Principles of Cyber-Physical Systems

Chapter 8-3: Timed Model

Instructor: Lanshun Nie

Models of Reactive Computation

- Synchronous model
 - Components execute in a sequence of discrete rounds in lock-step
 - Computation within a round: Execute all tasks in an order consistent with precedence constraints
- Asynchronous model
 - Speeds at which different components execute are independent
 - Computation within a step: Execute a single task that is enabled
- ☐ Continuous-time model for dynamical system
 - Synchronous, but now time evolves continuously
 - Execution of system: Solution to differential equations
- ☐ Timed model
 - Like asynchronous for communication of information
 - Can rely on global time for coordination

Example Timed Model

Initial state = (mode = off, x = 0)

Timed transition: (off, 0) – 0.5 \rightarrow (off, 0.5)

Input transition: (off, 0.5) – press? \rightarrow (dim, 0)

Timed transition: $(\dim, 0) - 0.8 \rightarrow (\dim, 0.8)$

Input transition: (dim, 0.8) – press? \rightarrow (bright, 0.8)

Timed transition: $(\dim, 0.8) - 1 \rightarrow (\dim, 1.8)$

Input transition: (dim, 1.8) – press? \rightarrow (off, 1.8)

Example Timed Model

- Clock variables
 - Tests and updates in mode-switches like other variables
 - New feature: During a timed transition of duration δ , the value of a clock variable increases by an amount equal to δ
- □ Timing constraint: Setting x to 0 for "off → dim" and guard x<=1 for "dim → bright" specifies that timing of these two transitions is <= 1 apart</p>

Example: Timed Buffer

- Buffer with a bounded delay
- Behavior to be modeled: Input received on the channel in is transmitted on the output channel after a delay of δ such that LB <= δ <= UB (i.e. we know lower/upper bounds on this delay)

Modeling Timed Buffer

- ☐ Mode says whether the buffer is full or not
- $oldsymbol{\square}$ State variable $oldsymbol{x}$ remembers the last input value when buffer is full
- Clock variable y tracks the time elapsed since buffer got full
- When full, input events are ignored
- \Box Guard y >= 1 ensures that at least 1 time unit elapses in mode Full
- How to ensure that mode-switch from Full to Empty is executed before the clock x exceeds the upper bound 2?

Clock Invariants

- □ The constraint "y <= 2" associated with the mode Full is called "clock invariant"</p>
- $lue{}$ A timed transition of duration δ is allowed only when the clock invariant remains true during the entire duration
 - Timed transition (Full, x, y=0.8) 0.7 \rightarrow (Full, x, y=1.5) allowed
 - Timed transition (Full, x, y=0.8) 1.4 \rightarrow (Full, x, y=2.2) disallowed
- Clock invariants useful to limit how long a process stays in a mode

Example with Two Clocks

- ☐ Input event: in; Output events out1, out2
- Two clock variables x and y
- \square In mode Wait2, as time elapses both clocks increase (at same rate)
- □ Sample timed transitions: (Wait2, x=0.8, y=0) -0.3 \rightarrow (Wait2, 1.1, 0.3) -0.72 \rightarrow (Wait2, 1.82, 1.02)

Two Clock Example

- □ Clock x tracks time elapsed since the occurrence of input event
- lacksquare Clock y tracks time elapsed since the occurrence of output event out1
- What is the behavior of this model?
- ☐ If input event occurs at time t, the process issues an output on channel out1 at time t' within the interval [t, t+1], and then produces output on channel out2 at time t" within the interval [t'+1, t+2]

Example Specification

Consider a timed process with

Input event x, Output events y and z

Desired behavior

Whenever it receives input, it produces both its output events

Time delay between x? and y! is in the interval [2, 4]

Time delay between x? and z! is in the interval [3,5]

