Deep Neural network

Last time

• Difference between linear regression and logistic regression

• How to optimize logistic regression

Preliminariries: Digital image representation

11	14	45	36	26	13	14	24	66		
13	46	36	25	24	23	32	23	52	52	·
21	64	80	82	104	33	101	140	33	101	140
	68	77	107	111	120	187	100	120	187	100
45	55	101	140	121	33	101	140	50	41	60
13		33	112		120	187	100	104	100	75
32	86	120				77		111	116	
23	85	120	187	100	34	//	107	111	110	85
:	86	33	101	140	33	101	140	121	90	12
	:	120	187	100	120	187	100	140	10	10

Picture element: pixel

Typically 8-bits per channel [0-255] (UINT)

Preliminairies: Convolution / image filtering

Linear filtering

Image

$$w(x,y) \star f(x,y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) f(x-s,y-t)$$

w(-1,-1)	w (−1,0)	w(−1,1)
w(0,−1)	w (0,0)	w (0,1)
w(1,-1)	w(1,0)	w(1,1)

Filter kernel

Linear filtering

How to deal with pixels at the border?

Flip mask w.r.t. signal

 $\sum w(s,t)f(x-s,y-t)$

Image f

0	0	0	0	0
0	0	0	0	0
0	0	1	0	0
0	0	0	0	0
0	0	0	0	0

Kernel w

Zero padded image

Zero padded image

 $\mathbf{w}(x,y) \star \mathbf{f}(x,y) = \mathbf{f}(x,y)$

Cropped result

0	0	0	0	0
0	1	2	3	0
0	4	5	6	0
0	7	8	9	0
0	0	0	0	0

try your self

Low-pass filter

High-pass filter

Single filters to find specific color changes

Single filters to find specific color changes

Image features Co-occurrence matrix

- Given a grey-level image I, co-occurrence matrix computes how often pairs of pixels with a specific value and offset occur in the image.
- The offset, $(\Delta x, \Delta y)$ is a position operator that can be applied to any pixel in the image (ignoring edge effects): for instance, (1,2) could indicate "one down, two right".
- An image with p different pixel values will produce a p xp co-occurrence matrix, for the given offset.
- The (i,j)th value of the co-occurrence matrix gives the number of times in the image that the ith and jth pixel values occur in the relation given by the offset.

$$C_{\Delta x, \Delta y}(i,j) = \sum_{x=1}^n \sum_{y=1}^m egin{cases} 1, & ext{if } I(x,y) = i ext{ and } I(x+\Delta x, y+\Delta y) = j \ 0, & ext{otherwise} \end{cases}$$

Co-occurrence matrix

Statistical measures

 $\sum_{i} \sum_{j} \frac{P(i,j)}{1+|i-j|}$ Homogeneity

 $\sum_{i}\sum_{j}(i-j)^{2}P(i,j)$ Contrast

Energy $\sum_{i} \sum_{j} P(i,j)^2$

Dissimilarity $\sum_{i} \sum_{j} P(i,j)|i-j|$ Entropy $-\sum_{i} \sum_{j} P(i,j) \log($

Entropy

 $-\sum_{i}\sum_{j}P(i,j)\log(P(i,j)+\varepsilon)$ $\sum_{i}\sum_{j}\frac{(i-\mu_{x})(i-\mu_{y})P(i,j)}{\sigma_{x}\sigma_{y}}$ Correlation

$$C_{\Delta x, \Delta y}(i,j) = \sum_{x=1}^n \sum_{y=1}^m egin{cases} 1, & ext{if } I(x,y) = i ext{ and } I(x+\Delta x, y+\Delta y) = j \ 0, & ext{otherwise} \end{cases}$$

Example

https://scikit-image.org/docs/stable/auto_examples/features_detection/plot_glcm.html

Preliminairies: Image features

- Generally not optimal to work on the raw data
 - Very sensitive to changes in viewpoint, illumination, scaling, rotation, etc.
 - Super high dimensional: curse of dimensionality
- Better idea: use a low dimensional mapping of the original data
 - Summarize the image into a set of descriptive features (lines, corners, colors, texture, ...)
 - Enables training relatively simple and robust classification models
- Concept also used in neural networks
 - Use an encoding scheme to obtain a representation in a latent (feature) space
 - Similar to image compression!

