In Class Practice 1

Introduction

What are seven layers in the OSI model?

OSI: Open Systems Interconnection

Application: Application specific protocols

 Presentation: Format of exchanged data, data translator (convert ***coded file to ASCII-coded file)

 Session: Name space for connection mgmt (request/response. Eg. RPC)

 Transport: Process-to-process channel (connection-oriented, flow control, reliability, e.g. TCP)

Network: Host-to-host packet delivery (Packet forwarding, routing)

Data Link: Framing of data bits (including error correction, e.g MAC: CSMA/CD)

Physical: Transmission of raw bits

Introduction

Store-and-forward transmission is used in which type of switching?

- a. Circuit switching
- b. Packet switching
- c. other

Q: Suppose you are designing a transport protocol and use a version of selective repeat to implement reliable data transfer. What are the constraints you have in selecting the number of bits for the sequence numbers?

Q: Suppose you are designing a transport protocol and use a version of selective repeat to implement reliable data transfer. What are the constraints you have in selecting the number of bits for the sequence numbers?

A: Sequence number range should be at least twice as big as the window size used by SR. Sequence numbers should not wrap around within a maximum segment lifetime. The receiver should no have two segments with the same sequence number.

SWS < (MaxSeqNum + 1)/ 2

Q: Consider a Go-Back-N protocol with a sender window size of 3 and a sequence number range of 1,024. Suppose that at time t, the next in-order packet that the receiver is expecting has a sequence number of k. Assume that the medium does not reorder messages. Answer the following questions:

(a) What are the possible sets of sequence numbers inside the sender's window at time t? Justify your answer.

A: Receiver has received packet k-1. That is, it should have Acknowledged packets up to k-1. Case 1: All ACKs received at the sender → sender window = [K, K+1, K+2]. Case 2: All ACKs lost: Sender window = [K-3, K-2, K-1]

- Q: Consider a Go-Back-N protocol with a sender window size of 3 and a sequence number range of 1,024. Suppose that at time t, the next in-order packet that the receiver is expecting has a sequence number of k. Assume that the medium does not reorder messages. Answer the following questions:
- (b) What are all possible values of the ACK field in all possible messages currently propagating back to the sender at time t? Justify your answer.

A: For the worst case (case 2 in (a)), K-3 has to be acknowledged. K-4 needn't to be acknowledged because sender already sent K-1. Therefore, ACK range [k-3, k-1]

Forwarding with Datagrams

What are the routing tables of the switches?

Forwarding with Datagrams

Answer:

Forwarding with VC

We would like to build VCs in the following order: A - D, F - C, and G - D. Suppose we always use the smallest available number for VCI. What are the tables at the switches?

Forwarding with VC

Answer:

α

Port IN	VCI IN	Port OUT	VCI OUT
0	0	1	0
2	0	1	1

ß

Port IN	VCI IN	Port OUT	VCI OUT
3	0	2	0
3	1	1	0
1	1	2	1

δ

Port	VCI	Port	VCI
IN	IN	OUT	OUT
3	0	0	0

γ

Port IN	VCI IN	Port OUT	VCI OUT
3	0	1	0
0	0	3	1

End-to-end Delay

Consider a path consisting of four nodes: A, B, C, and D in a packet switched network. The transmission speed of link (A,B) is s₁ bps, the transmission speed of link (B,C) is s_2 bps, and the transmission speed of link (C,D) is *s*₃ bps. The propagation delay of each of these three links is d seconds. The packet size is p bits. Node A sends two packets back-to-back at times t_1 and t_2 , respectively, to node D. That is, $t_2 = t_1 + p/s_1 + d$. Assume that the processing delay and queueing delay of a packet are zero. If $s_3 > s_2 > s_1$, when does node D receive the last bit of the second packet?

