DCCDL LAB6

Part I

電機碩一 111521035 林豪澤

1. Draw your block diagram for the butterfly and commutator modules and explain the timing diagram of the control signals to the commutator modules at all the stages.

Butterfly block diagram:

Stage1:

Stage2:

Stage3:

Commutator block diagram:

Stage1:

Stage2:

Stage3:

2. Draw the timing diagram of the control signals to the complex multiplier blocks at all the stages.

Multiplier block diagram:

Stage1:

Stage2:

3. Show your design for bit-reversal module to allow the frequency-domain samples appearing in order.

4. Use Matlab program to implement 8-point MDC FFT architecture and the bit-reversal module. Draw the real-part and imaginary-part of $X_0 \sim X_7$. Compare them with the real-part and imaginary-part of $Y_0 \sim Y_7$. Depict the error.

Error between X0~X7 and Y0~Y7

Real part:

Imaginary part

5. Show the timing diagram of your Verilog behavior and post-route simulation results of 8-point MDC FFT. Compare with the Matlab results to check your implementation error. Depict the error of the real part and imaginary part of each point using figures.

Behavior timing diagram:

Output before ping-pong access:

Matlab Output:

Output after ping-pong access:

Name	Value			500 ns		S20 ns		540 ns		560 ns		\$80 ns	Lerre	600 ns		620 ns		640 ns	
¼ clk	1																		
¼ rst	0																		
> W cnt[2:0]	5	3	4	-)		5	χ	6	<u> </u>	7	()	(!		χ :	2	3	3	4
> W LI_real[12:0]	0	0	102	3)	-14	149)	10	23)	14	48			1023
> W LI_imag[12:0]	0	0	102	34				0			10	24							1024
> W p_real[15:0]	0	0	204	15	20	18	-20	048	-20	149	-20	45	-20	48	20	48	204	19	0
> W p_imag[15:0]	0	0	204	18	-20	49	20	47	$\overline{}$	-20	48		20	19	-20	147	204	18	0

Matlab Output:

Real	part
------	------

[2045 2048 -2048 -2049 -2045 -2048 2048 2049] Imaginary part 2048] [2048 -2049 2047 -2049 -2048 2049 -2047

Synthesis timing diagram:

Global reset:

		110.0
Name	Value	Ons 50 ns 100 ns
¼ clk	1	
¼ rst	0	
> W cnt[2:0]	1	0 1
> W LI_real[12:0]	0	0
> W LI_imag[12:0]	0	0
> W UI_real[12:0]	0	
> W UI_imag[12:0]	0	
> W LO_real[14:0]	0	K
> W LO_imag[14:0]	0	K
> W UO_real[14:0]	0	K
> W UO_imag[14:0]	0	K
> W p_real[15:0]	0	K
> W p_imag[15:0]	0	K

Input:

Output before ping-pong access:

Output after ping-pong access:

		SSS.29/0 ns													
Name	Value	500 ns	520 ns) ns	560 ns	580 n	s 600 ns		640 ns	1				
¼ dk	1	1													
¼ rst	0														
> W cnt[2:0]	7	4	5	6	Х	7	χ	X 1	2	3)	4				
> W LI_real[12:0]	0	1023	ν ο	-1449	X_	Ó	1023	χ ο	1448	(·)	102				
> W LI_imag[12:0]	0	1024	χ	0			1024	_X	0		102				
> W p_real[15:0]	-2048	2045	2048	X	-2048	-204	-2	045 / -20	48 2048	2049	$\overline{\chi}^{-}$				
> W p_imag[15:0]	2047	2048	-2049		2047	X	-2048	204	9 -2047	2048	X				

Implementation timing diagram:

Global reset:

Input:

Output before ping-pong access:

Output after ping-pong access:

