第6章 LR分析

- 6.1 自下而上分析及LR分析概述
- 6.2 LR (0)分析
- 6.3 SLR(1)分析
- **6.4** LR(1)分析
- 6.5 LALR(1)分析
- 6.6 使用二义文法
- 6.7 语法分析程序的自动构造工具YACC

SLR(1) 分析

real a,b,...

$$(1)S \rightarrow rD$$

$$(2)D\rightarrow D,i$$

$$(3)D\rightarrow i$$

LR(0)项目

2.
$$S' \rightarrow S$$
.

3.
$$S \rightarrow rD$$

4.
$$S \rightarrow r.D$$

5.
$$S \rightarrow rD$$
.

7.
$$D \rightarrow D$$
, i 8. $D \rightarrow D$, i 9. $D \rightarrow D$, i.

8.
$$D \rightarrow D$$
, i

(2)
$$D \rightarrow D,i$$
 (3) $D \rightarrow i$

LR(0)项目集规范族

$$I_0: S' \rightarrow S$$
 $I_3: S \rightarrow r D.$

$$S \rightarrow r D$$
 $D \rightarrow D.,i$

$$I_1: S' \rightarrow S.$$
 $I_4: D \rightarrow i.$

$$I_2$$
: $S \rightarrow r.D$ I_5 : $D \rightarrow D, i$

$$D \rightarrow D,i$$
 $I_6: D \rightarrow D,i$

$$D \rightarrow i$$

其中I3中含有移进/归约冲突!

那么文法就不是LR(0)的,如何解决?

 I_3 : $S \rightarrow r D$. $D \rightarrow D$., i

例:文法的LR(0)分析表有多重表项

状态		ACTIO	N		GOTO		
	r	•	i	#	\mathbf{S}	D	
0	S_2				1		
1				acc			
2			S_4			3	
3	\mathbf{r}_1	S_5, r_1	\mathbf{r}_1	\mathbf{r}_1			
4	$\mathbf{r_3}$	$\mathbf{r_3}$	$\mathbf{r_3}$	$\mathbf{r_3}$			
5			S_6				
6	$\mathbf{r_2}$	$\mathbf{r_2}$	$\mathbf{r_2}$	$\mathbf{r_2}$			

清华大学出版社

TSINGHUA UNIVERSITY PRESS

 I_3 : S \rightarrow r D. D \rightarrow D.,i 利用 FOLLOW(S) \cap {, }= ϕ 解决冲突

SLR(1)分析表

状态		ACTION			GOTO		
	r	,	i	#	\mathbf{S}	D	
0	S_2				1		
1				acc			
2			S_4			3	
3	\mathbf{r}_1	S_5	\mathbf{r}_1	\mathbf{r}_1			
4	$\mathbf{r_3}$	$\mathbf{r_3}$	$\mathbf{r_3}$	\mathbf{r}_3			
5			S_6				
6	$\mathbf{r_2}$	$\mathbf{r_2}$	$\mathbf{r_2}$	$\mathbf{r_2}$			

SLR(1)技术

问题描述:

如果 LR(0) 项目集规范族中某个项目集 I_K 含移进/归约, 归约/归约 冲突:

 $I_K: \{..., A \rightarrow \alpha.b\beta, P \rightarrow \omega., Q \rightarrow \gamma., ...\}$

求解条件:

若FOLLOW(Q) ∩ FOLLOW(P) = φ

 $FOLLOW(P) \cap \{b\} = \emptyset$

 $FOLLOW(Q) \cap \{b\} = \emptyset$

解决冲突的SLR(1)技术:

action [k, b] = 移进;

对a ∈ FOLLOW (P) 则action[k, a] =用 P →ω 归约;

对a ∈ FOLLOW (Q) 则action[k, a] =用 Q → γ 归约;

能用SLR(1)技术解决冲突的文法称为SLR(1)文法, SLR(1)文法无二义

例:表达式文法G的拓广文法

- $(0) S' \rightarrow E$
- $(1) E \rightarrow E + T$
- (2) $E \rightarrow T$
- (3) $T \rightarrow T*F$
- (4) $T \rightarrow F$
- $(5) F \rightarrow (E)$
- (6) $F \rightarrow i$

Q1: I_1 , I_2 , I_9 中存在冲突!

$$I_1: S' \rightarrow E \bullet, E \rightarrow E \bullet + T$$

$$I_2: E \rightarrow T^{\bullet}, T \rightarrow T^{\bullet*}F$$

$$I_0: E \rightarrow E + T^{\bullet}, T \rightarrow T^{\bullet *}F$$

可用SLR(1)方法解决!

