VILNIAUS UNIVERSITETAS MATEMATIKOS IR INFORMATIKOS FAKULTETAS INFORMATIKOS INSTITUTAS PROGRAMŲ SISTEMŲ KATEDRA

Kursinis darbas

Medžiagų maišymo modeliavimas cheminėse reakcijose

(Modelling the mixing of reagents in chemical reactions)

Atliko: 4 kurso 3 grupės studentas

Arnas Vaicekauskas (parašas)

Darbo vadovas:

Asist. Dr. Rokas Astrauskas (parašas)

Turinys

Sąvokų apibrėžimai	2
Įvadas	3
1. YAG reakcijos matematinis modeliavimas	
1.1. YAG sintezė	4
1.2. Kietafazė reakcija	4
2. Matematinis modelis	5
2.1. Bedimensis modelis	5
2.2. Elementų maišymasis dviejose dimensijose	5
3. Skaitinis modelis	7
3.1. Erdvės diskretizavimas Dekarto koordinačių sistemoje	8
3.2. Dviejų dimensijų skaitinis modelis Dekarto koordinačių sistemoje	9
3.3. Modelio skaitinis stabilumas	10
4. Programos sudarymas ir rezultatai	13
4.1. Rezultatų korektiškumo tikrinimas	13
4.2. Palyginimas su eksperimentiniais duomenimis	13
5. Maišymo modeliavimas	14
5.1. Maišymo proceso modelis	14
5.2. Maišymo procesu papildytos programos rezultatų analizė	14
Rezultatai ir išvados	
Literatūra	16

Sąvokų apibrėžimai

• Stoichiometrinis mišinys - tai toks mišinys, kuriame medžiagų proporcijos yra tokios, kokių reikia, kad jos reakcijos metu visiškai sureaguotų

Įvadas

Šio **darbo tikslas** yra ištirti YAG reakcijos maišymo modelį. Iškelti darbo uždaviniai:

- 1. Atlikti literatūros analizę difuzijos modelių, YAG sintezės modelių ir baigtinių skirtumų metodų temomis
- 2. Sukurti kompiuterinę programą, kuri įgyvendina YAG reakcijos modelį
- 3. Patikrinti programos rezultatų korektiškumą ir palyginti juos su eksperimentiniais rezultatais
- 4. Papildyti kompiuterinę programą su maišymo proceso modeliu
- 5. Ištirti programos rezultatus

1. YAG reakcijos matematinis modeliavimas

1.1. YAG sintezė

YAG milteliai gali būti sintezuojami keleta skirtingų būdų: Zolis-Gelis procesu, nusodinimu, solvoterminiu procesu, terminio purškimo procesu bei kietafaze reakcija, kuri lieka viena dažniausiai taikomų dėl savo paprastumo bei galimybės pritaikyti masinei gamybai [ZLH+05].

1.2. Kietafazė reakcija

Šiame darbe yra modeliuojama paskutinė kietafazės reakcijos stadija, kurios metu reaguodami itrio ir aliuminio oksidai sudaro itrio aliuminio granato kristalus arba tiesiog YAG:

$$3 Y_2O_3 + 5 Al_2O_3 \longrightarrow 2 Y_3Al_5O_{12}$$

Prieš pradedant reakciją metalų oksidai yra sutrinami iki smulkiagrūdžių miltelių. Metalų oksidų mišinys yra nuolat kaitinamas 1600° C laipsnių temperatūroje ir periodiškai maišomas. Eksperimentiniu būdu išmatuota,kad individualių dalelių turiai prie 1600° C temperatūros siekia apie $\sqrt{10}\mu\text{m}^3$ [IKL09].

1 pav. Priartinto metalų oksidų mišinio iliustracija []

Modeliavimo

Tokioje temperatūroje metalų oksidai lydosi ir vyksta difuzija, dėl šios priežasties cheminei reakcija yra modeliuojama su difuzijos-reakcijos sistema.

