

Application for United States Letters Patent

for

**ADVANCED HEAT RECOVERY AND ENERGY CONVERSION
SYSTEMS FOR POWER GENERATION AND POLLUTION EMISSIONS
REDUCTION, AND METHODS OF USING SAME**

by

**Tom L. Pierson
John David Penton**

EXPRESS MAIL MAILING LABEL
NUMBER: EV 291395782 US
DATE OF DEPOSIT: JULY 9, 2003
I hereby certify that this paper or fee is being deposited with the United States Postal Service "EXPRESS MAIL POST OFFICE TO ADDRESSEE" service under 37 C.F.R. 1.10 on the date indicated above and is addressed to: Mail Stop Patent Application, Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.
 _____ Signature

**ADVANCED HEAT RECOVERY AND ENERGY CONVERSION
SYSTEMS FOR POWER GENERATION AND POLLUTION EMISSIONS
REDUCTION, AND METHODS OF USING SAME**

5

BACKGROUND OF THE INVENTION

1. FIELD OF THE INVENTION

The present invention generally relates to heat recovery for the purpose of electrical or mechanical power generation. Specifically, the present invention is directed to various systems and methods for the conversion of heat of any quality into mechanical or electrical power.

10

2. DESCRIPTION OF THE RELATED ART

In general, there is a constant drive to increase the operating efficiency of power generation systems. By increasing the efficiency of such systems, capital costs may be reduced, more power may be generated and there may be a reduction of possible adverse impacts on the environment, *e.g.*, a reduction in the amount of waste heat that must ultimately be absorbed by the environment. In other industrial processes, an excess amount of heat may be generated as a byproduct of the process. In many cases, such waste heat is normally absorbed by the environment through use of waste heat devices such as cooling towers.

20

There are several systems employed in various industries to produce useful work from a heat source. Such systems may including the following:

25

Heat Recovery Steam Generators (HRSG) – Typically, waste heat from gas turbines or other, similar, high quality heat sources is recovered using steam at multiple temperatures and pressures. Multiple operating levels are required because the temperature-enthalpy profile is not

linear. That is, such prior art systems involve isothermal (constant temperature) boiling as the working fluid, *i.e.*, water, is converted from a liquid to a vapor state. Various embodiments of the present invention eliminate the need for multiple levels and simplifies the process while having the capability to recover more heat and to economically recover heat from a much lower 5 quality heat source.

Rankine Cycle – The classic Rankine cycle is utilized in conjunction with HRSGs to produce power. This process is complex and requires multiple steam turbines, feed water heaters, steam drums, pumps, etc.. The methods and systems of the present invention are 10 significantly less complex while being more effective than systems employing the Rankine cycle.

Organic Rankine Cycle – Similar to the classic Rankine cycle, an Organic Rankine cycle utilizes a low temperature working fluid such as isoButane or isoPentane in place of steam in the 15 classic cycle. The system remains complex and is highly inefficient at low operating temperature differences.

Kalina Cycle – Dr. Kalina's cycle is a next generation enhancement to the Rankine cycle utilizing a binary fluid mixture, typically water and ammonia. Water and ammonia are utilized 20 at different concentrations in various portions of the process to extend the temperature range potential of the cycle and to allow higher efficiencies than are possible in the Rankine cycle. The methods and systems of the present invention simplifies the process while having the capability to recover more heat and to recover heat from a low quality heat source.

The following patents may be descriptive of various aspects of the prior art: U.S. Patent No., 5,029,444 to Kalina; U.S. Patent No. 5,440,882 to Kalina; U.S. Patent No. 5,095,708 to Kalina; U.S. Patent No. 5,572,871 to Kalina; and U.S. Patent No. 6,195,997 to Lewis; each of which are hereby incorporated by reference.

5

10

In general, what is desired are systems and methods for improving the efficiencies of various power generation systems and systems and methods for utilizing waste heat sources to improve operating efficiencies of various power and industrial systems. The present invention is directed to various systems and methods that may solve, or at least reduce, some or all of the aforementioned problems.

SUMMARY OF THE INVENTION

15

20

The present invention is generally directed to various systems and methods for producing mechanical power from a heat source. In various illustrative examples, the devices employed in practicing the present invention may include a heat recovery heat exchanger, a turbine, an economizer heat exchanger, a condenser heat exchanger, and a liquid circulating pump, etc. In one illustrative embodiment, the system comprises a first heat exchanger adapted to receive a fluid from a heat source and a working fluid, wherein, when the working fluid is passed through the first heat exchanger, the working fluid is converted to a vapor via heat transfer from the heat contained in the fluid from the heat source, at least one turbine adapted to receive the vapor, and an economizer heat exchanger adapted to receive exhaust vapor from the turbine and the working fluid, wherein a temperature of the working fluid is adapted to be increased via heat transfer with

the exhaust vapor from the turbine prior to the introduction of the working fluid into the first heat exchanger. The system further comprises a condenser heat exchanger that is adapted to receive the exhaust vapor from the turbine after the exhaust vapor has passed through the economizer heat exchanger and a cooling fluid, wherein a temperature of the exhaust vapor is reduced via heat transfer with the cooling fluid, and a pump that is adapted to circulate the working fluid to the economizer heat exchanger.

