# Principles of Software Engineering and Data Bases

Davide Yi Xian Hu

Email: davideyi.hu@polimi.it

Date: 29 October 2024

**Exercise Lecture: 01 - Relational Algebra** 



## Davide Yi Xian Hu

- Ph.D. student @ PoliMi
- Teaching Assistant
- Building 22, third floor, office 001





### **Database Schema**:

- **STUDENT** (Student-ID, Name, City, Degree Program)
- **EXAM** (Student-ID, Course-Code, Date, Grade)
- **COURSE** (Course-Code, Title, Professor)

\_\_\_

## **Exercise 1 - Exams**

PRIMARY KEY

A unique identifier for each record in the table

**Database Schema**:

- **STUDENT** (Student-ID, Name, City, Degree Program)
- **EXAM** (Student-ID, Course-Code, Date, Grade)
- COURSE (Course-Code, Title, Professor)

### TABLE NAME

Name of the entity the table is representing

### **ATTRIBUTE**

Column in the table that describe the properties of the entity

**STUDENT** (Student-ID, Name, City, Degree Program)

| STUDENT    |        |       |                |
|------------|--------|-------|----------------|
| Student-ID | Name   | City  | Degree Program |
| 000001     | Davide | Milan | Informatics    |
| 000002     | Mario  | Milan | Health IT      |
| 000003     | Giulia | Rome  | Economics      |
|            |        |       |                |



**COURSE** (Course-Code, Title, Professor)

| COURSE      |                                                         |                      |  |
|-------------|---------------------------------------------------------|----------------------|--|
| Course-Code | Title                                                   | Professor            |  |
| PSEDB01     | Principles of Software<br>Engineering and Data<br>Bases | Prof. Luciano Baresi |  |
| IT01        | Informatics                                             | Prof. Mario Rossi    |  |
| IT02        | Informatics                                             | Prof. Luigi Verdi    |  |
|             |                                                         |                      |  |

**EXAM** (Student-ID, Course-Code, Date, Grade)

| EXAM       |                    |            |       |
|------------|--------------------|------------|-------|
| Student-ID | <u>Course-Code</u> | Date       | Grade |
| 000001     | PSEDB01            | 27/10/2024 | 30    |
| 000002     | PSEDB01            | 27/10/2024 | 18    |
| 000003     | PSEDB01            | 27/10/2024 | 24    |
|            |                    |            |       |

# **Exercise 1 - Exams - Query 1**

Find the names of students enrolled in the Health IT degree program in Milan.

\_\_\_

# **Exercise 1 - Exams - Query 1**

Find the names of students enrolled in the Health IT degree program in Milan.

### Solution

$$m{\sigma}_{\text{Name}}$$
 (  $m{\sigma}_{\text{Degree Program="Health IT"}}$   $\wedge$  City="Milan" STUDENT)

### **Wrong Solution**

$$\mathbf{X}$$
  $\mathbf{\sigma}_{\mathsf{Degree\ Program="Health\ IT"\ }}$  (  $\mathbf{\pi}_{\mathsf{Name}}$  STUDENT )

# **Exercise 1 - Exams - Query 1**



| STUDENT    |        |       |                |
|------------|--------|-------|----------------|
| Student-ID | Name   | City  | Degree Program |
| 000001     | Davide | Milan | Informatics    |
| 000002     | Mario  | Milan | Health IT      |
| 000003     | Giulia | Rome  | Economics      |
|            |        |       |                |

# **Exercise 1 - Exams - Query 1**



| STUDENT    |        |       |                |
|------------|--------|-------|----------------|
| Student-ID | Name   | City  | Degree Program |
| 000001     | Davide | Milan | Informatics    |
| 000002     | Mario  | Milan | Health IT      |
| 000003     | Giulia | Rome  | Economics      |
|            |        |       |                |

\_

# **Exercise 1 - Exams - Query 2**

Find the names of students who have at least one grade of 30.

# **Exercise 1 - Exams - Query 2**

Find the names of students who have at least one grade of 30.

### **Solution**

### **Wrong Solution:**

\_\_\_

# **Exercise 1 - Exams - Query 2**

### **Precedence Rule**

- 👉 1. [ σ, π, ρ ] (highest)
- **2**. [ **X**, ⋈ ]
- **-** 3.[**N**]
- **←** 4. [ U, **—** ]

\_\_\_

# **Exercise 1 - Exams - Query 2**



\_

# **Exercise 1 - Exams - Query 2**



# **Exercise 1 - Exams - Query 3**

? Find the "Informatics" courses in which at least one student not enrolled in the Management degree program has scored 30.

