# Tutoría Colectiva Inicial 03MIAR - Algoritmos de Optimización

Viu Universidad Internacional de Valencia

#### Asignatura: Algoritmos de Optimización - TC1

#### **Presentación**







#### Raúl Reyero



raul.reyero@campusviu.es

Licenciado en Matemáticas por U.C.M



• Profesor de la VIU y colaborador de la UC3M



Viu
Universidad
Internacional
de Valencia
Universidad
Carlos III
de Madrid

Freelance (upwork.com)
 Minería datos Web (Web Scraping)















**Upwork** 

# Agenda de hoy(I)

#### 1ª Parte. Presentación de la asignatura:

- Material Docente
- Calendario
- Objetivos, Criterios de evaluación y Sistema de evaluación
- Videoconferencias
- Actividades Guiadas
- Trabajo práctico
- Foro
- Examen
- Fechas de Entrega y Entregas tardías
- Honestidad



#### Agenda de hoy (II)

2ª Parte. Preparación para la asignatura(herramientas y otros conocimientos)

- Formulario de registro
- GitHub
- Google Colaboratory



#### **Material Docente**















Actividades

#### Material Docente. Materiales del Profesor. Otros materiales



#### **Calendario**



#### Anexo: Planificación de las sesiones

| Sesión    | Fecha      | Contenido/Tema                                  |  |  |
|-----------|------------|-------------------------------------------------|--|--|
| SESIÓN 1  | 01/12/2021 | TC1 - Tutoría Colectiva Inicial                 |  |  |
| SESIÓN 2  | 13/12/2021 | VC1 – Introducción a los algoritmos             |  |  |
| SESIÓN 3  | 15/12/2021 | VC2 – Diseño de Algoritmos                      |  |  |
| SESIÓN 4  | 20/12/2021 | VC3 – Algoritmos de búsqueda y Problema<br>tipo |  |  |
| SESIÓN 5  | 22/12/2021 | AG1 – Actividad Guiada                          |  |  |
| SESIÓN 6  | 10/01/2022 | VC4 – Descenso del Gradiente                    |  |  |
| SESIÓN 7  | 12/01/2022 | AG2 – Actividad Guiada                          |  |  |
| SESIÓN 8  | 17/01/2022 | VC5 – Algoritmos Heurísticos                    |  |  |
| SESIÓN 9  | 19/01/2022 | AG3 – Actividad Guiada(1ª parte)                |  |  |
| SESIÓN 10 | 24/01/2022 | VC6 – Algoritmos genéticos                      |  |  |
| SESIÓN 11 | 26/01/2022 | AG3 – Actividad Guiada(2ª parte)                |  |  |
| SESIÓN 12 | 31/01/2022 | TC1 - Tutoría Colectiva Final                   |  |  |

#### **Objetivos Generales**

- Adquirir, a través de las clases magistrales, los conocimientos teóricos para conocer los algoritmos utilizados para resolver problemas de optimización, analizar el coste en recursos(tiempo y memoria) y estudiar la complejidad de los problemas.
- Familiarizase, a través de las actividades guiadas, con las técnicas concretas para resolver problemas de optimización usando técnicas de diseño de algoritmos a través de prácticas realizadas en Python.
- Enfrentarse, través del trabajo práctico, a problemas reales en los que deberá aplicar tanto los conocimientos teóricos como prácticos.





#### Criterios de Evaluación

- Conocer el conceptos de complejidad de los problemas y algoritmos.
- Desarrollar, modelar y analizar algoritmos según diferentes técnicas.
- Identificar problemas tipo.
- Conocer los algoritmos de búsqueda asociados a los grafos.
- Conocer la relación del descenso del gradiente y redes neuronales.
- Conocer las diferentes técnicas metaheurísticas



#### Sistema de Evaluación



| Sistema de Evaluación | Ponderación |
|-----------------------|-------------|
| Portafolio            | 60 %        |



Trabajo Práctico(\*): 30%

Actividades Guiadas(\*): 10%

Estudio y análisis de un artículo científico(\*): 10%

Participación en Foro(Evaluable): 10%

| Sistema de Evaluación | Ponderación |
|-----------------------|-------------|
| Prueba final*         | 40 %        |
|                       |             |

10 preguntas tipo test con una sola respuesta válida. Cada respuesta válida suma 1 punto y cada respuesta fallida resta 0.33 puntos



#### **Videoconferencias**



- 13-dic VC1 Introducción a los algoritmos
- 15-cic. VC2 Diseño de algoritmos / Algoritmos de Ordenación
- 20-dic. VC3 Problemas tipo / Algoritmos de Búsqueda
- 10-ene. VC4 Descenso del gradiente
- 12-ene. VC5 Algoritmos heurísticos
- 24-ene. VC6 Algoritmos Evolutivos y Genéticos

