

(FAST(er)) R-CNN

컴퓨터소프트웨어학부 박현준

Contents

I.R-CNN

- Introduction
 - Non-Max Suppression
 - Bounding-box regression
- Object Detection with R-CNN
 - Selective Search
 - Feature Extraction
- Result
- Conclusion

■. Fast R-CNN

- SPPnet
- Fast R-CNN
 - Multi-task loss
 - Minibatch Sampling
 - Rol pooling
 - Detection
 - Truncated SVD
- Result
- Conclusion

Ⅲ. Faster R-CNN

- Faster R-CNN
 - RPN
 - Anchors
 - Loss Function
- Result
- Conclusion

Reference

I. R-CNN

INTRODUCTION

"Features matter"

R-CNN: Regions with CNN features

2. Extract region proposals (~2k)

3. Compute CNN features

4. Classify regions

Unlike Image classification, Object detection needs localization

[Problem]

- 1. CNN (Sliding window): Precise localization is difficult with large receptive field, stride
- 2. Data Scarcity: Labeled data for training large CNNs

[Solution]

- 1. R-CNN: 2000-category independent region proposals by Selective Search
- 2. Supervised pre-training on a large auxiliary dataset (ILSVRC) followed by domain specific fine-tuning on a smaller dataset (PASCAL)

INTRODUCTION

Non-Max Suppression (NMS)

Algorithm 1 Non-Max Suppression

```
1: procedure NMS(B,c)
         B_{nms} \leftarrow \emptyset
         for b_i \in B do
             discard \leftarrow False
 4:
             for b_i \in B do
 5:
                  if same(b_i, b_j) > \lambda_{nms} then
                      if score(c, b_i) > score(c, b_i) then
 7:
                           discard \leftarrow True
 8:
             if not discard then
 9:
                  B_{nms} \leftarrow B_{nms} \cup b_i
10:
         return B_{nms}
11:
```

INTRODUCTION

Bounding-box Regression


```
def get_iou(bb1, bb2):
   assert bb1['x1'] < bb1['x2']
   assert bb1['y1'] < bb1['y2']
   assert bb2['x1'] < bb2['x2']
   assert bb2['y1'] < bb2['y2']
  # calculating dimension of common area between these two boxes.
   x_{\text{left}} = \max(bb1['x1'], bb2['x1'])
   y_top = max(bb1['y1'], bb2['y1'])
   x_right = min(bb1['x2'], bb2['x2'])
   y_bottom = min(bb1['y2'], bb2['y2'])
 # if there is no overlap output 0 as intersection area is zero.
   if x_right < x_left or y_bottom < y_top:</pre>
       return 0.0
   intersection_area = (x_right - x_left) * (y_bottom - y_top)
 # individual areas of both these bounding boxes.
   bb1_area = (bb1['x2'] - bb1['x1']) * (bb1['y2'] - bb1['y1'])
   bb2_area = (bb2['x2'] - bb2['x1']) * (bb2['y2'] - bb2['y1'])
 # union area = area of bb1_+ area of bb2 - intersection of bb1 and bb2.
   iou = intersection_area / float(bbl_area + bb2_area - intersection_area)
   assert iou >= 0.0
   assert iou <= 1.0
   return iou
```

Making ground truth box and predicted box similar Proceed only for values with $IoU \ge 0.5$ (positive) // $IoU \le 0.3$ (negative)

$$\mathbf{w}_{\star} = \operatorname*{argmin}_{\hat{\mathbf{w}}_{\star}} \sum_{i}^{N} (t_{\star}^{i} - \hat{\mathbf{w}}_{\star}^{\mathsf{T}} \phi_{5}(P^{i}))^{2} + \lambda \left\| \hat{\mathbf{w}}_{\star} \right\|^{2} \quad \star \quad \mathbf{IoU} : \frac{\mathbf{Area of \ Overlap}}{\mathbf{Area of \ Union}} = \frac{\mathbf{Area}(\mathbf{B}_{gt} \cap \mathbf{B}_{p})}{\mathbf{Area}(\mathbf{B}_{gt} \cup \mathbf{B}_{p})}$$

