Министерство образования и науки Российской Федерации

САНКТ-ПЕТЕРБУРГСКИИ НАЦИОНАЛЬНЫИ ИССЛЕДОВАТЕЛЬСКИИ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ"

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА ВЫПУСКНОЙ КВАЛИФИКАЦИОННОЙ РАБОТЫ

«РАЗРАБОТКА ВЕБ-ПРИЛОЖЕНИЯ ДЛЯ РАБОТЫ С ПРОГРАММНЫМ ПАКЕТОМ ВЫСОКОТОЧНОГО ПОЗИЦИОНИРОВАНИЯ RTKLIB»

Автор	Кузнецов Андрей Андрее	вич				
	(фамилия, имя, отчество)	(подпись)				
Направление по	дготовки (специальность)_	00.00.00				
TC 1						
Квалификация _	магистр					
	(бакалавр, инженер, магистр)					
Руководитель	уководитель Соснин Владимир Валерьевич, к.т.н., доцент					
_	(Фамилия, И., О., ученое звание, степень)					
К защите допус	стить					
n 1 u						
Зав.кафедрой	Муромцев Дмитрі	ий Ильич, к.т.н., доцент				
	(Фамилия, И., О.	ученое звание, степень)				

СОДЕРЖАНИЕ

В	ВЕДЕ	ние .	
1	AHA.	лиз пі	РЕДМЕТНОЙ ОБЛАСТИ
	1.1	Особе	нности работы GPS-приёмников
	1.2	Дифференциальная GPS и кинематика реального времени 9	
		1.2.1	Дифференциальная GPS
		1.2.2	Кинематика реального времени
	1.3	Прогр	аммный пакет RTKLIB
		1.3.1	Поддерживаемые спутниковые системы
		1.3.2	Режимы работы
		1.3.3	Поддерживаемые форматы данных
		1.3.4	Программы, входящие в состав RTKLIB
	1.4	Основ	вные проблемы использования RTKLIB
	1.5	Обзор	существующих веб-приложений, предназначенных для
		работі	ы с устройствами без органов управления
		1.5.1	OpenWrt
		1.5.2	Windows 10 IoT Core
	1.6	Вывод	цы по разделу 1
2	выбо	ЭР ПЛА	АТФОРМЫ ДЛЯ РАЗРАБОТКИ И ПРОЕКТИРОВАНИЕ
	ВЕБ-	ПРИЛС	25
	2.1	Платф	оорма для разработки
	2.2	Выбор	р инструментов разработки
	2.3	Обща	я архитектура приложения
3	PA3PA	АБОТК	А ПРИЛОЖЕНИЯ
4	TECT	ГИРОВА	АНИЕ ПРИЛОЖЕНИЯ
Б	иблиоі	графиче	еский список

ВВЕДЕНИЕ

Актуальность темы. В настоящее время сложно представить жизнь без спутниковой навигации — данная технология стала неотъемлемой частью деятельности огромного числа людей. Спутниковые системы позволяют легко определить улицу или дом, где находится человек, или же просто помочь в ориентировании на незнакомой местности. Но использование систем навигации не ограничивается только лишь бытовым применением — данная технология активно применяется для решения задач автоматизации сельскохозяйственных работ, топографических съёмок, а также в множестве других областей.

Точность современных приёмников, установленных, например, в смартфонах или автомобильных навигаторах, в зависимости от условий, при которых осуществлялось определение местоположения, варьируется от трёх до пяти метров. Для повседневного применения, например, ориентации по городу — это отличный результат. Однако же, для решения задач более сложных, чем перечисленные выше, необходимы гораздо более точные данные, которые получают, используя технологию дифференциального GPS. Данное решение подразумевает использование сложных алгоритмов, а стоимость представленных на рынке устройств, позволяющих производить подобные расчёты, может превышать 10000 долларов США.

