

VERZIJA OD: 16. RUJNA 2021.

PUBLISHED BY FER WWW.FER.UNIZG.HR Copyright © 2018 ZPM

Ova skripta se smije koristiti isključivo u osobne svrhe te se ne smije ni na koji način mijenjati ili umnožavati, kao ni prikazivati, izvoditi ili distribuirati u javnosti i drugim medijima, ili na bilo koji drugi način koristiti za bilo koju javnu ili komercijalnu svrhu.

Sadržaj

12	Nepravi integrali	5
12.1	Uvod i motivacija	5
12.2	Nepravi integrali s granicama u beskonačnosti	6
	Definicija nepravog integrala s granicama u beskonačnosti Kriteriji usporedbe za neprave integrale s granicama u beskonačnosti	
12.3	Nepravi integrali neomeđenih funkcija	11
	Definicija nepravih integrala neomeđenih funkcija	
12.4	Pitanja za ponavljanje	17
12.5	Zadaci za vježbu	18
12.6	Rješenja	18

12. Nepravi integrali

U ovom poglavlja upoznat ćemo se s nepravim integralima. To su integrali kod kojih ćemo pustiti da granice integracije teže u beskonačnost ili kod kojih podintegralna funkcija neće biti omeđena na intervalu integracije. Ovakvi integrali se često pojavljuju u primjeni kada promatramo granično ponašanje nekog procesa, a posebno će biti važni u vjerojatnosti i statistici.

Ključni pojmovi: nepravi integral s granicama u beskonačnosti, usporedni kriteriji za integrale s granicama u beskonačnosti, nepravi integral neomeđenih funkcija, usporedni kriteriji za integrale neomeđenih funkcija

12.1 Uvod i motivacija

Prisjetimo se da integral $\int_a^b f(x) dx$ predstavlja površinu ispod krivulje y = f(x) na intervalu [a,b] (Slika 13.1).

Slika 12.1: Površina ispod krivulje y = f(x)

Primijetimo da se ovdje radi o konačnom intervalu [a,b] te podintegralnoj funkciji koja je na tom intervalu omeđena. Prirodno nam se nameću dva pitanja:

- Što se događa ako pustimo da granice integracije a ili b budu $-\infty$ ili $+\infty$?
- Što se događa ako podintegralna funkcija ima vertikalnu asimptotu u nekoj točki $c \in [a, b]$, tj. ako je funkcija f(x) neomeđena na intervalu integracije?

Možda se na prvi pogled čini da nema smisla promatrati ovakve integrale no oni su itekako važni i često se pojavljuju u primjeni, pogotovo kada proučavamo bilo kakvo granično ponašanje nekog procesa. Neprave integrale s granicama u beskonačnosti ćemo često susretati u vjerojatnosti i statistici te u integralnim transformacijama koje su od velike važnosti u elektrotehničkoj struci.

Slika 12.2: Nepravi integral s granicom u beskonačnosti

12.2 Nepravi integrali s granicama u beskonačnosti

12.2.1 Definicija nepravog integrala s granicama u beskonačnosti

Krenimo od prvog problema s određenim integralima koji imaju granice integracije $-\infty$ ili $+\infty$, npr. problem površine sa Slike 13.2. Takve integrale ćemo zvati **nepravi integrali s granicama u beskonačnosti**.

Definicija 12.2.1 Neka je $f:[a,+\infty)\to\mathbb{R}$ integrabilna na svakom segmentu [a,b], gdje je $b<+\infty$. Ako postoji **konačan limes** $\lim_{b\to+\infty}\int_a^b f(x)\,dx$, onda se on zove **nepravi integral** funkcije f na skupu $[a,+\infty)$, i označava se:

$$\int_{a}^{+\infty} f(x) dx = \lim_{b \to +\infty} \int_{a}^{b} f(x) dx.$$
 (12.1)

Ako taj limes postoji i konačan je, još kažemo da integral $\int_a^{+\infty} f(x) dx$ konvergira. Ako je limes (12.1) jednak $+\infty$ ili $-\infty$, ili limes ne postoji, kažemo da integral **divergira**. Napomena 12.1 Analogno definiramo i sljedeće neprave integrale:

$$\int_{-\infty}^{b} f(x) dx = \lim_{a \to -\infty} \int_{a}^{b} f(x) dx$$
 (12.2)

$$\int_{-\infty}^{+\infty} f(x) dx = \lim_{\substack{a \to -\infty \\ b \to +\infty}} \int_{a}^{b} f(x) dx.$$
 (12.3)

■ Primjer 12.1 Ispitajte konvergenciju integrala $I = \int_0^{+\infty} \frac{dx}{1+x^2}$.