Module Design

- < Region proposals >
- → "Selective Search"

Bottom-up segmentation, merging regions at multiple scales

- 1. Create myriad random bounding boxes
- Merge bounding boxes using 'Hierarchical Grouping Algorithm'
- 3. Proceed to Region proposal format suggesting Rol

```
Algorithm 1: Hierarchical Grouping Algorithm
 Input: (colour) image
 Output: Set of object location hypotheses L
 Obtain initial regions R = \{r_1, \dots, r_n\} using [13]
 Initialise similarity set S = \emptyset
 foreach Neighbouring region pair (r_i, r_i) do
     Calculate similarity s(r_i, r_j)
    S = S \cup s(r_i, r_j)
 while S \neq \emptyset do
     Get highest similarity s(r_i, r_i) = \max(S)
     Merge corresponding regions r_t = r_i \cup r_i
     Remove similarities regarding r_i: S = S \setminus s(r_i, r_*)
     Remove similarities regarding r_i : S = S \setminus s(r_*, r_i)
     Calculate similarity set S_t between r_t and its neighbours
     S = S \cup S_t
     R = R \cup r_t
 Extract object location boxes L from all regions in R
```

Module Design

- < Region proposals >
- → "Selective Search"


```
• • •
cv2.setUseOptimized(True);
ss = cv2.ximgproc.segmentation.createSelectiveSearchSegmentation()
for e,i in enumerate(os.listdir(annot)):
        if i.startswith("airplane"):
            filename = i.split(".")[0]+".jpg"
            print(e,filename)
            image = cv2.imread(os.path.join(path,filename))
            df = pd.read_csv(os.path.join(annot,i))
            gtvalues=[]
            for row in df.iterrows():
                y1 = int(row[1][0].split(" ")[1])
x2 = int(row[1][0].split(" ")[2])
                y2 = int(row[1][0].split(" ")[3])
                gtvalues.append({"x1":x1,"x2":x2,"y1":y1,"y2":y2})
            ss.setBaseImage(image)
            ss.switchToSelectiveSearchFast()
            ssresults = ss.process()
            imout = image.copy()
            falsecounter = 0
            flag = 0
            fflag = 0
            for e,result in enumerate(ssresults):
                if e < 2000 and flag == 0:
                    for gtval in gtvalues:
                        x,y,w,h = result
                        iou = get_iou(gtval,{"x1":x,"x2":x+w,"y1":y,"y2":y+h})
                        if counter < 30:
                            if iou > 0.70:
                                timage = imout[x:x+w,y:y+h]
                                resized = cv2.resize(timage, (224,224), interpolation = cv2.INTER_AREA)
                                train_images.append(resized)
                                train_labels.append(1)
                                counter += 1
                            fflag =1
                        if falsecounter <30:
                            if iou < 0.3:
                                timage = imout[x:x+w,y:y+h]
                                resized = cv2.resize(timage, (224,224), interpolation = cv2.INTER_AREA)
                                train_images.append(resized)
                                train_labels.append(0)
                                falsecounter += 1
                            bflag = 1
                    if fflag == 1 and bflag == 1:
                        print("inside")
```

Module Design

< Feature extraction >

Figure 2: Warped training samples from VOC 2007 train.

- Use AlexNet
- Warping images regardless of the size or aspect ratio of the candidate region (227x227)
- 5 convolutional layers + 2 fully-connected layers
- Output : 4096-dimensional feature vector
- **Transfer learning** \rightarrow SVM (per class) in final part for image classification

- 1. Pre-training CNN network on image classification task
- 2. Region proposal by using Selective Search
- 3. Warping the proposed image to a fixed size(: Region proposal size varies)
- Fine-tuning CNN on warped proposal regions for
 N+1 classes (N: #class, 1: background)
- 5. Fixed-length feature extraction using CNN
- 6. Class-specific linear SVM classification for each class independently based on extracted features
- 7. Bounding box regression to reduce mislocalization

