Predicting Customer Churn in a Telecommunications Company

Problem Statemenet

Customer churn is a significant issue in the telecommunications industry. Retaining existing customers is often more cost-effective than acquiring new ones. By analyzing customer data, we can identify patterns and factors that contribute to churn, enabling the company to take proactive measures to retain customers.

1. Import Libraries

```
In [56]: # Data manipulation and analysis
         import pandas as pd
         import numpy as np
         # Visualization
         import matplotlib.pyplot as plt
         import seaborn as sns
         # Machine Learning
         from sklearn.model_selection import train_test_split, GridSearchCV, Stratified
         from sklearn.preprocessing import LabelEncoder, StandardScaler
         from sklearn.feature_selection import RFECV
         from sklearn.metrics import classification_report, confusion_matrix, roc_curve
         from sklearn.linear model import LogisticRegression
         from sklearn.ensemble import RandomForestClassifier
         # Handling imbalanced data
         from imblearn.over_sampling import SMOTE
         # Suppress warnings
         import warnings
         warnings.filterwarnings("ignore")
```

2. Load Dataset

```
In [57]: # Load the dataset
df = pd.read_csv("WA_Fn-UseC_-Telco-Customer-Churn.csv")
# Display first few rows
df.head()
```

Out[57]:		customerID	gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	MultipleLine
	0	7590- VHVEG	Female	0	Yes	No	1	No	No phon servic
	1	5575- GNVDE	Male	0	No	No	34	Yes	N
	2	3668- QPYBK	Male	0	No	No	2	Yes	N
	3	7795- CFOCW	Male	0	No	No	45	No	No phon servic
	4	9237- HQITU	Female	0	No	No	2	Yes	N ₁

5 rows × 21 columns

This dataset contains information about a telecom company's customers, including:

- Customer account information (customerID, tenure, contract type, payment method, monthly charges, total charges).
- Demographic information (gender, age range, senior citizen status, partner, dependents).
- Services subscribed (phone service, multiple lines, internet service, online security, online backup, device protection, tech support, streaming TV, streaming movies).
- The target variable is Churn, indicating whether the customer left within the last month.

In [58]: df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 7043 entries, 0 to 7042 Data columns (total 21 columns): # Column Non-Null Count Dtype 7043 non-null 0 customerID object 7043 non-null 1 gender object SeniorCitizen 7043 non-null int64 3 Partner 7043 non-null object 7043 non-null Dependents object 5 7043 non-null tenure int64 6 7043 non-null PhoneService object 7 MultipleLines 7043 non-null object 8 InternetService 7043 non-null object 9 OnlineSecurity 7043 non-null object 10 OnlineBackup 7043 non-null object 11 DeviceProtection 7043 non-null object 12 TechSupport 7043 non-null object 13 StreamingTV 7043 non-null object 14 StreamingMovies 7043 non-null object 15 Contract 7043 non-null object 16 PaperlessBilling 7043 non-null object 17 PaymentMethod 7043 non-null object 18 MonthlyCharges 7043 non-null float64 19 TotalCharges 7043 non-null object 20 Churn 7043 non-null object dtypes: float64(1), int64(2), object(18) memory usage: 1.1+ MB

3. Data Cleaning for EDA

3.1. Convert TotalCharges to Numeric

```
In [59]: # Convert 'TotalCharges' to numeric, coerce errors to NaN
    df["TotalCharges"] = pd.to_numeric(df["TotalCharges"], errors="coerce")

# Check for missing values in 'TotalCharges'
missing_total_charges = df["TotalCharges"].isnull().sum()
print(f"Total missing values in 'TotalCharges': {missing_total_charges}")

Total missing values in 'TotalCharges': 11
3.2 Handle Missing Values

In [60]: # Drop rows with missing 'TotalCharges'
df = df.dropna(subset=["TotalCharges"])

# Reset index
df.reset_index(drop=True, inplace=True)

3.3 Remove Unnecessary Columns

In [61]: # Drop 'customerID' as it's not useful for prediction
df = df.drop(columns=["customerID"])
```

4. Exploratory Data Analysis (EDA)

4.1 Churn Distribution

```
In [62]: # Count plot for 'Churn'
plt.figure(figsize=(6, 4))
sns.countplot(x="Churn", data=df, palette="Set2")
plt.title("Churn Distribution")
plt.xlabel("Churn")
plt.ylabel("Count")
plt.show()
```


The dataset is imbalanced with more 'No' churn instances than 'Yes'.

