

MODEL GRAPH :-

TABLE : FOR PRACTICAL CALCULATION :-

S-No	Joad Justance (RL)	Load www.ent (Ii) un camps	Load voltage (VL) un volts	Load power (PL) in watts.
1	1 K-a	2-96mA	2.96 V	8 · 76mW
2	150 KA	5.53 mA	0.9 9 5 V	6.60 mW
3	100 KA	6.00MA	0.6V	3.6 mw
4	470 K.2	4.13mA	1-94 V	8.01 mW
5	5Kn	0.85mA	4.335 V	3.68 mw

forestaring for himself the triber

VERIFICATION OF MAXIMUM POWER TRANSFER THEOREM.

AUM:

To measure the power absorbed in load and to verify that the power absorbed in a load is maximum only when load resistance is equal to the source resistance.

APPARATUS REQUIRED:

S.No	NAME OF THE APPARATUS	SPECIFICATION	QUANTITY
1.	Voltmeter	(0-15 V) MC	· ·
2.	Ammeter	(0-500 mA)MC	
3.	Resistors.	560.D,	2
4.	RPS (Oc supply)	15 15	1.4.

PROCEDURE:

- 1. Make connection as per the circuit diagram.
- 2. Change the oresistors Re whose value close to RTh, measure the corresponding Ve, It and calculate Pe and enter into the table (2).
- 3. Plot a graph between Ri and Pi and find the Ri corresponding to masimum power transfer.
- 4. Vouity the measured values of Re at uncommun power transfer as same as calculated and found graphically.

CALCULATION:

$$Vth = \frac{V \times R_2}{R_1 + R_2} = \frac{10 \times 560}{560 + 560} = 5V$$

$$Rth = \frac{560 \times 560}{2(560)} + 470 = 280 + 470$$

$$= 750 \Omega$$

RL = REACTION CONTRACTOR OF THE MEMBERS IN

$$P_L = \frac{(V_{th})^2}{4(R_{th})} = \frac{5^2}{4 \times 750} = \frac{25}{4 \times 750} = \frac{25}{3000}$$

= 8.33 mW

$$I_L = Vth$$

$$Rth + RL$$

$$I_{500}$$

$$I_L = 3.33 mA$$

VL = TL XRL = 3.33 × 10-3 × 750

VL = 2.5V

Marks consection is per the since lings and the first only of the same with the same with the same of the same of

tier i findy princip is anything to may have a find of the

rough and material value of the at water in

RESULT:

Thus maximum power transfer theorem is voisfied practically and theoretically.