

Mathématiques

Classe: BAC

Chapitre: géométrie dans l'espace

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

Exercice 1:

(S) 25 min

5 pts

L'espace est rapporté à un repère orthonormé $(O,\vec{i},\vec{j},\vec{k})$

1°) Soit le plan Q d'équation : $x + y + \sqrt{2}z - 2 = 0$.

Montrer que le plan Q coupe les axes (O,\vec{i}) , (O,\vec{j}) et (O,\vec{k}) respectivement aux points A(2,0,0), B(0,2,0), $C(0,0,\sqrt{2})$.

- **2°)** Soit la sphère (S) d'équation : $x^2 + y^2 + z^2 = 1$. Montrer que le plan Q et la sphère
- (S) sont tangents et déterminer leur point de contact.
- **3°)** Soit a un réel strictement positif. On considère les points M(a,0,0) et $N\left(0,\frac{4}{a},0\right)$. Déterminer en fonction du réel a, les composantes du vecteur $\overrightarrow{CM} \wedge \overrightarrow{CN}$.
- **4°) a)** Montrer qu'une équation du plan (CMN) est : $4x + a^2y + 2a\sqrt{2}z 4a = 0$.
 - **b)** Soit d la distance du point O au plan (CMN). Montrer que : $d = 1 \frac{(a-2)^2}{a^2 + 4}$.
 - c) En déduire la valeur du réel a pour laquelle la distance d est maximale.
- **5°) a)** Montrer que pour tout réel a > 0, le volume du tétraèdre *OCMN* est égal à $\frac{2\sqrt{2}}{3}$.
- **b)** En déduire que pour tout réel a > 0, l'aire du triangle *CMN* est supérieure ou égale à $2\sqrt{2}$.
 - c) Identifier les points M et N pour lesquels l'aire du triangle CMN est égale à $2\sqrt{2}$.

Exercice 2:

(S) 35 min

5 pts

L'espace est rapporté à un repère orthonormé $\left(O,\vec{i},\vec{j},\vec{k}\right)$

On considère les points A(1,1,1), B(0,4,0), C(0,0,2) et I(-1,1,-1).

- **1°) a)** Déterminer les composantes du vecteur $\overrightarrow{AB} \wedge \overrightarrow{AC}$.
 - **b)** Calculer le volume $\,\mathcal{V}\,$ du tétraèdre *ABCI*.
- **2°)** On désigne par \mathcal{P} le plan (ABC).

Montrer qu'une équation cartésienne du plan \mathcal{P} est : x + y + 2z - 4 = 0.

3°) Soit (S) l'ensemble des points M(x,y,z) de l'espace tel que :

$$x^2 + y^2 + z^2 + 2x - 2y + 2z - 8 = 0$$
.

- a) Montrer que (S) est la sphère de centre I et de rayon $\sqrt{11}$.
- **b)** Montrer que $P \cap (S)$ est un cercle \mathbb{C} de rayon $\sqrt{5}$.
- c) Vérifier que le segment $[{\it BC}]$ est un diamètre du cercle C.

- **4°)** Soit *a* un réel et *M* le point défini par : $\overrightarrow{AM} = a \overrightarrow{AB}$.
 - a) Déterminer à l'aide du réel a, les coordonnées du point M.
 - **b)** Montrer que $BM \cdot CM = (a-1)(11a+3)$.
- **c)** En déduire que la droite (AB) recoupe le cercle ${f C}$ au point E défini par $\overrightarrow{AE} = \frac{-3}{11} \overrightarrow{AB}$.
 - **d)** Montrer que le volume \mathcal{V}' du tétraèdre *AECI* est égal à $\frac{3}{11}\mathcal{V}$.

5 pts

Dans L'espace est rapporté à un repère orthonormé $(0,\vec{i},\vec{j},\vec{k})$, on considère les points A(1,2,-1), B(2,0,-2) et C(-1,1,1).

- **1°) a)** Déterminer $\overrightarrow{AB} \wedge \overrightarrow{AC}$ et en déduire que les points A, B et C ne sont pas alignés.
 - **b)** Soit \mathcal{P} le plan déterminé par les points A, B et C. Montrer qu'une équation cartésienne du plan \mathcal{P} est : x+z=0.
- $\int x = \alpha + 1$ **2°)** Soit Δ la droite de système d'équations paramétriques : Δ : $\begin{cases} y=2 \\ z=\alpha-1 \end{cases}$
 - a) Vérifier que A est un point de Δ .
 - **b)** Montrer que la droite Δ est perpendiculaire au plan \mathcal{P} .
- **3°)** Soit α un réel et $I_{\alpha}(\alpha+1,2,\alpha-1)$ un point de Δ .
 - **a)** Montrer que $d(I_{\alpha}, \mathcal{P}) = \sqrt{2} |\alpha|$.
 - **b)** Soit $\left(S_{\alpha}\right)$ la sphère de centre I_{α} et de rayon $2\sqrt{2}$. Déterminer suivant les valeurs de α la position relative de la sphère (S_{α}) et du plan \mathcal{P} .
- **4°) a)** Pour quelles valeurs de α , le point B appartient à la sphère (S_{α}) .
 - **b)** Pour les valeurs de lpha trouvées dans la question **4°) a)**, Caractériser $S_{lpha} \cap \mathcal{P}$.

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

www.takiacademy.com

73.832.000