Smart Farmer – IoT Enabled Smart Farming Application

Submitted by

01763
V
•

CONTENTS

CHAPTER	TITLE	PG.NO
NO		
1.	Introduction	4
	1.1.Project Overview	
	1.2.Purpose	
		_
2.	Literature Survey	5
	2.1.Existing Problem 2.2.References	
	2.3.Problem Statement Definition	

3.	Ideation &Proposed Solution 3.1.Prepare Empathy Map 3.2.Ideation 3.3.Proposed Solution 3.4.Proposed Solution Fit	8
4.	Requirement Analysis 4.1.Functional Requirement 4.2.Non- Functional Requirement	15
5.	Project Design 5.1.Data Flow Diagrams 5.2.Solution & Technical Architecture 5.3.User Stories	18

6.	Project Planning & scheduling	22
	6.1.Sprint Planning & Estimation	
	6.2.Sprint Delivery Schedule	
	6.3Reports from JIRA	
7.	Coding and Solution	27
	7.1.Feature – 1	
	7.2.Feature - 2	
	7.3.Data Scheme	
8.	Testing	36
	8.1.Test Cases	
	8.2.User Acceptance Testing	
9.	Results	39
	9.1.Performance Metrics	
10.	Advantages & Disadvantages	39

11.	Conclusion	
		40
12.	Future Scope	41
13.	Appendix	42
	13.1.Source code	
	13.2.GitHub & Project Demo Link	

1.Introduction

1.1.Project Overview

IoT-based farming systems help farmers to monitor various parameters of their fields, such as soil moisture, temperature, and humidity, using several sensors. A farmer can monitor all sensor parameters through his web or mobile application without being near

his field. Crop irrigation is one of the most important tasks for a farmer. By monitoring sensor parameters and controlling motor pumps from a mobile application, irrigation or crop movement decisions can be made easily.

1.2.Purpose

Better production management leads to a better cost control and less waste. For example, the ability to eliminate abnormal animal health conditions helps eliminate the risk of yield loss. In addition, automation increases efficiently. Smart Farming forms the ecological base of faming. Minimizing the site-specific application of inputs such as fertilizers and pesticides in precision farming systems reduces leaching issues and digester gas emissions.

2. Literature Survey

2.1.Existing Problem

IoT's Smart Farming improves entire farming systems by monitoring fields in real time. With the help of sensors and internet connectivity, the Internet of Things in culture has not only saved the celebrity era, but has also encouraged the abuse of resources such as water and electricity. Climate plays a very important role in agriculture. Mis-knowledge of climate also significantly reduces the quantity and quality of crop production. Precision agriculture/precision farming is one of his best known applications of IoT in agriculture. It enables smart farming applications such as livestock monitoring, field observation, and inventory monitoring, making farming practices more precise and controllable. To make greenhouses smart, IoT has enabled weather stations to automatically adjust climateconditions according to a specificset of instructions. IoT implementation in the greenhouse eliminated human intervention, making the whole process more cost-effective and more accurate.

2.2.References

- Internet of Things in agriculture, recent advances and future challenges Antonis Tzounisa, Nikolaos Katsoulasa, Thomas Bartzanas, Constantinos Kittasa a Department of Agriculture Crop Production & Rural Environment, University of Thessaly, Volos, Greece b Institute for Research & Technology Thessaly, Centre for Research and Technology Hellas, Volos, Greece Received 18 March 2017, Revised 2 September 2017, Accepted 21 September 2017, Available online 24 November 2017, Version of Record 24 November 2017.
- ii. Divya J., Divya M., Janani V. [2] Agriculture is essential to India's economy and people's survival. The purpose of this project is to create an embedded-based soil monitoring and irrigation system that will reduce manual field monitoring and provide information via a mobile app. The method is intended to help farmers increase their agricultural output. A pH sensor, a temperature sensor, and a humidity sensor are among the tools used to examine the soil. Based on the findings, farmers may plant the bestcrop for the land.
- iii. Kittikhun Meethongjan, Suwit Kongsong. The smart agriculture system played with an automation system and monitoring system based on wireless sensor networks. It can collect data from different sensors deployed at various nodes and sends it through

the wireless protocol. In smart agriculture, Arduino mainboard of IOT system consists of temperature sensor, moisture sensor, water level sensor, DC motor and GPRS module.

