Real Analysis Homework 6

Alexander J. Tusa

December 11, 2018

1. Section 3.5

2)a) Show directly from the definition that $(\frac{n+1}{n})$ is a Cauchy sequence.

Proof. Let $a_n := (\frac{n+1}{n}) = (1 + \frac{1}{n})$ be a sequence. We want to show that $\forall \varepsilon > 0, \exists H(\varepsilon) \in \mathbb{N} \text{ s.t. } \forall x_n, x_m \in a_n, |x_n - x_m| < \varepsilon, \text{ for } m, n \geq H(\varepsilon).$

Recall that if $\varepsilon > 0$, $\exists n_{\varepsilon} \in \mathbb{N}$ s.t. $0 < \frac{1}{n_{\varepsilon}} < \varepsilon$. So, we want to show that if we let $n_{\varepsilon} = H(\varepsilon)$, $\frac{1}{H(\varepsilon)} < \frac{\varepsilon}{2}$.

Let $m > n \ge H(\varepsilon)$.

So,

$$\left|\frac{m+1}{m} - \frac{n+1}{n}\right| = \left|\frac{1}{m} - \frac{1}{n}\right|$$

$$\leq \frac{1}{m} + \frac{1}{n} \qquad \text{by the Triangle Inequality}$$

$$\leq \frac{2}{n} \qquad \text{since } m > n \Rightarrow \frac{1}{m} < \frac{1}{n}$$

$$\leq \frac{2}{H(\varepsilon)} \qquad \text{since } n \geq H(\varepsilon)$$

$$< \varepsilon \qquad \qquad \text{since } \frac{1}{H(\varepsilon)} < \frac{\varepsilon}{2}$$

Thus, $a_n = \left(\frac{n+1}{n}\right)$ is a Cauchy sequence.

3)b) Show directly from the definition that $\left(n + \frac{(-1)^n}{n}\right)$ is not a Cauchy sequence.

Let
$$x_n := n + \frac{(-1)^n}{n}$$
, for $n \ge 1$.

Then we have the following:

$$x_{n+1} - x_n = (n+1) + \frac{(-1)^{n+1}}{n+1} - n - \frac{(-1)^n}{n}$$
$$= 1 + \frac{(-1)^{n+1}}{n+1} - \frac{(-1)^n}{n}$$
$$= 1 + (-1)^{n+1} \left(\frac{1}{n+1} + \frac{1}{n}\right)$$

So,

$$x_{2m+2} - x_{2m+1} = 1 + (-1)^{2m+1+1} \left(\frac{1}{2m+2} + \frac{1}{2m+1} \right)$$
$$= 1 + \frac{1}{2m+2} + \frac{1}{2m+1}$$

Thus, $|x_{2m+2} - x_{2m+1}| > 1$. Hence, if we let $\varepsilon = \frac{1}{2}$, there doesn't exist $H(\varepsilon) \in \mathbb{N}$ s.t. $|x_n - x_m| < \frac{1}{2}$, $\forall m, n \geq H(\varepsilon)$. This is because

$$\left|x_{2H(\varepsilon)+2} - x_{2H(\varepsilon)+1}\right| = 1 + \frac{1}{2H(\varepsilon)+2} + \frac{1}{2H(\varepsilon)+1} > 1 > \frac{1}{2}$$

Thus, $\left(n + \frac{(-1)^n}{n}\right)$ is not a Cauchy sequence.

4) Show directly from the definition that if (x_n) and (y_n) are Cauchy sequences, then $(x_n + y_n)$ and $(x_n y_n)$ are Cauchy sequences.

Proof. Recall Lemma 3.5.4:

Lemma. A Cauchy sequence of real numbers is bounded.

