Mixing Times of Markov Chains: Lecture 1

Background X is marked if the future is independent of the past. Pefa X is called a Markov (hain taking values in a space E if ∀xa,..., xn ∈ E s.t. IP(Xo=xo,..., Xn=xn)>0. A MC is defined by it's

transition matrix P. $P(x,y) = P(X_1 = y \mid X_2 = x)$ Note: Only studying time homogeneous MCs.

Check: P(Xt = y | Xo = x) = Pt(x,y) or pxy (t) or pt(x,y).

Deft A MC is called irreducible if Yx, y E In>0 s.t. P^(x,y)>0 recurrent if $P_{x}(T_{x}<\infty)=1$, $T_{x}=\inf\{t>1:X_{t}=x\}$

transiant afterwise

Del An MC: aperiodic of god { No.1, p^(x,x)>0}=1 Vx. Def T is an invariant distribution if it is a prob. dist. s. E if Xo - T, Hen

Vn Xn~π <=> π= πP

Let X be a MC, P, o Fix N and let Y2 = XN-2, 2 E80, ..., N3, $x_0 \sim \pi$. Then Y is a MC with transition matrix $P^*(x,y) = \#(y) P(y,x)/_{\pi(x)}$

X is called reversible if P=P => Vx,y T(x)P(x,y) = rt(y)P(y,x).

het $f,g: E \rightarrow 1R$. Define $\langle f,g \rangle_{T} = \sum_{x} f(x)g(x)\pi(x)$

Then check: < Pf, g> = < f, P*g> =

Example SRW on a graph. Let
$$G = (V, E)$$
 be a finite graph. Then SRW on G is the MC with $P(x,y) = \frac{1}{2} \log_q(x) = x - y$

$$T(x) = \frac{\deg_q(x)}{2 \cdot 1E^{-1}} \text{ is invariant and SRW is reversible.}$$

Theorem (Convergence to Equilibrium) Let X be a apperiodix B irreducible MC on a finite state space with P and TT . Then as $t \to \infty$, $P^t(x,y) \to T(y)$ $\forall x,y$.

We need to define a notion of distance

Def Let
$$\mu$$
 and ν be 2 prob. dist. on E. Define $\|\mu - \nu\|_{TV}$ as
$$\|\mu - \nu\|_{TV} = \max \{\mu(A) - \mu(A)\}$$
ACE

 $\frac{\log^{2}}{\log^{2}} \quad ||\mu - \nu||_{TV} = \sum_{x \in \mu(x), x \in V(x)} (\mu(x) - \nu(x)) = \frac{1}{2} \sum_{x \in \mu(x), x \in V(x)} ||\mu(x) - \nu(x)||_{T}$ $\frac{\log^{2}}{\log^{2}} \quad \text{let} \quad B = \{x : \mu(x), x \in V(x)\} \quad \text{and} \quad ACE. \quad \text{Then}$ $\mu(A) - \nu(A) = \mu(A \cap B) - \nu(A \cap B) + \mu(A \cap B^{c}) - \nu(A \cap B^{c})$

Similarly, $v(A) - \mu(A) \subseteq v(B^c) - \mu(B^c) = \mu(B) - v(B)$ So $|\mu(A) - v(B)| \leq \mu(B) - v(B) \quad \forall A$ and taking A = B $\rightarrow \max_{A} |\mu(A) - v(A)| = \mu(B) - v(B)$ So $|\mu - v||_{TV} = \mu(B) - v(B) = \sum_{x:\mu(x) \Rightarrow v(x)} (\mu(x) - v(x))$

Proof. (Cont.)
$$\Rightarrow$$
 (up-vII $\tau_0 = \frac{1}{2} \sum_{x:\mu(x) > v(x)} (\mu(x) - v(x)) + \frac{1}{2} \sum_{x:v(x) - \mu(x)} (v(x) - \mu(x))$

$$= \frac{1}{2} \sum_{x:\mu(x) > v(x)} (\mu(x) - v(x)) + \frac{1}{2} \sum_{x:v(x) - \mu(x)} (v(x) - \mu(x))$$

Remark TV satisfies the Triangle ineq..

Del² A coupling of μ and ν , two prot. distr., is a pair of random variables (X,Y) s.b. (X,Y) s.b. (X,Y) on the Sanna prob. space.

Frample Let (X,Y) be (X,Y) on the Sanna prob. space.

