Warning: package 'reticulate' was built under R version 4.2.3

Question

Suppose that the following simple linear regression model has been fitted to the Taiwan real estate data from topic 05:

$$Y = \beta_0 + \beta_1 \ln(X_1) + e$$

where X_1 corresponds to distance to the nearest MRT. The following output was obtained from Python:

					=========		
Dep. Variable:	. Variable: price			R-squared:			0.539
Model:			OLS	Adj.	R-squared:		0.538
							482.2
nte: Mon, 08 Sep 2025							
Γime:		16:28	3:40	Log-L	ikelihood:		-1507.3
No. Observatio	ons:		414	AIC:			3019.
Of Residuals:			412	BIC:			3027.
Of Model:			1				
Covariance Typ	oe:	nonrol	oust				
Covariance Typ							
	coef	std err		t	P> t	[0.025	0.975]
Intercept							
ldist							
Omnibus:					n-Watson:		2.109
Prob(Omnibus):	:				e-Bera (JB):		
Skew:		1					0.00
Kurtosis:							38.5
				=====	========	=======	=======
Notes:							

What is the null hypothesis corresponding to the t-statistic with value -21.959?

Answerlist

- $H_0: \beta_1 = 0$
- H_0 : $\beta_0 = 0$ H_0 : $\hat{\beta}_1 = 0$ H_0 : $\hat{\beta}_0 = 0$

Solution

Answerlist

• This is correct.

- This corresponds to the test for the intercept in the model, not the coefficient for ldist.
- Hypothesis tests are for population parameters, not estimates, which are denoted with a hat symbol.
- Hypothesis tests are for population parameters, not estimates, which are denoted with a hat symbol.

Meta-information

exname: regression, inference, taiwan extype: schoice exsolution: 1000 exshuffle: 4