情報数学 III 中間試験	学籍番号	(15 (3)	9 35 9	e Misir	1 4 .4	氏名	
	,						点/40 点

1 次の各間に答えなさい (詳細な説明は不要. 問に答えるのみでよい). (各4点)

(1) ベクトル $\begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix}$ と直交するベクトルを次の $(P) \sim (I)$ の中からすべて選びなさい。

(ア)
$$\begin{pmatrix} 1\\2\\1 \end{pmatrix}$$
 (イ) $\begin{pmatrix} 1\\1\\-2 \end{pmatrix}$ (ウ) $\begin{pmatrix} -1\\-1\\1 \end{pmatrix}$ (エ) $\begin{pmatrix} 2\\4\\-1 \end{pmatrix}$

ごとの内積を計算し、0とかるそれを達かかよい、

(2) ベクトル $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ との組が線形従属となるようなベクトルを次の (P) ~ (I) の中からひとつ選びなさい.

$$(\mathcal{P})$$
 $\left(\begin{array}{c} 2 \\ 1 \end{array} \right)$ (\mathcal{A}) $\left(\begin{array}{c} 1 \\ -2 \end{array} \right)$ $(\dot{\mathcal{D}})$ $\left(\begin{array}{c} -2 \\ -4 \end{array} \right)$ (\mathfrak{T}) $\left(\begin{array}{c} 2 \\ -4 \end{array} \right)$

2つのかりん ひとびか緑形住居 田 いとびは早行

(3) 平面 R² 内の原点を中心と

$$(\mathcal{P}) \quad \left(\begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array} \right)$$

$$(\mathcal{A}) \quad \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right)$$

(ウ)
$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
 (エ) $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

$$(\mathtt{I}) \quad \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)$$

回航季榜飞意了行对四(0000一点面)

(4) 媒介変数表示

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix} + s \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix} + t \begin{pmatrix} 2 \\ -3 \\ 3 \end{pmatrix} \qquad (s, t は任意の実数)$$

で表される ${f R}^3$ 内の平面を π とする. π と平行な平面を表す方程式を次の(ア)〜(エ)の中からすべて選びなさい.

$$(\mathcal{F}) 3x - 2y + 2z = 1$$

$$(\checkmark) 3x + 3y + z = 0$$

(ウ)
$$4x - 3y + 2z = -2$$

$$(7) 2x - z = 4$$

这额,八7Knが平约切如飞器~切、300 (5) 行列 $\begin{pmatrix} -3 & 1 & 3 \\ 2 & -4 & -6 \\ -2 & 2 & 4 \end{pmatrix}$ の固有ベクトルを次の(P) \sim (\mathbf{x}) の中からひとつ選び,その固有値を答えなさい.

$$(\mathcal{P}) \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} \qquad (\mathcal{T}) \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} \qquad (\mathcal{P}) \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} \qquad (\mathcal{I}) \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} \qquad (5) \qquad \boxed{\text{Id}} \quad \boxed{\text{Id}}$$

$$\begin{bmatrix} \mathbf{2} \end{bmatrix}$$
 2 点 $\vec{a} = \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix}$, $\vec{b} = \begin{pmatrix} -1 \\ 1 \\ -2 \end{pmatrix}$ を通る直線を l とする。以下の間に答えなさい。(8 点)

(1) l上の点を媒介変数 t を用いて成分表示しなさい. (4)

(2)
$$l$$
 を行列 $\begin{pmatrix} -2 & 4 & 4 \\ 0 & 0 & -1 \\ 2 & -4 & -5 \end{pmatrix}$ で線形変換すると、どのような図形に変換されるか答えなさい。 $\begin{pmatrix} 4 \end{pmatrix}$

3 行列
$$A = \begin{pmatrix} -1 & 2 \\ 3 & -2 \end{pmatrix}$$
 の固有値と固有ベクトルを求めなさい。 (12 点)

$$2 \det \left(\frac{1}{4} - 2 \right)$$

(路) 图有福日-441 (4)

· 图本位-4 水王

(F. #52 (-4 E. - A) \$ == 9

はからし 団有ない 関する

A。国でパプトルな

$$\subset \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

でする。は

(2010.11.10 担当:佐藤)

こかが、一年に関する日本がけんでする、今