FEB 1 1 2002 ENTREPENDENT THE

46

SEQUENCE LISTING
THE JOHNS HOPKINS UNIVERSITY SCHOOL OF MEDICINE
GERMINO, Gregory
WATNICK, Terry
PHAKDEEKITCHAROEN, Bunyong

<120> DETECTION AND TREATMENT OF POLYCYSTIC KIDNEY DISEASE

<130> JHU1680-2

<140> US 09/904,968

<141> 2001-07-13

<150> US 60/283,691

<151> 2001-07-13

<150> US 60/218,261

<151> 2000-07-13

<160> 113

<170> PatentIn version 3.0

<210> 1

<211> 53522

<212> DNA

<213> Homo sapiens

<400> 1

tgtaaacttt ttgagacagc atctcaccct gttccccagg ctggagtgca gtggtgtgat 60 120 catggctcac tgcagcgtca acctcctggg tctacttgat ctgtaaactt cgagggaagg tgtaataaac cctcctgcaa tgtctttgtt tttcaaaatc tttgtatttc acagtttagc 180 240 ttgagacaca gtcttgctct tgttgcccag gctggagtgc aatggtgtga tcttggctca 300 ctgcaacttc cacctcttgg gttcaagaga ttctcctgcc tcagccttcc gagtagctag gattacaggc gccgccacca caccccgcta attttgtatt tttagtagag atggggtttc 420 tccatattgg tcaggctggt ctcaaactcc cgacctcagg tgatccgccc acctcagcct 480 540 cccaaaatgc tgggattaca ggcgtgagtc accgcacctg gccaatgttc tatttttgag 600 aacacaacag ttcataatat attctacata gaccatacct gttatgtgta gataaacaga ctcttttccc atttaacacc ttttgcctta ggtttatttt tctggtatca atactggcac 660 acttactttg tttgcagttt cctgtctttt ttttttttt tttttttt gagacagagt 720 780 ctcactctgt cacccagget ggagtgaagt ggegggatet eggeteactg caacetetae ctcctgggtt catgcgattc tcctgcctca gcttcccgaa tagctgagac cacaactgtg 840 tgccaccatg cccagccaat ttttgtattt ttagtagaca cggggtttca ccatactggc 900 caggatggct caatctcttg acctcgtgat ccacctgcct ccgcctccca aagtgctggg 960

attacaggca tgagccactg tgcctggcct ttttttttct ttttgagatg gagtctcact 1020 ctgtcaccca ggctggagtg cagtggggta acctcaggtc actgcgacct ccgcctcccg 1080 ggttccagtg attctcctgc ctcagcctcc cgagtagctg ggattacagg cacccaccac 1140 catgcctggc taatttttgt atttttagta gagacggggt tttgccacgt tggccaggtt. 1200 ggtctcgaac tcttggcctc atgtgacccg cctgccttgg cctcccaaag tgctgggatt 1260 1320 acaggtgtga gccactgtgc ctggcctggc tttcttgttt cttttctcct cttctagttt ccccctttta ggctaacaat tattcactgt taataaaaac cctcaggtct gtattttatc 1380 1440 aagaaacatt tccctcacgt cttcttccct gaaccaaaca agatctctgg cacattttat ttgctctgtc tcaccacatg gattttgttt ttttgtttct ttgttttttg agatggagtc 1500 tcactcttgt tgcccaggct ggagtgccat ggcacaatct cagctcactg caacctccac 1560 1620 ctcctgggtt caagcgattc tcctgtctca gcctcctgag tagctgggat tacaggcgcg tggcaccacc cccagctaat ttttgtattt ttagtagaga cggggtttca ccatgttggt 1680 1740 caggetggte tegaacteet gacettgtga tetgeceace ttggeeteee aaagtgetgg 1800 gattacaggc atgagccacc acgcccggcc cccatggttt ttcaaatagt ttagaatttc atttccaggt aactaatttg cttctttaaa catatgtctt ttctatttaa gaaatccttt 1860 ctaaacaatt gcattttatt ccacaaccgc cttcaaacaa tcattgagac ttggttaatc 1920 1980 tgttttgctc atttggcagc agtttcttgt ggctgtttct tccctccact ggagtccttg aatcttaagt ctgtcatttg actgcaatta aaagctgggt ttggaataca atcgcagcct 2040 taccatccac ctgctgtgtg acctggtaaa tttctttttt ttttttgag acggagtctt 2100 gctctgttgc ccaggctgga gtgcagtggc acaacctctg cctcccaggt tcaagcgatt 2160 ctactgcctc aggctcccta gtagctggga ttataggtgc ctgccaccat gcccagctga 2220 2280 tttttgtatt tttagtagag atgaggtttc accatgttgg ctaggctggt ctcgaacttc 2340 tgatcttgtg atctgcccgc ctcggcctcc caaagtgctg ggattacagg catgagccac cactcccagc cagttctttt tttctttttt ccattttttt ttttttcgag acaggatctt 2400 actcttttgc ccaggcggga gtgcagtggc acaatcacgg ctcagcgcag ccactgccta 2460 2520 ctgggctcac acgctcctcc ggcctcagcc tctcgagtac ctgggactac aagcgtgagc cagtttggct aatttttgta gaaacggggt ctcgccatgt tggccaggct 2580 ggtctccaac tcctggactc aagggatcca ccttcctccc cctctcaaag ttctgggatt 2640 2700 accggagtga gccactgtgc cctgctggca aatttcttaa actgtctgtg cctcagtgac 2760 ctcatttaat aaagggaata attgtagcac actttttcta gagctgtgaa gattcaatgg 2820 aataaataag gcaataaatg aatggatggg gaatgaagga tgtgggtttc ctccctcttg

tettteaata ageteteace ateaacetee cattgeetgt tetetetet ecceetetet 2880 ccctctgtct ctctctcagc caggaaacct ggggtaggga ggcttggagc cagcgggtgc 2940 3000 gtcgggaggc tgcgggtact gactcgggcc gcgcacggag atcgcgggag aaggatccac 3060 aaccgcggaa gaaggatcag ggtggagcct gtggctgctg caggaggagg aacccgccgc ctggcccaca ccacaggaga agggcggagc agatggcacc ctgcccaccg cttcccgccc 3120 3180 acgcacttta gcctgcagcg gggcggagcg tgaaaaatag ctcgtgctcc tcggccgact 3240 ctgcagtgcg acggcggtgc ttccagacgc tccgcccac gtcgcatgcg ccccgggaac 3300 gcgtggggcg gagcttccgg aggccccgcc ctgctgccga ccctgtggag cggagggtga 3360 agceteegga tgeeagteee teategetgg eeeggtegeg etgtggegaa gggggeggag cetgeaceeg eccegeecee cetegeeceg teegeecege geegegegg gaggaggagg 3420 3480 aggageegeg geggggeeeg eactgeageg eeagegteeg agegggegge egageteeeg 3540 gageggeetg geeegagee eegagegge gtegeteage ageaggtege ggeegeagee ccatccagec egegecegec atgeegteeg egggeceege etgagetgeg geeteegege 3600 gegggeggge etggggaegg eggggeeatg egegegetge eetaaegatg eegeeegeeg 3660 3720 cgcccgcccg cctggcgctg gccctgggcc tgggcctgtg gctcggggcg ctggcggggg 3780 geceegggeg eggetgeggg eeetgegage eeeeetgeet etgeggeeea gegeeeggeg cegectgeeg egteaactge tegggeegeg ggetgeggae geteggteee gegetgegea 3840 3900 teccegegga egecaeageg etgtgagtag egggeeeage ggeaeeeggg agaggeegeg 3960 ggacgggcgg gcgtgggcgg gttccctggc ccgggacggg aagcaggacg cgggccagga cgctcccagg ggcgaggctc cggcgcggca cggcgggccc tgctaaataa ggaacgcctg gagccgcggt tggcacggcc ccggggagcc gaaaaacccc gggtctggag acagacgtcc 4080 cacceggggg ctctgcagac gccagegggg geggggegeg gaggeegege teagetggga 4140 ggacaaacag tcgctaattg gagaggaatt gggatgcggc ctgggggctgc ggggtacccg 4200 4260 gagaggtggg gatggctgta gggggcggca gggaagagtt ccaggaggtg tctggaaaag gatttgatgg atgtgcaaga attgggctga tgcttaggaa ggggcgatga ggtgggtcca 4320 gaagaaggg ggtgaacggt gtgagcaaag accgtgaggc tggaggctgg ccacgggagg 4380 tgtgagggt agggcaggg tgggaggtgg gctcgcgggt gggctggggt catgaagggc 4440 4500 ctcaggcgct ctgctattgg gttccaaggc tatcctgaga acaggggtga ggggggattg ccgtgggggg ttaaagcctt gtcatgttcg ctttcgggag ataaaaacaa caggtggcct 4560 ttatggagac gctgcccaga gccaggtctg tgccaggctc ctgttggggg tcgtcatgcg 4620

4680 gaatcctgac tctgaccatc cgaggcatag ggaccgtgga gatttgcatt tcacagatga 4740 ggaaacaggt ttggagaggt gacacgacct gtcccaggca tcacagccgg gatgtgcata 4800 gcaggggttt ggaactatga ggtgcccagg acccagggtt ggattgaaaa gggcggaggg 4860 gactaagata agcagacagt tgtccccagc gctggggaga gtcttgggac cagtctgatg 4920 cettgtattt cecaggetee aggeteeteg eegggaeagt gteteettgg gtgegtgetg 4980 gatecetggg ggacgtggca catececagg ettgetaaac attgggtggg ttetggcatt 5040 tggttttgta acgtttctgg gtcactcccg cctgtggcca cccttcctta ggggagccgt 5100 gtgtccttgg ggctttgctg ggtggtctcg agggtgggag aagaatgggt tctcctggac 5160 caatggagee egtgeeete ggggeeacat tgeteetgeg etecetgaet geggaegegt gtgtctcgcg gctgtctctg tggagatggc ctcctcctgc ctggcaacag cacccacaga 5220 5280 attgcatcag acctacccca cccgttgttt gtgatgctgt agctgagggc tcctctgtct 5340 gccaggccgg tcactgggga ctctgtccag ggcctggtgg ttcctgcttc ccagcacctg atggtgtcca tgagagcagc ccctcaggag ctgtccggga gagaagggcg ctggtggctg 5400 5460 ctgagcggag agcaaggccc gtgttctcca ggcccttggc acagcagtgg agcccccgcc 5520 cctgccttgt gttgtcctct taggctctgg tcctggggtt tggaggaggg ggaccctggg 5580 agttggtggc ctgtcccagc ctgagctggc aagattccga atgccaggcc ccccaagtgt gcaacagggc acagggtgac ctcatgtggg caggtgggtg ctgttctgta cacacctggg 5640 gccgccgctg ggagagttct ggaaggtggg gtgaggggac ccatggcaaa ctagggcctt 5700 5760 aggaaggatg tgaaggeeet ggetggeeee ceaggeeace etetgtgetg tggggeagee caqccatttt qctgtctacc ctgcaaactc ctcctcgggg agacggctgg gttttcccca 5820 gggaagaggg gtcaagctgg gagaggtgaa ggacacagat cacagctgct ggcaggtgtt 5880 5940 caagggtcca agagcgttgc tgtctgggtg tcaccagtag ccttcctggg gggctcacgc aggtgeetet ceaettgtgg eteeetgget getgaagete ageagggaea getgtgteea 6000 gttccaggtg gaggacagcc ggggcttctg aggccacagc ctgccttggg ttaatgatgc 6060 6120 tgccgagagg tggtggcttt tggaaaagat ggcgtactgc aaaacgtgct gctctgcgtg getegaaget tegtggggag acgtgggcag ageegtgget gaeteacaga eeceecacee 6180 cagageetge eetgeeetee etgeeeegae eetteteeet eetgaeeeat gtgtttttt 6240 ttttttttt ttttttgag acagagttca ctcttgttgc caaggctgga gtgcaatggc 6300 acgatctcgg ctcatggcaa cctccgcctc ctgggttcaa gcgctttttc ctgcctcagc 6360 6420 ctcccgagta gctgggatta caggcgtgca ccaccatgcc tggctaattt tgtattttta gtagagacag ggtttctcca tattggtcag gctggtcttg aactcctgac ctcagatgat 6480

cegecegeet eggeetecea aagtgetggg attacaggea tgagecacea egeceagee 6540 6600 tgacccatgt tttgaaccaa attccagcca cccttttatc tgcaagcatt ttggagggca 6660 tegeaatact geagaceeac etaacacaac agacagttee tteatgeeac egaaggeetg gtgtgttcac atttttggtt taatagtttg aattaagagc caaataaggt ccacacactg 6720 caattagttg atgtctttt tttttcttt ttttttttt ttttgagacg gagtcttgct 6780 6840 cttgtctcca ggccgcagtg cagtggcatg atctcagctc accgcaacct ccgactccct ggttcaagcg attctcctgc ctcagcctcc cgagtacctg gtagctgggt ttacaggcat 6900 6960 geaceacegt geceagetaa tttttgtatt tttagtagag aeggggtttt aetgtgttgg ccaggatggt ctcgatctcc tgacctcgtg atctgcccac ctcggcctcc caaagtgctg 7020 ggattacagg cgtgagccac cgcacccggc caatgtcttt taaaaatata tactttttt 7080 7140 ttttttttga gacggagttt cgctcttgtt gcccaggctg gagtgcagtg gcgcgatctc 7200 acctcacgge aacctccgcc tcccgggttc aagtgattct cctgcctcag cctctccagt 7260 agctgggatt acaggcatgt gccaccatgc ctggctaatt ttgtattttt aggagagacg 7320 gggtttctcc acgttggtca ggctggtctc aaactcctga cctcaggtga tccgcctgcc 7380 ttggcctccc aaagtgttgg gattacaggt gtgagccaac gcgcccagac aaaaatatat gtgtgtcttt aaggctggtc aagcaaagca gtaggactgg agaaagaatg aagaattcta 7440 7500 cctggctgtg atcaattcgt tgtgaacacc actgtgcttg gaccagctag ctgatgtctt ttgttttgtt ttgtttgaga cggagtctgg ctctgtcacc caggctggag gacaatggtg 7560 7620 tgatctcggc tcactgcagc ctccatctcc cgggttcaag cgattctcct gcctcagcct cctgagtagc tgggattaga ggcgcgcgcc accacgcccg gctaattttt aaaaatattt 7740 ttagtagaga tggggtttca ccatgttggt caggctggtc ttgaactctt ggccttaggt gatetgettg ceteggeete ceaaagtget gggattacag gtgtgagtga tgtattttat 7800 ttatttattt atttattat ttttattatt tgagatggag tctcactctg ttgcccaggc 7860 tggagtgcag cagtgccatc tcagctcact gcaagctccg cctcctgggt tcacgccatt 7920 ctcctgcctc agcctcctga gtagcctgga ctggtgcccg ccaccatgcc cagctaattt 7980 tttgtatttt tagtagagac ggggtttcac cgtgttagcc aggatggtct ggatctcctg 8040 acctcgtgat cctcccgcct cagcctccca aagtgctggg attacaggct tgagccaccg 8100 cctgtctttt aaatgtccga tgatgtctag gagcttccct tcctcttt ttccttgtgc 8160 aatttgttga agaaactggc tcctgcagcc tggatttctc gctgtgtctt gggggtgcca 8220 cctccatggt gtcacctccg tggtgctgtg agtgtgtgct ttgtgtttct tgtaaattgg 8280

8340 tcgttggagc cgacatccca ttgtcccaga ggttgtcctg gctggcactg gcctaggtgt 8400 agatgtcatc agctcagggc cccctgctct aaaggccact tctggtgctg gttgccactc accetggetg ggggteacet gggtetgetg etgtetegea aatgetgggg tecaggaetg 8460 8520 ggcacatcga gggacttggt aggtgcttgg ttcactgatg taaaatatag gagcacccgg ggccttgccc tttcccacct gcatccctga atgacaggag agtgtgggag agtgtaggga 8580 8640 cagcaggege agaceceggg geceetgeet gggattggeg teggggaaga eaggeattet 8700 ggagcgaccc ctaggcctga tgccttagag cgcaactgcc agagacacag cttccttggg 8760 gggctggcca ggccacggag gggccctggc tcccatttct ggtccctgga tcctgagagc 8820 gaggactagg gattgtcacc aaggcctcca tgagccctca gcagaaggag ggccaccctc 8880 gagggctccg ttatcactgg agcccgcgtt caaccaacac gcagatgatt ctccaaggac agagatggat gatggggagg gggctggcct ggaaggaccc ccagtgcagg tgacattgaa 8940 9000 gccaggtttc aaagctccca cagggagctg cccagagaga gtccccaagg ggcaaggtga 9060 ctcgggggca ggggtagggc ctctgtcagg agagcctagg agaggcctgt gtcttctagg aagagccctg gcagccgagc ggaggcagtg gtgaggacct gcatcctgca tgtccagctg 9120 gcctcacccg gggtccctga gccgggtctt acgtggctcc cgcactcggg cgttcagaac 9180 9240 gtgcctgcgt gagaaacggt agtttcttta ttagacgcgg atgcaaactc gccaaacttg 9300 tggacaaaaa tgtggacaag aagtcacacg ctcactcctg tacgcgattg ccggcagggg 9360 tgggggaagg gatggggagg ctttggttgt gtctgcagca gttgggaatg tggggcaccc 9420 gageteceae tgeagaggeg actgtggaga cagagageae etgeaggtea tecatgeagt ateggettge atecagatea tacagggaae actatgatte aacaacagae agggaeeeeg 9480 9540 tttaaacatg gacaaggggt cactcacgcc tggaatccca gcagtttggg aggccagggt gggtggatcg cttgagccca ggagtttgac accagcctgg gcaacagggt gagaccccgg 9600 9660 tctctaaaaa ataaaagaac attggccggg cgtggtggta tgcatctgtg gtcccagcta 9720 ttcaggagac tgaggtggga catcacttga gccgaggagg tcaaggctgc agtgagctgt 9780 gatcacacca ctgcactcca ggctgggtca cagagcaaga ccctgtctca aaaaaaaaa 9840 aaaaaaaaaa aaaaaatcac aggatctgaa cagagatttc tccaaagaag acgcacagat 9900 ggccaacagc gtgtgagaag atggtcggcc tcattagtca tgagggaaac gtaaatcaaa accactgtcc agccgggcgc ggtgcctcac gcctgtaatc ccagcacttt aggagagcag 9960 atggcttgag gccaggagtt tgaggccagc ctgggcaaca tagcgagacc aataaataga 10020 tattagtggt ggcgcctgta gtcccagcta gttgggaggc tgagggggga ggattccctg 10080 agtctatgag gttgagactg cagttagctg tgatggtgcc actgcactcc agcctgggcg 10140