Thus, we have that (x_n) and (y_n) are bounded. By the definition of boundedness, we know that there exists $M_1, M_2 \in \mathbb{R}$ such that the following hold:

$$\exists M_1 > 0 \text{ s.t. } |x_n| \leq M_1 \ \forall \ n \in \mathbb{N}$$

and

$$\exists M_2 > 0 \text{ s.t. } |y_n| \leq M_2 \forall \ n \in \mathbb{N}$$

Let $M = \max\{M_1, M_2\}.$

Since (x_n) and (y_n) are Cauchy sequences, we have the following:

$$\forall \ \varepsilon > 0, \ \exists \ H_1(\varepsilon) \in \mathbb{N} \text{ s.t. } |x_n - x_m| < \frac{\varepsilon}{2}, \ \forall \ m, n \ge H_1(\varepsilon)$$

$$\forall \ \varepsilon > 0, \ \exists \ H_2(\varepsilon) \in \mathbb{N} \text{ s.t. } |y_n - y_m| < \frac{\varepsilon}{2}, \ \forall \ m, n \ge H_2(\varepsilon)$$

Thus, by the Triangle Inequality, we have

$$|(x_n + y_n) - (x_m + y_m)| \le |x_n - x_m| + |y_n - y_m|$$

Let $H(\varepsilon) = \max\{H_1(\varepsilon), H_2(\varepsilon)\}$. Then we have that $|x_n - x_m| \leq \frac{\varepsilon}{2}$ and $|y_n - y_m| \leq \frac{\varepsilon}{2}$, $\forall m, n \geq H(\varepsilon)$. Thus,

$$|(x_n + y_n) - (x_m - y_m)| \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon, \ \forall \ m, n \ge H(\varepsilon)$$

 \therefore $(x_n + y_n)$ is Cauchy.

Similarly, to show that $x_n y_n$ is Cauchy, we have

$$|x_n y_n - x_m y_m| = |x_n y_n - y_n x_m + x_m y_n - x_m y_m|$$

$$\leq |y_n| |x_n - x_m| + |x_m| |y_n - y_m|$$

$$\leq M(|x_n - x_m| + |y_n - y_m|)$$

$$\leq M\left(\frac{\varepsilon}{2} + \frac{\varepsilon}{2}\right), \qquad \forall n, m \geq H(\varepsilon)$$

$$= M_{\varepsilon}$$

Note that we can initially replace ε by $\frac{\varepsilon}{M}$ to get $|x_ny_n-x_my_m|\leq \varepsilon, \ \forall \ n,m\geq H(\varepsilon)$.

Thus we have that $(x_n y_n)$ is also Cauchy.

5) If $x_n := \sqrt{n}$, show that (x_n) satisfies $\lim |x_{n+1} - x_n| = 0$, but that it is not a Cauchy sequence.

Note that (x_n) is an unbounded sequence. By the Cauchy Convergence Criterion, since \sqrt{n} is not bounded, (x_n) is not a Cauchy sequence. Now, we only must show that $|x_{n+1} - x_n|$ converges to 0. So,

$$|x_{n+1} - x_n| = \sqrt{n+1} - \sqrt{n}$$

$$= \frac{1}{\sqrt{n+1} + \sqrt{n}}$$

$$\Rightarrow \lim_{n \to \infty} |x_{n+1} - x_n| = \lim_{n \to \infty} \frac{1}{\sqrt{n+1} + \sqrt{n}}$$

$$= 0$$

Thus, we have that $\lim |x_{n+1} - x_n| = 0$, but (x_n) is not Cauchy.

12) If $x_1 > 0$ and $x_{n+1} := (2 + x_n)^{-1}$ for $n \ge 1$, show that (x_n) is a contractive sequence. Find the limit.

Proof. Recall the definition of a contractive sequence:

Definition. We say that a sequence (x_n) of real numbers is **contractive** if there exists a constant C, 0 < C < 1, such that

$$|x_{n+2} - x_{n+1}| \le C|x_{n+1} - x_n|$$

for all $n \in \mathbb{N}$. The number C is called the **constant** of the contractive sequence.

