Transportes - parte I (grafos bipartidos)

Investigação Operacional

J.M. Valério de Carvalho vc@dps.uminho.pt

Departamento de Produção e Sistemas Escola de Engenharia, Universidade do Minho

29 de outubro de 2019

Transportes

antes

• O algoritmo simplex resolve problemas de programação linear.

Guião

- O problema de transportes é um caso particular do problema de programação linear em que o modelo é definido num grafo (rede).
- O algoritmo para o problema de transportes é uma especialização do algoritmo simplex que tira partido dessa estrutura em rede.
- A sua implementação, usando estruturas de dados adequadas, pode traduzir-se em resoluções muito mais rápidas.
- Na Parte I, aplicaremos o algoritmo em grafos bipartidos.

depois

• Na Parte II, aplicaremos o algoritmo em grafos (redes) gerais.

Problema de Transportes em Rede: modelo geral

• Dado um grafo G = (V, A), pretende-se:

min
$$\sum_{(i,j)\in A} c_{ij} x_{ij}$$
suj. a
$$-\sum_{(i,j)\in A} x_{ij} + \sum_{(j,i)\in A} x_{ji} = b_j, \ \forall j \in V$$

$$0 \le x_{ij} \le u_{ij}, \ \forall (i,j) \in A$$

$$(2)$$

Variáveis de decisão:

• x_{ij} : fluxo de *um único tipo de entidades* no arco orientado (i,j);

Dados:

- $c_{ij:}$ custo unitário de transporte no arco orientado (i,j);
- u_{ij}: capacidade do arco orientado (i,j);
- $b_{j:}$ oferta (valor positivo) ou procura (valor negativo) no vértice j.
- Restrições (1) designam-se por restrições de conservação de fluxo.
- Restrições (2) designam-se por *restrições de capacidade*.

Exemplo: Lotes de Produção

- Determinar a dimensão dos lotes a fabricar em cada período, dentro de um horizonte de planeamento.
- Em cada período j, se o número de unidades disponíveis (*i.e.*, as unidades produzidas no período, x_j , mais as existentes em stock, s_{j-1}) for superior à procura nesse período, d_j , as unidades remanescentes, s_j , podem ser armazenadas em stock para entrega em períodos subsequentes:

 Objectivo: minimização da soma dos custos de produção e dos custos de armazenagem, satisfazendo a procura em cada período.

Exemplo: modelo de Lotes de Produção

$$\begin{aligned} & \min & & \sum_{j=1}^{T} \left(c_{j} x_{j} + h_{j} s_{j} \right) \\ & \text{suj. a} & & x_{j} + s_{j-1} - s_{j} = d_{j} \ , \ j = 1, \dots, T \\ & & 0 \leq x_{j} \leq x_{j}^{max} \ , \ j = 1, \dots, T \\ & & 0 \leq s_{j} \leq s_{j}^{max} \ , \ j = 1, \dots, T \end{aligned}$$

Variáveis de decisão:

- x_j : número de unidades produzidas no período j,
- s_j: stock existente após o período j.

Dados:

- T : número de períodos do horizonte de planeamento
- d_j: procura existente no período j
- c_j: custo unitário de produção dos artigos no período j
- h_j: custo unitário de posse de inventário no período j
- x_i^{max} : número máximo de unidades produzidas no período j
- s_i^{max}: nível máximo de stock no período j
- s_0 e s_n : stocks inicial e final, respectivamente

Lotes de Produção: Exemplo I

Horizonte de planeamento (T): 4 períodos

- Procura em cada período de 2, 3, 4 e 2, respectivamente.
- Capacidade máxima de produção, x_j^{max}: 4 unidades em cada período.
- Nível máximo de stock, s_{max} : 2 unidades.
- Custos unitários de armazenagem, h_j : 1 U.M./ artigo x período.
- Custos de produção: custo variável proporcional ao número de artigos, p_j.
- Valores dos coeficientes de custo de produção:

Lotes de Produção: transporte em rede geral

Rede com capacidades associadas aos arcos:

- valores associados aos arcos, (c_{ij}, u_{ij}) , representam o custo unitário de transporte e a capacidade do arco, respectivamente,
- valores associados aos vértices representam ofertas e procuras.

Exemplo:

Problema balanceado (soma das ofertas = soma dos procuras)

Plano

- Existe um algoritmo geral para o problema de transportes, que vamos aplicar a vários casos:
 - Transportes em grafos bipartidos (parte I)
 - Transportes em Redes (ainda sem limites superiores) (parte II)
 - 3 Transportes em Redes com Limites Superiores (parte II)
- Diferenças incrementais entre os casos:
 - Os grafos bipartidos são uma classe de grafos (redes) gerais, pelo que, no segundo caso, é preciso prestar atenção às variações dos valores das variáveis básicas no pivô.
 - No terceiro caso, há variáveis não-básicas no limite superior, pelo que, além das variáveis não-básicas atractivas no limite inferior a aumentar de valor, como antes, haverá variáveis não-básicas atractivas no limite superior a decrescer de valor.

