

SPATIAL VARIATIONS IN ENERGY ACCESSIBILITY
IN THE SOVIET UNION, 1960-1975

bу

RUSSELL VICTOR OLSON, JR. B.A., The Citadel, 1969

A Thesis Submitted to the Graduate Faculty of the University of Georgia in Partial Fulfillment

of the

Requirements for the Degree

MASTER OF ARTS

FILE COPY

This document has been approved for public relocate and sole; its distribution is unlimited.

ATHENS, GEORGIA

1980

80 7 2 001

SPATIAL VARIATIONS IN ENERGY ACCESSIBILITY IN THE SOVIET UNION, 1960-1975

bу

RUSSELL VICTOR OLSON, JR.

Approved:

WH Beren	Len	Date June 19,	198
Major Professor			
Lighton Il	Donall	Date Min //	<i></i>
Chairman, Reading	Committee	- :	_

John Dowling	/
Acting Dean, Graduate School	
÷	
Date 19, 1982	D

Approved:

Access	ion For	
NTIS	Order I	
DEC TA	B 🚺	
Unampo		
Justif	ication	
Ву	<u></u>	بنند
<u>Distri</u>	bution/	
Aveil	ability Codes	-ئىسىن
	Avail and/or	,
Dist	special	;
O.	- 1	
	="	3

DEPORT BOCHMENT	ATION PACE	READ INSTRUCTIONS
REPORT DOCUMENT		BEFORE COMPLETING FORM
1. REPORT NUMBER		3. RECIPIENT'S CATALOG NUMBER
	AD-A086 523	(9)
TITLE (and Subtitite)	Commission of the second section of the second seco	5. SHE DI REPORT THERIOD COVERED
SPATIAL VARIATIONS IN EN	ERGY ACCESSIBILITY	Final repert/19 Jun 80
IN THE SOVIET UNION, 196	Ø-1975	
Land of the same of the same of	and it was required to the to the total or t	5. PERFORMING ORG. REPORT-NUMBER
7. AUTHOR(e)		8. CONTRACT OR GRANT NUMBER(a)
RUSSELL VICTOR OLSON, JR	, CAPTAIN, FIELD	•
ARTILLERY	<i>[</i>	
9. PERFORMING ORGANIZATION NAME AND	ADDRESS	10. PROGRAM FI EMENT PROJECT TASK
Student, HQDA, MILPERCEN		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
200 Stovall Street, Alex		
200 Stovari Street, Arex	andria, va 22))2	
11. CONTROLLING OFFICE NAME AND ADDR	ESS	12. TREBORY-DATE
HQDA, MILPERCEN, ATTN:	DAPC-OPP-E. 200	1 19 Jun 80
Stovall Street, Alexandr		45. NUMBER OF PAGES
		134 + vii (12) 14-3
14. MONITORING AGENCY NAME & ADDRESS	if different from Controlling Office)	UNCLASSIFIED
		ONCTASSILIED
		The DECLASSIFICATION/DOWNSBADING
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report	9)	
	•	
Approved for public rele	ase; distribution ι	ınlimited.
17. DISTRIBUTION STATEMENT (of the abstract	ct entered in Riock 20, if different from	m Report)
'		
:		
.18. SUPPLEMENTARY NOTES		
A thesis submitted to th	e University of Geo	orgia, Athens, GA, in
partial fulfillment of t	he requirements for	the degree of Master
of Arts, Geography.		-
a delega		
19. KEY WORDS (Continue on reverse side if nec	cessary and identify by block number)	
Soviet Union		
Energy accessibility		
Urban population growth		
Energy potential model		
1 1/		· · · · · · · · · · · · · · · · · · ·
The emphasis in cool		mmoduation is the Contra
Inion ### chifted dramet	ically oper-word of	production in the Soviet
Union shifted dramat	rearry eastward all	er 1900, but spatial

paterns of energy accessibility remained fairly stable from 1960 to 1975. Utilizing annual coal, oil, and natural gas production data expressed in terms of standard fuel units and distances measured along railroad and pipeline routes, and energy potential model permitted the computation of energy potential indices based on distance and distance modified by generalized transport costs for

EUTION OF ! NOV. 65 IS OR

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

Block 20 continued...

Diame

ACKNOWLEDGEMENTS

Time and space do not permit me to mention all the graduate students and members of the Geography Department's staff and faculty who knowingly, or otherwise, made some contribution to this study. Some individuals, though, deserve recognition because of the significance of their contributions. Dr. Berentsen was my mentor, advisor, and friend during my graduate studies and was the source of inspiration for this thesis topic. The members of my reading committee, Drs. Pannell and Wheeler, were helpful with their timely assistance and comments. Although not a member of my reading committee, Dr. Mitchelson was generous with his time and advice. Dr. Houston of the University of Toronto was kind enough to lend his railroad distance matrix and saved me many hours of work. Mrs. Mildred Bell spared me the tedious job of typing a rough draft and Mrs. Ann Clark graciously accepted the task of typing the final copy at short notice. Delores of Cartographic Services did a thoroughly professional job of drafting the final maps. My "carrellmates," Betsy, Linda, and Mary, provided often needed distractions during my work. My wife, Linda, uncomplainingly bore the brunt of the many nights and weekends consumed by this thesis and was a tireless cheerleader on the home front. All of the above individuals will be remembered by me for a long time to come.

TABLE OF CONTENTS

			Page
ACKNOWLI	EDGEMENTS	; ;	iii
LIST OF	TABLES .		vi
LIST OF	FIGURES		vii
CHAPTER	I IN	TRODUCTION	1
		Background	1 5 8 8
CHAPTER	II L	TTERATURE REVIEW	11
		Introduction	11 11 16 20 24 26
CHAPTER	III DA	ATA AND METHODOLOGY	
		Introduction	30 33 35 43 46
CHAPTER	IV A	NALYSIS OF ENERGY ACCESSIBILITY	56
		Introduction	56 56 80 84
CHAPTER	v co	ONCLUSION	87
		Introduction	87 87 92

٦	,

		rage
BIBLIOGRAPHY		95
APPENDIX A	DISTANCES TO COAL SOURCES	100
APPENDIX B	DISTANCES TO OIL SOURCES	107
APPENDIX C	DISTANCES TO GAS SOURCES	117
APPENDIX D	COAL, OIL, AND NATURAL GAS POTENTIAL INDICES BASED ON DISTANCE AND TRANSPORT COSTS	124
APPENDIX E	IIRRAN POPIII ATTON DATA	131

LIST OF TABLES

<u>Table</u>		Page
3.1	Soviet Energy Production, in Million Metric Tons of Standard Fuel and Percentage of Total	34
3.2	Regional Distribution of Soviet Coal Production	36
3.3	Regional Distribution of Soviet Oil Production	37
3.4	Regional Distribution of Soviet Natural Gas Production	39
3.5	Comparison of Selected Oil Pipeline and Rail Distances	45
3.6	Energy Accessibility Based on Distance	47
3.7	Energy Accessibility Based on Transport Costs	50
4.1	Rankings by Relative Energy Potential Based on Distance .	57
4.2	Rankings by Relative Energy Potential Based on Transportation	62
4.3	Correlation Coefficients and Significance Levels Between Urban Population Data and Energy Accessibility Based on Distance	82
4.4	Correlation Coefficients and Significance Levels Between Urban Population Data and Energy Accessibility Based on	
	Transport Costs	83

LIST OF FIGURES

Figure		Page
1.1	Population Distribution	4
1.2	Soviet Energy Sources	6
3.1	Nodes Used in Study	32
4.1	Soviet Energy Potential: 1960 Based on Distance	67
4.2	Soviet Energy Potential: 1970 Based on Distance	69
4.3	Soviet Energy Potential: 1975 Based on Distance	71
4.4	Soviet Energy Potential: 1960 Based on Transport Costs .	73
4.5	Soviet Energy Potentia: 1970 Based on Transport Costs .	75
4.6	Soviet Energy Potential: 1975 Based on Transport Costs	77

CHAPTER I

INTRODUCTION

Background

The Soviet Union is the only large industrialized country in the world to be completely self-sufficient in energy resources at the present and for the foreseeable future (Lydolph 1979, p. 261). Although the Soviet Union has imported natural gas from its neighbors to the south, Iran and Afghanistan (Ebel 1978, p. 165, Lydolph 1979, p. 280), and some coal from Poland (Lydolph 1979, p. 288), these imports reflect the uneven spatial distribution of energy resources within the U.S.S.R. and the desire of the Soviets to minimize transportation costs in providing energy to outlying areas of the country. In fact, the Soviet Union is a net exporter of coal, oil, and gas with oil being its primary hard currency earning export. It is largely through the export of energy resources that the Soviets have been able to gain the hard currency with which they have purchased the large quantities of feed grain needed to maintain livestock herds at levels sufficient to placate the desires of the Soviet consumer for more meat. This hard currency is also used to obtain the high technology items which the U.S.S.R. is either unable or unwilling to produce itself due to production bottlenecks inherent in its centrally planned economy.

Even more important than their current position as major export items has been the use of energy resources to fuel the boilers of Soviet industry and thus provide the foundation upon which the steady growth of Soviet GNP during the past three decades has depended (Lydolph 1979, pp. 199-200; Cohn 1970). Dienes (1978) has demonstrated the uniqueness of the high level of energy intensity of Soviet economic development, and Dewdney (1976) has stated that "among the many factors that have favoured the industrial growth of the Soviet Union, none has been more important than that country's possession, within its own borders, of vast energy resources of all types" (p. 62). Unfortunately for the Soviets, "there is a striking lack of coincidence between the location of most of this industrial energy and the present centres of consumption" (Hooson 1966, p. 81). Three-fourths of the population and four-fifths of the industry of the Soviet Union are found in the European portion of the country, including the Urals and the Caucasus, while as much as 90% of the estimated energy reserves, including hydroelectricity, are located east of the Urals and the Caspian Sea (Dienes 1971).

When Soviet industrial energy needs were much more modest than they are now, adequate energy resources were easily accessible in locations favorably situated in the so-cailed "fertile triangle" of the country where most of the population is located (Figure 1.1). The Soviet Union possesses vast reserves of energy resources, but, as Hardt (1973) so aptly paraphrased Khruschev, "the U.S.S.R. cannot fire its diesels with statistics" (p. 27). Consequently, the Soviets have been forced to search elsewhere for new sources of energy. The spatial distribution of energy resources within the Soviet Union has resulted in the exploitation of coal, oil, and gas fields that are far removed from the population

FIGURE 1.1

Source: Lydolph (1979, p. 156)

and industrial centers of the country. Examples of this include increased production at the coal basins of Pechora, Kansk-Achinsk, and Ekibastuz, as well as the discovery of the supergiant oil and gas fields of Tyumen Oblast in Western Siberia (Figure 1.2). The further burdening of an already overtaxed railroad network and the building of oil and gas pipelines have been necessary to make these energy resources accessible to the bulk of Soviet energy consumers.

Problem Statement

As the emphasis of Soviet energy production shifted eastward and links were built to make this energy available for use to the urban and industrial consuming centers of the European U.S.S.R., certain areas and nodes (industrial and administrative centers) have undoubtedly undergone significant changes (absolute and relative in comparison to other areas and nodes) in accessibility to energy. The purpose of this study is to examine the changes in energy accessibility in the Soviet Union through the use of an energy potential model and to determine what influences these changes might have had on urban growth and industrial location. The aim of this research is not to explain all the complex factors involved in Soviet urban growth and industrial location but only to investigate the interrelationship between energy accessibility on the one hand and urban growth and industrial location on the other.

Energy accessibility will be determined for 129 nodes, and energy potential maps of the Soviet Union will be compiled for the years 1960, 1970, and 1975. Only coal, oil, and gas will be used in this study. Peat, oil shale, firewood, and electricity from hydroelectric and nuclear power plants can be very important on a local level but contribute little

FIGURE 1.2

Source: Data for outline and cities taken from <u>Soviet Union</u>

National Geographic Society, 1976,

transverse polyconic projection

زين

7

on a national basis. The three major types of energy together accounted for 89.2, 92.1, and 93.6 percentage of total Soviet production for the years 1960, 1970, and 1975 respectively (Dienes and Shabad 1979, pp. 32-34).

Research Objectives

This study will attempt to provide answers to the following central research questions.

- 1. How can energy accessibility be measured through the use of a potential model?
- 2. What have been the changing patterns of energy accessibility in the Soviet Union? How has energy accessibility in the Soviet Union changed during the study period?
- 3. How do spatial patterns of energy accessibility correspond with industrial areas in the Soviet Union?
- 4. What is the relationship between energy accessibility and urban growth?
- 5. If energy accessibility has been an important factor in urban growth and industrial location, has its importance been increasing or decreasing? Is it likely to be an important factor in the future?

Outline of Chapter Contents

Chapter II reviews major studies dealing with Soviet urban growth, industrial location, and natural resources. Specifically, it summarizes factors influencing Soviet urban growth, socialist principles of industrial location, links between resources and industrial output, links between industrial output and urban population, and the use of potential

models. Methodology is the theme of Chapter III, which discusses the selection of the data points and the types of energy and describes the energy potential model, the compilation of the data matrices, and the development of the energy potential maps. Chapter IV analyzes the data assembled in Chapter III in an effort to determine and evaluate whatever links may exist between energy accessibility on the one hand and urban growth and industrial location on the other. A summary of findings and the implications of this study are presented in Chapter V.

References

- Cohn, S.H. 1970. General Growth Performance of the Soviet Economy. In <u>Economic Performance and the Military Burden in the Soviet Union</u>, Subcommittee on Foreign Economic Policy of the Joint Economic Committee, Congress of the United States, pp. 9-17, Washington, D.C.: U.S. Government Printing Offices.
- Dewdney, J.C. 1976. The U.S.S.R. Kent, England: Wm. Dawson & Sons Ltd.
- Dienes, L. 1971. Issues in Soviet Energy Policy and Conflicts over Fuel Costs in Regional Development. <u>Soviet Studies</u> 23, 1:26-58.
- Dienes, L. 1978. Soviet Energy Policy and the Hydrocarbons. Washington, D.C.: Association of American Geographers Project on Soviet Natural Resources in the World Economy, Discussion Paper 2.
- Dienes, L. and Shabad, T. 1979. The Soviet Energy System. Washington, D.C.: V.H. Winston & Sons.
- Ebel, R.E. 1970. <u>Communist Trade in Oil and Gas</u>. New York: Praeger Publishers.
- Hardt, J.P. 1973. West Siberia: The Quest for Energy. Problems of Communism 22, 3:25-36.
- Hooson, D.J.M. 1966. The Soviet Union. London: University of London Press.
- Lydolph, P.E., 1979. Geography of the U.S.S.R., Topical Analysis. Elkhart Lake, Wisconsin: Misty Valley.

CHAPTER II

LITERATURE REVIEW

Introduction

This research has been undertaken in an effort to determine patterns of energy accessibility in the Soviet Union and to assess the significance of energy accessibility on urban growth and industrial location.

The literature dealing with Soviet urban growth, industrial distribution, and natural resources is quite diverse, and this chapter reviews the published literature relevant to the establishment of links between urban population, industrial location, and natural resources, particularly energy. In order to place the relationship between energy accessibility and urban growth in proper perspective, it is necessary to summarize the many factors influencing urban growth and industrial location and to demenstrate how urban population can be used as a surrogate measure of industrial distribution. There are five sections in this review. The first three cover Soviet urban growth, industrial location, and natural resources. The fourth reviews uses of potential models, and the last section is a summary.

Urban Growth

In their study of Russian and Soviet urbanization, Lewis and Rowland (1969) asserted that "the growth of Soviet cities is the most visible geographic change that has occurred in the U.S.S.R." (p. 776). Their definition of urbanization had two applications (Lewis and Rowland 1969, p. 779). Level of urbanization referred to the percentage of total population living in centers with a population of at least 15,000, and change in urbanization was the absolute change in the level of urbanization. Although they analyzed urbanization in terms of industrialization, transportation accessibility, and in-migration, they felt that urban population growth was so obviously the most important factor in urbanization that it was unnecessary to test the relationship. In some parts of their study, they even used urban population as an index of urbanization (Lewis and Rowland, 1969, pp. 779, 782, 785, and 789).

To determine national and regional patterns of urbanization, data for population centers of 50,000 and over were aggregated at the economic region level for the period 1959-1966 (Data were not available for centers under 50,000 for that period, but centers of 50,000 and over accounted for 76 percent urban population). During 1959-1966, the Donets-Dnepr, Central Chernozem, Volga-Vyatka, Northwest, and Belorussia regions exhibited the greatest increase in urbanization, and the most rapid urban growth occurred in Moldavia, Central Asia, Kazakhstan, Belorussia, and the Central Chernozem regions (Lewis and Rowland 1969, p. 789).

A rank correlation analysis of the effect of industrialization (as measured by the percentage of the total population in manufacturing) on urbanization (as measured by the percentage of the total population classified as urban) showed that between 1926 and 1961 industrialization was a significant factor (.05 level) in promoting the "city-forming process," with a Spearman rank correlation coefficient of +0.794. The level of urbanization in 1959 had a rank correlation of +0.828 with the

percentage of the total population in manufacturing in 1961 (Lewis and Rowland 1969, p. 791). Further analysis revealed that industrialization was more significant in stimulating the growth of large cities with a population of over $100,000 \ (r = +0.766)$ than of small ones (r = +0.609) for the period 1926-1961. The authors also mentioned that large cities produced 70-75% of Soviet gross industrial production (Lewis and Rowland 1969, p. 792). Transportation accessibility and in-migration were also noted as important factors in Russian and Soviet urbanization (Lewis and Rowland 1969, pp. 792-795).

Harris (1971) examined the growth of Soviet urban population between 1959 and 1970. At the regional level, variations in urban population growth were due primarily to the different stages each region had reached in the urban and demographic revolutions. "The urban revolution is marked by high rates of urban growth sustained by a massive rural-urban migration," and "the demographic revolution is characterized by falling death rates and falling birth rates but at different times" (Harris 1971, pp. 102-103). He stated that "among the major economic regions, variations in the rate of increase in urban population are inversely related to the proportion of the population urban, are positively connected with rate of natural increase in population, and are negatively associated with change in level of rural population" (Harris 1971, p. 110).

At the oblast level, high urban growth rates were associated with a low percentage of population urban, as in Rovno and Belgorod oblasts, in the Ukraine and the RSFSR, respectively, or with a high rate of natural increase, as in Guryev oblast in Kazakhstan and oblasts in Soviet Central Asia. A number of urban districts that had experienced the most

rapid urban growth during 1926-1939 displayed low urban growth rates during 1959-1970 (20 percent or less compared to the national average of 36 percent). These included Donetsk and Voroshilovgrad oblasts in the Donbas area, Tula oblast in the Moscow Coal Basin, and Kemerovo oblast in the Kuzbas region, all of which were heavily dependent on the coal industry "which has suffered from the competition of rapidly expanding petroleum and natural gas production" (Harris 1971, p. 116). Petroleum and natural gas discoveries helped account for rapid urban growth in oblasts in Soviet Central Asia, western Kazakhstan, and Western Siberia.

Of the 221 cities with 100,00 or more population in 1970, Harris (1971) briefly examined the growth of 28 cities with high growth rates (over 75 percent) and six cities with population decreases since 1959. Of the 28 cities with high growth rates, 16 were industrial cities, and 12 were diversified political-administrative centers. Of the 16 industrial cities, seven were associated with chemical industries, four with hydroelectric projects, three with iron and steel mills, and two with other industries. Of the seven industrial cities with chemical industries, Novgorod, Grodno, Rovno, and Cherkassy were old cities with fuel deficiencies that had had slow growth rates stimulated by the piping-in of natural gas (Harris 1971, p. 119). The six cities which showed population declines during 1959-1970 were coal-mining cities in the Donbas, Kuzbas, and Chelyabinsk coal basin (Harris 1971, p. 122-123).

A similar study by Lydolph and Pease (1972) found that during the period 1939-1959, most cities from the Volga eastward experienced high growth rates with particularly high rates for coal mining towns, while western cities grew less rapidly (Lydolph and Pease 1972, p. 252). This pattern of growth generally reversed itself during 1959-1970, and the

growth rate and absolute declines of coal mining centers across the country reflected the declining importance of coal in the Soviet energy mixture (Lydolph and Pease 1972, pp. 252-255). These declines give substance to the statement that "trends in industrialization are intimately related to trends in city growth" (Lydolph and Pease 1972, p. 252).

Lydolph and Pease (1972) felt that the growing importance of oil and natural gas would smooth the way for the location of industries in the western heavily populated areas. They wrote:

The discovery and exploitation of huge deposits of oil and gas in such remote regions as Western Siberia and the Mangyshlak Peninsula of Central Asia will bring boom times to these areas and will produce a few workers' settlements of considerable size, but these energy sources will be removed from their regions of origin for consumption elsewhere and will not provide an impetus for widespread settlement of these empty areas. Western Siberia's anticipated role as producer of one-third of all Soviet oil in 1980 will have its primary impact not on potential changes within the region itself, but rather on its contribution to total Soviet energy production, the increased supplies of easily transported fluid fuels, permitting the establishment of people-oriented industries serving the labor and markets of the Soviet West (Lydolph and Pease 1972, p. 261).

Urbanization continued unabated during the 1970-1979 intercensal period, and patterns of urban growth corresponded closely with those of the 1959-1970 period (Lydolph et al. 1978, p. 525; Bond and Lydolph 1979, pp. 461-475). The growth rates of most cities with populations over 100,000 declined from the 1959-1970 period, but this seemed "to be related more to stages of development than to geographical location" (Lydolph et al. 1978, p. 528). Although "no universally applicable axiom emerges relating magnitudes of growth to city functions" (Bond and Lydolph 1979, p. 471), diversified political-administrative centers, such as Minsk and Yerevan, had moderate and steady annual growth rates, and industrial cities displayed both the highest and the lowest growth

rates. The industrial cities with the highest growth rates were based on automotive activities along the Kama and Volga, oil and gas exploitation in West Siberia, and, in one case, the construction of a new iron and steel industry in the Kursk Magnetic Anomaly area. Cities with low or negative growth rates were in older industrial areas, such as coal mining centers in the Donets and Kuznetsk basins and metallurgical areas in the Urals (Bond and Lydolph 1979, pp. 471-475).

Urban growth and industrialization have been closely linked throughout the Soviet period. Prior to 1959, the eastern part of the country experienced high urban growth rates, especially coal mining areas including those in the western part of the country. During the intercensal periods 1959-1970 and 1970-1979, the western cities grew at a faster rate than did the eastern cities, but the annual growth rates were generally lower for all cities during the 1970-1979 period. Cities in Soviet Central Asia and the Transcaucasus exhibited high growth rates during both periods because of their initial low levels of urbanization and high natural population increase. The impact of the changing nature of the energy mixture was demonstrated by the low growth rates or population declines of coal mining cities during 1959-1970 and 1970-1979 while some cities had slow growth stimulated by the piping-in of natural gas. Oil and gas were expected to have more impact on the nation as a whole than on the producing regions.

Industrial Location

Although Western literature on Soviet industrial location is replete with references to Soviet location theory, Rodgers (1974) has observed that "no distinctive and coherent body of ideas than can

legitimately be called 'socialist location theory' has been produced in the U.S.S.R. or in any other socialist state" (p. 235). It is possible though to identify the following general Soviet industrial planning goals or principles (Huzinec 1977; Koropeckyj 1970; Lonsdale 1961; Lydolph and Pease 1972; Rodgers 1974):

- 1. Locate industry close to sources of raw materials and to markets in order to minimize transport costs.
- 2. Plan regional industrial development to make all regions as economically self-sufficient as possible.
- 3. Promote regional specialization to take advantage of favorable conditions and to utilize natural resources most effectively.
- 4. Raise the level of development of the underdeveloped regions of the country to that of the most advanced.
- 5. Eliminate the socioeconomic differences between rural and urban areas by distributing industry throughout the country.
 - 6. Create and maintain the greatest possible capacity for defense.

Several of these objectives are incompatible or mutually exclusive, and the emphasis placed on them has shifted through time. These principles have often been used as justification for decisions made for pragmatic or political reasons. This is especially true as Soviet planners have wrestled with the problems of:

development of well-populated, industrially underdeveloped regions; rejuvenation or diversification of old industrial areas with the attraction of growth industries; and integration of harsh pioneer areas, rich in natural resources, into the mainstream of the country's economic life (Dienes 1971, p. 27; Dienes 1972, p. 437).

Studies have endeavored to detect motives behind regional economic development which might reveal adherence to one or more of the planning

principles. Dienes (1972) examined the rate of capital return and marginal capital product in Soviet industry during the 1960s and found that "regional investment allocation evidently was guided by strategic considerations" (p. 446) because "the under-industrialized western regions, where capital and labor productivity are satisfactory or high, have been slighted in favor of more easterly provinces" (p. 437).

In his study of Soviet industrial location policy, Koropeckyj (1970) noted the concentration of industry in large cities and the importance of large cities in total industrial output. Soviet writers were then bemoaning "the excessive concentration of industrial development primarily in large and major cities" (Mikhailov and Solovev 1969, p. 130). Manufacturing plants were attracted to cities because labor and capital productivity were generally higher in such locations. Advances in technology tended to occur more rapidly in urban areas. These factors contributed to the location of industry in Soviet cities and the growth of cities during the 1960s (Koropeckyj 1970, pp. 280-284). Koropeckyj concluded by pointing out that no single principle dominated Soviet industrial location policy and that among all the forces at work the most important one was probably the one which reflected the political interests of the ruling group (Koropeckyj 1970, p. 285). This conclusion was supported by Abouchar (1979) who stated that "no single broad social or economic policy emerges . . . behind the pattern of attained and planned industrial growth rates since 1965" (p. 102).

Rodger. (1974) used average numbers of industrial production personnel on a region scale (generally oblast and autonomous republic level with some union republic data) to reveal shifts of industry in the U.S.S.R. 1940-1955 and 1955-1965. In 1940, there was a high correlation

(r² = 0.75) between the distribution of urban population and industrial employment (Rodgers 1974, p. 229). The German invasion of World War II was largely responsible for a general eastward shift of industry between 1950 and 1955 (Rodgers 1974, pp. 233-235). The shifts between 1955 and 1965 were more complex with no single area of industrial expansion. The areas with the highest growth were the Baltic republics, Belorussia, Moldavia, the Ukraine, the northern and western Caucasus, and the middle and lower Volga Valley (Rodgers 1974, p. 235).

Thinking that the reasons behind the 1955-1965 patterns might have been connected with regional variations in energy production, Rodgers (1974) calculated fuel and power output by region for 1965 and regressed those values on the shifts in industrial employment with results that were statistically insignificant. Rodgers argued that these results reflected the shift in emphasis from coal to oil and gas, whose relative ease of movement permitted a "high degree of locational freedom" (Rodgers 1974, p. 237). To test the relationship between changes in industrial location and the distribution of markets, population distribution for 1965 was used as a surrogate measure for markets, and the correlation between the regional population values and the shifts in industrial employment was "quite strong" ($r^2 = 0.42$). An R^2 of 0.46 resulted from a multiple regression with the 1955-1965 shifts in industrial employment as the dependent variable and population and fuel outputs for 1965 as the independent variables (Rodgers 1974, p. 237). This further underscored that the role of energy was less important than might otherwise have been expected in industrial location.

Additional analyses revealed that "there was remarkably limited evidence of the implementation of the equality principle" (Rodgers 1974,

p. 238). Rodgers (1974) concluded that "if there is a conscious regional planning policy in the U.S.S.R., it appears to support growth rather than equity" (p. 238). This observation was also noted by Fuchs and Demko (1979) who wrote that continued spatial inequalities in socialist states "can be explained in terms of the priority placed on efficiency or military security as opposed to equity in industrial location decisions" (p. 304).

