Álgebra Linear e Geometria Analítica

— Atividade de Recuperação da Aprendizagem — Abril/2019

1 Matrizes: conceitos fundamentais

- 1. De forma geral, o que é uma matriz?
- 2. Indique se a sentença é verdadeira (V) ou falsa (F):
 - (a) ___ Em geral, as matrizes são identificadas por letras minúsculas
 - (b) ___ As matrizes só podem ser delimitadas por parênteses ou colchetes
 - (c) ___ A representação "A = [-3]" indica uma matriz chamada A que contém um único elemento, -3.
 - (d) ___ Os números que formam a matriz são chamados de elementos.
 - (e) ___ A seguinte matriz é uma matriz coluna: $C = \begin{bmatrix} 3 & 4 & 5 \end{bmatrix}$
- 3. O que é a *ordem* (ou *tipo*) de uma matriz? Como a *ordem* é representada?
- 4. Qual a ordem da matriz $A = \begin{pmatrix} a & b & c \\ d & e & f \end{pmatrix}$? E o tipo da matriz $B = \begin{pmatrix} 1 & -3 & 0 & 7 & 2 \\ 2 & -2 & 4 & 5 & \sqrt{3} \\ 3 & -1 & 6 & 3 & 9 \end{pmatrix}$?
- 5. O que é uma matriz quadrada de ordem n?
- 6. Em uma matriz quadrada A de ordem n, podemos afirmar que sua diagonal principal é formada pelos elementos $a_{11}, a_{22}, a_{33}, \dots, a_{nn}$? Por quê?
- 7. Indique se a sentença é verdadeira (V) ou falsa (F):
 - (a) ___ Matrizes que não são quadradas, não têm diagonal principal
 - (b) ___ Matrizes que não são quadradas, não têm diagonal secundária
 - (c) ____ Toda matriz tem uma, e somente uma, diagonal principal
 - (d) ___ Toda matriz tem uma, e somente uma, diagonal secundária
 - (e) ____ Matriz quadrada de ordem n não têm diagonal secundária

- (f) ____ Os elementos formados pelos números "1" na matriz $E = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$, representam sua diagonal principal
- (g) ___ Os elementos formados pelos números "1" na matriz $F = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$, representam sua diagonal principal
- (h) ___ Uma matriz com ordem $1 \times n$ é uma matriz linha
- (i) ____ Uma matriz com ordem $m \times 1$ é uma matriz coluna
- (j) ___ Uma matriz com ordem 7×5 tem 75 elementos
- (k) ___ Em uma matriz quadrada de ordem n, os elementos tais que i+j=n+1 formam a diagonal secundária
- 8. A representação da seguinte matriz está correta? Por quê?

$$A = \begin{vmatrix} -1 & 7 & 2 \\ 0 & 5 & -5 \end{vmatrix}_{3 \times 2}$$

- 9. O que significa dizer que uma determinada matriz tem 2 elementos nulos?
- 10. Uma matriz A pode ser representada pela notação $A = (a_{ij})_{m \times n}$ onde a_{ij} ou $[A]_{ij}$ é o elemento na linha i e coluna j dessa matriz. Em relação a essa forma de notação, marque a resposta correta:
 - \bigcirc Se uma matriz B tem ordem 3×2 , o elemento b_{42} estará localizado em alguma das diagonais da matriz (principal ou secundária)
 - \bigcirc Uma matriz C com ordem 4×2 não pode ter um elemento na posição c_{31}
 - O Não existe como indicar todos os elementos da j-ésima coluna de uma matriz
 - \bigcirc A i-ésima linha de uma matriz A qualquer, com ordem $m \times n$, corresponde aos elementos $a_{i1}, a_{i2}, a_{i3}, \cdots, a_{in}$
 - \bigcirc A j-ésima linha de uma matriz A qualquer, com ordem $m \times n$, corresponde aos elementos $a_{1j}, a_{2j}, a_{3j}, \cdots, a_{mj}$
- 11. Chama-se *traço* de uma matriz quadrada a soma dos elementos da diagonal principal. Determine o traço de cada uma das matrizes:

$$A = \begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix}$$

$$B = \begin{pmatrix} 2 & 0 & 1\\ \sqrt{2} & 3 & -5\\ -1 & 0 & -1 \end{pmatrix}$$

2 Matrizes: construção a partir de regras

12. Sabendo-se que uma matriz qualquer A de ordem $m \times n$ tem a forma genérica

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn} \end{pmatrix},$$

construa a matriz
$$B = (b_{ij})_{5 \times 4}$$
, onde $b_{ij} = \begin{cases} i \times j & \text{se } i < j \\ j \div i & \text{se } i > j \\ i + j & \text{se } i = j \end{cases}$

