NAME: Solution

Problem 1: Design a fourbar linkage to carry the bolt in the figure from position 1 to position 2 to position 3 without regard to the fixed pivots shown.

The bolt is fed into the gripper in the z directing (into the paper). The gripper grabs the bolt, and our linkage moves it to position 3 to be inserted into the hole. A second degree of freedom within the gripper assembly (not shown) pushes the bolt into the hole.

Extend the gripper assembly as necessary to include the moving pivots. The fixed pivots should be on the base.

```
\begin{aligned} &p_{21} = [(13\text{mm})^2 + (99\text{mm})^2]^{1/2} \\ &= \textbf{99.85 mm} \\ &p_{31} = [(111.3\text{mm})^2 + (151.8\text{mm})^2]^{1/2} \\ &= \textbf{188.23 mm} \\ &\delta_{21} = \tan^{-1}[13\text{mm}/99\text{mm}] \\ &= \textbf{7.48}^{\circ} \\ &\delta_{31} = \tan^{-1}[151.8\text{mm}/111.3\text{mm}] \\ &= \textbf{306.2}^{\circ} \\ &\alpha_2 = \theta_2 - \theta_1 = 301.7^{\circ} - 272.3^{\circ} = \textbf{29.4}^{\circ} \\ &\alpha_3 = \theta_3 - \theta_1 = 270^{\circ} - 272.3^{\circ} = \textbf{-2.3}^{\circ} \end{aligned}
```


1a. (10pts) Find the location of the ground and moving pivots using analytical methods. Use β_2 =70°, β_3 =140°, γ_2 =-5°, and γ_3 =-49°. Print out your computer solution and attach it to the back of this sheet. Summarize your results below.

THREE POSITION ANALYTICAL MOTION SYNTHESIS

$$\vec{W}_2 + \vec{Z}_2 = \vec{W}_1 + \vec{Z}_1 + \vec{P}_{21}; \quad \vec{W}_3 + \vec{Z}_3 = \vec{W}_1 + \vec{Z}_1 + \vec{P}_{31}$$

$$|\vec{W}_1| = |\vec{W}_2| = |\vec{W}_3| = w; \quad |\vec{Z}_1| = |\vec{Z}_2| = |\vec{Z}_3| = z$$

$$\vec{W}_{1} = \mathbf{w} \cdot \left[\cos \left(\frac{\boldsymbol{\theta}}{\boldsymbol{\theta}} \right) \hat{i} + \sin \left(\frac{\boldsymbol{\theta}}{\boldsymbol{\theta}} \right) \hat{j} \right]$$

$$\vec{W}_2 = w \cdot \left[\cos \left(\theta + \beta_2 \right) \hat{i} + \sin \left(\theta + \beta_2 \right) \hat{j} \right]$$

$$\vec{W}_3 = \mathbf{w} \cdot \left[\cos \left(\mathbf{\theta} + \mathbf{\beta}_3 \right) \hat{i} + \sin \left(\mathbf{\theta} + \mathbf{\beta}_3 \right) \hat{j} \right]$$

$$\vec{Z}_1 = \mathbf{z} \cdot \left[\cos(\phi) \hat{i} + \sin(\phi) \hat{j} \right]$$

$$\vec{Z}_2 = \mathbf{z} \cdot \left[\cos \left(\phi + \alpha_2 \right) \hat{i} + \sin \left(\phi + \alpha_2 \right) \hat{j} \right]$$

$$\vec{Z}_3 = \mathbf{z} \cdot \left[\cos \left(\mathbf{\phi} + \mathbf{\alpha}_3 \right) \hat{i} + \sin \left(\mathbf{\phi} + \mathbf{\alpha}_3 \right) \hat{j} \right]$$

$$\vec{P}_{21} = p_{21} \cdot \left[\cos \left(\delta_2 \right) \hat{i} + \sin \left(\delta_2 \right) \hat{j} \right]$$

$$\vec{P}_{31} = p_{31} \cdot \left[\cos \left(\delta_3 \right) \hat{i} + \sin \left(\delta_3 \right) \hat{j} \right]$$