Q2:无用归约!

在状态 I_3 中,只有一个项目 $T \to F \bullet$ 。

按SLR(1)方法,该项目中没有冲突,可保持原来 LR(0)的处理方法:**不论当前输入符号是什么 都进行归约**;

若当前输入符为"(",进行归约是多余的(输入 串不合法!);

延迟了错误的发现。

Idea: 对所有归约项目,检查当前输入符号是否属于归约产生式左部非终结符的FOLLOW集: 是则进行归约;否则报错。

SLR(1)表的构造(改进)

假定 $C=\{I_0,\,I_1,\,...,\,I_n\}$,令每个项目集 I_k 的下标k为分析器的一个状态,则G'的SLR分析表含有状态0,1 , ... , n。

令那个含有项目 $S' \rightarrow .S$ 的 I_k 的下标k为初态。

ACTION表和GOTO表可按如下方法构造:

若项目 $A \rightarrow \alpha.a$ β属于 I_k 且 $GO(I_k, a)=I_j, a$ 为任意终结符,则置 ACTION[k, a]为"把状态j和符号a移进栈",简记为"sj";

若项目 $A \rightarrow \alpha$. 属于 I_k ,那么对任何输入符号a,若aeFOLLOW(A),则置ACTION[k, a]为"用产生式A $\rightarrow \alpha$ 进行归约",简记为"rj";其中A $\rightarrow \alpha$ 为文法的第j个产生式;

若项目S'→S.属于 I_k ,则置ACTION[k, #]为"接受",简记为 "acc";

若 $GO(I_k, A)=I_j$, A为非终结符,则置GOTO(k, A)=j; 分析表中凡不能用规则1至4填入的空白项均置"出错标志"。

· 按上述算法构造的含有ACTION和GOTO两部分的分析表,如果每个表项不含多重定义,则称它为文法G的一张SLR(1)分析表。

・ 具有SLR(1)表的文法G称为一个SLR(1)文法。

清华大学出版社

TSINGHUA UNIVERSITY PRESS

例: 文法(0) S'→S

 $(1)S \rightarrow rD$

(2) $D \rightarrow D,i$

 $(3)D\rightarrow i$

SLR(1)分析表

状态		ACTIO	GOTO			
	r	•	i	#	S	D
0	S_2				1	
1			acc			
2			S_4			3
3		S_5		$\mathbf{r_1}$		
4	$\mathbf{r_3}$		$\mathbf{r_3}$			
5		$\mathbf{S_6}$				
6	$\mathbf{r_2}$		$\mathbf{r_2}$			

LR(1)分析

SLR(1)的局限

文法G:

- $(0) S' \rightarrow S$
- (1) $S \rightarrow aAd$
- (2) $S \rightarrow bAc$

- (3) $S \rightarrow aec$ (4) $S \rightarrow bed$ (5) $A \rightarrow e$

LR(0) 项目集规范族:

$$I_0: S' \rightarrow S$$

$$I_1: S' \rightarrow S.$$

$$I_2: S \rightarrow a.Ad$$

$$S \rightarrow aAd$$

$$S \rightarrow a.ec$$

$$S \rightarrow .bAc$$

$$A \rightarrow .e$$

$$S \rightarrow aec$$

$$S \rightarrow .bed$$

$$(0) S \rightarrow S$$

(0)
$$S \rightarrow S$$
 (1) $S \rightarrow aAd$ (2) $S \rightarrow bAc$

(3)
$$S \rightarrow aec$$
 (4) $S \rightarrow bed$ (5) $A \rightarrow e$

$$(4) S \rightarrow bed$$

$$(5) A \rightarrow e$$

$$I_3: S \rightarrow b.Ac$$

$$S \rightarrow b.ed$$

$$A \rightarrow .e$$

$$I_4$$
:

$$S \rightarrow aA.d$$

$$S \rightarrow ae.c$$

$$A \rightarrow e$$
.

