ELECTRON BEAM & LASER BEAM MACHING-(EBM/LBM)

Dr. G. Takyi

Instructional Objective

- Describe the basic mechanism of material removal in EBM & LBM
- Identify major components of EBM & LBM equipments
- State the working principle of EBM & LBM equipments
- Draw schematically EBM & LBM equipments
- Identify the process parameters of EBM & LBM
- Identify the machining characteristics of EBM & LBM
- List three applications of EBM & LBM
- List three limitations of EBM & LBM

Classification of NTM Processes

- **Mechanical Processes**
 - Abrasive Jet Machining (AJM)
 - Ultrasonic Machining (USM)
 - Water Jet Machining (WJM)
 - Abrasive Water Jet Machining (AWJM)
- **Electrochemical Processes**
 - Electrochemical Machining (ECM)
 - Electro Chemical Grinding (ECG)
 - Electro Jet Drilling (EJD)

Classific

Classification of NTM Processes

- Mechanical Processes
 - Abrasive Jet Machining (AJM)
 - Ultrasonic Machining (USM)
 - Water Jet Machining (WJM)
 - Abrasive Water Jet Machining (AWJM)
- Electrochemical Processes
 - Electrochemical Machining (ECM)
 - Electro Chemical Grinding (ECG)
 - Electro Jet Drilling (EJD)

Classification of NTM Processes

- Electro-Thermal Processes
 - Electro-discharge machining (EDM)
 - Electron Beam Machining (EBM)
 - Laser Jet Machining (LJM)
 - Electro-Optical-Thermal Process
- Chemical Processes
 - Chemical Milling (CHM)
 - Photochemical Milling (PCM) etc

High Energy Density Processes

EQUIPMENT INTENSIVE PROCESSES

EBM takes place in a vacuum to avoid collision so that thermo-ionic can take place

EBM - Modules of Electron Beam Gun

- Cathode cartridge tungsten or tantalum
- High voltage supply
- Bias Grid (pulsed) to get pulse mode operation
- Anode
- Magnetic Lens
- Aperture
- Electromagnetic Coils
- Deflector Coils
- Lighting System & Telescope for Alignment
- Rotating Slotted Discs
- Vacuum pumps Diffusion Pump

EBM – Modules of Electron Beam Gun

- · Cathode cartridge tungsten or tantalum filaments
- · High voltage supply Cathode -vely
- Bias Grid (pulsed) to get pulse mode operation
- Anode
- Magnetic Lens
- Aperture stray electron
- Electromagnetic Coils
- Deflector Coils
- Lighting System & Telescope for Alignment
- Rotating Slotted Discs
- Vacuum pumps Diffusion Pump

DIFFUSION PUMP

EBM - Mechanism of Material Removal

- Thermo-ionic electrons
- Acceleration of electrons due to anode potential
- High velocity beam of electron
- Shaping and focussing of the electron beam
- Impingement of high velocity electron beam on the work
- Spot size 10 100 micron high energy density
- Heating, melting & vaporisation

EBM - Mechanism of Material Removal

- Localised heating by focussed electron beam
- Gradual formation of hole by penetration of melt-vaporisation front
- Penetration till auxiliary support
- Expulsion of any molten material at the top by high vapour pressure of auxiliary material

EBM - Process Parameters

- Accelerating voltage
- Beam current 250 μA 1A
- Pulse duration 50 μs 50 ms
- Energy per pulse 100 J/pulse
- Power per pulse
- Lens current
- Spot size 10 μm 500 μm
- Power density

EBM - Process Parameters

- Accelerating voltage
- Beam current 250 μA 1A
- Pulse duration 50 μs 50 ms
- Energy per pulse 100 J/pulse
- Power per pulse
- Lens current
- Spot size 10 μm 500 μm
- Power density

$$P_{d} = \frac{\frac{1}{2}m_{e}v_{e}^{2}}{\frac{\pi}{4}d_{s}^{2}} = \frac{V_{a}I_{b}t_{on}}{\frac{\pi}{4}d_{s}^{2}}$$

EBM - Hole characteristics

- Plane of focussing
- Reverse Tapering
- Auxiliary Support
- Recast layer
- No Burr Formation
- Minimum HAZ
- 100 μm 2mm diameter
- L/d ratio 10 ~ 15
- Almost any material
- Shallow angle drilling -20⁰

EBM - Hole characteristics

- Plane of focussing
 - Reverse Tapering
 - Auxiliary Support
- Recast layer
- No Burr Formation
- Minimum HAZ
- 100 μm 2mm diameter
- L/d ratio 10 ~ 15
- Almost any material
- Shallow angle drilling -20°

EBM – Advantages

- very high drilling rates when small holes with large aspect ratio are to be drilled.
- machine almost any material irrespective of their mechanical properties.
- applies no mechanical cutting force, work holding and fixturing cost is very less.
- fragile and brittle materials can also be processed.
- heat affected zone in EBM is rather less due to shorter pulses.
- holes of any shape by combining beam deflection using electromagnetic coils and the CNC table with high accuracy.

- high capital cost of the equipment and necessary regular maintenance applicable for any equipment using vacuum system.
- non-productive pump down period for attaining desired vacuum. However this can be reduced to some extent using vacuum load locks.
- heat affected zone is rather less in EBM but recast layer formation cannot be avoided.

