

Aufgabe 1 (25 Punkte)

(a) (11 Punkte) Gegeben sei das periodische Signal x(t) mit der Periode $T=2\pi$, wobei $x(t)=e^{2t}$ für $-\pi < t \le \pi$.

- \bigstar i. (3 Punkte) Bestimmen Sie die Koeffizienten c_k der Fourierreihe von x(t).
- \bigstar ii. (8 Punkte) Das Signal x(t) liegt am Eingang eines idealen Bandpassfilters mit der Mittenfrequenz $f_0 = \frac{3}{T}$ und der einseitigen Bandbreite $\Delta f = \frac{1}{T}$ (s. Abbildung) an. Der Frequenzgang des Bandpassfilters ist in der folgenden Abbildung dargestellt.

Bestimmen Sie das zum Eingangssignal $\boldsymbol{x}(t)$ gehörige Ausgangssignal $\boldsymbol{y}(t)$ des Bandpassfilters.

(b) (9 Punkte) Die Signale $x(t) = A\cos(2\pi t/T_a)$ und $y(t) = B\cos(2\pi t/T_b)$ liegen an den Eingängen des folgenden Multiplikators an.

Für die Beziehung zwischen den Perioden T_a und T_b sind folgende drei Fälle gegeben:

 \bigstar i. (3 Punkte) $T_a = T_b$

- \bigstar ii. (3 Punkte) $T_a = \frac{1}{2}T_b$
- \bigstar iii. (3 Punkte) $T_a = 2T_b$

Bestimmen Sie jeweils die Periode T von z(t). Bestimmen Sie zudem die Koeffizienten c_k der Fourierreihe $z(t) = \sum_{k=-\infty}^{\infty} c_k e^{2\pi i k t/T}$.

Hinweis: Verwenden Sie die trigonometrische Gleichung

$$\cos(x)\cos(y) = \frac{1}{2}\left(\cos(x-y) + \cos(x+y)\right).$$

(c) (5 Punkte) Gegeben sei das LTI-System H mit der Impulsantwort

$$h(t) = e^{-t/T}\sigma(t)$$
, mit $T > 0$,

wobei

$$\sigma(t) = \begin{cases} 1, & t \ge 0 \\ 0, & t < 0 \end{cases}.$$

Am Eingang von H liegt das Signal

$$x(t) = \delta(t) + \delta(t - 2T) + \delta(t - 4T).$$

- \bigstar i. (2 Punkte) Bestimmen Sie das zu x(t) gehörige Ausgangssignal y(t) des Systems H.
 - ii. (3 Punkte) Skizzieren Sie das Ausgangssignal y(t). Bitte beschriften Sie die Achsen in Ihrer Skizze.

Aufgabe 2 (25 Punkte)

(a) (16 Punkte) Gegeben seien die zeitkontinuierlichen Signale

$$x_1(t) = \frac{\sin(2000\pi t)}{\pi t}$$

und

$$x_2(t) = \frac{\sin(4000\pi t)}{\pi t} ,$$

welche an folgendem System anliegen,

wobei T>0 die Abtastperiode ist. Der D/A-Wandler hat die Eingangs-Ausgangsbeziehung

$$x_s(t) = \sum_{k=-\infty}^{\infty} x(kT)\delta(t-kT).$$

- \bigstar i. (9 Punkte) Berechnen und skizzieren Sie $\widehat{x}(f)$. Bitte beschriften Sie die Achsen in Ihrer Skizze.
 - ii. (3 Punkte) Geben Sie die maximale Abtastperiode T_{\max} an, so dass x(t) eindeutig aus x(kT), $k \in \mathbb{Z}$, rekonstruiert werden kann. Begründen Sie Ihre Antwort.
- \bigstar iii. (4 Punkte) Es sei nun $T=T_{\max}$. Berechnen Sie die Fouriertransformierte $\widehat{x}_s(f)$ von $x_s(t)$ in Abhängigkeit von $\widehat{x}(f)$ und T_{\max} .
- (b) (9 Punkte) Gegeben sei das System

$$y(t) \xrightarrow{T} y(kT) \longrightarrow y_s(t)$$

wobei T>0 die Abtastperiode ist, und der D/A-Wandler die Eingangs-Ausgangsbeziehung

$$y_s(t) = \sum_{k=-\infty}^{\infty} y(kT)\delta(t-kT)$$

hat. Die Fouriertransformierte $\widehat{y}(f)$ von y(t) ist im folgenden Diagramm dargestellt.

- \bigstar i. (5 Punkte) Skizzieren Sie die Fouriertransformierte $\widehat{y}_s(f)$ für die Abtastrate von $1/T=2.5f_1$. Kann y(t) eindeutig aus $y_s(t)$ rekonstruiert werden? Begründen Sie Ihre Antwort.
- \bigstar ii. (4 Punkte) Geben Sie die maximale Abtastperiode T_{\max} an, so dass das abgetastete Signal $y_s(t)$ frei von Aliasing ist. Skizzieren Sie auch die Fouriertransformierte $\widehat{y}_s(f)$ für diese Abtastperiode T_{\max} .

