作业八

Noflowerzzk

2025.4.11

4 - 7

(1) 相当于杆, $J = \frac{1}{3}ma^2$

(2)
$$M = \frac{1}{4}ka^4b\omega^2$$
, $\pm M = J\frac{\mathrm{d}\omega}{\mathrm{d}t}$, $\pm \frac{3}{4}\frac{ka^2b}{m}t = \frac{1}{\omega} - \frac{1}{\omega_0}$. $\Rightarrow \omega = \frac{1}{2}\omega_0 \pm t = \frac{4m}{3ka^2b\omega_0}$

4 - 9

$$(1) J_C = J_O + M \left(\frac{l}{4}\right)^2$$

(2)
$$L_O = L_C + L' = \frac{1}{4}Mvl$$

(3) 角动量守恒, $J_O\omega = L_O$, $\omega = \frac{12v}{7l}$

4 - 11

因此

$$M = \frac{\mathrm{d}L}{\mathrm{d}t} = J\frac{\mathrm{d}\omega}{\mathrm{d}t} + \omega\frac{\mathrm{d}J}{\mathrm{d}t}, \quad \text{Fig. } M\mathrm{d}t = J\mathrm{d}\omega + \omega\mathrm{d}J = \left(\frac{1}{2}m_0R^2 + mr^2\right)\mathrm{d}\omega + qr^2\omega\mathrm{d}t,$$

$$(M - qr^2\omega) dt = \left(\frac{1}{2}m_0R^2 + mr^2\right) d\omega, \quad \mathbb{X} \ m = qt, \quad \text{ix}$$

$$\frac{\mathrm{d}\omega}{M - qr^2\omega} = \frac{\mathrm{d}t}{\frac{1}{2}m_0R^2 + mr^2}, \quad \text{fig } \omega = \frac{2Mt}{m_0R^2 + 2qr^2t}, \quad \stackrel{\text{d}}{=} t = \frac{m_0R^2}{qr^2}, \quad \omega = \frac{2M}{q(R^2 + 2r^2)}.$$

4 - 12

弹簧原长 $l_0=0.5\,\mathrm{m}$,当 $\theta=90^\circ$ 时弹簧伸长量 $\Delta x=\sqrt{1.5^2+1^2}-0.5=1.30\,\mathrm{m}$,由能量守恒 $\frac{1}{2}J\omega^2+mg\frac{l}{2}=\frac{1}{2}k(\Delta x)^2$,故初始角速度大小

$$\omega = \sqrt{\frac{k(\Delta x)^2 - mgl}{\frac{1}{3}ml^2}} = 3.37 \,\mathrm{rad/s}$$

作业八 2025.4.11

4 - 13

(1) 转动惯量为 $J_o=\frac{1}{2}mR^2+mR^2=\frac{3}{2}mR^2$,由能量守恒 $\frac{1}{2}J_o\omega^2=mgR$,所以角速度

$$\omega = 2\sqrt{\frac{g}{3R}}$$
 $v_c = R\omega = 2\sqrt{\frac{gR}{3}}$ $v_A = 2R\omega = 4\sqrt{\frac{gR}{3}}$.

(2) 取 O 为参考点,外力矩为零,所以角加速度为零。质心水平方向加速度为 $a_{cx}=\beta R=0$,竖直方向加速度为 $a_{cy}=R\omega^2=\frac{4}{3}g$

 $F_x = ma_{cx}$, $F_y - mg = ma_{cy}$ 故 $F_x = 0$, $F_y = \frac{7}{3}mg$, 轴对圆盘的合力为

$$F = \sqrt{F_x^2 + F_y^2} = \frac{7}{3}mg.$$

4 - 14

绷紧瞬间 $J\omega_0=J\omega+mR^2\omega$ 得 $\omega=\frac{1}{3}\omega_0, v_A=\frac{1}{3}\omega_0R$. 由牛二 $\mu mg-T=mR\beta, TR=J\beta$, 有 $T=\frac{1}{3}\mu mg$.

