

SEQUENCE LISTING

<110> Romeo, Tony
Wang, Xin

<120> METHODS FOR POLYSACCHARIDE ADHESION SYNTHESIS MODULATION

<130> 14233.10USU1

<140> US 10/675,226

<141> 2003-09-29

<150> US 60/414,352

<151> 2002-09-30

<160> 9

<170> PatentIn version 3.1

<210> 1

<211> 2460

<212> DNA

<213> Escherichia coli

<400> 1
atgtattcaa gtagcagaaa aaggtgcccc aaaacccaaat gggctttgaa acttcttact 60
gccgcatttt tagcagcgag tcccgcggcg aagagtgctg ttaataacgc ctatgtgca 120
ttgattattg aagctcgcaa gggtaataact cagccagctt tgtcatggtt tgcaactaaaa 180
tcagcactca gcaataacca aattgctgac tggttacaga ttgccttatg ggccgggcaa 240
gataaacagg ttattaccgt ttacaaccgc taccgtcatc agcaatttacc agcgcgtgg 300
tatgcagctg tcgcccgtcgc ttatcgtaac ctgcaacaat ggcaaaactc gtttacactg 360
tggcaaaagg cgctctctct ggagccgcaa aataaggatt atcaacgggg acaaatttta 420
accctggcag atgctggtca ctatgatact gcgcgtggta aacttaagca gtttactct 480
ggagcacccgg acaaagccaa tttactcgca gaaggctata tctataaact ggccggggt 540
catcaggatg aattacgggc gatgacagag tcattacctg aaaatgcac tacgcaacaa 600
tatcccacag aatacgtgca ggcattacgt aataatcaac ttgctgccgc gattgacgat 660
gccaatttaa cgccagatat tcgcgtgtat attcatgccg aactggtcag actgtcggtt 720
atgcctacgc gcagtgaaag tgaacgttat gccattgccg atcgccgcct cgcccaatac 780
gctgcattag aaattctgtg gcacgataac ccagaccgca ctgcccagta ccagcgtatt 840
caggttgate atcttggcgc gttattaact cgcgatcggtt ataaagacgt tatttctcac 900
tatcagcgat taaaaaaagac ggggcaaatt attccgcctt gggggcaata ttgggttgca 960
tcggcttatac tcaaagatca tcagccgaaa aaagcacagt caataatgac cgagctctt 1020
tatcacaagg agaccattgc cccggattta tccgatgaag aacttgcgga tctctttac 1080

agccacctgg	agagtaaaaa	ttatccgggc	gcgctaactg	tcacccaaca	taccattaat	1140
acttcgccgc	ctttccttcg	gttaatgggc	acgcctacga	gcatcccgaa	tgatacctgg	1200
ttacaggggc	attcgttct	ctcaaccgta	gcaaaatata	gtaatgatct	tcctcaggct	1260
gaaatgacag	ccagagagct	tgcttataac	gcaccaggaa	atcagggact	gcgcattgat	1320
tacgcgagtg	tgttacaagc	ccgcgggttg	cctcgtgcag	cagaaaatga	attaaaaaaaaa	1380
gcagaagtga	tcgagccacg	taatattaat	ctggagggtt	aacaagcctg	gacagcatta	1440
acgttacaag	aatggcagca	ggcagctgtc	ttaacgcacg	atgttgcga	acgtgaaccg	1500
caagatcccg	gcgttgtacg	attaaaacgt	gcgggttgcgt	tacataatct	tgcagagctt	1560
cgtatcgctg	gctcaacagg	aattgatgcc	gaaggcccgg	atagtggtaa	acatgatgtc	1620
gacttaacca	ccatcgutta	ttcaccacccg	ctgaaggata	actggcgcgg	ttttgctgga	1680
ttcggttatg	ccgatggaca	attagcgaa	ggaaaaggga	ttgttcgcga	ctggcttgcg	1740
ggtgttgagt	ggcggtcacg	taatatctgg	ctcgaggcag	agtacgctga	acgcgttttc	1800
aatcatgagc	ataaacccgg	cgcgcgcctg	tctggctggt	atgattttaa	tgataactgg	1860
cgtattggtt	cgcaactgga	acgcctctct	caccgcgttc	cattacgggc	aatgaaaaat	1920
ggtgttacag	gcaacagtgc	tcaggcttat	tttcgctggt	atcaaaatga	gcggcgtaag	1980
tacggtgtct	cctgggcttt	cactgatttt	tccgacagta	accagcgtca	tgaagtctca	2040
cttgagggtc	aggaacgcac	ctggcttca	ccatattga	ttgtcgattt	cctaccagg	2100
ctgtattacg	aacaaaatac	agaacacgat	accccatact	acaaccctat	aaaaacgttc	2160
gatattgttc	cggcatttga	ggcaagccat	ttgttatggc	gaagctatga	aaatagctgg	2220
gagcaaataat	tcagcgcagg	tgttggtgcc	tcctggcaaa	aacattatgg	cacggatgtc	2280
gtcacccaaac	tcggctacgg	gcaacgcatt	agttggaatg	acgtgattga	tgctggcgca	2340
acgctacgct	gggaaaaacg	accttatgac	ggtgacagag	aacacaactt	atacgttcaa	2400
ttcgatatga	cattcagatt	ttaaggataa	atatgttacg	taatggaaat	aaatatctcc	2460