[mAP]

		실제	정답
		Positive	Negative
시친 경기	Positive	True Positive	False Positive (Type 1 Error)
실험 결과	Negative	False Negative (Type 2 Error)	True Negative

$$Precision = \frac{TP}{TP + FP} = \frac{TP}{All\ Detections}$$

$$Recall = \frac{TP}{TP + FN} = \frac{TP}{All\ Ground\ Truths}$$

$$mAP = \frac{1}{N} \sum_{i=1}^{N} AP_i$$

$$AP = 1 * 0.33 + 0.86 * (0.4 - 0.33) + 0.77 * (0.46 - 0.4) = 0.4364$$

[Dataset]

1. PASCAL VOC 2010

< Class > 20

- Person : person

- Animal: bird, cat, cow, dog, horse, sheep

- Vehicle: aeroplane, bicycle, boat, bus, car, motorbike, train

- Indoor: bottle, chair, dining table, potted plane, sofa, tv/monitor

Train/Val data: 10,103 images containing 23,374 Rol annotated objects and 4,203 segmentations

2. ILSVRC 2013

< Class > 200

Train / Val data : 395,909 + 20,121 images

Test data: 40,152 images

[PASCAL VOC]

VOC 2010 test	aero	bike	bird	boat	bottle	bus	car	cat	chair	cow	table	dog	horse	mbike	person	plant	sheep	sofa	train	tv	mAP
DPM v5 [20] [†]	49.2	53.8	13.1	15.3	35.5	53.4	49.7	27.0	17.2	28.8	14.7	17.8	46.4	51.2	47.7	10.8	34.2	20.7	43.8	38.3	33.4
UVA [39]	56.2	42.4	15.3	12.6	21.8	49.3	36.8	46.1	12.9	32.1	30.0	36.5	43.5	52.9	32.9	15.3	41.1	31.8	47.0	44.8	35.1
Regionlets [41]	65.0	48.9	25.9	24.6	24.5	56.1	54.5	51.2	17.0	28.9	30.2	35.8	40.2	55.7	43.5	14.3	43.9	32.6	54.0	45.9	39.7
SegDPM [18] [†]	61.4	53.4	25.6	25.2	35.5	51.7	50.6	50.8	19.3	33.8	26.8	40.4	48.3	54.4	47.1	14.8	38.7	35.0	52.8	43.1	40.4
R-CNN	67.1	64.1	46.7	32.0	30.5	56.4	57.2	65.9	27.0	47.3	40.9	66.6	57.8	65.9	53.6	26.7	56.5	38.1	52.8	50.2	50.2
R-CNN BB	71.8	65.8	53.0	36.8	35.9	59.7	60.0	69.9	27.9	50.6	41.4	70.0	62.0	69.0	58.1	29.5	59.4	39.3	61.2	52.4	53.7

Table 1: Detection average precision (%) **on VOC 2010 test.** R-CNN is most directly comparable to UVA and Regionlets since all methods use selective search region proposals. Bounding-box regression (BB) is described in Section C. At publication time, SegDPM was the top-performer on the PASCAL VOC leaderboard. †DPM and SegDPM use context rescoring not used by the other methods.

[ILSVRC 2013]

Conclusion

<u>Strength</u>

- ▶ Apply high-capacity CNN to bottom-up region proposals in order to **localize** and **segment** objects
- ▶ Paradigm for training large CNNs when labeled training data is scarce
- ▶ R-CNN can scale to thousands of object classes without resorting to approximate techniques, such as hashing

Weakness

- Running Selective Search sequentially to propose 2000 region proposals for every image
- ▶ Degradation of performance because of warping & cropping
- ► CNN, SVM, and Bounding box regression do not share the operation, so they do not learn end-to-end

