

Decision Making Statements (if,if-else,if-elif-else)

Statements	Syntax	Example	Definition
If	if condition: statement1 statement2	<pre>i = 10 if (i > 15): print ("10 is less than 15") print ("I am Not in if") Output: I am Not in if</pre>	if statement is the most simple decision making statement. It is used to decide whether a certain statement or block of statements will be executed or not
If - else	if (condition): statement1 else: statement2	<pre>i = 20; if (i < 15): print ("i is smaller than 15") print ("i'm in if Block") else: print ("i is greater than 15") print ("i'm in else Block") print ("i'm not in if and not in else Block") Output: i is greater than 15 i'm in else Block i'm not in if and not in else Block</pre>	We can use the else statement with if statement to execute a block of code when the condition is false.
nested-if	if (condition1): statement if (condition2): statement # if Block is end here # if Block is end here	<pre>i = 10 if (i == 10): if (i < 15): print ("i is smaller than 15") if (i < 12): print ("i is smaller than 12 too") else: print ("i is greater than 15") Output: i is smaller than 15 i is smaller than 12 too</pre>	A nested if is an if statement that is the target of another if statement. Nested if statements means an if statement inside another if statement.

Tutorials on Conditional Statements

if-elif-else	if (condition):	i = 20	Here, a user can decide
	statement	if (i == 10):	among multiple options.
	elif (condition):	print ("i is 10")	The if statements are
	statement	elif (i == 15):	executed from the top
		print ("i is 15")	down. As soon as one of
		elif (i == 20):	the conditions
	else:	print ("i is 20")	controlling the if is true,
	statement	else:	the statement associated
		print ("i is not present")	with that if is executed,
			and the rest of the ladder
		Output:	is bypassed.
		i is 20	

Comparison Operators (==,<,>,<=,>=)

Operator	Example	Meaning	Result
==	a == b	Equal to	True if the value of a is equal to the value
			of b
			False otherwise
!=	a != b	Not equal to	True if a is not equal to b
			False otherwise
<	a < b	Less than	True if a is less than b
			False otherwise
<=	a <= b	Less than or equal to	True if a is less than or equal to b
			False otherwise
>	a > b	Greater than	True if a is greater than b
			False otherwise
>=	a >= b	Greater than or equal to	True if a is greater than or equal to b
		_	False otherwise

Logical Operator

Operator	Example	Meaning
Not	not x	True if x is False
		False if x is True
		(Logically reverses the sense of x)
Or	x or y	True if either x or y is True
		False otherwise
and	x and y	True if both x and y are True

ECSE105L: Computational Thinking and Programming

Tutorials on Conditional Statements

		False otherwise
not in	x not in y	x not in y, here not in results in a 1 if x is not a member of
		sequence y
In	x in y	x in y, here in results in a 1 if x is a member of sequence y

Bit-wise Operator

Operator	Example	Meaning	Result
<<	x << y	bits shifted to the	Returns x with the bits shifted to the left by y places
		left	
>>	x >> y	bits shifted to the	Returns x with the bits shifted to the right by y
		right	places
&	x & y	bitwise and	Each bit of the output is 1 if the corresponding bit of
			x AND of y is 1, otherwise it's 0
	x y	bitwise or	Each bit of the output is 0 if the corresponding bit of
			x AND of y is 0, otherwise it's 1
~	~ x	complement of x	Returns the complement of x - the number you get
			by switching each 1 for a 0 and each 0 for a 1
x ^ y	x ^ y	Bitwise XOR	Each bit of the output is the same as the
		operator	corresponding bit in x if that bit in y is 0, and it's the
			complement of the bit in x if that bit in y is 1.

Others:

Data Type	Meaning		
<u>Booleans</u>	Boolean in Python can have two values - True or False		
<u>Numbers</u>	The numbers in Python are classified using the following keywords: int, float, and		
	complex.		
<u>Strings</u>	A sequence of one or more characters enclosed within either single quotes ' or		
	double quotes " is considered as String in Python. Any letter, a number or a		
	symbol could be a part of the sting.		
<u>Lists</u>	Lists in Python can be declared by placing elements inside square brackets		
	separated by commas.		
<u>Tuples</u>	A tuple is a heterogeneous collection of Python objects, using enclosing		
	parentheses () having its elements separated by commas inside.		
<u>Sets</u>	A set is an unordered collection of unique and immutable objects. Its definition		
	starts with enclosing braces { } having its items separated by commas inside.		
<u>Dictionaries</u>	Python syntax for creating dictionaries use braces {} where each item appears		
	as a pair of keys and values.		

