Curriculum: Hao Yan

School of Molecular Sciences & Center for Molecular Design, Biodesign Institute
Arizona State University

Email: hao.yan@asu.edu Lab website: yanlab.asu.edu

RESEARCH PROGRAM SUMMARY:

I am a (bio)molecular designer and engineer. The theme of my research is to use nature's design rules as inspiration to advance biomedical, energy-related, and other technological innovations through the use of self-assembling molecules and materials. I aim to create intelligent materials with better component controls at the atomic and molecular levels. Our interdisciplinary team is interested in designing bio-inspired molecular building blocks such as DNA, RNA and proteins and programming their higher order assembly into systems that will perform complex functions. My ultimate goals are 1) to engineer an information guided self-assembling molecular system for the finest possible interactions of molecules in a three-dimensional space; and 2) to create manmade molecular machines/molecular robotics through molecular design, molecular programming, directed molecular evolution and molecular systems engineering.

EDUCATION

Ph.D. in Chemistry	New York University, New York, NY Advisor: Nadrian C. Seeman	August 2001
B.S. in Chemistry	Shandong University, Jinan, P.R.China	July 1993

EMPLOYMENT AND APPOINTMENT

•	09/2013 to Present	Director, Center for Molecular Design and Biomimetics Biodesign Institute, Arizona State University, Tempe, AZ
•	09/2015 to Present	Milton D. Glick Distinguished Professor School of Molecular Sciences & Biodesign Institute, Arizona State University, Tempe, AZ
•	01/2012 to 08/2015	Milton D. Glick Distinguished Professor Department of Chemistry and Biochemistry & Biodesign Institute, Arizona State University, Tempe, AZ
•	08/2008 to 01/2012	Professor Department of Chemistry and Biochemistry & Biodesign Institute, Arizona State University, Tempe, AZ
•	08/2004 to 08/2008	Assistant Professor Department of Chemistry and Biochemistry & Biodesign Institute, Arizona State University, Tempe, AZ
•	09/2001 to 07/2004	Assistant Research Professor Department of Computer Science, Duke University, Durum, NC

ENTREPRENEURSHIP

• 02/2021 to Present Co-founder, Exodigm Biosciences, Inc.

AWARDS and HONORS

- Humboldt Research Award, Alexander von Humboldt Foundation, 2023.
- Named to the World's Top 2% Scientists' List Ranked by Stanford University for the 4th Consecutive Years, 2020-2023.
- Elected Fellow of the American Institute for Medical and Biological Engineering, 2023.
- Elected Fellow of the National Academy of Inventors, 2022.
- Feynman Prize in Nanotechnology, Experimental Category, Foresight Institute, 2020.
- Elected Fellow of American Association for the Advancement of Science (AAAS), 2019.
- Fast Company's 100 Most Creative People in Business, 2019.
- Web of Science 2018, 2019, 2020, 2021 & 2022 Highly Cited Researcher in Cross-Field.
- The Rozenberg Tulip Award in DNA Computing, 2013
- Arizona Technology Enterprise Achievement Award, 2014
- Finalist, Arizona State University Outstanding Doctoral Mentor Award, 2013
- Inaugural Milton D. Glick Distinguished Professor in Chemistry and Biochemistry, 2012
- Member of Steering Committee, International Meeting on DNA Computing and Molecular Programming, 2012 to present
- Arizona State University Promotion and Tenure Faculty Exemplar, 2008
- Alfred P. Sloan Research Fellowship, 2008
- Air Force Office of Scientific Research Young Investigator Award, 2007
- National Science Foundation CAREER Award, 2006
- Arizona Technology Enterprise Innovator of Tomorrow Award, 2006
- New York University GSAS Dean's Dissertation Fellowship, 2006

EDITORIAL BOARDS

- Associate Editor, ACS Applied Biomaterials, 2021 to Present
- Academic Associate Editor, Science Advances, 2021 to Present
- Member of Editorial Board, J. of Nanobiotechnology, 2019 to Present
- Member of Editorial Board, Nano Research, 2014 to Present

- Member of Editorial Board, Nature Scientific Report, 2016 to Present
- Member of Editorial Advisory Board, Langmuir, 2011 to 2015

HONORARY AND KEYNOTE LECTURESHIPS

- Ohio State University Institute for Materials Research Distinguished Lecturer, 2023
- Keynote speaker, World Congress of Nephrology, 2022
- BASF Lectureship in Chemical Sciences, University of California, Berkeley, 2018
- Keynote speaker, The 4th International Conference on DNA Nanotechnology, Xi'an, China, 2015.
- Keynote speaker, 40th Annual Naff Symposium on Chemistry and Molecular Biology, U. of Kentucky, 2014.
- Keynote speaker, Bio-Inspired Computing: Theories and Applications 2013 (BIC-TA 2013), Huangshan, China, 2013.
- Keynote speaker, 10th Annual Conference, Foundation of Nanoscience, Self-assembled Architectures and Devices, Snowbird, Utah, 2013.
- Keynote speaker, 7th Foundations of Nanoscience: Self-assembled Architectures and Devices, Snowbird, Utah, 2010.

SERVICE TO SCIENTIFIC SOCIETY AND CONFERENCES

- General co-chair, Annual Conference Foundation of Nanoscience, Snowbird, Utah, Starting in 2024
- Elected President, International Society for Nanoscale Science, Computation and Engineering, 2013-2015
- Steering Committee Member, International Meeting on DNA Computing and Molecular Programming, 2012-present
- Track Chair, Annual Conference Foundation of Nanoscience, Snowbird, Utah, 2021present
- Chair, Organizing Committee, 19th International Meeting on DNA Computing and Molecular Programming, Tempe, AZ, 2013
- Co-Chair, Program Committee, 13th International Meeting on DNA Computing and Molecular Programming, Memphis, TN, 2007
- Chair, MRS Symposium on DNA Nanotechnology, 2012
- Chair, Session on DNA Nanomachines in vitro and inside Living Cells, 54th Annual Biophysical Society Meeting, 2010
- Co-Chair for the Seventh International DNA Nanotechnology Conference, Co-chair, China, 2019

- Co-organizer and Scientific Coordinator for DNATEC17, Dresden, Germany, 2017
- Co-organizer for the Fifth International DNA Nanotechnology Conference, Nanjing, China, 2016
- Co-organizer for the Fourth International DNA Nanotechnology Conference, Xi'an, China, 2015
- Co-organizer for the Third International DNA Nanotechnology Conference, Suzhou, China, 2014
- Co-organizer for DNATEC14: Digital Chemistry, Dresden, Germany, 2014
- International Advisory Board Member of *Symposium H "Mining Smartness from Nature"* of CIMTEC, 2012
- Chair, Symposium in Honor of Ned Seeman, Snowbird, Utah, 2011
- Member of Steering Committee, International Conference on Bio-Inspired Computing: Theory and Applications (*BIC-TA*), 2011
- Chair, Workshop on "Bio-directed Assembly", Keystone, CO, 2010
- Co-Organizer, DNA Nanotechnology Workshop, Beijing, China, 2009
- Co-Organizer, International Workshop on DNA-based Nanotechnology: Construction, Mechanics, and Electronics, Dresden, Germany, May 11-15 (2009).
- Co-Organizer, DNA Nanotechnology Workshop, Beijing, China, 2009
- Session Chair: The Seventh International Meeting on Scanning Probe Microscopy, Cancun, Mexico (2005).

RESEARCH BIBLIOGRAPHY

1. Journal Publications

Google scholar profile: http://scholar.google.com/citations?user=arJVgNsAAAAJ&hl=en h-index: 97

A. At Arizona State University

240. H. Liu, M. Matthies, J. Russo, L. Rovigatti, R. Narayanan, T. Diep, D. McKeen, O. Gang, N. Stephanopoulos, F. Sciortino, H. Yan, F. Romano, P. Sulc*, Inverse Design of a Pyrochlore Lattice of DNA Origami Through Model-driven Experiments, *Science*, in revision (2024).

239. S. Fan, S. Wang, L. Ding, T. Speck, H. Yan*, S. Nussberger*, N. Liu*, Shape Matters: Autonomously Self-organized DNA Nanorobots as Masseur and Gatekeeper for Synthetic Cells, *Nature Materials*, in revision (2024).

238. C. Zhang*, R. Wu, F. Sun, Y. Lin, Y. Zhang, Y. Liang, Y. Chen., L. Liu*, Q. Ouyang*, L. Qian*, H. Yan*. Parallel DNA Storage by Programming and Printing Epigenetic Bits, *Nature*, in review (2023).

- 237. Y. Gao, Y. Sha, Y. Liu, J. Chen, M. Li, S. Gao, Q. Li, X. Zuo, C. Chen, T. Zhang, K. Wang, P. Wang, G. Chen, X. Liu*, H. Yan*, C. Fan*, Massively Parallel sub-10-nanometer lithography of Graphene with DNA-silica Composite Masked Material Manufacturing, *Nature Nanotechnology*, submitted (2023).
- 236. G. B. M. Wisna, D. Sukhareva, J. Zhao, D. Satyabola, H. Yan*, R. F. Hariadi*, DNA Origami Cryptography in 2D and 3D Space with Improved Detection and Fast Readout Enabled by High-Speed DNA-PAINT and Unsupervised Clustering, *Nature Communications*, submitted (2023).
- 235. Y. Xu[‡], R. Zheng[‡], A. Prasad[‡], M. Liu, X. Zhou, R. Porter, M. Sample, E. Poppleton, J. Procyk, H. Liu, H. Lee, H. Yan*, P. Sulc*, N. Stephanopoulos*, High-affinity binding to the SARS-CoV-2 spike trimer by a multivalent protein-DNA synthetic antibody, *J. Am. Chem. Soc.*, submitted (2023).
- 234. Y. Wang, H. Wang, Y. Li, C. Yang, Y. Tang, X. Lu, J. Fan, W. Tang, Y. Shang, H. Yan*, J. Liu*, B. Ding*, Chemically Conjugated Branched Staples for Super-DNA Origami, *J. Am. Chem. Soc.*, in press (2024).
- 233. T. Yip, X. Qi, H. Yan*, Y. Chang*, RNA Origami Functions as a Self-adjuvanted Nanovaccine Platform for Cancer Immunotherapy, *ACS Nano*, in revision (2024).
- 232. C. Simmons, H. Skyler, P. Sulc, N. Stephanopoulos*, H. Yan*, Self-assembling DNA Crystal Hosted Minor Groove Binders and Their Structure Determination with Crystallography, *J. Am. Chem. Soc.*, DOI:10.1021/jacs.3c07802 (2023).
- 227. R.P. Narayanan, A. Prasad, A. Buchberger, L. Zhou, J. Bernal-Chanchavac, T. MacCulloch, N.E. Fahmi, H. Yan, F. Zhang M.J. Webber*, N. Stephanopoulos*, Supramolecular polymerization of DNA nanostructures using high-affinity host-guest interactions. *Small*, 230785 (2023).
- 226. L. Yu, H. Yan*, DNA-based Computation for Multiple Biomarkers. *Nature Biomedical Engineering* 7, 1535-1536 (2023).
- 225. L. Yu, Y. Xu, M. Al-Amin, S. Jiang, M. Sample, A. Prasad, N. Stephanopoulos, P. Sulc, H. Yan*, CytoDirect: a Nucleic Acid Nanodevice for Specific and Efficient Delivery of Functional Payloads to the Cytoplasm. *J. Am. Chem. Soc.*, in press (2023).
- 224. Y. Tang, H. Liu, Q. Wang, X. Qi, L. Yu, P. Sulc, F. Zhang, H. Yan*, S. Jiang*, DNA Origami Tessellations, *J. Am. Chem. Soc.*, 145, 13858-13868 (2023).
- 223. J. Yang, K. Jahnke, L. Xin, X. Jing, P. Zhan, A. Peil, A. Griffo, M. Skugor, D. Yang, S. Fan, K. Gopfrich*, H. Yan*, P. Wang*, N. Liu*, Modulating Lipid Membrane Morphology by Dynamic DNA Origami Networks, *Nano Letters*, 23, 6330-6336 (2023).
- 222. K. Dai, C. Gong, Y. Xu, F. Ding, X. Qi, X. Tu, L. Yu, X. Liu, J. Li, C. Fan, H. Yan*, G. Yao* Single-Stranded RNA Origami-based Epigenetic Immunomodulation, *Nano Letters* 23, 7188-7196 (2023).
- 221. K. Dai, Y. Xu, Y. Yang, J. Shen, X. Liu, X. Tu, L. Yu, X. Qi, J. Li, L. Wang, X. Zuo, Y. Liu*, H. Yan*, C. Fan*, G. Yao*, Edge Length-Programmed Single-Stranded RNA Origami for Predictive Innate Immune Activation and Therapy, *J. Am. Chem. Soc.*, 145, 17112-17124 (2023).
- 220. Y. Tang, H. Liu, Q. Wang, X. Qi, L. Yu, P. Sulc, F. Zhang, H. Yan*, S. Jiang*, DNA Origami Tessellations, *J. Am. Chem. Soc.*, 145, 13858-13868 (2023).

- 219. D. Fu, R. P. Narayanan, A. Prasad, F. Zhang, D. Williams, J. S. Schreck, H. Yan*, J. Reif*. Automated Design of 3D DNA Origami with Non-rasterized 2D Curvature, *Science Advances*, 8, eade445 (2022).
- 218. X. Zhou', D. Satyabola, H. Liu, S. Jiang, X. Qi, L. Yu, S. Lin, Y. Liu, N.W. Woodbury*, H. Yan*. Two-Dimensional Excitonic Networks Directed by DNA Templates as an Efficient Model Light-Harvesting and Energy Transfer System, *Angew. Chem. Int. Ed.* 61, e2022112 (2022).
- 217. R. P. Narayanan, J. Procyk, P. Nandi, A. Prasad, Y. Xu, E. Poppleton, D. Williams, F. Zhang, H. Yan, P. Chiu*, N. Stephanopoulos*, and P. Šulc*, Coarse-Grained Simulations for the Characterization and Optimization of Hybrid Protein–DNA Nanostructures, *ACS Nano* 16, 14086-14096 (2022).
- 216. L. Ma, Y. Liu, C. Han, A. Movsesyan, P. Li, H. Li, P. Tang, Y. Yuan, S. Jiang, W. Ni, H. Yan, A. Govorov, Z. Wang, X. Lan*, DNA-Assembled Chiral Satellite-Core Nanoparticle Superstructures: Two-State Chiral Interactions from Dynamic and Static Conformations, *Nano Letters* 22, 4784-4791 (2022).
- 215. K. Chen, F. Xu, Y. Hu, H. Yan*, L. Pan*, DNA Kirigami Driven by Polymerase-Triggered Strand Displacement, *Small* 18, 2201478 (2022).
- 214. X. Zhou, H. Liu, F. Djutanta, D. Satyabola, S. Jiang, X. Qi, L. Yu, S. Lin, R.F. Hariadi, Y. Liu, N.W. Woodbury*, H. Yan*, DNA-Templated Programmable Excitonic Wires for Micron-Scale Exciton Transport, *Chem.* 8, 2442-2459 (2022).
- 213. X. Zhou, S. Lin, H. Yan*, Interfacing DNA nanotechnology and biomimetic photonic complex: advances and prospects in energy and biomedicine, *J. Nanobiotechnology* 20: 257 (2022).
- 212. C. Simmons, T. MacCulloch, M. Krepl, M. Matthies, A. Buchberger, I. Crawford, J. Sponer, P. Sulc, N. Stephanopoulos* and H. Yan*, The influence of Holliday junction sequence and dynamics on DNA crystal self-assembly *Nature. Communications* 13, article number 3112 (2022).
- 211. J. Bohlin', E. Poppleton', M. Matthies', J. Procyk', A. Mallya, H. Yan & P. Sulc*, Design and simulation of DNA, RNA, and hybrid protein-nucleic acid nanostructures with OxView, *Nature Protocols* 17, 1762-1788 (2022).
- 210. L. Liu, F. Hong, H. Liu, X. Zhou, S. Jiang, P. Sulc, J. Jiang*, H. Yan*, A localized DNA Finite State Machine with Temporal Resolution, *Science Advances* 8, DOI: 10.1126/sciadv.abm9530 (2022).
- 209. C. Zhang*, X. Ma, X. Zheng, Y. Ke, K. Chen, D. Liu, Z. Lu, J. Yang* and H. Yan*, Programmable Allosteric DNA Regulations for Molecular Networks and Nanomachines, *Science Advances* 5, DOI: 10.1126/sciadv.abl4589 (2022).
- 208. S. Dey, A. Dorey, L. Abraham, Y. Xing, I. Zhang, F. Zhang, S. Howorka*, H. Yan*, A Reversibly Gated Protein-Transporting Membrane Channel Made of DNA, *Nature Communications* 13, Article number: 2271 (2022)
- 207. H. Liu, F. Hong, F. Smith, J. Goertz, T. Ouldridge, M. Stevens, H. Yan & P. Sulc*, Kinetics of RNA and RNA:DNA hybrid strand displacement, *ACS Synth. Biol.* 10, 3066-3073 (2021).

