MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 4 - JANUARY 2009 SOLUTION KEY

Round 6

A) Each of the expressions 8^2 , 4^6 , 16^3 and 64^2 is equivalent to 2^{12} . Thus, we have:

$$\sqrt{4 \cdot 2^{12}} \cdot \sqrt{x^2} = \sqrt{2^{14}} \cdot \sqrt{x^2} = 2^7 \cdot |x| = 128|x| = 8^3 \Rightarrow 2^7|x| = 2^9 \Rightarrow |x| = 4 \Rightarrow x = \pm 4$$

B) In 1 minute the minute hand travels through 6° .

In x minutes the minute hand travels through (6x)°.

The hour hand travels at 1/12 the rate of the minute hand and, therefore travels through $(x/2)^{\circ}$

From the diagram at the right, we see that:

$$60 + \frac{x}{2} + 60 = 6x$$

⇒ 240 = 11
$$x$$
 ⇒ $x = \frac{240}{11}$

Note: A 60° is <u>not</u> formed again before 3:00. During the remainder of the hour, the angle between the hour and minute hand increases to 180° (when they point in diametrically opposite directions) and then decreases to 90° at 3:00.

C)
$$\overline{(x \circ y)} = \overline{2x - y} = (2x - y)^2$$

 $\overline{x \circ y} = x^2 \circ y^2 = 2x^2 - y^2$

Expanding and equating we have: $4x^2 - 4xy + y^2 = 2x^2 - y^2$

⇒
$$2x^2 + 2y^2 - 4xy = 0$$
 ⇒ $2(x^2 - 2xy + y^2) = 0$ or $2(x - y)^2 = 0$

$$\rightarrow y = \underline{x}$$