<210> 2
 <211> 807
 <212> PRT
 <213> Escherichia coli

<400> 2

Met Tyr Ser Ser Ser Arg Lys Arg Cys Pro Lys Thr Lys Trp Ala Leu
 1 5 10 15

Lys Leu Leu Thr Ala Ala Phe Leu Ala Ala Ser Pro Ala Ala Lys Ser

20

25

30

Ala Val Asn Asn Ala Tyr Asp Ala Leu Ile Ile Glu Ala Arg Lys Gly
35 40 45

Asn Thr Gln Pro Ala Leu Ser Trp Phe Ala Leu Lys Ser Ala Leu Ser
50 55 60

Asn Asn Gln Ile Ala Asp Trp Leu Gln Ile Ala Leu Trp Ala Gly Gln
65 70 75 80

Asp Lys Gln Val Ile Thr Val Tyr Asn Arg Tyr Arg His Gln Gln Leu
85 90 95

Pro Ala Arg Gly Tyr Ala Ala Val Ala Val Ala Tyr Arg Asn Leu Gln
100 105 110

Gln Trp Gln Asn Ser Leu Thr Leu Trp Gln Lys Ala Leu Ser Leu Glu
115 120 125

Pro Gln Asn Lys Asp Tyr Gln Arg Gly Gln Ile Leu Thr Leu Ala Asp
130 135 140

Ala Gly His Tyr Asp Thr Ala Leu Val Lys Leu Lys Gln Leu Asn Ser
145 150 155 160

Gly Ala Pro Asp Lys Ala Asn Leu Leu Ala Glu Ala Tyr Ile Tyr Lys
165 170 175

Leu Ala Gly Arg His Gln Asp Glu Leu Arg Ala Met Thr Glu Ser Leu
180 185 190

Pro Glu Asn Ala Ser Thr Gln Gln Tyr Pro Thr Glu Tyr Val Gln Ala
195 200 205

Leu Arg Asn Asn Gln Leu Ala Ala Ala Ile Asp Asp Ala Asn Leu Thr
210 215 220

Pro Asp Ile Arg Ala Asp Ile His Ala Glu Leu Val Arg Leu Ser Phe
225 230 235 240

Met Pro Thr Arg Ser Glu Ser Glu Arg Tyr Ala Ile Ala Asp Arg Ala
245 250 255

Leu Ala Gln Tyr Ala Ala Leu Glu Ile Leu Trp His Asp Asn Pro Asp

260

265

270

Arg Thr Ala Gln Tyr Gln Arg Ile Gln Val Asp His Leu Gly Ala Leu
275 280 285

Leu Thr Arg Asp Arg Tyr Lys Asp Val Ile Ser His Tyr Gln Arg Leu
290 295 300

Lys Lys Thr Gly Gln Ile Ile Pro Pro Trp Gly Gln Tyr Trp Val Ala
305 310 315 320

Ser Ala Tyr Leu Lys Asp His Gln Pro Lys Lys Ala Gln Ser Ile Met
325 330 335

Thr Glu Leu Phe Tyr His Lys Glu Thr Ile Ala Pro Asp Leu Ser Asp
340 345 350

Glu Glu Leu Ala Asp Leu Phe Tyr Ser His Leu Glu Ser Glu Asn Tyr
355 360 365

Pro Gly Ala Leu Thr Val Thr Gln His Thr Ile Asn Thr Ser Pro Pro
370 375 380

Phe Leu Arg Leu Met Gly Thr Pro Thr Ser Ile Pro Asn Asp Thr Trp
385 390 395 400

Leu Gln Gly His Ser Phe Leu Ser Thr Val Ala Lys Tyr Ser Asn Asp
405 410 415

Leu Pro Gln Ala Glu Met Thr Ala Arg Glu Leu Ala Tyr Asn Ala Pro
420 425 430

Gly Asn Gln Gly Leu Arg Ile Asp Tyr Ala Ser Val Leu Gln Ala Arg
435 440 445

Gly Trp Pro Arg Ala Ala Glu Asn Glu Leu Lys Lys Ala Glu Val Ile
450 455 460

Glu Pro Arg Asn Ile Asn Leu Glu Val Glu Gln Ala Trp Thr Ala Leu
465 470 475 480

Thr Leu Gln Glu Trp Gln Gln Ala Ala Val Leu Thr His Asp Val Val
485 490 495

Glu Arg Glu Pro Gln Asp Pro Gly Val Val Arg Leu Lys Arg Ala Val

500 505 510

Asp Val His Asn Leu Ala Glu Leu Arg Ile Ala Gly Ser Thr Gly Ile
515 520 525

Asp Ala Glu Gly Pro Asp Ser Gly Lys His Asp Val Asp Leu Thr Thr
530 535 540

Ile Val Tyr Ser Pro Pro Leu Lys Asp Asn Trp Arg Gly Phe Ala Gly
545 550 555 560

Phe Gly Tyr Ala Asp Gly Gln Phe Ser Glu Gly Lys Gly Ile Val Arg
565 570 575

Asp Trp Leu Ala Gly Val Glu Trp Arg Ser Arg Asn Ile Trp Leu Glu
580 585 590

Ala Glu Tyr Ala Glu Arg Val Phe Asn His Glu His Lys Pro Gly Ala
595 600 605

Arg Leu Ser Gly Trp Tyr Asp Phe Asn Asp Asn Trp Arg Ile Gly Ser
610 615 620

Gln Leu Glu Arg Leu Ser His Arg Val Pro Leu Arg Ala Met Lys Asn
625 630 635 640

Gly Val Thr Gly Asn Ser Ala Gln Ala Tyr Val Arg Trp Tyr Gln Asn
