2020年度 大阪大学基礎工学部編入学試験 注意事項(各コースにおける物理及び化学の解答方法について)

学科	コース	内容
電子物理科学科	エレクトロニクスコース	物理:3問すべて解答してください。
		物理:3問すべて解答してください。
	物性物理科学コース	化学:3問中2問を解答してください。 また、解答しない解答用紙に 大きく×印をしてください。
化学応用科学科	合成化学コース	物理:3問中2問を解答してください。 また、解答しない解答用紙に 大きく×印をしてください。
		化学:3問すべて解答してください。
	化学工学コース	物理及び化学: 2科目あわせて6問中5問を 解答してください。 また、解答しない解答用紙に 大きく×印をしてください。
システム科学科	知能システム学コース	物理:3問中2問を解答してください。 また、解答しない解答用紙に 大きく×印をしてください。
情報科学科	計算機科学コース	
	ソフトウェア科学コース	物理:3問中2問を解答してください。 また、解答しない解答用紙に 大きく×印をしてください。
	数理科学コース	

2020 年度 大阪大学基礎工学部編入学試験 [物理]の試験問題の訂正について

問題2(4)の問題文

- 【誤】 ただし、 $0 < l \ll x$ として近似式を用いて良い.
- 【正】 ただし、 $0 < l \ll x_m$ として近似式を用いて良い.

2020年度 大阪大学基礎工学部編入学試験 [物理] 試験問題

受 験 番 号	志望学科・コース
	学 科
	7-7

[物理-1]

問題1

図(a)に示す単振り子、および、図(b)に示す物理振り子について考える。図(a)の単振り子は、長さIの糸の下端に質量mのおもりをつけ、糸の上端は回転できるように支点Oにつけ、鉛直面内で十分小さな振幅で振動している。鉛直方向と糸がなす角を θ とする。おもりの大きさと糸の質量と伸縮は無視できる。図(b)の物理振り子は、棒の下端に円板の形をした剛体をつけ、棒の上端は回転できるように支点Pにつけ、鉛直平面内で十分小さな振幅で振動している。鉛直方向と棒がなす角を ϕ とする。棒と円板は、棒の延長線上に円板の中心Cがあるように固定されており、一体となって運動している。点Pと点Cの距離はLであり、棒の質量は無視できる。円板は密度が一様であり、半径はR、質量はMである。また、剛体のPまわりの慣性モーメントはIである。点Oおよび点Pでの摩擦は無視できるものとする。重力加速度をgとして、以下の間に答えよ。

- (1) 単振り子において、Oまわりの慣性モーメントを、m, g, l, θ のうち必要なものを用いて表せ.
- (2) 単振り子において、おもりに作用する重力のOに関するモーメントの大きさを、m, g, l, θ のうち必要なものを用いて表せ、
- (3) 単振り子において、鉛直方向と糸がなす角 θ を時間 t の関数 $\theta(t)$ として、おもりの運動を表す θ の微分方程式を、 θ 、t 、m 、 g 、l のうち必要なものを用いて表せ、振幅は十分に小さいため、 $\sin\theta \approx \theta$ の関係を用いてよい.
- (4) 単振り子の周期を、m, g, l のうち必要なものを用いて表せ.
- (5) 物理振り子において、鉛直方向と棒がなす角 ϕ を時間 t の関数 $\phi(t)$ として、剛体の運動を表す ϕ の微分方程式を、 ϕ 、t 、I 、M 、L 、g のうち必要なものを用いて表せ、振幅は十分に小さいため、 $\sin\phi\approx\phi$ の関係を用いてよい。
- (6) 物理振り子の周期を、I, M, L, g のうち必要なものを用いて表せ、
- (7) 物理振り子において、剛体のCまわりの慣性モーメントが $\frac{1}{2}MR^2$ であることを示せ.
- (8) 物理振り子において、剛体のPまわりの慣性モーメントIを、M, R, L, g のうち必要なものを用いて表せ.
- (9) 単振り子と物理振り子の周期が同じ場合,単振り子の糸の長さlを,m, R, M, L, g のうち必要なものを用いて表せ.

