Introduction to Machine Learning

Lecture 3 Linear Regression - Introduction

Hongteng Xu

高瓴人工智能学院 Gaoling School of Artificial Intelligence

Outline

Review

- ▶ **Linear algebra:** Basic operations of matrix and linear space
- ▶ **Statistics:** Expectation, variance, and the method of moments
- ▶ **Probability:** MLE v.s. MAP, two statistical ML paradigms

Outline

Review

- ▶ **Linear algebra:** Basic operations of matrix and linear space
- ▶ **Statistics:** Expectation, variance, and the method of moments
- ▶ **Probability:** MLE v.s. MAP, two statistical ML paradigms

Today

- ▶ Linear regression: Take polynomial regression as an example
- Pre-processing, training, and evaluation
- ▶ Model selection: AIC v.s. BIC

Polynomial Regression

A polynomial with N-1 degrees:

$$p(x) = c_0 + c_1 x + \dots + c_{N-1} x^{N-1} = \sum_{j=1}^{N} c_{j-1} x^{j-1}.$$
 (1)

Polynomial Regression

A polynomial with N-1 degrees:

$$p(x) = c_0 + c_1 x + \dots + c_{N-1} x^{N-1} = \sum_{j=1}^{N} \underbrace{c_{j-1}}_{\text{Coefficient}} x^{j-1}.$$
 (1)

Given a sequence of numbers, *i.e.*, x_1 , ..., x_M , the mapping

$$\underbrace{[c_0,...,c_{N-1}]^ op}_{\mathbf{c}}\mapsto \underbrace{[p(\pmb{x}_1),...,p(\pmb{x}_M)]^ op}_{p(\pmb{x})}$$

is linear.

Polynomial Regression

A polynomial with N-1 degrees:

$$p(x) = c_0 + c_1 x + \dots + c_{N-1} x^{N-1} = \sum_{j=1}^{N} \underbrace{c_{j-1}}_{\text{Coefficient}} x^{j-1}.$$
 (1)

Given a sequence of numbers, *i.e.*, x_1 , ..., x_M , the mapping

$$\underbrace{[c_0,...,c_{N-1}]^\top}_{\boldsymbol{c}} \mapsto \underbrace{[p(x_1),...,p(x_M)]^\top}_{p(\boldsymbol{x})}$$

is linear.

$$p(\mathbf{x}) = A\mathbf{c}$$

Vandermonde matrix: $\begin{vmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{N-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{N-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_M & x_M^2 & \cdots & x_M^{N-1} \end{vmatrix}$

Polynomial Regression: An Example

Malthus's principle of population.

Polynomial Regression: An Example

Polynomial Regression: An Example

Could you enumerate more cases suitable for polynomial regression?

▶ **Taylor Expansion:** For $f(x) : \mathbb{R} \mapsto \mathbb{R} \in \mathbb{C}^{\infty}$ and $a \in \mathbb{R}$,

$$f(x) = f(a) + \frac{f^{(1)}(a)}{1!}(x-a) + \frac{f^{(2)}(a)}{2!}(x-a)^2 + \frac{f^{(3)}(a)}{3!}(x-a)^3 + \dots$$

$$= \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^n.$$
(2)

▶ **Taylor Expansion:** For $f(x) : \mathbb{R} \mapsto \mathbb{R} \in \mathbb{C}^{\infty}$ and $a \in \mathbb{R}$,

$$f(x) = f(a) + \frac{f^{(1)}(a)}{1!}(x-a) + \frac{f^{(2)}(a)}{2!}(x-a)^2 + \frac{f^{(3)}(a)}{3!}(x-a)^3 + \dots$$

$$= \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^n.$$
(2)

Polynomial function can cover and approximate a large set of functions.

▶ **Taylor Expansion:** For $f(x) : \mathbb{R} \to \mathbb{R} \in \mathbb{C}^{\infty}$ and $a \in \mathbb{R}$,

$$f(x) = f(a) + \frac{f^{(1)}(a)}{1!}(x-a) + \frac{f^{(2)}(a)}{2!}(x-a)^2 + \frac{f^{(3)}(a)}{3!}(x-a)^3 + \dots$$

$$= \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^n.$$
(2)

- ▶ Polynomial function can cover and approximate a large set of functions.
- ► Could you enumerate the functions that cannot be fit well by polynomials?

