landon rabern

Joint with Hal Kierstead Arizona State University

AMS Special Session on Structural and Extremal Problems January 15, 2014

coloring a graph with around Δ colors

by greed: every graph is $(\Delta + 1)$ -colorable

coloring a graph with around Δ colors

by greed: every graph is $(\Delta + 1)$ -list-colorable

coloring a graph with around Δ colors

by greed: every graph is $(\Delta + 1)$ -online-list-colorable

coloring a graph with around Δ colors

by greed: every graph is $(\Delta + 1)$ -online-list-colorable

with more work:

coloring a graph with around Δ colors

by greed: every graph is $(\Delta + 1)$ -online-list-colorable

with more work:

• can Δ -color when no $K_{\Delta+1}$ (Brooks 1941)

coloring a graph with around Δ colors

by greed: every graph is $(\Delta + 1)$ -online-list-colorable

with more work:

- can Δ -color when no $K_{\Delta+1}$ (Brooks 1941)
- can Δ -list-color when no $K_{\Delta+1}$ (Vizing 1976)

coloring a graph with around Δ colors

by greed: every graph is $(\Delta + 1)$ -online-list-colorable

with more work:

- can Δ -color when no $K_{\Delta+1}$ (Brooks 1941)
- can Δ -list-color when no $K_{\Delta+1}$ (Vizing 1976)
- can \triangle -online-list-color when no $K_{\triangle+1}$ (Hladkỳ-Král-Schauz 2010)

coloring a graph with around Δ colors

by greed: every graph is $(\Delta + 1)$ -online-list-colorable

with more work:

- can Δ -color when no $K_{\Delta+1}$ (Brooks 1941)
- can Δ -list-color when no $K_{\Delta+1}$ (Vizing 1976)
- ullet can Δ -online-list-color when no $K_{\Delta+1}$ (Hladkỳ-Král-Schauz 2010)

hard conjecture: can $(\Delta-1)\text{-color}$ when no \mathcal{K}_Δ and $\Delta\geq 9$ (Borodin-Kostochka 1977)

between Δ -coloring and $(\Delta-1)$ -coloring

def: the ore-degree $\theta(G)$ of a graph G is $\max_{xy \in E(G)} d(x) + d(y)$

between Δ -coloring and $(\Delta-1)$ -coloring

def: the ore-degree $\theta(G)$ of a graph G is $\max_{xy \in E(G)} d(x) + d(y)$

ullet can $\lfloor rac{ heta}{2}
floor$ -color when $heta \geq 12$ and no $K_{\lfloor rac{ heta}{2}
floor+1}$ (Kierstead-Kostochka 2009)

between Δ -coloring and $(\Delta-1)$ -coloring

def: the ore-degree $\theta(G)$ of a graph G is $\max_{xy \in E(G)} d(x) + d(y)$

- ullet can $\lfloor rac{ heta}{2}
 floor$ -color when $heta \geq 12$ and no $K_{ \lfloor rac{ heta}{2}
 floor + 1}$ (Kierstead-Kostochka 2009)
- ullet can $\left\lfloor rac{ heta}{2}
 ight
 floor$ -color when $heta \geq 10$ and no $K_{\left\lceil rac{ heta}{2}
 ight
 ceil + 1}$ (R. 2010)

between Δ -coloring and $(\Delta-1)$ -coloring

def: the ore-degree $\theta(G)$ of a graph G is $\max_{xy \in E(G)} d(x) + d(y)$

- ullet can $\left\lfloor \frac{ heta}{2} \right\rfloor$ -color when $heta \geq 12$ and no $K_{\left\lfloor \frac{ heta}{2} \right\rfloor + 1}$ (Kierstead-Kostochka 2009)
- can $\lfloor \frac{\theta}{2} \rfloor$ -color when $\theta \geq 10$ and no $K_{\lfloor \frac{\theta}{2} \rfloor + 1}$ (R. 2010)
- can $\lfloor \frac{\theta}{2} \rfloor$ -color when $\theta \geq 8$ and no $K_{\lfloor \frac{\theta}{2} \rfloor + 1}$ nor O_5 (Kostochka-Stiebtiz-R. 2011)

the graph O_5

for (online) list coloring

problem: none of these methods work for list coloring

for (online) list coloring

problem: none of these methods work for list coloring

a new method: combine lower bounds on edges in critical graphs together with Kernel Lemma (Kostochka-Yancey 2012)

for (online) list coloring

problem: none of these methods work for list coloring

a new method: combine lower bounds on edges in critical graphs together with Kernel Lemma (Kostochka-Yancey 2012)

