Санкт-Петербургский политехнический университет Петра Великого Физико-механический институт

Высшая школа прикладной математики и вычислительной физики

Отчёт по лабораторной работе №8

по дисциплине
«Математическая статистика»

Выполнил студент группы 5030102/90101

Лаэтин Андрей Алексеевич

Проверил

Доцент, к.ф.-м.н.

Баженов Александр Николаевич

Санкт-Петербург 2022

СОДЕРЖАНИЕ

\mathbf{C}	СПИСОК ТАБЛИЦ						
1	Пос	танов	ка задачи	4			
	1.1		ше	4			
2	Теория						
	2.1	Довер	оительные интервалы для параметров нормального распределения	4			
		2.1.1	Доверительный интервал для математического ожидания m нормального				
			распределения	4			
		2.1.2	Доверительный интервал для среднего квадратичного отклонения нор-				
			мального распределения	4			
2.2 Доверительные интервалы для математического ожидания m и среднего к							
	тичного отклонения произвольного распределения при большом объёме выбо						
		ттотический подход					
		2.2.1	Доверительный интервал для математического ожидания m произвольной				
			генеральной совокупности при большом объёме выборки	Ę			
		2.2.2	Доверительный интервал для среднего квадратичного отклонения σ про-				
			извольной генеральной совокупности при большом объёме выборки				
3	Про	Программная реализация					
4	Рез	ультат	ъ	6			
5	б Обсуждение						
6	Приложение						

СПИСОК ТАБЛИЦ

1	Доверительные интервалы для параметров нормального распределения	6
2	Доверительные интервалы для параметров нормального распределения. Асимп-	
	тотический подход	7

1 Постановка задачи

1.1 Задание

Для двух выборок размерами 20 и 100 элементов, сгенерированных согласно нормальному закону N(x,0,1), для параметров положения и масштаба построить асимптотически нормальные интервальные оценки на основе точечных оценок метода максимального правдоподобия и классические интервальные оценки на основе статистик χ^2 и Стьюдента. В качестве параметра надёжности взять $\gamma=0.95$.

2 Теория

2.1 Доверительные интервалы для параметров нормального распределения

2.1.1 Доверительный интервал для математического ожидания m нормального распределения

Дана выборка (x_1, x_2, \dots, x_n) объёма n из нормальной генеральной совокупности. На её основе строим выборочное среднее \overline{x} выборочное среднее квадратическое отклонение s. Параметры m и σ нормального распределения неизвестны. Доверительный интервал для m с доверительной вероятностью $\gamma = 1 - \alpha$:

$$P(\overline{x} - \frac{sx}{\sqrt{n-1}} < m < \overline{x} + \frac{sx}{\sqrt{n-1}}) = 2F_T(x) - 1 = 1 - \alpha$$

$$P(\overline{x} - \frac{st_{1-\frac{\alpha}{2}}(n-1)}{\sqrt{n-1}} < m < \overline{x} + \frac{st_{1-\frac{\alpha}{2}}(n-1)}{\sqrt{n-1}}) = 1 - \alpha$$

$$(1)$$

2.1.2 Доверительный интервал для среднего квадратичного отклонения нормального распределения

Дана выборка (x_1, x_2, \ldots, x_n) объёма n из нормальной генеральной совокупности. На её основе строим выборочную дисперсию s^2 . Параметры m и σ нормального распределения неизвестны. Задаёмся уровнем значимости α . Доверительный интервал для с доверительной вероятностью $\sigma = 1 - \alpha$:

$$P(\frac{s\sqrt{n}}{\sqrt{\chi_{1-\frac{\alpha}{2}}^2}} < \sigma < \frac{s\sqrt{n}}{\sqrt{\chi_{\frac{\alpha}{2}}^2}}) \tag{2}$$

2.2 Доверительные интервалы для математического ожидания m и среднего квадратичного отклонения произвольного распределения при большом объёме выборки. Асимптотический подход

При большом объёме выборки для построения доверительных интервалов может быть использован асимптотический метод на основе центральной предельной теоремы.

2.2.1 Доверительный интервал для математического ожидания m произвольной генеральной совокупности при большом объёме выборки

Предполагаем, что исследуемое генеральное распределения имеет конечные математическое ожидание m и дисперсию σ^2 . $u_{1-\frac{\alpha}{2}}$ - квантиль нормального распределения N(0,1) порядка $1-\frac{\alpha}{2}$. Доверительный интервал для m с доверительной вероятностью $\gamma=1-\alpha$:

$$P(\overline{x} - \frac{st_{1-\frac{\alpha}{2}}(n-1)}{\sqrt{n-1}} < m < \overline{x} + \frac{st_{1-\frac{\alpha}{2}}(n-1)}{\sqrt{n-1}}) = \gamma$$
(3)

2.2.2 Доверительный интервал для среднего квадратичного отклонения σ произвольной генеральной совокупности при большом объёме выборки

Предполагаем, что исследуемая генеральная совокупность имеет конечные первые четыре момента. $u_{1-\frac{\alpha}{2}}$ - квантиль нормального распределения N(0,1) порядка $1=\frac{\alpha}{2}$. $E=\frac{\mu_4}{\sigma^4}-3$ - эксцесс генерального распределения, $e=\frac{m_4}{s^4}-3$ - выборочный эксцесс, $m_4=\frac{1}{n}\sum_{i=1}^n(x_i-\overline{x})^4$ - четвёртый выборочный центральный момент.

$$s(1+U)^{-\frac{1}{2}} < \sigma < s(1-U)^{-\frac{1}{2}} \tag{4}$$

$$s(1 - 0.5U) < \sigma < s(1 + 0.5U) \tag{5}$$

где
$$U=u_{1-\frac{\alpha}{2}}\sqrt{\frac{e+2}{n}}$$

Формулы (4) или (5) дают доверительный интервал для σ с доверительной вероятностью $\gamma=1-\alpha$ [1, с. 461-462].

3 Программная реализация

Лабораторная работа выполнена на языке Python вресии 3.9 в среде разработки PyCharm. Использовались дополнительные библиотеки:

1. scipy

- 2. math
- 3. matplotlib
- 4. numpy

В приложении находится ссылка на GitHub репозиторий с исходным кодом.

4 Результаты

Рис. 1: Гистограммы нормальных распределений и доверительные интервалы их параметров.

n = 20	m	σ
	[-0.66, 0.17]	[0.67, 1]
n = 100	m	σ
	[-0.10, 0.30]	[0.87, 1]

Таблица 1: Доверительные интервалы для параметров нормального распределения

Рис. 2: Гистограммы нормальных распределений и доверительные интервалы их параметров. Асимптотический подход

n = 20	m	σ
	[-0.68, 0.19]	[0.71, 1.18]
n = 100	m	σ
	[-0.10, 0.29]	[0.89, 1.12]

Таблица 2: Доверительные интервалы для параметров нормального распределения. Асимптотический подход

5 Обсуждение

- Генеральные характеристики (m=0 и $\sigma=1$) накрываются построенными доверительными интервалами.
- Также можно сделать вывод, что для большей выборки доверительные интервалы являются соотвественно более точными, т.е. меньшими по длине.
- Кроме того, при большом объёме выборки асимптотические и классические оценки практически совпадают.

6 Приложение

Код программы GitHub URL: https://github.com/A21l63/math-prob-stat