$\vec{U}_2 + \vec{S}_2 = \vec{U}_1 + \vec{S}_1 + \vec{P}_{21}; \quad \vec{U}_3 + \vec{S}_3 = \vec{U}_1 + \vec{S}_1 + \vec{P}_{31}$

$$|\vec{U}_1| = |\vec{U}_2| = |\vec{U}_3| = u; \quad |\vec{S}_1| = |\vec{S}_2| = |\vec{S}_3| = s$$

$$\vec{U}_1 = \mathbf{u} \cdot \left[\cos(\sigma) \hat{i} + \sin(\sigma) \hat{j} \right]$$

$$\vec{U}_2 = \mathbf{u} \cdot \left[\cos \left(\mathbf{\sigma} + \mathbf{\gamma}_2 \right) \hat{i} + \sin \left(\mathbf{\sigma} + \mathbf{\gamma}_2 \right) \hat{j} \right]$$

$$\vec{U}_3 = \mathbf{u} \cdot \left[\cos \left(\mathbf{\sigma} + \gamma_3 \right) \hat{i} + \sin \left(\mathbf{\sigma} + \gamma_3 \right) \hat{j} \right]$$

$$\vec{S}_1 = \mathbf{s} \cdot \left[\cos \left(\mathbf{\psi} \right) \hat{i} + \sin \left(\mathbf{\psi} \right) \hat{j} \right]$$

$$\vec{S}_2 = \mathbf{s} \cdot \left[\cos \left(\mathbf{\psi} + \mathbf{\alpha}_2 \right) \hat{i} + \sin \left(\mathbf{\psi} + \mathbf{\alpha}_2 \right) \hat{j} \right]$$

$$\vec{S}_3 = \mathbf{s} \cdot \left[\cos(\mathbf{\psi} + \mathbf{\alpha}_3) \hat{i} + \sin(\mathbf{\psi} + \mathbf{\alpha}_3) \hat{j} \right]$$

$$\vec{P}_{21} = p_{21} \cdot \left[\cos \left(\delta_2 \right) \hat{i} + \sin \left(\delta_2 \right) \hat{j} \right]$$

$$\bar{P}_{31} = p_{31} \cdot \left[\cos \left(\delta_3 \right) \hat{i} + \sin \left(\delta_3 \right) \hat{j} \right]$$

FIRST DYAD

GIVEN:		CHOSEN:		FIND:	
P12	99.85	β2	70.00	w	100.03
P13	188.23	β3	140.00	θ	149.94
δ2	7.48			z	306.21
δ3	306.20			ф	-49.69
α2	29.40			W1x	-86.58
α3	-2.30			W1y	50.10
				Z1x	198.11
				Z1v	-233.50

	x-coord	y-coord.
02	-111.53	183.40
A1	-198.11	233.50
A2	-188.217	119.1738
A3	-77.4055	89.3654
P1	0.00	0.00
P2	99.00	13.00
P3	111.17	-151.89

$$\begin{bmatrix} \cos \beta_2 - 1 & -\sin \beta_2 & \cos \alpha_2 - 1 & -\sin \alpha_2 \\ \sin \beta_2 & \cos \beta_2 - 1 & \sin \alpha_2 & \cos \alpha_2 - 1 \\ \cos \beta_3 - 1 & -\sin \beta_3 & \cos \alpha_3 - 1 & -\sin \alpha_3 \\ \sin \beta_3 & \cos \beta_3 - 1 & \sin \alpha_3 & \cos \alpha_3 - 1 \end{bmatrix} \begin{bmatrix} W_{1x} \\ W_{1y} \\ Z_{1x} \\ Z_{1y} \end{bmatrix} = \begin{bmatrix} p_{21} \cdot \cos \delta_2 \\ p_{21} \cdot \sin \delta_2 \\ p_{31} \cdot \cos \delta_3 \\ p_{31} \cdot \sin \delta_3 \end{bmatrix}$$

