Minería de Datos IIC2433

Conociendo los datos Vicente Domínguez

En esta clase, aprenderás

- Qué tipos de datos existen y cómo suelen almacenarse
- Métricas y visualizaciones para exploración de datos
- Las siguientes slides están reproducidas o parcialmente modificadas de:

http://www-users.cs.umn.edu/~kumar/dmbook/index.php

de los autores del libro:

Introduction to Data Mining (2005) de Tan, Steinbach y Kumar.

Knowledge Discovery in Databases

¿Qué son los datos?

Objetos

- Colecciones de objetos y sus atributos
- Un atributo es una propiedad o característica de un objeto
 - Los atributos se conocen también como variables, campos, características, o features
- Un conjunto de atributos define un objeto
 - Los **objetos** se conocen también como puntos, casos, entidades o instancias.

Atributos

				`
Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes
	1 2 3 4 5 6 7 8	1 Yes 2 No 3 No 4 Yes 5 No 6 No 7 Yes 8 No 9 No	Status 1 Yes Single 2 No Married 3 No Single 4 Yes Married 5 No Divorced 6 No Married 7 Yes Divorced 8 No Single 9 No Married	Status Income 1 Yes Single 125K 2 No Married 100K 3 No Single 70K 4 Yes Married 120K 5 No Divorced 95K 6 No Married 60K 7 Yes Divorced 220K 8 No Single 85K 9 No Married 75K

Valores de atributos

- "Attribute values are numbers or symbols assigned to an attribute"
- Los valores de un atributo son números o símbolos asignados a un atributo
- Distinción entre un atributo y su valor
 - A un mismo atributo se le pueden asignar diferentes valores
 - Ejemplo: Altura medida en metros o pies
 - A diferentes atributos se les puede asignar el mismo conjunto de valores
 - Example: Valores para ID y edad son números enteros
 - Pero sus propiedades son diferentes

Ejemplo en base de datos

¿Cuáles son atributos y cuales valores?

	conflD	year	subjectivity	polarity
1	AAAI	2009	0.0000000	0.00000000
2	AAAI	2010	0.3358810	0.17477655
3	AAAI	2011	0.3700711	0.13407506
4	AAAI	2012	0.3468204	0.18819547
5	AAAI	2013	0.3342377	0.11930844
6	CHI	2009	0.3535978	0.14754842
7	CHI	2010	0.3625253	0.15583003
8	CHI	2011	0.3466291	0.15390548
9	CHI	2012	0.3715251	0.16388508
10	CHI	2013	0.3441474	0.14595761
11	CIKM	2009	0.3307190	0.15835698

Tipos de atributos

- Hay cuatro tipos de atributos
 - Nominal
 - Examples: ID, color de ojos, código postal
 - Ordinal
 - Examples: rankings (ej., sabor de papas fritas del 1 al 10), notas, altura in {tall, medium, short}
 - Intervalo
 - Examples: calendar dates, temperaturas en Celsius o Fahrenheit.
 - Razón
 - Examples: temperatura en Kelvin, largo, tiempo, cuenta

Ejemplo en bases de datos

¿Qué tipos de atributos se observan aquí?

	conflD	year	subjectivity	polarity
1	AAAI	2009	0.0000000	0.00000000
2	AAAI	2010	0.3358810	0.17477655
3	AAAI	2011	0.3700711	0.13407506
4	AAAI	2012	0.3468204	0.18819547
5	AAAI	2013	0.3342377	0.11930844
6	CHI	2009	0.3535978	0.14754842
7	CHI	2010	0.3625253	0.15583003
8	CHI	2011	0.3466291	0.15390548
9	CHI	2012	0.3715251	0.16388508
10	CHI	2013	0.3441474	0.14595761
11	CIKM	2009	0.3307190	0.15835698

Properties of Attribute Values

 El tipo de atributo depende de qué propiedades posee:

```
    Distinción: = ≠
    Orden: < >
    Adición: + -
    Multiplicación: * /
```

- Nominal: distinción
- Ordinal: distinción y orden
- Intervalo: distinción, orden y adición
- Razón: las cuatro propiedades

Attribute Level	Transformation	Comments
Nominal	Any permutation of values	If all employee ID numbers were reassigned, would it make any difference?
Ordinal	An order preserving change of values, i.e., new_value = f(old_value) where f is a monotonic function.	An attribute encompassing the notion of good, better best can be represented equally well by the values {1, 2, 3} or by { 0.5, 1, 10}.
Interval	$new_value = a * old_value + b$ where a and b are constants	Thus, the Fahrenheit and Celsius temperature scales differ in terms of where their zero value is and the size of a unit (degree).
Ratio	new_value = a * old_value	Length can be measured in meters or feet.