List:

Lists are used to store multiple items in a single variable. Lists are one of 4 built-in data types in Python used to store collections of data, the other 3 are Tuple, Set, and Dictionary, all with different qualities and usage. Lists are created using square brackets:

Mylist= ['apple', '10', 'cost', '120.5'] print(Mylist)

Tuple:

Tuples are used to store multiple items in a single variable. A tuple is a collection which is ordered and **unchangeable**. Tuples are written with round brackets.

thistuple = ("apple", "banana", "cherry")
print(thistuple)

ASCII TABLE

Decimal Hex Char Decimal Hex Char Decimal Hex Char	
0 0 [NULL] 32 20 [SPACE] 64 40 @	96 60 `
1 1 [START OF HEADING] 33 21 ! 65 41 A	97 61 a
2 2 [START OF TEXT] 34 22 " 66 42 B	98 62 b
3 3 [END OF TEXT] 35 23 # 67 43 C	99 63 c
4 4 [END OF TRANSMISSION] 36 24 \$ 68 44 D	100 64 d
5 5 [ENQUIRY] 37 25 % 69 45 E	101 65 e
6 6 [ACKNOWLEDGE] 38 26 & 70 46 F	102 66 f
7 7 [BELL] 39 27 ' 71 47 G	103 67 g
8 8 [BACKSPACE] 40 28 (72 48 H	104 68 h
9 9 [HORIZONTAL TAB] 41 29) 73 49 I	105 69 i
10 A [LINE FEED] 42 2A * 74 4A J	106 6A j
11 B [VERTICAL TAB] 43 2B + 75 4B K	107 6B k
12 C [FORM FEED] 44 2C , 76 4C L	108 6C I
13 D [CARRIAGE RETURN] 45 2D - 77 4D M	109 6D m
14 E [SHIFT OUT] 46 2E . 78 4E N	110 6E n
15 F [SHIFT IN] 47 2F / 79 4F O	111 6F o
16 10 [DATA LINK ESCAPE] 48 30 0 80 50 P	112 70 p
17 11 [DEVICE CONTROL 1] 49 31 1 81 51 Q	113 71 q
18 12 [DEVICE CONTROL 2] 50 32 2 82 52 R	114 72 r
19 13 [DEVICE CONTROL 3] 51 33 3 83 53 S	115 73 s
20 14 [DEVICE CONTROL 4] 52 34 4 84 54 T	116 74 t
21 15 [NEGATIVE ACKNOWLEDGE] 53 35 5 85 55 U	117 75 u
22 16 [SYNCHRONOUS IDLE] 54 36 6 86 56 V	118 76 v
23 17 [ENG OF TRANS. BLOCK] 55 37 7 87 57 W	119 77 w
24 18 [CANCEL] 56 38 8 88 58 X	120 78 x
25 19 [END OF MEDIUM] 57 39 9 89 59 Y	121 79 y
26 1A [SUBSTITUTE] 58 3A : 90 5A Z	122 7A z
27 1B [ESCAPE] 59 3B ; 91 5B [123 7B {
28 1C [FILE SEPARATOR] 60 3C < 92 5C \	124 7C
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	125 7D }
30	126 7E ~
31 1F [UNIT SEPARATOR] 63 3F ? 95 5F _	127 7F [DEL]


```
1. Predict the output:
   i=-4
   num=-4
   if(num<i):
     print(num*num)
   else:
     print(num)
   Answer: -4
2. Predict the output:
   i=-8
   num=-4
   if(num<i):
     print(num*num)
   print(num+num)
   Answer: -8
3. a = 10
   b = 12
   ans = a \mid b
   print(ans)
   Answer: 1010
            1100
          =1110 (14)
4. a = 5
   b = 9
   ans = a \& b
   print(ans)
   Answer: 0101
            1001
         = 0001 (1)
5. a= 11
   ans= ~a
   print(ans)
   Answer: a= 11 = 1011
         -(1011+1)
```


-(1100) -12

```
6. Predict the output:

i = 20;
if (i < 21):</li>
print ("i am greater than 20")
print ("i'm in if Block")
elif(i<22):</li>
print ("i is also greater than 20")
print ("i'm in elif Block")
else:
print ("i'm not in if and not in else Block")
```

Answer: i am greater than 20 i'm in if Block

7. Predict the output:

```
i = 20;
if (i < 14):
    print ("i is smaller than 14")
    print ("i'm in if Block")
else:
    print ("i is greater than 15")
    print ("i'm in else Block")
print ("i'm not in if and not in else Block")</pre>
```

Answer: i is greater than 15
i'm in else Block
i'm not in if and not in else Block

8. Predict the output:

```
num = 1122
if 9 < num < 99:
    print("Two digit number")
elif 99 < num < 999:
    print("Three digit number")
elif 999 < num < 9999:
    print("Four digit number")
else:</pre>
```



```
print("number is <= 9 or >= 9999")
```