### \_

# **Exercise 1 - Exams - Query 3**

? Find the "Informatics" courses in which at least one student not enrolled in the Management degree program has scored 30.

```
        π<sub>Course Code</sub> (σ<sub>Title="Informatics"</sub> Λ Grade=30 Λ Degree Program≠"Management" (STUDENT ⋈ EXAM ⋈ COURSE))

        π<sub>Course Code</sub> ((σ<sub>Degree Program≠"Management"</sub> STUDENT) ⋈ (σ<sub>Grade=30</sub> EXAM) ⋈ (σ<sub>Title="Informatics"</sub> COURSE))
```

# **Exercise 1 - Exams - Query 3**

```
    π<sub>Course Code</sub> ( (σ<sub>Degree Program≠"Management"</sub> STUDENT) 
    (σ<sub>Grade=30</sub> EXAM) 
    (σ<sub>Title="Informatics"</sub> COURSE) )
```



\_

# **Exercise 1 - Exams - Query 4**

Find the professors of Mathematics courses in which no student has scored 30. \_\_\_

# **Exercise 1 - Exams - Query 4**

Find the professors of Mathematics courses in which no student has scored 30.

```
 \begin{array}{ll} & \boldsymbol{\pi}_{\text{Professor}} \ (\ \boldsymbol{\sigma}_{\text{Title="Mathematics"}} \ \text{COURSE} \ ) \ - \\ & \boldsymbol{\pi}_{\text{Professor}} \ (\ (\ \boldsymbol{\sigma}_{\text{Grade=30}} \ \text{EXAM} \ ) \ \boldsymbol{\bowtie} \ (\ \boldsymbol{\sigma}_{\text{Title="Mathematics"}} \ \text{COURSE} \ ) \ ) \\ & \boldsymbol{\leftarrow} \ \boldsymbol{\pi}_{\text{Professor}} \ (\ (\ \boldsymbol{\sigma}_{\text{Title="Mathematics"}} \ \text{COURSE} \ ) \ - \\ & (\ \boldsymbol{\sigma}_{\text{Grade=30}} \ \text{EXAM} \ ) \ \boldsymbol{\bowtie} \ (\ \boldsymbol{\sigma}_{\text{Title="Mathematics"}} \ \text{COURSE} \ ) \ ) \end{array}
```

\_

# **Exercise 1 - Exams - Query 5**

Prind the title of courses where no student has scored 18 and no student has scored 30.

\_\_\_

# **Exercise 1 - Exams - Query 5**

Find the title of courses where no student has scored 18 and no student has scored 30.

```
\sigma_{\text{Title}} ( ( COURSE - ( COURSE Μ ( \sigma_{\text{Grade=18}} EXAM ) ) ) \cap ( COURSE - ( COURSE Μ ( \sigma_{\text{Grade=30}} EXAM ) ) )
```

\_

# **Exercise 1 - Exams - Query 6**

Find the names of students who have received at least one grade of 30 and have never received a grade lower than 24.

# **Exercise 1 - Exams - Query 6**

Find the names of students who have received at least one grade of 30 and have never received a grade lower than 24.

```
 \begin{array}{c} \leftarrow & \mathbf{\pi}_{\text{Name}} \text{ (STUDENT } \bowtie \text{ (} \mathbf{\pi}_{\text{Student-ID}} \text{ (} \mathbf{\sigma}_{\text{Grade}=30} \text{ EXAM ) - } \\ & \qquad \qquad \text{ (} \mathbf{\pi}_{\text{Student-ID}} \text{ (} \mathbf{\sigma}_{\text{Grade}<24} \text{ EXAM ) ) ) ) ) \\ \leftarrow & \mathbf{\pi}_{\text{Name}} \text{ (} \text{ (STUDENT } \bowtie \text{ (} \mathbf{\sigma}_{\text{Grade}<24} \text{ EXAM ) ) ) - } \\ & \qquad \text{ (} \text{STUDENT } \bowtie \text{ (} \mathbf{\sigma}_{\text{Grade}<24} \text{ EXAM ) ) ) ) \end{array}
```

# Exercise 2 Flights

# **Exercise 2 - Flights**

### **Database Schema:**



| FLIGHTS         |                 |  |
|-----------------|-----------------|--|
| Departure       | Arrival         |  |
| Milano Linate   | London Heathrow |  |
| Milano Linate   | London Gatwick  |  |
| Milano Malpensa | London Heathrow |  |
| London Heathrow | New York JFK    |  |
| London Gatwick  | New York JFK    |  |
|                 |                 |  |

? Determine all possible connections between two airports where at most two flights are required.