13. Escreva a matriz $C = (c_{ij})_{4\times 1}$, onde $c_{ij} = i^2 + j$.

14. Escreva a matriz
$$A = (a_{ij})_{2\times 3}$$
, onde: $a_{ij} = \begin{cases} 2i+j & \text{se } i \geq j \\ i-j & \text{se } i < j \end{cases}$

3 Matrizes especiais

15. Já vimos e estudamos 12 (doze) tipos de matrizes especiais, ou seja, aquelas matrizes que apresentam alguma particularidade que as diferenciam de outras matrizes genéricas. Liste todas as matrizes especiais:

1.	

16.	o. O que é uma <i>matriz nula</i> ? Que letra geralmente é utilizada para representar tal matriz		
17.	A matriz nula $O=(0)$ é uma matriz quadrada, uma matriz linha ou uma matriz coluna?		
18.	O que é uma matriz diagonal?		
19.	O que é uma matriz triangular?		
20.	Indique se a sentença é verdadeira (V) ou falsa (F):		
	(a) Em situações especiais, como na multiplicação de matrizes, uma matriz nula pode conter um elemento com o valor 1		
	(b) Uma matriz retangular de ordem $m \times n$ com $m \neq n$ não pode ser nula		
	(c) Uma matriz diagonal é uma matriz retangular de ordem $m \times n$ com $m \neq n$, na qual todos os elementos que não estão na diagonal principal são nulos		
	(d) Uma matriz diagonal pode ter a diagonal principal com todos os elementos nulos		
	(e) Uma matriz triangular de ordem n é aquela onde todos os elementos que estão acima da diagonal principal, E MAIS todos os elementos que estão abaixo da diagonal principal, são nulos.		
	(f) Para que uma matriz seja considerada triangular, todos os elementos que estão acima OU abaixo da diagonal principal (não simultaneamente) devem ser nulos.		
	(g) Uma matriz diagonal nunca poderá ser uma matriz nula		
21.	O que é uma <i>matriz identidade</i> ? Que letra geralmente é utilizada para representar tal matriz?		
22.	O que é uma matriz transposta? Como é representada?		
23.	Indique se a sentença é verdadeira (V) ou falsa (F):		
	(a) Uma matriz nula <i>O</i> de ordem 1 pode ser uma matriz identidade		
	(b) Uma matriz identidade não precisa ser quadrada		
	(c) A diagonal secundária de uma matriz identidade tem todos os seus elementos nulos		

	(d) A diagonal principal de uma matriz identidade tem todos os seus elementos unitários
	(e) Existe uma matriz identidade de ordem 1, ou seja, $I_1 = [1]$
	(f) Para que uma matriz A seja transposta em A^t , é necessário que ela seja quadrada
	(g) Dada uma matriz identidade I qualquer, sua transposta I^t não é mais uma matriz identidade
	(h) A transposta de uma matriz nula O de ordem $m \times n$ com $m \neq n$, também será uma matriz nula O^t com a mesma ordem
	(i) A matriz transposta B^t de uma matriz B só terá a mesma ordem da matriz B se a matriz B for quadrada
	$(j) \underline{\qquad} (A^t)^t = A$
24.	O que é uma <i>matriz oposta</i> ? Como é representada?
25.	O que é uma <i>matriz simétrica</i> ?
26.	Uma matriz de ordem $m \times n$ com $m \neq n$ pode ser simétrica? Por quê?
27.	O que é uma matriz anti-simétrica?
28.	Marque a(s) alternativa(s) que corresponde(m) à seguinte matriz:
	$B = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$
	○ Matriz Nula
	○ Matriz Coluna
	Matriz Diagonal
	Matriz Triangular
29.	Marque a(s) alternativa(s) que corresponde(m) à seguinte matriz:
	$D = (7)$ $\bigcirc Matriz Identidada$
	Matriz IdentidadeMatriz Quadrada
	Matriz Quadrada Matriz Linha
	Matriz Coluna
	() Madiz Colulia

