

Systems & Network Biology Networks

Jordi Garcia Ojalvo Keith Kennedy

Department of Experimental and Health Sciences Universitat Pompeu Fabra

Understanding life

Gene Regulatory Network of pluripotency

[Integrated Stem Cell Molecular Interaction Database]

Dynamics of Nanog in embryonic stem

cells

Kalmar et al, PLoS Biol 7, e1000149 (2009)

Degree Destribution

Gene regulatory network of E. coli

Protein-protein interaction network of C. elegans

A Map of the Interactome Network of the Metazoan C. elegans

Siming Li et al, Science 23 January 2004: 303 (5657), 540-543

From regular to random networks

From regular to random networks

Small-world networks

Degree distribution

Scale-free networks

Gene regulatory network of E. coli

Preferential attachment

Lethality and network architecture

Lethality and centrality in protein networks
H. Jeong, S. P. Mason, A.-L. Barabási and Z. N. Oltvai
Nature **411**, 41-42(3 May 2001)

Connected components

Attack Failure

Biological Network

Tolerance of complex networks to errors and attacks

Giant component

Percolation transition

$$M = \rho rob NOT$$
 connected to giant component

 $M = (1-p + pu)^{n-1}$
 $ln \mu = (n-1) ln (1-\frac{1}{n-1}(1-\mu))$
 $= -(n-1)\frac{1}{n-1}(1-\mu)$
 $= -C(1-\mu)$
 $M = e^{-C(1-\mu)}$
 $M = e^{-C(1-\mu)}$