$$S \rightarrow bA.c$$

$$S \rightarrow be.d$$

$$A \rightarrow e$$
.

$$S \rightarrow aAd$$
.

$$I_0$$
: $S \rightarrow aec$.

$$I_{10}$$
: $S \rightarrow bAc$. I_{11} : $S \rightarrow bed$.

$$I_{11}$$
: $S \rightarrow bed$.

(0)
$$S \rightarrow S$$
 (1) $S \rightarrow aAd$ (2) $S \rightarrow bAc$

(3)
$$S \rightarrow aec$$
 (4) $S \rightarrow bed$ (5) $A \rightarrow e$

ACTION

ION GOTO

	a	C	e	b	d	#	$_{I}$ S	A
0	S2			S 3			1	
1						acc		
2			S5					4
3			S7					6
4					S 8			
5	r5	r5S9	r5	r5	r5	r5		
6		S10						
7	r 5	r5	r5	r5	r5S 1	11 r5		
8	r1	r1	r1	r1	r1	r1	Follo	
9	r3	r3	r3	r3	r3	r3	TOIL)
10	r2	r2	r2	r2	r2	r2		
11	r4	r4	r4	r4	r4	r4		

 $Follow(A) = \{c, d\}$

台大学出版社

TSINGHUA UNIVERSITY PRESS

$$(0) S' \rightarrow S$$

(1)
$$S \rightarrow aAd$$

(0)
$$S' \rightarrow S$$
 (1) $S \rightarrow aAd$ (2) $S \rightarrow bAc$

(3)
$$S \rightarrow aec$$
 (4) $S \rightarrow bed$ (5) $A \rightarrow e$

(4)
$$S \rightarrow bed$$

$$(5) A \rightarrow e$$

在一个规范推导中, 哪些输入符号能跟在句柄之后?

I₅:
$$S \rightarrow ae.c$$

$$A \rightarrow e.$$

$$S' = >_R S = >_R aAd = >_R aed$$

$$S' = >_R S = >_R aec$$

$$w_1$$
=a e d w_2 =a e c

$$w_2$$
=a e c

并不是Follow(A)中的每个元素在包含A的每个句型 中都会在A之后出现。

若 $S = \sum_{R}^{*} \alpha A w = > \alpha \beta w$, r是 $\alpha \beta$ 的前缀,则称r是G的一个活前缀。

Forward

台大学出版社

TSINGHUA UNIVERSITY PRESS

$$(0) S' \rightarrow S$$

(1)
$$S \rightarrow aAd$$

(0)
$$S' \rightarrow S$$
 (1) $S \rightarrow aAd$ (2) $S \rightarrow bAc$

(3)
$$S \rightarrow aec$$
 (4) $S \rightarrow bed$ (5) $A \rightarrow e$

(4)
$$S \rightarrow bed$$

$$(5) A \rightarrow e$$

在一个规范推导中, 哪些输入符号能跟在句柄之后?

I₇:
$$S \rightarrow be.d$$

$$A \rightarrow e.$$

$$S' = >_R S = >_R bAc = >_R bec$$

$$S' = >_R S = >_R bed$$

$$w_1$$
=b e c w_2 =b e d

$$w_2$$
=b e d

并不是Follow(A)中的每个元素在包含A的所有句型 中都会在A之后出现。

若 $S = \sum_{R}^{*} \alpha A w = > \alpha \beta w$, r是 $\alpha \beta$ 的前缀,则称r是G的一个活前缀。

