

INTERNATIONAL INSTITUTE OF INFORMATION TECHNOLOGY, HYDERABAD

RA WORK VIRTUAL LAB – STRUCTURAL LAB

PART-1

Single	1 - 14
Continuous	15- 21
Plate	25-29
Truss	30-35

17 Mar 2011

Venkata Dilip Kumar P
PhD Scholar (CASE)
Earthquake Engineering Research Center

Notations

E = modulus of elasticity, N/mm²

I = moment of inertia, m⁴

 ℓ = span length of the bending member, m

M = maximum bending moment, kN-m.

P = total concentrated load, kN.

R = reaction load at bearing point, kN.

V = shear force, kN.

W = total uniform load, kN.

 ω = load per unit length, kN/m.

 \triangle = deflection or deformation, m.

x = horizontal distance from reaction to point on beam, m.

SINGLE BEAM INPUT

SINGLE BEAM CALCULATIONS

Input Data

$$I = 3 \text{ m}$$

$$b = 0.25 \text{ m}$$

$$d = 0.25 \text{ m}$$

Youngs Modulus

 $E = 5000 \times sqrt(30)$

= 27386.12 N/mm²

 $= 2.73 \times 10^7 \, \text{kN/m}^2$

$$I = (b*d^3)/12$$

= 3.25 x 10⁻⁴ m⁴

Beam Type selected Cantilever

Deflection Calculations

$$\Delta_x = \frac{P}{6EI} (2l^3 - 3l^2 x + x^3)$$

Shear Force Calculations

$$V = P$$

Bending Moment Calculations

$$M_x = Px$$

At any point 'x'

SINGLE BEAM CALCULATIONS

Any doubts: Information missing:			

SAMPLE DIAGRAMS PART-III

List of figures & Equations:

Figure 1	Simple Beam–Uniformly Distributed Load
Figure 2	Simple Beam—Concentrated Load at Any Point
Figure 3	Cantilever Beam–Uniformly Distributed Load
Figure 4	Cantilever Beam-Concentrated Load at Free End
Figure 5	Cantilever Beam—Concentrated Load at Any Point
Figure 6	Beam Fixed at Both Ends–Uniformly Distributed Load
Figure 7	Beam Fixed at Both Ends-Concentrated Load at Center
Figure 8	Beam Fixed at Both Ends-Concentrated Load at Any Point
Figure 9	Continuous Beam–Two Equal Spans–Uniform Load on One Span
Figure 10	Continuous Beam-Two Equal Spans-Concentrated Load at Center of One Span
Figure 11	Continuous Beam-Two Equal Spans-Concentrated Load at Any Point
Figure 12	Continuous Beam-Two Equal Spans-Uniformly Distributed Load
Figure 13	Continuous Beam-Two Equal Spans-Two Equal Concentrated Loads Symmetrically Placed
Figure 14	Continuous Beam-Two Unequal Spans-Uniformly Distributed Load
Figure 15	Continuous Beam-Two Unequal Spans-Concentrated Load on Each Span Symmetrically Placed

Figure 1

Simple Beam-Uniformly Distributed Load

Figure 2

Simple Beam-Concentrated Load at Any Point

Figure 3

Cantilever Beam-Uniformly Distributed Load

Figure 4

Cantilever Beam-Concentrated Load at Free End

Figure 5

Cantilever Beam-Concentrated Load at Any Point

Figure 6

Beam Fixed at Both Ends-Uniformly Distributed Load

Figure 7 Beam Fixed at Both Ends—Concentrated Load at Center

Figure 8 Beam Fixed at Both Ends—Concentrated Load at Any Point

Continuous Beams

Figure 9	Continuous Beam–Two Equal Spans–Uniform Load on One Span
Figure 10	Continuous Beam-Two Equal Spans-Concentrated Load at Center of One Span
Figure 11	Continuous Beam-Two Equal Spans-Concentrated Load at Any Point
Figure 12	Continuous Beam-Two Equal Spans-Uniformly Distributed Load
Figure 13	Continuous Beam–Two Equal Spans–Two Equal Concentrated Loads Symmetrically Placed
Figure 14	Continuous Beam-Two Unequal Spans-Uniformly Distributed Load
Figure 15	Continuous Beam-Two Unequal Spans-Concentrated Load on Each Span Symmetrically Placed

