Data Structures: Graphs: Traversal, Minimum Spanning Tree, Graph Traversal Algorithms

Won Kim
(Lecture by Youngmin Oh)
Spring 2022

Graphs

- A tree is a special case of a graph
- Graphs are useful in modeling various problems, and devising algorithms for solving the problems.
 - Determining the cheapest airfare route
 - Determining the fastest route for routing messages in a telecommunication system
 - Determining the cheapest route for transmitting oil through a nationwide network of oil pipelines (USA)
 - Determining the most efficient way to complete a multi-task project
 - **....**

Real-World Graph Examples

Asiana Airlines Korea Route Map (no need for a graph algorithm ^ ^)

Continental Airlines US Route Map

"Social" Graph ("Knows Someone")

The Internet

Artificial Neural Networks (for Deep Learning)

input layer 1 hidden layer 2 hidden layer 3

Graph: Definitions - 1

- Node (Vertex)
 - No root node, no leaf node
- Edge
 - undirected edge
 - undirected graph
 - directed edge
 - directed graph (di-graph)
 - one-way, two-way
 - in-degree, out-degree
 - weighted edge
 - (directed or undirected) weighted graph

Definitions - 1: Illustrated

Definitions - 1: Illustrated (cont'd)

Definitions - 1: Illustrated (cont'd)

in-degree

A: 1

B: 2

C: 2

out-degree

A: 1

B: 1

C: 1

D: 1

E: 1

Definitions - 2

- Subgraph
 - A part of a graph that is itself a graph
- Connected Graph
 - A graph in which any node can be reached from any other node.
- Disconnected Graph
 - A graph in which at least one node cannot be reached from some other node.
- Adjacent Nodes
 - Two nodes with a direct edge between them
- Complete (Connected) Graph
 - A special case of a connected graph
 - Every node is adjacent to every other node.

Definitions - 2: Illustrated

connected graph

adjacent nodes

A & B

A & E

B & C

C & D

Definitions - 2: Illustrated (cont'd)

connected graph

subgraph

Definitions - 3

- Path (from node A to node B)
 - A sequence of edges (from node A to node B)
- Cycle
 - A path that returns to the starting node
- Cyclic Graph
 - A graph with a cycle
- Acyclic Graph
 - A graph with no cycle

Definitions - 2: Illustrated (cont'd)

disconnected graph

Definitions - 2: Illustrated (cont'd)

complete graph

Definitions - 3: Illustrated

acyclic graph

cyclic graph

Graph Algorithms

- Graph representation
- Graph traversal
- Spanning tree
- Minimum spanning tree
- Minimum spanning tree algorithms
- Transitive closure algorithms

Representation of a Graph

- Adjacency Matrix
 - Create an (n x n) 2-dimensional matrix
 - n is the number of nodes in the graph.
 - A (1 or 0) entry for each (row-column) node pair
 - 1 if the pair is adjacent; 0 otherwise
- Adjacency Lists
 - For each node, create a linked list of adjacent nodes

Representation of a Graph: Example 1

	А	В	С	D	Е
Α		1			1
В	1		1		
С		1		1	
D			1		
E	1				

Representation of a Graph: Example 2

adjacency lists

Graph Traversal

Depth-First Traversal

- From a node, visit one adjacent node recursively, until there is no new adjacent node.
- Then backtrack, and visit the next adjacent node recursively.
- Finish when every adjacent node of the initial node has been recursively traversed.

Breadth-First Traversal

- From a node, visit adjacent nodes one at a time.
- Then visit all unvisited adjacent nodes of each of the adjacent nodes of the original node one at a time.
- Finish when all nodes on each of the paths from the original node have been visited.

Depth-First Traversal: Example 1 (while discovering cycles)

Breadth-First Traversal: Example (while discovering cycles)

- Obtained from a connected graph of N nodes
 - Via a depth-first traversal or breadth-first traversal
 - A tree of N nodes and N-1 edges
 - Cycles are removed from the graph.
- More than one spanning tree may be obtained from the same connected graph.