2.3. Problem Statement Solution

To provide efficient decision support system using wireless sensor network which handle different activities of farm and gives useful information related to farm. Information related to Soil moisture, Temperature and Humidity content. Due to the weather condition, water level increasing Farmers get lot of distractions which is not good for Agriculture. Water level is managed by farmers in both Automatic/Manual using that mobile application. It will make more comfortable to farmers. Performing agriculture is very much time consuming. Traditional agriculture and related sectors are unable to meet the demands of modern agriculture, which requires high yield, quality and efficient production. Therefore, it is very important to look to modernize existing methods and use information technology and data over a period of time to predict the best possible productivity and country-suitable crops. The introduction of high-speed internet, mobile devices, and access to reliable and low-cost satellites is just some of the key technologies characterizing the precision farming trend in agriculture. Precision agriculture is one of his best-known applications of IoT in the agricultural sector, with many organizations around the world using the technology. Products and services used include VRI Optimization, Soil Moisture Probes and Virtual Optimizer PRO. Optimize variable rate irrigation (VRI) to maximize profitability, improve yields and increase water efficiency in irrigated fields with variable terrain and soils. IoT is making great strides in areas such as manufacturing, healthcare, and automotive. When it comes to food production, transportation and storage, it offers a range of options to improve his per capita food availability in India. Sensors that provide information on soil nutrient status, pest infestation, moisture conditions, etc. can be used to improve crop yields over time.

3.Ideation & Proposed Solution

3.1. Prepare Empathy Map

3.2 Ideation

3.3 Proposed Solution

S.No.	Parameter	Description
1.	Problem Statement (Problem	To provide efficient decision support
	to be solved)	system using wireless sensor network
		which handle different activities of farm
		and gives useful information related to
		farm. Information related to Soil
		moisture, Temperature and Humidity
		content. Due to the weather condition,
		water level increasing Farmers get lot of
		distractions which is not good for
		Agriculture. Water level is managed by
		farmers in both Automatic/Manual using
		that mobile application. It will make more
		comfortable to farmers. Performing
		agriculture is very much time consuming.

2. Idea / Solution description

In Internet of Things based smart agriculture, a system is formed to monitor the farmland with the help of sensors, which components like senses temperature, light, humidity, soil moisture, Then, automate etc. irrigation system and allow farmers to monitor their field conditions from anywhere through IoT **Analytics** Platform. To make the agricultural process even smarter and accurate, precision agriculture is used. This makes agricultural practice more controlled and precise in terms of raising livestock and farming. The output of the solution will be in the form of an application which gives us the above mentioned features like displaying the temperature, humidity, soil moisture which enables the farmers to know about the exact condition of thesoil.

3.	Social Impact / Customer	Smart Farming has enabled farmers to
	Satisfaction	reduce waste and enhance productivity
		with the help of sensors (humidity,
		temperature, soil moisture) and
		automation of irrigation systems. Further
		with the help of these sensors, farmers
		can monitor the field conditions from
		anywhere. Internet of Things based smart
		Farming is highly efficient when
		compared with the conventional
		approach. Thus this application helps the
		farmers to save time, reduce the work.
4.	Business Model (Revenue	By using this application farmers can
	Model)	overcome the over usage and under usage
		of water, fertilizers, etc. With the help of
		the sensors used they get an exact
		notification about the humidity level,
		moisture content level and temperature
		level in the soil. This helps them to save
		the time and cost for labours.

5.	Scalability of the Solution	Here we use the application that gives the
		exact conditions of the soil and also
		shows the historical conditions. Once
		when the threshold value is low the
		sensors starts working and send the
		notification to the farmer. It is also used to
		detect seasonal variations as climate plays
		a major role in agriculture. This
		application works best for farmers who do
		farming as a full time job.

