

Data Science with Docker

Gabriel Miretti

Who am I?

- Unsuccessful football player
- Computer Scientist
 - Licenciado @ FaMAF Universidad de Córdoba
- Previously: Quality Assurance Engineer
 - Mostly on integration on large systems (Intel, CONAE)
- Now: Data Science/Engineering Freelancer
 - Working on Social network analysis projects

Data Science

- Machine Learning
- Deep Learning
- NLP
- Big DatTOOLS
- **TOOLS**
 - TOOLS
 - TOOLS
 - **TOOLS**

Software Engineering

- Microservices
- Cloud
- CONTAINERS
- **CONTAINERS**
 - **CONTAINERS**
 - **CONTAINERS**
 - **CONTAINERS**

Data Science

- Machine Learning
- Deep Learning
- NLP
- Bigb
- · · · · TO

- TOOL
 - ...

Softw Engineering

Data Science in Containers

VERS NTAINERS CONTAINERS

Why use containers?

Data scientist goals:

- Focus on data
 - not software tools
- Take advantage of latest software
 - To improve performance
- Make science
 - Reproducible experiments
- Share results
 - Also materials and methods

Container promises:

- Focus on services
 - Simplify how to deploy or install
- Easier updates
 - Continuous deployment
- Portable applications
 - Hardware and cloud agnostic
- Open platform
 - Vibrant ecosystem

So, what is a container?

"A container image is a lightweight, stand-alone, executable package of a piece of software" .- Docker

"Containers are like ultralight virtual machines" .- Kaggle

VS.

Why Docker?

- Made containers popular again:
 - o Old idea: in Unix, chroot 1982. In IBM mainframes 1960s
- Multi-platform
 - Works on Linux, Mac and Windows
- Community and Enterprise support
- Leader ecosystem
 - Lot of vendors using docker (open and commercial)

Other options:

- on Linux: snapcraft, Applmage
 - on Cloud: Amazon AWS

How Docker works

Docker lifecycle

Example:

Example Data Science stack: Jupyter

Simpler: run Jupyter + Scipy stack

\$ docker run -it --rm -p 8888:8888 jupyter/scipy-notebook

- Just wait until image is downloaded
 - Open browser using the url showed
 - Create notebook and run using:
 - Jupyter Notebook 5.2.x
 - Conda Python 3.x environment
 - Scipy Stack pre-installed: pandas, matplotlib, scipy, seaborn, scikit-learn, scikit-image, sympy, cython, patsy, statsmodel, cloudpickle, dill, numba, bokeh, vincent, beautifulsoup, xlrd

Simpler: add Tensorflow + Keras

```
$ docker run -it --rm -p 8888:8888 jupyter/tensorflow-notebook
```

- Just wait until differential image is downloaded
 - Open browser using the url showed
 - Create notebook and run using:
 - Everything on scipy-notebook
 - Tensorflow
 - Keras
- How to update the image? Just pull and then run

\$ docker pull jupyter/tensorflow-notebook

Simpler: more options for Jupyter

jupyter/docker-stacks

- r-notebook
 - R language with commonly used packages
- datascience-notebook
 - o combo with Python, R and Julia
- pyspark-notebook
 - o includes a Spark on local mode
 - enable connection with a Mesos cluster
- all-spark-notebook
 - adds R and Scala language and spark packages

Going deeper

- --p 8888:8888 :
 - open on localhost:8888 port 8888 of container
 - o so you can run 2 containers using the same local port, ex. -p 8889:8888
- --rm:
 - everything created by container is erased when it stops
 - o you have to upload and download as an desktop app, or ...
- -v \$PWD:/home/jovyan/work -e NB_UID=`id -u`
 - mounts current directory on work folder
 - everything on that folder is saved after execution
 - Container directory specific on images, ie. this exactly works only on jupyter images
- docker run -it --rm jupyter/scipy-notebook start.sh ipython
 - You can also open ipython instead of jupyter (also jupyter image specific)

Personalize images

Interactive way:

- Run container:
 - \$ docker run -it --rm -e GRANT_SUDO=yes --user root --name pydatasl jupyter/scipy-notebook start.sh bash
- Modify container: Install packages as usual, using conda or pip
 - o jovyan@2faa89dbf8d3:~\$ conda install pymc3
- Save new image
 - \$ docker commit pydatasl gmiretti/pydatasl:handmade
 - sha256:924e5971fe97379b1951fdf9f2cb48c2f5a9461ae5fd12ea22a475d9127109e1
 - \$ docker images

0	REPOSITORY	TAG	ID	CREATED	SIZE
0	gmiretti/pydatasl	handmade	924e5971fe97	20 seconds ago	4.5GB

- Close initial container
- Open container from new image
 - \$ docker run -it --rm gmiretti/pydatasl:handmade start.sh bash
 - o jovyan@a8b3a5a985f0:~\$ python -c "import pymc3; print(pymc3.__version__)"
 3.2

¡Not recommended!

