

243 Jubug-Ri, Yangji-Myeon, Yongin-Si, Gyeonggi-Do, Korea 449-822 Tel: +82-31-323-6008 Fax: +82-31-323-6010 http://www.ltalab.com

Dates of Tests: May. 27, 2009 Test Site: LTA CO., LTD.

CERTIFICATIO OF COMPLIANCE

FCC ID.

APPLICANT

VUJAT870

ATID CO.,Ltd

Classification : Licensed Portable Transmitter Held to Ear (PCE)

Manufacturing Description : Industrial PDA
Manufacturer : ATID CO.,Ltd

Manufacturer (RF Module) : Siemens AG (FCC ID:QIPMC55i)

Model name : AT870

Test Device Serial No.: : Identical prototype
Rule Part(s) : \$24(E), \$22(H), \$2

TX Frequency Range : 824.2 ~ 848.8 MHz (GSM850)/1850.2 ~ 1909.8 MHz (PCS1900)

RX Frequency Range : 869.2 ~ 893.8 MHz (GSM850)/1930.2 ~ 1989.8 MHz (PCS1900)

Max. RF Output Power : 0.656 W ERP GSM850 (28.17dBm)

0.543 W EIRP PCS1900 (27.35dBm)

Data of issue : May 27, 2009

This test report is issued under the authority of:

The test was supervised by:

Dong -Min JUNG, Technical Manager

Kyung-Taek LEE, Test Engineer

This test result only responds to the tested sample. It is not allowed to copy this report even partly without the allowance of the test laboratory. This report must not be used by the applicant to claim product endorsement by any agency.

NVLAP LAB Code.: 200723-0

TABLE OF CONTENTS

1. GENERAL INFORMATION'S	3
2. INFORMATION'S ABOUT TEST ITEM	4
3. TEST REPORT	5
3.1 SUMMARY OF TESTS	5
3.2 TECHNICAL CHARACTERISTICS TEST	6
3.2.1 EFFECTIVE RADIATED POWER OUTPUT	6
3.3 DESCRIPTION OF TEST	
3.3.1 OUTPUT POWER (RADIATED)	7
APPENDIX	
APPENDIX TEST EQUIPMENT USED FOR TESTS	9

1. General information's

1-1 Test Performed

Company name : LTA Co., Ltd.

Address : 243, Jubug-ri, Yangji-Myeon, Youngin-Si, Kyunggi-Do, Korea. 449-822

Web site : http://www.ltalab.com
E-mail : chahn@ltalab.com
Telephone : +82-31-323-6008
Facsimile +82-31-323-6010

Quality control in the testing laboratory is implemented as per ISO/IEC 17025 which is the "General requirements for the competents of calibration and testing laboratory".

1-2 Accredited agencies

LTA Co., Ltd. is approved to perform EMC testing by the following agencies:

Agency	Country	Accreditation No.	Validity Reference	
NVLAP	U.S.A	200723-0	2009-09-30	ECT accredited Lab.
RRL	KOREA	KR0049	2009-06-20	EMC accredited Lab.
FCC	U.S.A	610755	2011-04-22	FCC filing
VCCI	JAPAN	R2133, C2307	2011-06-21	VCCI registration
IC	CANADA	IC5799	2010-05-03	IC filing

2. Information's about test item

2-1 Applicant & Manufacturer

Company name : ATID CO.,Ltd

Address : #1210 Byuksan/Gyungin digital valley II #481 – 10 Gasan-Dong

Gumchon-Gu Seoul KOREA

Tel / Fax : +82-2-544-1436 / +82-2-544-1438

2-2 Equipment Under Test (EUT)

Trade name : Industrial PDA

Model name : AT870

Serial number : Identical prototype

Date of receipt : January 13, 2009

EUT condition : Pre-production, not damaged

GSM Module : Siemens AG (FCC ID: QIPMC55i)

Identification mark: 0682

Antenna type : GSM850/PCS1900 Dual Stubby Helical Antenna

RF output power : GSM850 (33dBm: Level 5) / PCS1900 (30dBm: Level 0)

Modulation : GMSK, 8PSK Temperature range : $-20 \,^{\circ}\text{C} \sim +60 \,^{\circ}\text{C}$

Power Source 3.7Vdc Li-Ion Battery, 2960mAh

2-3 Tested frequency

	GSM 850 Channel Frequency (MHz)		PCS 1900		
			Channel	Frequency (MHz)	
LOW	128	824.2	512	1850.2	
MID	190	836.6	661	1880.0	
HIGH	251	848.8	810	1909.8	

2.4 Test conditions

Temperature	: +15~35 ℃	Humidity	: 30~65 %RH			
Pressure	: 860~1030 mbar	Operating mode : Air link mode				
GSM850	A communication link is established between the mobile station and the test simulator.					
	The transmitter is operated at its maximum rated output power: 33 dBm (power					
	class 4 = power control level 5)					
PCS1900	A communication link is established between the mobile station and the test simulator.					
	The transmitter is operated at its maximum rated out put power: 30 dBm (power					
	class 1 = power control level 0)					

3. Test Report

3.1 Summary of tests

Parameter	Status					
Transmitter Requirements						
I. FCC Part Section(s)						
GSM 850/1900 Terminal equipment (MC55i) is certified by FCC(FCC ID:	QIPMC55i).					
Refer to the test report of FCC ID:QIPMC55i.	Refer to the test report of FCC ID:QIPMC55i.					
Output Power	С					
<u>Note 1</u> : C=Complies NC=Not Complies NT=Not Tested NA=Not Applicable						
Note 2: The data in this test report are traceable to the national or international standards.						