2. Matematinis modelis

2.1. Bedimensis modelis

$$\frac{\partial c_1}{\partial t} = -3c_1c_2 + D\Delta c_1 \tag{1a}$$

$$\frac{\partial c_2}{\partial t} = -5c_1c_2 + D\Delta c_2 \tag{1b}$$

$$\frac{\partial c_3}{\partial t} = 2c_1c_2 \tag{1c}$$

kur c_1,c_2,c_3 yra bedimensė medžiagų koncentracija, Δ - Laplaso operatorius, t - laikas, D - bedimensis medžiagų c_1 ir c_2 difuzijos koeficientas. Modeliui yra taikoma kraštinė sąlygą:

$$\nabla c_k(\mathbf{x}, t) \cdot \vec{n} = 0, \mathbf{x} \in \partial \Omega \tag{2}$$

Čia ∇c_k yra medžiagos c_k gradientas, \mathbf{x} - erdvės koordinatė, $\partial\Omega$ - simuliuojamos erdvės srities paviršius, o \vec{n} - simuliuojamos erdvės paviršiaus normalė.

2.2. Elementų maišymasis dviejose dimensijose

Interpretavus bedimensį modelį (1) dviejose dimensijose gauname lygtis

$$\frac{\partial c_1}{\partial t} = -3c_1c_2 + D\left(\frac{\partial^2 c_1}{\partial x^2} + \frac{\partial^2 c_1}{\partial y^2}\right)$$
 (3a)

$$\frac{\partial c_2}{\partial t} = -5c_1c_2 + D\left(\frac{\partial^2 c_2}{\partial x^2} + \frac{\partial^2 c_2}{\partial y^2}\right) \tag{3b}$$

$$\frac{\partial c_3}{\partial t} = 2c_1c_2 \tag{3c}$$

Šiam modeliui yra taikomos stoichiometrinės pradinės sąlygos:

$$c_1(x,y,0) = \begin{cases} 3c_0, & \text{jei } x \in A \\ 0, & \text{kitaip} \end{cases}$$

$$c_2(x,y,0) = \begin{cases} 5c_0, & \text{jei } x \notin A \\ 0, & \text{kitaip} \end{cases}$$

$$c_3(x,y,0) = 0,$$

$$(x,y) \in \Omega, \quad \Omega = [0,W] \times [0,H], \quad A = \left[0,\frac{W}{2}\right] \times \left[0,\frac{H}{2}\right] \cup \left[\frac{W}{2},W\right] \times \left[\frac{H}{2},H\right].$$

$$(4)$$

Čia c_0 yra kažkoks teigiamas dydis, kuris nusako pradinę kiekvienos medžiagos koncentraciją sistemoje.

2 pav. Sistemos pradinės sąlygos

kraštinės sąlygos (2) dviejose dimensijose virsta:

$$\frac{\partial c_1}{\partial x}\Big|_{x=0} = \frac{\partial c_1}{\partial x}\Big|_{x=L} = \frac{\partial c_2}{\partial x}\Big|_{x=0} = \frac{\partial c_2}{\partial x}\Big|_{x=L} = 0, \quad y \in [0, H], \quad t \in [0, T]$$

$$\frac{\partial c_1}{\partial y}\Big|_{y=0} = \frac{\partial c_1}{\partial y}\Big|_{y=L} = \frac{\partial c_2}{\partial y}\Big|_{y=0} = \frac{\partial c_2}{\partial y}\Big|_{y=L} = 0, \quad x \in [0, W], \quad t \in [0, T]$$
(5)

kur L - bedimensis kubo kraštinės ilgis, T - bedimensė proceso trukmė.

3. Skaitinis modelis

3.1. Erdvės diskretizavimas Dekarto koordinačių sistemoje

Dviejų dimensijų skaitiniam modeliui erdvė buvo padalinta į $N\times M$ taškų nutolusių vienas nuo kito fiksuotais Δx ir Δy atstumais.