30. Marque a(s) alternativa(s) que corresponde(m) à seguinte matriz:

$$E = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

- Matriz Diagonal
- Matriz Simétrica
- Matriz Triangular
- Matriz Identidade
- 31. Marque a(s) alternativa(s) que corresponde(m) à seguinte matriz:

$$F = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

- Matriz Identidade
- Matriz Triangular
- Matriz Diagonal
- Matriz Simétrica
- () Matriz Nula
- 32. Marque a(s) alternativa(s) que corresponde(m) à seguinte matriz:

$$G = \begin{pmatrix} 0 & -2 & 0 \\ 2 & 0 & 3 \\ 0 & -3 & 0 \end{pmatrix}$$

- Matriz Identidade
- O Matriz Triangular
- O Matriz Diagonal
- Matriz Anti-Simétrica
- O Nenhuma das respostas acima
- 33. Indique se a sentença é verdadeira (V) ou falsa (F):
 - (a) ___ Existe uma matriz nula, quadrada, linha, coluna, diagonal, simétrica e antisimétrica
 - (b) ____ Existe uma matriz nula, diagonal e triangular
 - (c) ___ Toda matriz anti-simétrica tem sua diagonal principal composta por elementos nulos (zeros)
 - (d) ___ Se A = -1B, então B é a oposta de A
 - (e) ___ Se $A = A^t$, então elas não são simétricas
 - (f) ____ Se $B = -(B^t)$, então elas são anti-simétricas
 - (g) $A \neq (A^t)^t$

4 Operações com matrizes

- 34. Quais as 2 condições necessárias para afirmarmos que uma matriz A é igual a uma matriz B?
- 35. É possível somar ou diminuir matrizes de ordens diferentes? Por quê?
- 36. Se $A=(a_{ij})_{m\times n}$ e $B=(b_{ij})_{m\times n}$ são matrizes da mesma ordem, então é verdade que $C=(c_{ij})_{m\times n}$ tal que $c_{ij}=a_{ij}+b_{ij}$?
- 37. Se $C=(c_{ij})_{m\times n}$ e $D=(d_{ij})_{m\times n}$ são matrizes da mesma ordem, então é verdade que $E=(e_{ij})_{m\times n}$ tal que $e_{ij}=c_{ij}-d_{ij}$?
- 38. Indique se a sentença é verdadeira (V) ou falsa (F):
 - (a) ___ A adição de matrizes é comutativa: A + B = B + A
 - (b) ____ A adição de matrizes não é associativa: $A + (B + C) \neq (A + B) + C$
 - (c) ____ N\tilde{a}\tilde{o}\text{ existe um elemento nulo tal que: } A + O = A
 - (d) Somar uma matriz com sua oposta resulta em uma matriz nula: A + (-A) = O
 - (e) ____ Transposição da soma é diferente da soma das transposições: $(A+B)^t \neq A^t + B^t$
 - (f) Subtrair é somar com a oposta: A B = A + (-B)
- 39. Como é feita a multiplicação de um valor escalar por uma matriz, por exemplo: seja α um número real qualquer, e B uma matriz qualquer de ordem $m \times n$, como é feita a multiplicação $\alpha \times B$?
- 40. Se A e B são matrizes de mesma ordem e α e β são escalares, assinale a(s) propriedades(s) correta(s):
 - \bigcirc Distributiva: $A(\alpha + \beta) = A\alpha\beta$
 - \bigcirc Distributiva: $A(\alpha + \beta) = A\alpha + A\beta$
 - \bigcirc Distributiva: $\alpha(A+B) = \alpha A + \alpha B$
 - \bigcirc Distributiva: $\alpha(A+B)=\alpha AB$
 - \bigcirc Associativa: $\alpha(\beta A) = \alpha A + \beta$
 - \bigcirc Associativa: $\alpha(\beta A) = (\alpha \beta)A$

	Sejam A e B matrizes quadradas de mesma ordem. Para realizar a multiplicação entre elas, basta que cada elemento a_{ij} seja multiplicado pelo elemento correspondente b_{ij} ?
42.	As matrizes $A=(a_{ij})_{5\times 3}$ e $B=(b_{ij})_{5\times 3}$ podem ser multiplicadas? Por quê?
43.	Assinale a(s) alternativa(s) correta(s):
	\bigcirc A multiplicação de matrizes é comutativa: $AB=BA$
	\bigcirc Multiplicar as matrizes $A=(a_{ij})_{50\times 33}$ e $B=(b_{ij})_{33\times 1}$ resultará na matriz $C=(c_{ij})_{50\times 1}$
	 Para realizar a multiplicação de duas matrizes, o número de linhas em ambas as matrizes deverá ser o mesmo
	\bigcirc A multiplicação de matrizes é associativa: $A(BC)=(AB)C$
	\bigcirc A multiplicação de matrizes não é distributiva: $A(B+C) \neq AB + AC$
	\bigcirc A multiplicação de uma matriz A por uma matriz Identidade apropriada, resulta na mesma matriz A: $AI=A$
	\bigcirc A transposição de um produto de duas matrizes é igual ao produto das transposições: $(AB)^t = A^tB^t$
4.	Data a matriz $A = \begin{pmatrix} 1 & 2 \\ -1 & -4 \end{pmatrix}$, determine:
	a. A transposta de A
	b. A oposta de A
	Dadas as matrizes $A=(a_{ij})_{6\times 4}$, tal que $a_{ij}=i-j$, $B=(b_{ij})_{4\times 5}$, tal que $b_{ij}=j-i$, $C=AB$, determine o elemento c_{42} .
5	Determinantes: conceitos
1 6.	O que é o determinante de uma matriz?
1 7.	Para que serve o cálculo do determinante de uma matriz?