Input events received during this are ignored

Draw a timed state machine that captures this behavior

Definition of Timed Process

- ☐ A timed process TP consists of
 - 1. An asynchronous process P, where some of the state variables can be of type clock (ranging over non-negative real numbers)
 - 2. A clock invariant CI which is a Boolean expression over the state variables of P
- Define inputs, outputs, states, initial states, internal actions, input actions, output actions exactly the same as the asynchronous model
- Timed actions: Given a state s and real-valued time $\delta > 0$, s— $\delta \rightarrow s+\delta$ is a transition of duration δ if the state s+t satisfies the expression CI for all values of t in the interval $[0, \delta]$
 - For a state s and time t, s+t is another state which assigns the value s(x)+t to every clock variable x, and s(y) to every variable y of a type other than clock
 - If clock-invariant is a convex constraint then it is sufficient to check that the end-states s and s+ δ satisfy CI

Composition of Processes

- ☐ How to construct timed process corresponding to the composition of the two processes?
- What are the possible behaviors of the composite process?

Composition of Timed Processes

Construct the composite process with four modes

Definition of Parallel Composition

- \Box Consider timed processes TP1 = (P1, CI1) and TP2 = (P2, CI2)
- ☐ When is the parallel composition TP1 | TP2 defined?
 - Exactly when the asynchronous parallel composition P1 | P2 is defined (that is, when the outputs of the two are disjoint)
- ☐ TP1 | TP2 = (P1 | P2, CI1 & CI2)
 - Asynchronous composition of P1 and P2 defines the internal, input and output actions of the composite
 - Conjunction of the clock-invariants defines the clock-invariant of the composite
- \blacksquare Consequence: The composite process can allow a timed action of duration δ exactly when both TP1 and TP2 are willing to wait for time δ
- ☐ Timed model is sometimes called the "semi-synchronous" model (mix of asynchronous and synchronous)

Block Diagrams

- ☐ Components can be timed processes now
 - Operations of Instantiation (input/output variable renaming), parallel composition, and Hiding
- ☐ A step of the system is either
 - 1. An internal step of one of components
 - A communication (input/output) step involving relevant sender and receivers
 - 3. A timed step involving all the components

Timed Model

- Timed model is sometimes called the "semisynchronous" model (mix of asynchronous and synchronous)
- Definitions/concepts below carry over in a natural way
 - Executions of a timed process
 - Transition system associated with a timed process
 - Safety/liveness requirements
- Distributed coordination problems: how can we exploit the knowledge of timing delays to design protocols?

Recap: Shared Memory Asynchronous Processes

- ☐ Processes P1 and P2 communicate by reading/writing shared variables
- □ Each shared variable can be modeled as an asynchronous process
 - State of each such process is the value of corresponding variable
 - In implementation, shared memory can be a separate subsystem
- ☐ Read and write channel between each process and each shared variable
 - To write x, P1 synchronizes with x on "P1 writes x" channel
 - To read y, P2 synchronizes with y on "P2 reads y" channel

Shared Memory Programs with Atomic Registers

Declaration of shared variables

+ Code for each process

Key restriction: Each statement of a process either

changes local variables, reads a single shared var, or writes a single shared var

Execution model: execute one step of one of the processes

What if we knew lower and upper bounds on how long a read or a write takes? Can we solve coordination problems better?

Mutual Exclusion Problem

- ☐ Safety Requirement: Both processes should not be in critical section simultaneously (can be formalized using invariants)
- ☐ Absence of deadlocks: If a process is trying to enter, then some process should be able to enter

Mutual Exclusion: Attempted Solution

AtomicReg $\{0, 1, 2\}$ Turn := 0

Process P1

Turn := 0

Timing-based Mutual Exclusion

- 1. When a process wants to enter critical section, it reads the shared variable Turn
- 2. If Turn != 0 then try again (goto step 1)
- 3. If Turn = 0 then set Turn to your ID
- 4. Proceeding directly to critical section is a problem (since the other process may also have concurrently read Turn to be 0, and updating Turn to its own ID)
- 5. Solution: Delay and wait till you are sure that concurrent writes are finished
- 6. Read Turn again: if Turn equals your own ID then proceed to critical section, if not goto step 1 and try again
- 7. When done with critical section, set Turn back to 0

Fisher's Protocol for Mutual Exclusion

AtomicReg Turn := 0

Why does it work?

