Today: Hubs, Switches, and Routers, Oh My!

Terminology

Hubs and Repeaters

- Connect machines on same "layer 2" LAN
- Broadcast: All frames are sent out all physical ports

Switches and Bridges

- Connect machines on same "layer 2" LAN
- Only send frames to selected physical port based on destination MAC address

Routers

- Connect between LANs at "layer 3", e.g., wide area
- Only send packet to selected physical port based on destination IP address

"Layer 2" Hubs and Switches

Physical Layer: Repeaters

- Distance limitation in local-area networks
 - Electrical signal becomes weaker as it travels
 - Imposes a limit on the length of a LAN
- Repeaters join LANs together
 - Analog electronic device
 - Continuously monitors electrical signals
 - Transmits an amplified copy

Physical Layer: Hubs

- Joins multiple input lines electrically
 - Designed to hold multiple line cards
 - Do not necessarily amplify the signal
- Very similar to repeaters
 - Also operates at the physical layer

Hub: Overview

- Layer 1 Device
- 1 Collision Domain
- Half-Duplex
- Wasted Bandwidth
- **Security** Risks
- Replaced by Switches

Limitations of Repeaters and Hubs

- One large shared link
 - Each bit is sent everywhere
 - So, aggregate throughput is limited
- Cannot support multiple LAN technologies
 - Does not buffer or interpret frames
 - Can't interconnect between different rates/formats
- Limitations on maximum nodes and distances
 - Shared medium imposes length limits
 - E.g., cannot go beyond 2500 meters on Ethernet

Link Layer: Bridges

- Connects two or more LANs at the link layer
 - Extracts destination address from the frame
 - Looks up the destination in a table
 - Forwards the frame to the appropriate segment
- Each segment can carry its own traffic

Bridge: Overview

- Layer 2 Device
- Segments Lans
- 2 Collision Domains
- Fewer Ports
- Replaced by Switches

Link Layer: Switches

- Typically connects individual computers
 - A switch is essentially the same as a bridge
 - ... though typically used to connect hosts
- Supports concurrent communication
 - Host A can talk to C, while B talks to D

Switch: Overview

- Layer 2 Device
- Full-Duplex
- Multiple Collision Domains
- Saves Bandwidth
- Increased Security

Bridges/Switches: Traffic Isolation

- Switch filters packets
 - Frame only forwarded to the necessary segments
 - Segments can support separate transmissions

Self Learning: Building the Table

When a frame arrives

- Inspect the source MAC address
- Associate the address with the *incoming* interface
- Store the mapping in the switch table
- Use a timer to eventually forget the mapping

Self Learning: Handling Misses

- When frame arrives with unfamiliar destination
 - Forward the frame out all of the interfaces
 - ... except for the one where the frame arrived
 - Hopefully, this case won't happen very often!

Switches vs. Hubs

- Compared to hubs, Ethernet switches support
 - (Y) Larger geographic span
 - (M) Similar span
 - (C) Smaller span
- Compared to hubs, switches provide
 - (Y) Higher load on links
 - (M) Less privacy
 - (C) Traffic isolation

Routers: Looking closer...

- Routes Traffic Between Networks
- Layer 3 Device
- Fewer Ports

Basic Router Architecture

- Each switch/router has a forwarding table
 - Maps destination address to outgoing interface

Basic operation

- 1. Receive packet
- 2. Look at header to determine destination address
- 3. Look in forwarding table to determine output interface
- 4. Modify packet header (e.g., decr TTL, update chksum)
- 5. Send packet to output interface

Basic Router Architecture

Basic operation

- 1. Receive packet
- 2. Look at header to determine destination address
- 3. Look in forwarding table to determine output interface

Line Card (I/O)

- 4. Modify packet header (e.g., decr TTL, update chksum)
- 5. Send packet to output interface