Preliminairies: Classification

• Linear classification example:separate lemons from oranges

Color:
orange
Shape:
sphere
Diameter:
Diameter:±8 cm
Weigth:
±0.1 kg

Color:
yellow
Shape:
elipsoid
Diameter:
Diameter:±8 cm
Weigth:
±0.1 kg

→ Use "color" and "shape" as features

Feature representation

How to get such a model?

Neural Network

The "one learning algorithm" hypothesis

[Roe et al. 1992] Slide credit: Andrew Ng

The "one learning algorithm" hypothesis

[Metin and Frost 1989] Slide credit: Andrew Ng

Sensor representations in the brain

Seeing with your tongue

Haptic belt: Direction sense

Human echolocation (sonar)

Implanting a 3rd eye

[BrainPort; Welsh & Blasch, 1997; Nagel et al., 2005; Constantine-Paton & Law, 2009]

Slide credit: Andrew Ng

Neural Network

Sigmoid (logistic) activation function:
$$g(z) = \frac{1}{1 + e^{-z}}$$

Neural Network (feed forward)

Slide by Andrew Ng

Feed-Forward Process

Input layer units are features

- Working forward through the network, the input function is applied to compute the input value
 - E.g., weighted sum of the input
- The activation function transforms this input function into a final value
 - Typically a nonlinear function (e.g, sigmoid)

Layer 1
(Input Layer)

Layer 2
Hidden Laver

Layer 3
(Output Layer)

 $a_i^{(j)}$ = "activation" of unit i in layer j

 $\Theta^{(j)}$ = weight matrix controlling function mapping from layer j to layer j + 1

$$a_{1}^{(2)} = g(\Theta_{10}^{(1)}x_{0} + \Theta_{11}^{(1)}x_{1} + \Theta_{12}^{(1)}x_{2} + \Theta_{13}^{(1)}x_{3})$$

$$a_{2}^{(2)} = g(\Theta_{20}^{(1)}x_{0} + \Theta_{21}^{(1)}x_{1} + \Theta_{22}^{(1)}x_{2} + \Theta_{23}^{(1)}x_{3})$$

$$a_{3}^{(2)} = g(\Theta_{30}^{(1)}x_{0} + \Theta_{31}^{(1)}x_{1} + \Theta_{32}^{(1)}x_{2} + \Theta_{33}^{(1)}x_{3})$$

$$h_{\Theta}(x) = a_{1}^{(3)} = g(\Theta_{10}^{(2)}a_{0}^{(2)} + \Theta_{11}^{(2)}a_{1}^{(2)} + \Theta_{12}^{(2)}a_{2}^{(2)} + \Theta_{13}^{(2)}a_{3}^{(2)})$$

If network has s_j units in layer j and s_{j+1} units in layer j+1, then $\Theta^{(j)}$ has dimension $s_{j+1}\times(s_j+1)$

$$\Theta^{(1)} \in \mathbb{R}^{3 \times 4} \qquad \Theta^{(2)} \in \mathbb{R}^{1 \times 4}$$

Vector Representation

$$a_{1}^{(2)} = g\left(\Theta_{10}^{(1)}x_{0} + \Theta_{11}^{(1)}x_{1} + \Theta_{12}^{(1)}x_{2} + \Theta_{13}^{(1)}x_{3}\right) = g\left(z_{1}^{(2)}\right)$$

$$a_{2}^{(2)} = g\left(\Theta_{20}^{(1)}x_{0} + \Theta_{21}^{(1)}x_{1} + \Theta_{22}^{(1)}x_{2} + \Theta_{23}^{(1)}x_{3}\right) = g\left(z_{2}^{(2)}\right)$$

$$a_{3}^{(2)} = g\left(\Theta_{30}^{(1)}x_{0} + \Theta_{31}^{(1)}x_{1} + \Theta_{32}^{(1)}x_{2} + \Theta_{33}^{(1)}x_{3}\right) = g\left(z_{3}^{(2)}\right)$$

$$h_{\Theta}(\mathbf{x}) = g\left(\Theta_{10}^{(2)}a_{0}^{(2)} + \Theta_{11}^{(2)}a_{1}^{(2)} + \Theta_{12}^{(2)}a_{2}^{(2)} + \Theta_{13}^{(2)}a_{3}^{(2)}\right) = g\left(z_{1}^{(3)}\right)$$