Frample Let (X,Y) be (X,Y) and (X,Y) be indep. (X,Y) coupling of (X,Y) the infimum (X,Y) to a started (X,Y) the infimum (X,Y) the infimum (X,Y) the action (X,Y) the infimum (X,Y) the infimum (X,Y) the action (X,Y) the infimum (X,Y)

Since of 18 8 I have disjoint supports, x and Y will be equal only if the coin comes up hoods, $\rho = \sum_{\mathbf{x}: \mu(\mathbf{x}) > \nu(\mathbf{x})} + \sum_{\mathbf{x}: \nu(\mathbf{x}) > \nu(\mathbf{x})} \mu(\mathbf{x}) = 1 - \sum_{\mathbf{x}: \mu(\mathbf{x}) > \nu(\mathbf{x})} (\mu(\mathbf{x}) - \nu(\mathbf{x}))$ $= 1 - \|\mu - \nu\|_{TV}$ $\Rightarrow P(X=x) = P \cdot \frac{p(x) \wedge V(x)}{P} + (-P) \left(\frac{p(x) - V(x)}{P}\right) \prod \left(\frac{p(x)}{P} > V(x)\right) = p(x)$ => coupling of mand u.

Finally, 1P(X=Y) = 1-P= 11 p-V11+V

Peter Let 0 and
$$\pi$$
 be a stechastic matrix s its invariant dist.

Petine $d(t) = \max \|P^{t}(x, \cdot) - \pi\|_{\mathcal{N}}$ (Worst τv distance from τ after $d(t) = \max \|P^{t}(x, \cdot) - P^{t}(y, \cdot)\|_{\mathcal{N}}$ (worst distance between two starting points after t)

Lemma $\forall t \quad \text{we} \quad \text{have} \quad d(t) \in \overline{d}(t) \leq 2d(t)$ froof: o(t) ≤ 201t) follows from 1 ineq. $\|P^{t}(x, \cdot) - \pi\|_{\tau v} = \max_{A} |P^{t}(x, A) - \pi(A)|$

=
$$\max_{A} | P^{t}(x,A) - \not\subseteq \pi(y| P^{t}(y,A))$$
 since $\sum_{A} \pi(y) | P^{t}(x,A) - P^{t}(y,A)|$

 $= \max_{A} |P^{t}(x,A) - Z \pi(y) P^{t}(y,A)| \quad \text{since} \quad \pi = \pi P$ $\leq \max_{A} Z \pi(y) |P^{t}(x,A) - P^{t}(y,A)|$ $\leq \sum_{y} \pi(y) \max_{A} |P^{t}(x,A) - P^{t}(y,A)| \leq \overline{\delta}(t).$

$$\frac{1}{3} \frac{P_{f}(x^{2}) - P_{f}(y, \cdot)}{N} = \frac{1}{3} \frac$$

Theorem P be aperiodic, irred, on finite state space and it invar. dist. Then Here exist $\beta \in (0,1)$ and C>0 s.t. max $\|P^{t}(x,\cdot) - \pi\|_{TV} \leq C\beta^{t}$ Proof: Because of irred. & apperiodic. 3 rze s.t. Pr has strictly the entries.

(Finite state space). Set $\alpha = \min_{x,y} \frac{p^r(x,y)}{\pi(y)}$, then $\alpha > 0$. Then Yx,y P (x,y) > < T(y)

$$P^{r(x,y)} = \alpha \pi(y) + (-\alpha)Q(x,y) \quad \text{where} \quad Q \in \text{stachashic.}$$

$$P^{rk}(x,y) \stackrel{?}{=} (1-\alpha)^{k} Q^{k}(x,y) + (1-(1-\alpha)^{k}) \pi(y)$$

$$P^{rk}(x,y) \stackrel{?}{=} (1-\alpha)^{k} Q^{k}(x,y) + (1-(1-\alpha)^{k}) \pi(y)$$

$$P^{rk}(x,y) \stackrel{?}{=} (1-\alpha)^{k} Q^{k}(x,y) + (1-\alpha)^{k} Q^{k} P^{j} \quad \text{since} \quad \pi P = \pi$$

$$P^{rk}(x,y) = (1-\alpha)^{k} Q^{k} P^{j} \quad \text{since} \quad \pi P = \pi$$

$$P^{rk}(x,y) \stackrel{?}{=} (1-\alpha)^{k} Q^{k} P^{j} \quad \text{since} \quad \pi P = \pi$$

$$P^{rk}(x,y) = (1-\alpha)^{k} Q^{k} P^{j} \quad \text{since} \quad \pi P = \pi$$

