1 Sumas

La suma es una de las cuatro operaciones básicas de la **aritmética**, esta rama de las matemáticas se encarga de estudiar las operaciones que se pueden hacer con los números. La suma es una operación la cual agrupa conjuntos.

1.1 Elementos de la suma

La suma tiene dos elementos:

- ▶ Los sumandos, son los números que se van a sumar, una suma puede tener más de dos sumandos.
- ▶ El total, es el resultado de sumar los sumandos.

Figura 1 Sumas con 2 y 3 sumandos (azul) y su total (naranja).

1.2 Propiedades de la suma

▶ La suma de un número cualquiera más cero (0), va a ser siempre el mismo número. Esta propiedad recibe el nombre de **elemento neutro**.

$$4+0=4$$

 $0+15=15$

▶ La propiedad **conmutativa** de la suma nos dice que no importa el orden de los números que sumemos, el total será siempre el mismo.

$$\begin{cases} 7+6=13 \\ 6+7=13 \end{cases} \begin{cases} 15+8=23 \\ 8+15=23 \end{cases}$$

▶ La propiedad **asociativa** de la suma nos dice que cuando tenemos tres o más sumandos, podemos escoger cualquier pareja de números sumarlas y luego sumar ese resultado con los sumandos que falten.

$$\begin{cases} = (3+8)+4 \\ = 11+4 \\ = 15 \end{cases} = 3+(8+4)$$

$$= 3+12 \\ = 15$$

1.3 Ejemplos

8

EJEMPLO

Realiza la siguiente suma.

 $+\frac{5}{4}$

1) Suma los sumandos y coloca el total debajo de la línea.

$$+\frac{5}{4}$$

Realiza la siguiente suma.

$$+ \frac{9}{6}$$

1) Suma los sumandos y coloca el total debajo de la línea.

$$+ \frac{9}{6}$$
 $\frac{15}{15}$

EJEMPLO

Realiza la siguiente suma.

$$+\frac{3}{2}\frac{3}{3}$$

- 1) Suma la columna de la derecha y coloca el resultado debajo de la línea de esta misma columna.
- 2) Suma la siguiente columna y coloca el resultado debajo de la línea de esa misma columna.

$$+\frac{3}{2}\frac{3}{3}$$

EJEMPLO

Realiza la siguiente suma.

$$+\,rac{3\ 6}{1\ 7}$$

1) Suma la columna de la derecha, es decir, 6+7=13, como el resultado de la suma es mayor a 10, colocarás debajo de la línea de esa misma columna el 3, mientras que el 1 se va a colocar en la parte de arriba de la siguiente columna.

$$\frac{\begin{array}{c} 1 \\ +36 \\ 17 \\ \hline 3 \end{array}$$

2) Suma la siguiente columna, no te olvides del 1 que agregaste en el paso anterior.

$$+\frac{3}{1}\frac{6}{7}$$

EJEMPLO

Realiza la siguiente suma.

$$+\,{2\ 3\ 7}{1\ 8\ 6}$$

1) Suma la columna de la derecha, es decir, 7+6=13, como el resultado de la suma es mayor a 10, colocarás debajo de la línea de esa misma columna el 3, mientras que el 1 se va a colocar en la parte de arriba de la siguiente columna.

$$\begin{array}{r} 1 \\ +2 & 3 & 7 \\ \hline 1 & 8 & 6 \\ \hline 3 \end{array}$$

2) Suma la columna de enmedio, no te olvides del 1 que agregaste en el paso anterior, es decir, 1+3+8=12, como el resultado de la suma es mayor a 10, colocarás debajo de la línea de esa misma columna el 2, mientras que el 1 se va a colocar en la parte de arriba de la siguiente columna.

$$\begin{array}{c} 1 \\ + \begin{array}{c} 2 & 3 & 7 \\ 1 & 8 & 6 \\ \hline 2 & 3 \end{array}$$

3) Suma la columna de la izquierda, no te olvides del 1 que agregaste en el paso anterior.

$$\begin{array}{r} + \begin{array}{r} 2 & 3 & 7 \\ 1 & 8 & 6 \\ \hline 4 & 2 & 3 \end{array}$$

2 Restas

La resta es la segunda operación de la **aritmética** es la resta, la cual, a diferencia de la suma que agrupa conjuntos, esta desagrupa conjuntos, es por esto que se dice que la resta es la operación inversa u opuesta a la suma.

