Villamosságtan 3. előadás

Összeállította: Kőházi-Kis Ambrus

Az előadás vázlata

- 1 Elektromos áram, elenállás
- 2 Egyszerű áramkörök
- Thevenin- és Norton tétele
- Az elektromos áram teljesítménye

A diasorozat az alábbi könyv tananyagának felhasználásával készült:

Erostyák János, Litz József, A fizika Alapjai, Nemzeti Tankönyvkiadó, Budapest, 2002

Az elektromos áram

- Az elektromos áram a töltések rendezett áramlása.
- ullet Áramerősség: I , mértékegysége: A (amper), $1\,\mathrm{A} = 1\,\mathrm{C/s}$

$$I=rac{Q}{t}$$
,

ahol Q a vezető valamely keresztmetszetén t idő alatt átáramló töltés mennyisége.

- Az elektromos áramerősség megadja a vezető egy keresztmetszetén egységnyi idő alatt átáramló töltés nagyságát.
- Megállapodás szerint az áram iránya a pozitív töltések áramlási iránya (negatív töltések ellentétes iráyú áramlásával egyenértékű).

Ellenálláson folyó áram

- Ellenállások feszültsége a két bekötési pontja közötti feszültség.
- A feszültség iránya a végpontok sorrendjét jelöli ki.
- Az ellenállásokon a töltések áramlását az elektromos tér hajtja.
- A bennük folyó áram iránya, azaz a pozitív töltések áramlási iránya a feszültség irányába, azaz a potenciálesésirányába esik.

• Ellenállásokon a feszültség és az áram iránya megegyezik.

Elektromos ellenállás – Ohm-törvénye

ullet Elektromos ellenállás: R , mértékegyége: Ω (ohm), $1\,\Omega=1{
m V/A}$

$$R=\frac{U}{I}\,,$$

ahol I az adott ellenálláson rákapcsolt U feszültség hatására folyó áram.

- A fenti "törvény" legalább annyira definiáló összefüggés, mint természettörvény.
- Bármely áramköri elemnek definiálhatjuk úgy az elektromos ellenállását mint a rákapcsolt feszültség és a rajta átfolyó áram hányadosát.
- Valójában csak az idealizált lieneáris ohmikus ellenállásra teljesül Ohm-törvénye, azaz, hogy a feszültség és az áramszigorúan lineáris függvénykapcsolatban vannak egymással.
- Fémből készült ellenállásokra jó közelítéssel teljesül Ohm.törvénye.

Fémes vezetékek ellenállása

I hosszúságú, állandó A keresztmetszetű vezeték ellenállása:

$$R = \frac{\rho I}{A} ,$$

ahol ho a vezeték anyagának fajlagos ellenállása.

ullet Fajlagos ellenállás: ho , mértékegysége: $\Omega\,\mathrm{m}$

$$\rho = R \frac{A}{I} .$$

A gyakran a fenti SI-egység tört részét szokták használni:

$$1 \Omega \frac{\text{mm}^2}{\text{m}} = 1 \Omega \frac{\left(10^{-3} \text{ m}\right)^2}{\text{m}} = 10^{-6} \Omega m = 1 \mu \Omega \text{m}.$$

- Például: $\rho_{\rm Cu}=0,018\,\mu\Omega{\rm m},~\rho_{\rm Al}=0,028\,\mu\Omega{\rm m},~\rho_{\rm Fe}=0,12\,\mu\Omega{\rm m}$ (20 °C hőmérsékleten).
- A legjobb vezető anyagok a nemesfémek (arany, ezüst).

Ellenállások hőmérséklet-függése

 Fémes vezetők esetén szobahőmérséklet közelében az ellenállás jó közelítéssel lineárisan függ a hőmérséklettől:

$$R = R_0 \left(1 + \alpha \left(T - T_0 \right) \right) ,$$

ahol R_0 az ellenállás értéke T_0 hőmérsékleten (gyakran $T_0=20\,^{\rm o}{\rm C}$), α az ellenállás anyagának lineáris hőmérsékleti együtthatója, aminek mértékegysége: $1/{\rm K}=1/{\rm ^o}{\rm C}$.