The principles of industrial location ascribed to socialist planners are somewhat contradictory, and no clear guiding principle has emerged although military considerations and growth appear to be the most important factors. Industry is concentrated in large cities, and industrial growth has been highest in the western regions of the country in recent years. Markets were much more important than energy production in changes in industrial location.

Natural Resources

"The study of the role of natural resources in the location of the economy and population has been an important and traditional research area in economic geography" (Runova 1976, p. 73). Mints and Kakhanov-skaya (1974) developed a generalized resource potential index in an effort to quantitatively assess the natural resource potential of regions in the U.S.S.R. The natural resources included in their study were coal, oil, natural gas, iron ore, hydroelectric resources, timber resources, arable land, natural forage, and other major resources, such as chemical raw materials or nonferrous metals if particularly significant for a given region. The areal units for which data were available were union republics, krays, oblasts, and autonomous republics (Mints and

Kakhanovskaya 1974, pp. 556-557). The resource data were converted to annual productivity indicators. In the case of mineral resources, reserves were divided by the estimated periods of extraction. Additionally, reserve estimates were limited to those likely to be accessible in the next ten to 15 years. Once annual productivity indicators were determined, they were expressed in monetary units using rounded current prices, and the values were then arithmetically manipulated to determine the resource potential of each region (Mints and Kakhanovskaya 1974, pp. 559-561). The prices chosen for their calculations are probably the most controversial part of their study, considering the complex and often irrational pricing system of centrally planned economies.

The values were replaced with percentages to show the relative contribution of each resource to the rescurce potential of a region and each region to the total national potential. The results were somewhat startling, showing that the European part of the country (including the Urals) accounted for more than 40% of the nation's total potential, whereas Siberia and the Far East accounted for only 33%. This was due largely to the way values for mineral reserves were calculated and to the significant role of agriculture which represented 69% of the total resource potential in Kazakhstan, 65% in the European south, 64% in the middle and northern latitudes of the European U.S.S.R., and 61% in Soviet Central Asia. In Siberia and the Far East, agriculture accounted for only around 15% of total resource potential (Mints and Kakhanovskaya 1974, p. 561).

A choropleth map of resource density by unit area showed high values for southern agricultural areas, particularly those with significant mineral and hydroelectric resources. A map of resource availability on a per capita basis showed high values for the eastern regions (Mints and Kakhanovskaya 1974, pp. 562-563). Mints and Kakhanovskaya (1974) felt that "the results obtained and the maps compiled on that basis may already be useful in small-scale research on regional-planning and resource-use problems covering the Soviet Union as a whole or some of its major regions" (p. 556).

In a later study, Mints (1976) stated that "the resource factor plays a steadily declining role in shaping the spatial structure of the economy as a whole" (p. 9), in part, because of advances in transportation technology which make it easier to transport energy and raw materials (Mints 1976, p. 10). Although West Siberia is rich in oil and gas reserves, such reserves should be considered part of the energy base of the European part of the U.S.S.R., because the hostile environment precludes the establishment of local processing industries in areas as the West Siberian gas fields (Mints 1976, p. 12). Mints (1976) observed that recent trends to locate oil refineries in market areas are expected to continue (p. 15) and that "the existing spatial distribution of population and current migration trends are likely to become key factors in industrial location" (p. 21). His statement refers to the availability of labor in the western regions where most of the markets are, the continuous labor shortage in Siberia and the eastern regions, and the lack of success with inducing labor to stay in labor-short areas.

Using the resource potential data determined by Mints and Kakhanov-skaya (1974), Runova (1976) examined the links between the distribution of resources, economic activity, and population at the economic region level. The results of a linear correlation analysis on a pairwise basis showed that the correlations were extremely low between resources

as a whole and the distribution of total economic output (r = +0.02) and between resources and total population (r = +0.04). The correlations between industrial resources and industrial output and between industrial resources and urban population were also quite low (r = +0.03 for both relationships). There was a strong relationship (r = +0.96) between the distribution of industrial output and urban population. The difficulty of working with data at the economic region level was underscored when the great centers of production (the Central Region) and of resources (West Siberia) were omitted from the analysis. The correlations between total resources and total economic output (r = +0.43) and for total resources and population (r = +0.65) were then much higher (Runova 1976, pp. 83-85).

Dienes examined Soviet energy policy and regional development (Dienes 1971) and the problems of allocation in the Soviet fuel supply (Dienes 1973). Both studies were concerned with the concept of marginal fuel costs and the regional allocation of energy resources. A linear programming solution yielded an optimal fuel mix for each region (Dienes 1971, pp. 45-48; Dienes 1973, pp. 9-14). This linear programming solution was followed by a discussion of the heated debates between the "pro-Siberian" planners who wanted to severely curtail industrial location west of the Urals and the "pro-European" planners who had chafed under the relatively slow development of western mineral reserves, such as the Kursk Magnetic Anomaly (Dienes 1971, pp. 49-56; Dienes 1973, pp. 16-20). Dienes felt that resistance to a strongly pro-Siberian energy-oriented investment policy would grow because "taking workers and industry to energy sources has proved less effective than hoped for, and Soviet

planners are learning what Adam Smith knew: 'Of all baggage, people are the most expensive to move'" (Dienes 1971, pp. 57-58).

Efforts to quantify natural resource potential have been largely descriptive and highly aggregated. The relationship between resources on the one hand and industrial output and urban population on the other was rather weak, but the relationship between the distribution of industrial production and urban population was quite strong. The importance of resources as a factor in industrial location is expected to decline because of advances in transportation technology. The harsh environment of the eastern regions and the availability of labor in the western region is expected to further encourage the location of industry in the western market areas.

Potential Models

Although the concept of potential models has been criticized (Houston 1969; Taaffe and Gauthier 1973, pp. 97-99; Yeates 1974, pp. 130-131), potential models have been widely used as macrogeographic tools by human geographers in a variety of ways. Some of their uses have been to construct potential maps showing possible interactions between people or between producers and markets, to discover empirical regularities in the distribution of population, and to analyze patterns of transport costs and the effects of highway location on such patterns (Lukermann and Porter 1960; Stewart and Warntz 1958; Taaffe and Gauthier 1973, pp. 90-92). This section reviews some uses of potential models which are particularly relevant to this study.

Harris (1954) pioneered the use of potential models and maps constructed from them when he examined the importance of market accessibility as a factor in industrial location in the United States. He calculated an index of accessibility to markets with a market potential model using the formula, $P = \Sigma\left(\frac{M}{d}\right)$, where P = the market potential for a given city, M = county retail sales, and M = straight line distance as modified by a generalized estimate of freight rates. Two assumptions underlay this model. One was that county retail sales provided a good measure of the overall market for goods, and the other was that straight line distances measured from a map could be used instead of actual route distances because of the dense transportation network of the United States (Harris 1954, pp. 316-323).

New York City was found to have the highest market potential, and utilizing the values of the other cities in his study expressed as a percentage below New York City, Harris (1954) drew an isarithmic market potential map of the United States with contours representing lines of equal market potential. Harris (1954) relied on visual inspection to show how closely the area with the highest market potential coincided with the American Manufacturing Belt (Harris 1954, pp. 323-326).

Fifteen years later, Houston (1969) compiled several market potential maps of the Soviet Union employing total population, urban population, and total population weighted by retail sales per capita by republic as measures of market size. Distances between the 128 points used in calculating market potential indices were shortest rail and/or rail-ferry distances instead of straight line distances because of the nature of the Soviet transportation network which is a great deal less dense than that of the United States (Houston 1969, pp. 218-220). Since he was concerned primarily with an analysis of the concept of potential models, Houston (1969) made no interpretation of their application to

the U.S.S.R., but the market potential generally matched population distribution and was highest around Moscow.

In his monograph, <u>Cities of the Soviet Union</u>, Harris (1970) determined population potential indices for the entire country and compiled potential maps based on total, rural, and urban population. Harris (1970) used population by oblasts or similar administrative units and direct airline distances between the geographical centers of the oblasts at which the entire population was considered to be concentrated (Harris 1970, p. 187). Harris (1970) stated that urban population potential "measures on a country-wide basis and in a highly generalized and abstract form many elements of industrial location: market, labor, industrial materials for complex industries, and of the interaccessibility of such elements" (p. 194).

Summary

Soviet urban growth has been highest in the Soviet West, Transcaucasia, and Central Asia and has been affected primarily by trends in industrialization and stages in the urban and demographic revolutions. Although no single principle has been dominant, Soviet industrial location policy has appeared to favor maximizing national economic growth and defense considerations. The pull of markets and the availability of labor apparently have been strong factors in industrial location and have resulted in the concentration of industrial production in large cities in the western regions of the country. Analyses have shown the relationship between the distribution of urban population and industrial output to be quite strong.

Urban population and industrial distribution are inextricably linked in the U.S.S.R., but not much effort has been made to link urban and industrial growth to accessibility to energy, except for occasional comments on the impact of energy on the growth of individual cities or clusters of cities. Those studies which sought to examine the relationship of energy on the one hand and the distribution of urban population and industrial production on the other attained results that were surprisingly low. These low results were probably due to the fact that they were not considering the availability of energy. Rather, the energy data were in a highly aggregated form either as regional energy production data or submerged in regional industrial resource data. No one has examined nationwide patterns of energy accessibility, and the links between urban growth and energy accessibility have not been rigorously tested on a macrogeographic basis. Any link which can be established between urban growth and energy accessibility will provide additional information on the nature of Soviet urban-industrial growth policies.

References

- Abouchar, A. 1979. Regional Industrial Policies of the U.S.S.R. in the 1970s. In <u>Regional Development in the U.S.S.R.</u>, NATO Colloquium 25-27 April 1979, pp. 93-103. Newtonville, Mass.: Oriental Research Partners.
- Bond, A.R. and Lydolph, P.E. 1979. Soviet Population Change and City Growth 1970-79. A Preliminary Report. Soviet Geography: Review and Translation 20, 8:461-488.
- Dienes, L. 1971. Issues in Soviet Energy Policy and Conflicts over Fuel Costs in Regional Development. <u>Soviet Studies</u> 23, 1:26-58.
- Dienes, L. 1972. Investment Priorities in Soviet Regions. Annals of the Association of American Geographers 62, 3:437-454.
- Dienes, L. 1973. Geographical Problems of Allocation in the Soviet Fuel Supply. Energy Policy 1, 1:3-20.
- Fuchs, R.J. and Demko, G.J. 1979. Annals of the Association of American Geographers 69, 2:304-318.
- Harris, C.D. 1954. The Market as a Factor in the Localization of Industry in the United States. Annals of the Association of American Geographers 64, 4:315-348.
- Harris, C.D. 1970. <u>Cities of the Soviet Union</u>. Washington, D.C.: Association of American Geographers.
- Harris, C.D. 1971. Urbanization and Population Growth in the Soviet Union, 1959-1970. The Geographical Review 61, 1:102-124.
- Houston, C. 1969. Market Potential and Potential Transportation Costs: An Evaluation of the Concepts and Their Surface Patterns in the U.S.S.R. The Canadian Geographer 13, 3:216-236.
- Huzinec, G.A. 1977. A Reexamination of Soviet Industrial Location Theory. The Professional Geographer 29, 3:259-265.
- Koropeckyj, I.S. 1970. Industrial Location in the U.S.S.R. During the Postwar Period. In Economic Performance and the Military Burden in the Soviet Union, Subcommittee on Foreign Economic Policy of the Joint Economic Committee, Congress of the United States, pp. 233-295. Washington, D.C.: U.S. Government Printing Office.
- Lewis, R.A. and Rowland, R.H. 1969. Urbanization in Russia and the U.S.S.R.: 1897-1966. Annals of the Association of American Geographers, 59, 4:776-796.
- Lonsdale, R.E. 1961. Industrial Location Planning in the Soviet Union. The Professional Geographer 13, 6:11-15.

- Lukermann, F. and Porter, P.W. 1960. Gravity and Potential Models in Economic Geography. Annals of the Association of American Geographers 50, 4:493-504.
- Lydolph, P.E., Johnson, R., Mintz, J., and Mills, M.E. 1978. Recent Population Trends in the U.S.S.R. <u>Soviet Geography: Review and Translation</u> 19, 8:505-539.
- Lydolph, P.E. and Pease, S.R. 1972. Changing Distributions of Population and Economic Activities in the U.S.S.R. <u>Tijdschrift voor Economische en Sociale Geografie</u> 63, 4:244-261.
- Mikhailov, S. and Solovev, N. 1969. Small and Medium-Size Cities and the Location of Industry in the U.S.S.R. In <u>Contemporary Soviet Economics</u>, vol. 2, ed. M. Yanowitch, pp. 129-136. White Plains, New York: International Arts and Sciences Press, Inc.
- Mints, A.A. and Kakhanovskaya, T.G. 1974. An Attempt at a Quantitative Evaluation of the National Resource Potential of Regions in the U.S.S.R. Soviet Geography: Review and Translation 15, 9:554-565.
- Mints, A.A. 1976. A Predictive Hypothesis of Economic Development in the Eurpoean Part of the U.S.S.R. Soviet Geography: Review and Translation 17, 1:1-27.
- Rodgers, A. 1974. The Locational Dynamics of Soviet Industry. Annals of the Association of American Geographers 64, 2:226-240.
- Runova, T.G. 1976. The Location of the Natural Resource Potential of the U.S.S.R. in Relation to the Geography of Productive Forces.

 Soviet Geography: Review and Translation 17, 2:73-85.
- Stewart, J.Q. and Warntz, W. 1958. Macrogeography and Social Science. The Geographical Review 48, 2:167-184.
- Taaffe, E.J. and Gauthier, H.L. Jr. 1973. Geography of Transportation. Englewood Cliffs, N.J.: Prentice-Hall, Inc.
- Yeates, M. 1974. An Introduction to Quantitative Analysis in Human Geography. New York: McGraw-Hill Book Company.

CHAPTER III

DATA AND METHODOLOGY

Introduction

This chapter deals with how energy accessibility was determined for 129 cities of the Soviet Union. This introductory section discusses the selection of the nodes, years, and types of energy used in this study. Five sections follow. The first describes an energy potential model used to calculate energy accessibility. The next two sections cover the computation of energy production data and the measurement of distances needed in the energy potential model. The last section presents the energy potential indices and map compilations.

For the purpose of determining the patterns of energy accessibility in the Soviet Union, 129 nodes were selected (Figure 3.1). These nodes are cities which are either union republic capitals or centers of autonomous republics, oblasts, or krays (except for Norilsk). Although they do not include all of the almost 200 capitals or administrative centers of the country, they do provide adequate coverage of the ecumene of the Soviet Union and represent almost half of the 272 cities with populations of 100,000 or over in 1979. In addition to being administrative centers, many, if not most, of these 129 cities are also industrial cities. Large cities were selected in favor of smaller cities because census data for them were readily available.

FIGURE 3.1

Source: Data for outline and cities taken from Soviet Union, National Geographic Society, 1976, transverse polyconic projection

Only coal, oil, and natural gas were used in this study. Shale oil, peat, firewood, and hydroelectric and nuclear power plans can be very important on a local level but contribute little on a national basis. As can be seen from Table 3.1, the three major types of energy together accounted for 89.2, 92.1, and 93.6 percentage of total soviet energy production for the years 1960, 1970, and 1975 respectively. Considering the nearly ubiquitous availability of firewood, this omits only a small portion of the total Soviet energy production mixture.

The years 1960, 1970, and 1975 were selected for study because they are reasonably close to the census years of 1959, 1970, and 1979. It would have been preferable to use a year closer to 1979 than 1975, but, in 1977, the Soviet government imposed a virtual lid of secrecy on the publication of regional production data for coal, oil, and natural gas (Shabad 1978; Shabad 1979). This affected data for 1976 as well, and consequently, 1975 is the last pear for which energy production data in a disaggregate form are available.

An Energy Potential Model

Energy potential indices were calculated using:

$$EP_{i} = \sum_{j=1}^{n} \frac{AP_{j}}{d_{ij}}$$

where EP_i = energy potential of a city

AP_i = annual production of an energy source expressed in standard fuel units, and

dij = distance from an energy source to a city as measured
 along rail routes for coal, rail and pipeline for oil,
 and pipeline for natural gas.

Exponents of one were applied to each AP_j and d_{ij} . Actual route distances were used in computations rather than straight line distances

Table 3.1

Soviet Energy Production, in Million Metric Tons of Standard Fuel^a and Percentage of Total

	1950		1960		1970		1975	
Type of Energy	Production	%	Production	%	Production	%	Production	%
Petroleum	54.2	17.0	211.4	29,5	502.5	39.6	701.9	43.3
Natural gas	7.3	2.3	54.4	7.6	233.5	18.4	342.9	21.2
Coal and lignite	205.7	64.5	373.1	52.1	432.7	34.1	471.8	29.1
Peat	14.8	9.4	20.4	2.8	17.7	1.4	18.5	1.1
Oil shale	1.3	0.4	4.8	0.7	8.8	0.7	10.8	9.0
Firewood	27.9	8.8	28.7	4.0	26.6	2.1	25.4	1.6
Hydroelectricity	7.5	2.4	23.8	3.3	45.6	3.6	42.8	2.6
Nuclear power	ł		j	1	1.3	0.1	6.9	0.4
Total ^b	318.7	100	716.6	100	1268.7	100	1621.0	6.66

 $^{\mathbf{a}}$ One ton of SF (standard fuel) is equal to seven million kilocalories.

Percent totals may not equal exactly 100% due to rounding.

Sources: Dienes and Shabad (1979, pp. 32-34) and Lydolph (1979, p. 262).

in order to make the results more realistic. Energy potential indices were calculated using both route distances and route distances modified by estimated transport costs.

Energy Production Data

Before energy production data could be entered into the energy potential model, two tasks had to be performed with the available regional energy production data. First, the data had to be disaggregated from regional data to point data in order to have energy source points from which to measure distance to the cities under study. Because the spatial distribution of energy production is not homogeneous within regions, the geographic center of each region for which energy data were available could not be used as the energy source point for that region. Instead, the selection of points for energy sources was based on an examination of the locations of energy producing fields within each region, and the actual positions of the energy source centers were determined by the distribution of coal, oil, and natural gas fields within a region. The sources consulted in the determination of the energy source point and the points themselves are contained in the appropriate production data tables (Tables 3.2, 3.3, and 3.4).

The other task involved the standardizing of coal, oil, and natural gas production data by converting them into standard fuel units. The term standard fuel (or conventional fuel) is often employed by the Soviets for comparing different forms of energy. Standard fuel has a heat content of 7,000 kilocalories per kilogram (Ebel 1970, p. xix; Elliot 1974, p. 266), and conversion factors may be applied to the various types of fuel to obtain standard fuel equivalents.

Table 3.2

Regional Distribution of Soviet Coal Production
(in Million Metric Tons of Standard Fuel)

Region	1960	1970	1975	xsf ^a	Center ^b
Pechora Basin	17.4	20.0	21.8	0.90	Vorkuta-Inta
Moscow Basin	17.9	14.2	13.0	0.38	Tula
Donets Basin					
Rostov	26.4	24.9	24.5	0.75	Shakhty
Ukraine	128.7	142.1	141.8	0.75	Gorlovka
Lvov-Volhynia	3.9	10.3	11.7	0.81	Chervonograd
Dneper Basin	3.3	2.8	3.2	0.25	Aleksandriya
Georgia	1.9	1.4	1.3	0.61	Kutaisi
Bashkir	1.1	2.1	2.7	0.29	Kamertau
Perm	11.9	8.0	6.1	0.90	Kizel
Sverdlovsk	6.5	5.2	2.9	0.29	Serov
Chelyabinsk	10.7	9.2	8.2	0.43	Korkino
Kuznetsk Basin	69.0	87.3	102.8	0.75	Kemerovo
Kansk-Achinsk	4.5	9.0	13.4	0.48	Krasnoyarsk
Chernogorsk ^c	3.1	4.1	3.7	0.75	Abakan
Norilsk ^c	1.9	2.5	2.2	0.70	Norilsk
Cheremkhovo	12.1	12.1	10.2	0.73	Cheremkhovo
Azey	0.4	2.7	4.3	0.43	Tulun
Buryat	0.4	0.6	0.6	0.43	Gusinoozersk
Chita	2.6	2.9	5.2	0.70	Karymskoye
Yakut	0.7	1.1	1.4	0.70	Yakutsk
Amur	4.1	5.5	5.8	0.43	Raychikhinsk
Khabarovsk	0.7	0.9	1.1	0.71	Urgal
Maritime	5.0	6.5	7.1	0.70	Artem
Sakhalin	3.5	3.4	3.5	0.70	Uglegorsk
Magadan	0.9	1.0	1.5	0.80	Kadykchan
Karaganda	22.7	31.6	37.0	0.80	Karaganda
Ekibastuz	4.0	14.0	27.5	0.60	Ekibastuz
Uzbekisțan	2.2	2.3	3.2	0.61	Angren
Fergana ^d	3.0	2.9	3.0	0.61	Anáizhan
Total	370.5	430.6	470.7	0.67	

^aFactors used to convert 1975 raw production data into standard fuel units. These values were multiplied by 1.03 and 1.10 to obtain factors for 1970 and 1960 respectively.

Sources: Dienes and Shabad (1979); Elliot (1974); Hodgkins (1961); Lydolph (1977); Lydolph (1970); Shabad (1969).

Distances here measured from these energy source centers to the nodes under study.

^CEstimates based on 1965 production.

 $^{^{}m d}$ Represents the combined production of the Kirghiz and Tadzhik SSRs.

Table 3.3

Regional Distribution of Soviet Oil Production
(in Million Metric Tons of Standard Fuel)

The factor of the first of the control of the first of th

Region	1960 ^a	1970 ^a	1975 ^a	Centerb
Komi	1.2	10.9	15.7	Pechora
Krasnodar	10.0	8.4	8.9	Krasnodar
Stavropo1	2.3	9.2	10.0	Neftekumsk
Chechen-Ingush	4.7	28.6	12.9	Groznyy
Dagestan	0.3	3.1	2.9	Makhachkala
Tatar	66.2	145.7	148.3	Almetyevsk
Bashkir	36.2	56.1	55.9	Tuymazy
Kuybyshev	31.5	50.0	49.8	Kuybyshev
Saratov ^C	2.9	1.9	1.9	Saratov
Volgograd ^C	7.2	10.0	9.6	Zhirnovsk
Perm	3.3	23.0	31.9	Perm
Orenburg	1.7	10.6	19.9	Pokrovka
Udmurt	h	0.7	4.9	Sarapul
Belorussia	h	6.0	11.4	Rechitsa
West Ukrained	3.1	4.0	2.7	Dolina
East Ukraine ^d	h	15.9	15.6	Gadyach
Azerbaijan	25.5	28.9	24.6	Baku
Tyumen				
Shaim	h	6.0	7.2	Shaim
Samotlore	h	34.0	197.3	Megion
Tomske	h	4.9	7.2	Strezhevoy
Sakhalin	2.3	3.6	3.4	0kha
Kazakhstan				
Emba	2.2	3.9	5.4	Makat-Dossor
Mangyshlak	h	14.9	28.7	Uzen
Fergana Valleyf	3.0	3.3	2.7	Andizhan
Turkmenia	7.6	20.7	22.3	Nebit Dag
Georgiag	h	h	0.4	
Total	211.2	504.3	701.5	

^aA factor of 1.43 was used to convert raw regional production data into standard fuel units.

 $^{^{\}mbox{\scriptsize b}}$ Distances were measured from these energy source centers to the nodes under study.

 $^{^{\}mathrm{c}}$ Estimates for 1970 and 1975 based on 1960 and 1965 data.

d Estimates based on relative contribution to total Ukrainian production.

e Combined into one source with center near Megion when determining distances to nodes.

 $^{^{\}rm f}_{\rm Represents}$ the combined production of the Uzbek, Kirghiz, and Tadzhik SSRs.

 $^{^{\}rm g}$ Not used because contribution to any node's energy potential was so slight.

Table 3.3--Continued

h Negligible or no production.

Sources: Campbell (1968); Dienes and Shabad (1979); Ebel (1961); Ebel (1970); Elliot (1974); Lydolph (1977); Lydolph (1979); Lydolph and Shabad (1960); Shabad (1969).

Table 3.4

Regional Distribution of Soviet Natural Gas Production
(in Million Metric Tons of Standard Fuel)

Region	1960 ^a	1970 ^a	1975 ^a	Center ^b
Komi	1.2 ^e	8.1	22.0	Vukty1
Krasnodar	6.1	29.1	9.4	Tikhoretsk
Stavropol Stavropol	9.8	19.4	13.6	Stavropol
Chechen-Ingush	0.4	5.0	4.2	Groznyy
Dagestand	0.1	1.9	1.2	Makhachkala
Tatar	1.7	4.6	5.2	Almetyevsk
Bashkir	1.6,	2.2	1.7	Belebey
Kuybyshev	1.2°	2.7	2.5	Kuybyshev
Saratov	3.0	4.0	1.2	Saratov
Volgograd	3.1	4.7	3.6	Kotovo
Astrakhan ^d	f	0.9	0.6	Astrakhan
Perm	f	1.1	1.3	Perm
Orenburg	0.6d	1.5 ^d	23.9	Orenburg
Azerbaijan	7.0 ^d	6.5	11.8	Baku '
West Ukraine	6.2	14.4	8.2	Borislav
East Ukraine	11.0	57.4	73.6	Shebelinka
Belorussia ^e	£	0.2	0.7	Rechitsa
Tyumen				
Punga-Igrim	f	10.9	4.3	Punga-Igrim
Medvezhye	£	f	35.1 _d	NE of Nadym
Ob oil gas	f	0.1 ^c	2.6 ^d	Samotlor Samotlor
Norilskd	f	0.5	3.1	Messoyakha
Yakut ^d	f	0.2	0.6	Tas-Tumus
Sakhalin ^c	0.4	0.9	1.2	0kha
Kazakhstan				
Bazay	f	1.8	1.8	Bazaz
Uzen	f	0.7 ^c	4.4	Uzen
Uzbekistan	0.5 ^c	37.8	44.3	Gazli
Turkmenia	_			
West Turkmen	0.3 ^c	1.6 ^c	3.6	Kum-Dag
North Turkmen	f	11.6,	36.7	Achak
South Turkmen	£	$\frac{11.6}{2.4}$ d	21.4	Mary
Kirghizia ^C	f	0.4	0.3	-
Tadzhikistan	f	0.5^{d}	0.5	Dushanbe
Total	54.2	233.1	344.6	

^aFactors to convert raw regional production data into standard fuel units were 1.20 for 1960, 1.18 for 1970, and 1.19 for 1975.

 $^{^{\}mbox{\scriptsize b}}\mbox{\scriptsize Distances}$ were measured from these energy source centers to the nodes under study.

^CNot used because of lack of transportation link to any node in this study.

Table 3.4--Continued

- dApplied only to local nodes because of lack of access to nationwide network.
- $^{\mathrm{e}}$ Not used because contribution to any particular node's energy potential was negligible.
- f Negligible or no production.

Sources: Campbell (1968); Dienes and Shabad (1979); Ebel (1970); Elliot (1974); Lydolph (1977); Lydolph (1979); Lydolph and Shabad (1960); Shabad (1969).

