Contents

1	Preliminary	3			
2	Group Theory	5			
	2.1 Introduction	5			
	2.2 Subgroup	7			
	2.3 A counting principle	8			
	2.4 Normal subgroups				
	2.5 Homomorphism	11			
	2.6 Automorphism				
	2.7 Cayley's theorem	15			
	2.8 Permutation group	16			
	2.9 Another counting principle	18			
	2.10 Sylow's theorem	20			
	2.11 Direct product	21			
	2.12 Finite abelian groups	21			
3	Ring Theory	23			
	3.1 Some special classed of ring	23			

Chapter 1

Preliminary

 $R \subset A \times A$ is an equivalence relations if

Reflexive: $\forall a \in A, (a, a) \in R$.

Symmetric: $(a,b) \in R \implies (b,a) \in R$.

Transitive: $(a,b) \in R, (b,c) \in R \implies (a,c) \in R.$

A binary relations can be also denoted as aRb whenever $(a, b) \in R$.

If A is a set and if \sim is an equivalence relation on A, then the equivalence class of $a \in A$ is the set $\{x \in A \mid x \sim a\}$ denoted by cl(a).

Theorem 1.1. Equivalence classes partition the set into mutually disjoint subsets and conversely, mutually disjoint subsets give rise to equivalence classes.

If S and T are non-empty sets, then a mapping from S to T is a subset $M \subset S \times T$ such that for every $s \in S$ there is a unique $t \in T$ that $(s,t) \in M$. $\sigma: S \to T$ maybe denoted as $t = s\sigma$ or $t = \sigma(s)$.

1. Preliminary

Chapter 2

Group Theory

2.1 Introduction

Definition: A set S equipped with an associative binary operation is a **semigroup**.

A semigroup can have multiple left or right identities. However, if it has both left identity, e, and right identity, f, then those two are equal since e = ef = f. Two sided identity are unique. We have the same story with inverses.

Definition: A non-empty set of elements G together with a binary operation \circ are said to be a **group** if

Closure: $\forall a, b \in G, a \circ b \in G$.

Associative: $\forall a, b, c \in G, (a \circ b) \circ c = a \circ (b \circ c).$

Identity: $\exists e \in G \text{ such that } \forall a \in G, a \circ e = e \circ a = a.$

Inverse: $\forall a \in G \ \exists b \in G \ \text{such that} \ a \circ b = b \circ a = e.$

Definition: A group G is said to be **abelian** or **commutative** if for any two element a and b commute. i.e. $a \circ b = b \circ a$.

Definition: The number of elements in a group is called the **order** of the group and it is denoted by o(G).

Definition: Let $\langle a \rangle = \{a^n \mid n \in \mathbb{Z}\}$. If for some choice of a, $G = \langle a \rangle$, then G is said to be a **cyclic group**. More generally, for a set $W \subset G$, $\langle W \rangle = \bigcap W \subset H \subset GH$ where H is a subgroup of G.

Lemma 2.1. Given $a, b \in G$ the equation ax = b and ya = b have unique solutions for $x, y \in G$.

Proof. Note that a^{-1} and b^{-1} are unique. Therefore, $x = a^{-1}b$ and $y = ba^{-1}$ are unique. \square

Exercises

1. Let S be a finite semi-group. Prove that there exists $e \in S$ such that $e^2 = e$.

Proof. Pick $a \in S$ and consider $a_i = a^{2^i}$ for $i \ge 1$. After some point, a_i s repeat, by the pigeon hole principle. Let that point be a_i . Therefore, for some $m \ge 1$.

$$a_j = (a_j)^{2^m}$$

Let $e = a_j^{2^m - 1}$, then

$$e^2 = a_j^{2^{m+1}-2} = a_j^{2^m} a_j^{2^m-2} = a_j a_j^{2^m-2} = e$$

we are done.

2. Show that if a group G is abelian, then for $a, b \in G$ and any integer n, $(ab)^n = a^n b^n$.

Proof. Induct over positive n. It is trivially true for n=1. Suppose it is true for n=k, then

$$(ab)^{k+1} = (ab)^k ab = a^k b^k ab = a^k ab^k b = a^{k+1} b^{k+1}$$

For negative n, note that

$$(ab)^{-1} = b^{-1}a^{-1} = a^{-1}b^{-1} \implies (ab)^n = ((ab)^{-1})^{-n} = (a^{-1}b^{-1})^{-n} = a^nb^n$$

hence it is true for all integers n.

3. If a group has an even order, then there exists $a \neq e$ such that $a^2 = e$.

Proof. Let $A = \{g \mid g \neq g^{-1}\}$ and $B = \{g \mid g = g^{-1}\}$. Note that, |A| is even since $g \in A \implies g^{-1} \in A$. Moreover, o(G) = |A| + |B|, therefore |B| must be even and since $e \in B$, $|B| \ge 2$.

4. For any n > 2 construct a non-abelian group of order 2n.

Proof. Consider ϕ, ψ where $\psi^n = \phi^2 = e$ and $\psi \phi = \phi \psi^{-1}$. Then

$$G = \left\{ I, \phi, \psi, \psi^2, \dots, \psi^{n-1}, \phi\psi, \dots, \phi\psi^{n-1} \right\}$$

is a group of order 2n. Because, by the product rules defined, any combination of ψ and ϕ can be reduced to $\phi^b \psi^k$ where b=0,1 and $k=0,1,\ldots,n-1$. It is cleary non-abelian as well.

5. Find the order of $GL_2(\mathbb{Z}_p)$ and $SL_2(\mathbb{Z}_p)$ for a prime p.

Proof.

$$o(GL_2(\mathbb{Z}_p)) = (p+1)p(p-1)^2$$
$$o(SL_2(\mathbb{Z}_p)) = (p+1)p(p-1)$$

which be can be calculate with some basic casing.

2.2 Subgroup 7

2.2 Subgroup

Definition: A non-empty subset H of a group G is called a **subgroup** if under the product in G, H itself forms a group.

Lemma 2.2. H is a subgroup of G if and only if

- 1. $\forall a, b \in H, ab \in H$.
- 2. $\forall a \in H, a^{-1} \in H$.

Proof. If H is a subgroup, then the conditions hold. Suppose H is a subset of G that satisfies the conditions. Then,

- 1. $e \in H$ since $(a \in H \implies a^{-1} \in H) \implies e = aa^{-1} \in H$.
- 2. Associativity is inherited from G.

invertibility and closure are given from the conditions. Therefore, H is a subgroup. \square

Lemma 2.3. If H is a non-empty finite subset of a group G and H is closed under multiplication, then H is a subgroup of G.

Proof. Since H is non-empty there exists a $a \in H$. By closure, a^n for positive integer n, are also in H. We know that for some N, $a^N = e$ and therefore $a^{-1} = a^{N-1} \in H$. By , H is a subgroup.

Definition: Let G be a group and H a subgroup of G. For $a, b \in G$ we say that a is congruent to b mod H, written as $a \equiv b \mod H$ if $ab^{-1} \in H$.

Lemma 2.4. The relation $a \equiv b \mod H$ is an equivalence relation.