II. Fast R-CNN

R-CNN

Model Workflow

R-CNN: Regions with CNN features

- 1. Pre-training CNN network on image classification task
- 2. Region proposal by using Selective Search
- 3. Warping the proposed image to a fixed size (227*227)
- Fine-tuning CNN on warped proposal regions for
 N+1 classes (N: #class, 1: background)
- 5. Feature extraction using CNN
- 6. SVM classification for each class independently based on extracted features
- Bounding box regression to reduce localization errors

SPPnet (Spatial Pyramid Pooling net)

SPPnet (Spatial Pyramid Pooling net)

- 1. Forward **whole image** through ConvNet
- Generate 2000 region proposals by using "fast" mode of Selective Search
- 3. Extract feature maps from the entire image
- 4. Forward pass 4-level **SPP** layer (1x1, 2x2, 3x3, 6x6)
 - → Extract fixed size of feature vectors
- 5. Training binary linear SVM classifier for each category on these features
- 6. Bounding box regression to reduce mislocalization
- Still do not learn end-to-end
- when fine-tuning, it cannot train Conv Layers before SPP layer

- 1. Pre-training CNN network on image classification task
- 2. Region proposal by Selective Search
- 3. Feature extraction by VGG16
- 4. Max pooling by **Rol pooling** (single-level SPP)
- 5. Fixed feature vector extraction by each object proposal
- 6. Class prediction by classifier
- 7. Detailed localization by Bounding box regressor
- 8. Train Softmax classifier and Bounding box regressor by multi-task loss

Multi-task Loss

$$L_{cls}(p,u) = -log p_u$$

<Classification>

$$L(p, u, t^u, v) = L_{cls}(p, u) + \lambda [u \ge 1] L_{loc}(t^u, v)$$

→ Train a single model to optimize multiple objects

		5	8			N	Л			I		
multi-task training?		✓		✓		✓		✓		✓		√
stage-wise training?			\checkmark				\checkmark				\checkmark	
test-time bbox reg?			\checkmark	\checkmark			\checkmark	\checkmark			\checkmark	\checkmark
VOC07 mAP	52.2	53.3	54.6	57.1	54.7	55.5	56.6	59.2	62.6	63.4	64.0	66.9

$$L_{loc}(t^u, v) = \sum_{i \in \{x, y, w, h\}} smooth_{L_1}(t^u_i - v_i)$$

$$smooth_{L_1}(x) = \begin{cases} 0.5x^2 & if |x| < 1\\ |x| - 0.5 & otherwise \end{cases}$$

<Regression>

Table 6. Multi-task training (forth column per group) improves mAP over piecewise training (third column per group).

Mini-batch sampling

: SGD minibatch N=2 images, size R=128, sampling 64 Rols from each image

- 25% of Rols = $IoU \ge 0.5 \rightarrow$ labeled foreground object (u = 1)
- Remaining Rol = $0.1 \le IoU < 0.5 \rightarrow$ labeled background object (u = 0)
- Reduce computation cost and improve model's generalization performance

Backpropagation through Rol pooling layers

$$\frac{\partial L}{\partial x_i} = \sum_{r} \sum_{j} [i = i^*(r, j)] \frac{\partial L}{\partial y_{rj}} \qquad \begin{aligned} y_{rj} &= x_{i^*(r, j)} \\ i^*(r, j) &= argmax_{i' \in \mathcal{R}(r, j)} x_{i'} \end{aligned}$$

→ Generate fixed-size vector by using max pooling

Rol in Conv feature map: $21x14 \rightarrow 3x2$ max pooling with stride $(3,2) \rightarrow$ output: 7x7 Rol in Conv feature map: $35x42 \rightarrow 5x6$ max pooling with stride $(5,6) \rightarrow$ output: 7x7

SGD Hyper-parameters

- Softmax classification ~ $\mathcal{N}(0, (0.01)^2)$
- Bounding-box regression ~ $\mathcal{N}(0, (0.001)^2)$
- Learning rate : 0.001
- All layers use a per-layer learning rate of 1 for weights and 2 for biases
- VOC07 or VOC12 \rightarrow SGD for 30k iterations \rightarrow lower the lr to 0.0001 \rightarrow train 10k iterations
- Momentum = 0.9, $Parameter\ decay = 0.0005$

Fast R-CNN Detection

$$P(class = k \mid r) \triangleq p_k$$
 $(r: Rol (confidence), p: posterior, k: object class, \equiv : defined as)$

Truncated SVD

 $W \approx U \Sigma_t V^T$

Truncated SVD reduces the parameter count from uv to t(u + v) ($t < \min(u, v)$)

Figure 2. Timing for VGG16 before and after truncated SVD. Before SVD, fully connected layers fc6 and fc7 take 45% of the time.

