Sample Question Format

KIIT Deemed to be University Online Mid Semester Examination(Spring Semester-2021)

Subject Name & Code: Data Structure and Algorithm & CS-2001

Applicable to Courses: B.Tech, Sem-3rd (Regular)

Full Marks=20 Time:1 Hour

SECTION-A(Answer All Questions. All questions carry 2 Marks)

Time:20 Minutes

(5×2=10 Marks)

			<u> </u>	1	•	
Question	<u>Quest</u>		Question		<u>Ans</u>	<u>CO</u>
<u>No</u>	<u>ion</u>				<u>wer</u>	<u>Mapping</u>
	Type(Key(
	MCQ/				<u>if</u>	
	SAT)				MCQ	
)	
Q.No:1(a)					Ā	CO1
Q121012(41)		The following co	odes create a two dime	nsional		001
		matrix dynamical		noronar		
		matrix dynamical	ily.			
			G 1 B			
		Code-A	Code B			
		int *a[4];	int *a[4];			
		a[0]=malloc(12)	for(int $i=0;i<3;i++$)			
		* sizeof(int));	a[i]=malloc(4 *			
		for(int	sizeof(int));			
		i=0;i<3;i++)				
		a[i]=a[0]+(i *				
		4);				
		Which of	f the following stateme	ent will		
		work properly i	n both these above cod	es?		
		I) $a[1][2]=7$;				
		II) $a[2]=a[1];$				
		III) *(a[1]+3)	−7·			
		IV) *(a[0]+7)				
		(a[0]+7)	<i>I</i> -1,			
		A) I, II, III				
		B) I, II, III, IV				
		C) III, IV				
		D) I, III, IV				
		A A	:-(£ - :		D	CO1 CO4
			ists of n integers in lo		В	CO1,CO4
			n-1]. It is required to sl			
			rray cyclically to the le	•		
		•	$\leq k \leq (n-1)$. An inco	•		
			ng this in linear time, v			
		using another arr	ay is given below. Co	mplete		
		the algorithm by	filling in the blanks. A	Assume		

	all the variables are suitably declared. min = n; i = 0; while (
	n]; temp; i + 1; (B) i < min; j!= (n+i-k)mod n; A[(j + k)mod n]; j; i + 1; (C) i > min; j!= (n+i+k)mod n; A[(j + k)mod n]; j; i + 1; (D) i < min; j!= (n+i-k)mod n; A[(j + k)mod n]; temp; i + 1; Which of the following operations does not take O(1) time for an array of unsorted elements.	D	CO1,CO2
	Assume that array elements are distinct. (A) Find the largest element (B) Delete an element (C) Find the smallest element (D) All of the above A two dimensional array in C is initialized as int	D	CO1
	A [3][4]. What does *(*(A+3) +2), indicate? A. A[0][3] B. A[1][2] C. A[3][2] D. Compilation Error		
Q.No:1(b)	What is the time complexity of following code: void function(int n) $ \{ \\ $	b	CO2

