ASKAR GAFUROV

23/09/2021

FMFI UK

DNEŠNÉ CIELE

- 1. Pojem problému, algoritmu
- 2. Ukážka prevodu biologického problému na informatický
- 3. Efektivita algoritmu, pojem časovej zložitosti, O-notácia
- 4. NP-ťažké algoritmy

FORMULÁCIA PROBLÉMU, ALGORITMUS

- Formulácia problému: jasne definované vstupné a výstupné dáta a aký výstup očakávame pre každý vstup.
- Formulácia neuvádza *akým spôsobom* sa majú zo vstupov vypočítať výstupy.
- *Správny algoritmus*: Postup, ktorý určuje *spôsob*, akým pre každý vstup vypočítame príslušný výstup.

2

Biologický problém

Pomocou hmotnostného spektrometra (mass spectrometer) sme odmerali vo vzorke peptid s hmotnosťou *K*. Máme databázu proteínov a chceme zistiť, ktorý z proteínov obsahuje peptid s touto hmotnosťou.

Informatický problém

Vstup je postupnosť n kladných čísel $a[1], a[2], \ldots, a[n]$ a číslo K. Nájdite súvislý úsek tejto postupnosti $a[i], a[i+1], \ldots, a[j]$, ktorý svojim súčtom dáva číslo K.

Príklad

```
K=19
3 4 6 3 6 4 9 2 8
```

OTÁZKA NA ZAMYSLENIE

Informatický problém

Vstup je postupnosť n kladných čísel $a[1], a[2], \ldots, a[n]$ a číslo K. Nájdite súvislý úsek tejto postupnosti $a[i], a[i+1], \ldots, a[j]$, ktorý svojim súčtom dáva číslo K.

Príklad

Ako túto úlohu vyriešiť?

Informatický problém

Vstup je postupnosť n kladných čísel $a[1], a[2], \ldots, a[n]$ a číslo K. Nájdite súvislý úsek tejto postupnosti $a[i], a[i+1], \ldots, a[j]$, ktorý svojim súčtom dáva číslo K.

Triviálne riešenie

Skúšame všetky možnosti

```
pre každé i od 1 po n
|    pre každé j od i po n
|    |    suma := 0;
|    |    pre každé u od i po j
|    |    |    suma := suma + a[u]
|    |    ak suma = K, vypíš i,j
K=19
3 4 6 3 6 4 9 2 8
    i    j
```

AKO DLHO TAKÝTO PROGRAM POBEŽÍ?

- Naimplementovať do počítača a odmerať
- Na akom počítači? Na akých vstupoch?
- *Časová zložitosť* počet logických operácií, ktoré program vykoná, v závislosti od množstva dát.
- Pre každú veľkosť vstupu odhadneme najhorší možný prípad

```
pre každé i od 1 po n
|    pre každé j od i po n
|    |    suma := 0;
|    |    pre každé u od i po j
|    |    |    suma := suma + a[u]
|    |    ak suma = K, vypíš i,j
```

VÝPOČET ČASOVEJ ZLOŽITOSTI

```
pre každé i od 1 po n
|    pre každé j od i po n
|    |    suma := 0;
|    |    pre každé u od i po j
|    |    |    suma := suma + a[u]
|    |    ak suma = K, vypíš i,j
```

Počet operácií := a +

$$T(n) = \sum_{i=1}^{n} \left(\sum_{j=i}^{n} \left(1 + \sum_{u=i}^{j} 2 \right) \right) = \dots = \frac{1}{6} n^3 - n^2 + \frac{5}{6} n$$

Zaujíma nás *najvýznamnejší* člen tejto sumy, a to je $\frac{1}{6}n^3$. Navyše, nezaujíma nás konštanta pri tom člene. Výsledok takéhoto "zjednodušenia" píšeme ako $O(n^3)$ a hovoríme, že daný algoritmus má *kubickú časovú zložitosť*.

Prečo používame O-notáciu?

Úlohou O-notácie je odpovedať na otázky typu "ak budem máť X krát viac dát, koľkokrát dlhšie budem čakať na výsledok?"

Napríklad,
$$T(10^5) = \frac{1}{6} \cdot 10^{15} - 10^{10} + \frac{5}{6} \cdot 10^5 = 166656666750000$$

 $T(2 \cdot 10^5) = \frac{1}{6} \cdot 2^3 \cdot 10^{15} - 2^2 \cdot 10^{10} + 2 \cdot \frac{5}{6} \cdot 10^5 = 1333293333500000$

$$\frac{1333293333500000}{166656666750000} = 8.000240011400564$$

Tento výpočet môžem spraviť len s najvýznamnejšími členmi: $\frac{\frac{1}{6} \cdot 2^3 \cdot 10^{15}}{\frac{1}{6} \cdot 10^{15}} = 2^3 = 8$. Všimnite si, že na konštante $\frac{1}{6}$ nezáleží.

Prečo používame O-notáciu?

