

Pontificia Universidad Católica de Chile Facultad de Matemáticas FIS1523 – Termodinámica Profesor Iván Muñoz (Secciones 5 y 7) Primer Semestre del 2025

Resumen Ayudantía 5

Termodinámica

José Antonio Rojas Cancino – jrojaa@uc.cl

1 Tipos de Procesos y Sustancias Puras

1.1 Revisitando tipos de procesos

Vamos a recordar los distintos tipos de procesos que teníamos, y sus implicancias para los ejercicios (para sistemas cerrados):

• Isotérmico: Temperatura constante. Éste lo ocuparemos más tarde para gases ideales, pero lo importante será que, despreciando energá cinética y potencial, entonces en un gas ideal se cumple que:

Isotérmico:
$$T_i = T_f \Longrightarrow \Delta U = 0$$
 (gas ideal) (1.1)

• Isobárico: Presión constante. Éste será de utilidad, ya que si el proceso es a presión constante, entonces:

Isobárico:
$$P_1 = P_2 \Longrightarrow W = \int_{V_1}^{V_2} P \ dV = P \cdot (V_2 - V_1)$$
 (1.2)

• Isocórico/Isovolumétrico: Volumen constante. Éste también es de utilidad, ya que:

Isocórico:
$$V_1 = V_2 \Longrightarrow W = \int_{V_1}^{V_2} P \ dV = \int_{V_1}^{V_1} P \ dV = 0 \Longrightarrow \Delta U = (Q_{in} - Q_{out})$$
 (1.3)

• Adiabático: Sin transferencia de calor. Esto significa que, al no haber calor, entonces una variación de energía interna depende únicamente del trabajo realizado o recibido:

Adiabático:
$$\Delta U = (W_{in} - W_{out})$$
 (1.4)

1.2 Cambios de Fase

Una sustancia pura, al tener variación en su temperatura y/o presión, puede estar en distintos estados:

- Líqudo comprimido: Es aquel que se encuentra bajo la temperatura de ebullición (para una misma presión) o bajo la presión de ebullición (para una misma temperatura).
- Líqudo saturado: Aquel que está a punto de ebullir. Está justo a una presión y temperatura de ebullición.
- Mezcla: Aquel que está en proceso de ebullición/condensación. Ésta a una presión y temperatura de ebullición, pero no en el límite de ebullir o condensar completamente.
- Vapor Saturado: Aquel que está a punto de condensarse. Está justo a una presión y temperatura de ebullición.
- Vapor Sobrecalentado: Es aquel que se encuentra sobre la temperatura de ebullición (para una misma presión) o sobre la presión de ebullición (para una misma temperatura).
- Punto crítico: Es aquel en donde el volumen específico del líquido y vapor saturado son iguales.

Además, se necesitan saber los siguientes conceptos:

- 1. **Presión de saturación:** Presión a la cual la sustancia cambia de fase a una temperatura dada.
- 2. **Temperatura de saturación:** Temperatura a la cual la sustancia cambia de fase a una presión dada.

1.3 Diagramas

Los diagramas los vamos a ocupar normalmente cuando nos pidan a nosotros dibujar, pero también es posible que tengas que extrapolar información. La base de un diagrama será la **curva de saturación**, la cual nos indica en qué punto hay un cambio de fase:

Figure 1: Curva de saturación

De aquí, los valores a la izquierda de la campana estarán en **líquido comprimido**, en la línea de la campana en el sector izquierdo significa **líquido saturado**, dentro de la campana será **mezcla**, en la línea de la campana en el sector derecho será **vapor saturado**, y a la derecha de la campana será **vapor sobrecalentado**. Existen 2 principales diagramas a considerar:

1.3.1 Diagrama P-v

Es un diagrama que compara el volumen específico v con la presión P. Las líneas en marrón con **isotermas**, y representan una temperatura constante. Estas líneas tienen **pendiente negativa** cuando no se está en mezcla.