$$P^{rk}(x,y) = (1-\alpha)^{k} Q^{k} P^{j} \quad \text{since} \quad \pi P = \pi$$

$$P^{rk}(x,y) = (1-\alpha)^{k} Q^{k} P^{j} \quad \text{since} \quad \pi P = \pi$$

$$P^{rk}(x,y) = (1-\alpha)^{k} Q^{k} P^{j} \quad \text{since} \quad \pi P = \pi$$

$$P^{rk}(x,y) = (1-\alpha)^{k} Q^{k} P^{j} \quad \text{since} \quad \pi P = \pi$$

$$P^{rk}(x,y) = (1-\alpha)^{k} Q^{k} P^{j} \quad \text{since} \quad \pi P = \pi$$

$$P^{rk}(x,y) = (1-\alpha)^{k} Q^{k} P^{j} \quad \text{since} \quad \pi P = \pi$$

$$P^{rk}(x,y) = \pi P^{rk}(x,y) \quad \text{since} \quad \pi P = \pi$$

$$P^{rk}(x,y) = \pi P^{rk}(x,y) \quad \text{since} \quad \pi P = \pi$$

$$P^{rk}(x,y) = \pi P^{rk}(x,y) \quad \text{since} \quad \pi P = \pi$$

$$P^{rk}(x,y) = \pi P^{rk}(x,y) \quad \text{since} \quad \pi P = \pi$$

$$P^{rk}(x,y) = \pi P^{rk}(x,y) \quad \text{since} \quad \pi P = \pi$$

$$P^{rk}(x,y) = \pi P^{rk}(x,y) \quad \text{since} \quad \pi P = \pi$$

$$P^{rk}(x,y) = \pi P^{rk}(x,y) \quad \text{since} \quad \pi P = \pi$$

$$P^{rk}(x,y) = \pi P^{rk}(x,y) \quad \text{since} \quad \pi P = \pi$$

$$P^{rk}(x,y) = \pi P^{rk}(x,y) \quad \text{since} \quad \pi P = \pi$$

$$P^{rk}(x,y) = \pi P^{rk}(x,y) \quad \text{since} \quad \pi P = \pi$$

$$P^{rk}(x,y) = \pi P^{rk}(x,y) \quad \text{since} \quad \pi P = \pi$$

$$P^{rk}(x,y) = \pi P^{rk}(x,y) \quad \text{since} \quad \pi P = \pi$$

$$P^{rk}(x,y) = \pi P^{rk}(x,y) \quad \text{since} \quad \pi P = \pi$$

$$P^{rk}(x,y) = \pi P^{rk}(x,y) \quad \text{since} \quad \pi P = \pi$$

$$P^{rk}(x,y) = \pi P^{rk}(x,y) \quad \text{since} \quad \pi P = \pi$$

$$P^{rk}(x,y) = \pi P^{rk}(x,y) \quad \text{since} \quad \pi P = \pi$$

$$P^{rk}(x,y) = \pi P^{rk}(x,y) \quad \text{since} \quad \pi P = \pi$$

$$P^{rk}(x,y) = \pi P^{rk}(x,y) \quad \text{since} \quad \pi P = \pi$$

$$P^{rk}(x,y) = \pi P^{rk}(x,y) \quad \text{since} \quad \pi P = \pi$$

$$P^{rk}(x,y) = \pi P^{rk}(x,y) \quad \text{since} \quad \pi P \quad \text{si$$

So
$$\forall x,y \in \mathbb{R}^{p+t}(x,\cdot) - \mathbb{R}^{p+t}(y,\cdot)|_{\mathcal{T}_{t}} \leq \overline{\delta}(t) \|\mathbb{R}^{p}(x,\cdot) - \mathbb{R}^{p}(y,\cdot)|_{\mathcal{T}_{t}}$$

mox over $x,y \Rightarrow \overline{\delta}(s+t) \leq \overline{\delta}(s)\overline{\delta}(t)$

Also have $\delta(t) \leq \overline{\delta}(t) \leq 2\delta(t) \Rightarrow \delta(s+t) \leq \overline{\delta}(s+t) \leq \overline{\delta}(s)\overline{\delta}(t) \leq 2\delta(t)\overline{\delta}(s)$

< 3(4) IP(x + Y).

