Definition 6.2. A *inner product* of a vector space V is a function that maps $u, v \in V$ to $\langle u, v \rangle \in F$, and it satisfies:

- Positivity: $\langle v, v \rangle \ge 0$.
- Definiteness: $\langle v, v \rangle = 0 \iff v = 0$.
- Additivity: $\langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle$
- Homogeneity: $\langle \lambda v, w \rangle = \lambda \langle v, w \rangle$.
- Conjugate Symmetry: $\langle u, v \rangle = \overline{\langle v, u \rangle}$

Definition 6.4. A vector space equipped with an inner product is called an inner product space.

We assume vector spaces V,W are inner product space for the rest of chapter.

Theorem 6.6. Properties of inner product:

- Let $v \in V$, then $\langle -, v \rangle$ is a linear map $V \to F$.
- For any $v \in V$, we have $\langle 0, v \rangle = \langle v, 0 \rangle = 0$.
- For any $u, v, w \in V$, $\langle u, v + w \rangle = \langle u, v \rangle + \langle u, w \rangle$.
- For any $v, w \in V$ and $\lambda \in F$, $\langle u, \lambda v \rangle = \overline{\lambda} \langle u, v \rangle$.

Proof.

- Trivial from the definition.
- First, $\langle 0, v \rangle = 0$ since $\langle -, v \rangle$ is a linear map, thus maps 0 to 0. Then $\langle v, 0 \rangle = \overline{\langle 0, v \rangle} = \overline{0} = 0$.
- $\langle u, v + w \rangle = \overline{\langle v + w, u \rangle} = \overline{\langle v, u \rangle + \langle w, u \rangle} = \overline{\langle v, u \rangle} + \overline{\langle w, u \rangle} = \langle u, v \rangle + \langle u, w \rangle.$
- $\bullet \quad \langle u, \lambda v \rangle = \overline{\langle \lambda v, u \rangle} = \overline{\lambda \langle v, u \rangle} = \overline{\lambda} \overline{\langle v, u \rangle} = \overline{\lambda} \overline{\langle u, v \rangle}$

Definition 6.7. For any $v \in V$, the **norm** of v is denoted by ||v||, and is defined by:

$$||v|| = \sqrt{\langle v, v \rangle}$$

Theorem 6.9. Let $v \in V$,

- $\bullet ||v|| = 0 \iff v = 0.$
- For any $\lambda \in F$, $\|\lambda v\| = |\lambda| \|v\|$.

Proof.

- Trivial by the definition of inner product.
- $\|\lambda v\| = \langle \lambda v, \lambda v \rangle = \sqrt{\lambda \overline{\lambda}} \langle v, v \rangle = |\lambda| \|v\|.$

Definition 6.10. Let $u, v \in V$, u and v are **orthogonal** $\iff \langle u, v \rangle = 0$ **Theorem 6.11.**

- 0 is orthogonal to any $v \in V$.
- 0 is the only vector that orthogonal to itself.

Proof. Both trivial by the definition, (1) is equivalent to $\langle 0, v \rangle = 0$ and (2) is equivalent to $\langle v, v \rangle = 0 \iff v = 0$.

Theorem 6.12 (勾股定理). Let $u, v \in V$, if u is orthogonal to v, then $||u+v||^2 = ||u||^2 + ||v||^2$.

Proof.

$$||u + w||^2 = \langle u + w, u + w \rangle$$

$$= \langle u, u + w \rangle + \langle w, u + w \rangle$$

$$= \langle u, u \rangle + \langle u, w \rangle + \langle w, u \rangle + \langle w, w \rangle$$

$$= \langle u, u \rangle + \langle w, w \rangle$$

The last equation is by $\langle u, w \rangle = \langle w, u \rangle = 0$ cause u, w are orthogonal. \square

Theorem 6.13 (One Orthogonal Factorization). Let $u, v \in V$ and $v \neq 0$. Let $c = \frac{\langle u, v \rangle}{\|v\|^2}$ and w = u - cv, then u = cv + w and $w \perp v$.