BERT and Beyond

2019.5.17 Liu Chang

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

• Backbone: Transformer

- Training objectives:
 - Masked language modeling(cloze task)
 - Next sentence prediction(Quick thoughts)
- Ability:
 - Text / text pair classification
 - General purpose sentence embeddings / contextualized word embeddings for other tasks, such as sequence labelling...

Language model types:

- ELMo: unidirectional, both left-to-right and right-to-left
- GPT: unidirectional, left-to-right
- BERT: bidirectional

Unidirectional language model is essentially a decoder, while bidirectional language model is an encoder.

• What can BERT do, and how?

Empirical studies about BERT(and other pretrained language models):

- Understanding the Behaviors of BERT in Ranking(arxiv)
- Linguistic Knowledge and Transferability of Contextual Representations (NAACL19 long)
- What do you learn from context? Probing for sentence structure in contextualized word representations (ICLR19)

• . . .

• What can BERT do for us?

Using BERT as the backbone to do a wide range of downstream tasks:

- BERTSCORE: Evaluating Text Generation with BERT(arxiv)
- BERT for Joint Intent Classification and Slot Filling(arxiv)
- Utilizing BERT for Aspect-Based Sentiment Analysis via Constructing Auxiliary Sentence(NAACL19 short)

•

• What can we do for BERT?

Methods which can be directly incorporated to BERT:

• Reducing BERT Pre-Training Time from 3 Days to 76 Minutes(arxiv)

•

• What can't BERT do and how can BERT be improved?

Modifying model architecture, data type, training objective and ...:

- Cross-lingual Language Model (arxiv)
- MASS Masked Sequence to Sequence Pre-training for Language Generation (arxiv)
- Unified Language Model Pre-training for natural language understanding and generation (NAACL19 short)

• . . .

Cross-lingual Language Model Pretraining

——Arxiv2019, Facebook

Towards Multilingual BERT

- Causal Language Modeling(CLM): unidirectional, left-to-right
- Masked Language Modeling(MLM): bidirectional
- Translation Language Modeling(TLM): bidirectional and cross lingual

• Causal Language Modeling(CLM):

A Transformer language model trained to model the probability of a word given the previous words in a sentence $P(w_t|w_1,...,w_{t-1};\theta)$.

Masked Language Modeling(MLM)

• Translation Language Modeling(TLM)

• Cross-lingual text pair classification(XNLI)

	en	fr	es	de	el	bg	ru	tr	ar	vi	th	zh	hi	sw	ur Δ
Machine translation baselines (TRANSLATE-TRAIN)															
Devlin et al. (2018) XLM (MLM+TLM)	81.9 85.0	<u>80.2</u>	77.8 80.8	75.9 <u>80.3</u>	- 78.1	- 79.3	- 78.1	- <u>74.7</u>	70.7 <u>76.5</u>	- 76.6	- 75.5	76.6 <u>78.6</u>	<u>72.3</u>	- 70.9	61.6 - 63.2 <u>76.7</u>
Machine translation baselines (TRANSLATE-TEST)															
Devlin et al. (2018) XLM (MLM+TLM)	81.4 85.0	- 79.0	74.9 79.5	74.4 78.1	- 77.8	- 77.6	- 75.5	73.7	70.4 73.7	70.8	70.4	70.1 73.6	69.0	64.7	62.1 - 65.1 74.2
Evaluation of cross-lingual sentence encoders															
Conneau et al. (2018b) Devlin et al. (2018) Artetxe and Schwenk (2018) XLM (MLM) XLM (MLM+TLM)	73.7 81.4 73.9 83.2 85.0	67.7 - 71.9 76.5 78.7	68.7 74.3 72.9 76.3 78.9	67.7 70.5 72.6 74.2 77.8	68.9 73.1 73.1 76.6	67.9 - 74.2 74.0 77.4	65.4 71.5 73.1 75.3	64.2 69.7 67.8 72.5	64.8 62.1 71.4 68.5 73.1	72.0 71.2 76.1	64.1 69.2 69.2 73.2	65.8 63.8 71.4 71.9 76.5	64.1 65.5 65.7 69.6	55.7 62.2 64.6 68.4	58.4 65.6 58.3 - 61.0 70.2 63.4 71.5 <u>67.3</u> 75.1

Table 1: **Results on cross-lingual classification accuracy.** Test accuracy on the 15 XNLI languages. We report results for machine translation baselines and zero-shot classification approaches based on cross-lingual sentence encoders. XLM (MLM) corresponds to our unsupervised approach trained only on monolingual corpora, and XLM (MLM+TLM) corresponds to our supervised method that leverages both monolingual and parallel data through the TLM objective. Δ corresponds to the average accuracy.

