ទិញ្ញាសានី (<u>១</u>)

អស្ចាអន្តនប់ GCW ដើម្បីគាំតែជំនួចនៅមានបង្ហា ៣០៦៥-៣០៦៩

បង្រៀនដោយ **ស៊ី សំអុខ** នឹស្សិតថ្នាក់វិស្វករសាលាតិចណ្ដ

បង្រៀនក្បួនដោះស្រាយកាត់ ដោយធ្វើឲ្យបានរហ័ស ដើម្បីទទួលបានពិន្ទុល្អ និងអាហារូបករណ៍

- ${f 0}$. កន្សោម ${f D}_{f n}=1+2+2^2+2^3+\cdots+2^n$ ស្នើនឹង

- (ក) $\mathbf{D_n} = 2^n 1$ (ខ) $\mathbf{D_n} = 2^{n+1} 1$ (ក) $\mathbf{D_n} = 2^n + 1$ (ប្រ) $\mathbf{D_n} = 2^{n+1} + 1$ (ឯ) $\mathbf{D_n} = 2^{n+1}$
- $m{f U}$. គេឲ្យវ៉ិចទ័របី ec a=(1,1,1) , ec b=(1,-2,-1) , ec c=(-1,-2,1) ។ ចូរកំណត់រក ${f E}=\left(ec a imesec b
 ight)\cdotec c$
 - $(\tilde{\mathbf{n}}) \mathbf{E} = -6$
- (2) E = 8
- $(\mathfrak{P}) \; \mathbf{E} = -8$
- $(\mathfrak{W}) \mathbf{E} = 6$
- (ង) ចម្លើយផ្សេង

- $egin{align*} \mathbf{M}. \ & \ \mathbf$

- $(\mathfrak{W}) \frac{3}{2}$
- (ង) ចម្លើយផ្សេង
- $m{\epsilon}$. គេយក E ជាសំណុំចម្លើយទាំងអស់របស់សមីការឌីផេរ៉ង់ស្យែល y''+4y'+13y=0 ។ ក្នុងចំណោមអនុគមន៍ខាងក្រោមនេះ តើមួយណាជា ធាតុរបស់ *E* ?
 - (ñ) $y = e^{2t} (\cos 3t + 4 \sin 3t)$
- (a) $y = e^{-2t} (\cos 3t + 4\sin 3t)$ (b) $y = e^{-3t} (\cos 3t + 4\sin 3t)$
- (2) $y = e^{-2t} \cos 4t$
- $(\mathfrak{W}) y = e^{2t} \cos 4t$
- **៤**. ដេរីវេនៃអនុគមន៍ $f(x) = \ln\left(x + \sqrt{1 + x^2}
 ight)$ គឺ
 - (f) $\frac{x}{\sqrt{1-x^2}}$ (8) $\frac{1}{\sqrt{1+x^2}}$ (7) $\frac{x}{\sqrt{1+x^2}}$
- (11) $\frac{x^2}{\sqrt{1+x^2}}$
- (ង) ចម្លើយផ្សេង

- **៦.** កន្សោម $\mathbf{E}=\left(\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}i\right)^{2013}$ ស្នើនឹង (ក) $\mathbf{E}=-\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}i$ (គ) $\mathbf{E}=\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}i$
- (ង) ចម្លើយផ្សេង

- (8) $\mathbf{E} = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$
- (11) $\mathbf{E} = -\frac{\sqrt{2}}{2} \frac{\sqrt{2}}{2}i$
- **៧.** ចូរគណនា $\lim_{x \to \frac{\pi}{6}} \frac{2\sin^2 x + \sin x 1}{2\sin^2 x 3\sin x + 1}$ ។ (2) 3
- (គ) 1
- (5) -3
- (ង) ចម្លើយផ្សេង

