Sumário

<u>Distância</u>

By: Louis Phillipe Dubois

Produto Escalar
Produto Vetorial
Produto Misto
Sistema de Coordenadas
Operações Vetoriais em Coordenadas
Equações da Reta
Interseção de Retas
Equações do Plano
Posição entre Retas e Planos
Posição entre planos

Produto Escalar

Sejam \vec{u} e \vec{v} dois vetores, o produto escalar é definido por:

$$\vec{u} \cdot \vec{v}$$
 ou (\vec{u}, \vec{v})

Proposição:

(a) Se \vec{u} e \vec{v} não são nulos, o ângulo θ formado por eles é definido por:

$$\cos \theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|}$$

(b) Qualquer que seja o vetor \vec{u}

$$\|\vec{u}\| = \sqrt{\vec{u} \cdot \vec{u}}$$

(c) Quaisquer que sejam os vetores \vec{u} e \vec{v}

$$\vec{u} \perp \vec{v} \leftrightarrow \vec{u} \cdot \vec{v} = \mathbf{0}$$

 $Nota: \bot = Ortogonal = Perpendicular$

Propriedades:

(a)
$$|\vec{u}\cdot(\vec{v}+\vec{w})|=\vec{u}\cdot\vec{v}+\vec{u}\cdot\vec{w}|$$

(b)
$$\overrightarrow{u} \cdot (\lambda \overrightarrow{v}) = \overrightarrow{v} \cdot (\lambda \overrightarrow{u}) = \lambda (\overrightarrow{u} \cdot \overrightarrow{v})$$

(c)
$$\overrightarrow{u} \cdot \overrightarrow{v} = \overrightarrow{v} \cdot \overrightarrow{u}$$

Calculando o produto escalar:

Seja:
$$\vec{u} = (a_u, b_u, c_u) e \vec{v} = (a_v, b_v, c_v)$$

$$\overrightarrow{u} \cdot \overrightarrow{v} = a_u a_v + b_u b_v + c_u c_v$$

É assim que calcula produto escalar

Produto Vetorial

Sejam \vec{u} e \vec{v} dois vetores, o produto vetorial é definido por:

 $\vec{u}^{\wedge}\vec{v}$ ou $\vec{u} \times \vec{v}$

Proposição:

(a) Se $\overrightarrow{u} \times \overrightarrow{v} = 0$ então os vetores são *LD* (Linearmente dependentes)

(b)
$$\vec{u} \times \vec{u} = \vec{0}$$
, para qualquer \vec{u}

(c) Seja θ um ângulo entre \vec{u} e \vec{v}

$$sin(\theta) = \frac{\|\vec{u} \times \vec{v}\|}{\|\vec{u}\| \|\vec{v}\|}$$

Propriedades:

(a)
$$|\vec{u} \times \vec{v} = -\vec{v} \times \vec{u}| \rightarrow Muda \ o \ sinal$$

(b)
$$\overrightarrow{u} \times (\lambda \overrightarrow{v}) = (\lambda \overrightarrow{u}) \times \overrightarrow{v} = \lambda (\overrightarrow{u} \times \overrightarrow{v})$$

(c)
$$\overrightarrow{u} \times (\overrightarrow{v} + \overrightarrow{w}) = \overrightarrow{u} \times \overrightarrow{v} + \overrightarrow{u} \times \overrightarrow{w}$$
 e $(\overrightarrow{u} + \overrightarrow{v}) \times \overrightarrow{w} = \overrightarrow{u} \times \overrightarrow{w} + \overrightarrow{v} \times \overrightarrow{w}$

(d) Para quaisquer vetores \vec{u} , \vec{v} e \vec{w}

$$\overrightarrow{u} \times (\overrightarrow{v} \times \overrightarrow{w}) = (\overrightarrow{u} \cdot \overrightarrow{w})\overrightarrow{v} - (\overrightarrow{u} \cdot \overrightarrow{v})\overrightarrow{w}$$
$$(\overrightarrow{u} \times \overrightarrow{v}) \times \overrightarrow{w} = (\overrightarrow{u} \cdot \overrightarrow{w})\overrightarrow{v} - (\overrightarrow{v} \cdot \overrightarrow{w})\overrightarrow{u}$$