Given labeled data $\{(x_n, y_n)\}_{i=1}^N$, train a *D*-th order polynomial regression model:

$$y = \sum_{d=1}^{D} w_d x^{d-1} + \epsilon. \tag{3}$$

- ▶ The Vandermonde matrix $X = [x_n^{d-1}] \in \mathbb{R}^{N \times D}$ and the label vector $y = [y_n] \in \mathbb{R}^N$.
- ► Learning the model via:

$$\min_{\boldsymbol{w}} \underbrace{\|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{w}\|_{p}^{p}}_{L(\boldsymbol{w};\boldsymbol{X},\boldsymbol{y})} \tag{4}$$

Given labeled data $\{(x_n, y_n)\}_{i=1}^N$, train a *D*-th order polynomial regression model:

$$y = \sum_{d=1}^{D} w_d x^{d-1} + \epsilon. \tag{3}$$

- ▶ The Vandermonde matrix $X = [x_n^{d-1}] \in \mathbb{R}^{N \times D}$ and the label vector $y = [y_n] \in \mathbb{R}^N$.
- ► Learning the model via:

$$\min_{\boldsymbol{w}} \underbrace{\|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{w}\|_{p}^{p}}_{L(\boldsymbol{w};\boldsymbol{X},\boldsymbol{y})} \tag{4}$$

• When p = 2, we have

$$\frac{\partial L}{\partial \boldsymbol{w}} = \mathbf{0}$$

Given labeled data $\{(x_n, y_n)\}_{i=1}^N$, train a *D*-th order polynomial regression model:

$$y = \sum_{d=1}^{D} w_d x^{d-1} + \epsilon. \tag{3}$$

- ▶ The Vandermonde matrix $X = [x_n^{d-1}] \in \mathbb{R}^{N \times D}$ and the label vector $y = [y_n] \in \mathbb{R}^N$.
- ► Learning the model via:

$$\min_{\boldsymbol{w}} \underbrace{\|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{w}\|_{p}^{p}}_{L(\boldsymbol{w};\boldsymbol{X},\boldsymbol{y})} \tag{4}$$

• When p = 2, we have

$$\frac{\partial L}{\partial \boldsymbol{w}} = \mathbf{0} \quad \Rightarrow \quad 2\boldsymbol{X}^T(\boldsymbol{X}\boldsymbol{w} - \boldsymbol{y}) = \mathbf{0}$$

Given labeled data $\{(x_n, y_n)\}_{i=1}^N$, train a *D*-th order polynomial regression model:

$$y = \sum_{d=1}^{D} w_d x^{d-1} + \epsilon. \tag{3}$$

- ▶ The Vandermonde matrix $X = [x_n^{d-1}] \in \mathbb{R}^{N \times D}$ and the label vector $y = [y_n] \in \mathbb{R}^N$.
- ► Learning the model via:

$$\min_{\boldsymbol{w}} \underbrace{\|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{w}\|_p^p}_{L(\boldsymbol{w};\boldsymbol{X},\boldsymbol{y})} \tag{4}$$

• When p = 2, we have

$$\frac{\partial L}{\partial \boldsymbol{w}} = 0 \quad \Rightarrow \quad 2\boldsymbol{X}^{T}(\boldsymbol{X}\boldsymbol{w} - \boldsymbol{y}) = 0 \quad \Rightarrow \quad \boldsymbol{w}^{*} = (\boldsymbol{X}^{T}\boldsymbol{X})^{-1}\boldsymbol{X}^{T}\boldsymbol{y}$$
 (5)

- $\begin{tabular}{l} \blacktriangleright Recall the model: $y = \underbrace{\sum_{d=1}^D w_d x^{d-1}}_{\pmb{x}^T\pmb{w}} + \epsilon \\ \blacktriangleright Assume noise $\epsilon \sim \mathcal{N}(0,\sigma^2)$ \end{tabular}$