មានខ្មើនជម្រៀនដូរសម្រាច់សិស្សថ្នាក់និ១២ ថ្មី

ទិញ្ញាសានី (<mark>២</mark>

ងឃ្វាងខ្លួន QCM ង្រៀនតែនាំ១តំរមាយមួយបាន ៣០៦៤-៣០៦៩

បង្រេន្តែដោយ **ស៊ី សំអុខ** និស្សិតថ្នាក់វិស្វករសាលាតិចណ្

បង្រៀនក្បួនដោះស្រាយកាត់ ដោយធ្វើឲ្យបានរហ័ស ដើម្បីទទួលបានពិន្ទុល្អ និងអាហារូបករណ៍

- ${f 9}$. ដោយដឹងថា ${f 2}$ និង ${f 3}+i$ ជាឬសនៃសមីការ $az^3+bz^2+cz+d=0$ ដែល $a,b,c,d\in{\Bbb R}$ នោះឬសមួយទៀតនៃសមីការនេះគឺ
 - (\tilde{n}) -2
- (2) -3 + i
- $(\mathfrak{P}) 3 i$
- (ឃ) 3 i
- (ង) ចម្លើយផ្សេង

- **ប**. គណនាលីមីត $\lim_{x\to 0} \frac{x^2 + 2\sin x + e^x 1}{x^9 + x + 1 \cos x}$
 - (\tilde{n}) 0

- (គ) 2
- (ឃ) 3
- (ង) ចម្លើយផ្សេង
- ${f M}$. គណនាតម្លៃនៃកន្សោម ${1\over lpha}+{1\over eta}$ ដោយដឹងថា ${lpha}$ និង ${eta}$ ជាឬសនៃសមីការ $3x^2-14x+17=0$
 - $(\tilde{n}) 14$
- (2) 7
- (ฅ) −2
- (ឃ) 2
- (ង) 7
- $m{\epsilon}$. យក x ជាមេគុណនៃឯកធា a^3bd^7 និង y ជាចំនួននៃឯកធាទាំងអស់នៅក្នុងពហុធាដឺក្រេទី១១ $(a+b+c+d)^{11}$ ។ គេបាន
 - (n) (x = 1333, y = 365)
- (គ) (x = 1365, y = 366)
- (ង) (x = 1320, y = 364)

- (2) (x = 1234, y = 363)
- $(\mathbf{w}) (x = 1236, y = 367)$
- \mathbf{k} . សំណុំនៃប្ញសទាំងអស់របស់វិសមីការ $\ln x \leq \frac{3 \ln x 2}{\ln x}$ គឺ
 - (ñ) $(-\infty,1) \cup \left[e,e^2\right]$
- (គ) $(0,1)\cup\left(e,e^2
 ight)$

(ង) ចម្លើយផ្សេង

- (2) $(0,1) \cup [e,e^2]$
- (\mathfrak{W}) $\left[e,e^2\right]$
- **៦.** ចូរគណនា $\lim_{x\to 0} \frac{e^{1-\cos^2 x} \cos x}{\sin^2 x}$ ។ (ខ) $\frac{3}{2}$

- (취) $-\frac{2}{3}$
- $(\mathfrak{W}) \frac{3}{2}$
- (ង) ចម្លើយផ្សេង
- \emptyset . យក $f(x)=e^{-3x}\left(9\sin 9x-3\cos 9x
 ight)$ ជាអនុគមន៍ និង f'(x) ជាដេរីវេនៃ f(x) ។ គេបាន
 - (fi) $f'(x) = 90e^{-3x} \cos 8x$
- $(\vec{p}) f'(x) = 90e^{-3x} \cos 9x$
- (ង) ចម្លើយផ្សេង