Forward

清华大学出版社

TSINGHUA UNIVERSITY PRESS

$G[S]:(0) S \hookrightarrow S$

$$(1) S \rightarrow L = R$$

$$(2) S \rightarrow R$$

$$(3) L \rightarrow *R$$

(4)
$$L \rightarrow id$$

(5)
$$R \rightarrow L$$

LR(0)项目集规范族

I0:
$$S' \rightarrow S$$

$$S \rightarrow L = R$$

$$S \rightarrow R$$

$$L \rightarrow *R$$

$$R \rightarrow \bullet L$$

I1:
$$S' \rightarrow S$$

I2:
$$S -> L \cdot = R$$

$$R \rightarrow L$$

I3:
$$S \rightarrow R^{\bullet}$$

$$R \rightarrow \bullet L$$

$$L \rightarrow *R$$

$$L \rightarrow \bullet id$$

I6:
$$S \rightarrow L = R$$

$$R \rightarrow \bullet L$$

$$L \rightarrow *R$$

$$L \rightarrow \bullet id$$

Another example

I2: $S -> L \cdot = R$, $R -> L \cdot$

考虑分析表达式 id = id时,在工作到 I2 处已经将第一个 id 归约成 L了,看到下一个输入 = 要作决策,第一个项目设置 Action[2, =] 为S6,即把赋值的其它部分找到.但 = 也是属于 Follow(R),第二个项目要用 R->L归约.出现 shift-reduce 冲突.

SLR 分析程序没有记住足够的左文以决定当见到一个能归约到L的串而在输入中碰上 = 时会发生什么. 虽然在栈顶的符号序列可以归约到 R, 但我们不能要这个选择, 因为不可能有规范句型以 R = ...开头(有以*R = ... 开头的规范句型).

SLR(1)的局限

FOLLOW 集包含了在任何句型中跟在 R 后的符号,但没有严格地指出在一个特定的推导里哪些符号跟在 R后. 所以需要扩充状态以包含更多的信息:FOLLOW 集的哪些部分才是进到该状态最恰当的归约依据.

处在状态 2时, 试图构建句子有两条路:

 $1.S \Rightarrow L = R$ 或 $2.S \Rightarrow R \rightarrow L$. 如下一符号是 =, 那就不能用第二个选择, 必须用第一选择, 即移进. 只有下一个符号是#时才能归约. 尽管 = 属于Follow(R), 但那是因为一个 R 可以出现在别的上下文中. 在当前这个特定情况下, 它不适合, 因为在用S ⇒ R→L推导句子时, = 不能跟在R后.

是否LR(0)文法?

 $:: I_2: S \rightarrow L.=R, R \rightarrow L.$ 中存在移进/归约冲突

不是LR(0)文法

SLR能否解决I2中的冲突?

∵ FOLLOW(R)={#,=}与{=}交不为空

不是SLR(1)文法

LR(1)方法

若 $A \rightarrow \alpha$. B $\beta \in I$ 则 B $\rightarrow . \gamma \in I$ (B $\rightarrow \gamma$ 是一产生式)

Idea: 考虑将FIRST(β)作为用产生式 $B \rightarrow \gamma$ 归约的搜索符,作为归约时查看的符号集,用以代替 SLR(1)分析中的FOLLOW集。

LR(1)项目(配置)的一般形式

 $[A \rightarrow \alpha \cdot \beta, a]$

意味着处在栈顶的为 α ,期望 β 出现在栈顶的状态; a 称作该项目(配置)的向前搜索符(lookahead)。

 $[A \rightarrow \alpha \beta \bullet, a]$

意味着处在栈中的是αβ的状态,但只有当下一个输入符是a时才能进行归约;a要么是一个终结符,要么是输入结束标记#。

有多个向前搜索符时,可写作 A -> u•, a/b/c

向前搜索符(lookahead)只对圆点在最后的项目起作用

LR(1)项目集规范族构造

Closure(I)按如下方式构造:

- (1)I 的任何项目属于closure(I);
- (2)若[A \rightarrow β₁. Bβ₂, a]∈closure(I), B \rightarrow δ是一产生式,那么对于 FIRST(β₂ a)中的每个终结符b,如果[B \rightarrow .δ, b]不在 closure(I)中,则将它加入;
- (3)重复(1)(2), 直至closure(I)不再增大。

LR(1)项目集规范族C的构造算法类似于LR(0):

在开始时, C={closure({[S`→.S, #]})};

GO函数:

若I是一个项目集, X是一个文法符号,

GO(I, X) = closure(J)