Para memorizar:

$$\vec{u} \times (\vec{v} \times \vec{w}) = (\square)\vec{v} - (\square)\vec{w}$$
$$(\vec{u} \times \vec{v}) \times \vec{w} = (\square)\vec{v} - (\square)\vec{u}$$

Termos pra fora do parentêses são os que estavam dentro antes se o vetor que multiplica fora do parentêses estiver à esquerda o primeiro termo é o da esquerda do parentêses, se estiver à direita o primeiro termo é o da direita

Calculando o produto vetorial:

Seja: $\vec{u} = (a_u, b_u, c_u) e \vec{v} = (a_v, b_v, c_v)$ e $\vec{c} = (j, i, k)$ o vetor resultante de $\vec{u} \times \vec{v}$

Temos que:

$$\vec{u} \times \vec{v} = \begin{vmatrix} i & j & k \\ a_u & b_u & c_u \\ a_v & b_v & c_v \end{vmatrix} = \begin{vmatrix} b_u & c_u \\ b_v & c_v \end{vmatrix} i - \begin{vmatrix} a_u & c_u \\ a_v & c_v \end{vmatrix} j + \begin{vmatrix} a_u & b_u \\ a_v & b_v \end{vmatrix} k$$

Cuidado com o sinal

Produto Misto

O produto misto dos vetores \vec{u} , \vec{v} e \vec{w} , <u>nessa ordem</u>, é $\vec{u} \times \vec{v} \cdot \vec{w}$, indicado por $[\vec{u}, \vec{v}, \vec{w}]$ $[\vec{u}, \vec{v}, \vec{w}] = \vec{u} \times \vec{v} \cdot \vec{w}$

Proposição:

(a) Em relação a uma base ortonormal positiva $B=(\vec{\iota},\vec{\jmath},\vec{k})$, sejam, $\vec{u}=(a_u,b_u,c_u)$ $\vec{v}=(a_v,b_v,c_v)$ e $\vec{v}=(a_w,b_w,c_w)$

$$[\vec{u} \times \vec{v}] = \begin{vmatrix} i & j & k \\ a_u & b_u & c_u \\ a_v & b_v & c_v \end{vmatrix}$$

$$\begin{bmatrix} \overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w} \end{bmatrix} = \begin{vmatrix} a_u & b_u & c_u \\ a_v & b_v & c_v \\ a_w & b_w & c_w \end{vmatrix} = \overrightarrow{u} \times \overrightarrow{v} \cdot \overrightarrow{w} = \overrightarrow{u} \wedge \overrightarrow{v} \cdot \overrightarrow{w}$$

- (b) Uma tripla $(\vec{u}, \vec{v}, \vec{w})$ é **LD**, se somente se, $[\vec{u}, \vec{v}, \vec{w}] = \mathbf{0}$ e **LI**, se somente se, $[\vec{u}, \vec{v}, \vec{w}] \neq \mathbf{0}$
- (c) Seja $F = (\vec{u}, \vec{v}, \vec{w})$, se $[\vec{u}, \vec{v}, \vec{w}] = 0$ então F não é uma base.

Propriedades:

(a) O produto misto é *trilinear*, isto é, qualquer que sejam os vetores \vec{u} , \vec{u}_1 , \vec{u}_2 , \vec{v} , \vec{v}_1 , \vec{v}_2 , \vec{w} , \vec{w}_1 e \vec{w}_2 , e qualquer que sejam os números reais, α e β

$$\begin{split} [\alpha \vec{u}_1 + \beta \vec{\overline{u}}_2, \vec{v}, \vec{w}] &= \alpha [\vec{u}_1, \vec{v}, \vec{w}] + \beta [\vec{u}_2, \vec{v}, \vec{w}] \\ [\vec{u}, \alpha \vec{v}_1 + \beta \vec{v}_2, \vec{w}] &= \alpha [\vec{u}, \vec{v}_1, \vec{w}] + \beta [\vec{u}, \vec{v}_2, \vec{w}] \\ [\vec{u}, \vec{v}, \alpha \vec{w}_1 + \beta \vec{w}_2] &= \alpha [\vec{u}, \vec{v}, \vec{w}_1] + \beta [\vec{u}, \vec{v}, \vec{w}_2] \end{split}$$