- (2) $f'(x) = 90e^{3x} \cos 9x$
- $f'(x) = 90e^{-3x}\cos 8x$

ទិញ្ញាសានី (n

អស្ចាអន្តនប់ GCW ដើម្បីគាំតែជំនួចនៅមានបង្ហា ៣០៦៥-៣០៦៩

បង្រៀវនដោយ **ស៊ី សំអុខ** និស្សិតថ្នាក់វិស្វករសាលាតិចណូ

បង្រៀនក្បួនដោះស្រាយកាត់ ដោយធ្វើឲ្យបានរហ័ស ដើម្បីទទួលបានពិន្ទុល្អ និងអាហារូបករណ៍

- ${f l}$. រកមេគុណនៃ x^2 ក្នុងការពន្លាតកន្សោម $\left(x^3+rac{1}{x^2}
 ight)^{ imes}$ គឺ
 - (\tilde{n}) 0

- (គ) 124
- (ឃ) 126
- (ង) ចម្លើយផ្សេង

- f U. គណនាតម្លៃនៃកន្សោម $8\sin^4 heta+4\cos{(2 heta)}-\cos{(4 heta)}$, $~ heta\in\mathbb{R}$
 - $(\tilde{n})-1$
- (8)

- (គ) 1
- (ឃ) 2
- (ង) 3

- **M.** គេដឹងថា $\frac{2x+1}{(x+2)(x+1)^2}=\frac{a}{x+2}+\frac{b}{x+1}+\frac{c}{(x+1)^2}$ ។ នោះគេបាន (ក) a=3,b=-3,c=-1
 - (8) a = -3, b = 3, c = -1 (11) a = -3, b = -1, c = 3
- (ង) ចម្លើយផ្សេង
- $oldsymbol{\rlap/c}$. ក្រឡាផ្ទៃនៃដែនប្លង់ដែលខ័ណ្ឌដោយខ្សែកោងតាង $y=x^2$ និង y=4 ស្មើនឹង
 - $(\tilde{n}) \frac{32}{2}$
- (2) $\frac{31}{2}$
- $(\tilde{n}) \frac{37}{3}$
- $(\mathfrak{W}) \frac{35}{2}$
- (ង) ចម្លើយផ្សេង

- វែ. ចូររកតម្លៃនៃ $\lim_{x\to\infty}\left(\frac{x^2+1}{x^2-2}\right)$ ។ (E) e^{-3}
- (គ) e³
- (ឃ) e^2
- (ង) ចម្លើយផ្សេង

- **៦.** យក $f(x) = \int_0^{x^2} \frac{\sin t}{t} dt$ ។ ចូរគណនាដេរីវេ f'(x) នៃ f(x) ។
 - $(\tilde{n}) f'(x) = \frac{\sin(x^2)}{x^2}$
- $(\mathfrak{P}) f'(x) = \frac{2\sin\left(x^2\right)}{x}$
- (ង) ចម្លើយផ្សេង

- $(2) f'(x) = \frac{\sin(x)}{x}$
- $(\mathfrak{W}) f'(x) = \frac{2\sin(x)}{x}$
- $rak{d}$. ចូរគណនាអាំងតេក្រាល $\mathbf{I}=\int_0^2 \sqrt{4-x^2}dx$ ។
 - (fi) $\mathbf{I} = 4\pi$
- (2) $I = 3\pi$
- (គ) $\mathbf{I}=2\pi$
- $(\mathfrak{W}) \mathbf{I} = \pi$
- (ង) ចម្លើយផ្សេង

ទានមើតមម្រៀនដូរសម្រាច់សិស្សថ្នាក់នី១២ ថ្មី

ទិញ្ញាសានី 🔞

នខេប្បាន និម្សា QCM ម្រៀនតែនាំ១នាំទនាំទនាំទនាំ គល់ខេម្ម គល់ខេម្ម អាយុ

ចង្រៀនដោយ **ស៊ី សំអុខ** នឹស្សិតថ្នាក់វិស្វករសាលាតិចណ្ដ

បង្រៀនក្បួនដោះស្រាយកាត់ ដោយធ្វើឲ្យបានរហ័ស ដើម្បីទទួលបានពិន្ទុល្អ និងអាហារូបករណ៍

- $\mathbf{9}$. ចូររកតម្លៃអប្សរមានៃ $y = x^4 + x^2 + 2 + \frac{4}{x^4 + x^2 + 2}$ ។
 - (ñ) 2

