

Module IN3031 / INM378 Digital Signal Processing and Audio Programming

Tillman Weyde t.e.weyde@city.ac.uk

What This Module Is About

- Basics:
 - signals, sampling, frequency, spectrum
- Theory:
 - correlation and convolution, Fourier transform
- DSP system architectures:
 - streams, channels, filters
- Data analysis:
 - audio and images, financial data
- Game programming: audio and music for games

DSP Functions

Typical functions needed:

- Recording:
 - capturing sound, image, video, sensors
- Digital sound, image, video effects
- Noise reduction, data compression
- Signal analysis and retrieval: sound, music, image, sensor, financial (...)
- Spatial audio: games, VR
- Video and 3D graphics (not part of this module)

Learning Outcomes

Knowledge and understanding:

- Appraise the principles and theories of signal processing.
- Critically evaluate how these principles and theories are used in computer software.
- Apply relevant knowledge in the creation of games and multimedia applications.

Skills

- Design the integration of music and audio in an interactive software.
- Create the music or audio elements of an interactive software.
- Implement DSP functionality in Matlab
- Implement signal analysis in Matlab

Course texts

Main texts (links to PDFs on Moodle):

Dorran, David: Digital Signal Processing Foundations. DIT 2015

Smith, Steven: Digital Signal Processing: a practical guide for engineers and

scientists. Newnes, 2003. Available PDFs

Other interesting texts

Lyons, Richard G. Understanding Digital Signal Processing, 3/E. Pearson Education India, 2011. (similar to Smith)

Rocchesso, Davide: *Introduction to Sound Processing*. Florence, 2003, http://profs.sci.univr.it/~rocchess/SP/

Stevens, R. & Raybould, D.: Game Audio Implementation: A Practical Guide Using the Unreal Engine. 2011. (quite specific)

Marks, A. & Novak, J.: Game Development Essentials: Game Audio Development. 2008. (non-technical)

Labs

Tuesday 16:00-16:50, room EG01

Tools:

Mainly:

MATLAB (signal processing and analysis)

FMOD (games engine w/ sound modules)

Office Hours/Contact

For general discussions you can use the super-module on Moodle: http://moodle.city.ac.uk/course/view.php?id=25442

You can reach me via e-mail for questions and to arrange meetings.

My office hours are normally Tue 11-12 and Wed 11-12, please check for short term changes here:

https://webapps.city.ac.uk/sst/surgery/list.html?username=sa746

Week 1: Signal Basics

- What is a Signal?
 - From latin signum (sign): information sent through a medium, from humans or technical, natural or social processes
 - Typically represented as a uniform array or sequence of numbers, possibly higherdimensional

Signal Processing

- What is Signal Processing?
 - Combines mathematics, physics and technology
 - Transfer, manipulation, analysis, and synthesis of information contained in signals
 - Signals are variable in time and space
 - Sound
 - Images
 - Radio

- Sensors
- Financial data
- Text and symbols

Signa

Signal Transfer (Radio)

Electromagnetic

wave

Analog

 (e.g. radio,
 TV, 1G
 mobiles)

Electronic

Signal

Digital
(DAB, digital TV,
2G+ mobiles,
computers, ...)

Digital Signal Processing

- Digital representations of signals (in bits)
- (Specialised) digital computers for processing
- Used everywhere in tech, e.g.
 - _ telephony
 - _ television & radio
 - _ games
 - _ GPS, sensors, ...
- It's all in your pocket:

Signals and Waves

Signals

- In technology, our signals are numeric values recorded over time or space, e.g.
 - air pressure/movement (sound)
 - brightness (image, video)
 - acceleration, rotation (motion)
 - social or financial data
- Signals are often recorded oscillations (waves)

Physical Waves

- Movement **travels** through a **medium** (e.g. air) and the medium returns to previous state (**oscillation**).
- Movement direction depends on physical situation (compressibility, environment).

- **longitudinal**: movement on axis of travel (air)

- transversal: orthogonal movement (e.g. water)

Wave Animation

Animated figure of a longitudinal wave (e.g. sound). The wave travels, but the particles oscillate.

