Algebra: Chapter 0 Exercises

Chapter 3, Section 4

Ideals and quotients: Remarks and examples. Prime and maximal ideals

David Melendez

August 13, 2018

Problem 4.1. Let R be a ring, and let $\{I_{\alpha}\}_{{\alpha}\in A}$ be a family of ideals of R. We let

$$\sum_{\alpha \in A} I_{\alpha} = \left\{ \sum_{\alpha \in A} r_{\alpha} \text{ such that } r_{\alpha} \in I_{\alpha} \text{ and } r_{\alpha} = 0 \text{ for all but finitely many } \alpha \right\}$$

Prove that $J = \sum_{\alpha} I_{\alpha}$ is an ideal of R and that it is the smallest ideal containing all of the ideals I_{α} .

Solution. First we prove that J is an ideal of R.

Proof. Let $a, b \in J$, so that

$$a = \sum_{\alpha \in A} r_{\alpha}$$
$$b = \sum_{\alpha \in A} s_{\alpha},$$

where each $r_{\alpha}, s_{\alpha} \in I_{\alpha}$ and all but finitely many r_{α} and s_{α} are nonzero. We then have:

$$a + b = \sum_{\alpha \in A} r_{\alpha} + \sum_{\alpha \in A} s_{\alpha}$$
$$= \sum_{\alpha \in A} r_{\alpha} + s_{\alpha}.$$

Each term $r_{\alpha} + s_{\alpha}$ is in I_{α} since $r_{\alpha}, s_{\alpha} \in I_{\alpha}$ and I_{α} is an ideal, and clearly all but finitely many $r_{\alpha} + s_{\alpha}$ are nonzero since $(r_{\alpha})_{\alpha \in A}$ and $(s_{\alpha})_{\alpha \in A}$ both have that property, so $a + b \in J$.

Additionally, if $s \in R$ and $r \in J$ so that $r = \sum_{\alpha \in A} r_{\alpha}$ (where all but finitely many r's are zero), then we have

$$rs = \left(\sum_{\alpha \in A} r_{\alpha}\right) s$$
$$= \sum_{\alpha \in A} r_{\alpha} s$$
$$\in J,$$

where the last line is true because each $r_{\alpha}s \in I_{\alpha}$ as a result of each I_{α} being a right-ideal of R, and the fact that if r_{α} is zero then $r_{\alpha}s$ is also zero, implying that there are cofinitely many zero terms in this resulting sum as well. A similar argument shows that J is a left-ideal of R if each I_{α} is also a left-ideal.

Now, we will show that $J = \sum_{\alpha \in A} I_{\alpha}$ is the smallest ideal of R containing each of the ideals I_{α} for $\alpha \in A$.

Proof. We just proved that J is an ideal of R, so now we just need to show that J is a subset of any ideal containing each of the ideals I_{α} . This is immediate: if $r \in J$ is such that $r = \sum_{\alpha \in A} r_{\alpha}$ for $r_{\alpha} \in I_{\alpha}$, then of course any ideal of R containing each I_{α} contains r, since such an ideal is closed under addition.

Problem 4.2. Prove that the homomorphic image of a Noetherian ring is Noetherian. That is, prove that if $\varphi: R \to S$ is a surjective ring homomorphism and R is Noetherian, then S is Noetherian.

Solution. Suppose $I = (a_1, \ldots, a_n)$ is an ideal of R and $\varphi : R \to S$ is surjective. Then we have

$$\varphi(I) = \varphi\left(\sum_{i=1}^{n} (a_i)\right)$$
$$= \sum_{i=1}^{n} \varphi((a_i))$$
$$= \sum_{i=1}^{n} (\varphi(a_i)),$$

and so $\varphi(I)$ is finitely generated.

To see that these operations are justified, note that if $g \in R$ and J = (g) is an ideal, then we have

$$\varphi(J) = \varphi(\{rg : r \in R\})$$

$$= \{\varphi(r)\varphi(g) : r \in R\}$$

$$= \{r\varphi(g) : r \in R\}$$

$$= (\varphi(g)),$$

where the third equality follows from the surjectivity of φ .

Additionally, if I, J are ideals of R, then we also have

$$\varphi(I+J) = \varphi(\{i+j : i \in I, j \in J\})$$
$$= \{\varphi(i) + \varphi(j) : i \in I, j \in J\}$$
$$= \varphi(I) + \varphi(J)$$

Note, then, that if J is an ideal of S, then $\varphi^{-1}(J)$ is an ideal of R, allowing us to see that $J = \varphi(\varphi^{-1}(J))$ is finitely generated. Therefore, every ideal of S is finitely generated, and so S is Noetherian.

Problem 4.3. Prove that the ideal (2, x) of $\mathbb{Z}[x]$ is not principal.

Solution. First, we (quite clumsily) compute the ideal (2, x) as follows:

$$(2,x) = \{2p + xq : p, q \in \mathbb{Z}[x]\}\$$

$$= \{(2a_0 + 2a_1x + \dots + 2a_nx^n) + (b_1x + b_2x^2 + \dots + b_mx^m) : a_j, b_j \in \mathbb{Z}\}\$$

$$= \{2a_0 + a_1x + a_2x^2 + \dots + a_nx^n : a_j \in \mathbb{Z}\}.$$

In other words, the ideal (2, x) consists of all the polynomials in $\mathbb{Z}[x]$ with an even constant term.

Note, then, if (2, x) = (g) for some polynomial $g \in \mathbb{Z}[x]$, then there must be a polynomial $p \in \mathbb{Z}[x]$ such that 2 = gp, since $2 \in (2, x)$. If this is the case, then we have $\deg g + \deg p = 0$, and so $\deg g = \deg p = 0$. This means that g is constant, and hence is either 1 or 2. In the former case, (g) is the whole ring $\mathbb{Z}[x]$, and in the latter case, (g) is the ideal $2\mathbb{Z}[x]$. Neither of these ideals equal the ideal of (2, x), leading us to conclude that no single polynomial in $\mathbb{Z}[x]$ generates the ideal (2, x).

Problem 4.4. Prove that if k is a field, then k[x] is a PID. (Hint: Polynomial divison with remainder)

Solution. Let $I \subseteq k[x]$ be an ideal. If I = 0 = (0), then clearly it is principal. Otherwise, let $p \in I$ be a monic polynomial of minimal degree d Let $I \subseteq k[x]$ be an ideal. If I = 0 = (0), then clearly it is principal.

Otherwise, let $g \in I$ be a monic polynomial of minimal degree d. If $p \in I$, then we can apply division with remainder to find polynomials $q, r \in k[x]$ such that

$$p = gq + r$$
,

where $\deg r < d$. Note that since $p \in I$ and $gq \in I$ by (right-) absorption, we then can see that $r = p - gq \in I$, since I is closed under addition. But d is the smallest degree of any nonzero polynomial in I and $\deg r < d$; it then follows that r = 0, and so

$$p = gq$$

showing us that $I \subseteq (g)$.

Of course $(g) \subseteq I$, so we then have I = (g), as desired.

Problem 4.5. Let I, J be ideals in a commutative ring R, such that I + J = (1). Prove that $IJ = I \cap J$.

j++i