Rješenje. Po prethodnoj definiciji slijedi:

$$I = \lim_{b \to +\infty} \int_0^b \frac{dx}{1+x^2} = \lim_{b \to +\infty} (\operatorname{arctg} x) \Big|_0^b = \lim_{b \to +\infty} \operatorname{arctg} b - \operatorname{arctg} 0 = \frac{\pi}{2}.$$

Zaključujemo da integral konvergira i ima vrijednost $I = \frac{\pi}{2}$, vidi Sliku 13.3.

Slika 12.3: Primjer 13.1

■ **Primjer 12.2** Ispitajte konvergenciju integrala $I = \int_0^{+\infty} \sin x \, dx$.

Rješenje.

$$I = \lim_{b \to +\infty} \int_0^b \sin x \, dx = \lim_{b \to +\infty} (-\cos x) \Big|_0^b = 1 - \lim_{b \to +\infty} \cos b.$$

S obzirom da prethodni limes ne postoji, zadani integral divergira.

■ Primjer 12.3 Izračunajte $I = \int_0^{+\infty} xe^{-x} dx$.

Rješenje. Već smo pokazali u Primjeru 12.29 da parcijalnom integracijom dobivamo

$$\int xe^{-x} \, dx = -xe^{-x} - e^{-x} + C,$$

te stoga imamo

$$I = \lim_{b \to +\infty} \int_0^b x e^{-x} dx = \lim_{b \to +\infty} (-x e^{-x} - e^{-x}) \Big|_0^b = \lim_{b \to +\infty} (-b e^{-b} - e^{-b} + 1) = 1.$$

Sami za vježbu pokažite da je $\lim_{b \to +\infty} be^{-b} = 0$.

Integral iz prethodnog primjera ćete često susretati u vjerojatnosti i statistici, npr. kod eksponencijalne razdiobe i kod definiranja nekih specijalnih funkcija. No takav tip integrala je i od

velike važnosti u elektrotehnici. Jedna od najvažniji integralnih transformacija je Laplaceova transformacija funkcije f(t) definirana nepravim integralom

$$\int_0^\infty f(t)e^{-st}\,dt,$$

za svaki s za koji ovaj integral konvergira. Primjerice, Laplaceova transformacija funkcije $f(t) = \sin(\omega t)$ jednaka je

$$\int_0^\infty \sin(\omega t)e^{-st}\,dt = \frac{\omega}{s^2 + \omega^2}, \qquad s > 0.$$

Provjerite to sami koristeći rezultat Vježbe 12.6. Glavne primjene Laplaceove transformacije koje ćete upoznati u nastavku studija su u analizi strujnih krugova i rješavanju diferencijalnih jednadžbi.

■ Primjer 12.4 Izračunajte $I = \int_0^\infty \frac{dx}{(x+2)(2x+1)}$.

Rješenje. Nakon rastava na parcijalne razlomke dobivamo

$$\begin{split} I &= \frac{1}{3} \int_0^\infty \left(\frac{-1}{x+2} + \frac{2}{2x+1} \right) dx = \frac{1}{3} \lim_{b \to +\infty} \left(-\ln|x+2| + \ln|2x+1| \right) \Big|_0^b \\ &= \frac{1}{3} \lim_{b \to +\infty} \ln \frac{|2x+1|}{|x+2|} \Big|_0^b = \frac{1}{3} \left(\lim_{b \to +\infty} \ln \frac{2b+1}{b+2} - \ln \frac{1}{2} \right) = \frac{1}{3} (\ln 2 - \ln \frac{1}{2}) = \frac{1}{3} \ln 4. \end{split}$$

Napomena 12.2 Primijetite da ne smijemo rastavljati početni nepravi integral na dva nova neprava integrala i računati pripadne limese odvojeno. Naime, u tom slučaju bismo dobili

$$-\frac{1}{3} \int_0^\infty \frac{dx}{x+2} + \frac{2}{3} \int_0^\infty \frac{dx}{2x+1} = -\frac{1}{3} \lim_{b \to +\infty} \ln|x+2| \Big|_0^b + \frac{1}{3} \lim_{b \to +\infty} \ln|2x+1| \Big|_0^b = -\infty + \infty$$

što nas vodi na pogrešan zaključak da početni integral divergira.

■ **Primjer 12.5** Ispitajte konvergenciju integrala $I = \int_a^{+\infty} \frac{dx}{x^p}$, (za a > 0), u ovisnosti o parametru $p \in \mathbb{R}$.

