0.1 Preliminaries

Multisets

A Multiset M with underlying set S is a set of ordered pairs

$$M = \{(s_i, n_i) | s_i \in S, n_i \in \mathbb{Z}^+, s_i \neq s_j \forall i \neq j\}$$

Matrices

 $\mathcal{M}_{m,n}(F)$: the set of $m \times n$ matrices. Properties of transpose:

1. $(A^T)^T = A$

2.
$$(A+B)^T = A^T + B^T$$

3.
$$(rA)^T = rA^T \ \forall r \in F$$

4.
$$(AB)^T = B^T A^T$$
 provided that AB is defined.

5.
$$\det(A^T) = \det(A)$$

Partitions/Block Matrices

Actually there is another expression:

$$\begin{bmatrix} A_1 & A_2 & \cdots & A_k \end{bmatrix} \begin{bmatrix} B_1 \\ B_2 \\ \vdots \\ B_k \end{bmatrix} = \sum_{i=1}^k A_i B_i$$

provided that A_iB_i is defined.

Determinants

1.
$$det(AB) = det(A) det(B)$$

$$M = \begin{bmatrix} B_1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & B_n \end{bmatrix}$$

then $det(M) = \prod det(B_i)$.

Polynomials

More on it later. It's basically drawing analogies between polynomials and integers.

Function

Definition. Let $f: S \to T$ be a function from a set S to T. Assume that $0 \in T$, the support is

$$supp(f) = s \in S | f(s) \neq 0$$

If $X \subseteq S$ and $Y \subseteq T$,

$$f(X) = \{f(x)|x \in X\}$$

$$f^{-1}(Y) = s \in S|f(s) \in Y$$

where f doese not need to be injective.

$$f|_A(a) = f(a)$$

 $\bar{f}: U \to T, U \subseteq S \text{ for } \bar{f}|_S = f$

Equivalence Relations

Example

Let $p(x) \sim q(x) \iff p(x) = aq(x)$ for some nonzero constant $a \in F$. Trivially this is an equivalence relation. Since

$$p(x) \sim q(x) \implies \deg(p(x)) = \deg(p(x)),$$

the function of retrieving degrees is an invariant function of \sim , not a complete invariant. The set of all monic polynomials is a set of canonical forms.

Example

Row equivalence on $\mathcal{M}_{m,n}(F)$. The subset of reduced row echelon form matrices is a set of canonical form for row equivalence.

Example

 $A, B \in \mathcal{M}_n(F)$ are row equivalent $\stackrel{def}{\iff} \exists$ invertible P s.t. A = PB.

 $A, B \in \mathcal{M}_n(F)$ are column equivalent $\stackrel{def}{\iff} \exists$ invertible Q s.t. A = BQ.

A, B are equivalent $\stackrel{def}{\Longleftrightarrow} \exists$ invertible P, Q s.t. A = PBQ.

After elementary operations

$$J_k = \begin{bmatrix} I_k & O \\ O & O \end{bmatrix} \in \mathcal{M}_{m,n}$$

So $\{J_k\}$ is a canonical form and rank is a complete invariant.

Example

 $A, B \in \mathcal{M}_n(F)$ is similar $\stackrel{def}{\iff} \exists$ invertible P s.t. $A = PBP^{-1}$. To be developed.

Example

 $A, B \in \mathcal{M}_n(F)$ is congruent $\stackrel{def}{\iff} \exists$ invertible P s.t. $A = PBP^T$. Anyway, this book aims to find their canonical form.

Zorns's Lemma

posets: partially ordered set (not necessarily comparable for all elements)

Thus total/linear ordered set. chain: total ordered subset.

Zorn's Lemma. If P is a partially ordered set in which every chain has an upper bound, then P has a maximal element.

equivalent to axiom of choice, well-ordering principle.

Cardinality

 $|S| = |T| \stackrel{def}{\iff}$ there is a bijective function.