actaggaaac ggtctttaaa aaaaaaaaaa aaaaacaggg tgggcgcggt ggttcacgcc 10200 tgtaatctca gcactttggg aggccaaggt ggggggatca caaggtcagg agtttgtgac 10260 cagcctgacc aacatggtga aaccccgttc tactaaaaat acaaaaatta gcgaggtgtg 10320 gtcgtgggcg cctgtaatcc cagctaatta ggaggctgag gcaggagaat cacttgaacc 10380 10440 cgggaggcgg aggttgcagt gagccaatat cacaccactg cactctagcc tggtcaacag agcgagactc tgtctcaaaa aaaaaaaatg ctgagcgtgg tggcgcatgc ctgtagtctc 10500 10560 agctactttg ggggctgagg caggagaatc gcttgaacct gggaggcaga ggtcgcagtg aggcaagatt gcaccattgc actccagcct gggagacaga gtgaaactct gtctcaaaaa 10620 10680 gaaaaggtct aggaagagtc cgcaccctct ccccgcggtg gccacgccgg gctccgcgct gagecetetg tgttettgte tetecatace teatcaegge acegeagggt tgeagecaet 10740 10800 cetggtetea ttttacacac caggaaattg aggetetttg agaageegtg gtgatgattt catcagcatg ctctggggca gacccctgca gccgcacagg gtgcctgggg cccacactag 10860 tgccctggtt tatagacaga cagaggtggc agtggcgctt ccgagtcggg ctgcgatgtg 10920 10980 cttgcactcc ccgaggggct gaggggccct gcgcccaggt gcagctgctt gggtgctgcc agcccctccc acctctccct ccctgccagc ccctcccacc tctccctccc tgccagcccc 11040 teceaectet ecetecetge cagecettee cacetetece tecetgecag eceeteceae 11100 ctctccctcc ctgccagccc ctcccacctc tccctccctg ccagcccctc ccacctctcc 11160 ctccctgcca gcccctccca cctctccctc cctccagccc ctcccacctc tccctccctg 11220 ccagcccttc ccacctctcc ctccctgcca gcccctccca cctctccctc cctgccagcc 11280 ceteceacet etecetecet gecageceet eccaeetete ectecetgee ageceeteee acctetecet ecetgeeage eceteceace tetecetece tggeteatee etgetgte 11460 cettetetet agttteetgt teagttteag gaaggagget gggaacceag atgtagggaa 11520 tttgcgccct ggagtcagac ctgggttcac gtcccagcgc ctccacctct ggtgtgacct tggtccagtc tctcagcctc agtttcctca cctgtaaagt gggctccatg attagatgca 11580 ccctgcaggg cagtgtagca gtgacctggc tcagccactg gcagccccaa caatcatacc 11640 11700 ttgttaaagt agctctgtcg gttccctcag gggttccggg ggcccattcc cctgtcctcc atgcactgtg agacctgccc tgccacagag cagagtgtaa cagcctgagg gtgagagcca 11760 gacactgtgc ctgtgcttag accagacact ggacgacggg agccagtgca gcctgggcgg 11820 11880 gtggactcct atggacccct cagcacccag cctcggtgcc ttcagcgcag ggccgcgtgg 11940 ctgtgggggc tcacaagacc cggcccactc ctgcttgtgc ctacatctgg gtgtttgccc

attggtgcct tttgacgcgt tctggtgtgt gtgagacgtg cggggctggg aagtgttggc 12000 agagccgcga gtaccgtcct cactcctttt gttcttttga cgtaagctgg cgagtggcac 12060 12120 tgcctgagtt ccgctcagtg cccgccctga tgtgcggacc ccgctgcatt cttgctgtta 12180 ggtggtggcg gtgtgcgctg tcgctggtgg gcaccgagag tctttgggag ctttgggag gttgtgccaa gcctgagcct cgacgtcccc cttcccggct ttctgttggc tcttctgagg 12240 12300 ccagggcatc tctatgaggg cctcctgctg gagccgtctc tgtggatctc ctctgccatc ctggcccatg agtgggtgat gcgctggcca ccatctggtg acagtggccg ggcaccgctg 12360 12420 ccaaatgtgg gtcccgcatc tgcaagcccc tccctgggtc ccctagggta tggggtggtt ctgccactgc cctcgctccc ccaccttggg gtgcctctcc ccctgctcgt gggggagacc 12480 12540 ctgcctggga tctgctttcc agcaaggaat atactttgga gggagacaca catgttcttt tctggagctc tgcagtggcc acggcagccc agcccgccaa gcaccctgga atgaaaacat 12600 12660 cccgctgctg tctgggcctg gcctgcactc tgctgcctgc gctccagctg gctgaggccg 12720 ggcacgtctg cgggcacagc agcgggggcg ccacagtctc cctgcagagt gagcgcagct ggaaaatgca gctcacgccc tttcccagaa cacctcgctc ttcatggctt ggcagctgtc 12780 12840 cttgcctagg ggccagggtg cccaggcact ggtggcagga gaagggctac atctggggct 12900 gaggeggget gggteetttt eteeetgeag eteeegagge eeageeetgg eecageetgg 12960 cattcctgac cttagcagcg ccatgatctg aagacaggct ggcttctgtg aggccacctc agaaagggct ttgtgcccag gcagaggcgg aagccagctc ttccttctgg ttgaggcagg 13020 aatgaggcca gcgctgggca agcccatgcc cagggaacgt cacagctgtg ggagtacagg 13080 ggctccgggt tctgagcccg tccactgtgc atcgtggccc tggcctcagg atggctcgta ccatcattgg ctgtgcccac agccgagtgg gtgatgggat tccggctgcc ccgctggatc 13200 tgtgctgctg ccctctccag ggcactgctg tgcccgcaca gccgggcgca gatggccagt 13260 ttgcttgccc cccccccac catcctcttc ctaccttggc ttcctccatt gacacactgg 13320 accetgetgg etgeeeggg aggtgtttgg gggatggtgt tgggggagga ggagggeeee 13380 13440 ttgagcctca gtgtgcccat caggagcgta aggtcagtgc agcacctgcc cacacaggct 13500 gtgaagggtg ggagtggaga gggatgcaag ggggtcacaa cgcctggctc catgtcagct gcgtgcaggg qcaccaggag ccggccctca ttctcccctt gaactggaag ggtggccccg 13560 accccagcgg caggtagcat acgtatgaag cgctctcctt cctacacccc acaggtgggc 13620 tcgtctccag acggcccttt ttgagctggc tgtgtttttc catctgtgta ggcaaggaca 13680 tegeagacte ceetttetea tetecetegt teageeteeg aggeeggagt etecateeet 13740 gtgcctgcct gtgggtcccg ggaggacctg aggctgccca tgtcaccccc ggcatctcat 13800 cctggggaca gttcagccgt gggagggatc tgtaaggaca gaatgccgct gagcctgggg 13860 ctccccagct agtctcacac cccgtgtctg ggacccagag accctcgtgc agggctctgt 13920 tgcttggggc ctggcagcct cgtcctgtat cagaggctgc cacccccacc cctcgtgggg 13980 ccagggttgt ggccggcctc cctggccctc cccatggaag tggtaggcgg agccagcagc 14040 catctgccca gcccggggct gcactgtttt ttttcaaatg agcaccgtcc caaactgcag 14100 cccgttaatt taaacaggat catttccggc cctggaagcc gcctcactct ccttaaatag 14160 aaaggagcac agcgcagagg gaaacagatg aggtcatggc tcggctggcc cagcgaggaa 14220 ggggccgcag tgggggtggc actgccgcct gtcccctgtc ctctccagcg cccacactgc 14280 agcccatttc ctcaccctgg gcctgctctc gggagggacg ggcctggggg tcctcttgct 14340 gggcggaggg gaaccagctc ctccaggaga ggacggggcc tggcaggggg catggggcct 14400 14460 ccctgggtct ggcgtcctgt cctgcccctg ccgagggagg agcggttaca taagctccgc aggeggeece teegageegg teeceecage ceagttteea gtgaggegge cagegegge 14520 gggggtgccg ggcctggcgc acacccgctg ctgaccacac gtgtctggaa tgtgcagatg 14580 tttctttggg ggctccgtcc ggcccccaga ccccactcag catctggtct ggggagtggg 14640 14700 cgcctggggc actcagctct gagtgtgaga ctctgaggca ggtctggttt gtctggggcc 14760 attccctctg ctgtggattg ggagggcccc gggagctgcc ccacacccag ggaagttctc ctcagtccca ctgttgcatt ccccgacccc ggctcccccg gcccaggage gcctgtgggg 14820 14880 cagaaggeee ageeecaaga etteeeggee etgeeageet eaggetteae ecaceetege gccaactgtg ggcagagccc agggggaggg caggagagcc agcgcctggc tgggaacacc 14940 cctgaggggc cgaggctcca gggcgagggg gcccgacctg gggttcacac gcccgggtgg cgggcagacc cgctgcagca tgagacacgt gtcagctacc tcgggccggc aggctggccc 15060 tgctgcccac agccctggga cgtggcccca cctgtgacgg gtgtggaggg gcagcctcca 15120 ggcctggcca caccctctgc tgttgctgct cctgctccag gattggcaag ggtgctggga 15180 aggggtgaag acccgtactg tggccacaca cctgggactt ccttctccac ccagtggtgc 15240 cccagcagcc gctaaggagc ccgctgggtc ccacgctagg atggtcctaa ctcctcccgc 15300 cttccagatc ggacgctcgg cgctggggac cccttgtgtc ccggggctgg ggcaccgtcc 15360 tgccccatg ggggtgtact cctcccgaca agcttggctt cagcttccct gggagcacat 15420 cetggccctc gggcacccat caggetgtcc ctgtgcacct ggctcccacc cttccagctc 15480 atagcaggaa ctggggtgag gagtgcgtgg ggcagcaagg gcctgggacc ccagaggacc 15540 ctgcactctg ctctgtgctc ttgcctgggc ttagggccgc tcggtggtcc tgctgccaga 15600

tgcctgggcc ctgctgtgtc ccccatcctt gcagggaacc agaacgtggg ggcagggcat 15660 15720 cagacagegg egatgatgte acetggeggg tgeagaggaa geeegagggg eggggtgggg 15780 gggctggcgc gaggctgcct ggctaggcct tggcgttccc ccagaacggc gatggcaaaa gcagatggag acgtgaaaaa gtacgggagc aagcgaggtg aggactccac ggggacccct 15840 gtgctgttcc ctgtccctga agcccacacc tgagtcctgc ccagggcaga tgcttccaca 15900 cccagggggc acctgagtcc tacccagggc agacgcttcc acaccctggg ggctgggga 15960 ctgcacctgg ctcctgtctg ggccccagct tcattccact gccctgggcc ctgggagctc 16020 16080 ggccgagcgg ggtccccaag accttgctgc atttctgggc cttgggctgg ggtgagggcc 16140 gggagaagga gccagcctgg agcctggcac gcagggagtg catggccaga accggtgaca ggcagggctg cctgctggcg tggaagaagt gtccatggca cccccaggcc tggttcacag 16200 tgggatgggc ggggagccgg ggggctctgg ggtcctcggc tgacctgccc ccaccctgc 16260 cctggcttgt cagctcccag cagcagccac tcttgatgga ttttccagaa aatgaggtgt 16320 ggccaaacat cttcaggctt ttccttcttt cctttctccc gtggcctggg tgggagctgc 16380 tececatgee tgggggeagg tgegagagee tgtgeeeete eetggggeag ttteacaget 16440 16500 gtgtcccttc cagggggcct gcctgtgttc accgtggcct ctgcagcacc tctcgcccct tagggeteet gegeeteggg teeeggtgee teatttetee etaaageatt ggttetgetg 16560 16620 ccgccgcagc cgctggaaag tccctcctca ggtctaactg cagttcctca cggcacagtg 16680 ttccccctcg ggcatggtgc ttgggcagtg ggtgtgagtc cagctgcctc accctgtctc gagaatggcc tcttgctggt ctcccagcca ccaccctgtc ccaccccacg gcggggatgg 16740 16800 tgtggatgcc tagcagcgcg gctgtgggcc cacccatcct tatgggcagt ggggagcacc tcagcccgtg tccctacctt ggtgtagagg aggggacggc agagaagcag ggttcagtta 16860 ggggggaagt ggtggccctg ccggaggggc cgttccctgt gtgcctggcc cccagatcct 16920 ctccctccc ggagcccagg gcacaggcat aggctctctg agtgtcccac agcccctggg 16980 ggaagggaac tgcacccca accgtgccct ccatccgcag atggaacgag aagctccggg 17040 17100 agccagtgcc cagcgtctca tctgtctggg cacccagccc aggtgagggc ctggctccac cgtccgtggc tggtgctgct tcctggcacg gagaaggcct cggctgctct gtcccctcag 17160 17220 ctggggtggc ctctggtccc cttctttgtt ggttcccttc tcaagctctt gccctggccc cgggccccac cgggcagcct gtgtgtgcgt ctctcctgcg ccgggtaggc tcctgtggga 17280 gcggagctcc ggtgggagga gcagggctgg aggctggcag gggctgggcg ggtgttcagg 17340 gatggaggcc gccccggctt ggggctggct gccgggtggt cattgctggg aagagcaagt 17400 ctaggcggag gcacctgctg ggtcactcgt ggggagggtg acacctgggg aagtagaggc 17460

ccgtggcagg a	aggtgaggcc	tcggggtcct	ggggagcagg	ggggtggtgt	gcagacctgc	17520
ggagccatag t	cctgtgcca	ggagcactac	tgggagtgcg	tgggaccagg	aggggtgccc	17580
agggtgggcg g	gcagagtgac	ccccgaggtg	cttgaggccg	aggggaggtg	gagttctcgg	17640
tttgccccag c	ctctctgtct	actcacctcc	gcatcaccag	ctccaggacc	tggtttgtaa	17700
ctcgggcagc t	tctgaaaaga	gagacatgct	gccgccctgt	ggtttctgtt	gctttttctt	17760
cactgactac t	tgacatggga	tgtttttcct	acggctgtga	ccaattgtgc	ttcttctaat	17820
tgcctggttt t	tctttttt	gtttttggag	ttttctcttt	ctttcctccc	tccctctcac	17880
cctccatcct t	tttttttt	atttttattt	tttgagatgg	agcttcactc	ttgcaggatg	17940
gggtgctgga g	gtgcaggggt	gcgatctcag	ctcactgcaa	cctctgcctc	gcgggttcaa	18000
gtgattctcc t	gectaagec	tcctgagtag	ctggaattac	aggtgcttgc	caccacgccc	18060
gactaattct g	gtagttttgg	tagagacagg	gtgtctccgt	gttggtcggt	ctggtcttga	18120
actcctgacc t	caggtgatg	cgcccgcctc	agcctcccaa	agtgctggga	ttacaggcag	18180
gagccattgc a	acccggctct	ttccccttct	ccttttcttc	tctctctcct	ccctttcttt	18240
cttttcttt c	ettttttt	tcttttgaga	tggagtctcg	ctctgtcacc	aggctggatt	18300
gcagtggcgt g	gatcttggct	cactgcaacc	ttcgcctccc	gggttcacgt	gattctcctg	18360
cctcagcete c	ctgagtggct	ggcactacag	gctcccgccg	ccatgcccgg	ctaatttttg	18420
catttttagt a	agagacaggg	tttcaccctg	ttggccagga	tggtctcgat	ctcttgatct	18480
catgatccac c	ccaccttggc	ctcccaaagt	tctggcatta	caggagtgag	ccaccgtgcc	18540
cggccatctt t	ctttccttg	ctttctcttt	gttttctttc	gagaccgggt	cttgctctgt	18600
cgcccaggct g	ggactgcagt	ggcacaatca	tagctcactg	cagcctcgac	ttccctggct	18660
caagcgatcc t	tcctcctca	gcccccgag	tagctggaac	tacagttaca	cactaccatg	18720
cctggctgat t	cttttttc	cttgtagaga	tggggtcttg	ctatgctgtc	catcctggtc	18780
tcaaactcct g	ggccttccca	aagcactggg	tttacaggca	taagccacca	cacccagttt	18840
ccttttcttc t	ttttaactg	gaatagttga	cgttttcttt	attagctgtg	tgtcaggagg	18900
gtatttttgg c	cctttagtat	gtcgtgtaag	ttgctagtgc	ttttctgaga	ttgtagtttg	18960
ttttctaatt t	tatttatat	tttgcgtaga	agttgtgtat	tttagatgga	gttaggtcgg	19020
ctggtctttg a	atgttttatt	tattaattat	gtatgtattt	atttatttt	gaggtagagt	19080
ctcgccgttt c	cacccaggct	ggagtacagt	gatgcgatct	cagctccctg	tagccttgac	19140
ctctctgggc t	caagtgatt	tttctctcct	ctacctcccg	agtacttggg	accccaggcg	19200
catgccgcca t	geetggeta	atgtgtattt	tttgtagata	cggggtctca	ctgtgttgcc	19260

cagggtggtt tcaaaatcct gggcccaggc gatccttccg tctcagctcc cacggtgctg 19320 tgttaccggc gtgtgcccag tgcctggccg tcttggaggt cttgtttctc tgggtttatg 19380 cctcgaggtg gcgcctgctc ccctgtgctc cctggtagcc tggtagtgag cctgcttctc 19440 acacagtcat acctggttgt ggtcccacag tgggaccacc ctgttgggtt cagaacagga 19500 gatgggggcc cctcgagtct gtgtgggggc tgtggacagg gttgggagac cttggctctg 19560 19620 tgggggactg tggacagggg atggggggcc ttggccctgc gtgggatggg ttgggggtcc gtgcccttcc tggccctggg tggacaggtc catgtggcac tcggcatagg gctgagatgg 19680 gtgcagaggg ctgaggcccc caggcctctc ctggcttggt ttccccagat gagtgttcat 19740 ttgggtcttc catcagaaag tcccctcctg acctctggga gtggggagct caagggtggg 19800 aggccatagc ttggggatgc tggcaatgtg tgggatgggc ccagggaagg cctctggcct 19860 19920 actaggggct ctggccctga cccacggcca ctcactcctc agagacgtct cccacaacct gctccgggcg ctggacgttg ggctcctggc gaacctctcg gcgctggcag agctgtgagt 19980 20040 gtcccccagt cgtgccagca tgcggggctc actccgggtg ggctggcggc accgcctctt gctgctcagc tgtgggggct tccatcagct ttgccgaatc ccccgtctct tccagggata 20100 20160 20220 gtgaaatgta agttgtggtt ctttgggtgg ggtcctggct ggaccccagg cccccaatat cccttctgcc ctcccagttg gtccgtgtcc ccttccaggc ttgagaccag atcctggggg 20280 cagttcactg cctgcttgga gccccccagt gccggcttgg ttggggcagg ggaggcggtg 20340 20400 ctgtcagggt ggctccaggg cctggttgcc agtggggggc tggcatagac ccttcccacc agacctggtc cccaacacct gcccctgccc tgcagaaacc tgagtgggaa cccgtttgag tgtgactgtg gcctggcgtg gctgccgcga tgggcggagg agcagcaggt gcgggtggtg cagecegagg cagecacgtg tgctgggect ggcteectgg ctggecagee tetgettgge 20580 20640 atccccttgc tggacagtgg ctgtggtgag tgccggtggg tggggccagc tctgtccttc 20700 ccagccaggt gggacctggg ccctgcagac actgggcagg gctcaggaag gcctctctgg ggggggcctc cgggccaagg gaacagcatg ggagcctgtg agtgcggcgg gcggatgtgg 20760 gggcgtgggg tggagccagg aggagcagaa cccggggtcc agtggctgcc tcttctaggt 20820 gaggagtatg tegeetgeet ceetgaeaac ageteaggea eegtggeage agtgteettt 20880 tcagctgccc acgaaggcct gcttcagcca gaggcctgca gcgccttctg cttctccacc 20940 ggccagggcc tcgcagccct ctcggagcag ggctggtgcc tgtgtggggc ggcccagccc 21000 tocagtgcct cctttgcctg cctgtccctc tgctccggcc ccccgccacc tcctgccccc 21060 acctgtaggg gccccaccct cctccagcac gtcttccctg cctccccagg ggccaccctg 21120