Properties of Fisher's Protocol

- \square Assuming $\Delta_2 > \Delta_1$, the algorithm satisfies:
 - Mutual exclusion: Two processes cannot be in critical section simultaneously
 - Deadlock freedom: If a process wants to enter critical section then some process will enter critical section
- □ Protocol works for arbitrarily many processes (not just 2)
 - Note: In the asynchronous model, mutual exclusion protocol for N processes is lot more complex than Peterson's algorithm
- Does the protocol satisfy the stronger property of starvation freedom: If a process P_i wants to enter critical section then it eventually will?
- □ If $\Delta_2 \leftarrow \Delta_1$ then does mutual exclusion hold? Does deadlock freedom hold?

Implantable Pacemaker Modeling

Timing Analysis

- How to adapt algorithms for searching through the state-space of a model in presence of clock variables and timing constraints?
- Application: Formal analysis of timing-based coordination and communication protocols
- Must handle the space of clock valuations symbolically!
- Popular model checker: Uppaal

Timed Automata

- Motivation: When is exact analysis of timing constraints possible?
- \Box A timed process TP is a timed automaton if for every clock variable x
 - Assignments to x in the description of TP are of the form x:=0
 - An atomic expression involving x in the description of TP (in clock-invariants or in guards) must of the form " $x \sim k$ ", where k is a constant and \sim is a comparison operation (=, <=, >, <, >=)
- ☐ In such a model, one can express constant lower and upper bounds on timing delays
 - Closed under parallel composition: If TP1 and TP2 are timed automata then TP1 | TP2 is also a timed automaton
- ☐ Finite-state timed automaton: A timed automaton where all variables other than clock variables have finite types (e.g. Boolean, enumerated)
 - State-space is still infinite due to clock variables, but verification is solvable exactly

Requires propagation of the reachable combinations of x and y symbolically

Clock-zone R₀

$$0 \le x_1 \le 0$$

$$0 \le x_2 \le 0$$

$$0 \le x_1 - x_2 \le 0$$

Initial set of clock-valuations: $x_1 = 0 \& x_2 = 0$

Clock-zone: Uniform representation of constraints that arise during analysis

Constraints of two types:

- 1. Lower/upper bound on value of a clock variable
- 2. Lower/upper bound on difference of two clock variables

Clock-zone
$$R_0$$
 Clock-zone R'_0
 $0 \le x_1 \le 0$ $0 \le x_1 \le 1$ Infty
 $0 \le x_2 \le 0$ $0 \le x_2 \le 1$ Infty
 $0 \le x_1 - x_2 \le 0$ $0 \le x_1 - x_2 \le 0$

Starting from a state in R₀, as time elapses, which clock-valuations are reachable?

During a timed transition, values of all clocks increase.

How are the constraints impacted? What's the effect of clock-invariant?

Step 1: Compute effect of timed transitions ignoring clock-invariants

Constraints on individual clocks: Change upper bound to Infty

Constraints on differences between clock values: unchanged (why?)

Clock-zone R' ₀	Clock-zone R" ₀	Clock-zone R ₁
$0 \le x_1 \le Infty$	0 <= x ₁ <= 5	$0 \le x_1 \le 5$
$0 <= x_2 <= Infty$	$0 \le x_2 \le Infty$	$0 \le x_2 \le 5$
$0 \le x_1 - x_2 \le 0$	$0 \le x_1 - x_2 \le 0$	$0 \le x_1 - x_2 \le 0$

Desired clock-zone R_1 : Set of clock-valuations reachable while in mode A Intersection of constraints in R'_0 and the clock-invariant