Rješenje. Slijedi:

$$I = \lim_{b \to +\infty} \int_{a}^{b} x^{-p} dx = \begin{cases} \lim_{b \to +\infty} \frac{x^{-p+1}}{-p+1} \Big|_{a}^{b} = \lim_{b \to +\infty} \frac{b^{1-p}}{1-p} - \frac{a^{1-p}}{1-p}, & \text{za } p \neq 1 \\ \lim_{b \to +\infty} \ln|x| \Big|_{a}^{b} = \lim_{b \to +\infty} \ln b - \ln a = +\infty, & \text{za } p = 1. \end{cases}$$

S obzirom da je:

$$\lim_{b \to +\infty} b^{1-p} = \begin{cases} +\infty, & \text{za } p < 1\\ 0, & \text{za } p > 1, \end{cases}$$

možemo zaključiti sljedeće

$$\int_{a}^{+\infty} \frac{dx}{x^{p}} = \begin{cases} & \text{divergira za } p \le 1, \\ & \text{konvergira za } p > 1. \end{cases}$$

U slučaju konvergencije, vrijednost integrala iznosi $\frac{a^{1-p}}{p-1}$.

Često ćemo koristiti rezultat prethodnog primjera pa ga naglasimo i zapišimo u obliku propozicije.

Propozicija 12.2.1 Za a > 0 vrijedi sljedeće:

$$\int_{a}^{+\infty} \frac{dx}{x^{p}} = \begin{cases} & \text{divergira za } p \le 1, \\ & \text{konvergira za } p > 1. \end{cases}$$

Vježba 12.1 Ispitajte konvergenciju integrala $\int_1^{+\infty} \frac{dx}{\sqrt{x}}$ i $\int_1^{+\infty} \frac{dx}{x\sqrt{x}}$. Skicirajte i usporedite pripadajuće geometrijske interpretacije navedenih integrala

Kriteriji usporedbe za neprave integrale s granicama u beskonačnosti 12.2.2

Ponekad je dovoljno znati konvergira li promatrani integral, iako njegovu vrijednost ne znamo izračunati (primjerice, kada se radi o neelementarnom integralu). Tada uspoređujemo zadani integral s drugim nepravim integralom čija nam je konvergencija poznata. Idući teorem jasno slijedi sa Slike 13.4.

Slika 12.4: Usporedba nepravih integrala

<mark>leorem 12.2.1 —</mark> Usporedni kriterij za neprave integrale s granicama u beskonačnosti.

Neka graf funkcije f(x) leži u području između grafova funkcija -g(x) i g(x), odnosno $|f(x)| \le g(x), \ g(x) \ge 0$, za $x \in [a, +\infty)$. Tada vrijedi:

(a) Ako integral $\int_a^{+\infty} g(x) \, dx$ konvergira, onda konvergira i integral $\int_a^{+\infty} f(x) \, dx$.

(b) Ako integral $\int_a^{+\infty} f(x) \, dx$ divergira, onda divergira i integral $\int_a^{+\infty} g(x) \, dx$.

(a) Ako integral
$$\int_{a}^{+\infty} g(x) dx$$
 konvergira, onda konvergira i integral $\int_{a}^{+\infty} f(x) dx$.

Napomena 12.3 Analogne tvrdnje iz prethodnog teorema vrijede i za integrale $\int_{-\infty}^{b} f(x) dx$ i $\int_{-\infty}^{b} g(x) dx$, te za integrale $\int_{-\infty}^{+\infty} f(x) dx$ i $\int_{-\infty}^{+\infty} g(x) dx$.

Pokazat ćemo primjenu teorema na nekoliko primjera.

■ **Primjer 12.6** Ispitajte konvergenciju integrala $I = \int_0^{+\infty} \frac{\cos x}{1+x^2} dx$.

Rješenje. Za podintegralnu funkciju vrijedi

$$\left|\frac{\cos x}{1+x^2}\right| = \frac{|\cos x|}{1+x^2} \le \frac{1}{1+x^2}, \quad \text{za } x \in [0, \infty).$$

S obzirom da integral $\int_0^{+\infty} \frac{dx}{1+x^2}$ konvergira (Primjer 13.1), zadani integral također konvergira po Teoremu 12.2.1 (a).

■ Primjer 12.7 Ispitajte konvergenciju integrala $I = \int_0^{+\infty} e^{-x^2} dx$.

