南昌大学物理实验报告

课程名称:		·
实验名称:	电子束的偏转与影	聚焦
学院:	信息工程学院 专业	业班级: <u>自动化 153</u>
学生姓名:	<u>廖俊智</u> 学号:	6101215073
实验地点:	基础实验楼 B 区	_座位号 : _ <u>17</u>
实验时间:	第 3 周周四 9:45	

一、实验目的:

- 1、了解示波管的基本结构和工作原理;
- 2、研究带电粒子在电场和磁场中偏转的规律;
- 3、学会规范使用数字万用表;
- 4、通过磁聚焦原理测量电子的荷质比

二、实验原理:

1、示波管的基本结构

示波管的基本结构及原理图

H —钨丝的热电极 K —阴极

 G_1 —控制栅极

 A_1 —第一加速阳级 G_2 —加速栅级 A_2 —第二加速阳级 X_1X_2 —水平偏转板 Y_1Y_2 —垂直偏转板

阳极电压 U₂: 改变电子束的加速电压的大小。

聚焦电压 U₁: 用以调节聚焦极 A₁上的电压以调节电极附近区域的电场分布,从而调节电子束的聚焦和散焦。

栅极电压 U。(辉度):用以调节加在示波管控制栅极上的电压大小,以控制阴极发射的电子数量,从而控制荧光 屏上光点的辉度。

U_{dx}偏转电压调节: -80V~80V。

调零 X: 用来调节光点水平距离。

U_w偏转电压调节: -80~80V。

调零 Y: 用来调节光点上下距离。

2、电偏转

电子在均匀电场内以从平行于板的方向进入电场,在电场力的作用下,在方向(垂直方向)产生偏离位移。

——偏转电压(平行板间电位差)

——板间距离

——板长

电子离开电场后不受电场力作用,将作匀速直线运动,等效直接从 A 点(板中点位置)直接射出(如图 b 所示),

$$D = \left(\frac{l}{2} + L'\right) t g \theta = \left(\frac{l}{2} + L'\right) \frac{v_y}{v_x} = \left(\frac{l}{2} + L'\right) \cdot \frac{\frac{eU}{md} \left(\frac{L}{v_0}\right)}{v_0} = \left(\frac{l}{2} + L'\right) \frac{eUl}{mdv_0^2}$$

如果加速电压为 \mathbf{U}_2 则 $\mathbf{E} U_2 = \frac{1}{2} \mathbf{m} \mathbf{v}_0^2$ 故 $\mathbf{D} = \frac{ULl}{2U_2d}$

示波管的 Y 方向电偏转灵敏度:
$$S_y = \frac{D}{U_y} = \frac{ILU/2U_2d}{U} = \frac{IL}{2dU_2}$$
 在 X 方向同理得
$$S_x = \frac{D}{U_x} = \frac{IL}{2d_xU_2}$$

3、磁偏转

4. 加速场对电子所做的功等于电子动能的增量 $e~U_{~2}=rac{1}{2}~m~v_{~z}^{~2}$

 $_{
m e}$ 子受洛伦兹力为 $F=ev_z B$

 $ev_zB=m~rac{v_z^2}{R}$ 根据洛伦兹力的性质,是一个向心力,则

电子偏转的轨道半径为 $R = \frac{m v_z}{e B}$

 $an arphi = rac{l}{R} = rac{D}{L}$ 在偏转角较小时,近似的有

$$D = lBL \sqrt{\frac{e}{2mU_2}}$$

由此可得偏转量 D 与外加磁场 B、加速电压 U2 等的关系为

实验中的外加横向磁场由一对载流线圈产生,其大小为 $B=K\mu_0 nI$,式中为真空中的磁导率,为单位长度线圈的匝数,为线圈中的激励电流,为线圈产生磁场公式的修正系数。

由此有
$$D = K \mu_0 nIlL \sqrt{\frac{e}{2mU_2}}$$

当励磁电流 I (即外加磁场 B) 确定时,电子束在横向磁场中的偏转量 D 与加速电压 U2的平方根成反比。

$$S_m = \frac{D}{I} = K \,\mu_0 n l L \sqrt{\frac{e}{2m \,U_2}}$$

磁偏转灵敏度:

4、磁聚焦

在示波管外套一个同轴的螺线管,当给螺线管通以稳恒直流电时,其内部形成一个轴向磁场。若螺线管足够长,则可认为内部为匀强磁场。

电子进入匀强磁场后,将会以轴向速度作匀速直线运动。同时以径向速度作匀速圆周运动。其合运动是一个螺旋线运动。

由于匀速圆周运动周期与垂直无关。故只要电子的轴向速度相同,经过整数周期后会聚焦于荧光屏上的一点,这就是磁聚焦。

$$h = v_Z T = \frac{2\pi m v_Z}{Be}$$
电子作螺旋运动的螺距:

5、电子荷质比的测量

从前面的讨论可知, 电子的轴向速度由加速电压决定(电子离开阴极时的初速度相对来说很小, 可以忽略),

故有
$$\frac{1}{2}mv_Z^2 = eU_2$$
 即有
$$v_Z = \sqrt{\frac{2eU_2}{m}}$$

可见电子在匀强磁场中运动时,具有相同的轴向速度,但由于电子发射方向各异,导致径向速度不同。因此他们在磁场中将作半径不同但螺距相同的螺线运动,经过时间 T 后,在相同的地方聚焦。

调节磁场 B 的大小, 使螺距正好等于电子束交叉点到荧光屏的距离 LO, 这时荧光屏上的光斑就汇聚成一个小点。

$$L_0 = h = \frac{2\pi m}{eB} v_Z = \frac{2\pi m}{eB} \sqrt{\frac{2eU_2}{m}}$$

由士:

故电子的荷质比为:

$$\frac{e}{m} = \frac{8\pi^2 U_2}{L_0^2 B^2} = 8\pi^2 \frac{L^2 + D^2}{\mu_0^2 N^2 L_0^2} \cdot \frac{U_2}{I^2} = k \cdot \frac{U_2}{I^2}$$

$$k = 4.8527 \times 10^{8}$$

三、实验仪器:

DZS-D 电子束实验仪、导线

DZS-D型电子束实验仪(仪器面板功能分布见下图)

图中:

1一阳极电压表 2一实验仪面板 3一聚焦电压表 4一Y轴偏转极板插座 5一X轴偏转极板插座 6一电偏转电压表 7一励磁电流表 8一电偏转电压输入插座 9、11一励磁电流输出插座 10一保险丝管座 12一磁偏转与磁聚焦电流量程转换按钮 13一磁偏转与磁聚焦电流调节旋钮 14一电子束与示波器功能转换开关(K2) 15一电子束 X 偏转电压调节 16一电子束 X 轴光点调零 17一电子束 Y 偏转电压调节 18一电子束 Y 轴光点调零 19一电子束与示波器功能转换开关(K1) 20一阳极高压调节 21一聚焦调节 22一示波管亮度调节 23一磁聚焦电流输入插座 24一磁聚焦电流换向开关 25一磁聚焦螺线管 26一磁偏转线圈 27一线圈安装面板 28一示波管 29一有机玻璃防护罩 30一示波管安装座 31—机箱 32—磁偏转电流输入插座 DZS-D型电子束实验仪主要参数如下:

螺线管的长度: L = 0.234m, 螺线管的线圈匝数: N = 526T,

螺线管的直径: D = 0.090m, 螺距: (Y偏转板至荧光屏距离) h = 0.145m,

(X偏转板至荧光屏距离) $h_X = 0.115 m$ 。

四、实验内容和步骤:

1. 电偏转

(1) 接线图见图 7

图 7 电偏转实验接线图 (仅标出水平偏转接线)

- (2) 开启电源开关,将"电子束—荷质比"功能选择开关 K₁及 K₂都打到"电子束"位置。适当调节亮度旋钮,使示波管辉度适中,调节聚焦,使示波管显示屏上光点聚成—细点,(注意:光点不能太亮,以免烧坏荧光屏。)
- (3) 光点调零,如图 7 所示,用导线将 X 偏转板插座与电偏转电压表的输入插座相连接 (电源负极内部已连接),调节" X 偏转板"的"偏转电压"旋钮,使电偏转电压表的指示为"零",再调节" X 偏转板"的"光点调零"旋钮,把光点移动到示波管垂直中线上。
- (4) 测量光点移动距离 D 随偏转电压 V_a 大小的变化(X 轴):调节阳极电压旋钮,使阳极电压固定在 $V_2=600$ V。改变并测量电偏转电压 V_a 值和对应的光点的位移量 D 值,