The quality and caloric value of Soviet coal varies tremendously between regions. In 1975, a ton of hard coal (anthracite and bituminous) ranged from 0.57 to 0.93 ton of standard fuel and lignite or brown coal from 0.29 to 0.57 ton of standard fuel. The average heat content of a ton of Soviet coal has declined slightly over time from 0.73 ton of standard fuel in 1960, 0.69 ton in 1970, to 0.67 ton in 1975 (Dienes and Shabad 1979, pp. 32-33, 110-111). This decline meant that the factors needed to convert raw coal production data into standard fuel units (Table 3.2) varied not only by region but also through time. Regional conversion factors were first obtained for 1975 from several sources (Dienes and Shabad 1979; Elliot 1974; Lydolph 1979; Shabad 1969). If a precise conversion factor could not be found for a coal basin, an estimate was made based on the description of the type and quality of the coal and the range of values for hard and brown coal. Because the average heat content of Soviet coal has declined through time, the regional conversion factors for 1975 were multiplied by 1.03 to obtain values for 1970 factors and 1.10 for 1960. These conversion factors, when applied to the raw production data, gave totals (Table 3.2) that were fairly close to the actual aggregated production figures for coal in terms of standard fuel (Table 3.1).

Oil and natural gas also vary somewhat in quality (such as paraffin content for oil and sulfur content for natural gas), but their heat content is sufficiently uniform among regions that one conversion factor was used for all regions when transforming raw regional production data into standard fuel units (Table 3.3 for oil; Table 3.4 for gas). The conversion factors for oil and natural gas were calculated by dividing total standardized production (in standard fuel units) for each (Dienes

and Shabad 1979, p. 32) by total raw production for each (Dienes and Shabad 1979, pp. 46 and 70). A ton of oil had a heat content equivalent to 1.43 tons of standard fuel in 1975, and this value was also used for 1970 and 1960. The heat value of 1000 cubic meters of natural gas in 1975 was approximately 1.19 tons of standard fuel, and this value varied only slightly over time with values of 1.18 for 1970 and 1.20 for 1960.

The eastward shift in Soviet energy production is evident in all three major fuels. The Kuznetsk, Kansk-Achinsk, Karaganda, and Ekibastuz basins have all greatly expanded their output since 1960 (Table 3.2). The oil fields of the Volga-Urals area, including the Tatar and Bashkir ASSRs, and Kuybyshev, Perm, and Orenburg oblasts, more than doubled their combined production from 1960 to 1970, while the Baku oil fields' production remained stagnant. Almost 800 kilometers east of the Urals, the newly developed middle-Ob oil fields of Tyumen Oblast were the largest single source of energy in the Soviet Union in 1975 (Table 3.3). The shifts in gas production were rather erratic (Table 3.4). The North Caucasus gas fields of Krasnodar and Stavropol krays were up sharply in production in 1970 from 1960 and down in 1975, while the eastern Ukraine gas fields experienced dramatic increases in production from 1960 to 1970 and 1975: Similar increases occurred in Orenburg and Tyumen oblasts, Uzbekistan, and Turkmenia. The Komi ASSR in the northeastern part of the Northwest economic region achieved substantial increases in oil and gas production and a modest increase in production at its Pechora coal basin from 1960 to 1975. These production trends suggest that the patterns of energy potential will be somewhat different from those of population or market potential and will shift eastward through time.

Distance Measurement

After the regional energy production data had been converted into standard fuel units and assigned to a specific point within each region, it was necessary to measure the distances from each of the coal, oil, and gas source points to each of the 128 cities (Norilsk was treated as a closed system. ltp energy coessibility was determined by the coal and natural gas which were available to it in its immediate area.). The basic unit of distance measurement was 100 kilometers because of the great distances involved in working with the Soviet Union and also because of the degree of generalization already effected by assignment of regional data to points. For those nodes located at or within 150 kilometers of an energy source point, the distance was recorded as one unit.

The shortest distances along rail and rail-ferry routes were determined between the 128 cities and 29 coal sources. Houston greatly facilitated what still proved to be a laborious and time-consuming task by graciously supplying the railroad distance matrix he used in his study of market potential surface patterns in the Soviet Union (Houston 1969). Marine and river transport routes were not considered except for Yuzhno-Sakhalinsk, Magadan, Yakutsk, and Petropavlovsk-Kamchatskiy. This was not a serious omission because almost all coal in the Soviet Union is transported by rail with marine and river shipments never accounting for more than 4% of total coal loadings curing the period of this study (Elliot 1974, p. 173; Lydolph 1979, p. 421). The basic pattern of the Soviet rail network remained virtually unchanged from 1960 to 1975, and the distance matrix tabulated for 1060 required only slight modifications for use in 1970 and 1975 (Appendix A). The Soviets completed rail

links between Astrakhan and Guryev on the north shore of the Caspian Sea in 1967, Makat and Beyneu along the northeast edge of the Caspian Depression in 1965, and Beyneu and Kungrad across the Ust-Urt Plateau in 1970 (Lydolph 1977, p. 330; Yonge 1975). These added rail links had an appreciable effect on the distances for only four cities—Astrakhan, Volgograd, Guryev, and Aktyubinsk.

Distances between the oil sources and 128 cities were measured along the shortest pipeline, rail, and rail-ferry routes. River and marine tankers engaged in domestic trade carried only 6% of crude oil shipments in 1960, while pipelines and railroad tanker cars handled 72% and 22% respectively. The share carried by pipelines has increased since 1960, and that of rail and tankers has decreased (Dienes and Shabad 1979, pp. 62-63). It was possible to obtain actual lengths, general locations, and dates of completion of major pipelines from a number of sources (Campbell 1968; Dienes and Shabad 1979; Ebel 1961; Ebel 1970; Elliot 1974; Fullard 1965; Fullard 1972; Hassmann 1953; Hodgkins 1961; Kish 1960; Kish 1970; Lydolph 1977; Lydolph 1979; Lydolph and Shabad 1960; National Geographic Society 1976; Shabad 1961b; Shabad 1969; Taaffe and Kingsbury 1965). Pipelines were generally built parallel to rail lines, and their distances were often similar (Table 3.5). This similarity meant that if actual oil pipeline lengths were unknown adjusted rail distances could be used. If no rail link existed between two points connected by a pipeline, the pipeline distance was estimated. The similarity between pipeline and rail distances also meant that only relatively minor changes had to be made in the distance matrices (Appendix B) to reflect the expansion of the oil pipeline network from 1960

Table 3.5

Comparison of Selected Oil Pipe?ine and Rail Distances

Origin	Terminus	Length (km)	Rail Distance (km)
Omsk	Irkutsk	2470	2475
Omsk	Chita	3500	3488
Tuymazy	Leningrad	1500	1800
Kuybyshev	Mozyr	1350	1700
Unecha	Polotsk	375	445
Polotsk	Klaipeda	475	550
Polotsk	Ventspils	475	551
Kuybyshev	Bryansk	1185	1318
Omsk	Pavlodar	420	664
Gorkiy	Ryazan	415	634
Michurinsk	Kremenchug	700	869
Ryazan	Moscow	250	197

Sources: Ebel (1961, p. 149); Houston (1969); USSR Geological Ministry (1966); Yonge (1975).

to 1975. The major clanges in the distance matrices consisted of bringing new oil sources into the transportation network.

Natural gas travels only by pipeline in the Soviet Union, and all cities did not have access to the natural gas pipeline network. Fortytwo of the cities in this study had access to natural gas in 1960, 90 in 1970, and 94 in 1975. The distance matrices for natural gas (Appendix C) were derived in the same manner as for oil with respect to pipeline locations, construction dates, and lengths (Sources the same as for oil plus Shabad 1961a). The distance matrices for natural gas changed significantly from 1960 to 1975 as new gas fields were brought into production, the natural gas pipeline network expanded, and additional cities gained access to the network.

Energy Potential: Indices and Maps

Coal, oil, and natural gas potential indices for 1960, 1970, and 1975 were calculated for each city (Appendix D) by an SAS matrix algebra problem (Helwig and Council 1979) using the previously determined energy production and distance data. These indices were added together to give total energy potential indices for 1960, 1970 and 1975 (Table 3.6), and the highest energy potential index for each year was divided into the others for that year to give relative measures of energy accessibility (Table 3.6). The same procedure was followed to arrive at total energy potential indices based on transport costs (Table 3.7). A generalized transport cost ratio of 5:1:4 was used to represent estimated transport costs for coal, oil, and natural gas (Campbell 1968, p. 211; Dienes and Shabad 1979, p. 43 note 45 and p. 236 note 41; Elliot 1975, p. 271).

Table 3.6
Energy Accessibility Based on Distance

Energy Accessibility Based on Distance ****PODE TEP60** TEP70** TEP75** REP50** PEP70** REP75**										
MODE	TEP67ª	TFP70a	TFP75 4	REP50 b	p = n 7) b	२ ६२75				
LENINGPAD	30	54	65	16	21	24				
MURMANSK	19	29	35	10	11	13				
PETROTAVODSK	25	39	46	14	15	17				
NOVGERDD	32	58	59	17	23	25				
VOLOGDA	34	66	80	18	26	30				
ARKHANGELSK	24	39	46	13	15	17				
SYKTYVKAR	25	52	68	14	20	25				
WCOZOM	51	86	99	28	33	37				
YAROSLAVL	39	73	9.9	21	28	33				
VLADIMIR	43	84 ′	97	23	33	36				
CVONAVI	39	78	91	21	30	34				
KALININ	άί	72	85	22	28	32				
KALUGA	57	89	101	31						
	37				35	38				
KOSTROMA		72	87	20	58	32				
RYAZAN	50	95	99	27	33	37				
TULA	61	96	107	33	37	40				
KAZAN	76	148	158	41	58	62				
SORKIY	48	89	105	26	35	19				
KIROV	36	62	75	20	24	29				
YOSHKAR_OLA	52	104	123	28	40	46				
SARANSK	52	91	109	28	35	41				
CHEBOKSARY	58	103	126	32	42	47				
ULYANOVSK	68	119	133	37	46	49				
SELGOROD	67	127	144	36	49	54				
VORONEZH	58	104	118	32	42	44				
KURSK	56	101	114	30	39	42				
OREL	52	92	104	28	36	39				
BRYANSK	49	86	100	27	33	37				
	52	96	108		-	40				
LIPETSK				28	37					
TAMBOV	51	91	103	5 %	35	39				
PENZA	57	99	116	31	39	43				
ASTR AKHAN	47	69	76	22	27	28				
ADF CUCS VJ	62	98	114	34	39	42				
KUYBYSHEV	95	177	206	52	59	77				
SARATOV	69	114	133	38	44	49				
ROSTOV	125	195	187	68	76	77				
KRASNODAR	66	121	113	36	47	42				
STAVROPOL	62	110	111	` 34	43	41				
MAKHACHKALA	40	75	73	22	29	27				
NALCHIK	42	92	93	23	36	35				
ORDZHONIKIDZE	49	108	192	27	42	39				
GROZNYY	49	111	104	27	43	39				
KIEV	44	92	105	24	36	39				
ZAPOROZHME	67	119	132	36	46	49				
KHARKOV	84	169	193	46	66	72				
LVOV	41	79	83	22	31	31				
KISHINEV		59								
	30		68	16	23	25				
TALLIN	26	48	58	14	19	22				
RIGA	25	49 54	62	14	19	22				
VILNIUS	28		~ -	15	21	24				
KALININGRAD	24	37	44	13	14	16				
SMOLENSK	37	73	86	20	2.8	32				
PSKOV	28: 🐣	44	52	15	17	19				
MINC	34	61	76	18	24	23				
TBIL.,I	32	62	70	17	-4	26				
BAKU	59	92	101	32						

Table 3.6--Continued

NODE	TFP60	TEP70	TEP75	beb60	95270	25275
YEREVAN	26	50	58	14		
LUTSK	31	55	72	17	19 25	22
907MD	32	67	75	17	26	27 29
UZHGORPD	28	58	70	15	26	
I V 4 4 O _ FR 4 4 K O V S K	30	73	75	16	29	25 23
TERNOPOL	36	70	77	20	27	29
ZHITOMIR	39	75	85	21	29	32
VINNITSA	36	70	81	20	27	30
KHMELNITSKIY	32	69	78	17	27	29
CHERNOVSTY	29	59	67	16	23	25
CHERNIGOV	40	87	103	22	34	38
SUMY	47	111	124	26	43	46
POLTAVA	59	162	186	32	63	69
CHERKASSY	51	99	111	28	39	41
KIROVOGRAD	43	63	70	23	25	25
ODESSA	34	69	79] R	27	Žá
NIKOLAYEV	43	83	94	23	32	35
KHEPSON	43	.83	94	23	32	35
SIMFEROPOL	42	60	65	23	23	24
CHEPROPETROVSK	76	133	148	41	52	55
DONETSK	164	241	254	99	94	94
VOROSHILOVORAD	194	257	769	100	100	100
GRODNO	26	52	62	14	20	23
VITEBSK	34	53	79	18	21	29
HOGILEV	36	57	85	20	2.2	32
GOMEL	38	78	93	21	37	35
BREST	32	60	69	17	23	26
UFA	73	135	162	40	53	60
IZHEVSK	52	105	131	29	41	49
OREMBURG	48	84	136	26.	33	δί
PERM	59	124	154	32	48	57
SVEROLOVSK	41	78	106	22	30	39
CHELYABINSK	50	ጓጸ .	114	27	34	42
TYUMEN	33	59	82	18	23	30
KURGAN OMSK	39	65	85	21	25	32
	33	53	73	18	21	27
NOVOSIBIRSK TCMSK	42	43	91	. 23	25	34
BARNAUL	40	60	56	22	23	36
KRASNOYARSK	33	49	70	18	19	26
IRKUTSK	30	47	71	16	19	25
CHITA	29	37	46	15	14	17
ABAKAN	16	23	32	9	9	12
KEMEROVO	28	43	59	15	17	22
ULAN_UDE	86	118	156	47	46	58
VLADIVOSTOK	16 13	24	33	9	9	12
KHABAROVSK	10	19 15	23	7	7	9
BLAGOVESHCHENSK	11	16	19	5	6	7
YUZHNO_SAKHALINSK	9	14	21	6	6	8
MAGADAN	8	12	17	5	5	6
YAKUTSK	10	15	16 19	4	5	6
PETROPAVLOVSK_KAM	7	12		5	6	7
GURYEV	29	72	14 91	4	5	5
AKTYUBINSK	37	73	91	15	28	34
URALSK	42	68	79	20	28	35
KUSTANAY	40	72	79 95	23	26	29
	447	٠.٤	77	22	28	35

Table 3.6--Continued

NODE	TFP60	TFP70	TEP75	9 F 2 50	REP70	96975
PETROPAVLOVSK	35	5.8	76	10	23	28
KOKCHETAV	32	54	71	17	21	26
TSEL INDGRAD	35	57	75	19	22	2.8
KARAGANDA	47	72	იე	26	29	33
KZYL_ORDA	24	39	48	13	15	18
CHIMKENT	23	45	60	13	19	??
DZHAMBUL	21	43	57	11	17	21
SEMIPALATINSK	24	37	50	13	14	19
PAVLCDAR	32	58	86	17	23	32
UST_KAMENOGORSK	24	37	49	13	14	18
AL 1A_ATA	20	39	52	11	15	19
ASHKHABAD	23	38	63	13	15	23
DUSHANGE	15	27	49	9	11	13
TASHKENT	23	47	61	13	19	23
FRUNZE	20	40	54	11	16	20
MORILSK	2	2	3	i	ì	1
ELISTA	37	54	59	20	21	22

²Total energy potentials for 1960, 1970, and 1975 based on distance.

 $^{^{\}rm b}{\rm Relative}$ energy potentials for 1960, 1970, and 1975 as percentages of Voroshilov-grad.

Table 3.7
Energy Accessibility Based on Transport Costs

				-		
NODE	TEP60ª	TEP704	TEP75ª	460g	REP70b	REP75b
LENINGRAD	15	31	39	19	21	24
MURMANSK	9	19	25	12	13	15
PETROZAVODSK	13	26	32	17	19	20
NGVGOROD	15	34	41	20	23	25
VOLOGDA	18	40	50	23	27	30
ARKHANGELSK	13	26	32	17	18	20
SYKTYVKAR	13	32	42	17	22	26
MOSCOW	24	48	58	31	33	35
YAROSLAVL	20	45	55	26	31	33
VLADIMIR	25	53	62	32	36	37
IVANOVO	22	49	58	29	33	35
KALININ	20	42	51	26	29	31
KALUGA	24	47	56	31	32	34
KUSTROMA	20	45	55	26	30	_
RYAZAN	25	50	59	32		33
					34	36
TULA	25	50	58	33	34	35
KAZAN	58	121	135	75	82	82
GORKIY	29	61	72	38	41	44
KIROV	21	45	57	27	31	35
YOSHKAR_OLA	37	78	92	48	53	55
SARANSK	31	62	74	41	42	45
CHEBOKSARY	39	80	93	51	54	56
ULYANOVSK	51	101	113	66	68	68
BELGOROD	24	57	66	31	39	40
VORONEZH	25	53	61	32	36	37
KURSK	23	50	59	29	34	35
OREL	22	47	56	28	32	34
BRYANSK	21	45	55	28	31	33
LIPETSK	24	51	60	31	35	36
TAMBOV	26	54	63	34	37	38
PENZA	34	67	78	44	46	47
ASTRAKHAN	23	48	54	30	33	33
VOLGOGRAD	30	57	66	39	39	40
KUYBYSHEV	77	147	166	100	100	100
SARATOV	44	79	91	57	54	55
ROSTOV	39	71	72	50	48	43
KRASNODAR	32	58	59	42	39	36
STAVROPOL	26	51	54	34	35	33
MAKHACHKALA	24	56	54	31		
NALCHIK	23.	55	5 5		38	32
			62	30	38	33
ORDZHCNIKIDZE	26	71		34	48	38
GROZNYY	28	75	67	36	51	40
KIEV	18	47	55	23	32	33
ZAPOROZHYE	23	49	56	30	34	34
KHARKOV	29	67	78	37	46	47
LAOA	18	37	41	24	25	25
KISHINEV	13	30	35	17	20	21
TALLIN	ì 5	28	35	16	19	21
RIGA	13	29	36	17	19	22
VILNIUŞ	14	31	38	18	21	23
KALININGRAD	12	23	30	16	16	18
SMOLENSK	18	40	49	23	27	30
PSKOV	14	29	36	19	20	22
MINSK	16	35	44	20	24	27
TBILISI	18	35	40	23	24	24
BAKU	41	66	68	53	45	41
	· •					•

Table 3.7--Continued

NODE	TEP60	TEP70	TEP75	REP60	REP70	REP75
YEREVAN	14	29	34	18	20	20
LUTSK	14	33	38	ie	22	23
ROVNO	14	34	41	is	23	24
UZHGOROD	14	32	36	18	22	22
IVANC_FRANKOVSK	15	36	39	19	24	23
TERNOPOL	15	34	40	20	23	24
ZHITOMIR	17	38	45	22	26	27
VINNITSA	15	36	43	20	24	26
KHMELNITSKIY	14	35	41	19	24	24
CHERNOVSTY	14	30	36	iś	21	22
CHERNIGOV	18	49	61	23	33	37
SUMY	20	59	67	26	40	40
POLTAVA	22	70	81	29	48	49
CHERKASSY	19	47	54	25	32	33
KIROVOGRAD	17	36	42	23	24	25
ODESSA	ìs	34	40	19	23	24
NIKOLAYEV	17	40	46	23	27	28
KHERSON	17	40	46	23	27	28
SIMFEROPOL	iż	33	37	22	22	-
DNEPROPETROVSK	25	54	62	33	22 37	22
DONETSK	44	77	85	57	5 <i>1</i> 52	37
VOROSHILOVGRAD	48	80	88	63	55	51
GROONO	12	29	36	16	20	53
VITEBSK	16	34	46	21		21
MOGILEV	17	36	50	22	23	28
GOMEL	17	44	56	22	25	30
BREST	15	32	39	22 19	30	33
UFA	56	109	126	72	22	23
IZHEVSK	36	79	98	47	74 54	76
ORENBURG	33	66	88	43		59
PERM	40	97	121	4 3 52	45	53
SVERDLOVSK	23	52	73	29	66	73
CHELYABINSK	27	57	75	35	35 39	44
TYUMEN	18	41	63	23		45
KURGAN	21	45	64	28	28 31	38
OMSK	16	33	50	21	22	39
NOVOS I BIRSK	15	29	50	. 19	19	30
TOMSK	14	26	57	18	18	30
BARNAUL	13	24	40	17	16	34
KRASNOYARSK	ii	21	39	14	15	24
IRKUTSK	10	16	25	12	11	23
CHITA	6	12	18	8	8	15 11
ABAKAN	10	21	33	14	14	20
KEMEROVO	23	38	62	30	26	20 37
UL AN_UDE	6	13	20	8	9	
VLADIVOSTOK	5	9	12	6	6	12 7
KHABAROVSK	4	9	12	6	6	7
BLAGOVESHCHENSK	Š	ý	13	6	6	8
YUZHNO_SAKHALINSK	3	á	11	4	5	-
MAGADAN	4	7	10	5	5 5	6
YAKUTSK	4	9	12	-	-	6
PETROPAYLOVSK_KAM	3	7	9	6 4	6 5	7
GURYEV	17	46	58	22	31	6
AKTYUBINSK	23	50	28 64	22 29		35
URALSK	26	50	61	29 34	34	38
KUSTANAY	22	45	61	28	34	37
		77	9.1	40	31	37

Table 3.7—Continued

NODE	TEP60	TEP70	TEP75	REP60	REP70	REP75
PETROPAVLOVSK	18	38	53	24	26	32
KOKCHETAV	16	34	48	21	23	29
TSEL INOGRAD	16	31	44	21	21	26
KARAGANDA	17	33	44	23	22	26
KZYL_ORD4	14	27	34	18	18	21
CHIMKENT	12	25	34	15	17	21
DZHAMBUL	11	24	32	14	16	19
SEMIPALATINSK	10	20	30	14	14	18
PAVLODAR	13	28	43	17	19	26
UST_KAMENDGORSK	10	20	29	14	14	17
ALMA_ATA	10	21	29	12	14	17
ASHKHABAD	13	27	37	17	18	22
DUSHANBE	9	17	26	ii	12	16
TASHKENT	12	26	34	15	18	20
FRUNZE	10	22	31	14	15	18
NORILSK	0	0	ì	1	ő	0
ELISTA	18	33	37	23	23	23

 $^{^{\}mathbf{a}}$ Total energy potentials for 1960, 1970, and 1975 based on distance.

^bRelative energy potentials for 1960, 1970, and 1975 as percentages of Voroshilov-grad.

A Dell Foster digitizer was employed to determine the co-ordinates (X, Y) of the 129 nodes under study and the boundary of the Soviet Union using a base map with a scale of 1:10,140,000 (National Geographic Society 1976). Z-values for each node were the relative energy potential indices as calculated for distance and transport costs for 1960, 1970, and 1975. A general purpose contouring program, GPCP-II (CALCOMP 1972), and a CALCOMP drum plotter created six isarithmic energy potential maps.

References

- CALCOMP 1972. GPCP-II User's Manual. Anaheim, Ca: California Computer Products, Inc.
- Campbell, R.W. 1968. The Economics of Soviet Oil and Gas. Baltimore, Md.: The Johns Hopkins Press.
- Dienes, L. and Shabad, T. 1979. <u>The Soviet Energy System: Resource</u>
 Use and Policies. Washington, D.C.: V.H. Winston and Sons.
- Ebel, R.E. 1961. The Petroleum Industry of the Soviet Union. Arlington, Va.: Royer and Royer, Inc.
- Ebel, R.E. 1970. <u>Communist Trade in Oil and Gas</u>. New York: Praeger Publishers.
- Elliot, I.F. 1974. The Soviet Energy Balance. New York, N.Y.: Praeger Publishers, Inc.
- Fullard, H., ed. 1965. Soviet Union in Maps. London: George Philip & Son, Ltd.
- Fullard, H., ed. 1972. <u>Soviet Union in Maps</u>. London: George Philip & Son Ltd.
- Hassmann, H. 1953. Oil in the Soviet Union. Princeton, N.J.: Princeton University Press.
- Helwig, J.T. and Council, K.A., eds. 1979. SAS User's Guide, 1979 Edition. Raleigh, N.C.: SAS Institute, Inc.
- Hodgkins, J.A. 1961. <u>Soviet Power: Energy Resources, Production and Potentials</u>. Englewood Cliffs, N.J.: Prentice-Hall, Inc.
- Hooson, D.J.M. 1966. The Soviet Union. London: University of London Press.
- Houston, C. 1969. Market Potential and Potential Transportation Costs: An Evaluation of the Concepts and Their Surface Patterns in the USSR. The Canadian Geographer 13, 3:216-236.
- Kish, G. 1960. Economic Atlas of the Soviet Union. Ann Arbor: The University of Michigan Press.
- Kish, G. 1970. Economic Atlas of the Soviet Union. Ann Arbor: The University of Michigan Press.
- Lydolph, P.E. 1977. Geography of the U.S.S.R. New York: John Wiley & Sons.

- Lydolph, P.E. 1979. Geography of the U.S.S.R., Topical Analysis. Elkhart, Wisconsin: Misty Valley Publishing.
- Lydolph, P.E. and Shabad, T. 1960. The oil and Gas Industries in the U.S.S.R. Annals of the Association of American Geographers 50, 4: 461-486.
- National Geographic Society. 1976. Soviet Union. Washington, D.C.: National Geographic Society.
- Shabad, T. 1961a. News Notes. <u>Soviet Geography: Review and Translation</u> 2, 1:76.
- Shabad, T. 1961b. News Notes. <u>Soviet Geography: Review and Translation</u> 2, 3:80-81.
- Shabad, T. 1969. <u>Basic Industrial Resources of the U.S.S.R.</u> New York: Columbia University Press.
- Shabad, T. 1978. News Notes. <u>Soviet Geography: Review and Translation</u> 19, 4:273-285.
- Shabad, T. 1979. News Notes. Soviet Geography: Review and Translation 20, 4:255-265.
- Taaffe, R.N., and Kingsbury, R.C. 1965. An Atlas of Soviet Affairs.
 New York: Frederick A. Praeger.
- USSR Geological Ministry. 1966. USSR Railroads: Directions and Stations. Moscow: Central Board in Geology and Cartography.
- Yonge, J.R. 1975. <u>U.S.S.R. Railways</u>. Exeter, England: The Quail Map Company.

CHAPTER IV

ANALYSIS OF ENERGY ACCESSIBILITY

Introduction

This chapter analyzes the spatial patterns of energy accessibility in the Soviet Union and its effect on Soviet urban population growth. Three sections follow. The first discusses the rank ordering of the 129 nodes based on their energy potentials and describes the six energy potential maps for 1960, 1970, and 1975 based on relative energy potential values determined by distance and distance modified by transport costs. The second section presents the results of correlation analyses between energy accessibility and urban growth. The last section is a summary.