gtggggcccc acggacctct ggcctctggc cagctagcag ccttccacat cgctgccccg 21180 21240 ctccctgtca ctgccacacg ctgggacttc ggagacggct ccgccgaggt ggatgccgct 21300 gggccggctg cctcgcatcg ctatgtgctg cctgggcgct atcacgtgac ggccgtgctg gccctggggg ccggctcagc cctgctgggg acagacgtgc aggtggaagc ggcacctgcc 21360 gccctggagc tcgtgtgccc gtcctcggtg cagagtgacg agagcctcga cctcagcatc 21420 cagaaccgcg gtggttcagg cctggaggcc gcctacagca tcgtggccct gggcgaggag 21480 ccggcccgag gtgagtgtct gctgcccact ccccttcctc cccagggcca tccagatggg 21540 21600 gcagagcctg gtacccccgt cttgggccca cactgaccgt tgacaccctc gttcccaccg 21660 gtctccagcg gtgcacccgc tctgcccctc ggacacggag atcttccctg gcaacgggca 21720 ctgctaccgc ctggtggtgg agaaggcggc ctggctgcag gcgcaggagc agtgtcaggc 21780 ctgggccggg gccgccctgg caatggtgga cagtcccgcc gtgcagcgct tcctggtctc ccgggtcacc aggtgcctgc ccccaccccc cgaggggcca taggttggga gatctctgaa 21840 gcactggggc agagactgcg gctggggagt ctcaggagga aggaggtggg agctgggccg 21900 21960 gecetggtga geaggtggeg eeggeeggtg gggeegttee tgteagetet geagatgeag aggtggacat gagctggggg cagcctccgg acactcctgg gcacgccata cgggaggtgg 22020 22080 cctgcacggg gatccctgcc ggtacccaca ggccccgtgg gtgggtgctg ctgtgagcct gggctggtgg gccctggtct ccgggctctg agcctcagtt tccccatctg gaaaggggga 22140 cagtgatggg gctcccagcg ggctgctgtg agggtgggag gatggaggag tgccctgagc 22200 cccctgccat cccacacccg cccccaggag cctagacgtg tggatcggct tctcgactgt geagggggtg gaggtgggcc cagegeegea gggegaggee tteageetgg agagetgeea 22380 gaactggctg cccggggagc cacacccagc cacagccgag cactgcgtcc ggctcgggcc 22440 cacegggtgg tgtaacaceg acetgtgete agegeegeae agetaegtet gegagetgea gcccggaggt gtgcgggggg ccaggcaggg gcctgagacg ctggctgtgg ttaggggcct 22500 gecgagegee egeggtggag eetgggetga ggaggagggg etggtggggg ggtttteggg 22560 cggctcggtc cccagtctgt tcgtcctggt gtcctgggcc ctggcccggc gcctcactgt 22620 gcactegeca ecceaggece agtgeaggat geegagaace teetegtggg agegeecagt 22680 ggggacctgc agggacccct gacgcctctg gcacagcagg acggcctctc agccccgcac 22740 gagecegtgg aggtagtegg ecceecacgt tetacaacet geeeteetge etgeceetgg 22800 22860 aggeettgee tgeeetgeee actgtgggte tegecaaaaa acttggggge ettaatgttg cttgtgccca gtgaagatgg ttgggaaaat ccagagtgca gagaggaaag cgtttactca 22920

22980 cattacctcc aggccttttc tctgagcgtg tgtgagttat tcctgaaagg caggtcaggg 23040 gtcctgcccc ccatggacag tttccaccgg agtcttcctc tcgagcgaca ggagccaggc ctgtgggggt ctgatggctc gctctccttc cctcccctct tcctgggaag ttcgggtagg 23100 gggagtctgg gcttcaggct gggatggggt ctgtggagct gaggcggccc cctgccacc 23160 23220 aggtcatggt attcccgggc ctgcgtctga gccgtgaagc cttcctcacc acggccgaat ttgggaccca ggagctccgg cggcccgccc agctgcggct gcaggtgtac cggctcctca 23280 gcacagcagg tgggactctg ggtggtggt ggtgggtggt gggcgccgca ggactcgggg 23340 tggcctctct gagctttcac gtctgctggt cctgtggcca ccagagtggt tcccagtctt 23400 aggtggacag agcaggggtt ccagagacac cagctcattc caggtgtcct gggggtggat 23460 tgggtggggc ctgcctgggg gccggcctgg gtcagtcggc tggccggaga cggacgcagc 23520 23580 actgggctgg gagtgctgcc caggtgggga gacctgtcct cacagcaagg ccaggattgc 23640 tggtgcaggc agttgggcat ctctgacggt ggcctgtggg caaatcaggg ccccaacacc ctccctcct cacagggacc ccggagaacg gcagcgagcc tgagagcagg tccccggaca 23700 23760 acaggaccca gctggccccc gcgtgcatgc cagggggacg ctggtgccct ggagccaaca 23820 tetgettgee getggaegee teetgeeace eccaggeetg egecaatgge tgeacgteag ggccagggct acccggggcc ccctatgcgc tatggagaga gttcctcttc tccgttcccg 23880 eggggeeece egegeagtae teggtgtgtg geeetgaeet gggtetgtte eetgeatete 23940 ctcaggccac cttcctgtct gctgcccagg gtctgggtct gtgcaccaga cacacccagc 24000 ctgcaggccc ctcccacgtc cttgccacct ctgacctccg acctctgcag tgccctcggc 24060 cctctcccag tgggagaagc tctcgcctgg gcccttggca cgagctgtgc ctcctcttcc tctctcccag cacagetgct ccttcctgtc tgccaggtct tggcctgtgt cctctccccg tgtgtccccc ggtctgcaac tgtcctgcct gtccttgtca cgagcactgt ggggaggctc 24240 24300 cttgaggtgt ggctgacgaa gcggggagcc ctgcgtgtcc accctcatcc gtcgtgcggg 24360 ggtccacggg ccatgaccgt gaggacgtga tgcagccctg cctccctctc cacaggtcac cctccacgge caggatgtcc tcatgctccc tggtgacctc gttggcttgc agcacgacgc 24420 24480 tggccctggc gccctcctgc actgctcgcc ggctcccggc caccctggtc cccgggcccc 24540 ttgggcctgc cctgcctgtg ccctgcggct gcttgcagcc acggaacagc tcaccgtgct 24600 gctgggcttg aggcccaacc ctggactgcg gctgcctggg cgctatgagg tccgggcaga 24660 ggtgggcaat ggcgtgtcca ggcacaacct ctcctgcagc tttgacgtgg tctccccagt 24720 ggctgggctg cgggtcatct accetgeece cegegaegge egeetetaeg tgeecaecaa 24780

eggeteagee ttggtgetee aggtggaete tggtgeeaae geeaeggeea eggetegetg 24840 gcctgggggc agtgtcagcg cccgctttga gaatgtctgc cctgccctgg tggccacctt 24900 cgtgcccggc tgcccctggg agaccaacga taccctgttc tcagtggtag cactgccgtg 24960 gctcagtgag ggggagcacg tggtggacgt ggtggtggaa aacagcgcca gccgggccaa 25020 25080 cctcagcctg cgggtgacgg cggaggagcc catctgtggc ctccgcgcca cgcccagccc 25140 cgaggcccgt gtactgcagg gagtcctagt ggtgagtatg gccgaggctc caccaccagc 25200 ccccaggcag gtgcctgcag acagggtgct cacacagggc gtgaggcctg gcttcccagt 25260 gagggcagca gcccagttac tggggacgtc ggccccgggc aggtcctgct ggctggctcc tegggetace tggtgggett taaatteetg gaaagteacg getetgacag tggeteeget 25320 25380 aactcattcc actgtctcat ttcacaaaat gaatttaaaa ctctgctccc tgacctcaca cgagcccccg tgagtctctc acgccctctg ctgtgttctc gcctggctaa agcgagtggc 25440 25500 ttttgaggtg gagtctgaac ccctgatggg aaactgcggg ctgcccgcgg tgccaccatg 25560 ctgggtacat gggggacagg gctgtctcca tcttgcgggt acctgcctct tcaccagggg 25620 ccttgggagg ggccatcaga aatggcgtga cctgtgcagc ctgtcctggg ttctgtaagc 25680 cagtgtaggt gcctcccctc actgctccga gctctctggg tgaggagctg gggcaagagc 25740 gccgggaggg tctgagaaga ctcagagaga ggtggactct ttgtagctgg tactaggttt gctttacaga tggggaaact gaggcacaga gaggttgagg cattagtagt actacatggc 25800 tggctggaga gccggacagt gagtgtccca gcccgggctt ggctcccatg gcatgcagag 25860 ccccgggcac ctcctctct ctgtgccccg cgtgggactc tccagcccga cgggaggtgt 25920 gtccaggagg cgacaggcta agggcagagt cctccacaga gcccaggctg acaccattcc 26040 ccccgcagag gtacagcccc gtggtggagg ccggctcgga catggtcttc cggtggacca tcaacgacaa gcagtccctg accttccaga acgtggtctt caatgtcatt tatcagagcg 26100 26160 gcagggcggg ggcgggctcc accttcacct ctgccttctg ctctgcttca tgctgcccga 26220 26280 ggacgctgcc atggctgtgg gtgagtggag ggagggacgc caatcagggc caggcctctc acctgccacc tgggctcact gacgcctgtc cctgcagctg acggcctcca accacgtgag 26340 caacgtcacc gtgaactaca acgtaaccgt ggagcggatg aacaggatgc agggtctgca 26400 26460 ggtctccaca gtgccggccg tgctgtcccc caatgccacg ctagcactga cggcgggcgt gctggtggac tcggccgtgg aggtggcctt cctgtgagtg actcgggggc cggtttgggg 26520 tgggcaccag gctcttgtcc cagccccagc ctcagccgag ggacccccac atcacggggt 26580

tgcttttctg agcctcggtt tccctgtctg ttgggaggta actgggtgca caggagccct gaggetgeac gggageeggg agaggeetea geacageegg gtgggeeetg aatggaggee 26700 cggggcgtga ctgcagagtg gagcctcggc tgggtcccaa gcaccccctg ccccgccacc 26760 26820 gcccacccct gtcccggttc actcactgcg tcccaccgcc ccggcaggtg gacctttggg gatggggagc aggccctcca ccagttccag cctccgtaca acgagtcctt cccggttcca 26880 gacccctcgg tggcccaggt gctggtggag cacaatgtca tgcacaccta cgctgcccca 26940 27000 ggtgagggat gaggggtga gggggccact gcctttcagg ctctgagcac gggtcccccc agetececag teaagetgee ecectteete eccaacagee etcaetgtga ecteacetgg 27060 gctgatggct taggccctac tggggtgagg gaggggccag gcgtgggggg agtggacagg 27120 gaagetggge ceetgaactg egeeceege eeteceeggg eetggetett getgetetge 27180 tgccccgagt gcagctgcac ttggaggcgg tgcgtcctcg ccaggcagcc ctcagtgctg 27240 27300 ctacacctgt gctccgtccc gcacgtggct tgggagcctg ggacccttaa ggctgggccg caggtgcagc cgttcacccc gggctcctca ggcggggggc ttctgccgag cgggtgggga 27360 gcaggtgggg gtgccgcgc tgccccactc gggcctgtcc ccacaggtga gtacctcctg 27420 accepted catchaate cttcgagaac cegacecage agetectet gageetece 27480 gcctccctgc cctccgtggc tgtgggtgtg agtgacggcg tcctggtggc cggccggccc 27540 gtcaccttct accegcacce getgeceteg cetgggggtg ttetttacae gtgggactte 27600 27660 ggggacggct cccctgtcct gacccagagc cagccggctg ccaaccacac ctatgcctcg aggggcacct accacgtgcg cctggaggtc aacaacacgg tgagcggtgc ggcggcccag 27720 gcggatgtgc gcgtctttga ggagctccgc ggactcagcg tggacatgag cctggccgtg gagcagggeg cccccgtggt ggtcagcgcc gcggtgcaga cgggcgacaa catcacgtgg 27840 accttcgaca tgggggacgg caccgtgctg tcgggcccgg aggcaacagt ggagcatgtg 27900 tacctgcggg cacagaactg cacagtgacc gtgggtgcgg ccagccccgc cggccacctg 27960 gcccggagcc tgcacgtgct ggtcttcgtc ctggaggtgc tgcgcgttga acccgccgcc 28020 tgcatcccca cgcagcctga cgcgcggctc acggcctacg tcaccgggaa cccggcccac 28080 tacctcttcg actggacctt cggggatggc tcctccaaca cgaccgtgcg ggggtgcccg 28140 acggtgacac acaacttcac gcggagcggc acgttccccc tggcgctggt gctgtccagc 28200 cgcgtgaaca gggcgcatta cttcaccagc atctgcgtgg agccagaggt gggcaacgtc 28260 accetgeage cagagaggea gtttgtgeag eteggggaeg aggeetgget ggtggeatgt 28320 gcctggcccc cgttccccta ccgctacacc tgggactttg gcaccgagga agccgccccc 28380 acceptgeca ggggecetga ggtgaegtte atetacegag acceaggete etatettgtg 28440

acagtcaccg cgtccaacaa catctctgct gccaatgact cagccctggt ggaggtgcag 28500 gagecegtge tggtcaccag catcaaggte aatggeteee ttgggetgga getgeageag 28560 28620 ccgtacctgt tctctgctgt gggccgtggg cgccccgcca gctacctgtg ggatctgggg gacggtgggt ggctcgaggg tccggaggtc acccacgctt acaacagcac aggtgacttc 28680 accepttaggt ggccggctgg aatgaggtga gccgcagcga ggcctggctc aatgtgacgg 28740 28800 tgaagcggcg cgtgcggggg ctcgtcgtca atgcaagccc cacggtggtg cccctgaatg ggagcgtgag cttcagcacg tcgctggagg ccggcagtga tgtgcgctat tcctgggtgc 28860 tctgtgaccg ctgcacgccc atccctgggg gtcctaccat ctcttacacc ttccgctccg 28920 28980 tgggcacctt caatatcatc gtcacggctg agaacgaggt gggctccgcc caggacagca 29040 tcttcgtcta tgtcctgcag ctcatagagg ggctgcaggt ggtgggcggt ggccgctact tececaceaa ecacaeggta cagetgeagg cegtggttag ggatggeace aacgteteet 29100 29160 acagetggae tgeetggagg gaeaggggee eggeeetgge eggeagegge aaaggettet 29220 cgctcaccgt ctcgaggccg gcacctacca tgtgcagctg cgggccacca acatgctggg cagcgcctgg gccgactgca ccatggactt cgtggagcct gtggggtggc tgatggtggc 29280 cgcctccccg aacccagctg ccgtcaacaa aagcgtcacc ctcagtgccg agctggctgg 29340 29400 tggcagtggt gtcgtataca cttggtcctt ggaggagggg ctgagctggg agacctccga gccatttacc acccataget tececacace eggeetgeae ttggteacca tgaeggeagg 29460 29520 gaacccgctg ggctcagcca acgccaccgt ggaagtggat gtgcaggtgc ctgtgagtgg cctcagcatc agggccagcg agcccggagg cagcttcgtg gcggccgggt cctctgtgcc 29580 cttttggggg cagctggcca cgggcaccaa tgtgagctgg tgctgggctg tgcccggcgg cagcagcaag cgtggccctc atgtcaccat ggtcttcccg gatgctggca ccttctccat 29700 29760 ccggctcaat gcctccaacg cagtcagctg ggtctcagcc acgtacaacc tcacggcgga 29820 ggagcccatc gtgggcctgg tgctgtgggc cagcagcaag gtggtggcgc ccgggcagct ggtccatttt cagatcctgc tggctgccgg ctcagctgtc accttccgcc tgcaggtcgg 29880 29940 cggggccaac cccgaggtgc tccccgggcc ccgtttctcc cacagcttcc cccgcgtcgg agaccacgtg gtgagcgtgc ggggcaaaaa ccacgtgagc tgggcccagg cgcaggtgcg 30000 catcgtggtg ctggaggccg tgagtggct gcaggtgccc aactgctgcg agcctggcat 30060 cgccacgggc actgagagga acttcacagc ccgcgtgcag cgcggctctc gggtcgccta 30120 30180 cgcctggtac ttctcgctgc agaaggtcca gggcgactcg ctggtcatcc tgtcgggccg cgacgtcacc tacacgcccg tggccgcggg gctgttggag atccaggtgc gcgccttcaa 30240 cgccctgggc agtgagaacc gcacgctggt gctggaggtt caggacgccg tccagtatgt 30300 30360 ggccctgcag agcggcccct gcttcaccaa ccgctcggcg cagtttgagg ccgccaccag ccccagcccc cggcgtgtgg cctaccactg ggactttggg gatgggtcgc cagggcagga 30420 cacagatgag cccagggccg agcactccta cctgaggcct ggggactacc gcgtgcaggt 30480 gaacgcctcc aacctggtga gcttcttcgt ggcgcaggcc acggtgaccg tccaggtgct 30540 ggcctgccgg gagccggagg tggacgtggt cctgccctg caggtgctga tgcggcgatc 30600 acagcgcaac tacttggagg cccacgttga cctgcgcgac tgcgtcacct accagactga 30660 30720 gtaccgctgg gaggtgtatc gcaccgccag ctgccagcgg ccggggcgcc cagcgcgtgt ggccctgccc ggcgtggacg tgagccggcc tcggctggtg ctgccgcggc tggcgctgcc 30780 tgtggggcac tactgctttg tgtttgtcgt gtcatttggg gacacgccac tgacacagag 30840 catccaggcc aatgtgacgg tggcccccga gcgcctggtg cccatcattg agggtggctc 30900 ataccgcgtg tggtcagaca cacgggacct ggtgctggat gggagcgagt cctacgaccc 30960 31020 caacctggag gacggcgacc agacgccgct cagtttccac tgggcctgtg tggcttcgac acaggtcagt gcgtggcagg gccgtcctcc atgcccctca cccgtccaca cccatgagcc 31080 cagagaacac ccagcttgcc accagggctg gcccgtcctc agtgcctggt gggccccgtc 31140 ccagcatggg gagggggtct cccgcgctgt ctcctgggcc gggctctgct ttaaaactgg 31200 atggggctct caggccacgt cgccccttgt tctcggcctg cagagggagg ctggcgggtg 31260 31320 tgcgctgaac tttgggcccc gcgggagcag cacggtcacc attccacggg agcggctggc ggctggcgtg gagtacacct tcagcctgac cgtgtggaag gccggccgca aggaggaggc 31380 caccaaccag acggtgggtg ccgcccgccc ctcggccact tgccttggac agcccagcct ccctggtcat ctactgtttt ccgtgtttta gtgctggtgg aggccgcacg ctctcccctc 31500 tctgtttctg atgcaaattc tatgtaacac gacagcctgc ttcagctttg cttccttcca 31560 aacctgccac agttccacgt acagtcttca agccacatat gctctagtgg caaaagctac 31620 acagteceet ageaatacea acagtgagga agageeeett eecaeeeeag aggtageeae 31680 tgtccccagc ccatgtccct gttgctggat gtggtgggcc ggttctcacc ctcacgctcc 31740 cctctctgga ccggccagga ggcttggtga ccctgagccc gtggtggctg ctcctgctgc 31800 tgtcaggcgg ggcctgctgg tgccccagag tgggcgtctg ttccccagtc cctgctttcc 31860 31920 ggttccatcc cagctcagcc tcctgaccca ggccctggct aagggctgca ggagtctgtg 31980 agtcaggcct acgtggcagc tgcggtcctc acacccacac atacgtctct tctcacacgc 32040 atcccccag gggccctcag tgagcattgc ctgcctcctg ctagggtcca gctgggtcca 32100 gtacaccaga acgcacactc cagtgtcctc tgccctgtgt atgcccttcc gccgtccaag ttggaaggtg gcaaaccgga tgagtatcct gggagggagt gagctcaccg gcagtggcca 32220 ggcccctggg aaacctggag tttgggagca gcatcctcca tgggtccccc agtccttcca 32280 gcaggccaaa tagacctgtg ttggaggtaa ccccactccc acgccaggtg ctgatccgga 32340 gtggccgggt gcccattgtg tccttggagt gtgtgtcctg caaggcacag gccgtgtacg 32400 32460 aagtgagccg cagctcctac gtgtacttgg agggccgctg cctcaattgc agcagcggct ccaagcgagg ggtgagtgtt gagcggggtg tgggcgggct ggggatgggt cccatggccg 32520 aggggacggg gcctgcaggc agaagtgggg ctgacagggc agagggttgc gccccctcac 32580 caccccttct gcctgcagcg gtgggctgca cgtacgttca gcaacaagac gctggtgctg 32640 32700 gatgagacca ccacatccac gggcagtgca ggcatgcgac tggtgctgcg gcggggcgtg 32760 ctgcgggacg gcgagggata caccttcacg ctcacggtgc tgggccgctc tggcgaggag gagggctgcg cctccatccg cctgtccccc aaccgcccgc cgctgggggg ctcttgccgc 32820 32880 ctcttcccac tgggcgctgt gcacgccctc accaccaagg tgcacttcga atgcacgggt gagtgcaggc ctgcgtgggg ggagcagcgg gatcccccga ctctgtgacg tcacggagcc 32940 ctcccgtgat gccgtggga ccgtccctca ggctggcatg acgcggagga tgctggcgcc 33000 ccgctggtgt acgccctgct gctgcggcgc tgtcgccagg gccactgcga ggagttctgt 33060 gtctacaagg gcagcctctc cagctacgga gccgtgctgc ccccgggttt caggccacac 33120 ttcgaggtgg gcctggccgt ggtggtgcag gaccagctgg gagccgctgt ggtcgccctc 33180 aacaggtgag ccaggccgtg ggagggcgcc cccgagactg ccacctgctc accacccct ctgctcgtag gtctttggcc atcaccetce cagageecaa eggeagegea aeggggetea cagtctggct gcacgggctc accgctagtg tgctcccagg gctgctgcgg caggccgatc 33360 cccagcacgt catcgagtac tcgttggccc tggtcaccgt gctgaacgag gtgagtgcag 33420 cctgggaggg gacgtcacat ctgctgcatg cgtgcttggg accaagacct gtacccctgc 33480 33540 ctggagcttt gcagagggct catcccgggc cccagagata aatcccagtg accctgaagc agcaccccga cettecgete ceageageea cacceaecgg geeeteteeg gegtetgett 33600 tccacaatgc agccccgcc caggagggcc catgtgctta ccctgttttg cccatgaaga 33660 aacagctcag tgttgtgggt cagtgcccgc atcacacagc gtctagcacg taactgcacc 33720 ccgggagtcg tgggcatctg ctggcctcct gccggcctcc tgcgctgctg acagcttgct 33780 gtgcccctg cctgcccag tacgagcggg ccctggacgt ggcgcagagc ccaagcacga 33840 gcggcagcac cgagcccaga tacgcaagaa catcacggag actctggtgt ccctgagggt 33900

