# Learning Theory

Narayana Santhanam

EE 645 Apr 10, 2024



### This section

PAC Learning

VC dimension and Sauer's lemma

Learnability of finite classes bounded VC dimension



# PAC learning

Example/Instance space  $\mathcal{X}$ , label set  $\mathcal{Y}$ Hypothesis class  $\mathcal{H}$  (set of functions from  $\mathcal{X} \to \mathcal{Y}$ ) Distribution D over  $\mathcal{X}$ Training sample S generated by distribution D

Prediction rule  $h: \mathcal{X} \to \mathcal{Y}$  that is somehow good



## Loss of a prediction rule

Loss (wrt correct labeling 
$$f$$
): 
$$L_{D,f}(h) = \mathbf{P}_{X \sim D}[h(x) \neq f(x)]$$
 We cannot observe this in general Empirical loss on a sample of size  $n$ , 
$$\hat{L}(h) = \frac{1}{n} \sum \mathbf{1}(h(x_i) \neq f(x_i))$$
 This we observe in a supervised setting

What can we infer about L(h) from  $\hat{L}(h)$ ?



## IID assumption

Generally expect every example of our training sample to be generated independently

In this case we can expect  $\hat{L}(h)$  to concentrate around L(h) Empirical average pprox real expectation

But by how much? What is the deviation?



## Hoeffding's Inequality

Let  $X_1, \ldots, X_n$  be *i.i.d.* variables, the variables bounded in range  $X_i \in [a, b]$ , and let  $\mu = \mathbb{E}X_i$ . Then for any  $\epsilon > 0$ ,

$$\mathbf{P}\left(\left|\frac{1}{n}\sum_{i}X_{i}-\mu\right|>\epsilon\right)\leq2\exp\left(-\frac{2n\epsilon^{2}}{(b-a)^{2}}\right)$$



## Hoeffding's Inequality

Let  $X_1, \ldots, X_n$  be *i.i.d.* variables, the variables bounded in range  $X_i \in [a, b]$ , and let  $\mu = \mathbb{E}X_i$ . Then for any  $\epsilon > 0$ ,

$$\mathbf{P}\left(\left|\frac{1}{n}\sum_{i}X_{i}-\mu\right|>\epsilon\right)\leq2\exp\left(-\frac{2n\epsilon^{2}}{(b-a)^{2}}\right)$$

If we are working with binary classification (with 0-1 loss), then for each h,

$$\mathbf{P}\left(\left|\hat{\mathbf{L}}(\mathbf{h}) - \mathbf{L}(\mathbf{h})\right| > \epsilon\right) \le 2\exp\left(-2n\epsilon^2\right)$$



# Hoeffding's Inequality

Let  $X_1, \ldots, X_n$  be *i.i.d.* variables, the variables bounded in range  $X_i \in [a, b]$ , and let  $\mu = \mathbb{E}X_i$ . Then for any  $\epsilon > 0$ ,

$$\mathbf{P}\left(\left|\frac{1}{n}\sum_{i}X_{i}-\mu\right|>\epsilon\right)\leq2\exp\left(-\frac{2n\epsilon^{2}}{(b-a)^{2}}\right)$$

If we are working with binary classification (with 0-1 loss), then for each h,

$$\mathbf{P}\left(\left|\hat{\mathbf{L}}(h) - \mathbf{L}(h)\right| > \epsilon\right) \le 2\exp\left(-2n\epsilon^2\right)$$

In a bad set of training samples B(h),  $\hat{L}(h)$  deviates significantly from L(h), but the set of misleading training samples have small probability if n is large enough



### Union bound

If we have finite number of hypothesis, we can argue that collectively, all the bad sets of all  $h \in \mathcal{H}$  don't matter: Union bound

$$\mathbf{P}\left(\sup_{h\in\mathcal{H}}|\hat{L}(h)-L(h)|>\epsilon\right)\leq 2|\mathcal{H}|\exp\left(-2n\epsilon^2\right)$$

