pi)$ 是单位算符证明 N 必须是整数.

(b) 考虑无微扰时的哈密顿量 $H_0=\frac{1}{2}\left(\hat{N}-\frac{1}{2}\right)^2$,证明 $|N\rangle$ 也是 H_0 的本征态,并求出本征能量,证明每个能级都是两重简并的。

(c) 采用 $\{|N\rangle\}$ 作为基组, 写出微扰项 $V=-g\cos\left(2\hat{\theta}\right)$ 的表示矩阵, 并证明微扰不会连接简并的能级(即如果 $|N\rangle$ 和 $|N'\rangle$ 简并, 那么 $\langle N|V|N'\rangle$). 因此尽管 H_0 的能级是简并的, 我们仍然可以使用非简并微扰论.

(d) 计算每个能级 E_N 的微扰修正到 g 的二阶, 并证明此时所有的能级简并仍然没有被解除.