known bounds: combining with best known lower bound on edges in list-critical graphs (Kostochka-Stiebitz 2003) can $\left\lfloor \frac{\theta}{2} \right\rfloor$ -list-color when $\theta \geq$ 56 and no $K_{\left\lfloor \frac{\theta}{2} \right\rfloor+1}$

for (online) list coloring

problem: none of these methods work for list coloring

a new method: combine lower bounds on edges in critical graphs together with Kernel Lemma (Kostochka-Yancey 2012)

known bounds: combining with best known lower bound on edges in list-critical graphs (Kostochka-Stiebitz 2003) can $\left\lfloor \frac{\theta}{2} \right\rfloor$ -list-color when $\theta \geq$ 56 and no $K_{\left\lfloor \frac{\theta}{2} \right\rfloor+1}$

our improvement: can $\lfloor \frac{\theta}{2} \rfloor$ -online-list-color when $\theta \geq 18$ and no $K_{\lfloor \frac{\theta}{2} \rfloor + 1}$

for (online) list coloring

problem: none of these methods work for list coloring

a new method: combine lower bounds on edges in critical graphs together with Kernel Lemma (Kostochka-Yancey 2012)

known bounds: combining with best known lower bound on edges in list-critical graphs (Kostochka-Stiebitz 2003) can $\left\lfloor \frac{\theta}{2} \right\rfloor$ -list-color when $\theta \geq$ 56 and no $K_{\left\lfloor \frac{\theta}{2} \right\rfloor+1}$

our improvement: can $\lfloor \frac{\theta}{2} \rfloor$ -online-list-color when $\theta \geq 18$ and no $K_{\lfloor \frac{\theta}{2} \rfloor + 1}$

• small improvement of Kernel Lemma application

for (online) list coloring

problem: none of these methods work for list coloring

a new method: combine lower bounds on edges in critical graphs together with Kernel Lemma (Kostochka-Yancey 2012)

known bounds: combining with best known lower bound on edges in list-critical graphs (Kostochka-Stiebitz 2003) can $\left\lfloor \frac{\theta}{2} \right\rfloor$ -list-color when $\theta \geq 56$ and no $K_{\left\lfloor \frac{\theta}{2} \right\rfloor + 1}$

our improvement: can $\lfloor rac{ heta}{2}
floor$ -online-list-color when $heta \geq 18$ and no $K_{\lfloor rac{ heta}{2}
floor+1}$

- small improvement of Kernel Lemma application
- new lower bound on edges in online-list-critical graphs proved via extending Alon-Tarsi orientations

many edges or nicely orientable subgraph

def: A digraph D is f-Alon-Tarsi for $f: V(D) \to \mathbb{N}$ if

many edges or nicely orientable subgraph

def: A digraph D is f-Alon-Tarsi for $f:V(D)\to\mathbb{N}$ if

• $d^+(v) < f(v)$ for all v; and

many edges or nicely orientable subgraph

def: A digraph D is f-Alon-Tarsi for $f: V(D) \to \mathbb{N}$ if

- $d^+(v) < f(v)$ for all v; and
- D has differing numbers of even and odd spanning eulerian subgraphs

many edges or nicely orientable subgraph

def: A digraph D is f-Alon-Tarsi for $f: V(D) \to \mathbb{N}$ if

- $d^+(v) < f(v)$ for all v; and
- D has differing numbers of even and odd spanning eulerian subgraphs

the point: if D is f-Alon-Tarsi, then D is online f-choosable (Schauz 2010)

many edges or nicely orientable subgraph

def: A digraph D is f-Alon-Tarsi for $f: V(D) \to \mathbb{N}$ if

- $d^+(v) < f(v)$ for all v; and
- D has differing numbers of even and odd spanning eulerian subgraphs

the point: if D is f-Alon-Tarsi, then D is online f-choosable (Schauz 2010)

main result: for a graph G with $\delta(G) \geq 5$ and $K_{\delta(G)+1} \not\subseteq G$, either

many edges or nicely orientable subgraph

def: A digraph D is f-Alon-Tarsi for $f: V(D) \to \mathbb{N}$ if

- $d^+(v) < f(v)$ for all v; and
- D has differing numbers of even and odd spanning eulerian subgraphs

the point: if D is f-Alon-Tarsi, then D is online f-choosable (Schauz 2010)

main result: for a graph G with $\delta(G) \geq 5$ and $K_{\delta(G)+1} \not\subseteq G$, either

G has "lots" of edges; or

many edges or nicely orientable subgraph

def: A digraph D is f-Alon-Tarsi for $f: V(D) \to \mathbb{N}$ if

- $d^+(v) < f(v)$ for all v; and
- D has differing numbers of even and odd spanning eulerian subgraphs

the point: if D is f-Alon-Tarsi, then D is online f-choosable (Schauz 2010)

main result: for a graph G with $\delta(G) \geq 5$ and $K_{\delta(G)+1} \not\subseteq G$, either

