Genomics Data Analysis

Professor Seunggeun Lee

Spring 2021

GATK best practice session

TA Jangho Kim

Table of Contents

- 1. Prerequisite
- 2. FASTQ to BAM
 - a. Alignment
 - b. Mark duplicates and sort
 - c. BQSR
- BAM to VCF (variant calling)
 - a. gvcf using haplotype caller
 - b. combining gvcf into vcf
- 4. Appendix (fastq preprocessing)

1. Prerequisite (software)

- Computation with Linux OS (GSDS cluster)
- Conda virtual environment recommended
 - java
 - picard with java https://broadinstitute.github.io/picard/
 - samtools
 - o gatk https://github.com/broadinstitute/gatk/releases
 - Burrows Wheeler Aligner https://sourceforge.net/projects/bio-bwa/

1. Prerequisite (files)

• fasta file of reference genome (GRCh 37)

human_g1k_v37.fasta

VCF of known variations

ALL.wgs.mergedSV.v8.20130502.svs.genotypes.vcf.gz

ALL.wgs.mergedSV.v8.20130502.svs.genotypes.vcf.gz.tbi

Sample Code

```
conda activate [r env] # your environment name
conda install -c anaconda openidk
conda install -c bioconda samtools
export PATH=$PATH:/home/smkih1028/gatk-4.2.0.0
export PATH=$PATH:/home/smkjh1028/bwa-0.7.17
samtools faidx human g1k v37.fasta
gatk CreateSequenceDictionary -R human g1k v37.fasta
bwa index -a bwtsw human g1k v37.fasta
```

FASTQ

```
@SRR062641.1
TGAATTTTTTACTACGGTTCATAAAAAAACACAAGACTCACAT
@7:6+)=0577''3=?->>;:A>A####
@SRR062641.10
TTGGCATGTTCAGGTGCGACAACACCAGAGGAAGAATCTTACA
CAAC?BD?B5D5@=BDD=@D5C:DB?D?AA);>@####
```

SAM/BAM file

HEADER lines starting with @ symbol describing various metadata for *all* reads

```
@HD VN:1.6 SO:coordinate —— BAM header line
@SQ SN:seq1 LN:394893 —— Reference sequence dictionary entries
@SQ SN:seq2 LN:92783 —— Read group(s)
```

RECORDS containing structured read information (1 line per read/record)

- Added mapping info summarizes position, quality, and structure for each read
- Mate information points to the read from the other end of the molecule (other in a pair)

SRR062641	1136801	0	1	41692	0	100M	*	0	A
TTGGTTCAA	AGTATAACATGTTA	AAGCACA	GAGCCCCA	ACTCTGAAA	AGTAC(CATCCCTAAAT	TGGCAT	TTAGTTGC	ACCT
TTATATCCA	CCTTTAAAA	3<=;<;	?;<>><<>	>;>;;== </td <td>>><<=</td> <td>=;><><;=<<</td> <td><=;<<==</td> <td><===<;;;</td> <td><<<;</td>	>><<=	=;><><;=<<	<=;<<==	<===<;;;	<<< ;
;;<;;<:=;	<;<<==;<<9<<;;	<<:9;<;	;*<;9:5:	<:-9<	MD:Z:	100	PG:Z:	MarkDupl	icat
es R	G:Z:4 NM:i:0	UQ:i:0	AS:i:1	.00	XS:i:	100			
SRR062641	16863150	0	1	66399	9	20S51M3	3I15M1D	11M	T
AATATATA	TATTTATTTATTTT	ATAATAA	TATATATT	TATTATT	TAAATAT	TATATTATAT	TATATAA	TATAATAT	ATAT
TAATATAAA	ATATATAT	3<<=<<	<<<=<===	:<<==<	<<<<=	<<=<<<<<	==<<=<	<<<<==<=	:<<<
<=<<<<=<<	:<<<<<<	<<=<=<<	<<<<<	<<<<	MD:Z:	10T0A45T3	74^T11	PG:Z:	Mark

RG:Z:4 NM:i:8 UQ:i:148

AS:i:44 XS:i:38

Duplicates

How to generate a BAM for variant discovery Step 1: generate a uBAM aligned BAM **FASTQ FastqToSam** RevertSam add read group info remove XT and other tags restore base quality scores given OQ tags Steps 2–6: mark adapters and align with BWA unmapped BAM (uBAM) **uBAM**XT MarkIlluminaAdapters SamToFastq XT tag adapter sequences •interleave, NON_PF=true pipe give XT bases quality score of 2(#) Step 7: merge for raw BAM MergeBamAlignment **FASTQ** restore sequences and base quality scores •fix aligner artifacts; add RG, MC and other records **BWA** mem CLIP ADAPTERS=false M to flag secondary hits •MAX INSERTIONS OR DELETIONS=-1 specify ATTRIBUTES_TO_RETAIN from alignment aligned SAM **Picard SortSam** raw BAM & BAI sort, index and convert aligned BAM & BAI