For (x_n) , we have the following:

$$|x_{n+2} - x_{n+1}| = |(2 + x_{n+1})^{-1} - (2 + x_n)^{-1}|$$

$$= \left| \frac{1}{2 + x_{n+1}} - \frac{1}{2 + x_n} \right|$$

$$= \left| \frac{2 - x_n - (2 + x_{n+1})}{(2 + x_{n+1})(2 + x_n)} \right|$$

$$= \frac{|x_n - x_{n+1}|}{(2 + x_{n+1})(2 + x_n)}$$

$$\leq \frac{|x_n - x_{n+1}|}{(2 + 0)(2 + 0)}$$

$$= \frac{1}{4} \cdot |x_{n+1} - x_n|$$

Thus, if we let $C = \frac{1}{4}$, then (x_n) is a contractive sequence.

Now we want to find the limit of (x_n) .

Recall Theorem 3.5.8:

Theorem. Every contractive sequence is a Cauchy sequence, and therefore is convergent.

By Theorem 3.5.8, we have that $\lim(x_n) = x$ exists, and since we know that $\lim(x_{n+1}) = \lim(x_n) = x$, we have the following:

$$x_{n+1} = (2+x_n)^{-1}$$

$$x_{n+1} = \frac{1}{2+x_n} \quad \left| \lim \right|$$

$$x = \frac{1}{2+x} \quad \left| \cdot (2+x) \right|$$

$$x^2 + 2x = 1$$

$$x^2 + 2x - 1 = 0$$

$$x = \frac{-2 \pm \sqrt{4 - 4 \cdot 1 \cdot (-1)}}{2}$$

$$x_a = -1 - \sqrt{2} < 0$$

$$x_b = -1 + \sqrt{2} > 0$$

Since $x_n > 0$, $\forall n$, we know that $x_a < 0$ cannot be the limit, and thus we can conclude that $\lim_{n \to \infty} (x_n) = -1 + \sqrt{2}$.

13) If $x_1 := 2$ and $x_{n+1} := 2 + 1/x_n$ for $n \ge 1$, show that (x_n) is a contractive sequence. What is the limit?

Lemma 0.1. We want to show that $x_n \geq 2 \ \forall \ n \in \mathbb{N}$. We prove this by method of mathematical induction.

Basis Step: Let n = 1. Then we have that $x_1 = 2 \ge 2$.

Inductive Step: Assume that $x_n \geq 2$ for arbitrary $n \in \mathbb{N}$.

Show: We want to now show that $x_{n+1} \geq 2$, $\forall n \in \mathbb{N}$. So we have the following:

$$x_{n+1} = 2 + \frac{1}{x_n}$$
$$\ge 2 + 0$$
$$= 2$$

 \therefore by mathematical induction, we have that $x_n \geq 2, \ \forall \ n \in \mathbb{N}$

Proof. By the definition of a contractive sequence, we have the following:

$$|x_{n+2} - x_{n+1}| = \left| \left(2 + \frac{1}{x_{n+1}} \right) - \left(2 + \frac{1}{x_n} \right) \right|$$

$$= \left| \frac{1}{x_n + 1} - \frac{1}{x_n} \right|$$

$$= \left| \frac{x_n - x_{n+1}}{x_{n+1} \cdot x_n} \right| \leq \left| \frac{x_n - x_{n+1}}{2 \cdot 2} \right| \text{ by Lemma } 0.1$$

$$= \frac{1}{4} |x_n - x_{n+1}|$$

So, if we let $C = \frac{1}{4}$, then we have shown that by the definition of a contractive sequence, (x_n) is contractive.