#### **Foro**



| FORO                                      | DESCRIPCIÓN                                                                                                                         | PUBLICACIONES<br>TOTALES | RESPUESTAS PARA MÍ<br>NO LEIDAS | PARTICIPANT<br>TOTALES |
|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------------|------------------------|
| Cuestiones de la asignatura(No evaluable) |                                                                                                                                     | 0                        |                                 | 0                      |
| Aportaciones extraordinarias(Evaluable)   | En este foro se recogeran las aportaciones de los alumnos relativas al contenido de la asignatura al margen de los temas de debate. | 0                        |                                 | 0                      |
| Foro para Tema 1 de debate<br>(Evaluable) | En este foro se recogeran las aportaciones de los alumnos relativas al tema 1 de debate.                                            | 0                        |                                 | 0                      |
| Foro para Tema 2 de<br>debate(Evaluable)  | En este foro se recogeran las aportaciones de los alumnos relativas al tema 2 de debate.                                            | 0                        |                                 | 0                      |



#### Actividad. Estudio y análisis de artículo científico (\*)



- O3MIAR
  ALGORITMOS DE OPTIMIZACIÓN
  INICIO

  INFORMACIÓN GENERAL
  Bienvenida
  Guía didáctica
  Calendario

  ACTIVIDAD FORMATIVA
  Videoconferencias
  Recursos y materiales
  Actividades
  Mis calificaciones
- Lectura, análisis e interpretación de un artículo científico
- Contestar a preguntas sobre el artículo
- Tema: Heurísticas(pendiente de confirmar)



# Actividades Guiadas(\*). Fechas de entrega





- Desarrollar, modelar y analizar algoritmos según diferentes técnicas para resolver el problemas planteados en la asignatura de <u>manera guiada</u>
- Entrega de PDF



#### Actividades Guiadas - AG1 (\*). Contenido



- Desarrollar algoritmos de **ordenación** con python
- Desarrollar algoritmos voraces para resolver problemas
- Desarrollar algoritmos con la técnica de **vuelta atrás**(backtracking) para resolver problemas
- Desarrollar algoritmos con la técnica de divide y vencerás para resolver problemas
- Desarrollar algoritmos con la técnica de programación dinámica para resolver problemas





#### Actividades Guiadas - AG2 (\*). Contenido

**10%** 

- O3MIAR
  ALGORITMOS DE
  OPTIMIZACIÓN
  INICIO

  INFORMACIÓN GENERAL
  Bienvenida
  Guía didáctica
  Calendario

  ACTIVIDAD FORMATIVA
  Videoconferencias
  Recursos y lateriales
  Actividades
  Mis calificaciones

  COMUNICACIÓN
- Desarrollar algoritmos de búsqueda en amplitud para resolver problemas
- Desarrollar algoritmos de búsqueda en **profundidad** para resolver problemas
- Desarrollar algoritmos con la técnica de **ramificación y poda** para resolver problemas
- Desarrollar algoritmos con la técnica del descenso del gradiente

#### Actividades Guiadas - AG3(I) (\*). Contenido



- O3MIAR
  ALGORITMOS DE OPTIMIZACIÓN
  INICIO

  INFORMACIÓN GENERAL
  Bienvenida
  Guía didáctica
  Calendario

  ACTIVIDAD FORMATIVA
  Videoconferencias
  Recursos y materiales
  Actividades
  Mis calificaciones
- Desarrollar algoritmos con la técnica de búsqueda local
- Desarrollar algoritmos con la técnica de búsqueda tabú
- Desarrollar algoritmos con la técnica de recocido simulado(simulated annealing)
- Desarrollar algoritmos con la técnica de GRASP(procedimientos de búsqueda voraz aleatorios y adaptativos)



#### Actividades Guiadas - AG3(II) (\*). Contenido

- O3MIAR

  ALGORITMOS DE
  OPTIMIZACIÓN
  INICIO

  INFORMACIÓN GENERAL
  Bienvenida
  Guía didáctica
  Calendario

  ACTIVIDAD FO MATIVA
  Videoconferencias
  Recursos y lateriales
  Actividades
  Mis calificaciones

  COMUNICACIÓN
  Anuncios
- Desarrollar algoritmos por colonia de hormigas (ACO)
- Desarrollar algoritmos genéticos (GA)
- Trabajo en grupo





#### **Actividades Guiadas(\*)**

- · Reproducir la actividad realizada por el profesor.
- La entrega en GitHub asegura 8/10 en cada actividad. Mejorable con aportación personal.
- La entrega será un .pdf para el archivo del expediente con la copia del notebook
  - < <nombre\_apellidos>\_AG1.pdf
  - < <nombre\_apellidos>\_ AG2.pdf
  - < <nombre\_apellidos>\_ AG3.pdf
- Para descargar nuestro cuaderno de Google Colab a .pdf







