TITLE OF THE INVENTION

光学特性計測方法、露光方法及びデバイス製造方法

CROSS-REFERENCE TO RLATED APPLICATIONS

This is a continuation of International Application PCT/JP02/04435, with an international filing date of May 7, 2002, the entire content of which being hereby incorporated herein by reference, which was not published in English.

BACKGROUND OF THE INVENTION

Field of The Invention

本発明は、光学特性計測方法、露光方法及びデバイス製造方法に係り、更に 詳しくは、投影光学系の光学特性を計測する光学特性計測方法、該光学特性計 測方法によって計測された光学特性を考慮して調整された投影光学系を用いて 露光を行う露光方法、及び該露光方法を利用したデバイスの製造方法に関する。

Description of The Related Art

従来より、半導体素子、液晶表示素子等を製造するためのリソグラフィエ程では、マスク又はレチクル(以下、「レチクル」と総称する)に形成されたパターンを投影光学系を介してレジスト等が塗布されたウエハ又はガラスプレート等の基板(以下、適宜「ウエハ」ともいう)上に転写する露光装置が用いられている。この種の装置としては、近年では、スループットを重視する観点から、ステップ・アンド・リピート方式の縮小投影露光装置(いわゆる「ステッパ」)や、このステッパを改良したステップ・アンド・スキャン方式の走査型露光装置などの逐次移動型の露光装置が、比較的多く用いられている。

また、半導体素子(集積回路)等は年々高集積化しており、これに伴い半導

体素子等の製造装置である投影露光装置には、一層の高解像力、すなわちより 微細なパターンを精度良く転写できることが要求されるようになってきた。投 影露光装置の解像力を向上させるためには、投影光学系の光学性能を向上させ ることが必要であり、従って投影光学系の光学特性(結像特性を含む)を正確 に計測し、評価することが重要となっている。

投影光学系の光学特性、例えばパターンの像面の正確な計測は、投影光学系の視野内の各評価点(計測点)における最適なフォーカス位置(最良フォーカス位置)を正確に計測できることが前提となる。

従来の投影露光装置における最良フォーカス位置の計測方法としては、主と して以下の2つが知られている。

1つは、いわゆるCD/フォーカス法として知られている計測方法である。ここでは、所定のレチクルパターン(例えば、ラインアンドスペースパターン等)をテストパターンとして、このテストパターンを投影光学系の光軸方向に関する複数のウェハ位置でテスト用ウェハに転写する。そして、そのテスト用ウェハを現像して得られるレジスト像(転写されたパターンの像)の線幅値を走査型電子顕微鏡(SEM)等を用いて計測し、その線幅値と投影光学系の光軸方向に関するウェハ位置(以下、適宜「フォーカス位置」ともいう)との相関関係に基づいて最良フォーカス位置を判断する。

他の1つは、例えば日本特許第2580668号、第2712330号、及び対応する米国特許第4,908,656号などに開示される、いわゆるSMPフォーカス計測法として知られている計測方法である。ここでは、複数のフォーカス位置で、くさび形マークのレジスト像をウエハ上に形成し、フォーカス位置の違いによるレジスト像の線幅値の変化を長手方向の寸法変化に増幅させて置き換え、ウエハ上のマークを検出するアライメント系などのマーク検出系を用いてレジスト像の長手方向の長さを計測する。そして、フォーカス位置とレジスト像の長さとの相関関係を示す近似曲線の極大値近傍を所定のスライ

スレベルでスライスし、得られたフォーカス位置の範囲の中点を最良フォーカス位置と判断する。

そして、種々のテストパターンについて、このようにして得られた最良フォーカス位置に基づいて、投影光学系の光学特性である非点収差や像面湾曲等を 計測している。

しかし、上述したCD/フォーカス法では、例えばレジスト像の線幅値をS EMで計測するために、SEMのフォーカス合わせを厳密に行う必要があり、 1点当たりの計測時間が非常に長く、多数点での計測をするためには数時間か ら数十時間が必要とされていた。また、投影光学系の光学特性を計測するため のテスト用パターンも微細化するとともに、投影光学系の視野内での評価点の 数も増加することが予想される。従って、SEMを用いた従来の計測方法では、 計測結果が得られるまでのスループットが大幅に低下してしまうという不都合 があった。また、測定誤差や測定結果の再現性についても、より高いレベルが 要求されるようになり、従来の計測方法ではその対応が困難となってきた。さ らに、フォーカス位置と線幅値の相関関係を示す近似曲線は、誤差を小さくす るために4次以上の近似曲線が用いられており、それには、評価点毎に少なく とも5種類のフォーカス位置に関する線幅値が求められなければならないとい う制約があった。また、最良フォーカス位置からずれたフォーカス位置(投影 光学系の光軸方向に関する+方向と一方向との両方を含む)での線幅値と最良 フォーカス位置での線幅値との差は、誤差を小さくするために10%以上であ ることが要求されているが、この条件を満足させることが困難となってきた。

また、上述したSMPフォーカス計測法では、通常、計測を単色光で行うために、レジスト像の形状の違いにより干渉の影響が異なり、それが計測誤差(寸法オフセット)につながることが考えられる。さらに、画像処理にてくさび形マークのレジスト像の長さ計測を行うには、レジスト像の最も細くなる長手方向の両端部分までの情報を詳細に取り込む必要が有り、現状の画像取り込み機

器(CCDカメラ等)の分解能では未だ十分ではないという問題点がある。また、テストパターンが大きいために、投影光学系の視野内での評価点の数を増加させることが困難であった。

この他、主として上述のCD/フォーカス法の欠点を改善するものとして、テスト露光によってパターンが転写されたウエハを現像し、現像後にウエハ上に形成されるパターンのレジスト像を撮像し、その撮像データを用いて所定のテンプレートとのパターンマッチングを行い、その結果に基づいて最良フォーカス位置などの最良露光条件を決定する発明が、例えば特開平11-233434号公報などに開示されている。この公報に開示される発明によると、SMP計測法のような現状の画像取り込み機器(CCDカメラ等)の分解能不足や、投影光学系の視野内での評価点の数の増加が困難であるという不都合もない。

しかるに、テンプレートマッチング法を採用して、かつこれを自動化する場合には、そのテンプレートマッチングを容易にするためにパターンとともにマッチングの基準となる枠(パターン)がウエハ上に形成されるのが通常である。

しかしながら、上述のようなテンプレートマッチングを用いた最良露光条件の決定方法にあっては、多種多用なプロセス条件の中にはパターンの近傍に形成されるテンプレートマッチングの基準となる枠の存在により、画像処理方式のウエハアライメント系、例えばFIA(field image alignment)系のアライメントセンサなどで画像取り込みを行った場合に、パターン部のコントラストが著しく低下して計測が不可能になる場合があった。

SUMMARY OF THE INVENTION

本発明は、かかる事情の下になされたものであり、その第1の目的は、短時間で、精度及び再現性良く投影光学系の光学特性を計測することができる光学特性計測方法を提供することにある。

また、本発明の第2の目的は、高精度な露光を実現できる露光方法を提供す

ることにある。

また、本発明の第3の目的は、高集積度のデバイスの生産性を向上させることができるデバイス製造方法を提供することにある。

本発明は、第1の観点からすると、第1面上のパターンを第2面上に投影する投影光学系の光学特性を計測する光学特性計測方法であって、少なくとも1つの露光条件を変更しながら、前記第1面上に配置された計測用パターンを前記投影光学系の第2面側に配置された物体上に順次転写してマトリックス状に配置された複数の区画領域から成る全体として矩形の第1領域を前記物体上に形成する第1工程と;前記第1領域の周囲の少なくとも一部の前記物体上の領域に過露光の第2領域を形成する第2工程と;前記第1領域を構成する前記複数の区画領域の少なくとも一部の複数の区画領域における前記計測用パターンの像の形成状態を検出する第3工程と;前記検出結果に基づいて前記投影光学系の光学特性を求める第4工程と;を含む第1の光学特性計測方法である。

本明細書において、「露光条件」とは、照明条件(マスクの種別を含む)、像面上における露光ドーズ量等狭義の露光条件の他、投影光学系の光学特性など露光に関連する全ての構成部分の設定条件を含む広義の露光条件を意味する。

これによれば、少なくとも1つの露光条件を変更しながら、第1面(物体面) 上に配置された計測用パターンを投影光学系の第2面(像面)側に配置された 物体上に順次転写してマトリックス状に配置された複数の区画領域から成る全 体として矩形の第1領域を物体上に形成するとともに、第1領域の周囲の少な くとも一部の物体上の領域に過露光の第2領域を形成する(第1、第2工程)。

そして、第1領域を構成する複数の区画領域の少なくとも一部の複数の区画 領域における計測用パターンの像の形成状態を検出する(第3工程)。ここで、 計測用パターンの像の形成状態の検出は、物体が感光物体である場合に、その 物体を現像することなく物体上に形成された潜像に対して行っても良いし、上 記像が形成された物体を現像した後、物体上に形成されたレジスト像、あるい はレジスト像が形成された物体をエッチング処理して得られる像(エッチング像)などに対して行っても良い。ここで、物体上における像の形成状態を検出するための感光層は、フォトレジストに限らず、光(エネルギ)の照射によって像(潜像及び顕像の少なくとも一方)が形成されるものであれば良い。例えば、感光層は、光記録層、光磁気記録層などであっても良く、従って、感光層が形成される物体もウエハ又はガラスプレート等に限らず、光記録層、光磁気記録層が形成可能な板等であっても良い。

例えば、像の形成状態の検出をレジスト像、エッチング像などに対して行う場合には、SEMなどの顕微鏡は勿論、例えば露光装置のアライメント検出系、例えばアライメントマークの像を撮像素子上に結像する画像処理方式のアライメント検出系、いわゆるFIA(Field Image Alignment)系のアライメントセンサや、コヒーレントな検出光を対象に照射し、その対象から発生する散乱光又は回折光を検出するアライメントセンサ、例えばいわゆるLSA系のアライメントセンサや、その対象から発生する2つの回折光(例えば同次数)を干渉させて検出するアライメントセンサなど、各種のアライメントセンサをも用いることができる。

また、像の形成状態の検出を潜像に対して行う場合には、FIA系などを用いることができる。

いずれにしても、第1領域の外側に過露光の第2領域(パターン像が形成されない領域)が存在するので、第1領域内の最外周部に位置する区画領域(以下、「外縁部区画領域」と呼ぶ)の検出の際に、隣接する外側の領域のパターン像の存在によりその外縁部区画領域の像のコントラストが低下するのが防止される。従って、前記外縁部区画領域と第2領域の境界線をS/N比良く検出することが可能となり、その境界線を基準として設計値に基づき他の区画領域の位置を算出することにより、他の区画領域のほぼ正確な位置を求めることが可能となる。これにより、第1領域内の複数の区画領域それぞれの位置をほぼ正

確に知ることができるので、例えばそれぞれの区画領域における像のコントラスト、あるいは回折光などの反射光の光量などを検出することにより、パターン像の形成状態を短時間で検出することが可能になる。

そして、その検出結果に基づいて投影光学系の光学特性を求める(第4工程)。 ここでは、客観的かつ定量的な像のコントラスト、回折光などの反射光の光量 などを用いた検出結果に基づいて光学特性が求められるために、従来の方法と 比較して光学特性を精度及び再現性良く計測することができる。

また、従来の寸法を計測する方法に比べて、計測用パターンを小さくすることができるため、マスク(又はレチクル)のパターン領域内に多くの計測用パターンを配置することが可能となる。従って、評価点の数を増加させることができるとともに、各評価点間の間隔を狭くすることができ、結果的に光学特性計測の測定精度を向上させることが可能となる。

従って、本発明の第1の光学特性計測方法によれば、短時間で、精度及び再 現性良く投影光学系の光学特性を計測することができる。

この場合において、第1工程は、第2工程に先立って行われても良いが、前記第2工程は、前記第1工程に先立って行われることとしても良い。後者の場合には、例えば感光剤として、化学増幅型レジストなどの高感度レジストを用いる場合に、計測用パターンの像の形成(転写)から現像までの時間を短くできるので、特に好適である。

本発明の第1の光学特性計測方法では、前記第2領域は、前記第1領域を取り囲む一回り大きい矩形枠状の領域の少なくとも一部であることとすることができる。かかる場合には、第2領域の外縁部を検出することにより、その外縁部を基準として第1領域を構成する複数の区画領域の位置を容易に算出することも可能である。

本発明の第1の光学特性計測方法において、前記第2工程では、前記第1面 上に配置された所定のパターンを前記投影光学系の第2面側に配置された前記 物体上に転写して前記第2領域を形成することとすることができる。この場合において、所定のパターンとしては、矩形枠状のパターン、あるいはその矩形枠の一部形状、例えばコ字状(U字状)のパターンなど種々のパターンが考えられる。例えば、前記所定のパターンが全体として矩形のパターンである場合には、前記第2工程では、前記第1面上に配置された前記全体として矩形のパターンを前記投影光学系の第2面側に配置された前記物体上に走査露光方式(又はステップ・アンド・スティッチ方式)などで転写することとすることができる。あるいは、前記所定のパターンが全体として矩形のパターンである場合に、前記第2工程では、前記第1面上に配置された前記全体として矩形のパターンを前記投影光学系の第2面側に配置された前記全体として矩形のパターンを前記投影光学系の第2面側に配置された前記物体上に順次転写することとすることもできる。

この他、本発明の第1の光学特性計測方法において、前記第2工程では、前記第1面上に配置された前記計測用パターンを前記投影光学系の第2面側に配置された前記物体上に過露光となる露光量で順次転写して前記第2領域を形成することとすることができる。

本発明の第1の光学特性計測方法において、前記第3工程では、前記第2領域の一部を基準として前記第1領域を構成する複数の区画領域それぞれの位置を算出することとすることができる。

本発明の第1の光学特性計測方法において、前記第3工程では、前記第1領域を構成する複数の区画領域及び前記第2領域に対応する撮像データに基づき、テンプレートマッチングの手法により前記第1領域を構成する前記複数の区画領域の少なくとも一部の複数の区画領域における像の形成状態を検出することとすることができる。

本発明の第1の光学特性計測方法において、前記第3工程では、前記第1領域を構成する前記複数の区画領域の少なくとも一部の複数の区画領域における像の形成状態を、撮像により得られた前記各区画領域のピクセルデータに関す

る代表値を判定値として検出することとすることができる。かかる場合には、 各区画領域のピクセルデータに関する代表値という客観的かつ定量的な値を判 定値として像(計測用パターンの像)の形成状態を検出するので、像の形成状 態を精度、再現性良く検出することが可能となる。

この場合において、前記代表値は、前記ピクセルデータの加算値、微分総和値、分散及び標準偏差の少なくとも1つであることとすることができる。あるいは、前記代表値は、各区画領域内の指定範囲内におけるピクセル値の加算値、微分総和値、分散及び標準偏差のいずれかであることとすることもできる。ここで、各区画領域内の指定範囲は勿論、代表値の算出のためピクセルデータを抽出するエリア(例えば区画領域)の形状は、矩形、円形、楕円形、あるいは三角形などの多角形、のいずれの形状であっても良い。

本発明の第1の光学特性計測方法では、前記像の形成状態の検出に際し、前記各区画領域の代表値を所定の閾値と比較して二値化することとすることができる。かかる場合には、像(計測用パターンの像)の有無を精度、再現性良く検出することが可能となる。

なお、本明細書において、上記の代表値として用いられるピクセル値の加算値、分散あるいは標準偏差などを、適宜、「スコア」あるいは「コントラストの指標値」などとも呼ぶものとする。

本発明の第1の光学特性計測方法では、前記露光条件は、前記投影光学系の 光軸方向に関する前記物体の位置及び前記物体上に照射されるエネルギビーム のエネルギ量の少なくとも一方を含むこととすることができる。

本発明の第1の光学特性計測方法では、前記計測用パターンの転写に際しては、前記投影光学系の光軸方向に関する前記物体の位置と前記物体上に照射されるエネルギビームのエネルギ量をそれぞれ変更しながら、前記計測用パターンを前記物体上に順次転写し、前記像の形成状態の検出に際しては、前記物体上の前記少なくとも一部の複数の区画領域における前記計測用パターンの像の

有無を検出し、前記光学特性を求めるに際しては、前記像が検出された複数の 区画領域に対応する前記エネルギビームのエネルギ量と前記投影光学系の光軸 方向に関する前記物体の位置との相関関係により最良フォーカス位置を決定す ることとすることができる。

かかる場合には、計測用パターンの転写に際しては、2つの露光条件、すなわち投影光学系の光軸方向に関する物体の位置と物体上に照射されるエネルギビームのエネルギ量を変更しながら計測用パターンの像を物体上の複数の領域に順次転写する。この結果、物体上の各領域には、それぞれ転写時の投影光学系の光軸方向に関する物体の位置及び物体上に照射されるエネルギビームのエネルギ量が異なる計測用パターンの像が転写される。

そして、像の形成状態の検出に際しては、物体上の前記少なくとも一部の複数の区画領域について、例えば投影光学系の光軸方向に関する位置毎に計測用パターンの像の有無を検出する。この結果、投影光学系の光軸方向に関する位置毎に、その像が検出されたエネルギビームのエネルギ量を求めることができる。このように、像のコントラスト又は回折光などの反射光の光量などを利用した手法により、像の形成状態を検出しているため、従来の寸法を計測する方法と比較して、短時間で像の形成状態を検出することができる。また、客観的かつ定量的な像のコントラスト又は回折光などの反射光の光量などを用いているため、従来の方法と比較して、形成状態の検出精度及び検出結果の再現性を向上させることができる。

そして、前記光学特性を求めるに際しては、その像が検出されたエネルギビームのエネルギ量と投影光学系の光軸方向に関する位置との相関関係を示す近似曲線を求め、例えば、その近似曲線の極値から最良フォーカス位置を求めることができる。

本発明は、第2の観点からすると、第1面上のパターンを第2面上に投影する投影光学系の光学特性を計測する光学特性計測方法であって、少なくとも1

つの露光条件を変更しながら、前記第1面上に配置されたマルチバーパターンを含む計測用パターンを前記投影光学系の第2面側に配置された物体上に順次転写し、隣接する複数の区画領域から成り、各区画領域に転写された前記マルチバーパターンとこれに隣接するパターンとが、前記マルチバーパターンの像のコントラストが前記隣接するパターンによる影響を受けない距離し以上離れている所定の領域を前記物体上に形成する第1工程と;前記所定の領域を構成する前記複数の区画領域の少なくとも一部の複数の区画領域における像の形成状態を検出する第2工程と;前記検出結果に基づいて前記投影光学系の光学特性を求める第3工程と;を含む第2の光学特性計測方法である。

ここで、マルチバーパターンは、複数本のバーパターン(ラインパターン) が所定間隔で配置されたパターンを意味する。また、マルチバーパターンに隣接するパターンは、該マルチバーパターンが形成された区画領域の境界に存在する枠パターン、及び隣接する区画領域のマルチバーパターンのいずれをも含む。

これによれば、少なくとも1つの露光条件を変更しながら、第1面(物体面) 上に配置されたマルチバーパターンを含む計測用パターンを投影光学系の第2 面(像面)側に配置された物体上に順次転写し、隣接する複数の区画領域から 成り、各区画領域に転写されたマルチバーパターンとこれに隣接するパターン とが、マルチバーパターンの像のコントラストが前記隣接するパターンによる 影響を受けない距離し以上離れている所定の領域を物体上に形成する(第1工程)。

次いで、前記所定の領域を構成する前記複数の区画領域の少なくとも一部の 複数の区画領域における像の形成状態を検出する(第2工程)。

ここで、各区画領域に転写されたマルチバーパターンとこれに隣接するパターンとが、マルチバーパターンの像のコントラストが隣接するパターンによる 影響を受けない距離 L 以上離れているので、それぞれの区画領域に転写された マルチバーパターンの像のS/N比が良好な検出信号を得ることができる。この場合、マルチバーパターンの像のS/N比が良好な検出信号を得ることができるので、例えばその検出信号の信号強度などを所定の閾値を用いて二値化することにより、マルチバーパターンの像の形成状態を二値化情報(像の有無情報)に変換することができ、各区画領域毎のマルチバーパターンの形成状態を精度、再現性良く検出することが可能となる。

そして、前記検出結果に基づいて前記投影光学系の光学特性を求める(第3 工程)。従って、光学特性を精度及び再現性良く計測することができる。

また、前述の第1の光学特性計測方法の場合と同様の理由により、評価点の数を増加させることができるとともに、各評価点間の間隔を狭くすることができ、結果的に光学特性計測の測定精度を向上させることが可能となる。

この場合において、前記第2工程では、画像処理の手法により前記像の形成 状態を検出することとすることができる。

すなわち、撮像信号に基づいて、テンプレートマッチング、あるいはコントラスト検出などの画像処理手法により各区画領域に形成されたマルチバーパターンの像の形成状態を精度良く検出することができる。

例えば、テンプレートマッチングによる場合には、客観的、定量的な相関値の情報が区画領域毎に得られ、コントラスト検出の場合には、客観的、定量的なコントラスト値の情報が区画領域毎に得られるので、いずれにしても、得られた情報を、それぞれの閾値と比較することにより、マルチバーパターンの像の形成状態を二値化情報(像の有無情報)に変換することにより、各区画領域毎のマルチバーパターンの形成状態を精度、再現性良く検出することが可能となる。

本発明の第2の光学特性計測方法では、前記距離 L は、マルチバーパターンの像のコントラストが隣接するパターンにより影響を受けない程度の距離であれば良く、例えば、前記距離 L は、前記各区画領域を撮像する撮像装置の解像

度を R_f 、前記マルチパターン像のコントラストを C_f 、プロセスによって定まるプロセスファクタを P_f 、前記撮像装置の検出波長を λ_f とした場合に、L=f(C_f 、 R_f 、 P_f 、 λ_f)なる関数で表されることとすることができる。ここで、プロセスファクタは、像のコントラストに影響を与えるので、プロセスファクタを含まない関数L=f'(C_f 、 R_f 、 λ_f)なる関数によって距離Lを規定しても良い。

本発明の第2の光学特性計測方法では、前記所定の領域は、前記物体上にマトリックス状に配置された複数の区画領域から成る全体として矩形の領域であることとすることができる。

この場合において、前記第2工程では、前記所定の領域の外周の輪郭から成る矩形の外枠を前記所定の領域に対応する撮像データに基づいて検出し、その検出された外枠を基準として前記所定の領域を構成する複数の区画領域それぞれの位置を算出することとすることができる。

本発明の第2の光学特性計測方法において、前記第1工程では、前記所定の 領域内の最外周部に位置する複数の区画領域の少なくとも一部の特定の複数の 区画領域が過露光の領域となるように前記露光条件の一部として前記物体上に 照射されるエネルギビームのエネルギ量を変更することとすることができる。 かかる場合には、上記の外枠の検出に際して外枠部分の検出データ(撮像デー タなど)のS/N比が向上するので外枠検出が容易になる。

本発明の第2の光学特性計測方法において、前記第2工程では、前記所定の 領域を構成する複数の区画領域に対応する撮像データに基づき、テンプレート マッチングの手法により前記所定の領域を構成する前記複数の区画領域の少な くとも一部の複数の区画領域における像の形成状態を検出することとすること ができる。

本発明の第2の光学特性計測方法において、前記第2工程では、前記所定の 領域を構成する前記複数の区画領域の少なくとも一部の複数の区画領域におけ る像の形成状態を、撮像により得られた前記各区画領域のピクセルデータに関する代表値を判定値として検出することとすることができる。

この場合において、前記代表値は、前記ピクセルデータの加算値、微分総和値、分散及び標準偏差の少なくとも1つであることとすることができる。あるいは、前記代表値は、各区画領域内の指定範囲内におけるピクセル値の加算値、微分総和値、分散及び標準偏差のいずれかであることとすることができる。

ここで、各区画領域内の指定範囲は勿論、代表値の算出のためピクセルデータを抽出するエリア(例えば区画領域)の形状は、矩形、円形、楕円形、あるいは三角形などの多角形、のいずれの形状であっても良い。

本発明の第2の光学特性計測方法では、前記露光条件は、前記投影光学系の 光軸方向に関する前記物体の位置及び前記物体上に照射されるエネルギビーム のエネルギ量の少なくとも一方を含むこととすることができる。

