

GenCore version 5.1.6
(c) 1993 - 2004 Compugen Ltd.

M protein - protein search, using sw model

May 17, 2004, 12:16:47 ; Search time 41.5161 Seconds
(without alignments)
61.252 Million cell updates/sec

title: US-09-458-299A-4233
erfect score: 43
equence: 1 KYFGSLAFV 9

scoring table: BIOSUM62

Gapp 10.0 , Gapext 0.5

earched:

1586107 seqs, 282547505 residues

otal number of hits satisfying chosen parameters:

inimum DB seq length: 0

aximum DB seq length: 2000000000

ost-Processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

atabase : A_Geneseq_29Jan04:
1: GeneseqP1980s:
2: GeneseqP1990s:
3: GeneseqP2000s:
4: GeneseqP2001s:
5: GeneseqP2002s:
6: GeneseqP2003as:
7: GeneseqP2003ds:
8: GeneseqP2004s:
Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

%

result No.

Score

Query

Match

Length

DB

ID

Description

1	43	100.0	9	4	AAB99689	Aab99689 HLA A2 bi
2	43	100.0	9	4	AAGB8935	Aag88995 HER2/neu
3	43	100.0	9	4	AAGB8936	Aag88786 HER2/neu
4	43	100.0	9	4	AAB75809	Aab75809 Tumour as
5	43	100.0	9	7	AAD49638	Ada49638 Multi-epi
6	43	100.0	144	7	ADA49445	Ada49445 Multi-epi
7	43	100.0	147	7	ADA49447	Ada49447 Multi-epi
8	43	100.0	148	7	ADA49443	Ada49443 Multi-epi
9	40	93.0	9	4	AAB99638	Aab99638 HLA A2 bi
10	40	93.0	9	4	AAGB8934	Aag88994 HER2/neu
11	40	93.0	9	4	AAGB8788	Aag8788 HER2/neu
12	40	93.0	5	5	AAU95942	Aau95942 Immunogen
13	40	93.0	9	5	AAU95940	Aau95940 Immunogen
14	39	90.7	9	2	ARR73685	Aar73685 Antigen f
15	39	90.7	9	2	AAR97507	Aar97507 Cytotoxic
16	39	90.7	9	2	AAW36824	Aaw36824 Immunogen
17	39	90.7	9	2	AAW70057	Aaw70057 HER2/neu
18	39	90.7	2	2	AAW78859	Aaw78859 HER-1/neu
19	39	90.7	9	2	AAW77131	Aaw77131 HER-2/neu
20	39	90.7	9	2	AAV10495	Aav10495 HLA Class
21	39	90.7	9	3	AAB13755	Aab13755 Peptide f
22	39	90.7	9	3	AAB33671	Aab33671 MHC class
23	39	90.7	9	3	AAB23682	Aab23682 Cytotoxic
24	39	90.7	9	4	AAB74453	Aab74453 Her2/neu
25	39	90.7	9	4	AAB95917	Aab95917 MHC class

RESULT 1

ID AAB99689 standard; peptide; 9 AA.

XX AC AAB9689;

XX DT 06-SEP-2001 (first entry)

XX DB HLA A2 binding CTL epitope peptide from Her2/neu SEQ ID NO:10.

XX Human leukocyte antigen A2 binding peptide: HLA class I A2; CTL

KW cytotoxic T-cell lymphocyte; tumour associated antigen; CEA; HER2/neu;

KW MAG22; MAGE3; P53; vaccine; cancer; cytotoxic; immunomodulator;

KW immunotherapy; immune response.

XX Homo sapiens.

XX PN WO200141741-A1.

XX PD 14-JUN-2001.

XX XX PF 13-DEC-2000; 2000MO-US34318.

XX PR 13-DEC-1999; 99US-0170448P.

XX PR 06-APR-2000; 2000US-00543608.

XX PR 30-MAY-2000; 2000US-00583200.

XX PA (EPMN-) EPIMUNE INC.

XX PI Fikes J., Sette A., Sidney J., Southwood S., Celis E., Keogh E;

PI Chesnut R,

XX DR WPI; 2001-381489/40.

Compositions for use in a vaccine for treating, e.g., breast, lung and colon cancer comprises at least one peptide that comprises an isolated epitope of a tumor-associated antigen.

Claim 1; Page 76; 86pp; English.

The present invention describes a composition (I) comprising at least one peptide that comprises an isolated, prepared epitope consisting of a sequence selected from 25 short amino acid sequences given in AAB99680 to AAB99704. Also described are: (1) a composition (II) comprising one or more peptides, and further comprising at least two epitopes selected from the 25 short amino acid sequences (as above), where each of the one or more peptides comprise less than 50 continuous amino acids that have 100% identity with a native peptide sequence; and (2) a vaccine composition

(III) comprising an epitope selected from the 25 short amino acid sequences (as above) and a pharmaceutical excipient, (I) has cytosstatic and immunomodulatory activities and can be used in vaccine production and immunotherapy. The peptide epitope compositions (I)-(II) are useful for monitoring an immune response to a tumour associated antigen or when one or more peptides are combined to create a vaccine (III) that stimulates the cellular arm of the immune system. In particular, the vaccine mediates immune responses against tumours in individuals who bear an allele of the human leucocyte antigen (HLA)-A2 subtype and improve the standard of care for patients being treated for breast, colon, or lung cancer.

Sequence 9 AA;

	Query Match	Score	DB 4;	Length
Y	1 KVFGSLAFV 9	100.0%	Score 43;	9;
b	1 KVFGSLAFV 9	100.0%	Pred. No. 1.4e+06;	
		Matches 0;	Mismatches 0;	
		Indels 0;	Gaps 0;	

RESULT 2
AGB8995

D AAG88995 standard; peptide; 9 AA.

C AAG88995;

X X 11-SEP-2001 (first entry)

E HER2/neu epitope HLA-A2 supermotif-bearing peptide #8.

W Human; HER2/neu; epitope; human leukocyte antigen; HLA; T cell; immune response; vaccine; tumour; cancer; cytosatic; immunostimulant; tumour-associated antigen; T lymphocyte; cytotoxic T lymphocyte; CTL. Homo sapiens.

S Synthetic.

X X WO200141787-A1.

X D 14-JUN-2001.

X X F 11-DEC-2000; 2000WO-US033591.

X R 10-DEC-1999; 99US-00458299.

A (EPIM-) EPIMMUNE INC.

X I Fikes J, Sette A, Sidney J, Southwood S, Chesnut R, Celis E;

I Keogh E;

X X WPI; 2001-374995/39.

X An isolated prepared HER2/neu epitope useful in a vaccine for inducing cellular immune responses for the prevention and treatment of cancer. Claim 1; Page 189; 199pp; English.

X The present invention describes isolated prepared HER2/neu epitopes (I). Also described are: (1) a clonal cytotoxic T lymphocyte (CTL) that is culture *in vitro* and binds to a complex of an epitope (I), bound to a human leucocyte antigen (HLA) molecule; (2) a peptide (II) comprising (I) and a second epitope and the peptide is less than 50 contiguous amino acids that have 100% identity with a native peptide sequence of HER2/neu; (3) a vaccine composition (III) comprising (II) and a pharmaceutical excipient; (4) an isolated nucleic acid encoding a peptide comprising (I) and (5) an isolated nucleic acid encoding (III). (I) has cytosatic and immunostimulant activities, and can be used in vaccines. (I), (II) and (III) are useful for inducing cellular immune responses for the prevention and treatment of cancer. (I) and (II) are useful for preventing or evaluating an immune response to a tumour-associated

CC antigen when incubated with a T lymphocyte sample from a patient and detecting the presence of bound T lymphocyte to (I) or (II). Epitope based vaccines mean that immunosuppressive epitopes that may be present in whole antigens may be avoided. Selected epitopes may be combined to enhance immunogenicity. The possible pathological side effects caused by infectious agents or whole protein antigen is eliminated. The vaccine provides the ability to direct and focus an immune response to multiple selected antigens from the same pathogen. Epitope-based anti-tumour vaccines provides the opportunity to combine epitopes derived from multiple tumour-associated molecules addressing the problem of tumour-tumour variability and reducing the likelihood of tumour escape due to antigen loss. AG88266 to AAG89121 represent amino acid sequences used in the exemplification of the present invention

XX Sequence 9 AA;

SQ Query Match 100.0%; Score 43; DB 4; Length 9;

Best Local Similarity 100.0%; Pred. No. 1.4e+06; Mismatches 0; Conservative 0; Indels 0; Gaps 0;

Qy 1 KVFGSLAFV 9
Db 1 KVFGSLAFV 9

RESULT 3
AAG88786

ID AAG88786 standard; peptide; 9 AA.

XX AC AAG88786;

XX DT 11-SEP-2001 (first entry)

XX DE HER2/neu A2 supermotif crossbinding peptide #30.

XX Human; HER2/neu; epitope; human leukocyte antigen; HLA; T cell; immune response; vaccine; tumour; cancer; cytosatic; immunostimulant; tumour-associated antigen; T lymphocyte; cytotoxic T lymphocyte; CTL. Homo sapiens.
OS Synthetic.

XX PN WO200141787-A1.

XX PD 14-JUN-2001.

XX PP 11-DEC-2000; 2000WO-US033591.

XX PR 10-DEC-1999; 99US-00458299.

XX PA (EPIM-) EPIMMUNE INC.

XX PI Fikes J, Sette A, Sidney J, Southwood S, Chesnut R, Celis E;

XX PI Keogh E;

XX DR 2001-374995/39.

XX An isolated prepared HER2/neu epitope useful in a vaccine for inducing cellular immune responses for the prevention and treatment of cancer. PT Example 2; Page 180; 199pp; English.

XX The present invention describes isolated prepared HER2/neu epitopes (I). Also described are: (1) a clonal cytotoxic T lymphocyte (CTL) that is culture *in vitro* and binds to a complex of an epitope (I), bound to a human leucocyte antigen (HLA) molecule; (2) a peptide (II) comprising (I) and a second epitope and the peptide is less than 50 contiguous amino acids that have 100% identity with a native peptide sequence of HER2/neu; (3) a vaccine composition (III) comprising (II) and a pharmaceutical excipient; (4) an isolated nucleic acid encoding a peptide comprising (I) and (5) an isolated nucleic acid encoding (III). (I) has cytosatic and immunostimulant activities, and can be used in vaccines. (I), (II) and (III) are useful for inducing cellular immune responses for the prevention and treatment of cancer. (I) and (II) are useful for preventing or evaluating an immune response to a tumour-associated

CC antigen (I), (II) and (III) are useful for inducing cellular immune responses for the

prevention and treatment of cancer. (I) and (II) are useful for monitoring or evaluating an immune response to a tumour-associated antigen when incubated with a T lymphocyte sample from a patient and detecting the presence of bound T cell receptor to (I) or (II). Epitope based vaccines mean that immunosuppressive epitopes that may be present in whole antigens may be avoided. Selected epitopes may be combined to enhance immunogenicity. The possible pathological side effects caused by infectious agents or whole protein antigen is eliminated. The vaccine provides the ability to direct and focus an immune response to multiple selected antigens from the same pathogen. Epitope-based anti-tumour vaccines provides the opportunity to combine epitopes derived from multiple tumour associated molecules addressing the problem of tumour-tumour variability and reducing the likelihood of tumour escape due to antigen loss. AAG8826 to AA89121 represent amino acid sequences used in the exemplification of the present invention.

Sequence 9 AA;

Query Match 100.0%; Score 43; DB 4; Length 9;
Best Local Similarity 100.0%; Pred. No. 1.4e+06;
Matches 9; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

1 KVFGSLAFV 9
| | | | | | |
1 KVFGSLAFV 9

SULT 4

B75509 AAB75509 standard; peptide; 9 AA.
AAB75509;

10-APR-2001 (First entry)

Tumour associated antigen Her2/neu HLA-A2 binding peptide.

Human leukocyte antigen; HLA; major histocompatibility complex; MHC; cytotoxic T lymphocyte; CTL; human class I MHC; immunogenic; HLA binding peptide; immune response; glycoprotein; cytostatic; virucide; hepatotrophic; antiinflammatory; anti-HIV; vaccine; human immunodeficiency virus; protozoacide; viral infection; cancer; prostate cancer; hepatitis B; hepatitis C; human papilloma virus; HPV; cytomegalovirus; CMV; acquired immunodeficiency syndrome; AIDS; cervical carcinoma; cervical carcinoma; lymphoma; malaria; condyloma acuminatum.

Homo sapiens.

WO200100225-A1.

04-JAN-2001.

28-JUN-2000; 2000WO-US017842.

29-JUN-1999; 99US-0141422P.

(EPIM-) EPIMMUNE INC.

Sette A, Sidney J, Southwood S;
WPI: 2001-112389/12.

Composition comprising human leukocyte antigen binding peptide which comprises isolated, prepared epitope useful for treating viral infections such as acquired immunodeficiency syndrome, and cancer.

Claim 1; Page 41; 58pp; English.

The present invention describes a composition (I) which comprises at least one human leukocyte antigen (HLA) binding peptide comprising an isolated, prepared epitope comprising one of 547 8-11 residue amino acid sequences (S1), given in AAB75803 to AAB75639. (I) has cytosstatic,

virucide, hepatotropic, antiinflammatory, anti-HIV (human immunodeficiency virus) and protozoacide activities, which can be used in vaccine production and is an inducer of cytotoxic T-cell response. (I) is useful for inducing a cytotoxic T cell response against a pre-selected antigen in a patient expressing a specific major histocompatibility complex (MHC) class I allele, by contacting cytotoxic T cells (CTLs) from the patient with (I). (I) is useful as a vaccine to treat and/or prevent viral infection and cancer such as prostate cancer, hepatitis B, hepatitis C, human papilloma virus (HPV) infection, cytomegalovirus (CMV), acquired immunodeficiency syndrome (AIDS), renal carcinoma, cervical carcinoma, lymphoma, malaria, and condyloma acuminatum.

SQ Sequence 9 AA;

Query Match 100.0%; Score 43; DB 4; Length 9;
Best Local Similarity 100.0%; Pred. No. 1.4e+06;
Matches 9; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Qy 1 KVFGSLAFV 9
| | | | | | |
Db 1 KVFGSLAFV 9

RESULT 5

ADA49638

ID ADA49638 standard; peptide; 9 AA.

XX AC ADA49638;

XX DT 20-NOV-2003 (first entry)

XX DB Multi-epitope construct specific epitope #180.

XX KW multi-epitope; immunogenic; epitope; major histocompatibility complex;

KW MHC class I; MHC class II; junctional epitope.

XX OS Unidentified.

XX US2002119127-A1.

XX PD 29-AUG-2002.

XX PF 27-JUN-2001; 2001US-00894018.

XX PR 26-DEC-1999; 99US-01173390P.

PR 28-DEC-2000; 2000WO-US035568.

PR 16-APR-2001; 2001US-0284221P.

XX XX

PA (SETTE A.) SETTE A.

PA (CHESI) CHESI R.

PA (LIVI) LIVINGSTON B. D.

PA (BAKE) BAKER D. M.

PA (NEWM) NEWMAN M. J.

PA (BROW) BROWN D. H.

XX PI Sette A, Chesnut R, Livingston BD, Baker DM, Newman MJ, Brown DH;

XX WPI: 2003-615704/58.

XX Disclosure; Fig 19E; 78pp; English.

The invention relates to a method of designing multi-epitope constructs comprising major histocompatibility complex (MHC) class I and II (CTL) epitope nucleic acids (CEN), involves sorting CEN, introducing flanking amino acid residue selected from specified amino acid residues given in specification at C-terminal position of CEN, introducing amino acid spacer residues between two CEN, and selecting the constructs having less junctional epitopes. The method is useful for designing a multi-epitope construct having multiple epitope nucleic acid. The method avoids or

CC The invention relates to a method of designing multi-epitope constructs CC comprising major histocompatibility complex (MHC) class I and II (CTL) CC epitope nucleic acids (CEN), involves sorting CEN, introducing flanking CC amino acid residue selected from specified amino acid residues given in CC specification at C-terminal position of CEN, introducing amino acid spacer CC residues between two CEN, and selecting the constructs having less CC junctional epitopes. The method is useful for designing a multi-epitope CC construct having multiple epitope nucleic acid.

minimises the occurrence of junctional epitopes and maximises the immunogenicity and/or antigenicity of multi-epitope vaccines. The present sequence represents the amino acid sequence of an epitope present in a multi-epitope construct.

Sequence 9 AA:
 Query Match Score 43; DB 7; Length 9;
 Best Local Similarity 100.0%; Pred. No. 1.4e+06;
 Matches 9; Conservative 0; Mismatches 0; Indels 0; Gaps 0;
 / 1 KVFGSLAFV 9
 > 1 KVFGSLAFV 9

RESULT 6

ADA49445 standard; protein; 144 AA.

X Multi-epitope construct #25.
 X multi-epitope; immunogenic; epitope; major histocompatibility complex;
 X MHC class I; MHC class II; junctional epitope.
 X Synthetic.
 X 20-NOV-2003 (first entry)
 X Multi-epitope construct #25.
 X multi-epitope; immunogenic; epitope; major histocompatibility complex;
 X MHC class I; MHC class II; junctional epitope.

Synthetic.

US2002119127-A1.

29-AUG-2002.

X (SETT/) SETTE A.
 X 27-JUN-2001; 2001US-00894018.
 X 28-DEC-1999; 99US-0173390P.
 X 28-DEC-2000; 2000WO-US015568.
 X 16-APR-2001; 2001US-0284221P.
 X (SETT/) SETTE A.
 X (CHES/) CHESTUT R.
 X (LIVI/) LIVINGSTON B D.
 X (BAKE/) BAKER D M.
 X (NEWM/) NEWMAN M J.
 X (BROW/) BROWN D H.

Sette A, Chesnut R, Livingston BD, Baker DM, Newman MJ, Brown DH;

WPI; 2003-615704/58.

N-PSDB; ADA49446.

CC Designing multi-epitope construct having major histocompatibility complex class I and II epitope nucleic acids, by selecting mixture of amino acid insertions at junctions of construct to minimize junctional epitopes.
 CC Disclosure; Fig 18K; 78pp; English.

CC The invention relates to a method of designing multi-epitope constructs comprising major histocompatibility complex (MHC) class I and II (CTL) epitope nucleic acids (CEN), involving sorting CEN, introducing flanking amino acid residue selected from specified amino acid residues given in specification at C-1 position of CEN, introducing amino acid spacer residues between two CEN, and selecting the constructs having less junctional epitopes. The method is useful for designing a multi-epitope constructs having multiple epitope nucleic acid. The method avoids or minimises the occurrence of junctional epitopes and maximises the immunogenicity and/or antigenicity of multi-epitope vaccines. The present sequence represents the amino acid sequence of a multi-epitope construct.

Sequence 144 AA;

X Q

Query Match Score 43; DB 7; Length 144;
 Best Local Similarity 100.0%; Pred. No. 0.73;
 Matches 9; Conservative 0; Mismatches 0; Indels 0; Gaps 0;
 / 1 KVFGSLAFV 9
 > 102 KVFGSLAFV 110

Sequence 9 AA:
 Query Match Score 43; DB 7; Length 9;
 Best Local Similarity 100.0%; Pred. No. 0.73;
 Matches 9; Conservative 0; Mismatches 0; Indels 0; Gaps 0;/ 1 KVFGSLAFV 9
 > 102 KVFGSLAFV 110

RESULT 7

ADA49447 standard; protein; 147 AA.

X ID ADA49447
 X XX
 X AC
 X XX
 X DT 20-NOV-2003 (first entry)

XX Multi-epitope construct #26.

X DB
 X XX
 X KW multi-epitope; immunogenic; epitope; major histocompatibility complex;
 X MHC class I; MHC class II; junctional epitope.X XX
 X OS Synthetic.X XX
 X PN US2002119127-A1.X XX
 X PD 29-AUG-2002.X XX
 X 29-AUG-2002.X XX
 X 27-JUN-2001; 2001US-00894018.X XX
 X PR 28-DEC-1999; 99US-0173390P.X XX
 X PR 28-DEC-2000; 2000WO-US035568.X XX
 X PR 16-APR-2001; 2001US-0284221P.X XX
 X PA (SETT/) SETTE A.

X PA (CHES/) CHESTUT R.

X PA (LIVI/) LIVINGSTON B D.

X PA (BAKE/) BAKER D M.

X PA (NEWM/) NEWMAN M J.

X PA (BROW/) BROWN D H.

X XX
 X PI Sette A, Chesnut R, Livingston BD, Baker DM, Newman MJ, Brown DH;X XX
 X DR WPI; 2003-615704/58.

X DR N-PSDB; ADA49448.

CC Designing multi-epitope construct having major histocompatibility complex class I and II epitope nucleic acids, by selecting mixture of amino acid

PT insertions at junctions of construct to minimize junctional epitopes.

XX Disclosure; Fig 18K; 78pp; English.

PS Sequence 147 AA.

XX The invention relates to a method of designing multi-epitope constructs

CC comprising major histocompatibility complex (MHC) class I and II (CTL)

CC epitope nucleic acids (CEN), introducing flanking

CC amino acid residue selected from specified amino acid residues given in

CC specification at C-1 position of CEN, introducing amino acid spacer

CC residues between two CEN, and selecting the constructs having less

CC junctional epitopes. The method is useful for designing a multi-epitope

CC construct having multiple epitope nucleic acid. The method avoids or

CC minimises the occurrence of junctional epitopes and maximises the

CC immunogenicity and/or antigenicity of multi-epitope vaccines. The present

CC sequence represents the amino acid sequence of a multi-epitope construct.

XX Sequence 147 AA;

CC The invention relates to a method of designing multi-epitope constructs

CC comprising major histocompatibility complex (MHC) class I and II (CTL)

CC epitope nucleic acids (CEN), involves sorting CEN, introducing flanking

CC amino acid residue selected from specified amino acid residues given in

CC specification at C-1 position of CEN, introducing amino acid spacer

CC residues between two CEN, and selecting the constructs having less

CC junctional epitopes. The method is useful for designing a multi-epitope

CC construct having multiple epitope nucleic acid. The method avoids or

CC minimises the occurrence of junctional epitopes and maximises the

CC immunogenicity and/or antigenicity of multi-epitope vaccines. The present

CC sequence represents the amino acid sequence of a multi-epitope construct.

X Q

Sequence 144 AA;

X Q

Sequence 9 AA:
 Query Match Score 43; DB 7; Length 147;

Best Local Similarity 100.0%; Pred. No. 0.74;

Matches 9; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

/ 1 KVFGSLAFV 9
 > 76 KVFGSLAFV 84

Db

	ISULT 8	XX DT 06-SEP-2001 (first entry)
)	ADA49443 standard; protein; 148 AA.	XX DE HLA A2 binding CTL epitope peptide from Her2/neu SEQ ID NO:9.
)	ADA49443;	XX KW Human leukocyte antigen A2 binding peptide; HLA Class I A2; CTL; Cytotoxic T-cell lymphocyte; tumour associated antigen; CEA; HER2/neu; MAGE2; MAGE3; p53; vaccine; cancer; cytostatic; immunomodulator; immunotherapy; immune response.
)	20-NOV-2003 (first entry)	XX OS Homo sapiens.
)	Multi-epitope construct #24.	XX PN WO200141741-A1.
)	multi-epitope; immunogenic; epitope; major histocompatibility complex; MHC class I; MHC class II; junctional epitope.	XX PD 14-JUN-2001.
)	Synthetic.	XX PF 13-DEC-2000; 2000WO-US034318.
)	US2002119127-A1.	XX PR 13-DEC-1999; 99US-0170448P.
)	29-AUG-2002.	PR 05-APR-2000; 2000US-005433608.
)	27-JUN-2001; 2001US-00894018.	PR 30-MAY-2000; 2000US-00583200.
)	(SETT/) SETTE A.	XX PA (EPIM-) EPIMUNE INC.
)	(CFES/ CHESTNUT R.	XX XX Compositions for use in a vaccine for treating, e.g., breast, lung and colon cancer comprises at least one peptide that comprises an isolated epitope of a tumor-associated antigen.
)	(LIV1/ LIVINGSTON B D.	XX PI Pikes J, Sette A, Sidney J, Southwood S, Celis E, Keogh E;
)	(BAKE/ BAKER D M.	XX PI Chesnut R;
)	(NEWM/ NEWMAN M J.	XX DR WPI; 2001-381489/40.
)	(BROW/ BROWN D H.	XX PS Claim 1; Page 76; 86pp; English.
)	Sette A, Chesnut R, Livingston BD, Baker DM, Newman MJ, Brown DH;	XX CC The present invention describes a composition (I) comprising at least one peptide that comprises an isolated, prepared epitope consisting of a sequence selected from 25 short amino acid sequences given in AB993690 to AB99704. Also described are: (1) a composition (II) comprising one or more peptides, and further comprising at least two epitopes selected from the 25 short amino acid sequences (as above), where each of the one or more peptides comprise less than 50 contiguous amino acids that have 100% identity with a native peptide sequence; and (2) a vaccine composition (III) comprising an epitope selected from the 25 short amino acid sequences (as above) and a pharmaceutical excipient. (1) has cytostatic and immunomodulatory activities and can be used in vaccine production and immunotherapy. The peptide epitope compositions (I)-(III) are useful for monitoring an immune response to a tumour associated antigen or when one or more peptides are combined to create a vaccine (III) that stimulates the cellular arm of the immune system. In particular, the vaccine mediates immune responses against tumours in individuals who bear an allele of the human leukocyte antigen (HLA) A2 supertype and improve the standard of care for patients being treated for breast, colon, or lung cancer
)	WPI; 2003-615704/58.	XX SQ Sequence 9 AA;
)	N-PRDB; ADA49444.	Query Match Score 40; DB 4; Length 9; Best Local Similarity 93.9%; Pred No 1.4e-06; Mismatches 1; Mismatches 0; Indels 0; Gaps 0;
)	Designing multi-epitope construct having major histocompatibility complex class I and II epitope nucleic acids, by selecting mixture of amino acid insertions at junctions of construct to minimize junctional epitopes.	Qy 1 KVFGSLAFV 9 Matches 8; Conservative 1; Indels 0; Gaps 0; Db 1 KVFGSLAFV 9
)	Disclosure; Fig 18K; 78pp; English.	RESULT 10 AAG8994 ID AAG88994 standard; peptide; 9 AA. XX AC AAG88994; XX DT 11-SEP-2001 (first entry)
)	The invention relates to a method of designing multi-epitope constructs comprising major histocompatibility complex (MHC) class I and II (CMV) epitope nucleic acids (CEN), introducing flanking amino acid residue selected from specified amino acid residues given in specification at C+1 position of CEN, introducing amino acid spacer residues between two CEN, and selecting the constructs having less junctional epitopes. The method is useful for designing a multi-epitope construct having multiple epitope nucleic acid. The method avoids or minimises the occurrence of junctional epitopes and maximises the immunogenicity and/or antigenicity of multi-epitope vaccines. The present sequence represents the amino acid sequence of a multi-epitope construct.	Sequence 148 AA;
)	Sequence 148 AA;	Query Match Score 43; DB 7; Length 148; Best Local Similarity 100.0%; Pred. No. 0.75; Mismatches 0; Indels 0; Gaps 0;
)	1 KVFGSLAFV 9 53 KVFGSLAFV 61	Qy 1 KVFGSLAFV 9 Matches 9; Conservative 0; Mismatches 0; Indels 0; Gaps 0; Db 1 KVFGSLAFV 9
)	AB99688	RESULT 9 AAG8994 ID AAG88994 standard; peptide; 9 AA. XX AC AAG88994; XX DT 11-SEP-2001 (first entry)
)	AB99688 standard; peptide; 9 AA.	Qy 1 KVFGSLAFV 9 Matches 9; Conservative 0; Mismatches 0; Indels 0; Gaps 0; Db 1 KVFGSLAFV 9
)	AB99688	RESULT 9 AAG8994 ID AAG88994 standard; peptide; 9 AA. XX AC AAG88994; XX DT 11-SEP-2001 (first entry)

X E HER2/neu epitope HLA-A2 supermotif-bearing peptide #7.
 X Human; HER2/neu; epitope; human leukocyte antigen; HLA; T cell;
 W immune response; vaccine; tumour; cancer; cytostatic; immunostimulant;
 W tumour-associated antigen; T lymphocyte; cytotoxic T lymphocyte; CTL;
 X Homo sapiens.
 S Synthetic.
 X WO200141787-A1.
 X D 14-JUN-2001.
 X X 11-DEC-2000; 2000WO-US033591.
 X R 10-DEC-1999; 99US-00458299.
 A (EPIM-) EPIMMUNE INC.
 X I Fikes J., Sette A., Sidney J., Southwood S., Chesnut R., Celis E.;
 I Keogh E.;
 X R WPI: 2001-374995/39.
 X T An isolated prepared HER2/neu epitope useful in a vaccine for inducing
 cellular immune responses for the prevention and treatment of cancer.
 S Claim 1; Page 189; 199pp; English.
 C The present invention describes isolated prepared HER2/neu epitopes (I).
 C Also described are: (1) a clonal cytotoxic T lymphocyte (CTL) that is
 culture in vitro and binds to a complex of an epitope (I), bound to a
 human leukocyte antigen (HLA) molecule; (2) a peptide (II) comprising (I)
 and a second epitope and the peptide is less than 50 contiguous amino
 acids that have 100% identity with a native peptide sequence of HER2/neu;
 C (3) a vaccine composition (III) comprising (II) and a pharmaceutical
 C excipient; (4) an isolated nucleic acid comprising (II) and a pharmaceutical
 C excipient; (4) an isolated nucleic acid encoding (II); (I) has cytostatic and
 C immunostimulant activities, and can be used in vaccines. (I), (II) and
 C (III) are useful for inducing cellular immune responses for the
 prevention and treatment of cancer. (I) and (II) are useful for
 monitoring or evaluating an immune response to a tumour-associated
 antigen when incubated with a T lymphocyte sample from a patient and
 detecting the presence of bound T lymphocyte to (I) or (II). Epitope
 based vaccines mean that immunosuppressive epitopes may be present
 in whole antigens may be avoided. Selected epitopes may be present to
 enhance immunogenicity. The possible pathological side effects caused by
 infectious agents or whole protein antigen is eliminated. The vaccine
 provides the ability to direct and focus an immune response to multiple
 selected antigens from the same pathogen. Epitope-based anti-tumour
 vaccines provides the opportunity to combine epitopes derived from
 multiple tumour-associated molecules addressing the problem of tumour
 tumour variability and reducing the likelihood of tumour escape due to
 antigen loss. AAG8826 to AAG89121 represent amino acid sequences used in
 the exemplification of the present invention.

X Sequence 9 AA:
 Query Match 93.0%; Score 40; DB 4; Length 9;
 Best Local Similarity 88.9%; Pred. No. 1.4e+06;
 Matches 8; Conservative 1; Mismatches 0; Indels 0; Gaps 0;

Y 1 KVFGSLAFV 9
 b 1 KVFGSLAFV 9

RESULT 12
 AG88788 Standard; peptide; 9 AA.
 D AAG88788 Standard; peptide; 9 AA.
 X AAG88788
 C

XX DT 11-SEP-2001 (first entry)
 XX DE HER2/neu A2 supermotif crossbinding peptide #32.
 XX Human; HER2/neu; epitope; human leukocyte antigen; HLA; T cell;
 KW immune response; vaccine; tumour; cancer; cytostatic; immunostimulant;
 KW tumour-associated antigen; T lymphocyte; cytotoxic T lymphocyte; CTL;
 XX Homo sapiens.
 OS Synthetic.

XX PN WO200141787-A1.
 XX PD 14-JUN-2001.
 XX PF 11-DEC-2000; 2000WO-US033591.
 XX PR 10-DEC-1999; 99US-00458299.
 PA (EPIM-) EPIMMUNE INC.
 XX PT An isolated prepared HER2/neu epitope useful in a vaccine for inducing
 cellular immune responses for the prevention and treatment of cancer.
 XX PS Example 2; Page 180; 199pp; English.
 XX CC The present invention describes isolated prepared HER2/neu epitopes (I).
 CC Also described are: (1) a clonal cytotoxic T lymphocyte (CTL) that is
 CC culture in vitro and binds to a complex of an epitope (I), bound to a
 CC human leukocyte antigen (HLA) molecule; (2) a peptide (II) comprising (I)
 CC and a second epitope and the peptide is less than 50 contiguous amino
 CC acids that have 100% identity with a native peptide sequence of HER2/neu;
 CC (3) a vaccine composition (III) comprising (II) and a pharmaceutical
 CC excipient; (4) an isolated nucleic acid comprising (II) and a pharmaceutical
 CC excipient; (4) an isolated nucleic acid encoding (II); (I) has cytostatic and
 CC immunostimulant activities, and can be used in vaccines. (I), (II) and
 CC (III) are useful for inducing cellular immune responses for the
 CC prevention and treatment of cancer. (I) and (II) are useful for
 CC monitoring or evaluating an immune response to a tumour-associated
 CC antigen when incubated with a T lymphocyte sample from a patient and
 CC detecting the presence of bound T lymphocyte to (I) or (II). Epitope
 CC based vaccines mean that immunosuppressive epitopes that may be present
 CC in whole antigens may be avoided. Selected epitopes may be present to
 CC enhance immunogenicity. The possible pathological side effects caused by
 CC infectious agents or whole protein antigen is eliminated. The vaccine
 CC provides the ability to direct and focus an immune response to multiple
 CC selected antigens from the same pathogen. Epitope-based anti-tumour
 CC vaccines provides the opportunity to combine epitopes derived from
 CC multiple tumour-associated molecules addressing the problem of tumour
 CC tumour variability and reducing the likelihood of tumour escape due to
 CC antigen loss. AAG8826 to AAG89121 represent amino acid sequences used in
 CC the exemplification of the present invention.

XX SQ Sequence 9 AA;
 Query Match 93.0%; Score 40; DB 4; Length 9;
 Best Local Similarity 88.9%; Pred. No. 1.4e+06;
 Matches 8; Conservative 1; Mismatches 0; Indels 0; Gaps 0;

Qy 1 KVFGSLAFV 9
 Db 1 KVFGSLAFV 9

W human immunodeficiency virus; human papilloma virus; p53; c-ERBB2; MAGB-1;
 W melanoma antigen-1; core antigen; surface antigen;
 W pharmaceutical composition; in vivo; ex vivo; therapeutic; diagnostic;
 W MHC class I molecule; major histocompatibility complex; HLA-A2.1; gme-;
 W 10mer; anchor; human leukocyte antigen; Pgp; 8mer; algorithm prediction;
 W MBP; CMV; cytomegalovirus; HSV; herpes simplex virus.
 X Homo sapiens.
 X W09420127-A1.
 X X D 15-SEP-1994.
 X X F 04-MAR-1994; 94WO-US002353.
 X X R 05-MAR-1993; 93US-00027146.
 X R 04-JUN-1993; 93US-000273205.
 X R 29-NOV-1994; 93US-00159184.
 X X (CYTE-) CYTEL CORP.
 X A Grey FM, Sette A, Sidney J, Kast W;
 X T Immunogenic peptide(s) having an HLA-A2.1 binding motif - used for
 X treatment or prophylaxis of cancer, virus infection or autoimmune
 X diseases.
 X Disclosure, Page 80, 138pp; English.

X ARR73685-876 are potential peptide binders of HLA-A2.1 motif. Using
 C motifs disclosed in the invention, these peptides were screened for
 C further motifs. Only peptides with binding affinity of at least 1%
 C (binding affinity is expressed as an IC50 value) as compared to the
 C standard peptide (ARR71233) in assays. This peptide has an binding value
 C of 0.1500. The peptide(s) of the invention can induce cytotoxic T
 C lymphocytes which can react with target cells. They can be used for the
 C treatment or prophylaxis of cancer, eg. prostate cancer or lymphoma, etc.
 C (Updated on 25-MAR-2003 to correct PN field.)

Sequence 9 AA;

Query Match 90.7%; Score 39; DB 2; Length 9;
 Best Local Similarity 77.8%; Pred. No. 1.4e+06;
 Matches 7; Conservative 2; Mismatches 0; Indels 0; Gaps 0;

Y 1 RVFGSLAFV 9
 b 1 :|:|||: 1 KIFGSLAFL 9

RESULT 15

AR97507 D ARR97507 standard; peptide; 9 AA.
 X C ARR97507;
 X T 11-FEB-1997 (first entry)

X E Cytotoxic T lymphocyte-activating Her-2/Neu-specific peptide.
 X X p53; Her-2; Neu; aa; amino acid; CTL; cytotoxic T lymphocyte; target;
 X malignant cell; antigen; vaccine; immunisation; activation.
 X Homo sapiens.
 X X WO9618409-A1.
 D 20-JUN-1996
 X X 14-DEC-1995; 95WO-US016415.

PR 14-DEC-1994; 94US-00355558.
 XX PA (SCRIB) SCRIPPS RES INST.
 XX PI Sherman LA;
 XX DR WPI; 1996-300385/30.
 PT In vivo activation of tumour-specific cytotoxic T lymphocytes - by
 PT contacting with polypeptide(s) derived from human p53 or Her-2/Neu
 proteins.
 PT XX
 PS Claim 5; Page 124; 158pp; English.
 PS XX
 CC AAR97507 is a peptide capable of activating cytotoxic T lymphocytes
 CC (CTLs) which specifically target malignant cells. The peptide corresponds
 CC to amino acids 389-377 of human Her-2/Neu protein. CTLs activating
 CC peptides can be used in a vaccine for protecting against tumour cell
 CC formation. CTLs activated by the peptides will lyse tumour cells
 CC displaying specific peptides. Antibodies against CTL- activating peptides
 CC are useful for the identification of other similar compounds which may
 CC be useful for treating cancer or virally- infected cells, or for diagnosis.
 CC The peptide and vaccines produced provide immunity to a high percentage
 CC of different ethnic groups, i.e., those with different HLA alleles.
 XX SQ Sequence 9 AA;
 Query Match 90.7%; Score 39; DB 2; Length 9;
 Best Local Similarity 77.8%; Pred. No. 1.4e+06;
 Matches 7; Conservative 2; Mismatches 0; Indels 0; Gaps 0;

QY 1 KVFGSLAFV 9
 Db 1 :|:|||: 1 KIFGSLAFL 9

Search completed: May 17, 2004, 12:54:32
 Job time : 42.5161 secs

GenCore version 5.1.6
(c) 1993 - 2004 Compugen Ltd.

M protein - protein search, using sw model

un on: May 17, 2004, 12:47:22 ; Search time 28.7419 Seconds

(without alignments)
98.799 Million cell updates/sec

title: US-09-458-299A-4233

effect score: 4.3

reference: 1 KVFGSLAFLV 9

scoring table: BLOSUM62

Gapop 10.0 , Gapext 0.5

searched: 10107041 seqs, 315518202 residues

total number of hits satisfying chosen parameters: 1017041

minimum DB seq length: 0

maximum DB seq length: 2000000000

ost-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

atabase : SPTRIMBL2

1: sp_archea:*

2: sp_bacteria:*

3: sp_fungi:*

4: sp_human:*

5: sp_invertebrate:*

6: sp_mammal:*

7: sp_micr:*

8: sp_organelle:*

9: sp_plage:*

10: sp_plant:*

11: sp Rodent:*

12: sp_virus:*

13: sp_vertebrat:*

14: sp_unclassified:*

15: sp_virus:*

16: sp_bacteriap:*

17: sp_archaeap:*

17 34 79.1 181 16 Q82n79 Streptomyce

18 34 79.1 249 16 Q8d479 vibrio vuln

19 34 79.1 454 5 Q9xtu7 caenorhabdii

20 34 79.1 553 5 Q8suF9 encephalito

21 34 79.1 562 13 Q7T2C0 brachydianio

22 34 79.1 769 16 Q7UJ55 rhodopirell

23 34 79.1 822 10 Q9shL9 arribidopsis

24 34 79.1 3373 12 Q9i9C2 apoi virus

25 32 76.7 231 5 Q19158 caenorhabdii

26 33 76.7 297 16 Q9z866 chlamydia p

27 33 76.7 331 2 Q8vm84 rhizobium p

28 33 76.7 335 5 Q1809 caenorhabdii

29 33 76.7 343 10 Q9uax3 caenorhabdii

30 33 76.7 370 10 Q9lyt5 arribidopsis

31 33 76.7 391 17 Q979S3 thermoplasma

32 33 76.7 404 10 Q9f1x8 arribidopsis

33 33 76.7 443 16 Q8a8Y3 bacteroides

34 33 76.7 505 5 Q912K5 caenorhabdii

35 33 76.7 602 16 Q8KDR8 chlorobium

36 32 74.4 96 17 Q8TQN9 methanocarc

37 32 74.4 105 8 Q85nZ2 naibates fu

38 32 74.4 125 8 Q8m3S3 naibates fu

39 32 74.4 125 8 Q8lvt8 naibates ha

40 32 74.4 129 16 Q8z11S salmonella

41 32 74.4 180 16 Q9xx23 streptomyce

42 32 74.4 244 5 Q86FB4 schistosoma

43 32 74.4 257 8 Q8wA73 hemisus tab

44 32 74.4 337 16 Q89p67 bradyrizob

45 32 74.4 342 16 Q98FZ0 rhizobium 1

ALIGNMENTS

RESULT 1

Q80Y89 PRELIMINARY; PRT: 711 AA.

ID Q80Y89; TREMBLrel. 24, Created)

AC Q80Y89; (TREMBLrel. 24, Last sequence update)

DT 01-JUN-2003 (TREMBLrel. 24, Last annotation update)

DT 01-OCT-2003 (TREMBLrel. 25, Last annotation update)

DE V-erb-b2 erythroblastic leukemic viral oncogene homolog (Hypothetical

DE protein).

OS Mus musculus (Mouse).

Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Buteleostomi;

OC Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Muris.

OC NCBITaxID=10090;

[1]

SEQUENCE FROM N.A.

RP STRAIN=C57BL/6; TISSUE=Brain;

RX MEDLINE=2388257; Published=12477932;

RA Strasbourg R.L., Feingold B.A., Grouse L.H., Derge J.G.,

RA Klausner R.D., Colling F.S., Wagner L., Shemesh C.M., Schuler G.D.,

RA Altschul S.F., Zeeberg B., Buetow K.H., Schaefer C.P., Bhat N.K.,

RA Hoischen R.F., Jordan H., Moore T., Max S.J., Wang J., Hsieh F.,

RA Diachenko L., Marusina K., Farmer A.A., Rubin G.M., Hong L.,

RA Stapleton M., Soares M.B., Bonaldo M.F., Casavant T.L., Scheetz T.E.,

RA Brownstein M.J., Usdin L.B., Tohmyri S., Carninci P., Prange C.,

RA Loqueland N.A., Peters G.J., Abramson R.D., Mullayah S.J.,

RA Rahi S.S., Zeeberg B., Buetow K.H., Gunaratne P.H.,

RA Bosak S.A., McEwan P.J., McKernan K.J., Malek J.A., Gunaratne P.H.,

RA Richards S., Worley K.C., Hale S., Garcia A.M., Gay L.J., Hulyk S.W.,

RA Villalon D.K., Mizny D.M., Sodergren E.J., Gibbs R.A.,

RA Fahay J., Helton E., Kettenman M., Nedan A., Rodriguez S., Sanchez A.,

RA Whiting M., Madan A., Young A.C., Shavchnik Y., Bouffard G.G.,

RA Blakesley R.W., Touchman J.W., Green E.D., Dickson M.C.,

RA Rodriguez A.C., Grimmel J., Schmutz J., Myers R.M., Butterfield Y.S.,

RA Krzywinski M.I., Skalska U., Smilus D.E., Schnurch A., Schein J.E.,

RA Jones S.J., Marrs M.A.; "Generation and initial analysis of more than 15,000 full-length human

and mouse cDNA sequences.", Proc. Natl. Acad. Sci. U.S.A. 99:16899-16903 (2002).

[2]

SUMMARIES

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

Description

result Query ID Description

No. Score Match Length DB

1 39 90.7 711 11 Q80Y89

Q80Y89 mus musculus

Q8k3F9 canis familiaris

Q8lgu1 rattus norvegicus

Q8lu34 arribidopsis

Q8guco caenorhabditis

Q8y19 brachydianus

Q7vnu0 haemophilus

Q7wxz9 oryza sativa

Q9i5ns pseudomonas

Q81vao bacillus an-

Q8lt18 lactococcus

Q83cr5 coxiella bu-

Q8fxs3 brucella su-

[2]

RC	STRAIN=Columbia;
RA	Sato S., Nakamura Y., Kaneko T., Kato T., Asamizu E., Tabata S. ;
RA	Submitted (FEB-1999) to the EMBL/GenBank/DDBJ databases.
RN	[2]
RP	SEQUENCE FROM N.A.
RC	STRAIN=Columbia;
RX	Medline=30277480; PubMed=10193599;
RA	Nakamura Y. ;
RT	"Structural analysis of Arabidopsis thaliana chromosome 3, I. Sequence features of the regions of 4,504,864 bp covered by sixty P1 and TAC clones." ;
RL	RNA Res. 7:131-135(2000).
CC	- SIMILARITY: BELONGS TO THE ABC TRANSPORTER FAMILY.
DR	EMBL; AB230454; BAB01717.1; -.
DR	GO; GO:0016020; C-membrane; IEA.
DR	GO; GO:0005524; F-ATP binding; IEA.
DR	GO; GO:0000009; F-nucleotide cassette (ABC) transporter acti. . . ; IEA.
DR	GO; GO:0000166; F-nucleotide binding; IEA.
DR	GO; GO:0006810; P-transport; IEA.
DR	InterPro; IPR003593; AAA_APase.
DR	InterPro; IPR001110; ABC_TM transport.
DR	InterPro; IPR003439; ABC_T-transporter.
DR	Pfam; PF00664; ABC_membrane; 2.
DR	Pfam; PF00054; ABC_tran; 2.
DR	PtDB; PD000006; ABC_transporter; 2.
DR	SMART; SMO3882; AAA_2.
DR	PROSITE; PS00011; ABC_TRANSPORTER_1; 1.
DR	PROSITE; PS050893; ABC_TRANSPORTER_2; 2.
KW	ATP-binding; Transport; Transport.
SQ	SEQUENCE 1:06 AA: 144848 MW: 738P0731B86C0D78 CRC64 ;
Query Match	88.4% ; Score 38; DB 10; Length 1306;
Best Local Similarity	77.8% ; Prd. No. 39;
Matches	7; Conservative 2; Mismatches 0; Indels 0; Gaps
Qy	1 KVFSSLAFFV 9
Db	499 KVFSSIAVY 507
RESULT 6	
Q9GU00	PRELIMINARY;
ID	Q9GU00
AC	Q9GU00;
DT	01-MAR-2001 (TREMBL) 1. 16, Created)
DT	01-OCT-2001 (TREMBL) 1. 16, Last sequence update)
DT	01-OCT-2003 (TREMBL) 2. 25, Last annotation update)
DE	Hypothetical protein.
GN	F48G1.
OS	Caenorhabditis elegans.
OC	Eukaryota; Metazoa; Nematoda; Chromadorea; Rhabditida; Rhabditoidae;
OC	Rhabditidae; Peloderrinia; Caenorhabditis.
OX	NCBI_TaxID=6239.
RN	[1] _
RP	SEQUENCE FROM N.A.
RC	STRAIN=Bristol N2;
RX	Medline=9905613; PubMed=9851916;
RA	None;
RT	"Genome sequence of the nematode <i>C. elegans</i> : a platform for investigating biology." The <i>C. elegans</i> Sequencing Consortium. ";
RL	Science 282:2012-2018(1998).
RN	[2]
RP	SEQUENCE FROM N.A.
RC	STRAIN=Bristol N2;
RA	Waterson R. ;
RT	"Direct Submissions." ;
RL	Submitted (TN-1998) to the EMBL/GenBank/DDBJ databases.
RN	[3]
RP	SEQUENCE FROM N.A.
RC	STRAIN=Bristol N2;
RA	Wohlbach M. ;
RA	Clarke K., Wohlbach M., Harrison M. ;
RT	"The sequence of <i>C. elegans</i> cosmid F48G7." ;
RL	Submitted (TN-1998) to the EMBL/GenBank/DDBJ databases.

Q915N6	PRELIMINARY;	PRT;	4180 AA.	RJ	Nature 423:81-86 (2003).
Q915N6;				DR	EMLB; AE017026; AAF24617.1; -.
Q915N6;				DR	ITGR; BA0398; -.
Q915N6;				KW	Hypothetical protein; Complete proteome.
Q915N6;				SQ	SEQUENCE 43 AA; 4607 MW; C952AC26FE082CAF CRC64;
01-MAR-2001 (TREMBLrel. 16, Last sequence update)				Query Match	Score 34; DB 16; Length 43;
01-MAR-2001 (TREMBLrel. 16, Last annotation update)				Best Local Similarity 75.0%;	Pred. No. 8.2;
HYPOTHEICAL protein PA0690.				Matches 6;	Mismatches 0; Indels 0; Gaps 0;
PA0690.				Qy	2 VFGSLAFV 9
Pseudomonas aeruginosa.				Db	5 VFGALAFI 12
Bacteria; Proteobacteria; Gammaproteobacteria; Pseudomonadales;					
Pseudomonadaceae; Pseudomonas.					
[1]NCBI_TaxID=287;					
SEQUENCE FROM N.A.					
SEQUENCE=ATCC 15692 / PA01;					
MEDLINE=20437337; PubMed=10984043;					
Stover C.K., Pham X.-Q.T., Erwin A.L., Mizoguchi S.D., Warrener P.M.,					
Hickey M.J., Brinkman F.S.L., Ruffinagle W.O., Kowalek D.J., Lagrou M.,					
Gabber R.L., Brinkman F.S.L., Huffnagle W.O., Kowalek D.J., Lagrou M.,					
Gabber R.L., Tolentino E., Westbroek-Wadman S., Yuan Y.,					
Brody L.L., Coulter S.N., Folger K.R., Kas A., Larbig K., Lim R.M.,					
Smith K.A., Spencer D.H., Wong G.K.-S., Wu Z., Paulsen I.T.,					
Reizer J., Sauer M.H., Hancock R.E.W., Lory S., Olson M.V.,					
"Complete genome sequence of <i>Pseudomonas aeruginosa</i> PA01, an					
opportunistic pathogen";					
PIR; AE004514; ASP04079.1; -.					
PIR; GO:0004110; P:aspartic-type endopeptidase activity; IEA.					
GO: GO:0006508; P:proteolysis and peptidolysis; IEA.					
InterPro; IP001969; AspPropeptase_AS.					
InterPro; IP0008638; Haemagg_act.					
PFAM; PF05865; Haemagg_actCT_1.					
HYPOTHEICAL PROTEIN; PS00141; ASP04079.1.					
HYPOTHEICAL PROTEIN; Complete proteome.					
SEQUENCE 4180 AA; 430016 MW; EB181ER3E01BC7AC CRC64;					
Query Match	Score 35;	DB 16;	Length 4180;		
Best Local Similarity 87.5%;	Pred. No. 5.8e+02;				
Matches 7;	Conservative 1;	Mismatches 0;	Indels 0;		
	2 VFGSLAFV 9				
	1553 VFGSLAFM 1560				
RESULT 11					
311VA0	PRELIMINARY;	PRT;	43 AA.	Qy	1 KVFGSLAFV 9
Q8IVAO;				Db	29 KVFGTVAFL 37
Q8IVAO;					
01-JUN-2003 (TREMBLrel. 24, Created)					
01-JUN-2003 (TREMBLrel. 24, Last sequence update)					
01-JUN-2003 (TREMBLrel. 24, Last annotation update)					
HYPOTHEICAL protein.					
BA0598.					
Bacillus anthracis (strain Ames).					
Bacillales; Bacillaceae; Bacillus.					
[1]NCBI_TaxID=138094;					
SEQUENCE FROM N.A.					
MEDLINE=2260814; PubMed=12721629;					
Read T.D., Peterson S.N., Tourasse N., Baillie L.W., Paulsen I.T.,					
Nelson K.E., Tettelin H., Fouts D.B., Eisen J.A., Gill S.R.,					
Holtzapflle E.K., Okstad O.A., Helgason E., Rilstone J., Wu M.,					
Kolonay J.F., Beanan M.J., Dodson R.J., Brinkac L.M., Gwinn M.,					
DeBoy R.T., Madupu R., Daugherty S.C., Durkin A.S., Haff D.H.,					
Nelson W.C., Peterson J.D., Pop M., Khouri H.M., Radune D.,					
Bentzen J.L., Mahamoud Y., Jiang L., Hance I.R., Weidman J.F.,					
Bentzen K.J.L., Pfeifer R.D., Wolf A.M., Watkins K.L., Nieman W.C.,					
Hazen A., Cline R., Redmond C., Thwaite J.B., White O., Saizberg S.L.,					
Thomason B., Friedlander A.M., Koehler T.M., Hanna P.C., Kolsto A.-B.,					
Frazer C.M.,					
The genome sequence of <i>Bacillus anthracis</i> Ames and comparison to					
closely related bacteria.";					
Query Match	Score 34;	DB 9;	Length 59;		

Best Local Similarity 65.7%; Pred. No. 11; Matches 6; Conservative 3; Mismatches 0; Indels 0; Gaps 0; Qy 1 KVFGSLAFV 9
 Db 54 RTFGPLVVF 62

Search completed: May 17, 2004, 12:56:25
 Job time : 30.7419 secs

ESULT 14
 83CR5 PRELIMINARY; PRT; 133 AA.
 D Q83CR5;
 C Q83CR5;
 T 01-JUN-2003 (TREMBLrel. 24, Created)
 T 01-JUN-2003 (TREMBLrel. 24, Last sequence update)
 E Hypothetical protein.
 C CB1042.
 S Coxiella burnetii.
 C Bacteria; Proteobacteria; Gammaproteobacteria; Legionellales;
 C Coxiellaceae; Coxiella.
 X N [1] -
 N P SEQUENCE FROM N.A.
 C STRAIN=Nine Mile phase I / RSA 493;
 X MEDLINE=2260865; PubMedID=12704232;
 A Seshadri R., Paulsen I.T., Eisen J.A., Read T.D., Nelson K.E.,
 A Neidley W.C., Ward N.L., Tettelin H., Davidsen T.M., Beanan M.J.,
 A DeBoy R.T., Daugherty S.C., Brinkac L.M., Madupu R., Dodson R.J.,
 A Khouri H.M., Lee K.H., Cartt H.A., Scanlan D., Heinzen R.A.,
 A Thompson H.A., Samuel J.E., Fraser C.M., Heidelberg J.F.;
 T "Complete genome sequence of the Q-fever pathogen, Coxiella
 burnetii".
 L Proc. Natl. Acad. Sci. U.S.A. 100:5455-5460 (2003).
 R EMBL; AE016963; AA090558.1; -.
 R TIGR; CB1042; -.
 W Hypothetical protein; Complete proteome.
 Q SEQUENCE 133 AA; 15055 MN; 7519BC7662A96F34 CRC64;
 Q

Query Match 79.1%; Score 34; DB 16; Length 133;
 Best Local Similarity 75.0%; Pred. No. 27;
 Matches 6; Conservative 2; Mismatches 0; Indels 0; Gaps 0;

Y 2 VFGSLAFV 9
 b 51 RTFGPLVVF 58

ESULT 15
 8GLF9 PRELIMINARY; PRT; 134 AA.
 D Q8GLF9;
 C Q8GLF9;
 T 01-MAR-2003 (TREMBLrel. 23, Created)
 T 01-MAR-2003 (TREMBLrel. 23, Last sequence update)
 T 01-MAR-2003 (TREMBLrel. 23, Last annotation update)
 B Immunoreactive protein Se23.5 (Fragment).
 S Streptococcus equi.
 C Bacteria; Firmicutes; Lactobacillales; Streptococcaceae;
 C Streptococcus.
 X N [1] -
 N P SEQUENCE FROM N.A.
 C STRAIN=CF12; Timoney J.; Timoney J., Timoney J.,
 A Qin A., Artiushin S., Artiushin S., Timoney J.;
 T "Identification and Genomic Organization of Genes for Immunoactive
 T Surface Exposed Proteins of Streptococcus equi";
 T Submitted (JUL-2002) to the EMBL/GenBank/DBJ databases.
 R EMBL; AY17526; AAN1826; AAN1826.1; -.
 T NON TER 134 134
 Q SEQUENCE 134 AA; 15366 MN; BC3811DD1744F87F CRC64;
 Q

Query Match 79.1%; Score 34; DB 2; Length 134;
 Best Local Similarity 77.8%; Pred. No. 27;
 Matches 7; Conservative 0; Mismatches 2; Indels 0; Gaps 0;

GenCore version 5.1.6
 Copyright (c) 1993 - 2004 Compugen Ltd.

