第6章 时序逻辑电路

Sequential Logic Circuits

- §6.1 概述 Introduction
- §6.2 同步时序电路分析 Sequential Logic Circuits Analysis
- §6.3 同步时序电路设计 Synchronous Sequential Circuit Design
- §6.4 计数器 Counter
- §6.5 寄存器 Register
- §6.6 序列信号发生器 Series Signal Generator

§ 6.1 概述 Introduction

```
时序电路
输出
输入以前状态 记忆
基本单元: FF(逻辑门+反馈线)
```

时序电路结构:

组合电路 + 记忆元件

W: 控制输入 — J, K, D, T

Q: 触发器输出 (状态)

外输入 X 控制输入 W外输出 Z 状态

关系:

输出方程

驱动方程

特征方程

Z = F(X, Q)

W = H(X, Q)

 $Q^{n+1} = G(W, Q^n)$

按照电路中输出变量是否和输入变量直接相关

时序电路

米里型 (Mealy)

输出Z $\left\{ \begin{array}{c} Q^{n} \\ \mathbf{v} \end{array} \right.$

莫尔型 (Moore) 输出 $Z \sim Q^n$

§6.2 同步时序电路分析 Sequential Logic Circuits Analysis

分析: 已知电路, 描述电路原理及功能

例1: 分析下图时序逻辑电路

1) 输入 X 输出 Z

控制输入 J_0, K_0, J_1, K_1 状态 Q_1 (MSB), Q_0

2) 方程

输出方程

$$Z = (X \oplus Q_1^n) \cdot \overline{Q_0^n}$$

$$\begin{cases} J_0 = X \oplus \overline{Q_1^n} \\ K_0 = 1 \end{cases} \qquad \begin{cases} J_1 = X \oplus Q_0^n \\ K_1 = 1 \end{cases}$$

$$\begin{cases} J_1 = X \oplus Q_0^r \\ K_1 = 1 \end{cases}$$

3) 状态表和状态图

已知: 输入 X, Q^n

求:输出 Z, Qⁿ⁺¹

状态表

$$X = 0 \begin{cases} X & Q_1^n & Q_0^n & Q_1^{n+1} & Q_0^{n+1} & Z \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 0 \end{cases}$$

$$X=1 \begin{cases} 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \end{cases}$$

$$Q_1^{n+1} = (X \oplus Q_0^n) \cdot Q_1^n$$

$$Q_0^{n+1} = (X \oplus \overline{Q_1^n}) \overline{Q_0^n}$$

$$Z = (X \oplus Q_1^n) \cdot \overline{Q_0^n}$$

$$X=0 \begin{cases} Q_{1}^{n+1} = Q_{0}^{n} \cdot \overline{Q}_{1}^{n} \\ Q_{0}^{n+1} = \overline{Q_{1}^{n}} \cdot \overline{Q}_{0}^{n} = \overline{Q_{1}^{n} + Q_{0}^{n}} \\ Z = Q_{1}^{n} \cdot \overline{Q}_{0}^{n} \end{cases}$$

$$X=1 \begin{cases} Q_1^{n+1} = \overline{Q_0^n} \cdot \overline{Q_1^n} \\ Q_0^{n+1} = Q_1^n \cdot \overline{Q_0^n} \\ Z = \overline{Q_1^n} \cdot \overline{Q_0^n} \end{cases}$$

状态图

状态表

X	Q_1^n Q_0^n	Q_1^{n+1}	Q_0^{n+1}	Z
0	0 0	0	1	0
0	0 1	1	0	0
0	1 0	0	0	1
0	1 1	0	0	0
1	0 0	1	0	1
1	0 1	0	0	0
1	10	0	1	0
1	11	0	0	0

── 对应一个CLK

输出Z是原状态下的输出

每条转换线对应真值表的一行

4) 电路功能

X=0, M-3 加法计数: Z=1, 进位输出;