Proof. We show the equivalence axioms:

- 1. for any a, $a \equiv a \mod H$ because, $aa^{-1} = e \in H$.
- 2. for any $a, b, a \equiv b \mod H \implies b \equiv a \mod H$ since $ab^{-1} \in H$ because of invertibility implies that $(ab^{-1})^{-1} = ba^{-1} \in H$.
- 3. for any a, b, c, $a \equiv b \mod H$, $b \equiv c \mod H \implies a \equiv c \mod H$ since $ab^{-1}, bc^{-1} \in H$ because of closure implies that $ab^{-1}bc^{-1} = bc^{-1} \in H$.

Definition: If H is a subgroup of G and $a \in G$, then $Ha = \{ha \mid h \in H\}$ is a **right coset** of H in G. Similarly, $aH = \{ah \mid h \in H\}$ is a **left coset** of H in G.

Lemma 2.5. For all $a \in G$,

$$Ha = \{x \in G \mid a \equiv x \mod H\}$$

Proof. Suppose $x \in G$ and $x \equiv a \mod H$. That is, $xa^{-1} = h$ for some $h \in H$. Then, x = ha. Suppose $h \in H$ and x = ha. Then, $xa^{-1} = h$ and hence $x \equiv a \mod H$.

This implies, two right/left coset of H are either identical or disjoint.

Lemma 2.6. There is a one-to-one correspondence between any two right/left cosets of H.

Proof. Let R_1, R_2 be two right cosets of H with $a_1 \in R_1$ and $a_2 \in R_2$. Note that, $R_1 = Ha_1$ and $R_2 = Ha_2$, therefore the map $g \mapsto ga_1^{-1}a_2$ is a bijective map from R_1 to R_2 .

Theorem 2.7 (Lagrange's theorem). If G is a finite group and H is a subgroup of G, then $o(H) \mid o(G)$.

Proof. By and , and from finiteness of G, the order of G is equal to the number of right cosets multiplied by the cardinality of a right coset which is equal to the order of H. Hence, $o(H) \mid o(G)$

Definition: If H is a subgroup of G, the **index** of H in G is the number of distince right cosets of H, denoted by [G:H] or $i_G(H)$.

Definition: Let G be a group and $a \in G$, then the **order** or **period** of a is the least positive integer m such that $a^m = e$. If no such integer exists we say that a is of infinite order. The order of a is denoted by $\operatorname{ord}_G(a)$.

Corollary 2.8. If G is a finite group, then

- 1. $o(G) = i_G(H)o(H)$.
- 2. $\operatorname{ord}_G(a) \mid o(G)$.
- 3. $a^{o(G)} = e$.
- 4. If o(G) is a prime, then G is cyclic.

2.3 A counting principle

Let H and K be two subgroups of G, then

$$HK = \{ hk \mid h \in H, k \in K \}$$

Lemma 2.9. HK is a subgroup of G if and only if HK = KH.

Proof. Suppose HK is a subgroup. If $hk \in HK$, then

$$k^{-1}h^{-1} \in HK \implies k^{-1} \in H, h^{-1} \in K \implies k \in H, h \in K \implies hk \in KH$$

hence $HK \subset KH$. If $kh \in KH$, then

$$hk \in HK \implies k^{-1} \in H, h^{-1} \in K \implies k \in H, h \in K \implies kh \in HK$$

thus HK = KH. Suppose HK = KH with $h_1k_1, h_2k_2 \in HK$.

1. for closure we have

$$h_1k_1h_2k_2 = h_1k_1(k_2'h_2') = h_1(k_1k_2')h_2' = h_1(k_1'k_2') = h_1h_2''k_1''$$

2. for inverse

$$(h_1k_1)^{-1} = k_1^{-1}h_1^{-1} = h_1'k_1'$$

Corollary 2.10. If H and K are subgroups of an abelian group G, then HK is a subgroup of G.

Lemma 2.11. If H and K are finite subgroups G, then

$$|HK| = \frac{o(H)o(K)}{o(H \cap K)}$$

Proof. If $h_1 \in H \cap K$ then $hk = (hh_1)(h_1^{-1}k)$. Therefore, hk appears at least $o(H \cap K)$ times. If hk = h'k', then $h'^{-1}h = k'k^{-1} \in H \cap K$. Let $u = h'^{-1}h$ then $h' = hu^{-1}$ and k' = uk. Thus, all duplicates are accounted for.

Corollary 2.12. If H and K are subgroups of G and $o(H), o(K) > \sqrt{o(G)}$, then $H \cap K \neq \{e\}$.

Proof. $HK \subset G$ therefore, $|HK| \leq o(G)$ and

$$o(G) \ge |HK| = \frac{o(H)o(K)}{o(H \cap K)} > \frac{o(G)}{o(H \cap K)}$$

which implies that $o(H \cap K) > 1$.

Exercises

1. Let G be a group such that the intersection of all of its subgroups that are different from $\{e\}$ is different from $\{e\}$. Prove that every element in G has finite order.

Proof. For the sake of contradiction, suppose $a \in G$ has infinite order. Then, a^k are all different and

$$\bigcup_{k=1}^{\infty} \langle a^k \rangle = \{e\}$$

which is a contradiction.

- 2. Show that there is one-to-one correspondence between the right and left cosets of a subgroup.
- 3. Suppose H and K are finite index subgroups in G. Show that $H \cap K$ is a finite subgroup in G.

Proof. Let Ha_1, \ldots, Ha_n be the right cosets of H in G and Kb_1, \ldots, Kb_m be the right costs of K in G. Then,

$$G = G \cap G = \bigcap_{i} Ha_{i} \cap \bigcap_{j} Kb_{j} = \bigcap_{i,j} Ha_{i} \cap Kb_{j}$$

Suppose $Ha_i \cap Kb_j$ is not empty. Let $g \in Ha_i \cap Kb_j$, then $Hg = Ha_i$ and $Kg = Kb_j$. Thus,

$$Ha_i \cap Kb_i = Hq \cap Kq = (H \cap K)q$$

Therefore, $Ha_i \cap Kb_j$ are either empty or a right coset of $H \cap K$. Since there finitely many $Ha_i \cap Kb_j$, there finitely many right cosets of $H \cap K$ in G. Moreover, $[G: H \cap K] \leq$

[G:H][G:K] by this construction. Note that, $H \cap K$ is finite index in H, and let $(H \cap K)c_1, \ldots, (H \cap K)c_l$ be the right cosets of $H \cap K$ in H. We claim that $(H \cap K)c_ra_i$ are the right cosets of $H \cap K$ in G. By definition, for each $x \in G$, there exists i such that $x \in Ha_i$ and hence $x = ha_i$ for some $h \in H$. Similarly, there exists r such that $h \in (H \cap K)c_r$ and hence $h = fc_r$ for some $f \in H \cap K$. Therefore, $x = fc_ra_i$ and $x \in (H \cap K)c_ra_i$. Lastly, we must show that $(H \cap K)c_ra_i$ are disjoint. Consider $(H \cap K)c_{r_1}a_{i_1}$ and $(H \cap K)c_{r_2}a_{i_2}$. Since $(H \cap K)c_{r_1}, (H \cap K)c_{r_2} \subset H$, then

$$(H \cap K)c_{r_1}a_{i_1} = (H \cap K)c_{r_2}a_{i_2} \implies a_{i_1} = a_{i_2}, (H \cap K)c_{r_1} = (H \cap K)c_{r_2}$$

 $\implies a_{i_1} = a_{i_2}, c_{r_1} = c_{r_2}$

As a result, $[G: H \cap K] = [G: H][H: H \cap K]$.

