MATH*2000: Practice Term Test #1

Name:	_	
E-mail:	_	
ID:		

1. (10 Marks)

Let P, Q, and R be atomic statements that may either be *true* or *false*. Prove whether or not the following two statements are logically equivalent to one another.

$$\neg (P \land Q) \leftrightarrow (\neg Q \lor R) \equiv (\neg P \lor R) \leftrightarrow \neg Q$$

2. (15 Marks)

Prove whether or not the following statement is true. If it is true, then your proof must use the method of proof by contradiction. If it is false, provide a counter-example that contradicts it.

Prove that $\forall n \in \mathbb{N}$ if n is a perfect square $(\exists x \in \mathbb{N} \ni x^2 = n)$, then the value n + 1 cannot be a perfect square.

3. (15 Marks)

Verify the following mathematical identity for all $n \in \mathbb{N}$ using a proof by induction technique.

$$\sum_{i=0}^{n} r^{i} = \frac{1 - r^{n+1}}{1 - r}$$

4. (10 Marks)

Let A, B, and C be sets. Prove that the following sets are equal.

$$A \backslash (B \cap C) = (A \backslash B) \cup (A \backslash C)$$