48.	Indique se a sentença é verdadeira (V) ou falsa (F):			
	(a) Nem toda matriz quadrada tem determinante.			
	(b) As matrizes nulas de ordem n terão determinante igual ao número de elementos da matriz.			
	(c) É correto afirmar que $A=[2]$ representa uma matriz, e que $\det(A)= 2 $ representa o determinante da matriz de ordem 1 que contém apenas o elemento 2.			
	(d) A matriz identidade de ordem 1 tem determinante 0.			
	(e) O determinante da matriz nula de ordem 3 também é 3.			
	(f) Não é possível calcular o determinante de uma matriz $A=(a_{ij})_{3\times 4}$.			
49.	Seja a matriz $J=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, de ordem 2, onde a , b , c e d representam números reais. Como podemos calcular o $\det(B)$?			
50.	Sobre a <i>Regra de Sarrus</i> , indique se as sentenças abaixo são verdadeiras (V) ou falsas (F):			
	(a) O determinante da matriz identidade de ordem 3 é igual a 1.			
	(b) Podemos aplicar a Regra de Sarrus para matrizes de ordem 4.			
	(c) Não é possível utilizar a Regra de Sarrus para encontrar o determinante de uma matriz nula de ordem 3.			
	(d) A Regra de Sarrus só pode ser aplicada para matriz quadradas de ordem 3.			
51.	Para calcular o determinante de uma matriz quadrada de qualquer ordem, podemos utilizar o <i>Teorema de Laplace</i> , que obtém o determinante através do cálculo do <i>menor complementar</i> e do <i>cofator</i> de cada elemento da matriz. Explique o que é o <i>menor complementar</i> e o <i>cofator</i> .			
52.	Qual o determinante da matriz identidade de ordem 4?			
53.	O que é o Teorema de Laplace? O que ele diz?			
54.	Por que devemos escolher uma linha (ou uma coluna) com o maior número de elementos			
	0 (zero) no cálculo do determinante pelo método de Laplace?			

55.	matriz é 0 (zero). Quais são essas situações (propriedades)?	
	1	
	3	
	4	
56.	O que ocorre com o determinante de uma matriz cada vez que permutamos (trocamos de lugar) duas linhas (ou colunas)?	
57.	É correto dizer que quando multiplicamos todos os elementos de uma única linha (ou uma única coluna) de uma matriz A por um número real k qualquer, obtém-se uma matriz B cujo determinante é igual ao determinante da matriz A multiplicado por k , ou seja, $det(B) = k \times det(A)$? Sim ou não? Se sim, demonstre que a propriedade é verdadeira em uma matriz quadrada de ordem 2 qualquer. Se não, vá para a próxima questão.	
58.	Se multiplicarmos todos os elementos de uma matriz C quadrada qualquer de ordem n por um escalar k , o que podemos dizer do determinante $\det(kC)$?	
59.	Um aluno afirmou que o determinante de uma matriz transposta A^t é o inverso do de-	
	terminante de matriz A , ou seja, ele afirmou que $det(A^t) = \frac{1}{det(A)}$. A justificativa que o aluno deu foi a seguinte: "já que a matriz transposta é uma espécie de inversão de linhas por colunas, então o determinante da matriz transposta também será uma espécie de inverso do determinante da matriz original". Você concorda com esse aluno? Por quê?	
60.	Como calcular o determinante de uma matriz triangular qualquer?	
61.	O que é o Teorema de Jacobi?	

- 62. Podemos afirmar que o determinante do produto de duas matrizes, A e B, é igual ao produto dos determinantes das matrizes individuais, ou seja, podemos afirmar que $det(AB) = det(A) \times det(B)$?
- 63. Existe uma propriedade dos determinantes que diz que $det(A^{-1}) = \frac{1}{det(A)}$. O que isso quer dizer?
- 64. Para que serve a Regra de Chió?

