

Thinking Like Transformers

Докладчик: Александра Сендерович рецензент: Анастасия Дроздова

🔍 Практик-исследователь: Дарья Сапожникова🕵

— Хакер: Полина Гусева <a>®

Thinking Like RNNs

Paнee -- RNN:

- RNN хорошо распознают грамматическую структуру
- Формальный язык -- множество конечных строк над конечным алфавитом
- Рекуррентные нейронные сети аналогичны конечным автоматам

Основная цель -- интерпретируемость: приближаем сеть простой моделью

Трансформер

Внимание

$$\operatorname{Attention}(Q,K,V) = \operatorname{softmax}\left(rac{QK^{\mathrm{T}}}{\sqrt{d_k}}
ight)V$$

Тепловые карты Self-Attention

softmax
$$\left(\frac{QK^{\mathrm{T}}}{\sqrt{d_k}}\right)$$

Thinking Like Transformers

- Предлагается простая модель для кодировщика трансформера
- Язык программирования RASP (Restricted Access Sequence Processing Language)
- Абстракция: вместо слоёв нейронной сети -- операции над последовательностями
- С помощью решающей задачу программы можно построить и обучить трансформер для той же задачи
- Нельзя запрограммировать перевод и другие сложные задачи

Язык RASP

- Вход: (последовательность длины n, range(n))
- Для входа длины n оперирует последовательностями длины n и бинарными матрицами размера n x n, выход -- последовательность
- Константа -- последовательность длины n, заполненная одним и тем же числом
- 3 типа операций:
 - Вспомогательные: length = [n] * n
 - Моделирующие линейные слои и активации: поэлементные (+, + const, pow(,const), >, *, ...)
 - Моделирующие механизм внимания

Язык RASP. Моделирование внимания

- Все матрицы -- бинарные!
- select: (последовательности k, q; предикат p) -> матрица S: $S_{[i][j]} = p(k_{[i]}, q_{[j]})$
- **aggregate**: (матрица S; последовательность v) -> последовательность s, где i-ый элемент -- среднее элементов, выбранных из v i-ой строкой матрицы S
- **selector_width**: (матрица S) -> последовательность s, где i-ый элемент -- число выбранных элементов в i-ой строке матрицы S
- Булева логика для бинарных матриц

Язык RASP

- Ограничения:
 - Нет циклов: обычный трансформер не может повторять операции произвольное число раз
 - В select выбор всегда взаимный -- как в механизме внимания
- Программа, разворачивающая строку:

```
reverse = aggregate(

select(indices,

length-indices-1,==)

tokens);
```

Язык RASP. Связь с трансформером

- Вспомогательные операции:
 - подаваемые на вход индексы range(n) -- позиционное кодирование
 - длину можно посчитать с помощью aggregate и select
- Операции, моделирующие линейные слои и активации: нет ограничений на операции, любая функция приближается нейросетью глубины 2 с СИГМОИДОЙ
- Операции, моделирующие внимание:
 - рации, моделирующие впиматию. select -- матрица внимания, аналогия $\operatorname{softmax}\left(\frac{QK^{\perp}}{\sqrt{d_{\perp}}}\right)$
 - **aggregate** -- применение внимания, аналогия $\operatorname{softmax}\left(\frac{QK^{\mathrm{T}}}{\sqrt{J_{\bullet}}}\right)V$

Язык RASP. Трансформер

- Отслеживается граф вычислений, по нему определяется порядок слоёв
- 1 aggregate == 1 голова внимания
- Поэлементные операции превращаются в линейный слой с активацией
- При обучении в трансформер добавляется attention supervision: считается MSE между находящейся внутри трансформера и полученной из программы на RASP тепловой картой внимания (attention heatmap)

Эксперименты

- Пример -- программа,
 разворачивающая строку
- 3 набора экспериментов:
 - Верна ли полученная из программы верхняя граница на число слоёв и голов
 - Насколько она точна
 - Использование attention supervision

opp_index = length - indices - 1;
flip = select(indices, opp_index,==);
reverse = aggregate(flip, tokens);

