29 Квадратичные иррациональности. Множество $\mathbb{Z}[\sqrt{m}]$: сопряжение, замкнутость сложения, умножения. Согласованность сопряжения и умножения. Норма и её свойства.

Опр Иррациональное число $\overline{\alpha}$ называется $\kappa \epsilon a d p a m u u v o u u p p a u u o n a n ь но с п в с п в с п в а дратного уравнения с целыми коэффициентами.$

Опр Пусть $\alpha=a+b\sqrt{m}$ — квадратичная иррациональность. Назовем число $\alpha=a-b\sqrt{m}$ сопряженным к α числом

Утверждение

Множество $\mathbb{Z}[\sqrt{m}] = \{a + b\sqrt{m} | a, b \in Z \} \subset \mathbb{R}$ замкнуто относительно операций:

- 1 Сопряжения
- 2 Сложения
- 3 Умножения

1 a -
$$b\sqrt{m} = a + (-b)\sqrt{m}$$
; a, $-b \in Z \Longrightarrow a - b\sqrt{m} \in \mathbb{Z}[\sqrt{m}]$

2
$$a_1 + b_1\sqrt{m} + a_2 + b_2\sqrt{m} = (a_1 + a_2) + (b_1 + b_2)\sqrt{m}$$
; $(a_1 + a_2)$, $(b_1 + b_2) \in Z \Longrightarrow a_1 + b_1\sqrt{m} + a_2 + b_2\sqrt{m} \in \mathbb{Z}[\sqrt{m}]$

$$3 \ (a_1+b_1\sqrt{m})*(a_2+b_2\sqrt{m}) = (a_1a_2+b_1b_2m) + (a_1b_2+a_2b_1)\sqrt{m}; (a_1a_2+b_1b_2m), (a_1b_2+a_2b_1) \in Z \Longrightarrow (a_1+b_1\sqrt{m})*(a_2+b_2\sqrt{m}) \in Z[\sqrt{m}] \ \blacksquare$$

Сопряжённость для квадратичной иррациональности согласована с общим определением. В алгебре сопряженными к элементу α над полем F называются корни неприводимого многочлена $f(x) \in F[x]$, для которого $f(\alpha) = 0$. Это согласовано с определением комплексного сопряжения. А именно, для комплексного числа $z \in C$ R его сопряжённое — это второй корень квадратного многочлена, у которого первый корень — это z.

Опр

Для $\alpha \in \mathbb{Z}[\sqrt{m}]$ определим норму $\mathbb{N}(\alpha) = \alpha \overline{\alpha}$.

Свойства

$$1\ N(\alpha) \in Z \ \blacktriangle \ N(\alpha) = \alpha \overline{\alpha} = (a + b\sqrt{m}) * (a - b\sqrt{m}) = a^2 - b^2 m \in Z \ \blacksquare$$

$$2 \ N(\alpha\beta) = N(\alpha) * N(\beta)$$

$$\Delta \alpha = a_1 + b_1\sqrt{m}, \ \beta = a_2 + b_1\sqrt{m}.$$

$$\alpha\beta = (a_1a_2 + b_1b_2m) + (a_1b_2 + a_2b_1)\sqrt{m}$$

$$\alpha\beta = (a_1a_2 + b_1b_2m) - (a_1b_2 + a_2b_1)\sqrt{m}$$

$$N(\alpha\beta) = ((a_1a_2 + b_1b_2m) + (a_1b_2 + a_2b_1)\sqrt{m})((a_1a_2 + b_1b_2m) - (a_1b_2 + a_2b_1)\sqrt{m}) =$$

$$= (a_1 + b_1\sqrt{m})(a_2 + b_2\sqrt{m}) * (a_1 - b_1\sqrt{m})(a_2 - b_2\sqrt{m}) = (a_1 + b_1\sqrt{m})(a_1 - b_1\sqrt{m}) * (a_2 + b_2\sqrt{m})(a_2 - b_2\sqrt{m}) = N(\alpha)N(\beta)$$

30 Пара (a, b), где $a + b\sqrt{2} = (1 + \sqrt{2})^n$ является решением уравнения Пелля $a^2 - 2b^2 = \pm 1$.