Personalize images

Recommended: Images as Code way

- Create Dockerfile
 - Simple, only 17 instructions available
- Build

```
$ docker build -t keras-notebook:2.0 Dockerfile
```

Run

```
$ docker run --rm keras-notebook:2.0
```

```
# Copyright (c) Jupyter Development Team.
# Distributed under the terms of the Modified BSD License.
FROM jupyter/scipy-notebook

LABEL maintainer="Jupyter Project <jupyter@googlegroups.com>"

# Install Tensorflow
RUN conda install --quiet --yes \
   'tensorflow=1.3*' \
   'keras=2.0*' && \
   conda clean -tipsy && \
   fix-permissions $CONDA_DIR
```

Real example taken from Jupyter official stacks:

https://github.com/jupyter/docker-stacks/blob/master/tensorflow-notebook/Dockerfile

PyDataSL (unofficial) tutorial images

Just pull and run:

```
$ docker run -ti --rm -p 8888:8888 -v $PWD:/home/jovyan/work \
-e NB_UID=`id -u` gmiretti/pydatasl-tutorials-cpu-notebook
```

Contents:

- Jupyter
- Python + Scipy stack
- Tensorflow 1.3 + Tensorboard
- Keras 2.0 + Quiver
- Pymc3 + Theano

```
FROM jupyter/tensorflow-notebook

# Install additional packages for PyDataSL 2017 tutorials
RUN conda install --quiet --yes 'pymc3' 'theano' 'mkl-service' && \
    conda install --quiet --yes -c anaconda 'quiver_engine' && \
    conda clean -tipsy && \
    fix-permissions $CONDA_DIR
```

Code in https://github.com/gmiretti/pydatasl-stacks/

nvidia-docker

nvidia-docker

- Works only on Linux
 - https://github.com/NVIDIA/nvidia-docker#quick-start
 - but could be a server cluster
- Works as expected
 - o nvidia-docker run --rm nvidia/cuda nvidia-smi
 - nvidia-docker run --rm nvidia/cuda:6.5-devel nvidia-smi
- Images available
 - https://hub.docker.com/r/nvidia/cuda/
 - https://github.com/NVIDIA/nvidia-docker/wiki/Third-party
 - Official: Tensorflow, Caffe, CNTK, Keras
 - Unofficial: Theano

Other official stacks

- Anaconda
- Apache Zeppelin: notebooks using Scala, R and Python with Spark
- Kaggle images for Python, R and Julia: run kernels on your machine
- Hortonworks Data Platfom and Data Flow
- Cloudera Data Science Workbench
- Apache Superset
- Metabase

Reproducible and Shareable

- Build your own image with your code and data inside
- 2. Push your image to a registry
- 3. On any machine with docker, pull and run

Example: Python Data Science Handbook

- Great introductory and interactive book!
- Notebooks and data available on Github
 https://github.com/jakevdp/PythonDataScienceHandbook
- But installing requirements to run locally isn't so easy, also breaks frequently
- Docker can help us?

Example: Python Data Science Handbook

- Download book
 Just fork and clone
- 2. Create Dockerfile ADD content
- 3. Build image

```
$ docker build -t gmiretti/python-data-science-handbook .
```

- 4. Push image
 - \$ docker push gmiretti/python-data-science-handbook
- 5. Run image everywhere
 - \$ docker run --rm -p 8888:8888 gmiretti/python-data-science-handbook

FROM jupyter/minimal-notebook

conda clean -tipsy && \
fix-permissions \$CONDA DIR

ADD notebooks /home/\$NB USER/

ADD requirements.txt /home/\$NB USER/

code: github.com/gmiretti/PythonDataScienceHandbook
 image: hub.docker.com/r/gmiretti/python-data-science-handbook

RUN conda install --yes --file /home/\$NB USER/requirements.txt && \

Conclusions

- Docker keeps its promises
 - Data science stacks are simpler to use
 - Most of them in one command
 - Also simpler to update
 - Experiments can be shared and reproduced
 - Not only by me on different machines, also by others
 - Also they are controlled and isolated
- Docker is here to stay
 - It is the building block of Cloud computing
- Docker is a great addition to any data science toolkit

¿Questions?

http://about.me/gmiretti

