Manuel Mager

Redes Neuronales para datos secuenciales

July 2, 2019

Institute for Natural Language Processing University of Stuttgart

Contenido

- 1 Introducción
 Nociones generales
 RNNs
- 2 LSTM ¿Qué es un LSTM? Variantes de un LSTM
- 3 Aplicaciones
 Arquitecturas

Introducción

Introducción al procesamiento secuencial

Datos no secuenciales

Las primeras redes neuronales lograron clasificar datos no secuenciales.

Ejemplo

Clasificar flores basándonos en 4 características: largo del pétalo, ancho del pétalo, largo del sépalo, ancho del sépalo. Se clasifica las flores en 3 especies.

Datos no secuenciales

Las primeras redes neuronales lograron clasificar datos no secuenciales.

Ejemplo

Clasificar flores basándonos en 4 características: largo del pétalo, ancho del pétalo, largo del sépalo, ancho del sépalo. Se clasifica las flores en 3 especies.

Datos secuenciales

Ciertos datos, están se relacionan entre sí sobre una serie de tiempo.

- Desarrollo de la economía de un país
- La temperatura
- Lenguaje Humano
- La organización molecular de las proteínas

Es una secuencia que contiene vectores x_t que ocurre en un tiempo t que occure de 1..T.

Ejemplo con lenguaje

Tratemos de encontrar la entidad de nombre en la siguiente frase.

Ejemplo con lenguaje

Tratemos de encontrar la entidad de nombre en la siguiente frase.

Redes Neuronales Recursivas (RNN)

Es una clase especial de redes neuronales artificiales que tiene conexiónes entre nodos de un grafo dirigido a lo largo de una secuencia temporal.

Un RNN puede ser entendido como un grafo computacional con estructuras repetitivas, que corresponde a una cadena de eventos. El sistema dinámico

$$h_t = f(h_{t-1})$$

puede ser expanido de la siguiente forma para t+1.

$$h_{t+1} = f(h_t)$$

= $f(f(h_{t-1}))$

Gráficamente podemos visualizarlo de la siguiente manera:

h...

Un RNN puede ser entendido como un grafo computacional con estructuras repetitivas, que corresponde a una cadena de eventos. El sistema dinámico

$$h_t = f(h_{t-1})$$

puede ser expanido de la siguiente forma para t + 1.

$$h_{t+1} = f(h_t)$$

= $f(f(h_{t-1}))$

Un RNN puede ser entendido como un grafo computacional con estructuras repetitivas, que corresponde a una cadena de eventos. El sistema dinámico

$$h_t = f(h_{t-1})$$

puede ser expanido de la siguiente forma para t+1.

$$h_{t+1} = f(h_t)$$

= $f(f(h_{t-1}))$

Un RNN puede ser entendido como un grafo computacional con estructuras repetitivas, que corresponde a una cadena de eventos. El sistema dinámico

$$h_t = f(h_{t-1})$$

puede ser expanido de la siguiente forma para t+1.

$$h_{t+1} = f(h_t)$$

= $f(f(h_{t-1}))$

Un RNN puede ser entendido como un grafo computacional con estructuras repetitivas, que corresponde a una cadena de eventos. El sistema dinámico

$$h_t = f(h_{t-1})$$

puede ser expanido de la siguiente forma para t + 1.

$$h_{t+1} = f(h_t)$$

= $f(f(h_{t-1}))$

$$h(t) = f(h_{t-1}, x_t)$$

$$h(t) = f(h_{t-1}, x_t)$$

$$h(t) = f(h_{t-1}, x_t)$$

$$h(t) = f(h_{t-1}, x_t)$$

$$h(t) = f(h_{t-1}, x_t)$$

$$h(t) = f(h_{t-1}, x_t)$$

$$\mathbf{a}_t = \mathbf{b} + \mathbf{W}\mathbf{h}_{t-1} + Ux_t$$

$$\mathbf{h}_t = \tanh(\mathbf{a}_t)$$

$$\mathbf{o}_t = \mathbf{c} + \mathbf{V}\mathbf{h}_t$$

$$\mathbf{h}_t = \operatorname{softmax}(\mathbf{o}_t)$$

$$\mathbf{a}_t = \mathbf{b} + \mathbf{W}\mathbf{h}_{t-1} + U\mathbf{x}_t$$

$$\mathbf{h}_t = \tanh(\mathbf{a}_t)$$

$$o_t = c + Vh_t$$

$$\mathbf{h}_t = \operatorname{softmax}(\mathbf{o}_t)$$

$$\mathbf{a}_t = \mathbf{b} + \mathbf{W}\mathbf{h}_{t-1} + U\mathbf{x}_t$$

 $\mathbf{h}_t = \tanh(\mathbf{a}_t)$
 $\mathbf{o}_t = \mathbf{c} + \mathbf{V}\mathbf{h}_t$

$$\mathbf{a}_t = \mathbf{b} + \mathbf{W}\mathbf{h}_{t-1} + U\mathbf{x}_t$$

$$\mathbf{h}_t = \tanh(\mathbf{a}_t)$$

$$o_t = c + Vh_t$$

$$\mathbf{h}_t = \tanh(\mathbf{a}_t)$$

$$\mathbf{o}_t = \mathbf{c} + \mathbf{V}\mathbf{h}_t$$

$$\mathbf{h}_t = \operatorname{softmax}(\mathbf{o}_t)$$

Loss function

la función de pérdida es la suma de la función de pérdida sobre todos los momentos en el tiempo.