4 - 15

能量守恒有 $\frac{1}{2}mgl=\frac{1}{2}J\omega_0^2$. 碰撞时角动量守恒有 $J\omega_0=J\omega+mv_0l$. 棒反弹后有 $\frac{1}{2}mgl+\frac{1}{2}J\omega^2=mgh$, 块 $\mu mgs=\frac{1}{2}mv_0^2$, 解得 $h=3\mu s+l-\sqrt{6\mu sl}$

4 - 16

(1) 力矩为 0,角动量守恒,小珠滑到环的中点时 $J\omega_0=J\omega_1+mR^2\omega_1$,角速度为 $\omega_1=\frac{1}{3}\omega_0$,由能量守恒

$$\frac{1}{2}J\omega_0^2 + mgR = \frac{1}{2}J\omega_1^2 + \frac{1}{2}m((R\omega_1)^2 + u_1^2)$$

解得

$$u_1 = \sqrt{\frac{1}{3}R\omega_0^2 + 2gR}$$
 相对地面的速度大小为 $v_1 = \sqrt{u_1^2 + (R\omega_1)^2} = \sqrt{\frac{4}{9}R\omega_0^2 + 2gR}$.

(2) 小珠滑到底部时有 $J\omega_0=J\omega_2$,所以角速度大小为 $\omega_2=\omega_0$,由能量守恒

$$\frac{1}{2}J\omega_{0}^{2}+2mgR=\frac{1}{2}J\omega_{2}^{2}+\frac{1}{2}mu_{2}^{2}$$

解得 $u_2 = \sqrt{4gR}$,相对地面的速度大小为 $v_1 = u_2 = \sqrt{4gR}$.

作业八 2025.4.11

4 - 17

(1) 小球下落能量守恒, $\frac{1}{2}mv_0^2=mgl$,以 O 为参考点角动量守恒, $mlv_0=J\omega_0$,碰撞能量守恒 $\frac{1}{2}mv_0^2=\frac{1}{2}J\omega_0^2$ 故 M=3m 。

(2) 由 (1) 解得 $v_0=l\omega_0$,细杆摆起过程中能量守恒, $\frac{1}{2}J\omega_0^2=Mg\frac{l}{2}(1-\cos\theta)$ 故 $\theta=\arccos\frac{1}{3}$ 。

4 - 18

- (1) 转动惯量为 $J=\frac{1}{3}Ml^2+Ml^2=\frac{4}{3}Ml^2$ 系统中心位置与 O 距离为 $l_c=\frac{M\frac{l}{2}+Ml}{2M}=\frac{3}{4}l$,子 弹穿入过程中系统角动量守恒, $mlv=ml\frac{v}{2}+J\omega_0$,杆和球能量守恒 $\frac{1}{2}J\omega_0^2=2Mg\times 2l_c$,解 得 $v=\frac{4M}{m}\sqrt{2gl}$ 。
- (2) 角加速度为 $\beta_1=\frac{2Mgl_c}{J}=\frac{9g}{8l}$, 质心水平加速度为 $a_{cx}=l_c\omega_1^2=\frac{3}{4}l\omega_1^2$, 竖直加速度为 $a_{cy}=\beta_1l_c=\frac{27}{32}g$,由牛二 $F_x=2Ma_{cx}$, $2Mg-F_y=2Ma_{cy}$ 故 $F_x=\frac{3}{2}Ml\omega_1^2$, $F_y=\frac{5}{16}Mg$, 故

$$F = M\sqrt{\frac{25}{256}g^2 + \frac{9}{4}l^2\omega_1^4}$$

4 - 19

(1) 顺时针

(2)
$$\omega_1 = \frac{mgr \sin \theta}{J_c \omega \sin \theta} = \frac{mgr_C}{J_C \omega}$$

$$v = \frac{1}{r}g\left(t - \frac{r}{c}\right), r = \sqrt{x^2 + y^2 + z^2}, \text{ iff } \theta: \frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2} = \frac{1}{c^2} \frac{\partial^2 v}{\partial t^2}$$