Эксперименты. 1 набор

Верна ли полученная из программы верхняя граница на число слоёв и голов

Language	Layers	Heads	Test Acc.	Attn. Matches?
Reverse	2	1	99.99%	×
Hist BOS	1	1	100%	✓
Hist no BOS	1	2	99.97%	*
Double Hist	2	2	99.58%	×
Sort	2	1	99.96%	X
Most Freq	3	2	95.99%	X
Dyck-1 PTF	2	1	99.67%	*
Dyck-2 PTF ⁸	3	1	99.85%	X

Эксперименты. 2 набор

Насколько полученная оценка точна; L -- число слоёв, Н -- число голов

Language	RASP	Average test accuracy (%) with			
	L, H	L, H	H-1	L-1	$L{-}1,2H$
Reverse	2,1	99.9	_	23.1	41.2
Hist	1, 2	99.9	91.9	-	-
2-Hist	2,2	99.0	73.5	40.5	83.5
Sort	2,1	99.8	-	99.0	99.9
Most Freq	3,2	93.9	92.1	84.0	90.2
Dyck-1	2,1	99.3	-	96.9	96.4
Dyck-2	3, 1	99.7	-	98.8	94.1

Эксперименты. 3 набор

Использование attention supervision

```
same_tok = select(tokens, tokens, ==);
   hist = selector_width(
                same_tok,
                assume_bos = True);
   first = not has_prev(tokens);
   same_count = select(hist, hist, ==);
    same_count_reprs = same_count and
        select(first, True, ==);
   hist2 = selector_width(
12
                same_count_reprs,
                assume_bos = True);
    (a)
```

hist2("§aaabbccdef")=[§,1,1,1,2,2,2,2,3,3,3] (internal to has_prev) same_tok same_count_reprs

Следствия и новая интуиция о трансформерах

- Ограничение внимания: если внимание использует меньше n log(n) операций (где n -- длина входа), то невозможно обучить трансформер на сортировку
- Порядок слоёв: лучше, если сначала будет внимание, а потом линейные слои с активациями
- k-язык Дика (скобочная последовательность с k видами скобок): задача решается трансформером с фиксированным числом слоёв и голов для любого k
- Решение логических задач: можно написать код на RASP и посмотреть на получившуюся структуру

Thinking Like Transformers

Gail Weiss, Yoav Goldberg, Eran Yahav

Come, let me take your problems

away...

From the depths of Hell itself:

The Restricted Access Sequence Processing Language

- Think in Symbolic Code!
- · Effortlessly follow the information flow constraints of a Transformer! (You don't have a choice!)
- Analyse your programs for number of layers and heads they need!

all in exchange for...

Your soul Nothing, it's free online: github.com/tech-srl/RASP

Solve a task in RASP!

select(tokens,tokens,) (select(tokens,tokens,...) num_smaller = with_bos_selector_width(earlier); sel_new_val = select(target_pos,indices,==); sort = aggregate(sel_new_val, tokens);

Bully an actual transformer into realising your solution!

RASP Primitives

How are transformers doing all the cool stuff that they do?

I tried to figure out long addition in

transformers, but layernorm kept

getting in the way

Doesn't anyone have a

computational model for these things?!

Every time I try to think whether a transformer can solve a specific task I am

forced to make explicit

constructions!!!

All examples on input "RASP"

Base Sequences

HOW CAN WE DISCUSS TRANSFORMER

BEHAVIOUR WITHOUT

TRIPPING OVER THE

DETAILS?!?!?

tokens = [R,A,S,P] = [0,1,2,3]indices = [4,4,4,4]length

Elementwise Operations

indices+2 = [2,3,4,5]indices*length = [0,4,8,12] tokens if indices%2==1 else "a" = [a,A,a,P]

Non-Elementwise Operations

reverse=aggregate(No. [R,A,S,P]) RASP -> S -> IESAR RASP => A

(selector_width)

selector_width(|||-) = [1,1,1,1] selector width(select(indices,indices,<=)) = [1,2,3,4] histogram = selector width(select(tokens,tokens,==)) on input "Hello": histogram = [1,1,2,2,1]

Never once worry abou what weights your solution requires in practice!

Рецензия

Сильные стороны

- Предложена новая интересная идея понимания трансформеров с помощью языка программирования
- Подробное описание RASP, примеры решаемых задач
- В статье делается попытка установить связь между операциями на языке RASP и трансформерах

Слабые стороны

- Язык подходит для кодирования только части задач
- Введение нового языка программирования не обосновано
- Нет заявленной связи с матрицами внимания
- Связь с матрицами внимания экспериментально не подтверждена
- Качество оценки RASP на количество слоев/attention heads не вполне подтверждается экспериментами

Воспроизводимость

- Есть репозитории с интерпретатором RASP[1] и с кодом экспериментов
 [2], примеры кода на RASP
- Даны значения параметров для экспериментов
- Есть только описание "компиляции" языка в архитектуру трансформера

Контекст работы

Информация о публикации

- Статья опубликована 19.07.21
- Статья была представлена на ICML 21 в виде постера
- Изначально статья подавалась на ICLR2021 (первая версия статьи датируется 28.09.20)

Poster

Thinking Like Transformers

Gail Weiss · Yoav Goldberg · Eran Yahav Keywords: [Others] [Deep Learning]

Thinking Like Transformers

Gail Weiss, Yoav Goldberg, Eran Yahav

Информация об авторах

- Gail Weiss (PhD студент в Технионе), предыдущие работы посвящены конечным автоматам и формальным иерархиям над RNN и формальными языками
- Yoav Golderg (профессор в Университете Бар Илан), научный руководитель Weiss
- Eran Yahav (профессор в Технионе), научный руководитель Weiss

На что опирается работа

- Работа ключевым образом основывается на научных интересах Weiss и ее предыдущих работах
- Есть работы, которые показывают, что поставленные в данной статье перед авторами задачи могут быть решены с теоретической точки зрения, как, например, [1], [2] и [3]

^[1] On the Ability and Limitations of Transformers to Recognize Formal Languages, Satwik Bhattamishra, Kabir Ahuja, Navin Goyal

^[2] Are Transformers Universal Approximators Of Sequence-To-Sequence Functions? Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank J. Reddi, Sanjiv Kumar [3] Attention is Turing Complete, Jorge P´erez, Pablo Barcel´o. Javier Marinkovic.

Цитирование

На данную статью ссылаются только 3 другие работы:

- On the Power of Saturated Transformers: A View from Circuit Complexity
 William Merrill, Y.Goldberg, R. Schwartz, N. Smith
- The Neural Data Router: Adaptive Control Flow in Transformers Improves
 Systematic Generalization. Róbert Csordás, Kazuki Irie, Jürgen Schmidhuber
- Learning Adaptive Control Flow in Transformers for Improved Systematic Generalization. Róbert Csordás, Kazuki Irie, Jürgen Schmidhuber

Хакерство

Репликация

- Код авторов очень сложный для прочтения
- При запуске с параметрами из статьи результаты воспроизводятся
- К оценкам на размеры трансформера из статьи возникли вопросы...

Задача о гистограммах

- В статье рассмотрено две вариации
 со спецтокенами и без
- Утверждается, что без спецтокенов требуется две головы
- Идеально обучить трансформер с одной головой можно
- Выводы о роли спецтокенов не аргументированы

Language	RASP	Average test accuracy (%) with			
	L, H	L,H	H-1	L-1	$L{-}1,2H$
Hist	1,2	99.9	91.9	-	-

Подсчет больших токенов

- Достаточно одного слоя и одной головы
- Карта внимания совпадает с ожиданиями: большие токены имеют большие веса