Here  $|\cdot|$  denotes the size of a set



### Union bound

If we have finite number of hypothesis, we can argue that collectively, all the bad sets of all  $h \in \mathcal{H}$  don't matter: Union bound

$$\mathbf{P}\left(\sup_{h\in\mathcal{H}}|\hat{L}(h)-L(h)|>\epsilon\right)\leq 2|\mathcal{H}|\exp\left(-2n\epsilon^2\right)$$

Here  $|\cdot|$  denotes the size of a set

This is not artificial—in fact, given we only use finite precision and a finite number of network weights, most deep networks also form finite classes in practice.



### Union bound

If we have finite number of hypothesis, we can argue that collectively, all the bad sets of all  $h \in \mathcal{H}$  don't matter: Union bound

$$\mathbf{P}\left(\sup_{h\in\mathcal{H}}|\hat{L}(h)-L(h)|>\epsilon\right)\leq 2|\mathcal{H}|\exp\left(-2n\epsilon^2\right)$$

Here  $|\cdot|$  denotes the size of a set

This is not artificial—in fact, given we only use finite precision and a finite number of network weights, most deep networks also form finite classes in practice.

Catch is, we don't have to wait till we are guaranteed convergence like above: usually our estimators work good well before we need to sample to reduce the right side to within a given confidence



# Vapnik Chervonenkis dimension

Again, binary classification, 0-1 loss.



## Vapnik Chervonenkis dimension

Again, binary classification, 0-1 loss.

A set of points S is shattered by a hypothesis class  $\mathcal{H}$  if all  $2^{|S|}$  labelings on S are produced by hypothesis in  $\mathcal{H}$ , namely  $|\mathcal{H}(S)| = 2^{|S|}$ 

Examples



## Vapnik Chervonenkis dimension

The VC dimension of  $\mathcal{H}$  is the size of the largest set S of points it shatters.

If the VC dimension of  $\mathcal H$  is d, it doesn't mean every set of d points is shattered by  $\mathcal H$  only that some set of d points is

But it does mean no set of d+1 points can be shattered by  ${\cal H}$ 

Larger VC dimension, more power



### Sauer's lemma

If  $\mathcal{H}$  has VC dimension d, how many labelings on a sample S of size *n* can it generate?

Trivially, if n > d, then number of labelings is  $< 2^n$ But one would imagine  $2^n$  is a gross overestimate Proposed by Erdös, solved (1972) and re-proved several times in other contexts

including by Vapnik and Chervonenkis



### Sauer's lemma

If  $\mathcal{H}$  has VC dimension d and S is a sample of size n,

$$|\mathcal{H}(S)| \leq \sum_{i=0}^{d} {n \choose i} \stackrel{\text{def}}{=} L(n,d).$$

Proof (simple, and by induction)

We prove a stronger result that

$$|\mathcal{H}(S)| \leq |B \subset S : \mathcal{H} \text{ shatters } B|.$$



### Induction argument

To prove:

$$|\mathcal{H}(S)| \leq |\mathcal{B} \subset S: \mathcal{H} \text{ shatters } \mathcal{B}|. \leq |C \subset S: |c| \leq d$$

Proof: When n = 1, either both sides are 1 or both are 2. =  $l + \binom{n}{1} + \binom{n}{2} + \cdots + \binom{n}{n}$ 

Induction hypothesis: Assume true for all sets S with size  $\langle n, \text{ will } \rangle$  prove for all S of size n

Hence ged



### Proof

To prove:

$$|\mathcal{H}(S)| \leq |B \subset S : \mathcal{H} \text{ shatters } B|.$$

Let S' be the sample with the last example removed (so size n-1) and let

$$Y_0 = \{ \mathbf{y}(S') : \mathbf{y}(S') \in \mathcal{H}(S') \}$$

and

$$Y_1 = \{ \mathbf{y}(S') : (\mathbf{y}(S'), \mathbf{0}) \text{ and } (\mathbf{y}(S'), \mathbf{1}) \in \mathcal{H}(S) \}$$

