Import Libraries

```
In [1]:
         import numpy as np
          import pandas as pd
          import matplotlib.pyplot as plt
          import seaborn as sns
In [2]: | df=pd.read_csv("HR_Employee_Attrition.csv")
Out[2]:
                 Age Attrition
                                                           Department DistanceFromHome Education Education
                                 BusinessTravel DailyRate
              0
                  41
                           Yes
                                   Travel_Rarely
                                                     1102
                                                                 Sales
                                                                                                    2
                                                            Research &
                                                      279
              1
                  49
                               Travel_Frequently
                                                                                         8
                           No
                                                                                                    1
                                                           Development
                                                            Research &
              2
                  37
                          Yes
                                   Travel_Rarely
                                                     1373
                                                                                         2
                                                                                                    2
                                                           Development
                                                            Research &
              3
                  33
                               Travel Frequently
                                                     1392
                                                                                         3
                           No
                                                           Development
                                                            Research &
                  27
              4
                           No
                                   Travel Rarely
                                                      591
                                                                                         2
                                                                                                    1
                                                           Development
                                                            Research &
           1465
                               Travel_Frequently
                                                      884
                                                                                                    2
                  36
                           No
                                                                                        23
                                                           Development
                                                            Research &
           1466
                                                      613
                  39
                           No
                                   Travel_Rarely
                                                                                         6
                                                                                                    1
                                                           Development
                                                            Research &
           1467
                  27
                                                                                                    3
                           No
                                   Travel_Rarely
                                                      155
                                                                                         4
                                                           Development
           1468
                  49
                               Travel_Frequently
                                                     1023
                                                                                         2
                                                                                                    3
                                                                 Sales
                           Nο
                                                            Research &
           1469
                  34
                           No
                                   Travel Rarely
                                                      628
                                                                                                    3
                                                           Development
          1470 rows × 33 columns
In [3]: df.shape
Out[3]: (1470, 33)
         df.Attrition.value_counts()
In [4]:
Out[4]: No
                  1233
                   237
          Name: Attrition, dtype: int64
```

In [5]: df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 1470 entries, 0 to 1469 Data columns (total 33 columns):

#	Column	Non-Null Count	Dtype
0	Age	1470 non-null	 int64
1	Attrition	1470 non-null	object
2	BusinessTravel	1470 non-null	object
3	DailyRate	1470 non-null	int64
4	Department	1470 non-null	object
5	DistanceFromHome	1470 non-null	int64
6	Education	1470 non-null	int64
7	EducationField	1470 non-null	object
8	EmployeeNumber	1470 non-null	int64
9	EnvironmentSatisfaction	1470 non-null	int64
10	Gender	1470 non-null	object
11	HourlyRate	1470 non-null	int64
12	JobInvolvement	1470 non-null	int64
1 3	JobLevel	1470 non-null	int64
14	JobRole	1470 non-null	object
15	JobSatisfaction	1470 non-null	int64
16	MaritalStatus	1470 non-null	object
17	MonthlyIncome	1470 non-null	int64
18	MonthlyRate	1470 non-null	int64
19	NumCompaniesWorked	1470 non-null	int64
20	Over18	1470 non-null	object
21	OverTime	1470 non-null	object
22	PercentSalaryHike	1470 non-null	int64
23	PerformanceRating	1470 non-null	int64
24	RelationshipSatisfaction	1470 non-null	int64
25	StockOptionLevel	1470 non-null	int64
26	TotalWorkingYears	1470 non-null	int64
27	TrainingTimesLastYear	1470 non-null	int64
28	WorkLifeBalance	1470 non-null	int64
29	YearsAtCompany	1470 non-null	int64
30	YearsInCurrentRole	1470 non-null	int64
31	YearsSinceLastPromotion	1470 non-null	int64
32	YearsWithCurrManager	1470 non-null	int64
dtyne	es: int64(24) ohiect(9)		

dtypes: int64(24), object(9) memory usage: 379.1+ KB

In [6]: df.describe()

Out[6]:

	Age	DailyRate	DistanceFromHome	Education	EmployeeNumber	Environme
count	1470.000000	1470.000000	1470.000000	1470.000000	1470.000000	
mean	36.923810	802.485714	9.192517	2.912925	1024.865306	
std	9.135373	403.509100	8.106864	1.024165	602.024335	
min	18.000000	102.000000	1.000000	1.000000	1.000000	
25%	30.000000	465.000000	2.000000	2.000000	491.250000	
50%	36.000000	802.000000	7.000000	3.000000	1020.500000	
75%	43.000000	1157.000000	14.000000	4.000000	1555.750000	
max	60.000000	1499.000000	29.000000	5.000000	2068.000000	

8 rows × 24 columns

Checking for Null Values.

```
In [7]: df.isnull().any()
Out[7]: Age
                                      False
        Attrition
                                      False
        BusinessTravel
                                      False
        DailyRate
                                      False
        Department
                                      False
        DistanceFromHome
                                      False
        Education
                                      False
        EducationField
                                      False
        EmployeeNumber
                                      False
        EnvironmentSatisfaction
                                      False
        Gender
                                      False
        HourlyRate
                                      False
        JobInvolvement
                                      False
        JobLevel
                                      False
        JobRole
                                      False
        JobSatisfaction
                                      False
        MaritalStatus
                                      False
        MonthlyIncome
                                      False
        MonthlyRate
                                      False
        NumCompaniesWorked
                                      False
        Over18
                                      False
        OverTime
                                      False
        PercentSalaryHike
                                      False
        PerformanceRating
                                      False
        RelationshipSatisfaction
                                      False
        StockOptionLevel
                                      False
        TotalWorkingYears
                                      False
        TrainingTimesLastYear
                                      False
        WorkLifeBalance
                                      False
        YearsAtCompany
                                      False
        YearsInCurrentRole
                                      False
        YearsSinceLastPromotion
                                      False
        YearsWithCurrManager
                                      False
        dtype: bool
In [8]: df.isnull().sum().sum()
```

Out[8]: 0

Data Visualization

```
In [9]: sns.histplot(df["Age"])
```

Out[9]: <Axes: xlabel='Age', ylabel='Count'>

In [10]: df.corr()

C:\Users\Mishra\AppData\Local\Temp\ipykernel_26656\1134722465.py:1: FutureWar
ning: The default value of numeric_only in DataFrame.corr is deprecated. In a
future version, it will default to False. Select only valid columns or specif
y the value of numeric_only to silence this warning.
 df.corr()

Out[10]:

	Age	DailyRate	DistanceFromHome	Education	EmployeeNumber
Age	1.000000	0.010661	-0.001686	0.208034	-0.010145
DailyRate	0.010661	1.000000	-0.004985	-0.016806	-0.050990
DistanceFromHome	-0.001686	-0.004985	1.000000	0.021042	0.032916
Education	0.208034	-0.016806	0.021042	1.000000	0.042070
EmployeeNumber	-0.010145	-0.050990	0.032916	0.042070	1.000000
EnvironmentSatisfaction	0.010146	0.018355	-0.016075	-0.027128	0.017621
HourlyRate	0.024287	0.023381	0.031131	0.016775	0.035179
Joblnvolvement	0.029820	0.046135	0.008783	0.042438	-0.006888
JobLevel	0.509604	0.002966	0.005303	0.101589	-0.018519
JobSatisfaction	-0.004892	0.030571	-0.003669	-0.011296	-0.046247
MonthlyIncome	0.497855	0.007707	-0.017014	0.094961	-0.014829
MonthlyRate	0.028051	-0.032182	0.027473	-0.026084	0.012648
NumCompaniesWorked	0.299635	0.038153	-0.029251	0.126317	-0.001251
PercentSalaryHike	0.003634	0.022704	0.040235	-0.011111	-0.012944
PerformanceRating	0.001904	0.000473	0.027110	-0.024539	-0.020359
RelationshipSatisfaction	0.053535	0.007846	0.006557	-0.009118	-0.069861
StockOptionLevel	0.037510	0.042143	0.044872	0.018422	0.062227
TotalWorkingYears	0.680381	0.014515	0.004628	0.148280	-0.014365
TrainingTimesLastYear	-0.019621	0.002453	-0.036942	-0.025100	0.023603
WorkLifeBalance	-0.021490	-0.037848	-0.026556	0.009819	0.010309
YearsAtCompany	0.311309	-0.034055	0.009508	0.069114	-0.011240
YearsInCurrentRole	0.212901	0.009932	0.018845	0.060236	-0.008416
YearsSinceLastPromotion	0.216513	-0.033229	0.010029	0.054254	-0.009019
YearsWithCurrManager	0.202089	-0.026363	0.014406	0.069065	-0.009197

