Unit 5 Machine Learning

Lecture 1

What is learning

- Learning is the processof acquiring new or modifying existing knowledge, behaviors, skills, values, or preferences
- Evidence that learning has occurred may be seen in changes in behavior from simple to complex.

What is Machine Learning?

- The machine Learning denotes changes in the systems that are adaptive in the sense that they enable the system to do the same task more effectively the next time.
- Like human learning from past experiences, computer system learns from data, which represent some "past experiences" of an application domain.
- Therefore, Machine learning gives computers the ability to learn without being explicitly programmed.

Why Machine Learning?

- To learn a target function (relation between input and output)that can be used to predict the values of a discrete class attribute,
 - −e.g., male or female, and high-risk or low risk, etc.
- To model the underlying structure or distribution in the data in order to learn more about the data.
- To learns behavior through trial-and-error interactions with a dynamic environment.

Types

 Based on training set machine learning algorithms are classified into the following three categories:

Supervised Learning

- Supervised learning is where you have input variables (x) and an output variable (Y) and you use an algorithm to learn the mapping function from the input to the output. Y = f(X)
- Learning stops when the algorithm achieves an acceptable level of performance.
- when you have new input data (x) that you can predict the output variables (Y) for that data

Supervised Learning

- It is called supervised learning because the process of an algorithm learning from the training dataset can be thought of as a teacher supervising the learning process.
- We know the correct answers, the algorithm iteratively makes predictions on the training data and is corrected by the teacher.

Supervised Learning

Unsupervised Learning

- Unsupervised learning is where you only have input data (X) and no corresponding output variables(targets/ labels).
- The goal for unsupervised learning is to model the underlying structure or distribution in the data in order to learn more about the data.
- These are called unsupervised learning because unlike supervised learning above there is no correct answers and there is no teacher.
- Algorithms are left to their own devises to discover and present the interesting structure in the data.

E.g., Clustering

Unsupervised Learning

Unsupervised Learning

Reinforcement Learning

- Is learning behavior through trial-and-error interactions with a environment.
- Is learning how to act in order to maximize a reward (Encouragements).
- Reinforcement learning emphasizes learning feedback that evaluates the learner's performance without providing standards of correctness in the form of behavioral targets.
- Example: Bicycle learning, game playing, etc.

Supervised Learning Algorithm

Classification:

- To predict the outcome of a given sample where the output variable is in the form of categories(discrete). Examples include labels such as, sick and healthy.

• Regression:

-To predict the outcome of a given sample where the output variable is in the form of real values(continuous). Examples include real-valued labels denoting the amount of rainfall, the height of a person

Contd.

Regression

What is the temperature going to be tomorrow?

Classification

Will it be Cold or Hot tomorrow?

Learning by Analogy:

- Reasoning by analogy generally involves abstracting details from a particular set of problems and resolving structural similarities between previously distinct problems.
- Analogical reasoning refers to this process of recognition and then applying the solution from the known problem to the new problem.
- Such a technique is often identified as *case- based reasoning*. Analogical learning generally involves developing a set of mappings between features of two instances.

The question in above figure represents some known aspects of a new case, which has unknown aspects to be determined.

- In deduction, the known aspects are compared (by a version of structure mapping called *unification*) with the premises of some implication.
- Then the unknown aspects, which answer the question, are derived from the conclusion of the implication.
- In analogy, the known aspects of the new case are compared with the corresponding aspects of the older cases.
- The case that gives the best match may be assumed as the best source of evidence for estimating the unknown aspects of the new case.
- The other cases show alternative possibilities for those unknown aspects; the closer the agreement among the alternatives, the stronger the evidence for the conclusion

Retrieve:

- Given a target problem, retrieve cases from memory that are relevant to solving it.
- A case consists of a problem, its solution, and, typically, annotations about how the solution was derived. For example, suppose Fred wants to prepare blueberry pancakes.
- The procedure he followed for making the plain pancakes, together with justifications for decisions made along the way, constitutes Fred's retrieved case.

2. Reuse:

- Map the solution from the previous case to the target problem.
- This may involve adapting the solution as needed to fit the new situation.
- In the pancake example, Fred must adapt his retrieved solution to include the addition of blueberries.

3. Revise:

- Having mapped the previous solution to the target situation, test the new solution in the real world (or a simulation) and, if necessary, revise.
- Suppose Fred adapted his pancake solution by adding blueberries to the batter.
- After mixing, he discovers that the batter has turned blue – an undesired effect.
- This suggests the following revision: delay the addition of blueberries until after the batter has been ladled into the pan.

4. Retain:

- After the solution has been successfully adapted to the target problem, store the resulting experience as a new case in memory.
- Fred, accordingly, records his newfound procedure for making blueberry pancakes, thereby enriching his set of stored experiences, and better preparing him for future pancake-making demands.

Transformational Analogy:

- Suppose you are asked to prove a theorem in plane geometry.
- You might look for a previous theorem that is very similar and copy its proof, making substitutions when necessary.
- The idea is to transform a solution to a previous problem in to solution for the current problem. The following figure shows this process,

Fig: Transformational Analogy

Derivational Analogy:

- Notice that transformational analogy does not look at how the old problem was solved, it only looks at the final solution.
- Often the twists and turns involved in solving an old problem are relevant to solving a new problem.
- The detailed history of problem solving episode is called derivation, Analogical reasoning that takes these histories into account is called derivational analogy.

