An Analytical Method For Multi-Class Molecular Cancer Classification

Ryan Rifkin * * * , Sayan Mukherjee * * * , Pablo Tamayo * * , Sridhar Ramaswamy * † , Chen-Hsiang Yeang * † † , Michael Angelo || , Michael Reich * , Tomaso Poggio * , Eric S. Lander * * , Todd R. Golub * † and Jill P. Mesirov * * .

* Whitehead Institute / Massachusetts Institute of Technology Center for Genome Research, Cambridge, MA 02139; † Departments of Adult and ‡ Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115; Departments of ** Biology, # McGovern Institute, CBCL, Artificial Intelligence Laboratory, and †† Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139. || X-Mine, Brisbane, CA 94005. & These authors contributed equally to this work. && Corresponding author.

February 18, 2003

Machine Learning in Bioinformatics (NAIL107) Project
May 15, 2019

Richard Eliáš, Kateřina Břicháčková

Introduction

- Cancer treatment by molecular methods
- Multi-class classification of 14 tumor types
- DNA microarray gene expression data
- Combine multiple binary Support Vector Machine classifiers

Labels	: :
0	Breast
1	Prostate
2	Lung
3	Colorectal
4	Lymphoma
5	Bladder
6	Melanoma
7	UterusAdeno
8	Leukemia
9	Renal
10	Pancreas
11	Ovary
12	Mesothelioma
13	CNS

Challenges

- Multi-class classification more complex
 - Greater number of separation boundaries
 - Error rates can be higher
 - Random prediction:
 - Binary problem accuracy 50%
 - K classes accuracy I/K

- Large dimensionality 16063 genes
- Small number of samples 198
- Solid tumors harder sample preparation
- Uncertainty in the original labeling
- Measurement noise

Multi-class supervised classification

- Decomposition → set of binary problems
- Combine the binary classifiers
- 2 common approaches:
 - One-versus-all (OVA)
 - All-pairs (AP)
- AP approach should be theoretically more accurate
 - But very problem dependent...

Methodology

- OVA approach → I4 binary SVM classifiers
- Winning class:

$$class = \arg \max_{i=1..K} f_i$$

- Linear kernel
- No feature selection

- **AP** approach → 182 binary SVM classifiers
- Winning class:

$$class = \arg \max_{i=1..K} \left| \sum_{j=1}^{K} f_{ij} \right|$$

- Linear kernel
- No feature selection

Results

Table 2. Accuracy of different combinations of multi-class approaches and algorithms.

Number of Genes per Classifier	Weighted Voting	Weighted Voting	k-nearest neighbors	k-nearest neighbors	SVM	SVM
	One vs. All	All Pairs	One vs. All	All Pairs	One vs. All	All Pairs
30	60.0%	62.3%	65.3%	67.2%	70.8%	64.2%
92	59.3%	59.6%	68.0%	67.3%	72.2%	64.8%
281	57.8%	57.2%	65.7%	67.0%	73.4%	65.1%
1073	53.5%	52.4%	66.5%	64.8%	74.1%	64.9%
3276	43.4%	48.8%	66.3%	62.0%	74.7%	64.7%
6400	38.5%	45.6%	64.2%	58.4%	75.5%	64.6%
All	-	-	-	-	78.0%	64.7%