Nodal Rank Ordering and Energy Potential Maps

Three regions dominate the top positions when the 129 nodes are rank ordered by their relative energy potentials based on distance for 1960, 1970, and 1975 (Table 4.1). These regions are the eastern Ukraine (Voroshilovgrad, Donetsk, Poltava, Dnepropetrovsk, Kharkov, Zaporozhye, Sumy), the western North Caucasus region (Rostov, Krasnodar, Stavropol), and the area of the Volga-Urals oil fields (Kuybyshev, Kazan, Ufa, Saratov, Perm, Ulyanovsk). Voroshilovgrad and Donetsk occupy the top two positions throughout primarily because of their favorable positions with respect to the Donets Basin. Rostov and Kharkov are near the Donets Basin and are also close to the gas fields of the North Caucasus and

Table 4.1
Rankings by Relative Energy Potential Based on Distance

185	a 400E	85890 _p	085	¹ ของค	96P70 b	UBS a	400E	0EP75
			1	VOROSHILOVGRAD	100	1.1	CA 201911120 2010	120
	PATANCO	89	3		94		YSTSYCO	04
3	POSTOV KUYBYSHEV KEMEROVO KHARKOV KAZAV	5.8	3	POSTOV	76		CJYRYSHEV	77
4	KUYBYSHEV	5 2	4	KUYNYSHEV	60		VCXPAH	72
5	KEMEROVO	47	5	KHARKOV	66		ROSTOV	70
6	KHARKOV	46	6	POLTAVA	63	Á	OL TAVA	59
7	KAZAN	41		KAZAN	58	7)	(A7AN	62
3	NAFEROBETSOARK	41	8	UFA	53	A i	(AZAN Jea	50
. 9	UF 4 SARATOV UL VANOVSK	40	9	ONEPROPETROVSK	52	9 1	JFA KEMEROVO PRRM	58
10	SARATOV	38	10	BELGOROD	49	10 5	PERM	57
	ULYANOVSK	37	11	PCK3	4×		NEPROPETROVSK	
Ιc	BELGORAA	36	12	KRASNODAR	47		SEL GOP OO	54
	KRASNODAR	36		KEMEROVO	46		RENBURG	51
	74POROZHYE	36	14	ULYANDVSK				49
	VOLSOSRAD	34	15	ZAPOROZHYE	46	15	JLYANOVSK LAPOROZHYE	49
	STAVROPOL	30 37 36 36 36 34 32 32 32 32 32	16	ZAPOROZHYE SARATOV	44	16	SARATOV	49
	TUL 4	33	17	SARATUY STAVROPOL GROZNYY SUMY CHEBOK SAOY OROZHONIK LOZE IZHEVSK VORONEZH YOSHKAR_OLA PENZA KURSK	43		ZHEVSK	49
	CHEBOKSARY	32	18	GROZNYY	43	18 (HEBOKSARY	47
	VORONE ZH	3 <i>2</i>	19	SUMY	43	10	SUNY	45
	BAKU	3 <i>7</i>	20	CHEBOX SAPY	42	20 9	TO SHEAD OLA	46
	POLTAVA	32	21	OROZHONIKIOZE	42	21 1	SUMY 70SHKAR_OLA 70RONEZH	44
	PERM	32 32 31 31 30 28	22	IZHEVSK	41	22 8	PENZA	13
	KALUGA	31	23	VORONEZH	40		PASNODAP	42
	PENTA	31	24	YOSHKAR DLA	40	24 K	(JP SK	42
25	KUR SK	30	25	PENZA	39		BLGGGRAD	42
26	WOSCOW CLA	28 28	26	KURSK	39	26 0	YELYAS INSK	47
27	YUSHKAR_ULA	28	27	PENZA KURSK CHERKASSY VILGOGRAD	39	27 9	TAVROPOL	41
	SARANSK	25	28	VOLGOGRAD	38	29 0	TAVROPOL HERKASSY JAPANSK	41
	OREL	28 28	24	TULA	37	29 9	AP ANSK	41
30	LIPETSK TAMBOV	28	30	LIPETSK	37 37 36 36	30 1		40
	IA TAUY	?9 28	31	BAKIJ	36	31 1	IDETCK	40
32	CHERKASSY IZHEVSK	28	32	ORFL	36	32 0	POZNYÝ	39
33	ILMEVOK	28	33	KIEV	36	33 0	RFI	30
	PYAZAN	27	34	NALCHIK	36	34 K	IEV	39
30	PRYANSX	27	35	KALUGA	35	35 6	ng k ty	30
36	CROZHONIKIDZE GROZNYY	27	36	SARANSK	35	36.5	VERTLAVSK	39
3 /	GROZNYY	27	37	KALUGA SARANSK TAMBOV GORKIY	35	37 0	REL IEV ORKIY VERDLOVSK ROZHGNIKIDZE AKU	39
38	CHELYAB INSK	27	38	GORKIY	35	38 8	AKU	38
,,	Jakuti	₹0	39	CHELYABINSK CHERNIGOV MOSCOW	34			38
	YPUZ	26	40	CHERNIGOV	34	40 T	ALUGA AMBOV	38
	ORENBURG	26 26	41	MOSCOW	33	41 0	HE RNI GOV	38
	KARAGANDA	?6		PYAZAN	33	42 V	OSCOM	37
+ 3	KIEV	24	43	BRYAYSK	33		MASAY	37
7 T	VLADIMIR	23	44	ORENBUMS	33		XZVAYS	37
+>	MALCHIK	23	45	VIADINED	33		LADIMIR	36
**	KIROVOSPAO	23	46	MIXOLAYEV	32		OMSK.	36
	NIKOLAYEV	23	41	KHEKZUN	32		ALCHIK	35
	KHERSON	23	48	LYOV	3 i		IKOLAYEV	35
	SIMFEROPOL	23 23	49	SVERDLOVSK	30		HERSON	35
	NCVOSIGIRSM	23	20	IVANOVO	30		OMEL	35
	URALSK	23	51	GOMEL	30		USTANAY	35
5 7	ACTOAULIAN	22	52	MAKHACHKALA	29		KTYUBTHSK	35
53 54	ASTRAKHAN	22	53	ZHITOMIR	29.		CVONAV	34
) "	MAKHACHKALA LVOV	22		KARAGANDA	28		URYEV	34
,,	LVUV CHERNIGOV	27		KALININ	28		OVOSTRIESK	34
				KUSTANAY	28			

462 ME Little Care All and Market

Table 4.1--Continued

285	NOOE	REP60	0 3 S	NODE	REP7 0	08.5	эоси	RF275
57	SVEROLOVSK	22	57	YAROSLAVL	28		MAR 00	
	TOMSK	22		KOSTRONA	28		YAROSLAVL	33
	KUSTANAY	2.2	60	CHOL CHEK	20		24(1.)418	32
	YAROSLAVL	21	60	AKTYUBINSK	29		KAL ININ KOS TROMA	32
61	IVANOVO	21		IVANO_FRANKOVSK			SMOLENSK	3 <i>2</i>
62	ZHITOMIR	21		GURYEV	28		KURGAN	32 32
63	GOMEL	2:	53	ASTRAKHAN	27		PAVLODAR	32
	KURGAN	21		TERNOPOL	27		MOGILEV	32
55	KOSTROMA	20	65	VINNITSA	27		LVGV	31
	KIROV	20	66	ODESSA	27		VINNITSA	30
	SMOLENSK	20	67	KHMELNITSKIY	27		VOLOGOA	30
	TERNOPOL	20	68	URALSK	26		TYUMEN	30
	VINNITSA	20		VOLOGDA	26		TERNOPOL	29
	MOGILEY	20		ROVNO	26		COESSA	29
	AKTYUBINSK	20	71	UZHGOROD	26	71	KHMELNITSKIY	29
	FLISTA	20	72	UZHGOROD KIROVOGRAD NOVOSIBIRSK KURGAY LUTSK KIROV MINSK	25	72	URALSK	29
	PETROPAVLOVSK	19	73	MOVOSIBLESK	25	73	VITEBS<	?9
	TSFL INDGRAD	19	74	KURGAY	25	74	ASVCAMA FRANKOVSK	29
	VOLOGDA MINSK	18	72	FALSK	25		ASTRAKHAN	28
	COESSA	18 18	77	MINICH	24		ROVNO	28
	VITEBSK	18	79	TBILISI	24		KIROV	28
	TYUMEN	18		SIMFEROPOL	23		MINSK	28
	DAZK	18		TOMSK	23		PE TROPAYLOVSK	Sb
	BARNAUL	18	81	PETROPAVIOUSE	23		TSEL I VOGRAD	29
	MOVSORGD	17	82	PETROPAVLOVSK TYUMEN	23		MAKHACHKALA	27
	TRILISI	17	83	NOVGORDO	23		LUTSK	2.7
	LUTSK	17		BREST	23		UZHGOPOD	27
85	ROVNO	17	85	PAVLODAR	23		KIROVOSRAD	26
86	KHMFLNITSKIY	17	86	KISHINFV	23		TBILISI	24 24
	BREST	17	87	CHERNOVSTY MOSTLEV	23		NOVGURDO	26
98	KOKCHETAV	17			22		BREST	36
	PAVLODAR	17	89	TSELINOGRAD ELISTA	27		KOKCHETAV	26
	LEVINGRAD	16	90	ELISTA	2? 21		BARNAUL	26
	KISHINEV	16	91	VITEBSK	21		YZSAYCVZASX	26
	IVANO_FRANKOVSK			DMSK	21		KISHINEV	25
	CHERNOVSTY	16	93		21		CHERNOVSTY	25
	KRASNOYARSK	16		LENINGRAD	21		SYKTYVKAR	25
	VILNIUS	15		AIFAIDS	21	95	SIMFEROPOL	24
	PSKOV	15		SYKTYVKAR	20	96	LENINGRAD	24
	UZHGOROO IRKUTSK	15 15		GROONO	20		VILNIUS	24
	ABAKAN	15		BARNAUL TALLIN	19		GRODNO	<i>2</i> 3
	GURYEV	15		RIGA	19 19		TASHKENT	23
	PETROZAVODSK	14		YEREVAY	19		ASHKHANAD	23
	SYKTYVKAR	14		KRASNOYARSK	18		EL I STA	22
	TALLIY	14	103	CHINKENT	18		TALLIN	72
	RIGA	14		TASHKENT	18		RIGA	22
	YEREVAN	14		PSKOV	17		YEREVAN CHIMKENT	22 22
	GRONYO	14	106	ABAKAN	17		ABAKAN	22
	ARKHANGELSK	13		ABAKAN DZHAMBUL FRUNZF	17		DZHAMBUL	21
	KALININGRAD	13	108	FRUNZF	16		FRUNZF	20
	KZYL_OROA	13	109	PETROZAVODSK	15	100	BEKON	19
110	CHIMKENT	13	110	AVV JE IOCEDY	15	110	AL MA_ATA	iý
111	SEMIPALATINSK	13	111	KZYL_ORDA	15	111	SEMIPALATINS	Ìá
112	UST_KAMENDGORSK	13	112	ASHKHABAD	15		KZYL_ORDA	19

Table 4.1—Continued

08\$	NODE	REP50	085	NODE	PEP70	085	NODE	RCP75
113	CABAHZHZA	13	113	ALMA_ATA	15	113	UST_KAMENOSORSK	18
114	TASHKENT	13	114	IRKUTSK	14	114	DUSHANBE	18
115	DZHAMBUL	11	115	KAL ININGRAD	14	115	PETROZAVODSK	17
116	ALMA_ATA	11	116	SEMIPALATINSK			ARKHANGELSK	17
117	FRUNZE	11	117	UST_KAMENDGORSK			TRKUTSK	17
118	MJR MANSK	10		MURMANSK	11		KALIMINGRAD	16
119	CHITA	9	119	DUSHANDE	li		YURMAYSK	13
120	UL AN_UDE	9		CHITA	9		CHITA	12
121	NUSHAN3 E	9	121	ULAM_UDE	9	121	ULAN_UDE	iż
122	VLADIVOSTOK	7		VLADIVOSTOK	7		VLADIVOSTOK	٠.
123	BLAGOVESHOHENSK	6		BLAGOVESHCHENSK	6		BLAGO"ESHCHENSK	À
124	KHABAROVSK	5		KHABARTVSK	Ä		KHABAROVSK	7
125	YJZHNO_SAKHAL LYSK	5		YAKUTSK	6		YAKUTSK	7
126	YAKUTSK	5		YUZHNO_SAKHALINSK	-		YUZHYO_SAKHAL INSK	6
127	MAGADAN	4		MAGADAY	ś		MAGAGAY	š
129	PETRUPAVLOVSK_KAM	4		PETROPAVLOVSK_KAM	ś		PETROPAVLOVSK_KAV	-,
	NORILSK	1		MORILSK	í		NORTLSK	i

^aApproximate rankings by rounded relative energy potentials. Rankings mentioned in text are by unrounded absolute energy potential indices.

^bRelative energy potential for 1960, 1970, and 1975 as percentage of Voroshilovgrad.

eastern Ukraine respectively. Poltava's rise from 21st place in 1960 to 6th place in 1970 and 1975 was caused by the rapid increase in production of the east Ukrainian gas fields. Kuybyshev and the other cities in the Volga-Urals oil fields area owe their rankings to their proximity to oil producing sources. Kemerovo is not near any of the three regions mentioned but owes its high rankings to its location in the middle of the Kuznetsk Basin along with some contribution from the West Siberian oil fields in 1975.

A number of nodes outside major production areas showed large changes in rank from 1960 to 1975. The old oil producing center of Baku experienced an increase in its energy accessibility from 1960 to 1975 but dropped in ranking from 19th place in 1960 to 40th place in 1975. Largely because of its gas fields, Orenburg rose from 39th place in 1960 and 44th place in 1970 to 13th place in 1975. Simferopol, on the Crimean Peninsula, experienced only a modest increase in its absolute energy accessibility from 1960 to 1975, and its relative accessibility remained virtually the same, but most other nodes increased their relative energy accessibility. Simferopol, consequently, steadily declined in rank from 49th place in 1960, 80th place in 1970, to 96th place in 1975. Guryev, on the other hand, underwent proportionally substantial absolute and relative increases in energy accessibility from 1960 to 1975 and rose from 97th place in 1960, 60th place in 1970, to 54th place in 1975. The areas with the lowest energy potentials throughout the period 1960-1975 were the Baltic, Central Asia, East Siberia, Far East, and Northwest regions.

The general patterns of energy accessibility do not appear to have changed much from 1960 to 1975, and the correlations were quite high

between the balues for 1960 and 1970 (r = +0.96), 1970 and 1975 (r = +0.98), and 1960 and 1975 (r = +0.94). Practically all nodes underwent increases in energy accessibility relative to Voroshilovgrad which experienced some of the lowest percent increases in absolute energy potential during the period 1960-1975 because of the virtually stagnant, albeit high, production of the Donets Basin.

A different pattern was evident when the rankings were by relative energy accessibility based on distance modified by transport costs (Table 4.2). The low cost of transporting oil compared to coal and gas resulted in those nodes in or near oil producing areas dominating the top positions. Additional cities (Cheboksary, Izhevsk, Penza, Saransk) in or near the Volga-Urals oil fields join those nodes in that region which were among the top when rankings were by energy accessibility based on distance. Nodes in the eastern Ukraine and others, such as Kemerovo, which were dependent on coal for a large portion of their energy accessibility dropped sharply from their earlier rankings by energy accessibility based on distance. Rostov and other cities in the North Caucasus region generally declined in rankings from 1960 to 1975. Baku, whose oil production dipped slightly from 1960 to 1975, fell from 8th place in 1960 to 21st place in 1975 as oil production greatly increased in other areas of the Soviet Union. Orenburg remained in the top 20 positions during 1960-1975 because of its location near the Volga-Urals oil fields and its own gas fields. Cities in the eastern Urals region (Chelyabinsk, Sverdlovsk, Kurgan) rose in rankings from 1960 to 1975 as a result of the influence of the Volga-Urals oil fields and the newly discovered oil fields of West Siberia. Simferopol and Guryev moved through positions as before when the rankings were base in distance

Table 4.2

Rankings by Relative Energy Potential Based on Distance Modified by Transport Costs

98 S ⁴	NODE	RCP50 b	08 S	NODE	PEP70	08 \$	эсси	86014 p
1	KJYNYSHEV	110	1	KJYBYSHEV	100	1	KUYBYSHEV	100
2	KAZAN	75	2	KAZAN	92	2	KAZAY	۶2
3	UFA	72	3	UFA	74	3	UFA	75
4	ULYANOVSK	66	4	ULYANOVSK	58	4	PERM	73
5	VORDSHILOVGRAD	63	5	PERM	66	5	ULYANOVSK	68
6	SARATOV	57	6	VORDSHILDVORAD	55	6	IZHEVSK	59
7	DONETSK	57	7	SARATOV	54	7	CHEROKSARY	56
9	BAKU	53		CHEBOK SAR /	54	ġ	SARATOV	55
á	PERM	52	ğ	IZHEVSK	54	ģ	YOSHKAR_GLA	55
-	CHEBOKSARY	51	10	YOSHKAR_OLA	53	10	VORDSHIEDVGPAD	53
ii	POSTOV	50	ii	ODVETSK	52	11	ORENBURG	53
12	YOSHKAR_OLA	48	12		Śì	12	DONETSK	śί
13		47	13	ROSTOV	48	13	POLTAVA	40
	IZHEVSK		14	ORDZHONIKIDZE	48		PEN7A	47
14	PENZA	44				14		
15	ORFNBUGG	43	15	POLTAVA	48	15	VCXPAHX	47
16	CARNODAP	47	16	PEYZA	46	16	SARANSK	45
17	SARANSK	41	17	KHARKOV	46	17	CHELYABINSK	45
13	VOLGOGRAD	30	18	PAKU	45	18	GORKIY	44
19	GO4 KIY	38	19	OREMBURG	45	19	SVEROLOVSK	44
20	KHARKOV	37	20		42	20	VCTZCA	43
21	GROZNYY	36	21	GORKIY	41	21	BAKU	41
22	CHELYARIUSK	35	22	SJYY	40	22	GROZMYY	40
23	TAMBOV	34	23	KRASNODAR	39	23	SUMY	40
24	STAVROPOL	34	24	VOLGOGRAD	39	24	VOLGOGRAD	40
25	DROZHONIKIDZE	34	25	CHFLYABINSK	39	25	BELGORDO	40
26	URALSK	34	26	BELGOROD	39	26	KURGAN	39
27	TJLA	33	27	MAKHACHKALA	38	27	STOIXIPCHSORD	3.8
28	ONEPROPETPOVSK	33	28		38	28	TAMBOV	38
29	VLADIMIR	32	29		37	29	AKTYUB INSK	38
30	PYAZAN	32	30			30	TYUMEN	38
31	VORONEZH	32	31		36	31	DNEPROPETROVSK	37
32	MOSCOW	31	32		36	32	VLADITIR	37
		-	33		35	33	VORONEZH	37
33	KALUGA	31	34		35			37
34	PELGOROD	31	35			34	URALSK CHEPNIGOV	37
35	LIPETSK	31			35	35		-
36	MAKHACHKALA	31	36		34	36	KUSTANAY	37
37	ASTRAKHAN	30	37		34	37	KEMEROVO	37
38	NALCHIK	30	38		34	38	KRASNODAR	36
39	ZAPOROZHYE .	30	39		34	39	LIPETSK	36
43	KEMEROVO	30	40		34	40	RYAZAN	36
41	CVONAVI	29	41		34	41	TULA	35
42		29	42		33	42	KURSK	35
43	PGL TAV 4	29	43		33	43	MOSCOW	35
44	SVERDLOVSK	29	44	CVOPAVI	33	44	CVCMAVI	35
45	AKTYUB INSK	29	45	CHERNIGOV	33	45	KIROV	35
46	OREL	28	46	KALUGA	32	46	GURYEV	35
47	BRYANSK	28	47		32	47	ZAPOROZHYE	34
48	KJRGAN	28	46	CHERKASSY	32	48	KALUGA	34
49	KUSTANAY	29	49		3?	49	OREL	34
50	KIROV	7	50		31	50	TOMSK	34
51	YAROSLAVL	26	51		31	51	NALCHIK	23
52	KALININ		52		31	52	STAVROPOL	33
53	KOSTROMA	26	53		31	53	ASTRAKHAN	33
		26	54				CHERKASSY	
54	SUMY CHERKASSY	26 25	59		31 31	54 55		33 33

distance of the same

Maria and Address of

A STATE OF THE PARTY OF THE PAR

The second second

200 0 10 to 10 10 10 10 10 10 10

and the contract many six that straight attaches attaches

- Comment of the comm

or service of the service

en normalijas ka

Table 4.2--Continued

280	ЭОСИ	dèbe0	288	эсси	4 FP71	085	400E	R=275
57	PETROPAVLOVSK	24	57	GOMEL	30	57	YAROSLAVL	33
-	VOLOGDA	23		KAL ININ	29		KOSTROJA	33
59	KIFV	23		TYUYEN	28		GOMEL	33
50	SMOLENSK	73	60	VOLOGOA	27	60	MAKHACHKALA	32
61	TBILISI	23	61	SMOLENSK	27	61		32
62	CHERNIGOV	?3	62	NIKOLAYEV	27	62	KALIMIN	31
63	KIROVOSRAD	23	63	KHERSON	27		VOLOGDA	30
64		23	64	KEMEROVO	26	64	SMOLENSK	30
	KHERSON	23	65	PETROPAVLOVSK	26		40G I LEV	30
66	TYUMEN	?3		ZHITOHIP	26	66	UMSK	30
	KARAGANDA	23		LVOV	25	57		30
	FLIST4	23		MOGILEV	25		KOKCHETAV	29
	ZHITCMIR	22		TRILISI	24		NIKOLAYEV	54
70 71	SIMFEROPUL MOGILEV	22 22		KIROVOGRAD	24		KHERSON	28
	GOMEL	22	_	MINSK	24		VITEBSK ZHITOMIR	28
	GURYEV	22		VINNITSA	24		MINSK	27
	VITEBSK	21		TVANO_FRANKOVSK	24 24		VINNITSA	27
	OMSK	21		KHMFLYITSKIY ELISTA	23		KARAGANDA	26
76	KOKCHETAV	21		VITEBSK	23		SYKTYVKAO	26 26
77		21		KOKCHETAV	23		TSELINOGRAD	76
78		20		NOVGORGO	23		PAVLODAR	26
79	MINSK	20		TERNOPOL	23		LVOV	25
80	TERNOPOL	20		POVNO	23		KIROVOGRAD	25
81	VINNITSA	20		ODESSA	23	81		25
82	LENINGRAD	19		KARAGAYOA	22	82	TRILIST	24
83	PSKOV	19		SIMFEROPOL	22	97	KYMELMITSKIY	24
84	ROVNO	10		DYSK	2.2	84	TERNOPOL	24
85			85	BREST	22	85	POVVO	24
86		19	86	LUTSK	22	36	ODESSA	24
	ODE SSA	19	87	UZHGBROD	22		LENINGRAD	24
	BREST	19	88	SYKTYVKAR	22		BARNAUL	24
	NOVOSTRIPSK	19	89	TSELINOGRAD	21		IVAND_FRANKOVSK	23
	VILNIUS	18		LENINGRAD	21		ELISTA	73
	YEREVAN	18		VILNIUS	21	_	BREST	23
	LUTSK	18		CHERNOVSTY	21		LJTSK	2.3
	UZHGORC \	18		PSKOV	20		VILNIUS	23
	CHERNOVSTY TOMSK	18 19		YEREVAN	20		KRASHDYARSK	23
	KZYL_ORĐA	18		KISHINEV	20		SIMFEROPOL UZHGOROO	22
97		17		GRODNO	20 19		CHERNOVSTY	?2
98		17		NOVOSIBIRSK Riga	19		PSKOV	22 22
99		17		PAYLODAR	19		RIGA	?2
	KISHINEV	17		TALLIN	19		ASHKHABAD	22
	RIGA	17		TOYSK	18		KISHINEV	21
102	BARNAUL	17		KZYL_OPOA	18		GROOYO	21
103	PAVLODAR	17		PETROZAVONSK	iá	103	TALLIN	21
104	GAEAHAHAA GAAAA GAAAAA GAAAAAA GAAAAAAAAAA	17		ARKHANGELSK	18	104	KZYL_ORDA	21
105		16		ASHKHABAD	19	105	CHIMKENT	21
	KALININGRAD	16	106	TASHKENT	18		YEREVAN	20
	GRODNO	16	107	CHIMKENT	17		PETROZAVODSK	50
	CHIMKENT	15	108		16		ARKHANGELSK	20
	TASHKENT	15		KAL ININGRAD	16		TASHKEYT	20
	KRASNOYARSK	14		OZHAMBJL	16		ABAKAN	50
	L ABAKAN	14		KRASHIJYARSK	15		DZHAMBIJL	19
11.	2 DZHAMBJL	14	112	FRUMZE	15	112	KALININGRAD	18

Table 4.2--Continued

08.5	HODE	RFP60	085	NODE	REDIO	785	376	RFP75
113	SEMIPALATINSK	14	113	ABAKAN	14	113	FRUNZF	10
114	UST_KAMENOGORSK	14	114	SEMIPALATINSK	14	114	SEMIPALATINSK	18
	FRUYZE	14	115	UST_KAMENDGORSK	14	115	UST_K4MENDGDPSK	17
116	MURYANSK	12	116	AL MA_ATA	14	116	AL 4 A_ATA	17
117	TRKUTSK	12	117	MJRYANSK	13	117	DUSHANBE	16
118	ALMA_ATA	12	118	DUSHANDE	12	119	MURMANSK	15
119	DUSHANBE	11	119	[PKUTSK	11	119	[RKUTSK	15
120	CHITA	8	120	UL AN_UDE	ģ	120	ULAN_IJOE	12
121	UL AY_UDE	8	121	CHITA	8	121	CHITA	11
122	VLADIVOSTOK	6	122	VLADIVOSTOK	6	122	BL AGOVE SHOHENSK	8
123	KHABARDVSK	6		KHABARO SK	6	123	VLADIVOSTOK	7
124	BLAGTVESHCHENSK	6	124	BLAGOVE 3-1CHENSK	6	124	KHABARDVSK	7
125	VAKUTSK	6	125	YAKUTSK	6	125	YAKUTSK	7
126	MAGADAN	5	126	MAGADAN	5	126	MAGADAN	6
127	YUZHNO_SAKHAL INSK	4		YJZHNO_SAKHALINSK		127	YUZHNO_SAKHALINSK	6
128	PETPOPAVLOVSK_KAM	4		PETPOPAVLOVSK_KAM	5		PETROPAVLOVSK_KAM	6
129	PIDR ILSK	1	129	NORILSK	0	129	NORTLSK	ō

Approximate rankings by rounded relative energy potentials. Rankings mentioned in text are by unrounded absolute energy potential indices.

 $^{^{\}mathrm{b}}$ Relative energy potential for 1960, 1970, and 1975 as percentage of Kuybyshev.

alone, but their changes in rankings were not quite as large. The areas with the lowest energy potential based on transport costs during 1960-1975 were generally the same as those when energy accessibility was determined by distance. The overall patterns of energy accessibility based on transport costs varied even less through time than those for distance, with correlation coefficients of +0.97 for 1960 and 1970, +0.97 for 1970 and 1975, and +0.95 for 1960 and 1975.

The patterns of energy accessibility using unmodified distance are similar to those determined by distance modified by transport costs. The correlations between the two sets of values were high with correlation coefficients of +0.78 for 1960, +0.83 for 1970, and +0.84 for 1975. This similarity occurs because, although the top positions changed from one set of rankings to the other, the bulk of the nodes remained fairly constant in their positions. Moscow, for example, fluctuated between 32nd and 43rd places when the rankings were based on distance and between 34th and 44th places when transport costs were used. Moscow's values were somewhat higher than might otherwise have been expected because of its distance from major sources of energy, but Moscow benefits from being the center of the transportation network in the European USSR. Energy thus has a shorter distance to travel to get to Moscow than to other nodes around Moscow.

The energy potential indices of the 129 nodes were used to construct maps showing energy accessibility as calculated using distance and distance modified by transport costs for 1960, 1970, and 1975 (Figures 4.1 through 4.6). On the basis of the indices determined for each node, contour lines of equal energy potential were drawn. For easier comparison, the values of the contour lines are expressed as percentages

Source: Data for outline and cities taken from <u>Soviet Union</u>,

National Geographic Society, 1976,

transverse polyconic projection.

ŧ

NO COLON

Source: Data for outline and cities taken from Soviet Union, National Geographic Society, 1976, transverse polyconic projection.

1.

Source: Data for outline and cities taken from <u>Soviet Union</u>,

National Geographic Society, 1976

transverse polyconic projection.