3 pav. diskretizuota erdvė

Čia

3.2. Dviejų dimensijų skaitinis modelis Dekarto koordinačių sistemoje

Remiantis išreikštiniu baigtinių skirtumų metodu iš dvimačio modelio galima gauti skaitinį modelį.

$$\frac{c_{1,i,j}^{n+1} - c_{1,i,j}^n}{\Delta t} = -3c_{1,i,j}^n c_{2,i,j}^n + D\left(\frac{c_{1,i-1,j}^n - 2c_{1,i,j}^n + c_{1,i+1,j}^n}{(\Delta x)^2} + \frac{c_{1,i,j-1}^n - 2c_{1,i,j}^n + c_{1,i,j+1}^n}{(\Delta y)^2}\right)$$
(6a)

$$\frac{c_{2,i,j}^{n+1} - c_{2,i,j}^n}{\Delta t} = -5c_{1,i,j}^n c_{2,i,j}^n$$

$$+D\left(\frac{c_{2,i-1,j}^n - 2c_{2,i,j}^n + c_{2,i+1,j}^n}{(\Delta x)^2} + \frac{c_{2,i,j-1}^n - 2c_{2,i,j}^n + c_{2,i,j+1}^n}{(\Delta y)^2}\right)$$
(6b)

$$\frac{c_{3,i,j}^{n+1} - c_{3,i,j}^n}{\Delta t} = 2c_{1,i,j}^n c_{2,i,j}^n, \tag{6c}$$

kur $n \in [0,T)$ - laiko momentas, $i \in [0,N)$ - diskrečios erdvės taško koordinatė x ašyje, $j \in [0,M)$ - diskrečios erdvės taško koordinatė y ašyje, $c^n_{1,i,j}$ - pirmos medžiagos kiekis diskrečios erdvės taške i,j laiko momentu $n,c^n_{2,i,j}$ - antros medžiagos kiekis diskrečios erdvės taške i,j laiko momentu $n,c^n_{3,i,j}$ - trečios medžiagos kiekis diskrečios erdvės taške i,j laiko momentu $n,\Delta t$ - laiko žingsnis, Δx - diskrečios erdvės žingsnis x ašimi, x - diskrečios erdvės žingsnis x ašimi.

3.3. Modelio skaitinis stabilumas

Norint užtikrinti skaitinį programos stabilumą, reikia užtikrinti, kad visais laiko momentais, visuose diskretizuotos erdvės taškuose, visų medžiagų koncentracijos išliktų ne neigiamos. Šiai sąlygai išpildyti, užtenka pasirinkti pakankamai mažą laiko žingsnį Δt . Pirmiausia įvedame porą konstantų:

$$\mu_x = \frac{D\Delta t}{(\Delta x)^2}, \quad \mu_y = \frac{D\Delta t}{(\Delta y)^2}$$

Tada pertvarkome dviejų dimensijų skaitinį modelį (6) taip, kad kairėse lygčių pusėse liktų medžiagų koncentracija laiko momentu n+1, o dešinėse lygčių pusėse sugrupuojame narius pagal medžiagų koncentraciją skirtinguose diskretizuotos erdvės taškuose:

$$c_{1,i,j}^{n+1} = \underbrace{\left(1 - 3\Delta t c_{2,i,j}^n - 2(\mu_x + \mu_y)\right)}_{R_1} c_{1,i,j}^n + \mu_x c_{1,i-1,j}^n + \mu_x c_{1,i+1,j}^n + \mu_y c_{1,i,j-1}^n + \mu_y c_{1,i,j+1}^n$$
 (7a)

$$c_{2,i,j}^{n+1} = \underbrace{\left(1 - 5\Delta t c_{1,i,j}^n - 2(\mu_x + \mu_y)\right)}_{R_2} c_{2,i,j}^n + \mu_x c_{2,i-1,j}^n + \mu_x c_{2,i+1,j}^n + \mu_y c_{2,i,j-1}^n + \mu_y c_{2,i,j+1}^n$$
 (7b)

$$c_{3,i,j}^{n+1} = c_{3,i,j}^n + 2\Delta t c_{1,i,j}^n c_{2,i,j}^n$$
(7c)

