$$P = /(\frac{2}{3})^{\frac{1}{100}} = \frac{1}{3} \times (1 - \frac{1}{3})^{\frac{1}{2}} = \frac{1}{3} = 0.16.$$

$$E[N] = \frac{1}{3} \times (1 - \frac{1}{3})^{\frac{1}{2}} = \frac{1}{3} = 0.16.$$

$$E[N] = \frac{1}{3} \times (1 - \frac{1}{3})^{\frac{1}{2}} = \frac{1}{3} = 0.16.$$

$$= 0.166$$

$$1 - P(w) - 0.99$$
 $P(w) - 0.01$
 $e^{-(H-7)t} - 0.01$

Proshant kumar 1718003058

a.2 Arrival rate of westoner, & 1/minute
proof. fine to purchase ticket 1880 1 20 seconds

(1)
$$\Omega = 1$$
, $\Delta = \frac{1}{20} / 8u$.
 $\Delta = \frac{1}{4} = \frac{1}{20} / 8u$.
 $\Delta = \frac{1}{20} \times 60 = 3 / 1 \text{ min}$.

He arrives before 2 min so he can expect to be Seated for tip-off.

(i)
$$9 = /11$$
 minute 3 tickets will be fold only 1 winte 3 tickets will be fold 40 probability = $4 - 33.3 \%$

Pn: $(2)^n \left[1-\frac{1}{2}\right] - \left(\frac{1}{3}\right)^n \left(1-\frac{1}{3}\right)$

$$= \frac{1}{2} \times \frac{2}{3} = \frac{2}{27}$$

- 0.074