THE STATE OF THE PARTY OF THE P

Source: Data for outline and cities taken from Soviet Union, National Geographic Society, 1976, transverse polyconic projection.

Source: Data for outline and cities taken from Soviet Union, National Geographic Society, 1976, transverse polyconic projection.

Source: Data for outline and cities taken from <u>Soviet Union</u>,

National Geographic Society, 1976,

transverse polyconic projection.

X.

of the nodes having the highest energy potential. The contour interval is ten percentage, and the zero and 50 percentage lines are darker than the other lines. These nodes are Vorcshilovgrad for the maps based on distance and Kuybyshev for the maps based on transport costs.

The 1960 energy potential map based on distance alone (Figure 4.1) contained two major peaks and one minor peak. The dominant peak occurs in the eastern Ukraine and North Caucasus area where Voroshilovgrad,

Donetsk, and Rostov are so favorably located in the Donets Basin. This peak subsumes a large part of the Donets-Dnepr industrial complex. A secondary major peak rises over the Volga-Urals oil fields and straddles the boundary between the Volga and the Urals industrial regions. A minor peak is centered over Kemerovo and the Kuznetsk Basin and is coincident with the Kuzbas heavy industrial region. There is a slight rise around Baku, and closed contour lines surround the Moscow and Karaganda coal basins. Despite the region's huge energy reserves, the nodes in the trans-Baikal area have the lowest relative energy accessibility values in the U.S.S.R. because of their great distance from major energy producing sources.

The Donets Basin peak also dominates the 1970 energy potential map based on distance (Figure 4.2), but the Volga-Urals peak increases its relative height and area because of the doubling of oil production in that region between 1960 and 1970. A slight spur now runs from Voroshilovgrad westward to Kharkov and Poltava because of the five-fold increase in production of the east Ukrainian natural gas fields and the discovery of oil near Poltava. A notable prolongation extends eastward from Kuybyshev through Ufa generally along the Trans-Siberian Railroad to Kemerovo and encompasses Karaganda. A minor peak appears in the

North Caucasus region around Groznyy and Ordzhonikidze because of a dramatic but temporary spurt in procetion of the Chechen-Ingush ASSR oil fields.

The size and shape of the Voroshilovgrad energy potential peak remained virtually urchanged in 1975 (Figure 4.3), while the Volga-Urals peak grew in height and expanded its base northward and eastward to include the cities of the eastern Urals region. This expansion was influenced by production from the middle-Ob oil fields of Tyumen Oblast. Increased coal production at the Kuznetsk Basin aided by input from the middle-Ob oil fields, enabled the Kemerovo peak to grow and expand with a prolongation southwestward to include Karaganda.

The Volga-Urals oil fields peak towers over the map of relative energy potential based on distance modified by transport costs in 1960 (Figure 4.4). Two secondary peaks are centered over the Donets Basin and the Baku oil fields. A closed contour line surrounds Kemerovo because of the Kuznetsk Basin. The peaks at Voroshilovgrad and Kuybyshev bulge toward each other as though they might coalesce, but this never happens because the production of the Donets Basin rose only slightly from 1960 while the Volga-Urals production doubled from 1960 to 1970.

The patterns vary little from 1960 to 1970 (Figure 4.5). The peak at Voroshilovgrad has shrunk a bit, but a slight prolongation now runs northwestward through the gas and oil fields near Kharkov and Poltava. The peak at Kuybyshev has expanded its base, and the distended ridge running northeast to Perm is more pronounced. The spasmodic increase in production of the Groznyy oil fields is evident in the minor peak appearing in the eastern North Caucasus region.

The Groznyy peak disappears by 1975 (Figure 4.6), and the peak at Voroshilovgrad has diminished even more. The base of the Volga-Urals peak expands eastward and northward as the cities of the eastern Urals region increase their energy potentials because of the influence of the West Siberian oil fields along the Ob. There is a small rise in the Kuznetsk Basin area, but the values there are generally less than those in the Central region around Moscow.

A few general observations can be made about both series of energy potential maps. The areas with the lowest energy accessibility were the Far East, East Siberia, the Northwest, Soviet Central Asia, the Baltic states, and the area along the western border of the country. The latter three areas contain some of the highest concentrations of population in the Soviet Union and some of the nodes with the highest urban population growth rates as well as the Leningrad industrial region. On all maps, major peaks occur in or near the Donets-Dnepr, Volga, and Urals industrial areas, and minor peaks often rise at the Baku, Karaganda, and Kuznetsk industrial centers. The nodes of the long-established industrialized region around Moscow displayed moderate energy potential values largely because of their locations with respect to the Donets Basin and Volga-Urals oil fields. The dramatic increases in the oil and natural gas production of West Siberia were reflected by modest eastward and northward shifts in the base of the Volga-Urals peak.

Urban Population Growth and Energy Accessibility

The relationship between urban population growth and energy accessibility was analyzed using urban population data from the 1959, 1970, and 1979 censuses (Appendix E) and nodal energy potential indices for 1960,

1970, and 1975 based on distance and transport costs. Norilsk and Elista were not included in the correlation analyses because Norilsk had been treated as a separate system with no energy inputs from sources other than those in its immediate area and because population data for Elista were not available for the entire period of study.

E " WASHINGTON,

The results of the correlation analysis between the urban population data and energy accessibility based on distance revealed that energy accessibility has had little impact on urban population growth (Table 4.3). Those nodes with high growth rates were, in fact, located away from areas of high energy accessibility as indicated by the negative signs of the correlation coefficients between urban population growth and energy potential. A small positive relationship exists, however, between changes in energy accessibility and urban population growth. Evidence of a lag effect is present in that the change in energy accessibility 1960-1970 had a higher correlation with urban population growth 1970-1979 than did the change in energy accessibility 1960-1970 with urban population growth 1959-1970. The evidence of a lag effec! is also supported by the lack of any significant correlation between urban population growth 1970-1979 and the change in energy accessibility 1970-1975. As might be expected, the correlation coefficients between urban population and urban population growth demonstrates that larger cities tend to grow at slower rates than small cities. The substantial correlation between urban population growth 1959-1970 and urban population growth 1970-1979 shows that the patterns of growth were somewhat similar during both periods.

The correlation coefficients matrix for urban population data and energy accessibility calculated using transport costs again indicates

Table 4.3 COMMENTER STATEMENTS THE STATEMENT STATEMENT STATEMENT OF THE STATEMENT ACCESSISTED A STATEMENT PROPRE TABLE OF THE STATEMENT ACCESSISTED A STATEMENT OF THE STATEMENT ACCESSISTED A STATEMENT OF THE STATEMENT ACCESSISTED ASSOCIATED AND ACCESSISTED ASSOCIATED AND ACCESSISTED ASSOCIATED AS

	J9253 ⁶	27277	CHURTHS.	SSUPL 45	TEPAC	4 15270	rer-	CHANGE!	CHANGER	CHANGES
21,053	1.0000	0.0301	-).35560 0.0001	-0.32350	0.14326 0.1081	0.13375	0.1413	.05790 2.5136	-0.74865	-7.04165
ene *3	1.77A72 1.1001	1.77777	-7.34775 0.0001	-1.33744 0.0001	9. [470 <i>7</i> 9.0945	0.14130 2.1131	2.1510) 2.2921	-3.04194	-0.04117	
SR INI 1	-0.35562 0.3071	-0.14795 2.0791	1.07000	7.69994 2.2001	-9.17415 0.3502	-0.12489 2.1613	-0.11625 0.1931	9.21715	0.0#034 0.3597	0.27979 0.9021
1976792	-1.32*20 1.1002	-9.33749 9.3031	2.2201	1.22020	-9.22140 0.2123	-0.16654 2.2613	-7.17263 7.0523	3.2574A 0.3034	-0.33001	J.23357 0.0787
TFOAD	0.14375	0.1440? 0.3945	-7.17415 0.0102	-0.22159 0.0123	1.0000	0.94497 3.0001	7.93647 0.000l	-7.74927 2.4397	-3.39515 0.0001	-1.34333 0.001
75273	0.13375	2.14132 2.1131	-0.12449 0.1619	-0.16656 7.7613	0.95587 3.000l	1.00000 0.0000	0.97449	0.19251	-0.45649 7.3001	
7 = 779	0.14134	0.19173 2.2701	-9.11625 2.1931	-0.17240 0.0523	0.936A7 0.0001	0.97949	0.0000	0.16478 0.7474	-9.30368 2.2005	-0.75757 7.5037
C+4*13£ 1	-0.35780	-0.05194 0.5420	7.21716 2.0142		-7.06927 2.4370	2.19253 2.2320		0.2022	-1.37243 3.3772	0.47561
CHNIGE?	-7.06#45 2.5872	-U.74119 7.6457	0.3692			-1.46688 1.0001	-0.37368 0.3005	-3.32230	1.00003	
C4145F1	-0.35165	-0.05708	7.27070 7.2021	0.23340		-7.15452 7.3613		7.67951 3.3771	0.46922	0.0000

*Population 1959 and 1970

Urban population growth 1959-1970

Curban population growth 1970-1979

d Total energy potential 1960, 1970, and 1975

*Change in energy potential 1960-1970

Change is energy potential 1970-1975

SChange in energy petential 1970-1975

hCorrelation coefficients

¹Significance levels

Table 4.4

CORRELATION COEFFICIENTS AND SIGNIFICANCE LEVELS AFTHEEN URBAN POPULATION DATA AND ENERGY ACCESSIBILITY BASED ON TRANSPORT COSTS

	PQP59 ⁴	90970	CHOPINI ^D	GROWTH2 ^C	18960	4 16970	7EP75	CHANGEL	CHANGE2	CHANGES &
PQP39	1.00000	0.99692	-9.35540 0.0001	-0.32800 0.0002	0.15116	0.12710	0.13497	-0.10613	-0.03770	-0.11038 1 3.2167
•0 • 70	0.94692	1.00000	-0.34005 0.0001	-0.33049	0.15968	0.13571 0.1292	0.14503	-0.10379 9.2455	-0.03446	-0.10496 0.2402
GROWINI	-0.35563 0.0001	-0.34005 2.0001	0.0000	0.49994	-0.150C7 0.0922	-0.09636 0.2713	-9.09326 0.2970	0.26767	0.00667 0.4466	0.22470
GROWTH2	-0.32800	-0.33349 0.0001	0.69994	1.00000	-0.24947 0.0047	-0.19473 2.0282	-0.20144 0.0231	0.32617	-0.J2791 3.7554	0.23394
16960	0.15114	J.15564 0.3729	-0.15007 0.0922	-0.24947 3.0047	1.00000	3.3001	0.45140	-7.13957 3.1290	-0.44741	-0.50755
16270	0.12710 0.1544	0.13571 0.1252	- 74636 J. 2713	-9.19473 0.0252	0.94941	1.20000	0.97410	0.05845	-0.50027 3.0001	-0.39825
TEP75	0.13497 0.1303	0.14503	-0.09325 0.2970	-0.20144 0.0231	0.95160	9.97410	1.20000	0.04827	-0.32635	
CHANGEL	-0.10613 0.2350	-0.13379 0.2455	0.26767	0.32617	-0.13867		0.04827	1.00000	-9.29827 0.0007	0.4744t 0.000t
CHANGEZ	-0.03770 0.6739	-0.03496	0.00667	-0.02791 0.7554	-0.44741	-0.50827 0.000L	-0.32935	-0.29927 0.0007	1.03000	0.0001
CHANGE3 *	-0.11038 0.2167	-0.10494 0.2402		0.23344	-0.50754 J.0001	-0.39826 0.0001	-0.25729 0.0035	0.0001	0.69211	0.0000

*Population 1959 and 1970

後年までくべるであったが、

Durban population growth 1959-1970

Curban population growth 1970-1979

datal energy potential 1960, 1970, and 1975

*Change in energy potential 1960-1970

Change in energy potential 1970-1975

SChange in energy potential 1960-1975

hCorrelation coefficients

1Significance levels.

that those nodes with high growth rates tended to have low energy potential (Table 4.4). Changes in energy accessibility based on transport costs have a stronger relationship with urban population growth than did energy accessibility based on distance. The stronger relationship of energy accessibility based on transport costs with urban population growth reflects the superiority of transport costs over sheer distance as a measure of impedance. Evidence of a lag effect of changes in energy accessibility on urban population growth is even more pronounced than before. This is exhibited by the higher correlation coefficient between the change in energy accessibility 1960-1970 and urban population growth 1970-1979.

Summary

The analysis of energy accessibility revealed peaks and troughs which were fairly stable through time and relatively invariant with regard to the way energy accessibility was calculated. Nodes in two areas, the Donets Basin and the Volga-Urals oil fields, had the highest energy potential indices. Voroshilovgrad in the eastern Ukraine was ranked first when energy accessibility was determined by distance alone, and Kuybyshev was first when transport costs were used. East Siberia, the Far East, the Northwest, the Baltic states, Belorussia, the western Ukraine, Moldavia, and Soviet Central Asia had the lowest accessibility to energy based on actual energy production. Areas with moderate levels of energy accessibility were the Kuznetsk Basin, the North Caucasus, and Baku. Moscow and the Central industrial region had modest levels of energy accessibility. The energy potential patterns as determined by distance were fairly similar to those determined by transport costs. These

patterns also changed little between 1960 and 1975 despite the eastward shift in emphasis of energy production. The huge oil and gas fields of Western Siberia were simply too far away from any of the nodes studied to have more than a modest impact on energy potential patterns, although there was a gradual eastward expansion of the base of the Volga-Urals peak between 1960 and 1975.

Three major industrial regions of the Soviet Union, the DonetsDnepr, Volga, and Urals, are nearly coincident with the areas of highest
energy accessibility. The Central, Karaganda, Baku, and Kuznetsk Basin
industrial areas had energy accessibility values ranging from moderate
to moderately high respectively. Leningrad and the emerging industrial
area around Tashkent had low energy potential values. Some of the creas
with the lowest energy potentials were also those with high urban population growth rates, such as Soviet Central Asia, Belorussia, Lithuania,
and Moldavia. This high urban population growth was generally due to
high birth rates and rural to urban migration potential. On the other
hand, many nodes in the well-established, industrial regions which have
high energy accessibility values displayed relatively low growth rates.
These low growth rates were the result of an already high level of urbanization, low rates of natural increases in population, and lack of rural
to urban migration potential.

The correlation analysis between urban population growth and energy accessibility supported the apparent disconformity between patterns of high urban population growth and high energy accessibility. Changes in energy accessibility were, however, positively correlated with urban population growth. A lag effect was evident in the correlation between

the change in energy accessibility 1960-1970 and urban population growth 1970-1979.

The role of energy accessibility in Soviet urban population growth appears to be relatively modest at best. Reasons for this modest role will be considered in the final chapter.

CHAPTER V

CONCLUSION

Introduction

"Coal is the actual bread of industry; without this bread, industry cannot function" (Lenin as quoted by Hodgkins 1961, p. 40). What Lenin said about coal in the early 1920s can now be applied to oil and gas as well. Energy, in whatever form, is absolutely essential for most endeavors of modern man. Because of the essential nature of energy to industry, it was intuitively appealing to strive to establish a link between energy accessibility and urban population growth, which can be regarded a fair indicator of industrial growth under the Soviet system. The purpose of this research, then, was to determine the patterns of energy accessibility in the Soviet Union, examine the spatial and temporal variations of such patterns, and investigate the influence of energy accessibility on urban population growth. This purpose was accomplished, but the study would be incomplete without a discussion of the implications of the results of this research on urban population growth, industrilocation, and regional development. Two sections follow. The first deals with implications; the second suggests areas for future research.

Implications

There have been excellent works on the growth of Soviet cities and the Soviet energy system, but this is the first in-depth study examining the interrelationships between energy and urban population growth on a macrogeographic basis. This work is also unique in that it represents a new application of potential models to determine patterns of energy accessibility. There are several implications regarding the results of this study.

The influence of energy accessibility on urban population growth on a nation-wide level proved to be relatively modest. Although access to energy can dramatically affect the growth of individual cities or groups of cities (Bond and Lydolph 1979; Harris 1971; Lydolph et al. 1978), other factors are clearly more important in determining Soviet urban population growth. Regional variations in levels of urbanization, rural to urban migration potential, and natural increase in population result in high urban population growth for nodes with relatively low levels of energy accessibility. Lithuania, Belorussia, Moldavia, and Central Asia are examples. Rural to urban migration was a major factor in the high urban population growth in Lithuania, Belorussia, and Moldavia. Natural increase in population was less important in those three republics, although Lithuania had the highest rate among the Baltic states, Belorussia had the highest rate among the Slavic republics, and Moldavia was above the national average. Levels of urbanization were important in Moldavia and Soviet Central Asia, both of which are still predominately rural. Natural increase in population was the dominant factor in urban population growth in Central Asia which had rates of natural increase in population two to three times higher than the national average (Bond and Lydolph 1979).

Nodes in the Donets-Omepr, Volga, Urals, and Kuzbas industrial regions all had relatively high energy potential indices, but their urban

population growth was generally well below the national average. These well-established industrial regions were characterized by high levels of urbanization, low rural to urban migration potential, and low natural increase in population. In addition, increasing mechanization of coal mining and the decreasing importance of coal in the Soviet energy budget adversely affected urban population growth of cities in coal mining regions such as the Donets, Kuznetsk, and Karaganda basins (Bond and Lydolph 1979; Harris 1971).

Energy may act as a catalyst for economic activities, and a city undoubtedly requires a certain minimum level of energy to survive or prosper. Despite the wide range in levels of energy accessibility, all cities in this study apparently had access to enough energy to sustain urban population growth. Any amount of energy over the minimum requirement may have been largely superfluous, though there was a small positive correlation between changes in energy accessibility and urban population growth.

The eastward shift in energy production and grandiose construction projects such as the Baikal Amur Mainline or BAM in Siberia and the Far East do not necessarily portend an eastward shift in urban population growth and industry. The eastward shift in energy production to sites that are far away from the market areas of the western part of the U.S.S.R. has been forced on the Soviets by the need for more energy to fuel economic growth and to earn hard currency from energy exports. The Soviets are building the BAM for several reasons: (1) to relieve the overburdened Trans-Siberian Railroad, (2) to open remote resource areas for exploitation, (3) to bolster defense capabilities in Siberia and the

Far East, and (4) to strengthen foreign and domestic commercial ties (Lydolph 1979, pp. 424-425).

The eastward shift in energy production and the completion of the Baikal Amur Mainline may stimulate some settlement in areas of Siberia and the Far East which are now largely uninhabited. Some cities in those areas may exhibit spectacular growth rates, such as Surgut near the Samotlor oil fields of Western Siberia, but these will be resource oriented "boom towns" whose growth is closely dependent on production trends. The hostile environment and labor shortage in much of Siberia and the Far East are severe constraints on regional development in those areas, and the Soviets will probably meet with only limited success with their plans to urbanize and industrialize areas such as the lower reaches of the Yenisey (Myakinenkov 1975).

The high urban population growth demonstrated by nodes with low accessibility to energy supports the notion that the Soviets have yielded to the pull of the market as a factor in industrial location as suggested by Soviet geographer A.A. Mints (1976) and American geographers, Lydolph and Pease (1972). Energy resource location will more than likely continue to be a lesser important factor in industrial location. The "fluid" nature of oil and natural gas and the rapidly expanding pipeline networks have doubly blessed the Soviets by facilitating the export of oil and natural gas to Eastern and Western Europe and by enabling the Soviets to develop the energy-poor western areas of their own country. Future emphasis will likely be on developing mineral resources, such as the Kursk Magnetic Anomaly, in the market areas of the western U.S.S.R. where there is an available labor pool (Lydolph and Pease 1972).

The findings and maps compiled as the result of this study might be useful in small-scale economic planning for the Soviets. The data points for which energy accessibility was calculated were major administrative and industrial nodes generally within the "fertile triangle" of the Soviet Union. The energy potential indices and maps thus represent or portray energy accessibility of market areas within the Soviet Union rather than areas that are sparsely inhabited. Siberia and the Far East may possess vast reserves of energy resources, but such reserves are like the coal field described by Harris (1954) as "useless until it falls within the technological capabilities of specific human groups and until it can be utilized in a favorable economic environment" (p. 315).

Contour maps of energy potential would probably be more useful to Soviet economic planners in making industrial location decisions than existing choropleth maps of resource potential (See: Mints and Kakhanov-skaya 1975). Soviet geographers have long advocated the location of industry in small and medium-size cities of their country (Mikhailov and Solovev 1969). Industry could be located in such cities in or near areas of high energy accessibility such as between the Donets Basin and the Volga-Urals oil fields. This would minimize transport costs because the industry would be fairly close to energy sources as well as still within the market area of the Soviet Union. This would also achieve other aims which the Soviets have been striving for, such as a reduction in the excessive concentration of industrial production in large cities and a more equitable distribution of population and industrial production (Koropeckyj 1970; Mikhailov and Solovev 1969).

Areas for Future Research

The aims of this study were achieved, but future research might be undertaken in a number of related areas. Changes in energy accessibility based on generalized transport costs had slightly stronger correlations with urban population growth that did changes in energy accessibility based on distance alone. This suggests that transport costs are a superior measure of friction in accessibility studies than sheer distance. The same generalized transport costs were used throughout the period of study, and exponents of 1.0 were used in calculating energy potential indices. Additional research might be directed toward determining how the transport cost ratio for coal, oil, and natural gas has changed over time and what the actual exponents should be.

A temporal series of energy potential maps with energy producing sources used as data points rather than nodes in the energy consuming market area of the Soviet Union would more clearly show the dramatic eastward shift in energy production. For planning purposes, energy potential maps could be drafted based on projected production rather than on actual production. What would be the effect of including the energy imports from Poland, Afghanistan, or Iran on the patterns of energy accessibility within the Soviet Union? Conversely, should some allowance be made for the coal, oil, and natural gas that the Soviets export?

Large cities were selected for study because census data were readily available. The influence of energy accessibility on medium-size (50,000-100,000 population) should be examined. Medium-size cities might be more sensitive to changes in energy accessibility than large cities. A study utilizing medium-size cities rather than large cities

welopment priorities. Other variables, such as changes in industrial production or percentage of labor force engaged in manufacturing, could be used instead of urban population growth. Use of other variables, though, would present problems of data availability and aggregation. Urban population data were used because the Soviets are not as reticent in publishing population data as they are with economic data.

The results of this study could be included in a model for urban population growth. Additional variables could include an index of rural to urban migration potential, the rate of natural increase in population, and the population of the city. Similar energy accessibility studies could be done for other large countries of the world, such as the People's Republic of China or Brazil, which do not have homogeneous distributions of population or energy resources.

The purpose of this research was accomplished. Temporal and spatial variations in energy accessibility were determined and mapped, and the influence of energy accessibility on urban population growth was examined. Spatial patterns of energy accessibility have not varied a great deal despite the intense sectoral and spatial shifts in energy production. Energy accessibility has had a limited effect on urban population growth because other factors more profoundly influence Soviet urban population and because Soviet regional development policy appears to follow a course relatively unrestrained by energy resource locations. Although this work cannot be considered exhaustive, it has provided some additional insight on the interrelationship between energy accessibility and human activity in the Soviet Union.

References

- Bond, A.R. and Lydolph, P.E. 1979. Soviet Population Change and City Growth 1970-79: A Preliminary Report. Soviet Geography: Review and Translation 20, 8:461-
- Harris, C.D. 1954. The Market as a Factor in the Localization of Industry in the United States. Annals of the Association of American Geographers 64, 4:315-348.
- Harris, C.D. 1971. Urbanization and Population Growth in the Soviet Union, 1959-1970. The Geographical Review 61, 1:102-124.
- Hodgkins, J.A. 1961. Soviet Power: Energy Resources, Production and Potentials. Englewood Cliffs, N.J.: Prentice-Hall, Inc.
- Koropeckyj, I.S. 1970. Industrial Location in the USSR During the Postwar Period. In Economic Performance and the Military Burden in the Soviet Union. Subcommittee on Foreign Economic Policy of the Joint Economic Committee, Congress of the United States, pp. 233-294. Washington, D.C.: U.S. Government Printing Office.
- Lydolph, P.E. 1979. Geography of the U.S.S.R., Topical Analysis. Elkhart, Wisc.: Misty Valley Publishing.
- Lydolph, P.E., Johnson, R., Mintz, J., and Mills, M.E. 1978. Recent Population Trends in the USSR. Soviet Geography: Review and Translation 19, 8:505-539.
- Lydolph, P.E. and Pease, S.R. 1972. Changing Distributions of Population and Economic Activities in the U.S.S.R. <u>Tijdschrift voor Economische en Sociale Geografie</u> 63, 4:244-261.
- Mints, A.A. 1976. A Predictive Hypothesis of Economic Development in the European Part of the USSR. Soviet Geography: Review and Translation 17, 1:1-27.
- Mints, A.A. and Kakhanovskaya, T.G. 1974. An Attempt at a Quantitative Evaluation of the National Resource Potential of Regions in the USSR. Soviet Geography: Review and Translation 15, 9:554-565.
- Mikhailov, S. and Solovev, N. 1969. Small and Medium-Size Cities and the Location of Industry in the USSR. In <u>Contemporary Soviet Economics</u>, vol. 2, ed. M. Yanowitch, pp. 129-136. White Plains, N.Y.: International Arts and Sciences Press, Inc.
- Myakinenkov, V.M. 1975. Prospects of the Development of Production and Settlement in the Northern Yenisey Region. Soviet Geography: Review and Translation 16, 9:578-583.

BIBLIOGRAPHY

- Abouchar, A. 1979. Regional Industrial Policies of the U.S.S.R. in the 1970s. In <u>Regional Development in the U.S.S.R.</u>, NATO Colloquium 25-27 April 1979, pp. 93-103. Newtonville, Mass.: Oriental Research Partners.
- Bond, A.R. and Lydolph, P.E. 1979. Soviet Population Change and City Growth 1970-79. A Preliminary Report. Soviet Geography: Review and Translation 20, 8:461-488.
- CALCOMP 1972. GPCP-II User's Manual. Anaheim, Ca: California Computer Products, Inc.
- Campbell, R.W. 1968. The Economics of Soviet Oil and Gas. Baltimore, Md.: The Johns Hopkins Press.
- Cohn, S.H. 1970. General Growth Performance of the Soviet Economy. In Economic Performance and the Military Burden in the Soviet Union, Subcommittee on Foreign Economic Policy of the Joint Economic Committee, Congress of the United States, pp. 9-17, Washington, D.C.: U.S. Government Printing Office.
- Dewdney, J.C. 1976. The U.S.S.R. Kent, England: Wm. Dawson & Sons Ltd.
- Dienes, L. 1971. Issues in Soviet Energy Policy and Conflicts Over Fuel Costs in Regional Development. Soviet Studies 23, 1:26-58.
- Dienes, L. 1972. Investment Priorities in Soviet Regions. Annals of the Association of American Geographers 62, 3:437-454.
- Dienes, L. 1973. Geographical Problems of Allocation in the Soviet Fuel Supply. Energy Policy 1, 1:3-20.
- Dienes, L. 1978. Soviet Energy Policy and the Hydrocarbons. Washington, D.C.: Association of American Geographers Project on Soviet Natural Resources in the World Economy, Discussion Paper 2.
- Dienes, L. nd Shabad, T. 1979. <u>The Soviet Energy System</u>. Washington, D.C.: V.H. Winston & Sons.
- Ebel, R.E. 1961. The Petroleum Industry of the Soviet Union. Arlington, Va.: Royer and Royer, Inc.

