27411 Chemometrics and Biological Data Analysis

Lecture 7: Ridge and Lasso Regression

Per Bruun Brockhoff

DTU Compute, Statistics and Data Analysis Building 324, Room 220 Danish Technical University 2800 Lyngby - Danmark e-mail: perbb@dtu.dk

27411 Chemometrics, Lecture 7

Spring 2015

Multivariate Calibration

- Multivariate calibration \bullet Classical (chemical) calibration: Model x as function of
 - Predict y fro x by "going backwards".
 - We are doing Inverse calibration: y = f(x)
 - What is a good model: In theory:

$$f(\boldsymbol{x}) = \mathsf{E}(Y|\boldsymbol{X} = \boldsymbol{x}).$$

• If $Y = \mathsf{E}(Y|\boldsymbol{X}=\boldsymbol{x}) + \boldsymbol{\varepsilon}$ and $\hat{f}(\boldsymbol{x})$ is some model estimator, expected prediction error:

$$\mathsf{E}_{Y|X=\boldsymbol{x}}((y-\hat{f}(\boldsymbol{x}))^2) =$$

$$\begin{split} \mathsf{E}((y - \mathsf{E}(Y|X=\boldsymbol{x}))^2) + \mathsf{E}((f(\boldsymbol{x}) - \hat{f}(\boldsymbol{x}))^2) + (f(\boldsymbol{x}) - \mathsf{E}(Y|X=\boldsymbol{x}))^2 \\ &= \sigma^2 + \mathsf{Var}(\hat{f}(\boldsymbol{x})) + \mathsf{Bias}^2 \quad \text{\tiny DTU Compute} \\ &= \mathsf{E}((y - \mathsf{E}(Y|X=\boldsymbol{x}))^2) + (f(\boldsymbol{x}) - \mathsf{E}(Y|X=\boldsymbol{x}))^2 + (f(\boldsymbol{x}) - \mathsf{E}(Y|X=\boldsymbol{x$$

Overview

- Multivariate Calibration
 - Optimal predictor
- Example data
- Ridge regression
- Lasso regression
- Sidge regression: Solution
- **6** The L_2 -methods
- All methods
- 8 Little Ridge example
- Ridge/Lasso How to do it! (same as for PCR/PLS)

27411 Chemometrics , Lecture

Spring 2015

Multivariate Calibration

Optimal predictor

Find optimal predictor by CV

27411 Chemometrics, Lecture

Basic model: MLR

$$\mathsf{E}(y_i|x_{i1},x_{i2},\ldots,x_{ip}) = b_0 + b_1 x_{i1} + b_2 x_{i2} + \cdots + b_p x_{ip}$$

 $\mathbf{y} = \mathbf{X}\mathbf{b} + \boldsymbol{\varepsilon}$

- $oldsymbol{ar{b}} = (oldsymbol{X}^{'}oldsymbol{X})^{-1}oldsymbol{X}^{'}oldsymbol{y}$
- Problem: The parameters are badly estimated!
- HIGH Uncertainty!
- HIGH value of one parameter can go together with a parameter of opposite sign - NOT changing the model

27411 Chemometrics, Lecture

Spring 2015

Example data

Example Data

Basic model: MLR

• Uncertainty:

$$\begin{aligned} \mathsf{Var}(\hat{\boldsymbol{b}}) &= \hat{\sigma}^2 (\boldsymbol{X}' \boldsymbol{X})^{-1} \\ &= \hat{\sigma}^2 \sum_{j=1}^p (\boldsymbol{v}_j \boldsymbol{v}_j') / d_j^2 \end{aligned}$$

 vv_i is the jth principal loading vector d_{j}^{2} is the jth principal eigenvalue of $oldsymbol{X}^{'}oldsymbol{X}$ $(\operatorname{\mathsf{Var}}(\boldsymbol{X}\boldsymbol{v}_j)=d_j^2/n)$

• SMALL principal directions will induce HIGH uncertainty!

27411 Chemometrics, Lecture

Example data

MLR results:

	Estimate	Std. Error	t	P-val
Intercept	-0.1668	0.4309	-0.387	0.736
×1	-0.8141	1.6888	-0.482	0.677
×2	-0.1027	0.8635	-0.119	0.916
x 3	2.0695	1.4133	1.464	0.281
x4	-0.1354	0.6183	-0.219	0.847

27411 Chemometrics, Lecture 7

 b_3 becomes too large AND the others too small.

