Бесконечномерные компакты и гауссовские процессы

Досполова Мария Каиржановна

Санкт-Петербургское отделение Математического института им. В. А.Стеклова РАН dospolova.maria@yandex.ru

Секция: Теория вероятностей

Пусть K — выпуклое компактное подмножество евклидова пространства \mathbb{R}^d . У каждого такого компакта K есть характеристики, которые не зависят от размерности объемлющего пространства d, а зависят только от внутренней геометрии K. Они называются внутренними объемами K, обозначаются через $V_k(K)$, $k=0,1,\ldots,d$ и определяются как коэффициенты в формуле Штейнера. Штейнер показал, что объем λ -окрестности компакта K представляется многочленом от λ с коэффициентами $V_k(K)$ (где нормировка подобрана специальным образом).

Известно еще одно, эквивалентное первому, определение внутренних объемов: $V_k(K)$ — это средний объем проекции K на случайное k-мерное линейное подпространство, выбранное по мере Хаара.

Воспользовавшись независимостью внутренних объемов от размерности, Судаков и Шеве обобщили данное понятие на бесконечномерные выпуклые множества в сепарабельном гильбертовом пространстве.

Оказалось, что, помимо вышеприведенных определений, у внутренних объемов существует гауссовское представление (Судаков [1] и Цирельсон [2]), которое позволяет изучать их с вероятностной точки зрения. Обнаружение глубокой связи между внутренними объемами и гауссовскими процессами позволило решить задачи на стыке теории вероятностей и выпуклой геометрии.

В докладе мы рассмотрим дальнейшие свойства бесконечномерных компактов и их связь с гауссовскими процессами.

- [1] В. Н. Судаков, Геометрические проблемы теории бесконечномерных вероятностных распределений, Труды МИАН, 141 (1976), 3-191.
- [2] Б. С. Цирельсон, Геометрический подход к оценке максимального правдоподобия для бесконечномерного гауссовского сдвига. ІІ, Теория вероятн. и ее примен., 30:4 (1985), 772-779.
- [3] R. Schneider, W. Weil, Stochastic and integral geometry, Springer, 2008.
- [4] B. Klartag, V. Milman, The slicing problem by Bourgain. In Analysis at large. Dedicated to the life and work of Jean Bourgain, Springer, 2022.