Canonicalization: Tighten all bounds to reflect implied constraints

Each lower bound should be as high as possible

Each upper bound should be as low as possible

Clock-zone
$$R_1$$

 $0 \le x_1 \le 5$
 $0 \le x_2 \le 5$
 $0 \le x_2 \le 5$
 $0 \le x_1 = 5$
 $0 \le x_2 \le 5$
 $0 \le x_1 = 5$
 $0 \le x_2 \le 5$
 $0 \le x_2 \le 5$
 $0 \le x_1 = 5$
 $0 \le x_2 \le 5$
 $0 \le x_2 \le 5$
 $0 \le x_1 = 5$
 $0 \le x_2 \le 5$
 $0 \le x_2 \le 5$
 $0 \le x_1 = 5$
 $0 \le x_2 \le 5$
 $0 \le x_2 \le 5$
 $0 \le x_2 \le 5$
 $0 \le x_1 = 5$

Desired clock-zone R₂: What are set of clock-valuations upon entry to B?

- Step 1: Intersect guard 3 \leq x₁ with the clock-zone R₁
- Step 2: Canonicalize by tightening constraints
- Step 3: Capture the effect of assignment $x_2 := 0$ Bounds on x_2 change, and so do bounds on x_1 - x_2

Step 4: Canonicalize. In this case, constraints are already as tight as possible

Clock-zone
$$R_2$$

 $3 <= x_1 <= 5$
 $0 <= x_2 <= 0$
 $3 <= x_1 <= 1$ fifty $3 <= x_1 <= 7$
 $0 <= x_2 <= 1$ fifty $3 <= x_1 <= 7$
 $0 <= x_2 <= 1$ fifty $0 <= x_2 <= 1$ fifty $0 <= x_2 <= 4$
 $3 <= x_1 - x_2 <= 5$
 $3 <= x_1 - x_2 <= 5$
 $3 <= x_1 - x_2 <= 5$

Starting from a state in R_0 , as time elapses, which clock-valuations are reachable?

Step 1: Set upper bounds on individual clock values to Infty

Step 2: Intersect with the clock-invariant $x_1 \le 7$

Step 3: Canonicalize by tightening all the bounds

What is a good data structure to represent clock-zones?

What are algorithms for operations such as intersection, canonicalization?

Difference Bounds Matrix

- □ Data structure for representing constraints, where each constraint expresses a bound on difference of values of two variables
- \square Suppose clocks are named $x_1, x_2, ... x_m$
- Let us introduce a dummy clock x_0 that is always 0. Then instead of the constraint L <= x_i <= U, we have L <= x_i x_0 <= U
- Lower bound constraint $L \le x_i x_j$ can be rewritten as upper bound constraint $x_i x_i \le -L$
- DBM R is $(m+1) \times (m+1)$ matrix representing for $0 \le i \le m$, for $0 \le j \le m$, $x_i - x_j \le R[i,j]$
- \Box Diagonal entries should be 0: $x_i x_j \leftarrow 0$
- There is a one-to-one correspondence between DBMs and clock-zones
- ☐ Entries of DBM: Integers plus a special symbol Infty (to represent absence of a bound)

DBM Representation of Constraints

$$3 \le x_1 \le 7$$

 $0 \le x_2 \le 1$ Infty

$$3 \le x_1 - x_2 \le 5$$

$$3 \le x_1 - x_0 \le 7$$

$$0 \le x_2 - x_0 \le Infty$$

$$3 \le x_1 - x_2 \le 5$$

$$x_1 - x_0 <= 7$$

$$x_0 - x_1 <= -3$$

$$x_2 - x_0 \le Infty$$

$$x_0 - x_2 <= 0$$

$$x_1 - x_2 \le 5$$

$$x_2 - x_1 <= -3$$

	X0	X1	X2
X0	0	-3	0
X1	7	0	5
X2	Infty	-3	0

DBM Canonicalization

	X0	X1	X2
X0	0	-3	0
X1	7	0	5
X2	Infty	-3	0

	XO	X1	X2
X0	0	-3	0
X1	7	0	5
X2	4	-3	0

Clock-zone
$$R_3$$

 $3 \le x_1 \le 7$
 $0 \le x_2 \le 4$
 $3 \le x_1 - x_2 \le 5$

We know: $x_2 - x_1 \le -3$ and $x_1 - x_0 \le 7$, so we can conclude $x_2 - x_0 \le 4$

