AE 330 Rocket Propulsion Boundary Layers & Turbulence

Kowsik Bodi Aerospace Engineering, IIT Bombay

Displacement Thickness

Flow Separation

Flow Separation

Nozzle: Decreasing pressure and area	Throat: Constant pressure and area	Diffuser: Increasing pressure and area
Increasing velocity	Velocity constant	Decreasing velocity
Favorable gradient	Zero gradient	Adverse gradient (boundary layer thickens)

Flow Separation

Flat-plate Boundary Layer

Pipe Flow

Pipe Flow – Reynolds Experiment

Pipe Flow – Reynolds Experiment

Pipe Flow – Reynolds Experiment

Turbulent Fluctuations

Pipe Flow – Mean Flow Profile

$$\frac{\overline{u}}{V_c} = \left(1 - \frac{r}{R}\right)^{1/n}$$

Pipe Flow - Mean Flow Profile

Pipe Flow – Mean Flow

Flat-plate Boundary Layer

Flat-plate Boundary Layer

Flat Plate Flow - Mean Flow

How to model?

Turbulent Fluctuations

Turbulence Intensity
$$\mathcal{J} = \frac{\sqrt{\overline{(u')^2}}}{\overline{u}}$$

Reynolds Averaged Navier-Stokes (RANS)

$$\frac{\partial \bar{u}_i}{\partial t} + \frac{\partial}{\partial x_j} \left(\bar{u}_i \bar{u}_j \right) = -\frac{1}{\rho_o} \frac{\partial \bar{p}}{\partial x_i} - \frac{\partial}{\partial x_j} \left(\overline{u_i' u_j'} \right) + \nu \frac{\partial^2 \bar{u}_i}{\partial x_j \partial x_j}$$

Reynolds
$$\tau_{_{t_{ij}}} = -\overline{u_i'u_j'} = \nu_t \frac{\partial \overline{u}_i}{\partial x_j}$$
 Stress tensor

$$v \sim v_{th} \lambda_{mfp}$$

Classical Collisional transport

Classical Collisional transport

Turbulent transport

 l_m is "mixing length"

$$v_t \sim v_t \lambda_t \sim \frac{l_m^2}{\tau_m} = l_m^2 \frac{\partial \bar{u}}{\partial y}$$

Prandtl

Turbulent transport

$$v_t \sim v_t \lambda_t \sim \frac{l_m^2}{\tau_m} = l_m^2 \frac{\partial \bar{u}}{\partial y}$$

	l_m
plane jet	0.09 <i>l</i>
circular jet	0.075 <i>l</i>
mixing layer	0.07 <i>l</i>
wall boundary layer	$κy, \frac{y}{\delta} \le \frac{\kappa_o}{\kappa}$ $κδ, \frac{y}{\delta} \ge \frac{\kappa_o}{\kappa}$ $κ = 0.41, \kappa_o = 0.09$

Turbulent Mixing Layer

Mixing Layer between Helium (upper) and Nitrogen (lower) streams

Turbulence

Kolmogorov's Energy Spectrum

Turbulence

Kolmogorov's Energy Spectrum

Turbulence

Kolmogorov's Energy Spectrum

$$v_t \sim v_t \lambda_t \sim \frac{l_m^2}{\tau_m} = l_m^2 \frac{\partial \bar{u}}{\partial y}$$

	l_m
plane jet	0.09 <i>l</i>
circular jet	0.075 <i>l</i>
mixing layer	0.07 <i>l</i>
wall boundary layer	$κy, \frac{y}{\delta} \le \frac{\kappa_o}{\kappa}$ $κδ, \frac{y}{\delta} \ge \frac{\kappa_o}{\kappa}$ $κ = 0.41, \kappa_o = 0.09$

References

• Images from the books of White, Heister et al., Munson et al., Kundu et al., and Rodriguez