 $oldsymbol{\hat{b}}^{Ridge}$ minimizes (for a given s)

$$\sum_{i=1}^n \left(y_i - b_0 - \sum_{j=1}^p b_j x_{ij} \right)^2 \text{ subject to } \sum_{j=1}^p b_j^2 \le s$$

 $oldsymbol{\hat{b}}^{Ridge}$ minimizes (for a given λ)

$$\sum_{i=1}^{n} \left(y_i - b_0 - \sum_{j=1}^{p} b_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} b_j^2$$

27411 Chemometrics, Lecture 7

Ridge regression: Solution

Ridge regression: Solution

• Add λ to the diagonal of X'X:

$$oldsymbol{b}^{Ridge} = (oldsymbol{X}^{'}oldsymbol{X} + \lambda I)^{-1}oldsymbol{X}^{'}oldsymbol{y}$$

- $oldsymbol{\bullet}$ RR-predictor: $\hat{oldsymbol{y}}^{Ridge} = oldsymbol{X} oldsymbol{b}^{Ridge}$
- Operational: Try different λs choose the optimal by Cross Validation.

27411 Chemometrics, Lecture 7

Lasso regression

- Penalizes (numerically) large regression coefficients
- $oldsymbol{\hat{b}}^{Lasso}$ minimizes (for a given s)

$$\sum_{i=1}^n \left(y_i - b_0 - \sum_{j=1}^p b_j x_{ij}\right)^2 \text{ subject to } \sum_{j=1}^p |b|_j \le s$$

 $oldsymbol{\hat{b}}^{Lasso}$ minimizes (for a given λ)

$$\sum_{i=1}^{n} \left(y_i - b_0 - \sum_{j=1}^{p} b_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} |b|_j$$

MLR(LS), PCR and RR

$$\hat{oldsymbol{y}}^{LS} = oldsymbol{X} oldsymbol{b}^{LS} = \sum_{j=1}^{p} oldsymbol{u}_{j} oldsymbol{u}_{j}^{'} oldsymbol{y}$$

$$\hat{oldsymbol{y}}^{Ridge} = oldsymbol{X} oldsymbol{b}^{Ridge} = \sum_{j=1}^p oldsymbol{u}_j rac{d_j^2}{d_j^2 + \lambda} oldsymbol{u}_j^{'} oldsymbol{y}$$

$$\hat{oldsymbol{y}}^{PCR} = oldsymbol{U}oldsymbol{ heta}^{PCR} = oldsymbol{X}oldsymbol{b}^{PCR} = \sum_{j=1}^{A}oldsymbol{u}_{j}oldsymbol{u}_{j}^{'}oldsymbol{y}$$

 \boldsymbol{u}_{j} is the jth principal score values

All methods

MLR(LS), PCR and RR/Lasso

- The LS-solution is a vector in space.
- Ridge regression *shrinks* the LS-solution
- Highest shrinkage in low-variance directions
- \bullet PCR also shrinks: No shrinkage in main directions, 100% shrinkage in low variance directions.
- (PLS is ALSO a shrinkage method allthough "expansion" is also possible)
- Lasso also shrinks some coefficients down to EAXCTLY zero
- Lasso is hence also an automated variable selection method
- ullet Lasso is an L_1 method VERY different from:

The others are L_2 methods

Spring 2015 20 / 2

Little Ridge example

Regression coefficients

Little Ridge example

Example Data

Little Ridge example

Cross Validation

Little Ridge example

MLR and RR results:

	MLR Estimate	RR estimate ($\lambda = 0.0012$)
	1.651	1.543
×2	-1.723	-1.595
	0.5819	0.6023
×4	0.4848	0.4440

DTU Compute
Department of Applied Mathematics and Computer Science

r Bruun Brockhoff (perbb@dtu.dk) 27411 Chemometrics , Lecture 7

Spring 2015 25 / 27

Ridge/Lasso - How to do it! (same as for PCR/PLS)

How to do it?(same as for PCR/PLS)

- Explore data
- Do modelling (choose number of components, consider variable selection)
- Validate (residuals, outliers, influence etc) (not so straightforward)
- Iterate e.g. on 2. and 3.
- Interpret, conclude, report.
- If relevant: predict future values.

DTU Compute
Department of Applied Mathematics and Computer Science

Per Bruun Brockhoff (perbb@dtu.dk)

27411 Chemometrics , Lecture 7

Spring 2015 27 / 27