4 protein - protein search, using sw model

on: May 17, 2004, 12:51:02 ; Search time 10.1613 Seconds

(without alignments)
 85.198 Million cell updates/sec

title: US-09-458-299A-4233

score: 43

sequence: 1 KVEGSLAFV 9

scoring table: BL005M62

Gapopen 10.0 , Gapext 0.5

searched: 283366 seqs, 96191526 residues

total number of hits satisfying chosen parameters: 283366

minimum DB seq length: 0

maximum DB seq length: 2000000000

dst-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

database :

PIR_78;*

1: PIR;*

2: pir2;*

3: Pir;*

4: Pir;*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

result No.	Score	Query	Match Length	DB ID	Description
1	39	90.7	1254	2 I48161	p-185 precursor - protein-tyrosine k
2	39	90.7	1255	1 A24571	protein-tyrosine k
3	39	90.7	1260	1 TVRTTV	hypothetical prote
4	36	83.7	1355	2 T28747	hypothetical prote
5	35	81.4	298	2 S53849	ribosomal protein
6	35	81.4	4180	2 G83559	hypothetical prote
7	34	79.1	454	2 T27040	probable retroelement
8	34	79.1	822	2 GB4552	hypothetical prote
9	33	76.7	231	2 T20547	4-hydroxybenzoate
10	33	76.7	297	2 A72100	benoate octophenyl
11	33	76.7	297	2 A86524	hypothetical prote
12	33	76.7	335	2 T20920	hypothetical prote
13	33	76.7	343	2 T33989	hypothetical prote
14	33	76.7	370	2 T48578	hypothetical prote
15	33	76.7	505	2 T26764	probable membrane
16	33	76.7	616	2 B84500	probable membrane
17	32	74.4	129	2 AB1032	transport
18	32	74.4	385	2 AH0353	di-tripeptide trans
19	32	74.4	492	2 AD1144	hypothetical prote
20	32	74.4	502	2 G71055	transmembrane trans
21	32	74.4	503	2 D75104	hypothetical prote
22	32	74.4	503	2 T43969	SF1 protein - human
23	32	74.4	503	2 J01654	lysyl-tRNA synthet
24	32	74.4	561	2 AH2314	probable membrane-
25	32	74.4	779	2 H71301	probable methyl-ac
26	32	74.4	845	2 H71317	daf-18 protein - C
27	32	74.4	962	2 T32574	hypothetical prote
28	32	74.4	965	2 H84486	protein Ty1/copia-
29	32	74.4	1152	2	

RESULT 1						
I48161	P-185 precursor - Golden hamster	C;Species: Mesocricetus auratus (golden hamster)	C;Date: 02-Jul-1996 #sequence_revision 02-Jul-1996 #text_change 18-Jun-1999			
		C;Accession: I48161	R;Nakamura, T.; Ushijima, T.; Ishizaka, Y.; Nagao, M.; Arai, M.; Yamazaki, Y.; Ishikawa, Gene 140, 251-255, 1994			
		A;Title: Cloning and activation of the Syrian hamster ne proto-oncogene.	A;Reference number: I48161; PMID:9193007; PMID:7908275			
		A;Accession: I48161	A;Status: preliminary; translated from GB/EMBL/DDJB			
		A;Molecule type: mRNA	A;Residues: 1-1254 <PES>			
		C;Cross-references: GB:D16295; NID:9493236; PIDN:BAA03801.1; PID:g747595	C;Genetics:			
		A;Gene: neu	C;SuperFamily: epidermal growth factor receptor; protein kinase homology			
		C;Keywords: ATP	F;718-983/Domain: protein kinase ATP-binding motif			
		F;726-734/Region: protein kinase ATP-binding motif				

RESULT 2						
Query Match	90.7%	Score 39:	DB 2:	Length 1254;		
Best Local Similarity	77.8%	Pred. No. 7.1;				
Matches	7;	Conservative	2; Mismatches 0;	Indels 0;	Gaps 0;	
Qy	1 KVFGSLAFV 9					
Db	369 KIFGSLAPL 377					

:Residues: 737-1031 <SEM>
;Cross-references: GB: M11767; NID: g182163; PID: AAA35808.1;
;Cousseen, L.; Yang-Peng, T.L.; Liao, Y.C.; Chen, E.; McGrath, J.; Seeburg, F.
;Title: Tyrosine kinase receptor with extensive homology to EGF receptor shares chromosome 230
;Reference number: A44188; MUID: 86070181; PMID: 2999974
;Accession: A44188
;Molecule type: DNA
;Residues: 740-910 <COU1>
;Cross-references: GB: M12036; NID: g183988; PIDN: AAA35978.1; PID: g183989
;Molecule type: mRNA
;Accession: B44188
;Cross-references: GB: M11767; NID: g183986
;Molecule type: mRNA
;Accession: B44188
;Cross-references: GB: M1170; NID: g183985
;King, C.R.; Kraus, M.H.; Aaronson, S.A.
;Title: Amplification of a novel v-erbB-related gene in a human mammary carcinoma.
;Reference number: I59509; MUID: 85272597; PMID: 12932089
;Status: translated from GB/EMBL/DDJB
;Molecule type: DNA
;Residues: 832-909 <REX>
;Cross-references: GB: I229335; NID: g49807; PIDN: AAA35809.1; PID: g455808
;Tal, M.; King, C.R.; Kraus, M.H.; Ulrich, A.; Schlessinger, J.; Givol, D.
;J. Cell. Biol., 107, 2597-2601, 1987
;Title: Human HER2 (neu) promoter: evidence for multiple mechanisms for transcriptional regulation
;Reference number: I57622; MUID: 87286898; PMID: 3039351
;Accession: I57622
;Status: translated from GB/EMBL/DDJB
;Molecule type: DNA
;Gene: SDB: ERBB2; NGL; NEU; HER-2
;Cross-references: GDB: M16792; NID: g183983; PIDN: AAA58637.1; PID: g553332
;Comment: Amplification and overexpression of this erbB-related gene occurs in about 30% of breast carcinomas.
;Genetics:
;Gene: SDB: ERBB2; NGL; NEU; HER-2
;Cross-references: GDB: M16792; OMIM: 164670
;Map Position: 17q21.1-17q21.1
;Introns: 25/1; 75/3; 147/1; 883/3
;Note: the list of introns is incomplete
;Function:
;Description: catalyzes the phosphorylation of a peptidyl tyrosine residue by ATP
;Keywords: epidermal growth factor receptor; duplication; glycoprotein; phosphoprotein; phosphotyrosine; autophosphorylation; kinase; protein kinase homology domain; signal sequence; tyrosine kinase; erbB2
;Accession: A24562
;Molecule type: mRNA
;Residues: 1-1660 <BAR>
;Cross-references: EMBL: X03362; NID: g56745; PIDN: CAA27059.1; PID: 956746
;R-Masui, T.; Maeda, A.M.; Macatee, T.L.; Garland, B.M.; Okamura, T.; Smith, R.A.; Cohen, C.; Accession: A24562
;A; Residues: 1-1660 ;
;A; Cross-references: Carcinogenesis 12, 1975-1978, 1991
;A; Title: Direct DNA sequencing of the rat neu oncogene transmembrane domain reveals no mutations
;A; Cross-references: 2-thiazolylformamide or N-methyl-N-nitrosourea.
;A; Accession: A61204
;A; Status: preliminary
;A; Molecule type: DNA
;A; Residues: 637-663, 'V', 665-702 <NAS>
;A; Note: authors translated the codon GCA for residue 25 as Val
;C; Genetics:
;A; Gene: neu
;C; Superfamily: epidermal growth factor receptor; protein kinase homology domain
;C; Keywords: ATP; autophosphorylation; duplication; glycoprotein; phosphoprotein; phosphotyrosine; signal sequence
;F; 1-19/Domain: status predicted <SIG>
;F; 20-1260/Domain: protein-tyrosine kinase neu #status predicted <MAT>
;F; 258-580/Domain: transmembrane #status predicted <TMN>
;F; 723-988/Domain: protein kinase homology <KIN>
;F; 731-739/Region: Protein kinase ATP-binding motif
;F; 741-191-263-535-576-634/Binding site: carbohydrate (Asn) (covalent) #status predicted
;F; 691/Binding site: phosphate (Thr) (covalent) #status predicted
;F; 58/Active site: lys #status predicted
;F; 882-1227-1253/Binding site: phosphate (Tyr) (covalent) #status predicted
;Query Match Score 90.7%; Best Local Similarity 77.8%; Pred. No. 7/1; Matches 7; Conservative 2; Mismatches 0; Indels 0; Gaps 0;
;Qy 1 KVFGSLAFV 9
;Db 373 KVFGSLAFL 381

RESULT 4
T28/47
hypothetical protein F48G7.1 - *Caenorhabditis elegans*
C; Species: *Caenorhabditis elegans*
C; Date: 15-Oct-1999 #sequence_revision 15-Oct-1999
C; Accession: T28/47
R; Clarke, K.; Wohldmann, P.; Harrison, M.
submitted to the EMBL Data Library, January 1998
A; Description: The sequence of *C. elegans* cosmid F48G7.
A; Reference number: 220517
A; Accession: T28/47
A; Status: preliminary; translated from GB/EMBL/DDJB
A; Molecule type: DNA
A; Residues: 1-356 <CL>
A; Cross-references: EMBL: AF039044; PIDN: AAC47951.1; GSPPDB: GN00023; CESP: F48G7.1
A; Experimental source: strain Bristol N2; Cione F48G7
C; Genetics:

A; Gene: CESP-F48G7.1
A; Map position: 5
A; Introns: 64/3; 148/3; 220/1; 301/2
Query Match Score 83.7%; Best Local Similarity 66.7%; Pred. No. 8/4; Matches 6; Conservative 3; Mismatches 0; Indels 0; Gaps 0;
Y 1 KVFGSLAFV 9
Db 369 KVFGSLAFI 377

RESULT 3
VRNU
rotein-tyrosine kinase (EC 2.7.1.112) neu precursor - rat
Species: *Rattus norvegicus* (Norway rat)
Date: 31-Dec-1998 #sequence_revision 31-Dec-1998 #text_change 11-Jun-1999
Accession: A24562; A61204

RESULT 5
SS3849

R; Bargmann, C.I.; Hung, M.C.; Weinberg, R.A.
Nature 319, 226-230, 1986
A; Title: The neu oncogene encodes an epidermal growth factor receptor-related protein.
A; Reference number: A24562; MUID: 9618662; PMID: 3945311
A; Accession: A24562
A; Molecule type: mRNA
A; Residues: 1-1660 ;
A; Cross-references: EMBL: X03362; NID: g56745; PIDN: CAA27059.1; PID: 956746
R-Masui, T.; Maeda, A.M.; Macatee, T.L.; Garland, B.M.; Okamura, T.; Smith, R.A.; Cohen, C.; Accession: A24562
A; Residues: 1-1660 <BAR>
A; Cross-references: Direct DNA sequencing of the rat neu oncogene transmembrane domain reveals no mutations
A; Title: 2-thiazolylformamide or N-methyl-N-nitrosourea.
A; Accession: A61204
A; Status: preliminary
A; Molecule type: DNA
A; Residues: 637-663, 'V', 665-702 <NAS>
A; Note: authors translated the codon GCA for residue 25 as Val
C; Genetics:
A; Gene: neu
C; Superfamily: epidermal growth factor receptor; protein kinase homology domain
C; Keywords: ATP; autophosphorylation; duplication; glycoprotein; phosphoprotein; phosphotyrosine; signal sequence
F; 1-19/Domain: status predicted <SIG>
F; 20-1260/Domain: protein-tyrosine kinase neu #status predicted <MAT>
F; 258-580/Domain: transmembrane #status predicted <TMN>
F; 723-988/Domain: protein kinase homology <KIN>
F; 731-739/Region: Protein kinase ATP-binding motif
F; 741-191-263-535-576-634/Binding site: carbohydrate (Asn) (covalent) #status predicted
F; 691/Binding site: phosphate (Thr) (covalent) #status predicted
F; 58/Active site: lys #status predicted
F; 882-1227-1253/Binding site: phosphate (Tyr) (covalent) #status predicted
;Query Match Score 90.7%; Best Local Similarity 77.8%; Pred. No. 7/1; Matches 7; Conservative 2; Mismatches 0; Indels 0; Gaps 0;
;Qy 1 KVFGSLAFV 9
;Db 373 KVFGSLAFL 381

ibosomal protein S3 - Acanthamoeba castellanii mitochondrial ribosomal protein S3 - Acanthamoeba castellanii mitochondrial ribosomal source: clone Y49E10
 Species: mitochrondrion Acanthamoeba castellanii
 Date: 15-Jul-1995 #sequence_revision 01-Sep-1995 #text_change 21-Jul-2000
 Accession: SS3849
 Burger, G.; Platne, I.; Loneragan, K.M.; Gray, M.W.
 Mol. Biol. 245: 522-537; 1995
 Title: The mitochondrial DNA of the amoeboid protozoan, Acanthamoeba castellanii: complete sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana.
 Reference number: SS3825; MUID:95147275; PMID:7844823
 Status: nucleic acid sequence not shown; translation not shown
 Residues: 1-298 <BUR>
 Cross-references: GB:U12186; NID:9562028; PIDN:AAD11841.1; PID:g562053
 Experimental source: Strain Neff; ATCC 30010
 Note: the nucleotide sequence was submitted to the EMBL Data Library, July 1994
 Genetics:
 Genome: mitochondrion
 Genetic code: SG6
 Keywords: mitochondrion

Query Match 81.4%; Score 35; DB 2; Length 298;
 Best Local Similarity 87.5%; Pred. No. 11; Gaps 0;
 Matches 7; Conservative 0; Mismatches 1; Indels 0;
 / 1 KVFGSLAFV 8
 , 250 KARFGLAF 257

RESULT 6

hypothetical protein PA0690 [imported] - Pseudomonas aeruginosa (strain PAO1)
 Species: Pseudomonas aeruginosa
 Date: 15-Sep-2000 #sequence_revision 15-Sep-2000 #text_change 31-Dec-2000
 Accession: G83559
 Stover, C.K.; Pham, X.Q.; Erwin, A.L.; Mizoguchi, S.D.; Warrener, P.; Hickey, M.J.; Bhiman, S.; Yuan, Y.; Brody, L.L.; Coulter, S.N.; Folger, K.R.; Kas, A.; Larbig, K.; Lim, Lory, S.; Olson, M.V.
 Nature 406: 959-964; 2000
 Title: Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen
 Reference number: AB2950; MUID:20437337; PMID:10984043
 Accession: G83559
 Status: preliminary
 Molecule type: DNA
 Residues: 1-4180 <STO>
 Cross-references: GB:AE004504; GB:AE004091; NID:99946568; PIDN:AA04079.1; GSPDB:GN001 Experimental source: strain PAO1
 Genetics:
 Gene: PA0690

Query Match 81.4%; Score 35; DB 2; Length 4180;
 Best Local Similarity 87.5%; Pred. No. 1.7e+02; Gaps 0;
 Matches 7; Conservative 1; Mismatches 0; Indels 0;
 / 2 VFGSLAFV 9
) 1553 VFGSLAFM 1560

RESULT 7

hypothetical protein Y49E10.9 - Caenorhabditis elegans
 Species: Caenorhabditis elegans
 Date: 15-Oct-1999 #sequence_revision 15-Oct-1999 #text_change 15-Oct-1999
 Accession: T27040
 Barlow, K.
 Submitted to the EMBL Data Library, August 1997
 Reference number: Z20303
 Accession: T22040
 Status: preliminary; translated from GB/EMBL/DDBJ
 Molecule type: DNA
 Residues: 1-454 <WIL>
 Cross-references: EMBL:Z98866; PIDN:CAB11549.1; GSPDB:GN00021; CESP:Y49E10.9

A;Experimental source: clone Y49E10
 C;Genetics:
 A;Gene: CESP:Y49E10.9
 A;Map position: 3
 A;Introns: 17/3; 125/1; 170/2; 260/3; 284/3; 302/2; 326/1; 396/1
 Query Match 79.1%; Score 34; DB 2; Length 454;
 Best Local Similarity 77.8%; Pred. No. 28;
 Matches 7; Conservative 1; Mismatches 1; Indels 0; Gaps 0;
 Qy 1 KVFGSLAFV 9
 Db 439 KVFGLLAFV 447

RESULT 8

probable retroelement pol polyprotein [imported] - Arabidopsis thaliana
 C;Species: Arabidopsis thaliana (mouse-ear cress)
 C;Date: 02-Feb-2001 #sequence_revision 02-Feb-2001 #text_change 02-Feb-2001
 C;Accession: G84552
 R;Lin, X.; Kaul, S.; Rounseley, S.D.; Shea, T.P.; Benito, M.I.; Town, C.D.; Fujii, C.Y.; M.; Koo, H.; Moffat, K.S.; Cronin, L.A.; Shen, M.; VanAken, S.E.; Umayam, L.; Talon, J.; ewiss, D.; Nierman, W.C.; White, O.; Eisen, J.A.; Salzberg, S.L.; Fraser, C.M.; Venter, J.; Title: Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana.
 A;Reference number: A84420; MUID:20083487; PMID:10617197
 A;Accession: G84552
 A;Status: preliminary
 A;Molecule type: DNA
 A;Residues: 1-832 <STO>
 A;Cross references: GB:AE002093; NID:94914370; PIDN:AAD32906.1; GSPDB:GN00139
 A;Map position: 2
 Query Match 79.1%; Score 34; DB 2; Length 822;
 Best Local Similarity 66.7%; Pred. No. 52;
 Matches 6; Conservative 2; Mismatches 1; Indels 0; Gaps 0;
 A;Gene: Atg17430
 R;Steward, C.
 Submitted to the EMBL Data Library, February 1996
 C;Accession: T20547
 A;Reference number: Z19290
 A;Status: preliminary; translated from GB/EMBL/DDBJ
 A;Molecule type: DNA
 A;Residues: 1-221 <NTL>
 A;Cross references: EMBL:Z69659; PIDN:CAA93484.1; GSPDB:GN00022; CESP:F07C6.3
 A;Experimental source: clone F07C6
 C;Genetics:
 A;Gene: CESP:F07C6.3
 A;Map position: 4
 A;Introns: 14/3; 47/3; 68/3; 123/3; 149/3; 179/3
 C;Species: Caenorhabditis elegans hypothetical protein F07C6.3
 C;Similarity: 75.0%; Pred. No. 23;
 A;Cross references: T20547
 A;Map position: 4
 A;Introns: 14/3; 47/3; 68/3; 123/3; 149/3; 179/3
 C;Status: preliminary; translated from GB/EMBL/DDBJ
 A;Residues: 1-221 <NTL>
 A;Cross references: EMBL:Z69659; PIDN:CAA93484.1; GSPDB:GN00022; CESP:F07C6.3
 A;Experimental source: clone F07C6
 C;Genetics:
 A;Gene: CESP:F07C6.3
 A;Map position: 4
 A;Introns: 14/3; 47/3; 68/3; 123/3; 149/3; 179/3
 C;Species: Caenorhabditis elegans hypothetical protein F07C6.3
 C;Similarity: 75.0%; Pred. No. 23;
 A;Cross references: T20547
 A;Map position: 4
 A;Introns: 14/3; 47/3; 68/3; 123/3; 149/3; 179/3
 C;Status: preliminary; translated from GB/EMBL/DDBJ
 A;Residues: 1-221 <NTL>
 A;Cross references: EMBL:Z69659; PIDN:CAA93484.1; GSPDB:GN00022; CESP:F07C6.3
 A;Experimental source: clone F07C6
 C;Genetics:
 A;Gene: CESP:F07C6.3
 A;Map position: 4
 A;Introns: 14/3; 47/3; 68/3; 123/3; 149/3; 179/3
 C;Species: Caenorhabditis elegans hypothetical protein F07C6.3
 C;Similarity: 75.0%; Pred. No. 23;
 A;Cross references: T20547
 A;Map position: 4
 A;Introns: 14/3; 47/3; 68/3; 123/3; 149/3; 179/3
 C;Status: preliminary; translated from GB/EMBL/DDBJ
 A;Residues: 1-221 <NTL>
 A;Cross references: EMBL:Z69659; PIDN:CAA93484.1; GSPDB:GN00022; CESP:F07C6.3
 A;Experimental source: clone F07C6
 C;Genetics:
 A;Gene: CESP:F07C6.3
 A;Map position: 4
 A;Introns: 14/3; 47/3; 68/3; 123/3; 149/3; 179/3
 C;Species: Caenorhabditis elegans hypothetical protein F07C6.3
 C;Similarity: 75.0%; Pred. No. 23;
 A;Cross references: T20547
 A;Map position: 4
 A;Introns: 14/3; 47/3; 68/3; 123/3; 149/3; 179/3
 C;Status: preliminary; translated from GB/EMBL/DDBJ
 A;Residues: 1-221 <NTL>
 A;Cross references: EMBL:Z69659; PIDN:CAA93484.1; GSPDB:GN00022; CESP:F07C6.3
 A;Experimental source: clone F07C6
 C;Genetics:
 A;Gene: CESP:F07C6.3
 A;Map position: 4
 A;Introns: 14/3; 47/3; 68/3; 123/3; 149/3; 179/3
 C;Species: Caenorhabditis elegans hypothetical protein F07C6.3
 C;Similarity: 75.0%; Pred. No. 23;
 A;Cross references: T20547
 A;Map position: 4
 A;Introns: 14/3; 47/3; 68/3; 123/3; 149/3; 179/3
 C;Status: preliminary; translated from GB/EMBL/DDBJ
 A;Residues: 1-221 <NTL>
 A;Cross references: EMBL:Z69659; PIDN:CAA93484.1; GSPDB:GN00022; CESP:F07C6.3
 A;Experimental source: clone F07C6
 C;Genetics:
 A;Gene: CESP:F07C6.3
 A;Map position: 4
 A;Introns: 14/3; 47/3; 68/3; 123/3; 149/3; 179/3
 C;Species: Caenorhabditis elegans hypothetical protein F07C6.3
 C;Similarity: 75.0%; Pred. No. 23;
 A;Cross references: T20547
 A;Map position: 4
 A;Introns: 14/3; 47/3; 68/3; 123/3; 149/3; 179/3
 C;Status: preliminary; translated from GB/EMBL/DDBJ
 A;Residues: 1-221 <NTL>
 A;Cross references: EMBL:Z69659; PIDN:CAA93484.1; GSPDB:GN00022; CESP:F07C6.3
 A;Experimental source: clone F07C6
 C;Genetics:
 A;Gene: CESP:F07C6.3
 A;Map position: 4
 A;Introns: 14/3; 47/3; 68/3; 123/3; 149/3; 179/3
 C;Species: Caenorhabditis elegans hypothetical protein F07C6.3
 C;Similarity: 75.0%; Pred. No. 23;
 A;Cross references: T20547
 A;Map position: 4
 A;Introns: 14/3; 47/3; 68/3; 123/3; 149/3; 179/3
 C;Status: preliminary; translated from GB/EMBL/DDBJ
 A;Residues: 1-221 <NTL>
 A;Cross references: EMBL:Z69659; PIDN:CAA93484.1; GSPDB:GN00022; CESP:F07C6.3
 A;Experimental source: clone F07C6
 C;Genetics:
 A;Gene: CESP:F07C6.3
 A;Map position: 4
 A;Introns: 14/3; 47/3; 68/3; 123/3; 149/3; 179/3
 C;Species: Caenorhabditis elegans hypothetical protein F07C6.3
 C;Similarity: 75.0%; Pred. No. 23;
 A;Cross references: T20547
 A;Map position: 4
 A;Introns: 14/3; 47/3; 68/3; 123/3; 149/3; 179/3
 C;Status: preliminary; translated from GB/EMBL/DDBJ
 A;Residues: 1-221 <NTL>
 A;Cross references: EMBL:Z69659; PIDN:CAA93484.1; GSPDB:GN00022; CESP:F07C6.3
 A;Experimental source: clone F07C6
 C;Genetics:
 A;Gene: CESP:F07C6.3
 A;Map position: 4
 A;Introns: 14/3; 47/3; 68/3; 123/3; 149/3; 179/3
 C;Species: Caenorhabditis elegans hypothetical protein F07C6.3
 C;Similarity: 75.0%; Pred. No. 23;
 A;Cross references: T20547
 A;Map position: 4
 A;Introns: 14/3; 47/3; 68/3; 123/3; 149/3; 179/3
 C;Status: preliminary; translated from GB/EMBL/DDBJ
 A;Residues: 1-221 <NTL>
 A;Cross references: EMBL:Z69659; PIDN:CAA93484.1; GSPDB:GN00022; CESP:F07C6.3
 A;Experimental source: clone F07C6
 C;Genetics:
 A;Gene: CESP:F07C6.3
 A;Map position: 4
 A;Introns: 14/3; 47/3; 68/3; 123/3; 149/3; 179/3
 C;Species: Caenorhabditis elegans hypothetical protein F07C6.3
 C;Similarity: 75.0%; Pred. No. 23;
 A;Cross references: T20547
 A;Map position: 4
 A;Introns: 14/3; 47/3; 68/3; 123/3; 149/3; 179/3
 C;Status: preliminary; translated from GB/EMBL/DDBJ
 A;Residues: 1-221 <NTL>
 A;Cross references: EMBL:Z69659; PIDN:CAA93484.1; GSPDB:GN00022; CESP:F07C6.3
 A;Experimental source: clone F07C6
 C;Genetics:
 A;Gene: CESP:F07C6.3
 A;Map position: 4
 A;Introns: 14/3; 47/3; 68/3; 123/3; 149/3; 179/3
 C;Species: Caenorhabditis elegans hypothetical protein F07C6.3
 C;Similarity: 75.0%; Pred. No. 23;
 A;Cross references: T20547
 A;Map position: 4
 A;Introns: 14/3; 47/3; 68/3; 123/3; 149/3; 179/3
 C;Status: preliminary; translated from GB/EMBL/DDBJ
 A;Residues: 1-221 <NTL>
 A;Cross references: EMBL:Z69659; PIDN:CAA93484.1; GSPDB:GN00022; CESP:F07C6.3
 A;Experimental source: clone F07C6
 C;Genetics:
 A;Gene: CESP:F07C6.3
 A;Map position: 4
 A;Introns: 14/3; 47/3; 68/3; 123/3; 149/3; 179/3
 C;Species: Caenorhabditis elegans hypothetical protein F07C6.3
 C;Similarity: 75.0%; Pred. No. 23;
 A;Cross references: T20547
 A;Map position: 4
 A;Introns: 14/3; 47/3; 68/3; 123/3; 149/3; 179/3
 C;Status: preliminary; translated from GB/EMBL/DDBJ
 A;Residues: 1-221 <NTL>
 A;Cross references: EMBL:Z69659; PIDN:CAA93484.1; GSPDB:GN00022; CESP:F07C6.3
 A;Experimental source: clone F07C6
 C;Genetics:
 A;Gene: CESP:F07C6.3
 A;Map position: 4
 A;Introns: 14/3; 47/3; 68/3; 123/3; 149/3; 179/3
 C;Species: Caenorhabditis elegans hypothetical protein F07C6.3
 C;Similarity: 75.0%; Pred. No. 23;
 A;Cross references: T20547
 A;Map position: 4
 A;Introns: 14/3; 47/3; 68/3; 123/3; 149/3; 179/3
 C;Status: preliminary; translated from GB/EMBL/DDBJ
 A;Residues: 1-221 <NTL>
 A;Cross references: EMBL:Z69659; PIDN:CAA93484.1; GSPDB:GN00022; CESP:F07C6.3
 A;Experimental source: clone F07C6
 C;Genetics:
 A;Gene: CESP:F07C6.3
 A;Map position: 4
 A;Introns: 14/3; 47/3; 68/3; 123/3; 149/3; 179/3
 C;Species: Caenorhabditis elegans hypothetical protein F07C6.3
 C;Similarity: 75.0%; Pred. No. 23;
 A;Cross references: T20547
 A;Map position: 4
 A;Introns: 14/3; 47/3; 68/3; 123/3; 149/3; 179/3
 C;Status: preliminary; translated from GB/EMBL/DDBJ
 A;Residues: 1-221 <NTL>
 A;Cross references: EMBL:Z69659; PIDN:CAA93484.1; GSPDB:GN00022; CESP:F07C6.3
 A;Experimental source: clone F07C6
 C;Genetics:
 A;Gene: CESP:F07C6.3
 A;Map position: 4
 A;Introns: 14/3; 47/3; 68/3; 123/3; 149/3; 179/3
 C;Species: Caenorhabditis elegans hypothetical protein F07C6.3
 C;Similarity: 75.0%; Pred. No. 23;
 A;Cross references: T20547
 A;Map position: 4
 A;Introns: 14/3; 47/3; 68/3; 123/3; 149/3; 179/3
 C;Status: preliminary; translated from GB/EMBL/DDBJ
 A;Residues: 1-221 <NTL>
 A;Cross references: EMBL:Z69659; PIDN:CAA93484.1; GSPDB:GN00022; CESP:F07C6.3
 A;Experimental source: clone F07C6
 C;Genetics:
 A;Gene: CESP:F07C6.3
 A;Map position: 4
 A;Introns: 14/3; 47/3; 68/3; 123/3; 149/3; 179/3
 C;Species: Caenorhabditis elegans hypothetical protein F07C6.3
 C;Similarity: 75.0%; Pred. No. 23;
 A;Cross references: T20547
 A;Map position: 4
 A;Introns: 14/3; 47/3; 68/3; 123/3; 149/3; 179/3
 C;Status: preliminary; translated from GB/EMBL/DDBJ
 A;Residues: 1-221 <NTL>
 A;Cross references: EMBL:Z69659; PIDN:CAA93484.1; GSPDB:GN00022; CESP:F07C6.3
 A;Experimental source: clone F07C6
 C;Genetics:
 A;Gene: CESP:F07C6.3
 A;Map position: 4
 A;Introns: 14/3; 47/3; 68/3; 123/3; 149/3; 179/3
 C;Species: Caenorhabditis elegans hypothetical protein F07C6.3
 C;Similarity: 75.0%; Pred. No. 23;
 A;Cross references: T20547
 A;Map position: 4
 A;Introns: 14/3; 47/3; 68/3; 123/3; 149/3; 179/3
 C;Status: preliminary; translated from GB/EMBL/DDBJ
 A;Residues: 1-221 <NTL>
 A;Cross references: EMBL:Z69659; PIDN:CAA93484.1; GSPDB:GN00022; CESP:F07C6.3
 A;Experimental source: clone F07C6
 C;Genetics:
 A;Gene: CESP:F07C6.3
 A;Map position: 4
 A;Introns: 14/3; 47/3; 68/3; 123/3; 149/3; 179/3
 C;Species: Caenorhabditis elegans hypothetical protein F07C6.3
 C;Similarity: 75.0%; Pred. No. 23;
 A;Cross references: T20547
 A;Map position: 4
 A;Introns: 14/3; 47/3; 68/3; 123/3; 149/3; 179/3
 C;Status: preliminary; translated from GB/EMBL/DDBJ
 A;Residues: 1-221 <NTL>
 A;Cross references: EMBL:Z69659; PIDN:CAA93484.1; GSPDB:GN00022; CESP:F07C6.3
 A;Experimental source: clone F07C6
 C;Genetics:
 A;Gene: CESP:F07C6.3
 A;Map position: 4
 A;Introns: 14/3; 47/3; 68/3; 123/3; 149/3; 179/3
 C;Species: Caenorhabditis elegans hypothetical protein F07C6.3
 C;Similarity: 75.0%; Pred. No. 23;
 A;Cross references: T20547
 A;Map position: 4
 A;Introns: 14/3; 47/3; 68/3; 123/3; 149/3; 179/3
 C;Status: preliminary; translated from GB/EMBL/DDBJ
 A;Residues: 1-221 <NTL>
 A;Cross references: EMBL:Z69659; PIDN:CAA93484.1; GSPDB:GN00022; CESP:F07C6.3
 A;Experimental source: clone F07C6
 C;Genetics:
 A;Gene: CESP:F07C6.3
 A;Map position: 4
 A;Introns: 14/3; 47/3; 68/3; 123/3; 149/3; 179/3
 C;Species: Caenorhabditis elegans hypothetical protein F07C6.3
 C;Similarity: 75.0%; Pred. No. 23;
 A;Cross references: T20547
 A;Map position: 4
 A;Introns: 14/3; 47/3; 68/3; 123/3; 149/3; 179/3
 C;Status: preliminary; translated from GB/EMBL/DDBJ
 A;Residues: 1-221 <NTL>
 A;Cross references: EMBL:Z69659; PIDN:CAA93484.1; GSPDB:GN00022; CESP:F07C6.3
 A;Experimental source: clone F07C6
 C;Genetics:
 A;Gene: CESP:F07C6.3
 A;Map position: 4
 A;Introns: 14/3; 47/3; 68/3; 123/3; 149/3; 179/3
 C;Species: Caenorhabditis elegans hypothetical protein F07C6.3
 C;Similarity: 75.0%; Pred. No. 23;
 A;Cross references: T20547
 A;Map position: 4
 A;Introns: 14/3; 47/3; 68/3; 123/3; 149/3; 179/3
 C;Status: preliminary; translated from GB/EMBL/DDBJ
 A;Residues: 1-221 <NTL>
 A;Cross references: EMBL:Z69659; PIDN:CAA93484.1; GSPDB:GN00022; CESP:F07C6.3
 A;Experimental source: clone F07C6
 C;Genetics:
 A;Gene: CESP:F07C6.3
 A;Map position: 4
 A;Introns: 14/3; 47/3; 68/3; 123/3; 149/3; 179/3
 C;Species: Caenorhabditis elegans hypothetical protein F07C6.3
 C;Similarity: 75.0%; Pred. No. 23;
 A;Cross references: T20547
 A;Map position: 4
 A;Introns: 14/3; 47/3; 68/3; 123/3; 149/3; 179/3
 C;Status: preliminary; translated from GB/EMBL/DDBJ
 A;Residues: 1-221 <NTL>
 A;Cross references: EMBL:Z69659; PIDN:CAA93484.1; GSPDB:GN00022; CESP:F07C6.3
 A;Experimental source: clone F07C6
 C;Genetics:
 A;Gene: CESP:F07C6.3
 A;Map position: 4
 A;Introns: 14/3; 47/3; 68/3; 123/3; 149/3; 179/3
 C;Species: Caenorhabditis elegans hypothetical protein F07C6.3
 C;Similarity: 75.0%; Pred. No. 23;
 A;Cross references: T20547
 A;Map position: 4
 A;Introns: 14/3; 47/3; 68/3; 123/3; 149/3; 179/3
 C;Status: preliminary; translated from GB/EMBL/DDBJ
 A;Residues: 1-221 <NTL>
 A;Cross references: EMBL:Z69659; PIDN:CAA93484.1; GSPDB:GN00022; CESP:F07C6.3
 A;Experimental source: clone F07C6
 C;Genetics:
 A;Gene: CESP:F07C6.3
 A;Map position: 4
 A;Introns: 14/3; 47/3; 68/3; 123/3; 149/3; 179/3
 C;Species: Caenorhabditis elegans hypothetical protein F07C6.3
 C;Similarity: 75.0%; Pred. No. 23;
 A;Cross references: T20547
 A;Map position: 4
 A;Introns: 14/3; 47/3; 68/3; 123/3; 149/3; 179/3
 C;Status: preliminary; translated from GB/EMBL/DDBJ
 A;Residues: 1-221 <NTL>
 A;Cross references: EMBL:Z69659; PIDN:CAA93484.1; GSPDB:GN00022; CESP:F07C6.3
 A;Experimental source: clone F07C6
 C;Genetics:
 A;Gene: CESP:F07C6.3
 A;Map position: 4
 A;Introns: 14/3; 47/3; 68/3; 123/3; 149/3; 179/3
 C;Species: Caenorhabditis elegans hypothetical protein F07C6.3
 C;Similarity: 75.0%; Pred. No. 23;
 A;Cross references: T20547
 A;Map position: 4
 A;Introns: 14/3; 47/3; 68/3; 123/3; 149/3; 179/3
 C;Status: preliminary; translated from GB/EMBL/DDBJ
 A;Residues: 1-221 <NTL>
 A;Cross references: EMBL:Z69659; PIDN:CAA93484.1; GSPDB:GN00022; CESP:F07C6.3
 A;Experimental source: clone F07C6
 C;Genetics:
 A;Gene: CESP:F07C6.3
 A;Map position: 4
 A;Introns: 14/3; 47/3; 68/3; 123/3; 149/3; 179/3
 C;Species: Caenorhabditis elegans hypothetical protein F07C6.3
 C;Similarity: 75.0%; Pred. No. 23;
 A;Cross references: T20547
 A;Map position: 4
 A;Introns: 14/3; 47/3; 68/3; 123/3; 149/3; 179/3
 C;Status: preliminary; translated from GB/EMBL/DDBJ
 A;Residues: 1-221 <NTL>
 A;Cross references: EMBL:Z69659; PIDN:CAA93484.1; GSPDB:GN00022; CESP:F07C6.3
 A;Experimental source: clone F07C6
 C;Genetics:
 A;Gene: CESP:F07C6.3
 A;Map position: 4
 A;Introns: 14/3; 47/3; 68/3; 123/3; 149/3; 179/3
 C;Species: Caenorhabditis elegans hypothetical protein F07C6.3
 C;Similarity: 75.0%; Pred. No. 23;
 A;Cross references: T20547
 A;Map position: 4
 A;Introns: 14/3; 47/3; 68/3; 123/3; 149/3; 179/3
 C;Status: preliminary; translated from GB/EMBL/DDBJ
 A;Residues: 1-221 <NTL>
 A;Cross references: EMBL:Z69659; PIDN:CAA93484.1; GSPDB:GN00022; CESP:F07C6.3
 A;Experimental source: clone F07C6
 C;Genetics:
 A;Gene: CESP:F07C6.3
 A;Map position: 4
 A;Introns: 14/3; 47/3; 68/3; 123/3; 149/3; 179/3
 C;Species: Caenorhabditis elegans hypothetical protein F07C6.3
 C;Similarity: 75.0%; Pred. No. 23;
 A;Cross references: T20547
 A;Map position: 4
 A;Introns: 14/3; 47/3; 68/3; 123/3; 149/3; 179/3
 C;Status: preliminary; translated from GB/EMBL/DDBJ
 A;Residues: 1-221 <NTL>
 A;Cross references: EMBL:Z69659; PIDN:CAA93484.1; GSPDB:GN00022; CESP:F07C6.3
 A;Experimental source: clone F07C6
 C;Genetics:
 A;Gene: CESP:F07C6.3
 A;Map position: 4
 A;Introns: 14/3; 47/3; 68/3; 123/3; 149/3; 179/3
 C;Species: Caenorhabditis elegans hypothetical protein F07C6.3
 C;Similarity: 75.0%; Pred. No. 23;
 A;Cross references: T20547
 A;Map position: 4
 A;Introns: 14/3; 47/3; 68/3; 123/3; 149/3; 179/3
 C;Status: preliminary; translated from GB/EMBL/DDBJ
 A;Residues: 1-221 <NTL>
 A;Cross references: EMBL:Z69659; PIDN:CAA93484.1; GSPDB:GN00022; CESP:F07C6.3
 A;Experimental source: clone F07C6
 C;Genetics:
 A;Gene: CESP:F07C6.3
 A;Map position: 4
 A;Introns: 14/3; 47/3; 68/3; 123/3; 149/3; 179/3
 C;Species: Caenorhabditis elegans hypothetical protein F07C6.3
 C;Similarity: 75.0%; Pred. No. 23;
 A;Cross references: T20547
 A;Map position: 4
 A;Introns: 14/3; 47/3; 68/3; 123/3; 149/3; 179/3
 C;Status: preliminary; translated from GB/EMBL/DDBJ
 A;Residues: 1-221 <NTL>
 A;Cross references: EMBL:Z69659; PIDN:CAA93484.1; GSPDB:GN00022; CESP:F07C6.3
 A;Experimental source: clone F07C6
 C;Genetics:
 A;Gene: CESP:F07C6.3
 A;Map position: 4
 A;Introns: 14/3; 47/3; 68/3; 123/3; 149/3; 179/3
 C;Species: Caenorhabditis elegans hypothetical protein F07C6.3
 C;Similarity: 7

```

T20930 hypothetical protein F14H3.1 - Caenorhabditis elegans
C;Species: Caenorhabditis elegans
C;Date: 15-Oct-1999 #sequence_revision 15-Oct-1999 #text_change 15-Oct-1999
R;McMurry, A.
submitted to the EMBL Data Library, November 1996
A;Reference number: Z19347
A;Accession: T20920
A;Status: Preliminary; translated from GB/EMBL/DBJ
A;Cross-references: EMBL:Z33105; PIDN:CAB054801; GSPDB:GN00023; CESP:F14H3.
A;Experimental source: clone F14H3
C;Genetics:
A;Gene: CESP:F14H3.1
A;Map position: 5
A;Introns: 83/3; 117/2; 185/3; 249/3
A;Residues: 1-335 <WIL>
Db

Query Match Score 33; DB 2; Length 335;
Best Local Similarity 66.7%; Pred. No. 34;
Matches 6; Conservative 2; Mismatches 1; Indels 0; Gaps
Qy 1 KVFGLSALAFV 9
          |||||:|:|
Db 12 KVFGLSFLFV 20

RESULT 13
T33989 hypothetical protein Y40B10B.2 - Caenorhabditis elegans
C;Species: Caenorhabditis elegans
C;Date: 29-Oct-1999 #sequence_revision 29-Oct-1999 #text_change 29-Oct-1999
R;Hammon, G.; Courtney, L.; Langston, Y.; Dorne, K.
submitted to the EMBL Data Library, February 1999
A;Description: The sequence of C. elegans cosmid Y40B10B.
A;Reference number: Z24451
A;Accession: T33989
A;Status: Preliminary; translated from GB/EMBL/DBJ
A;Cross-references: EMBL:AF125961; PIDN:AAD14739.1; GSPDB:GN00023; CESP:Y40B10B
A;Gene: CESP:Y40B10B.2
A;Map position: 5
A;Introns: 64/3; 86/3; 122/2; 190/3; 224/3
A;Residues: 1-343 <HAR>
Db

Query Match Score 33; DB 2; Length 343;
Best Local Similarity 66.7%; Pred. No. 35;
Matches 6; Conservative 2; Mismatches 1; Indels 0; Gaps
Qy 1 KVFGLSALAFV 9
          |||||:|:|
Db 12 KVFGLSFLFV 20

RESULT 14
T48578 hypothetical protein T31B5.130 - Arabidopsis thaliana
C;Species: Arabidopsis thaliana (mouse-ear cress)
C;Date: 20-Apr-2000 #sequence_revision 20-Apr-2000 #text_change 20-Apr-2000
C;Accession: T48578
C;Status: preliminary
A;Reference number: Z224490
A;Accession: T48578
A;Status: preliminary
A;Cross-references: EMBL:AL163491
A;Gene: CESP:T31B5.130
A;Map position: 5
A;Introns: 1-370 <BEV>
Db
```

:Genetics:
:Map position: 5
:Introns: 119/3
:Note: T31BS.130

Query Match 76.7%; Score 33; DB 2; Length 370;
Best Local Similarity 75.0%; Pred. No. 38;
Matches 6; Conservative 1; Mismatches 1; Indels 0; Gaps 0;
' 1 KVFGSLAF 8
' :|||:| 17 KVFGSLPF 24

:SULT 15

16764 hypothetical protein Y39E4B.5 - Caenorhabditis elegans

Species: Caenorhabditis elegans
Date: 15-Oct-1999 #sequence_revision 15-Oct-1999 #text_change 20-Jun-2000

Accession: T26764
Submitted to the EMBL Data Library, September 1999

Reference number: 220261

Accession: T26764

Status: preliminary; translated from GB/EMBL/DDBJ

Molecule type: DNA

Residues: 1-150 <WIL>

Cross reference: EMBL:AU110487; PIDN:CAB54427.1; CESP:Y39E4B.5

Experimental source: clone Y39E4B

Genetics:

Gene: CESP:Y39E4B.5

Introns: 39/2; 61/3; 212/2; 298/2; 426/3

Superfamily: Glucose transport protein

Query Match 76.7%; Score 33; DB 2; Length 505;
Best Local Similarity 55.6%; Pred. No. 52;
Matches 5; Conservative 3; Mismatches 1; Indels 0; Gaps 0;
' 1 KVFGSLAFV 9
' :|||:| 426 RIFGSMCFV 434