SECOND DYAD

GIVEN:		CHOSEN:		FIND:	
P12	99.85	γ2	-5.00	u	231.81
P13	188.23	γ3	-49.00	σ	62.31
δ2	7.48			s	166.99
δ3	306.20			Ψ	-88.84
α2	29.40			U1x	107.71
α3	-2.30			U1y	205.27
				S1x	3.39
				S1y	-166.95

	x-coord	y-coord.
04	-111.11	-38.32
B1	-3.39	166.95
B2	14.09	156.78
B3	114.48	15.06
P1	0.00	0.00
P2	99.00	13.00
P3	111.17	-151.89

$$\begin{bmatrix} \cos \gamma_2 - 1 & -\sin \gamma_2 & \cos \alpha_2 - 1 & -\sin \alpha_2 \\ \sin \gamma_2 & \cos \gamma_2 - 1 & \sin \alpha_2 & \cos \alpha_2 - 1 \\ \cos \gamma_3 - 1 & -\sin \gamma_3 & \cos \alpha_3 - 1 & -\sin \alpha_3 \\ \sin \gamma_3 & \cos \gamma_3 - 1 & \sin \alpha_3 & \cos \alpha_3 - 1 \end{bmatrix} \cdot \begin{bmatrix} U_{1x} \\ U_{1y} \\ S_{1x} \\ S_{1y} \end{bmatrix} = \begin{bmatrix} p_{21} \cdot \cos \delta_2 \\ p_{21} \cdot \sin \delta_2 \\ p_{31} \cdot \cos \delta_3 \\ p_{31} \cdot \sin \delta_3 \end{bmatrix}$$

1b. (10pts) Using analytical methods design a linkage attached to dyad W that will drive this mechanism to place 10 bolts in one minute. Be sure to indicate the RPM's required of the motor. Print out your computer solution and attach it to the back of this sheet. Summarize your results below. (**Bonus 5pts**: solve with a quick return ration T_R =.75)

$$10\frac{Rev}{min} \cdot \frac{min}{60 \, s} \cdot \frac{2 \cdot \pi \, rad}{Rev} = 1.047 \, \frac{1}{s}$$

NON-QUICK-RETURN (From Three Position Results)

	X-pos	Y-pos	mag	angle	i	j
04	-111.53	183.40	214.64	121.3	-0.5196	0.8544
3P-A1	-198.11	233.50	306.21	130.3	-0.6470	0.7625
3P-A2	-188.22	119.17	222.77	147.7	-0.8449	0.5350
3P-A3	-77.41	89.37	118.23	130.9	-0.6547	0.7559
Factors						

Р	0.5	% dist up Link 4		
K	-2.5	Length of Link 3+Lin	k 2 to B1B2	
Link 1	282.51			
Link 2	47.00			
Link 3	281.99			
Link 4	50.02	Grashof		

$\dot{\theta}_2 =$	1.0470 1/s
$\ddot{\theta}_2 =$	0.0000 1/s^2
ω3-1	0.1745 1/s
ω3-i	-0.0432 1/s
ω3-2	-0.1745 1/s
ω4-1	0.0000 1/s
ω4-i	-1.0235 1/s
ω4-2	0.0000 1/s
α3-1	-0.4183 1/s^2
α3-i	0.3777 1/s^2
α3-2	-0.5856 1/s^2
α4-1	2.5098 1/s^2
α4-i	0.3385 1/s^2
α4-2	-3.5138 1/s^2

	x comp	y comp	mag	angle	i	j
rO4	-111.53	183.40	214.64	121.3	-0.5196	0.8544
rO43P-A1	-86.58	50.10	100.03	149.9	-0.8655	0.5009
rO43P-A2	-76.69	-64.22	100.03	-140.1	-0.7667	-0.6420
rO43P-A3	34.12	-94.03	100.03	-70.1	0.3411	-0.9400
rB1	-154.82	208.45	259.65	126.6	-0.5962	0.8028
rO4B1	-43.29	25.05	50.02	149.9	-0.8655	0.5009
rB2	-94.47	136.38	165.90	124.7	-0.5694	0.8221
rO4B2	17.06	-47.02	50.02	-70.1	0.3411	-0.9400
rBi	-149.87	151.29	212.95	134.7	-0.7038	0.7104
rO4Bi	-38.35	-32.11	50.02	-140.1	-0.7667	-0.6420
rB1B2	60.35	-72.07	94.00	-50.1	0.6420	-0.7667
rO2	-305.69	388.61	494.44	128.2	-0.6183	0.7860
rB102	-150.87	180.16	234.99	129.9	-0.6420	0.7667
rBiO2	-155.82	237.33	283.91	123.3	-0.5488	0.8359
rA1	-335.87	424.65	541.41	128.3	-0.6203	0.7843
rO2A1	-30.17	36.03	47.00	129.9	-0.6420	0.7667
rA2	-275.52	352.58	447.46	128.0	-0.6157	0.7880
rO2A2	30.17	-36.03	47.00	-50.1	0.6420	-0.7667
rAi	-263.52	409.36	486.85	122.8	-0.5413	0.8408
rO2Ai	42.17	20.75	47.00	26.2	0.8972	0.4415
rB1A1	-181.05	216.20	281.99	129.9	-0.6420	0.7667
rBiAi	-113.65	258.08	281.99	113.8		0.9152
rB2A2	-181.05	216.20	281.99	129.9	-0.6420	0.7667
rO4O2	-194.16	205.22	282.51	133.4	-0.6873	0.7264