2.1 Elementos de la resta

La resta tiene tres elementos:

▶ Minuendo, es el número más grande.

- ▶ Sustraendo, es menor que el minuendo y es el que se va a restar de él.
- ▶ Diferencia, es el resultado de restar el sustraendo del minuendo.

Figura 2 Elementos de la resta, minuendo (azul), sustraendo (naranja) y diferencia o resultado (verde).

2.2 Propiedades de la resta

▶ En una resta el minuendo **siempre** tiene que ser mayor que el sustraendo, de lo contrario la resta no se puede resolver.

$$4-1=3$$

 $12-15=?$

▶ Cuando se resta un número cualquiera menos cero (0), el resultado siempre será igual al mismo número.

$$4 - 0 = 4$$

 $15 - 0 = 15$

▶ Cuando se resta un número menos el mismo número, el resultado siempre será igual a cero (0).

$$4 - 4 = 0$$

 $15 - 15 = 0$

▶ La resta no es **conmutativa**, por lo que no es permitido cambiar de lugar el minuendo por el sustraendo.

$$\begin{cases} 15 - 8 = 7 \\ 8 - 15 = ? \end{cases} \begin{cases} 20 - 10 = 10 \\ 10 - 20 = ? \end{cases}$$

▶ Una resta se puede comprobar sumando el sustraendo con la diferencia, si el resultado es igual al minuendo, entonces la resta se hizo correctamente.

2.3 Ejemplos de restas sin transformación

\$

EJEMPLO

Realiza la siguiente resta.

$$-\frac{5}{4}$$

1) Hazte la pregunta, ¿cuánto le falta al 4 para llegar al 5?, lo que falte es la respuesta de la resta.

$$\frac{-\frac{5}{4}}{1}$$

EJEMPLO

Realiza la siguiente resta.

$$-\frac{1}{6}\frac{5}{6}$$

1) Hazte la pregunta, ¿cuánto le falta al 6 para llegar al 15?, lo que falte es la respuesta de la resta.

$$-\frac{15}{6}$$

EJEMPLO

$$-\frac{3}{2}\frac{5}{3}$$

- 1) Resta la columna de la derecha, recuerda hacerte la pregunta ¿cuánto le falta al 3 para llegar al 5?, la respuesta a esta pregunta la colocarás debajo de la línea de esta misma columna.
- 2) Resta la siguiente columna, recuerda hacerte la pregunta ¿cuánto le falta al 2 para llegar al 3?, coloca la respuesta debajo de la línea de esa columna.

$$-\frac{3}{2}\frac{5}{3}$$

Realiza la siguiente resta.

$$-\,rac{2\ 6\ 7}{1\ 3\ 1}$$

- 1) Resta la columna de la derecha, recuerda hacerte la pregunta ¿cuánto le falta al 1 para llegar al 7?, la respuesta a esta pregunta la colocarás debajo de la línea de esta misma columna.
- 2) Resta la siguiente columna, recuerda hacerte la pregunta ¿cuánto le falta al 3 para llegar al 6?, coloca la respuesta debajo de la línea de esa columna.
- 3) Resta la siguiente columna, recuerda hacerte la pregunta ¿cuánto le falta al 1 para llegar al 2?, coloca la respuesta debajo de la línea de esa columna.