Clearly

$$|\mathcal{H}(S)| = |Y_0| + |Y_1|$$



### <u>Proof</u>

To prove:

$$|\mathcal{H}(S)| \leq |B \subset S : \mathcal{H} \text{ shatters } B|.$$

Recall S' be the sample with the last example removed (so size n-1) and that

$$Y_0 = \{ \mathbf{y}(S') : \mathbf{y}(S') \in \mathcal{H}(S') \}$$

From induction hypothesis

$$|Y_0| \leq |\{B \notin S : \mathcal{H} \text{ shatters } B \text{ and } \underline{\mathcal{K}}_n \notin B\}|$$

$$|Y_0| \leq |\{B \notin S^1 : \mathcal{H} \text{ shatters } B \}|$$



### Proof

To prove:

$$|\mathcal{H}(S)| \leq |B \subset S : \mathcal{H} \text{ shatters } B|.$$

Recall S' be the sample with the last example removed (so size n-1) and

$$Y_1 = \{ \mathbf{y}(S') : (\mathbf{y}(S'), \mathbf{0}) \text{ and } (\mathbf{y}(S'), \mathbf{1}) \in \mathcal{H}(S) \}$$

Let  $\mathcal{H}'$  be a subset of  $\mathcal{H}$ . We put a pair h, h' into  $\mathcal{H}'$  if h, h' agree on S' but disagree on the last example.

Now we claim  $|Y_1| = |\mathcal{H}'(S')|$  and therefore that

$$|\mathcal{H}'(S')| \leq |\{B \in S : \mathcal{H} \text{ shatters } B \text{ and } X_n \in B\}|$$



### **Proof**

Therefore

$$|\mathcal{H}(S)| = |Y_0| + |Y_1|,$$

but

and

$$|Y_1| \leq |\{B \subseteq S : \mathcal{H} \text{ shatters } B \text{ and } \chi_n \in B\}|$$

and so, the result follows!



### Next steps

How Sauer's lemma gives us learnability results for infinite classes VCDim instead of log #hypothesis

Caveat: not strong enough to explain neural networks More refinements to come



## VC dimension and PAC learnability

$$S = \left\{ \begin{array}{ccc} x_1 & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

Let S be a sample of size n, generated iid D

For each sample, what is the worst deviation between sample error  $\hat{L}(h)$  made by some  $h \in \mathcal{H}$  and its true generalization error L(h)? Namely

$$\sup_{h\in\mathcal{H}}|\hat{L}(h)-L(h)|$$

Today' class: bound on this





## VC dimension and PAC learnability

Let S be a sample of size n, generated iid DFor each sample, what is the worst deviation between sample error  $\hat{L}(h)$  made by some  $h \in \mathcal{H}$  and its true generalization error L(h)? Namely

$$\sup_{h\in\mathcal{H}}|\hat{L}(h)-L(h)|$$

Today' class: bound on this

Full disclosure, we will bound  $\mathbb{E}_S \sup_{h \in \mathcal{H}} |\hat{L}(h) - L(h)|$ , from which we bound  $\mathbf{P}(\sup_{h \in \mathcal{H}} |\hat{L}(h) - L(h)| > \epsilon)$  via a Markov inequality



Let S' be a "ghost sample" (an imaginary sample also generated iid D) Let  $\hat{L}_{S'}(h)$  be the empirical error of hypothesis h on S'



$$\mathbb{E}_{S} \stackrel{?}{L}(h) = L(h) \qquad \frac{L(h) = \frac{1}{n} \sum_{x_{i} \in S} 1(h(x_{i}) + y_{i})}{\sum_{x_{i} \in S} 1(h(x_{i}) + y_{i})}$$

$$\mathbb{E}_{S} \stackrel{?}{L}(h) = L(h) \qquad \frac{L(h) = \frac{1}{n} \sum_{x_{i} \in S} 1(h(x_{i}) + y_{i})}{\sum_{x_{i} \in S} 1(h(x_{i}) + y_{i})}$$