:Search completed: May 17, 2004, 12:57:47

:Search time : 10.1613 secs

DE (p185erbB2) (NEU proto-oncogene) (C-erbB-2) (Tyrosine kinase-type cell
 DE surface receptor HER2) (MLN 19).
 DE ERB2 OR HER2 OR NGL OR NEU.
 OS Homo sapiens (Human).
 OC Eukaryote; Metazoa; Chordata; Craniota; Vertebrata; Euteleostomi;
 OC Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
 OX NCBI_TaxID=9606;
 RN [1] _
 RP SEQUENCE FROM N.A.
 RX MEDLINE=16116636; PubMed=3003577;
 RA Yamamoto T., Ikawa S., Akiyama T., Semba K., Nomura N., Miyajima N.,
 RA Saito T., Toyoshima K.; Chordata; Craniota; Vertebrata; Euteleostomi;
 RT "Similarity of protein encoded by the human c-erb-B-2 gene to
 RT epidermal growth factor receptor receptor.";
 RT Nature 319:230-234(1986).
 RL Nature 319:230-234(1986).
 RN [2]
 RN SEQUENCE FROM N.A., AND VARIANT ALA-1170.
 RP MEDLINE=86070181; PubMed=299994;
 RX Coubessens L., Yang-Feng T.L., Liao Y.C., Chen B., Gray A.,
 RA McGrath J., Seeburg P.H., Libermann T.A., Schlessinger J.,
 RA Francke U., Levinson A., Ullrich A.;
 RT "Tyrosine kinase receptor with extensive homology to EGF receptor
 RT shares chromosomal location with neu oncogene.";
 RL Science 230:1132-1139(1985).
 RN [3]
 RN SEQUENCE FROM N.A., AND VARIANT CYS-452 VAL-655 AND ALA-1170.
 RP Rieder M.J., Livingston R.J., Daniels M.R., Montoya M.A., Chung M.-W.,
 RA Miyamoto K.E., Nguyen C.P., Nguyen D.A., Poel C.L., Robertson P.D.,
 RA Schackwitz W.S., Sherwood J.K., Wittrak L.A., Nickerson D.A.;
 RL Submitted (DEC-2002) to the EMBL/GenBank/DDBJ databases.
 RN [4]
 RN SEQUENCE OF 737-1031 FROM N.A.
 RP MEDLINE=86016729; PubMed=2959567;
 RA Semba K., Kamata N., Toyoshima K., Yamamoto T.,
 RT "A v-erbB-related protooncogene, c-erbB-2, is distinct from the
 c-erbB-1/epidermal growth factor-receptor gene and is amplified in a
 human salivary gland adenocarcinoma";
 RL Proc. Natl. Acad. Sci. U.S.A. 82:6497-6501(1985).
 RN [5]
 RN VARIANTS VAL-654 AND VAL-655.
 RP MEDLINE=3194196; PubMed=8095488;
 RA Ensani A., Low J., Wallace R.B., Wu A.M.,
 RT "Characterization of a new allele of the human ERBB2 gene by allele-
 specific competition hybridization.";
 RL Genomics 15:42-42(1993).
 CC -!- FUNCTION: Essential component of a neuregulin-receptor complex,
 CC although neuregulin do not interact with it alone. GP10 is a
 CC potential ligand for this receptor. Not activated by EGF, TGF-
 CC alpha and amphiregulin.
 CC -!- CATALYTIC ACTIVITY: ATP + a protein tyrosine = ADP + protein
 CC tyrosine phosphate.
 CC -!- SUBUNIT: Heterodimer with each of the other ERBB receptors
 CC (Potential). Interacts with PRKACB (By similarity).
 CC -!- SUBCELLULAR LOCATION: Type I membrane protein.
 CC -!- PTM: Ligand-binding increases phosphorylation on tyrosine
 CC residues (By similarity).
 CC -!- POLYMORPHISM: There are four alleles due to the variations in
 CC positions 654 and 655. Allele B1 (Ile-654/Ile-655) has a frequency of
 CC 0.782; allele B2 (Ile-654/Val-655) has a frequency of 0.216;
 CC allele B3 (Val-654/Val-655) has a frequency of 0.012.
 CC -!- SIMILARITY: Belongs to the EGF receptor family.
 CC
 CC This SWISS-PROT entry is copyright. It is produced through a collaboration
 CC between the Swiss Institute of Bioinformatics and the EMBL outstation -
 CC the European Bioinformatics Institute. There are no restrictions on its
 CC use by non-profit institutions as long as its content is in no way
 CC modified and this statement is not removed. Usage by and for commercial
 CC entities requires a license agreement (See <http://www.isb-sib.ch/announce/>
 CC or send an email to licences@isb-sib.ch).
 DR EMBL; M11767; AAA5808_1;
 DR EMBL; M11761; AAA5808_1; JOINED.
 DR EMBL; M11762; AAA5808_1; JOINED.
 DR EMBL; M11763; AAA5808_1; JOINED.
 DR EMBL; M11764; AAA5808_1; JOINED.
 DR EMBL; M11765; AAA5808_1; JOINED.
 DR EMBL; M11766; AAA5808_1; JOINED.
 DR EMBL; M11767; AAA5808_1; JOINED.
 DR EMBL; M11768; AAA5808_1; JOINED.
 DR EMBL; M11769; AAA5808_1; JOINED.
 DR EMBL; M11770; AAA5808_1; JOINED.
 DR EMBL; M11771; AAA5808_1; JOINED.
 DR EMBL; M11772; AAA5808_1; JOINED.
 DR EMBL; M11773; AAA5808_1; JOINED.
 DR EMBL; M11774; AAA5808_1; JOINED.
 DR EMBL; M11775; AAA5808_1; JOINED.
 DR EMBL; M11776; AAA5808_1; JOINED.
 DR EMBL; M11777; AAA5808_1; JOINED.
 DR EMBL; M11778; AAA5808_1; JOINED.
 DR EMBL; M11779; AAA5808_1; JOINED.
 DR EMBL; M11780; AAA5808_1; JOINED.
 DR EMBL; M11781; AAA5808_1; JOINED.
 DR EMBL; M11782; AAA5808_1; JOINED.
 DR EMBL; M11783; AAA5808_1; JOINED.
 DR EMBL; M11784; AAA5808_1; JOINED.
 DR EMBL; M11785; AAA5808_1; JOINED.
 DR EMBL; M11786; AAA5808_1; JOINED.
 DR EMBL; M11787; AAA5808_1; JOINED.
 DR EMBL; M11788; AAA5808_1; JOINED.
 DR EMBL; M11789; AAA5808_1; JOINED.
 DR EMBL; M11790; AAA5808_1; JOINED.
 DR EMBL; M11791; AAA5808_1; JOINED.
 DR EMBL; M11792; AAA5808_1; JOINED.
 DR EMBL; M11793; AAA5808_1; JOINED.
 DR EMBL; M11794; AAA5808_1; JOINED.
 DR EMBL; M11795; AAA5808_1; JOINED.
 DR EMBL; M11796; AAA5808_1; JOINED.
 DR EMBL; M11797; AAA5808_1; JOINED.
 DR EMBL; M11798; AAA5808_1; JOINED.
 DR EMBL; M11799; AAA5808_1; JOINED.
 DR EMBL; M11800; AAA5808_1; JOINED.
 DR EMBL; M11801; AAA5808_1; JOINED.
 DR EMBL; M11802; AAA5808_1; JOINED.
 DR EMBL; M11803; AAA5808_1; JOINED.
 DR EMBL; M11804; AAA5808_1; JOINED.
 DR EMBL; M11805; AAA5808_1; JOINED.
 DR EMBL; M11806; AAA5808_1; JOINED.
 DR EMBL; M11807; AAA5808_1; JOINED.
 DR EMBL; M11808; AAA5808_1; JOINED.
 DR EMBL; M11809; AAA5808_1; JOINED.
 DR EMBL; M11810; AAA5808_1; JOINED.
 DR EMBL; M11811; AAA5808_1; JOINED.
 DR EMBL; M11812; AAA5808_1; JOINED.
 DR EMBL; M11813; AAA5808_1; JOINED.
 DR EMBL; M11814; AAA5808_1; JOINED.
 DR EMBL; M11815; AAA5808_1; JOINED.
 DR EMBL; M11816; AAA5808_1; JOINED.
 DR EMBL; M11817; AAA5808_1; JOINED.
 DR EMBL; M11818; AAA5808_1; JOINED.
 DR EMBL; M11819; AAA5808_1; JOINED.
 DR EMBL; M11820; AAA5808_1; JOINED.
 DR EMBL; M11821; AAA5808_1; JOINED.
 DR EMBL; M11822; AAA5808_1; JOINED.
 DR EMBL; M11823; AAA5808_1; JOINED.
 DR EMBL; M11824; AAA5808_1; JOINED.
 DR EMBL; M11825; AAA5808_1; JOINED.
 DR EMBL; M11826; AAA5808_1; JOINED.
 DR EMBL; M11827; AAA5808_1; JOINED.
 DR EMBL; M11828; AAA5808_1; JOINED.
 DR EMBL; M11829; AAA5808_1; JOINED.
 DR EMBL; M11830; AAA5808_1; JOINED.
 DR EMBL; M11831; AAA5808_1; JOINED.
 DR EMBL; M11832; AAA5808_1; JOINED.
 DR EMBL; M11833; AAA5808_1; JOINED.
 DR EMBL; M11834; AAA5808_1; JOINED.
 DR EMBL; M11835; AAA5808_1; JOINED.
 DR EMBL; M11836; AAA5808_1; JOINED.
 DR EMBL; M11837; AAA5808_1; JOINED.
 DR EMBL; M11838; AAA5808_1; JOINED.
 DR EMBL; M11839; AAA5808_1; JOINED.
 DR EMBL; M11840; AAA5808_1; JOINED.
 DR EMBL; M11841; AAA5808_1; JOINED.
 DR EMBL; M11842; AAA5808_1; JOINED.
 DR EMBL; M11843; AAA5808_1; JOINED.
 DR EMBL; M11844; AAA5808_1; JOINED.
 DR EMBL; M11845; AAA5808_1; JOINED.
 DR EMBL; M11846; AAA5808_1; JOINED.
 DR EMBL; M11847; AAA5808_1; JOINED.
 DR EMBL; M11848; AAA5808_1; JOINED.
 DR EMBL; M11849; AAA5808_1; JOINED.
 DR EMBL; M11850; AAA5808_1; JOINED.
 DR EMBL; M11851; AAA5808_1; JOINED.
 DR EMBL; M11852; AAA5808_1; JOINED.
 DR EMBL; M11853; AAA5808_1; JOINED.
 DR EMBL; M11854; AAA5808_1; JOINED.
 DR EMBL; M11855; AAA5808_1; JOINED.
 DR EMBL; M11856; AAA5808_1; JOINED.
 DR EMBL; M11857; AAA5808_1; JOINED.
 DR EMBL; M11858; AAA5808_1; JOINED.
 DR EMBL; M11859; AAA5808_1; JOINED.
 DR EMBL; M11860; AAA5808_1; JOINED.
 DR EMBL; M11861; AAA5808_1; JOINED.
 DR EMBL; M11862; AAA5808_1; JOINED.
 DR EMBL; M11863; AAA5808_1; JOINED.
 DR EMBL; M11864; AAA5808_1; JOINED.
 DR EMBL; M11865; AAA5808_1; JOINED.
 DR EMBL; M11866; AAA5808_1; JOINED.
 DR EMBL; M11867; AAA5808_1; JOINED.
 DR EMBL; M11868; AAA5808_1; JOINED.
 DR EMBL; M11869; AAA5808_1; JOINED.
 DR EMBL; M11870; AAA5808_1; JOINED.
 DR EMBL; M11871; AAA5808_1; JOINED.
 DR EMBL; M11872; AAA5808_1; JOINED.
 DR EMBL; M11873; AAA5808_1; JOINED.
 DR EMBL; M11874; AAA5808_1; JOINED.
 DR EMBL; M11875; AAA5808_1; JOINED.
 DR EMBL; M11876; AAA5808_1; JOINED.
 DR EMBL; M11877; AAA5808_1; JOINED.
 DR EMBL; M11878; AAA5808_1; JOINED.
 DR EMBL; M11879; AAA5808_1; JOINED.
 DR EMBL; M11880; AAA5808_1; JOINED.
 DR EMBL; M11881; AAA5808_1; JOINED.
 DR EMBL; M11882; AAA5808_1; JOINED.
 DR EMBL; M11883; AAA5808_1; JOINED.
 DR EMBL; M11884; AAA5808_1; JOINED.
 DR EMBL; M11885; AAA5808_1; JOINED.
 DR EMBL; M11886; AAA5808_1; JOINED.
 DR EMBL; M11887; AAA5808_1; JOINED.
 DR EMBL; M11888; AAA5808_1; JOINED.
 DR EMBL; M11889; AAA5808_1; JOINED.
 DR EMBL; M11890; AAA5808_1; JOINED.
 DR EMBL; M11891; AAA5808_1; JOINED.
 DR EMBL; M11892; AAA5808_1; JOINED.
 DR EMBL; M11893; AAA5808_1; JOINED.
 DR EMBL; M11894; AAA5808_1; JOINED.
 DR EMBL; M11895; AAA5808_1; JOINED.
 DR EMBL; M11896; AAA5808_1; JOINED.
 DR EMBL; M11897; AAA5808_1; JOINED.
 DR EMBL; M11898; AAA5808_1; JOINED.
 DR EMBL; M11899; AAA5808_1; JOINED.
 DR EMBL; M11900; AAA5808_1; JOINED.
 DR EMBL; M11901; AAA5808_1; JOINED.
 DR EMBL; M11902; AAA5808_1; JOINED.
 DR EMBL; M11903; AAA5808_1; JOINED.
 DR EMBL; M11904; AAA5808_1; JOINED.
 DR EMBL; M11905; AAA5808_1; JOINED.
 DR EMBL; M11906; AAA5808_1; JOINED.
 DR EMBL; M11907; AAA5808_1; JOINED.
 DR EMBL; M11908; AAA5808_1; JOINED.
 DR EMBL; M11909; AAA5808_1; JOINED.
 DR EMBL; M11910; AAA5808_1; JOINED.
 DR EMBL; M11911; AAA5808_1; JOINED.
 DR EMBL; M11912; AAA5808_1; JOINED.
 DR EMBL; M11913; AAA5808_1; JOINED.
 DR EMBL; M11914; AAA5808_1; JOINED.
 DR EMBL; M11915; AAA5808_1; JOINED.
 DR EMBL; M11916; AAA5808_1; JOINED.
 DR EMBL; M11917; AAA5808_1; JOINED.
 DR EMBL; M11918; AAA5808_1; JOINED.
 DR EMBL; M11919; AAA5808_1; JOINED.
 DR EMBL; M11920; AAA5808_1; JOINED.
 DR EMBL; M11921; AAA5808_1; JOINED.
 DR EMBL; M11922; AAA5808_1; JOINED.
 DR EMBL; M11923; AAA5808_1; JOINED.
 DR EMBL; M11924; AAA5808_1; JOINED.
 DR EMBL; M11925; AAA5808_1; JOINED.
 DR EMBL; M11926; AAA5808_1; JOINED.
 DR EMBL; M11927; AAA5808_1; JOINED.
 DR EMBL; M11928; AAA5808_1; JOINED.
 DR EMBL; M11929; AAA5808_1; JOINED.
 DR EMBL; M11930; AAA5808_1; JOINED.
 DR EMBL; M11931; AAA5808_1; JOINED.
 DR EMBL; M11932; AAA5808_1; JOINED.
 DR EMBL; M11933; AAA5808_1; JOINED.
 DR EMBL; M11934; AAA5808_1; JOINED.
 DR EMBL; M11935; AAA5808_1; JOINED.
 DR EMBL; M11936; AAA5808_1; JOINED.
 DR EMBL; M11937; AAA5808_1; JOINED.
 DR EMBL; M11938; AAA5808_1; JOINED.
 DR EMBL; M11939; AAA5808_1; JOINED.
 DR EMBL; M11940; AAA5808_1; JOINED.
 DR EMBL; M11941; AAA5808_1; JOINED.
 DR EMBL; M11942; AAA5808_1; JOINED.
 DR EMBL; M11943; AAA5808_1; JOINED.
 DR EMBL; M11944; AAA5808_1; JOINED.
 DR EMBL; M11945; AAA5808_1; JOINED.
 DR EMBL; M11946; AAA5808_1; JOINED.
 DR EMBL; M11947; AAA5808_1; JOINED.
 DR EMBL; M11948; AAA5808_1; JOINED.
 DR EMBL; M11949; AAA5808_1; JOINED.
 DR EMBL; M11950; AAA5808_1; JOINED.
 DR EMBL; M11951; AAA5808_1; JOINED.
 DR EMBL; M11952; AAA5808_1; JOINED.
 DR EMBL; M11953; AAA5808_1; JOINED.
 DR EMBL; M11954; AAA5808_1; JOINED.
 DR EMBL; M11955; AAA5808_1; JOINED.
 DR EMBL; M11956; AAA5808_1; JOINED.
 DR EMBL; M11957; AAA5808_1; JOINED.
 DR EMBL; M11958; AAA5808_1; JOINED.
 DR EMBL; M11959; AAA5808_1; JOINED.
 DR EMBL; M11960; AAA5808_1; JOINED.
 DR EMBL; M11961; AAA5808_1; JOINED.
 DR EMBL; M11962; AAA5808_1; JOINED.
 DR EMBL; M11963; AAA5808_1; JOINED.
 DR EMBL; M11964; AAA5808_1; JOINED.
 DR EMBL; M11965; AAA5808_1; JOINED.
 DR EMBL; M11966; AAA5808_1; JOINED.
 DR EMBL; M11967; AAA5808_1; JOINED.
 DR EMBL; M11968; AAA5808_1; JOINED.
 DR EMBL; M11969; AAA5808_1; JOINED.
 DR EMBL; M11970; AAA5808_1; JOINED.
 DR EMBL; M11971; AAA5808_1; JOINED.
 DR EMBL; M11972; AAA5808_1; JOINED.
 DR EMBL; M11973; AAA5808_1; JOINED.
 DR EMBL; M11974; AAA5808_1; JOINED.
 DR EMBL; M11975; AAA5808_1; JOINED.
 DR EMBL; M11976; AAA5808_1; JOINED.
 DR EMBL; M11977; AAA5808_1; JOINED.
 DR EMBL; M11978; AAA5808_1; JOINED.
 DR EMBL; M11979; AAA5808_1; JOINED.
 DR EMBL; M11980; AAA5808_1; JOINED.
 DR EMBL; M11981; AAA5808_1; JOINED.
 DR EMBL; M11982; AAA5808_1; JOINED.
 DR EMBL; M11983; AAA5808_1; JOINED.
 DR EMBL; M11984; AAA5808_1; JOINED.
 DR EMBL; M11985; AAA5808_1; JOINED.
 DR EMBL; M11986; AAA5808_1; JOINED.
 DR EMBL; M11987; AAA5808_1; JOINED.
 DR EMBL; M11988; AAA5808_1; JOINED.
 DR EMBL; M11989; AAA5808_1; JOINED.
 DR EMBL; M11990; AAA5808_1; JOINED.
 DR EMBL; M11991; AAA5808_1; JOINED.
 DR EMBL; M11992; AAA5808_1; JOINED.
 DR EMBL; M11993; AAA5808_1; JOINED.
 DR EMBL; M11994; AAA5808_1; JOINED.
 DR EMBL; M11995; AAA5808_1; JOINED.
 DR EMBL; M11996; AAA5808_1; JOINED.
 DR EMBL; M11997; AAA5808_1; JOINED.
 DR EMBL; M11998; AAA5808_1; JOINED.
 DR EMBL; M11999; AAA5808_1; JOINED.
 DR EMBL; M12000; AAA5808_1; JOINED.
 DR EMBL; M12001; AAA5808_1; JOINED.
 DR EMBL; M12002; AAA5808_1; JOINED.
 DR EMBL; M12003; AAA5808_1; JOINED.
 DR EMBL; M12004; AAA5808_1; JOINED.
 DR EMBL; M12005; AAA5808_1; JOINED.
 DR EMBL; M12006; AAA5808_1; JOINED.
 DR EMBL; M12007; AAA5808_1; JOINED.
 DR EMBL; M12008; AAA5808_1; JOINED.
 DR EMBL; M12009; AAA5808_1; JOINED.
 DR EMBL; M12010; AAA5808_1; JOINED.
 DR EMBL; M12011; AAA5808_1; JOINED.
 DR EMBL; M12012; AAA5808_1; JOINED.
 DR EMBL; M12013; AAA5808_1; JOINED.
 DR EMBL; M12014; AAA5808_1; JOINED.
 DR EMBL; M12015; AAA5808_1; JOINED.
 DR EMBL; M12016; AAA5808_1; JOINED.
 DR EMBL; M12017; AAA5808_1; JOINED.
 DR EMBL; M12018; AAA5808_1; JOINED.
 DR EMBL; M12019; AAA5808_1; JOINED.
 DR EMBL; M12020; AAA5808_1; JOINED.
 DR EMBL; M12021; AAA5808_1; JOINED.
 DR EMBL; M12022; AAA5808_1; JOINED.
 DR EMBL; M12023; AAA5808_1; JOINED.
 DR EMBL; M12024; AAA5808_1; JOINED.
 DR EMBL; M12025; AAA5808_1; JOINED.
 DR EMBL; M12026; AAA5808_1; JOINED.
 DR EMBL; M12027; AAA5808_1; JOINED.
 DR EMBL; M12028; AAA5808_1; JOINED.
 DR EMBL; M12029; AAA5808_1; JOINED.
 DR EMBL; M12030; AAA5808_1; JOINED.
 DR EMBL; M12031; AAA5808_1; JOINED.
 DR EMBL; M12032; AAA5808_1; JOINED.
 DR EMBL; M12033; AAA5808_1; JOINED.
 DR EMBL; M12034; AAA5808_1; JOINED.
 DR EMBL; M12035; AAA5808_1; JOINED.
 DR EMBL; M12036; AAA5808_1; JOINED.
 DR EMBL; M12037; AAA5808_1; JOINED.
 DR EMBL; M12038; AAA5808_1; JOINED.
 DR EMBL; M12039; AAA5808_1; JOINED.
 DR EMBL; M12040; AAA5808_1; JOINED.
 DR EMBL; M12041; AAA5808_1; JOINED.
 DR EMBL; M12042; AAA5808_1; JOINED.
 DR EMBL; M12043; AAA5808_1; JOINED.
 DR EMBL; M12044; AAA5808_1; JOINED.
 DR EMBL; M12045; AAA5808_1; JOINED.
 DR EMBL; M12046; AAA5808_1; JOINED.
 DR EMBL; M12047; AAA5808_1; JOINED.
 DR EMBL; M12048; AAA5808_1; JOINED.
 DR EMBL; M12049; AAA5808_1; JOINED.
 DR EMBL; M12050; AAA5808_1; JOINED.
 DR EMBL; M12051; AAA5808_1; JOINED.
 DR EMBL; M12052; AAA5808_1; JOINED.
 DR EMBL; M12053; AAA5808_1; JOINED.
 DR EMBL; M12054; AAA5808_1; JOINED.
 DR EMBL; M12055; AAA5808_1; JOINED.
 DR EMBL; M12056; AAA5808_1; JOINED.
 DR EMBL; M12057; AAA5808_1; JOINED.
 DR EMBL; M12058; AAA5808_1; JOINED.
 DR EMBL; M12059; AAA5808_1; JOINED.
 DR EMBL; M12060; AAA5808_1; JOINED.
 DR EMBL; M12061; AAA5808_1; JOINED.
 DR EMBL; M12062; AAA5808_1; JOINED.
 DR EMBL; M12063; AAA5808_1; JOINED.
 DR EMBL; M12064; AAA5808_1; JOINED.
 DR EMBL; M12065; AAA5808_1; JOINED.
 DR EMBL; M12066; AAA5808_1; JOINED.
 DR EMBL; M12067; AAA5808_1; JOINED.
 DR EMBL; M12068; AAA5808_1; JOINED.
 DR EMBL; M12069; AAA5808_1; JOINED.
 DR EMBL; M12070; AAA5808_1; JOINED.
 DR EMBL; M12071; AAA5808_1; JOINED.
 DR EMBL; M12072; AAA5808_1; JOINED.
 DR EMBL; M12073; AAA5808_1; JOINED.
 DR EMBL; M12074; AAA5808_1; JOINED.
 DR EMBL; M12075; AAA5808_1; JOINED.
 DR EMBL; M12076; AAA5808_1; JOINED.
 DR EMBL; M12077; AAA5808_1; JOINED.
 DR EMBL; M12078; AAA5808_1; JOINED.
 DR EMBL; M12079; AAA5808_1; JOINED.
 DR EMBL; M12080; AAA5808_1; JOINED.
 DR EMBL; M12081; AAA5808_1; JOINED.
 DR EMBL; M12082; AAA5808_1; JOINED.
 DR EMBL; M12083; AAA5808_1; JOINED.
 DR EMBL; M12084; AAA5808_1; JOINED.
 DR EMBL; M12085; AAA5808_1; JOINED.
 DR EMBL; M12086; AAA5808_1; JOINED.
 DR EMBL; M12087; AAA5808_1; JOINED.
 DR EMBL; M12088; AAA5808_1; JOINED.
 DR EMBL; M12089; AAA5808_1; JOINED.
 DR EMBL; M12090; AAA5808_1; JOINED.
 DR EMBL; M12091; AAA5808_1; JOINED.
 DR EMBL; M12092; AAA5808_1; JOINED.
 DR EMBL; M12093; AAA5808_1; JOINED.
 DR EMBL; M12094; AAA5808_1; JOINED.
 DR EMBL; M12095; AAA5808_1; JOINED.
 DR EMBL; M12096; AAA5808_1; JOINED.
 DR EMBL; M12097; AAA5808_1; JOINED.
 DR EMBL; M12098; AAA5808_1; JOINED.
 DR EMBL; M12099; AAA5808_1; JOINED.
 DR EMBL; M12100; AAA5808_1; JOINED.
 DR EMBL; M12101; AAA5808_1; JOINED.
 DR EMBL; M12102; AAA5808_1; JOINED.
 DR EMBL; M12103; AAA5808_1; JOINED.
 DR EMBL; M12104; AAA5808_1; JOINED.
 DR EMBL; M12105; AAA5808_1; JOINED.
 DR EMBL; M12106; AAA5808_1; JOINED.
 DR EMBL; M12107; AAA5808_1; JOINED.
 DR EMBL; M12108; AAA5808_1; JOINED.
 DR EMBL; M12109; AAA5808_1; JOINED.
 DR EMBL; M12110; AAA5808_1; JOINED.
 DR EMBL; M12111; AAA5808_1; JOINED.
 DR EMBL; M12112; AAA5808_1; JOINED.
 DR EMBL; M12113; AAA5808_1; JOINED.
 DR EMBL; M12114; AAA5808_1; JOINED.
 DR EMBL; M12115; AAA5808_1; JOINED.
 DR EMBL; M12116; AAA5808_1; JOINED.
 DR EMBL; M12117; AAA5808_1; JOINED.
 DR EMBL; M12118; AAA5808_1; JOINED.
 DR EMBL; M12119; AAA5808_1; JOINED.
 DR EMBL; M12120; AAA5808_1; JOINED.
 DR EMBL; M12121; AAA5808_1; JOINED.
 DR EMBL; M12122; AAA5808_1; JOINED.
 DR EMBL; M12123; AAA5808_1; JOINED.
 DR EMBL; M12124; AAA5808_1; JOINED.
 DR EMBL; M12125; AAA5808_1; JOINED.
 DR EMBL; M12126; AAA5808_1; JOINED.
 DR EMBL; M12127; AAA5808_1; JOINED.
 DR EMBL; M12128; AAA5808_1; JOINED.
 DR EMBL; M12129; AAA5808_1; JOINED.
 DR EMBL; M12130; AAA5808_1; JOINED.
 DR EMBL; M12131; AAA5808_1; JOINED.
 DR EMBL; M12132; AAA5808_1; JOINED.
 DR EMBL; M12133; AAA5808_1; JOINED.
 DR EMBL; M12134; AAA5808_1

constitutively activated oncogenic variant forms a homodimer.

-!- Interacts with PRKCBP (By Similarity).

-!- SUBCELLULAR LOCATION: Type I membrane protein.

-!- PTM: Ligand-binding increases phosphorylation on tyrosine residues (By Similarity).

-!- SIMILARITY: Belongs to the BGF receptor family.

This SWISS-PROT entry is copyright. It is produced through a collaboration between the Swiss Institute of Bioinformatics and the EMBL outstation - the European Bioinformatics Institute. There are no restrictions on its use by non-profit institutions as long as its content is in no way modified and this statement is not removed. Usage by and for commercial purposes requires a license agreement (See <http://www.isb-sib.ch/announce/> or send an email to license@isb-sib.ch).

SMART; SMD00219; TyrKc; 1.	PT	MOD_RES	1141	1141	PHOSPHORYLATION (AUTO-)
	PT	MOD_RES	1230	1250	PHOSPHORYLATION (AUTO-)
	PT	CARBODY	68	68	N-LINKED (GLCNAC. . .) (BY SIMILARITY).
	PT	CARBODY	188	188	N-LINKED (GLCNAC. . .) (POTENTIAL).
	PT	CARBODY	260	260	N-LINKED (GLCNAC. . .) (POTENTIAL).
	PT	CARBODY	532	532	N-LINKED (GLCNAC. . .) (POTENTIAL).
	PT	CARBODY	573	573	N-LINKED (GLCNAC. . .) (POTENTIAL).
	PT	CARBODY	631	631	N-LINKED (GLCNAC. . .) (POTENTIAL).
	PT	VARIANT	661	661	V -> E (IN ONCOGENIC NEU).
	SQ	SEQUENCE	1257 AA;	138831 MW;	61926458301402 CRC64;
Query	1	KVFGSLAFV 9			
Db	370	KIFGSLAFL 378			
<hr/>					
RESULT 4					
RT03_ACACA STANDARD; PRT; 298 AA.					
ID RT03_ACACA					
AC P46754; DT 04-NOV-1995 (Rel. 32, Created)					
DT 01-NOV-1995 (Rel. 32, Last sequence update)					
DT 30-MAY-2000 (Rel. 39, Last annotation update)					
DB Mitochondrial ribosomal protein S3.					
GN RPS3.					
OS Acanthamoeba castellanii (Amoeba).					
OG Mitochondrion.					
OC Eukaryotes; Acanthamoebidae; Acanthamoeba.					
OX NCBI_TaxID=5755;					
RN [1] RP SEQUENCE FROM N.A.					
RC STRAIN=ATCC 30010; PubMed=7844823;					
RX MEDLINE=514775; Pubmed=7844823;					
RA Burger G.; Planté I.; Loneragan K.M.; Gray M.W.; RT The mitochondrial DNA of the amoeboid protozoan, Acanthamoeba castellanii: complete sequence, gene content and genome organization.";					
RT J. Mol. Biol. 245:522-537(1995). RL					
CC -!- SUBCELLULAR LOCATION: Mitochondrial.					
CC -!- SIMILARITY: Belongs to the S3P family of ribosomal proteins.					
CC This SWISS-PROT entry is copyright. It is produced through a collaboration between the Swiss Institute of Bioinformatics and the EMBL outstation - the European Bioinformatics Institute. There are no restrictions on its use by non-profit institutions as long as its content is in no way modified and this statement is not removed. Usage by and for commercial entities requires a license agreement (See http://www.isb-sib.ch/announce/ or send an email to license@isb-sib.ch).					
CC This SWISS-PROT entry is copyright. It is produced through a collaboration between the Swiss Institute of Bioinformatics and the EMBL outstation - the European Bioinformatics Institute. There are no restrictions on its use by non-profit institutions as long as its content is in no way modified and this statement is not removed. Usage by and for commercial entities requires a license agreement (See http://www.isb-sib.ch/announce/ or send an email to license@isb-sib.ch).					
CC DR EMBL; U11386; AAD11841; 1. DR PIR; S53849; S53849.					
CC DR InterPro; IPR009019; KH_prok.					
CC DR InterPro; IPR001354; Ribosomal_S3_C.					
CC DR InterPro; IPR008232; Ribosomal_S3_C.					
CC DR Pfam; PF0189; Ribosomal_S3_C.					
CC DR PROSITE; PS00548; RIBOSOMAL_S3_NEG.					
CC KW Ribosomal protein; Mitochondrion.					
SQ SEQUENCE 298 AA; 36060 MW;					
Query Match 81.4%; Score 35; DB 1; Length 298; Best Local Similarity 87.5%; Pred. No. 6 / 8; Matches 7; Conservative 0; Mismatches 1; Indels 0; Gaps 0;					
Qy 1 KVFGSLAF 8					
Db 250 KAFGSLAF 257					

+ L-lysyl-tRNA(Lys).
 -: COFACTOR: Binds 3 magnesium ions per subunit (By similarity).
 CC -: SUBCELLULAR LOCATION: Homodimer (By similarity).
 CC -: SIMILARITY: Belongs to Class-II aminoacyl-tRNA synthetase family.

This SWISS-PROT entry is copyright. It is produced through a collaboration between the Swiss Institute of Bioinformatics and the EMBL outstation - the European Bioinformatics Institute. There are no restrictions on its use by non-profit institutions as long as its content is in no way modified and this statement is not removed. Usage by and for commercial entities requires a license agreement (See <http://www.isb-sib.ch/announce/> or send an email to license@isb-sib.ch).

R EMBL; AP003595; BABP5770_1; -.
 R PIR; AH2314; AH2314.
 DR InterPro; IPRO00195; Nucleic acid_OB.
 DR InterPro; IPRO04364; tRNA-synt_2.
 DR InterPro; IPRO002312; tRNA-synt.asp.
 DR InterPro; IPRO002313; tRNA-synt_lys_2.
 DR InterPro; IPRO04365; tRNA_anti_-lys_2.
 DR InterPro; IPRO01042; TRNAsYNTASP.
 DR PRINTS; PRO0982; TRNAsYNTASP.
 DR TIGRGRAMS; TIGR00499; lysS bact.; 1.
 DR PROSITE; PS00862; AA_TRNA_LIGASE_II; 1.
 W Aminoacyl-tRNA synthetase; Protein biosynthesis; Ligase; ATP-binding;
 W Metal-binding; Magnesium; Complete proteome.
 T MAGNESIUM 1 (BY SIMILARITY).
 T METAL 409 409
 Q SEQUENCE 561 AA: 63676 MW: 92FF80E13632DAA3 CRC64;

Query Match 74.4%; Score 32; DB 1; Length 561;
 Best Local Similarity 75.0%; Pred. No. 52; Gaps 0;
 Matches 6; Conservative 1; Mismatches 1; Indels 0; Gaps 0;

Y 1 KVFGSLAF 8
 b 1:||||| 1:
 b 65 RVFGKLA 72

RESULT 8
 D BXB2_HAEIN STANDARD; PRT; 265 AA.
 IC P19350;
 JT 01-NOV-1990 (Rel. 16, Created)
 JT 01-NOV-1990 (Rel. 16, Last sequence update)
 JT 15-MAR-2004 (Rel. 43, Last annotation update)

DE Capsule polysaccharide export inner-membrane protein bexB.
 IN BXB2.
 JS Haemophilus influenzae.
 JC Bacteria; Proteobacteria; Gammaproteobacteria; Pasteurellales;
 JC Pasteurillaceae; Haemophilus.
 IX NCBI_TAXID=27;

IN [1]
 UP SEQUENCE FROM N.A.
 IC STRAIN=RM 926 / Serotype_B;
 IC MEDLINE=9010850; PubMed=2137816;

IX Kroll J.S., Moxon B.R.;
 "Capsulation in distantly related strains of Haemophilus influenzae type b: genetic drift and gene transfer at the capsulation locus." ;
 J. Bacteriol. 172:1374-1379(1990).
 DE FUNCTION: May form an ATP-driven capsule polysaccharide export apparatus, in association with the bexA, bexC and bexD proteins.
 IN BXB2.
 JS Haemophilus influenzae.
 JC Bacteria; Proteobacteria; Gammaproteobacteria; Pasteurellales;
 JC Pasteurillaceae; Haemophilus.

IN [1]
 DR EMBL; M33789; AAA24945_1; -.
 DR InterPro; IPRO00412; ABC transport2.
 DR Pfam; PF01061; ABC2 membrane_1.
 DR PRINTS; PRO0164; ABC2TRANSPORT.
 DR PROSITE; PS00850; ABC2 MEMBRANE_1.
 DR Transport; Polysaccharide transport; Bacterial capsule;
 KW Inner membrane; Transmembrane.
 FT POTENTIAL.

This SWISS-PROT entry is copyright. It is produced through a collaboration between the Swiss Institute of Bioinformatics and the EMBL outstation - the European Bioinformatics Institute. There are no restrictions on its use by non-profit institutions as long as its content is in no way modified and this statement is not removed. Usage by and for commercial entities requires a license agreement (See <http://www.isb-sib.ch/announce/> or send an email to license@isb-sib.ch).

the European Bioinformatics Institute. There are no restrictions on its use by non-profit institutions as long as its content is in no way modified and this statement is not removed. Usage by and for commercial entities requires a license agreement (See <http://www.isb-sib.ch/announce/> or send an email to license@isb-sib.ch).

CC EMBL; M33789; AAA24945_1; -.
 DR InterPro; IPRO00412; ABC transport2.
 DR Pfam; PF01061; ABC2 membrane_1.
 DR PRINTS; PRO0164; ABC2TRANSPORT.
 DR PROSITE; PS00850; ABC2 MEMBRANE_1.
 DR Transport; Polysaccharide transport; Bacterial capsule;
 KW Inner membrane; Transmembrane.
 FT POTENTIAL.

This SWISS-PROT entry is copyright. It is produced through a collaboration between the Swiss Institute of Bioinformatics and the EMBL outstation - the European Bioinformatics Institute. There are no restrictions on its use by non-profit institutions as long as its content is in no way modified and this statement is not removed. Usage by and for commercial entities requires a license agreement (See <http://www.isb-sib.ch/announce/> or send an email to license@isb-sib.ch).

CC EMBL; M33789; AAA24945_1; -.
 DR InterPro; IPRO00412; ABC transport2.
 DR Pfam; PF01061; ABC2 membrane_1.
 DR PRINTS; PRO0164; ABC2TRANSPORT.
 DR PROSITE; PS00850; ABC2 MEMBRANE_1.
 DR Transport; Polysaccharide transport; Bacterial capsule;
 KW Inner membrane; Transmembrane.
 FT POTENTIAL.

Query Match 72.1%; Score 31; DB 1; Length 265;

Best Local Similarity 55.6%; Pred. No. 42; Gaps 0; Indels 0; Gaps 0;

Matches 5; Conservative 4; Mismatches 0; Indels 0; Gaps 0;

SQ SEQUENCE 265 AA: 30181 MW: 0A436FF824CD25C1 CRC64;

Qy 1 KVFGSLAFV 9
 Db 180 KIWGTLISFV 188

RESULT 9
 BXB2_HAEIN STANDARD; PRT; 265 AA.
 ID BXB2_HAEIN STANDARD; PRT; 265 AA.
 AC P19351;
 DT 01-NOV-1990 (Rel. 16, Created)
 DT 01-MAR-2004 (Rel. 16, Last sequence update)
 DT 15-MAR-2004 (Rel. 43, Last annotation update)

DE Capsule polysaccharide export inner-membrane protein bexB.
 GN BXB2.
 OS Haemophilus influenzae.
 OC Bacteria; Proteobacteria; Gammaproteobacteria; Pasteurellales.
 OC Pasteurillaceae; Haemophilus.
 OX NCBI_TAXID=727;
 RN [1]

RP SEQUENCE FROM N.A.
 RC STRAIN=RM 926 / Serotype_B;
 RX MEDLINE=9010850; PubMed=2137816;

RA Kroll J.S., Moxon B.R.;
 RT "Capsulation in distantly related strains of Haemophilus influenzae type b: genetic drift and gene transfer at the capsulation locus." ;
 RL J. Bacteriol. 172:1374-1379(1990).
 CC -: FUNCTION: May form an ATP-driven capsule polysaccharide export apparatus, in association with the bexA, DexC and bexD proteins.
 CC -: SUBCELLULAR LOCATION: Integral membrane protein. Inner membrane (Potential).
 CC -: SIMILARITY: Belongs to the ABC-2 integral membrane protein family.

This SWISS-PROT entry is copyright. It is produced through a collaboration between the Swiss Institute of Bioinformatics and the EMBL outstation - the European Bioinformatics Institute. There are no restrictions on its use by non-profit institutions as long as its content is in no way modified and this statement is not removed. Usage by and for commercial entities requires a license agreement (See <http://www.isb-sib.ch/announce/> or send an email to license@isb-sib.ch).

CC EMBL; M33789; AAA24946_1; -.
 DR InterPro; IPRO00412; ABC transport2.
 DR Pfam; PF01061; ABC2 membrane_1.
 DR PRINTS; PRO0164; ABC2TRANSPORT.
 DR PROSITE; PS00850; ABC2 MEMBRANE_1.
 DR Transport; Polysaccharide transport; Bacterial capsule;
 KW Inner membrane; Transmembrane.
 FT POTENTIAL.

This SWISS-PROT entry is copyright. It is produced through a collaboration between the Swiss Institute of Bioinformatics and the EMBL outstation - the European Bioinformatics Institute. There are no restrictions on its use by non-profit institutions as long as its content is in no way modified and this statement is not removed. Usage by and for commercial entities requires a license agreement (See <http://www.isb-sib.ch/announce/> or send an email to license@isb-sib.ch).

CC EMBL; M33789; AAA24946_1; -.
 DR InterPro; IPRO00412; ABC transport2.
 DR Pfam; PF01061; ABC2 membrane_1.
 DR PRINTS; PRO0164; ABC2TRANSPORT.
 DR PROSITE; PS00850; ABC2 MEMBRANE_1.
 DR Transport; Polysaccharide transport; Bacterial capsule;
 KW Inner membrane; Transmembrane.
 FT POTENTIAL.

RESULT 12	L2 HPV48	STANDARD
D D Q80Z5	D V12 HPV48	
T T 19-JUL-1998	(Ref. 36, L	
T T 19-JUL-1998	(Ref. 36, L	
T T 19-JUL-1998	(Ref. 36, L	
3 N Minor capsid protein L2		
	Human papillomavirus type 18 Viruses; dsDNA viruses; Papillomavirus.	
	NBGI_TaxID=40338;	
	[1]	
	SEQUENCE FROM N.A.	
	Delius H.; Submitted (OCT-1995) to SWISS-PROT entry i	
	This SWISS-PROT entry is between the Swiss Institute of Bioinformatics and the European Bioinformatics Institute. It is made available use by non-profit institutions modified and this state entities requires a license or send an email to license@ebi.ac.uk	
	EMBL: U31789; AAA9469 InterPro: IPR000784; PFAM: PF00513; late pro coat Protein; Late Pro SEQUENCE 502 AA; 544	
Query Match	72	
Best Local Similarity	62	
Matches	5; Conservativ	
	Y 1 KVFGLSIAFP 8	
	: : b 43 KTFGSLVY 50	
RESULT 13		
SYK SYNL	STANDARD	
D SYK SYNL		
C QD9A9		
T 10-OCT-2003	(Ref. 42, C	
T 10-OCT-2003	(Ref. 42, I	
T 10-OCT-2003	(Ref. 42, I	
T "Complete genome structure of Syk-like tRNA synthetase Lysyl-tRNA synthetase LSS OR TLL0212.		
S S Chryseobacterium elongatum Bacteria; Cyanobacteria NCBI_TaxID=32046;		
X X [1]		
N N SEQUENCE FROM N.A.		
P P STRAIN:BP-1;		
A A MEDLINE=2225144; PubMed=		
A A Nakamura Y.; Kaneko T.; Watanabe A.; Iriuchi M.; Kiyokawa S.; Kohmoto M.; Shimpo S.; Sugimoto M.		
A A "Complete genome structure of Thermosynechococcus elongatus Bacterium; Cyanobacteria NCBI_TaxID=32046;		
X X [1]		
C C -I- CATALYTIC ACTIVITY C C + L-LYSYL-tRNA(Lysyl tRNA) C C -- COPIATOR: Binds 3' m		
C C -- SUBUNIT: Homodimer		
C C -- SUBCELLULAR LOCATION: C C -- SIMILARITY: Belongs to		

This SWISS-PROT entry is copyright. It is produced through a collaboration between the Swiss Institute of Bioinformatics and the EMBL outstation - European Bioinformatics Institute. There are no restrictions on its use by non-profit institutions as long as its content is in no way modified and this statement is not removed. Usage by and for commercial entities requires a license agreement (See <http://www.isb-sib.ch/announce/> or send an email to license@isb-sib.ch).

DR EMBL; AP005369; BAC07765.1; -;

DR DANAPro; MF_0052; -'; 1.

DR InterPro; IPR008934; Nucleic_acid_OB.

DR InterPro; IPR004344; tRNA-synt_2.

DR InterPro; IPR02313; tRNA-synt_lys_2.

DR InterPro; IPR04365; tRNA_ant_1.

DR InterPro; IPR006105; tRNA_ligase_II.

DR Pfam; PF01152; tRNA-synt_2'; 1.

DR Pfam; PF01336; tRNA_ant_1.

DR PRINTS; PR00932; TRNA_SYNTHES.

DR TIGRFAMS; TIGR00449; LYSS_bact_1.

DR RCSBITE; PS50066; AA_tRNA_LIGASE_III_1.

KW Aminocys-tRNA synthetase; Protein biosynthesis; Ligase; ATP binding;

KW Metal-binding; Magnesium; Complete Proteome.

FT METAL 411 MAGNESIUM 1 AND 2 (BY SIMILARITY).

FT METAL 411 MAGNESIUM 1 (BY SIMILARITY).

SQ SEQUENCE 505 AA; 56353 MW; 837861ED7C8F1P5 CRC64;

Query Match 72.1%; Score 31; DB 1; Length 506;

Best Local Similarity 62.5%; Pred. No. 76;

Matches 5; Conservative 2; Mismatches 1; Indels 0; Gaps 0;

Qy 1 KVFGLSLAF 8

Db :||| |

70 RIFGKLAP 77

RESULT 14

	FTSK_VIBCH	STANDARD;	PRT;	960 AA.
ID	FTSK_VIBCH			
AC	Q84133; Q9KQUS;			
DT	10-OCT-2003 (Rel. 42, Created)			
DT	10-OCT-2003 (Rel. 42, Last sequence update)			
DT	10-OCT-2003 (Rel. 42, Last annotation update)			
DE	DNA translocase ftsK.			
GN	FTSK OR VC1903.			
OS	Vibrio cholerae.			
OC	Bacteria; Proteobacteria; Gammaproteobacteria; Vibionales;			
OC	Vibrionaceae; Vibrio.			
OX	NCBI_TaxID=666;			
RN	RP SEQUENCE FROM N.A.			
RC	SEQUENCE FROM N.A.			
RX	STRAIN=El Tor NI6361 / Serotype O1;			
RX	Medline=20406533; PubMed=10952301;			
RA	Heidelberg J.P.; Eisen J.B.; Nelson W.C.; Clayton R.A.; Gwinn M.L.,			
RA	Dodson R.J.; Haft D.H.; Hickey E.K.; Peterson J.D.; Umayam L.A.,			
RA	Gill S.R.; Nelson K.E.; Read T.D.; Tettelin H.; Richardson D.,			
RA	Brimblebaeza M.D.; Vanathavan J.; Bass S.; Qin H.; Dragoi I.,			
RA	McDonald L.; Utterback T.; Fleischmann R.D.; Nierman W.C., White O.,			
RA	Salzberg S.L.; Smith H.O.; Colwell R.R.; Mekalanos J.J.; Venter J.C.,			
RA	Frasier C.M.;			
RT	"DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae."			
RL	Nature 406:477-483 (2000).			
RN	[2]			
RP	SEQUENCE OF 446-917 FROM N.A.			
RX	Medline=22450551; PubMed=1215622793;			
RA	Herz K.; Vimont S.; Padan E.; Berche P.;			
RT	"Roles of NhaB, NhaB, and NhaD Na(+)/H(+) antiports in survival of Vibrio cholerae in a saline environment."			
RL	J. Bacteriol. 185:1236-1244 (2003).			
-:	FUNCTION: DNA motor protein, which is both required to move DNA out of the region of the septum during cell division and for the septum formation. Tracks DNA in an ATP-dependent manner by			

C Generating positive supercoils in front of it and negative
 C supercoils behind it (By similarity).
 C -SUBUNIT: Homohexameric. This suggests the formation of a ring
 C between the two cells at the septum that surrounds DNA (By
 C similarity).

C -SUBCELLULAR LOCATION: Integral membrane protein. Located at the
 C septum. The large C-terminal part of the protein is cytoplasmic
 C (Potential). Contains 1 FtsK domain.

C This SWISS-PROT entry is copyright. It is produced through a collaboration
 C between the Swiss Institute of Bioinformatics and the EMBL outstation -
 C the European Bioinformatics Institute. There are no
 C restrictions on its use by non-profit institutions as long as its content is in no way
 C modified and this statement is not removed. Usage by and for commercial
 C entities requires a license agreement. (See <http://www.isb-sib.ch/announce/>
 C or send an email to license@isb-sib.ch).

R EMBL; AE004266; AAF5051.1; -.
 R EMBL; AF489522; AAO37927.1; -.
 R PIR; AF2142; -.
 R TIGR; VC1803; -.
 R HAMAP; MF_01809; -.
 R InterPro; IPR02543; FtsK_SPOIIIE.
 R Pfam; PF01580; FtsK_SPOIIIE; 1.
 R PROSITE; PS50901; FTSK; 1.
 R W Chromosome partition; Cell division; ATP-binding; DNA-binding;
 R W Transmembrane; Complete proteome.
 T TRANSMEM 33 55 POTENTIAL.
 T TRANSMEM 84 106 POTENTIAL.
 T TRANSMEM 119 141 POTENTIAL.
 T TRANSMEM 146 168 POTENTIAL.
 T TRANSMEM 173 195 POTENTIAL.
 T DOMAIN 601 814 FTSK.
 T NP_BIND 618 625 ATP (POTENTIAL)
 Q SEQUENCE 960 AA; 105887 MW; OAAT78438BD8970 CRC64;

Query Match Score 31; DB 1; Length 960;
 Best Local Similarity 85.7%; Pred. No. 1.4e+02; Mismatches 0; Indels 0; Gaps 0;
 Matches 6; Conservative 1; Mismatches 2; Indels 2; Gaps 0;

Y 2 VFGSLAF 8
 b 86 VFGSLAY 92

RESULT 15

D_DPOL_RHCM6 STANDARD; PRT; 1035 AA.
 C 07112;
 T 15-DEC-1998 (Rel. 37, Created)
 T 15-DEC-1998 (Rel. 37, Last sequence update)
 T 28-FEB-2003 (Rel. 41, Last annotation update)
 E DNA Polymerase (EC 2.7.7.7).
 N UL54.
 S Rhinomavirus (strain 68-1) (RhCMV).
 C Virus; dsDNA viruses, no RNA stage; Herpesviridae;
 C Betaherpesvirinae; Cytomegalovirus.
 X NCBI_TaxID=10330;

X [1]

X SEQUENCE FROM N.A.
 X MEDLINE=98118429; PubMed=9454707;
 A Swanson R.; Bergquam E.; Wong S.W.;

T "Characterization of rhesus cytomegalovirus genes associated with
 T anti-viral susceptibility.";
 L Virology 240:338-348(1996).

C -CATALYTIC ACTIVITY: N deoxymucleoside triphosphate = N diphosphate
 C + (DNA) (N).

C -SUBCELLULAR LOCATION: Nuclear.
 C -SIMILARITY: Belongs to the DNA polymerase type-B family.

C This SWISS-PROT entry is copyright. It is produced through a collaboration -
 C between the Swiss Institute of Bioinformatics and the EMBL outstation -

the European Bioinformatics Institute. There are no restrictions on its use by non-profit institutions as long as its content is in no way modified and this statement is not removed. Usage by and for commercial entities requires a license agreement (see <http://www.isb-sib.ch/announce/> or send an email to license@isb-sib.ch).

CC DR EMBL; AF03184; AAC0556.1; -.
 CC DR InterPro; IPR006172; DNA_Pol_B-dom.
 CC DR InterPro; IPR006134; DNA_Pol_B_exo.
 CC DR InterPro; IPR006133; DNA_Pol_B_exo.
 CC DR Pfam; PF00136; DNA_pol_B; 1.
 CC DR Pfam; PF03104; DNA_pc1_B_exo; 1.
 CC DR PRINTS; PRO00106; DNAPOLB.
 CC DR SMART; SM00486; POLBC; 1.
 CC DR PROSITE; PS00116; DNA POLYMERASE_B; 1.
 CC DR PROSITE; PS00116; DNA POLYMERASE_B; 1.
 CC KW DNA-binding; DNA-directed DNA Polymerase; DNA replication;
 KW DNA-binding; Nuclear protein.
 SQ SEQUENCE 1035 AA; 116595 MW; 4E320D2062D9C1 CRC64;

Query Match Score 31; DB 1; Length 1035;
 Best Local Similarity 66.7%; Pred. No. 1.5e+02; Mismatches 1; Indels 2; Gaps 0;
 Matches 6; Conservative 1; Mismatches 2; Indels 2; Gaps 0;

Db 799 KVFGSLMMI 807

Search completed: May 17, 2004, 12:57:00
 Job time : 7.96774 secs

Qy 1 KVFGSLAFV 9
 Y ||||| :
 Db 799 KVFGSLMMI 807

prevention and treatment of cancer. (I) and (II) are useful for monitoring or evaluating an immune response to a tumour-associated antigen when incubated with a T lymphocyte sample from a patient and detecting the presence of bound T lymphocyte to (I) or (II). Epitope based vaccines mean that immunosuppressive epitopes that may be present in whole antigens may be avoided. Selected epitopes may be combined to enhance immunogenicity. The possible pathological side effects caused by infectious agents or whole protein antigen is eliminated. The vaccine provides the ability to direct and focus an immune response to multiple selected antigens from the same pathogen. Epitope-based anti-tumour vaccines provides the opportunity to combine epitopes derived from multiple tumour-associated molecules addressing the problem of tumour-tumour variability and reducing the likelihood of tumour escape due to antigen loss. AAG8126 to AAG8121 represent amino acid sequences used in the exemplification of the present invention.

```
{
    Sequence 9 AA;
    Query Match 100.0%; Score 42; DB 4; Length 9;
    Best Local Similarity 100.0%; Pred. No. 1.4e+06;
    Matches 9; Conservative 0; Mismatches 0; Indels 0; Gaps 0;
    /
    1 VVLGIVFGV 9
    | ||| | |
    1 VVLGIVFGV 9
}

:SU1T 2
1B75857
) AAB75857 standard; peptide; 9 AA.

:AAB75857;

< 10-APR-2001 (first entry)
< Tumour associated antigen Her2/neu HLA-A2 binding peptide.
< Human leukocyte antigen; HLA; major histocompatibility complex; MHC;
< HLA binding peptide; immune response; glycoprotein; cytosatic; virucide;
< cytotoxic T lymphocyte; CTL; human class I MHC; immunogenic;
< hepatotropic; anti-HIV; vaccine;
< human immunodeficiency virus; protozoacide; viral infection; cancer;
< prostate cancer; hepatitis B; hepatitis C; human papilloma virus; HPV;
< cytomegalovirus; CMV; acquired immunodeficiency syndrome; AIDS;
< renal carcinoma; cervical carcinoma; lymphoma; malaria;
< conyloma acuminatum.
< Homo sapiens.
< WO200100225-A1.
< 04-JAN-2001.
< Sette A, Sidney J, Southwood S;
< WPI: 2001-112389/12.
< 28-JUN-2000; 2000WO-US017842.
< 29-JUN-1999; 99US-011422P.
< (EPIM-) EPIMMUNE INC.
< 28-JUN-2000; 2000WO-US017842.
< 29-JUN-1999; 99US-011422P.
< (EPIM-) EPIMMUNE INC.
< Sette A, Sidney J, Southwood S;
< WPI: 2001-112389/12.
< Composition comprising human leukocyte antigen binding peptide which
< Comprises isolated, prepared epitope useful for treating viral infections
< such as acquired immunodeficiency syndrome, and cancer.
< Claim 1: Page 42; 58pp; English.
< The present invention describes a composition (I) which comprises at
< least one human leukocyte antigen (HLA) binding peptide comprising an
< isolated, prepared epitope comprising one of 5478-11 residue amino acid
< sequences (SI), given in AAB75803 to AAB76349. (I) has cytostatic,
```

virucide, hepatotropic, antiinflammatory, anti-HIV (human immunodeficiency virus) and protozoacide activities which can be used in vaccine production and is an inducer of cytotoxic T-cell response. (I) is useful for inducing a cytotoxic T cell response against a preselected antigen in a patient expressing a specific major histocompatibility complex (MHC) Class I allele, by contacting cytotoxic T cells (CTls) from the patient with (I). (I) is useful as a vaccine to treat and/or prevent viral infection and cancer such as prostate cancer, hepatitis B, hepatitis C, human papilloma virus (HPV) infection, cytomegalovirus (CMV), acquired immunodeficiency Syndrome (AIDS); renal carcinoma, cervical carcinoma, lymphoma, malaria, and conyloma acuminatum.

Sequence 9 AA;

```
Query Match 100.0%; Score 42; DB 4; Length 9;
Best Local Similarity 100.0%; Pred. No. 1.4e+06;
Matches 9; Conservative 0; Mismatches 0; Indels 0; Gaps 0;
SQ
```

```
RESULT 3
AAW70053
```

```
ID AAW70053 standard; peptide; 9 AA.
```

```
XX AAW70053;
```

```
AC AAW70053;
```

```
XX 22-OCT-1998 (first entry)
```

```
DT XX HER-2/neu derived HLA-A2.1 binding peptide 1 (residues 565-573).
```

```
DE XX Cytotoxic T lymphocyte antigen; CTL; major histocompatibility complex; MHC;
```

```
KW XX human leukocyte antigen; HLA; tumour associated antigen; cancer;
```

```
KW XX antigen presenting cell; APC; immunogenic peptide; immune disorder;
```

```
KW XX viral infection; AIDS; hepatitis; bacterial infection; malaria;
```

```
KW XX fungal infection; tuberculosis; melanoma; HER-2/neu; cerB-2.
```

```
Synthetic.
```

```
OS XX Homo sapiens.
```

```
XX WO9833888-A1.
```

```
PN XX
```

```
PD 06-AUG-1998.
```

```
XX XXX 98WO-US001959.
```

```
PP 30-JAN-1998;
```

```
XX PR 31-JAN-1997;
```

```
XX PA (BPIM-) EPIMMUNE INC.
```

```
XX PI Tsai V, Southwood S, Sidney J, Sette A, Celis E,
```

```
XX DR WPI: 1998-437445/37.
```

```
XX Production of antigen-specific cytotoxic T cells - by incubating
PT PT immunogenic peptide(s) from antigen that binds class I major
PT PT histocompatibility complex molecules with pre-treated antigen presenting
PT PT cells.
```

```
XX Example 7; Page 77; 104pp; English.
```

```
XX Sequences shown in AAW70053 to AAW70075 represent peptides derived from
CC CC HLR-2/neu (cerB-2) antigen. The peptides can bind to a human leukocyte
CC CC antigen (HLA), HLA-A2.1 and are used to exemplify the method of invention
CC CC of producing antigen specific cytotoxic T cells (CTls) in vitro. The
CC CC method comprises contacting immunogenic peptides from an antigen that
CC CC binds class I major histocompatibility complex (MHC) molecules with
CC CC antigen presenting cells (APCs) precoated with pretreatment growth
CC CC factors, and incubating the APCs with purified CD8 cells in the presence
CC CC of at least 2 incubation growth factors, thereby producing antigen-specific
CC CC CTls. A method for specifically killing target cells in a human
```

Patient is also provided which comprises obtaining a fluid sample containing CTLs from a patient, contacting the cytotoxic T cells with APCs pretreated with pre-treatment growth factors, where the APCs comprise class I MHC molecules. The pretreated APCs are incubated with the cytotoxic growth factors, thereby producing activated CTLs which are contacted with a carrier to form a composition. The composition can then be administered to the patient. The activated CTLs can be used for treating cancers; immune disorders; AIDS; hepatitis, bacterial infection, fungal infection, malaria or tuberculosis.

