
 $\times\!\!\times\!\!\times\!\!\times$

Some practice problems for exam 1

1. Solve the following systems by row reducing the augmented matrix. If there is a unique solution, state what it is. If there is no solution, explain why. If there are infinite solutions, express your solution in parametric vector form.

(a)

$$x + y + z = 3$$
$$y + 2z = -5$$
$$x + 2y + 4z = -4.$$

(b)

$$x_1 - 3x_2 + 2x_3 - 5x_4 = 3$$

$$2x_1 - 6x_2 + x_3 - 7x_4 = 2$$

$$x_1 - 3x_2 - 4x_3 + x_4 = -5.$$

- 2. For the following UNRELATED statements, determine if the statement is true or false. If it is TRUE, simply state TRUE. If it is FALSE, **provide an explicit counterexample** i.e. an explicit example that shows the statement is false.
 - (a) Suppose A is a 3×4 matrix that is the standard matrix of a linear transformation. Then the transformation is always onto.
 - (b) Suppose A is a 3×4 matrix that is the standard matrix of a linear transformation. Then the transformation is never one-to-one.
 - (c) Let $S = {\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3}$ be vectors in \mathbb{R}^n . If $n \geq 3$, then the set of vectors must be linearly independent.
 - (d) Let A be $m \times n$. If m > n, then the set of ROW vectors (each row represents 1 vector) must be linearly dependent.
 - (e) If A is the matrix representation of a linear transformation and we know the columns of A form a linearly independent set, then the transformation is always onto.
- 3. Determine if (0, 10, 8) lies in

$$Span(\{(-1,2,3),(1,3,1),(1,8,5)\}).$$

If it does lie in the span, find an explicit linear combination.

Is the set $Span(\{(-1,2,3),(1,3,1),(1,8,5)\})$ linearly independent? What about the set $(\{(-1,2,3),(1,3,1),(1,8,5)\})$?

- 4. Suppose \mathbf{v} is a linear combination of $\mathbf{v}_1, \mathbf{v}_2, ... \mathbf{v}_m$. If we add another vector \mathbf{v}_{m+1} , will \mathbf{v} sometimes, always, or never be in $\mathrm{Span}(\{\mathbf{v}_1, \mathbf{v}_2, ... \mathbf{v}_m, \mathbf{v}_{m+1}\})$?
- 5. Matlab assignment 2, problems #1 and #4.
- 6. Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be a transformation where $T(x_1, x_2, x_3) = (x_1 x_3, x_2)$. Show T is NOT a linear transformation.
- 7. Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be a transformation where $T(x_1, x_2, x_3) = (x_1 + x_3, x_2)$. Find the standard matrix representation of the transformation.
- 8. Suppose you have 5 vectors in \mathbb{R}^7 , and none are the zero vector, and every vector is different. You create a matrix where each column is one of those vectors. Treating this matrix as the standard matrix of a linear transformation, is the transformation sometimes, always, or never one-to-one?
- 9. Let

$$A = \begin{bmatrix} -1 & 0 \\ -1 & 1 \\ 6 & -3 \\ 0 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} -1 & 3 & 0 \\ 0 & 4 & -1 \end{bmatrix}, \quad C = \begin{bmatrix} 0 & 1 & 1 \\ 3 & 0 & -1 \\ 0 & 4 & 4 \end{bmatrix}.$$

Compute the following, if it exists. If it does not, just write DNE.

- (a) CC^T
- (b) $(B+A)^2$
- (c) AB
- (d) CB^T
- (e) A^TC
- 10. If the matrix of a linear transformation is given by

$$\begin{bmatrix} 1 & -1 & 4 \\ -2 & 0 & 2 \\ -3 & 4 & -8 \end{bmatrix}.$$

3

Is the transformation one-to-one/injective? Onto/surjective? Justify.