23 pages

Print

More setting



Actividades Guiadas(\*). Generar .pdf





No zips





# Actividades Guiadas + Trabajo práctico. Recursos Necesarios. GitHub(I). Registro

https://github.com/







# Actividades Guiadas + Trabajo práctico. Recursos Necesarios. GitHub(I). Crear repositorio privado









# Actividades Guiadas + Trabajo práctico. Recursos Necesarios. GitHub(I). Invitar al profesor



# Actividades Guiadas + Trabajo práctico. Recursos Necesarios. GitHub



GitHub. Crear Carpetas:

→03MIAR – Algoritmos de optimización

→AG1

→AG2

 $\rightarrow$ AG3

**→TRABAJO** 





# Actividades Guiadas + Trabajo práctico. Recursos Necesarios. GitHub



GitHub. Crear Carpetas:

→03MIAR – Algoritmos de optimización

→AG1

→AG2

→AG3

**→TRABAJO** 





Actividades Guiadas + Trabajo práctico. Recursos Necesarios(\*)

 Rellenar formulario: http://goo.gl/forms/rPI03hYfcbfMQ9Rc2

•Importante: Identificar la url correcta del repositorio github



# Actividades Guiadas(\*). Fechas de entrega



- Desarrollar, modelar y analizar algoritmos según diferentes técnicas para resolver el problemas planteados en la asignatura de <u>manera guiada</u>
- Entrega de PDF
- Fecha limite de entrega 1ª convocatoria: 10/02/2022
- Fecha limite de entrega 2ª convocatoria: 11/03/2022



# Trabajo práctico.(\*). Fechas de entrega



- Desarrollar, modelar y analizar algoritmos según diferentes técnicas para resolver el problema planteado en la asignatura.
- Resolver un problema real. Entrega de PDF
- Deben identificarse los aspectos teóricos en la entrega
- Fecha limite de entrega 1ª convocatoria: 10/02/2022
- Fecha limite de entrega 2ª convocatoria: 11/03/2021



# Actividad. Estudio y análisis de artículo científico (\*) Fechas de Entrega

- Lectura, análisis e interpretación de un artículo científico
- Contestar a preguntas sobre el artículo
- Tema: Heurísticas(pendiente de confirmar)
- Fecha limite de entrega 1ª convocatoria: 17/02/2022
- Fecha limite de entrega 2ª convocatoria: 11/03/2021





# Foro. Fechas de entrega

- Una cuestión de debate en las 2 primeras semanas: 2 cuestiones.
- Aportaciones que ayuden a los compañeros serán valoradas.
- Cuestiones particulares deben exponerse por correo electrónico.
- No "forzar" la participación ni "eludirla".
- Leer todas las participaciones y evitar repetir comentarios de otros compañeros.
- Fecha 1<sup>a</sup> convocatoria : 10 de febrero de 23:59







# Examen. Fechas de entrega

Fecha 1<sup>a</sup> convocatoria: 10 de febrero a 20:00



Duración: 1 hora

• 10 preguntas tipo test: Acierto: +1. Fallo: -0.33





# Convocatorias y entregas tardías

\* Si es la **primera convocatoria** de la actividad:

En este caso, la entrega se ignora y se suspende directamente con un 0. El alumno puede presentar el mismo trabajo, si así lo desea, en segunda convocatoria, en cuyo caso se corregirá de forma normal sin penalización.

\* Si es la **segunda convocatoria** de la actividad (pero se ha entregado antes de publicar las actas):

se procederá a corregir la actividad, pero se quedará en 5 sobre 10.

\* Si es la **segunda convocatoria** de la actividad pero se ha entregado tras publicar las actas: se ignorará la entrega y se considerará la actividad como no presentada.



#### **Honestidad**

- Todos los **trabajos** deben hacerse de manera **individual** e independiente aunque se permite y fomenta la participación y colaboración.
- Si se utilizan **recursos** externos(libros, paginas web,...) **deben citarse** claramente.
- El plagio descalifica.



#### **Durante el descanso...**

Registro en Google

https://accounts.google.com

 Registro en GitHub https://github.com/

Rellenar formulario:

http://goo.gl/forms/rPI03hYfcbfMQ9Rc2









# Tutoría Colectiva Inicial (II) 03MAIR - Algoritmos de Optimización

Viu Universidad Internacional de Valencia

#### Agenda de hoy (II)

2ª Parte. Preparación de herramientas de la asignatura:

- Formulario de registro
- GitHub
- Google Colaboratory
- pdfcrowd.com o similar (opcional)