(b) O produto misto é *alternado*, isto é, permutar dois vetores altera o sinal

$$[\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}] = -[\overrightarrow{v}, \overrightarrow{u}, \overrightarrow{w}] = [\overrightarrow{v}, \overrightarrow{w}, \overrightarrow{u}] \dots$$

- (c) $[\vec{u}, \vec{v}, \vec{w}]$ não se altera se somarmos a um dos vetores uma combinação linear dos outros dois, por exemplo: $[\vec{u}, \vec{v}, \vec{w}] = [\vec{u}, \vec{v} + \alpha \vec{u} + \beta \vec{w}, \vec{w}]$
- (d) Quaisquer que sejam \vec{u} , \vec{v} e \vec{w} , vale a igualdade: $|\vec{u} \times \vec{v} \cdot \vec{w}| = |\vec{u} \cdot \vec{v} \times \vec{w}|$

Sistema de Coordenadas

Na matéria de Geometria Analítica é estudado a Geometria Euclidiana, são conjuntos de pontos E^2 ou E^3 , duas ou três dimensões, (retas, planos, curvas, superfícies, triângulos, etc) com auxílio de álgebra elementar e álgebra vetorial.

O Sistema de Coordenadas serve para descrever o espaço E^2 ou E^3 por meio de números. Sejam O um ponto e $E=(\vec{e}_1,\vec{e}_2,\vec{e}_3)$. O par ordenado $\Sigma=(\mathbf{0},\mathbf{E})$ é chamado **sistema de coodenadas (em** \mathbf{E}^3), de origem O e base E.

Se i, j e k forem três vetores ortonormais, ou seja, ortogonais dois a dois e de norma 1, então o sistema de coordenadas $\Sigma = (O, B)$ onde B = (i, j, k) é chamado de **sistema cartesiano de coordenadas**. Daqui em diante as letras i, j e k sempre denotarão vetores ortonormais.

Um sistema de coordenadas cujos vetores não são ortogonais é dito **sistema de coordenadas oblíquo**.

Figura 2.1: Sistema de Coordenadas Ortonormais

Figura 2.2: Sistema de Coordenadas Oblíquo

Operações Vetoriais em Coordenadas

Proposição:

Se $u = (a_1, a_2, a_3)_E$, $v = (b_1, b_2, b_3)_E$ e $P = (p_1, p_2, p_3)_E$

- 1. $u + v = (a_1 + b_1, a_2 + b_2, a_3 + b_3)_E$
- 2. $\lambda u = (\lambda a_1, \lambda a_2, \lambda a_3)_E$
- 3. $P + u = (a_1 + p_1, a_2 + p_2, a_3 + p_3)_E$

Coordenadas entre pontos:

Dados os pontos
$$P=(p_1,p_2,p_3)$$
 e $X=(x_1,x_2,x_3)$ $\overrightarrow{PX}=X-P=(x_1-p_1,x_2-p_2,x_3-p_3)$

Ponto Médio

Dados os pontos $P = (p_1, p_2, p_3)$ e $X = (x_1, x_2, x_3)$

No vetor \overrightarrow{PX} o ponto Médio M é dado por

$$M = \left(\frac{(x_1 + p_1)}{2}; \frac{(x_2 + p_2)}{2}; \frac{(x_3 + p_3)}{2}\right)$$

Equações da Reta

Um dos postulados da geometria Euclidiana nos diz que, dados dois pontos no espaço existe uma única reta contendo estes pontos. Isso nos leva ao seguinte problema: dados dois pontos A e B, determinar a equação da reta r que passa por estes dois pontos.

