

Licence de Mathématiques et Informatique 2019-2020

Analyse 3

TD6

Exercice 1. On définit la fonction f sur [-1,1] par f(0)=1 et pour $x\neq 0$:

$$f(x) = 1 - x^2(1 + \frac{1}{2}\sin(\frac{1}{x})).$$

- **1.** Montrer que pour tout $x \neq 0 : 1 \frac{3}{2}x^2 \leqslant f(x) \leqslant 1 \frac{1}{2}x^2$.
- **2.** En déduire que f est continue en 0 et que f atteint son maximum en 0.
- **3.** Montrer que f est dérivable au point 0 et que sa dérivée est nulle.
- **4.** Calculer f'(x) pour $x \neq 0$.
- **5.** On pose, pour $n \ge 1$, $x_n = \frac{1}{\frac{\pi}{2} + 2n\pi}$ et $y_n = \frac{1}{\pi + 2n\pi}$. Montrer que $f'(x_n) < 0$ et $f'(y_n) > 0$.
- **6.** Existe-il un intervalle de la forme $[0,\varepsilon]$ ($\varepsilon>0$) où f est décroissante?

Exercice 2.

1. Contexte

Pour chacune des fonctions $f: \mathbb{R} \to \mathbb{R}$ suivantes, dire si f est continue sur \mathbb{R} , dérivable sur \mathbb{R} , de classe C^1 sur \mathbb{R} , deux fois dérivable sur \mathbb{R} , de classe C^∞ sur \mathbb{R} :

- **2.** $f: x \mapsto \sin(x)\sin\left(\frac{1}{x}\right)$ si $x \neq 0$ et f(0) = 0.
- **3.** f(0) = 0 et $f(x) = x^2 \cos(\frac{1}{x})$, si $x \neq 0$.
- **4.** $f: x \mapsto x|x|$.

Exercice 3. On considère la fonction $g: \mathbb{R} \longrightarrow \mathbb{R}$ définie par la relation $g(x) = e^{-1/x^2}$ si $x \neq 0$ et g(0) = 0.

- **1.** Montrer que q est continue sur \mathbb{R} tout entier et de classe \mathcal{C}^{∞} sur \mathbb{R}^* .
- **2.** Montrer que pour tout $n \in \mathbb{N}$, il existe un polynôme P_n tel que $g^{(n)}(x) = P_n\left(\frac{1}{x}\right)e^{-1/x^2}$ pour tout $x \neq 0$.
- **3.** En déduire que g est de classe \mathcal{C}^{∞} sur tout \mathbb{R} . Quels sont les valeurs des dérivées successives en 0?

Exercice 4.

1. Contexte

Soit f la fonction de] - 1, 1 [vers \mathbb{R} telle que $f(x) = \frac{\arcsin(x)}{\sqrt{1-x^2}}$.

- **2.** Démontrer que f est solution de l'équation différentielle $(1-x^2)y'-xy-1=0$.
- **3.** En déduire les dérivées successives de f en 0.

Exercice 5.

- **1.** Soit g une fonction de classe C^n définie sur l'intervalle [a,b] à valeur dans \mathbb{R} . On suppose qu'il existe n+1 réels distincts : $a \leq x_1 < x_2 < \ldots < x_n < x_{n+1} \leq b$ tels que $g(x_i) = 0$.
 - **1.1.** Montrer qu'il existe $y_1 < y_2 < \ldots < y_n$ vérifiant : $y_i \in]x_i, x_{i+1}[, g'(y_i) = 0.$
 - **1.2.** En déduire qu'il existe $z \in]a, b[$, tel que $g^{(n)}(z) = 0$.
- **2.** Soit f une fonction de classe C^n définit sur l'intervalle [a, b] à valeur dans \mathbb{R} , qui s'annule en n points $x_1 < x_2 < \ldots < x_n$ de [a, b].

