第二章 随机变量及其分布

- 随机变量及其分布函数
- 离散型随机变量
- 连续型随机变量
- 随机变量函数的分布

§ 2.1. 随机变量及其分布函数

随机变量的定义

例1. 随机试验E:将一枚硬币掷3次,考察出现正(H)反(T)面的情况。

 Ω = {HHH,HHT,HTH,THH,HTT,TTH,THT,TTT}

X: 3 2 2 2 1 1 1 0

用X表示在E中出现正面的次数,则

对Ω中每一个样本点ω,X都有一个值与之对应,即X是定义在Ω上的函数,其取值随试验结果而改变,称为随机变量。

随机变量

定义1.设随机试验E的样本空间为 $\Omega=\{\omega\}$,

 $X=X(\omega)$ 是定义在 Ω 上的单值实函数,称

X=X(ω) 为随机变量, 记为r.v.。

分布函数

定义2 设X为一个随机变量,我们称

 $F(x) = P(X \le x), \quad x \in R$ (2.1.1) 为随机变量 X的分布函数 (d.f.). 随机变量X可视为实轴R上的随机点。

F(x)是指随机点X落在x左侧的概率。

 $\forall a < b, a, b \in R, \overline{\uparrow}$

$$P{a < X \le b} = F(b) - F(a)$$

分布函数完整地描述了 随机变量的统计规律性。

分布函数F(x)的性质

1°.F(x)是一个单调不减的函数

$$\forall a < b,$$
 $ff(b) - F(a) = P\{a < X \le b\} \ge 0$
 $2^{\circ}.0 \le F(x) \le 1, \quad F(-\infty) = 0, F(+\infty) = 1$

 $3^{\circ}.F(x)$ 是右连续的。

任意分布函数F(x)都满足这三条性质, 任意满足这三条性质的函数都是分布函数

例2. 随机变量X的分布函数为

$$F(x) = A + B \arctan x$$
, 求 A , B 的值。

解:
$$F(-\infty) = A - B \cdot \frac{\pi}{2} = 0$$

$$F(+\infty) = A + B \cdot \frac{\pi}{2} = 1$$

$$A = \frac{1}{2}$$

$$B = \frac{1}{\pi}$$

$$P(X = x) = F(x) - F(x - 0)$$

$$P(X = x) = \lim_{\varepsilon \to 0+} P(x - \varepsilon < X \le x)$$

$$= \lim_{\varepsilon \to 0+} [F(x) - F(x - \varepsilon)]$$

例.3. 己知随机变量

X	0	1	2	3
P _k	1/8	3/8	3/8	1/8

求随机变量X的分布函数,并求

$$P(\frac{1}{2} < X \le \frac{5}{2})_{\circ}$$

解: 当
$$x < 0$$
时, $F(x) = P(X \le x) = 0$
当 $0 \le x < 1$ 时, $F(x) = P(X \le x)$
= $P(X = 0) = \frac{1}{8}$

当
$$1 \le x < 2$$
时, $F(x) = P({X = 0} \cup {X = 1})$
= $P(X = 0) + P(X = 1)$
= $\frac{1}{8} + \frac{3}{8} = \frac{1}{2}$
当 $2 \le x < 3$ 时,

$$F(x) = P(X = 0) + P(X = 1) + P(X = 2)$$
$$= \frac{1}{8} + \frac{3}{8} + \frac{3}{8} = \frac{7}{8}$$