24 rows × 24 columns

In [11]: | sns.heatmap(df.corr(),annot=True)

C:\Users\Mishra\AppData\Local\Temp\ipykernel_26656\4277794465.py:1: FutureWar
ning: The default value of numeric_only in DataFrame.corr is deprecated. In a
future version, it will default to False. Select only valid columns or specif
y the value of numeric_only to silence this warning.
 sns.heatmap(df.corr(),annot=True)

Out[11]: <Axes: >

In [12]: sns.boxplot(df.Age)

Out[12]: <Axes: >

In [13]: sns.boxplot(df.DailyRate)

Out[13]: <Axes: >

In [14]: sns.boxplot(df.DistanceFromHome)

Out[14]: <Axes: >

In [15]: sns.boxplot(df.Education)

Out[15]: <Axes: >


```
In [16]: sns.boxplot(df.EmployeeNumber)
```

Out[16]: <Axes: >

Splitting Dependent and Independent variables

```
In [17]: x=df.iloc[:,2:]
y=df.iloc[:,1]
```

Label Encoding

In [18]: from sklearn.preprocessing import LabelEncoder
le=LabelEncoder()

- x.BusinessTravel=le.fit_transform(x.BusinessTravel)
- x.Department=le.fit_transform(x.Department)
- x.EducationField=le.fit_transform(x.EducationField)
- x.Gender=le.fit transform(x.Gender)
- x.JobRole=le.fit_transform(x.JobRole)
- x.MaritalStatus=le.fit_transform(x.MaritalStatus)
- x.Over18=le.fit transform(x.Over18)
- x.OverTime=le.fit_transform(x.OverTime)
- x.head()

Out[18]:

	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	EducationField	Emplo
0	2	1102	2	1	2	1	
1	1	279	1	8	1	1	
2	2	1373	1	2	2	4	
3	1	1392	1	3	4	1	
4	2	591	1	2	1	3	

5 rows × 31 columns

Feature Scaling

In [19]: from sklearn.preprocessing import MinMaxScaler
 ms=MinMaxScaler()
 x_scaled=pd.DataFrame(ms.fit_transform(x),columns=x.columns)
 x_scaled

Out[19]:

	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	EducationField	Em	
0	1.0	0.715820	1.0	0.000000	0.25	0.2		
1	0.5	0.126700	0.5	0.250000	0.00	0.2		
2	1.0	0.909807	0.5	0.035714	0.25	0.8		
3	0.5	0.923407	0.5	0.071429	0.75	0.2		
4	1.0	0.350036	0.5	0.035714	0.00	0.6		
1465	0.5	0.559771	0.5	0.785714	0.25	0.6		
1466	1.0	0.365784	0.5	0.178571	0.00	0.6		
1467	1.0	0.037938	0.5	0.107143	0.50	0.2		
1468	0.5	0.659270	1.0	0.035714	0.50	0.6		
1469	1.0	0.376521	0.5	0.250000	0.50	0.6		
1470 rows × 31 columns								
4							•	

Splitting Data into Train and Test.

```
In [20]: from sklearn.model_selection import train_test_split
    x_train,x_test,y_train,y_test=train_test_split(x_scaled,y,test_size=0.2,random
In [21]: x_train.shape,x_test.shape,y_train.shape,y_test.shape
Out[21]: ((1176, 31), (294, 31), (1176,), (294,))
```