- Ebel, R.E. 1970. <u>Communist Trade in Oil and Gas</u>. New York: Praeger Publishers.
- Elliot, I.F. 1974. The Soviet Energy Balance. New York, N.Y.: Praeger Publishers, Inc.
- Fuchs, R.J. and Demko, G.J. 1979. Annals of the Association of American Geographers 69, 2:304-318.
- Fullard, H., ed. 1965. Soviet Union in Maps. London: George Philip & Son, Ltd.
- Fullard, H., ed. 1972. Soviet Union in Maps. London: George Philip & Son Limited.
- Hardt, J.P. 1973. West Siberia: The Quest for Energy. Problems of Communism 22, 3:25-36.
- Harris, C.D. 1954. The Market as a Factor in the Localization of Industry in the United States. Annals of the Association of American Geographers 64, 4:315-348.
- Harris, C.D. 1970. <u>Cities of the Soviet Union</u>. Washington, D.C.: Association of American Geographers.
- Harris, C.D. 1971. Urbanization and Population Growth in the Soviet Union, 1959-1970. The Geographical Review 61, 1:102-124.
- Hassmann, H. 1953. Oil in the Soviet Union. Princeton, N.J.: Princeton University Press.
- Helwig, J.T. and Council, K.A., eds. 1979. SAS User's Guide, 1979 Edition. Raleigh, N.C.: SAS Institute, Inc.
- Hodgkins, J.A. 1961. <u>Soviet Power: Energy Resources, Production and Potentials</u>. Englewood Cliffs, N.J.: Prentice-Hall, Inc.
- Hooson, D.J.M. 1966. The Soviet Union. London: University of London Press.
- Houston, C. 1969. Market Potential and Potential Transportation Costs: An Evaluation of the Concepts and Their Surface Patterns in the USSR. The Canadian Geographer 13, 3:216-236.
- Huzinec, G.A. 1977. A Reexamination of Soviet Industrial Location Theory. The Professional Geographer 29, 3:259-265.
- Kish, G. 1960. Economic Atlas of the Soviet Union. Ann Arbor: The University of Michigan Press.
- Kish, G. 1970. Economic Atlas of the Soviet Union. Ann Arbor: The University of Michigan Press.

- Koropeckyj, I.S. 1970. Industrial Location in the U.S.S.R. During the Postwar Period. In Economic Performance and the Military Burden in the Soviet Union, Subcommittee on Foreign Economic Policy of the Joint Economic Committee, Congress of the United States, pp. 233-295. Washington, D.C.: U.S. Government Printing Office.
- Lewis, R.A. and Rowland, R.H. 1969. Urbanization in Russia and the U.S.S.R.: 1897-1966. Annals of the Association of American Geographers 59, 4:776-796.
- Lonsdale, R.E. 1961. Industrial Location Planning in the Soviet Union.

 <u>The Professional Geographer</u> 13, 6:11-15.
- Lukermann, F. and Porter, P.W. 1960. Gravity and Potential Models in Economic Geography. Annals of the Association of American Geographers 50, 4:493-504.
- Lydolph, P.E. 1977. Geography of the U.S.S.R. New York: John Wiley & Sons.
- Lydolph, P.E. 1979. Geography of the U.S.S.R., Topical Analysis. Elk-hart, Wisconsin: Misty Valley Publishing.
- Lydolph, P.E., Johnson, R., Mintz, J., and Mills, M.E. 1978. Recent Population Trends in the U.S.S.R. Soviet Geography: Review and Translation 19, 8:505-539.
- Lydolph, P.E. and Pease, S.R. 1972. Changing Distributions of Population and Economic Activities in the U.S.S.R. <u>Tijdschrift voor</u> Economische en Sociale Geografie 63, 4:244-261.
- Lydolph, P.E. and Shabad, T. 1960. The Oil and Gas Industries in the U.S.S.R. Annals of the Association of American Geographers 50, 4: 461-486.
- Mikhailov, S. and Solovev, N. 1969. Small and Medium-Size Cities and the Location of Industry in the U.S.S.R. In <u>Contemporary Soviet Economics</u>, vol. 2, ed. M. Yanowitch, pp. 129-136. White Plains, New York: International Arts and Sciences Press, Inc.
- Mints, A.A. and Kakhanovskaya, T.G. 1974. An Attempt at a Quantitative Evaluation of the National Resource Potential of Regions in the U.S.S.R. Soviet Geography: Review and Translation 15, 9:554-565.
- Mints, A.A. 1976. A Predictive Hypothesis of Economic Development in the European Part of the U.S.S.R. <u>Soviet Geography: Review and</u> Translation 17, 1:1-27.
- Myakinenkov, V.M. 1975. Prospects of the Development of Production and Settlement in the Northern Yenisey Region. Soviet Geography: Review and Translation 16, 9:578-583.

- National Geographic Society. 1976. Soviet Union. Washington, D.C.: National Geographic Society.
- Rodgers, A. 1974. The Locational Dynamics of Soviet Industry. Annals of the Association of American Geographers 64, 2:226-240.
- Runova, T.G. 1976. The Location of the Natural Resource Potential of the U.S.S.R. in Relation to the Geography of Productive Forces.

 Soviet Geography: Review and Translation 17, 2:73-85.
- Shabad, T. 1961a. News Notes. <u>Soviet Geography: Review and Translation</u> 2, 1:76.
- Shabad, T. 1961b. News Notes. <u>Soviet Geography: Review and Translation 2, 3:80-81.</u>
- Shabad, T. 1969. <u>Basic Industrial Resources of the U.S.S.R</u>. New York: Columbia University Press.
- Shabad, T. 1978. News Notes. <u>Soviet Geography: Review and Translation</u> 19, 4:273-285.
- Shabad, T. 1979. News Notes. Soviet Geography: Review and Translation 20, 4:255-265.
- Stewart, J.Q. and Warntz, W. 1958. Macrogeography and Social Science.

 The Geographical Review 48, 2:167-184.
- Taaffe, E.J. and Gauthier, H.L. Jr. 1973. Geography of Transportation. Englewood Cliffs, N.J.: Prentice-Hall, Inc.
- Taaffe, R.N., and Kingsbury, R.C. 1965. An Atlas of Soviet Affairs.
 New York: Frederick A. Praeger.
- USSR Geological Ministry. 1966. <u>USSR Railroads: Directions and Stations</u>. Moscow: Central Board in Geology and Cartography.
- Yeates, M. 1974. An Introduction to Quantitative Analysis in Human Geography. New York: McGraw-Hill Book Company.
- Yonge, J.R. 1975. <u>U.S.S.R. Railways</u>. Exeter, England: The Quail Map Company.

APPENDICES

APPENDIX A DISTANCES TO COAL SOURCES

		101400mm00m00mm004nm	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	F M K Q 4 X 4	' ଏକେ ବଳ ବଳ ଅଟେ	4 N B B B B B B B B B B B B B B B B B B
	< 20 & w 2	. W B B B B B B B B B B B B B B B B B B	30000000000000000000000000000000000000
	をよう 日本 STU	22222222222222222222222222222222222222	4 K II R R A C C C C C C C C C C C C C C C C C
	X4K40Z04		ろうしょう ちょうしょく スプラス ちょうきょうきょう きょうしょく ちょうしょく ちゅう かいしょく ゆん なん ない りゅん ちゅう かいしょく しょうしょう しゅうしょう しゅうしゅう しゅうしょう しゅうしゅう しゅう
	Z < O < O < Z		124 6 6 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
	NEXTENEZ	100333	
	X < & X W		-
	ひまらくし		7.000000000000000000000000000000000000
	< E D &	(とよくしょななしなるとよくしょくならない)とくしょくしょくなるとなるとしょくしょくしょくない こしょくしょく ロー・アー・アー・アー・アー・アー・アー・アー・アー・アー・アー・アー・アー・アー	7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	>< ********		9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
X	UI	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
001	®⊃K≻ ⊀⊢	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 4 8 8 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
Z	∢ ₩₩≻	. NO NA NA AAAAAAAAAAAAAAAAAAAAAAAAAAAAA	4 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
SOURCES	028280>0	. W W W & W & & & & & & & & & & & & & &	ᠰᠮᡳᡢᡊᡊᡊᡳ᠘ᠰᠰᡘᡢᡧᠰᠮ᠘ᡊᠺᡢᠺᡢᠰᡲ ᡊᡊᠬᠰᡮ᠍ᠬᡣᢗ᠀ᠬ᠐ᡐ᠀ᢀᠪᡂᢒᡐᡐᡣᡂ
	< m < x < z	. W. A. W. B.	# 4 4 4 4 4 4 4 M 4 4 M M 4 4 4 4 M M 4 4 4 M M 4 4 M
COAL	⊻∢	・ちゅうようようききゅうきゃん まままきまる (できょうとう) こうかい こうかい こうかい こうかい こうかい こうかい こうかい こうかい	m 4 4 4 4 4 4 m m 4 4 m m 4 4 4 4 5 4 4 4 4
1960	*DNZMFNY	でしてとととととををををををををしてしている。	8-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
10 1	₹0₹ ₩ ₹	. W + L = C = C = C = C = C = C = C = C = C =	22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	∨™≪⊙>	38 30 42 22 22 22 23 23 23 23 23 23 23 23 23 23	2322233322233322233322233322233322233322233322233322233322233322233322333223333
DISTANCES	e m α I		24 25 25 26 27 27 27 27 27 27 27 27 27 27 27 27 27
0	@481×=4		244566 24456 24456 24456 24456 24456 24566 24566 24566 24566 24566 24566 24666
	らきひれら!▲	5235 F5 10 6 3 3 5 4 7 6 9 3 7 7 6 9 3 7 7 6 9 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
	0 X W & W &	146465666666666666666666666666666666666	848777004770000000000000000000000000000
	~>o>		22222222222222222222222222222222222222
	D×≅∢∺×≡	201100000000000000000000000000000000000	4444488783334898748484848484848484848484848484848484
	«O»⊢O>	3277035E9 5775E9 5775	36616616 5043611660000
	► ⊃~≪	まま ころ まんちんまゆうまりもままちゃ	よ ちょうききゅうれいりてころもつのかりの
	できらはひれ ▲		301-008-1+8-12-13-14-02-10-10-10-10-10-10-10-10-10-10-10-10-10-
		URHANSK GVEDZA'DDSK GVEDDD GVEDDD ODEGDA OSEGN KRHANGELSK YKYYVKAR OSEGN VAROYD OSEGN OSEROYA ALUGA OSTROYA OSTROYA OSTROYA OSTROYA OSTROYA OSTROYA OSTROYA OSKRAY: DLA	VSK 20 20 14 14 16 16 17 17 17 17 17 17 17 17 17 17
	zocm	HURHANSK PETRDZAVDDS PETRDZAVDDS VOLDGDA ARKHANGELSK SYKTYVKAR MOSCON I VANOVO I VANOVO KALLIKIR KALURA KOSTROMA KOSTROMA KOSTROMA KOSTROMA KOSTROMA KOSTROMA KOSTROMA KOSTROMA KOSTROMA KAZAN	BELGOROD VOLYANOYSK BELGOROD VORONEZH KURSK KURSK KURSK LIPETSK LIPETSK LIPETSK LIPETSK RABOV PFEALA ASTRAKIAN VOLGOGRAD KRASNODAR STRAKOPOL STRAKOPOL HAKKACHKALA NALCHIK NALCHIK KASONOTY KIEV

	> < 5
¥	
100	6 :
Z	
SOURCES	υ πα :
COAL	
1960	X D N
10	×0
DISTANCES	6 0 ⋖ 1

	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	102
<b>『 目 氏 ひ ∢ ∑ ∢</b>		<b>6</b> W O
< ≤ 0 € m ≤		
ロようすらするで	BU44004474444444444444444444444444444444	
X4440X04	$\begin{array}{llllllllllllllllllllllllllllllllllll$	212
I < U < O < Z		9 9 9 7 7 9
<b>SHTATHS</b>		€ 4 0 8 8 8
<b>E46</b> Em		79 81 83
2 K O 4 J	00000000000000000000000000000000000000	773
415r	\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$	46 49 70
><*2>0×		69 72 73
<b>□ = = = =</b>		44 52 52
@D&><+	400 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	44.4
<b>∠</b> ши≯	~ W W O O W W W O O W W W O O O W W O O O W W W W W W W W W W W W W W W W W W W W	4 0 E
014240>0	6 5 5 5 5 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6	8 0 4 0 8 0
<04×4Z	445044664444664446666666666666666666666	27 30 31
׫	\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$	27 23 30
<b>スリンNモTSK</b>	44454444444444445445444444444444444444	25 24 26
XOKX⇒ZO		. N Q B
N m ≈ O >	05 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	50 62
# m ≪ ₹	7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.	196
B < ら I × F K	222233333333333333333333333333333333333	123
らきひれら!人	22.23.24.24.24.25.25.25.25.25.25.25.25.25.25.25.25.25.	27 28 25
OSmerma	らろきゅうよりゅうようひこんきてりきらすみようちろきまままるようきこうきゅうか	22 22 20 20
~>o>		NNN
D⊀K∢⊶≴m	WW71274719748871447000118894876999811187005	2002
≪ D ∨ + D >		20 20 18
F5~4		1227
e mo≭o≪∢	まな ちょうちょう ちょう かんきゅうきょう ちょうきょう ちょうきょう ちょうしょう ちょうしょう ちょうしょう ちょう ちょう ちょう ちょう ちょう ちょう ちょう しょうしょう しょう	31
<b>z</b> 0 0 w	ZAPDROZHYE KHAKDY LVOV LVOV TALLIN RIGA TALLIN RIGA TALLIN RIGA TALLIN RIGA TALLIN RIGA TALLIN RIGA TALLIN ROBENO UZHGOROD UZHGROD UZHGOROD UZHGROD UZHG	UFA UFA IZHEVSK ORENBURG

	F E R G A M A	400000						83	2 3	66			202						0	52	2 6	2	9:	5	12	
		004000		~ ×	w 40	~ ~	0 1		<b>+</b> c		- -	, M	<b>-</b> -	M H		<b>6</b> 0 v	o 4		•		v ru		<b>.</b>	<b>+</b> -		
	4 % O K W %	w 4 4 4 4 4	~ m	4 E	4 10	. W W	<b>W #</b>	<b>-</b> 1	<b>~</b> 0	•	~ 0	~	- N	~ ~	. ~		-			~	N 11	-		-		60
	日内188810	845911																								
	*4*40204	747500		~ ~	W 4	~ ~	w,	• •	۰ 0	. 80	• • •	~	- ~	-			•	-	-	~		~	2	~	۔ ،	
	* < 0 < 0 < 2	6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	*E	72	8 4	22	25	12	R =	-	£ 2	101	96 101	8	8 6	32	֓֞֞֓֞֓֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֓֡֓֓֡	86	8	8	8	6	113	500	38	117
	これれはよしまれ	<b>28222</b>	\$ 5	6 8 8	47	4 5	25	12	77	13	36	16	8 7 7	8	2:2	92	£ 3	6	6	7	72	82	104	104	87	108
	IAKHHHEW	\$2222	9 8	63	7 =	<b>8</b> 9	31	• •	2 5	3 %	30	81	85 86	25	5 =	#1	2 2	, m	8	9	6 5 7	19	6	99	82	103
	ひをらくし	70 64 63 63	2 2	44	233	202	28	•	<b>.</b>	11:	25	2	2 23	59	2 29	79	٥	25	13	21	2 G		8	6 F	: *	36
	4 E D &	98 9 9 9 9 9 9 9												_												
	>4XDF0X	698286	00	-	~~		<b>~</b> -	• m i	~ 4	- 0	0		~ ~	ه م	٠		~ ~	٠.	~	۰.			•	o >-	٠.	
	UI	4444																								
X	# > # > # + 4 +	4 W W W W W																								
100	<b>∢</b> ₩>	282283																								
Z	OI#XX0>0	23322																								
	4 m 4 x 4 z	20 23					~		<b>60</b> 0		00		0 10	<b>m</b> t		9	• •	- 0	-	. ب	~ ~		٠.		٠,	_
SOURCES	×<	223 23 24 19 24 19 24 19 24 19 25 24 19 25 25 25 25 25 25 25 25 25 25 25 25 25		=-	===	•																				
SO	X D N Z W F N X	287187						<b>~</b>	o #	۸ ۱۰	0 0	0			v	٠.	۰ -				• 0	. 0	(		- w	
COAL	*OKX-ZO	94-9MF		~~			-	9	~ h	- N	ю. 1	m	<b>8</b> N	~		0	N	. ^		0	4 ^		in I	•	u W	
	<b>∨≡≪⊙&gt;</b>	54878											- -		2 2											
1960	4 w ex X	24878																								
01	0 < V I X K	26-20E								. 0	2 6	10	<b>S</b>	0	<u>س</u> د		9 4	- 0	-		~ 0		~	N 0	<b>&gt;</b> ~	
	OMOROHA	20225	9 9	0.4	N.Y	. W. &	0		m e																	
Š	0.300.400.4	- 10 10 10 10 10 10 10 10 10 10 10 10 10					•	-	•	4 44	-	•														
DISTANCES	OSMFRE	****	( <del>)</del> 3	4 6	25	2	9	3	<b>S</b>	35	6	38	2 2	8	, M	36	M A	, ,	7	Š	4.3	7	8	4 4	7 4	- 2
٥	~> 0 >	288488	3 3	<b>4</b> L	35	. % 3	\$ 3	56	26	113	8 :	36	24 %	33	o M	7	4 6	4	\$	25	4 K	27	36	22.4	4 4	
	3×4<-×≡	**************************************	363	77	25	;;;	38	5 2	£ 6	8	8 8	2	22	27	7 1	33	3.5 5.0 6.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7	2 %	37	\$	37	; ‡	*	38	6 <b>1</b>	
	<b>€</b> 00+0>	* \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	36.4	24	57	543	29	6	5 65	901	06	52	202	92	2 6	35	3.4	3 %	36	\$	36 1,	45	12	35	1 6	
	F ⊃ ~ €	22222	346	33	184	345	150	8	80	5 5	4 6	38	2	23	27	30	32		34	9	34	36	53	4,0	7 9 9 0	) a
	<b>~</b> m ∩ <b>I</b> D <b>K</b> <	22 22 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25	36.4	24		77				_	-	-														
									,	4 ~1 4	7	•														
									SK	Ê	5										ť	Ś				
		. ¥	×	*	(		3	<b>٤</b>	BLAGOVESHCHENSK	TOCHNO_SANTALINS MAGADAN	YAKUTSK Seteno Avi Ovek WA				PETRUPAVLUVSK KOKCHETAV	2				SEMIPALATINSK	Ĉ	ALMA ATA				
		PERM SVERDLOVSK CHELYABINSK TYUMEN KURGAN	NOVOSIBIRSK Tomsk	BARNAUL	<u> </u>	ç	و س	KHABAROVSK	33	, _	5	<u> </u>	AKTYUB INSK HRALSK	ير :	¥ >	TSEL INDGRAD	¥ c	<u> </u>	ہے:	ATI	<b>7</b>	<b>.</b>	V	m F	5	
		AN	STE	BARNAUL	IRKUTSK	ABAKAN	ULAN_UDE	ARG	S C	O A	YAKUTSK	, ,	<u>8</u> 2	KUSTANAY	KOKCHETAV	ž	KARACANDA	CHINEBUT	DZIIAMBUL	PAL	PAVLODAR	ALMA ATA	ASHKHABAD	DUSHANBE	FRUNZE	, =
		PERM SVERGL CHELYA TYUMEN KURGAN	NOVOS	ARN	IRKUT	ABAKAN	¥.	HAB	٧.	AGA	AKU	GURYEV	AKTYUB	UST	ביים מאכי	SEL	ARA	727	¥H2	EMI	¥;	. ¥	ΣŦ	USH TOTAL	֓֞֝֓֓֓֓֓֓֓֟֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	Et CTA
	200m	TWOPE	2 Z >	. ec 7		y ≪ ¥	: 🗢 :	> ×	<b>@</b> >	<b>- T</b>	> 0	ی د	∢ :	×	. ×	-	××	۷ ر	9	S	s. :	<b>&gt;</b> <	•	0 +	- 11	. 4

DESTANCES TO 1970/1975

F E E C C C C C C	44444444444444444444444444444444444444	2 3 4
< Z !		333
ほん! ひんらてい	######################################	22.
x < x < 0 % D <		122
7 < 0 < 0 < 2	1222111234522522222222222222222222222222	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
NEKLET-E		
F < K F W	10	300
25045	0 10 10 10 10 10 10 10 10 10 10 10 10 10	222
∢∑ ⊅⊀	$ \begin{array}{c} \bullet & \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet \\ \bullet & \bullet &$	220
><×>+		
	.	
U.Z <		
CD# > < +		
∢ ₩₩≻		
CIKERO>C	**************************************	
≪ E < ¥ ≪ Z	\$	
⊻ <		30.
スリイツティスド	44444444444444444444444444444444444444	, w v
XOKX-ZC	~ 0.55	
wm≪0>		
FMKI		
ひるちばれまれ		
らきけれらーへ	23.23.24.24.24.25.23.25.25.25.25.25.25.25.25.25.25.25.25.25.	23
CZMFMK		22.5
~>o>		22
2554-5A		225
€ 00+0>	992002200000000000000000000000000000000	202
► D ⊷ 4		
できらはひ 氏∢	を見る ない はい	31
	TAPORDZHYE KHARKOV LVOV LVOV LYOV TALIN REGA KILNINGRAD SHALININGRAD SHAROPETRAVSK SUMT TERNOGRAD SHERSOP TERNOGRAD SHERSOP THENSOR	SK JRG
2004	TAPOROZHY KHAROV LVOV TALLIN TALL TALLIN TALL TALLIN TALLIN TALLIN TALLIN TALLIN TALLIN TALLIN TALLIN TALLI	ZHEVSK JRFYDJRG

DISTANCES TO 1970/1975 COAL SOURCES IN 100 KM

APPENDIX B

DISTANCES TO OIL SOURCES

		:	,		-	STANCES 1	10 1960	ם זר	SOURCES		N X N	c	2		U			
		× « <	v - ∢ ∶	ن هر د	ଘଝଓ।	•	æ∢•	×⊃¢;	v∢s	> 0 ~ (⊃ & w 3	* 12 x		n ∢ ⊻ 3	w 2		u. w a
zo	¥ 0	v z 0	> & 0	0 ~ Z	u ∾ ⊢	- «	V I X	- v I	× < -	ى 0 د	~ w	2 6 3	 ⊲	છ ∢	: ~	: ₽ <		
, O W	Z -	0 e	دہ	, >>	< z	∢ ~	- - ∝	w >	o >	~ 0	αI	ac O	- z	X D	~ Z	• 0	Z <	
LENINGRAD	11	23	53	27	28	11	81	11	51	91	11	61	2;	31	86	30	4 (45
MURMANSK	20	33	39	37	38	58 -	20	8 6	26	18	53	36	50 70	3.6	58	35	4	۰ ۲
PETRUZAVGUSK	<u> </u>	, , ,	2,7	, v	26	191		16	*	5.5	. 	8	91	30	86	53	÷	
VOLDEDA	•	12	21	22	56	12	13	14	5	15	==	16	20	30	35	22	*	_
ARKHANGEL SK	13	27	35	30	32	19	20	20	50	21	9	22	92	9	26	i Ν	7	~ .
SYKTYVKAR	*	30	34	32	32	11	82	20	20	21	2:	25	53	90.0	£ 6	33	• 6	_ a
MOSCOM	9.	91	22	20	21	2	= :	= :	٠;	2:	: :	2:	2:	0 ;	Ç 6	2,4	ח ה	
YAROSLAVL	£1	6	52	23	54	2	71	Ξ'	1:	2:	2:	2 :	9 5	7 %	, o	, r		
VLADIMIR	9:		# U	27	57	0 0	· •	r 0	2 5	:=	2.2	:=	6	28	2 2	53	m	. ~
	9 .	<u>.</u>	3 %	ָרָ רָרָ בּי	2 2		2 =	``	2 2	: =	: 2	<u>*</u>	91	5 8	96	25	4	_
KAL110111	9 6	2 -	2,2	2 0	7.5	77	3	: =	0	01	2	13	*	52	8	54	m	e e
KOSTBONA		. 5	2.5	2 2	24	0.7			12	13	=	13	50	28	26	54	ň	
RYAZAN	• • • • • • • • • • • • • • • • • • •	<u>+</u>	20	18	20	01	=	6	6	10	1,4	11	11	23	*	22	m	.
TULA	8	2	77	61	20	12	13	01	~	æ	91	12	23	23	8	23	m	_
KAZAN	2	61	21	19	20	7	4	'n	_	₩	_ ;	~ ;	54	23	98	8 2	m i	_
GORKIY	14	20	25	20	21	•	~	ဆ	6 0 ;	σ;	2	2:	0 :	2 5	? :	17	ň .	. ,
KIROV	•	25	27	5 2	52	σ.	0	13	13	5 1	n (<u>.</u>	٠	\$;	9 6	Ç :		
YOSHKAR_OLA	e :	2:	21	61	20	+ 1	s o	• •	8 0 U	.	• :	5 P	5 7	\$ 7	5 6	, « -	,	• ^
SARANSK	~ 1	<u> </u>	5	- 1	£ (٠,	.	۸,	n 1	0 0	Ξ.	- •	1,0	1,7	2 2	2 2	ř	
CHEBOKSARY	۲:	6:	77	6.	02.	.	۷ 4	۳ ۵	- Ľ	o «	٥ ح	o w	7,7	21		20	'n	
UL TANGVSK	ה ה ה	2 5	9 7	2 1		^ <u>Y</u>		· <u>*</u>	٠.	`=	23	. 9	. 21	61	66	\$2	4	_
	5 6	2 0	2 2	: :	2 2	2 =		0	•	~	13	12	12	19	96	21	ě	
KURSK	21	12	81	9	1	2	12	12	0	01	19	±	12	21	86	54	ň	_
OREL	20	13	20	18	13	14	15	12	10	0	8	7	13	25	86	23	ñ	_
BRYANSK	20	**	20	18	61	±	15	13	2	2	80	2	21	23		52	m	
LIPETSK	21	12	18	91	11	21	15	O	Ç.	- 1	:	= '	2:	2 5	£ 6	· ·	0 6	
TAMBOV	21	£ :	8 :	9:	8 .	<u>،</u>	9,	٠.		n u	9 :	~ 4		,,	5 6	<u>``</u>	, ,	
PENZA	61	2	<u>.</u>	_ '	£ `	- :	- :	* 5	r	n a	3 -		7 2	y o	2 6	م		
ASTRAKHAN	62	= -	`:	^ 0	۽ د	2 -	2 5		- •	o m	2 2	::	32	, 2	95	0	'n	
WULCOCKAU WINDA CUTA	9;	- 7	::	, ,	2 -	2 "	2 "	٠ -	. 4	, Kr	-	. ~	24	27	98		N	
CABATOV	22	2 2	2 4	2		۰.	٠.	4	-		=======================================	ورا	12	91	8	12	m	0
ROTTOV	1 60			. •	, ec	-	~	*	21	6	02	91	11	13	100	25	W	٥
KRASNODAR	32	-	~	~	80	1.8	61	16	12	01	22	81	21	12	1 02	27	m	
STAVROPOL	32	m	6	9	•	18	61	16	12	=	23	<u>8</u>	21	21	102	22	m	80
HAKHACHKALA	34	æ	*	~		19	20	11	13	13	23	61	92	•	103	92	m ·	0
NALCHIK	3.5	ĸ	4	7	4	19	20	e 1	13	<u>-</u>	5 *	50	5 3	~	104	27	m (*
ORDZHONIK I DZE	35	ø	m	~	r	19	20	17	13	*	5 2	6	54	-	103	97	ř	_
GROZNYY	34	~	2		2	18	61	9	- 1	~ :	23	8 9	52	٠,	201	\$2	2	
KIEV	25	13	61	17	8 7	61	20	17	7	15	22	67	_	22	103	52	•	•

