used to count the mumber of F. - 1 Counter clock pulses arriving at its input of U 2 types: Ripple/Series/Asynchronous Parallel Synchronou 4 bit binary counter or med-16 counter For this counter Fis connected in the FF B FFA of of a FF CFF the K inputs -vely edge triggered uill clock input. initially all the FFs are BBB = 0000, which is just before 1st cus pulse. _arrives and masses a ie Of changes from 0 to 1.

					1.7						
This being a	+V	e g	oing_	chang	e , B FF is shot						
briggered. U He	nie_	FE.	5 4	and	D also do not						
-change state	change states. The output condition is										
on the as	rrival	of	the	and	clock pulse of						
== 180m !	to o	W	hich	tring	sers B FF driving						
7.01.02		(0 m	\circ	The ' II V	D.D						
geing change CFF is not briggered So no change in the subult of 75											
1-13-212-13-21A-	0	010									
This con	a Li.	-%-	ind	at :	the end of the						
		-CO-C	have	the	output condition						
BORCHBBA =	1111				as de condition						
When the	ne	16th	lock	pulse	arrives & make:						
a to o trans	sition	,0	AC	hanao	s to o from 1.						
his triggers	<u>B</u> _	, <u>m</u>	King	its	output o. The						
-ve going of	nange	tr	gaer	s C	which changes nges from 1 to o.						
from 11 to a), (PF D	01.	cha:	nace Changes						
Hence at the	en	d or	- th	re- 16	nges from 1 to o.						
output condition	n is	5 6	3, 8,	8, 8.	clock pulse,						
		_		-4B4A-	= 0000						
Truth table:											
	QD	8c	8 _B	BA	· Clock						
	0	0	0	0	· Clock pulse						
	0	0	0								
	.0	0	1	··							
	0	0	1								
	0		 D	0							
	0.	 1	0		4						
	0	,	<u> </u>		5						
	0			0	6						
1			(1	7						

÷

	-	1			() () () () () () () () () ()	3 3
	8,	B.	B _B	8A	Clock pulse	
	1	0	0	0	8.	
	1	0	0	1	q	
	1	0	1	0	10	
	1	0	1	1	(1	
	1	1	0	0	12	
	1	1	0	1	1,3	
)	1	1	0	14	
	1	1	1		15	
				-		
From	v 41	ne.	abov	re t	. table it can be	seen
states	the 4 FF ent	ough.	ounte es	hich v	nter is the total the counter car progresses through ferred to as a	16 gre
Wave						16 c
						1 8
			a) do b			
				,		0

					1	
Truthtable	Q _D	8c	SzB	8A	Clock	
	0	0	O	0	b :-	
	Ø	0	O	1	1	
	0	0	1	0	2	
	0	0	Ī	ı	3	
	O	1	0	0	4	
1	0	1	0	1	5	
	0	1	1	0	6	
	0)		1	7_	
	1	O	0	0	8	
•	1	0	0	1	9	
•	0	0	0	0	10	
	100					1

The waveforms showing the action of the counter is shown below.

				- 4
count this counter which is its disadvanto	spas	.ar_spe		
is circle a la dividit	Ser - M	1 200	operati	200
is simple and straight	TUTWAY	Yeari	VPE OF	minimum
of hardware	<u>asaan</u>	1-1-94	16.3	
naidware.				1
Parallel Synchronous (ounters	! -	الم الم	I FFS
This is a co	unter	170 00	MCN G.	donor
are triggered by the	<u>san</u>	ae Clor	ch, as	Show
below for a mod-4	parall	e) Cou	nter	
			o+Vcc	
T QA	JOCIK K	Q _B		
A	. 7	3		
Truth table: -	8B	8A	CLK	
(144) [660]	0	0	. 0	
	0	Ĭ	-	•
•	1 .	0	2	
			.3	
	<u>`</u>	0	4	
				<u> </u>
The clock is ap	plied	di rectly	to A	FF.
Whenever BA is high	AND	gate	is e	nabled
and a clock pulse is	_passe	d thi	ough	the gate
to the clock input of				
are triggered in sync	المالى دىنى دىنى دىنى دىنى دىنى دىنى دىنى دى			th 0
everall delay time is				
delay time of a sin	rgie_f	<u>-11e</u>	_an	increase

(10)
in speed of operation is achieved by using: this counter. The hardware required is more than that of a ripple counter. Series and parallel counters are used in combinations to compromise between speed of operation and hardware count
Problems:
(1) Determine the no: of FFS that would be required to build the foll. counters. > (a) Mod 6 (b) Mod 11 (c) Mod 15 (d) Mod 19 (e) Mod 31 (f) Mod 128.
(2) Draw the black diagrams of mod-14 and mod-5 ripple counters and give their tetables. Also show the waveform at the output of each FF in the case of a mod-5 counter.
(3) An 8MHz square wave drives a 5 bit binary counter. What is the frequency of the waveform at the Output of the last FF of the counter.
(4) Construct a mod 8 parallel counter.

PAGE: / /

Mod-8 parallel counter

All the JKFFs used are negatively edge triggered ones, with I and K inputs maintained high.