- 206. Y. Liu, L. Ma, S. Jiang, C. Han, P. Tang, H. Yang, X. Duan, N. Liu*, H. Yan* & X. Lan*, DNA Programmable Self-Assembly of Planar, Thin-Layered Chiral Nanoparticle Superstructures with Complex Two-Dimensional Patterns, *ACS Nano* 15, 16664-16672 (2021).
- 205. T. Yuan, Y. Shao, X. Zhou, Q. Liu, Z. Zhu, B. Zhou, Y. Dong, N. Stephanopoulos, S. Gui*, H. Yan*, D. Liu*, Highly Permeable DNA Supramolecular Hydrogel Promotes Neurogenesis and Functional Recovery after Completely Transected Spinal Cord Injury, *Advanced Materials* 33, 2102428, (2021).
- 204. Y. Zhang, Z. Qu, . Jiang, Y. Liu, R. Narayanan, D. Williams, X. Zuo, L. Wang, H. Yan, H. Liu* & C. Fan, Prescribing Silver Chirality with DNA Origami, *J. Am. Chem. Soc* 143, 8639-8646, (2021).
- 203. S. Jiang, N. Pal, F. Hong, N. E. Fahmi, H. Hu, M. Vrbanac, H. Yan*, N. G. Walter*, Y. Liu*, Regulating DNA Self-Assembly Dynamics with Controlled Nucleation, *ACS Nano* 15, 5384-5396, (2021).
- 202. S. Dey, C. Fan*, K. V. Gothelf*, J. Li*, C. Lin*, L. Liu, N. Liu*, M. A. D. Nijenhuis, B. Sacca*, F. C. Simmel*, H. Yan* & P. Zhan, DNA Origami, *Nat. Rev. Methods Primers* 1, 13, (2021).
- 201. S. Jiang, Z. Ge, S. Mou, H. Yan*, C. Fan*, Designer DNA Nanostructures for Therapeutics, *Chem* 7, 1156-1179, (2020).
- 200. G. Yao', F. Zhang', F. Wang', T. Peng, H. Liu, E. Poppleton, P. Sulc, S. Jiang, L. Liu, C. Gong, X. Jing, X. Liu, L. Wang, Y. Liu, C. Fan*, H. Yan*, Meta-DNA Structures, *Nat. Chem.* 12, 1067-1075, (2020).
- 199. C.R. Simmons, T. MacCulloch, F. Zhang, Y. Liu, N. Stephanopoulos & H. Yan, A Self-Assembled Rhombohedral DNA Crystal Scaffold with Tunable Cavity Sizes and High Resolution Structural Detail, *Angew. Chem. Int. Ed.* 59, 18619-18626, (2020).
- 198. S. Jiang, F. Zhang & H. Yan, Complex assemblies and crystals guided by DNA, *Nat. Mater.* 19, 694-700, (2020).
- 197. J. Georges, X. Qi, X. Liu, Y. Zhou, E. C. Woolf, A. Valeri, Z. Al-Atrache, E. Belykh, B. Feuerstein, M. Preul, A. C. Scheck, M. Reiser, T. Anderson, J. Gopez, D. Appelt, S. Yocom, J. Eschbacher, H. Yan, P. Nakaji, A Fluorescent Aptamer Provides Rapid and Specific Ex Vivo Diagnosis of Central Nervous System Lymphoma from Rodent Xenograft Biopsies, *J. Neurosurg.* in press, (2020).
- 196. J. Li', J. Dai', S. Jiang', M. Xie', T. Zhai, L. Guo, S. Cao, S. Xing, Z. Qu, Y. Zhao, F. Wang, Y. Yang, L. Liu, X. Zuo, L. Wang*, H. Yan*, C. Fan*, Encoding quantized fluorescence states with fractal DNA frameworks, *Nat. Commun.* 11, 2185, (2020).
- 195. X. Qi, X. Liu, L. Matiski, R. Rodriguez Del Villar, T. Yip, F. Zhang, S. Sokalingam, S. Jiang, L. Liu, H. Yan, Y. Chang, RNA Origami Nanostructures for Potent and Safe Anti-Cancer Immunotherapy, *ACS Nano* 14, 4727-4740, (2020).
- 194. F. Hong, D. Ma, K, Wu, L.A. Mina, R.C. Luiten, Y. Liu, H. Yan*, A.A. Green*, Precise and Programmable Detection of Mutations Using Ultraspecific Riboregulators, *Cell* 180, 1018-1032, (2020).
- 193. G. Yao, J. Li, Q. Li, X. Chen, X. Liu, F. Wang, Z. Qu, Z. Ge, R.P. Narayanan, D. Williams,

- H. Pei, X. Zuo, L. Wang, H. Yan, B.L. Feringa*, C. Fan*, Programming nanoparticle valence bonds with single-stranded DNA encoders, *Nature Materials* 19, 781-788, (2020).
- 192. Z. Zhao, C. Wang, H. Yan,* Y. Liu*, Soft Robotics Programmed with Double Crosslinking DNA Hydrogels, *Advanced Functional Materials* 1905911, (2019).
- 191. C. Zhang*, Z. Wang, Y. Liu, J. Yang, X. Zhang, Y. Li, L. Pan, Y. Ke*, H. Yan*, Nicking-Assisted Reactant Recycle to Implement Entropy-Driven DNA Circuit, *J. Am. Chem. Soc.* 141, 17189-17197 (2019).
- 190. X. Jing, F. Zhang, P. Pan, X. Dai, J. Li, L. Wang, H. Yan, C. Fan, Solidifying framework nucleic acids with silica, *Nature Protocols* 14, 2416-2436, (2019).
- 189. Y. Zhou, X. Qi, Y. Liu, F. Zhang, H. Yan*, DNA Nanoscaffold-Assisted Selection of Femtomolar Bivalent Aptamers for Human α-Thrombin with Potent Anticoagulant Activity, *ChemBioChem* 20, 2494-2503, (2019).
- 188. X. Wang, A. Chandrasekaran, R. Arun, Z. Shen, Y. Ohayon, T. Wang, M. Kizer, R. Sha, C. Mao, H. Yan, X. Zhang, S. Liao, B. Ding, B. Chakraboty, N. Jonoska, D. Niu, H. Gu, J. Chao, X. Gao, Y. Li, T. Ciengshin, N. Seeman, Paranemic Crossover DNA: There and Back Again, *Chemical Reviews*, 119, 6273-6289, (2019).
- 187. X. Zhou, S. Mandal, S. Jiang, S. Lin, J. Yang, Y. Liu, D. Whitten, N. Woodbury*, H.Yan*, Efficient Long-rnage, Directional Energy Transfer through DNA-Templated Dye Aggregates, *J. Am. Chem. Soc.* 141, 8473-8481 (2019).
- 186. S. Mandal, X. Zhou, S. Lin, H. Yan*, N. Woodbury*, Directional Energy Transfer through DNA-Templated J-aggregates, *Bioconjugate Chemistry* 30, 1870-1879 (2019).
- 185. Z. Ge, Z. Su, C. R. Simmons, J. Li, S. Jiang, W. Li, Y. Yang, Y. Liu*, W. Chiu, C. Fan*, H. Yan*, Rodox Engineering of Cytochrome c using DNA Nanostructure-Based Charge Encapsulation and Spatial Control, *ACS Applied Materials & Interfaces* 11, 13874-13880 (2019).
- 184. Z. Ge, J. Fu, M. Liu, S. Jiang, A. Andreoni, X. Zuo, Y. Liu, H. Yan*, C. Fan*, Constructing Submonolayer DNA Origami Scaffold on Gold Electrode for Wiring of Redox Enzymatic Cascade Pathways, *ACS Applied Materials & Interfaces* 11, 13881-13887 (2019).
- 183. L. Xin, M. Lu, S. Both, M. Pfeifer, M. Urban, C. Zhou, H. Yan, T. Weiss, N. Liu, K. Lindfors, Watching a Single Fluorofphore Molecule Walk into a Plasmonic Hotspot, *ACS Photonics* 6, 985-993 (2019).
- 182. Y. Xu, S. Jiang, C. Simmons, R. Narayanan, F. Zhang, A. Aziz, H. Yan, N. Stephanopoulos*, Tunable Nanoscale Cages from Self-Assembling DNA and Protein Building Blocks, *ACS Nano* 13, 3545–3554, (2019).
- 181. H. Jun, F. Zhang, T. Shepherd, S. Ratanalert, X. Qi, H. Yan, M. Bathe, Autonomously designed free-form 2D DNA origami, *Science Advances*, 5, eaav0655 (2019).
- 180. D. Jiang, Z. Ge, H. Im, C. England, D. Ni, J. Hu, L. Zhang, C. Kutyreff, Y. Yan, Y. Liu, S. Cho, J. Engle, J. Shi, P. Huang, C. Fan*, H. Yan*, W. Cai*, DNA-origami nanostructures can exhibit preferential renal uptake and alleviate acute kidney injury, *Nature Biomed. Eng.* 2, 865-877 (2018).

- 179. X. Qi, F. Zhang*, Z. Su', S. Jiang, D. Han, B. Ding, Y. Liu, W. Chiu, P. Yin, H. Yan*, Programing Molecular Topologies from Single-stranded Nucleic Acids, *Nature Communications* 9, 4579 (2018).
- 178. F. Hong, S. Jiang, X. Lan, R. Narayanan, P. Sulc, F. Zhang*, Y. Liu*, H. Yan*, Layered-Crossover Tiles with Precisely Tunable Angles for 2D and 3D DNA Crystal Engineering, *J. Am. Chem. Soc.* 140, 14670-14676 (2018).
- 177. X. Lan, T. Liu, Z. Wang, A. Govorov, H. Yan, Y. Liu, DNA-Guided Plasmonic Helix with Switchable Chirality, *J. Am. Chem. Soc.* 140, 11763-11770 (2018).
- 176. F. Zhang, C. Simmons, J. Gates, Y. Liu, H. Yan*, Self-Assembly of a 3D DNA Crystal Structure with Rationally Designed Six-Fold Symmetry, *Angew Chem Int Ed.* 57, 12504-12507 (2018).
- 175. X. Liu, F. Zhang, X. Ling, M. Pan, P. Liu, W. Li, B. Zhu, J. Li, H. Chen, L. Wang, J. Lin, Y. Liu, D. Zhao, H. Yan*, C. Fan*, Complex Silica Composite Nanomaterials Templated with DNA Origami, *Nature*, 559, 593-598, (2018).
- 174. Z. Ge, Z. Su, C. R. Simmons, J. Li, S. Jiang, W. Li, Y. Yang, Y. Liu, W. Chiu, C. Fan, H. Yan* *ACS Appl. Mater. Interfaces*, Redox Engineering of Cytochrome c using DNA Nanostructure-Based Charged Encapsulation and Spatial Control, DOI:10.1021/acsami.8b07101 (2018).
- 173. Li, A. Johnson-Buck, Y. Yang, W. Shih, H. Yan, N. Walter, Exploring the speed limit of toehold exchange with a cartwheeling DNA acrobat, *Nature Nanotechnology* 13, 723-729, (2018).
- 172. S. Li, Q. Jiang, C. Song, Y. Tian, J. Wang, S. Liu, Y. Zhang, Y. Zou, G. Anderson, J. Han, Y. Chang, Y. Liu, H. Yan*, G. Nie*, B. Ding, Y. Zhao*, A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo, *Nature Biotechnology*, 36, 258-264 (2018).
- 171. E. Boulais, N.Sawaya, R. Veneziano, A. Andreoni, S. Lin, N. Woodbury, H. Yan*, M. Bathe* Programmed coherent coupling in a DNA-based excitonic circuit, *Nature Materials*, 17, 159-166 (2018).
- 170. D. Han, X. Qi, C. Myhrvold, B. Wang, M. Dai, S. Jiang, M. Bates, Y. Liu, B. An*, F. Zhang*, H. Yan*, P. Yin* Single-stranded DNA and RNA Origami, *Science*, 358, 1402 (2017).
- 169. F. Zhang, H. Yan* DNA Self-assembly scaled up, *Nature*, 552, 34 (2017).
- 168. Y.R. Yang; J. Fu, <u>S. Wootten</u>, X. Qi, M. Liu, H. Yan, Y. Liu* 2D Enzyme Cascade Network with Efficient Substrate Channeling by Swinging Arms. *ChemBioChem*. DOI: 10.1002/cbic.201700613 (2017).
- 167. J. Li, A. A. Green, H. Yan, C. Fan, Engineering nucleic acid structures for programmable molecular circuitry and intracellular biocomputation, *Nature Chem.* DOI:10.1038/nchem.20405, in press (2017).
- 166. C. Simmons, F. Zhang, T. MacCulloch, N. Fahmi, N. Stephanopoulos, Y. Liu, N. Seeman, H. Yan, Tuning the Cavity Size and Chirality of Self-Assembling 3D DNA Crystals. *J. Am. Chem. Soc.* 139, 11254-11260 (2017).

- 165. D. Mieritz, X. Li, A. Volosin, M. Liu, H. Yan, N. Walter, D. Seo, Tracking Single DNA Nanodevices in Herarchically Meso-Macroporous Antimony-Doped Tin Oxide Demonstrates Finite Confinement, *Langmuir* 33, 6410-6418 (2017).
- 164. H. Zhang, A. Carey, K. Jeon, M. Liu, T. Murell, J. Locsin, S. Lin, H. Yan, N. Woodbury, D. Seo, A Highly Stable and Scalable Photosynthetic Reaction Center-Graphene Hybrid Electrode System for Biomimetic Solar Energy Transduction, *J. Mater. Chem. A.* 5, 6038–6041, (2017).
- 163. A. Carey, H. Zhang, M. Liu, D. Sharaf, N. Akram, H. Yan, S. Lin, N. Woodbury*, D. Seo*, Enhancing Photocurrent Generation in Photosynthetic Reaction Center-based Photoelectrochemical Cells with Biomimetic DNA Antenna, **ChemSusChem** *10*, *4457-4460* (2017).
- 162. S. Jiang, F. Hong, *H. Hu*, H. Yan*, Y. Liu*, Understanding the Elementary Steps in DNA Tile-based Self-assembly, **ACS Nano.** *11*, 9370-9381 (2017).
- 161. H. Fan, F. Zhang, Y. Liu*, H. Yan*, DNA Origami, Scaffolds for Creating Higher Order Structures, *Chemical Reviews*, Chemical Review, in press (2017).
- 160. F. Zhang, F. Hong, H. Yan*, DNA Origami Tiles: Nanoscale Mazes, *Nature*. *Nanotechnology*. 12, 189-190 (2017).
- 159. Y. Dong, Y. Yang, Y. Zhang, D. Wang, X. Wei, S. Banerjee, Y. Liu, Z. Yang, H. Yan*, D. Liu*, Cuboid Vesicles Formed by Frame-guided Assembly on DNA Origami Scaffolds, *Angew Chem Int Ed.* 156, 1586-1589, (2017).
- 158. A. Andreoni, S. Lin, H. Liu, R. E. Blankenship, H. Yan, N. Woodbury, Orange Carotenoid Protein as a Control Element in an Antenna System based on a DNA Nanostructure *Nano Letters*, 17, 1174-1180 (2017).
- 157. F. Hong, S. Jiang, T. Wang, Y. Liu*, H. Yan*, 3D Framework DNA origami with Layered Crossovers, *Angew Chem Int Ed.* 128, 13024–13027, (2016).
- 156. A. Carey, H. Zhang, D. Mieritz, A. Volosin, A. Gardiner, R. Cogdell, H. Yan, D. Seo, S. Lin, N. Woodbury*, Photocurrent generation by photosynthetic purple bacterial reaction centers interfaced with a porous antimony-doped tin oxide (ATO) electrode, *ACS Appl. Matter. Interfaces* 8, 25104–25110, (2016).
- 155. J. Fu*, Y. Yang, S. Dhakal, Z. Zhao, M. Liu, T. Zhang, N. Walter, H. Yan, Assembly of Multi-Enzyme Complexes on DNA Nanostructures, *Nature Protocols* 11, 2243–2273, (2016). 154. C. Simmons, F. Zhang, J. Birktoft, X. Qi, D. Han, Y. Liu, R. Sha, H. Abdallah, C. Hernandez, Y. Ohayon, N. Seeman*, H. Yan*, Construction and Structure Determination of a Three-dimensional DNA Crystal, *J. Am. Chem. Soc.* 138, 10047–10054, (2016).
- 153. R. Veneziano, S. Ratanalert, K. Zhang, F. Zhang, H. Yan, W. Chiu, M. Bathe*, Designer nanoscale DNA assemblies programmed from the top down, *Science* 10.1126/science.aaf4388 (2016).
- 152. F. Zhang*, S. Jiang, W. Li, A. Hunt, Y. Liu*, H. Yan*, Self-assembly of Complex DNA Tessellations using low symmetry multi-arm DNA tiles, *Angew Chem Int Ed.* 55, 8860–8863 (2016).

