

N-channel 600 V, 45 m Ω typ., 52 A MDmesh M2 Power MOSFET in a TO-247 package

TO-247

Features

Order code	V _{DS} at T _J max.	R _{DS(on)} max.	I _D
STW56N60M2	650 V	55 mΩ	52 A

- Extremely low gate charge
- Excellent output capacitance (Coss) profile
- 100% avalanche tested
- · Zener-protected

Applications

· Switching applications

Description

This device is an N-channel Power MOSFET developed using MDmesh M2 technology. Thanks to its strip layout and an improved vertical structure, the device exhibits low on-resistance and optimized switching characteristics, rendering it suitable for the most demanding high efficiency converters.

Product status link STW56N60M2

Product summary			
Order code STW56N60M2			
Marking	56N60M2		
Package	TO-247		
Packing	Tube		

1 Electrical ratings

Table 1. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{GS}	Gate-source voltage	±25	V
I-	Drain current (continuous) at T _C = 25 °C	52	
I _D	Drain current (continuous) at T _C = 100 °C	33	_ A
I _{DM} ⁽¹⁾	Drain current (pulsed)	208	А
P _{TOT}	Total power dissipation at T _C = 25 °C	350	W
dv/dt ⁽²⁾	Peak diode recovery voltage slope	15	V/ns
dv/dt ⁽³⁾	MOSFET dv/dt ruggedness	50	V/ns
T _{stg}	Storage temperature range	-55 to 150	°C
T _J	Operating junction temperature	150	°C

- 1. Pulse width limited by safe operating area.
- 2. $I_{SD} \le 52~A,~di/dt = 400~A/\mu s,~V_{DS}~(peak) < V_{(BR)DSS},~V_{DD} = 400~V.$
- 3. $V_{DS} \le 480 \text{ V}$.

Table 2. Thermal data

Symbol	Parameter	Value	Unit
R _{thJC}	Thermal resistance, junction-to-case	0.36	°C/W
R _{thJA}	Thermal resistance, junction-to-ambient	50	°C/W

Table 3. Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR}	Avalanche current, repetitive or non-repetitive (pulse width limited by T _J max.)	7.5	Α
E _{AS}	Single pulse avalanche energy (starting $T_J = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V)	1100	mJ

DS10753 - Rev 3 page 2/12

2 Electrical characteristics

 T_C = 25 °C unless otherwise specified.

Table 4. On/off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$	600			V
lass	Zoro goto voltago drain ourrent	V _{GS} = 0 V, V _{DS} = 600 V			1	
I _{DSS}	Zero gate voltage drain current	V _{GS} = 0 V, V _{DS} = 600 V, T _C = 125 °C ⁽¹⁾			100	μA
I _{GSS}	Gate-body leakage current	V _{DS} = 0 V, V _{GS} = ± 25 V			±10	μA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_{D} = 250 \mu A$	2	3	4	V
R _{DS(on)}	Static drain-source on-resistance	V _{GS} = 10 V, I _D = 26 A		45	55	mΩ

^{1.} Specified by design, not tested in production.

Table 5. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance	V _{DS} = 100 V, f = 1 MHz, V _{GS} = 0 V		3750	-	pF
C _{oss}	Output capacitance			175	-	pF
C _{rss}	Reverse transfer capacitance		-	6.6	-	pF
C _{o(er)} (1)	Equivalent output capacitance	V _{GS} = 0 V, V _{DS} = 0 to 480 V	-	740	-	pF
R _G	Intrinsic gate resistance	f = 1 MHz, open drain		4.7	-	Ω
Qg	Total gate charge	V _{DD} = 480 V, I _D = 52 A, V _{GS} = 0 to 10 V (see Figure 14. Test circuit for gate charge behavior)	-	91	-	nC
Q _{gs}	Gate-source charge		-	13.5	-	nC
Q _{gd}	Gate-drain charge		-	41	-	nC

^{1.} Coss eq. is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS} .

Table 6. Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	V _{DD} = 300 V, I _D = 26 A,	-	18	-	ns
t _r	Rise time	$R_G = 4.7 \Omega$, $V_{GS} = 10 V$	-	26.5	-	ns
t _{d(off)}	Turn-off delay time	(see Figure 13. Test circuit for resistive load switching times and	-	119	-	ns
t _f	Fall time	Figure 18. Switching time waveform)	-	14	-	ns

DS10753 - Rev 3 page 3/12

Table 7. Source drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		52	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		208	Α
V _{SD} ⁽²⁾	Forward on voltage	I _{SD} = 52 A, V _{GS} = 0	-		1.6	V
t _{rr}	Reverse recovery time	I _{SD} = 52 A, di/dt = 100 A/μs	-	496		ns
Q _{rr}	Reverse recovery charge	V _{DD} = 60 V	-	10		μC
I _{RRM}	Reverse recovery current	(see Figure 15. Test circuit for inductive load switching and diode recovery times)	-	41		Α
t _{rr}	Reverse recovery time	I _{SD} = 52 A, di/dt = 100 A/μs	-	632		ns
Q _{rr}	Reverse recovery charge	V _{DD} = 60 V, T _J = 150 °C	-	14		μC
I _{RRM}	Reverse recovery current	(see Figure 15. Test circuit for inductive load switching and diode recovery times)	-	45		Α

^{1.} Pulse width limited by safe operating area.

DS10753 - Rev 3 page 4/12

^{2.} Pulsed: pulse duration = $300 \mu s$, duty cycle 1.5%.

2.1 Electrical characteristics (curves)

DS10753 - Rev 3 page 5/12

Figure 8. Normalized gate threshold voltage vs temperature VGS(th) GIPD180920141442FSR (norm) $I_D = 250 \, \mu A$ 1.1 1.0 0.9 8.0 0.7 0.6 -75 -25 25 75 125 Tj(°C)

DS10753 - Rev 3 page 6/12

3 Test circuits

Figure 13. Test circuit for resistive load switching times

Vos pulse width D.U.T.

AM01468v1

DS10753 - Rev 3 page 7/12

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

4.1 TO-247 package information

Figure 19. TO-247 package outline

0075325_10

DS10753 - Rev 3 page 8/12

Table 8. TO-247 package mechanical data

Dim.	mm				
Dilli.	Min.	Тур.	Max.		
Α	4.85		5.15		
A1	2.20		2.60		
b	1.0		1.40		
b1	2.0		2.40		
b2	3.0		3.40		
С	0.40		0.80		
D	19.85		20.15		
Е	15.45		15.75		
е	5.30	5.45	5.60		
L	14.20		14.80		
L1	3.70		4.30		
L2		18.50			
ØP	3.55		3.65		
ØR	4.50		5.50		
S	5.30	5.50	5.70		
aaa		0.04	0.10		

DS10753 - Rev 3 page 9/12

Revision history

Table 9. Document revision history

Date	Revision	Changes
01-Dec-2014	1	Initial release.
10-Dec-2014	2	Updated Section 3: Test circuits.
		Updated Internal schematic diagram on cover page.
25-Aug-2022	3	Updated Section 4 Package information.
		Minor text changes.

DS10753 - Rev 3 page 10/12

Contents

1	Electrical ratings					
	Electrical characteristics					
		Electrical characteristics (curves)				
3	Test	circuits	7			
4	Pac	kage information	8			
	4.1	TO-247 package information	8			
Rev	vision	history	.10			

IMPORTANT NOTICE - READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2022 STMicroelectronics – All rights reserved

DS10753 - Rev 3 page 12/12