

ČESKÁ A SLOVENSKÁ
FEDERATIVNÍ
REPUBLIKA
(19)

FEDERÁLNÍ ÚŘAD
PRO VYNÁLEZY

POPIS VYNÁLEZU

K AUTORSKÉMU OSVĚDČENÍ

272 371

(11)

(13) B1

(51) Int. Cl.
C 23 F 1/44 //
H 01 L 21/306,
C 23 F 1/24

(21) PV 1729-88.V
(22) Přihlášeno 17 03 88

(40) Zveřejněno 14 05 90
(45) Vydáno 21 10 91

(75) Autor vynálezu HOLOUBEK JIŘÍ ing.,
BOK KAREL ing.,
VALÍČEK JAROMÍR ing., ROŽNOV POD RADHOŠTĚM

(54) Lázeň pro leptání vrstev silicidu chromu
pro integrované obvody v pevné fázi

(57) Lázeň je tvořena směsí kyseliny dusičné HNO_3 a kyseliny fluorovodíkové HF zředěnou etylénglykolem $\text{HOCH}_2\text{CH}_2\text{OH}$. Svým složením umožňuje leptání vrstev silicidu chromu SiCr_2 mokrou cestou slučitelné s výrobou integrovaných obvodů v pevné fázi. Dosud bylo nutno tvarovat vrstvy silicidu chromu SiCr_2 pro integrované obvody v pevné fázi podstatně náročnější technologií iontového leptání. Jelikož dosud známé lázně pro mokré leptání nebyly slučitelné s používanou technologií výroby integrovaných obvodů v pevné fázi.

Vynález se týká lázně pro leptání vrstev silicidu chromu použitelné v technologii výroby integrovaných obvodů v pevné fázi.

U některých integrovaných obvodů v pevné fázi se dosahuje špičkových hodnot časové a teplotní stability užitím tenkovrstvových odporů. Tyto odpory jsou vytvarovány z tenkých vrstev, nanesených na povrch systému integrovaného obvodu na rozdíl od běžně užívaných odporů, jejichž dráhy jsou vytvořeny oblastmi difundovanými nebo implantovanými do monokrystalického křemíku. Materiálem pro tenkovrstvové odpory bývá často silicid chromu CrSi_2 . Vrstvy silicidu chromu s vhodnými parametry lze vyrobit podle čs. autorského osvědčení č. 2044. Tvarování těchto vrstev lze obecně provádět několika způsoby: leptáním mokrou nebo suchou cestou nebo nanášením vrstvy na povrch předem vytvarované šablony a následným odplavením přebytečných částí vrstvy spolu s šablonou. Posledně jmenovaná metoda nazývaná "lift-off" má zásadní nevýhodu v tom, že přítomnost šablony zpravidla vylučuje možnost žíhání vrstvy během depozice, bez něhož není možné dosáhnout potřebné teplotní stability vrstvového odporu.

Pro mokré leptání vrstev silicidu chromu obsahujících kyslík nebo wolfram na křemíkových deskách se strukturami monolitických integrovaných obvodů je známá lázeň, která má nevýhodu v tom, že kromě HF, HNO_3 , CH_3COOH a H_2O obsahuje také vysokomolekulární složku na bázi klihu nebo želatiny. Tato organická aditiva neexistují v čistotě potřebné pro výrobu integrovaných obvodů. Z uvedeného důvodu může použití této lázně vést ke zhoršení elektrických parametrů a spolehlivosti integrovaných obvodů v pevné fázi.

Jiným případem mokrého leptání vrstev silicidu chromu je leptání v lázni složené z HF, H_2O_2 , HCl a H_2O . Přestože je tato lázeň určena pro leptání vrstev CrSi_2N_x , nelze ji použít v případech, kdy jsou kontaktní okénka ke křemíku otevřena ještě před depozicí odporové vrstvy. V takovém případě je totiž po vyleptání odporové vrstvy účinkům lázně vystavena plocha Si kontaktů a použitím výše uvedené lázně dochází vlivem elektrochemických dějů k jejich poškození. Totéž se týká lázní složených z kombinace HNO_3 , HF, NH_4F , H_3PO_4 a H_2O .