## Lo que no es la asignatura

No es un curso de programación. Deberíamos tener las bases de python

No es una colección de "recetas" para ser introducidas en el ordenador



http://docs.python.org.ar/tutorial/3/index.html



## Estructura de datos fundamentales

• Listas: arrays, listas, cadenas

C Α В Dato A Dato B Dato C NULL







- Árboles
- **Diccionarios**



Vectores, Matrices



| A = | $a_{11}$ | $a_{12}$          | <br>$a_{1j}$                   |     | $a_{ m ln}$                |
|-----|----------|-------------------|--------------------------------|-----|----------------------------|
|     | $a_{21}$ | $a_{22}$          | <br>$a_{2j}$                   |     | $a_{2n}$                   |
|     |          |                   | <br>                           |     |                            |
|     | $a_{il}$ | $a_{i2}$          | <br>$a_{ij}$                   | ••• | $a_{\mathrm{in}}$          |
|     |          |                   | <br>                           |     |                            |
|     | $a_{m1}$ | $a_{\mathrm{m}2}$ | <br>$a_{\mathrm{m}\mathrm{j}}$ |     | $a_{\mathrm{m}\mathrm{n}}$ |

## Estadística básica

- Población, muestra, muestra aleatoria
- Tipos de variables: Cualitativas y Cuantitativas(Discretas y Continuas)
- Frecuencias, Histogramas
- Estadísticos:
  - O Posición: Cuantiles, percentiles...
  - O Centralización: Moda, Media, Mediana
  - O Dispersión: Desviación(media y típica), rango, varianza





## Combinatoria básica

Variaciones, Permutaciones y Combinaciones

• El arte de contar









## Diferenciación básica

- Derivar funcionas
- Concepto de 1<sup>a</sup> y 2<sup>a</sup> derivada
- Gradiente y matriz hessiana

$$H(f) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix}$$



## **Crear proyecto en GitHub(I)**

03MIAR---Algoritmos-de-Optimizacion---2021



de Valencia

Formulario para registrar las actividades + Trabajo

práctico en GitHub

http://goo.gl/forms/rPI03hYfcbfMQ9Rc2





## **Uso de Google Colaboratory (I)**

https://colab.research.google.com/

- Usaremos cuadernos(notebooks) para realizar las prácticas
- Computación gratuita en la nube
- Necesario registro en Google
- ¿Por que Google Colaboratory?
  - √ Fácil para compartir
  - √ Fácil de usar
  - √ Fácil de integrar con GitHub y Google Drive
  - ✓ Uso de GPU(Graphics Processing Unit)

https://en.wikipedia.org/wiki/Graphics processing unit





## **Uso de Google Colaboratory (II)**

- 1. Nuevo Cuaderno de Python 3
- 2. Cambiar nombre a *Untitled1.ipynb*
- 3. Importar : import sorting



ModuleNotFoundError: No module named 'sorting'

#### Instalar:

- | !pip install sorting
- Collecting sorting

  Downloading <a href="https://files.pythonhosted.org/packages/5f/c8/2d2318aa6697f8">https://files.pythonhosted.org/packages/5f/c8/2d2318aa6697f8</a>

  Building wheels for collected packages: sorting

  Building wheel for sorting (setup.py) ... done

  Stored in directory: /root/.cache/pip/wheels/1d/69/7d/afb45b857f9cd6d792

  Successfully built sorting

  Installing collected packages: sorting

  Successfully installed sorting-1.0.2

## **Uso de Google Colaboratory (III)**

• Primer algoritmo





## **Uso de Google Colaboratory + GitHub (IV)**

Guardar en GitHub







## **Uso de Google Colaboratory** + **GitHub (V)**

Guardar en GitHub





# **Bibliografía(I)**



Fundamentos de algoritmia: Una perspectiva de la ciencia de los computadores

Paul Bratley, Gilles Brassard ISBN 13: 9788489660007



Introducción al diseño y análisis de algoritmos

R.C.T. Lee,...

ISBN 13: 9789701061244



Una introducción a las matemáticas para el análisis y diseño de algoritmos(\*)

Pérez Aguila, R.

ISBN 13: 9781413576474 https://tinyurl.com/yzlt5oed



de Valencia

Técnicas de diseño de algoritmos

Guerequeta, R., y Vallecillo, A. (2000).

http://www.lcc.uma.es/~av/Libro

(\*)En la biblioteca de la VIU

# **Bibliografía(II)**



Metaheurísticas(\*)

Abraham Duarte,...
ISBN 13: 9788498490169

https://tinyurl.com/y6ekjhft



Genetic Algorithms + Data Structures = Evolution Programs(\*)
Michalewicz, Zbigniew

https://go.exlibris.link/LSvz7r0D



**Evolutionary optimization algorithms** Simon, Dan; Simon, Dan

https://go.exlibris.link/q5yXZjNz



(\*)En la biblioteca de la VIU

# ¿Preguntas?





# Gracias

raul.reyero@campusviu.es

Viu Universidad Internacional de Valencia