Nearest-neighbor heuristic

Starting from some point p0, we walk first to its nearest neighbor p1. From p1, we walk to its nearest unvisited neighbor thus excluding only p0 as a candidate. We now repeat this process until we run out of unlisted points after which we return to p0 to close off the tour

NearestNeighbor(P)

Pick and visit an initial point p_0 from P

$$p = p_0$$
$$i = 0$$

While there are still unvisited points

$$i = i + 1$$

Select p_i to be the closest unvisited point to p_{i-1} Visit p_i

Return to p_0 from p_{n-1}

$\operatorname{ClosestPair}(P)$

Let n be the number of points in set P.

For
$$i = 1$$
 to $n - 1$ do

$$d = \infty$$

For each pair of endpoints (s,t) from distinct vertex chains if $dist(s,t) \leq d$ then $s_m = s$, $t_m = t$, and d = dist(s,t)

Connect (s_m, t_m) by an edge

Connect the two endpoints by an edge

Travel sales man problem

OptimalTSP(P)

$$d = \infty$$

For each of the n! permutations P_i of point set PIf $(cost(P_i) \leq d)$ then $d = cost(P_i)$ and $P_{min} = P_i$ Return P_{min}

There is a fundamental difference between algorithms which always proceed a correct result and heuristics which may usually do a good job but without

providing any guarantee