Introduction to Discrete Math

Felipe P. Vista IV

Course Outline

- Mathematical Thinking
 - Convincing Arguments, Find Example, Recursion, Logic, Invariants
- Probability & Combinatronics
 - Counting, Probability, Random Variables
- Graph Theory
 - Graphs (cycles, classes, parameters)
- Number Theory & Cryptography
 - Arithmetic in modular form
 - Intro to Cryptography

Mathematical Thinking – Counting

TUPLES AND PERMUTATIONS

Number of Tuples

License Plates

Tuples with Restrictions

Permutations

Problem

How many 5-character passwords can we create using lower case Latin letters only? (the size of the alphabet is 26)

Problem

How many 5-character passwords can we create using lower case Latin letters only? (the size of the alphabet is 26)

• It turns out that the rule of product is all we need to solve this problem

Problem

How many 5-character passwords can we create using lower case Latin letters only? (the size of the alphabet is 26)

- It turns out that the rule of product is all we need to solve this problem
- But we need to do it step by step

• Let's start with a 1 letter password

= ??

Number of Passwords

- Let's start with a 1 letter password
 - Clearly, then there are 26 options

26

*

$$= 26$$

- Let's start with a 1 letter password
 - Clearly, then there are 26 options
- What about two letters?
 - Then we can choose both letters in 26 ways

- Let's start with a 1 letter password
 - Clearly, then there are 26 options
- What about two letters?
 - Then we can choose both letters in 26 ways
- Use the rule of product: the answer is 676

676

- Let's move on to the case of 3-character password
- We already know that we can choose the first two letters in 676 ways

- Let's move on to the case of 3-character password
- We already know that we can choose the first two letters in 676 ways
- We apply rule of product again!

- Let's move on to the case of 3-character password
- We already know that we can choose the first two letters in 676 ways
- We apply rule of product again!
- The answer is 17 576

- We proceed the same way for 4-character password
- We apply rule of product again!

$$\begin{bmatrix}
 26 & x & 26 & x & 26 \\
 * & * & *
 \end{bmatrix} x = 26$$

$$= ???$$

- We proceed the same way for 4-character password
- We apply rule of product again!
- Answer is

And for a 5-character password

- And for a 5-character password
- Applying rule of product, we get

$$26 x 26 x 26 x 26 x 26 = 11881376$$

Number of Tuples

Problem

Suppose we have a set of \underline{n} symbols. How many different sequences of length k we can form out of these symbols?

Number of Tuples

Problem

Suppose we have a set of n symbols. How many different sequences of length k we can form out of these symbols?

Suppose we have a set of n symbols. How many different sequences of length k we can form out of these symbols?

These sequences are usually called tuples

- Can apply the same argument
- There are *n* possibilities to pick the first letter
- Each next letter multiplies the number of sequences by n
- Thus the answer is a product of n by itself k times,
 - that is n^k

Number of Tuples

License Plates

Tuples with Restrictions

Permutations

License Plates

Now we are ready to get back to our motivating example

- Russian license plate:
 - 3 digits, 3 letters; 78 is a regional code

License Plates

Now we are ready to get back to our motivating example

- Russian license plate:
 - 3 digits, 3 letters; 177 is a regional code
- 10 options for digits, 12 options for letters
 - only Cyrillic letters that are similar to Latin ones are used

License Plates

Now we are ready to get back to our motivating example

- Russian license plate:
 - 3 digits, 3 letters; 177 is a regional code
- 10 options for digits, 12 options for letters
 - only Cyrillic letters that are similar to Latin ones are used
- How many plates are there for one region?

License Plates

• Each digit can be chosen in 10 ways $\left[0 - 7 \right]$

- Each digit can be chosen in 10 ways
- Thus a sequence of digits can be chosen in
 - $-10 \times 10 \times 10 = 1000$ ways

- Each digit can be chosen in 10 ways
- Thus a sequence of digits can be chosen in
 - $-10\times10\times10=1000$ ways
- Each letter can be chosen in 12 ways
 - Thus a sequence of three letters can be chosen in $12 \times 12 \times 12 = 1728$ ways =

- Each digit can be chosen in 10 ways
- Thus a sequence of digits can be chosen in
 - $-10 \times 10 \times 10 = 1000$ ways
- Each letter can be chosen in 12 ways
 - Thus a sequence of three letters can be chosen in $12 \times 12 \times 12 = 1$ 728 ways
- Overall, there are 1 728 000 license plates for a region

License Plates

• Is 1 728 000 license plates enough for a region?

