OSLα: Online Structure Learning using Background Knowledge Axiomatization

Evangelos Michelioudakis 1 , Anastasios Skarlatidis 1 , Georgios Paliouras 1 and Alexander Artikis 2,1

Institute of Informatics and Telecommunications, NCSR "Demokritos" Department of Maritime Studies, University of Piraeus²

{vagmcs, anskarl, paliourg, a.artikis}@iit.demokritos.gr

Introduction

- Targets:
- Learning in temporal domains
- Handle uncertainty and complex relational structure
- Handle large (streaming) training data
- Approach:
- Markov Logic Networks, Event Calculus (MLN–EC)
- Online structure learning (OSL α)
- Starting point: Online Structure Learning (OSL) algorithm
- ✓ Online strategy for updating the model
- × Cannot handle a search space having large domain of constants
- × Does not exploit background knowledge
- × Does not support first-order logic functions

Event Recognition

Probabilistic Event Calculus

- Event Calculus
- Logic formalism to represent and reason about events
- Defines whether a fluent holds or not at a specific time-point
- Law of inertia: Fluents persist over time

Activity Recognition

- Recognize complex activities between multiple persons
- Data from surveillance video footage
- Video frames are annotated by human experts
- Observed individual activities (walking, active, enter, etc)
- Activities among persons (meeting or moving together)

$OSL\alpha$ **Procedure**

Hypergraph and Relational Pathfinding

Template Guided Search

Clause Creation, Clause Evaluation and Weight Learning

1. Generalize each path into a definite clause:

$$\begin{split} \texttt{InitiatedAt}(\texttt{move}(id_1,id_2),t) &\Leftarrow \\ \texttt{HappensAt}(\texttt{walking}(id_1),t) \land \\ \texttt{HappensAt}(\texttt{walking}(id_2),t) \end{split}$$

Predicate completion and template predicate elimination

- Produce clauses independent of the template predicates

2. Clause Evaluation:

Keep clauses whose coverage of the annotation is significantly greater than that of the clauses already learnt.

- 3. Weight Learning using AdaGrad:
 - Extended clauses initially inherit their ancestors weights
 - Optimize the weights of all clauses

Experimental Evaluation

- Activity recognition using the CAVIAR dataset
- 28 surveillance videos
- Learn target concepts for meet and move CEs
- 19 sequences of SDEs and CE annotations
- 10-fold cross-validation
- Implemented on LoMRF (http://github.com/anskarl/LoMRF)

Method	meet			move		
	Precision	Recall	F ₁ -score	Precision	Recall	F ₁ -score
EC_{crisp}	0.6868	0.8556	0.7620	0.9093	0.6390	0.7506
AdaGrad	0.7228	0.8547	0.7833	0.9172	0.6674	0.7726
MaxMargin	0.9189	0.8133	0.8629	0.8443	0.9410	0.8901
$\mathtt{OSL}lpha$	0.8192	0.8509	0.8347	0.8056	0.7522	0.7780

Method	mee	et	move		
	training	testing	training	testing	
$\mathtt{OSL}\alpha$	22m 49s	54s	1h 56m 2s	1m 6s	
OSL	> 25h	-	-	-	

Conclusions

Probabilistic online structure learning ($OSL\alpha$) based on MLNs

- Exploits background knowledge axiomatization (MLN–EC)
- Considers both types of wrongly predicted atoms
- Supports a subset of first-order logic functions

Future Research

- 1. Faster hypergraph search
- 2. Learn hierarchical definitions and support negated literals
- 3. Structure learning in the presence of unobserved data