COL872 Problem Set 5

Mallika Prabhakar (2019CS50440) Sayam Sethi (2019CS10399) Satwik Jain (2019CS10398)

May 2023

Contents

1	Question 1	2
	1.1 Question 1.1	2
	1.2 Question 1.2	
2	Question 2	4
3	Question 3	6
	3.1 Question 3.1	6
	3.2 Question 3.2	
4	Question 4	8
	4.1 Question 4.1	8
	4.2 Question 4.2	9
5		10
	5.1 Question 5.1	10
	5.2 Question 5.2	10
	5.3 Question 5.3	10
6	Bonus Question 2 (PS4)	11

1.1 Question 1.1

Universal Cloning

Question. Consider the following quantum process: it maps $\alpha |0\rangle + \beta |1\rangle$ to $\alpha |0\rangle |0\rangle + \beta |1\rangle |1\rangle$. Is T p-good for some constant p?

Proof. We know that T converts a pure state to another pure state. So Application of T on the density matrix $\langle \psi \rangle \psi$ will give the density matrix of another pure state. For a state to be p-good,

$$|\left\langle \psi | \left\langle \psi | \cdot T(|\psi\rangle \left\langle \psi | \right) \cdot |\psi\rangle |\psi\rangle \right.| \geq p$$

For $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$,

we have LHS as

$$\alpha^{2} \langle 0 | \langle 0 | + \alpha \beta(\langle 0 | \langle 1 | + \langle 1 | \langle 0 |) + \beta^{2} \langle 1 | \langle 1 | \cdot T(|\psi\rangle \langle \psi|) \cdot \alpha^{2} | 0 \rangle | 0 \rangle + \alpha \beta(|0\rangle | 1 \rangle + |1\rangle | 0 \rangle) + \beta^{2} |1\rangle |1\rangle$$
where, $T(|\psi\rangle \langle \psi|) = (\alpha |0\rangle |0\rangle + \beta |1\rangle |1\rangle)(\alpha \langle 0 | \langle 0 | + \beta \langle 1 | \langle 1 |)$

then the LHS becomes $(\alpha^3 + \beta^3)^2$

Now we have $\alpha^2 + \beta^2 = 1$, $|\alpha|$, $|\beta| \le 1$

Using this we get $(\alpha^3 + \beta^3)^2 \ge \frac{1}{2}$.

Therefore, T is a half-good cloning device.

1.2 Question 1.2

Universal Cloning

Question. Prove that, for all $|\psi\rangle$, $|\langle\psi|\langle\psi|\rho|\psi\rangle|\psi\rangle| \geq 2/3$

Proof. let the input be $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$ with $\alpha^2 + \beta^2 = 1$. Now applying Unitary on $|\psi\rangle |0\rangle |0\rangle$,

$$U\cdot\left|\psi\right\rangle\left|0\right\rangle\left|0\right\rangle = \left(\alpha\sqrt{\frac{2}{3}}\left|00\right\rangle + \frac{\beta}{\sqrt{6}}\left|10\right\rangle + \frac{\beta}{\sqrt{6}}\left|01\right\rangle\right)\left|0\right\rangle + \left(\beta\sqrt{\frac{2}{3}}\left|11\right\rangle + \frac{\alpha}{\sqrt{6}}\left|10\right\rangle + \frac{\alpha}{\sqrt{6}}\left|01\right\rangle\right)\left|1\right\rangle$$

Now measuring the last qubit, we get

$$|\phi\rangle = \{(p_i, \frac{1}{\sqrt{p_i}} |\phi_i\rangle)\}_{i \in \{0,1\}}$$