Для тех, кому по тем или иным причинам дорогостоящее оборудование недоступно, решением может стать RTKLIB [1] — проект с открытым исходным кодом, реализующий вышеупомянутые алгоритмы для стандартных, общедоступных приёмников. Однако, распространению данного пакета программ мешает неудобство его использования: для управления и мониторинга требуется наличие полноценного компьютера, а программы RTKLIB имеют множество режимов работы и настроек, что достаточно сильно повышает общий порог вхождения.

Объектом исследования является программный пакет высокоточного позиционирования RTKLIB.

Предметом исследования является процесс взаимодействия пользователя с программными компонентами RTKLIB.

Целью исследования является создание приложения, позволяющего взаимодействовать с RTKLIB через веб-браузер. Под взаимодействием понимается возможность наблюдать различные статусы и изменять настройки компонентов RTKLIB, производить сбор данных, а также работать с накопленными файлами логов данных глобальных навигационных спутниковых систем (ГНСС).

Для достижения цели исследования был сформулирован следующий ряд задач:

- изучить состав и возможности программного комплекса RTKLIB;
- произвести анализ существующих веб-приложений, предназначенных для работы устройствами, у которых отсутствую органы управления;
 - осуществить проектирование и разработку приложения;
 - произвести тестирование приложения.

Средствами разработки в представленной работе являются: языки программирования Python и JavaScript для реализации серверной (англ. backend) и клиентской (англ. front-end) частей приложения соответственно, открытые JavaScript-библиотеки D3.js, OpenLayers, JavaScript-фреймворк Vue.js. Для организации обмена данными серверной и клиентской частей приложения в реальном времени используются библиотека Socket.IO, принцип работы которой основывается на протоколе WebSocket.

Методологической основой работы послужила гибкая методология разработки (англ. *Agile software development*), ориентированная на итеративный процесс создания программного продукта и учитывающая возможность динамического формирования требований.

Новизна работы обусловлена отсутствием в настоящее время какихлибо программных продуктов с открытым API, основанных на RTKLIB и позволяющих работать с геодезическим оборудованием через веб-браузер.

Результатом данной работы является рабочая версия приложения, в которой реализованы все необходимые функции, перечисленные в постановке цели исследования. Также была создана и выложена в открытый доступ пользовательская документация, поясняющая основные моменты работы с приложением. Открытый АРІ находится в стадии разработки.

Апробация результатов работы. Наличие документации позволило осуществить открытое тестирование приложения пользователями и, как результат, получить отзывы, сообщения об ошибках и пожелания к функциональности.

1 АНАЛИЗ ПРЕДМЕТНОЙ ОБЛАСТИ

1.1 Особенности работы GPS-приёмников

Каждый GPS-приёмник определяет свои координаты, основываясь на расстояниях до спутников, с которых он получает сигналы. Данные расстояния вычисляются из времени, которое требуется радиосигналам для прохождения от космических аппаратов до приёмника.

Для установления позиции приёмнику необходимо получать сигналы минимум от четырёх спутников. Каждый из этих сигналов может быть искажён при прохождении через слои атмосферы или при отражении от различных наземных объектов (рис. 1.1) — данные явления вызывают появление ошибок и задержек, что отрицательно сказывается на точности позиционирования.

Рисунок 1.1 – Источники ошибок: атмосферные задержки и переотражение сигнала

Важную роль в решении проблемы, описанной выше, играет масштабность системы GPS. Расстояние между наземными объектами и космическими спутниками так велико, что многие расстояния на земле становятся незначительными. Иными словами, если разместить два приёмника на расстоя-

нии нескольких сотен километров друг от друга, то сигналы, которые они будут получать со спутников, будут проходить практически через одну и ту же часть атмосферы, что позволит считать ошибки на обоих приёмниках одинаковыми (рис. 1.2).