Atributos discretos y continuos

Discreto:

- Tiene un conjunto de valores finito o infinito numerable
- Ejemplos: códigos postales, conjunto de palabras en un documento
- Representados usualmente con números enteros
- Note: binary attributes are a special case of discrete attributes

Continuos:

- Números reales como valores de atributo
- Ejemplos: temperatura, altura, peso
- En la práctica los valores reales solo pueden ser medidos y representados usando un número finito de dígitos.
- Representados usualmente con variables de punto flotante

Tipos de datasets

Registros

- Matriz de datos
- Datos de documentos
- Datos de transacciones

Grafos

- WWW
- Estructura molecular

Ordenados

- Datos espaciales
- Datos temporales
- Datos secuenciales
- Datos de secuencias genéticas

Important Characteristics of Structured Data

- Dimensionality
 - Curse of Dimensionality
- Sparsity
 - Only presence counts
- Resolution
 - Patterns depend on the scale

Datos de registros

 Colección de registros con una cantidad fija de atributos

Tid	Refund	Marital Status	Taxable Income	Cheat	
1	Yes	Single	125K	No	
2	No	Married	100K	No	
3	No	Single	70K	No	
4	Yes	Married	120K	No	
5	No	Divorced	95K	Yes	
6	No	Married	60K	No	
7	Yes	Divorced	220K	No	
8	No	Single	85K	Yes	
9	No	Married	75K	No	
10	No	Single	90K	Yes	

Matriz de datos

- Si los datos tienen una cantidad fija de atributos (sin valores faltantes), entonces se puede representar como una matriz de n x m.
- Generalmente una matriz de datos tiene solo datos de tipo "razón"

Projection of x Load	Projection of y load	Distance	Load	Thickness	
10.23	5.27	15.22	2.7	1.2	
12.65	6.25	16.22	2.2	1.1	

Datos de documentos

- Cada documento pasa a ser un vector de términos
- Cada término es una componente del vector
 - El valor de la componente indica cuántas veces aparece ese término en el documento

	team	coach	pla y	ball	score	game	n <u>¥</u> .	lost	timeout	season
Document 1	3	0	5	0	2	6	0	2	0	2
Document 2	0	7	0	2	1	0	0	3	0	0
Document 3	0	1	0	0	1	2	2	0	3	0

Datos de transacciones

- Un caso especial de registros, donde
 - Cada registro es una transacción que involucra ciertos ítems
 - Por ejemplo en un supermercado.
 - Una transacción es lo que compró una persona en una visita
 - Un ítem es un producto del supermercado

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Datos de grafos

Ejemplos: Grafo genérico y links html

Data Mining

Graph Partitioning

Parallel Solution of Sparse Linear System of Equations

N-Body Computation and Dense Linear System Solvers

Datos ordenados

Secuencia de genes

Datos ordenados

Datos espacio-temporales

Temperatura promedio mensual

¿Qué vimos la clase pasada?

- Objetos y atributos
- Tipos de atributos
 - Nominales
 - Ordinales
 - Intervalos
 - Razones
- Tipos de datasets
 - Matrices, documentos
 - Transacciones
 - Grafos, Espacio-temporales, Secuencias genéticas
 - Etc.

¿Qué veremos esta clase?

- Visualización de datos
- Pre-procesamiento de datos

Ciencia de Datos (Data Science)

Fuente: Drew Conway

¿Qué es la visualización de datos?

¿Para qué sirve?

- Comunicar
- Explorar

Comunicar

Comunicar

Explorar

 Comprender mejor los datos al codificar gráficamente las variables

Explorar

 Comprender mejor los datos al codificar gráficamente las variables

Explorar

- Visión general cualitativa

Explorar

- Buscar patrones, tendencias, irregularidades, estructura

Gráfico de puntos

Técnicas de visualización orientadas a pixeles

(b) Límite de crédito

(c) Volumen de transacciones

(d) Edad

Matrices de scatterplots

Paisajes

Used by permission of B. Wright, Visible Decisions Inc.

Coordenadas paralelas

Parallel coordinate plot, Fisher's Iris data

Caras de Chernoff

Tree Map

Visualización de datos - Ejemplos

Cone Tree

Pre-procesamiento de datos

Las siguientes slides están basadas en las slides del profesor Karim Pichara.

