Nature Methods

ChromHMM: automating chromatin-state discovery and characterization

Jason Ernst & Manolis Kellis

Supplementary Figure 1	Automatic State Ordering by Emission and Transition Parameters.			
Supplementary Figure 2	Comparing Emission and Transition based Ordering with Previous			
	Manual State Ordering.			
Supplementary Figure 3	e 3 Example Heat Map of Chromatin State Positional Enrichments.			
Supplementary Figure 4	Example Model Emission Parameter Correlation Comparison Heat			
	Map.			
Supplementary Note	Use of Control Data in ChromHMM, Model Parameter			
	Initialization, Automatic State Ordering, Data Sets in			
	Enrichment Analysis			
Supplementary Data	Example ChromHMM Report			

Supplementary Figure 1: Automatic State Ordering by Emission and Transition Parameters. (a) Visualization of the emission parameters (left) and transition parameters (right) of a

previously published model² when the states of the model have been automatically ordered based on the emission parameters. **(b)** The same as in (a) except the states are ordered based on the transition parameters. See **Supplementary Note** for more details about the state ordering. In both cases the columns of the emission matrix have been ordered based on the same procedure to order the states in (a).

	Order			e	
	힏			Order	
	0			0	
	10			10	
	20			20	
	(Ernst and Kellis, 2010)		ā	(Ernst and Kellis, 2010)	
State Emission Order	=		State Transition Order	=	
ត់	¥		0	~	
<u>_</u>	2		5	2	
Si	t a		1 12	t a	
is	us		l ë	Su	
ᇤ	ŭ		1 2	直	
<u>e</u>	state		e	state	
5	ŧ	State Description	2	ta t	State Description
1	39	CTCF island; candidate insulator	1		Specific repression
2	40	Unmappable	2		Repressed promoter
3	41	Heterochr; nuclear lamina; most AT rich	3	3	Promoter upstream low expr; potential enh looping
4	47	L1/LTR repeats	4	2	Promoter upstream med expr; potential enh looping
5	28	ZNF genes; KAP-1 repressed state	5	1	Promoter upstream high expr; potential enh looping
6	48	Satellite repeat	6		TSS high expr
		·			
7	49	Satellite repeat; moderate mapping bias	7		TSS med expr
8	50	Satellite repeat; high mapping bias	8		TSS low-med expr; most GC rich
9	51	Satellite repeat/rRNA; extreme mapping bias	9	8	Transcribed promoter; highest expr, TSS for active genes
10	42	Heterochr; nuclear lamina; ERVL repeats	10		Transcribed promoter; highest expr, downstream
11	44	Heterochr; ERVL repeats: lower gene/exon depletion	11		Transcribed promoter; high expr, downstream
12	43	Heterochr; lower gene depletion	12		Transcribed promoter; high expr, near TSS
13	45	Specific repression	13		Transcribed 5' proximal, higher expr, open chr, TF binding
14	37	Non-repressive intergenic domains; Alu repeats	14	14	Transcribed 5' proximal, high expr, open chr
15	36	Active intergenic further from enhancers; Alu repeats	15	16	Transcribed 5' proximal, med expr; Alu repeats
16	35	Active intergenic regions not enhancer specific	16		Transcribed 5' proximal, high expr
17	32	Candidate weak distal enhancer	17		Transcribed 5' proximal, higher expr, open chr
18	29	Cand strong distal enh; higher open chr; higher target expr	18	17	Transcribed less 5' proximal, med expr, open chr
19	30	Cand strong distal enh; high open chr; higher target expr	19	18	Transcribed less 5' proximal, med expr
20	34	Proximal to active enhancers; Alu repeats	20	19	Transcribed less 5' proximal, lower expr; Alu repeats
21	20	Candidate strong enhancer in transcribed regions	21		Transcribed 5' distal; exons
22	10	Transcribed promoter; high expr, near TSS	22		Transcribed 5' distal; Alu repeats
23	1	Promoter upstream high expr; potential enh looping	23	25	Transcribed further 5' distal; exons
24	2	Promoter upstream med expr; potential enh looping	24	28	ZNF genes; KAP-1 repressed state
25	31	Intergenic H2AZ with open chr/TF binding. Cand. distal enh	25	48	Satellite repeat
26	38	H2AZ specific state	26		Satellite repeat; moderate mapping bias
	3				
27	_	Promoter upstream low expr; potential enh looping	27		Satellite repeat; high mapping bias
28	4	Repressed promoter	28	51	Satellite repeat/rRNA; extreme mapping bias
29	5	TSS low-med expr; most GC rich	29	30	Cand strong distal enh; high open chr; higher target expr
30	6	TSS med expr	30	34	Proximal to active enhancers; Alu repeats
31	7	TSS high expr	31	33	Candidate distal enhancer
32		Transcribed promoter; highest expr, TSS for active genes	32		Candidate strong enhancer in transcribed regions
					_
33	9	Transcribed promoter; highest expr, downstream	33		Spliced exons/GC rich; open chr, TF binding
34	11	Transcribed promoter; high expr, downstream	34	23	Spliced exons/GC rich; Alu repeats
35	12	Transcribed 5' proximal, higher expr, open chr, TF binding	35	22	Spliced exons/GC rich
36	13	Transcribed 5' proximal, higher expr, open chr	36	27	End of transcription; exons; high expr
37	15	Transcribed 5' proximal, high expr	37		CTCF island; candidate insulator
38	16	Transcribed 5' proximal, med expr; Alu repeats	38		Non-repressive intergenic domains; Alu repeats
39	14	Transcribed 5' proximal, high expr, open chr	39		H2AZ specific state
40	19	Transcribed less 5' proximal, lower expr; Alu repeats	40	31	Intergenic H2AZ with open chr/TF binding. Cand. distal enh
41	18	Transcribed less 5' proximal, med expr	41	36	Active intergenic further from enhancers; Alu repeats
42	17	Transcribed less 5' proximal, med expr, open chr	42		Active intergenic regions not enhancer specific
			43		
43	21	Spliced exons/GC rich; open chr, TF binding			Candidate weak distal enhancer
44	22	Spliced exons/GC rich	44		Cand strong distal enh; higher open chr; higher target expr
45	23	Spliced exons/GC rich; Alu repeats	45	46	Simple repeats (CA)n, (TG)nL1/LTR repeats
46	27	End of transcription; exons; high expr	46	44	Heterochr; ERVL repeats: lower gene/exon depletion
47	25	Transcribed further 5' distal; exons	47		Heterochr; lower gene depletion
48	26	Transcribed 5' distal; Alu repeats	48		L1/LTR repeats
49	24	Transcribed 5' distal; exons	49		Heterochr; nuclear lamina; most AT rich
50	46	Simple repeats (CA)n, (TG)n; L1/LTR repeats	50	42	Heterochr; nuclear lamina; ERVL repeats
51	33	Candidate distal enhancer	51	40	Unmappable
					11 - 12

