Probabilités 1 - CC1 - Lundi 3 octobre 2022 - Éléments de correction Si vous repérez une erreur, signalez-là sur votre copie et poursuivez votre épreuve.

Exercice 1 Les deux questions sont indépendantes.

- 1. Donner la définition de la loi d'une variable aléatoire.
- 2. On définit $\Omega = \{1, 2, 3, 4\}$ et $\mathcal{C} = \{\{1\}; \{1, 2\}\}$. Donner $\sigma(\mathcal{C})$.

Correction 1 C'est du cours pour la question 1. Pour la seconde, on note que $\sigma(\mathcal{C})$ doit contenir en plus de $\mathcal{C}:\emptyset,\Omega$ et $\{2\},\{3,4\},\{2,3,4\},\{1,3,4\}$. On introduit donc $\mathcal{F}=\{\emptyset,\Omega,\{1\},\{2\},\{1,2\},\{3,4\},\{2,3,4\},\{1,3,4\}\}$ et on a $\mathcal{F}\subset\sigma(\mathcal{C})$. De plus on vérifie facilement que \mathcal{F} est une tribu et comme $\mathcal{C}\subset\mathcal{F}$ on obtient $\sigma(\mathcal{C})\subset\mathcal{F}$.

Exercice 2 Déterminer si les fonctions suivantes sont intégrables.

$$f_1: t \in]0, +\infty[\to t^3 e^{-t}$$
 $f_2: t \in]0, +\infty[\to \frac{t \ln t}{(t^2+1)^2}$ $f_3: t \in]0, +\infty[\to \frac{1}{t\sqrt{t^2+1}}]$

Correction 2

La fonction f_1 est continue sur $]0,+\infty[$ et admet une limite finie en 0. On doit donc uniquement étudier son comportement en $+\infty$. Or $|t^2f_1(t)| \to 0$ quand $t \to +\infty$ donc par comparaison on en déduit que f_1 est intégrable.

La fonction f_2 est continue sur $]0, +\infty[$ et admet une limite finie en 0. On doit donc uniquement étudier son comportement en $+\infty$. Or $|t^2f_2(t)| \to 0$ quand $t \to +\infty$ donc par comparaison on en déduit que f_2 est intégrable.

La fonction f_3 est continue sur $]0, +\infty[$. Examinons son comportement en $0: |f_3(t)| \stackrel{0}{\sim} 1/t$ donc f_3 n'est pas intégrable. Remarque : f_3 est intégrable sur $[1, +\infty[$.

Exercice 3 On lance une pièce de monnaie équilibrée successivement 5 fois.

- 1. Proposer un espace de probabilité pour modéliser cette expérience.
- 2. Expliciter soigneusement les événements puis calculer les probabilités correspondant à :
 - (a) obtenir exactement une fois Face
 - (b) obtenir au moins une fois Face
 - (c) obtenir une série de longueur au moins 3 (i.e. avoir au moins 3 Piles consécutifs ou 3 Faces consécutifs parmi les 5 lancers)
 - (d) obtenir plus de Face que de Pile

Correction 3

- 1. On propose comme univers $\Omega = \{0,1\}^5$ où 1 correspond à Pile et 0 à Face. On pouvait bien sûr faire d'autres choix. Comme Ω est fini on prend pour tribu $\mathcal{F} = \mathcal{P}(\Omega)$. Enfin puisqu'on veut que tous les tirages aient même probabilité on prend pour probabilité P la probabilité uniforme définie pour tout $A \in \mathcal{F}$ par $P(A) = |A|/|\Omega|$. On note que $|\Omega| = 2^5 = 32$.
- 2. (a) On introduit $A=\{\omega\in\Omega \text{ t.q. } \sum_{i=1}^5\omega_i=4\}.$ On a |A|=5 et donc $\mathrm{P}(A)=5/32.$
 - (b) On introduit $B = \{(1, 1, 1, 1, 1)\}$ et on s'intéresse donc à B^c . On a |B| = 1 et donc $P(B^c) = 1 P(B) = 1 1/32$.
 - (c) Ça n'est pas très élégant mais on peut décrire C en énumérant simplement tous les éléments de Ω qu'il contient :
 - i. les séries de longueur 5:(1,1,1,1,1);(0,0,0,0,0)
 - ii. les séries de longueur 4:(1,1,1,1,0);(0,1,1,1,1);(1,0,0,0,0);(0,0,0,0,1)
 - iii. les séries de longueur 3:(1,1,1,0,1);(1,1,1,0,0);(0,1,1,1,0);(1,0,1,1,1);(0,0,1,1,1) et (0,0,0,1,0);(0,0,0,1,1);(1,0,0,0,1);(0,1,0,0,0);(1,1,0,0,0).

On a donc |C| = 16 et donc P(C) = 16/32 = 1/2.

(d) On introduit $D = \{\omega \in \Omega \text{ t.q. } \sum_{i=1}^5 \omega_i \leq 2\}$. On peut partitionner cet événement selon la valeur de la somme et on obtient facilement |D| = 1 + 5 + 10 = 16 et on obtient P(D) = 1/2.

Exercice 4 Le but de l'exercice est de montrer que [0,1] n'est pas dénombrable en raisonnant par l'absurde. Supposons donc que [0,1] est dénombrable.

- 1. Justifier qu'il existe une suite $(u_k)_{k\geq 0}$ telle que $[0,1]=\{u_k,\ k\geq 0\}$.
- 2. Que vaut $\sum_{k=0}^{+\infty} \frac{1}{2^{k+1}}$?
- 3. Montrez que pour tout $n \geq 0$, il existe un réel x_n dans

$$[0,1]\setminus\bigcup_{k=0}^{n}[u_k-\frac{1}{2^{k+2}},u_k+\frac{1}{2^{k+2}}].$$

4. Parvenir à une contradiction en utilisant le théorème de Bolzano-Weierstrass.

Correction 4

- 1. Si [0,1] est dénombrable alors par définition il existe une bijection f de \mathbb{N} dans [0,1]. On note pour tout $k \geq 0$, $u_k = f(k)$. Comme f est bijective, $[0,1] = \{u_k, k \geq 0\}$.
- 2. C'est une somme géométrique! $\sum_{k=0}^{+\infty} \frac{1}{2^{k+1}} = 1$.
- 3. En particulier, pour tout $n \ge 0$, $\sum_{k=0}^{n} \frac{1}{2^{k+1}} < 1$ et donc $\bigcup_{k=0}^{n} [u_k \frac{1}{2^{k+2}}, u_k + \frac{1}{2^{k+2}}]$ ne peut recouvrir [0,1]! On en déduit que pour tout $n \ge 0$, il existe un réel x_n dans

$$[0,1] \setminus \bigcup_{k=0}^{n} [u_k - \frac{1}{2^{k+2}}, u_k + \frac{1}{2^{k+2}}].$$

4. D'après le théorème de Bolzano-Weierstrass, $(x_n)_{n\geq 0}$ étant bornée, elle admet une sous-suite $(x_{\phi(n)})_{n\geq 0}$ convergeant vers une limite $\ell\in[0,1]$. Comme $[0,1]=\{u_k,\ k\geq 0\}$, il existe $p\geq 0$ tel que $\ell=u_p$. Or pour tout $n\geq p,\ \phi(n)\geq n\geq p$ donc $x_{\phi(n)}\notin[u_p-\frac{1}{2^{p+2}},u_p+\frac{1}{2^{p+2}}]$. On en déduit que $(x_{\phi(n)})_{n\geq 0}$ ne converge pas vers ℓ et on tient notre contradiction.