4. Let H be a finite index subgroup in G. Show that there is only finitely many subgroups of form aHa^{-1} in G.

Proof. Let a_1H, \ldots, a_nH be left cosets of H. Then, $Ha_1^{-1}, \ldots, Ha_n^{-1}$ are right cosets of H. Suppose $aH = a_iH$, then $Ha^{-1} = Ha_i^{-1}$ and therefore, $aHa^{-1} = a_iHa_i^{-1}$. Since there are finitely many $a_iHa_i^{-1}$, then there are finitely many aHa^{-1} .

- 5. If an abelian group has subgroups of orders m and n, respectively, then show it has a subgroup whose order is the least common multiple of m and n.
- 6. Let G be a finite (abelian) group in which the number of solutions in G of the equation $x^n = e$ is at most n for every positive integer n. Prove that G must be a cyclic group.

2.4 Normal subgroups

Definition: A subgroup N of G is **normal** if $\forall g \in G, n \in N, gng^{-1} \in N$.

Lemma 2.13. N is normal if and only if $gNg^{-1} = N$ for every $g \in G$.

Proof. By definition, $gNg^{-1} \subset N$. Let $n \in N$, then $g^{-1}ng = n'$ for some $n' \in N$. Hence, $n \in gNg^{-1}$ for all $n \in N$.

Lemma 2.14. N is a normal subgroup if and only if every left coset of N is a right coset.

Proof. If N is normal, then by 2.13, gN = Ng for all g. Suppose, for all $g \in G$, gN = Nh for some $h \in G$. Then, $h = gn \implies gN = Ngn$ for $n \in N$. This implies, $gNn^{-1} = gN = Ng$ and therefore, $gNg^{-1} = N$ which by 2.13 means that N is normal.

Lemma 2.15. N is a normal subgroup if and only if the product of two right cosets of N is a right coset as well.

Proof. If N is normal, then

$$NaNb = N(aN)b = N(Na)b = Nab$$

Then, suppose NaNb = Nc for all $a, b \in G$ and some $c \in G$. This implies NaNb = Nab and therefore, $NaNa^{-1} = N \implies NaN = Na$.

$$NaN = Na \implies \forall n, an \in Na \implies aN \subset Na$$

 $Na^{-1}N = Na^{-1} \implies \forall n \exists n', a^{-1}n = n'a^{-1} \implies na = an' \implies Na \subset aN$

therefore, aN = Na.

Definition: G/N is called a **quotient group** is the set of all right cosets of N.

Theorem 2.16. If N is normal in G, then G/N is a group. Furthermore, for finite G, $o(G/N) = \frac{o(G)}{o(N)}$.

Proof. Checking axioms is pretty easy. Note that, $o(G/N) = i_G(N)$.

Exercises

- 1. The groups in which all subgroups are normal are called **Dedekind groups**. Non-abelian dedekind groups are called **Hamiltonian groups**. Show that quaternion group is a Hamiltonian group.
- 2. Show that if K is a normal subgroup of N and N is a normal subgroup of G, then K is not necessarily a subgroup of G.

2.5 Homomorphism

Definition: A mapping ϕ from a group G to another group \bar{G} is a **homomorphism** if for all $a,b\in G$

$$\phi(ab) = \phi(a)\phi(b)$$

Lemma 2.17. Suppose G is a group, N a normal subgroup of G, $\phi : G \to G/N$ given by $\phi(x) = Nx$ for all $x \in G$. Then, ϕ is a homomorphism.

Proof. Note that
$$\phi(xy) = Nxy$$
 and $\phi(x)\phi(y) = NxNy = Nxy$.

Definition: If ϕ is a homomorphism of G into \bar{G} , the **kernel** of ϕ , K_{ϕ} is defined as $K_{\phi} = \{x \in G \mid \phi(x) = \bar{e}\}.$

Lemma 2.18. If $\phi: G \to \bar{G}$ is a homomorphism, then

- 1. $\phi(e) = \bar{e}$.
- 2. $\phi(x^{-1}) = (\phi(x))^{-1}$.

Proof.

$$\phi(xe) = \phi(x) = \phi(x)\phi(e) \implies \phi(e) = \bar{e}$$

and

$$\phi(x^{-1})\phi(x) = \phi(x^{-1}x) = \bar{e} \implies \phi(x^{-1}) = (\phi(x))^{-1}$$

Lemma 2.19. If ϕ is a homomorphism, then K_{ϕ} is a normal subgroup of G.

Proof. Pick an arbitray $x \in G$ and $y \in K_{\phi}$. Then,

$$\phi(xyx^{-1}) = \phi(x)\phi(y)\phi(x^{-1}) = \bar{e}$$

hence, $xyx^{-1} \in K_{\phi}$.

Lemma 2.20. If ϕ is a homomorphism, then the set all iverse images of $\bar{g} \in \bar{G}$ under ϕ is given by $K_{\phi}x$ for any particular inverse image of \bar{g} .

Proof. Suppose y is another inverse image of \bar{g} .

$$\phi(y) = \bar{g} \qquad \phi(x) = \bar{g}$$

$$\Longrightarrow \phi(yx^{-1}) = \bar{e} \qquad \Longrightarrow yx^{-1} \in K_{\phi}$$

which means $y \in K_{\phi}x$. Also, clearly each $y \in K_{\phi}x$ is an inverse image of \bar{g} .

Definition: A homomorphism $\phi: G \to \bar{G}$ is an **isomorphism** if ϕ is <u>one-to-one</u>.

Definition: Two groups G and \bar{G} are **isomorphic** if there exists an isomorphism of G onto \bar{G} . Isomorphic groups are denoted by $G \approx \bar{G}$.

Corollary 2.21. Let ϕ be a homomorphism. Then, ϕ is an isomorphism if and only if $K_{\phi} = \{e\}.$

Proof. If ϕ is an isomorphism, then it is injective and hence only $e \in K_{\phi}$. Suppose $K_{\phi} = \{e\}$, then we must show that ϕ is a injective function. Suppose $\phi(x) = \phi(y)$, then by 2.20, $yx^{-1} \in K_{\phi}$. Thus, y = x and ϕ is injective.