- Is 1 728 000 license plates enough for a region?
 - No, it's not: for example, there are about $5\ 600\ 000$ vehicles in Moscow (as of 2016)

- Is 1 728 000 license plates enough for a region?
 - No, it's not: for example, there are about $5\ 600\ 000$ vehicles in Moscow (as of 2016)
- Does it mean that by the Pigeonhole principle there are vehicles with identical license plates?

- Is 1 728 000 license plates enough for a region?
 - No, it's not: for example, there are about $5\ 600\ 000$ vehicles in Moscow (as of 2016)
- Does it mean that by the Pigeonhole principle there are vehicles with identical license plates?
 - No, several regional codes were introduced for same region

- Is 1 728 000 license plates enough for a region?
 - No, it's not: for example, there are about $5\,600\,000$ vehicles in Moscow (as of 2016)
- Does it mean that by the Pigeonhole principle there are vehicles with identical license plates?
 - No, several regional codes were introduced for same region
- But this required intro of three-digit regional codes

Number of Tuples

License Plates

Tuples with Restrictions

Permutations

Tuples with Restrictions

 We have shown how using the rule of product we can compute the number of tuples or a certain length of a fixed set of symbols

 But the rule of product can also give us other things too

Numbers with exactly one 7-digit

Problem

How many integer numbers between θ and θ 999 are there that have exactly one θ 7 digit? $\theta = \theta = \theta = \theta = \theta$

Numbers with exactly one 7-digit

Problem

How many integer numbers between θ and 9999 are there that have exactly one 7 digit?

- Numbers between θ and 9999 are sequences of digits of length 4
- For numbers below 1000 for length $4 \rightarrow 6000 \rightarrow 999$
 - Three digital numbers correspond to sequences starting with $\boldsymbol{\theta}$

Numbers with exactly one 7-digit

* * * *

• We can place the unique 7 at any of the four positions

Numbers with exactly one 7-digit

- We can place the unique 7 at any of the four positions
- This gives us 4 cases;
 - if we compute the number of sequences in all four cases, we can get the answer by the rule of sum

Numbers with exactly one 7-digit

* * * *

- We can place the unique 7 at any of the four positions
- This gives us 4 cases;
 - if we compute the number of sequences in all four cases, we can get the answer by the rule of sum
- Consider one of the cases
 - Each of other three digits can be picked out in 9 options!

Numbers with exactly one 7-digit

* * * *
7 × × ×

$$\chi = [0-9], exc$$
 7

- We can place the unique 7 at any of the four positions
- This gives us 4 cases;
 - if we compute the number of sequences in all four cases, we can get the answer by the rule of sum
- Consider one of the cases
 - Each of other three digits can be picked out in 9 options!
 - digit 7 is forbidden

Numbers with exactly one 7-digit

• Thus there are $9 \times 9 \times 9 = 729$ sequences in this case

Numbers with exactly one 7-digit

- Thus there are $9 \times 9 \times 9 = 729$ sequences in this case
 - And in all other cases as well!

Numbers with exactly one 7-digit

* * 7 *

- Thus there are $9 \times 9 \times 9 = 729$ sequences in this case
 - And in all other cases as well!
- There are 4 cases, so there are $4 \times 729 = 2916$ 4-digit numbers below 10 000 with exactly one digit 7 present

Numbers with exactly one 7-digit

* * 7 *

- Thus there are $9 \times 9 \times 9 = 729$ sequences in this case
 - And in all other cases as well!
- There are 4 cases, so there are $4 \times 729 = 2916$ 4-digit numbers below 10,000 with exactly one digit 7 present
 - This is below 1/3, but above 1/4 of all four digit numbers
 - This is an estimation of the probability to get exactly one digit 7 if we pick a number below $10\,000$ "randomly"

Number of Tuples

License Plates

Tuples with Restrictions

Permutations

We have discussed how to count the number of tuples

 Now we are ready to proceed to the second standard combinatorial setting: permutations

Permutations

Problem 3 : 123 2 : 12,13,23Suppose we have a set of n symbols. How many different

sequences of length k we can form out of these symbols if we are not allowed to use the same symbol twice?

Problem

Suppose we have a set of n symbols. How many different sequences of length k we can form out of these symbols if we are not allowed to use the same symbol twice?

- *k*-permutations
 - Tuples of length k without repetitions

Problem

Suppose we have a set of n symbols. How many different sequences of length k we can form out of these symbols if we are not allowed to use the same symbol twice?

