Determining Porosity

1) Density Method

- ullet measure mass M and volume V of sample
- calculate density $\rho = M/V$

compare ρ with known density of solid grains ρ_s

$$M = \rho_s V_s = \rho_s (1 - \phi) V$$

equate M and solve for ϕ

$$\phi = \frac{\rho_s - \rho}{\rho_s}$$

Typical Porosities

Sedimentary

- 1. clastic rocks (sandstone, shale, etc.) $\phi \approx 0.5$ random packing of uniform spheres $\phi = 0.4$
- 2. evaporites (salt deposits) $\phi \approx 10^{-3}$

Igneous

- 1. intrusive rocks (like granite) $\phi \approx 10^{-3}$
- 2. extrusive rocks $\phi > 10^{-3}$
- 3. ash deposits $\phi \approx 0.5$

Clastic Rocks

In clastic (sedimentary) rocks the initial porosity depends on

- 1. grain size surface friction
- 2. shape more irregular shapes have higher porosity
- 3. distribution uniform size have higher porosity

Evolution of Porosity

- 1. consolidation slip and rotation of grains
- 2. compaction (plastic) deformation of grains
- 3. dissolution and precipitation