Manifold Learning and UMAP

Paul Snopov

MIPT & IITP

November, 29, 2021

Overview

- What is Manifold Learning
 - Different Approaches
 - What is UMAP
- UMAP: theoretical side
 - Local distance
 - Review for simplicial sets
 - Fuzzy simplicial sets
 - Extended-pseudo-metric spaces
 - Returning to the problem
- Optimizing a low dimensional representation
 - Layout
- UMAP: computational side
 - Basic Structure
 - Graph Construction
 - Graph Layout

MANHET

Examples

What is Manifold Learning

- An approach to non-linear dimensionality reduction
- The input data is assumed to be sampled from a low dimensional manifold embedded in some \mathbb{R}^n for sufficiently large n
- Manifold Learning methods look for that low dimensional representation of original data

What is Manifold Learning

Figure The image is taken from https://www.researchgate.net/figure/ Swiss-roll-data-set-Fig-11-Three-dimensional-clusters-data-set_ fig7_224189094

Figure The image is taken from [3]

Let's suppose our data $X = \{x_1, ..., x_N\}$ lies on a manifold in some ambient metric space.

The idea of UMAP is sort of borrowed from TDA: having finite sets of points, we can consider balls about each point and construct Cech complex via these balls. By Nerve theorem, this complex will give us a representation of the manifold the data is sampled from.

Figure Images are taken from [3]

If the data were uniformly distributed, the appropriate radius would have been chosen easily $(\frac{d(x_i,x_j)}{2}+\varepsilon)$.

Figure The image is taken from [3]

Assuming the data is uniformly distributed on \mathcal{M} , any ball of fixed volume should contain approx. the same number of points of X regardless of where on the manifold it's centered. And conversely, a ball centered at X_i that contains exactly k neighbors should have approx. fixed volume regardless of the choice of $X_i \in X$.

But real world data simply isn't that nicely behaved. How to fix this?

A: let's suppose that the data *is* uniformly distributed on the manifold, but if the data looks like it isn't uniformly distributed that must simply be because the notion of distance is varying across the manifold – space itself is warping: stretching or shrinking according to where the data appear sparser or denser.

By assuming that the data is uniformly distributed we can actually compute an approx. of a local notion of distance for each point.

Figure The image is taken from [3]

Local distance

Let \mathcal{M} be the manifold on which the data lie on and g be the Riemannian metric on it.

Lemma

Let (\mathcal{M},g) be in ambient \mathbb{R}^n and $p\in\mathcal{M}$. If g is locally constant about p in an open nbhd U s.t. g is constant diagonal matrix in ambient coordinates, then in a unit ball $B(p)\subseteq U$ (i.e. with volume $\frac{\pi^{n/2}}{\Gamma(n/2+1)}$ w.r.t. g), the geodesic distance from p to any point $q\in B(p)$ is $\frac{1}{r}d\mathbb{R}^n(p,q)$, where r – the radius of B(p) in the ambient space.

Local distance

Figure The image is taken from [3]

Local distance

By previous lemma, we can approx. geodesic distance from X_i to its neighbors by normalising distances w.r.t. the distance of the farthest neighbor, i.e. creating custom distances for each X_i .

Thus now we have a family of discrete metric spaces for each X_i . And we need to merge it into something global. This can be done by converting the metric spaces into fuzzy simplicial sets.

Definition

The category Δ is called *simplicial category*. It's the category with:

- **①** Objects are finite order sets $[0], [1], ...[n] = \{0, 1, ..., n\}$
- ② Morphism $[n] \rightarrow [m]$ is order-preserving map

Definition

A simplicial set is a presheaf on Δ

Standard n-simplex Δ^n is defined as the functor hom(-,[n]). By the Yoneda lemma, for simplicial set X, $X([n]) \simeq \operatorname{Nat}(\Delta^n,X)$, moreover, the next theorem holds

Theorem (Density theorem for simplicial set)