Aufgabe 3 (25 Punkte)

Gegeben sei das folgende zeitdiskrete, kausale LTI-System G mit Eingangssignal x[n] und Ausgangssignal y[n].

Das System G besteht aus der Serienschaltung der beiden zeitdiskreten, kausalen LTI-Systeme H_1 und H_2 , wobei die Übertragungsfunktion von H_1 gegeben ist durch

$$H_1(z) = \frac{(z-1)^2}{z^2}, \quad z \in \mathbb{C}.$$

- \bigstar (a) (3 Punkte) Bestimmen Sie die Impulsantwort des Systems H_1 .
- ★ (b) (4 Punkte) Bestimmen Sie anhand des Blockschaltbilds die Übertragungsfunktion $H_2(z)$ des Systems H_2 in Abhängigkeit von $a, b, c \in \mathbb{R}$.

Nehmen Sie in weiterer Folge an, dass die Koeffizienten a, b, c so sind, dass

$$H_2(z) = \frac{z + \frac{1}{5}}{(z - \frac{1}{2})(z - 1)}.$$

- \bigstar (c) (2 Punkte) Ist das Gesamtsystem G BIBO-stabil? Begründen Sie Ihre Antwort.
- \bigstar (d) (4 Punkte) Betrachten Sie das Eingangssignal $x[n] = \delta[n] \frac{1}{2}\delta[n-1]$ und bestimmen Sie das zugehörige Ausgangssignal y[n] = (Gx)[n] des Gesamtsystems.
- ★ (e) (6 Punkte) Bestimmen Sie ein rechtsseitiges Eingangssignal x'[n], sodass für das zugehörige Ausgangssignal u[n] des Systems H_1 gilt $\delta[n] = u[n] = (H_1x')[n]$.
- \star (f) (6 Punkte) Bestimmen Sie die Impulsantwort des Systems H_2 .

Aufgabe 4 (25 Punkte)

In dieser Aufgabe sind wir an der diskreten Fouriertransformation zwei-dimensionaler (2D) Signale $x:\mathbb{Z}^2\to\mathbb{C}$ endlichen Trägers interessiert. Konkret seien $N,M\in\mathbb{N}$ und x[n,m] ein zeitdiskretes 2D-Signal. Die zugehörige diskrete Fouriertransformierte ist definiert als

$$\hat{x}: k, \ell \mapsto \sum_{n=0}^{N-1} \sum_{m=0}^{M-1} x[n, m] e^{-2\pi i k n/N} e^{-2\pi i \ell m/M}, \text{ für alle } k, \ell \in \mathbb{Z}.$$
 (1)

 \bigstar (a) (4 Punkte) Beweisen Sie, dass \hat{x} periodisch ist gemäss

$$\hat{x}[k+uN,\ell+vM] = \hat{x}[k,\ell], \ \forall k,\ell,u,v \in \mathbb{Z}.$$

★(b) (8 Punkte) Beweisen Sie, dass die inverse zwei-dimensionale diskrete Fourier-transformation gegeben ist durch

$$x[n,m] = \frac{1}{NM} \sum_{k=0}^{N-1} \sum_{\ell=0}^{M-1} \hat{x}[k,\ell] e^{2\pi i k n/N} e^{2\pi i \ell m/M},$$
 (3)

für
$$n = 0, ..., N - 1, m = 0, ..., M - 1.$$

- \bigstar (c) (8 Punkte) Ein zeitdiskretes 2D-Signal $x: \mathbb{Z}^2 \to \mathbb{C}$ wird als separierbar bezeichnet, wenn es in der Form $x[n,m]=x_1[n]x_2[m]$, $n,m\in\mathbb{Z}$, dargestellt werden kann, wobei $x_1,x_2:\mathbb{Z}\to\mathbb{C}$. Beweisen Sie, dass x[n,m] separierbar ist dann und nur dann, wenn $\hat{x}[k,\ell]$ separierbar ist.
- \bigstar (d) (3 Punkte) Es seien $k_1, k_2 \in \mathbb{Z}$, so dass $0 \le k_1 \le N-1$ und $0 \le k_2 \le M-1$. Berechnen Sie die zwei-dimensionale diskrete Fouriertransformation des Signals $x[n,m] = e^{2\pi i \left(\frac{nk_1}{N} + \frac{mk_2}{M}\right)}$, $n,m \in \mathbb{Z}$.
- \bigstar (e) (2 Punkte) Angenommen dass $N=M=50, k_1=10, k_2=5$ und $x[n,m]=e^{2\pi i\left(\frac{nk_1}{N}+\frac{mk_2}{M}\right)}$, für alle $n,m\in\mathbb{Z}$. Welches der folgenden beiden Bilder entspricht der diskreten 2D-Fouriertransformation von x[n,m]?

