Síntese do datapath unidades funcionais

- Unidades funcionais do datapath
 - operadores aritméticos
 - operandos inteiros, vírgula fixa ou vírgula flutuante, dimensões de dados específicas
 - operadores com constantes são mais eficientes do que operadores genéricos
 - operadores lógicos, manipulação de bits
 - funções lógicas, rotações, deslocamentos, bitreverse,...
 - operadores combinados específicos para uma aplicação
 - A*B-(C+D), x[k]*x[k+t1]*x[k+t2]
- Desenhando com modelos RTL + síntese
 - operadores inferidos e construídos no processo de síntese
 - implementados como circuitos combinacionais
 - otimizações conduzidas pelos parâmetros do processo de síntese
 - dimensões dos operadores inferida da dimensão dos operandos e resultado
 - só é suportada aritmética inteira/vírgula fixa
 - diferença entre reg/wire e reg/wire signed ?
 - floating point não é (para já...) suportado em ferramentas de síntese RTL (porquê?)

Operadores aritméticos

Adição/subtração

- Ripple carry adder
 - propagação do carry limita a rapidez de cálculo
 - resultado garantido após o maior tempo de propagação do carry
- Carry lookahead
 - Carry em cada andar gerado com funções combinatórias das entradas
 - Reduz o tempo de propagação do carry
- Carry select
 - Duplicar secções do somador para Cin=1 e Cin=0
 - Saída selecionada com o real valor do carryin.
- Carry save
 - Reduz A+B+C para Z+Y em tempo constante, i.e. não depende do nº de bits.
- Como cresce o tempo de propagação em árvores de somadores?
 - Se um somador de N bits tem t_n=X ns, qual o t_n de M somadores em cascata?

- somadores assíncronos
 - tempo de propagação depende dos operandos
 - circuitos para detetar que a propagação do carry está concluída
 - somador de 32 bits: média de 5 bits de carry
 - 6 para um somador de 64 bits
 - tempo pior é igual ou pior do que um somador ripple carry
- subtratores
 - em complemento para dois basta complementar o subtrator
 - trocar todos os bits (com XOR) e adicionar 1 fazendo C₋₁=1
- melhor implementação depende da tecnologia
 - em FPGAs Xilinx e usando fast carry logic
 - somador ripple carry gerado pela síntese RTL melhor do que carry select ou lookahead carry "feito à mão" com funções lógicas
 - para ASICs há arquitecturas mais eficientes
 - usando portas complexas CMOS ou modelos ao nível do interruptor

- carry select adder
 - dividido em secções, cada secção inclui 2 somadores de k bits
 - exemplo: somador de 12 bits em secções de 4 bits:

Kay Hwang, "Computer Arithmetic - Principles, Architecture and Design", John Wiley & Sons, 1990

- carry lookahead
 - Generate carry at stage i $G_i = A_i \cdot B_i$
 - Propagate carry at stage i $P_i = A_i \oplus B_i$
 - Boolean functions for a generic adder

$$S_{i} = A_{i} \oplus B_{i} \oplus C_{i-1} = P_{i} \oplus C_{i-1}$$

$$C_{i} = A_{i} \cdot B_{i} + A_{i} \cdot C_{i-1} + B_{i} \cdot C_{i-1} = \dots = G_{i} + P_{i} \cdot C_{i-1}$$

• All carry bits generated in parallel with a two level AND-OR logic circuit

$$C_1 = G_1 + C_0 . P_1$$

 $C_2 = G_2 + C_1 . P_2 = G_2 + (G_1 + C_0 . P_1) . P_2 = G_2 + G_1 . P_2 + C_0 . P_1 . P_2$
...
$$C_k = G_k + G_{k-1} . P_k + G_{k-1} . P_{k-1} . P_k + ... + C_{-1} . P_0 . P_1 P_k$$

- Adição de vários operandos
 - Carry-save adder
 - produz 2 resultados (z e 2y) cuja soma é igual à adição dos 3 operandos
 - Os resultados **y** e **z** são gerados em tempo constante (O(1))
 - Para obter o resultado z+2y é necessário um somador adicional