Опр Уравнение вида $x^2 - my^2 = 1$, где m — натуральное число, не являющееся точным квадратом, называется уравнением Пелля. Решение (1, 0) называется тривиальным. Решение (x, y) называется положительным, если x > 0 и y > 0.

Определим a_n и b_n при помощи равенства $(1+\sqrt{2})^n=a_n+b_n\sqrt{2}$

1.
$$(1+\sqrt{2})^n=\sum_{k=0}^n C_n^k(\sqrt{2})^k$$
 $(1-\sqrt{2})^n=\sum_{k=0}^n C_n^k(-\sqrt{2})^k$. При четных $\mathbf{k}\ (-\sqrt{2})^k=(\sqrt{2})^k\in N\Longrightarrow (-\sqrt{2})^k\in a_n$. При нечетных $\mathbf{k}\ (-\sqrt{2})^k=-(\sqrt{2})^k\not\in Z\Longrightarrow (-\sqrt{2})^k\in -b_n$ Таким образом, $(1-\sqrt{2})^n=a_n-b_n\sqrt{2}$

2.
$$a_n^2 - 2b_n^2 = (a_n - b_n\sqrt{2})(a_n + b_n\sqrt{2}) = (1 + \sqrt{2})^n(1 - \sqrt{2})^n = (-1)^n$$

Отсюда заключаем, что такие a_n и b_n : $(1+\sqrt{2})^n=a_n+b_n\sqrt{2}$ являются решениями уравнения Пелля $a^2-2b^2=\pm 1$.

31 Связь между решениями уравнения Пелля $a^2-2b^2=\pm 1$ и элементами $\mathbf{Z}[\sqrt{2}]$ нормой 1.

Утверждение

Любой элемент $\mathbf{Z}[\sqrt{2}]$ нормы 1 является решением уравнения $a^2-2b^2=1$, любое решение уравнения $a^2-2b^2=1$ - элемент $\mathbf{Z}[\sqrt{2}]$ нормы 1

- -> Пусть (a,b) решение уравнения Пелля $a^2-2b^2=1$, тогда $(a+b\sqrt{2})(a-b\sqrt{2})=1\Longrightarrow N(a+b\sqrt{2})=1; a,b\in Z[\sqrt{2}]$
- <- Пусть a, b $\in Z[\sqrt{2}], \ N(a+b\sqrt{2})=1\Longrightarrow (a+b\sqrt{2})(a-\sqrt{2})=1=a^2-2b^2\Longrightarrow (a,b)$ решение уравнения Пелля

Аналогичное утверждение можно сформулировать для $a^2 - 2b^2 = -1$

32 Алгебраические и трансцендентные числа. Существование трансцендентных чисел (из соображения мощности). Степень алгебраического числа. Теорема Лиувилля (б/д).

Опр Число α - алгебраическое, если существует многочлен с целыми коэффициентами, корнем которого является α

Обозначим множество алгебраических чисел A. Это множество счетно (достаточно занумеровать все многочлены)

Опр $R \setminus A$ ($C \setminus A$) имеет мощность континуум, все числа из этого множества - mpancuendenmhue числа

Опр *Степень алгебраического числа* - это минимальная степень уравнения, корнем которого является это число

Теорема Лиувилля

Пусть α - алгебраическое число степени d, тогда $\exists c=c(\alpha)$: неравенство $|\alpha-\frac{p}{q}|\leq \frac{c}{q^d}$ не имеет решени в $\frac{p}{q}$

33 Определение решётки (эквивалентность двух определений) и дискретного подмножества. Определитель решётки. Независимость значения определителя от выбора базиса.

