Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

Группа	P3217	К работе допущен
Студент	Григорьев Георгий	Работа выполнена
Преподаватель	Самолётов В. А.	Отчет принят

Рабочий протокол и отчет по лабораторной работе № 13

ОПРЕДЕЛЕНИЕ ОСНОВНЫХ ХАРАКТЕРИСТИК ДИФРАКЦИОННОЙ РЕШЕТКИ

1. Цель работы.

Определение периода, числа штрихов на 1 мм, угловой дисперсии и разрешающей способности дифракционной решетки.

- 2. Задачи, решаемые при выполнении работы.
 - Проведение необходимых расчетов для расчета разрешающей способности дифракционной решетки.
- 3. Объект исследования. Дифракционная решетка.
- 4. Метод экспериментального исследования. Эмпирический: снятие показаний, их обработка, формулировка выводов
- 5. Рабочие формулы и исходные данные

$$dsin(\phi) = \kappa \lambda \ (1), \quad d = \frac{\kappa \lambda}{sin(\phi)} \quad n = \frac{1}{d}$$

$$D = \frac{d\phi}{d\phi} = \frac{\kappa}{sin(\phi)} \quad (2)$$

$$D = \frac{d\phi}{d\lambda} = \frac{\kappa}{d\cos(\phi)} (2)$$

$$R = \frac{\overline{\lambda}}{\sigma^{\lambda}} (3)$$

6. Измерительные приборы.

Nº п/ п	Наименование	Тип прибора	Используемые диапозон	Погрешность прибора	
1	Гониометр	Линейный	360°	±30′	
2	Нониус	Линейный	360°	±1′	

- 7. Схема установки (перечень схем, которые составляют *Приложение 1*). Схема гониометра
- 8. Результаты прямых измерений и их обработки.

Таблица 1

	D	Опыт 1		Опыт 2		Опыт 3					
	Величина	N1	N2	ϕ_1	N1	N2	ϕ_2	N1	N2	ϕ_3	Центр
СП	$\phi_{ m \phiиол}$	147°10′	143°	-2°45′	147°	143°35′	-1°45′	146°45′	143°35′	-3°45′	147°
p a	$\phi_{зел}$	147°15′	142°	-5°	147°	142°	-5°45′	146°45′	142°17′	-2°24′	147°10′
в a	$\phi_{жел}$	147°10′	141°30′	-2°38′	147°10′	141°30′	-2°38′	147°10′	141°30′	-2°38′	147°20′
с л е в а	$\phi_{ m \phiиол}$	147°	150°50′	1°47′	147°20′	150°50′	1°47′	147°	150°50′	1°47′	147°25′
	$\phi_{зел}$	147°	151°50′	2°37′	147°20′	151°40′	2°37′	147°	151°50′	2°37′	147°
	$\phi_{жел}$	158°14′	162°10′	2°5′	158°14′	162°10′	2°5′	158°14′	162°10′	2°5′	158°

Расчет угла поворота ϕ для каждого из 3 опытов в таблице 1 производился по формуле:

$$\phi = \frac{N_2 - N_1}{2}$$

9. Расчет результатов косвенных измерений

	Величина	$\overline{\phi}$, град.	<i>d</i> , м.	<i>n</i> , ед.	\hat{D}_1	\hat{D}_2	R
СП	$\phi_{ m \phi$ иол	-1°45′	1,32E-05	7,58E+04	8E+04	7,64E+04	8E+04
p	$\phi_{ ext{зел}}$	-2°24′	1,3E-05	7,69E+04	_	_	_
ва	$\phi_{жел}$	2°37′	1,23E-05	8,13E+04	8,1E+04	8,77E+04	_
сл ева	$\phi_{ m \phiиол}$	2°5′	1,3E-05	7,69E+04	8,11E+04	7,93E+04	8E+04
	$\phi_{зел}$	-2°38′	1,19E-05	8,40E+04	_	_	_
	$\phi_{жел}$	1°47′	1,55E-05	6,45E+04	6E+04	7E+04	_

Расчет усредненного значения угла $\overline{\phi}$ производился по формуле:

$$\overline{\phi} = \frac{\phi_1 + \phi_2 + \phi_3}{3}$$

Расчет периода дифр. решетки d и числа штрихов n производились по формулам:

$$d = \frac{\kappa \lambda}{\sin(\phi)} \quad n = \frac{1}{d}, \ \kappa = 1, \ \lambda_{\phi} = 404,7 \times 10^{-9} \text{M}.$$

$$\lambda_{3} = 546,1 \times 10^{-9} \text{M}. \ \lambda_{\varkappa} = 564 \times 10^{-9} \text{M}.$$

$$d_{\phi} = \frac{1 \times 404.7}{10^{9} \times 0.0305} \approx 1.35 \times 10^{-5}$$

Расчет дисперсии дифракционной решетки проводился двумя разными способами по формулам, λ бралась для фиолетового/желтого и фиолетового/ зеленого цвета:

$$\begin{split} \hat{D_1} &= \frac{\kappa}{d\cos(\phi)}; \hat{D_2} = \frac{\Delta\phi}{\Delta\lambda} \\ \hat{D_1} &= \frac{0^\circ 39^\prime}{141,4 \times 10^{-9} \text{ M.}} = \frac{1,13}{141,4} \times 10^7 \approx 8 \times 10^4 \text{M}^{-1} \\ \hat{D_2} &= \frac{1}{1,32 \times 10^{-5} \text{ M.} \times 0.99} = 7,65 \times 10^4 \text{M}^{-1} \end{split}$$

10. Расчет погрешностей измерений

Расчет погрешностей прямых измерений

$$t = \frac{|\overline{x} - \mu|}{se}, \quad se = \frac{\sigma_{\phi}}{\sqrt{n}} \quad \Rightarrow \quad |\overline{x} - \mu| = \Delta x = t \frac{\sigma_{\phi}}{\sqrt{n}} = \sum_{i=1}^{31} \sqrt{\frac{(\phi_i - \overline{\phi})^2}{n(n-1)}} t$$

t-значение берется из таблицы значений T-распределения, в нашем конкретном случае кол-во измерений равно 3, соответствующее значение t будет равно 2,92.

$$\Delta \phi = \sum_{i=1}^{3} \sqrt{\frac{(\phi_i - 2^{\circ}10')^2}{3 \times 2}} \approx 0.701^{\circ}$$

Расчет погрешностей косвенных измерений

- 11. Графики (перечень графиков, которые составляют Приложение 2)
- 12. Окончательные результаты

Получены результаты вычислений разрешающей способности дифракционной решетки, рассчитана погрешность вычислений.

13. Выводы и анализ результатов работы.

Измерение углов на гониометре требует определенной сноровки, при этом я получил результаты с довольно большой погрешностью, это обусловлено малым количеством измерений. Из-за этого на воспроизведение правильных результатов надеяться не приходится.