To compress a network, the single fc layer corresponding to W is replaced by two fc layers ($\Sigma_t V$, U)

⇒ By compression, we can speedup when the number of RoIs is large

[VOC 2007, 2010, 2012]

method	train set	aero	bike	bird	boat	bottle	bus	car	cat	chair	cow	table	dog	horse	mbike	persn	plant	sheep	sofa	train	tv	mAP
SPPnet BB [11] [†]	$07 \setminus diff$	73.9	72.3	62.5	51.5	44.4	74.4	73.0	74.4	42.3	73.6	57.7	70.3	74.6	74.3	54.2	34.0	56.4	56.4	67.9	73.5	63.1
R-CNN BB [10]	07	73.4	77.0	63.4	45.4	44.6	75.1	78.1	79.8	40.5	73.7	62.2	79.4	78.1	73.1	64.2	35.6	66.8	67.2	70.4	71.1	66.0
FRCN [ours]	07	74.5	78.3	69.2	53.2	36.6	77.3	78.2	82.0	40.7	72.7	67.9	79.6	79.2	73.0	69.0	30.1	65.4	70.2	75.8	65.8	66.9
FRCN [ours]	$07 \setminus \text{diff}$	74.6	79.0	68.6	57.0	39.3	79.5	78.6	81.9	48.0	74.0	67.4	80.5	80.7	74.1	69.6	31.8	67.1	68.4	75.3	65.5	68.1
FRCN [ours]	07+12	77.0	78.1	69.3	59.4	38.3	81.6	78.6	86.7	42.8	78.8	68.9	84.7	82.0	76.6	69.9	31.8	70.1	74.8	80.4	70.4	70.0

Table 1. **VOC 2007 test** detection average precision (%). All methods use VGG16. Training set key: **07**: VOC07 trainval, **07** \ diff: **07** without "difficult" examples, **07+12**: union of **07** and VOC12 trainval. †SPPnet results were prepared by the authors of [11].

method	train set	aero	bike	bird	boat	bottle	bus	car	cat	chair	cow	table	dog	horse	mbike	persn	plant	sheep	sofa	train	tv	mAP
BabyLearning	Prop.	77.7	73.8	62.3	48.8	45.4	67.3	67.0	80.3	41.3	70.8	49.7	79.5	74.7	78.6	64.5	36.0	69.9	55.7	70.4	61.7	63.8
R-CNN BB [10]	12	79.3	72.4	63.1	44.0	44.4	64.6	66.3	84.9	38.8	67.3	48.4	82.3	75.0	76.7	65.7	35.8	66.2	54.8	69.1	58.8	62.9
SegDeepM	12+seg	82.3	75.2	67.1	50.7	49.8	71.1	69.6	88.2	42.5	71.2	50.0	85.7	76.6	81.8	69.3	41.5	71.9	62.2	73.2	64.6	67.2
FRCN [ours]	12	80.1	74.4	67.7	49.4	41.4	74.2	68.8	87.8	41.9	70.1	50.2	86.1	77.3	81.1	70.4	33.3	67.0	63.3	77.2	60.0	66.1
FRCN [ours]	07++12	82.0	77.8	71.6	55.3	42.4	77.3	71.7	89.3	44.5	72.1	53.7	87.7	80.0	82.5	72.7	36.6	68.7	65.4	81.1	62.7	68.8

