CSE428: Image Processing

Problem Set 3

Linear & Logistic Regression

Question 1

Solve Example Problem 2 from Lecture 7.1.

Question 2

Solve Example Problem 1 from Lecture 8.1.

Linear Models and Neural Networks

Question 3

Suppose you have a database, stored as a .csv file, on which you want to perform a supervised learning algorithm for **simultaneous regression** and **classification**. The first 3 rows of the dataset are shown below. Column **y** is the target for performing the **regression** task and column **z** is the label for performing the **classification** task on this dataset.

х1	x2	х3	у	z
10	124	-139	0.4	0
5	398	-112	0.32	1
3	312	-172	-0.19	0

- **a)** Is any preprocessing required on this dataset before performing supervised learning? Explain briefly.
- b) Suppose you are using linear regression to predict y given x1, x2, and x3. Write the structure of the hypothesis function (Model) and the cost function.
- c) Among the following two sets of parameters, which one is the "better" model? Why? i) $\theta = [\theta_0, \theta_1, \theta_2, \theta_3] = [0, 0.1, 0.008, 0.001]$ ii) $\theta = [\theta_0, \theta_1, \theta_2, \theta_3] = [0, 0.5, 0.008, 0.002]$
- d) Write down the matrix equations for the forward pass (from x_1 , x_2 and x_3 to the output of the **softmax**) of a **neural network** used for solving the classification problem with one hidden layer of 4 neurons.

Neural Networks

Question 4

Suppose a shallow dense neural network with a single hidden layer of only 2 neurons has been trained for a binary dark (label: 0) vs light (label: 1) image classification task. After sufficient training period, you want to test the performance of the network with a 2 x 2 input image. The pixel intensity values of the input image and the weight-bias parameters for the layers are given below:

0.7	0.8
0.6	0.9

Input to *Hidden* layer weight and bias parameters:

$$W_{input-hidden} = \begin{bmatrix} 0.1 & 0.5 & 0.3 & 0.1 \\ 0.2 & 0.4 & 0.09 & 0.3 \end{bmatrix}$$

$$b_{hidden} = \begin{bmatrix} -0.32 \\ -0.28 \end{bmatrix}$$

Hidden to Output layer weight and bias parameters:

$$W_{hidden-output} = [0.5 \quad 0.9]$$

 $b_{output} = [0.5]$

The activation functions used in the **Hidden** and **Output** layers are given in the following table:

Layer	Activation function		
Hidden	tanh		
Output	sigmoid		

- a) Explain why linear activation functions are not ideal for neural networks.
- **b) Draw the architecture** of the neural network to be used for the above classifier.
- c) Determine the **outputs** of individual layers **using the given parameters** and **predict the classification label** of the test image determined by the neural network. [Hint: Output at any layer can be determined using the following equation:]

$$output = activation(W \times input + b)$$

Data Preparation, Hyperparameter Tuning & Evaluation

Question 5

Answer the questions from Practical Scenarios 1 & 2 in Lecture 8.2.

Question 6

Answer the questions from Practical Scenarios 3, 4, 5 & 9 in Lecture 8.2.

CNN

Question 4

Alice is a BRACU student and she is taking **CSE428** this semester. For her final project, she is trying to implement a CNN architecture for a classification task that comprises of the following layers:

Layer	Input Dimensions	Filter Size	#Filters or, #Neurons	Padding	Output Dimensions	#Params
Conv1	128 * 128 * 3	7*7	8	2		
MaxPool1		2*2	_	0		
Conv2		5*5	16	2		
MaxPool2		2*2	_	0		
Conv3		3*3	32	0		
AvgPool3		4*4	_	0		
Flatten		_	_	_		
FC		_	256	_		
FC		_	128	_		
FC (Output)			4	_		

In the table above, *Conv-X* denotes a **Convolutional** layer, *Pool-X* denotes a **Pooling** layer and *FC* denotes a **Fully Connected** layer.

- **a. Determine** the number of classes and the activation function used in the final layer.
- **b.** Calculate the **input** and **output dimensions** for each of the layers. (Complete the 2nd and 6th columns of the table).
- **c.** Calculate the number of Parameters for each of the layers. (Complete the last column of the table).
- d. Repeat Question b considering a Mini-Batch size of 32 instead of individual inputs.
- e. Suppose, Alice used **Batch Normalization** layers after each **Convolutional** and **Fully Connected** layer. Would it Change the total **number of trainable parameters**? If **Yes**, then, by **how much**?