Practice Exam 1

Chemistry 605 (Reich)

FIRST HOUR EXAM

Thur, March 3, 2011

•	١.	ies	tır	n	ப	\sim	n	t٠
١.	, ,		111) I I/		U		1.5

R-10A____/7

R-10B____/15

R-10C____/23

R-10D____/25

R-10E____/30

Total _____/100

Name_____

If you place answers anywhere else except in the spaces provided, (e.g. on the spectra or on extra pages) clearly indicate this on the answer sheets.

Problem R-10A (C_6H_8O). Below are given the ¹³C NMR spectra of two stereoisomers of 3-methyl-pent-2-ene-4-yn-1-ol. Assign structures, and assign the signals by writing the δ values next to the appropriate carbons on each structure (Source: Aldrich Spectra Viewer).

Briefly explain the basis for your assignment. Be specific.

Problem R-10B (C₉H₂₀O). Identify the compound whose ¹³C NMR spectrum is given below.

- (a) DBE_____. What functional groups might be present?_____
- (b) What does the signal at δ 61.1 tell you about the structure?
- (c) Plausible structures? Circle your choice. Assign the signals by placing the appropriate letters (A-G) on the structure.

(d) Do a chemical shift calculation for the carbon to which you have assigned the signal F (δ 51.3) using the Grant-Cheney parameters.

Problem R-10C (C₂₃H₃₄O₂SSi) A 500 MHz ¹H spectra is provided.

(a) The structure of R-10C is given below. All of the important signals in the ^{1}H NMR spectrum are labeled (A, B, C etc). Assign the proton signals by placing appropriate labels on the structure. For parts (b), (c) and (d), identify the couplings (e.g. for (b): $J_{GX} = 22$ Hz, $J_{GY} = 32$ Hz)

(b) The multiplet at δ 2.9 (**G**) is shown above. How many other protons are coupled to this one?____ Draw a coupling tree for **G** and reort the coupling constants

(c) What kind of pattern is the multiplet at δ 2.5 (**H**)?_____ Draw a coupling tree on the multiplet, label it, and report *J* values.

Problem R-10C (C₂₃H₃₄O₂SSi) 500 MHz ¹H NMR Spectrum in CDCl₃ (Source: Margaret K. Jones/Burke 10/19) Hz 30 20 10 Е Н 2.95 2.90 5.51 2.55 2.50 2.45 2.40 5.30 2.10 1.98 2.20 2.15 1.08 1 15 1,10 1.09 C D E F G ΗΙJ Κ Μ В 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 ppm

(a) DBE_____

	th of the signals listed below report multiplicity and coupling consta er analysis, and the part structure each corresponds to.	ants to the
A		
В		
C		
D		
E		
F		
G		
(c) Give the structure of R-10D . If more than vith the assgnments (A-G)	an one structure is possible, circle your best choice. Label the prot	ons

Problem R-10D (C₈H₇NO₂). Determine the structure of **R-10D** from the ¹H NMR spectrum provided.

Problem R-03D (C₈H₇NO₂) Assign proton signals 300 MHz ¹H NMR Spectrum in CDCl₃ Source: Aldrich Spectral Viewer/Reich

orovided.	H ₁₆ O ₃). Determine the structure of R-10E from the ¹ H NMR, ¹³ C NMR and IR spectra
(a) DBE (b) W	hat information can you obtain from the IR spectrum (give frequency and peak assignment)
(c) Interpret the ¹³ C values.	NMR spectrum, showing any part structures that can be identified, and the corresponding δ
δ	
14.13	
17.68	
19.76	
22.40	
46.98	
60.65	
72.47	
177.80	
	7 in the 'H NMR spectrum disappears when the sample is shaken with D ₂ O, and the signal quartet. What does this tell you about the structure?
3.9 becomes a 1:3:3:1 (e) Analyze the ¹ H Natructure in the standar	quartet. What does this tell you about the structure?
(e) Analyze the ¹ H Natructure in the standar he signal(s).	quartet. What does this tell you about the structure?
(e) Analyze the ¹ H Natructure in the standar he signal(s).	quartet. What does this tell you about the structure? NMR spectrum. For each of the groups of signals marked on the spectrum, report the multip d format (e.g., 0.0δ , dtd, $J = 0.0$, 0.0 , $0.0 Hz$, $2H$) and any part structure you could obtain fr
(e) Analyze the ¹ H Natructure in the standar he signal(s). A B	quartet. What does this tell you about the structure? $ \frac{1}{3} = \frac{1}{3} $ IMR spectrum. For each of the groups of signals marked on the spectrum, report the multiple different (e.g., 0.0 δ , dtd, J = 0.0, 0.0, 0.0 Hz, 2H) and any part structure you could obtain from the spectrum of
(e) Analyze the ¹ H Natructure in the standar the signal(s). A B C	IMR spectrum. For each of the groups of signals marked on the spectrum, report the multip d format (e.g., $0.0~\delta$, dtd, J = 0.0 , 0.0 , $0.0~Hz$, $2H$) and any part structure you could obtain from the spectrum of the

circling the structure

Problem R-10E (C₈H₁₆O₃). IR Spectrum Neat

Source: Nicolet FT-IR

Problem **R-10G** ($C_8H_8Br_2$). This problem requires you to analyze the signals at δ 4.1 and δ 5.2. You are given the structure.

(a) Do a "first order" analysis of the two multiplets shown below. Draw a coupling tree, and estimate couplings. What type of pattern is this?

(b) Do an accurate (quantitative) analysis. Use the frequencies shown above. If more than one solution is possible, show them both, and draw the proper coupling tree on the spectra below. Use appropriate criteria to distinguish the two. Show your work, and tabulate your data in an easily readable form.