- Recall the model: $y = \underbrace{\sum_{d=1}^{D} w_d x^{d-1}}_{\text{a.t.}} + \epsilon$
- Assume noise $\epsilon \sim \mathcal{N}(0, \sigma^2)$

$$y - \mathbf{x}^T \mathbf{w} \sim \mathcal{N}(0, \sigma^2) \quad \Rightarrow \quad \underbrace{p(y - \mathbf{x}^T \mathbf{w})}_{p(y|\mathbf{x}^T)} = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y - \mathbf{x}^T \mathbf{w})^2}{2\sigma^2}\right)$$
 (6)

- Recall the model: $y = \underbrace{\sum_{d=1}^{D} w_d x^{d-1}}_{x T = 0} + \epsilon$
- Assume noise $\epsilon \sim \mathcal{N}(0, \sigma^2)$

$$y - \mathbf{x}^T \mathbf{w} \sim \mathcal{N}(0, \sigma^2) \quad \Rightarrow \quad \underbrace{p(y - \mathbf{x}^T \mathbf{w})}_{p(y|\mathbf{w},\mathbf{x})} = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y - \mathbf{x}^T \mathbf{w})^2}{2\sigma^2}\right)$$
 (6)

$$\max_{\boldsymbol{v}} \prod_{n=1}^{N} p(y_n - \boldsymbol{x}_n^T \boldsymbol{v})$$
 (i.i.d. Assumption)

- ▶ Recall the model: $y = \underbrace{\sum_{d=1}^{D} w_d x^{d-1}}_{x^{TD}} + \epsilon$
- Assume noise $\epsilon \sim \mathcal{N}(0, \sigma^2)$

$$y - \mathbf{x}^T \mathbf{w} \sim \mathcal{N}(0, \sigma^2) \quad \Rightarrow \quad \underbrace{p(y - \mathbf{x}^T \mathbf{w})}_{p(y|\mathbf{x}^T)} = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y - \mathbf{x}^T \mathbf{w})^2}{2\sigma^2}\right)$$
 (6)

$$\max_{\boldsymbol{w}} \prod_{n=1}^{N} p(y_n - \boldsymbol{x}_n^T \boldsymbol{w})$$
 (i.i.d. Assumption)

$$\Rightarrow \min_{\boldsymbol{w}} - \sum_{n=1}^{N} \log p(y_n - \boldsymbol{x}_n^T \boldsymbol{w})$$
 (Negative Log-likelihood)

• Recall the model: $y = \underbrace{\sum_{d=1}^{D} w_d x^{d-1}}_{x^T y} + \epsilon$

• Assume noise $\epsilon \sim \mathcal{N}(0, \sigma^2)$

$$y - \mathbf{x}^T \mathbf{w} \sim \mathcal{N}(0, \sigma^2) \quad \Rightarrow \quad \underbrace{p(y - \mathbf{x}^T \mathbf{w})}_{p(y|\mathbf{w},\mathbf{x})} = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y - \mathbf{x}^T \mathbf{w})^2}{2\sigma^2}\right)$$
 (6)

$$\max_{\boldsymbol{w}} \prod_{n=1}^{N} p(y_n - \boldsymbol{x}_n^T \boldsymbol{w}) \qquad \text{(i.i.d. Assumption)}$$

$$\Rightarrow \min_{\boldsymbol{w}} - \sum_{n=1}^{N} \log p(y_n - \boldsymbol{x}_n^T \boldsymbol{w}) \qquad \text{(Negative Log-likelihood)}$$

$$\Rightarrow \min_{\boldsymbol{w}} \frac{1}{2\sigma^2} \sum_{n=1}^{N} (y_n - \boldsymbol{x}_n^T \boldsymbol{w})^2 - \text{Const.}$$

- Recall the model: $y = \underbrace{\sum_{d=1}^{D} w_d x^{d-1}}_{t=0} + \epsilon$
- Assume noise $\epsilon \sim \mathcal{N}(0, \sigma^2)$

$$y - \mathbf{x}^T \mathbf{w} \sim \mathcal{N}(0, \sigma^2) \quad \Rightarrow \quad \underbrace{p(y - \mathbf{x}^T \mathbf{w})}_{\mathbf{x}(\mathbf{y}|\mathbf{w}, \mathbf{x})} = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y - \mathbf{x}^T \mathbf{w})^2}{2\sigma^2}\right)$$
 (6)

$$\max_{\boldsymbol{w}} \prod_{n=1}^{N} p(y_n - \boldsymbol{x}_n^T \boldsymbol{w}) \qquad \text{(i.i.d. Assumption)}$$

