

CMS-EXO-11-035

Search for long-lived particles in events with photons and missing energy in proton-proton collisions at $\sqrt{s} = 7 \text{ TeV}$

The CMS Collaboration*

Abstract

Results are presented from a search for long-lived neutralinos decaying into a photon and an invisible particle, a signature associated with gauge-mediated supersymmetry breaking in supersymmetric models. The analysis is based on a $4.9\,\mathrm{fb}^{-1}$ sample of proton-proton collisions at $\sqrt{s}=7\,\mathrm{TeV}$, collected with the CMS detector at the LHC. The missing transverse energy and the time of arrival of the photon at the electromagnetic calorimeter are used to search for an excess of events over the expected background. No significant excess is observed, and lower limits at the 95% confidence level are obtained on the mass of the lightest neutralino, $m>220\,\mathrm{GeV}$ (for $c\tau<500\,\mathrm{mm}$), as well as on the proper decay length of the lightest neutralino, $c\tau>6000\,\mathrm{mm}$ (for $m<150\,\mathrm{GeV}$).

Submitted to Physics Letters B

1 Introduction

New, heavy particles with long lifetimes are predicted in many models of physics beyond the standard model (SM), such as hidden valley scenarios [1] or supersymmetry (SUSY) with gauge-mediated supersymmetry breaking (GMSB) [2]. Under the assumption of R-parity conservation [3], strongly-interacting supersymmetric particles would be pair-produced at the Large Hadron Collider (LHC). The decay chain may include one or more quarks and gluons, as well as the lightest supersymmetric particle (LSP), which escapes detection, giving rise to a momentum imbalance in the transverse plane. A GMSB benchmark scenario, commonly described as 'Snowmass Points and Slopes 8' (SPS8) [4] is used as the reference in this search. In this scenario, the lightest neutralino ($\tilde{\chi}_1^0$) is the next-to-lightest supersymmetric particle, and can be long-lived. It decays to a photon (or a Z boson) and a gravitino (\tilde{G}), which is the LSP [5]. If $\tilde{\chi}_1^0$ consists predominantly of the bino, the superpartner of the U(1) gauge field, its branching fraction to a photon and gravitino is expected to be large. If $\tilde{\chi}_1^0$ is wino-like, the superpartner of the SU(2) gauge fields, its branching fraction to a photon and gravitino is reduced. Figure 1 shows several diagrams of possible squark and gluino pair-production processes that result in a single-photon or diphoton final state.

Figure 1: Example diagrams for SUSY processes that result in a diphoton (top) and single-photon (bottom) final state through squark (left) and gluino (right) production at the LHC.

The search criteria require only one identified photon in order to be sensitive to scenarios with a large branching fraction for the neutralino decay to a Z boson and a gravitino. For a long-lived neutralino, the photon from the $\widetilde{\chi}^0_1 \to \gamma \widetilde{G}$ decay is produced at the $\widetilde{\chi}^0_1$ decay vertex, at some distance from the beam line, and reaches the detector at a later time than the prompt, relativistic particles produced at the interaction point. In addition, the geometric shape of the energy deposit produced by such photons is typically different from that of a prompt photon. The time of arrival of the photon at the detector and the missing transverse energy are used to discriminate signal from background.

A search for a long-lived neutralino, decaying to a photon and a gravitino, is performed with a novel technique using the excellent time measurement with the electromagnetic calorimeter. Previous searches for long-lived neutralinos have been performed by the CMS Collaboration [6], using the impact parameter of converted photons relative to the beam collision point, and by the CDF [7] collaboration, using only the missing transverse energy in the event. Other searches with prompt photons, by the ATLAS [8] and D0 [9] collaborations, place lower limits on the mass of the $\widetilde{\chi}^0_1$ at 280 GeV and 175 GeV, respectively, in the SPS8 scenario, assuming $\mathcal{B}(\widetilde{\chi}^0_1 \to \gamma \widetilde{G}) = 100\%$.

2 Detector and data samples

A detailed description of the Compact Muon Solenoid (CMS) detector can be found elsewhere [10]. The detector's central feature is a superconducting solenoid providing a 3.8 T axial magnetic field along the beam direction. Charged particle trajectories are measured by a silicon pixel and strip tracker system with full azimuthal coverage within $|\eta| < 2.5$; the pseudo-rapidity η is defined as $\eta = -\ln[\tan{(\theta/2)}]$, with θ being the polar angle with respect to the counterclockwise beam direction. A lead-tungstate (PbWO4) crystal electromagnetic calorimeter (ECAL) and a brass/scintillator hadron calorimeter (HCAL) surround the tracker volume. The ECAL is a high-granularity device. The barrel region consists of 61 200 crystals with a frontal area of approximately $2.2 \times 2.2 \, \text{cm}^2$ corresponding to roughly 0.0174×0.0174 in η - ϕ space. Each of the two endcap sections consist of 3662 crystals with a frontal area of $2.68 \times 2.68 \,\mathrm{cm^2}$. A typical shower spans approximately 10 crystals with energy deposits above the threshold. Muons are measured in gas-ionization detectors embedded in the steel return yoke of the magnet. The detector is nearly hermetic, allowing reliable measurement of transverse momentum imbalance to be performed. The time of arrival of electromagnetic particles can be measured to excellent precision using the CMS ECAL [11]. The time reconstruction method is described in more detail in Section 3.1.

The analysis is performed on the proton-proton collision data at a center-of-mass-energy of 7 TeV recorded by the CMS detector at the LHC, corresponding to an integrated luminosity of $4.9 \pm 0.1 \, \text{fb}^{-1}$. Events with at least one high transverse momentum (p_T) isolated photon in the barrel region ($|\eta| < 1.44$) and at least three jets in the final state are selected in this analysis. The data were recorded using the CMS two-level trigger system. Several trigger selections have been used due to the increasing instantaneous luminosity during the data taking. The first $0.20 \, \text{fb}^{-1}$ of data were collected with a trigger requiring at least one isolated photon with $p_T > 75 \, \text{GeV}$. For the second $3.8 \, \text{fb}^{-1}$, the p_T threshold was increased to $90 \, \text{GeV}$. In the remaining $0.89 \, \text{fb}^{-1}$, the trigger selection required at least one isolated photon with $p_T > 90 \, \text{GeV}$ in the barrel region and at least three jets with p_T greater than $25 \, \text{GeV}$. All offline selection requirements are chosen to be more restrictive than the trigger selection.

Signal and background events are generated using Monte Carlo (MC) packages PYTHIA 6.4.22 [12] or MADGRAPH 5 [13] with the CTEQ6L1 [14] parton distribution functions (PDFs). The response of the CMS detector is simulated using the GEANT4 package [15]. Decays of secondary τ leptons, coming from W and Z productions, are simulated with TAUOLA [16]. The SUSY GMSB signal production follows the SPS8 proposal, where the free parameters are the SUSY breaking scale (Λ) and the average proper decay length ($c\tau$) of the neutralino. The $\tilde{\chi}_1^0$ mass explored is in the range of 140 to 260 GeV (corresponding to Λ values from 100 to 180 TeV), with proper decay lengths ranging from $c\tau=1$ mm to 6000 mm. These free parameters are varied to cover the range of experimental phase space allowed by inner radius of the barrel section of the ECAL (1.29 m).

There is a non-negligible probability that several collisions may occur in a single bunch crossing

due to the high instantaneous luminosities at the LHC. The presence of multiple interaction vertices in an event (pile-up) affects the resolution of the transverse momentum measurement and the performance of photon isolation requirements. To account for the effects of pile-up, simulated events are re-weighted so that the distribution of the number of interaction vertices matches that in the data.

3 Analysis technique

This section, outlining the analysis technique, starts with a description of the physics object reconstruction followed by a brief explanation of the event selection criteria. Finally, the definitions of the key discriminating variables related to the ECAL cluster shape and the time of impact of the photon on the surface of the ECAL are discussed. The signal and background yields are determined with a binned maximum likelihood fit to the two-dimensional distribution in these variables.

3.1 Object reconstruction

Photons are reconstructed by identifying energy deposits in the ECAL using the method explained in Ref. [17]. Photons that are found to have converted into an electron-positron pair in the detector material are not used in the analysis. Electron or positron candidates are reconstructed starting from a cluster of energy deposits in the ECAL which is then matched to the momentum associated with a track in the silicon tracker. Electron candidates are required to have $|\eta| < 1.44$ or $1.56 < |\eta| < 2.5$ to avoid the region of transition between the barrel and endcap sections. Photons are required to be spatially separated from electrons by at least $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} = 0.25$, where $\Delta \eta$ and $\Delta \phi$ are, respectively, differences between the photon and the electron directions in pseudorapidity and azimuthal angle.

Jets are reconstructed from objects identified using the Particle-Flow (PF) algorithm [18] with anti- k_T clustering [19] and a distance parameter of 0.5. In this analysis, the missing transverse energy ($\not\!E_T$) is defined as the magnitude of the vector sum of the transverse momentum of all particles identified in the PF algorithm in the event excluding muons.

The time of impact, T_{raw} , for the photon on the surface of the ECAL is the weighted time of impact measured in the crystals within the cluster associated with a photon candidate. An event-by-event correction (T_{prompt}) is applied to T_{raw} to account for possible biases due to the jitter in the trigger system, and to the imperfect knowledge of the time of the interaction within the bunch crossing. This correction is computed using the time of impact of all crystals in the event, excluding those belonging to the two most energetic photon candidates, which are typically due to prompt jets, low-energy prompt photons, and photons from π^0 and η decays. The new calibrated ECAL timing is defined as $T_{\text{calib}} = T_{\text{raw}} - T_{\text{prompt}}$. With this definition, a particle produced at the interaction point has a time of arrival of zero, whereas a delayed photon has a non-zero T_{calib} . The distributions in data for T_{raw} and T_{calib} , after the nominal selection, are shown in Fig. 2. The width of the main, Gaussian, component of T_{calib} is slightly smaller than that of T_{raw} , while there is some increase in the tails. For the dominant background processes, the tails are taken into account by using control samples in data, as described in Section 4. In the determination of the yield, the distribution of T_{calib} in simulated signal events is used as a template for the signal contribution. This distribution is narrower in simulation than in the data, because the uncertainties in the time inter-calibration constants are not emulated. A convolution with a Gaussian, whose parameters vary as a function of the photon energy, is performed to reproduce the T_{calib} resolution observed in data.

Figure 2: The ECAL timing distribution for data, before and after calibration, overlaid with the results of the Gaussian fits.

One of the distinctive features of a photon is the shape of the energy deposits it leaves in the ECAL. Prompt photons have a roughly circular projected energy deposit on the ECAL surface, while the energy deposits from jets typically have a larger width along the η direction. Non-prompt photons are expected to have an elliptical shape along an arbitrary direction, as illustrated in Fig. 3, therefore the width of the energy deposit along the η direction is not optimal for the discrimination of jets. In this search, the shape of the energy deposit is characterized by the minor axis ($S_{\rm Minor}$) of its projection on the internal ECAL surface. The axis $S_{\rm Minor}$ is computed using the geometrical properties of the distribution of the energy deposit, and is defined as

$$S_{\text{Minor}} = \frac{\left(S_{\phi\phi} + S_{\eta\eta}\right) - \sqrt{\left(S_{\phi\phi} - S_{\eta\eta}\right)^2 + 4S_{\phi\eta}^2}}{2},$$
 (1)

where $S_{\phi\phi}$, $S_{\eta\eta}$, and $S_{\phi\eta}$ are the second moments of the spatial distribution of the energy deposit in the ECAL in η - ϕ coordinates. A large fraction of QCD multijet events can be rejected by applying requirements on S_{Minor} as illustrated in Fig. 4, where the normalized distributions of S_{Minor} for simulated signal and QCD multijet background events are shown.