Rješenje. Funkcija e^{-x^2} nije elementarno integrabilna pa je potrebno napraviti usporedbu s funkcijom koju ćemo lagano integrirati. Prirodno se nameće usporedba s e^{-x} , no pogledamo li Sliku 13.5, vidimo da vrijedi $e^{-x^2} \le e^{-x}$, no tek za $x \in [1, +\infty)$.

Slika 12.5: Primjer 13.7

Stoga ćemo zadani integral prikazati kao zbroj dva integrala na sljedeći način:

$$\int_0^{+\infty} e^{-x^2} dx = \int_0^1 e^{-x^2} dx + \int_1^{+\infty} e^{-x^2} dx = I_1 + I_2.$$

S obzirom da je prvi integral konačan, a drugi nepravi, konvergencija zadanog integrala se podudara s konvergencijom integrala I_2 . Njega uspoređujemo s nepravim integralom $I_2^* = \int_1^{+\infty} e^{-x} dx$ čiju konvergenciju možemo lako utvrditi:

$$\int_{1}^{+\infty} e^{-x^{2}} dx \leq \int_{1}^{+\infty} e^{-x} dx = \lim_{b \to +\infty} (-e^{-x}) \Big|_{1}^{b} = \lim_{b \to +\infty} (-e^{-b}) + e^{-1} = e^{-1}.$$

Integral I_2^* konvergira pa prema Teoremu 12.2.1 konvergira i I_2 , odnosno i promatrani integral I konvergira.

Napomena 12.4 Zadani integral se naziva Euler-Poissonov integral te je u uskoj vezi osnovnim elementima teorije vjerojatnosti. Može se izračunati egzaktno što ćete vidjeti u kasnijim matematičkim kolegijima, a vrijednost mu je $I = \frac{\sqrt{\pi}}{2}$.

Iskazat ćemo još jedan usporedni kriterij konvergencije koji će nam pomoći u određivanju konvergencije.

Teorem 12.2.2 — Alternativni usporedni kriterij za neprave integrale s granicama u beskonačnosti. Neka su f(x),g(x) definirane za $x\in [a,\infty)$ i neka postoji konačan limes $\lim_{x\to+\infty}\frac{f(x)}{g(x)}=L, L\neq 0$. Onda integrali $\int_a^{+\infty}f(x)\,dx$ i $\int_a^{+\infty}g(x)\,dx$ imaju istu konvergenciju, tj. ili oba konvergiraju ili oba divergiraju.

Napomena 12.5 Dodatno, ako je $\lim_{x \to +\infty} \frac{f(x)}{g(x)} = 1$, koristimo sljedeću oznaku

$$\int_{a}^{+\infty} f(x) \, dx \sim \int_{a}^{+\infty} g(x) \, dx.$$

Primijetite ako je $\lim_{x\to +\infty} \frac{f(x)}{g(x)} = L \neq 0$, tada je $\lim_{x\to +\infty} \frac{f(x)}{Lg(x)} = 1$, odnosno možemo pisati

$$\int_{a}^{+\infty} f(x) \, dx \sim L \int_{a}^{+\infty} g(x) \, dx.$$

■ **Primjer 12.8** Ispitajte konvergenciju integrala $I = \int_{1}^{+\infty} \frac{dx}{\sqrt{x^3 + 1}}$.

Rješenje. Možemo pisati
$$\int_1^{+\infty} \frac{dx}{\sqrt{x^3+1}} \sim \int_1^{+\infty} \frac{dx}{\sqrt{x^3}}$$
 jer vrijedi $\lim_{x \to +\infty} \frac{\frac{1}{\sqrt{x^3+1}}}{\frac{1}{\sqrt{x^3}}} = 1$.

S obzirom da integral $\int_{1}^{+\infty} \frac{dx}{\sqrt{x^3}}$ konvergira zbog $p = \frac{3}{2} > 1$ (Propozicija 12.2.1), prema Teoremu 12.2.2 konvergira i zadani integral.

■ **Primjer 12.9** Ispitajte konvergenciju integrala $I = \int_{1}^{+\infty} \frac{dx}{\sqrt[3]{x^2 + 1}}$.

Rješenje. Opet pišemo $\int_{1}^{+\infty} \frac{dx}{\sqrt[3]{x^2+1}} \sim \int_{1}^{+\infty} \frac{dx}{\sqrt[3]{x^2}}$ jer je $\lim_{x \to +\infty} \frac{\frac{1}{\sqrt[3]{x^2+1}}}{\frac{1}{\sqrt[3]{x^2}}} = 1$, a budući $\int_{1}^{+\infty} \frac{dx}{\sqrt[3]{x^2}}$ divergira zbog $p = \frac{2}{3} < 1$, divergira i početni integral.

