```
HATRICOLA: 334279
  A-1 = 1/41 · A* A* = [Czi] rc (A) = dim (R(A)) = dim (C(A))
  U4. U2 = { v 6 V 1 v = U4. U2, U4 & U4, U2 & U2} dim (U+W) = dim (U) + dim (W) - olim (UAW)
V = \bigoplus U_i \implies V = \sum U_i \ , \ U_k \wedge U_k^* = \{\tilde{o}\} \qquad A = [u_{iB} \mid ... \mid U_{n|B}] \rightarrow X = \sum t_i A_{cG} \rightarrow [A|x] \rightarrow [S|x']
In(f) ~ C(F) Ker(f) ~ Ker(F) K(f) = dim(Ker(f)) r(f) = dim(Im(f))
FIB_NB_W = [f(V_4)|B_W| ... | f(V_n)|B_W] dim(V) = r(f) + K(f) init. e(f) = dim(V)
MB-B' = [ V4 |B' | ... | V | B'] MB-B' MB-B'
                                                                                                                                                                                                                                                                                           sured r (f). dim(w)
VIB' = MB-28' · VIB FIB'B' = MB-38' · FIB-8 · MB' - B.
                                                                                                                                                                                                                                                                                           lin. re(f)= dim(v)=
  FIBY MBY -BY FIBY MBY -BY
                                                                                                                                                                                                                                                                                                                                    = dim(w)
  AB = OB - OA - BIB - AIB A [ U4|B | .. | UniB] X = QIB + ∑ ECA: → [A|x-Q|B] → [>|x]
  // \pi(\tilde{A}|\tilde{B})^{\frac{1}{n}}\pi(\tilde{A}) = n-q
\times \pi(\tilde{A}|\tilde{B}) = \pi(\tilde{A}) \times n-q \quad \begin{bmatrix} \tilde{A}|\tilde{B} \end{bmatrix} = \begin{bmatrix} A|B \\ A'|B \end{bmatrix} \quad \begin{bmatrix} A|B \end{bmatrix} \rightarrow \pi a \mu \quad \text{oly} \quad \text{
  ngh.π(Ã/B)>π(Ã)>n-q
  A nomicle on B - R (A) = R(B), Br(A) - Br(B), IAI - IBI, PA(X) = PB(X) ( recolici e confliciali )
V<sub>λ</sub>= Ker(A-λI) P<sub>A</sub>(λ)= (A-λI) → C<sub>O</sub>= (Al, C<sub>N-4</sub>= (-1)<sup>N-4</sup> Gr(A), C<sub>N</sub>= (-1)<sup>N</sup>
  <u, V> = U 18 · VIB < A, B> = Gre(AT. B) < x, Y> = x 16 · GIB · YIB GIV=[ < U1, U2 >] GIB · Ha'a GIB Masa
\|U \cdot v\|_{*}^{\frac{1}{2}} \|v\|^{\frac{1}{2}} + \|v\|^{\frac{1}{2}} + \frac{2}{2} \langle v, v \rangle