- Fémek esetén jellemzően a hőmérséklet növekedésével növekszik az ellenállás ($\alpha > 0$), félvezetők esetén azonban a hőmérséklet növekedésével egyre kisebb az ellenállás.
- Fémes anyagok esetén $T_0 = 20\,{}^{\rm o}{\rm C}$ közelében $\alpha \approx 4\cdot 10^{-3}\,1/K$.
- Például: egy $T_0=20\,^{\rm o}{\rm C}$ hőmérsékleten $R_0=100\,\Omega$ -os ellenállás ha anyagának lineáris hőmérsékleti együtthatója $\alpha=4\cdot 10^{-3}\,1/K$, akkor $T=120\,^{\rm o}{\rm C}$ hőmérsékleten $R=140\,\Omega$.

Ellenállások soros és páhuzamos kapcsolása – 1

soros kapcsolás

$$U = U_1 + U_2$$
 $I = I_1 = I_2$
helyette:

$$R_{\rm e} = \frac{U}{T}$$

$$R_{\rm e} = R_1 + R_2$$

párhuzamos kapcsolás

$$\begin{split} R_{\rm e} &= \frac{\textit{U}}{\textit{I}} \\ R_{\rm e} &= \textit{R}_1 \times \textit{R}_2 \equiv \frac{\textit{R}_1 \, \textit{R}_2}{\textit{R}_1 + \textit{R}_2} \end{split}$$

Ellenállások soros és páhuzamos kapcsolása – 2

soros kapcsolás

parhuzamos kapcsolas

feszültségosztás:

$$U_1 = rac{R_1 U}{R_1 + R_2} \,,$$
 $U_2 = rac{R_2 U}{R_1 + R_2} \,,$ $rac{U_1}{U_2} = rac{R_1}{R_2} \,.$

áramosztás:

$$I_{1} = \frac{R_{2} I}{R_{1} + R_{2}} ,$$

$$I_{2} = \frac{R_{1} I}{R_{1} + R_{2}} ,$$

$$\frac{I_{1}}{I_{2}} = \frac{R_{2}}{R_{1}} = \left(\frac{R_{2}}{R_{1}}\right)^{-1}$$

Egyszerű áramkör

- Az áramkörben az áram körbe folyik.
- A feszültség értéke, előjele független az úttól, csak a kezdő és a végponttól függ.
- Generátorban az áram és a feszültség ellentétes irányú.
- A fogyasztóban az elektromos tér hajtja az áramot, ezért itt az áram és a feszültség azonos irányúak.

Ideális feszültséggenerátor

• Ideális feszültséggenerátor: minden áramkörben pontosan az U_0 forrásfeszültségével egyenlő feszültséget kelt.

Jele:
$$U_0 \bigvee U_1$$

- Az ideális feszültséggenerátor minden R_k ellenállásra ugyanazt az U_0 feszültséget kapcsolja. Ha R_k egyre kisebb, akkor ugyanazon feszültség rajta egyre nagyobb áramot kell áthajtson.
- A valóságos generátorok ezt vég nélkül nem tudják teljesíteni: növekvő áram esetén csökken az U_k kapocsfeszültségük.

Valóságos feszültséggenerátor

 Valóságos (nem ideális) feszültséggenerátor: a generátor véges teljesítőképességét egy R_b belső ellenállással vehetjük figyelembe:

- Ideális feszültséggenerátorok belső ellenállása nulla.
- Nem ideális feszültséggenerátor által keltett áram a belső ellenállásán az úgynevezett U_b belső feszültséget kelti, amely miatt az U_k kapocsfeszültség jellemzően kisebb, mint a generátor U_0 forrásfeszültsége:

$$U_k \leq U_0 \; , \quad U_k = U_0 - U_b \; .$$

Egyszerű áramkör feszültséggenerátorral

$$U_k = U_0 - R_b I,$$

$$U_k = \frac{R_k U_0}{R_b + R_k},$$

$$I = \frac{U_0}{R_b + R_k}.$$

- 1) Üresjárás: $U_k = U_0$, ekkor $R_k = \infty$.
- 2) Rövidzár: $I = I_{rz} = \frac{U_0}{R_b}$, ekkor $R_k = 0$.

Ideális áramgenerátor

• Ideális áramgenerátor: minden áramkörben pontosan az I_0 forrásárammal egyenlő áramot kelt.