Vježba 12.2 Prethodna dva primjera smo mogli riješiti i koristeći osnovni usporedni kriteriji 12.2.1. Napravite to sami za vježbu.

Vježba 12.3 Ispitajte konvergenciju integrala $I = \int_{1}^{+\infty} \frac{dx}{x\sqrt[3]{x+1}}$.

12.3 Nepravi integrali neomeđenih funkcija

12.3.1 Definicija nepravih integrala neomeđenih funkcija

Sada ćemo promatrati drugi problem: podintegralna funkcija ima vertikalnu asimptotu u nekoj točki intervala integracije, odnosno nije omeđena na promatranom intervalu (vidi Sliku 13.6).

Definicija 12.3.1 Neka je $f: [a,c) \cup \langle c,b| \to \mathbb{R}$ takva da vrijedi:

- **1.** f je integrabilna na svakom segmentu $[a, c \varepsilon], \varepsilon > 0$,
- **2.** f je integrabilna na svakom segmentu $[c + \delta, b]$, $\delta > 0$,
- 3. f nije omeđena u bilo kojoj okolini točke c, tj. $\lim_{x\to c^{\pm}} f(x) = \pm \infty$.

Slika 12.6: Nepravi integral neomeđene funkcije

Nepravi integral od f na skupu [a,b] je izraz:

$$\int_{a}^{b} f(x) dx = \lim_{\varepsilon \to 0^{+}} \int_{a}^{c-\varepsilon} f(x) dx + \lim_{\delta \to 0^{+}} \int_{c+\delta}^{b} f(x) dx$$
 (12.4)

ako ova oba limesa postoje i konačni su. U tom slučaju kažemo da nepravi integral $\int_a^b f(x) dx$ **konvergira**. Ako bilo koji od limesa u izrazu (12.4) ne postoji ili nije konačan kažemo da nepravi integral od f na skupu [a,b] **divergira**.

Napomena 12.6 Prethodna definicija ima dva posebna slučaja, kada je c=a:

$$\int_{a}^{b} f(x) dx = \lim_{\varepsilon \to 0^{+}} \int_{a+\varepsilon}^{b} f(x) dx,$$

i kada je c = b:

$$\int_{a}^{b} f(x) dx = \lim_{\delta \to 0^{+}} \int_{a}^{b-\delta} f(x) dx.$$

■ Primjer 12.10 Ispitajte konvergenciju integrala $I = \int_{-1}^{1} \frac{dx}{x^3}$.

Rješenje. Prvo je potrebno primijetiti da je podintegralna funkcija $f(x) = \frac{1}{x^3}$ neomeđena u točki $0 \in [-1,1]$ (Slika 13.7). Za izračunavanje integrala koristit ćemo prethodnu definiciju no uz

Slika 12.7: Primjer 13.10

jednostavniji zapis limesa bez uvođenja ε i δ okoline.

$$I = \lim_{c \to 0^{-}} \int_{-1}^{c} \frac{dx}{x^{3}} + \lim_{c \to 0^{+}} \int_{c}^{1} \frac{dx}{x^{3}} = \lim_{c \to 0^{-}} \left(-\frac{1}{2x^{2}} \right) \Big|_{-1}^{c} + \lim_{c \to 0^{+}} \left(-\frac{1}{2x^{2}} \right) \Big|_{c}^{1}$$

$$= \lim_{c \to 0^{-}} \left(-\frac{1}{2c^{2}} + \frac{1}{2} \right) + \lim_{c \to 0^{+}} \left(-\frac{1}{2} + \frac{1}{2c^{2}} \right) = -\infty + \infty$$
(12.5)

Budući da limesi nisu konačni, zaključujemo da promatrani integral divergira.

Napomena 12.7 Primijetimo što bi se dogodilo direktnim integriranjem:

$$I = \int_{-1}^{1} \frac{dx}{x^3} = \left(-\frac{1}{2x^2}\right)\Big|_{-1}^{1} = -\frac{1}{2} + \frac{1}{2} = 0.$$

Pogreška je nastala jer nismo provjeravali (ne)omeđenost funkcije na intervalu [-1,1] pa smo nepravi integrali tretirali kao pravi. Kod računanja određenih integrala treba uvijek pripaziti na to!

■ **Primjer 12.11** Ispitajte konvergenciju integrala $I = \int_0^1 \frac{dx}{\sqrt{1-x^2}}$.