Рисунок 1.2 – База и ровер, получающие сигналы с одного спутника

Описанный выше принцип не является лишь теоретическими рассуждениями — данный способ устранения ошибок применяется на практике и является основой $\partial u \phi \phi$ еренциальной GPS.

1.2 Дифференциальная GPS и кинематика реального времени 1.2.1 Дифференциальная GPS

Дифференциальная GPS (англ. *Differential Global Positioning System,* DGPS) — система, предназначенная для повышения точности сигналов GPS. Принцип работы данной системы заключается в измерении и учёте разницы между рассчитанной и закодированной псевдодальностями до спутников [2].

Важнейшей особенность DGPS является использование двух приёмников при проведении измерений:

— **База** (англ. *base*) — стационарный приёмник, который находится в точке с заранее рассчитанной координатой. База транслирует данные о разнице

между информацией о позиции, полученной со спутника, и закодированными данными о своём местонахождении.

— **Ровер** (англ. *rover*) — приёмник, с помощью которого производятся какие-либо измерения. Используя данные, полученные с базы, ровер учитывает влияние внешних факторов на расчёт координаты, тем самым получая более точную информацию о своём местонахождении.

Таким образом, работа дифференциальной GPS основана на следующем принципе: считая искажения спутниковых сигналов одинаковыми для близлежащих приёмников, мы получаем возможность вносить поправки в получаемое решение, улучшая результаты измерений.

1.2.2 Кинематика реального времени

Кинематика реального времени (англ. *Real Time Kinematic*, *RTK*) – режим работы, при котором приём и применение поправок с базы происходят в реальном времени, что позволяет получать результат практически сразу. Важнейшей особенностью данного режима является тот факт, что для обеспечения работы необходима постоянная связь между ровером и базой.

RTK представляется крайне удобным инструментом для задач, решение которых подразумевает использование высокоточного позиционирования. Однако, алгоритмы дифференциальной GPS, обеспечивающие работу RTK, весьма сложны, и производители приёмников предлагают решение в виде закрытого, проприетарного программного обеспечения, встроенного в их продукты. Стоимость приёмников, поддерживающих дифференциальный режим работы, достаточно высока и может превышать 10000 долларов США.

Высокая стоимость оборудования является причиной того, что использование технологии дифференциальной GPS распространено только в таких специфических областях деятельности, как геодезия, земельный кадастр и т.п. Однако, для тех людей, которым по каким-либо причинам недоступны дорогостоящие устройства, решением может стать RTKLIB — программный ком-

плекс, реализующий вышеупомянутые алгоритмы для стандартных, общедоступных GPS-приёмников.

1.3 Программный пакет RTKLIB

RTKLIB — программный пакет с открытым исходным кодом, предназначенный для осуществления стандартного и высокоточного позиционирования с помощью ГНСС (глобальных навигационных спутниковых систем). В состав пакета входит библиотека функций и ряд приложений, использующих данную библиотеку.

Создателем RTKLIB является Томодзи Такасу, профессор Токийского Университета Морских Наук и Технологий. Существенный вклад в кодовую базу проекта был внесён Мишелем Баваро [1; 3], итальянским инженером с огромным опытом работы в сфере спутниковой навигации.

Начиная с релиза первой версии RTKLIB, состоявшегося в 2007 году, проект активно развивается и на данный момент представляет собой систему из восьми приложений, некоторые из которых имеют как графический, так и консольный интерфейс.

Функции компонентов RTKLIB подробно описаны в прилагающейся к проекту официальной документации. Ниже будут рассмотрены наиболее важные для данной работы возможности программного комплекса.

1.3.1 Поддерживаемые спутниковые системы

RTKLIВ поддерживает работу с шестью основными системами спутниковой навигации:

- GPS;
- GLONASS;
- Galileo;
- QZSS;
- BeiDou;

- SBAS.

Основной системой, позволяющей осуществлять высокоточное позиционирование является GPS. Остальные системы, как правило, служат источником дополнительных данных, которые помогают опровергнуть или подтвердить получаемое решение.