ccacactgtg gatgacatcc agcagatcgc tgctgcgctg gcccagtgca tggtaggatg 33960 34020 gccccacctg ctcaccctgc cccgcatgcc tgccagggca ctgggttcag ccccccaggg cagacgggca gcttggccga ggagctgagc ctccagcctg ggctccttcc tgccatggcg 34080 ttcctcggtc tctgacctgc ttcagtagcc tcagccgttc tgtcctgtgt gaacgcaggg 34140 34200 tgcctctcgg gggacccagg gtgtaaagag gggcccagat gtggggaggg actaagaaga teceetecte eceteceeta gecettecee tecteceete ecetageeet ttecettett 34320 ccccccage cettecete etecetece etagecette ecetectece eteceetace 34380 cetteceete eteceetece etagacette eceteacete etecegetga geceetecae 34440 tegtececea geoectecet ecectagece etcecetece ecttectece etcetecee 34500 tecetecte ecetecete ttectecece tecetecte ecettecte ecetetecte 34560 cocctocct cotgtoccc ctcctccct cotcctcct cocctoctcc ccctcctcc 34620 34680 tececetect ecetecee tecteceet ectecteete ecetectee tectecete ctccctccc ctcctcccc tccccctcc cttcctcccc ctccccctc ccctcccc 34740 cetetectee teceatect ecteceatee etecteceg tteceattet eteceetece 34800 ccttccattt ctccctcctc ccctgccct cctctcctcc tcacctcccc ttctccgctc 34860 34920 cttctcctct cttttcatcc ttcccttctt ccctcctttc ctcctcttt ccctcttcc 34980 cccctcctc ccctcctcc tcctcccatt ccccctcctc cccctccca ttccccctcc 35040 tecetectt ectecteca ttaccetec tetectece tecteceace ecetetect eceggetect etectecet ecteatecee etectetect tecetectaa ececeteet 35160 ctcctccct cctcatcccc ctcctcct tccctcctcc tatcccccct cctctccc 35220 tectecete eteceatece etectece tectecete teccatecea tececeteet 35340 ctcccatccc ccctcctccc atccccctc ctctcctccc cactcctctc ctccccactc 35460 tetectecte tecetece ettetettt tecetecte tecetteete etecetett 35640 eteceetttt eeetttete tteeteteet eceettetee eetectgtee teeeteett 35700 tetetette ttteeteet tteettetee eetgttetee teeetteet teteeettt 35760

tetteeetee teettteete eceteeteet tttetetgtt tetetteett teeceteeae 35820 tttccccttc ctttcccctc tcctttctcc ttcctttcct ctccccttct cttccttttc 35880 tecetecte ttecetece etectettee ectetecte tettecete ecetectet 36000 tteccetece etectettee eteccettee etteccetee tettecetee eetteccete 36120 ctcttccttc ctctcttccc ctcccctcct cttccctccc ctcttcccct ccccttctct 36180 tctcctcccc ttctcttccc ctcccctttt cttccctctc cttgtcttcc ctgccctcct 36240 cttccctccc ctcctcttcc ctcccctctt cccctctcct cctcttccct cccctcttcc 36300 tettteetet teeeeteece teeteeteec teeeettee eetetteece teeeeteege 36360 ttecetecee ttteteceee ttetetecee teceetetee eccettetet ecceteceet 36420 cccttctct ccccttctc tctccccttc tctcccctt ctctcccctc ccccttctc 36540 tecetecee tetececett eteteceete ecetetecee tgteetetee tetecaceet 36600 tetetecet eccetetect etececette cetetectet eccettete tecectece 36660 tetectetee eccetttet ceaeteceet etectete eccteeteet eegeteteat gtgaagaggt gccttgtgtg gtcggtgggc tgcatcacgt ggtccccagg tggaggccct 36780 gggtcatgca gagccacaga aaatgcttag tgaggaggct gtgggggtcc agtcaagtgg 36840 gctctccagc tgcagggctg ggggtgggag ccaggtgagg acccgtgtag agaggagggc 36900 gtgtgcaagg agtggggcca ggagcggggc tggacactgc tggctccaca caggggccca gcagggagct cgtatgccgc tcgtgcctga agcagacgct gcacaagctg gaggccatga 37020 tgctcatcct gcaggcagag accaccgcgg gcaccgtgac gcccaccgcc atcggagaca 37080 gcatceteaa cateaeaggt gcegeggeee gtgeeceatg ceaeeegeee geeeegtgeg 37140 gecettteet etgeeteet eeteeceea acegegtege etttgeecea teccatette 37200 gtcccctcc cctccccca attcccatcc tcatccccct cccccaattc ccattctcct 37260 cccctcccc cttccctatt accatccctt ttctccatct ctctcccctt ttctccattt 37320 cccccccgt cctccccgtc cttttgtcca ttcccctcat cttcctcatc cccctcatcc contracted contracted contracted contracted type to the contract contracted c 37500 egtecteate eccateacet tececetece ecetecacea etetetete agettecece 37560

tteettetge etgeaceteg etetetgeee eeteaggtte eeeetttete eeageeecea 37620 ccctccggct cccccttttt gcctgccccc accctccctc tacctccctg tctctgcact 37680 gacctcacgc atgtctgcag gagacctcat ccacctggcc agctcggacg tgcgggcacc 37740 acagecetea gagetgggag eegagteace ateteggatg gtggegteee aggeetacaa 37800 cctgacctct gccctcatgc gcatcctcat gcgctcccgc gtgctcaacg aggagcccct 37860 gacgctggcg ggcgaggaga tcgtggccca gggcaagcgc tcggacccgc ggagcctgct 37920 gtgctatggc ggcgccccag ggcctggctg ccacttctcc atccccgagg ctttcagcgg 37980 ggccctggcc aacctcagtg acgtggtgca gctcatcttt ctggtggact ccaatccctt 38040 tecetttgge tatateagea actaeacegt etceaceaag gtggeetega tggeatteea 38100 38160 gacacaggee ggegeecaga tececatega geggetggee teagagegeg ceateacegt 38220 gaaggtgccc aacaactcgg actgggctgc ccggggccac cgcagctccg ccaactccgc 38280 caactecgtt gtggtccage eccaggeete egteggtget gtggtcacee tggacageag caaccetgeg geegggetge atetgeaget caactataeg etgetggaeg gtgegtgeag 38340 38400 cgggtggggc acacgcggcc ccctggcctt gttcttgggg ggaaggcgtt tctcgtaggg 38460 cttccatggg tgtctctggt gaaatttgct ttctgtttca tgggctgctg ggggcctggc cagagaggag ctgggggcca cggagaagca ggtgccagct ctggtgcaga ggctcctatg 38520 38580 ctttcaggcc cgtggcagag ggtgggctca ggagggccat cgtgggtgtc ccccgggtgg ttgagettee eggeaggegt gtgaeetgeg egttetgeee eaggeeacta eetgtetgag 38640 gaacctgagc cctacctggc agtctaccta cactcggagc cccggcccaa tgagcacaac 38700 tgctcggcta gcaggaggat ccgcccagag tcactccagg gtgctgacca ccggccctac tcatgggtca gcattgcctg ggttactggc cccatgggga cggcaggcag cgaggggact 38880 38940 ggaccgggta tgggctctga gactgcgaca tccaacctgg cggagcctgg gctcacgtcc gctacccctt ccctgcccag gagcagagac ccagcgggga gttaccatct gaacctctcc 39000 agecaettee getggtegge getgeaggtg teegtgggee tgtacaegte eetgtgeeag 39060 39120 tacttcagcg aggaggacat ggtgtggcgg acagaggggc tgctgcccct ggaggagacc 39180 tegeceegee aggeegtetg ceteaceege caceteaceg cetteggege cageetette gtgcccccaa gccatgtccg ctttgtgttt cctgtgagtg accctgtgct cctgggagcc 39240 totgcagagt cgaggaggc ctgggtgggc tcggctctat cctgagaagg cacagcttgc 39300 acgtgacctc ctgggcccgg cggctgtgtc ctcacaggag ccgacagcgg atgtaaacta 39360 catcgtcatg ctgacatgtg ctgtgtgcct ggtgacctac atggtcatgg ccgccatcct 39420

gcacaagctg gaccagttgg atgccagccg gggccgcgcc atccctttct gtgggcagcg 39480 gggccgcttc aagtacgaga tcctcgtcaa gacaggctgg ggccggggct caggtgaggg 39540 gcgcagcggg gtggcagggc ctcccctgct ctcactggct gtgctggttg caccctctgg 39600 gagtgagtct cgtcgcaggc gtcagaacaa ggcagttttt gcagtgctgt gtgaagggct 39660 cgtgtgttca tcctgggaat gacctcgtga gcactcactg tccctgagga ctaggacagc 39720 tectagetgg aagtaggtge cagteagtea gggtgggeag eecaegttet geacagtage 39780 gtggccccac aagtgacgtg agcatcgcta ccactgtggg agactgtgca tccacccgcg 39840 atcctgactg catagctcgt ctctcagacg gaggcgccag caccctcccc gtggctgttt 39900 cttcagtacc tccattttcc tttcattgga attgcccttc tggcattccc tttttgtttt 39960 cgtttttctt tttttagaga cggagtctca ctctgttgcc caggctggag tgcaatggca 40020 tgatcttggc tcacagcaac ttccagctcc cgggtttaag ccattcccct taagcgattc 40080 tcctgagtag ctgggagtac aggtgcacac caccacaccc agttaatttt tcaccatgtc 40140 agccaggcga actcctgacc tcaggtgatc cgcctgcctc ggcctgccag agtgctggga 40200 tgacaggtgt gagccaccac acctggctgt gttcccattt tttatctctg tgctgctttc 40260 ctcttcattg cccagttctt tcttttgatt acctactttt aaaaactgtc ggccgggcgc 40320 40380 ggtggctcac acctgtaatc cgagcacttt gggaggccag gcaggcaaat cacggggtca ggagatcgag accatcctgg ctaacggtga aaccctgtct ctaataaaaa gtacaaaaaa 40440 attagecegg egtagtggea ggegeetgta gteecagete ettgggagae tgaggeagga 40500 gaatggcgtg aacccgggag gcggagcttg cagtgagctg agattgcgcc actgcactcc gggtctgtca ctgggagagg aggtgacaca gcttcacgct ttgcagtctg tgcatgaact gagggacggg tgtgtggtgc gggtcaccgg ttgtggcatg actgaggcgt ggacaggtgt 40740 gcagtgcggg tcactggttg tggtgtggac tgaggcgtgt gcagccatgt ttgcatgtca 40800 caagttacag ttctttccat gtaacttaat catgtccttg aggtcctgct gttaattgga 40860 caaattgcag taaccgcagc teettgtgta tggcagagee gtgcaaagee gggaetgeet 40920 gtgtggctcc ttgagtgcgc acaggccaaa gctgagatga cttgcctggg atgccacacg 40980 41040 tgttgggcag cagaccgagc ctcccacccc tccctcttgc ctcccaggta ccacggccca cgtgggcatc atgctgtatg gggtggacag ccggagcggc caccggcacc tggacggcga 41100 cagageette caeegeaaca geetggaeat etteeggate geeaceeege acageetggg 41160 tagcgtgtgg aagatccgag tgtggcacga caacaaaggt ttgtgcggac cctgccaagc 41220

tetgececte tgececegea ttggggegee etgegageet gaeeteeete etgegeetet 41280 gcagggctca gccctgcctg gttcctgcag cacgtcatcg tcagggacct gcagacggca 41340 cgcagcgcct tcttcctggt caatgactgg ctttcggtgg agacggaggc caacgggggc 41400 ctggtggaga aggaggtgct ggccgcgagt aaggcctcgt tccatggtcc cactccgtgg 41460 gaggttgggc agggtggtcc tgccccgtgg cctcctgcag tgcggccctc cctgccttct 41520 aggegaegea geeettttge getteeggeg eetgetggtg getgagetge agegtggett 41580 ctttgacaag cacatctggc tctccatatg ggaccggccg cctcgtagcc gtttcactcg 41640 catecagagg gecaectget gegtteteet catetgeete tteetgggeg ecaaegeegt 41700 gtggtacggg gctgttggcg actctgccta caggtgggtg ccgtaggggt cggggcagcc 41760 tetteetgee cageeettee tgeeeteag eeteacetgt gtggeeteet eteeteeaca 41820 41880 cagcacgggg catgtgtcca ggctgagccc gctgagcgtc gacacagtcg ctgttggcct ggtgtccagc gtggttgtct atcccgtcta cctggccatc ctttttctct tccggatgtc 41940 ccggagcaag gtgggctggg gctggggacc cgggagtact gggaatggag cctgggcctc 42000 42060 ggcaccatgc ctagggccgc cactttccag tgctgcagcc agagggaaag gcgtccacca aaggetgete gggaagggte aacacacttg ageageetta getagaetga eeagggagaa 42120 agagagaaga ctcagaagcc agaatggtga aagaacgagg gcactttgct aagcagacgc 42180 cacggacgac tgcacagcag cacgccagat aactcagaag aagcaagcac gcggctgtgc 42240 acgcttccga aatgcactcc agaagaaaat ctcagtacat ctataggaag tgaagaggct 42300 gagttagtcc cttagaaacg tcccagtggc cgggccgggt gtggtggctc acgcctgtaa 42360 tcccaacact tcaggtggcc gaggtgggcg gatctgagtc caggagtttg agaccagcct 42420 gggcaacata gcaagacccc atctatataa aacattaaaa agggccaggc gcggtggctc 42480 42540 acgcctgtaa tcccagcact ttgggaggcc gaggcgggca gatcacttga ggtcaggagt tcgagaccag cctggccaac acaatgaaac cccgactcta ctacaaatac aaaaacttag 42600 ctgggcatgg tggcggcgc ctgtagtccc agctactcga gaggctgagg caggagaatg 42660 42720 gcatgaaccc aggaggcgga gcttgcagtg agccgagatt gcgccactgc actccatcct 42780 42840 tcaggctcag agccttcacg atagaatttt tctaagcagt taaggaagaa ttaacaccaa tccttcacag actctttcca agaatacagc aggtgggaac gcttcccatt catacggaaa 42900 42960 cgggaggccg caccccttag gaatgcacac gtggggtcct caagaggtta catgcaaact aaccccagca gcacacagag aaggcgcata agccgcgacc aggaggggtt gctcccgagt 43020 ccgtggcagg aaccagaggc cacatgtggc tgctcgtatt taagttaatt aaaatggaac 43080

gatggccggg tgtggttggct cacacctgta atcccagcac tttgggaggc ggaggcgggc agatcacttg aggtcaggag ttccaagacc agcctggcca acacagtgaa accccgtctc 43200 tactaaaaat acaaaaaatt agctgggcat ggtggcaggc acctgtaatc ccagctactc 43260 43320 aggaggctga gccaggacaa tcgcctgaac gcgggaggtg gaggttgcag tgagctgaga ttgcgccatt gcactccagc ctgggtgaca gcgagactcc atctaaaaaa gaaaatatga 43380 43440 aatttaaaac tctgttcctt agctgcacca gtctgctgtc aagtgttcag tggcacacgt cgcgaggggc tgccatcacg gacggtgcag atgtcccata tatccagcat tctaggacat 43500 tctgtcagat ggcaccgggc tctgtcctgt ctgctgagga ggtggcttct catccctgtc 43560 ctgagcaggt ctgagctgcc gcccgctgac cactgccctc gtcctgcagg tggctgggag 43620 cccgagcccc acacctgccg ggcagcaggt gctggacatc gacagctgcc tggactcgtc 43680 cgtgctggac agctccttcc tcacgttctc aggcctccac gctgaggtga ggactctact 43740 gggggtcctg ggctgggctg ggggtcctgc cgccttggcg cagcttggac tcaagacact 43800 43860 gtgcacctct cagcaggcct ttgttggaca gatgaagagt gacttgtttc tggatgattc taagaggtgg gttccctaga gaaacctcga gccctggtgc aggtcactgt gtctggggtg 43920 43980 ccgggggtgt gcgggctgcg tgtccttgct gggtgtctgt ggctccatgt ggtcacacca cccgggagca ggtttgctcg gaagcccagg gtgtccgtgc gtgactggac gggggtgggc 44040 44100 tgtgtgtgtg acacatcccc tggtaccttg ctgacccgcg ccacctgcag tctggtgtgc tggccctccg gcgagggaac gctcagttgg ccggacctgc tcagtgaccc gtccattgtg 44160 44220 ggtagcaatc tgcggcagct ggcacggggc caggcgggcc atgggctggg cccagaggag gacggettet eeetggeeag eeeetaeteg eetgeeaaat eetteteage ateaggtgag ctggggtgag aggaggggc tctgaagctc acccttgcag ctgggcccac cctatgcctc 44340 ctgtacctct agatgaagac ctgatccagc aggtccttgc cgagggggtc agcagcccag 44400 cccctaccca agacacccac atggaaacgg acctgctcag cagcctgtga gtgtccggct ctcgggggag gggggattgc cagaggaggg gccgggactc aggccaggca gccgtggttc 44520 44580 44640 ctctgaacct ctgttgtctg tggaaagagc ctcatgggat ccccagggcc ccagaacctt ccctctaggg agggagcagg ctcatggggc tttgtaggag cagaaaggct cctgtgtgag 44700 44760 gctggccggg gccacgtttt tatcttggtc tcagagcagt gagaaattat gggcgggttt ttaaataccc catttttggc cgggcgcggt ggctcacacg tgtaatccca gcactttggg 44820 aggccgaggt gggcagatga cctgaggtca gcagttcgag accagcctgg ccaacatggc 44880

gaaaccccgt ctctactaaa aatacaaaaa attagccggg catgctggca ggcgcctgta 44940 45000 gtcccagtta ctcgggagac tgaggtagga gaatcgattg aacctggtag gtgaaggttg tagtgageeg agategegee aetgeaetee ageetgggea acaagagega aacteegtet 45060 caaaaacaaa aaaattcctc aatttcttgg ttgttttgta acttatcaac aaatggtcat 45120 45180 atagaggtta ccttgtatgt agtcacgcac atagtcacgc acatggcagc cggcggcgga 45240 gegeacecae ggegtgttee caegegtgtg acceeggget etgecatgee etectatget caggtgtgct gaggtccaca cggccctgcc gttgcactgc agctgcctgc aggattcagt 45300 45360 geagtggcat geagtgeagg tgeggtgeec eggageeaca ggeeacaeca eagggeetge 45420 atgcacaggg gctgcggtgt ctgggtttgg gtaactacgc cctgtgacat ttgcacagca 45480 acagaattac ctaatgacgc atttctcaga acacatccct ggcactaagt ggtgcgtgac 45540 tgctgctttt gcatccacat ctagtttgat ttgtgtgtta ttcctttgag tgcttctcat 45600 tgttaagcaa ccaagaacta aagaggtatg aactgcccct ggactcaaac aaaaaggaaa 45660 acttcctgat ttacaaaagg cagataacca tcacatgagg gcatctttat gaataaattg 45720 ctggttggtt ttaaaaatac agagtatggg gaaatccagg ggtagtcact acatgctgac cagececagg tateteegge ceaaagetet gtgaaateea gatteagtge tteegegggg 45780 45840 atttctgacg gcagctcaga ctccgcatcc acacagagcg cgtggccctc accctcccgg cttcctcaac ccttggccgt cccttgctcg gacagtgctt cgggctgacc aggtcggagg 45900 cttgggtttg tcctggaccc ctctgcgtcc ttcctcactg cagcctccag cgcgtcccgt 45960 ggctcctttc ccaacgcaga gcacggcctt ccctgcgcct gagcctgcac cctccgtcct 46020 ggcggcgcct ctgccctggc attccctgcc actccatgcc tccctattgg ccattctccg tetetgecag egagageetg etecetgagt cagaceetga gteatttgtg ttgetataaa ggaatagttg aggctgggtt atttttatt tttatttatt tttttgagat ggagtctctg 46200 ttqcccagac tggagtgcag tcgcatgatc tcggctcact gcaaagtctg cctcccacgt 46260 tcaagcagtt atctgectca geeteecaag tagetaagat tacaggegee egeegeeaca 46320 46380 gccggctaat tttttgtgtg tgtgttttag tagagaggag gtttcaccat cttagccagg ctggtcttga actcctgacc tcgtgatcca cccatctcag cctcccaaaa tgctgagatt 46440 46500 acaggcgtga gccaccacgc ctgaccaagt tgaggctagg tcatttttta attttttgta 46560 aagacagggt ctcactgtct ccaactcctg agctcaagtg atcctcctgc ctcagcctcc 46620 tgaagtgctg ggattacagg cttgagacac tgcgcccagc caagagtgtc ttttatcctc cgagagacag caaaacagga agcattcagt gcagtgtgac cctgggtcag gccgttcttt 46680 cggtgatggg ctgacgaggg cgcaggtacg ggagagcgtc ctgagagccc gggactcggc 46740 gtctcgcagt tggtctcgtc ctccccctca acgtgtcttc gctgcctctg tacctcttct ctagcagctc tgggaccggg catatcagca tggtggcccg atgcagtggc acagcctcgg 46860 46920 tggtcactgg ctcctggaga cacaagcaga tctctggcct cagggagccc tacacactgt 46980 tgggatttga aaggcattca tatgtttcct tgtccagaag ttaattttag gccataaacc tgcatgggac agacacactg gcgtctctag attgtagaga tgcttgttgg atggttgaga 47040 47100 cccaatcata gtttgcaggg ttgaaggggg gctcattgca ccctgagaga ctgtgcactg 47160 ctgtaagggc agctggtcag gctgtgggcg atgggtttat cagcagcaag cgggcgggag agggacgcag gcggacgcct gacttcggtg cctggagtgg ctcttggttc cctggctccc 47220 agcaccactc ccactctcgt ttggggtagg gtcttccggc tttttgtcgg ggggaccctg 47280 tgacccaaga ggctcaagaa actgcccgcc caggttaaca tgggcttggc tgcaactgcc 47340 47400 tcctggaggc cgggatgaat tcacagccta ccatgtccct caggtccagc actcctgggg 47460 agaagacaga gacgctggcg ctgcagaggc tgggggagct ggggccaccc agcccaggcc tgaactggga acagccccag gcagcgagge tgtccaggac aggtgtgctt gcgtagccce 47520 47580 gggatgcccc tagcccctcc ctgtgagctg cctctcacag gtctgtctct gcttccccag 47640 gactggtgga gggtctgcgg aagcgcctgc tgccggcctg gtgtgcctcc ctggcccacg 47700 ggctcagcct gctcctggtg gctgtggctg tggctgtctc agggtgggtg ggtgcgagct tececeggg egtgagtgtt gegtggetee tgtceageag egecagette etggeeteat 47760 47820 tecteggetg ggagecaetg aaggtgaggg ggetgeeagg ggtaggetae aggeeteeat cacgggggac ccctctgaag ccacccctc cccaggtctt gctggaagcc ctgtacttct cactggtggc caagcggctg cacccggatg aagatgacac cctggtagag agcccggctg tgacgcctgt gagcgcacgt gtgccccgcg tacggccacc ccacggcttt gcactcttcc 48000 tggccaagga agaagcccgc aaggtcaaga ggctacatgg catgctgcgg gtgagcctgg 48060 gtgcggcctg tgcccctgcc acctccgtct cttgtctccc acctcccacc catgcacgca 48120 48180 ggacactcct gtcccccttt cctcacctca gaaggccctt aggggttcaa tgctctgcag cetttgeeeg gteteeetee taeeceaege eeeceaettg etgeeeeagt eeetgeeagg 48240 gcccagctcc aatgcccact cctgcctggc cctgaaggcc cctaagcacc actgcagtgg 48300 cctgtgtgtc tgcccccagg tggggttccg ggcagggtgt gtgctgccat taccctggcc 48360 aggtagagtc ttggggcgcc ccctgccagc tcaccttcct gcagccacac ctgccgcagc 48420 catggctcca gccgttgcca aagccctgct gtcactgtgg gctggggcca ggctgaccac 48480 agggccccc cgtccaccag agcctcctgg tgtacatgct ttttctgctg gtgaccctgc 48540

tggccagcta tggggatgcc tcatgccatg ggcacgccta ccgtctgcaa agcgccatca 48600 agcaggagct gcacagccgg gccttcctgg ccatcacgcg gtacgggcat ccggtgcact 48660 48720 ggtctgtctt ctgggcttta gttttgcctt tagtccagcc agaccctagg ggacatgtgg 48780 acatgtgtag atacctttgt ggctgctaga actggaggta ggtgctgctg gcatcagtag gcagagggga gggacacagg tccgtgtctt gcagtgcaca ggacgggccc atgacagaca 48840 48900 actgtctgcc ccagaacatc cccaggataa ggctgagaag cccaggtcta gccgtggcca gcagggcagt gggagccatg ttccctgggt ctctggtggc cgctcactcg aggcgggcat 48960 ggggcagtag gggctggagc gtgtgactga tgctgtggca ggtctgagga gctctggcca 49020 tggatggccc acgtgctgct gccctacgtc cacgggaacc agtccagccc agagctgggg 49080 49140 ccccacggc tgcggcaggt gcggctgcag gaaggtgagc tggcagggcg tgccccaaga 49200 cttaaatcgt tcctcttgtt gagagagcag cctttagcgg agctctggca tcagccctgc 49260 teectagetg tgtgaeettt geeetettaa eacegeegtt teettetetg tatatgagag atggtaacgt tgtctaattg atggctgctg ggagggttcc ctgggggtggc gccgaaccag 49320 ageteaggeg agetggeeag caggaaacae teetgttggg ttttgatgag geeetggeee 49380 cggcctgggg ctctgtgtt ttcagcactc tacccagacc ctcccggccc cagggtccac 49440 acgtgctcgg ccgcaggagg cttcagcacc agcgattacg acgttggctg ggagagtcct 49500 49560 cacaatggct cggggacgtg ggcctattca gcgccggatc tgctggggtg agcagagcga gggccccggg cgtctacgcc aaggacaagg gagtagttct ccaggagtgc cgcggcctcc 49620 tgaccagect ggeteegggg tgeeggaagg getggggtge ggeacceaeg ceaecetet ccggcagggc atggtcctgg ggctcctgtg ccgtgtatga cagcgggggc tacgtgcagg agetgggeet gageetggag gagageegeg aceggetgeg etteetgeag etgeacaact ggctggacaa caggtgggag ctccctcccc tgccctctcc ggggtggccg cagtcaccag 49860 ccaggagece acceteacte eteeggeece egetggeeta ggeggettee acageceete 49920 agecaegeet geactgegeg gteecegeag etecegeet gecaeceget eetactgace 49980 cgcaccctct gcgcaggagc cgcgctgtgt tcctggagct cacgcgctac agcccggccg 50040 tggggctgca cgccgccgtc acgctgcgcc tcgagttccc ggcggccggc cgcgccctgg 50100 ccgccctcag cgtccgcccc tttgcgctgc gccgcctcag cgcgggcctc tcgctgcctc 50160 tgctcacctc ggtacgcccg tccccggcca gaccccgcgc ctcccaccgg cagcgtcccg 50220 cccctcgcg gggccccgcc cggcagcgtc tcacccttcg cagcgccccg ccccttcgca 50280 gcgtcccgcc ccctcgcagg gccccgcccc ggcagcgtcc cgcccctcg tagggccccg 50340 ccccggcagc gtcccgcccc ctcgcagggc cccgccccgg cagcgtccct cccgcctcc

tgaccgcgcc ccccacaggt gtgcctgctg ctgttcgccg tgcacttcgc cgtggccgag 50460 gcccgtactt ggcacaggga agggcgctgg cgcgtgctgc ggctcggagc ctgggcgcgg 50520 50580 tggctgctgg tggcgctgac ggcggccacg gcactggtac gcctcgccca gctgggtgcc gctgaccgcc agtggacccg tttcgtgcgc ggccgcccgc gccgcttcac tagcttcgac 50640 50700 caggtggcgc agetgagete egeageeegt ggeetggegg eetegetget etteetgett 50760 ttggtcaagg tgagggctgg geeggtggge geggggetgg gegeacacec cagggetgca agcagacaga tttctcgtcc gcaggctgcc cagcagctac gcttcgtgcg ccagtggtcc 50820 gtctttggca agacattatg ccgagctctg ccagagctcc tgggggtcac cttgggcctg 50880 gtggtgctcg gggtagccta cgcccagctg gccatcctgg taggtgactg cgcggccggg 50940 gagggcgtct tagctcagct cagctcagct gtacgccctc actggtgtcg ccttccccgc 51000 agctcgtgtc ttcctgtgtg gactccctct ggagcgtggc ccaggccctg ttggtgctgt 51060 51120 gccctgggac tgggctctct accctgtgtc ctgccgagtc ctggcacctg tcaccctgc tgtgtgtggg gctctgggca ctgcggctgt ggggcgccct acggctgggg gctgttattc 51180 tccgctggcg ctaccacgcc ttgcgtggag agctgtaccg gccggcctgg gagccccagg 51240 actacgagat ggtggagttg ttcctgcgca ggctgcgcct ctggatgggc ctcagcaagg 51300 51360 tcaaggaggt gggtacggcc cagtgggggg gagagggaca cgccctgggc tctgcccagg gtgcagccgg actgactgag cccctgtgcc gcccccagtt ccgccacaaa gtccgctttg 51420 aagggatgga geegetgeee tetegeteet eeaggggete eaaggtatee eeggatgtge 51480 ccccacccag cgctggctcc gatgcctcgc acccctccac ctcctccagc cagctggatg 51540 ggctgagcgt gagcctgggc cggctgggga caaggtgtga gcctgagccc tcccgcctcc aagccgtgtt cgaggccctg ctcacccagt ttgaccgact caaccaggcc acagaggacg 51720 tctaccaget ggagcagcag etgcacagec tgcaaggceg caggagcage egggegeeeg 51780 ccggatcttc ccgtggccca tccccgggcc tgcggccagc actgcccagc cgccttgccc 51840 gggccagtcg gggtgtggac ctggccactg gccccagcag gacacccctt cgggccaaga acaaggtcca ccccagcagc acttagtcct ccttcctggc gggggtgggc cgtggagtcg 51900 gagtggacac cgctcagtat tactttctgc cgctgtcaag gccgagggcc aggcagaatg 51960 gctgcacgta ggttccccag agagcaggca ggggcatctg tctgtctgtg ggcttcagca 52020 ctttaaagag gctgtgtggc caaccaggac ccagggtccc ctccccagct cccttgggaa 52080 ggacacagca gtattggacg gtttctagcc tctgagatgc taatttattt ccccgagtcc 52140 tcaggtacag cgggctgtgc ccggccccac cccctgggca gatgtccccc actgctaagg 52200

ctgctggctt	cagggagggt	tagcctgcac	cgccgccacc	ctgcccctaa	gttattacct	52260
ctccagttcc	taccgtactc	cctgcaccgt	ctcactgtgt	gtctcgtgtc	agtaatttat	52320
atggtgttaa	aatgtgtata	tttttgtatg	tcactatttt	cactagggct	gaggggcctg	52380
cgcccagagc	tggcctcccc	caacacctgc	tgcgcttggt	aggtgtggtg	gcgttatggc	52440
agcccggctg	ctgcttggat	gcgagcttgg	ccttgggccg	gtgctggggg	cacagetgte	52500
tgccaggcac	tctcatcacc	ccagaggcct	tgtcatcctc	ccttgcccca	ggccaggtag	52560
caagagagca	gcgcccaggc	ctgctggcat	caggtctggg	caagtagcag	gactaggcat	52620
gtcagaggac	cccagggtgg	ttagaggaaa	agactcctcc	tgggggctgg	ctcccagggt	52680
ggaggaaggt	gactgtgtgt	gtgtgtgtgt	gegegegege	acgcgcgagt	gtgctgtatg	52740
gcccaggcag	cctcaaggcc	ctcggagctg	gctgtgcctg	cttctgtgta	ccacttctgt	52800
gggcatggcc	gcttctagag	cctcgacacc	cccccaaccc	ccgcaccaag	cagacaaagt	52860
caataaaaga	gctgtctgac	tgcaatctgt	gcctctatgt	ctgtgcactg	gggtcaggac	52920
tttatttatt	tcactgacag	gcaataccgt	ccaaggccag	tgcaggaggg	agggccccgg	52980
cctcacacaa	actcggtgaa	gtcctccacc	gaggagatga	ggcgcttccg	ctggcccacc	53040
tcatagccag	gtgtgggctc	ggctggagtc	tgtgcagggg	ctttgctatg	ggacggaggg	53100
tgcaccagag	gtaggctggg	gttggagtag	gcggcttcct	cgcagatctg	aaggcagagg	53160
cggcttgggc	agtaagtctg	ggaggcgtgg	caaccgctct	gcccacacac	ccgccccaca	53220
gcttgggcag	ccagcacacc	ccgctgaggg	agccccatat	tccctacccg	ctggcggagc	53280
gcttgatgtg	gcggagcggg	caatccactt	ggaggggtag	atatcggtgg	ggttggagcg	53340
gctatgatgc	acctgtgagg	ccatctgggg	acgtaggcag	ggggtgagct	cactatcagg	53400
tggcacctgg	gcctgtccca	ccagctcacg	cctggaccca	ccccactca	catttgcgtg	53460
cagggccatc	tggcgggcca	cgaagggcag	gttgcggtca	gacacgatct	tggccacgct	53520
9 9						53522

<210> 2

<211> 4303

<212> PRT

<213> Homo sapiens

<400> 2

Met Pro Pro Ala Ala Pro Ala Arg Leu Ala Leu Ala Leu Gly Leu Gly 1 5 10 15

Leu Trp Leu Gly Ala Leu Ala Gly Gly Pro Gly Arg Gly Cys Gly Pro 20 25 30

Cys Glu Pro Pro Cys Leu Cys Gly Pro Ala Pro Gly Ala Ala Cys Arg

Val Asn Cys Ser Gly Arg Gly Leu Arg Thr Leu Gly Pro Ala Leu Arg Ile Pro Ala Asp Ala Thr Glu Leu Asp Val Ser His Asn Leu Leu Arg Ala Leu Asp Val Gly Leu Leu Ala Asn Leu Ser Ala Leu Ala Glu Leu Asp Ile Ser Asn Asn Lys Ile Ser Thr Leu Glu Glu Gly Ile Phe Ala Asn Leu Phe Asn Leu Ser Glu Ile Asn Leu Ser Gly Asn Pro Phe Glu Cys Asp Cys Gly Leu Ala Trp Leu Pro Gln Trp Ala Glu Glu Gln Gln Val Arg Val Val Gln Pro Glu Ala Ala Thr Cys Ala Gly Pro Gly Ser Leu Ala Gly Gln Pro Leu Leu Gly Ile Pro Leu Leu Asp Ser Gly Cys Gly Glu Glu Tyr Val Ala Cys Leu Pro Asp Asn Ser Ser Gly Thr Val Ala Ala Val Ser Phe Ser Ala Ala His Glu Gly Leu Leu Gln Pro Glu Ala Cys Ser Ala Phe Cys Phe Ser Thr Gly Gln Gly Leu Ala Ala Leu Ser Glu Gln Gly Trp Cys Leu Cys Gly Ala Ala Gln Pro Ser Ser Ala Ser Phe Ala Cys Leu Ser Leu Cys Ser Gly Pro Pro Ala Pro Pro Ala 250 255 Pro Thr Cys Arg Gly Pro Thr Leu Leu Gln His Val Phe Pro Ala Ser Pro Gly Ala Thr Leu Val Gly Pro His Gly Pro Leu Ala Ser Gly Gln Leu Ala Ala Phe His Ile Ala Ala Pro Leu Pro Val Thr Asp Thr Arg Trp Asp Phe Gly Asp Gly Ser Ala Glu Val Asp Ala Ala Gly Pro Ala Ala Ser His Arg Tyr Val Leu Pro Gly Arg Tyr His Val Thr Ala Val Leu Ala Leu Gly Ala Gly Ser Ala Leu Leu Gly Thr Asp Val Gln Val Glu Ala Ala Pro Ala Ala Leu Glu Leu Val Cys Pro Ser Ser Val Gln