Teda, namiesto porovnávania presných funkcií stačí porovnať ich pomocou "zjednodušených" funkcií:

$$\frac{T(X \cdot n)}{T(n)} \approx \frac{(X \cdot n)^3}{n^3} = \frac{X^3 \cdot n^3}{n^3} = X^3$$

Ak by časová zložitosť bola napríklad $O(2^n)$, tak by zmena času behu algoritmu vyzerala následovne:

$$\frac{2^{X \cdot n}}{2^n} = 2^{(X-1) \cdot n}$$

Všimnite si, že pri exponenciálnej zložitosti nárast závisí nielen od *X*, ale aj od pôvodnej veľkosti vstupu *n*.

MERANIA

		O(n)	O(n ²)	$O(n^3)$	O(2 ⁿ)
Čas na	10	ε	ε	ε	ε
vyriešenie	50	ε	ε	ε	2 weeks
problému	100	ε	ε	ε	2800 univ.
veľkosti	1000	ε	0.025	4 . 5S	_
	10000	ε	2.15	75m	_
	100000	0.048	3.5m	52d	_
	1 mil.	0.425	5.8h	142yr	_
	10 mil.	4.25	24.3d	140000yr	_
Max veľkosť	1S	2.3 mil.	6900	610	33
problému	1m	140 mil.	53000	2400	39
vyriešená za	1d	200 bil.	2 mil.	26000	49
Zvýšenie	+1	_	_	_	×2
času so	×2	×2	\times 4	$\times 8$	_
zvýšeným <i>n</i>					

Informatický problém

Vstup je postupnosť n kladných čísel $a[1], a[2], \ldots, a[n]$ a číslo K. Nájdite súvislý úsek tejto postupnosti $a[i], a[i+1], \ldots, a[j]$, ktorý svojim súčtom dáva číslo K.

Skúsme počítať sumy a[i] + ... + a[j] rýchlejšie.

- Nech S[i] = a[1] + a[2] + ... + a[i], S[0] = 0.
- Ak hodnoty S[i] poznáme, ako vieme rýchlo zrátať súčet a[i] + ... + a[j]?

Informatický problém

Vstup je postupnosť n kladných čísel $a[1], a[2], \ldots, a[n]$ a číslo K. Nájdite súvislý úsek tejto postupnosti $a[i], a[i+1], \ldots, a[j]$, ktorý svojim súčtom dáva číslo K.

Skúsme počítať sumy a[i] + ... + a[j] rýchlejšie.

- Nech S[i] = a[1] + a[2] + ... + a[i], S[0] = 0.
- Ak hodnoty S[i] poznáme, ako vieme rýchlo zrátať súčet a[i] + ... + a[j]? a[i] + ... + a[j] = S[j] S[i 1]

Informatický problém

Vstup je postupnosť n kladných čísel $a[1], a[2], \ldots, a[n]$ a číslo K. Nájdite súvislý úsek tejto postupnosti $a[i], a[i+1], \ldots, a[j]$, ktorý svojim súčtom dáva číslo K.

Skúsme počítať sumy a[i] + ... + a[j] rýchlejšie.

- Nech S[i] = a[1] + a[2] + ... + a[i], S[0] = 0.
- Ak hodnoty S[i] poznáme, ako vieme rýchlo zrátať súčet a[i] + ... + a[j]? a[i] + ... + a[j] = S[j] S[i 1]
- Ako vieme spočítať hodnoty S[i]?

Informatický problém

Vstup je postupnosť n kladných čísel $a[1], a[2], \ldots, a[n]$ a číslo K. Nájdite súvislý úsek tejto postupnosti $a[i], a[i+1], \ldots, a[j]$, ktorý svojim súčtom dáva číslo K.

Skúsme počítať sumy a[i] + ... + a[j] rýchlejšie.

- Nech S[i] = a[1] + a[2] + ... + a[i], S[0] = 0.
- Ak hodnoty S[i] poznáme, ako vieme rýchlo zrátať súčet a[i] + ... + a[j]? a[i] + ... + a[j] = S[j] S[i 1]
- Ako vieme spočítať hodnoty S[i]?

```
S[0] := 0
pre každé i od 1 po n:
| S[i] := S[i-1] + a[i]
```

Informatický problém

Vstup je postupnosť n kladných čísel $a[1], a[2], \ldots, a[n]$ a číslo K. Nájdite súvislý úsek tejto postupnosti $a[i], a[i+1], \ldots, a[j]$, ktorý svojim súčtom dáva číslo K.

Skúsme počítať sumy a[i] + ... + a[j] rýchlejšie.

- Nech S[i] = a[1] + a[2] + ... + a[i], S[0] = 0.
- Ak hodnoty S[i] poznáme, ako vieme rýchlo zrátať súčet a[i] + ... + a[j]? a[i] + ... + a[j] = S[j] S[i 1]
- Ako vieme spočítať hodnoty S[i]?

■ Akú má časovú zložitosť výpočeť S[i]?

Informatický problém

Vstup je postupnosť n kladných čísel $a[1], a[2], \ldots, a[n]$ a číslo K. Nájdite súvislý úsek tejto postupnosti $a[i], a[i+1], \ldots, a[j]$, ktorý svojim súčtom dáva číslo K.

Skúsme počítať sumy a[i] + ... + a[j] rýchlejšie.

- Nech S[i] = a[1] + a[2] + ... + a[i], S[0] = 0.
- Ak hodnoty S[i] poznáme, ako vieme rýchlo zrátať súčet a[i] + ... + a[j]? a[i] + ... + a[j] = S[j] S[i 1]
- Ako vieme spočítať hodnoty S[i]?

■ Akú má časovú zložitosť výpočeť S[i]? O(n)

PROBLÉM # 2: NAJKRATŠIE SPOLOČNÉ NADSLOVO

Formulácia problému

- Vstup: niekoľko reťazcov
- Výstup: najkratší reťazec, ktorý obsahuje všetky vstupné reťazce ako súvislé podreťazce

Príklad

Vstup: GCCAAC, CCTGCC, ACCTTC

Výstup: CCTGCCAACCTTC (najkratšie možné)

PROBLÉM # 2: NAJKRATŠIE SPOLOČNÉ NADSLOVO

Najlepší algoritmus?

- Nepoznáme algoritmus, ktorý by bežal v polynomiálnom čase t.j. $O(n^k)$ pre nejakú konštantu k.
- Daný problém je *NP-ťažký*.

"I can't find an efficient algorithm, because no such algorithm is possible!"

"I can't find an efficient algorithm, but neither can all these famous people."

Ako sa vysporiadať s NP-ťažkými problémami?

Heuristické algoritmy

- Nájde aspoň nejaké riešenie, aj keď nie nutne optimálne
- Nejde teda o správny algoritmus riešiaci náš problém, lebo pre niektoré vstupy dáva zlú odpoveď
- Radšej ale horšia odpoveď rýchlo, ako perfektná o milión rokov

Príklad

Heuristika pre najkratší spoločný nadreťazec: v každom kroku zlepíme dva reťazce s najväčším prekryvom

Príklad: CATATAT, TATATA, ATATATC Optimum: CATATATATC, dĺžka 10

Heuristika: CATATATCTATATA, dĺžka 14

7

AKO SO VYSPORIADAŤ S NP-ŤAŽKÝMI PROBLÉMAMI?

Aproximačný algoritmus

Často vieme dokázať, že nejaká heuristika sa vždy priblíži k optimálnemu riešeniu aspoň po určitú hranicu

Príklad

Heuristika pre najkratší spoločný nadreťazec: v každom kroku zlepíme dva reťazce s najväčším prekryvom Je dokázané, že vždy nájde najviac 3,5-krát dlhší reťazec ako najlepšie riešenie.

Informatici predpokladajú, že v skutočnosti najviac 2-krát dlhší, ale nevieme to dokázať.

AKO SO VYSPORIADAŤ S NP-ŤAŽKÝMI PROBLÉMAMI?

Exaktný výpočet pomocou iného problému

- Preformulovať do podoby jedného z dobre známych NP-ťažkých problémov (napr. celočíselné lineárne programovanie, a pod.)
- Múdri ľudia napísali programy, ktoré vedia riešiť tieto známe problémy aspoň v niektorých prípadoch (CONCORD, CPLEX, a pod.)

Preformulovať problém

■ Je toto skutočne jediná rozumná formulácia biologického problému ktorý chceme vyriešiť?

ZHRNUTIE

- Problémy zo skutočného života je dobré najskôr sformulovať tak, aby bolo jasné, aké výsledky očakávame pre každý možný vstup.
- Takáto formulácia by mala byť oddelená od postupu (algoritmu) riešenia.
- Informatici merajú čas v O-čkach, ktoré abstrahujú od detailov konkrétneho počítača.
- Vytvorenie efektívneho algoritmu je umenie! Časť z toho sú finty (ako napr. dynamické programovanie).
- Pre niektoré problémy poznáme iba Nechutne Pomalé algoritmy (NP-ťažké problémy).
- Aj napriek tomu vo veľa prípadoch vieme pomôcť.

Úvod do dynamického programovania (cvičenie)

Broňa Brejová 29.9.2022

Problém platenia minimálnym počtom mincí

Vstup: hodnoty k mincí m_1, m_2, \ldots, m_k a cieľová suma X (všetko kladné celé čísla

Výstup: najmenší počet mincí, ktoré potrebujeme na zaplatenie X

Príklad:
$$k = 3$$
, $m_1 = 1$, $m_2 = 2$, $m_3 = 5$, $X = 13$

Odbočka: ešte matematickejšia formulácia bez slov minca, suma,...