	XXII		COs
	What is the time complexity of following code:	a	CO ₂
	void fun(int n)		
	{		
	int a, b;		
	for(a=1; a<=n; a=2*a)		
	for(b=n/2; b<=n; b++)		
	printf("%d%d", a, b);		
	}		
	,		
	() 0 (1)		
	(a) O $(n \log_2 n)$		
	(b) O $(\log_2 n)$		
	$(c) O(n^2)$		
	(d) O (n)		
	(d) O (li)		
	What is the time complexity of following code:	b	CO ₂
	void function(int n)		
	{		
	int i,j,k;		
	for $(i=n/2; i <= n; i++)$		
	for $(j=1; j+n/2 <=n; j=j++)$		
	for($k=1$; $k <= n$; $k=k * 2$)		
	count++; }		
	(a) O (n $\log_2 n$)		
	(b) O $(n^2 \log_2 n)$		
	$(c) O (n^2)$		
	(d) O (n)		
	What is the time complexity of following code:	a	CO ₂
	void function(int n)		
	()		
	int i, j, k, p, $q = 0$;		
	for $(i = 1; i < n; ++i)$		
	101 (1 = 1,1×11, ++1)		
	$\frac{1}{n} = 0$		
	p = 0;		
	for $(j=n; j>1; j=j/2)$		
	++p;		
	for (k=1; k <p; k="k*2)</th"><th></th><th></th></p;>		
	++q;		
	}		
	(a) O (n $\log_2 n$)		
	(b) O $(n^2 \log_2 n)$		
	$(c) O (n^2)$		
	(d) O (n)		
Q.No:1(c)	In a two dimensional matrix A[0,19, 0,34] is	a	CO1,CO4
- 	stored in the memory with each element		
	requiring 4 bytes of storage. If the address of		
	A[0][0] is 2148 and the location of A[k, j] is		
	same in both row-major-order and column-		
	· · · · · · · · · · · · · · · · · · ·		
	major-order. Find the value of k/j?		
	(a) 34/19		
	(b)2148/2228		
	(c) 19/34		
	(-/ -//		j

	(d)2228/2148		
	In a two dimensional matrix A[0,64, 0,92] is stored in the memory with each element requiring 4 bytes of storage. If the address of A[0][0] is 1000 and the location of A[k, j] is same in both row-major-order and column-major-order. Find the value of k/j? (a) 64/92 (b)1000/2508 (c) 2508/1000 (d) 92/64	d	CO1,CO4
	In a two dimensional matrix A[0,29, 0,49] is stored in the memory with each element requiring 4 bytes of storage. If the address of A[0][0] is 1756 and the location of A[k, j] is same in both row-major-order and column-major-order. Find the value of k/j? (a)1756/2234 (b)49/29 (c) 29/49 (d) 2234/1756	b	CO1,CO4
	In a two dimensional matrix A[0,54, 0,17] is stored in the memory with each element requiring 4 bytes of storage. If the address of A[0][0] is 7600 and the location of A[k, j] is same in both row-major-order and column-major-order. Find the value of k/j? (a)7600/8540 (b)17/54 (c) 54/17 (d) 8540/7600	b	CO1,CO4
Q.No:1(d)	Evaluate the following postfix expression using stack and indicate the content of the stack when the red marked '*' (2 nd multiplication from left to right sequence) is encountered: 5 3 2*-18 9/4*2/-6+2- (a)12, 2, 2 (b) -1, -2 4 (c) -1, 2, 4 (d) 1,-2,2	c	CO4
	Evaluate the following postfix expression using stack and indicate the content of the stack when the operand '+' is encountered: 3 5 10 - 2 + / 5 3 */ a) 3,5,10 b) 3,-5,2 c) 3,5, 15 d) -5,-2-,3	a	CO4
	Convert the following Infix expression using stack and indicate the content of the stack when the operand '5' is encountered: $((6+8)*9-(5-4)^{(2+7)})$	b	CO4

	a) (- * (-		
	a) (- · (- b) (- (
	c) (-(-		
	d) (*(-		
	Convert the following Infix expression to	c	CO4
	Postfix using stack and indicate the content of	C	004
	the stack when the operand '5' is encountered:		
	$(1-(2+3)/4)^5+6/7)$		
	(2 (2 (5), 1), 5 (6), 1)		
	a) (-(^		
	b) (- (^		
	c) (^		
	d) ((-/^		
Q.No:1(e)	What is the time complexity of the EnQueue	a	CO2
	and DeQueue operation in a Linear queue?		
	(a) O (1) and O(1)		
	(b) O (n) and) O (n)		
	(c) O (1) and O (n)		
	(d) O (n) and) O (1)		
	A normal queue, if implemented using an array	a	CO ₄
	of size MAX_SIZE, gets full when:		
	a) Rear=MAX_SIZE-1		
	b) Front=(rear+1)mod MAX_SIZE		
	c) Front=rear+1		
	d) Rear=front		
	What is the worst case time complexity for a	d	CO2
	consecutive n EnQueue operation in a linear		
	Queue?		
	(a) O (n $\log_2 n$)		
	(b) O $(n^2 \log_2 n)$		
	$(c) O(n^2)$		
	(d) O (n)		
	What is the worst case time complexity for a	b	CO2
	consecutive n DeQueue operation in a linear		
	Queue?		
	(a) O (n $\log_2 n$)		
	(b) O (n)		
	(c) O $(\log_2 n)$		
	$(d) O (n^2)$		
	(u) O (n)		I .

