

MAT8034: Machine Learning

Generalized Linear Models

Fang Kong

https://fangkongx.github.io/Teaching/MAT8034/Spring2025/index.html

Part of slide credit: Stanford CS229

Outline

- The exponential family
 - Motivation/Intuition
 - Examples
- Generalized linear models (GLMs)
 - Design ideas
 - Workflow

The exponential family

Motivation

- In the regression problem $y|x; \theta \sim \mathcal{N}(\mu, \sigma^2)$
- In the classification problem $y|x; \theta \sim \text{Bernoulli}(\phi)$

Whether these distributions can be uniformly represented?

If P has a a special form, then inference and learning come for free

The exponential family

 $p(y;\eta) = b(y) \exp(\eta^T T(y) - a(\eta))$

- y: data label (scalar)
- η : natural parameter
- T(y): sufficient statistic
- b(y): base measure, depend on y, but not η (scalar)
- $a(\eta)$: log partition function (scalar) $1 = \sum_{y} P(y; \eta) = e^{-a(\eta)} \sum_{y} b(y) \exp \left\{ \eta^T T(y) \right\}$

$$\implies a(\eta) = \log \sum_{y} b(y) \exp \left\{ \eta^{T} T(y) \right\}$$

Example 1: Bernoulli distribution

• Bernoulli(ϕ)

$$p(y; \eta) = b(y) \exp(\eta^T T(y) - a(\eta))$$

•
$$p(y = 1; \phi) = \phi; \ p(y = 0; \phi) = 1 - \phi$$

$$p(y;\phi) = \phi^y (1-\phi)^{1-y}$$

$$= \exp(y\log\phi + (1-y)\log(1-\phi))$$

$$= \exp\left(\left(\log\left(\frac{\phi}{1-\phi}\right)\right)y + \log(1-\phi)\right)$$

$$\eta = \log(\phi/(1-\phi))$$

$$T(y) = y$$

$$a(\eta) = -\log(1-\phi)$$

$$= \log(1+e^{\eta})$$

$$b(y) = 1$$

Example 2: Gaussian distribution with $\sigma^2=1$

• Gaussian(μ , 1)

$$p(y; \eta) = b(y) \exp(\eta^T T(y) - a(\eta))$$

$$p(y;\mu) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}(y-\mu)^2\right)$$
$$= \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}y^2\right) \cdot \exp\left(\mu y - \frac{1}{2}\mu^2\right)$$

Thus, we see that the Gaussian is in the exponential family, with

$$\eta = \mu$$

$$T(y) = y$$

$$a(\eta) = \mu^2/2$$

$$= \eta^2/2$$

$$b(y) = (1/\sqrt{2\pi}) \exp(-y^2/2).$$

An observation

Notice that for a Gaussian with mean μ we had

$$\eta = \mu, T(y) = y, a(\eta) = \frac{1}{2}\eta^2.$$

We observe something peculiar:

$$\partial_{\eta} a(\eta) = \eta = \mu = \mathbb{E}[y]$$
 and $\partial_{\eta}^2 a(\eta) = 1 = \sigma^2 = \text{var}(y)$

That is, derivatives of the log partition function is the expectation and variance. Same for Bernoulli.

Is this true in general?

Log Partition Function

Yes! Recall that

$$a(\eta) = \log \sum_{y} b(y) \exp \left\{ \eta^{T} T(y) \right\}$$

Then, taking derivatives

$$\nabla_{\eta} a(\eta) = \frac{\sum_{y} T(y)b(y) \exp\left\{\eta^{T} T(y)\right\}}{\sum_{y} b(y) \exp\left\{\eta^{T} T(y)\right\}} = \mathbb{E}[T(y); \eta]$$

Note: $\nabla^2_{\eta} a(\eta) = \text{var}[T(y); \eta]$, you can check!

 Takeaway: In this way, once we're in the exponential family, we get inference "for free" meaning in the same way for every member

Quiz: Gaussian distribution with σ^2

• Gaussian(μ , σ^2)?

$$p(y; \eta) = b(y) \exp(\eta^T T(y) - a(\eta))$$

Some Facts About Exponential Models

- ► There are many canonical exponential family models:
 - ▶ Binary → Bernoulli
 - ► Multiple Classses → Multinomial
 - ightharpoonup Real \mapsto Gaussian
 - ightharpoonup Counts \mapsto Poisson
 - $ightharpoonup \mathbb{R}_+ \mapsto \mathsf{Gamma}$, Exponential
 - ▶ Distributions → Dirichlet
- In this course, we'll use T(y) = y.

The GLMs

Three assumptions/design choices

- 1. $y \mid x; \theta \sim \text{ExponentialFamily}(\eta)$. I.e., given x and θ , the distribution of y follows some exponential family distribution, with parameter η .
- 2. Given x, our goal is to predict the expected value of T(y) given x. In most of our examples, we will have T(y) = y, so this means we would like the prediction h(x) output by our learned hypothesis h to satisfy $h(x) = \mathrm{E}[y|x]$. (Note that this assumption is satisfied in the choices for $h_{\theta}(x)$ for both logistic regression and linear regression. For instance, in logistic regression, we had $h_{\theta}(x) = p(y = 1|x;\theta) = 0 \cdot p(y = 0|x;\theta) + 1 \cdot p(y = 1|x;\theta) = \mathrm{E}[y|x;\theta]$.)
- 3. The natural parameter η and the inputs x are related linearly: $\eta = \theta^T x$. (Or, if η is vector-valued, then $\eta_i = \theta_i^T x$.)

How linear regression belongs to GLMs?

• Consider the label $y \sim N(\mu, \sigma^2)$

How logistic regression belongs to GLMs?

• Consider the label $y \sim \text{Bernoulli}(\phi)$

$$h_{ heta}(x) = E[y|x; heta]$$
 Assumption 2
$$= \phi \qquad \qquad \text{Bernoulli distribution}$$

$$= 1/(1+e^{-\eta}) \qquad \qquad \text{Assumption 1}$$

$$= 1/(1+e^{-\theta^T x}) \qquad \text{Assumption 3}$$

One reason for the definition of logistic regression

Workflow of GLMs

Model formulation

■ Maximum log-likelihood $\max_{\theta} \log p(y \mid x; \theta)$

• Gradient ascent to optimize $\theta^{(t+1)} = \theta^{(t)} + \alpha \left(y^{(i)} - h_{\theta^{(t)}}(x^{(i)}) \right) x^{(i)}$

Summary

- The exponential family
 - Motivation/Intuition
 - Examples
- Generalized linear models (GLMs)
 - Design ideas
 - Workflow