其中 $J=\{$ 任何形如[$A\rightarrow \alpha X.\beta$, a]的项目|[$A\rightarrow \alpha.X\beta$,a] \in I $\}$ 。

TSINGHUA UNIVERSITY PRESS

例:LR(1)项目集的规范族

$$I_0$$
: S' \rightarrow .S, #

$$S \rightarrow aAd, #$$

$$S \rightarrow .bAc, #$$

$$S \rightarrow aec, #$$

$$S \rightarrow bed, #$$

$$I_1: S' \rightarrow S_1, \#$$

$$I_2$$
: S' \rightarrow a.Ad, #

$$S \rightarrow a.ec, #$$

$$A \rightarrow e, d$$

I₃:
$$S \rightarrow b.Ac, #$$

$$S \rightarrow b.ed, #$$

$$A \rightarrow .e,c$$

$$I_4$$
: $S \rightarrow aA.d, #$

$$I_5$$
: $S \rightarrow ae.c, #$

$$A \rightarrow e., d$$

$$I_6$$
: S \rightarrow bA.c, #

$$I_7$$
: S \rightarrow be.d, #

$$A \rightarrow e., c$$

$$I_8$$
: $S \rightarrow aAd., #$

$$I_9$$
: $S \rightarrow aec., #$

$$I_{10}$$
: $S \rightarrow bAc., #$

$$I_{11}$$
: $S \rightarrow bed., #$

$$(0) S' \rightarrow S$$

(1)
$$S \rightarrow aAd$$

(2)
$$S \rightarrow bAc$$

(3)
$$S \rightarrow aec$$

(4)
$$S \rightarrow bed$$

$$(5) A \rightarrow e$$

规范的LR(1)分析表构造

- 假定LR(1)项目集规范族C={ I_0 , I_1 , ..., I_n }, 令每个项目集 I_k 的下标k为分析器的一个状态,G'的LR(1)分析表含有状态0, 1, ..., n.
- 1. 若项目[$\mathbf{A} \rightarrow \alpha.\mathbf{a}\beta$, \mathbf{b}]属于 \mathbf{I}_k 且GO(\mathbf{I}_k , \mathbf{a})= \mathbf{I}_j , 则置 $\mathbf{ACTION}[\mathbf{k}, \mathbf{a}]$ = $\mathbf{s}\mathbf{j}$, 含义是"把状态j和符号a移进栈";
- 2. 若项目[$A \rightarrow \alpha$., a]属于 I_k , 那么置ACTION[k, a]为"用产生式 $A \rightarrow \alpha$ 进行归约",简记为"rj";其中,j为产生式 $A \rightarrow \alpha$ 在文法 G'中的编号;
- 3. 若项目[S`→S., #]属于I_k, 则置ACTION[k, #]为"接受", 简记为"acc";
- 4. 若GO(I_k, A)= I_i, A为非终结符, 则置GOTO(k, A)=j;
- 5. 分析表中凡不能用规则1至4填入信息的**空白表项**,均置上"出错标志"。

- · 按上述算法构造的含有ACTION和GOTO两部分的分析表,如果每个表项不含多重定义,则称它为文法G的一张规范的LR(1)分析表。
- 具有规范的LR(1)分析表的文法G称为一个LR(1) 文法。

LR(1) 文法满足下面两个条件:

- 1. 如果一个项目集中有项目 [A -> u•xv, a], x是终 结符,则不会有项目[B -> u•, x];
- 2. 项目集中所有归约项目的向前搜索符不相交,即不能同时含有项目: [A -> u•, a] 和 [B -> v•, a]

LR(1)比SLR(1)能力强

例如文法G[S']:

- $(0)S' \rightarrow S$
- $(1)S \rightarrow L = R$
- $(2)S \rightarrow R$
- $(3)L\rightarrow *R$
- $(4)L\rightarrow i$
- $(5)R\rightarrow L$