3.2 Event selection

Events must have a primary vertex with at least four associated tracks and a position less than 2 cm from the center of the CMS detector in the direction transverse to the beam and 24 cm in the direction along the beam. Events are also required to have at least three jets with $p_T > 35$ GeV and spatially separated from photons by at least $\Delta R = 0.5$.

Photon candidates are required to have $p_T \ge 100\,\text{GeV}$ and $|\eta| \le 1.44$ and to be isolated in the HCAL, the ECAL, and the tracker. An absolute isolation parameter is defined as the scalar sum of the transverse energies of tracks or calorimeter deposits in a cone of aperture 0.3 around the photon direction, excluding the contribution from the photon itself. A relative isolation parameter is defined as the ratio of the absolute isolation and the photon p_T . In the tracker, the relative isolation is required to be less than 0.1. In the ECAL and the HCAL, the relative isolation is required to be less than 0.05 and the absolute isolation less than 2.4 GeV. Thresholds on both absolute and relative isolation are set in the ECAL and HCAL to avoid imposing requirements that are more restrictive than the noise level. The energy deposit by a photon candidate

Figure 3: The distribution of energy deposition in the ECAL crystals for a prompt (left) and a non-prompt (right) photon. Each rectangle represents an ECAL crystal and has a size that is proportional to the energy deposited in that crystal. The non-prompt illustration is for a $\tilde{\chi}_1^0$ flight length of 45 cm.

Figure 4: Normalized distribution of S_{Minor} for simulated signal, γ + jets, and QCD multijet events. The arrows indicate the S_{Minor} selection interval.

is required to have $0.15 < S_{\rm Minor} < 0.30$. This requirement is optimized to select candidates that are more likely to be real photons.

The signal efficiencies for selecting one photon and at least three jets are summarized in Table 1 for proper decay lengths between 1 mm and 6000 mm and for Λ between 100 TeV and 180 TeV. The efficiency drops by a factor of two between $c\tau=1$ mm and 6000 mm, since, with increasing decay time, the probability of the $\tilde{\chi}_1^0$ to decay outside the detector is enhanced.

4 Background estimation

The primary sources of background in the analysis are QCD multijet events and γ + jets events, which together make up 99% of the sample. Improper reconstruction of jets can give rise to fake

-			G	•		
	Λ (TeV)	$M_{\widetilde{\chi}_1^0}$ (GeV)	$c\tau = 1 \mathrm{mm}$	$c\tau = 250\mathrm{mm}$	$c\tau = 2000\mathrm{mm}$	$c\tau = 6000 \mathrm{mm}$
	100	140	18.7 ± 0.3	18.4 ± 0.2	8.4 ± 0.2	3.3 ± 0.1
	120	170	24.9 ± 0.4	24.6 ± 0.3	15.1 ± 0.4	6.6 ± 0.1
	140	200	30.4 ± 0.3	31.3 ± 0.3	22.2 ± 0.4	11.4 ± 0.3
	160	230	35.5 ± 0.3	36.1 ± 0.6	29.4 ± 0.4	17.0 ± 0.4
	180	260	40.1 ± 0.7	38.0 ± 0.5	36.0 ± 0.5	22.2 ± 0.4

Table 1: Selection efficiency in percent. The reported uncertainties include the contributions of systematic effects, for various signal samples.

missing transverse energy, while photons produced in the decays of hadrons (mostly energetic π^0 and η) can sometimes pass the isolation criteria.

A large fraction of γ + jets events, characterized by a smaller jet multiplicity compared to signal, are rejected by requiring at least three jets in the event. The residual contribution of these backgrounds is estimated from the data.

In addition, there are other (non-QCD) processes with genuine $\not\!\!E_T$, largely comprised of $W/Z+\gamma+$ jets and $t\bar{t}$ events, where the W boson decays into a lepton and a neutrino. There is also a small contribution from Drell–Yan processes. These events make up less than 1% of the total sample but are taken into account since they can play a role in the tails of the $\not\!\!E_T$ distribution where signal is expected. Simulated events are used to estimate the contribution of these processes.

Finally, additional backgrounds from events not originating from proton-proton collisions, including cosmic rays and beam-halo muons, are also expected. The contribution of these events is reduced to negligible levels by requiring $T_{\rm calib}$ of the most energetic photon candidate to be greater than $-2\,\rm ns$, and the event to have an identified primary vertex and at least three jets.

Because of the difficulty of accurately predicting cross sections and jet multiplicities for multijet and γ + jets processes, their contribution is estimated with methods based on the data. The QCD multijet control sample is obtained by selecting events with at least three jets and a photon candidate passing a less stringent identification requirement but failing the nominal photon selection criteria. The γ + jets control sample consists of events with one photon which satisfies the nominal selection. Events with the angle in the transverse plane between the highest- p_T jet (leading jet) and the photon smaller than $2/3\,\pi$ are rejected. The ratio of the transverse momenta of the leading jet to that of the photon is required to be between 0.6 and 1.4, while for the subleading jet the ratio is required to be less than 0.2. The contribution of non-QCD and signal events to these two control samples is estimated to be, respectively, 1% and less than 0.01%.

To estimate the number of background and signal events in data, a maximum likelihood fit is performed to the two-dimensional distribution of E_T and $T_{\rm calib}$. The correlation coefficient between E_T and E_T are derived from simulated events for signal and non-QCD backgrounds. Templates for QCD multijet and E_T are derived from data control samples as described earlier. The relative normalization of the QCD multijet and E_T is to events. The normalization of the non-QCD templates are fixed in the fit according to the measured cross sections (statistical uncertainties in the cross sections are less than 3%) and the integrated luminosity of the data sample. Studies have been performed with pseudo-experiments to confirm the stability of the fit and to verify that the fit results are unbiased. The measured

signal and background yields in data, obtained with the likelihood fit, are summarized in Table 2. The one-dimensional projections of \mathbb{E}_T and T_{calib} for the data and expected backgrounds, as determined from the fit, are illustrated in Fig. 5. No excess of events is observed beyond the SM backgrounds and the fitted signal yield is compatible with zero. It should be noted that the discriminating power of individual variables is not apparent in these projections because the largest sensitivity to signal is in the region with both large \mathbb{E}_T and large T_{calib} . The improved background discrimination is visible in Fig. 6 where the one-dimensional projection of \mathbb{E}_T for events with $T_{\text{calib}} > 0.5$ ns is illustrated.

Table 2: The measured signal and background yields determined with the maximum likelihood fit to the data. The relative composition of QCD multijet and γ + jets backgrounds have been normalized to 67% and 33% with respect to each other. The expected signal yields are 211 events for the GMSB(100,250) benchmark point and 96 for GMSB(100,2000). The GMSB(100,250) benchmark point corresponds to $\Lambda = 100\,\text{TeV}$, $c\tau = 250\,\text{mm}$ and the GMSB(100,2000) benchmark point corresponds to $\Lambda = 100\,\text{TeV}$, $c\tau = 2000\,\text{mm}$. The reported uncertainties are statistical only and are determined in the fit.

	Events
	Events
GMSB (100, 250)	6 ± 8
GMSB (100, 2000)	4 ± 4
QCD multijet and γ + jets	80900 ± 300
$t\bar{t}$ + jets (fixed)	73
$W \rightarrow e\nu + jets$ (fixed)	116
Drell-Yan + jets (fixed)	67
$W/Z + jets + \gamma$ (fixed)	215
Total background	81400 ± 300
Data	81 382

5 Systematic uncertainties

Several sources of systematic uncertainty have been considered and their contributions are summarized in Table 3. The largest single contribution to the systematic uncertainties derives from the uncertainty in the modeling of the background shape. A bin-by-bin variation of the background shape template according to the Poisson uncertainty is used to determine the contribution of each type of background. An additional uncertainty is assessed for the QCD multijet and γ + jets processes using simulated events, by comparing the shapes of E_T and T_{calib} for the control sample and for a sample obtained with the nominal selection criteria. The difference observed in simulation is used to re-weight the shapes obtained in data control samples. The dominant contribution is due to the difference in the E_T distributions. The small tails in the distribution of T_{calib} are accounted for by using data control samples to derive the templates, rather than relying on simulation. The uncertainty in the relative fraction of QCD multijet and γ + jets events is estimated to be 33%. The main contribution to this uncertainty is due to the next-to-leading correction for the γ + jets cross section. Additional contributions are included to take into account the the observed difference between the number of events in the γ + jets control sample in data and the expected number of events according to PYTHIA (10%), and to the QCD multijet events misidentified as γ + jets events (10%).

The main contributions to the uncertainty in the signal shape modeling derive from the uncertainty in the E_T resolution and the determination of T_{calib} . The contribution of the E_T resolution uncertainty is estimated by smearing the E_T distribution of simulated signal events. A sys-

8 6 Results

Figure 5: The one-dimensional projection for $\not\!\!E_T$ (left) and for ECAL timing (right), after all selection requirements. The multijet and γ + jets backgrounds are normalized to the yields from the fit. The rest of the backgrounds are fixed according to the integrated luminosity of the data. The GMSB(100,2000) benchmark point corresponds to $\Lambda = 100\,\text{TeV}$, $c\tau = 2000\,\text{mm}$ and the GMSB(100,250) benchmark point corresponds to $\Lambda = 100\,\text{TeV}$, $c\tau = 250\,\text{mm}$.

tematic uncertainty of 0.1 ns is assigned to the measurement of the time of impact $T_{\rm calib}$. This uncertainty is determined using a sample of γ + jets events by measuring the difference between the average $T_{\rm calib}$ values in data and simulation, as a function of the photon $p_{\rm T}$.

The uncertainty in the luminosity determination is 2.2% [20]. The remaining sources of systematic uncertainty affecting the signal acceptance are the following. The calorimeter response to different types of particles is not perfectly linear and hence corrections are made to properly map the measured jet energy deposition. The uncertainty on this correction is referred to as the uncertainty on the jet energy scale and varies as a function of position and transverse momentum of the jet. Similarly, the uncertainty on the photon energy scale in the barrel is estimated to be 1.0%, based on the final-state radiation measurement with Z bosons [21]. Following the recommendations of the PDF4LHC group [22], PDF and the strong coupling constant (α_s) variations of the MSTW2008 [23], CTEQ6.6 [24] and NNPDF2.0 [25] PDF sets are taken into account and their impact on the signal acceptance is estimated.