Ser Asp Glu Ser Leu Asp Leu Ser Ile Gln Asn Arg Gly Gly Ser Gly Leu Glu Ala Ala Tyr Ser Ile Val Ala Leu Gly Glu Glu Pro Ala Arg Ala Val His Pro Leu Cys Pro Ser Asp Thr Glu Ile Phe Pro Gly Asn Gly His Cys Tyr Arg Leu Val Val Glu Lys Ala Ala Trp Leu Gln Ala Gln Glu Gln Cys Gln Ala Trp Ala Gly Ala Ala Leu Ala Met Val Asp Ser Pro Ala Val Gln Arg Phe Leu Val Ser Arg Val Thr Arg Ser Leu Asp Val Trp Ile Gly Phe Ser Thr Val Gln Gly Val Glu Val Gly Pro Ala Pro Gln Gly Glu Ala Phe Ser Leu Glu Ser Cys Gln Asn Trp Leu Pro Gly Glu Pro His Pro Ala Thr Ala Glu His Cys Val Arg Leu Gly Pro Thr Gly Trp Cys Asn Thr Asp Leu Cys Ser Ala Pro His Ser Tyr Val Cys Glu Leu Gln Pro Gly Gly Pro Val Gln Asp Ala Glu Asn Leu Leu Val Gly Ala Pro Ser Gly Asp Leu Gln Gly Pro Leu Thr Pro Leu Ala Gln Gln Asp Gly Leu Ser Ala Pro His Glu Pro Val Glu Val Met Val Phe Pro Gly Leu Arg Leu Ser Arg Glu Ala Phe Leu Thr Thr Ala Glu Phe Gly Thr Gln Glu Leu Arg Arg Pro Ala Gln Leu Arg Leu Gln Val Tyr Arg Leu Leu Ser Thr Ala Gly Thr Pro Glu Asn Gly Ser Glu Pro Glu Ser Arg Ser Pro Asp Asn Arg Thr Gln Leu Ala Pro Ala Cys Met Pro Gly Gly Arg Trp Cys Pro Gly Ala Asn Ile Cys Leu Pro Leu Asp Ala Ser Cys His Pro Gln Ala Cys Ala Asn Gly Cys Thr Ser Gly Pro Gly Leu Pro Gly Ala Pro Tyr Ala Leu Trp Arg Glu Phe Leu Phe

Ser Val Pro Ala Gly Pro Pro Ala Gln Tyr Ser Val Thr Leu His Gly 690 700

Gln Asp Val Leu Met Leu Pro Gly Asp Leu Val Gly Leu Gln His Asp 705 710 715 720

Ala Gly Pro Gly Ala Leu Leu His Cys Ser Pro Ala Pro Gly His Pro
725 730 735

Gly Pro Arg Ala Pro Tyr Leu Ser Ala Asn Ala Ser Ser Trp Leu Pro
740 745 750

His Leu Pro Ala Gln Leu Glu Gly Thr Trp Gly Cys Pro Ala Cys Ala 755 760 765

Leu Arg Leu Leu Ala Gln Arg Glu Gln Leu Thr Val Leu Leu Gly Leu 770 780

Arg Pro Asn Pro Gly Leu Arg Leu Pro Gly Arg Tyr Glu Val Arg Ala
785 790 795 800

Glu Val Gly Asn Gly Val Ser Arg His Asn Leu Ser Cys Ser Phe Asp 805 810 815

Val Val Ser Pro Val Ala Gly Leu Arg Val Ile Tyr Pro Ala Pro Arg 820 825 830

Asp Gly Arg Leu Tyr Val Pro Thr Asn Gly Ser Ala Leu Val Leu Gln 835 840 845

Val Asp Ser Gly Ala Asn Ala Thr Ala Thr Ala Arg Trp Pro Gly Gly 850 860

Ser Leu Ser Ala Arg Phe Glu Asn Val Cys Pro Ala Leu Val Ala Thr 865 870 875 880

Phe Val Pro Ala Cys Pro Trp Glu Thr Asn Asp Thr Leu Phe Ser Val 885 890 895

Val Ala Leu Pro Trp Leu Ser Glu Gly Glu His Val Val Asp Val Val 900 905 910

Val Glu Asn Ser Ala Ser Arg Ala Asn Leu Ser Leu Arg Val Thr Ala 915 920 925

Glu Glu Pro Ile Cys Gly Leu Arg Ala Thr Pro Ser Pro Glu Ala Arg 930 935 940

Val Leu Gln Gly Val Leu Val Arg Tyr Ser Pro Val Val Glu Ala Gly 945 950 955 960

Ser Asp Met Val Phe Arg Trp Thr Ile Asn Asp Lys Gln Ser Leu Thr 965 970 975

Phe Gln Asn Val Val Phe Asn Val Ile Tyr Gln Ser Ala Ala Val Phe 980 985 990

Lys Leu Ser Leu Thr Ala Ser Asn His Val Ser Asn Val Thr Val Asn 995 1000 1005

Tyr Asn Val Thr Val Glu Arg Met Asn Arg Met Gln Gly Leu Gln

	1010					1015					1020			
Val	Ser 1025	Thr	Val	Pro	Ala	Val 1030	Leu	Ser	Pro	Asn	Ala 1035	Thr	Leu	Ala
Leu	Thr 1040	Ala	Gly	Val	Leu	Val 1045	Asp	Ser	Ala	Val	Glu 1050	Val	Ala	Phe
Leu	Trp 1055	Thr	Phe	Gly	Asp	Gly 1060	Glu	Gln	Ala	Leu	His 1065	Gln	Phe	Gln
Pro	Pro 1070	Tyr	Asn	Glu	Ser	Phe 1075	Pro	Val	Pro	Asp	Pro 1080	Ser	Val	Ala
Gln	Val 1085	Leu	Val	Glu	His	Asn 1090	Val	Thr	His	Thr	Tyr 1095	Ala	Ala	Pro
Gly	Glu 1100	Tyr	Leu	Leu	Thr	Val 1105	Leu	Ala	Ser	Asn	Ala 1110	Phe	Glu	Asn
Leu	Thr 1115	Gln	Gln	Val	Pro	Val 1120	Ser	Val	Arg	Ala	Ser 1125	Leu	Pro	Ser
Val	Ala 1130	Val	Gly	Val	Ser	Asp 1135	Gly	Val	Leu	Val	Ala 1140	Gly	Arg	Pro
Val	Thr 1145	Phe	Tyr	Pro	His	Pro 1150	Leu	Pro	Ser	Pro	Gly 1155	Gly	Val	Leu
Tyr	Thr 1160	Trp	Asp	Phe	Gly	Asp 1165		Ser	Pro	Val	Leu 1170	Thr	Gln	Ser
Gln	Pro 1175	Ala	Ala	Asn	His	Thr 1180	Tyr	Ala	Ser	Arg	Gly 1185	Thr	Tyr	His
Val	Arg 1190	Leu	Glu	Val	Asn	Asn 1195	Thr	Val	Ser	Gly	Ala 1200	Ala	Ala	Gln
Ala	Asp 1205	Val	Arg	Val	Phe	Glu 1210	Glu	Leu	Arg	Gly	Leu 1215	Ser	Val	Asp
Met	Ser 1220	Leu	Ala	Val	Glu	Gln 1225	Gly	Ala	Pro	Val	Val 1230	Val	Ser	Ala
Ala	Val 1235	Gln	Thr	Gly	Asp	Asn 1240	Ile	Thr	Trp	Thr	Phe 1245	Asp	Met	Gly
qaA	Gly 1250	Thr	Val	Leu	Ser	Gly 1255	Pro	Glu	Ala	Thr	Val 1260	Glu	His	Val
Tyr	Leu 1265	Arg	Ala	Gln	Asn	Cys 1270	Thr	Val	Thr	Val	Gly 1275	Ala	Gly	Ser
Pro	Ala 1280	Gly	His	Leu	Ala	Arg 1285	Ser	Leu	His	Val	Leu 1290	Val	Phe	Val
Leu	Glu 1295	Val	Leu	Arg	Val	Glu 1300	Pro	Ala	Ala	Cys	Ile 1305	Pro	Thr	Gln
Pro	Asp 1310	Ala	Arg	Leu	Thr	Ala 1315	Tyr	Val	Thr	Gly	Asn 1320	Pro	Ala	His

Tyr	Leu 1325		Asp	Trp	Thr	Phe 1330	_	_	_	Ser	Ser 1335	Asn	Thr	Thr
Val	Arg 1340	-	Cys	Pro	Thr	Val 1345		His	Asn	Phe	Thr 1350	Arg	Ser	Gly
Thr	Phe 1355	Pro	Leu	Ala	Leu	Val 1360	Leu	Ser	Ser	Arg	Val 1365	Asn	Arg	Ala
His	Tyr 1370		Thr	Ser	Ile	Cys 1375					Val 1380	Gly	Asn	Val
Thr	Leu 1385		Pro	Glu	Arg	Gln 1390				Leu	Gly 1395	Asp	Glu	Ala
Trp	Leu 1400	Val	Ala	Cys	Ala	Trp 1405		Pro	Phe	Pro	Tyr 1410	Arg	Tyr	Thr
Trp	Asp 1415	Phe	Gly	Thr	Glu	Glu 1420	Ala	Ala	Pro	Thr	Arg 1425	Ala	Arg	Gly
Pro						Tyr 1435	_	_		_		Tyr	Leu	Val
Thr	Val 1445		Ala	Ser	Asn	Asn 1450	Ile	Ser	Ala	Ala	Asn 1455	Asp	Ser	Ala
Leu	Val 1460	Glu	Val	Gln	Glu	Pro 1465	Val	Leu	Val	Thr	Ser 1470	Ile	Lys	Val
Asn	Gly 1475		Leu	Gly	Leu	Glu 1480					Tyr 1485	Leu	Phe	Ser
Ala	Val 1490	•	Arg	Gly	Arg	Pro 1495		Ser	туг	Leu	Trp 1500	Asp	Leu	Gly
Asp	Gly 1505	_	Trp	Leu	Glu	Gly 1510	Pro	Glu	Val	Thr	His 1515	Ala	Tyr	Asn
Ser	Thr 1520	Gly	Asp	Phe	Thr	Val 1525	_	Val	Ala	Gly	Trp 1530	Asn	Glu	Val
Ser	Arg 1535				Trp	Leu 1540					Lys 1545	Arg	Arg	Val
_	_					Ala 1555		_						Asn
Gly	Ser 1565	Val	Ser	Phe	Ser	Thr 1570	Ser	Leu	Glu	Ala	Gly 1575	Ser	Asp	Val
Arg	Tyr 1580	Ser	Trp	Val	Leu	Cys 1585	Asp	Arg	Cys	Thr	Pro 1590	Ile	Pro	Gly
Gly	Pro 1595	Thr	Ile	Ser	Tyr	Thr 1600	Phe	Arg	Ser	Val	Gly 1605	Thr	Phe	Asn
Ile	Ile 1610	Val	Thr	Ala	Glu	Asn 1615	Glu	Val	Gly	Ser	Ala 1620	Gln	Asp	Ser

Ile Phe Val Tyr Val Leu Gln Leu Ile Glu Gly Leu Gln Va 1625 1630 1635	l Val
Gly Gly Gly Arg Tyr Phe Pro Thr Asn His Thr Val Gln Le 1640 1645 1650	u Gln
Ala Val Val Arg Asp Gly Thr Asn Val Ser Tyr Ser Trp Th 1655 1660 1665	r Ala
Trp Arg Asp Arg Gly Pro Ala Leu Ala Gly Ser Gly Lys Gl 1670 1675 1680	y Phe
Ser Leu Thr Val Leu Glu Ala Gly Thr Tyr His Val Gln Le 1685 1690 1695	u Arg
Ala Thr Asn Met Leu Gly Ser Ala Trp Ala Asp Cys Thr Me 1700 1705 1710	t Asp
Phe Val Glu Pro Val Gly Trp Leu Met Val Ala Ala Ser Pr 1715 1720 1725	o Asn
Pro Ala Ala Val Asn Thr Ser Val Thr Leu Ser Ala Glu Le 1730 1735 1740	u Ala
Gly Gly Ser Gly Val Val Tyr Thr Trp Ser Leu Glu Glu Gl 1745 1750 1755	y Leu
Ser Trp Glu Thr Ser Glu Pro Phe Thr Thr His Ser Phe Pr 1760 1765 1770	o Thr
Pro Gly Leu His Leu Val Thr Met Thr Ala Gly Asn Pro Le 1775 1780 1785	u Gly
Ser Ala Asn Ala Thr Val Glu Val Asp Val Gln Val Pro Va 1790 1795 1800	l Ser
Gly Leu Ser Ile Arg Ala Ser Glu Pro Gly Gly Ser Phe Va 1805 1810 1815	l Ala
Ala Gly Ser Ser Val Pro Phe Trp Gly Gln Leu Ala Thr Gl 1820 1825 1830	y Thr
Asn Val Ser Trp Cys Trp Ala Val Pro Gly Gly Ser Ser Ly 1835 1840 1845	s Arg
Gly Pro His Val Thr Met Val Phe Pro Asp Ala Gly Thr Ph 1850 1860	
Ile Arg Leu Asn Ala Ser Asn Ala Val Ser Trp Val Ser Al 1865 1870 1875	a Thr
Tyr Asn Leu Thr Ala Glu Glu Pro Ile Val Gly Leu Val Le 1880 1885 1890	u Trp
Ala Ser Ser Lys Val Val Ala Pro Gly Gln Leu Val His Ph 1895 1900 1905	e Gln
Ile Leu Leu Ala Ala Gly Ser Ala Val Thr Phe Arg Leu Gl 1910 1915 1920	n Val
Gly Gly Ala Asn Pro Glu Val Leu Pro Gly Pro Arg Phe Se	r His

	1925					1930					1935			
Ser	Phe 1940	Pro	Arg	Val	Gly	Asp 1945	His	Val	Val	Ser	Val 1950	Arg	Gly	Lys
Asn	His 1955	Val	Ser	Trp	Ala	Gln 1960	Ala	Gln	Val	Arg	Ile 1965	Val	Val	Leu
Ģlu	Ala 1970	Val	Ser	Gly	Leu	Gln 1975		Pro	Asn	Cys	Cys 1980	Glu	Pro	Gly
Ile	Ala 1985	Thr	Gly	Thr	Glu	Arg 1990	Asn	Phe	Thr	Ala	Arg 1995	Val	Gln	Arg
Gly	Ser 2000	Arg	Val	Ala	Tyr	Ala 2005	Trp.	Tyr	Phe	Ser	Leu 2010	Gln	Lys	Val
Gln	Gly 2015	Asp	Ser	Leu	Val	Ile 2020	Leu	Ser	Gly	Arg	Asp 2025	Val	Thr	Tyr
Thr	Pro 2030	Val	Ala	Ala	Gly	Leu 2035	Leu	Glu	Ile	Gln	Val 2040	Arg	Ala	Phe
Asn	Ala 2045	Leu	Gly	Ser	Glu	Asn 2050	_	Thr	Leu	Val	Leu 2055	Glu	Val	Gln
Asp	Ala 2060	Val	Gln	Tyr	Val	Ala 2065		Gln	Ser	Gly	Pro 2070	Cys	Phe	Thr
Asn	Arg 2075		Ala	Gln	Phe	Glu 2080		Ala	Thr	Ser	Pro 2085	Ser	Pro	Arg
Arg	Val 2090	Ala	Tyr	His	Trp	Asp 2095	Phe	Gly	Asp	Gly	Ser 2100	Pro	Gly	Gln
Asp	Thr 2105	Asp	Glu	Pro	Arg	Ala 2110	Glu	His	Ser	Tyr	Leu 2115	Arg	Pro	Gly
Asp	Tyr 2120	Arg	Val	Gln	Val	Asn 2125	Ala	Ser	Asn	Leu	Val 2130	Ser	Phe	Phe
Val	Ala 2135	Gln	Ala	Thr	Val	Thr 2140			Val	Leu	Ala 2145	Cys	Arg	Glu
Pro	Glu 2150	Val	Asp	Val	Val	Leu 2155	Pro	Leu	Gln	Val	Leu 2160	Met	Arg	Arg
Ser	Gln 2165	Arg	Asn	Tyr	Leu	Glu 2170	Ala	His	Val	Asp	Leu 2175	Arg	Asp	Cys
Val	Thr 2180	Tyr	Gln	Thr	Glu	Tyr 2185	Arg	Trp	Glu	Val	Tyr 2190	Arg	Thr	Ala
Ser	Cys 2195	Gln	Arg	Pro	Gly	Arg 2200	Pro	Ala	Arg	Val	Ala 2205	Leu	Pro	Gly
Val	Asp 2210	Val	Ser	Arg	Pro	Arg 2215	Leu	Val	Leu	Pro	Arg 2220	Leu	Ala	Leu
Pro	Val 2225	Gly	His	Tyr	Cys	Phe 2230	Val	Phe	Val	Val	Ser 2235	Phe	Gly	Asp

Thr	Pro 2240		Thr	Gln	Ser	Ile 2245				Val	Thr 2250	Val	Ala	Pro
Glu	Arg 2255		Val	Pro	Ile	Ile 2260		_	_	Ser	Tyr 2265	Arg	Val	Trp
Ser	Asp 2270		Arg	Asp	Leu	Val 2275	Leu	Asp	Gly	Ser	Glu 2280	Ser	Tyr	Asp
Pro	Asn 2285	Leu	Glu	Asp	Gly	Asp 2290	Gln	Thr	Pro	Leu	Ser 2295	Phe	His	Trp
Ala	Суз 2300		Ala	Ser	Thr	Gln 2305	_			_	Gly 2310	Cys	Ala	Leu
Asn	Phe 2315	_	Pro	Arg	Gly	Ser 2320				Thr	Ile 2325	Pro	Arg	Glu
Arg	Leu 2330		Ala	Gly	Val	Glu 2335	Tyr	Thr	Phe	Ser	Leu 2340	Thr	Val	Trp
Lys		_	_	_		Glu 2350					Thr 2355			
Arg	Ser 2360	Gly	Arg	Val	Pro	Ile 2365	Val	Ser	Leu	Glu	Cys 2370	Val	Ser	Cys
Lys	Ala 2375	Gln	Ala	Val	Tyr	Glu 2380	Val	Ser	Arg	Ser	Ser 2385	Tyr	Val	Tyr
Leu	Glu 2390	Gly	Arg	Cys	Leu	Asn 2395	Cys	Ser	Ser	Gly	Ser 2400	Lys	Arg	Gly
Arg	Trp 2405		Ala	Arg	Thr	Phe 2410		Asn	Lys	Thr	Leu 2415	Val	Leu	Asp
Glu	'Thr 2420	Thr	Thr	Ser	Thr	Gly 2425		Ala	Gly	Met	Arg 2430	Leu	Val	Leu
Arg	Arg 2435	Gly	Val	Leu	Arg	Asp 2440	Gly	Glu	Gly	Tyr	Thr 2445	Phe	Thr	Leu
Thr	Val 2450	Leu	Gly	Arg	Ser	Gly 2455	Glu	Glu	Glu	Gly	Cys 2460	Ala	Ser	Ile
Arg	Leu 2465	Ser	Pro	Asn	Arg	Pro 2470	Pro	Leu	Gly	Gly	Ser 2475	Суз	Arg	Leu
Phe	Pro 2480	Leu	Gly	Ala	Val	His 2485	Ala	Leu	Thr	Thr	Lys 2490	Val	His	Phe
Glu	Cys 2495		Gly	Trp	His	Asp 2500	Ala	Glu	Asp	Ala	Gly 2505	Ala	Pro	Leu
Val	Tyr 2510	Ala	Leu	Leu	Leu	Arg 2515	Arg	Cys	Arg	Gln	Gly 2520	His	Cys	Glu
Glu	Phe 2525	Cys	Val	Tyr	Lys	Gly 2530	Ser	Leu	Ser	Ser	Tyr 2535	Gly	Ala	Val