5 In another illustrative embodiment, the system comprises a first heat exchanger adapted to receive a fluid from a heat source and a working fluid, wherein, when the working fluid is
10 passed through the first heat exchanger, the working fluid is converted to a vapor via heat transfer from the heat contained in the fluid from the heat source, and at least one turbine adapted to receive the vapor. The system further comprises a desuperheater heat exchanger adapted to receive exhaust vapor from the turbine and a portion of the working fluid extracted upstream of the first heat exchanger, wherein the temperature of the exhaust vapor from the turbine is adapted
15 to be reduced via heat transfer with the working fluid in the desuperheater heat exchanger, a condenser heat exchanger that is adapted to receive working fluid exiting the desuperheater heat exchanger and a cooling fluid, wherein a temperature of the working fluid is adapted to be reduced via heat transfer with the cooling fluid in the condenser heat exchanger, and a pump adapted to circulate the working fluid to the first heat exchanger.

20

BRIEF DESCRIPTION OF THE DRAWINGS

The invention may be understood by reference to the following description taken in conjunction with the accompanying drawings, in which like reference numerals identify like elements, and in which:

5

Figure 1A is a schematic diagram of one illustrative embodiment of the present invention employing an economizer heat exchanger and a heat recovery heat exchanger;

10 Figures 1B and 1C are illustrative temperature-enthalpy plots of a working fluid employed in various systems of the present invention;

Figure 1D is a temperature-enthalpy plot of a working fluid employed in an illustrative prior art system;

15 Figure 2 is a schematic diagram of one illustrative embodiment of the present invention employed in connection with a gas turbine;

Figure 3 is a schematic diagram of one embodiment of the present invention wherein a desuperheater is employed to cool working fluid exiting a turbine;

20 Figure 4 is a schematic diagram of an embodiment of the present invention wherein the present invention may be employed with a low quality heat source such as solar power, geothermal power or an industrial process;

Figure 5 is a schematic diagram of an illustrative embodiment of the present invention wherein a refrigeration unit and a desuperheater are employed;

Figure 6 is a schematic diagram of an embodiment of the present invention involving the use of a refrigeration system, a desuperheater and an economizer/refrigerant condenser;

Figure 7A is a schematic depiction of one illustrative embodiment of the present invention wherein a refrigeration system is employed to chill the inlet air of a gas turbine;

10 Figure 7B is a schematic depiction of the illustrative system depicted in Figure 7A with
the addition of an intermediate chilled liquid loop;

Figure 7C is a schematic depiction of the system depicted in Figure 7B with the addition of a plurality of power generators;

15 Figure 8A is a schematic depiction of one embodiment of the present invention which involves use of a refrigeration system and a combustion gas turbine compressor intercooler as the heat source with intercooling and combustion gas turbine inlet air chilling;

20 Figure 8B is a schematic depiction of the system depicted in Figure 8A with the addition
of an intermediate chilled liquid loop;

Figure 8C is a schematic depiction of a multi-stage air compressor of a gas turbine wherein air from an intermediate stage of compression is employed to heat the working fluid in the system;

5 Figure 9 is a schematic depiction of an embodiment of a system using a refrigeration system and a compressor intercooler as the heat source with intercooling and compressor inlet chilling; and

10 Figure 10 is a schematic depiction of an embodiment of the present invention using a refrigeration system and a compressor aftercooler as the heat source with intercooling.

15 While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof have been shown by way of example in the drawings and are herein described in detail. It should be understood, however, that the description herein of specific embodiments is not intended to limit the invention to the particular forms disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.

DETAILED DESCRIPTION OF THE INVENTION

20 Illustrative embodiments of the invention are described below. In the interest of clarity, not all features of an actual implementation are described in this specification. It will of course be appreciated that in the development of any such actual embodiment, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compli-

ance with system-related and business-related constraints, which will vary from one implementation to another. Moreover, it will be appreciated that such a development effort might be complex and time-consuming, but would nevertheless be a routine undertaking for those of ordinary skill in the art having the benefit of this disclosure.

5

The present invention will now be described with reference to the attached drawings which are included to describe and explain illustrative examples of the present invention. The words and phrases used herein should be understood and interpreted to have a meaning consistent with the understanding of those words and phrases by those skilled in the relevant art. No special definition of a term or phrase, *i.e.*, a definition that is different from the ordinary and customary meaning as understood by those skilled in the art, is intended to be implied by consistent usage of the term or phrase herein. To the extent that a term or phrase is intended to have a special meaning, *i.e.*, a meaning other than that understood by skilled artisans, such a special definition will be expressly set forth in the specification in a definitional manner that directly and unequivocally provides the special definition for the term or phrase.

One illustrative embodiment of the present invention will now be described with reference to Figure 1A. As shown therein, a high pressure liquid 1 enters a heat exchanger 17 and exits as a superheated vapor 2 due to heat transfer with a hot fluid, either a gas, a liquid, or a two-phase mixture of gas and liquid entering at 3 and exiting at 4. The vapor 2 may be a subcritical or supercritical vapor. The heat exchanger 17 may be any type of heat exchanger capable of transfer heat from one fluid stream to another fluid stream. For example, the heat exchanger 17 may be a shell-and-tube heat exchanger, a plate-fin-tube coil type of exchanger, a

bare tube or finned tube bundle, a welded plate heat exchanger, etc. Thus, the present invention should not be considered as limited to any particular type of heat exchanger unless such limitations are expressly set forth in the appended claims. The source of the hot fluid 3 for the heat exchanger 17 may either be a waste heat source (from any of a variety of sources) or heat may 5 intentionally be supplied to the system, *e.g.*, by a gas burner or the like. In one illustrative embodiment, the source of the hot fluid 3 for the heat exchanger 17 is a waste heat source such as the exhaust from an internal combustion engine (*e.g.*, a reciprocating diesel engine), a combustion gas turbine, a compressor, or an industrial or manufacturing process. However, any heat source of sufficient quantity and temperature may be utilized if it can be obtained economically. In some cases, the heat exchanger 17 may be referred to as a “waste heat recovery heat 10 exchanger,” indicating that the source of the fluid 3 is from what would otherwise be a waste heat source, although the present invention is not limited to such situations.

