SN 2020jgb

Authors¹

¹ Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA

ABSTRACT

Keywords: keywords

- 1. INTRODUCTION
- 2. OBSERVATIONS

2.1. Detection and Classification

SN 2020jgb was first discovered by the Zwicky Transient Facility (ZTF; Bellm et al. 2019; Graham et al. 2019) on 2020 May 03.463 UT (MJD 58972.463) with the 48-inch Samuel Oschin Telescope (P48) at Palomar Observatory. The internal designation is ZTF20aayhacx. It was detected at a magnitude of 19.86 in ZTF gband, and J2000 coordinates $\alpha=17^{\rm h}53^{\rm m}12^{\rm s}.651,~\delta=-00^{\circ}51'21''.81$. The last non-detection was on 2020 April 27.477 (MJD 58966.477; 5.99 days before the first detection) up to a limiting magnitude of 20.7 in ZTF r-band.

Classification, ...

2.2. Optical Photometry

We obtained gr-band photometry of SN 2020jgb with the ZTF camera. A Galactic extinction of E(B-V)=0.404 is reported by the maps of (Schlafly & Finkbeiner 2011), for which we correct all our photometry. We do not account for any additional host extinction due to the lack of any Na I D absorption in our spectra (Is it in the outskirt?).

2.3. Optical Spectroscopy

2.4. Near-infrared (NIR) Spectroscopy

We obtained one NIR spectrum of the transient using the Gemini near-infrared spectrometer (GNIRS; Elias et al. 1998) on the Gemini North telescope on 2020 June 9 (\approx 22 days after r-band peak), for an integration time of 2400 s. The spectra were reduced with the PypeIt Python package (Prochaska et al. 2020; Prochaska et al. 2020).

3. ANALYSIS

3.1. Photometric Properties

Figure 1. Optical spectroscopic sequence of SN 2020jgb.

- sub-luminous
- first light time, peak time
- color evolution

3.2. Spectroscopic Properties

- infrared Ca II triplet (Ca II IRT)
- tentative He I absorption at ≈9950 Å

3.3. Optical Spectroscopy

4. HOST GALAXY

2 Authors et al.

Figure 2. Line velocity comparison between the high-velocity component of Ca II IRT and the infrared absorption feature at ≈ 9950 Å assuming it is associated with He I at 10830 Å.

REFERENCES

Bellm, E. C., Kulkarni, S. R., Graham, M. J., et al. 2019, PASP, 131, 018002, doi: 10.1088/1538-3873/aaecbe

Elias, J. H., Vukobratovich, D., Andrew, J. R., et al. 1998, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 3354, Infrared Astronomical Instrumentation, ed. A. M. Fowler, 555–565, doi: 10.1117/12.317281 5. MODEL COMPARISONS6. DISCUSSION AND CONCLUSION

Graham, M. J., Kulkarni, S. R., Bellm, E. C., et al. 2019, PASP, 131, 078001, doi: 10.1088/1538-3873/ab006c
Prochaska, J. X., Hennawi, J. F., Westfall, K. B., et al. 2020, Journal of Open Source Software, 5, 2308, doi: 10.21105/joss.02308
Prochaska, J. X., Hennawi, J., Cooke, R., et al. 2020, pypeit/PypeIt: Release 1.0.0, v1.0.0, Zenodo, doi: 10.5281/zenodo.3743493

Schlafly, E. F., & Finkbeiner, D. P. 2011, ApJ, 737, 103, doi: 10.1088/0004-637X/737/2/103