Also have $d(t) \in d(t) \leq 2d(t) \Rightarrow d(s+t) \leq d(s+t) \leq d(s)d(t) = 2d(t)d(t)$ Remark: Chasse a diff coupling to get $d(s+t) \leq d(s)d(t)$ (Exercise!)

= IE[](X + Y) · 2 & IP+(X,z) - P+(Y,z)]

< |P(x + Y)| E[\frac{1}{2} max [\frac{5}{2} | pt(x,z) - pt(y,z)]]

Dota (Mixing Time) traix (E) = min \$ + 7,0: d(t) < E}. When E=1/4 we just write traix. Why $\varepsilon = 1/4$? $\partial(\lfloor t_{mix} \rangle) \leq \overline{\partial}(\lfloor t_{mix}(\varepsilon) \rangle) \leq \overline{\partial}(\lfloor t_{mix}(\varepsilon) \rangle) \leq (2\varepsilon)^{L}$

Taking &= 1/4 gives dl(traix) \le \frac{1}{20} Hen \text{Lax(\varepsilon)} \le \Tiog_e \frac{\varepsilon}{27} \text{Emix}

 \mathbb{D}^{2} (Coupling) A coupling of MCs with transition matrix P is a process (Xe, Ye)e s.t.

both X and Y are MCs w/ transition matrix P and possibly different starting distr. $Def^{-}(Markovian Coupling)$ In addition, $\forall x, x', y, y'$ $P(x, = x') \times_0 = x, y' = y' = P(x, x')$ and $IP(Y_1 = y^1) \times_{0} = x, Y_0 = y^1) = P(y,y^1).$

Dela (Coalescent) A coupling is called coalescent if whenever Is s.t. Xs=Ys Han

Xt=Yt Yt >8. When Hey touch they stay together.

Remark A Markovian coupling can be modified to make it a coalescent coupling. Run the MCs using the Markavian coupling until the first time they meet. Then contin. togetter.

Theorem let (X, Y) be a Markovian coupling w/ Xo= x and Yo=y. Let Traple

be minstro: $X_t = Y_t$ 3. Then $\|P^t(x, \cdot) - P^t(y, \cdot)\|_{\mathcal{T}} \leq \|P_{x,y}(T_{couple} > t)$

Proof: - Fix x,y. Markovin => IP($X_t = x^t$) = P(x, x) and some for Y_t .

So X_t, Y_t is a coupling of $P^t(x, \cdot)$ and $P^t(y, \cdot)$

So | | Pt(x,.) - Pt(y,.) | | TV & Px,y(Xe # Ye) & 1Px,y (Tcouple > t)

In particular if $\forall (x,y) \ \exists \ Mark$. Caupling with Toouple the Note: Smaller than previously time, then $\partial(t) \leq \max_{x,y} \varphi_{x,y} \left(\text{Toouple} > t \right)$ bound since $x = Y_{t} \Rightarrow \text{Toouple} \leq t$.

. d(t) ∈ Max (Exy(Tcoople) by Markov ineq. t = 4(Exy(Tcoople) => d(t) ≤ + => tmix ≤ t

Notation fig functions. $f(n) \leq g(n)$ if $\exists c > 0$ s.t. $f(n) \leq cg(n) \forall n$. $f_1g: |N| \rightarrow |R^{\dagger}|$ $f(n) \geq g(n)$ if $g(n) \leq f(n)$ $f(n) \simeq g(n)$ if both hold.

Def (Lazy drain) Take He MC with transition matrix $\frac{P+1}{2}$ (i.e. with prob 1/2 remain where you are, with prob 1/2 move according to P.

Note: We use this to avoid apperiodicity.

Example SRW on $\mathbb{Z}_n = \{0,...,n-1\}$ IP(i, (ixi) mod n) = 1/2 lazy chain $\frac{P+T}{2}$ Claim: $t_{mix} \times n^2$

Lecture 4

<u>Claim</u> let x be a lazy SRW on Zn Hen tmix×n³

Proof: Take x,y & Zn. X,Y two SRWs starting at x,y · Couple as follows: Toss fair coin If H move x to random neighbour, if T move Y.

When they meet, continue together.