645 650 655

Glu Arg Arg Lys Tyr Gly Val Ser Trp Ala Phe Thr Asp Phe Ser Asp
660 665 670

Ser Asn Gln Arg His Glu Val Ser Leu Glu Gly Gln Glu Arg Ile Trp
675 680 685

Ser Ser Pro Tyr Leu Ile Val Asp Phe Leu Pro Ser Leu Tyr Tyr Glu
690 695 700

Gln Asn Thr Glu His Asp Thr Pro Tyr Tyr Asn Pro Ile Lys Thr Phe
705 710 715 720

Asp Ile Val Pro Ala Phe Glu Ala Ser His Leu Leu Trp Arg Ser Tyr
725 730 735

Glu Asn Ser Trp Glu Gln Ile Phe Ser Ala Gly Val Gly Ala Ser Trp

740 745 750

Gln Lys His Tyr Gly Thr Asp Val Val Thr Gln Leu Gly Tyr Gly Gln
755 760 765

Arg Ile Ser Trp Asn Asp Val Ile Asp Ala Gly Ala Thr Leu Arg Trp
770 775 780

Glu Lys Arg Pro Tyr Asp Gly Asp Arg Glu His Asn Leu Tyr Val Glu
785 790 795 800

Phe Asp Met Thr Phe Arg Phe
805

<210> 3
<211> 2031
<212> DNA
<213> Escherichia coli

<400> 3
ttaaggataa atatgttacg taatggaaat aaatatctcc tgatgctggc gaggataatt 60
atgctcacccg cgtgcattag ccagtcaaga acatcattta taccgccaca ggatcgca 120
tctttactcg ccgagcaacc gtggccgcat aatggtttg tagcgatttc atggcataac 180
gttgaagacg aagctgccga ccagcggtt atgtcagtgc ggacatcagc actgcgtgaa 240
caatttgcct ggctgcgcga gaacggttat caaccggta gtattgctca aattcgtgaa 300
gcacatcgag gaggaaaacc gctaccggaa aaagctgttag tgctgactt tgatgacggc 360
taccagagtt ttatacccg cgtttccca attcttcagg ccttccagtg gcctgctgta 420
tggccccccg tcggcagttg ggtcgatacg ccagcgata aacaagtaaa atttggcgat 480
gagttggtcg atcgagaata ttttgcacg tggcaacaag tgcgagaagt tgccgttcc 540
cggtcggtt agctcgcttc tcatacatgg aattctcaact acggatttca ggctaattcc 600
accggcagct tattgcctgt atatgttaat cgtgcatttt ttactgacca cgacggtat 660
gaaaccgcag cagaataccg ggaaagaatt cgtctggatg ctgtaaaaat gacggaatac 720
ctgcgtacaa aggttgaggt aaatccacac gttttgttt ggccttatgg cgaagcgaat 780
ggcatagcga tagaggaatt aaaaaaactc ggttatgaca tggcttcac cttgaatca 840
ggtttggcaa atgcgtcgca attggattcc attccgcggg tattaatcgc caataatccc 900
tcattaaaag agtttgcacca gcaaattt accgtacagg aaaaatcacc acaacggata 960
atgcataatcg atcttgatta cgtttatgac gaaaacctcc agcaaatgga tcgcaatatt 1020
gatgtgctaa ttcagcgggt gaaagatatg caaatatcaa ccgtgtatcc gcaggcattt 1080

gctgatcccg atggatgg gctgtcaaa gaggtctgg ttccaaatcg tttgctacca	1140
atgaaagcag atatttttag tcgggttgcc tggcaattac gtacccgctc aggtgtaaac	1200
acttatgcgt ggatgccggt attaagctgg gatttagatc ccacattaac gcgagtaaaa	1260
tacttaccaa caggggagaa aaaagcacaa attcatcctg aacaatatca ccgtctctct	1320
ccttcgatg acagagtcag agcacaagg ggcatgttat atgaagatct tgccggacat	1380
gctgctttg atggcatatt gttccacgat gatgcttgc tttcagatta tgaagatgcc	1440
agtgcacccg ctatcacggc ttatcagcaa gcaggctta gcgggagtct gaggaaatt	1500
cgacaaaacc cggagaatt taaacagtgg gccggctta aaagtcgtgc gttaactgac	1560
ttcactttag aacttagtgc ggcgtaaaaa gccattcgcg gtccacatat taaaactgca	1620
cggaaatattt ttgcacttcc ggtaatacaa cctgaaagtg aagcctggtt tgcacagaat	1680
tatgctgatt tcctaaaaag ctatcactgg accgctatta tggctatgcc ttatctggaa	1740
ggtgtcgcag aaaaatcggc tgaccaatgg ttaatacaat tgaccaatca aattaaaaac	1800
atccctcagg ctaaagacaa atctatTTT gaattacagg cacaaaactg gcagaaaaat	1860
ggtcagcatc aggctatttc ttgcacacaa ctcgctact ggatgagcct attacaactg	1920
aatggagtga aaaactatgg ttattatccc gacaatttc tgcataacca acctgaaata	1980
gaccttattc gtcctgagtt ttcaacagcc tggtatccga aaaatgatta a	2031

