Exact sampling of determinantal point processes with sublinear time preprocessing

Michał Dereziński^{†*}, Daniele Calandriello^{‡*}, Michal Valko[§] [†]UC Berkeley, [‡]LCSL - Istituto Italiano di Tecnologia, [§]DeepMind Paris

*Equal contribution

In a nutshell

Determinantal point processes (DPP) are used in machine learning for randomized selection of diverse subsets to capture negative dependencies between samples.

Existing algorithms for DPP sampling are **expensive** and require the eigendecomposition of an $n \times n$ similarity matrix at $\mathbf{O}(\mathbf{n^3})$ cost.

Our contribution: first **exact** DPP sampler with O(n) cost (the cost is **sublinear** in the n^2 size of the similarity matrix!)

Determinantal point processes

Goal: Given an $n \times n$ p.s.d. matrix **L**, sample $S \subseteq \{1, ..., n\}$ from:

above, restricted to |S| = k. (variant 2) k-DPP(\mathbf{L}):

Similarity/Kernel interpretation

 $\mathbf{L} = \left[\phi(x_i)^{\mathsf{T}}\phi(x_j)\right]_{ij} \text{ for a mapping } \phi: \mathcal{X} \to \mathbb{R}^m$

Determinant is *volume squared* in kernel space:

Applications: to learn more about DPPs, see [1]

- Recommender systems,
- Data summarization,
- Stochastic optimization,
- Gaussian processes.

uniform

DPP

Existing DPP samplers

Exact sampler [2]

Eigendecompose L: $O(n^3)$ performed only once

Volume sampling: $O(nk^2)$ performed for every sample

Cost of $S_1 \sim \text{DPP}(\mathbf{X})$: $O(n^3)$ Cost of $S_2 \sim \text{DPP}(\mathbf{X})$: $O(nk^2)$

MCMC sampler [3]

- 1. Start from $S \subseteq [n]$
- 2. Sample $i \in S$ and $j \notin S$
- 3. Swap w.p. $\frac{1}{2} \min \left\{ 1, \frac{\Pr(S-i+j)}{\Pr(S)} \right\}$ \lesssim : ϵ -close in total variation distance

Cost of $S_1 \stackrel{\epsilon}{\sim} k$ -DPP(\mathbf{X}): $n \cdot \text{poly}(k)$ Cost of $S_2 \stackrel{\epsilon}{\sim} k$ -DPP(\mathbf{X}): $n \cdot \text{poly}(k)$

- Sample intermediate set σ out of $\{1..n\}$, then downsample S out of σ
- How to ensure that intermediate σ always contains DPP sample S?
- 1. Use marginal inclusion probabilities of $S \sim \text{DPP}(\mathbf{L})$

$$\Pr(i \in S) = \ell_i = \left[\mathbf{L} (\mathbf{I} + \mathbf{L})^{-1} \right]_{ii}$$

a.k.a. 1-ridge leverage scores, $\sum_{i=1}^{n} \ell_i = \mathbb{E}[|S|] = k$

- 2. Sample i.i.d. $\sigma_1, \ldots, \sigma_t \sim [\ell_1/k, \ldots, \ell_n/k]$
- \square Ignores negative dependence: $S \not\subseteq \sigma$ possible
- Reject σ if $S \not\subseteq \sigma!$ Sampling becomes exact!

Trade-offs: 1. How large should the intermediate sample σ be? 2. How accurate should the leverage score estimates be?

DPP-VFX: first sub-linear time exact DPP sampler

Thm. For any DPP(\mathbf{L}) or k-DPP(\mathbf{L}), we can sample

a) the first subset S_1 in: $n \cdot \text{poly}(k) \text{polylog}(n)$ time,

b) each successive S_i in: poly(k) time.

• Our answer: we only suffer a constant number of rejections!

- 1. Size of the intermediate sample is $t = O(k^2)$, independent of n!
- 2. $l_i \approx (1 \pm O(1/k))\ell_i$ leverage scores estimates are accurate enough → efficient to compute with off-the-shelf Nyström approximations
- Easier in practice: $l_i \approx (1 \pm 1/2) \ell_i$ enough for constant rejections

Comparison with existing DPP samplers

	exact	DPP	k-DPP	first sample	next sample
Hough et al. [2]			X	n^3	nk^2
Kulesza and Taskar [1]		X		n^3	nk^2
Anari et al. [3]	X	X		$n \cdot \text{poly}(k)$	$n \cdot \text{poly}(k)$
Li et al. [4]	X		X	$n^2 \cdot \operatorname{poly}(k)$	$n^2 \cdot \text{poly}(k)$
DPP-VFX	/	/		$n \cdot \operatorname{poly}(k)$	poly(k)

Distortion-free intermediate sampling

- - 1: repeat

 - 7: return $S = \{\sigma_i : i \in S\}$

Very Fast and eXact DPP sampler (DPP-VFX) Input: $\mathbf{L} \in \mathbb{R}^{n imes n}$, its Nyström approximation $\widehat{\mathbf{L}}$ $l_i = \left[(\mathbf{L} - \widehat{\mathbf{L}}) + \widehat{\mathbf{L}} (\mathbf{I} + \widehat{\mathbf{L}})^{-1} \right]_{ii} \approx \ell_i,$ preprocessing $s = \sum_{i} l_i, z = \operatorname{tr}(\widehat{\mathbf{L}}(\mathbf{I} + \widehat{\mathbf{L}})^{-1}), [\widetilde{\mathbf{L}}]_{ij} = [\mathbf{L}]_{ij}/(s\sqrt{l_i l_j})$ sample $t \sim \text{Poisson}(s^2 e^{1/s})$ rejection 3: sample $\sigma_1,...,\sigma_t \sim (l_1/s,...,l_n/s)$, sampling 4: sample Acc \sim Bernoulli $\left(\mathrm{e}^{z-t/s} \cdot \frac{\det(\mathbf{I} + \widehat{\mathbf{L}}_{\sigma})}{\det(\mathbf{I} + \widehat{\mathbf{L}})} \right)$ 5: **until** Acc = true 6: sample $\widetilde{S} \sim \mathrm{DPP}(\widetilde{\mathbf{L}}_{\sigma})$ downsample

General reduction from k-DPP to DPP sampling

Folklore heuristic: k-DPP rejection sampler

repeat
$$S_{\alpha} \sim \text{DPP}(\alpha \mathbf{L})$$
 until $|S_{\alpha}| = k$

Rejecting is expensive. How often should we do it?

The folklore heuristic was right (with the right α^*)

Thm. We can compute α^* in $\widetilde{O}(n \cdot \text{poly}(k))$ such that

$$\operatorname{Mode}(|S_{\alpha^*}|) = k, \qquad \mathbf{P}(|S_{\alpha^*}| = k) \ge \Omega(k^{-1/2})$$

inducing at most $O(\sqrt{k})$ rejections.

Experiments

Sampling from MNIST8M with $n \in \{1..10^6\}$

	DPP-VFX		eigendeco	omp. (exact)	MCMC	
	first	succ.	first	succ.	first	succ.
n = 15000	4	1	54 (10x)	1 (1x)	13 (4x)	13 (13x)
n = 70000	19	1	DNF	DNF	175 (9x)	175 (175x)
Runtime in	' 1 secono	ds and o	correspondi	ng (speedup).	DNF = Die	d Not Finish