Now we want to find the limit of (x_n) . By Theorem 3.5.8, we have that since (x_n) is contractive, it is also convergent. Thus, we know that $\lim(x_n) = x$ exists, and since we also know that $\lim(x_{n+1}) = \lim(x_n) = x$, we have the following:

$$x_{n+1} = 2 + \frac{1}{x_n} \qquad | \lim$$

$$x = 2 + \frac{1}{x} \qquad | \cdot x$$

$$x^2 = 2x + 1$$

$$x^2 - 2x - 1 = 0$$

$$x = \frac{2 \pm \sqrt{4 - 4 \cdot 1 \cdot (-1)}}{2}$$

$$x_a = 1 - \sqrt{2} < 2$$

$$x_b = 1 + \sqrt{2} > 2$$

By Lemma 0.1, we know that $x_n \ge 2$, $\forall n \in \mathbb{N}$, and thus we know that $x_a < 2$ can't be the limit. Thus, we can conclude that $\lim_{n \to \infty} (x_n) = 1 + \sqrt{2}$.

- 2. Find examples of sequences of real numbers satisfying each set of properties:
 - (a) Cauchy, but not monotone

Consider the sequence $a_n := (1, \frac{1}{3}, \frac{1}{2}, \frac{1}{5}, \frac{1}{4}, \dots)$. Notice that $\forall \varepsilon > 0, \exists H(\varepsilon) \in \mathbb{N}$ s.t. $|a_n - a_m| < \varepsilon$, for $m, n \in \mathbb{N}, \forall m, n \geq H(\varepsilon)$. Thus, this sequence satisfies the definition of a Cauchy sequence, and thus it is a Cauchy sequence. However, notice that while it is decreasing overall, it is not decreasing in a way that coincides with the definition of monotone decreasing.

That is, in order for this sequence to be considered monotone decreasing, we must have the following:

$$a_1 \ge a_2 \ge a_3 \ge a_4 \ge a_5 \ge \cdots \ge a_n, \ \forall \ n \in \mathbb{N}$$

But, given the first five terms of this sequence, we have

$$1 \ge \frac{1}{3} \le \frac{1}{2} \ge \frac{1}{5} \le \frac{1}{4} \dots$$

Hence this sequence is Cauchy but not monotone.

(b) Monotone, but not Cauchy

Consider the sequence $a_n := (1, 4, 9, 16, 25, \dots) = n^2$. This sequence is monotone, since it is an increasing sequence, however it is not Cauchy. Consider $\varepsilon = 1$. Since (a_n) is an increasing sequence, we have that for any two $m, n \in \mathbb{N}$, $|a_n - a_m| > 1$. Thus, $\not\equiv H(\varepsilon) \in \mathbb{N}$ s.t. $\forall \varepsilon > 0$, $|a_n - a_m| < \varepsilon$, for $m, n \in \mathbb{N}$, $\forall m, n \geq H(\varepsilon)$. Thus (a_n) is a monotone sequence but it is not a Cauchy sequence.

(c) (Section 3.5, Problem 1) Bounded, but not Cauchy

Consider the sequence $a_n := (-1, 1, -1, 1, -1, \dots) = (-1)^n$. This sequence is bounded above by 1 and is bounded below by -1, and thus this sequence is bounded. However, since $\forall m, n \in \mathbb{N}, |a_n - a_m| = |a_m - a_n| = 2$, we have that the sequence is not Cauchy. Consider $\varepsilon = 1$. Then we have that $\nexists H(\varepsilon) \in \mathbb{N}$ s.t. $|a_n - a_m| < \varepsilon$, for $m, n \in \mathbb{N}, \forall m, n \geq H(\varepsilon)$. Thus, we have a sequence that is bounded, but is not a Cauchy sequence.

3. (a) Let $a_n = \frac{1}{2} + \frac{1}{6} + \cdots + \frac{1}{n(n+1)}$. Show a_n is Cauchy.

Proof. Let $a_n = \frac{1}{2} + \frac{1}{6} + \cdots + \frac{1}{n(n+1)}$. We want to show that a_n is Cauchy. That is, we want to show that $\forall \varepsilon > 0, \exists H(\varepsilon) \in \mathbb{N}$, s.t. $|a_m - a_n| < \varepsilon, \forall m, n \ge H(\varepsilon)$.

