Ejercicio Teoría de Conjuntos II

Miguel Angel Gomez Barrera

Fundación Universitaria Konrad Lorenz

2020

Ejercicio

Sean X y Y dos conjuntos en los cuales existe una función f desde P(X) a P(Y), que a cada subconjunto A de X asigna una imagen del subconjunto f(X) de Y. Y sea f^{-1} el inverso de f, una función desde P(Y) a P(X), tal que B es subconjunto de Y Demostrar:

- ▶ Si $B \subset Y$, entonces $f(f^{-1}(B)) \subset B$.
- ▶ Si f va desde X a Y, entonces $f(f^{-1}(B)) = B$.
- ▶ Si $A \subset X$, entonces $A \subset f^{-1}(f(A))$.
- ▶ Si f es uno a uno entonces $A = f^{-1}(f(A))$.

Tener presente que $f^{-1}(B) = \{x \in X : f(x) \in B\}$

Propiedad

Si $B \subset Y$, entonces $f(f^{-1}(B)) \subset B$.

Demostración.

Si $y \in f(f^{-1}(B))$, entonces y = f(x) para algún x en $f^{-1}(B)$, lo que implica que y = f(x) y $f(x) \in B$ y por ende $y \in B$.

Tener presente que $f^{-1}(B) = \{x \in X : f(x) \in B\}$

Propiedad

Si f va desde X a Y, entonces $f(f^{-1}(B)) = B$.

Demostración.

Si $y \in B$, entonces y = f(x) para algún x en X, y por tanto para algún x en $f^{-1}(B)$; ello implica que $y \in f(f^{-1}(B))$.

Propiedad

Si $A \subset X$, entonces $A \subset f^{-1}(f(A))$.

Demostración.

Si $x \in A$, entonces $f(x) \in f(A)$; Lo que implica que $x \in f^{-1}(f(A))$.

Propiedad

Si f es uno a uno entonces $A = f^{-1}(f(A))$.

Demostración.

Si $x \in f^{-1}(f(A))$, entonces $f(x) \in f(A)$ y por ende f(x) = f(u) para algún u en A; ello implica que x = u y en consecuencia que $x \in A$.