$$-\frac{2\ 6\ 7}{1\ 3\ 1}\\ \hline \frac{1\ 3\ 6}$$

2.4 Ejemplos de restas con transformación

EJEMPLO

$$-\begin{array}{c} 3 & 2 \\ 1 & 7 \end{array}$$

- 1) Al hacerte la pregunta ¿cuánto le falta al 7 para llegar al 2? te darás cuenta que no se puede responder ya que el 7 es MAYOR que 2, cuando esto suceda entonces "pedirás prestado".
- 2) El dos (2) le pedirá prestado al tres (3) un uno (1), para que así el dos (2) se transforme en doce (12) y el tres (3) al darle prestado al dos se convertirá en dos (2).
- 3) Ahora hazte la pregunta ¿cuánto le falta al 7 para llegar al 12, la respuesta a esta pregunta la colocarás debajo de la línea de esta misma columna.
- 4) Resta la siguiente columna, recuerda hacerte la pregunta ¿cuánto le falta al 1 para llegar al 2?, coloca la respuesta debajo de la línea de esa columna.

$$-rac{3}{1}rac{2}{7}$$

Realiza la siguiente resta.

$$-\frac{6}{2}\frac{3}{8}$$

- 1) Al hacerte la pregunta ¿cuánto le falta al 8 para llegar al 3? te darás cuenta que no se puede responder ya que el 8 es MAYOR que 3, cuando esto suceda entonces "pedirás prestado".
- 2) El tres (3) le pedirá prestado al seis (6) un uno (1), para que así el tres (3) se transforme en trece (13) y el seis (6) al darle prestado al tres se convertirá en cinco (5).
- 3) Ahora hazte la pregunta ¿cuánto le falta al 8 para llegar al 13, la respuesta a esta pregunta la colocarás debajo de la línea de esta misma columna.
- 4) Resta la siguiente columna, recuerda hacerte la pregunta ¿cuánto le falta al 2 para llegar al 5?, coloca la respuesta debajo de la línea de esa columna.

$$-\frac{6\ 3}{2\ 8}$$

EJEMPLO

$$-\frac{1}{6}\frac{3}{3}$$

- 1) Resta la columna de la derecha, recuerda hacerte la pregunta ¿cuánto le falta al 3 para llegar al 5?, la respuesta a esta pregunta la colocarás debajo de la línea de esta misma columna.
- 2) Resta la siguiente columna, al hacerte la pregunta ¿cuánto le falta al 6 para llegar al 3? te darás cuenta que no se puede responder ya que el 6 es MAYOR que 3, cuando esto suceda entonces "pedirás prestado".
- 3) El tres (3) le pedirá prestado al uno (1) un uno (1), para que así el tres (3) se transforme en trece (13) y el uno (1) al darle prestado al tres (3) se convertirá en cero (0).
- 4) Ahora hazte la pregunta ¿cuánto le falta al 6 para llegar al 13, la respuesta a esta pregunta la colocarás debajo de la línea de esta misma columna.
- 5) Resta la siguiente columna, recuerda hacerte la pregunta ¿cuánto le falta al 0 para llegar al 0?, coloca la respuesta debajo de la línea de esa columna.

$$\frac{-\begin{array}{c} 1 & 3 & 5 \\ 6 & 3 \end{array}}{7 & 2}$$

2.5 Ejemplos de restas con dos transformaciones

EJEMPLO

$$-\,rac{3}{1}\,rac{2}{5}\,rac{5}{8}$$

- 1) Al hacerte la pregunta ¿cuánto le falta al 8 para llegar al 5? te darás cuenta que no se puede responder ya que el 6 es MAYOR que 3, cuando esto suceda entonces "pedirás prestado".
- 2) El cinco (5) le pedirá prestado al dos (2) un uno (1), para que así el cinco (5) se transforme en quince (15) y el dos (2) al darle prestado al cinco (5) se convertirá en uno (1).
- 3) Ahora hazte la pregunta ¿cuánto le falta al 8 para llegar al 15, la respuesta a esta pregunta la colocarás debajo de la línea de esta misma columna.
- 4) Al hacerte la pregunta ¿cuánto le falta al 5 para llegar al 1? te darás cuenta que no se puede responder ya que el 5 es MAYOR que 1, cuando esto suceda entonces "pedirás prestado".
- 5) El uno (1) le pedirá prestado al tres (3) un uno (1), para que así el uno (1) se transforme en once (11) y el tres (3) al darle prestado al uno (1) se convertirá en dos (2).
- 6) Ahora hazte la pregunta ¿cuánto le falta al 5 para llegar al 11, la respuesta a esta pregunta la colocarás debajo de la línea de esta misma columna.
- 7) Resta la siguiente columna, recuerda hacerte la pregunta ¿cuánto le falta al 1 para llegar al 2?, coloca la respuesta debajo de la línea de esa columna.