Feed-Forward Steps:

$$\mathbf{z}^{(2)} = \Theta^{(1)}\mathbf{x}$$

$$\mathbf{a}^{(2)} = g(\mathbf{z}^{(2)})$$

$$\text{Add } a_0^{(2)} = 1$$

$$\mathbf{z}^{(3)} = \Theta^{(2)}\mathbf{a}^{(2)}$$

$$h_{\Theta}(\mathbf{x}) = \mathbf{a}^{(3)} = g(\mathbf{z}^{(3)})$$

Can extend to multi-class

Pedestrian

Car

Motorcycle

Truck

$$h_{\Theta}(\mathbf{x}) \in \mathbb{R}^K$$

We want:

$$h_{\Theta}(\mathbf{x}) pprox \left[egin{array}{c} 1 \ 0 \ 0 \ 0 \end{array}
ight]$$

$$h_{\Theta}(\mathbf{x}) \approx \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

$$h_{\Theta}(\mathbf{x}) pprox egin{bmatrix} 1 \ 0 \ 0 \ 0 \end{bmatrix} \qquad h_{\Theta}(\mathbf{x}) pprox egin{bmatrix} 0 \ 1 \ 0 \ 0 \end{bmatrix} \qquad h_{\Theta}(\mathbf{x}) pprox egin{bmatrix} 0 \ 0 \ 1 \ 0 \end{bmatrix} \qquad h_{\Theta}(\mathbf{x}) pprox egin{bmatrix} 0 \ 0 \ 0 \ 1 \ 0 \end{bmatrix}$$

$$h_{\Theta}(\mathbf{x}) pprox \left[egin{array}{c} 0 \\ 0 \\ 0 \\ 1 \end{array}
ight]$$

when pedestrian

when car

when motorcycle when truck

Why staged predictions?

Simple example: AND

$$x_1, x_2 \in \{0, 1\}$$

 $y = x_1 \text{ AND } x_2$

$$h_{\Theta}(\mathbf{x}) = g(-30 + 20x_1 + 20x_2) -$$

x_1	x_2	$h_{\Theta}(\mathbf{x})$
0	0	g(-30) ≈ 0
0	1	$g(-10) \approx 0$
1	0	$g(-10) \approx 0$
1	1	$g(10) \approx 1$

Representing Boolean Functions

Combining Representations to Create Non-Linear Functions

Based on example by Andrew Ng

-20

 x_2

Layering Representations

Each image is "unrolled" into a vector x of pixel intensities

Layering Representations

Visualization of Hidden Layer

Stochastic Sub-gradient Descent

```
Given a training set \mathcal{D} = \{(x, y)\}
```

```
Initialize w \leftarrow \mathbf{0} \in \mathbb{R}^n
For epoch 1...T:
For (x,y) in \mathcal{D}:
Update w \leftarrow w - \eta \nabla f(\theta)
```

• Return θ

ML in NLP 40

Recap: Logistic regression

$$\min_{\boldsymbol{\theta}} \frac{\lambda}{2n} \boldsymbol{\theta}^T \boldsymbol{\theta} + \frac{1}{n} \sum_{i} \log \left(1 + e^{-y_i(\boldsymbol{\theta}^T \mathbf{x}_i)} \right)$$

Let $h_{\theta}(x_i) = 1/(1 + e^{-\theta^T x_i})$ (probability y = 1 given x_i)

$$\frac{\lambda}{2n}\boldsymbol{\theta}^T\boldsymbol{\theta} + \frac{1}{n}\sum_i y_i \log(h_{\theta}(x_i)) + (1 - y_i)(\log(1 - h_{\theta}(x_i)))$$