3.4 Proposed Solution Fit

Define CS, fit into AS 1. CUSTOMER SEGMENT(S) 6. CUSTOMER CONSTRAINTS 5. AVAILABLE SOLUTIONS The customers of this product are the farmers who cultivate crops. Our aim is to assiet, aid and help them to monitor the field parameters remotely and to keep track of the parameters. This product saves the agriculture from extinction. Deployment of huge number of sensors is difficult. It requires an unlimited or continuous internet connection to be successful. The irrigation process is automated using IoT, weather data and field parameters were obtained and processed to automate the process of irrigation. The drawbacks are high cost of installation, efficient only for short distance, difficulty is storing the data. 2. JOBS-TO-BE-DONE / PROBLEMS J&P 9. PROBLEM ROOT CAUSE 7. BEHAVIOUR Using proper drain system to overcome the effects of excess water due to heavy rain. Using hybrid varieties of crop that are resistant The objective of this product is to obtain the different field parameters using sensor and process it using a central processing system. Cloud is used to store and transmit the data by using IoT. do agriculture. These factors play a major role Weather APIs are employed to assist the farmer in making in making decision whether to water the plant decision. The farmer could take decision through a mobile when the farmer is out of station, thus leading to crop damage.

4. Requirement Analysis

4.1Functional Requirement

FR No.	Functional Requirement	Sub Requirement (Story / Sub-Task)
	(Epic)	
FR-1	User Registration	Registration through Gmail
		Registration by creating a new user name and
		password
FR-2	User Confirmation	Confirmation via Email
		Confirmation via OTP
FR-3	User login	Login using the credentials we have used
		during registration
FR-4	User permission	Smart Farming with IoT relies
		increasingly on smart technology for the
		management of agricultural enterprises.
		And it does so in order to increase the
		quality and quantity of the products.

FR-5	Using the intelligent system	IoT and AI solutions can get integrated	
		into autonomous tractors to help collect	
		real-time data about soil health, including	
		water levels, temperature, and weather.	
1			1

4.2.Non-Functional Requirements

FR No.	Non-Functional	Description
	Requirement	
NFR-1	Usability	It is very user friendly, any people with less
		knowledge also can easily
		understand.Remote Management. With
		farms being located in far-off areas and
		distant lands, farmers enable this for
		better solution.

NFR-2	Security	Smart farming, which involves the
		application of sensors and automated
		irrigation practices, can help monitor
		agricultural land, temperature, soil
		moisture, etc. This would enable
		farmers to monitor crops from
		anywhere.
NFR-3	Reliability	It has good consistency and Accuracy as it
		actively helps farmers to better
		understand the important factors such
		as water level,weather,humidity and
		soil mositure.
NFR-4	Performance	The performance of smart farming is high
		and it is very efficient as it is very easy to
		understand and has a high security and
		scalability.
NFR-5	Availability	This smart farming is enabled at any
		system like laptop, mobile phone,
		desktop, Gis and user friendly.
	I .	

NFR-6	Scalability	smart farming refers to the adaptability
		of a system to increase the capacity,the
		number of technology devices such as
		sensors and actuators, while enabling
		timely analysis.

5.Project Design

5.1.Data Flow Diagram

5.2.Solution Architecture

- The different soil parameters (temperature, humidity, Soil Moisture) are sensed using different sensors, and the obtained value is stored in the IBM cloud.
- Arduino UNO is used as a processing unit that processes the data obtained from sensors and weather data from weather API.
- Node-red is used as a programming tool to wire the hardware, software, and APIs. The MQTT protocol is followed for communication.
- All the collected data are provided to the user through a mobile application that was developed using the MIT app inventor. The user could make a decision through an app, whether to water the crop or not depending upon the sensor values. By using the app they can remotely operate the

motor switch.

5.3.User Stories

User Type	Functional	User Story	User Story / Task	Acceptance criteria	Priority	Release
	Requirement	Number				
	(Epic)					
Customer (Mobile user)	Registration	USN-1	As a user, I can register for the application by entering my email, password, and confirming my password.	I can access my account / dashboard	High	Sprint-1
		USN-2	As a user, I will receive confirmation email once I have registered for the application	I can receive confirmation email & click confirm	High	Sprint-1
		USN-3	As a user, I can register for the application through Facebook	I can register & access the dashboard with Facebook Login	Low	Sprint-2
		USN-4	As a user, I can register for the application through Gmail	I can register & access the dashboard with Gmail Login	Medium	Sprint-1
	Login	USN-5	As a user, I can log into the application by entering email & password	I can access dashboard with email login	High	Sprint-1
	Dashboard	USN-6	As a user I can enter into dashboard by using navigation	I can access the dashboard by using	High	Sprint-1