$$-\frac{3\ 2\ 5}{1\ 5\ 8}\\ \hline 1\ 6\ 7$$

2.6 Ejemplos de restas con ceros intermedios

EJEMPLO

Realiza la siguiente resta.

$$-\,\frac{3\ 0\ 0}{1\ 5\ 8}$$

- 1) Al hacerte la pregunta ¿cuánto le falta al 8 para llegar al 0? te darás cuenta que no se puede responder ya que el 8 es MAYOR que 0, cuando esto suceda entonces "pedirás prestado".
- 2) El cero (0) le pedirá prestado no al cero sino al treinta (30) un uno (1), para que así el cero (0) se transforme en diez (10) y el treinta (30) al darle prestado al cero (0) se convertirá en veintinueve (29).
- 3) Ahora hazte la pregunta ¿cuánto le falta al 8 para llegar al 10, la respuesta a esta pregunta la colocarás debajo de la línea de esta misma columna.
- 4) Resta la siguiente columna, recuerda hacerte la pregunta ¿cuánto le falta al 5 para llegar al 9?, coloca la respuesta debajo de la línea de esa columna.
- 5) Resta la siguiente columna, recuerda hacerte la pregunta ¿cuánto le falta al 1 para llegar al 2?, coloca la respuesta debajo de la línea de esa columna.

$$-\frac{3\ 0\ 0}{1\ 5\ 8}$$

$$\frac{1\ 4\ 2}{1\ 4\ 2}$$

EJEMPLO

$$-\,\frac{4\ 0\ 5}{1\ 9\ 3}$$

- 1) Resta la columna de la derecha, recuerda hacerte la pregunta ¿cuánto le falta al 3 para llegar al 5?, la respuesta a esta pregunta la colocarás debajo de la línea de esta misma columna.
- 2) Resta la siguiente columna, al hacerte la pregunta ¿cuánto le falta al 9 para llegar al 0? te darás cuenta que no se puede responder ya que el 9 es MAYOR que 0, cuando esto suceda entonces "pedirás prestado".
- 3) El cero (0) le pedirá prestado al cuatro (4) un uno (1), para que así el cero (0) se transforme en diez (10) y el cuatro (4) al darle prestado al cero (0) se convertirá en tres (3).
- 4) Ahora hazte la pregunta ¿cuánto le falta al 9 para llegar al 10, la respuesta a esta pregunta la colocarás debajo de la línea de esta misma columna.
- 5) Resta la siguiente columna, recuerda hacerte la pregunta ¿cuánto le falta al 1 para llegar al 3?, coloca la respuesta debajo de la línea de esa columna.

$$-\frac{4\ 0\ 5}{1\ 9\ 3}$$

Realiza la siguiente resta.

$$-\frac{3}{1} \frac{0}{8} \frac{3}{7}$$

- 1) Al hacerte la pregunta ¿cuánto le falta al 7 para llegar al 3? te darás cuenta que no se puede responder ya que el 7 es MAYOR que 3, cuando esto suceda entonces "pedirás prestado".
- 2) El tres (3) le pedirá prestado no al cero sino al treinta (30) un uno (1), para que así el tres (3) se transforme en trece (13) y el treinta (30) al darle prestado al tres (3) se convertirá en veintinueve (29).
- 3) Ahora hazte la pregunta ¿cuánto le falta al 7 para llegar al 13, la respuesta a esta pregunta la colocarás debajo de la línea de esta misma columna.
- 4) Resta la siguiente columna, recuerda hacerte la pregunta ¿cuánto le falta al 8 para llegar al 9?, coloca la respuesta debajo de la línea de esa columna.
- 5) Resta la siguiente columna, recuerda hacerte la pregunta ¿cuánto le falta al 1 para llegar al 2?, coloca la respuesta debajo de la línea de esa columna.

$$\frac{-\,\frac{3\;0\;3}{1\;8\;7}}{1\;1\;6}$$

3 Multiplicaciones

La multiplicación es la tercera la tercera operación de la aritmética y es una abreviación de la suma, ya que al multiplicar dos números lo que se esta haciendo es ir contando de 2 en 2, de 3 en 3 o de cualquier otro número en cualquier otro número.

