# [9장] 웹 크롤러 설계

가상 면접 사례로 배우는 대규모 시스템 설계 기초

이민석 / unchaptered

## 웹 크롤러(Web Crawler)란 무엇인가?

웹 크롤러는 웹사이트를 탐색하며 데이터를 수집하는 도구이다.

웹사이트에 포함된 링크(URL)을 따라가면서 정보를 수집하고 분류하며, 이 특징은 다음과 같이 활용된다.

- 1. 검색 엔진 인덱싱(Search Engine Indexing)
- 2. 웹 아카이빙(Web Archiving)
- 3. 웹 마이닝(Web Mining)
- 4. 웹 모니터링(Web Monitoring)

# 검색 엔진 인덱싱(Search Engine Indexing)

- [예시]

Google, Naver, Bing 등

- [정의]

검색 엔진이 검색 전에 정보를 구성하여 쿼리에 대한 초고속 응답을 가능하게 하는 프로세스

- [프로세스]

역색인은 <u>텍스트를 저장하는 데이터베이스</u>를 해당 텍스트 문서와 이를 가리키는 포인터와 함께 컴파일합니다.

이후, 검색엔진은 <u>토큰화</u>를 통해 단어를 핵심 의미로 줄여 데이터를 저장하고 검색하는데 필요 줄입니다.



https://www.lumar.io/learn/seo/indexability/search-engine-index ing/#:~:text=Indexing%20is%20the%20process%20by,engines%20to%20identify%20relevant%20information.

# 웹 아카이빙(Web Archiving)이란?

- [예시]

US Library of Congress, EU Web Archive, Internet Archive

- [정의]

나중에 사용할 목적으로 **장기보관**하기 위해서 웹에서 정보를 모으는 절차





https://www.googie.com/search/q=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&og=US+Web+ARchive&o

https://www.lumar.io/learn/seo/indexability/search-engine-indexing/#.~:text=Indexing%20is%20 the%20process%20by,engines%20to%20identify%20relevant%20information.

# 웹 마이닝(Web Mining)이란?

### - [정의]

문서 및 서비스에서 정보를 **자동으로 검색하고 추출**하는 <u>데이터 마이닝 기술</u> 프로세스

요구사항에 따라 관련 정보를 찾고 추출하기 위해 WWW(World Wide Web)에서 사용할 수 있는 시스템의 방대한 양의 데이터를 선별하는 가장 좋은 방법

## GeeksforGeeks

https://www.geeksforgeeks.org > web-mining :

## Web Mining

Mar 1, 2024 — **Web Mining** is the process of Data Mining techniques to automatically discover and extract information from Web documents and services.

# 웹 모니터링(Web Monitoring)

- [정의]

인터넷에서 저작권이나 상표권이 침해되는 사례 탐지

- [사례]

Digimarc에서 다양한 웹 모니터링을 위한 서비스 및 기능을 지원



https://www.digimarc.com/product-digitization/data-carriers/digitalwatermarks?utm\_source=google+ads&utm\_medium=search&utm\_ campaign=google+ads\_search\_Digital+Watermarks

# 결론

- 웹 크롤러(Web Cralwer)는 다음의 **기능이 반드시 포함** 
  - 웹 사이트 탐색
  - 웹 사이트 정보 저장

## 요구사항 질의

- [목적]
  - 검색 엔진 인덱싱(Search Engine Indexing)
- [수량]
  - 1,000,000,000개 (10억개)
- [제한사항]
  - 새로 만들어진 웹 페이지, 수정용 웹 페이지 고려
  - 중복 콘텐츠를 가진 페이지는 무시
  - 수집한 웹 사이트는 5년 간 저장
- [추가 고려사항]
  - 규모 확장성 : 병행성(parallelism)을 활용
  - 안정성(robustness): 잘못 작성된 HTML, 반응 없는 서버, 장애, 악성 코드가 붙은 링크
  - 예절(politeness) : 수집 대상 웹사이트에 적적량의 요청 전송
  - 확장성(extensibility): 새로운 형태의 콘텐츠 지원이 쉬워야 함

## 요구사항 질의

## [개요]

- 매달 10억 개의 페이지 다운로드
- 페이지당 평균 크기 = 500 KiB

## [QPS]

- 기본 QPS = 1,000,000,000 / 30 / 24 / 3600 = **385**
- 피크 QPS = 기본 QPS \* 2 ≒ 385 \* 2 ≒ 770

## [용량]

- 월간 필요 용량 = 1,000,000,000 \* 500 KiB = 500,000,000,000 KiB ≒ 500 TiB
- 연간 필요 용량 ≒ 500TiB \* 12month \* 5year ≒ 30,000TiB ≒ 30 PiB

# 웹 크롤러 선행 연구 1



https://azderica.github.io/til/docs/dev/system-design-interview/ch9

#### 시작 URL 집합

웹 크롤러가 크롤링을 시작하는 시작 지점 웹 크롤러가 가장 많은 페이지를 탐색할 수 있도록 별도의 전략이 필요

#### 미수집 URL 저장소

다운로드 할 URL을 FIFO Queue 형태로 저장 (다운로드 할 URL 상태) → 상태 : 다운로드할 URL

#### HTML 다운로더

<u>미수정 URL 저장소</u>에서 URL을 꺼내고 HTML을 다운로드 → 상태 : 다운로드 된 URL

#### 도메인 이름 변환기

URL을 IP 주소로 변환

#### 컨텐츠 파서

웹 사이트에 대한 파싱 및 유효성 검증 (성능 및 보안 관점)

