Centre Number	Candidate Number	Name

MINISTRY OF EDUCATION, BOTSWANA

in collaboration with

UNIVERSITY OF CAMBRIDGE LOCAL EXAMINATIONS SYNDICATE

Botswana General Certificate of Secondary Education

SCIENCE: DOUBLE AWARD

0569/03

Paper 3

October/November 2003

2 hours

Candidates answer on the Question Paper No additional materials are required

Read the following carefully before you start.

Write your centre number, candidate number and name in the spaces provided at the top of this page.

Answer all questions.

Write your answers in the spaces provided on the question paper.

Do not use staples, paper clips, highlighters, glue or correction fluid.

The number of marks is given in brackets [] at the end of each question or part question.

You may use a calculator.

A copy of the Periodic Table is printed on page 16.

For Examiner's Use	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
TOTAL	

This question paper consists of 15 printed pages and 1 blank page.

SP SJF2869/TC S43259/5 © UCLES 2003

[Turn over

1 A girl pours hot water into a bottle and a Thermos flask, Fig. 1.1. She notices that the bottle gets hotter than the flask.

Fig. 1.1

(a)	Ву ч	what process does heat from the water in the bottle reach her hand?
	•	[1]
(b)		e two features of the Thermos flask that reduce heat loss from the flask, and ain how each reduces heat loss.
	1	
	2	
		[41]

high	electric motor rated at 200 W is used to raise a 20 kg bag to the roof of a building 10 in.	Om
(a)	What form of energy does the bag gain as it rises?	
		[1]
(b)	Calculate the work done to raise the bag to the roof. (1 kg has a weight of 10 N).	
	work done =	[2]
(c)	Assuming no energy losses, how long will it take for the bag to reach the roof?	
	time =	[2]
		<u>,</u>

		n
	Α	В
	Fig.	j. 3.1
(i)	What type of wave is a sound wav	/e?
(ii)	Which sound wave has a higher p	
	Explain your answer.	
(iii)	One wave is reflected by a vertical	l wall. What effect will this have on its pitch?
	Explain your answer.	
		[5]
		ertical wall. She fires a starter pistol and hears an

(c) A magnifying glass produces a virtual enlarged image.

Complete the diagram to show;

(i) where the object should be placed. Label the object O.

[1]

(ii) how the image is formed.

[4]

4 Fig. 4.1 shows two skydivers A and B falling in air.

Fig. 4.1

(a)	Name the two vertical forces acting on each diver.
	1
	2[2]
(b)	Explain why diver B would fall faster than diver A .
	[2]

5 Fig. 5.1 shows two resistors in parallel. These resistors can be replaced by a single resistor **X**, without changing the brightness of the lamp.

Fig. 5.1

(a) What would be the resistance of resistor X?

		resistance = [2]
(b)	Wha	at would be the effect on the brightness of the lamp of removing the 8Ω resistor?
	Exp	ain your answer.
		[2]
(c)	(i)	State one difference between a step-down and a step-up transformer.
	(ii)	A transformer connected to a 240 V supply draws a current of 10 A. The voltage output of the transformer is 600 V. Calculate the current in the secondary coil.
		current = [2]
	(iii)	Why is it preferable to use low current in the transmission of electricity over long distances?

6 Fig. 6.1 shows the arrangement of particles in structures **X** and **Y**.

Fig. 6.1

(a)	(i)	Write the	chemical formula of a compo	und with structure X.	
	(ii)		chemical formula of the comp		[2]
(b)	Con	nplete the	table by naming the type of s	tructure and bonding in X ar	nd Y .
			type of structure	bonding	
		Х			
		Υ			[4]
					∐ [4]
(c)		•	e compound with structure X as a low melting point?	have a high melting point	, while that with
	X				•••••••••••••••••••••••••••••••••••••••
					•••••
	Y				
					[2]
(d)	Giv	e one othe	er property each for compound	ds with the bonding in X and	l in Y .
	X				

7 The equation represents the complete combustion of 2.0 g of propane at room temperature and pressure.

$${\rm C_3H_8(g)} + \quad {\rm O_2(g)} \rightarrow \quad {\rm CO_2(g)} + \quad {\rm H_2O(I)}$$

(a) Balance the equation.

[1]

(b) Calculate the number of moles of propane that were burnt.

number of moles =[2]

(c) Calculate the mass of oxygen that reacted with propane.

mass of O_2 = g [2]

(d) Calculate the volume of carbon dioxide produced.

volume of $CO_2 = \dots dm^3$ [2]

(e) When the carbon dioxide produced was dissolved in water, it formed a weak acid.