Leu Pr 25	o Pro	o Gly	Phe	Arg	Pro 2545		Phe	Glu	Val	Gly 2550	Leu	Ala	Val
Val Va 25	l Gl: 55	n Asp	Gln	Leu	Gly 2560		Ala	Val	Val	Ala 2565	Leu	Asn	Arg
Ser Le 25	u Ala 70	a Ile	Thr	Leu	Pro 2575	Glu	Pro	Asn	Gly	Ser 2580	Ala	Thr	Gly
Leu Th 25	r Val	l Trp	Leu	His	Gly 2590	Leu	Thr	Ala	Ser	Val 2595	Leu	Pro	Gly
Leu Le 26	u Arg	g Gln	Ala	Asp	Pro 2605	Gln	His	Val	Ile	Glu 2610	Tyr	Ser	Leu
Ala Le 26	u Va. 15	l Thr	Val	Leu	Asn 2620		Tyr	Glu	Arg	Ala 2625	Leu	Asp	Val
Ala Al 26	a Gli 30	u Pro	Lys	His	Glu 2635	Arg	Gln	His	Arg	Ala 2640	Gln	Ile	Arg
Lys As 26	n Ile 45								_			Thr	Val
Asp As 26	p Ile 60	e Gln	Gln	Ile	Ala 2665	Ala	Ala	Leu	Ala	Gln 2670	Сув	Met	Gly
Pro Se 26	r Arg	g Glu	Leu	Val	Cys 2680	Arg	Ser	Cys	Leu	Lys 2685	Gln	Thr	Leu
His Ly 26	s Lei 90	u Glu	Ala	Met	Met 2695	Leu	Ile	Leu	Gln	Ala 2700	Glu	Thr	Thr
Ala Gl 27	y Th:	r Val	Thr	Pro	Thr 2710		Ile	Gly	Asp	Ser 2715	Ile	Leu	Asn
Ile Th 27	r Gly	y Asp	Leu	Ile	His 2725		Ala	Ser	Ser	Asp 2730	Val	Arg	Ala
Pro Gl 27	n Pro	o Ser	Glu	Leu	Gly 2740	Ala	Glu	Ser	Pro	Ser 2745	Arg	Met	Val
Ala Se 27	r Gli 50	n Ala	Tyr	Asn	Leu 2755	Thr	Ser	Ala	Leu	Met 2760	Arg	Ile	Leu
Met Ar 27	g Se: 65	r Arg	Val	Leu	Asn 2770	Glu	Glu	Pro	Leu	Thr 2775	Leu	Ala	Gly
Glu Gl 27	u Ile 80	e Val	Ala	Gln	Gly 2785	Lys	Arg	Ser	Asp	Pro 2790	Arg	Ser	Leu
Leu Cy 27	rs Ty:	r Gly	Gly	Ala	Pro 2800	Gly	Pro	Gly	Cys	His 2805	Phe	Ser	Ile
Pro Gl 28	u Ala 10	a Phe	Ser	Gly	Ala 2815	Leu	Ala	Asn	Leu	Ser 2820	Asp	Val	Val
Gln Le 28	u Ile 25	e Phe	Leu	Val	Asp 2830	Ser	Asn	Pro	Phe	Pro 2835	Phe	Gly	Tyr
Ile Se	r Ası	n Tyr	Thr	Val	Ser	Thr	Lys	Val	Ala	Ser	Met	Ala	Phe

	2840					2845					2850			
Gln	Thr 2855	Gln	Ala	Gly	Ala	Gln 2860	Ile	Pro	Ile	Glu	Arg 2865	Leu	Ala	Ser
Glu	Arg 2870	Ala	Ile	Thr	Val	Lys 2875	Val	Pro	Asn	Asn	Ser 2880	Asp	Trp	Ala
Ala	Arg 2885	Gly	His	Arg	Ser	Ser 2890	Ala	Asn	Ser	Ala	Asn 2895	Ser	Val	Val
Val	Gln 2900	Pro	Gln	Ala	Ser	Val 2905	_	Ala	Val	Val	Thr 2910	Leu	Asp	Ser
Ser	Asn 2915	Pro	Ala	Ala	Gly	Leu 2920	His	Leu	Gln	Leu	Asn 2925	Tyr	Thr	Leu
Leu	Asp 2930	Gly	His	Tyr	Leu	Ser 2935	Glu	Glu	Pro	Glu	Pro 2940	Tyr	Leu	Ala
Val	Tyr 2945	Leu	His	Ser	Glu	Pro 2950	Arg	Pro	Asn	Glu	His 2955	Asn	Сув	Ser
	Ser 2960	Arg	Arg	Ile	Arg	Pro 2965	Glu	Ser	Leu	Gln	Gly 2970	Ala	Asp	His
Arg	Pro 2975	Tyr	Thr	Phe	Phe	Ile 2980	Ser	Pro	Gly	Ser	Arg 2985	Asp	Pro	Ala
Gly	Ser 2990	Tyr	His	Leu	Asn	Leu 2995		Ser	His	Phe	Arg 3000	Trp	Ser	Ala
Leu	Gln 3005	Val	Ser	Val	Gly	Leu 3010	_	Thr	Ser	Leu	Cys 3015	Gln	Tyr	Phe
Ser	Glu 3020	Glu	qaA	Met	Val	Trp 3025	Arg	Thr	Glu	Gly	Leu 3030	Leu	Pro	Leu
Glu	Glu 3035	Thr	Ser	Pro	Arg	Gln 3040	Ala	Val	Cys	Leu	Thr 3045	Arg	His	Leu
Thr	Ala 3050	Phe	Gly	Ala	Ser	Leu 3055	Phe	Val	Pro	Pro	Ser 3060	His	Val	Arg
Phe	Val 3065	Phe	Pro	Glu	Pro	Thr 3070	Ala	Asp	Val	Asn	Tyr 3075	Ile	Val	Met
Leu	Thr 3080	Cys	Ala	Val	Cys	Leu 3085	Val	Thr	Tyr	Met	Val 3090	Met	Ala	Ala
Ile	Leu 3095	His	Lys	Leu	Asp	Gln 3100	Leu	Asp	Ala	Ser	Arg 3105	Gly	Arg	Ala
Ile	Pro 3110	Phe	Cys	Gly	Gln	Arg 3115	Gly	Arg	Phe	Lys	Tyr 3120	Glu	Ile	Leu
Val	Lys 3125	Thr	Gly	Trp	Gly	Arg 3130	Gly	Ser	Gly	Thr	Thr 3135	Ala	His	Val
Gly	Ile 3140	Met	Leu	Tyr	Gly	Val 3145	Asp	Ser	Arg	Ser	Gly 3150	His	Arg	His

Leu Asp 3155	_	Asp	Arg	Ala	Phe 3160		_		Ser	Leu 3165	_	Ile	Phe
Arg Ile 3170		Thr	Pro	His	Ser 3175				Val	Trp 3180	Lys	Ile	Arg
Val Trp 3185		Asp	Asn	Lys	Gly 3190	Leu	Ser	Pro	Ala	Trp 3195	Phe	Leu	Gln
His Val 3200		Val	Arg	Asp	Leu 3205	Gln	Thr	Ala	Arg	Ser 3210	Ala	Phe	Phe
Leu Val 3215		Asp	Trp	Leu	Ser 3220					Ala 3225	Asn	Gly	Gly
Leu Val 3230		Lys	Glu	Val	Leu 3235				Asp	Ala 3240	Ala	Ļeu	Leu
Arg Phe 3245	_	Arg	Leu	Leu	Val 3250	Ala	Glu	Leu	Gln	Arg 3255	Gly	Phe	Phe
Asp Lys 3260			_				_					Arg	Ser
Arg Phe 3275		Arg	Ile	Gln	Arg 3280	Ala	Thr	Cys	Cys	Val 3285	Leu	Leu	Ile
Cys Leu 3290		Leu	Gly	Ala	Asn 3295	Ala	Val	Trp	Tyr	Gly 3300	Ala	Val	Gly
Asp Ser 3305		Tyr	Ser	Thr	Gly 3310	His	Val	Ser	Arg	Leu 3315	Ser	Pro	Leu
Ser Val 3320	-	Thr	Val	Ala	Val 3325	_	Leu	Val	Ser	Ser 3330	Val	Val	Val
Tyr Pro 3335		Tyr	Leu	Ala	Ile	T.011	D	T 011	Dhe	Ara	Met	202	Arg
0 7					3340	Бец	Pne	Leu	FIIC	3345		ser	
Ser Lys 3350		Ala	Gly	Ser	3340					3345			Gln
_	Asp				3340 Pro 3355	Ser	Pro	Thr	Pro	3345 Ala 3360	Gly	Gln	
3350 Val Leu	Asp Leu	Ile	Asp	Ser	3340 Pro 3355 Cys 3370	Ser Leu	Pro Asp	Thr	Pro Ser	3345 Ala 3360 Val 3375	Gly Leu	Gln Asp	Ser
3350 Val Leu 3365 Ser Phe	Asp Leu Met	Ile Thr	Asp Phe	Ser	3340 Pro 3355 Cys 3370 Gly 3385	Ser Leu Leu	Pro Asp	Thr Ser Ala	Pro Ser Glu	3345 Ala 3360 Val 3375 Gln 3390	Gly Leu Ala	Gln Asp Phe	Ser Val
3350 Val Leu 3365 Ser Phe 3380 Gly Gln	Asp Leu Met	Ile Thr Lys	Asp Phe Ser	Ser Ser Asp	3340 Pro 3355 Cys 3370 Gly 3385 Leu 3400	Ser Leu Leu Phe	Pro Asp His	Thr Ser Ala	Pro Ser Glu Asp	3345 Ala 3360 Val 3375 Gln 3390 Ser 3405	Gly Leu Ala Lys	Gln Asp Phe	Ser Val Leu
Val Leu 3365 Ser Phe 3380 Gly Gln 3395 Val Cys	Asp Leu Met Trp	Ile Thr Lys Pro	Asp Phe Ser	Ser Ser Asp	3340 Pro 3355 Cys 3370 Gly 3385 Leu 3400 Glu 3415	Ser Leu Leu Phe	Pro Asp His Leu	Thr Ser Ala Asp	Pro Ser Glu Asp	3345 Ala 3360 Val 3375 Gln 3390 Ser 3405 Trp 3420	Gly Leu Ala Lys	Gln Asp Phe Ser	Ser Val Leu

Ser	Leu 3455		Ser	Pro	Tyr	Ser 3460	Pro	Ala	Lys	Ser	Phe 3465	Ser	Ala	Ser
Asp	Glu 3470	Asp	Leu	Ile	Gln	Gln 3475	Val	Leu	Ala	Glu	Gly 3480	Val	Ser	Ser
Pro	Ala 3485	Pro	Thr	Gln	Asp	Thr 3490	His	Met	Glu	Thr	Asp 3495	Leu	Leu	Ser
Ser	Leu 3500	Ser	Ser	Thr	Pro	Gly 3505	Glu	Lys	Thr	Glu	Thr 3510	Leu	Ala	Leu
Gln	Arg 3515		Gly	Glu	Leu	Gly 3520			Ser	Pro	Gly 3525	Leu	Asn	Trp
Glu	Gln 3530	Pro	Gln	Ala	Ala	Arg 3535		Ser	Arg	Thr	Gly 3540	Leu	Val	Glu
Gly	Leu 3545	Arg	Lys	Arg	Leu	Leu 3550	Pro	Ala	Trp	Cys	Ala 3555	Ser	Leu	Ala
His	Gly 3560					Leu 3565						Ala	Val	Ser
Gly	Trp 3575		Gly	Ala	Ser	Phe 3580	Pro	Pro	Gly	Val	Ser 3585	Val	Ala	Trp
Leu	Leu 3590	Ser	Ser	Ser	Ala	Ser 3595	Phe	Leu	Ala	Ser	Phe 3600	Leu	Gly	Trp
Glu	Pro 3605	Leu	Lys	Val	Leu	Leu 3610	Glu	Ala	Leu	Tyr	Phe 3615	Ser	Leu	Val
Ala	Lys 3620	_	Leu	His	Pro	Asp 3625	Glu	Asp	Asp	Thr	Leu 3630	Val	Glu	Ser
Pro	Ala 3635	Val	Thr	Pro	Val	Ser 3640	Ala	Arg	Val	Pro	Arg 3645	Val	Arg	Pro
Pro	Hís 3650	Gly	Phe	Ala	Leu	Phe 3655	Leu	Ala	Lys	Glu	Glu 3660	Ala	Arg	Lys
Val	Lys 3665	Arg	Leu	His	Gly	Met 3670	Leu	Arg	Ser	Leu	Leu 3675	Val	Tyr	Met
Leu	Phe 3680	Leu	Leu	Val	Thr	Leu 3685	Leu	Ala	Ser	Tyr	Gly 3690	Asp	Ala	Ser
Cys	His 3695	Gly	His	Ala	Tyr	Arg 3700	Leu	Gln	Ser	Ala	Ile 3705	Lys	Gln	Glu
Leu	His 3710	Ser	Arg	Ala	Phe	Leu 3715	Ala	Ile	Thr	Arg	Ser 3720	Glu	Glu	Leu
Trp	Pro 3725	Trp	Met	Ala	His	Val 3730	Leu	Leu	Pro	Tyr	Val 3735	His	Gly	Asn
Gln	Ser 3740	Ser	Pro	Glu	Leu	Gly 3745	Pro	Pro	Arg	Leu	Arg 3750	Gln	Val	Arg
Leu	Gln	Glu	Ala	Leu	Tyr	Pro	Asp	Pro	Pro	Gly	Pro	Arg	Val	His

	3755					3760					3765			•
Thr	Cys 3770		Ala	Ala	Gly	Gly 3775		Ser	Thr	Ser	Asp 3780	Tyr	Asp	Val
Gly	Trp 3785		Ser	Pro	His	Asn 3790	Gly	Ser	Gly	Thr	Trp 3795	Ala	Tyr	Ser
Ala	Pro 3800	Asp	Leu	Leu	Gly	Ala 3805	Trp	Ser	Trp	Gly	Ser 3810	Cys	Ala	Val
Tyr	Asp 3815	Ser	Gly	Gly	Tyr	Val 3820	Gln	Glu	Leu	Gly	Leu 3825	Ser	Leu	Glu
Glu	Ser 3830	Arg	Asp	Arg	Leu	Arg 3835	Phe	Leu	Gln	Leu	His 3840	Asn	Trp	Leu
Asp	Asn 3845	Arg	Ser	Arg	Ala	Val 3850	Phe	Leu	Glu	Leu	Thr 3855	Arg	Tyr	Ser
Pro	Ala 3860	Val	Gly	Leu	His	Ala 3865	Ala	Val	Thr	Leu	Arg 3870	Leu	Glu	Phe
Pro	Ala 3875		Gly	Arg	Ala	Leu 3880		Ala	Leu	Ser	Val 3885	Arg	Pro	Phe
Ala	Leu 3890	Arg	Arg	Leu	Ser	Ala 3895	Gly	Leu	Ser	Leu	Pro 3900	Leu	Leu	Thr
Ser	Val 3905	Cys	Leu	Leu	Leu	Phe 3910	Ala	Val	His	Phe	Ala 3915	Val	Ala	Glu
Ala	Arg 3920	Thr	Trp	His	Arg	Glu 3925	Gly	Arg	Trp	Arg	Val 3930	Leu	Arg	Leu
Gly	Ala 3935	Trp	Ala	Arg	Trp	Leu 3940	Leu	Val	Ala	Leu	Thr 3945	Ala	Ala	Thr
Ala	Leu 3950	Val	Arg	Leu	Ala	Gln 3955	Leu	Gly	Ala	Ala	Asp 3960	Arg	Gln	Trp
Thr	Arg 3965	Phe	Val	Arg	Gly	Arg 3970	Pro	Arg	Arg	Phe	Thr 3975	Ser	Phe	Asp
Gln	Val 3980	Ala	His	Val	Ser	Ser 3985	Ala	Ala	Arg	Gly	Leu 3990	Ala	Ala	Ser
Leu	Leu 3995	Phe	Leu	Leu	Leu	Val 4000	Lys	Ala	Ala	Gln	His 4005	Val	Arg	Phe
Val	Arg 4010	Gln	Trp	Ser	Val	Phe 4015	Gly	Lys	Thr	Leu	Cys 4020	Arg	Ala	Leu
Pro	Glu 4025	Leu	Leu	Gly	Val	Thr 4030	Leu	Gly	Leu	Val	Val 4035	Leu	Gly	Val
Ala	Tyr 4040	Ala	Gln	Leu	Ala	Ile 4045	Leu	Leu	Val	Ser	Ser 4050	Cys	Val	Asp
Ser	Leu 4055	Trp	Ser	Val	Ala	Gln 4060	Ala	Leu	Leu	Val	Leu 4065	Cys	Pro	Gly

Thr Gly Leu Ser Thr Leu Cys Pro Ala Glu Ser Trp His Leu Ser Pro Leu Leu Cys Val Gly Leu Trp Ala Leu Arg Leu Trp Gly Ala Leu Arg Leu Gly Ala Val Ile Leu Arg Trp Arg Tyr His Ala Leu Arg Gly Glu Leu Tyr Arg Pro Ala Trp Glu Pro Gln Asp Tyr Glu Met Val Glu Leu Phe Leu Arg Arg Leu Arg Leu Trp Met Gly Leu Ser Lys Val Lys Glu Phe Arg His Lys Val Arg Phe Glu Gly Met Glu Pro Leu Pro Ser Arg Ser Ser Arg Gly Ser Lys Val Ser Pro Asp Val Pro Pro Pro Ser Ala Gly Ser Asp Ala Ser His Pro Ser Thr Ser Ser Ser Gln Leu Asp Gly Leu Ser Val Ser Leu Gly Arg Leu Gly Thr Arg Cys Glu Pro Glu Pro Ser Arg Leu Gln Ala Val Phe Glu Ala Leu Leu Thr Gln Phe Asp Arg Leu Asn Gln Ala Thr Glu Asp Val Tyr Gln Leu Glu Gln Gln Leu His Ser Leu Gln Gly Arg Arg Ser Ser Arg Ala Pro Ala Gly Ser Ser Arg Gly Pro Ser Pro Gly Leu Arg Pro Ala Leu Pro Ser Arg Leu Ala Arg Ala Ser Arg Gly Val Asp Leu Ala Thr Gly Pro Ser Arg Thr Pro Leu Arg Ala Lys Asn Lys Val His Pro Ser Ser Thr