Plazmochemické leptání vrstev silicidu chromu je také nepoužitelné, protože při něm nelze zaručit selektivitu leptání vzhledem k podložní vrstvě, jíž bývá zpravidla nitrid křemíku v kombinaci s monokrystalickým křemíkem v místech kontaktů. Z těchto důvodů se pro tvarování vrstev silicidu chromu používá iontové leptání, tj. odprašování argonovými ionty ve vysokofrekvenčním výboji. Nevýhodou této metody je její rychlosť leptání řádově 1 nm/min a vysoká technická náročnost. Navíc, podobně jako v případě plazmochemického leptání, nelze ani u této metody zaručit dostatečnou selektivitu vůči podložním vrstvám. Leptání se provádí v naprašovacích zařízeních vybavených doplňkem pro vysokofrekvenční iontové leptání a vyžaduje samostatný vakuový cyklus, tj. vyčerpání do oblasti vysokého vakua min. 10^{-4} Pa, provedení leptání a zavzdūšení. Leptání je nutno mezioperačně kontrolovat a podle potřeby provést doleptání v dalším vakuovém cyklu.

Uvedené nevýhody odstraňuje lázeň pro leptání vrstev silicidu chromu pro integrované obvody v pevné fázi podle vynálezu, jehož podstata spočívá v tom, že obsahuje 1 až 5 objemových % kyseliny dusičné HNO_3 , 1 až 5 objemových % kyseliny fluorovodíkové HF a 90 až 98 objemových % etylénglykolu $\text{HOCH}_2\text{CH}_2\text{OH}$.

Ve srovnání se způsobem tvarování vrstev silicidu chromu iontovým leptáním je leptání v lázni podle vynálezu produktivnější, nevyžaduje nákladná technologická zařízení a odstraňuje nutnost manipulace s křemíkovými deskami. Další výhodou použití lázně podle vynálezu je odstranění radiačního poškození struktur, které vzniká při iontovém leptání vrstev silicidu chromu působením energetických nabitych částic. Důsledkem je zlepšení elektrických parametrů struktur citlivých na přítomnost náboje v dielektrických vrstvách a na vlastnosti povrchů.

Ve srovnání se známými způsoby mokrého leptání vrstev ze silicidu chromu nedochází v oblastech obnaženého monokrystalu křemíku k poškození jeho povrchu. Všechny použité chemikálie jsou dostupné v čistotě potřebné pro výrobu integrovaných obvodů v pevné fázi.

Lázeň o složení například: etylénglykol 2 l, kyselina dusičná 20 ml, kyselina fluorovodíková 40 ml leptá vrstvy silicidu chromu homogenně rychlostí 10 nm/min při pokojové teplotě, přičemž prakticky nenapadá vrstvu podložního nitridu křemíku. Při styku s obnaženými oblastmi monokrystalického křemíku v místech kontaktů dojde k jejich rovnoměrnému mírnému naleptání bez známek jakékoli degradace nezávisle na typu vodivosti a velikosti dotace.

Lázeň pro leptání vrstev silicidu chromu podle vynálezu umožňuje leptání těchto vrstev mokrou cestou, je univerzálně použitelná, zaručuje vysokou čistotu procesu a získává spolehlivost a reprodukovatelnost výroby integrovaných obvodů v pevné fázi.

PŘEDEMĚT VÝNÁLEZU

Lázeň pro leptání vrstev silicidu chromu pro integrované obvody v pevné fázi, vyznačující se tím, že obsahuje 1 až 5 objemových % kyseliny dusičné HNO_3 , 1 až 5 objemových % kyseliny fluorovodíkové HF a zbytek do 100 objemových % etylénglykolu $\text{HOCH}_2\text{CH}_2\text{OH}$.