Supplementary Figure 2: Comparing Emission and Transition based Ordering with Previous Manual State Ordering. The figure shows the state ordering based on the emission parameters (left) and transition parameters (right) next to the manual state ordering of a previously presented model². State colors and descriptions are as previously presented². Many of the states near each other under the manual ordering are also near each other under the automatic orderings. Differences are also biologically reasonable for example the ZNF gene associated state (state 28) appearing with other repetitive states in the emission based ordering, and the specific repression state (state 45) appearing next to the repressed promoter (state 4) under the transition ordering.

GM12878 Fold Enrichment Relative to TSS

Position

Supplementary Figure 3: Example Heat Map of Chromatin State Positional Enrichments. An example heat map produced by ChromHMM showing the relative genome-wide enrichment of each state at positions within 2000 base pairs (bp) of RefSeq transcription start sites at a 200 bp resolution in the cell type GM12878 for a previously presented model³.

Supplementary Figure 4: Example Model Emission Parameter Correlation Comparison Heat Map. An example heat map produced by ChromHMM comparing a set of models with different numbers of states. Each row corresponds to a state from a 51 state model², and each column a model with a different number of states. The intensity of a cell indicates the maximum emission parameter correlation of any state in the model of the column with the state of the row from the 51 state model. The states are numbered to match the emission parameter ordering in **Supplementary Figure 1a.** From this heat map one can quickly observe for instance that state 1 which is highly specific to CTCF is not well captured in models in the set with fewer than 24 states.

Number of States in Model

Supplementary Note

Use of Control Data in ChromHMM

Control data can be used by ChromHMM as an input feature directly in the model which can help isolate regions of copy number variation and repeat associated artifacts³ or it can be used to locally adjust the binarization threshold. The binarization threshold is determined based on an expected number of reads per bin, a significance threshold based on a Poisson background distribution, and also optionally requiring a minimum fold enrichment over the expected number of reads. Without control data the expected number of reads per bin is the genomewide average number of reads per bin. When using an input control this expectation is multiplied by the local enrichment for control reads. When computing the local enrichment for control reads, a pseudocount, default of 1, is first added to the count for each bin to smooth the data from 0. The local enrichment for control data is then computed as the total control counts within a fixed number of bins in both directions, default is five 200-base pair bins, divided by the expected number control counts in the same number of bins if control reads were uniformly distributed.