2. FASTQ to BAM - Alignment

- Use BWA mem and reference genome
- bwa mem -M -t 7 -p human_g1k_v37.fasta HG_input.fq >
 HG_aligned.sam
- **D** and **E** in the Code document

2. FASTQ to BAM - MarkDuplicates and SortSam

- Finding duplicates is important for calling accuracy and expression level accuracy (RNA)
- java -jar picard.jar MarkDuplicates I=HG_preprocessed.bam O=HG_dedup.bam M=HG_dedup.metrics.txt
- java -jar picard.jar SortSam I=HG_dedup.bam O=HG_sorted.bam SO=coordinate

2. FASTQ to BAM - Base Recalibration

- Indel realignment is deprecated now (haplotypecaller does that)
- gatk --java-options '-Xmx16g' BaseRecalibrator -I HG_sorted.bam -R human_g1k_v37.fasta --known-sites ALL.wgs.mergedSV.v8.20130502.svs.genotypes.vcf.gz -O HG.recal_data.table
- gatk -- java-options '-Xmx16g' ApplyBQSR -I HG_sorted.bam -R human_g1k_v37.fasta -- bqsr-recal-file

HG.recal_data.table -O HG.fin.bam

DONE!

3. BAM to VCF

- a. gvcf using haplotype caller
- b. combining gvcf into vcf

3. BAM to VCF - making gvcf file with reference and bam

gatk --java-options "-Xms4g" **HaplotypeCaller** -R /media/leelabsg_storage01/1000G/human_g1k_v37.fasta -I /home/lee7801/DATA/1000G/HG00096.chrom20.ILLUMINA.bw a.GBR.exome.20120522.bam -L 20 -ERC GVCF -O sample01_20.g.vcf

3. BAM to VCF - combine gvcf and convert to vcf

- gatk CombineGVCFs -R
 /media/leelabsg_storage01/1000G/human_g1k_v37.fasta
 --variant sample01_20.g.vcf --variant sample02_20.g.vcf
 --variant sample03_20.g.vcf -O sample_all.g.vcf.gz
- gatk --java-options "-Xmx4g" GenotypeGVCFs -R
 /media/leelabsg_storage01/1000G/human_g1k_v37.fasta
 -V sample_all.g.vcf.gz -O sample_all_fin.vcf

Reference

- https://drive.google.com/drive/folders/1Nh73FzKde203gUoxyR9CmTd1EcVDMCI5
- https://www.internationalgenome.org/faq/which-reference-assembly-do-you-use/
- https://www.biostars.org/p/174343/
- https://github.com/broadgsa/gatk-protected/blob/master/doc_archive/deprecated/%5BHow_to%5D Generate a BAM for variant discovery (long).md#step7
- https://gatk.broadinstitute.org/hc/en-us/articles/360035535912-Data-pre-processing-for-varia nt-discovery
- https://gatk.broadinstitute.org/hc/en-us/articles/360035890531
- https://2wordspm.com/2019/09/23/ngs-dna-seq-pipeline-gatk-best-practice-code-part1-fastqto-bam/

Appendix. FASTQ to BAM - unmapped bam file

- GATK regards fastq file inferior to uBAM file format because it lacks ability to store metadata.
- https://gatk.broadinstitute.org/hc/en-us/articles/360039568932--Ho
 w-to-Map-and-clean-up-short-read-sequence-data-efficiently#step3D
- FASTQ : picard FastqToSam
- Aligned bam file: picard RevertSam
 For the fastq, add read group

https://gatk.broadinstitute.org/hc/en-us/articles/360037 226472-AddOrReplaceReadGroups-Picard-

Appendix. FASTQ to BAM - adapter sequence and conversion

- Use picard MarkIlluminaAdapters and SamToFastq
- Convert the bam file to fastq to remove adapter portion of the sequence and we use this fastq file as input

XT:i:88

3KJMPPPPPPPOROPQQRROQOQROQOPQROQOPPPQROOPPOQSPPPPRSPRQPPPPPPQQMMPPOPPPOOPLRSHROMJOPORH############

3KJMPPPPPPPOROPQQRROQOQROQOPQROQOPPPQROOPPOQSPPPPRSPRQPPPPPPQQMMPPOPPPOOPLRSHROMJOPORHOINOQPOHNHFFJ

Appendix. FASTQ to BAM - MergeBamAlignment

- Use picard MergeBamAlignment
- Merge metadata from the unmapped bam file and alignment information from the aligned sam file
- F in Code document