Jele:

- Az ideális áramgenerátor minden R_k ellenálláson ugyanazt az I₀ áramot hajtja keresztül. Ha R_k egyre nagyobb, akkor ugyanazon áram rajta egyre nagyobb feszültséget jelent.
- A valóságos generátorok ezt vég nélkül nem tudják teljesíteni: növekvő feszültség esetén csökken a generátor árama.

Valóságos áramgenerátor

 Valóságos (nem ideális) áramgenerátor: a generátor véges teljesítőképességét egy R_b belső ellenállással vehetjük figyelembe:

- Ideális áramgenerátorok belső ellenállása végtelen.
- Nem ideális áramgenerátor a belső ellenállásán folyik áram, ezért a kapcson kiáramló áram általában kisebb, mint a generátor forrásárama:

$$I_k \le I_0 \;, \quad I_k = I_0 - I_b \;.$$

Egyszerű áramkör áramgenerátorral

$$I_k = I_0 - U/R_b,$$

$$I_k = \frac{R_b I_0}{R_b + R_k},$$

$$U = I \left(R_b \times R_k \right).$$

- 1) Üresjárás: $U_k = U_{\ddot{u}} = I_0 R_b$, ekkor $R_k = \infty$.
- 2) Rövidzár: $I = I_{rz} = I_0$, ekkor $R_k = 0$.

Műszerek idealitása

- Mérőműszerekkel szemben alapvető elvárás, hogy kalibráltak legyenek: kijelzőjük azt az értéket mutassa, amelyet érzékelője észlel.
- A műszerek ennek teljesülése esetén sem tekinthetők ideálisnak: nem feltétlenül azt mérik, amit szeretnénk.
- Általában ugyanis a műszer a mérés során kölcsönhat a mért rendszerrel, annak viselkedését módosítja.
- Mi általában nem a mérés által megzavart rendszer jellemzőire vagyunk kíváncsiak, hanem a megzavarás (a mérőműszer bekapcsolása) nélküli rendszer paramétereire.
- Ideális műszereknek nevezzük azokat a műszereket, amelyek mérés során nem zavarják meg a mért rendszert.

Ideális feszültségmérő

• Ideális feszültségmérő jele:

- Az áramköri elemek feszültségén mindig a bekötési pontjai közötti feszültséget értjük.
- Feszültségmérő bekötése: párhuzamosan

 A feszültségmérő akkor nem zavarja a mérendő áramkört, akkor tekinthető ideálisnak, ha olyan, mintha ott se lenne, ha szakadásként viselkedik, azaz belső elleállása végtelen:

$$R_b = \infty$$
, gyakorlatilag: $R_b \gg R$.

Nem ideális (valóságos) feszültségmérő

 A feszültségmérőt csupán belső ellenállásával kell figyelembevenni, mert az ideális műszer olyan, mnitha ott se lenne.

Kapcsolása: párhuzamosan

Feszültségmérő méréshatárának kiterjesztése – 1

- ullet Adott egy alapműszerünk: U_0 a méréshatára, R_b a belső ellenállása.
- ullet Szeretnénk U feszültségig méréseket végezni, de $U>U_0$.
- Az alapműszerrel egy úgynevezett R_E előtétellenállást kell sorba kapcsolni:

 Minél nagyobb az előtétellenállás, annál kisebb része esik az U feszültségnek a műszerre.

Feszültségmérő méréshatárának kiterjesztése – 2

- Az U feszültségnek csak egy, az $R_{\rm b}$ és $R_{\rm E}$ ellenállások arányától függő rögzített hányadát mérjük a műszerrel, amely átskálázásával így már a nagyobb feszültség is mérhető.
- A feszültségosztás:

$$U_0 = \frac{R_\mathrm{b} U}{R_\mathrm{b} + R_\mathrm{E}} \ .$$

ullet Legyen $k=U/U_0$, a méréshtárnövelés szorzója, ezzel

$$R_{\rm E}=R_{\rm b}~(k-1)$$
.

ullet Az $R_{
m E}$ ellenállással kibővített műszerünk $R_{
m b}'$ belső ellenállása:

$$R_{\mathrm{b}}' = k R_{\mathrm{b}}$$
.