Sequence 9 AA;

Query Match 97.6%; Score 41; DB 2; Length 9;
Best Local Similarity 88.9%; Pred. No. 1.4e+06;
Matches 8; Conservative 1; Mismatches 0; Indels 0; Gaps 0;

b Y 1 VVLAGWFGV 9
b Y 1 VVLAGWFGV 9

RESULT 4

AY47712
D AAY47712 standard; peptide; 9 AA.

X C AAY47712;

X T 01-DEC-1999 (first entry)

X E Immunogenic peptide having a human leukocyte antigen binding motif #2323.
X X Human leukocyte antigen; binding; immunogenic; glycoprotein; MHC; HLA;
W immune response; T cell activation; major histocompatibility complex;
W cytotoxic T lymphocyte; CTL; tumour rejection; viral infection; cancer;
W prostate cancer; hepatitis B; hepatitis C; AIDS; renal carcinoma;
W vaccine; immunisation.
X X Synthetic.
S Homo sapiens.

X N WO9415954-A1.

X D 16-SEP-1999.

X F 13-MAR-1998; 98WO-US0005039.

X R 13-MAR-1998; 98WO-US0005039.

X (EPIM-) EPIMMUNE INC.

X I Sette A, Kubo RT, Sidney J, Celis E, Grey HM, Southwood S;

X WPI; 1999-551214/46.

X New immunogenic peptides with HLA binding motif, useful in treatment and diagnosis of cancers and viral diseases.
X X Claim 1; Page 120; 150pp; English.
X X AAY45390 to AAY48214 represent specifically claimed immunogenic peptides having a human major histocompatibility complex (MHC) Class I (also known as human leukocyte antigen (HLA)) binding motif. The immunogenic peptides can bind to a specific HLA allele ('i.e. HLA-A subtypes HLA-A2.1, A1, A3.2 or A4.1 or HLA-B or C) and induce a cytotoxic T cell response against the antigen from which the peptide is derived. Cytotoxic T lymphocytes (CTLs) which destroy antigen-bearing cells are normally induced by an antigen in the form of a peptide fragment bound to a HLA molecule, rather than the intact foreign antigen itself, and are particularly important in tumour rejection and in fighting viral infections. The peptides are therefore useful therapeutically to treat or prevent viral infections and cancers in mammals (especially humans) e.g. prostate cancer, hepatitis B and C, AIDS, and renal carcinoma. They can be administered as vaccines to elicit an immune response in individuals susceptible or otherwise at risk

of viral infection or cancer, or used to treat chronic or acute conditions. They are also useful diagnostically, and can be used to induce a cytotoxic T cell response, by contacting a cytotoxic T cell with the peptide e.g. to produce CTLs ex vivo for infusion back into a patient. The polynucleotides encoding the immunogenic peptides are also useful therapeutically and for immunisation as above.

Sequence 9 AA;

Query Match 97.6%; Score 41; DB 2; Length 9;
Best Local Similarity 88.9%; Pred. No. 1.4e+06;
Matches 8; Conservative 1; Mismatches 0; Indels 0; Gaps 0;

Y 1 VVLAGWFGV 9
Db 1 VVLAGWFGV 9

RESULT 5
AAB99702
ID AAB99702 standard; peptide; 9 AA.

XX AC AAB99702;

XX DT 06-SEP-2001 (first entry)

XX DE HLA A2 binding CTL epitope peptide from Her2/neu SEQ ID NO:23.
XX Human leukocyte antigen A2 binding peptide: HLA Class I A2; CTL; cytotoxic T-cell lymphocyte; tumour associated antigen; CEA; HER2/neu; MAGE2; MAGE3; P53; tumour; cancer; immunomodulator; immunotherapy; immune response.
XX OS Homo sapiens.

XX PN WO200141741-A1.

XX PD 14-JUN-2001.

XX PF 13-DEC-2000; 2000WO-US034318.

XX PR 13-DEC-1999; 99US-0170445P.

XX PR 05-APR-2000; 2000US-00543608.

XX PR 30-MAY-2000; 2000US-00583200.

XX PA (EPIM-) EPIMMUNE INC.

XX PI Fikes J, Sette A, Sidney J, Southwood S, Celis E, Keogh B;

XX PI Chestnut R;

XX DR WPI; 2001-381489/40.

XX PT Compositions for use in a vaccine for treating, e.g., breast, lung and colon cancer comprises at least one peptide that comprises an isolated peptide of a tumor-associated antigen.
XX PS Claim 1; Page 76; 86pp; English.
XX CC The present invention describes a composition (I) comprising at least one peptide that comprises an isolated, prepared epitope consisting of a sequence selected from 25 short amino acid sequences given in AAB99680 to AAB99704. Also described are: (1) a composition (II) comprising one or more peptides, and further comprising at least two epitopes selected from the 25 short amino acid sequences (as above), where each of the one or more peptides comprise less than 50 contiguous amino acids that have 100% identity with a native peptide sequence; and (2) a vaccine composition (III) comprising an epitope selected from the 25 short amino acid sequences (as above) and a pharmaceutical excipient. (1) has cytostatic and immunomodulatory activities and can be used in vaccine production and immunotherapy. The peptide epitope compositions (I)-(II) are useful for monitoring an immune response to a tumour associated antigen or when one or more peptides are combined to create a vaccine (III) that stimulates the cellular arm of the immune system. In particular, the vaccine

mediates immune responses against tumours in individuals who bear an allele of the human leukocyte antigen (HLA) A2 superotype and improve the standard of care for patients being treated for breast, colon, or lung cancer.

Sequence 9 AA:

Query Match	97.6%	Score 41;	DB 4;	Length 9;
Best Local Similarity	88.9%	Pred. No.	1.4e+06;	
Matches	8	Conservative	1;	Mismatches 0;
Indels	0;	Gaps	0;	

QY	1 VVLGVVFGV 9
JB	1 VVLGVVFGI 9

RESULT 6

D AGC88791 standard; peptide; 9 AA.

XC AGC88791;

XX DT 11-SEP-2001 (first entry)

DX HER2/neu A2 supermotif crossbinding peptide #35.

CX Human; HER2/neu; epitope; human leukocyte antigen; HLA; T cell; immunostimulant;

(W) immune response; vaccine; tumour; cancer; cytostatic; immunostimulant;

(W) tumour-associated antigen; T lymphocyte; cytotoxic T lymphocyte; CTL;

(S) Homo sapiens.

(S) Synthetic.

XX IN WO200141787-A1.

DX 14-JUN-2001.

DX 11-DEC-2000; 2000WO-US033591.

DX 10-DEC-1999; 99US-00458299.

PA (EPIM-) EPIMMUNE INC.

CX Fikes J, Sette A, Sidney J, Southwood S, Chesnut R, Celia E;

JT Keogh E;

XX WPI; 2001-374995/39.

DX An isolated prepared HER2/neu epitope useful in a vaccine for inducing cellular immune responses for the prevention and treatment of cancer.

PT Example 2: Page 180; 199pp; English.

PS The present invention describes isolated prepared HER2/neu epitopes (I).

DC Also described are: (1) a clonal cytotoxic T lymphocyte (CTL) that is cultured in vitro and binds to a complex of an epitope (I), bound to a human leukocyte antigen (HLA) molecule; (2) a peptide (II), comprising (I) and a second epitope and the peptide is less than 50 contiguous amino acids that have 100% identity with a native peptide sequence of HER2/neu; (3) a vaccine composition (III) comprising (II) and a pharmaceutical excipient; (4) an isolated nucleic acid encoding (II); (5) an isolated nucleic acid encoding (I); (6) an isolated nucleic acid encoding (II); (7) has cytostatic and immunostimulant activities and can be used in vaccines. (I), (II) and (III) are useful for inducing cellular immune responses for the prevention and treatment of cancer. (I) and (II) are useful for monitoring or evaluating an immune response to a tumour-associated antigen when incubated with a T lymphocyte sample from a patient and detecting the presence of bound T lymphocyte to (I) or (II). Epitope based vaccines mean that immunosuppressive epitopes that may be present in whole antigens may be avoided. Selected epitopes may be combined to enhance immunogenicity. The possible pathological side effects caused by infectious agents or whole protein antigen is eliminated. The vaccine provides the ability to direct and focus an immune response to multiple

selected antigens from the same pathogen. Epitope-based anti-tumour vaccines provides the opportunity to combine epitopes derived from multiple tumour-associated molecules addressing the problem of tumour-tumour variability and reducing the likelihood of tumour escape due to antigen loss. AGC88266 to AGC9121 represent amino acid sequences used in the exemplification of the present invention

SQ Sequence 9 AA;

QY	1 VVLGVVFGV 9
JB	1 VVLGVVFGI 9

RESULT 6

D AGC88791 standard; peptide; 9 AA.

XC AGC88791;

XX DT 11-SEP-2001 (first entry)

DX HER2/neu epitope HLA-A2 supermotif-bearing peptide #13.

CX Human; HER2/neu; epitope; human leukocyte antigen; HLA; T cell;

(W) immune response; vaccine; tumour; cancer; cytostatic; immunostimulant;

(W) tumour-associated antigen; T lymphocyte; cytotoxic T lymphocyte; CTL;

(S) Homo sapiens.

(S) Synthetic.

XX OS Synthentic.

OS PN WO200141787-A1.

DX 14-JUN-2001.

DX 11-DEC-2000; 2000WO-US033591.

DX 10-DEC-1999; 99US-00458299.

PA (EPIM-) EPIMMUNE INC.

CX Fikes J, Sette A, Sidney J, Southwood S, Chesnut R, Celia E;

JT Keogh E;

XX WPI; 2001-374995/39.

DX An isolated prepared HER2/neu epitope useful in a vaccine for inducing cellular immune responses for the prevention and treatment of cancer.

PT Example 2: Page 180; 199pp; English.

PS The present invention describes isolated prepared HER2/neu epitopes (I).

DC Also described are: (1) a clonal cytotoxic T lymphocyte (CTL) that is cultured in vitro and binds to a complex of an epitope (I), bound to a human leukocyte antigen (HLA) molecule; (2) a peptide (II), comprising (I) and a second epitope and the peptide is less than 50 contiguous amino acids that have 100% identity with a native peptide sequence of HER2/neu; (3) a vaccine composition (III) comprising (II) and a pharmaceutical excipient; (4) an isolated nucleic acid encoding (II); (5) an isolated nucleic acid encoding (I); (6) an isolated nucleic acid encoding (II); (7) has cytostatic and immunostimulant activities and can be used in vaccines. (I), (II) and (III) are useful for inducing cellular immune responses for the prevention and treatment of cancer. (I) and (II) are useful for monitoring or evaluating an immune response to a tumour-associated antigen when incubated with a T lymphocyte sample from a patient and detecting the presence of bound T lymphocyte to (I) or (II). Epitope based vaccines mean that immunosuppressive epitopes that may be present in whole antigens may be avoided. Selected epitopes may be combined to enhance immunogenicity. The possible pathological side effects caused by

CC selected antigens from the same pathogen. Epitope-based anti-tumour CC vaccines provides the opportunity to combine epitopes derived from CC multiple tumour-associated molecules addressing the problem of tumour- CC tumour variability and reducing the likelihood of tumour escape due to CC antigen loss. AGC88266 to AGC9121 represent amino acid sequences used in CC the exemplification of the present invention

CC SQ Sequence 9 AA;

CC AGC88791

CC RESULT 7

CC AAG89000

CC ID AAG89000 standard; peptide; 9 AA.

CC XX AC AAG89000;

CC XX DT 11-SEP-2001 (first entry)

CC DX HER2/neu epitope HLA-A2 supermotif-bearing peptide #13.

CC CX Human; HER2/neu; epitope; human leukocyte antigen; HLA; T cell;

CC (W) immune response; vaccine; tumour; cancer; cytostatic; immunostimulant;

CC (W) tumour-associated antigen; T lymphocyte; cytotoxic T lymphocyte; CTL;

CC (S) Homo sapiens.

CC (S) Synthetic.

CC OS Synthentic.

CC OS PN WO200141787-A1.

CC DX 14-JUN-2001.

CC DX 11-DEC-2000; 2000WO-US033591.

CC DX 10-DEC-2000; 2000WO-US033591.

CC PA (EPIM-) EPIMMUNE INC.

CC CX Fikes J, Sette A, Sidney J, Southwood S, Chesnut R, Celia E;

CC JT Keogh E;

CC XX WPI; 2001-374995/39.

CC DR WPI; 2001-374995/39.

CC PT An isolated prepared HER2/neu epitope useful in a vaccine for inducing cellular immune responses for the prevention and treatment of cancer.

CC PT Example 2: Page 180; 199pp; English.

CC PS The present invention describes isolated prepared HER2/neu epitopes (I).

CC DC Also described are: (1) a clonal cytotoxic T lymphocyte (CTL) that is

CC cultured in vitro and binds to a complex of an epitope (I), bound to a

CC human leukocyte antigen (HLA) molecule; (2) a peptide (II), comprising (I)

CC and a second epitope and the peptide is less than 50 contiguous amino

CC acids that have 100% identity with a native peptide sequence of HER2/neu;

CC and a second epitope and the peptide is less than 50 contiguous amino

CC acids that have 100% identity with a native peptide sequence of HER2/neu;

CC and a second epitope and the peptide is less than 50 contiguous amino

CC acids that have 100% identity with a native peptide sequence of HER2/neu;

CC and a second epitope and the peptide is less than 50 contiguous amino

CC acids that have 100% identity with a native peptide sequence of HER2/neu;

CC and a second epitope and the peptide is less than 50 contiguous amino

CC acids that have 100% identity with a native peptide sequence of HER2/neu;

CC and a second epitope and the peptide is less than 50 contiguous amino

CC acids that have 100% identity with a native peptide sequence of HER2/neu;

CC and a second epitope and the peptide is less than 50 contiguous amino

CC acids that have 100% identity with a native peptide sequence of HER2/neu;

CC and a second epitope and the peptide is less than 50 contiguous amino

CC acids that have 100% identity with a native peptide sequence of HER2/neu;

CC and a second epitope and the peptide is less than 50 contiguous amino

CC acids that have 100% identity with a native peptide sequence of HER2/neu;

CC and a second epitope and the peptide is less than 50 contiguous amino

CC acids that have 100% identity with a native peptide sequence of HER2/neu;

CC and a second epitope and the peptide is less than 50 contiguous amino

CC acids that have 100% identity with a native peptide sequence of HER2/neu;

CC and a second epitope and the peptide is less than 50 contiguous amino

CC acids that have 100% identity with a native peptide sequence of HER2/neu;

CC and a second epitope and the peptide is less than 50 contiguous amino

CC acids that have 100% identity with a native peptide sequence of HER2/neu;

CC and a second epitope and the peptide is less than 50 contiguous amino

CC acids that have 100% identity with a native peptide sequence of HER2/neu;

CC and a second epitope and the peptide is less than 50 contiguous amino

CC acids that have 100% identity with a native peptide sequence of HER2/neu;

CC and a second epitope and the peptide is less than 50 contiguous amino

CC acids that have 100% identity with a native peptide sequence of HER2/neu;

CC and a second epitope and the peptide is less than 50 contiguous amino

CC acids that have 100% identity with a native peptide sequence of HER2/neu;

CC and a second epitope and the peptide is less than 50 contiguous amino

CC acids that have 100% identity with a native peptide sequence of HER2/neu;

CC and a second epitope and the peptide is less than 50 contiguous amino

CC acids that have 100% identity with a native peptide sequence of HER2/neu;

CC and a second epitope and the peptide is less than 50 contiguous amino

CC acids that have 100% identity with a native peptide sequence of HER2/neu;

CC and a second epitope and the peptide is less than 50 contiguous amino

CC acids that have 100% identity with a native peptide sequence of HER2/neu;

CC and a second epitope and the peptide is less than 50 contiguous amino

CC acids that have 100% identity with a native peptide sequence of HER2/neu;

CC and a second epitope and the peptide is less than 50 contiguous amino

CC acids that have 100% identity with a native peptide sequence of HER2/neu;

CC and a second epitope and the peptide is less than 50 contiguous amino

CC acids that have 100% identity with a native peptide sequence of HER2/neu;

CC and a second epitope and the peptide is less than 50 contiguous amino

CC acids that have 100% identity with a native peptide sequence of HER2/neu;

CC and a second epitope and the peptide is less than 50 contiguous amino

CC acids that have 100% identity with a native peptide sequence of HER2/neu;

CC and a second epitope and the peptide is less than 50 contiguous amino

CC acids that have 100% identity with a native peptide sequence of HER2/neu;

CC and a second epitope and the peptide is less than 50 contiguous amino

CC acids that have 100% identity with a native peptide sequence of HER2/neu;

CC and a second epitope and the peptide is less than 50 contiguous amino

CC acids that have 100% identity with a native peptide sequence of HER2/neu;

CC and a second epitope and the peptide is less than 50 contiguous amino

CC acids that have 100% identity with a native peptide sequence of HER2/neu;

CC and a second epitope and the peptide is less than 50 contiguous amino

CC acids that have 100% identity with a native peptide sequence of HER2/neu;

CC and a second epitope and the peptide is less than 50 contiguous amino

CC acids that have 100% identity with a native peptide sequence of HER2/neu;

CC and a second epitope and the peptide is less than 50 contiguous amino

CC acids that have 100% identity with a native peptide sequence of HER2/neu;

CC and a second epitope and the peptide is less than 50 contiguous amino

CC acids that have 100% identity with a native peptide sequence of HER2/neu;

CC and a second epitope and the peptide is less than 50 contiguous amino

CC acids that have 100% identity with a native peptide sequence of HER2/neu;

CC and a second epitope and the peptide is less than 50 contiguous amino

CC acids that have 100% identity with a native peptide sequence of HER2/neu;

CC and a second epitope and the peptide is less than 50 contiguous amino

CC acids that have 100% identity with a native peptide sequence of HER2/neu;

CC and a second epitope and the peptide is less than 50 contiguous amino

CC acids that have 100% identity with a native peptide sequence of HER2/neu;

CC and a second epitope and the peptide is less than 50 contiguous amino

CC acids that have 100% identity with a native peptide sequence of HER2/neu;

CC and a second epitope and the peptide is less than 50 contiguous amino

CC acids that have 100% identity with a native peptide sequence of HER2/neu;

CC and a second epitope and the peptide is less than 50 contiguous amino

CC acids that have 100% identity with a native peptide sequence of HER2/neu;

CC and a second epitope and the peptide is less than 50 contiguous amino

CC acids that have 100% identity with a native peptide sequence of HER2/neu;

CC and a second epitope and the peptide is less than 50 contiguous amino

CC acids that have 100% identity with a native peptide sequence of HER2/neu;

CC and a second epitope and the peptide is less than 50 contiguous amino

CC acids that have 100% identity with a native peptide sequence of HER2/neu;

CC and a second epitope and the peptide is less than 50 contiguous amino

CC acids that have 100% identity with a native peptide sequence of HER2/neu;

CC and a second epitope and the peptide is less than 50 contiguous amino

CC acids that have 100% identity with a native peptide sequence of HER2/neu;

CC and a second epitope and the peptide is less than 50 contiguous amino

CC acids that have 100% identity with a native peptide sequence of HER2/neu;

CC and a second epitope and the peptide is less than 50 contiguous amino

CC acids that have 100% identity with a native peptide sequence of HER2/neu;

CC and a second epitope and the peptide is less than 50 contiguous amino

CC acids that have 100% identity with a native peptide sequence of HER2/neu;

CC and a second epitope and the peptide is less than 50 contiguous amino

CC acids that have 100% identity with a native peptide sequence of HER2/neu;

CC and a second epitope and the peptide is less than 50 contiguous amino

CC acids that have 100% identity with a native peptide sequence of HER2/neu;

CC and a second epitope and the peptide is less than 50 contiguous amino

CC acids that have 100% identity with a native peptide sequence of HER2/neu;

CC and a second epitope and the peptide is less than 50 contiguous amino

CC acids that have 100% identity with a native peptide sequence of HER2/neu;

CC and a second epitope and the peptide is less than 50 contiguous amino

CC acids that have 100% identity with a native peptide sequence of HER2/neu;

CC and a second epitope and the peptide is less than 50 contiguous amino

CC acids that have 100% identity with a native peptide sequence of HER2/neu;

CC and a second epitope and the peptide is less than 50 contiguous amino

CC acids that have 100% identity with a native peptide sequence of HER2/neu;

CC and a second epitope and the peptide is less than 50 contiguous amino

CC acids that have 100% identity with a native peptide sequence of HER2/neu;

CC and a second epitope and the peptide is less than 50 contiguous amino

CC acids that have 100% identity with a native peptide sequence of HER2/neu;

detecting the presence of bound T lymphocyte to (I) or (II). Epitope based vaccines mean that immunosuppressive epitopes that may be present in whole antigens may be avoided. Selected epitopes may be combined to enhance immunogenicity. The possible pathological side effects caused by infectious agents or whole protein antigen is eliminated. The vaccine provides the ability to direct and focus an immune response to multiple selected antigens from the same pathogen. Epitope-based anti-tumour vaccines provides the opportunity to combine epitopes derived from multiple tumour-associated molecules addressing the problem of tumour-tumour variability and reducing the likelihood of tumour escape due to antigen loss. AAGB826 to AAG89121 represent amino acid sequences used in the exemplification of the present invention.

XX Sequence 9 AA;

Query Match	97.6%	Score 41;	DB 4;	Length 9;
Best Local Similarity	88.9%;	Prod. No. 1.4e+06;		
Matches	8;	Mismatches 1;	Indels 0;	Gaps 0;

2Y 1 VVLGIVVFGV 9
Db 1 VVLGIVVFGI 9

RESULT 10
ABG79080 Standard; peptide; 9 AA.

XX
AC ABG79080;
XX DT 15-NOV-2002 (first entry)

XX Human HER-2 class I HLA widely expressed antigen peptide #4.

XX Cell penetrating peptide; cancer; tumour; melanoma; thymoma; antigen; XX lymphoma; sarcoma; lung cancer; non-Hodgkin's lymphoma; leukaemia; XX Hodgkin's lymphoma; uterine cancer; cervical cancer; bladder cancer; XX kidney cancer; adenocarcinoma; breast cancer; prostate cancer; dendritic cell; XX ovarian cancer; pancreatic cancer; epitope; vaccine; dendritic cell; XX tumour infiltrating lymphocyte; TIL; human leukocyte antigen; HLA; XX cytostatic; human.
XX Homo sapiens.
XX PN WO200264057-A2.
PD 22-AUG-2002.
XX PF 15-FEB-2002; 2002WO-US005212.
XX PR 15-FEB-2001; 2001US-0268687P.
XX PA (BAYU) BAYLOR COLLEGE MEDICINE.
XX Wang R;
XX DR WPI; 2002-627577/67.

XX Novel composition for treating a disease in an animal, comprises an immune effector cell and a cell penetrating peptide (CPP) associated with an antigen or antibody.

XX Disclosure; Page 18; 61pp; English.

XX The invention relates to a composition (I), comprising an immune effector cell and a cell penetrating peptide (CPP) associated with an antigen or antibody. Also included are (1) a vaccine comprising (I), CPP associated with an antigen, and a pharmaceutically acceptable carrier and (2) preparing a composition for a disease, by providing (I) and CPP associated with an antigen for disease, and introducing the antigen-associated CPP to (I), where antigen enters into the cell. The antigens are, for example, tumour antigen derived epitopes recognised by tumour infiltrating lymphocytes (TIL) or HLA (human leucocyte antigen) class I

or II. The composition is useful for enhancing immunity in an animal to a disease, by administering a mature dendritic cell comprising CPP associated with an antigen to disease, to the animal, such that following the administration, animal is protected from disease, where the animal comprises both CD4+ and CD8+ T cells. It is also useful for treating a disease (e.g. cancer, tumour, melanoma, thymoma, lymphoma, sarcoma, lung cancer, non-Hodgkin's lymphoma, leukaemia, Hodgkin's lymphoma, uterine cancer, cervical cancer, bladder cancer, kidney cancer, adenocarcinoma, breast cancer, prostate cancer, ovarian cancer and pancreatic cancer). The animal is further subjected to a cancer treatment including surgery, radiation, chemotherapy or gene therapy. The administration of (I), with, preferably, dendritic cell is prior to, subsequent to or concurrent with, the cancer treatment. The present sequence is a tumour antigen derived epitope for inclusion in the composition of the invention

XX Sequence 9 AA;

QY

1 VVLGIVVFGV 9

Db

1 VVLGIVVFGI 9

RESULT 11
ADA49641

ID ADA49641 standard; peptide; 9 AA.

XX

AC ADA49641;

XX DT 20-NOV-2003 (first entry)

XX Multi-epitope construct specific epitope #183.

DE

XX multi-epitope; immunogenic; epitope; major histocompatibility complex; MHC class I; MHC class II; junctional epitope.

XX Unidentified.

OS

XX US2002119127-A1.

PN

XX

PD

XX 29-AUG-2002.

PP

XX 27-JUN-2001; 2001US-00894018.

PP

XX 28-DEC-1999; 99US-0173390P.

PR

XX 28-DEC-2000; 2000WO-US035568.

PR

XX 16-APR-2001; 2001US-0284221P.

XX

(SBTT/)

SETTE A.

PA

XX (CHES/)

PA (CHESNUT R.

PA (LIVI/)

PA (LIVINGSTON B D.

PA (BAKE/)

PA (BAKER D M.

PA (NEWM/)

PA (NEWMAN M J.

PA (BROW/)

PA (BROWN D H.

XX

PI

XX Sette A, Chesnut R; Livingston BD, Baker DM, Newman MJ, Brown DH;

DR

XX WPI; 2003-615704/58.

XX

PT

XX Designing multi-epitope construct having major histocompatibility complex class I and II epitope nucleic acids, by selecting mixture of amino acid insertions at junctions of construct to minimize junctional epitopes.

XX

PS

XX Disclosure; Fig 19E; 78pp; English.

XX

PT

XX Designing multi-epitope construct having major histocompatibility complex class I and II epitope nucleic acids (CEN), involving sorting CEN, introducing flanking epitope nucleic acids (CEN), involves specifying CEN, introducing flanking amino acid residue selected from specified amino acid residues given in specification at C+1 position of CEN, introducing amino acid spacer.

CC

residues between two CEN, and selecting the constructs having less junctional epitopes. The method is useful for designing a multi-peptide construct having multiple epitope nucleic acid. The method avoids or minimises the occurrence of junctional epitopes and maximises the immunogenicity and/or antigenicity of multi-peptide vaccines. The present sequence represents the amino acid sequence of an epitope present in a multi-peptide construct.

X Sequence 9 AA;

Query Match 97.6%; Score 41; DB 7; Length 9;
Best Local Similarity 88.9%; Pred. No. 1.e+06;
Matches 8; Conservative 1; Mismatches 0; Indels 0; Gaps 0;

Y 1 VVLGVVFGV 9
1 ||| | | | :
b 1 VVLGVVFGI 9

ESTLT 12
AY98853 standard; peptide; 15 AA.

X AAY98853
X 07-AUG-2000 (first entry)

E HLA class II binding antigen epitope peptide #42.

X Human leucocyte antigen; HLA class II; antigen epitope; pharmaceutical; immune response; chronic viral disease; cancer; autoimmune disease; rheumatoid arthritis; multiple sclerosis; myasthenia gravis; AIDS; allograft rejection; allergy; lyme disease; hepatitis; prostate cancer; glomerulonephritis; food hypersensitivity; malaria.

X Unidentified.

X W09961916-A1.

D 02-DEC-1999.
X X 28-MAY-1999; 99WO-US012066.
X X 29-MAY-1998; 98US-0087192P.
A (EPIM-) EPIMMUNE INC.

I Sette A, Southwood S, Sidney J;
WPI: 2000-097143/08.

R New compositions containing immunogenic peptide epitopes for various HLA class II DR molecules useful for inducing helper T cell response.
Claim 1: Page 40; 60pp; English.

C The present invention relates to a new pharmaceutical composition comprising a unit dose form of a peptide, or analogue, comprising an epitope selected from those represented by peptides AY98612-Y99339 which are derived from various antigens for various human leucocyte antigen class DR molecules, representative of the world wide population. The peptide/analogue binds to an HLA class II molecule at an IC-50 of less than or equal to 1,000 nM. The pharmaceutical can be used to induce a helper T cell response. The pharmaceutical focuses the immune response towards selected determinants and could therefore be used in cases of chronic viral diseases and cancers. Examples of diseases that can be treated using the peptide containing pharmaceutical include autoimmune diseases (rheumatoid arthritis, multiple sclerosis, and myasthenia gravis), allograft rejection, allergies, lyme disease, hepatitis, post-streptococcal endocarditis or glomerulonephritis and food hypersensitivities. The peptide epitopes can be used to enhance immune responses against other immunogens administered with the peptides. Diseases which can be treated using immunogenic mixtures include prostate

cancer, hepatitis B, hepatitis C, AIDS, renal carcinoma, cervical carcinoma, lymphoma, and condyloma acuminatum. The peptides may also be used to make monoclonal antibodies useful as potential diagnostic or therapeutic agents. The peptides may also be useful as diagnostic reagents, for example, to determine the susceptibility of an individual to a treatment regimen. Also, the peptides may be used to predict which individuals will have substantial risk of developing chronic infection. The selection of appropriate T and B cell epitopes should allow the development of epitope based vaccines particularly towards conserved epitopes of pathogens which are characterized by high sequence variability such as HIV, HCV and Malaria

SQ Sequence 15 AA;
XX

Query Match 97.6%; Score 41; DB 3; Length 15;
Best Local Similarity 88.9%; Pred. No. 0.38;
Matches 8; Conservative 1; Mismatches 0; Indels 0; Gaps 0;

Y 1 VVLGVVFGV 9
1 ||| | | | :
Db 4 VVLGVVFGI 12

RESULT 13
AAGB8468
ID AAGB8468 standard; peptide; 15 AA.

AC AAGB8468;
XX DT 11-SEP-2001 (first entry)
XX HER2/NEU DR supermotif binding peptide exemplary sequence #90.
DE XX Human; HER2/neu; epitope; human leukocyte antigen; HLA; T cell;
KW Human response; vaccine; tumour; cancer; cytostatic; immunostimulant;
KW tumour-associated antigen; T lymphocyte; cytotoxic T lymphocyte; CTL.
XX OS Homo sapiens.
OS Synthetic.
XX PN WO200141787-A1.
XX PD 14-JUN-2001.
XX PF 11-DEC-2000; 2000WO-US033591.
XX PR 10-DBC-1999; 99US-00458299.
XX PA (EPIM-) EPIMMUNE INC.
PI Fikes J, Sette A, Sidney J, Southwood S, Chearnut R, Celis E;
PI Keogh E;
XX DR WPI: 2001-374995/39.

PT An isolated prepared HER2/neu epitope useful in a vaccine for inducing cellular immune responses for the prevention and treatment of cancer.

Disclosure; Page 168; 199pp; English.

CC The present invention describes isolated prepared HER2/neu epitopes (I).
CC Also described are: (1) a clonal cytotoxic T lymphocyte (CTL) that is
CC culture in vitro and binds to a complex of an epitope (I), bound to a
CC human leucocyte antigen (HLA) molecule; (2) a peptide (II) comprising (I)
CC and a second epitope and the peptide is less than 50 contiguous amino
CC acids that have 100% identity with a native peptide sequence of HER2/neu;
CC (3) a vaccine composition (III) comprising (II) and a pharmaceutical
CC excipient; (4) an isolated nucleic acid encoding a peptide comprising (I)
CC and (5) an isolated nucleic acid encoding (II). (I) has cytostatic and
CC immunosimulatory activities, and can be used in vaccines. (I), (II) and
CC (III) are useful for inducing cellular immune responses for the
CC prevention and treatment of cancer. (I) and (II) are useful for
CC monitoring or evaluating an immune response to a tumour-associated

IC antigen when incubated with a T lymphocyte sample form a patient and
 IC detecting the presence of bound T lymphocyte to (I) or (II). Epitope
 IC based vaccines mean that immunosuppressive epitopes that may be present
 IC in whole antigens may be avoided. Selected epitopes may be combined to
 IC enhance immunogenicity. The possible pathological side effects caused by
 IC infectious agents or whole protein antigen is eliminated. The vaccine
 IC provides the ability to direct and focus an immune response to multiple
 IC selected antigens from the same pathogen. Epitope-based anti-tumour
 IC vaccines provides the opportunity to combine epitopes derived from
 IC multiple tumour-associated molecules addressing the problem of tumour-
 IC tumour variability and reducing the likelihood of tumour escape due to
 IC antigen loss. AAG88186 to AAG89121 represent amino acid sequences used in
 IC the exemplification of the present invention

XQ Sequence 15 AA;

Query Match	97.6%	Score	41;	DB	4;	Length	15;
Best Local Similarity	88.9%	Pred.	No.	0.38;			
Matches	8;	Conservative	1;	Mismatches	0;	Indels	0;
Gaps	0;						

Y 1 VVLAGVVFGR 9

Nb 4 VVLAGVVFGR 12

E RESULT 14

D AAG8818 Standard; peptide; 15 AA.

X C AAG8818;

X T 11-SEP-2001 (first entry)

X E HER2/NEU DR supermotif binding peptide exemplary sequence #65.

X W Human; HER2/neu; epitope; human leukocyte antigen; HLA; T cell;
 W immune response; vaccine; tumour; cancer; cytostatic; immunostimulant;
 W tumour-associated antigen; T lymphocyte; cytotoxic T lymphocyte; CTL.
 IS Homo sapiens.
 IS Synthetic.
 X N WO200141787-A1.
 D 14-JUN-2001.
 X P 11-DEC-2000; 2000WO-US033591.
 X R 10-DEC-1999; 99US-00458299.

X A (EPIM-) EPIMMUNE INC.

X I Fikes J, Sette A, Sidney J, Southwood S, Chesnut R, Celis E;

X I Keogh E;

X R WPI; 2001-374995/39.

X An isolated prepared HER2/neu epitope useful in a vaccine for inducing

X cellular immune responses for the prevention and treatment of cancer.

X Disclosure; Page 168; 19pp; English.

IS The present invention describes isolated prepared HER2/neu epitopes (I).

IC Also described are: (1) a clonal cytotoxic T lymphocyte (CTL) that is
 IC culture in vitro and binds to a complex of an epitope (II), bound to a
 IC human leukocyte antigen (HLA) molecule; (2) a peptide (II) comprising (I)
 IC and a second epitope and the peptide is less than 50 contiguous amino
 IC acids that have 100% identity with a native peptide sequence of HER2/neu;
 IC (3) a vaccine composition (III) comprising (II) and a pharmaceutical
 IC excipient; (4) an isolated nucleic acid encoding (II); (1) has cytostatic and
 IC immunostimulant activities, and can be used in vaccines. (I), (II) and
 IC (III) are useful for inducing cellular immune responses for the

CC prevention and treatment of cancer. (I) and (II) are useful for
 CC monitoring or evaluating an immune response to a tumour-associated
 CC antigen when incubated with a T lymphocyte sample form a patient and
 CC detecting the presence of bound T lymphocyte to (I) or (II). Epitope
 CC based vaccines mean that immunosuppressive epitopes that may be present
 CC in whole antigens may be avoided. Selected epitopes may be combined to
 CC enhance immunogenicity. The possible pathological side effects caused by
 CC infectious agents or whole protein antigen is eliminated. The vaccine
 CC provides the ability to direct and focus an immune response to multiple
 CC selected antigens from the same pathogen. Epitope-based anti-tumour
 CC vaccines provides the opportunity to combine epitopes derived from
 CC multiple tumour-associated molecules addressing the problem of tumour-
 CC tumour variability and reducing the likelihood of tumour escape due to
 CC antigen loss. AAG88266 to AAG89121 represent amino acid sequences used in
 CC the exemplification of the present invention

XX

SQ Sequence 15 AA;

Query Match	97.6%	Score	41;	DB	4;	Length	15;
Best Local Similarity	88.9%	Pred.	No.	0.38;			
Matches	8;	Conservative	1;	Mismatches	0;	Indels	0;
Gaps	0;						

Qy 1 VVLAGVVFGR 9

Db 5 VVLAGVVFGR 13

RESULT 15

AAG89023

ID AAG89023 standard; peptide; 15 AA.

XX

AC AAG89023;

XX

DT 11-SEP-2001 (first entry)

XX

DE Her2/neu DR supertype primary binding peptide #17.

XX

Human; HER2/neu; epitope; human leukocyte antigen; HLA; T cell;

KW immune response; vaccine; tumour; cancer; cytotoxic; immunostimulant;

KW tumour-associated antigen; T lymphocyte; cytotoxic T lymphocyte; CTL.

KW

Homo sapiens.

OS Synthetic.

OS

XX

PN WO200141787-A1.

XX

PD 14-JUN-2001.

XX

PP 11-DEC-2000; 2000WO-US033591.

XX

PR 10-DEC-1999; 99US-00458299.

XX

PA (EPIM-) EPIMMUNE INC.

XX

PI Fikes J, Sette A, Sidney J, Southwood S, Chesnut R, Celis E;

XX

PI Keogh E;

XX

DR WPI; 2001-374995/39.

PT

PT

XX

PS Example 5; Page 190; 19pp; English.

XX

The Present invention describes isolated prepared HER2/neu epitopes (I).

CC

Also described are:

CC

(1) a clonal cytotoxic

CC

T lymphocyte

CC

that is

CC

bound to a

CC

complex

CC

of an

CC

human

CC

leukocyte

CC

antigen

CC

(HLA)

CC

molecule;

CC

(2) a peptide (II)

CC

comprising

CC

(I)

CC

and a

CC

pharmaceutical

CC

excipient;

CC

(4) an isolated nucleic acid encoding (II); (1) has cytostatic and

CC

immunostimulant

CC

activities,

CC

and can be used in

CC

vaccines.

CC

(I), (II) and

CC

(III) are useful for inducing cellular immune responses for the

CC

present invention

CC

immunostimulant activities, and can be used in vaccines. (I), (II) and (III) are useful for inducing cellular immune responses for the prevention and treatment of cancer. (I) and (II) are useful for monitoring or evaluating an immune response to a tumour-associated antigen when incubated with a T lymphocyte sample from a patient and detecting the presence of bound T lymphocyte to (I) or (II). Epitope based vaccines mean that immunosuppressive epitopes that may be present in whole antigens may be avoided. Selected epitopes may be combined to enhance immunogenicity. The possible pathological side effects caused by infectious agents or whole protein antigen is eliminated. The vaccine provides the ability to direct and focus an immune response to multiple selected antigens from the same pathogen. Epitope-based anti-tumour vaccines provides the opportunity to combine epitopes derived from multiple tumour-associated molecules addressing the problem of tumour-tumour variability and reducing the likelihood of tumour escape due to antigen loss. AAG8266 to AAG89121 represent amino acid sequences used in the exemplification of the present invention.

Sequence 15 AA:

```

Query Match      97.6%; Score 41; DB 4; Length 15;
Best Local Similarity 88.9%; Prod. No. 0.38;
Matches 8; Conservative 1; Mismatches 0; Indels 0; Gaps 0;
/
1 VVIGVVFVGV 9
   ||||| | |
4 VLGVVFGI 12

```

Search completed: May 17, 2004, 12:54:34
db time : 43.5161 secs

GenCore version 5.1.6
 Copyright (c) 1993 - 2004 Compugen Ltd.

M protein - protein search, using sw model

run on: May 17, 2004, 12:51:02 : Search time 10.1613 Seconds
 (without alignments)
 85.198 Million cell updates/sec

title: US-09-458-299A-4239
 perfect score: 42

sequence: 1 VVLGVVFGV 9

coring table: BLOSUM62
 Gapop 10.0 , Gapext 0.5

searched:

total number of hits satisfying chosen parameters: 283366

minimum DB seq length: 0
 maximum DB seq length: 2000000000

post-processing: Minimum Match 0%
 Maximum Match 100%
 Listing first 45 summaries

atabase :

PIR_78;*
 1: Piri;*: 2: Pirz;*: 3: pir3;*: 4: pir4;*

Pred. NO. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

result No.	Score	Query Match Length	DB ID	Description
1	41	97.6	1255	A24571
2	41	97.6	2824	T22759
3	39	92.9	556	S51892
4	37	88.1	377	A69277
5	36	85.7	57	B813550
6	36	85.7	93	G64521
7	36	85.7	93	C71984
8	36	85.7	135	S49200
9	36	85.7	385	XF0588
10	36	85.7	429	G82789
11	36	85.7	451	T04603
12	36	85.7	822	S74833
13	35	83.3	2	AG1911
14	35	83.3	3	H84362
15	35	83.3	80	C86630
16	35	83.3	139	S46306
17	35	83.3	149	T04603
18	35	83.3	159	A85330
19	35	83.3	204	AB3302
20	35	83.3	219	B81296
21	35	83.3	234	T04604
22	35	83.3	321	E65097
23	35	83.3	321	B91125
24	35	83.3	321	A85970
25	35	83.3	322	A97657
26	35	83.3	322	AI2880
27	35	83.3	399	D71728
28	35	83.3	437	G97927
29	35	83.3	437	S56529
				AF0667

ALIGNMENTS

probable sugar tra	3.0	83.3	454	2	F75580
YadQ protein - Esc	3.1	83.3	473	2	C61739
probable channel C	3.2	83.3	473	2	G9648
probable channel C	3.3	83.3	473	2	G81499
Glutamate transpor	3.4	83.3	523	2	S55677
glutamate transpor	3.5	83.3	524	2	S28902
protein F21B7.33 [3.6	81.0	166	2	G81167
hypothetical prote	3.7	81.0	167	2	T0888
conserved hypothet	3.8	81.0	170	2	C90079
hypothetical prote	3.9	81.0	205	2	E8293
probable amino aci	4.0	81.0	217	2	G9873
bacitracin resista	4.1	81.0	274	2	B79518
hypothetical prote	4.2	81.0	287	2	C90023
chemotaxis protein	4.3	81.0	295	1	QRICMA
protein conductor C	4.4	81.0	295	2	H9953
chemotaxis MotA pr	4.5	81.0	295	2	AB203

Cross-references: GB:M16792; NID:gi13983; PID:AA58637.1; PID:955332
 ;Comment: Amplification and overexpression of this erbB-related gene occurs in about 30
 ;Genetics:
 ;Gene: GDB:ERBB2; NGL; NEU; HER-2
 ;Cross-references: GDB:120613; OMIM:164870
 ;Map position: 17q21.1-17q21.1
 ;Introns: 25/1; 75/3; 147/1; 893/3
 ;Note: the list of introns is incomplete

;Function:
 ;Description: catalyzes the phosphorylation of a peptidyl tyrosine residue by ATP
 ;Superfamily: epidermal growth factor receptor; protein kinase homology
 ;Keywords: Amp; autophosphorylation; duplication; glycoprotein; phosphoprotein; phosphonase
 ;1-21/Domain: signal sequence #status predicted <SIG>
 ;22-653/Domain: extracellular #status predicted <EXT>
 ;70-104/Domain: EGFR receptor extracellular domain repeat <EE1>
 ;655-665/Domain: EGFR receptor extracellular domain repeat <EE2>
 ;654-675/Domain: transmembrane #status predicted <TM>
 ;676-1255/Domain: intracellular #status predicted <INT>
 ;718-983/Domain: protein kinase homology <KIN>
 ;726-134/Region: protein kinase ATP-binding motif
 ;686/Binding site: phosphate (mnn) (covalent) (by protein kinase C) #status predicted
 ;687/Binding site: phosphate (mnn) (covalent) (by protein kinase C) #status predicted
 ;753/Active site: Lys #status predicted
 ;11139,1221,1222,1228/Binding site: phosphate (Tyr) (covalent) (by autoprophorylation)
 ;11139,1221,1222,1228/Binding site: phosphate (Tyr) (covalent) (by autoprophorylation)

Query Match Score 97.6%; Score 41; DB 1; Length 1255;
 Best Local Similarity 88.9%; Pred. No. 13;
 Matches 8; Conservative 1; Mismatches 0; Indels 0; Gaps 0;

ESUIT 2
 22759
 hypothetical protein F55H12.3 - Caenorhabditis elegans
 ;Species: Caenorhabditis elegans
 ;Date: 15-Oct-1999 #sequence_revision 15-Oct-1999 #text_change 18-Aug-2000
 ;Accession: T22759
 ;Dobson, R.
 ;Reference number: Z19610
 ;Accession: T22759
 ;Status: Preliminary; translated from GB/EMBL/DDJB
 ;Molecule type: DNA
 ;Residues: 1-2024 <WIL>
 ;Cross-references: EMBL:Z81091; PIDN:GAB03143.1; GSDB:GN00019; CESP:F55H12.3
 ;Experimental source: clone F55H12
 ;Genetics:
 ;Gene: CESP:F55H12.3
 ;Map position: 17q21.1-17q21.1
 ;Introns: 17/1; 126/2; 201/3; 343/3; 406/1; 576/3; 656/1; 825/3; 869/1; 909/1; 96/1; 1755/2; 1800/1; 1850/3; 1896/1; 2003/3; 2035/3; 2082/3; 2119/1; 2144/1; 2200/2; 227/1; Superfamily: LDL receptor ligand-binding repeat homology
 ;243-79/Domain: LDL receptor ligand-binding repeat homology <LDL>

Query Match Score 97.6%; Score 41; DB 2; Length 2824;
 Best Local Similarity 88.9%; Pred. No. 28;
 Matches 8; Conservative 1; Mismatches 0; Indels 0; Gaps 0;

ESUIT 3
 51892
 probable membrane protein YOL105C - Yeast (Saccharomyces cerevisiae)
 ;Alternate names: hypothetical protein HRE556; hypothetical protein 00759
 ;Species: Saccharomyces cerevisiae

C;Date: 05-May-1995 #sequence_revision 03-Aug-1995 #text_change 21-Jul-2000
 C;Accession: S51992; S59188; S66801
 R;Vandenbosch, M.; Durand, P.; Portetelle, D.; Hilger, F.
 submitted to the EMBL Data Library, January 1995
 A;Description: Sequence analysis of a 44 kb DNA fragment of yeast chromosome XV including the
 and a Delta.
 A;Reference number: S51848
 A;Accession: S51812
 A;Molecule type: DNA
 A;Residues: 1-556 <VAN>
 A;Cross-references: EMBL:248149; NID:g663234; PID:g663247
 R;Vandenbosch, M.; Durand, P.; Portetelle, D.; Hilger, F.
 Yeast 11, 1059-1075, 1995
 A;Title: Sequence analysis of a 44 kb DNA fragment of yeast chromosome XV including the
 delta element.
 A;Reference number: S59156; MUID:96706631; PMID:7502582
 A;Accession: S59156
 A;Sequence: nucleic acid sequence not shown; translation not shown
 A;Molecule type: DNA
 A;Residues: 1-556 <VAN>
 A;Cross-references: EMBL:Z48149; NID:g663234; PID:g663247
 A;Note: the nucleotide sequence was submitted to the EMBL Data Library, January 1995
 R;Durand, P.; Hilger, F.; Portetelle, D.; Vandenbosch, M.
 submitted to the Protein Sequence Database, July 1996
 A;Reference number: S66791
 A;Accessories: S66791
 A;Molecule type: DNA
 A;Residues: 1-556 <DUR>
 A;Cross-references: ENBL:Z74847; NID:gi1419966; PMID:e252294; PID:g1419967; MIPS:YOL105C
 A;Experimental source: strain S288C
 C;Genetics:
 A;Gene: SGD:IWS3
 A;Cross-references: SGD:S0005465; MIPS:YOL105C
 A;Map position: 15I
 C;Keywords: transmembrane protein
 F:20-36/Domain: transmembrane #status predicted <TM1>
 F:317-333/Domain: transmembrane #status predicted <TM2>
 F:385-401/Domain: transmembrane #status predicted <TM3>
 Query Match Score 92.9%; Score 39; DB 2; Length 556;
 Best Local Similarity 77.8%; Pred. No. 15;
 Matches 2; Mismatches 0; Indels 0; Gaps 0;
 Qy 1 VVLGVFGV 9
 Db 385 IVIGVFGV 393
 RESULT 4
 A69227
 Na+/H+ antiporter (napA-1) homolog - Archaeoglobus fulgidus
 C;Species: Archaeoglobus fulgidus
 C;Date: 05-Dec-1997 #sequence_revision 05-Dec-1997 #text_change 02-Jun-2000
 C;Accession: A69227
 R;Fleischmann, R.A.; Tomb, J.F.; White, O.; Nelson, K.E.; Ketchum, K.A.; Dodson, R.; Goeddel, A.; Zhou, L.; Overbeek, R.; Gocayne, J.D.; McDonald, L.
 Nature 390, 364-370, 1997
 A;Authors: Utterback, T.; Cotton, M.D.; Spriggs, T.; Ariach, P.; Kaine, B.P.; Sykes, S.H.; Smith, H.O.; Woese, C.R.; Venter, J.C.
 A;Title: The complete genome sequence of the hyperthermophilic, sulfate-reducing archaeon
 A;Reference number: A69250
 A;Accession: A69227
 A;Status: preliminary; nucleic acid sequence not shown; translation not shown
 A;Molecule type: DNA
 A;Residues: 1-377 <KLE>
 A;Cross-references: GB:AE0001091; GB:AE000782; NID:g2689414; PMID:AAB91016.1; PID:g2650426
 C;Superfamily: Aquifex aeolicus Na+/H+-exchanging protein napA1

Query Match Score 88.1%; Score 37; DB 2; Length 377;
 Best Local Similarity 66.7%; Pred. No. 24;
 Matches 3; Mismatches 0; Indels 0; Gaps 0;

ESUIT 3
 51892
 probable membrane protein YOL105C - Yeast (Saccharomyces cerevisiae)
 ;Alternate names: hypothetical protein HRE556; hypothetical protein 00759
 ;Species: Saccharomyces cerevisiae

:Is-Neto, E.; Docena, C.; El-Dorry, H.; Facincant, A.P.; Ferreira, A.J.S.
submitted to Genbank, June 2000
:Authors: Ferreira, V.C.A.; Ferro, J.A.; Praga, J.S.; Franca, S.C.; Franco, M.C.; Froeh
l; Junqueira, M.L.; Kenper, E.L.; Kitajima, H.M.F.; Kurata, E.; Martins, E.;
inado, M.A.; Madeira, A.M.B.N.; Madeira, H.M.F.; Marinho, C.L.; Marques, M.V.; Martins, E.;
Martins, E.M.F.; Matsuoka, A.Y.; Merck, C.F.M.; Miracco, E.C.; Miyaki, C.Y.;
Nunes, P.G.; Nunes, L.R.; Oliveira, M.A.; Oliveira, M.C.; Oliveira, R.G.; Palmeri, D.A.;
Rodrigues, V.; Rosa, A.J. de M.; de Rosa Jr., V.E.; de Sa, R.G.; Santelli, R.V.; Savasak
I.; Tsuhako, M.H.; Vallada, H.; Van Sluys, M.A.; Silva Jr., W.A.; da Silveir
i.; Reference number: A59328
:Contents: annotation
:Genetics:
:Gene: XP05859

Query Match 85.7% - Clostridium acetobutylicum
Best Local Similarity 77.8%; Pred. No. 37;
Matches 7; Conservative 2; Mismatches 0; Indels 0; Gaps 0;
Y 1 VVGGVVFVGV 9
b 284 VVGGVVFVGV 292

RESULT 10
ermase [Imported] - Clostridium acetobutylicum
;Species: Clostridium acetobutylicum
;Date: 14-Sep-2001 #sequence_revision 14-Sep-2001 #text_change 30-Sep-2001
;Accession: A97241
;Nolling, J.; Bretton, G.; Omelchenko, M.V.; Matkarova, K.S.; Zeng, Q.; Gibson, R.; Lee,
; Daly, M.J.; Bennett, G.N.; Koornin, E.V.; Smith, D.R.
;BacterioL 183; 4823-4838; 2001
;Title: Genome Sequence and Comparative Analysis of the Solvent-Producing Bacterium Clc
;Reference number: A96900; MUID:21359325; PMID:21359325
;Accession: A97241
;Status: preliminary
;Molecule type: DNA
;Cross-references: GB:AEO01437; PIDN:AAK80716.1; PID:g15025810; GSPDB:GN00168
;Experimental source: Clostridium acetobutylicum ArCCB24
;Genetics:
;Gene: CAC2772
;Superfamily: conserved hypothetical protein HI0125

Query Match 85.7% - Clostridium acetobutylicum
Best Local Similarity 75.0%; Pred. No. 41;
Matches 6; Conservative 2; Mismatches 0; Indels 0; Gaps 0;
Y 2 VVGGVVFVGV 9
b 203 VVGGVVFVGV 210

RESULT 11
hypothetical protein s110855 - Synechocystis sp. (strain PCC 6803)
;Species: Synechocystis sp.
;Variety: PCC 6803
;Date: 25-Apr-1997 #sequence_revision 25-Apr-1997 #text_change 20-Jun-2000
;Accession: S74833
;Kaneko, T.; Sato, S.; Kotani, H.; Tanaka, A.; Asamizu, E.; Nakamura, Y.; Miyajima, N.;
K.; Okumura, S.; Shingo, S.; Takeuchi, C.; Wada, T.; Watanabe, A.; Yamada, M.; Yasuda
;NA Res. 3, 10-136, 1996
;Title: Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis
;Reference number: S74322; MUID:97061201; PMID:8905231
;Accession: S74833
;Status: preliminary
;Molecule type: DNA
;Residues: 1-451 <RAN>
;Cross-references: EMBL:D90909; GB:AB0001339; NID:J165244; PIDN:BAA17794.1; PRD:9165287
;Note: the nucleotide sequence was submitted to the EMBL Data Library, June 1996

C;Superfamily: hypothetical protein s110855
Query Match 85.7% - Synechocystis sp. (strain PCC 6803)
Best Local Similarity 55.6%; Pred. No. 43;
Matches 5; Conservative 4; Mismatches 0; Indels 0; Gaps 0;
Qy 1 VVGGVVFVGV 9
Db 251 VVGGVVFVGV 259

RESULT 12

AG1911
hypothetical protein alr0841 [Imported] - Nostoc sp. (strain PCC 7120)
C;Species: Nostoc sp. PCC 7120
A;Note: Nostoc sp. strain PCC 7120 is a synonym of Anabaena sp. Strain PCC 7120
C;Date: 14-Dec-2001 #sequence_revision 14-Dec-2001 #text_change 09-Dec-2002
C;Accession: AG1911
;Kaneko, T.; Nakamura, Y.; Wolk, C.P.; Kuritz, T.; Sasamoto, S.; Watanabe, A.; Iriuchi,
Nakazaki, N.; Shimojo, S.; Sugimoto, M.; Takazawa, M.; Yamada, M.; Tabata, S.
DNA Res. 8, 205-213, 2001
A;Title: Complete Genomic Sequence of the Filamentous Nitrogen-fixing Cyanobacterium An
A;Reference number: AB1807; MUID:21595285; PMID:11759840
A;Accession: AG1911
A;Status: preliminary
A;Molecule type: DNA
A;Residues: 1-822 <KUR>
A;Experimental source: Strain PCC 7120
A;Cross-references: GB:BA0000019; PIDN:BAR72798.1; PID:917130186; GSPDB:GN001179
A;Accession: AG1911
;C;Genetics:
A;Gene: alr0841
Query Match 85.7% - Synechocystis sp. (strain PCC 6803)
Best Local Similarity 75.8%; Pred. No. 75;
Matches 7; Conservative 1; Mismatches 1; Indels 0; Gaps 0;
Qy 1 VVGGVVFVGV 9
Db 222 VVGGVVFVGV 230

RESULT 13

H84162
hypothetical protein Vng2129h [Imported] - Halobacterium sp. NRC-1
C;Species: Halobacterium sp. NRC-1
C;Accession: H84162
;Ring, W.V.; Kennedy, S.P.; Mahairas, G.G.; Berquist, B.; Pan, M.; Shukla, H.D.; Lasky, S.;
Leithauser, B.; Keller, K.; Cruz, R.; Danson, M.J.; Hough, D.W.; Maddocks, D.G.; Jablon
;Jung, K.H.; Alam, M.; Freitas, T.
Proc. Natl. Acad. Sci. U.S.A. 97, 12176-12181, 2000
A;Author(s): Hou, S.; Daniels, C.J.; Dennis, P.P.; Omer, A.D.; Ebhardt, H.; Lowe, T.M.; Li
;A;Title: Genome sequence of Halobacterium species NRC-1.
A;Reference number: A84160; MUID:20304483; PMID:11016930
A;Accession: H84162
A;Molecule type: DNA
A;Residues: 1-35 <STO>
A;Cross-references: GB:AE004437; NID:910581543; PIDN:AGG20268.1; GSPDB:GN001138
C;Genetics:
A;Gene: VNG2129H
Query Match 83.3% - Synechocystis sp. (strain PCC 6803)
Best Local Similarity 77.8%; Pred. No. 63;
Matches 7; Conservative 1; Mismatches 1; Indels 0; Gaps 0;

Qy 1 VVGGVVFVGV 9
Db 19 VVGGVVFVGV 217

RESULT 14
C86630

lymphocyte psl protein 19 [imported] - Lactococcus lactis subsp. lactis (strain IL1403)
 ;Species: Lactococcus lactis subsp. lactis
 ;Date: 23-Mar-2001 #sequence_revision 23-Mar-2001 #text_change 03-Aug-2001
 ;Accession: Cac630
 ;Boulton, A.; Wincher, P.; Mauger, S.; Jaillon, O.; Malarrie, K.; Weissenbach, J.; Ehrlich, S.; Renome, Res. 11, 731-753, 2001
 ;Title: The complete genome sequence of the lactic acid bacterium Lactococcus lactis subsp. lactis
 ;Reference number: A86625; PMID:21235186; PMID:11337471
 ;Accession: C86630
 ;Status: Preliminary
 ;Molecule type: DNA
 ;Residues: 1-80 <SPO>
 ;Cross-references: GB:AE005176; PID:912722883; PIDN:AAK04141.1; GSPDB:GN00146
 ;Experimental source: strain IL1403
 ;Genetics:
 ;Genes: ps119

Query Match Score 35; DB 2; Length 80;
 Best Local Similarity 62.5%; Pred. No. 14;
 Matches 5; Conservative 3; Mismatches 0; Indels 0; Gaps 0;
 Y 2 VLGVFGV 9
 b 58 ILGVFGI 65

RESULT 15

46306
 cytochrome b5 - common tobacco
 ;Species: Nicotiana tabacum (common tobacco)
 ;Date: 27-Jan-1995 #sequence_revision 27-Jan-1995 #text_change 05-May-2000
 ;Accession: S46306; S33157
 ;Smith, M.A.; Stobart, A.K.; Shevry, P.R.; Napier, J.A.
 ;Plant Mol. Biol. 25, 527-537, 1994
 ;Title: Tobacco cytochrome b (5): cDNA isolation, expression analysis and in vitro proteo
 ;Reference number: S46306; PMID:94323476; PMID:8049375
 ;Accession: S46306
 ;Status: Preliminary
 ;Molecule type: mRNA
 ;Residues: 1-139 <SMI>
 ;Cross-references: EMBL:X71141; NID:3996305; PIDN:CAA5075.1; PID:g296386

;Superfamily: cytochrome b5; cytochrome b5 core homology
 ;Keywords: heme; iron; metalloprotein
 ;8-83/Domain: cytochrome b5 core homology <CB5>
 ;43-67/Banding site: heme iron (His) (axial ligands) #status predicted

Query Match Score 35; DB 2; Length 139;
 Best Local Similarity 55.6%; Pred. No. 22;
 Matches 5; Conservative 3; Mismatches 1; Indels 0; Gaps 0;
 Y 1 VVLGVFGV 9
 b 122 IILGVFGI 130

search completed: May 17, 2004, 12:57:48
 job time : 11.1613 secs

GenCore version 5.1.6
Copyright (C) 1993 - 2004 Compugen Ltd.