不能用SLR(1)技术解决, 但能用LR(1)技术解决。

每个SLR(1)文法都是LR(1)的, 一个SLR(1)文法的LR(1)分析器往往比其SLR(1) 分析器的状态数要多。

例
$$G(S):S \to BB$$
 $B \to aB$ $B \to b$

$$I_0:S'\rightarrow .S$$
 $S\rightarrow .BB$ $B\rightarrow .aB$ $B\rightarrow .b$

$$I_1:S'\rightarrow S.$$

$$I_2:S \rightarrow B.B \quad B \rightarrow .aB \quad B \rightarrow .b$$

$$I_3:B \rightarrow a.B \quad B \rightarrow .aB \quad B \rightarrow .b$$

$$I_4:B\rightarrow aB$$
.

$$I_5:B\rightarrow b$$
.

$$I_6:S \rightarrow BB$$
.

LR(1)项目集及其之间转换关系

LALR(1) 分析

LALR—SLR(1)和LR(1)之间的折衷办法 (状态数目、分析能力)

LALR (lookahead LR)

$$I_3:B \rightarrow a \bullet B, a/b$$

 $B \rightarrow \bullet aB, a/b$

$$B \rightarrow \bullet b, a/b$$

$$I_6:S \rightarrow a \bullet B, \#$$
 $B \rightarrow \bullet aB, \#$
 $B \rightarrow \bullet b, \#$

$$I_4:B \rightarrow b \bullet, a/b$$

$$I_7:B \rightarrow b \bullet ,\#$$

$$I_8:B \rightarrow aB \bullet, a/b$$

$$I_9:B \rightarrow aB \bullet ,\#$$

合并同心集I₃I₆,I₄I₇,I₈I_{9。}

同心集合并的几个问题:

- 1. 同心集合并后所得项目集的心不变,但搜索符为各同心集的搜索符集的并。
- 2. 合并同心集后的项目集经转换函数到达的仍为同心集。
- 3. 合并同心集后若有冲突也只可能是归约/归约冲突,而不可能产生移进/归约冲突。
- 4. 合并同心集后对某些错误发现时间会产生<mark>推迟</mark>现象。

合并同心集后若有冲突也只可能是归约/归约冲突, 而不可能产生移进/归约冲突。

若LR(1)文法的项目集 I_k 与 I_j 为同心集,其中:

$$I_{k}$$
: $[A \rightarrow \alpha_{\bullet}, u_{1}]$
 $[B \rightarrow \beta_{\bullet}a\gamma, b]$
 I_{j} : $[A \rightarrow \alpha_{\bullet}, u_{2}]$
 $[B \rightarrow \beta_{\bullet}a\gamma, c]$
合并后 I_{kj} :
 $[A \rightarrow \alpha_{\bullet}, u_{1}/u_{2}]$
 $[B \rightarrow \beta_{\bullet}a\gamma, b/c]$

构造 LALR(1)分析表

- 1. 构造文法G的规范 LR(1) 状态集.
- 2. 合并同心集(除搜索符外两个集合是相同的)的状态.
- 3. 新 LALR(1) 状态的GO函数是合并的同心集状态的GO函数的并.
- 4. LALR(1)分析表的ACTION 和 GOTO 构造方法与LR(1)一样.
- 经上述步骤构造的表若不存在冲突,则称它为G的LALR(1)分析表。
- 存在这种分析表的文法称为LALR(1)文法。

LR(1)项目集及其之间转换关系

LALR(1)分析表

LR(1)分析表

状		ACTION	GOTO		
状 态	a	b	#	S	В
0	S3	S4		1	2
1			acc		
2	S 6	S7			5
3	S3	S4			8
4	r3	r3			
5			r1		
6	S 6	S7			9
7			r3		
8	r2	r2			
9			r2		

状态		ACT]	GOTO		
	a	b	#	S	В
0	S _{3,6}	S _{4,7}		1	2
1			acc		
2	$S_{3,6}$	$S_{4,7}$			5
3,6 4,7	$S_{3,6}$	$egin{array}{c} \mathbf{S}_{4,7} \ \mathbf{S}_{4,7} \end{array}$			8,9
	r_3	r_3	r_3		
5			\mathbf{r}_1		
8,9	r_2	r_2	r_2		