- 151. G. Ke, M. Liu, S. Jiang, X. Qi, Y. R. Yang, S. Wootten, F. Zhang, Z. Zhu, Y. Liu*, C. J. Yang*, H. Yan*, Directional Regulation of Enzyme Pathways via the Control of Substrate Channeling on a DNA Origami Scaffold, *Angew Chem Int Ed.*, 55, 7483-7486 (2016).
- 150. M. Liu; J. Fu; X. Qi; S. Wootten; N. Woodbury; Y. Liu*; H. Yan*, A three-enzyme pathway with an optimized geometric arrangement to facilitate substrate transfer, *ChemBioChem*, 17, 1097-1101 (2016). (Featured as inside cover of the Journal)
- 149. S. Dokal, M. Adendorff, M. Liu, H. Yan*, M. Bathe*, N. Walter*, Rational design of DNA-actuated enzyme nanoreactors guided by single molecule analysis, *Nano Scale* 8, 3125-3137 (2016).
- 148. W. Li, F. Zhang, H. Yan*, Y. Liu*, DNA Based Arithmetic Function: Half Adder Based on DNA Strand Displacement, *Nanoscale* 8, 3775-3784 (2016).
- 147. Z. Zhao, J. Fu. S. Dokal, A. Johnson-Buck, M. Liu, Y. Liu, N. Woodbury, N. Walter, H. Yan*, Nancaged Enzymes with Enhanced Catalytic Activity and Increased Stability Against Protease Digestion, *Nature Communications* 7, 10619 (2016).
- 146. C. Zhang, J. Yang, S. Jiang, Y. Liu*, H. Yan*, DNAzyme-based Logic Gate-mediated DNA Self-assembly, *Nano Letters*, 16, 736–741, (2016)
- 145. F. Zhang, S. Jiang, S. Wu, Y. Li, C. Mao, Y. Liu*, H. Yan*, Complex wireframe DNA origami nanostructures with multi-arm junction vertices, *Nature Nanotechnology*, 10, 779-784 (2015). (Featured as Front Cover of the Journal)
- 144. Y. Yang, Y. Liu, H. Yan*, DNA nanostructures as programmable biomolecular scaffolds, *Bioconjugate Chemistry*, 26, 1381-1395 (2015). (Featured as Front Cover of the Journal)
- 143. J. F. Georges, X. Liu, J. Eschbacher, J. Nichols, M. A. Mooney, A. Joy, R. F. Spetzler, B. G. Feuerstein, M. C. Preu, T. Anderson, H. Yan, P. Nakaji*, Use of a Conformational Switching Aptamer for Rapid and Specific Ex Vivo Identification of Central Nervous System Lymphoma in a Xenograft Model. *PloS one*, 10(4), e0123607 (2015).
- 142 K. Pan, D. N. Kim, F. Zhang, M. Adendorff, H. Yan, M. Bathe*, Lattice-free prediction of three-dimensional structure of programmed DNA assemblies. *Nature Communications*, 5, 5578 (2014).
- 141 P. Dutta, S. Levenberg, A. Loskutov, D. Jun, R. Saer, J. Beatty, S. Lin, Y. Liu, N. Woodbury*, H. Yan*, A DNA-Directed Light-Harvesting/Reaction Center System, *J. Am. Chem. Soc.*, 136, 16618-16625 (2014).
- 140 A. Samanta, Y. Zhou, S. Zou, H. Yan, Y. Liu*, Fluorescence Quenching of Quantum Dots by Gold Nanoparticles: a Potential Long Range Spectroscopic Ruler, *Nano Letters*, 14, 5052–5057 (2014).
- 139 F. Zhang, J. Nangreave, Y. Liu, H. Yan*, Structural DNA Nanotechnology: State of the Art and Future Perspective, *J. Am. Chem. Soc.*, 136, 11198–11211 (2014).
- 138 D. Wang, S. Capehart, S. Pal, M. Liu, L. Zhang, J. Schuck, Y. Liu, H. Yan, M. Francis, J. De Yoreo*, Hierarchical Assembly of Plasmonic Nanostructures using Virus Capsid Scaffolds on DNA Origami Templates, *ACS Nano*, 8, 7896–7904 (2014).

- 137 J. Flory, C. Simmons, S. Lin, T. Jonhson, A. Andreoni, J. Zook, G. Chirlanda, Y. Liu, **H. Yan**, and P. Fromme, Low Temperature Assembly of Functional 3D DNA-PNA-Protein Complexes, *J. Am. Chem. Soc.*, 136, 8283-8295 (2014).
- 136 A. Johnson-Buck, S. Jiang, **H. Yan**, and N. G. Walter, DNA-Cholesterol Barges as Programmable Membrane-Exploring Agents, *ACS Nano*, 8, 5641-5649 (2014).
- 135. L. Liang, J. Li, Q. Li, Q. Huang, J. Shi, **H. Yan**, and C. Fan, Single-particle Tracking and Modulation of Cell Entry Pathways of a Tetrahedral DNA Nanostructure in Live Cells, *Angew Chem Int Ed.*, 53, 7745-7750 (2014).
- 134 J. Fu, Y. R. Yang, A. Johnson-Buck, Y. Liu, N. G. Walter, N. W. Woodbury, and **H. Yan**, Multi-enzyme Complexes on DNA Scaffolds Capable of Substrate Channeling with an Artificial Swinging Arm, *Nature Nanotechnology*, 9, 531-536 (2014).
- 133. S. Jiang, **H. Yan**, and Y. Liu, Kinetics of DNA Tile Dimerization, *ACS Nano.*, 8, 5826-5832 (2014).
- 132. W. Li, Y. Yang, S. Jiang, **H. Yan**, and Y. Liu, Controlled Nucleation and Growth of DNA Tile Arrays within Prescribed DNA Origami Frames and Their Dynamics, *J. Am. Chem. Soc.*, 136, 3724-3727 (2014).
- 131. P. Dutta, S. Lin, A. Loskutov, S. Levenberg, D. Jun, R. Saer, J. Beatty, Y. Liu, **H. Yan**, and N. Woodbury, Regengineering the Optical Absorption Cross-section of Photosynthetic Reaction Centers, *J. Am. Chem. Soc.*, 136, 4599-4604 (2014).
- 130. D. Han, S. Jiang, A. Samanta, Y. Liu, and **H. Yan**, Unidirectional Scaffold-Strand Arrangement in DNA Origami, *Angew Chem Int Ed.*, 52, 9031-9034 (2013).
- 129. Q. Mei, R. H. Johnson, X. Wei, F. Su, Y. Liu, L. Kelbauskas, S. Lindsay, D. R. Meldrum, and **H. Yan**, On-chip Isotachophoresis Separation of Functional DNA Origami Capture Nanoarrays from Cell Lysate, *Nano Research*, 6, 712-719 (2013).
- 128. M. Liu, J. Fu, C. Hejesen, Y. Yang, N. W. Woodbury, K. Gothelf, Y. Liu, and **H. Yan**, A DNA Tweezer-Actuated Enzyme Nanoreactor, *Nature Comm.*, 4:2127 (2013).
- 127. S. Pal, P. Dutta, H. Wang, Z. Deng, S. Zou, **H. Yan**, and Y. Liu, Quantum Efficiency Modification of Organic Fluorophores Using Gold Nanoparticles on DNA Origami Scaffolds, *J. Phys. Chem. C*, 117, 12735–12744, (2013).
- 126. W. Li, Y. Yang, **H. Yan**, and Y. Liu, 3-Input Majority Logic Gate and Multiple Input Logic Circuit Based on DNA Strand Displacement, *Nano Letters*, 13, 2980–2988, (2013).
- 125. A. Johnson-Buck, J. Nangreave, S. Jiang, **H. Yan**, and N. Walter, Multifactorial Modulation of Binding and Dissociation Kinetics on Two-Dimensional DNA Nanostructures, *Nano Letters*, 13, 2754–2759, (2013).
- 124. F. Zhang, Y. Liu, and **H. Yan**, Complex Archimedean Tiling Self-assembled from DNA Nanostructures, *J. Am. Chem. Soc.*, 135, 7458–7461, (2013).
- 123. X. Wei, J. Nangreave, S. Jiang, **H. Yan**, and Y. Liu, Mapping the Thermal Behavior of DNA Origami Nanostructures, *J. Am. Chem. Soc.*, 135, 6165–6176, (2013).

- 122. J. Flory, S. Shinde, S. Lin, Y. Liu, **H. Yan**, G. Ghirlanda, and P. Fromme, PNA-peptide Assembly in a 3D DNA Nanocage at Room Temperature, *J. Am. Chem. Soc.*, 135, 6985–6993, (2013).
- 121. Y. Yang, Z. Zhao, F. Zhang, J. Nangreave, Y. Liu, and **H. Yan**, Self-assembly of DNA Rings from Scaffold Free DNA Tiles, *Nano Letters*, 13, 1862–1866, (2013).
- 120. O. Schulz, Z. Zhao, A. Ward, M. Koenig, F. Koberling, Y. Liu, J. Enderlein, **H. Yan** and R. Ros, Tip Induced Fluorescence Quenching for Nanometer Optical and Topographical Resolution, *Optical Nanoscopy*, 2:1, (2013).
- 119. Z. Deng, S. Pal, A. Samanta, **H. Yan**, and Y. Liu, DNA Functionalization of Colloidal II-VI Semiconductor Nanowires, *Chemical Sciences*, 3, 2234–2240, (2013).
- 118. X. Liu, Y. Liu, and **H. Yan**, Functionalized DNA Nanostructures for Nanomedicine, Israel Journal of Chemistry, *Special Issue on Supramolecular Chemistry for Materials and Medicine*, (eds: Steven C. Zimmerman, Alanna Schepartz) Invited review, 53, 555-566, (2013).
- 117.A. Johnson-Buck, J. Nangreave, D. Kim, M. Bathe, **H. Yan**, and N. Walter, Super-Resolution Fingerprinting Detects Chemical Reactions and Idiosyncrasies of Single DNA Pegboards, *Nano Letters*, 13, 728-733 (2013).
- 116. D. Han, S. Pal, Y. Yang, S. Jiang, J. Nangreave, Y. Liu, and **H. Yan**. DNA Gridiron Nanostructures Based on Four-Arm Junctions, *Science*, 339, 1412-1415 (2013).
- 115. Z. Zhao, Y. Liu, and H. Yan, DNA Origami Templated Self-assembly of Discrete Length Single Wall Carbon Nanotubes, *Org. Biomol. Chem.*, 11, 596-598 (2013).
- 114. Z. Deng, A. Sanmanta, J. Nangreave, **H. Yan**, and Y. Liu, Robust DNA Functionalized Core/Shell Quantum Dots with Fluorescent Emission Spanning from UV-Vis to Near IR and Compatible with DNA Directed Self-Assembly, *J. Am. Chem. Soc.*, 134, 17424-17427 (2012).
- 113. Y. Yang, D. Han, J. Nangreave, Y. Liu, and **H. Yan**, DNA Origami with Double-Stranded DNA As a Unified Scaffold, *ACS Nano*, 6, 8209-8215 (2012).
- 112. N. Lu, H. Pei, Z. Ge, C. R. Simmons, **H. Yan**, and C. Fan, Charge Transport within A Three-Dimensional DNA nanostructure Framework, *J. Am. Chem. Soc.*, 134, 13148-13151 (2012).
- 111. Q. Jiang, C. Song, J. Nangreave, X. Liu, L. Lin, D. Qiu, Z. Wang, G. Zou, X. Liang, H. Yan, and B. Ding, DNA Origami as a Carrier for Circumvention of Drug Resistance, *J. Am. Chem. Soc.*, 134, 13396-13403 (2012).
- 110. X. Liu, Y. Xu, T. Yu, C. Craig, Y. Liu, **H. Yan**, and Y. Chang, A DNA Nanostructure Platform for Directed Assembly of Synthetic Vaccines, *Nano Letters*, 12, 4254-4259 (2012).
- 109. J. Fu, M. Liu, Y. Liu, and **H. Yan**, Spatially-Interactive Biomolecular Networks Organized by Nucleic Acid Nanostructures, *Acc. Chem. Res.* 45, 1215-1226 (2012).
- 108 F. Zhang, J. Nangreave, Y. Liu, and **H. Yan**, Reconfigurable DNA Origami to Generate Quasi-Fractal Patterns, *Nano Letters*, 12, 3290–3295 (2012).
- 107 A. V. Pinheiro, J. Nangreave, S, Jiang, **H. Yan**, and Y. Liu, Steric Crowding and the Kinetics of DNA Hybridization within a DNA Nanostructure System, *ACS Nano*, 6, 5521–5530 (2012).

- 106 J. Fu and **H. Yan**, Controlled Drug Release by a Nanorobot, *Nature Biotechnol.* 30, 407–408 (2012).
- 105 J. Fu, M. Liu, Y. Liu, N. W. Woodbury, and **H. Yan**, Interenzyme Substrate Diffusion for an Enzyme Cascade Organized on Spatially Addressable DNA Nanostructures, *J. Am. Chem. Soc.* 134, 5516–5519 (2012).
- 104 Z. Li, L. Wang, **H. Yan**, and Y. Liu, Effect of DNA Hairpin Loops on the Twist of Planar DNA Origami Tiles, *Langmuir*, 28, 1959–1965 (2012).
- 103 A. Pinheiro, D. Han, W. M. Shih, and **H. Yan**, Challenges and Opportunities for Structural DNA Nanotechnology. *Nature Nanotechnology*. 6, 763-772, 2011.
- 102 S. Pal, Z. Deng, Y. Liu, and **H. Yan**, DNA Origami Directed Self-assembly of Anisotropic Plasmonic Nanostructures. *J. Am. Chem. Soc.* 133, 17606-17609, 2011.
- 101 P. Dutta, R. Varghese, S. Lin, **H. Yan**, and Y. Liu. DNA Directed Artificial Light Harvesting Systems. *J. Am. Chem. Soc.* 133, 11985-11993, 2011.
- 100 C. R. Simmons, D.Schmitt, X. Wei, D. Han, A. M. Volosin, D. M Ladd, D. Seo, Y. Liu, and **H. Yan**, Size-selective Incorporation of DNA Nanocages into Nanoporous Antimony-doped Tin Oxide Materials, *ACS Nano*, 5, 6060-6068, 2011.
- 99. Z. Zhao, Y. Liu, and **H. Yan**, Organizing DNA Origami Tiles into Larger Structures Using Pre-formed Scaffold Frames, *Nano Letters*, 11, 2997-3002, 2011.
- 98. T. Torring, N. V. Voigt, J. Nangreave, **H. Yan**, and K. Gothelf, DNA Origami: A Quantum Leap for Self-assembly of Complex Structures, *Chem. Soc. Rev*, 40, 5636-5646, 2011.
- 97. X. Liu, **H. Yan**, Y. Liu, and Y. Chang, Targeted Cell-Cell Interactions by DNA Nanoscaffold-Templated Multivalent Bi-specific Aptamers, *Small*, 7, 1673-1682, 2011.
- 96. D. Han*, S. Pal, J. Nangreave, Z. Deng, Y. Liu, and **H. Yan**, DNA Origami with Complex Curvatures in Three-dimensional Space, *Science*, 332, 342-346 2011. (Featured as cover story of the April 15 issue of Science)
- This work was highlighted by National Science Foundation news release with video story (http://www.nsf.gov/news/news_summ.jsp?cntn_id=119245&org=NSF&from=news)
- 95 S.Pal, R. Varghese, **H. Yan**, and Y. Liu, Site Specific Synthesis and in-situ Immobilization of Fluorescent Silver Nanoclusters on DNA Nanoscaffolds Using Tollens Reaction, *Angew Chem Int Ed*, 50, 4176-4179, 2011.
- 94. Z. Deng, L. Tong, S. Lin, M. Flores, J. Cheng, **H. Yan**, and Y. Liu, High Quality Manganese-Doped Zinc Sulfide Quantum Rods with Tunable Dual-Color and Multi-Photon Emissions, *J. Am. Chem. Soc*, 133, 5389-5396, 2011.
- 93. J. Nangreave, **H. Yan**, and Y. Liu, DNA Nanostructures as Models for Evaluating the Role of Enthalpy and Entropy in Polyvalent Binding, *J. Am. Chem. Soc*, 133, 4490-4497, 2011.
- 92. Q. Mei, X. Wei, F. Su, Y. Liu, C. Youngbull, R. Johnson, S. Lindsay, **H. Yan**, and D. Meldrum, Stability of DNA Origami Nanoarrays in Cell Lysate *Nano Letters*, 11, 1477-1482, 2011.
- 91. Z. Zhao, Y. Liu, and **H. Yan**, Encapsulation of Gold Nanoparticles in a DNA Origami Cage, *Angew Chem Int Ed*, 50, 2041-2044, 2011.

