Note that $|X_n|=\frac{1}{n}.$ Thus, $|X_n|>\epsilon$ if and only if $n<\frac{1}{\epsilon}.$ Thus, we conclude

$$\sum_{n=1}^{\infty} Pig(|X_n| > \epsilonig) \leq \sum_{n=1}^{\lfloor rac{1}{\epsilon}
floor} Pig(|X_n| > \epsilonig) \ = \lfloor rac{1}{\epsilon}
floor < \infty.$$

Theorem 7.5 provides only a sufficient condition for almost sure convergence. In particular, if we obtain

$$\sum_{n=1}^{\infty} P(|X_n - X| > \epsilon) = \infty,$$

then we still don't know whether the X_n 's converge to X almost surely or not. Here, we provide a condition that is both necessary and sufficient.

Theorem 7.6

Consider the sequence X_1, X_2, X_3, \cdots . For any $\epsilon > 0$, define the set of events

$$A_m = \{|X_n - X| < \epsilon, \qquad ext{for all } n \ge m\}.$$

Then $X_n \stackrel{a.s.}{\longrightarrow} X$ if and only if for any $\epsilon>0$, we have

$$\lim_{m o \infty} P(A_m) = 1.$$

Example 7.15

Let X_1, X_2, X_3, \cdots be independent random variables, where $X_n \sim Bernoulli\left(\frac{1}{n}\right)$ for $n=2,3,\cdots$. The goal here is to check whether $X_n \stackrel{a.s.}{\longrightarrow} 0$.

- 1. Check that $\sum_{n=1}^{\infty} P(|X_n| > \epsilon) = \infty$.
- 2. Show that the sequence X_1, X_2, \ldots does not converge to 0 almost surely using Theorem 7.6

Solution

1. We first note that for $0 < \epsilon < 1$, we have

$$\sum_{n=1}^{\infty} P(|X_n| > \epsilon) = \sum_{n=1}^{\infty} P(X_n = 1)$$
 $= \sum_{n=1}^{\infty} \frac{1}{n} = \infty.$

2. To use Theorem 7.6, we define

$$A_m = \{|X_n| < \epsilon, \quad \text{for all } n \ge m\}.$$

Note that for $0 < \epsilon < 1$, we have

$$A_m = \{X_n = 0, \quad \text{for all } n \ge m\}.$$

According to Theorem 7.6, it suffices to show that

$$\lim_{m o\infty}P(A_m)<1.$$

We can in fact show that $\lim_{m\to\infty}P(A_m)=0$. To show this, we will prove $P(A_m)=0$, for every $m\geq 2$. For $0<\epsilon<1$, we have

$$P(A_m) = P(\{X_n = 0, \quad \text{ for all } n \ge m\})$$

$$\leq P(\{X_n = 0, \quad \text{ for } n = m, m+1, \cdots, N\}) \quad \text{(for every positive integer } N \ge m)$$

$$= P(X_m = 0)P(X_{m+1} = 0) \cdots P(X_N = 0) \quad \text{(since the } X_i\text{'s are independent)}$$

$$= \frac{m-1}{m} \cdot \frac{m}{m+1} \cdots \frac{N-1}{N}$$

$$= \frac{m-1}{N}.$$

Thus, by choosing N large enough, we can show that $P(A_m)$ is less than any positive number. Therefore, $P(A_m)=0$ for all $m\geq 2$. We conclude that $\lim_{m\to\infty}P(A_m)=0$. Thus, according to Theorem 7.6, the sequence $X_1,\,X_2,\,\ldots$ does not converge to 0 almost surely.

An important example for almost sure convergence is the **strong law of large numbers (SLLN)**. Here, we state the SLLN without proof. The interested reader can find a proof of SLLN in [19]. A simpler proof can be obtained if we assume the finiteness of the fourth moment. (See [20] for example.)

The strong law of large numbers (SLLN)

Let $X_1, X_2, ..., X_n$ be i.i.d. random variables with a finite expected value $EX_i = \mu < \infty$. Let also

$$M_n = rac{X_1 + X_2 + \ldots + X_n}{n}.$$

Then $M_n \stackrel{a.s.}{\longrightarrow} \mu.$

We end this section by stating a version of the continuous mapping theorem. This theorem is sometimes useful when proving the convergence of random variables.

Theorem 7.7 Let X_1, X_2, X_3, \cdots be a sequence of random variables. Let also $h: \mathbb{R} \to \mathbb{R}$ be a <u>continuous</u> function. Then, the following statements are true:

- 1. If $X_n \stackrel{d}{ o} X$, then $h(X_n) \stackrel{d}{ o} h(X)$.
- 2. If $X_n \stackrel{p}{\to} X$, then $h(X_n) \stackrel{p}{\to} h(X)$. 3. If $X_n \stackrel{a.s.}{\longrightarrow} X$, then $h(X_n) \stackrel{a.s.}{\longrightarrow} h(X)$.