Basic Wave Properties

- **Frequency** speed of oscillations: faster oscillations mean
 - smaller structure in images
 - faster movement or change
 - higher pitch in sound
- **Amplitude** strength of oscillations: stronger oscillations mean
 - wider movement, greater change
 - louder sound, brighter light

Period and Frequency

period *p*: duration of a periodic signal's cycle

frequency f: number of cycles per time f = 1/p

Frequency

Number of cycles per time.

Measured in **Hertz** (Hz, 1/sec).

1 Hz equals 1 wave cycle per second

5 Hz equals five wave cycles per second

Amplitude

Amplitude: **scale** of values, often measures at crest and trough peaks, (e.g., for sound **maximal deviations** from normal air pressure)

Signals: Mathematical Model

Signals are a **relevant quantity y** (air pressure, pixel value),

as a function (typically)

of time: y = f(t) (1-dimensional for audio)

or space: y = f(x,y) (2-dimensional for images)

Graphs are useful, particularly for 1D signals:

Signal Energy and Power

Two definitions:

• **Energy** of a time variant signal: defined as the sum of the squares of the signal values over all time points

energy(f) =
$$sum_t(f(t)^2)$$

• Power: energy per time power(f) = energy(f)/time = sum_t(f(t)²)/time = mean(f(t)²)

This matches physics for audio and electrical signals, not for images, values are already energies (of light).

Decibels

- Signals typically have a wide range of values, from very large to very small
- dB is a logarithmic expression of ratios, especially useful for very large and small numbers and ratios
- Definition: $a/b = x dB \text{ means } x = 10 \log_{10} (a/b)$
- In other words:
 adding 10 dB corresponds to multiplying by factor 10
- Examples:
 - +3dB ~ *2 (approximately)
 - +20dB = *100 (exactly)

more examples ...

Digital Signals: Sampling and Quantisation

Sampling

Digital signals are sequences of samples (values)
 at discrete points in time or space.

(more details next week)

Sine & Cosine Functions in Signal Processing and Data Analysis

Sine/cosine functions sin(t)/cos(t)

- appear in basic physical processes
- in **audio** they are perceived as 'pure tones' or 'simple tones' (no 'overtones')
- can be used to analyse and generate signals

Sine and cosine are the building blocks of harmonic signal theory.

Sine functions and simple harmonic motion

Simple oscillating system (mass *m* and a force growing by factor *k* with displacement **x** from *equilibrium point*), e.g. mass & spring, string under tension, electric LC circuit.

• Equation: $x = c \sin(\sqrt{k/m}t + \phi)$ • Quation on the start time

• Frequency: $f = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$ 2π is **period of sine**

System frequency f depends on k and m

Resonance

• Systems oscillate easily at natural frequency (simple harmonic motion)

- $f = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$
- Used, in musical instruments, mechanical watches, etc.
- Can be modified by
 - changing m, e.g.
 - air volume (wind instruments, e.g. trombone)
 - different string length and width (piano, **guitar**, violin)
 - changing **k**
 - electrical capacitor (synthesizer)
 - string tension (guitar, ...)

Complex Signals

- real systems oscillate at more than one frequency
- several frequencies are added with different intensities these are called partials (or overtones or harmonics)
- $s(t) = a_0 f_0(t) + a_1 f_1(t) + + a_n f_n(t)$

Harmonic and Inharmonic Signals

- Harmonic signals have integer ratios between fundamental $\boldsymbol{f}_{_{\boldsymbol{0}}}$ and the other partials
- Most musical sounds are (approximately) harmonic
- Bells have typically inharmonic sounds

Noise

- Tones contain energy at discrete frequency points
- Noise contains energy at all frequencies
 (e.g. analog radio not tuned to a station)
 tone noise

Sine Waves in 2D

• In 2D there are different frequencies in **both dimensions**

Sine Waves in 2-D

 We can relate whole images to mixtures of sine waves, but it's not as straightforward (more in later weeks)

Noise in 2D

In 2D there is also noise

noise image

image with noise

Photos taken in low light often contain noise

Frequencies in Audio And Music

Audio Frequencies Perceived by Humans

- Range approximately 20Hz 20,000 Hz
- Frequencies perceived logarithmically (Weber's law)
 1 octave up corresponds to 2 x frequency
- Sequential discrimination accuracy up to 3Hz

 (i.e. tones with that frequency difference are perceived as being different when heard one after the other)

