

Reinforcement Learning

Libri di testo

Reinforcement Learning

An Introduction second edition

Richard S. Sutton and Andrew G. Barto

- Richard S. Sutton and Andrew G. Barto, Reinforcement Learning: An Introduction, Second Edition, MIT Press (disponibile online)
- Algorithms for Reinforcement Learning, Szepesvari

Outline

- Introduzione al Reinforcement Learning
- Formalizzazione del problema
- Agente basato su RL
- Problematiche

Posizionare il RL

Tipi di apprendimento

Problemi con l'apprendimento supervisionato

- Cosa c'è di sbagliato nell'apprendimento supervisionato?
 - Un agente di apprendimento supervisionato apprende osservando passivamente l'esempio coppie ingresso/uscita fornite da un "insegnante"
 - Possiamo addestrare l'agente di scacchi con l'apprendimento supervisionato?
 - Dati: esempi di posizioni scacchistiche (ognuna etichettata con la corretta mossa)
 - ▶ Training data disponibili per i vincitori: 10⁸
 - ▶ Lo spazio di tutte le possibili posizioni degli scacchi: 10⁴⁰
 - Gli scacchi non possono essere risolti con l'apprendimento supervisionato

Caratteristiche del RL

- Cosa rende il Reinforcement Learning diverso dagli altri paradigmi di Machine Learning?
 - Non c'è alcuna supervisione, solo *ricompense*
 - Il feedback non è istantaneo
 - Il tempo conta davvero (dati sequenziali, continual learning, non i.i.d)
 - Le azioni dell'agente influenzano le informazioni successive che riceve (non-stazionarietà)

Esempi di RL

- Imparare a manovrare veicoli
- Impara a controllare robot (camminare, navigare, manipolare)
- Sconfiggere il campione del mondo di Backgammon
- Gestire un portafoglio di investimenti
- Scoprire nuove molecole

Cos'è il RL

- Ci sono diversi motivi per apprendere:
 - 1. Trovare soluzioni
 - Un programma che gioca a scacchi molto bene
 - Un robot industriale con uno specifico scopo
 - 2. Adattarsi online, gestire situazioni inattese
 - Un programma di scacchi che può adattarsi al giocatore
 - Un robot che può apprendere a navigare in terreni sconosciuti
 - RL può fornire algoritmi per entrambi le situazioni
 - Il secondo punto non è una generalizzazione del primo, è l'apprendere in modo efficiente online, durante le operazioni

Cos'è il RL

- Una scienza ed un framework per apprendere le decisioni da prendere dalle interazioni
- Questo richiede di tenere in considerazione
 - Il tempo
 - le conseguenze delle azioni (a lungo termine)
 - acquisire esperienza in modo attivo
 - predire il futuro
 - gestire le incertezze

https://www.youtube.com/watch?v=eG1Ed8PTJ18

https://www.youtube.com/watch?v= OV0Hlj8Fb8

https://www.twitch.tv/videos/410533063?t=01h32m02s

Navigare

Manipolare

https://www.youtube.com/watch?v=jwSbzNHGflM

Formalizzare il Reinforcement Learning

Ricompense (Rewards)

- Una ricompensa R_t è un feedback rappresentato con uno scalare
- ▶ Indica il grado di efficienza dell'agente allo step t
- Il compito dell'agente è quello di massimizzare la ricompensa cumulativa
- Il Reinforcement Learning è basato sulla reward hypothesis:

Tutti gli obiettivi possono essere descritti come la massimizzazione della ricompensa cumulativa prevista

Esempi di ricompense

- Far camminare un robot umanoide
 - ricompensa positiva per aver eseguito la traiettoria desiderata
 - ricompensa negativa in caso di caduta
- Sconfiggere il campione del mondo di Backgammon
 - ricompensa positiva/negativa per aver vinto/perso una partita
- Controllare una centrale elettrica
 - ricompensa positiva per aver prodotto energia
 - ricompensa negativa per aver violato le misure di sicurezza
- Gestire un portafoglio di investimenti
 - ricompensa positiva per ogni € guadagnato
- Giocare ai videogiochi
 - ricompensa positiva/negativa per aver migliorato/peggiorato il punteggio
- Scoprire nuove molecole (pos. molecola sintetizzabile, neg. molecola tossica)

Processo decisionale sequenziale

- Obiettivo: selezionare le azioni al fine di massimizzare la ricompensa totale futura
 - Le azioni possono avere conseguenze a lungo termine
 - La ricompensa potrebbe essere ritardata
 - Può essere preferibile sacrificare una ricompensa immediata per ottenere una maggiore ricompensa a lungo termine

Esempi:

- Un investimento finanziario (può richiedere mesi per maturare)
- Rifornimento di carburante a un elicottero (potrebbe evitare un incidente dopo diverse ore)
- Bloccare le mosse dell'avversario (potrebbe aiutare a vincere molte mosse da ora)

Agente ed Ambiente

Agente ed ambiente (2)

- A ciascun step *t* l'agente:
 - Esegue l'azione A_t
 - ▶ Riceve l'osservazione O_t
 - ightharpoonup Riceve la ricompensa R_t
- L'ambiente:
 - ightharpoonup Riceve l'azione A_t
 - Produce l'osservazione O_{t+1}
 - Produce la ricompensa R_{t+1}
- t viene incrementato

