Zadanie 3

Wiemy, że $\langle \cdot, \cdot \rangle$ to standadowy iloczyn skalarny na \mathbb{F}^n oraz dopełnienie ortogonalne dla dowolnego $U \subseteq \mathbb{F}^n$ definiujemy jako:

$$U^{\perp} = \{ \vec{v} \in \mathbb{F}^n : \ \forall \vec{u} \in U \ \langle u, v \rangle = 0 \}$$

Do udowodnienia mamy następujące fakty:

Fakt 1. U^{\perp} jest podprzestrzenią \mathbb{F}^n ($U^{\perp} < \mathbb{F}^n$)

 $Dow \acute{o}d.$ Przy dowodzeniu, że U^{\perp} jest podprzestrzenią liniową, musimy pokazać 3 własności:

- 1. $\vec{0} \in U^{\perp}$ oczywiste, ponieważ $\forall \vec{u} \in U \ \langle \vec{u}, \vec{0} \rangle = 0$
- 2. U^{\perp} jest zamknięty na mnożenie przez skalar: Weźmy dowolny wektor $\vec{u} \in U^{\perp}$ i pokażmy, że jeśli $\alpha \in \mathbb{F}$, to wtedy również $\alpha \vec{u} \in U^{\perp}$, czyli (z definicji dop. ortogonalnego) $\langle \alpha u, v \rangle = 0$, gdzie \vec{v} to dowolny wektor z U. Wiemy jednak, że skoro $\vec{u} \in U^{\perp}$, to $\langle u, v \rangle = 0$. Z definicji standardowego iloczynu skalarnego mamy: $\langle \alpha u, v \rangle = \sum_{i=1}^n \alpha u_i v_i = \alpha \sum_{i=1}^n u_i v_i = \alpha \langle u, v \rangle$, a skoro $\langle u, v \rangle = 0$, to również $\alpha \langle u, v \rangle = 0$, czyli $\alpha \vec{u} \in U^{\perp}$.
- 3. U^{\perp} jest zamknięty na dodawanie: Weźmy dowolne wektory $u_1, u_2 \in U^{\perp}$; musimy pokazać, że również $u_1 + u_2 \in U^{\perp}$. Weźmy dowolny wektor $\vec{v} \in U$; wtedy $\langle v, u_1 \rangle = \langle v, u_2 \rangle = 0$. Policzmy teraz iloczyn skalarny v i $u_1 + u_2$: $\langle v, u_1 + u_2 \rangle = \sum_{i=1}^n v_i (u_{1i} + u_{2i}) = \sum_{i=1}^n v_i u_{1i} + v_i u_{2i} = \sum_{i=1}^n v_i u_{1i} + \sum_{i=1}^n v_i u_{2i} = \langle v, u_1 \rangle + \langle v, u_2 \rangle = 0$. Tak więc skoro $\langle v, u_1 + u_2 \rangle = 0$, gdzie \vec{v} to dowolny wektor z U, to $u_1 + u_2 \in U^{\perp}$.

Fakt 2. Jeśli \mathbb{W} podprzestrzenią \mathbb{F}^n ($\mathbb{W} \leq \mathbb{F}^n$), to $dim \mathbb{W}^{\perp} + dim \mathbb{W} = n$.

Dowód. Niech $\vec{v}_1 \dots \vec{v}_k$ będzie bazą przestrzeni \mathbb{W} (co daje nam dim $\mathbb{W}=k$), macierz $M=\left[\vec{v}_1|\vec{v}_2|\cdots\vec{v}_k\right]$ oraz L - przekształcenie liniowe zdefiniowane jako $L(v)=M^Tv$. Musimy pokazać, że dim $\mathbb{W}^\perp=n-k$.

Zauważmy, że $\dim(\ker(L))+\dim(\operatorname{Im}(L))=\dim(\mathbb{F}^n)=n$ (z własności przekształcenia liniowego). Ponieważ wektory (poziome) z M^T tworzą bazę przestrzeni \mathbb{W} , mamy: $\operatorname{rk}(M^T)=$ k. Wiemy, że rząd przekształcenia liniowego L jest równy rzędowi macierzy, która definiuje to przekształcenie, oraz że rząd przekształcenia liniowego to wymiar obrazu tego przekształcenia. Zapiszmy to:

 $\operatorname{rk}(M^T) = \operatorname{rk}(L) = \dim(\operatorname{Im}(L)) = k$. Dostajemy więc:

 $\dim(\ker(L))=n-\dim(\operatorname{Im}(L))=n-k$. Dla udowodnienia naszego faktu wystarczy teraz pokazać, że $\ker(L)=\mathbb{W}^{\perp}$:

- \subseteq Weźmy dowolny wektor $\vec{u} \in \ker(L)$. Z definicji: $L(u) = M^T u = \vec{0}$, czyli dla każdego wektora \vec{v}_i z bazy $\vec{v}_1 \dots \vec{v}_k$ mamy $\sum_{j=1}^n v_{ij} u_j = \langle v_i, u \rangle = 0$. Wektor \vec{u} jest więc prostopadły do każdego wektora z bazy \mathbb{W} , czyli należy do \mathbb{W}^{\perp} .
- \supseteq Weźmy dowolny wektor $\vec{u} \in \mathbb{W}^{\perp}$. Jest on prostopadły do każdego wektora z bazy przestrzeni \mathbb{W} , czyli $\langle v_1, u \rangle = \langle v_2, u \rangle = \ldots = \langle v_k, u \rangle = 0$. Łatwo więc zauważyć, że $M^T u = \vec{0}$, czyli $L(v) = \vec{0} \equiv \vec{u} \in \ker(L)$

Udowodniliśmy, że $\ker(L) = \mathbb{W}^{\perp}$, a skoro $\dim(\ker(L)) = n - k$, to także $\dim(\mathbb{W}^{\perp}) = n - k$

Fakt 3. $\mathbb{W} = (\mathbb{W}^{\perp})^{\perp}$, $gdzie \mathbb{W}$ to $podprzestrze\acute{n} \mathbb{F}^n$

Dowód. Wystarczy udowodnić dwie własności:

- 1. $\mathbb{W} \leq (\mathbb{W}^{\perp})^{\perp}$ Weźmy dowolny wektor $\vec{w} \in \mathbb{W}$. Wiemy, że wszystkie wektory należące do \mathbb{W}^{\perp} są prostopadłe do \vec{w} . Natomiast do $(\mathbb{W}^{\perp})^{\perp}$ należą wszystkie wektory, które są prostopadłe do każdego wektora z \mathbb{W}^{\perp} , więc w szczególności wektor \vec{w} .
- 2. $\dim(\mathbb{W}) = \dim((\mathbb{W}^{\perp})^{\perp})$ Niech $\dim(\mathbb{W}) = k$. Wtedy (z faktu 2.) $\dim(\mathbb{W}^{\perp}) = n - k$, czyli $\dim((\mathbb{W}^{\perp})^{\perp}) = n - (n - k) = k$

Tak więc $\mathbb W$ jest podprzestrzenią $(\mathbb W^\perp)^\perp$ mającą ten sam wymiar; wobec tego $\mathbb W = (\mathbb W^\perp)^\perp$

2