Model Parameter Initialization

When learning the parameters of an HMM through likelihood maximization an initial set of parameters needs to be specified. The local maximum and learned model obtained can depend on the choice of initial parameters. We have previously shown that for a fixed model size, that while many of the chromatin states recovered are largely invariant to the initial set of parameters not all are². The fact that different independent initializations can lead to different states being recovered can confound comparing models of different sizes. To address this issue we previously proposed a two-pass nested initialization strategy that pruned states from a high scoring model based on states obtained from models learned from random initializations in the first pass². The approach however had the drawbacks of requiring a maximum number of states to consider to be specified a priori and being more computationally expensive than a single pass approach.

ChromHMM supports a new initialization strategy which can be used to learn models from a nested set of emission parameters in parallel directly in a single pass. The idea behind the approach is to iteratively partition the bins of the genome in an informative way as defined by an entropy measure. Each iteration refines a previous partition based on the presence of a selected mark. At each iteration, an emission vector corresponding to the mark frequencies in a newly created subset of bins is added to the nested set of emission parameters. Opposed to directly working off of the binary present or absent vector associated with each bin, spatial

information is incorporated into the initialization procedure by only counting a mark as being present at a bin if it is also present at the next bin. In more detail and formally:

Inputs to the initialization procedure:

Let *M* be the number of marks in the model

Let *K* be the number of states in the model

Let C denote the set of chromosomes

Let T_c denote the number of bins in chromosome c in C

Let c_t denote the bin t on chromosome c

Let v_{c_t} denote the observation vector at position t on the chromosome c

Let $v_{c_t,m}$ denote the binary 0/1 observation for the m^{th} mark

Let α be a smoothing constant with a default value of 0.02

Outputs of the parameter initialization procedure:

Let $p_{k,m}$ denote the emission probability in state k for mark m.

Let $b_{i,j}$ denote the transition probability from state i to state j.

Let a_i denote the probability of starting in state i.

Parameter initialization procedure:

1. Create a smoothed emission vector corresponding to all marks being absent:

$$p_{1,m} = \frac{\alpha}{2}$$
 for $m = 1, ..., M$

2. Create a transformed set of observation vectors that only retains '1' calls observed at consecutive bins:

Define
$$M$$
 element vectors d_{c_t} for each c in C and $t=1,\ldots,T_c-1$

where
$$d_{c_t,m} = v_{c_t,m} \times v_{c_{t+1},m}$$
 for $m=1,...,M$

3. Initialize all non-last bins to initially be in group 1:

Set
$$s_{c_t} = 1$$
 for each c in C and $t = 1, ..., T_c - 1$

- 4. For i = 2 to K do
 - a. Find the best group and mark to split on to increase total entropy that is select u < i and m that maximizes:

$$(h_{u,m,0}+h_{u,m,1})log_2(h_{u,m,0}+h_{u,m,1})-(h_{u,m,0})log_2(h_{u,m,0})-(h_{u,m,1})log_2(h_{u,m,1})$$
 where:

$$h_{u,m,v} = \frac{|\{c_t | (s_{c_t} = u) \land (d_{c_t,m} = v)\}|}{\sum_{c \in C} (T_c - 1)}$$

b. Create a new group i containing the elements in group u which contain mark m that is:

For all
$$c_t$$
 such that if $(s_{c_t}=u) \wedge (d_{c_t,m}=1)$ let $s_{c_t}=i$

c. Create an emission vector based on a smoothed frequency of the mark being present in the newly created group:

$$p_{i,m} = (1 - \alpha) \times \frac{|\{c_t | (s_{c_t} = i) \land (d_{c_t,m} = 1)\}|}{|\{c_t | s_{c_t} = i\}|} + \frac{\alpha}{2}$$

end for

5. Initialize transition parameters based on the final group assignments:

Let
$$b_{i,j} = (1 - \alpha) \times \frac{|\{c_t|s_{c_t} = i \land s_{c_{t+1}} = j\}|}{|\{c_t|s_{c_t} = i\}|} + \frac{\alpha}{\kappa}$$
 for $i = 1, ..., K$ and $j = 1, ..., K$

6. Initialize the initial probability parameters based on the final group assignments:

Let
$$a_i = (1 - \alpha) \times \frac{|\{c \mid s_{c_1} = i\}|}{|C|} + \frac{\alpha}{K}$$
 for $i = 1, ..., K$

The above procedure is limited in the values of K it can handle by the number of unique d_{c_t} vectors, but in practice the desired values of K will generally be less than this constraint.