Table 2. VOC 2010 test detection average precision (%). BabyLearning uses a network based on [17]. All other methods use VGG16. Training set key: 12: VOC12 trainval, Prop.: proprietary dataset, 12+seg: 12 with segmentation annotations, 07++12: union of VOC07 trainval, VOC07 test, and VOC12 trainval.

method	train set	aero	bike	bird	boat	bottle	bus	car	cat	chair	cow	table	dog	horse	mbike	persn	plant	sheep	sofa	train	tv	mAP
BabyLearning	Prop.	78.0	74.2	61.3	45.7	42.7	68.2	66.8	80.2	40.6	70.0	49.8	79.0	74.5	77.9	64.0	35.3	67.9	55.7	68.7	62.6	63.2
NUS_NIN_c2000	Unk.	80.2	73.8	61.9	43.7	43.0	70.3	67.6	80.7	41.9	69.7	51.7	78.2	75.2	76.9	65.1	38.6	68.3	58.0	68.7	63.3	63.8
R-CNN BB [10]	12	79.6	72.7	61.9	41.2	41.9	65.9	66.4	84.6	38.5	67.2	46.7	82.0	74.8	76.0	65.2	35.6	65.4	54.2	67.4	60.3	62.4
FRCN [ours]	12	80.3	74.7	66.9	46.9	37.7	73.9	68.6	87.7	41.7	71.1	51.1	86.0	77.8	79.8	69.8	32.1	65.5	63.8	76.4	61.7	65.7
FRCN [ours]	07++12	82.3	78.4	70.8	52.3	38.7	77.8	71.6	89.3	44.2	73.0	55.0	87.5	80.5	80.8	72.0	35.1	68.3	65.7	80.4	64.2	68.4

Table 3. VOC 2012 test detection average precision (%). BabyLearning and NUS_NIN_c2000 use networks based on [17]. All other methods use VGG16. Training set key: see Table 2, Unk.: unknown.

Runtime Comparison

	Fa	st R-CN	N	F	R-CNN	1	SPPnet
	S	M	L	S	\mathbf{M}	L	$^{\dagger}\mathbf{L}$
train time (h)	1.2	2.0	9.5	22	28	84	25
train speedup	18.3×	$14.0 \times$	$8.8 \times$	1×	$1 \times$	$1 \times$	3.4×
test rate (s/im)	0.10	0.15	0.32	9.8	12.1	47.0	2.3
⊳ with SVD	0.06	0.08	0.22	-	-	-	-
test speedup	98×	$80 \times$	146×	1×	$1 \times$	$1 \times$	20×
\triangleright with SVD	169×	$150 \times$	$213\times$	-	-	-	-
VOC07 mAP	57.1	59.2	66.9	58.5	60.2	66.0	63.1
\triangleright with SVD	56.5	58.7	66.6	-	-	-	-

Table 4. Runtime comparison between the same models in Fast R-CNN, R-CNN, and SPPnet. Fast R-CNN uses single-scale mode. SPPnet uses the five scales specified in [11]. †Timing provided by the authors of [11]. Times were measured on an Nvidia K40 GPU.

Conclusion

Fast R-CNN

Strength

- ► End-to-end training of deep ConvNets for detection
- ► Fast training times
- ▶ Multiple models can be trained in single stage using multi-task loss
- ► Weight values of the network can be updated through backpropagation

	R-CNN	Fast R-CNN
Training Time:	84 hours	9.5 hours
(Speedup)	1x	8.8x
Test time per image	47 seconds	0.32 seconds
(Speedup)	1x	146x
mAP (VOC 2007)	66.0	66.9

Using VGG-16 CNN on Pascal VOC 2007 dataset

Weakness

- ▶ Dependence on Selective Search → computationally expensive and slow
- ▶ Difficulty in Real-time Application because of reliance on region proposals (bottleneck)

III. Faster R-CNN

More Faster?

Selective Search

??