- Adição de vários operandos com RCA
 - Exemplo: adição de 7 operandos com n bits cada

Tempo de propagação: (n+3+1)tp_{FA}

• Árvore de CSA para adicionar **n** operandos

Adder tree

how propagation delays increase?

```
always @(posedge clock)
...
sum <= ra + rb + rc + rd + re + rf + rg + rh;</pre>
```

#	operands	min period (after P&R)
	2	2.41 (3.37)
	3	3.29 (3.89)
	4	4.28 (5.80)
	5	5.21 (8.90)
	6	4.51 (7.43)
	7	5.40 (7.36)
	8	5.50 (7.30)
	9	6.30 (8.83)

Carry-save adder como comparador

Theorem 1 Let X, Y, and Z be n-bit two's complement numbers, and let $(C, S) = X + Y + \overline{Z}$. Then $X + Y = Z \Leftrightarrow C$ and S differ in every bit position.

Operadores aritméticos multiplicação e divisão de N por M bits

Circuitos combinacionais

- Arrays 2D de N x M full-adders com alguma lógica adicional
 - O multiplicador usa uma rede de ANDs para gerar os produtos parciais
 - O divisor usa XORs para criar uma rede de somadores/subtratores em casacata
- Área em número de blocos (full-adder+...)
 - É proporcional ao produto do número de bits N e M dos dois operandos
- Tempo de propagação
 - No multiplicador é proporcional à soma do número de bits dos operandos
 - No divisor é proporcional ao produto do número de bits dos operados

Pipelined

– Onde quebrar e meter os registos de pipeline?

Circuitos sequenciais

- circuito mais simples: uma iteração por bit do multiplicador / dividendo
- redução do número de ciclos de relógio analisando 2 ou mais bits/iteração

Multiplicação binária

sem sinal complemento para dois

1101 (13) (-3)

$$\times 0101$$
 (5) (5)

1101
 0000

1101
 0000

01000001 (65 \neq -15)

- multiplicação de números com sinal
 - facilmente tratados com representação em sinal e magnitude
 - custo: complementar os operandos e o resultado
 - Custo equivalente a um somador/subtrator

- Multiplicação binária em complemento para dois
 - se o multiplicador for negativo
 - basta <u>subtrair o último produto parcial</u> (é igual a zero se for positivo)
 - Recordando a representação complemento para dois
 - para um número positivo com m bits

valor(x) =
$$\mathbf{0} + X_{m-2}.2^{m-2} + ... + X_12^1 + X_0.2^0$$

• se for <u>negativo</u>

valor(x) =
$$-2^m + 2^{m-1} + X_{m-2} \cdot 2^{m-2} + ... + X_1 \cdot 2^1 + X_0 \cdot 2^0$$

para os dois casos

valor(x) =
$$-X_{m-1}.2^{m-1} + X_{m-2}.2^{m-2} + ... + X_12^1 + X_0.2^0$$

bit de sinal X_{m-1} tem peso -2^{m-1}

- Multiplicação binária, complemento para dois
 - se só for negativo o multiplicando
 - basta estender o sinal dos produtos parciais

- Multiplicação em complemento para dois
 - se o multiplicador for negativo

— ... e se ambos negativos

implementação: fácil incluir no multiplicador shift-add!