Let X be a presheaf, then $X \simeq \lim_{n \to \infty} \Delta^n$

There is a standard covariant functor geometric realization $|\cdot|: \Delta \to \textit{Top}$ that sends [n] to the standard n-simplex $|\Delta^n| \subseteq \mathbb{R}^{n+1}$

$$|\Delta^n| = \{(t_0, ..., t_n) \in \mathbb{R}^{n+1} | \sum_{i=0}^n t_i = -log(a) \}$$

For simplicial set, one can construct |X| as the colimit

$$|X| = \lim_{\longrightarrow} |\Delta^n|$$

Conversely, for topological space Y one can construct associated simplicial set Sing(Y) – singular set of Y, by defining:

$$\mathsf{Sing}(Y):[n]\mapsto \mathsf{hom}_{\mathit{Top}}(|\Delta^n|,Y)$$

It's known from homotopy theory that $|\cdot| \dashv \mathsf{Sing}$

Fuzzy sets

Classical theory of singular sets and topological realization can be extended to fuzzy singular sets and metric realization (due to Spivak [2]).

Classically, a *fuzzy set* is defined in terms of a carrier set A and a map $\nu:A\to [0,1]$ – *membership function*. The value $\nu(x)$ is sort of the membership strength of x to the set A.

Fuzzy sets

Let I = (0,1] with topology given by intervals of the form (0,a) for $a \in (0,1]$. Let's consider the category of open sets of Op(I).

Definition

A fuzzy set is a presheaf $\mathcal P$ on Op(I) such that all maps $\mathcal P(a \leq b)$ are injections.

To link to the classical approach to fuzzy sets one can think of a section $\mathcal{P}((0,a))$ as the set of all elements with membership strength at least a.

Category of fuzzy sets

Under the Grothendieck topology on Op(I), presheaves are trivially sheaves, and then

Definition

The category **Fuzz** of fuzzy sets is the full subcategory of sheaves on *I* spanned by fuzzy sets

Category of fuzzy simplicial sets

Definition

The category of fuzzy simplicial sets **sFuzz** is the category of presheaves on Δ with value in **Fuzz**

We will use $\Delta_{\leq a}^n$ to denote the sheaf given by representable functor of the object ([n],(0,a)). The importance of this fuzzy version of simplicial sets is their relation to metric spaces.

Category of extended-pseudo-metric spaces

Definition

An extended-pseudo-metric space (e.p. metric space) (X, d) is a metric space in which the distance between two distinct points can be either 0, or ∞ .

The category of e.p. metric spaces **EPMet** has non-expansive maps as morphisms. The subcategory of finite e.p. metric spaces is **FinEPMet**.

In [2] Spivak constructs a pair of adjoint functors $Real \dashv Sing$ between categories **sFuzz** and **EPMet**, which are just the natural extension of the classical functors from algebraic topology.

The functor *Real* is defined for standard fuzzy simplices $\Delta_{< a}^n$ as:

$$Real(\Delta_{\leq a}^n) = \{(t_0, ..., t_n) \in \mathbb{R}^{n+1} | \sum_{i=0}^n t_i = -log(a) \},$$

similarly to the classical realization functor $|\cdot|$. The metric on $Real(\Delta^n_{< a})$ is inherited from ambient space. A morphism $\Delta^n_{< a} \to \Delta^m_{< b}$ exists iff $a \le b$ and is determined by a Δ morphism $\sigma: [n] \to [m]$. The action of Real on such morphism is a map

$$(x_0,...,x_n) \mapsto \frac{\log(b)}{\log(a)} \left(\sum_{i_0 \in \sigma^{-1}(0)} x_{i_0},..., \sum_{i_0 \in \sigma^{-1}(m)} x_{i_0} \right)$$

For general simplicial set X, we can define

$$Real(X) = \lim_{\rightarrow} Real(\Delta^n_{< a})$$

Analogously to the classical case, we can define functor Sing:

$$\mathit{Sing}(Y):([n],(0,a))\mapsto \mathsf{hom}_{\textit{EPMet}}(\mathit{Real}(\Delta^n_{< a}),Y)$$

But in our case, we are interested in finite metric spaces. We can consider subcategory of bounded fuzzy simplicial sets Fin - sFuzz and therefore use the analogous adjoint pair FinReal and FinSing.

