Convertisseurs Analogiques - Numériques (CAN)

Dans toutes les structures qui suivent, la tension d'entrée à convertir sera supposée constante.

I. RAPPEL SUR LE COMPARATEUR

Un comparateur permet de comparer les 2 tensions V⁺ et V⁻ entre elles. De manière un peu simplifiée on peut considérer :

Si
$$V^+ > V^-$$
: $V_s = 5 V$
 \Rightarrow Sortie logique « 1 »

Si
$$V^+ < V^-$$
: $V_s = 0 V$
 \Rightarrow Sortie logique « $\mathbf{0}$ »

On utilisera le comparateur *LM 311* dont le brochage est présenté ci-contre.

II. CAN A SIMPLE RAMPE NUMERIQUE

L'une des versions les plus simples du CAN utilise un compteur binaire qui est incrémenté par le signal d'horloge jusqu'à ce que V_{Ax} (entrée sur V- du comparateur) $\geq V_A$ (entrée sur V+ du comparateur).

- V_A: tension analogique à convertir
- V_{Ax} : tension à valeurs discrètes fournie par un Convertisseur Numérique Analogique (CNA) commandé par un compteur. Celui-ci est incrémenté par un signal d'horloge présent entre le signal "début" et le signal FDC.
- Début : signal autorisant l'incrémentation du compteur par l'horloge.
- $\begin{tabular}{ll} \bullet & FDC: signal de fin de conversion (vrai au niveau BAS) ce qui indique la fin de conversion (dès que $V_{Ax} > V_{A}). \end{tabular}$

La chronologie des opérations est la suivante :

- On applique une impulsion "début": mise à zéro du compteur → blocage du ET→ pas de signal d'horloge transmis au compteur
- Comme V_A>V_{Ax} (V_{Ax}=0) la sortie du comparateur FDC est au niveau HAUT (non actif)
- Au moment où "début" revient à zéro, la porte ET est validée et les impulsions d'horloge sont transmises au compteur.
- V_{Ax} augmente d'un palier par top d'horloge
- Dès que V_{Ax} > V_A, alors FDC passe au niveau BAS ce qui bloque le passage de l'horloge vers le compteur.

Le nombre N à la sortie du compteur donne alors la valeur numérique de V_A. C'est le résultat de la conversion Analogique Numérique.

III. CAN A APPROXIMATIONS SUCCESSIVES (CAS)

- Il possède des circuits plus complexes que le CAN rampe numérique mais son temps de conversion est beaucoup plus court (n cycles d'horloge).
- Les convertisseurs par approximations successives (CAS) ont une **durée de conversion fixe** qui ne dépend pas de la valeur de l'entrée analogique V_A.
- Le montage de base de ce convertisseur est semblable à celui du convertisseur à rampe numérique mais utilise un **registre** plutôt qu'un **compteur** pour alimenter l'entrée du CNA.
- La logique de contrôle modifie le contenu du registre bit par bit jusqu'à ce que la donnée qui s'y trouve soit l'équivalent numérique de signal analogique V_A.

Le circuit intégré est le composant : C.I ADC 0804

Considérons un CAN 4 bits ayant un pas de progression de 1Volt pour examiner en détail son fonctionnement.

Soit $V_A = 5.3V$.

• A l'instant $t=t_0$:

Mise à zéro par la logique de contrôle de tous les bits des registres

$$Q_3 = Q_2 = Q_1 = Q_0 = 0$$

$$[Q]=0000 \rightarrow V_{Ax}=0V$$

Sortie du comparateur : COMP=1

• A l'instant t=t₁ (= T, période d'horloge) :

La logique de contrôle met à 1 le bit MSB de poids fort Q3

$$[Q]=1000 \rightarrow V_{Ax}=8V$$

On a $V_{Ax}>V_A$

Sortie du comparateur : COMP=0

• A l'instant t=t'₁

Le niveau BAS de COMP remet Q₃ à 0

V_{Ax} revient à 0V

 $[Q]=0000 \rightarrow V_{Ax}=0V$

On a $V_{Ax} < V_A$

Sortie du comparateur : COMP=1

• A l'instant $t=t_2 (= 2T)$

Q₃ est conservé à 0

La logique de contrôle met Q₂ à 1

 $[Q]=0100 \rightarrow V_{Ax}=4V$

On a $V_{Ax} < V_A$, COMP=1

• A l'instant $t=t_3 (= 3T)$

Comme COMP=1 Q₂ reste à 1

 $Q_1=1$, $[Q]=0110 \rightarrow V_{Ax}=6V > V_A$, COMP=0

• A l'instant t=t'3

Le niveau 0 de COMP remet Q_1 à 0 : [Q]=0100.

V_{Ax} revient à 4V

• A l'instant t=t₄

On met
$$Q_0$$
 à 1 [Q]=0101 \rightarrow V_{Ax}= 5V < V_A On a V_{Ax}A, COMP=1

Tous les bits ayant été traités, la logique de contrôle active FDC, fin de conversion.

Le résultat final est donc V_{AX} =5V et la durée de conversion = 4T.

On note que pour les CAS, $V_{AX} < V_{A}$ (pour le simple rampe $V_{AX} > V_{A}$).

Pour un convertisseur n bits, <u>durée de conversion = n T</u>.

On trouve des CAN 8 bits, 2µs et des CAN 10 bits, 10µs.

Les plus performants permettent d'atteindre 8 bits, 400ns ou 12 bits, 2µs.