Transportes em grafos bipartidos

- Grafo bipartido $G = (V_1, V_2, A) : \forall (i, j) \in A, i \in V_1, j \in V_2$ i.e.,
- grafo cujo conjunto de vértices é partido em V_1 e V_2 , e em que todos os arcos ligam uma origem $i \in V_1$ a um destino $j \in V_2$.
- V_1 : pontos de produção (origens) ($|V_1| = m$)
- V_2 : pontos de consumo (destinos) ($|V_2| = n$)

- A origem i produz a_i unidades e o destino j necessita de b_i unidades.
- Custo unitário de transporte entre a origem i e o destino j é c_{ii}.
- As unidades a transportar são entidades de um único tipo.

Transportes em grafos bipartidos: modelo

 Objectivo: minimizar o custo de transporte das unidades entre os pontos de produção (origens) e os pontos de consumo (destinos).

$$\begin{aligned} & \min \qquad & \sum_{i \in V_1} \sum_{j \in V_2} c_{ij} x_{ij} \\ & \text{suj. a} \qquad & \sum_{j \in V_2} x_{ij} = a_i \ , \ \forall i \in V_1 \\ & \qquad & \sum_{i \in V_1} x_{ij} = b_j \ , \ \forall j \in V_2 \\ & \qquad & \qquad & x_{ij} \geq 0 \end{aligned}$$

Variáveis de decisão:

• x_{ij} - quantidade a transportar da origem i para o destino j.

Dados:

- c_{ij}: custo unitário de transporte no arco orientado (i,j);
- a_i: número de unidades oferecidas na origem i;
- b_j : número de unidades consumidas no destino j.

Diversas representações

	1	2	3
1	x ₁₁ _{c11}	$x_{12}_{c_{12}}$	$x_{13}_{c_{13}}$
2	$x_{21}_{c_{21}}$	$x_{22}_{c_{22}}$	x_{23}
3	x ₃₁ _{c₃₁}	x ₃₂ _{c₃₂}	x33 _{c33}
	b_1	b_2	<i>b</i> ₃

	x ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₂₁	<i>x</i> ₂₂	<i>X</i> 23	<i>x</i> ₃₁	<i>X</i> 32	<i>X</i> 33		
origem 1	1	1	1							=	a_1
origem 2				1	1	1				=	a_2
origem 3							1	1	1	=	<i>a</i> ₃
destino 1	-1			-1			-1			= -	$\overline{-b_1}$
destino 2		-1			-1			-1		= -	$-b_{2}$
destino 3			-1			-1			-1	= -	- <i>b</i> 3
min	c ₁₁	<i>c</i> ₁₂	<i>c</i> ₁₃	c ₂₁	<i>c</i> ₂₂	c ₂₃	c ₃₁	<i>c</i> ₃₂	<i>C</i> 33		

 a_1

 a_2

*a*3

Exemplo

	x ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₂₁	<i>X</i> 22	X23	<i>X</i> 31	<i>X</i> 32	<i>X</i> 33	
Α	1	1	1							= 30
В				1	1	1				= 10
C							1	1	1	= 50
D	-1			-1			-1			= -20
Ε		-1			-1			-1		= -30
F			-1			-1			-1	= -40
min	3	6	5	2	5	5	1	2	3	

30

10

50

Conteúdo (transportes em grafos bipartidos)

- Balanceamento e caracterização das soluções básicas
- Solução inicial
 - Método do canto NW
 - Método dos custos mínimos
- Pivôs
- Teste de optimalidade
 - Método do Stepping-stone
 - Método dos multiplicadores
- Resolução de um exemplo
- Apêndices
 - Degenerescência
 - Dual do problema de transportes
 - Justificação do método dos multiplicadores

Balanceamento

Condição necessária para o problema ter soluções admissíveis:

- ullet Produção $=\sum_{i\in V_1}a_i$ deve ser **sempre** igual ao consumo $=\sum_{j\in V_2}b_j$
- Se (produção > consumo), criar destino fictício que absorva excesso.

Destino fictício F absorve excesso. Geralmente, custos unitários de transporte dos novos arcos são nulos (i.e., $c_{AF} = c_{BF} = 0$).

 Se (produção < consumo), problema é impossível, porque não é possível satisfazer a procura (assumindo que não é possível recorrer a ofertas externas ao modelo).

Número de equações linearmente independentes

- Das n+m equações, há n+m-1 equações linearmente independentes,
- porque qualquer equação pode ser expressa como uma combinação linear das restantes.
- Exemplo:

	x ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₂₁	<i>X</i> ₂₂	X23	<i>X</i> 31	<i>X</i> 32	<i>X</i> 33	
Α	1	1	1							= 30
В				1	1	1				= 10
C							1	1	1	= 50
D	-1			-1			-1			= -20
Ε		-1			-1			-1		= -30
F			-1			-1			-1	= -40
min	3	6	5	2	5	5	1	2	3	

 A equação de F é igual ao simétrico da soma das equações de A.B.C.D e E.

Caracterização das soluções básicas

 O grafo associado a uma solução básica é uma árvore^(*) que suporta todos os vértices.