## 웹 크롤러 선행 연구 2



https://azderica.github.io/til/docs/dev/system-design-interview/ch9

#### 중복 컨텐츠?

A와 B 페이지의 중복을 검사 전문을 비교하는 것은 너무 느리기에, 두 페이지의 해쉬값을 비교

#### 컨텐츠 저장소

인기있는 컨텐츠 → 메모리 기반 저장소 일반 컨텐츠 → 디스크 기반 저장소

#### URL 추출기

<u>상대 경로를 전부 절대 경로로 치환</u>

#### URL 필터

특정한 콘텐츠 타입, 파일 확장자를 갖는 URL은 제거

#### 이미 방문한 URL?

블룸 필터나 해시 테이블을 이용하여 URL의 중복 방문을 방지 이미 방문한 URL은 URL 저장소에 기록이 되어 있음

## **DFS vs BFS**





#### 3단계 | 상세 설계 (2-1/3) | 미수집 URL 저장소

## 예의



https://velog.io/@vixloaze/9%EC%9E%A5-%EC%9B%B9-%ED%81% AC%EB%A1%A4%EB%9F%AC-%EC%84%A4%EA%B3%84

#### 큐 라우터

같은 호스트 소속의 URL을 같은 큐(b1, b2, ..., bn)으로 가도록 제어

#### 매핑 테이블

호스트 이름 - 큐 사이를 보관

wikipedia.com - b1 apple.com - b2

#### 선입선출 큐(FIFO Queue)

같은 호스트에 속한 URL은 언제나 같은 큐(b1, b2, ..., bn)에 보관

#### 큐 선택기

여러 큐(b1, b2, ..., bn)들을 순회하면서 한 지정된 큐를 작업 스레드에 전달

#### 작업 스레드

전달된 URL을 다운로드

## 우선순위



https://velog.io/@vixloaze/9%EC%9E%A5-%EC%9B%B9-%ED%81%AC%EB%A1%A4%EB%9F%AC-%EC%84%A4%EA%B3%84

#### 순위 결정 장치

URL을 입력 받아 우선순위 계산

#### 큐(f1, ..., fn)

우선 순위 별로 큐가 하나씩 할당 우선 순위에 따라서 선택 확률이 높아짐

#### 큐 선택기

임의 큐에서 처리할 URL을 선택 <u>순위 결정 장치</u>에서 정한 순위에 따라서 확률 적으로 큐를 선택

## 신선도 + 지속적 저장장치

## [신선도]

- 정보의 신선도를 유지하기 위해서, 이미 수집한 데이터도 주기적으로 재수집해야 함
- 이 때, 재수집의 빈도는 <u>웹 페이지의 변경 이력</u> 혹은 <u>우선 순위</u>를 참조

## [지속적 저장장치]

- 인기 있는 URL은 <u>메모리 기반 저장소</u>에 저장
- 일반 URL은 <u>디스크 기반 저장소</u>에 저장

## Robots.txt

웹 사이트의 개발자는 다양한 목적에 따라서 robots.txt라는 파일을 만들고 있음

- 웹 크롤링 방지의 목적 (도서에서 소개)
- 웹 크롤링이 잘 되게 하기 위한 목적 (그 외에도··· 웹툰 불법다운로드 사이트를 보면, 웹툰 제목들이 따로 리스트업 되어 있음)



https://www.youtube.com/watch?v=qRlQ965pGCA

## 성능 최적화

기본적으로 분산 크롤링을 통해서 성능을 극대화한다.

- 1. 하지만 동기적으로 작동하는 DNS 쿼리로 인한 성능 저하가 발생할 수 있음
- 2. 분산 서버가 크롤링 대상에 가까운 곳에 있도록 지역 별로 분산할 수 있음
- 3. 타임아웃 설정 필요



https://azderica.github.io/til/docs/dev/system-design-interview/ch9

## 안정성

안정 해시를 통해서 부하 분산

지속적 저장 장치를 이용해서 크롤링 상태 및 수집 데이터를 보관

예외 처리

데이터 검증

## 확장성



https://azderica.github.io/til/docs/dev/system-design-interview/ch9

## 문제 있는 콘텐츠 감지 및 회피

중복 컨텐츠는 해시/체크섬을 이용해서 필터링

거미 덫 등은 URL의 최대길이를 제한하는 것으로 막음

 $\rightarrow \square \ \square \ \square$  https://www.marketingtracer.com/seo/crawler-traps

무의미 한 데이터(데이터 노이즈)들을 필터링해서 제거

→ <script> 태그 등

# 추가로 논의할 것들에 대하여

- 서버 측 랜더링(Server-side Rendering)
- 원치 않는 페이지 필터링
- 데이터베이스 다중화 및 샤딩
- 수평적 규모 확장성

# 감사합니다.