LASER BEAM MACHING

LBM - Introduction

- LASER Light Amplification by Stimulated Emission of Radiation
- Albert Einstein 1917
- Industrial Laser 1960s
- Wavelength 0.5 to 70 micron
- Power Density as high as 1 MW/mm²
- Absorption of Laser Energy
- Rapid rise in Temperature
- Melting & Evaporation
- Material Removal

LBM – Working Principle of Laser

- Spontaneous absorption
- Spontaneous emission
- Time duration ns
- Stimulated absorption
- Meta-stable state of electron
- Time Duration micro to ms
- Population inversion
- Stimulated emission
- Phase coherency temporal and spatial

LBM - Spontaneous Absorption & Emission

LBM - Stimulated Emission

LBM – Working Principle of Laser

LBM - Laser Types and Lasing Medium

- Gas Lasers
 - Helium Neon
 - Argon
 - CO₂ etc. wave length 10.6 μm
- Solid State Lasers
 - Ruby which is a chromium aluminium alloy having a wavelength of 0.7 μm
 - Nd-glass lasers having a wavelength of 1.64 μm
 - Nd-YAG laser having a wavelength of 1.06 μm

LBM - Solid State Laser 0-- Capación

LBM - Folded Gas Laser

LBM - Mechanism of Material Removal

- Absorption of Laser Energy
- Rapid rise in Temperature
- Melting & Evaporation
- Material Removal
- Gas Assist

Laser - Characteristics

Nd-YAG	CO2
Solid state	Gas
1% Nd doped Yttrium – Aluminium-Garnet	CO ₂ +He+N ₂ (3:8:4)
1.064 μm	10.6 μm
2%	10-15%
Pulsed	CW
0.015 mm	0.075 mm
1-300 pps	cw
10-1000 W	0.1 – 10 kW
400 kW	100 kW
	Solid state 1% Nd doped Yttrium – Aluminium-Garnet 1.064 µm 2% Pulsed 0.015 mm 1-300 pps 10-1000 W

LBM - Application

- Material Removal drilling, cutting, trepanning
- Welding
- Cladding
- Alloying
- Bending
- Laser Drilling Pulsed and Continuous Laser

- Material Removal drilling, cutting, trepanning
- Welding ~
- Cladding 4
- Alloying
- Bending

Laser Drilling - Pulsed and Continuous Laser Asist

LBM - Application

Application	Type of Laser
Holes upto 1.5 mm dia.	Ruby, Nd-Glass, Nd-YAG
Trepanned Holes	Nd-YAG, CO2
Holes – dia. less than 0.25 mm	Ruby, Nd-Glass, Nd-YAG
Drilling - punching	Nd-YAG, Ruby
Thick cutting	CO ₂ with gas assist
Thin slitting of metals	Nd-YAG
Thin slitting of plastics	CO2
Plastics	CO ₂
Metals	Nd-YAG, ruby, Nd-glass
Organics, Non-metal	Pulsed CO ₂
Ceramics	Pulsed CO ₂ , Nd-YAG

LBM - Advantages

- Micro-holes can be drilled in difficult to machine materials
- Though laser processing is a thermal processing but heat affected zone specially in pulse laser processing is not very significant due to shorter pulse duration.
- In laser machining there is no physical tool.
 Thus no machining force or wear of the tool takes place.
- Large aspect ratio in laser drilling can be achieved along with acceptable accuracy or dimension, form or location

- High initial capital cost
- High maintenance cost
- Not very efficient process
- Presence of Heat Affected Zone specially in gas assist CO₂ laser cutting
- Thermal process not suitable for heat sensitive materials

LBM - Limitations

- Nd-YAG
- High initial capital cost
- **High maintenance cost**
- Not very efficient process
- Presence of Heat Affected Zone specially in gas assist CO2 laser cutting
- Thermal process not suitable for heat sensitive materials

Summary

- Major components of EBM & LBM equipment
- Working principle of EBM & LBM equipment
- Drawing of EBM & LBM equipment
- Process parameters of EBM & LBM
- Basic mechanism of material removal in EBM & LBM
- Applications of EBM & LBM
- Advantages of EBM & LBM
- Limitations of EBM & LBM

Quiz

- 1. Mechanism of material removal in Electron Beam Machining is due to
 - a) Mechanical erosion due to impact of high of energy electrons
 - b) Chemical etching by the high energy electron
 - c) Sputtering due to high energy electrons
 - d) Melting and vaporisation due to thermal effect of impingement of high energy electron

Answer - (d)

Quiz

- 2. Mechanism of material removal in Laser Beam Machining is due to
- a) Mechanical erosion due to impact of high of energy photons
- b) Electro-chemical etching
- Melting and vaporisation due to thermal effect of impingement of high energy laser beam
- d) Fatigue failure

Answer – (c)

3. Generally Electron Beam Gun is operated at

- a) Atmospheric pressure
- b) At 1.2 bar pressure above atmosphere
- c) At 10 100 mTorr pressure
- d) At 0.01 0.001 mTorr pressure

Answer - (d)

- 4. Laser Beam is produced due to
 - a) Spontaneous emission
 - b) Stimulated emission followed by spontaneous emission
 - Spontaneous emission followed by Spontaneous absorption
 - d) Spontaneous absorption leading to "population inversion" and followed by stimulated emission