Logisitic Regression Model Building

```
In [22]: from sklearn.linear_model import LogisticRegression
model=LogisticRegression()
```

```
In [23]: model.fit(x_train,y_train)
Out[23]:
         ▼ LogisticRegression
         LogisticRegression()
In [24]:
         pred=model.predict(x test)
         pred
Out[24]: array(['No',
                     'No', 'No',
                                 'No', 'Yes', 'No', 'Yes', 'No', 'No', 'Yes',
                'No', 'No', 'No', 'Yes', 'No', 'No', 'No', 'No', 'No', 'No', 'No',
                            'No',
                                 'Yes', 'No', 'No', 'No', 'Yes', 'No',
                      'No',
                                                                            'No',
                'No',
                                                                     'No'
                'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No',
                      'No', 'Yes', 'No', 'Yes', 'No', 'No', 'Yes', 'No',
                'No',
                'No',
                     'Yes', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No',
                'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No',
                            'No',
                                       'No',
                                            'No',
                                                  'No',
                                                        'No',
                                                              'No', 'No',
                'No',
                      'No',
                                 'No',
                           'No',
                'No', 'No',
                                 'No', 'No', 'No', 'No', 'No', 'No', 'No',
                                 'No', 'Yes', 'No', 'No', 'No', 'No', 'No', 'No',
                            'No',
                'No',
                      'No',
                'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No',
                           'No', 'No', 'Yes', 'No', 'No', 'No', 'No', 'No',
                'No', 'No',
                           'Yes', 'No', 'No', 'Yes', 'No', 'No', 'No', 'No',
                'No',
                     'No',
                'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No',
                      'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No',
                'Yes', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No',
                'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'Yes', 'No',
                'No', 'Yes', 'No', 'Yes', 'No', 'No', 'No', 'No', 'No', 'No',
                'No', 'No', 'No', 'No', 'No', 'Yes', 'No', 'No', 'No', 'No',
                                      'No', 'No', 'No', 'No', 'No', 'No', 'No',
                'No',
                      'No', 'No',
                                'No',
                'No', 'No', 'No', 'No', 'Yes', 'No', 'No', 'No', 'No', 'No', 'No',
                                 'No', 'No', 'No', 'No', 'No', 'No', 'No',
                      'No',
                           'No',
                'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No',
                'No', 'Yes', 'No', 'No', 'No', 'Yes', 'No', 'No', 'No', 'No',
                     'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No',
                'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No',
                'No', 'No', 'No', 'No', 'No', 'No', 'Yes', 'No', 'No'],
               dtype=object)
In [25]: y_test
Out[25]: 442
                 No
         1091
                 No
         981
                 Yes
         785
                 No
         1332
                 Yes
         1439
                 No
         481
                 No
         124
                 Yes
         198
                 No
         1229
                 No
         Name: Attrition, Length: 294, dtype: object
```

Accuracy Score

```
In [26]: from sklearn.metrics import accuracy_score,confusion_matrix,classification_rep
In [27]: |confusion_matrix(y_test,pred)
Out[27]: array([[241,
                         4],
                 [ 30, 19]], dtype=int64)
In [28]: pd.crosstab(y_test,pred)
Out[28]:
            col_0
                   No Yes
          Attrition
                  241
                        4
              No
                   30
              Yes
                        19
In [29]:
         Accuracy = (241+19)/(241+4+30+19)
         Accuracy
Out[29]: 0.8843537414965986
In [30]:
         print(classification_report(y_test,pred))
                        precision
                                      recall f1-score
                                                         support
                                                              245
                    No
                             0.89
                                        0.98
                                                  0.93
                   Yes
                             0.83
                                        0.39
                                                  0.53
                                                              49
                                                  0.88
                                                              294
              accuracy
                             0.86
                                        0.69
                                                  0.73
                                                              294
            macro avg
                                                              294
         weighted avg
                             0.88
                                        0.88
                                                  0.87
```