Storia e Stato

La *storia* è la sequenza di osservazioni, azioni, ricompense

$$H_t = O_1, R_1, A_1, \dots, A_{t-1}, O_t, R_t$$

cioè tutte le variabili osservabili fino al tempo t

- La storia influenza ciò che accade successivamente:
 - Le azioni eseguite dall'agente
 - ▶ Le osservazioni/ricompense prodotte dall'ambiente
- Lo stato è l'informazione utilizzata per determinare ciò che accade successivamente
- Formalmente, lo stato S_t è una funzione della storia:

$$S_t = f(H_t)$$

Stato dell'ambiente

- Lo stato dell'ambiente S_t^e è la rappresentazione privata dell'ambiente e al tempo t
 - Qualsiasi informazione usata dall'ambiente per scegliere la prossima osservazione/ricompensa
- Di solito, lo stato dell'ambiente non è visibile all'agente
- Nache se S_t^e è visibile, potrebbe contenere informazioni irrilevanti

Stato dell'agente

- Lo stato dell'agente S_t^a è la rappresentazione interna dell'agente a
 - Qualsiasi informazione usata dall'agente per scegliere l'azione successiva
- Questa è l'informazione utilizzata dagli algoritmi di RL
- Può essere qualsiasi funzione della storia:

$$S_t^a = f(H_t)$$

Stato delle informazioni

- Uno stato delle informazioni (a.k.a. stato di Markov) contiene tutte le informazioni utili della storia
- Uno stato S_t è detto di Markov se e solo se

$$P[S_{t+1} | S_1, ..., S_t] = P[S_{t+1} | S_t]$$

«Dato il presente, il futuro è indipendente dal passato»

$$H_{1:t} \rightarrow S_t \rightarrow H_{t+1:\infty}$$

- Una volta che lo stato è noto, la storia può non essere considerata
- Lo stato è una statistica sufficiente del futuro
- lacksquare Lo stato dell'ambiente S_t^e e la storia H_t sono di Markov

Esempio

- Cosa succede se lo stato dell'agente = ultimi 3 elementi della sequenza?
- E se lo stato dell'agente = numero di luci, campanelli e leve?
- E se lo stato dell'agente = sequenza completa?

Ambienti completamente osservabili

 Osservabilità completa: l'agente osserva direttamente lo stato dell'ambiente

$$O_t = S_t^a = S_t^e$$

- Stato dell'agente = Stato dell'ambiente = Stato delle informazioni
- Formalmente, questo è definito Processo Decisionale di Markov (MDP)

Ambienti parzialmente osservabili

- Osservabilità parziale: l'agente osserva indirettamente l'ambiente
 - Un agente di trading osserva solo i prezzi correnti
 - Un agente che gioca a poker osserva solo le carte sul tavolo
- In questo caso Stato dell'agente ≠ Stato dell'ambiente
- Formalmente, questo è definito Processo Decisionale di Markov Parzialmente Osservabile (POMDP)
- L'agente deve costruire la propria rappresentazione dello stato S_t^a , ad esempio
 - Storia completa: $S_t^a = H_t$
 - Credenze sullo stato dell'ambiente: $S_t^a = (\mathbb{P}[S_t^e = s^1], ..., \mathbb{P}[S_t^e = s^n])$
 - Rete neurale ricorrente: $S_t^a = \sigma(S_{t-1}^a W_s + O_t W_o)$

Componenti di un agente basato su Reinforcement Learning

Componenti principali di un agente basato su RL

- Un agente basato su RL include una o più delle seguenti componenti:
 - Policy: funzione di comportamento dell'agente
 - Value function: esprime quanto è valido ogni stato e/o azione
 - Modello: rappresentazione dell'ambiente ad opera dell'agente

Policy

- Una policy π esprime il comportamento dell'agente
- Stabilisce l'azione da eseguire in base allo stato in cui si trova l'agente, ad esempio
 - Policy deterministica: $a = \pi(s)$
 - Policy stocastica: $\pi(a|s) = P[A_t = a|S_t = s]$

Value function

- Una value function è una previsione della ricompensa futura
- Viene utilizzata per valutare la validità degli stati e quindi per la scelta delle azioni da eseguire, ad esempio

$$v_{\pi}(s) = \mathbb{E}_{\pi} \left[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots \mid S_t = s \right]$$

- Ricompensa futura attesa (scontata) in base alla politica π dallo stato s
- Uno stato s potrebbe avere sempre una ricompensa bassa ma avere un valore $v_{\pi}(s)$ alto (gli stati seguenti hanno una ricompensa alta)

Modello

- Un modello predice ciò che l'ambiente farà in seguito
- P predice il prossimo stato
- P predice la ricompensa successiva (immediata), ad esempio

$$\mathcal{P}_{ss'}^{a} = \mathbb{P}[S_{t+1} = s' \mid S_{t} = s, A_{t} = a]$$

 $\mathcal{R}_{s}^{a} = \mathbb{E}[R_{t+1} \mid S_{t} = s, A_{t} = a]$

Esempio Labirinto

- Ricompense: -1 per time-step
- Azioni: N, E, S, O
- Stati: posizione dell'agente