V protein - protein search, using SW model

on: May 17, 2004, 12:50:37 ; Search time 6.96774 Seconds
(without alignments)

67.257 Million cell updates/sec

title: US-09-458-299A-4239
score: 42
sequence: 1 VVLGTVFGV 9

scoring table: BLASTM52
Gapop 10.0 , Gapext 0.5

searched: 141681 seqs , 52070155 residues

total number of hits satisfying chosen parameters: 141681

minimum DB seq length: 0

maximum DB seq length: 2000000000

host processing: Minimum Match 0%
Maximum Match 100%

listing first 45 summaries

database : SwissProt_42: *

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

result No.	Score	Query	Match	Length	DB	ID	Description
1	41	97.6	1255	1	ERBB2_HUMAN	P04626	homo sapien
2	39	92.9	556	1	WSC3_YEAST	Q12215	saccharomyces cerevisiae
3	37	88.1	162	1	CAV2_FUGRU	Q9ygm9	fugu rubripinnis
4	36	85.7	135	1	CYSS5_TOBAC	P49099	nicotiana tabacum
5	36	85.7	137	1	CT24_HUMAN	Q9bu86	homo sapiens
6	35	83.3	136	1	CYB5_TOBAC	P49098	nicotiana tabacum
7	35	83.3	275	1	COBS_CORYNEBACTERIUM	Q8fng1	corynebacterium shigella fl
8	35	83.3	320	1	ALX_ECOLI	Q8xaj0	escherichia coli
9	35	83.3	321	1	ALX_ECOLI	Q8fdel	escherichia coli
10	35	83.3	321	1	ALX_SHIFI	Q83q35	shigella flexneri
11	35	83.3	321	1	ALX_SHIFI	P42601	escherichia coli
12	35	83.3	437	1	SGCC_ECOLI	P39365	escherichia coli
13	35	83.3	473	1	CLCA_ECOLI	Q8f244	escherichia coli
14	35	83.3	473	1	CLCA_ECOLI	P37019	escherichia coli
15	35	83.3	473	1	CLCA_SHIFI	P59639	shigella flexneri
16	35	83.3	523	1	EAA3_MOUSE	P51906	mus musculus
17	35	83.3	524	1	BAA3_BOVIN	Q95135	bos taurus
18	35	83.3	524	1	YDTN_ECOLI	P31597	protozoa
19	35	83.3	524	1	YDTN_ECOLI	Q9rx61	denococcus
20	34	81.0	274	1	UPK_DEIRA	P09348	escherichia coli
21	34	81.0	295	1	MOTA_ECOLI	Q9zjcb	helicobacte
22	34	81.0	322	1	ALX_SALTI	O6024	helicobacte
23	34	81.0	322	1	ALX_SALTY	P32500	ndci 1 yeast
24	34	81.0	430	1	G43B_DROMB	Q9v4g0	desospha
25	34	81.0	463	1	YDTN_ECOLI	P77529	escherichia
26	34	81.0	482	1	YGFU_ECOLI	Q46821	escherichia
27	34	81.0	523	1	EAA3_RAT	P51907	ratius norvegicus
28	34	81.0	533	1	YE91_HELPJ	Q9zjcb	helicobacte
29	34	81.0	533	1	YE91_HELPY	O6024	helicobacte
30	34	81.0	655	1	NDCI_YEAST	P32500	ndci 1 yeast
31	34	81.0	1742	1	GUNA_CALSA	Q9v4g0	desospha
32	33	78.6	40	1	YSXC_SULAC	P22534	calcoelium
33	33	78.6	108	1	Y869_ARCFU	P39477	sulfolobus archaeoglob

ALIGNMENTS							
RESULT 1							
ERBB2_HUMAN	HUMAN	STANDARD;	PRT;	1255	AA.		
ID	ERBB2_HUMAN						
AC	P04626;						
DT	13-AUG-1987	(Re.)	05	Created			
	13-AUG-1987	(Rel.)	05	Last sequence update			
	10-OCT-2003	(Rel.)	42	Last annotation update			
DE	Receptor protein-tyrosine kinase erbB-2 precursor (EC 2.7.1.112)						
DE	(p185erbB2) (NEU proto-oncogene) (C-erbB-2) (Tyrosine kinase-type cell surface receptor HER2) (MLN 19).						
GN	ERBB2 OR HER2 OR NGF OR NEU.						
NCBI_TaxID	9606;						
RN	SEQUENCE FROM N.A.						
RX	SEQUENCE FROM N.A., AND VARIANT ALA-1170.						
RA	Yamamoto T., Itoh S., Akiyama T., Sembra K., Nomura N., Miyajima N.,						
RA	Saito T., Toyoshima K.,						
RT	"Similarity of protein encoded by the human c-erbB-2 gene to epidermal growth factor receptor."						
RT	Nature 319:330-334 (1986).						
RL							
[1]	SEQUENCE FROM N.A., AND VARIANT ALA-1170.						
RX	SEQUENCE FROM N.A., AND VARIANT ALA-1170.						
RA	Yamamoto T., Itoh S., Akiyama T., Sembra K., Nomura N., Miyajima N.,						
RA	Saito T., Toyoshima K.,						
RT	"Similarity of protein encoded by the human c-erbB-2 gene to epidermal growth factor receptor."						
RT	Nature 319:330-334 (1986).						
RN							
[2]	SEQUENCE FROM N.A., AND VARIANT ALA-1170.						
RX	SEQUENCE FROM N.A., AND VARIANT ALA-1170.						
RA	Medline-86118663; PubMed-3003577;						
RA	Yamamoto T., Itoh S., Akiyama T., Sembra K., Nomura N., Miyajima N.,						
RA	Saito T., Toyoshima K.,						
RT	"Similarity of protein encoded by the human c-erbB-2 gene to epidermal growth factor receptor."						
RT	Nature 319:330-334 (1986).						
RL							
[3]	SEQUENCE FROM N.A., AND VARIANT CYS-452; VAL-655 AND ALA-1170.						
RX	SEQUENCE FROM N.A., AND VARIANT CYS-452; VAL-655 AND ALA-1170.						
RA	Rieder M.J., Livingston R.J., Daniels M.R., Montoya M.A., Chung M.-W.,						
RA	Miyamoto K.-E., Nguyen C.P., Poel C.L., Robertson P.D.,						
RA	Schackert W.S., Sherwood J.K., Witruk L.A., Nickerson D.A.,						
RA	Submitted (DRC-2002) to the EMBL/GenBank/DDJB databases.						
[4]	SEQUENCE OF 737-1031 FROM N.A.						
RX	SEQUENCE OF 737-1031 FROM N.A.						
RA	Senda K., Kamata N., Yamamoto T., Yamamoto T.,						
RA	Nguyen C.P., Poel C.L., Robertson P.D.,						
RA	Schackert W.S., Sherwood J.K., Witruk L.A., Nickerson D.A.,						
RL	Submitted (DRC-2002) to the EMBL/GenBank/DDJB databases.						
[5]	VARIANTS VAL-654 AND VAL-655.						
RX	VARIANTS VAL-654 AND VAL-655.						
RA	Medline-9319196; PubMed-8095588;						
RA	Ehsani A., Low J., Wallace R.B., Wu A.M.,						
RT	"A v-erbB-2-related protooncogene, c-erbB-2, is distinct from the c-erbB-1/epidermal growth factor receptor gene and is amplified in a human salivary gland adenocarcinoma."						
RT	Proc. Natl. Acad. Sci. U.S.A. 82:6497-6501(1985).						
RL							
[6]							
RA							
RT							
RT							
RL							
[7]							
RA							
RT							
RT							
RL							
[8]							
RA							
RT							
RT							
RL							
[9]							
RA							
RT							
RT							
RL							
[10]							
RA							
RT							
RT							
RL							
[11]							
RA							
RT							
RT							
RL							
[12]							
RA							
RT							
RT							
RL							
[13]							
RA							
RT							
RT							
RL							
[14]							
RA							
RT							
RT							
RL							
[15]							
RA							
RT							
RT							
RL							
[16]							
RA							
RT							
RT							
RL							
[17]							
RA							
RT							
RT							
RL							
[18]							
RA							
RT							
RT							
RL							
[19]							
RA							
RT							
RT							
RL							
[20]							
RA							
RT							
RT							
RL							
[21]							
RA							
RT							
RT							
RL							
[22]							
RA							
RT							
RT							
RL							
[23]							
RA							
RT							
RT							
RL							
[24]							
RA							
RT							
RT							
RL							
[25]							
RA							
RT							
RT							
RL							
[26]							
RA							
RT							
RT							
RL							
[27]							
RA							
RT							
RT							
RL							
[28]							
RA							
RT							
RT							
RL							
[29]							
RA							
RT							
RT					</td		

C alpha and amphiregulin.
C CATALYTIC ACTIVITY: ATP + a protein tyrosine = ADP + protein
C tyrosine phosphate.
C -!- SUBUNIT: Heterodimer with each of the other ERBB receptors
C (Potential). Interacts with ERK/CAP (By similarity).
C -!- SUBCELLULAR LOCATION: Type I membrane Protein.
C -!- PTM: Ligand-binding increases phosphorylation on tyrosine
C residues (By similarity).
C -!- POLYMORPHISM: There are four alleles due to the variations in
C positions 654 and 655. Allele B1 (Ile-654/Val-655) has a frequency of 0.206;
C allele B2 (Ile-654/Val-655) has a frequency of 0.012.
C -!- SIMILARITY: Belongs to the EGFR receptor family.

This SWISS-PROT entry is copyright. It is produced through a collaboration between the Swiss Institute of Bioinformatics and the EMBL Outstation - the European Bioinformatics Institute. There are no restrictions on its use by non-profit institutions as long as its content is in no way modified and this statement is not removed. Usage by and for commercial entities requires a license agreement (see <http://www.isb-sib.ch/announce/> or send an email to license@isb-sib.ch).

R EMBL; M11767; AAA35808.1; -.
R EMBL; M11767; AAA35808.1; JOINED.
R EMBL; M11767; AAA35808.1; JOINED.
R EMBL; M11765; AAA35808.1; JOINED.
R EMBL; M11765; AAA35808.1; JOINED.
R EMBL; M11765; AAA35808.1; JOINED.
R EMBL; M11766; AAA35808.1; JOINED.
R PIR; A24571; CAA37060.1; -.
R PIR; A24571; CAA37060.1; -.
R PDB; 1NBZ; 1B-PEO-03.
R PDB; 1QRL; 01-JAN-00.
R Genew; HGNC:3-3.0; ERBB2.
R MIM; 164870; -.
R GO; GO:0005012; F:Neu/Erbb-2 receptor activity; TAS.
R GO; GO:0004716; F:receptor signaling protein tyrosine kinase . . ; TAS.
R GO; GO:0004783; F:cell proliferation; TAS.
R GO; GO:0007167; P:enzyme linked receptor protein signaling pa. . . ; TAS.
R GO; GO:0006470; P:protein amino acid dephosphorylation; TAS.
R GO; GO:0006468; P:protein amino acid phosphorylation; TAS.
R InterPro; IPR000494; EGFR_L domain.
R InterPro; IPR006211; Purin-Tike.
R InterPro; IPR006212; Purin repeat.
R InterPro; IPR009030; GROW_Fac repeat.
R InterPro; IPR000719; Prot_kinase.
R InterPro; IPR001245; Tyr_Pkinase.
R InterPro; IPR008266; Tyr_Pkinase_AS.
R InterPro; IPR004019; YIP motif.
R Pfam; PF00057; Purin-like; 1.
R Pfam; PF00069; Pkinase_1.
R Pfam; PF02757; YLP_7.
R PRINTS; PR00108; TYRKINASE.
R ProDom; PD000001; Prot_kinase; 1.
R SMART; SM00219; TyrKc; 1.
R PROSITE; PS00107; PROTEIN_KINASE_ATP; 1.
R PROSITE; PS00109; PROTEIN_KINASE_TYR; 1.
R PROSITE; PS50011; PROTEIN_KINASE_DOM; 1.
R Transmembrane; Glycoprotein_Multigene family; Receptor; Signal; Transmembrane; Tyrosine-protein kinase; ATP-binding; Phosphorylation; Polymorphism; 3D-structure.
R SIGNATURE; 1; 21
R T CHAIN 22 1255 RECEPTOR PROTEIN-TYROSINE KINASE ERBB-2.
R T DOMAIN 22 652 EXTRACELLULAR (POTENTIAL).
R T TRANSMEM 653 675 CYTOPLASMIC (POTENTIAL).
R T DOMAIN 676 1255 PROTEIN KINASE (POTENTIAL).
R T NP_BIND 720 987 ATP (By SIMILARITY).
R T 726 734

ATP (BY SIMILARITY).
PT BINDING 753 753 BY SIMILARITY.
PT ACT SITE 845 845 BY SIMILARITY.
PT DISULFID 195 204 BY SIMILARITY.
PT DISULFID 199 212 BY SIMILARITY.
PT DISULFID 220 227 BY SIMILARITY.
PT DISULFID 224 235 BY SIMILARITY.
PT DISULFID 236 244 BY SIMILARITY.
PT DISULFID 240 252 BY SIMILARITY.
PT DISULFID 255 264 BY SIMILARITY.
PT DISULFID 268 295 BY SIMILARITY.
PT DISULFID 299 311 BY SIMILARITY.
PT DISULFID 315 331 BY SIMILARITY.
PT DISULFID 334 338 BY SIMILARITY.
PT DISULFID 511 520 BY SIMILARITY.
PT DISULFID 515 528 BY SIMILARITY.
PT DISULFID 526 624 BY SIMILARITY.
PT DISULFID 531 630 BY SIMILARITY.
PT MOD RES 1139 1139 (AUTO-) (BY SIMILARITY).
PT MOD RES 1248 1248 PHOSPHORYLATION (AUTO-) (BY SIMILARITY).
PT CARBOHYD 68 68 N-LINKED (GLCNAC. . .) (POTENTIAL).
PT CARBOHYD 124 124 N-LINKED (GLCNAC. . .) (POTENTIAL).
PT CARBOHYD 187 187 N-LINKED (GLCNAC. . .) (POTENTIAL).
PT CARBOHYD 259 259 N-LINKED (GLCNAC. . .) (POTENTIAL).
PT CARBOHYD 530 530 N-LINKED (GLCNAC. . .) (POTENTIAL).
PT CARBOHYD 571 571 N-LINKED (GLCNAC. . .) (POTENTIAL).
PT CARBOHYD 629 629 N-LINKED (GLCNAC. . .) (POTENTIAL).
W > C.
/PFTid=VAR_016317.
/I-> V (in allele B1; dbSNP:1801201).
/PFTid=VAR_004077.
/I-> V (in allele B2 and allele B3; dbSNP:1801200).
/PFTid=VAR_004078.
P > A.
/SQ SEQUENCE 1255 AA; 137909 MW; 39E9DFFA04DCF962 CRC64;
Query Match Score 41; Best Local Similarity 88.9%; Length 1255;
Matches 8;保守性 1; Mismatches 0; Indels 0; Gaps 0;
Qy 1 VVLGVVFGV 9
Db 665 VVLGVVFGI 673

RESULT 2
WS3 YEAST
ID WSC3 YEAST
AC Q12275;
DT 28-FEB-2003 (Rel. 41; Created)
DT 28-FEB-2003 (Rel. 41; Last sequence update)
DE Cell wall integrity and stress response component 3 precursor.
DN WSC3 OR YOL105C OR HB556.
OS Saccharomyces cerevisiae (Baker's yeast).
OC *Bukaryota*; *Fungi*; *Ascomycot*; *Saccharomycetes*; *Saccharomyces cereviseae*; *Saccharomyces*.
NCBI TaxID=932;
OX [1] _
RN SEQUENCE FROM N.A.
RN MEDLINE:96076631; PubMed=7502582;
RX Vandenbol M, Durand P, Porteille D, Hilger F;
RA "Sequence analysis of a 44 kb DNA fragment of yeast chromosome XV
RT including the Ty1-H3 retrotransposon, the sub1(+) frameshift
RT suppressor gene for tRNA-GLY, the yeast transfer RNA-Thr-1a and a
RT delta element.";

Yeast 11:1069-1075(1995).
 -!- SIMILARITY: Contains 1 WSC domain.

This SWISS-PROT entry is copyright. It is produced through a collaboration between the Swiss Institute of Bioinformatics and the EMBL outstation - the European Bioinformatics Institute. There are no restrictions on its use by non-profit institutions as long as its content is in no way modified and this statement is not removed. Usage by and for commercial entities requires a license agreement (See <http://www.isb-sib.ch/announce/> or send an email to license@isb-sib.ch).

R EMBL; Z48149; CAA88155 1; -;
 R EMBL; Z74847; CAA99123 1; -;
 R PIR; S51892; S51892;
 R Germonline; 113527;
 R SGD; S0004465; WSC3.
 GO; GO:0004888; P:transmembrane receptor activity; IGI.
 GO; GO:0009408; P:response to heat; IGI.
 GO; GO:0007266; P:rho protein signal transduction; IGI.
 InterPro; IPR002889; WSC.
 Pfam; PF01822; WSC_1.
 SMART; SM00321; WSC_1.
 R SIGNAL 1 38 POTENTIAL. Glycoprotein; Signal.
 T CHAIN 39 556 CELL WALL INTEGRITY AND STRESS RESPONSE
 DOMAIN 39 132 WSC
 DOMAIN 137 348 SER/THR-RICH.
 T TRANSMEM 385 405 POTENTIAL.
 T CARBOHYD 84 84 N-LINKED (GLCNAC. .) (POTENTIAL).
 T CARBOHYD 367 367 N-LINKED (GLCNAC. .) (POTENTIAL).
 T CARBOHYD 370 370 N-LINKED (GLCNAC. .) (POTENTIAL).
 T CARBOHYD 473 473 N-LINKED (GLCNAC. .) (POTENTIAL).
 T CARBOHYD 480 480 N-LINKED (GLCNAC. .) (POTENTIAL).
 2 SEQUENCE 556 AA; 58229 MW; D137E277180001DA CRC64;
 Query Match 92.9%; Score 39; DB 1; Length 556;
 Best Local Similarity 77.8%; Pred. No. 10;
 Matches 7; Conservative 2; Mismatches 0; Indels 0; Gaps 0;

Y 1 VVLGIVVFGV 9
 b 385 IVGIVVFGV 393

RESULT 3
 AV2_FUGRU STANDARD; PRT; 162 AA.

C Q9YGN9;
 T 16-OCT-2001 (Rel. 40, Created)
 T 16-OCT-2001 (Rel. 40, Last sequence update)
 T 15-MAR-2004 (Rel. 43, Last annotation update)

B Caveolin-2.
 CA2 OR CAV-2.
 Fugu rubripes (Japanese pufferfish) (Takifugu rubripes).
 Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
 Actinopterygii; Neopterygii; Teleostei; Euteleostei; Neoteleostei;
 Tetrapoda; Acanthomorpha; Streptopeltida; Embryophyta; Tracheophyta;
 Tetradontoidea; Tetraodontidae; Takifugu.
 NCBI_TaxID=31033;
 [1] NCBITaxonID=31033;
 P SEQUENCE FROM N.A.

A Coverage A.J.; Submitted (AUG-1998) to the EMBL/GenBank/DBJU databases.
 [2] SEQUENCE FROM N.A.
 P MEDLINE=2279194; PubMed=12917688;
 A Thomas J.W., Touchman J.W., Blakesley R.W., Bouffard G.G.,
 Beckstrom-Sternberg S.M., Margulies E.H., Blanchette M., Siepel A.C.,
 Thomas P.J., McDowell J.C., Mskrni B., Hansen N.P., Schwartz M.S.,
 Weber R.J., Kent W.J., Karolchik D., Bruen T.C., Bevan R.,
 Cutier D.J., Schwartz S., Elnitski L., Idol J.R., Prasad A.B.,
 Lee-Lin S.-Q., Maduro V.V., Summers T.J., Portnoy M.E., Dietrich N.L.,

RA Akhter N., Ayele K., Benjamin B., Cariaga K., Brinkley C.P.,
 RA Brooks S.Y., Granite S., Guan X., Gupta J., Haghjighi P., Ho S.-L.,
 RA Huang M.C., Karlins B., Leric P.I., Leggepi R., Lim M.J., Maduro Q.L.,
 RA Mastello C.A., Mastrian S.D., McCloskey J.C., Pearson R.,
 RA Staartjes P.S., Tiengson E.B., Tran J.T., Tsugeon C., Vogt J.L.,
 RA Walker M.A., Weherby K.D., Wiggin L.S., Young A.C., Zhang L.-H.,
 RA Oseogawa K., Zhu B., Zhao B., Shu C.L., De Jong P.J., Lawrence C.E.,
 RA Smit A.P., Chakravarti D., Haussler D., Green P., Miller W.,
 RA Green E.D.,
 RT "Comparative analyses of multi-species sequences from targeted genomic regions";
 RT Nature 424:788-793 (2003).
 CC -!- FUNCTION: May act as a scaffolding protein within caveolar membranes. Interacts directly with G-protein alpha subunits and can functionally regulate their activity (By similarity).
 CC -!- SUBUNIT: Homooligomer (By similarity).
 CC -!- SUBCELLULAR LOCATION: Membrane protein of caveolae. Potential hairpin-like structure in the membrane (By similarity).
 CC -!- SIMILARITY: Belongs to the caveolin family.
 CC This SWISS-PROT entry is copyright. It is produced through a collaboration between the Swiss Institute of Bioinformatics and the EMBL outstation - the European Bioinformatics Institute. There are no restrictions on its use by non-profit institutions as long as its content is in no way modified and this statement is not removed. Usage by and for commercial entities requires a license agreement (See <http://www.isb-sib.ch/announce/> or send an email to license@isb-sib.ch).
 CC Between the Swiss Institute of Bioinformatics and the EMBL outstation - the European Bioinformatics Institute. There are no restrictions on its use by non-profit institutions as long as its content is in no way modified and this statement is not removed. Usage by and for commercial entities requires a license agreement (See <http://www.isb-sib.ch/announce/> or send an email to license@isb-sib.ch).
 CC EMBL; AJ010316; CAA00811; -;
 DR EMBL; AC090119; AAL40363.1; -;
 DR InterPro; IPR001612; Caveolin.
 DR Pfam; PF01146; Caveolin; 1;
 DR PROSITE; PS01210; CAVEOLIN; 1;
 KW Transmembrane; Lipoprotein.
 FT DOMAIN 1 86 CYTOPLASMIC (POTENTIAL).
 FT DOMAIN 87 107 POTENTIAL.
 FT DOMAIN 108 162 CYTOPLASMIC (POTENTIAL).
 SQ SEQUENCE 162 AA; 18236 MW; 1D7CF4907D491253 CRC64;
 Query Match 2 VLGIVVFGV 9
 Best Local Similarity 88.1%; Score 37; DB 1; Length 162;
 Matches 7; Conservative 1; Mismatches 0; Indels 0; Gaps 0;

Qy 2 VLGIVVFGV 9
 :|||||||
 Db 99 ILGIVVFGV 106

RESULT 4
 CYSS_TOBAC STANDARD; PRT; 135 AA.
 ID CYSS_TOBAC
 AC P40599;
 DT 01-FEB-1996 (Rel. 33, Created)
 DT 01-FEB-1996 (Rel. 33, Last sequence update)
 DE Cytochrome b5, seed ; isoform.
 OS Nicotiana tabacum (Common tobacco).
 OC Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
 OC Spermatophyta; Magnoliophyta; eudicots; asterids;
 OC Lamiales; Solanales; Solanaceae; Nicotianina.
 NCBI_TaxID=4097;
 RN [1]
 RP SEQUENCE FROM N.A.
 RC STRAIN=cv. Samson; TISSUE=Seed;
 RX MEDLINE=96009039; PubMed=1580800;
 RA Napier J.A., Smith M.A., Stobart A.K., Shevry P.R.;
 RT "Isolation of a cDNA encoding a cytochrome b5 specifically expressed in developing tobacco seeds.";
 RL Planta 197:200-202 (1995).
 CC -!- FUNCTION: Cytochrome b5 is a membrane bound hemoprotein which functions as an electron carrier for several membrane bound oxygenases. May play a key role in the modification by desaturation of fatty acids in the endoplasmic reticulum, which in

the developing seed is utilized for membrane synthesis and in the developmentally regulated production of large amounts of storage lipids.

-1 SUBCELLULAR LOCATION: Microsomal membrane. Bound to the cytoplasmic side of the endoplasmic reticulum (By similarity).

-1 TISSUE-SPECIFICITY: Specifically expressed in developing seeds.

-1 SIMILARITY: Belongs to the cytochrome b5 family.

This SWISS-PROT entry is copyright. It is produced through a collaboration between the Swiss Institute of Bioinformatics and the EMBL outstation - use by non-profit institutions as long as its content is in no way modified and this statement is not removed. Usage by and for commercial entities requires a license agreement (see <http://www.isb-sib.ch/announce/> or send an email to license@isb-sib.ch).

EMBL; X80000; CAA56318.1; -.

PRR; S49200; S49200.

DR IntP; P00171; ICYO.

DR InterP; IFR00119; Cyt_B5.

PFAM; PF00173; heme_1; 1.

PRDOM; PDD00612; CYTOCHROME_B5_1; 1.

PRD SITE; PS50191; CYTOCHROME_B5_1.

PRD SITE; PS50255; CYTOCHROME_B5_2; 1.

EW Electron transport; Transmembrane; Heme; Iron; Microsome;

JW Multigene Family.

T T TRANSMEM 107 127 POTENTIAL (HEME AXIAL LIGAND) (BY SIMILARITY).

T T METAL 40 40 IRON (HEME AXIAL LIGAND) (BY SIMILARITY).

T T METAL 64 64 IRON (HEME AXIAL LIGAND) (BY SIMILARITY).

Q SEQUENCE 135 AA; 14869 MW; A36CCA0B1A72B0BC CRC64;

Query Match Score 36; DB 1; Length 135;

Best Local Similarity 66.7%; Pred. No. 11;

Matches 6; Conservative 2; Mismatches 1; Indels 0; Gaps 0;

Y 1 VVIGVPGV 9

Y 1 :||| ||| |

D 119 IIIGVAFSY 127

RESULT 5

CD24_HUMAN STANDARD; PRT; 137 AA.

NCBI_TAXID=9606;

UN [1] SEQUENCE FROM N.A. (ISOFORM 1).

UN [2] TISSUE=Adrenal gland.

IC Jiang C., Zhang C., Huang C., Peng Y., Gu Y., Zhang L., Wu T., Li Y., Han Z., Wang Y., Chen Z., Fu G.; "A novel gene expressed in human adrenal gland;" Submitted (DEC-1998) to the ENSEMBL/GenBank/DBJ databases.

IL SEQUENCE FROM N.A. (ISOFORM 2).

IC Yu W.-Q., Sun B.-Z., Chai Y.-B., Zhu F., Liu X.-S., Li Z., Lu F., Yan W., Yang H., Zhao Z.-L.; "Human acute promyelocytic leukemia cell line NB4's apoptosis related genes;" Submitted (JUN-2000) to the ENSEMBL/GenBank/DBJ databases.

IL SEQUENCE FROM N.A. (ISOFORM 3).

IC You W.-Q., Sun B.-Z., Chai Y.-B., Zhu F., Liu X.-S., Li Z., Lu F., Yan W., Yang H., Zhao Z.-L.; "Human acute promyelocytic leukemia cell line NB4's apoptosis related genes;" Submitted (JUN-2000) to the ENSEMBL/GenBank/DBJ databases.

IL SEQUENCE FROM N.A. (ISOFORM 4).

IC Deloukas P., Mathews L.H., Asbury J., Burton J., Gilbert J.G.R., Jones M., Stavrides G., Almeida J.P., Babbage A.X., Baggaley C.L.,

Bailey J., Barlow K.F., Bates K.N., Beard L.M., Bearre D.M., Beare A.J., Beasley O.P., Bird C.P., Blakely S.E., Bridgeman A.M., Brown A.J., Buck D., Burhill W.D., Butler A.P., Carter C., Carter N.P., Clark C.M., Chapman J.C., Clamp M., Clark G., Clark L.N., Clark S.Y., Clew C.M., Coulson A., Coville G.J., Deadman R.E., Corby N.R., Clegg S., Cobley V.E., Collier R.E., Connor R.E., Dunn M., Ellington A.G., Frankland J.A., Fraser A., French L., Garner P., Graham D.V., Griffiths C., Griffiths M.N.D., Gwilliam R., Hall R.E., Hammond S., Harley J.L., Heath P.D., Ho S., Holden J.L., Howden P.J., Huckle E., Hunt A.R., Hunt S.E., Jekosch K., Johnson C.M., Johnson D., King M.P., Kimberley A.M., Laird G.K., Lawlor S., Lehyeslaio M.H., Leverasha M.A., Lloyd C., Lloyd D.M., Lovell J.D., Marsh V.L., Martin S.L., McConachie L.J., McIay K., McMurray A.A., Milne S.A., Mistrey D., Moore M.J.C., Muljikian J.C., Nickerson T., Oliver K., Parker A., Patel R., Pearce T.A.V., Peck A.I., Philimore B.J.C.T., Prathalingam S.R., Plumb R.W., Ramsay H., Rice C.M., Ross M.T., Scott C.E., Shewenken R., Sims S., Skuce C.D., Smith M.L., Soderlund C.A., Sulston J.E., Swann R.M., Sycamore N., Taylor R., Tee L., Thomas D.W., Thorpe A., Tracey A., Tromans A.C., Vaudin M., Wall M., Wallis J.M., Whitehead S.L., Whittaker P., Willey D.L., Williams L., Williams S.A., Wilming L., Wray P.W., Hubbard T., Durbin R.M., Bentley D.R., Beck S., Rogers J., "The DNA sequence and comparative analysis of human chromosome 20.", Nature 414:865-871(2001).
RN [4]

RP SEQUENCE FROM N.A. (ISOFORMS 1 AND 4).

RC TISSUE=Lung, and Skin;

RC MEDLINE=22388257; PubMed=12477912;

RC Strausberg R.L., Feingold E.A., Grouse L.H., Derge J.G., Klausner R.D., Feingold E.A., Grouse L.H., Derge J.G., Schuler G.D., Schaefer C.F., Bhat N.K., Altenschul S.F., Zeeberg B., Buettow K.H., Schaefer C.F., Bhat N.K., Hopkins R.F., Jordan H., Moore T., Max S.I., Wang J., Hsieh F., Diatchenko L., Marusina K., Farmer G.M.F., Hong L., Stapleton M., Soares M.B., Bondaldo M.F., Casavant T.L., Scheetz T.E., Brownstein M.J., Usdin T.B., Tsohlypik S., Carninci P., Prange C., Raha S.S., Loqueland N.A., Peters G.J., Abramson K.J., Mullahy S.J., Bosak S., McBwan P.J., McErlean K.J., Malek J.A., Gunaratne P.H., Richards S., Worley K.C., Hale S., Garcia A.M., Gibbs R.A., Villalon D.K., Muzny D.M., Sodergren E.J., Lu X., Fahey J., Helton E., Ketteman M., Madan A., Rodriguez S., Sanchez A., Whiting M., Madan A., Young A.C., Shevchenko Y., Buffard G.G., Blakesley R.W., Touchman J.W., Green E.D., Dickson M.C., Rodriguez A.C., Grimmwood J., Schmutz J., Myers R.M., Butterfield Y.S.N., Krywienski M.I., Smailus D.E., Schnarch A., Schein J.E., Jones S.J.M., Marras M.A.; "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences." Proc. Natl. Acad. Sci. U.S.A. 99:16899-16903 (2002).
RN [5]

RP SEQUENCE OF 15-137 FROM N.A. (ISOFORM 1).

RC MEDLINE=96421776; PubMed=8824393;

RC Vitale G., Alexandrov K., Ulrich O., Horuchi H., Giner A., Dobson C., Baykova O., Gourdin H., Stemmark H., Zerlin M.; "The GDP/GTP cycle of Rab5 in the regulation of endocytotic membrane traffic"; Cold Spring Harb. Symp. Quant. Biol. 60:211-220(1995).
RT -! ALTERNATIVE PRODUCTS:
RT "Event-Alternative splicing; Named isoforms=4;
CC Comment-Experimental confirmation may be lacking for some isoforms;
CC Name=;

CC IsoID=Q9BUTV8-1; Sequence=Displayed;

CC Name=2;

CC IsoID=Q9BUTV8-2; Sequence=VSP_003796;

CC Name=3;

CC IsoID=Q9BUTV8-3; Sequence=VSP_003797;

CC IsoID=Q9BUTV8-4; Sequence=VSP_003795;

CC This SWISS-PROT entry is copyright. It is produced through a collaboration between the Swiss Institute of Bioinformatics and the EMBL outstation - CC the European Bioinformatics Institute. There are no restrictions on its

use by non-profit institutions as long as its content is in no way modified and this statement is not removed. Usage by and for commercial entities requires a license agreement. (See <http://www.isb-sib.ch/announce/> or send an email to license@isb-sib.ch).

EMBL; AP005221; BAC1893.1; -.

RHMAP; MF_00719; -.

R InterPro; IPRO03805; Cobs_synth.

R Pfam; PF02654; CobbS_1; Cobalamin biosynthesis; Transferase; Complete proteome;

SEQUENCE 275 AA; 2758 MW; 3688A1625EEB3EB CR64;

Q Best Local Similarity 83.3%; Score 35; DB 1; Length 275;

Matches 7; Conservative 1; Mismatches 0; Indels 0; Gaps 0;

Y 2 VLGIVFGV 9
| :||| |
b 52 VVGIVFGV 59

RESULT 8

LX_SHIFL PRT; 320 AA.

D Q83Q15; Q7UBI0;

T 15-MAR-2004 (Rel. 43, Created)

F 15-MAR-2004 (Rel. 43, Last sequence update)

F 15-MAR-2004 (Rel. 43, Last annotation update)

ALX protein.

B AX OR SF318 OR S3335.

Shigella flexneri.

Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacteriales;

Enterobacteriaceae; Shigella.

NCBI_TaxID=623;

N [1] [2]

P SEQUENCE FROM N.A.

STRAIN=301 / Serotype 2a;

STRAIN=2437 / ATCC 700930 / Serotype 2a;</

Pfam; PF03741; TerC; 1. Transmembrane; Complete proteome.

Q Best Local Similarity 77.8%; Pred. No. 34; Matches 7; Conservative 1; Mismatches 1; Indels 0; Gaps 0;

W TRANSMEM 7 POTENTIAL.

T TRANSMEM 27 POTENTIAL.

T TRANSMEM 44 64 POTENTIAL.

T TRANSMEM 90 110 POTENTIAL.

T TRANSMEM 114 134 POTENTIAL.

T TRANSMEM 136 156 POTENTIAL.

T TRANSMEM 199 219 POTENTIAL.

T TRANSMEM 226 246 POTENTIAL.

T TRANSMEM 262 282 POTENTIAL.

T TRANSMEM 287 307 POTENTIAL.

Q SEQUENCE 321 AA; 35951 MW; BFBT173442799C3 CRC64;

Y Query Match 83.3%; Score 35; DB 1; Length 321;

Y Best Local Similarity 77.8%; Pred. No. 34; Matches 7; Conservative 1; Mismatches 1; Indels 0; Gaps 0;

b Y 1 VVGVVFGV 9

b 292 VSLGVVFGI 300

RESULT 10 LX_ECOL6 STANDARD; PRT; 321 AA.

Q SEQUENCE FROM N.A. Q8FEF1; ATCC073 / ATCC 700928; SEQUENCE FROM N.A. Q8FEF1; ATCC073 / ATCC 700928; SEQUENCE FROM N.A. Q8FEF1; ATCC073 / ATCC 700928;

D 15-MAR-2004 (Rel. 43, Created) D 15-MAR-2004 (Rel. 43, Last sequence update) D 15-MAR-2004 (Rel. 43, Last annotation update)

R Welch R.A., Burland V., Plunkett G. III, Redford P., Roesch P., Rasko D., Buckles E.L., Liou S.-R., Boutin A., Hackett J., Strand D., Mayhew G.F., Rose D.J., Zhou S., Schwartz D.C., Perna N.T., Mobley H.L.T., Donnenberg M.S., Blattner F.R.; "Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli"; Proc. Natl. Acad. Sci. U.S.A. 99:17020-17024 (2002).

R -1- SUBCELLULAR LOCATION: Integral membrane protein. (Potential).
-1- SIMILARITY: Belongs to the terC family.

This SWISS-PROT entry is copyright. It is produced through a collaboration between the Swiss Institute of Bioinformatics and the EMBL outstation - the European Bioinformatics Institute. There are no restrictions on its use by non-profit institutions as long as its content is in no way modified and this statement is not removed. Usage by and for commercial entities requires a license agreement (See <http://www.isb-sib.ch/announce/> or send an email to license@isb-sib.ch).

InterPro; IPR005496; TerC.

Pfam; PF03741; TerC; 1. Transmembrane; Complete proteome.

Q Best Local Similarity 77.8%; Pred. No. 34; Matches 7; Conservative 1; Mismatches 1; Indels 0; Gaps 0;

W TRANSMEM 7 POTENTIAL.

T TRANSMEM 44 64 POTENTIAL.

T TRANSMEM 90 110 POTENTIAL.

T TRANSMEM 114 134 POTENTIAL.

T TRANSMEM 136 156 POTENTIAL.

T TRANSMEM 199 219 POTENTIAL.

T TRANSMEM 226 246 POTENTIAL.

T TRANSMEM 262 282 POTENTIAL.

Q SEQUENCE 321 AA; 36053 MW; A9EB7A0912799662 CRC64;

Y Query Match 83.3%; Score 35; DB 1; Length 321;

QY 1 VVGVVFGV 9

Db 292 VSLGVVFGI 300

RESULT 11 ALX_ECOLI STANDARD; PRT; 321 AA.

AC P47601; DT 01-NOV-1995 (Rel. 32, Created)
DT 01-NOV-1995 (Rel. 32, Last sequence update)
DT 15-MAR-2004 (Rel. 43, Last annotation update)

RA Blattner F.R., Plunkett G. III, Bloch C.A., Perna N.T., Burland V., Riley M., Collado-Vieira J., Glasner J.D., Goeden M.A., Mayhew G.F., Gregor J., Davis N.W., Kirkpatrick H.A., Rose D.J., Mau B., Shao Y.; "The complete genome sequence of Escherichia coli K-12."; Science 277:1453-1474 (1997).
[2]

RA Bacteriophage; Gammaproteobacteria; Enterobacteriales;
OC Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacteriales;
OC Bacteriophage; Gammaproteobacteria; Escherichia.
OX NCBI_TaxID=562;
RN [1]

RP SEQUENCE FROM N.A.
RC STRAIN=K12 / MG1655;
RX MEDLINE=9416617; PubMed=9278503;
RA Blattner F.R., Plunkett G. III, Bloch C.A., Perna N.T., Burland V., Riley M., Collado-Vieira J., Glasner J.D., Goeden M.A., Mayhew G.F., Gregor J., Davis N.W., Kirkpatrick H.A., Rose D.J., Mau B., Shao Y.; "The complete genome sequence of Escherichia coli K-12."; Science 277:1453-1474 (1997).
RN [1]

RP GENE NAME, AND INDUCTION.
RC STRAIN=K12;
RX MEDLINE=90202745; PubMed=2108134;
RA Bingham R.J., Hall K.S., Slonczewski J.L.; "Alkaline induction of a novel gene locus, alx, in Escherichia coli.;"
RT "Ph-dependent expression of periplasmic proteins and amino acid catabolism in Escherichia coli";
RL J. Bacteriol. 172:2184-2186 (1990).
RN [3]

RP INDUCTION.
RC STRAIN=K12;
RX MEDLINE=22103114; PubMed=12107143;
RA Stancik L.M., Stancik D.M., Schmid B., Barthart D.M., Yoncheva Y.N., Slonczewski J.L.; "Alkaline induction of a novel gene locus, alx, in Escherichia coli";
RT "Ph-dependent expression of periplasmic proteins and amino acid catabolism in Escherichia coli";
RL J. Bacteriol. 184:4246-4252 (2002).
RN [4]

CC -1- SUBCELLULAR LOCATION: Integral membrane protein (Probable).
CC -1- INDUCTION: By extreme alkaline conditions.
CC -1- SIMILARITY: Belongs to the terC family.

This SWISS-PROT entry is copyright. It is produced through a collaboration between the Swiss Institute of Bioinformatics and the EMBL outstation - the European Bioinformatics Institute. There are no restrictions on its use by non-profit institutions as long as its content is in no way modified and this statement is not removed. Usage by and for commercial entities requires a license agreement (See <http://www.isb-sib.ch/announce/> or send an email to license@isb-sib.ch).

DR ENBL; U18977; AAAS7890_1; -.
DR ENBL; AE000391; AAC76123_1; -.
DR PIR; B65097; E65097.
DR EcoGene; EGL273.; alx.
DR InterPro; IPR005496; TerC.
DR Pfam; PF03741; TerC.;
KW Transmembrane; Complete proteome.
PT TRANSMEM 7 POTENTIAL.
PT TRANSMEM 44 64 POTENTIAL.
PT TRANSMEM 90 110 POTENTIAL.
PT TRANSMEM 114 134 POTENTIAL.
PT TRANSMEM 136 156 POTENTIAL.
PT TRANSMEM 199 219 POTENTIAL.
PT TRANSMEM 226 246 POTENTIAL.
PT TRANSMEM 262 282 POTENTIAL.
PT TRANSMEM 287 307 POTENTIAL.
PT TRANSMEM 321 AA; 36053 MW; A9EB7A0912799662 CRC64;

Query Match 83.3%; Score 35; DB 1; Length 321;

RESULT 12
 GCC_ECOLI STANDARD; PRT; 437 AA.
 D_SGCC_ECOLI STANDARD; PRT; 437 AA.
 C_C P39375; [1] SEQUENCE FROM N.A.
 T_T 01-FEB-1995 (Rel. 31, Created)
 T_T 01-FEB-1995 (Rel. 31, Last sequence update)
 T_T 28-FEB-2003 (Rel. 41, Last annotation update)
 E_E PHOTOPHOTOTRANSFERASE ENZYME II, C component sgcc.
 N_N SGCC OR B43044.
 S_S Escherichia coli.
 C_C Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacteriales;
 C_C Enterobacteriaceae; Escherichia.
 X_X NCBI_TaxID=562;
 X_X NCBI_TaxID=[1];
 P_P SEQUENCE FROM N.A.
 C_C STRAIN=K12 / MG1655;
 X_X MEDLINE=9334462; PubMed=7610040;
 A_A Burland V.D., Plunkett G. III, Sofia H.J., Daniels D.L., Blattner F.R.; "Analysis of the Escherichia coli genome VII: DNA sequence of the region from 92.8 through 100 minutes."; Nucleic Acids Res. 23:2105-2119(1995).
 P_P DISCUSSION OF SEQUENCE.
 A_A Reizer J., Charbit A., Reizer A., Saier M.H. Jr.; "Novel phosphotransferases system revealed by bacterial genome analysis: operons encoding homologues of sugar-specific permease enzymes"; Genome Sci Technol. 1:53-75(1995).
 C_C SUBCELLULAR LOCATION: Integral membrane protein. Inner membrane (Potential). Contains 1 PTS ERIC domain.
 C_C -!- SIMILARITY: Contains 1 PTS ERIC domain.
 C_C This SWISS-PROT entry is copyright. It is produced through a collaboration between the Swiss Institute of Bioinformatics and the EMBL outstation - the European Bioinformatics Institute. There are no restrictions on its use by non-profit institutions as long as its content is in no way modified and this statement is not removed. Usage by and for commercial entities requires a license agreement (See http://www.isb-sib.ch/announce/ or send an email to license@isb-sib.ch).
 C_C -----
 R_R EMBL: U14403; AAA97200; 1; -.
 R_R PIR: S56529; S56529.
 R_R InterPro: IPR04703; Gal_spec_IIC.
 R_R Ecogene: EG12556; sgcc.
 R_R TIGRFAMS: PF01611; BIIIC-GAT; 1.
 R_R Phosphotransferase System; Sugar transport; Transmembrane;
 W_W Inner membrane; Complete proteome.
 T_T TRANSMEM 5 25 POTENTIAL.
 T_T TRANSMEM 35 55 POTENTIAL.
 T_T TRANSMEM 88 108 POTENTIAL.
 T_T TRANSMEM 134 154 POTENTIAL.
 T_T TRANSMEM 173 193 POTENTIAL.
 T_T TRANSMEM 215 235 POTENTIAL.
 T_T TRANSMEM 236 256 POTENTIAL.
 T_T TRANSMEM 302 322 POTENTIAL.
 T_T TRANSMEM 325 345 POTENTIAL.

RESULT 13
 CLCA_ECO57 STANDARD; PRT; 473 AA.
 D_ID CLCA_ECO57
 AC P58744;
 DT 16-OCT-2001 (Rel. 40, Created)
 DT 16-OCT-2001 (Rel. 40, Last sequence update)
 DT 10-OCT-2003 (Rel. 42, Last annotation update)
 DE Voltage-gated ClC-type chloride channel clca.
 GN CLCA OR ERIC OR Z016 OR ECS0159.
 OS Escherichia coli O15:H7.
 OC Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacteriales;
 OC Enterobacteriaceae; Escherichia.
 RN NCBITaxonID=83334;

[1]
 RP SEQUENCE FROM N.A.
 RC STRAIN=O157:H7 / EDL933 / ATCC 700927;
 RX MEDLINE=211074935; PubMed=1120651;
 RA Perna N.T., Plunkett G. III, Burland V., Mau B., Glasner J.D., Rose D.J., Mayhew G.F., Evans P.S., Gregor J., Kirkpatrick H.A., Rossall G., Hackney J., Kline S., Boutin A., Shao Y., Miller L., Grotbeck E.J., Davis N.W., Lim A., Dimambato E.T., Potamitis K., Apodaca J., Anantharaman T.S., Lin J., Yen G., Schwartz D.C., Welch R.A., Blattner F.R.; "Genome sequence of enterohaemorrhagic Escherichia coli O157:H7."; Nature 409:529-533(2001).
 RN [2]
 RP SEQUENCE FROM N.A.
 RC STRAIN=O157:H7 / RIMD 0509952;
 RX MEDLINE=21116231; PubMed=11258196;
 RA Hayashi T., Makino R., Ohnishi M., Kurokawa K., Ishii K., Yokoyama K., Han C.-G., Ohtsubo E., Nakayama K., Murata T., Tanaka M., Tobe T., Iida T., Takami H., Honda T., Sasaiwa C., Ogasawara N., Yasunaga T., Kuhara S., Shiba T., Hattori M., Shinagawa H.; "Complete genome sequence of enterohaemorrhagic Escherichia coli O157:H7 and genomic comparison with a laboratory strain K-12."; RT DNA Res. 11:1-12(2001).
 RL -!- FUNCTION: Probably acts as an electrical shunt for an outwardly-directed proton pump that is linked to amino acid decarboxylation, as part of the extreme acid resistance (XAP) response (By similarity).
 CC -!- SUBUNIT: Homodimer (By similarity).
 CC -!- SUBSIDIARY LOCATION: Inner membrane protein. Inner membrane (Probable).
 CC -!- DOMAIN: Helix R might transduce intracellular events into channel gating (By similarity).
 CC -!- MISCELLANEOUS: The dimeric channel has a two-fold axis perpendicular to the membrane plane; each of the subunits within the dimer exhibits an anti-parallel architecture and forms its own ion-conducting pore. The channel is probably activated by chloride ions, which appear to exert this gating effect by actually entering the pore. The ion conduction and gating are thus closely linked (By similarity).
 CC -!- MISCELLANEOUS: The two ClC channels in this bacterium, clca and clcb, act redundantly (By similarity).
 CC -!- SIMILARITY: Belongs to the chloride channel family.
 CC -----
 CC This SWISS-PROT entry is copyright. It is produced through a collaboration between the Swiss Institute of Bioinformatics and the EMBL outstation - the European Bioinformatics Institute. There are no restrictions on its

use by non-profit institutions as long as its content is in no way modified and this statement is not removed. Usage by and for commercial entities requires a license agreement (see <http://www.isb-sib.ch/announce/> or send an email to license@isb-sib.ch).