- 90. B. Ding, H. Wu, W. Xu, Z. Zhao, Y. Liu, H. Yu, and **H. Yan**, Interconnecting Gold islands with DNA Origami Nanotubes, *Nano Letters*, 10, 5065-5069, 2010.
- 89. D. Han, S. Pal, Y. Liu, and **H. Yan**, Folding and Cutting DNA into Reconfigurable Topological Nanostructures, *Nature Nanotechnology*, 5, 712–717, 2010.
- 88. Z. Li, M. Liu, L. Wang, J. Nangreave, **H. Yan**, and Y. Liu, Molecular Behavior of DNA Origami in Higher Order Self-assembly, *J. Am. Chem. Soc*, 138, 13545–13552, 2010.
- 87. Z. Deng, **H. Yan**, and Y. Liu, Controlled Colloidal Growth of Ultra-Thin Single-Crystal ZnS Nanowires with Magic-Size Diameter, *Angew. Chem. Int. Ed.* 49, 8695-8698, 2010.
- 86. H. Pei, N. Lu, Y. Wen, S. Song, Y. Liu, **H. Yan**, and C. Fan, A DNA Nanostructure-based Biomolecular Probe Carrier Platform for Electrochemical Biosensing, *Advanced Materials*, 22, 4754–4758, 2010.
- 85. J. Nangreave, D. Han, Y. Liu, and **H. Yan**, DNA Origami: A History and Current Perspective, *Curr Opin Chem Biol*, 14, 608–615, 2010.
- 84. N. Stephanopoulos; M. Liu; G. Tong; Z. Li; Y. Liu; H. Yan; and M. Francis, Immobilization and One-Dimensional Arrangement of Virus Capsids With Nanoscale Precision Using DNA Origami, *Nano Lett.* 10, 2714-2720, 2010.
- 83. K. Lund, A. J. Manzo, N. Dabby, N. Michelotti, A. Johnson-Buck, J. Nangreave, Steven Taylor, R. Pei, M. N. Stojanovic, N. G. Walter, E. Winfree, and **H. Yan**, Molecular Robots Guided by Prescriptive Landscapes, *Nature* 465, 206-210 (2010).
- 82. Z. Deng, O. Schulz, S. Lin, B. Ding, X. Liu, X. Wei, R. Ros, **H. Yan**, and Y. Liu, Aqueous Synthesis of Zinc-Blende CdTe/CdS Magic-Core/Thick-Shell Tetrahedral Shaped Nanocrystals with Emission Tunable to Near-Infrared, *J. Am. Chem. Soc.* 132, 5592-5593 (2010).
- 81. S. Pal, Z. Deng, B. Ding, **H. Yan**, and Y. Liu, DNA Origami Directed Self-assembly of Discrete Silver Nanoparticle Architectures, *Angew Chem Int Ed* 49, 2700-2704 (2010).
- 80. B. Ding, Z. Deng, H. Yan, S. Cabrini, R. Zukerman, and J. Borker, Gold Nanoparticles Self-similar Chain Structure Organized by DNA Origami, *J. Am. Chem. Soc.* 132, 3248-3249, (2010).
- 79 R. Chhabra, J. Sharma, Y. Liu, S. Rinker, and **H. Yan**, DNA Self-assembly for Nanomedicine, *Advanced Drug Delivery Reviews* 62, 617-625 (2010).
- 78. Z. Zhao, **H. Yan**, and Y. Liu, A Route to Scale up DNA Origami using DNA Tiles as Folding Staples, *Angew Chem Int Ed* 49, 1414-1417 (2010).
- 77. S. Williams, K. Lund, C. Lin, P. Wonka, S. Lindsay, and H. Yan, Tiamat: A Three Dimensional Editing Tool for Complex DNA Structures, *DNA Computing: Lecture Notes in Computer Science*, 5347, 90-101 (2010).
- 76. Z. Deng, **H. Yan**, and Y. Liu, Band Gap Engineering of Quaternary Alloyed ZnCdSSe Quantum Dots via a Facile Phosphine-Free Colloidal Method, *J. Am. Chem. Soc.* 131, 17744 (2009).
- 75. R. Chhabra, J. Sharma, H. Wang, S. Lin, **H. Yan**, S. Zou, S. Lindsay, and Y. Liu, Distance-dependent Interactions between Gold Nanoparticles and Fluorescent Molecules with DNA as Tunable Spacers, *Nanotechnology*, 20, 485201 (2009).
- 74. Y. Ke, S. Douglas, M. Liu, J. Sharma, A. Cheng, A. Leung, Y. Liu, W. Shih, and H. Yan,

- Multilayer DNA Origami Packed On a Square Lattice, J. Am. Chem. Soc. 131, 15903-15908 (2009).
- 73. L. A. Stearns, R. Chhabra, J. Sharma, Y. Liu, W. T. Petuskey, **H. Yan**, and J. C. Chaput, Template-Directed Nucleation and Growth of Inorganic Nanoparticles on DNA Scaffolds, *Angew. Chem. Int. Ed.* 45, 8494-8496 (2009).
- 72. Z. Li, B. Wei, J. Nangreave, C. Lin, Y. Liu, Y. Mi, and H. Yan, A Replicable Tetrahedral Nanostructure Self-assembled from a Single DNA Strand, *J. Am. Chem. Soc.* 131, 13093-13098 (2009).
- 71. S. Pal, J. Sharma, **H. Yan**, and Y. Liu, Stable Silver Nanoparticle-DNA Conjugates for Directed Self-assembly of Core-Satelite Silver Nanoclusters, *Chemical Communication*. 6059-6061 (2009).
- 70. Y. Liu and **H. Yan**, Designer Curvature, *Science* 325, 685-686 (2009).
- 69. Y. Liu and H. Yan, Coordinating Corners, *Nature Chemistry* 1, 339-340 (2009).
- 68. J. Nangreave, **H. Yan**, and Y. Liu, Studies of Thermal Stability of Multivalent DNA Hybridization in a Nanostructured System, *Biophys. J.* 97, 563-571 (2009).
- 67. A. E. Gerdon, S.-S. Oh, W. Hsieh, Y. Ke, **H. Yan**, and H. T. Soh, Controlled Delivery of DNA Origami on Patterned Surface, *Small* 5, 1942-1946 (2009).
- 66. C. Andersen, M. Knudsen, R. Chhabra, Y. Liu, **H. Yan**, and K. Gothelf, Distance Dependent Interhelical Couplings of Organic Rods Incorporated in DNA 4-Helix Bundles, *Bioconjugation Chemistry* 20, 1538-1546 (2009).
- 65. Y. Ke, J. Sharma, M. Liu, K. Jahn, Y. Liu, and **H. Yan**, Scaffolded DNA Origami of a DNA Tetrahedron Molecular Container, *Nano. Lett.* 9, 2445-2447 (2009).
- 64. C. Lin and **H. Yan**, Engaging Enzyme Cascades on DNA Scaffolds, *Nature Nanotechnology* 4, 211-212 (2009).
- 63. C. Lin, Y. Liu, and **H. Yan**, Designer DNA Nanoarchitectures, *Biochemistry*, 48, 1663-1674 (2009).
- 62. J. Sharma, R. Chhabra, A. Cheng, J. Brownell, Y. Liu, and **H. Yan**, Control of Self-Assembly of DNA Tubules Through Integration of Gold Nanoparticles, *Science*, *323*, *112-116* (2009).

Highlighted by National Science Foundation

(http://www.nsf.gov/news/news summ.jsp?cntn id=112939&org=OLPA&from=news)

- 61 C. Lin, Y. Ke, Z. Li, J. Wang, Y. Liu, and **H. Yan**, Mirror Image DNA Nanostructures for Chiral Supramolecular Assemblies, *Nano Letters.* 9, 433-436 (2009).
- 60. C. Lin, S. Rinker, X. Wang, Y. Liu, N. C. Seeman, and **H. Yan**, *In-vivo* Cloning of DNA Nanostructures, *Proc. Natl. Acad. Sci.* 105, 17626-17635 (2008).

See commentary from Nature news

(http://www.nature.com/news/2008/081007/full/news.2008.1157.html) and PNAS (http://www.pnas.org/content/105/46/17593)

59. Z. Li, Y. Ke, C. Lin, **H. Yan**, and Y. Liu, Subtractive Assembly of DNA Nanoarchitectures Driven by Fuel Strand Displacement, *Chem. Comm* 4318-4320 (2008).

- 58. C. Lin, J. Nangreave, Z. Li, **H. Yan**, and Y. Liu, Signal Amplification on a DNA Tile Based Biosensor with Enhanced Sensitivity, *Nanomedicine* 3, 521-528 (2008).
- 57. Y. Xu, Q. Wang, P. He, Q. Dong, F. Liu, Y. Liu, L. Lin, **H. Yan**, and X. Zhao, Cell Nucleus Penetration by Quantum Dots Induced by Nuclear Staining Organic Fluorophore and UV-Irradiation, *Advanced Materials* 20, 3468-3473 (2008).
- 56. J. Sharma, R. Chhabra, C. S. Anderson, K. V. Gothelf, **H. Yan**, and Y. Liu, Toward Reliable Gold Nanoparticle Patterning on Self-assembled DNA Nanoscaffold, *J. Am. Chem. Soc* 130, 7820-2821 (2008).
- 55. C. S. Anderson, **H. Yan**, and K. V. Gothelf, Bridging One Helical Turn in dsDNA by Templated Dimerization of Molecular Rods, *Angew Chem Int Ed* 47, 5569-5572 (2008).
- 54. J. Sharma, Y. Ke, C. Lin, R. Chhabra, Q. Wang, J. Nangreave, Y. Liu, and **H. Yan**, DNA Tile Directed Self-assembly of Quantum Dots into Two-dimensional Nanopatterns, *Angew Chem Int Ed* 47, 5157-5159 (2008).
- 53. S. Rinker, Y. Ke, Y. Liu, and **H. Yan**, Self-assembled DNA Nanostructures for distance dependent multivalent ligand-protein binding, *Nature Nanotechnology* 3, 418-422 (2008).
- 52. Y. Ke, S. Lindsay, Y. Chang, Y. Liu, and **H. Yan,** Self-assembled Water-soluble Nucleic Acid Probe Tiles for Label Free RNA Detection, *Science* 319, 180-183 (2008).

This paper has been highlighted by Reuters and many other news agencies and was commented by high profile journals such as Nature Biotechnology (http://www.nature.com/nbt/journal/v26/n3/full/nbt0308-299.html), Nature Methods (http://www.nature.com/nmeth/journal/v5/n3/full/nmeth0308-222.html).

- 51 J. Sharma, R. Chhabra, H. Yan, and Y. Liu, A Facile In situ Generation of Dithiocarbamate Ligands for Stable Gold Nanoparticle-Oligonucleotide Conjugates *Chemical Communication* 18, 2140-2142 (2008).
- 50. Q. Wang, Y. Liu, Y. Ke, and **H. Yan,** Quantum Dots Bioconjugation During Core-Shell Synthesis, *Angew Chem Int Ed.* 47, 316-319 (2008).
- 49. C. Lin, X. Wang, Y. Liu, N. C. Seeman, and **H. Yan,** Rolling Circle Enzymatic Replication of a Complex Multi-crossover DNA Nanostructure, *J. Am. Chem. Soc.* 129, 14475-14481 (2007).
- 48. R. Chhabra, J. Sharma, Y. Ke, Y. Liu, S. Rinker, S. Lindsay, and **H. Yan,** Spatially Addressable Multi-protein Nanoarrays Templated by Aptamer Tagged DNA Nanoarchitectures, *J. Am. Chem. Soc.* 129, 10304-10305 (2007).

This paper was highlighted by the editor of *Nature Nanotechnology* as "Research Highlight": http://www.nature.com/nnano/reshigh/2007/0807/full/nnano.2007.287.html

- 47. Q. Wang, Y. Liu, and **H. Yan,** Layer-by-layer Growth of Superparamagnetic and Fluorecently Barcoded Nanospheres, *Nanotechnology* 18, 40, 405026 (2007).
- 46. C. Lin, Y. Liu, M. Mertig, J. Gu, and **H. Yan**, Functional DNA Nanotube Arrays: Bottom-up Meets Top-down, *Angew. Chem. Int. Ed.* 46, 6089-6092 (2007).

This paper was chosen by the editors as "Hot Paper":

http://www3.interscience.wiley.com/cgi-bin/jabout/26737/2002 hotpaper.html

- 45. Q. Wang, Y. Liu, and **H. Yan**, Mechanism of a Self-templating Synthesis of Monodispersed Hollow Silica Nanospheres with Tunable Size and Shell Thickness, *Chemical Communication* 2339-2341 (2007)
- 44. Q. Wang, Y. Xu, X. Zhao, Y. Chang, Y. Liu, L. Jiang, J. Sharma, D.-K. Seo, and **H. Yan**, A Facile One-step In situ Functionalization of Quantum Dots with Preserved Photoluminescence for Bioconjugation, *J. Am. Chem. Soc.* 129, 6380-6381, (2007).
- 43. B. Williams, K. Lund, Y. Liu, **H. Yan, and** J. Chaput, Self-assembled Peptide Nanoarrays: An Approach to Studying Protein-protein Interactions, *Angew. Chem. Int. Ed.* 46, 3051-3054 (2007).
- 42. C. Lin, Y. Liu, and **H. Yan,** Self-assembled Combinatorial Encoding Nanoarrays for Multiplexed Biosensing, *Nano Lett.* 7, 507-512 (2007).
- 41. J. Sharma, R. Chhabra, **H. Yan**, and Y. Liu, pH-driven Conformational Switch of "i-motif" DNA for Reversible Assembly of Gold Nanoparticles. *Chemical Communication* 477-479 (2007)
- 40. C. Lin, M. Xie, J. Chen, Y. Liu, and **H. Yan**, Rolling Circle Amplification of a DNA Nanojunction, *Angew. Chem. Int. Ed.* 45, 7537-7539 (2006).

This paper was chosen by the editors as "Hot Paper": http://www3.interscience.wiley.com/cgi-bin/jabout/26737/2002 hotpaper.html

- 39 C. Lin, E. Katilius, Y. Liu, and **H. Yan**, Self-assembled Signaling Aptamer Nanoarrays for Protein Detection, *Angew. Chem. Int. Ed.* 45, 5296-5301 (2006).
- 38. C. Lin, Y. Liu, S. Rinker, and **H. Yan**, DNA Tile Based Self-assembly: Building Complex Nano-architectures, *ChemPhysChem* 7, 1641-1647 (2006).
- 37. K. Lund, Y. Liu, and **H. Yan**, Combinatorial Self-assembly of DNA Nanostructures, *Organic and Biomolecular Chemistry* 4, 3402-3403 (2006)

Chosen by the editors as the Inside Cover image.

- 36 S. Rinker, Y. Liu, and **H. Yan**, Two Dimensional LNA/DNA Arrays: Estimating the Helicity of LNA/DNA Hybrid Duplex, *Chemical Communication* 2675-2677 (2006).
- 35. R. Chhabra, J. Sharma, Y. Liu, and **H. Yan**, Addressable Molecular Tweezers for DNA Templated Coupling Reactions, *Nano Lett.* 6, 978-983 (2006).
- 34. L. Lin, H. Wang, Y. Liu, **H. Yan**, and S. Lindsay, Recognition Imaging with a DNA Aptamer, *Biophysical J.* 90, 4236-4238 (2006).
- 33. K. Lund, B. Williams, Y. Ke, Y. Liu, and **H. Yan**, DNA Nanotechnology: a Rapidly Evolving Field, *Current Nanoscience* 2, 113-122 (2006).
- 32. Y. Ke, Y. Liu, J. Zhang, and **H. Yan**, A Study of DNA Tube Formation Mechanisms Using 4-, 8- and 12-Helix DNA Nanostructures, *J. Am. Chem. Soc.* 128, 4414-4421 (2006).
- 31. J. Zhang, Y, Liu, Y. Ke, and **H. Yan**, Periodic Square-like Gold Nanoparticle Arrays Templated by a DNA Nanogrids on a Surface, *Nano Lett.* 6, 248-251 (2006).

Featured in *physorg.com*: (http://www.physorg.com/news11996.html)

30 H. Yan and B. Xu, Towards Rapid DNA Sequencing: Detecting Single-Stranded DNA with

- a Solid-State Nanopore, Small 2, 310-312 (2006).
- 29. J. Sharma, R. Chhabra, Y. Liu, Y. Ke, and **H. Yan**, DNA Templated Self-assembly of Two-Dimensional and Periodical Gold Nanoparticle Arrays, *Angew. Chem. Int. Ed.* 45, 730-735 (2006).
- 28. K. Lund, Y. Liu, S. Lindsay, and **H. Yan**, Self-assembling Molecular Pegboard, *J. Am. Chem. Soc.* 127, 17606-17607 (2005).
- 27. Y. Liu, Y. Ke, and H. Yan, Self-assembly of Symmetric Finite Size DNA Nanoarrays, *J. Am. Chem. Soc.* 127, 17140-17141 (2005).
- 26. Y. Liu, C. Lin, H. Li, and **H. Yan** Aptamer Directed Self-assembly of Proteins on a DNA Nanostructure, *Angew. Chem. Int. Ed.* 44, 4333 (2005).

Featured in *physorg.com*: (http://www.physorg.com/printnews.php?newsid=4616)

- 25 S. H. Park, P. Yin, Y. Liu, J. Reif, T. H. LaBean, and H. Yan, Programmable DNA Self-assemblies for Nanoscale Organization of Ligands and Proteins. *Nano Lett.* 5, 729 (2005).
- 24. S. H. Park, R. Barish, H. Li, J. H. Reif, G. Finkelstein, **H. Yan**, and T. H. LaBean, Three Helix Bundle DNA Tiles Self-assemble into 2D Lattice or 1D Templates for Silver Nanowires, *Nano Lett.* 5, 693 (2005).
- 23. Y. Liu, and **H. Yan**, Modular Self-assembly of DNA Lattice with Tunable Periodicity, *Small* 1,327-330 (2005).
- 22. **H. Yan,** Nucleic Acid Nanotechnology, *Science*, 306, 2048-2049 (2004).

B. At Duke University

- 21. J. H. Reif, T. H. LaBean, S. Sahu, **H. Yan** and P. Yin, Design, Simulation, and Experimental Demonstration of Self-assembled DNA Nanostructures and Motors. In: UPP2004, LNCS 3566, ed. by J.P. Banatre, Springer-Verlag Berlin Heidelberg, pp. 173-187, (2005).
- 20 S.H. Park, **H. Yan**, J.H. Reif, T. H. LaBean, and G. Finkelstein, Electronic Nanostructures Templated on Self-assembled DNA Scaffolds, *Nanotechnology* 15, S525-S527 (2004).
- 19 **H. Yan**, P. Yin, S. H. Park, H. Li, L. Feng, X. Guan, D. Liu, J. H. Reif, and T. H. LaBean, Self-Assembled DNA Structures for Nanoconstruction, *AIP Proceedings* 725 (DNA-Based Molecular Electronics), 43-52. (2004).
- 18 P. Yin, **H. Yan,** X.J. Guan, A.J. Turberfield, and J. H. Reif, An Autonomous Unidirectional DNA Walker, *Angew. Chem. Int. Ed.* 43, 4906-4911 (2004).