当 $x \ge 3$ 时, $F(x) = P(X \le x) = P(\Omega) = 1$ 随机变量X的d.f.为

$$F(x) = \begin{cases} 0, & x < 0 \\ \frac{1}{8}, & 0 \le x < 1 \\ \frac{1}{2}, & 1 \le x < 2 \\ \frac{7}{8}, & 2 \le x < 3 \end{cases}$$

$$1, & x \ge 3$$

$$P(\frac{1}{2} < X \le \frac{5}{2}) = F(\frac{5}{2}) - F(\frac{1}{2}) = \frac{7}{8} - \frac{1}{8} = \frac{3}{4}$$

$$P(\frac{1}{2} < X \le \frac{5}{2}) = P(X = 1) + P(X = 2)$$

$$= \frac{3}{8} + \frac{3}{8} = \frac{3}{4}$$

分布函数F(x)的图像为

这是一个**阶梯函数**,每一段的右端为虚点,左端为实点,**F(x)**是**右连续**的

例4 在曲线 $y = 2x - x^2 = 5x$ 轴所围区域 G

中等可能地投点,以X表示该点到y轴的距离,求X的分布函数。

解: 由题意知X的取值范围为[0,2] 当x < 0时, $F(x) = P(X \le x)$ = 0

当
$$0 \le x < 2$$
时, $F(x) = P(X \le x) = \frac{|D_x|}{|G|}$

$$= \frac{\int_0^x (2t - t^2) dt}{\int_0^2 (2t - t^2) dt}$$

$$= \frac{(t^2 - \frac{t^3}{3})_0^x}{(t^2 - \frac{t^3}{3})_0^2}$$
$$= \frac{3}{3}(x^2 - \frac{x^3}{3})$$

随机变量X的d.f.为

$$F(x) = \begin{bmatrix} 0, & x < 0 \\ \frac{3}{4}(x^2 - \frac{x^3}{3}), & 0 \le x < 2 \\ 1, & x \ge 2 \end{bmatrix}$$

F(x)是一个连续函数,并且它还可以写 成如下形式: $F(x) = \int_{-\infty}^{x} f(t)dt, \forall x \in R$

其中 $f(t) = \frac{3}{4}(2t-t^2), 0 < t < 2$, 其他区间为 0.

§ 2.2. 离散型随机变量

分布列及其性质

定义3 设X为一个随机变量,如果X的分布函数 F(x)是一个阶梯函数,则称X为一个离散型随机变量。 定义3' 如果随机变量X的所有可能取值 x_1, x_2, \cdots

 x_n ··· 都能列出来,称X 为离散型随机变量,并称

$$P(X = x_i) = p_i, \quad i = 1, 2, \dots$$
 (2.2.1)

为随机变量X的分布律(分布列)。

分布列也可以用表格的形式表示为

X				
	\mathcal{X}_1	x_2	\mathcal{X}_{i}	
P _k	p_1	p_2	p i	

分布列的本质性质:

(1). 非负性:
$$p_i \ge 0, i = 1, 2, \cdots$$

(2). 归一性:
$$\sum_{i=1}^{\infty} p_i = 1$$

例5 已知离散型随机变量 X的分布函数为

$$F(x) = \begin{cases} 0, & x < -1 \\ a, & -1 \le x < 1 \\ \frac{2}{3} - a, & 1 \le x < 2 \\ a + b, & x \ge 2 \end{cases}$$

且P(X = 2) = 0.5, 求 (1). a, b的值; (2).随机变量 X的分布列。

解:
$$(1).F(+\infty) = 1 = a + b$$
,

$$P(X = 2) = 0.5 = F(2+0) - F(2-0)$$

$$= a + b - (\frac{2}{3} - a)$$

$$a = \frac{1}{6}.$$

(2).F(x)的间断点为-1,1,2,X的可能取值为-1,1,2, $P(X=-1)=a=\frac{1}{6}$. $P(X=1)=(\frac{2}{3}-a)-a=\frac{1}{3}$.