6 Results

The observed event yield in data is consistent with the SM background prediction, and upper limits are obtained on the production cross section of a long-lived neutralino in the context of the GMSB model, assuming $\mathcal{B}(\widetilde{\chi}_1^0 \to \gamma \widetilde{G}) = 100\%$. Exclusion limits are computed with a modified frequentist CL_s method [26–28], using the asymptotic approximation for the test statistic as described in Ref. [29]. The background normalization and the corresponding uncertainty are taken from the fit to the data. The uncertainties in the shapes are taken into account by vertical interpolation of the templates. The shapes are interpolated quadratically for shifts below one

Figure 6: The one-dimensional projection after all selection requirements for $\not\!\!E_T$ for events with $T_{\rm calib} > 0.5$ ns (left) and for ECAL timing (right) for events with $\not\!\!E_T > 100$ GeV. The multijet and γ + jets backgrounds are normalized to the yields from the fit. The rest of the backgrounds are fixed according to the integrated luminosity of the data. The GMSB(100,2000) benchmark point corresponds to $\Lambda = 100$ TeV, $c\tau = 2000$ mm and the GMSB(100,250) benchmark point corresponds to $\Lambda = 100$ TeV, $c\tau = 250$ mm.

standard deviation and linearly beyond. Log-normal multiplicative corrections are used for the normalization, the signal acceptance, and the integrated luminosity. Fig. 7 shows the observed and expected 95% confidence level (CL) upper limits on the cross section for GMSB production in terms of $\tilde{\chi}^0_1$ mass (left), and proper decay length (right). The signal cross section is computed at leading order precision and the theoretical uncertainty is evaluated by using the PDF4LHC recommendation for the PDF uncertainty. The one-dimensional limits are combined to provide exclusion limits in the mass and proper decay length plane of the long-lived $\tilde{\chi}^0_1$ in Fig. 8.

7 Summary

The CMS experiment has performed a search for long-lived particles produced in association with jets using LHC proton-proton collision data at a center-of-mass energy of 7 TeV corresponding to an integrated luminosity of $4.9 \pm 0.1\,\mathrm{fb}^{-1}$. A GMSB scenario with a long-lived neutralino decaying to a photon and a gravitino is used as the reference. The missing transverse energy and the timing information from the ECAL are used to search for an excess of events over the expected SM background prediction. A fit to the two-dimensional distribution in these variables yields no significant excess of events beyond the SM contributions, and upper limits at 95% CL are obtained on the GMSB production cross section in the SPS8 model of GMSB supersymmetry. In this scheme, we obtain an exclusion region as a function of both the neutralino mass and its proper decay length, assuming $\mathcal{B}(\widetilde{\chi}_1^0 \to \gamma \widetilde{G}) = 100\%$. The mass of the lightest neutralino is then restricted to values $m(\widetilde{\chi}_1^0) > 220\,\mathrm{GeV}$ (for neutralino proper decay length $c\tau < 500\,\mathrm{mm}$) at 95% CL, and the neutralino decay length $c\tau$ must be greater than 6000 mm (for $m(\widetilde{\chi}_1^0) < 150\,\mathrm{GeV}$). These limits are the most stringent for long-lived neutralinos.

To Summary 7 Sum

Table 3: Summary of the systematic uncertainties in the background and signal shapes, as well as in the signal acceptance \times efficiency. The signal uncertainties are evaluated individually for every signal point, although only the maximum and minimum values associated with each source are quoted.

Source	Uncertainty (%)			
Background				
Shape	10			
Normalization	0.3			
Multijet/ γ + jets fraction	0.8			
Signal shape				
$ \not\!\!E_{ m T} $ resolution	0.2–2			
ECAL timing uncertainty	1–5			
Signal acceptance × efficiency				
Photon energy scale	0.5–3			
Jet energy scale	0.02 - 0.05			
Jet energy resolution	0.01–2			
PDF uncertainties	0.1–2			

Figure 7: Upper limits at the 95% CL on the cross section as a function of the $\tilde{\chi}_1^0$ mass for $c\tau=1$ mm (left), and for the $\tilde{\chi}_1^0$ proper decay length for $M_{\tilde{\chi}_1^0}=170\,\text{GeV}$ (right) in the SPS8 model of GMSB supersymmetry.

Acknowledgements

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MEYS (Bulgaria); CERN; CAS,

Figure 8: The observed exclusion region for the mass and proper decay length of the long-lived $\tilde{\chi}_1^0$ in the SPS8 model of GMSB supersymmetry.

MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MON, RosAtom, RAS and RFBR (Russia); MSTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEP-Center, IPST and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

References

- [1] M. J. Strassler and K. M. Zurek, "Echoes of a hidden valley at hadron colliders", *Phys. Lett. B* **651** (2007) 374, doi:10.1016/j.physletb.2007.06.055, arXiv:hep-ph/0604261.
- [2] G. F. Giudice and R. Rattazzi, "Theories with gauge-mediated supersymmetry breaking", *Phys. Rept.* **322** (1999) 419, doi:10.1016/S0370-1573(99)00042-3, arXiv:hep-ph/9801271.
- [3] G. R. Farrar and P. Fayet, "Phenomenology of the production, decay, and detection of new hadronic states associated with supersymmetry", *Phys. Lett. B* **76** (1978) 575, doi:10.1016/0370-2693 (78) 90858-4.
- [4] B. C. Allanach et al., "The Snowmass Points and Slopes: benchmarks for SUSY searches", *Eur. Phys. J. C* **25** (2002) 113, doi:10.1007/s10052-002-0949-3, arXiv:hep-ph/0202233.
- [5] S. Dimopoulos et al., "Experimental signatures of low-energy gauge mediated supersymmetry breaking", *Phys. Rev. Lett.* **76** (1996) 3494, doi:10.1103/PhysRevLett.76.3494, arXiv:hep-ph/9601367.

[6] CMS Collaboration, "Search for new physics with long-lived particles decaying to photons and missing energy in pp collisions at $\sqrt{s} = 7 \,\text{TeV}$ ", JHEP 11 (2012) 172, doi:10.1007/JHEP11 (2012) 172, arXiv:1207.0627.

- [7] CDF Collaboration, "Search for Supersymmetry with Gauge-Mediated Breaking in Diphoton Events with Missing Transverse Energy at CDF II", *Phys. Rev. Lett.* **104** (2010) 011801, doi:10.1103/PhysRevLett.104.011801, arXiv:0910.3606.
- [8] ATLAS Collaboration, "Search for diphoton events with large missing transverse momentum in 7 TeV proton-proton collision data with the ATLAS detector", *Phys. Lett. B* **710** (2012) 519, doi:10.1016/j.physletb.2012.02.054, arXiv:1209.0753.
- [9] D0 Collaboration, "Search for diphoton events with large missing transverse energy in 6.3 fb⁻¹ of $p\bar{p}$ collisions at $\sqrt{s}=1.96$ TeV", *Phys. Rev. Lett.* **105** (2010) 221802, doi:10.1103/PhysRevLett.105.221802, arXiv:1008.2133.
- [10] CMS Collaboration, "The CMS experiment at the CERN LHC", JINST **3** (2008) S08004, doi:10.1088/1748-0221/3/08/S08004.
- [11] CMS Collaboration, "Time reconstruction and performance of the CMS electromagnetic calorimeter", JINST 5 (2010) T03011, doi:10.1088/1748-0221/5/03/T03011, arXiv:0911.4044.
- [12] T. Sjöstrand, S. Mrenna, and P. Z. Skands, "PYTHIA 6.4 physics and manual", *JHEP* **05** (2006) 026, doi:10.1088/1126-6708/2006/05/026, arXiv:hep-ph/0603175.
- [13] J. Alwall et al., "MadGraph 5: Going Beyond", JHEP **06** (2011) 128, doi:10.1007/JHEP06(2011)128, arXiv:1106.0522.
- [14] J. Pumplin et al., "New generation of parton distributions with uncertainties from global QCD analysis", JHEP 07 (2002) 012, doi:10.1088/1126-6708/2002/07/012, arXiv:hep-ph/0201195.
- [15] GEANT4 Collaboration, "GEANT4—a simulation toolkit", Nucl. Instrum. Meth. A **506** (2003) 250, doi:10.1016/S0168-9002 (03) 01368-8.
- [16] Z. Was, "TAUOLA the library for tau lepton decay, and KKMC/KORALB/KORALZ/...status report", Nucl. Phys. Proc. Suppl. 98 (2001) 96, doi:10.1016/S0920-5632 (01) 01200-2, arXiv:hep-ph/0011305.
- [17] CMS Collaboration, "Isolated Photon Reconstruction and Identification at $\sqrt{s}=7$ TeV", CMS Physics Analysis Summary CMS-PAS-EGM-10-006, (2010).
- [18] CMS Collaboration, "Commissioning of the Particle-Flow Reconstruction in Minimum-Bias and Jet Events from pp Collisions at 7 TeV", CMS Physics Analysis Summary CMS-PAS-PFT-10-002, (2010).
- [19] M. Cacciari, G. P. Salam, and G. Soyez, "The anti- k_t jet clustering algorithm", *JHEP* **04** (2008) 063, doi:10.1088/1126-6708/2008/04/063, arXiv:0802.1189.
- [20] CMS Collaboration, "Absolute Calibration of the Luminosity Measurement at CMS: Winter 2012 Update", CMS Physics Analysis Summary CMS-PAS-SMP-12-008, (2012).
- [21] CMS Collaboration, "Measurement of W γ and Z γ production in pp collisions at $\sqrt{s} = 7$ TeV", *Physics Letters B* **701** (2011) 535, doi:10.1016/j.physletb.2011.06.034.

[22] M. Botje et al., "The PDF4LHC Working Group Interim Recommendations", (2011). arXiv:1101.0538.

- [23] A. D. Martin et al., "Parton distributions for the LHC", Eur. Phys. J. C 63 (2009) 189, doi:10.1140/epjc/s10052-009-1072-5, arXiv:0901.0002.
- [24] P. M. Nadolsky et al., "Implications of CTEQ global analysis for collider observables", Phys. Rev. D 78 (2008) 013004, doi:10.1103/PhysRevD.78.013004, arXiv:0802.0007.
- [25] R. D. Ball et al., "A first unbiased global NLO determination of parton distributions and their uncertainties", Nucl. Phys. B 838 (2010) 136, doi:10.1016/j.nuclphysb.2010.05.008, arXiv:1002.4407.
- [26] ATLAS and CMS Collaborations, "Procedure for the LHC Higgs boson search combination in summer 2011", ATL-PHYS-PUB 2011-011, (2011). CMS NOTE-2011/005.
- [27] T. Junk, "Confidence level computation for combining searches with small statistics", Nucl. Instrum. Meth. A 434 (1999) 435, doi:10.1016/S0168-9002(99)00498-2, arXiv:hep-ex/9902006.
- [28] A. L. Read, "Presentation of search results: The CL_s technique", *J. Phys. G* **28** (2002) 2693, doi:10.1088/0954-3899/28/10/313.
- [29] G. Cowan et al., "Asymptotic formulae for likelihood-based tests of new physics", Eur. Phys. J. C 71 (2011) 1554, doi:10.1140/epjc/s10052-011-1554-0, arXiv:1007.1727.