Theorem 2.22. If $\phi: G \to \bar{G}$ is a surjective homomorphism, then $G/K_{\phi} \approx \bar{G}$

Proof. Consider the following mapping, $\psi: G/K_{\phi} \to \bar{G}$. For any $X \in K/\phi$, $\psi(X) = \phi(g)$ for some $g \in X$. This is well-defined since if $g, g' \in X$, then g' = xg for some $x \in K_{\phi}$ and hence

$$\phi(g') = \phi(g)\phi(x) = \phi(g)$$

Furthermore, ψ is injective. Suppose $xK_{\phi}, yK_{\phi} \in G/K_{\phi}$. Then,

$$\psi(xK_{\phi}) = \psi(yK_{\phi}) \implies \phi(x) = \phi(y) \implies xy^{-1} \in K_{\phi}$$

which implies that $x \in K_{\phi}y$ and hence $K_{\phi}y = K_{\phi}x$. Moreover, this map is surjective. Let $\bar{g} \in \bar{G}$. Since ϕ is surjective, then there exists an inverse image g. Therefore, $\psi(gK_{\phi}) = \bar{g}$. Finally, we must show that ψ is a homomorphism. Since K_{ϕ} is normal in G we have

$$\psi(xK_{\phi}yK_{\phi}) = \psi(xyK_{\phi}) = \phi(xy) = \phi(x)\phi(y) = \psi(xK_{\phi})\psi(yK_{\phi})$$

which concludes the proof.

Thus, we can find all homomorphic images of G by going through normal subgroups of G.

Definition: A group is **simple** if it has no non-trivial homomorphic images. i.e. it has no non-trivial normal subgroup.

Theorem 2.23 (Cauchy's theorem for finite abelian groups). Suppose G is a finite abelian group, and $p \mid o(G)$ where p is a prime number. Then, there is an element $a \neq e$ such that $a^p = e$.

Proof. We induct over o(G). For G with a single element, the theorem is true trivially. If G has non-trivial subgroup H, then G is cyclic and hence all its elements satisfy the condition. Suppose H is a non-trivial group of G. Since G is abelian, then H is normal in G. If $p \mid o(H)$ then by induction we are done. Suppose otherwise, then $p \mid o(G/H)$. Consder a set S where each element correspond to a right coset of H. Clearly, there is a isomorphism between G/H and S. Since S is a subgroup of G and O0 by induction hypothesis we are done.

Theorem 2.24 (Sylow's theorem for finite abelian groups). Suppose the group G is a finite abelian group and $p^{\alpha} \mid\mid o(G)$, then G has a unique subgroup of order p^{α} .

Proof. We first prove the existence of such group. For $\alpha=0$, the claim holds trivially as $\{e\}$ is a subgroup of order 1. Suppose $H=\{x\in G\,|\, x^{p^n}=e\}$ is a subgroup of G. Since $p\mid o(G)$ there is a non identity element g such that $g^p=e$. Hence $g\in H$. We show that $q\not\mid o(H)$ for any other prime $q\neq p$. Since otherwise there is a an element $h\in H$ where $h\neq e$ and $h^q=e$ by 2.23. Since q and p^n are coprime, then h=e which is a contradiction. Lastly, we claim that $p^\alpha\mid\mid o(H)$. Suppose the contrary that $p^\beta\mid\mid o(H)$ for some $\beta<\alpha$. Then, the quotient group of H, $p\mid o(G/H)$. By 2.23, there is a right coset $Hx\neq H$ such that $(Hx)^p=Hx^p=H$. This implies that $x^p\in H$ which means $(x^p)^{p^n}=e$ for some n. $x^{p^{n+1}}=e\Longrightarrow x\in H$. which is a contradtion. Thus, $o(H)=p^\alpha$.

Finally, suppose $K \neq H$ is another subgroup of G such that $o(K) = p^{\alpha}$. Then, note that

$$|HK| = \frac{o(H)o(K)}{o(H \cap K)} = \frac{p^{2\alpha}}{o(H \cap K)} \implies p^{\gamma} || |HK|$$

However, this is a contradiction since HK is a subgroup in G. Therefore H is unique in G.

Lemma 2.25. Suppose $\phi: G \to \bar{G}$ is a surjective homomorphism and \bar{H} is a subgroup of \bar{G} . Let $H = \{x \in G \mid \phi(x) \in \bar{H}\}$. Then, H is a subgroup of G and $H \supset K_{\phi}$. If \bar{H} is normal in \bar{G} , then H is normal. Moreover, this association sets up a one-to-one mapping from the set of all subgroups \bar{G} onto the set of all subgroups of G which contain K_{ϕ} .

Proof. Since $\bar{e} \in \bar{H}$, then $K_{\phi} \subset H$. Let $x, y \in H$. $xy \in H$ since $\phi(xy) = \phi(x)\phi(y) \in \bar{H}$ and $x^{-1} \in H$ since $\phi(x^{-1}) = (\phi(x))^{-1} \in \bar{H}$. Thus, H is a subgroup in G. Assume that \bar{H} is normal and pick arbitray elements $g \in G$ and $h \in H$.

$$\phi(ghg^{-1}) = \phi(g)\phi(h)(\phi(g))^{-1} \in \bar{H} \implies ghg^{-1} \in H$$

hence H is normal in G. Let $\bar{H}, \bar{H'}$ be two subgroups of \bar{G} and $H = \phi^{-1}(\bar{H}), H' = \phi^{-1}(\bar{H'})$. Thus far we have proved that $H, H' \supset K_{\phi}$ are subgroups of G and ϕ^{-1} is surjective. If $\bar{H} \neq \bar{H'}$, then there is an element $x \in \bar{H}$ but $x \notin \bar{H'}$. We should see that for any $y = \phi^{-1}(x)$, $y \subset H$ but $y \notin H'$. Since $\phi(y) = x \in \bar{H}$, then $y \in H$. If $y \in H'$, then $\phi(y) = x \in \bar{H'}$ which is a contradiction. Therefore, ϕ^{-1} is a injective as well. So ϕ^{-1} is a bijection between the subgroups of \bar{G} and subgroups of G that contain K_{ϕ} .

Theorem 2.26. Let $\phi: G \to \bar{G}$ be a surjective homomorphism, \bar{N} a normal subgroup of \bar{G} , and $N = \{x \in G \mid \phi(x) \in N\}$. Then, $G/N \approx \bar{G}/\bar{N}$ and equivalently $G/N \approx (G/K_{\phi})/(N/K_{\phi})$.

Proof. The last equivalency results immediately from 2.22.

Exercises

- 1. Let U be a subset of a group G. The subgroup generated by U, denoted by $\langle U \rangle$ is the smallest subgroup that contains U. Show that $\langle U \rangle$ exists and give a construction for it.
- 2. Let $U = \{xyx^{-1}y^{-1} \mid x, y \in G\}$. In this case, $\langle U \rangle$ is usually written as \hat{G} and is called the **commutator subgroup** of G.
 - (a) Prove \hat{G} is normal in G.
 - (b) Prove G/\hat{G} is abelian.
 - (c) If G/N is abelian, prove that $N \supset \hat{G}$.
 - (d) Prove that if H is a subgroup of G and $H \supset \hat{G}$, then H is normal in G.
 - (e) Let $G = GL_2(\mathbb{R})$ and $N = SL_2(\mathbb{R})$. Show that $N = \hat{G}$.

2.6 Automorphism

Definition: An isomorphism of a group onto iteslf is called an **automorphism**.