1.3.2 Diagrama T-v

Es un diagrama que compara el volumen específico v con la temperatura T. Las líneas marrón con **isobaras**, y representan una presión constante. Estas líneas tienen **pendiente positiva** cuando no se está en mezcla.

1.4 Entalpía

En las tablas termodinámica, nos va a aparecer una h, la cual se denomina **entalpía**. La entalpía es una forma de calor, la cual se define como:

$$H = U + PV$$
.

Es una propiedad **intensiva**, por lo que denominamos **entalía específica** cuando dividimos por la masa, es decir,

$$h = \frac{H}{m}$$

Si es que, por ejemplo, tenemos presión constante, entonces se cumple que:

$$\Delta H = \Delta U + P\Delta V = \Delta Q.$$

Cambios de Fase - Cómo ocuparlo

La mayoría de las veces nosotros vamos a ocupar **tablas termodinámicas**, la cual se ve más o menos así:

Tabla A-4 Agua saturada. Tabla de temperaturas												
Temp., <i>T</i> °C	Pres. sat., P _{sat} kPa	Volumen específico, m³/kg		Energía interna, kJ/kg			Entalpía, kJ/kg			Entropía, kJ/kg · K		
		Líq. sat., v _f	Vapor sat., v _g	Líq. sat., u _f	Evap.,	Vapor sat., u _g	Líq. sat., h _f	Evap., h _{fg}	Vapor sat., h _g	Líq. sat., s _f	Evap.,	Vapor sat., s _g
0.01 5 10 15 20	0.6117 0.8725 1.2281 1.7057 2.3392	0.001000 0.001000 0.001000 0.001001 0.001002	206.00 147.03 106.32 77.885 57.762	0.000 21.019 42.020 62.980 83.913	2374.9 2360.8 2346.6 2332.5 2318.4	2374.9 2381.8 2388.7 2395.5 2402.3	0.001 21.020 42.022 62.982 83.915	2500.9 2489.1 2477.2 2465.4 2453.5	2500.9 2510.1 2519.2 2528.3 2537.4	0.0000 0.0763 0.1511 0.2245 0.2965	9.1556 8.9487 8.7488 8.5559 8.3696	9.024 8.899 8.780

En estas vamos a tener mucha información, la cual vamos a aprender a sacar después. Lo importante ahora es reconocer en qué estado estamos. Para hacer esto, debemos primero entender qué significa cada columna, en este caso para Tabla de Temperaturas

- Columna 1: T °C: Para esta tabla, es el dato bonito, lo que sería la presión para la tabla de presión. Nos indica nuestro punto de partida.
- Columna 2: P_{sat} : Nos dice la presión de saturación a la temperatura dada. De manera inversa, sería la temperatura de saturación a una presión dada.
- Columna 3-4: $v_f \mathbf{y} v_g$: Nos da el volumen específico cuando está en líquido saturado (v_f) y en vapor saturado (v_g) , para esa presión/temperatura.
- Columna 5-7: u_f , u_g y u_{fg} : Nos dice la energía interna específica cuando está en líquido saturado (u_f) y en vapor saturado (u_g) . Además, nos dan la diferencia entre estos valores (u_{fg}) , los cual nos servirá cuando tengamos mezclas.
- Columna 8-10: h_f , h_g y h_{fg} : Nos dice la entalpía específica cuando está en líquido saturado (h_f) y en vapor saturado (h_g) . Además, nos dan la diferencia entre estos valores (h_{fg}) , llamada entalpía de vaporización, la cual nos servirá cuando tengamos mezclas.
- Columna 11-13: s_f , s_g y s_{fg} : Nos dice la entropía específica (lo veremos después) cuando está en líquido saturado (s_f) y en vapor saturado (s_g) . Además, nos dan la diferencia entre estos valores (s_{fg}) , llamada entropía de vaporización, la cual nos servirá cuando tengamos mezclas más adelante.