U^{\perp} = \left\{ v \in V \mid \langle v, v \rangle \cdot o \right\} \qquad \rho_{U}(v) = \sum_{i=1}^{\frac{2}{2}} \frac{\langle v, u_{i} \rangle}{\|v_{i}\|^{2}} v_{i} \rightarrow \sigma_{*} \sum_{i=1}^{\frac{2}{2}} \frac{\langle v, v_{i} \rangle}{\|v_{i}\|^{2}} v_{i}

    ∠ V, U ® w>= <w/>
        \w, ∨ Ø ∪> , U, Ø (U, Ø U<sub>3</sub>)= < U<sub>4</sub>, U<sub>5</sub>>· U<sub>4</sub> = < U<sub>4</sub>, U<sub>2</sub>>· U<sub>3</sub>, U<sub>4</sub>@ (U<sub>1</sub>® U<sub>3</sub>)+ U<sub>1</sub>® (U<sub>5</sub>® U<sub>4</sub>)+ U<sub>5</sub>® (U<sub>4</sub>® U<sub>2</sub>)=0
    ∠ V, U ® w>= < w, ∨ Ø ∪> , U<sub>4</sub> Ø (U<sub>4</sub> Ø U<sub>3</sub>)= < U<sub>4</sub>, U<sub>5</sub>>· U<sub>4</sub> = < U<sub>4</sub>, U<sub>2</sub>>· U<sub>3</sub>, U<sub>4</sub>@ (U<sub>4</sub> Ø U<sub>3</sub>)+ U<sub>5</sub>Ø (U<sub>4</sub> Ø U<sub>4</sub>)+ U<sub>5</sub>Ø (U<sub>4</sub> Ø U<sub>4</sub>)

  f \in End(v), construit \rightarrow f \in O(v) O(GL(v)) O(n; \mathbb{R}) \sim O(v) Q \in O(n; \mathbb{R}) \subset Q \cdot Q^{\frac{1}{2}} I (|Q|-24)
  se: { f= Idv V=v } f=-Idv V=v } |l|=1, f= Idv => dim(V,)=1 1 mude in Vi di Bro(f)=1+2 cos+
            [16] -1. Lo-Idv => dim (V_)=1 1 nitate lungo V_ 1 nucle in Vide Exc(f)=-1. 2000
  se: 11:4 => mula di cos « + { Excl) } 11:4 => nifette lungo V.
  1 di 1 se < fcvs. w>w = < fcvs. v>v F = F = 5m(4) = Korlf = ) -, Im(1 = Korlf = Korlf) = Korlf) = Korlf = Korl
  re 1+= 1 li autoagginto => 16 S(v) S(v) ~ S(n: R)
  fi ort. diag. ne 3060(n, R): D=Q*.F.Q Interde: fi outoaggiinta ne e solo se fi ort. diagon.
  che 5 è ipergiano: rapp alg: [[vile]...|vile|Pieo]]=[[vile]...|vile|ano]]
                                                                        we has roys. alg. ∑a:x(=b => d(S;P)= | Eaix(-b)
   S. T. milioporei: d(3,T)= \( \frac{G(\nu_1,...,\nu_n,\alpha \)}{G(\nu_1,...,\nu_n)} \) con \( \left(\nu_1,...,\nu_n \right) \) losse di U+W, PES, QET
     X = \int d(s,\tau) = 0   (s,\tau) = d(s,\tau) = d(s,\tau)   (s,\tau) = d(s,\tau)   (s,\tau) = d(s,\tau)
```

r(C)	r(A)	I_3	I_2	I_1I_3	Forma canonica	Moduli	Nome	\[\sum_{\text{tot}} \alpha_{ij} \x_i^2 + 2 \sum_{\text{tot}} \sum_{\text{tot}} \x_{ij} \x_{ij
- 3	2	$\neq 0$	> 0	< 0	$\frac{\tilde{x}^2}{\alpha^2} + \frac{\tilde{y}^2}{\beta^2} = 1$	$\alpha, \beta > 0$	Ellisse con punti reali	
3	2	$\neq 0$	> 0	> 0	$\frac{\tilde{x}^2}{\alpha^2} + \frac{\tilde{y}^2}{\beta^2} = -1$	$\alpha, \beta > 0$	$Ellisse\ privo\ di\ punti\ reali$	$ \begin{array}{c ccccc} A & a_{ii} & a_{ij} & B & b_i \\ \vdots & \vdots & \vdots \\ a_{pi} & a_{pq} & \vdots \\ \end{array} $ $ \begin{array}{c ccccc} B & b \\ \vdots \\ b_n \end{array} $ $ \begin{array}{c cccc} C & B \\ \hline B^T & C \end{array} $