Lemma 2.27. If G is a group, then $\mathscr{A}(G)$, the set of all automorphisms of G is also a group. The $\mathscr{A}(G)$ is also denoted by $\operatorname{Aut}(G)$.

Proof. The Aut(G) is a group under composition. Suppose $\theta, \phi, \psi \in Aut(G)$.

1. It is closed under composition. Since ϕ , θ are both bijective, then their composition is a bijection as well. Moreover, it is a homomorphisms

$$\phi(\psi(xy)) = \phi(\psi(x)\psi(y)) = \phi(\psi(x))\phi(\psi(y))$$

therefore, $\phi \circ \psi \in \text{Aut}(G)$.

2. The identity is the identity transformation I.

$$I \circ \phi = \phi \circ I = \phi$$

3. the inverse of each automorphisms is its inverse map. Suppose ϕ^{-1} is inverse of ϕ

$$xy = \phi \left(\phi^{-1}(x)\right) \phi \left(\phi^{-1}(y)\right) = \phi \left(\phi^{-1}(x)\phi^{-1}(x)\right) \implies \phi^{-1}(xy) = \phi^{-1}(x)\phi^{-1}(y)$$

4. composition is associative

$$\phi \circ (\psi \circ \theta) = (\phi \circ \psi) \circ \theta$$

for any maps ϕ, ψ, θ from G to G.

Example 2.1. $T_g: G \to G$ with $xT_g = g^{-1}xg$. T_g is an automorphisms. T_g is called the **inner automorphism corresponding to** g. Let $\mathscr{T}(G) = \{T_g \in \operatorname{Aut}(G) \mid g \in G\}$ is the **inner automorphism group** and is also denoted by $\operatorname{Inn}(G)$. $\Psi: G \to \operatorname{Aut}(G)$ given by $g\Psi = T_g$ is a homomorphism. The kernel of Ψ is the **center** of G, Z(G), the set of the elements that commute with all other elements. Note that, if $g_o \in K_{\Psi}$, then $T_{g_o} = I$, hence $g_0^{-1}xg_0 = x$ implying $g_0x = xg_0$ for all $x \in G$. If $g_0 \in Z(G)$, then $xg_0 = g_0x$ for all x, thus $T_{g_0} = I$ and $g_0 \in K_{\Psi}$.

Lemma 2.28. $G/Z \approx \operatorname{Inn}(G)$.

Proof. Since $K_{\psi} = Z$, this is an immediate result of 2.22, by considering $\Psi : G \to \text{Inn}(G)$. \square

Lemma 2.29. Let G be a group and ϕ be an automorphism of G. If $a \in G$ is of order o(a) > 0, then $o(\phi(a)) = o(a)$.

Proof. For any homomorphism $\phi: G \to \bar{G}$, $o(\phi(a)) \mid o(a)$ since

$$\phi(a)^{o(a)} = \phi(a^{o(a)}) = \phi(e) = \bar{e}$$

since both ϕ and ϕ^{-1} are homomorphism from G to G, then

$$o(\phi(a)) \mid o(a)$$

$$o(\phi^{-1}(\phi(a))) = o(a) \mid o(\phi(a))$$

$$\implies o(\phi(a)) = o(a)$$

Exercises

- 1. A subgroup C of G is said to be a **characteristics subgroup** of G if $CT \subset C$ for all automorphisms T of G. For any group G, prove that the commutator subgroup \hat{G} is a characteristic subgroup of G.
- 2. Let G be a finite group, T an automorphism of G with property that xT = x if and only if x = e. Suppose futher that $T^2 = I$. Prove that G must be abelian.
- 3. Let G be a finite group, T an automorphism of G that sends more than three-quarters of the elements of G onto their inverses. Prove that $xT = x^{-1}$ and that G is abelian.
- 4. Let G be a group of order 2n. Suppose that half of the elements of G are of order 2, and the other half form a subgroup H of order n. Prove that H is of odd order and is an abelian subgroup of G.

2.7 Cayley's theorem

Theorem 2.30 (Cayley). Every group is isomorphic to a subgroup of A(S) for some set S.

Proof. Take S = G and let $\tau_g : S \to S$ be given by $\tau_g : x \mapsto xg$ for a $g \in G$. We claim that $\theta : G \to A(S)$ given by $\theta : g \mapsto \tau_g$ is an isomorphism. First, we must show that θ is well defined. That is, for all $g \in G$, $\tau_g \in A(S)$. Note that, if xg = yg, then x = y, hence τ_g is injective. For every $y \in G$, $y = yg^{-1}\tau_g$, hence τ_g is surjective. Thus, $\tau_g \in A(S)$. Second, we show that θ is a homomorphism. For all $g, h, x \in G$, x(gh) = (xg)h therefore, $x_g = x_g =$

The construction above, describes a group G as a subgroup of A(G) that for finite G, is of order o(G)!. Too BIG. We wish to make it smaller. Consider the following results.

Theorem 2.31. If G is a group, H a subgroup of G, and S is the set of all right cosets of H in G, then there is a homomorphism $\theta: G \to A(S)$ and the kernel of θ is the largest normal subgroup of G which is contained in H.

Proof. Let $\tau_g: S \to S$ be given by $Hx\tau_g = Hxg$ and then let $\theta: G \to A(S)$ be given by $\theta: g \mapsto \tau_g$. One can easily check that, $\tau_g \in A(S)$ for all g and that θ is a homomorphism. Suppose K is the kernel of θ . Since K is a kernel of a homomorphism, it is normal. Moreover, if $g \in K$, then Hxg = Hx for all $x \in G$. In particular, Hg = H which implies that $g \in H$. As a result, $K \subset H$. Lastly, suppose K' is another normal subgroup of G which is contained in H. If $g' \in K'$, then for all $x \in G$, $xg'x^{-1} \in K' \subset H'$. That is, there exists a $h_x \in H$ such that xg' = hx which implies Hxg' = Hx for all x. Therefore, $g' \in K$ and $K' \subset K$. Which was what was wanted.

Given the above theorem, if H has no non-trivial normal subgroup of G inside it, then θ is an isomorphism.

Lemma 2.32. If G is a finite group, and $H \neq G$ is a subgroup of G such that $o(G) \nmid i(H)!$, then H must contain a non-trivial normal subgroup of G. In particular, G is not simple.

Proof. Suppose H contains no non-trivial normal subgroup of G. Then, by preceding theorem, θ is an isomorphism and G is isomorphic to a subgroup of A(S), where A(S) = i(H)!. By Lagrange, theorem, $o(G) \mid i(H)!$ which was what was wanted.

Exercises

- 1. Let o(G) = pq, p > q are primes, prove
 - (a) G has a subgroup of order p and a subgroup of order q.
 - (b) If $q \nmid p-1$, then G is cyclic.
 - (c) Given two primes, p and q with $q \mid p-1$, there exists a non-abelian group of order pq.
 - (d) Any two non-abelian groups of order pq are isomorphic.