Baziniu atveju, kai n=0, medžiagų koncentracija visuose taškuose yra ne neigiama, kaip numatyta pradinėje sąlygoje (4). Darome indukcijos hipotezės prielaidą, kad medžiagų koncentracija visuose diskretizuotos erdvės taškuose, laiko momentu n bus ne neigiama:

$$c_{k,i,j}^n \ge 0, \quad k = 1,2,3, \quad i = 0,1,\dots,N-1, \quad j = 0,1,\dots,M-1$$
 (8)

Akivaizdu, kad lygtyje (7c), medžiagos koncentracija $c_{3,i,j}^{n+1}$ bus ne neigiama:

$$\Delta t > 0 \wedge c_{k,i,j}^n \geqslant 0 \implies c_{3,i,j}^{n+1} = c_{3,i,j}^n + 2\Delta t c_{1,i,j}^n c_{2,i,j}^n \geqslant 0$$

Pirmos medžiagos lygtyje (7a), galima pastebėti, kad dėmenys su medžiagų koncentracijomis iš aplinkinių diskretizuotos erdvės taškų visada bus ne neigiami dėl prielaidos (8) ir fakto, kad $\mu_x>0$ ir $\mu_y>0$:

$$\mu_x c_{1,i-1,j}^n + \mu_x c_{1,i+1,j}^n + \mu_y c_{1,i,j-1}^n + \mu_y c_{1,i,j+1}^n \geqslant 0$$

Taigi, $c_{1,i,j}^{n+1}$ ženklą lemia tik koeficientas R_1 , todėl įvedame ribojimą, kad $R_1\geqslant 0$. Analogiškai,

iš antros medžiagos lygties (7b) gauname, kad $R_2\geqslant 0$ ir turime nelygybių sistemą:

$$\begin{cases} 1 - 3\Delta t c_{2,i,j}^n - 2(\mu_x + \mu_y) \geqslant 0 \\ 1 - 5\Delta t c_{1,i,j}^n - 2(\mu_x + \mu_y) \geqslant 0 \end{cases}, \quad i = 0, 1, \dots, N - 1, \quad j = 0, 1, \dots, M - 1$$
 (9)

Išreiškę nelygybes (9) per laiko žingsnį Δt gauname:

$$\begin{cases}
\Delta t \leqslant (3c_{2,i,j}^n + 2D((\Delta x)^{-2} + (\Delta y)^{-2}))^{-1} \\
\Delta t \leqslant (5c_{1,i,j}^n + 2D((\Delta x)^{-2} + (\Delta y)^{-2}))^{-1}
\end{cases}$$
(10)

Gautas nelygybės galima apjungti dėl jų panašios struktūros. Norint, kad apjungta nelygybė tenkintų sistemą (10), reikia išrinkti mažiausią įmanomą laiko žingsnį Δt , o taip bus tada, kai trupmenos vardiklis bus kuo įmanoma didesnis. Dėl to gauta nelygybė įgaus formą:

$$\Delta t \leqslant \left(\max(3c_{2,i,j}^n, 5c_{1,i,j}^n) + 2D\left((\Delta x)^{-2} + (\Delta y)^{-2} \right) \right)^{-1} \tag{11}$$

Taigi, parodėme, kad su pakankamai mažu laiko žingsniu Δt išvengiame neigiamų sprendinio reikšmių. Tačiau čia sustoti būtų nenaudinga, nes turime rekursyvią priklausomybę – norint pasirinkti Δt , reikia žinoti maksimalią medžiagų reikšmę simuliacijoje, o jai sužinoti reikia atlikti simuliaciją su pasirinktu laiko žingsniu Δt .