JC	use by non-profit institutions as long as its content is in no way modified and this statement is not removed. Usage by and for commercial entities requires a license agreement (see http://www.isb-sib.ch/announce/ or send an email to license@isb-sib.ch).	DR	10-OCT-2003 (Rel. 42, Last sequence update)
JC	--	DR	10-OCT-2003 (Rel. 42, Last annotation update)
JC	--	DT	Voltage-gated CIC-type chloride channel cicA.
JC	--	GN	CICCA OR ERIC OR CO190.
DR	EMBL: AE005250; BAB33582.1; -;	OS	Bacillus coli O6.
DR	PIR: G90648; G90648.	OC	Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacteriales;
DR	P37019; R1KPK.	OC	Enterobactericeae; Escherichia.
DR	HAWAP: MF_0112B; -;	NCBI_TaxID:	217992;
DR	InterPro: IPR001807; C1-channel_volt.	RN	[1]
DR	PFAM: PF00654; voltage_CLC; 1.	RP	SEQUENCE FROM N.A.
DR	PRINTS: PRO0762; CLICHANNEL.	RC	STRAIN=O6_H1 / CFT073 / ATCC 700928;
JW	Transport; Ion transport; Ionic channel; Voltage-gated channel; Chloride channel; Chloride; Inner membrane; Transmembrane; Complete proteome.	RX	MEDLINE=2388234; PubMed=1247115;
T	DOMAIN 1 32 CYTOPLASMIC (BY SIMILARITY).	RA	Welch R.A., Burland V., Plunkett G. III, Redford P., Roesch P., Rasko D., Buckles E.L., Liou S.-R., Schwartz D.C., Sett J., Stroud D., Mayhew G.P., Rose D.J., Zhou J., Blattner F.R.;
T	TRANSMEM 33 65 BY SIMILARITY.	RA	Mobile H.L.T., Donnenberg M.S., Blattner F.R.; "Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli."
T	DOMAIN 66 78 EXTRACELLULAR (BY SIMILARITY).	RT	Proc. Natl. Acad. Sci. U.S.A. 99:17020-17024 (2002);
T	TRANSMEM 79 100 BY SIMILARITY.	RL	-- FUNCTION: Probably acts as an electrical shunt for an outwardly-directed proton pump that is linked to amino acid decarboxylation, as part of the extreme acid resistance (XAR) response (By
T	DOMAIN 106 110 SELECTIVITY FILTER PART_1 (BY SIMILARITY).	CC	similarity).
T	DOMAIN 109 116 IN-MEMBRANE HELIX (BY SIMILARITY).	CC	CC SUBUNIT: Homodimer (By similarity).
T	DOMAIN 117 126 CYTOPLASMIC (BY SIMILARITY).	CC	CC SUBCELLULAR LOCATION: Integral membrane protein. Inner membrane (probable).
T	TRANSMEM 127 140 BY SIMILARITY.	CC	-- DOMAIN: Helix R might transduce intracellular events into channel gating (By similarity).
T	DOMAIN 146 150 SELECTIVITY FILTER PART_2 (BY SIMILARITY).	CC	-- MISCELLANEOUS: The dimeric channel has a two-fold axis perpendicular to the membrane plane; each of the subunits within the dimer exhibits an antiparallel architecture and forms its own ion-conducting pore. The channel is probably activated by chloride ions, which appear to exert this gating effect by actually entering the pore. The ion conduction and gating are thus closely linked (By similarity).
T	TRANSMEM 148 164 CYTOPLASMIC (BY SIMILARITY).	CC	-- MISCELLANEOUS: The two CLC channels in this bacterium, clcA and clcB, act redundantly (By similarity).
T	DOMAIN 165 170 BY SIMILARITY.	CC	-- SIMILARITY: Belongs to the chloride channel family.
T	TRANSMEM 171 189 LOOP BETWEEN TWO HELICES (BY SIMILARITY).	CC	This SWISS-PROT entry is copyright. It is produced through a collaboration between the Swiss Institute of Bioinformatics and the EMBL outstation - the European Bioinformatics Institute. There are no restrictions on its use by non-profit institutions as long as its content is in no way modified and this statement is not removed. Usage by and for commercial entities requires a license agreement (See http://www.isb-sib.ch/announce/ or send an email to license@isb-sib.ch).
T	TRANSMEM 190 192 BY SIMILARITY.	CC	-- DR: AB016755; AAC7884.1; -.
T	TRANSMEM 193 202 BY SIMILARITY.	CC	-- DR: InterPro: IP001807; C1-channel_volt.
T	DOMAIN 203 214 CYTOPLASMIC (BY SIMILARITY).	CC	-- DR: PRINTS: PR00762; CLCHANNEL.
T	TRANSMEM 215 232 BY SIMILARITY.	CC	-- DR: Pfam: PF00654; voltage_CLC; 1.
T	DOMAIN 233 252 EXTRACELLULAR (BY SIMILARITY).	CC	-- DR: Transport; Ion transport; Ionic channel; Chloride channel; Chloride; Inner membrane; Transmembrane; Complete proteome.
T	TRANSMEM 253 284 BY SIMILARITY.	CC	-- FT: TRANSMEM 31 53 POTENTIAL.
T	DOMAIN 285 287 CYTOPLASMIC (BY SIMILARITY).	CC	-- FT: TRANSMEM 75 97 POTENTIAL.
T	TRANSMEM 288 307 BY SIMILARITY.	CC	-- FT: TRANSMEM 124 146 POTENTIAL.
T	DOMAIN 308 329 EXTRACELLULAR (BY SIMILARITY).	CC	-- FT: TRANSMEM 179 201 POTENTIAL.
T	TRANSMEM 330 349 BY SIMILARITY.	CC	-- FT: TRANSMEM 210 232 POTENTIAL.
T	DOMAIN 355 359 SELECTIVITY FILTER PART_3 (BY SIMILARITY).	CC	-- FT: TRANSMEM 252 274 POTENTIAL.
T	TRANSMEM 357 378 BY SIMILARITY.	CC	-- FT: TRANSMEM 287 309 POTENTIAL.
T	DOMAIN 379 386 EXTRACELLULAR (BY SIMILARITY).	CC	-- FT: TRANSMEM 319 341 POTENTIAL.
T	TRANSMEM 387 401 BY SIMILARITY.	CC	-- FT: TRANSMEM 376 396 POTENTIAL.
T	TRANSMEM 402 404 LOOP BETWEEN TWO HELICES (BY SIMILARITY).	CC	-- FT: TRANSMEM 391 413 POTENTIAL.
T	TRANSMEM 405 416 BY SIMILARITY.	CC	-- FT: TRANSMEM 418 440 POTENTIAL.
T	TRANSMEM 417 421 LOOP BETWEEN TWO HELICES (BY SIMILARITY).	CC	-- FT: SITE 148 148 MAY BE INVOLVED IN GATING (BY SIMILARITY).
T	TRANSMEM 422 438 BY SIMILARITY.	CC	-- FT: BINDING 107 107 CHLORIDE (VIA AMIDE NITROGEN) (BY SIMILARITY).
T	DOMAIN 439 473 CYTOPLASMIC (BY SIMILARITY).	CC	-- FT: BINDING 356 356 CHLORIDE (VIA AMIDE NITROGEN) (BY SIMILARITY).
T	SITE 148 148 MAY BE INVOLVED IN GATING (BY SIMILARITY).	CC	-- FT: BINDING 357 357 CHLORIDE (VIA AMIDE NITROGEN) (BY SIMILARITY).
T	BINDING 107 107 CHLORIDE (VIA AMIDE NITROGEN) (BY SIMILARITY).	CC	-- FT: BINDING 357 357 CHLORIDE (VIA AMIDE NITROGEN) (BY SIMILARITY).
T	BINDING 356 356 CHLORIDE (VIA AMIDE NITROGEN) (BY SIMILARITY).	CC	-- FT: BINDING 357 357 CHLORIDE (VIA AMIDE NITROGEN) (BY SIMILARITY).
T	BINDING 357 357 CHLORIDE (VIA AMIDE NITROGEN) (BY SIMILARITY).	CC	-- FT: BINDING 357 357 CHLORIDE (VIA AMIDE NITROGEN) (BY SIMILARITY).
T	BINDING 445 445 CHLORIDE (VIA AMIDE NITROGEN) (BY SIMILARITY).	CC	-- FT: BINDING 357 357 CHLORIDE (VIA AMIDE NITROGEN) (BY SIMILARITY).
Q	SEQUENCE 473 AA; 50334 MN; 72255396D976B23 CR64;	CC	-- FT: BINDING 357 357 CHLORIDE (VIA AMIDE NITROGEN) (BY SIMILARITY).
Query Match	Score 35; DB 1; Length 473;	CC	-- FT: BINDING 357 357 CHLORIDE (VIA AMIDE NITROGEN) (BY SIMILARITY).
Best Local Similarity	44.4%; Pred. No. 46; 5; Mismatches 0; Indels 0; Gaps 0;	CC	-- FT: BINDING 357 357 CHLORIDE (VIA AMIDE NITROGEN) (BY SIMILARITY).
Matches 4; Conservative		CC	-- FT: BINDING 357 357 CHLORIDE (VIA AMIDE NITROGEN) (BY SIMILARITY).
Y 1 VVLGVFGV 9		CC	-- FT: BINDING 357 357 CHLORIDE (VIA AMIDE NITROGEN) (BY SIMILARITY).
0 256 LILGIIGI 264		CC	-- FT: BINDING 357 357 CHLORIDE (VIA AMIDE NITROGEN) (BY SIMILARITY).
RESULT 14		CC	-- CLCA_ECOL6 STANDARD; PRM; 473 AA.
Q8EL15;		CC	--

RT "A biological role for prokaryotic ClC chloride channels.";
 RL Nature 419:715-718(2002).
 RN [7]
 RN X-RAY CRYSTALLOGRAPHY (6.5 ANGSTROMS).
 RP STRAIN=K12 / MG1655;
 RC MEDLINE=21037970; PubMed=11196649;
 RX
 RA Mindell J.A., Maduke M., Miller M., Miller C., Grigorieff N.;
 RT "projection structure of a ClC-type chloride channel at 6.5 Å
 resolution.";
 RL Nature 409:219-223(2001).
 RN [8]
 RN X-RAY CRYSTALLOGRAPHY (3.5 ANGSTROMS).
 RX MEDLINE=21655566; PubMed=11796399;
 RA Dutzler R., Campbell E.B., Cadene M., Chait B.T., MacKinnon R.;
 RT "X-ray structure of a ClC chloride channel at 3.0 Å reveals the
 molecular basis of anion selectivity.";
 RL Nature 415:287-294(2002).
 CC -!- FUNCTION: Probably acts as an electrical shunt for an outwardly-
 directed proton pump that is linked to amino acid decarboxylation,
 as part of the extreme acid resistance (XAR) response.
 CC -!- SUBUNIT: Homodimer.
 CC -!- SUBCELLULAR LOCATION: Integral membrane protein. Inner membrane
 (probable).
 CC -!- INDUCTION: By acid-shock conditions.
 CC -!- DOMAIN: Helix R might transduce intracellular events into channel
 gating.
 CC -!- MISCELLANEOUS: The dimeric channel has a two-fold axis
 perpendicular to the membrane plane; each of the subunits within
 the dimer exhibits an antiparallel architecture and forms its own
 ion-conducting pore. The channel is probably activated by chloride
 ions, which appear to exert this gating effect by actually
 entering the pore. The ion conduction and gating are thus closely
 linked.
 CC -!- MISCELLANEOUS: The two ClC channels in this bacterium, cICa and
 cICb, act redundantly.
 CC -!- SIMILARITY: Belongs to the chloride channel family.
 CC -!- CAUTION: Ref.1 sequence differs from that shown due to a
 frameshift in position 11.
 CC -----
 This SWISS-PROT entry is copyright. It is produced through a collaboration
 between the Swiss Institute of Bioinformatics and the EMBL Outstation
 at the European Bioinformatics Institute. There are no restrictions on its
 use by non-profit institutions as long as its content is in no way
 modified and this statement is not removed. Usage by and for commercial
 entities requires a license agreement (See <http://www.isb-sib.ch/announce/>
 or send an email to license@isb-sib.ch).
 CC -----
 SEQUENCE FROM N.A.
 CP STRAIN=K12 / MG1655;
 X MEDLINE=974226617; PubMed=9278503;
 A Blattner F.R., Plunkett G. III, Bloch C.A., Perna N.T., Burland V.,
 A Riley M., Collado-Vides J., Glasner J.D., Rose C.K., Mayhew G.F.,
 A Gregor J., Davis N.W., Kirkpatrick H.A., Goeden M.A., Rose D.J.,
 A Mau B., Shao Y.,
 A complete genome sequencing of Escherichia coli K-12.";
 T the 2.4-4.1 min (110,917-193,643 bp) region.";
 U Science 277:1453-1474(1997).
 IN [12]
 CP SEQUENCE FROM N.A.
 C MEDLINE=974226617; PubMed=9278503;
 X MEDLINE=974226617; PubMed=9278503;
 A Blattner F.R., Plunkett G. III, Bloch C.A., Perna N.T., Burland V.,
 A Riley M., Collado-Vides J., Glasner J.D., Rose C.K., Mayhew G.F.,
 A Gregor J., Davis N.W., Kirkpatrick H.A., Goeden M.A., Rose D.J.,
 A Mau B., Shao Y.,
 A complete genome sequence of Escherichia coli K-12.";
 T the 2.4-4.1 min (110,917-193,643 bp) region.";
 U Submitted (SEP-1996) to the EMBL/GenBank/DDBJ databases.
 IN [13]

CHARACTERIZATION.

IC STRAIN=K12 / MG1655;
 X MEDLINE=99553; PubMed=10539975;
 A Maduke M., Pheasant D.J., Miller C.,
 A Purdy M.D., Wiener M.C.;
 T "High-level expression, functional reconstitution, and quaternary
 structure of a prokaryotic ClC-type chloride channel.";
 U J. Gen. Physiol. 114:113-722(1999).
 IN [14]

CHARACTERIZATION.

IC STRAIN=K12 / MG1655;
 X MEDLINE=2015456; PubMed=10648805;
 A Purdy M.D., Wiener M.C.;
 T "Expression, purification, and initial structural characterization of
 YaqQ, a bacterial homolog of mammalian ClC chloride channel
 proteins.";
 U PNAS Lett. 466:26-28(2000).
 IN [15]

FUNCTION.

IC STRAIN=K12 / MG1655;
 X MEDLINE=22202680; PubMed=12384697;
 A Iyer R., Iverson T.M., Accardi A., Miller C.,

T T TRANSMEM 193 202 CYTOPLASMIC.
 T T DOMAIN 203 214
 T T TRANSMEM 215 232 EXTRACELLULAR.
 T T DOMAIN 233 252
 T T TRANSMEM 253 284 CYTOPLASMIC.
 T T DOMAIN 285 287
 T T TRANSMEM 289 307 EXTRACELLULAR.
 T T DOMAIN 308 329
 T T TRANSMEM 330 349 SELECTIVITY FILTER PART_3.
 T T DOMAIN 335 359
 T T TRANSMEM 357 378 EXTRACELLULAR.
 T T DOMAIN 379 386
 T T TRANSMEM 387 401 LOOP BETWEEN TWO HELICES.
 T T TRANSMEM 402 404
 T T DOMAIN 405 416
 T T TRANSMEM 417 421 LOOP BETWEEN TWO HELICES.
 T T TRANSMEM 422 438 CYTOPLASMIC.
 T T DOMAIN 439 473 MAY BE INVOLVED IN GATING.
 T T SITE 148 148 CHLORIDE (VIA AMIDE NITROGEN).
 T T BINDING 107 107 CHLORIDE (VIA AMIDE NITROGEN).
 T T BINDING 316 356 CHLORIDE (VIA AMIDE NITROGEN).
 T T BINDING 357 357 CHLORIDE (VIA AMIDE NITROGEN).
 T T BINDING 445 445 P -> Q (IN REF. 1).
 T T CONFLICT 342 32 HELIX 13 25
 T T HELIX 13 25 TURN 26 27
 T T HEELIX 33 64 TURN 26 27
 T T TURN 65 70
 T T HEELIX 75 100
 T T TURN 102 103
 T T HEELIX 109 115
 T T TURN 115 116
 T T HEELIX 116 117
 T T TURN 124 124
 T T HEELIX 124 142
 T T STRAND 146 146
 T T HEELIX 148 165
 T T TURN 166 167
 T T HEELIX 170 171
 T T HEELIX 172 190
 T T TURN 191 191
 T T HEELIX 193 199
 T T TURN 200 202
 T T HEELIX 215 232
 T T TURN 249 251
 T T HEELIX 252 275
 T T TURN 276 286
 T T TURN 288 289
 T T HEELIX 290 305
 T T TURN 306 307
 T T HEELIX 310 312
 T T TURN 317 319
 T T HEELIX 320 324
 T T TURN 325 326
 T T HEELIX 330 350
 T T TURN 351 351
 T T STRAND 355 355
 T T TURN 357 358
 T T HEELIX 359 378
 T T TURN 380 381
 T T HEELIX 386 392
 T T TURN 393 394
 T T HEELIX 396 401
 T T TURN 402 402
 T T HEELIX 405 416
 T T HEELIX 419 421
 T T HEELIX 422 434
 T T TURN 435 440
 T T HEELIX 444 457
 T T TURN 457 459

Query Match 83.3%; Score 35; DB 1; Length 473;
 Best Local Similarity 44.4%; Pred. No. 46;
 Matches 4; Conservative 5; Mismatches 0; Indels 0; Gaps 0;

Search completed: May 17, 2004, 12:57:00
Job time : 6.96774 secs

GenCore version 5.1.6
 Copyright (c) 1993 - 2004 Compugen Ltd.

M protein - protein search, using sw model

un on: May 17, 2004, 12:47:22 ; Search time 28.7419 Seconds

(without alignments)
 98.739 Million cell updates/sec

title: US-09-458-299A-4239

erfect score: 42

equence: 1 VVTLGVVFGV 9

oring table: BLOSUM62

Gap0 10.0 , Gapext 0.5

earched: 1017041 seqs, 315518202 residues

otal number of hits satisfying chosen parameters:

minimum DB seq length: 0

maximum DB seq length: 2000000000

ost-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

atabase : SPTREMBL25:*

1: sp_archea:*

2: sp_bacteria:*

3: sp_fungi:*

4: sp_human:*

5: sp_invertebrate:*

6: sp_mammal:*

7: sp_inhc:*

8: sp_organelle:*

9: sp_phage:*

10: sp_plant:*

11: sp_rabbit:*

12: sp_virus:*

13: sp_unclassified:*

14: sp_rvirus:*

15: sp_bacteriap:*

16: sp_archaeap:*

17: sp_archap:*

SPTREMBL25:*

1: sp_archea:*

2: sp_bacteria:*

3: sp_fungi:*

4: sp_human:*

5: sp_invertebrate:*

6: sp_mammal:*

7: sp_inhc:*

8: sp_organelle:*

9: sp_phage:*

10: sp_plant:*

11: sp_rabbit:*

12: sp_virus:*

13: sp_unclassified:*

14: sp_rvirus:*

15: sp_bacteriap:*

16: sp_archaeap:*

17: sp_archap:*

SPTREMBL25:*

1: sp_archea:*

2: sp_bacteria:*

3: sp_fungi:*

4: sp_human:*

5: sp_invertebrate:*

6: sp_mammal:*

7: sp_inhc:*

8: sp_organelle:*

9: sp_phage:*

10: sp_plant:*

11: sp_rabbit:*

12: sp_virus:*

13: sp_unclassified:*

14: sp_rvirus:*

15: sp_bacteriap:*

16: sp_archaeap:*

SPTREMBL25:*

1: sp_archea:*

2: sp_bacteria:*

3: sp_fungi:*

4: sp_human:*

5: sp_invertebrate:*

6: sp_mammal:*

7: sp_inhc:*

8: sp_organelle:*

9: sp_phage:*

10: sp_plant:*

11: sp_rabbit:*

12: sp_virus:*

13: sp_unclassified:*

14: sp_rvirus:*

15: sp_bacteriap:*

16: sp_archaeap:*

SPTREMBL25:*

1: sp_archea:*

2: sp_bacteria:*

3: sp_fungi:*

4: sp_human:*

5: sp_invertebrate:*

6: sp_mammal:*

7: sp_inhc:*

8: sp_organelle:*

9: sp_phage:*

10: sp_plant:*

11: sp_rabbit:*

12: sp_virus:*

13: sp_unclassified:*

14: sp_rvirus:*

15: sp_bacteriap:*

16: sp_archaeap:*

SPTREMBL25:*

1: sp_archea:*

2: sp_bacteria:*

3: sp_fungi:*

4: sp_human:*

5: sp_invertebrate:*

6: sp_mammal:*

7: sp_inhc:*

8: sp_organelle:*

9: sp_phage:*

10: sp_plant:*

11: sp_rabbit:*

12: sp_virus:*

13: sp_unclassified:*

14: sp_rvirus:*

15: sp_bacteriap:*

16: sp_archaeap:*

SPTREMBL25:*

1: sp_archea:*

2: sp_bacteria:*

3: sp_fungi:*

4: sp_human:*

5: sp_invertebrate:*

6: sp_mammal:*

7: sp_inhc:*

8: sp_organelle:*

9: sp_phage:*

10: sp_plant:*

11: sp_rabbit:*

12: sp_virus:*

13: sp_unclassified:*

14: sp_rvirus:*

15: sp_bacteriap:*

16: sp_archaeap:*

SPTREMBL25:*

1: sp_archea:*

2: sp_bacteria:*

3: sp_fungi:*

4: sp_human:*

5: sp_invertebrate:*

6: sp_mammal:*

7: sp_inhc:*

8: sp_organelle:*

9: sp_phage:*

10: sp_plant:*

11: sp_rabbit:*

12: sp_virus:*

13: sp_unclassified:*

14: sp_rvirus:*

15: sp_bacteriap:*

16: sp_archaeap:*

SPTREMBL25:*

1: sp_archea:*

2: sp_bacteria:*

3: sp_fungi:*

4: sp_human:*

5: sp_invertebrate:*

6: sp_mammal:*

7: sp_inhc:*

8: sp_organelle:*

9: sp_phage:*

10: sp_plant:*

11: sp_rabbit:*

12: sp_virus:*

13: sp_unclassified:*

14: sp_rvirus:*

15: sp_bacteriap:*

16: sp_archaeap:*

SPTREMBL25:*

1: sp_archea:*

2: sp_bacteria:*

3: sp_fungi:*

4: sp_human:*

5: sp_invertebrate:*

6: sp_mammal:*

7: sp_inhc:*

8: sp_organelle:*

9: sp_phage:*

10: sp_plant:*

11: sp_rabbit:*

12: sp_virus:*

13: sp_unclassified:*

14: sp_rvirus:*

15: sp_bacteriap:*

16: sp_archaeap:*

SPTREMBL25:*

1: sp_archea:*

2: sp_bacteria:*

3: sp_fungi:*

4: sp_human:*

5: sp_invertebrate:*

6: sp_mammal:*

7: sp_inhc:*

8: sp_organelle:*

9: sp_phage:*

10: sp_plant:*

11: sp_rabbit:*

12: sp_virus:*

13: sp_unclassified:*

14: sp_rvirus:*

15: sp_bacteriap:*

16: sp_archaeap:*

SPTREMBL25:*

1: sp_archea:*

2: sp_bacteria:*

3: sp_fungi:*

4: sp_human:*

5: sp_invertebrate:*

6: sp_mammal:*

7: sp_inhc:*

8: sp_organelle:*

9: sp_phage:*

10: sp_plant:*

11: sp_rabbit:*

12: sp_virus:*

13: sp_unclassified:*

14: sp_rvirus:*

15: sp_bacteriap:*

16: sp_archaeap:*

SPTREMBL25:*

1: sp_archea:*

2: sp_bacteria:*

3: sp_fungi:*

4: sp_human:*

5: sp_invertebrate:*

6: sp_mammal:*

7: sp_inhc:*

8: sp_organelle:*

9: sp_phage:*

10: sp_plant:*

11: sp_rabbit:*

12: sp_virus:*

13: sp_unclassified:*

14: sp_rvirus:*

15: sp_bacteriap:*

16: sp_archaeap:*

SPTREMBL25:*

1: sp_archea:*

2: sp_bacteria:*

3: sp_fungi:*

4: sp_human:*

5: sp_invertebrate:*

6: sp_mammal:*

7: sp_inhc:*

8: sp_organelle:*

9: sp_phage:*

10: sp_plant:*

11: sp_rabbit:*

12: sp_virus:*

13: sp_unclassified:*

14: sp_rvirus:*

15: sp_bacteriap:*

16: sp_archaeap:*

SPTREMBL25:*

1: sp_archea:*

2: sp_bacteria:*

3: sp_fungi:*

4: sp_human:*

5: sp_invertebrate:*

6: sp_mammal:*

7: sp_inhc:*

8: sp_organelle:*

9: sp_phage:*

10: sp_plant:*

11: sp_rabbit:*

12: sp_virus:*

13: sp_unclassified:*

14: sp_rvirus:*

15: sp_bacteriap:*

16: sp_archaeap:*

SPTREMBL25:*

1: sp_archea:*

2: sp_bacteria:*

3: sp_fungi:*

4: sp_human:*

5: sp_invertebrate:*

6: sp_mammal:*

7: sp_inhc:*

8: sp_organelle:*

9: sp_phage:*

10: sp_plant:*

11: sp_rabbit:*

12: sp_virus:*

13: sp_unclassified:*

14: sp_rvirus:*

15: sp_bacteriap:*

16: sp_archaeap:*

SPTREMBL25:*

1: sp_archea:*

2: sp_bacteria:*

3: sp_fungi:*

4: sp_human:*

5: sp_invertebrate:*

6: sp_mammal:*

7: sp_inhc:*

8: sp_organelle:*

Mon May 17 14:54:05 2004

ub-09-458-299a-4239.rspt

		OX NCBI_TaxID=1513;
	RN [1]	SEQUENCE FROM N.A.
	RP	STRAIN=Massachusetts / BB8;
	RC	MEDLINE=22457253; PubMed=12552129;
	RX	Brueggemann H., Baumert S., Fricke W.P., Wiezer A., Liesegang H., Decker I., Herzberg C., Martinez-Arias R., Merkl R., Henne A., Gottschalk G.;
	RA	"The genome sequence of Clostridium tetani, the causative agent of tetanus disease.";
	RT	Proc. Natl. Acad. Sci. U.S.A. 100:1316-1321(2003).
	RL	EMBL; AE015938; AA035238.1; -.
	DR	Complete proteome.
	KW	258 AA;
	SQ	51B0A814C1C64BCE CRC64;
		Query Match 90.5%; Score 38; DB 16; Length 258;
		Best Local Similarity 55.6%; Pred. No. 43;
		Matches 5; Conservative 4; Mismatches 0; Indels 0; Gaps 0;
	Qy	1 VVLGIVFGV 9
		: : :
	Db	239 IIIGIVFGI 247
		RESULT 4
	Q8RF88	PRELIMINARY;
	ID Q8RF88	PRT; 408 AA.
	AC Q8RF88:	
	DT 01-JUN-2002 (TREMBLrel. 21, Created)	
	DT 01-JUN-2002 (TREMBLrel. 21, Last sequence update)	
	DT 01-JUN-2003 (TREMBLrel. 24, Last annotation update)	
	GN FN0828.	
	OS Fusobacterium nucleatum (subsp. nucleatum);	
	OC Bacteria; Fusobacteria; Fusobacteriales; Fusobacteriaceae;	
	OC Fusobacterium;	
	OX NCBI_TaxID=76856;	
	RN [1]	
	RP	SEQUENCE FROM N.A.
	RC	STRAIN=ATCC 25586;
	RX	MEDLINE=1188394; PubMed=11889109;
	RA	Kapatral V., Anderson T., Ivanova N., Reznik G., Los T., Lykidis A., Bhattacharyya A., Barriman A., Gardner W., Grechkin G., Zhu L., Vasileva O., Chu L., Rogan Y., Chaga O., Goltzman E., Bernall A., Larsen N., D'Souza M., Walunas T., Pusch G., Haselkorn R., Fonstein M., Kyriides N., Overbeek R.;
	RT	"Genome sequence and analysis of the oral bacterium Fusobacterium nucleatum strain ATCC 25586";
	RL	J. Bacteriol. 184:1845-1855 (2002).
	DR	EMBL; AB010594; AAL95044.1; -.
	GO	GO:0016020; C:membrane; IEA.
	DR	InterPro; IPR003838; DUF214.
	PF	Pfam; PF0268; PfamX; -.
	DR	Complete proteome.
	KW	45050 AA;
	SQ	926EC1271F3EC494 CRC64;
		Query Match 90.5%; Score 38; DB 16; Length 408;
		Best Local Similarity 77.8%; Pred. No. 67;
		Matches 7; Conservative 2; Mismatches 0; Indels 0; Gaps 0;
	Qy	1 VVLGIVFGV 9
		: : :
	Db	362 VVVGIVFGV 390
		RESULT 5
	Q8FQ94	PRELIMINARY;
	ID Q8FQ94	PRT; 172 AA.
	AC Q8FQ94:	
	DT 01-MAR-2003 (TREMBLrel. 23, Created)	
	DT 01-MAR-2003 (TREMBLrel. 23, Last sequence update)	
	DR 01-MAR-2003 (TREMBLrel. 23, Last annotation update)	
	DB	Conserved hypothetical protein
		Clostridium terai.
		Bacteria; Firmicutes; Clostridia; Clostridiales; Clostridiaceae;
		C Clostridium.

IN CPB185;
 IS Corynebacterium efficiens.
 IC Actinobacteria; Actinomycetales;
 CC Corynebacteriales; Corynebacteriaceae; Corynebacterium.
 NCBI_TaxID=152794;
 X [1]

SEQUENCE FROM N.A.
 STRAIN=Y5-314 / AJ 12310 / DSM 44549 / JCM 11189;
 C Submitted (MAY-2002) to the EMBL/GenBank/DBJ databases.
 R EMBL: AP005218; BAC17995_1.; -.

W Hypothetical Protein; Complete Proteome.
 Q SEQUENCE 172 AA; 18639 MW; 4C39A6DA55C3CA7D CRC64;

Y 1 VVLGVVFGV 9
 b 109 LVLMGVVPGV 117

RESULT 6
 Q8U3GS PRELIMINARY; PRT; 331 AA.
 P 01-JUN-2002 (TREMBLrel. 21, Created)
 P 01-JUN-2002 (TREMBLrel. 21, Last sequence update)
 P 01-OCT-2003 (TREMBLrel. 25, Last annotation update)
 L Putative iron ABC transporter.
 NCBI_TaxID=2261;

P SEQUENCE FROM N.A.
 STRAIN=VC1 / DSM 3638 / ATCC 43587 / JCM 8422;
 A Weiss R.B., Dunn D.M., Robb F.T., Brown J.R.;
 T "The complete sequence of the Pyrococcus furiosus Genome.";
 L Submitted (FEB-2002) to the EMBL/GenBank/DBJ databases.
 R GO:GO:0016020; C:transmembrane protein transport.
 R GO:GO:0005311; F:medium:dicarboxylate/tricarboxylate symport. . . ; IEA.
 R GO:GO:0005215; F:transporter activity; IEA.
 R GO:GO:0006835; F:dicarboxylic acid transport; IEA.
 R GO:GO:0006810; F:transport; IEA.
 R InterPro; IPR00522; Predicted.
 P Pfam; PF01032; FeccD; 1.
 P PRINTS; PR00173; BDTRNSPORT.
 P Problem; PD00557; FeccD; 1.
 P Complete Prokrome; Hypothetical protein.
 SEQUENCE 331 AA; 35473 MW;

Query Match 88.1%; Score 37; DB 17; Length 331;
 Best Local Similarity 87.5%; Prod. No. 84;
 Matches 7; Conservative 1; Mismatches 0; Indels 0; Gaps 0;

/ 1 VVLGVVFG 8
 > 16 VVLGVVFG 23

RESULT 7
 9479 019479 PRELIMINARY; PRT; 342 AA.
 > 01-JAN-1998 (TrEMBLrel. 05, Created)

RP SEQUENCE FROM N.A.
 STRAIN=VC-16 / DSM 4304 / ATCC 49558;
 RC MEDLINE=98019343; PubMed=938975;
 RX RA Kleink H.-P., Clayton R.A., Tomb J.-P., White O., Nelson K.E.,
 RA Ketchum K.A., Dodson R.J., Gwinn M., Hickey E.K., Peterson J.D.,
 RA Richardson D.L., Kerlavage A.R., Graham D.E., Kyrpides N.C.,
 RA Fleischmann R.D., Quackenbush J., Lee N.H., Sutcliffe G.G., Gill S.,
 RA Karkeas B.P., Dougherty B.A., McMenamin L.K., Badger J.H., Glodek A.,
 RA Overbeek R., Gocayne J.D., Weidman J.F., McDonald L., Utterback T.,
 RA Corton M.D., Springs T., Artlach P., Kaine B.P., Sykes S.M.,
 RA Sadow P.W., D'Andrea R.P., Bowman C., Fujii C., Garland S.A.,
 RA Mason T.M., Olsen G.J., Fraser C.M., Smith H.O., Woese C.R.,
 RA Venter J.C.;
 RT "The complete genome sequence of the hyperthermophilic, sulphate-

01-JUN-2003 (TREMBLrel. 24, Last annotation update)
Small hydrophobic protein.

NCBI_TaxID=197;

SEQUENCE FROM N.A.
STRAIN=NCTC 1116B;
MEDLINE=015912; PubMed=10588204;

Parikh J., Wren B.W., Mangal R., Katley J.M., Churcher C., Busham D., Chillingworth T., Davies R.M., Feltwell T., Holroyd S., Jagels K., Karlyshev A.V., Moule S., Pallen M.J., Penn C.W., Raju M.A., Ranaiream M.A., Rutherford K.M., van Vliet A.H.M., Whitehead S., Barrell B.G., "The genome sequence of the food-borne pathogen *Campylobacter jejuni* reveals hypervariable sequences.", Nature 403:665-668(2000).
EMBL: ALI39076; CAB73051.1; -.

PIR: BB1350;
Complete proteome.

SEQUENCE 57 AA; 6821 MW; 495834G4E304B62 CRC64;

Query Match Score 36; DB 16; Length 57;
Best Local Similarity 44.4%; Pred. No. 25;
Matches 4; Conservative 5; Mismatches 0; Indels 0; Gaps 0;

1 VVGVVFVGV 9
:::|||:
9 IIIGVIFGI 17

:SULT 13

Q8DNT8 PRELIMINARY; PRT; 65 AA.
Q8DNT8 (TREMBLrel. 23, Created)
01-MAR-2003 (TREMBLrel. 23, Last sequence update)
01-MAR-2003 (TREMBLrel. 23, Last annotation update)
TS1003 protein.

Synochococcus elongatus (Thermosynechococcus elongatus).
Bacteria; Cyanobacteria; Chroococcales; Synechococcus.
NCBI_TaxID=3046;

SEQUENCE FROM N.A.
STRAIN=BP-1;
MEDLINE=02225144; PubMed=12240834;
Nakamura Y., Kaneko T., Sato S., Ikeuchi M., Katoh H., Sasamoto S., Watanabe A., Iriuchi M., Kawashita K., Kimura T., Kishida Y., Kiyohara C., Kohara M., Matsuno A., Nakazaki N., Shimojo S., Sugimoto M., Takeuchi C., Yamada M., Tabata S., "Complete genome structure of the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1.", DNA Res. 9:123-130(2002).
EMBL: AP00539; BAC0757.6.1; -.

Complete proteome.

SEQUENCE 65 AA; 6790 MW; F6B8AA287DC930AC CRC64;

Query Match Score 36; DB 16; Length 65;
Best Local Similarity 55.6%; Pred. No. 28;
Matches 5; Conservative 4; Mismatches 0; Indels 0; Gaps 0;

1 VVGVVFVGV 9
:::|||:
13 MILGVIFGI 21

:SULT 14

Q8A60 PRELIMINARY; PRT; 93 AA.
Q8A60 O24860 (TREMBLrel. 24, Last annotation update)
Hypothetical Protein HP0015.

01-JAN-1998 (TREMBLrel. 05, Created)
01-JAN-1998 (TREMBLrel. 05, Last sequence update)
01-JUN-2003 (TREMBLrel. 24, Last annotation update)

DE
RN
GN
HP0015.

OS Helicobacter pylori (Campylobacter pylori).
OC Bacteria; Proteobacteria; Epsilonproteobacteria; Campylobacterales;
OC Helicobacteraceae; Helicobacter.

OX NCBI_TaxID=210;

RN [1]
RP SEQUENCE FROM N.A.
RC STRAIN=26695 / ATCC 700392;
RX MEDLINE=97334467; PubMed=9252185;
RA Tomb J.-F., White O., Keravage A.R., Clayton R.A., Sutton G.G., Sutton G., Gill S., Dougherty B.A., Nelson K., Quackenbush J., Zhou L., Kirkegaard E.F., Peterson S., Fleischmann R.D., Ketchum K.A., Klein H.-P., Glodek A., Loitus B., Richardson D., Dodson R., Khalak H.G., Glodek A., McMenney K., Fitzgerald L.M., Lee N., Adams M.D., Hickey E.K., Berg D.E., Gocayne J.D., Utterback T.R., Peterson J.D., Kelley J.M., Cotton N.D., Weidman J.M., Fujii C., Bowman C., Watthey E., Hayes W.S., Borodovsky M., Karp P.D., Smith H.O., Fraser C.M., Ventre J.C.; "The complete genome sequence of the gastric pathogen Helicobacter pylori.", Nature 388:539-547(1997).
RL ENBL: AE000524; AAP01091.1; -.
PR; GG521; G65521.
TIGR; HP0015; -.

KW Hypothetical protein; Complete proteome.

SQ SEQUENCE 93 AA; 10526 MW; SE13E652C402A22F CRC64;

Query Match Score 36; DB 16; Length 93;
Best Local Similarity 75.0%; Pred. No. 39;
Matches 6; Conservative 2; Mismatches 0; Indels 0; Gaps 0;

QY 2 VLGIVFEGV 9
DB 69 ILGVVFRGI 76

:RESULT 15

Q9ZN46 PRELIMINARY; PRT; 93 AA.
ID Q9ZN46
AC Q9ZN46;
DT 01-MAY-1999 (TREMBLrel. 10, Created)
DT 01-MAY-1999 (TREMBLrel. 10, Last sequence update)
DT 01-JUN-2003 (TREMBLrel. 24, Last annotation update)
DE Putative.

CN JP0013

OS Helicobacter pylori J99 (Campylobacter pylori J99).
OC Bacteria; Proteobacteria; Epsilonproteobacteria; Campylobacterales;
OC Helicobacteraceae; Helicobacter.

OX NCBI_TaxID=65953;

RN [1]
RP SEQUENCE FROM N.A.
RX MEDLINE=99120557; PubMed=9923682;
RA Alm R.A., Ling L.-S.L., Moir D.T., King B.L., Brown B.D., Doig P.C., Smith D.R., Noonan B., Guild B.C., de Jonge B.L., Carmel G., Trammino P.J., Caruso A., Urias-Nickelsen M., Mills D.M., Ives C., Gibson R., Mertzberg D., Mills S.D., Jiang Q., Taylor D.E., Vovis G.F., Trust T.J.; "Genomic sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori.", Nature 397:176-180(1999).
RL DR EMBL: AE001441; AAP00595.1; -.
DR PIR; C71984; C71984.
KW Complete proteome.

SQ SEQUENCE 93 AA; 10512 MW; SE017652C402A22F CRC64;

Query Match Score 36; DB 16; Length 93;
Best Local Similarity 75.0%; Pred. No. 39;
Matches 6; Conservative 2; Mismatches 0; Indels 0; Gaps 0;

y 2 VIJVVEGV 9
b :|||:|||:
69 IIJVVEGI 76

earch completed: May 17, 2004, 12:56:27
ob time : 30.7419 secs

Q Sequence 13 AA;
 Query Match 100.0%; Score 55; DB 2; Length 13;
 Best Local Similarity 84.6%; Pred. No. 0.0055; 0; Indels 0; Gaps 0;
 Matches 11; Conservative 2; Mismatches 0; OS Unidentified.
 Y 1 :|||:|||:|||:
 b 1 AKXWANTLKAAX 13

ESULT 2
 AJ04120 02-JUL-2001 (first entry)
 X C AAJ04120 standard; peptide; 13 AA.
 X X Pan-DR binding epitope.
 X B Hepatitis C virus; HCV; epitope; vaccine; immunogen; HLA-binding motif; antiviral.
 X S Synthetic.
 X N WO200121189-A1.
 X D 29-MAR-2001.
 X F 19-JUL-2000; 2000WO-US019774.
 X R 19-JUL-1999; 99US-00357737.
 X X (EPM-) EPIMUNE INC.
 X I Sette A, Sidney J, Southwood S, Livingston BD, Chesnut R;
 X Baker DM, Celis E, Kubo RT, Grey HM;
 X R WPI; 2001-308046/32.
 X T A new composition useful as a vaccines against hepatitis C virus.
 X S Disclosure; Page 53; 214pp; English.
 X X The present invention describes a composition comprising a prepared hepatitis C virus (HCV) epitope such as those given in AAJ00010-AAJ04121. These are derived from HCV HLA-binding motifs. They are useful in vaccines for the prevention and treatment of HCV infection in humans. The present sequence is an epitope used in the disclosure of the invention
 X Sequence 13 AA;

Query Match 100.0%; Score 55; DB 4; Length 13;
 Best Local Similarity 84.6%; Pred. No. 0.0055; 0; Indels 0; Gaps 0;
 Matches 11; Conservative 2; Mismatches 0; OS Unidentified.
 Y 1 XKXYWANTLKAAX 13

ESULT 3
 AY99331 07-AUG-2000 (first entry)
 D AY99331 standard; peptide; 13 AA.
 C C AAY99331;
 X X HLA class II binding antigen epitope Peptide #520.
 E X Human leucocyte antigen; HLA class II; antigen epitope; pharmaceutical;
 W W

KW immune response; chronic viral disease; cancer; autoimmune disease;
 KW rheumatoid arthritis; multiple sclerosis; myasthenia gravis; AIDS;
 KW glomerulonephritis; food hypersensitivity; malaria.
 XX Prostate cancer;
 OS Unidentified.
 PN WO9961916-A1.
 XX PD 02-DEC-1999.
 XX PF 28-MAY-1999; 99WO-US012066.
 XX PR 29-MAY-1998; 98US-0087192P.
 PA (EPM-) EPIMUNE INC.
 XX PI Sette A, Southwood S, Sidney J;
 DR WPI; 2000-097143/08.
 XX PT New Compositions containing immunogenic peptide epitopes for various HLA class II DR molecules useful for inducing helper T cell response.
 XX PS Claim 1; Page 48; 60pp; English.
 XX CC The present invention relates to a new pharmaceutical composition comprising a unit dose form of a peptide, or analogue, comprising an peptide selected from those represented by Peptides AAY98812/Y9933 which are derived from various antigens of various human leucocyte antigen class DR molecules, representative of the world wide population. The peptide/analogue binds to HLA class II molecule at an IC₅₀ of less than or equal to 1,000 nM. The pharmaceutical can be used to induce a helper T cell response. The pharmaceutical focuses on the immune response towards selected determinants and could therefore be used in cases of chronic viral diseases and cancer. Examples of diseases that can be treated using the peptide containing pharmaceutical include autoimmune diseases (rheumatoid arthritis, multiple sclerosis, and myasthenia gravis), allograft rejection, allergies, lyme disease, hepatitis, post-streptococcal endocarditis or glomerulonephritis and food hypersensitivities. The peptide epitopes can be used to enhance immune responses against other pathogens administered with the peptides. Diseases which can be treated using immunogenic mixtures include prostate cancer, hepatitis B, hepatitis C, AIDS, renal carcinoma, cervical carcinoma, lymphoma, and condyloma acuminatum. The peptides may also be used to make monoclonal antibodies useful as potential diagnostic or therapeutic agents. The peptides may also be useful as diagnostic reagents, for example, to determine the susceptibility of an individual to a treatment regimen. Also, the peptides may be used to predict which individuals will be at substantial risk of developing chronic infection. The selection of appropriate T and B cell epitopes should allow the development of epitope based vaccines particularly towards conserved epitopes of pathogens which are characterized by high sequence variability such as HIV, HCV and Malaria.

Query Match 100.0%; Score 41; DB 3; Length 13;
 Best Local Similarity 69.2%; Pred. No. 1.6; 3; Mismatches 1; Indels 0; Gaps 0;
 SQ Sequence 13 AA;

QY 1 XKXYWANTLKAAX 13
 DB 1 AKEVYKANTLKAAX 13

RESULT 4
 AAB99718
 ID AAB99718 standard; peptide; 13 AA.
 XX AC AAB99718;
 DT 06-SEP-2001 (First entry)

Page 4

ABB6847. The MCT nucleic acids and proteins are useful in the identification of microorganisms which can be used to produce fine chemicals, for modulating fine chemical production in C. Glutamicum or related bacteria (e.g. Brevibacterium lactofermentum), the typing or identification of C. glutamicum or related bacteria, as reference points for mapping C. glutamicum genome, and as markers for transformation. AAF68082 and AAF68082 represent sequencing primers which are used in an example from the present invention.

Sequence 425 AA;

AB76651 Standard; Protein; 425 AA.

Query Match Score 40; DB 4; Length 425;

Best Local Similarity 46.2%; Pred. No. 1.3e+02;

Matches 6; Conservative 5; Mismatches 2; Indels 0; Gaps 0;

1 XXXYANTLRAAX 13

:|:||| :|:|:| :

2 296 DKSVQNTIEACA 308

3SILT 8

AB76651 Standard; Protein; 425 AA.

Query Match Score 40; DB 4; Length 425;

Best Local Similarity 46.2%; Pred. No. 1.3e+02;

Matches 6; Conservative 5; Mismatches 2; Indels 0; Gaps 0;

1 XXXYANTLRAAX 13

:|:||| :|:|:| :

2 296 DKSVQNTIEACA 308

Corynebacterium glutamicum MCT Protein SSO ID NO:384.

Corynebacterium glutamicum; brevibacterium lactofermentum; MCT;

membrane construction and membrane transport protein; petroleum spill;

hydrocarbon degradation; gram positive aerobic bacterium; marker;

identification; microorganism; fine chemical production; transformation;

genome mapping; genetic engineering.

Corynebacterium glutamicum.

WO200100805-A2.

04-JAN-2001.

23-JUN-2000; 2000WO-IB000926.

25-JUN-1999; 99US-0141031P.

26-JUL-1999; 99DE-0103144.

27-JUL-1999; 99DE-01031458.

28-JUL-1999; 99DE-01031533.

29-JUL-1999; 99DE-01032122.

29-JUL-1999; 99DE-01032124.

29-JUL-1999; 99DE-01032115.

29-JUL-1999; 99DE-01032128.

29-JUL-1999; 99DE-01032180.

29-JUL-1999; 99DE-01032182.

29-JUL-1999; 99DE-01032190.

29-JUL-1999; 99DE-01032191.

29-JUL-1999; 99DE-01032209.

29-JUL-1999; 99DE-01032212.

29-JUL-1999; 99DE-01032227.

29-JUL-1999; 99DE-01032228.

29-JUL-1999; 99DE-01032229.

29-JUL-1999; 99DE-01032230.

14-JUL-1999; 99DE-01032927.

14-JUL-1999; 99DE-01033005.

14-JUL-1999; 99DE-01033006.

14-JUL-1999; 99DE-0104074.

27-AUG-1999; 99DE-0104075.

27-AUG-1999; 99DE-0104076.

27-AUG-1999; 99DE-0104080.

27-AUG-1999; 99DE-0104081.

27-AUG-1999; 99DE-0104082.

31-AUG-1999; 99DE-01041378.

PR 31-AUG-1999; 99DE-01041379.
PR 31-AUG-1999; 99DE-01041395.
PR 03-SEP-1999; 99DE-01042077.
PR 03-SEP-1999; 99DE-01042078.
PR 03-SEP-1999; 99DE-01042079.
XX PA (BADI) BASF AG.

XX Pompejus M., Kroeger B., Schroeder H., Zelder O., Haberhauer G.;
PI PR 2001-071486/08.
DR N-PSDB; AAF67884.

XX Corynebacterium glutamicum nucleic acids encoding membrane construction
and membrane transport proteins or their portions, useful for typing or
identifying C. glutamicum or related bacteria, as markers for transformation.
PT PT identifying C. glutamicum or related bacteria, as markers for transformation.
XX PA Claim 20; Page 568-569; 1119PP; English.

XX AAF67743 to AAF68080 encode the Corynebacterium glutamicum membrane
construction and membrane transport (MCT) proteins given in AAB76510 to
CC AAB6847. The MCT nucleic acids and proteins are useful in the
CC identification of microorganisms which can be used to produce fine
chemicals, for modulating fine chemical production in C. glutamicum or
CC related bacteria (e.g. Brevibacterium lactofermentum), the typing or
CC identification of C. glutamicum or related bacteria, as reference points
CC for mapping C. glutamicum genome, and as markers for transformation.
CC AAF68082 and AAF68082 represent sequencing primers which are used in an
CC example from the present invention.

XX PS Sequence 425 AA;

CC AAF67743 to AAF68080 encode the Corynebacterium glutamicum membrane
construction and membrane transport (MCT) proteins given in AAB76510 to
CC AAB6847. The MCT nucleic acids and proteins are useful in the
CC identification of microorganisms which can be used to produce fine
chemicals, for modulating fine chemical production in C. glutamicum or
CC related bacteria (e.g. Brevibacterium lactofermentum), the typing or
CC identification of C. glutamicum or related bacteria, as reference points
CC for mapping C. glutamicum genome, and as markers for transformation.
CC AAF68082 and AAF68082 represent sequencing primers which are used in an
CC example from the present invention.

XX SQ Sequence 425 AA;

Query Match Score 72.7%; Score 40; DB 4; Length 425;
Best Local Similarity 46.2%; Pred. No. 1.3e+02;
Matches 6; Conservative 5; Mismatches 2; Indels 0; Gaps 0;

Qy 1 XKKXWANTLKAAX 13
Db 296 DKSVQNTIEACA 308

RESULT 9
AAB80185 standard; protein; 425 AA.
ID AAB80185
XX AC AAB80185;
XX DT 30-APR-2001 (first entry)

XX Corynebacterium glutamicum MP protein sequence SEQ ID NO:1104
DE Corynebacterium glutamicum MP protein sequence SEQ ID NO:1104
XX KW Corynebacterium glutamicum; metabolic pathway protein; MP Protein;
KW fine chemical production; microorganism; organic acid; nucleoside;
KW nonproteinogenic amino acid; purine base; pyrimidine base; nucleotide;
KW lipid; saturated fatty acid; unsaturated fatty acid diol; vitamin;
KW carbohydrate; aromatic compound; cofactor; polyketide; enzyme.
XX OS Corynebacterium glutamicum.
XX PN WO200100843-A2.
XX PD 04-JAN-2001.
XX PP 23-JUN-2000; 2000WO-IB000923.
XX PR 25-JUN-1999; 99US-0141031P.
PR 01-JUL-1999; 99DE-01030476.
PR 02-JUL-1999; 99US-012101P.
PR 08-JUL-1999; 99DE-01031415.
PR 08-JUL-1999; 99DE-01031418.
PR 08-JUL-1999; 99DE-01031419.

