Two-level Logic Synthesis and Optimization

Dr. Shubhajit Roy Chowdhury,

Centre for VLSI and Embedded Systems Technology, IIIT Hyderabad, India

Email: src.vlsi@iiit.ac.in

Circuit Optimization

- Goal: To obtain the simplest implementation for a given function
- Optimization is a more formal approach to simplification that is performed using a specific procedure or algorithm
- Optimization requires a cost criterion to measure the simplicity of a circuit
- Distinct cost criteria we will use:
 - Literal cost (L)
 - Gate input cost (G)
 - Gate input cost including inverters (GN)

Literal Cost

- Literal a variable or it complement
- Literal cost the number of literal appearances in a Boolean expression corresponding to the logic circuit diagram
- Example: Boolean expressions for F

$$-F = BD + ABC + ACD$$

$$-F = BD + ABC + ABD + ABC$$

$$-F = (A+B)(A+D)(B+C+D)(B+C+D)$$

$$L = 10$$

— Which solution is best?

First solution is best

Gate Input Cost

- Gate Input Cost: Count of total number of inputs to the gates in the logic circuit implementation
- Two gate input costs are defined:
 - **G** = Count of gate inputs without counting Inverters
 - **GN** = Count of gate inputs + count of Inverters
- For SOP and POS equations, the gate input cost can be found from the Boolean expression by finding the sum of:
 - All literal appearances
 - Number of terms excluding single literal terms (added to G)
 - Number of distinct complemented single literals (added to GN)
- Example:

$$-F = BD + ABC + ACD$$

L = 8

G = L+3 = 11

Cost Criteria

Example:

• $\mathbf{F} = \mathbf{A} \mathbf{B} \mathbf{C} + \widetilde{\mathbf{A}} \widetilde{\mathbf{B}} \widetilde{\mathbf{C}}$

L = 6 G = 8 GN = 11

• $\mathbf{F} = (\mathbf{A} + \mathbf{\overline{C}})(\mathbf{\overline{B}} + \mathbf{C})(\mathbf{\overline{A}} + \mathbf{B})$

- L = 6 G = 9 GN = 12
- Same function and same literal cost
- But first circuit has <u>better</u> gate input count and <u>better</u> gate input count with NOTs
- Select first circuit!

Cost Criteria Summary

Literal Count:

- Simple to evaluate by counting all literals
- However, does not represent circuit complexity accurately in all cases
- Gate Input Cost (or Count):
 - Good measure of logic implementation
 - Proportional to the number of transistors and wires used in the implementation
 - Important when measuring cost of circuits with more than two levels

Boolean Function Optimization

- Minimizing the gate input (or literal) cost of a Boolean equation reduces the circuit cost
- We choose gate input cost
- Boolean Algebra and graphical techniques are tools to minimize cost criteria values
- Some important questions:
 - When do we stop trying to reduce the cost?
 - Do we know when we have a minimum cost?
- Treat optimum or near-optimum cost functions for two-level (SOP and POS) circuits first
- Introduce a graphical technique using Karnaugh maps (K-maps for short)

General Logic Structure

- Combinational optimization
 - keep latches/registers at current positions, keep their function
 - optimize combinational logic in between
- Sequential optimization
 - change latch position/function (retiming)

What is logic synthesis?

Given: Finite-State Machine $F(X,Y,Z, , \lambda)$ where:

X: Input alphabet

Y: Output alphabet

Z: Set of internal states

 λ : X x Z \rightarrow Z (next state function, *Boolean*)

 δ : X x Z \rightarrow Y (output function, *Boolean*)

Combinational logic

Target: Circuit *C*(*G*, *W*) where:

• G: set of circuit components {Boolean gates, flip-flops, etc}

• W: set of wires connecting G

Basic Model of Sequential Circuit: FSM

 $M(X,Y,S,S_0,\delta,\lambda)$:

X: Inputs

Y: Outputs

S: Current State

S₀: Initial State(s)

find (multi-level) implementation of δ (X) and

 $\lambda(X)$ that minimize its cost (area, delay, power)

 δ : $X \times S \rightarrow S$ (next state function)

 $\lambda: X \times S \rightarrow Y$ (output function)

Delay elements:

• Clocked: synchronous

• single-phase clock, multiple-phase clocks

Unclocked: asynchronous

Optimization Criteria for Synthesis

The optimization criteria for logic optimization is to *minimize* some function of:

- Area occupied by the logic gates and interconnect (approximated by literals = transistors in technology independent optimization)
- Critical path delay of the longest path through the logic
- Degree of testability of the circuit, measured in terms of the percentage of faults covered by a specified set of test vectors for an approximate fault model (e.g. single or multiple stuck-at faults)
- Power consumed by the logic gates
- Noise Immunity
- Place-ability, Wire-ability

while simultaneously satisfying misc. constraints

Two-Level (PLA) vs. Multi-Level

PLA

- control logic
- constrained layout
- highly automatic
- technology independent
- multi-valued logic
- input, output, state encoding