In one embodiment, the vapor 2 is then sent to a suction drum 18 that may contain a 15 demister 18A therein. The suction drum 18 may serve several purposes, such as, for example: (a) preventing liquid from entering the turbine 19; (b) allowing liquid (or even vapor) to be bypassed around the turbine 19; and (c) allowing for startup and shutdown of the system. Any liquid that does collect in the drum 18 will exit through the drain line 8 and be routed through a control valve 21 to reduce it to a pressure equal to the condenser 22 inlet pressure in line 10.

20

Dry vapor 5 exits the drum 18 and enters the turbine 19. The vapor 5 is expanded in the turbine 19 and the design of the turbine converts kinetic and potential energy of the dry vapor 5 into mechanical energy in the form of torque on an output shaft 27. Any type of commercially

available turbine suited for use in the systems described herein may be employed, *e.g.*, an expander, a turbo-expander, a power turbine, etc. The shaft horsepower available on the shaft 27 of the turbine 19 can be used to produce power by driving an illustrative generator 28, or to drive a compressor, a pump, or other mechanical device, either directly or indirectly. Several illustrative embodiments of how such useful power may be used are described further in the application. 5 Additionally, as will be recognized by those skilled in the art after a complete reading of the present application, a plurality of turbines 19 may be employed with the system depicted in Figure 1A.

10 The low pressure, high temperature discharge 6 from the turbine is routed to an economizer heat exchanger 20 that is positioned upstream of the heat exchanger 17. The economizer heat exchanger 20 may serve several purposes, such as, for example: (a) the economizer 20 may be used to recover heat from the turbine exhaust 6 and use it to preheat the liquid working fluid 14 prior to the liquid working fluid being introduced into the heat exchanger 17; and (b) the 15 economizer 20 may be used to cool the low pressure, high temperature discharge 6 from the turbine 19 and, thus, reduce the required size and cost of the condenser 22. The condenser 22 condenses the slightly superheated, low pressure gas 10 and condenses it to the liquid state using water, seawater, air, or other process fluids. The condenser 22 may be utilized to condense the 20 hot working fluid from a vapor to a liquid at a temperature ranging from approximately 50-200°F.

The condensed liquid 11 is introduced into a drum 23 that may contain a demister 23A. The drum 23 may serve several purposes, such as, for example: (a) the design of the drum 23

ensures that the pump 24 has sufficient head to avoid cavitation; (b) the design of the drum 23 ensures that the supply of liquid 12 to the pump 24 is steady; (c) the design of the drum 23 ensures that the pump 24 will not be run dry; (d) the design of the drum 18 provides an opportunity to evacuate any non-condensable vapors from the system through a vent valve 26 via lines 5 15, 16; (e) the design of the drum 23 allows for the introduction of process liquid into the system; and (f) the design of the drum 23 allows for the introduction of makeup liquid in the event that a small amount of operating fluid is lost. The high pressure discharge 13 of the pump is fed to the economizer heat exchanger 20 through the valve 25. The pump 24 may be any type of commercially available pump sufficient to meet the pumping requirements of the systems 10 disclosed herein. In various embodiments, the pump 24 may be sized such that the discharge pressure of the working fluid ranges from approximately 200-800 psia.

In the illustrative embodiment depicted in Figure 1A, the working fluid enters the heat recovery heat exchanger 17 as a high pressure liquid and leaves as a superheated vapor (stream 15 2). The high pressure, superheated vapor is then expanded through a turbine 19 to produce mechanical power. The vapor (stream 6) exiting the turbine 19 is at low pressure and in the superheated state. This superheated vapor is then introduced into the economizer heat exchanger 20 to preheat the working fluid going into the heat recovery heat exchanger 17. The economizer heat exchanger 20 significantly enhances the efficiency of the system. The cooled vapor exiting 20 the economizer heat exchanger 20, typically still slightly superheated, is condensed at low pressure using the condenser heat exchanger 22. This condenser heat exchanger 22 may be water cooled, air cooled, evaporatively cooled, or used as a heat source for district heating, domestic hot water, or similar heating load. The condensed low pressure liquid (stream 11) is

fed to the suction of a pump 24 and is pumped to the high pressure required for the heat recovery heat exchanger 17.

The present invention may employ a single component working fluid that may be 5 comprised of any of, for example, HCFC-123 (R-123), HCFC-134a (R-134a), ammonia (NH₃), etc. Notably, the present invention does not employ water as a working fluid. In some applications, the working fluid may be comprised of multiple components, none of which are water. For example, one or more of the refrigerants identified above may be combined or such refrigerants may be combined with a hydrocarbon fluid, e.g., isobutene, etc. In the context of the 10 present application, reference may be made to the use of R-123 as the working fluid and to provide certain illustrative examples. However, after a complete reading of the present application, those skilled in the art will recognize that the present invention is not limited to any particular type of working fluid or refrigerant. Thus, the present invention should not be considered as limited to any particular working fluid unless such limitations are clearly set forth 15 in the appended claims.

In the present invention, as the working fluid passes through the heat exchanger 17, it changes from a liquid state to a vapor state in a non-isothermal process using an approximately linear temperature-enthalpy profile, *i.e.*, the slope of the temperature-enthalpy curve does not 20 change significantly even though the working fluid changes state from a subcooled liquid to a superheated vapor. This situation is schematically depicted in Figures 1B and 1C, which are illustrative temperature-enthalpy graphs from an illustrative working fluid as it passes through the heat exchanger 17. The slope of the temperature-enthalpy graph may vary depending upon

the application. Moreover, the temperature-enthalpy profile may not be linear over the entire range of the curve. For example, the temperature-enthalpy graph may be curved as indicated by the dashed line “A” in Figure 1B. Figure 1C is another example of an illustrative temperature-enthalpy graph “A” that is slightly curved.