R 08-JUL-1999; 99DE-01031420.
R 08-JUL-1999; 99DE-01031424.
R 08-JUL-1999; 99DE-01031428.
R R 08-JUL-1999; 99DE-01031434.
R R 08-JUL-1999; 99DE-01031435.
R R 08-JUL-1999; 99DE-01031443.
R R 08-JUL-1999; 99DE-01031453.
R R 08-JUL-1999; 99DE-01031457.
R R 08-JUL-1999; 99DE-01031465.
R R 08-JUL-1999; 99DE-01031478.
R R 08-JUL-1999; 99DE-01031510.
R R 08-JUL-1999; 99DE-01031541.
R R 08-JUL-1999; 99DE-01031573.
R R 08-JUL-1999; 99DE-01031592.
R R 08-JUL-1999; 99DE-01031632.
R R 08-JUL-1999; 99DE-01031634.
R R 09-JUL-1999; 99DE-01031636.
R R 09-JUL-1999; 99DE-01031215.
R R 09-JUL-1999; 99DE-01031216.
R R 09-JUL-1999; 99DE-01031210.
R R 09-JUL-1999; 99DE-01031218.
R R 09-JUL-1999; 99DE-01031220.
R R 09-JUL-1999; 99DE-01031227.
R R 09-JUL-1999; 99DE-01032228.
R R 09-JUL-1999; 99DE-01032229.
R R 09-JUL-1999; 99DE-01032230.
R R 09-JUL-1999; 99DE-01032922.
R R 14-JUL-1999; 99DE-01032926.
R R 14-JUL-1999; 99DE-01032928.
R R 14-JUL-1999; 99DE-01033004.
R R 14-JUL-1999; 99DE-01033005.
R R 14-JUL-1999; 99DE-01033006.
R R 12-AUG-1999; 990S-01048613P.
R R 27-AUG-1999; 99DE-01040764.
R R 27-AUG-1999; 99DE-01040765.
R R 27-AUG-1999; 99DE-01040766.
R R 27-AUG-1999; 99DE-01040832.
R R 31-AUG-1999; 99DE-01041378.
R R 31-AUG-1999; 99DE-01041379.
R R 31-AUG-1999; 99DE-01041380.
R R 31-AUG-1999; 99DE-01041394.
R R 03-SEP-1999; 99DE-01041396.
R R 03-SEP-1999; 99DE-01042076.
R R 03-SEP-1999; 99DE-01042077.
R R 03-SEP-1999; 99DE-01042079.
R R 03-SEP-1999; 99DE-01042086.
R R 03-SEP-1999; 99DE-01042087.
R R 03-SEP-1999; 99DE-01042088.
R R 03-SEP-1999; 99DE-01042095.
R R 03-SEP-1999; 99DE-01042124.
R R 03-SEP-1999; 99DE-01042129.
R R 09-MAR-2000; 2000US-0187970P.
X X (BADI) BASF AG.
X WPI; 2001-137957/14.
X N-PSDB; AAF72304.
X X Pompejus M, Kroeger B, Schroeder H, Zelder O, Haberhauer G;
X WPI; 2001-137957/14.
X N-PSDB; AAF72304.
X X Nucleic acids from Corynebacterium glutamicum encoding metabolic pathway proteins, useful for producing fine chemicals in microorganisms, and purine and pyrimidine bases. Claim 20; Page 1662-1664; 173pp; English.
X X AAFF71753 to AAFF72330 encode the Corynebacterium glutamicum metabolic pathway (MP) proteins given in AAF79634 to AAF80211. The C. glutamicum MP nucleic acids are useful for the production of fine chemicals in microorganisms, including organic acids, nonproteinogenic amino acids, purine and pyrimidine bases, nucleosides, nucleotides, lipids, saturated and unsaturated fatty acids, diols, carbohydrates, aromatic compounds,

CC vitamins, cofactors, polyketides and enzymes
XX Sequence 425 AA;
SQ Query Match Score 40; DB 4; Length 425;
Best Local Similarity 46.2%; Pred. No. 1.3e+02;
Matches 6; Conservative 5; Mismatches 2; Indels 0; Gaps 0;
QY 1 XKVWANTLKAMX 13
Db 296 DKSVWONTIEACX 308

RESULT 10
AAR80504
ID AAR80504 standard; protein; 527 AA.
XX
XX AC AAR80504;
XX
XX DT 25-MAR-2003 (revised)
DT 04-DEC-1995 (first entry)
XX S. lividans protease Tap.
XX Protease; metalloendopeptidase; tripeptidyl aminopeptidase;
protease-deficiency; protein secretion.

Streptomyces lividans.
OS XX
XX Key Location/Qualifiers
FH 1..36
Peptide FT /label= Sig_Peptide
FT Modified-site 1
FT /label= OTHER
FT /note= "IMet"
FT Peptide 37..39
FT /label= Autocatalytic_tripeptide
Protein 40..537
FT /label= Mat_protein
XX
XX WO9517512-A2.
XX
XX PR 23-DEC-1993;
XX (CANG-) CANGENE CORP.
XX
XX DR 1995-240673/31.
XX DR N-PSDB; AAF99364.

Claim 4; Fig 5; 142pp; English.
A genomic library of *S. lividans* 66 was prep'd. in pSS12, and recombinants were used to transform *S. lividans* 66 protoplast. Colonies selected for color formation on GPL-beta-naphthylamide contained a gene encoding a novel tripeptidyl aminopeptidase, Tap. Impaired expression of Tap by Streptomyces hosts improves the quality, quantity and stability of exogenous gene products. (Updated on 25-MAR-2003 to correct PN field.)

Sequence 537 AA;
Query Match Score 40; DB 2; Length 537;
Best Local Similarity 63.6%; Pred. No. 1.7e+02;

Matches	7; Conservative	2; Mismatches	2; Indels	0; Gaps	0;
1 XKXWANTAKA 11 : : 142 KSAVWANTAKA 152					
SU11 AAW687796	standard; protein; 537 AA.				
AAW87796					
19-MAR-1999	(first entry)				
Tripeptidyl aminopeptidase (tap) protein.					
Tripeptidyl aminopeptidase; TAP; N-terminal cleavage; protein production; GM-CSF; interleukin-3; IL-6; EPO; tumour necrosis factor; TNF; SCF; IL-7; IL-2.					
Streptomyces lividans.					
Key	Location/Qualifiers				
Peptide	1. .39 /note= "signal peptide"				
Misc-difference	1 /note= "Met encoded by TTG"				
Protein	40. .537 /note= "mature protein"				
US5856166-A.					
05-JAN-1999.					
24-JUN-1994; 23-DEC-1993; 05-JAN-1999.	94US-00265310. 93US-00173508.				
(CANG-) CANGENE CORP.					
Bartfeld D, Malek LT, Jenish DL, Walczyk E, Hadary D, Garven S, Soostmeyer G, Butler MJ, Krygsman P, Krieger TJ,					
WPI: 1999-105117/09. N-PSDB; AAV84065.					
Streptomyces tripeptidyl aminopeptidase - useful for removing N-terminal pro-peptide from secreted proteins.					
Claim 2; Fig 12A-B; 83pp; English.					
The present sequence represents a tripeptidyl aminopeptidase (TAP) of Streptomyces. The aminopeptidase is endogenous to Streptomyces and cleaves an N-terminal sequence of X-Pro-Y, where X is an aliphatic or hydroxy amino acid and Y is an aliphatic, hydroxy or sulphur-containing amino acid. The TAP of Streptomyces are useful in the production of proteins, such as GM-CSF, interleukin-3 (IL-3), IL-6, EPO, tumour necrosis factor (TNF) SCF, IL-7 and IL-2.					
Sequence 537 AA;					
Query Match 72.7%; Score 40; DB 2; Length 537; Best Local Similarity 63.6%; Pred. No. 1.7e+02; Matches 7; Conservative 2; Mismatches 2; Indels 0; Gaps 0;					
1 XKXWANTAKA 11 : : 142 KSAVWANTAKA 152					
SQ Sequence 537 AA;					
Query Match 72.7%; Score 40; DB 3; Length 537; Best Local Similarity 63.6%; Pred. No. 1.7e+02; Matches 7; Conservative 2; Mismatches 2; Indels 0; Gaps 0;					
Qy 1 XKXWANTAKA 11 : : Db 142 KSAVWANTAKA 152					

RESULT 13
 BB07853 standard; protein; 541 AA.
 D ABC transporter protein; amino acid synthesis; organic acid synthesis;
 X Corynebacterium glutamicum.

X ABB07853 ;
 X 03-JUL-2002 (first entry)
 X C. glutamicum ABC transporter protein, Attr43.
 X ABC transporter protein; atr43; coryneform bacterium; fermentation;
 X L-amino acid; medicine; food; pharmaceutical; animal nutrition.
 X Corynebacterium glutamicum.

X Key Location/Qualifiers
 T Misc-difference 1 /note= "Encoded by TRG"
 T WO200222814-A2.
 X 21-MAR-2002.
 X 26-JUL-2001; 2001WO-EPP008650.
 X 15-SEP-2000; 2000DE-01045580.
 R 11-MAY-2001; 2001DE-01023070.
 X A (DEGS) DEGUSSA AG.
 X Farwick M, Huthmacher K, Pfefferle W;
 X WPI; 2002-339870/37.
 R N-PSDB; ABL40819.
 X New atr43 gene of coryneform bacteria, useful when suppressed for
 T increasing fermentative production of L-amino acids, encodes an ABC
 T transporter protein.
 S Claim 7; Page 36-39; 41PP; English.
 X The invention relates to the atr43 gene from coryneform bacteria. The
 C encoded polypeptides have the activity of the ABC transporter protein
 C Atr43. Coryneforms having reduced expression of the atr43 gene are useful
 C for fermentative production of L-amino acids, specifically L-lysine,
 C useful in human medicine, the food and pharmaceutical industries and
 C particularly in animal nutrition. The atr43 polynucleotides are also
 C useful, as hybridization probes or amplification primers, for identifying
 C nucleic acid that encodes the ABC transporter Atr43 and sequences closely
 C related to the atr43 gene. Particularly where used as (micro)arrays or
 C DNA chips. The present sequence represents the Atr43 polypeptide
 X Sequence 541 AA.

Query Match 72.7%; Score 40; DB 5; Length 541;
 Best Local Similarity 46.2%; Pred. No. 1.7e+02;
 Matches 6; Conservative 5; N mismatches 2; Indels 0; Gaps 0;

Y 1 XKKVWANTLKAAX 13
 b 412 DKSVWQNTIEACA 424

RESULT 14
 AG91463 standard; protein; 543 AA.
 X C AG91463 ;
 X T 26-SEP-2001 (first entry)
 X C glutamicum protein fragment SEQ ID NO: 5217.
 X

KW Coryneform bacterium; amino acid synthesis; vitamin; saccharide;
 KW organic acid synthesis.
 XX OS Corynebacterium glutamicum.
 XX PN EP1108790-A2.
 PD 20-JUN-2001.
 XX PR 18-DEC-2000; 2000EP-00127688.
 XX PR 16-DEC-1999; 99JP-00377484.
 XX PR 07-APR-2000; 2000JP-0015162.
 XX PR 03-AUG-2000; 2000JP-00280988.
 XX PA (KION) KYOWA HAKKO KOGYO KK.
 XX PI Nakagawa S, Mizoguchi H, Ando S, Hayashi M, Ochiai K, Yokoii H;
 XX PI Senoh A, Ikeda M, Ozaki A;
 XX PS WPI; 2001-5217; 246pp + Sequence Listing; English.
 DR 2001-376931/40.
 DR N-PSDB; AAB46682.
 XX PT Novel polynucleotides derived from Coryneform bacteria, for identifying
 PT mutation point of a gene, measuring expression of a gene, analyzing
 PT expression profile or pattern of a gene and identifying homologous gene.
 XX PS Claim 17; SEQ ID NO 5217; 246pp + Sequence Listing; English.
 XX CC The present invention provides a number of nucleotide and protein
 CC sequences from the Coryneform bacterium Corynebacterium glutamicum. These
 CC are useful for identifying the mutation point of a gene derived from a
 CC mutant of coryneform bacterium, measuring expression amount and analysing
 CC the expression profile or expression pattern of a gene derived from
 CC Coryneform bacterium, and identifying a homologue of a gene derived from
 CC coryneform bacterium. Coryneform bacteria are useful for producing amino
 CC acids, nucleic acids, vitamins, saccharides and organic acids,
 CC particularly L-lysine. The present sequence is a protein described in the
 CC exemplification of the invention. Note: The sequence data for this patent
 CC did not form part of the printed specification, but was obtained in
 CC electronic format directly from the European Patent Office
 XX SQ Sequence 543 AA;

Query Match 72.7%; Score 40; DB 4; Length 543;
 Best Local Similarity 46.2%; Pred. No. 1.8e-02;
 Matches 6; Conservative 5; N mismatches 2; Indels 0; Gaps 0;

QY 1 XKKVWANTLKAAX 13
 Db 414 DKSVWQNTIEACA 426

RESULT 15
 AAG10400
 ID AAG10400 standard; protein; 361 AA.
 XX AC AAG10400;
 XX DT 17-OCT-2000 (first entry)
 XX DB Arabidopsis thaliana protein fragment SEQ ID NO: 8706.
 XX KW Protein identification; signal transduction pathway; metabolic pathway;
 KW hybridization assay; genetic mapping; gene expression control; promoter;
 KW termination sequence.
 XX OS Arabidopsis thaliana.
 XX PN EP1033405-A2.
 PD 06-SEP-2000.

PR	25-FEB-2000;	2000EF-00301439.	99US-0142920P.
PR	05-MAR-1999;	99US-0121825P.	99US-0142977P.
PR	09-MAR-1999;	99US-0123180P.	99US-0143342P.
PR	23-MAR-1999;	99US-0123548P.	99US-014364P.
PR	25-MAR-1999;	99US-0125788P.	99US-0144005P.
PR	29-MAR-1999;	99US-0126264P.	99US-0144085P.
PR	01-APR-1999;	99US-0126785P.	99US-0144086P.
PR	06-APR-1999;	99US-0127462P.	99US-0144325P.
PR	08-APR-1999;	99US-0128234P.	99US-0144311P.
PR	16-APR-1999;	99US-0128714P.	99US-0144322P.
PR	19-APR-1999;	99US-0129845P.	99US-0144333P.
PR	21-APR-1999;	99US-0130077P.	99US-0144334P.
PR	04-MAY-1999;	99US-0132484P.	99US-0145088P.
PR	05-MAY-1999;	99US-0134449P.	99US-0145055P.
PR	23-APR-1999;	99US-0130510P.	99US-0144507P.
PR	06-MAY-1999;	99US-0132485P.	99US-0144532P.
PR	28-APR-1999;	99US-0130891P.	99US-0144584P.
PR	07-MAY-1999;	99US-01313449P.	99US-0144514P.
PR	11-NAY-1999;	99US-0132863P.	99US-0145145P.
PR	14-MAY-1999;	99US-0134256P.	99US-0145218P.
PR	14-MAY-1999;	99US-0134218P.	99US-0145244P.
PR	14-MAY-1999;	99US-0134211P.	99US-0145216P.
PR	14-MAY-1999;	99US-0134221P.	99US-014513P.
PR	18-MAY-1999;	99US-0134370P.	99US-014518P.
PR	19-MAY-1999;	99US-0134941P.	99US-014519P.
PR	21-MAY-1999;	99US-0135124P.	99US-0145951P.
PR	24-MAY-1999;	99US-0135355P.	99US-014386P.
PR	27-MAY-1999;	99US-0136021P.	99US-014638P.
PR	28-MAY-1999;	99US-0136392P.	99US-0146389P.
PR	03-JUN-1999;	99US-0136789P.	99US-014702P.
PR	03-JUN-1999;	99US-0137229P.	99US-0147192P.
PR	04-JUN-1999;	99US-0137520P.	99US-0147260P.
PR	07-JUN-1999;	99US-0137500P.	99US-0147303P.
PR	08-JUN-1999;	99US-0137724P.	99US-0147416P.
PR	10-JUN-1999;	99US-0138094P.	99US-0147420P.
PR	10-JUN-1999;	99US-0138540P.	99US-0147493P.
PR	14-JUN-1999;	99US-0138841P.	99US-0147935P.
PR	14-JUN-1999;	99US-0139119P.	99US-0148171P.
PR	16-JUN-1999;	99US-0139422P.	99US-0148199P.
PR	16-JUN-1999;	99US-0139432P.	99US-0148319P.
PR	17-JUN-1999;	99US-0139459P.	99US-0148341P.
PR	18-JUN-1999;	99US-0139450P.	99US-0148565P.
PR	18-JUN-1999;	99US-0139451P.	99US-0146684P.
PR	18-JUN-1999;	99US-0139455P.	99US-014368P.
PR	18-JUN-1999;	99US-0139462P.	99US-0149175P.
PR	18-JUN-1999;	99US-0139450P.	99US-0149126P.
PR	18-JUN-1999;	99US-0139457P.	99US-0149122P.
PR	18-JUN-1999;	99US-0139459P.	99US-0149172P.
PR	18-JUN-1999;	99US-0139450P.	99US-014922P.
PR	21-JUN-1999;	99US-0139811P.	99US-014929P.
PR	22-JUN-1999;	99US-0139891P.	99US-014902P.
PR	23-JUN-1999;	99US-0140352P.	99US-014930P.
PR	23-JUN-1999;	99US-0140354P.	99US-015066P.
PR	24-JUN-1999;	99US-0140635P.	99US-0150884P.
PR	28-JUN-1999;	99US-0140823P.	99US-0152363P.
PR	29-JUN-1999;	99US-0140991P.	99US-0153158P.
PR	30-JUN-1999;	99US-0141281P.	99US-0154018P.
PR	01-JUL-1999;	99US-0141842P.	99US-0154039P.
PR	02-JUL-1999;	99US-0142144P.	99US-0154779P.
PR	06-JUL-1999;	99US-0142355P.	99US-0155139P.
PR	08-JUL-1999;	99US-0142803P.	99US-0155659P.

28-SEP-1999;	99US-0156458P.
29-SEP-1999;	99US-0156596P.
04-OCT-1999;	99US-0157117P.
05-OCT-1999;	99US-0157153P.
06-OCT-1999;	99US-0157165P.
07-OCT-1999;	99US-0158299P.
08-OCT-1999;	99US-0158222P.
12-OCT-1999;	99US-0158169P.
13-OCT-1999;	99US-0159293P.
13-OCT-1999;	99US-0159244P.
13-OCT-1999;	99US-0159255P.
14-OCT-1999;	99US-0159329P.
14-OCT-1999;	99US-0159310P.
14-OCT-1999;	99US-0159311P.
14-OCT-1999;	99US-0159637P.
14-OCT-1999;	99US-0159638P.
18-OCT-1999;	99US-0159544P.
21-OCT-1999;	99US-0160741P.
21-OCT-1999;	99US-0160767P.
21-OCT-1999;	99US-0160788P.
21-OCT-1999;	99US-0160707P.
21-OCT-1999;	99US-0160814P.
21-OCT-1999;	99US-0160815P.
22-OCT-1999;	99US-0160980P.
22-OCT-1999;	99US-0160911P.
22-OCT-1999;	99US-0160939P.
25-OCT-1999;	99US-0161104P.
25-OCT-1999;	99US-01611405P.
25-OCT-1999;	99US-0161146P.
26-OCT-1999;	99US-0161139P.
26-OCT-1999;	99US-0161160P.
28-OCT-1999;	99US-0161131P.
28-OCT-1999;	99US-0161192P.
28-OCT-1999;	99US-0161192P.
29-OCT-1999;	99US-0162142P.

Query Match Score 39; DB 3; Length 361;
Best Local Similarity 70.9%; P-Value 1.6e+02;
Matches 6; Conservative Mismatches 2; Indels

1 XKXVWANTLKAAX 13
1 :|:||:|:||:
152 AKBRIWANSOSAAR 164

Search completed: May 17, 2004, 13:49:39

GenCore version 5.1.6
Copyright (c) 1993 - 2004 Compugen Ltd.

4 protein - protein search, using SW model

in on: May 17, 2004, 13:42:09 ; Search time 21 Seconds
 (without alignments)
 59.547 Million cell updates/sec

file: US-09-458-299A-4226

effect score: 55

quence: 1 XKXWANTLMAAX 13

oring table: BLOSUM62DX

Gapop 10.0 , Gapext 0.5

sarched: 283366 seqs, 96191526 residues

real number of hits satisfying chosen parameters: 283366

Minimum DB seq length: 0
 Maximum DB seq length: 2000000000

rst-processing: Minimum Match 0%
 Maximum Match 100%
 Listing first 45 summaries

atabase :

FIR78:
 1: pir1:
 2: pir2:
 3: pir3:
 4: pir4:
 *

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

#	Query	Match	Length	DB	ID	Description
1	40	72.7	1695	2	JE0084	voltage-gated sodium channel alpha subunit - hydromedusa (Polyorchis penicillatus)
2	39	70.9	111	2	B75605	hypothetical prote
3	39	70.9	215	2	AH3215	hypothetical prote
4	38	69.1	239	2	AC2745	glycerophosphoryl
5	38	69.1	246	2	B97526	hypothetical prote
6	38	69.1	246	2	B863016	hypothetical prote
7	38	69.1	485	2	E72115	hypothetical prote
8	38	69.1	485	2	A81555	hypothetical prote
9	38	69.1	518	1	T40151	hypothetical prote
10	38	69.1	1638	2	B90538	hypothetical prote
11	37	67.3	301	2	S51132	hypothetical prote
12	37	67.3	357	2	AP2796	lipoprotein limpor
13	37	67.3	368	2	T0580	probable transcrip
14	37	67.3	371	2	F97575	hypothetical prote
15	37	67.3	384	2	D75201	hypothetical prote
16	37	67.3	398	2	S21883	bZIP transcription
17	37	67.3	423	2	H86195	hypothetical prote
18	37	67.3	1355	2	T32092	hypothetical prote
19	37	67.3	1719	2	A48298	sodium channel hom
20	36	65.5	111	2	B70035	chaperonin homolog
21	36	65.5	162	2	AF1435	PTS system, fructo
22	36	65.5	182	2	AG1077	PTS system, fructo
23	36	65.5	216	2	A72291	hypothetical prote
24	36	65.5	303	2	S60550	envelope polypepte
25	36	65.5	303	2	S60549	envelope polypepte
26	36	65.5	337	2	B96543	probable RAV-like
27	36	65.5	339	2	A41677	ADP ATP carrier pr
28	36	65.5	443	2	C41621	env polypepte P
29	36	65.5	508	2	T20757	hypothetical prote

RESULT 1

JE0084

voltage-gated sodium channel alpha subunit - hydromedusa

(Polyorchis penicillatus)

C;Species:

Polyorchis penicillatus

C;Date:

11-May-1998

#sequence_revision

29-May-1998

#text_change

21-Jul-2000

C;Accession:

JE0084

B;Spafford, J. D. ; Spencer, A. N. ; Gallin, W. J.

Biochem. Biophys. Res. Commun.

244,

777-780,

1998

F;201,73,99,664,1065,1082,1089,1428/Binding site: carbonyl group

A;Title:

A putative voltage-gated sodium channel alpha subunit (PPSNCN1) from the hydroco

A;Reference number:

JE0084

A;Accession:

JE0084

A;Molecule type: mRNA

A;Residues:

1-195 <SPA>

A;Cross references:

GB:AF047380;

NID:93005563;

PIDN:AAC38974_1;

PID:93005564

C;Comment:

This protein is the only pore-forming alpha subunit available to account for

C;Superfamily:

sodium channel protein

C;Keywords:

glycoprotein

F;201,73,99,664,1065,1082,1089,1428/Binding site: carbonyl group (Asn) (covalent)

#status

Query Match

72.7%

Score 40;

DB 2;

Length 1695;

Matches 7;

Best Local Similarity 77.8%;

Pred. No. 77.7%;

No. 77;

Mismatches 1;

Indels 0;

Gaps 0;

QY

5 WANTIKAX 13

Db

1192 WNTIKAKAS 1200

RESULT 2

B75605

hypothetical protein - Deinococcus radiodurans (strain R1)

C;Species:

Deinococcus radiodurans

C;Accession:

B7605

R;White, O. ; Eisen, J. A. ; Heidelberg, J. F. ; Hickey, E. K. ; Peterson, J. D. ; McDonald, R. J. ; Zalewski, C. ; Ma

M. ; Shen, M. ; Vamathevan, J. J. ; Lam, P. ; McDonald, L. ; Utterback, T. ; Zalewski, C. M.

S. ; Smith, H. O. ; Ventler, J. C. ; Fraser, C. M.

Science 286, 1571-1577, 1999

A;Title:

Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1.

A;Reference number:

A75250;

NID:20036896;

PMID:10567266

A;Accession:

B7605

A;Status: preliminary

A;Molecule type: DNA

A;Residues:

<WHL>

A;Cross-references:

GB:AE001862;

NID:96460468;

PIDN:AAF12331_1;

PID:9646002

C;Genetics;

A;Gene: DRA0104

A;Map Position: 2

C;Superfamily:

Deinococcus radiodurans hypothetical protein DRA0104

Query Match 70.9%; Score 39; DB 2; Length 111;
 Best Local Similarity 63.6%; Pred. No. 6.3;
 Matches 7; Conservative 3; Mismatches 1; Indels 0; Gaps 0;
 Genomics:
 Y 3 XWANTLKAAX 13
 b 62 SWVANSLDAAI 72

RESULT 3
hypothetical protein Atu5455 [Imported] - Agrobacterium tumefaciens (strain C58, Dupont)
;Species: Agrobacterium tumefaciens
;Accession: AH3215
;Date: 11-Jan-2002 #sequence_revision 11-Jan-2002 #text_change 18-Nov-2002
;Author: Wood, D.W.; Setubal, J.C.; Kaul, R.; Monks, D.; Chen, L.; Wood, G.E.; Chen, Y.; Woo, I.; Rage, G.; Gillet, W.; Grant, C.; Guenther, D.; Kutyavin, T.; Levy, R.; Li, M.; McClellan, Karp, P.; Romero, P.; Zhang, S.
science 294, 2317-2323, 2001
;Authors: Yoo, H.; Tao, Y.; Biddle, P.; Jung, M.; Krespan, W.; Perry, M.; Gordon-Kamm, B.W.
;Title: The Genome of the Natural Genetic Engineer Agrobacterium tumefaciens C58.
;Reference number: AB2577; MUID:21608550; PMID:11743193
;Accession: AR3215
;Status: preliminary
;Molecule type: DNA
;Residues: 1-215 <KUR>
;Cross-references: GB:AB008687; PIDN:AAL46142_1; PID:917743910; GSPDB:GN00188
;Experimental source: strain C58 (Dupont)
;Genetics:
;Gene: Atu5455
;Genome: plasmid

Query Match 70.9%; Score 39; DB 2; Length 215;
 Best Local Similarity 63.6%; Pred. No. 13; Mismatches 1; Indels 0; Gaps 0;
 Genomics:
 Y 3 XWANTLKAAX 13
 b 194 AWQAQSIIKAAL 204

RESULT 4
C2745
lipocephosphoryl diester phosphodiesterase Atu1371 [Imported] - Agrobacterium tumefaciens
;Species: Agrobacterium tumefaciens
;Accession: AC2245
;Date: 11-Jan-2002 #sequence_revision 11-Jan-2002 #text_change 18-Nov-2002
;Author: Wood, D.W.; Setubal, J.C.; Kaul, R.; Monks, D.; Chen, L.; Wood, G.E.; Chen, Y.; Woo, I.; Rage, G.; Gillet, W.; Grant, C.; Guenther, D.; Kutyavin, T.; Levy, R.; Li, M.; McClellan, Karp, P.; Romero, P.; Zhang, S.
science 294, 2317-2323, 2001
;Authors: Yoo, H.; Tao, Y.; Biddle, P.; Jung, M.; Krespan, W.; Perry, M.; Gordon-Kamm, B.W.
;Title: The Genome of the Natural Genetic Engineer Agrobacterium tumefaciens C58.
;Reference number: AB2577; MUID:21608550; PMID:11743193
;Accession: AC2745
;Status: preliminary
;Molecule type: DNA
;Residues: 1-229 <KUR>
;Cross-references: GB:AB008688; PIDN:ARL42377_1; PID:917739785; GSPDB:GN00186
;Experimental source: strain C58 (Dupont)
;Genetics:
;Gene: Atu1371
;Map position: circular chromosome

Query Match 69.1%; Score 38; DB 2; Length 239;
 Best Local Similarity 54.5%; Pred. No. 22; Mismatches 3; Indels 0; Gaps 0;
 Genomics:
 Y 1 XKKWVANTLKA 11
 b 15 NKAVVENTISA 25

RESULT 5
B91526
hypothetical protein AGR_C_2553 [Imported] - Agrobacterium tumefaciens (strain C58, Cerec)
;Species: Agrobacterium tumefaciens
;Date: 30-Sep-2001 #sequence_revision 30-Sep-2001 #text_change 18-Nov-2002
;Accession: B91526
R;Goodner, B.; Hinkle, G.; Gattung, S.; Miller, N.; Blanchard, M.; Quroollo, B.; Goldman, A.; Liu, F.; Wollam, C.; Allinger, C.; Scott, C.; Lapas, C.; Markez, B.;
Science 294, 2323-2328, 2001
;Author: Goodner, B.; Hinkle, G.; Gattung, S.; Miller, N.; Blanchard, M.; Quroollo, B.; Goldman, A.; Liu, F.; Wollam, C.; Allinger, C.; Scott, C.; Lapas, C.; Markez, B.;
;Title: Genome Sequence of the Plant Pathogen and Biotechnology Agent Agrobacterium tumefaciens
;Reference number: A97355; MUID:21608551; PMID:11743194
;Accession: B91526
A;Status: preliminary
A;Residues: 1-246 <KUR>
A;Cross-references: GB:AE007889; PIDN:AAK87163_1; PID:915156435; GSPDB:GN00169
C;Genetics:
A;Gene: AGR_C_2553
A;Map position: circular chromosome

Query Match 69.1%; Score 38; DB 2; Length 246;
 Best Local Similarity 54.5%; Pred. No. 23; Mismatches 3; Indels 0; Gaps 0;
 Genomics:
 Y 1 XKKWVANTLKA 11
 Db 22 NKAVVENTISA 32

RESULT 6
E86506
hypothetical protein CPJ0124 [Imported] - Chlamydophila pneumoniae (strain J138)
;Species: Chlamydophila pneumoniae, Chlamydia pneumoniae
;Accession: E86506
C;Date: 02-Mar-2001 #sequence_revision 02-Mar-2001 #text_change 02-Mar-2001
R;Shirai, M.; Hirakawa, H.; Kimoto, M.; Tabuchi, M.; Kishi, F.; Ouchi, K.; Shiba, T.; Is
Nucleic Acids Res. 28, 2311-2314, 2000
A;Title: Comparison of whole genome sequences of chlamydial pneumoniae J138.
A;Reference number: A86491; MUID:20330349; PMID:10871362
A;Accession: E86506
A;Status: preliminary
A;Molecule type: DNA
A;Residues: 1-485 <STO>
A;Cross-references: GB:BA000008; PIDN:g8978498; PIDN:BA98335_1; GSPDB:GN001442
A;Experimental source: strain J138
C;Genetics:
A;Gene: CPJ0124

Query Match 69.1%; Score 38; DB 2; Length 485;
 Best Local Similarity 63.6%; Pred. No. 47; Mismatches 2; Indels 0; Gaps 0;
 Genomics:
 Y 3 XWANTLKAAX 13
 Db 412 SVWANQLSAAE 422

RESULT 7
E72115
hypothetical protein - Chlamydophila pneumoniae (strain CWL029)
;Species: Chlamydophila pneumoniae, Chlamydia pneumoniae
;Accession: E72115
R;Kalmann, S.; Mitchell, W.; Marathe, R.; Lammel, C.; Fan, J.; Olinger, L.; Grimwood, J.;
Nature Genet. 21, 385-389, 1999
A;Title: Comparative Genomes of Chlamydia pneumoniae and C. trachomatis.
A;Reference number: A72000; MUID:99206606; PMID:10192388
A;Accession: E72115
A;Status: preliminary
A;Molecule type: DNA
A;Residues: 1-485 <ARN>

Cross-references: GB:AB00599; GB:AE001363; NID:94376387; PIDN:AAD18277.1; PMID:94376388
 Experimental source: strain CML029
 Genetics: Cpn0124

Query Match	69.1%	Score	38	DB	2	Length	485
Best Local Similarity	63.6%	Pred. No.	47				
Matches	7	Mismatches	2	Indels	0	Gaps	0
3 XWVANTLRAAX 13							
: : : :							
412 SVWANQISAE 422							

SUIT 8

putative protein CP0649 [imported] - Chlamydophila pneumoniae (strain AR39)
 Species: Chlamydophila pneumoniae, Chlamydia pneumoniae
 Date: 31-Mar-2000 #sequence_revision 31-Mar-2000 #text_change 11-May-2000
 Accession: A81555

Read, T.D.; Brumham, R.C.; Shen, C.; Gill, S.R.; Heidelberg, J.F.; White, O.; Hickey, C.C.; Dodson, R.; Gwinn, M.; Nelson, W.; DeBoy, R.; Kolonay, J.; McCleary, G.; Salzberg, S.L. Genome sequences of Chlamydia trachomatis MoPr and Chlamydia pneumoniae AR39. Reference number: A81500; MUID:20150255; PMID:10684935

Accession: A81555

Status: preliminary
 Molecule type: DNA
 Residues: 1-485 <REA>
 Cross-references: GB:AE000222; GB:AE002161; NID:97189553; PIDN:AAD18277.1; PMID:97189556

```

Gene ID: CP0649
Query Match 69.1%; Score 38; DB 2; Length 4B5;
Best Local Similarity 63.6%; Pred. No. 47;
Matches 7; Conservative 2; Mismatches 0; Gaps 0;
          |
          3 XWVANTLKAAX 13
          :||| | | |:
412 SWVANQLSAEE 422

SUNIT 9
          |
          111] S-ribosomal-tRNA ligase precursor, mitochondrial - fission yeast (Schizosaccharomyces pombe
Species: Schizosaccharomyces pombe
DDate: 03-Dec-1999 #sequence_revision 03-Dec-1999 #text_change 19-Jul-2002
Accession: T40151
Wood, V.; Rajandream, M.A.; Barrell, B.G.; Devlin, K.; Churcher, C.M.
Submitted to the EMBL Data Library, March 1998
Reference number: Z21842
Accession: T40151
Status: preliminary; translated from GB/EMBL/DDBJ
Molecule type: DNA
Residues: 1-338 <WOO>
Cross-references: EMBL:AL0222103; PIRN:CAA17822; 1; GSPDB:GN00067; SPDB:SPBC2G2.12
Experimental source: strain 972h-; cosmid c2G2
Genetics:
Gene: SPBC2G2.12
Map position: 2
Genome: nuclear

```

457 CKDIWANETKA 467

```

RESULT 11
SS1.3.12 ADP/ATP carrier protein - malaria parasite (Plasmodium falciparum)
NN: Alternative names: ADP/ATP transporter
CC: Species: Plasmodium falciparum
C: Date: 07-May-1995 #Sequence_revision 01-Sep-1995 #text_change 09-Jun-2000
C: Accession: S68932; SS1.12
R: Hatin, I.; Jaureguiberry, G.
Bur. J. Biochem. 228, 6-1, 1995
A: Title: Molecular characterization of the ADP/ATP-transporter cDNA from the human mala
A: Reference number: S68992; PMID: 7883016
A: Accession: S68932
A: Status: preliminary
A: Molecule type: mRNA
A: Residues: 1-301 <HAT>
A: Cross-references: EMBL:X83551; NID:9623334; PID:CA58541.1; PID:9623335
CC: Superfamily: ADP/ATP carrier protein; ADP/ATP carrier protein repeat homology
C: Keywords: duplication; transmembrane protein
F: 6-1102/Domain: ADP/ATP carrier protein repeat homology <ACP1>
F: 6-112-203/Domain: ADP/ATP carrier protein repeat homology <ACP2>
F: 209-301/Domain: ADP/ATP carrier protein repeat homology <ACP3>

Query Match          67.3%; Score 37; DB 2; Length 301;
Best Local Similarity 38.5%; Pred. No. 43;
Matches 5; Conservative 5; Mismatched 3; Indels 0; Gaps 0;
Qy          1 XKRWVANTLKAX 13
Dy          : : : : : : : :
Dy          274 PKQAWANVTRGAC 286
Dy

```

RESULT 12
AF2796 Lipoprotein [imported] - Agrobacterium tumefaciens (strain C58, Dupont)
C;Species: Agrobacterium tumefaciens
C;Date: 11-Jan-2002 #sequence_revision 11-Jan-2002 #text_change 18-Nov-2002
C;Accession: AF2796
P.;Werard, G.; Gillet, W.; Grant, C.; Guenther, D.; Kutyavin, T.; Levy, R.; Li, M.; McClellan, Karp, P.; Romer, P.; Zhang, S.
Science 294 2317-2323, 2001

;Authors: Yoo, H.; Tao, Y.; Biddle, P.; Jung, M.; Krespan, W.; Perry, M.; Gordon-Kamm, ter, E.W.
;Title: The Genome of the Natural Genetic Engineer Agrobacterium tumefaciens C58.
;Reference number: AB0577; MUID:21608550; PMID:11743193
;Accession: AF2736
;Status: Preliminary
;Molecule type: DNA
;Residues: 1-357 <KUR>
;Cross-references: GB:AE006688; PIDN:AAI42788_1; PID:917740232; GSPDB:GN00186
;Experimental source: strain C58 (Dupont)
;Genetics:
;Gene: Atu1789
;Map position: circular chromosome
Query Match 67.3%; Score 37; DB 2; Length 357;
Best Local Similarity 75.0%; Pred. No. 51;
Matches 6; Conservative 2; Mismatches 0; Indels 0; Gaps 0;
Y 1 XXXWANT 8
: :|||
b 184 IKVWANT 191
;RESULTS 13

03580 probable transcription activator RF2a - rice
;Species: *Oryza sativa* (rice)
;Date: 24-Mar-1999 #sequence_revision 24-Mar-1999 #text_change 21-Jul-2000
;Accession: T03580
;yIN, Y.; Zhu, Q.; Dai, S.; Lamb, C.; Beachy, R.N.
;MBO J. 16: 5247-5259, 1997
;Title: RF2a, a bZIP transcriptional activator of the phloem-specific rice tungro bacil
;Reference number: Z14956; MUID:97459912; PMID:9311985
;Accession: T03580
;Status: Preliminary; translated from GB/EMBL/DDBU
;Molecule type: mRNA
;Cross-references: EMBL:AF005492; PID:92253277; PIDN: AAC49832_1; PID:92253278
;Experimental source: strain TP301
;Genetics:
;Note: r12a

Query Match 67.3%; Score 37; DB 2; Length 368;
Best Local Similarity 46.2%; Pred. No. 53;
Matches 6; Conservative 4; Mismatches 3; Indels 0; Gaps 0;
Y 1 XXXWANTLAAAX 13
: :|||:
b 173 AKRIWANRQSAR 185

ESULT 14
97575 hypothetical protein AGR_C3392 [imported] - Agrobacterium tumefaciens (strain C58, Cere
;Species: Agrobacterium tumefaciens
;Date: 30-Sep-2001 #sequence_revision 30-Sep-2001 #text_change 18-Nov-2002
;Accession: F97575
;Goodier, B.; Hinkie, G.; Gattung, S.; Miller, N.; Blanchard, M.; Ouroollo, B.; Goldman, A.; Liu, P.; Wolram, C.; Allinger, M.; Doughty, D.; Scott, C.; Lappas, C.; Markelz, B.;
;Science 294: 2223-2228, 2001
;Title: Genome Sequence of the Plant Pathogen and Biotechnology Agent Agrobacterium tum
;Reference number: A97359; MUID:21608551; PMID:11743194
;Accession: F97575
;Status: Preliminary
;Molecule type: DNA
;Residues: 1-371 <KUR>
;Cross-references: GB:AE007869; PIDN:AAK87559_1; PID:915156897; GSPDB:GN00169
;Genetics:
;Gene: AGR_C3392
;Map position: circular chromosome
Query Match 67.3%; Score 37; DB 2; Length 371;
Best Local Similarity 75.0%; Pred. No. 53;

Database :	SwissProt_42_*			
Score	Query Match Length	DB ID	Description	
1	37	67.3	398	1 PF21_ARATH
2	37	67.3	509	1 SYK_ARCCA
3	36	65.5	111	1 YVDS_BACSU
4	36	65.5	335	1 ORTC_STREICO
5	36	65.5	339	1 ADT_CHLKE
6	36	65.5	357	1 IDT2_CHLTB
7	36	65.5	721	1 ZW10_DROME
8	36	65.5	765	1 METB_CATRO
9	36	65.5	765	1 METB_MESCR
10	36	65.5	1358	1 SIR4_YEAST
11	35	63.6	134	1 Y322_XEIN
12	35	63.6	149	1 Y272_AQUAE
13	35	63.6	172	1 YPL_AQT4
14	35	63.6	404	1 CGB2_HUMAN
15	35	63.6	655	1 AMYA_PYRAB
16	35	63.6	697	1 Y351_BUGAP
17	35	63.6	790	1 YDDH_ECOLI
18	35	63.6	1053	1 HNDH_SCHPO
19	35	63.6	1061	1 CTFD_BACSU
20	34	61.8	70	1 RK28_CYAPA
21	34	61.8	99	1 Y11K_STPRFR
22	34	61.8	176	1 FRH1_XENLA
23	34	61.8	176	1 FRH2_XENLA
24	34	61.8	194	1 HSB_XENLA
25	34	61.8	211	1 HPR1_LBD0
26	34	61.8	70	1 RPC6_YEAST
27	34	61.8	366	1 T22A_DROME
28	34	61.8	423	1 YDIN_ECOLI
29	34	61.8	430	1 RTG5_HUMAN
30	34	61.8	591	1 VATA_CHLMU
31	34	61.8	591	1 VATA_CHITR
32	34	61.8	633	1 ANFA_PYRHO
33	34	61.8	653	1 MALQ_PYRKO
			09v298_pyrococcus	
			Q8k14_buchnera_ap	
			P31217_escherichia	
			Q10283_schizosaccharomyces_pasteuri	
			Q0B34 bacillus_su	
			P48129_cyanophora	
			P26500_streptomyces	
			P17663_xenopus_lae	
			P49948_xenopus_lae	
			P22845_xenopus_lae	
			P43152_leishmania	
			P32910_saccharomyces_cerevisiae	
			P52654_drosophila_melanogaster	
			P765198_escherichia_coli	
			Q9p885_chlamydia_muridarum	
			O84110_chlamydia_trachomatis	
			OS7332_pyrococcus	
			OS2450_pyrococcus	

ALIGNMENTS

RESULT 1	
PP21_ARATH	STANDARD;
ID	PF21_ARATH
AC	Q0408B;
DT	01-NOV-1995 (Rel. 32, Created)
DT	01-MAR-2004 (Rel. 43, Last annotation update)
DE	Possible transcription factor PosF21.
GN	PosF21 OR AR2G117 OR T28P11.14.
OS	Arabidopsis thaliana (Mouse-ear cress).
OC	Bukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta; Spermatophyta; Magnoliophyta; eudicots; core eudicots; rosids; eurosids II; Brassicales; Brassicaceae; Arabidopsis
OC	NCBI_TaxID=3702;
RN	SEQUENCE FROM N.A.
RC	STRAIN=CV; Zurich; PubMed=1849885;
RX	Medline=9325100; Pubmed=1849885;
RA	Peschbacher R.A., Schrodt M., Potrykus I., Saul M.W.; Isolation and molecular characterization of PosF21, an Arabidopsis thaliana gene which shows characteristics of a b-Zip class transcription factor." Plant J. 1:303-316(1991).
RT	"Sequence analysis of chromosome 2 of the plant Arabidopsis thaliana." Plant J. 40:761-768(1999).
RL	SEQUENCE FROM N.A.
RP	SEQUENCE FROM N.A.
RC	STRAIN=CV; Columbia; PubMed=10617197;
RX	Medline=20083387; Pubmed=10617197;
RA	Lin X., Kaul S., Rounseley S.D., Shea T.P., Benito M.-I., Town C.D., Fuell C.R., Kercham K.A., Lee J.J., Ronning M.E., Barnstead M.E., Feldblyum T.V., Moffat K.S., Cronin L.A., Shen M., Pai G., Van Aken S., Umayam L., Gill J.E., Adams M.D., Carretero P.J., Gill L.J., Somerville C.R., Copenhafer G.P., Preuss D., Goodman H.M., Nieman W.C., White O., Eisen J.A., Salzberg S.L., Fraser C.M., Venier J.C., "Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana." Plant J. 40:761-768(1999).
RN	SEQUENCE FROM N.A.
RC	STRAIN=CV; Columbia; PubMed=2294850; Pubmed=2294850;
RX	Medline=2294850; Pubmed=2294850;
RA	Yamada K., Dale J.M., Lim J., Dale J.M., Chen H., Shinji P., Palm C.J., Southwick A.M., Wu H.C., Kim C.J., Nguyen M., Pham P.K., Cheulk R.F., Karlin-Newmann G., Liu S.X., Lam B., Sakano H., Wu T., Yu G., Miranda M., Quach H.L., Tripp M., Chang C.H., Lee J.M., Toriumi M.J., Chan M.M., Tang C.C., Onodera C.S., Deng J.M., Akivama K., Ansari Y., Arakawa T., Banh J., Bauno F., Bowser L., Brooks S.Y., Carninci P., Chao Q., Choi N., Enju A., Goldsmith A.D., Gurjali M., Hansen N.P., Hayashizaki Y., Johnson-Hopson C., Hsuan V.W., Iida K., Karnes M., Khan S., Koese E., Ishida J., Jiang P.X., Jones T., Kawai J., Kamiya A., Meyers C., Nakajima M., Narusawa M., Seki M., Yamamura Y., Satoh M., Tamse R., Vayberg M., Wallender E.K., Wong C., Yamamura Y., Yuan S., Shinozaki K., Davis R.W., Theologis A., Ecker J.R., Yuan S., Shinozaki K., Davis R.W., Theologis A., Ecker J.R., Empirical analysis of transcriptional activity in the Arabidopsis genome.";
RT	RT

Science 302:842-846 (2003).
 -!- FUNCTION: Putative transcription factor with an activatory role.
 -!- SUBCELLULAR LOCATION: Nuclear.
 -!- ALTERNATIVE PRODUCTS:
 Event=Alternative splicing; Named isoforms=1;
 Comment=A number of isoforms are produced. According to EST Sequences,
 Name=1;
 Isoform=Q04088-1; Sequence=Displayed;
 -!- DEVELOPMENTAL STAGE: Expressed constitutively at a low level in young seedlings in roots, stems and leaves of mature plants.
 -!- SIMILARITY: Belongs to the bZIP family.

This SWISS-PROT entry is copyright. It is produced through a collaboration between the Swiss Institute of Bioinformatics and the EMBL Outstation of the European Bioinformatics Institute. There are no restrictions on usage by non-profit institutions as long as its content is in no modified and this statement is not removed. Usage by and for commercial entities requires a license agreement (see <http://www.isb-sib.ch/anno> or send an email to license@isb-sib.ch).

EMBL; X61031; CAA43366.1; -.
 EMBL; AC001169; AAD26486.1; -.
 EMBL; AY057534; AAL0974.1; -.
 EMBL; AY113058; AAM47366.1; -.
 PRIR; S21882; S21883; -.
 InterPro; IPR004827; TF_bZIP.
 Pfam; PF00170; bZIP; 1.
 SMART; SM00338; BRIZ; 1.
 PROSITE; PS5021; BZ1P; 1.
 PROSITE; PS00036; BZ1P_BASIC; FALSE NEG.
 Transcription regulation; Activator; Nuclear protein; DNA-binding; Alternative splicing.

DNA BIND 203 222 BASIC MOTIF.
 DOMAIN 229 264 LEUCINE-ZIPPER.
 DOMAIN 340 372 POLY-GLN.

SEQUENCE 398 AA; 44689 MW; 2DAAABCBC14D11 CR64;

Query Match 67.3%; Score 37; DB 1; Length 398;
 best Local Similarity 46.2%; Pred. No. 22;
 matches 6; Conservative 4; Mismatches 3; Indels 0; Gaps

1 ACKWVANTLRAKX 13
 :::| | | | | :
 205 AKRIWANRQSAAR 217

ACINETOBACTER CALCOACETICUS
 Bacteria; Proteobacteria; Gammaproteobacteria; Pseudomonadales;
 Moraxellaceae; Acinetobacter.
 NCBI_TaxID=471;

[1] SEQUENCE FROM N.A.
 STRAIN=BD413 / ADP1;
 MEDLINE=97228433; PubMed=9074511;
 Geissdorfer W., Racjczak A., Hillen W.;
 "Nucleotide sequence of a putative periplasmic Mn superoxide dismutase from Acinetobacter calcoaceticus." Gene 186:305-308 (1997).
 + L-Lysyl-tRNA(Lys).
 -!- COPACTOR: Binds 3 magnesium ions per subunit (By similarity).
 -!- SUBUNIT: Homodimer (By similarity).
 -!- SUBCELLULAR LOCATION: Cytoplasmic.

- - - - - SIMILARITY: Belongs to class-II aminoacyl-tRNA synthetase family.

C C This SWISS-PROT entry is copyright. It is produced through a collaboration C between the Swiss Institute of Bioinformatics and the EMBL outstation C use by non-profit institutions as long as its content is in no way C modified and this statement is not removed. Usage by and for commercial C entities requires a license agreement (see <http://www.isb-sib.ch/announce/> or send an email to license@isb-sib.ch).

R R EMBL; 246663; CAA85924.1; - .

R R HSSPDB; P14825; 1E10.

R R HAMAP; MF_00252; - , 1.

R R InterPro; IPR08994; Nucleic acid_OB.

R R InterPro; IPR04364; tRNA-synt_2.

R R InterPro; IPR02313; tRNA-synt_lys_2.

R R InterPro; IPR04365; tRNA_anti.

R R InterPro; IPR06195; tRNA_ligase_II.

R R Pfam; PF0152; tRNA-synt_2; 1.

R R Pfam; PF01336; tRNA_anti; 1.

R R PRINTS; PRO0932; TRNASTYTHYL.

R R TIGRFAMS; TIGR00499; lys_bact; 1.

R R PROSITE; PS5066; AA-TRNA-LIGASE_II; 1.

R R Aminoacyl-tRNA synthetase; Protein biosynthesis; Ligase; ATP-binding;

R R Metal-binding Magnesium.

R R METAL 418 MAGNESIUM 1 (BY SIMILARITY)

R R METAL 425 MAGNESIUM 1 AND 2 (BY SIMILARITY).

R R SEQUENCE 509 AA; 58079 MW; 95ED1AA43DC3D2F6 CRC64,

Query Match 67.3%; Score 37; DB 1; Length 509;

Best Local Similarity 60.0%; Pred. No. 29;

Matches 6; Conservative 2; Mismatches 2; Indels 0; Gaps 0;

YY 1 XKXYWNTLX 10

YY ::|:||| |

YY 38 GKSWPNTEFK 47

RESULT 3

VDS_BACSU STANDARD; PRT; 111 AA.

C D YVDS_BACSU PRT; 111 AA.

C O32752; 0070000;

C 30-MAY-2000 (Rel. 39, Created)

C 30-MAY-2000 (Rel. 39, Last sequence update)

C 10-OCT-2003 (Rel. 42, Last annotation update)

C Hypothetical protein yvds.

N YVDS OR BSU3490.

S Bacillus subtilis.

X Bacteria; Firmicutes; Bacillales; Bacillaceae; Bacillus.

X NCBI_TaxID=1433;

N [1]

P Denizot F.;

P Subunit (APR-1997) to the EMBL/GenBank/DDBJ databases.

N [2]

P SEQUENCE FROM N.A.

P STRAIN=16;

P SEQUENCE FROM N.A.

C MEDLINE=9044033; PubMed=9384377;

A Kunz F., Ogasawara N., Moszer I., Albertini A.M., Alloni G., Borchert S.,

A Azevedo V., Barbero M.G., Bessieres P., Bolotin A., Brignell S.C., Bron S.,

A Boriss R., Bourcier L., Brans A., Braun M., Brignell S.C., Bron S.,

A Broissart S., Bruschi C.V., Caldwell B., Conerton I.F., Cummings N.J., Daniel R.A.,

A Choi S.K., Coani J.J., Devine K.M., Dusserhoff A., Ehrlich S.D., Emmerson P.T.,

A Denizot F., Devine K.M., Errington J., Fabret C., Ferrari E., Foulger D.,

A Entian D.B., Errington J., Fujita Y., Fuma S., Galizzi A., Galleron N.,

A Fritz C., Fujita M., Fujita Y., Fuma S., Galizzi A., Grandi G.,

A Ghim S.Y., Glaser P., Goffeau A., Golightly E.J., Grandi G.,

A Giuseppe G., Guy B.J., Haga K., Hailech J., Harwood C.R., Renaud A.,

A Hillbert H., Hollsappel S., Hosono S., Hulio M.F., Itaya M., Jones L.,

A Joris B., Karmata D., Kasahara Y., Klaerr-Blandford M., Klein C.,

A Kobayashi Y., Koetter P., Koningsstein G., Krogh S., Kumano M.,

A Kurita K., Lapicida A., Lardinois S., Lauber J., Lazarus V.,

Lee S.M., Levine A., Liu H., Masuda S., Mauel C., Medigue C., Moestl D., Nakai S., Noback M., Medina N., Mellado R.P., Mizuno M., Moestl D., Nakai S., Noback M., Noone D., O'Beilly M., Ogawa K., Ogiwara A., Oudega S.H., Park S.H., Parrish V., Pohl T.M., Porteille D., Porwollik S., Prescott A.M., Puig J., Pujic P., Purnelle B., Rapoport G., Rey M., Reynolds S., Rieger M., Rivolta C., Rocha E., Roche B., Rose M., Sadaie Y., Sato T., Scallan B., Schleich S., Schroeter R., Scoffone F., Shin B.S., Soldo B., Sorokin A., Tacconi E., Takagi T., Takashii H., Takenaru K., Takeuchi M., Tamakoshi A., Tanaka T., Terpsstra P., Togoni A., Torsi A., Uchiyama S., Vandemboul F., Vassarotti A., Wambutt R., Wedler E., Weitzsenerg T., Winters P., Wipat A., Yamamoto H., Yamane K., Yasumoto K., Yata K., Yoshida K., Yoshioka H.F., Zunstein E., Yoshikawa H., Danchin A.; "The complete genome sequence of the Gram-positive bacterium *Bacillus subtilis*"; Nature 390:249-255(1997).

-!- SUBCELLULAR LOCATION: Integral membrane protein (Potential)

-!- SIMILARITY: Belongs to the small multidrug resistance (SMR) protein family.

This SWISS-PROT entry is copyright. It is produced through a collaboration between the Swiss Institute of Bioinformatics and the EMBL outstation - the European Bioinformatics Institute. There are no restrictions on its use by non-profit institutions as long as its content is in no way modified and this statement is not removed. Usage by and for commercial entities requires a license agreement (see <http://www.isb-sib.ch/announce/> or send an email to license@isb-sib.ch).