Let S' be a "ghost sample" (an imaginary sample also generated iid D)

Let  $\hat{L}_{S'}(h)$  be the empirical error of hypothesis h on S'Still have  $L(h) = \mathbb{E}_{S' \sim D} \hat{L}_{S'}(h)$  (expectation over all ghost samples)

Using above, we write for each  $h \in \mathcal{H}$ ,

$$\begin{aligned} |\hat{L}(h) - L(h)| &= |\mathbb{E}_{S'}(\hat{L}(h) - \hat{L}_{S'}(h))| \leq \mathbb{E}_{S'}|\hat{L}(h) - \hat{L}_{S'}(h)| \\ & \left| \sum_{\beta} (s') \right| \hat{L}_{S}(h) - \hat{L}_{S'}(h) \right| &\leq \sum_{\beta} |\hat{L}(h) - \hat{L}_{S}(h)| \\ &= \sum_{\beta} |\hat{L}_{S}(h) - \hat{L}_{S}(h)| \end{aligned}$$



Let S' be a "ghost sample" (an imaginary sample also generated iid D)

We observed for each h,

$$|\hat{L}(h) - L(h)| \leq \mathbb{E}_{S'}|\hat{L}(h) - \hat{L}_{S'}(h)|$$



$$S \sim \chi^2 = \frac{1}{2}$$

Let S' be a "ghost sample" (an imaginary sample also generated iid D)

We observed for each h,

$$|\hat{L}(h) - L(h)| \leq \mathbb{E}_{S'}|\hat{L}(h) - \hat{L}_{S'}(h)|$$

So for each training sample,

$$\sup_{h\in\mathcal{H}}|\hat{L}(h)-L(h)|\leq \sup_{h\in\mathcal{H}}\mathbb{E}_{S'}|\hat{L}(h)-\hat{L}_{S'}(h)|$$



$$\frac{\text{Ghost sample}}{\text{Let } S' \text{ be a "ghost sample"}} \begin{picture}(100,0) \put(0,0){\line(1,0){100}} \put(0,0){\line(1,$$

iid D)

We observed for each h.

$$|\hat{L}(h) - L(h)| \leq \mathbb{E}_{S'}|\hat{L}(h) - \hat{L}_{S'}(h)|$$

So for each training sample,

$$\sup_{h\in\mathcal{H}}|\hat{L}(h)-L(h)|\leq \sup_{h\in\mathcal{H}}\mathbb{E}_{S'}|\hat{L}(h)-\hat{L}_{S'}(h)|$$

But

$$\sup_{h\in\mathcal{H}}\mathbb{E}_{S'}|\hat{L}(h)-\hat{L}_{S'}(h)|\leq \mathbb{E}_{S'}\sup_{h\in\mathcal{H}}|\hat{L}(h)-\hat{L}_{S'}(h)|$$

and hence

$$|\hat{\mathcal{L}}(h) - \mathcal{L}(h)| \leq \mathbb{E}_{S'} \sup_{h \in \mathcal{H}} |\hat{\mathcal{L}}(h) - \hat{\mathcal{L}}_{S'}(h)|$$



Training sample  $S = (\mathbf{z}_1, \dots, \mathbf{z}_n)$  and ghost sample  $S' = (\mathbf{z}'_1, \dots, \mathbf{z}'_n)$ . Both are drawn *i.i.d.* D.



Training sample  $S = (\mathbf{z}_1, \dots, \mathbf{z}_n)$  and ghost sample  $S' = (\mathbf{z}'_1, \dots, \mathbf{z}'_n)$ . Both are drawn *i.i.d.* D.