(2)3

- (គ) 5
- (ឃ) 6
- (ង) 4

- f U. សំណុំនៃប្តូសទាំងអស់របស់សមីការ $(x-7)\,(x-5)\,(x+4)\,(x+6)=608$ គឺ
 - (ñ) $\mathbf{S} = \left\{ \left(1 \pm \sqrt{19} \right) / 2, \left(1 \pm \sqrt{234} \right) / 2 \right\}$
- (គ) $\mathbf{S} = \left\{ \left(1 \pm \sqrt{17} \right) / 2, \left(1 \pm \sqrt{233} \right) / 2 \right\}$

(8) $\mathbf{S} = \left\{ 1 \pm \sqrt{17}, 1 \pm \sqrt{233} \right\}$

- (\mathbf{W}) $\mathbf{S} = \left\{1 \pm \sqrt{19}, 1 \pm \sqrt{234}\right\}$
- (ង) ចម្លើយផ្សេង
- \mathbf{M} . បើ $x_0>0, x_n=rac{2014}{2015}x_{n-1}+rac{1}{x_{n-1}^{2014}}, n=1,2,3,\ldots$ នោះ លីមីតនៃស៊្វីត x_n ស្មើនឹង
 - (n) $\sqrt[2014]{2014}$
- (2) $\sqrt[2014]{2015}$
- (គ) $\sqrt[2015]{2015}$
- (5) $\sqrt[2015]{2014}$
- (ង) ចម្លើយផ្សេង

- $oldsymbol{\delta}$. យក $\mathbf{S_n}=rac{81}{10^n}\left(8+88+\cdots+88\dots 88
 ight)$ និង $\mathbf{S}=\lim_{x o +\infty}\mathbf{S_n}$ ។ គេបាន
 - (ຄື) $\mathbf{S} = 72$
- (2) S = 80
- (គ) $\mathbf{S} = 81$
- (ឃ) **S** = 90
- <mark>(ង</mark>) ចម្លើយផ្សេង
- $m{\epsilon}$. នៅក្នុងសំណុំនៃចំនួនគត់ធំជាង 1 ចូររកចំនួននៃឬសទាំងអស់របស់សមីការ a+b+c+d=16 ។
 - (ñ) 152
- (2)165
- (គ) 173
- (ឃ) 184
- (ង) ចម្លើយផ្សេង

- **៦.** តម្លៃនៃកន្សោម $\sqrt[3]{6+\sqrt[3]{6+\sqrt[3]{6+\sqrt[3]{6+\dots}}}}$ ស្មើនឹង
 - (ñ) 3

 $(2)^{2}$

- (គ) 1
- (ឃ) -2
- (ង) ចម្លើយផ្សេង
- \emptyset . យក $f(x)=rac{x+\sqrt{3}}{1-x\sqrt{3}}$ និង $f_n(x)=f\left(\ldots f\left(f\left(x
 ight)\right)\ldots
 ight)$ ដែល f មានចំនួន n ដង។ គេបាន
 - (fi) $f_{2015}(x) = x$

- (a) $f_{2015}(x) = \frac{x \sqrt{3}}{x\sqrt{3} \pm 1}$
- (11) $f_{2015}(x) = \frac{x + \sqrt{3}}{1 + \sqrt{3}x}$

(8) $f_{2015}(x) = \frac{x + \sqrt{3}}{1 - x\sqrt{3}}$

(ង) ចម្លើយផ្សេង

ទិញ្ញាសានី (<mark>៥</mark>)

ងឃ្វាងខ្លួន QCM ង្រៀនតែនាំ១តំរមាយមួនថា pooq-poeg

បង្រៀវនដោយ **ស៊ី សំអុខ** និស្សិតថ្នាក់វិស្វករសាលាតិចណូ

បង្រេំន្រក្បួនដោះស្រាយកាត់ ដោយធ្វើឲ្យបានរហ័ស ដើម្បីទទួលបានពិន្ទល្អ និងអាហារូបករណ៍