(i) What is a weak acid?

.....

(ii) Name the weak acid formed.

......[2]

undertaken properly.
(a) State two environmental problems that may be caused by the chemical industry.
1
2[2]
(b) Some products of the chemical industry are recycled.
(i) What is recycling?
[1]
(ii) Give two advantages of recycling.
1
2[1]
(iii) Name one substance that can be recycled.
[1]
Dudu prepared some alcohol by mixing yeast, malt, sugar and warm water. The mixture was left for 2-3 days.
(a) Name the substance added to speed up the reaction.
[1]
(b) Name the process used to prepare the alcohol.
[1]
(c) Write an equation to represent the reaction that took place.
[1]

(d) The equation shows the reaction between the alcohol and ethanoic acid to form **P** and water.

$$CH_3COOH + C_2H_5OH \longrightarrow P + H_2O$$

(i) Name the group of organic compounds to which P belongs.

.....[1]

(ii) Draw the molecular formula of P.

[1]

(iii) State one physical property of P.

.....[1]

(e) Equations S and R represent the preparation of ethanol, $\rm C_2H_5OH$, from butane.

(i) Write the chemical formula of M.

_____[1]

(ii) Name the type of reaction S.

.....[1]

(iii) Name the homologous series to which CH_3CH_3 belongs.

.....[1]

10				s supply cells with energy s m for wastes.	sources and substances	for growth, and act as
	(a)	(i)	Desc	cribe how energy is obtained	by cells.	
						[2]
		(ii)	With tissu	reference to named substa es.	ances, explain how blood	I promotes growth in the
						[2]
		(iii)	Com	plete the table below to sheted.	now where any two nar	med waste products are
				waste product	organ	
				(i)		
				(ii)		[4]
	(b)	Son		ung women develop a condi	tion in which there are fe	
		(i)	Wha	t physical effect does this ha	ve on them?	
						[1]
		(ii)	Sugg	gest the cause of this condition	on.	
						[1]

11 Fig. 11.1 shows blood vessels in the skin.

Fig. 11.1

When a person carries out vigorous exercise, there is a change in the capillary in the skin.

(a)	(i)	On Fig. 11.1, show how the capillary would change if vigorous exercise is carried out.
	(ii)	Explain how the change you have shown helps in regulating body temperature.
		[2]
(b)	Des	cribe the role of the following skin structures in cooling the body.
	(i)	hair:
		[2]
	(ii)	sweat glands:
		[2]
	(iii)	receptors

		nt used three culture solutions A , B and C to investigate the necessity of mineral plant growth. Three leafy shoots were put in the culture solutions treated as follows:	
A B C	solution lacking nitrate ions		
		y shoots were exposed to the same conditions of growth for four weeks. Air was through the solutions.	
(a)	Whi	ch plant will show the healthiest growth?	
(b)	Des	cribe and explain the appearance of	
	(i)	plant B	
	• •	appearance:	
		explanation:[2]	
	(ii)	plant C	
		appearance:	
		explanation:[2]	
(c)	Wh	was it necessary to bubble air through the solutions during the experiment?	
	••••	[1]	
(d)	Wh	at was the purpose of plant A ?	
		[1]	
(e)	(i)	Name the process by which the plants take up mineral salts.	
		[1]	
	(ii)	State two ways in which the process in (i) differs from osmosis.	
		[2]	

13 Fig. 13. 1 shows the percentage of undigested food taken in through the mouth until it leaves the alimentary canal.

Fig. 13.1

(a) Name section B.

[1]

(b) Why does the digestion of carbohydrates stop in section C?

[1]

(c) In which section does most digestion occur?

[1]

(d) State the function of section F.

[1]

(e) State what happens to the undigested material at G.

[1]