Uma árvore de suporte é um grafo com as seguintes propriedades^(**) :

- ligado (existe um caminho entre cada par de vértices),
- sem ciclos,
- com um número de arcos = número de vértices -1.

Independência e dependência linear num grafo

- Os arcos de uma árvore correspondem a um conjunto de vectores linearmente independentes (base) do modelo de programação linear.
- Os arcos de um ciclo correspondem a um conjunto de vectores linearmente dependentes: um arco do ciclo pode ser expresso como uma combinação linear dos restantes arcos.

^(*) Uma árvore é um grafo com arcos não-orientados (ou arestas); iremos considerar os arcos sem a sua orientação.

^(**) Pode ser provado que quaisquer 2 das propriedades caracterizam uma árvore e implicam a terceira, 👩 🕟 🔞 🍃 🔻 💈 🥏 💍 🔌

Exemplo: resolver sistema em ordem às variáveis básicas

- Conjunto das variáveis básicas $\mathcal{B} = \{x_{11}, x_{12}, x_{22}, x_{32}, x_{33}\}.$
- Grafo correspondente é uma árvore: ligado, sem ciclos e $|\mathscr{B}| = 5$.
- Conjunto das variáveis não-básicas $\mathcal{N} = \{x_{13}, x_{21}, x_{23}, x_{31}\}.$

	D	E	F			
Д	? 3	? 6	5	30	30 A	D 20
В	2	? 5	5	10	B	E 30
С	1	? 2	? 3	50	50 C	F 40
	20	30	40			

- Resolvendo o sistema de equações em ordem às variáveis básicas, obtém-se uma solução básica (única) do sistema (determinado) com 5 equações linearmente independentes e com 5 variáveis,
- sendo as variáveis não-básicas iguais a 0,

Solução básica (vértice do poliedro de transportes)

- Solução básica é admissível, porque $x_{ij} \ge 0, \forall i, j$.
- Há m+n-1 variáveis básicas (exemplo, quadro tem 5 casas básicas).
- As restantes variáveis são não-básicas.

	D	Е	F			
Α	20 3	10 6	5	30	30 A	D 20
В	2	10 5	5	10	10 B	E 30
С	1	10 2	40 3	50	50 C	F 40
	20	30	40			

Custo da solução básica:

• custo = 20(3)+10(6)+10(5)+10(2)+40(3)=310

Algoritmo (simplex) de transportes

Algoritmo

Obter uma quadro básico inicial (i.e., solução básica inicial) Enquanto (quadro básico não óptimo) mudar para um quadro básico adjacente melhor

Dois métodos para obter um quadro básico inicial:

- Método do canto NW
- Método dos custos mínimos

- Olocar a maior quantidade possível na casa mais a NW ⇒
 - ou a procura de um destino (coluna) é totalmente satisfeita,
 - ou a oferta de uma origem (linha) é totalmente usada,
 - ou ambas.
- Ortar a linha ou a coluna (ou ambas)
- Repetir se ainda houver uma casa.

	D	E	F			
Α	3	6	5	30	<u>30</u> ★A	D 20
В	2	5	5	10	<u>10</u> →B	E 30
С	1	2	3	50	<u>50</u> ←C	F 40
	20	30	40			

- Olocar a maior quantidade possível na casa mais a NW ⇒
 - ou a procura de um destino (coluna) é totalmente satisfeita,
 - ou a oferta de uma origem (linha) é totalmente usada,
 - ou ambas.
- Ortar a linha ou a coluna (ou ambas)
- Repetir se ainda houver uma casa.

	ı	þ	Ε	F			
Α	2	20 3	6	5	30	<u>30</u> ★A	
В		2	5	5	10	<u>10</u> ■	E 30
С		1	2	3	50	<u>50</u> ►C	F 40
		0	30	40			

- Olocar a maior quantidade possível na casa mais a NW ⇒
 - ou a procura de um destino (coluna) é totalmente satisfeita,
 - ou a oferta de uma origem (linha) é totalmente usada,
 - ou ambas.
- Cortar a linha ou a coluna (ou ambas)
- Repetir se ainda houver uma casa.

- Olocar a maior quantidade possível na casa mais a NW ⇒
 - ou a procura de um destino (coluna) é totalmente satisfeita,
 - ou a oferta de uma origem (linha) é totalmente usada,
 - ou ambas.
- Cortar a linha ou a coluna (ou ambas)
- Repetir se ainda houver uma casa.

- Olocar a maior quantidade possível na casa mais a NW ⇒
 - ou a procura de um destino (coluna) é totalmente satisfeita,
 - ou a oferta de uma origem (linha) é totalmente usada,
 - ou ambas.
- Cortar a linha ou a coluna (ou ambas)
- Repetir se ainda houver uma casa.

- Olocar a maior quantidade possível na casa mais a NW ⇒
 - ou a procura de um destino (coluna) é totalmente satisfeita,
 - ou a oferta de uma origem (linha) é totalmente usada,
 - ou ambas.
- Cortar a linha ou a coluna (ou ambas)
- Repetir se ainda houver uma casa.