But current R[2,0] entry is Infty, to reflect tighter implied constraint, change it to 4 General canonicalization step:

If R[i,k] > R[i,j] + R[j,k] then R[i,k] = R[i,j] + R[j,k]

Canonicalization: repeatedly apply above rule.

A matrix is called canonical if all i, j, k, R[i,k] <= R[i,j] + R[j,k]

Canonical DBMs

- Every canonicalization step does not change the set of clock-valuations that the DBM represents
 - Canonical DBM represents the "tightest" possible constraints
- If R is canonical, for every i and j, R[i,j] is the least upper bound on the difference x_i x_j for clock-valuations satisfying constraints in R
- → Alternative interpretation
 - Consider a graph with m+1 vertices corresponding to $x_0, x_1, ... x_m$
 - Entry R[i,j] = Cost labeling the edge from vertex x_i to x_j
 - Canonicalization: Compute costs of shortest paths in this graph
 - R is canonical if R[i,j] is the cost of shortest path from x_i to x_j
- What if constraints are unsatisfiable?

Checking Satisfiability/Non-emptiness

	XO	X1	X2
X0	0	0	0
X1	5	0	10
X2	Infty	-6	0

	X0	X1	X2
X0	0	-6	0
X1	5	0	10
X2	Infty	-6	0

	XO	X1	X2
X0	0	-6	0
X1	5	-1	10
X2	Infty	-6	0

Suppose we know: $0 \le x_1 \le 5$; $0 \le x_2 \le 10$

Canonicalization step 1: Compare R[0,1] to R[0,2] + R[2,1], and change to -6

Canonicalization step 2: Compare R[1,1] to R[1,0] + R[0,1], and change to -1

R[1,1] entry says $x_1 - x_1 \le -1$, not possible! Means original constraints unsatisfiable!

Graph-based representation

Given: $1 \le x_1 \le 3$; $x_2 \ge 0$; $0 \le x_3 \le 3$; $x_2 - x_3 = 1$; $x_2 - x_1 \ge 2$

	XO	X1	X2	Х3
X0	0	-1	0	0
X1	3	0	-2	infty
X2	infty	infty	0	1
Х3	3	Infty	-1	0

	XO	X1	X2	Х3
X0	0	-1	-3	-2
X1	2	0	-2	-1
X2	4	3	0	1
Х3	3	2	-1	0

Canonicalization Algorithm

- Problem same as computing shortest paths among all pairs of vertices in a directed graph
- Need to account for detection of negative cycles (that is, unsatisfiable constraints)
- Classical algorithm with time complexity cubic in the number of vertices/clocks

Canonicalization Algorithm

```
Input: (m+1) \times (m+1) DBM R
Output: Check if constraints represented by R are satisfiable, and if so,
return "canonical" version of R
for I = 0 to m {
/* R[i,j] reflects shortest path going through vertices < I */
        for i = 0 to m {
            for j = 0 to m \{ /*Check if visiting vertex | improves <math>i \rightarrow j path */
                 R[i, j] = min(R[i,j], R[i,l] + R[l,j])
            };
             if R[i, i] < 0 then return "Unsatisfiable";
return R
```

	XO	X1	X2
X0	0	-3	0
X1	7	0	5
X2	4	-3	0

	XO	X1	X2
X0	0	0	-2
X1	Infty	0	Infty
X2	Infty	Infty	0

	XO	X1	X2
X0	0	-3	-2
X1	7	0	5
X2	4	-3	0

	X0	X1	X2	
XO	0	-5	-2	
X1	7	0	5	
X2	4	-3	0	

Goal: Compute set of clock-valuations upon entry to C

Step 1: Represent guard condition $x_2 \ge 2$ as a canonical DBM

Step 2: Intersect the two DBMs

[i,j] entry of the result = Minimum of [i,j] entries of the given DBMs

Step 3: Canonicalize.