Fig: Derivational Analogy

Artificial Neural Networks

 A neural network is composed of number of nodes or units, connected by links. Each link has a numeric weight associated with it.

 Artificial neural networks are programs design to solve any problem by trying to mimic the structure and the function of our nervous system.

Artificial neural network model:

- Input to the network are represented by mathematical symbol xn.
- Each of these inputs are multiplied by a connection weight, wn

$$sum = w1 x1 + w2 x2 + + wn xn$$

 These products are simply summed, fed through the transfer function f() to generate result and output

Back Propagation Algorithm

- Back propagation is the essence of neural network training.
- It is the method of fine-tuning the weights of a neural network based on the error rate obtained in the previous iteration.
- Proper tuning of the weights allows to reduce error rates and make the model reliable by increasing its generalization.
- Backpropagation in neural network is a short form for "backward propagation of errors."
- It is a standard method of training artificial neural networks.
- This method helps calculate the gradient of a loss function with respect to all the weights in the network.

How Back Propagation Algorithm Works?

- The Back propagation algorithm in neural network computes the gradient of the loss function for a single weight by the chain rule.
- It efficiently computes one layer at a time, unlike a native direct computation.
- It computes the gradient, but it does not define how the gradient is used.
- It generalizes the computation in the delta rule.
- Consider the following Back propagation neural network example diagram to understand:

How Backpropagation Algorithm Works

- Inputs X, arrive through the pre connected path
- Input is modeled using real weights W. The weights are usually randomly selected.
- Calculate the output for every neuron from the input layer, to the hidden layers, to the output layer.
- Calculate the error in the outputs
 Error_B = Actual Output Desired Output
- Travel back from the output layer to the hidden layer to adjust the weights such that the error is decreased.
- Keep repeating the process until the desired output is achieved

Why We Need Backpropagation?

Most prominent advantages of Backpropagation are:

- Back propagation is fast, simple and easy to program
- It has no parameters to tune apart from the numbers of input
- It is a flexible method as it does not require prior knowledge about the network
- It is a standard method that generally works well
- It does not need any special mention of the features of the function to be learned.

Learning in Neural Networks:

• Learning:

- Learning in neural networks is carried out by adjusting the connection weights among neurons.
- There is no algorithm that determines how the weights should be assigned in order to solve specific problems. Hence, the weights are determined by a learning process
- Learning may be classified into two categories:
 - Supervised Learning
 - Unsupervised Learning

Learning in Neural Networks:

1) Supervised Learning:

- In supervised learning, the network is presented with inputs together with the target (teacher signal) outputs.
- Then, the neural network tries to produce an output as close as possible to the target output by adjusting the values of internal weights.
- The most common supervised learning method is the "error correction method".
 - Neural networks are trained with this method in order to reduce the error (difference between the network's output and the desired output) to zero.

Learning in Neural Networks:

2) Unsupervised Learning:

- In unsupervised learning, there is no teacher (target signal/output) from outside and the network adjusts its weights in response to only the input patterns
- A typical example of unsupervised learning is Hebbian learning.

Network Architecture

Feed-forward networks:

- Feed-forward ANNs allow signals to travel one way only; from input to output.
- Feed-forward ANNs tend to be straight forward networks that associate inputs with outputs.

Types of Feed Forward Neural Network:

a) Single-layer neural networks

A neural network in which all the inputs connected directly to the outputs is called a single-layer neural network.

Types of Feed Forward Neural Network:

a) Single-layer Feed Forward neural networks:

Two types:

- Perceptron, and
- ADLINE

Perceptron

- Developed by Frank Rosenblatt by using McCulloch and Pitts model, perceptron is the basic operational unit of artificial neural networks.
- It employs supervised learning rule and is able to classify the data into two classes.
- Operational characteristics of the perceptron:
 - It consists of a single neuron with an arbitrary number of inputs along with adjustable weights, but the output of the neuron is 1 or -1 depending upon the input. It also consists of a bias whose weight is always 1.
- Following figure gives a schematic representation of the perceptron.

Perceptron

• Following figure gives a schematic representation of the perceptron:

- Perceptron
 Perceptron thus has the following three basic elements:
 - Links
 - Adder
 - Activation function

Adaptive Linear Neuron (ADALINE)

- ADALINE which stands for Adaptive Linear Neuron, is a network having a single linear unit.
- It was developed by Widrow and Hoff in 1960. Some important points about ADALINE are as follows:
 - It uses bipolar activation function.
 - It uses delta rule for training to minimize the Mean-Squared Error (MSE)
 between the actual output and the desired/target output.
 - The weights and the bias are adjustable.

Adaptive Linear Neuron (ADALINE)

• Architecture :

- The basic structure of ADALINE is similar to perceptron having an extra feedback loop with the help of which the calculated output is compared with the desired/target output.
- After comparison on the basis of training algorithm, the weights and bias will be updated.

Types of Feed Forward Neural Network:

b) Multilayer neural networks

The neural network which contains input layers, output layers and some hidden layers also is called multilayer neural network.

Network Architectures

2) Feedback networks (Recurrent networks:)

- Feedback networks can have signals traveling in both directions by introducing loops in the network.
 - very powerful
 - extremely complicated.
 - dynamic: Their 'state' is changing continuously until they reach an equilibrium point.
- also known as interactive or recurrent.

Applications of Neural Network

- Speech recognition
- Optical character recognition
- Face Recognition
- Pronunciation (NETtalk)
- Stock-market prediction
- Navigation of a car
- Signal processing/Communication
- Imaging/Vision

•