Where,

$$|\phi_0\rangle = \alpha \sqrt{\frac{2}{3}} |00\rangle + \frac{\beta}{\sqrt{6}} |10\rangle + \frac{\beta}{\sqrt{6}} |01\rangle$$

$$|\phi_1\rangle = \beta \sqrt{\frac{2}{3}} |11\rangle + \frac{\alpha}{\sqrt{6}} |10\rangle + \frac{\alpha}{\sqrt{6}} |01\rangle$$

$$p_0 = \frac{2\alpha^2 + \beta^2}{3} = \frac{1 + \alpha^2}{3}$$

$$p_1 = \frac{\alpha^2 + 2\beta^2}{3} = \frac{1 + \beta^2}{3}$$

$$p_0 + p_1 = 1$$

Therefore, we get

$$|\langle \psi | \langle \psi | \rho | \psi \rangle | \psi \rangle| = (|\langle \psi | \langle \psi | | \phi_0 \rangle \langle \phi_0 | | \psi \rangle | \psi \rangle |) + (|\langle \psi | \langle \psi | | \phi_1 \rangle \langle \phi_1 | | \psi \rangle | \psi \rangle |)$$

$$|\langle \psi | \langle \psi | | \phi_0 \rangle \langle \phi_0 | | \psi \rangle | \psi \rangle| = \left(\alpha^3 \sqrt{\frac{2}{3}} + \alpha \beta^2 \frac{2}{\sqrt{6}}\right)^2$$
$$= \frac{2\alpha^2}{3} \left(\alpha^2 + \beta^2\right)^2$$
$$= \frac{2\alpha^2}{3}$$

Similarly,

$$|\langle \psi | \langle \psi | | \phi_1 \rangle \langle \phi_1 | | \psi \rangle | \psi \rangle| = \frac{2\beta^2}{3}$$

Therefore,

$$|\langle \psi | \langle \psi | \rho | \psi \rangle | \psi \rangle| = \frac{2}{3} (\alpha^2 + \beta^2)$$
$$= \frac{2}{3}$$

Question 2

Question. Let (Setup, H) be an SSB-hash. Construct a collapsing hash function (with appropriate domain and co-domain) using the SSB-hash, and prove security of your construction.

Proof.

Claim 2.1. Let H_k be an SSB-hash with input domain $(\{0,1\}^s)^L$, co-domain $\{0,1\}^l$ with hash key k. The same construction of H_k works as a collapsing hash. The property of H_k is that $\Pr[\exists x, x' \text{ s.t. } x_i \neq x'_i, H_k(x) = H_k(x')] = \text{negl where } x = (x[0], x[1], \dots x[L-1]), x' = (x'[0], x'[1], \dots x'[L-1])$

Proof. We need to show that if an Adversary can break Collapsing hash, SSB-Hash is broken. SSB-Hash game can be defined as finding a collision x, x'. Let us consider the following reduction-

Figure 1: B and C are playing SSB-Hash game, A is playing Collapsing Hash

C gives the key k to B. B forwards it to A and A finds a superposition of $|x\rangle = |\psi\rangle$ such that $H_k(x) = h$ and sends $h, |\psi\rangle$. B measures $|\psi\rangle$ and obtains $|x_0\rangle$ and residual state $|\psi'\rangle$. It sends back $|\psi'\rangle$. A then finds out b' and has a residual state $|\psi''\rangle$ B takes that $|\psi''\rangle$ and measures to obtain $|x_1\rangle$. B then sends $h, |x_0\rangle, |x_1\rangle$ to C.

Claim 2.2. B wins SSB-Hash game with non-negligible probability since $H_k(x_0) = H_k(x_1) = h$ with non-negligible probability.

Proof. In the good case, when the A sends a valid superposition $|\psi\rangle$, B measures $|\psi\rangle$ to obtain $|x_0\rangle$ and $H_k(x_0) = h$ with probability 1. When the measured state $|\psi\rangle$ is operated on by A to obtain, it finally has a state $|\psi''\rangle$. This is measured by B to obtain $|x_1\rangle$. Probability of getting a valid x_1 such that $H_k(x_1) = h$ is non-negligible (p) (proven in PS4, Q2.1). This is true only if it is not a collapsing hash. Hence:

$$\Pr[\text{finding a collision}] = \Pr[H_k(x_0) = h] \times \Pr[H_k(x_1) = h] = p$$

which is non-negligible.

This is a contradiction of our assumption that the given SSB-Hash scheme is secure. Therefore, our proposed use of SSB-Hash as a collapsing hash must be valid.