Esempio Maze: Policy

Le frecce rappresentano la policy $\pi(s)$ per ogni stato s

Esempio Maze: Value Function

- I numeri rappresentano il valore $v_{\pi}(s)$ di ciascuno stato s
- ▶ Tempo previsto per raggiungere l'obiettivo

Esempio Maze: Modello

- L'agente può avere un modello interno (imperfetto) dell'ambiente
 - Come le azioni cambiano lo stato
 - Quanta ricompensa si ottiene da ogni stato

- Il layout a griglia rappresenta il modello di transizione $\mathcal{P}_{ss'}^a$
- I numeri rappresentano la ricompensa immediata \mathcal{R}_s^a da ciascuno stato s

Apprendere le componenti degli agenti

- Tutte le componenti sono funzioni
 - Policies: $\pi: \mathcal{S} \to \mathcal{A}$ (or to probabilities over \mathcal{A})
 - ▶ Value functions: $v: S \to \mathbb{R}$
 - ightharpoonup Models: $m: S \to S$ and/or $r: S \to \mathbb{R}$
 - ▶ State update: $u : S \times O \rightarrow S$
- Ad es., possiamo usare reti neurali o tecniche di deep learning per apprenderle
- NB. Spesso non valgono le assunzioni del supervised learning (stazionarietà, iid)

Categorizzazione degli agenti basati su RL

- Value-based
 - Non utilizzano alcuna Policy
 - Value Function
- Policy-based
 - Policy
 - Non utilizzano alcuna Value Function
- Actor Critic
 - Policy
 - Value Function

Categorizzazione degli agenti basati su RL (2)

- Model-free
 - Policy e/o Value Function
 - Non utilizzano alcun Modello

- Model-based
 - Policy e/o Value Function
 - Model

Tassonomia degli agenti basati su RL

Learning e Planning

Ci sono due problematiche fondamentali in un processo decisionale sequenziale

- Reinforcement Learning:
 - L'ambiente è inizialmente sconosciuto
 - L'agente interagisce con l'ambiente
 - L'agente migliora la sua policy
- Planning:
 - Un modello dell'ambiente è noto
 - L'agente esegue le computazioni con il suo modello (senza alcuna interazione esterna)
 - L'agente migliora la sua policy

Esempio Atari: Reinforcement Learning

- Le regole del gioco sono sconosciute
- L'apprendimento è basato sull'esperienza ottenuta dall'interazione con il gioco
- Bisogna scegliere le azioni da eseguire col joystick, vedere i pixel e i punteggi

Esempio Atari: Planning

- Le regole del gioco sono note
- L'agente può interrogare l'emulatore
 - Esiste un modello perfetto per l'agente
- Se l'agente esegue un'azionea da uno stato s:
 - Quale è il prossimo stato?
 - Quale è il punteggio?
- Bisogna pianificare in anticipo per trovare una policy ottimale
 - Ad esempio, si può usare un albero di ricerca

Exploration and Exploitation

Il Reinforcement Learning è simile ad un apprendimento trial-and-error

- L'agente dovrebbe individuare una politica buona
 - Tramite l'esperienza che acquisisce interagendo con l'ambiente
 - Senza perdere troppa ricompensa lungo il percorso

Exploration and Exploitation (2)

L'exploration trova più informazioni sull'ambiente

- L'exploitation sfrutta le informazioni note per massimizzare la ricompensa
- Di solito questi due task hanno la stessa importanza

Esempi

- Selezione di un ristorante
 - Exploitation: Vai al tuo ristorante preferito
 - Exploration: Prova un nuovo ristorante
- Banner pubblicitari online
 - Exploitation: Mostra la Pubblicità di maggior successo
 - Exploration: Mostra una pubblicità diversa
- Perforazioni petrolifere
 - Exploitation: Perforare nel punto più noto
 - Exploration: Perforare in una nuova posizione
- Game-playing
 - Exploitation: Esegui la mossa che ritieni migliore
 - Exploration: Esegui una mossa sperimentale

Prediction e Control

- Prediction: valutare il futuro
 - La policy è nota

- Control: ottimizzare il futuro
 - Trova la miglior policy

Esempio Gridworld: Prediction

3.3	8.8	4.4	5.3	1.5
1.5	3.0	2.3	1.9	0.5
0.1	0.7	0.7	0.4	-0.4
-1.0	-0.4	-0.4	-0.6	-1.2
-1.9	-1.3	-1.2	-1.4	-2.0

Quale è la value function per la policy casuale uniforme?

Esempio Gridworld: Control

a) gridworld

22.0	24.4	22.0	19.4	17.5
19.8	22.0	19.8	17.8	16.0
17.8	19.8	17.8	16.0	14.4
16.0	17.8	16.0	14.4	13.0
14.4	16.0	14.4	13.0	11.7

b)
$$v_*$$

- c) π_*
- Quale è la value function ottimale tra tutte le possibili policy?
- Quale è la policy ottimale?