The sample was tested according to the following specification:

ANSI C-63.4-2003

3.2 Technical Characteristics Test

3.2.1 Effective Radiated Power Output

Effective Radiated Power Output Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. For GSM signals, an average detector is used, with RBW=VBW=3MHz, SPAN=10MHz. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. The conducted power at the terminals of the dipole is measured. The ERP is recorded.

3.2.2 Radiation Spurious and Harmonic Emissions

Effective Radiated Power Output Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

Radiation and harmonic emissions are measured outdoors at our 3-meter test range. The equipment under test is placed on a wooden turntable 3-meters from the receive antenna.

The receive antenna height and turntable rotations were adjusted for the highest reading on the receive spectrum analyzer. The Spectrum was investigated from 30MHz to the 10th Harmonic of the fundamental. A peak detector is used. With RBW=VBW=1MHz. The value that we could measure was only reported. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator with the level of the signal generator being adjusted to obtain the same receive spectrum analyzer reading. This level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

3.3 DESCRIPTION OF TESTS

3.3.1 Output Power

Effective Radiated Power Output (GSM850)

Measurement Data:

GSM850

~-	Frequency	TEST CONDITIONS Power Step: 5				
Channel	(MHz)	Ref. level (dBm)	Pol. (H/V)	ERP (dBm)	ERP (W)	Battery
128	824.2	-12.07	V	28.17	0.656	STD
190	836.6	-12.62	V	27.54	0.568	STD
251	848.8	-12.1	V	27.39	0.548	STD

Note 1: Radiated measurements at 3 meters by Substitution Method.

Equivalent Isotropic Radiated Power (PCS1900)

Measurement Data:

PCS1900

GI. I	Frequency	TEST CONDITIONS Power Step: 0				
Channel	(MHz)	Ref. level (dBm)	Pol. (H/V)	EIRP (dBm)	EIRP (W)	Battery
512	1850.2	-12.89	V	27.35	0.543	STD
661	1880.0	-14.24	V	26.58	0.455	STD
810	1909.8	-13.72	V	26.73	0.471	STD

Note 2: Radiated measurements at 3 meters by Substitution Method.

APPENDIX

TEST EQUIPMENT USED FOR TESTS

	Description	Model No.	Serial No.	Manufacturer	Next Cal. Date
1	Spectrum Analyzer	FSV-30	100757	R&S	Feb-10
2	Signal Generator	8648C	3623A02597	HP	Apr-10
3	Attenuator (3dB)	8491A	37822	HP	Oct-09
4	Attenuator (10dB)	8491A	63196	HP	Oct-09
5	EMI Test Receiver	ESVD	843748/001	R&S	Apr-10
6	Horn Antenna(18 ~ 40GHz)	SAS-574	154	Schwarzbeck	Nov-10
7	Horn Antenna(18 ~ 40GHz)	SAS-574	155	Schwarzbeck	Nov-10
8	RF Amplifier	8447D	2949A02670	HP	Apr-10
9	RF Amplifier	8449B	3008A02126	HP	Apr-10
10	Test Receiver	ESHS10	828404009	R&S	Apr-10
11	TRILOG Antenna	VULB 9160	9160-3212	SCHWARZBECK	Jul-09
12	LogPer. Antenna	VULP 9118	9118 A 401	SCHWARZBECK	Apr-10
13	Biconical Antenna	BBA 9106	VHA 9103-2315	SCHWARZBECK	Apr-10
14	Horn Antenna	3115	00055005	ETS LINDGREN	Apr-11
15	Horn Antenna	BBHA 9120D	9120D122	SCHWARZBECK	Dec-11
16	Dipole Antenna	VHA9103	2116	SCHWARZBECK	Nov-09
17	Dipole Antenna	VHA9103	2117	SCHWARZBECK	Nov-09
18	Dipole Antenna	VHA9105	2261	SCHWARZBECK	Nov-09
19	Dipole Antenna	VHA9105	2262	SCHWARZBECK	Nov-09
20	Spectrum Analyzer	8591E	3649A05888	НР	Oct-09
21	Spectrum Analyzer	8563E	3425A02505	HP	Apr-10
22	Spectrum Analyzer	ESU	100109	R&S	Apr-10
23	Hygro-Thermograph	THB-36	0041557-01	ISUZU	Apr-10
24	Splitter (SMA)	ZFSC-2-2500	SF617800326	Mini-Circuits	Jun-09
25	RF Switch	MP59B	6200414971	ANRITSU	Jun-09
26	RF Switch	MP59B	6200438565	ANRITSU	Jun-09
27	Power Divider	11636A	6243	HP	Oct-09
28	DC Power Supply	6622A	3448A03079	HP	Oct-09
29	Combiner / Divider	11636A	6243	HP	Oct-09
30	Frequency Counter	5342A	2826A12411	HP	Apr-10
31	Power Meter	EPM-441A	GB32481702	HP	Apr-10
32	Power Sensor	8481A	2702A64048	НР	Apr-10
33	Audio Analyzer	8903B	3729A18901	НР	Oct-09
34	Modulation Analyzer	8901B	3749A05878	HP	Oct-09
35	TEMP & HUMIDITY Chamber	YJ-500	L05022	JinYoung Tech	Oct-09
36	LOOP-ANTENNA	FMZB 1516	151602/94	SCHWARZBECK	Apr-10
37	Stop Watch	HS-3	601Q09R	CASIO	Apr-10