Vstup: kladné celé čísla m_1, m_2, \ldots, m_k a X

Výstup: celé číslo n a n čísel $x_1, \ldots x_n$, pre ktoré platia nasledujúce podmienky:

- ullet $x_i \in \{m_1, m_2, \ldots, m_k\}$ pre každé $i=1,2,\ldots n$
- $\bullet \ \sum_{i=1}^m x_i = X$
- n je najmenšie možné.

Problém platenia minimálnym počtom mincí

Vstup: hodnoty k mincí m_1, m_2, \ldots, m_k a cieľová suma X (všetko kladné celé čísla

Výstup: najmenší počet mincí, ktoré potrebujeme na zaplatenie X

Príklad: k = 3, $m_1 = 1$, $m_2 = 2$, $m_3 = 5$, X = 13

Príklad: k = 3, $m_1 = 1$, $m_2 = 3$, $m_3 = 4$, X = 6

Algoritmus pre všeobecnú sústavu k mincí $m_1, m_2, \ldots m_k$

```
A[i] = 1 + \min\{A[i - m_1], A[i - m_2], ..., A[i - m_k]\}
m = [1, 3, 4]
X = 11
k = len(m)
nekonecno = math.inf
A = [0]
for i in range (1, X + 1):
  min = nekonecno
  for j in range(k):
     if i \ge m[j] and A[i - m[j]] < min:
       min = A[i - m[j]]
  A.append(1 + min)
print(A)
```

Program aj s výpisom mincí

```
m = [1, 3, 4]
X = 11
k = len(m)
nekonecno = 1000000
A = [0]
B = \lceil -1 \rceil
for i in range (1, X + 1):
  min = nekonecno
  min_minca = -1
  for j in range(k):
     if i \ge m[j] and A[i - m[j]] < min:
       min = A[i - m[j]]
       min_minca = m[j]
  A.append(1 + min)
  B.append(min_minca)
while X > 0:
    print(B[X])
    X = X - B[X]
```

Dynamické programovanie vo všeobecnosti

- Okrem riešenia celého problému riešime aj menšie problémy (nazývame ich podproblémy)
- Riešenia podproblémov ukladáme do tabuľky a používame pri riešení väčších podproblémov
- Technika dynamického programovania sa používa na viacero problémov v bioinformatike

Zarovnávanie sekvencií (cvičenie)

Broňa Brejová 8.10.2021

Mitochondriálny genóm človeka vs. ryba Danio rerio

A: Homo_sapiens/Homo_sapiens.NGBI36.52.dna_rm.chromosome.MT.Peyerse alignment

B: Danio_rerio/Danio_rerio.ZFISH7.52.dna_rm.chromosome.MT.‡aForward alignment

Mitochondriálny genóm človeka vs. Drosophila melanogaster

A: Homo_sapiens/Homo_sapiens.NGBI36.52.dna_rm.chromosome.MT.Fayerse alignment

B: Drosophila_melanogaster/Drosophila_melanogaster.BDGP5.4.52.dAd_rM.chromk

Mitochondriálny genóm človeka vs. to isté

A: Homo_sapiens/Homo_sapiens.NGBI36.52.dna_rm.chromosome.MT.Peyerse alignment

B: Homo_sapiens/Homo_sapiens.NCBI36.52.dna_rm.chromosome.MT.Fgrward alignment

Drosophila proteín Escargot zinc finger vs. to isté

Drosophila proteín Escargot zinc finger

Description:	Protein escargot	
Source organism:	Drosophila melanogaster (Fruit fly View Pfam proteome data.	
Length:	470 amino acids	

Pfam domains

Pravdepodobnosť a E-value (cvičenie)

Broňa Brejová 24.10.2019

Hračkársky prípad

Dotaz: ATGCTCAAAC (dĺžka m=10)

Databáza: (dĺžka n=300)

Skórovacia schéma: zhoda +1, nezhoda -1, medzera -1

Lokálne zarovnanie so skóre S=6

GCTCAAAC

GCTCA-AC

E-value: koľko očakávame lokálnych zarovnaní so skóre aspoň S v náhodnej databáze dĺžky n pri náhodnom dotaze dĺžky m

Dotaz: GTGCCTGCAG

Databáza:

Dotaz: TCGACCGAAA

Databáza:

tactccattagggattataacgactaaagcccgtcgtggcgggatcactt tgagattcaactttaacgcatcacagaggaatctgagacaaagcaaaacc gatcataatgatcgatccaggtaataagtctccttgatggcgttagactg gaaataacagttgacttccgactatagtttaatgaacgttcgtaattaga cgatcgtgtaacttaaccaaaggctgccccaaactagctgagtaatagc tcgtcctgagcatgtaagagtcagcctccacggaacactgcaacgttctt

Dotaz: CCCGTCGTAG

Databáza:

cagcattagccccgttatttCGTCGTtctccaacgggtctgcctttctgg
aacgtggcgaaccttcacaggtcagtctgtcatcgcctgcgcttagagcg
gacggtactcgaaaggtcggttcagtgtgggcgctggaaagaagaatagca
acacatgcactaatggaaggtcccagtggtgtgggacattctggaCCCGT
GTgtgccaacctatgtgagctccggcgttgactcggaggatgttaacaag
atcaagctgtaggcgacgatccccgccgggtttcctctactgcctcgagc