<210> 3

<211> 29

<212> DNA

<213> Artificial sequence

<220>

<223> PCR primer BPF14

<400> 3

ccatccacct gctgtgtgac ctggtaaat

<210><211><211><212><213>	4 26 DNA Artificial sequence	
<220> <223>	PCR primer BPR9	
<400> ccacct	4 catc gccccttcct aagcat	26
<210><211><211><212><213>	31	
<220> <223>	PCR primer BPF9	
<400> atttt	5 tgag atggagcttc actcttgcag g	31
<210><211><212><213>	20	
<220> <223>	PCR primer BPR4	
<400> cgctc	6 ggcag gcccctaacc	20
<210><211><211><212><213>		
<220> <223>	PCR primer BPF12	
<400>	s 7 cccag gagcctagac g	21
<212:	> 8 > 27 > DNA > Artificial sequence	
<220 <223	> > PCR primer BPR5	
<400 catc	> 8 ctgttc atccgctcca cggttac	27

<210> 9

<211> <212>	20 DNA	
<213>	Artificial sequence	
<220> <223>	PCR primer F13	
<400>		20
tggagg	gagg gacgccaatc	
<210>	10	
<211>		
<212>		
<213>	Artificial sequence	
<220>	1 DOT	
<223>	PCR primer R27	
<400>		20
gtcaac	gtgg gcctccaagt	
<210>	11	
<211>		
<212>	DNA .	
<213>	Artificial sequence	
<220>	PCR primer F26	
<223>	PCR primer 120	
<400>	11 aacta cttggaggcc c	21
agege	aacta cooggaggagga	
<210>	12	
<211>		
<212>	DNA	
<213>	Artificial sequence	
<220>		
<400>	- 12	28
gcagg	gtgag caggtggggc catcctac	
<210	> 13	
<211:		
<212	> DNA	
<213	> Artificial sequence	
<220		
<223	> PCR primer BPF15	
<400	> 13	26
gagg	ctgtgg gggtccagtc aagtgg	
<210	> 14	
	> 14 > 25	

	DNA	
<213>	Artificial sequence	
<220>		
<223>	PCR primer BPR12	
<400>		25
agggag	gcag aggaaagggc cgaac	
<210>	15	
<211>		
<212>		
	Artificial sequence	
<220>		
<223>	PCR primer BPF6	
<400>		24
ccccgt	cctc cccgtccttt tgtc	2.
<210>		
<211>		
<212>		
<213>	Artificial sequence	
-2205		
<220>	PCR primer BPR6	
<2237	ren primer brief	
<400>	16	0.1
	caaaa gggctgcgtc g	21
<210>		
<211>		
<212>		
<213>	Artificial sequence	
220		
<220>	PCR primer BPF13	
<223>	FCR PIIMEI BIIIS	
<400>	1 <i>7</i>	
	tccct gccttctagg cg	22
95000		
<210>	18	
<211>	21	
<212>		
<213>	Artificial sequence	
<220>		
<223>	PCR primer KG8R25	
<400>	. 1Ω	
	agcca agcccatgtt a	21
gitgt	agood agoodarges -	
<210>	• 19	
<211:		
<212:	DNA	

<213>	Artificial sequence	
<220> <223>	PCR primer 1F1	
<400>		
ggtege	getg tggcgaagg	19
<210>	•	
<211><212>		
	Artificial sequence	
<220>	PCR primer 1R1	
<400>	gegg categt	16
-55-55.		
<210>	21	
<211>		
<212>	DNA Artificial sequence	
	Michigan bequested	
<220> <223>	PCR primer 1F2	
<400>		
	gggc catgcg	16
<210>		
<211> <212>		
	Artificial sequence	
<220>		
<223>	PCR primer 1R2	
<400>		
gegtee	tggc ccgcgtcc	18
<210>	23	
<211>		
<212>		
	Artificial sequence	•
<220>	PCR primer 2F	
<400>	atgc tggcaatgtg	20
2223	,	
<210>	24	
<211>		
<212>	DNA	

<213> Artificial sequence

<220> <223>	PCR primer 2R	
<400>	24 cggc aaagctgatg	20
<210>		
<211><212>		
<213>	Artificial sequence	
<220>		
<223>	PCR primer 3F	
<400>		2.0
ccatcag	gett tgeegaatee	20
<210>	26	
<211>		
<212>	DNA Artificial sequence	
<220>	PCR primer 3R	
<400>	raaq qqatattqqq	20
agggca	gaag ggatattggg	
<210>	27	
<211>		
<212>	Artificial sequence	
<220>	PCR primer 4F	
<400>	27 ttcc caccagacct	20
agaccc		
<210>	28	
<211>		
<212>	Artificial sequence	
	•	
<220> <223>	PCR primer 4R	
<400>		
	ztgc ccagtgtct	19
-		
<210>		
<211>		
<212> <213>	Artificial sequence	

```
<220>
<223> PCR primer 5F1
<400> 29
                                                                     21
gagccaggag gagcagaacc c
<210> 30
<211> 21
<212> DNA
<213> Artificial sequence
<220>
<223> PCR primer 5R1
<400> 30
                                                                     21
agagggacag gcaggcaaag g
<210> 31
<211> 18
<212> DNA
 <213> Artificial sequence
 <220>
 <223> PCR primer 5F2
 <400> 31
                                                                      18
 cccagccctc cagtgcct
 <210> 32
 <211> 20
 <212> DNA
 <213> Artificial sequence
 <220>
 <223> PCR primer 5R2
 <400> 32
                                                                      20
 cccaggcagc acatagcgat
 <210> 33
 <211> 18
  <212> DNA
  <213> Artificial sequence
  <220>
  <223> PCR primer 5F3
  <400> 33
                                                                       18
  ccgaggtgga tgccgctg
  <210> 34
  <211> 21
  <212> DNA
  <213> Artificial sequence
```

<220>

<223>	PCR primer 5R3	
<400> gaaggg	34 gagt gggcagcaga c	21
<211><212>	35 21 DNA Artificial sequence	
<220> <223>	PCR primer 6F	
<400> cactga	35 accgt tgacaccctc g	21
<210><211><212><213>	DNA	
<220> <223>	PCR primer 6R	
<400> tgccc	cagtg cttcagagat c	21
<210><211><211><212><213>		
<220:	> > PCR primer 7F	
<400: ggag	> 37 tgccct gagccccct	19
<211 <212	> 38 > 19 > DNA > Artificial sequence	
<220 <223		
)> 38 ctaacca cagccagcg	1:
<211 <212	0> 39 1> 21 2> DNA 3> Artificial sequence	
<22 <22	0> 3> PCR primer 8F	

<400> 39 totgttogto otggtgtoot g	21
<210> 40	
<211> 21	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> PCR primer 8R	
<400> 40	21
gcaggagggc aggttgtaga a	
<210> 41	
<211> 20	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> PCR primer 9F	
<400> 41	20
ggtaggggga gtctgggctt	20
<210> 42	
<211> 17	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> PCR primer 9R	
400. 42	
<400> 42 gaggccaccc cgagtcc	17
gaggeeacce	
<210> 43	
<211> 20	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> PCR primer 10F	
<400> 43	20
gttgggcatc tctgacggtg	
<210> 44	
<211> 20	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> PCR primer 10R	

<400> ggaaggt	44 tggc ctgaggagat	20
<210><211><212><213>	17	
<220> <223>	PCR primer 11F2	
<400> ggggtco	45 cacg ggccatg	17
<210><211><212><213>	20	
<220> <223>	PCR primer 11R2	
<400> aagccca	46 agca gcacggtgag	20
<210><211><211><212><213>	17	
<220> <223>	PCR primer 11midF	
<400> gcttgca	47 agcc acggaac	17
<210><211><212><213>	20	
<220> <223>	PCR primer 11midR	
<400> gcagtgo	48 ctac cactgagaac	20
<210><211><212><213>	23	
<220> <223>	PCR primer 11F1	
<400>	49	

tgcccc	tggg agaccaacga tac	23
<210><211><211><212><213>	22	
<220> <223>	PCR primer 11R1	
<400> ggctgc	50 tgcc ctcactggga ag	22
<210><211><211><212><213>	18	
<220> <223>	PCR primer 12F	
<400> gaggcg	51 Jacag gctaaggg	18
<210><211><211><212><213>	25	
<220> <223>	Primer for PCR	
<400> aggtca	52 lacgt gggcctccaa gtagt	25
<210><211><211><212><213>	19	
<220> <223>	Forward nested primer F32	
<400> gccttg	53 gegea gettggaet	19
<210><211><212><213>	20	
<220> <223>	Second specific primer 31R	
<400>	54 stott gagtocaago	20

```
<210> 55
      30
<211>
<212> DNA
<213> Artificial sequence
<220>
<223> PCR primer
<400>
       55
                                                                    30
ctggtgacct acatggtcat ggccgagatc
<210> 56
<211> 30
<212> DNA
<213> Artificial sequence
<220>
<223> PCR primer
<400> 56
                                                                     30
ggttgtctat cccgtctacc tggccctcct
 <210> 57
 <211> 25
 <212> DNA
 <213> Artificial sequence
 <220>
 <223> PCR primer
 <400> 57
                                                                      25
 gtccccagcc ccagcccacc tggcc
        58
 <210>
 <211> 7
 <212> PRT
 <213> Homo sapiens
 <400> 58
 Trp Asp Phe Gly Asp Gly Ser
  1
  <210> 59
  <211> 4
  <212> PRT
  <213> Homo sapiens
  <400> 59
  His Leu Thr Ala
  1
  <210> 60
  <211> 27
  <212> DNA
```

<213> Artificial sequence	
<220> <223> PCR primer	
<400> 60 gcagggtgag caggtggggc catccta	27
<210> 61 <211> 19	
<212> DNA <213> Artificial sequence	
<220> <223> PCR primer 12R-2	
<400> 61 catgaagcag agcagaagg	19
<210> 62 <211> 20	
<212> DNA <213> Artificial sequence	
<220> <223> PCR primer 13F	
<400> 62 tggagggagg gacgccaatc	20
<210> 63 <211> 19	
<212> DNA <213> Artificial sequence	
<220> <223> PCR primer 13R	
<400> 63 gaggctgggg ctgggacaa	19
<210> 64 <211> 18	
<212> DNA <213> Artificial sequence	
<220> <223> PCR primer 14F	
<400> 64 cccggttcac tcactgcg	18
<210> 65 <211> 20 <212> DNA	
<213> Artificial sequence	

<220> <223> PCR primer 14R	
<400> 65	20
ccgtgctcag agcctgaaag	20
<210> 66	
<211> 18 <212> DNA	
<213> Artificial sequence	
<220>	
<223> PCR primer 15F16	
<400> 66	18
cgggtggga gcaggtgg	
<210> 67	
<211> 21 <212> DNA	
<213> Artificial sequence	
<220>	
<223> PCR primer 15R16	
<400> 67	21
gctctgggtc aggacagggg a	
<210> 68 <211> 18	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> PCR primer 15F15	
<400> 68	18
cgcctggggg tgttcttt	
<210> 69	
<211> 18	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> PCR primer 15R15	
<400> 69	18
acgtgatgtt gtcgcccg	
<210> 70	
<211> 18	
<212> DNA	
<213> Artificial sequence	

<220> <223> PCR primer 15F14	
<400> 70 gccccgtgg tggtcagc	18
<210> 71 <211> 18 <212> DNA	
<213> Artificial sequence	
<220> <223> PCR primer 15R14	
<400> 71 caggctgcgt ggggatgc	18
<210> 72 <211> 18	
<212> DNA <213> Artificial sequence	
<220> <223> PCR primer 15F13	
<400> 72 ctggaggtgc tgcgcgtt	18
<210> 73 <211> 18 <212> DNA <213> Artificial sequence	
<220> <223> PCR primer 15R13	
<400> 73 ctggctccac gcagatgc	18
<210> 74 <211> 18 <212> DNA <213> Artificial sequence	
<220> <223> PCR primer 15F12	
<400> 74 cgtgaacagg gcgcatta	1
<210> 75 <211> 21 <212> DNA <213> Artificial sequence	

<220>

<223>	PCR primer 15R12	
<400>		21
gcagca	gaga tgttgttgga c	21
<210>	76	
<211>		
<212>	DNA Artificial sequence	
<220>	PCR primer 15F11	
<400>	76 toot atottgtgac a	21
000330		
<210>	77	
<211>	21	
<212>	DNA Artificial sequence	
<220>	PCR primer 15R11	
<400>	77 cacc tgtgctgttg t	21
cgaage		
<210>	78	
<211>		
<212>	DNA Artificial sequence	
(213)	Arctriciar bequeince	
<220>	PCR primer 15F10	
(223)	rek primer isrio	
<400>	78 gtgg gatctgggg	19
CCACCC	gray gareragyy	~~
<210>	79	
<211>	18	
<212>	DNA Artificial sequence	
(213)	Arciriotat boquence	
<220>	PCR primer 15R10	
(223)	rek primer iskio	
<400>		18
rgerga	agct cacgctcc	¥.0
<210>	80	
<211>	20	
<212>	DNA Artificial sequence	
	III CILICIAL DOGACIICO	
<220>	PCR primer 15F9	
~~~~	TOW PTIMOT TOTO	

<400> 80 gggctcgtcg tcaatgcaag	20
<210> 81 <211> 20 <212> DNA <213> Artificial sequence	
<220> <223> PCR primer 15R9	
<400> 81 caccacctgc agcccctcta	20
<210> 82 <211> 20 <212> DNA <213> Artificial sequence	
<220> <223> PCR primer 15F8	
<400> 82 ccgcccagga cagcatcttc	20
<210> 83 <211> 18 <212> DNA <213> Artificial sequence	
<220> <223> PCR primer 15R8	
<400> 83 cgctgcccag catgttgg	18
<210> 84 <211> 19 <212> DNA <213> Artificial sequence	
<220> <223> PCR primer 15F7	
<400> 84 cggcaaaggc ttctcgctc	19
<210> 85 <211> 20 <212> DNA <213> Artificial sequence	
<220> <223> PCR primer 15R7	

<400> ccgggtg	85 gtgg ggaagctatg	20
<210><211><211><212><213>	21	
<220> <223>	PCR primer 15F6	
<400> cgagcca	86 attt accacccata g	21
<210><211><212><213>	19	
<220> <223>	PCR primer 15R6	
<400> gcccago	87 cacc agctcacat	19
<210><211><211><212><213>	19	
<220> <223>	PCR primer 15F5	
<400> ccacggg	88 gcac caatgtgag	19
<210><211><211><212><213>	20	
<220> <223>	PCR primer 15R5	
<400> ggcagco	89 cagc aggatctgaa	20
<210><211><212><213>	18	
<220> <223>	PCR pimer 15F4	
<400>	90	

cagcago	caag gtggtggc	18
<210><211><211><212>	18	
<220>		
	PCR primer 15R4	
<400> gcgtag	91 gcga cccgagag	18
<210>	92	
<211>	21	
<212>		
<213>	Artificial sequence	
<220>		
<223>	PCR primer 15F3	
<400>	92	21
	actg agaggaactt c	2 1.
<210>	93	
<211>		
<212>	DNA	
<213>	Artificial sequence	
<220>		
	PCR primer 15R3	
	•	
<400>		20
accag	cgtgc ggttctcact	
<210>		
<211>	DNA	
	Artificial sequence	
(210)		
<220>		
<223>	PCR primer 15F2	
<400>	. 94	10
	gacgt cacctacac	19
J - J		
~21 <b>0</b> s	• 95	
	· 18	
	DNA	
	Artificial sequence	
<220:		
<223	> PCR primer 15R2	
<400	> 95	18
	ccctqq qctcatct	10

<210><211><212>	20	
<213>	Artificial sequence	
<220> <223>	PCR primer 15F1	
<400>		0.0
gtcgcc	aggg caggacacag	20
<210>	97	
<211>	21	
<212>		
<213>	Artificial sequence	
<220>	PCR primer 15F1-1	
<223>	PCR primer isri-i	
<400>		
acttgg	aggc ccacgttgac c	21
<210>	98	
<211>		
<212>	Artificial sequence	
\ <b>Z</b> _1,5/	metricial bequese	
<220>		
<223>	PCR primer 15R1-1	
<400>	98	
tgatgg	gcac caggcgctc	19
<210>	99	
<211>		
<212>		
<213>	Artificial sequence	
<220>		
<223>	PCR primer 15F1-2	
<400>	99	
	ggcc aatgtgacgg t	21
<210>	100	
<211>		
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	PCR primer 15R1-2	
<400>	100	
	ggca agctgggtgt t	21

<210> 101 <211> 20 <212> DNA	
<213> Artificial sequence	
<220> <223> PCR primer 16F	
<400> 101 taaaactgga tggggctctc	20
<210> 102 <211> 18	
<212> DNA	
<213> Artificial sequence	
<220> <223> PCR primer 16R	
<400> 102	1.0
ggcctccacc agcactaa	18
010 103	
<210> 103 <211> 20	
<212> DNA	
<213> Artificial sequence	
<220> <223> PCR primer 17F	
<400> 103 gggtccccca gtccttccag	20
gggtcccca gccccag	
<210> 104	
<211> 17 <212> DNA	
<213> Artificial sequence	•
<220>	
<223> PCR primer 17R	
<400> 104 tccccagccc gcccaca	17
<210> 105	
<211> 20 <212> DNA	
<213> Artificial sequence	
<220>	
<223> PCR primer 18F	
<400> 105	20
gcccctcac cacccttct	

-010	105	
	> 106	
<211:		
	> DNA	
<213>	> Artificial sequence	
<220>	>	
	> PCR primer 18R	
~2207		
-400-	> 106	
		1.0
teceg	getget eccecae	18
<210:	> 107	
<211:	<b>&gt;</b> 18	
<212>	> DNA	
	> Artificial sequence	
1444		
<220>		
<4233	> PCR primer 19F	
	,	
	> 107	
gatgo	ccgtgg ggaccgtc	18
<210:	> 108	
	> 20	
	> DNA	
< <b>Z</b> 133	> Artificial sequence	
<b>.</b>		
<220:		
<223	> PCR primer 19R	
<400>	> 108	
gtgad	geaggt ggeagteteg	20
<210×	> 109	
	> 21	
	> DNA	
<213:	> Artificial sequence	
_		
<220:		
<223:	> PCR primer 20F	
<400	> 109	
ccaco	ececte tgetegtagg t	21
<210:	- 110	
	> 19	
	> DNA	
<213:	> Artificial sequence	
<220:	>	
<223:	> PCR primer 20R	
<4005	> 110	
	ccaage acgcatgca	19
22000		
010	. 111	
<b>- 231Λ</b> .	. 737	

<210> 111

<212>	DNA Artificial sequence	
<220> <223>	PCR primer 21F	
<400> tgccgg	111 cete etgegetget ga	22
<210><211><212><213>	28	
<220> <223>	PCR primer TWR2-1	
<400> gtagga	112 tggc cccacctgct caccctgc	28
<210><211><212><213>	20	
<220> <223>	PCR primer R27'	
<400> aggtca	113 aacgt gggcctccaa	20