A The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia

S. Chatrchyan, V. Khachatryan, A.M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik der OeAW, Wien, Austria

W. Adam, E. Aguilo, T. Bergauer, M. Dragicevic, J. Erö, C. Fabjan¹, M. Friedl, R. Frühwirth¹, V.M. Ghete, J. Hammer, N. Hörmann, J. Hrubec, M. Jeitler¹, W. Kiesenhofer, V. Knünz, M. Krammer¹, I. Krätschmer, D. Liko, I. Mikulec, M. Pernicka[†], B. Rahbaran, C. Rohringer, H. Rohringer, R. Schöfbeck, J. Strauss, A. Taurok, W. Waltenberger, G. Walzel, E. Widl, C.-E. Wulz¹

National Centre for Particle and High Energy Physics, Minsk, Belarus

V. Mossolov, N. Shumeiko, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium

M. Bansal, S. Bansal, T. Cornelis, E.A. De Wolf, X. Janssen, S. Luyckx, L. Mucibello, S. Ochesanu, B. Roland, R. Rougny, M. Selvaggi, Z. Staykova, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, A. Van Spilbeeck

Vrije Universiteit Brussel, Brussel, Belgium

F. Blekman, S. Blyweert, J. D'Hondt, R. Gonzalez Suarez, A. Kalogeropoulos, M. Maes, A. Olbrechts, W. Van Doninck, P. Van Mulders, G.P. Van Onsem, I. Villella

Université Libre de Bruxelles, Bruxelles, Belgium

B. Clerbaux, G. De Lentdecker, V. Dero, A.P.R. Gay, T. Hreus, A. Léonard, P.E. Marage, A. Mohammadi, T. Reis, L. Thomas, G. Vander Marcken, C. Vander Velde, P. Vanlaer, J. Wang

Ghent University, Ghent, Belgium

V. Adler, K. Beernaert, A. Cimmino, S. Costantini, G. Garcia, M. Grunewald, B. Klein, J. Lellouch, A. Marinov, J. Mccartin, A.A. Ocampo Rios, D. Ryckbosch, N. Strobbe, F. Thyssen, M. Tytgat, P. Verwilligen, S. Walsh, E. Yazgan, N. Zaganidis

Université Catholique de Louvain, Louvain-la-Neuve, Belgium

S. Basegmez, G. Bruno, R. Castello, L. Ceard, C. Delaere, T. du Pree, D. Favart, L. Forthomme, A. Giammanco², J. Hollar, V. Lemaitre, J. Liao, O. Militaru, C. Nuttens, D. Pagano, A. Pin, K. Piotrzkowski, N. Schul, J.M. Vizan Garcia

Université de Mons, Mons, Belgium

N. Beliy, T. Caebergs, E. Daubie, G.H. Hammad

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil

G.A. Alves, M. Correa Martins Junior, D. De Jesus Damiao, T. Martins, M.E. Pol, M.H.G. Souza

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

W.L. Aldá Júnior, W. Carvalho, A. Custódio, E.M. Da Costa, C. De Oliveira Martins, S. Fonseca De Souza, D. Matos Figueiredo, L. Mundim, H. Nogima, V. Oguri, W.L. Prado Da Silva, A. Santoro, L. Soares Jorge, A. Sznajder

Universidade Estadual Paulista ^a, Universidade Federal do ABC ^b, Sao Paulo, Brazil

T.S. Anjos^b, C.A. Bernardes^b, F.A. Dias^{a,3}, T.R. Fernandez Perez Tomei^a, E.M. Gregores^b, C. Lagana^a, F. Marinho^a, P.G. Mercadante^b, S.F. Novaes^a, Sandra S. Padula^a

Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria

V. Genchev⁴, P. Iaydjiev⁴, S. Piperov, M. Rodozov, S. Stoykova, G. Sultanov, V. Tcholakov, R. Trayanov, M. Vutova

University of Sofia, Sofia, Bulgaria

A. Dimitrov, R. Hadjiiska, V. Kozhuharov, L. Litov, B. Pavlov, P. Petkov

Institute of High Energy Physics, Beijing, China

J.G. Bian, G.M. Chen, H.S. Chen, C.H. Jiang, D. Liang, S. Liang, X. Meng, J. Tao, J. Wang, X. Wang, Z. Wang, H. Xiao, M. Xu, J. Zang, Z. Zhang

State Key Lab. of Nucl. Phys. and Tech., Peking University, Beijing, China

C. Asawatangtrakuldee, Y. Ban, Y. Guo, W. Li, S. Liu, Y. Mao, S.J. Qian, H. Teng, D. Wang, L. Zhang, W. Zou

Universidad de Los Andes, Bogota, Colombia

C. Avila, J.P. Gomez, B. Gomez Moreno, A.F. Osorio Oliveros, J.C. Sanabria

Technical University of Split, Split, Croatia

N. Godinovic, D. Lelas, R. Plestina⁵, D. Polic, I. Puljak⁴

University of Split, Split, Croatia

Z. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia

V. Brigljevic, S. Duric, K. Kadija, J. Luetic, S. Morovic

University of Cyprus, Nicosia, Cyprus

A. Attikis, M. Galanti, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis

Charles University, Prague, Czech Republic

M. Finger, M. Finger Jr.

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt

Y. Assran⁶, S. Elgammal⁷, A. Ellithi Kamel⁸, M.A. Mahmoud⁹, A. Radi^{10,11}

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia

M. Kadastik, M. Müntel, M. Raidal, L. Rebane, A. Tiko

Department of Physics, University of Helsinki, Helsinki, Finland

P. Eerola, G. Fedi, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland

J. Härkönen, A. Heikkinen, V. Karimäki, R. Kinnunen, M.J. Kortelainen, T. Lampén, K. Lassila-Perini, S. Lehti, T. Lindén, P. Luukka, T. Mäenpää, T. Peltola, E. Tuominen, J. Tuominiemi, E. Tuovinen, D. Ungaro, L. Wendland

Lappeenranta University of Technology, Lappeenranta, Finland

K. Banzuzi, A. Karjalainen, A. Korpela, T. Tuuva

DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France

M. Besancon, S. Choudhury, M. Dejardin, D. Denegri, B. Fabbro, J.L. Faure, F. Ferri, S. Ganjour, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, E. Locci, J. Malcles, L. Millischer, A. Nayak, J. Rander, A. Rosowsky, I. Shreyber, M. Titov

Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France

S. Baffioni, F. Beaudette, L. Benhabib, L. Bianchini, M. Bluj¹², C. Broutin, P. Busson, C. Charlot, N. Daci, T. Dahms, M. Dalchenko, L. Dobrzynski, R. Granier de Cassagnac, M. Haguenauer, P. Miné, C. Mironov, I.N. Naranjo, M. Nguyen, C. Ochando, P. Paganini, D. Sabes, R. Salerno, Y. Sirois, C. Veelken, A. Zabi

Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France

J.-L. Agram¹³, J. Andrea, D. Bloch, D. Bodin, J.-M. Brom, M. Cardaci, E.C. Chabert, C. Collard, E. Conte¹³, F. Drouhin¹³, C. Ferro, J.-C. Fontaine¹³, D. Gelé, U. Goerlach, P. Juillot, A.-C. Le Bihan, P. Van Hove

Centre de Calcul de l'Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France

F. Fassi, D. Mercier

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France

S. Beauceron, N. Beaupere, O. Bondu, G. Boudoul, J. Chasserat, R. Chierici⁴, D. Contardo, P. Depasse, H. El Mamouni, J. Fay, S. Gascon, M. Gouzevitch, B. Ille, T. Kurca, M. Lethuillier, L. Mirabito, S. Perries, L. Sgandurra, V. Sordini, Y. Tschudi, P. Verdier, S. Viret

Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia

Z. Tsamalaidze 14

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

G. Anagnostou, C. Autermann, S. Beranek, M. Edelhoff, L. Feld, N. Heracleous, O. Hindrichs, R. Jussen, K. Klein, J. Merz, A. Ostapchuk, A. Perieanu, F. Raupach, J. Sammet, S. Schael, D. Sprenger, H. Weber, B. Wittmer, V. Zhukov¹⁵

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany

M. Ata, J. Caudron, E. Dietz-Laursonn, D. Duchardt, M. Erdmann, R. Fischer, A. Güth, T. Hebbeker, C. Heidemann, K. Hoepfner, D. Klingebiel, P. Kreuzer, M. Merschmeyer, A. Meyer, M. Olschewski, P. Papacz, H. Pieta, H. Reithler, S.A. Schmitz, L. Sonnenschein, J. Steggemann, D. Teyssier, M. Weber

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

M. Bontenackels, V. Cherepanov, Y. Erdogan, G. Flügge, H. Geenen, M. Geisler, W. Haj Ahmad, F. Hoehle, B. Kargoll, T. Kress, Y. Kuessel, J. Lingemann⁴, A. Nowack, L. Perchalla, O. Pooth, P. Sauerland, A. Stahl

Deutsches Elektronen-Synchrotron, Hamburg, Germany

M. Aldaya Martin, J. Behr, W. Behrenhoff, U. Behrens, M. Bergholz¹⁶, A. Bethani, K. Borras, A. Burgmeier, A. Cakir, L. Calligaris, A. Campbell, E. Castro, F. Costanza, D. Dammann, C. Diez Pardos, G. Eckerlin, D. Eckstein, G. Flucke, A. Geiser, I. Glushkov, P. Gunnellini, S. Habib, J. Hauk, G. Hellwig, H. Jung, M. Kasemann, P. Katsas, C. Kleinwort, H. Kluge, A. Knutsson, M. Krämer, D. Krücker, E. Kuznetsova, W. Lange, W. Lohmann¹⁶, B. Lutz, R. Mankel, I. Marfin, M. Marienfeld, I.-A. Melzer-Pellmann, A.B. Meyer, J. Mnich, A. Mussgiller, S. Naumann-Emme, O. Novgorodova, J. Olzem, H. Perrey, A. Petrukhin, D. Pitzl, A. Raspereza, P.M. Ribeiro Cipriano, C. Riedl, E. Ron, M. Rosin, J. Salfeld-Nebgen, R. Schmidt¹⁶, T. Schoerner-Sadenius, N. Sen, A. Spiridonov, M. Stein, R. Walsh, C. Wissing

University of Hamburg, Hamburg, Germany

V. Blobel, J. Draeger, H. Enderle, J. Erfle, U. Gebbert, M. Görner, T. Hermanns, R.S. Höing, K. Kaschube, G. Kaussen, H. Kirschenmann, R. Klanner, J. Lange, B. Mura, F. Nowak, T. Peiffer, N. Pietsch, D. Rathjens, C. Sander, H. Schettler, P. Schleper, E. Schlieckau, A. Schmidt, M. Schröder, T. Schum, M. Seidel, V. Sola, H. Stadie, G. Steinbrück, J. Thomsen, L. Vanelderen