本発明の第2の光学特性計測方法では、前記計測用パターンの転写に際しては、前記投影光学系の光軸方向に関する前記物体の位置と前記物体上に照射されるエネルギビームのエネルギ量をそれぞれ変更しながら、前記計測用パターンを前記物体上に順次転写し、前記像の形成状態の検出に際しては、前記物体上の前記少なくとも一部の複数の区画領域における前記計測用パターンの像の有無を検出し、前記光学特性を求めるに際しては、前記像が検出された複数の区画領域に対応する前記エネルギビームのエネルギ量と前記投影光学系の光軸方向に関する前記物体の位置との相関関係により最良フォーカス位置を決定することとすることができる。

かかる場合には、計測用パターンの転写に際しては、2つの露光条件、すなわち投影光学系の光軸方向に関する物体の位置と物体上に照射されるエネルギビームのエネルギ量を変更しながら計測用パターンの像を物体上の複数の領域に順次転写する。この結果、物体上の各領域には、それぞれ転写時の投影光学系の光軸方向に関する物体の位置及び物体上に照射されるエネルギビームのエ

ネルギ量が異なる計測用パターンの像が転写される。

そして、像の形成状態の検出に際しては、物体上の前記少なくとも一部の複数の区画領域について、例えば投影光学系の光軸方向に関する位置毎に計測用パターンの像の有無を検出する。この結果、投影光学系の光軸方向に関する位置毎に、その像が検出されたエネルギビームのエネルギ量を求めることができる。このように、客観的かつ定量的な上記の相関値、コントラストなどを利用した手法により、像の形成状態を検出しているため、従来の寸法を計測する方法と比較して、短時間で像の形成状態を検出することができる。また、客観的かつ定量的な撮像データを用いているため、従来の方法と比較して、形成状態の検出精度及び検出結果の再現性を向上させることができる。

そして、前記光学特性を求めるに際しては、その像が検出されたエネルギビームのエネルギ量と投影光学系の光軸方向に関する位置との相関関係を示す近似曲線を求め、例えば、その近似曲線の極値から最良フォーカス位置を求める。

本発明は、第3の観点からすると、第1面上のパターンを第2面上に投影する投影光学系の光学特性を計測する光学特性計測方法であって、光透過部に形成される計測用パターンを前記第1面上に配置し、少なくとも1つの露光条件を変更しながら、かつ前記投影光学系の第2面側に配置された物体を前記光透過部のサイズに対応する距離以下のステップピッチで順次移動して前記計測用パターンを前記物体上に順次転写することにより、マトリックス状に配置された複数の区画領域から成る全体として矩形の所定の領域を前記物体上に形成する第1工程と;前記所定の領域を構成する前記複数の区画領域の少なくとも一部の複数の区画領域における像の形成状態を検出する第2工程と;前記検出結果に基づいて前記投影光学系の光学特性を求める第3工程と;を含む第3の光学特性計測方法である。

ここで、「光透過部」は、その形状は問わず内部に計測用パターンが配置され

ていれば良い。

これによれば、光透過部に形成される計測用パターンを前記第1面上に配置し、少なくとも1つの露光条件を変更しながら、かつ投影光学系の第2面側に配置された物体を光透過部のサイズに対応する距離以下のステップピッチで順次移動して前記計測用パターンを物体上に順次転写することにより、マトリックス状に配置された複数の区画領域から成る全体として矩形の所定の領域を物体上に形成する(第1工程)。この結果、物体上には、区画領域相互間の境界に従来のような枠線が存在しない複数のマトリックス状配置の複数の区画領域(計測用パターンの像が投影された領域)が形成される。

次に、前記所定の領域を構成する複数の区画領域の少なくとも一部の複数の 区画領域における像の形成状態を検出する(第2工程)。この場合、隣接する区 画領域間に枠線が存在しないので、像形成状態の検出対象である複数の区画領 域(主として計測用パターンの像の残存する区画領域)において、計測用パタ ーンの像のコントラストが枠線の存在により低下することがない。

このため、それらの複数の区画領域の検出データとしてパターン部と非パターン部のS/N比の良好なデータを得ることができ、このS/N比が良好なデータ(例えば光強度などのデータ)を所定の閾値と比較することにより、計測用パターンの像の形成状態を二値化情報(像の有無情報)に変換することができ、各区画領域毎の計測用パターンの形成状態を精度、再現性良く検出することが可能となる。

そして、前記検出結果に基づいて前記投影光学系の光学特性を求める(第3 工程)。従って、光学特性を精度及び再現性良く計測することができる。

また、前述と同様の理由により、評価点の数を増加させることができるとと もに、各評価点間の間隔を狭くすることができ、結果的に光学特性計測の測定 精度を向上させることが可能となる。

この場合において、前記第2工程では、前記像の形成状態を画像処理の手法

により検出することとすることができる。

すなわち、撮像データを用いてテンプレートマッチング法あるいはコントラスト検出法などの画像処理の手法により、像の形成状態を精度良く検出することができる。

例えば、テンプレートマッチングによる場合には、客観的、定量的な相関値の情報が区画領域毎に得られ、コントラスト検出の場合には、客観的、定量的なコントラスト値の情報が区画領域毎に得られるので、いずれにしても、得られた情報を、それぞれの閾値と比較することにより、計測用パターンの像の形成状態を二値化情報(像の有無情報)に変換することにより、区画領域毎の計測用パターンの形成状態を精度、再現性良く検出することが可能となる。

本発明の第3の光学特性計測方法では、前記ステップピッチは、前記物体上で前記光透過部の投影領域がほぼ接する、あるいは重なるように設定されることができる。

本発明の第3の光学特性計測方法では、前記物体には、その表面にポジ型のフォトレジストで感光層が形成されるとともに、前記像は前記計測用パターンの転写後に現像処理を経て前記物体上に形成され、前記ステップピッチは、前記物体上で隣接する像間の感光層が前記現像処理により除去されるように設定されることとすることができる。

本発明の第3の光学特性の計測方法において、前記第1工程では、前記所定の領域内の最外周部に位置する複数の区画領域の少なくとも一部の特定の複数の区画領域が過露光の領域となるように前記露光条件の一部として前記物体上に照射されるエネルギビームのエネルギ量を変更することとすることができる。かかる場合には、所定の領域の外縁の検出に際してのS/N比が向上する。

本発明の第3の光学特性計測方法では、前記第2工程は、前記所定の領域の 外周の輪郭から成る矩形の外枠を前記所定の領域に対応する撮像データに基づ いて検出する外枠検出工程と;前記検出された外枠を基準として前記所定の領 域を構成する複数の区画領域それぞれの位置を算出する算出工程と;を含むこととすることができる。

この場合において、前記外枠検出工程では、前記所定の領域の外周の輪郭から成る矩形の外枠を構成する第1辺から第4辺の各辺上でそれぞれ少なくとも2点を求め、前記求めた少なくとも8点に基づいて前記所定の領域の外枠を算出することとすることができる。また、前記算出工程では、既知の区画領域の配列情報を用いて前記検出した外枠の内部領域を等分割して、前記所定の領域を構成する複数の区画領域それぞれの位置を算出することとすることができる。

本発明の第3の光学特性計測方法では、前記外枠検出工程は、前記所定の領域の外周の輪郭から成る矩形の外枠を構成する第1辺から第4辺のうちの少なくとも1辺について概略位置検出を行う概略位置検出工程と;前記概略位置検出工程で算出された少なくとも1辺の概略位置の検出結果を利用して前記第1辺から第4辺の位置を検出する詳細位置検出工程と;を含むこととすることができる。

この場合において、前記概略位置検出工程では、前記所定の領域の画像中心 近傍を通る第1方向のピクセル列情報を用いて境界検出を行い、前記詳細位置 検出工程では、前記所定の領域の前記第1方向の一端,他端にそれぞれ位置し 前記第1方向に直交する第2方向に延びる第1辺,第2辺の概略位置をそれぞ れ求め、前記求めた前記第1辺の概略位置より所定距離だけ前記第2辺寄りの 位置を通る前記第2方向のピクセル列、及び前記求めた前記第2辺の概略位置 より所定距離だけ前記第1辺寄りの位置を通る前記第2方向のピクセル列を用 いて境界検出を行い、前記所定の領域の前記第2方向の一端,他端にそれぞれ 位置し前記第1方向に延びる第3辺、第4辺及び該第3辺、第4辺上の各2点 を求め、前記求めた第3辺より所定距離だけ前記第4辺寄りの位置を通る第1 方向のピクセル列、及び前記求めた第4辺より所定距離だけ前記第3辺寄りの 位置を通る前記第1方向のピクセル列を用いて境界検出を行い、前記所定の領 域の前記第3辺、第4辺上の各2点を求め、矩形領域である前記所定の領域の 4頂点を、前記第1ないし第4辺上の各2点の点に基づいて定まる4本の直線 同士の交点として求め、前記求めた4頂点に基づいて最小二乗法による長方形 近似を行い、回転を含めた前記所定の領域の矩形の外枠を算出することとする ことができる。

この場合において、前記境界検出に際して、誤検出を起こし難い境界の検出情報を用いて、誤検出を起こし易い境界の検出範囲を限定することとすることができる。かかる場合には、特に、所定の領域内の最外周部に位置する複数の区画領域のいずれをも過露光の領域としなかった場合にも、前述の境界検出を精度良く行うことができる。

あるいは、前記境界検出に際しては、前記各ピクセル列のピクセル値から成る信号波形と所定の閾値 t との交点を求め、該求めた各交点の近傍の極大値及び極小値を求め、求めた極大値及び極小値の平均値を新たな閾値 t 'とし、前記波形信号が前記極大値と極小値間で新たな閾値 t 'を横切る位置を求め、その位置を境界位置とすることとすることができる。

この場合において、閾値 t は、予め定めた値を用いることもできるが、前記 閾値 t は、所定の範囲の振り幅で閾値を変化させつつ、該閾値と前記境界検出 用に取り出した直線状のピクセル列のピクセル値から成る信号波形との交点数 を求め、該求めた交点数が、前記計測用パターンによって決まる目標交点数に 一致したときの閾値を仮閾値とし、該仮閾値を含み、前記交点数が前記目標交点数となる閾値範囲を求め、その求めた閾値範囲の中心を前記閾値 t として決 定することによって設定されていることとすることができる。

この場合において、前記振り幅は、前記境界検出用に取り出した直線状のピクセル列におけるピクセル値の平均と標準偏差を基に設定されていることとすることができる。

本発明の第3の光学特性計測方法において、前記第2工程では、前記所定の

領域に対応する撮像データに基づき、テンプレートマッチングの手法により前 記所定の領域を構成する前記複数の区画領域の少なくとも一部の複数の区画領 域における像の形成状態を検出することとすることができる。

あるいは、前記第2工程では、前記所定の領域を構成する前記複数の区画領域の少なくとも一部の複数の区画領域における像の形成状態を、撮像により得られた前記各区画領域のピクセルデータに関する代表値を判定値として検出することとすることができる。

この場合において、前記代表値は、前記ピクセルデータの加算値、微分総和値、分散及び標準偏差の少なくとも1つであることとすることができる。あるいは、前記代表値は、各区画領域内の指定範囲内におけるピクセル値の加算値、微分総和値、分散及び標準偏差のいずれかであることとすることができる。後者の場合、前記指定範囲は、前記計測用パターンの像と前記区画領域との設計上の位置関係に応じて定まる縮小率で前記各区画領域を縮小した縮小領域であることとすることができる。

本発明の第3の光学特性計測方法では、前記露光条件は、前記投影光学系の 光軸方向に関する前記物体の位置及び前記物体上に照射されるエネルギビーム のエネルギ量の少なくとも一方を含むこととすることができる。

本発明の第3の光学特性計測方法において、前記第1工程では、前記投影光学系の光軸方向に関する前記物体の位置と前記物体上に照射されるエネルギビームのエネルギ量をそれぞれ変更しながら、前記計測用パターンを前記物体上に順次転写し、前記第2工程では、前記物体上の前記少なくとも一部の複数の区画領域における前記計測用パターンの像の有無を検出し、前記第3工程では、その像が検出された複数の区画領域に対応する前記エネルギビームのエネルギ量と前記投影光学系の光軸方向に関する前記物体の位置との相関関係により最良フォーカス位置を決定することとすることができる。

本発明は、第4の観点からすると、第1面上のパターンを第2面上に投影す

る投影光学系の光学特性を計測する光学特性計測方法であって、少なくとも1つの露光条件を変更しながら、前記第1面上に配置された計測用パターンを前記投影光学系の第2面側に配置された物体上の複数の領域に順次転写する第1工程と;前記計測用パターンが異なる露光条件で転写された前記物体上の前記複数の領域を撮像し、複数のピクセルデータからなる領域毎の撮像データをそれぞれ求め、前記複数の領域の少なくとも一部の複数の領域について、該領域毎のピクセルデータに関する代表値を用いて前記計測用パターンの像の形成状態を検出する第2工程と;前記検出結果に基づいて前記投影光学系の光学特性を求める第3工程と;を含む第4の光学特性計測方法である。

これによれば、少なくとも1つの露光条件を変更しながら計測用パターンの像を物体上の複数の領域に順次転写する(第1工程)。この結果、物体上の各領域には、それぞれ転写時の露光条件が異なる計測用パターンの像が転写される。

次に、物体上の複数の領域を撮像し、領域毎に複数のピクセルデータからなる領域毎の撮像データをそれぞれ求め、前記複数の領域の少なくとも一部の複数の領域について、該領域毎のピクセルデータに関する代表値を用いて前記計測用パターンの像の形成状態を検出する(第2工程)。この場合、領域毎のピクセルデータに関する代表値を判定値として、すなわち、代表値の大小により像の形成状態が検出される。このように、ピクセルデータに関する代表値を利用して画像処理の手法により像の形成状態を検出しているため、従来の寸法を計測する方法(例えば、前述したCD/フォーカス法やSMPフォーカス計測法等)と比較して、短時間で像の形成状態を検出することができる。また、客観的かつ定量的な撮像データ(ピクセルデータ)を用いているため、従来の方法と比較して、形成状態の検出精度及び再現性を向上させることができる。

そして、像の形成状態の検出結果に基づいて投影光学系の光学特性を求める (第3工程)。ここで、計測用パターンの像の形成状態の検出は、物体が感光物 体である場合に、その物体を現像することなく物体上に形成された潜像に対し て行っても良いし、上記像が形成された物体を現像した後、物体上に形成されたレジスト像、あるいはレジスト像が形成された物体をエッチング処理して得られる像(エッチング像)などに対して行っても良い。ここで、物体上における像の形成状態を検出するための感光層は、フォトレジストに限らず、光(エネルギ)の照射によって像(潜像及び顕像)が形成されるものであれば良い。例えば、感光層は、光記録層、光磁気記録層などであっても良く、従って、感光層が形成される物体もウエハ又はガラスプレート等に限らず、光記録層、光磁気記録層が形成可能な板等であっても良い。

例えば、像の形成状態の検出をレジスト像、エッチング像などに対して行う場合には、SEMなどの顕微鏡は勿論、例えば露光装置のアライメント検出系、例えばアライメントマークの像を撮像素子上に結像する画像処理方式のアライメント検出系、いわゆるFIA(Field Image Alignment)系のアライメントセンサや、コヒーレントな検出光を対象に照射し、その対象から発生する散乱光又は回折光を検出するアライメントセンサ、例えばいわゆるLSA系のアライメントセンサや、その対象から発生する2つの回折光(例えば同次数)を干渉させて検出するアライメントセンサなど、各種のアライメントセンサをも用いることができる。

また、像の形成状態の検出を潜像に対して行う場合には、FIA系などを用いることができる。

いずれにしても、客観的かつ定量的な撮像データを用いた検出結果に基づいて光学特性が求められるために、従来の方法と比較して光学特性を精度及び再現性良く計測することができる。

また、前述と同様の理由により、評価点の数を増加させることができるとと もに、各評価点間の間隔を狭くすることができ、結果的に光学特性計測の測定 精度を向上させることが可能となる。

従って、第4の光学特性計測方法によれば、短時間で、精度及び再現性良く

投影光学系の光学特性を計測することができる。

この場合において、前記第2工程では、前記複数の領域の少なくとも一部の複数の領域について、領域毎に全てのピクセルデータの加算値、微分総和値、分散及び標準偏差の少なくとも1つを代表値とし、該代表値と所定の閾値とを比較して前記計測用パターンの像の形成状態を検出することとすることもできる。

あるいは、前記第2工程では、前記複数の領域の少なくとも一部の複数の領域について、領域毎に一部のピクセルデータの加算値、微分総和値、分散及び標準偏差の少なくとも1つを代表値とし、該代表値と所定の閾値とを比較して前記計測用パターンの像の形成状態を検出することとすることもできる。

この場合において、前記一部のピクセルデータは、前記各領域内の指定範囲内におけるピクセルデータであり、前記代表値は、前記ピクセルデータの加算値、微分総和値、分散及び標準偏差のいずれかであることとすることができる。

この場合において、前記指定範囲は、前記各領域内における前記計測用パターンの配置に応じて定められた前記各領域の部分領域であることとすることができる。

本発明の第4の光学特性計測方法において、前記第2工程では、異なる複数の閾値と前記代表値とを比較して閾値毎に前記計測用パターンの像の形成状態を検出し、前記第3工程では、前記閾値毎に求めた前記検出結果に基づいて光学特性を計測することとすることができる。

本発明の第4の光学特性計測方法において、前記第2工程は、前記複数の領域の少なくとも一部の複数の領域について、領域毎に全てのピクセルデータの加算値、微分総和値、分散及び標準偏差の少なくとも1つを代表値とし、該代表値と所定の閾値とを比較して前記計測用パターンの像の第1の形成状態を検出する第1検出工程と;前記複数の領域の少なくとも一部の複数の領域について、領域毎に一部のピクセルデータの加算値、微分総和値、分散及び標準偏差

の少なくとも1つを代表値とし、該代表値と所定の閾値とを比較して前記計測 用パターンの像の第2の形成状態を検出する第2検出工程と;を含み、前記第 3工程では、前記第1の形成状態の検出結果と前記第2の形成状態の検出結果 とに基づいて、前記投影光学系の光学特性を求めることとすることができる。

この場合において、前記第2工程では、異なる複数の閾値と前記代表値とを 比較して閾値毎に前記計測用パターンの像の第1の形成状態及び第2の形成状態をそれぞれ検出し、前記第3工程では、前記閾値毎に求めた前記第1の形成 状態及び第2の形成状態の検出結果に基づいて光学特性を計測することとする ことができる。

本発明の第4の光学特性計測方法では、露光条件としては種々のものが考えられるが、前記露光条件は、前記投影光学系の光軸方向に関する前記物体の位置及び前記物体上に照射されるエネルギビームのエネルギ量の少なくとも一方を含むこととすることができる。

本発明の第4の光学特性計測方法において、前記第1工程では、前記投影光学系の光軸方向に関する前記物体の位置と前記物体上に照射されるエネルギビームのエネルギ量をそれぞれ変更しながら、前記計測用パターンの像を前記物体上の複数の領域に順次転写し、前記第2工程では、前記投影光学系の光軸方向に関する位置毎に前記像の形成状態を検出し、前記第3工程では、その像が検出された前記エネルギビームのエネルギ量と前記投影光学系の光軸方向に関する位置との相関関係により最良フォーカス位置を決定することとすることができる。

本発明は、第5の観点からすると、露光用のエネルギビームをマスクに照射し、前記マスクに形成されたパターンを投影光学系を介して物体上に転写する露光方法であって、本発明の第1~第4の光学特性計測方法のいずれかによって計測された前記光学特性を考慮して前記投影光学系を調整する工程と;前記調整された投影光学系を介して前記マスクに形成されたパターンを前記物体上

に転写する工程と:を含む露光方法である。

これによれば、本発明の第1~第4の光学特性計測方法のいずれかによって 計測された投影光学系の光学特性を考慮して最適な転写が行えるように投影光 学系が調整され、その調整された投影光学系を介してマスクに形成されたパタ ーンを物体上に転写するので、微細パターンを物体上に高精度に転写すること ができる。

また、リソグラフィ工程において、本発明の露光方法を用いることにより、 物体上に微細パターンを物体上に精度良く転写することができ、これにより、 より高集積度のマイクロデバイスを歩留まり良く製造することができる。従っ て、本発明は更に別の観点からすると、本発明の露光方法を用いるデバイス製 造方法であるとも言える。

BRIEF DESCRIPTION OF THE DRAWINGS

In the accompanying drawings;

図1は、本発明の第1の実施形態に係る露光装置の概略構成を示す図である;

図2は、図1の照明系IOPの具体的構成の一例を説明するための図である;

図3は、第1の実施形態において、投影光学系の光学特性の計測に用いられるレチクルの一例を示す図である;

図4は、第1の実施形態における主制御装置内CPUの光学特性の計測時の 処理アルゴリズムを示すフローチャート(その1)である;

図5は、第1の実施形態におけるCPUの光学特性の計測時の処理アルゴリズムを示すフローチャート(その2)である:

図6は、第1領域を構成する区画領域の配列を説明するための図である;

図 7 は、ウエハ W_T 上に第 1 領域 D C_n が形成された状態を示す図である;

図8は、ウエハW_T 上に評価点対応領域 DB_n が形成された状態を示す図で

ある;

図 9 は、ウェハ W_T を現像後にウェハ W_T 上に形成された評価点対応領域 D B_1 のレジスト像の一例を示す図である;

図10は、図5のステップ456(光学特性の算出処理)の詳細を示すフローチャート(その1)である:

図11は、図5のステップ456 (光学特性の算出処理)の詳細を示すフローチャート(その2)である;

図12は図10のステップ508の詳細を示すフローチャートである:

図13は、図12のステップ702の詳細を示すフローチャートである;

図14Aは、ステップ508の処理を説明するための図、図14Bは、ステップ510の処理を説明するための図、図14Cはステップ512の処理を説明するための図である:

図 1 5 A は、ステップ 5 1 4 の処理を説明するための図、図 1 5 B は、ステップ 5 1 6 の処理を説明するための図、図 1 5 C は、ステップ 5 1 8 の処理を説明するための図である;

図16は、外枠検出における境界検出処理を説明するための図である;

図17は、ステップ514の頂点検出を説明するための図である;

図18は、ステップ516の長方形検出を説明するための図である;

図19は、第1の実施形態における像形成状態の検出結果の一例をテーブル データ形式で示す図である;

図20は、パターン残存数(露光エネルギ量)とフォーカス位置との関係を示す図である:

図21A~図21Cは、境界検出に微分データを用いる場合の変形例を説明 するための図である:

図22は、本発明の第2の実施形態において、投影光学系の光学特性の計測 に用いられるレチクルに形成された計測用パターンを説明するための図であ る;

図23は、第2の実施形態に係る主制御装置内CPUの光学特性の計測時の 処理アルゴリズムを示すフローチャートである;

図24は、図23のステップ956(光学特性の算出処理)の詳細を説明するためのフローチャートである;

図25は、第2の実施形態におけるウエハW_T 上の評価点対応領域を構成する区画領域の配置を示す図である;

図26は、各区画領域における各パターンの撮像データ領域を説明するための図である;

図27は、第2の実施形態において、第1パターンCA1の像の形成状態の 検出結果の一例をテーブルデータ形式で示す図である:

図28は、パターン残存数(露光エネルギ量)とフォーカス位置との関係を、 第1段階の近似曲線とともに示す図である:

図29は、露光エネルギ量とフォーカス位置との関係とともに第2段階の近似曲線を示す図である;

図30は、各区画領域における各パターンの撮像データ領域(サブ領域)を 説明するための図である:

図31は、第2の実施形態の変形例を説明するための図であって、複数の閾値における、露光エネルギ量とフォーカス位置との関係を示す図である;

図32は、第2の実施形態の別の変形例を説明するための図であって、閾値 とフォーカス位置との関係を示す図である;

図33は、第2の実施形態のその他の変形例を説明するための図であって、 山形が複数含まれるような図形(偽解像を含む図形)の一例を示す図である;

図34は、本発明に係るデバイス製造方法の実施形態を説明するためのフローチャートである: and

図35は、図34のステップ304における処理の一例を示すフローチャー

トである。

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS 《第1の実施形態》

以下、本発明の第1の実施形態を図1~図20に基づいて説明する。

図1には、本発明に係る光学特性計測方法及び露光方法を実施するのに好適な第1の実施形態に係る露光装置100の概略的な構成が示されている。この露光装置100は、ステップ・アンド・リピート方式の縮小投影露光装置(いわゆるステッパ)である。

この露光装置100は、照明系IOP、マスクとしてのレチクルRを保持するレチクルステージRST、レチクルRに形成されたパターンの像を感光剤(フォトレジスト)が塗布された物体としてのウエハW上に投影する投影光学系PL、ウエハWを保持して2次元平面(XY平面内)を移動するXYステージ20、XYステージ20を駆動する駆動系22、及びこれらの制御系等を備えている。この制御系は装置全体を統括制御するマイクロコンピュータ(あるいはワークステーション)などから成る主制御装置28を中心として構成されている。

前記照明系IOPは、図2に示されるように、光源1、ビーム整形光学系2、エネルギ粗調器3、オプティカルインテグレータ(ホモジナイザ)4、照明系開口絞り板5、ビームスプリッタ6、第1リレーレンズ7A、第2リレーレンズ7B、レチクルブラインド8等を備えている。なお、オプティカルインテグレータとしては、フライアイレンズ、ロッド型(内面反射型)インテグレータ、あるいは回折光学素子などを用いることができる。本実施形態では、オプティカルインテグレータ4としてフライアイレンズが用いられているので、以下では、フライアイレンズ4とも呼ぶ。

ここで、この照明系IOPの上記構成各部について説明する。光源1として

は、KrFエキシマレーザ(発振波長248nm)やArFエキシマレーザ(発振波長193nm)等が使用される。光源1は、実際には、露光装置本体が設置されるクリーンルーム内の床面、あるいは該クリーンルームとは別のクリーン度の低い部屋(サービスルーム)等に設置され、不図示の引き回し光学系を介してビーム整形光学系の入射端に接続されている。

前記ビーム整形光学系2は、光源1からパルス発光されたレーザビームLBの断面形状を、該レーザビームLBの光路後方に設けられたフライアイレンズ4に効率よく入射するように整形するもので、例えばシリンダレンズやビームエキスパンダ(いずれも図示省略)等で構成される。

前記エネルギ粗調器3は、ビーム整形光学系2後方のレーザビームLBの光路上に配置され、ここでは、回転板31の周囲に透過率(=1ー減光率)の異なる複数個(例えば6個)のNDフィルタ(図2ではその内の2個のNDフィルタ32A、32Dのみが示されている)を配置し、その回転板31を駆動モータ33で回転することにより、入射するレーザビームLBに対する透過率を100%から等比級数的に複数段階で切り換えることができるようになっている。駆動モータ33は、主制御装置28によって制御される。

前記フライアイレンズ4は、エネルギ粗調器3後方のレーザビームLBの光路上に配置され、レチクルRを均一な照度分布で照明するためにその射出側焦点面に多数の点光源(光源像)から成る面光源、すなわち2次光源を形成する。この2次光源から射出されるレーザビームを以下においては、「パルス照明光 L」と呼ぶものとする。

前記フライアイレンズ4の射出側焦点面の近傍に、円板状部材から成る照明系開口絞り板5が配置されている。この照明系開口絞り板5には、ほぼ等角度間隔で、例えば通常の円形開口より成る開口絞り、小さな円形開口より成りコヒーレンスファクタであるσ値を小さくするための開口絞り(小σ絞り)、輪帯照明用の輪帯状の開口絞り(輪帯絞り)、及び変形光源法用に複数の開口を偏心

させて配置して成る変形開口絞り(図2ではこのうちの2種類の開口絞りのみが図示されている)等が配置されている。この照明系開口絞り板5は、主制御装置28により制御されるモータ等の駆動装置51により回転されるようになっており、これによりいずれかの開口絞りがパルス照明光ILの光路上に選択的に設定される。なお、照明系開口絞り板5の代わりに、あるいはそれと組み合わせて、例えば照明光学系内に交換して配置される複数の回折光学素子、照明光学系の光軸に沿って可動なプリズム(円錐プリズム又は多面体プリズムなど)、及びズーム光学系の少なくとも1つを含む光学ユニットを、光源1とオプティカルインテグレータ4との間に配置し、照明光学系の瞳面上での照明光ILの光量分布(2次光源の大きさや形状)、すなわちレチクルRの照明条件の変更に伴う光量損失を抑えることが好ましい。

照明系開口絞り板5後方のパルス照明光ILの光路上に、反射率が小さく透過率の大きなビームスプリッタ6が配置され、更にこの後方の光路上に、レチクルブラインド8を介在させて第1リレーレンズ7A及び第2リレーレンズ7Bから成るリレー光学系が配置されている。

レチクルブラインド8は、レチクルRのパターン面に対する共役面に配置され、例えば2枚のL字型の可動ブレード、あるいは上下左右に配置された4枚の可動ブレードから成り、可動ブレード同士で囲まれて形成される開口がレチクルR上の照明領域を規定する。この場合、各可動ブレードの位置を調整することにより、開口の形状を任意の矩形状に設定することが可能である。各可動ブレードは、例えばレチクルRのパターン領域の形状に併せて不図示のブラインド駆動装置を介して主制御装置28によって駆動制御されるようになっている。

リレー光学系を構成する第2リレーレンズ7B後方のパルス照明光ILの光路上には、当該第2リレーレンズ7Bを通過したパルス照明光ILをレチクルRに向けて反射する折り曲げミラーMが配置されている。

一方、ビームスプリッタ6による反射光路上には、集光レンズ52を介して 光電変換素子よりなるインテグレータセンサ53が配置されている。このイン テグレータセンサ53としては、例えば遠紫外域で感度があり、且つ光源ユニット1のパルス発光を検出するために高い応答周波数を有するPIN型のフォトダイオード等が使用できる。このインテグレータセンサ53の出力DPと、ウエハWの表面上でのパルス照明光ILの照度(強度)との相関係数(又は相 関関数)は予め求められて、主制御装置28内部の記憶装置内に記憶されている。

このようにして構成された照明系IOPの作用を簡単に説明すると、光源1からパルス発光されたレーザビームLBは、ビーム整形光学系2に入射して、ここで後方のフライアイレンズ4に効率よく入射するようにその断面形状が整形された後、エネルギ粗調器3に入射する。そして、このエネルギ粗調器3のいずれかのNDフィルタを透過したレーザビームLBは、フライアイレンズ4に入射する。これにより、フライアイレンズ4の射出側焦点面に多数の点光源(光源像)より成る面光源、すなわち2次光源が形成される。この2次光源から射出されたパルス照明光ILは、照明系開口絞り板5上のいずれかの開口絞りを通過した後、透過率が大きく反射率が小さなビームスプリッタ6に至る。このビームスプリッタ6を透過した露光光としてのパルス照明光ILは、第1リレーレンズ7Aを経てレチクルブラインド8の矩形の開口部を通過した後、第2リレーレンズ7Bを通過してミラーMによって光路が垂直下方に折り曲げられた後、レチクルステージRST上に保持されたレチクルR上の矩形(例えば正方形)の照明領域を均一な照度分布で照明する。

一方、ビームスプリッタ6で反射されたパルス照明光ILは、集光レンズ52を介して光電変換素子よりなるインテグレータセンサ53で受光され、インテグレータセンサ53の光電変換信号が、不図示のピークホールド回路及びA/D変換器を介して出力DP(digit/pulse)として主制御装置28に供給され

る。

図1に戻り、前記レチクルステージRSTは、照明系IOPの図1における下方に配置されている。このレチクルステージRST上には不図示のバキュームチャック等を介してレチクルRが吸着保持されている。レチクルステージRSTは、不図示の駆動系によってX軸方向(図1における紙面左右方向)、Y軸方向(図1における紙面直交方向)及びθz方向(XY面に直交するZ軸回りの回転方向)に微小駆動可能とされている。これにより、レチクルステージRSTは、レチクルRのパターンの中心(レチクルセンタ)が投影光学系PLの光軸AXpとほぼ一致する状態でレチクルRを位置決め(レチクルアライメント)できるようになっている。図1では、このレチクルアライメントが行われた状態が示されている。

前記投影光学系PLは、レチクルステージRSTの図1における下方に、その光軸AXpの方向がXY面に直交するZ軸方向となるように配置されている。この投影光学系PLとしては、ここでは両側テレセントリックな縮小系であって、Z軸方向の共通の光軸AXpを有する複数枚のレンズエレメント(図示省略)から成る屈折光学系が用いられている。レンズエレメントのうちの特定の複数枚は、主制御装置28からの指令に基づいて、図示しない結像特性補正コントローラによって制御され、投影光学系PLの光学特性(結像特性を含む)、例えば倍率、ディストーション、コマ収差、及び像面湾曲などを調整できるようになっている。

この投影光学系PLの投影倍率は、例えば 1 / 5 (あるいは 1 / 4) などとされている。このため、レチクルRのパターンとウエハW上の被露光領域との位置合わせ(アライメント)が行われた状態で、パルス照明光 I LによりレチクルRが均一な照度で照明されると、レチクルRのパターンが投影光学系PLにより縮小されて、フォトレジストが塗布されたウエハW上に投影され、ウエハW上の被露光領域にパターンの縮小像が形成される。

前記 X Y ステージ 2 O は、実際には不図示のベース上を Y 軸方向に移動する Y ステージと、この Y ステージ上を X 軸方向に移動する X ステージとで構成されているが、図 1 ではこれらが代表的に X Y ステージ 2 O として示されている。この X Y ステージ 2 O 上にウェハテーブル 1 8 が搭載され、このウェハテーブル 1 8 上に不図示のウェハホルダを介してウェハWが真空吸着等によって保持されている。

前記ウエハテーブル18は、ウエハWを保持するウエハホルダをZ軸方向及 びXY面に対する傾斜方向に微小駆動するもので、Z・チルトステージとも称 される。このウエハテーブル18の上面には、移動鏡24が設けられており、 この移動鏡24にレーザビームを投射して、その反射光を受光することにより、 ウエハテーブル18のXY面内の位置を計測するレーザ干渉計26が移動鏡2 4の反射面に対向して設けられている。なお、実際には、移動鏡はX軸に直交 する反射面を有するX移動鏡と、Y軸に直交する反射面を有するY移動鏡とが 設けられ、これに対応してレーザ干渉計もX方向位置計測用のXレーザ干渉計 とY方向位置計測用のYレーザ干渉計とが設けられているが、図1ではこれら が代表して移動鏡24、レーザ干渉計26として図示されている。また、移動 鏡24の代わりにウエハテーブル18の端面を鏡面加工して反射面としても良 い。なお、メレーザ干渉計及びソレーザ干渉計は測長軸を複数有する多軸干渉 計であり、ウエハテーブル18のX、Y位置の他、回転(ヨーイング(Z軸回 りの回転である θ z 回転)、ピッチング (X軸回りの回転である θ x 回転)、ロ ーリング(Y軸回りの回転である θ y回転))も計測可能となっている。従って、 以下の説明ではレーザ干渉計 2 6 によって、ウエハテーブル 1 8 の X 、Y 、 θ z、 θ v、 θ x の 5 自由度方向の位置が計測されるものとする。

レーザ干渉計26の計測値は主制御装置28に供給され、主制御装置28はこのレーザ干渉計26の計測値に基づいて駆動系22を介してXYステージ20を制御することにより、ウエハテーブル18を位置決めする。

また、ウエハW表面の Z 軸方向の位置及び傾斜量は、例えば特開平5-19 0423号公報及びこれに対応する米国特許第5,502,311号等に開示される送光系50a及び受光系50bを有する斜入射方式の多点焦点位置検出系から成るフォーカスセンサAFSによって計測されるようになっている。このフォーカスセンサAFSの計測値も主制御装置28に供給されており、主制御装置28は、フォーカスセンサAFSの計測値に基づいて駆動系22を介してウエハテーブル18をZ方向、6×方向及び6y方向に駆動して、投影光学系PLの光軸方向に関するウエハWの位置及び傾きを制御するようになっている。本国際出願で指定した指定国又は選択した選択国の国内法令が許す限りにおいて、上記公報及び米国特許における開示を援用して本明細書の記載の一部とする。

また、ウエハテーブル18上には、その表面がウエハWの表面と同じ高さになるような基準板FPが固定されている。この基準板FPの表面には、後述するアライメント検出系のいわゆるベースライン計測等に用いられる基準マークを含む各種の基準マークが形成されている。

更に、本実施形態では、投影光学系PLの側面に、ウエハWに形成されたアライメントマークを検出するマーク検出系としてのオフ・アクシス方式のアライメント検出系ASが設けられている。このアライメント検出系ASは、LSA(Laser Step Alignment)系、FIA(Field Image Alignment)系と呼ばれるアライメントセンサを有しており、基準板FP上の基準マーク及びウエハ上のアライメントマークのX、Y2次元方向の位置計測を行なうことが可能で

ある。

ここで、LSA系は、レーザ光をマークに照射して、回折・散乱された光を 利用してマーク位置を計測する最も汎用性のあるセンサであり、従来から幅広 いプロセスウエハに使用されている。FIA系は、ハロゲンランプ等のブロー ドバンド(広帯域)光でマークを照明し、このマーク画像を画像処理すること によってマーク位置を計測する画像処理方式の結像式アライメントセンサであ り、アルミ層やウエハ表面の非対称マークに有効に使用される。

本実施形態では、これらのアライメントセンサを、適宜目的に応じて使い分け、ウエハ上の各被露光領域の正確な位置計測を行なうファインアライメント等を行なうようになっている。この他、アライメント検出系ASとして、例えばコヒーレントな検出光を対象マークに照射し、その対象マークから発生する2つの回折光(例えば同次数)を干渉させて検出するアライメントセンサを単独で、あるいは上記FIA系、LSA系などと適宜組み合わせて用いることは可能である。

アライメント制御装置 1 6 は、アライメント検出系ASを構成する各アライメントセンサからの情報DSをA/D変換し、このデジタル化された波形信号を演算処理してマーク位置を検出する。この結果は、アライメント制御装置 1 6 から主制御装置 2 8 に供給されるようになっている。

さらに、本実施形態の露光装置100では、図示が省略されているが、レチクルRの上方に、例えば特開平7-176468号公報及びこれに対応する米国特許第5,646,413号等に開示される、投影光学系PLを介してレチクルR上のレチクルマーク又はレチクルステージRST上の基準マーク(共に図示省略)と基準板FP上のマークとを同時に観察するための露光波長の光を用いたTTR(Through The Reticle)アライメント系から成る一対のレチクルアライメント顕微鏡が設けられている。これらのレチクルアライメント顕微鏡の検出信号は、アライメント制御装置16を介して主制御装置28に供給され

るようになっている。本国際出願で指定した指定国又は選択した選択国の国内 法令が許す限りにおいて、上記公報及び米国特許における開示を援用して本明 細書の記載の一部とする。

次に、本発明に係る投影光学系の光学特性を計測するのに用いられるレチクルの一例について説明する。

図3には、投影光学系PLの光学特性を計測するのに用いられるレチクルRTの一例が示されている。この図3は、レチクルRTをパターン面側(図1における下面側)から見た平面図である。この図3に示されるように、レチクルRTは、ほぼ正方形のマスク基板としてのガラス基板42の中央に、クロム等の遮光部材から成るパターン領域PAが形成されている。このパターン領域PAの中心(すなわちレチクルRTの中心(レチクルセンタ)に一致)及び4隅の部分の合計5箇所に、例えば20μm角の開口パターン(透過領域)AP1~AP5が形成され、当該各開口パターンの中央部にラインアンドスペースパターン(L/Sパターン)から成る計測用パターンMP1~MP5がそれぞれ形成されている。計測用パターンMPn(n=1~5)のそれぞれは、一例としてX軸方向を周期方向とし、線幅約1、3μm、長さ約12μm程度の5本のラインパターン(遮光部)が、ピッチ約2、6μmで配列されたマルチバーパターンによって構成されている。このため、本実施形態では、開口パターンAPn の約60%の縮小領域部分に計測用パターンMPnがそれぞれ配置されている。

なお、本実施形態では各計測用パターンをY軸方向に細長く延びるバーパターン(ラインパターン)で構成するものとしたが、このバーパターンはX軸方向とY軸方向とでそのサイズが異なれば良い。

また、前述のレチクルセンタを通るパターン領域PAのX軸方向の両側には、 一対のレチクルアライメントマークRM1、RM2が形成されている。

次に、本実施形態の露光装置100における投影光学系PLの光学特性の計

測方法について、主制御装置28内のCPUの処理アルゴリズムを簡略化して 示す図4及び図5のフローチャートに沿って、かつ適宜他の図面を用いて説明 する。

先ず、図4のステップ402において、不図示のレチクルローダを介してレチクルステージRST上にレチクルRTをロードするとともに、不図示のウエハローダを介してウェハWTをウェハテーブル18上にロードする。なお、ウェハWTには、その表面にポジ型のフォトレジストで感光層が形成されているものとする。

|次のステップ404において、レチクルアライメント、レチクルブラインド の設定などの所定の準備作業を行う。具体的には、まず、ウエハテーブル18 上に設けられた基準板FPの表面に形成されている一対の基準マーク(不図示) の中点が投影光学系PLの光軸とほぼ一致するように、レーザ干渉計26の計 測結果をモニタしつつ駆動系22を介してXYステージ20を移動する。次い で、レチクルRT の中心(レチクルセンタ)が投影光学系PLの光軸とほぼー 致するように、レチクルステージRSTの位置を調整する。このとき、例えば、 前述のレチクルアライメント顕微鏡(不図示)により投影光学系PLを介して レチクルアライメントマークRM1、RM2と対応する前記基準マークとの相 対位置を検出する。そして、レチクルアライメント顕微鏡によって検出された 前記相対位置の検出結果に基づいてレチクルアライメントマークRM1、RM 2と対応する前記基準マークとの相対位置誤差がともに最小となるように不図 示の駆動系を介してレチクルステージRSTのXY面内の位置を調整する。こ れにより、レチクルR™の中心(レチクルセンタ)が投影光学系PLの光軸と 正確にほぼ一致するとともにレチクルR▽の回転角もレーザ干渉計26の測長 軸で規定される直交座標系の座標軸に正確に一致する。すなわち、レチクルア ライメントが完了する。

また、照明光ILの照射領域がレチクルRTのパターン領域PAにほぼ一致

するように、照明系 I O P 内のレチクルブラインド 8 の開口の大きさ及び位置 を調整する。

このようにして、所定の準備作業が終了すると、次のステップ406に移行 して、後述する第1領域の露光終了判定用のフラグFを立てる(F←1)。

次のステップ408では、露光エネルギ量(ウエハWT 上に照射される照明 光 I L の積算エネルギ量に相当し、露光ドーズ量とも呼ばれる)の目標値を初 期化する。すなわち、カウンタ j に初期値「1」を設定して露光エネルギ量の目標値 P_j を P_1 に設定する(j ← 1)。本実施形態では、カウンタ j は、露光 エネルギ量の目標値の設定とともに、露光の際のウエハWT の行方向の移動目標位置の設定にも用いられる。なお、本実施形態では、例えばフォトレジストの感度特性から定まる最適な露光エネルギ量(予想値など)を中心として、露光エネルギ量を P_1 から Δ P 刻みで P_N (一例として N = 2 3)まで変化させる(P_i = P_1 ~ P_{23})。

次のステップ410では、ウエハ W_T のフォーカス位置(Z軸方向の位置)の目標値を初期化する。すなわち、カウンタiに初期値「1」を設定してウエハ W_T のフォーカス位置の目標値 Z_i を Z_1 に設定する($i \leftarrow 1$)。本実施形態では、カウンタiは、ウエハ W_T のフォーカス位置の目標値の設定とともに、露光の際のウエハ W_T の列方向の移動目標位置の設定にも用いられる。なお、本実施形態では、例えば投影光学系PLに関する既知の最良フォーカス位置(設計値など)を中心として、ウエハ W_T のフォーカス位置を Z_1 から Δ Z刻みで Z_M (一例としてM=13)まで変化させる($Z_i=Z_1\sim Z_{13}$)。

従って、本実施形態では、投影光学系PLの光軸方向に関するウェハ W_T の位置とウェハ W_T 上に照射されるパルス照明光 ILのエネルギ量をそれぞれ変更しながら、計測用パターン MP_n ($n=1\sim5$)をウェハ W_T 上に順次転写するための、 $N\times M$ (一例として $2.3\times1.3=2.9.9$)回の露光が行われることになる。投影光学系PLの視野内の各評価点に対応するウェハ W_T 上の領域

(以下「評価点対応領域」という) $DB_1 \sim DB_5$ の内の後述する第 1 領域 $DC_1 \sim DC_5$ (図 7 及び図 8 参照)には、 $N \times M$ 個の計測用パターン MP_n が転写されることとなる。

ここで、評価点対応領域 DB_n ($n=1\sim5$) 内の第 1 領域 DC_n としているのは、本実施形態では、各評価点対応領域 DB_n は、上記の $N\times M$ 個の計測用パターン MP_n が転写される矩形の第 1 領域 DC_n と、該第 1 領域を囲む矩形枠状の第 2 領域 DD_n とによって構成されるからである(図 8 参照)。

なお、この評価点対応領域 DBn(すなわち第 1 領域 DCn)は、投影光学系 PLの視野内でその光学特性を検出すべき複数の評価点に対応している。

ここで、説明は前後するが、便宜上、後述する露光によって、計測用パターンMPnが転写されるウエハ W_T 上の各第1領域 DC_n について、図6を用いて説明する。この図6に示されるように、本実施形態では、M行N列(13行23列)のマトリックス状に配置された $M\times N$ ($=23\times13=299$)個の仮想の区画領域 $DA_{i,j}$ ($i=1\sim M$ 、 $j=1\sim N$)に計測用パターンMPnがそれぞれ転写され、これら計測用パターンMPnがそれぞれ転写された $M\times N$ 個の区画領域 $DA_{i,j}$ から成る第1領域 DC_n がウエハ W_T 上に形成される。なお、仮想の区画領域 $DA_{i,j}$ は、図6に示されるように、 $+\times$ 方向が行方向(jの増加方向)となり、+Y方向が列方向(iの増加方向)となるように配列されている。また、以下の説明において用いられる添え字i, j、及びM、Nは、上述と同じ意味を有するものとする。

図4に戻り、次のステップ412では、ウエハ W_T 上の各評価点対応領域 D_R の仮想の区画領域 $D_{A_{i,j}}$ (ここでは $D_{A_{1,1}}$ (図7参照))に計測用パターン M_R の像がそれぞれ転写される位置に、レーザ干渉計26の計測値をモニタしつつ駆動系22を介してXYステージ20(ウェハ W_T)を移動する。

次のステップ414では、ウエハ W_T のフォーカス位置が設定された目標値 Z_i (この場合 Z_1) と一致するように、フォーカスセンサAFSからの計測値

をモニタしながらウエハテーブル 1 8 を Z 軸方向及び傾斜方向に微少駆動する。次のステップ 4 1 6 では、露光を実行する。このとき、ウエハWT 上の一点における露光エネルギ量(露光量)が設定された目標値(この場合 P1)となるように、露光量制御を行う。この露光エネルギ量は、照明光 I L のパルスエネルギ量と、各区画領域の露光時にウエハ上に照射される照明光 I L のパルス数との少なくとも一方を変更することで調整できるので、その制御方法としては、例えば、次の第 1 ~第 3 の方法を、単独で、あるいは適宜組み合わせて用いることができる。

すなわち、第1の方法として、パルスの繰り返し周波数を一定に維持し、エネルギ粗調器3を用いてレーザビームLBの透過率を変化させ像面(ウエハ面)に与えられる照明光ILのエネルギ量を調整する。第2の方法として、パルスの繰り返し周波数を一定に維持し、光源1に指示を与えてレーザビームLBの1パルス当たりのエネルギを変化させることにより像面(ウエハ面)に与えられる照明光ILのエネルギ量を調整する。第3の方法として、レーザビームLBの透過率及びレーザビームLBの1パルス当たりのエネルギを一定に維持し、パルスの繰り返し周波数を変更することによって、像面(ウエハ面)に与えられる照明光ILのエネルギ量を調整する。

これにより、図 7 に示されるように、ウエハ W_T 上の各第 1 領域 D C_n の区 画領域 D $A_{1,1}$ にそれぞれ計測用パターン MP_n の像が転写される。

図4に戻り、上記ステップ416の露光が終了すると、ステップ418において、前述のフラグFが立っているか、すなわちF=1であるか否かを判断する。この場合、前述したステップ406でフラグFが立てられているので、ここでの判断は肯定され、次のステップ420に移行する。

ステップ420では、ウエハ W_T のフォーカス位置の目標値が Z_M 以上であるか否かを判断することにより、所定のZ範囲での露光が終了したか否かを判断する。ここでは、最初の目標値 Z_1 での露光が終了しただけなので、ステッ

