HOMEWORK 3

5.3 Find i_o in the circuit in Fig. P5.3 if the op amp is ideal.

Figure P5.3

- 5.13 a) The op amp in Fig. P5.13 is ideal. Find v_o if $v_a = 16 \text{ V}$, $v_b = 12 \text{ V}$, $v_c = -6 \text{ V}$, and $v_d = 10 \text{ V}$.
 - b) Assume $v_a v_c$, and v_d retain their values as given in (a). Specify the range of v_b such that the op amp operates within its linear region.

Figure P5.13

5.18 The op amp in the circuit shown in Fig. P5.18 is ideal.

- a) Calculate v_o when v_g equals 3 V.
- b) Specify the range of values of v_g so that the op amp operates in a linear mode.
- c) Assume that v_g equals 5 V and that the 48 k Ω resistor is replaced with a variable resistor. What value of the variable resistor will cause the op amp to saturate?

Figure P5.18

5.36 The op amps in the circuit in Fig. P5.36 are ideal.

a) Find i_a .

b) Find the value of the right source voltage for which $i_a = 0$.

Figure P5.36

