Les identités remarquables

Utiliser le calcul littéral

- ☐ Utiliser le calcul littéral
- ☐ Utiliser les égalités remarquables

Situation de recherche

n est un nombre entier. On pose $A = (3n+1)^2 + 16n^2 - 26n + 3$.

- 1. Développer et réduire A.
- 2. Démontrer que A est le carré d'un nombre entier.

2 Situation de recherche

- 1. Effectuer les opérations suivantes : $5^2 4 \times 6$ et $9^2 10 \times 8$. Quelle remarque peut-on faire?
- **2.** Calculer $n^2 (n+1) \times (n-1)$.
- 3. Conclure.

Situation de recherche

b

1. Calcule l'aire du grand carré de deux façons différentes.

2. Quelle égalité peux tu en déduire?

Théorème 1. Les identités remarquables

Pour tous nombres a et b,

$$(a+b)^2 = a^2 + 2ab + b^2$$

$$(a-b)^2 = a^2 - 2ab + b^2$$

$$(a-b)(a+b) = a^2 - b^2$$

Remarque

Dans la propriété ci dessus, le membre de gauche est la forme factorisée et dans celui de droite est la forme développée.

Application directe

Développer, réduire et ordonner ces produits. On pourra utiliser le calcul formel de GGB pour vérifier les résultats.

$$A = (x+5)^2$$

$$D = (5x - 1)^2$$

$$F = (3, 2 - x)(3, 2 + x)$$

$$H = (2+x)^2$$

$$B = (a-3)^2$$

$$E = (2a+4)^2$$

$$G = (x-4)^2$$

$$I = (2 - \sqrt{5})^2$$

Application directe

Trois triangles équilatéraux identiques sont découpés dans les coins d'un triangle équilatéral de côté 6 cm. La somme des périmètres des trois petits triangles est égale au périmètre de l'hexagone gris restant. Quelle est la mesure du côté des petits triangles?

Les identités remarquables

Les identités remarquables sont primordiales dans la factorisation d'expressions.

Théorème 2. Les identités remarquables

Pour tous nombres a et b,

Forme factorisée $(a-b)(a+b) = a^2 - b^2$ [Forme développée]

1 Vu au brevet Métropole Juin

- **1.** On donne l'expression $E = (3x + 8)^2 64$.
 - (a) Développer E.
 - (**b**) Montrer que *E* peut s'écrire sous forme factorisée : 3x(3x + 16).
 - (c) Résoudre l'équation $(3x+8)^2-64=0$.
- **2.** La distance d de freinage d'un véhicule dépend de sa vitesse et de l'état de la route. On peut la calculer à l'aide de la formule suivante :

 $d = k \times V^2$ avec d: distance de freinage en m V: vitesse du véhicule en m/s

k : coefficient dépendant de l'état de la route

 $\begin{cases} k = 0,14 \text{ sur route mouillée} \\ k = 0,08 \text{ sur route sèche.} \end{cases}$

Quelle est la vitesse d'un véhicule dont la distance de freinage sur route mouillée est égale à 15 m?

2 Vu au brevet Métropole Septembre

Pour chaque affirmation, dire en justifiant, si elle est vraie ou fausse.

Affirmation 1:

Programme de calcul A

Choisir un nombre

Ajouter 3

Multiplier le résultat par 2

Soustraire le double du nombre de départ

Le résultat du programme de calcul A est toujours égal à 6.

Affirmation 2: Le résultat du calcul $\frac{7}{5} - \frac{4}{5} \times \frac{1}{3}$ est égal à $\frac{1}{5}$.

Affirmation 3: La solution de l'équation 4x - 5 = x + 1 est une solution de l'équation $x^2 - 2x = 0$.

Affirmation 4: Pour tous les nombres entiers n compris entre 2 et 9, $2^n - 1$ est un nombre premier.

Vus au DNB

1 Vu au brevet Pondichery

On considère l'expression E = (x-2)(2x+3) - 3(x-2).

- 1. Développer E.
- **2.** Factoriser *E* et vérifier que E = 2F, où F = x(x-2).
- 3. Déterminer tous les nombres x tels que (x-2)(2x+3)-3(x-2)=0.

Vu au brevet Amérique du Nord

Le schéma ci-contre représente le jardin de Leïla. Il n'est pas à l'échelle.

[OB] et [OF] sont des murs, OB = 6 m et OF = 4m.

La ligne pointillée BCDEF représente le grillage que Leïla veut installer pour délimiter un **enclos rectangulaire OCDE**.

Elle dispose d'un rouleau de 50 m de grillage qu'elle veut utiliser entièrement.

Leïla envisage plusieurs possibilités pour placer le point C.

- 1. En plaçant C pour que BC = 5 m, elle obtient que FE = 15 m.
 - (a) Vérifier qu'elle utilise les 50 m de grillage.
 - (**b**) Justifier que l'aire A de l'enclos OCDE est 209 m².
- **2.** Pour avoir une aire maximale, Leïla fait appel à sa voisine professeure de mathématiques qui, un peu pressée, lui écrit sur un bout de papier :

« En notant BC =
$$x$$
, on a A(x) = $-x^2 + 18x + 144$ »

Vérifier que la formule de la voisine est bien cohérente avec le résultat de la question 1.

- 3. Dans cette partie, les questions a. et b. ne nécessitent pas de justification.
 - (a) Leïla a saisi une formule en B2 puis l'a étirée jusqu'à la cellule I2.

B2			=-B1*B1+18*B1+144							
	A	В	С	D	Е	F	G	Н	I	J
1	x	5	6	7	8	9	10	11	12	
2	$A(x) = -x^2 + 18x + 144$	209	216	221	224	225	224	221	216	
3										

Quelle formule est alors inscrite dans la cellule F2?

- (b) Parmi les valeurs figurant dans le tableau, quelle est celle que Leïla va choisir pour BC afin obtenir un enclos d'aire maximale?
- (c) Donner les dimensions de l'enclos ainsi obtenu.

Quelques défis

Développement https://www.geogebra.org/m/fgHDPjEF **Factorisation** https://www.geogebra.org/m/WzrRd7Kz

Identités remarquables https://www.geogebra.org/m/FAGxTYCk

1

Approfondissement

Que penses-tu de l'affirmation : "Les entiers de la forme $n^3 - n$ sont divisibles par 6"?

Le rayon de la boule est 4 fois celui du cochonnet. Ils sont placés dans une boîte carrée de 27 cm de côté. Calcule leurs rayons respectifs.

3 Défi

Les cercles sont tangents deux à deux. Le rayon du plus grand cercle est 2. Calcule le rayon des deux plus petits.

