FITENTH Autonomous Racing

Theme: Control

Introduction to Optimal Control

Ahmad Amine
University of Pennsylvania
aminea@seas.upenn.edu

Rahul Mangharam University of Pennsylvania rahulm@seas.upenn.edu

Safe Autonomy Lab
University of Pennsylvania

Lecture Content

- I. Control Systems Basics
- 2. Introduction to Optimal Control
- 3. Introduction to Convex Optimization

Control Systems Basics

Recap - Controller's We've Seen So Far

Pure Pursuit - Geometric

PID Control - Model Free

Common Elements Between Controllers?

Control Systems Design

"Control governs, or regulates, how the system behaves or functions."

~ IEEE Control Systems Society

The Goal as a Control Theorist / Engineer: Design a **SYSTEM** to track a desired reference signal => Output of Control Design is the System that produces u(t), not u(t)

Looks Familiar?

Control Systems Examples

Control Systems Examples

Control Systems Examples

What is Needed for Control?

Terminology

- System Dynamics: f(x, u)
- (System) Control Input: u(t)
- Sensor (Observation) Dynamics: h(x, u)
- Reference Signal: r(t)

Types of Controllers

- Multivariable Control: Multiple Inputs and / or Outputs
- Nonlinear Control: Nonlinear dynamics, harder to ensure analytic results
- Stochastic Control: Minimize variance of output for stochastic systems
- **Robust Control:** Ensure specification satisfaction under noise / disturbances
- Adaptive Control: Real-time adaptation of controller parameters or system model.

Where does PID control fit?

PID controllers belong to the class of linear single-input single-output

$$u(t) = K_p e(t) + K_I \int_0^t e(\tau) d\tau + K_d \frac{de(t)}{dt}$$

PID Control Design Steps

I. Identify the system:

- As the system is linear, single-input single-output, then the system can be easily identified using a step-response graph
- Usually identified in frequency domain (laplace transforms)

$$H(s) = \frac{Y(s)}{X(s)}$$

PID Control Design Steps

2. List out specifications:

- a. Percentage Overshoot
- b. Percentage Undershoot
- c. Percentage Steady-State Error
- d. Rise Time
- e. Settling Time etc...

PID Control Design Steps

3. Design the Controller:

- a. PID Tuning
- b. Pole Placement
- c. Self-tuning Regulators etc...

4. Deploy and Validate

Check to meet specifications

Effects of increasing a parameter independently [18]

Parameter	Rise time	Overshoot	Settling time	Steady-state error	Stability ^[14]
K_p	Decrease	Increase	Small change	Decrease	Degrade
K_i	Decrease	Increase	Increase	Eliminate	Degrade
K_d	Minor change	Decrease	Decrease	No effect in theory	Improve if K_d small

Why not use simple PID rather than more complex Controllers?

PID Drawbacks

$$u(t) = K_\mathrm{p} e(t) + K_\mathrm{i} \int_0^t e(t') \, dt' + K_\mathrm{d} rac{de(t)}{dt}$$

Handles only a single input (e(t)) and a single output (u(t)) (SISO systems).
 E.g. angle error → steering angle input

Penn Engineering

18

PID Drawbacks

- A car takes multiple inputs (steering angle, acceleration).
- Independent PID controllers may give conflicting control commands, e.g., car may flip over.
- E.g. angle = steering angle = $\pi/3$, velocity = 70mph

19

PID Drawbacks

$$u(t) = K_\mathrm{p} e(t) + K_\mathrm{i} \int_0^t e(t') \, dt' + K_\mathrm{d} rac{de(t)}{dt}$$

• Cannot deal with constraints. May generate impossible control inputs (steering angle = $\pi/2$) for the car to follow.

MIMO Control vs PID

MIMO (Multi-Input Multi-Output) VS SISO with PID

What does MIMO Control Look Like?