On fixe $x \in [a, b]$ tel que $f(x) \neq 0$ et on pose :

$$g(t) = f(t) - A \prod_{i=1}^{n} (t - x_i)$$

- **2.1.** Trouver A tel que g s'annule en t = x. Dans la suite on choisit ce A, mais on n'utilisera pas sa valeur.
- **2.2.** Montrer que la dérivée n -iéme relativement à t de $\prod_{i=1}^{n} (t-x_i)$ est n!.
- **2.3.** En appliquant les résultats de la question 1. à g (avec le A choisi), montrer qu'il existe $z \in [a,b]$ tel que $f(x) = \frac{f^{(n)}(z)}{n!} \prod_{i=1}^{n} (x-x_i)$.
- **2.4.** Montrer alors qu'il existe $M \in \mathbb{R}^+$ tel que : $\forall x \in [a, b], |f(x)| \leq \frac{M}{n!} \prod_{i=1}^n |x x_i|$.

Exercice 6. Soient $f, g : [a, b] \longrightarrow \mathbb{R}$ deux fonctions continues sur [a, b] (a < b) et dérivables sur [a, b]. On suppose que $g'(x) \neq 0$ pour tout $x \in]a, b[$.

- **1.** Montrer que $g(x) \neq g(b)$ pour tout $x \in [a, b[$.
- **2.** Posons $p = \frac{f(b) f(a)}{g(b) g(a)}$ et considérons la fonction h(x) = f(x) pg(x) pour $x \in [a, b]$. Montrer que h vérifie les hypothèses du théorème de Rolle et en déduire qu'il existe un nombre réel $c \in]a, b[$ tel que

$$\frac{f(a) - f(b)}{g(a) - g(b)} = \frac{f'(c)}{g'(c)}.$$

3. On suppose que $\lim_{x\to b^-} \frac{f'(x)}{g'(x)} = \ell$, où ℓ est un nombre réel. Montrer que

$$\lim_{x \to b^{-}} \frac{f(x) - f(b)}{g(x) - g(b)} = \ell.$$

4. Application. Calculer la limite suivante :

$$\lim_{x \to 1^{-}} \frac{\operatorname{Arccos} x}{\sqrt{1 - x^2}}.$$

Exercice 7.

1. Contexte

Soit f une fonction de classe C^2 sur [a,b] vers \mathbb{R} et soit h la fonction affine de [a,b] vers \mathbb{R} définie par h(a)=f(a) et h(b)=f(b).

2. Démontrer la formule d'interpolation linéaire suivante : pour tout $x \in [a, b]$, il existe au moins un réel $c \in]a, b[$ tel que

$$f(x) = h(x) + (x - a)(x - b)\frac{f''(c)}{2}.$$

3. En déduire que pour tout $x \in [a, b]$,

$$|f(x) - h(x)| \le \frac{(b-a)^2}{8} \sup_{[a,b]} |f''|.$$

Exercice 8. Soit f une fonction de $[0, +\infty[$ vers \mathbb{R} dérivable en 0 et telle que f(0) = 0. Démontrer que la suite $\left(\sum_{p=1}^n f\left(\frac{p}{n^2}\right)\right)$ converge et admet $\frac{f'(0)}{2}$ pour limite.

Exercice 9. Soit $f: \mathbb{R} \to \mathbb{R}$ de classe C^{∞} telle que $f^{(n)}(0) = 0$ pour tout $n \in \mathbb{N}$. Écrire la formule de Taylor-Lagrange d'un point $x \in \mathbb{R}$ au voisinage de 0 à l'ordre n.

Exercice 10.

1. Contexte

Soit f une fonction dérivable de \mathbb{R} dans \mathbb{R} .

- **2.** Démontrer que si $f'(x) \to 0$ quand $x \to \infty$, alors $\frac{f(x)}{x} \to 0$ quand $x \to \infty$.
- **3.** La réciproque est-elle vraie?