			panel	navigation panel		
Customer (Web user)	Registration	USN-1	As a user, I can register for the web application by entering my email, password, and confirming my password.	I can access my account / dashboard	High	Sprint-1
		USN-2	As a user, I will receive confirmation email once I have registered for the web application	I can receive confirmation email & click confirm	High	Sprint-1
	Login	USN-3	As a user, I can log into the web application by entering email & password	I can access dashboard with email login	High	Sprint-1
	Dashboard	USN-4	As a user I can enter into web dashboard by using navigation panel	I can access into dashboard by using navigation panel	High	Sprint-1
Customer Care Executive	Registration	USN-1	As a user I can contact the customer care service through phone or mail medium	I can receive confirmation SMS or email	High	Sprint-1
!		USN-2	As a user I want customer care to answer the questions related to product and services	I can get the problem solved within a day	High	Sprint-1
		USN-3	As a user I want customer care to register my complaints	I can receive a confirmation message stating my complaint is registered	High	Sprint-1

	USN-4	As a user I want customer care to collect and analyse consumer feedback	I can get the status of my feedback	High	Sprint-1
	USN-5	As a user I want customer care to troubleshoot technical problems	I can get the problem solved within a day	High	Sprint-1
Administrator	USN-1	As a user I want the administrator to use good working hardware	I can get a guarantee and warranty card	High	Sprint-1
	USN-2	As a user I want the administrator to sell the product in a reasonable rate	I can get the cost of bill of materials	High	Sprint-1
	USN-3	As a user I want the administrator to refund my amount if I am not satisfied with the product	I can get an assurance stating I will get my amount back	High	Sprint-1

6.Project Planning & Scheduling

6.1 Sprint Planning & Estimation

Sprint	Functional	User	User Story/Task	Story	Priority	Team Member
	Requirement	StoryNumb		Poin		
	(Epic)	ar		ts		
	(Epic)	er				

	(FarmerMobi le User)	UNS-1	As a user, I canregisterfor the application by entering my email, password, and confirming my password.	2	High	Kiruthika L (Leader)
Sprint-1	Login	UNS-2	As a user, I will receive confirmation email once I have registered for the application	1	High	Megala P (Member2)

Sprint-2	User Interface	UNS-3	As a user, I can	3	Low	Rithika C (Member 3)
			registerfor the			
			application			
			throughFacebook			

Sprint-1	Data Visualization	UNS-4	As a user, I can registerfor the application throughGMAIL	2 Medium		Harshitha N (Member 4)
Sprint-3	Registration (Farmer-Web User)	USN - 1	As a user, I can log intothe application by entering email and password	a user, I can log the application by ering email and		Kiruthika L(Leader)
Sprint - 2	Login	USN - 2	As a registered user, I need to easily login loginto my registered account via the web page in minimumtime	3	High	Megala P (Member 2)
Sprint - 4	Web UI	USN - 3	As a user, I need to have a friendly user interface to easily viewand access the resources	3	Medium	Rithika C (Member3)
Sprint - 1	Registration (Chemical Manufacturer - Web user)	USN - 1	As a new user, I want tofirst register using my organization email and create a password for the account.	2	High	Harshitha N(Member 4)

Sprint - 4	Login	USN - 2	As a registered user, Ineed to easily log in using the registered account via the web page.	3	High	Kiruthika L (Leader)
Sprint -	Web UI	USN - 3	As a user, I need to have a userfriendly interface to easily viewand access the resources.	3	Medium	Megala P (Member 2)
Sprint - 1	Registration (Chemical Manufacturer - Mobile User)	USN - 1	As a user, I want to firstregister using my emailand create a password for theaccount.	1	High	Rithika C (Member 3)
Sprint - 1	Login	USN - 2	As a registered user, I need to easily log in tothe application.	2	Low	Harshitha N (Member 4)

6.2 Sprint DeliverySchedule

Sprint	Total	Durati	Sprint	Sprint End	Story	Sprint Release
	Story	on	Start	Date	PointsComplet	Date(Actual)
	Points		Date	(Planned)	ed (as on	
					Planned	
					End Date)	
Sprint-1	12	6Days	24Oct 2022	29Oct 2022	20	29Oct 2022
Sprint-2	6	6Days	31Oct 2022	05Nov 2022	20	30OCT 2022
Sprint-3	6	6Days	07Nov 2022	12Nov 2022	20	6NOV 2022
Sprint-4	6	6Days	14Nov 2022	19Nov 2022	20	1. NOV 2022

