A számítástudomány alapjai

ÖSSZEFOGLALÓ JEGYZET

Készítette: Illyés Dávid

Ez a jegyzet nagyon hasonlóan van struktúrálva az előadás jegyzetekhez és fő célja, hogy olyan módon adja át a "A Programozás Alapjai 1" nevű tárgy anyagát, hogy az teljesen kezdők számára is könnyen megérthető és megtanulható legyen.

Tartalomjegyzék

		Oldal
1	A gráfelmélet alapjai 1.1 Mi a gráf? 1.2 Multigráfok és irányított gráfok 1.3 Handshaking lemma 1.4 Komplementer és izomorfia 1.5 Gráfoperációk 1.6 Háromféle elérhetőség, összefüggőség 1.7 Gráfok összefüggősége a gyakorlatban 1.8 Fák és erdők 1.9 Fák további tulajdonságai 1.10 Feszítőfák	. 2 . 2 . 3 . 3 . 3 . 3 . 3
2	Minimális költségű feszítőfák 2.1 Alapkörrendszer, alap vágás renszer 2.2 Minimális költségű feszítőfa 2.3 Minimális költségű feszítőfák struktúrája 2.4 Az ötödik elem 2.5 Mkkffák egy villamosmérnöki alkalmazása	. 4 . 4 . 4
3	Gráfbejárások és legrövidebb utak	5
4	Legrövidebb utak, DFS, PERT	6
5	Euler-séták és Hamilton-körök	7
6	Síkgráfok	8
7	Lineáris egyenletrendszerek	9
8	$\mathbf{Az}\ \mathbb{R}^n$ tér alaptulajdonságai	10
9	Altér bázisa és dimenziója	11
10	Négyzetes mátrix determinánsa	12
11	Mátrixműveletek és lineáris leképezések	13
12	Mátrix rangja és inverze	14
13	Mátrixegyenletek	15

1 A gráfelmélet alapjai

1.1 Mi a gráf?

Def: G = (V, E) egyszerű, irányítatlan gráf

Példa: ha $V \neq 0$ és $E \subseteq \binom{V}{2}$, ahol $\binom{V}{2} = \{\{u, v\} : u, v \in V, u \neq v\}$.

V a G csúcsainak (vagy (szög)pontjainak), E pedig G éleinek halmaza.

Példa: $G = (\{a, b, c, d\}, \{a, b\}, \{a, c\}, \{b, c\}, \{b, d\})$

Def: A G = (V, E) gráf diagramja a G egy olyan lerajzolása, amiben V-nek a sík különböző pontjai felelnek meg, és G minden $\{u, v\}$ élének egy u-t és v-t összekötő görbe felel meg.

Terminológia & konvenciók: Gráf alatt rendszerint egyszerű, irányítatlan gráfot értünk. Ha G egy gráf, akkor V(G) a G csúcshalmazát, E(G) pedig G élhalmazát jelöli, azaz G = (V(G), E(G)). Az $e = \{u, v\}$ élt röviden uv-vel jelöljük.

Ekkor e az u és v csúcsokat köti össze. Továbbá u és v az e végpontjai, amelyek az e élre illeszkednek, és e mentén szomszédosak.

1.2 Multigráfok és irányított gráfok

Megj: Ha egy gráf nem egyszerű, akkor lehetnek párhuzamos élei, hurokélei vagy akár párhuzamos hurokélei is.

Def: Az irányított gráf olyan gráf, aminek minden éle irányított.

Def: G = (V, E) véges gráf, ha V és E is véges halmazok.

Def: Az n-pontú út, n-pontú kör, ill. n-pontú teljes gráf jele rendre P_n , C_n , ill. K_n . $(P_1, P_2, P_3 \text{ elfajulók.})$ **Megf:** $K_1 = P_1, P_2 = C_2, C_3 = K_3$

Def: $c \in V(G)$ esetén a v-re illeszkedő élek száma a v fokszáma. Jelölése $d_g(v)$ vagy d(v), a hurokél kétszer számít. (Irányított gráf esetén $\delta(v)$ ill. $\rho(v)$ a v ki- ill. befokát jelöli.)