Featured in Technology Research News, TRNMag.com: (http://www.trnmag.com/Stories/2004/110304/DNA machines take a walk 110304.htm)

- 17 H. Li, S. H. Park, J. H. Reif, T. H. LaBean, and **H. Yan,** DNA Templated Self-Assembly Of Protein And Nanoparticle Linear Arrays, *J. Am. Chem. Soc.* 126, 418 (2004).
- 16 **H. Yan,** L. Feng, T. H. LaBean, and J. H. Reif, Parallel Molecular Computation of Pair-wise Exclusive-Or (XOR) Using DNA "String Tile" Self-Assembly, *J. Am. Chem. Soc.* 125, 14246 (2003).
- 15 H. Yan, S. H. Park, G. Finkelstein, J. H. Reif and T. H. LaBean, DNA Templated Self-

- assembly of Protein Arrays and Highly Conductive Nanowires, *Science*, 301, 1882 (2003).
- Featured in Technology Research News, TRNMag.com: DNA forms nano waffles (http://www.trnmag.com/Stories/2003/102203/DNA_forms_nano_waffles_102203.html)
- 14 L. Feng, S. H. Park, J. H. Reif, and **H. Yan,** A Two-State DNA Lattice Switched By DNA Nanoactuator, *Angew. Chem. Int. Ed.* 42, 4342 (2003).
- Featured by an interview with BBC radio program Discovery Today (Oct. 29, 2003). Editor's choice of Science magazine, MATERIALS SCIENCE: DNA Makes a Move (http://www.sciencemag.org/content/vol302/issue5642/twil.shtml).
- 13. **H. Yan,** T. H. LaBean, L. Feng, and J. H. Reif, Directed Nucleation Assembly of DNA tile Complexes for Barcode Patterned Lattices, *Proc. Natl. Acad. Sci. U.S.A.* 100, 8103 (2003).

Featured in Technology Research News, TRNMag.com: DNA makes nano barcode (http://www.trnmag.com/Stories/2003/070203/DNA makes nano barcode 070203.html)

C. At New York University

- 12. N.C. Seeman, B. Ding, S. Liao, T. Wang, W.B. Sherman, P.E. Constantinou, J. Kopatsch, C. Mao, R. Sha, F. Liu, **H. Yan** and P.S. Lukeman, Experiments in Structural DNA Nanotechnology: Arrays and Devices, Proc. SPIE; Nanofabrication: Technologies, Devices and Applications 5592, 71-81 (2005).
- 11. Sha, R., Zhang, X., Liao, S., Constantinou, P.E., Ding, B., Wang, T., Garibotti, A.V., Zhong, H., Israel, L.B., Wang, X., Wu, G., Chakraborty, B., Chen, J., Zhang, Y., Mao, C., **Yan, H.**, Kopatsch, J., Zheng, J., Lukeman, P.S., Sherman, W.B. and Seeman, N.C., Motifs and Methods in Structural DNA Nanotechnology, Proc. Intl. Conf. Nanomaterials, NANO 2005, July 13-15, 2005, Mepco Schlenk Engineering College, Srivakasi, India, V. Rajendran, ed., pp. 3-10 (2005).
- 10. R. Sha, X. Zhang, S. Liao, P. Constantinou, B. Ding, T. Wang, A. V. Garibotti, H. Zhong, L. B. Israel, X. Wang, G. Wu, B. Chakraborty, J. Chen, Y. Zhang, **H. Yan**, Z Shen, W. SHen, P. Sa-Ardyen, J. Kopatsch, J. Zheng, P. Lukeman, W.B. Sherman, C. Mao, N. Jonoska, and N. C. Seeman, Structural DNA Nanotechnology: Molecular Construction and Composition. In: UC2005, LNCS 3699, ed. by C.S. Calude et al. Springer-Verlag Berlin Heidelberg, pp. 20-31 (2005).
- 9. Z. Shen, **H. Yan,** T. Wang, and N. C. Seeman, Paranemic Crossover DNA: A Generalized Holliday Structure with Applications in Nanotechnology, *J. Am. Chem. Soc.* 126, 1666 (2004).
- 8. **H. Yan** and N. C. Seeman, Edge-Sharing DNA Triangles And One-Dimensional Self-Assembly, *J. Supramol. Chem.*, 1, 229-237 (2003).
- 7. X. Zhang, **H. Yan**, Z. Shen and N. C. Seeman, Paranemic Cohesion of Topologically-Closed DNA Molecules, *J. Am. Chem. Soc.* 124, 12940-12941 (2002).
- 6. **H. Yan,** X. Yang, Z. Shen and N. C. Seeman, A Robust Sequence-dependent Rotary DNA Device, *Nature*, 415, 62-65 (2002).
- 5. T. H. LaBean, **H. Yan**, J. Kopatsch, F. Liu, E. Winfree, J. H. Reif and N. C. Seeman, The Construction, Analysis, Ligation and Self-assembly of DNA Triple Crossover Molecules, *J. Am. Chem. Soc.* 122, 1848-1860 (2000).

4. N.C. Seeman, H. Wang, X. Yang, F. Liu, C. Mao, W. Sun, L. Wenzler, Z. Shen, R. Sha, H. Yan, M.H. Wong, P. Sa-Ardyen, B. Liu, H. Qiu, X. Li, J. Qi, S.M. Du, Y. Zhang, J.E. Mueller, T.-J. Fu, Y. Wang, and J. Chen, New Motifs in DNA Nanotechnology, *Nanotechnology* 9, 257-273 (1998).

D. At Shandong University

- 3. Y. Ma, Q. Wang, **H. Yan**, X. Ji and Q. Qiu, Zeolite-Catalyzed Esterification. Synthesis of Acetates, Benzoates And Phthalates, *Appl. Catal.* 139, 51-57 (1996).
- 2. Q. Wang, Y. Ma, X. Ji, **H. Yan**, and Q. Qiu. Zeolite-Catalyzed Friedel-Crafts Acylation of Aromatics. Synthesis Of 4-Acyl Anisole With A HY Catalyst, *Chin. Chem. Lett.* 7, 99-102 (1996).
- 1. Q. Wang, Y. Ma, X. Ji, **H. Yan** and Q. Qiu, Regioselective Acylation of Anisole with Carboxylic-Acid Over HZSM-5 Catalyst, *J. Chem. Soc. Chem. Comm.* 22, 2307-2308 (1995).

2. Book Chapters

- 10. A. Edwards and **H. Yan**, "DNA Origami". In: Nucleic Acid Nanotechnology, ed. by K. Gothelf, Springer, 2013.
- 9. J. Sharma, Y. Liu, and **H. Yan**, "Structural DNA Nanotechnology: Information Guided Self-assembly". In: Chemistry of Nanostructured Materials, ed. by P. Yang, World Scientific Publisher, 2011.
- 8. Y. Ke, Y. Liu, and **H. Yan**, "Structural DNA Nanotechnology: Information Guided Self-assembly". In: Advanced Nanomaterials, ed. by K. E. Geckeler, Wiley-VCH, (2009).
- 7. J. D. Carter, C. Lin, Y. Liu, **H. Yan** and T. H. LaBean, "DNA-based Self-assembly of Nanostructures". In: Frontiers in Nanoscience and Nanotechnology, ed. by A.Narlikar and Y. Fu, Oxford University Press, (2009).
- 6. B. Ding, Y. Liu, S. Rinker, and **H. Yan**, "DNA-Templated Self-assembly of Protein Arrays and Highly Conductive Nanowires". In: Encyclopedia of Complexity and System Science, ed. by D. Bonchev, Springer, (2008).
- 5. R. Chhabra, J. Sharma, Y. Liu, and **H. Yan**, "Patterning Metallic Nanoparticles by DNA Scaffolds". In: Bio-Applications of Nanoparticles, ed. by W. Chan, Landes Bioscience, 2007. Pp. 107-115 (chapter 8).
- 4. **H. Yan** and Y. Liu, "DNA Nanotechnology: An Evolving Field". In: Nanotechnology: Science and Computation, ed. by J. Chen, N. Janoska, G. Rozenberg, Springer, 2005, ISBN: 3-540-30295-6.
- 3. M. Stojacovic, T. LaBean, and **H. Yan**, "Computing with Nucleic Acids". In: Bioelectronics, From Theory to Applications, ed. by I. Willner, Weily VCH, 2005. ISBN: 3-527-30690-0
- 2. N.C. Seeman, C. Mao, F. Liu, R. Sha, X. Yang, L. Wenzler, X. Li, Z. Shen, **H. Yan**, P. Sa-Ardyen, X. Zhang, W. Shen, J. Birac, P. Lukeman, Y. Pinto, J. Qi, B. Liu, H. Qiu, S.M. Du, H. Wang, W. Sun, Y. Wang, T.-J. Fu, Y. Zhang, J.E. Mueller and J. Chen. "Nicks, Nodes, and New Motifs for DNA Nanotechnology". In: Frontiers of Nano-Optoelectronic Systems, ed. by L. Pavesi & E. Buzanova, Kluwer, Dordrecht, 177-198 (2000).

1. N.C. Seeman, J. Chen, Y. Zhang, B. Liu, H. Qiu, T.-J. Fu, Y. Wang, X. Li, X. Yang, J. Qi, F. Liu, L.A. Wenzler, S, Du, J.E. Mueller, H. Wang, C. Mao, W. Sun, Z. Shen, M.H. Wong, **H. Yan** and R. Sha. "A Bottom-Up Approach to Nanotechnology Using DNA", In: Biological Molecules in Nanotechnology, ed. by S.C. Lee, IBC Libraries, Southborough, MA, Chapter 8 (1998).

3. Patents and Patent Applications

A. Issued Patents

- A Polynucleic Acid Nanomechanical Device Controlled By Hybridization Topology U.S. Patent issued #7,612,184, Issue date: November 03, 2009. Inventors: N. C. Seeman, **H. Yan**, X. Zhang and Z. Shen
- Novel DNA Nanostructures that Promote Cell-Cell Interaction and Use Thereof U.S Patent issued: #8,440,811, Issue date: May 14, 2013
 Inventors: Y. Chang, **H. Yan**
- Multifunctional Aptamer-nucleic Acid Nanostructures for Tumor-targeted Killing U.S. Patent issued: #8,552,167, Issue date: October 8, 2013 Inventors: Y. Chang, **H. Yan**
- 4 Modified Nucleic Acid Nanoarrays and Uses Therefor US Patent issued: #8,685,894, Issue date: April 1, 2014 Inventors: J, Chaput, S. Lindsay, **H. Yan**, P. Zhang
- 5 Quantum Dot Barcode Structures and Uses Thereof US Patent issued: #8895072, Issue date: Nov. 25, 2014 Inventors: **H. Yan,** Q. Wang, Y. Liu
- 6. Methods for Obtaining Information from Single Cells Within Populations using DNA Origami Nanostructures Without the Need for Single Cell Sorting US Patent issued: #9,944,923, Issue date: April 17, 2018 Inventors: Joseph Blattman, **Hao Yan**, Louis Schoettle, Xixi Wei
- 7 Synthetic Antibodies US Patent issued: #9,863,938, Issue date: Jan. 9, 2018 Inventors: S. Jonhston, N. Woodbury, J. Chaput, Chris, Diehnelt, **H. Yan**
- Quantum Dots, Rods, Wires, Sheets, and Ribbons, and Uses Thereof
 US Patent issued: #9,732,273, Issue date: August 15, 2017
 Inventors: Hao Yan, Zhengtao Deng, Yan Liu
- Nanocrystals containing CdTe core with CdS and ZnS coatings US Patent issued: #9,202,867, Issue date: December 1, 2015 Inventors: **Hao Yan**, Zhengtao Deng, Yan Liu
- 10 DNA Gridiron Compositions and Methods US Patent issued: #10,189,874, Issue date: Jan. 29, 2019 Inventors: Dongran Han, **Hao Yan**
- Nanocaged Enzymes with Enhanced Catalytic Activity and Increased Stability US Patent issued: #10,669,534, Issue date: June 2, 2020

Inventors: Jinglin Fu, Zhao Zhao, Neal Woodbury, Hao Yan

Structure Assisted Directed Evolution of Multivalent Aptamers US Patent issued: #11,168,320, Issue date: November 9, 2021

Inventors: Hao Yan

DNA Origami Nanostructures for Treatment of Acute Kidney Injury
US Patent issued: #10,987,373, Issue date: April 27, 2021
Inventors: **Hao Yan**, Dawei Jiang, Zhilei Ge, Christoper England, Peng Huang, Chunhai Fan, Weibo Cai

RNA Nanostructures and Methods of Making and Using RNA Nanostructures EP Patent issued: #3676380, Issue date: May 18, 2022
Inventors: **Hao Yan,** Yung Chang, Xiaowei Liu, Fei Zhang, Xiaodong Qi

RNA Nanostructures and Methods of Making and Using RNA Nanostructures US Patent issued: #11,254,941, Issue date: Feb. 22, 2022 Inventors: **Hao Yan,** Yung Chang, Xiaowei Liu, Fei Zhang, Xiaodong Qi

RNA-Nanostructured Double Robots and Methods of Use Thereof US Patent issued: #111,242,533, Issue date: Feb. 08, 2022 Inventors: Yung Chang, **Hao Yan**, Xiaodong Qi, Fei Zhang

B. Pending Patents

17 TLR Ligand-Nucleic Acid Nanostructure as a Novel Immune Modulatory Agent and Method of Using the Same

PCT/US09/065508

Inventors: Yung Chang and Hao Yan

18 Oligonucleotides Functionalized Quantum Dots

PCT/US61/771.728

Inventors: Hao Yan, Yan Liu, Zhengtao Deng, Anirban Samanta

19 Novel Nicotine DNA Vaccines

PCT/US 61/798,635

Inventors: Yung Chang, Hao Yan, Sidney Hecht, Paul Pentel, Xiaowei Liu, Rumit Maini

20 Novel DNA-Origami Nanovaccines

PCT/US 61/595,501

Inventors: Yung Chang, Hao Yan, Giovanna Ghirlanda

21 Self-Assembled Combinatorial Encoding Nanoarrays for Multiplexed Biosensing PCT/US 60/846,539

Inventors: Hao Yan, Chenxiang Lin, Evaldas Katilius, Yan Liu

22 Self-Assembled Nucleic Acid Nanoarrays and Uses Therefor PCT/US 60/680,32

Inventors: Stuart Lindsay, Hao Yan, John Chaput, Yan Liu, Peiming Zhang

23 Aptamer Probe for Locating Molecules and Method of Use PCT/US 60/868,295

Inventors: Liyun Lin, Hao Yan, Yan Liu, Stuart Lindsay

24 Methods for Obtaining Information from Single Cells within Populations using DNA Origami Nanostructures without the need for Single Cell Sorting Continuation: US 2018/0216102

Inventors: Joseph Blattman, Hao Yan, Louis Schoettle, Xixi Wei

25 DNA Gridiron Compositions and Methods

Continuation: US 2021/0061845 Inventors: Dongran Han, **Hao Yan**

Nanocaged Enzymes with Enhanced Catalytic Activity and Increased Stability Continuation: US 2020/0270599

Inventors: Jinglin Fu, Zhao Zhao, Neal Woodbury, Hao Yan

27 Ultraspecific Nucleic Acid Sensors for Low-Cost Liquid Biopsies US 2020/0071777

Inventors: Alexander Green, Fan Hong, Hao Yan

28 RNA Nanostructures and Methods of Making and Using RNA Nanostructures Continuation: US 2022/0056450

Inventors: Hao Yan, Yung Chang, Xiaowei Liu, Fei Zhang, Xiaodong Qi

29 DNA-Chimeric Antigen Receptor T Cells for Immunotherapy US 2020/0390814

Inventors: Hao Yan, Bo Ning

30 Highly Knotted Molecular Topologies from Single-stranded Nucleic Acids US 2021/0230601

Inventors: Hao Yan, Fei Zhang, Xiaodong Qi

Transmembrane Nanosensor Arrays for Rapid, Ultra-sensitive and Specific Digital Quantification of Internal Micro-RNA Content of Intact Exosomes US 2021/0230601

Inventors: Hao Yan, Rizal Hariadi, Swarup Dey

32 Transmembrane Sensors and Molecular Amplifiers for Lysis-free Detection of Intracellular Targets

PCT/US2021/054861

Inventors: Hao Yan, Rizal Hariadi

Rapid and Specific Ex-Vivo Diagnosis of Central Nervous System Lymphoma US Provisional: 63/225,305

Inventors: Hao Yan, Xiaowei Liu, Xiaodong Qi, Joseph George, Peter Nakaji

34 A Reversibly Gated Protein-Transporting Membrane Channel Made of DNA US Provisional: 63/255,867

Inventors: Hao Yan, Swarup Dey, Fei Zhang

35 Delivery Platforms for Small RNA Structures

US Provisional: 63/255,826

Inventors: Hao Yan, Xiaodong Qi, Yang Xu, Lu Yu

High Sensitivity DNA linked Immunosorbent Signal Amplification Assay (DLISA) for Detection of Infectious SARS-Cov-2 Virus and Variants

US Provisional: 63/257,838

Inventors: Hao Yan, Yang Xu, Shaopeng Wang, Nicholas Stephenopoulos

37 Neutralizing Trivalent Protein-DNA Molecules (Tri-PDbody) for Sars-CoV-2 Infection Treatment

US Provisional: 63/257,832

Inventors: Hao Yan, Yang Xu, Shaopeng Wang, Nicholas Stephenopoulos

38 DNA Origami Subunit Vaccine for Prevention of SARS-CoV-2 Variant Infection US Provisional: 63/257,835

Inventors: Hao Yan, Yang Xu, Petr Sulc, Nicholas Stephenopoulos

39 Folding mRNA into a nanoscale delivery vehicle

US Provisional Filed

Inventors: Nicholas Stephenopoulos, Petr Sulc, Hao Yan, Skalar Henry

40 5FU and RNAOG Combined Immunochemotherapy for Pancreatic Cancer Treatment US Provisional: 63/298,129

Inventors: Hao Yan, Xiaodong Qi, Yang Xu, Yung Chang, Guangbao Yao, Zhen Gong

4. Invited Presentations

- 147. "Designer Nucleic Acid Nanostructures for Programable Self-assembly", ACS-Korea University Symposium on Frontiers of Chemistry, Korea University, Seoul, Korea Oct. 23, 2023
- 146. "Designer Nucleic Acid Nanostructures for Programable Self-assembly", DNA nanotechnology summit, Seoul National University, Seoul, Korea Oct. 14, 2023.
- 145. "Designer Nucleic Acid Nanostructures for Programable Self-assembly", Univeristy Ca'Foscari Venice, Venice, Italy, June 8, 2023.
- 144. "Designer Nucleic Acid Nanostructures for Programable Self-assembly", University of Barcelona, Barcelona, Spain, June 5, 2023.
- 143. "Designer Nucleic Acid Nanostructures for Programable Self-assembly", IQAC-CSIC, Barcelona, Spain, June 2, 2023.
- 142. "Designer Nucleic Acid Nanostructures for Programable Self-assembly", Department of Chemistry, University College London, London, UK May 30, 2023.
- 141. "Designer Nucleic Acid Nanostructures for Programable Self-assembly", Ohio State University Institute for Materials Research Distinguished Lecturer, March 2, 2023
- 140. "Designer Nucleic Acid Nanostructures for Programable Self-assembly", Department of Chemistry, U. of Massachusetts, Amherst, Oct. 13, 2022.