- Multiplicador iterativo (shift-add)
 - multiplicando=Md[m-1:0], multiplicador=Mr[n-1:0]
 - Acc[m+n:0] = 0
 - para cada bit k do multiplicador desde 0 até n-1
 - se Mr_k = = 1 Acc[m+n:n] = Acc[m+n-1:n] + Md[m-1:0]
 - Acc = Acc >> 1
 - produto = Acc[m+n-1:0]
 - exemplo:

Md	Mr	k	Mr_k	Acc	oper.	
1101	0101	_	_	000000000		
1101	010 1	0	1	01101 0000	add	
				0 0110 1 000	shift	
1101	01 0 1	1	0	00110 1 000	add	
				0 0011 01 00	shift	
1101	0 1 01	2	1	10000 01 00	add	
				01000 0010	shift	
1101	0 101	3	0	01000 001 0	add	
				001000001	shift	

- Multiplicador shift-add
 - Mr é o multiplicador, Md é o multiplicando
 - em cada ciclo, os **m+1** bits do produto parcial são carregados em **Acc**
 - o resultado parcial é deslocado para o registo que contém inicialmente Mr
 - calcula o produto em n iterações (n = número de bits do multiplicador)

Operadores aritméticos multiplicação sequencial

- Multiplicador shift-add
 - avaliação de k bits do multiplicador de cada vez
 - número de ciclos reduzido k vezes (*shift* de k bits de cada vez)
 - exemplo para k=2

Mr1	Mr0	somar a Acc				
0	0	0				
0	1	Md				
1	0	2.Md				
1	1	2.Md+Md				

- aumento da complexidade do somador
 - é necessário somar 3.Md
 - necessário 2 somadores em cascata

Multiplicador sequencial

(K bits do multiplicador por iteração)

- Multiplicação recodificação de Booth
 - pela propriedade:

• <u>objectivo</u>: eliminar sequências de uns que conduzem a 3 x Md

permite evitar a multiplicação pelo fator 3 (3.Md = 2.Md+Md)

- Multiplicação recodificação de Booth
 - algoritmo
 - percorrer todos os bits desde o lsb até encontrar um 1
 - trocar esse 1 por 1 e percorrer uns até encontrar um zero
 - trocar esse 0 por 1 e continuar
 - exemplo

0011 1101 1001 = 512 + 256 + 128 + 64 + 16 + 8 + 1 = 985
0100
$$0\overline{1}10 \overline{1}01\overline{1} = 1024 - 64 + 32 - 8 + 2 - 1 = 985$$

- tabela de recodificação, analisando 2 bits de cada vez
 - é necessário acrescentar um bit zero à direita do lsb: b₋₁=0

b_i	b_{i-1}	zi	valor	caso			
0	0	0	0	cadeia de zeros			
0	1	1	+1	fim dos uns			
1	0	1	-1	inicio dos uns			
1	1	0	0	cadeia de uns			

- Multiplicação recodificação de Booth
 - para cada bit do multiplicador
 - se é 0 não soma nada
 - se é 1 soma o multiplicando
 - se é 1 soma o simétrico do multiplicando
 - não é necessário recodificar o multiplicador explicitamente
 - exemplo

- Multiplicador de Booth
 - recodificando pares de bits em dígitos com sinal
 - são analisados 3 bits de cada vez
 - cada par de bits produz uma multiplicação parcial por 0, +1, +2, -1 ou -2
 - reduz para metade o número de iterações (shift de 2 bits de cada vez)
 - tabela de recodificação

b_i	b_{i-1}	b_{i-2}	$z_i z_{i-1}$	fator	caso
0	0	0	0	0	cadeia de zeros
0	0	1	1	+1	fim de uns
0	1	0	1	+1	1 isolado
0	1	1	1	+2	fim de uns
1	0	0	1	-2	início de uns
1	0	1	ī	-1	zero isolado
1	1	0	1	-1	início de uns
1	1	1	0	0	cadeia de uns

Multiplicador de Booth (n/2 iterações)

Multiplicação paralela (unsigned)

					a4	a 3	a2	a1	a 0
				X	(b4	b3	b2	b1	b 0
					a4.b0	a3.b0	a2.b0	a1.b0	a0.b0
				a4.b1	a3.b1	a2.b1	a1.b1	a0.b1	
			a4.b2	a3.b2	a2.b2	a1.b2	a0.b2		
		a4.b3	a3.b3	a2.b3	a1.b3	a0.b3			
	a4.b4	a3.b4	a2.b4	a1.b4	a0.b4				
p9	8 q	p 7	p6	p 5	p4	p 3	p2	p1	p0

multiplicação de 2 números de n x m bits: m produtos parciais (n ANDs cada): n x m ANDs m-1 somadores de n bits para somar os produtos parciais