- $\mathbf{9}$. បើ $f(x) = 5^x$ នោះគេបានដេរីវេនៃ f គឺ f'(x) ស្តើនឹង
 - (\tilde{n}) 5^x
- (2) $x5^{x}$
- (គ) $5^x \ln 5$
- (\mathfrak{W}) $5e^x$
- (ង) ចម្លើយផ្សេង
- f U. តាង $0 \le lpha$, $eta \le rac{\pi}{4}$ ។ បើ $\cos{(lpha + eta)} = rac{4}{5}$ និង $\sin{(lpha eta)} = rac{5}{13}$ ចូរគណនាតម្លៃនៃ $\tan{(2lpha)}$ ។
 - (n)

- (8) $\frac{56}{33}$
- (취) $\frac{33}{56}$
- $(\mathfrak{W}) \frac{33}{56}$
- $(3) \frac{56}{33}$

- \mathbf{M} . រកឬសមួយនៃសមីការ $3x^4 + 4x^3 x^2 5x + 2 = 0$
 - (n) -1
- (2) $\frac{1}{2}$ (3) $\frac{2}{3}$
- $(\mathfrak{W})^{\frac{3}{4}}$
- $(a) \frac{4}{5}$
- $u_1>0, u_{n+1}=\sqrt{u_n+u_{n-1}+\cdots+u_2+u_1}, n=1,2,3,\ldots$ ។ នោះលីមីតនៃស៊ីត $\frac{u_n}{n}$ ស្មើនឹង
 - (\tilde{n}) 4

- $\frac{1}{2}$ (S)
- $(\mathfrak{W})\frac{1}{4}$
- (ង) ចម្លើយផ្សេង

- f(x) ជាអនុគមន៍ពិតផ្ទៀងផ្ទាត់ $f(x)+f\left(rac{x-1}{x}
 ight)=1+x$ ។ ចូរកំណត់រក f(x) ។
 - (f) $f(x) = \frac{x^3 + x^2 1}{2x(x+1)}$ (f) $f(x) = \frac{x^3 x^2 1}{2x(x-1)}$
- (a) $f(x) = \frac{x^3 + x^2 + 1}{x(x+1)}$

- (2) $f(x) = \frac{x^3 x^2 1}{2x(x+1)}$
- (UI) $f(x) = \frac{x^3 + x^2 + 1}{2x(x+1)}$
- **៦.** តម្លៃនៃកន្សោម $\sin\left(\frac{\pi}{722}\right)\sin\left(\frac{2\pi}{722}\right)\ldots\sin\left(\frac{360\pi}{722}\right)$ ស្មើនឹង (ក) $\frac{17}{2^{361}}$ (ខ) $\frac{17\sqrt{3}}{2^{361}}$ (គ) $\frac{19\sqrt{3}}{2^{360}}$

- $(\mathfrak{W}) \frac{19}{2^{360}}$
- (ង) ចម្លើយផ្សេង
- **៧.** យក $\mathbf{S} = \lim_{n \to +\infty} \left(\frac{n}{n^4 + n^2 + 1} + \frac{4n}{n^4 + 4n^2 + 16} + \dots + \frac{n^3}{n^4 + n^4 + n^4} \right)$ ។ គេបាន (ក) $12\mathbf{S} = \pi\sqrt{3} 3\ln 3$ (ត) $12\mathbf{S} = \pi\sqrt{3} + 3\ln 3$ (ង) ប
- (ង) ចម្លើយផ្សេង

- (8) $12S = \pi\sqrt{3} 3\ln 2$
- (ພັ) 12 $\mathbf{S} = \pi\sqrt{3} + 3\ln 2$

មានខ្មើនជម្រៀនដូរសម្រាច់សិស្សថ្នាក់និ១២ ថ្មី