Graph fundamentals

Bipartite graph characterization

Lemma. If a graph contains an odd closed walk, then it contains an odd cycle.

Proof strategy: Consider a shortest closed odd walk W. If W is not a cycle, then it has a repeated vertex x that is not the first/last one, i.e., W is $u, \ldots, x, \ldots, x, \ldots, u$. Notice there are two closed walks shorter than W (namely, x, \ldots, x on inside and u, \ldots, x, \ldots, u using outside portions).

Can you say something analogous to the above lemma for a closed even walk? How about a closed even trail?

Definition For vertices $u, v \in V(G)$, the *distance* from u to v, denoted d(u, v), in G is the length of a shortest u, v-path.¹

Theorem (König). A graph is bipartite if and only if it has no odd cycle.

Proof. (\Rightarrow) If G is bipartite with bipartition X, Y of the vertices, then any cycle C has vertices that must alternately be in X and Y. Thus, since a cycle is closed, C must have an even number of vertices and hence is an even cycle.

 (\Leftarrow) First, we prove the result in the case where G is connected. Assume G has no odd cycle. Let $u \in V(G)$ be an arbitrary vertex. Partition all other vertices based on the parity of distance (even or

¹Note: If no u, v-path exists, we say that $d(u, v) = \infty$ (or sometimes it is said to be undefined).

odd) from u. That is, let

$$X = \{v \in V(G) : d(u, v) \text{ is even}\},\$$

 $Y = \{v \in V(G) : d(u, v) \text{ is odd}\}.$

Clearly, $X \cap Y = \emptyset$ and $X \cup Y = V(G)$ since G is connected.

We claim that X, Y is a bipartition of G. Suppose not – then there exists an edge incident to two vertices of X or an edge incident to two vertices of Y. Without loss of generality, assume the former. Let $x_1, x_2 \in X$ and $x_1 \sim x_2$. It follows that

$$x_1 \in X \implies \exists u, x_1\text{-path } P_1 \text{ of even length,}$$

 $x_2 \in X \implies \exists u, x_2\text{-path } P_2 \text{ of even length.}$

Concatenate u, x_1 -path P_1 , the edge x_1x_2 , and the x_2, u -path P_2^{-1} to obtain a closed odd walk. By the previous lemma, the graph must contain an odd cycle. $\Rightarrow \Leftarrow$ Hence, it must be the case the X, Y is a valid bipartition, so G is bipartite.

Exercise: Finish proof in the case where G is a disconnected graph.

Corollary. A graph G is bipartite if and only if the adjacency matrix A of G satisfies trace $A^k = 0$ for $k = 3, 5, 7, ..., 2\lceil \frac{n}{2} \rceil - 1$.

We can make the corollary stronger by simply requiring trace $A^r = 0$ where $r = 2\lceil \frac{n}{2} \rceil - 1$ (the largest odd integer less than or equal to n).

Induction trap

The following result follows immediately from the degree-sum formula.

Lemma. Every graph has an even number of vertices of odd degree.

We will use the above lemma on our way to proving a property of 3-regular connected graphs.

Consider the following 3-regular graphs (*cubic graphs*):

Note that none of them have any cut edges. (Also, all have an even # of vtcs.)

Claim: No 3-regular connected graph has a cut edge.

Proof. We give a proof by induction on k, where 2k is the # of vtcs in the graph.

Base case: The smallest 3-regular graph is K_4 , which is connected. Since every edge of K_4 appears in a cycle, by the previous thm, K_4 has no cut edges, and so the base case holds.

Induction hypothesis: Assume that a 3-regular, connected graph G with 2k vertices, for $k \geq 2$, has no cut edges.

We obtain a 3-regular, connected graph G' with 2(k+1) vertices by an "expansion" operation: subdivide two edges of G (i.e., replace the edges by paths of length 2 through new vtcs.), and add an edge joining the two new vertices.

Since G was connected, the expanded graph G' is also connected. Any u, v-path that existed in G that traversed a subdivided edge simply became longer in G', and a path to a new vertex x in G' can be built from a path in G to a neighbor of x.

Furthermore, since G was assumed to have no cut edges, we know every edge of G lies on a cycle. These cycles are still present in G' (some may be longer). The new edge xy also belongs to a cycle in G' that uses a path in G between edges that were subdivided. It follows from our previous thm that G' has no cut edges.

Thus, by induction, every 3-regular connected graph has no cut edges.

HOWEVER, THE CLAIM IS FALSE!!

Where is the flaw in the proof by induction?

The previous proof fails because not every 3-regular connected graph can be constructed from K_4 via "expansions".

Math 104 - Prof. Kindred - Lecture 3

Counterexample to claim:

Induction trap: if the inductive step builds an instance with the new value of parameter from a smaller instance, then we must prove that all instances with the new value have been considered.

New topic (moving on from graph fundamentals) to... trees!

Trees

Definitions A *tree* is a connected, acyclic graph.

A *forest* is an acyclic graph, i.e., a disjoint union of trees.

A *leaf* is a vertex of degree one.

A *spanning tree* of a graph G is a spanning subgraph of G that is a tree.

Example All trees on 5 vertices

Example Spanning trees of wheel graph on 6 vertices

Properties of trees

Have students brainstorm and generate properties of trees.

Do all trees have leaves? (Only exception is K_1 .)

Proposition. Let T be a tree with at least two vtcs. Then T has a leaf.

Proof. Let $P = (u, v_1, v_2, \dots, v_{k-1}, v)$ be a longest path in T. We claim that u and v are leaves. Suppose, BWOC, that u is not a leaf.

Then u has a neighbor in T other than v_1 , say w.

Since T is acyclic, $w \notin V(P)$. So $(w, u, v_1, \ldots, v_{k-1}, v)$ is a longer path than P. $\Rightarrow \Leftarrow$ Thus, u and, by the same argument, v are leaves of T.

Proposition. Let T be a tree with leaf v. Then T - v is a tree.

Proof sketch. Acyclic: T acyclic $\Rightarrow T-v$ acyclic Connected: For $u,w\in V(T)-v$, if a u,w-path in T contains v, then v has degree ≥ 2 . $\Rightarrow \Leftarrow$

These two propositions are the foundation for the standard proof by induction for trees. This proof technique is used for the next result.

Proposition. If T is a tree with n vertices, then T has n-1 edges.

Proof. Proof is by induction on n.

Base case (n = 1): The only tree with one vertex is K_1 , which has 0 edges.

IH: Suppose any tree with n = k vtcs has k - 1 edges, where $k \ge 1$.

Consider a tree with n = k + 1 vtcs. Let v be a leaf of T, and let T' = T - v. Note that T' is a tree on k vtcs so, by IH, T' has k - 1 edges. Since $d_T(v) = 1$, T has (k - 1) + 1 = k edges.