1.3.2 Режимы работы

Программный комплекс RTKLIB поддерживает несколько режимов работы, каждый из которых предназначен для решения различных навигационных задач. При выборе того или иного режима процесс работы с приёмником может измениться коренным образом. Рассмотрим особенности и назначение основных режимов работы комплекса:

— **Single**, или **Single point positioning** (рис. 1.3). Базовый режим работы, при использовании которого можно получить координаты со стандартной точность. В режиме Single местоположение определяется с помощью данных одного приёмника — база в данном режиме не используется.

Рисунок 1.3 – Режим Single. Корабли, исполняющие роли роверов, не используют поправки с базы, которая установлена на берегу

При использовании режима Single RTKLIB производит расчёт координаты, используя данные о спутниках навигационной системы. Однако, сами при-

ёмники, как правило, берут на себя задачу расчёта местоположения, т.к. они изначально оптимизированы для получения single-решения.

RTKLIB в режиме Single используется только на приёмниках, которые поддерживают функцию выдачи необработанных (или «сырых») данных: фазовых измерений, псевдодальностей и т.д. При работе в данном режиме RTKLIB создаёт файлы логов «сырых» данных, которые далее можно будет использовать для постобработки (англ. *post-processing*).

– **Static** и **Kinematic** (рис. 1.4). При данных настройках RTKLIB позволяет перейти от постобработки накопленных логов к измерениям в режиме реально времени (RTK). В режимах Static и Kinematic данные ровера используются вместе данными базовой станции, что позволит определять позицию ровера гораздо точнее.

Отличием между режимами Static и Kinematic является подвижность ровера. Если при работе в режиме Static ровер считается неподвижным, то в режиме Kinematic ровер находится в движении.

Рисунок 1.4 – Режимы Static и Kinematic. Корабли, исполняющие роли роверов, используют поправки с базы, которая установлена на берегу

Как и в случае Single, в рассматриваемых режимах RTKLIB позволяет записывать логи необработанных данных ровера, однако важно отметить, что параллельно с этим можно также вести лог поправок, получаемых с базы. Сбор всех этих данных может быть крайне полезен для определения и решения проблем связи между двумя приёмниками.

— **Moving-Baseline** (рис. 1.5). Данный режим очень похож на Kinematic, но имеет одно ключевое отличие — движущуюся базу. Moving-Baseline не предназначен для улучшения точности абсолютного позиционирования, однако относительно друг друга база и ровер будут получать крайне точные координаты — работая в этом режиме, можно получить аналог GPS компаса.

Рисунок 1.5 – Режим Moving-Baseline. Один из кораблей выполняет роль базы и передаёт поправки на корабль-ровер; оба корабля находятся в движении

– **Precise point positioning**, или **PPP**. Режимы работы (PPP-Static, PPP-Kinematic и PPP-Fixed), которые используются для подготовке к работе в режиме RTK.

Среди перечисленных выше PPP режимов интерес для данной работы представляет PPP-Static, который используется для определения позиции будущей базы. Суть работы RTKLIB при таких настройках заключается в накоплении и усреднении информации о текущей позиции приёмника. Проработав таким образом в одной точке несколько часов, приёмник может с хорошей степенью точности определить координаты своего местоположения и выдать

данные для настройки базы.

1.3.3 Поддерживаемые форматы данных

RTKLIB поддерживает множество форматов хранения данных, используемых при работе с ГНСС. Набор поддерживаемых форматов включает в себя как независимые от специфических устройств форматы (стандартные форматы), так и форматы, используемые для выдачи координат лишь GPS-приёмниками определённых производителей (проприетарные форматы).

Стандартные форматы сообщений:

- RINEX (сокр. англ. Receiver Independent Exchange Format);
- RTCM (сокр. англ. Radio Technical Commission for Maritime Services);
- NMEA (сокр. англ. National Marine Electronics Association).