3.1 Elementos de la multiplicación

La multiplicación tiene dos elementos:

- ▶ Factores, son los números que se van a multiplicar, una multiplicación puede tener más de dos factores.
- ▶ **Producto**, es el resultado de multiplicar los factores.

Figura 3 Multiplicaciones con sus factores (azul) y su producto (naranja).

3.2 Propiedades de la multiplicación

▶ La multiplicación de un número cualquiera por cero (0), va a ser siempre cero (0).

$$4 \times 0 = 0$$

$$9 \times 0 = 0$$

▶ La multiplicación de un número cualquiera por 1, será siempre el mismo número. Esta propiedad recibe el nombre de **elemento neutro**.

$$13 \times 1 = 13$$

$$7 \times 1 = 7$$

▶ La propiedad **conmutativa** de la multiplicación nos dice que no importa el orden de los factores, el producto será siempre el mismo.

$$\begin{cases} 3 \times 4 = 12 \\ 4 \times 3 = 12 \end{cases}$$

$$\begin{cases} 7 \times 8 = 50 \\ 2 \times 5 = 50 \end{cases}$$

$$4 \times 3 = 12$$

$$\begin{cases} 7 \times 8 = 56 \\ 8 \times 7 = 56 \end{cases}$$

▶ La propiedad asociativa de la multiplicación nos dice que cuanto tenemos tres o más factores, podemos escoger cualquier pareja de números multiplicarlos y luego multiplicar ese resultado con los factores que falten.

$$\begin{cases}
= (2 \times 3) \times 4 \\
= 6 \times 4 \\
= 24
\end{cases}$$

$$= 2 \times (3 \times 4)$$

$$=6\times4$$

$$=2\times12$$

$$= 24$$

$$= 2^{4}$$

3.3 Ejemplos

EJEMPLO

Realiza la siguiente multiplicación.

$$\begin{array}{ccc} 2 & 4 \\ \times & 2 \end{array}$$

- 1) Multiplica el factor de abajo por cada uno de los números del factor de arriba, comenzando siempre de derecha a izquierda.
- 2) Multiplica $2 \times 4 = 8$ y el resultado lo colocas debajo de la línea de la primera columna.
- 3) Multiplica $2 \times 2 = 4$ y el resultado lo colocas debajo de la línea de la segunda columna.

$$\begin{array}{r} 2 \ 4 \\ \times 2 \\ \hline 4 \ 8 \end{array}$$

EJEMPLO

Realiza la siguiente multiplicación.

$$\begin{array}{c} 3 \ 6 \\ \times 3 \end{array}$$

- 1) Multiplica el factor de abajo por cada uno de los números del factor de arriba, comenzando siempre de derecha a izquierda.
- 2) Multiplica $3 \times 6 = 18$, como el resultado de la multiplicación es mayor a 10 se colocará debajo de la línea de la primera columna el 8, mientras que el 1 se va a colocar en la parte de arriba de la segunda columna.
- 3) Multiplica $3 \times 3 = 9$, no te olvides de sumarle el 1 que agregaste en el paso anterior, es decir 9 + 1 = 10, como ya no hay más multiplicaciones que hacer escribe el 10 debajo de la línea.

$$\begin{array}{r}
 3 6 \\
 \times 3 \\
 \hline
 1 0 8
 \end{array}$$

EJEMPLO

Realiza la siguiente multiplicación.

$$56$$
 \times 6

1) Multiplica el factor de abajo por cada uno de los números del factor de arriba, comenzando siempre de derecha a izquierda.