DFA

对输入串ab#用LR(1)分析的过程

步骤	状态栈	符号栈	输入串	ACTION	GOTO
1	0	#	ab#	S_3	
2	03	#a	b #	S_4	
3	034	#ab	#	出错	

对输入串ab#用LALR(1)分析的过程

步骤	状态栈	符号栈	输入串	ACTION	GOTO
1	0	#	ab#	$S_{3,6}$	
2	0(3,6)	#a	b#	$egin{array}{c} \mathbf{S}_{3,6} \ \mathbf{S}_{4,7} \end{array}$	
3	0(3,6)(4,7)	#ab	#	r_3	(8,9)
	0(3,6)(8,9)	#aB	#	r_2	2
5	02	#B	#	出错	

清华大学出版社

例: $(0)S' \rightarrow S (1)S \rightarrow L = R (2)S \rightarrow R (3)L \rightarrow *R (4)L \rightarrow I (5)R \rightarrow L$

考察项目集I2:

$$S \rightarrow L \bullet = R, \#$$

 $R \rightarrow L \bullet , \#$

- 1. 存在移进与归约项目, 非LR(0);
- 2. FOLLOW(R)={#,=},与{=}相交不为空,非 SLR(1);
- 3. 是LR(1)和LALR(1)的。

华大学出版社

台并: I_4 与 I_{11} , I_5 与 I_{12} , I_7 与 I_{13} , I_8 与 I_{10} 。

状态		ACT	TION	GOTO			
态	=	*	i	#	S	L	R
0		S4	S6		1	2	3
1				acc			
2	S 6			r5			
3				r2			
4		S4	S5			8	7
5	r4			r4			
6		S4	S5			8	9
7	r3			r3			
8	r5			r5			
9				r1			

项目集规范族的DFA

LR(1)项目集不存在动作冲突,合并同心集后会不会产生新的冲突(移进-归约、归约-归约)?

例:S→ aAd|bBd|aBe|bAe A→ c

 $B \rightarrow c$

不会产生新的移进-归约冲突; 会产生新的归约-归约冲突。 可见,该文法是LR(1)的但不是LALR(1)的。

非LR的上下文无关文法

语言L={ww^R|w∈(a|b)*}的文法:

 $S \rightarrow aSa \mid bSb \mid \epsilon$

对其中的任一句子,如abaaba,扫描前一半字符时应压栈,扫描后一半字符时先做空归约,然后将剩余字符和栈中字符通过归约进行比较,以保证后一半是前一半的逆。

二义性文法在LR分析中的应用

例:表达式文法

$$E' \rightarrow E$$

$$E \rightarrow E + E$$

$$E \rightarrow E^*E$$

$$E \rightarrow (E)$$

$$E \rightarrow i$$

二义性文法不是LR文法,但对某些二义性文法,根据背景语义人为地给出优先性和结合性,则可能构造出更有效的LR分析器

如:规定在表达式文法中

i 的优先性最高

算术表达式二义性文法的 LR(0)项目集及状态转换矩阵

当前符号	+	*	()	i	#	Е
I ₀ :			I ₂ :	,	I ₃ :		I ₁ :
E'→•E E→•E+E			E→(•E) E→•E+E		E→i•		E'→E• E→E•+E
E →• E*E			E→•E*E				E→E•*E
E→•(E) E→•i			E→•(E) E→•i				
I ₁ :	I ₄ :	I ₅ :				acc	
	E→E+•E E→•E+E	E→E*•E E→•E+E					
	E→•E*E	E→•E*E					
	E→•(E) E→•i	E→•(E) E→•i					

当前 符号 状态	+	*	()	i	#	E
I ₂ :			I ₂ :		I ₃ :		I_6 : $E \rightarrow (E \bullet)$ $E \rightarrow E \bullet + E$ $E \rightarrow E \bullet * E$
I ₃ : I ₄ :			I ₂ :		I ₃ :		$I_7: \\ E \rightarrow E + E \bullet$
I ₅ :			I ₂ :		I ₃ :		$E \rightarrow E \bullet + E$ $E \rightarrow E \bullet * E$ $I_8:$ $E \rightarrow E * E \bullet$
I ₆ :	I ₄ :	I ₅ :		I ₉ : E→(E) •			E→E•+E E→E•*E
I ₇ : I ₈ : I ₉ :	I ₄ : I ₄ :	I ₅ : I ₅ :					

