Midterm 2 Problems

February 21, 2022

1. (5 pts) Van't Hoff Equation Nitrosyl chloride ClNO(g) decomposes into NO(g) and $Cl_2(g)$. The unbalanced chemical equation is

$$ClNO(g) \rightleftharpoons NO(g) + Cl_2(g)$$

Using the Van't Hoff equation

$$\ln K = -\frac{\Delta H^{\circ}}{RT} + \frac{\Delta S^{\circ}}{R} \tag{1}$$

and the gas phase thermochemistry data, determine the following. Report all results to 3 significant figures.

- (a) Balance the chemical equation.
- (b) At what temperature is the equilibrium constant K greater than 1?
- (c) At 25° C, suppose the reaction is at equilibrium. The temperature is increased. Describe the change in K in terms of the thermodynamic quantities. *Hint:* Create a plot to illustrate the process.

Table 1: Reported ΔH° (kJ/mol) and ΔS° (J/(mol K))

	ΔH°	ΔS°
NO	90.29	210.76
ClNO	51.71	261.68
Cl_2	0.00	223.08

2. (6 pts) Mixing of Ideal Gas Assume ideal gas conditions. At 25°C, nitrogen dioxide $NO_2(g)$ and dinitrogen tetraoxide $N_2O_4(g)$ are separated into equal 1L volumes, see Fig. 1. The initial pressures of the $NO_2(g)$ and $N_2O_4(g)$ are both at 1.25 atm. The valve is then opened allowing the gases to mix. Report all results to 2 significant figures.

Figure 1: Illustration of gases A and B separated into equal volumes.

- (a) Determine the free energy of mixing $\Delta G_{\rm mix}$ and entropy of mixing $\Delta S_{\rm mix}$.
- (b) $N_2O_4(g)$ is in equilibrium with $NO_2(g)$. Write the balanced chemical equation including states.
- (c) At 25°C, the equilibrium constant K is 0.1481 for the $N_2O_4(g)$ decomposition. When the gases mix and allow to equilibrate, describe the "driving force" in terms of the thermodynamic quantities.

3. (4 pts) Properties of Equilibrium Constants Determine K_c at 25°C for the reaction,

$$N_2(g) + O_2(g) + Cl_2(g) \Longrightarrow 2 \operatorname{NOCl}(g),$$

given the following data set at 25°C. Report result to 2 significant figures.

$$\begin{split} &\mathrm{N_2(g)} + 2\,\mathrm{O_2(g)} & \Longrightarrow 2\,\mathrm{NO_2(g)} \quad K_p = 1.0 \times 10^{-18} \\ &2\,\mathrm{NOCl(g)} + \mathrm{O_2(g)} & \Longrightarrow 2\,\mathrm{NO_2Cl(g)} \quad K_p = 1.21 \times 10^4 \\ &2\,\mathrm{NO_2(g)} + \mathrm{Cl_2(g)} & \Longleftrightarrow 2\,\mathrm{NO_2Cl(g)} \quad K_p = 9.0 \times 10^{-2} \end{split}$$