	XO	X1	X2
X0	0	-5	-2
X1	7	0	5
X2	4	-3	0

	XO	X1	X2
X0	0	-5	-2
X1	Infty	0	5
X2	Infty	-3	0

	X0	X1	X2	
X0	0	-5	-2	
X1	8	0	5	
X2	Infty	-3	0	

	XO	X1	X2
X0	0	-5	-2
X1	8	0	5
X2	5	-3	0

Goal: Compute set of clock-valuations reachable due to timed transitions in mode C

Step 1: Set upper bounds on all clocks, that is, first column, other than XO, to Infty

Step 2: Represent clock-invariant of C as a DBM, and take intersection

Step 3: Canonicalize.

		XU	XI	XZ	
	X0	0	-5	-2	
	X1	8	0	5	
	X2	5	-3	0	x ₂ >= 6
$x_1, x_2 := 0$ $x_1 < = 5$ $x_1 > = 3 \rightarrow x_2 := 0$	B x ₁ <=		>= 2	X ₁ <	$x_1 <= 4$ E
DBM R_5 = Reachable states (x	κ ₁ , χ ₂ ,n	node=	C)	;	x ₁ = 7

Intersection of R_5 and $x_2>=6$ unsatisfiable; means mode D not reachable Intersection of R_5 and $x_1 <= 4$ unsatisfiable; means mode E not reachable Intersection of R_5 and $x_1=7$ satisfiable; means mode F is reachable

Symbolic BFS Algorithm

Given region Init over S, region Trans over S U S', and region ϕ over S, if ϕ is reachable in T then return 1, else return 0

```
reg Reach := Init; /* States found reachable */
reg New := Init; /* States not yet explored for outgoing transitions */
while IsEmpty(New) = 0 { /* while there are states to be explored */
  if IsEmpty(Conj(New,\varphi)) =0 /* Property \varphi found reachable */
  then return 1 (and stop);
  New := Diff(Post(New, Trans), Reach);
           /*These are states in post-image of New, but not
                   previously found reachable, so to be explored */
  Reach := Disj(Reach, New); /* Update Reach by newly found states*/
return 0; /* All states explored without encountering \phi */
```

Symbolic Search Using DBMs

- State of a timed automaton = (Discrete state, clock valuation)
 - Discrete state assigns values to all variables other than clocks
- Symbolic representation = (Discrete state s, DBM R)
- Operations on DBMs used to implement symbolic search
- \square When do (s, R) and (s', R') represent same set of states?
 - = s = s' and R = R' (assuming they are canonical)
- Image computation corresponding to timed transitions: already studied
- ☐ Image computation corresponding to mode-switches
 - Intersect with guard, and reset clocks as needed
 - What's the algorithm to compute, given DBM R, DBM for R[$x_i := 0$]
- □ Cannot implement "Union" operation directly on DBMs
 - Union of DBMs R and R' need not be a DBM, as each DBM represents a convex set of valuations

Symbolic Search Using DBMs

- \square Data structure: discrete state and a list of DBMs (s, R₁, R₂, ...)
- ☐ Search is partly enumerative and partly symbolic
- Multiple paths ending up at same discrete state s would cause the list of DBMs associated with s to grow
 - Efficient implementation needs a way to keep this list compact
- ☐ If number of reachable discrete states is finite, then search algorithm is guaranteed to terminate
- Alternative algorithm for analyzing timed automata
 - Region equivalence: Finite partitioning of the set of all possible clock-valuations such that valuations belonging to the same partition behave similarly
 - See Section 7.3.2 for details