6 Determinantes: cálculo

- 65. Seja a matriz A = [-2], de ordem 1. Calcule o det(A), ou seja, o determinante dessa matriz.
- 66. Seja a matriz $B = \begin{pmatrix} 2 & 0 & 1 \\ -1 & 0 & 4 \end{pmatrix}$. Calcule o $\det(B)$.
- 67. Se $\begin{vmatrix} 1 & x \\ 5 & 7 \end{vmatrix} = 2$, qual é o valor de x?
- 68. A *Regra de Sarrus* é utilizada para calcular o determinantes de matrizes quadradas de ordem 3. Data a matriz genérica abaixo, calcule seu determinante aplicando a Regra de Sarrus:

$$G = \begin{pmatrix} g_{11} & g_{12} & g_{13} \\ g_{21} & g_{22} & g_{23} \\ g_{31} & g_{32} & g_{33} \end{pmatrix}$$

- 69. Calcule o determinante da matriz $F = \begin{pmatrix} 2 & 3 & 1 \\ -1 & -4 & -1 \\ 6 & 0 & 7 \end{pmatrix}$:
- 70. Se $\begin{vmatrix} 1 & 0 & -2 \\ 2 & y & 1 \\ -1 & 3 & 7 \end{vmatrix} = 10$, qual é o valor de y?

- 71. (FEI-SP) As faces de um cubo foram numeradas de 1 a 6; depois, em cada face, foi registrada uma matriz de ordem 2, com elementos definidos por $a_{ij} = \begin{cases} 2i+f & \text{se } i=j \\ j & \text{se } i\neq j \end{cases}$ onde f é o valor associado à face correspondente. Qual o valor do determinante da matriz registrada na face 5?
- 72. Seja $S = (s_{ij})$ a matriz de ordem 3 em que $s_{ij} = \begin{cases} 0 & \text{se } i < j \\ i+j & \text{se } i=j \end{cases}$. Calcule o determinante de S.
- 73. (FUVEST-SP) Calcule $\begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 2 \\ 1 & 2 & 3 & 3 \\ 1 & 2 & 3 & 4 \end{vmatrix}$
- 74. Calcule os determinantes usando Chio e Laplace:
 - a. $\begin{vmatrix} 2 & 3 & -1 & 0 \\ 4 & -2 & 1 & 3 \\ 1 & -5 & 2 & 1 \\ 0 & 3 & -2 & 6 \end{vmatrix}$ b. $\begin{vmatrix} 2 & 3 & 0 & -1 \\ 5 & -6 & 2 & 4 \\ 2 & -1 & 0 & 3 \\ 3 & 2 & 1 & 5 \end{vmatrix}$

7 Matriz inversa: conceitos

- 75. O que é uma matriz inversa? Como é representada?
- 76. Indique se a sentença é verdadeira (V) ou falsa (F):
 - (a) ____ Se $B = A^{-1}$, então $B = \frac{1}{A}$
 - (b) ____ Se $AB = BA = I_n$, então $B = A^{-1}$
 - (c) ___ Se A e B são matrizes inversíveis, então $(AB)^{-1} = \frac{1}{AB}$
 - (d) ___ Se A e B são matrizes inversíveis, então $(AB)^{-1} = A^{-1} + B^{-1}$
 - (e) ___ Se A e B são matrizes inversíveis, então $(AB)^{-1}=A^{-1}B^{-1}$
 - (f) ___ Matrizes que não são quadradas são inversíveis
- 77. Por que é importante calcular uma matriz inversa?

78. É correto dizer que toda matriz quadrada possui inversa?

79. Para o cálculo da inversa de uma matriz quadrada A qualquer é necessário encontrarmos a adjunta de A, simbolizada por adj(A), pois a matriz inversa é dada pela equação $A^{-1} = \frac{1}{det(A)} \times adj(A)$. O que é a ajunta de uma matriz?

Matriz inversa: cálculo 8

- 80. Decida se a matriz $F = \begin{pmatrix} 2 & 5 & 5 \\ -1 & -1 & 0 \\ 2 & 4 & 3 \end{pmatrix}$ é inversível e, se for, calcule sua inversa. 81. Decida se a matriz $H = \begin{pmatrix} 2 & 0 & 0 \\ 8 & 1 & 0 \\ -5 & 3 & 6 \end{pmatrix}$ é inversível e, se for, calcule sua inversa.