Homework #12

Due Monday 25 April, 2022 at 11:59pm.

Submit as a single PDF via Gradescope; see the Canvas page

canvas.alaska.edu/courses/7017

Textbook Problems from Strang, *Intro Linear Algebra*, 5th ed. will be graded for completion. Answers/solutions to these Problems are linked at

bueler.github.io/math314/resources.html

The **P** Problems will be graded for correctness. When grading these Problems, I will expect you to write explanations using complete sentences!

Put these Textbook Problems first on your PDF, in this order.

from Problem Set 6.4, pages 344–348: #4, 5, 8

from Problem Set 8.1, pages 406–409: #1, 3, 13, 17, 20, 24 (Hint. Append columns.)

from Problem Set 8.2, pages 417–419: #1, 4, 5, 10, 11, 14, 27

Put these **P** Problems next on your PDF, in this order.

P57. (a) By hand calculation, find an orthogonal matrix Q which diagonalizes

$$S = \begin{bmatrix} 1 & 0 & 2 \\ 0 & -1 & -2 \\ 2 & -2 & 0 \end{bmatrix}$$

(b) Check your calculation using Matlab's eig command [Q,D] = eig(S)

Explain any differences between your Q and the computed $\mathbb Q$ from Matlab.

(Hints. Recall that if X is an invertible matrix of eigenvectors of A then X diagonalizes A in the sense that $AX = X\Lambda$ or $A = X\Lambda X^{-1}$, where Λ is diagonal. Recall that the columns of an orthogonal matrix are orthonormal vectors: $Q^{T}Q = I$. If X = Q is orthogonal then $A = X\Lambda X^{-1} = Q\Lambda Q^{T}$.)

- **P58.** (a) What matrix A transforms (1,0) and (0,1) to (r,s) and (t,u)?
- **(b)** What matrix B transforms (a, b) and (c, d) to (1, 0) and (0, 1)?
- (c) What condition on a, b, c, d will make part (b) impossible?
- (d) When r = a, s = b, t = c, and u = d then A and B are matrix inverses. Confirm this.

P59. Consider the symmetric matrices

$$A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \qquad B = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

- (a) Which of these classes of matrices do A and B belong to?:

 INVERTIBLE, ORTHOGONAL, PROJECTION, PERMUTATION, DIAGONALIZABLE Explain, or show work which supports your answers.
- **(b)** Which of these factorizations are possible for *A* and *B*?:

$$LU$$
, $X\Lambda X^{-1}$, $Q\Lambda Q^{\top}$

(As usual, L is lower triangular with ones on diagonal, U is upper triangular, X is invertible, Λ is diagonal, and Q is orthogonal.) Explain, or show work which supports your answers.

- (c) By hand calculation, find Q orthogonal and Λ diagonal so that $B = Q\Lambda Q^{\top}$. (Hint. B has a repeated eigenvalue $\lambda = 0$, and you will need to find two orthogonal and normalized eigenvectors for this λ . Check your work in Matlab.)
- **P60.** In this problem we consider transformations from $V = \mathbb{R}^2$ to $W = \mathbb{R}^2$.
- (a) For each of these transformations, is it linear? (*Show it is, or give a counterexample.*) In either case, give a simplified formula for T(T(v)):
 - $\bullet \ T(\boldsymbol{v}) = -\boldsymbol{v}$
 - $\bullet \ T(\boldsymbol{v}) = \boldsymbol{v} + (1,1)$
 - $T(\mathbf{v}) = (\text{do } 90^{\circ} \text{ rotation on } \mathbf{v}) = (-v_2, v_1)$
 - $T(v) = (projection) = \frac{1}{2}(v_1 + v_2, v_1 + v_2)$
- **(b)** Show that if T is linear, i.e. $T(a\mathbf{v} + b\mathbf{w}) = aT(\mathbf{v}) + bT(\mathbf{w})$, then $T(T(\mathbf{v}))$ is also linear.

(Note that it is common in mathematics to write " T^2 " for the composition $T(T(\cdot))$ of a transformation T with itself, even if T is not linear, and/or T is not already represented by a matrix.)

- **P61.** (a) Consider the vector space M of 2 by 2 matrices. Show that the transpose transformation T, on M, is linear: $T(A) = A^{T}$. (*Hint. Not much to do! Fits on one line.*)
- **(b)** Try to find a 2 by 2 matrix B so that T(A) = BA. Show that no such matrix B exists! (*Hint. Show that* $BA = A^{\top}$ *being true for* all *matrices* A *is impossible.*)
- (c) If we rearrange the entries of a 2 by 2 matrix A into a column vector \mathbf{a} with four entries then we can do what is asked in (b). That is, show that there is a 4×4 matrix C so that $C\mathbf{a}$ is a column vector which is the rearrangement of A^{\top} .