All the three FFs are triggered by the same clock. FF A is triggered whenever the clock makes a negative transition. FF B is triggered for a negative or falling edge of the clock only if $A_A=1$. Similarly FFC is triggered for a falling clock edge, provided A_A and A_B are both equal to

Initially, suppose all the FFS are reset ie achor and as are both equal to 0, for the first negative clock edge, only FFA is triggered ie FFA toggles and BA=1. OchBBA=001

Now with BA=1, BB=0, for the

	second clock pulse, FFA and FFB
	toggles while FFC is not triggered.
_	toggles while FFC is not triggered. ie BA = 0, BB=1 and Bc=0.
-	This continues and at the end of
	the third clock pulse BA=1, BB=1, B=0.
	Now for the fourth clock pulse, A FF
	C FF and B FF triggers giving 80=0
-	C FF and B FF triggers giving BA=0, BB=0 and Bc=1. In this way,
	at the end of the seventh clock
	pulse, $Q_{R} = Q_{C} = 1$. For the eighth
	clock pulse, all the FFs toggie to
_	the reset state ie counter is reset

 				9
 Clock	82	87B	8,4	
pulse				· · · · · · · · · · · · · · · · · ·
 0	O	0	O	
)	0	0	1	
 2_	Ð	I	0	
 3	0	1	1	
. 4	.31	0	0	
 5	}	0		
6	1	1	0	
 7	1	[
 8	0	0	0	

				PAGE(14)
CLK	80	Sig	84	DATE
0	0	0	O	
1	7.	1.	7	
			0	
3		_ 0_		
4 .	i_	0	0	
5	0	1	1	
6	0	1	0	
7	0	2	1	
8		0		
	0	10	0	

Crece (1)

Working: - Initially, the counter is reset When the first clock pulse arrives A FF toggles and its & output goes from 1 to 0. This negative transition triggers B and its B output goes from 1 to o. This in turn triggers c FF and When the second clock pulse arrives, ~ FF toggles and BA goes from 0 to 1. This positive transition does not trigger B FF and hence CFF also downot change state. i. QA = D, BB=QC=1. This continues and at the end of the seventh clock pulse Be=0, 9,00,0,=1 For the eighth clock pulse, A toggles and its output \$ A goes from 0 to 1. This does not brigger B and C FFS and hence $Q_B = Q_C = 0$ and $Q_A = D$.

							4	<i>3</i>	
Clock	92	02	8,	a _o					
pulse			1	·O			-		
0	0	0	0	0			•		
	0.	0	0	0		<u> </u>			
2	1	,0 ×	0	0					
3		1/	70	. 0		=			
4	0	الة	14	10		-			
At the end of the FF5 are Some as the pulses required the number of is also referred The data stored reading) in two For paralle (A3 A2 A Ro) is available at for reading, ef times, with For serial obtained at number of clo number of clo number of to cutput, after each FF output data is retri	the season who for for for for for for for for for fo	fourt a s ex a s a s a s be a s cher des where ulse e o	to be construction of the synth	e strieve in a con not enting date in a con clock	red The data is can entents clock some en	which ie inum s the s enterix the refer d para of t is no be rea is no be rea is no the rea is no the rea is no the rea that	same same g the red to lel-o he re at a the form appli same none	he fock as edata o as edata o as the register as the exial with the register as the	er or e
garallel-in p	aralle	<u>-1</u> -0	ut	and	Paralle	l-in.	Seria	out year	rister
farallel-in p Refer the	2 0	bove	_di	agra	m. D	ata ca	n be	enter	ed
· ·				J					

Suppose initially the register content is Q3 Q2 A, Ro V= 0001. When the first megative clock transition occurs, as becomes high, while az, a, 80 remain low. ie 93828,80=1000 For the second negative clock - transition, only 1/2 goes high and hence 93928, 40 = 0100, When the third negative clock transition takes place, i' is shifted to the next FF. ie 83828, 00 = 0010, For the fourth negative clock edge we again have 938, 8, 90 = 0001 The stored 'I' bit follows a circular path, moving through the flipflops until the final flipfiop sends it back to the first FF. This is why the circuit is called a ring courter.

Shift - left Register:

A shift register moves the stored bits left or right. This bit shifting is essential for certain arithmetic and logic operations used in microcomputers MSB

A register where in data movement is towards the left ie from LSB. to MSB FF, for the application of clock pulses is called a shift-left register. A shift-left operation is equivalent to multiplying by 2 action. Suppose Din=1 and the register is initially reset ie & & 2 0 0000 On the arrival of the first elock rising. clock edge, A FF sets and the FF outputs tread 93828, 90 = 0001. This means D, now equals I as well as Do. When the next positive clock edge arrives, BFF sets and the register contents become 23929, 80 = 0011. The third positive clock edge results in - Qad, Qo = 0111 and the fourth rising Clock edge gives Q3828, 80 = 1111. Hereafter, as long as Din=1, this stored word remains unchanged ଧ୍ର Qo_ 03 92 CLOCK PULSE 0 0 0 0 0 0 0

A register wherein data movement is towards the right ie from MSB to LSB FF, for the application of clock pulses is called a shift-right register. A shift right operation is equivalent to divide by 2 action.

the D input of the preceding flipflop.
When the rising clock edge arrives, the
Stored bits move one position to the right.

With Din=1 and register cleared initially, on the arrival of the first positive clock edge, D FF sets and $\theta_3=1$. $\theta_2=\theta_1=\theta_0=0$.

On the arrival of the 2nd clock pulse, with Din=1, D2=1, both B3 and Q_2 equal $1 \cdot Q_1 = Q_0 = 0$,

For the third positive clock edge,
B FF sets giving 0, =1... 0,30,20,0=1110And, for the fourth positive edge 0,0,0,0=1111

i								
							PAGE:	(22),
-		CLOCK PULSE	Din	Ø3	Q 2	8.	8.	
		0 1 2 3	l		0 0	0 0 0 -	0 0 0 0	
		4						1 CLK.
	-							82
-					— ×			Oro.

. . . .