6.3.JIRA Report

7. Coding & Solutioning

7.1.Feature - 1

Receiving commands from IBM cloud using C++ program

```
#include "Arduino.h" #include "dht.h"
#include "SoilMoisture.h" #define dht_apin
A0
#define organization = "mmbh4c" #define deviceType =
"smartfarmer" #define deviceId = "smartfarmer 1" #define
authMethod = "use-token-auth" #define authToken =
"123456789"
char server[] = ORG ".messaging.internetofthings.ibmcloud.com";
char publishTopic[] = "iot-2/evt/abcd_1/fmt/json";char topic[] = "iot-
2/cmd/home/fmt/String";
char authMethod[] = "use-token-auth";char token[]=TOKEN; char clientId[] = "d:"
ORG ":" DEVICE_TYPE ":"DEVICE_ID;
const int sensor_pin = A1; //soil moistureint pin_out = 9; dht DHT; int c=0;
```

```
void setup()
 {
 pinMode(2, INPUT); //Pin 2 as INPUT pinMode(3, OUTPUT); //PIN 3 as OUTPUT pinMode(9,
 OUTPUT);//output for pump
 void loop()
 if (digitalRead(2) == HIGH)
 digitalWrite(3, HIGH);
                         // turn the LED/Buzz ONdelay(10000); digitalWrite(3,
 LOW);
           // turn the LED/Buzz OFFdelay(100);
Serial.begin(9600);delay(1000);
  DHT.read11(dht_apin); //tempraturefloat h=DHT.humidity;
```

```
float t=DHT.temperature;delay(5000); Serial.begin(9600); float
moisture_percentage;int sensor_analog; sensor_analog =
analogRead(sensor_pin);
  moisture_percentage = ( 100 - ( (sensor_analog/1023.00) *100 ) );
float m=moisture_percentage;delay(1000); if(m<40)//pump
{
while(m < 40)
{
digitalWrite(pin_out,HIGH);
                                    //open pump sensor_analog =
analogRead(sensor_pin);
  moisture_percentage = ( 100 - ( (sensor_analog/1023.00) *100 ) );
m=moisture_percentage;delay(1000);
}
```

```
digitalWrite(pin_out,LOW);
                                   //closepump
 }
 if(c>=0)
 {
 mySerial.begin(9600);delay(15000); Serial.begin(9600); delay(1000); Serial.print("\r"); delay(1000);
 Serial.print((String)"update-
 >"+(String)"Temprature="+t+(String)"Humidity="+h+(String
)"Moisture="+m);delay(1000);
```

Output

7.2.Feature - 2

Configuration of Node-Red to send commands to IBM cloud

Ibmiot out node I used to send data from Node-Red to IBM Watson device. So, after adding it to the flow we need to configure it with credentials of our Watsondevice.

Here we add two buttons in UI 1 -> for motor on

2 -> for motor off

We used a function node to analyses the data received and assign command toeach number.

The Java script code for the analyses is:

if(msg.payload===1) msg.payload={"command":

"ON"}; else if(msg.payload===0)

msg.payload={"command": "OFF"};

This is the program flow for sending commands to IBM cloud.

Adjusting User Interface

In order to display the parsed JSON data a Node-Red dashboard is created

Here we are using Gauges, text and button nodes to display in the UI and helps to monitor the parameters and control the farm equipment.

Below images are the Gauge, text and button node configurations.