Institut für Experimentelle Kernphysik, Karlsruhe, Germany

C. Barth, J. Berger, C. Böser, T. Chwalek, W. De Boer, A. Descroix, A. Dierlamm, M. Feindt, M. Guthoff⁴, C. Hackstein, F. Hartmann, T. Hauth⁴, M. Heinrich, H. Held, K.H. Hoffmann, U. Husemann, I. Katkov¹⁵, J.R. Komaragiri, P. Lobelle Pardo, D. Martschei, S. Mueller, Th. Müller, M. Niegel, A. Nürnberg, O. Oberst, A. Oehler, J. Ott, G. Quast, K. Rabbertz, F. Ratnikov, N. Ratnikova, S. Röcker, F.-P. Schilling, G. Schott, H.J. Simonis, F.M. Stober, D. Troendle, R. Ulrich, J. Wagner-Kuhr, S. Wayand, T. Weiler, M. Zeise

Institute of Nuclear Physics "Demokritos", Aghia Paraskevi, Greece

G. Daskalakis, T. Geralis, S. Kesisoglou, A. Kyriakis, D. Loukas, I. Manolakos, A. Markou, C. Mavrommatis, E. Ntomari

University of Athens, Athens, Greece

L. Gouskos, T.J. Mertzimekis, A. Panagiotou, N. Saoulidou

University of Ioánnina, Ioánnina, Greece

I. Evangelou, C. Foudas, P. Kokkas, N. Manthos, I. Papadopoulos, V. Patras

KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary

G. Bencze, C. Hajdu, P. Hidas, D. Horvath¹⁷, F. Sikler, V. Veszpremi, G. Vesztergombi¹⁸

Institute of Nuclear Research ATOMKI, Debrecen, Hungary

N. Beni, S. Czellar, J. Molnar, J. Palinkas, Z. Szillasi

University of Debrecen, Debrecen, Hungary

J. Karancsi, P. Raics, Z.L. Trocsanyi, B. Ujvari

Panjab University, Chandigarh, India

S.B. Beri, V. Bhatnagar, N. Dhingra, R. Gupta, M. Kaur, M.Z. Mehta, N. Nishu, L.K. Saini, A. Sharma, J.B. Singh

University of Delhi, Delhi, India

Ashok Kumar, Arun Kumar, S. Ahuja, A. Bhardwaj, B.C. Choudhary, S. Malhotra, M. Naimuddin, K. Ranjan, V. Sharma, R.K. Shivpuri

Saha Institute of Nuclear Physics, Kolkata, India

S. Banerjee, S. Bhattacharya, S. Dutta, B. Gomber, Sa. Jain, Sh. Jain, R. Khurana, S. Sarkar, M. Sharan

Bhabha Atomic Research Centre, Mumbai, India

A. Abdulsalam, R.K. Choudhury, D. Dutta, S. Kailas, V. Kumar, P. Mehta, A.K. Mohanty⁴, L.M. Pant, P. Shukla

Tata Institute of Fundamental Research - EHEP, Mumbai, India

T. Aziz, S. Ganguly, M. Guchait¹⁹, M. Maity²⁰, G. Majumder, K. Mazumdar, G.B. Mohanty, B. Parida, K. Sudhakar, N. Wickramage

Tata Institute of Fundamental Research - HECR, Mumbai, India

S. Banerjee, S. Dugad

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

H. Arfaei²¹, H. Bakhshiansohi, S.M. Etesami²², A. Fahim²¹, M. Hashemi, H. Hesari, A. Jafari, M. Khakzad, M. Mohammadi Najafabadi, S. Paktinat Mehdiabadi, B. Safarzadeh²³, M. Zeinali

INFN Sezione di Bari ^a, Università di Bari ^b, Politecnico di Bari ^c, Bari, Italy

M. Abbrescia^{a,b}, L. Barbone^{a,b}, C. Calabria^{a,b,4}, S.S. Chhibra^{a,b}, A. Colaleo^a, D. Creanza^{a,c},

N. De Filippis^{a,c,4}, M. De Palma^{a,b}, L. Fiore^a, G. Iaselli^{a,c}, L. Lusito^{a,b}, G. Maggi^{a,c}, M. Maggi^a, B. Marangelli^{a,b}, S. My^{a,c}, S. Nuzzo^{a,b}, N. Pacifico^{a,b}, A. Pompili^{a,b}, G. Pugliese^{a,c}, G. Selvaggi^{a,b}, L. Silvestris^a, G. Singh^{a,b}, R. Venditti^{a,b}, G. Zito^a

INFN Sezione di Bologna ^a, Università di Bologna ^b, Bologna, Italy

G. Abbiendi^a, A.C. Benvenuti^a, D. Bonacorsi^{a,b}, S. Braibant-Giacomelli^{a,b}, L. Brigliadori^{a,b}, P. Capiluppi^{a,b}, A. Castro^{a,b}, F.R. Cavallo^a, M. Cuffiani^{a,b}, G.M. Dallavalle^a, F. Fabbri^a, A. Fanfani^{a,b}, D. Fasanella^{a,b,4}, P. Giacomelli^a, C. Grandi^a, L. Guiducci^{a,b}, S. Marcellini^a, G. Masetti^a, M. Meneghelli^{a,b,4}, A. Montanari^a, F.L. Navarria^{a,b}, F. Odorici^a, A. Perrotta^a, F. Primavera^{a,b}, A.M. Rossi^{a,b}, T. Rovelli^{a,b}, G.P. Siroli^{a,b}, R. Travaglini^{a,b}

INFN Sezione di Catania ^a, Università di Catania ^b, Catania, Italy

S. Albergo^{a,b}, G. Cappello^{a,b}, M. Chiorboli^{a,b}, S. Costa^{a,b}, R. Potenza^{a,b}, A. Tricomi^{a,b}, C. Tuve^{a,b}

INFN Sezione di Firenze ^a, Università di Firenze ^b, Firenze, Italy

G. Barbagli^a, V. Ciulli^{a,b}, C. Civinini^a, R. D'Alessandro^{a,b}, E. Focardi^{a,b}, S. Frosali^{a,b}, E. Gallo^a, S. Gonzi^{a,b}, M. Meschini^a, S. Paoletti^a, G. Sguazzoni^a, A. Tropiano^{a,b}

INFN Laboratori Nazionali di Frascati, Frascati, Italy

L. Benussi, S. Bianco, S. Colafranceschi²⁴, F. Fabbri, D. Piccolo

INFN Sezione di Genova ^a, Università di Genova ^b, Genova, Italy

P. Fabbricatore^a, R. Musenich^a, S. Tosi^a,^b

INFN Sezione di Milano-Bicocca ^a, Università di Milano-Bicocca ^b, Milano, Italy

A. Benaglia^{a,b}, F. De Guio^{a,b}, L. Di Matteo^{a,b,4}, S. Fiorendi^{a,b}, S. Gennai^{a,4}, A. Ghezzi^{a,b}, S. Malvezzi^a, R.A. Manzoni^{a,b}, A. Martelli^{a,b}, A. Massironi^{a,b,4}, D. Menasce^a, L. Moroni^a, M. Paganoni^{a,b}, D. Pedrini^a, S. Ragazzi^{a,b}, N. Redaelli^a, S. Sala^a, T. Tabarelli de Fatis^{a,b}

INFN Sezione di Napoli ^a, Università di Napoli "Federico II" ^b, Napoli, Italy

S. Buontempo^a, C.A. Carrillo Montoya^a, N. Cavallo^{a,25}, A. De Cosa^{a,b,4}, O. Dogangun^{a,b}, F. Fabozzi^{a,25}, A.O.M. Iorio^{a,b}, L. Lista^a, S. Meola^{a,26}, M. Merola^{a,b}, P. Paolucci^{a,4}

INFN Sezione di Padova a , Università di Padova b , Università di Trento (Trento) c , Padova, Italy

P. Azzi^a, N. Bacchetta^{a,4}, D. Bisello^{a,b}, A. Branca^{a,b,4}, R. Carlin^{a,b}, P. Checchia^a, T. Dorigo^a, F. Gasparini^{a,b}, F. Gonella^a, A. Gozzelino^a, K. Kanishchev^{a,c}, S. Lacaprara^a, I. Lazzizzera^{a,c}, M. Margoni^{a,b}, A.T. Meneguzzo^{a,b}, J. Pazzini^{a,b}, N. Pozzobon^{a,b}, P. Ronchese^{a,b}, F. Simonetto^{a,b}, E. Torassa^a, M. Tosi^{a,b}, S. Vanini^{a,b}, P. Zotto^{a,b}, A. Zucchetta^{a,b}, G. Zumerle^{a,b}

INFN Sezione di Pavia ^a, Università di Pavia ^b, Pavia, Italy

M. Gabusi^{a,b}, S.P. Ratti^{a,b}, C. Riccardi^{a,b}, P. Torre^{a,b}, P. Vitulo^{a,b}

INFN Sezione di Perugia ^a, Università di Perugia ^b, Perugia, Italy

M. Biasini^{a,b}, G.M. Bilei^a, L. Fanò^{a,b}, P. Lariccia^{a,b}, G. Mantovani^{a,b}, M. Menichelli^a, A. Nappi^{$a,b\dagger$}, F. Romeo^{a,b}, A. Saha^a, A. Santocchia^{a,b}, A. Spiezia^{a,b}, S. Taroni^{a,b}

INFN Sezione di Pisa ^a, Università di Pisa ^b, Scuola Normale Superiore di Pisa ^c, Pisa, Italy P. Azzurri^{a,c}, G. Bagliesi^a, J. Bernardini^a, T. Boccali^a, G. Broccolo^{a,c}, R. Castaldi^a, R.T. D'Agnolo^{a,c,4}, R. Dell'Orso^a, F. Fiori^{a,b,4}, L. Foà^{a,c}, A. Giassi^a, A. Kraan^a, F. Ligabue^{a,c}, T. Lomtadze^a, L. Martini^{a,27}, A. Messineo^{a,b}, F. Palla^a, A. Rizzi^{a,b}, A.T. Serban^{a,28}, P. Spagnolo^a, P. Squillacioti^{a,4}, R. Tenchini^a, G. Tonelli^{a,b}, A. Venturi^a, P.G. Verdini^a

INFN Sezione di Roma ^a, Università di Roma ^b, Roma, Italy

L. Barone^{a,b}, F. Cavallari^a, D. Del Re^{a,b}, M. Diemoz^a, C. Fanelli^{a,b}, M. Grassi^{a,b,4}, E. Longo^{a,b},

P. Meridiani^{a,4}, F. Micheli^{a,b}, S. Nourbakhsh^{a,b}, G. Organtini^{a,b}, R. Paramatti^a, S. Rahatlou^{a,b}, M. Sigamani^a, L. Soffi^{a,b}

INFN Sezione di Torino ^a, Università di Torino ^b, Università del Piemonte Orientale (Novara) ^c, Torino, Italy

N. Amapane^{a,b}, R. Arcidiacono^{a,c}, S. Argiro^{a,b}, M. Arneodo^{a,c}, C. Biino^a, N. Cartiglia^a, M. Costa^{a,b}, N. Demaria^a, C. Mariotti^{a,4}, S. Maselli^a, E. Migliore^{a,b}, V. Monaco^{a,b}, M. Musich^{a,4}, M.M. Obertino^{a,c}, N. Pastrone^a, M. Pelliccioni^a, A. Potenza^{a,b}, A. Romero^{a,b}, M. Ruspa^{a,c}, R. Sacchi^{a,b}, A. Solano^{a,b}, A. Staiano^a, A. Vilela Pereira^a