4.2 Churn Rate by Contract Type

Out[63]:		Contract_Type	Churn_Rate (%)
	0	Long-term	6.778587
	1	Short-term	42.709677

```
In [64]: plt.figure(figsize=(8, 6))
    sns.barplot(x="Contract_Type", y="Churn_Rate (%)", data=churn_rate, palette="v:
    plt.title("Churn Rate by Contract Type")
    plt.xlabel("Contract Type")
    plt.ylabel("Churn Rate (%)")
    plt.show()
```


Short-term contracts have a significantly higher churn rate compared to long-term contracts.

4.3 Tenure vs. Churn

```
In [65]: # Distribution plots for tenure
plt.figure(figsize=(8, 6))
sns.kdeplot(df[df["Churn"] == "No"]["tenure"], label="No Churn", shade=True)
sns.kdeplot(df[df["Churn"] == "Yes"]["tenure"], label="Churn", shade=True)
plt.title("Tenure Distribution by Churn Status")
plt.xlabel("Tenure (Months)")
plt.ylabel("Density")
```

```
plt.legend()
plt.show()
```


Customers with shorter tenure are more likely to churn.

4.4 Monthly Charges vs. Churn

```
In [67]: # Distribution plots for MonthlyCharges
  plt.figure(figsize=(8, 6))
  sns.kdeplot(df[df["Churn"] == "No"]["MonthlyCharges"], label="No Churn", shade:
    sns.kdeplot(df[df["Churn"] == "Yes"]["MonthlyCharges"], label="Churn", shade=Ti
    plt.title("Monthly Charges Distribution by Churn Status")
    plt.xlabel("Monthly Charges ($)")
    plt.ylabel("Density")
    plt.legend()
    plt.show()
```


Customers with higher monthly charges tend to churn more.

5. Data Preprocessing and Encoding

5.1 Encode Binary Variables

In [31]: df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7032 entries, 0 to 7031
Data columns (total 22 columns):
#
    Column
                       Non-Null Count
                                       Dtype
                       7032 non-null
0
    gender
                                       object
                       7032 non-null
                                       int64
1
    SeniorCitizen
    Partner
                       7032 non-null
                                       object
3
    Dependents
                       7032 non-null
                                       object
    tenure
                       7032 non-null
                                       int64
 5
    PhoneService
                       7032 non-null
                                       obiect
6
                       7032 non-null
    MultipleLines
                                       object
7
    InternetService
                       7032 non-null
                                       object
8
    OnlineSecurity
                       7032 non-null
                                       object
```

12 StreamingTV 7032 non-null object 13 StreamingMovies 7032 non-null object 14 Contract 7032 non-null object

15 PaperlessBilling 7032 non-null object 7032 non-null 16 PaymentMethod object 7032 non-null 17 MonthlyCharges float64

7032 non-null

7032 non-null

7032 non-null

object

object

object

18 TotalCharges 7032 non-null float64 19 Churn 7032 non-null object 20 Contract_Type 7032 non-null object

21 Churn numeric 7032 non-null int64 dtypes: float64(2), int64(3), object(17)

memory usage: 1.2+ MB

OnlineBackup

10 DeviceProtection

11 TechSupport

```
In [32]:
         # List of binary variables to map
         binary_features = ["Partner", "Dependents", "PhoneService", "PaperlessBilling"
         # Map 'Yes' to 1 and 'No' to 0
         for col in binary_features:
             df[col] = df[col].map({"Yes": 1, "No": 0})
```

In [33]: df.head()

9

Out[33]:		gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	MultipleLines	InternetSe
	0	Female	0	1	0	1	0	No phone service	
	1	Male	0	0	0	34	1	No	
	2	Male	0	0	0	2	1	No	
	3	Male	0	0	0	45	0	No phone service	
	4	Female	0	0	0	2	1	No	Fiher

5 rows × 22 columns

```
In [34]: # Map 'Short-term' to 0 and 'Long-term' to 1
         df["Contract_Type"] = df["Contract_Type"].map({"Short-term": 0, "Long-term": 1]
```

5.2 One-Hot Encode Categorical Variables