Х	-1	1	2
P_k	1/6	1/3	1/2

例6.在n 重伯努利试验中,事件A在每次试验中发生的概率为p。用X表示在这n 次试验中A发生的次数,求r.v.X的分布列。

解: X的可能取值为0,1,...,n,

$$P(X=k) = C_n^k p^k (1-p)^{n-k}, k = 0,1,\dots,n$$

称X 服从参数为n和p的二项分布,记为X~B(n,p)。

例7.设某射手向一目标独立地进行连续射击,每次命中的概率为p。用X表示首次命中的射击次数,求X的分布列。

解:X的可能取值为1,2,...

$$P(X=k) = p \cdot (1-p)^{k-1} k = 1,2,\cdots,$$

称X服从参数为p的几何分布,记为X~G(p)。

例8.设一口袋中共有N个球,其中有M个红球,现从口袋中任取n个球,用X表示其中红球的个数,求X的分布列。

解: X的可能取值为0,1, ..., min{M,n},

$$P(X=k) = \frac{C_M^k C_{N-M}^{n-k}}{C_N^n},$$

 $k = 0.1, \dots, \min\{M, n\}$

称X 服从参数为n,M,N的**超几何分布**,记为X~H(n,M,N),(其中N>M,N>n)。

几种常见的离散型分布

二项分布

定义4.设 X为一个离散型随机变量, 若X的分布列为

$$P\{X = k\} = C_n^k p^k (1-p)^{n-k}, \quad k = 0,1,\dots,n,$$

其中0<p<1,则称X服从参数为n,p的二项分布,记为X~B(n,p)。

例9.根据以往资料,患有某种疾病的人死亡率为0.002,试求2000名患者中死亡人数大于8的概率。

解:以X表示这2000人中的死亡人数,则X~B(2000,0.002).

 $P(X>8)=1-P(X\leq 8)$

$$=1-\sum_{k=0}^{8}C_{2000}^{k}0.002^{k}0.998^{2000-k}$$

泊松分布

定义5.设 X是一个离散型随机变量,

若X的分布列为

$$P\{X = k\} = \frac{\lambda^k e^{-\lambda}}{k!}, k = 0, 1, 2, \dots$$
 (2.2.3)

其中 $\lambda > 0$,则称X服从参数为 λ 的泊松分布,记为 $X \sim P(\lambda)$ 。

泊松逼近定理

设
$$X_n \sim B(n, p_n)$$
, 如果 $\lim_{n \to \infty} np_n = \lambda$, 常数 $\lambda > 0$, 则有 $\lim_{n \to \infty} P(X_n = k) = \lim_{n \to \infty} C_n^k p_n^k (1 - p_n)^{n-k}$

$$= \frac{\lambda^k}{k!} e^{-\lambda}, \quad k = 0, 1, 2, \cdots$$

该定理说明当**n很大**,**p很小**,np大小适中时,**B**(n,p) 与泊松分布**P**(λ)(λ =np)几乎一样。

例10 已知某批集成电路的次品率为0.15%,随机抽取1000块集成电路,求次品数为2的概率。

解: X表示次品数,则X服从二项分布B(1000,0.0015),

 $P\{X = 2\} = C_{1000}^2 0.0015^2 (1-0.0015)^{998}$ n很大,p很小, $np = 1000 \times 0.0015 = 1.5$ 大小适中,可以用泊松分布近似计算:

$$P\{X = 2\} \approx \frac{1.5^2}{2!}e^{-1.5} = 0.251021$$

几何分布

定义6设X是一个离散型随机变量,若

X的分布列为

$$P{X=k} = pq^{k-1}, k=1,2,\cdots$$
 (2.2.5)

其中 0<p<1,q=1-p,则称X服从参数为

p的几何分布,记为X \sim G(p)。

例11 (几何分布的无记忆性)

设 $X \sim G(p)$,则对任意正整数 n, m,都有 $P(X > n + m \mid X > m) = P(X > n)$ 。

$$\mathbb{H}: P(X > n) = \sum_{k=n+1}^{\infty} P(X = k) = \sum_{k=n+1}^{\infty} p \cdot q^{k-1}$$

$$= p \cdot \frac{q^{n}}{1 - q} = q^{n}$$

$$P(X > m) = q^{m}, \ P(X > n + m) = q^{n+m},$$

$$P(X>n+m|X>m) = \frac{P(X>n+m)}{P(X>m)}$$

$$= \frac{q^{n+m}}{q^m} = q^n = P(X > n),$$

几何分布具有无记忆性

§ 2.3 连续型随机变量

连续型随机变量的定义及密度函数 定义7.设 X为一个随机变量,它的分布函数为 F(x),若存在非负函数f(x)使得对任意的x∈R,总有

$$F(x) = \int_{-\infty}^{x} f(t)dt$$
 (2.3.1)