Swapping out the first element of ghost with that of train,



Training sample  $S = (\mathbf{z}_1, \dots, \mathbf{z}_n)$  and ghost sample  $S' = (\mathbf{z}'_1, \dots, \mathbf{z}'_n)$ . Both are drawn *i.i.d.* D.

Swapping out the first element of ghost with that of train, (so we now consider the function

$$\sup_{h} |\ell(h, \mathbf{z}'_1) - \ell(h, \mathbf{z}_1)| + \sum_{i=2}^{n} (\ell(h, \mathbf{z}_i) - \ell(h, \mathbf{z}'_i))|$$

in place of  $\sup_h |\hat{L}(h) - \hat{L}_{S'}(h)|$ ), expectations don't change:

$$\begin{split} \mathbb{E}_{S} \mathbb{E}_{S'} \sup_{h} |\ell(h, \mathbf{z}'_{1}) - \ell(h, \mathbf{z}_{1}) + \sum_{i=2}^{n} (\ell(h, \mathbf{z}_{i}) - \ell(h, \mathbf{z}'_{i})| \\ &= \mathbb{E}_{S} \mathbb{E}_{S'} \sup_{h} |\ell(h, \mathbf{z}_{1}) - \ell(h, \mathbf{z}'_{1}) + \sum_{i=2}^{n} (\ell(h, \mathbf{z}_{i}) - \ell(h, \mathbf{z}'_{i})| \\ &= \mathbb{E}_{S} \mathbb{E}_{S'} \sup_{h} |\hat{L}(h) - \hat{L}_{S'}(h)| \end{split}$$



In fact, can swap as many examples between train/ghos as we want with no change in expectations

We could even pick  $\sigma_1,\ldots,\sigma_n$  to be independent random variables taking values in  $\{-1,1\}^n$ , with equal probabilities and

$$E_{\sigma}\mathbb{E}_{S}\mathbb{E}_{S'}\sup_{h}|\sum_{i=1}^{n}\sigma_{i}(\ell(h,\mathbf{z}_{i})-\ell(h,\mathbf{z}_{i}'))|$$

$$=\mathbb{E}_{S}\mathbb{E}_{S'}\sup_{h}|\sum_{i=1}^{n}(\ell(h,\mathbf{z}_{i})-\ell(h,\mathbf{z}_{i}'))|$$

$$=\mathbb{E}_{S}\mathbb{E}_{S'}\sup_{h}|\hat{L}(h)-\hat{L}_{S'}(h)|$$



# Reviewing so far

$$\begin{split} \mathbb{E}_{S} \mathbb{E}_{S'} \sup_{h} |\hat{\mathcal{L}}(h) - \hat{\mathcal{L}}_{S'}(h)| \\ &= E_{\sigma} \mathbb{E}_{S} \mathbb{E}_{S'} \sup_{h} |\sum_{i=1}^{n} \sigma_{i}(\ell(h, \mathbf{z}_{i}) - \ell(h, \mathbf{z}'_{i}))| \\ &= \mathbb{E}_{S} \mathbb{E}_{S'} E_{\sigma} \sup_{h} |\sum_{i=1}^{n} \sigma_{i}(\ell(h, \mathbf{z}_{i}) - \ell(h, \mathbf{z}'_{i}))| \end{split}$$

We now fix a train and ghost sample combination and examine

$$\sup_{h \in \mathcal{H}} |\sum_{i=1}^{n} \sigma_{i}(\ell(h, \mathbf{z}_{i}) - \ell(h, \mathbf{z}'_{i}))|$$

Now given a fixed train and ghost sample, and a fixed h, let  $W_i = \sigma_i(\ell(h, \mathbf{z}_i) - \ell(h, \mathbf{z}_i'))$ .

 $\mathbb{E}W_i = 0, -1 \le W_i \le 1$ , and  $W_i$  independent (not identical!)