GEOMETRY

Length1 (m) 1 4 3.0 3.0

MATERIAL

BOUNDARY TYPE

- Simple Supported
- Cantilever
- Fixed

LOADING TYPE

Figure 9 Continuous Beam—Two Equal Spans—Uniform Load on One Span

$$R_{1} = V_{1} \qquad \qquad = \frac{7}{16} w\ell$$

$$R_{2} = V_{2} + V_{3} \qquad \qquad = \frac{5}{8} w\ell$$

$$R_{3} = V_{3} \qquad \qquad = -\frac{1}{16} w\ell$$

$$V_{2} \qquad \qquad = \frac{9}{16} w\ell$$

$$M_{max} \left(\text{at } x = \frac{7}{16} \ell \right) \qquad \qquad = \frac{49}{512} w\ell^{2}$$

$$M_{1} \left(\text{at support } R_{2} \right) \qquad \qquad = \frac{1}{16} w\ell^{2}$$

$$M_{2} \left(\text{when } x < \ell \right) \qquad \qquad = \frac{wx}{16} (7\ell - 8x)$$

Figure 10 Continuous Beam—Two Equal Spans—Concentrated Load at Center of One Span

Figure 11 Continuous Beam—Two Equal Spans—Concentrated Load at Any Point

a b P	$R_1 = V_1 \qquad \ldots \qquad = \frac{Pb}{4\ell^3} \left(4\ell^2 - a(\ell+a) \right)$
ightharpoonup igh	$R_2 = V_2 + V_3 \dots \dots = \frac{Pa}{2\ell^3} (2\ell^2 + b(\ell + a))$
	$R_3 = V_3 \dots = -\frac{Pab}{4\ell^3}(\ell+a)$
V_1 V_2 Shear V_3	$V_2 \ldots = \frac{Pa}{4\ell^3} \left(4\ell^2 + b(\ell+a)\right)$
	M_{max} (at point of load) = $\frac{Pab}{4\ell^3} \left(4\ell^2 - a(\ell + a) \right)$
M_1 Moment	M_1 (at support R_2) = $\frac{Pab}{4\ell^2}(\ell + a)$

Figure 12 Continuous Beam-Two Equal Spans-Uniformly Distributed Load

Figure 13 Continuous Beam—Two Equal Spans—Two Equal Concentrated Loads Symmetrically Placed

P P	$R_1 = V_1 = R_3 = V_3 \dots = \frac{5P}{16}$
R_1 R_2 R_3	$R_2 = 2V_2 \dots = \frac{11P}{8}$
	$V_2 = P - R_1 \dots = \frac{11P}{16}$
V_1 V_2 V_3 V_2	V_{max} = V_2
	$M_1 \qquad \dots \qquad = -\frac{3P\ell}{16}$
M_x M_z M_z	$M_2 \qquad \dots \qquad = \frac{5P\ell}{32}$
M_1	M_x (when $x < a$) = $R_1 x$

Figure 14 Continuous Beam–Two Unequal Spans–Uniformly Distributed

Figure 15 Continuous Beam-Two Unequal Spans-Concentrated Load on Each Span Symmetrically Placed

PLATES

CASE 1: All sides simply supported with UDL

: All sides simply supported with Point load

CASE 2: All sides fixed with UDL

: All sides fixed with point load

GEOMETRY

- Length (m) 1 4 3.0 3.0
- Breadth (m) 1 4 3.0 3.0
- Thickness (mm) 100 500 250

BOUNDARY TYPE

- All sides Simply supported
- All sides Fixed

LOADING TYPE

Two Simply supported & 2 F

MATERIAL

Concrete Grade M20 M50
30

Poisson Ration ν $\begin{array}{c}
0.0 & 0.3 \\
\hline
0.05
\end{array}$ 0.3

PLATE CALCULATIONS

To compute the displacement of a simply-supported rectangular plate under a uniform load.

Input Data

Geometry Material Loading

Width L_x Youngs Modulus

Length L_x $E = 5000 \times \text{sqrt}(30)$ UDL (P)

Thickness T V = 0.3

Deflection at any point (x,y)

$$D = \frac{ET^{3}}{12(1-v)}$$

$$w(x,y) = \frac{16p}{\pi^{6}D} \sum_{m=1,3,5}^{\infty} \sum_{n=1,3,5}^{\infty} \frac{\sin\left(\frac{m\pi x}{L_{x}}\right) \sin\left(\frac{n\pi y}{L_{y}}\right)}{mn \left[\left(\frac{m}{L_{x}}\right)^{2} + \left(\frac{n}{L_{y}}\right)^{2}\right]^{2}}$$

PLATE CALCULATIONS

To compute the displacement of a simply-supported rectangular plate under a Point distributed load.