Router

Router

Lookup algorithm depends on protocol

Protocol	Mechanism	Techniques
Ethernet (48 bits) MPLS ATM	Exact Match	Direct lookupAssociative lookupHashingBinary tree
IPv4 (32 bits) IPv6 (128 bits)	Longest-Prefix Match	Radix trieCompressed trieTCAM

Longest Prefix Match (LPM)

- Each packet has destination IP address
- Router looks up table entry that matches address

68.211.6.120

Prefix	Output
68.208.0.0/12	1
68.211.0.0/17	1
68.211.128.0/19	2
68.211.160.0/19	2
68.211.192.0/18	1

LPM: Motivation

- Each packet has destination IP address
- Router looks up table entry that matches address
- Benefits of CIDR allocation and LPM
 - Efficiency: Prefixes can be allocated at much finer granularity
 - Hierarchical aggregation: Upstream ISP can aggregate
 2 contiguous prefixes from downstream ISPs to
 shorter prefix

Software LPM lookup using trie

- Prefixes "spelled out" by following path from root
- To find the best prefix spell out address in trie

	Prefixes
Α	111*
В	10*
С	1010*
D	10101

Software LPM lookup using trie

- Prefixes "spelled out" by following path from root
- To find the best prefix spell out address in trie

 1 lookup per level → max 32 lookups/address!

- Too slow:
 - E.g., "Optical Carrier 48" line
 (2.5 Gbps) requires 160ns
 lookup ... or 4 memory
 accesses

Software LPM lookup: k-ary trie (k=2)

A 1	L 11 *		
В :	10*	10	11
C 10	010*	В	
D 10	0101	10	10

IP Address Lookup: Binary Tries

IP Address Lookup: Patricia Trie

Problem: Lots of (slow) memory lookups

LPM with PATRICIA Tries

- Traditional method Patricia Tree
 - Arrange route entries into a series of bit tests
- Worst case = 32 bit tests
 - Problem: memory speed, even w/SRAM!

Address Lookup: Direct Trie

- When pipelined, one lookup per memory access
- Inefficient use of memory

Hardware for LPM lookup

Content-Address Memory (CAM)

- Input: tag (address)
- Output: value (port
- Exact match, but O(1) in hardware

Ternary CAM

- Can have wildcards: 0, 1, *
- "value" memory cell and "mask" (care / don't care) cell

LPM via TCAM

- In parallel, search all prefixes for all matches
- Then choose longest match
 - Trick: choose first match, but already sorted by prefix length

Example: LPM with a TCAM

Decision: Forwarding table per line card

Decision: Crossbar switch

Decision: Crossbar switch

- Shared bus
 - Only one input can speak to one output at a time

- Crossbar switch / switched backplane
 - Input / output pairs that don't compete can send in same timeslot

Crossbar switching

- Every input port has connection to every output port
- In each timeslot, each input connected to zero or more outputs

Crossbar switching

- Every input port has connection to every output port
- In each timeslot, each input connected to zero or more outputs

- Good parallelism
- Needs scheduling

Everything gets complicated...

Problem: Head-of-line blocking

- The packet in front of queue blocks packets behind it from being processed
- Say first packet at input 1 wants to go to output 5;
 second packet at 1 that wants 4 is still blocked

Everything gets complicated...

- Solution: Virtual output queues
 - One queue at input, per output port (for all inputs)
 - So avoids head-of-line blocking during crossbar scheduling

Cisco 8000 Series Routers

- Up to 648 400 GbE
- 260 Tbps backplane

• Hub

Switch

Broadcast domain Collision domain

Switch and router

Collision domain

• Hub, switch, and router

Conclusions

- Physical devices sharing L2 & L3 networks have many common features
 - Forward table lookups
 - Queueing and backplane switching
 - Fast vs. slow paths
 - Switches and routers separate routing decisions (control plane) from forwarding actions (data plane)
- High speed necessitates innovation
 - Specialized hardware
 - Software algorithms