FONCTIONS AUTOMORPHES ET SÉRIES DE POINCARÉ

Par

Henri Cartan

à Paris, France

Dans mon Séminaire consacré à la théorie des fonctions automorphes et des espaces analytiques (année 1953—54, Exposé 1), j'ai formulé des théorèmes concernant l'existence de séries de Poincaré qui admettent des développements limités donnés en des points donnés (Théorèmes 2 et 2 bis, 3 et 3 bis); ces théorèmes ont été utilisés à plusieurs reprises dans la littérature, (1) mais leur démonstration est incorrecte, comme me l'a signalé récemment R. Godement. Les énoncés des théorèmes sont néanmoins corrects; je me propose d'en donner ici une démonstration, d'ailleurs valable pour un cas un peu plus général que dans l'Exposé cité.

X désigne un domaine borné (connexe) de l'espace numérique complexe \mathbb{C}^n , et G un groupe discret d'automorphismes (analytiques complexes) de X. Soit $J_g(x)$ un facteur d'automorphie: pour chaque $g \in G$, $J_g(x)$ est une fonction holomorphe et non nulle de $x \in X$, et on a

(1)
$$J_{gg'}(x) = J_g(g' \cdot x) J_{g'}(x) \text{ pour } g, g' \in G \text{ et } x \in X.$$

Plus généralement, soit F un espace vectoriel complexe de dimension finie; on considère un facteur d'automorphie $\rho_g(x)$, qui pour chaque $g \in G$, est

et invariante par $G(x_0)$

par ceux-ci:

et satisfaisant à $h(sx)(J_s(x))^m = h(x)$ pour $s \in G(x_0)$.

Cette modification entraîne les changements suivants dans la démonstration de la Proposition 7 (page 102):

^{1.} Je profite de cette occasion pour rectifier un lapsus dans mon article: "Quotient d'un espace analytique par un groupe d'automorphismes" (Algebraic Geometry and Topology, A Symposium in honor of S. Lefschetz, Princeton Univ. Press 1957). Page 99 (dernière ligne) et page 100 (3 premières lignes), l'énoncé (ii) est incorrect; on doit remplacer (page 100, ligne 2) les mots

[—] ligne 9, lire: telle que l'ordre de $f_i - fQ_i$ au point x_0 soit $>d_i$, en notant f une fonction de L_{m_0} telle que $f(x_0) = 1$ (cf. (i)).

[—] ligne 10, au lieu de: tel que les f_i , lire: tel que les f_i/f .

[—] ligne 15, supprimer: et une $f \in L_m$.

⁻ ligne 17, remplacer f par gf.

une fonction holomorphe de $x \in X$ à valeurs dans le groupe GL(F) des automorphismes (linéaires complexes) de F, et satisfait à

(2)
$$\rho_{gg'}(x) = \rho_g(g' \cdot x) \cdot \rho_{g'}(x),$$

où, dans le second membre, le produit désigne la composition des automorphismes de F. Une fonction Φ holomorphe (resp. méromorphe) dans X, à valeurs dans F, est une forme automorphe (relativement au groupe G et au facteur d'automorphie ρ) si on a

(3)
$$\Phi(g \cdot x) = \rho_g(x) \cdot \Phi(x)$$
 identiquement, pour tout $g \in G$.

Dans ce qui suit, nous supposerons qu'il existe un entier $m_0 > 0$ tel que les deux séries

$$\sum_{g \in G} (J_g(x))^{m_0} \quad \text{et} \quad \sum_{g \in G} (J_g(x))^{m_0} \rho_g(x)^{-1}$$

convergent normalement sur tout compact de X. Alors, pour tout entier $m \ge m_0$, les "séries de Poincaré"

$$L(h; m) = \sum_{g \in G} (J_g(x))^m h(g \cdot x)$$

(h holomorphe dans X, à valeurs scalaires, et bornée)

$$L(f; \rho, m) = \sum_{g \in G} (J_g(x))^m \rho_g(x)^{-1} \cdot f(g \cdot x)$$

(f holomorphe dans X, à valeurs dans F, et bornée) sont des fonctions $\Psi(x)$ et $\Phi(x)$, holomorphes dans X, qui satisfont à

$$\Psi(g \cdot x) = (J_g(x))^{-m} \Psi(x),$$

(5)
$$\Phi(g \cdot x) = (J_g(x))^{-m} \rho_g(x) \cdot \Phi(x).$$

Donc $L(f; \rho, m)$ est une forme automorphe (holomorphe) relativement au facteur d'automorphie $(J_{\varepsilon}(x))^{-m}\rho_{\varepsilon}(x)$, et le quotient $L(f; \rho, m)/L(h; m)$ est une forme automorphe (méromorphe) relativement au facteur d'automorphie ρ (si le dénominateur n'est pas identiquement nul).

