Relational Schema

Minimal FDs & proof that relations are in BCNF

F1: The Complete Database

Database Management Systems Project Assigned by: Prof. P M Jat

18th October, 2019

Team

Attributes: T_Name, Nationality, Budget, Debut Year, Driver 1 Id, Driver 2 Id, Engine Supplier, Team Base, Points, G_Year, W_Year

Minimal FD set: T_Name → (Nationality, Budget, Debut Year, Driver 1 Id, Driver 2 Id, Engine Supplier, Team Base, Points, G_Year, W_Year Points)

{T_Name}+= { T_Name , Nationality, Budget, Debut Year, Driver 1 Id, Driver 2 Id, Engine Supplier, Team Base, Points, G_Year, W_Year }

The closure of T_Name includes all attributes so **T_Name** is key.

The functional dependency set has the key on the left and rest of the attributes on right. So this relation is in BCNF.

Employee

Attributes: Employee_Id, Name, Date of Birth, Team Name **Minimal FD set**: Employee_Id → (Name, Date of Birth, Team Name)

{Employee_Id}+= { Employee_Id, Name, Date of Birth, Team Name }

The closure of Employee_Id includes all attributes so Employee_Id is key.

The functional dependency set has the key on the left and rest of the attributes on right. So this relation is in BCNF.

Driver

Attributes: Driver Number, Team Name, Debut, Nationality, Points, G_Year, W_Year, Employee_Id, Position

Minimal FD set: (Employee_Id) → (Driver Number, Team Name, Debut, Nationality, Points, G_Year, W_Year, Position)

{ Employee_Id}+= { Driver Number, Team Name, Debut, Nationality, Points, G_Year, W_Year, Employee_Id, Position }

The closure of Employee_Id includes all attributes so Employee_Id is key.

The functional dependency set has the key on the left and rest of the attributes on right. So this relation is in BCNF.

Pit Crew Member

Attributes: Team Name, Fastest Pit Stop Time(s), Employee Id **Minimal FD set:** Employee_Id → (Team Name, Fastest Pit Stop Time(s))

{ Employee_Id } += { Employee_Id , Team Name, Fastest Pit Stop Time(s }

The closure of Employee_Id includes all attributes so Employee_Id is key.

The functional dependency set has the key on the left and rest of the attributes on right. So this relation is in BCNF.

Team Principle

Attributes: Team Name, Employee Id

Minimal FD set: Employee_Id → (Team Name)

{ Employee_Id } += { Employee_Id , Team Name }

The closure of Employee_Id includes all attributes so Employee_Id is key.

The functional dependency set has the key on the left and rest of the attributes on right. So this relation is in BCNF.

Technician

Attributes: Team Name, Employee Id

Minimal FD set: Employee_Id \rightarrow (Team Name)

{ Employee_Id } = { Employee_Id , Team Name }

The closure of Employee_Id includes all attributes so Employee_Id is key.

The functional dependency set has the key on the left and rest of the attributes on right. So this relation is in BCNF

Analyst

Attributes: Team Name, Employee Id

Minimal FD set: Employee_Id \rightarrow (Team Name)

{ Employee_Id } += { Employee_Id , Team Name }

The closure of Employee_Id includes all attributes so **Employee_Id** is key.

The functional dependency set has the key on the left and rest of the attributes on right. So this relation is in BCNF.

Strategist

```
Attributes: Team Name, Employee Id
```

Minimal FD set: Employee_Id → (Team Name)

```
{ Employee_Id } = { Employee_Id , Team Name }
```

The closure of Employee_Id includes all attributes so Employee_Id is key.

The functional dependency set has the key on the left and rest of the attributes on right. So this relation is in BCNF

Race Track

Attributes: Nation, Turns, RC_Name, Length, Crowd Capacity, Nearest City,

Position D, Day or Night

Minimal FD set: Position_D→ (Turns, Name, Length, Crowd Capacity, Nearest

City, Day or Night)

{ Position_D }+= { Nation, Turns, Position_D, Name, Length, Crowd Capacity, Nearest City, Day or Night }

Nearest City, Day or Night }

The closure of Position_D includes all attributes so Position_D is key.

The functional dependency set has the key on the left and rest of the attributes on right. So this relation is in BCNF.

Sponsor

```
Attributes: S_Name, Devoted Money, Devoted Employees

Minimal FD set: S_Name → (, Devoted Money, Devoted Employees)

{ S_Name }<sup>+</sup>= { S_Name, , Devoted Money, Devoted Employees }
```

The closure of S_Name includes all attributes so-S_Name is key.

The functional dependency set has the key on the left and rest of the attributes on right. So this relation is in BCNF.