Definition

Define FinReal : **Fin – sFuzz** \rightarrow **FinEPMet** by setting FinReal($\Delta_{<a}^n$) = $(x_1, ..., x_n, d_a)$, where

$$d_a(x_i, x_j) = \begin{cases} -log(a) & \text{if } i \neq j \\ 0 & \text{otherwise} \end{cases}$$

Similarly, for bounded simplicial set X $FinReal(X) = \lim_{\substack{\longrightarrow \\ \text{can}}} FinReal(\Delta^n_{< a})$. Similar to Spivak's construction, for map $\Delta^n_{< a} \to \Delta^m_{< b}$, the action of FinReal is given by

$$(x_1,...,x_n,d_a)\mapsto (x_\sigma(1),...,x_\sigma(n),d_b)$$

Definition

Define $FinSing : FinEPMet \rightarrow Fin - sFuzz$ by

 $FinSing(Y): ([n], (0, a)) \mapsto hom_{FinEPMet}(FinReal(\Delta^n_{\leq a}), Y)$

The main theorem:

Theorem

The functors FinReal and FinSing form adjunction FinReal ⊢ FinSing

Returning to our problem

Now we can handle the family of incompatible metric spaces described above. Each metric space can be translated into a fuzzy simplicial set via the fuzzy singular set functor. We get the family of fuzzy simplicial sets for which we can just take a fuzzy union across the entire family. The result is a single fuzzy simplicial set which captures the relevant topological and metric structure of the manifold \mathcal{M} .

Returning to our problem

But fuzzy singular functor applies to e.p. metric spaces. The result of Lemma 1 only provide accurate approx. of geodesic distance local to X_i for distances measured from X_i – the geodesic distances between other pairs of points within the neighborhood of X_i are not well defined. So due to the lack of information, let $d_i(X_i, X_k) = \infty$ for $i \neq j$ and $i \neq k$.

Returning to our problem

Definition

Let $X = \{X_1, ..., X_N\}$ be a dataset in \mathbb{R}^n and let $\{(X, d_i)\}$ be a family of e.p. metric spaces such that

$$d_i(X_j, X_k) = \begin{cases} d_{\mathcal{M}}(X_j, X_k) - \rho & \text{if } i = j \text{ or } i = k \\ \infty & \text{otherwise} \end{cases}$$

where ρ is the distance to the nearest neighbor of X and $d_{\mathcal{M}}$ is geodesic distance on the manifold.

The fuzzy topological representation of X is

$$\bigcup_{i=0}^{n} FinSing((X, d_i))$$

Local connectivity

Why we substract ρ there? It's because we assume that our manifold is locally connected. This assumption is natural in topological sense and actually helps us to prevent the curse of dimensionality [4].

Figure The image is taken from [3]

Layout

Let $Y = \{Y_1, ..., Y_N\} \subseteq \mathbb{R}^d$ be a low dim. representation of X. Since we know apriori a manifold on which Y lies on(usually just \mathbb{R}^d) we can compute fuzzy topological representation directly.

We will use fuzzy set cross entropy to compare 2 fuzzy sets. For this, we need to revert to classical fuzzy set notation, i.e. to a reference set A and function $\nu:A\to[0,1]$. Having fuzzy simplicial set \mathcal{P} , we can let $A=\bigcup_{a\in(0,1]}\mathcal{P}([0,a))$ and $\nu(x)=\sup\{a\in(0,1]|x\in\mathcal{P}([0,a))\}$

Layout

Definition

The cross entropy C of two fuzzy sets (A, ν) and (A, μ) is

$$C((A, \nu), (A, \mu)) = \sum_{a \in A} \left(\nu(a) \log \frac{\nu(a)}{\mu(a)} + (1 - \nu(a)) \log \frac{1 - \nu(a)}{1 - \mu(a)} \right)$$

We can optimize embedding Y w.r.t. fuzzy set cross entropy using gradient descent. Fuzzy singular set functor is then approximated via differentiable functions.