intermediate

negatives b

Kinematics							
	x comp	y comp	mag	angle	i	j	
r1	194.16	-205.22	282.51	-46.6	0.6873	-0.7264	
r4-1	-43.29	25.05	50.02	149.9	-0.8655	0.5009	
r4-i	-38.35	-32.11	50.02	-140.1	-0.7667	-0.6420	
r4-2	17.06	-47.02	50.02	-70.1	0.3411	-0.9400	
r2-1	-30.17	36.03	47.00	129.9	-0.6420	0.7667	
r2-i	42.17	20.75	47.00	26.2	0.8972	0.4415	
r2-2	30.17	-36.03	47.00	-50.1	0.6420	-0.7667	
r3-1	181.05	-216.20	281.99	-50.1	0.6420	-0.7667	
r3-i	113.65	-258.08	281.99	-66.2	0.4030	-0.9152	
r3-2	181.05	-216.20	281.99	-50.1	0.6420	-0.7667	
vA-1	-37.73	-31.59	49.21	-140.1	-0.7667	-0.6420	
vA-i	-21.73	44.15	49.21	116.2	-0.4415	0.8972	
vA-2	37.73	31.59	49.21	39.9	0.7667	0.6420	
vB-1	0.00	0.00	0.00	-120.1	-0.5009	-0.8655	
vB-i	-32.87	39.25	51.19	129.9	-0.6420	0.7667	
vB-2	0.00	0.00	0.00	-160.1	-0.9400	-0.3411	
aA-1	33.08	-39.50	51.52	-50.1	0.6420	-0.7667	
aA-i	-46.23	-22.75	51.52	-153.8	-0.8972	-0.4415	
aA-2	-33.08	39.50	51.52	129.9	-0.6420	0.7667	
aB-1	-62.87	-108.65	125.53	-120.1	-0.5009	-0.8655	
aB-i	51.04	20.66	55.06	22.0	0.9269	0.3752	
aB-2	-165.20	-59.95	175.74	-160.1	-0.9400	-0.3411	

1c. (10 pts) Determine the angular velocity of each link in this mechanism and the velocity of P2 when the bolt is in position 2 using analytical methods. Attach your computer output to the back of this sheet. Summarize the results below.

KINEMATI	KINEMATIC ANALYSIS - CRITICAL POSITIONS							
	x-coord	y-coord.	mag	angle	i	j		
O2	-111.53	183.40	214.64	121.3	-0.5196	0.8544		
A1	-198.11	233.50	306.21	130.3	-0.6470	0.7625		
A2	-188.22	119.17	222.77	147.7	-0.8449	0.5350		
A3	-77.41	89.37	118.23	130.9	-0.6547	0.7559		
P1	0.00	0.00	0.00	#DIV/0!	#DIV/0!	#DIV/0!		
P2	99.00	13.00	99.85	7.5	0.9915	0.1302		
P3	111.17	-151.89	188.23	-53.8	0.5906	-0.8070		

ω2-1	0.0000 1/s
ω2-2	-1.0235 1/s
ω2-3	0.0000 1/s
α2-1	2.5098 1/s^2
α2-2	0.3385 1/s^2
α2-3	-3.5138 1/s^2
ω3-1	0.0000 1/s
ω3-2	-0.2038 1/s
ω3-3	0.0000 1/s
ω4-1	0.0000 1/s
ω4-2	0.2976 1/s
ω4-3	0.0000 1/s
α3-1	1.2337 1/s^2
α3-2	-0.6974 1/s^2
α3-3	2.9970 1/s^2
α4-1	0.2126 1/s^2
α4-2	-0.6714 1/s^2
α4-3	2.0178 1/s^2