Dotaz: AGGATGAGGA

Databáza:

ttatcgattctccggtgcgccagtacagcacaaggctcggatcctgtaaa acactacaccttaaaaactaagtcAGGATGtgatctcccttaaGATGAGa cagtctctaatgcggcgtagtgggaccctcgtgaccgagctaagcagttc acaatgggcgctctgagcgattggctggagaccttgacttcccggtaggt gtggtgttagttctgtgcccagagataaccatccaccgtaatggatctcg taactttacGATGAAGAccggcatcatctcagttatatttctaggacggg

Celkovo opakujeme 100 krát

 $S=6,\,m=10,\,n=300,\,{\rm obsah}\,{\rm GC}\,{\rm 50\%}$

Počet výskytov: 2, 0, 2, 3, 3, 1, 0, 1, 1, 1, 0, 0, 4, 2, 0, 1, 0, 1, 0, 0, 1, 0, 0, 4, 3, 1, 1, 0, 0, 0, 2, 3, 0, 0, 2, 1, 1, 1, 0, 0, 0, 0, 4, 1, 1, 0, 0, 1, 1, 1, 2, 2, 2, 0, 0, 2, 0, 1, 1, 0, 1, 2, 2, 1, 0, 0, 1, 1, 2, 0, 1, 0, 0, 1, 0, 3, 2, 0, 2, 2, 1, 0, 0, 2, 0, 0, 1, 2, 1, 1, 3, 2, 2, 1, 1, 0, 2, 0, 1, 3

Priemerný počet výskytov: 1.05

Keď celé opakujeme viackrát, dostávame hodnoty 0.99, 1.15, 1.02, 1.07, 0.98, ...

Správna hodnota E-value: 0.99

Fylogenetické stromy

Broňa Brejová 26.10.2023

Terminológia

- zakorenený strom, rooted tree
- nezakorenený strom, unrooted tree
- hrana, vetva, edge, branch
- vrchol, uzol, vertex, node
- list, leaf, leaf node, tip, terminal node
- vnútorný vrchol, internal node
- koreň, root
- podstrom, subtree, clade

Reálne ukážky stromov z článkov (zakorenený/nezakorenený)

[Margulies et al. 2007]

zakorenený pomocou vonkajšej skupiny (outgroup) [Pace et al 1997]

Zopár faktov o stromoch

- ullet Majme zakorenený strom s n listami, v ktorom má každý vnútorný vrchol 2 deti. Takýto strom vždy má n-1 vnútorných vrcholov a 2n-2 vetiev (prečo?)
- ullet Majme nezakorenený strom s n listami, v ktorom má každý vnútorný vrchol 3 susedov. Takýto strom vždy má n-2 vnútorných vrcholov a 2n-3 vetiev.
- ullet Koľkými spôsobmi môžeme zakoreniť nezakorenený strom s n listami?

Bootstrap

- Náhodne vyberieme niektoré stĺpce zarovnania, zostrojíme strom
- Celé to opakujeme veľa krát
- Značíme si, koľkokrát sa ktorá hrana opakuje v stromoch (v nezakorenenom strome je hrana rozdelenie listov na dve skupiny)
- Nakoniec zostavíme strom z celých dát a pozrieme sa ako často sa ktorá jeho hrana vyskytovala
- Môžeme zostaviť aj strom z často sa vyskytujúcich hrán
- Bootstrap hodnoty sú odhadom spoľahlivosti, hlavne ak máme celkovo málo dát (krátke zarovnanie)
- Ak však dáta nezodpovedajú vybranej metóde/modelu, tak aj pre zlý strom môžeme dostať vysoký bootstrap

Bootstrap

Robili sme $100 \times$ bootstrap, dostali sme tieto výsledky:

(ii)
$$A \longrightarrow F$$

$$B \longrightarrow F$$

$$B \longrightarrow F$$

$$A \longrightarrow F$$

$$B \longrightarrow F$$

Doplňte bootstrap hodnoty hranám výsledného stromu (iii)

Ktoré ďalšie vetvy majú podporu aspoň 20%?

Aký strom by sme dostali, ak by sme chceli nechať iba vetvy s podporou aspoň 80%?

Opakovanie pravdepodobnostných modelov

Keď počítame pravdepodobnosť, rozmýšľame o **myšlienkovom experimente**, v ktorom hádžeme kockou, ťaháme gulôčky z vreca a pod.

- Dôležité je vždy si poriadne uvedomiť, ako tento experiment prebieha
- Experimenty nastavujeme tak, aby odzrkadľovali nejaké aspekty reality, napr.
 skutočných DNA sekvencií, ich evolúcie a pod.
- Pravdepodobnosti, ktoré spočítame v idealizovanom svete nám možno niečo povedia o reálnom svete
- Slávny citát štatistika Georga Boxa:
 All models are wrong, but some are useful.