3	2	$\neq 0$	< 0		$\frac{\tilde{x}^2}{\alpha^2} - \frac{\tilde{y}^2}{\beta^2} = 1$	$\alpha, \beta > 0$	Iperbole	
3	1	$\neq 0$	=0		$\tilde{x}^2 - 2\rho \tilde{y} = 0$	$\rho > 0$	Parabola	[azi ann] [bn] [B' C]
2	2	= 0	> 0	= 0	$\frac{\tilde{x}^2}{\alpha^2} + \tilde{y}^2 = 0$	$\alpha > 0$	Coppia di rette incidenti con un unico punto reale	X-A-x + 2B-x+c=0
2	2	= 0	< 0	= 0	$\frac{\tilde{x}^2}{\alpha^2} - \tilde{y}^2 = 0$	$\alpha > 0$	Coppia di rette incidenti con infiniti punti reali	$Y^{\dagger} \cdot C \cdot Y = 0 \left(Y_{2} \left[\frac{x}{4}\right]\right)$
					~2		Coppia di rette parallele	$\widetilde{A} = Q^T \cdot A \cdot Q \widehat{B} = Q^T (A \cdot T + B)$
2	1	=0	=0	= 0	$\frac{\tilde{x}^2}{\alpha^2} = 1$	$\alpha > 0$	con infiniti punti reali	
2	1	= 0	= 0	= 0	$\frac{\tilde{x}^2}{\alpha^2} = -1$	$\alpha > 0$	Coppia di rette parallele prive di punti reali	$\widehat{C} = T^{T} \cdot A \cdot T + 2B^{T} \cdot T + C$ $F \cdot \left[\begin{array}{c} a & T \\ \hline & \bullet \\ \end{array} \right] \rightarrow \widehat{C} = F^{T} \cdot C \cdot F$
1	1	= 0	= 0	= 0	$\tilde{x}^2 = 0$		Retta doppia	
r(C)	r(A)	I_4 I	_	_	Forma canonica	Moduli	Nome	r(A)= r(A) , r(C)= r(E)
4		< 0 ≠	_	_	-2 ~2 =2	$\alpha, \beta, \gamma > 0$	Ellissoide con punti reali	0 (1) 0 (2) 101 121
4	3	> 0 \neq	0 >	0 < 0	$\frac{\tilde{x}^2}{\alpha^2} + \frac{\tilde{y}^2}{\beta^2} + \frac{\tilde{z}^2}{\gamma^2} = -1$	$\alpha, \beta, \gamma > 0$	Ellissoide privo di punti reali	$P_{A}(\lambda) = P_{X}(\lambda)$, $ C = C $
4	3 :	> 0 \(\neq \)		0 ≥ 0	$\frac{\tilde{x}^2}{\alpha^2} + \frac{\tilde{y}^2}{\beta^2} - \frac{\tilde{z}^2}{\gamma^2} = 1$	$\alpha, \beta, \gamma > 0$	Iperboloide ad una falda od iperbolico	iv E2: I4 = En (A) Is 1C1
4	_	< 0 \ \neq		0 \le 0	$\frac{\tilde{x}^2}{\alpha^2} - \frac{\tilde{y}^2}{\beta^2} - \frac{\tilde{z}^2}{\gamma^2} = 1$	$\alpha, \beta, \gamma > 0$	Iperboloide a due falde	I2= Al
4	_	$< 0 \neq 0$			$\frac{\tilde{x}^2}{\alpha^2} + \tilde{y}^2 - 2\rho \tilde{z} = 0$	$\alpha, \rho > 0$	od ellittico Paraboloide ellittico	
4		> 0 =		0 = 0	$\frac{\tilde{x}^2}{\alpha^2} - \tilde{y}^2 - 2\rho \tilde{z} = 0$	$\alpha, \rho > 0$	Paraboloide iperbolico	iv 1E3: I4= Bro(A) I3= IAI
3	3 =	= 0 ≠	0 >	0 <	$\frac{\tilde{x}^2}{\alpha^2} + \frac{\tilde{y}^2}{\beta^2} + \tilde{z}^2 = 0$	$\alpha, \beta > 0$	Cono con un unico punto reale	$I_2 = I_2(P_A)$ $I_4 = C $