Question 3.1 3.1

Optimal Attack on Wiesner's Scheme

Question. Give a procedure that succeeds in attacking Weisner's Scheme with probability at

Proof. The Procedure is as follows:

- 1. Bank sends a qubit $|\psi\rangle$ to adversary.
- 2. Adversary measures the qubit in $\{|0\rangle, |1\rangle\}$ basis.
- 3. Adversary creates two identical copies based on the measured value and sends the qubits to the Bank.

If the qubit is in $\{|0\rangle, |1\rangle\}$ basis, we will get the correct measurement and will be able to model copies correctly and fool the bank.

If the qubit is in $\{|+\rangle, |-\rangle\}$ basis, The adversary measures in $\{|0\rangle, |1\rangle\}$ basis and models the qubit in the same basis. When the bank measures the copies in $\{|+\rangle, |-\rangle\}$ basis, there is a 1/2 probability of getting the correct measurement for each copy.

Therefore, the overall probability of fooling the Bank is $\frac{1}{2} \times 1 + \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{5}{8}$

3.2 Question 3.2

Optimal Attack on Wiesner's Scheme

Question. Show that the probability of success for new procedure is higher than what was achieved in part 3.1.

Proof. Let us find the probability to fool the bank in the cases when qubit is $|0\rangle \& |+\rangle$. the other two cases follow from it.

When qubit is $|0\rangle$,

After applying the unitary and discarding the first qubit, we get $\frac{|01\rangle+|10\rangle}{\sqrt{2}}$ with probability $\frac{1}{6}$ and $\frac{3|00\rangle+|11\rangle}{\sqrt{10}}$ with probability $\frac{5}{6}$.

From here the chance of the strategy succeeding $=\frac{1}{6}\times 0+\frac{5}{6}\times \frac{9}{10}=\frac{3}{4}$. Similarly the probability for $|1\rangle$ is also $\frac{3}{4}$.

Now when qubit is $|+\rangle$,

After applying the unitary and discarding the first qubit, we get $\frac{3|00\rangle+|01\rangle+|10\rangle+|11\rangle}{\sqrt{12}}$ with probability $\frac{1}{2}$ and $\frac{|00\rangle+|01\rangle+|10\rangle+3|11\rangle}{\sqrt{12}}$ with probability $\frac{1}{2}$. working with first factor, we apply Hadamard on the two qubits, and then find the probability

of getting $|00\rangle$ (which corresponds to $|++\rangle$ in the original case).

Applying Hadamard, we get $\frac{3|00\rangle+|01\rangle+|10\rangle+|11\rangle}{\sqrt{12}}$ and probability of getting $|00\rangle$ is $\frac{3}{4}$ in this

Similarly for the other factor Applying Hadamard, we get $\frac{3|00\rangle - |01\rangle - |10\rangle + |11\rangle}{\sqrt{12}}$ and probability of getting $|00\rangle$ is $\frac{3}{4}$ in this case as well. Therefore the overall probabilty for this case comes out to be $\frac{3}{4}$.

Similarly for the case when qubit is $|-\rangle$, we get the probability as $\frac{3}{4}$. Therefore the probability in all the four cases comes out to be $\frac{3}{4}$ which ultimately is the overall probability.

4.1 Question 4.1

Question 4

Question. Suppose the QM adversary always outputs a forgery of the form

$$\sum_{x,s,s'H(x)=h} \alpha_{x,s,x,s'} |x\rangle_{x_1} |s\rangle_{s_1} |x\rangle_{x_2} |s'\rangle_{s_2}$$

Show that if the challenger runs $VerifyCoin\ on\ (X_1,S_1)\ and\ (X_2,S_2)$, the probability of an accept in both the verifications is at most c for some constant c<1.