Pour chaque point $a \in X$, notons A_a l'anneau des germes de fonctions holomorphes (scalaires) au point a, et $A_a(F)$ l'espace vectoriel des germes de fonctions holomorphes à valeurs dans F. Pour tout entier $p \ge 0$, soit I_a^p l'idéal de A_a (resp. $I_a^p(F)$ le sous-espace vectoriel de $A_a(F)$ (formé des germes de fonctions qui s'annulent au point a ainsi que leurs dérivées d'ordres $\le p$. Soit D_a^p l'anneau quotient A_a/I_a^p , et $D_a^p(F)$ l'espace vectoriel quotient $A_a(F)/I_a^p(F)$, qui est un module sur D_a^p . Pour chaque h holomorphe

au voisinage de a, on notera $\delta_a^p(h)$ l'image canonique de h dans D_a^p ; de même si f est holomorphe à valeurs dans F, on écrira $\delta_a^p(f) \in D_a^p(F)$; $\delta_a^p(f)$ est le développement limité d'ordre p de la fonction f; il s'identifie à un polynôme de degré p en x-a.

Soit G(a) le groupe d'isotropie du point a (sous-groupe des $g \in G$ tels que $g \cdot a = a$); il est fini; on notera k(a) son ordre. On notera Δ^p_a le sous-espace de $D^p_a(F)$, formé des germes de fonctions Φ qui satisfont à (3) modulo $I^p_a(F)$, pour tout $g \in G(a)$. Pour chaque entier m, on notera $\Delta^p_a(m)$ le sous-espace de $D^p_a(F)$, formé des germes de fonctions Φ qui satisfont à (5) modulo $I^p_a(F)$, pour tout $g \in G(a)$. Il est clair que si Φ est une forme automorphe relativement au facteur d'automorphie ρ , et si Φ est holomorphe au point a, $\delta^p_a(\Phi)$ appartient à Δ^p_a ; de même, si Φ est une forme automorphe satisfaisant à (5), $\delta^p_a(\Phi)$ appartient à $\Delta^p_a(m)$.

Dans tout ce qui suit, on se donne un ensemble fini de points $a_i \in X$, tel que, pour $i \neq j$, a_i et a_j ne soient pas congrus suivant G. On se donne un entier $p \geq 0$ une fois pour toutes.

Lemme 1. Soit h une fonction holomorphe (scalaire) bornée dans X, telle que:

 $h(a_i) = 1$ en tout point a_i ;

h(c) = 0 en tout point c distinct des a_i et de la forme $g \cdot a_i$ (g étant un élément de G tel que $|J_g(a_i)| \ge 1$). Comme ces points c sont en nombre fini, il existe une telle h; on peut même prendre pour h un polynôme). Alors, pour tout entier m > 0 assez grand et multiple des ordres $k(a_i)$, la fonction holomorphe L(h; m) est $\ne 0$ aux points a_i .

Démonstration: Si $L(h; m) = \Psi_m$, on a

$$\Psi_m(a_i) = \sum_{g \in G(a_i)} (J_g(a_i))^m h(g \cdot a_i) + \sum_g (J_g(a_i))^m h(g \cdot a_i),$$

la seconde somme étant étendue aux $g \in G$ tels que $|J_g(a_i)| < 1$. La première somme est égale à $h(a_i)$, et la seconde somme tend vers 0 quand m tend vers $+\infty$.

Lemme 2. Pour tout nombre u tel que 0 < u < 1, il existe une partie finie $H \subset G$ et, pour chaque point a_i , un voisinage V_i de a_i , jouissant de la propriété suivante: pour $x \in V_i$ et $g \notin H$, on a $|J_R(x)| \le u$.

Cela résulte aussitôt du fait que la série $\sum_{g \in G} (J_g(x))^{m_0}$ converge normalement au voisinage de chacun des points a_i .

