

RISK-AWARE LINEAR BANDITS WITH CONVEX LOSS

Patrick Saux¹, Odalric-Ambrym Maillard ¹

¹Inria, Univ. Lille, CNRS, UMR 918f9 - CRIStAL

Setting

At time *t*:

- Observe action set $\mathcal{X}_t \subset \mathbb{R}^d$ and select action X_t ,
- Receive reward $Y_t \sim \Phi(X_t)$ where $\Phi \colon \mathbb{R}^d \to \mathscr{P}(\mathbb{R})$,
- Linear model: $\Phi = \varphi \circ \langle \theta^*, \cdot \rangle$,
- Goal: minimize regret $\mathcal{R}_T = \sum_{t=1}^T \max_{x \in \mathcal{X}_t} \rho(\varphi \circ \langle \theta^*, x \rangle) \rho(\varphi \circ \langle \theta^*, X_t \rangle),$ where ρ is a certain **risk measure**.
- $\hookrightarrow \neq$ existing settings: $\mathbb{E}[Y_t \mid X_t] = \mu(\langle \theta^*, X_t \rangle)$ (generalized mean-linear).

Example: risk-aversion in agriculture

Elicitable risk measures

Convex loss: $\mathcal{L}: \mathbb{R} \times \mathbb{R} \to \mathbb{R}_+$.

Definitions

• Risk measure elicited by \mathcal{L} :

$$\rho_{\mathscr{L}} \colon \nu \in \mathscr{P}(\mathbb{R}) \mapsto \min_{\xi \in \mathbb{D}} \mathbb{E}_{Y \sim \nu} [\mathscr{L}(Y, \xi)].$$

• Adapted loss to a linear bandit (φ, θ^*) :

$$\rho_{\mathscr{L}}(\varphi \circ \langle \theta^*, X_t \rangle) = \langle \theta^*, X_t \rangle.$$

Examples of elicitable risk measures

Name	$ ho_{\mathscr{L}}(u)$	Associated loss $\mathcal{L}(y,\xi)$
Mean	$\mathbb{E}_{Y \sim \mathcal{V}}[Y]$	$\frac{1}{2}(y-\xi)^2$
p-expectile	$\underset{\psi(z)}{\operatorname{argmin}}_{\xi \in \mathbb{R}} \mathbb{E}_{Y \sim v} [\psi(Y - \xi)]$ $\psi(z) = p - \mathbb{1}_{z < 0} z^2$	$\psi(y-\xi)$
Entropic risk $\gamma \neq 0$	$\frac{1}{\gamma}\log\mathbb{E}_{Y\sim v}[e^{\gamma Y}]$	$\xi + \frac{1}{\gamma}(e^{\gamma(y-\xi)} - 1)$

Remark: variance and CVaR are *not* (first-order) elicitable.

LinUCB with convex loss

Input: regularisation parameter α , projection Π , exploration bonus sequence $(\gamma_t)_{t \in \mathbb{N}}$. **Initialization:** Observe \mathcal{X}_1 .

for t = 1, ..., T **do**

 $\widehat{\theta}_t \in \operatorname{argmin}_{\mathbb{R}^d} \sum_{s=1}^{t-1} \mathcal{L}(Y_s, \langle \theta, X_s \rangle) + \frac{\alpha}{2} \|\theta\|_2^2; \triangleright \text{ Empirical risk minimization}$ $\bar{\theta}_t = \Pi(\hat{\theta}_t) ; \triangleright \text{ Projection}$ $X_t = \operatorname{argmax}_{x \in \mathcal{X}_t} \langle \bar{\theta}_t, x \rangle + \gamma_t(x) ; \triangleright \text{ Play arm}$

Observe Y_t and \mathcal{X}_{t+1} .

Numerical computation of $\widehat{\theta}_t$ at each step! \neq mean-linear case: $\widehat{\theta}_t = \left(\sum_{s=1}^{t-1} X_s X_s^\top + \alpha I_d\right)^{-1} \sum_{s=1}^{t-1} Y_s X_s$.