则称X为一个连续型随机变量,称f(x)为X的概率密度函数。

- 注: (1) 改变密度函数f(x)在个别点的值,不影响分布函数F(x)的值,因此不介意 f(x)在个别点的值。
 - (2) 由微积分基本定理知 F(x)必为连续函数。

概率密度函数的性质

连续型随机变量X的密度函数为f(x),满足两个

(2) 归一性:
$$\int_{-\infty}^{+\infty} f(x) dx = 1$$

(3). $\forall a < b, a, b \in R$,

$$P(a < X \le b) = F(b) - F(a) = \int_{a}^{b} f(x) dx$$

(4). 若 $f(x)$ 在 x_0 点连续,则 $F'(x_0) = f(x_0)$ 。

当△x很小时,有P(x<X≤x+ △x) ≈f(x) △x

例12. 设连续型随机变量X的分布函数为:

$$F(x) = \begin{cases} A + Be^{-x}, x > 0\\ 0, & x \le 0 \end{cases}$$

试求: (1) 常数A,B. (2) 密度函数f(x)。

解: (1). 由d.f.的性质, $F(+\infty) = A = 1$, $F(-\infty) = 0$,F(x)是连续型随机变量的 d.f. F(x)是连续函数,F(0-0) = 0 = F(0+0) = A + B, B = -1, X的分布函数为:

$$F(x) = \begin{cases} 1 - e^{-x}, x > 0 \\ 0, & x \le 0 \end{cases}$$

(2).当
$$x > 0$$
时, $f(x) = F'(x) = e^{-x}$
当 $x < 0$ 时, $f(x) = F'(x) = 0$,
 $F(x)$ 在 0 点不可导, 在 $x = 0$ 点 $f(x)$ 可任意
补充定义,
$$f(x) = \begin{cases} e^{-x}, x > 0 \\ 0, x \le 0 \end{cases}$$

例13. 设连续型随机变量X的概率密度为:

$$f(x) = \begin{cases} kx, & 0 \le x < 3 \\ 2 - \frac{x}{2}, 3 \le x < 4 \\ 0 & \sharp \text{ de} \end{cases}$$

试求: (1) 常数k;

(2) 随机变量X的分布函数F(x);

(3)
$$P(1 \le X \le \frac{7}{2})$$
.

解:(1).
$$\int_{-\infty}^{+\infty} f(x)dx = 1$$
, 即 $\int_{0}^{3} kxdx + \int_{3}^{4} (2 - \frac{x}{2})dx = 1$

$$\int_0^3 kx dx + \int_3^4 (2 - \frac{x}{2}) dx = 1, \qquad \frac{kx^2}{2} \Big|_0^3 + \left(2x - \frac{x^2}{4}\right)_3^4 = 1,$$

解得
$$k = \frac{1}{6}$$
. 即 $f(x) = \begin{cases} \frac{x}{6}, & 0 \le x < 3 \\ 2 - \frac{x}{2}, & 3 \le x < 4 \\ 0 & 其他 \end{cases}$

(2). 当
$$x < 0$$
时, $F(x) = \int_{-\infty}^{x} f(t)dt = 0$
当 $0 \le x < 3$ 时, $F(x) = \int_{-\infty}^{x} f(t)dt$

$$= \int_{0}^{x} \frac{t}{6} dt = \frac{x^{2}}{12}$$

当3 ≤ x < 4时,
$$F(x) = \int_{-\infty}^{x} f(t) dt$$

$$= \int_{0}^{3} \frac{t}{6} dt + \int_{3}^{x} (2 - \frac{t}{2}) dt$$

$$= \frac{t^{2}}{12} \Big|_{0}^{3} + \left(2t - \frac{t^{2}}{4}\right)_{3}^{x}$$

$$= -3 + 2x - \frac{x^{2}}{4}$$

当 $x \ge 4$ 时, F(x) = 1.