Примеры поддерживаемых проприетарных форматов сообщений:

- UBX (приёмники u-blox);
- NovAtel;
- Hemisphere;
- JAVAD;
- Furuno;
- NVS.

1.3.4 Программы, входящие в состав RTKLIB

Для понимания внутреннего устройства и получения представления о функциональности различных компонентов RTKLIB, следует рассмотреть программы, входящие в состав данного программного пакета. Как уже было сказано ранее, последние версии RTKLIB – 2.4.2 и 2.4.3 beta – включают в себя восемь приложений, отвечающих за различные функции комплекса (таблица 1.1).

В рамках данной работы рассматриваются три приложения RTKLIB, отвечающие за ключевые функции, необходимые при решении задач навигации и позиционирования: RTKNAVI, STRSVR и RTKCONV.

Таблица 1.1 – Программы, входящие в состав RTKLIB

No	Назначение	GUI*	CUI**
1	Запуск приложений RTKLIB	RTKLAUNCH	-
2	Позиционирование в режиме реального времени	RTKNAVI	RTKRCV
3	Мультиплексор потоков данных	STRSVR	STR2STR
4	Постобработка данных	RTKPOST	RNX2RTKP
5	Конвертер данных	RTKCONV	CONVBIN
6	Графическое отображение полученных данных	RTKPLOT	-
7	Скачивание данных ГНСС	RTKGET	-
8	NTRIP браузер	SRCTBLBROWS	-

 $^{^*}$ Графическое приложение ** Консольное приложение

- RTKNAVI программа, обеспечивающая работу приёмника в режиме RTK. RTKNAVI выполняет все задачи, возлагаемые на ровер:
 - 1) приём необработанных данных с GPS-приёмника;
 - 2) приём поправок с базы;
 - 3) ведение логов полученных данных;
 - 4) обработка данных с помощью RTK алгоритмов;
 - 5) выдача полученного решения в указанном формате.

Также, с помощью RTKNAVI пользователь получает наглядную информацию о качестве текущего решения и о сигналах, получаемых ровером и базой со спутников.

RTKNAVI имеет консольный аналог – приложение под названием **RTKRCV**. Текстовое версия поддерживает все функции графического приложения, включая вывод информации о решении, спутниках и текущих координатах.

Важным отличием двух вариантов приложения является способ установки

настроек – если RTKRCV имеет отдельное окно с графическими элементами управления, то RTKRCV настраивается только с помощью конфигурационных файлов, работа с которыми требует от пользователя определённых навыков.

– **STRSVR** является мультиплексором потоков данных, который позволяет создать до трёх каналов передачи связи, в которые будет направлен вывод подключённого к компьютеру GPS-приёмника.

STRSVR предоставляет широкий набор возможностей по перенаправлению данных:

- 1) передача через СОМ-порты;
- 2) передача через ТСР сокеты;
- 3) передача через NTRIP-серверы;
- 4) запись в файл.

Также STRSVR обеспечивает (для каждого из выходных потоков) конвертацию входящих данных в указанный пользователем формат. Только STRSVR может осуществлять выдачу информации в легковесном формате RTCM3, что необходимо для обеспечения работы в режиме базы.

Консольная версия данного приложения носит название STR2STR.

- **RTKCONV**, или его консольный аналог **CONVBIN** – конвертер данных, получаемых со спутников. Одно из самых важных применений данной программы – конвертация файлов логов из форматов, привязанных к конкретным приёмникам, в независимый формат RINEX.

Использование RTKCONV может быть обусловлено необходимостью проведения дальнейшего анализа и постобработки данных с использованием специального программного обеспечения.

1.4 Основные проблемы использования RTKLIB

RTKLIB предоставляет широчайший спектр возможностей, а исходный код данного проекта является открытым. Однако, данный комплекс распространён достаточно слабо и не является широко известным. Данный факт связан отнюдь не с низким качеством результатов работы RTKLIB, а, в первую очередь, с удобством использования данного программного продукта.