 Az univerzális mérőműszerekben a feszültségmérés méréshatárának változtatásakor az előtétellenállást változtatjuk.

ldeális árammérő

Ideális árammérő jele:

- Az elektromos áram a vezeték egy keresztmetszetén időegység alatt átáramló töltés mennyiségét jelenti.
- Árammérő bekötése: sorosan

$$R$$
 A A

- Az áramkört meg kell szakítani, hogy az árammérőt beiktassuk az áramkörbe, hogy a mérendő áram átfolyhasson rajta.
- Az árammérő akkor nem zavarja a mérendő áramkört, akkor tekinthető ideálisnak, ha olyan, mintha ott se lenne, ha rövidzárként viselkedik, azaz belső elleállása nulla:

$$R_b = 0$$
, gyakorlatilag: $R_b \ll R$.

Nem ideális (valóságos) árammérő

 Az árammérőt csupán belső ellenállásával kell figyelembevenni, mert az ideális műszer olyan, mnitha ott se lenne.

Kapcsolása: sorosan

 Az árammérő műszer akkor zavarja kevéssé a vizsgált áramkör működését, ha a vizsgált áramköri ágban egymással sorbakötött ellenállások összegénél lényegesebb a belső ellenállása.

Árammérő méréshatárának kiterjesztése – 1

- ullet Adott egy alapműszerünk: I_0 a méréshatára, R_b a belső ellenállása.
- Szeretnénk I áramig méréseket végezni, de $I > I_0$.
- Az alapműszerrel egy úgynevezett R_S söntellenállást kell sorba kapcsolni:

 Minél kisebb a söntellenállás, annál kisebb része folyik az I áramnak a műszer felé.

Árammérő méréshatárának kiterjesztése – 2

- Az I áramnak csak egy, az $R_{\rm b}$ és $R_{\rm S}$ ellenállások arányától függő rögzített hányadát mérjük a műszerrel, amely átskálázásával így már a nagyobb áram is mérhető.
- A feszültségosztás:

$$I_0 = \frac{R_S I}{R_b + R_S} \ .$$

ullet Legyen $k=I/I_0$, a méréshtárnövelés szorzója, ezzel

$$R_{S} = \frac{R_{b}}{k-1} .$$

ullet Az R_E ellenállással kibővített műszerünk R_b' belső ellenállása:

$$R_b'=\frac{R_b}{k}.$$

 Az univerzális mérőműszerekben az árammérés méréshatárának változtatásakor a söntellenállást változtatjuk.

Egy egyszerű áramkör ideális feszültséggenerátorral

• Legyen $U_0 = 12 \text{ V}$, $R_b = 20 \Omega$, $R_k = 100 \Omega$.

A külső ellenálláson eső feszültség:

$$I = \frac{U_0}{R_b + R_k} = \frac{12 \text{ V}}{20 \Omega + 100 \Omega} = 0, 1 \text{ A}$$

A külső ellenállásonfolyó áram:

$$U_{\rm k} = \frac{R_{\rm k} \ U_0}{R_{\rm b} + R_{\rm k}} = \frac{100 \ \Omega \ 12 \ {
m V}}{20 \ \Omega + 100 \ \Omega} = 10 \ {
m V}$$

 Megvizsgáljuk, hogy hogyan módosúlnak a mérni kívánt áram, illetve feszültségértékek, ha nem ideális mérőműszerrel mérjük őket.

Mérés nem ideális feszültségmérővel

• Megmérjük a kapocsfeszültséget egy $R_{\rm v}=900\,\Omega$ belső ellenállású feszültségmérővel:

ullet Az ideális feszültségmérő mintha ott se lenne, viszont az $R_{
m v}$ ellenállással lényegében megváltozik a külső ellenállás $R_{
m k}'$ értéke:

$$R'_k = R_k \times R_v = \frac{100 \Omega 900 \Omega}{100 \Omega + 900 \Omega} = 90 \Omega.$$

ullet A lényegében kisebb külső ellenállás kisebb $U_{\mathbf{k}}'$ kapocsfeszültséget eredményez:

$$U'_{k} = \frac{R'_{k} U_{0}}{R_{b} + R'_{k}} = \frac{90 \Omega 12 V}{20 \Omega + 90 \Omega} = \underline{9,82 V}$$

Mérés nem ideális árammérővel

• Megmérjük az $R_{
m k}$ ellenálláson folyó áramot egy $R_{
m a}=10\,\Omega$ belső ellenállású árammérővel:

 Az ideális árammérő mintha ott se lenne, viszont az R_a ellenállással lényegében megváltozik a külső ellenállás R'_k értéke:

$$R'_k = R_k + R_a = 100 \,\Omega + 10 \,\Omega = 110 \,\Omega$$
.

