

Redes neuronales artificiales.

Una red neuronal es una gran cantidad de unidades simples de cómputo interconectadas entre si, que tratan de asemejarse al cerebro en dos aspectos:

- 1. El conocimiento es adquirido por la red desde el ambiente a traves de un proceso de aprendizaje
- 2. El conocimiento adquirido es almacenado en las conecciones entre neuronas

Machine learning

El modelo de McCulloch y Pitts data de 1943.

Figure 18.19 A simple mathematical model for a neuron. The unit's output activation is $a_j = g(\sum_{i=0}^n w_{i,j}a_i)$, where a_i is the output activation of unit i and $w_{i,j}$ is the weight on the link from unit i to this unit.

Estructura de una red neuronal

- Una red está compuesta por unidades (o neuronas) conectadas por links.
- Un link tiene asociado un peso y es usado para propagar la activación desde una neurona a otra.
- La activación de una neurona aj se calcula:

$$a_j = g(in_j) = g\left(\sum_{i=0}^n w_{i,j}a_i\right)$$

Donde:

- g es la función de activacion
- w es el peso sináptico
- ai es la entrada relacionada
- Si g es la función threshold, la neurona se denomina perceptron
- Hay redes propagación hacia adelante y recurrentes.

Machine learning

- Las redes **feed-forward** se pueden organizar en **capas** o **layers**.
- Si la red es multicapa, las capas que no se conectan con la salida se denominan ocultas.

Figure 18.20 (a) A perceptron network with two inputs and two output units. (b) A neural network with two inputs, one hidden layer of two units, and one output unit. Not shown are the dummy inputs and their associated weights.

Redes de una capa.

- Si hay *m* salidas, entonces hay *m* redes distintas, cada una con su propio entrenamiento
- Cada neurona es un clasificador lineal

x_1	x_2	y_3 (carry)	y_4 (sum)
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Figure 18.21 Linear separability in threshold perceptrons. Black dots indicate a point in the input space where the value of the function is 1, and white dots indicate a point where the value is 0. The perceptron returns 1 on the region on the non-shaded side of the line. In (c), no such line exists that correctly classifies the inputs.

Redes multicapa. MLP

Mediante este tipo de redes es posible representar cualquier tipo de función, incluso funciones no lineales.

Las salidas de una capa son entradas a otra capa.

$$a_5 = g(w_{0,5,+}w_{3,5} a_3 + w_{4,5} a_4)$$

$$= g(w_{0,5,+}w_{3,5} g(w_{0,3} + w_{1,3} a_1 + w_{2,3} a_2) + w_{4,5} g(w_0 4 + w_{1,4} a_1 + w_{2,4} a_2))$$

$$= g(w_{0,5,+}w_{3,5} g(w_{0,3} + w_{1,3} x_1 + w_{2,3} x_2) + w_{4,5} g(w_0 4 + w_{1,4} x_1 + w_{2,4} x_2)).$$

Entrenamiento del MLP. back propagation

El valor de las salidas dependen de todos los pesos de entrada

$$\frac{\partial}{\partial w} Loss(\mathbf{w}) = \frac{\partial}{\partial w} |\mathbf{y} - \mathbf{h}_{\mathbf{w}}(\mathbf{x})|^2 = \frac{\partial}{\partial w} \sum_{k} (y_k - a_k)^2 = \sum_{k} \frac{\partial}{\partial w} (y_k - a_k)^2 \quad (18.10)$$

Otro inconveniente es que el error en las salidas debe **retro propagarse** a la capa oculta. La idea básica es dividirlo de acuerdo a los pesos en la capa oculta.

Regla para la capa de salida:

$$\frac{\partial Loss_k}{\partial w_{j,k}} = -2(y_k - a_k) \frac{\partial a_k}{\partial w_{j,k}} = -2(y_k - a_k) \frac{\partial g(in_k)}{\partial w_{j,k}}
= -2(y_k - a_k)g'(in_k) \frac{\partial in_k}{\partial w_{j,k}} = -2(y_k - a_k)g'(in_k) \frac{\partial}{\partial w_{j,k}} \left(\sum_j w_{j,k} a_j \right)
= -2(y_k - a_k)g'(in_k)a_j = -a_j \Delta_k ,$$

Inteligencia Artificial

Machine learning

Regla para la capa oculta:

$$\frac{\partial Loss_k}{\partial w_{i,j}} = -2(y_k - a_k) \frac{\partial a_k}{\partial w_{i,j}} = -2(y_k - a_k) \frac{\partial g(in_k)}{\partial w_{i,j}}$$

$$= -2(y_k - a_k)g'(in_k) \frac{\partial in_k}{\partial w_{i,j}} = -2\Delta_k \frac{\partial}{\partial w_{i,j}} \left(\sum_j w_{j,k} a_j \right)$$

$$= -2\Delta_k w_{j,k} \frac{\partial a_j}{\partial w_{i,j}} = -2\Delta_k w_{j,k} \frac{\partial g(in_j)}{\partial w_{i,j}}$$

$$= -2\Delta_k w_{j,k} g'(in_j) \frac{\partial in_j}{\partial w_{i,j}}$$

$$= -2\Delta_k w_{j,k} g'(in_j) \frac{\partial}{\partial w_{i,j}} \left(\sum_i w_{i,j} a_i \right)$$

$$= -2\Delta_k w_{j,k} g'(in_j) a_i = -a_i \Delta_j,$$

Datos adicionales

- Existen otros modelos de red además del MLP:
 - Radial Base Networks
 - Self Organized Maps (SOM)
 - Hopfield
- En problemas reales es necesaria una etapa de preprocesamiento

Inteligencia Artificial Machine learning

Bibliografía y enlaces útiles.

- Russell S., Norvig P.: Artificial Intelligence: A modern Approach. Third Edition. Chapter 18.
- Haykin, Simon: Neural Networks. A comprehensive foundation. Second Edition.