## Better Heoffding

In fact, our earlier version of Hoeffding's inequality wasn't the full version. We don't need the random variables to be iid, only independent suffices.

Let  $W_1, \ldots, W_n$  be independent variables, the variables bounded in range  $X_i \in [a, b]$ , with  $\mathbb{E}W_i = \mu$ . Then for any  $\epsilon > 0$ ,

$$\mathbf{P}\left(\left|\frac{1}{n}\sum_{i}W_{i}-\mu\right|>\epsilon\right)\leq2\exp\left(-\frac{2n\epsilon^{2}}{(b-a)^{2}}\right)$$



# Completing the proof

We were examining for a fixed train/ghost sample:

$$\sup_{h \in \mathcal{H}} |\sum_{i=1}^{n} \sigma_{i}(\ell(h, \mathbf{z}_{i}) - \ell(h, \mathbf{z}'_{i}))|$$

Now given a fixed train and ghost sample, and a fixed h, let  $W_i = \sigma_i(\ell(h, \mathbf{z}_i) - \ell(h, \mathbf{z}_i'))$ .

 $\mathbb{E}W_i=0$ ,  $-1\leq W_i\leq 1$ , and  $W_i$  independent (not identical!)

Therefore for each  $h \in \mathcal{H}$ ,

$$\mathbf{P}(|\sum_{i=1}^{n} \sigma_{i}(\ell(h, \mathbf{z}_{i}) - \ell(h, \mathbf{z}'_{i}))| \geq \epsilon) \leq 2 \exp\left(-\frac{n\epsilon^{2}}{2}\right)$$

But doesn't  $\mathcal{H}$  have infinitely many hypotheses?



### Recall: Sauer's lemma

If  $\mathcal{H}$  has VC dimension d and S is a sample of size n,

$$|\mathcal{H}(S)| \leq \sum_{i=0}^d \binom{n}{i} \stackrel{\text{def}}{=} L(n,d).$$

Proof (simple, and by induction)

We prove a stronger result that

$$|\mathcal{H}(S)| \leq |B \subset S : \mathcal{H} \text{ shatters } B|.$$



Therefore for each  $h \in \mathcal{H}$ ,

$$\mathbf{P}(|\sum_{i=1}^{n} \sigma_{i}(\ell(h, \mathbf{z}_{i}) - \ell(h, \mathbf{z}'_{i}))| \geq \epsilon) \leq 2 \exp\left(-\frac{n\epsilon^{2}}{2}\right)$$

Now since we have fixed train/ghost, there are only L(2n, d) labelings from  $\mathcal{H}$  if it has VC dimension d. So effectively only L(2n, d) hypotheses! Therefore

$$\mathbf{P}(\sup_{h\in\mathcal{H}}|\sum_{i=1}^n\sigma_i(\ell(h,\mathbf{z}_i)-\ell(h,\mathbf{z}_i'))|\geq\epsilon)\leq 2L(2n,d)\exp\left(-\frac{n\epsilon^2}{2}\right)$$

Remember: this is probability over choice of  $\sigma_i$  (the training and ghost samples are being held fixed)



Therefore for each  $h \in \mathcal{H}$ ,

$$\mathbf{P}(|\sum_{i=1}^{n} \sigma_{i}(\ell(h, \mathbf{z}_{i}) - \ell(h, \mathbf{z}'_{i}))| \geq \epsilon) \leq 2 \exp\left(-\frac{n\epsilon^{2}}{2}\right)$$

Now since we have fixed train/ghost, there are only L(2n, d) labelings from  $\mathcal{H}$  if it has VC dimension d. So effectively only L(2n, d) hypotheses! Therefore

$$\mathbf{P}(\sup_{h\in\mathcal{H}}|\sum_{i=1}^n\sigma_i(\ell(h,\mathbf{z}_i)-\ell(h,\mathbf{z}_i'))|\geq\epsilon)\leq 2L(2n,d)\exp\left(-\frac{n\epsilon^2}{2}\right)$$