图 8 磁偏转实验接线图

- (1) 开启电源开关,将"电子束—荷质比"选择开关 K₁及 K₂打向"电子束"位置, 适当调节亮度旋钮,使示波管辉度适中,调节聚焦,使示波管显示屏上光点聚成一细点。
- (2) 光点调零,在磁偏转输出电流为零时,通过调节"X偏转"和"Y偏转"旋钮,使光点位于Y轴的中心原点。
- - 4、磁聚焦和电子荷质比的测量:
 - (1) 按图 9 所示接线
 - (2) 把主机 "励磁电流输出"两插座与螺线管前面板 "励磁电流输入"的两插座用导线连接,把"电流调节"旋钮逆时针旋到底。
 - (3) 开启电子束测试仪电源开关,"电子束--荷质比"转换开关 K1 置于"荷质比"位

挨接红黑

3. 磁聚焦和电子荷质比的测量

- 置, K2置于"电子束"位置,此时荧光屏上出现一条直线,把阳极电压调到700V。
 - (4) "释放电流转换"按钮,"0~3.5A"档指示灯亮,顺时针转动"电流调节"旋

图 9 磁聚焦和电子荷质比的测量接线图

- 钮,逐渐加大电流使荧光屏上的直线一边旋转一边缩短,直到变成一个小光点。读取电流值,然后将电流值调为零。再将螺线管前面板上的电流换向开关扳到另一方,再从零开始增加电流使屏上的直线反方向旋转并缩短,直到再一次得到一个小光点,读取电流值并记录到表格 4-1 中。通过计算,求得电子荷质比 e/m。
 - (5) 改变阳极电压为800V,重复步骤(4)。
 - (6) 实验结束,请先把励磁电流调节旋钮逆时针旋到底。

五、实验数据与处理:

1.电偏转

	D	20	15	10	5	0	-5	-10	-15	-20
700V	Ud	-15.06	-11.65	-7.75	-4.23	-0.35	3.97	8.35	12.46	16.56
900V	Ud	-20.91	-15.50	-10.6	-5.66	0.074	4.00	9.63	15.07	19.95

灵敏度为
$$S_y = \frac{D}{U_y} = \frac{lLU/2U_2d}{U} = \frac{lL}{2dU_2} = 0.54$$
mm/v

2. 磁偏转

		D	20	15	10	5	0	-5	-10	-15	-20
70	00V	Ι	85.7	64.7	44.5	19.78	0.003	-19.80	-46.5	-65.6	-82.6
90	00V	Ι	95.0	71.6	47.8	23. 15	0.02	-23.43	-49.3	-72. 7	-93.8

灵敏度为
$$S_m = \frac{D}{I} = K \mu_0 n l L \sqrt{\frac{e}{2mU_2}} = 0.1583$$

3. 磁聚焦和电子荷质比的测量

	I正	I反
700V	1. 49	1.40
800V	1. 44	1.83
900V	1.61	1.63
1000V	1. 71	1.70

$$\frac{e}{m} = \frac{8\pi^2 U_2}{L_0^2 B^2} = 8\pi^2 \frac{L^2 + D^2}{\mu_0^2 N^2 L^2} \bullet \frac{U_2}{I^2} = k \bullet \frac{U_2}{I^2} = 1.696 \times 10^{11} \text{ c/kg}$$

六、误差分析

- 1. 在做电偏转和磁偏转测量实验时,光点的大小易导致读数产生误差。
- 2. 在做磁聚焦实验时,调节后很难准确判断光点在电流为何值时最小,易产生误差。

七. 思考题

1、为什么在接入万用表之前转动磁偏调节光点不会移动而转 Y 轴调节光点会上下移动?

因为万用电表的 mA 档测量磁偏电流时插入磁偏电流的孔,相当于使产生磁场的电路通路,这时调节磁偏调节光点才动。之前万用电表 V 档测 U_d 时, 万用电表接在 X 或 Y 正负两端, 产生磁场的电路断开,所以光点不动。

2、测时屏上为什么是一直线?

电子在匀强磁场中运动时,具有相同的轴向速度,但由于电子发射方向各异,导致径向速度不同。因此他们在 磁场中将作半径不同但螺距相同的螺线运动,所以屏上是一直线

八、附上原始数据:

