RESEARCH OF BOOSTING ALGORITHMS VERSUS TRADITIONAL METHODS IN CREDIT CARD FRAUD DETECTION ACROSS VARIED DATASETS

Justs Viduss

Transport and Telecommunication Institute

16-May-24 Riga, Latvia

Why This Research Matters

- Addressing a Major Challenge: This research directly addresses the critical need for more effective fraud detection systems in the banking sector, particularly in handling the complexity and volume of modern financial transactions.
- Addressing Real-World Data Challenges: Financial fraud detection faces the
 challenge of dealing with highly unbalanced datasets where fraudulent
 transactions are much less frequent than legitimate ones. The research explores
 the effectiveness of these algorithms in such settings, offering potential
 solutions to one of the biggest obstacles in fraud detection
- Improvement Over Existing Methods: By conducting a thorough comparison of boosting algorithms against traditional methods, this research fills a gap in the existing literature that often lacks detailed comparative analysis.

Objectives

- To explore the evolution of fraud detection tactics in the banking industry
- To compare the efficacy of traditional and boosting algorithms in identifying credit card fraud using criteria such as accuracy, precision, recall, and the F1 score.
- To evaluate the computational efficiency of these algorithms, take into account parameters such as training time and resource use, which are crucial for real-time fraud detection.

Outline

- Algorithms tested
- Datasets
- Implementation
- Algorithm performance analysis
- Conclusions

Algorithms tested

Datasets

Unballanced dataset: 284k rows, 30 features, 492 fraud cases (0.17%). All features exept time and transaction amount are anonymized using PCA. Source: Kaggle (2018) transactions made by European

cardholders in September 2013

Riga, Latvia

Ballanced dataset: 568k rows, 29 features, 280k fraud cases (50%).

Source: Kaggle (2023). Transactions made by European cardholders in

2023

Synthetic data: Generated with python script, 1.7m rows, 5

features, 14k fraud cases (0.84%)

Implementation

- Tools: Python notebooks, Excel
- Preprocessing: Data cleaning and preparation for modeling
- Parameter tuning: In total 900 semi-automated tests were done
- Testing environment: Laptop
 - 10 Core 12th gen Intel CPU
 - 16 GB RAM

Algorithm performance analysis

Why each metric was chosen for tests:

- Recall when it is critical to catch as many frauds as possible (minimizing false negatives)
- Precision when it is crucial to be as accurate as possible in your fraud predictions (minimizing false positives)
- F1 Score when you need a balance between precision and recall, and both types of errors are similarly costly
- Accuracy only when the classes are somewhat balanced or when you want a general idea of the model's performance across all predictions

Recall

Unballanced data max Recall

Ballanced data max Recall

Recall

Synthetic data max Recall

Accuracy

	Max of Accuracy				
	Unballanced		Ballanced	Synthetic	
XGBoost		99,96%	99,99%	99,26%	
AdaBoostDT	Z↓	99,96%	99,98%	99,50%	
Random Forest	AΨ	99,96%	99,99%	99,38%	
K-Nearest Neighbors (KNN)		99,95%	99,93%	99,36%	
AdaBoost		99,95%	97,62%	99,37%	
Gradient Boosting Machine		99,95%	99,96%	99,60%	
SVM (Support Vector Machines)		99,94%	96,39%	99,19%	
Logistic Regression		99,92%	96,53%	99,27%	
Linear Regression		99,91%	94,84%	99,19%	

16-May-24 Justs Viduss Riga, Latvia 14

F1 Score

	Max of F1 Score				
	Unballanced		Ballanced	Synthetic	
XGBoost		88,27%	99,99%	26,86%	
AdaBoostDT	ZΙ	87,64%	99,98%	57,55%	
Random Forest	ΑΨ	85,55%	99,99%	38,74%	
K-Nearest Neighbors (KNN)		85,39%	99,93%	36,02%	
AdaBoost		85,08%	97,61%	36,72%	
Gradient Boosting Machine		82,76%	99,96%	72,04%	
SVM (Support Vector Machines)		82,16%	96,34%	0,21%	
Logistic Regression		72,62%	96,49%	18,47%	
Linear Regression		67,48%	94,67%	0,07%	

16-May-24 Justs Viduss Riga, Latvia 15

Precision

	Max of Precision				
	Unballanced		Ballanced	Synthetic	
Random Forest		100,0%	100,0%	99,6%	
Gradient Boosting Machine	ΖI	100,0%	99,9%	100,0%	
XGBoost	ΑΨ	98,7%	100,0%	100,0%	
AdaBoostDT		98,7%	100,0%	100,0%	
K-Nearest Neighbors (KNN)		95,0%	99,9%	99,2%	
AdaBoost		92,8%	98,5%	100,0%	
SVM (Support Vector Machines)		89,2%	98,1%	100,0%	
Logistic Regression	87,1%		98,2%	100,0%	
Linear Regression		84,6%	98,2%	100,0%	

16-May-24 Justs Viduss Riga, Latvia 16

Conclusions

- For Fraud detection in real world scenarious AdaBoost has best performance from tested algorithms, and outperforms other
 Boosting and classical algorithms
- Other algorithms perform better in different situations which is interesting for other industries where Accuracy, F1 Score or Precision would be more important
- Gradient Boosting Machine might be go to algorithm with uncertain or changing data, as it performed well on both, real and synthetic data

Acknowledgements

 The research was supervised by Dr.sc.ing., Professor Nadezda Spiridovska, whose insights and guidance were invaluable throughout the study

Thank you

Justs Viduss

viduss.justs@gmail.com

16-May-24 Riga, Latvia