Very predictable

E.g. Standard Cell Layout

Multi-level Logic

- all logic
- general (standard cells, macro cells, blocks)
- automatic
- partially technology independent
- part of multi-level logic

Very hard to predict

Two-level Logic: the PLA

Programmable Logic Array: Pseudo NMOS PLA

Multiple-Level Optimization

- Multiple-level circuits circuits that are more than two levels (inverters are not counted)
- Multiple-level circuits can have reduced gate input cost compared to two-level (SOP and POS) circuits
- Multiple-level optimization is performed by applying transformations to circuits represented by equations while evaluating cost

Transformations

- Factoring: finding a factored form from SOP or POS expression
- Decomposition: expressing a function as a set of new functions
- Substitution of H into F: Expressing F as a function of H and some of its original variables
- Elimination: Inverse of substitution, called also flattening
- Extraction: decomposition applied to multiple functions simultaneously

Factorization

Algebraic Factoring

$$\mathbf{F} = \overline{\mathbf{A}} \ \overline{\mathbf{C}} \ \overline{\mathbf{D}} + \overline{\mathbf{A}} \ \mathbf{B} \ \overline{\mathbf{C}} + \mathbf{A} \ \mathbf{B} \ \mathbf{C} + \mathbf{A} \ \mathbf{C} \ \overline{\mathbf{D}} \qquad (\mathbf{G} = \mathbf{16})$$

Factoring:

$$\mathbf{F} = \overline{\mathbf{A}} (\overline{\mathbf{C}} \overline{\mathbf{D}} + \overline{\mathbf{B}} \overline{\mathbf{C}}) + \overline{\mathbf{A}} (\overline{\mathbf{B}} \mathbf{C} + \overline{\mathbf{C}} \overline{\mathbf{D}}) \qquad (G = 16)$$

Factoring again:

$$\mathbf{F} = \overline{\mathbf{A}} \ \overline{\mathbf{C}} \ (\mathbf{B} + \overline{\mathbf{D}}) + \mathbf{A} \ \mathbf{C} \ (\mathbf{B} + \overline{\mathbf{D}})$$
 (G = 12)

Factoring again:

$$\mathbf{F} = (\overline{\mathbf{A}} \ \overline{\mathbf{C}} + \mathbf{A} \ \mathbf{C}) \ (\mathbf{B} + \overline{\mathbf{D}}) \tag{G = 10}$$

This factoring example has reduced G from 16 to 10 Resulting circuit has three levels plus input inverters

Decomposition Example

Given the following function:

$$F = (A (B + C) + D) (B + C)$$

$$(G = 10)$$

Define 2 new functions X and Y as follows:

$$X = (B + C)$$
 and $Y = (A X + D)$

Then function F can be decomposed as follows:

$$F = X Y$$
, where

$$X = (B + C)$$
 and

$$Y = (A X + D)$$

$$(G=8)$$

Elimination

Given a set of functions:

$$X = B+C$$
, $Y = A+B$, and $Z = \overline{A} X + C Y$ (G = 10)

Eliminate X and Y from Z:

$$Z = \overline{A} (B + C) + C (A + B)$$
 (G = 10)

Flatten Z (Convert to SOP expression):

$$Z = \overline{A} B + \overline{A} C + A C + B C \qquad (G = 12)$$

Two-Level Optimization (using K-map):

$$Z = \overline{A} B + C \tag{G = 4}$$

This example shows that elimination begins with any set of functions. It can increase gate input cost (G) temporarily, but can result in a final solution with optimum cost (G)

Substitution

Given the following function:

$$H = A(\overline{C} + \overline{D})(E + F) + B C D \overline{E} \overline{F} \qquad (G = 14)$$

Define X and Y as new functions:

$$X = C D$$
 and $Y = E + F$

The complement of X and Y are:

$$\overline{X} = (\overline{C} + \overline{D})$$
 and $\overline{Y} = \overline{E} \overline{F}$

• Substitute C D with X and $(\overline{C} + \overline{D})$ with \overline{X}

Substitute (E + F) with Y and \overline{E} \overline{F} with \overline{Y}

$$H = A \overline{X} Y + B X \overline{Y}$$

where,
$$X = CD$$
 and $Y = E + F$

$$(G = 12)$$

Extraction

Given the following two functions:

$$E = ABD + ABD$$

$$H = BCD + BCD$$

$$(G = 16)$$

- Find a common factor for E and H
- Define the common factor as a function:

$$F = BD + BD$$

 Perform extraction by expressing E and H as a function of F:

$$F = B D + B D, E = A F, H = C F$$
 (G = 10)

Reduced cost because of the sharing of F

Thank You!!!