In [31]: probability=model.predict_proba(x_test)[:,1]
 probability

```
Out[31]: array([0.15891475, 0.21511559, 0.32432557, 0.08886681, 0.63303258,
                0.06182676, 0.60116073, 0.06129281, 0.01244633, 0.52894224,
                0.05911797, 0.40055503, 0.01774956, 0.61600177, 0.19536204,
                0.03097475, 0.11993564, 0.14259998, 0.0441882, 0.28487654,
                0.18435044, 0.01360069, 0.06054637, 0.0644042, 0.50468314,
                0.43046476, 0.10822989, 0.05258899, 0.63461419, 0.08664196,
                0.01485371, 0.03713133, 0.06832962, 0.20850356, 0.09852004,
                0.03286342, 0.082464 , 0.05914568, 0.05256949, 0.05318322,
                0.05700568, 0.01903842, 0.01641415, 0.01302266, 0.02503352,
                0.50677165, 0.36259837, 0.00234831, 0.66839676, 0.44671953,
                0.13405863, 0.56997014, 0.07936646, 0.28134011, 0.69621889,
                0.24937791, 0.01621117, 0.38833096, 0.02564579, 0.17550708,
                0.02883122, 0.18284739, 0.14299095, 0.02734075, 0.34548398,
                0.04414777, 0.31497096, 0.14558263, 0.1235461 , 0.09541113,
                0.09102041, 0.2608112 , 0.07637309, 0.07676458, 0.10931979,
                0.05017179, 0.08388532, 0.10813308, 0.1900822, 0.03545992,
                0.0091634 , 0.02462897, 0.16628409, 0.02543071, 0.03139766,
                0.07830403, 0.00499672, 0.07289363, 0.03522334, 0.12782832,
                0.1997292 , 0.14301624, 0.2646213 , 0.24404641, 0.01720617,
                0.20455338, 0.34599494, 0.25017011, 0.09201517, 0.05121543,
                0.2112655 , 0.72467912, 0.35414797, 0.02786452, 0.09955845,
                0.04508169, 0.06873754, 0.15215574, 0.10096503, 0.15594135,
                0.08245439, 0.04400721, 0.04334864, 0.14834368, 0.05975021,
                0.04272249, 0.04574552, 0.11551546, 0.00941756, 0.01223489,
                0.22613438, 0.04843507, 0.08376676, 0.80373244, 0.04366118,
                0.027391 , 0.01291323, 0.13356578, 0.17716949, 0.04168438,
                0.01438738, 0.30332401, 0.56809177, 0.26727437, 0.05807149,
                0.42124429, 0.56577335, 0.24697458, 0.06163264, 0.22610041,
                0.08386132, 0.07842809, 0.08930405, 0.17701088, 0.29890668,
                0.03919743, 0.13828096, 0.0033842 , 0.11208064, 0.13953154,
                0.05557145, 0.14898315, 0.05451647, 0.11730045, 0.0341553,
                0.04390226, 0.06912775, 0.07821587, 0.01381096, 0.01241026,
                0.38855565, 0.01307225, 0.11239813, 0.80343597, 0.1942669,
                0.33130457, 0.16264036, 0.13382165, 0.03038525, 0.00542577,
                0.03733729, 0.17353554, 0.17097854, 0.08239189, 0.0161542 ,
                0.11497677, 0.09675853, 0.09017036, 0.04375561, 0.09275858,
                0.02416675, 0.11140631, 0.00530973, 0.81022589, 0.06321252,
                0.04128112, 0.53764442, 0.04502352, 0.73399774, 0.0824389 ,
                0.34750978, 0.32974373, 0.31554156, 0.05230788, 0.07749644,
                0.21347688, 0.04652234, 0.01956346, 0.25828489, 0.05695346,
                          , 0.17308441, 0.63309302, 0.0554643 , 0.23351402,
                0.041376 , 0.4338105 , 0.00331211, 0.12265664, 0.02913167,
                0.11640111, 0.18765739, 0.09235799, 0.08987611, 0.24930837,
                0.0231433 , 0.01520841, 0.08704603, 0.0228926 , 0.12615554,
                0.09957933, 0.23980335, 0.67402732, 0.18515948, 0.35788124,
                0.02958548, 0.15886055, 0.16351833, 0.28564987, 0.02851941,
                0.03820667, 0.35638525, 0.05565143, 0.02953751, 0.16095279,
                          , 0.20774611, 0.01027417, 0.07141752, 0.01208132,
                0.19008834, 0.26995358, 0.01436142, 0.16016645, 0.05334459,
                0.03607947, 0.40769009, 0.4200565 , 0.0318672 , 0.10361636,
                0.4059028 , 0.35236182, 0.73182365, 0.04756796, 0.2262603 ,
                0.0848035 , 0.00518662, 0.62543897, 0.3014179 , 0.35547649,
                0.35354735, 0.0335931, 0.19246384, 0.05074979, 0.05413504,
                0.15366914, 0.00781302, 0.212933 , 0.37675336, 0.06984907,
                0.10237479, 0.00992434, 0.1386785, 0.05692345, 0.03202143,
                0.03304906, 0.06063555, 0.35044495, 0.35817183, 0.17578989,
                0.20989673, 0.01532338, 0.12868418, 0.08311898, 0.03062858,
```

```
0.21635223, 0.00706043, 0.24320165, 0.00281585, 0.0253744, 0.24037253, 0.67469459, 0.06700778, 0.26604659])
```