3	_	= 0 ≠		_	$\frac{\tilde{x}^2}{\alpha^2} + \frac{\tilde{y}^2}{\beta^2} - \tilde{z}^2 = 0$	$\alpha, \beta > 0$	Cono con infiniti	λ ₄ x ₄ + ··· + λη x _η = O π(c) = π(A)
3	3 =	= 0 ≠	0	≤ 0			punti reali Cilindro ellittico	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
_ 3	2 =	= 0 =	0 >	0 = 0	$\frac{\tilde{x}^2}{\alpha^2} + \frac{\tilde{y}^2}{\beta^2} = 1$	$\alpha, \beta > 0$	con punti reali	
3	2 =	= 0 =	0 >	0 = 0	$\frac{\tilde{x}^2}{\alpha^2} + \frac{\tilde{y}^2}{\beta^2} = -1$	$\alpha, \beta > 0$	Cilindro ellittico	(λ, x, + ···· λ, x, + 2ρ X, = ο π(c) - ε(A) · 2
3	2 =	= 0 =	0 <		-2 -2	$\alpha, \beta > 0$	privo di punti reali	[0 Lan. (1
3	_	= 0 =	_	_		$\rho > 0$	Cilindro iperbolico Cilindro parabolico	
2		= 0 =			$\frac{\tilde{x}^2}{a^2} + \tilde{y}^2 = 0$	$\alpha > 0$	Coppia di piani incidenti	$ \begin{bmatrix} \lambda_{1} & 0 & 0 \\ \vdots & \lambda_{k} & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \lambda_{1} & 0 & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \dots & \lambda_{k} & 0 \\ 0 & \dots & 0 & P \end{bmatrix} $
		- 0 -	0 /	3 - 0	$\frac{\alpha^2 + y}{\alpha^2} = 0$	a > 0	con una retta di punti reali	
2	2 =	= 0 =	0 <	0 = 0	$\frac{\tilde{x}^2}{\alpha^2} - \tilde{y}^2 = 0$	$\alpha > 0$	Coppia di piani incidenti con infiniti punti reali	[6016]
2	1 =	= 0 =	0 =	0 = 0	\tilde{x}^2 1	- > 0	Coppia di piani paralleli	[6,9, 10]
	1 =	= 0 =	0 = 1	J = 0	$\frac{\tilde{x}^2}{\alpha^2} = 1$	$\alpha > 0$	con infiniti punti reali	$x = Q \cdot \tilde{x} + \tau $
2	1 =	= 0 =	0 =	0 = 0	$\frac{\tilde{x}^2}{\alpha^2} = -1$	$\alpha > 0$	Coppia di piani paralleli privi di punti reali	
1	1 =	= 0 =	0 =	0 = 0	$\tilde{x}^2 = 0$		Piano doppio	hasha => restaurant
4.				7			070	C: [AI-B]
47	Q ₄ .	A C	יעו : פיז.	= Q4 ·	AQ, => A4	, D ₄	= W . B , C,=C	
2)	т. •	۷-۱	<u> </u>	1	siet _ A.	= A. B.	= A ₁ · T ₂ + B ₁ , C = - \(\frac{\pi}{4} \)	$-\frac{v_{0}}{Ai} - c_{1} \pi_{i} X = C + t \vee_{n} (v_{n} a.v d: A)$
			^		-> - +4 £ (£ M		1,	
	ſ	_	l Ra					
3)	a, L	Д,е	而	.ii _e H	4 Hh.n.4] =	A - Q	ALQ3 , B3 QT BL , C3	, • C2
						5 ₃ = D4 ,	C4=0 ! P= B1 p	
Ly	Q= (Q ₄ . Q	3	T = G	14(Qs·T4+T2)			
ROT. NUTORNO AD ASSE CILINDRO GEN. DA J / a R: COUO CON DIR. 8								
KOT	. NUT	URN(AD	- A3	Dea Peir3	Sac.	x QeX	$\begin{cases} P_0 \in \mathcal{O} \\ \overline{VP} = \varepsilon \overline{VP_0} \end{cases}$
)	٠.	,		,	, , , , ,	1.	1, 1	10000
	11 00	: II =	II ÕP	เก้) die aue	(e'	a // re passante per	Poex, PelE3 velE3
μ,	۷, ۵	QP > :	0		D E DANG	(th	mmo w-cho, ye, to) &	(T)
					y,, e,,)			(etimino Po = (xo, yo, zo) + t)
		-			•			