Input Data

Geometry

Material

Loading

Youngs Modulus

Point load

Width L_x Length L_v

 $E = 5000 \times sqrt(30)$

Point load position

Thickness T

V = 0.3

X coordinate 'a' Y coordinate 'b'

Deflection at any point (x,y)

$$D = \frac{ET^3}{12(1-\nu)}$$

$$w(x,y) = \frac{4p}{\pi^4 D L_x L_y} \sum_{m=1,3,5}^{\infty} \sum_{n=1,3,5}^{\infty}$$

$$w(x,y) = \frac{4p}{\pi^4 D L_x L_y} \sum_{m=1,3,5}^{\infty} \sum_{n=1,3,5}^{\infty} \frac{\sin\left(\frac{m\pi a}{L_x}\right) \sin\left(\frac{n\pi b}{L_y}\right) \sin\left(\frac{m\pi x}{L_x}\right) \sin\left(\frac{n\pi y}{L_y}\right)}{\left[\left(\frac{m}{L_x}\right)^2 + \left(\frac{n}{L_y}\right)^2\right]^2}$$

$$\left[\left(\frac{m}{L_x} \right)^2 + \left(\frac{n}{L_y} \right)^2 \right]^2$$

PLATE CALCULATIONS

To compute the displacement of a two simply-supported and two fixed rectangular plate under a Point distributed load.
Need Update

TRUSS FORMULATION

STEP-1

Nodal Coordinates

STEP-3

Element connectivity

ND

Node Number	х	У
1	X_1	y ₁
2	x ₂	y ₂
3	x ₃	y ₃
4	X ₄	Y ₄

EL

Element	N1	N2	E	Α
1	1	2		
2	1	3		
3	1	4		
4	2	4		
5	3	4		

STEP-2

Element Lengths

STEP-4

Element Stiffness Matrix

$$\ell_e = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$\ell = (x_2 - x_1)/l_e$$

$$m = (y_2 - y_1)/l_e$$

- cross section area

$$\ell = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$\ell = (x_2 - x_1)/l_e$$

$$m = (y_2 - y_1)/l_e$$

$$E - elastic modulus$$

$$k_{ele} = \frac{E_e A_e}{l_e} \begin{bmatrix} l^2 & lm & -l^2 & -lm \\ lm & m^2 & -lm & -m^2 \\ -l^2 & -lm & l^2 & lm \\ -lm & -m^2 & lm & m^2 \end{bmatrix}$$

```
For i=1:size(EL,1) % iterating through all elements ------
    node1 = EL(i,2);
    node2 = EL(i,3);
    E1=EL(i,4);
    A1 = EL(i,5);
      % Calculation of K_{ele} - (step -2 then step - 4)
    t1 = node1*2; t2 = node2*2;
    % global K
    Kgl((t1-1):t1,(t1-1):t1) = Kgl((t1-1):t1,(t1-1):t1) + Klc(1:2,1:2);
    Kgl((t1-1):t1,(t2-1):t2) = Kgl((t1-1):t1,(t2-1):t2) + Klc(1:2,3:4);
    Kgl((t2-1):t2,(t1-1):t1) = Kgl((t2-1):t2,(t1-1):t1) + Klc(3:4,1:2);
    Kgl((t2-1):t2,(t2-1):t2) = Kgl((t2-1):t2,(t2-1):t2) + Klc(3:4,3:4);
  end;
```

STEP-6 Boundary Conditions and Forces

CON = [Node number, X-constraint , Y-Constraint] \longrightarrow Fixed - 0 LOAD = [Node number, X-force , Y-force]

```
C=max(max(kgl))*10000

for i=1:size(CON)
    if(CON(i,2)==0)
    kgl((CON(i,1)*2)-1,(CON(i,1)*2)-1)=C;
    end

    if(CON(i,3)==0)
        kgl((CON(i,1)*2),(CON(i,1)*2))=C;
    end
end

f(1:dof,1)=0
f or i=1:size(LOAD)
    f(2*LOAD(i,1)-1)=LOAD(i,2);
    f(2*LOAD(i,1))=LOAD(i,3);
End
```

```
CON = [ 1 0 0 ;
2 1 0
4 0 0];
LOAD = [ 2 10 0 ;
3 10 10 ];
```

STEP-7 Final Displacements

displacements = inv(kgl)*f

PART-II

GEOMETRY

1 4 Length(I) (m) 0.1 m

BOUNDARY TYPE

- O CASE-II

O CASE-III

MATERIAL

Young's Modulus (E)
$$kN/m^2$$
 $2x10^5$ 1e3

Boundary Conditions

Constraint (CON)

LOADING TYPE

2.5e5

3.0

0.2

 $4x10^{5}$

Node Number (ND) 3 (1,2,3,4)

0 10 Point load (KN) 0 10 Υ 10

FINAL OUTPUT:

The final out put should be the nodal displacements.