Algebra Tutorial-III

Dr. Abhash Kumar Jha / MA-111

1. Let H be a normal subgroup of a group G and K be any subgroup of G. Then prove that

$$HK = \{ hk \mid h \in H, k \in K \}$$

is a subgroup of G.

- 2. Let G be a group and let Z(G) denote the center of G. If G/Z(G) is cyclic, then show that G is Abelian.
- 3. Let $f: G \to G'$ be a group homomorphism. Then prove the following:
 - (a) $f(H) = \{f(h) \mid h \in H\}$ is a subgroup of G'. If $K \leq G'$, then $f^{-1}(K) = \{g \in G \mid f(g) \in K\}$ is a subgroup of G.
 - (b) If H is cyclic, then f(H) is cyclic, and if H is Abelian, then f(H) is Abelian.
 - (c) If $H \subseteq G$, then $f(H) \subseteq f(G)$. Also, if $K \subseteq G'$, then $f^{-1}(K) \subseteq G$.
 - (d) If |H| = n, then |f(H)| | n.
- 4. Let $G = (\mathbb{R}, +)$ and $G' = (\mathbb{R}^+, \cdot)$. Prove that $G \cong G'$ under the mapping $f(x) = 2^x$.
- 5. Show that any infinite cyclic group is isomorphic to \mathbb{Z} .
- 6. Show that every group is isomorphic to a group of permutations.
- 7. Compute Aut($\mathbb{Z}/10\mathbb{Z}$). Show that it is isomorphic to $(\mathbb{Z}/10\mathbb{Z})^*$.
- 8. Let f be an automorphism of \mathbb{C}^* , the group of nonzero complex numbers under multiplication. Determine f(-1) and f(i).
- 9. Let H be a subgroup of a group G. Show that $N_G(H)/C_G(H)$ is isomorphic to a subgroup of $\operatorname{Aut}(H)$.
- 10. Prove that every group of order 35 is cyclic.
- 11. Suppose that $f: \mathbb{Z}_{50} \to \mathbb{Z}_{15}$ is a group homomorphism with f(7) = 6. Determine the map, its kernel and image, i.e., determine f(x), Im(f) and Ker(f).