Decision Tree and RandomForest Classifier

```
In [32]: from sklearn.tree import DecisionTreeClassifier
                  dtc=DecisionTreeClassifier()
In [33]: | dtc.fit(x_train,y_train)
Out[33]:
                   ▼ DecisionTreeClassifier
                   DecisionTreeClassifier()
In [34]: |pred=dtc.predict(x test)
                  pred
Out[34]: array(['No', 'No', 'No', 'No', 'No', 'Yes', 'No', 'No', 'No', 'No',
                                'No', 'No', 'Yes', 'No', 'No', 'No', 'No', 'No', 'Yes', 'No',
                                         'No', 'No', 'No', 'No', 'No', 'No', 'Yes', 'No', 'No',
                                'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No',
                                           'No', 'No', 'Yes', 'Yes', 'Yes', 'Yes', 'No', 'No',
                                'No', 'No', 'No', 'No', 'Yes', 'No', 'No', 'Yes', 'No',
                                'Yes', 'No', 'No', 'No', 'No', 'No', 'Yes', 'No', 'No', 'No',
                                'Yes', 'Yes', 'No', 'No', 'Yes', 'No', 'No', 'Yes', 'No',
                                'No', 'Yes', 'No', 'No', 'Yes', 'No', 'No', 'Yes', 'No',
                                'No', 'No', 'No', 'Yes', 'No', 'No', 'Yes', 'Yes', 'No', 'No
                                                                                                      'Yes', 'Yes', 'No', 'No',
                                'No', 'No', 'No', 'No', 'No', 'No', 'Yes', 'Yes', 'No', 'No',
                                'No', 'No', 'No', 'Yes', 'Yes', 'Yes', 'No', 'No',
                                'No', 'Yes', 'No', 'No', 'Yes', 'No', 'No', 'No', 'No',
                                'Yes', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No',
                                'No', 'No', 'Yes', 'No', 'No', 'No', 'No', 'No', 'No', 'No',
                                                                 'No', 'No', 'No', 'Yes', 'No', 'Yes',
                                'No', 'No', 'No',
                                                                                                                                           'Yes',
                                'No', 'No', 'No', 'Yes', 'No', 'No', 'Yes', 'No', 'No', 'No',
                                'No', 'Yes', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No',
                                'No', 'Yes', 'No', 'Yes', 'No', 'Yes', 'No', 'No', 'No',
                                'No', 'No', 'No', 'No', 'No', 'No', 'Yes', 'No', 'No', 'No',
                                'Yes', 'No', 'No', 'Yes', 'No', 'Yes', 'No', 'No', 'Yes',
                                'No', 'No', 'No', 'No', 'No', 'No', 'No', 'Yes', 'No', 'No',
                                'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No',
                                'No', 'No', 'No', 'Yes', 'No', 'No', 'No', 'No', 'No', 'No', 'No',
                                'Yes', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No',
                                          'Yes',
                                                       'Yes', 'No', 'No', 'Yes', 'No', 'No', 'Yes',
                                'No', 'No', 'No', 'No', 'No', 'No'], dtype=object)
```

```
In [35]: |y_test
Out[35]: 442
                   No
          1091
                   No
          981
                  Yes
          785
                   No
          1332
                  Yes
                  . . .
          1439
                   No
          481
                   No
          124
                  Yes
          198
                   No
          1229
                   No
          Name: Attrition, Length: 294, dtype: object
```