5

The temperature-enthalpy profile of the working fluid of the present invention is fundamentally different from other systems. For example, a temperature-enthalpy profile for a typical Rankine cycle is depicted in Figure 1D. As shown therein, the single working fluid, *e.g.*, water, undergoes an essentially isothermal (constant temperature) boiling process, as indicated by the horizontal line “B,” as the working fluid changes from a liquid state to a vapor state. Other systems, such as a Kalina cycle, may exhibit a more non-isothermal conversion of the working fluid from a liquid state to a vapor state, but such systems employ binary component working fluids, such as ammonia and water.

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8620
8625
8630
8635
8640
8645
8650
8655
8660
8665
8670
8675
8680
8685
8690
8695
8700
8705
8710
8715
8720
8725
8730
8735
8740
8745
8750
8755
8760
8765
8770
8775
8780
8785
8790
8795
8800
8805
8810
8815
8820
8825
8830
8835
8840
8845
8850
8855
8860
8865
8870
8875
8880
8885
8890
8895
8900
8905
8910
8915
8920
8925
8930
8935
8940
8945
8950
8955
8960
8965
8970
8975
8980
8985
8990
8995
9000
9005
9010
9015
9020
9025
9030
9035
9040
9045
9050
9055
9060
9065
9070
9075
9080
9085
9090
9095
9100
9105
9110
9115
9120
9125
9130
9135
9140
9145
9150
9155
9160
9165
9170
9175
9180
9185
9190
9195
9200
9205
9210
9215
9220
9225
9230
9235
9240
9245
9250
9255
9260
9265
9270
9275
9280
9285
9290
9295
9300
9305
9310
9315
9320
9325
9330
9335
9340
9345
9350
9355
9360
936

By way of example, with reference to Figure 1A, in one illustrative embodiment where the working fluid is R-123, the temperature of the working fluid may be between approximately 50-200°F at approximately 600 psia at the discharge of the pump 24. The working fluid may be at a pressure of approximately 30 psia at the discharge of the condenser 22 (see Figure 1A) for a system pressure ratio of approximately twenty to one (20:1). The temperature of the R-123 working fluid at the exit of the heat exchanger 17 may be approximately 200-1000°F. The temperature of the R-123 working fluid at the exit of the turbine 19 may be approximately 200-800°F at a pressure of approximately 35 psia. The temperature of the R-123 working fluid at the exit of the economizer heat exchanger 20 may be approximately 200-700°F at a pressure of approximately 600 psia at 1 and approximately 60-250°F at a pressure of 32 psia at 7.

In another illustrative embodiment where the working fluid is R-134a, the temperature of the working fluid may be between approximately 50-200°F at approximately 710 psia at the discharge of the pump 24. The working fluid may be at a pressure of approximately 160 psia at the discharge of the condenser 22 (see Figure 1A) for a system pressure ratio of approximately four point four to one (4.4:1). The temperature of the R-134a working fluid at the exit of the heat exchanger 17 may be approximately 400-800°F. The temperature of the R-134a working fluid at the exit of the turbine 19 may be approximately 300-700°F at a pressure of approximately 170 psia. The temperature of the R-134a working fluid at the exit of the economizer heat exchanger 20 may be approximately 200-400°F at a pressure of approximately 705 psia at 1 and approximately 60-250°F at a pressure of 165 psia at 7.

In yet another illustrative embodiment where the working fluid is ammonia, the temperature of the working fluid may be approximately 100-120°F in a solar power application at approximately 1700 psia at the discharge of the pump 24. The working fluid may be at a pressure of approximately 220 psia at the discharge of the condenser 22 (see Figure 1A) for a system pressure ratio of approximately seven point seven to one (7.7:1). The temperature of the ammonia working fluid at the exit of the heat exchanger 17 may be approximately 600-1000°F. The temperature of the ammonia working fluid at the exit of the turbine 19 may be approximately 200-650°F at a pressure of approximately 220 psia. The temperature of the ammonia working fluid at the exit of the economizer heat exchanger 20 may be approximately 110-250°F at a pressure of approximately 225 psia.

The methods and systems described herein are effective for pressure ratios greater than three to one (3:1) and the pressure ratio is determined by the physical characteristics of the working fluid being utilized. The specific selection of the low cycle pressure is determined by the condensing pressure of the working fluid and will be, typically, the saturation pressure of the working fluid at between approximately 60°F and 160°F, depending on the cooling medium or condenser heat exchanger type and the ambient temperature or ultimate heat sink temperature. The specific selection of the high cycle pressure is determined by the thermodynamic properties of the working fluid plus a margin, as a minimum, and by cycle efficiency, pump power consumption, and maximum component design pressures as a maximum.

