PRÁCTICA 2 FFI

Memoria explicativa

Luis Ortiz Fernandez

Ejercicio 1: Valores experimentales de los componentes utilizados:

Valor nominal	Valor experimental
$R_1 = 1 \text{ k}\Omega$	$R_1 = 0.995 \pm 0.013 \text{ k}\Omega$
$R_2 = 1 \text{ k}\Omega$	$R_2 = 0.995 \pm 0.013 \text{ k}\Omega$
$R_3 = 1 \text{ k}\Omega$	$R_3 = 2,205 \pm 0,02 \text{ k}\Omega$
$R_4 = 1 \text{ k}\Omega$	$R_4 = 2,205 \pm 0,02 \text{ k}\Omega$
$R_5 = 1 \text{ k}\Omega$	$R_5 = 9,90 \pm 0,13 \text{ k}\Omega$
$R_6 = 1 \text{ k}\Omega$	$R_6 = 21,42 \pm 0,2 \text{ k}\Omega$
$R_7 = 1 \text{ k}\Omega$	$R_7 = 47 \pm 0.4 \text{ k}\Omega$
$V_1 = 4.5 \text{ V}$	$V_1 = 4,755 \pm 0,05 \text{ V}$
$V_2 = 4.5 \text{ V}$	$V_2 = 4,755 \pm 0,05 \text{ V}$
$V_3 = 4.5 \text{ V}$	$V_3 = 4,755 \pm 0,05 \text{ V}$

Ejercicio 2: Resistencias en serie:

R	V_R	I_R
10 kΩ	1,60 V	155,5 μΑ
20 kΩ	3,16 V	156,5 μΑ

•
$$1,6 + 3,16 = 4,76 \text{ V}$$

$$\Delta X = (\frac{0.06}{1.6} + \frac{0.07}{3.16}) \cdot 4.76 = 0.28420.3$$

$$4,76 \pm 0,3 \text{ V}$$

La pila tiene un valor de 4,755 por lo que ambas medidas se asemejan.

• Resistencia equivalente: $4,755 \text{ V} / 1,56*10^{-4} \text{ A} = 30 \text{ k}\Omega$ $30 \pm 0,4 \text{ k}\Omega$

Ejercicio 3: Resistencias en paralelo:

R	V_R	I_R
10 kΩ	4,77 V	0,48 mA
20 kΩ	4,77 V	0,22 mA

• 0,48 + 0,22 = 0,7 mA (Mismo proceso que el anterior)

$$0.7 \pm 0.3 \text{ mA}$$

La intensidad de corriente que atraviesa la pila es 0,65 simular a la que se obtiene prácticamente.

• Resistencia equivalente: 6, $7 \pm 0.4 \text{ k}\Omega$ (se realiza al igual que en el ejercicio 2)

Ejercicio 3: Ley de Ohm:

V1

V1+V2

V1+V2+V3

Intensidad (mA)	Voltaje (V)
2,28	2,257
1,45	3,103
1,12	3,43
0,9	3,658
4,66	4,59
3,35	6,3
2,3	6,98
1,8	7,46
7,05	6,93
4,5	9,52
3,49	10,55
2,77	11,29

X: Intensidad (mA) /Y: Voltaje (V)

$$a = \frac{\sum_{i=1}^{n} x_i y_i}{\sum_{i=1}^{n} x_i^2} \Delta a = \sqrt{\frac{\sum_{i=1}^{n} (y_i - ax_i)^2}{(n-1)\sum_{i=1}^{n} x_i^2}}$$

(A partir de estas fórmulas y de los datos de la tabla se saca esta ecuación)

$$y=(1,76+-0,3)x$$

Ejercicio 5: Circuito con varias mallas:

RAMA	I
BAEF	0,39
BF	0,31
BC	0,41
CG	0,47
FG	0,41
CDHG	0,33

$$I_{1} = 0.43 \text{ mA}$$
 $I_{2} = 0.452 \text{ mA}$
 $I_{3} = 0.022 \text{ mA}$
 $I_{4} = 0.3322 \text{ mA}$
 $I_{6} = 0.352 \text{ mA}$

Luis Otts Freunders

W 81