プ4 2 2 に移行し、カウンタ i を 1 インクリメントする(i ← i + 1)とともに、ウエハ W_T のフォーカス位置の目標値に Δ Z を加算する(Z_i ← Z + Δ Z)。ここでは、フォーカス位置の目標値を Z_2 (= Z_1 + Δ Z)に変更した後、ステップ 4 1 2 に戻る。このステップ 4 1 2 において、ウエハ W_T 上の各第 1 領域 D C n の区画領域 D A 2 , 1 に計測用パターンM P n の像がそれぞれ転写される位置にウエハ W_T が位置決めされるように、X Y ステージ 2 O を所定のステップピッチ S P だけ X Y 面内で所定方向(この場合 – Y 方向)に移動する。ここで、本実施形態では、上記のステップピッチ S P が、各開ロパターンA P n のウエハ W_T 上の投影像の寸法とほぼ一致する約 5 μ m に設定されている。なお、ステップピッチ S P は、約 5 μ m に限らないが、 5 μ m すなわち各開ロパターンA P n のウエハ W_T 上の投影像の寸法以下であることが望ましい。この理由については後述する。

次のステップ414では、ウエハ W_T のフォーカス位置が目標値(この場合 Z_2)と一致するように、ウエハテーブル18を Δ Zだけ光軸AXpの方向に ステップ移動し、ステップ416において前述と同様にして露光を行い、ウエハ W_T 上の各第1領域DC $_n$ の区画領域DA $_2$, $_1$ に計測用パターンMP $_n$ の像をそれぞれ転写する。

以後、ステップ420における判断が肯定されるまで、すなわちそのとき設定されているウェハ W_T のフォーカス位置の目標値が Z_M であると判断されるまで、ステップ418 \rightarrow 420 \rightarrow 422 \rightarrow 412 \rightarrow 414 \rightarrow 416のループの処理(判断を含む)を繰り返す。これにより、ウェハ W_T 上の各第1領域DCnの区画領域DA $_{i,1}$ ($i=3\sim M$)に計測用パターンMPnがそれぞれ転写される。

一方、区画領域 $DA_{M,1}$ に対する露光が終了し、上記ステップ 420 における判断が肯定されると、ステップ 424 に移行し、そのとき設定されている露光エネルギ量の目標値が P_N 以上であるか否かを判断する。ここでは、そのと

き設定されている露光エネルギ量の目標値はP1 であるため、このステップ424における判断は、否定され、ステップ426に移行する。

ステップ426では、カウンタ j を 1 インクリメントする(j \leftarrow j + 1)とともに、露光エネルギ量の目標値に Δ P を加算する($P_j \leftarrow P_j + \Delta$ P)。ここでは、露光エネルギ量の目標値を P_2 (= $P_1 + \Delta$ P)に変更した後、ステップ 4 1 O に戻る。

その後、ステップ410においてウエハ W_T のフォーカス位置の目標値が初期化された後、ステップ412 \rightarrow 414 \rightarrow 416 \rightarrow 418 \rightarrow 420 \rightarrow 422のループの処理(判断を含む)を繰り返す。このループの処理は、ステップ420における判断が肯定されるまで、すなわち露光エネルギ量の目標値 P_2 での、所定のウエハ W_T のフォーカス位置範囲($Z_1 \sim Z_M$)についての露光が終了するまで、繰り返される。これにより、ウエハ W_T 上の各第1領域 DC_n の区画領域 $DA_{i,2}$ ($i=1\sim M$)に計測用パターン MP_n の像が順次転写される。

一方、露光エネルギ量の目標値 P_2 での、所定のウエハ W_T のフォーカス位置範囲($Z_1 \sim Z_M$)についての露光が終了すると、ステップ420における判断が肯定され、ステップ424に移行し、設定されている露光エネルギ量の目標値が P_N 以上であるか否かを判断する。この場合、露光エネルギ量の目標値は P_2 であるため、このステップ424における判断は、否定され、ステップ426に移行する。ステップ426において、カウンタ $P_1 \leftarrow P_2 \leftarrow P_3 \leftarrow P_3$

このようにして、所定の露光エネルギ量の範囲($P_1 \sim P_N$)についての露光が終了すると、ステップ424における判断が肯定され、図5のステップ428に移行する。これにより、ウエハ W_T 上の各第1領域 DC_n には、図7に示されるように、それぞれ露光条件が異なる $N \times M$ (一例として23 \times 13 = 2

99) 個の計測用パターンMPn の転写像(潜像)が形成される。なお、実際には、上述のようにして、ウエハWT 上に計測用パターンMPn の転写像(潜像)が形成されたN×M(一例として23×13=299)個の区画領域が形成された段階で、各第1領域DCn が形成されるのであるが、上記の説明では、説明を分かり易くするために、第1領域DCn が予めウエハWT 上にあるかのような説明方法を採用したものである。

図5のステップ428では、前述のフラグFが降ろされているか、すなわち F=0であるか否かを判断する。ここでは、前記ステップ406においてフラグFが立てられているので、このステップ428における判断は否定され、ステップ430に移行して、カウンタi、jをそれぞれ1インクリメントする(i \leftarrow i + 1、j \leftarrow j + 1)。これにより、カウンタi = M + 1、j = N + 1となり、露光対象の領域が、図8に示される区画領域 $DA_{M+1,N+1} = DA_{14,24}$ となる。次のステップ432では、フラグFを降ろし($F\leftarrow$ 0)、図4のステップ41

次のステップ432では、フラグFを降ろし(F \leftarrow 0)、図4のステップ412に戻る。ステップ412では、ウエハ W_T 上の各第1領域 D C_n の区画領域 D A_{M+1} 、N+1 = D A_{14} 、1 に計測用パターンM P_n の像がそれぞれ転写される位置にウエハ W_T を位置決めし、次のステップ414に進む。但し、このとき、ウエハ W_T のフォーカス位置の目標値は Z_M のままなので、特に動作を行うことなく、ステップ416に進んで、区画領域 D $A_{14,24}$ に対する露光を行う。このとき露光エネルギ量Pは、最大露光量 P_N で露光が行われる。

次のステップ418では、フラグF=0となっているので、ステップ420、424をスキップして、ステップ428に移行する。このステップ428では、フラグFが降ろされているか否かを判断するが、ここでは、F=0であるので、この判断は肯定され、ステップ434に移行する。

ステップ434では、カウンタi=M+1、かつカウンタj>0を満足するか否かが判断されるが、このとき、i=M+1、j=N+1であるので、ここでの判断は肯定され、ステップ436に移行して、カウンタjを1デクリメン

トし($j \leftarrow j - 1$)、ステップ412に戻る。以後、ステップ412→414→416→418→428→434→436のループの処理(判断を含む)を、ステップ434における判断が否定されるまで、繰り返し行う。これにより、図8に示される区画領域DA_{14,23} からDA_{14,0} まで前述の最大露光量での露光が順次行われる。

そして、区画領域 D A_{14,0} に対する露光が終了すると、i = M+1 (= 14)、j = 0となるので、ステップ434における判断が否定され、ステップ438に移行する。このステップ438では、カウンタi > 0、かつカウンタj = 0を満足するか否かを判断するが、このとき、i = M+1、j = 0であるので、ここでの判断は肯定され、ステップ440に移行して、カウンタiを1デクリメントし($i \leftarrow i - 1$)、ステップ412に戻る。以後、ステップ412→414→416→418→428→434→438→440のループの処理(判断を含む)を、ステップ438における判断が否定されるまで、繰り返し行う。これにより、図8の区画領域 D A_{13,0} からD A_{0,0} まで前述の最大露光量で露光が順次行われる。

そして、区画領域 $DA_{0,24}$ に対する露光が終了すると、j = N + 1 (= 2 4) となるので、ステップ 4 4 2 における判断が肯定され、ステップ 4 4 6 に移行

そして、区画領域 $DA_{13,24}$ に対する露光が終了すると、i=M(=23)となるので、ステップ 4 4 6 における判断が肯定され、これにより、ウエハW T に対する露光が終了する。これにより、ウエハWT 上には、図 8 に示されるような矩形(長方形)の第 1 領域 DC_n と、これを取り囲む矩形枠状の第 2 領域 DD_n とから成る、評価点対応領域 DB_n ($n=1\sim5$)の潜像が形成される。この場合、第 2 領域 DD_n を構成する各区画領域は、明らかに過露光(オーバードーズ)状態となっている。

このようにしてウエハ W_T に対する露光が終了すると、図5のステップ45 0に移行する。このステップ450では、不図示のウエハアンローダを介して ウエハ W_T をウエハテーブル18上からアンロードするとともに不図示のウエ ハ搬送系を用いてウエハ W_T を露光装置100にインラインにて接続されてい る不図示のコータ・デベロッパに搬送する。

上記のコータ・デベロッパに対するウエハ W_T の搬送後に、ステップ452に進んでウエハ W_T の現像が終了するのを待つ。このステップ452における待ち時間の間に、コータ・デベロッパによってウエハ W_T の現像が行われる。この現像の終了により、ウエハ W_T 上には、図8に示されるような矩形(長方形)の第1領域 DC_n と、これを取り囲む矩形枠状の第2領域 DD_n とから成る、評価点対応領域 DB_n ($n=1\sim5$)のレジスト像が形成され、このレジスト像が形成されたウエハ W_T が投影光学系PLの光学特性を計測するための

試料となる。図9には、ウエハ W_T 上に形成された評価点対応領域 DB_1 のレジスト像の一例が示されている。

この図9では、評価点対応領域DB1は、 $(N+2) \times (M+2) = 25 \times 1$ 5=375個の区画領域DAi,j($i=0 \sim M+1$ 、 $j=0 \sim N+1$)によって構成され、隣接する区画領域相互間に仕切りの枠のレジスト像が存在するかのように図示されているが、これは個々の区画領域を分かり易くするためにこのようにしたものである。しかし、実際には、隣接する区画領域相互間に仕切りの枠のレジスト像は存在しない。このように枠を無くすことにより、従来問題となっていた、FIA系のアライメントセンサなどによる画像取り込みに際して、枠による干渉に起因してパターン部のコントラスト低下が生じるのを防止するためである。このため、本実施形態では、前述のステップピッチSPを、各開口パターンAPnのウエハWT上の投影像の寸法以下となるように設定したのである。

また、この場合、隣接する区画領域間のマルチバーパターンから成る計測用パターンMPnのレジスト像同士の距離をしとすると、この距離しは、一方の計測用パターンMPnの像のコントラストに他方の計測用パターンMPnの像の存在が影響を与えない程度の距離とされている。この距離しは、区画領域を撮像する撮像装置(本実施形態の場合アライメント検出系ASのFIA系のアライメントセンサ)の解像度を R_f 、計測用パターンの像のコントラストを R_f 、レジストの反射率、屈折率などを含むプロセスによって定まるプロセスファクタを R_f 、FIA系のアライメントセンサの検出波長を R_f とした場合に、一例として、 R_f 、 R_f 、 R_f R_f 、 R_f R_f 、 R_f R_f 、 R_f R_f 、 R_f 、 R_f 、 R_f R_f

なお、プロセスファクタ P_f は、像のコントラストに影響を与えるので、プロセスファクタを含まない関数 L=f' (C_f 、 R_f 、 λ_f) なる関数によって距離 L を規定しても良い。

また、図9からもわかるように、矩形(長方形)の第1領域DC1を取り囲

む矩形枠状の第2領域 D D1 には、パターン残存領域が見当たらない。これは、前述の如く、第2領域 D D1 を構成する各区画領域の露光の際に過露光となる露光エネルギを設定したためである。このようにしたのは、後述する外枠検出の際にその外枠部のコントラストを向上させ、検出信号の S / N 比を高くするためである。

上記ステップ452の待ち状態で、不図示のコータ・デベロッパの制御系からの通知によりウエハ W_T の現像が終了したことを確認すると、ステップ454に移行し、不図示のウエハローダに指示を出して、前述のステップ402と同様にしてウエハ W_T をウエハテーブル18上に再度ロードした後、ステップ456の投影光学系の光学特性を算出するサブルーチン(以下、「光学特性計測ルーチン」とも呼ぶ)に移行する。

この光学特性計測ルーチンでは、まず、図10のステップ502において、カウンタnを参照して、ウエハWT上の評価点対応領域DBnのレジスト像がアライメント検出系ASで検出可能となる位置にウエハWTを移動する。この移動、すなわち位置決めは、レーザ干渉計26の計測値をモニタしつつ、駆動系22を介してXYステージ20を制御することにより行う。ここで、カウンタnは、n=1に初期化されているものとする。従って、ここでは、図9に示されるウエハWT上の評価点対応領域DB1のレジスト像がアライメント検出系ASで検出可能となる位置にウエハWTが位置決めされる。なお、以下の光学特性計測ルーチンの説明では、評価点対応領域DBnのレジスト像を、適宜「評価点対応領域DBn」と略述するものとする。

次のステップ504では、ウエハ W_T 上の評価点対応領域 DB_n (ここでは、 DB_1)のレジスト像をアライメント検出系ASのFIA系アライメントセンサ (以下、適宜「FIAセンサ」と略述する)を用いて撮像し、その撮像データを取り込む。なお、FIAセンサは、レジスト像を自身の有する撮像素子(CD等)のピクセル単位に分割し、ピクセル毎に対応するレジスト像の濃淡を

8ビットのデジタルデータ(ピクセルデータ)として主制御装置 2 8に供給するようになっている。すなわち、前記撮像データは、複数のピクセルデータで構成されている。なお、ここでは、レジスト像の濃度が高くなる(黒に近くなる)につれてピクセルデータの値は大きくなるものとする。

次のステップ506では、FIAセンサからの評価点対応領域DB_n(ここでは、<math>DB₁)に形成されたレジスト像の撮像データを整理し、撮像データファイルを作成する。

次のステップ(サブルーチン)508~ステップ516では、以下に説明するようにして、評価点対応領域DBn(ここでは、DB1)の外縁である長方形 (矩形)の外枠を検出する。図14A~図14C及び図15A、図15Bには、外枠検出の様子が順番に示されている。これらの図において、符号DBn が付された矩形領域が、外枠検出の対象となる評価点対応領域DBn に相当する。

まず、サブルーチン508において、図14Aに示されるように、評価点対応領域DBn(ここでは、DB1)の画像中心近傍を通る縦方向ピクセル列情報を用いて境界検出を行い、評価点対応領域DBnの上辺及び下辺の大まかな位置を検出する。図12に、このサブルーチン508の処理が示されている。

このサブルーチン508では、まず、図12のサブルーチン702において、 最適な閾値 t を決定(自動設定)する。図13に、このサブルーチン702の 処理が示されている。

サブルーチン702では、まず、図13のステップ802において、境界検出用の直線状のピクセル列、例えば図14Aに示される直線LVに沿う直線状のピクセル列のデータ(ピクセル列データ)を前述の撮像データファイルの中から抽出する。これにより、例えば図14A中の波形データPD1に対応するピクセル値を有するピクセル列データが得られたものとする。

次のステップ804では、そのピクセル列のピクセル値(ピクセルデータの値)の平均値と標準偏差(又は分散)を求める。

次のステップ806では、求めた平均値と標準偏差とに基づいて閾値 (スレッショルドレベルライン) SLの振り幅を設定する。

次のステップ808では、図16に示されるように、上で設定した振り幅で 閾値(スレッショルドレベルライン)SLを所定ピッチで変化させ、変化位置 毎に波形データPD1と閾値(スレッショルドレベルライン)SLとの交点数 を求め、その処理結果の情報(各閾値の値と交点数)を不図示の記憶装置に記憶 する。

次のステップ810では、上記ステップ808で記憶した上記処理結果の情報に基づいて、求めた交点数が、対象パターン(この場合は、評価点対応領域DBn)によって定まる交点数に一致する閾値(仮閾値と呼ぶ) to を求める。次のステップ812では、上記仮閾値to を含み、交点数が同じである閾値範囲を求める。

次のステップ814では、上記ステップ812で求めた閾値範囲の中心を最適な閾値 t として決定した後、図12のステップ704にリターンする。

なお、ここでは、高速化を目的としてピクセル列のピクセル値の平均値と標準偏差(又は分散)を基に、離散的に(所定ステップピッチで)閾値を変化させているが、閾値の変化方法は、これに限定されるものではなく、例えば連続的に変化させるなどしても良いことは勿論である。

図12のステップ704では、上で決定した閾値(スレッショルドレベルライン) t と、前述の波形データPD1との交点(すなわち、閾値 t が波形データPD1を横切る点)を求める。なお、この交点の検出は、図16中に矢印A、A'で示されるように、実際にはピクセル列を外側から内側に走査することによって行われる。従って、交点は、少なくとも2点検出される。

図12に戻り、次のステップ706では、求めた各交点の位置からそれぞれ 双方向にピクセル列を走査し、各交点の近傍のピクセル値の極大値及び極小値 を、それぞれ求める。 次のステップ708では、求めた極大値及び極小値の平均値を算出し、これを新たな閾値 t'とする。この場合、交点が少なくとも2点あるので、新たな 閾値 t'も交点毎に求められることになる。

次のステップ710では、上記ステップ708で求めた交点毎の、極大値と極小値との間で、閾値 t'と波形データPD1との交点(すなわち、閾値 t'が波形データPD1を横切る点)をそれぞれ求め、その求めた各点(ピクセル)の位置を境界位置とする。すなわち、このようにして境界位置(この場合、評価点対応領域DBnの上辺及び下辺の大まかな位置)を算出した後、図10のステップ510にリターンする。

図10のステップ510では、図14Bに示されるように、上記ステップ508で求めた上辺より少し下側の横方向(X軸方向にほぼ平行な方向)の直線LH1上のピクセル列、及び、求めた下辺より少し上側の横方向の直線LH2上のピクセル列を用いて、前述のステップ508と同様の手法で境界検出を行い、評価点対応領域DBnの左辺及び右辺上の点を各2点、合計4点求める。図14B中には、このステップ510における境界検出に用いられる、上記直線LH1上のピクセル列データのピクセル値に対応する波形データPD2、上記直線LH2上のピクセル列データのピクセル値に対応する波形データPD3がそれぞれ示されている。また、この図14B中には、ステップ510で求められた点Q1~Q4も併せて示されている。

図10に戻り、次のステップ512では、図14Cに示されるように、上記ステップ510で求めた左辺上の2点 Q_1 、 Q_2 より少し右側の縦方向の直線レ V1上のピクセル列、及び、求めた右辺上の2点 Q_3 、 Q_4 より少し左側の縦方向の直線レ V2上のピクセル列を用いて、前述のステップ508と同様の手法で境界検出を行い、評価点対応領域 D B_n の上辺及び下辺上の点を各2 点、合計4点求める。図14C中には、このステップ512における境界検出に用いられる、上記直線レ V1上のピクセル列データのピクセル値に対応する波形デ

ータPD4、上記直線LV2上のピクセル列データのピクセル値に対応する波 形データPD5がそれぞれ示されている。また、この図14C中には、ステップ512で求められた点Q5~Q8も併せて示されている。

図10に戻り、次のステップ514では、図15Aに示されるように、上記ステップ510、512においてそれぞれ求めた、評価点対応領域DB $_1$ の左辺、右辺、上辺及び下辺上の各2点($_2$)、($_3$, $_4$)、($_4$)、($_5$, $_6$)、($_7$, $_8$) に基づいて、各辺上の2点で決まる直線同士の交点として、矩形領域(長方形領域)である評価点対応領域DB $_1$ の外枠の4頂点 $_1$ 0、 $_2$ 1、 $_2$ 2、 $_3$ 2 を求める。ここで、この頂点の算出方法について、頂点 $_1$ 3 を算出する場合を例にとって、図17に基づいて詳述する。

図17に示されるように、頂点 p_0 'が、境界位置 Q_2 から Q_1 へ向かうベクトルK1の α 倍(α >0)の位置にあり、同時に Q_5 から Q_6 へ向かうベクトルK2の β 倍(β <0)の位置にあるとするとき、次の連立方程式(1)が成り立つ。(ここで、添え字x, y は、それぞれ各点のx 座標、y 座標を表す。)

$$p_{0x}' = Q_{2x} + \alpha (Q_{1x} - Q_{2x}) = Q_{5x} + \beta (Q_{6x} - Q_{5x})$$

$$p_{0y}' = Q_{2y} + \alpha (Q_{1y} - Q_{2y}) = Q_{5y} + \beta (Q_{6y} - Q_{5y})$$

$$\cdots (1)$$

上記の連立方程式(1)を解けば、頂点 p_0 'の位置(p_0x ', p_0y ')が求められる。

残りの頂点 p₁'、p₂'、p₃'についても、同様の連立方程式を立て、それを解くことにより、それぞれの位置を求めることができる。

図10に戻り、次のステップ516では、図15Bに示されるように、上で求めた4項点 p_0 ' $\sim p_3$ 'の座標値に基づいて、最小二乗法による長方形近似を行い、回転を含めた評価点対応領域 DB_n の外枠DBFを算出する。

ここで、このステップ516における処理を、図18に基づいて詳述する。 すなわち、このステップ516では、4項点 $p_0 \sim p_3$ の座標値を用いて、最小 二乗法による長方形近似を行い、評価点対応領域 DB_n の外枠DBFの幅w、 高さ h、及び回転量 θ を求めている。なお、図 1 8 において、 y 軸は紙面の下側が正となっている。

中心 p_c の座標を (p_{cx}, p_{cy}) とすると、長方形の4項点 (p_0, p_1, p_2, p_3) はそれぞれ次式 $(2) \sim (5)$ のように表せる。

$$\begin{bmatrix}
p_{0x} \\
p_{0y}
\end{bmatrix} = \begin{bmatrix}
p_{cx} \\
p_{cy}
\end{bmatrix} + \begin{bmatrix}
\cos\theta & -\sin\theta \\
\sin\theta & \cos\theta
\end{bmatrix} \begin{bmatrix}
-\frac{w}{2} \\
-\frac{h}{2}
\end{bmatrix} \cdots (2)$$

$$\begin{bmatrix}
p_{1x} \\
p_{1y}
\end{bmatrix} = \begin{bmatrix}
p_{cx} \\
p_{cy}
\end{bmatrix} + \begin{bmatrix}
\cos\theta & -\sin\theta \\
\sin\theta & \cos\theta
\end{bmatrix} \begin{bmatrix}
\frac{w}{2} \\
-\frac{h}{2}
\end{bmatrix} \cdots (3)$$

$$\begin{bmatrix}
p_{2x} \\
p_{2y}
\end{bmatrix} = \begin{bmatrix}
p_{cx} \\
p_{cy}
\end{bmatrix} + \begin{bmatrix}
\cos\theta & -\sin\theta \\
\sin\theta & \cos\theta
\end{bmatrix} \begin{bmatrix}
\frac{w}{2} \\
\frac{h}{2}
\end{bmatrix} \cdots (4)$$

$$\begin{bmatrix}
p_{3x} \\
p_{3y}
\end{bmatrix} = \begin{bmatrix}
p_{cx} \\
p_{cy}
\end{bmatrix} + \begin{bmatrix}
\cos\theta & -\sin\theta \\
\sin\theta & \cos\theta
\end{bmatrix} \begin{bmatrix}
-\frac{w}{2} \\
\frac{h}{2}
\end{bmatrix} \cdots (5)$$

上記ステップ5 1 4 で求めた 4 頂点 p_0 ', p_1 ', p_2 ', p_3 ' の各点とそれぞれ対応する上式(2)~(5)でそれぞれ表される頂点 p_0 , p_1 , p_2 , p_3 との距離の総和を誤差 E_p とする。誤差 E_p は、次式(6)、(7)で表せる。

$$E_{px} = (p_{0x} - p_{0x}')^2 + (p_{1x} - p_{1x}')^2 + (p_{2x} - p_{2x}')^2 + (p_{3x} - p_{3x}')^2 \cdots (6)$$

$$E_{py} = (p_{0y} - p_{0y}')^2 + (p_{1y} - p_{1y}')^2 + (p_{2y} - p_{2y}')^2 + (p_{3y} - p_{3y}')^2 \cdots (7)$$

上記式(6)、(7)を、未知変数 p_{cx} , p_{cy} , w, h, θ でそれぞれ偏微分し、その結果が0になるように連立方程式を立て、その連立方程式を解くことによって長方形近似結果が得られる。

この結果、評価点対応領域 DBnの外枠 DBF が求められた様子が、図15 Bに実線にて示されている。

図10に戻り、次のステップ518では、上で検出した評価点対応領域DB n の外枠DBFを、既知の区画領域の縦方向の数=(M+2)=15、区画領域の横方向の数=(N+2) = 25を用いて、等分割し、各区画領域DA $_{i,j}$

 $(i=0\sim14,j=0\sim24)$ を求める。すなわち、外枠DBFを基準として、各区画領域を求める。

図 1 5 Cには、このようにして求められた、第 1 領域 D C_n を構成する各区 画領域 D A_{i,i} ($i = 1 \sim 13$ 、 $j = 1 \sim 23$) が示されている。