<210> 4
 <211> 672
 <212> PRT
 <213> Escherichia coli

 <400> 4

Met Leu Arg Asn Gly Asn Lys Tyr Leu Leu Met Leu Val Ser Ile Ile
 1 5 10 15

Met Leu Thr Ala Cys Ile Ser Gln Ser Arg Thr Ser Phe Ile Pro Pro
 20 25 30

Gln Asp Arg Glu Ser Leu Leu Ala Glu Gln Pro Trp Pro His Asn Gly
 35 40 45

Phe Val Ala Ile Ser Trp His Asn Val Glu Asp Glu Ala Ala Asp Gln
 50 55 60

Arg Phe Met Ser Val Arg Thr Ser Ala Leu Arg Glu Gln Phe Ala Trp
 65 70 75 80

Leu Arg Glu Asn Gly Tyr Gln Pro Val Ser Ile Ala Gln Ile Arg Glu
85 90 95

Ala His Arg Gly Gly Lys Pro Leu Pro Glu Lys Ala Val Val Leu Thr
100 105 110

Phe Asp Asp Gly Tyr Gln Ser Phe Tyr Thr Arg Val Phe Pro Ile Leu
115 120 125

Gln Ala Phe Gln Trp Pro Ala Val Trp Ala Pro Val Gly Ser Trp Val
130 135 140

Asp Thr Pro Ala Asp Lys Gln Val Lys Phe Gly Asp Glu Leu Val Asp
145 150 155 160

Arg Glu Tyr Phe Ala Thr Trp Gln Gln Val Arg Glu Val Ala Arg Ser
165 170 175

Arg Leu Val Glu Leu Ala Ser His Thr Trp Asn Ser His Tyr Gly Ile
180 185 190

Gln Ala Asn Ala Thr Gly Ser Leu Leu Pro Val Tyr Val Asn Arg Ala
195 200 205

Tyr Phe Thr Asp His Ala Arg Tyr Glu Thr Ala Ala Glu Tyr Arg Glu
210 215 220

Arg Ile Arg Leu Asp Ala Val Lys Met Thr Glu Tyr Leu Arg Thr Lys
225 230 235 240

Val Glu Val Asn Pro His Val Phe Val Trp Pro Tyr Gly Glu Ala Asn
245 250 255

Gly Ile Ala Ile Glu Glu Leu Lys Lys Leu Gly Tyr Asp Met Phe Phe
260 265 270

Thr Leu Glu Ser Gly Leu Ala Asn Ala Ser Gln Leu Asp Ser Ile Pro
275 280 285

Arg Val Leu Ile Ala Asn Asn Pro Ser Leu Lys Glu Phe Ala Gln Gln
290 295 300

Ile Ile Thr Val Gln Glu Lys Ser Pro Gln Arg Ile Met His Ile Asp
305 310 315 320

Leu Asp Tyr Val Tyr Asp Glu Asn Leu Gln Gln Met Asp Arg Asn Ile
325 330 335

Asp Val Leu Ile Gln Arg Val Lys Asp Met Gln Ile Ser Thr Val Tyr
340 345 350

Leu Gln Ala Phe Ala Asp Pro Asp Gly Asp Gly Leu Val Lys Glu Val
355 360 365

Trp Phe Pro Asn Arg Leu Leu Pro Met Lys Ala Asp Ile Phe Ser Arg
370 375 380

Val Ala Trp Gln Leu Arg Thr Arg Ser Gly Val Asn Ile Tyr Ala Trp
385 390 395 400

Met Pro Val Leu Ser Trp Asp Leu Asp Pro Thr Leu Thr Arg Val Lys
405 410 415

Tyr Leu Pro Thr Gly Glu Lys Lys Ala Gln Ile His Pro Glu Gln Tyr
420 425 430

His Arg Leu Ser Pro Phe Asp Asp Arg Val Arg Ala Gln Val Gly Met
435 440 445

Leu Tyr Glu Asp Leu Ala Gly His Ala Ala Phe Asp Gly Ile Leu Phe
450 455 460

His Asp Asp Ala Leu Leu Ser Asp Tyr Glu Asp Ala Ser Ala Pro Ala
465 470 475 480

Ile Thr Ala Tyr Gln Gln Ala Gly Phe Ser Gly Ser Leu Ser Glu Ile
485 490 495

Arg Gln Asn Pro Glu Gln Phe Lys Gln Trp Ala Arg Phe Lys Ser Arg
500 505 510

Ala Leu Thr Asp Phe Thr Leu Glu Leu Ser Ala Arg Val Lys Ala Ile
515 520 525

Arg Gly Pro His Ile Lys Thr Ala Arg Asn Ile Phe Ala Leu Pro Val
530 535 540

Ile Gln Pro Glu Ser Glu Ala Trp Phe Ala Gln Asn Tyr Ala Asp Phe
545 550 555 560

Leu Lys Ser Tyr Asp Trp Thr Ala Ile Met Ala Met Pro Tyr Leu Glu
565 570 575