$$F(x) = \begin{cases} 0, & x < 0 \\ \frac{x^2}{12}, & 0 \le x < 3 \\ -3 + 2x - \frac{x^2}{4}, 3 \le x < 4 \\ 1 & x \ge 4 \end{cases}$$

$$(3).P(1 \le x \le \frac{7}{2})$$

$$= P(1 < x \le \frac{7}{2}) + P(X = 1)$$

$$= F(\frac{7}{2}) - F(1)$$

$$= -3 + 2 \times \frac{7}{2} - \frac{\left(\frac{7}{2}\right)^2}{4} - \frac{1}{12} = \frac{41}{48}$$

几种常见的连续型随机变量

均匀分布

定义8 若连续型随机变量X的概率密度为:

$$f(x) = \begin{cases} \frac{1}{b-a}, & a < x < b \\ 0, & \sharp \text{ (2.3.5)} \end{cases}$$

称X服从区间(a,b)上的均匀分布,记为 $X \sim U(a,b)$ 。

$$r.v.X$$
的 $d.f.F(x) = \begin{cases} 0, & x < a \\ \frac{x-a}{b-a}, a \le x < b \\ 1, & x \ge b \end{cases}$

例14.在区间(-1,1)上任取一点,记为 X,求 方程 $t^2 - 3Xt + 1 = 0$ 有实根的概率。

解: 由题意知 $X \sim U(-1,1)$,

$$f(x) = \begin{cases} \frac{1}{2}, -1 < x < 1 \\ 0, & \text{#d} \end{cases}$$

方程有实根 $\longrightarrow \Delta \ge 0$,即 $9X^2 - 4 \ge 0 \longrightarrow |X| \ge \frac{2}{3}$

$$P(|X| \ge \frac{2}{3}) = P(X \le -\frac{2}{3}) + P(X \ge \frac{2}{3}) = \frac{1}{3}$$

指数分布

定义9 若随机变量X 的密度函数为

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, x > 0\\ 0, & x \le 0 \end{cases}$$
 (2.3.7)

其中参数 λ >0,则称X服从参数为λ 的指数分布,记为X~E(λ)。

$$X$$
的分布函数为 $F(x) = \begin{cases} 1 - e^{-\lambda x}, x > 0 \\ 0, x \le 0 \end{cases}$

例15. 假设一种投影仪的使用 寿命X(单位: h) 服从参数为 $\lambda = \frac{1}{2000}$ 的指数分布,

- (1) 任取一台这种投影仪 , 求其能正常使用 500 h 的概率;
- (2) 若一台投影仪已经使用了500h,求它至少还能再使用500h的概率。

解: (1).
$$P(X > 500) = \int_{500}^{+\infty} \frac{1}{2000} e^{-\frac{x}{2000}} dx$$

$$= \left(-e^{-\frac{x}{2000}}\right)_{500}^{+\infty} = e^{-\frac{1}{4}}$$

(2).
$$P(X > 1000 | X > 500) = \frac{P(X > 1000)}{P(X > 500)}$$

$$=\frac{e^{-\frac{1000}{2000}}}{e^{-\frac{500}{2000}}}=e^{-\frac{1}{4}}=P(X>500)$$

若
$$X \sim E(\lambda)$$
,则对 $\forall s > 0, t > 0$ 有 $P(X > s + t | X > s) = P(X > t)$

$$P(X > s + t \mid X > s) = P(X > t)$$

指数分布具有无记忆性

例16.设顾客在某银行的窗口等待服务的时间X(单位:分钟)服从参数为λ=1/5的指数分布。某顾客在窗口等待服务,若超过15分钟他就离开。他一个月要去银行4次,以 Y表示一个月内他未等到服务而离开的次数。求随机变量Y的分布列。