図10に戻り、次のステップ520では、各区画領域 $DA_{i,j}$ ($i=1\sim M$ 、 $j=1\sim N$) について、ピクセルデータに関する代表値(以下、適宜「スコア」とも呼ぶ)を算出する。

以下、スコア $E_{i,i}(i=1\sim M,j=1\sim N)$ の算出方法について詳述する。

通常、撮像された計測対象において、パターン部分と非パターン部分にはコントラスト差がある。パターンが消失した領域内には非パターン領域輝度をもつピクセルだけが存在し、一方、パターンが残存する領域内にはパターン領域輝度をもつピクセルと非パターン領域輝度を持つピクセルとが混在する。従って、パターン有無判別を行うための代表値(スコア)として、各区画領域内でのピクセル値のばらつきを用いることかできる。

本実施形態では、一例として、区画領域内の指定範囲のピクセル値の分散(又は標準偏差)を、スコアEとして採用するものとする。

指定範囲内のピクセルの総数をS、k番目のピクセルの輝度値を I_k とすると、スコアEは次式(8)で表せる。

$$E = \sum_{k=1}^{S} (SI_k - \sum I_k)^2 / S^3 \cdots (8)$$

本実施形態の場合、前述の如く、レチクルRT上で、開口パターンAPn($n=1\sim5$)と中心を同じくする、該各開口パターンの約60%の縮小領域部分に計測用パターンMPnがそれぞれ配置されている。また、前述の露光の際のステップピッチSPが、各開口パターンAPnのウエハWT上への投影像の寸法とほぼ一致する約5 μ mに設定されている。従って、パターン残存区画領域において、計測用パターンMPnは、区画領域DAi,jと中心を同じくし、該区画領域DAi,jをほぼ60%に縮小した範囲(領域)に存在することとなる。

かかる点を考慮すると、上記の指定範囲として、例えば区画領域 $DA_{i,j}$ (i = 1 \sim M、j = 1 \sim N)と中心を同じくし、その領域を縮小した範囲をスコア 算出に用いることができる。但し、その縮小率 A (%) は以下のように制限される。

まず、下限については、範囲が狭すぎるとスコア算出に用いる領域が、パターン部分のみになってしまい、そうするとパターン残存部でもばらつきが小さくなってパターン有無判別には利用できなくなる。この場合には、上述のパターンの存在範囲から明らかなように、A>60%である必要がある。また、上限については、当然100%以下だが、検出誤差などを考慮して100%より小さい比率にすべきである。これより、縮小率Aは、60%<A<100%に定める必要がある。

本実施形態の場合、パターン部が区画領域の約60%を占めているため、スコア算出に用いる領域(指定範囲)の区画領域に対する比を上げるほどS/N比が上がるものと予想される。

しかるに、スコア算出に用いる領域内でのパターン部と非パターン部の領域サイズが同じになれば、パターン有無判別のS/N比を最大にすることができる。従って、幾つかの比率を実験的に確認して、最も安定した結果が得られる比率として、A=90%という比率を採用するものとした。勿論縮小率Aは、90%に限定されるものではなく、計測用パターンMPnと開口パターンAPnとの関係、及びステップピッチSPによって決定されるウエハ上の区画領域を考慮して、区画領域に対する計測用パターンMPnの像が占める割合を考慮して定めれば良い。また、スコア算出に用いる指定範囲は、区画領域と中心を同じくする領域に限定されるものではなく、計測用パターンMPnの像が区画領域内のどの位置に存在するかを考慮して定めれば良い。

従って、ステップ520では、前記撮像データファイルから、各区画領域D $A_{i,j}$ の前記指定範囲内の撮像データを抽出し、上式(8)を用いて、各区画領

域 $DA_{i,j}$ ($i=1\sim M$ 、 $j=1\sim N$)のスコア $E_{i,j}$ ($i=1\sim M$ 、 $j=1\sim N$)を算出する。

上記の方法で求めたスコアEは、パターンの有無具合を数値として表しているので、所定の閾値で二値化することによってパターン有無の判別を自動的にかつ安定して行うことが可能である。

そこで、次のステップ522(図11)において、区画領域 $DA_{i,j}$ 毎に上で求めたスコア $E_{i,j}$ と所定の閾値SHとを比較して、各区画領域 $DA_{i,j}$ における計測用パターンMPの像の有無を検出し、検出結果としての判定値 $F_{i,j}$ ($i=1\sim M$ 、 $j=1\sim N$) を図示しない記憶装置に保存する。すなわち、このようにして、スコア $E_{i,j}$ に基づいて、区画領域 $DA_{i,j}$ 毎に計測用パターンMP の像の形成状態を検出する。なお、像の形成状態としては、種々のものが考えられるが、本実施形態では、上述の如く、スコアEがパターンの有無具合を数値として表すものであるという点に基づいて、区画領域内にパターンの像が形成されているか否かに着目することとしたものである。

ここでは、スコア $E_{i,j}$ が閾値SH以上の場合には、計測用パターン MP_n の像が形成されていると判断し、検出結果としての判定値 $F_{i,j}$ を「O」とする。一方、スコア $E_{i,j}$ が閾値SH未満の場合には、計測用パターン MP_n の像が形成されていないと判断し、検出結果としての判定値 $F_{i,j}$ を「1」とする。図 19には、この検出結果の一例がテーブルデータとして示されている。この図 19は、前述の図 9に対応するものである。

図19において、例えば、 $F_{12,16}$ は、ウエハ W_T のZ軸方向の位置が Z_{12} で、露光エネルギ量が P_{16} のときに転写された計測用パターン MP_n の像の形成状態の検出結果を意味し、一例として、図19の場合には、 $F_{12,16}$ は、「1」という値になっており、計測用パターン MP_n の像が形成されていないと判断されたことを示している。

なお、閾値SHは、予め設定されている値であり、オペレータが図示しない

入出力装置を用いて変更することも可能である。

次のステップ524では、上述の検出結果に基づいて、フォーカス位置毎に パターンの像が形成されている区画領域の数を求める。すなわち、フォーカス 位置毎に判定値「〇」の区画領域が何個あるかを計数し、その計数結果をパタ ーン残存数 T_i ($i=1\sim M$)とする。この際に、周囲の領域と異なる値を持つ いわゆる跳び領域は無視する。例えば、図19の場合には、ウエハW_Tのフォ ーカス位置が Z_1 ではパターン残存数 $T_1 = 8$ 、 Z_2 では $T_2 = 11$ 、 Z_3 では $T_3 = 14$, Z_4 $\sigma t T_4 = 16$, Z_5 $\sigma t T_5 = 16$, Z_6 $\sigma t T_6 = 13$, Z_7 $\text{rdT}_7 = 1.1$, Z_8 $\text{rdT}_8 = 8$, Z_9 $\text{rdT}_9 = 5$, Z_{10} $\text{rdT}_{10} = 3$, Z_{10} $_{11}$ では $T_{11}=2$ 、 Z_{12} では $T_{12}=2$ 、 Z_{13} では $T_{13}=2$ である。このよう にして、フォーカス位置とパターン残存数T;との関係を求めることができる。 なお、上記の跳び領域が生ずる原因として、計測時の誤認識、レーザのミス ファイヤ、ゴミ、ノイズ等が考えられるが、このようにして生じた跳び領域が パターン残存数 Ti の検出結果に与える影響を軽減するために、フィルタ処理 を行っても良い。このフィルタ処理としては、例えば評価する区画領域を中心 とする3×3の区画領域のデータ(判定値Fii)の平均値(単純平均値又は重 み付け平均値)を求めることが考えられる。なお、フィルタ処理は、形成状態 の検出処理前のデータ(スコアEi;)に対して行っても勿論良く、この場合に は、より有効に跳び領域の影響を軽減できる。

次のステップ526では、パターン残存数からベストフォーカス位置を算出 するための高次の近似曲線(例えば4~6次曲線)を求める。

具体的には、上記ステップ 5 2 4 で検出されたパターンの残存数を、横軸をフォーカス位置とし、縦軸をパターン残存数 T_i とする座標系上にプロットする。この場合、図 2 0 に示されるようになる。ここで、本実施形態の場合、ウエハ W_T の露光にあっては、各区画領域 D $A_{i,j}$ を同一の大きさとし、かつ、行方向で隣接する区画領域間の露光エネルギ量の差を一定値(= Δ P)とし、列

方向で隣接する区画領域間のフォーカス位置の差を一定値($=\Delta Z$)としたので、パターン残存数 T_i が露光エネルギ量に比例するものとして扱うことができる。すなわち、図 2 O において、縦軸は露光エネルギ量 P であると考えることもできる。

上記のプロット後、各プロット点をカーブフィットすることにより高次の近似曲線(最小二乗近似曲線)を求める。これにより、例えば図20に点線で示されるような曲線P=f(Z)が求められる。

図11に戻り、次のステップ528では、上記曲線P=f(Z)の極値(極大値又は極小値)の算出を試みるとともに、その結果に基づいて極値が存在するか否かを判断する。そして、極値が算出できた場合には、ステップ530に移行して極値におけるフォーカス位置を算出して、その算出結果を光学特性の一つである最良フォーカス位置とするとともに、該最良フォーカス位置を図示しない記憶装置に保存する。

一方、上記ステップ528において、極値が算出されなかった場合には、ステップ532に移行して、ウエハ W_T の位置変化(Zの変化)に対応する曲線 P=f(Z)の変化量が最も小さいフォーカス位置の範囲を算出し、その範囲の中間の位置を最良フォーカス位置として算出し、その算出結果を最良フォーカス位置とするとともに、該最良フォーカス位置を図示しない記憶装置に保存する。すなわち、曲線P=f(Z)の最も平坦な部分に基づいてフォーカス位置を算出する。

ここで、このステップ532のようなベストフォーカス位置の算出ステップを設けたのは、計測用パターンMPの種類やレジストの種類その他の露光条件によっては、例外的に上述の曲線P=f(Z)が明確なピークを持たないような場合がある。このような場合にも、ベストフォーカス位置をある程度の精度で算出できるようにしたものである。

次のステップ534において、前述のカウンタnを参照して、全ての評価点

対応領域 $DB_1 \sim DB_5$ について処理が終了したか否かを判断する。ここでは、評価点対応領域 DB_1 についての処理が終了しただけであるため、このステップ 534 における判断は否定され、ステップ 536 に進んでカウンタ n を 14 ンクリメント $(n \leftarrow n + 1)$ した後、図 10 のステップ 502 に戻り、評価点対応領域 DB_2 がアライメント検出系 A Sで検出可能となる位置に、ウエハ W_T を位置決めする。

そして、上述したステップ $504 \sim 534$ までの処理(判断を含む)を再度行い、上述した評価点対応領域 DB_1 の場合と同様にして、評価点対応領域 DB_2 について最良フォーカス位置を求める。

そして、評価点対応領域 DB_2 について最良フォーカス位置の算出が終了すると、ステップ 5.3.4 で全ての評価点対応領域 $DB_1 \sim DB_5$ について処理が終了したか否かを再度判断するが、ここでの判断は否定される。以後、ステップ 5.3.4 における判断が肯定されるまで、上記ステップ $5.0.2 \sim 5.3.6$ の処理(判断を含む)が繰り返される。これにより、他の評価点対応領域 $DB_3 \sim DB_5$ について、前述した評価点対応領域 DB_1 の場合と同様にして、それぞれ最良フォーカス位置が求められることとなる。

このようにして、ウエハ W_T 上の全ての評価点対応領域 $DB_1 \sim DB_5$ について最良フォーカス位置の算出がなされると、ステップ 5.3.4 での判断が肯定され、ステップ 5.3.8 に移行して、上で求めた最良フォーカス位置データに基づいて他の光学特性を算出する。

例えば、このステップ538では、一例として、評価点対応領域DB $_1\sim D$ B $_5$ における最良フォーカス位置のデータに基づいて、投影光学系PLの像面湾曲を算出する。

ここで、本実施形態では、説明の簡略化のため、投影光学系PLの視野内の各評価点に対応するレチクルRT上の領域に計測用パターンとして前述のパターンMPnのみが形成されていることを前提として、説明を行った。しかし、

本発明がこれに限定されないことは勿論である。例えば、レチクルRT上に、例えば各評価点に対応するレチクルRT上の領域の近傍に、前述したステップピッチSPの整数倍、例えば8倍、12倍などの間隔で複数の開口パターンAPnを配置し、各開口パターンAPnの内部に、周期方向が異なるL/Sパターンや、ピッチが異なるL/Sパターンなど複数種類の計測用パターンをそれぞれ配置しても良い。このようにすると、複数種類の計測用パターンにおける最良フォーカス位置(平均値など)を求めることができるだけでなく、例えば、各評価点に対応する位置に近接して配置された周期方向が直交する1組のL/Sパターンを計測用パターンとして得られた最良フォーカス位置から各評価点における非点収差を求めることができる。さらに、投影光学系PLの視野内の各評価点について、上述のようにして算出された非点収差に基づいて最小二乗法による近似処理を行うことにより非点収差面内均一性を求めるととも可能となる。

そして、上述のようにして求められた投影光学系PLの光学特性データは、 図示しない記憶装置に保存されるとともに、不図示の表示装置の画面上に表示 される。これにより、図11のステップ538の処理、すなわち図5のステッ プ456の処理を終了し、一連の光学特性の計測処理を終了する。

次に、デバイス製造の場合における、本実施形態の露光装置100による露光動作を説明する。

前提として、上述のようにして決定された最良フォーカス位置の情報、あるいはこれに加えて像面湾曲の情報が、不図示の入出力装置を介して主制御装置 28に入力されているものとする。

例えば、像面湾曲の情報が入力されている場合には、主制御装置28は、露 光に先立って、この光学特性データに基づいて、図示しない結像特性補正コントローラに指示し、例えば投影光学系PLの少なくとも1つの光学素子(本実 施形態では、レンズエレメント)の位置(他の光学素子との間隔を含む)ある いは傾斜などを変更することにより、その像面湾曲が補正されるように投影光学系PLの結像特性を可能な範囲で補正する。なお、投影光学系PLの結像特性の調整に用いる光学素子は、レンズエレメントなどの屈折光学素子だけでなく、例えば凹面鏡などの反射光学素子、あるいは投影光学系PLの収差(ディストーション、球面収差など)、特にその非回転対称成分を補正する収差補正板などでも良い。さらに、投影光学系PLの結像特性の補正方法は光学素子の移動に限られるものではなく、例えば露光光源を制御してパルス照明光ILの中心波長を僅かにシフトさせる方法、又は投影光学系PLの一部で屈折率を変化させる方法などを単独、あるいは光学素子の移動との組み合わせで採用しても良い。

そして、主制御装置28からの指示に応じて、不図示のレチクルローダにより転写対象となる所定の回路パターン(デバイスパターン)が形成されたレチクルRがレチクルステージRST上にロードされる。同様に、不図示のウエハローダにより、ウエハWがウエハテーブル18上にロードされる。

次に、主制御装置28により、不図示のレチクルアライメント顕微鏡、ウエハテーブル18上の基準マーク板FP、アラインメント検出系AS等を用いて、レチクルアラインメント、ベースライン計測などの準備作業が所定の手順で行われ、これに続いてEGA(エンハンスト・グローバル・アラインメント)方式などのウエハアライメントが行われる。なお、上記のレチクルアライメント、ベースライン計測等の準備作業については、例えば特開平4-324923号公報及びこれに対応する米国特許第5,243,195号等に詳細に開示され、また、これに続くEGAについては、特開昭61-44429号公報及びこれに対応する米国特許第4,780,617号等に詳細に開示されている。本国際出願で指定した指定国又は選択した選択国の国内法令が許す限りにおいて、上記各公報並びにこれらに対応する上記米国特許における開示を援用して本明細書の記載の一部とする。

上記のウェハアライメントが終了すると、以下のようにしてステップ・アンド・リピート方式の露光動作が行われる。

この露光動作にあたって、まず、ウエハW上の最初のショット領域(ファースト・ショット領域)が露光位置(投影光学系PLの直下)に一致するようにウエハテーブル18が位置決めされる。この位置決めは、主制御装置28により、レーザ干渉計26によって計測されたウエハWのXY位置情報(又は速度情報)に基づき、駆動系22等を介してXYステージ20を移動することによって行われる。

このようにして、ウエハWが所定の露光位置に移動すると、主制御装置28は、フォーカスセンサAFSによって検出されたウエハWのZ軸方向の位置情報に基づき、前述した光学特性補正後の投影光学系PLの像面の焦点深度の範囲内にウエハW表面の露光対象のショット領域が収まるように、駆動系22を介してウエハテーブル18をZ軸方向及び傾斜方向に駆動して面位置の調整を行う。そして、主制御装置28は、前述した露光を行う。なお、本実施形態では、ウエハWの露光動作に先立って、前述した各評価点における最良フォーカス位置に基づいて投影光学系PLの像面を算出し、この像面がフォーカスセンサAFSの検出基準となるようにフォーカスセンサAFSの光学的なキャリブレーション(例えば、受光系50b内に配置される平行平面板の傾斜角度の調整など)が行われている。勿論、光学的なキャリブレーションを必ずしも行う必要はなく、例えば先に算出した像面とフォーカスセンサAFSの検出基準との偏差に応じたオフセットを考慮して、フォーカスセンサAFSの出力に基づいてウエハW表面を像面に一致させるフォーカス動作(及びレベリング動作)を行うようにしても良い。

このようにしてファースト・ショット領域に対する露光、すなわちレチクルパターンの転写が終了すると、ウエハテーブル18が1ショット領域分だけステッピングされて、前ショット領域と同様に露光が行われる。

以後、このようにして、ステッピングと露光とが順次繰り返され、ウエハW 上に必要なショット数のパターンが転写される。

以上詳細に説明したように、本実施形態に係る露光装置における、投影光学系PLの光学特性計測方法によると、矩形枠状の開口パターンAPn と該開口パターンAPnの内部に位置する計測用パターンMPn とが形成されたレチクルRTを、投影光学系の物体面側に配置されたレチクルステージRST上に搭載し、投影光学系PLの像面側に配置されたウエハWT の投影光学系PLの光軸方向に関する位置(Z)とウエハWT 上に照射されるパルス照明光ILのエネルギ量Pをそれぞれ変更しながら、ウエハWT を開口パターンAPnのサイズに対応する距離、すなわち開口パターンAPnのウエハWT 上への投影像のサイズ以下のステップピッチで順次XY面内で移動して計測用パターンMPnをウエハWT上に順次転写する。これにより、ウエハWT上には、マトリックス状に配置された複数の区画領域DAi,j(i=0~M+1、j=0~N+1)から成る全体として矩形の評価点対応領域DBnが形成される。この場合、前述した理由により、ウエハWT上には、区画領域相互間の境界に従来のような枠線が存在しない複数のマトリックス状配置の複数の区画領域(計測用パターンの像が投影された領域)が形成される。

そして、ウェハ W_T の現像後に、該ウェハ W_T 上に形成された評価点対応領域 DB_n を構成する複数の区画領域のうち、第2領域 DD_n を除く第1領域 DC_n を構成する $M\times N$ 個の領域における像の形成状態を画像処理の手法、具体的には、主制御装置 28 が、アライメント検出系 ASOFIA センサを用いてウェハ W_T 上の評価点対応領域 DB_n を撮像し、取り込んだレジスト像の撮像データを用いて前述の各区画領域 $DA_{i,j}$ のスコア $E_{i,j}$ と閾値 SH とを比較した二値化の手法により検出する。

本実施形態の場合、隣接する区画領域間に枠線が存在しないので、像形成状 態の検出対象である複数の区画領域(主として計測用パターンの像の残存する 区画領域)において、計測用パターンの像のコントラストが枠線の干渉に起因して低下することがない。このため、それらの複数の区画領域の撮像データとしてパターン部と非パターン部のS/N比の良好なデータを得ることができる。従って、区画領域毎の計測用パターンMPの形成状態を精度、再現性良く検出することが可能となる。しかも、像の形成状態を客観的、定量的なスコア Ei,j を閾値 S H と比較してパターンの有無情報(二値化情報)に変換して検出するので、区画領域毎の計測用パターンMPの形成状態を、再現性良く検出することができる。

また、本実施形態では、パターンの有無具合を数値として表したスコアEi,jを用いて像の形成状態をパターン有無情報(二値化情報)に変換して検出するので、パターン有無の判別を自動的にかつ安定して行うことができる。従って、本実施形態では、二値化に際して、閾値は一つだけで足り、複数の閾値を設定しておいて閾値毎にパターンの有無具合を判別するような場合に比べて、像の形成状態の検出に要する時間を短縮することができるとともに、その検出アルゴリズムも簡略化することができる。

また、主制御装置 2 8 は、上述した区画領域毎の像の形成状態の検出結果、すなわち客観的かつ定量的な上記のスコア Eij (画像のコントラストの指標値)を用いた検出結果に基づいて最良フォーカス位置などの投影光学系 P L の光学特性、を求めている。このため、短時間で精度良く最良フォーカス位置などを求めることが可能となる。従って、この最良フォーカス位置に基づいて決定される光学特性の測定精度及び測定結果の再現性を向上させることができるとともに、結果的に光学特性計測のスループットを向上させることが可能となる。

また、本実施形態では、上述の如く、像の形成状態をパターンの有無情報(二値化情報)に変換して検出するので、レチクル R_T のパターン領域PA内に計測用パターンMP以外のパターン(例えば、比較用の基準パターンや、位置決

め用マークパターン等)を配置する必要がない。また、従来の寸法を計測する方法(CD/フォーカス法、SMPフォーカス計測法など)に比べて、計測用パターンを小さくすることができる。このため、評価点の数を増加させることができるとともに、評価点間の間隔を狭くすることが可能となる。結果的に、光学特性の測定精度及び測定結果の再現性を向上させることができる。

また、本実施形態では、ウエハWT 上に形成される隣接する区画領域間に枠線が存在しないことに鑑み、各評価点対応領域DBn の外周縁である外枠DB Fを基準として各区画領域DAi,j の位置を算出する手法を採用している。そして、各評価点対応領域DBn 内の最外周部に位置する複数の区画領域から成る第2領域DDn を構成する各区画領域が過露光の領域となるように露光条件の一部としてウエハWT 上に照射されるパルス照明光 I Lのエネルギ量を変更している。これにより、前述の外枠DBFの検出に際してのS/N比が向上し、外枠DBFの検出を高精度に行うことができ、この結果、これを基準として各第1領域DCn を構成する各区画領域DAi,j ($i=1\sim M$, $j=1\sim N$) の位置を精度良く検出することができる。

また、本実施形態に係る光学特性計測方法によると、統計処理による近似曲線の算出という客観的、かつ確実な方法を基礎として最良フォーカス位置を算出しているので、安定して高精度かつ確実に光学特性を計測することができる。なお、近似曲線の次数によっては、その変曲点、あるいはその近似曲線と所定のスライスレベルとの複数の交点等に基づいて最良フォーカス位置を算出することは可能である。

また、本実施形態の露光装置によると、本実施形態に係る光学特性計測方法により精度良く計測された投影光学系PLの光学特性を考慮して最適な転写が行えるように投影光学系PLが露光に先立って調整され、その調整された投影光学系PLを介してレチクルRに形成されたパターンがウエハW上に転写される。更に、上述のようにして決定された最良フォーカス位置を考慮して露光の

際のフォーカス制御目標値の設定が行われるので、デフォーカスによる色むらの発生を効果的に抑制することができる。従って、本実施形態に係る露光方法によると、微細パターンをウエハ上に高精度に転写することが可能となる。

なお、上記実施形態では、計測用パターンMPnの像の形成状態を、スコア Ei,jを閾値SHと比較してパターンの有無情報(二値化情報)に変換して検出 する場合について説明したが、本発明がこれに限定されるものではない。上記 実施形態では、評価点対応領域DBnの外枠DBFを精度良く検出し、この外枠を基準として各区画領域DAi,jを演算により算出するので、各区画領域の位置を正確に求めることができる。従って、この正確に求められた各区画領域に対してテンプレートマッチングを行うこととしても良い。このようにすれば、短時間にテンプレートマッチングを行うことができる。この場合、テンプレートパターンとして、例えば像が形成された区画領域あるいは像が形成されなかった区画領域の撮像データを用いることができる。このようにしても、客観的、定量的な相関値の情報が区画領域毎に得られるので、得られた情報を、所定の 閾値と比較することにより、計測用パターンMPの形成状態を二値化情報(像の有無情報)に変換することにより、上記実施形態と同様に像の形成状態を精度、再現性良く検出することができる。