- 139. "Designer Nucleic Acid Nanostructures for Programable Self-assembly", ACS Fall 2022, Chicago, Session on Supracolloidal Self-Assembly of DNA-Based Hybrid Materials, Aug. 24, 2022.
- 138. "Designer DNA Architectures for Programable Self-assembly", Functional DNA nanotechnology, Rome, Italy, May 27. 2022.
- 137. "Designer DNA Architectures for Programable Self-assembly", Engineering Life Seminar, LMU, Munich, Germany, May 19, 2022.
- 136. "Designer DNA Architectures for Programable Self-assembly", 2nd Physics Institute, U. of Stuttgart, Germany, May 16, 2022.
- 135. "DNA Nanobot", September 7, 2021, SIP of Science (Virtual)
- 134. "Designer DNA Architectures for Programable Self-assembly", August 10, 2021 International Conference in DNA Nanotechnology (Virtual)
- 133. "Designer DNA Architectures for Programable Self-assembly", Department of Chemistry, Northeastern University, Boston, Oct. 9, 2019.
- 132. "Designer DNA Architectures for Programable Self-assembly", "8th International Conference on DNA Nanotechnology", Wuxi, China, July 24-27, 2019.
- 131. "BASF Lectureship", University of California, Berkeley, Nov. 9, 2018.
- 130. "Wyss Institute Symposium on Molecular Robotics", Harvard University, Cambridge, MA, Sept. 24-25, 2018.
- 129. "ACS Symposium on Innovation in Materials", Shanghai, China, July 29-31, 2018.
- 128. "7th International Conference on DNA Nanotechnology", Chongqing, China, June 1-4, 2018.
- 127. "Designer DNA Nanostructures for Programmable Self-assembly", College of Chemistry, Changsha, China, August 29, 2017.
- 126. "Designer DNA Nanostructures for Programmable Self-assembly", Sixth International Meeting on DNA Nanotechnology, Beijing, China, August 27-28, 2017.
- 125. "Self-replicating DNA nanostructures", ONR PI meeting, Arlington, DC, August 2-4, 2017.
- 124. "DNA Nanostructure Directed Excitonic Networks", DOE Biomolecular Materials PI meeting, August 2-4, 2017.
- 123. "DNA Actuated Enzyme Nanoreactors", SRC/IBM Workshop on Biological pathways for electronic nanofabrication and materials, San Jose, Nov. 17-18, 2016.
- 122. "Single Stranded DNA and RNA Origami", RNA Nanotechnology Conference, Berkshire, UK, August 4-8, 2016.
- 121. "Designer DNA Architectures for Programmable Self-assembly", 5th International Conference on DNA Nanotechnology, Nanjing, China, May 7-9, 2016.
- 120. "Designer DNA Architectures for Programmable Self-assembly", Molecular Engineering

- and Sciences Institute, U. of Washington, Seattle, May 17, 2016.
- 119. "Designer DNA Architectures for Programmable Self-assembly", National Center for Nanoscience and Technology, Beijing, Dec. 2, 2015.
- 118. "Designer DNA Architectures for Programmable Self-assembly", Department of Chemistry, Tsinghua University, Beijing, Dec. 2, 2015.
- 117. "Designer DNA Architectures for Programmable Self-assembly", Department of Chemistry, Peking University, Beijing, Dec. 1, 2015.
- 116. "Designer DNA Architectures for Programmable Self-assembly", Workshop on DNA Meets Plasmonics, Bad Honnef, Germany, Dec. 8-10, 2015.
- 115. "Designer DNA Architectures for Programmable Self-assembly", Department of Nanoengineering, UCSD, San Diego, Nov. 18, 2015.
- 114. "Designer DNA Architectures for Programmable Self-assembly", Nanoday of the 21st International Meeting on DNA Computing and Molecular Programming, Boston, August, 21, 2015.
- 113. "Designer DNA Architectures for Programmable Self-assembly", KSI Meinsberg, Meinsberg, Germany, June 22, 2015.
- 112. "Designer DNA Architectures for Programmable Self-assembly", Department of Physics, Leipzig University, Leipzig, Germany, June 9, 2015.
- 111. "Designer DNA Architectures for Programmable Self-assembly", Department of Chemistry, Technical University Dresden, Dresden, Germany, June 4, 2015.
- 110. "Complex Wireframe DNA Origami Architectures Self-assembled from Multi-arm Junction Vertices", The 4th International Conference on DNA Nanotechnology, Xi'an, China, June 27-29, 2015. Chair of Organizing Committee and Keynote speaker.
- 109. "Designer DNA Architectures for Programmable Self-assembly", Materials Beyond Symposium, Fudan University, Shanghai, China, April 27-28, 2015.
- 108. "Designer DNA Architectures for Programmable Self-assembly", Department of Chemistry, U. of Pittsburg, Pittsburg, PA, April 2, 2015.
- 107. "Designer DNA Architectures for Programmable Self-assembly", RNA Nanotechnology Gordon Research Conference, Ventura, CA, Feb. 2-4, 2015.
- 106 "Designer DNA Nanoarchitectures for Multivalency", 3rd International Symposium on Multivalency in Chemistry and Biochemistry, Berlin, Germany, Oct.22-24, 2014.
- 105 "Designer DNA Nanoarchitectures for Programmable Self-assembly", ACS Central Regional Meeting, Session on DNA/RNA Nanostructures, Pittsburgh, Oct.1-4, 2014.
- 104 "Designer DNA Nanoarchitectures for Programmable Self-assembly", Department of Chemistry, U. of Pittsburgh, Oct.2, 2014.
- 103 "DNA Origami and the Different Functionalization Techniques", Plasmonics: Manipulating Light-Matter Interaction at the Nanoscale, Gordon Research Conference, Newry, ME, July 6-11, 2014.
- 102 "Designer DNA Nanoarchitectures for Programmable Self-assembly", The Third

- International DNA Nanotechnology Conference, Suzhou, China, May 25-28, 2014. Co-Chair of Organizing Committee and Plenary speaker.
- 101 "Designer DNA Nanoarchitectures for Programmable Self-assembly", International Workshop on DNA-Based Nanotechnology: Digital Chemistry, Dresden, Germany, May 5-9, 2014. Co-Organizer and Invited speaker.
- 100 "Designer DNA Nanoarchitectures for Programmable Self-assembly", 40th Annual Naff Symposium on Chemistry and Molecular Biology, April 25, 2014. (Keynote speaker).
- 99 "Designer DNA Nanoarchitectures for Programmable Self-assembly", Department of Chemistry, U. of Michigan, April 1, 2014.
- 98 "Designer DNA Nanoarchitectures for Programmable Self-assembly", Department of Chemistry, U. of Chicago, March 31, 2014.
- 97 "New Innovations in Biotechnology: Molecular Design and Biomimicry", Presidential Engagement Program, Building Solutions to Grand Challenges: Creating Societal Impact Through Use-Inspired Research, Arizona State University, March 13, 2014.
- "Designer DNA Architectures for Programmable Self-assembly", Bio-Inspired Computing: Theories and Applications 2013 (BIC-TA 2013), Huangshan, China, July 12-14, 2013. (Keynote speaker).
- 95 "Designer DNA Architectures for Programmable Self-assembly", 10th Annual Conference, Foundation of Nanoscience, Self-assembled Achitectures and Devices, Snowbird, Utah, April 15-18, 2013. (Keynote speaker)
- 94 "Designer DNA Architectures for Programmable Self-assembly", Wyss Institute of Bioinspired Engineering, Harvard University, May 13, 2013.
- 93 "Designer DNA Architectures for Programmable Self-assembly", Department of Bioengineering, MIT, May 9, 2013.
- 92 "Designer DNA Architectures for Programmable Self-assembly", Department of Chemistry, Penn State Univ, April 3, 2013.
- 91 "Designer DNA Architectures", DNATEC workshop, Arhus, Denmark, August 13, 2012.
- 90 "Designer DNA Nanostructures for Nanobiotechnology", Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, May 9, 2012.
- 89 "Designer DNA Nanostructures", Department of Chemistry, University of Nebraska Lincoln, NE, April 6, 2012.
- 88 "Designer DNA Nanostructures", Seminar Series in Chemical Biology, Yale University New Heaven CT, April 4, 2012.
- 87 "Designer DNA Architectures for Nanotechnology", the 243rd ACS National Meeting, San Diego, CA, March 25, 2012.
- When the signer DNA Architectures, DNA Nanotechnology Conference: From Structure to Function, Shanghai, China, March 16-19, 2012.
- 85 "Designer DNA Nanostructures", the 14th IUPAC conference on Polymers and Organic Chemistry, Doha, Qatar, Jan. 6-9, 2012.

- When the signer DNA Nanostructures, the 17th International Conference on DNA Computing and Molecular Programming, Pasadena, CA, Sept. 19-23, 2011. (Plenary Talk).
- 83 "Designer DNA Nanostructures", Symposium In Honor of Ned Seeman, The 8th meeting for Foundations of Nanoscience: Self-assembled Architectures and Devices, Snowbird, Utah, April 11-15, 2011.
- 82 "Designer DNA Nanostructures", iNANO, University of Aarhus, Aarhus, Denmark, Feb. 7. 2011.
- 81 "Designer DNA Nanostructures for Nanobiotechnology", The 8th iCeMS International Symposium on Meso-Control of Functional Architecture, Kyoto, Japan. November 9-11, 2010.
- When the signer DNA Nanostructures for Nanobiotechnology, Graduate summer school in molecular self-assembly hosted by the Interdisciplinary Nanoscience Center at Aarhus University, Denmark, Aug. 7-12, 2010.
- 79 "Designer DNA Nanostructures for Nanobiotechnology", Gordon Research Conference on Nobel Metal Nanoparticles, Mount Holyoke College, MA, June 20-25, 2010.
- 78 "Designer DNA Nanostructures for Nanobiotechnology", School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, China, June 13, 2010.
- 77 "Designer DNA Nanostructures for Nanobiotechnology", Fifth Sino-US Nano Forum, Suzhou Institute of Nanotechnology and Nanobiones (SINANO), Chinese Academy of Sciences, June 5-7, 2010.
- 76 "Designer DNA Nanostructures for Nanobiotechnology", Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, China, June 1, 2010.
- 75 "Designer DNA Nanostructures for Nanobiotechnology", School of Chemistry, Shandong University, Jinan, China, May 21, 2010.
- 74 "Designer DNA Nanostructures for Nanobiotechnology", Workshop on Bio-directed Assembly, Keystone, CO, May 17-18, 2010.
- 73 "Designer DNA Nanostructures for Directed Self-assembly", Center for Nanofabrication, U. of Washington, Seattle, WA, May 4, 2010.
- 72 "Designer DNA Nanostructures for Nanobiotechnology", Department of Biomedical Engineering, U. of Washington, Seattle, WA, May 3, 2010.
- "Designer DNA Nanostructures for Nanobiotechnology", Foundations of Nanoscience: Self-assembled Architectures and Devices, Snowbird, Utah, April 27-29, 2010. (Keynote speaker).
- "Designer DNA Nanostructures for Nanobiotechnology", Symposium OO: Hierarchical Self Assembly of Functional Materials from Nanoscopic- to Mesoscopic-Length Scales: 2010 Material Research Society Spring Meeting, San Francisco, CA, April, 5-9, 2010.
- 69 "Designer DNA Nanostructures for Nanobiotechnology", Workshop on Soft Nanomaterial Synthesis, Molecular Foundry, Lawrence Berkeley National Lab, CA, March 19-20, 2010.

- 68 "Designer DNA Nanostructures for Nanobiotechnology", Symposium on "Probing the BioNano Self-assembly World", Pittcon 2010, Orlando, FL, Feb. 28-March 5, 2010.
- 67 "Designer DNA Nanostructures for Nanobiotechnology", Session on "DNA Nanomachines in Vitro and Inside Living Cells", 54th Annual Biophysical Society Meeting, San Francisco, CA, Feb. 20-24, 2010.
- 66 "Designer DNA Nanostructures for Nanobiotechnology", Biophysics Seminar, Dept. of Physics and Astronomy, Rice University, Houston, TX, Nov. 6, 2009.
- 65 "Designer DNA Nanostructures for Nanobiotechnology", nanoUtah2009: 5th Annual Utah Statewide Nanotechnology Conference, Salt Lake City, Utah, Oct.16, 2009.
- 64 "Designer DNA Nanostructures for Nanobiotechnology", Dept. of Chemical and Nuclear Engineering, U. of New Mexico, Albuquerque, NM, Sept. 29, 2009.
- 63 "Designer DNA Nanostructures for Nanobiotechnology", DNA Nanotechnology workshop, National Center for Nanoscience and Technology, Beijing, July 16, 2009.
- 62 "Designer DNA Nanostructures for Nanobiotechnology", Dept. of Chemistry, Univ. of Science and Technology of China, Hefei, July 10, 2009.
- 61 "Designer DNA Nanostructures for Nanobiotechnology", Institute of Applied Physics, CAS, Shanghai, July 8, 2009.
- 60 "Designer DNA Nanostructures for Nanobiotechnology", Materials Science and Engineering Department, Iowa State University, Ames, IA, April. 9, 2009.
- 59 "Designer DNA Nanostructures for Nanobiotechnology", Mini-symposium of Center for DNA Nanotechnology, Duke University, Durham, NC, March. 20, 2009.
- 58 "Designer DNA Nanostructures for Nanobiotechnology", Department of Chemistry, Florida State University, Tallahassee, FL, Feb. 27, 2009.
- 57 "Designer DNA Nanostructures for Nanobiotechnology", Joint MIT and Harvard Inorganic Chemistry Seminar Series, Department of Chemistry, MIT, Cambridge, MA, Jan. 21, 2009.
- 56 "Designer DNA Nanostructures for Nanobiotechnology", Departments of Material Science and Mechanical Engineering, UC Santa Babara, Santa Barbara, CA Oct. 31, 2008.
- 55 "Designer DNA Nanostructures for Nanobiotechnology". the Joint Symposium of 18th International Roundtable on Nucleosides, Nucleotides and Nucleic Acids (IRTXVIII) and 35th International Symposium on Nucleic Acids Chemistry (SNAC), Kyoto, Japan, September 8th 12th, 2008.
- 54 "Designer DNA Nanostructures for Nanobiotechnology". SPIE Optics and Photonics Meeting (Biosensing Symposium), San Diego, CA, August 10-14, 2008.
- 53 "Structural DNA Nanotechnology: Information Guided Self-assembly", Gordon Research Conference, Session on Bioorganic Chemistry (Organizer: W. A. Van Der Donk & P. L. Richardson), Andover, NH, June. 15-20, 2008.
- 52 "Designer DNA Nanostructures for Nanobiotechnology". Conference of International Materials and Technologies (CIMTEC08: Symposium E), Sicilly, Italy, June 8-13, 2008.
- 51 "Designer DNA Nanostructures for Nanobiotechnology". International Symposium for DNA