Basic structure for approximating manofild

- Graph Construction
 - ① Construct a weighted *k*-neighbour graph.
 - 2 Apply some transform on the edges to ambient local distance.
 - **3** Deal with the inherent asymmetry of the *k*-neighbour graph.
- Graph Layout
 - Define an objective function that preserves desired characteristics of this k-neighbour graph.
 - Find a low dimensional representation which optimizes this objective function

Graph Construction

From now, let $X = \{x_1, ..., x_N\}$ be the input dataset with a metric(or dissimilarity measure) $d: X \times X \to \mathbb{R}_{\geq 0}$.

Given the hyperparameter k, we compute the set $\{x_{i1},...,x_{ik}\}$ of the k nearest neighbors for each $x_i \in X$ under the metric d.

Graph Construction

For each x_i we define 2 parameters: ρ_i and σ_i s.t.

$$\rho_i = \min\{d(x_i, x_j) | 1 \le j \le k, d(x_i, x_j) > 0\}$$

$$\sum_{j=1}^k \exp\left(\frac{-\max(0, d(x_i, x_j) - \rho_i)}{\sigma_i}\right) = \log_2 k$$

- ρ_i local connectivity
- σ_i smoothed normalisation factor, defining the Riemannian metric local to x_i

Graph Construction

Define a weighted directed graph $\bar{G} = (V, E, w)$, where:

- Vertices V are just points X
- $(x_i, x_j) \in E$ if x_j is a k-neighbor of x_i
- $w((x_i, x_j)) = \exp\left(\frac{-\max(0, d(x_i, x_j) \rho_i)}{\sigma_i}\right)$

This graph is 1-skeleton of the fuzzy simplicial set associated to the metric space local to x_i where the local metric is defined in terms of ρ_i and σ_i . The weight – membership strenth of the corresponding 1-simplex within the fuzzy simplicial set (or one can think of the weight as the probability that the edge exists).

Unified topological representation

Let A be the weighted adjacency matrix of \bar{G} , and consider

$$B = A + A^T - A \circ A^T,$$

where \circ is the Hadamard product. If A_{ij} – probability that the directed edge (x_i, x_j) exists, then B_{ij} is the probability that either (x_i, x_j) or (x_j, x_i) exists.

Then UMAP graph G is an undirected weighted graph whose adjacency matrix is B.

Unified topological representation

Figure Images are taken from [3]

Force directed graph layout algorithm

UMAP uses a force directed graph layout algorithm in low dimensional space. Force directed layout algorithm requires a description of both the attractive and repulsive forces.

In UMAP the attractive force between i and j is

$$\frac{-2ab \|y_i - y_j\|_2^{2(b-1)}}{1 + \|y_i - y_j\|_2^2} w((x_i, x_j))(y_i - y_j)$$

The repulsive force is given by:

$$\frac{2b}{(\varepsilon + \|y_i - y_j\|_2^2)(1 + a\|y_i - y_j\|_2^{2b})}(1 - w((x_i, x_j)))(y_i - y_j)$$

Force directed graph layout algorithm

The algorithm applies iteratively the forces at each edge. Slowly decreasing the forces, it converges to a local minima. The forces are derived from gradients optimising the cross-entropy between UMAP graph G and an equivalent weighted graph H with points y_i . We are looking for the positions of y_i such that H closely approximates G. Since G captures the topology of the source data, H matches the topology

as closely as the optimization allows.

MNIST

Figure The image is taken from [1]

FashionMNIST

Figure The image is taken from [3]

References

- L. McInnes et. al. UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction, 2020
- David I Spivak. Metric realization of fuzzy simplicial sets. Self published notes, 2012.
- "How UMAP works", UMAP documentation. https://umap-learn.readthedocs.io/en/latest/how_umap_works.html
- UMAP Uniform Manifold Approximation and Projection for Dimension Reduction SciPy 2018 https://youtu.be/nq6iPZVUxZU