Aké sme doteraz videli modely

- Skórovacie matice: porovnávame model náhodných sekvencií a model náhodných zarovnaní
- E-value v BLASTe: náhodne vygenerujeme databázu a dotaz (query), koľko bude v priemere medzi nimi lokálnych zarovnaní so skóre aspoň S?
- Hľadanie génov: model generujúci sekvenciu+anotáciu naraz (parametre nastavené na známych génoch).
 Pre danú sekvenciu, ktorá anotácia je najpravdepodobnejšia?
- Evolúcia, Jukes-Cantorov model: model generujúci stĺpec zarovnania. Neznáme parametre: strom, dĺžky hrán. Pre danú sadu stĺpcov zarovnania, ktoré parametre povedú k najväčšej pravdepodobnosti? $\max_{param} \Pr(data|param)$

Evolúcia, Jukes-Cantorov model

Model generujúci stĺpec zarovnania.

Neznáme parametre: strom, dĺžky hrán.

Pre danú sadu stĺpcov zarovnania, ktoré parametre povedú k najväčšej pravdepodobnosti? $\max_{param} \Pr(data|param)$

Pravdepodobnosť zmeny/nezmeny na hrane dĺžky t:

$$Pr(A|A,t) = (1 + 3e^{-\frac{4}{3}t})/4,$$

 $P(C|A,t) = (1 - e^{-\frac{4}{3}t})/4$

- Ak poznáme ancestrálne sekvencie, vieme spočítať pravdepodobnosť dát
- Ancestrálne sekvencie sú náhodné premenné, ktoré nás nezaujímajú: marginalizujeme ich (uvažujeme všetky ich možné hodnoty)

K-means clustering

Broňa Brejová 12.11.2020

Formulácia problému

Vstup: n-rozmerné vektory x_1, x_2, \ldots, x_t a počet zhlukov k

Výstup: Rozdelenie vektorov do k zhlukov:

- priradenie vstupných vektorov do zhlukov zapísané ako čísla c_1,c_2,\ldots,c_t , kde $c_i\in\{1,2,\ldots,k\}$ je číslo zhluku pre x_i
- ullet centrum každého zhluku, t.j. n-rozmerné vektory $\mu_1, \mu_2, ..., \mu_k$

Hodnoty c_1, \ldots, c_t a μ_1, \ldots, μ_k volíme tak, aby sme minimalizovali súčet štvorcov vzdialeností od každého vektoru k centru jeho zhluku:

$$\sum_{i=1}^{t} \|x_i - \mu_{c_i}\|_2^2$$

Pre vektory $a=(a_1,\ldots,a_n)$ a $b=(b_1,\ldots b_n)$ je druhá mocnina vzdialenosti $\|a-b\|_2^2=\sum_{i=1}^n(a_i-b_i)^2$

Príklad vstupu

Príklad výstupu

μ_3	0.10	1.80	
μ_2	1.04	-1.38	
μ_1	-0.47	-0.07	
x_{15}	2.00	-1.10	2
x_{14}	1.60	-0.80	2
x_{13}	1.20	-1.50	2
x_{12}	1.00	2.00	3
x_{11}	0.50	0.40	1
x_{10}	0.40	-1.50	2
x_9	0.40	0.10	1
x_8	0.20	1.90	3
x_7	0.10	-0.40	1
x_6	0.00	-2.00	2
x_5	-0.30	1.50	3
x_4	-0.50	1.80	3
x_3	-0.60	-0.20	1
x_2	-1.20	0.20	1
x_1	-2.00	-0.50	1

Algoritmus

Heuristika, ktorá nenájde vždy najlepšie zhlukovanie.

Začne z nejakého zhlukovania a postupne ho zlepšuje.

Inicializácia:

náhodne vyber k centier $\mu_1, \mu_2, ..., \mu_k$ spomedzi vstupných vektorov

Opakuj, kým sa niečo mení:

- ullet priraď každý bod najbližšiemu centru: $c_i = rg \min_j \left\| x_i \mu_j
 ight\|_2$
- ullet vypočítaj nové centroidy: μ_j bude priemerom (po zložkách) z vektorov x_i , pre ktoré $c_i=j$

Zvolíme náhodné centrá μ_i

Vektory priradíme do zhlukov (hodnoty c_i)

Zabudneme μ_i

Dopočítame nové μ_i (suma klesla z 30.05 na 19.66)

Dopočítame nové c_i (suma klesla z 19.66 na 17.39)

Prepočítame μ_i

Prepočítame c_i

Prepočítame μ_i

Prepočítame c_i (žiadna zmena, končíme)

GO Enrichment

Broňa Brejová 12.11.2020

Gene list analysis

Many analyses yield lists of genes. Examples:

- genes with positive selection in comparative genomics
- overexpressed or underexressed genes in expression analysis
- genes regulated by a specific transcription factor

Some of genes in a list will have a known function, others may be less studied

What to do with such a gene list?