Let $\varepsilon > 0$ be given. Without loss of generality, let $m \geq n$. Then we have that $0 < a_m - a_n$, which yields the following:

$$= \left(\frac{1}{2} + \frac{1}{6} + \dots + \frac{1}{n(n+1)} + \frac{1}{(n+1)(n+2)} + \dots + \frac{1}{m(m+1)}\right) - \left(\frac{1}{2} + \dots + \frac{1}{n(n+1)}\right)$$

$$= \frac{1}{(n+1)(n+2)} + \dots + \frac{1}{m(m+1)}$$

$$= \left(\frac{1}{n+1} - \frac{1}{n+2}\right) + \left(\frac{1}{n+2} - \frac{1}{n+3}\right) + \dots + \left(\frac{1}{m} - \frac{1}{m+1}\right)$$

$$= \frac{1}{n+1} - \frac{1}{m+1} < \frac{1}{n+1} < \frac{1}{n} = \varepsilon$$

So, if we let $H(\varepsilon) \geq \frac{1}{\varepsilon}$, we then have that $|a_m - a_n| < \varepsilon$, $\forall m, n \geq H(\varepsilon)$.

$$\therefore a_n$$
 is Cauchy.

(b) Let a_n satisfy $|a_n - a_{n+1}| \le 1/3^n$. Show a_n converges.

Proof. First note that if we let $b_n := \frac{1}{3^n}$, then we have the sequence $b_n = (\frac{1}{3}, \frac{1}{9}, \frac{1}{27})$. Notice that this sequence is a Cauchy sequence. This is because if we have the following:

$$3^n < 3^{2n}$$

$$\Rightarrow \frac{1}{3^n} > \frac{1}{3^{2n}}$$

Thus we have that if we let $\varepsilon = \frac{1}{3^n}$, then $|a_n - a_{n+1}| < \frac{1}{3^2n} < \frac{1}{3^n} = \varepsilon$. So, if we let $H(\varepsilon) = \frac{\log(\frac{1}{\varepsilon})}{2\log(3)}$, then $\forall n \geq H(\varepsilon)$, $|a_n - a_{n+1}| < \varepsilon$. Consider if we let m = n + 1. Then we can rewrite this as follows:

$$\forall \ \varepsilon > 0, \ \exists \ H(\varepsilon) \in \mathbb{N} \text{ s.t. } |a_n - a_m| < \varepsilon, \ \forall \ m, n \ge H(\varepsilon), \text{ where } H(\varepsilon) = \frac{\log(\frac{1}{\varepsilon})}{2\log(3)}$$

Thus we have that any sequence a_n that satisfies this property must be a Cauchy Sequence. Thus by the Cauchy Convergence Criteria, we have that a_n is convergent since it is also Cauchy. Hence $\lim(a_n) = A$ exists.

(c) Prove that if a_n converges, then $\lim_{n\to\infty} |a_{n+1}-a_n|=0$.

Proof. Suppose that (a_n) is a convergent sequence. Then we have that by the *Cauchy Convergence Criterion*, (a_n) is a Cauchy sequence.

Recall Theorem 3.1.3:

Theorem. Let $X = (x_n : n \in \mathbb{N})$ be a sequence of real numbers and let $m \in \mathbb{N}$. Then the m-tail $X_m = (x_{m+n} : n \in \mathbb{N})$ of X converges if and only if X converges. In this case, $\lim X_m = \lim X$.

Thus by Theorem 3.1.3, we have that if we let m = 1, then $a_{m+n} = a_{n+1}$ also converges since a_n converges.

Also, recall *Theorem 3.4.2*:

Theorem. If a sequence $X = (x_n)$ of real numbers converges to a real number x, then any subsequence $X' = (x_{n_k})$ of X also converges to x.