 Desvantagem: não toma em consideração os custos das casas, que podem ser muito elevados nas casas a NW.

- Olocar a maior quantidade possível na casa com custo mínimo ⇒
 - ou a procura de um destino (coluna) é totalmente satisfeita,
 - ou a oferta de uma origem (linha) é totalmente usada,
 - ou ambas.
- Ortar a linha ou a coluna (ou ambas)
- Repetir se ainda houver uma casa.

	D	Ε	F			
Α	3	6	5	30	<u>30</u> ♠	D 20
В	2	5	5	10	<u>10</u> →B	E 30
С	1	2	3	50	<u>50</u> €C	F 40
	20	30	40			

- Olocar a maior quantidade possível na casa com custo mínimo ⇒
 - ou a procura de um destino (coluna) é totalmente satisfeita,
 - ou a oferta de uma origem (linha) é totalmente usada,
 - ou ambas.
- Ortar a linha ou a coluna (ou ambas)
- Repetir se ainda houver uma casa.

	ı	þ	Ε	F			
Α		3	6	5	30	<u>30</u> ►(A)	D 20
В		2	5	5	10	<u>10</u> ■	E 30
С	2	20 1	2	3	50	50 C	F 40
		0	30	40			

- Olocar a maior quantidade possível na casa com custo mínimo ⇒
 - ou a procura de um destino (coluna) é totalmente satisfeita,
 - ou a oferta de uma origem (linha) é totalmente usada,
 - ou ambas.
- Ortar a linha ou a coluna (ou ambas)
- Repetir se ainda houver uma casa.

	ı	þ	I	ŧ	F				
Α		3		6		5	30	<u>30</u> ★A	$D \xrightarrow{20}$
В		2		5		5	10	<u>10</u> ■B	E 30
-C	4	20 1	_3	0 2		3	50	50 C	F 40
	2	}0	3	0	40				

- Olocar a maior quantidade possível na casa com custo mínimo ⇒
 - ou a procura de um destino (coluna) é totalmente satisfeita,
 - ou a oferta de uma origem (linha) é totalmente usada,
 - ou ambas.
- Ortar a linha ou a coluna (ou ambas)
- Repetir se ainda houver uma casa.

- Olocar a maior quantidade possível na casa com custo mínimo ⇒
 - ou a procura de um destino (coluna) é totalmente satisfeita,
 - ou a oferta de uma origem (linha) é totalmente usada,
 - ou ambas.
- Cortar a linha ou a coluna (ou ambas)
- Repetir se ainda houver uma casa.

- Olocar a maior quantidade possível na casa com custo mínimo ⇒
 - ou a procura de um destino (coluna) é totalmente satisfeita,
 - ou a oferta de uma origem (linha) é totalmente usada,
 - ou ambas.
- Cortar a linha ou a coluna (ou ambas)
- Repetir se ainda houver uma casa.

 Solução básica deve ter 5 variáveis básicas. Esta solução é admissível, mas ...

Solução inicial ... deve ter 5 variáveis básicas

- Considerar uma variável com valor nulo como variável básica.
- (neste caso, seleccionamos x_{AE}).
- A solução básica admissível é uma solução degenerada.

	D	Е	F			
Α	3	0 6	30 ₅	30	30 A	D 20
В	2	5	10 5	10	10 B	E 30
С	20 1	30 ₂	3	50	50 C	F 40
	20	30	40			

- Grafo associado à solução básica é uma árvore (depois de adicionar o arco).
- Desta forma, quando há vários componentes (floresta), em soluções degeneradas, também se pode associar à solução básica uma árvore.

Nota: selecção da variável básica com valor 0

- Nem todas as variáveis podem ser escolhidas!
- No seguinte exemplo, escolher a variável x_{AE} dá origem a um grafo que não é uma árvore.

	D	E	F
Α	*	0	
В	*	*	
С			*

 Os arcos associados às variáveis formam um ciclo (i.e., as colunas do modelo de PL são linearmente dependentes, e portanto não formam uma base)

Pivô: variação das variáveis não-básicas

- Pivô: quadro inicial → quadro adjacente
- No movimento ao longo de uma aresta do poliedro do modelo de programação linear (de transportes):
- todas as variáveis não-básicas permanecem nulas, excepto uma única que aumenta de valor.

Pivô: como variam os valores das variáveis básicas?

• Exemplo: quando a variável x_{AF} (não-básica) aumenta de uma quantidade θ , como variam os valores das variáveis básicas?

	D	E	F	
Α	20 3	10 6	+ θ ₅	30
В	2	10 5	5	10
С	1	10 2	40 3	50
	20	30	40	

Propriedades das árvores:

- Há 1 caminho (e 1 só) entre cada par de vértices. Porquê?
- A adição de 1 arco a uma árvore dá origem a 1 (e 1 só) ciclo.
 Porquê?

Pivô: variação dos valores das variáveis básicas

- O arco (A, F) (variável não-básica) forma um ciclo com os arcos (C, F), (C, E) e (A, E) (das variáveis básicas).
- Os arcos do ciclo formam um conjunto linearmente dependente.