- 1. Pre-trained Convolutional Layers
 - Extract feature maps from input image
- 2. RPN (Region Proposal Network)
 - Use feature maps to generate region proposals
- 3. Generate region proposals directly
- 4. Rol pooling
 - Extract fixed size feature representations for each proposal
- 5. Classification and Bounding box regression

RPN (Region Proposal Networks)

- Training **end-to-end** by backpropagation and SGD
- Sampling 256 anchors (128 (positive) + 128 (negative))
- $W \sim \mathcal{N}(0, (0.01)^2)$
- lr = 0.001 for 60k mini-batches $\rightarrow lr = 0.0001$ for the next 20k mini-batches on the PASCAL VOC
- Momentum = 0.9, weight decay = 0.0005

Anchors

- Scale: (128, 256, 512), Aspect Ratio: (2:1, 1:1, 1:2)
- W * H * k anchors (k = 9 in paper)
- **Translation Invariant** → Guarantee same proposal
- Overfitting ↓ (Small dataset)

Table 8: Detection results of Faster R-CNN on PAS-
CAL VOC 2007 test set using different settings of
anchors. The network is VGG-16. The training data
is VOC 2007 trainval. The default setting of using 3
scales and 3 aspect ratios (69.9%) is the same as that
in Table 3.

512

settings	anchor scales	aspect ratios	mAP (%)
1 and 1 matic	128^{2}	1:1	65.8
1 scale, 1 ratio	256^{2}	1:1	66.7
1 scale, 3 ratios	128^{2}	{2:1, 1:1, 1:2}	68.8
1 scale, 5 fatios	256^{2}	{2:1, 1:1, 1:2}	67.9
	$\{128^2, 256^2, 512^2\}$		69.8
3 scales, 3 ratios	$\{128^2, 256^2, 512^2\}$	{2:1, 1:1, 1:2}	69.9

Anchors

 $\begin{cases} Positive \ (1) & if, IoU \ge 0.7 \\ Negative \ (0) & elif, IoU \le 0.3 \\ No \ Contribution & O.T.W \end{cases}$

Loss Function

$$L(\{P_i\},\{t_i\}) = \frac{1}{N_{cls}} \sum_{i} L_{cls}(p_i,p_i^*) + \lambda \frac{1}{N_{reg}} \sum_{i} p_i^* L_{reg}(t_i,t_i^*)$$

$$L_{cls} = -(ylog(p) + (1 - y)log(1 - p))$$

 $L_{reg}(t_i, t_i^*) = R(t_i - t_i^*)$ (R: Smooth L_1 in Fast R-CNN)

Table 9: Detection results of Faster R-CNN on PAS-CAL VOC 2007 test set using **different values of** λ in Equation (1). The network is VGG-16. The training data is VOC 2007 trainval. The default setting of using $\lambda = 10$ (69.9%) is the same as that in Table 3.

λ	0.1	1	10	100
mAP (%)	67.2	68.9	69.9	69.1

 p_i : Predicted probability

 t_i : Predicted bbox coordinate

 $N_{\rm cls}$: #anchors in minibatch (256)

 N_{reg} : #anchor location

 p_i^* : Ground truth object label

 t_i^* : True box coordinates

 L_{cls} : binary cross entropy loss

 L_{reg} : Smooth L1 loss

 λ : parameter (In practice, $\lambda = 10$)

Comparison

Model	Test time	Speed up	mAP (VOC07)	mAP (VOC07+12)
R-CNN	50s	1x	66.0	_
Fast R-CNN	2s	25x	66.9	70.0
Faster R-CNN	0.2s	250x	69.9	73.2

PASCAL VOC 2007

Table 3: Detection results on **PASCAL VOC 2007 test set**. The detector is Fast R-CNN and VGG-16. Training data: "07": VOC 2007 trainval, "07+12": union set of VOC 2007 trainval and VOC 2012 trainval. For RPN, the train-time proposals for Fast R-CNN are 2000. †: this number was reported in [2]; using the repository provided by this paper, this result is higher (68.1).

method	# proposals	data	mAP (%)
SS	2000	07	66.9 [†]
SS	2000	07+12	70.0
RPN+VGG, unshared	300	07	68.5
RPN+VGG, shared	300	07	69.9
RPN+VGG, shared	300	07+12	73.2
RPN+VGG, shared	300	COCO+07+12	78.8

Selective Search → **RPN**

Table 5: **Timing** (ms) on a K40 GPU, except SS proposal is evaluated in a CPU. "Region-wise" includes NMS, pooling, fully-connected, and softmax layers. See our released code for the profiling of running time.