$$L(y,\hat{y}) = \sum_{t} L^{(t)}$$

Gradiente para RNNs

Para ilustrar el back propagation por el tiempo vamos a usar una RNN bastante simple.

$$s_t = \tanh(Ux_t + Ws_{t-1}) \tag{1}$$

$$\hat{y}_t = \operatorname{softmax}(Vs_t) \tag{2}$$

Y definimos nuestra función de loss cómo un cross entropy.

$$E_t(y_t, \hat{y}_t) = -y_t \log \hat{y}_t \tag{3}$$

$$E(y,\hat{y}) = \sum_{t} E_t(y_t,\hat{h}_t)$$
 (4)

$$= -\sum_{t} y_t \log \hat{y}_t \tag{5}$$

Figure: Fuente: http://www.wildml.com

Aplicaciones 00000

Ahora queremos calcular las gradientes del error respecto a los parámetros *U*, *V* y *W*. Para ello sumamos las gradientes de cada paso en el tiempo para cada ejemplo de entrenamiento:

$$\frac{\partial E}{\partial W} = \sum_{t} \frac{\partial E_{t}}{\partial W} \tag{6}$$

Para $\frac{\partial E_t}{\partial V}$ resolver esto es fáci, ya que únicamente requerimos conocer \hat{y}_t , y_t , s_t . Para t=3 tenemos la sigueinte derivada.

$$\frac{\partial E_3}{\partial V} = \frac{\partial E_3}{\partial \hat{y}_3} \frac{\partial \hat{y}_3}{\partial V} \tag{7}$$

$$= \frac{\partial E_3}{\partial \hat{y}_3} \frac{\partial \hat{y}_3}{\partial z_3} \frac{\partial z_3}{\partial V} \tag{8}$$

$$=(\hat{y}_3-y_3)\otimes s_3 \tag{9}$$

Donde $z_3 = Vs_3$ y \otimes es el producto exterior de dos vectores.

$$\frac{\partial E_3}{\partial W} = \frac{\partial E_3}{\partial \hat{y}_3} \frac{\partial \hat{y}_3}{\partial s_3} \frac{\partial s_3}{\partial W}$$
 (10)

(11)

Dado que $s_3 = \tanh(Ux_3 + Ws_2)$ este depende de s_2 que depende de W y s_1 , etc. Por ello debemos expandir la regla de la cadena.

$$\frac{\partial E_3}{\partial W} = \frac{\partial E_3}{\partial \hat{y}_3} \frac{\partial \hat{y}_3}{\partial s_3} \frac{\partial s_3}{\partial s_k} \frac{\partial s_k}{\partial W}$$
(12)

(13)

La diferecia con una red neuronal no recurrente es que en las RNN sumamos las grdientes para W en cada paso de tiempo.

Figure: Fuente: http://www.wildml.com

Problemas de las RNN

- RNN son difíciles de entrnar.
- 2 No logran aprender dependencias sobre secuencias largas.
- 3 Esto se debe al problema del desvanecimiento del gradiente

El problema del desvanecimiento del gradiente

Figure: Fuente: http://nn.readthedocs.org/en/rtd/transfer/

- Una red Long-Short Term Memory (LSTM) es un tipo de red neuronal recursova.
- 2 fue inventada por Hochreiter & Schmidhuber (1997).
- 3 Fue diseñada espesíficamente para evitar el problema de aprender largas dependencias.

```
Excelente lectura: https:
```

//colah.github.io/posts/2015-08-Understanding-LSTMs/

Figure: Fuente: https://colah.github.io/

Forget gate layer

Figure: Fuente: https://colah.github.io/

Input gate layer

$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

Figure: Fuente: https://colah.github.io/

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

Figure: Fuente: https://colah.github.io/

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

Figure: Fuente: https://colah.github.io/

Figure: Fuente: https://colah.github.io/

- Uno a uno (Etiquetado de secuencias, inferencia de fenómenos ocultos.)

- Uno a uno (Etiquetado de secuencias, inferencia de fenómenos ocultos.)
- Muchos a uno (Generación de descripciones de imágenes)

- Uno a uno (Etiquetado de secuencias, inferencia de fenómenos ocultos.)
- Muchos a uno (Generación de descripciones de imágenes)
- Uno a muchos (Clasificación de textos)

- Uno a uno (Etiquetado de secuencias, inferencia de fenómenos ocultos.)
- Muchos a uno (Generación de descripciones de imágenes)
- Uno a muchos (Clasificación de textos)
- Muchos a muchos (Traducción, resumen)

Varios a uno

Varios a uno

Varios a varios

