Laboratório 5 CPU RISC-V PIPELINE

Matheus Olivera de Almeida Marques da Cruz*

Pedro Henrique dos Santos †

Nicole de Oliveira Sena ‡

João Pedro Carvalho de Oliveira Rodrigues §

Giulia Moura Ferreira [¶]

Universidade de Brasília, 13 de dezembro de 2023

RESUMO

Neste laboratório realizamos a implementação do processador Pipeline. A implementação consiste de acrescentarmos os registradores de pipeline, assim dividindo as etapas de processamento. Apesar de ter dado tudo certo na implementação, não obtivemos sucesso ao rodar o jogo do canhão. O jogo abre, e podemos controlar o canhão, mas quando vamos atirar ele congela. Não conseguimos encontrar uma causa específica de falha, mas suspeitamos que seja algum problema relacionado a Hazards, já que o restante da implementação é a mesma do processador Uniciclo, onde atestamos o funcionamento do jogo do canhão.

1 REQUERIMENTOS FÍSICOS E TEMPORAIS

ISA	Número de ALMs	Número de	Quantidade de	Número de DSPs
		Registradores	bits de memória	
RV32I	3414 ALUTs	2387	0	0
RV32IM	8455 ALUTs	2458	0	12
RV32IMF	11647 ALUTs	5102	47616	18
RV32Red	276 ALUTs	270	65536	0

ISA	maior atraso tpd	maiores tempos tco	Maiores tempos th
RV32I	23.912	37.708	6.358
RV32IM	25.861	38.910	6.250
RV32IMF	26.278	38.426	5.545
RV32Red	15.478	5.883	0.762

1	ISA	maiores tempos	Máxima frequência
		TSU	de clock utilizável
1	RV32I	15.470	113.8 MHz
	RV32IM	15.121	106.46 MHz
	RV32IMF	15.253	107.56 MHz
	RV32Red	2.553	94.72 MHz

2 VERIFICAÇÃO: TIRO DE CANHÃO

O programa rodou inicialmente, conseguimos movimentar o canhão e tudo mais, mas no momento de atira o jogo simplesmente congela. Suspeitamos que pudesse ser algum Hazard que o processador não conseguiu tratar, e tentamos colocar alguns nops nos pontos possíveis de Hazard, mas não teve efeito. O vídeo da tentativa de execução está neste link.

3 IMPLEMENTAÇÃO DO PIPELINE COM ISA REDUZIDA

Realizamos a implementação do Pipeline, acrescentando os registradores de Pipeline que faltavam. As figuras 1, 2 e 3 contém a imagem do netlist, que precisamos dividir para que fosse visível no relatório.

^{*211055343@}aluno.unb.br

^{†200026127@}aluno.unb.br

^{‡190114860@}aluno.unb.br

^{§221017032@}aluno.unb.br

^{¶200018795@}aluno.unb.br

Figura 1: Netlist do Pipeline implementado parte 1.

Figura 2: Netlist do Pipeline implementado parte 2.

Figura 3: *Netlist do Pipeline implementado parte 3.*