2.8 Permutation group

Suppose S is a finite set having n elements x_1, \ldots, x_n . If $\phi \in A(S)$, then ϕ is a one-to-one correspondence and it can be represented as

$$\phi: \begin{pmatrix} x_1 & x_2 & \dots & x_n \\ x_{i_1} & x_{i_2} & \dots & x_{i_n} \end{pmatrix}$$

where $x_{i_j} = \phi(x_j)$. More simply

$$\begin{pmatrix} 1 & 2 & \dots & n \\ i_1 & i_2 & \dots & i_n \end{pmatrix}$$

By considering composition of $\theta, \psi \in A(S)$, we can define multiplication on their representa-

For $\theta \in A(S)$ and $a, b \in S$, $a \stackrel{\theta}{\equiv} b \iff a = b\theta^i$ for some $i \in \mathbb{Z}$. This defines an equivalence relation.

- 1. $a \stackrel{\theta}{\equiv} a$ for all a, since $a = a\theta^0$.
- 2. $a \stackrel{\theta}{\equiv} b$ implies $b \stackrel{\theta}{\equiv} a$, since $a = b\theta^i \implies b = a\theta^{-1}$.
- 3. $a \stackrel{\theta}{\equiv} b$ and $b \stackrel{\theta}{\equiv} c$ implies $a \stackrel{\theta}{\equiv} c$, since $a = b\theta^i$ and $b = c\theta^j$ implies $a = c\theta^{i+j}$.

We call the equivalence classes of $s \in S$, the **orbit** of s under θ . The orbit of s consists of all elements in form of $s\theta^i$, $i \in \mathbb{Z}$. If S is finite, then there is a smallest positive integer l = l(s) such that $s\theta^l = s$. By **cycle** of θ we mean the ordered set $(s, s\theta, \ldots, s\theta^{l-1})$.

Lemma 2.33. Every permutation is a product of its cycles.

Proof. Note that the cycles of a permuation are disjoint, and each is a permuation, hence their product is a permuation. Suppose ψ is the permuation of the product of cycles of θ . ψ is well-defined since the product of disjoint permuation is commutative. Furthermore, for each $s \in S$, $s\psi = \theta s$ thus, $\theta = \psi$.

Lemma 2.34. Every cycle can be written as a product of 2-cycle or **transpositions**.

Proof. Every m-cycle can be written as a product of 2-cycles.

$$\begin{pmatrix} 1 & 2 & \dots & m \end{pmatrix} = \begin{pmatrix} 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 3 \end{pmatrix} \dots \begin{pmatrix} m-1 & m \end{pmatrix} \qquad \Box$$

Definition: A permutation $\theta \in S_n$ is said to be an **even permuation** if it can be represented as a product of an even number of transpositions,

The proof of well-definition of even permuation involves the polynomial $p(x_1, \ldots, x_n)$

$$p(x_1, \dots, x_n) = \prod_{i < j} (x_i - x_j)$$

Define the action of $\theta \in A(S_n)$ on the polynomial p

$$\theta \cdot p = \prod_{i < j} (x_{\theta(i)} - x_{\theta(j)})$$

It can be easily seen that $\theta \cdot p = \pm p$. In fact, if θ is a transposition, then $\theta \cdot p = -p$. Since this is an action on p, if θ is the product of m transposition, $\theta \cdot p = (-1)^m p$. Therefore, even permuations are well-defined. That is, no permuation can be written as a product of even number of transpositions and odd number of transpositions simultaneously.

Let $A_n \subset S_n$ be the set of even permutations. A_n is a subgroup of S_n and it is called the alternating group.

Lemma 2.35. The alternating group is a normal subgroup of S_n of index 2, .

Proof. A way to prove this lemma, is to show that every odd permuation is in one coset of A_n .

Another way, is to show that $\Psi: S_n \to W$ given by

$$\theta \Psi = \begin{cases} 1 & \theta \text{ is even} \\ -1 & \theta \text{ is odd} \end{cases}$$

is an onto homomorphism. W is the group of $\{1, -1\}$ under multiplication. Then A_n is the kernel of Ψ . Since $S_n/A_n \approx W$, then

$$\frac{o(S_n)}{o(A_n)} = o(W) = 2$$

Which was what was wanted.

Exercises

- 1. (a) What is the order of an n-cycle.
 - (b) What is the order of the product of disjoint cycles of length m_1, m_2, \ldots, m_k .
 - (c) How do you find the order of a given permutation?
- 2. Prove that A_5 has no non-trivial normal subgroups.
- 3. If $n \geq 5$ prove that A_n is the only non-trivial normal subgroup in S_n .

2.9 Another counting principle

Definition: If $a, b \in G$, then b is said to be a **conjugate** of a in G, denoted by $a \sim b$, if there exists an element $c \in G$ such that $b = c^{-1}ac$

Lemma 2.36. Conjugacy is an equivalence relation on G.

Proof. 1. $a \sim a$ for all $a \in G$, $a = e^{-1}ae$.

- 2. $a \sim b \implies b \sim a$ for all $a, b \in G$, since $a = c^{-1}bc$ implies that $b = cac^{-1}$.
- 3. $a \sim b, b \sim c \implies a \sim c$ for all $a, b, c \in G$, since $a = d^{-1}bd = d^{-1}e^{-1}ced = (ed)^{-1}c(ed)$.

For $a \in G$ let $C(a) = \{x \in G \mid x \sim a\}$. C(a) is called the **conjugate class** of a in G. It consists all elements in form of $y^{-1}ay$ for $y \in G$. Suppose G is a finite group and A is a set of representative of conjugacy classes. Then,

$$o(G) = \sum_{a \in A} |C(a)|$$

Definition: Suppose $a \in G$. The **normalizer** of a in G, denoted by N(a), is the set of all elements that commute with a, $N(a) = \{x \in G \mid ax = xa\}$.

Lemma 2.37. N(a) is a subgroup of G.

Proof. Suppose $x, y \in N(a)$, then a(xy) = (ax)y = (xa)y = x(ay) = x(ya) = (xy)a. And $x^{-1}a = ax^{-1}$ holds. Therefore, N(a) is a subgroup of G.

Theorem 2.38. If G is a finite group, then $|C(a)| = i_G(N(a))$. i.e. the number of elements conjugate to a in G is the index of normalized of a in G.

Proof. Let S be the set of right cosets of N(a) in G. Consider $\varphi: S \to C(a)$ given by $\varphi: N(a)g \mapsto g^{-1}ag$. This, function is well-defined since if N(a)g = N(a)h, then g = nh for some $n \in N(a)$. Then, $g^{-1}ag = h^{-1}n^{-1}anh = h^{-1}ah$. Similarly, it is injective. If $N(a)g\varphi = N(a)h\varphi$, then $g^{-1}ag = h^{-1}ah \implies a = (gh^{-1})a(hg^{-1}) \implies hg^{-1} \in N(a)$ hence N(a)g = N(a)h. φ is clearly surjective. Suppose $x \in C(a)$, then there exists $g \in G$ such that $x = g^{-1}ag$. Then, $N(a)g\varphi = g^{-1}ag = x$. Therefore, φ is a bijection and $|C(a)| = i_G(N(a))$.

Corollary 2.39. The class equation of G

$$o(G) = \sum_{a \in A} \frac{o(G)}{o(N(a))}$$

Recall that the center Z(G) of a group G is the set of all $a \in G$ such that ax = xa for all $x \in G$.