Опр Пусть $(e_1, ..., e_k)$ — набор линейно независимых векторов в \mathbb{R}^n . Решётка - абелева группа, порождённая $\{e_i\}$. Иными словами, решётка есть множество $\Lambda = \{a_1e_1 + ... + a_ke_k\}, a_i \in \mathbb{Z}$

Эквивалентность

<- Для $\Lambda = \{a_1e_1 + ... + a_ke_k\}, a_i \in Z$ выполяняются ассоциативность и коммутативность сложения, существует нейтральный по сложению $(\overline{0})$ и к каждому $\overline{a} = a_1 e_1 + ... + a_k e_k$ обратный $-\overline{a}=-a_1e_1-...-a_ke_k$, значит, Λ - абелева группа. Причем $\{e_i\}$ - базис

-> Любой элемент абелевой группы, порожденной $\{e_i\}$ имеет вид $\bar{a}=a_1e_1+...+a_ke_k$, где $a_i \in Z \Longrightarrow \overline{a} \in \Lambda$

Опр Подмножество X пространства R^n называется дискретным, если для любой точки $\mathbf{x} \in$ Х существует окрестность этой точки, не содержащая других точек множества Х.

Опр Определителем $det\Lambda$ решётки Λ называется определитель матрицы, составленной из координат её базисных векторов. Он равен объёму фундаментального параллелепипеда, то есть параллелепипеда, составленного из базисных векторов.)

Утверждение

Определитель решетки не зависит от выбора базиса

A Пусть A, B - матрицы в разных базисах, S - матрица перехода от A к B. Тогда B = A * S. В силу того, что векторы нового безиса - это ЛК векторов старого базиса с какими-то целочисленными коэффициентами, матрица S целочисленная. По этим же соображениям, S^{-1} целочисленная матрица. Тогда

$$detB = detA \ detS, detA = detS^{-1}detB \Longrightarrow \frac{1}{detS} = detS^{-1} \Longrightarrow detS^{-1}detS = 1. \Longrightarrow detS = \pm 1 \Longrightarrow detA = detB \blacksquare$$

34 Определение решётки и его определителя. Решётка $\Lambda_{\overline{a}}$ и её определитель.

Опр Дано простое число р и зафиксирован вектор $\overline{a} = (\frac{a_1}{p}, ..., \frac{a_n}{p})$, где $a_i \in Z$. Определим множество $\Lambda_{\overline{a}} = \{l\overline{a} + \overline{b}, l \in \mathbb{Z}, \overline{b} \in \mathbb{Z}^n\}$

Утверждение

 $\Lambda_{\overline{a}}$ - решетка

 \blacktriangle Заметим, что все это множество порождается векторами $(\overline{a}, \overline{e_1}, \overline{e_2}, ..., \overline{e_n})$. Покажем, что если убрать из этого набора векторов $\overline{e_1}$, они все равно будут порождать множество $\Lambda_{\overline{a}}$.

Заметим, что если все a_i :p, то ничего нового мы не получим, т.е. \overline{a} линейно выражается через $(\overline{e_1},...\overline{e_n})$, и мы нашли базис, порождащий это множество, тогда $\Lambda_{\overline{a}}$ - решетка.

Предположим, какой-то из $a_i \not p$; Пусть БОО это a_1 . Научимся из вектора $\gamma = (\frac{1}{n}, ..., \frac{la_n}{n})$ получать вектор \overline{a} и вектор $\overline{e_1}$.

Возьмем в качестве $\overline{b}=k\overline{e_1}$, тогда $l\overline{a}+\overline{b}=(\frac{la_1+kp}{p},\frac{la_2}{p},....,\frac{la_n}{p})$ Заметим, что всегда можно выбрать l и k так, чтобы $la_1+kp=1$, т.к. $(a_1,p)=1$

Покажем, что $(\gamma, e_2, ..., e_n)$ образуют базис. Для начала заметим, что $\overline{e_1} = p\gamma - la_2\overline{e_2} - la_3\overline{e_3}$ — $...la_n\overline{e_n}.\ l\overline{a}=\gamma-\overline{b}.$ Мы умеем выражать все базисные векторы и $l\overline{a}\Longrightarrow$ умеем выражать $\overline{a}\Longrightarrow$ нашли базис■

Найдем $det\Lambda_{\overline{a}}$

Заметим, что матрица, составленная из базисных векторов $\Lambda_{\overline{a}}$ нижняя треугольная, $\operatorname{diag}(\frac{1}{p}, 1, 1, ..., 1)$, исходя из того, какой базис мы нашли. Тогда $det \Lambda_{\overline{a}} = \frac{1}{n}$