Thus we have that since the sequence (a_{n+1}) is a subsequence of (a_n) , by *Theorem* 3.4.2, the subsequence (a_{n+1}) also converges to x.

Let
$$\lim_{n\to\infty} (a_n) = A$$
 and let $\lim_{n\to\infty} (a_{n+1}) = B$, for $A, B \in \mathbb{R}$.

Consider first the sequence generated by $(a_{n+1} - a_n)$.

Recall Theorem 3.2.3:

- **Theorem.** i. Let $X = (x_n)$ and $Y = (y_n)$ be sequences of real numbers that converge to x and y, respectively, and let $c \in \mathbb{R}$. Then t he sequences $X + Y, X Y, X \cdot Y$, and cX converge to x + y, x y, xy, and cx, respectively.
- ii. If $X = (x_n)$ converges to x and $Z = (z_n)$ is a sequence of nonzero real numbers that converges to z and if $z \neq 0$, then the quotient sequence X/Z converges to x/z.

Thus, by *Theorem 3.2.3*, we have

$$\lim_{n \to \infty} (a_{n+1} - a_n) = B - A$$

However, since we have that $\lim_{n\to\infty} (a_n) = x$ and by Theorem 3.4.2, since (a_{n+1}) is a subsequence of (a_n) , we know that

$$\lim_{n \to \infty} (a_{n+1}) = \lim_{n \to \infty} (a_n) = x$$

Which yields that A = x = B. So, we have

$$\lim_{n \to \infty} (a_{n+1} - a_n) = B - A = A - A = B - B = x - x = 0$$

Hence,

$$\lim_{n \to \infty} |a_{n+1} - a_n| = |0| = 0$$

 \therefore if (a_n) converges, then $\lim_{n\to\infty} |a_{n+1}-a_n|=0$.

(d) Give an example of a sequence a_n where $\lim_{n\to\infty} |a_{n+1}-a_n|=0$, but a_n diverges.

Consider the sequence $a_n := (\frac{1}{2}, 1, \frac{4}{3}, \frac{19}{12}, \frac{107}{60}, \frac{38}{20}, \dots) \approx (0.5, 1, 1.3333, 1.583333, 1.783333, 1.9, \dots)$. Thus we note that this sequence is monotone increasing, and

also is unbounded. Thus this is a divergent sequence. However, note the resulting sequence of $|a_{n+1} - a_n|$:

$$|a_{n+1} - a_n| = (\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}, \dots)$$

We can note that the resulting sequence of $|a_{n+1} - a_n|$ is not only monotone decreasing, but also converges to 0. Thus we have defined a sequence (a_n) such that $\lim_{n\to\infty} (a_n) = \infty$, however $\lim_{n\to\infty} |a_{n+1} - a_n| = 0$.

(e) Let a_n satisfy $a_{n+1} = a_n^2$ for all $n \in \mathbb{N}$ where $0 < a_1 \le 1/3$. Show a_n is contractive.

To begin, we want to show that $a_{n+1} < \frac{1}{3}$. We prove it by method of mathematical induction.

Lemma 0.2. Basis Step: Let n=1. Then we have that $a_1 < \frac{1}{3}$

Inductive Step: Assume that $a_2 < \frac{1}{3}$ for arbitrary $n \in \mathbb{N}$.

Show: We want to now show that $a_{n+1} < \frac{1}{3}$, $\forall n \in \mathbb{N}$. So,

$$a_{n+1} = a_n^2 < \left(\frac{1}{3}\right)^2$$
 by definition of a_{n+1}
$$= a_n^2 < \frac{1}{9} < \frac{1}{3}$$

Thus, by mathematical induction, we have that $a_n < \frac{1}{3}, \ \forall \ n \in \mathbb{N}$.

Now, we want to show that a_n is contractive.