$$\Rightarrow \min_{\boldsymbol{w}} - \sum_{n=1}^{N} \log p(y_n - \boldsymbol{x}_n^T \boldsymbol{w}) \qquad \text{(Negative Log-likelihood)}$$

$$\Rightarrow \min_{\boldsymbol{w}} \frac{1}{2\sigma^2} \sum_{n=1}^{N} (y_n - \boldsymbol{x}_n^T \boldsymbol{w})^2 - \text{Const.}$$

$$\Rightarrow \min_{\boldsymbol{w}} \|\boldsymbol{y} - \boldsymbol{X}^T \boldsymbol{w}\|_2^2$$

- Closed form solution: $\boldsymbol{w}^* = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y}$
- ► How many operations does it involve?

- Closed form solution: $\boldsymbol{w}^* = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y}$
- ► How many operations does it involve? $\mathcal{O}(D^2N + D^3)$

- ► Closed form solution: $\boldsymbol{w}^* = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y}$
- ▶ How many operations does it involve? $\mathcal{O}(D^2N + D^3)$

Stochastic gradient descent:

▶ Initialize \mathbf{w}_0 , randomly.

- ► Closed form solution: $\boldsymbol{w}^* = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y}$
- ▶ How many operations does it involve? $\mathcal{O}(D^2N + D^3)$

Stochastic gradient descent:

- ▶ Initialize \mathbf{w}_0 , randomly.
- ▶ At the *t*-th iteration:
 - ► Sample a batch of data y_B , X_B randomly.
 - ► Compute the gradient $\frac{\partial L}{\partial \boldsymbol{w}} = 2\boldsymbol{X}_{B}^{T}(\boldsymbol{X}_{B}\boldsymbol{w}_{t-1} \boldsymbol{y}_{B})$.

- ► Closed form solution: $\boldsymbol{w}^* = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y}$
- ▶ How many operations does it involve? $\mathcal{O}(D^2N + D^3)$

Stochastic gradient descent:

- ▶ Initialize \mathbf{w}_0 , randomly.
- ▶ At the *t*-th iteration:
 - ► Sample a batch of data y_B , X_B randomly.
 - ► Compute the gradient $\frac{\partial L}{\partial \boldsymbol{w}} = 2\boldsymbol{X}_B^T(\boldsymbol{X}_B\boldsymbol{w}_{t-1} \boldsymbol{y}_B)$.

Keypoints of The Learning Problem

▶ Data preprocessing

► Suppress the unfairness of features

▶ Evaluation

- ► Key criteria
- ▶ Data splitting and cross-validation

▶ Training

▶ Model selection

Why Do We Need Data Preprocessing?

- ightharpoonup The *x* here is time (e.g., year).
- ► Consider a 3rd-order polynomial $y = w_1 + w_2x + w_3x^2 + w_4x^3$

Why Do We Need Data Preprocessing?

- ightharpoonup The *x* here is time (e.g., year).
- ► Consider a 3rd-order polynomial $y = w_1 + w_2x + w_3x^2 + w_4x^3$
- $x = \mathcal{O}(10^3)$, while $x^d \mathcal{O}(10^{3d})$.
- **▶** Numerical issue

Data Preprocessing: Normalization

Motivation:

▶ Make each feature comparable on their ranges.

Data Preprocessing: Normalization

Motivation:

▶ Make each feature comparable on their ranges.

Principle: Given $\boldsymbol{X} = [\boldsymbol{x}_1, ..., \boldsymbol{x}_D]$, for each \boldsymbol{x}_d

- ▶ $\|\mathbf{x}_d\|_2 = 1 \Rightarrow \text{Normalization energy}$
- ▶ $\|\boldsymbol{x}_d\|_1 = 1 \Rightarrow \text{Normalization absolute sum}$
- $\| \mathbf{x}_d \|_{\infty} = 1 \quad \Rightarrow \quad \max\{|x_{nd}|\}_{n=1}^N = 1$

Data Preprocessing: Shifting and Scaling

Motivation:

- ► Same range does not mean same statistics.
- ▶ Make each feature with zero mean and normalized variance.

Data Preprocessing: Shifting and Scaling

Motivation:

- Same range does not mean same statistics.
- Make each feature with zero mean and normalized variance.