また、上記実施形態では、評価点対応領域 DBn を構成する第2領域が正確な矩形枠状である場合について説明したが、本発明がこれに限定されるものではない。すなわち、第2領域は、その外縁が少なくとも第1領域を構成する各区画領域の位置算出の基準にできれば良いので、全体として矩形の第1領域の外周全域に渡って形成される必要はなく、矩形枠状の区画領域の一部、例えばコ字状(U字状)部分であっても良い。

また、第2領域、すなわち矩形枠状の領域、あるいはその一部の領域を形成 する方法も、上記実施形態で説明した計測用パターンを過露光の状態でウエハ 上に転写する、ステップ・アンド・リピート方式の露光方法以外の方法を採用

しても良い。例えば、露光装置100のレチクルステージRST上に例えば矩 形枠状の開口パターン、あるいはその一部のパターンなどが形成されたレチク ルを搭載し、そのレチクルのパターンを1回の露光で、投影光学系PLの像面 側に配置されたウエハ上に転写して、過露光の第2領域をウエハ上に形成する こととしても良い。この他、前述した開口パターンAP。と同様の開口パター ンが形成されたレチクルをレチクルステージRST上に搭載して、ステップ・ アンド・リピート方式で、その開口パターンを過露光の露光エネルギ量でウエ ハ上に転写することにより、過露光の第2領域をウエハ上に形成することとし ても良い。また、例えば上記の開口パターンを用いてステップ・アンド・ステ ィッチ方式で露光を行い、ウエハ上に開口パターンの複数の像を隣接してある いは繋ぎ合わせて形成することによって、過露光の第2領域をウエハ上に形成 しても良い。この他、レチクルステージRSTを静止させた状態でそのレチク ルステージRST上に搭載されたレチクルに形成された開口パターンを照明光 で照明しながらウエハW(ウエハテーブル18)を所定方向に移動して過露光 の第2領域を形成しても良い。いずれにしても、上記実施形態と同様に、過露 光の第2領域の存在により、その第2領域の外縁をS/N比の良好な検出信号 に基づいて精度良く検出することが可能となる。

これらの場合において、マトリックス状に配置された複数の区画領域 DAi, j から成る全体として矩形の第 1 領域 DCn をウエハWT 上に形成する工程と、第 1 領域の周囲の少なくとも一部のウエハ上の領域に過露光の第 2 領域(例えば DDn など)を形成する工程とは、上記実施形態の場合と反対であっても良い。特に、像形成状態の検出の対象となる第 1 領域の形成のためのための露光を、後で行うようにした場合には、例えば感光剤として、化学増幅型レジストなどの高感度レジストを用いる場合に、計測用パターンの像の形成(転写)から現像までの時間を短くできるので、特に好適である。

また、過露光の第2領域は、上記実施形態のような矩形枠状あるいはその一

部のような形状に限定されるものではない。例えば、第2領域の形状は、第1領域との境界線(内縁)のみが矩形枠状の形状を有し、外縁は任意形状であっても良い。かかる場合であっても、第1領域の外側に過露光の第2領域(パターン像が形成されない領域)が存在するので、第1領域内の最外周部に位置する区画領域(以下、「外縁部区画領域」と呼ぶ)の検出の際に、隣接する外側の領域のパターン像の存在によりその外縁部区画領域の像のコントラストが低下するのが防止される。従って、前記外縁部区画領域と第2領域の境界線をS/N比良く検出することが可能となり、その境界線を基準として設計値に基づき他の区画領域(第1領域を構成する各区画領域)の位置を算出することができ、他の区画領域のほぼ正確な位置を求めることが可能である。これにより、第1領域内の複数の区画領域それぞれの位置をほぼ正確に知ることができるので、例えばそれぞれの区画領域に対して、上記実施形態と同様のスコア(像のコントラストの指標値)を用いた方法、あるいはテンプレートマッチング法を適用して像の形成状態を検出することにより、上記実施形態と同様に、パターン像の形成状態を短時間で検出することが可能になる。

そして、その検出結果に基づいて投影光学系の光学特性を求めることにより、 客観的かつ定量的な像のコントラスト、あるいは相関値を用いた検出結果に基づいて光学特性を求めることができる。従って、上記実施形態と同等の効果を 得ることができる。

また、全体として矩形の第1領域を構成するN×M個の区画領域を全て露光するものとしたが、N×M個の区画領域の少なくとも1個、すなわち曲線P=f(Z)の決定に明らかに寄与しない露光条件が設定される区画領域(例えば、図9で右上隅及び右下隅に位置する区画領域など)については必ずしもその露光を行わなくても良い。この場合、第1領域の外側に形成される第2領域はその形状が矩形でなくその一部に凹凸を持つ形状となるように形成しても良い。換言すればN×M個の区画領域のうち露光された区画領域のみを囲むように第

2領域を形成しても良い。

また、前記外縁部区画領域と第2領域の境界線を検出する場合には、アライメント検出系のFIA系センサ以外のアライメントセンサ、例えばLSA系などの散乱光あるいは回折光の光量などを検出するアライメントセンサを用いても良い。

かかる場合であっても、第2領域の内縁部を基準として、第1領域内の各区 画領域の位置を精度良く求めることが可能である。

また、上記実施形態と同様に、各評価点対応領域を第1領域とその周囲の第 2領域とで形成する場合には、前述のステップピッチSPを、前述した開口パターンAPの投影領域サイズ以下に必ずしも設定しなくても良い。その理由は、これまでに説明した方法で、第2領域の一部を基準として、第1領域を構成する各区画領域の位置がほぼ正確に求まるので、その位置の情報を用いることにより、例えばテンプレートマッチングや、上記実施形態の場合を含むコントラスト検出をある程度の精度でかつ短時間で行うことができるからである。

一方、前述のステップピッチSPを、前述した開口パターンAPの投影領域サイズ以下に設定する場合において、第1領域の外側に前述の第2領域を必ずしも形成しなくても良い。かかる場合であっても、上記実施形態と同様にして第1領域の外枠を検出することが可能であり、この検出した外枠を基準として第1領域内の各区画領域の位置を正確に求めることが可能だからである。そして、このようにして求められた各区画領域の位置の情報を用いて、例えばテンプレートマッチングや、上記実施形態のようなスコアを用いた検出(コントラスト検出)により像形成状態を検出する場合に、枠の干渉に起因するパターン部と非パターン部のコントラスト低下のないS/N比の良好な画像データを用いて像形成状態を精度良く検出することが可能となる。

但し、この場合には、第1領域内の最外周の区画領域でパターンが残っている区画領域が並ぶ辺上では境界の誤検出を起こし易くなる。このため、誤検出

を起こし難い境界の検出情報を用いて、誤検出を起こし易い境界の検出範囲を限定することによって対処することが望ましい。上記実施形態に則して説明すれば、誤検出を起こし難い区画領域が並ぶ右辺で検出した境界の情報を基に、誤検出を起こし易い区画領域が並ぶ左辺上の境界位置の検出範囲を限定する。また、第1領域の上下辺上の境界検出では、誤検出を起こし難い右側の検出情報を用いて左側の境界位置の検出範囲を限定することとすれば良い(図9参照)。

なお、上記実施形態では、ウエハWT のステップピッチSPを、通常より狭く設定することにより、ウエハWT 上に形成された評価点対応領域を構成する区画領域間に枠が残存しないようにして、枠の干渉によるパターン部のコントラスト低下を防止する場合について説明した。しかし、枠の存在によるパターン部のコントラスト低下は、以下のようにしても防止することができる。

すなわち、前述の計測用パターンMPと同様にマルチバーパターンを含む計 測用パターンが形成されたレチクルを用意し、該レチクルをレチクルステージ RST上に搭載し、ステップ・アンド・リピート方式などで前記計測用パター ンをウエハ上に転写し、これにより、隣接する複数の区画領域から成り、各区 画領域に転写されたマルチバーパターンとこれに隣接するパターンとが、マル チバーパターンの像のコントラストが前記隣接するパターンによる影響を受け ない距離し以上離れている所定の領域をウエハ上に形成することとしても良い。

この場合、各区画領域に転写されたマルチバーパターンとこれに隣接するパターンとが、マルチバーパターンの像のコントラストが隣接するパターンによる影響を受けない距離 L 以上離れているので、前記所定の領域を構成する複数の区画領域の少なくとも一部の複数の区画領域における像の形成状態を、画像処理の手法、テンプレートマッチング、あるいはスコア検出を含むコントラスト検出などの画像処理手法により検出する際に、それぞれの区画領域に転写されたマルチバーパターンの像のS/N比が良好な撮像信号を得ることができる。従って、この撮像信号に基づいて、テンプレートマッチング、あるいはスコア

検出を含むコントラスト検出などの画像処理手法により各区画領域に形成されたマルチバーパターンの像の形成状態を精度良く検出することができる。

例えば、テンプレートマッチングによる場合には、客観的、定量的な相関値の情報が区画領域毎に得られ、コントラスト検出の場合には、客観的、定量的なコントラスト値の情報が区画領域毎に得られるので、いずれにしても、得られた情報を、それぞれの閾値と比較することにより、マルチバーパターンの像の形成状態を二値化情報(像の有無情報)に変換することにより、各区画領域毎のマルチバーパターンの形成状態を精度、再現性良く検出することが可能となる。

従って、かかる場合にも上記実施形態と同様に、上記の検出結果に基づいて 投影光学系の光学特性を求めることにより、客観的かつ定量的な相関値、コントラストなどを用いた検出結果に基づいて光学特性が求められる。従って、従来の方法と比較して光学特性を精度及び再現性良く計測することができる。また、評価点の数を増加させることができるとともに、各評価点間の間隔を狭くすることができ、結果的に光学特性計測の測定精度を向上させることが可能となる。

なお、上記実施形態では、前述の外枠DBFの検出の際の境界の検出で、ピクセル列データ(生データ)を用い、そのピクセル値の大小(明暗差)により境界位置を検出する場合について説明したが、これに限らず、ピクセル列データ(グレーレベルの生データ)の微分波形を用いても良い。

図21Aは、境界検出に際して得られたグレーレベルの生データを示し、図21Bは、図21Aの生データをそのまま微分した微分データを示す。この微分データが、ノイズや残存パターンによって外枠部分の信号出力が目立ちにくい場合には、図21Cのようにスムージングフィルタを施してから微分しても良い。このようにしても、外枠の検出が可能である。

なお、上記実施形態では、レチクルRT 上の計測用パターンMPn として開

ロパターンAP内の中央部に配置された1種類のL/Sパターン(マルチバーパターン)を用いる場合について説明したが、本発明がこれに限定されないことは言うまでもない。計測用パターンとしては、密集パターンと孤立パターンのいずれを用いても良いし、その両方のパターンを併用したり、周期方向が異なる少なくとも2種類のL/Sパターンや、孤立線やコンタクトホールなどを用いたりしても良い。計測用パターンMPnとしてL/Sパターンを用いる場合には、デューティ比及び周期方向は、任意で良い。また、計測用パターンMPnとして周期パターンを用いる場合、その周期パターンは、L/Sパターンだけではなく、例えばドットマークを周期的に配列したパターンでも良い。これは、像の線幅等を計測する従来の方法とは異なり、像の形成状態をスコア(コントラスト)で検出しているからである。

また、上記実施形態では、1種類のスコアに基づいて最良フォーカス位置を 求めているが、これに限らず、複数種類のスコアを設定しこれらに基づいて、 それぞれ最良フォーカス位置を求めても良く、あるいはこれらの平均値(ある いは重み付け平均値)に基づいて最良フォーカス位置を求めても良い。

また、上記実施形態では、ピクセルデータを抽出するエリアを矩形としているが、これに限定されるものではなく、例えば、円形や楕円形、あるいは三角形などであっても良い。また、その大きさも任意に設定することができる。すなわち、計測用パターンMPnの形状に合わせて抽出エリアを設定することによりノイズを減少させ、S/N比を高くすることが可能である。

また、上記実施形態では、像の形成状態の検出に1種類の閾値を用いているが、これに限らず、複数の閾値を用いても良い。複数の閾値を用いる場合、それぞれの閾値を、スコアと比較することで、区画領域の像の形成状態を検出することとしても良い。この場合、例えば第1の閾値での検出結果から最良フォーカス位置が算出困難な場合に、第2の閾値での形成状態の検出を行い、その検出結果から最良フォーカス位置を求めることなどが可能となる。

また、予め複数の閾値を設定しておき、閾値毎に最良フォーカス位置を求め、それらの平均値(単純平均値あるいは重み付け平均値)を最良フォーカス位置としても良い。例えば、各閾値に応じて、露光エネルギ量Pが極値を示すときのフォーカス位置を順次算出する。そして、各フォーカス位置の平均値を最良フォーカス位置とする。なお、露光エネルギ量Pとフォーカス位置ことの関係を示す近似曲線と適当なスライスレベル(露光エネルギ量)との2つの交点(フォーカス位置)を求め、両交点の平均値を、各閾値毎に算出し、それらの平均値(単純平均値あるいは重み付け平均値)を最良フォーカス位置としても良い。

あるいは、各閾値毎に最良フォーカス位置を算出し、閾値と最良フォーカス 位置との関係において、閾値の変動に対して、最良フォーカス位置の変化が最 も小さい区間における最良フォーカス位置の平均値(単純平均値あるいは重み 付け平均値)を最良フォーカス位置としても良い。

また、上記実施形態では、予め設定されている値を閾値として用いているが、 これに限定されるものではない。例えば、ウエハWT 上の計測用パターンMP nが転写されていない領域を撮像し、得られたスコアを閾値としても良い。

なお、前述の外枠検出を行わない場合には、評価点対応領域DBnに形成されたレジスト像を必ずしも1度に撮像する必要はない。例えば、撮像データの分解能を向上させる必要がある場合には、アライメント検出系ASのFIAセンサの倍率を上げ、ウエハテーブル18をXY2次元方向に所定距離ステッピングさせる動作と、FIAセンサによるレジスト像の撮像とを交互に順次繰り返すことによって、区画領域毎に撮像データの取り込みを行うこととしても良い。さらに、例えば前述の第1領域と第2領域とで、FIAセンサによる画像の取り込み回数を異ならせても良く、このようにすることにより計測時間の短縮などを図ることができる。

なお、上記実施形態の露光装置 1 O O では、主制御装置 2 8 は、図示しない 記憶装置に格納されている処理プログラムに従って、前述した投影光学系の光 学特性の計測を行うことにより、計測処理の自動化を実現することができる。 勿論、この処理プログラムは、他の情報記録媒体(CD-ROM、MO等)に 保存されていても良い。さらに、計測を行う時に、図示しないサーバから処理 プログラムをダウンロードしても良い。また、計測結果を、図示しないサーバ に送付したり、インターネットやイントラネットを介して電子メール及びファイル転送により、外部に通知することも可能である。

また、撮像装置として露光装置外に設けられた専用の撮像装置(例えば光学 顕微鏡など)を用いても良い。また、画像処理以外の方法で外枠検出を行う場 合などに、LSA系のアライメントセンサなどを用いることも可能である。さ らに、オペレータなどが介在することなく、前述の計測結果(最良フォーカス 位置など)に基づいて投影光学系PLの光学特性を調整することができる。す なわち、露光装置に自動調整機能を持たせることが可能となる。

また、外枠基準による各区画領域の位置算出を行わないのであれば、ウエハ上の評価点対応領域を、上記実施形態の如く、マトリックス状に配置された複数の区画領域によって構成する必要はない。すなわち、ウエハ上のいずれの位置にパターンの転写像が転写されていても、その撮像データを用いてスコアを求めることは十分に可能だからである。すなわち、撮像データファイルが作成できれば良いからである。

また、上記実施形態では、一例として、区画領域内の指定範囲のピクセル値の分散(又は標準偏差)を、スコアEとして採用するものとしたが、本発明がこれに限定されるものではなく、区画領域内又はその一部(例えば、前述の指定範囲)のピクセル値の加算値、微分総和値をスコアEとしても良い。また、上記実施形態中で説明した外枠検出のアルゴリズムは一例であって、これに限らず、例えば前述した境界検出と同様の手法により、評価点対応領域DBnの4辺(上辺、下辺、左辺及び右辺)でそれぞれ少なくとも2点を検出することとしても良い。このようにしても、検出された少なくとも8点に基づいて例え

ば前述と同様の頂点検出、長方形近似などが可能である。また、上記実施形態では、図3に示されるように、開口パターンの内部に遮光部によって計測用パターンMPnが形成された場合について説明したが、これに限らず、図3の場合と反対に、遮光部内に光透過性のパターンから成る計測用パターンを形成しても良い。

≪第2の実施形態≫

次に、本発明の第2の実施形態を図22~図30に基づいて説明する。本第 2の実施形態においては、前述した第1の実施形態に係る露光装置100と同 様の構成の露光装置を用いて、投影光学系のPLの光学特性の計測及び露光が 行われる。この露光装置は、前述した露光装置100と比べて、主制御装置内 部のCPUの処理アルゴリズムが異なるのみで、その他の部分の構成などは前 述の露光装置100と同一である。従って、以下においては、重複説明を避け る観点から、同一部分には同一の符号を用いるとともに、その説明を省略する ものとする。

本第2の実施形態では、光学特性の計測に際し、計測用パターンとして図22に示されるような計測用パターン200が形成された計測用レチクル(R_T 'とする)が用いられる。この計測用レチクル R_T 'は、前述の計測用レチクル R_T と同様に、ほぼ正方形のガラス基板の中央に、クロム等の遮光部材から成るパターン領域PAが形成され、このパターン領域PAの中心(すなわちレチクル R_T 'の中心(レチクルセンタ)に一致)及び4隅の部分の合計5箇所にそれぞれ設けられる光透過部内に、計測用パターン200が形成されている。また、レチクルアライメントマークも同様に形成されている。

ここで、計測用レチクル R_T 'のパターン領域PAに形成された計測用パターン2OOについて、図22を用いて説明する。

計測用パターン·200は、本第2の実施形態では、一例として図22に示されるように、複数本のパーパターン(遮光部)から成る4種類のパターン、す

なわち、第1パターンCA1、第2パターンCA2、第3パターンCA3、及び第4パターンCA4から構成されている。ここで、第1パターンCA1は、所定の線幅を有するラインアンドスペース(以下、「L/S」と略述する)パターンであり、周期方向は紙面左右方向(X軸方向:第1の周期方向)である。第2パターンCA2は、前記第1パターンCA1を紙面内で反時計回りに90度回転させた形状であり、第2の周期方向(Y軸方向)を有している。第3パターンCA3は、前記第1パターンCA1を紙面内で反時計回りに45度回転させた形状であり、第3の周期方向を有している。第4パターンCA4は、前記第1パターンCA1を紙面内で時計回りに45度回転させた形状であり、第4の周期方向を有している。すなわち、各パターンCA1~CA4は、周期方向が異なる以外は同一形成条件(周期、デューティ比など)で形成されたL/Sパターンである。

また、前記第2パターンCA2は、前記第1パターンCA1の紙面下側(+ Y側)に配置され、前記第3パターンCA3は、前記第1パターンCA1の紙 面右側(+X側)に配置され、前記第4パターンCA4は、前記第3パターン CA3の紙面下側(+Y側)に配置されている。

また、レチクルRT'のパターン領域PA内には、レチクルRT'のアライメントが行われた状態で、投影光学系PLの視野内でその光学特性を検出すべき複数の評価点に対応する位置毎に前記計測用パターン200がそれぞれ配置されている。

次に、本第2の実施形態の露光装置における投影光学系PLの光学特性の計測方法について、主制御装置28内のCPUの処理アルゴリズムを簡略化して示す図23及び図24のフローチャートに沿って、かつ適宜他の図面を用いて説明する。

先ず、図23のステップ902において、前述のステップ402と同様にしてレチクルステージRST上にレチクル R_T 'をロードするとともに、ウエハ

 W_T をウェハテーブル 1 8上にロードする。なお、ウェハ W_T には、その表面にポジ型のフォトレジストで感光層が形成されているものとする。

次のステップ904において、前述のステップ404と同様の手順でレチクルアライメント、レチクルブラインドの設定などの所定の準備作業を行う。

次のステップ908では、前述のステップ408と同様に露光エネルギ量の目標値を初期化する。すなわち、露光エネルギ量の目標値の設定とともに、露光の際のウェハ W_T の行方向の移動目標位置の設定に用いられる前述のカウンタ j に初期値「1」を設定して露光エネルギ量の目標値 P_j を P_1 に設定する ($j\leftarrow 1$)。なお、本実施形態においても、露光エネルギ量を P_1 から ΔP 刻みで P_N (一例としてN=23) まで変化させる ($P_j=P_1\sim P_{23}$)。

次のステップ910では、前述のステップ410と同様に、ウエハ W_T のフォーカス位置(Z軸方向の位置)の目標値を初期化する。すなわち、ウエハ W_T のフォーカス位置の目標値の設定とともに、露光の際のウエハ W_T の列方向の移動目標位置の設定に用いられる前述のカウンタ i に初期値「1」を設定してウエハ W_T のフォーカス位置の目標値 Z_i を Z_1 に設定する(i ← 1)。本第2の実施形態においても、ウエハ W_T のフォーカス位置を Z_1 から Δ Z刻みで Z_M (一例としてM=13)まで変化させる(Z_i = Z_1 ~ Z_{13})。

従って、本第2の実施形態では、投影光学系PLの光軸方向に関するウェハ W_T の位置とウェハ W_T 上に照射されるパルス照明光 I Lのエネルギ量をそれぞれ変更しながら、計測用パターン20 O_n (n=1~5)をウェハ W_T 上に順次転写するための、 $N\times M$ (一例として2 3×1 3=299)回の露光が行われることになる。投影光学系PLの視野内の各評価点に対応するウェハ W_T 上の領域(以下「評価点対応領域」という) $DB1 \sim DB5$ には、図25 に示されるように、 $N\times M$ 個の計測用パターン20 O_n がそれぞれ転写されることとなる。なお、この評価点対応領域 $DB1 \sim DB5$ は、投影光学系PLの視野内でその光学特性を検出すべき複数の評価点に対応している。そこで、本実施

形態では、データ処理を効率化するため、各評価点対応領域 DB1~DB5を仮想的にN×M個のマトリックス状の区画領域にそれぞれ分割し、各区画領域をDA $_{i,j}$ ($_{i}=1$ ~M、 $_{j}=1$ ~N)で表記することとする。なお、区画領域 DA $_{i,j}$ は、前述の第1の実施形態と同様に、 $_{i}+$ X方向が行方向($_{i}$ の増加方向)となり、 $_{i}+$ Y方向が列方向($_{i}$ の増加方向)となるように配列されている。また、以下の説明において用いられる添え字 $_{i}$, $_{i}$ 、及びM、Nは、上述と同じ意味を有する。

図23に戻り、次のステップ912では、ウエハ W_T 上の各評価点対応領域 DBn ($n=1\sim5$)の仮想の区画領域 DA $_{i,j}$ (ここでは DA $_{1,1}$ (図25参照))に計測用パターン200 $_n$ の像がそれぞれ転写される位置に、前述のステップ412と同様にして XYステージ20 (ウエハ W_T) を移動する。

次のステップ914では、前述のステップ414と同様に、ウエハ W_T のフォーカス位置が設定された目標値 Z_i (この場合 Z_1)と一致するように、ウエハテーブル18を Z_1 を2軸方向及び傾斜方向に微少駆動する。

次のステップ916では、露光を実行する。このとき、ウエハ W_T 上の一点における露光エネルギ量(露光量)が設定された目標値(この場合 P_1)となるように、露光量制御を行う。この露光エネルギ量の制御方法としては、前述の第1~第3の方法を、単独で、あるいは適宜組み合わせて用いることができる。

これにより、図25に示されるように、ウエハ W_T 上の各評価点対応領域 D B 1 ~ D B 5 の区画領域 D A $_{1,1}$ にそれぞれ対応する計測用パターン 2 O O $_{n}$ の像が転写される。

次のステップ920では、ウエハ W_T のフォーカス位置の目標値が Z_M 以上であるか否かを判断することにより、所定のZ範囲での露光が終了したか否かを判断する。ここでは、最初の目標値 Z_1 での露光が終了しただけなので、ステップ922に移行し、カウンタ \vdots を 1 1 1 1 2

ともに、ウエハ W_T のフォーカス位置の目標値に Δ Z を加算する($Z_1 \leftarrow Z + \Delta$ Z)。ここでは、フォーカス位置の目標値を Z_2 ($=Z_1 + \Delta$ Z)に変更した後、ステップ9 1 2 に戻る。このステップ9 1 2 において、ウエハ W_T 上の各評価点対応領域 D B n の区画領域 D A $_{2,1}$ に計測用パターン 2 O O n の像がそれぞれ転写される位置にウエハ W_T が位置決めされるように、XYステージ2 O を所定のステップピッチだけ XY 面内で所定方向(この場合-Y方向)に移動する。