INFN Sezione di Trieste ^a, Università di Trieste ^b, Trieste, Italy

S. Belforte^a, V. Candelise^{a,b}, M. Casarsa^a, F. Cossutti^a, G. Della Ricca^{a,b}, B. Gobbo^a, M. Marone^{a,b,4}, D. Montanino^{a,b,4}, A. Penzo^a, A. Schizzi^{a,b}

Kangwon National University, Chunchon, Korea

S.G. Heo, T.Y. Kim, S.K. Nam

Kyungpook National University, Daegu, Korea

S. Chang, D.H. Kim, G.N. Kim, D.J. Kong, H. Park, S.R. Ro, D.C. Son, T. Son

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea

J.Y. Kim, Zero J. Kim, S. Song

Korea University, Seoul, Korea

S. Choi, D. Gyun, B. Hong, M. Jo, H. Kim, T.J. Kim, K.S. Lee, D.H. Moon, S.K. Park

University of Seoul, Seoul, Korea

M. Choi, J.H. Kim, C. Park, I.C. Park, S. Park, G. Ryu

Sungkyunkwan University, Suwon, Korea

Y. Cho, Y. Choi, Y.K. Choi, J. Goh, M.S. Kim, E. Kwon, B. Lee, J. Lee, S. Lee, H. Seo, I. Yu

Vilnius University, Vilnius, Lithuania

M.J. Bilinskas, I. Grigelionis, M. Janulis, A. Juodagalvis

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico

H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-de La Cruz, R. Lopez-Fernandez, R. Magaña Villalba, J. Martínez-Ortega, A. Sanchez-Hernandez, L.M. Villasenor-Cendejas

Universidad Iberoamericana, Mexico City, Mexico

S. Carrillo Moreno, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico

H.A. Salazar Ibarguen

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico

E. Casimiro Linares, A. Morelos Pineda, M.A. Reyes-Santos

University of Auckland, Auckland, New Zealand

D. Krofcheck

University of Canterbury, Christchurch, New Zealand

A.J. Bell, P.H. Butler, R. Doesburg, S. Reucroft, H. Silverwood

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan

M. Ahmad, M.H. Ansari, M.I. Asghar, H.R. Hoorani, S. Khalid, W.A. Khan, T. Khurshid, S. Qazi, M.A. Shah, M. Shoaib

National Centre for Nuclear Research, Swierk, Poland

H. Bialkowska, B. Boimska, T. Frueboes, R. Gokieli, M. Górski, M. Kazana, K. Nawrocki, K. Romanowska-Rybinska, M. Szleper, G. Wrochna, P. Zalewski

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland G. Brona, K. Bunkowski, M. Cwiok, W. Dominik, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal

N. Almeida, P. Bargassa, A. David, P. Faccioli, P.G. Ferreira Parracho, M. Gallinaro, J. Seixas, J. Varela, P. Vischia

Joint Institute for Nuclear Research, Dubna, Russia

I. Belotelov, P. Bunin, I. Golutvin, I. Gorbunov, A. Kamenev, V. Karjavin, G. Kozlov, A. Lanev, A. Malakhov, P. Moisenz, V. Palichik, V. Perelygin, M. Savina, S. Shmatov, V. Smirnov, A. Volodko, A. Zarubin

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia

S. Evstyukhin, V. Golovtsov, Y. Ivanov, V. Kim, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev, An. Vorobyev

Institute for Nuclear Research, Moscow, Russia

Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, M. Kirsanov, N. Krasnikov, V. Matveev, A. Pashenkov, D. Tlisov, A. Toropin

Institute for Theoretical and Experimental Physics, Moscow, Russia

V. Epshteyn, M. Erofeeva, V. Gavrilov, M. Kossov, N. Lychkovskaya, V. Popov, G. Safronov, S. Semenov, V. Stolin, E. Vlasov, A. Zhokin

Moscow State University, Moscow, Russia

A. Belyaev, E. Boos, M. Dubinin³, L. Dudko, A. Ershov, A. Gribushin, V. Klyukhin, O. Kodolova, I. Lokhtin, A. Markina, S. Obraztsov, M. Perfilov, S. Petrushanko, A. Popov, L. Sarycheva[†], V. Savrin, A. Snigirev

P.N. Lebedev Physical Institute, Moscow, Russia

V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, A. Leonidov, G. Mesyats, S.V. Rusakov, A. Vinogradov

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia

I. Azhgirey, I. Bayshev, S. Bitioukov, V. Grishin⁴, V. Kachanov, D. Konstantinov, V. Krychkine, V. Petrov, R. Ryutin, A. Sobol, L. Tourtchanovitch, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia

P. Adzic²⁹, M. Djordjevic, M. Ekmedzic, D. Krpic²⁹, J. Milosevic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain

M. Aguilar-Benitez, J. Alcaraz Maestre, P. Arce, C. Battilana, E. Calvo, M. Cerrada, M. Chamizo Llatas, N. Colino, B. De La Cruz, A. Delgado Peris, D. Domínguez Vázquez, C. Fernandez

Bedoya, J.P. Fernández Ramos, A. Ferrando, J. Flix, M.C. Fouz, P. Garcia-Abia, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, G. Merino, J. Puerta Pelayo, A. Quintario Olmeda, I. Redondo, L. Romero, J. Santaolalla, M.S. Soares, C. Willmott

Universidad Autónoma de Madrid, Madrid, Spain

C. Albajar, G. Codispoti, J.F. de Trocóniz

Universidad de Oviedo, Oviedo, Spain

H. Brun, J. Cuevas, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, L. Lloret Iglesias, J. Piedra Gomez

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain J.A. Brochero Cifuentes, I.J. Cabrillo, A. Calderon, S.H. Chuang, J. Duarte Campderros, M. Felcini³⁰, M. Fernandez, G. Gomez, J. Gonzalez Sanchez, A. Graziano, C. Jorda, A. Lopez Virto, J. Marco, R. Marco, C. Martinez Rivero, F. Matorras, F.J. Munoz Sanchez, T. Rodrigo, A.Y. Rodríguez-Marrero, A. Ruiz-Jimeno, L. Scodellaro, I. Vila, R. Vilar Cortabitarte

CERN, European Organization for Nuclear Research, Geneva, Switzerland

D. Abbaneo, E. Auffray, G. Auzinger, M. Bachtis, P. Baillon, A.H. Ball, D. Barney, J.F. Benitez, C. Bernet⁵, G. Bianchi, P. Bloch, A. Bocci, A. Bonato, C. Botta, H. Breuker, T. Camporesi, G. Cerminara, T. Christiansen, J.A. Coarasa Perez, D. D'Enterria, A. Dabrowski, A. De Roeck, S. Di Guida, M. Dobson, N. Dupont-Sagorin, A. Elliott-Peisert, B. Frisch, W. Funk, G. Georgiou, M. Giffels, D. Gigi, K. Gill, D. Giordano, M. Girone, M. Giunta, F. Glege, R. Gomez-Reino Garrido, P. Govoni, S. Gowdy, R. Guida, M. Hansen, P. Harris, C. Hartl, J. Harvey, B. Hegner, A. Hinzmann, V. Innocente, P. Janot, K. Kaadze, E. Karavakis, K. Kousouris, P. Lecoq, Y.-J. Lee, P. Lenzi, C. Lourenço, N. Magini, T. Mäki, M. Malberti, L. Malgeri, M. Mannelli, L. Masetti, F. Meijers, S. Mersi, E. Meschi, R. Moser, M.U. Mozer, M. Mulders, P. Musella, E. Nesvold, T. Orimoto, L. Orsini, E. Palencia Cortezon, E. Perez, L. Perrozzi, A. Petrilli, A. Pfeiffer, M. Pierini, M. Pimiä, D. Piparo, G. Polese, L. Quertenmont, A. Racz, W. Reece, J. Rodrigues Antunes, G. Rolandi³¹, C. Rovelli³², M. Rovere, H. Sakulin, F. Santanastasio, C. Schäfer, C. Schwick, I. Segoni, S. Sekmen, A. Sharma, P. Siegrist, P. Silva, M. Simon, P. Sphicas³³, D. Spiga, A. Tsirou, G.I. Veres¹⁸, J.R. Vlimant, H.K. Wöhri, S.D. Worm³⁴, W.D. Zeuner

Paul Scherrer Institut, Villigen, Switzerland

W. Bertl, K. Deiters, W. Erdmann, K. Gabathuler, R. Horisberger, Q. Ingram, H.C. Kaestli, S. König, D. Kotlinski, U. Langenegger, F. Meier, D. Renker, T. Rohe, J. Sibille³⁵

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland

L. Bäni, P. Bortignon, M.A. Buchmann, B. Casal, N. Chanon, A. Deisher, G. Dissertori, M. Dittmar, M. Donegà, M. Dünser, J. Eugster, K. Freudenreich, C. Grab, D. Hits, P. Lecomte, W. Lustermann, A.C. Marini, P. Martinez Ruiz del Arbol, N. Mohr, F. Moortgat, C. Nägeli³⁶, P. Nef, F. Nessi-Tedaldi, F. Pandolfi, L. Pape, F. Pauss, M. Peruzzi, F.J. Ronga, M. Rossini, L. Sala, A.K. Sanchez, A. Starodumov³⁷, B. Stieger, M. Takahashi, L. Tauscher[†], A. Thea, K. Theofilatos, D. Treille, C. Urscheler, R. Wallny, H.A. Weber, L. Wehrli

Universität Zürich, Zurich, Switzerland

C. Amsler³⁸, V. Chiochia, S. De Visscher, C. Favaro, M. Ivova Rikova, B. Millan Mejias, P. Otiougova, P. Robmann, H. Snoek, S. Tupputi, M. Verzetti

National Central University, Chung-Li, Taiwan

Y.H. Chang, K.H. Chen, C.M. Kuo, S.W. Li, W. Lin, Z.K. Liu, Y.J. Lu, D. Mekterovic, A.P. Singh, R. Volpe, S.S. Yu

National Taiwan University (NTU), Taipei, Taiwan

P. Bartalini, P. Chang, Y.H. Chang, Y.W. Chang, Y. Chao, K.F. Chen, C. Dietz, U. Grundler, W.-S. Hou, Y. Hsiung, K.Y. Kao, Y.J. Lei, R.-S. Lu, D. Majumder, E. Petrakou, X. Shi, J.G. Shiu, Y.M. Tzeng, X. Wan, M. Wang

Chulalongkorn University, Bangkok, Thailand

B. Asavapibhop, N. Srimanobhas

Cukurova University, Adana, Turkey

A. Adiguzel, M.N. Bakirci³⁹, S. Cerci⁴⁰, C. Dozen, I. Dumanoglu, E. Eskut, S. Girgis, G. Gokbulut, E. Gurpinar, I. Hos, E.E. Kangal, T. Karaman, G. Karapinar⁴¹, A. Kayis Topaksu, G. Onengut, K. Ozdemir, S. Ozturk⁴², A. Polatoz, K. Sogut⁴³, D. Sunar Cerci⁴⁰, B. Tali⁴⁰, H. Topakli³⁹, L.N. Vergili, M. Vergili

