

Amendments to the Specification:

Please replace the paragraph beginning at page 5, line 15 with the following replacement paragraph:

--A change in the length of piezoelectric actuator 2 is achieved by applying a current to piezoelectric actuator 2 in a first time interval Δt_1 . First time interval Δt_1 is the charge process of piezoelectric actuator 2. In this interval, piezoelectric actuator 2 is charged to a maximum voltage U_{\max} . The discharge process of the piezoelectric actuator occurs in another time interval Δt_2 (see Figure 2). In a third time interval Δt_3 , lying between these two intervals, piezoelectric actuator 2 acts like a sensor in which any changes in length/force result in changes in voltage. The time characteristic of the voltage during interval Δt_3 now depends on what voltage is applied to piezoelectric actuator 2 immediately following the charge process, that is, at the end of interval Δt_1 . In extensive series of measurements it was determined that the voltage decreases continuously until it asymptotically approaches a voltage, immediately prior to the discharge process, designated in Figure 3 [[2]] as U_{Regel} .--.