以後、ステップ920における判断が肯定されるまで、すなわちそのとき設定されているウェハ W_T のフォーカス位置の目標値が Z_M であると判断されるまで、ステップ920 \to 922 \to 912 \to 914 \to 916のループの処理(判断を含む)を繰り返す。これにより、ウェハ W_T 上の各評価点対応領域DBnの区画領域DA $_{i,1}$ ($i=3\sim M$)に計測用パターン200 $_n$ がそれぞれ転写される。

一方、区画領域 $DA_{M,1}$ に対する露光が終了し、上記ステップ920における判断が肯定されると、ステップ924に移行し、そのとき設定されている露光エネルギ量の目標値が P_N 以上であるか否かを判断する。この場合、設定されている露光エネルギ量の目標値は P_1 であるため、このステップ924における判断は、否定され、ステップ926に移行する。

ステップ926では、カウンタ j を 1 インクリメントする(j \leftarrow j + 1) と ともに、露光エネルギ量の目標値に Δ P を加算する($P_j \leftarrow P_j + \Delta$ P)。ここで は、露光エネルギ量の目標値を P_2 (= $P_1 + \Delta$ P)に変更した後、ステップ9 10に戻る。

その後、ステップ910においてウエハ W_T のフォーカス位置の目標値を初期化した後、ステップ912 \rightarrow 914 \rightarrow 916 \rightarrow 920 \rightarrow 922のループの処理 (判断を含む)を繰り返す。このループの処理は、ステップ920における判断が肯定されるまで、すなわち露光エネルギ量の目標値 P_2 での、所定のウエハ W_T のフォーカス位置範囲($Z_1\sim Z_M$)についての露光が終了するまで、繰り返される。これにより、ウエハ W_T 上の各評価点対応領域 DB_n の区画領域 $DA_{i,2}$ ($i=1\sim M$)に計測用パターン200nの像が順次転写される。

一方、露光エネルギ量の目標値 P_2 での、所定のウエハ W_T のフォーカス位置範囲($Z_1 \sim Z_M$)についての露光が終了すると、ステップ920における判断が肯定され、ステップ924に移行し、設定されている露光エネルギ量の目標値が P_N 以上であるか否かを判断する。この場合、設定されている露光エネルギ量の目標値は P_2 であるため、このステップ924における判断は、否定され、ステップ926に移行する。ステップ926において、カウンタ j を 1 インクリメントするとともに、露光エネルギ量の目標値に ΔP を加算する($P_1 \leftarrow P_1 + \Delta P$)。ここでは、露光エネルギ量の目標値を P_3 に変更した後、ステップ910に戻る。以後、上記と同様の処理(判断を含む)を繰り返す。

このようにして、所定の露光エネルギ量の範囲($P_1 \sim P_N$)についての露光が終了すると、ステップ924における判断が肯定され、ステップ950に移行する。これにより、ウエハ W_T 上の各評価点対応領域 DB_n には、図25に示されるように、それぞれ露光条件が異なる $N \times M$ (一例として23 \times 13 = 299)個の計測用パターン200 $_n$ の転写像(潜像)が形成される。

ステップ950では、不図示のウエハアンローダを介してウエハ W_T をウエハテーブル18上からアンロードするとともに不図示のウエハ搬送系を用いてウエハ W_T を露光装置にインラインにて接続されている不図示のコータ・デベロッパに搬送する。

上記のコータ・デベロッパに対するウエハ W_T の搬送後に、ステップ952に進んでウエハ W_T の現像が終了するのを待つ。このステップ952における待ち時間の間に、コータ・デベロッパによってウエハ W_T の現像が行われる。この現像の終了により、ウエハ W_T 上には、図25に示されるような矩形(長方形)の評価点対応領域DBn(n=1~5)のレジスト像が形成され、このレジスト像が形成されたウエハ W_T が投影光学系PLの光学特性を計測するための試料となる。

上記ステップ952の待ち状態で、不図示のコータ・デベロッパの制御系からの通知によりウエハ W_T の現像が終了したことを確認すると、ステップ954に移行し、不図示のウエハローダに指示を出して、前述のステップ902と同様にしてウエハ W_T をウエハテーブル18上に再度ロードした後、ステップ956の投影光学系の光学特性を算出するサブルーチン(以下、「光学特性計測ルーチン」とも呼ぶ)に移行する。

この光学特性計測ルーチンでは、まず、図24のステップ958において、前述のステップ502と同様にして、カウンタ n を参照して、ウエハ W_T 上の評価点対応領域DBnのレジスト像がアライメント検出系ASで検出可能となる位置にウエハ W_T を移動する。ここで、カウンタ n は、n=1 に初期化されているものとする。従って、ここでは、図25に示されるウエハ W_T 上の評価点対応領域DB1のレジスト像がアライメント検出系ASで検出可能となる位置にウエハ W_T が位置決めされる。なお、以下の光学特性計測ルーチンの説明では、評価点対応領域DBnのレジスト像を、適宜「評価点対応領域DBn」と略述するものとする。

次のステップ960では、ウエハWT 上の評価点対応領域DBn(ここでは、DB1)のレジスト像をアライメント検出系ASのFIAセンサを用いて撮像し、その撮像データを取り込む。なお、FIAセンサから供給される複数のピクセルデータから成る撮像データは、本第2の実施形態においてもレジスト像

の濃度が高くなる(黒に近くなる)につれてピクセルデータの値が大きくなる ものとする。

また、ここでは、評価点対応領域DB1に形成されたレジスト像を1度に撮像するものとしたが、例えば、撮像データの分解能を向上させる必要がある場合には、アライメント検出系ASのFIAセンサの倍率を上げ、ウエハテーブル18をXY2次元方向に所定距離ステッピングさせる動作と、FIAセンサによるレジスト像の撮像とを交互に順次繰り返すことによって、区画領域毎に撮像データの取り込みを行うこととしても良い。

次のステップ962では、FIAセンサからの評価点対応領域DBn(ここでは、DB1)に形成されたレジスト像の撮像データを整理し、パターンCA1~CA4毎に、各区画領域DAi,jの撮像データファイルを作成する。すなわち、各区画領域DAi,jには、4つのパターンCA1~CA4の像が転写されているので、図26に示されるように、区画領域DAi,jをさらに4つの矩形エリアに分割し、パターンCA1の像が転写されている第1エリアAREA1内のピクセルデータをパターンCA1の撮像データ、パターンCA2の像が転写されている第2エリアAREA2内のピクセルデータをパターンCA2の撮像データ、パターンCA3の像が転写されている第3エリアAREA3内のピクセルデータをパターンCA3の撮像データ、パターンCA4の像が転写されている第4エリアAREA4内のピクセルデータをパターンCA4の撮像データとして、撮像データファイルを作成する。

図24に戻り、次のステップ964において、対象パターンを第1パターン CA1に設定し、前記撮像データファイルから、各区画領域 DAi,j における第 1パターン CA1の撮像データを抽出する。

次のステップ966では、区画領域 $DA_{i,j}$ 毎に第1エリアAREA1内に含まれる全てのピクセルデータを加算してピクセルデータに関する代表値としてのコントラストを求め、その加算値(加算結果)を第1のコントラストK1 $_{i,j}$

 $(i = 1 \sim M, j = 1 \sim N)$ とする。

次のステップ968では、第1のコントラストK1iiに基づいて区画領域D Aij毎に第1パターンCA1の像の形成状態を検出する。なお、像の形成状態 の検出としては、種々のものが考えられるが、本第2の実施形態では、前述の 第1の実施形態と同様に、区画領域内にパターンの像が形成されているか否か に着目する。すなわち、前記各区画領域DA; , の第1パターンCA1の第1の コントラストK 1i, i と所定の第1の閾値S1とを比較して、各区画領域DA i,j における第1パターンCA1の像の有無を検出する。ここでは、第1のコン トラストK1iiが第1の閾値S1以上の場合には、第1パターンCA1の像が 形成されていると判断し、検出結果としての判定値 $F_{1i,j}$ ($i = 1 \sim M$ 、 $j = 1 \sim M$ 1~N)を「O」とする。一方、第1のコントラストK 1; , が所定の第1の閾 値S1未満の場合には、第1パターンCA1の像が形成されていないと判断し、 検出結果としての判定値 $F_{1,i}$ を「1」とする。これにより、図27のような 検出結果が、第1パターンCA1について得られる。この検出結果は、図示し ない記憶装置に保存される。なお、第1の閾値S1は、予め設定されている値 であり、オペレータが図示しない入出力装置を用いて変更することも可能であ る。

図24に戻り、次のステップ970において、上述の検出結果に基づいて、フォーカス位置毎にパターンの像が形成されている区画領域の数を前述の第1の実施形態と同様にして求める。すなわち、フォーカス位置毎に判定値「0」の区画領域が何個あるかを計数し、その計数結果をパターン残存数 T_i (i=1 ~M)とする。この際に、周囲の領域と異なる値を持ついわゆる跳び領域は無視する。例えば、図27の場合には、ウエハ W_T のフォーカス位置が Z_1 ではパターン残存数 $T_1=1$ 、 Z_2 では $T_2=1$ 、 Z_3 では $T_3=2$ 、 Z_4 では $T_4=5$ 、 Z_5 では $T_5=7$ 、 Z_6 では $T_6=9$ 、 Z_7 では $T_7=11$ 、 Z_8 では $T_8=9$ 、 Z_9 では $T_9=7$ 、 Z_{10} では $T_{10}=5$ 、 Z_{11} では $T_{11}=2$ 、 Z_{12} では T_{12}

12 = 1、 Z_{13} では $T_{13} = 1$ である。このようにして、フォーカス位置とパターン残存数 T_i との関係を求めることができる。

この場合も、跳び領域がパターン残存数 Ti の検出結果に与える影響を軽減するために、前述と同様のフィルタ処理を行っても良い。

図24に戻り、次のステップ972では、上記のフォーカス位置とパターン残存数 T_i との関係において、山状のカーブが出ているか否かを確認する。例えば、図27の検出結果が第1パターンCA1について得られた場合には、中央のフォーカス位置($=Z_7$)でのパターン残存数 T_7 が11であり、両端のフォーカス位置($=Z_1$, Z_{13})でのパターン残存数 (T_1, T_{13}) が1であるため、山状のカーブが出ていると判断(ステップ972での判断を肯定)し、ステップ974に移行する。

ステップ974では、フォーカス位置とパターン残存数 Ti との関係から、フォーカス位置と露光エネルギ量との関係を求める。すなわち、パターン残存数 Ti を露光エネルギ量に変換する。この場合も、第1の実施形態と同様の理由により、パターン残存数 Ti が露光エネルギ量に比例するものとして扱うことができる。

従って、フォーカス位置と露光エネルギ量との関係は、フォーカス位置とパターン残存数 Ti との関係と同様な傾向を示す(図28参照)。

次に図24のステップ974において、上記のフォーカス位置と露光エネルギ量との関係に基づいて、例えば、図28に示されるように、フォーカス位置と露光エネルギ量との相関関係を示す高次の近似曲線(例えば4~6次曲線)を求める。

次のステップ976において、上記近似曲線において、ある程度の極値が求められるかどうかを判断する。そして、この判断が肯定された場合、すなわち極値が求められた場合には、ステップ978に移行し、その極値近傍を中心に、例えば、図29に示されるように、再度、フォーカス位置と露光エネルギ量と

の相関関係を示す高次の近似曲線(例えば4~6次曲線)を求める。

そして、次のステップ980において、上記高次の近似曲線の極値を求め、 その場合のフォーカス位置を光学特性の一つである最良フォーカス位置とする とともに、該最良フォーカス位置を図示しない記憶装置に保存する。これによ り、第1パターンCA1の第1のコントラストK1_{i,j}に基づく最良フォーカス 位置を求めることができる。

次のステップ982では、像の形成状態の検出に用いたコントラストが第1のコントラストK1i,jであるか否かを判断する。そして、この判断が肯定された場合、すなわち第1のコントラストK1i,jである場合には、ステップ988に移行し、各区画領域DAi,jにおける対象パターン、この場合第1パターンCA1の第2のコントラストを算出する。具体的には、前記撮像データファイルから、第1パターンCA1の撮像データを抽出する。そして、区画領域DAi,j毎に、図30に示されるように、前記第1エリアAREA1の中央部に設定され前記第1エリアAREA1の中央部に設定され前記第1エリアAREA1の約4分の1の面積を有する第1サブエリアAREA1a内に含まれる全てのピクセルデータを加算してピクセルデータに関する代表値としてのコントラストを求め、その加算値(加算結果)を第1パターンCA1の第2のコントラストを求め、その加算値(加算結果)を第1パターンCA1の第2のコントラストと2i,j(i=1~M、j=1~N)とする。すなわち、第1パターンCA1のL/Sパターンを構成する両端のラインパターンの撮像データを除外して、コントラストを求める。従って、第1サブエリアAREA1aの大きさは、第1パターンCA1の大きさに依存して決められる。

その後、図24のステップ968に戻り、前記第1のコントラストK1 $_{i,j}$ の代わりに第2のコントラストK2 $_{i,j}$ を用いて、前述と同様に、ステップ968 \rightarrow 970 \rightarrow 972 \rightarrow 974 \rightarrow 976 \rightarrow 978 \rightarrow 980の処理、判断を繰り返す。これにより、第1パターンCA1の第2のコントラストK2 $_{i,j}$ に基づく最良フォーカス位置を求めることができる。

一方、ステップ982における判断が否定された場合、すなわち像の形成状

態の検出に用いたコントラストが第 1 のコントラスト K $1_{i,j}$ でない場合には、そのときの対象パターン、この場合第 1 パターン C A 1 での処理が終了したと判断し、ステップ 9 8 4 に移行する。

ステップ984では、処理が終了した対象パターンが第4パターンCA4であるか否かを判断する。ここでは、処理が終了した対象パターンは第1パターンCA1であるので、ステップ984における判断は否定され、ステップ996に移行し、対象パターンを次の対象パターン、この場合第2パターンCA2に変更し、ステップ966に戻る。

そして、前述の第 1 パターンCA 1 の場合と同様に、ステップ 9 6 $8 \rightarrow 9$ 7 $0 \rightarrow 9$ 7 $2 \rightarrow 9$ 7 $4 \rightarrow 9$ 7 $6 \rightarrow 9$ 7 $8 \rightarrow 9$ 8 0 の処理、判断を繰り返す。これにより、第 2 パターンCA 2 の第 1 のコントラストK $1_{i,j}$ に基づく最良フォーカス位置を求めることができる。

次のステップ982において、像の形成状態の検出に用いたコントラストが第1のコントラストK1 $_{i,j}$ であるか否かを判断するが、ここでは第1のコントラストK1 $_{i,j}$ が用いられているので、ここでの判断は肯定され、ステップ988に移行し、各区画領域D4 $_{i,j}$ における対象パターン、この場合第2パターン C42の第2のコントラストを前述と同様の手順で算出する。これにより、区画領域D4 $_{i,j}$ 年に、図30に示されるように、前記第2エリアAREA2の中央部に設定され前記第2エリアAREA2の約4分の1の面積を有する第2サブエリアAREA2a内に含まれる全てのピクセルデータの加算値が第2のコントラストK2 $_{i,j}$ (i=1 \sim M、j=1 \sim N)として算出される。

そして、ステップ968に戻り、第2のコントラストK2 $_{i,j}$ を用いて、前述と同様に、ステップ968 \rightarrow 970 \rightarrow 972 \rightarrow 974 \rightarrow 976 \rightarrow 978 \rightarrow 98 0の処理、判断を繰り返す。これにより、対象パターンである第2パターンCA2の第2のコントラストK2 $_{i,j}$ に基づく最良フォーカス位置を求めることができる。

一方、上記の如くして第2パターンCA2での処理が終了すると、ステップ 982における判断が否定され、ステップ984に移行する。

ステップ984では、処理が終了した対象パターンが第4パターンCA4であるか否かを判断する。ここでは、処理が終了した対象パターンは第2パターンCA2であるので、ステップ984での判断は否定され、ステップ996に移行し、対象パターンを次の対象パターン、この場合第3パターンCA3に変更し、ステップ966に戻る。

ステップ966では、各区画領域 $DA_{i,j}$ における対象パターン、この場合第3パターン CA3 の第1のコントラスト $K1_{i,j}$ を前述と同様にして算出する。これにより、区画領域 $DA_{i,j}$ 毎に第3エリアAREA3内に含まれる全てのピクセルデータの加算値が第3パターンCA3 の第1のコントラスト $K1_{i,j}$ として算出される。

そして、ステップ968→970→972→974→976→978→98 0の処理、判断を繰り返す。これにより、第3パターンCA3の第1のコント ラストK1_{i,j} に基づく最良フォーカス位置を求めることができる。

次のステップ982において、形成状態の検出に用いたコントラストが第1のコントラストK1_{i,j}であるか否かを判断するが、ここでは第1のコントラストK1_{i,j}が用いられているので、ここでの判断は肯定され、ステップ988に移行し、各区画領域DA_{i,j}における対象パターン、この場合第3パターンCA2の第2のコントラストを前述と同様の手順で算出する。これにより、区画領域DA_{i,j}毎に、図30に示されるように、前記第3エリアAREA3の中央部

に設定され前記第3エリアAREA3の約4分の1の面積を有する第3サブエリアAREA3a内に含まれる全てのピクセルデータの加算値が第2のコントラストK $2_{i,j}$ ($i=1\sim M$, $j=1\sim N$) として算出される。

そして、ステップ968に戻り、第2のコントラストK2 $_{i,j}$ を用いて、前述と同様に、ステップ968 \rightarrow 970 \rightarrow 972 \rightarrow 974 \rightarrow 976 \rightarrow 978 \rightarrow 980の処理、判断を繰り返す。これにより、対象パターンである第3パターンCA3の第2のコントラストK2 $_{i,j}$ に基づく最良フォーカス位置を求めることができる。

一方、上記の如くして第3パターンCA3での処理が終了すると、ステップ 982における判断が否定され、ステップ984に移行する。

ステップ984では、処理が終了した対象パターンが第4パターンCA4であるか否かを判断する。ここでは、処理が終了した対象パターンは第3パターンCA3であるので、ステップ984での判断は否定され、ステップ996に移行し、対象パターンを次の対象パターン、この場合第4パターンCA4に変更し、ステップ966に戻る。

ステップ966では、各区画領域 $DA_{i,j}$ における対象パターン、この場合第4パターン CA4 の第1のコントラスト $K1_{i,j}$ を前述と同様にして算出する。これにより、区画領域 $DA_{i,j}$ 毎に第4エリアAREA4内に含まれる全てのピクセルデータの加算値が第4パターンCA4 の第1のコントラスト $K1_{i,j}$ として算出される。

そして、ステップ968→970→972→974→976→978→98 0の処理、判断を繰り返す。これにより、第4パターンCA4の第1のコント ラストK1_{i,j} に基づく最良フォーカス位置を求めることができる。

次のステップ982において、像の形成状態の検出に用いたコントラストが 第1のコントラストK1i,jであるか否かを判断するが、ここでは第1のコント ラストK1i,jが用いられているので、ここでの判断は肯定され、ステップ98 8に移行し、各区画領域 $DA_{i,j}$ における対象パターン、この場合第4パターン CA40第2のコントラストを前述と同様の手順で算出する。これにより、区 画領域 $DA_{i,j}$ 毎に、図30に示されるように、前記第4エリアAREA4の中央部に設定され前記第4エリアAREA3の約4分の1の面積を有する第3サブエリアAREA4a内に含まれる全てのピクセルデータの加算値が第4パターンCA40第2のコントラストK2 $_{i,j}$ ($_{i=1}$ ~M、 $_{j=1}$ ~N)として算出される。

そして、ステップ968に戻り、第2のコントラストK2 $_{i,j}$ を用いて、前述と同様に、ステップ968 \rightarrow 970 \rightarrow 972 \rightarrow 974 \rightarrow 976 \rightarrow 978 \rightarrow 98 0の処理、判断を繰り返す。これにより、対象パターンである第4パターンCA4の第2のコントラストK2 $_{i,j}$ に基づく最良フォーカス位置を求めることができる。

以後、ステップ958以下の処理、判断を繰り返して、前述した評価点対応 領域DB1の場合と同様にして、評価点対応領域DB2の第1パターン〜第4 パターンのそれぞれについて、第1のコントラスト及び第2のコントラストに 基づいてそれぞれ最良フォーカス位置を求める。

そして、評価点対応領域DB2の第4パターンCA4での処理が終了すると、

ステップ984における判断が肯定され、ステップ986に移行し、前述のカウンタnを参照して未処理の評価点対応領域があるか否かを判断する。ここでは、評価点対応領域DB1、DB2についてだけ処理が終了しただけなので、ここでの判断は肯定され、ステップ987に移行してカウンタnを1インクリメントした後、ステップ958に戻る。以後、前記ステップ958以下の処理をステップ986における判断が否定されるまで繰り返して、他の評価点対応領域DB3~DB5について、前述した評価点対応領域DB1の場合と同様にして、第1パターン~第4パターンのそれぞれについて、第1のコントラスト及び第2のコントラストに基づいてそれぞれ最良フォーカス位置を求める。

この一方、上記ステップ976における判断が否定された場合、すなわち前記近似曲線に極値なしと判断された場合には、ステップ990に移行し、像の形成状態の検出に用いた閾値が第2の閾値S2であったか否かを判断する。そして、このステップ990における判断が否定された場合、すなわち、形成状態の検出に用いた閾値が第1の閾値S1であった場合には、ステップ994に移行して、第2の閾値S2(≠第1の閾値S1)を用いて像の形成状態の検出を行う。なお、第2の閾値S2は、第1の閾値S1と同様に、予め設定されている値であり、オペレータが図示しない入出力装置を用いて変更することも可能である。このステップ994では、前述したステップ968と同様の手順で像の形成状態の検出が行われる。そして、このステップ994での像の形成状態の検出が終了すると、ステップ970に移行して、以後前記と同様の処理、判断を繰り返す。

一方、上記ステップ990における判断が肯定された場合、すなわち像の形成状態の検出に用いた閾値が第2の閾値S2であった場合には、ステップ992に移行して、計測不可能であると判定して、その旨(計測不可能)の情報を検出結果として図示しない記憶装置に保存した後、ステップ982に進む。

さらに、前述と反対に、上記ステップ972における判断が否定された場合、

すなわちフォーカス位置とパターン残存数 Ti との関係において、山状のカーブが出ていないと判断された場合には、ステップ 9 9 0 に進み、以後前記と同様の処理、判断を行う。

このようにして、ウエハ W_T 上の全ての計測点対応領域 $DB1 \sim DB5$ について最良フォーカス位置の算出又は計測不能の判定がなされると、ステップ986での判断は否定され、ステップ998に移行し、上で求めた最良フォーカス位置データに基づいて、一例として次のようにして他の光学特性を算出する。すなわち、例えば、評価点対応領域毎に、各パターン $CA1 \sim CA4$ の第2

すなわち、例えば、評価点対心領域毎に、各ハターンCA1~CA4の第2のコントラストから求めた最良フォーカス位置の平均値(単純平均値又は重み付け平均値)を算出し、投影光学系PLの視野内の各評価点の最良フォーカス位置とするとともに、該最良フォーカス位置の算出結果に基づいて、投影光学系PLの像面湾曲を算出する。

また、例えば第1パターンCA1の第2のコントラストから求めた最良フォーカス位置と、第2パターンCA2の第2のコントラストから求めた最良フォーカス位置とから非点収差を求めるとともに、第3パターンCA3の第2のコントラストから求めた最良フォーカス位置と、第4パターンCA4の第2のコントラストから求めた最良フォーカス位置とから非点収差を求める。そして、それらの非点収差の平均値から投影光学系PLの視野内の各評価点での非点収差を求める。

さらに、例えば投影光学系PLの視野内の各評価点について、上述のように して算出された非点収差に基づいて最小二乗法による近似処理を行うことによ り非点収差面内均一性を求めるとともに、非点収差面内均一性と像面湾曲とか ら総合焦点差を求める。

また、例えば、各パターンCA1~CA4について、第1のコントラストから求めた最良フォーカス位置と、第2のコントラストから求めた最良フォーカス位置との差から投影光学系のコマ収差の影響を求めるとともに、パターンの