Principle: Given $\boldsymbol{X} = [\boldsymbol{x}_1, ..., \boldsymbol{x}_D]$, for each \boldsymbol{x}_d

- ► Estimate expectation $\hat{\mu}_d = \frac{1}{N} \sum_{n=1}^{N} x_{nd}$
- Estimate variance $\hat{\sigma}_d = \frac{1}{N-1} \sum_{n=1}^{N} (x_{nd} \hat{\mu}_d)^2$.
- $ightharpoonup ilde{\chi}_{nd} = rac{x_{nd} \hat{\mu}_d}{\hat{\sigma}_d}$

Data Preprocessing: Shifting and Scaling

Motivation:

- ► Same range does not mean same statistics.
- ▶ Make each feature with zero mean and normalized variance.

Principle: Given $X = [x_1, ..., x_D]$, for each x_d

- Estimate expectation $\hat{\mu}_d = \frac{1}{N} \sum_{n=1}^{N} x_{nd}$
- ► Estimate variance $\hat{\sigma}_d = \frac{1}{N-1} \sum_{n=1}^{N} (x_{nd} \hat{\mu}_d)^2$.
- $ightharpoonup ilde{\chi}_{nd} = rac{x_{nd} \hat{\mu}_d}{\hat{\sigma}_d}$

$$x \sim \mathcal{N}(\mu, \sigma^2) \quad \Rightarrow \quad \frac{x - \mu}{\sigma} \sim \mathcal{N}(0, 1)$$
 (8)

Data Preprocessing: Whitening

Motivation:

- ▶ Shifting and scaling assumes uncorrelated features, which is questionable.
- ▶ Make each feature with zero mean, normalized variance, and uncorrelated.

Data Preprocessing: Whitening

Motivation:

- ▶ Shifting and scaling assumes uncorrelated features, which is questionable.
- ▶ Make each feature with zero mean, normalized variance, and uncorrelated.

Principle: Given $X = [x_1, ..., x_D]$, for each x_d

- ► Estimate expectation $\hat{\mu}_d = \frac{1}{N} \sum_{n=1}^{N} x_{nd}$ for d = 1, ..., D.
- Estimate covariance matrix

$$\widehat{\boldsymbol{\Sigma}} = \frac{1}{N-1} (\boldsymbol{X} - \mathbf{1}_N \hat{\boldsymbol{\mu}}^T)^T (\boldsymbol{X} - \mathbf{1}_N \hat{\boldsymbol{\mu}}^T) \in \mathbb{R}^{D \times D}$$
(9)

 $\blacktriangleright \text{ Whitening: } \tilde{\boldsymbol{X}} = \boldsymbol{X} \widehat{\boldsymbol{\Sigma}}^{-\frac{1}{2}}.$

Mean-square error (MSE)

▶ $|y - \hat{y}|^2$

Mean-square error (MSE)

▶ $|y - \hat{y}|^2$

Mean absolute error (MAE)

 $|y-\hat{y}|$

Mean-square error (MSE)

▶ $|y - \hat{y}|^2$

Mean absolute error (MAE)

 $|y-\hat{y}|$

The loss function actually is designed based on the evaluation measurement.

▶ MSE \Rightarrow Gaussian noise $\Rightarrow \ell_2$ -norm as loss function.

Mean-square error (MSE)

▶ $|y - \hat{y}|^2$

Mean absolute error (MAE)

 $|y-\hat{y}|$

The loss function actually is designed based on the evaluation measurement.

- ▶ MSE \Rightarrow Gaussian noise $\Rightarrow \ell_2$ -norm as loss function.
- ► MAE?

How To Evaluate The Stability of Learning Methods?

- ▶ When training data change, will we obtain the model with same/similar parameters?
- ▶ When training data change, will we train the model and make it achieve similar performance on the same testing data?

How To Evaluate The Stability of Learning Methods?

- ▶ When training data change, will we obtain the model with same/similar parameters?
- ▶ When training data change, will we train the model and make it achieve similar performance on the same testing data?

Which one is harder?

