Project SunDial

Ruchi Kwatra Vardhman Mehta Casey Pham Michael Stepanovic Ryan Stoddard

Autumn 2017 CSE 583

Background

Operating a solar battery installation is complicated!

Should solar power be stored or sold back into to the grid?
Will I make the most money selling power now or later?
Does the weather suggest the battery should be charged or discharged?

Maximize \$\$\$

Data Sources

Weather forecasts (predicted)

Battery cycle data

Energy price data

Solar output data

Energy Efficiency & Renewable Energy

Energy demand data

1. Visualize Energy Plan Impact

Interpret fluctuations in energy prices, demand, PV output, and battery health by entering the date and hours

2. Cost Analysis

Maximize cost savings of a solar installation, based on:

(1) energy costs, (2) demand, (3) sunlight availability and (4) battery health

Design Components

Based on 2016 energy demand seasonality and a given weather forecast...

How much are utilities charging? (Energy Price Model)

2. How much sunlight is available? (Solar Cell Output Model)

3. What are my charge/discharge capabilities? (Battery Degradation Model)

4. How much energy will the grid demand? (Energy Demand Model)

5. How should I use my battery? (Dashboard)

Integrating Components

Predict cost savings and compare energy plans

Given a user-specified date, time window, and cost threshold, calculate total daily costs under different utilization scenarios.

Visualize cost savings in an interactive dashboard

Provide information and controls for developing an energy utilization plan.

Combine data sources and fit predictive models

Energy prices, demand, sunlight and battery degeneration modeled for a specified location (Santa Maria, CA) over 2016.

PERSONAL PROPERTY. ON THE WAY THE WAY THE WAY DESCRIPTION OF THE STREET WAY DO © © 5270.0.1 Demo Chit per 7000 1010 1000 1010 1000 - Schmitte, A. Scarreng_S through up to - Sanahy C ment price, tph-中华中国的美国 13 1 Cuminante Cott [1] 护 100 Coeffee Hour 新の物を対策 Kimb 36 18. 18 30 Hour A Street St. 1. St.

THE WAY DOD'N TO

Project Structure

```
SunDial/
  - app.py
  - LICENSE
  I - README.md
  |- requirements.txt
  - setup.py
  - doc/
     - components.md
     - data.md
     |- functionalspecs.md
     - ...
  |- examples/
     |- model_usage_example.py
    - ipynb/
       |- ...
  - img/
     |- ...
  - sundial/
     - init .py
     |- data/
       |- ...
     |- battery model/
       |- ...
     |- demand model/
        - ...
     |- price model/
       |- ...
     |- pv_model/
        |- ...
     |- tests/
       |- ...
```

https://github.com/UWSEDS-aut17/SunDial

Lessons Learned & Future Work

Lessons Learned

- Programming styles
- Unit tests
- Version control
- Machine Learning models

Future Work

- Add capabilities to auto-download datasets based on lat-long
- Further explore various models to make more accurate
- Add "auto-optimizer" tool that searches every possible scenario and finds the cheapest solutions