ML in NLP 41

Cost Function

$$f(\theta) = J(\theta) + g(\theta), \quad g(\theta) = \gamma \theta^T \theta$$

Logistic Regression:

$$J(\theta) = -\frac{1}{n} \sum_{i=1}^{n} [y_i \log h_{\theta}(\mathbf{x}_i) + (1 - y_i) \log (1 - h_{\theta}(\mathbf{x}_i))] + \frac{\lambda}{2n} \sum_{j=1}^{d} \theta_j^2$$

Neural Network:

$$\begin{split} h_{\Theta} &\in \mathbb{R}^{K} & (h_{\Theta}(\mathbf{x}))_{i} = i^{th} \text{output} \\ J(\Theta) &= -\frac{1}{n} \left[\sum_{i=1}^{n} \sum_{k=1}^{K} \underbrace{y_{ik}} \log \left(h_{\Theta}(\mathbf{x}_{i}) \right)_{k} + (1 - y_{ik}) \log \left(1 - \left(h_{\Theta}(\mathbf{x}_{i}) \right)_{k} \right) \right] \\ &+ \frac{\lambda}{2n} \sum_{l=1}^{L-1} \sum_{i=1}^{s_{l-1}} \sum_{i=1}^{s_{l}} \left(\Theta_{ji}^{(l)} \right)^{2} & \text{ & kth class: true, predicted not k^{th} class: true, predicted not $k^{\text{$$

Optimizing the Neural Network

$$J(\Theta) = -\frac{1}{n} \left[\sum_{i=1}^{n} \sum_{k=1}^{K} y_{ik} \log(h_{\Theta}(\mathbf{x}_{i}))_{k} + (1 - y_{ik}) \log(1 - (h_{\Theta}(\mathbf{x}_{i}))_{k}) \right] + \frac{\lambda}{2n} \sum_{l=1}^{L-1} \sum_{i=1}^{s_{l-1}} \sum_{j=1}^{s_{l}} \left(\Theta_{ji}^{(l)}\right)^{2}$$

Solve via: $\min_{\Theta} J(\Theta)$

 $J(\Theta)$ is not convex, so GD on a neural net yields a local optimum

But, tends to work well in practice

Need code to compute:

- $J(\Theta)$
- $\bullet \frac{\partial}{\partial \Theta_{ij}^{(l)}} J(\Theta)$

Forward Propagation

• Given one labeled training instance (\mathbf{x}, y) :

Forward Propagation

- $a^{(1)} = x$
- $\mathbf{z}^{(2)} = \Theta^{(1)} \mathbf{a}^{(1)}$
- $\mathbf{a}^{(2)} = g(\mathbf{z}^{(2)})$ [add $\mathbf{a}_0^{(2)}$]
- $\mathbf{z}^{(3)} = \Theta^{(2)} \mathbf{a}^{(2)}$
- $\mathbf{a}^{(3)} = g(\mathbf{z}^{(3)})$ [add $\mathbf{a}_0^{(3)}$]
- $\mathbf{z}^{(4)} = \Theta^{(3)} \mathbf{a}^{(3)}$
- $\mathbf{a}^{(4)} = \mathbf{h}_{\Theta}(\mathbf{x}) = g(\mathbf{z}^{(4)})$

Online examples

https://www.w3schools.com/ai/ai_perceptrons.asp

Next time

- Can we make a model for image classification?
- Can we measure the quality of a certain model?
- How can we improve this by learning from data?

• Middle test: 18th Oct 2022

Final project

Backpropagation: Compute Gradient

$$rac{d}{dt}f(g(t))=f'(g(t))g'(t)=rac{df}{dg}\cdotrac{dg}{dt}$$

$$\delta_j^{\,(l)} =$$
 "error" of node j in layer l Formally, $\delta_j^{(l)} = rac{\partial}{\partial z_j^{(l)}} \mathrm{cost}(\mathbf{x}_i)$

where
$$cost(\mathbf{x}_i) = y_i \log h_{\Theta}(\mathbf{x}_i) + (1 - y_i) \log(1 - h_{\Theta}(\mathbf{x}_i))$$

36