2020年度 大阪大学基礎工学部編入学試験

[物理]試験問題

受 験 番 号	志望学科・コース
	学 科
	7-7

[物理-2]

問題2

図のように、真空中に径の無視できる無限に長い導線が z 軸上に設置されているとする。この導線には、z 軸に沿って正の向きに均一に直流電流 I が流れているとする。z 軸上に置かれた導線上の点をPとする。ここで、xy 平面上の点 $Q\left(x_{Q},\ y_{Q},\ 0\right)$ について考える。このとき、図のように角度 θ ならびに $d\theta$ を定義する。また \overline{PQ} を \overline{r} で表し、その長さを r とする。真空中にて、点Pにある電流素片 $Id\overline{s}$ が距離 r だけ離れた点Qに作る磁界 $d\overline{H}$ は、

$$d\vec{H} = \frac{Id\vec{s} \times \vec{r}}{4\pi r^3}$$

で与えられる. ここで、 $d\vec{s}=(0, 0, ds)$ は線素ベクトルである. 以下の間に答えよ.

- (1) 点Pにある電流素片 $Id\bar{s}$ が、点Qに作る磁界 $d\bar{H}$ を図中の I , x_{Q} , y_{Q} , r , ds を用いて表せ.
- (2) $\sin\theta = r\frac{\mathrm{d}\theta}{\mathrm{d}s}$ の関係式を用いて(1)で求めた式を変形し、 $\mathrm{d}\vec{H}$ を図中のI, x_Q , y_Q , θ , $\mathrm{d}\theta$ を用いて表せ.
- (3) (2) で求めた式を θ について 0 から π まで積分することで、無限に長い導線を流れる電流が点 Qに作る 磁界 \vec{H} を求めよ.
- (4) 2つ磁荷 m, -m n, それぞれ $\left(x_{m}, \frac{l}{2}, 0\right)$, $\left(x_{m}, -\frac{l}{2}, 0\right)$ の座標に存在したとする。ただし、磁荷の単位はウェーバー (Wb) とする。これらの磁荷が作る磁気モーメントを $\bar{\mu}=\left(\mu_{x}, \ \mu_{y}, \ \mu_{z}\right)=\left(0, \ ml, \ 0\right)$ とする。(3) で求めた磁界を用いて、この磁気モーメント $\bar{\mu}$ に働く力を I, x_{m} , μ_{y} を用いて表せ。ただし、 $0 < l \ll x$ として近似式を用いて良い。また、磁界 \bar{H} 中に存在する磁荷 m に働く力は、 $\bar{F}=m\bar{H}$ で表される。

2020年度 大阪大学基礎工学部編入学試験

[物理]試験問題

受 験 番 号	志望学科・コース
	学 科
	コース

[物理-3]

問題3

1モルの理想気体に対して図に示すような、状態AからB、状態BからC、状態CからD、状態DからAへと変化させる準静的サイクルについて考える。状態AからBは温度 T_H の等温過程、状態BからCは断熱過程、状態CからDは温度 T_L の等温過程、状態DからAは断熱過程である。圧力 P、体積 V、絶対温度 T に対して、R を気体定数として状態方程式 PV=RT が成り立つものとする。また、定積モル比熱は定数 C_V で与えられるものとする。以下の間に答えよ。

- 1) 状態AからBまでの温度 T_H における等温過程において圧力及び体積を P_A V_A から, P_B , V_B へと変化させるとき,外部に行う仕事 W_{AB} を T_H , V_A , V_B ,R を用いて表せ.
- (2) 状態BからCまでの断熱過程の途中において圧力 P と体積 V に成り立つ関係式を P, V, C_V , R を用いて表せ、ただし、定数を const. として用いてもよい。
- (3) 状態A, B, C, Dにおける体積 VA, VB, VC, VD の間に成立する関係式を導け.
- (4) 状態BからCまでの断熱過程で外部に行う仕事 W_{BC} と状態DからAまでの断熱過程で外部に行う仕事 W_{DA} の合計, W_{BC} + W_{DA} を計算せよ.
- (5) サイクルの一周で外部に行う仕事を W_{ex} とし、状態AからBの等温過程において吸収する熱量を Q_{H} とするとき、それらの比の値 $W_{\text{ex}}/Q_{\text{H}}$ を温度 T_{H} と T_{L} を用いて表せ、