Slika 12.8: Primjer 13.11

Rješenje. Ovdje se radi o jednostavnijem slučaju definicije 12.3.1:

$$I = \lim_{c \to 1^{-}} \int_{0}^{c} \frac{dx}{\sqrt{1 - x^{2}}} = \lim_{c \to 1^{-}} (\arcsin x) \Big|_{0}^{c} = \lim_{c \to 1^{-}} \arcsin(c) = \arcsin 1 = \frac{\pi}{2}.$$

Dakle, zadani integral konvergira i ima vrijednost $I = \frac{\pi}{2}$.

Analogno Propoziciji 12.2.1 za neprave integrale s granicama u beskonačnosti, lako se pokaže sljedeća tvrdnja.

Propozicija 12.3.1 Za a > 0 vrijedi sljedeće:

$$\int_0^a \frac{dx}{x^p} = \begin{cases} & \text{konvergira za } p < 1, \\ & \text{divergira za } p \ge 1. \end{cases}$$

Vježba 12.4 Dokažite prethodnu propoziciju sami za vježbu. Također pokažite da u slučaju konvergencije, vrijednost integrala iznosi $\frac{a^{1-p}}{1-p}$.

Vježba 12.5 Ispitajte konvergenciju integrala $I = \int_0^1 \frac{x}{\sqrt{1-x^2}} dx$.

■ Primjer 12.12 Izračunajte integral $I = \int_0^{2\pi} \frac{dx}{2 + \cos x}$.

Rješenje. Prvo primijetimo da je podintegralna funkcija omeđena na $[0,2\pi]$. No prilikom izračunavanja integrala koristimo univerzalnu supstituciju $t = \operatorname{tg}\left(\frac{x}{2}\right)$. S obzirom da funkcija $\operatorname{tg}\left(\frac{x}{2}\right)$

ima prekid u točki $x = \pi$ te nije omeđena ni u kojoj okolini te točke, potrebno je računati na sljedeći način:

$$\begin{split} I &= \int_{0}^{\pi} \frac{dx}{2 + \cos x} + \int_{\pi}^{2\pi} \frac{dx}{2 + \cos x} = \begin{vmatrix} t = \operatorname{tg}(\frac{x}{2}) & x \to \pi^{-} \Rightarrow t \to +\infty \\ dx = \frac{2dt}{1 + t^{2}} & x \to \pi^{+} \Rightarrow t \to -\infty \end{vmatrix} \\ &= \lim_{b \to +\infty} \int_{0}^{b} \frac{\frac{2dt}{1 + t^{2}}}{2 + \frac{1 - t^{2}}{1 + t^{2}}} + \lim_{a \to -\infty} \int_{a}^{0} \frac{\frac{2dt}{1 + t^{2}}}{2 + \frac{1 - t^{2}}{1 + t^{2}}} \\ &= \lim_{b \to +\infty} \int_{0}^{b} \frac{2dt}{t^{2} + 3} + \lim_{a \to -\infty} \int_{a}^{0} \frac{2dt}{t^{2} + 3} \\ &= \lim_{b \to +\infty} \frac{2}{\sqrt{3}} \operatorname{arctg}\left(\frac{t}{\sqrt{3}}\right) \Big|_{0}^{b} + \lim_{a \to -\infty} \frac{2}{\sqrt{3}} \operatorname{arctg}\left(\frac{t}{\sqrt{3}}\right) \Big|_{a}^{0} \\ &= \frac{2}{\sqrt{3}} \left(\frac{\pi}{2} - 0\right) + \frac{2}{\sqrt{3}} \left(0 - \left(-\frac{\pi}{2}\right)\right) = \frac{2\pi}{\sqrt{3}}. \end{split}$$

Zaključujemo da promatrani integral konvergira i ima vrijednosti $I = \frac{2\pi}{\sqrt{3}}$.

12.3.2 Kriteriji usporedbe za neprave integrale neomeđenih funkcija

Kao i kod nepravih integrala s granicama u beskonačnosti, i ovdje je moguće iskazati kriterije usporedbe pomoću kojih možemo ustanoviti konvergenciju promatranih integrala, no ne i njihovu točnu vrijednosti. Najefikasniji je sljedeći kriterij koji je analogan kriteriju 12.2.2 za usporedbu nepravih integrala s granicama u beskonačnosti.

<mark>Teorem 12.3.1 —</mark> Usporedni kriterij za neprave integrale neomeđenih funkcija.

Neka je $\int_a^b f(x) dx$ nepravi integral kojem je podintegralna funkcija f(x) neomeđena u točki $c \in [a,b]$. Ako postoji konačan limes $\lim_{x \to c} \frac{f(x)}{g(x)} = L, L \neq 0$, onda integrali $\int_a^b f(x) dx$ i $\int_a^b g(x) dx$ imaju istu konvergenciju, odnosno ili oba konvergiraju ili oba divergiraju.