- Look at several interesting candidates and study them in detail (bioinformatics / wet lab)
- Determine if the whole set is enriched in genes with some property
 - for example, genes under positive selection are often enriched for functions in immunity
 - this is caused by evolutionary pressure from pathogens

Example from Kosiol et al 2008

16,529 genes total

70 genes innate immune response (0.4% of all genes)

400 genes positive selection

8 genes positive selection + innate immune response (2% of pos. sel.)

Contingency table

	Pos.sel.	No pos.sel.	Total
Immunity	8 (n_{ip})	62	70 (n_i)
Not immunity	392	16067	16459
Total	400 (n_p)	16129	16529 (<i>n</i>)

Observations:

Innate immune response only a small fraction of pos.sel.

But large enrichemnt from 0.4% to 2%

Is it by chance (due to small numbers)?

Example from Kosiol et al 2008

	Pos.sel.	No pos.sel.	Total
Immunity	8 (n_{ip})	62	70 (n_i)
Not immunity	392	16067	16459
Total	400 (n_p)	16129	16529 (<i>n</i>)

Is enrichment due to chance?

Want p-value:

What would be a chance of obtaining such an enrichemnt if positive selection and role in innate immune response independent (null hypothesis)

Null hypothesis

	Pos.sel.	No pos.sel.	Total
Immunity	8 (n_{ip})	62	70 (n_i)
Not immunity	392	16067	16459
Total	400 (n_p)	16129	16529 (<i>n</i>)

Urn with $n_i=70$ white balls and $n-n_i=16459$ black balls

Draw $n_p=400$ balls from the urn

Denote by X the number of white balls in the selection

On average we expect $E(X) = n_p(n_i/n) = 1.7$

In reality we see $n_{ip}=8$ pos. sel. genes with role in innate immunity

This is $4.7 \times$ more

How likely is this by chance?

Null hypothesis

Urn with $n_i=70$ white balls and $n-n_i=16459$ black balls

Draw $n_p = 400$ balls from the urn

Denote by X the number of white balls in the selection

Variable X has hypergeometric distribution:

$$\Pr(X = n_{ip}) = \binom{n_i}{n_{ip}} \binom{n - n_i}{n_p - n_{ip}} / \binom{n}{n_p}$$

P-value is $\Pr(X \ge n_{ip}) = \Pr(X = n_{ip}) + \Pr(X = n_{ip} + 1) + \dots$ Tail of the distribution

In our case $\Pr(X \ge 8) = 0.00028$

This is called **Hypergeometric** or Fisher's exact test It can be approximated by χ^2 **test**

Multiple testing correction

Often we do many tests of the same type, for example

- ullet Test 1000 genes for positive selection, select those with p-value ≤ 0.05
- \bullet Test enrichment of 1000 functional categories in a list of genes, selectthose with p-value ≤ 0.05

Problem: If each category has 5% chance of being there by chance, we expect 50 purely random results.

If the total number of positive tests was 100, half of them were false.

Multiple testing correction: lower threshold on p-value so that false positives do not constitute a large portion of results

Several techniques, e.g. FDR (false discovery rate)

Cvičenia pre biológov, 7.12.2023 Zhrnutie semestra

Tvorba bioinformatického nástroja

- Sformulujeme biologické ciele
 (aké máme dáta, aké typy otázok sa chceme pýtať).
- Sformulujeme informaticky/matematicky

 (napr. ako pravdepodobnostný model).

 Dostaneme informatické zadanie problému, v ktorom je presne daný vzťah medzi vstupom a želaným výstupom

 (napr. nájsť zarovnanie s max. skóre v určitej skórovacej schéme).
- Hľadáme efektívne algoritmy na riešenie informatického problému.
- Ak sa nám nepodarí nájsť dosť rýchly algoritmus, použijeme heuristiky, ktoré dávaju približné riešenia.
- Testujeme na reálnych dátach, či sú výsledky biologicky správne
 (či bol model dobre zvolený, či heuristiky dobre fungujú).

Použitie bioinformatického nástroja

- Sformulujeme biologické ciele (aké máme dáta, aké typy otázok sa chceme pýtať).
- Porozmýšľame, aký typ nástroja, resp. ich kombinácia by nám mohli pomôcť
- Alebo hľadáme v literatúre nástroj na typ problému, s ktorým sme sa ešte nestretli
- Pre správne nastavenie parametrov a interpretovanie výsledkov je dôležité poznať model, predpoklady, ktoré autori nástroja použili, resp. zdroj dát v príslušnej databáze
- Konkrétne nástroje a webstránky sa rýchlo menia, celkové princípy sa menia pomalšie