Depth-First Traversal: Example 1

Depth-First Traversal: Example 1 (cont'd)

Exercise 1: Obtain One Spanning Tree through a Depth-First Traversal

Exercise 1: Solution

Exercise 1: Solution

a spanning tree

Breadth-First Traversal: Example

Breadth-First Traversal: Example (cont'd)

Exercise 2: Obtain One Spanning Tree through a Breadth-First Traversal

Exercise 2: Solution

Exercise 2: Solution

a spanning tree

- A graph is a linked list of data, where a data item is linked to other data items by a certain relationship.
- A search for a data item on a graph proceeds from one data item to another data item that satisfies a certain relationship. The search from a data item may return to itself.
- The network of a graph is a convenient visualization of the relationships among the data items.

- Obtained from a weighted connected graph of N nodes
- A spanning tree with A minimum total weight of all the edges.
- In general not unique
- Used to model and solve some "minimumcost" problems
 - (e.g.) minimum-cost construction of subway system routes

Minimum Spanning Tree

- Three well-known algorithms
 - Prim's algorithm
 - Kruskal's algorithm
 - Sollin's algorithm

Prim's Algorithm

- Start from a node of an undirected graph.
- Examine all adjacent nodes.
- Pick a minimum-weight edge
 - (and insert it into a list of visited nodes).
- Continue from the selected adjacent node.
 - Examine all edges not selected.
 - Examine all edges to new adjacent nodes.
 - Pick a minimum-weight edge, avoiding cycles.
 - (And insert it into a list of visited nodes)
- Continue until all nodes of the graph have been included (in the list of visited nodes(and all edges have been considered at least once.

Prim's Algorithm: Illustrated

Do NOT pick the B-D edge.

total = 10

Prim's Algorithm: Exercise 3

Prim's Algorithm:Solution

- Examine all edges of an undirected graph.
- Pick a minimum-weight edge, avoiding cycles.
 - (And insert the new node into a list of visited nodes)
- Continue until all nodes of the graph have been included (in the list of visited nodes).
- Greedy algorithm
 - At each step, selects the minimum-weight edge among all edges

Kruskal's Algorithm: Illustrated

Do NOT pick the B-D edge.

Do NOT pick the D-E edge.

total = 10

66

Kruskal's Algorithm: Exercise 4

Kruskal's Algorithm: Solution

Transitive Closure Algorithms

Determining direct and indirect paths between two nodes of a connected directed graph

transitive closure

Popular Algorithms

- Dijkstra's algorithm
- Warshall's algorithm

- Determine a "least cost" path from node A and node B on a directed graph.
- A kind of minimum spanning tree algorithm, but does not span the entire graph and edges are directed.
- Performance: O(N²)

Dijkstra's Algorithm: Illustrated

Find the lowest cost path from A to D.

adjacency matrix

	Α	В	С	D	Е	F
Α	X	1	5	7	ı	2
В	_	X	2	5	I	I
С	_	_	X	_	1	_
D	_	_	_	Х	_	_
Е	_	_	_	1	Х	-
F	-	-	-	_	_	X 72

	Α	В	С	D	Е	F
Α	X	1	5	7	_	2
В	ı	X	2	5	-	_
C	ı	ı	Х	ı	1	_
D	-	-	-	Х	_	_
Ε	-	-	_	1	Х	_
F	I	I	ı	ı	-	Х

path	В	C	D	E	F
A,B	1	5	7	_	2

E	Г
_	2
-	2
	_

	A	В	С	D	Е	F
А	Х	1	5	7	-	2
В	-	Х	2	5	_	_
С	-	_	Х	_	1	_
D	-	_	_	Х	_	_
Е	_	_	_	1	Х	-
F	_	_	_	_	_	Х

)						
path	В	С	D	Е	F	
A,B	1	5	7	ı	2	
A,F		3B	6B	ı	2	
A,B,C		3B	6B	_		

	Α	В	C	D	E	F
Α	X	1	5	7	-	2
В	I	X	2	5	I	ı
C	ı	ı	X	ı	1	_
О	ı	ı	ı	X	-	_
Ш	ı	ı	ı	1	X	_
F	_	_	_	_	_	Х