Accuracy Score

```
In [36]: from sklearn.metrics import accuracy score, confusion matrix, classification rep
In [37]: | accuracy_score(y_test,pred)
Out[37]: 0.7551020408163265
In [38]: confusion_matrix(y_test,pred)
Out[38]: array([[206,
                        39],
                        16]], dtype=int64)
                 [ 33,
In [39]: pd.crosstab(y_test,pred)
Out[39]:
            col_0
                  No Yes
          Attrition
              No
                  206
                       39
              Yes
                   33
                       16
In [40]: Accuracy = (212+17)/(212+33+32+17)
         Accuracy
Out[40]: 0.7789115646258503
```

In [41]: print(classification_report(y_test,pred))

	precision	recall	f1-score	support
No Yes	0.86 0.29	0.84 0.33	0.85 0.31	245 49
accuracy macro avg	0.58	0.58	0.76 0.58	294 294
weighted avg	0.77	0.76	0.76	294

In [42]: probability=model.predict_proba(x_test)[:,1]
probability

```
Out[42]: array([0.15891475, 0.21511559, 0.32432557, 0.08886681, 0.63303258,
                0.06182676, 0.60116073, 0.06129281, 0.01244633, 0.52894224,
                0.05911797, 0.40055503, 0.01774956, 0.61600177, 0.19536204,
                0.03097475, 0.11993564, 0.14259998, 0.0441882, 0.28487654,
                0.18435044, 0.01360069, 0.06054637, 0.0644042, 0.50468314,
                0.43046476, 0.10822989, 0.05258899, 0.63461419, 0.08664196,
                0.01485371, 0.03713133, 0.06832962, 0.20850356, 0.09852004,
                0.03286342, 0.082464 , 0.05914568, 0.05256949, 0.05318322,
                0.05700568, 0.01903842, 0.01641415, 0.01302266, 0.02503352,
                0.50677165, 0.36259837, 0.00234831, 0.66839676, 0.44671953,
                0.13405863, 0.56997014, 0.07936646, 0.28134011, 0.69621889,
                0.24937791, 0.01621117, 0.38833096, 0.02564579, 0.17550708,
                0.02883122, 0.18284739, 0.14299095, 0.02734075, 0.34548398,
                0.04414777, 0.31497096, 0.14558263, 0.1235461 , 0.09541113,
                0.09102041, 0.2608112 , 0.07637309, 0.07676458, 0.10931979,
                0.05017179, 0.08388532, 0.10813308, 0.1900822, 0.03545992,
                0.0091634 , 0.02462897, 0.16628409, 0.02543071, 0.03139766,
                0.07830403, 0.00499672, 0.07289363, 0.03522334, 0.12782832,
                0.1997292 , 0.14301624, 0.2646213 , 0.24404641, 0.01720617,
                0.20455338, 0.34599494, 0.25017011, 0.09201517, 0.05121543,
                0.2112655 , 0.72467912, 0.35414797, 0.02786452, 0.09955845,
                0.04508169, 0.06873754, 0.15215574, 0.10096503, 0.15594135,
                0.08245439, 0.04400721, 0.04334864, 0.14834368, 0.05975021,
                0.04272249, 0.04574552, 0.11551546, 0.00941756, 0.01223489,
                0.22613438, 0.04843507, 0.08376676, 0.80373244, 0.04366118,
                0.027391 , 0.01291323, 0.13356578, 0.17716949, 0.04168438,
                0.01438738, 0.30332401, 0.56809177, 0.26727437, 0.05807149,
                0.42124429, 0.56577335, 0.24697458, 0.06163264, 0.22610041,
                0.08386132, 0.07842809, 0.08930405, 0.17701088, 0.29890668,
                0.03919743, 0.13828096, 0.0033842, 0.11208064, 0.13953154,
                0.05557145, 0.14898315, 0.05451647, 0.11730045, 0.0341553,
                0.04390226, 0.06912775, 0.07821587, 0.01381096, 0.01241026,