X=1, M-3 减法计数: Z=1, 借位输出。

状态图主循环:模3加减双向计数器

例 2. 分析下图时序电路

无外输入, 无外输出

$$\begin{cases} J_{3} = Q_{2}^{n} & J_{2} = Q_{1}^{n} \\ K_{3} = \overline{Q_{2}^{n} \oplus Q_{1}^{n}} & K_{2} = \overline{Q_{3}^{n}} \end{cases} \qquad \begin{cases} J_{1} = Q_{2}^{n} + Q_{3}^{n} \\ K_{1} = \overline{Q_{2}^{n}} + \overline{Q_{3}^{n}} = \overline{Q_{2}^{n}} \overline{Q_{3}^{n}} \end{cases}$$

$$Q_{3}^{n+1} = J_{3}\overline{Q_{3}^{n}} + \overline{K}_{3}Q_{3}^{n} = Q_{2}^{n}\overline{Q_{3}^{n}} + (Q_{2}^{n} \oplus Q_{1}^{n})Q_{3}^{n}$$

$$Q_{2}^{n+1} = J_{2}\overline{Q_{2}^{n}} + \overline{K}_{2}Q_{2}^{n} = Q_{1}^{n}\overline{Q_{2}^{n}} + Q_{3}^{n}Q_{2}^{n}$$

$$Q_{1}^{n+1} = J_{1}\overline{Q_{1}^{n}} + \overline{K}_{1}Q_{1}^{n} = (Q_{2}^{n} + Q_{3}^{n})\overline{Q_{1}^{n}} + Q_{2}^{n}Q_{3}^{n}Q_{1}^{n}$$

Q_3^n	Q_2^n	Q_1^n	Q_3^{n+1}	Q_2^{n+1}	Q_1^{n+1}
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	1	0	1
0	1	1	1	0	0
1	0	0	0	0 (
1	0	1	1	ci	$\overline{0}$
1	1	0	1	1	1
1	1	1	0	1	1

$$Q_{3}^{n+1}$$
 $\begin{cases} Q_{2}^{n} & Q_{3}^{n} = 0, \\ Q_{2}^{n} \oplus Q_{1}^{n} & Q_{3}^{n} = 1, \end{cases}$ Q_{2}^{n+1} $\begin{cases} Q_{1}^{n} & Q_{2}^{n} = 0, \\ Q_{3}^{n} & Q_{2}^{n} = 1, \end{cases}$ $Q_{2}^{n} = 1,$ $Q_{2}^{n} = 1,$ Q_{1}^{n+1} $\begin{cases} Q_{2}^{n} + Q_{3}^{n} & Q_{1}^{n} = 0, \\ Q_{2}^{n} Q_{3}^{n} & Q_{1}^{n} = 1, \end{cases}$

Q_3^n	Q_2^n	Q_1^n	Q_3^{n+1}	Q_2^{n+1}	Q_1^{n+1}
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	1	0	1
0	1	1	1	0	0
1	0	0	0	0	1
1	0	1	1	1	0
1	1	0	1	1	1
1	1	1	0	1	1

000 孤立状态

自启动

§6.3 同步时序电路设计

Synchronous Sequential Circuit Design

已知 → 功能或状态图求 → 电路

自启动

例 1. 设计同步5进制加法计数器

1) 确定状态及状态图

M-5 计数器, 5 个状态: S_0, S_1, S_2, S_3, S_4

在计数脉冲CLK作用

下,5 个状态周期性变换,在 S_4 状态下进位输出 Y=1

2) 状态化简

M-5, 5 个状态, 不须再化简

3) 状态分配、编码

n: 二进制位数

3位

状态表

Q_2^n	$Q_1^n Q_0^n$	Q_2^{n+}	Q_1^{n-1}	Q_0^{n+1}	Y
0	0 0	0	0	1	0
0	01	0	1	0	0
0	10	0	1	1	0
0	11	1	0	0	0
1	0 0	0	0	0	1

4) 选择 FF,确定驱动方程、状态方程 Q^{n+1} 及输出方程

方法 1: 先不确定用哪种触发器

由状态表填卡诺图

Q_2^{n+1} Q_0^{n}	$Q_1^{\mathbf{n}} Q_1^{\mathbf{n}}$	01	11	10
0	0	0	Ф	0
1	0	1	Φ	Φ