Графические версии приложений RTKLIB возможно запустить только в среде операционной системы семейства Windows. Однако, достаточно проблематично обеспечить запуск графических Windows-приложений, к примеру, на беспилотном летательном аппарате или на ГНСС-приёмнике. Но полностью раскрыть потенциал RTK можно именно при интеграции программного обеспечения в технику. Данный факт делает консольные версии программ RTKLIB более привлекательным вариантом.

Входящие в состав пакета текстовые приложения не требуют больших вычислительных ресурсов и могут быть запущены на огромном количестве платформ под управлением GNU/Linux. Но важно понимать, что для работы с консольными приложениями необходимо постоянно поддерживать работу одного или нескольких терминалов, а также иметь компьютер с клавиатурой и доступом к данным приёмника.

Вне зависимости от того, используются ли графические или консольные версии приложений, невозможно использовать обширные возможности RTKLIB без знания особенностей процесса конфигурирования данного комплекса. Огромное количество настроек вкупе с различными режимами работы могут вызвать трудности при освоении RTKLIB новыми пользователями, а разнообразные конфигурационные файлы и неочевидные с первого взгляда решения в дизайне графических настроек способны запутать даже опытных пользователей.

Таким образом, можно выделить следующий ряд трудностей, которые

могут возникнуть при использовании RTKLIB:

- работа с комплексом возможна только при наличии компьютера с клавиатурой;
- графические приложения, входящие в состав пакета, можно запустить только при использовании операционной системы семейства Windows;
- конфигурационные файлы консольных версий программ имеют достаточно сложный синтаксис;
- большое количество доступных настроек может затруднить освоение комплекса новыми пользователями.

В качестве решения проблем, перечисленных выше, данная работа предлагает создать веб-приложение, с помощью которого можно было бы осуществлять контроль над работой RTKLIB, используя практически любое устройство с веб-браузером. Работа подобного приложения будет обеспечиваться с помощью дополнительного программного обеспечения, добавленного на вычислительный модуль, на котором запущен RTKLIB. Осуществляя с помощью такого программного обеспечения обмен командами и информацией между веб-интерфейсом и RTKRCV, можно осуществлять работу с RTKLIB, используя смартфон или планшет.

1.5 Обзор существующих веб-приложений, предназначенных для работы с устройствами без органов управления

В настоящее время существует достаточно большое количество электроники, единственным способом управления которой является специальный веб-интерфейс. Современные маршрутизаторы и различные одноплатные компьютеры — отличный пример подобных устройств.

В рамках проведённого обзора были рассмотрены популярные операционные системы, позволяющие осуществлять управление устройством, на которое они установлены, через веб-браузер:

- OpenWrt дистрибутив GNU/Linux, предназначенный для установки на маршрутизаторы.
- Windows 10 IoT Core версия операционной системы Windows, созданная специально для встраиваемых решений.

1.5.1 OpenWrt

Работа с маршрутизаторами, находящимися под управлением OpenWrt, производится через специальный веб-интерфейс под названием **LuCI**. Данный интерфейс представляет собой одностраничное веб-приложение, доступное через браузер любого устройства, подключённого к сети маршрутизатора. LuCI позволяет пользователю:

- произвести настройку маршрутизатора;
- просмотреть информацию о маршрутизаторе и установленном программном обеспечении;
 - просмотреть информацию о подключённых устройствах и трафике.

В интерфейсе LuCI доступ к различным страницам и настройкам осуществляется через меню в верхней части веб-страницы (рис. 1.6). Все пункты верхнего меню, за исключением кнопки выхода из системы, представляют собой выпадающие меню, позволяющие перейти на одну из страниц соответствующей категории.