End-to-end Delay

Consider a path consisting of four nodes: A, B, C, and D in a packet switched network. The transmission speed of link (A,B) is s₁ bps, the transmission speed of link (B,C) is s_2 bps, and the transmission speed of link (C,D) is *s*₃ bps. The propagation delay of each of these three links is d seconds. The packet size is p bits. Node A sends two packets back-to-back at times t_1 and t_2 , respectively, to node D. That is, $t_2 = t_1 + p/s_1 + d$. Assume that the processing delay and queueing delay of a packet are zero. If $S_3 > S_2 > S_1$ (to ensure Zero queuing and processing time at the intermediate switches), when does node D receive the last bit of the second packet?

6

CRC

A CRC is constructed to generate a 4-bit checksum for an 11-bit message. The generator polynomial is x⁴ + x³ + 1. Encode the data bit sequence 10111010100. What is the code word to be sent by the sender?

Can you construct error bit pattern which cannot be detected?

COMP535

Answer

11001
101110101000000
11001
011100
11001
0010110
11001
011111
11001
0011000
11001
00010000

COMP535

11001

01001

Checksum

Suppose a header consists of four 16-bit words: (11111111, 111111111, 00000000, 11110000, 11110000, 11000000, 11000000). Find the Internet checksum for this code.

11111111 11111111 11111111 00000000 11110000 11110000 11000000 11000000

10110000 10110010 1's complement = 0100111101001101

Encoding

Show the NRZ, Manchester, and NRZI encodings for the following bit pattern. For NRZ: High (1); Low (0). And the NRZI signal starts out low (0).

Encoding

Answer:

ΙP

1- IP currently uses 32-bit addresses. If we could redesign IP to use the 6-byte MAC address instead of the 32-bit address, What are the advantages and disadvantages of the proposed change?

A: Disadvantages:

- Lose hierarchical nature of IP.
- Inefficient routing (lose of aggregate routing).

Advantages:

Eliminate the need for address resolution (i.e., mapping between IP to physical address)

ΙP

2- IPv4 has fragment reassembly done at the endpoints, rather than at the routers. What are two strongest reasons NOT to make the IPv4 reassemble the packets?

A:

- loading the router: Reassembly overhead
- Multipath routing: Individual fragments can have different routes to the destination node.

IP

3- Suppose a computer is moved from one department to another. Does the MAC address need to change? Does the IP address need to change? State all the assumptions clearly.

A: MAC address is bound to the network interface (NIC adaptor). Therefore, it doesn't change. The IP address changes if the machine joined different subnet network.

4- Address 172.16.1.1 belongs to which IP Class?

A: Class B

5- The network address of 172.16.0.0/19 provides how many subnets and hosts?

A: Class B has the first 16 bits is for network address, this leaves 3 bits out of /19 ones indicated in the above IP address to the subnet address. So, $2^3 = 8$ subnets.

Subnets

Write down the subnet mask of each host.

- 225.255.254.0 for hosts: 223.1.16.1,223.1.16.2 and 223.1.16.3
- 255.255.255.0 for hosts: 223.1.2.1 and 223.1.2.2
- 255.255.255.0 for hosts: 223.1.3.1 and 223.1.3.2

Complete the following routing table of router "R"

IP	Subnet mask	Subnet number
223.1.16.4	255.255.254.0	223.1.16.0
223.1.3.27	255.255.255.0	223.1.3.0
223.1.2.9	255.255.255.0	223.1.2.0

- 1. Explain why a CSMA/CD type protocol cannot be used in a wireless environment.
 - every radio is not necessarily in range of each other. Radios may collide each other because they cannot know the other is transmitting.

 2. Explain a drawback of virtual-circuitbased forwarding.

- Round trip set up time
- Not tolerant to node failures (must set up new route)
- Global address path information still necessary for connection setup

3. Why does Ethernet use binary exponential backoff during contention resolution?

 To reduce the probability of future collisions after a collision has occurred.

4. Why does Ethernet have a minimum packet size? How is it determined?

 To ensure that all nodes can detect a collision. It is based on the maximum distance between two nodes.