3B

3B

6B

6B

6B

4C

A,B

A,F

A,B,C

A,B,C,E

F	
2	
2	

Α	X	1	5	7	ı	2
В	ı	Х	2	5	ı	ı
С	-	-	Х	_	1	-
D	_	_	-	Х	-	-
Е	_	_	_	1	Х	_
F	_	_	_	_	_	Х

path	В	С	D	Е	F
A,B	1	5	7	_	2
A,F		3B	6B	_	2
A,B,C		3B	6B	_	
A,B,C,E			6B	4C	
A,B,C,E,D			5E		

Iowest cost path A-B-C-E-D cost = 5

Dijkstra's Algorithm: Exercise 5 (Lowest Cost Path from A to E)

path	В	С	D	Е
A,B	1	5	7	-
A,B,C		3B	6B	5B
A,B,C,E			6B	4C

lowest cost path A-B-C-E cost = 4

- Computes transitive closure using an adjacency matrix
- Performance: O(N³)

Warshall's Algorithm: Illustrated

Scan the matrix from left to right from top to bottom.

adjacency matrix

	Α	В	С	D	Е	F
Α	0	1	1	1	0	1
В	0	0	1	1	0	0
С	0	0	0	0	1	0
D	0	0	0	0	0	0
Е	0	0	0	1	0	0
F	0	0	0	0	0	0

$A \rightarrow C = 1$
C->E=1
means
$A \rightarrow E = 1$

	Α	В	С	D	Е	F
Α	0	1	1	1	1	1
В	0	0	1	1	~	0
С	0	0	0	1	1	0
D	0	0	0	0	0	0
Е	0	0	0	1	0	0
F	0	0	0	0	0	0

Example: Find a Transitive Closure Using Warshall's Algorithm

	Α	В	С	D	Е	F	G	Н
Α	0	0	1	0	0	1	0	0
В	1	0	0	0	0	0	0	0
С	0	1	0	1	0	0	0	0
D	0	0	0	0	0	0	1	0
Е	0	0	1	0	0	0	0	0
F	0	0	0	1	0	0	0	0
G	0	0	0	0	0	1	0	0
Н	0	0	0	0	1	0	0	0

B->A=1
means
B -> C = 1
$B \rightarrow F = 1$

	A	В	C	D	Е	F	G	Ι
Α	0	0	1	0	0	1	0	0
В	1	0	1	0	0	1	0	0
С	1	1	0	1	0	1	0	0
D	0	0	0	0	0	0	1	0
E	0	0	1	0	0	0	0	0
F	0	0	0	1	0	0	0	0
G	0	0	0	0	0	1	0	0
Н	0	0	0	0	1	0	0	0

End

	Α	В	C	D	Е	F	G	Ι
Α	0	1	1	1	0	1	1	0
В	1	0	1	1	0	1	1	0
С	1	1	0	1	0	1	1	0
D	0	0	0	0	0	1	1	0
Е	1	1	1	1	0	1	1	0
F	0	0	0	1	0	0	1	0
G	0	0	0	1	0	1	0	0
Н	1	1	1	1	1	1	1	0

Find the shortest path and its length from Node 0 to ALL THE OTHER NODES in the graph using Dijksta's algorithm.

i.e., Find the solution for each of the following:

Node 0 to Node 1: shortest path and its length

Node 0 to Node 2: shortest path and its length

•••••

Node 0 to Node 8 : : shortest path and its length

End of Lecture