Complete Program Flow

Web APP UI Home Tab

Mobile App UI

SMART FARMER APPLICATION

Blocks

8.Testing

8.1.Test Cases

Shopenzer Testcases Testscearnios •••									Exit	Exit Full					
1 2 3 4	Ă.).	С)	Date Tream ID Project Name Maximum Warks	F SAID-12 PROTOST MEDICANI Project on A rayle	E.	×	1	J.	K	l,	¥	X.	0
5	Tet cose 0	Feature Type	Component	Tet Sonario	PeRquite	Steps To Execute	Tectors	Ependilesuit	Actual Result	Satus	Commets	TC for Automation(170)	8/60	Excendity	
5 1	LoginPhys.,TC,507	Factoral	Hone Page	Verfy user's able to see the Capin' Signup propay when user closed on My account button		1 Enter URL and clock go 2 Dick on Mily Account dropdown button 3 Heafy loops Singup propar displayed	MT Aga Investor https://againvestor.inli.elu	Login populp should display		БI	Sepond Clear to follow		Bq123		
7 (LogoPage, TC, STZ	¥	Home Page	Nerly the Undersett in Login Signal popular	P	Line's brust App C line's login Singap populy with below U elements: In Items are both to A password line to it C submit a button d files custome' C bash account link elized password' Recovery password	MT Age breefor https://age/netromit.edu	Application should show below (ill whereats: la email test thoi hippessword test thoir clarge truther with prange colour differe customed "Death account link willing password" Recovery password link willing password" Recovery password link willing password."	Working as expected	Pess					
8 (LapaPage, TC, SEE	Federal	Hone page	Verly user's able to log into application with Valid ordersals				ther should ravigate to user account homegage	Noting as Expend	Pess					
9 (LogisProp. TC 004	Ferderal	Linghir galage	Verly use's side to log into application with initial ordensisk		Time IR.		leplication doubt done incomet email or passensis' validation message.	Workingsa Expend	Pass					

8.2. User Acceptance Testing

1. Purpose of Document

The purpose of this document is to briefly explain the test coverage and open issues of the [ProductName] project at the time of the release to User Acceptance Testing (UAT).

Increasing control over production leads to better cost management and waste reduction. The ability to trace anomalies in crop growth or livestock health, for instance, helps eliminate the risk of losing yields. Additionally, automation boosts efficiency. Smart farming reduces the ecological footprint of farming. Minimized or site-specific application of inputs, such as fertilizers and pesticides, in precision agriculture systems will mitigate leaching problems as well as the emission of greenhouse gases.

2. Defect Analysis

This report shows the number of resolved or closed bugs at each severity level, and how they were resolved

Severity 1	Severity 2	Severity 3	Severity 4	Subtotal
8	3			
		2	2	16
1	0	2	0	3
2	3	0	1	6
9	2	3	17	31
0	0	1	0	1
0	0	1	1	2
1	4	1	1	7
21	12	9	22	66
	2 9 0 0	2 3 9 2 0 0 0 0	2 3 0 9 2 3 0 0 1 0 0 1 1 4 1	2 3 0 1 9 2 3 17 0 0 1 0 0 0 1 1 1 4 1 1

3. Test Case Analysis

This report shows the number of test cases that have passed, failed, and untested

Total Cases			
Total Cases	Not Tested	Fail	Pass
5	0	0	5
30	0	0	30
2	0	0	2
2	0	0	2
9	0	0	9
4	0	0	4
1	О	0	1
	5 30 2 2 9	5 0 0 0 2 0 2 0 9 0 4 0	5 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0

9.Result

10.Advantages & Disadvantages

Advantages:

- Farms can be monitored and controlled remotely.
- Increase in convenience to farmers.
- Less labor cost.
- Better standards of living.

Disadvantages:

- Lack of internet/connectivity issues.
- Added cost of internet and internet gateway infrastructure.
- Farmers wanted to adapt the use of WebApp.

11.Conclusion

An IoT-based SMART FARMING SYSTEM for live monitoring of temperature, humidity and soil moisture is proposed using Arduino and cloud computing. The system has high efficiency and accuracy in acquiring live temperature and soil moisture data. The IoT-based smart farming system proposed in this report constantly assists farmers by providing accurate live feeds of ambient temperature and soil moisture for over 99 curated results, thus enabling farmers to increase their agricultural yields and help manage food production efficiently.

12. Future Scope

By collecting data from Sensor with IoT devices, we can learn about the "real state" of Crops. In future, IoT system in agriculture enables predictive analytics and helps you make better harvest decisions. It is important to use the latest information and communication technology to manage the family in order to improve the quantity and quality of products while optimizing the human labor force. In between

Technologies available for today's glory: Soil, water, light, humidity and temperature control. Small Agricultural Products are designed to support field monitoring through the automation of automation systems using Sensors. As a result, Fame and associated volumes can easily monitor field conditions from anywhere.

13.Appendix

Links:

IBM cloud reference: https://cloud.ibm.com

Github link: https://github.com/IBM-EPBL/IBM-Project-17437-1659670304

IOT Watson simulator: https://157uf3.internetofthings.ibmcloud.com/dashboard/devices/browse

Node-Red:https://node-red-hdyfv-2022-10-01.eu-gb.mybluemix.net/red/%23flow/c7ddb1462b8a000c