- Unsupervised machine translation
- Supervised machine translation
- Low-resource language model
- Unsupervised cross-lingual word embeddings

MASS: Masked Sequence to Sequence Pre-training for Language Generation

——ICML2019, NJU, MSRA

Towards Seq2seq BERT

Motivation:

- BERT: bidirectional LM, only encoder
- GPT: unidirectional LM (standard LM), only decoder
- If unified together → Pretrained model for Seq2seq tasks.

Model:

- Architecture:
 - Mask: bidirectional LM for encoder's self-attention and decoder-encoder attention
 - Sequence prediction: unidirectional LM (standard LM) for decoder's generation ability

Figure 1. The encoder-decoder framework for our proposed MASS. The token "_" represents the mask symbol [M].

Model:

- Architecture:
 - Mask: bidirectional LM for encoder's self-attention and decoder-encoder attention
 - Sequence prediction: unidirectional LM (standard LM) for decoder's generation ability

Figure 1. The encoder-decoder framework for our proposed MASS. The token "_" represents the mask symbol [M].

Model:

Figure 1. The encoder-decoder framework for our proposed MASS. The token "_" represents the mask symbol [M].

• Objective function:

$$L(\theta; \mathcal{X}) = \frac{1}{|\mathcal{X}|} \sum_{x \in \mathcal{X}} \log P(x^{u:v} | x^{\setminus u:v}; \theta)$$
$$= \frac{1}{|\mathcal{X}|} \sum_{x \in \mathcal{X}} \log \prod_{t=u}^{v} P(x_t^{u:v} | x_{< t}^{u:v}, x^{\setminus u:v}; \theta).$$

Unifying BERT and GPT:

(a) Masked language modeling in BERT (k = 1)

(b) Standard language modeling (k = m)

Figure 2. The model structure of MASS when k = 1 and k = m. Masked language modeling in BERT can be viewed as the case k = 1 and standard language modeling can be viewed as the case k = m.

• k=1: becomes BERT

The decoder can be considered as a non-linear classifier, analogous to the softmax matrix used in BERT.

- k=m: becomes GPT
 - The decoder-encoder attention can't bring useful information, only noise.
- 1<k<m: methods in between

Unifying BERT and GPT:

• The choice of k: m/2 results in the best results in a wide range of tasks

Pretraining details

• Dataset:

- 50M for English, German and French respectively, 2.9M for Romanian.
- BPE encoding and vocabulary sharing. (as XLM)

• Other details:

- Removing the padding in the decoder (the masked tokens) but keeping the positional embedding of the unmasked tokens unchanged.
- The fragment length k is set as roughly 50% of the total number of tokens in the sentence. (m/2)

- Unsupervised NMT
 - Monolingual data only, with back translation
- Low-Resource NMT
 - Respectively sampling 10K, 100K, 1M paired sentence from the bilingual training data

• Text Summarization(ROUGE)

• Conversational Response Generation(PPL)

Method	Data = 10K	Data = 110K
Baseline BERT+LM	82.39 80.11	26.38 24.84
MASS	74.32	23.52

Unified Language Model Pre-training for Natural Language Understanding and Generation

—arxiv, MSRA

Different types of LMs:

	ELMo	GPT	BERT	UniLM
Left-to-Right LM	✓	\checkmark		✓
Right-to-Left LM	\checkmark			\checkmark
Bidirectional LM			\checkmark	✓
Seq-to-Seq LM				✓

Backbone Network	LM Objectives of Unified Pre-training	What Unified LM Learns	Example Downstream Tasks	
Transformer with shared parameters for all LM objectives	Bidirectional LM	rectional LM Bidirectional encoding		
	Unidirectional LM	Unidirectional decoding	Long text generation	
	Sequence-to-Sequence LM	Unidirectional decoding conditioned on bidirectional encoding	Abstractive summarization Question generation Generative question answering	

Training objectives: 4 LM and quick-thoughts

- For natural language understanding: compares favorably with BERT on the GLUE benchmark.
- For natural language generation:
 - improving the CNN/DailyMail abstractive summarization ROUGE-L to 40.63 (2.16 absolute improvement),
 - pushing the CoQA generative question answering F1 score to 82.5(37.1 absolute improvement),
 - and the SQuAD question generation BLEU-4 to 22.88 (6.50 absolute improvement).

Thank you for listening!