Question 1

1) Equal-width binning is more appropriate for this dataset. Our purpose is to divide data into groups with low and high water quality. Equal-width binning divides water quality at 48.35, which separates water with low and high quality quite well, while equal-depth binning divides water quality at 15.8, which does not quite distinguish low and high water well. Groups are divided below:

Group 1									
	Experiment	Substance A	Substance B	Water Pollution					
2	3.0	7.59	76.7	73.4					
4	5.0	7.31	58.4	74.9					
7	8.0	7.34	83.4	64.9					
9	10.0	7.17	86.9	76.8					
13	14.0	7.79	61.4	55.5					
14	15.0	0.63	11.3	61.4					
16	17.0	7.21	88.0	90.7					
17	18.0	6.12	35.4	70.1					
18	19.0	4.24	53.3	60.0					
21	22.0	0.67	9.2	80.1					
23	24.0	1.44	32.9	64.9					
28	29.0	2.99	20.6	77.0					
30	31.0	8.62	78.9	81.2					
32	33.0	7.44	98.8	83.8					
35	36.0	1.74	12.7	69.0					
38	39.0	2.84	33.6	77.9					
39	40.0	1.43	26.2	62.1					
Group 2									
	Experiment	Substance A	Substance B	Water Pollution					
0	1.0	2.84	78.9	11.5					
1	2.0	9.34	52.6	17.7					
3	4.0	0.21	39.6	11.2					
5	6.0	2.77	98.1	6.0					
6	7.0	4.41	4.8	15.2					
8	9.0	9.94	16.4	14.1					
10	11.0	0.66	61.6	11.3					
11	12.0	2.73	67.2	9.4					
12	13.0	2.14	85.0	13.8					
15	16.0	7.36	13.0	21.4					
19	20.0	9.79	16.8	6.7					
20	21.0	5.07	87.9	13.0					
22	23.0	9.83	55.3	8.4					
24	25.0	5.76	94.4	9.3					
25	26.0	0.17	41.9	9.6					
26	27.0	7.90	15.5	11.5					
27	28.0	9.29	13.6	7.5					
29	30.0	2.00	93.3	11.9					
31	32.0	7.21	20.6	14.9					
33	34.0	8.70	48.3	15.8					
34	35.0	3.05	86.3	16.5					
36	37.0	3.41	1.6	7.6					
37	38.0	7.50	22.7	10.6					

Group 1 Normalized Group 2 Normalized Substance A Substance B Substance A Substance B 0.753348211 [[0.87108886 [[0.27328557 0.801036271 [0.83604506 0.54910714] [0.93858751 0.52849741] [0.83979975 0.828125 0.393782381 [0.00409417 [0.81852315 0.8671875] 0.26612078] [0.89612015 0.58258929] [0.43398158 0.033160621 [0. 0.0234375] [1. 0.15336788] [0.82352941 0.87946429] [0.05015353 0.621761661 [0.68710889 0.29241071] [0.26202661 0.67979275] 0.4921875] [0.45181477 0.20163767 0.8642487] [0.00500626] [0.73592631 0.11813472] [0.10137672 0.26450893] [0.98464688 0.15751295] [0.29536921 0.12723214] [0.50153531 0.89430052] [1. 0.77790179] [0.98874104 0.55647668] [0.85231539] 0.57215967 0.96165803] [0.13892365 0.0390625] [0. 0.417616581 [0.27659574 0.272321431 0.79119754 0.14404145] [0.10012516 0.18973214]] [0.93346981 0.124352331 [0.18730809 0.950259071 0.72057318 0.196891191 [0.87308086 0.483937821 0.29477994 0.87772021] [0.33162743 0. 0.75025589 0.21865285]]

4)

```
Group 1 Pearson correlation coefficient:
(0.89382425337583649, 1.3317228787170414e-06)
Group 2 Pearson correlation coefficient:
(-0.44962747254599289, 0.031353743604282829)
```

5) From the scatter plot and Pearson correlation coefficient, it can be seen that substance A and substance B are nearly negatively correlated for the high water quality group(2). Hence, adding the two substance in reverse amount(one high and one low) would decrease water pollution.

Question 2:

1) The method used here is the function pd.describe() from python data frame.

	age
count	20.000000
mean	39.750000
std	16.577966
min	2.000000
25%	32.750000
50%	41.000000
75%	43.000000
max	91.000000

2) From the plot, age of 2 and 91 are the outliers.

