Bioinformatics Algorithms

Lecture Notes

a.a. 2020/2021

Contents

1	Defi	initions	1
	1.1	Alphabet	1
	1.2	String (or word)	1
	1.3	Substrings, prefixes and suffixes	1
	1.4	Reverse, palindrome and rotations	1
2	2 Comparing strings		1
	2.1	Hamming distance	2
	2.2	Edit distance	2

1 Definitions

1.1 Alphabet

Let Σ be a finite set of symbols (alternatively called characters), called the alphabet. No assumption is made about the nature of the symbols.

1.2 String (or word)

A string over Σ is any finite sequence of symbols from Σ . For example if $\Sigma = \{0, 1\}$ then 01011 is a string over Σ .

The **length of a string** S is the number of symbols in s (the length of the sequence) and can be any non-negative integer. It is often denoted as |S|.

The **empty string** is the unique string over Σ of length 0, and is denoted as ϵ .

The set of all strings over Σ of length n is denoted Σ^n . For example, if $\Sigma = 0, 1$, then $\Sigma^2 = \{00, 01, 10, 11\}$. Note that $\Sigma^0 = \{\epsilon\}$ for any alphabet Σ .

The set of all strings of any length over Σ is the *Kleene closure* of Σ and is denoted as Σ^* . Also:

$$\Sigma^* = \bigcup_{n \in N \cup \{0\}} \Sigma^n$$

The set of all non-empty strings over Σ is denoted by Σ^+

1.3 Substrings, prefixes and suffixes

A string s is said to be a **substring** (or factor) of t if there exist (possibly empty) strings u and v such that t = usv.

Given a string t, suffixes and prefixes are special substrings of t.

A string s is said to be a **prefix** of t if there exists a string u such that t = su. If u is nonempty, s is said to be a *proper* prefix of t.

Simmetrically, a string s is said to be a **suffix** of t if there exists a string u such that t = us. If u is nonempty, s is said to be a *proper* suffix of t.

1.4 Reverse, palindrome and rotations

The **reverse** of a string is a string with the same symbols but in reverse order. For example, if s = abc (where a, b, and c are symbols of the alphabet), then the reverse of s is cba.

A string that is the reverse of itself is called a **palindrome**, which also includes the empty string and all strings of length 1.

A string s = uv is said to be a **rotation** of t if t = vu. For example, if $\Sigma = \{0, 1\}$ the string 0011001 is a rotation of 0100110, where u = 00110 and v = 01.

2 Comparing strings

2.1 Hamming distance

The Hamming distance between two strings of equal length is the number of positions at which the corresponding symbols are different.

- "karolin" and "kathrin" $\rightarrow 3$
- 1011101 and $1001001 \rightarrow 2$

With Hamming distance we can formalize *substitutions* in biological sequences - or simply sequencing errors in which the wrong base pair is identified.

2.2 Edit distance

The **edit distance** is a way of quantifying how dissimilar two strings (e.g., words) are to one another by counting the **minimum number of operations required to transform on string into the other**. In the *Levenshtein distance* (the most common), edit operations are: **removal**, **insertion**, and **substitution**.

The edit distance between "kitten" and "sitting" is 3. A minimal edit script that transforms the former into the latter is:

- kitten \rightarrow sitten (substitute s for k)
- sitten \rightarrow sittin (substitute i for e)
- sittin \rightarrow sitting (insert q at the end)

The number of solutions (sequences of operations) is infinite.