In another illustrative embodiment of the present invention, as shown in Figure 2, a system substantially similar to Figure 1A is utilized in conjunction with a combustion gas turbine

4. A gas turbine 52 is a very suitable device for heat recovery as a significant amount (approximately 65-85%) of the fuel burned to produce power leaves the exhaust section 52a of the turbine 52 as waste heat. As will be recognized by those skilled in the art after a complete reading of the present application, any of a variety of commercially available gas turbines may
5 be employed with the present invention. In this illustrative embodiment, a schematically depicted stainless steel plate-fin-tube coil 17A is utilized as the heat exchanger 17 (shown in Figure 1A) as it has a large surface area to volume ratio, a low air side pressure drop (1-2 inches of water) and a sufficiently high pressure retaining capability. The exhaust of the gas turbine 52 is typically between approximately 800°F and 1200°F and is, therefore, an ideal source of high
10 quality waste heat. In accordance with one embodiment of the present invention, approximately ten to thirty percent (10-30%) of the available energy in the turbine exhaust is converted into useable power. The overall simple cycle thermal efficiency of the gas turbine 52 is typically in the range of 15-35% with higher numbers being more common in power production applications. For a gas turbine with a thirty percent (30%) thermal efficiency and fifteen percent (15%) waste
15 heat conversion efficiency, the total efficiency increase from thirty percent (30%) to $30\% + 15\% * (100\% - 30\%) = 40.5\%$. Thus, a typical efficiency gain of 35% (40.5/30) more power can be produced. In other embodiments for other gas turbines, the recovery efficiency can range from ten (10%) to more than eighty percent (80%) with equivalent gains in overall efficiency.

20 Another illustrative embodiment of the present invention is depicted in Figure 3. In this embodiment, which is similar to Figures 1A-2, the economizer heat exchanger 20 (Figure 1A) is eliminated and replaced with a desuperheater 29 (Figure 3), spray pump 30 and valve 31. In the depicted embodiment, the desuperheater 29 is essentially a chamber or area, *e.g.*, a pipe or

vessel, where the superheated vapor 6 that exits the turbine 19 may be contacted with a sprayed liquid, *e.g.*, R-123, R-134A, or ammonia (*i.e.*, the working fluid). This embodiment would be employed when there is insufficient heating value available in the turbine discharge 6 to justify the use of the economizer heat exchanger 20 (shown in Figure 1A). The desuperheater 29 allows 5 the low pressure, high temperature gas (from stream 6) in the combined stream 9A to be desuperheated to the dew point and introduced to the condenser 22. A heat rejection source 32, such as a cooling tower, and a water pump 33 can be utilized for an illustrative water cooled condenser 22. The utilization of an air cooled or evaporative condenser is also possible.

10 The present invention may also be employed to recover heat from lower quality heat sources. For example, Figure 4 depicts another illustrative embodiment of the present invention that may be employed to recover heat from a low temperature source, such as a solar energy system where a working fluid, such as ammonia, is boiled isothermally at a low temperature and high pressure. Because of the smaller pressure ratio allowed in such a circuit due to the small 15 difference between the operating temperature of the heat collector 40 and the condensing temperature, the heat collector 40 is operated as a thermosyphon device. The liquid working fluid 41 enters a drum 42 as a high pressure liquid, *e.g.*, approximately 500-900 psia. The nearly saturated liquid exits the bottom of the drum 42 as liquid stream 43 under pressure supplied by the liquid level in the drum 42 as is dominated by gravitational force. The liquid 43 is partially 20 boiled in the heat collector 40 and returns to the drum 42 as a two-phase vapor via stream 44. The warm liquid from the heat collector 40 falls to the bottom of the drum 42 and mixes with the incoming liquid working fluid 41 preheating the working fluid 41 to near the saturation temperature, *e.g.*, approximately 150-250°F. The warm vapor 45 from the heat collector 40 exits

the top of the drum 42 and enters the turbine 19 as a high pressure saturated gas at a temperature ranging from approximately 150-250°F. The drum 42 may contain a demister 42A. The hot vapor 45 expands in the turbine 19 to produce power on a shaft 27 and partially condenses during the expansion process. The power produced at shaft 27 may be utilized to drive a generator 28 or other mechanical device. The low pressure two-phase vapor 46 exiting the turbine 19 is then condensed and slightly subcooled in the condenser 47. This subcooled liquid 48 exiting the condenser 47 is supplied directly to the pump 49 and is pumped to high pressure, e.g., 500-900 psia, as the liquid working fluid 41. The various components depicted in Figure 4, e.g., pumps, compressors, turbines, drums, condensers, etc., may be similar to those described above wherein such equipment is properly sized and configured to operate in the system depicted in Figure 4.

15 The present invention may also be combined with a refrigeration system 50, the output of which may be used for various purposes. Figure 5 depicts another illustrative embodiment of the present invention wherein a power section substantially similar to Figure 3 wherein two turbines 19A, 19B and a refrigeration system 50 are added to the power recovery system. The system depicted in Figure 5 may be designed to only produce refrigeration (i.e., all of the mechanical power drives the compressors R9, R10) or to produce a combination of both refrigeration and electrical power. Turbine 1 (19A) would be mechanically linked to Compressor 1 (R9) either directly or through an intermediate gearbox. Likewise, Turbine 2 (19B) would be mechanically linked to Compressor 2 (R10). Any of a variety of commercially available compressors may be employed with the present invention. The refrigeration load would be applied to the refrigerant evaporator R15. The condenser load would be applied to the refrigerant condenser R11.

In operation, the cold vapor R2, at or near its dewpoint, is supplied to Compressor 1 (R9) where it is compressed to a higher, intermediate pressure. The exhaust R3 from Compressor 1 (R9) is sent to a direct contact heat transfer device, *e.g.*, refrigeration drum R13, which serves 5 both as a separation device and a heat transfer device. This device R13 serves as an intercooler for the intermediate stage of compression and a separator for the second stage of compression. The intermediate vapor R5 from the device R13 is transferred to the inlet of Compressor 2 (R10) and is compressed into to a high pressure gas R6. This heated, high pressure gas is desuper- 10 heated and condensed in the refrigerant condenser R11 and exits as a saturated or subcooled liquid R7. This cooled, high pressure liquid is expanded through a high pressure Joule-Thompson expansion valve R12 into a two-phase gas/liquid mixture R8. The expansion process 15 cools the mixture. The expanded mixture R8 is used as the cooling medium in the direct contact heat transfer device R13. Some of the liquid from the expanded mixture R8 flashes to cool the discharge stream R3 from Compressor 1 (R9). The saturated liquid R4 from the heat transfer device R13 is expanded through a second, low pressure Joule-Thompson valve R14. Again, the 20 expansion cools the stream R4 and produces a two-phase gas/liquid mixture R1. This cold, two-phase mixture R1 may then be used for a variety of cooling purposes.