Weather

```
Attributes: RaceTrack Name, Position, Type

Minimal FD set: RaceTrack Name → (Position, Type)
{ RaceTrack Name } += { RaceTrack Name, Position, Type }
```

The closure of Racetrack Name includes all attributes so **RaceTrack Name** is key.

The functional dependency set has the key on the left and rest of the attributes on right. So this relation is in BCNF

Records

```
Attributes: Record_ID, Type, Value

Minimal FD set: Record_ID_→ (Type, Value)
{ Record_ID}+= { Record_ID, Type, Value }
```

The closure of Record_ID includes all attributes so Record_ID is key.

The functional dependency set has the key on the left and rest of the attributes on right. So this relation is in BCNF

Strategy

```
Attributes: St_Name, Average Laps, Racetrack Name

Minimal FD set: St_Name → (, Average Laps, Racetrack Name)

{ St_Name }<sup>+</sup> = { St_Name, Average Laps, Racetrack Name }
```

The closure of St_Name includes all attributes so St_Name is key.

The functional dependency set has the key on the left and rest of the attributes on right. So this relation is in BCNF

Tyres

```
Attributes: Tyre_Name, Speed Delta, Manufacturer, Longetivity, Optimal Temperature(F)

Minimal FD set: Tyre_Name → (Tyre_Name, Speed Delta, Manufacturer, Longetivity, Optimal Temperature(F))

{ Tyre_Name } += { Tyre_Name, Speed Delta, Manufacturer, Longetivity, Optimal Temperature(F) }

The elegance of Tyre Name, includes all ettributes as Tyre Name is key.
```

The closure of Tyre_Name includes all attributes so **Tyre_Name** is key.

The functional dependency set has the key on the left and rest of the attributes on right. So this relation is in BCNF

Engine

```
Attributes: Engine Number, Capacity, Horse Power

Minimal FD set: Engine Number→ (Capacity, Horse Power)

{Engine Number}<sup>+</sup>= { Engine Number, Capacity, Horse Power }
```

The closure of Engine Number includes all attributes so **Engine Number**, is key.

The functional dependency set has the key on the left and rest of the attributes on right. So this relation is in BCNF.

Grand Prix Points

Attributes: Maximum Grand Prix Points, G_Year **Minimal FD set:** G_Year → Maximum Grand Prix Points { G_Year } += { Maximum Grand Prix Points, G_Year }

The closure of Year includes all attributes in **G_Year**, is key.

The functional dependency set has the key on the left and rest of the attributes on right. So this relation is in BCNF.

Dependents

Attributes: Name, Employee_Id, Sex, Date of Birth, RelationShip **Minimal FD set:** Name, Employee_Id → (Sex, Date of Birth, RelationShip) { Name, Employee_Id } += { Name, Employee_Id, Sex, Date of Birth, RelationShip }

The closure of Name, Employee_Id includes_all attributes so Name, Employee_Id, is key.

The functional dependency set has the key on the left and rest of the attributes on right. So this relation is in BCNF.

World Championship Points

Attributes: W_Year

Minimal FD set: No Functional Dependancy

So this relation is in BCNF.

Contributes to

```
Attributes: G_{Year,-W_{Year}}, Maximum Points Minimal FD set: G_{Year}, W_{Year} \rightarrow (Maximum Points) { G_{Year}, W_{Year} }<sup>+=</sup> { G_{Year}, W_{Year}, Maximum Points }
```

The closure of G_Year, W_Year includes all attributes so G_Year, W_Year is key.

The functional dependency set has the key on the left and rest of the attributes on right. So this relation is in BCNF.

Manages

Attributes: Employee Id Engine Number **Minimal FD set:** No Functional Dependancy

So this relation is in BCNF

Formulates

Attributes: Employee Id, St_Name

Minimal FD set: No Functional Dependancy

So this relation is in BCNF

Supplies

Attributes: T_Name, Engine Number

Minimal FD set: No Functional Dependancy

So this relation is in BCNF

Previous Team of Employees

Attributes: Employee_Id, Previous Team
Minimal FD set: No Functional Dependancy

So this relation is in BCNF

Achieves 2

Attributes: T_Name, Record Id

Minimal FD set: No Functional Dependancy

So this relation is in BCNF

Achieves 1

Attributes: Employee Id, Record Id, Position Minimal FD set: No Functional Dependancy

So this relation is in BCNF

Influences

Attributes: St_Name, Tyre Name

Minimal FD set: No Functional Dependancy

So this relation is in BCNF

Finances 2

Attributes: S_Name, T_Name

Minimal FD set: No Functional Dependancy

So this relation is in BCNF

Finances 1

Attributes: S_Name, Position_D

Minimal FD set: No Functional Dependancy

So this relation is in BCNF

Drives In

Attributes: Employee Id, Position, Position_D **Minimal FD set:** No Functional Dependancy

So this relation is in BCNF