" clockwise distance between XY is SRW on 30,1, ., n3 or/ absorption at a and n

Let C = ming t 70: KE = Yeg. Then T is first time distance gets absorbed at 30,03 1x-y1=&=> (Ee (T) = & (n-k) (it is the hitting probs)

. $d(t) \in \max_{x,y} \frac{(E_{x,y}[\tau])}{t} \leq \frac{n^2}{4t}$ so if $t=n^2$ flen $d(t) \leq 1/4$

=> tmix < n2

Lewer bound Let (S_{ℓ}) be a lazy SRW on \mathbb{Z} of then set $X_{\ell} = S_{\ell} \mod n$. $|P(X_{\ell} \in \{\frac{n}{4}\} + 1, \dots, \frac{n}{4}\}\}) \leq |P_{\alpha}(1S_{\ell}| > \frac{n}{4}) \leq \frac{|Var(S_{\ell})|}{(hebyslev)} = \frac{|Var(S_{\ell})|}{n^{2}/16} = \frac{8\ell}{n^{2}}$ Since $S_{\ell} = \sum_{i=1}^{k} (E_{i}!)$ 228 $S_{i} = \sum_{i=1}^{k+1} \frac{m_{i}}{m_{i}} \frac{|Var(S_{\ell})|}{n^{2}} = \frac{8\ell}{n^{2}}$

Take $E=n^2/32$ Hen $IP(\chi_{\epsilon}\in A)\leq 1/4$ but $\pi(A) \approx 1/2$ so $\delta(t) \approx \pi(A) - 1P_0(\chi_{\epsilon}\in A)$ >= > bmix > 12/32 RW on the finite binary tree

on vertices, root has degree 2, offspring degree 3, leaves degree 1.

Claim thix > C. max (Ex (Ta)

Check If Te = minft > 0: Xt = root & max Ex [Te] & C.n go time & n. Upper bound Coupling: Toss fair coin. H > X moves T > Y moves until they reach source level.

So Z < 1st time × hits roots after having visited beaves.

so 16x,y[T] ≤ C*n + C** logn ≤ C'n ⇒ Emix ≤ n

Top to random shuffle Deck of a cards. RW on Sa. - Trop = 9 time to bottom card get to top +13 then & Trop is uniform on Sn and indep of Ztop. Del (Stopping time) A RV 7 such that \$7 < +3 = 7 4t. A stationary line is a stopping time T (possibly dep. on Xol s.t. Pz (xz = 4) = 17(4). A strong stationary time is a stat. time s.t. $\forall t, y \ | \Re(X_{\tau} = y, \tau = t) = \Re(y) \cdot | \Re(\tau = t)$ Example Lazy RW on Sosis? (x1,..., 2n) ~ (y1,..., yn) if 3! i s.b. yi= 1-xi

and gi=xj +j+i. Pic & a coord. var (uniform. at. random) and refresh the bit by a uniform one foils. This is lazy to an foils

Bernoulli(1/2) Xt+1 = f(Xt, Zt+1) where Zi are iid and indep. of Xt.

· Proved 11Pt(x,.) - 7110 5 1P,c(2>t)

Lecture 5 · Defined s(t)

- $s(2t) \in 1 (1 \delta(t))^2$ using c s.
- · Proved some results for a coupon collector
- " Compared LRW on 80,13" to coupon collector to get tmix(E) < Talaga + c(E) all
- · Top to random shuffle has that top strong stationary time. d(t) = IP(Ttop > t) Get Emix(E) = Trilogn + C(E)n7
- · Proved lowerbound for tmix(E) for Ttop.
- · Defined what it means for a sequence of MCs to exhibit cutoff.

Lecture 6

• Defined L^{r} distance: $f: E \rightarrow (R, \|f\|_{p} = \|f\|_{p, \pi} = \begin{cases} (2 \|f(x)\|^{p} \pi(x))^{1/p} \| \le p < \infty \end{cases}$ • $d_{p}(t) = \max \|q_{t}(x, \cdot) - \|\|_{p} \quad \text{where} \quad \max \|f(x)\|_{p} = \infty$ $q_{t}(x, y) = \frac{p^{t}(x, y)}{\pi(y)}$ for a reversible chain. Lecture 6 $2\partial(t) = \partial_{x}(t) \leq \partial_{x}(t) \leq \partial_{\infty}(t)$ by Jensens.

· 1 - mixing time t mix (E) = min { t > 0 : dp(t) < E }

For $p = \infty$, $t_{\text{mix}}^{(\infty)}(E) = \text{oniform mixing time}$ • Let P be a reversible chain wit π Than $\forall t$ $d_{\infty}(2t) = (d_2(t))^2 = \max_{\pi} \frac{P^{2\epsilon}(x,z)}{\pi}$

- · Spectral Techniques: · E finite state space, Tr prob diste, fig: E -> 1R. Defined < fig? and < fig? r