```
In [35]: # Identify categorical variables for one-hot encoding
         categorical_vars = [
             "gender",
             "MultipleLines",
             "InternetService",
             "OnlineSecurity",
             "OnlineBackup",
             "DeviceProtection",
             "TechSupport",
             "StreamingTV",
             "StreamingMovies",
             "Contract",
             "PaymentMethod",
         # Perform one-hot encoding
         df_encoded = pd.get_dummies(df, columns=categorical_vars, drop_first=True)
In [36]: # Drop 'Contract' variable since we have created Contract_Type, we can drop the
         df_encoded = df_encoded.drop(columns=["Contract_Two year", "Contract_One year"
In [37]: df_encoded=df_encoded.drop(columns=["Churn_numeric"],axis=1)
```

5.3 Handle Remaining Missing Values

In [38]:	df_encoded.head()									
Out[38]:	Se	niorCitizen	Partner	Dependents	tenure	PhoneService	PaperlessBilling	MonthlyCharges		
	0	0	1	0	1	0	1	29.85		
	1	0	0	0	34	1	0	56.95		
	2	0	0	0	2	1	1	53.85		
	3	0	0	0	45	0	0	42.30		
	4	0	0	0	2	1	1	70.70		
5 rows × 30 columns										
In [39]:	<pre># Check for remaining missing values df_encoded.isnull().sum()</pre>									

10/3/24, 5:58 PM telco SeniorCitizen 0 Out[39]: Partner 0 Dependents tenure 0 PhoneService PaperlessBilling 0 MonthlyCharges 0 TotalCharges Churn Contract_Type gender Male MultipleLines No phone service MultipleLines Yes InternetService_Fiber optic InternetService No OnlineSecurity No internet service OnlineSecurity_Yes 0 OnlineBackup_No internet service OnlineBackup Yes 0 DeviceProtection No internet service 0 DeviceProtection Yes TechSupport_No internet service 0 TechSupport_Yes 0 0 StreamingTV_No internet service StreamingTV Yes 0 StreamingMovies_No internet service 0 StreamingMovies Yes PaymentMethod_Credit card (automatic) PaymentMethod_Electronic check PaymentMethod Mailed check dtype: int64

5.4 Feature Scaling

```
In [40]: # List of numerical features
    numerical_features = ["tenure", "MonthlyCharges", "TotalCharges"]
# Initialize the scaler
    scaler = StandardScaler()
# Scale numerical features
    df_encoded[numerical_features] = scaler.fit_transform(df_encoded[numerical_features])
```

6. Machine Learning Modeling

6.1 Define Features and Target

```
In [41]: # Define target variable 'Churn'
y = df_encoded["Churn"]

# Define feature set 'X'
X = df_encoded.drop(columns=["Churn"])
```

6.2 Handling Class Imbalance

```
# Check class distribution
In [42]:
         y.value_counts(normalize=True)
         Churn
Out[42]:
              0.734215
              0.265785
         Name: proportion, dtype: float64
         the dataset is imbalanced. So applying SMOTE to balance classes
In [43]: # Initialize SMOTE
         smote = SMOTE(random state=42)
         # Fit SMOTE to features and target
         X_resampled, y_resampled = smote.fit_resample(X, y)
         # Check new class distribution
         y resampled.value counts(normalize=True)
         Churn
Out[43]:
              0.5
              0.5
         Name: proportion, dtype: float64
         6.3 Split the Data
```

6.4 Feature Selection

Use Recursive Feature Elimination with Cross-Validation (RFECV)

```
In [45]: # Initialize Logistic Regression model
    model = LogisticRegression(max_iter=1000, random_state=42)

# Initialize RFECV
    rfecv = RFECV(estimator=model, step=1, cv=StratifiedKFold(5), scoring="accuracy"

# Fit RFECV
    rfecv.fit(X_train, y_train)

# Optimal number of features
    print(f"Optimal number of features: {rfecv.n_features_}")

# Selected features
    selected_features = X_train.columns[rfecv.support_]
    print("Selected features:", list(selected_features))
```

Optimal number of features: 25
Selected features: ['Dependents', 'tenure', 'PhoneService', 'MonthlyCharges',
'TotalCharges', 'Contract_Type', 'MultipleLines_No phone service', 'MultipleLi
nes_Yes', 'InternetService_Fiber optic', 'InternetService_No', 'OnlineSecurity
_No internet service', 'OnlineSecurity_Yes', 'OnlineBackup_No internet servic
e', 'OnlineBackup_Yes', 'DeviceProtection_No internet service', 'DeviceProtect
ion_Yes', 'TechSupport_No internet service', 'TechSupport_Yes', 'StreamingTV_N
o internet service', 'StreamingTV_Yes', 'StreamingMovies_No internet service',
'StreamingMovies_Yes', 'PaymentMethod_Credit card (automatic)', 'PaymentMethod
_Electronic check', 'PaymentMethod_Mailed check']

6.5 Model Training and Evaluation

6.5.1 Logistic Regression

plt.ylabel("Actual")

plt.show()

