MATH3140

Homework 7

Exercises: 1, 2 (below) and Judson 19.3, 19.13, 19.19.

Due date: Friday, 10/19

- 1. Let P with \leq be a partially ordered set, let $S \subseteq P$ and let $u \in P$. We say that u is an upper bound for S iff $s \leq u$ for all $s \in S$. We say ℓ is the least upper bound of S iff ℓ is an upper bound of S and $\ell \leq u$ for every upper bound u of S. Prove that if ℓ is the least upper bound of the set $\{x,y\}$ and m is the least upper bound of the set $\{\ell,z\}$, then m is the least upper bound of the set $\{x,y,z\}$.
- **2.** Let (P, \leq) be a partially ordered set with the property that every pair of elements $x, y \in P$ has a greatest lower bound. For $x, y \in P$, define $x \cdot y = \text{glb}(x, y)$. Prove that (P, \cdot) is a semilattice.
- **19.3.** Draw a diagram of the lattice of subgroups of \mathbb{Z}_{12} .
- **19.13.** Let G be a group and X be the set of subgroups of G ordered by set-theoretic inclusion. If H and K are subgroups of G, show that the least upper bound of H and K is the subgroup generated by $H \cup K$.
- **19.19.** Let X and Y be posets. A map $\phi: X \to Y$ is order-preserving if $a \leq b$ implies that $\phi(a) \leq \phi(b)$. Let L and M be lattices. A map $\psi: L \to M$ is a lattice homomorphism if $\psi(a \vee b) = \psi(a) \vee \psi(b)$ and $\psi(a \wedge b) = \psi(a) \wedge \psi(b)$. Show that every lattice homomorphism is order-preserving, but that it is not the case that every order-preserving map is a lattice homomorphism.