## Exercice 2

March 6, 2020

# 1 La première [3pt; 1pt pour la décomposition en cylindre, 2pt pour le résultat]

Le cylindre est un objet formidable (observez la figure 1 si vous ne me croyez pas), surtout lorsqu'il a un rayon R et une hauteur h. La valeur de son volume va vous étonner! Calculez-la en utilisant une intégrale simple. (Pour ce faire, vous vous rappelerez, avec nostalgie, l'équation d'un cercle de rayon R:  $x^2 + y^2 = R^2$ ).

#### 1.1 Soluce

On décompose notre cylindre en petit cylindre de hauteur  $\mathrm{d}z$  et additionne les volumes de tous ces cylindres pour trouver le volume du cylindre. Le volume de chacun de ces cylindres est  $\pi r(z)^2 \mathrm{d}y$ . Il ne reste plus qu'à trouver r(z).

On connaît les équations du cylindre  $x^2+y^2=R^2$  et  $0\leq z\leq h$ . Pour chacun de ces cylindres, on est dans un plan parallèle à xOy, c'est à dire qu'on est à z fixé. On connaît l'équation d'un cercle dans un tel plan  $x^2+y^2=r(z)^2$ , on en déduit que  $x^2+y^2=R^2=r(z)^2$ . Donc, le volume du cylindre pour un z donné est  $\pi R^2 \mathrm{d} z$ , il ne reste plus qu'à sommer :

$$V_{\rm cyl} = \int_0^h \pi R^2 \, \mathrm{d}z = \pi R^2 h \tag{1}$$

# 2 La deuxième [2pt; 0.5pt pour la décompo en cylindre, 1pt pour avoir posé la bonne intégrale, 0.5 pour le résultat]

Les toupies ne sont pas mal non plus. Celle-ci possède le petit désavantage d'être infinie. Mais son équation cartésienne est plutôt lisible :

$$\begin{cases} x^2 + y^2 &= \frac{1}{\sqrt{|z|}} \\ |z| &\le 5 \end{cases}$$

Trouvez la valeur du volume de cette toupie (que vous pouvez admirer sur la figure 2) en utilisant une intégrale.

### 2.1 Soluce

On décompose la toupie en petit cylindre de hauteur  $\mathrm{d}z$  et on additionne les volumes de tous ces cylindres pour trouver le volume de la toupie. Le volume de chacun des cylindres est  $\pi r(z)^2\mathrm{d}y$ .

A z fixé, on connaît l'équation d'un cercle dans le plan xOy:  $x^2+y^2=\frac{1}{\sqrt{|z|}}$ , on en déduit que  $x^2+y^2=\frac{1}{\sqrt{|z|}}$ 

1



Figure 1: Un cylindre, dans toute sa simplicité



Figure 2: Une toupie, dans toute son infinité

 $\frac{1}{\sqrt{|z|}}=r(z)^2$ . Donc, le volume du cylindre pour un z donné est  $\pi\frac{1}{\sqrt{|z|}}\mathrm{d}z$ , il ne reste plus qu'à sommer :

$$V_{\text{toupie}} = \int_{-5}^{5} \pi \frac{1}{\sqrt{|z|}} \, \mathrm{d}z = 2 \int_{0}^{5} \pi \frac{1}{\sqrt{z}} \, \mathrm{d}z$$
 (2)

Qui est une intégrale généralisée. On trouve finalement

$$V_{\text{toupie}} = 2\pi \lim_{\epsilon \to 0} \left[ 2\sqrt{z} \right]_{\epsilon}^{5} = 4\pi\sqrt{5}$$
 (3)