Blatt 03

Aufgabe 3.1

Wir fuhren das Experiment durch "Zweimal hintereinander würfeln". Welche der folgenden Ereignisse sind unabhangig.

	1	2	3	4	5	6
1	2	3	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
4	5	6	7	8	9	10
5	6	7	8	9	10	11
6	7	8	9	10	11	12

- (a)
$$A = \{(1;1);(2;2);(3;3);(4;4)\}\ B$$
 : Augensumme groesser oder gleich 5

aus Tabelle:

$$P(A) = \frac{4}{36} = \frac{1}{9}$$

$$P(B) = \frac{36-6}{36} = \frac{5}{6}$$

$$P(A \cap B) = \frac{2}{36}$$

$$P(A)*P(B)=rac{5}{54}
eq P(A\cap B) o$$
 stochastisch abhängig

• (b) A: Ein Wurfel zeigt eine 1 B: Ein Wurfel zeigt eine 2

aus Tabelle:

$$P(A) = \frac{11}{36}$$

$$P(B) = \frac{11}{36}$$

$$P(A\cap B)=rac{2}{36}$$

$$P(A)*P(B)=rac{121}{1296}
eq P(A\cap B)
ightarrow ext{stochastisch abhängig}$$

• (c) A: Beide Augenzahlen sind gerade.

B: Beide Augenzahlen sind ungerade.

aus Tabelle:

$$P(A) = \frac{9}{36}$$

$$P(B) = \frac{9}{36}$$

$$P(A\cap B)=0$$
 (nicht möglich)

$$P(A)*P(B)
eq 0 = P(A \cap B) o ext{stochastisch abhängig}$$

(d) A: Beide Augenzahlen sind gerade.
 B: Ein Wurfel zeigt eine gerade Zahl.

aus Tabelle:

$$P(A) = \frac{9}{36}$$

$$P(B) = \frac{36-9}{36} = \frac{27}{36}$$

$$P(A \cap B) = \frac{9}{36}$$

$$P(A)*P(B)=rac{243}{1296}
eqrac{9}{36}=P(A\cap B)
ightarrow$$
 stochastisch abhängig

Aufgabe 3.2

Wir führen das Experiment durch "Zweimal hintereinanderwürfeln". Der Ereignisraum ist also $\Omega=\{1;2;3;4;5;6\} \times \{1;2;3;4;5;6\}$ Wir definieren drei Zufallsvariablen:

X: Anzahl der Wurfe, bei denen eine gerade Zahl geworfen wird.

 $Y: \mathbf{Anzahl}$ der Wurfe, bei denen eine Zahl 5 geworfen wird.

 ${\cal Z}$: Ergebnis des ersten Wurfes.

Welche der Zufallsvariablen sind unabhangig (Definition von Unabhangigkeit von Zufallsvariablen kommt am 29.10. in der Vorlesung). Begründen Sie Ihre Antwort!

Aufgabe 3.3

Gegeben ist die Verteilungsfunktion einer diskreten Zufallsvariablen

	0	für	t < 0		
	0,1	für	0 <= t < 2		
F(t)=	0,4	für	2 <= t < 4		
	0,8	für	4 <= t < 6		
	1	für	t >= 6		

Berechnen Sie: P(1 < X <= 4); P(1 <= X <= 4); P(X >= 3).

$$P(1 < X <= 4) =$$

Aufgabe 3.4

Die zufällige Anzahl X von Ausfällen eines Servers pro Monat genügt folgender Verteilung:

Ausfälle x_i	0	1	2	3	4	>4
$P(X=x_i)$	0,5	0,2	0,1	0,1	0,1	0

Der Ausfall des Servers verursacht verschiedene Kosten. Der einmalige Ausfall des Servers kostet 1000EUR. Fällt der Server zweimal aus, so betragen die Kosten 1500EUR. Bei drei- und viermaligem Ausfall mussen jeweils 2000EUR bezahlt werden. Wie groß ist die Wahrscheinlichkeit dafur, dass mehr als 1000EUR Kosten im Monat wegen Ausfallen des Servers entstehen?

$$P("Mehr als 1000 EUR kosten im Monat") = P(X >= 2) =$$

= $P(X = 2) + P(X = 3) + P(X = 4) + P(X > 4) = 0, 1 + 0, 1 + 0, 1 + 0 = 0, 3$

Aufgabe 3.5

Die Intaktwahrscheinlichkeit bezogen auf die Zeit t betragen fur zwei unabhängig voneinander arbeitende Computernetze 0,9 bzw. 0,8. Sei X die Zufallsvariable für die Anzahl der in der Zeit t intakten Computernetze. Ermitteln Sie

- (a) die Verteilungsfunktion F(x),
- (b) die Wahrscheinlichkeit, dass in der Zeit t wenigstens ein Computernetzintakt ist.