Tercero de secundaria

- 2) Multiplica $6 \times 6 = 36$, como el resultado de la multiplicación es mayor a 10 se colocará debajo de la línea de la primera columna el 6, mientras que el 3 se va a colocar en la parte de arriba de la segunda columna.
- 3) Multiplica $6 \times 5 = 30$, no te olvides de sumarle el 3 que agregaste en el paso anterior, es decir 30 + 3 = 33, como ya no hay más multiplicaciones que hacer escribe el 33 debajo de la línea.

$$\begin{array}{r}
 5 6 \\
 \times 6 \\
 \hline
 3 3 6
 \end{array}$$

EJEMPLO

Realiza la siguiente multiplicación.

- 1) Multiplica el factor de abajo por cada uno de los números del factor de arriba, comenzando siempre de derecha a izquierda.
- 2) Multiplica $5 \times 4 = 20$, como el resultado de la multiplicación es mayor a 10 se colocará debajo de la línea de la primera columna el 0, mientras que el 2 se va a colocar en la parte de arriba de la segunda columna.
- 3) Multiplica $5 \times 3 = 15$, no te olvides de sumarle el 2 que agregaste en el paso anterior, es decir 15 + 2 = 17, como el resultado de la multiplicación con la suma es mayor a 10 se colocará debajo de la línea de la segunda columna el 7, mientras que el 1 se va a colocar en la parte de arriba de la tercera columna.
- 4) Multiplica $5 \times 2 = 10$, no te olvides de sumarle el 1 que agregaste en el paso anterior, es decir 10 + 1 = 11, como ya no hay más multiplicaciones que hacer escribe el 11 debajo de la línea.

$$\begin{array}{c}
2 \ 3 \ 4 \\
\times 5 \\
\hline
1 \ 1 \ 7 \ 0
\end{array}$$

EJEMPLO

Realiza la siguiente multiplicación.

$$\begin{array}{c}
 35 \\
 \times 24 \\
 \hline
 140 \\
 70
 \end{array}$$

- 1) Multiplica la el cuatro (4) por cada uno de los números del factor de arriba, comenzando siempre de derecha a izquierda.
- 2) Multiplica $4 \times 5 = 20$, como el resultado de la multiplicación es mayor a 10 se colocará debajo de

la línea de la primera columna el 0, mientras que el 2 se va a colocar en la parte de arriba de la segunda columna.

3) Multiplica $4 \times 3 = 12$, no te olvides de sumarle el 2 que agregaste en el paso anterior, es decir 12 + 2 = 14, como ya no hay más multiplicaciones que hacer escribe el 14 debajo de la línea.

$$\begin{array}{c}
3 5 \\
\times 2 4 \\
\hline
1 4 0 \\
7 0 \\
\hline
8 4 0
\end{array}$$

4 La división

La división es la cuarta operación de la aritmética. La división es la operación inversa de la multiplicación y es usada para repartir una cantidad determinada entre otra.

4.1 Los elementos de la división

La división tiene 4 elementos: el **dividendo** que es el número que va a ser divido y está dentro de la "casa", el **divisor** que es el número que va a dividir al dividendo y se encuentra afuera de la "casa", el **cociente** que es el resultado de dividir el dividendo entre el divisor y se ubica arriba de la "casa" y el **residuo** es lo que sobra al efectuar la división.

Figura 4 Divisiones con sus respectivos elementos. En la división de la izquierda el residuo es cero (0) y en la división de la derecha el residuo es 4.

4.2 Las propiedades de la división

1 La división entre el número cero (0) no se puede realizar.

$$10 \div 0 = ?$$
$$5 \div 0 = ?$$

2 La división de un número cualquiera entre 1, será el mismo número.

$$8 \div 1 = 8$$
$$15 \div 1 = 15$$

3 La división no es asociativa, por lo que no está permitido cambiar el dividendo por el divisor o viceversa.

$$\begin{cases} 15 \div 3 = 5 \\ 3 \div 15 = ? \end{cases} \begin{cases} 20 \div 10 = 2 \\ 10 \div 20 = ? \end{cases}$$

4.3 Ejemplos

Realiza la siguiente división $5 \div 2$.

