Université Mohamed Khider Biskra Mokhtar HAFAYED Epreuve $N^{\circ} - 1$

Département de Mathématiques. $2013/2014, \, 1^{\grave{\epsilon}me}$ Master. Prob Approf.

Exercice 1: (6-points)_

 $1+2+1,5+1,5 \ points$

Soit X une variable aleatoire reelle integrable définie sur (Ω, \mathcal{F}, P) et \mathcal{G} une sous-tribu de \mathcal{F} . Soit Ψ une fonction convexe, telle que $\Psi(X)$ est intégrable.

- 1. Montrer que $\mathbb{E}(\Psi(X) \mid \mathcal{G}) \geq \Psi(\mathbb{E}(X \mid \mathcal{G}))$.
- 2. Déduire que si X > 0: $[\mathbb{E}(X \mid \mathcal{G})]^p \leq \mathbb{E}(X^p \mid \mathcal{G}), \forall p \geq 1$ et $\mathbb{E}(X^p \mid \mathcal{G}) \leq [\mathbb{E}(X \mid \mathcal{G})]^p, \forall p \in [0, 1]$. Donner un exemple.
- 3. Si \mathcal{H} une sous tribu de \mathcal{F} telle que $\mathcal{H} \subset \mathcal{G}$, montrer que

$$\mathbb{E}\left[\mathbb{E}(X\mid\mathcal{G})\mid\mathcal{H}\right] = \mathbb{E}\left[\mathbb{E}(X\mid\mathcal{H})\mid\mathcal{G}\right] = \mathbb{E}(X\mid\mathcal{H}).$$

4. Montrer que $\mathbb{E}\left[\mathbb{E}(X\mid\mathcal{G})\right]=\mathbb{E}(X)$, et $\mathbb{E}\left[\mathbb{E}(X\mid\mathcal{G})Y\right]=\mathbb{E}\left[XY\right]$ pour toute variable aleatoire $Y-\mathcal{G}$ mesurable

Exercice 2: (6-points)_____

2+2+2 points

1. Soit X_n une suite de variables aleatoires independantes definie par la loi de probabilité:

$$X_n \in \{0, \gamma_n\} : P\{X_n = \gamma_n\} = p_n, \quad P\{X_n = 0\} = 1 - p_n.$$

telle que $\lim_{n \to +\infty} p_n = 0$, $\gamma_n > 0$, $0 < p_n < 1$,

- (i) Montrer que X_n converge preque surement vers 0 si et seulement si la serie $\sum_n p_n$ est convergente, et que X_n converge en moyenne si et seulement si $\gamma_n \gamma_n \to 0$, quand $n \to +\infty$.
 - (ii) Montrer que X_n converge en probabilité vers.0
- 2. Soit X une variable aleatoire de variance finie et c un réel. Montrer que $\mathbb{E}\left[(X-c)^2\right] = \mathbb{V}ar(X) + (\mathbb{E}(X)-c)^2$ et déduire qu'une suite X_n converge en moyenne quadratique vers c ssi, $\mathbb{V}ar(X_n)$ tend vers 0 et $\mathbb{E}(X_n)$ tend vers c.

Exercice 3. (8-points)_

1+1+1+1+1+1+1,5+1,5 points

- 1. Montrer au moyen d'un contre exemple qu'une suite de v.a:
 - (i) $X_n \xrightarrow{P} X$ n'implique pas $X_n \xrightarrow{p.s} X$,
 - (ii) $X_n \xrightarrow{Loi} X$ n'implique pas $X_n \xrightarrow{P} X$.
- 2. Montrer au moyen d'un exemple qu'une suite de v.a
 - (i) X_n converge en moyenne mais pas en moyenne quadratique.
 - (ii) X_n converge presque surement mais pas en en moyenne.
 - (iii) X_n converge en Loi vers une constante c implique que X_n converge en probabilité vers c
- 3. Utiliser le théorème limite central pour montrer que la suite $X_n = e^{-n} \sum_{k=0}^n \frac{n^k}{k!}$ converge vers $\frac{1}{2}$ quand $n \to +\infty$.
- 4. Si X_n une suite de variables aleatoires independantes, Montrer que si $\sum_n X_n$ converge presque surement, alors pour tout a > 0:

$$\sum_{n} P(|X_n| > a) < +\infty.$$