

# CHEMISTRY Chapter 9





**HIDRUROS - HIDROXIDOS** 









## ¿Qué es un hidruro?

Los hidruros son compuestos binarios formados por átomos de hidrógeno y de otro elemento que puede ser metálico o no metálico.





## **Hidruros Metálicos**









## BaH<sub>2</sub>

- Sistemática (IUPAC)
  - Stock
  - Clásica

- Dihidruro de bario
- Hidruro de bario
- Hidruro bárico









FeH<sub>3</sub>

| Anhídrido      |   | Total |
|----------------|---|-------|
| Hipo oso       |   |       |
| 050            |   | Х     |
| <br>opi        | Х | Х     |
| Per <u>ico</u> |   |       |

Sistemática (IUPAC) - Trihidruro de hierro

Stock → Hidruro de hierro (III)

Clásica → Hidruro férrico



2

## **Hidruros No Metálicos**

- >El hidrógeno presenta estado de oxidación +1
- Pueden ser:

<u>Hidruros especiales</u>: Cuando el no metal pertenece al grupo:

| III A (-3) | IVA (-4)                    | VA (-3)                                       |
|------------|-----------------------------|-----------------------------------------------|
| B (boro)   | C (carbono)<br>Si (silicio) | N (nitrógeno)<br>P (fósforo)<br>As (arsénico) |

Anfigenuros y Haluros: Cuando el no metal pertenece al grupo:

| VI A (-2)                           | VIIA (-1)                                |
|-------------------------------------|------------------------------------------|
| S (azufre) Se (selenio) Te (teluro) | F (flúor) Cℓ (cloro) Br (bromo) I (yodo) |



## **Hidruros especiales**

BH<sub>3</sub> BORANO

CH<sub>4</sub> METANO

SiH<sub>4</sub> SILANO

PH<sub>3</sub> **FOSFINA** 

NH<sub>3</sub> **AMONIACO** 

AsH<sub>3</sub> ARSINA



| III A (-3) | IVA (-4)                    | VA (-3)                                       |
|------------|-----------------------------|-----------------------------------------------|
| B (boro)   | C (carbono)<br>Si (silicio) | N (nitrógeno)<br>P (fósforo)<br>As (arsénico) |



## **Anfigenuros y Haluros**





Hidrógeno + No Metal

**SULFURO DE HIDRÓGENO** 

| +1 | -1         |
|----|------------|
| H  | <b>C</b> ℓ |

HCℓ (g)

**CLORURO DE HIDRÓGENO** 

| VI A (-2)                  | VIIA (-1)               |
|----------------------------|-------------------------|
| S (azufre)<br>Se (selenio) | F (flúor)<br>Cℓ (cloro) |
| Te (teluro)                | Br (bromo)<br>I (yodo)  |

anfigenuros
y haluros se
encuentran
en estado
gaseoso





# ¿Qué es un hidróxido?

Los hidróxidos son compuestos ternarios. Llamados también bases. Se forman al combinarse:

$$K_2O$$
 +  $H_2O$   $\longrightarrow$  KOH

Hidróxido de potasio

















# $Pb(OH)_4$

Sistemática (IUPAC)

Tetrahidróxido de plomo

Stock

Hidróxido de plomo (IV)

Clásica

Hidróxido plúmbico



Nombre el siguiente hidruro (nomenclatura sistemática): PbH₄

## **RESOLUCIÓN**

PbH<sub>4</sub>



Tetrahidruro de plomo



Nombre el siguiente hidróxido:

**RESOLUCIÓN** 

Stock: Hidróxido de cobre (II)

IUPAC: DiHidróxido de cobre

Clásica: Hidróxido cúprico



## Formule el siguiente hidruro:

Hidruro de oro (III)

**RESOLUCIÓN** 

#### **STOCK**



Formule el siguiente hidróxido y luego indique el número de átomos:

Hidróxido férrico:\_\_\_\_\_

## **RESOLUCIÓN**



Atomicidad = 7



## Relacione.

- I. CrH<sub>3</sub>
- II.  $Zn(OH)_2$
- $III. HI_{(a)}$
- IV. CaO

- (v) Óxido de calcio
- (III) Yoduro de hidrógeno
- (II) Hidróxido de zinc
- ( I) Trihidruro de cromo

## **RESOLUCIÓN**

CrH<sub>3</sub>

**IUPAC:** 

Trihidruro de cromo

Haluros

HI<sub>(g)</sub> Yoduro de hidrógeno

+2

 $Zn(OH)_2$ 

Stock:

Hidróxido de zinc

+2

CaO

Stock:

Óxido de calcio



El hidróxido sódico (NaOH) se emplea mucho en la industria de los jabones y los productos de belleza y cuidado corporal. Su principal uso es en la saponificación de determinados ácidos grasos para formar jabón. También están los antiácidos que neutralizan los ácidos digestivos, tenemos ejemplos como Mg(OH)<sub>2</sub>, Ca(OH)<sub>2</sub>, Al(OH)<sub>3</sub>. Con respecto a los tres últimos hidróxidos mencionados dar nombre Stock-IUPAC-clásico respectivamente.

## **RESOLUCIÓN**

 $Mg(OH)_2$ 

**Stock:** Hidróxido de magnesio

**IUPAC:** Dihidróxido de magnesio

CLÁSICO: Hidróxido magnésico



**Stock:** Hidróxido de calcio

Ca(OH)<sub>2</sub>

**IUPAC:** Dihidróxido de calcio

CLÁSICO: Hidróxido cálcico

Al(OH)3

Stock: Hidróxido de aluminio

**IUPAC:** 

Trihidróxido de aluminio

CLÁSICO:

Hidróxido alumínico



El vanadio es un elemento metálico del grupo VB de la tabla periódica. Este metal tiene un gran número de usos, principalmente conformando aleaciones. Alrededor del 95 % del vanadio del mundo se obtiene en Sudáfrica, China y Rusia. El vanadio no se halla en su forma elemental, pero puede ser obtenido a partir de 65 minerales distintos. Sabiendo que un hidróxido de vanadio presenta una atomicidad de 5, determine el nombre del óxido correspondiente.

A) Óxido de vanadio (II)

B) Óxido vanádico

C) Óxido de vanadio (III)

D) Óxido de vanadio (IV)



**RESOLUCIÓN** 

Hidróxido de vanadio presenta una atomicidad de 5. Vanadio Metal (+2;+3) +4;+5)



Rpta: a) óxido de vanadio (II)