Q_0^{n+1} Q_2	11	10		
Q_0^n 0	1	01 1	Φ	0
1	0	0	Ф	Φ

状态表

Q_2^n	$Q_1^n Q_0^n$	Q_2^{n+}	Q_1^{n+1}	Q_0^{n+1}	Y
0	0 0	0	0	1	0
0	01	0	1	0	0
0	10	0	1	1	0
0	11	1	0	0	0
1	00	0	0	0	1

也可直接填卡诺图

直接填卡诺图

5个有效状态 3位二进制数

$Y_{Q_0^n}$	$2^{\mathbf{n}} \mathbf{Q}_{1}^{\mathbf{n}} = 0$	01	11	10
0	0	0	Ф	1
1	0	0	Ф	Φ

Q_0^{n+1} Q_0^{n}	2 ⁿ Q 1 ⁿ	01	11	10
0	1	1	Ф	0
1	0	0	Ф	Φ

Q_2^{n+1} Q_0^{n}	$2^{\mathbf{n}} \mathbf{Q_1}^{\mathbf{n}}$	01	11	10
0	0	0	Ф	0
V				_

Q_0^{n+1} Q_0^{n}	$2^{\mathbf{n}} \mathbf{Q}_{1}^{\mathbf{n}}$	01	11	10
0	1	1)	Φ	0
1	0	0	Ф	Φ

$$Q_2^{n+1} = Q_1^n Q_0^n$$
$$= D_2$$
$$D_2 = Q_1^n Q_0^n$$

$$Q_1^{n+1} = Q_0^n \overline{Q}_1^{n} + \overline{Q}_0^n Q_1^n$$

$$= Q_0^n \oplus Q_1^n$$

$$= T_1 \oplus Q_1^n$$

$$T_1 = Q_0^n$$

$$Q_0^{n+1} = \overline{Q}_2^n \overline{Q}_0^n$$

$$= D_0$$

$$J_0 = \overline{Q}_2^n$$

$$Y_{Q_2^nQ_1^n}$$
 Q_0^n
00 01 11 10
0 0 Φ 1
1 0 0 Φ Φ

$$Y = Q_2^n$$

$$J_0 = Q_2^{\text{n}}$$
$$K_0 = 1$$

$$D_{2} = Q_{1}^{n} Q_{0}^{n} \qquad T_{1} = Q_{0}^{n} \qquad \begin{cases} J_{0} = Q_{2}^{n} \\ K_{0} = 1 \end{cases} \qquad Y = Q_{2}^{n}$$

5) 电路

与门可以省略

6)检查是否可以自启动

$$Q_{2}^{n+1} = Q_{1}^{n} Q_{0}^{n}$$

$$Q_{1}^{n+1} = Q_{0}^{n} \overline{Q}_{1}^{n} + \overline{Q}_{0}^{n} Q_{1}^{n}$$

$$= Q_{0}^{n} \oplus Q_{1}^{n}$$

$$Q_{0}^{n+1} = \overline{Q}_{2}^{n} \overline{Q}_{0}^{n}$$

状态表

Q_2^n	Q_1'	Q_0^n	Q_2^{n-1}	Q_1^{n-1}	Q_0^{n+1}	Y
0		04	0	0	1	0
0	0	1	0	1	0	0
0	1	0	0	1	1	0
0	1	1	1	0	0	0
1	0	0	0	0	0	1
1	0	1	0	1	0	1
1	1	0	0	1	0	1
1	1	1	1	0	0	1

方法 2: 确定用哪种触发器

- 4) 选择 FF 选 JK-FFs
- 5) 状态方程 Q^{n+1} 及控制输入-J,K

状态表

Q_2^n	Q_1'	Q_0^n	Q_2^{n+}	$^{-1}Q_1^{n+}$	Q_0^{n+1}	Y
0	0	0	0	0	1	0
0	0	1	0	1	0	0
0	1	0	0	1	1	0
0	1	1	1	0	0	0
1	0	0	0	0	0	1

