Mark Scheme Topic Specific Questions: Waves: Stationary

Jan 2002 to Jan 2009

Section A: Objective test keys

Q4 Jan 2002

1-D; 2-C; 3-B; 4-C; 5-B; 6-D; 7-B; 8-A; 9-D; 10-C; 11-B; 12-B; 13-A; 14-D; 15-B.

Section A

Q4 Jun 2002

Key to Objective Test Questions

1-B; 2-B; 3-D; 4-C; 5-A; 6-C; 7-B; 8-B; 9-D; 10-A; 11-C; 12-C; 13-D; 14-A; 15-C.

1

- (a) interference or superposition ✓ Q1 Jun 2003
 reflection from metal plate ✓
 two waves of the same frequency/wavelength ✓
 travelling in opposite directions (or forward/reflected waves) ✓
 maxima where waves are in phase or interfere constructively ✓
 minima where waves are out of phase/antiphase
 or interfere destructively ✓
 nodes and antinodes or stationary waves identified ✓

 max(4)
- (b)(i) (distance between minima = $\frac{\lambda}{2}$) $\left(\frac{\lambda}{2} = \frac{144}{9} \text{ gives}\right) \lambda = 32.0 \text{ mm} \checkmark$
- (b)(ii) $c = f\lambda \text{ and } c = 3 \times 10^8 \text{ (m s}^{-1}) \checkmark$ $f = \frac{3 \times 10^8}{32 \times 10^{-3}} = 9.38 \times 10^9 \text{ Hz } \checkmark$ (allow C.E. for value of λ from (i))

(a) two waves that overlap/meet/superpose ✓ same wavelength or frequency ✓ equal and opposite velocities ✓ same or similar amplitudes ✓

Q1 Jan 2004

 $\max(2)$

(b)(i) $0.8(0) \,\mathrm{m} \,\checkmark$

(ii) (use of
$$f = \frac{c}{\lambda}$$
 gives) $f\left(=\frac{200}{0.8}\right) = 250 \,\text{Hz}$

(allow C.E. for value of λ from (i))

(iii) (use of
$$T = \frac{1}{f}$$
 gives) $T \left(= \frac{1}{250} \right) = 4.0 \text{ ms}$
 $3.0 \text{ ms} = \frac{3T}{4}$ [or $\frac{3}{4}$ of one cycle or vibration \checkmark

(to be drawn on the diagram)

(allow C.E. for value of *T* from (ii) if diagram still shows

a stationary wave)

<u>(5)</u>

Question 1		Q1 Jun 2005					
(a)	reference to resonance \(\square \) air set into vibration at frequency of loudspeaker \(\square \) resonance when driving frequency = natural frequency \(\text{more than one mode of vibration } \(\square \) stationary wave (in air column) \(\square \) (or reference to nodes maximum amplitude vibration (or max energy transfer)	of air column ✓ s and antinodes)	Max 4				
	[alternative answer to (a): first two marks as above, remaining four marks for wave reflected from surface (of water) \checkmark interference/superposition (between transmitted and reflected waves) \checkmark maximum intensity when path difference is $n\lambda \checkmark$ maxima (or minima) observed when l changes by $\lambda/2 \checkmark$]						
(b) (i)	$\frac{\lambda}{2} = 523 - 168 \checkmark (= 355 \text{ mm})$ $\lambda = 710 \text{ mm} \checkmark$ [if $\frac{\lambda}{4} = 168$, giving $\lambda = 670 \text{ mm}$, $\checkmark (1 \text{ max}) (672 \text{ mm})$]	Much of this question is beyo year 12 work and relies on Y13 wo some bits are no even covered in	l rk				
(ii)	$c(=f\lambda) = 480 \times 0.71 \checkmark$ = 341 m s ⁻¹ \(\square \) (allow C.E. for incorrect \(\lambda \) from (i)) [allow 480 \(\times 0.67 = 320 \text{ m s}^{-1} \) \((1\text{max}) (322 \text{ m s}^{-1}) \)	Y13					

Unit 4: PA04 Section A Waves, Fields and Nuclear Energy

Q3 Jun 2004

Key to Objective Test Questions

1-C; 2-D; 3-A; 4-D; 5-D; 6-B; 7-A; 8-B; 9-B; 10-A; 11-B; 12-C; 13-D; 14-D; 15-B.