Gly Val Ala Glu Lys Ser Ala Asp Gln Trp Leu Ile Gln Leu Thr Asn
580 585 590

Gln Ile Lys Asn Ile Pro Gln Ala Lys Asp Lys Ser Ile Leu Glu Leu
595 600 605

Gln Ala Gln Asn Trp Gln Lys Asn Gly Gln His Gln Ala Ile Ser Ser
610 615 620

Gln Gln Leu Ala His Trp Met Ser Leu Leu Gln Leu Asn Gly Val Lys
625 630 635 640

Asn Tyr Gly Tyr Tyr Pro Asp Asn Phe Leu His Asn Gln Pro Glu Ile
645 650 655

Asp Leu Ile Arg Pro Glu Phe Ser Thr Ala Trp Tyr Pro Lys Asn Asp
660 665 670

<210> 5
<211> 1380
<212> DNA
<213> Escherichia coli

<400> 5
aaaatgatta atcgcatcgt atcgaaaaatattatgtc tggtgttatg cataccctta 60
tgcgttagcgt actttcaactc tggtaactg atgatgaggt tcgttttctt ctggccgttt 120
tttatgtcca ttatgtggat tggtaatgcgtt gtttgcgttc gtctatttctt gggctatcg tgaacgccac 180
tggccgtggg gagaaaacgc accagctccc cagttgaaag ataatccgtc tatctccatt 240
atcattccct gtttaatga ggagaaaaac gttgaggaaa ccatacacgc cgcttttagca 300
cagcgttatg agaacattga agttattgcc gtaaatgacg gttcaacaga taaaaccgtt 360
gccatcctgg atcgcatggc tgcacaaatt ccccatgtc gggcattca tctggcgcaa 420
aaccagggga aagccattgc gcttaaaacc ggagctgccg cggcgaaaag tgaatatctg 480
gtgtgcatttgc atggcgatgc gttttagac cgcgtgcgg cggcatatat tgtggaaaccg 540
atgttgtaca acccgctgtt gggtgccgtt acccgtaatc ctcgtattcg aacacgttct 600
accctgggtt gtaaaaattca gtttggcgat tattcctcaa ttattggttt gatcaagcga 660
accaggcgta tctatggaaa cgtatttacc gtttccgtt ttattgccgc atttcgtcgc 720
agcgccccgtt cagaagtggg ttactggagt gacgatatga tcaccgaaga tattgatatt 780

agctggaagc	tgcagttgaa	tcagtgacg	atttttacg	agccacggc	actgtgctgg	840
atattaatgc	ctgaaacgtt	aaaaggcgt	tggaaacagc	gcctgcgctg	ggctcagggc	900
ggtcagaag	tattcctcaa	aaatatgaca	aggttgtggc	gcaaagaaaa	cttcgaatg	960
tggccgctgt	ttttgaata	ctgcctgacg	acaatatgg	ccttcacc	cctggtcggt	1020
ttcattattt	acgcagtcca	acttgccggt	gtaccgttaa	atattgaatt	gacacat	1080
gctgcgacac	atactgccgg	aatattattg	tgtacgttat	gttactgca	attattgtc	1140
agcctgatga	tcgagaatcg	ctatgagcat	aatctgactt	catcgcttt	ctggattatt	1200
tggttcccgg	ttat	ttctg	gatgctgagc	ctggcaacga	cattggtac	1260
gtcatgttga	tgcctaaaaa	gcaacgcgcc	cgttggtaa	gtcccgatcg	cgggattctg	1320
agaggttaat	atgaacaatt	taattattac	gaccgcacaa	tcaccag	tac gttactggt	1380

<210> 6
 <211> 445
 <212> PRT
 <213> Escherichia coli

<400> 6

Met	Ile	Asn	Arg	Ile	Val	Ser	Phe	Phe	Ile	Leu	Cys	Leu	Val	Leu	Cys
1					5				10				15		

Ile	Pro	Leu	Cys	Val	Ala	Tyr	Phe	His	Ser	Gly	Glu	Leu	Met	Met	Arg
				20				25				30			

Phe	Val	Phe	Phe	Trp	Pro	Phe	Phe	Met	Ser	Ile	Met	Trp	Ile	Val	Gly
					35			40				45			

Gly	Val	Tyr	Phe	Trp	Val	Tyr	Arg	Glu	Arg	His	Trp	Pro	Trp	Gly	Glu
					50			55			60				

Asn	Ala	Pro	Ala	Pro	Gln	Leu	Lys	Asp	Asn	Pro	Ser	Ile	Ser	Ile	Ile
65						70				75			80		

Ile	Pro	Cys	Phe	Asn	Glu	Glu	Lys	Asn	Val	Glu	Glu	Thr	Ile	His	Ala
					85				90			95			

Ala	Leu	Ala	Gln	Arg	Tyr	Glu	Asn	Ile	Glu	Val	Ile	Ala	Val	Asn	Asp
						100			105			110			

Gly	Ser	Thr	Asp	Lys	Thr	Arg	Ala	Ile	Leu	Asp	Arg	Met	Ala	Ala	Gln
						115			120			125			

