

Wrocław University of Technology

Podstawy Telekomunikacji Teoria informacji i kodowania

dr Robert Borowiec

Politechnika Wrocławska

Instytut Telekomunikacji, Teleinformatyki i Akustyki

pokój 909, C-5

tel. 3203083

e-mail: Robert.Borowiec@pwr.wroc.pl

www: https://kursy.pwr.wroc.pl/

Cyfrowy system transmisyjny

Pojęcia podstawowe

Kompresja danych - stosowana jest po to, aby zmniejszyć ilość przesyłanych danych bez uszczerbku dla zawartej w nich informacji. Rozróżniamy dwa podstawowe sposoby kompresji:

- ☐ ilościowa (bezstratna)
- jakościowa

Kompresja ilościowa - wykorzystuje redundancję (nadmiarowość) źródła informacji.

Kompresja jakościowa - wykorzystuje ułomność zmysłów człowieka (zgadzamy się na niezauważalną utratę ilości informacji).

Pojęcia podstawowe

Szyfrowanie - stosowane jest po to, aby zapewnić:

- ⇒ poufność informacji (prywatność)
- ⇒ autentyczność informacji (integralność)

Szyfrator ma za zadanie tak zmienić informację, aby była ona niezrozumiała dla osoby nieuprawnionej do odczytania wiadomości. Odtworzenie jawnej treści informacji następuje dopiero w *deszyfratorze*, którego zadaniem jest również stwierdzenie czy wiadomość jest autentyczna.

Szyfrowanie nie zwiększa ilości bitów w informacji.

Pojęcia podstawowe

Modulacja –nadanie sygnałowi elektrycznemu cech charakterystycznych w celu przesłania informacji.

Modulator odwzorowuje zbiór symboli (słów binarnych) na zbiór sygnałów odpowiednich do przesłania w medium transmisyjnym.

Demodulator przeprowadza demodulację i detekcję odebranych sygnałów. Podejmuje decyzję, który symbol (słowo binarne) zostało nadane.

Pojęcia podstawowe

Kodowanie kanałowe -stosowane jest po to, aby zapewnić przy określonym stosunku E_b/N_o (energii bitu do energii szumu) odpowiednią jakość transmisji. Kodowanie jest procesem wprowadzania informacji nadmiarowej, którą potem dekoder wykorzystuje do oceny odebranych informacji.

Układ *koder-dekoder* ma, więc za zadanie zmniejszenie wpływu szumu na jakość transmisji. Wprowadzenie informacji nadmiarowej (bitów kontrolnych) implikuje wzrost prędkości strumienia bitów, a więc i szerokości pasma sygnału.

Poprawa jakości transmisji

Korekcja błędów w przód (ang. FEC)

Automatyczne żądanie powtórzenia (ang. ARQ)

Podział kodów

Podział kodów

W ujęciu historycznym kody dzieli się na:

- blokowe
- splotowe

Kodowanie blokowe polega na wprowadzeniu na wejście kodera bloków informacji binarnej o długości k bitów i dodaniu do nich *n-k* bitów nadmiarowych (parzystości).

Przy kodowaniu splotowym informacja bitowa z wejścia jest przetwarzana w sposób ciągły. Koder dokonuje dyskretnego splotu strumienia informacji bitowej z odpowiedzią impulsową kodera.

Pojemność kanału-Twierdzenia Shanona-Hartleya

$$C = W \log_2 \left(\frac{S}{N} + 1\right)$$

gdzie:

C -pojemność kanału

S/N -stosunek sygnał szum w kanale

W -szerokość pasma kanału

Pojemność kanału-Twierdzenia Shanona-Hartleya

Definicja blokowego kodu liniowego

Kodowanie blokowe polega na przekształceniu k-pozycyjnych q-narnych ciągów informacyjnych $\mathbf{h} = (h_1, h_2, ..., h_k)$ w n-pozycyjne q-narne ciągi kodowe $\mathbf{c} = (c_1, c_2, ..., c_n)$

