Organisasi Sistem Komputer

Bab 1. Arsitektur Komputer dan Representasi Bilangan

- 1.1 Sejarah Komputer
- 1.2 Arsitektur Komputer
- 1.3 Representasi Bilangan

Pembahasan:

- Bilangan Biner
- Heksadesimal
- Representasi Bilangan Bertanda
 - Signed Magnitude
 - One's Complement
 - Two's Complement

Sistem Bilangan Posisional

- Kita sehari-hari menggunakan angka dalam bilangan desimal, yaitu sistem bilangan posisional dengan basis (atau radix) 10
- Setiap angka dalam desimal mempunyai nilai sama dengan penjumlahan dari hasil perkalian setiap digit dengan basisnya (yaitu 10) yang dipangkatkan dengan posisi digit tersebut
 - $25 = 2 \times 10^{1} + 5 \times 10^{0}$ $136 = 1 \times 10^{2} + 3 \times 10^{1} + 6 \times 10^{0}$
- Sistem bilangan posisional basis tertentu yang sering digunakan dalam mempelajari komputer:
 - Basis 2: disebut dengan biner; setiap digit dapat berupa 0 atau 1
 - Basis 8: disebut dengan octal; setiap digit dapat berupa 0, 1, 2, 3, 4, 5, 6, 7
 - Basis 16: disebut dengan heksadesimal; setiap digit dapat berupa 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

Bilangan Biner

- Komputer hanya mengerti biner
- Komputer menggunakan biner karena mudah direpresentasikan dalam sistem digital:
 - voltase rendah = 0 dan voltase tinggi = 1
- Digit biner disebut dengan bit (binary digit)
- Unit data terkecil yang dapat disimpan dalam komputer disebut dengan byte (biner 8 bit)
- Bit terkecil (paling kanan) disebut dengan *Least Significant Bit (LSB)*
- Bit terbesar (paling kiri) disebut dengan Most Significant Bit (MSB)

Bilangan Biner 8-bit

- Biner dengan banyak bit n mempunyai nilai dari 0 s.d 2ⁿ - 1
- Biner 8-bit (1 byte)
 merepresentasikan nilai 0 sampai
 dengan 255

Biner	(8 bit)	Desimal
0000	0000	0
0000	0001	1
0000	0010	2
0000	0011	3
0000	0100	4
0000	0001	5
0000	0001	6
1111	1011	251
1111	1100	252
1111	1101	253
1111	1110	254
1111	1111	255

Konversi Biner ke Desimal

Konversi 100101102 ke desimal!

$$= (1 x 2^{7}) + (0 x 2^{6}) + (0 x 2^{5}) + (1 x 2^{4}) + (0 x 2^{3}) + (1 x 2^{2}) + (1 x 2^{1}) + (0 x 2^{0})$$

$$= 128 + 0 + 0 + 16 + 0 + 4 + 2 + 0$$

$$= 150_{10}$$

Konversi Desimal ke Biner

Konversi 87₁₀ ke biner 8-bit!

```
sisa
2
   87
                 ◆ bit 0
2
   43
                 ← bit 1
2
                bit 2
   21
2
   10
                 ← bit 3
                 ← bit 4
2
                 ← bit 5
2
    2
2
             1 ← bit 6
```


Penjumlahan Biner

```
1001<sub>2</sub> + 1111<sub>2</sub>
```


Heksadesimal

- Bilangan berbasis 16 yang setiap digitnya dapat berupa 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
- Heksadesimal 1 digit merepresentasikan biner 4-bit

Heksadesimal	Biner (4 bit)	Desimal
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
A	1010	10
В	1011	11
С	1100	12
D	1101	13
E	1110	14
F	1111	15

Heksadesimal Pada Biner 8-bit

- Heksadesimal sering digunakan untuk menyingkat penulisan biner
- Konversi biner ke heksadesimal dan sebaliknya mudah:
 - Biner ke Heksadesimal: konversi setiap 4bit biner ke 1 digit heksadesimal
 - ☐ Heksadesimal ke Biner: konversi setiap digit heksadesimal ke 4-bit biner

Heksadesimal	Biner (8 bit)	Desimal
00	0000 0000	0
01	0000 0001	1
02	0000 0010	2
0A	0000 1111	15
10	0001 0000	16
11	0001 0001	17
12	0001 0010	18
1F	0001 1111	31
20	0010 0000	32
21	0010 0001	33
FD	1111 1101	253
FE	1111 1110	254
FF	1111 1111	255

Konversi Heksadesimal ke Desimal

Konversi AF₁₆ ke desimal!

$$= (10 \times 16^{1}) + (15 \times 16^{0})$$
$$= 160 + 15$$
$$= 175_{10}$$

Konversi Desimal ke Heksadesimal

Konversi 89₁₀ ke heksadesimal!

Konversi Heksadesimal ke Biner

Konversi A43FE2₁₆ ke biner!