	x comp	y comp	mag	angle	i	j
r1	0.42	-221.72	221.72	-89.9	0.0019	-1.0000
r4-1	107.71	205.27	231.81	62.3	0.4647	0.8855
r4-2	125.19	195.10	231.81	57.3	0.5401	0.8416
r4-3	225.58	53.38	231.81	13.3	0.9731	0.2303
r2-1	-86.58	50.10	100.03	149.9	-0.8655	0.5009
r2-2	-76.69	-64.22	100.03	-140.1	-0.7667	-0.6420
r2-3	34.12	-94.03	100.03	-70.1	0.3411	-0.9400
r3-1	194.71	-66.55	205.77	-18.9	0.9463	-0.3234
r3-2	202.30	37.61	205.77	10.5	0.9832	0.1828
r3-3	191.88	-74.31	205.77	-21.2	0.9325	-0.3611
rAP-1	198.11	-233.50	306.21	-49.7	0.6470	-0.7625
rAP-2	287.22	-106.18	306.21	-20.3	0.9380	-0.3467
rAP-3	188.58	-241.26	306.21	-52.0	0.6158	-0.7879
vA-1	0.00	0.00	0.00	-120.1	-0.5009	-0.8655
vA-2	-65.73	78.49	102.38	129.9	-0.6420	0.7667
vA-3	0.00	0.00	0.00	-160.1	-0.9400	-0.3411
vB-1	0.00	0.00	0.00	152.3	-0.8855	0.4647
vB-2	-58.07	37.26	68.99	147.3	-0.8416	0.5401
vB-3	0.00	0.00	0.00	103.3	-0.2303	0.9731
vP-1	0.00	0.00	0.00	9.5	0.9864	0.1646
vP-2	-87.37	19.95	89.62	167.1	-0.9749	0.2226
vP-3	0.00	0.00	0.00	48.6	0.6614	0.7500
aA-1	-125.74	-217.30	251.06	-120.1	-0.5009	-0.8655
aA-2	102.08	41.32	110.12	22.0	0.9269	0.3752
aA-3	-330.41	-119.89	351.49	-160.1	-0.9400	-0.3411
aB-1	-43.65	22.90	49.29	152.3	-0.8855	0.4647
aB-2	119.90	-101.34	156.99	-40.2	0.7638	-0.6455
aB-3	-107.71	455.19	467.76	103.3	-0.2303	0.9731
aP-1	162.31	27.09	164.56	9.5	0.9864	0.1646
aP-2	16.10	-154.58	155.42	-84.1	0.1036	-0.9946
aP-3	392.66	445.28	593.67	48.6	0.6614	0.7500

KINEMATIC ANALYSIS - CRITICAL POSITIONS						
	x-coord	y-coord.	mag	angle	i	j
O4	-111.11	-38.32	117.53	-161.0	-0.9454	-0.3260
B1	-3.39	166.95	166.99	91.2	-0.0203	0.9998
B2	14.09	156.78	157.41	84.9	0.0895	0.9960
B3	114.48	15.06	115.46	7.5	0.9915	0.1304
P1	0.00	0.00	0.00	180.0	-1.0000	0.0000
P2	99.00	13.00	99.85	7.5	0.9915	0.1302
P3	111.17	-151.89	188.23	-53.8	0.5906	-0.8070

Three-position analytical synthesis

1d. (10pts) Using graphical methods design a linkage to perform the outlined task with fixed pivots on the base (not necessarily the ones shown).

1e. (10pts) Using graphical methods design the Grashof drive linkage attached to the Dyad W that will drive this mechanism to place 10 bolts in one minute.

1d. (10pts) Using graphical methods design a linkage to perform the outlined task with fixed pivots on the base (not necessarily the ones shown).

1e. (10pts) Using graphical methods design the Grashof drive linkage attached to the Dyad W that will drive this mechanism to place 10 bolts in one minute.

Problem 2: (10pts) For the four bar linkage shown, in the configuration indicated, determine the angular velocities, linear velocities, angular accelerations, and linear accelerations of the links, moving pivots, and point p. Summarize your results below and attach our computer print out to the back of this sheet.