```
In [46]:
         # Create Logistic Regression model with selected features
         lr model = LogisticRegression(max iter=1000, random state=42)
         lr_model.fit(X_train[selected_features], y_train)
         # Predict on test set
         y pred lr = lr model.predict(X test[selected features])
         # Classification report
         print("Logistic Regression Classification Report:")
         print(classification_report(y_test, y_pred_lr))
         Logistic Regression Classification Report:
                       precision
                                    recall f1-score
                                                        support
                    0
                                      0.74
                            0.82
                                                 0.78
                                                           1033
                    1
                            0.76
                                      0.84
                                                 0.80
                                                           1033
                                                 0.79
                                                           2066
             accuracy
                            0.79
                                      0.79
                                                 0.79
                                                           2066
            macro avq
                                                 0.79
         weighted avg
                            0.79
                                      0.79
                                                           2066
In [47]: # Confusion matrix
         cm = confusion matrix(y test, y pred lr)
         sns.heatmap(cm, annot=True, fmt="d", cmap="Blues")
         plt.title("Logistic Regression Confusion Matrix")
         plt.xlabel("Predicted")
```



```
In [48]: # ROC Curve
y_pred_proba = lr_model.predict_proba(X_test[selected_features])[::, 1]
fpr, tpr, _ = roc_curve(y_test, y_pred_proba)
auc_score = auc(fpr, tpr)

plt.figure()
plt.plot(fpr, tpr, label=f"AUC = {auc_score:.2f}")
plt.plot([0, 1], [0, 1], linestyle="--")
plt.title("ROC Curve - Logistic Regression")
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.legend()
plt.show()
```

ROC Curve - Logistic Regression

6.5.2 Random Forest Classifier

```
In [49]:
         # Define parameter grid
         param_grid = {
             "n_estimators": [100, 200],
             "max_depth": [None, 10, 20],
             "min_samples_split": [2, 5],
             "min_samples_leaf": [1, 2],
         }
         # Initialize Random Forest model
         rf = RandomForestClassifier(random_state=42)
         # Initialize GridSearchCV
         grid search = GridSearchCV(
             estimator=rf, param_grid=param_grid, cv=5, scoring="accuracy", n_jobs=-1
         # Fit GridSearchCV
         grid_search.fit(X_train[selected_features], y_train)
         # Best parameters
         print(f"Best Parameters: {grid_search.best_params_}")
         Best Parameters: {'max_depth': None, 'min_samples_leaf': 2, 'min_samples_spli
         t': 2, 'n_estimators': 200}
In [50]: # Best Random Forest model
         best_rf = grid_search.best_estimator_
         best_rf.fit(X_train[selected_features], y_train)
```

weighted avg

```
# Predict on test set
y_pred_rf = best_rf.predict(X_test[selected_features])
# Classification report
print("Random Forest Classification Report:")
print(classification_report(y_test, y_pred_rf))
```

0.82

2066

```
Random Forest Classification Report:
                           recall f1-score
              precision
                                               support
                   0.85
                             0.78
                                        0.81
                                                  1033
           1
                   0.80
                             0.86
                                        0.83
                                                  1033
                                        0.82
                                                  2066
   accuracy
  macro avg
                             0.82
                                        0.82
                                                  2066
                   0.82
```

0.82

```
In [51]: # Confusion matrix
    cm_rf = confusion_matrix(y_test, y_pred_rf)
    sns.heatmap(cm_rf, annot=True, fmt="d", cmap="Greens")
    plt.title("Random Forest Confusion Matrix")
    plt.xlabel("Predicted")
    plt.ylabel("Actual")
    plt.show()
```

0.82


```
In [52]: # ROC Curve
y_pred_proba_rf = best_rf.predict_proba(X_test[selected_features])[::, 1]
fpr_rf, tpr_rf, _ = roc_curve(y_test, y_pred_proba_rf)
auc_score_rf = auc(fpr_rf, tpr_rf)
```

```
plt.figure()
plt.plot(fpr_rf, tpr_rf, label=f"AUC = {auc_score_rf:.2f}", color="green")
plt.plot([0, 1], [0, 1], linestyle="--")
plt.title("ROC Curve - Random Forest")
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.legend()
plt.show()
```


7. Conclusion

Observation:

- Model performance:
 - Logistic Regression:

o Accuracy: 0.79

o AUC: 0.88

Random Forest:

Accuracy: 0.82

o AUC: 0.89

- Both Logistic regression and Random Forest models perform well after handling class imbalance and feature selection.
- Random Forest typically has higher accuracy and better ability to capture complex patterns.
- key predictors of Churn:
 - Tenure: Lower tenure increases the likelihood of churn.
 - Contract_Type: Short-term contracts are associated with higher churn.
 - MonthlyCharges: Higher charges are linked to increased churn.

Recommendations:

- Customer Retention Strategies:
 - Tenure
 - Implement loyalty programs targeting new customers to increase tenure.
 - Contract
 - Encourage customers to switch to long-term contracts through incentives.
 - Provide discounts for customers who switch to longer-term contracts.

 Create attractive packages that encourage customers to opt for longer contracts.

- Monthly Chargers
 - Re-evaluate pricing models to ensure competitiveness.