_	model	system	conv	proposal	region-wise	total	rate	
-	VGG	SS + Fast R-CNN	146	1510	174	1830	0.5 fps	
	VGG	RPN + Fast R-CNN	141	10	47	198	5 fps	
-	ZF	RPN + Fast R-CNN	31	3	25	59	17 fps	

MS COCO

Table 11: Object detection results (%) on the MS COCO dataset. The model is VGG-16.

			COCO val		COCO test-dev	
method	proposals	training data	mAP@.5	mAP@[.5, .95]	mAP@.5	mAP@[.5, .95]
Fast R-CNN [2]	SS, 2000	COCO train	-	-	35.9	19.7
Fast R-CNN [impl. in this paper]	SS, 2000	COCO train	38.6	18.9	39.3	19.3
Faster R-CNN	RPN, 300	COCO train	41.5	21.2	42.1	21.5
Faster R-CNN	RPN, 300	COCO trainval	-	-	42.7	21.9

What is COCO?

COCO is a large-scale object detection, segmentation, and captioning dataset. COCO has several features:

- **♦ Object segmentation**
- Recognition in context
- Superpixel stuff segmentation
- 1.5 million object instances
- ◆ 80 object categories
- 91 stuff categories
- ✓ 5 captions per image
- ✓ 250,000 people with keypoints

Conclusion

Faster R-CNN

Strength

- ► Replace Selective Search (CPU) with RPN (GPU) → FAST
- ► Translation invariant : Extract same feature anywhere
- ► Region proposal step is nearly cost-free
- ► End-to-end training

Weakness

▶ if the Region proposal is not a multiple of 7 when extracting the 7x7 feature map by RoI pooling, it must be discarded or rounded, and errors may occur here.

Conclusion

R-CNN

Fast R-CNN

SPP net

Faster R-CNN

<R-CNN>

Region proposal (Selective Search)

Feature extraction (DNN)

Classfication (SVM) Bounding box (Regression)

<Fast R-CNN>

Region proposal (Selective Search)

Feature extraction Classfication + BB Regression (DNN)

<Faster R-CNN>

Region proposal Feature extraction Classfication + BB Regression (DNN)

Reference

- Ross Girshick, Jeff Donahue, Trevor Darrell, Jitendra Malik.

 FRich feature hierarchies for accurate object detection and semantic segmentation_1, 2014
- J.R.R. Uijlings, K.E.A. van de Sande, T. Gevers, A.W.M. Smeulders. 「Selective Search for Object Recognition」, 2012
- Pedro F. Felzenszwalb, Daniel P. Huttenlocher. 「Efficient Graph-Based Image Segmentation」, 2004
- Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton. [ImageNet Classification with Deep Convolutional Neural Networks], 2012
- Ross Girshick, Microsoft Research. Fast R-CNN_J, 2015
- Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition, 2015
- Shaoqing Ren, Kaiming He, Ross Girshick, Jian Sun. Faster R-CNN: Toward Real-Time Object Detection with Region Proposal Networks, 2015
- https://www.robots.ox.ac.uk/~tvg/publications/talks/fast-rcnn-slides.pdf
- https://kikaben.com/r-cnn-original/
- Selecting the right bounding box using non max suppression with implementation
- https://lilianweng.github.io/posts/2017-12-31-object-recognition-part-3/
- https://learnopencv.com/understanding-alexnet/
- https://kikaben.com/fast-r-cnn-213/
- https://oi.readthedocs.io/en/latest/computer vision/object detection/faster r-cnn.html
- https://cs231n.stanford.edu/slides/2016/winter1516_lecture8.pdf

THANK YOU