### \_\_\_

# **Exercise 2 - Flights - Query 1**

Petermine all possible connections between two airports where at most <u>two</u> flights are required.

```
Flights-1 = Flights, Flights-2 = Flights
Flights-1 U
π<sub>Flights-1.Departure, Flights-2.Arrivals</sub>
( Flights-1 M<sub>Flights-1.Arrivals = Flights-2.Departure</sub>
Flights-2 )
```

Potermine all possible connections between two airports where at most <u>three</u> flights are required.

Potermine all possible connections between two airports where at most <u>three</u> flights are required.

```
Flights-1 = Flights Flights-2 = Flights, Flights-3 = Flights Flights-1 U

The Flights-1.Departure, Flights-2.Arrivals (Flights-1 Magnetic Flights-1.Arrivals, Flights-2.Departure)

Flights-1.Departure, Flights-3.Arrivals (Flights-1 Magnetic Flights-3.Arrivals, Flights-2.Departure)

Flights-2.Arrivals, Flights-3.Departure

Flights-3)
```

Petermine all possible connections between two airports.

\_

# **Exercise 2 - Flights - Query 3**

Petermine all possible connections between two airports.

### **Solution**



It's not possible:

Relational Algebra does not support recursive calls.

# Exercise 3 Corporate Hierarchy

# **Exercise 3 - Hierarchy**

### **Database Schema:**

- **EMPLOYEE** (Name, Age, Salary)
- **SUPERVISION** (Manager, Subordinate)

# **Exercise 3 - Hierarchy**

**EMPLOYEE** (Name, Age, Salary)

**SUPERVISION** (Manager, Subordinate)

| EMPLOYEE    |     |        |
|-------------|-----|--------|
| <u>Name</u> | Age | Salary |
| Davide      | 28  | 1250   |
| Mario       | 20  | 5000   |
| Giulia      | 35  | 2400   |
|             |     |        |

| SUPERVISION    |                    |  |
|----------------|--------------------|--|
| <u>Manager</u> | <u>Subordinate</u> |  |
| Giulia         | Davide             |  |
| Mario          | Davide             |  |
| Giulia         | Mario              |  |
|                |                    |  |

\_

# **Exercise 3 - Hierarchy - Query 1**

Find the employees who report directly to Mario.

Find the employees who report directly to Mario.

```
\pi_{\text{Name}} ((\sigma_{\text{Manager="Mario"}} SUPERVISION)

\sigma_{\text{Subordinate=Name}} EMPLOYEE)

\sigma_{\text{Subordinate}} (\sigma_{\text{Manager="Mario"}} SUPERVISION)
```

\_

# **Exercise 3 - Hierarchy - Query 2**

Find the pairs of employees who collaborate under Giulia (i.e., employees who share the same superior are considered to be collaborating).

Find the pairs of employees who collaborate under Giulia (i.e., employees who share the same superior are considered to be collaborating).

Find the pairs of employees who collaborate under Giulia (i.e., employees who share the same superior are considered to be collaborating).

```
 \begin{array}{c} \quad \boldsymbol{\pi}_{\text{S1, S2}} \\ \text{((} \boldsymbol{\sigma}_{\text{Manager="Giulia"}}(\boldsymbol{\rho}_{\text{S1+Subordinate}} \text{SUPERVISION))} \\ \boldsymbol{\bowtie}_{\text{S1 \neq S2}} \\ \text{(} \boldsymbol{\sigma}_{\text{Manager="Giulia"}}(\boldsymbol{\rho}_{\text{S2+Subordinate}} \text{SUPERVISION)))) \end{array}
```

Find the employees who do not have a manager.

\_\_\_

# **Exercise 3 - Hierarchy - Query 3**

Find the employees who do not have a manager.

### **Solution**

44

? Find the managers who have at least one subordinate who earns more than the manager.

? Find the managers who have at least one subordinate who earns more than the manager.

```
 \begin{array}{c} \stackrel{\longleftarrow}{\text{$\mathsf{m}$}} & \pi_{\mathsf{mgr.Name}} \text{ ((($\rho_{\mathsf{sub.Name}+\mathsf{Name}, \, \mathsf{sub.Salary} \leftarrow \mathsf{Salary})$} \\ & \bowtie_{\mathsf{sub.Salary} > \, \mathsf{mgr.Salary} \\ & ($\rho_{\mathsf{mgr.Name} \leftarrow \mathsf{Name}, \, \mathsf{mgr.Salary} \leftarrow \mathsf{Salary}$} \\ & \bowtie_{\mathsf{mgr.Name} = \mathsf{Manager} \, \bigwedge \, \mathsf{sub.Name} = \mathsf{Subordinate}} & \mathsf{SUBORDINATE} \, ) \\ \end{array}
```