The system depicted in Figure 5 may also be modified by substituting an economizer heat 20 exchanger 20 (see Figure 1A) for the desuperheater 29, valve 31 and spray pump 30. That is, the refrigeration system 50 depicted in Figure 5 (compressors, evaporator, condenser) may be incorporated into the system depicted in Figure 1A. If the illustrative refrigeration system 50 depicted in Figure 5 were employed, an additional turbine would need to be incorporated into the

system depicted in Figure 1A. In the alternative, any number of turbines paired with any number of compressors might be utilized. The choice of two turbines and two compressors, as depicted in Figure 5, is one suggested application of this process. The refrigeration system represented by Compressor 1 (R9), Compressor 2 (R10), refrigerant condenser R11, refrigerant evaporator R15, refrigeration drum R13 and Joule-Thompson valves R12 and R14 may be any of a variety of generic, cascade refrigeration systems that are commonly found in industry.

Figure 6 depicts another illustrative embodiment of the present invention wherein heat rejected by a refrigeration system 50 is recovered and used to preheat the working fluid of the system. As shown in Figure 6, a power section substantially similar to Figure 5 is provided. The refrigerant condenser R11 (Figure 5) is replaced with a refrigerant condenser/economizer 51 and an optional refrigerant subcooler R16. That is, in this embodiment, heat from the high temperature refrigerant R6 exiting the compressor R10 is used as the heat source to preheat the working fluid 1 prior to it entering the heat exchanger 17. In effect, the refrigerant condenser/economizer 28 is the economizer heat exchanger 20 (depicted in Figure 1A) wherein the heating fluid used to preheat the working fluid is taken from the refrigeration system 50. This technique substantially increases the output efficiency of this system.

Figure 7A depicts another illustrative embodiment of the present invention wherein waste heat recovered from a combustion gas turbine 52 is utilized as the heat source for the power system that, in turn, powers a refrigeration system 50 that chills the inlet air to the combustion gas turbine 52. In the depicted embodiment, the inlet air to the gas turbine 52 is chilled by means of an inlet chilling coil R17, *i.e.*, a heat exchanger that evaporates the cold refrigerant R1,

which is a cold, two phase mixture of liquid and vapor to thereby chill the air entering the combination gas turbine 52. In one illustrative embodiment, the inlet temperature for the chilling coil R17 may be approximately 32°F while the exit temperature for the chilling coil R17 may be approximately 50°F. The chilling coil R17 depicted in Figure 7A may be, for example, a plate-fin-tube coil type heat exchanger. In the alternative, a separation device (not shown) can be utilized between the cold refrigerant R1 and the chilling coil R17 to send only liquid to the inlet chilling coil R17 and to return the vapor, separately to Compressor 1 (R9). In Figure 7A, the heat exchanger 17A is placed in the exhaust outlet housing 52A of the gas turbine 52, similar to the configuration depicted in Figure 2. Exhaust gas from the turbine 52 is used to convert the working fluid flowing through the heat exchanger 17A from a liquid state to a vapor state. The illustrative embodiment depicted in Figure 7A employs a desuperheater 29 (similar to that described above in connection with Figure 3). However, the system depicted in Figure 7A could also be employed in a system like that shown in Figure 1A wherein the economizer heat exchanger 20 is employed and the desuperheater 29, spray pump 30 and valve 31 are eliminated.

Figure 7B depicts another embodiment of the present invention that is substantially similar to the system depicted in Figure 7A. In Figure 7B, an intermediate loop R20 arrangement is utilized to isolate the cold two-phase refrigerant R1 from the inlet chilling coil R17. An intermediate liquid loop R20 and a refrigerant to liquid heat exchanger R19 are utilized to provide chilled liquid to the inlet chilling coil R17. The cold liquid flows into the chilling coil R17 via line R18 and returns via line R21. The working fluid used in the loop R20 may be water, glycol and water, SoCool, Enviro-Kool™, a refrigerant, etc. However, the system depicted in Figure 7B could also be employed in a system like that shown in Figure 1A wherein

the economizer heat exchanger 20 is employed and the desuperheater 29, spray pump 30 and valve 31 are eliminated.

Figure 7C depicts another illustrative embodiment of the present invention that is substantially similar to Figure 7B. In this embodiment, one or more generators 53, 54 may be attached to the shafts 27A, 27B that couple Turbine 1 (19A) with Compressor 1 (R9) and Turbine 2 (19B) and Compressor 2 (R10). The generators 53, 54 may be connected to the shafts 27A, 27B either directly or through an intermediate gearbox. The electrical power produced from the generators 53, 54 is transferred through a pair of power leads 55, 56 to a main power transmission line 57 for delivery to a power grid. This illustrative embodiment allows the simultaneous generation of both mechanical power (here used to drive a pair of compressors for refrigeration) and electrical power. However, the system depicted in Figure 7C could also be employed in a system like that shown in Figure 1A wherein the economizer heat exchanger 20 is employed and the desuperheater 29, spray pump 30 and valve 31 are eliminated.