JK-FF 激励表

Q^n	$\rightarrow Q^{n+1}$	J K
0	0	0 ×
0	1	1 ×
1 🗸	0	× 1
1	1	\times 0

$Q_2^n \Rightarrow Q_2^{n+1} \quad J_2$

0 0

0 0 0

0 0 0

0 1 1

 $1 \quad 0 \quad X$

 $\mathbf{X} = \mathbf{X} \setminus \mathbf{X}$

 $\mathbf{X} \quad \mathbf{X} \quad \mathbf{X}$

 $\mathbf{X} \cdot \mathbf{X} \qquad \mathbf{X}$

得到 $2^{\#}$ -FF 控制输入 J_2 驱动卡诺图

状态图

Q_2^n	Q_1^n	Q_0^n	Q_2^{n+1}	Q_1^{n+1}	Q_0^{n+1}	Y
0	0	0	0	0	1	0
0	0	1	0	1	0	0
0	1	0	0	1	1	0
0	1	1	1	0	0	0
1	0	0	0	0	0	1

JK-FF 激励表

Q^n	$\rightarrow Q^{n+1}$	J	K
0	0	0	X
0	1	1	X
1	0	×	1
1	1	×	0

$$Q_1^n \Rightarrow Q_1^{n+1} \quad \mathbf{K}_1$$

0 0	X
-----	---

$$\mathbf{X} = \mathbf{X}$$

$$\mathbf{X} = \mathbf{X} \longrightarrow \mathbf{X}$$

得到 1#-FF 控制输入 K_1 驱动卡诺图

K_1 \mathcal{Q}_1^n	Q_0^n	01	11	10
Q_2^n	×	×	1	0
1	×	×	×	×

得到各个触发器控制输入驱动卡诺图及控制输入

$$J_2 = Q_1^n Q_0^n$$

$$J_1 = Q_0^n$$

$$J_0 = \overline{Q_2^n}$$

$$K_2 = 1$$

$$K_1 = Q_0^n$$

$$K_0 = 1$$

输出卡诺图

- 1	
_ ^ R	

Q_2^n	Q_1^n	Q_0^n	Q_2^{n+1}	Q_1^{n+}	Q_0^{n+1}	Y
0	0	0	0	0	1	0
0	0	1)	0	1	0	0
0	1	0	0	1	1	0
0	1	1	1	0	0	0
1	0	0	0	0	0	1

$$Y = Q_2^n$$

$$J_2 = Q_1^n Q_0^n$$

$$K_2 = 1$$

$$\begin{cases} J_1 = Q_0^n \\ K_1 = Q_0^n \end{cases} \begin{cases} J_0 = \overline{Q_2^n} \\ K_0 = 1 \end{cases}$$

电路

佥查是否可以自启动

例 2. 设计一个串行数据检测器。该检测器有一个输入端X。电路的功能是对输入信号进行检测。当连续输入三个1 (以及三个以上1) 时,该电路输出Y=1,否则输出Y=0。

1) 根据设计要求,设定状态

 S_0 —初始状态或没有收到1时的状态;

 S_1 —收到一个1后的状态;

 S_2 —连续收到两个1后的状态;

 S_3 —连续收到三个1 (以及三个以上1) 后的状态。

X=1, 收到一个"1"

2) 画出状态转换图

 S_0 —初始状态或没有收到1时的状态;

 S_1 —收到一个1后的状态;

 S_2 —连续收到两个1后的状态;

 S_3 —连续收到三个1 (以及三个以上1) 后的状态。

X=1, 收到一个"1"

输入三个1 (以及三个以上1) 时,输出Y=1

3) 状态化简

状态化简: 合并等效状态

等效状态:

在相同的输入条件下,输出相同、次态也相同的状态

 S_2 和 S_3 是等效状态,将 S_2 和 S_3 合并为 S_2

3) 状态分配、编码

Set
$$S_0=00$$

$$S_1=01$$
 编码可以不连续
$$S_2=11$$

编码后的状态图

状态表

X	Q_1^n	Q_0^n	Q_1^{n+1}	Q_0^{n+1}	Y
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	Φ	Φ	Φ
0	1	1	0	0	0
1	0	0	0	1	0
1	0	1	1	1	0
1	1	0	Φ	Φ	Φ
1	1	1	1	1	1

4) 选触发器及控制输入

$$Q_1^{n+1} = XQ_0^n = D_1 \quad D_1 = XQ_0^n$$

$$Q_0^{n+1} = X = \boldsymbol{D_0} \qquad \boldsymbol{D_0} = X$$

X	Q_1^n	Q_0^n	Q_1^{n+1}	Q_0^{n+1}	Y
0	0_	0	0	0	0
0	0	1	0	0	0
0	1	0	Φ	Φ	Φ
0	1	1	0	0	0
1	0	0	0	1	0
1	0	1	1	1	0
1	1	0	Φ	Φ	Φ
1	1	1	1	1	1

$$Y = XQ_1^n$$

5) 电路

$$D_1 = XQ_0^{\text{n}}$$

$$D_0 = X$$

$$Y = XQ_1^n$$

$$Q_1^{n+1} = XQ_0^n$$

$$Q_0^{n+1} = X$$

$$Y = XQ_1^n$$

6) 自启动

从电路的状态图分析

可以自启动

 Q_1Q_0 X/Y

但其功能错误, 输出应设置为0,才符合题意

检测 连续输入三个及以上个1时,电路输出Y=1。

自启动

让X=1, 10对应的输出 为0

状态表

$X Q_1^n$	Q_0^n	Q_1^{n+1}	Q_0^{n+1}	Y
0 0 ()	0	0	0
0 0 1	1	0	0	0
0 1 ()	0	0	0
0 1 1		0	0	0
1 0	0	0	1	0
1 0 1	1	1	1	0
11()	0	1	0
1 1 1		1	1	1

Y X C	Q_1^n 00	01	11	10
0	0	0	0	0
1	0	0	1	0

$$Y = XQ_1^nQ_0^n$$

既实现自启动,也符号题意。

可以在最初设计时考虑自启动(K-map随意项的填写)

例 3. 设计 M-6 减法计数器

6个状态

直接用3位数编码

借位输出 Z

/Z

Z_{Q_1}	$Q_2^{\mathbf{n}}$	01	11	10
0	1	0	Ф	0
1	0	0	Ф	0

Q_3^{n+1} $Q_3^n Q_2^n$ $Q_3^n Q_2^n$ $Q_3^n Q_2^n$								
Q_1^n	00	01	11	10				
0	1	0	Φ	0				
1	0	0	Φ	1				

$$Q_{2}^{n+1}$$
 Q_{1}^{n}
 Q_{2}^{n}
 Q_{2}^{n}
 Q_{1}^{n}
 Q_{2}^{n}
 Q_{2}^{n}
 Q_{3}^{n}
 Q_{2}^{n}
 Q_{4}^{n}
 Q_{5}^{n}
 $Q_$

2^{n+1}	,n Q ,n			
Q_1	00	01	11	10
00	1	1	Φ	1
1	0	0	Φ	0

$$Q_3^{n+1} = \overline{Q_3} \ \overline{Q_2} \ \overline{Q_1} + Q_3 Q_1 \qquad Q_2^{n+1} = Q_2 Q_1$$

$$D_3 = \overline{Q_3} \ \overline{Q_2} \ \overline{Q_1} + Q_3 Q_1$$

$$Q_2^{n+1} = Q_2 Q_1 + Q_3 \overline{Q_1}$$

$$D_2 = Q_2 Q_1 + Q_3 \overline{Q_1}$$

$$Q_1^{n+1} = \overline{Q_1}$$

$$D_1 = \overline{Q_1}$$

$$Z = \overline{Q_3} \ \overline{Q_2} \ \overline{Q_1}$$

自启动及电路图略