Lemma 2.40. $a \in Z(G)$ if and only if N(a) = G. If G is finite, $a \in Z(G)$ if and only if o(N(a)) = o(G).

Proof. It can be readily proven by applying the definitions.

2.9.1 Applications of 2.38

Theorem 2.41. If $o(G) = p^n$ where p is a prime number, then $Z(G) \neq \{e\}$.

Proof. Let z = o(Z(G)). For each $a \in Z(G)$, |C(a)| = 1. For each $b \notin Z(G)$, $N(a) \neq G$, hence $o(N(a)) = p^k$ for some 0 < k < n. Therefore, $|C(a)| = p^{n-k}$ with $n - k \ge 1$. Hence,

$$p^{n} = \sum_{a \in A} |C(a)|$$

$$= \sum_{A \cap Z(G)} |C(a)| + \sum_{A \cap (Z(G))^{c}} |C(a)|$$

$$= z + \sum_{A \cap (Z(G))^{c}} |C(a)|$$

We have shown that, for $a \notin Z(G)$, then $p \mid |C(a)|$, thus $p \mid z$. Since $e \in Z(G)$, then Z(G) contains at least p elements.

Corollary 2.42. If $o(G) = p^2$ where p is a prime number, then G is abelian.

Proof. Based on the proof last theorem, $o(Z(G)) = p, p^2$. Suppose o(Z(G)) = p and $a \notin Z(G)$. Then, $Z(G) \subsetneq N(a)$. By Lagrange's theorem, $o(N(a)) \mid o(G)$, thus $o(N(a)) = p^2$ which means $a \in Z(G)$, a contradiction. Therefore, $o(Z(G)) = p^2$ and G is abelian.

Theorem 2.43 (Cauchy). If p is a prime number and $p \mid o(G)$, then G has an element of order p.

Proof. If o(G) = p, then G is cyclic and the theorem holds. Suppose, the statement is true for all groups with o(G) = pk for $1 \le k \le n - 1$, we will show that it is also true for o(G) = np. That is, we will prove the theorem by induction. If G has a non-trivial subset H where $p \mid o(H)$, then we would be done. Suppose, that p divides the order of no non-trivial

subgroup of H. Consider the normalizer subgroups, N(a). If a normalizer subgroup is trivial, then N(a) = G and hence $a \in Z(G)$. If it is not trivial, then its index divides p.

$$p^{n} = z + \sum_{A \cap (Z(G))^{c}} |C(a)| \implies p \mid z$$

That is $p \mid o(Z(G))$. Therefore, Z(G) = G which means G is abelian. By Cauchy's theorem for abelian groups, there exists $a \neq e$ such that $a^p = e$.

Recall that every permutation in S_n can be decomposed into disjoint cycles. We shall say a permutation $\sigma \in S_n$ has the **cycle decomposition** $\{n_1, \ldots, n_r\}$ if it can be written as product of disjoint cycles of length n_1, \ldots, n_r with $n_1 \leq n_2 \leq \cdots \leq n_r$.

Lemma 2.44. Two permuations in S_n are conjugate if and only if they have the same cycle decomposition.

Proof. Conjugation in S_n leaves the cyclic decomposition unchanged. Also, for any two permuations with the same cyclic decomposition, we can find a $\theta \in S_n$ such that $\sigma_1 = \theta^{-1}\sigma_2\theta$.

Corollary 2.45. The number of conjugate classes in S_n is p(n), the number of partitions of n.

Proof. Every conjugate class corresponds to a partition of n.

Exercises

1.

2.10 Sylow's theorem

Theorem 2.46 (Sylow). If p is a prime number and $p^{\alpha} \mid o(G)$, then G has a subgroup of order p^{α} .

Corollary 2.47. If $p^m \mid o(G)$, $p^{m+1}() \mid o(G)$, then G has a subgroup of order p^m .

A subgroup of G of order p^m where $p^m \mid\mid o(G)$ is called a p-Sylow group. Let $e_p(n)$ be $p^{e_p(n)} \mid\mid n!$.

Lemma 2.48. $e_p(p^k) = 1 + p + \dots + p^{k-1}$.

Lemma 2.49. S_{p^k} has a p-Sylow group.

Definition: Let G be a group, A, B subgroups of G. If $x, y \in G$ define $x \sim y$ if y = axb for some $a \in A$ and $b \in B$.

Lemma 2.50. The relatino \sim defines an equivalence relation on G. The equivalence class of $x \in G$ is the set $AxB = \{axb \mid a \in A, b \in B\}$.

Lemma 2.51. If A, B are finie subgroups of G then

$$|AxB| = \frac{o(A)o(B)}{o(A \cup xBx^{-1})}$$

Lemma 2.52. Let G be a finite group and suppose G is a subgroup of the finite group M. Suppose further that M has a p-Sylow group subgroup Q. Then G has a p-Sylow subgroup P. In fact, $P = G \cap xQx^{-1}$ for some $x \in M$.

Theorem 2.53 (Second part of Sylow's theorem). If G is a finite group, p is a prime and $p^n \mid\mid o(G)$, then any two subgroups of G of order p^n are conjugate.

Lemma 2.54. The number of p-Sylow subgroups in G equals o(G)/o(N(P)) where P is any p-Sylow subgroup of G. In particular, this number is a divisor of o(G).

Theorem 2.55 (Second part of Sylow's theorem). The number of p-Sylow subgroups in G, is of the form 1 + kp.

2.11 Direct product

Let A and B be any two groups and $G = A \times B$. Define the operation \circ_G as $(a_1, b_1) \circ_G (a_2, b_2) = (a_1 \circ_A a_2, b_1 \circ_B b_2)$. It can be readily verified that G is group under the operation \circ_G . We call (G, \circ_G) the **external direct product** of A and B.

Now suppose $G = A \times B$ and consider $\bar{A} = \{(a, f) \in G \mid a \in A\}$ where f is the unit element of B. Then, \bar{A} is a normal subgroup in G and is isomorphic to A. We claim that $G = \bar{A}\bar{B}$ and every $g \in G$ has a unique decomposition in the form of $g = \bar{a}\bar{b}$ where $\bar{a} \in \bar{A}$ and $\bar{b} \in \bar{B}$. Thus we have realized G as an **internal product** $\bar{A}\bar{B}$ of two normal subgroups.

Definition: Let G be a group and N_1, \ldots, N_n normal subgroups of G such that

- 1. $G = N_1 \dots N_n$.
- 2. Any $g \in G$ can be uniquely represented as $g = n_1 n_2 \dots n_n$ where $n_i \in N_i$.

We then say that G is the internal direct product of N_1, \ldots, N_n .

Lemma 2.56. Suppose that G is the internal product of N_1, \ldots, N_n . Then for $i \neq j$, $N_i \cap N_j = \{e\}$ and if $a \in N_i$ and $b \in N_j$ then ab = ba.

Theorem 2.57. Suppose that G is the internal product of N_1, \ldots, N_n and let $T = N_1 \times \cdots \times N_n$. Then G and T are isomorphic.

