

8259 PROGRAMMABLE INTERRUPT CONTROLLER

SALIENT FEATURES

- 8259 is a **Programmable Interrupt Controller** (PIC) designed to work with various microprocessors such as **8085**, **8086** etc.
- 8259 is basically used to increase the number of interrupts.
- A single 8259 can handle 8 interrupts
- A cascaded configuration of 8 slave 8259's and 1 master 8259 can handle 64 interrupts.
- 8259 has a **flexible priority** structure.
- 8259 can handle edge as well as level triggered interrupts.
- In 8259 interrupts can be **masked** individually.
- The **Vector address** of the interrupts is **programmable**.
- Status of interrupts (pending, In-service, masked) can be easily read by the μP.

Note: Initialization of 8259

- 8259 must be compulsorily initialized.
- During Initialization we give commands to 8259 by which we decide priority, trigger, masking etc.
- The MOST important thing we give are vector addresses for the interrupts.
- In a cascaded configuration every 8259 must be individually initialized.

Special Note:

If you are learning this by piracy, then you are not my student. You are simply a thief! #PoorUpbringing

ARCHITECTURE OF 8259

1) Interrupt Request Register (IRR)

- 8259 has 8 interrupt input lines IR₇ ... IR₀.
- The IRR is an 8-bit register having one bit for each of the interrupt lines.
- When an **interrupt request** occurs on any of these lines, the **corresponding bit** is **set** in the Interrupt Request Register (IRR).

2) In-Service Register (InSR)

• It is an **8-bit** register, which **stores** the **level** of the Interrupt Request, which is **currently** being **serviced**.

3) Interrupt Mask Register (IMR)

- It is an 8-bit register, which stores the masking pattern for the interrupts of 8259.
- It stores one bit per interrupt level.

4) Priority Resolver

• It examines the IRR, InSR, and IMR and determines which interrupt is of highest priority and should be sent to the μP.

5) Control Logic

- It has INT output signal connected to the INTR of the μP, to send the Interrupt to the μP.
- It also has the INTA input signal connected to the INTA of the μP, to receive the interrupt acknowledge.
- It is also used to control the remaining blocks.

6) Data Bus Buffer

• It is a bi-directional buffer used to **interface** the internal **data bus** of 8259 with the external (system) data bus.

7) Read/Write Logic

- It is used to accept the RD, WR, A₀ and CS signal.
- It also holds the Initialization Command Words (ICW's) and the Operational Command Words (OCW's).

8) Cascade Buffer / Comparator

- It is used in cascaded mode of operation.
- It has two components:

i. CAS₂, CAS₁, CAS₀ lines:

- These lines are output for the master, input for the slave.
- The Master sends the address of the slave on these lines (hence output).
- The **Salves read** the **address** on these lines (hence input).
- As there are 8 interrupt levels for the Master, there are 3 CAS lines (: $2^3 = 8$).

ii. SP/EN (Slave Program/Master Enable):

- In Buffered Mode, it functions as the EN line and is used to enable the buffer.
- In Non buffered mode, it functions as the SP output line.
- For Master 8259 SP should be high, and for the Slave SP should be low.

Mumbai: 2021

INTERFACING AND WORKING OF A SINGLE 8259

The working of a single 8259 with 8085, 8259 is explained below.

- 1. First of all, interrupt INTR of 8085 must be enabled by the El instruction.
- 2. **8259** is **initialized** by giving the necessary commands. (**ICWs**)
- 3. **Once** 8259 is **initialized**, the **following sequence** of events takes place when one or more **interrupts occur** on the IR lines of the 8259.
- 4. The corresponding bit for an interrupt is set in IRR.
- 5. The **Priority Resolver checks** the 3 registers:

IRR (for highest interrupt request)

IMR (for the masking Status)

InSR (for the current level serviced)

and **determines** the **highest priority** interrupt.

It **sends** the **INT** signal **to** the μ **P**.

- 6. The μP finishes the current instruction and acknowledges the interrupt by sending the first INTA pulse.
- 7. On receiving the INTA signal, the **corresponding bit** in the **InSR** is **set** (indicating that the service of this interrupt is started) and the **bit** in the **IRR** is **reset** (to indicate that the request is accepted).
 - **8259** now sends the Opcode of CALL instruction to the μ P on the data bus.
- 8. The μP decodes the CALL instruction and sends 2 more INTA pulses to the 8259.
- 9. In response to the two INTA pulses, the 8259 sends the address of the ISR to the μ P. First the lower byte and then the higher byte.
- 10. Thus, the complete 3-byte CALL Instruction code is released by the 8259.
- 11. The μP pushes the contents of PC onto the Stack and transfers program to the address of the ISR sent by the 8259. The ISR thus begins.
- 12. At the end of the ISR, 8085 will give an **EOI command t**o make the corresponding bit 0 in In Service Register. *In case of doubts WhatsApp:* +919136428051 ()Only for regsitered students!)

Special Note:

You will learn the interfacing diagram in the next page in later lectures. But the explanation of the interface is already covered as you learn the architecture.

Bharat Acharya Education

Learn...

8085 | 8086 | 80386 | Pentium | 8051 | ARM7 | COA

Fees: 1199/- | Duration: 6 months | Activation: Immediate | Certification: Yes

Free: PDFs of Theory explanation, VIVA questions and answers, Multiple-Choice Questions

Start Learning... NOW!

www.BharatAcharyaEducation.com

Order our Books here...

8086 Microprocessor

Link: https://amzn.to/3qHDpJH

8051 Microcontroller

Link: https://amzn.to/3aFQkXc

Official WhatsApp number:

+91 9136428051