Analysis

Notations and assumptions

- $\partial \mathcal{L}(y,\xi) = \frac{\partial \mathcal{L}}{\partial \xi}(y,\xi),$
- $V_t^{\alpha} = \sum_{s=1}^{t-1} X_s X_s^{\top} + \alpha I_d$,
- $\bullet H_t^{\alpha}(\theta) = \sum_{s=1}^{t-1} \partial^2 \mathcal{L}(Y_s, \langle \theta, X_s \rangle) X_s X_s^{\top} + \alpha I_d,$
- $\theta^* \in \Theta \subseteq \mathscr{B}_{\|\cdot\|_2}(0, S)$ convex and $\forall t \in \mathbb{N}$, $\mathscr{X}_t \subseteq \mathscr{B}_{\|\cdot\|_2}(0, L)$.

Martingale lemma

With respect to the natural bandit filtration,

- $S_t = \sum_{s=1}^{t-1} \partial \mathcal{L}(Y_s, \langle \theta^*, X_s \rangle) X_s$ defines a martingale.
- $M_t^{\lambda} = \exp\left(\lambda^{\top} S_t \frac{\sigma^2}{2} \|\lambda\|_{H_t^0(\theta^*)}^2\right)$ defines a supermartingale for each $\lambda \in \mathbb{R}^d$ (under mild assumptions).

Very Useful for time-uniform concentration of $\bar{\theta}_t$ around θ^* !

Geometric sufficient condition for optimism

Parameter space Θ is a Hessian manifold equipped with the metric $g_{\theta} = H_t^{\alpha}(\theta)$.

Local metric (depends on θ , except if ρ =mean).

Linear optimism works if $\exists \kappa, \beta > 0$ s.t. $\kappa \bar{H}_t^{\alpha}(\theta^*, \bar{\theta}_t) \succcurlyeq H_t^{\beta}(\theta^*),$ $\kappa \bar{H}_t^{\alpha}(\theta^*, \bar{\theta}_t) \succcurlyeq H_t^{\beta}(\bar{\theta}_t).$

This is satisfied with $\kappa = \frac{M}{m}$ and $\beta = \kappa \alpha$ if $\forall y, \xi \in \mathbb{R}, \ m \leq \partial^2 \mathcal{L}(y, \xi) \leq M.$

Regret of LinUCB with convex loss

With probability at least $1 - \delta$, $\mathcal{R}_T^{\text{LinUCB}} = \mathcal{O}\left(\frac{\kappa\sigma d}{\sqrt{m}}\sqrt{T}\log\frac{TL^2}{d}\right)$.

A faster approximate algorithm: LinUCB-OGD

Input: horizon T, regularisation parameter α , projection Π , exploration bonus sequence $(\gamma_{t,T}^{\text{OGD}})_{t \leq T}$, gradient descent step sequence $(\varepsilon_t)_{t \in \mathbb{N}}$, episode length h > 0.

Initialization: Observe \mathcal{X}_1 , set $\widehat{\theta}_0^{\text{OGD}}$, t = 1, n = 1.

for t = 1, ..., T **do**

if t = nh + 1 then

 $\widehat{\theta}_{n}^{\mathrm{OGD}} = \widehat{\theta}_{n-1}^{\mathrm{OGD}} - \varepsilon_{n-1} \left(\sum_{k=1}^{h} \partial \mathcal{L}(Y_{(n-1)h+k}, \langle \widehat{\theta}_{n-1}^{\mathrm{OGD}}, X_{(n-1)h+k} \rangle) + \alpha \widehat{\theta}_{n-1}^{\mathrm{OGD}} \right); \triangleright \quad \mathrm{OGD}$ $\bar{\theta}_n^{\text{OGD}} = \frac{1}{n} \sum_{j=1}^n \Pi(\hat{\theta}_j^{\text{OGD}}); \triangleright \text{ Average over previous OGD steps}$

 $X_t = \operatorname{argmax}_{x \in \mathscr{X}_t} \langle \bar{\theta}_n^{\text{OGD}}, x \rangle + \gamma_{t,T}^{\text{OGD}}(x) ; \triangleright \text{ Play with same } \bar{\theta}_n^{\text{OGD}} \text{ for } h \text{ steps}$ Observe Y_t and \mathcal{X}_{t+1} ,

 $t \leftarrow t + 1$.

Regret of LinUCB-OGD with convex loss

With probability at least $1 - \delta$, $\mathcal{R}_T^{\text{LinUCB-OGD}} = \mathcal{O}\left(\sqrt{T} \times \text{Polylog}(T)\right)$.

Numerical experiments

Gaussian expectile bandit.

Bernoulli entropic risk bandit.

Linear expectile bandit with expectile-based asymmetric noises.