An Extension of PlusCal for Modeling Distributed Algorithms

Heba Alkayed, Horatiu Cirstea, Stephan Merz

University of Lorraine, CNRS, Inria, Nancy, France

September 18, 2020

Introduction

Formal Specification Languages

- Algorithms modeled using TLA+ can be formally verified using the TLA+ Toolbox
- ▶ PlusCal algorithms have a more familiar syntax and can be translated to TLA⁺

Distributed PlusCal Algorithms

Motivation

An extension of PlusCal with a syntax that offers constructs for modeling distributed algorithms naturally

Features

- Introduces
 - Sub-processes
 - Communication channels
- ► Can be translated into a TLA+ specification

Motivating example

Lamport Mutex Algorithm

- An algorithm for Mutual Exclusion in Distributed Systems
- Critical section requests are ordered based on timestamps
- Processes exchange 3 types of messages
 - Request
 - Acknowledge
 - Release
- Processes need to asynchronously receive messages from each other

Process modelisation (in PlusCal)

Lamport Mutex Example - PlusCal (**--algorithm LamportMutex { Process executing the main algorithm process (proc \in Proc) { ncs: while (TRUE) { * non-critical section try: * multicast a message requesting access to cs enter: * wait for acknowledgements cs: * critical section exit: * multicast the release message } * end while } * end process

Process modelisation (in Distributed PlusCal)

```
Lamport Mutex Example - PlusCal
                            Process handling
                            messages
process (comm \in Comm) {
 rcv: while (TRUE) {
       with (prc = node(self),
         ...) {
        \* handle request, acknowledge and release
    messages
     } \* end while
} \* end process
```

Process modelisation (in Distributed PlusCal)

```
Lamport Mutex Example - PlusCal
                                Proc == 1 .. N
process (comm \in Comm) {
                                Comm == N+1..N+N
                                node(c) == c - N
 rcv: while (TRUE) {
       with (prc = node(self),
         ...) {
         \* handle request, acknowledge and release
    messages
     } \* end while
} \* end process
**)
```

Lamport Mutex in Distributed PlusCal

Lamport Mutex Example - Distributed PlusCal

```
fifos network[Proc, Proc];
                           sub-process executing
process(p \in Proc)
                           the main algorithm
     variables ...
{
     ncs: \*non-critical section
     exit: \* multicast the
                                    message handling
           \* release message
                                    sub-process
    rcv: \* receive msq from channel
         \* handle request, acknowledge and release
    messages
} \* end message handling thread
**)
```

Declaration (in PlusCal)

 $\texttt{network=[p,q \ \ l-> \ \langle\rangle]}$

Declaration (in PlusCal)	Declaration (in Distrbuted PlusCal)
$\texttt{network=[p,q \ \ l-> \ } \langle \rangle \texttt{]}$	<pre>fifos network[Proc, Proc];</pre>

Declaration (in PlusCal)

Declaration (in Distrbuted PlusCal)

fifos network[Proc, Proc];

 $network=[p,q \in Proc \mid -> \langle \rangle]$

```
Operation (in PlusCal)
```

```
macro mcast(p, msg) {
  network := [s,d \in Proc
  |-> IF s = p /\ d # p
   THEN
   Append(network[s,d],
   msg) ELSE network[s,d]]
}
mcast(self, Request(clock));1
```

Declaration (in PlusCal)

Declaration (in Distrbuted PlusCal)

network=[p,q \in Proc $|-\rangle$ $\langle\rangle$]

fifos network[Proc, Proc];

Operation (in PlusCal)

Operation (in Distrbuted PlusCal)

```
macro mcast(p, msg) {
  network := [s,d \in Proc
  |-> IF s = p /\ d # p
   THEN
   Append(network[s,d],
   msg) ELSE network[s,d]]
}
mcast(self, Request(clock));1
```

```
\* the 1st argument is the
  channel name and the 2nd is
a TLA+ expression that
  specifies the message and
  the intended recipients
```

multicast(network, [self, p \in
Proc |-> Request(clock)]);

General Structure of an algorithm

```
(* --algorithm <algorithm name>
(* Declaration section *)
variables <variable declarations>
channels <channel declarations>
fifos <fifo declarations>
(* ... *)
(* Processes section *)
process (<name> [=|\in] <Expr>))
  variables <variable declarations>
  <subprocesses>
*)
```

Operation on channels

- Supported operators
 - ▶ send(ch, el)
 - receive(ch, var)
 - broadcast(ch, [x \in S \mapsto e(x)]
 - multicast(ch, [x \in S \mapsto e(x)]
 - clear(ch)

Unordered Channels Translation

```
channel \langle id \rangle [\langle Expr_1 \rangle, \dots, \langle Expr_N \rangle];
```

- ▶ Translation based on TLA⁺ sets
 - ▶ send(chan[e], msg) ≜
 chan' = [chan EXCEPT ![e] = chan[e] \cup {msg}]

FIFO Channels Translation

```
fifo \langle id \rangle [\langle Expr_1 \rangle, \dots, \langle Expr_N \rangle];
```

- ► Translation based on TLA⁺ sequences
 - ▶ send(chan[e], msg) ≜
 chan' = [chan EXCEPT ![e] = Append(@, msg)]

Program counter

➤ The special variable pc was modified to take into account sub-processes

$$\textit{pc} = [\textit{self} \in \textit{ProcSet} \mapsto [\textit{self} \in \textit{IdSet} \mapsto \langle \textit{"IbI"}, \ldots \rangle]]$$

where IdSet is a collection that contains process identifiers, and the labels that appear in the sequence are the entry point actions for each sub-process

Translation to TLA+

```
exit(self) ==
    /\ pc[self][1] = "exit"
    /\ clock' = [clock EXCEPT ![self] = clock[self] + 1]
    /\ network' = [<<slf, n>> \in DOMAIN network |->
      TF
         slf = self / p \in Proc \setminus \{ self \}
      THEN
         Append(network[slf, p], Release(clock'[self]))
      FLSE
         network[slf, p]]
    /\ pc' = [pc EXCEPT ![self][1] = "ncs"]
    /\ UNCHANGED << req, ack, sndr, msg >>
```

Contributions and future work

Contributions

- An extension of PlusCal offering the possibility to define
 - Sub-Processes
 - Communication Channels
- ► A backward compatible translator to TLA⁺

Future Work

In the future we aim to introduce more types of communication channels and channel operators.