- array multiplicador (unsigned)
 - cada nó é um *full adder* (somador de 3 bits)

caminho crítico: a0.bi -> p9: $((n-1) + (n-1)) \times tp_{FA}$

multiplicação paralela (signed)

- array multiplicador de Pezaris (nxn, signed)
 - 4 tipos de *full adders* diferentes

- multiplicador bi-secção (signed)
 - separando os termos positivos dos negativos

multiplicador bi-secção

Operadores aritméticos – divisão

- divisão de números inteiros sem sinal
 - processo parecido com a multiplicação: shift-subtract
 - o resultado de uma subtracção define a próxima operação
 - dependência entre as várias operações
 - mais complexo do que a multiplicação
 - exemplo (sem sinal): 147/11=13, 147%11=4

Operadores aritméticos – divisão

• divisão *unsigned* – algoritmo "restoring"

```
A=0; // fica com o resto, n bits
M=Divisor; // n bits
Q=Dividendo; // "apanha" quociente, m bits
                                                  11000011
cnt=m;
repeat
                                             0111 10000110
                                      resto-
 \{A, O\} = \{A, O\} << 1;
 A = A - M; // subtrai o divisor ao dividendo
 if (A>=0)
                                                         quociente
   Q[0] = 1; // divisor "coube" no dividendo
                                                   dividendo
 else
 begin
   Q[0] = 0; // divisor não "coube" no dividendo
  A = A + M; // repõe o valor do dividendo
 end
 cnt = cnt - 1;
until (cnt==0);
```

Operadores aritméticos divisor combinacional

CAS (Controlled Add/Subtract)

Síntese do datapath outros operadores

- Implementações específicas de uma aplicação
 - quadrado
 - AxA é mais eficiente do que a multiplicação
 - operações com constantes
 - propagação de constantes simplifica o *hardware* (geralmente...)
 - multiplicação traduzida em shifts, adições e subtracções
 - raíz quadrada
 - aproximação algorítmica
 - funções transcendentes
 - aproximações por tabelas, polinómios ou segmentos de recta
 - domínio da função e precisão pretendida condiciona o método

CORDIC

COordinate Rotation DIgital Computer

- "canivete suiço" para cálculo de funções transcendentes
 - sin, cos, cosh, sinh, atan, ln, exp, sqrt, produto, divisão
- processo iterativo, calcula um bit do resultado por iteração (aprox.)
- Reduzida complexidade: somadores, comparadores, LUT e shifters
- proposto em 1959 (Volder) para o cálculo de funções trignométricas para navegação de aviões em tempo real, generalizado por Walther em '71
 - usado na calculadora HP35 (1972) (Google "HP35 voidware")
- "rotação" de um vector ao longo de um círculo, hipérbole ou recta

Scott Hauck, André DeHon, "Reconfigurable Computing - the theory and practice of FPGA-based computing " (capítulo 25)

CORDIC

- Rodar um vector no plano (x,y) de θ graus
 - vector inicial (xs,ys), vector final (xf, yf)

$$\begin{bmatrix} xf \\ yf \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} xs \\ ys \end{bmatrix} = ROT(\theta) \begin{bmatrix} xs \\ ys \end{bmatrix}$$

– Definir θ como um conjunto de "micro-rotações" de ângulos $\alpha_{\rm i}$

$$θ = Σ αi$$

$$ROT(θ) = Π ROT(αi)$$

$$x_{i+1} = x_i \cos \alpha_i - y_i \sin \alpha_i$$
 $x_{i+1} = \cos \alpha_i (x_i - y_i \tan \alpha_i)$
 $y_{i+1} = x_i \sin \alpha_i + y_i \cos \alpha_i$ $y_{i+1} = \cos \alpha_i (y_i + x_i \tan \alpha_i)$