Napomena 12.8 Analogno nepravim integralima s granicama u beskonačnosti (Napomena 13.5), ako je $\lim_{x\to c} \frac{f(x)}{g(x)} = 1$, koristimo sljedeću oznaku

$$\int_{a}^{b} f(x) dx \sim \int_{a}^{b} g(x) dx,$$

a ako je $\lim_{x\to c}\frac{f(x)}{g(x)}=L\neq 0$, tada vrijedi $\lim_{x\to c}\frac{f(x)}{Lg(x)}=1$, pa pišemo

$$\int_a^b f(x) \, dx \sim L \int_a^b g(x) \, dx.$$

■ **Primjer 12.13** Ispitajte konvergenciju integrala $\int_0^1 \frac{\ln(1+x)}{\sqrt{x^5}} dx$.

Rješenje. Problematična točka podintegralne funkcije je x = 0 pa provjerimo pripadni limes

$$\lim_{x \to 0^+} \frac{\ln(1+x)}{\sqrt{x^5}} = \left(\frac{0}{0}\right) = \lim_{x \to 0^+} \frac{\frac{1}{1+x}}{\frac{5}{2}\sqrt{x^3}} = +\infty$$

Funkcija je neomeđena u okolini ishodišta pa prema prethodnom usporednom kriteriju, konvergencija integrala se neće promijeniti ako podintegralnu funkciju zamijenimo s nekom ekvivalentnom funkcijom za $x \to 0$. U Poglavlju 7.4.3 vidjeli smo da vrijedi $\ln(1+x) \sim x$, za $x \to 0$.

Stoga možemo pisati:

$$\int_0^1 \frac{\ln(1+x)}{\sqrt{x^5}} dx \sim \int_0^1 \frac{x}{\sqrt{x^5}} dx = \int_0^1 \frac{1}{x^{\frac{3}{2}}} dx$$

S obzirom da je $p = \frac{3}{2} > 1$, po Propoziciji 12.3.1 zaključujemo da zadani integral divergira.

Vježba 12.6 Na sličan način pokažite da integral $\int_0^1 \frac{\ln(1+x)}{\sqrt[3]{x^4}} dx$ konvergira.

■ **Primjer 12.14** Ispitajte konvergenciju integrala $\int_0^1 \frac{dx}{\sqrt{1-x^4}}$.

Rješenje. Podintegralna funkcija je neomeđena u okolini točke x = 1. S obzirom da vrijedi

$$\lim_{x \to 1^{-}} \frac{\frac{1}{\sqrt{1 - x^{4}}}}{\frac{1}{\sqrt{1 - x}}} = \lim_{x \to 1^{-}} \frac{\frac{1}{\sqrt{1 - x} \cdot \sqrt{(1 + x)(1 + x^{2})}}}{\frac{1}{\sqrt{1 - x}}} = \frac{1}{2},$$

po Napomeni 13.8 slijedi da je

$$\frac{1}{\sqrt{1-x^4}} \sim \frac{1}{2\sqrt{1-x}} \quad \text{za } x \to 1^-$$

Sada prema kriteriju usporedbe imamo

$$\int_0^1 \frac{dx}{\sqrt{1-x^4}} \sim \int_0^1 \frac{dx}{2\sqrt{1-x}} = \lim_{c \to 1^-} \int_0^c \frac{dx}{2\sqrt{1-x}}$$
$$= \lim_{c \to 1^-} (-\sqrt{1-x}) \Big|_0^c = \lim_{c \to 1^-} (-\sqrt{1-c} + 1) = 1.$$

Dakle, zadani integral konvergira. (No primijetite da mu ne možemo izračunati točnu vrijednost pomoću elementarnih funkcija.)

12.4 Pitanja za ponavljanje

- 1. Definirajte nepravi integral na intervalu $[a, +\infty)$.
- 2. Definirajte nepravi integral na intervalu [a,b] ako je f neomeđena u točki a.
- 3. Odredi koji su od sljedećih integrala nepravi:

(a)
$$\int_{0}^{\infty} e^{-x} dx$$
 (e) $\int_{1}^{2} \frac{x}{\sin x} dx$ (b) $\int_{-1}^{1} \frac{1}{x-2} dx$ (f) $\int_{0}^{1} \frac{\sin x}{x} dx$ (g) $\int_{-1}^{1} \frac{1}{\sqrt{x^{2}+1}} dx$ (d) $\int_{-\infty}^{-5} \frac{1}{x^{2}} dx$ (h) $\int_{-6}^{-2} \frac{1}{x^{2}+3x} dx$