Proof. Given coins (X_1, S_1) and (X_2, S_2) , since $X_1 = X_2$, there are no collisions to be found, hence we look at the probabilities of successful validation. On running Test1 on the state $|\phi\rangle = \sum_{x,s,s',H(x)=h} \alpha_{x,s,s'} |x\rangle_{X_1} |s\rangle_{S_1} |x\rangle_{X_2} |s'\rangle_{S_2}$, the probability of validation passing is obtained as follows:

$$p_{1} = \Pr\left[\mathsf{Measure}(\mathsf{Alg}_{2}(|\phi\rangle\,,|00\rangle)) = 11\right]$$

$$\implies p_{1} = \Pr\left[\mathsf{Measure}\left(\sum_{x,s,s',b_{0},b_{1}} \alpha_{x,s,s'} \cdot \beta_{x,s,s',b_{0},b_{1}} \left|y_{x}\right\rangle \left|t_{s}\right\rangle \left|z_{x}\right\rangle \left|u_{s'}\right\rangle \left|b_{0}b_{1}\right\rangle\right) = 11\right]$$

$$\implies p_{1} = \sum_{x,s,s'} |\alpha_{x,s,s'} \cdot \beta_{x,s,s',1,1}|^{2}$$

$$(1)$$

For Test2, let ρ be the state after measuring $|\phi\rangle$, the probability of validity is as follows:

$$\begin{split} p_2 &= \Pr\left[\mathsf{Measure}(\mathsf{Alg}_2(\rho,|00\rangle)) = 00\right] \\ &\leq 1 - \Pr\left[\mathsf{Measure}(\mathsf{Alg}_2(\rho,|00\rangle)) = 11\right] \\ &\leq 1 - \sum_{x,s,s'} \alpha_{x,s,s'}^2 \Pr\left[\mathsf{Measure}\left(Alg_2\left(|x\rangle|s\rangle|x\rangle|s'\rangle,|00\rangle\right)\right) = 00\right] \\ &\leq 1 - \sum_{x,s,s'} \alpha_{x,s,s'}^2 \Pr\left[\mathsf{Measure}\left(|y_x\rangle|t_s\rangle|z_x\rangle|u_{s'}\rangle\left(\sum_{b_0,b_1} \beta_{x,s,s',b_0,b_1}|b_0b_1\rangle\right)\right) = 00\right] \\ &\leq 1 - \sum_{x,s,s'} |\alpha_{x,s,s'} \cdot \beta_{x,s,s',1,1}|^2 \\ &\leq 1 - p_1 \end{split} \tag{2}$$

Therefore, the probability of the adversary succeeding is $(p_1 + p_2)/2 \le 1/2 = c$.

4.2 Question 4.2

Question 4.2

Question. Now consider a general QM adversary that outputs a forgery of the form

$$\sum_{\substack{x,s,x',s':\\H(x)=H(x')=h}} \alpha_{x,s,x',s'} |x\rangle_{X_1} |s\rangle_{S_1} |x'\rangle_{X_2} |s'\rangle_{S_2} \quad where \quad \sum_{\substack{x,s,s'\\H(x)=h}} |\alpha_{x,s,x,s'}|^2 > 1 - \epsilon$$
 (3)

Show that if the challenger runs VerifyCoin on (X_1, S_1) and (X_2, S_2) , the probability of an accept in both the verifications is at most c0 for some constant c' < 1.

Proof. (Note: we prove a general result for any $1 \ge \epsilon > 0$)

Let the probability of success on applying Test1 on both coins be p_1 and on applying Test2 be p_2 . Now, we find a bound on p_2 in terms of p_1 using the trace distance between the adversary's state and the state obtained after measuring the register $x = 2\sqrt{\epsilon}$,

$$p_1 \le \Pr\left[x = x'\right] \cdot (1 - p_0 + \mathsf{Tr}_{dist}) + \Pr\left[x \ne x'\right] \cdot 1$$

= $(1 - \epsilon) \cdot (1 - p_0 + 2\sqrt{\epsilon}) + \epsilon$ (4)

Thus, the total probability of success is,

$$\frac{1}{2}(p_0 + p_1) = \frac{1 + \epsilon \cdot p_0 + 2\sqrt{\epsilon} \cdot (1 - \epsilon)}{2} \le \frac{1}{2} + \frac{\sqrt{\epsilon}}{2} \cdot (2 + p_0 - \sqrt{\epsilon})
\le \frac{1}{2} + c'$$
(5)

Therefore, any adversary has atmost a constant probability of giving a valid forgery for the publically-verifiable QM scheme. \Box

5.1 Question 5.1

Question 5.1

Question. Complete Step V_4 .

