## Problemas Insolúveis em MT

Esdras Lins Bispo Jr. bispojr@ufg.br

Teoria da Computação Bacharelado em Ciência da Computação

06 de dezembro de 2017





## Plano de Aula

- Revisão
  - Definição de algoritmo
- Problemas Insolúveis em MT
  - Terminologia para descrever MTs
- Opecidibilidade





## Sumário

- Revisão
  - Definição de algoritmo
- Problemas Insolúveis em MT
  - Terminologia para descrever MTs
- 3 Decidibilidade





## Problema

## Problema 3.16 (b)

Mostre que a coleção de linguagens Turing-reconhecíveis é fechada sob a operação de concatenação.





## Problema

**Prova:** Sejam duas linguagens Turing-reconhecíveis (TR) quaisquer A e B. Sejam  $M_A$  e  $M_B$  as duas máquinas de Turing (MT) que reconhecem A e B, respectivamente (pois se uma linguagem é Turing-reconhecível, então uma MT a reconhece). Iremos construir uma MT não-determinística (MTN)  $M_{aux}$ , a partir de  $M_A$  e  $M_B$ , que reconhece  $A \circ B$ . A descrição de  $M_{aux}$  é dada a seguir:  $M_{aux}$  = "Sobre a entrada  $\omega$ , faça:

- Corte, não deterministicamente,  $\omega$  em duas cadeias (i.e.  $\omega = \omega_1 \circ \omega_2$ ).
- 2 Rode  $M_A$  sobre  $\omega_1$ . Se  $M_A$  rejeita, rejeite.
- **3** Rode  $M_B$  sobre  $\omega_2$ . Se  $M_B$  aceita, aceite.
- Rejeite".

Como é possível construir  $M_{aux}$ , então  $A \circ B$  é TR (pois toda MTN tem uma MT equivalente). Logo, a classe de linguagens UFG Turing-reconhecíveis é fechada sob a operação de concatenação



## Contribuição

Apresentou uma noção do que seria um algoritmo no Congresso Internacional de Matemáticos em Paris, no ano de 1900.

### Quem?

David Hilbert (1862-1943)

Matemático alemão





## Polinômio

#### Definições

Um **polinômio** é uma soma de termos. Um **termo** é um produto de variáveis e uma constante chamada de **coeficiente**.

## Exemplo: Termo

$$6 \cdot x \cdot x \cdot y \cdot z \cdot z \cdot z = 6x^2yz^3$$

## Exemplo: Polinômio

$$6x^2yz^3 + 3xy^2 - 10$$





## Polinômio

#### Definições

Uma raiz de um polinômio é uma atribuição de valores às suas variáveis de modo que o valor do mesmo seja 0. Chamamos de raiz inteira aquela em todos os valores atribuídos são valores inteiros.

## Exemplo: Raiz

O polinômio  $6x^3yz^2 + 3xy^2 - x^3 - 10$  tem uma raiz em x = 5, y = 3 e z = 0.

## Exemplo: Raiz Inteira

A raiz do exemplo acima é uma raiz inteira.





## Polinômio

## Problema apresentado por Hilbert

É possível conceber um algoritmo que teste se um polinômio tem uma raiz inteira ou não?

## Expressão utilizada por Hilbert

"Um processo com o qual ela possa ser determinada por um número finito de operações".

### Curioso

Não existe algoritmo que execute esta tarefa.







## Contribuição

Mostrou, em 1970, que não existe algoritmo para se testar se um polinômio tem raízes inteiras.

### Quem?

Yuri Matijasevich (1947-) Cientista da computação e matemático russo.





Noção intuitiva de algoritmos de de algoritmos de máquina de Turing

#### **FIGURA 3.22**

A Tese de Church-Turing

#### Conclusão

Existem problemas que são algoritmicamente insolúveis.





#### Contexto

 $D = \{p \mid p \text{ \'e um polinômio com uma raiz inteira}\}$ 

#### Problema

O conjunto D é decidível?

## Resposta

Não é decidível. Mas é Turing-reconhecível.





## Sumário

- Revisão
  - Definição de algoritmo
- Problemas Insolúveis em MT
  - Terminologia para descrever MTs
- 3 Decidibilidade





## Problema análogo

 $D_1 = \{p \mid p \text{ \'e um polinômio sobre } x \text{ com uma raiz inteira}\}$ 





## Problema análogo

 $D_1 = \{p \mid p \text{ \'e um polinômio sobre } x \text{ com uma raiz inteira}\}$ 

#### $\mathsf{MT}\ M_1$ que reconhece $D_1$

 $M_1$  = "A entrada é um polinômio p sobre a variável x.

• Calcule o valor de p com x substituída sucessivamente pelos valores  $0, 1, -1, 2, -2, 3, -3, \dots$ 

Se em algum ponto o valor do polinômio resulta em 0, aceite.





## Problema análogo

 $D_1 = \{p \mid p \text{ \'e um polinômio sobre } x \text{ com uma raiz inteira}\}$ 

#### $MT M_1$ que reconhece $D_1$

 $M_1$  = "A entrada é um polinômio p sobre a variável x.

• Calcule o valor de p com x substituída sucessivamente pelos valores  $0, 1, -1, 2, -2, 3, -3, \dots$ 

Se em algum ponto o valor do polinômio resulta em 0, aceite.

#### Considerações

 $M_1$  reconhece  $D_1$ , mas não a decide.





#### Resultado obtido por Matijasevich

É possíve $\mid$  construir um decisor para  $D_1$  . Mas não para D .





#### Resultado obtido por Matijasevich

É possíve $\mid$  construir um decisor para  $D_1$  . Mas não para D .

