Recitation #3 - 2.2: Definition of Limits

Warm up:

- (a) True or False: To find $\lim_{x\to 2} f(x)$, it's enough to know $f(2.1),\ f(2.01),\ f(2.001),$ etc.
- (b) True or False: If we know f(2), then we know $\lim_{x\to 2} f(x)$. False. In the above example, we have that f(2)=0, however $\lim_{x\to 2} f(x)$ does not exist.

Group work:

Problem 1 Given the graph of the function, estimate $\lim_{x\to 1} \frac{x^2-1}{x-1}$. Then estimate $\lim_{x\to 1} \frac{x^2-1}{x-1}$ by creating a table of values.

Problem 2 Sketch the graph of a function with the given properties. You need not find a formula for the function.

$$f(3) = -2, f(5) = 6, \lim_{x \to 5^{-}} f(x) = -1, \lim_{x \to 5^{+}} f(x) = 4, \lim_{x \to 3} f(x) = 7$$
$$\lim_{x \to 2^{-}} f(x) = 3, \lim_{x \to 2^{+}} f(x) = 0, \lim_{x \to 1^{+}} f(x) = 5$$

Problem 3 True/False: Give an explanation or counterexample. Assume a and L are finite numbers.

- (a) If $\lim_{x\to a} f(x) = L$, then f(a) = L.
- (b) If $\lim_{x\to a^-} f(x) = L$, then $\lim_{x\to a^+} f(x) = L$.
- (c) If $\lim_{x\to a} f(x) = L$ and $\lim_{x\to a} g(x) = L$, then f(a) = g(a).
- (d) $\lim_{x\to a} \frac{f(x)}{g(x)}$ does not exist if g(a) = 0.