Рисунок 1.6 – Главное меню LuCI

Благодаря разнообразным веб-элементам и возможностям JavaScript в LuCI

пользователь получает возможность удобно редактировать различные настройки маршрутизатора с помощью интерактивных форм (рис. 1.7), что позволяет производить конфигурацию устройства, используя практически любой компьютер или смартфон.

Рисунок 1.7 – LuCI: Форма настройки системных логов

Также, OpenWrt демонстрирует прекрасный пример применения современных веб-технологий для визуализации данных. Через интерфейс LuCI пользователь может наблюдать за текущей загрузкой сети с помощью специального графика (рис. 1.8).

1.5.2 Windows 10 IoT Core

Windows 10 IoT Core позволяет использовать операционную систему Windows на таких устройствах, как Raspberry PI или MinnowBoard. Так как подобные встраиваемые решения зачастую не имеют экрана и клавиатуры, взаимодействие пользователя с системой осуществляется с помощью вебстраницы (рис. 1.9).

Различные функции, предоставляемые системой, доступны пользова-

Рисунок 1.8 – LuCI: График загрузки сети

Рисунок 1.9 – Главная страница Windows 10 IoT Core

телю через специальное боковое меню (рис. 1.10). При переключении между пунктами меню веб-приложение отображает страницы с различными панелями управления.

Богатые возможности веб-технологий позволяют отобразить в браузере привычные для операционной системы Windows утилиты: менеджер установленных приложений, диспетчер задач, панель настройки беспроводных подключений, менеджер подключённых устройств (рис. 1.10) и т.д.

Рисунок 1.10 – Windows 10 IoT Core: Менеджер подключённых устройств

1.6 Выводы по разделу 1

На основании обзора существующих веб-приложений, предназначенных для работы с устройствами без органов управления, можно сделать следующие выводы:

- Одностраничные приложения являются наиболее удачным решением при создании веб-версии панели управления каким-либо устройством. Отсутствие долгой загрузки при переключении между вкладками или пунктами меню и получение необходимых данных с помощью асинхронных запросов благоприятно влияют на опыт пользователя (англ. *User experience*, *UX*).
- Выпадающие списки, текстовые поля с валидацией введённых значений, флажки, переключатели и другие веб-элементы позволяют предста-

вить сложные конфигурационные файлы в виде интуитивно понятных форм настроек.

 С помощью векторных изображений и JavaScript можно создавать наглядные графики и диаграммы для визуализации различной информации, обновляемой в режиме реального времени.

Проведённый обзор показал распространённость использования вебприложений для управления встраиваемыми решения, что ещё раз подчёркивает актуальность предлагаемой работы. При учёте сделанных наблюдений и выводов становится возможно создание браузерного приложения, которое существенно облегчит использование GPS-приёмника, работа которого основана на использовании RTKLIB.

2 ВЫБОР ПЛАТФОРМЫ ДЛЯ РАЗРАБОТКИ И ПРОЕКТИРОВАНИЕ ВЕБ-ПРИЛОЖЕНИЯ

- 2.1 Платформа для разработки
- 2.2 Выбор инструментов разработки
- 2.3 Общая архитектура приложения

3 РАЗРАБОТКА ПРИЛОЖЕНИЯ

4 ТЕСТИРОВАНИЕ ПРИЛОЖЕНИЯ

Библиографический список

- 1. Takasu T. RTKLIB: An Open Source Program Package for GNSS Positioning [Электронный ресурс] // RTKLIB support information. 2015. URL: http://www.rtklib.com/ (дата обращения: 01.02.2017).
- 2. Trimble GPS Tutorial [Электронный ресурс] // Официальный сайт компании Trimble. 2017. URL: http://www.trimble.com/gps_tutorial/ (дата обращения: 01.02.2017).
- 3. Bavaro M. Michele's GNSS blog [Электронный ресурс] // Личный блог Мишеля Баваро. 2017. URL: http://michelebavaro.blogspot.ru/ (дата обращения: 15.02.2017).