- k-permutations \nearrow
 - Tuples of length *k* without repetitions
- Observe that if n < k, then there are no k-permutations: there are simply not enough different letters

Problem

Suppose we have a set of n symbols. How many different sequences of length k we can form out of these symbols if we are not allowed to use the same symbol twice?

- *k*-permutations
 - Tuples of length *k* without repetitions
- Observe that if n < k, then there are no k-permutations: there are simply not enough different letters
- So it is enough to solve the problem for the case $k \le n$

Introduction to Discrete Math

Probability & Combinatronics – Counting

Permutations

 $1 \qquad 2 \qquad 3 \qquad \dots \qquad k$ * * * * * *

• Let us apply rule of product

- Let us apply rule of product
- The first symbol can be picked in n ways

Permutations

- Let us apply rule of product
- The first symbol can be picked in *n* ways
- How many choices there are for the second symbol?

Permutations

- Let us apply rule of product
- The first symbol can be picked in *n* ways
- How many choices there are for the second symbol?
 - We can place anything there, except for the symbol on the first place

- Let us apply rule of product
- The first symbol can be picked in *n* ways
- How many choices there are for the second symbol?
 - We can place anything there, except for the symbol on the first place
- Symbol on the first place might be arbitrary, but whatever it is there are n-1 choices for the second symbol!

Permutations

• So we can pick the first and the second symbol in $n \times (n-1)$ ways

- So we can pick the first and the second symbol in $n \times (n-1)$ ways
- Now, the third symbol can be picked among n-2 options: all except the symbols in the first and the second position

- So we can pick the first and the second symbol in $n \times (n-1)$ ways
- Now, the third symbol can be picked among n-2 options: all except the symbols in the first and the second position
- And so on; for each next symbol we have one less option

- So we can pick the first and the second symbol in $n \times (n-1)$ ways
- Now, the third symbol can be picked among n-2 options: all except the symbols in the first and the second position
- And so on; for each next symbol we have one less option
- In the end for the last object we have n-k+1 options

Permutations

• Overall we have $n \times (n-1) \times ... \times (n-k+1)$ k-permutations

- Overall we have $n \times (n-1) \times ... \times (n-k+1)$ *k*-permutations
- Convenient notation: $\underline{n!=1\times2\times...\times n}$; this number is called factorial of \underline{n}

- Overall we have $n \times (n-1) \times ... \times (n-k+1)$ k-permutations
- Convenient notation: $n!=1\times 2\times ...\times n$; this number is called factorial of n
- In this notation the number of *k*-permutations of *n* symbols

of length
$$k$$
 looks nicer: it is $n!/(n-k)!$ k -permutations of n sy $n=3$ $k=2$ $k=2$

- Overall we have $n \times (n-1) \times ... \times (n-k+1)$ *k*-permutations
- Convenient notation: $n!=1\times 2\times ...\times n$; this number is called factorial of n
- In this notation the number of k-permutations of n symbols of length k looks nicer: it is n!/(n-k)!
- What if n-k=0? Convention: 0!=1

Permutations

Problem

Problem

In how many orders can we place *n* books on the shelf?

Each book is a symbol

Permutations

Problem

- Each book is a symbol
- We need to count \underline{n} -permutations of \underline{n} symbols; these are called permutations

Problem

- Each book is a symbol
- We need to count <u>n</u>-permutations of *n* symbols; these are called permutations
- By the previous result there are n! of them (n+1)!

Permutations

Problem

- Each book is a symbol
- We need to count *n*-permutations of *n* symbols; these are called permutations
- By the previous result there are *n*! of them
- This is the formula that was used in the discussion of magic square in the course "What is a Proof?"

Conclusion

We have started the discussion of Combinatorics

- We have started the discussion of Combinatorics
- Important for Probability Theory, estimations on running time of algorithms, mathematics in general

- We have started the discussion of Combinatorics
- Important for Probability Theory, estimations on running time of algorithms, mathematics in general
- We have discussed two standard settings: tuples and permutations; they help in many cases

- We have started the discussion of Combinatorics
- Important for Probability Theory, estimations on running time of algorithms, mathematics in general
- We have discussed two standard settings: tuples and permutations; they help in many cases
- Recursive counting is also useful, especially for computational applications

- We have started the discussion of Combinatorics
- Important for Probability Theory, estimations on running time of algorithms, mathematics in general
- We have discussed two standard settings: tuples and permutations; they help in many cases
- Recursive counting is also useful, especially for computational applications
- Still are not ready to count, say, what are the chances to get two aces in a 6 card hand:D

Thank you.