Middle East Technical University, Physics Department, Ankara, Turkey

I.V. Akin, T. Aliev, B. Bilin, S. Bilmis, M. Deniz, H. Gamsizkan, A.M. Guler, K. Ocalan, A. Ozpineci, M. Serin, R. Sever, U.E. Surat, M. Yalvac, E. Yildirim, M. Zeyrek

Bogazici University, Istanbul, Turkey

E. Gülmez, B. Isildak⁴⁴, M. Kaya⁴⁵, O. Kaya⁴⁵, S. Ozkorucuklu⁴⁶, N. Sonmez⁴⁷

Istanbul Technical University, Istanbul, Turkey

K. Cankocak

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine L. Levchuk

University of Bristol, Bristol, United Kingdom

F. Bostock, J.J. Brooke, E. Clement, D. Cussans, H. Flacher, R. Frazier, J. Goldstein, M. Grimes, G.P. Heath, H.F. Heath, L. Kreczko, S. Metson, D.M. Newbold³⁴, K. Nirunpong, A. Poll, S. Senkin, V.J. Smith, T. Williams

Rutherford Appleton Laboratory, Didcot, United Kingdom

L. Basso⁴⁸, K.W. Bell, A. Belyaev⁴⁸, C. Brew, R.M. Brown, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, J. Jackson, B.W. Kennedy, E. Olaiya, D. Petyt, B.C. Radburn-Smith, C.H. Shepherd-Themistocleous, I.R. Tomalin, W.J. Womersley

Imperial College, London, United Kingdom

R. Bainbridge, G. Ball, R. Beuselinck, O. Buchmuller, D. Colling, N. Cripps, M. Cutajar, P. Dauncey, G. Davies, M. Della Negra, W. Ferguson, J. Fulcher, D. Futyan, A. Gilbert, A. Guneratne Bryer, G. Hall, Z. Hatherell, J. Hays, G. Iles, M. Jarvis, G. Karapostoli, L. Lyons, A.-M. Magnan, J. Marrouche, B. Mathias, R. Nandi, J. Nash, A. Nikitenko³⁷, A. Papageorgiou, J. Pela, M. Pesaresi, K. Petridis, M. Pioppi⁴⁹, D.M. Raymond, S. Rogerson, A. Rose, M.J. Ryan, C. Seez, P. Sharp[†], A. Sparrow, M. Stoye, A. Tapper, M. Vazquez Acosta, T. Virdee, S. Wakefield, N. Wardle, T. Whyntie

Brunel University, Uxbridge, United Kingdom

M. Chadwick, J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, D. Leggat, D. Leslie, W. Martin, I.D. Reid, P. Symonds, L. Teodorescu, M. Turner

Baylor University, Waco, USA

K. Hatakeyama, H. Liu, T. Scarborough

The University of Alabama, Tuscaloosa, USA

O. Charaf, C. Henderson, P. Rumerio

Boston University, Boston, USA

A. Avetisyan, T. Bose, C. Fantasia, A. Heister, J. St. John, P. Lawson, D. Lazic, J. Rohlf, D. Sperka, L. Sulak

Brown University, Providence, USA

J. Alimena, S. Bhattacharya, D. Cutts, Z. Demiragli, A. Ferapontov, A. Garabedian, U. Heintz, S. Jabeen, G. Kukartsev, E. Laird, G. Landsberg, M. Luk, M. Narain, D. Nguyen, M. Segala, T. Sinthuprasith, T. Speer, K.V. Tsang

University of California, Davis, Davis, USA

R. Breedon, G. Breto, M. Calderon De La Barca Sanchez, S. Chauhan, M. Chertok, J. Conway, R. Conway, P.T. Cox, J. Dolen, R. Erbacher, M. Gardner, R. Houtz, W. Ko, A. Kopecky, R. Lander, O. Mall, T. Miceli, D. Pellett, F. Ricci-Tam, B. Rutherford, M. Searle, J. Smith, M. Squires, M. Tripathi, R. Vasquez Sierra, R. Yohay

University of California, Los Angeles, Los Angeles, USA

V. Andreev, D. Cline, R. Cousins, J. Duris, S. Erhan, P. Everaerts, C. Farrell, J. Hauser, M. Ignatenko, C. Jarvis, C. Plager, G. Rakness, P. Schlein[†], P. Traczyk, V. Valuev, M. Weber

University of California, Riverside, Riverside, USA

J. Babb, R. Clare, M.E. Dinardo, J. Ellison, J.W. Gary, F. Giordano, G. Hanson, G.Y. Jeng⁵⁰, H. Liu, O.R. Long, A. Luthra, H. Nguyen, S. Paramesvaran, J. Sturdy, S. Sumowidagdo, R. Wilken, S. Wimpenny

University of California, San Diego, La Jolla, USA

W. Andrews, J.G. Branson, G.B. Cerati, S. Cittolin, D. Evans, F. Golf, A. Holzner, R. Kelley, M. Lebourgeois, J. Letts, I. Macneill, B. Mangano, S. Padhi, C. Palmer, G. Petrucciani, M. Pieri, M. Sani, V. Sharma, S. Simon, E. Sudano, M. Tadel, Y. Tu, A. Vartak, S. Wasserbaech⁵¹, F. Würthwein, A. Yagil, J. Yoo

University of California, Santa Barbara, Santa Barbara, USA

D. Barge, R. Bellan, C. Campagnari, M. D'Alfonso, T. Danielson, K. Flowers, P. Geffert, J. Incandela, C. Justus, P. Kalavase, S.A. Koay, D. Kovalskyi, V. Krutelyov, S. Lowette, N. Mccoll, V. Pavlunin, F. Rebassoo, J. Ribnik, J. Richman, R. Rossin, D. Stuart, W. To, C. West

California Institute of Technology, Pasadena, USA

A. Apresyan, A. Bornheim, Y. Chen, E. Di Marco, J. Duarte, M. Gataullin, Y. Ma, A. Mott, H.B. Newman, C. Rogan, M. Spiropulu, V. Timciuc, J. Veverka, R. Wilkinson, S. Xie, Y. Yang, R.Y. Zhu

Carnegie Mellon University, Pittsburgh, USA

B. Akgun, V. Azzolini, A. Calamba, R. Carroll, T. Ferguson, Y. Iiyama, D.W. Jang, Y.F. Liu, M. Paulini, H. Vogel, I. Vorobiev

University of Colorado at Boulder, Boulder, USA

J.P. Cumalat, B.R. Drell, W.T. Ford, A. Gaz, E. Luiggi Lopez, J.G. Smith, K. Stenson, K.A. Ulmer, S.R. Wagner

Cornell University, Ithaca, USA

J. Alexander, A. Chatterjee, N. Eggert, L.K. Gibbons, B. Heltsley, A. Khukhunaishvili, B. Kreis, N. Mirman, G. Nicolas Kaufman, J.R. Patterson, A. Ryd, E. Salvati, W. Sun, W.D. Teo, J. Thom, J. Thompson, J. Tucker, J. Vaughan, Y. Weng, L. Winstrom, P. Wittich

Fairfield University, Fairfield, USA

D. Winn

Fermi National Accelerator Laboratory, Batavia, USA

S. Abdullin, M. Albrow, J. Anderson, L.A.T. Bauerdick, A. Beretvas, J. Berryhill, P.C. Bhat, I. Bloch, K. Burkett, J.N. Butler, V. Chetluru, H.W.K. Cheung, F. Chlebana, V.D. Elvira, I. Fisk, J. Freeman, Y. Gao, D. Green, O. Gutsche, J. Hanlon, R.M. Harris, J. Hirschauer, B. Hooberman, S. Jindariani, M. Johnson, U. Joshi, B. Kilminster, B. Klima, S. Kunori, S. Kwan, C. Leonidopoulos, J. Linacre, D. Lincoln, R. Lipton, J. Lykken, K. Maeshima, J.M. Marraffino, S. Maruyama, D. Mason, P. McBride, K. Mishra, S. Mrenna, Y. Musienko⁵², C. Newman-Holmes, V. O'Dell, O. Prokofyev, E. Sexton-Kennedy, S. Sharma, W.J. Spalding, L. Spiegel, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, R. Vidal, J. Whitmore, W. Wu, F. Yang, F. Yumiceva, J.C. Yun

University of Florida, Gainesville, USA

D. Acosta, P. Avery, D. Bourilkov, M. Chen, T. Cheng, S. Das, M. De Gruttola, G.P. Di Giovanni, D. Dobur, A. Drozdetskiy, R.D. Field, M. Fisher, Y. Fu, I.K. Furic, J. Gartner, J. Hugon, B. Kim, J. Konigsberg, A. Korytov, A. Kropivnitskaya, T. Kypreos, J.F. Low, K. Matchev, P. Milenovic⁵³, G. Mitselmakher, L. Muniz, M. Park, R. Remington, A. Rinkevicius, P. Sellers, N. Skhirtladze, M. Snowball, J. Yelton, M. Zakaria

Florida International University, Miami, USA

V. Gaultney, S. Hewamanage, L.M. Lebolo, S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez

Florida State University, Tallahassee, USA

T. Adams, A. Askew, J. Bochenek, J. Chen, B. Diamond, S.V. Gleyzer, J. Haas, S. Hagopian, V. Hagopian, M. Jenkins, K.F. Johnson, H. Prosper, V. Veeraraghavan, M. Weinberg

Florida Institute of Technology, Melbourne, USA

M.M. Baarmand, B. Dorney, M. Hohlmann, H. Kalakhety, I. Vodopiyanov

University of Illinois at Chicago (UIC), Chicago, USA

M.R. Adams, I.M. Anghel, L. Apanasevich, Y. Bai, V.E. Bazterra, R.R. Betts, I. Bucinskaite, J. Callner, R. Cavanaugh, O. Evdokimov, L. Gauthier, C.E. Gerber, D.J. Hofman, S. Khalatyan, F. Lacroix, M. Malek, C. O'Brien, C. Silkworth, D. Strom, P. Turner, N. Varelas

The University of Iowa, Iowa City, USA

U. Akgun, E.A. Albayrak, B. Bilki⁵⁴, W. Clarida, F. Duru, J.-P. Merlo, H. Mermerkaya⁵⁵, A. Mestvirishvili, A. Moeller, J. Nachtman, C.R. Newsom, E. Norbeck, Y. Onel, F. Ozok⁵⁶, S. Sen, P. Tan, E. Tiras, J. Wetzel, T. Yetkin, K. Yi

Johns Hopkins University, Baltimore, USA

B.A. Barnett, B. Blumenfeld, S. Bolognesi, D. Fehling, G. Giurgiu, A.V. Gritsan, Z.J. Guo, G. Hu, P. Maksimovic, S. Rappoccio, M. Swartz, A. Whitbeck

The University of Kansas, Lawrence, USA

P. Baringer, A. Bean, G. Benelli, R.P. Kenny Iii, M. Murray, D. Noonan, S. Sanders, R. Stringer, G. Tinti, J.S. Wood, V. Zhukova

