

ECE320H1F: Fields and Waves Laboratory 1: Waves On Transmission Lines

Marking Scheme

Show your calculations for *all* work, including theoretical diagrams and plots. **Measurement** graphs refer to intrumentation screen captures obtained in the laboratory. **Include the full name, student number and PRA session for all group members on the laboratory report.**

- 3.2 [3] Sketch of the waveform at point C when the line is terminated in \mathbb{Z}_0 .
 - [2] Z_0 found using the variable load.
- 3.3 [5] $Z_0 = \frac{v_1(t,0)}{i_1(t,0)}$ calculated using Ohm's law and measured voltages.
- 3.4 [5] Measurement v vs t graphs at C, D, E, and F for $R_L = 50 \Omega$.
 - [3] Recorded time delay Δt at points D, E, and F relative to the input signal.
- 3.5 [2] Calculated average velocity of propagation v_{avg} and relative permittivity ε_r .
 - [10] Theoretical bounce diagram (2 marks) and corresponding v vs t graphs at C, D, E, and F (2 marks each). Compare with Section 3.4 measurement results.
- 3.6 [1] Compare calculated and measured $\Gamma_{\rm L}$.
 - [4] Measurement v vs t graphs at C and F for $R_L = 100 \Omega$.
 - [2] Discuss the relationship between the pulses at C and F.
 - [10] Theoretical v vs d graphs at t = T/2, T, 3T/2, and 2T where T = pulsewidth.
 - [2] Discuss the pulse propagation along the line with a mismatch at the load.
- 3.7 [4] Measurement v vs t graphs at C and F for $R_{\text{source}} = (50 + 100) \Omega$ and $R_{\text{L}} = 20 \Omega$ for pulse widths of T and 10 T.
 - [2] Calculated and measured $\Gamma_{\rm S}$ and $\Gamma_{\rm L}$.
 - [20] Calculate the corresponding theoretical bounce diagram diagram for pulse widths of T and 10 T (5 marks each) and plot the theoretical v vs t graphs for each case at C and F (2.5 marks each).
 - [3] Discuss how the measured results compare to the theoretically calculated ones.
- 3.8 [3] Find three v_1 minumum frequencies for the short circuit load.
 - [5] Explain why minimum voltages are obtained and discuss the effect on input current.
 - [3] Find three v_1 minumum frequencies for the capacitive load.
 - [6] Discuss how and why the results for the short circuit and the capacitor are different.
 - [5] Presentation and neatness.
- Indicates the number of marks out of 100 total marks