Résumé - Cours de Virtualisation (4IIR-EMSI)

Pr M. Zbakh - 2024-2025

I. Principaux Avantages de la Virtualisation

Avantages Clés

• Optimisation des ressources : Un serveur physique héberge plusieurs VMs

• Réduction des coûts : Moins de matériel physique et de maintenance

• Flexibilité et évolutivité : Déploiement/modification rapide

Sécurité et isolation : Chaque VM fonctionne indépendamment

• Facilité de gestion : Outils comme VMware, KVM, Hyper-V, OpenStack

II. Les 4 Raisons de la Virtualisation

Raison	Exemples	Avantages	
Partager	LPARs, VMs, virtual disks, VLANs	Utilisation des ressources, flexibilité, isolation	
Consolider	Virtual disks, IP routing to clones	Simplification de gestion, protection investissement	
Émuler	Arch. emulators, iSCSI, virtual tape	Compatibilité, interopérabilité, flexibilité	
Isoler	Spare CPU subst., CUoD, SAN-VC	Disponibilité continue, flexibilité	
<	•	>	

III. Types de Virtualisation

1. Virtualisation de Serveurs

• **Concept**: Plusieurs OS/applications sur une machine physique

Avantages : Réduction TCO, maintenance simplifiée, sécurisation

2. Virtualisation du Stockage

A. Objectifs

• Optimiser l'utilisation : Centralisation et allocation selon besoins

• Simplifier la gestion : Interfaces utilisateurs et API

• Améliorer la disponibilité : Redondance contre pannes

• Améliorer l'évolutivité : Extension flexible sans interruption

B. Inconvénients

- Complexité accrue
- Risques de sécurité

• Problèmes de performance potentiels

C. Types de Stockage

Туре	Description	Avantages	Inconvénients
Local (DAS)	Stockage directement connecté	Performances élevées	Pas de partage
SAN	Réseau dédié au stockage	Centralisation, performances	Complexité, coût
NAS	Stockage via réseau	Partage facile	Performances moindres
Distribué	Stockage sur plusieurs nœuds	Haute disponibilité, scalabilité	Complexité
<	•	•	>

D. Interfaces de Stockage

• **SATA**: 1.5 à 6 Gb/s

• **SAS**: 3 à 22.5 Gb/s

• **NVMe**: > 100 Gb/s via PCle

E. Services de Stockage

Service	Caractéristiques	Cas d'usage
Par bloc	Haute performance, faible latence	Disques de démarrage, bases de données
Par fichier	Partage via SMB/NFS	Collaboration, partage documents
Par objet	API REST, métadonnées	Big data, archivage, multimédia
<	•	>

F. Température des Données

• Chaudes (Hot) : Accès fréquent → SSD rapides

• **Tièdes (Warm)** : Accès modéré → SSD/HDD standard

• Froides (Cold) : Accès rare → Stockage objet

3. Virtualisation de Réseau

Concepts Clés

• **Transformation**: Réseau basé matériel → logiciel

Types:

• Externe : Combine/divise réseaux physiques (VLANs)

• Interne : Émule réseau dans un serveur

Hyper-V Network Virtualization (HNV)

• **HNVv1**: Compatible Windows Server 2012 R2

• **HNVv2**: Extension VFP (Virtual Filtering Platform)

Composants HNV

• **Réseau virtuel** : Limite d'isolation avec RDID unique

• Sous-réseau virtuel : Domaine de diffusion avec VSID unique

• Encapsulation : NVGRE ou VXLAN

4. Virtualisation du Poste de Travail (VDI)

A. Composants

• Bureau Virtuel: Accès via navigateur web

• **Streaming Applicatif**: Applications sans installation

• VDI : Environnements bureau complets virtualisés

B. Architecture VDI

• Connection Broker : Gère allocation des ressources

• Machines virtuelles : Hébergées sur serveurs ESX

• Clients: Accès via RDP/ICA

C. Technologies Principales

Technologie	Description	Acteurs
Client léger	Applications sur serveur, déport d'interface	Microsoft, Citrix
Virtualisation d'applications	Applications isolées en streaming	Microsoft, Citrix, Altiris
Virtualisation du PC	Environnement système virtualisé	VMware
Streaming de système	OS à disposition via serveur	Ardence (Citrix)
PC lame	Centralisation physique sur serveur lame	ClearCube, HP
<	•	>

5. Virtualisation des Applications

Avantages

• **Installation simple**: Une fois sur serveur

• Gestion centralisée : Un emplacement unique

• Flexibilité accrue : Support mobilité

• **Sécurité renforcée** : Isolation des applications

• Contrôle d'accès : Permissions centralisées

Défis

- Applications graphiques exigeantes
- Dépendance réseau stable
- Problèmes pilotes périphériques
- Accès hors ligne limité

IV. Types de Migrations

A. Migration P2V (Physical to Virtual)

Outils de Conversion

- Microsoft Virtual Machine Converter (MVMC): Gratuit, interface conviviale
- Disk2vhd : Léger, création images VHD/VHDX

Processus MVMC

- 1. Installation et lancement assistant
- 2. Sélection "Physical machine conversion"
- 3. Configuration machine source et cible
- 4. Spécification stockage et réseau
- 5. Lancement conversion

B. Migration V2V (Virtual to Virtual)

Types de Migration

- 1. Migration hors ligne: VM suspendue pendant migration
- 2. **Migration en ligne**: VM continue fonctionnement (vMotion, xenMotion)
- 3. **Migration mémoire** : Stratégie pré-copie pour état mémoire

Exemple: VMware vMotion

- Fonctionnalité : Migration à chaud sans interruption
- Types:
 - vMotion standard : Migration VM en exécution
 - Storage vMotion : Migration stockage seulement

C. Migration V2P (Virtual to Physical)

Cas d'Usage

- Conversion VHDX → lecteur physique
- Déploiements nécessitant environnement physique

Bonnes Pratiques

- Sauvegarde complète avant migration
- Conservation identifiants administrateur local
- Matériel générique pour compatibilité pilotes
- Adaptation BIOS (Gen 1) vs UEFI (Gen 2)

Points Clés pour l'Examen

Technologies à Retenir

Hyperviseurs: VMware ESXi, Hyper-V, KVM, Xen

Outils de gestion : vCenter, System Center, OpenStack

Protocoles stockage: FCP, iSCSI, NVMe-oF

Protocoles réseau : NVGRE, VXLAN

Concepts Importants

• TCO: Total Cost of Ownership

PRA: Plan de Reprise d'Activité

• **SLA**: Service Level Agreement

• RAID: Niveaux 1, 6, 10 pour redondance

• **Snapshots**: Copy-on-write pour sauvegardes cohérentes

Formules et Calculs

• **Utilisation ressources**: Plusieurs VMs sur un serveur physique

• Économies : Réduction matériel, énergie, administration

• **Performance**: Débits interfaces (SATA < SAS < NVMe)

Architectures à Connaître

• DAS vs SAN vs NAS : Différences et cas d'usage

Stockage distribué : Ceph, Gluster, vSAN

• VDI: Connection Broker, machines virtuelles, clients

• HNV : Réseaux virtuels, sous-réseaux, encapsulation