Anexo

Tabla de transformadas de Laplace

f(t)	$F(s) = f(t) = \int_{-\infty}^{\infty} e^{-st} f(t) dt$
$\delta(t)$ (Dirac)	$F(s) = \mathcal{L}\left\{f(t)\right\} = \int_0^\infty e^{-st} f(t) dt$
	F(s-a)
$e^{at}f(t)$	F(s-a)
f(t-a)u(t-a)	$e^{-as}F(s)$
f(at)	$\frac{1}{a}F\left(\frac{s}{a}\right)$
$f^{(n)}(t)$	$s^{n}F(s) - s^{n-1}f(0) - s^{n-2}f'(0) - \dots - f^{(n-1)}(0)$
$t^n f(t)$	$(-1)^n F^{(n)}(s)$
$\int_0^t f(u)du$	$\frac{F(s)}{s}$
$\frac{f(t)}{t}$	$\int_{s}^{\infty} F(u)du$
f(t+T) = f(t) (periódica)	$\frac{1}{1 - e^{-sT}} \int_0^T e^{-st} f(t) dt$
$(f * g)(t) = \int_0^t f(u)g(t - u)du$	F(s)G(s)
t^n	$\frac{n!}{s^{n+1}}$
e^{-at}	$\frac{1}{s+a}$
$\sin(at)$	$\frac{a}{s^2 + a^2}$
$\cos(at)$	$\frac{s}{s^2 + a^2}$
$\sinh(at)$	$\frac{a}{s^2 - a^2}$
$\cosh(at)$	$\frac{s}{s^2 - a^2}$
u(t-a)	$\frac{e^{-as}}{s}$
f(t)u(t-a)	$e^{-as}\mathcal{L}\left\{f(t+a)\right\}$
	· · · · · · · · · · · · · · · · · · ·

Tabla de transformadas Z: $x(k) = \mathcal{Z}^{-1} \{X(z)\} \mid X(z) = \sum_{k=0}^{\infty} x(k) z^{-k}$		
$x(k) = \mathcal{Z}^{-1} \left\{ X(z) \right\}$	$X(z) = \sum_{k=0}^{\infty} x(k)z^{-k}$	
ax(k) + y(k)	aX(z) + Y(z)	
$\delta(k-r)$	z^{-r}	
u(k-r)	$\frac{1}{z^{r-1}(z-1)}$	
a^k	$\frac{z}{z-a}$	
ka^{k-1}	$\frac{z}{(z-a)^2}$ $ze^{-a}\sin(b)$	
$e^{-ka}\sin(kb)$	$z^2 - 2ze^{-a}\cos(b) + e^{-2a}$	
$e^{-ka}\cos(kb)$	$\frac{z(z - e^{-a}\cos(b))}{z^2 - 2ze^{-a}\cos(b) + e^{-2a}}$	
$k^r x(k)$	$-z\frac{d}{dz}\left(\cdots-z\frac{d}{dz}\left(-z\frac{d}{dz}X(z)\right)\right)$, r veces	
x(k+r)	$z^r \left[X(z) - \sum_{m=0}^{r-1} x(m) z^{-m} \right]$	
x(k-r)	$z^{-r}[X(z)]$	
x(k) * y(k)	X(z)Y(z)	
x(ak)	$X(z^{\frac{1}{a}})$	
$a^k x(k)$	$X\left(\frac{z}{a}\right)$	
$\sum_{r=0}^{k} x(r)$	$\frac{z}{z-1}X(z)$	

Tabla de transformadas de Fourier:		
$f(t) = \mathcal{F}^{-1}\left\{F(w)\right\}$	F(w) = $\mathcal{F}\left\{f(t)\right\} = \int_{-\infty}^{\infty} e^{-j\omega t} f(t) dt$	
af(t) + q(t)	$aF(\omega) + G(\omega)$	
$e^{j\omega_0 t} f(t)$	$F(\omega - \omega_0)$	
$af(t) + g(t)$ $e^{j\omega_0 t} f(t)$ $f(t-a)$	$F(\omega - \omega_0) = e^{-j\omega a} F(\omega)$	
F(t)	$2\pi f(-\omega)$	
f(at)	$\frac{1}{ a }F\left(\frac{\omega}{a}\right)$	
$f^{(n)}(t)$	$(j\omega)^n F(\omega)$	
$(-jt)^n f(t)$	$F^{(n)}(\omega)$	
$(f * g)(t) = \int_{-\infty}^{\infty} f(u)g(t - u)du$	$F(\omega)G(\omega)$	
f(t)g(t)	$\frac{1}{2\pi}(F(\omega)*G(\omega))$	
$u(t-t_0)$	$\left(\pi\delta(\omega) + \frac{1}{j\omega}\right)e^{-j\omega t_0}$	
$e^{j\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$	
$\frac{1}{t^n}$	$\frac{\pi(-1)^n j^n \omega^{n-1} sgn(\omega)}{(n-1)!}$	
sgn(t)	_	
$e^{-a t-t_0 }$	$ \frac{\overline{j\omega}}{2a} $ $ \frac{2a}{a^2 + \omega^2} e^{-j\omega t_0} $ $ \frac{\pi}{e^{-\frac{\omega^2}{4a}}} $	
e^{-at^2}	$\frac{\pi}{-e} \frac{-\omega^2}{4a}$	
$e^{-at}u(t)$	$\frac{1}{a+j\omega}$	
$\cos(at)$	$\frac{a+j\omega}{\pi\left(\delta(\omega-a)+\delta(\omega+a)\right)}$	
sen(at)	$-j\pi \left(\delta(\omega-a)-\delta(\omega+a)\right)$	