- 4. Ispitajte konvergenciju integrala $\int_{1}^{+\infty} \frac{1}{x^p} dx$ u ovisnosti o realnom parametru p.
- 5. Ispitajte konvergenciju integrala $\int_0^1 \frac{1}{x^p} dx$ u ovisnosti o realnom parametru p.
- 6. Napišite primjere funkcija f(x) takvih da je integral $\int_a^b f(x) dx$ nepravi:
 - (a) u rubu a (b) u rubu b (c) u oba ruba
- 7. Ako u određeni integral na intervalu $[0, \pi]$ uvedemo univerzalnu supstituciju $t = \operatorname{tg} \frac{x}{2}$, kako glase nove granice integracije? Objasnite u čemu je problem.
- 8. Iskažite usporedni kriterij za nepravi integral s granicama u beskonačnosti i grafički ga objasnite.
- 9. (a) Ako nepravi integral $\int_a^{+\infty} f(x) dx$ konvergira, možete li išta zaključiti o graničnom ponašanju funkcije f(x), odnosno o limesu $\lim_{x \to +\infty} f(x)$?
 - (b) Ako je $\lim_{x \to +\infty} f(x) \neq 0$, možete li išta zaključiti o nepravom integralu $\int_a^{+\infty} f(x) dx$? (c) Je li sljedeća tvrdnja točna ili netočna:

Ako je
$$\lim_{x \to +\infty} f(x) = 0$$
, tada nepravi integral $\int_{a}^{+\infty} f(x) dx$ konvergira.

Ako je tvrdnja točna, objasnite je, a ako je netočna, pokažite to protuprimjerom.

12.5 Zadaci za vježbu

Izračunajte sljedeće neprave integrale ili utvrdite da su divergentni:

$$1. \int_{-1}^{2} \frac{dx}{x}$$

$$2. \int_1^\infty \frac{dx}{x^4}$$

$$3. \int_0^1 \frac{dx}{\sqrt{x}}$$

$$4. \int_0^\infty \frac{dx}{\sqrt[3]{x}}$$

$$5. \int_0^3 \frac{dx}{(x-2)^2}$$

6.
$$\int_0^\infty \frac{1}{x^2 + 4} dx$$

7.
$$\int_0^\infty \frac{x}{x^2 + 4} dx$$

$$8. \int_0^\infty \frac{x}{x^4 + 4} \, dx$$

$$9. \int_{-\infty}^{\infty} \frac{dx}{x^2 + 4x + 5}$$

10.
$$\int_0^\infty \frac{dx}{(2x+1)(x^2+1)}$$

11.
$$\int_{a}^{\infty} \frac{dx}{x \ln^2 x} \left(\operatorname{za} a > 1 \right)$$

12.
$$\int_{-\infty}^{1} xe^{x} dx$$

13.
$$\int_{-\infty}^{\infty} \frac{e^x}{e^{4x} + 3e^{2x} + 2} dx$$

$$14. \int_0^\infty \frac{\sinh^2 x}{\cosh^4 x} dx$$

15.
$$\int_0^\infty \frac{x+1}{\sqrt{(x^2+1)^3}} \, dx$$

$$16. \int_0^1 \sqrt{\frac{1+x}{1-x}} dx$$

17.
$$\int_0^1 \arcsin x \, dx$$

18.
$$\int_0^{\frac{\pi}{2}} \frac{\mathsf{tg}^2 x}{\mathsf{tg}^2 x + 1} \, dx$$

19.
$$\int_0^{\frac{\pi}{4}} \operatorname{tg}(2x) \, dx$$

20.
$$\int_0^{2\pi} \frac{dx}{2 + \sin x}$$

12.6 Rješenja

- 1. divergira
- $2. \frac{1}{3}$
- 3. 2
- 4. divergira
- 5. divergira
- 6. $\frac{\pi}{4}$
- 7. divergira
- 8. $\frac{\pi}{8}$
- 9. π
- 10. $\frac{\pi}{10} + \frac{1}{5} \ln 4$

- 11. $\frac{1}{\ln a}$
- 12 (
- 13. $\frac{\pi}{2} \frac{\sqrt{2}}{4}$
- 14. $\frac{1}{3}$
- 15. 2
- 16. $\frac{\pi}{2} + 1$
- 17. $\frac{\pi}{2} 1$
- 18. $\frac{\pi}{4}$
- 19. divergira
- $20. \ \frac{2\pi}{\sqrt{3}}$