1 Representa la división en un diagrama, el primero número es el dividiendo y el segundo es el divisor.

2)5

- 2 Realiza la división colocando el cociente en la parte de arriba del diagrama.
- 3 Multiplica el resultado por el divisor y coloca el resultado debajo del dividendo. Resta el dividendo del resultado de la multiplicación obtenida para conocer el residuo.

 $2)\frac{2}{5}$ $\frac{4}{1}$

EJEMPLO

Realiza la siguiente división $25 \div 3$.

1 Representa la división en un diagrama, el primero número es el dividiendo y el segundo es el divisor.

3)25

- Divide $2 \div 3$, al no poderse efectuar la división se agrega el 5. Divide $25 \div 3$ y coloca el cociente arriba del 5.
- 3 Multiplica el cociente por el divisor y coloca el resultado debajo del dividendo.
- 4 Resta el resultado obtenido en el paso anterior del dividendo para conocer el residuo.

 $\frac{8}{3)25}$ $\frac{24}{1}$

EJEMPLO

Realiza la siguiente división $237 \div 12$.

1 Representa la división en un diagrama, el primero número es el dividiendo y el segundo es el

divisor.

- Divide $2 \div 12$, al no poderse efectuar la división, se le agrega el 3 al 2, para formar el 23. Divide $23 \div 12$ y coloca el cociente arriba del 3.
- Multiplica el cociente por el divisor y coloca el resultado debajo del 23 y luego resta el resultado obtenido de la multiplicación del dividiendo.

$$\begin{array}{r}
 1 \\
 12) 237 \\
 \hline
 12 \\
 \hline
 11
 \end{array}$$

- Divide $11 \div 12$, al no poderse efectuar la división se baja el 7 junto al 11, para formar el 117. Divide $117 \div 12$ y coloca el cociente arriba del 7.
- [5] Multiplica el cociente obtenido en el paso anterior por el divisor y coloca el resultado debajo del 117.
- [6] Resta el resultado obtenido en el paso anterior de 117 para conocer el residuo.

$$\begin{array}{r}
 19 \\
 12 \overline{\smash{\big)}\,237} \\
 \underline{12} \\
 \overline{117} \\
 \underline{108} \\
 9
\end{array}$$

EJEMPLO

Realiza la siguiente división $4352 \div 28$.

1 Representa la división en un diagrama, el primero número es el dividiendo y el segundo es el divisor.

$$28\,\overline{)\,4352}$$

- Divide $4 \div 28$, al no poderse efectuar la división, se le agrega el 3 al 4, para formar el 43. Divide $43 \div 28$ y coloca el cociente arriba del 3.
- 3 Multiplica el cociente por el divisor y coloca el resultado debajo del 43 y luego resta el resultado obtenido de la multiplicación del dividiendo.

$$\begin{array}{r}
 1 \\
 28 \overline{\smash{\big)}\,4352} \\
 \underline{28} \\
 15
\end{array}$$

- Divide $15 \div 28$, al no poderse efectuar la división se baja el 5 junto al 15, para formar el 155. Divide $155 \div 28$ y coloca el cociente arriba del 5.
- Multiplica el cociente obtenido en el paso anterior por el divisor y coloca el resultado debajo del 155 y luego resta el resultado obtenido de la multiplicación del dividendo.

$$\begin{array}{r}
15\\
28 \overline{\smash)4352}\\
28\\
\overline{155}\\
\underline{140}\\
15
\end{array}$$

- $\boxed{6}$ Divide $15 \div 28$, al no poderse efectuar la división se baja el 2 junto al 15, para formar el 152. Divide $152 \div 28$ y coloca el cociente arriba del 2.
- Multiplica el cociente obtenido en el paso anterior por el divisor y coloca el resultado debajo del 152 y luego resta el resultado obtenido de la multiplicación del dividendo para conocer el residuo.

$$\begin{array}{r}
155 \\
28 \overline{\smash)4352} \\
\underline{28} \\
155 \\
\underline{140} \\
152 \\
\underline{140} \\
12
\end{array}$$