	D	Е	F		
Α	20 3	10 -0 6	+ θ 5	30	30 A 0 20
В	2	10 5	5	10	10 B E 30
С	1	10+ 0 ₂	40 -0 3	50	50 C F 40
	20	30	40		

- As variáveis básicas do ciclo são designadas por Stepping-stones.
- Os valores das variáveis básicas que ficam fora do ciclo não mudam.

Pivô: qual o aumento máximo de x_{AF} ?

	D	Е	F			
Α	20 3	$10-\theta_{6}$	+ θ 5	30	30 A	$\rightarrow D$ $\stackrel{20}{\longrightarrow}$
В	2	10 5	5	10	10 B	E 30
С	1	10+θ ₂	$40-\theta_{3}$	50	50 C	F 40
	20	30	40			

- Quanto pode aumentar a variável não-básica x_{AF} sem nenhuma das variáveis básicas se tornar negativa?
- $\theta_{max} = \min\{10, 40\} = 10$

Pivô: exemplo

	D	Е	F		20
Α	20 3	$10-\theta_6$	+ θ 5	30	_30
В	2	10 5	5	10	_10
С	1	$10+\theta_{2}$	40-θ ₃	50	_50
	20	30	40	$\theta_{max} =$	min{]

• A variável x_{AF} entra na base e x_{AE} sai da base.

	D	E	F
Α	20 3	6	10 5
В	2	10 5	5
С	1	20 2	30 3
	20	30	40

Teste de optimalidade

Um vértice não é óptimo se existir

- uma variável não-básica atractiva, cujo aumento melhore o valor da função objectivo.
- caso contrário, a solução é óptima.

Dois métodos para fazer o teste de optimalidade:

- método do stepping-stone.
- método dos multiplicadores.
- O método dos Multiplicadores é o mais eficiente: identifica todas as variáveis não-básicas atractivas.
- O método do stepping-stone deve ser repetido para cada variável não-básica; ajuda a esclarecer como se calculam os valores.

Teste de optimalidade: método do stepping-stone

Identifica-se se uma dada variável não-básica é atractiva:

- analisando a variação do valor da função objectivo,
- que resulta da soma das variações dos custos quando os valores das variáveis do ciclo (a variável não-básica e as variáveis do stepping-stone) mudam.

Um pivô no problema de transportes corresponde a

 caminhar ao longo de uma aresta do poliedro do problema de transportes, aumentando uma variável não-básica e mantendo as restantes iguais a 0.

Exemplo: variável não-básica x_{AF}

	D	Е	F			
Α	20 3	$10-\theta_{6}$	+ θ 5	30	30 A	\bigcirc D $\stackrel{20}{\longrightarrow}$
В	2	10 5	5	10	10 B	E 30
С	1	10+θ ₂	$40-\theta_{3}$	50	50 C	F 40
	20	30	40	$\theta_{max} =$	$min\{10, 40\} = 10$	

Por cada unidade de aumento da variável não-básica x_{AF} ,

- gastam-se mais 5 unidades em (A, F),
- economizam-se 3 unidades em (C, F),
- gastam-se mais 2 unidades em (C, E),
- economizam-se 6 unidades em (A, E),
- pelo que o valor da função objectivo diminui 2 unidades: $\delta_{AE} = +5 3 + 2 6 = -2$.

Teste de optimalidade: método dos multiplicadores

Output do método dos multiplicadores:

- os δ_{ij} de todas as variáveis não-básicas ij.
- Vantagem: mais eficiente do que calcular as variações de custo para todos os ciclos.

Validade do método: resulta da teoria da dualidade (ver Apêndice)

Os multiplicadores são variáveis duais associadas às restrições.

Teste de optimalidade: método dos multiplicadores (cont.)

Multiplicadores associados às restrições:

- há um multiplicador u_i associado a cada linha i, i = 1,...,m;
- há um multiplicador v_j associado a cada coluna j, j = 1, ..., n.

Método dos multiplicadores:

- Fixar o valor de um qualquer multiplicador (e.g., no valor 0).
- Para as casas básicas $(ij \in \mathcal{B})$, fazer:

$$c_{ij}=u_i-v_j$$

② Para as casas não-básicas $(ij \in \mathcal{N})$, fazer:

$$\delta_{ij} = c_{ij} - (u_i - v_j)$$

Output do método dos multiplicadores:

cálculo dos δ_{ii} dá o mesmo resultado.

ullet os δ_{ii} de todas as casas não-básicas.

Nota: há livros que usam $c_{ij} = u_i + v_j$ em grafos bipartidos, o que equivale a usar os valores simétricos de v_j . É fácil de verificar que o

Método dos multiplicadores:

• Fixar o valor de um qualquer multiplicador (e.g., no valor 0).

$u_i^{V_j}$			
0	20 3	10 6	5
	2	10 5	5
	1	10 2	40 3

30 10 50

• fixar um multiplicador: $u_A = 0$.