- based nanodevices, Jena, German, May 29-30, 2008.
- 50 "Designer DNA Nanostructures for Nanobiotechnology". Foundations of Nanoscience: Self-assembled Architectures and Devices (FNANO08), Snowbird, Utah, April 22-25, 2008.
- 49 "DNA based Nanscale Scaffolds, Assembly and Molecular Robotics". Office of Naval Research Workshop on DNA based Nanofabrication, Washington DC, April 11, 2008.
- 48 "Designer DNA Nanostructures for Nanobiotechnology". 3rd Annual Arizona Nanotechnology Cluster Symposium, Scottsdale, AZ, April 10, 2008.
- 47 "Designer DNA Nanostructures for Nanobiotechnology". Department of Chemistry, Texas A &M University, College Station, TX, April 4, 2008.
- 46 "Structural DNA Nanotechnology: Information Guided Self-assembly", Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, March. 27, 2008.
- 45 "Designer DNA Nanostructures for Nanobiotechnology", 2008 William H. Nichols Symposium, New York Section of the American Chemical Society, White Plains, NY, March. 14, 2008.
- 44 "Structural DNA Nanotechnology: Information Guided Self-assembly", Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, March. 12, 2008.
- 43 "Structural DNA Nanotechnology: Information Guided Self-assembly", Department of Chemistry, U. of Central Florida, Orlando, FL, Oct. 12, 2007.
- 42 "DNA Based Self-assembly of Nanostructures", Symposium MM: Biomolecular and Biologically-Inspired Interfaces and Assemblies, Fall 2007 Materials Research Society National Meeting, Boston, MA, Nov 27-Dec. 1, 2007.
- 41 "DNA Based Self-assembly of Nanostructures", Symposium on Advances in Bio-based Nanostructures and Nanomaterials, 234th ACS National Meeting, Boston, MA, Aug. 19-23, 2007.
- 40 "DNA Based Self-assembly of Nanostructures", Mini-symposium on DNA based Nanotechnology University of Aarhus, Aarhus, Denmark, Aug. 17, 2007.
- 39 "DNA Based Self-assembly of Nanostructures", The Second Advanced Materials Workshop, Dalian, China, June 23-24, 2007.
- 38 "DNA Based Self-assembly of Nanostructures", Albany 2007: The 15th Conversation, Albany, New York, June 21, 2007.
- 37 "DNA Based Self-assembly of Nanostructures", NSF Center for Hierarchical Manufacturing, U. of Massachusetts, Amherst, MA, May 17, 2007.
- 36 "DNA Based Self-assembly of Nanostructures", Nanoscience and Nanotechnology Session 2006 SACNAS, Tampa, Fl, Oct. 27, 2006.
- 35 "DNA Based Self-assembly of Nanostructures", Bionanotechnology Symposium organized by Canadian institute for advanced research, Toronto, Canada, Oct. 14-15, 2006.
- 34 "DNA Based Self-assembly of Nanostructures", Department of Chemistry, Hunter College, CUNY, New York, NY, Sept. 29, 2006.

- 33 "DNA Based Self-assembly of Nanostructures", National Center for Nanoscience and Technology, Beijing, China, June 19, 2006.
- 32 "DNA Based Self-assembly of Nanostructures", Department of Chemistry, Tsinghua University, Beijing, China, June 19, 2006.
- 31 "DNA Based Self-assembly of Nanostructures", Interdisciplinary Nanoscience Center (iNANO), University of Aarhus, Aarhus, Denmark, May 24, 2006.
- 30 "DNA Based Self-assembly of Nanostructures", Department of Physics, Leiden University, Leiden, Netherland, May 22, 2006.
- 29 "DNA Based Self-assembly of Nanostructures", International Symposium on DNA-Based Nanoscale Integration, Jena, Germany, May 18-20, 2006.
- 28 "DNA Based Self-assembly of Nanostructures", Symposium on Frontier of Nanoscience, Auburn University, Auburn, AL, May. 2, 2006.
- 27 "DNA Based Self-assembly of Nanostructures", NSF workshop: The Synthesis of Complex Chemical Systems, Oxfordshire, UK, March 19-21, 2006.
- 26 "DNA Based Self-assembly of Nanostructures", Department of Physics, University of Oxford, Oxford, UK, Mar. 17, 2006.
- 25 "DNA Based Self-assembly of Nanostructures", VIII Annual Linz Winter Workshop on Single Molecule Research, Linz, Austria, Feb. 3-7, 2006.
- 24 "DNA Based Self-assembly of Hierarchical Nanostructures", Arizona Nanocluster Symposium, Organized by Quanttera Co., Tempe, AZ, Jan. 26, 2006.
- 23 "DNA Based Self-assembly of Hierarchical Nanostructures", Mini-Symposium on DNA Self Assembly and Robotics, Columbia University, New York, NY, Dec. 16, 2005.
- 22 "DNA Based Self-assembly of Hierarchical Nanostructures", NSF Workshop: Emerging Opportunities of Nanoscience to Energy Conversion and Storage, Arlington, VA, Nov 21-22, 2005.
- 21 "DNA Based Nanobiotechnology", Department of Biomedical Engineering, Cornell University, Ithaca, NY, Oct. 6, 2005.
- 20 "DNA Based Nanobiotechnology", Department of Chemical Engineering, Hong Kong University of Science and Technology, Hong Kong, Aug. 2, 2005.
- 19 "DNA Based Nanobiotechnology", 2005 Scanning Probe Microscopy, Sensors and Nanostructures Meeting, Cancun, Mexico, June 6, 2005.
- 18 "DNA Based Nanobiotechnology", Session on Developing Nano-Bio Interfaces, 2005 MRS Spring Meeting, San Francisco, CA. March 28-April 1, 2005.
- 17 "DNA Based Nanobiotechnology", 2005 Arizona Imaging and Microanalysis Society Annual Meeting, Tempe, AZ, March 22, 2005.
- 16 "DNA Based nanotechnology: pattern and motion", Engineering a DNA World, Workshop sponsored by California Institute of Technology, Center for Biological Circuit Design Rock Auditorium, Broad Center for Biological Sciences, Pasadena, CA, Jan. 7, 2005.
- 15 "DNA Based Nanobiotechnology", Structure of Nanocrystals Workshop Sponsored by

- Michigan State University, Tempe, AZ, Dec. 5-8, 2004.
- 14 "DNA Based Nanotechnology: Pattern and Motion". ACS Rocky mountain analytical section, Denver, CO, Aug. 2, 2004.
- 13 "DNA Self-assembly, Nanoactuators and Autonomous Unidirectional DNA Motor". Max Bergmann Zentrum fur Biomaterialien, Technische Universitat Dresden, Germany, May 18, 2004.
- 12 "New Structures for DNA based Nanotechnology". DNA-Based Molecular Electronics, International Symposium, Jena, Germany, May 15, 2004.
- 11 "DNA Nanoactuator in Self-assembly". Foundations of Nanoscience: Self-assembled Architectures and Devices, Snowbird, Utah, April 21-23, 2004.
- "DNA Self-assembly, Nanoactuators and Autonomous Unidirectional DNA Motor". 320th WE-Heraeus-Seminar "Nano-Physics of DNA" Physikzentrum Bad Honnef, Germany, Mar. 23, 2004.
- 9 "DNA Nanoactuators in Self-assembly". DARPA IPTO Workshop for Molecular Architectures from Self-Assembled Nanostructures, Adelphi, MD, Feb. 3-5, 2004.
- 8 "DNA self-assembly for nanoconstruction and molecular robotics". Dept. of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, Jan. 18, 2003.
- 7 "Overview of New Structures for DNA-based Nanofabrication and Computation". 6th International Conference on Computational Intelligence and Natural Computing, Cary, NC, Sept. 26-30, 2003.
- 6 "Self-assembly of DNA for Computing and Molecular Robotics". Department of Chemistry, Duke University, Durham, NC, Sept. 12, 2003.
- 5 "Self-assembly of DNA for Nanofabrication, Computing and Molecular Robotics". Department of Quantum Molecular Devices. Osaka University, Osaka, Japan, Aug. 11, 2003.
- 4 "Self-assembly of DNA for Nanofabrication and Molecular Robotics". Graduate School of Arts and Sciences, College of Arts and Science, University of Tokyo, Tokyo, Japan, Aug. 9, 2003.
- 3 "Self-assembly of DNA for Nanofabrication, Computing and Molecular Robotics". Graduate School of Engineering, Hokkaido University, Sapporo, Japan, Aug. 5, 2003.
- 2 "Tutorial: Self-assembly of Nanostructures". 9th International Meeting on DNA Based Computers, Madison, WI, June 1, 2003.
- 1 "Molecular Robotics for DNA Nanostructures". DARPA IPTO/NSF Bio-Computation/QIS Joint PI Meeting, Fort Lauderdale, FL, May 16, 2003.

RESEARCH GRANTS

1.Past research grants

National Science Foundation

8/02-08/06

"Molecular Robotics for DNA Nanostructures"

Award amount: \$349,950

Role: PI

National Science Foundation 8/04-07/07

"NANO: Combinatorial Self-assembly of

Nanocircuit on Addressable DNA Nanoscaffolds"

Award amount: \$300,000

Role: PI

AZTE Innovation Catalyst Fund 8/05-07/06

"A Protein Detection Technology based on Aptamer Binding"

Award amount: \$40,000

Role: PI

National Science Foundation 8/06-07/11

"Career: DNA Directed-Self-assembly of Multicomponent Nanoarchitectures"

Award amount: \$400,000

Role: PI

National Institute of Heath 9/06-08/09

"R21: Water-soluble Arrays for Personalized Medicine"

Award amount: \$560,255

Role: co-PI; PI: S. Lindsay, co-PI: H. Yan, P. Zhang

National Science Foundation 9/06-08/10

"NIRT: Self-assembly at Photonic and Electronic Scale"

Award amount: \$1,100,000

Role: co-PI; PI: S. Lindsay, co-PI: H. Yan, D. Gust, R. Diaz

Office of Naval Research 12/06-11/09

"Nanodisplay: A Self-assembly Approach to Inorganic Nanoarrays"

Award amount: \$450,000 Role: PI; co-PI: J. Chaput

Air Force Office of Scientific Research 1/07-11/09

AFOSR-YIP "Self-assembled Combinatorial Encoding Nanoarrays

for Multiplexed Biosensing" Award amount: \$355,533

Role: PI

National Science Foundation 08/07-07/10

"Material World Network: Self-assembled DNA Nanotubes: Biomimetic Design, Controlled Surface Alignment and Templated Nanowire Formation"

Award amount: \$276,000

Role: PI

National Science Foundation 09/07-08/10

"Emerging Model Technology: Self-assembled Inductors: A New Paradigm for

Nanoelectronic Designs" Award amount: \$650.001

Role: co-PI; PI: Hongbin Yu, co-PI: H. Yan, Y. Cao, B. Bakkaloglu

Alfred P. Sloan Foundation

04/08-03/10

Research Fellowship Award amount: \$50,000

Role: PI

National Institute of Health

07/08-07/12

"1R01 DA026296-01: Feasibility Demonstration of an Artificial Electrocyte for Neuronal

Observation and Stimulation" Award amount: \$1,200,000

Role: co-PI; PI: R. Diaz, co-PI: T. Moore

National Science Foundation

07/08-07/12

"EMT-MISC: Behavior Based Molecular Robotics"

Award amount: \$2,200,000

Role: co-PI; PI: M. Stojanovic and 5 other co-PIs

Army Research Office

08/08-07/11

"Self-assembling DNA architectures for Bio-inspired Engineering of Discrete and

Multifunctional Nanostructures"

Award amount: \$300,000 Role: PI; co-PI: Yan Liu

Office of Naval Research

12/08-11/10

"Guided DNA Fabrication of Nanometer Scale Electron Devices and Sensors"

Award amount: \$960,000

Role: co-PI; PI: N. C. Seeman, co-PIs: S. Chou, C. Mao

DOD-CDMRP

"Multi-Specific Aptamer-nanoscaffolds to Induce Aptamer-dependent Cellular

Cytotoxicity (ApDCC) against Breast Cancer Cells"

Award amount: \$106,848

Role: co-PI, PI: Yung Chang, co-PI: Yan Liu

Office of Naval Research

01/10-12/12

"Protein Arrays with Precisely Controlled Orientation and Position"

Award amount: \$470,000 Role: PI; co-PI: William Shih

Army Research Office

03/10-08/10

"Workshop on Bio-Directed Assembly, Keystone, Co, 18-19 May 2010"

Award amount: \$49,500

Role: PI

National Institute of Health

05/10-04/12

"1R21CA141021-01A2: Tunable DNA-nanostructure to Induce NK-mediated Killing of

Tumor Cells"

Award amount: \$352,735

Role: co-PI; PIs: Y. Chang, co-PI: Y. Liu, H. Yan

Army Research Office

07/10-06/11

"High School Student Training Opportunity in a Structural DNA Nanotechnology Laboratory"

1 ---- 1 ---- ---- C

Award amount: \$9,150

Role: PI

National Science Foundation

12/10-11/13

Enzymology of Multi-enzyme Systems on Self-assembled Surfaces

Award amount: \$401,000

Role: Co-PI; PI: Neal Woodbury

National Institute of Health

04/11-03/12

"R21 DA030045: Tunable Nicotine DNA-Nanovaccines"

Award amount: \$319,120

Role: co-PI; PI: Y. Chang, co-PI: H. Yan, S. Hecht

Office of Naval Research

06/11-06/12

"High Speed Atomic Force Microscope for Real Time Imaging of Biomolecular

Assembly"

Award amount: \$ 309,123

Role: PI

Department of Energy

08/09-07/14

EFRC: Bio-inspired Solar Fuel Award amount: \$14.2 million Role: co-PI with 10 others

Office of Naval Research

08/09-08/14

"DNA-based Three-dimensional Nanofabrication"

Award amount: \$3,200,000 Role: PI; co-PI: 8 others

National Science Foundation

09/11-08/14

"DNA Origami Nanostructures with Complex Curvatures in 3D Space"

Award amount: \$400,000 Role: PI; co-PI: Y. Liu

National Institute of Health

08/09-05/14

"1R01 GM088818-01: Water Soluble Nanoarrarys for Single Cell Proteomics"

Award amount: \$1,500,000

Role: PI; co-PIs: S. Lindsay, Y. Liu, D. Meldrum

National Science Foundation

07/12-06/16

"INSPIRE: Mimicking the Functional Complexity of Biology with Man-Made Systems"

Award amount: \$1,000,000

Role: co-PI; PI: N. Woodbury, co-PI: H. Yan, S. Johnson, S. Lindsay

Army Research Office

05/11-05/15

"Molecular Engineering of Self-assembled Nanoreactors"

Award amount: \$470,000 Role: PI; co-PI: Y. Liu

Army Research Office

08/12-07/17

"MURI-Translating Biochemical Pathways to Non-cellular Environments"

Award amount: \$6,250,000 Role: PI; 5 other co-PIs

National Institute of Health

09/12-08/17

"1R01GM104960: NIH-Transformative Research Award: Theranostic Nano-objects:

Basic Principles and Initial Applications"

Award amount: \$5,400,000 Role: co-PI; PI: Milan Stojanovic

National Institute of Health

Kole. co-1 1, 1 1. Willam Stojano

04/13-03/17

"1R01DA035554-01: Rational Design and Targeted Selection of DNA-scaffolded

Nicotine Vaccines"

Award amount: \$3,350,000 Role: co-PI; PI: Yung Chang

National Science Foundation

01/14-12/17

"DMREF: Computational Design Principles for Functional DNA-Based Materials"

Award amount: \$1,706,468

Role: co-PI; PI: M. Bathe, co-PI: P. Yin

National Science Foundation

07/14-7/17

"Self-assembling Quasi-crystals from DNA Tiles"

Award amount: \$390,000 Role: PI; co-PI: Y. Liu

Office of Naval Research

09/15-08/18

"Self-replicating DNA Nanostructures"

Award amount: \$450,000 Role: PI; co-PI: Y. Liu

National Science Foundation

08/15-07/17

"EAGER: Collaborative Research: Algorithmic Design Principles for Programmed DNA

Nanocages"

Award amount: \$145,000

Role: PI

National Institute of Health

08/15-07/17

"Single Cell Technologies for Rapid Detection of Tumor Heterogeneity"

Award amount: \$796,130

Role: Co-I; PI: Karen Anderson, co-PI: Joseph Blattman

National Institute of Health

06/16-05/18

"DNA Origami Nanostructures for Single-Cell Multi-Gene Analysis Without Single Cell Sorting"

A 1

Award amount: \$440,000

Role: co-PI; PI: Joseph Blattman

National Institute of Health

03/16-02/18

"Switchable Molecular Nanoprobes for Fast and Specific Intraoperative Diagnosis of

Brain Tumors"

Award amount: \$410,000 Role: PI; co-PI: Peter Nakaji

National Science Foundation

04/16-03/20

"AF: Medium: Collaborative Research: Top-down algorithmic design of structured

nucleic acid assemblies" Award amount: \$560,755

Role: PI

Department of Energy

08/16-06/19

"DNA nanostructure directed designer excitonic networks"

Award amount: \$899,000

Role: PI; co-PIs: Neal Woodbury, Mark Bathe, Yan Liu, David Whitten

National Science Foundation

08/16-07/19

"Bilateral NSF/BIO-BBSRC: Synthetic DNA Nanopores for Selective Transmembrane

Transport"

Award amount: \$500,000

Role: PI

Office of Naval Research

8/16-8/17

"Mass Spectrometry Instrument for Mass Determination of Protein and Nucleic Acid Conjugates"

Award amount: \$300,000

Role: PI

National Science Foundation

8/16-8/19

"DMREF: Computational Design of Next-generation Nanoscale DNA-based Materials"