Frequencies in Music

- In music frequencies are organised as **pitches**, which correspond to one fundamental frequency each.
- In all cultures a frequency ratio of 2:1 (an octave) has a special role, these tones are perceived to be highly related
- Western music:
 - _ octave divided into 12 semitones
 - a semitone has a ratio of 12th root of 2
 (in equal temperament, there are other variants)
 - reference note is the 'middle A' at 440Hz

Frequencies in MIDI

- In MIDI (Musical Instrument Digital Interface) all notes have a number.
- 'middle A' has number 69,
- Freq of MIDI number X calculated as 440 * 2^([x-69]/12)

Frequency		VeAooard	name	number	
	4186.0		C8		108
0000	3951.1		B7		107
3729.3	3520.0		A7	106	105
3322.4	3136.0		G7	104	103
2960.0	2793.8		F7	102	101
- 4	2637.0				100
2489.0	2349.3		E7 D7	99	98
2217.5	2093.0		C7	97	96
104.5	1975.5		B6		95
1864.7	1760.0		A6	94	93
1661.2	1568.0		G6	92	91
1480.0	1396.9		F6	90	89
1044 5	1318.5		E6		88
1244.5	1174.7		D6	87	86
1108.7	1046.5		C6	85	84
932.33	987.77		B5		83
830.61	880.00		A5	82	81
739.99	783.99		G5	80	79
137.77	698.46		F5	78	77
622.25	659.26		E5		76
554.37	587.33		D5	75	74
334.37	523.25		Č5	73	72
466.16	493.88		В4		71
415.30	440.0		Ā4	70	69
369.99	392.00		G4	68	67
007.77	349.23		F4	66	65
311.13	329.63		E4		64
277.18	293.67		D4	63	62
	261.6 246.94	100000000000000000000000000000000000000	C4	61	60
233.08	220.00		В3		59
207.65	196.00		A3	58 54	57
185.00	174.61		G3	56 54	55
	164.81		F3	54	53
155.56	146.83		E 3	51	52
138.59	130.81		D3	49	50
	123.47		C3	72	48
116.54	110.00		B2	46	47
103.83	97.999		A2	44	45
92.499	87.307		G2	42	43
	82.407		F2		41
77.782	73.416		E2	39	40
69.296	65.406		D2	37	38
	61.735		C2	٠.	36 35
58.270	55.000		B1	34	33
51.913	48.999		A1	32	31
46.249	43.654		G1 F1	30	29
	41.203		E1		28
38.891	36.708		D1	27	26
34.648	32.703		C1	25	24
20.125	30.868		B0		23
29.135	27.500	J Wolfe, IINSW	A0	22	21
		wille, illiawi			

Note

Kevboard

Frequency

The Human Ear

outer ear (ear flap and canal)

middle ear: eardrum (Tympanic membrane), hammer (Malleus), anvil (Incus), and stirrup (Stapes) transmit vibrations to the inner ear

The Inner Ear

- •the **vestibule** (middle)
- the semicircular canals (back, sense of balance)
- •the cochlea (front, connected to the auditory nerve)

The Cochlea

Unrolled **length ~3cm**Vibrations **enter oval window** transmitted by the stapes
Wave **transmission** on basilar membrane **varies by freq**

Basilar Membrane

Hair cells on basilar membrane transform (mechanical) vibrations into (electro-chemical) nerve signals.

Frequency Analysis in the Cochlea

Basilar membrane widens from basal (input) to apical end Resonance for higher frequencies at lower (basal) positions Different hair cells 'tuned' to different frequencies

Frequency analysis in the ear

Active sharpening of frequency perception by top-down mechanisms (cochlear amplifier).

Masking

Sounds close in frequency and time mask weaker sounds.

Used in lossy compression (MP3, WMA, OggVorbis)

A: normal audible threshold; B: threshold changed by tone C

D: Masked tone

READING

Physics of waves:

http://www.physicsclassroom.com/Class/sound/soundtoc.html Lesson 1 to 5 with tests.

Doran, basics of DSP:

https://arrow.dit.ie/cgi/viewcontent.cgi?article=1013&context=engschelecon

Read pages 2-9 and do the following quiz:

http://eleceng.dit.ie/dorran/moodle/mod/quiz/view.php?id=146

Next week: Sampling and Reconstruction Signal Correlation