在 $I_{1, I_{7, I_8}}$ 中存在移进-归约冲突

\mathbf{CI}_{1,I_7,I_8} 中 存在移进 - 归约冲突

I₁:
$$E' \rightarrow E \bullet$$

$$E \rightarrow E \bullet + E$$

$$E \rightarrow E \bullet * E$$

I₇:
$$E \rightarrow E+E$$

$$E \rightarrow E+E$$

$$E \rightarrow E*E$$

I₈:
$$E \rightarrow E^*E^{\bullet}$$
 $E \rightarrow E^{\bullet}+E$
 $E \rightarrow E^{\bullet}*E$

I₁: 移进和接受无冲突

I₇, I₈利用优先关系和结合性解决冲突, 规定: '*'优先于'+',都服从左结合。

二义性表达式文法的LR分析表

状			ACTIC	N			GOTO
状 态	+	*)	i	#	E
0			S2		S3		1
1	S4	S5				acc	
2			S2		S2		6
3	r4	r4		r4		r4	
4			S2		S3		7
5			S2		S3		8
6	S4	S5		S9			
7	r1	S5		r1		r1	
8	r2	r2		r2		r2	
9	r3	r3		r3		r3	

对输入串i+i*i的分析过程

步骤	状态栈	符号栈	输入串	ACTION	GOTO
1	0	#	i+i*i#	S3	
2	03	#i	+ i*i #	r4	1
3	01	$\#\mathbf{E}$	+i*i #	S4	
4	014	# E +	i*i#	S3	
5	0143	#E+i	*i#	r4	
6	0147	$\#\mathbf{E} + \mathbf{E}$	*i#	S5	
7	01475	#E+E*	i#	S3	
8	014753	#E+E*i	#	r4	8
9	014758	#E+E*E	#	r2	
10	0147	#E+E	#	r1	1
11	01	#E	#	acc	

LR分析的错误处理---在表中插入处理程序

 $E \rightarrow E + E \mid E * E \mid (E) \mid id$

State on	Action						
top of stack	id	+	*	()	\$	Е
0	s3	e1	e1	s2	e2	e1	1
1	e3	s4	s5	e3	e2	acc	
2	s3	e1	e1	s2	e2	e1	6
3	e3	r4	r4	е3	r4	r 4	
4	s3	e1	e1	s2	e2	e1	7
5	s3	e1	e1	s2	e2	e1	8
6	e3	s4	s5	e3	s9	e4	
7	e3	r1	s5	e3	r 1	r 1	
8	e3	r2	r2	e3	r2	r2	
9	e3	r3	r3	e3	r3	r3	

- e1: 状态 0, 2, 4, 5 调用,这些状态期望输入一个表达式的首符,而遇到的是算符,错误信息是"缺少运算量",可将id置于栈,并盖以状态3
- e2: 状态 0, 1, 2, 4, 5 调用,这些状态期望一个新表达式的开头或者是状态1的输入结束,而见到的是右括号,可能的修复: 删除右括号,错误信息是"不匹配的右括号"
- e3: 状态 1, 3, 6, 7, 8, 9 调用,见到的是左括号或id,期望输入的是算符,可能的修复:将+置于栈,并盖以状态4,错误信息是"缺少运算符"
- e4: 状态 6 调用, 见到的是输入结束符 \$. 期望输入的是算符或右括号,可能的修复:可将")"置于栈,并盖以状态9,错误信息是"缺少右括号"

刃 题

3 (1)(2)

7

8

9

补充习题

- 1. 下列文法是LR(0)吗?是SLR(1)吗?
- a) E -> E + T | T T -> (E) | id | id[E]
- b) S -> Ab | ABc A -> aA | a B -> b
- 2. 为下列文法构造LR(1)分析表,并分析串 baab。
- 0) S' -> S
- 1) $S \rightarrow XX$
- $2) X \rightarrow aX$
- 3) $X \rightarrow b$