Kansas State University, Manhattan, USA

A.F. Barfuss, T. Bolton, I. Chakaberia, A. Ivanov, S. Khalil, M. Makouski, Y. Maravin, S. Shrestha, I. Svintradze

Lawrence Livermore National Laboratory, Livermore, USA

J. Gronberg, D. Lange, D. Wright

University of Maryland, College Park, USA

A. Baden, M. Boutemeur, B. Calvert, S.C. Eno, J.A. Gomez, N.J. Hadley, R.G. Kellogg, M. Kirn,

T. Kolberg, Y. Lu, M. Marionneau, A.C. Mignerey, K. Pedro, A. Skuja, J. Temple, M.B. Tonjes, S.C. Tonwar, E. Twedt

Massachusetts Institute of Technology, Cambridge, USA

A. Apyan, G. Bauer, J. Bendavid, W. Busza, E. Butz, I.A. Cali, M. Chan, V. Dutta, G. Gomez Ceballos, M. Goncharov, K.A. Hahn, Y. Kim, M. Klute, K. Krajczar⁵⁷, P.D. Luckey, T. Ma, S. Nahn, C. Paus, D. Ralph, C. Roland, G. Roland, M. Rudolph, G.S.F. Stephans, F. Stöckli, K. Sumorok, K. Sung, D. Velicanu, E.A. Wenger, R. Wolf, B. Wyslouch, M. Yang, Y. Yilmaz, A.S. Yoon, M. Zanetti

University of Minnesota, Minneapolis, USA

S.I. Cooper, B. Dahmes, A. De Benedetti, G. Franzoni, A. Gude, S.C. Kao, K. Klapoetke, Y. Kubota, J. Mans, N. Pastika, R. Rusack, M. Sasseville, A. Singovsky, N. Tambe, J. Turkewitz

University of Mississippi, Oxford, USA

L.M. Cremaldi, R. Kroeger, L. Perera, R. Rahmat, D.A. Sanders

University of Nebraska-Lincoln, Lincoln, USA

E. Avdeeva, K. Bloom, S. Bose, J. Butt, D.R. Claes, A. Dominguez, M. Eads, J. Keller, I. Kravchenko, J. Lazo-Flores, H. Malbouisson, S. Malik, G.R. Snow

State University of New York at Buffalo, Buffalo, USA

A. Godshalk, I. Iashvili, S. Jain, A. Kharchilava, A. Kumar

Northeastern University, Boston, USA

G. Alverson, E. Barberis, D. Baumgartel, M. Chasco, J. Haley, D. Nash, D. Trocino, D. Wood, J. Zhang

Northwestern University, Evanston, USA

A. Anastassov, A. Kubik, N. Mucia, N. Odell, R.A. Ofierzynski, B. Pollack, A. Pozdnyakov, M. Schmitt, S. Stoynev, M. Velasco, S. Won

University of Notre Dame, Notre Dame, USA

L. Antonelli, D. Berry, A. Brinkerhoff, K.M. Chan, M. Hildreth, C. Jessop, D.J. Karmgard, J. Kolb, K. Lannon, W. Luo, S. Lynch, N. Marinelli, D.M. Morse, T. Pearson, M. Planer, R. Ruchti, J. Slaunwhite, N. Valls, M. Wayne, M. Wolf

The Ohio State University, Columbus, USA

B. Bylsma, L.S. Durkin, C. Hill, R. Hughes, K. Kotov, T.Y. Ling, D. Puigh, M. Rodenburg, C. Vuosalo, G. Williams, B.L. Winer

Princeton University, Princeton, USA

N. Adam, E. Berry, P. Elmer, D. Gerbaudo, V. Halyo, P. Hebda, J. Hegeman, A. Hunt, P. Jindal, D. Lopes Pegna, P. Lujan, D. Marlow, T. Medvedeva, M. Mooney, J. Olsen, P. Piroué, X. Quan, A. Raval, B. Safdi, H. Saka, D. Stickland, C. Tully, J.S. Werner, A. Zuranski

University of Puerto Rico, Mayaguez, USA

E. Brownson, A. Lopez, H. Mendez, J.E. Ramirez Vargas

Purdue University, West Lafayette, USA

E. Alagoz, V.E. Barnes, D. Benedetti, G. Bolla, D. Bortoletto, M. De Mattia, A. Everett, Z. Hu, M. Jones, O. Koybasi, M. Kress, A.T. Laasanen, N. Leonardo, V. Maroussov, P. Merkel, D.H. Miller, N. Neumeister, I. Shipsey, D. Silvers, A. Svyatkovskiy, M. Vidal Marono, H.D. Yoo, J. Zablocki, Y. Zheng

Purdue University Calumet, Hammond, USA

S. Guragain, N. Parashar

Rice University, Houston, USA

A. Adair, C. Boulahouache, K.M. Ecklund, F.J.M. Geurts, W. Li, B.P. Padley, R. Redjimi, J. Roberts, J. Zabel

University of Rochester, Rochester, USA

B. Betchart, A. Bodek, Y.S. Chung, R. Covarelli, P. de Barbaro, R. Demina, Y. Eshaq, T. Ferbel, A. Garcia-Bellido, P. Goldenzweig, J. Han, A. Harel, D.C. Miner, D. Vishnevskiy, M. Zielinski

The Rockefeller University, New York, USA

A. Bhatti, R. Ciesielski, L. Demortier, K. Goulianos, G. Lungu, S. Malik, C. Mesropian

Rutgers, the State University of New Jersey, Piscataway, USA

S. Arora, A. Barker, J.P. Chou, C. Contreras-Campana, E. Contreras-Campana, D. Duggan, D. Ferencek, Y. Gershtein, R. Gray, E. Halkiadakis, D. Hidas, A. Lath, S. Panwalkar, M. Park, R. Patel, V. Rekovic, J. Robles, K. Rose, S. Salur, S. Schnetzer, C. Seitz, S. Somalwar, R. Stone, S. Thomas

University of Tennessee, Knoxville, USA

G. Cerizza, M. Hollingsworth, S. Spanier, Z.C. Yang, A. York

Texas A&M University, College Station, USA

R. Eusebi, W. Flanagan, J. Gilmore, T. Kamon⁵⁸, V. Khotilovich, R. Montalvo, I. Osipenkov, Y. Pakhotin, A. Perloff, J. Roe, A. Safonov, T. Sakuma, S. Sengupta, I. Suarez, A. Tatarinov, D. Toback

Texas Tech University, Lubbock, USA

N. Akchurin, J. Damgov, C. Dragoiu, P.R. Dudero, C. Jeong, K. Kovitanggoon, S.W. Lee, T. Libeiro, Y. Roh, I. Volobouev

Vanderbilt University, Nashville, USA

E. Appelt, A.G. Delannoy, C. Florez, S. Greene, A. Gurrola, W. Johns, P. Kurt, C. Maguire, A. Melo, M. Sharma, P. Sheldon, B. Snook, S. Tuo, J. Velkovska

University of Virginia, Charlottesville, USA

M.W. Arenton, M. Balazs, S. Boutle, B. Cox, B. Francis, J. Goodell, R. Hirosky, A. Ledovskoy, C. Lin, C. Neu, J. Wood

Wayne State University, Detroit, USA

S. Gollapinni, R. Harr, P.E. Karchin, C. Kottachchi Kankanamge Don, P. Lamichhane, A. Sakharov

University of Wisconsin, Madison, USA

M. Anderson, D.A. Belknap, L. Borrello, D. Carlsmith, M. Cepeda, S. Dasu, E. Friis, L. Gray, K.S. Grogg, M. Grothe, R. Hall-Wilton, M. Herndon, A. Hervé, P. Klabbers, J. Klukas, A. Lanaro, C. Lazaridis, J. Leonard, R. Loveless, A. Mohapatra, I. Ojalvo, F. Palmonari, G.A. Pierro, I. Ross, A. Savin, W.H. Smith, J. Swanson

†: Deceased

- 1: Also at Vienna University of Technology, Vienna, Austria
- 2: Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
- 3: Also at California Institute of Technology, Pasadena, USA
- 4: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland

- 5: Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
- 6: Also at Suez Canal University, Suez, Egypt
- 7: Also at Zewail City of Science and Technology, Zewail, Egypt
- 8: Also at Cairo University, Cairo, Egypt
- 9: Also at Fayoum University, El-Fayoum, Egypt
- 10: Also at British University in Egypt, Cairo, Egypt
- 11: Now at Ain Shams University, Cairo, Egypt
- 12: Also at National Centre for Nuclear Research, Swierk, Poland
- 13: Also at Université de Haute-Alsace, Mulhouse, France
- 14: Now at Joint Institute for Nuclear Research, Dubna, Russia
- 15: Also at Moscow State University, Moscow, Russia
- 16: Also at Brandenburg University of Technology, Cottbus, Germany
- 17: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
- 18: Also at Eötvös Loránd University, Budapest, Hungary
- 19: Also at Tata Institute of Fundamental Research HECR, Mumbai, India
- 20: Also at University of Visva-Bharati, Santiniketan, India
- 21: Also at Sharif University of Technology, Tehran, Iran
- 22: Also at Isfahan University of Technology, Isfahan, Iran
- 23: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
- 24: Also at Facoltà Ingegneria, Università di Roma, Roma, Italy
- 25: Also at Università della Basilicata, Potenza, Italy
- 26: Also at Università degli Studi Guglielmo Marconi, Roma, Italy
- 27: Also at Università degli Studi di Siena, Siena, Italy
- 28: Also at University of Bucharest, Faculty of Physics, Bucuresti-Magurele, Romania
- 29: Also at Faculty of Physics of University of Belgrade, Belgrade, Serbia
- 30: Also at University of California, Los Angeles, Los Angeles, USA
- 31: Also at Scuola Normale e Sezione dell'INFN, Pisa, Italy
- 32: Also at INFN Sezione di Roma; Università di Roma, Roma, Italy
- 33: Also at University of Athens, Athens, Greece
- 34: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
- 35: Also at The University of Kansas, Lawrence, USA
- 36: Also at Paul Scherrer Institut, Villigen, Switzerland
- 37: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
- 38: Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland
- 39: Also at Gaziosmanpasa University, Tokat, Turkey
- 40: Also at Adiyaman University, Adiyaman, Turkey
- 41: Also at Izmir Institute of Technology, Izmir, Turkey
- 42: Also at The University of Iowa, Iowa City, USA
- 43: Also at Mersin University, Mersin, Turkey
- 44: Also at Ozyegin University, Istanbul, Turkey
- 45: Also at Kafkas University, Kars, Turkey
- 46: Also at Suleyman Demirel University, Isparta, Turkey
- 47: Also at Ege University, Izmir, Turkey
- 48: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
- 49: Also at INFN Sezione di Perugia; Università di Perugia, Perugia, Italy
- 50: Also at University of Sydney, Sydney, Australia
- 51: Also at Utah Valley University, Orem, USA

- 52: Also at Institute for Nuclear Research, Moscow, Russia
- 53: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
- 54: Also at Argonne National Laboratory, Argonne, USA
- 55: Also at Erzincan University, Erzincan, Turkey
- 56: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
- 57: Also at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary
- 58: Also at Kyungpook National University, Daegu, Korea