15 The present invention may also be employed in situations when heat is recovered from an intermediate stage of a multi-stage gas compressor used in a combustion gas turbine. In this specific embodiment, the energy recovered would, most effectively, be utilized to cool the inlet gas, thereby increasing the flow capacity of the compressor or reducing the compressor power requirement while reducing the compressor discharge temperature. One illustrative embodiment of such a system is depicted in Figure 8A, which is substantially similar to Figure 7A. In the embodiment of Figure 8A, the heat source is the discharge gas 61 of an intermediate stage of an air compressor (not shown) in the compression section 60 of a combustion gas turbine 52. The

heat in this discharged gas 61 is recovered by the heat exchanger 17, and it is used to heat the working fluid of the system. The cooled gas 62 is returned to the next stage of compression in the air compressor. In general, a multi-stage compressor is provided to provide compressed air to the gas turbine 52. The compressed air that is ultimately supplied to the combustion section of the gas turbine 52 is normally subjected to multiple stages of compression at successively higher pressures. The structure and function of such multiple stage compressors are well known to those skilled in the art and, thus, they will not be repeated in any greater detail. Figure 8C is a schematic depiction of an illustrative examples of the multiple stages of compression of the air for the gas turbine, wherein the pressures P_1 , P_2 , P_3 and P_4 are successively higher pressures. As the air is compressed, the temperature of the air increases. In the system depicted in Figure 8C, at one or more stages of compression, the compressed air (heated due to compression) is used as the source of heat for the heat exchanger 17 to heat the working fluid 1 to a vapor 2 that is ultimately provided to the turbines 19A, 19B. However, the system depicted in Figure 8A could also be employed in a system like that shown in Figure 1A wherein the economizer heat exchanger 20 is employed and the desuperheater 29, spray pump 30 and valve 31 are eliminated.

Figure 8B depicts another illustrative embodiment of the present invention that is substantially similar to Figure 7B, wherein the heat source is the discharge gas 61 of an intermediate stage of compression of air in a combustion gas turbine 52 recovered by a heat exchanger 17. The cooled gas 62 is returned to the next stage of compression. This embodiment differs from Figure 8A in that an intermediate heat exchanger R18 is utilized to isolate the inlet chilling coil R17 from the balance of the refrigeration system, in a manner similar to that described above with reference to Figure 7B. However, the system depicted in Figure 8B could

also be employed in a system like that shown in Figure 1A wherein the economizer heat exchanger 20 is employed and the desuperheater 29, spray pump 30 and valve 31 are eliminated.

Figure 9 is another illustrative embodiment of a system in accordance with the present invention. The system depicted in Figure 9 is substantially similar to the embodiment depicted in Figure 8B. In Figure 9, the heat source for heating the working fluid 1 is the discharge gas 64 of an intermediate stage of compression of any compressor 63 compressing any gas or combination of gases 65, the heat of compression of which is recovered by a heat exchanger 17 as the heat input for the process. The cooled gas 66 is returned to the compressor 63. The refrigeration produced is provided to a refrigerant evaporator heat exchanger R15 which is utilized to chill the inlet gas 65 to a reduced temperature, as indicated by the stream 66. Ultimately, the gas is compressed to its final pressure, as indicated by stream 67. Such cooling of the incoming gases may reduce the required power to operate the compressor 63, thereby reducing power consumption, increasing pressure rise, increasing throughput, or a combination of these events. However, the system depicted in Figure 9 could also be employed in a system like that shown in Figure 1A wherein the economizer heat exchanger 20 is employed and the desuperheater 29, spray pump 30 and valve 31 are eliminated.

Figure 10 depicts another embodiment of the present invention that is substantially similar to that depicted in Figure 9. More specifically, in the system depicted in Figure 10, the source of the hot fluid to heat the working fluid is the discharge gas 67 from the final stage of compression of any compressor 63 that may be used to compress any gas or combination of gases 65. The heat of compression is recovered by a heat exchanger 17 as the heat input for the

process. The refrigeration produced is provided to a refrigerant evaporator/intercooler heat exchanger R15 which is utilized to intercool the gas 64 from one or more intermediate stages of the compressor 63 and reduce the required power to operate the compressor 63, thereby reducing power consumption, increasing pressure rise, increasing throughput, or a combination of these events. The cooled gas 66 (after it passes through the heat exchanger R15) is returned to the compressor 63 where it is subjected to further compression within one or more stages of the compressor 63. However, the system depicted in Figure 10 could also be employed in a system like that shown in Figure 1A wherein the economizer heat exchanger 20 is employed and the desuperheater 29, spray pump 30 and valve 31 are eliminated.

10

In one specific embodiment of the present invention, the mechanical power available at the output shaft of the turbine may be utilized directly or through a gearbox to provide mechanical work to drive an electrical power generator to produce electrical power either as a constant voltage and constant frequency AC source or as a DC source which might be rectified to produce AC power at a constant voltage and constant frequency. In another specific embodiment, the mechanical power available at the output shaft of the turbine may be utilized directly or through a gearbox to provide mechanical work to drive any combination of mechanical devices such as a compressor, a pump, a wheel, a propeller, a conveyer, a fan, a gear, or any other mechanical device(s) requiring or accepting mechanical power input. Moreover, the present invention is not restricted to stationary devices, as it may be utilized in or on an automobile, a ship, an aircraft, a spacecraft, a train, or other non-stationary vessel.

A specific byproduct of this method is an effective and dramatic reduction in the emissions of both pollutants and greenhouse gases. This method may not require any fuel nor does it generate any pollutants or greenhouse gases or any other gases as byproducts. Any process to which this method may be applied, such as a gas turbine or a diesel engine, will 5 generate significantly more power with no increase in fuel consumption or pollution. The effect of this method is a net reduction in the specific pollution generation rate on a mass per power produced basis.