Proof. By the definition of a contractive sequence, we have the following:

$$|a_{n+2} - a_{n+1}| = a_{n+1}^2 - a_n^2|$$

$$= |a_{n+1} - a_n||a_{n+1} + a_n|$$

$$\leq |a_{n+1} - a_n|(|a_{n+1}| + |a_n|)$$

$$\leq \frac{2}{3}|a_{n+1} - a_n|$$

So, if we let $C = \frac{2}{3}$, then we have shown that by the definition of a contractive sequence, (a_n) is contractive.

- **4.** Show that the following sequences are not Cauchy.
 - (a) $a_n = n^2$.

Consider $\varepsilon = 1$. Since (a_n) is an increasing sequence, we have that for any two $m, n \in \mathbb{N}$, $|a_n - a_m| > 1$. Thus, $\nexists H(\varepsilon) \in \mathbb{N}$ s.t. $\forall \varepsilon > 0$, $|a_n - a_m| < \varepsilon$, for $m, n \in \mathbb{N}$, $\forall m, n \geq H(\varepsilon)$. Thus (a_n) is not a Cauchy sequence.

(b) (Section 3.5, Problem 2b) $a_n = n + \frac{(-1)^n}{n}$.

If we let $\varepsilon = \frac{1}{2}$, there doesn't exist $H(\varepsilon) \in \mathbb{N}$ s.t. $|x_n - x_m| < \frac{1}{2}$, $\forall m, n \geq H(\varepsilon)$. This is because

$$|x_{2H(\varepsilon)+2} - x_{2H(\varepsilon)+1}| = 1 + \frac{1}{2H(\varepsilon)+2} + \frac{1}{2H(\varepsilon)+1} > 1 > \frac{1}{2}$$

Thus, $\left(n + \frac{(-1)^n}{n}\right)$ is not a Cauchy sequence.

- 5. Prove or justify, if true. Provide a counterexample, if false.
 - (a) If a_n is Cauchy and b_n is bounded, then $a_n \cdot b_n$ is Cauchy.

This is a false statement. Consider the sequences $(a_n) := 1$, and $b_n := (-1)^n$. We have that a_n is a Cauchy sequence and we also have that (b_n) is a bounded sequence since it is bounded below by -1 and it is bounded above by 1. Then we have that the resulting sequence of $a_n b_n$ is

$$a_n \cdot b_n = (-1, 1, -1, 1, -1, \dots)$$

Thus since this sequence oscillates between -1 and 1, it is not a Cauchy sequence since by the *Cauchy Convergence Criterion*, since this sequence doesn't converge, it isn't Cauchy.

(b) If a_n is a monotone increasing sequence such that $a_{n+1} - a_n \le 1/n$, then a_n converges.

This is a false statement. Consider the following sequence: $a_n := (-1, -\frac{1}{2}, -\frac{1}{3}, -\frac{1}{4}, \dots, -\frac{1}{n})$. Thus we have that this sequence is both monotone increasing and is a harmonic sequence. Also, note for n = 1, we have

$$a_{n+1} - a_n = -\frac{1}{2} - (-1) = -\frac{1}{2} + 1 = \frac{1}{2} \le \frac{1}{1} = 1$$

However, if we let $\varepsilon = \frac{1}{3}$, then we have that $|a_2 - a_1| \not< \varepsilon$, since $|a_2 - a_1| = \frac{1}{2} \not< \frac{1}{3}$. Hence this sequence is not true for all ε .

(c) The Cauchy convergence criteria holds in \mathbb{Q} .

This is a false statement. Consider the sequence $a_n := (1.4, 1.41, 1.414, ...)$. We have that this sequence is indeed a Cauchy sequence, however this sequence does not converge to a value in \mathbb{Q} . Rather, this sequence converges to $\sqrt{2} \notin \mathbb{Q}$. Thus the Cauchy convergence criteria does not hold in \mathbb{Q} .