Remember: this is probability over choice of  $\sigma_i$  (the training and ghost samples are being held fixed) from which we get a straightforward bound on

$$\mathbb{E}_{\sigma} \sup_{h \in \mathcal{H}} | \sum_{i=1}^{n} \sigma_{i}(\ell(h, \mathbf{z}_{i}) - \ell(h, \mathbf{z}_{i}'))|,$$



Therefore for each  $h \in \mathcal{H}$ ,

$$\mathbf{P}(|\sum_{i=1}^{n} \sigma_{i}(\ell(h, \mathbf{z}_{i}) - \ell(h, \mathbf{z}'_{i}))| \geq \epsilon) \leq 2 \exp\left(-\frac{n\epsilon^{2}}{2}\right)$$

Now since we have fixed train/ghost, there are only L(2n, d) labelings from  $\mathcal{H}$  if it has VC dimension d. So effectively only L(2n, d) hypotheses! Therefore

$$\mathbf{P}(\sup_{h \in \mathcal{H}} |\sum_{i=1}^n \sigma_i(\ell(h, \mathbf{z}_i) - \ell(h, \mathbf{z}_i'))| \ge \epsilon) \le 2L(2n, d) \exp\left(-\frac{n\epsilon^2}{2}\right)$$

Remember: this is probability over choice of  $\sigma_i$  (the training and ghost samples are being held fixed) from which we get a straightforward bound on

 $\textstyle \mathbb{E}_{\sigma} \sup_{h \in \mathcal{H}} |\sum_{i=1}^n \sigma_i(\ell(h,\mathbf{z}_i) - \ell(h,\mathbf{z}_i'))|, \text{ which upper bounds } \mathbb{E}_{S} \sup_{h \in \mathcal{H}} |\hat{L}(h) - L(h)|,$ 



Therefore for each  $h \in \mathcal{H}$ ,

$$\mathbf{P}(|\sum_{i=1}^{n} \sigma_{i}(\ell(h, \mathbf{z}_{i}) - \ell(h, \mathbf{z}'_{i}))| \geq \epsilon) \leq 2 \exp\left(-\frac{n\epsilon^{2}}{2}\right)$$

Now since we have fixed train/ghost, there are only L(2n, d) labelings from  $\mathcal{H}$  if it has VC dimension d. So effectively only L(2n, d) hypotheses! Therefore

$$\mathbf{P}(\sup_{h \in \mathcal{H}} |\sum_{i=1}^n \sigma_i(\ell(h, \mathbf{z}_i) - \ell(h, \mathbf{z}_i'))| \ge \epsilon) \le 2L(2n, d) \exp\left(-\frac{n\epsilon^2}{2}\right)$$

Remember: this is probability over choice of  $\sigma_i$  (the training and ghost samples are being held fixed) from which we get a straightforward bound on

 $\mathbb{E}_{\sigma} \ \text{sup}_{h \in \mathcal{H}} \ | \ \textstyle \sum_{i=1}^n \sigma_i(\ell(h,\mathbf{z}_i) - \ell(h,\mathbf{z}_i'))|, \ \text{which upper bounds} \ \mathbb{E}_{\mathcal{S}} \ \text{sup}_{h \in \mathcal{H}} \ | \hat{L}(h) - L(h)|, \ \text{which upper bounds} \ \mathbb{E}_{\mathcal{S}} \ \text{sup}_{h \in \mathcal{H}} \ | \hat{L}(h) - L(h)|, \ \text{which upper bounds} \ \mathbb{E}_{\mathcal{S}} \ \mathbb$ 

 $\mathsf{P}(\mathsf{sup}_{h\in\mathcal{H}} \, |\hat{\mathcal{L}}(h) - \mathcal{L}(h)| > \epsilon)$  via a Markov inequality