- Controller is now a multivariable (vector) function mapping from (at least) R^N→R^M where N is the number of system states, M is the number – of control inputs
- Resulting control is dynamically feasible for full-state dynamics

$$\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t) + \mathbf{D}\mathbf{u}(t)$$

 $\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t)$

Introduction to Optimal Control

Optimal Control

- A branch of control concerned with deriving the "best" controllers given some definition of "best".
- More formally, optimal control is concerned with deriving controllers that minimize some defined cost function.
- Example: Optimal Unconstrained Linear Control LQR:

argmin
$$\int_{0}^{\infty} x^{T}Qx + u^{T}Ru + x_{\infty}^{T}Px_{\infty}$$
given that $\dot{x} = Ax + Bu$

$$u(t) = R^{-1}B^{T}P$$

$$0 = A^{T}P + PA - PBR^{-1}B^{T}P + Q$$

Formulating Optimal Control Problems

- How do we formulate and solve such a problem?
 - Start of by defining a cost function with "desirable" properties, denote by $\ell(\mathbf{x}, \mathbf{u})$:

Solving Optimal Control Problems

- Minimize our "loss" function $\ell(\mathbf{x}, \mathbf{u})$
 - Find $\pi^*(\mathbf{x})$ that minimizes $\int_0^\infty \ell(\mathbf{x}, \mathbf{u}) dt$ subject to our dynamics.
- Hard to solve, infinite-dimensional problem!
- Simplify:
 - Consider the following state-action graph

Discrete Optimal Control

Problem is now to finding the shortest path on the graph

- ullet Redefine infinite cost by the cost to the goal $ar{J}^*(s_i)$
 - The optimal "cost-to-go"
 - \circ Problem is now to minimize $ar{J}^*(s_i)$:

$$orall i \quad \hat{J}^*(s_i) \Leftarrow \min_{a \in A} \left[\ell(s_i, a) + \hat{J}^*\left(f(s_i, a)
ight)
ight]$$

Discrete Optimal Control

• Iteratively updating the policy $\pi^*(\mathbf{x})$ to minimize $J^*(s_i)$ is called **Policy Iteration**:

Policy Iteration Algorithm

Policy Iteration (using iterative policy evaluation) for estimating $\pi \approx \pi_*$

1. Initialization

$$V(s) \in \mathbb{R}$$
 and $\pi(s) \in \mathcal{A}(s)$ arbitrarily for all $s \in \mathcal{S}$

2. Policy Evaluation

Loop:

$$\Delta \leftarrow 0$$

Loop for each $s \in S$:

$$v \leftarrow V(s)$$

$$V(s) \leftarrow \sum_{s',r} p(s',r|s,\pi(s)) [r + \gamma V(s')]$$

$$\Delta \leftarrow \max(\Delta, |v - V(s)|)$$

until $\Delta < \theta$ (a small positive number determining the accuracy of estimation)

3. Policy Improvement

$$policy\text{-}stable \leftarrow true$$

For each $s \in S$:

$$old\text{-}action \leftarrow \pi(s)$$

$$\pi(s) \leftarrow \operatorname{arg\,max}_a \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$$

If $old\text{-}action \neq \pi(s)$, then $policy\text{-}stable \leftarrow false$

If policy-stable, then stop and return $V \approx v_*$ and $\pi \approx \pi_*$; else go to 2

Continuous Optimal Control Problems

- ullet We can extend $ar{J}^*(s_i)$ to continuous space
 - O Recursively minimize $\int_0^\infty \ell(\mathbf{x}, \mathbf{u}) dt$ by minimizing $\ell(\mathbf{x}, \mathbf{u})$ plus the cost-to-go J(x)

$$\pi^*(\mathbf{x}) = \mathrm{argmin}_{\mathbf{u}} \left[\ell(\mathbf{x}, \mathbf{u}) + rac{\partial J^*}{\partial \mathbf{x}} f(\mathbf{x}, \mathbf{u})
ight]$$

Optimal MIMO Control Example

- ullet Define $f(\mathbf{x},\mathbf{u})$ as $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}$
- Define $\ell(\mathbf{x}, \mathbf{u})$ as $\mathbf{x}^T \mathbf{Q} \mathbf{x} + \mathbf{u}^T \mathbf{R} \mathbf{u}$
 - To ensure "desired properties", enforce:

$$\mathbf{Q} = \mathbf{Q}^T \succeq 0, \mathbf{R} = \mathbf{R}^T \succ 0$$

- ullet Derive $J^*(\mathbf{x})$ as $\mathbf{x}^T\mathbf{S}\mathbf{x}$ subject to $\mathbf{S}=\mathbf{S}^T\succeq 0$
 - Derived by solving HJB equation

$$orall \mathbf{x}, \quad 0 = \min_{\mathbf{u}} \left[\mathbf{x}^T \mathbf{Q} \mathbf{x} + \mathbf{u}^T \mathbf{R} \mathbf{u} + \frac{\partial J^*}{\partial \mathbf{x}} (\mathbf{A} \mathbf{x} + \mathbf{B} \mathbf{u})
ight]$$

LQR Quadrotor Demo

Adding More Constraints?