• Escolhendo os micro-ângulos α_i adequados

$$\alpha_{i} = \text{atan}(\ \delta_{i}\ 2^{-i}\),\ \text{com}\ \delta_{i} = \{-1,\ +1\}$$

$$x_{i+1} = \cos\alpha_{i}\ (\ x_{i} - y_{i}\ 2^{-i}\ \delta_{i}\)$$

$$y_{i+1} = \cos\alpha_{i}\ (\ y_{i} + x_{i}\ 2^{-i}\ \delta_{i}\)$$

- à parte cos α_i , são só necessárias somas, subtracções e deslocamentos
- os valores de δ_i são +1 ou -1 para que o processo convirja
- define-se uma nova variável z_i que representa o ângulo de rotação:

$$z_{i+1} = z_i - atan(\delta_i 2^{-i}) = z_i - \delta_i atan(2^{-i})$$

– iniciando z_i com θ , (z_0 = θ), Z é conduzido a zero somando ou subtraindo parcelas iguais a atan(2-i), fazendo δ_i = +1 ou -1

$$\delta_i = +1 \text{ se } z_i \ge 0$$
 $\delta_i = -1 \text{ se } z_i < 0$

rotation mode

- Rotação de um vetor x_s, y_s de um ângulo θ :
 - Fazer $x_0, y_0 = x_s, y_s e z_0 = \theta$ $x_{i+1} = x_i y_i 2^{-i} \delta_i$ $y_{i+1} = y_i + x_i 2^{-i} \delta_i$ $z_{i+1} = z_i \delta_i \operatorname{atan}(2^{-i}), \operatorname{com} \delta_i = \operatorname{sign}(z_i)$
- O módulo do vetor final (i.e. x_f e y_f) é escalado de:
 - Em cada rotação de um valor igual a $\frac{1}{\cos \alpha_i}$
 - No final do processo: $K = \prod_i \frac{1}{\cos \alpha_i}$

$$K = \prod_{i} \sqrt{1 + tan^2 \propto_i} = \prod_{i} \sqrt{1 + 2^{-2i}} \approx 1.64676026$$

Este valor não depende do número de iterações!

rotation mode

- Para calcular $sin(\theta)$ e $cos(\theta)$ roda-se de θ o vetor (1,0):
 - $x_0 = 1/K, y_0 = 0 e z_0 = \theta$
 - No final $x_f = cos(\theta) e y_f = sin(\theta)$
- No caso geral para a rotação do vetor (a,b):
 - $X_0 = a/K, y_0 = b/K e z_0 = \theta$
 - No final $\mathbf{x}_f = \mathbf{a} \cos(\theta) \mathbf{b} \sin(\theta) = \mathbf{y}_f = \mathbf{a} \sin(\theta) + \mathbf{b} \cos(\theta)$ (o vetor (a,b) rodado do ângulo θ)
- Transformar coordenas polares em retangulares
 - vetor com módulo M e ângulo θ : $X_0 = M/K$, $y_0 = 0$ e $z_0 = \theta$
 - No final $x_f = M \cos(\theta) e y_f = M \sin(\theta)$ (coordenadas retangulares)

CORDIC vectoring mode

- Rodar um vetor x_s,y_s até y ser igual a zero
 - Iniciar com $x_0 = x_s$, $y_0 = y_s$ e $z_0 = 0$
 - com δ_i = sign(y_i)
 - A variável z acumula as micro-rotações que levam y a zero
 - $z_{i+1} = z_i \delta_i \operatorname{atan}(2^{-i}),$
- No final obtém-se
 - $x_f = K \sqrt{(x_s^2 + y_s^2)}, y_f = 0 e z_f = atan(y_s / x_s)$
 - Transforma coordenadas retangulares em polares

coordenadas lineares

• Rodar um vetor ao longo da reta $x = x_s$

$$X_R = X_S$$
 $Y_R = Y_S + X_S Z_S$

- Rotation mode:
$$\begin{aligned} x_{i+1} &= x_i \\ y_{i+1} &= y_i + x_i \ 2^{-i} \ \delta_i \\ z_{i+1} &= z_i - \delta_i \ 2^{-i}, \ com \ \delta_i = sign(z_i) \\ x_f &= x_s, \ y_f = y_s + x_s \ z_s \ e \ z_f = 0 \end{aligned}$$