Método dos multiplicadores:

Para as casas básicas, fazer:

$$c_{ij} = u_i - v_j$$

 u_i^{v}

0

20 3	10 6	5
2	10 5	5
1	10 2	40 3

10 50

•
$$u_A - v_D = 3$$

$$\Rightarrow v_D =$$

- •
- •
- •
- •
- •

Método dos multiplicadores:

Para as casas básicas, fazer:

$$c_{ij} = u_i - v_j$$

•
$$u_A - v_D = 3$$

$$\Rightarrow v_D = -3$$

$$\bullet \quad u_A - v_E = 6$$

$$\Rightarrow v_E =$$

- •
- •
- •

Método dos multiplicadores:

Para as casas básicas, fazer:

$$c_{ij}=u_i-v_j$$

•
$$u_A - v_D = 3$$

$$\Rightarrow v_D = -3$$

•
$$u_A - v_E = 6$$

$$\Rightarrow v_E = -6$$

•
$$u_B - v_E = 5$$

$$\Rightarrow u_B =$$

- •
- •
- •

Método dos multiplicadores:

Para as casas básicas, fazer:

$$c_{ij} = u_i - v_j$$

$u_i^{V_j}$	-3	-6	
0	20 3	10 6	5
-1	2	10 5	5
	1	10 2	40 3

30 0	-3
A	D 20
10-1	-6
B	E 30
50 (C)	F) 40

•
$$u_A - v_D = 3$$

$$\Rightarrow v_D = -3$$

•
$$u_A - v_E = 6$$

$$\Rightarrow v_E = -6$$

•
$$u_B - v_E = 5$$

$$\Rightarrow u_B = -1$$

•
$$u_C - v_E = 2$$

$$\Rightarrow u_C =$$

•

•

Método dos multiplicadores:

Para as casas básicas, fazer:

$$c_{ij} = u_i - v_j$$

$u_i^{v_j}$	-3	-6	
0	20 3	10 6	5
-1	2	10 5	5
-4	1	10 2	40 3

30	30 O	-3 D 20
10	10 B	-6 E 30
50	50 ⁻⁴ C	F 40

•
$$u_A - v_D = 3$$

$$\Rightarrow v_D = -3$$

•
$$u_A - v_F = 6$$

$$\Rightarrow v_E = -6$$

•
$$u_B - v_E = 5$$

$$\Rightarrow u_B = -1$$

$$u_C - v_F = 2$$

$$\Rightarrow u_C = -4$$

•
$$u_C - v_F = 3$$

$$\Rightarrow v_F =$$

Método dos multiplicadores:

Para as casas básicas, fazer:

$$c_{ij}=u_i-v_j$$

-3	-6	<u>-7</u>
20 3	10 6	5
2	10 5	5
1	10 2	40 3
	3	20 ₃ 10 ₆ 2 10 ₅

30	30 (A)	———(<u>C</u>
10	10 B	-6 E
50	50 ⁻⁴ C	

•
$$u_{\Delta} - v_{D} = 3$$

$$\Rightarrow v_D = -3$$

•
$$u_A - v_E = 6$$

$$\Rightarrow v_E = -6$$

•
$$u_B - v_E = 5$$

$$\Rightarrow u_B = -1$$

•
$$u_C - v_F = 2$$

$$\Rightarrow u_C = -4$$

•
$$u_C - v_F = 3$$

$$\Rightarrow v_F = -7$$

• Será sempre possível calcular todos os multiplicadores? Porquê?

Método dos multiplicadores

Para as casas não-básicas, fazer:

$$\delta_{ij} = c_{ij} - (u_i - v_j) = c_{ij} - u_i + v_j$$

30

10

50

u_I	5	U	,
0	20 3	10 6	-2 5
-1	0 2	10 5	-1 5
-4	+2	10 2	40 3

$$30 \text{ A}$$
 -6 B -7 A

•
$$\delta_{AF} = 5 - 0 - 7 = -2$$

•
$$\delta_{BD} = 2 - (-1) + (-3) = 0$$

•
$$\delta_{BF} = 5 - (-1) + (-7) = -1$$

•
$$\delta_{CD} = 1 - (-4) + (-3) = +2$$

• A variável não-básica x_{AF} é a mais atractiva.

Variável não-básica que entra na base: selecção

 Seleccionar a variável não-básica com maior variação da função objectivo por unidade de incremento da variável não-básica, ou seja:

A variável não-básica a entrar na base é:

- a variável não-básica com δ_{ij} mais negativo (em problemas de minimização).
- Esta escolha visa atingir a solução óptima mais rapidamente.
- Em caso de empate, a escolha é arbitrária.

Resolução do exemplo: diapositivo repetido da iteração 1

30

10

50

• A variável x_{AF} entra na base e x_{AE} sai da base.

	D	E	F
Α	20 3	6	10 5
В	2	10 5	5
С	1	20 2	30 3
	20	30	40

Quadro 2: teste de optimalidade

• A variável não-básica mais atractiva é a variável x_{BD} : $\delta_{BD} = -2$.

Iteração 2

	D	Е	F			
Α	20-θ ₃	6	10+θ ₅	30	30 A	D 20
В	+ θ 2	$10-\theta_5$	5	10	10 B	E 30
С	1	20+θ ₂	$30-\theta_3$	50	50 C	F 40
	20	30	40	$\theta_{max} =$	$min\{10,20,30\}=10$	

30

10

50

ullet A variável x_{BD} entra na base e x_{BE} sai da base.