Prehľad preberaných tém

- Zostavovanie genómov (najkratšie spoločné nadslovo, heuristiky, de Bruijnov graf)
- Zarovnania (skórovanie ako pravdepodobnostný model, dynamické programovanie, heuristické zarovnávanie, E-value a P-value, lokálne vs. globálne, párové vs. viacnásobné, celogenómové)
- Evolúcia (pravdepodobnostné modely substitúcií, metóda maximálnej vierohodnosti, metóda maximálnej úspornosti, metóda spájania susedov)
- Hľadanie génov (skryté Markovove modely)
- Komparatívna genomika (hľadanie konzervovaných oblastí, komparatívne hľadanie génov, pozitívny výber, fylogenetické HMM, kodónové matice)

Prehľad preberaných tém (pokračovanie)

- Expresia génov (zhlukovanie, klasifikácia, regulačné siete, transkripčné faktory, hľadanie motívov)
- Proteíny (predikcia štruktúry, profily a profilové HMM rodín/domén, protein threading)
- RNA štruktúra (dynamické programovanie, stochastické bezkontextové gramatiky)
- Populačná genetika (mapovanie asociácií, väzbová nerovnováha, genetický drift, štruktúra a história populácie)

Nahliadli sme do sveta informatiky

- Algoritmus, časová zložitosť
- NP-ťažké problémy, presné algoritmy, heuristiky, aproximačné algoritmy
- Dynamické programovanie
- Stromy, grafy
- Skryté Markovove modely a bezkontextové gramatiky

Ďalšie predmety

- Genomika N-mCBI-303, Nosek a kol. (LS, 2P, 3kr)
- Linux pre používateľov 1-AIN-500, Nagy (LS, 2K, 2kr) alebo
 Operačné systémy a počítačové siete 1-DAV-103 (ZS, 2P+2C, 5k)
- Programovanie (1) 1-MAT-130, Salanci (ZS, 2P+2C, 5kr) alebo
 Programovanie (1) 1-AIN-130 Blaho (ZS, 4P+4C, 9kr)

Pre pokročilejších

- Seminár z bioinformatiky 1, 2 Brejová, Vinař (ZS/LS, 2S, 2kr)
 journal club o bioinformatických metódach
- Úvod do bioštatistiky 1-BMF-331 Waczulíková (LS, 2P+1C, 4kr)
 predmet pre biomedicínskych fyzikov a dátovú vedu
- Vizualizácia dát 1-DAV-105 Brejová, Bátorová (LS, 2P+2C, 5kr)
 vyžaduje základy Pythonu
- Manažment dát 1-DAV-105 Brejová, Boža, Vinař (LS, 1P+2C, 5kr)
 vyžaduje znalosť programovania, základy práce na príkazovom riadku

Teória grafov

Broňa Brejová 19.12.2020

Grafy a grafové algoritmy

Graf: 7 vrcholov (mestá), 8 hrán (cestné spojenia)

Počet vrcholov n, počet hrán mNezáleží na rozmiestnení vrcholov

Cesta: Postupnosť nadväzujúcich hrán, žiadny vrchol sa neopakuje

Napr. Plzeň-Praha-Brno-Bratislava je cesta Brno-Ostrava-Košice-Brno-Praha nie je cesta

Najkratšia cesta z a do b: Cesta spájajúca vrcholy a a b s najmenším súčtom vzdialeností na hranách

Možno spočítať v čase $O(n^2)$ Dijkstrovym algoritmom.

Cyklus: Postupnosť nadväzujúcich hrán, ktorá sa vracia do východzieho bodu, nemá žiadne iné opakujúce sa vrcholy.

Proctor and Gamble súťaž, 1962

Problém obchodného cestujúceho

Vrcholy: mestá na mape

Hrany: medzi každými dvoma vrcholmi, váha je vzdušná vzdialenosť

Úloha: obcestovať všetky mestá tak, aby celková vzdušná vzdialenosť bola minimálna (**Hamiltonovská kružnica**)

Jednoduchá heuristika: Vždy pokračuj v najbližšom meste, ktoré sme ešte nenavštívili.

Správny a efektívny algoritmus? Nanešťastie, obchodný cestujúci je **NP-ťažký problém**.

Príklad: Sieť interakcií proteínov

Vrcholy: proteiny

Hrany: priame interakcie

Metabolické dráhy zodp. cestám

Metabolické cykly zodp. cyklom

Kliky: Skupiny vrcholov priamo prepojené každý s každým

Komplexy zodpovedajú klikám

Komponenty súvislosti: Najväčšie skupiny vrcholov tak, aby sa v každom komponente dalo dostať z každého vrcholu do každého.

Príklad: Fylogenetický strom

- Stromy sú špeciálna podtrieda grafov (acyklické, súvislé)
- Vrcholy: listy, vnútorné (spolu n)
- Hrany: n-1
- Binárny strom: každý vnútorný vrchol má 2 synov

Ďalšie príklady stromov: hierarchické zhlukovanie, dátové štruktúry na rýchle vyhľadávanie

Ďalšie príklady grafov: de Bruijnov graf, fylogenetická sieť (evolúcia s horizontálnym prenosom génov alebo rekombináciou), regulačné siete, hierarchia GO (gene ontology)