Quiz 3: January 22, 2015

Left Neighbor:	Right Neighbor:	
2 010 1 (01 2 110 01 ·	1010110110110011	

This is a closed book quiz

TABLE 1 Rules of Inference.		
Rule of Inference	Tautology	Name
$p \atop p \to q \atop \therefore q$	$[p \land (p \rightarrow q)] \rightarrow q$	Modus ponens
$ \begin{array}{c} \neg q \\ p \to q \\ \therefore \overline{\neg p} \end{array} $	$[\neg q \land (p \to q)] \to \neg p$	Modus tollens
$\begin{array}{c} p \to q \\ q \to r \\ \therefore \overline{p \to r} \end{array}$	$[(p \to q) \land (q \to r)] \to (p \to r)$	Hypothetical syllogism
$ \begin{array}{c} p \lor q \\ \neg p \\ \therefore \overline{q} \end{array} $	$[(p \lor q) \land \neg p] \to q$	Disjunctive syllogism
$\therefore \frac{p}{p \vee q}$	$p \to (p \lor q)$	Addition
$\therefore \frac{p \wedge q}{p}$	$(p \land q) \rightarrow p$	Simplification
$ \begin{array}{c} p \\ q \\ \therefore p \wedge q \end{array} $	$[(p) \land (q)] \to (p \land q)$	Conjunction
$ \begin{array}{c} p \lor q \\ \neg p \lor r \\ \therefore \overline{q \lor r} \end{array} $	$[(p \lor q) \land (\neg p \lor r)] \to (q \lor r)$	Resolution

1. (4 points) Let Q(x) be the statement " $x = x^2$." If the domain consists of all integers, what are these truth values?

- **T** (a) Q(0)
- **F** (b) Q(-1)
- T (c) $\exists x Q(x)$
- $F(d) \forall x \neg Q(x)$

For this question, you were supposed to state TRUE or FALSE for each statement below. Many students circled statements without writing 0 or 1 or T or F. This is not a sufficient answer. Credit was generally given but a point or less was deducted.

2. (4 points) Express the negations of each of these statements so that all negation symbols immediately precede predicates:

(a) $\exists z \forall y \forall x T(x, y, z)$

$$\sim (\exists z \forall y \forall z T(x,y,z)) = \forall z \exists y \exists z \sim T(x,y,z)$$

(b) $\exists x \exists y P(x, y) \land \forall x \forall y Q(x, y)$

$$\sim (\exists x \exists y P(x,y) \land \forall x \forall y Q(x,y)) = \sim \exists x \exists y P(x,y) \lor \sim \forall x \forall y Q(x,y) = \forall x \forall y \sim P(x,y) \lor \exists x \exists y \sim Q(x,y)$$

3. (2 points) Determine whether each of these arguments is valid. If it is valid, what rule of inference is being used?

(a) If n is a real number such that n > 1, then $n^2 > 1$. Suppose that $n^2 > 1$. Then n > 1.

Invalid

(b) if n is a real number with n > 2, then $n^2 > 4$. Suppose that $n^2 \le 4$. Then $n \le 2$

Valid. We are given p -> q and ~q and it yields ~p. This is Modus Tollens aka Contraposition