-1.6021E+00

-5.8913E+00

K3=

K4=

	x comp	y comp	mag	angle	i	j
r04=	8.00	0.00	8.00	0.0	1.000	0.000
rA=	2.60	1.50	3.00	30.0	0.866	0.500
rBA=	9.00	0.25	9.00	1.6	1.000	0.028
rBO4=	3.59	1.75	4.00	26.0	0.899	0.439
rB=	11.59	1.75	11.73	8.6	0.989	0.150
rPA=	7.13	13.20	15.00	61.6	0.475	0.880
rP=	9.73	14.70	17.62	56.5	0.552	0.834
vA=	-22.50	38.97	45.00	120.0	-0.500	0.866
vBA=	-0.21	7.55	7.55	91.6	-0.028	1.000
vB=	-22.71	46.52	51.77	116.0	-0.439	0.899
vPA=	-11.08	5.98	12.59	151.6	-0.880	0.475
vP=	-33.58	44.96	56.11	126.8	-0.598	0.801
aA=	-487.07	-506.37	702.60	-133.9	-0.693	-0.721
аВА	-6.03	-10.94	12.49	-118.9	-0.483	-0.876
аВ	-493.10	-517.31	714.67	-133.6	-0.690	-0.724
aPA=	10.76	-17.82	20.82	-58.9	0.517	-0.856
aP=	-476.31	-524.20	708.28	-132.3	-0.672	-0.740
ALT	x comp	y comp	mag	angle	i	j
rO4=	8.00	0.00	8.00	0.0	1.000	0.000
rA=	2.60	1.50	3.00	30.0	0.866	0.500
rBA=	7.58	-4.86	9.00	-32.7	0.842	-0.540
rBO4=	2.17	-3.36	4.00	-57.1	0.544	-0.839
rB=	10.17	-3.36	10.71	-18.3	0.950	-0.313
rPA=	13.32	6.89	15.00	27.3	0.888	0.459
rP= vA=	15.92 -22.50	8.39 38.97	18.00 45.00	27.8 120.0	0.885 -0.500	0.466
v A= vBA=	-22.50 -58.71	-91.59	108.79	-122.7	-0.540	-0.842
vBA= vB=	-81.21	-52.62	96.76	-147.1	-0.839	-0.544
vPA=	83.27	-161.06	181.31	-62.7	0.459	-0.888
vP=	60.77	-122.09	136.38	-63.5	0.446	-0.895
aA=	-487.07	-506.37	702.60	-133.9	FALSE	-0.721
aBA	595.70	3365.94	3418.25	80.0	0.174	0.985
аВ	108.63	2859.57	2861.63	87.8	0.038	0.999
aPA=	-4361.91	3664.77	5697.08	140.0	-0.766	0.643
	-4848.97					

Problem 3: (10 pts) For slider crank linkage shown, in the configuration indicated, determine the angular velocities, linear velocities, angular accelerations, and linear accelerations of the links, and moving pivots. Summarize your results below and attach our computer print out to the back of this sheet.

a=	3
b=	9
c=	5
$\theta_2 =$	30
$\dot{\theta}_2 =$	100
$\theta_2 =$	18

Slider Crank

a=	3	Link 2
b=	9	Link 3
C=	5	Link 1
$\theta_2 =$	30	0.523598776
	100	$\frac{1}{s}$
$\theta_2 =$	18	$\frac{1}{s^2}$
By=	5.00	5.00
Bx=	10.89	-5.69
$\theta_3 =$	22.9	157.1
$\dot{\theta}_3 =$	-31.33	31.33
$\dot{\theta}_3 =$	2217.87	-2217.87
vB=	-40.33	-259.67
aB=	-41911.11	-10104.41

Problem 4: (15 pts) Using graphical methods design a non-quick return, Grashof, rocker linkage that will give the two positions shown.

Problem 4: (15 pts) Using graphical methods design a non-quick return, Grashof, rocker linkage that will give the two positions shown.

Problem 5: (15 pts) Using graphical methods design a coupler linkage that will give the two positions shown.

Problem 5: (15 pts) Using graphical methods design a coupler linkage that will give the two positions shown.

(ALT. SOL. 1)

Problem 5: (15 pts) Using graphical methods design a coupler linkage that will give the two positions shown.

(ALT. SOL. Z)

Problem 5: (15 pts) Using graphical methods design a coupler linkage that will give the two positions shown.

(Au Sa 3)

Problem 5: (15 pts) Using graphical methods design a coupler linkage that will give the two positions shown.

-9-