Pure seasonal models

ARIMA MODELS IN R

David Stoffer

Professor of Statistics at the University of Pittsburgh

Pure Seasonal Models

- Often collect data with a known seasonal component
- Air Passengers (1 cycle every S = 12 months)
- Johnson & Johnson Earnings (1 cycle every S = 4 quarters)

Pure Seasonal Models

Consider pure seasonal models such as an $\mathsf{SAR}(P=1)_{s=12}$

$$X_t = \Phi X_{t-12} + W_t$$

ACF and PACF of Pure Seasonal Models

	SAR(P)s	SMA(Q) _s	SARMA(P, Q) _s
ACF*	Tails off	Cuts off lag QS	Tails off
PACF*	Cuts off lag PS	Tails off	Tails off

^{*} The values at the nonseasonal lags are zero

Let's practice!

ARIMA MODELS IN R

Mixed seasonal models

ARIMA MODELS IN R

David Stoffer

Professor of Statistics at the University of Pittsburgh

Mixed Seasonal Model

- Mixed model: $\mathsf{SARIMA}(p,d,q) imes (P,D,Q)_s$ model
- ullet Consider a SARIMA $(0,0,1) imes (1,0,0)_{12}$ model

$$X_t = \Phi X_{t-12} + W_t + \theta W_{t-1}$$

- ullet SAR(1): Value this month is related to last year's value X_{t-12}
- ullet MA(1): This month's value related to last month's shock W_{t-1}

ACF and PACF of SARIMA(0,0,1) x (1,0,0) s=12

• The ACF and PACF for this mixed model:

$$X_t = .8X_{t-12} + W_t - .5W_{t-1}$$

ACF and PACF of SARIMA(0,0,1) x (1,0,0) s=12

• The ACF and PACF for this mixed model:

$$X_t = .8X_{t-12} + W_t - .5W_{t-1}$$

Seasonal

ACF and PACF of SARIMA(0,0,1) x (1,0,0) s=12

• The ACF and PACF for this mixed model:

$$X_t = .8X_{t-12} + W_t - .5W_{t-1}$$

Non-seasonal

Seasonal Persistence

Seasonal Persistence

Quarterly Occupancy Rate: **% rooms filled

Seasonal Component: this year vs. last year Q1 \approx Q1, Q2 \approx Q2, Q3 \approx Q3, Q4 \approx Q4

Seasonal Persistence

Quarterly Occupancy Rate: **-% rooms filled **-

Seasonal Component: this year vs. last year Q1 \approx Q1, Q2 \approx Q2, Q3 \approx Q3, Q4 \approx Q4

Remove seasonal persistence by a seasonal difference:

 X_t - X_{t-4} or D = 1, S = 4 for quarterly data

Air Passengers

Monthly totals of international airline passengers, 1949-1960

lx: log(x)

dlx: diff(lx)

ddlx: diff(dlx, 12)

• Seasonal: ACF cutting off at lag 1s (s = 12); PACF tailing off at lags 1s, 2s, 3s...

• Seasonal: ACF cutting off at lag 1s (s = 12); PACF tailing off at lags 1s, 2s, 3s...

- Seasonal: ACF cutting off at lag 1s (s = 12); PACF tailing off at lags 1s, 2s, 3s...
- Non-Seasonal: ACF and PACF both tailing off

Air Passengers

```
airpass_fit1 <- sarima(log(AirPassengers), p = 1,  d = 1, q = 1, P = 0, \\  D = 1, Q = 1, S = 12)  airpass_fit1$ttable
```

```
Estimate SE t.value p.value

ar1 0.1960 0.2475 0.7921 0.4296

ma1 -0.5784 0.2132 -2.7127 0.0075

sma1 -0.5643 0.0747 -7.5544 0.0000
```

```
airpass_fit2 <- sarima(log(AirPassengers), 0, 1, 1, 0, 1, 1, 12)
airpass_fit2$ttable</pre>
```

```
Estimate SE t.value p.value
ma1 -0.4018 0.0896 -4.4825 0
sma1 -0.5569 0.0731 -7.6190 0
```


Air Passengers

Let's practice!

ARIMA MODELS IN R

Forecasting seasonal ARIMA

ARIMA MODELS IN R

David Stoffer

Professor of Statistics at the University of Pittsburgh

Forecasting ARIMA Processes

- Once model is chosen, forecasting is easy because the model describes how the dynamics of the time series behave over time
- Simply continue the model dynamics into the future
- In the astsa package, use sarima.for() for forecasting

Forecasting Air Passengers

In the previous video, we decided that a

 $\mathsf{SARIMA}(0,1,1) imes (0,1,1)_{12}$ model was appropriate

Let's practice!

ARIMA MODELS IN R

Congratulations!

ARIMA MODELS IN R

David Stoffer

Professor of Statistics at the University of Pittsburgh

What you've learned

- How to identify an ARMA model from data looking at ACF and PACF
- How to use integrated ARMA (ARIMA) models for nonstationary time series
- How to cope with seasonality

Don't stop here!

- astsa package
- Other DataCamp courses in Time Series Analysis

Thank you! ARIMA MODELS IN R