Formalnie proces kodowania blokowego można zapisać:

$$\bigwedge_{\mathbf{h}_i \in \{\mathbf{h}\}} \bigvee_{\mathbf{c}_i \in \{\mathbf{c}\}} f : \mathbf{h}_i \to \mathbf{c}_i \quad \text{, przy czym} \quad f : \mathbf{h} \Leftrightarrow \mathbf{c}$$

Proces kodowania blokowego

Parametry kodu blokowego

Blokowy kod nadmiarowy oznaczamy symbolem (n, k). Jednoznaczne określenie kodu (n, k) wymaga podania zbiorów $\{h\}$ i $\{c\}$ oraz funkcji f, a więc

Parametry kodu blokowego

$$(n,k) \equiv (\{\mathbf{h}\}, \{\mathbf{c}\}, f).$$

Nadmiar kodowy

$$\rho_k = \frac{n-k}{n} = 1 - \frac{k}{n}$$

Sprawność

$$\eta_k = \frac{k}{n} = 1 - \rho_k$$

Podział kodów

Kod systematyczny rozdzielny

Kod niesystematyczny

Przykład kodowania

W wyniku refleksów świetlnych powodowanych przez słońce dużo fałszywych alarmów. Brak możliwości rozróżnienia alarmów fałszywych od prawdziwych

Przykład kodowania

Zmniejszyliśmy ilość fałszywych alarmów, ale nie jesteśmy w stanie ocenić, w przypadku pojedynczego błędu transmisji, jaka powinna być poprawna widomość, gdyż odległość błędnego słowa 01 lub 10 od poprawnego 00 lubb11 jest taka sama. Konieczne jest powtórzenie wiadomości (ARQ).

Przykład kodowania

Zmniejszyliśmy nie tylko fałszywych alarmów, ale możemy się już pokusić o wskazanie prawidłowego zdarzenia mimo przekłamanego pojedynczego bitu. Kodowanie FEC.

Jak dokładać informację nadmiarową

Zdarzenie	Słowo informacyjne	Słowo kodowe			
Zdarzenie	Symbole	N krotne powtórzenie	Dołożenie N "0"	Dołożenie N "1"	
jadą	0	00000	00000	01111	
nie jadą	1	11111	10000	11111	

Kodowanie w życiu codziennym

- Język jakim się posługujemy to w istocie kod o zmiennej długości o dużym nadmiarze.
- Polski alfabet -32 litery
 - aąbcćdeęfghijklłmnńoóprsśtu wyzźż
- Ilość słów:
 - jednoliterowych = 32 = 32
 - dwuliterowych = 32^2 = 1.024
 - trzyliterowych = 32^3 = 32.768
 - czteroliterowych = 32^4 = 1.048.576

Po co używamy tak długich nazw jak "politechnika"

 Po co używamy tak długich nazw jak "politechnika" skoro do opisu wszystkiego wystarczyły by nam słowa o długości 4 liter

Przykład słowa w języku czteroliterowym	Przypisane znaczenie w jęz. polskim	
nwjk	politechnika	
mwjk	przedszkole	

 Łatwo o błąd "transmisji" podczas rozmowy, gdy słowa o różnym znaczeniu różnią się na niewielkiej ilości liter.

Przykłady wyznaczania entropii

- Wyznaczanie entropii źródła informacji na temat płci
- Wyznaczanie entropii dla źródeł o różnym prawdopodobieństwie symboli
- Kompresja bezstratna

Wrocław University of Technology

Entropia-przypomnienie

Entropia jest dana zależnością:

$$H(X) = -\sum_{i=1}^{n} p(X_i) \cdot \log_2 p(X_i)$$

gdzie: X_1, \ldots, X_n będą wariantami treści wiadomości występującymi z prawdopodobieństwami: $p(X_1),....,$ $p(X_n)$ oraz:

$$\sum_{i=1}^{n} p(X_i) = 1$$

Uwzględniając wszystkie wiadomości X, mamy:

$$H(X) = -\sum_{X} p(X) \log_2 p(X) = \sum_{X} p(X) \log_2 \left(\frac{1}{p(X)}\right)$$