1010 0100 0011 1111 1100 0010

Konversi Biner ke Heksadesimal

Penjumlahan Heksadesimal

```
Hitung A3<sub>16</sub> + 17<sub>16</sub> !
```


Representasi Bilangan Bulat

- Komputer menyimpan bilangan bulat (integer) dalam satuan byte (8-bit) dan kelipatannya
- Terminologi untuk kelipatan byte:
 - ☐ 1-byte (8-bit) = byte
 - □ 2-byte (16-bit) = word
 - 4-byte (32-bit) = double word
 - 8-byte (64-bit) = paragraph
- Dua macam integer:
 - Unsigned Integer (bilangan bulat tak bertanda): bilangan bulat positif dan 0
 - Signed integer (bilangan bulat bertanda): bilangan bulat positif, negatif, dan 0
- Tiga metode untuk merepresentasikan bilangan bulat bertanda dalam biner:
 - Signed magnitude (Besaran bertanda)
 - One's complement (Komplemen satu)
 - Two's complement (Komplemen dua)

Signed Magnitude

- Most significant bit (MSB) digunakan sebagai tanda:
 - \square MSB = 1 \rightarrow tanda negatif
 - \square MSB = 0 \rightarrow tanda positif

THISD - O Y	tariaa positii								
Bilangan bulat tidak bertanda	37 ₁₀	0	0	1	0	0	1	0	1
Bilangan bulat	+37 ₁₀	0	0	1	0	0	1	0	1
bertanda (besaran bertanda)									
	-37 ₁₀	1	0	1	0	0	1	0	1

- Nilai 0 mempunyai dua representasi → memperumit logika CPU
- Tidak lagi di-implementasi dalam arsitektur CPU

	ned itude bit)	Integer Bertanda
1111	1111	-127
1111	1110	-126
1111	1101	-125
1000	0011	-3
1000	0010	-2
1000	0001	-1
1000	0000	-0
0000	0000	+0
0000	0001	+1
0000	0010	+2
0000	0011	+3
0111	1101	+125
0111	1110	+126
0111	1111	+127

One's Complement

 Nilai negatif didapat dengan membalik nilai setiap bit dari nilai positif

- Nilai 0 mempunyai dua representasi → memperumit logika CPU
- Tidak lagi di-implementasi dalam arsitektur CPU

One's Complement (8-bit)		Integer Bertanda
1000	0000	-127
1000	0001	-126
1000	0010	-125
1111	1100	-3
1111	1101	-2
1111	1110	-1
1111	1111	-0
0000	0000	+0
0000	0001	+1
0000	0010	+2
0000	0011	+3
0111	1101	+125
0111	1110	+126
0111	1111	+127

Two's Complement

 Nilai negatif didapat dengan menambahkan nilai 1 pada komplemen satu

- Nilai 0 hanya mempunyai satu representasi:
 0000 0000
- Komputer saat ini menggunakan metode two's complement

Two's Complement (8-bit)		Integer Bertanda
1000	0000	-128
1000	0001	-127
1000	0010	-126
1000	0011	-125
	·•	
1111	1101	-3
1111	1110	-2
1111	1111	-1
0000	0000	+0
0000	0001	+1
0000	0010	+2
0000	0011	+3
0111	1101	+125
0111	1110	+126
0111	1111	+127

Penjumlahan Komplemen Dua

 Misal, kita mempunyai dua angka 1-byte, A3 dan 17, dan kita menambahkan keduanya:

$$A3_{16} + 17_{16} = BA_{16}$$

Jika saya mengartikannya sebagai bilangan tidak bertanda:

```
\circ A3<sub>16</sub> = 163<sub>10</sub>
```

$$017_{16} = 23_{10}$$

$$OBA_{16} = 186_{10}$$

- o dan tentu saja, $163_{10} + 23_{10} = 186_{10}$
- Jika saya mengartikannya sebagai bilangan bertanda (komplemen dua):

$$\circ$$
 A3₁₆ = -93₁₀

$$017_{16} = 23_{10}$$

$$\circ$$
 BA₁₆ = -70_{10}

o dan tentu saja, $-93_{10} + 23_{10} = -70_{10}$

Penjumlahan Komplemen Dua

- Komputer tidak mengerti nilai-nilai yang kita simpan dan lakukan penjumlahan adalah bilangan bulat bertanda atau bilangan bulat tidak bertanda
- Kita yang harus mengartikannya sendiri
- Selama kita konsisten dalam mengartikan jenis bilangan, penjumlahan biner komplemen dua akan menghasilkan hasil yang benar
- Berlaku juga untuk pengurangan

Ringkasan

- Komputer hanya mengerti biner
- Heksadesimal digunakan untuk menyingkat biner
- Representasi bilangan bulat bertanda yang saat ini digunakan adalah two's complement (komplemen dua)
- Penjumlahan dan pengurangan dua bilangan bulat bertanda komplemen dua menghasilkan nilai yang benar jika kita konsisten mengartikannya