Unit 4: PA04 Section A

Waves, Fields and Nuclear Energy

Q4 Jan 2005

Key to Objective Test Questions

1-B; 2-A; 3-D; 4-A; 5-C; 6-C; 7-D; 8-D; 9-C; 10-D; 11-C; 12-B; 13-B; 14-A; 15-C.

Section A Q4 Jan 2006

This component is an objective test for which the following list indicates the correct answers used in marking the candidates' responses.

Key	Keys to Objective Test Questions														
1	2	3	4	5	6	7	8	9	10 D	11	12	13	14	15	
C	C	В	C	A	D	В	В	A	D	C	A	D	В	D	

PA04 Section A: Waves, Fields and Nuclear Energy Q4 Jun 2006

Keys to Objective Test Questions															
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
В	C	A	C	A	D	В	\mathbf{C}	D	D	В	\mathbf{C}	D	14 B	В	

Section A Q5 Jan 2007

This component is an objective test for which the following list indicates the correct answers used in marking the candidates' responses.

Keys to Objective Test Questions															
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
Α	В	D	Α	С	В	С	D	Α	10 B	D	В	D	С	Α	

Ques	stion 1		
(a)	(i)	$\lambda = \left(\frac{ws}{D}\right) = \frac{2.0 \times 3.2}{16} = 0.40 \text{m}$ Q1 Jan 2007	2
	(ii)	$c (= f \lambda) = 850 \times 0.40 = 340 \mathrm{ms}^{-1} \checkmark$	
(b)	(i)	speakers act as coherent sources or have constant phase relation ✓ light is emitted from sources in (incoherent) bursts ✓ light sources are not coherent or phase relation not constant ✓	
	(ii)	use of double slit ✓ wavefronts are divided at slits ✓ slits act as coherent sources ✓ slit sources have the same frequency ✓ slit sources have a constant phase relation ✓	max 5
		Total	7

Question 3						
(a)	at nodes displacement is always zero or a minimum ✓ at antinodes the displacements have maximum amplitude ✓ (not displacement is a maximum)					
(b)		Q3 Jun 2	2007			
	(or dippers D and E vibrate at the same frequency) ✓					
	waves travelling in opposite directions ✓ waves travel at same speed ✓					
	[or waves have equal and opposite velocities ✓✓]		max 4			
	waves meet or overlap or superpose or interfere ✓					
	constructive or destructive superposition explained ✓ (e.g. by reference to phase or antiphase of waves)					
(c) (i)	λ_1 (= 2 × 12) = 24 mm \checkmark $c = 24 \times 10^{-3} f$ and $c = 20 \times 10^{-3} (f + 2) \checkmark gives f = 10 \text{ Hz} \checkmark$		4			
(ii)	$c = 24 \times 10^{-3} \times 10$) = 0.24 m s ⁻¹ \checkmark (allow CE from (c) (i))					
		Total	10			

Que	stion 1			
(a)	(i)	two progressive waves travelling in opposite dire	ections ✓	
		e.g. forward wave and its reflection	Q1 Jan 2008	
		waves have same frequency or wavelength ✓		2
		and same or similar amplitudes ✓		3
			max 2	
	(ii)	length of string = $n \times (\lambda/2)$ \checkmark		
(b)	(i)	$\lambda \left(= \frac{c}{f} \right) = \frac{72}{30} = 2.4 \mathrm{m} \checkmark$		
	(ii)	P Q /		4
		[or accept top or bottom half of this sketch]		
	(iii)	same amplitude and frequency ✓ phase difference of 180° or π rad ✓		
			Total	7

Question 5					
(a)	(progressive waves travel from centre) to ends and reflect ✓				
	two (progressive) waves travel in opposite directions along the string ✓				
	waves have the same frequency (or wavelength) ✓				
	waves have the same (or similar) amplitude ✓ Q5 Jan 2009				
	superposition (accept 'interference') ✓				
(b) (i)	wavelength (= 2 × PQ = 2 × 1.20 m) = 2.4 m ✓				
	speed (= wavelength × frequency = 2.4 × 150) = 360 m s ⁻¹ ✓				
	(answer only gets both marks)				
(ii)	diagram to show three 'loops' ✓ and of equal length and good shape ✓ (or loop of one third length ✓)	4			
	Total	7			