- G has "lots" of edges; or
- there is an orientation of some induced subgraph H which is f-Alon-Tarsi where $f(v) := \delta(G) + d_H(v) d_G(v)$

many edges or nicely orientable subgraph

def: A digraph D is f-Alon-Tarsi for $f: V(D) \to \mathbb{N}$ if

- $d^+(v) < f(v)$ for all v; and
- D has differing numbers of even and odd spanning eulerian subgraphs

the point: if D is f-Alon-Tarsi, then D is online f-choosable (Schauz 2010)

main result: for a graph G with $\delta(G) \geq 5$ and $K_{\delta(G)+1} \not\subseteq G$, either

- G has "lots" of edges; or
- there is an orientation of some induced subgraph H which is f-Alon-Tarsi where $f(v) := \delta(G) + d_H(v) d_G(v)$

corollary: since we can complete a $\delta(G)$ -coloring of G-H to such an H, this implies that online-list-critical graphs have "lots" of edges

key lemma

Lemma

Let G be a multigraph without loops and $f:V(G)\to\mathbb{N}$. If there are $F\subseteq G$ and $Y\subseteq V(G)$ such that:

- any multiple edges in G are contained in G[Y]; and
- 2 $f(v) \ge d_G(v)$ for all $v \in V(G Y)$; and
- **③** $f(v) \ge d_{G[Y]}(v) + d_F(v) + 1$ for all v ∈ Y; and
- **③** For each component T of G Y there are different $x_1, x_2 \in V(T)$ where $N_T[x_1] = N_T[x_2]$ and $T \{x_1, x_2\}$ is connected such that either:
 - there are $x_1y_1, x_2y_2 \in E(F)$ where $y_1 \neq y_2$ and $N(x_i) \cap Y = \{y_i\}$ for $i \in [2]$; or
- **②** $|N(x_2) \cap Y| = 0$ and there is $x_1y_1 \in E(F)$ where $N(x_1) \cap Y = \{y_1\}$,

then G is f-Alon-Tarsi.

key lemma

Lemma

Let G be a multigraph without loops and $f:V(G)\to\mathbb{N}$. If there are $F\subseteq G$ and $Y\subseteq V(G)$ such that:

- any multiple edges in G are contained in G[Y]; and
- 2 $f(v) \ge d_G(v)$ for all $v \in V(G Y)$; and
- **3** $f(v) \ge d_{G[Y]}(v) + d_F(v) + 1$ for all $v \in Y$; and
- **③** For each component T of G Y there are different $x_1, x_2 \in V(T)$ where $N_T[x_1] = N_T[x_2]$ and $T \{x_1, x_2\}$ is connected such that either:
 - there are $x_1y_1, x_2y_2 \in E(F)$ where $y_1 \neq y_2$ and $N(x_i) \cap Y = \{y_i\}$ for $i \in [2]$; or
 - **2** $|N(x_2) \cap Y| = 0$ and there is $x_1y_1 \in E(F)$ where $N(x_1) \cap Y = \{y_1\}$,

then G is f-Alon-Tarsi.

we need a picture

please prove

can
$$\lfloor \frac{\theta}{2} \rfloor$$
-online-list-color when $\theta \geq 10$ and no $K_{\lfloor \frac{\theta}{2} \rfloor + 1}$

please prove

can
$$\lfloor \frac{\theta}{2} \rfloor$$
-online-list-color when $\theta \geq 10$ and no $K_{\lfloor \frac{\theta}{2} \rfloor + 1}$

or even better:

please prove

can
$$\lfloor \frac{\theta}{2} \rfloor$$
-online-list-color when $\theta \geq 10$ and no $K_{\lfloor \frac{\theta}{2} \rfloor + 1}$

or even better:

can
$$\lfloor \frac{\theta}{2} \rfloor$$
-online-list-color when $\theta \geq 8$ and no $K_{\lfloor \frac{\theta}{2} \rfloor + 1}$ nor O_5

please prove

can
$$\left\lfloor \frac{\theta}{2} \right\rfloor$$
-online-list-color when $\theta \geq 10$ and no $K_{\left\lfloor \frac{\theta}{2} \right\rfloor + 1}$

or even better:

can
$$\lfloor \frac{\theta}{2} \rfloor$$
-online-list-color when $\theta \geq 8$ and no $K_{\lfloor \frac{\theta}{2} \rfloor + 1}$ nor O_5

thanks for watching