Théorème 1. Soit h une fonction holomorphe (scalaire) bornée dans X, telle que:

$$\delta_{a_i}^p(h) = 1$$
 pour tout point a_i ;

 $\delta_c^p(h) = 0$ pour tout point c distinct des a_i et de la forme $g \cdot a_i$, avec $g \in H$. Soient donnés d'autre part, pour chaque a_i , un élément $\alpha_i \in \Delta_{a_i}^p$, et soit f une fonction holomorphe (à valeurs dans F), bornée dans X, et telle que

$$\delta_{a_i}^p(f) = \alpha_i, \quad \delta_c^p(f) = 0$$

aux points c ci-dessus. Alors, pour chaque point a_i , on a

(6)
$$\lim_{\substack{m \to \infty \\ m \equiv 0 \ (k)}} \delta_{a_i}^p \frac{L(f; \varrho, m)}{L(h; m)} = \alpha_i,$$

où k désigne le p.p.c.m. des ordres $k(a_i)$.

Démonstration: Observons d'abord qu'il existe toujours une h et une f satisfaisant aux conditions de l'énoncé, par exemple des polynômes convenables. D'autre part, le premier membre de (6) a un sens pour m assez grand, puisque la fonction L(h; m) est $\neq 0$ aux points a_i , d'après le Lemme 1. Fixons maintenant le point a_i considéré, et posons

$$L'(f; \rho, m) = \sum_{g \in G \setminus a_i} (J_g(x))^m \rho_g(x)^{-1} \cdot f(g \cdot x),$$

$$L'(h; m) = \sum_{g \in G(a_i)} (J_g(x))^m h(g \cdot x),$$

$$L''(f; \rho, m) = \sum_{g \notin H} (J_g(x))^m \rho_g(x)^{-1} \cdot f(g \cdot x),$$

$$L''(h; m) = \sum_{g \notin H} (J_g(x))^m h(g \cdot x).$$

Puisque $\delta_c^p(f) = 0$, $\delta_c^p(h) = 0$ pour les points c définis dans l'énoncé, on a

$$\begin{split} \delta^{p}_{a_{i}}L\left(f\;;\rho\;,m\right) &= \delta^{p}_{a_{i}}L'(f\;;\rho\;,m) + \delta^{p}_{a_{i}}L''(f\;;\rho\;,m) \\ \delta^{p}_{a_{i}}L\left(h\;;m\right) &= \delta^{p}_{a_{i}}L'(h\;;m) + \delta^{p}_{a_{i}}L''(h\;;m) \;. \end{split}$$

De plus

$$\delta_{a_i}^p L'(f;\rho,m) = \sum_{g \in G(a_i)} (\delta_{a_i}^p J_g(x))^m \alpha_i = (\delta_{a_i}^p L'(h;m)) \alpha_i$$

puisque, par hypothèse, α_i appartient à $\Delta^p_{a_i}$. D'autre part, on a

$$\delta_{a}^{p} J_{g}(x) = \varepsilon_{g} + P_{g}(x - a_{i}) \text{ pour } g \in G(a_{i}),$$

où ε_g est une constante, racine $k(a_i)$ -ième de l'unité, et P_g est un polynôme de degré p sans terme constant. Puisque m est un multiple de $k(a_i)$, on a

$$(\delta_{a_i}^p J_g(x))^m = (1 + Q_g(x - a_i))^m \text{ pour } g \in G(a_i),$$

où Q_g désigne un polynôme de degré p sans terme constant.

On a donc

$$(7) \quad \delta^{p}_{a_{i}} \frac{L(f;\rho,m)}{L(h;m)} - \alpha_{i} = \delta^{p}_{a_{i}} \left(\frac{1}{L(h;m)}\right) \cdot \left[\delta^{p}_{a_{i}} L''(f;\rho,m) - (\delta^{p}_{a_{i}} L''(h;m))\alpha_{i}\right]$$

et pour prouver (6) il reste à montrer que le second membre de (7) tend vers 0 quand $m \to +\infty$ (en restant multiple de k).

Dans le voisinage V_i de a_i , on a $|J_g(x)| \le u$ pour $g \notin H$, donc la fonction holomorphe $L''(f; \rho, m)$ est, dans V_i , majorée par

$$u^{m-m_0}\sum_{g\in H}|(J_g(x))^{m_0}\rho_g(x)^{-1}\cdot f(g\cdot x)|\leq M\cdot u^m,$$

où M ne dépend pas de m. Résultat analogue pour la fonction L''(h;m). En appliquant les inégalités de Cauchy aux développements limités de ces fonctions, on voit que $\delta^p_{a_i}L''(f;\rho,m)$ et $\delta^p_{a_i}L''(h;m)\alpha_i$, considérés comme polynômes-fonctions en $x-a_i$, sont, dans un voisinage fixe de a_i , majorés par $N \cdot u^m$, où N est indépendant de m.

Il reste, dans (7), à majorer $\delta^p_{a_i}\left(\frac{1}{L(h;m)}\right)$, qui est un polynôme en $x-a_i$. On a d'abord

$$\delta_{a_{i}}^{p} L(h; m) = \sum_{g \in G(a_{i})} (1 + Q_{g})^{m} + \delta_{a_{i}}^{p} L''(h; m)$$
$$= R_{0} + R_{1} + ... + R_{p},$$

où chaque R_j est un polynôme homogène de degré j en $x-a_i$, qui dépend de m. Quand $m \to +\infty$, R_0 tend vers $k(a_i)$, tandis que, pour $1 \le j \le p$, on a

 $|R_j| \le K \cdot m^j$ au voisinage de a_i (K désignant un nombre fixe). En calculant l'inverse de $\delta^p_{a_i} L(h;m)$ dans l'anneau $D^p_{u_i}$, on trouve

$$\delta_{a_i}^p\left(\frac{1}{L(h;m)}\right) = \frac{1}{R_0}(1+S_1+...+S_p),$$

où chaque S_j $(1 \le j \le p)$ est un polynôme homogène de degré p, majoré dans un voisinage fixe de a_i par $K_1 \cdot m^j$ (K_1) : constante indépendante de m). On voit finalement que le second membre de (7) est majoré par

$$N_1 \cdot m^p u^m$$
 (N_1 indépendant de m),

et ceci établit la relation (6); le Théorème 1 est démontré.

Conséquence du Théorème 1: Prenons des systèmes (α_i) en nombre fini, formant une base de l'espace vectoriel $\prod_i \Delta_{a_i}^p$. Pour chaque élément (α_i^t) de cette base, choisissons un polynôme f^t comme il est dit dans le Théorème 1. Alors, pour chaque i et chaque t, on a

$$\lim_{\substack{m \to \infty \\ m \equiv 0 \, (k)}} \delta_{a_i}^{p} \frac{L(f^t; \rho, m)}{L(h; m)} = \alpha_i^t.$$

Donc, pour tout multiple m assez grand de k, l'application

$$f \to \left(\delta^{p}_{a_{i}} \frac{L(f; \rho, m)}{L(h; m)}\right)$$

envoie les f^i sur une base de l'espace vectoriel $\prod_i \Delta^p_{a_i}$. Ainsi

Théorème 2. Les points a_i et l'entier p étant donnés comme ci-dessus, soit h une fonction holomorphe comme dans le Théorème 1. Il existe un entier $m(p,a_i)$ jouissant de la propriété suivante: pour tout entier m multiple des ordres $k(a_i)$ et $\geq m(p,a_i)$, et pour tout système d'éléments $a_i \in \Delta^p_{a_i}$, il existe un polynôme f tel que

(8)
$$\delta_{a_i}^{\rho} \frac{L(f; \rho, m)}{L(h; m)} = \alpha_i \quad \text{pour tout } i.$$

En particulier, il existe une forme automorphe (méromorphe) relativement au facteur "d'automorphie ρ , qui soit holomorphe en chacun des points a_i et y admette des développements limités d'ordre p, arbitrairement choisis dans les $\Delta^p_{a_i}$.

Théorème 3. Les points a_i et l'entier p étant donnés comme ci-dessus, soit m un multiple des ordres $k(a_i)$ qui soit $\geq m(p,a_i)$. Alors, pour tout système d'éléments $\beta_i \in \Delta^p_{a_i}(m)$, il existe un polynôme f tel que

(9)
$$\delta_{a_i}^p L(f; \rho, m) = \beta, \text{ pour tout } i.$$

En effet, posons $\alpha_i = \beta_i/\delta_{a_i}^p L(h; m)$. On a $\alpha_i \in \Delta_{a_i}^p$; donc, d'après le Théorème 2, il existe un polynôme f satisfaisant à (8), et de là on déduit (9).

Pour finir, soit q un entier quelconque, et considérons le facteur d'automorphie $\rho_{\delta}(x) = (J_{\delta}(x))^{-q}$. Pour ce facteur d'automorphie, le Théorème 2 ci-dessus redonne le "Théorème 3 bis" de l'Exposé cité au début; le Théorème 3 ci-dessus redonne le "Théorème 2 bis" de l'Exposé cité.

Institut Henri Poincaré Paris, France

(Reçu le 28 mai 1958)