Considerando A um ponto inicial A=(a,b,c) e v um vetor diretor, vemos que um ponto X=(x,y,z) só pertence a reta se:

$$r: X = A + vt$$

Equação vetorial de reta

$$r: X = A + vt$$

$$\begin{vmatrix} x \\ y \\ z \end{vmatrix} = \begin{vmatrix} a \\ b \\ c \end{vmatrix} + \begin{vmatrix} v_1 \\ v_2 \\ v_3 \end{vmatrix} t$$

Equação paramétrica da reta

$$r: \begin{cases} x = a + v_1 t \\ y = b + v_2 t \\ z = c + v_3 t \end{cases}$$

Equação da reta na forma simétrica

$$\frac{x-a}{v_1} = \frac{y-b}{v_2} = \frac{z-c}{v_3}$$

Interseção de Retas

Comecemos com o estudo da posição relativa de duas retas no plano. Lembremos primeiro que duas retas em um mesmo plano podem ser:

- coincidentes, i.e., são a mesma reta;
- paralelas;
- concorrentes, ou seja, se interceptam em um único ponto.

Então, dada as equações das retas:

$$r: X = A + vt$$

 $s: X_2 = A_2 + v_2 t$

- Se $v\ e\ v_2$ forem //, ou seja, multiplos um do outro e o ponto A_2 estiver contido em r, então as retas são coincidentes
- Se $v\ e\ v_2$ forem //, ou seja, multiplos um do outro e o ponto A_2 **não** estiver contido em r, então as retas são paralelas
- Se $v e v_2$ não forem // ou seja, não forem paralelos, as retas são concorrentes.

Se duas retas não estiverem contidas no mesmo plano elas são chamadas reversas.

Equações do Plano

Passemos agora a um novo problema: determinar uma equação (ou conjunto de equações) que representem um dado plano no espaço euclidiano.

Se \vec{u} e \vec{v} são LI e paralelos a um plano π , o par (\vec{u}, \vec{v}) é chamado de **par de vetores diretores** de π .

Para que o vetor \overrightarrow{AP} seja então complanar aos vetores \overrightarrow{u} e \overrightarrow{v} ele precisa ser representado como uma combinação dos dois.

Equação vetorial do plano

$$\overrightarrow{AP} = \lambda \overrightarrow{u} + \mu \overrightarrow{v}$$

Como $\overrightarrow{AP} = P - A$, podemos reescrever a equação da seguinte maneira:

$$P = A + \lambda \vec{u} + \mu \vec{v}$$

Equação paramétrica do plano

$$\begin{cases} x = x_0 + \lambda u_x + \mu v_x \\ y = y_0 + \lambda u_y + \mu v_y \\ z = z_0 + \lambda u_z + \mu v_z \end{cases}$$

Equação geral ou cartesiana do plano

$$P \in \pi \leftrightarrow \begin{vmatrix} x - x_0 & y - y_0 & z - z_0 \\ u_x & u_y & u_z \\ v_x & v_y & v_z \end{vmatrix} = 0$$

$$Portanto \ temos \ que: \begin{vmatrix} x - x_0 & y - y_0 & z - z_0 \\ u_x & u_y & u_z \\ v_x & v_y & v_z \end{vmatrix} = \begin{vmatrix} u_y & u_z \\ v_y & v_z \end{vmatrix} (x - x_0) - \begin{vmatrix} u_x & u_z \\ v_x & v_z \end{vmatrix} (y - y_0) + \begin{vmatrix} u_x & u_y \\ v_x & v_y \end{vmatrix} (z - z_0)$$

$$\begin{aligned} & |v_x - v_y| & (2 - 20) \\ & \text{Utilizando:} & \left| \begin{matrix} u_y & u_z \\ v_y & v_z \end{matrix} \right| = a, - \left| \begin{matrix} u_x & u_z \\ v_x & v_z \end{matrix} \right| = b, \left| \begin{matrix} u_x & u_y \\ v_x & v_y \end{matrix} \right| = c \end{aligned}$$

$$Temos: -ax_0 - by_0 - cz_0 = d$$

E finalmente podemos obter a equação:

$$ax + by + cz + d = 0$$

Proposições:

- (a) π contém ou é paralelo a um dos eixos coordenados se e somente se o coeficiente correspondente a esse eixo é nulo.
- (b) π é paralelo a um dos planos coordenados se e somente se os coeficientes das duas váriaveis correspondentes a esse plano forem nulos.

Posição entre Retas e Planos

Passemos agora para o estudo da posição de uma reta e um plano. Dado um plano p e uma reta r temos três possibilidades:

- ullet a intersecção de r e π é vazia. Nesse caso a reta r é dita paralela a π .
- ullet a intersecção de π e r é um único ponto. Nesse caso dizemos que a reta r é transversal a π
- a intersecção de π e r tem pelo menos dois pontos. Nesse caso temos que todos os pontos da reta r pertencem ao plano π e dizemos que a reta r está contida em π .

Vetor normal a um plano

Seja π um plano de equação ax + by + cz + d = 0, o vetor $\vec{n} = (a, b, c)$ é ortogonal a π , ou seja, \vec{n} é o vetor normal de π .

Vetor transversal a um plano

Dada a equação r: X = A + vt

Se $v \cdot n \neq 0$ o vetor de equação r é transversal ao plano π

Vetor contido a um plano

Dada a equação r: X = A + vt

Se $v \cdot n = 0$ e A estiver contido em π o vetor de equação r está contido no plano π

Vetor paralelo a um plano

Dada a equação r: X = A + vt

Se $v \cdot n = 0$ e A **não** estiver contido em π o vetor de equação r é paralelo ao plano π

Posição entre planos

Sejam π_1 e π_2 dois planos de equações $a_1x+b_1y+c_1=d_1$ e $a_2x+b_2y+c_2z=d_2$ respectivamente. então:

- Os planos são paralelos se $(a_1, b_1, c_1) = \lambda(a_2, b_2, c_2)$
 - \circ Se (a_1,b_1,c_1,d_1) for proporcional a (a_2,b_2,c_2,d_2) então são planos coincidentes
 - \circ Se (a_1,b_1,c_1,d_1) **não** for proporcional a (a_2,b_2,c_2,d_2) então são planos paralelos distintos
- Os planos são transversais se (a_1,b_1,c_1) não for proporcional a (a_2,b_2,c_2)

Ângulo entre dois planos:

$$\cos(\theta) = \frac{|n_1 \cdot n_2|}{\|n_1\| \|n_2\|}$$

Distância

Tuesday, December 1, 2015 9:39 PM

Distância entre ponto e reta

$$h = d(P, r) = \frac{\|\overrightarrow{AP} \times \overrightarrow{AB}\|}{\|\overrightarrow{AB}\|}$$

Distância entre ponto e plano

$$d(P,\pi) = \|Proj_n \overrightarrow{AP}\| = \frac{\|\overrightarrow{AP} \cdot n\|}{\|n\|}$$

Distância entre duas retas

Dadas as retas: r : A + ut es : B + vt

Escolhemos um ponto P na reta r e um ponto Q na reta s. Projetamos o vetor \overrightarrow{PQ} sobre o vetor $n=u \times \overline{Q}$ \boldsymbol{v} que é ortogonal as retas r
 e s. Assim obtendo a equação

$$d(r,s) = \frac{\left|\overrightarrow{PQ} \cdot n\right|}{\|n\|}$$

$$d(r,s) = \frac{\left| \overrightarrow{PQ} \cdot n \right|}{\|n\|}$$
$$d(r,s) = \frac{\left| \overrightarrow{PQ} \cdot n \right|}{\|u \times v\|}$$