Proof. We assume that V_4 executes iff c=1. In the case when c=0, the verifier simply checks if the obtained x_b is one of x_0 or x_1 (the verifier knows the two pre-images using td and y). The steps of V_4 are:

- 1. The verifier first computes x_0, x_1 using td, y.
- 2. Using r, b, d, x_0, x_1 , the verifier can uniquely determine the state $|\psi_2\rangle$. Note that $|\psi_2\rangle = |b\rangle |d\rangle |\psi\rangle$, where $|\psi\rangle \in \{|0\rangle, |1\rangle, |+\rangle, |-\rangle\}$.
- 3. Based on c', the verifier knows what should be the most-likely response of the prover. If the response is the same, the verifier accepts, else it rejects.

5.2 Question 5.2

Question 5.2

Question. (Completeness) Prove that the honest quantum prover's response is accepted with probability 1 if c = 0, else it is accepted with probability $\cos^2 \frac{\pi}{8}$ if c = 1.

Proof. If c=0, then, if the prover followed the protocol honestly, on measuring $|\psi_1\rangle$ it will definitely get one of the pre-images of y. Thus, the verifier will always accept in that case. Otherwise, if c=1, then the measurement is at a distance of $\pi/8$ from the actual state $|\psi\rangle$ (which is at an angle $\theta \in \{-\pi/4, 0, \pi/4, \pi/2\}$ with respect to $|0\rangle$). Therefore, the probability of an honest prover outputting the correct bit is $\cos^2\frac{\pi}{8}$.

5.3 Question **5.3**

Question 5.3 Question. (Soundness) Show an upper bound on the success probability of any p.p.t. (classical) prover. Proof.

6 Bonus Question 2 (PS4)

Combiners for collapsing hash functions

Question. Is the concatenating combiner a good combiner for the collapse-binding property?

Proof. Let $\mathcal{H}_0, \mathcal{H}_1 : \{0,1\}^n \to \{0,1\}^{n/2}$.

Let $\mathcal{H} = \mathcal{H}_0 \| \mathcal{H}_1$ where at-least one of $\mathcal{H}_0, \mathcal{H}_1$ is a collapse binding hash function. We will prove that \mathcal{H} is also a collapse binding hash function through contradiction.

Suppose \mathcal{H} is not a collapse binding hash function. then Using an adversary \mathcal{A} that breaks the collapsing property of \mathcal{H} , we can achieve a reduction \mathcal{B} that breaks collapsing property of \mathcal{H}_0 if applicable.

Reduction:

- 1. Challenger sends a hash key k to \mathcal{B} who forwards the same to \mathcal{A} .
- 2. \mathcal{A} sends a string $h \in \{0,1\}^n, h = h_0 || h_1$ to \mathcal{B} along with a quantum state $|\psi\rangle = \sum_{x:H(x)=h} |x\rangle$.
- 3. \mathcal{B} sends h_0 along with $|\psi\rangle$ to Challenger.
- 4. Challenger chooses a bit b, if b = 0 it measures $|\psi\rangle$ and sends it back otherwise it sends back $|\psi\rangle$ to \mathcal{B} .
- 5. \mathcal{B} forwards the message from Challenger to \mathcal{A} .
- 6. \mathcal{A} sends a bit b' to \mathcal{B} who forward it to Challenger and wins if b = b'.

As Reduction is just passing the messages to \mathcal{A} , $|\psi\rangle$ is a also a valid superposition for \mathcal{H}_0 . As \mathcal{A} is able to win with a non-negligible probability, \mathcal{B} will also win with a non-negligible probability.

Similarly a reduction can be shown for \mathcal{H}_1 .

But Since at least one of \mathcal{H}_0 , \mathcal{H}_1 is collapse binding, we reach a contradiction. Therefore \mathcal{H} is also a collapse binding hash function.