Parodysime, kad galima panaikinti laiko žingsnio priklausomybę nuo laiko momento n ir kad Δt priklauso tik nuo pradinių sąlygų $c_{1,i,j}^0$ ir $c_{2,i,j}^0$. Medžiagos kiekio pokytis per laiką sistemoje gali būti apskaičiuoti taip:

$$\frac{\partial q_k}{\partial t} = \int_{\Omega} \frac{\partial c_k}{\partial t} dA \tag{12}$$

Istatome bedimensio modelio lygtis (1a), (1b):

$$\frac{\partial q_1}{\partial t} = -3 \int_{\Omega} c_1 c_2 dA + \int_{\Omega} \Delta c_1 dA = -3 \int_{\Omega} c_1 c_2 dA + \int_{\Omega} \nabla \cdot (\nabla c_1) dA \tag{13}$$

$$\frac{\partial q_2}{\partial t} = -5 \int_{\Omega} c_1 c_2 dA + \int_{\Omega} \Delta c_2 dA = -5 \int_{\Omega} c_1 c_2 dA + \int_{\Omega} \nabla \cdot (\nabla c_2) dA$$
 (14)

Pagal Gauso divergencijos teoremą ir kraštinę sąlygą (2) gauname, kad:

$$\int_{\Omega} \nabla \cdot (\nabla c_k) dA = \int_{\partial \Omega} \nabla c_k \cdot \vec{n} \, ds = 0, \quad k = 1,2$$
(15)

Todėl pirmos ir antros medžiagų kiekio pokytis per laiką bus ne teigiamas:

$$\frac{\partial q_1}{\partial t} = -3 \int_{\Omega} c_1 c_2 \, dA \leqslant 0 \tag{16}$$

$$\frac{\partial q_2}{\partial t} = -5 \int_{\Omega} c_1 c_2 \, dA \leqslant 0 \tag{17}$$

Tai reiškia, kad maksimalios pirmos ir antros medžiagų reikšmės bus laiko momente n=0, tad nelygybę galime suprastinti iki šios formos:

$$\Delta t \leqslant \left(\max(3c_{2,i,j}^0, 5c_{1,i,j}^0) + 2D\left((\Delta x)^{-2} + (\Delta y)^{-2} \right) \right)^{-1}$$
(18)

Laiko žingsnis čia vis dar priklauso nuo diskretizuotos erdvės koordinatės (i, j), tačiau tai nesunku pastebėti, kad užtenka parinkti didžiausią reikšmę iš kiekvienos pradinės sąlygos – tokiu būdu laiko žingsnis gausis mažiausias. Iš pradinės sąlygos (4) turime:

$$\max c_{1,i,j}^0 = 3c_0, \quad i = 0,1,\dots,N-1, \quad j = 0,1,\dots,M-1$$

$$\max c_{2,i,j}^0 = 5c_0, \quad i = 0,1,\dots,N-1, \quad j = 0,1,\dots,M-1$$

Taigi, kad simuliacija išliktų skaitiškai stabili, reikia, kad laiko žingsnis Δt tenkintų šią nelygybę.

$$\Delta t \le (15c_0 + 2D((\Delta x)^{-2} + (\Delta y)^{-2}))^{-1}$$

- 4. Programos sudarymas ir rezultatai
- 4.1. Rezultatų korektiškumo tikrinimas
- 4.2. Palyginimas su eksperimentiniais duomenimis

- 5. Maišymo modeliavimas
- 5.1. Maišymo proceso modelis
- 5.2. Maišymo procesu papildytos programos rezultatų analizė

Rezultatai ir išvados

Literatūra

- [IKL09] Feliksas Ivanauskas, Aivaras Kareiva, and Bogdan Lapcun. Computational modelling of the YAG synthesis. *Journal of Mathematical Chemistry*, 46(2):427–442, 2009-08-01. ISSN: 1572-8897. DOI: 10.1007/s10910-008-9468-2. URL: https://doi.org/10.1007/s10910-008-9468-2 (visited on 2024-10-20).
- [ZLH+05] Xudong Zhang, Hong Liu, Wen He, Jiyang Wang, Xia Li ir Robert I. Boughton. Novel Synthesis of YAG by Solvothermal Method. *Journal of Crystal Growth*. Proceedings of the 14th International Conference on Crystal Growth and the 12th International Conference on Vapor Growth and Epitaxy, 275(1):e1913–e1917, 2005-02. ISSN: 0022-0248. DOI: 10.1016/j.jcrysgro.2004.11.274. (Tikrinta 2024-11-03).