SECTION-B(Answer Any One Question. Each Question carries 10 Marks)

<u>Time: 30 Minutes</u> (1×10=10 Marks)

Question No	<u>Question</u>	<u>CO</u> <u>Mapping</u>
Q.No:2	 a. Differentiate between array and linked list. An array has n positive integers. Write a function of O (n) order for removing all the odd numbers from the array. Example, the array contains 10, 2, 3, 7, 8, 6, and 11. The output should be 10, 2, 8, and 6. [5] b. Write the difference between Array and Linked List. Given singly linked list with every node having an 	CO1,CO3,CO4

	additional pointer named as 'multiply' that currently	
	points to NULL. Need to make the "Multiply" pointer	
	point to the next multiplied value of the current node.	
	If multiplied value is not present, then keep it NULL.	
	[5]	
	Input	
	2 NULL 7 NULL 3 NULL 6 NULL X	
	ZINOLE JINOLE JONOLE JANOLE X	
	Output	
	2 7 3 6 NULL X	
	2 John State Company	
	**	go go go
	a. How do we represent a polynomial expression using	CO1,CO3,CO4
	single linked list? Write a pseudo code to add two	
	polynomial having two numbers of unknown variables.	
	[5]	
	b. Let a linked list consists of n number of nodes, where	
	each node consists of an unique character represents the	
	grades of the students (O, E, A, B, C), and pointer to	
	next node. Write pseudo code/ C code to group the	
	students having same grade in consecutive place and	
	also finally all the nodes should be in sorting order as	
	per their grade value. (O>E>A>B>C) [5]	001 002 001
	a. Write a C program to add two triplets and print the	CO1,CO3,CO4
	result in another triplet format using the array.[5]	
	b. Write a function in C or Pseudo code: DeleteFromEnd()	
	in a header linked list ,where one Node structure to	
	store an integer value and the special designated node	
	(i.e. header node) contains three information: number	
	of nodes in the list and the maximum, minimum among	
	the list of values. These values must be updated, if	
	required, in every function call. At the beginning define	
O Novo	the structure of both the nodes. [5]	CO1 CO4
<u>Q.No:3</u>	a. Let 'm' number of stacks are implemented in one array	CO1,CO4
	where m _i is the size of each i th stack. Write a pseudo	
	code /function for the push () and pop () operations on i^{th} stack.[5]	
	b. Write a function/Pseudo code to swap the following	
	nodes in a circular single Linked List with minimum	
	number of pointers and having only one pointer	
	head/start to indicate first node address.	
	i. 1 st node with 2 nd node	
	ii. Last node with its previous node	
	(Note: Swap the node/structure node) [5]	
	(2.000. 5 map the node, bit detaile node) [5]	
	a. WAP to find maximum element of stack at a particular	CO1,CO4
	instant when any number of push and pop operation is	-,
	allowed using linked list such that each top node will	
	contain the maximum element from all elements below	
	to it.[5].	
	b. Design pseudo code/function to add a given value K	
	to each element in the double linked list and if it	
	becomes greater than M, then convert it to 0M-1 by	
	doing modulo operation with $M.(k< M)$. Then if the	
	element in the current node is equal to any other node	
	previous to this, delete the current node. [5]	
<u> </u>	F	

>4->12->16, then output 6->4->12->16. [5]

Controller of Examinations