EMBL; 284043; CAB0848_1; ALT_INIT.

PTRB; B70035; B70035.

SubtiList; BC124227; yrdS.

InterPro; IPR000390; Smr.

Pfam; PF0089; Multi_Drug_Res_1.

Hypothetical protein,_Transmembrane,_Transport; Complete proteome.

POTENTIAL.

TRANSMEM 3 23 POTENTIAL.

TRANSMEM 24 44 POTENTIAL.

TRANSMEM 54 74 POTENTIAL.

TRANSMEM 80 100 POTENTIAL.

SEQUENCE 111 AA; 12085 MW; 65SE7165743DFB6E CRC64;

Query Match 65.5%; Score 36; DB 1; Length 111;

Best Local Similarity 46.2%; Prd. No. 8.9;

Matches 6; Conservative 6; Mismatches 1; Indels 0; Gaps 0;

Score 36; DB 1; Length 335;

Best Local Similarity 54.5%; Prd. No. 29;

Matches 6; Conservative 3; Mismatches 2; Indels 0; Gaps 0;

Query Match 1 XXYWANTKAAAX 13

, 12 LEVTVASSLIKHD 24

SUULT 4
C_STRCO STANDARD; PRT; 335 AA.

Q9JF1; 10-OCT-2003 (Rel. 42, Created)

10-OCT-2003 (Rel. 42, Last sequence update)

10-OCT-2003 (Rel. 42, Last annotation update)

Ornithine carbamoyltransferase (EC 2.1.3.3) (OTCase).

ARG OR ARCS OR SC0597 OR STBAC16H..11 OR SBAC16H..11.

Streptomyces coelicolor.

Bacteria; Actinobacteria; Actinomycetales;

streptomyicinae; Streptomyctaceae; Streptomyces;

NCBI_TaxID=1902;

SEQUENCE FROM N.A.

STRAIN=3 (2) / M145;

MEDLINE=21936410; PubMed=12000953;

Bentley S.D., Chater K.E., Cerdano-Tarraga A.-M., Challis G.L., Thomson N.R., James K.D., Harris D.B., Quail M.A., Kieser H., Harper D., Bateman A., Brown S., Chandra G., Chen C.W., Collins M., Cronin A., Fraser A., Goble A., Hidalgo J., Hornsby T., Howarth S., Huang C.-H., Kieser T., Larke L., Murphy L., Oliver K., O'Neil S.,

Rabbowitsch B., Rajandream M.A., Rutherford K., Rutter S., Seeger K., Saunders D., Sharp S., Squares R., Taylor K., Warren T., Wietzorek A., Woodward J., Barrell B.G., Parkhill J., Hopwood D.A.; "Complete genome sequence of the model actinomycete Streptomyces coelicolor A3 (2)." Nature 417:141-147 (2002).

CC -!- CATALYTIC ACTIVITY: Carbamoyl phosphate + L-ornithine = phosphate + L-citrulline

CC -!- PATHWAY: Arginine biosynthesis; sixth step.

CC -!- SUBCELLULAR LOCATION: Cytoplasmic (Probable).

CC -!- SIMILARITY: Belongs to the OTCase/OTCase family.

CC This SWISS-PROT entry is copyright. It is produced through a collaboration between the Swiss Institute of Bioinformatics and the EMBL outstation - the European Bioinformatics Institute. There are no restrictions on its use by non-profit institutions as long as its content is in no way modified and this statement is not removed. Usage by and for commercial entities requires a license agreement (See <http://www.isb-sib.ch/announce/> or send an email to license@isb-sib.ch).

CC DR AL59162; CAC4590_1; -.

DR HAMAP; MF_01109; -.

DR InterPro; IPR006130; Asp/Orn_Cotransf.

DR InterPro; IPR002292; Orn_carBtransf.

DR InterPro; IPR006131; OTCase_O.

DR InterPro; IPR006132; OTCase_P.

DR Pfam; PF00085; OTCase; 1.

DR Pfam; PF0229; OTCase_N; 1.

DR PRINTS; PR0100; AOTASE.

DR TIGRFAMS; TIGR00658; orn caro tr; 1.

DR PROSITE; P000097; CARBAMOYLTRANSFERASE_1.

KW Arginine biosynthesis; Transferase; Complete proteome.

FT SITE 35 35 SIMILARITY FOR STRUCTURAL INTEGRITY (BY SITE)

FT SITE 60 64 CARBAMOYLPHOSPHATE BINDING (BY SIMILARITY).

FT SITE 111 111 CARBAMOYLPHOSPHATE BINDING (BY SIMILARITY).

FT SITE 138 138 CARBAMOYLPHOSPHATE BINDING (BY SIMILARITY).

FT SITE 151 151 IMPORTANT FOR STRUCTURAL INTEGRITY (BY SIMILARITY).

FT SITE 276 279 ORNITHINE BINDING (BY SIMILARITY).

SQ SEQUENCE 335 AA; 36701 MW; 6FAFC3FBCC876D337 CRC64;

Query Match Score 65.5%; Best Local Similarity 54.5%; Prd. No. 29; Matches 6; Conservative 3; Mismatches 2; Indels 0; Gaps 0;

OY 1 XXYWANTKAAAX 11

Db 243 PREVNERIKA 253

RESULT 5

ADT_CHLKE ID ADT_CHLKE STANDARD; PRT; 339 AA.

AC P31692; 01-JUL-1993 (Rel. 26, Created)

DT DT 01-JUL-1993 (Rel. 26, Last sequence update)

DI DT 10-OCT-2003 (Rel. 42, Last annotation update)

DE DE ADP,ATP carrier protein (ADP/ATP translocase) (Adenine nucleotide translocator) (ANT).

DE Chlorella kessleri

OC Eukaryota; Viridiplantae; Chlorophytida; Chlorophyceae; Chlorophyta; Chlorophyllales incertae sedis; Parachlorophyta.

OC Chlorellales incertae sedis; Parachlorophyta.

OX NCBI_TaxID=3074;

RN [1]

RP SEQUENCE FROM N.A.

RX MEDLINE=92084708; PubMed=1748677;

RA Hilgarth C., Sauer N., Tanner W.;

RT Glucose increases the expression of the ATP/ADP translocator and the

glyceraldehyde-3-phosphate dehydrogenase genes in Chlorella.";
 J. Biol. Chem. 266:24044-24047 (1991).
 -|- FUNCTION: Catalyzes the exchange of ADP and ATP across the mitochondrial inner membrane.
 -|- SUBUNIT: Homodimer (By similarity).
 -|- SUBCELLULAR LOCATION: Integral membrane protein. Mitochondrial inner membrane.
 -|- SIMILARITY: Belongs to the mitochondrial carrier family.
 -|- SIMILARITY: Contains 3 Solcar repeats.

This SWISS-PROT entry is copyright. It is produced through a cooperation between the Swiss Institute of Bioinformatics and the EMBL of the European Bioinformatics Institute. There are no restrictions on use by non-profit institutions as long as its content is modified and this statement is not removed. Usage by and for entities requires a license agreement (See <http://www.isb-sib.ch>) or send an email to license@isb-sib.ch.

SULT 6
 T12_CHLTE STANDARD; PRT; 357 AA.
 Q8KEF5;
 10-OCT-2003 (Rel. 42, Created)
 10-OCT-2003 (Rel. 42, Last sequence update)
 10-OCT-2003 (Rel. 42, Last annotation update)
 Isopentenyl-diphosphate delta-isomerase (EC 5.3.3.2) (IPP isomerase)
 (Isopentenyl pyrophosphate isomerase)
 FNI OR CTO257.
 Chlorobium tepidum.
 Bacteria; Chlorobi; Chlorobia; Chlorobiales; Chlorobiaceae;
 Chlorobium.
 NCBI_TaxID=1097;
 [1]
 SEQUENCE FROM N.A.
 STRAIN=TLS / ATCC 49652 / DSM 1205;
 MEDLINE=221033901; PubMed=12033901;
 Eisen J.A., Nelson K.E., Paulsen I.T., Heidelberg J.F., Wu M.,
 Dodson R.J., Debroy R., Gwin M.L., Nelson W.C., Haft D.H.,
 Hickey E.K., Peterson J.D., Durkin A.S., Kolonay J.L., Yang F.,
 Holt I., Umamaheswari P., Mason T., Brenner M., Sheat T.P., Parksey D.,
 Nieman W.C., Feldblyum T.V., Hansen C.L., Craven M.B., Radune D.,
 Vaamonde J., Khouri H., White O., Gruber T.M., Ketchum K.A.,
 Venter J.C., Tetrafin H., Bryant D.A., Fraser C.M.,
 "The complete genome sequence of Chlorobium tepidum TLS, a
 photosynthetic, anaerobic, green-sulfur bacterium";
 1

PROC. Natl. Acad. Sci. U.S.A. 99:9509-9514 (2002).
-I- FUNCTION: Catalyzes the 1,3-allylic rearrangement of the
CC homocyclic substrate isopentenyl (IPP) to its allylic isomer,
CC dimethylallyl diphosphate (DMAPP) (By similarity).
CC CATALYTIC ACTIVITY: Isopentenyl diphosphate = dimethylallyl
CC diphosphate.
CC -I- COFACTOR: FMN and NADPH (By similarity).
CC -I- SUBCELLULAR LOCATION: Cyttoplasmic (By similarity).
CC -I- SIMILARITY: Belongs to the IPP isomerase type 2 family.

CC This SWISS-PROT entry is copyright. It is produced through a collaboration
CC between the Swiss Institute of Bioinformatics and the EMBL outsources
CC the European Bioinformatics Institute. There are no restrictions
CC on use by non-profit institutions as long as its content is in
CC modified and this statement is present. Usage by and for commercial
CC entities requires a license agreement (See <http://www.isb-sib.ch/>).
CC or send an email to license@isb-sib.ch.

EMBL; AE012804; AAM71503.1; -
 DR TIGR; CT0257; -
 DR HANAP; MF 00354; -¹.
 DR InterPro; IPR03009; FMN_enzyme.
 KW Isomerase; Isoenzyme biosynthesis; Flavoprotein; FMN; NADP;
 KW Complement proteaseome.
 SQ SEQUENCE 357 AA; 38265 MW; 4D2AE23D335C785C CRC64;;

Query Match	Score	Length
Best Local Similarity	65.5%	36
Matches	54.5%	DB 1;
6; Conservative	3;	Mismatches

Qy 3 XWWTNTKAX 13
 Db 327 RTWANDLRAAM 337

RESULT 7
ZW10_DRONE STANDARD; PRT; 721 AA.
 AC Q9WAK9;
 DT 16-OCT-2001 (Rel. 40, Created)
 DT 16-OCT-2001 (Rel. 40, Last sequence update)
 DT 10-OCT-2003 (Rel. 42, Last annotation update).
 DE Centromere/kinetochore Protein zw10 (Mitotic 15 protein).
 GN MIT1.15 OR ZW10 OR EG-BACR7C10.3 OR CG9900.
 OS Drosophila melanogaster (Fruit fly).

Bukaryote; Metazoa; Arthropoda; Hexapoda; Insecta; Pterygota;
 Neoptera; Endopterygota; Diptera; Brachycera; Muscomorpha;
 OC Ephdroioidea; Drosophilidae; Drosophila.
 OC NCBITaxonID:7227;

RN [1] RN
 RP SEQUENCE FROM N.A.
 TISSUE=Inorganic disks;
 MEDLINE=9236320; PubMed=1339459;

RX Williams B.C.; Karr T.L.; Montgomery J.M.; Goldberg M.L.;
 RA "The Drosophila 1(1) zw10 gene product, required for accurate mitotic
 RT chromosome segregation, is redistributed at anaphase onset.";
 RT J. Cell Biol. 118:759-773 (1992).

RL [2] RN
 RP SEQUENCE FROM N.A.
 STRAIN=Berkely;

RC MEDLINE=20195006; PubMed=10731132;
 RA Adams M.D.; Celniker S.E.; Holt R.A.; Evans C.A.; Gocayne J.D.;
 RA Amatitlades M.D.; Scheer S.E.; Li P.W.; Hossibus R.A.; Galle R.F.';
 RA George R.A.; Lewis S.E.; Richards S.; Ashburner M.; Henderson S.N.,
 RA Sutton G.G.; Wortman J.R.; Yandell M.D.; Zhang Q.; Chen L.X.,
 RA Brandon R.C.; Rogers Y.H.C.; Blaejew R.G.; Champe M.; Pfeiffer B.D.,
 RA Wan K.H.; Doyle C.; Baxter E.G.; Heit G.; Nelson C.R.; Miklos G.L.G.,
 RA Abrial J.F.; Agbayani A.; An H.-J.; Andrews-Sfannikoch C.; Baldwin D.,
 RA Ballew R.M.; Basu A.; Baxendale J.; Bayraktaroglu L.; Beasley E.M.,
 RA Beeson K.Y.; Benos P.V.; Berman B.P.; Shandriji S.,
 RA Borrova D.; Botchan M.R.; Bouck J.; Brokstein P.; Brottier P.,
 RA Burits K.C.; Busam D.A.; Butler H.; Cadine E.; Center A.; Chandra I.,
 RA Cherry J.M.; Cawley C.; Dahlke C.; Davenport L.B.; Davies P.,
 RA

Query Match 65.5%; Score 36; DB 1; Length 1358;
 Best Local Similarity 46.2%; No. 1.3e+02; Gaps 0;
 Matches 6; Conservative 6; Mismatches 1; Indels 0;
 Gaps 0;

Y 1 XCKXWANTLKAAX 13
 :|:|||:|||:|||:
 2 1012 LKDIFANNLKSAAI 1024

RESULT 11

222_HAEIN STANDARD; PRT; 134 AA.
 057122; 005016; PRT; 134 AA.
 01-NOV-1997 (Rel. 35, Created)
 01-NOV-1997 (Rel. 35, Last sequence update)
 16-Oct-2001 (Rel. 40, Last annotation update)

3 Hypothetical protein HI0322.
 H01032.

4 Haemophilus influenzae.
 Bacteria; Proteobacteria; Gammaproteobacteria; Pasteurellales;
 Pasteurellaceae; Haemophilus.

5 NCBI_TaxID=722;

SEQUENCE FROM N.A., STRAIN=RQ / KW20 / ATCC 51907; MEDLINE=5350630; PubMed=7342800;

6 Fleischmann R.D., Adams M.D., White O., Clayton R.A., Kirkness E.F.,
 Kerlavage A.R., Bult C.J., Dougherty B.A., Merrick J.M.,
 McRaveney K., Sutton G., Fitzhugh W., Fields C.A., Gocayne J.D.,
 Scott J.D., Shirley R., Liu L.-I., Glodek A., Kelley J.M.,
 Weissenbach J.P., Phillips C.A., Hedbom B., Cotton M.D.,
 Utterback T.R., Hanna M.C., Nguyen D.T., Saudek D.M., Brandon R.C.,
 Fine L.D., Fritchman J.L., Fuhrmann J.L., Geoghegan N.S.M.,
 Graham C.J., McDonald L.A., Small K.V., Fraser C.M., Smith A.O.,
 Venter J.C.; "Whole-genome random sequencing and assembly of Haemophilus influenzae
 Rd"; Science 269:496-512 (1995).

7 -1- SIMILARITY: TO H.INFLUENZAE HI0947.
 -1- SIMILARITY: TO B.NODOSUS VIRULENCE-ASSOCIATED PROTEIN C
 (VAPC).

This SWISS-PROT entry is produced through a collaboration between the Swiss Institute of Bioinformatics and the EMBL outstation - the European Bioinformatics Institute. There are no restrictions on its use by non-profit institutions as long as its content is in no way modified and this statement is not removed. Usage by and for commercial entities requires a license agreement (See <http://www.isb-sib.ch/announce/> or send an email to license@isb-sib.ch).

EMBL; U32717; AAC21985.1; -.

PIGR; G64051; G64051; -.

InterPro; IPR002716; PIN.

PFam; PF01850; PIN; 1.

SMART; SM00670; PINC; 1.

Hypothetical Protein; Complete proteome.

SEQUENCE 134 AA; 15726 MW; 7EC5014217A854F9 CRC64; -.

Query Match 63.6%; Score 35; DB 1; Length 134;
 Best Local Similarity 100.0%; Pred. No. 17;
 Matches 6; Conservative 0; Mismatches 0; Indels 0;
 Gaps 0;

5 WANTLK 10
 :|:|||:
 84 WANTLK 89

RESULT 12
 Y272_AQUAE STANDARD; PRT; 149 AA.

AC 0666629;
 DT 16-OCT-2001 (Rel. 40, Created)
 DT 16-OCT-2001 (Rel. 40, Last sequence update)
 DT 16-OCT-2001 (Rel. 40, Last annotation update)

DE AQ_272.

OS Aquifex aeolicus.

OC Bacteria; Aquificae; Aquificales; Aquificaceae; Aquifex.

NCBI_TaxID=63363;

RN [1]

RP SEQUENCE FROM N.A.

RC STRAIN=VFS; PubMed=9537320;

RX MEDLINE=9819666; PubMed=9537320;

RA Deckert G., Warren P.V., Gaasterland T., Young W.G., Lenox A.L.,

RA Graham D.E., Overbeek R., Snead M.A., Keller M., Aufay M., Huber R.,

RA Feldman R.A., Short J.M., Olson G.J., Swanson R.V.;

RT "The complete genome of the hyperthermophilic bacterium Aquifex

aeolicus";

RL Nature 392:353-358 (1998).

CC This SWISS-PROT entry is copyright. It is produced through a collaboration between the Swiss Institute of Bioinformatics and the EMBL outstation - the European Bioinformatics Institute. There are no restrictions on its use by non-profit institutions as long as its content is in no way modified and this statement is not removed. Usage by and for commercial entities requires a license agreement (See <http://www.isb-sib.ch/announce/> or send an email to license@isb-sib.ch).

CC EMBL; AE00081; AAC0587.1; -.

DR PIR; A70325; A70325.

DR Hypothetical protein; Coiled coil; Complete proteome.

DR DOMAIN 111 140 COILED COIL (POTENTIAL);

SQ SEQUENCE 149 AA; 17945 MW; 92EE623B513E79E3 CRC64;

CC Query Match 63.6%; Score 35; DB 1; Length 149;

CC Best Local Similarity 60.0%; Pred. No. 19;

CC Matches 6; Conservative 2; Mismatches 2; Indels 0; Gaps 0;

CC QY 1 XCKXWANTLK 10

DB 42 PEERENTWLK 51

RESULT 13

YPL_AGR74 STANDARD; PRT; 172 AA.

AC P04028;

DT 23-OCT-1996 (Rel. 02, Created)

DT 01-FEB-1996 (Rel. 33, Last sequence update)

DT 10-OCT-2003 (Rel. 42, Last annotation update)

DE Hypothetical protein 1 (Gene 5 Protein).

OS Agrobacterium tumefaciens (strain Ach5).

OG Plasmid pT18C5.

OC Bacteria; Proteobacteria; Alphaproteobacteria; Rhizobiales;

OC Rhizobiaceae; Rhizobium/Agrobacterium group; Agrobacterium.

OX NCBI_TaxID=176298;

RN [1]

RP SEQUENCE FROM N.A.

RX MEDLINE=94035196; PubMed=94035196;

RA Guevara-Garcia A., Mosqueda-Cano G., Arguello-Astorga G.,

RA Simpson J., Herrera-Pastrella I.;

RT "Tissue-specific and wound-inducible pattern of expression of the

RT mannopine synthase promoter is determined by the interaction between

RT positive and negative cis-regulatory elements.";

PL Plant J. 4:495-505 (1993).

RN [3]

SEQUENCE FROM N.A.
 4 Barker R.F., Idler K.B., Thompson D.V., Kemp J.D.; Kemp J.D.;
 T tumour necrosis factor α T-DNA region from the Agrobacterium
 Plant Mol. Biol. 2:335-350(1983). ;
 PRELIMINARY SEQUENCE FROM N.A.
 4 MEDLINE=64207942; PubMed=6327292;
 Gievens J., de Beuckel M., Sevrinck J., Deboeck F., de Greve H.,
 Temmers M., van Montagu M., Schell J.;
 T "The complete nucleotide sequence of the T1-DNA of the Agrobacterium
 EMBO J. 3:835-846(1984). ;
 SEQUENCE FROM N.A.
 4 Winnans S.C., Zhu J., Oger P.M., Schrammeijer B., Hooykaas P.J.,
 Farzand S.K.;
 T "Occipine-type Ti plasmid sequence.",
 Submitted (MAR-2000) to the EMBL/GenBank/DBJU databases.

This SWISS-PROT entry is copyright. It is produced through a collaboration between the Swiss Institute of Bioinformatics and the EMBL outstation - the European Bioinformatics Institute. There are no restrictions on its use by non-profit institutions as long as its content is in no way modified and this statement is not removed. Usage by and for commercial entities requires a license agreement (See <http://www.isb-sib.ch/announce/> or send an email to license@isb-sib.ch).

EMBL; AF242881; AAF77120.1; -.
 PIR; A04496; Q0AGIT.
 InterPro; IPR006064; Glycosidase.
 Pfam; PF02027; RoB1_RoC1; 1.
 X Crown gall tumor; Plasmid; Hypothetical protein.
 2 SEQUENCE 172 AA; 19330 MW; 956C85F4B09D88 CRC64;

Query Match Score 35 / DB 1; Length 172;
 Best Local Similarity 60.0%; Pred. No. 22;
 Matches 6; Conservative 2; Mismatches 2; Indels 0; Gaps 0;

Y 1 XKXWANTLK 10
 :|:||| |
 b 139 QKXVNQNTSK 148

ESTIMATE 14
 GE2_HUMAN
 D CGE2_HUMAN STANDARD; PRT; 404 AA.
 C 096030; O95439;
 T 15-JUL-1999 (Rel. 38, Created)
 T 15-MAR-2004 (Rel. 43, Last annotation update)
 T 1/S-Specific cyclin E2.

N Homo sapiens (Human); Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo; NCI TAXID=9606; [1]

P SEQUENCE FROM N.A. (ISOFORMS LONG AND SHORT).
 C TISSUE=Fetal Lung;
 X MEDLINE=99077999; PubMed=9858585;
 C Gudas J.M., Payton M., Thukral S., Chen E., Bass M., Robinson M.O., Coats S.;
 A "Cyclin E2, a novel G1 cyclin that binds Cdk2 and is aberrantly expressed in human cancers." Mol. Cell. Biol. 19:612-622(1999). ;
 SEQUENCE FROM N.A.
 C TISSUE=B-cell; MEDLINE=9054666; PubMed=9840927;
 A Lauper N., Beck A.R.P., Cario S., Richman L., Hofmann K., Reith W.,

RA Slingerland J.M., Amati B.;
 RT "Cyclin E2: a novel CDK2 partner in the late G1 and S phases of the mammalian cell cycle.";
 RT Oncogene 17:2657-2653(1998). ;
 RN [3]
 SEQUENCE FROM N.A.; SUBCELLULAR LOCATION, AND MUTAGENESIS OF THR-392.
 RC TISSUE=Keratinocytes;
 RX MEDLINE=9905678; PubMed=9840943;
 RA Zarivach R., Liu J., Xiong Y.;
 RT Cyclin E2, a novel human G1 cyclin and activating partner of CDK2 and CDK3, is induced by viral oncoproteins.;
 RL Oncogene 17:278-2798(1998). ;
 CC -I- FUNCTION: Essential for the control of the cell cycle at the late G1 and early S phase.
 CC -I- SUBUNIT: Interacts with the CDK2 (in vivo) and CDK3 (in vitro) protein kinases to form a serine/threonine kinase holoenzyme complex. The cyclin subunit imparts substrate specificity to the complex.
 CC -I- ALTERNATIVE PRODUCTS:
 Event=Alternative splicing; Named isoforms=2;
 Name=Long;
 IsoID=096030-1; Sequence=Displayed;
 Name=Short; Synonyms=SV;
 IsoID=096032-2; Sequence=VSP_001256;
 CC -I- TISSUE SPECIFICITY: According to Ref.1: highest levels in adult testis, thymus and brain. Lower levels in placenta, spleen and colon. Consistently elevated levels in tumor-derived cells compared to nontransformed proliferating cells. According to Ref.2: low levels in thymus, prostate, brain, skeletal muscle, and kidney. Elevated levels in lung. According to Ref.3: highly expressed in testis, placenta, thymus and brain. In a lesser extent in small intestine and colon.
 CC -I- INDUCTION: Activated by papilloma viral oncoproteins E6 and E7 which bind to and inactivate p53 and Rb, respectively.
 CC -I- PTM: PHOSPHORYLATION BY CDK2 TRIGGERS ITS RELEASE FROM CDK2 AND DEGRADATION VIA THE UBIQUITIN PROTASOME PATHWAY (BY SIMILARITY).
 CC -I- SIMILARITY: Belongs to the cyclin family. Cyclin E subfamily.
 CC This SWISS-PROT entry is copyright. It is produced through a collaboration between the Swiss Institute of Bioinformatics and the EMBL outstation - the European Bioinformatics Institute. There are no restrictions on its use by non-profit institutions as long as its content is in no way modified and this statement is not removed. Usage by and for commercial entities requires a license agreement (See <http://www.isb-sib.ch/announce/> or send an email to license@isb-sib.ch).
 CC or send an email to license@isb-sib.ch).
 CC
 DR EMBL; AF106990; AAC08816.1; -.
 DR EMBL; AF112857; AAC08819.1; -.
 DR EMBL; AF091433; AAC08528.1; -.
 DR EMBL; AF102278; AAC78145.1; -.
 DR Genew; HGNC:1590; CCNE2.
 DR GK; O96020; -.
 DR MIM; 602775; -.
 DR GO; GO:0000075; P:cell cycle checkpoint; TAS.
 DR GO; GO:0000019; P:regulation of CDK activity; TAS.
 DR InterPro; IPR0066670; Cyclin.
 DR InterPro; IPR0046676; Cyclin_Cterm.
 DR InterPro; IPR006671; Cyclin_N.
 DR Pfam; PF00134; cyclin_C.
 DR Pfam; PF02984; cyclin_C.
 DR SMART; SM0385; Cyclin_N.
 DR PROSITE; PS00292; Cyclins.
 KW Cyclin; Cell cycle; Cell division; Phosphorylation; Alternative splicing; Nuclear protein.
 FT MOD RES 392 392
 FT VARSPLIC 167 211 Missing (in isoform short).
 FT FTID=ISP_001256.
 FT MUTAGEN 392 392 T->A: INCREASE OF STEADY STATE LEVEL.
 SQ SEQUENCE 404 AA; 46157 MW; D7DCBEBE3FD62BC CRC64;
 Query Match Score 35; DB 1; Length 404;
 Best local similarity 60.0%; Pred. No. 54; ;
 A

```

Matches   6;  Conservative   2;  Mismatches   2;  Indels   0;  Gaps   0;
          1 XKKWVANTLK 10
          :|:|:|:|:|
          110 SKREWNLK 119

```

```

SULT 15
YA_PYRAB
STANDARD;
PRT;  655 AA.
Q9VZ98;
16-OCT-2001 (Rel. 40, Created)
16-OCT-2001 (Rel. 40, Last sequence update)
10-OCT-2003 (Rel. 42, Last annotation update)
Alpha-amylase (EC 3.2.1.1)
AMYA OR PYRA01760 OR PAB0118.
Pyrococcus abyssi.
Archaea; Euryarchaeota; Thermococci; Thermococcales; Thermococcaceae;
Pyrococcus.
NCBI_TaxID=29292;
[1]

```

SEQUENCE FROM N.A.

```

SPRATNGE5 / Orsay;
MEDLINE:22511545; PubMed:12622808;
Cohen G.N., Barbe V., Flament D., Galperin M., Heilig R., Leconte O.,
Poch O., Prieur D., Quereilou J., Ripp R., Thierry J.-C.,
Van der Oost J., Weissenbach J., Zivanovic Y., Porte P.,
"An integrated analysis of the genome of the hyperthermophilic
archaeon Pyrococcus abyssi."
Mol. Microbiol. 47:1495-1512(2003)
-1- CATALYTIC ACTIVITY: Endohydrolysis of 1,4-alpha-glucosidic
linkages in oligosaccharides and polysaccharides.
-1- PATHWAY: Polysaccharide degradation.
-1- SIMILARITY: Belongs to family 57 of glycosyl hydrolases.

```

This SWISS-PROT entry is copyright. It is produced through a collaboration between the Swiss Institute of Bioinformatics and the EMBL outstation - the European Bioinformatics Institute. There are no restrictions on its use by non-profit institutions as long as its content is in no way modified and this statement is not removed. Usage by and for commercial entities requires a license agreement (see <http://www.isb-sib.ch/announce/> or send an email to license@isb-sib.ch).

```

EMBL; AJ24828; CAB4910.1; -
PIR; E75206; E75206.
InterPro; IPR004100; Glyco_hydro_57.
Pharm; PF0305; Glyco_hydro_57; 1.
Hydrolase; Glycosidase; carbohydrate metabolism; Complete proteome.
SEQUENCE 655 AA; 7F6F820BLA002CE CRC64;

```

```

Query Match      63.6%; Score 35; DB 1; Length 655;
Best Local Similarity 36.4%; Pred. No. 90;
Matches 4; Conservative 6; Mismatches 1; Indels 0; Gaps 0;
          1 XKKWVANTLK 11
          :::::|:|:|
          370 RRAWSNLKA 380

```

Search completed: May 17, 2004, 13:50:02
 Job time : 11 secs

GenCore version 5.1.6
Copyright (c) 1993 - 2004 Compugen Ltd.

protein - protein search, using SW mode!

on: May 17, 2004, 13:39:49 ; Search time 39 Seconds
(without alignments)

105.173 Million cell updates/sec

title:	US-09-458-299A-4226
refct score:	55
Quence:	1 XXXXWANTLKAAX 13
oring table:	BLOSUM62DX Gapo 10.0 , Gapext 0.5
searched:	1017041 seqs, 316518202 residues
total number of hits satisfying chosen parameters:	1017041
minimum DB seq length:	0
maximum DB seq length:	2000000000
st-processing:	Minimum Match 0% Maximum Match 100% Listing First 45 summaries

Database : SFARIgene_2.2;

1: sp_archea:*

2: sp_bacteria:*

3: sp_fungi:*

4: sp_human:*

5: sp_invertebrate:*

6: sp_mammal:*

7: sp_micr:*

8: sp_organelle:*

9: sp_phage:*

10: sp_plant:*

11: sp_rat:*

12: sp_virus:*

13: sp_vertebrate:*

14: sp_unclassified:*

15: sp_rvirus:*

16: sp_bacteriap:*

17: sp_archeap:*

PREDICTED ALIGNMENTS

RESULT 1

Query	Match	Length	DB	ID	Description
No.	Score				
1	44	80.0	333	16 Q8Y31	Q8y31 lactobacill
2	41	74.5	322	16 Q8XQ25	Q8xq25 ralstonia s
3	40	72.7	537	2 Q54410	Q54410 streptomyce
4	40	72.7	541	16 Q9FCD7	Q9fcf7 streptomyce
5	40	72.7	543	16 QBNQ84	Qbnq84 corynebacte
6	40	72.7	543	16 Q8FT92	Q8ftf92 corynebacte
7	40	72.7	1695	16 Q62604	062604 polyorchiis
8	39	70.9	111	16 Q9R250	Q9r250 deinococcus
9	39	70.9	150	15 Q89784	Q89784 human immun
10	39	70.9	202	15 Q9E4D3	Q9e4d3 human immun
11	39	70.9	217	16 QBUJM1	Qbujm1 agrobacteri
12	39	70.9	297	10 Q9AX92	Q9ax92 oryza sativ
13	39	70.9	318	5 Q9SJ36	Q9sj36 toxoplasma
14	39	70.9	328	15 Q8OF59	Q8of59 human immun
15	39	70.9	423	15 Q9ID29	Q9id29 arabidopsis
16	39	70.9	490	16 Q7V4I3	Q7v4i3 prochloroco
17	39	70.9	490	16 Q8OZ52	Q8oz52

Pred. No. is the number of results Predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	Query	Match	Length	DB	ID	Description
1	44	80.0	333	16	Q8Y31	Q8y31 lactobacill	
2	41	74.5	322	16	Q8XQ25	Q8xq25 ralstonia s	
3	40	72.7	537	2	Q54410	Q54410 streptomyce	
4	40	72.7	541	16	Q9FCD7	Q9fcf7 streptomyce	
5	40	72.7	543	16	QBNQ84	Qbnq84 corynebacte	
6	40	72.7	543	16	Q8FT92	Q8ftf92 corynebacte	
7	40	72.7	1695	16	Q62604	062604 polyorchiis	
8	39	70.9	111	16	Q9R250	Q9r250 deinococcus	
9	39	70.9	150	15	Q89784	Q89784 human immun	
10	39	70.9	202	15	Q9E4D3	Q9e4d3 human immun	
11	39	70.9	217	16	QBUJM1	Qbujm1 agrobacteri	
12	39	70.9	297	10	Q9AX92	Q9ax92 oryza sativ	
13	39	70.9	318	5	Q9SJ36	Q9sj36 toxoplasma	
14	39	70.9	328	15	Q8OF59	Q8of59 human immun	
15	39	70.9	423	15	Q9ID29	Q9id29 arabidopsis	
16	39	70.9	490	16	Q7V4I3	Q7v4i3 prochloroco	
17	39	70.9	490	16	Q8OZ52	Q8oz52	

RESULT 2

Query	Match	Length	DB	ID	Description
No.	Score				
1	44	80.0	333	16 Q8Y31	Q8y31 lactobacill
2	41	74.5	322	16 Q8XQ25	Q8xq25 ralstonia s
3	40	72.7	537	2 Q54410	Q54410 streptomyce
4	40	72.7	541	16 Q9FCD7	Q9fcf7 streptomyce
5	40	72.7	543	16 QBNQ84	Qbnq84 corynebacte
6	40	72.7	543	16 Q8FT92	Q8ftf92 corynebacte
7	40	72.7	1695	16 Q62604	062604 polyorchiis
8	39	70.9	111	16 Q9R250	Q9r250 deinococcus
9	39	70.9	150	15 Q89784	Q89784 human immun
10	39	70.9	202	15 Q9E4D3	Q9e4d3 human immun
11	39	70.9	217	16 QBUJM1	Qbujm1 agrobacteri
12	39	70.9	297	10 Q9AX92	Q9ax92 oryza sativ
13	39	70.9	318	5 Q9SJ36	Q9sj36 toxoplasma
14	39	70.9	328	15 Q8OF59	Q8of59 human immun
15	39	70.9	423	15 Q9ID29	Q9id29 arabidopsis
16	39	70.9	490	16 Q7V4I3	Q7v4i3 prochloroco
17	39	70.9	490	16 Q8OZ52	Q8oz52

RESULT 3

Query	Match	Length	DB	ID	Description
No.	Score				
1	44	80.0	333	16 Q8Y31	Q8y31 lactobacill
2	41	74.5	322	16 Q8XQ25	Q8xq25 ralstonia s
3	40	72.7	537	2 Q54410	Q54410 streptomyce
4	40	72.7	541	16 Q9FCD7	Q9fcf7 streptomyce
5	40	72.7	543	16 QBNQ84	Qbnq84 corynebacte
6	40	72.7	543	16 Q8FT92	Q8ftf92 corynebacte
7	40	72.7	1695	16 Q62604	062604 polyorchiis
8	39	70.9	111	16 Q9R250	Q9r250 deinococcus
9	39	70.9	150	15 Q89784	Q89784 human immun
10	39	70.9	202	15 Q9E4D3	Q9e4d3 human immun
11	39	70.9	217	16 QBUJM1	Qbujm1 agrobacteri
12	39	70.9	297	10 Q9AX92	Q9ax92 oryza sativ
13	39	70.9	318	5 Q9SJ36	Q9sj36 toxoplasma
14	39	70.9	328	15 Q8OF59	Q8of59 human immun
15	39	70.9	423	15 Q9ID29	Q9id29 arabidopsis
16	39	70.9	490	16 Q7V4I3	Q7v4i3 prochloroco
17	39	70.9	490	16 Q8OZ52	Q8oz52

RESULT 4

Query	Match	Length	DB	ID	Description
No.	Score				
1	44	80.0	333	16 Q8Y31	Q8y31 lactobacill
2	41	74.5	322	16 Q8XQ25	Q8xq25 ralstonia s
3	40	72.7	537	2 Q54410	Q54410 streptomyce
4	40	72.7	541	16 Q9FCD7	Q9fcf7 streptomyce
5	40	72.7	543	16 QBNQ84	Qbnq84 corynebacte
6	40	72.7	543	16 Q8FT92	Q8ftf92 corynebacte
7	40	72.7	1695	16 Q62604	062604 polyorchiis
8	39	70.9	111	16 Q9R250	Q9r250 deinococcus
9	39	70.9	150	15 Q89784	Q89784 human immun
10	39	70.9	202	15 Q9E4D3	Q9e4d3 human immun
11	39	70.9	217	16 QBUJM1	Qbujm1 agrobacteri
12	39	70.9	297	10 Q9AX92	Q9ax92 oryza sativ
13	39	70.9	318	5 Q9SJ36	Q9sj36 toxoplasma
14	39	70.9	328	15 Q8OF59	Q8of59 human immun
15	39	70.9	423	15 Q9ID29	Q9id29 arabidopsis
16	39	70.9	490	16 Q7V4I3	Q7v4i3 prochloroco
17	39	70.9	490	16 Q8OZ52	Q8oz52

RESULT 5

Query	Match	Length	DB	ID	Description
No.	Score				
1	44	80.0	333	16 Q8Y31	Q8y31 lactobacill
2	41	74.5	322	16 Q8XQ25	Q8xq25 ralstonia s
3	40	72.7	537	2 Q54410	Q54410 streptomyce
4	40	72.7	541	16 Q9FCD7	Q9fcf7 streptomyce
5	40	72.7	543	16 QBNQ84	Qbnq84 corynebacte
6	40	72.7	543	16 Q8FT92	Q8ftf92 corynebacte
7	40	72.7	1695	16 Q62604	062604 polyorchiis
8	39	70.9	111	16 Q9R250	Q9r250 deinococcus
9	39	70.9	150	15 Q89784	Q89784 human immun
10	39	70.9	202	15 Q9E4D3	Q9e4d3 human immun
11	39	70.9	217	16 QBUJM1	Qbujm1 agrobacteri
12	39	70.9	297	10 Q9AX92	Q9ax92 oryza sativ
13	39	70.9	318	5 Q9SJ36	Q9sj36 toxoplasma
14	39	70.9	328	15 Q8OF59	Q8of59 human immun
15	39	70.9	423	15 Q9ID29	Q9id29 arabidopsis
16	39	70.9	490	16 Q7V4I3	Q7v4i3 prochloroco
17	39	70.9	490	16 Q8OZ52	Q8oz52

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SQ	SEQUENCE	537 AA;	58273 MW;	850703374BC4DEC9 CRC64;
D Q8XQ25; PPRELIMINARY; PRT; 3322 AA.				
C Q8XQ25; 01-MAR-2002 (TREMBLrel 20, Created)				
D 01-MAR-2003 (TREMBLrel 25, Last sequence update)				
I 01-OCT-2003 (TREMBLrel 25, Last annotation update)				
B Probable hemoglobin-related protein.				
R RSP1073 OR R804477.				
S Ralstonia solanacearum (Pseudomonas solanacearum).				
D Plasmid megaplasmid.				
B Bacteria; Proteobacteria; Betaproteobacteria; Burkholderiales;				
B Burkholderiaceae; Ralstonia.				
N NCBITaxID=305;				
V [1] _				
P SEQUENCE FROM N.A.				
K STRAIN=GNI1000;				
M MEDLINE=2168-879; PubMed=11823852;				
K Salanoubat M., Genin S., Artiguenave F., Gouzy J., Mangenot S., Arialt M., Billaud A., Brottier P., Camus J.C., Cattoico L., Chandler M., Choaine N., Claudel-Renard C., Cunnac S., Demange N., Gaspin C., Lario M., Moisan A., Robert C., Saurin W., Schiex T., Siegler P., Thebault P., Whalen M., Levy M., Weissenbach J., Boucher C.A.; "Genome sequence of the plant pathogen Ralstonia solanacearum."; Nature 415:49-52 (2002).				
E EMBL; AL646032; CAD18224.1; -.				
G GO:0046821; C:extrachromosomal DNA; IEA.				
I InterPro; IPR00610; IPR00610; Fil_haemagg.				
I InterPro; IPR008634; Haemagg_act.				
P Pfam; PF05594; Fil_haemagg_19.				
P Pfam; PF05602; Haemagg_act; 1.				
P Plasmid; Complete genome.				
S SEQUENCE 3322 AA; 332591 MW; 47120FE79BF8450C CRC64;				
Q Query Match Score 41; DB 16; Length 3322; Best Local Similarity 54.5%; Pred. No. 4.2e+02; Gaps 0; Matches 6; Conservative 4; Mismatches 1; Indels 0; Gaps 0;				
/ 3 XWANTLRAKX 13				
/ : : :				
J 245 GIWANTLKYSA 255				
RESULT 3				
D Q54410 PRELIMINARY; PRT; 537 AA.				
D Q54410; 01-NOV-1996 (TREMBLrel 01, Created)				
D 01-NOV-1996 (TREMBLrel 01, Last sequence update)				
D 01-OCT-2003 (TREMBLrel 25, Last annotation update)				
B Tripeptidylaminopeptidase precursor.				
B Streptomyces lividans.				
Bacteria; Actinobacteridae; Actinomycetales; Streptomyces; Streptomyctaceae; Streptomyces.				
N NCBITaxID=1946;				
V [1] _				
P SEQUENCE FROM N.A.				
M MEDLINE=86090168; PubMed=7487044; Soltes G.A., Bentler M.J., Binnie C., Dizionno M.A., Krygsman P., Soltes G.A., Soosmire G., Walczyk E., Malek L.T.; "Cloning and characterization of a gene encoding a secreted tripeptidylaminopeptidase from Streptomyces lividans 66."; Appl. Environ. Microbiol. 61:3145-3150 (1995).				
E EMBL; L27456; AAA93338; -.				
MEROPS; S33_002; -.				
G GO:0004177; F:aminopeptidase activity; IEA.				
G GO:0003824; F:catalytic activity; IEA.				
I InterPro; IPR000073; Ab-hydrolease.				
I InterPro; IPR00120; Lipase_SER; 1.				
KW Aminopeptidase; Complete protease.				
SQ SEQUENCE 541 AA; 58535 MW; 01BA2E6F70B124DB CRC64;				
Q Query Match Score 40; DB 16; Length 541; Best Local Similarity 63.6%; Pred. No. 91; Mismatches 2; Indels 0; Gaps 0;				
V [1] SIGNAL 1 39				
C CHAIN 40 537				
P Aminopeptidase; Signal.				
P POTENTIALLY AMINOPEPTIDASE.				
P TRIPEPTIDYLAMINOPEPTIDASE.				

1 XKXWANTLKA 11
 : : ||| | | |
) 146 KSAWANTAKA 156

SEQUENCE FROM N.A.
 STRAIN=ATCC 13032 / DSM 20300 / NCIB 10025;
 Nakagawa S.;
 Complete genomic sequence of Corynebacterium glutamicum ATCC 13032.;
 Submitted (MAY-2002) to the EMBL/GenBank/DBJ databases.
 EMLL; AP00527; BAB9894.7/ -.
 GO; GO:0016030; C:membrane; IEA.
 GO; GO:0005524; P:ATP binding cassette (ABC) transporter acti. . .; IEA.
 GO; GO:004409; P:ATP-binding cassette (ABC) transporter acti. . .; IEA.
 GO; GO:006810; P:transport; IEA.
 InterPro; IPR003439; ABC transporter.
 PEAM; PF00005; ABC_tran; -2.
 PRODOM; PD00006; ABC_TRANSPORTER; 2.
 PROSITE; PSS0093; ABC_TRANSPORTER; 2.
 Complete genome; IEA.

SEQUENCE 543 AA; 58866 MW; E5062AE374DDEFI CRC64;

Query Match 72.7%; Score 40; DB 16; Length 543;
 Best Local Similarity 46.2%; Pred. No. 91;
 Matches 6; Conservative 5; Mismatches 2; Indels 0; Gaps 0;

1 XKXWANTLKAAX 13
 : : ||| | | | : :
) 414 DKSWQNTIEACA 426

SEQUENCE FROM N.A.
 STRAIN=ATCC 13032 / DSM 20300 / NCIB 10025;
 Nakagawa S.;
 Complete genomic sequence of Corynebacterium glutamicum ATCC 13032.;
 Submitted (MAY-2002) to the EMBL/GenBank/DBJ databases.
 EMLL; AP00527; BAB9894.7/ -.
 GO; GO:0016030; C:membrane; IEA.
 GO; GO:0005524; P:ATP binding cassette (ABC) transporter acti. . .; IEA.
 GO; GO:004409; P:ATP-binding cassette (ABC) transporter acti. . .; IEA.
 GO; GO:006810; P:transport; IEA.
 InterPro; IPR003439; ABC transporter.
 PEAM; PF00005; ABC Tran; -2.
 PRODOM; PD00006; ABC TRANSPORTER; 2.
 PROSITE; PSS0093; ABC TRANSPORTER; 2.
 Complete genome; IEA.

SEQUENCE 543 AA; 58866 MW; E5062AE374DDEFI CRC64;

Query Match 72.7%; Score 40; DB 16; Length 543;
 Best Local Similarity 46.2%; Pred. No. 91;
 Matches 6; Conservative 5; Mismatches 2; Indels 0; Gaps 0;

1 XKXWANTLKAAX 13
 : : ||| | | | : :
) 414 DKSWQNTIEACA 426

SEQUENCE FROM N.A.
 STRAIN=S-314 / AJ 12310 / DSM 44549 / JCM 11189;
 IKeda K., Suzu M., Washima J., Yamazaki J., Hino Y., Kikuchi H., Nakamura Y.,
 Usuda Y., Sugimoto S., Itoh T., Yamagishi A., Nishio Y.,
 "The entire genomic sequence of Corynebacterium efficiens YS-314.";
 Submitted (MAY-2002) to the EMBL/GenBank/DBJ databases.
 EMLL; AP005219; BAC1848.1/ -.
 GO; GO:0016020; C:membrane; IEA.
 GO; GO:004409; P:ATP binding cassette (ABC) transporter acti. . .; IEA.
 GO; GO:0005524; P:ATP binding; IEA.
 GO; GO:0000166; P:nucleotide binding; IEA.

SEQUENCE FROM N.A.
 STRAIN=ATCC 13032 / DSM 20300 / NCIB 10025;
 Nakagawa S.;
 Complete genomic sequence of Corynebacterium glutamicum ATCC 13032.;
 Submitted (MAY-2002) to the EMBL/GenBank/DBJ databases.
 EMLL; AP00527; BAB9894.7/ -.
 GO; GO:0016030; C:membrane; IEA.
 GO; GO:0005524; P:ATP binding cassette (ABC) transporter acti. . .; IEA.
 GO; GO:004409; P:ATP-binding cassette (ABC) transporter acti. . .; IEA.
 GO; GO:006810; P:transport; IEA.
 InterPro; IPR003439; ABC transporter.
 PEAM; PF00005; ABC Tran; -2.
 PRODOM; PD00006; ABC TRANSPORTER; 2.
 PROSITE; PSS0093; ABC TRANSPORTER; 2.
 Complete genome; IEA.

SEQUENCE 543 AA; 58866 MW; E5062AE374DDEFI CRC64;

Query Match 72.7%; Score 40; DB 16; Length 543;
 Best Local Similarity 46.2%; Pred. No. 91;
 Matches 6; Conservative 5; Mismatches 2; Indels 0; Gaps 0;

1 XKXWANTLKAAX 13
 : : ||| | | | : :
) 414 DKSWQNTIEACA 426

SEQUENCE FROM N.A.
 STRAIN=ATCC 13032 / DSM 20300 / NCIB 10025;
 Nakagawa S.;
 Complete genomic sequence of Corynebacterium glutamicum ATCC 13032.;
 Submitted (MAY-2002) to the EMBL/GenBank/DBJ databases.
 EMLL; AP00527; BAB9894.7/ -.
 GO; GO:0016030; C:membrane; IEA.
 GO; GO:004409; P:ATP binding cassette (ABC) transporter acti. . .; IEA.
 GO; GO:0005524; P:ATP binding; IEA.
 GO; GO:0000166; P:nucleotide binding; IEA.

"The genome of the natural genetic engineer Agrobacterium tumefaciens C58.";
Science 294: 2317-2323 (2001).

			DE ADP/ATP carrier.
			OS <i>Toxoplasma gondii</i> .
			OC <i>Eukaryota</i> ; <i>Alveolata</i> ; <i>Apicomplexa</i> ; <i>Coccidia</i> ; <i>Eimeriida</i> ; <i>Sarcocystidae</i> .
			OC <i>Toxoplasma</i> .
			NCBI_TaxID=5811;
			RN [1]
			RP SEQUENCE FROM N.A.
			RA Voncken F.; Clayton C.; carrier of <i>Toxoplasma gondii</i> ";
			RT Mitochondrial ADP/ATP carrier of <i>Toxoplasma gondii</i> ";
			RL Submitted (JAN-2001) to the EMBL/GenBank/DBJ databases.
			DR EMBL; AF343580; AAC26384.1; -
			GO; GO:0005743; C:mitochondrial inner membrane; IEA.
			DR GO; GO:0005810; P:transport; IEA.
			DR GO; GO:0006810; P:transport; IEA.
			DR InterPro; IPR001993; Mitoch_cARRIER.
			DR InterPro; IPR002067; Mito_cARRIER.
			DR Pfam; PF0153; mito_cARR; 3.
			DR PRINTS; PRO0926; MITOCARRIER.
			DR PROSITE; PS00215; MITOCH_CARRIER; 3.
			SQ SEQUENCE 318 AA; 35242 MW; AD45301657FDA697 CRC64;
			Query Match 70.9%; Score 39; DB 5; Length 318;
			Best Local Similarity 46.2%; Prd. No. 78;
			Matches 6; Conservative 4; Mismatches 3; Indels 0; Gaps 0;
			Qy 1 XKXWANTLKAX 13
			Db 290 FKGAVALVFGAG 302
			RESULT 14
			Q8QF59 PRELIMINARY; PRT; 328 AA.
			ID Q8QF59
			AC Q8QF59;
			RA SEQUENCE FROM N.A.
			DR MEDLINE=11752161;
			RA Zhu T., Muchui D., Holte S., Nickle D., Feng F., Brodie S.,
			RA Hwangbo Y., Mallins J.J., Corey L.;
			RA "Evidence for human immunodeficiency virus type 1 replication in vivo
			RT in CD14 monocytes and its potential role as a source of virus in
			RT patients on highly active antiretroviral therapy.";
			RL J. Virol. 76:707-716(2002).
			DR EMBL; AF05862; AAL76550.1; -.
			DR PIR; AF3531; A53591.
			DR GO; GO:0016021; C:integral to membrane; IEA.
			DR GO; GO:0019028; C:viral capsid; IEA.
			DR GO; GO:001331; C:viral envelope; IEA.
			DR InterPro; IPR003326; Env GP41.
			DR Non-TER 1
			SQ SEQUENCE 328 AA; 356035 MW; D7C60C7D7DB234F CRC64;
			Query Match 70.9%; Score 39; DB 15; Length 328;
			Best Local Similarity 70.0%; Prd. No. 80;
			Mismatches 2; Conservative 2; Indels 0; Gaps 0;
			Qy 1 XKXWANTLK 10
			Db 100 SKAWANTLK 109

RESULT 15

Q8LDZ9;	PRELIMINARY;	PRT:	423 AA.
Q8LDZ9;			
) 01-OCT-2002 (TREMBLref).	22, Created)		
) 01-OCT-2002 (TREMBLref).	22, Last sequence update)		
) 01-OCT-2003 (TREMBLref).	25, Last annotation update)		
) Transcriptional activator RF2A, putative.			
) Arabidopsis thaliana (Mouse-ear cress).			
) Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;			
) Spermatophyta; Magnoliophyta; eudicots; core eudicots; rosids;			
) eurosids II; Brassicales; Brassicaceae; Arabidopsis.			
NCBI_TaxID=3702;			

[1] SEQUENCE FROM N.A.
Haas B.J., Volfovsky N., Town C.D., Troukhan M., Alexandrov N.,
Feldmann K.A., Flavell R.B., White O., Salzberg S.L.;
"Full-length messenger RNA sequences greatly improve genome
annotation.", Genome Biol., 0:0-0 (2002).

[2] SEQUENCE FROM N.A.
Brover V., Troukhan M., Alexandrov N., Lu Y.-P., Flavell R.,
Feldmann K.; "Full-Length cDNA from Arabidopsis thaliana.",
Submitted (MAR-2002) to the EMBL/GenBank/DBJ databases.
EMBL: AY085706; AAC6294.1;
GO: GO:0005634; C:nucleus; IEA.
GO: GO:0003677; F:DNA binding; IEA.
GO: GO:0006355; P:regulation of transcription, DNA-dependent; IEA.
InterPro: IPR004827; TF_bZIP_P.
Pfam: PF00170; bZIP_P_1.
SMART: SM00318; BRL2_1.
PROSITE: PS55217; BZIP_P_1.
SEQUENCE 423 AA; 47062 NW; FE74A06665E70B90 CRC64;

Query Match	70.9%	Score	39;	DB	10;	Length	423;			
Best Local Similarity	46.2%	Pred.	No.	1.1e+0;	Mismatches	2;	Indels	0;	Gaps	0;
Matches	6;	Conservative	5;							
/	1 XKKXWANTIKAAK 13	:	:	:	:	:				
)	214 AKR1WANSQAAR 226									

search completed: May 17, 2004, 13:50:54
db time : 39 secs