Ile Pro His Leu Arg Val Ile His Leu Ala Gln Asn Gln Gly Lys Ala
130 135 140

Ile Ala Leu Lys Thr Gly Ala Ala Ala Ala Lys Ser Glu Tyr Leu Val
145 150 155 160

Cys Ile Asp Gly Asp Ala Leu Leu Asp Arg Asp Ala Ala Ala Tyr Ile
165 170 175

Val Glu Pro Met Leu Tyr Asn Pro Arg Val Gly Ala Val Thr Gly Asn
180 185 190

Pro Arg Ile Arg Thr Arg Ser Thr Leu Val Gly Lys Ile Gln Val Gly
195 200 205

Glu Tyr Ser Ser Ile Ile Gly Leu Ile Lys Arg Thr Gln Arg Ile Tyr
210 215 220

Gly Asn Val Phe Thr Val Ser Gly Val Ile Ala Ala Phe Arg Arg Ser
225 230 235 240

Ala Leu Ala Glu Val Gly Tyr Trp Ser Asp Asp Met Ile Thr Glu Asp
245 250 255

Ile Asp Ile Ser Trp Lys Leu Gln Leu Asn Gln Trp Thr Ile Phe Tyr
260 265 270

Glu Pro Arg Ala Leu Cys Trp Ile Leu Met Pro Glu Thr Leu Lys Gly
275 280 285

Leu Trp Lys Gln Arg Leu Arg Trp Ala Gln Gly Gly Ala Glu Val Phe
290 295 300

Leu Lys Asn Met Thr Arg Leu Trp Arg Lys Glu Asn Phe Arg Met Trp
305 310 315 320

Pro Leu Phe Phe Glu Tyr Cys Leu Thr Thr Ile Trp Ala Phe Thr Cys
325 330 335

Leu Val Gly Phe Ile Ile Tyr Ala Val Gln Leu Ala Gly Val Pro Leu
340 345 350

Asn Ile Glu Leu Thr His Ile Ala Ala Thr His Thr Ala Gly Ile Leu
355 360 365

Leu Cys Thr Leu Cys Leu Leu Gln Phe Ile Val Ser Leu Met Ile Glu
370 375 380

Asn Arg Tyr Glu His Asn Leu Thr Ser Ser Leu Phe Trp Ile Ile Trp
385 390 395 400

Phe Pro Val Ile Phe Trp Met Leu Ser Leu Ala Thr Thr Leu Val Ser
405 410 415

Phe Thr Arg Val Met Leu Met Pro Lys Lys Gln Arg Ala Arg Trp Val
420 425 430

Ser Pro Asp Arg Gly Ile Leu Arg Gly Met Asn Asn Leu
435 440 445

<210> 7
<211> 30
<212> DNA
<213> Escherichia coli

<400> 7
tacagttaag tgtgttatcg gtgcagagcc 30

<210> 8
<211> 31
<212> DNA
<213> Escherichia coli

<400> 8
ctcaacgcct ggctgattaa accaactatt c 31

<210> 9
<211> 7500
<212> DNA
<213> Escherichia coli

<400> 9
atgtattcaa gtagcagaaa aaggtgcccg aaaaccaaat gggcttgaa acttcttact 60
gccgcatttt tagcagcgag tccccggcg aagagtgctg ttaataacgc ctatgatgca 120
ttgattattg aagctcgcaa gggtaatact cagccagctt tgtcatggtt tgcactaaaa 180
tcagcactca gcaataacca aattgctgac tggttacaga ttgccttatg ggccgggcaa 240
gataaacagg ttattaccgt ttacaaccgc taccgtcatc agcaattacc agcgcgtgg 300
tatgcagctg tcgcccgtcgc ttatcgtaac ctgcaacaat ggcaaaactc gcttacactg 360
tggcaaaagg cgctctctct ggagccgcaa aataaggatt atcaacgggg acaaattta 420
accctggcag atgctggtca ctatgatact gcgcgtggta aacttaagca gcttaactct 480

ggagcaccgg acaaagccaa ttactcgca gaaggctata tctataaact ggccccgcgt	540
catcaggatg aattacgggc gatgacagag tcattacctg aaaatgcac tacgcaacaa	600
tatcccacag aatacgtca ggcattacgt aataatcaac ttgctgccgc gattgacgat	660
gccaatttaa cgccagatat tcgcgctgat attcatgccc aactggtcag actgtcgttt	720
atgcctacgc gcagtgaaag tgaacgttat gccattgccg atcgccct cgcacatac	780
gctgcattag aaattctgtg gcacgataac ccagaccgca ctgcccagta ccagcgtatt	840
caggttgate atcttggcgc gttattaact cgcgatcgat ataaagacgt tatttctcac	900
tatcagcgat taaaaaaagac ggggcaaatt attccgcctt gggggcaata ttgggttgca	960
tcggcttatac tcaaagatca tcagccgaaa aaagcacagt caataatgac cgagctctt	1020
tatcacaagg agaccattgc cccggattta tccgatgaag aacttgcgga tctctttac	1080
agccacctgg agagtaaaa ttatccggc gcgctaactg tcacccaaca taccattaat	1140
acttcgcccgc ctttccttcg gttaatggc acgcctacga gcatccgaa tgataacctgg	1200
ttacaggggc attcgtttct ctcacccgta gcaaaatata gtaatgatct tcctcaggct	1260
gaaatgacag ccagagagct tgcttataac gcaccaggaa atcagggact gcgcattgat	1320
tacgcgagtg tgttacaagc ccgcggttgg cctcgatcg cagaaaaatga attaaaaaaaaa	1380
gcagaagtga tcgagccacg taatattaat ctggaggttg aacaagcctg gacagcatta	1440
acgttacaag aatggcagca ggcagctgat ttaacgcacg atgttgcga acgtgaaccg	1500
caagatcccg gcgttgtacg attaaaacgt gcgggtgatg tacataatct tgcagagctt	1560
cgtatcgctg gctcaacagg aattgatgcc gaaggccgg atagtgtaa acatgatgatc	1620
gacttaacca ccatcgatccat ttcaccacccg ctgaaggata actggcgccg ttttgctgga	1680
ttcggttatg ccgatggaca atttagcgaa ggaaaaggaa ttgttcgcga ctggcttgcg	1740
ggtgttgagt ggcggtcacg taatatctgg ctcgaggcag agtacgctga acgcgttttc	1800
aatcatgagc ataaaacccgg cgcgccctg tctggctggt atgattttaa tgataactgg	1860
cgtattggtt cgcaactgga acgcctctt caccgcgttc cattacggc aatgaaaaat	1920
ggtgttacag gcaacagtgc tcaggctt attcgctggt atcaaaatga gcggcgtaag	1980
tacgggtct cctggcttt cactgattt tccgacagta accagcgtca tgaagtctca	2040
cttgagggtc aggaacgcattt ctggcttca ccatattga ttgtcgattt cctaccagg	2100
ctgtattacg aacaaaatac agaacacgat accccataact acaaccctat aaaaacgttc	2160
gatattgttc cggcatttga ggcaagccat ttgttatggc gaagctatga aaatagctgg	2220
gagcaaataat tcagcgcagg tttgggtgcc tcctggcaaa aacattatgg cacggatgtc	2280