Confidence Interval

- Let X be a random sample from a probability distribution with parameter θ .
- ▶ A confidence interval of θ with confidence level α , is an interval with random endpoints (l(X), u(X)), such that

$$P_{\theta,\psi}(l(X) < \theta < u(X)) = \alpha, \quad \forall (\theta, \psi).$$
 (10)

Confidence Interval

- Let *X* be a random sample from a probability distribution with parameter θ .
- ▶ A confidence interval of θ with confidence level α , is an interval with random endpoints (l(X), u(X)), such that

$$P_{\theta,\psi}(l(X) < \theta < u(X)) = \alpha, \quad \forall \ (\theta,\psi).$$
 (10)

Note:

- ▶ The random interval covers the unknown θ with probability α , no matter what the true θ is.
- ► The true value can be out of the range.

Bootstrapping has been widely used to estimate confidence interval.

- ▶ Given bootstrapped parameters $\{\theta_n^*\}_{n=1}^N$ derived by bootstrapping
- ▶ Percentile bootstrap:

$$(\theta^*_{(\alpha/2)}, \; \theta^*_{(1-\alpha/2)})$$
 (11)

where $\theta_{(1-\alpha/2)}^*$ denote the $1-\alpha/2$ percentile of the bootstrapped parameters.

- ▶ Given bootstrapped parameters $\{\theta_n^*\}_{n=1}^N$ derived by bootstrapping
- ▶ Percentile bootstrap:

$$(\theta^*_{(\alpha/2)}, \; \theta^*_{(1-\alpha/2)})$$
 (11)

where $\theta_{(1-\alpha/2)}^*$ denote the $1-\alpha/2$ percentile of the bootstrapped parameters.

▶ Basic bootstrap:

$$(2\hat{\theta} - \theta^*_{(1-\alpha/2)}, \ 2\hat{\theta} - \theta^*_{(\alpha/2)})$$
 (12)

Cross-validation

How To Compare Models and Select The Best?

- ► Good-of-fitness v.s. simplicity of the model
- Overfitting v.s. Underfitting

Motivation:

- ▶ Estimate the relative amount of information lost by a given model.
- ► Achieve a trade-off between good-of-fitness and model simplicity.

Motivation:

- ▶ Estimate the relative amount of information lost by a given model.
- ► Achieve a trade-off between good-of-fitness and model simplicity.

Principle: Suppose that we have a statistical model of some data.

- ightharpoonup Let K be the number of model parameters.
- Let $\widehat{L} = \max p(X|\widehat{\theta})$ be the maximum likelihood for the model.
- ► The AIC value of the model:

$$AIC = 2K - 2\log \widehat{L}$$
 (13)

Given M models and their AIC values $\{AIC_m\}_{m=1}^M$

▶ The relative likelihood of model *m*:

$$\exp\left(\frac{\text{AIC}_{\min} - \text{AIC}_m}{2}\right) \tag{14}$$

▶ It is proportional to the probability that the model *m* minimizes the (estimated) information loss.

Given M models and their AIC values $\{AIC_m\}_{m=1}^M$

▶ The relative likelihood of model *m*:

$$\exp\left(\frac{\text{AIC}_{\min} - \text{AIC}_m}{2}\right) \tag{14}$$

▶ It is proportional to the probability that the model *m* minimizes the (estimated) information loss.

Any drawbacks?

Motivation:

- ▶ BIC also penalizes model complexity, and with larger penalty term.
- ► Consider the influence of data size.

Motivation:

- ▶ BIC also penalizes model complexity, and with larger penalty term.
- ► Consider the influence of data size.

Principle: Suppose that we have a statistical model of some data.

- ▶ Let *K* be the number of model parameters.
- ▶ Let *N* be the number of data points (samples)
- Let $\widehat{L} = \max p(\mathbf{X}|\widehat{\boldsymbol{\theta}})$ be the maximum likelihood for the model.
- ► The BIC value of the model:

$$BIC = K \log N - 2 \log \widehat{L} \tag{15}$$

What is it reasonable?

Suppose that θ are specific parameters of a model \mathcal{M} .