ChromHMM also supports initializing the parameters randomly from uniform distributions, and the nested state pruning initialization method previously described² generalized to allow correlation or euclidean based distance and smoothing of the parameters away from 0.

Automatic State Ordering

ChromHMM offers the ability to automatically order the states of a model based on either the emission or transition parameters. ChromHMM determines the state order based on an approximation algorithm to minimize the total distance between consecutive states in the ordering.

If ordering is based on the emission parameters, then the distance between two states is defined as

$$d(x,y) = \sqrt{\left(1 - \rho(p_x, p_y)\right)}$$

where ρ is the pearson correlation coefficient and p_x is the emission parameters in state x.

When ordering based on the transition parameters the distance between two states is defined as

$$d(x,y) = 2 - (b_{x,y} + b_{y,x})$$

where $b_{x,y}$ is defined as the probability of transitioning from state x to state y.

The approximation algorithm considers each state as the first state in the order and then greedily selects the nearest unselected state to it, and continues selecting the closest state to the last selected state among any unselected state. The ordering resulting from the choice of first state that has the smallest total distance is used.

Data Sets in Enrichment Analysis

In **Figure 1c** in the main text, the external data are RefSeq transcription start sites (TSS)⁷, CpG Islands, regions within 2000 base pairs of a RefSeq TSS, RefSeq Exons, RefSeq genes, RefSeq transcript end sites, SiPhy omega conserved elements⁸, and nuclear lamina associated domains⁹ all obtained from the UCSC genome browser⁶.

Supplementary References

- 7. Pruitt, K.D., Tatusova, T., Klimke, W., & Maglott, D.R. *Nucleic Acids Res* **37(Database issue)**: D32-36 (2009).
- 8. Lindblad-Toh, K. et al. Nature **478**: 476-482 (2011).
- 9. Guelen, L. et al. Nature **453**: 948-951 (2008).

Supplementary Data

ChromHMM Report

Input Directory: SAMPLEDATA_HG18 Output Directory: OUTPUTSAMPLE

Number of States: 10 Assembly: hg18

Full ChromHMM command: LearnModel SAMPLEDATA_HG18 OUTPUTSAMPLE 10 hg18

Model Parameters

- Emission Parameter SVG File
- Emission Parameter Tab-Delimited Text File

Mark

Nature Methods: doi:10.1038/nmeth.1906

State To (Emission order)

- Transition Parameter SVG File
- Transition Parameter Tab-Delimited Text File
- All Model Parameters Tab-Delimited Text File

Genome Segmentation Files

- GM12878_10 Segmentation File (Four Column Bed File)
- K562_10 Segmentation File (Four Column Bed File)

Custom Tracks for loading into the <u>UCSC Genome Browser</u>:

- GM12878_10 Browser Custom Track Dense File
- GM12878_10 Browser Custom Track Expanded File
- K562_10 Browser Custom Track Dense File
- K562_10 Browser Custom Track Expanded File

State Enrichments

GM12878_10 Enrichments

Nature Methods: doi:10.1038/nmeth.1906

Fold Enrichment GM12878_10

Category

- GM12878_10 Overlap Enrichment SVG File
- GM12878_10 Overlap Enrichment Tab-Delimited Text File

Nature Methods: doi:10.1038/nmeth.1906

Fold Enrichment GM12878_10 RefSeqTSS

Position

- GM12878_10_RefSeqTSS_neighborhood Enrichment SVG File
- GM12878_10_RefSeqTSS_neighborhood Enrichment Tab-Delimited Text File

Nature Methods: doi:10.1038/nmeth.1906

Fold Enrichment GM12878_10 RefSeqTES

Position

- GM12878_10_RefSeqTES_neighborhood Enrichment SVG File
- GM12878_10_RefSeqTES_neighborhood Enrichment Tab-Delimited Text File

K562_10 Enrichments

Nature Methods: doi:10.1038/nmeth.1906

Fold Enrichment K562_10

Category

- K562_10 Overlap Enrichment SVG File
- K562_10 Overlap Enrichment Tab-Delimited Text File

Nature Methods: doi:10.1038/nmeth.1906

Fold Enrichment K562_10 RefSeqTSS

Position

- K562_10_RefSeqTSS_neighborhood Enrichment SVG File
- K562_10_RefSeqTSS_neighborhood Enrichment Tab-Delimited Text File

Nature Methods: doi:10.1038/nmeth.1906

Fold Enrichment K562_10 RefSeqTES

Position

- K562_10_RefSeqTES_neighborhood Enrichment SVG File
- K562_10_RefSeqTES_neighborhood Enrichment Tab-Delimited Text File

Nature Methods: doi:10.1038/nmeth.1906

8 of 8