#### **Justificativa**

É possível obter um limitante para polinômios de uma única variável. Porém, Matijasevich provou ser impossível calcular tais limitantes para polinômios multivariáveis.





#### Resultado obtido por Matijasevich

É possíve $\mid$  construir um decisor para  $D_1$  . Mas não para D .

#### **Justificativa**

É possível obter um limitante para polinômios de uma única variável. Porém, Matijasevich provou ser impossível calcular tais limitantes para polinômios multivariáveis.

#### Limitante para polinômios de uma única variável

$$\pm k \frac{c_{max}}{c_1}$$

#### em que

- k é o número de termos do polinômio,
- c<sub>max</sub> é o coeficiente com maior valor absoluto, e
- c<sub>1</sub> é o coeficiente do termo de mais alta ordem.





#### Níveis de descrição

 Descrição formal: esmiúça todos os elementos da 7-upla, conforme definição;





## Níveis de descrição

 Descrição de implementação: descreve a forma pela qual a MT move a sua cabeça e a forma como ela armazena os dados na fita;





## Níveis de descrição

 Descrição de alto nível: neste nível não precisamos mencionar como a máquina administra a sua fita ou sua cabeça de leitura-escrita.





### Níveis de descrição

- Descrição formal: esmiúça todos os elementos da 7-upla, conforme definição;
- Descrição de implementação: descreve a forma pela qual a MT move a sua cabeça e a forma como ela armazena os dados na fita:
- Descrição de alto nível: neste nível não precisamos mencionar como a máquina administra a sua fita ou sua cabeça de leitura-escrita.





## Exemplo

Seja A a linguagem consistindo em todas as cadeias representando grafos não-direcionados que são conexos. Logo:

$$A = \{\langle G \rangle | G \text{ \'e um grafo n\~ao-direcionado conexo}\}$$





## Exemplo

Seja A a linguagem consistindo em todas as cadeias representando grafos não-direcionados que são conexos. Logo:

 $A = \{\langle G \rangle | G \text{ \'e um grafo n\~ao-direcionado conexo}\}$ 

#### Descrição de alto nível

 $M = \text{``Sobre a entrada } \langle G \rangle$ , a codificação de um grafo G:

- Selecione o primeiro nó de G e marque-o.
- Repita o seguinte estágio até que nenhum novo nó seja marcado:
  - Para cada nó em G, marque-o se ele está ligado por uma aresta a um nó que já está marcado.
- Faça uma varredura em todos os nós de G para determinar se eles estão todos marcados. Se eles estão, aceite; caso contrário, rejeite".





## Exemplo

## Pergunta

Como seria a descrição de M no nível de implementação?





## Sumário

- Revisão
  - Definição de algoritmo
- Problemas Insolúveis em MT
  - Terminologia para descrever MTs
- Opecidibilidade





## Introdução

## Propósitos da Teoria da Computação

- Conhecer o poder dos algoritmos;
- Explorar os limites da solubilidade algorítmica;
- Identificar algoritmos insolúveis.





## Introdução

## Propósitos da Teoria da Computação

- Conhecer o poder dos algoritmos;
- Explorar os limites da solubilidade algorítmica;
- Identificar algoritmos insolúveis.

#### Por que devemos estudar insolubilidade?

- Relaxamento dos requisitos;
- Conhecimento das limitações dos modelos computacionais.





## Linguagens Decidíveis

## Exemplos de Linguagens Decidíveis

São úteis porque

- Algumas linguagens decidíveis estão associadas a aplicações;
- Algumas linguagens aparentemente triviais não são decidíveis.





## Linguagens Decidíveis

## Exemplos de Linguagens Decidíveis

São úteis porque

- Algumas linguagens decidíveis estão associadas a aplicações;
- Algumas linguagens aparentemente triviais não são decidíveis.

#### Problema da aceitação

Dado um modelo computacional MC e uma cadeia de entrada  $\omega$ , identificar se MC aceita  $\omega$ .





## Problema da aceitação para AFDs

Dado um AFD B e uma cadeia de entrada  $\omega$ , identificar se B aceita  $\omega$ .





## Problema da aceitação para AFDs

Dado um AFD B e uma cadeia de entrada  $\omega$ , identificar se B aceita  $\omega$ .

#### Problema

 $A_{AFD} = \{\langle B, \omega \rangle \mid B \text{ \'e um AFD que aceita a cadeia de entrada } \omega \}$ 





## Problema da aceitação para AFDs

Dado um AFD B e uma cadeia de entrada  $\omega$ , identificar se B aceita  $\omega$ .

#### Problema

 $A_{AFD} = \{\langle B, \omega \rangle \mid B \text{ \'e um AFD que aceita a cadeia de entrada } \omega \}$ 

## Estratégia de Resolução

Resolver o problema da aceitação para AFDs é decidir se  $\omega \in \mathcal{A}_{AFD}$ .





#### Teorema 4.1

 $A_{AFD}$  é uma linguagem decidível.





#### Teorema 4.1

A<sub>AFD</sub> é uma linguagem decidível.

#### Ideia da Prova

M= "Sobre a entrada  $\langle B,\omega\rangle$ , em que B é um AFD, e  $\omega$ , uma cadeia:

- **1** Simule B sobre a entrada  $\omega$ ;
- Se a simulação termina em um estado de aceitação, aceite. Senão, rejeite."





## Problemas Insolúveis em MT

Esdras Lins Bispo Jr. bispojr@ufg.br

Teoria da Computação Bacharelado em Ciência da Computação

06 de dezembro de 2017