Po co stosować koder źródłowy

- Koder źródłowy stosujemy, aby zminimalizować ilość przesyłanych bitów w kanale telekomunikacyjnym
- Przesyłanie informacji o płci kodem ASCI wymaga przesłania:
 - 7 bajtów -kobieta
 - 9 bajtów-mężczyzna
- W postaci binarnej tylko 1 bitu
 - "0"-kobieta
 - "1"-meżczyzna

Optymalne kodowanie informacji

 Optymalną ilość bitów do zakodowania zdarzenia o prawdopodobieństwie p wyraża zależność

$$\log_2\left(\frac{1}{p}\right)$$
bitów

 Zależność nie mówi nic o sposobie jej zakodowania, a tylko o ilości bitów

Kod Huffmana

- Optymalne zakodowanie zdarzeń na bitach można uzyskać za pomocą kodu Huffmana.
- Mamy zdarzenia A, B, C, D, E, F o prawdopodobieństwach:

```
• P(A)=0,4 , to log_2(1/0,4)=1,32 \cong 1
```

•
$$P(B)=0,3$$
 , to $log_2(1/0,3) = 1,73 \cong 2$

•
$$P(C)=0.16$$
 , to $log_2(1/0.16) = 2.64 \cong 3$

•
$$P(D)=0.07$$
 , to $log_2(1/0.07) = 3.83 \cong 4$

•
$$P(E)=0.036$$
 , to $log_2(1/0.036) = 4.79 \cong 5$

•
$$P(F)=0.016$$
 , to $log_2(1/0.016) = 5.96 \cong 6$

•
$$P(G)=0.01$$
 , to $log_2(1/0.01) = 6.64 \cong 7$

•
$$P(H)=0.008$$
 , to $log_2(1/0.008) = 6.96 \cong 7$

 $H(X)=0.4*1,32+0,3*1,73+....+0,008*6,96 \cong 2.13 \text{ bita/zd.}$

Kod Huffmana

Posortuj zdarzenia od najmniejszej prawdopodobnego do najbardziej prawdopodobnego

H 0,008 G 0,01

F 0,016

E 0,036 D 0,07

C 0,16 B 0,3

A 0,4

Połącz zdarzenia najmniej prawdopodobne i ponownie posortuj

Kod Huffmana

Powtarzaj operację łączenia najmniej prawdopodobnych zdarzeń i sortowanie ich układu, aż do uzyskania drzewa. Następnie lewym gałęziom przypisz "0", a prawym "1", lub odwrotnie.

Sekwencję binarną optymalną do zakodowania zdarzenia uzyskujemy poprzez odczyt wartości ścieżek od węzła głównego do poszczególnych zdarzeń

Optymalne przyporządkowanie

Zdarzenie	Sekwencja binarna		
Α	0		
В	11		
С	101		
D	1001		
E	10001		
F	100000		
G	1000011		
Н	1000010		

Zysk z kompresji

Załóżmy, że nastąpiło N=500 zdarzeń x_i :

- Jeśli nie uwzględnimy statystyki występowania symboli alfabetu wtedy każdy z nich musimy zapisać na 3 bitach i objętość wiadomości wyniesie 1500bitów.
- 2. Jeśli uwzględnimy statystyki występowania symboli alfabetu wtedy, każdy z nich musimy zapisujemy na innej ilości bitów *L*, co w efekcie daje nam objętość wiadomości 1081 bitów.

Zdarzenie x _i	$p(x_i)$	$N \times p(x_i)$	L	N×L
Α	0,4	200	1	200
В	0,3	150	2	300
С	0,16	80	3	240
D	0,07	35	4	140
E	0,036	18	5	90
F	0,016	8	6	48
G	0,01	5	7	35
Н	0,008	4	7	28
Razem	1	500	średnio 2	1081

KONIEC

Dziękuję za uwagę