In one illustrative embodiment, the present invention is directed to a system comprised of 10 a heat recovery heat exchanger 17 adapted to receive a fluid (liquid or vapor) from a source of waste heat wherein a working fluid 1 is passed through the heat recovery heat exchanger 17 and is converted to vapor via heat transfer from the fluid from waste heat source, a drum 18 adapted to receive the vapor exiting the heat recovery heat exchanger 17, a turbine 19 adapted to receive the vapor exiting the drum 18, and an economizer heat exchanger 20 adapted to receive exhaust 15 vapor 6 from the turbine 19 to heat working fluid provided to the heat recovery heat exchanger 17 via heat transfer with the exhaust vapor 6 from the turbine 19. In some illustrative embodiments, the working fluid may be comprised of a single component or it may be comprised of multiple components. In one particular illustrative embodiment, a refrigerant R-123 may be employed as the working fluid. In various embodiments of the present invention, the vapor that 20 exits the heat recovery heat exchanger 17 may be either a super-critical or sub-critical vapor. Additionally, the fluid (liquid or vapor) used to heat the working fluid in the heat recovery heat exchanger 17 may be provided from a variety of sources, *e.g.*, waste heat from any industrial process, a solar energy source, a cement plant, a manufacturing process, a reciprocating engine, a

gas turbine, etc. Such a system provides increased efficiency relative to prior art systems. For example, as stated previously, in one illustrative application, such a system may increase efficiency by approximately 35%. This is due at least in part to the use of the economizer heat exchanger's (20) use of the exhaust fluid 6 from the turbine 19 to preheat the working fluid prior 5 to its introduction into the heat recovery heat exchanger 17. Additionally, the present invention may be useful in reducing the amount of waste heat that is absorbed by the environment, as a portion of the exhaust fluid 6 from the turbine 19 is used in preheating the working fluid prior to its introduction into the heat recovery heat exchanger 17. Due to this reduction in the amount of waste heat, the size of other equipment, such as the condenser 22 depicted in Figure 1A, may be 10 reduced. Thus, the present invention may be useful in reducing the amount of heat exhausted to the environment, reducing the size of some of the equipment employed in such systems and/or increase the overall operating efficiency of such a system.

In another illustrative embodiment, the present invention is directed to a method that 15 comprises the steps of increasing a temperature of a working fluid in the heat exchanger 20 from a first temperature to a second temperature by transferring heat from an exhaust fluid 6 of a turbine 19, introducing the working fluid at the second temperature into the heat exchanger 17 wherein the working fluid is converted to a vapor by transferring heat from a fluid from a waste 20 heat source, and introducing the vapor exiting the heat exchanger 17 into a drum 18 and introducing vapor 5 exiting the drum 18 into an inlet of the turbine 19.

In another illustrative embodiment, the present invention is directed to a method that comprises the steps of increasing the temperature of a working fluid in the heat exchanger 20

from a first temperature to a second temperature by transferring heat from an exhaust fluid 6 of a turbine 19, introducing the working fluid at the second temperature into the heat exchanger 17 wherein the working fluid is converted to a vapor by transferring heat from a fluid from a waste heat source, and introducing the vapor 5 into an inlet of the turbine 19.

5

The present invention is generally directed to various systems and methods for producing mechanical power from a heat source. In various illustrative examples, the devices employed in practicing the present invention may include a heat recovery heat exchanger, a turbine, an economizer heat exchanger, a condenser heat exchanger, and a liquid circulating pump, etc. In 10 one illustrative embodiment, the system comprises a first heat exchanger adapted to receive a fluid from a heat source and a working fluid, wherein, when the working fluid is passed through the first heat exchanger, the working fluid is converted to a vapor via heat transfer from the heat contained in the fluid from the heat source, at least one turbine adapted to receive the vapor, and an economizer heat exchanger adapted to receive exhaust vapor from the turbine and the working 15 fluid, wherein a temperature of the working fluid is adapted to be increased via heat transfer with the exhaust vapor from the turbine prior to the introduction of the working fluid into the first heat exchanger. The system further comprises a condenser heat exchanger that is adapted to receive the exhaust vapor from the turbine after the exhaust vapor has passed through the economizer heat exchanger and a cooling fluid, wherein a temperature of the exhaust vapor is reduced via 20 heat transfer with the cooling fluid, and a pump that is adapted to circulate the working fluid to the economizer heat exchanger.

In another illustrative embodiment, the system comprises a first heat exchanger adapted to receive a fluid from a heat source and a working fluid, wherein, when the working fluid is passed through the first heat exchanger, the working fluid is converted to a vapor via heat transfer from the heat contained in the fluid from the heat source, and at least one turbine adapted to receive the vapor. The system further comprises a desuperheater heat exchanger adapted to receive exhaust vapor from the turbine and a portion of the working fluid extracted upstream of the first heat exchanger, wherein the temperature of the exhaust vapor from the turbine is adapted to be reduced via heat transfer with the working fluid in the desuperheater heat exchanger, a condenser heat exchanger that is adapted to receive working fluid exiting the desuperheater heat exchanger and a cooling fluid, wherein a temperature of the working fluid is adapted to be reduced via heat transfer with the cooling fluid in the condenser heat exchanger, and a pump adapted to circulate the working fluid to the first heat exchanger.

The particular embodiments disclosed above are illustrative only, as the invention may be modified and practiced in different but equivalent manners apparent to those skilled in the art having the benefit of the teachings herein. For example, the process steps set forth above may be performed in a different order. Furthermore, no limitations are intended to the details of construction or design herein shown, other than as described in the claims below. It is therefore evident that the particular embodiments disclosed above may be altered or modified and all such variations are considered within the scope and spirit of the invention. Accordingly, the protection sought herein is as set forth in the claims below.