Teorema: Decidibilità ed Enumerazione Ordinata

Teorema Principale

Teorema: Un linguaggio L è decidibile se e solo se esiste un enumeratore che enumera L secondo l'ordinamento standard delle stringhe.

Formalmente: $L \in R \iff \exists E$: E enumera L in ordine lessicografico

Definizioni Preliminari

Enumeratore

Un **enumeratore** E è una TM con un nastro di output che:

- Non ha input
- Stampa stringhe separate da delimitatori sul nastro di output
- L(E) = {w | E stampa w sul nastro di output}

Ordinamento Standard

L'**ordinamento standard** (lessicografico) su Σ^* è definito da:

- 1. $|w_1| < |w_2| \implies w_1 <_{lex} w_2$ (ordinamento per lunghezza)
- 2. $|w_1| = |w_2| \Longrightarrow w_1 <_{lex} w_2$ sse w_1 precede w_2 nell'ordine dizionario

Esempio ($\Sigma = \{0,1\}$): ϵ , 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 111, ...

Dimostrazione

Direzione (⇒): Decidibile ⇒ Enumeratore Ordinato

Dato: L decidibile, quindi 3 TM M tale che M decide L

Tesi: ∃ enumeratore E che enumera L in ordine lessicografico

Costruzione dell'Enumeratore E

Enumeratore E:

- 1. Genera tutte le stringhe in ordine lessicografico
- 2. Per ogni stringa w generata:
 - a. Simula M(w)
 - b. Se M accetta w, stampa w
 - c. Continua con la prossima stringa

Algoritmo Formale

```
E(): for \ n=0, 1, 2, ... \ do for \ ogni \ stringa \ w \in \Sigma^n \ in \ ordine \ lessicografico \ do simula \ M(w) if \ M \ accetta \ w \ then stampa \ w end \ f end \ for end \ for
```

Correttezza della Costruzione

Lemma 1: E enumera esattamente L

Dimostrazione:

• E stampa $w \iff M(w)$ accetta $\iff w \in L$ (per definizione di M)

Lemma 2: E enumera in ordine lessicografico

Dimostrazione:

- Le stringhe sono generate per lunghezza crescente
- All'interno di ogni lunghezza, sono generate in ordine lessicografico
- M termina sempre (L è decidibile), quindi nessuna stringa blocca l'enumerazione

Lemma 3: E termina la generazione di ogni stringa in tempo finito **Dimostrazione**:

- Per ogni w, M(w) termina in tempo finito (M è un decisore)
- Quindi E procede sempre alla stringa successiva

Direzione (←): **Enumeratore Ordinato** → **Decidibile**

Dato: ∃ enumeratore E che enumera L in ordine lessicografico

Tesi: L è decidibile

Costruzione del Decisore M

```
Decisore M:
Input: stringa w

1. Simula E finché non stampa una stringa s tale che s ≥lex w

2. If s = w then accetta

3. Else rifiuta
```

Algoritmo Formale

```
M(w):
repeat
sia s la prossima stringa stampata da E
if s = w then
accetta
endif
if s > lex w then
rifiuta
endif
endrepeat
```

Correttezza della Costruzione

Lemma 4: M termina sempre

Dimostrazione:

- E enumera in ordine lessicografico crescente
- Per ogni w, esisterà sempre una stringa s ≥_{lex} w nella sequenza
- Quindi il ciclo termina sempre

Lemma 5: M decide L correttamente

Dimostrazione:

- Caso w ∈ L: E stamperà w in posizione corretta, M accetta
- Caso w ∉ L: E non stamperà mai w, ma stamperà una stringa s >_{lex} w, M rifiuta

Lemma 6: L'ordinamento garantisce la correttezza

Dimostrazione: Se w ∉ L e E enumera s >_{lex} w, allora w non può apparire successivamente perché E enumera in ordine crescente.

Conseguenze Teoriche

Corollario 1: Caratterizzazione Alternativa

Corollario: $L \in R \iff L$ è ricorsivamente enumerabile e co-r.e.

Dimostrazione:

- Il nostro teorema fornisce una costruzione diretta
- Un enumeratore ordinato permette sia di verificare appartenenza che non-appartenenza

Corollario 2: Separazione da R.E.

Corollario: Esistono linguaggi r.e. che non sono decidibili

Dimostrazione:

- Alcuni linguaggi r.e. hanno enumeratori che non possono essere resi ordinati
- Esempio: il linguaggio delle TM che terminano su input vuoto

Corollario 3: Ottimalità

Corollario: L'ordinamento è necessario - un enumeratore non ordinato non garantisce decidibilità

Controesempio: $K = \{(M) \mid M((M)) \text{ accetta}\}\$ ha un enumeratore ma non ordinato.

Esempio Applicativo

```
Linguaggio: L = \{ww^R \mid w \in \{0,1\}^*\}
```

Enumeratore Ordinato:

```
E():

for n = 0, 2, 4, ... do // solo lunghezze pari

for ogni w ∈ {0,1}^(n/2) in ordine lex do

stampa ww^R

endfor

endfor
```

Decisore Derivato:

```
M(x):

if |x| è dispari then rifiuta

let x = x_1x_2...x_{2k}

if x_1...x_k = x_{k+1}...x_{2k} R then accetta

else rifiuta
```

Complessità della Costruzione

Analisi Temporale

- Enumeratore → Decisore: O(2^|w|) nel caso peggiore
- **Decisore** → **Enumeratore**: Tempo polinomiale per stringa generata

Ottimalità della Costruzione

La costruzione è **ottimale** nel senso che:

- 1. Non esiste una costruzione più efficiente in generale
- 2. L'ordinamento lessicografico è l'unico ordinamento totale computabile che garantisce la proprietà

Importanza Teorica

Questo teorema stabilisce che:

- 1. Decidibilità ≡ Enumerabilità ordinata
- 2. Fornisce un bridge tra **riconoscimento** ed **enumerazione**
- 3. Dimostra che l'**ordinamento** è il fattore critico che separa R da R.E.