APMA 2822B Homework 3 Report

Yash Agrawal

October 27, 2025

Math Setup

Assume that $\Delta x = \Delta y = h$.

Using the second derivative approximations we were given, we have

$$f(x,y) = \frac{u[i-1,j] + u[i+1,j] + u[i,j-1] + u[i,j+1] - 4u[i,j]}{h^2}$$

Substituting in the given f(x, y), we get

$$-8\pi^2 \sin(2\pi x)\cos(2\pi y) = \frac{u[i-1,j] + u[i+1,j] + u[i,j-1] + u[i,j+1] - 4u[i,j]}{h^2}$$
$$-8\pi^2 h^2 \sin(2\pi x)\cos(2\pi y) = u[i-1,j] + u[i+1,j] + u[i,j-1] + u[i,j+1] - 4u[i,j]$$

Solving for u[i,j], we have

$$4u[i,j] = u[i-1,j] + u[i+1,j] + u[i,j-1] + u[i,j+1] + 8\pi^2 h^2 \sin(2\pi x) \cos(2\pi y)$$
$$u[i,j] = \frac{1}{4} \left(u[i-1,j] + u[i+1,j] + u[i,j-1] + u[i,j+1] + 8\pi^2 h^2 \sin(2\pi x) \cos(2\pi y) \right)$$

We can use this equation to iteratively solve for u with the given f(x,y) using the Jacobi method.

We will consider our solution to have converged when the maximum change in u across all grid points is less than a specified tolerance ϵ .