Determinization

EECS 20
Lecture 16 (February 26, 2001)
Tom Henzinger

State machines

Deterministic

Output-deterministic

Nondeterministic

A state machine is deterministic iff

- 1. there is only one initial state, and
- 2. for every state and every input, there is only one successor state.

Hence, for every input signal there is exactly one run.

A state machine is output-deterministic iff

- 1. there is only one initial state, and
- 2. for every state and every input-output pair, there is only one successor state.

Hence, for every behavior there is exactly one run.

State machines

Simulations can be found easily

Nondeterministic

If M2 is a deterministic state machine, then

M1 is simulated by M2

M1 is equivalent to M2.

"if and only if"

M1 refines M2, and M2 refines M1

If M2 is an output-deterministic state machine, then

M1 is simulated by M2

M1 (refines) M2.

If M2 is a nondeterministic state machine, then

M1 is simulated by M2 implies
M1 refines M2.

Fortunately:

For every nondeterministic state machine M, we can find an output-deterministic state machine det(M) that is equivalent to M.

(This is called "subset construction.")

Then, to check if M1 refines M2, check if M1 is simulated by det(M2):

```
M1 refines M2

iff

M1 refines det(M2)

iff

M1 is simulated by det(M2).
```

Then, to check if M1 refines M2, check if M1 is simulated by det(M2):

M1 refines M2 iff M1 refines det(M2) iff M1 is simulated by (det(M2).

output-deterministic

The Subset Construction

Given: nondeterministic state machine M

Find: output-deterministic state machine det(M)

that is equivalent to M

The Subset Construction

Given: nondeterministic state machine M

Find: output-deterministic state machine det(M)

that is equivalent to M

```
Inputs [det(M)] = Inputs [M]
```

Outputs [det(M)] = Outputs [M]

The Subset Construction

```
Let initialState [det(M)] = possibleInitialStates [M];
Let States [ det(M) ] = { initialState [det(M)] };
Repeat as long as new transitions can be added to det(M):
  Choose P \in States[det(M)] and (x,y) \in Inputs \times Outputs;
 Let Q = \{ q \in \text{States}[M] \mid \exists p \in P, (q,y) \in \text{possibleUpdates}[M](p,x) \};
  If Q \neq \emptyset then
     Let States [det(M)] = States [det(M)] \cup \{Q\};
     Let update [det(M)](P,x) = (Q,y).
```


$$det(M)$$
 {p}

$$det(M) \qquad \qquad \underbrace{\{q1,q2\}}$$

det(M)

$$det(M) \longrightarrow \{a\}$$

$$det(M) \longrightarrow \{a\}$$

$$det(M) \longrightarrow \underbrace{\begin{cases} 0/0 \\ 1/1 \\ \{a,b\} \end{cases}}$$

det(M)

M

$$det(M) \longrightarrow \{a,c\}$$

M

M

For a given reactive system 5:

1. If there is a nondeterministic state machine that implements S with n states, then there is an output-deterministic state machine that implements S with 2ⁿ states.

[Subset construction]

- 2. There may not be an output-deterministic state machine that implements 5 with fewer than 2ⁿ states. [Homework 5, Problem C]
- 3. There may not be a unique nondeterministic state machine that implements 5 with the fewest states.

equivalent but not isomorphic to

So what does minimization do for nondeterministic state machines?

Input: nondeterministic state machine M

Output: minimize (M), the state machine with the fewest states that is bisimilar to M

(the result is unique up to renaming of states)

A binary relation $B \subseteq S$ tates $[M1] \times S$ tates [M2] is a bisimulation between M1 and M2

iff

```
A1. \forall p \in possibleInitialStates [M1],
           \exists q \in possibleInitialStates [M2], (p,q) \in B, and
A2. \forall p \in States[M1], \forall q \in States[M2],
     if (p,q) \in B,
      then \forall x \in \text{Inputs}, \forall y \in \text{Outputs}, \forall p' \in \text{States} [M1],
              if (p', y) \in possibleUpdates [M1] (p, x)
              then \exists q' \in States [M2],
                     (q', y) \in possibleUpdates[M2](q, x) and
                     (p', q') \in B, and
```

and

```
B1. \forall q \in possibleInitialStates[M2],
            \exists p \in possibleInitialStates [M1], (p,q) \in B, and
B2. \forall p \in \text{States [M1]}, \forall q \in \text{States [M2]},
      if (p,q) \in B,
      then \forall x \in \text{Inputs}, \forall y \in \text{Outputs}, \forall q' \in \text{States} [M2],
               if (q', y) \in possibleUpdates[M2](q, x)
               then \exists p' \in States [M1],
                       (p', y) \in possibleUpdates [M1] (p, x) and
                       (p', q') \in B.
```


For deterministic state machines M1 and M2,

M1 is equivalent to M2

M1 and M2 are bisimilar.

For nondeterministic state machines M1 and M2,

M1 is equivalent to M2

M1 and M2 are bisimilar.

- 1. Let Q be set of all reachable states of M.
- 2. Maintain a set P of state sets:

Initially let $P = \{Q\}$.

Repeat until no longer possible: split P.

3. When done, every state set in P represents a single state of the smallest nondeterministic state machine bisimilar to M.

Split P

```
If there exist
   two state sets R \in P and R' \in P
   two states r1 \in R and r2 \in R
   an input x \in Inputs
   an output y \in Outputs
such that
    \exists r' \in R', (r', y) \in possibleUpdates(r1, x) and
    \forall r' \in R', (r', y) \notin possibleUpdates(r2, x)
then
    let R1 = \{r \in R \mid \exists r' \in R', (r', y) \in possibleUpdates(r, x)\};
    let R2 = R \setminus R1:
    let P = (P \setminus \{R\}) \cup \{R1, R2\}.
```

Split

Split

Minimal state machine bisimilar to M

Minimal state machine equivalent to M (in general, this is difficult to find)