Direct and Indirect Networks

- Direct Network
 - Every Node in the network is both a terminal and a switch

Direct Network

- Indirect Network
 - Nodes are either switches or terminal

Direct Networks

- aka point-to-point network
- Consists of a set of nodes, each one being directly connected to a (usually small) subset of other nodes in the network
 - These nodes may have different functional capabilities
 - ✓ E.g., vector processors, graphics processors, I/O processors, etc.

5

Direct Networks - Router

- A common component of the node is the router
 - It handles message communication among nodes
 - ✓ For this reason, direct networks are also known as router-based networks
 - → Each router has direct connections to the router of its neighbors

Direct Networks - Links

- Two neighboring nodes are connected by a pair of unidirectional channels in opposite directions
- A bidirectional channel may also be used to connect two neighboring nodes

Direct Networks - Scalability

- As the number of nodes in the system increases, the total communication bandwidth also increase
 - Thus, direct networks have been a popular interconnection architecture for constructing large-scale parallel computers

Direct Networks - Topologies

- Many network topologies have been proposed in terms of their graph-theoretical properties
 - Very few of them have ever been implemented
 - Most of the implemented networks have an orthogonal topology

Indirect Networks

- The communication between any two nodes is carried through some switches
- Each node has a network adapter that connects to a network switch
- The interconnection of those switches defines various network topologies

Cuts

- A *cut* of a network, $C(N_1, N_2)$, is a set of channels that partitions the set of all nodes into two disjoint sets, N_1 and N_2
 - \rightarrow Each element in $C(N_1, N_2)$ is a channel with a source in N_1 and destination in N_2 or vice versa

Bandwidth of the Cut

■ Total bandwidth of the cut $C(N_1, N_2)$

$$B(N_1, N_2) = \sum_{c \in C(N_1, N_2)} b_c$$

Bisection

- The bisection is a cut that partitions the entire network nearly in half
- The *channel bisection* of a network, *B*_c, is the minimum channel count over all bisections

$$B_C = \min_{\text{bisections}} |C(N_1, N_2)|$$

■ The **bisection bandwidth** of a network, B_B , is the minimum bandwidth over all bisections

$$B_B = \min_{\text{bisections}} |B(N_1, N_2)|$$

Bisection Examples

Diameter

The diameter of a network, H_{max}, is the largest, minimal hop count over all pairs of terminal nodes

$$H_{\max} = \max_{\mathbf{x}, \mathbf{y} \in N} |H(\mathbf{x}, \mathbf{y})|$$

For a fully connected network with N terminals built from switches with out degree δ_0 , H_{max} is bounded by

$$H_{\text{max}} \ge \log_{\delta_O} N \tag{1}$$

Each terminal can reach at most δ_0 other terminals after one hop At most δ_0^2 after two hops, and at most δ_0^H after H hops If we set $\delta_0^H = N$ and solve for H, we get (1)

Average Minimum Hop count

The average minimum hop count of a network, H_{min}, is defined as the average hop count over all sources and destinations

$$H_{\min} = \frac{1}{N^2} \sum_{x, y \in N} H(x, y)$$