	⊢⊃&xImz	24.6.6.6.7.7.7.7.7.7.7.8.6.6.8.8.8.7.7.7.7	32
	wwwo∢z∢	よらなみょく ちょうようころうゅう ちちょく ちゅうみん ちゅうみん ちゅうしょう ひょうしょう ひょう ちょう りょう ちょう ちょう ちょう ちょう ちょう ちょう ちょう ちょう ちょう こうこう アファン ラング・ストン しょう ちょうしょ ちょう しょう はいしょう しょう しょう しょう しょう しょう しょう しょうしょう しょうしゅう しゅうしゅう しゅうしゅう しゅうしゅう しょうしょう しょうしゅう しゅう しゅうしゅう しょうしゅう しょうしゅう しゅうしゅう しゅうしょう しょうしょう しょうしょう しょうしょう しゅうしゅう しゅうしょう しょうしょう しゅうしゅう しゅうしょう しょうしょう しょうしゅう しゅうしゅう しょうしょう しょう	33;
	m≅ce∢∙≎o	・ まくかん ない こと こうかい おく こう	22 6
	スペドロコード	103 103 103 103 103 103 103 103 103 103	93 83 82
	∞∢ x⊃	80880000000000000000000000000000000000	22
	Z IDXX4HZ		27 62
	ロみを対めひたら	21122222222222222222222222222222222222	10,
100 KM	€ ሠα ¥	4 1 1 2 2 2 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	-42
Z	>0100080		12
SOURCES	v4≪4►0>		° °
ult	<pre><= """</pre>	10000000000000000000000000000000000000	v ⊕ 4
TO 1960	の∢な丼K≒R	0.000000000000000000000000000000000000	e av
STANCES TO	₩ ₹ ₩	04400000000000000000000000000000000000	041-
DIST	ひんひきちゃんだ	2000 4 2000 4 2000 2000 4 2000 2000 200	22 23 18
	のよりとおとと		21 22 18
	N-4>4007	20000000000000000000000000000000000000	23
	X & & W Z O O &		21 22 19
	× O x 🛏	7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.	52 22
	≈ c o w	ZAPDROZHYE KHARKOV LVOV TALLIN RIGA RIGA RIGA SAOLENSK RALININGRAD SAOLENSK RALININGRAD SAOLENSK RIST RILISI BAKU VARGORO UVARGORO UVARGOR	UFA 12HEVSK Orenburg

•				015T	DISTANCES	10 19	TO 1960 OIL	SOURCES		100 NI	ĭ							
		×	s		0			¥		>		0	3		s			
		~	}-	ပ	∢		8	Þ	s	0		œ			⋖		u.	_
		≺	∢	œ	ى		⋖	80	<	_		w	>		×	ı.	w	_
		S	>	0	w	- -	S	>	œ	ဗ		z	×		x	X.	œ	-
2	¥	z	æ∠	7	v	4	I	S	⋖ '	0	۰	6	«	∞ .	⋖ .	∞ ⋅	ტ .	
c	0	0	0	z	-	-	×	I	-	، ی	w i	>	∢ .	< ;	. ب	∢ .	∢ :	
0	æ.	٥	۵.	> ;	< :	< 0	- (w ;	ο:	α C	« 1	oc (⊷ 2	× :	- 2	ه د	z «	
w	-	¥	ر	-	Z	¥	ĸ	•	•		Ē.				:	•	•	-
PERM		56	- 82	92	27	4	Ŋ	۲	11						18	61	34	m
SVERDLUVSK		27	62	27	28	6	₩	7.	7						11	12	30	m
CHELYABINSK		56	28	5 6	27	4 0	9	0	12						9 ;	£ :	28	ň:
TYUMEN		31	33	31	31	12	=	<u>+</u>	11						* ;	e :	6	*
KURGAN		23	30	28	29	2:	œ <u>:</u>	: :	*						* *	25	2 5	ň 4
CHSK		* (9 5	* 4	6 7	<u> </u>	5 6	7.	200						200	7.	2	3
TOWER		,	7 4	4	; ;	7,7	23	26	56						9	30	32	• •
SARVAII		4	4	4		54	23	26	53						65	30	30	4
KRASNOYARSK		84	20	8	49	53	28	31	34						54	35	39	Š
TRKUTSK		59	79	23	9	•	33	42	45						43	47	40	9
CHITA		69	1	69	2	20	64	25	52						33	26	9	-
ABAKAN		40	21	6	64	30	53	32	35						19	36	36	7
KEMERDVO		43	45	43	‡	54	23	56	59						29	30	ø.	
ULAN_UDE		63	65	63	6	4	43	46	64						36	20	, ,	ŏ
VLADIVOSTOK		007	201	001	101	81	80	۲ 10	90						× .	, c	7 0	2 6
KHABAROVSK		25	4 6	26	93	ς;	2:	2.5	2 .						2 4	7.7	, K	č
BLAGDVESHCHENSK		2 5	2 4	20.	9 0	0 0	` .	2:	2 6						2 4	· 6	9	2
TUZHMU_SARBALINSK			100		2 0	0 0	• «	6 6	9						. 60	96	66	1
VAKITOK		2 6	6	6	8	12	3 =	: 2	: 2						33	3.8	82	6
PETROPAVLOVSK_KAM	•	110	112	011	111	16	000	63	96						01	26	101	=
GURYEV		27	22	25	92	15	14	11	15						89	 -	92	ň
AKTAUBINSK		22	22	20	20	6	•	-	01						*	•	22	N
URALSK		91	16	14	15	٥	æ	•	*						60 I	=:	52	ž
KUSTANAY		28	82	92	27	2	٠ ;	7	5 :						- ;	? :	, ,	7
PETROPAVLOVSK		3.		# C	35	21	<u></u>	5 1	71						: 2	2 -	25	0 66
TORCHE AV		ם ת ת	36	9 6	1 6	- 1	2 4	<u> </u>	2.5						22	8	22	m
KAR AGANDA		9 6	9	3.6) (C		e e	212	24						75	21	50	8
KZYL DRDA		3 1	3 = 6	53	30	18	11	20	61						90	91	01	~
CHIAKENT		36	31	59	32	23	22	25	54						86	20	~	
DZHAMBUL		38	33	31	37	25	54	27	56						83	23	6	~
SEHIPALATINSK		14	48	46	45	28	2.7	30	33						68	35	52	m
PAVLODAR		38	43	14	37	25	21	23	56						89	23	52	3 :
UST_KAMENDGORSK		33	64	4	\$	53	88	31	34						50	.	ζ:	* (
ALMA_ATA		43	33	37	35	31	30	30	33						61	2	<u>.</u>	, '
ASHKHABAD		20	91	<u>*</u>	12	37	36	56	22						10	υ	D .	•
DUSHANBE		34	30	28	27	37	36	36	36						10		<u>.</u> .	¥ -
TASHKERT		33	53	27	25	52	54	23	25						8 G	17		- 7
FRUNZE	245	e Ou	ę -	4 0	35	87 -	22	/ o	, , ,	2 6	22	21 23	3 17		105	53	7	, =
.,		,	•	•			•									,		

として、おりとりのはいいなくのともともをもなるできるできるともなってことともなるととなってもとともをもをもなるできるできるとももももなるできるできるともなるできるともなるできるというというというといい くりょくかことのようからこのなですのももからからをを見るならないとなりのの目ととして ことにこのことにはなることにはこれにはなることにはなることにはなるとしてはなるとしてはなるとしてはなるとしてはなる Oumpagooppoopsumosumasseseeseeseeseesee メート かいいしょ しゅうしょうしゅうしょうしょう とうしゅうしょう とうしょうしょうしょう とうしょうしょうしょうしょく しょうしょうしょう とうしゅうしょう とうしゅうしょう とうしゅうしょう アンステンション ファン・ストーン アンストーン アンス

Z SOURCES 011 10

よんないりょうことからももっともなるとをををとらまるともをとなるととををはなることできるとしてごとととととととととなるととをとなるとなるとなるとなるとなるとなるとなるとなるとなるとなるとなるとなるとなる マらて ひとき きょうしょう ちょうかきんかきん ちょうりょう しょうしょう しゅうしょう きょうてい くりょう ちゅう ちゅう ちゅう ちゅう ちゅう とうきゅう 00450608477488878480104887877866744667786778447 できょうことにはなるとのではないないのではないないないないないにはなるととにはなっているととにはなっているととにはなっているとにはなっているとはないないない。

Z DISTANCES TO 1970 DIL SOURCES

Ė

よのこちらのかりごかきょんようにことっとらるともではちららかららかららもっとにととことにとここととには、これになっているとはなるとには、これには、これには、これには、これには、これには、これには、これに らいしてをはり ちょのちょくまての 4 かりももりかららしもさてよりほしきとしょりゃしんりょくとことところしょしょ ニュータウェンジャをごとごこま OPAVLOVSK_KAM

DISTANCES TO 1970 DIL SOURCES IN 100

ゆるおうゆうぎょうしゅうサイドラ外のごろんとちろちられりゅうちことにはんべんりさ おいとかてのいらくのののはよららんのようのののようなできなそのことののいまとかであるとは、よくしょうしょうにしましましょくのののなえるとととなるとこれにはなっているというないとなるととなるといいない。

016 2

					_	0157	ANCE:	DISTANCES TO 1975 OIL	1975	011	SOU	SOURCES IN		100	X								
		K K 4 N	ω⊢ ∢>	0 ¢ 0	0 4 C M	h	z « v	×36>	v	ס ב ס כ		0 8 10 12	26	****	* 15.4	m IDX	v z ◀	NEEL		Next	J ~ L Z	T. W &	
200W	XOI-	500	×00-1	NZ>>	ひてくと	<- <a< th=""><th>I × ~ «</th><th>~ = w ></th><th>∢⊢0></th><th>00 & 0</th><th>a w or z</th><th></th><th>X D # F</th><th></th><th></th><th>K4~2</th><th></th><th></th><th></th><th>~ U ~ ₹</th><th></th><th>0 4 Z 4</th><th></th></a<>	I × ~ «	~ = w >	∢⊢ 0>	00 & 0	a w or z		X D # F			K4~2				~ U ~ ₹		0 4 Z 4	
ZAPOROZHYE Kharkov	27	٠.5	15	13	7 2	19	20	11	13	112	25	52	23		52	• *	18 3	35	1 04	601	188	26 4	£ 0
LVOV	53	2 5	23	53	5	*	25	33	2 5	202	27		23	· ~	<u>.</u>	. 70	• • • •						•
X CHINEV	33	16	22	22	21	25	5 6	23	5 2	620	23		27	2.		.		•					ବ୍ୟ
RIGA	53	23	53	27	28	12	23	22	11	8	25		77	. 	. <u> </u>	· m	• • •						۰,
VILNIUS KAI ININGRAD	24	202	5 6	24	5 0	23	23	20	20 20	13	23		25	 		0 6	•,			-			~ 0
SMOLENSK	50	12	33	: 72	22	1	12	*	, ~ , ~	12	8		16	•	:=								-
PSKOV	0,4	25	28	2 ?	2 % F	11	9:	<u>~</u>	2 z	91	2 2		5 2	~ ~ r	- •		• • •						ev r
TB1L IS1	3 0	2 =	2 2	: ::	3 6	56:	21	2,5	:2	2 2	30		30.	ת תו			. •	-					٠.
BAKU	38	7		5	4	23	54	7.7	91	2	27		27	*				-					e (
YEREJAN	4 ¢	<u> </u>	7 7	2%	0 %	6 K	30	27	23 18	25	34		7 7 7	 ~~		~ ~	• (-					O ec
ROVNO	27	7	23	7.7	32	22	53	; ġ		19	2 2		23	'n				-					, ~
UZHGOROD	33	22	92	52	52	52	56	*;	22	25	53		56	۰ ۱	~	0.0	•						0 0
TERNOPOL	3 G	18	\$ \$	2 %	2 2	\$ 2	2 %	22	28	. 5	8 7		7 %	• •	- N	,							
ZHITOMIR	52	22	7	5	20	20	77	6	2	9:	*				•	N I	•••						S
VINALISA	27	2:	7	스 ;	, ,	Ζ;	22	<u> </u>	9:	ጋ:	52				.	W F							S
CHERNOVSTY	326	2 6	25	23	2,4	3 t	32	32	202	21	2 E				~	- =			_				
CHERNIGOV	23	23	13	1	1 6	£.	2	-	2	<u>*</u>	7				•	~	•						m.
SUMY	23	215	6 2	2 2	~ ×	~ =	Œ 9		= =	21	21				<u>.</u> .	 	••••						
CHERKASSY	3 %	12	100	2 2	18	20	2 2	8 2	: 2	2	33				. •	· N							
KIROVOGRAD	27	13	610	2:	81	21	12	2 5	512	91	24			•	40 4	m 4	•						v. «
WIKOLAYEV	29	-	91	<u> </u>	2	22	25	5	9	12	: 2				· ~		• • •						Ņ
KHERSON	53	-	15	2	5	25	22	61	2	5	22				<u></u>	•	•						v.
SIMPEROPOL	3,4	∞ «	4	<u> </u>		٥ م	23	20	2 2	9 2	27				4 0	- r							c n
DONETSK	27	· •	` =	, 6	13	: _	: =	2 5	: =	: 2	22				15	. ~							,
VORDSHILOVGRAD	~	80	2	=	=	2	1	<u>+</u>	6	*	20				9	9					-		-
GROONG	56	21	23	52	2:	7:	25	7	£ :	5	\$				- • !	~ (æ 1
77 - LOW	77	9 -	5 %	> 7	2,0	9 2	<u>:</u> :	e v	5.	<u>:</u> :	2 2				70	9 6	,.						٠,
COMEL	22	: =	52	: 6	202	17	. e	22	22	3 5	22				• 60	· W			-	-			N
BREST	27	25	26	24	2¢	۲,	22	۲,	8.	61	ړ:			٠ د	ر ا ا	95	(-, -	-	_				~ c
UPA 1745VCK	57	7 7	? ?	7 %	77	n 4	V L	n a	~ _	٠.	~ 4					•							v r-
DRENBURG	\$ 2	26	50.	18	2.5	. ~	ۍ ،	, 4	, œ	, 0	14	۸.	. 2			20.	_	•					

H D K X Z W Z		24
# M K Q 4 % 4		71
ひてほれてのでち		5 2
MEDALOLN	0.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	* 2 2
NAKIANES	### ### ### ### ### ### ### ### ### ##	105
ろんがてむれてら	\$6822684211111111111111111111111111111111	35
NIKHEHN	まなんしゅりこうののりからのうましたとうをもならいなかいともってっているとしましましましましましましましましましましましましましましましましましましま	37
ಐ∢⊻⊃		29
ほ こりとらくしい	$\begin{array}{cccccccccccccccccccccccccccccccccccc$;:
3 13564-5		2 %
&mn±~⊢∾ ∢	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	3 65
20124-	25340511111111111111111111111111111111111	29
OWEZEDEC	0 11 0 0 11 0 0 12 0 12 0 13 0 13 0 13 0	\$ 5
	14401111111111111111111111111111111111	28
> C ~ C C C C C C	00000000000000000000000000000000000000	30
N484-0>	ままままない おんかい しょうしょう ちょうしょう しょうこう ちょう とうとう とうとう とうしょう しょうしょう しゅう しょう しょう しょう しょう しょう しょう しょう しょう しょう しょ	29
ドリモアシオモン	20001111111111111111111111111111111111	25
# NIN = X	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	22
F4F48	468205144600044188867115660241668761717	28
ひょひきなアベド		32
ひれりて以下す	27-0118-4-4-4-00-00-00-00-00-00-00-00-00-00-00-	* 0
NF4>4064	######################################	9:
*K4NZOOK		ð.
×0 =		245
	× ₹	
700 w	PERM SVEROLDVSK CHELYABINSK TYUYEN TYYYEN TYYYEN TYYYEN TYYYEN TYYYEN TYYYEN TYYYYEN TYYYYEN TYYYYEN TYYYYYYYYYY	FRUNZE

DISTANCES TO 1975 DIL SOURCES IN 100 KM

APPENDIX C
DISTANCES TO GAS SOURCES

		Ē	DISTANCES TO 1960 GAS SOUPLES IN THE RE	1960 GAS	SUUPILES IN	100 25			
NODE	KRASNUDR	STAVPOPL	GROZNYY	TATAR	BASHKIR	SARATOV	VOLCOGRD	DASHAVA	F_UKPAIN
	:	ç	76	2.0	ů.	1.5	1.1	71	91
LEN INGPAIR	<u>.</u>			26	. 6	<u>-</u>	15	6.	÷
ACV6084110	<u>.</u>		; -		2.5	•	61	*	6
40.5CDM	- !	2:			36	2	12	91	=
KAL ININ	2 :	2 :			, ,		12	13	~
KALUGA	21	:	<u>.</u>	S :	:	2			
RYAZAY	21	*	ec 	6	17	٠ ٥	• ;		. ^
T(1) A	•		15	2.2	7,4	0	= :	2:	- ;
XA/AN	20	, <u> </u>	35	~	r	0	21	25	S
> × × × × × × × × × × × × × × × × × × ×	, K	27	31	ş	œ	~	•	62	22
C AD ANCK	2	24	28	c	=	•	•	26	۵;
	7.	5 2	33	ę	£	6	=	č	5 2
	; •) =	٠.	53	31	<u>.</u>	£	15	~
	• •	. "	~	52	27	12	7.	£	•
ACTION CH	=		1.	28	6	15	81	* _	~
	: =	: <u>"</u>	0	26	28	<u>*</u>	11	12	•
	2 2	2 2		52	27	12	±	-	ç
() KYANSK	<u>.</u> ;	2 6	2.2	ì	1.2	2	•	52	£.
214	7 (3 %			<u>«</u>	•	2	92	<u>6</u>
VIII.6 658AU	3:	5 6	36	-			2	22	12
SARATIJA	٤.	Ş.*	, =		· F	92	•	22	æ
RUS LUV	- 4 -	~ •	÷ c	; =		61	77	*2	10
KRASIMOAR	→ .	٠-	2		\ <u>\</u>	20	22	25	=
STAVROPOL	•	.	• •	ř		36	26	27	£2
ORDZIENAIK I OZE	6 7	٠ ج	۰.	2;		76	36	2.2	13
CROZNYY	0	•	- ;	£ (; <u>c</u>		21
KIEV	-2	12	\$2	2.5	2 6		: =	<u>.</u>	-
KHARKOV	•	<u>.</u>	<u>.</u>	;;	2 5	: E		-	
	*	5 2	30	0	£ ;	S :	` `		-
TALLIN	21	23		31		E (? ;		
HINSK.	۲	Ξ.	37	•	5	2 3	÷ ;		
TERNOPUL	22	5.6	2 8	33	35	62:	\`	· •	` -
ZHI TOMIR	≂	23	2.2	35	3	<u>-</u>	5 ;	٠.	: -
VINNITSA	22	. * 2	82	33	35	02	2:	•	
DNEPROPETROVSK	2	21	91	23	I .	~ :	<u>.</u>	- ;	
VORUSHILLUVGRAD	•	*	6	28	30	2	_ :	7	
1888	82	ž	34	40	25	12	6 2 :	• ;	> ;
1154	22	34	38	۴.	~	91	E	r.	çç

S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RR CG
7
A 0 P P O P P O P P P P P P P P P P P P P
7 C C C C C C C C C C C C C C C C C C C
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
5-22224
13 13 14 11 11 11 12 13 14 13 14 13 14 14 15 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18
2000
3 17 21 21 20 20 20 20 20 20 20 20 20 20 20 20 20
2
ŗ
16 13

				6	DISTANCES TO	_	970 GAS	SSOURCES	ES IN	100 K4						
		×	s				×		>				w			
		~	-	، ی		€ .		•.•	0			0	ı			
		< 1	< ∶	K		⋖ :	>	⋖	ب			~	>			
		Ŋ	>	0	-	S	æ	_	ڻ			S	×	۵	60	ی
z	×	Z	~	7	<	=	>	٧.	-	Δ.	•	I	€′	>	< <	4
-	0	c	-	z	-	×	S	_	ی	w	⋖	⋖	<	~	7	~
c	Ŧ	0	۵.	>	<	_	I	c	æ	~	¥	>	_	v	<	_
w		*	ب	>	œ	œ	>	>	O	Ł	>	•	>	•	>	_
SMOLENSK	23	13	15	61	82	20	60	7 7	9	23	26		•		36	3.6
MINSK	6	23	2		4	¥		, <u>c</u>		9 0	3.6					
TRILISI	36	:=	· •	, "			, F	3 %	× ×	3,4	, r				2 7	2 4
BAKU	-		` -	` «	4 4) r		; F	5 4	٠.		<u>.</u>		- :	
YFREVAN		<u>-</u>	. 0		2 %	3,6	, ,,	. 0	<u> </u>	-			E 4		7 5	1.0
LUISK		E	, 00	, ,	5 6			, ,		7	° =		9 6		7 4	, ,
ROVYO	, e		202	*	2 :	·	5 6) X	. ~	7	7 =		^ E		, 4	. 4
UZHGORJO	100	11	2	, 5	28	Ç	, C	; ;	. 4						` 1) 1
EVAND FRANKOVSK	35	92	=	22	27	2	2	2.5	, K	; ;	2 2					, W
TERYOPOL	90	±	91	20	25	2	*	2	22	۽						
ZHI TOMIR	82	~	*	£		, K	. "	2					٠.			9 6
VINCITSA	6	13	. 2	2	7.	2	7 :	200	; ;	2 5	, 4		۰ د		, 4	, ,
KHMELNITSKIY	53	=	2	0	24	5	; *	2 2	;;	. 6	. Y		· «		9 0	9 0
CHERNOVSTY	, (F	1.7				2 6	. *	, *	3,5						2 4	
CHERNIGOV	*	12	: :	*	2 2		- C	2 5	170	3 2	2 6		<u>,</u>		• v	
SIIAY	C	€	; <u>c</u>	7		, ,		: =			, ,		• •		2 6	`
POLTAVA	2	. ~	•		32	76	2 .	٠.	<u>.</u>	2.6	1 0		n -		, 6	0 ° 6
CHERKASSY	33			2	, v		, ,	. 5		; £	2 6		• •			
DDESSA	\ =	2 =	J #	2 -	3 %	- «	, ,	3 5	, r	2 7					~ ;	? ;
NIKI AYEV	2	: =			2 6		36			÷ 5	, ,		.		· ·	- 6
KERKUR	, ,	2 =	2 2	9 4) C		, ,	2 6	, ,	2 5	? ;		n •		7 ;	2 5
DNEPROPETROVAK	, ,	2 -	y c	9 6		, ,	, ,	> *	٠ •	2 6	C (v ,			÷ ;
) °	- 4		2 0	77	17		: :	. :	5 8	2 :		, ,		E (÷ ;
VORDSHILDVGRAD	; ;	جا .	٠.	٠.	7.	2 "	2	. <u>.</u>	-	, ,	2 4		٠,) A	D 4
GROUND	<u> </u>	, (2	۶,	,00	9 7) (3) <u>}</u>		200	3 7 7		, <u>.</u>		- 0	
GOMEL	52	13	:	; c	50	22	20,) -	; ec	; <u> </u>	2 2		. «		2 4	2 %
RREST	36	20	22	92	31	33	Ę	2	53	96	33		•		2.5	
(JFA	92	92	28	35	m		53	9	£	•	39		24			
12HEVSK	5 6	9 2	82	35	٧.	*	20	91	Ē	~	39		*		19	2 62
PERM	24	29	30	34	₩.	~	22	£	20	_	Ţ		2.2		. 60	28
SVERDLDVSK	*	3,4	36	9	=	01	29	54	92	ø	47		33		13	22
CHELYABINSK	33	33	35	39	<u>0</u>	æ	21	23	52	•	\$		32		=	20
GURYEV	£	92	£.	35	21	23	0.	æ	01	92	39		92		81	15
AKTYURINSK	32	32	~	7 7	12	2	53	22	27	2	E		34		~	5
KUSTANAY	35	35	34	8 0	0	~	2.2	23	52	<u>2</u> 3	4 5		32			20
CHIMENI	EC	*	20	54	34	33	ž	62	31	37	19		5 6		82	•
הבוזע אמחר הביי היים	52	20	25	20	36	34	E (3	33	39	©		œ.		20	0.
ACAA_A7A	٠. د د	<u>,</u>	¢ ;	9 5	• •	£ .	37	35	37	Ç;	7 9	51	25	9 6	52	2
s abstract	7.5	ř	7	٠ ا		<u>.</u>	2 6	97	⊋ ;	£:	9		S 1		~	ec ,
- 7075	Ž	7	ŕ	ř	Ę	ç	ç	ř	_	7	2		5		7,	-

を言えているというないというというというというというというなどところことにころってしまるととことにことにいるというとしまるととにといるというというというというというというというといいといいといいといい を見てよりになるとしているというないというないというなりにいるなりになることをできるというというというというというというとしてきををををしているというないというというないというとしてもををしているという MIN NO MODERNA DE DE COMENCIA \$2500 \$21222 \$215 \$2500 P + 4 4 4 4 2 1 2 6 4 F F D 1 1 4 6 1 1 1 8 6 2 5 5 そのかの ちゅうとりょうりょうりょうというというというというというというというとしているというとしているというとしていることとととととととととととととというとしているというというというというというという Name in the second of the seco

NCES TO 1975 GAS SOURCES IN 100 KI

								•												
sa.		⊻ ≪ ≪		ن و	ω.≪		∨ ∢	>01			۵∢	w 15						¥ 3		0 K M
ż.c	×C	vzc	- · ·	CNE	~ ∢ ⊦	ω×ν ν××	∝∢ ⊢	000	ه. ۱۱	æ ⋖	ν Ξ ∢	× « <	452	946	∢∪ I	2 < C	2 ~	क्र १८	<i>7.</i> ≪	2 60 3
.	• x ⊷	5 D K		. ==			-0>		. E. E.	(× 5	· > <	. .	• ∪ ∢				. w 2	1 ≪ ()	<i>*</i> ~ ≻	
SHOLENSK	812	13	25	19		18 17		~ ~	21	26	10			32	333	30 34	26	m m	1 35	212
TB1L IS1	32:	22								; i n •	23		· 10 6					· 10 4		
FEREVAN	3 %	5 5						~ ~		- •	5 9 7 8		.					• •		
LUTSK	27	80 .						~ ~		31	w 4		~ 0					€0 KI		
UZHGOROD	3 2	2								18	٠ -	22:	~ ~ .					ישו		
TERNOPOL	30	<u> </u>						V ~		27	4 7		- 6					u w		
ZHITOMIR	82	21								\$2	ın i	ا ص	~ (€. E		
KHMELNITSKIY	62 62	2 E								9 7 8 8	n m	~ 00	o c o					ט נט		
CHERNOVSTY	35	12:						· 100 ·		8	m	£.	~					~ 1		
CHERNICOV	*	21 8						~ ~		52	* C	ø (*	n r					n (v		
POLTAVA	2 5) ~						• ~		: 2	•	· 						· N		
CHERKASSY	35	C.						~ •		23	€:	.	σ (m r		
DDESSA VIKULAVEV	5 6	10						~ -		5 %	o =	o v	.					y (e)		
KHEYSON	35	22								23	2	'n	. 6					m		
DNEPROPETROVSK	53	۰.			•			 .		50	21	~ (.					~ (
JONETSK VORUSHTI OVGRAD	2 2 9	4 M								51 12	e e	~ ~	10 PL					~ ~		
SRONG	\$2	20						~		33	1	15						m		
VITEBSK		22						~ -		2 g	<u>د</u> د	0 0	~ ~					₩ F		
SOME		12						41		\$ 2	0	, eo	. .	,) M		
BREST		20						~		32	* (1 1	.					m (
UFA 1745VCK		* *						-		3 9	6 8 6	12	- ~					N 160		
DRENBURG		6								33	56	11	6					~		
PERA		28						~ (7	3	27	6 (W i		
SVEROLDVSK		0 6						۰,		•	9 6	- 2	,							
GURYEV		c 6.						-		35	23	91	٠ ٥					^ 		
AKTYUBIYSK		30						~		£ 3	36	56	æ					~		
KUSTANAY	35	ec 6						- ^		7 1	34	\$ 6	•					m r		
DZHAMBUL	υ 10 υ 10	2 4						ዓ ሎ		26	0 6 0	0 0	٠.					· ~		
ALMA_ATA	29	9						m		9	25	4 1	٠,					W (
ASHKHABAD Dushanbe	2 Z	38			31 2 2 2 2		26 27	~ ~		25 25		38.2						~ ~		