	D	Е	F
Α	10 3	6	20 5
В	10 2	5	5
С	1	30 2	20 3
	20	30	40

Quadro 3: teste de optimalidade

- Solução óptima.
- \bullet Custo da solução óptima: 10(3)+20(5)+10(2)+30(2)+20(3)=270
- Há soluções óptimas alternativas, porque $\delta_{\it CD}$ = 0.

Uma solução óptima alternativa

	D	Е	F			
Α	10- <i>\theta_3</i>	6	20+ <i>θ</i> ₅	30	30 A	D 20
В	10 2	5	5	10	10 B	E 30
С	+0 1	30 2	$20-\theta_3$	50	50 C	F 40
	20	30	40	$\theta_{\it max}$	$= \min\{10, 20\} = 10$	

30

10

50

• O custo da seguinte solução é o mesmo. Porquê?

Conclusão

- O algoritmo apresentado é uma especialização do algoritmo simplex para um problema que é representado num grafo bipartido.
- Este problema é, por vezes, designado por problema de Hitchcock^(†), que apresentou um modelo matemático e um procedimento para a sua resolução.
- Os grafos bipartidos são uma classe de grafos, e o algoritmo pode ser generalizado para grafos gerais.

(†) - Frank. L. Hitchcock, The distribution of a product from several sources to numerous localities, J. Math. Physics, 20 (1941), 224-230.

Apêndices

- Degenerescência
- ② Dual do problema de transportes
- Justificação do método dos multiplicadores

Degenerescência: pivô degenerado

ullet Com degenerescência, regras são semelhantes, mas $heta_{max}$ pode ser 0.

• A variável x_{BD} entra na base (com valor nulo) e x_{AE} sai da base.

3	6	30 ₅
0 2	5	10 5
20 1	30 ₂	3
20	30	40

Degenerescência: saída do vértice degenerado

O pivô anterior designa-se por pivô degenerado:
 a base é diferente, mas a solução básica (vértice) é a mesma.

	-2	-3	-5		
0	+1 3	+3	30 ₅	30	30 A
0	$0+\theta_2$	+2 5	$10-\theta_{5}$	10	10 B
-1	$20-\theta_{1}$	30 ₂	$^{-1}$ $+\theta$ 3	50	50 C
	20	30	40	$\theta_{max} =$	$min\{10, 20\} = 10$
	-2	-3	-5		
0	-2 +1 3	-3 +3 6	-5 30 ₅	30	30 A
0	+1	+3		30 10	30 A 10 B
	+1 3	+3 6 +2	30 ₅		A

Dual do problema de transportes

Grafo bipartido, $G = (V_1, V_2, A)$, em dois conjuntos de vértices V_1 e V_2 .

Modelo primal do problema de transportes

$$\begin{aligned} & \min & & \sum_{ij:i \in V_1, j \in V_2} c_{ij} x_{ij} \\ & suj. & & \sum_{j \in V_2} x_{ij} = a_i \text{ , } \forall i \in V_1 \\ & & - \sum_{i \in V_1} x_{ij} = -b_j \text{ , } \forall j \in V_2 \\ & & x_{ij} \geq 0 \end{aligned}$$

Problema de transportes: estrutura

	x ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃	x ₂₁	<i>x</i> ₂₂	<i>x</i> ₂₃	<i>x</i> ₃₁	<i>x</i> ₃₂	<i>X</i> 33			Variáveis duais
	1	1	1							=	<i>a</i> ₁	u_1
				1	1	1				=	a ₂	u_2
							1	1	1	=	<i>a</i> ₃	u ₃
	-1			-1			-1			=	$-b_1$	v_1
		-1			-1			-1		=	$-b_2$	<i>v</i> ₂
			-1			-1			-1	=	$-b_3$	<i>v</i> ₃
min	c ₁₁	<i>c</i> ₁₂	<i>C</i> 13	c ₂₁	C ₂₂	<i>C</i> 23	<i>c</i> ₃₁	<i>C</i> 32	<i>C</i> 33			

variáveis duais (multiplicadores) do problema de transportes

- u_i : variável dual associada à restrição do vértice $i \in V_1$
- v_j : variável dual associada à restrição do vértice $j \in V_2$
- Cada coluna A_{ij} tem apenas 2 elementos diferentes de 0, um +1 na posição i do bloco de cima e um −1 na posição j do bloco de baixo, respectivamente.
- Podemos associar uma coluna desse tipo a um arco do grafo.

Problema dual

Dual

$$\begin{array}{ll} \max & \sum_{i \in V_1} a_i u_i - \sum_{j \in V_2} b_j v_j \\ \\ \text{suj. a} & u_i - v_j \leq c_{ij} \ , \ \forall i \in V_1, j \in V_2 \\ & u_i, v_i \text{ sem restrição de sinal} \end{array}$$

• as variáveis duais não têm restrição de sinal; iremos justificar esse facto já a seguir.

