CLASSIFICATION METHODS

Nearest-Neighbor classifiers

instance-based learning

eager learners

- (1) constructing a classification model from data
- (2) applying the model to test examples

uses specific training instances to make predictions without having to maintain an abstraction (or model) derived from data

Atr1	 AtrN	Class
		A
		В
		В
		С
		A
		C
		В

Lazy learners

Nearest-Neighbor classifiers

Rote-learner

* Memorizes entire training data and performs classification only if attributes of record match one of the training examples exactly

Nearest neighbor

❖ Uses k "closest" points (nearest neighbors) for performing classification

Nearest Neighbor Classifiers

□ Basic idea:

□ If it walks like a duck, quacks like a duck, then it's probably a duck

Nearest-Neighbor Classifiers

- Requires three things
 - The set of stored records
 - Distance Metric to compute distance between records
 - The value of k, the number of nearest neighbors to retrieve
- To classify an unknown record:
 - Compute distance to other training records
 - Identify k nearest neighbors
 - Use class labels of nearest neighbors to determine the class label of unknown record (e.g., by taking majority vote)

Majority Voting:
$$y' = \underset{v}{\operatorname{argmax}} \sum_{(\mathbf{x}_i, y_i) \in D_z} I(v = y_i)$$

Definition of Nearest Neighbor

K-nearest neighbors of a record x are data points that have the k smallest distance to x

Nearest-Neighbor Classifiers

Choosing the value of k:

- If k is too small, sensitive to noise points
- If k is too large, neighborhood may include points from other classes

Nearest-Neighbor Classifiers

Distance-Weighted Voting:
$$y' = \underset{v}{\operatorname{argmax}} \sum_{(\mathbf{x}_i, y_i) \in D_z} w_i \times I(v = y_i)$$

$$w_i = 1/d(\mathbf{x}', \mathbf{x}_i)^2$$

- √ Lazy learners
- √ Nearest-neighbor classifiers can produce arbitrarily shaped decision boundaries
- √ appropriate proximity measure
- √ data preprocessing steps

Bayes Classifier

- □ A probabilistic framework for solving classification problems P(A, C)
- Conditional Probability:

$$P(C \mid A) = \frac{P(A,C)}{P(A)}$$

$$P(A \mid C) = \frac{P(A,C)}{P(C)}$$

Bayes theorem:

$$P(C|A) = \frac{P(A|C)P(C)}{P(A)}$$

Example of Bayes Theorem

□ Given:

- A doctor knows that meningitis causes stiff neck 50% of the time
- \blacksquare Prior probability of any patient having meningitis is 1/50,000
- \blacksquare Prior probability of any patient having stiff neck is 1/20
- If a patient has stiff neck, what's the probability he/she has meningitis?

$$P(M \mid S) = \frac{P(S \mid M)P(M)}{P(S)} = \frac{0.5 \times 1/50000}{1/20} = 0.0002$$

Bayesian Classifiers

- Consider each attribute and class label as random variables
- \square Given a record with attributes $(x_1, x_2, ..., x_n)$
 - Goal is to predict class Y
 - □ Specifically, we want to find the value of Y that maximizes $P(Y | x_1, x_2,...,x_n)$
- □ Can we estimate $P(Y | x_1, x_2,...,x_n)$ directly from data?

Bayesian Classifiers

- Approach:
 - □ compute the posterior probability $P(Y \mid x_1, x_2, ..., x_n)$ for all values of Y using the Bayes theorem

$$P(Y \mid x_1 x_2 ... x_n) = \frac{P(x_1 x_2 ... x_n \mid Y) P(Y)}{P(x_1 x_2 ... x_n)}$$

- □ Choose value of Y that maximizes $P(Y \mid x_1, x_2, ..., x_n)$
- Equivalent to choosing value of Y that maximizes $P(x_1, x_2, ..., x_n \mid Y) P(Y)$
- □ How to estimate $P(x_1, x_2, ..., x_n \mid Y)$?

Naïve Bayes Classifier

- Assume independence among attributes A_i when class is given:
 - $P(x_1, x_2, ..., x_n | Y) = P(x_1 | Y_i) P(x_2 | Y_i)... P(x_n | Y_i)$
 - \blacksquare Can estimate $P(x_i | Y_i)$ for all x_i and Y_i .
 - New point is classified to Y_i if $P(Y_i) \prod P(x_i | Y_i)$ is maximal.

How to Estimate Probabilities from Data?

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

 \square Class: $P(Y_k) = N_k/N$

e.g.,
$$P(No) = 7/10$$
, $P(Yes) = 3/10$

□ For discrete attributes:

$$P(x_i \mid Y_k) = |x_{ik}|/N_k$$

- where |x_{ik}| is number of instances having attribute x_i and belongs to class Y_k
- Examples:

$$P(Status=Married | No) = 4/7$$

 $P(Refund=Yes | Yes)=0$

How to Estimate Probabilities from Data?

- □ For continuous attributes:
 - Discretize the range into bins
 - Probability density estimation:
 - Assume attribute follows a normal distribution
 - Use data to estimate parameters of distribution (e.g., mean and standard deviation)
 - Once probability distribution is known, can use it to estimate the conditional probability $P(x_i | c)$

How to Estimate Probabilities from Data?

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

□ Normal distribution:

$$P(x_{i} | Y_{j}) = \frac{1}{\sqrt{2\pi\sigma_{ij}^{2}}} e^{-\frac{(x_{i} - \mu_{ij})^{2}}{2\sigma_{ij}^{2}}}$$

- \square One for each (x_i, Y_i) pair
- For (Income, Class=No):
 - ☐ If Class=No
 - sample mean = 110
 - sample variance = 2975

$$P(Income = 120 \mid No) = \frac{1}{\sqrt{2\pi}(54.54)}e^{\frac{-(120-110)^2}{2(2975)}} = 0.0072$$