	O~ W X 6 7 K O	3
	748>	91
	V7F 1040	92
	DNEX	12
	Z < Q > I	3
	4 U X4 X	11
	ಣ≪∾⊒⊶	Φ:
	@ 4 N 4 >	11
X	a ⊃ × ∪ ∢	39
)01 N	そ ごびドスルモN	37
CES	CANIA>A	*
S SOU	64 ¥⊃	ης 10. 80
75 GA:	a.w.e.z	36
DISTANCES TO 1975 GAS SOURCES IN 100	>0~000%0	30
NCES	N4K4F0>	33
DISTA	×3≻€≻NI>	30
_	ゆくいゴバード	35
	⊢ ∢⊬∢ଝ	88
	られロとはアア	2.0
	ひ下∢>ROP ┑	7 4
	* * < N Z O C *	33
	×oz-	52
	Zοοώ	TASHKENT

APPENDIX D

COAL, OIL, AND NATURAL GAS POTENTIAL INDICES BASED ON
DISTANCE AND TRANSPORT COSTS

COAL, OIL, AND GAS POTENTIAL INDICES BASED ON DISTANC	COAL,	OIL.	AND GAS	POTENTIAL	INDICES	BASED	ON DISTANCE
---	-------	------	---------	-----------	---------	-------	-------------

NCDE	Caea	0260	GP60	CP70	0270	SP70	CP75	0275	6275
LENINGRAD	17	11	2	18	25	11	19	32	14
HURMANSK	ii	7	ā	12	17	ō	13	22	0
PETRGZAVODSK	15	10	ō	16	23	ō	17	29	0
NOVGOROD	19	11	3	19	27	12	20	33	16
VOLOGDA	20	14	ō	21	33	12	22	41	17
ARKHANGELSK	14	10	ō	16	23	ō	17	29	ō
SYKTYVKAR	15	10	ŏ	17	26	9	iá	35	15
MOSCOM	30	17	4	31	38~	17	31	47	21
YAROSLAVL	22	16	ò	23	37	13	24	46	18
VLADIMIR	23	20	ō	25	44	15	26	52	19
IVANOVO	21	18	ŏ	23	41	14	23	49	19
KALININ	23	15	3	24	34	14	25	41	19
KALUGA	38	15	4	37	35	17	37	43	21
KOSTROMA	21	16	ò	22	37	13	23	46	18
RYAZAN	28	18	4	30	40	15	31	48	20
TULA	41	16	4	40	37	19	40	44	23
KAZAN	20	53	ż	22	113	13	23	126	19
GORKIY	21	24	3	22	53	14	23	63	19
KIROV	19	17	ő	21	41	ŏ	22	53	ó
YOSHKAR_OLA	19	33	ŏ	21	71	12	22	83	18
SARANSK	23	26	3	25	54	iž	26	64	19
CHEBOK SARY	21	34	3	23	72	13	24	83	19
JLYANOVSK	21	47	ő	23	96	'n	25	108	ò
BELGOROD	46	13	8	50	37	40	51	43	50
	36	16	6	39	38	27	40	45	33
VCRONE ZH KURSK	37	14	5	40	36	25	41	43	30
OREL	34	14	4	36	35	21	36	42	26
	31	14	4	33	34	19	34	42	24
BRYANSK	35	17	ŏ	37	39	20	37	46	25
LIPETSK TAMBOV	37 31	20	Ö	33	44	14	33	52	18
	25	28	4	27	58	14	28	67	21
PENZA	21	19	ŏ	25	43	ì	26	49	ī
ASTRAKHAN	36	22	4	39	46	13	40	53	21
VOLGOGRAD	22	72	ī	24	139	14	26	154	26
KUYBYSHEV	25	37	7	27	69	18	28	79	26
SARATOV	25 98	16	12	104	36	55	105	40	42
POSTOV			10	35	39	46	37	44	32
KRASNODAR	33 33	23 16	13	36	34.		37	38	36
STAVROPOL	20	20	٥.	22	51	.40 2	23	49	i
MAKHACHKALA	24	18	0	26	45	21	27	44	22
MALCHIK	24	20	5	26	60	22	27	51	24
GROZHONIKIDZE		20	5	24	65	22	25	56	23
SROZNYY	22		3	33	34	25	34	41	30
KIEV	30	11 12	0	60	30	29	61	35	36
ZAPOPOZHYE	55 56	14	14	62	37	70	62	44	87
KHARKOV		• .			25	25	31	29	23
FAGA	21	12	8	29	22			26	18
KISHIMEV	21	. 9	Ö	23		14	24		13
TALLIN	15	9	2	17	22	-	17	28	
PIGA	16	10	0	18	23	. 8	19	29	12
VILNIUS	18	10	0	20	. 24 . 20	10	21	30	14
KAL ININGRAL	15	9	0	17		.0	18	26 20	-
SMOLENSK	24	13	0	26	31	16	27	39	20 0
PSKOV	17	11	0	19	25	0	20	32	-
MINSK	21	11	2	23	28	10	24	35	17
TBILISI	17	14	1	19	27	16	20	31	19 24
BAKU	16	36.	. 7	18	58	16	1.3	58	4

COAL, DIL. AND GAS POTENTIAL INDICES BASED ON DISTANCE

NODE	CP60	OP60	GP60	CP70	0P70	GP70	CP75	OP 75	GP75
YEREVAN	14	11	1	15	23	12	16	27	15
LUTSK	21	10	ò	26	24	15	27	29	_
ROVNO	22	ió	ŏ	27	25	15	29	31	16 16
UZHGOROD	18	10	ŏ	21	22	25	22	26	_
IVANO_FRANKOVSK	19	ii	ŏ	23	25	25	25	26 29	22 22
TERNOPCL	ži	10	5	26	24	20	27	29	21
ZHITOMIR	25	ii	á	28	27	20	29	33	23
VINNITSA	23	10	3	26	26	18	29	32	23 21
KHMELUITSKIY	22	10	ő	25	25	19	27	32 30	21
CHERNOVSTY	19	iŏ	ő	22.	22	15	23	27	17
CHERNIGOV	28	12	ŏ	36	38	19	31	49	23
SUMY	34	13	ŏ	37	44	30	38	50	2 <i>5</i> 36
POLTAVA	46	13	ŏ	50	43	69	51	49	
CHERKASSY	40	ii	ŏ	43	32	24	44	38	86 29
KIPOVOGRAD	32	ii	ŏ	34	29	0	35	35	0
ODESSA	24	10	ő	27	24	18	29	29	
VIKOLAYEV	32	ii	ŏ	35	28	20	36	33	22 25
KHERSON	32	ii	ŏ -	35	28	20	36	33	25
SIMFERGOOL	31	ii	ŏ	34	26	0	35	30	29
ONEPPOPETROVSK	56	12	š	61	32	40	62	37	49
CONFISC	150	14	ő	163	33	45	154	39	51
VORCSHILOVGRAD	163	14	7	175	33	49	176	39	54
380040	17	9	ó	19	23	10	20	28	14
VITERSK	22	12	ŏ	24	29	0	24	37	18
10G1LEV	24	12	ŏ	26	31	0	27	40	18
GOMEL	26	12	ŏ	28	34	.16	29	45	19
SREST	19	ìõ	3	23	24	13	24	30	15
UFA	ŽÓ	51	ž	22	102	ii	24	116	22
IZHEVSK	20	32	õ	21	72	12	22	89	20
CRENBURG	18	29	ĭ	21	51	12	22	84 74	29 40
PERM	24	35	ò	24	89	11	25	112	17
SVEROLDVSK	23	18	ŏ	24	45	.,	26	64	16
CHELYABINSK	29	21	ŏ	30	49	9	32	64	18
TYUMEN	19	14	ŏ	22	37	0	24	58	0
KURGAN	22	17	ŏ	25	40	Ö	27	59	ő
OMSK	21	iż	ŏ	25	28	ő	29	44	0
NOVOSIPIRSK	34	8	ŏ	43	20	ŏ	51	40	ő
TOHSK	33	7	ŏ	42	18	ŏ	49	47	Ö
BARNAUL	25	8	ŏ	31	18		37	2.2	^
KRASNOYARSK	24	6	ň	32	15	Õ	40	31	` j
TRKUTSK	23	5	Ö	26	ií	ő	26	20	Ó
CHITA	12	4	ŏ	14	9	ŏ	17	15	ŏ
ABAKAN	22	6	ŏ	28	15	ŏ	32	27	õ
KEMEKOVO	79	7	ŏ	100	īś	ŏ	119	38	ŏ
JL AN_UDE	12	4	Ō	14	10	ŏ	16	17	ŏ
VLADIVOSTOK	10	3	Ŏ	13	- 6	ŏ	14	9	ŏ
KH48AROVSK	7	3	0	8	7	ŏ	Š	1ó	ŏ
3L AGOVE SHCHENSK	8	3	Ö	9	7	ŏ	10	ii	ŏ
YUZHNO_SAKHALINSK	7	2	ŏ	8	6	ŏ		• •	ő
MAGADAN	5	3	ŏ	6	6	ŏ	į	9	ŏ
YAKUTSK	7	3	Ö	8	7	ō	ġ	10	ŏ
PETPOPAVLOVSK_KAM	5	2	ō	6	6	ŏ	6	В	ő
GURYEV	14	14	Ö	22	39	11	23	48	20
AKTYUBINSK	18	19	ō	20	44	9	22	55	18
URALSK	20	22	ŋ	22	46	Ó	23	56	ő
KUSTANAY	23	17-	O	25	38	9	27	51	17

COAL, OIL, AND CAS POTENTIAL INDICES BASED BY DISTANCE

NODE	CP60	OP60	G2 60	CP70	0P70	GP70	C275	GP75	GP75
PETROPAVLOVSK	21	14	9	25	33	2	29	47	0
KOKCHETAV	23	12	Ó	25	29	ň	29	42	š
TSELINOGRAD	24	11	ō	32	25	ň	39	36	0
KAPAGANDA	37	10	ō	49	23	ň	58	32	ŏ
KZYL_GRDA	13	ii	ŏ	15	24	ň	17	31	á
CHIMKENT	14	9	ō	16	20	ğ	18	27	15
DZHAMBUL	13	8	ā	16	19	Ŕ	19	25	14
SEMIPALATINSK	17	7	0	21	16	Ŏ	25	25	ì
PAVLODAR	24	8	Ō	38	20	ñ	54	32	ň
UST_KAMENOGORSK	17	7	0	21	16	ò	25	24	ň
ALMA_ATA	13	7	O	16	16	7	ĩś	22	12
ASHKHABAD	12	11	0	14	24	ò	15	29	19
DUSHANAE	9	7	0	11	15	i	12	19	iś
TASHKENT	14	9	0	17	20	iō	19	26	16
FRUNZE	12	8	0	15	17		17	24	13
NORIESK	2	0	9	2	Ö	Ö	2	ŏ	i
ELISTA	24	13	0	26	28	õ	27	32	ò

COAL. DIL. AND GAS POTENTIAL INDICES MASED ON TRANSPORT COSTS

3COV	CPSO	0260	GP60	CP70	0970	GP 79	CP75	OP75	SP75
LENINGRAD	3	11	1	4	25	3	4	11	
HURHANSK	2	7	ō	ż	17	ó	3	32 22	0
PETROZAVODSK	3	10	ŏ	3	23	ŏ	3	29	0
MOVGOROD	4	11	ī	4	27	3	4	-	
VOLOGEA	4	14	ò	4	33	3	4	33	4
ARKHANGELSK	3	10	ŏ	3	23	0	3	41	4
SYKTYVKAR	3	io	ŏ	3	26	ž	_	29	0
HOSCOW	6	17	ĭ	í	39	4	4	35	4
YAROSLAVL	4	16	ż	5	37	3	5	47	5
VLADIMIR	5	20	ó	ś	44	4	5	46	5
OVCHAV I	4	13	ŏ	Ś	41	7	5	52	5
KALININ	5	15	ĭ	ś	34	4	5	49	5
KALUGA	ģ	15	i	7	35		5	41	5
KOSTROMA	4	ιδ	ò	4	37	4	7	42	5
RYAZAN	6	18	ĭ	6	40	4	5	40	5
TULA	š	16	i	8	37		6	48	5
KAZAN	4	53	i	4	113	5	9	44	6
GORKTY	4	24	i	7	53	3	5	126	5
KIROV	4	17	ò	4		4	5	63	5
YOSHKAR_DLA	4	33	ă	4	41	0	4	53	0
SARANSK	5	26	ĭ	5	71 54	3	4	83	5
CHEBOK SARY	4	34	i	5		3	5	64	5
ULYANOVSK	4	47	ò	5	72	3	5	83	5
BELGCROD	õ	13		-	96	0	5	108	0
VGRONEZH	7	16	2	10	37	10	เว	43	13
KURSK	7	14	_	8	38	7	6	45	8
OREL	ý	14	1	3	36	6	8	43	9
BRYANSK		•	1	<u> </u>	35	5	7	42	7
LIPETSK	6 7	14	1	7	34	5	7	42	6
TA480V		17	0	7	39	5	7	46	6
PENZA	6	20	0	7	44	4	7	52	5
ASTRAKHAN	5	28	l	5	58	4	6	67	5
VOLGOGRAD	4	19	0	5	43	0	5	49	0
	7	22	1	8	46	3	8	53	5
KUYBYSHEV	4	72	0	5	139	4	5	154	7
SARATOV	5	37	2	5	69	5	6	79	7
POSTOV	20	16	3	21	36	14	21	40	11
KRASNODAR	7	23	3	7	39	12	7	44	8
STAVROPOL	7	16	3	7	34	10	7	38	5
MAKHACHKALA	4	20	0	4	51	• 1	5	49	บ
MALCHIK	5	18	0	5	45	5	5	44	6
STG1 NINOHZGRO	5	20	1	5	60	6	5	51	6
GFOZYYY	4	22	1	5	65	6	5	56	6
KIEV .	. 6	11	ı	7	34	6	7	41	8
ZAPOROZHYE	11	12	0	12	30	7	12	35	9
KHARKOV	11	14	4	12	37	18	12	44	22
LVOV	4	12	2	6	25	6	6	29	6
KISHINEV	4	9	0	5	22	4	5	26	5
TALLIN	3	9	1	3	22	2	3	28	3
RIGA	3	٤0	o	4	23	2	4	29	3
VILNIUS	4	10	0	4	24	3	4	30	4
KALININGRAD	3	9	0	3	20	0	4	26	Ó
SMOLENSK	5	13	อ	5	31	4	5	39	5
PSKOV	3	11	0	4	25	0	4	32	ń
HINSK	4	11	ı	5	2.8	3	5	35	4
TRILISI	3	14	0	4	27	4	4	31	5
BAKU	3	36	2	4	. d	4	4	58	6

COAL, OIL, AND GAS POTENTIAL INDICES BASED ON TRANSPORT COSTS

0(1-2)	W.C. 4.	U JAJ 1		1.401013	34365 01	I DM 13F	71 CG313		
3006	CP60	0960	GP60	CP70	0970	GP70	C275	0275	GP75
YEREVAN	3	11	0	3	23	3	3	27	4
LUTSK	4	io	ž	Š	24	4	ś	29	4
ROVNO	4	10	ŏ	5	25	4	Á	31	4
UZHGOROD	4	10	ŏ	4	22	6	4	25	5
IVANC_FRANKOVSK	4	ii	ŏ	5	25	6	5	23	6
TERNOPOL	4	iò	ĭ	É	24	5	5	29	5
ZHITOHIR	5	ii	i	6	27	5	6	33	,
VINITSA	5	iò	i	š	26	Ś	6	32	5
KHMELHITSKIY	4	10	ò	5	25	5	5	30	ś
CHERNOVSTY	4	12	š	4	22	4	5	27 27	4
CHERNIGOV	Ġ	iź	ő	6	38	5	ś	49	6
SUMY	ž	13	ŏ	7	44	ś	ă	50	9
POLTAVA	9	13	ŏ	10	43	17	10	49	22
CHERKASSY	8	11	ŏ	9	32	6	9	38	7
KIROVOGRAD	6	ii	ň	í	29	ŏ	ŕ	35	ò
ODESSA	5	10	ó	5	24	5	6	29	6
NIKOLAYEV	6	ii	ŏ	ź	28	3	7	33	6
KHERSON	6	ii	ŏ	ż	28	ś	7	33	6
SIMFERCOOL	6	ii	ŏ	7	26	ó	,	30	0
DHE PROPETROVSK	11	12	ž	12	32	10	12	37	12
DONETSK	30	14	ō	33	33	ii	33	39	13
VOPOSHI LOVGRAD	33	14	2	35	33	12	35	39	14
GROONO	1 3	مُ مُ	ō	4	23	3	4	28	4
VITEBSK	4	12	ŏ	5	29	ò	5	37	* ;
MOSTLEY	5	12	ŏ	5	31	ŏ	5	40	5
32466	ś	12	ŏ	-	34	4		45	-
ROEST		10	i	6 5	24	3	6 5	30	5 4
UFA	7	51	-		_	3			
IZHEVSK	7	32	l O	4	102	3	5	116	6
GRENBURG	7	36 29	ò	4	72		4	89 74	. 5
SEBA	5	35	Ö	5	61 89	l,	5		,0
SVEPDLOVSK	5	18	Ö			3 2	-	112	4
CHELYABINSA	5	21	ů	5	45		5	64	4
TYUMEN	4	14	ŏ	6 4	49 37	2	6	64	5
KURGAN	7	17	0	5			5	58	0
OMSK	7				40	0	5	59	0
10V0SIBIRSK	ž	12	0	5	28	0	. 6	44	0
		6	0	9	20	0	10	40	0
TOMS < BARNAUL	7	7	0	8	18	0	10	47	9
KRASNOYARSK	5 5	8	0	6		. 0	7	33	0
IRKUTSK	5	6 5	0	6	15	0	9	31	0
CHITA	2		2	5	11	0	5	20	0
ARAKAN		4	0	3	9	0	3	15	0
KEMEROVO	4 16	6 7	0	6	15) 3	5 24	27	0
NE VE VEROVO	2	4	Ô	20	19 10	0	23	38	ö
VLADIVESTOK	2	3	Ö			õ		17	
KHABARBVSK	ĺ	3	ő	3 2	6 7	õ	3 ?	10	0
ALAGOVE SHCHENSK	2	3			7	Ö			
YUZHYO_SAKHALINSK	í	2	0	2	6	Ö	2 2	11	0
MAGADAN	i		Ö	_		0		9	
YAKUTSK	1	3 3	Ö	1 2	6 7	2	l 2	10	0
PETPOPAVLOVSK_KAM	i	ž	0	i	-	0	l		
SURYEV	3				6	3		8	0
NK TYUBINSK	4	14	0	4	39		5	48 55	5
URALSK	4	19		-	44	2	4	55	5
KUSTANAY	5	22 17	0	4 5	46	0 2	5 5	56	0 4
U/- 1 + 4.8W I	Þ	4.1	U	7	38	2	7	51	4

COAL, DIL, AND GAS POTENTIAL INDICES MASED ON TRANSPORT COSTS

NODE	CP50	0260	GP 60	C270	0P70	GP70	CP75	CP75	977
PETROPAVLOVSK	4	14	0	5	33	o	5	47	0
KOKCHETAV	4	12	9	5	29	0	5	42	9
TSELINDGRAD	5	11	0	6	25	0	9	36	0
KARAGANDA	7	10	0	10	23	0	12	32	0
KZYL_ORDA	3	11	0	3	24	0	3	31	0
CHIMKENT	3	9	0	3	20	2	4	27	4
DZHAMBUL	3	3	0	3	19	2	4	25	4
SEMIPALATINSK	3	7	0	4	16	Ö	5	25	0
PAVLODAR	5	9	0	8	30	0	11	32	0
JST_KAMENOGORSK	3	7	0	4	16	9	5	24	0
ALMA_ATA	3	7	0	3	16	2	4	22	3
ASHKHABAD	2	11	0	3	24	õ	3	29	5
DUSHANSE	2	7	0	2	15	0	2	19	5
TASHKENT	3	9	0	3	20	3	4	26	4
FRUNZE	2	8	n	3	17	2	3	24	3
NORILSK	0	0	0	0	o	ō	ō	Ö	Ó
FLISTA	5	13	0	5	28	0	5	32	0

APPENDIX E
URBAN POPULATION DATA

SOVIET URBAN POPULATION AND GROWTH RATES

NODE	POP59ª	P0270ª	PCP 79ª	GROWTH 1 ^b	GROWTH2C
LENINGRAD	3003	3550	4073	19	15
MURMANSK	222	309	381	39	23
PETROZAVOOSK	141	192	234	37	22
NOVGOROD	61	128	186	111	45
VOLOGDA	139	178	237	28	33
ARKHANGELSK	258	343	385	33	12
	69	125	171	82	37
SYKTYVKAR			7831	_	13
MOSCOW	6009	6942		16	
YAROSLAVL	407	517	597	27	15
VLADIMIR	154	234	296	52	26
OVONAV 1	335	419	465	25	11
KALININ	261	345	412	32	19
KALUGA	134	211	265	57	26
KOSTROMA	172	223	255	30	14
RYAZAN	214	351	453	64	29
TULA	351	462	514	32	11
KAZAN	667	869	993	30	14
GORKIY	941	1170	1344	24	15
KIROV	252	332	390	32	17
YOSHKAR_OLA	89	166	201	87	21
SARANSK	91	191	263	109	38
CHEBCKSARY	104	216	308	104	43
ULYANOVSK	206	351	464	70	32
BELGOROD	72	151	240	109	59
VORONEZH	407	660	783	48	19
KURSK	205	284	375	39	32
OREL	150	232	305	55	31
			-	-	
BRYANSK	207	318	394	53	24
LIPETSK	157	290	396	85	37
TAMBOV	172	230	270	33	17
PENZA	255	374	483	46	26
ASTRAKHAN	305	410	461	34	12
VOLGOGRAD	591	818	929	38	14
KUYBYSHEV	806	1045	1216	30	16
SARATOV	579	757	856	31	13
ROSTOV	600	789	934	32	18
KRASNODAR	313	464	560	48	21
STAVROPOL	161	198	258	41	30
MAKHACHKALA	119	186	250	56	35
NALCHIK	88	146	207	66	42
ORDZHONIKIDZE	164	236	279	44	18
GROZNYY	250	341	375	37	10
KIEV	1110	1632	2144	47	31
ZAPOROZHYE	449	658	781	46	19
KHARKOV	953	1223	1444	28	18
LVOV	411	553	667	35	21
KISHINEV	216	357		65	41
	282	363	503 430	29	19
TALLIN					
RIGA	580	732	835	26 50	14
VILNIUS	236	372	481	58	29
KALININGRAD	204	297	355	46	20
SMOLENSK	147	211	276	43	31
PSKOV	81	127	176	56	39
MINSK	509	907	1262	78	39
TBILISI .	703	889	1066	27	20
BAKU	643	852	1022	33	20

SOVIET URBAN POPULATION AND GROWTH RATES

NODE	P0P59	POP70	POP79	GROWTH1	GROWTH2
YEREVAN	493	767	1019	55	33
LUTSK	56	94	137	69	46
ROVNO	56	116	179	106	55
UZHGOROD	47	65	91	36	41
IVANO_FRANKOVSK	66	105	150	58	43
TERNOPOL	52	85	144	62	70
ZHITOMIR	106	161	244	52	52
VINNITSA	122	212	313	74	48
KHMELNITSKIY	62	113	172	81	52
CHERNOVSTY	152	187	218	23	17
CHERNIGOV	90	159	238	77	50
SUMY	98	159	223	62	43
POLTAVA	.43	220	279	54	27
CHERKASSY	85	158	228	97	44
KIROVOGRAD	132	189	237	43	26
ODESSA	664	892	1046	34	17
NIKOLAYEV	251	362	441	41	22
KHERSON	158	261	319	65	22
SIMFEROPOL	186	249	302	34	21
DNEPROPETROVSK	691	904	1066	30	18
DONETSK	708	879	1021	24	16
VOROSHILOVGRAD	275	383	463	39	21
GRODNO	73	132	195	82	47
VITEBSK	148	231	297	56	29
MOGILEV	122	202	290	66	43
GOMEL	168	272	383	62	41
BREST	74	122	177	65	46
UFA	547	771	969	41	26
IZHEVSK	285	422	549	48	30
ORENBURG	267	344	459	29	33
PERM	629	850	999	35	17
SVERDLOVSK	779	1025	1211	32	13
CHELYABINSK	689	875	1031	27	13
TYUMEN	150	269	359	79	34
KURGAN	146	244	310	67	27
OMSK	581	821	1014	41	23
NOVOSIBIRSK	885	1161	1312	31	13
TOMSK	249	338	421	36	24
BARNAUL	303	439	533	45	21
KRASNOYARSK	412	648	796	57	23
IRKUTSK Chita	366	451	550	23	22
ABAKAN	172	241	302	40	25
KEMEROVO	56 200	90	128	60	42
ULAN_UDE	289 174	385	471	33	22
VLADIVOSTOK	291	254 441	300	45	18
KHABAROVSK	323	436	550 528	52	25
BLAGOVESHCHENSK	94	128	172	35 36	21
YUZHNO_SAKHALINSK	86	106	140	36 24	35 32
MAGADAN	62	92	122	48	32 32
YAKUTSK	74	108	152	46 45	
PETROPAVLOVSK_KAM	86	154	215	9 5 80	41 40
GURYEV	79	114	130	45	40 14
AKTYUBINSK	97	150	191	55	27
URALSK	99	134	167	36	24
KUSTANAY	86	123	164	43	33
				~ -	

SOVIET URBAN POPULATION AND GROWTH RATES

NODE	POP59	PUP70	P9P79	GROWTHE	GROWTH2
PETROPAVLOVSK	131	173	207	32	20
KOKCHETAV	53	81	103	52	29
TSEL INOGRAD	99	180	234	82	30
KARAGANDA	383	523	572	37	9
KZYL_OR DA	66	122	156	86	27
CHIMKENT	153	247	321	61	30
DZHAMBUL	113	187	264	65	41
SEMIPALATINSK	156	236	283	51	20
PAVLODAR	90	187	273	108	46
UST_KAMENOGORSK	150	230	274	53	19
ALMA_ATA	456	733	910	60	24
ASHKHABAD	170	253	312	49	23
DUSHANBE	227	374	493	65	32
TASHKENT	927	1385	1779	49	28
FRUNZE	220	431	533	96	24
NORILSK	118	135	180	14	33
ELISTAd	•	•	•	•	•

^aPopulation in 1959, 1970, and 1979

Source: Data compiled by Shabad in Bond and Lydolph (1979).

Percent increase 1959-1970

^cPercent increase 1970-1979.

dData not available.