 A lényegében nagyobb külső ellenállás kisebb I' áramerősséget eredményez:

Egyszerűsítő képek

 Elemek, akkumulátorok, tápegységek, vagy akár a hálózati feszültség gyakran névleges feszültségükkel meghatározottak, attól függetlenül, hogy éppen milyen bonyolult áramkör is van mögötte.

 Áramgenerátorok külön nem kaphatók boltban, de összetett áramkörök részecskéit lehet áramgenerátornak tekinteni, pl.

Thevenin tétele

 Tetszőleges áramkör bármely kétpólusa helyettesíthető egy valóságos (nem ideális) feszültsggenerátorral.

- Összetett áramkörök úgy tekinthetők, mint egy nem ideális feszültséggenerátor – bármilyen bonyolult szerkezete is van.
- Az R_b belső ellenállást az eredeti áramkörben az A-B pontok közötti ellenállásként kell számolni úgy, hogy az áramkörből a generátorokat elhagyjuk.
- ullet Általános esetben $R_{
 m b}$ nemlineáris: értéke függ a terheléstől.

Norton tétele

 Tetszőleges áramkör bármely kétpólusa helyettesíthető egy valóságos (nem ideális) áramgenerátorral.

- Összetett áramkörök úgy tekinthetők, mint egy nem ideális áramgenerátor – bármilyen bonyolult szerkezete is van.
- Az R_b belső ellenállást az eredeti áramkörben az A-B pontok közötti ellenállásként kell számolni úgy, hogy az áramkörből a generátorokat elhagyjuk.
- ullet Általános esetben $R_{
 m b}$ nemlineáris: értéke függ a terheléstől.

Az elektromos tér munkát végez az áramló töltéseken

• I áram azt jelenti, hogy Δt idő alatt $\Delta Q = I \Delta t$ töltés áramlik át a vezető egy keresztmetszetén.

ullet Az U feszültségen áthaladó ΔQ töltésen az elektromos tér munkája

$$\Delta W = U \Delta Q.$$

• Az egységnyi idő alatt végzett munka a *P* teljesítmény:

$$P = \frac{\Delta W}{\Delta t} = \frac{U \Delta Q}{\Delta t} = UI.$$

Az elektromos áram teljesítménye

- Az ellenállásokon az áram teljesítménye hőt generál Joule-hő.
- Egyéb fogyasztókon az elektromos energia egyéb energiaformává is átalakulhat. pl.:
 - villanymotor mechnikai energia,
 - elektromos fényforrás (LED, lézerdióda, izzólámpa, fénycső) fényenergia
 - akkumulátor töltő elektromos energia
- Az elektromos teljesítmény másképpen is felírható az Ohm-törvény $(U=R\,I)$ felhasználásával:

$$P = UI = RI^2 = \frac{U^2}{R}.$$

Fogyasztó illesztése a feszültségforráshoz

Mekkora ellenállású fogyasztó esetén nyerhető egy feszültségforrásból a maximális teljesítmény?

$$P_k = R_k I_k^2 = \frac{R_k U_0^2}{(R_b + R_k)^2} ,$$

$$I = \frac{U_0}{R_L + R_L} .$$

- Ebben a felvetésben P_klényegében R_k függvénye (R_b és U₀ állandó paramétereknek tekinthetőek)
- P_k maximális, ha

$$\frac{\mathrm{d}\,P_k}{\mathrm{d}\,R_k}=0\,,$$

$$\frac{\mathrm{d} P_k}{\mathrm{d} R_k} = \frac{U_0^2 \left[1 (R_b + R_k)^2 - R_k 2 (R_b + R_k) \right]}{(R_b + R_k)^4} = 0,$$

amiből

$$R_k = R_b$$
,

azaz akkor nyerhető egy generátorból a legnagyobb teljesítmény, ha annak belső ellenállásával megegyező nagyságú fogyasztóval terheljük.

Elektromos áram, elenállás Egyszerű áramkörök Thevenin- és Norton tétele Az elektromos áram teljesítménye

Köszönöm a figyelmet!