Answer: Four digit number

9. Predict the output:

```
num = -99
if num > 0:
    print("Positive Number")
else:
    print("Negative Number")
    #nested if
    if -99<=num:
        print("Two digit Negative Number")</pre>
```

Answer: Negative Number

Two digit Negative Number

```
10. num=65

num2= ord('A')

if (num == num2):

print("Equal Number")

else:

print("not equal")
```

Answer: Equal Number

```
11. num=77
  num2= ord('m')
  if (num == num2):
    print("Equal Number")
  else:
    print("not equal")
```

Answer: not equal

```
12.a=int(5)
  b=float(5)
  if(a==b):
    print("Equal number")
  else:
    print("Not equal")
```


Answer: Equal number

```
13. Predict the outputs:
   assorted_list = [True, False, 1, 1.1, 1+2j, "Learn", "b", "Python"]
   first_element = assorted_list[0]
   print(first_element)
   first element = assorted list[3]
   print(first_element)
   first_element = assorted_list[3]
   print(first_element)
   print(assorted_list[5])
   print(assorted_list)
   Answer:
   True
   1.1
   1.1
   Learn
   [True, False, 1, 1.1, (1+2j), 'Learn', 'b', 'Python']
14. Predict the outputs:
   first_tuple = (3, 5, 7, 9)
   print(type(first_tuple))
   print(first_tuple)
   Answer:
   <class 'tuple'>
   (3, 5, 7, 9)
15. Predict the outputs:
   another_set = {"red", "green", "black"}
   print(type(another_set))
   print(another_set)
   Answer:
   <class 'set'>
   {'green', 'red', 'black'}
```

16. The fine charged in a library is as follow: if a student returns a book after 5 days of due date the fine is 50 rupees, if it is in between 6-10 days the fine is 100 rupees, if it is overdue by more than 10 days the fine is 500 rupees. Also, if the book is overdue by 1 semester then membership will be canceled. Now derive a solution for the

whole scenario involving if else statements where number of days will be provided by the user.

Answer:

```
num_of_days = int(input())
if(num_of_days <=5):</pre>
  print("Total fine would be 50.")
elif(num_of_days >= 6 and num_of_days <= 10):
  print("Total fine would be 100.")
elif(num_of_days >=10 and num_of_days <=180):
  print("Total fine would be 500.")
elif(num_of_days >180):
  print("Membership is cancelled.")
```

17. You are given three sides of triangle; now check whether the triangle is isosceles, equilateral, scalene.

Answer:

```
a = int(input("Enter first side : "))
b = int(input("Enter second side: "))
c = int(input("Enter third side : "))
if a == b and b == c:
  print("Equilateral Triangle")
elif a == b or b == c or c == a:
  print("Isosceles Triangle")
else:
  print("Scalene Triangle")
```

18. A newspaper is published using Cyan-Magenta-Yellow-Black (CMYK) color model. Usually these color formats are inherited by Red-Green-Blue (RGB) color model. The value of CMYK is varied on a real scale from 0-1. Provide a solution for RGB to CMYK color model conversion. The formulas are given:

```
White = Max(Red/255, Green/255, Blue/255)
Cyan = ((White - Red/255)/White)
Magenta = ((White - Green/255)/White)
Yellow = ((White - Blue/255)/White)
Black = 1 - white
```

Answer:

```
r = int(input("Enter R : "))
g = int(input("Enter G:"))
b = int(input("Enter B : "))
if (r/255 > g/255) and (r/255 > b/255):
```



```
w = r/255
elif (g/255 > r/255) and (g/255 > b/255):
    w = g/255
else:
    w = b/255
    c = ((w-r/255)/w)
    m = ((w-g/255)/w)
    y = ((w-b/255)/w)
    b = 1-w
    print("Cyan:",c,"Magenta:", m, "Yellow:",y,"Black:",b)
```

19. The ratio of person's weight (kg) and square of height (m) is known as Body Mass Index (BMI). Derive a solution which will receive weight and height and provides the BMI.

BMI Category	BMI
Starvation	<15
Anorexic	15.1 to 17.5
Underweight	17.6 to 18.5
Ideal	18.6 to 24.9
Overweight	25 to 25.9
Obese	30 to 30.9
Morbidly Obese	>=40

Answer:

```
w = float(input("Enter Weight (Kg):"))
h = float(input("Enter Height (m):"))
bmi = w/(h*h)
print("BMI:", bmi)
```

20. Any character/ special symbol is entered, now check whether is it capital letter, small letter, a digit, or any special symbol.

Answer:

```
w = input("Enter a character")
if(ord(w)>=65 and ord(w)<=90):
    print("Capital Letter")
elif(ord(w)>=97 and ord(w)<=122):
    print("Capital Letter")
elif(ord(w)>=48 and ord(w)<=57):
    print("A digit")
else:
    print("Special Symbol")</pre>
```