Award amount: \$1,600,000

Role: co-PI

Army Research Office

09/18-08/19

"Extension Project: MURI-Translating Biochemical Pathways to Non-cellular Environments"

Award amount: \$1,250,000 Role: PI; 2 other co-PIs

2. Active research grants

Department of Energy

08/19-07/23

"Biomimetic Light Harvesting Complexes Based on Self-Assembled Dye-DNA

Nanostructures"

Award amount: \$1500,000

Role: PI; co-PIs: Neal Woodbury, Su Lin

National Science Foundation

08/19-07/23

"Elements: Models and tools for on-line design and simulations for DNA and RNA

nanotechnology"

Award amount: \$436,607 Role: co-PI; PI: Petr Sulc

National Science Foundation

07/20-06/23

"Rational design of self-assembled, three-dimensional DNA crystals"

Award amount: \$450,000

Role: PI; co-PI: Petr Sulc & Nick Stephanopoulos

National Science Foundation

10/20-09/23

"SemiSynBio-II: DNA-Based Memory for High-Density Information Storage and

Molecular Cryptography with Fast Readout Methods"

Award amount: \$1,500,000

Role: PI; co-PI: Rizal Hariadi & Chao Wang

Office of Naval Research

09/20-08/23

"Modeling Driven Design and Assembly of 3D DNA Nanomaterials"

Award amount: \$563,994 Role: co-PI; PI: Petr Sulc

National Science Foundation

11/22-10/25

"SemiSynBio-III: DNA Templated Chiral Metamaterials for Information Storage"

Award amount: \$1,500,000

Role: PI; co-PI: Rizal Hariadi. Petr Sulc, Sui Yang

National Institute of Health

05/23-04/26

"High-throughput, purification-free, and ultrasensitive transmembrane

nanosensor arrays for digital counting of microRNA biomarkers of intact exosomes"

Award amount: \$706,500 Role: PI; co-PI: Rizal Hariadi

TEACHING AND MENTORING

1. Courses Taught

Year	Semester	Course	Title	Credit hours	Enrollment
2023	Spring	BCH461	General Biochemistry	3	42
2022	Spring	BCH461	General Biochemistry	3	43
2021	Spring	BCH461	General Biochemistry	3	51
2020	Spring	BCH361	Principles of Biochemistry	3	173
2019	Spring	BCH361	Principles of Biochemistry	3	138
2018	Spring	CHM460	Biological Chemistry	3	12
2017	Spring	BCH361	Principle of Biochemistry	3	170
2016	Fall	BCH461	General Biochemistry	3	105
2016	Spring	BCH361	Principle of Biochemistry	3	157
2014	Fall	CHM460	Biological Chemistry	3	14
2012	Fall	BCH461	Biochemistry	3	134
2011	Fall	BCH461	Biochemistry	3	108
2011	Spring	BCH494	Bionanotechnology	3	24
2010	Fall	Sabbatical			
2009	Spring	Teaching Re	elease		
2009	Fall	BCH461	Biochemistry	3	85

2009	Spring	CHM598	Bionanotechnology	3	24
2008	Fall	CHM461	Biochemistry	3	140
2008	Spring	BCH598	Bionanotechnology	3	14
2007	Fall	CHM460	Biological Chemistry	3	20
2007	Spring	BCH598	Bionanotechnology	3	6
2006	Fall	CHM460	Biological Chemistry	3	15
2006	Spring	BCH561	Advanced Topics in Biochemistry	3	11
2006	Spring	BCH598	Nucleic Acid and Nanobiotechnology	3	23
2005	Fall		Approved Release Before Tenure		
2005	Spring		Approved Release Before Tenure		
2004	Fall	BCH501	Current Topics in Biochemistry	1	21
2004	Fall	CHM598	Nucleic Acid and Nanobiotechnology	3	24

2. Graduate Student Mentees

Year Enrolled	Research Area
Fall 04	Self-assembled DNA Molecular Pegboards and Spiral Tubes
Fall 04	DNA Tweezer and Templated Nanoparticle Assembly
Fall 04	in-vivo Replication of DNA Nanostructures
Spring 05	Water-soluble Nanoarrays for Gene Expression Detection
Spring 05	Combinatorial Barcode Nanoarrays
na Spring 05	Quantum Dot Based Nanoassembly and Biosensing
ive Fall 07	Thermodynamics and Kinetics of DNA Nanostructures
Fall 07	Higher Order Assembly of DNA Nanostructures
Fall 08	Complementary Geometry for Self-assembly
Fall 08	Interfacing DNA nanostructures with live cells
Fall 08	Multi-enzyme Cascade Engineering
	Fall 04 Fall 04 Fall 04 Spring 05 Spring 05 Spring 05 as Spring 05 ave Fall 07 Fall 07 Fall 08 Fall 08

Suchetan Pal	Fall 08	DNA templated Nanophotonics
Xiaowei Liu	Fall 08	DNA Nanostructure Vaccines
Wei Li	Fall 09	DNA Computing
Palash Dutta	Fall 09	Multifunctional and Multicomponent Nanostructures
Dongran Han	Fall 09	3D DNA Origami with Complex Curvatures
Anirban Samanta	Fall 09	Quantum Dot Nanobiotechnology
Fei Zhang	Fall 10	Complex DNA Nanostructures
Shuoxing Jiang	Fall 11	Kinetics of DNA Self-assembly
Yuhe Yang	Fall 11	DNA Directed Enzyme Cascades
Saswata Banerjee	Fall 12	Theranostic Nanorobots
Angela Edwards	Fall 12	Thermodynamics and Kinetics of DNA Nanostructures
Yu Zhou	Fall 13	Single cell Analysis
Fan Hong	Fall 14	Dynamic DNA nanotechnology
Swarup Dey	Fall 15	DNA nanopore
Raghu Narayanan	Fall 15	DNA-peptide hybrid materials
Xu Zhou	Fall 16	DNA-directed excitonic networks
Hao Liu	Fall 18	Computational modeling of DNA nanostructures
Yue Tang	Fall 18	Algorithmic DNA self-assembly
Leeza Abraham	Fall 18	DNA nanotechnology for immunotherapy
Liangxiao Chen	Fall 19	Allosteric control of DNA nanostructures
Lu Yu	Fall 19	DNA nanotechnology for Cancer Therapy
Deeksha Soboyata	Fall 20	DNA based light harvesting
Abhay Prasad	Fall 20	DNA nanotechnology for synthetic biology
Rong Zheng	Fall 21	DNA nanotechnology for immunotherapy
Xinyi Tu	Fall 21	DNA nanotechnology for Cancer therapy
Lanshen Zhao	Fall 21	DNA nanotechnology for Cancer therapy
Gengshi Wu	Fall 23	DNA nanotechnology for intracellular medicine
Aleksandra Petrova	Fall 23	RNA nanomedicine

Other Graduate Student Thesis Committees: Lisha Lin, Margaret Barnhart, Devendra Chauhan, Vikas Garg, Netra Joshi, Rawiwan Laocharoensuk, Yun Xiang, Sandip Shinde, Balakumar Thangaraj, Yang Li, Christopher Bley, Justin York, Jessica Troxel, Jinglei Zhang, Shahid Oamar, Mingyi Xie, Di Wu, Xiaodong Qi, Qin Yan, Yinan Liu, Berea Williams, Jennifer Watkins, Qiang Fu, Wen Wen, Terannie Vazuez-Alvarez, Su Zhang, Kaushik

Gurunathan, Smitha Pillai, Jinglin Fu, Brandon Forrest, Linda Stearns, Jeanine Cordova, Anindya Roy, Jesse Bergkamp, Benjamin Sherman, Katherine Wong, Robin Paul, Justin Flory, Hao Liu, Annie Tang, Yangyang Tang, Kaiyue Wu

3. Postdoctoral Researcher Mentees: Dr. Junping Zhang, Dr. Qiangbin Wang, Dr. Xiaoju Guan, Dr. Zhengtao Deng, Dr. Reji Varghese, Dr. Yang Yang, Dr. Jinglin Fu, Dr. Alessio Andreoni, Dr. Ryan Nangreave, Dr. Sarah Henry, Dr. Xiaodong Qi, Dr. Zhilei Ge, Dr. Xiaowei Liu, Dr. Nour Eddine, Dr. Xiang Lan, Dr. Zhi Zhao, Guangbo Yao, Yinan Zhang

.______

4. Undergraduate Student Mentees: David Hirchak, Thuy Thong, Bruce Norish, Mike Pease, Henry Lu, Christina Calhoun, Enoch Chiang, Danielle Niren, Sam Gowland, Ashely Hunt, Lucas Johnson, Matthew Vrbanac

5. High School Student and Teacher Mentees: Robert Barish, Patrick Vedeou, Alex Foyer, Tom Bundy, Jimmy Wang, Sharon New (Barsha High School teacher).

6. Current Status of Lab Alumni:

Chengxiang Lin, Associate Professor, Yale University

Qiangbin Wang, Professor, Suzhou Institue of Nanotech and Nano-bionics, CAS, China Baoquan Ding, Professor, National Center of Nanoscience and Nanotechnology, CAS, China Reji Vargahes, Assistant Professor, Indian Institute of Science Education and Research Kyle Lund, Liason Officer and Biodefense Scientist at Centre de Transfusion Sanguine des Armées

Yonggang Ke, Associate Professor, Joint Bioengineering Department, Emory and Georgia Tech.

Suchetan Pal, Assistant Professor, IIT-Bhilai, India

Jaswinder Sharma, Staff Scientist, Oak Ridge National Lab

Rahul Chhabra, Senior Scientist, Nanoanalytics Inc.

Sherri Rinker, Research Scientist II at AIT Bioscience

Dongran Han, Professor, Bejing University of Chinese Medicine

Zhengtao Deng, Professor, Nanjing University

Jinglin Fu, Associate Professor, Rutgers University, Camden

Zhe Li, Professor, Nanjing University, China

Yang Yang, Professor, Shanghai Jiao Tong University, China

Jeanette Nangreave, Teaching faculty, ASU

Ryan Nangreave, Teaching faculty, ASU

Andre Pinheiro, Consultant at ICON P&MA

Junping Zhang, Material Scientist, Carestream Health-Advanced Materials

Zhao Zhao, Postdoc, Harvard Medical School

Anirban Samanta, Assistant Professor, Ramakrishna Mission Vidyamandira, Belur Math, India Palash Dutta, Scientist, Illumina

Yuhe Yang, Professor, National Center for Nanoscience and Nanotechnology, China Alessio Andreoni, Postdoc, NIH

Yuanchen Dong, Professor, Bejing Institue of Chemistry, CAS, China

Zhilei Ge, Associate Professor, Shanghai Jiao Tong University, China

Xiaowei Liu, Scientist, Caris Life.

Xixi Wei, Senior Scientist, Caris Life.

Wei Li, Scientist, Agilent

Saswata Banajee, Postdoc, Columbia University

Yen-ting Lai, Postdoc, NIH

Xiang Lan, Professor, Donghua University

Bryan Wei, Professor, Tsinghua University, China

Guoliang Ke, Associate Professor, Hunan University, China

Shuoxing Jiang, Associate Professor, Nanjing University, China

SERVICE

1. University and Departmental Service

Chair, SMS Faculty Search Committee for MDB position (2022-2023)

Chair, SMS Seminar Committee (2019-present)

Biodesign Institute Executive Directorate Committee (2015-present)

President Crow's Academic Council (2014-present)

Member: Faculty Search Committee for Cryo-EM faculty search (2015)

Chair: Faculty Mentoring Committee, SMS (2016-present)

Chair: Faculty Search Committee for Molecular Design and Biomimetics (2016)

Co-Chair: Faculty Search Committee for Molecular Design and Biomimetics (2015)

Chair: Faculty Search Committee for Molecular Design and Biomimetics (2014)

Chair: Faculty Search Committee for Molecular Design and Biomimetics (2013)

Member: Faculty Search Committee for Joint Physics/Biodesign Biophysics Appointment (2011&2012)

Member: Departmental Strategic Planning Committee (2012-present)

Member: Departmental Graduate Program Committee (2010 - 2012)

Chair: Departmental Seminar Committee (2008 - 2010)

Co-chair: Biodesign Institute Personnel Committee (2009-present)

Member: Departmental Seminar Committee (2006-2008)

Member: Departmental Seminar Committee (2004-2005)

Member: Departmental Septannual Review Committee (2005)

Member: Faculty Search Committee for biophysical theory position (2005)

2. Outside of ASU

A. Conference Program Committees:

Co-Chair for the Seventh International DNA Nanotechnology Conference, Co-chair, China (2019).

President, International Society for Nanoscale Science, Computation and Engineering (2013-2015).

Co-organizer and Scientific Coordinator for DNATEC17, Dresden, Germany (2017).

Co-organizer for the Fifth International DNA Nanotechnology Conference, Nanjing, China (2016).

Co-organizer for the Fourth International DNA Nanotechnology Conference, Xi'an, China (2015).

Co-organizer for the Third International DNA Nanotechnology Conference, Suzhou, China (2014).

Co-organizer for DNATEC14: Digital Chemistry, Dresden, Germany (2014).

Chair of Organizing Committee for the 19th International Meeting in DNA Computing and Molecular Programming (2013).

Member of Steering Committee for International Meeting in DNA Computing and Molecular Programming (2013).

Co-organizer, Symposium "DNA Nanotechnology" MRS Spring Meeting (2012).

International Advisory Board Member of *Symposium H "Mining Smartness from Nature"* of CIMTEC (2012).

Chair, Symposium in Honor of Ned Seeman, Snowbird, Utah, April 11 (2011).

Member of Steering Committee, International Conference on Bio-Inspired Computing: Theory and Applications (*BIC-TA*) (2011).

Chair, Workshop on "Bio-directed Assembly", Keystone, CO, May 18-19 (2010).

Chair, Session on "DNA Nanomachines in vitro and Inside Living Cells", 54th Annual

Biophysical Society Meeting, San Francisco, CA, Feb. 20-24 (2010).

Co-Organizer, DNA Nanotechnology Workshop, Beijing, China, July 15-18 (2009).

Co-Organizer, International Workshop on DNA-based Nanotechnology:

Construction, Mechanics, and Electronics, Dresden, Germany, May 11-15 (2009).

International Advisory Board Member: 3rd International Conference on "Smart Materials, Structures and Systems"--Symposium E: "Mining Smartness from Nature", Sicily, Italy (2008).

Treasurer, International Society for Nanoscale Science, Computation and Engineering (2008).

Program track co-Chair, Track on Self-assembled DNA nanostructures, Fifth Conference on Foundations OF Nanoscience: Self-assembled Architectures and Devices (FNANO08), Snowbird, Utah (2008).

Program Committee Member: the 16th International Meeting for DNA Computing, Hong Kong (2010).

Program Committee Member: the 15th International Meeting for DNA Computing, Little Rock, Arkansas (2009).

Program Committee co-Chair: the 13th International Meeting for DNA Computing, Memphis (2007).

Program Committee Member: the 12th International Meeting for DNA Computing, Seoul, Korea (2006).

Program Committee Member: the 11th International Meeting for DNA Computing, London, Ontario, Canada (2005).

Program Committee Member: the 10th International Meeting on DNA-based Computers, Milano, Italy (2004).

Program Committee Member: DNA-Based Semantic Information Processing, KES'04- 8th Int'l Conference on Knowledge-Based Intelligent Information & Engineering Systems, Wellington, New Zealand (2004).

Session Chair: The Seventh International Meeting on Scanning Probe Microscopy, Cancun, Mexico (2005).

3. Editorial:

Associate Editor, ACS Applied Bio Materials, 2021 to Present

Academic Associate Editor, Science Advances, 2021 to Present

Member of Editorial Board, Nano Research, 2014 to Present

Member of Editorial Board, Nature Scientific Report, 2016 to Present

Editorial Advisory Board Member, Langmuir (2012-present).

Guest Co-editor: Natural Computing: Special Issue: DNA Computing Conference (2007).

Guest editor: Proc. Natl. Acad. Sci.

Guest co-editor: Accounts of Chemical Research special issue on DNA nanotechnology

3. Grant Review Panel:

Panelist and Ad Hoc Reviewers for Department of Energy (2006-present).

Panelist and Ad Hoc Reviewers for National Science Foundation (2003-present).

Panelist: National Institute of Health (2004).

Ad Hoc Reviewer: ACS petroleum fund (2005).

Ad Hoc Reviewer: Research Cooperation (2007).

Ad Hoc Reviewer: Department of Energy (2010-present).

Invited Member of Review Panel at the Molecular Foundry in Lawrence Berkeley Laboratory.

Invited Member of Review Panel at the Los Alamos National Laboratory.

4. Manuscript Review:

Review of manuscripts for: Science, Nature, Nature Materials, Nature Nanotechnology, Nature Protocols, Nature Chemistry, Nature Communication, Nature Methods, Proc. Natl. Acad. Sci.,

J. Am. Chem Soc., Angew Chem. Int. Ed., Nano Letter, Small, ACS Nano, Advanced Material, Advanced Functional Materials, Nanotechnology, Chemistry of Materials, Chem. Comm, Biomacromolecules, Langmuir, ChemBioChem, ChemPhysChem, Nanomedicine, Nucleic Acid Research

5. Professional Affiliations:

Member of American Chemical Society, Material Research Society, American Association for the Advancement of Science, International Society for Nanoscale Science, Computation and Engineering.