gtcacccaac tcggctacgg gcaacgcatt agttgaatg acgtgattga tgctggcgca	2340
acgctacgct gggaaaaacg accttatgac ggtgacagag aacacaactt atacgttcaa	2400
ttcgatatacattcagatt ttaaggataa atatgttacg taatggaaat aaatatctcc	2460
tcatgctggt gagtataatt atgctcaccg cgtgcattag ccagtcaaga acatcattta	2520
taccggcaca ggatcgcgaa tctttactcg ccgagcaacc gtggccgcatt aatggtttg	2580
tagcgatttc atggcataac gttgaagacg aagctgccga ccagcgaaaaat atgtcagtgc	2640
ggacatcagc actgcgtgaa caatttgccct ggctgcgcga gaacggttat caaccggta	2700
gtattgctca aattcgtgaa gcacatcgag gagaaaaacc gctaccggaa aaagctgttag	2760
tgctgacttt tgatgacggc taccagatt ttataccggc cgtcttccca attctcagg	2820
ccttccagtg gcctgctgta tggggcccccg tcggcagttg ggtcgatacg ccagcggata	2880
aacaagtaaa atttggcgat gagttggtcg atcgagaata ttttgcacg tggcaacaag	2940
tgcgagaagt tgcgcggtcc cggctcggtt agctcgcttc tcatacatgg aattctcaact	3000
acggattca ggctaattgcc accggcagct tattgcgtgt atatgtaaat cgtcatatt	3060
ttactgacca cgcacggat gaaaccgcag cagaataccg ggaaagaatt cgtctggatg	3120
ctgtaaaaat gacggaatac ctgcgtacaa aggttgaggt aaatccacac gttttgttt	3180
ggccttatgg cgaagcgaat ggcatacgca tagaggaatt aaaaaaactc gtttatgaca	3240
tgttcttcac ctttgcattca ggtttggcää atgcgtcgca attggattcc attccgcggg	3300
tattaatcgc caataatccc tcattaaaag agttgccttca gcaaattatt accgtacagg	3360
aaaaatcacc acaacggata atgcataatcg atcttgatttgcgttgcac gaaaacctcc	3420
agcaaatgga tcgcaatatt gatgtgctaa ttcaagcgggt gaaagatatg caaatatcaa	3480
ccgtgtattt gcaggcattt gctgatcccg atggatgg gctggtaaa gaggtctgg	3540
ttccaaatcg tttgctacca atgaaagcag atattttag tcgggttgc tggcaattac	3600
gtacccgctc aggtgtaaac atctatgcgt ggatgcgggt attaagctgg gatttagatc	3660
ccacattaac gcgagtaaaa tacttaccaa caggggagaa aaaagcacaatccatcctg	3720
aacaatatca ccgtctctct ctttcgatg acagagtcag agcacaagtt ggcattttat	3780
atgaagatct tgccggacat gctgcttttgc atggcatatt gttccacatgat gatgctttgc	3840
tttcagatta tgaagatgcc agtgcacccgg ctatcacggc ttatcagcaaa gcaggcttta	3900
gcgggagtcg gagcggaaatt cgacaaaacc cggagcaatt taaacagtgg gcccgcgttta	3960
aaagtcgtgc gttaactgac ttcaacttttag aacttagtgc gcgctaaaa gccattcgcg	4020
gtccacatataaaaactgca cgaaatattt ttgcacttcc ggtaataccaa cctgaaagtgc	4080