► Consider the 2nd-order Taylor expansion of the log-likelihood $\log p(X|\theta, \mathcal{M})$ about the MLE $\hat{\theta}$:

$$\log p(\mathbf{X}|\boldsymbol{\theta}, \mathcal{M}) \approx \log \underbrace{p(\mathbf{X}|\hat{\boldsymbol{\theta}})}_{\widehat{L}} - \frac{N}{2} (\boldsymbol{\theta} - \hat{\boldsymbol{\theta}})^T \mathbf{I}(\hat{\boldsymbol{\theta}}) (\boldsymbol{\theta} - \hat{\boldsymbol{\theta}})$$
(16)

► Fisher Information Matrix:

$$I(\theta) = -\mathbb{E}\left[\frac{\partial^2 \log p(X|\theta)}{\partial \theta^2}\right]$$
 (17)

Suppose that θ are specific parameters of a model \mathcal{M} .

► Consider the 2nd-order Taylor expansion of the log-likelihood $\log p(X|\theta, \mathcal{M})$ about the MLE $\hat{\theta}$:

$$\log p(\mathbf{X}|\boldsymbol{\theta}, \mathcal{M}) \approx \log \underbrace{p(\mathbf{X}|\hat{\boldsymbol{\theta}})}_{\widehat{L}} - \frac{N}{2} (\boldsymbol{\theta} - \hat{\boldsymbol{\theta}})^T \mathbf{I}(\hat{\boldsymbol{\theta}}) (\boldsymbol{\theta} - \hat{\boldsymbol{\theta}})$$
(16)

► Fisher Information Matrix:

$$I(\theta) = -\mathbb{E}\Big[\frac{\partial^2 \log p(X|\theta)}{\partial \theta^2}\Big]$$
 (17)

▶ Why the 1st order derivation term $\frac{\partial \widehat{L}}{\partial \hat{\theta}}(\theta - \hat{\theta})$ is ignored?

▶ We have

$$p(m{X}|\mathcal{M}) = \int p(m{X}|m{ heta},\mathcal{M})p(m{ heta}|\mathcal{M})\mathrm{d}m{ heta} pprox \left(rac{2\pi}{N}
ight)^{K/2}\widehat{L}\underbrace{|m{I}(\hat{m{ heta}})|^{-1/2}p(\hat{m{ heta}})}_{\mathcal{O}(1) ext{ as } N o\infty}$$

▶ We have

$$p(\mathbf{X}|\mathcal{M}) = \int p(\mathbf{X}|\boldsymbol{\theta}, \mathcal{M}) p(\boldsymbol{\theta}|\mathcal{M}) d\boldsymbol{\theta} \approx \left(\frac{2\pi}{N}\right)^{K/2} \widehat{L} \underbrace{|\mathbf{I}(\hat{\boldsymbol{\theta}})|^{-1/2} p(\hat{\boldsymbol{\theta}})}_{\mathcal{O}(1) \text{ as } N \to \infty}$$

$$= \exp\left(\underbrace{\log \widehat{L} - \frac{K}{2} \log N}_{\text{OSTRG}} + \mathcal{O}(1)\right)$$
(18)

In Summary

- ► Introduction of linear regression model (Take polynomial regression as an example)
- ► The keypoints in the whole training and testing pipeline
- ▶ Model selection: AIC and BIC

Next...

- ► Generalized linear regression
- ▶ Bias v.s. variance
- ► Regularization

Homework 1: DDL — March 17, 2022, Midnight

Python Programming

- ▶ Lab # 1 (3 Pts, Done)
- ▶ Lab # 2 (5 Pts)

Questions for Tech Report (6 Pts, \leq 3 Pages)

▶ Demonstrate the equivalence of the following four claims (3 Pts):

Theorem

A is of full column rank ($Rank(\mathbf{A}) = N$).

- $\Leftrightarrow A$ is injective.
- $\Leftrightarrow [\boldsymbol{a}_1,...,\boldsymbol{a}_N]$ is linearly-independent.
- $\Leftrightarrow Null(\mathbf{A}) = \{\mathbf{0}\}.$
 - ▶ Demonstrate $\|\boldsymbol{x}\|_{\infty} \leq \|\boldsymbol{x}\|_{2} \leq \|\boldsymbol{x}\|_{1} \leq \sqrt{N} \|\boldsymbol{x}\|_{2} \leq N \|\boldsymbol{x}\|_{\infty}$, $\forall \boldsymbol{x} \in \mathbb{R}^{N}$, and provide an illustration of the principle in the case of N = 2 (3 Pts).