Construção do dual do problema de transportes - I

Regra:

- Uma restrição de igualdade no problema primal tem associada uma variável dual sem restrição de sinal.
- Há autores que, para construir o modelo dual, não reduzem o modelo a uma das formas indicadas ((max,≤) ou (min,≥)), e que usam directamente regras para saber o tipo de variáveis duais.
- Usando o procedimento apresentado nos diapositivos sobre Dualidade, todas essas regras podem ser derivadas.

Para exemplificar, com este exemplo do problema de transportes,

- Vamos colocar o problema na forma canónica: problema de min com restrições de ≥,
- vamos construir o problema dual,
- e obter justamente a regra acima apresentada.

Construção do dual do problema de transportes - II

Problema primal na forma canónica:

	<i>x</i> ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₂₁	X22	X23	<i>x</i> ₃₁	<i>X</i> 32	<i>X</i> 33			Variáveis duais
	1	1	1							≥	a ₁	u_1^+
	-1	-1	-1							≥	$-a_1$	u_1^{-}
				1	1	1				≥	a ₂	u_2^+
				-1	-1	-1				≥	$-a_2$	
							1	1	1	≥	<i>a</i> ₃	u ₂ - u ₃ +
							-1	-1	-1	≥	-a ₃	u_3^-
	-1			-1			-1			≥	$-b_1$	v_1^+
	1			1			1			≥	b_1	v_1^-
		-1			-1			-1		≥	$-b_2$	v_2^+
		1			1			1		≥	<i>b</i> ₂	_
			-1			-1			-1	≥	$-b_3$	v_{3}^{+}
			1			1			1	≥	<i>b</i> ₃	v ₂ v ₃ ⁺ v ₃ ⁻
min	<i>c</i> ₁₁	<i>c</i> ₁₂	C ₁₃	c ₂₁	C ₂₂	C ₂₃	<i>c</i> ₃₁	C32	C33			-

sendo todas as variáveis $u_i^+, u_i^- \ge 0, \forall i \in v_j^+, v_j^- \ge 0, \forall j$.

Construção do dual do problema de transportes - III

Problema dual correspondente:

	u_1^+	u_1^-	u_{2}^{+}	u_2^-	u_{3}^{+}	u_3^-	v_1^+	v_1^-	v_{2}^{+}	v_2^-	v_{3}^{+}	v_3^-		
-	1	-1					-1	1					≤	c ₁₁
	1	-1							-1	1			≤	<i>c</i> ₁₂
	1	-1									-1	1	≤	<i>c</i> ₁₃
			1	-1			-1	1					≤	c ₂₁
			1	-1					-1	1			≤	c ₂₂
			1	-1							-1	1	≤	c ₂₃
					1	-1	-1	1					≤	c ₃₁
					1	-1			-1	1			≤	c ₃₂
					1	-1					-1	1	≤	c ₃₃
max	a_1	$-a_1$	<i>a</i> ₂	-a ₂	<i>a</i> ₃	- <i>a</i> ₃	$-b_1$	b_1	$-b_{2}$	b_2	$-b_3$	<i>b</i> ₃		

As variáveis u_i e v_j definidas do seguinte modo não têm restrição de sinal:

$$u_i = u_i^+ - u_i^-, \quad \forall i$$

$$v_j = v_i^+ - v_i^-, \quad \forall j$$

Construção do dual do problema de transportes - IV

Modelo dual com variáveis sem restrição de sinal:

	u_1	u_2	из	v_1	<i>v</i> ₂	<i>V</i> 3		
	1			-1			≤	c ₁₁
	1				-1		≤	<i>c</i> ₁₂
	1					-1	≤	c ₁₃
		1		-1			≤	c ₂₁
		1			-1		≤	c ₂₂
		1				-1	≤	c ₂₃
			1	-1			≤	c ₃₁
			1		-1		≤	<i>c</i> ₃₂
			1			-1	≤	<i>c</i> ₃₃
max	a_1	a ₂	a 3	$-b_{1}$	$-b_{2}$	$-b_{3}$		

As variáveis u_i e v_j não têm restrição de sinal.

Método dos multiplicadores

Método dos multiplicadores: passo 1

- Para cada variável básica x_{ij} , fazer: $u_i v_j c_{ij} = 0$,
- porque a variável dual correspondente (variável de folga da restrição dual) deve ser nula.

Solução dual: $c_B B^{-1} = (u_1, ..., u_m, v_1, ..., v_n)$.

Método dos multiplicadores: passo 2

- Para cada variável não-básica x_{ij} , calcular: $\delta_{ij} = c_{ij} (u_i v_j)$.
- ullet Como cada coluna A_{ij} tem apenas 2 elementos diferentes de 0,
- $(c_B B^{-1}) A_{ij} c_{ij} = u_i v_j c_{ij}$,
- que é simétrico de δ_{ij} , i.e., $\delta_{ij} = -(c_B B^{-1})A_{ij} + c_{ij}$

O valor de $\delta_{\it ij}$ serve para avaliar se a variável não-básica é atractiva.

Fim