aagcctggtt	tgcacagaat	tatgctgatt	tcctaaaaag	ctatgactgg	accgctatta	4140
tggctatgcc	ttatctggaa	ggtgtcgca	aaaaatcgcc	tgaccaatgg	ttaatacaat	4200
tgaccaatca	aattaaaaac	atccctcagg	ctaaagacaa	atctatttta	gaattacagg	4260
cacaaaactg	gcagaaaaat	ggtcagcatc	aggctatttc	ttcgcaacaa	ctcgctca	4320
ggatgagcct	attacaactg	aatggagtg	aaaactatgg	ttattatccc	gacaatttc	4380
tgcataacca	acctgaaata	gactttattc	gtcctgagtt	ttcaacagcc	tggtatccg	4440
aaaatgatta	atcgcatcg	atcgttttt	atattatgtc	tggtgttatg	catacccta	4500
tgcgtagcgt	actttcactc	tggtaactg	atgatgaggt	tcgttttctt	ctggccgtt	4560
tttatgtcca	ttatgtggat	tgttggcggc	gtctatttct	gggtctatcg	tgaacgccac	4620
tggccgtggg	gagaaaacgc	accagctccc	cagtgaaag	ataatccgtc	tatctccatt	4680
atcattccct	gtttaatga	ggagaaaaac	gttgaggaaa	ccatacacgc	cgcttagca	4740
cagcgttatg	agaacattga	agttattgcc	gtaaatgacg	gttcaacaga	taaaacccgt	4800
gccatcctgg	atcgcatggc	tgcacaaatt	ccccattgc	gggtcattca	tctggcgaa	4860
aaccagggga	aagccattgc	gttaaaacc	ggagctgccg	cggcgaaaag	tgaatatctg	4920
gtgtgcattg	atggcgatgc	gttatttagac	cgcgatgcgg	cggcatatat	tgtgaaaccg	4980
atgttgtaca	acccgcgtgt	gggtgccgta	accggtaatc	ctcgtattcg	aacacgttct	5040
accctgggtgg	gtaaaattca	gttggcgag	tattcctcaa	ttattggttt	gatcaagcga	5100
acccagcgta	tctatggaaa	cgtatttacc	gtttccggtg	ttattgccgc	atttcgtcgc	5160
agcgccctgg	cagaagtggg	ttactggagt	gacgatatga	tcaccgaaga	tattgatatt	5220
agctggaagc	tgcagttgaa	tcagtggacg	atttttacg	agccacgggc	actgtgctgg	5280
atattaatgc	ctgaaacggtt	aaaagggctg	tggaaacagc	gcctgcgtg	ggctcagggc	5340
ggtgcagaag	tattcctcaa	aaatatgaca	aggttgtggc	gcaaagaaaa	ctttcgaatg	5400
tggccgctgt	ttttgaata	ctgcctgacg	acaatatggg	ccttcacctg	cctggtcgg	5460
ttcattattt	acgcagtcca	acttgccggt	gtaccgttaa	atattgaatt	gacacatatc	5520
gctgcgacac	atactgccgg	aatattattg	tgtacgttat	gtttactgca	atttattgtc	5580
agcctgatga	tcgagaatcg	ctatgagcat	aatctgactt	catcgcttt	ctggattatt	5640
tgttcccgg	ttattttctg	gatgctgagc	ctggcaacga	cattggtac	attacacga	5700
gtcatgtga	tgcctaaaaa	gcaacgcgcc	cgttggtaa	gtcccgatcg	cgggattctg	5760
agaggtaat	atgaacaatt	taattattac	gaccgacaa	tcaccagta	gttactgg	5820
tgattatgtt	gccacaacca	tcttgtggac	attatttgcg	ttgttcatat	tcttattcgc	5880

catggatctg	ctgacgggtt	attactggca	aagcgaggcc	agaagccgac	ttcagttcta	5940
tttttgctg	gcagtggcga	atgccgtcgt	gttaattgtc	tgggcgtgt	acaataagct	6000
gcgtttcaa	aaacagcagc	atcatgcagc	ctaccaatat	acgcccgaag	aatatgcaga	6060
gagcttagca	atacctgatg	agctctatca	gcaactacaa	aaaagccaca	ggatgagcgt	6120
acacttcacc	agccaggggc	aaataaaaaat	ggttgttca	aaaaaaggcgc	tagtccgggc	6180
ataaacaccc	aaaacaaagc	ccggttcgcc	cgggctctgc	accgataaca	cacttaactg	6240
taggcatgca	gcgtacgtt	gcaaagtgcc	gaacgtacgc	agtcctctt	accgaaccgg	6300
acgatcccaa	ccatttcatc	ttcttcgaaa	cgttccagcg	cgtcactaa	tccggagcac	6360
acgcccgcag	gcaaatcgca	ttgcgtgata	tcaccgtga	cgataaccgt	cacgttctcc	6420
ccgaggcggg	ttaaaaacat	tttcatttgc	gcggcagtca	cattctgcgc	ctcgtcaaga	6480
atgacgactg	catttcaaa	ggtacgtcca	cgcataatagg	cgaacggcgc	aatttccacc	6540
ttccctattt	ccggtcgcag	gcagtaactgc	ataaaggaag	cccctaagcg	ccggaccagc	6600
acgtcgtaga	ccgggcgaaa	atagggagca	aactttctg	cgatatctcc	aggtaaaaag	6660
ccaagatctt	catcggttg	cagaactgga	cgggtgacga	taatcctgtc	gacatcctta	6720
tgtatcaggg	cctctgccgc	tttgctgcg	ctgatccagg	ttttccgca	cccggttcg	6780
cccggtggcga	atatcagctg	tttactctca	atagcctca	gatagtgcaa	ttgcgttca	6840
tttcgcgcga	ggatgggcga	agtatcgca	ctgtcgcggg	ccataccaat	ggcttctacg	6900
ccgcccacatct	gcacaagcga	ggtgaccgat	tcttcttac	gctgcttatg	gctgcgcgaa	6960
tcccgtctca	gcacacgttt	tgctcgca	cgagcttga	tcactgctt	ttgtcttccc	7020
atggagagca	ccttgagttt	tttgtattca	tcacacgcgc	cgttggcagc	gcgattatgc	7080
gcacgaacat	cagagggtt	gcttccttgt	aagccatagt	ttgctttgg	ataaaaatgcc	7140
gaaaaacggc	tacgcgcacc	gtttacggcg	tcggtaacac	atgaaaagaa	aggatgaggt	7200
tgaaaatgca	aagtgacgag	atgactaccc	gaggagaaaa	ctccgcgagt	ggtggcgcgt	7260
tgattatcta	aaacatgtcc	agtacaggac	gttaccatcc	gcatctcca	tagtgactga	7320
ctatcactgc	cgggacttc	cgctgctact	taataagtac	aacagatctc	gcatttattg	7380
caacaatata	tttacttata	tttaactata	aaacaccatt	tcagtgacat	tagttctac	7440
tggaaagatg	acagagtat	gacagtgtat	aaaaaagctg	tgtgcttca	gcaggattt	7500