                0.38855565, 0.01307225, 0.11239813, 0.80343597, 0.1942669,
                0.33130457, 0.16264036, 0.13382165, 0.03038525, 0.00542577,
                0.03733729, 0.17353554, 0.17097854, 0.08239189, 0.0161542 ,
                0.11497677, 0.09675853, 0.09017036, 0.04375561, 0.09275858,
                0.02416675, 0.11140631, 0.00530973, 0.81022589, 0.06321252,
                0.04128112, 0.53764442, 0.04502352, 0.73399774, 0.0824389 ,
                0.34750978, 0.32974373, 0.31554156, 0.05230788, 0.07749644,
                0.21347688, 0.04652234, 0.01956346, 0.25828489, 0.05695346,
                          , 0.17308441, 0.63309302, 0.0554643 , 0.23351402,
                0.041376 , 0.4338105 , 0.00331211, 0.12265664, 0.02913167,
                0.11640111, 0.18765739, 0.09235799, 0.08987611, 0.24930837,
                0.0231433 , 0.01520841, 0.08704603, 0.0228926 , 0.12615554,
                0.09957933, 0.23980335, 0.67402732, 0.18515948, 0.35788124,
                0.02958548, 0.15886055, 0.16351833, 0.28564987, 0.02851941,
                0.03820667, 0.35638525, 0.05565143, 0.02953751, 0.16095279,
                          , 0.20774611, 0.01027417, 0.07141752, 0.01208132,
                0.19008834, 0.26995358, 0.01436142, 0.16016645, 0.05334459,
                0.03607947, 0.40769009, 0.4200565 , 0.0318672 , 0.10361636,
                0.4059028 , 0.35236182, 0.73182365, 0.04756796, 0.2262603 ,
                0.0848035 , 0.00518662, 0.62543897, 0.3014179 , 0.35547649,
                0.35354735, 0.0335931, 0.19246384, 0.05074979, 0.05413504,
                0.15366914, 0.00781302, 0.212933 , 0.37675336, 0.06984907,
                0.10237479, 0.00992434, 0.1386785, 0.05692345, 0.03202143,
                0.03304906, 0.06063555, 0.35044495, 0.35817183, 0.17578989,
                0.20989673, 0.01532338, 0.12868418, 0.08311898, 0.03062858,
```

```
0.21635223, 0.00706043, 0.24320165, 0.00281585, 0.0253744, 0.24037253, 0.67469459, 0.06700778, 0.26604659])
```

```
In [43]:
        probability=dtc.predict_proba(x_test)[:,1]
        probability
Out[43]: array([0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0.,
              0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0.,
              1., 0., 0., 0., 0., 0., 0., 1., 0., 0., 1., 0., 1., 0., 0., 0.,
              0., 0., 0., 1., 0., 0., 0., 1., 1., 0., 0., 0., 1., 0., 0., 1., 0.,
              0., 1., 0., 0., 0., 1., 0., 0., 1., 0., 0., 0., 0., 1., 0., 0., 1.,
              1., 0., 0., 0., 0., 1., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0.,
              0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 0.,
              0., 0., 1., 0., 0., 0., 1., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0.,
              0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
              0., 0., 0., 0., 0., 1., 0., 1., 1., 0., 0., 0., 0., 1., 0., 0., 1.,
              0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0.,
              1., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0.,
              0., 1., 0., 0., 1., 0., 0., 1., 0., 0., 1., 0., 0., 0., 0., 0., 0.,
              0., 0., 1., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0.,
              0., 0., 0., 0., 1., 1., 0., 0., 1., 0., 0., 1., 0., 0., 0., 0.,
              0., 0., 0., 0., 0.])
```