- We often care about state or control constraints beyond just the dynamics
 - Example:

Adding More Constraints?

- Can we still use HJB to solve this optimal control problem?
 - Derived controller would no longer be linear (next lecture)

$$U_t^*(x(t)) := \underset{U_t}{\operatorname{argmin}} \sum_{k=0}^{N-1} q(x_{t+k}, u_{t+k})$$
 subj. to $x_t = x(t)$ measurement
$$x_{t+k+1} = Ax_{t+k} + Bu_{t+k} \quad \text{system model}$$

$$x_{t+k} \in \mathcal{X} \quad \text{state constraints}$$

$$u_{t+k} \in \mathcal{U} \quad \text{input constraints}$$

$$U_t = \{u_0, u_1, \dots, u_{N-1}\} \quad \text{optimization variables}$$

Numerical Optimization

- Alternatively, we can solve the problem numerically
 - IF problem can be formulated in solvable form (i.e compatible with solver)

Introduction to Convex Optimization

What is Optimization?

- "Maximizing or minimizing some function relative to some set, often representing a range of choices available in a certain situation"
- Example Optimization
 Problem:
 Maximize Value of Bag
 Subject to Weight <= 15

Why Convex Optimization?

Guarantees local optimality is global optimality

Why Convex Optimization?

Comprises a large family of problems, with matching solvers

Why Convex Optimization?

Low computation time allows solvers to be used in real-time

Convex Optimization

 A special class of mathematical optimization problems where the objective function and constraints are convex functions

Example:

$$\min_{x,y} \quad f(x,y) = 8x^2 - 2y$$
 subject to
$$x^2 + y^2 = 1$$

Convexity

 A convex set is one where all points along a line inside the set are also elements of the set

Convex Functions

 A convex function is one where all points along a line connecting two points of the function lie above the function

Relation to Convex Sets

• The epigraph of a convex function forms a convex set, where the epigraph is defined by $\operatorname{epi} f = \{(x,t) \mid x \in \operatorname{dom} f, \ f(x) \leq t\}$

Convex

Non-Convex

Solving Convex Optimization

The most popular unconstrained convex optimization solver is

gradient descent

Algorithm 9.3 Gradient descent method.

given a starting point $x \in \operatorname{dom} f$.

repeat

- 1. $\Delta x := -\nabla f(x)$.
- 2. Line search. Choose step size t via exact or backtracking line search.
- 3. Update. $x := x + t\Delta x$.

until stopping criterion is satisfied.

Constrained Solvers

- The most popular constraint solvers use Interior-point methods
 - Idea: Structure problem such that an interior central path drives the iterative updates to the optimal point

minimize
$$f_0(x) + \sum_{i=1}^m I_-(f_i(x))$$

subject to $Ax = b$,
$$I_-(u) = \begin{cases} 0 & u \leq 0 \\ \infty & u > 0. \end{cases}$$

Constrained Solvers

- In practice, log-barrier functions are used
 - differentiable and numerically "friendly"

$$\widehat{I}_{-}(u) = -(1/t)\log(-u)$$
, for $t = 0.5, 1, 2$.

Interior-Point Method

Resulting optimization with central path

Summary

- Control design as a field and typical control workflow
- Comparison of PID control with other controllers
 - Most notably MIMO control
- Optimal Control as a field
 - HJB equation for deriving LQR controller
- Convex Optimization as a powerful mathematical tool to solving certain problems
 - Different solvers and handling constraints

Next Lecture

- Combine convex optimization with optimal control to derive a constrained optimal controller
 - How to formulate optimal control problem as convex problem?
- Practical implementation of controller
 - Efficient implementation through mathematical formulation