解: r.v.Y的可能取值为0,1,2,3,4, Y~B(4,p),

$$p = P(X > 15) = \int_{15}^{+\infty} \frac{1}{5} e^{-\frac{x}{5}} dx = e^{-3}$$

正态分布

定义10 若连续型随机变量X的密度函数为

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, -\infty < x < +\infty$$
 (2.3.10)

其中 $\mu \in R, \sigma > 0$, 称X服从参数为 μ 和 σ^2 的正态分布,记为 $X \sim N(\mu, \sigma^2)$ 。

X的分布函数为

$$F(x) = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{x} e^{-\frac{(t-\mu)^2}{2\sigma^2}} dt \qquad (2.3.11)$$

正态分布的性质

(1). f(x)的图像为倒扣的钟形曲线,以ox轴为渐近线

(2) f(x)的图像关于 $x = \mu$ 轴对称 $\forall h > 0, P(\mu - h < X \le \mu) = P(\mu < X \le \mu + h)$ (3). $\exists x = \mu \text{时} f(x)$ 取得最大值 $f(\mu) = \frac{1}{\sqrt{2\pi}\sigma}$

- (4)当 σ 固定,改变 μ 的值,f(x)的图像沿x轴平移,而形状不变, μ 称为位置参数
- (5).固定 μ , 改变 σ , 当 σ 越小时,图形越瘦越尖
 - (6) 当 $\mu = 0$, $\sigma = 1$ 时,称为标准正态分布

标准正态分布

$$\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, -\infty < x < +\infty$$
称为标准正态分布。

记为N(0,1)

$$\Phi(x) = \int_{-\infty}^{x} \varphi(t)dt = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx$$

为标准正态分布的分布函数

查表: P180-181 附表3

T	A	В	С	D	E	F	G	Н		Т	77
1	X	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	K
12	0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.09
3	0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5359
4	0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
5	0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
6	0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
7	0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
8	0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
9	0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
10	0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
11	0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
12	1.0	(0.8413)	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
13	1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
14	1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
15	1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
16	1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
17	1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
18	1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
19	1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
20	1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
21	1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
22	2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
23	2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
24	2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
25	2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
26	2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
27	2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
28	2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964

$$\Phi(-x) = 1 - \Phi(x)$$

上α分位数

设 $r.v.Z \sim N(0,1)$, 如对 $\alpha \in (0,1)$, 实数 z_{α} 满足

$$P\{Z>z_{\alpha}\}=\alpha,$$

则称 z_{α} 为标准正态分布的上 α 分位点。

定理1 若随机变量 $X \sim N(\mu, \sigma^2)$,

令
$$Z = \frac{X-\mu}{\sigma}$$
,则 $Z \sim N(0,1)$ 。
证明:只需证明 Z 的 $d.f.$ 为 $\Phi(z)$

$$P(Z \le z) = P\left(\frac{X - \mu}{\sigma} \le z\right)$$
$$= P(X \le \sigma z + \mu)$$

$$\Rightarrow \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\sigma z + \mu} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-\frac{t^2}{2}} dt = \Phi(z)$$

用Excel计算正态分布的概率

例17 设X~N(5,9), 求P(X≤10)=0.9522 P(2<X<10)=F(10)-F(2) =0.9522-0.158655 ≈0.7935

方法二:

(查表)
$$(1)P(X \le 10) = P(\frac{X-5}{3} \le \frac{10-5}{3})$$
$$= P(\frac{X-5}{3} \le 1.67)$$
$$= \Phi(1.67) = 0.9525$$

$$(2)P(2 < X < 10) = P(\frac{2-5}{3} < \frac{X-5}{3} < \frac{10-5}{3})$$

$$= P(-1 < \frac{X-5}{3} < 1.67)$$

$$= \Phi(1.67) - \Phi(-1) = 0.9525 - [1 - \Phi(1)]$$

$$= 0.9525 - 1 + 0.8413 = 0.7938$$