- Vectoring mode:
$$X_{i+1} = X_i$$

$$y_{i+1} = y_i + x_i 2^{-i} \delta_i$$

 $z_{i+1} = z_i - \delta_i 2^{-i}$, com $\delta_i = -\text{sign}(y_i)$

$$x_f = x_s, y_f = 0 e z_f = z_s + y_s / x_s$$

CORDIC coordenadas hiperbólicas

- Rodar o vetor (xs,ys) ao longo de uma hipérbole
 - vector inicial (xs,ys), vector final (xf, yf)

$$\begin{bmatrix} xf \\ yf \end{bmatrix} = \begin{bmatrix} \cosh \theta & \sinh \theta \\ \sinh \theta & \cosh \theta \end{bmatrix} \begin{bmatrix} xs \\ ys \end{bmatrix}$$

– micro-rotações α_i = atanh 2^{-i}

$$x_{i+1} = x_i - y_i 2^{-i} \delta_i$$

 $y_{i+1} = y_i + x_i 2^{-i} \delta_i$
 $z_{i+1} = z_i - \delta_i \operatorname{atanh}(2^{-i})$

Rotation mode: $\delta_i = \text{sign}(z_i)$ Vectoring mode: $\delta_i = -\text{sign}(y_i)$ Fator de escala $K_h \approx 0.82816$

Formulação unificada

$$x[j+1] = x[j] - m\sigma_j 2^{-j} y[j]$$

$$y[j+1] = y[j] + \sigma_j 2^{-j} x[j]$$

$$z[j+1] = \begin{cases} z[j] - \sigma_j \tan^{-1}(2^{-j}) & \text{if } m = 1\\ z[j] - \sigma_j \tanh^{-1}(2^{-j}) & \text{if } m = -1\\ z[j] - \sigma_j (2^{-j}) & \text{if } m = 0 \end{cases}$$

m = 1 coordenadas circulares

m = 0 coordenadas lineares

m = -1 coordenadas hiperbólicas

CORDIC algumas funções

m	Mode	Initial values			Functions	
		x_{in}	y_{in}	z_{in}	x_R	y_R or z_R
1	rotation	1	0	θ	$\cos \theta$	$y_R = \sin \theta$
-1	rotation	1	0	θ	$\cosh \theta$	$y_R = \sinh \theta$
-1	rotation	a	a	θ	ae^{θ}	$y_R = ae^{\theta}$
1	vectoring	1	a	$\pi/2$	$\sqrt{a^2+1}$	$z_R = \cot^{-1}(a)$
-1	vectoring	a	1	0	$\sqrt{a^2-1}$	$z_R = \coth^{-1}(a)$
-1	vectoring	a+1	a-1	0	$2\sqrt{a}$	$z_R = 0.5 \ln(a)$
-1	vectoring	$a + \frac{1}{4}$	$a - \frac{1}{4}$	0	\sqrt{a}	$z_R = \ln(\frac{1}{4}a)$
-1	vectoring	a+b	a - b	0	$2\sqrt{ab}$	$z_R = 0.5 \ln(\frac{a}{b})$

- quando i cresce, atan(2⁻ⁱ) tende para 2⁻ⁱ
 - a sucessão de "micro-rotações" tende para os valores 2-i

CORDICdatapath para 1 iteração

Possíveis implementações

Iterative along time: minimal area, requires N clock cycles

Possíveis implementações

Iterative along space: fully combinational, N instances of the CORDIC datapath

Possíveis implementações

Iterative along space and pipelined: clock rate constrained by one iteration datapath