BLANK PAGE

DATA SHEET
The Periodic Table of the Elements

						=	ne Perio	dic i abi	e or the	The Periodic Lable of the Elements	2]						
_	=							ຮູ	Group			=	2	>	5	N	c
-	=												•	•	:		,
						,	- I										4 I
							Hydrogen										Hellum 2
7	6					-		_				=	12	4		19	80
=	Be											ω	ပ	z	0	ıL	ş
3 Lithium	Beryllium 4											Boron 5	Carbon 6	Nitrogen 7	00	Fluorine 9	Neon 10
ន	24	T										27	88		88	35.5	40
Ra	Mg											ΑĮ	:ō		ဟ	ಶ	¥
Sodium 11	Magnesium 12											Aluminium 13	Silicon 14	Phosphorus 15	Sulphur 16	Chlorine 17	Argon 18
88	04	45	48	15	25	55	56	69	65	2		2	7.3	l	62.	8	28
×	င္မ	သွ	F	>	ర	Ē	Fe	ර	Z	ಪ	Zu	g	æ	As		ă	호
Potassium 19	Calcium 20	Scandium 21	Titanium 22	Vanadium 23	Chromium 24	Manganese 25	10n 26	Cobalt 27	Nickel 28	Copper 29	30 Zinc	Gallium 31	Germanium 32		_	Bromine 35	Krypton 36
88	88	68	6	83		1	101	103	106		112	115	119		1	127	131
8	ഗ്	>	ŭ	£	€		æ	뜐	В	Ag		드	S		<u>Je</u>	-	×
Rubidium 37	Strontium 38	Yttrium 39	Zirconium 40	Niobium 41	Molybdenum 42	Technetium 43	Ruthenium 44	Phodium 45	Palladium 46	Silver 47	_	Indium 49		Antimony 51	Tellurium 52	ិន	Xenon 54
133	137	139	178	181	18 1		190	192	195	197	1	202	207				
క	Ba	Ę	Ì	ם	>		SO	ř	盂	Αu	훈	11	<u>g</u>	窗	8	Αŧ	졽
Caesium 55	Barium 56	Lanthanum 57 *	Hafnium 72	Tantalum 73	Tungsten 74	Rhenium 75	Osmium 76	ridium 77	Piatinum 78	Gold 79	Mercury 80	Thallium 81	Lead 82	Bismuth 83	Potonium 84	Astatine 85	Redon 86
i	526	227									-						
ì	æ	Ac															
Francium 87	Radium 88	Actinium 89															
*58.71	*58-71 Lanthanoid series	d corioc	1	140	141	4		150	152	157	159	162	165	167	169	<u>s</u>	175
100	Actinosid	G 30:103		පී	ď	P	F	Sm	丑	g	2	۵	운	ш	Ę	φ ¥	L
790-105	T90-103 Actinoid series	seues		Cerium	Praseodymium	Neodymium	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbirm	Thullum	Ytterbium	Lutetium

150 152 157 159 159 159 159 159 150	5m Eu Gd Tb Dy Ho Fr Samarium Europiam Gadopiniam Tactium Dysprosium Hotmium Errbium 62 63 64 65 66 67 88	Pm Sm Eu Gd Tb Dy Ho Er Prometitum Samarium Europium Gaddeinium Tertium Dysprosium Hofmium Erthum 61 62 63 64 65 66 67 68	144 Pm 150 152 157 159 162 165 167 Nd Pm Sm Europiam Gadoinium Gadoinium Toetiam Dy Ho Fr 60 61 62 63 64 65 65 67 67 68 238 238 64 65 65 67 67 68
150 152 157 159 162 Sm	150 152 157 159 162 Sm	150 152 157 159 162 162 162 162 162 163 162 163 162 163	144 Pm 150 152 157 159 162 Nd Pm Sm Eu Gd Tb Dy Neodymium Promethium Samarium Europium Gadoinium Tarbium Dysprosium 238 61 62 63 64 65 66
150 152 157 159 Sm	150 152 157 159 Sm	Sm Sm Eu Gd Tb Tb Tb Tb Tb Tb Tb T	144 Pm 150 152 157 159 Nd Pm Sm Eu Gd Tb Neodymium Promethium Samarium Europium Gaodinium Tabrium 60 61 62 63 64 65 238 738 74 74 74
Sm Eu Gd Samarium Europiam Gaobinium 62 84	Sm Eu Gd Samarium Europiam Gaobinium 62 84	150 157	144 Pm 150 157 157 Nd Pm Sm Eu Gd Neodymium Fin constitution Europium Gadolinium 60 61 62 63 238 64 64
Sm Eu Samarium Europium 62	Sm Eu Samarium Europium 62	150 152 152 152 152 152 152 152 153	Nd Pm Sm Europium 60 62 63 63 63 65 65 65 65 65 65 65 65 65 65 65 65 65
Samarium	Samarium	Pm Sm Promethum Samarium 61 62	Nd Pm Sm Neodynium Promethium Samarium 60 61 62
		Promethium 61	Nd Pm Neodymium Promethium 60 61
	Promethium 61		Neodymium 60 238

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

b = proton (atomic) number

a = relative atomic mass X = atomic symbol

Key