Pre-procesamiento de datos Limpieza de datos

- Datos faltantes
- Datos erróneos
- Datos inconsistentes

Pre-procesamiento de datos Datos faltantes

- Muchas veces un atributo viene vacío, y eso afecta el proceso de análisis:
- Soluciones posibles (todas tienen pros y contras):
 - Ignorar la tupla
 - Llenar los datos manualmente
 - Usar una cte. Global para llenar los valores: Ej: "desconocido", "-∞", etc.
 - Usar la media del atributo
 - Usar la media por clases
 - Usar el valor más probable (según herramienta de inferencia)

Pre-procesamiento de datos Datos faltantes

- No siempre un dato faltante es un error. Ej, persona no tiene licencia de conducir, no usa tarjeta de crédito, etc.
- En esos casos es importante tener valores definidos como "no se aplica", etc.

Técnicas de pre-procesamiento de datos Binning

Los datos se ordenan separándose en grupos (bins).

Técnicas de pre-procesamiento de datos Binning (ejemplo)

Precio ordenado de diferentes productos: 4, 8, 9, 15, 21, 21, 24, 25, 26, 28, 29, 34

- * Partición en 3 (equi-depth) bins:
 - Bin 1: 4, 8, 9, 15
 - Bin 2: 21, 21, 24, 25
 - Bin 3: 26, 28, 29, 34

Técnicas de pre-procesamiento de datos

Binning

Los datos se ordenan separándose en grupos (bins).

- Smoothing by bin means: Cada valor en el bin es reemplazado por la media del bin.
- Smoothing by bin boundaries: cada valor se reemplaza por el valor mínimo del bin o el máximo dependiendo de cuál sea el más cercano.

Técnicas de pre-procesamiento de datos Binning (ejemplo)

Precio ordenado de diferentes productos: 4, 8, 9, 15, 21, 21, 24, 25, 26, 28, 29, 34

- * Partición en 3 (equi-depth) bins:
 - Bin 1: 4, 8, 9, 15
 - Bin 2: 21, 21, 24, 25
 - Bin 3: 26, 28, 29, 34
- * Smoothing by bin means:
 - Bin 1: 9, 9, 9, 9
 - Bin 2: 23, 23, 23, 23
 - Bin 3: 29, 29, 29, 29
- * Smoothing by bin boundaries:
 - Bin 1: 4, 4, 4, 15
 - Bin 2: 21, 21, 25, 25
 - Bin 3: 26, 26, 26, 34

Técnicas de pre-procesamiento de datos Regresión para corrección

Algunos datos se "corrigen" en base a una función.

Técnicas de pre-procesamiento de datos Clustering

Para la detección de outliers (candidatos a ser datos erróneos)

Integración de datos

La información en la mayoría de los casos debe ser integrada desde múltiples fuentes de datos.

Algunos problemas típicos:

- Identificación de la entidad
- Redundancia
- Detección y resolución de conflictos entre valores

Identificación de la entidad

La misma entidad tiene distintos nombres en diferentes fuentes de datos, ej, *customer_id*, *cust_number*.

Para esto se utiliza Metadata donde se almacena información sobre las entidades en cada fuente de datos, ej: nombre, significado, tipo de datos, rango, valores nulos, etc.

Redundancia

Un atributo es redundante si puede ser derivado de otro. Errores en la identificación de la entidad suelen llevar a situaciones de redundancia

Puede ser detectada realizando un análisis de correlación:

$$r_{A,B} = \frac{\sum_{i=1}^{N} (a_i - \overline{A})(b_i - \overline{B})}{N\sigma_A\sigma_B} \qquad -1 \le r_{A,B} \le 1$$

Redundancia

Transformación de datos

- Normalización
- Construcción de características (feature construction)
- Selección de features
- Generalización
- Reducción de dimensionalidad

Transformación de datos Normalización min-max (Estandarización)

$$v' = \frac{v - min_A}{max_A - min_A} (new_max_A - new_min_A) + new_min_A$$

Transformación de datos Normalización z-score

$$v' = \frac{v - A}{\sigma_A}$$

Transformación de datos Construcción y selección de features

Construcción

Se construyen nuevos atributos a partir de los existentes de tal forma de ayudar al proceso de data mining. Por ejemplo, se podría agregar el **atributo área a partir de los atributos alto y ancho**, esto puede ayudar a encontrar patrones que se perderían si no se hiciera esta modificación.

Selección

Se aplica un algoritmo que seleccione los mejores atributos para nuestro propósito. Por ejemplo, los atributos que permite clasificar mejor los datos.

Transformación de datos Reducción de dimensionalidad

- Curse of dimensionality
 - Al aumentar la dimensionalidad, los datos se vuelven más ralos
 - Definiciones como la distancia y la densidad pierden significado

Transformación de datos Reducción de dimensionalidad

- Principal component analysis
 - Captura la mayor cantidad de variación en los datos

Transformación de datos Reducción de dimensionalidad

- Principal component analysis
 - Captura la mayor cantidad de variación en los datos