Def: A G gráf maximális ill. minimális fokszáma $\Delta(G)$ ill. $\delta(G)$. G reguláris, ha minden csúcsának foka ugyanannyi: $\Delta(G) = \delta(G)$, G pedig k-reguláris, ha minden csúcsának pontosan k a fokszáma.

Megf: Minden kör 2-reguláris, K_n pedig (n-1)-reguláris.

1.3 Handshaking lemma

Kézfogás-lemma (KFL): HaG = (V, E) véges, nem feltétlenül egyszerű gráf, akkor $\sum_{v \in V} d(v) = 2|E|$, azaz a csúcsok fokszámösszege az élszám kétszerese.

Általánosított kézfogás-lemma: Tetsz. G = (V, E) véges irányított gráfra $\sum_{v \in V} \delta(v) = \sum_{v \in V} \rho(V) = |E|$, azaz a csúcsok ki- és befokainak összege is az élszámot adja meg.

Biz: Az egyes csúcsokból kilépő éleket megszámolva G minden irányított élét pontosan egyszer számoljuk meg. Ezért a kifokok összege az élszám. A belépő éleket leszámlálva hasonló igaz, ezért a befokok összege is az élszám.

 \mathbf{A} KFL bizonyítása: Készítsükel a G' digráfot úgy, hogy G minden élét egy oda-vissza irányított élpárral helyettesítjük. Ekkor

$$\sum_{v \in V} d_G(V) = \sum_{v \in V} \delta_{G'}(v) = |E(G')| = 2|E(G)|$$

Megj: Úgy is bizonyíthattuk volna az általánosított kéfogás-lemmát, hogy egyenként húzzuk be G-be az éleket. 0-elű (üres)gráfokra a lemma triviális, és minden egyes él behúzása pontosan 1-gyel növeli az élszámot is és a ki/befokok összegét is.

 \mathbf{Megj} : Úgy is bizonyíthattuk volna a kézfogás-lemmát, hogy egyenként húzzuk be G-be az éleket. Üresgráfokra a lemma triviális, és minden egyes él behúzása pontosan 2-vel növeli a kétszeres élszámot és a csúcsok fokszámösszeget is.

1.4 Komplementer és izomorfia

Def: A G egyszerű gráf komplementere $\overline{G} = (V, (G), \binom{v}{2} \setminus E(G))$.

 $\mathbf{Megj:}\ G$ és \overline{G} csúcsai megegyeznek, és két csúcs pontosan akkor szomszédos \overline{G} -ben, ha nem szomszédosak G-ben.

Példa:

- 1.5 Gráfoperációk
- 1.6 Háromféle elérhetőség, összefüggőség
- 1.7 Gráfok összefüggősége a gyakorlatban
- 1.8 Fák és erdők
- 1.9 Fák további tulajdonságai
- 1.10 Feszítőfák

2 Minimális költségű feszítőfák

- 2.1 Alapkörrendszer, alap vágás renszer
- 2.2 Minimális költségű feszítőfa
- 2.3 Minimális költségű feszítőfák struktúrája
- 2.4 Az ötödik elem
- 2.5 Mkkffák egy villamosmérnöki alkalmazása

3 Gráfbejárások és legrövidebb utak

4 Legrövidebb utak, DFS, PERT

5 Euler-séták és Hamilton-körök

6 Síkgráfok

7 Lineáris egyenletrendszerek

8 Az \mathbb{R}^n tér alaptulajdonságai

9 Altér bázisa és dimenziója

10 Négyzetes mátrix determinánsa

11 Mátrixműveletek és lineáris leképezések

12 Mátrix rangja és inverze

13 Mátrixegyenletek