2.12 Finite abelian groups

Theorem 2.58 (The fundamental theorem on finite abelian groups). Every finite abelian group is the direct product of cyclic groups.

Definition: If G is an abelian group of order p^n , p a prime, and $G = A_1 \times \cdots \times A_k$ where A_i is cyclic of order p^{n_i} with $n_1 \geq n_2 \geq \cdots \geq n_k > 0$, then the integers n_1, n_2, \ldots, n_k are called the **invariants** of G.

Definition: If G is an abelian group and s is any integer, then $G(s) = \{x \in G \mid x^s = e\}$.

Lemma 2.59. If G and G' are isomorphic abelian groups, then for every integer s, G(s) and G'(s) are isomorphic.

Chapter 3

Ring Theory

Definition: A non-empty set R is an **associative ring** if in R there are defined two operations $(+,\cdot)$ such that for all $a,b,c\in R$

- 1. R is closed under +.
- 2. + is commutative.
- 3. + is associative.
- 4. There exists an element $0 \in R$, which is the identity element of +.
- 5. For each a, there exists b such that a + b = b + a = 0.
- 6. R is closed under \cdot .
- $7. \cdot is associative.$
- 8. · is distributive over +. That is, $a \cdot (b+c) = a \cdot b + a \cdot c$ and $(a+b) \cdot c = a \cdot c + b \cdot c$.

If there is an element $1 \in R$ such that $a \cdot 1 = 1 \cdot a = a$ for all $a \in R$, R is said to be a **ring with unity**. If \cdot is commutative, R is said to be a **commutative ring**. If the non-zero elements of R form an abelian group under \cdot , R is said to be a **field**.

Example 3.1. Consider the **real quaternions**, $Q = \{\alpha_0 + \alpha_1 i + \alpha_2 j + \alpha_3 k \mid \alpha_1, \alpha_2, \alpha_3 \in \mathbb{R}\}$ with multiplication rules; $i^2 = j^2 = k^2 = ijk = 1$, ij = -ji = k, jk = -kj = i, ki = -ik = j. Then, Q is a non-commutative ring and its non-zero elements form a non-commutative group under multiplication.

3.1 Some special classed of ring

Definition: If R is a commutative ring, then a non-zero element $a \in R$ is a **zero-divisor** if there exists another non-zero element b such that ab = 0.

Definition: A commutative ring is an **integral domain** if it has no zero-divisors.

Definition: A ring in which all non-zero elements form a group under multiplication is called a division ring or skew-field.

Definition: A field is a commutative division ring.

3. Ring Theory

Lemma 3.1. for all $a, b, c \in R$

1.
$$a \cdot 0 = 0 \cdot a = 0$$
.

2.
$$a(-b) = (-a)b = -ab$$
.

3.
$$(-a)(-b) = ab$$
.

If $1 \in R$

1.
$$(-1)a = -a$$
.

2.
$$(-1)(-1) = 1$$
.

Lemma 3.2. A finite integral domain is a field.

Corollary 3.3. If p is a prime, \mathbb{Z}_p is a field.

Definition: An integral domain D is said to be of characteristic 0 if the relation ma = 0 where $a \neq 0$ and $m \in \mathbb{Z}$ holds only if m = 0. D is of finite characteristic if there exists a positive integer m such that for all $a \in D$, ma = 0. The characteristic of D is the samllest such integer. We say that a ring R has n-torsion if there exists $a \neq 0$ in R such that na = 0 and $ma \neq 0$ for 0 < m < n.

3.2 Homomorphisms

Definition: A mapping ϕ from the ring R into the ring R' is a homomorphism if

$$\phi(a+b) = \phi(a) + \phi(b)$$

and

$$\phi(ab) = \phi(a)\phi(b)$$

for all $a, b \in R$.

Lemma 3.4. If $\phi: R \to R'$ is a homomorphism

- 1. $\phi(0) = 0$.
- 2. $\phi(-a) = -\phi(a)$.

Definition: Suppose $\phi: R \to R'$ is a homomorphism. The kernel $I(\phi) = \{a \in R\} \phi(a) = 0$.

Lemma 3.5. If $\phi: R \to R'$ is a homomorphism

- 1. $I(\phi)$ is a subgroup of R under addition.
- 2. If $a \in I(\phi)$ and $r \in R$, then $ra, arI(\phi)$.

Definition: A homomorphism R into R' is an isomorphism of it is one-to-one. R and R' are isomorphic if there is an onto isomorphism between them.

Lemma 3.6. The homomorphism $\phi: R \to R'$ is an isomorphism if and only if $I(\phi) = \{0\}$.

3.3 Ideals and quotient ring

Definition: A non-empty subset U of R is a **two-sided ideal** of R if

- 1. U is a subgroup of R under addition.
- 2. For all $u \in U$ and $r \in R$, $ur, ru \in U$.

R/U is the set of distinct cosets of U in R as a group under addition. R/U is a ring with (a+U)(b+U)=ab+U.

If R is commutative or it has unit element, then R/U is commutative or has unit element. But the converse is not necessarily true. — give an example.

Lemma 3.7. If U is an ideal of the ring R. then R/U is a ring and is a homomorphic image of R.

Theorem 3.8. Suppose $\phi: R \to R$ " is a homomorphism and let $U = I(\phi)$. Then, $R' \approx R/U$. Moreover, there is a one-to-one correspondence between the set of ideals of R' and the set of ideals of R that contain U. This correspondence can be achieved by associating with an ideal W' of R', the ideal W in R defined by $W = \{x \in R \mid \phi(x) \in W'\}$, then $W' \approx R/W$.

3.4 More ideals and quotient rings

Lemma 3.9. Let R be a commutative ring with unit element whose only ideals are (0) and R. Then, R is a field.

Definition: An ideal $M \neq R$ is said to be **maximal ideal** of R whenever U is an ideal of R such that $M \subset U \subset R$, then either UR or U = M.

If a ring has unit element, then using axiom of choice it can be shown that there is a maximal ideal.

Theorem 3.10. If R is a commutative ring with unit element and M is an ideal of R, then M is maximal ideal if and only if R/M is a field.

3.5 The field of quotients of integral domain

Definition: A ring R can be **imbedded** in ring R' if there is an isomorphism of R inot R'. If R and R' have unit elements, this isomorphism should take 1 onto 1'. R' will be called an **over ring or extension** of R.

Theorem 3.11. Every integral domain can be imbedded in a field.

Proof. Take a look at quotients $\frac{a}{b}$. $M = \{(a,b) \mid a,b \in D, b \neq 0\}$. $(a,b) \sim (c,d)$ if ad = bc. F be the set of equivalence classes. F is a field and D can be imbedded in F.

F is called the **field of quotients** of D.

3. Ring Theory

3.6 Euclidean ring

Definition: An integral domain R is an **Euclidean ring** if for every $a \neq 0$ in R there exists a non-negative integer d(a) such that

- 1. For all non-zero $a, b \in R$, $d(a) \le d(ab)$.
- 2. For all non-zero $a, b \in R$, there exists $t, r \in R$ such that a = tb + r where either r = 0 or d(r) < d(b).