周期方向とコマ収差の影響との関係を求める。

このようにして求められた投影光学系の光学特性データは、図示しない記憶 装置に保存されるとともに、不図示の表示装置の画面上に表示される。

このようにして、図23のステップ956の処理を終了し、一連の光学特性 の計測処理を完了する。

デバイス製造の場合における、本第2の実施形態の露光装置による露光処理 動作は、前述した第1の実施形態の露光装置100の場合と同様にして行われるので、詳細説明については省略する。

以上説明したように、本第2の実施形態に係る光学特性計測方法によると、像の転写領域のピクセルデータに関する代表値としてのコントラストと所定の 閾値とを比較することにより、像の形成状態を検出するという、画像処理手法 を用いているために、従来の目視により寸法を計測する方法(例えば、前述したCD/フォーカス法など)と比較して、像の形成状態を検出するのに要する 時間を短縮することが可能となる。

また、画像処理という客観的かつ定量的な検出手法を用いているため、従来の寸法を計測する方法と比較して、パターン像の形成状態を精度良く検出することができる。そして、客観的かつ定量的に求められた形成状態の検出結果に基づいて、最良フォーカス位置を決定しているため、短時間で精度良く最良フォーカス位置を求めることが可能となる。従って、この最良フォーカス位置に基づいて決定される光学特性の測定精度及び測定結果の再現性を向上させることができるとともに、結果的に光学特性計測のスループットを向上させることが可能となる。

また、従来の寸法を計測する方法(例えば、前述したCD/フォーカス法やSMPフォーカス計測法など)に比べて、計測用パターンを小さくすることができるため、レチクルのパターン領域PA内に多くの計測用パターンを配置することが可能となる。従って、評価点の数を増加させることができるとともに、

各評価点間の間隔を狭くすることができ、結果的に光学特性計測の測定精度を 向上させることが可能となる。

また、本第2の実施形態では、計測用パターンの像の転写領域のコントラストと所定の閾値とを比較することにより、計測用パターンの像の形成状態を検出しているために、レチクルRTのパターン領域PA内に計測用パターン以外のパターン(例えば、比較用の基準パターンや、位置決め用マークパターン等)を配置する必要がなく、従って、評価点の数を増加させることができるとともに、各評価点間の間隔を狭くすることが可能となる。これにより、結果的に、光学特性の測定精度及び測定結果の再現性を向上させることができる。

本第2の実施形態に係る光学特性計測方法によると、統計処理による近似曲線の算出という客観的、かつ確実な方法を基礎として最良フォーカス位置を算出しているので、安定して高精度かつ確実に光学特性を計測することができる。なお、近似曲線の次数によっては、その変曲点、あるいはその近似曲線と所定のスライスレベルとの複数の交点等に基づいて最良フォーカス位置を算出することは可能である。

また、本第2の実施形態に係る露光方法によると、上述のようにして決定された最良フォーカス位置を考慮して露光の際のフォーカス制御目標値の設定が行われるので、デフォーカスによる色むらの発生を効果的に抑制して、微細パターンをウェハ上に高精度に転写することが可能となる。

さらに、本第2の実施形態では、第1のコントラストは、パターンの像が転写されている転写エリア全体のピクセルデータの加算値であるために、S/N 比が高く、像の形成状態と露光条件との関係を精度良く求めることができる。

また、本第2の実施形態では、第2のコントラストは、L/Sパターンの像が転写されている転写エリアのピクセルデータから、L/Sパターンを構成するラインパターンの両端に位置するラインパターンのピクセルデータを除外しているために、像の形成状態の検出結果に対する投影光学系のコマ収差の影響

を除くことができ、光学特性を精度良く求めることが可能となる。

しかも、第1のコントラストに基づく最良フォーカス位置と第2のコントラストに基づく最良フォーカス位置との差から、投影光学系の光学特性の一つであるコマ収差の影響を抽出することができる。

なお、上記第2の実施形態では、レチクルRT'上の計測用パターン200nは、周期方向のみが異なる4種類のL/Sパターンであるものとしたが、本発明がこれに限定されないことは言うまでもない。計測用パターンとしては、密集パターンと孤立パターンのいずれを用いても良いし、その両方のパターンを併用したり、少なくとも1種類のL/Sパターン、例えば1種類のL/Sパターンのみであっても良く、また、孤立線やコンタクトホールなどを用いても良い。計測用パターンとしてL/Sパターンを用いる場合には、デューティ比及び周期方向は、任意で良い。また、計測用パターンとして周期パターンを用いる場合、その周期パターンは、L/Sパターンだけではなく、例えばドットマークを周期的に配列したパターンでも良い。これは、像の線幅等を計測する従来の方法とは異なり、像の形成状態をコントラストで検出しているからである。

また、上記第2の実施形態では、2種類のコントラスト(第1のコントラストと第2のコントラスト)でそれぞれ最良フォーカス位置を求めているが、いずれか一方のコントラストで最良フォーカス位置を求めても良い。

さらに、上記第2の実施形態では、パターンが形成されている部分のピクセルデータはパターンが形成されていない部分よりも大きいものとしているが、これに限定されるものではない。また、上記実施形態では、ピクセルデータの加算値からコントラストを求めているが、これに限定されず、例えばピクセルデータの微分総和値、分散あるいは標準偏差を算出し、その算出結果をコントラストとしても良い。そして、例えばパターンの残らないところのピクセルデータを基準とし、それに対してコントラストが黒に偏っている場合あるいは白に偏っている場合を、パターンが形成されていると判断することも可能である。

なお、上記第2の実施形態において、第2のコントラストとして、前述した ピクセルデータに関する代表値(スコア)を採用することとしても良い。この 場合、パターン有無判別を行うための代表値(スコア)として、各領域(上記 実施形態では第1エリアAREA1~第4エリアAREA4)内でのピクセル 値のばらつきを用いることかできる。例えば、領域内指定範囲のピクセル値の 分散(又は標準偏差、加算値、微分総和値など)を、スコアEとして採用する ことができる。

例えば、パターンCA1~CA4がそれぞれ転写される領域(AREA1~AREA4)とほぼ中心を同じくする該領域(AREA1~AREA4)のほぼ60%に縮小した範囲に存在するものとすると、上記の指定範囲として、例えば領域(AREA1~AREA4)と中心を同じくし、その領域をA%(一例として60%<A%<100%)程度に縮小した範囲をスコア算出に用いることができる。

この場合、パターン部が領域(AREA1~AREA4)の約60%を占めているため、スコア算出に用いる領域の領域(AREA1~AREA4)に対する比を上げるほどS/N比が上がるものと予想される。従って、例えばA%=90%という比率を採用することができる。この場合も、幾つかの比率を実験的に確認して、最も安定した結果が得られる比率にA%を定めることが望ましい。

上記の方法で求めたスコアEは、パターン有無具合を数値として表しているので、前述と同様に、所定の閾値で二値化することによってパターン有無の判別を自動的にかつ安定して行うことが可能となる。

上述したスコアEと同様にして決定されたピクセルデータに関する代表値をパターンの形成状態の検出に用いる場合には、例えば1種類のL/Sパターンのみを計測用パターンとして用いる場合などにも、パターンの有無の判別を正確に行うことが期待される。この場合、上記第2の実施形態に即して説明する

と、パターン残存領域について、領域 DAi,j 内に1つのL/Sパターンの像の みが形成されることになるが、スコアEと同様にして決定されたピクセルデー タに関する代表値を用いる場合には、安定してパターン有無の判別を行うこと ができるので、必ずしも上記第2の実施形態のように2種類のコントラスト値 の検出を行う必要はない。

また、上記第2の実施形態では、ピクセルデータを抽出するエリアを矩形としているが、これに限定されるものではなく、例えば、円形や楕円形、あるいは三角形などであっても良い。また、その大きさも任意に設定することができる。すなわち、計測用パターンの形状に合わせて抽出エリアを設定することによりノイズを減少させ、S/N比を高くすることが可能である。勿論、これらの場合にも、ピクセルデータの全てではなく、その一部のデータのみを用いても良く、その一部のピクセルデータの加算値、微分総和値、分散及び標準偏差の少なくとも1つを代表値とし、該代表値と所定の閾値とを比較して計測用パターンの像の形成状態を検出することとしても良い。

また、上記第2の実施形態では、像の形成状態の検出に2種類の閾値を用いているが、これに限定されるものではなく、少なくとも1つの閾値であれば良い。

さらに、上記第2の実施形態では、第1の閾値での検出結果から最良フォーカス位置が算出困難な場合にのみ、第2の閾値での形成状態の検出を行い、その検出結果から最良フォーカス位置を求めているが、予め複数の閾値Sm を設定しておき、各閾値Sm 毎に最良フォーカス位置 Zm を求め、それらの平均値(単純平均値あるいは重み付け平均値)を最良フォーカス位置 Zbest としても良い。図31には、一例として、5種類の閾値S1~S5を用いた検出結果に基づく、露光エネルギ量Pとフォーカス位置 Z との関係が簡略化して示されている。これにより、各閾値に応じて、露光エネルギ量Pが極値を示すときのフォーカス位置が順次算出される。そして、各フォーカス位置の平均値を最良フォ

一カス位置 Z_{best} とする。なお、露光エネルギ量 Pとフォーカス位置 Zとの関係を示す近似曲線と適当なスライスレベル(露光エネルギ量)との 2 つの交点(フォーカス位置)を求め、両交点の平均値を、各閾値毎に算出し、それらの平均値(単純平均値あるいは重み付け平均値)を最良フォーカス位置 Z_{best} としても良い。

あるいは、閾値 S_m 毎に最良フォーカス位置 Z_m を算出し、図32に示されるように、閾値 S_m と最良フォーカス位置 Z_m との関係において、閾値 S_m の変動に対して、最良フォーカス位置 Z_m の変化が最も小さい区間における最良フォーカス位置 Z_m の平均値(図32では、 Z_2 と Z_3 の単純平均値あるいは重み付け平均値)を最良フォーカス位置 Z_{best} としても良い。

また、上記第2の実施形態では、予め設定されている値を閾値として用いているが、これに限定されるものではない。例えば、ウェハ W_T 上の計測用パターンが転写されていない領域を撮像し、得られたコントラストを閾値としても良い。

さらに、上記第2の実施形態では、N×M個の区画領域を全て露光するものとしたが、前述した第1の実施形態と全く同様にN×M個の区画領域の少なくとも1個について露光を行わなくても良い。

なお、上記第2の実施形態の露光装置では、主制御装置が、図示しない記憶装置に格納されている処理プログラムに従って、前述した投影光学系の光学特性の計測を行うことにより、計測処理の自動化を実現することができる。勿論、この処理プログラムは、他の情報記録媒体(CD-ROM、MO等)に保存されていても良い。さらに、計測を行う時に、図示しないサーバから処理プログラムをダウンロードしても良い。また、計測結果を、図示しないサーバに送付したり、インターネットやイントラネットを介して電子メール及びファイル転送等により、外部に通知することも可能である。

また、上記第2の実施形態と同様の処理を行う際に、露光エネルギ量Pとフ

オーカス位置 Z との関係において、図33に示されるように、極値が複数含まれる場合がある。このような場合、最大の極値を有する曲線 G のみに基づいて、最良フォーカス位置を算出するようにしても良いが、小さい極値を有する曲線 B. Cも必要な情報を含む場合があるため、これを無視することなく、曲線 B. Cをも用いて最良フォーカス位置を算出することが望ましい。例えば、曲線 B. C の極値に対応するフォーカス位置の平均値と、曲線 G の極値に対応するフォーカス位置との平均値(単純平均値あるいは重み付け平均値)を最良フォーカス位置とするなどである。

なお、上記第2の実施形態では、各パターンの線幅がすべて同一の場合について説明しているが、これに限定されるものではなく、異なる線幅を有するパターンが含まれていても良い。これにより、光学特性に及ぼす線幅の影響を求めることができる。

また、上記第2の実施形態において、ウエハ上の評価点対応領域を、前述の如く、マトリックス状の区画領域に分割することは必ずしも必要ではない。すなわち、ウエハ上のいずれの位置にパターンの転写像が転写されていても、その撮像データを用いてコントラストを求めることは十分に可能だからである。すなわち、撮像データファイルが作成できれば良いからである。

なお、上記第1の実施形態で説明した技術と、第2の実施形態で説明した技術とを適宜組み合わせても良い。例えば、上記第1の実施形態で、計測用パターンとして、第2の実施形態と同様のパターンを用いても良い。このようにすると、第2の実施形態と同様に、投影光学系PLの像面湾曲に加え、投影光学系PLの視野内の各評価点での非点収差、非点収差面内均一性、更には非点収差面内均一性と像面湾曲とから総合焦点差などを、上記第1の実施形態と同様にして高精度に求めることができる。

なお、上記第1、第2の実施形態では、結像特性補正コントローラを介して 投影光学系PLの結像特性を調整するものとしたが、例えば、結像特性補正コ ントローラだけでは結像特性を所定の許容範囲内に制御することができないときなどは、投影光学系PLの少なくとも一部を交換しても良いし、あるいは投影光学系PLの少なくとも1つの光学素子を再加工(非球面加工など)しても良い。また、特に光学素子がレンズエレメントであるときはその偏芯を変更したり、あるいは光軸を中心として回転させても良い。このとき、露光装置のアライメント検出系を用いてレジスト像などを検出する場合、主制御装置はディスプレイ(モニター)への警告表示、あるいはインターネット又は携帯電話などによって、オペレータなどにアシストの必要性を通知しても良いし、投影光学系PLの交換箇所や再加工すべき光学素子など、投影光学系PLの調整に必要な情報を一緒に通知すると良い。これにより、光学特性の計測などの作業時間だけでなく、その準備期間も短縮でき、露光装置の停止期間の短縮、すなわち稼働率の向上を図ることが可能となる。

また、上記第1、第2の実施形態では、計測用パターンをウェハWT 上の各区画領域 DAi,jに転写した後、現像後にウェハWT 上の各区画領域 DAi,jに形成されるレジスト像をFIA系のアライメント検出系ASによって撮像し、その撮像データに対して画像処理を行う場合について説明したが、本発明に係る光学特性の計測方法はこれに限定されるものではない。例えば、撮像の対象は、露光の際にレジストに形成された潜像であっても良く、上記像が形成されたウェハを現像し、さらにそのウェハをエッチング処理して得られる像(エッチング像)などに対して行っても良い。また、ウェハなどの物体上における像の形成状態を検出するための感光層は、フォトレジストに限らず、光(エネルギ)の照射によって像(潜像及び顕像)が形成されるものであれば良い。例えば、感光層は、光記録層、光磁気記録層などであっても良く、従って、感光層が形成される物体もウェハ又はガラスプレート等に限らず、光記録層、光磁気記録層などが形成可能な板等であっても良い。

また、撮像装置として露光装置外に設けられた専用の撮像装置(例えば光学

顕微鏡など)を用いても良い。また、撮像装置としてLSA系のアライメント 検出系ASを用いることも可能である。転写像のコントラスト情報が得られれ ば良いからである。さらに、オペレータなどが介在することなく、前述の計測 結果(最良フォーカス位置など)に基づいて投影光学系PLの光学特性を調整 することができる。すなわち、露光装置に自動調整機能を持たせることが可能 となる。

また、上記第1、第2の実施形態では、パターンの転写の際に変更される露光条件が、投影光学系の光軸方向に関するウエハWTの位置及びウエハWTの面上に照射されるエネルギビームのエネルギ量(露光ドーズ量)である場合について説明したが、本発明がこれに限定されるものではない。例えば、照明条件(マスクの種別を含む)、投影光学系の結像特性など露光に関連する全ての構成部分の設定条件などの何れかであれば良く、また、必ずしも2種類の露光条件を変更しながら露光を行う必要もない。すなわち、一種類の露光条件の変更しながら、計測用マスクのパターンをウエハなどの物体上の複数の領域に転写し、その転写像の形成状態を検出する場合であっても、コントラスト計測(スコアを用いた計測を含む)、あるいはテンプレートマッチングの手法により、その検出を迅速に行うことができるという効果がある。例えば、エネルギ量のかわりに、ラインパターンの線幅、もしくはコンタクトホールのピッチ等の変化によって投影光学系の光学特性を計測することができる。

また、上記第1、第2の実施形態において、最良フォーカス位置とともに最良露光量を決定することができる。すなわち、露光エネルギ量を低エネルギ量側にも設定して、上記実施形態と同様の処理を行い、露光エネルギ量毎に、その像が検出されたフォーカス位置の幅を求め、該幅が最大となるときの露光エネルギ量を算出し、その場合の露光量を最良露光量とする。

さらに、上記第1及び第2の実施形態において、図1の露光装置はウエハ上

に転写すべきパターンに応じてレチクルの照明条件を変更可能となっているので、例えば露光装置で使用される複数の照明条件でそれぞれ上記各実施形態と同様の処理を行い、照明条件毎に前述の光学特性(最良フォーカス位置など)を求めることが好ましい。また、ウエハ上に転写すべきパターンの形成条件(例えばピッチ、線幅、位相シフト部の有無、密集パターンか孤立パターンかなど)が異なるときは、例えばパターン毎にその形成条件と同一あるいは近い形成条件の計測用パターンを用いて、上記各実施形態と同様の処理を行い、形成条件毎に前述の光学特性を求めるようにしても良い。

また、上記第1及び第2の実施形態において、投影光学系PLの光学特性として前述の計測点における焦点深度などを求めるようにしても良い。また、ウエハに形成する感光層(フォトレジスト)はポジ型だけでなくネガ型を用いても良い。

さらに、本発明が適用される露光装置の光源は、KrFエキシマレーザやArFエキシマレーザに限らず、F2レーザ(波長157nm)、あるいは他の真空紫外域のパルスレーザ光源であっても良い。この他、露光用照明光として、例えば、DFB半導体レーザ又はファイバーレーザから発振される赤外域、又は可視域の単一波長レーザ光を、例えばエルビウム(又はエルビウムとイッテルビウムの両方)がドープされたファイバーアンプで増幅し、非線形光学結晶を用いて紫外光に波長変換した高調波を用いても良い。また、紫外域の輝線(g線、i線等)を出力する超高圧水銀ランプ等を用いても良い。この場合には、ランプ出力制御、NDフィルタ等の減光フィルタ、光量絞り等によって露光エネルギの調整を行えば良い。

なお、上記実施形態では、本発明がステップ・アンド・リピート方式の縮小 投影露光装置に適用された場合について説明したが、本発明の適用範囲がこれ に限定されないのは勿論である。すなわち、ステップ・アンド・スキャン方式、 ステップ・アンド・スティッチ方式、ミラープロジェクション・アライナー、 及びフォトリピータなどにも好適に適用することができる。例えば、ステップ・アンド・スキャン方式の露光装置に本発明を適用する場合、特に第1の実施形態でステップ・アンド・スキャン方式の露光装置を用いる場合には、前述の開ロパターンAPと同様の正方形、あるいは矩形の開ロパターンが形成されたレチクルを、そのレチクルステージ上に搭載して、走査露光方式によって、前述の矩形枠状の第2領域を形成することができる。かかる場合には、前述の実施形態の場合に比べて第2領域の形成に要する時間を短縮することができる。

さらに、投影光学系PLは、屈折系、反射屈折系、及び反射系のいずれでも 良いし、縮小系、等倍系、及び拡大系のいずれでも良い。

例えば、走査型露光装置の場合、非走査方向に細長い矩形又は円弧状のスリット状の照明領域が形成されるが、この照明領域に対応する投影光学系のイメージフィールド内の領域の内部に評価点を配置することにより、上記実施形態と全く同様にして、最良フォーカス位置や像面湾曲等の投影光学系PLの光学特性、及び最良露光量などを求めることができる。また、パルス光源を用いた走査型露光装置の場合、パルス光源から像面に照射される1パルス当たりのエネルギ量、パルス繰り返し周波数、照明領域の走査方向の幅(いわゆるスリット幅)、及び走査速度の少なくとも1つを調整することにより、像面における露光ドーズ量(露光エネルギ量、積算エネルギ量)を所望の値に調整することが可能である。

さらに、本発明は、半導体素子の製造に用いられる露光装置だけでなく、角型のガラスプレート上に液晶表示素子パターンを転写する液晶用の露光装置や、プラズマディスプレイや有機ELなどの表示装置、薄膜磁気ヘッド、撮像素子(CCDなど)、マイクロマシン及びDNAチップなどを製造するための露光装置、さらにはマスク又はレチクルの製造に用いられる露光装置などにも広く適用できる。また、半導体素子などのマイクロデバイスだけでなく、光露光装置、EUV露光装置、X線露光装置、及び電子線露光装置などで使用されるレチク

ル又はマスクを製造するために、ガラス基板又はシリコンウエハなどに回路パターンを転写する露光装置にも本発明を適用できる。

なお、上記各実施形態では、露光装置が静止露光方式を用いるものとしたが、 走査露光方式の露光装置を用いても、上記実施形態と同様の処理を行うことで 投影光学系の光学特性を計測することができる。また、走査露光方式の露光装 置では、前述の計測用パターンを用いてウエハを露光するとき、レチクルとウ エハとをほぼ静止させて計測用パターンを転写し、レチクルステージやウエハ ステージの移動精度などの影響を含まない光学特性を求めることが望ましい。 勿論、走査露光方式にて計測用パターンを転写し、ダイナミックな光学特性を 求めるようにしても良い。

≪デバイス製造方法≫

次に、上記説明した露光装置及び方法を使用したデバイスの製造方法の実施 形態を説明する。

図34には、デバイス(ICやLSI等の半導体チップ、液晶パネル、CCD、薄膜磁気ヘッド、DNAチップ、マイクロマシン等)の製造例のフローチャートが示されている。図34に示されるように、まず、ステップ301(設計ステップ)において、デバイスの機能・性能設計(例えば、半導体デバイスの回路設計等)を行い、その機能を実現するためのパターン設計を行う。引き続き、ステップ302(マスク製作ステップ)において、設計した回路パターンを形成したマスクを製作する。一方、ステップ303(ウエハ製造ステップ)において、シリコン等の材料を用いてウエハを製造する。

次に、ステップ304(ウエハ処理ステップ)において、ステップ301~ステップ303で用意したマスクとウエハを使用して、後述するように、リソグラフィ技術によってウエハ上に実際の回路等を形成する。次いで、ステップ305(デバイス組立ステップ)において、ステップ304で処理されたウエハを用いてデバイス組立を行う。このステップ305には、ダイシング工程、

ボンディング工程、及びパッケージング工程(チップ封入)等の工程が必要に 応じて含まれる。

最後に、ステップ306(検査ステップ)において、ステップ305で作製されたデバイスの動作確認テスト、耐久性テスト等の検査を行う。こうした工程を経た後にデバイスが完成し、これが出荷される。

図35には、半導体デバイスの場合における、上記ステップ304の詳細なフロー例が示されている。図35において、ステップ311(酸化ステップ)においてはウエハの表面を酸化させる。ステップ312(CVDステップ)においてはウエハ表面に絶縁膜を形成する。ステップ313(電極形成ステップ)においてはウエハ上に電極を蒸着によって形成する。ステップ314(イオン打込みステップ)においてはウエハにイオンを打ち込む。以上のステップ311~ステップ314それぞれは、ウエハ処理の各段階の前処理工程を構成しており、各段階において必要な処理に応じて選択されて実行される。

ウエハプロセスの各段階において、上述の前処理工程が終了すると、以下のようにして後処理工程が実行される。この後処理工程では、まず、ステップ3 15 (レジスト形成ステップ) において、ウエハに感光剤を塗布する。引き続き、ステップ3 16 (露光ステップ) において、上記各実施形態の露光装置及び露光方法によってマスクの回路パターンをウエハに転写する。次に、ステップ3 17 (現像ステップ) においては露光されたウエハを現像し、ステップ3 18 (エッチングステップ) において、レジストが残存している部分以外の部分の露出部材をエッチングにより取り去る。そして、ステップ3 19 (レジスト除去ステップ) において、エッチングが済んで不要となったレジストを取り除く。

これらの前処理工程と後処理工程とを繰り返し行うことによって、ウエハ上 に多重に回路パターンが形成される。

以上のような、本実施形態のデバイス製造方法を用いれば、露光ステップ(ス

テップ316)で、上記各実施形態の露光装置及び露光方法が用いられるので、 前述した光学特性計測方法で精度良く求められた光学特性を考慮して調整され た投影光学系を介して高精度な露光が行われ、高集積度のデバイスを生産性良 く製造することが可能となる。

上述した本発明の実施形態は、現状における好適な実施形態であるが、リソグラフィシステムの当業者は、本発明の精神と範囲から逸脱することなく、上述した実施形態に対して、多くの付加、変形、置換をすることに容易に想到するであろう。全てのこうした付加、変形、置換は、以下に記載される請求の範囲によって最も的確に明示される本発明の範囲に含まれるものである。