FMC III - Trabalho 4

Alexandre Ribeiro, José Ivo e Marina Medeiros

Setembro 2025

1. Mostre que uma partição de um conjunto é pelo menos tão fina quanto outra sse a relação de equivalência associada com a primeira é uma sub-relação da relação de equivalência associada com a última.

Demonstração. Seja A um conjunto e sejam $\{P_i\}_{i\in I}$ e $\{Q_j\}_{j\in J}$ duas partições de A. Sejam R_P e R_Q as relações de equivalência associadas a $\{P_i\}_{i\in I}$ e $\{Q_j\}_{j\in J}$, respectivamente.

Queremos mostrar que:

$$\{P_i\}_{i\in I}$$
 é pelo menos tão fina quanto $\{Q_j\}_{j\in J} \iff R_P\subseteq R_Q$.

 (\Rightarrow) Suponha que $\{P_i\}_{i\in I}$ seja pelo menos tão fina quanto $\{Q_j\}_{j\in J}$. Isso significa que $\forall i\in I, \exists j\in J; P_i\subseteq Q_j$. Com isso, teremos que:

$$\exists i \in I; a, b \in P_i \Leftrightarrow (a, b) \in R_P \qquad \text{(Def. relação de eq. associada a partição)} \\ \Rightarrow (a, b) \in R_P \land a, b \in Q_j \qquad \qquad (P_i \subseteq Q_j) \\ \Leftrightarrow (a, b) \in R_P \land (a, b) \in R_Q \qquad \text{(Def. relação de eq. associada a partição)} \\ \Rightarrow R_P \subseteq R_Q \qquad \qquad \text{(Def. } \subseteq \text{)}$$

 (\Leftarrow) Suponha que $R_P \subseteq R_Q$.

$$(a,b) \in R_P \Rightarrow \exists i \in I, a,b \in P_i$$
 (Def. relação de eq. associada a partição)
 $\Rightarrow \exists i \in I, a,b \in P_i \land (a,b) \in R_Q$ (Def. \subseteq)
 $\Rightarrow \exists i \in I, a,b \in P_i \land \exists j \in J, a,b \in Q_j$ (Def. rel. de eq. associada a partição)
 $\Rightarrow \forall i \in I, \exists j \in J; P_i \subseteq Q_j$ (Def. \subseteq)

Concluímos que:

 $\{P_i\}_{i\in I}$ é pelo menos tão fina quanto $\{Q_j\}_{j\in J} \iff R_P\subseteq R_Q$.

2. A intersecção dos fechos transitivos de duas relações é sempre igual ao fecho transitivo da sua intersecção? Se for verdadeiro, prove, se for falso, de um exemplo onde não vale.

Demonstração. Falso. Tome como contra-exemplo as relações:

$$R = \{(1, 2), (2, 3)\}$$

$$S = \{(1, 3)\}$$
 Em um conjunto $A = 1, 2, 3$
$$t(R) \cap t(S) :$$

$$t(R) \cap t(S) =$$

$$t(\{(1,2),(2,3)\}) \cap t(\{(1,3)\}) = (\text{Def. de R e S})$$

$$\{(1,2),(2,3),(1,3)\} \cap \{(1,3)\} = (\text{Def. Fecho Transitivo})$$

$$\{(1,3)\}$$

 $T(R \cap S)$:

$$t(R\cap S) =$$

$$t(\{(1,2),(2,3)\}\cap\{(1,3)\}) = (\text{Def. de R e S})$$

$$t(\emptyset) = (\text{Def. }\cap)$$

$$\emptyset \text{ (Def. Fecho transitivo)}$$

Logo, a intersecção dos fechos transitivos de duas relações não é sempre igual ao fecho transitivo de sua intersecção. \Box

3. Prove que se R é uma relação binária sobre A, então tsr(R) é a menor relação de equivalência que contém R.

Demonstração. Seja R uma relação. Vamos demonstrar que tsr(R) contém R.

$$tsr(R) \iff t(s(r(R))) \tag{1}$$

$$\iff t((s(R \cup R^0))) \tag{Corolário: } r(R) = R \cup R^0)$$

$$\iff t((R \cup R^0) \cup (R \cup R^0)^{-1}) \tag{Corolário: } s(R) = R \cup R^{-1})$$

$$\iff t(R \cup R^0 \cup R^{-1} \cup (R^0)^{-1}$$

$$\iff t(R \cup R^0 \cup R^{-1} \cup R^0) \tag{(R^0)^{-1} = R^{-1} \cup S^{-1})}$$

$$\iff t(R \cup R^0 \cup R^{-1} \cup R^0) \tag{(R^0)^{-1} = R^0)}$$

$$\iff t(R \cup R^0 \cup R^{-1}) \tag{Idempotência}$$

$$= \bigcup_{n=1}^{\infty} (R \cup R^{-1} \cup R^0)^n \tag{Definição de fecho transitivo}$$

Assim. Sabemos que R $\subset R$ pois todo conjunto contém a si mesmo.

$$R \subset R \implies R \subset R \cup R^{-1} \cup R^{0}$$
 (Idempotência)
 $\implies R \subset (R \cup R^{-1} \cup R^{0})^{1}$ (2)
 $\implies R \subset tsr(R)$ (3)

Dessa forma, temos que tsr(R) contém R.

Além disso, pela própria definição de fecho, sabemos que tsr(R) é uma relação de equivalência, visto que aplica as propriedades de reflexividade, simetria e transitividade.

Agora, demonstraremos que $\operatorname{tsr}(R)$ é a menor relação de equivalência que contém R.

Suponha uma relação de equivalência S qualquer tal que $R \subset S$

$$R \subset S \implies r(R) \subset S$$
 (S já é reflexiva)
 $\implies sr(R) \subset S$ (S já é simétrica)
 $\implies tsr(R) \subset S$ (S já é transitiva)

Concluindo, tsr(R) sempre estará contida em uma relação de equivalência que contém R, ou seja, é a menor possível.