```
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity lcd is
  Port (clk,reset: in std logic;
      RS,EN,RW: out std_logic;
      data: out std_logic_vector(7 downto 0));
end lcd;
architecture Behavioral of lcd is
  type state_type is (s0,s1,s2,s3,s4,s5,s6,s7,s8,s9,s10,s11,
  s12,s13,s14,s15,s16,s17,s18,s19,s20,s21,s22,s23);
  signal state:state_type;
        SIGNAL count:std logic vector(22 downto 0);
  SIGNAL clk1:std logic;
begin
process(Clk,Reset)
        begin
                if(Clk' event AND Clk='1')then
                count<=count+"0001";
                end if;
                clk1<=count(20);
                end process;
RW<='0';
        process(clk1, reset)
        begin
         if reset = '1' then
                        state \leq s0;
                elsif rising edge(clk1) then
                        if state = s0 then
                                state <= s1;
                                 RS<='0'; -- Write commonds to LCD.
                                EN <= '1';
                                data <= "00110000"; -- Function set for 8 bit interface, 1 line mode
and 5x7 dot matrix.
                        end if;
                        if state = s1 then
                                state <= s2;
                                EN <= '0';
                        end if;
                        if state = s2 then
                                state <= s3;
                                EN <= '1';
                                data <= "00001111"; -- Display cursor and blinking ON.
                        end if:
                        if state = s3 then
                                state <= s4;
                                EN <= '0';
                        end if;
```

```
if state = s4 then
             state <= s5;
             EN <= '1';
             data <= "00000001"; -- Clear display.
     end if;
     if state = s5 then
             state <= s6;
             EN <= '0';
     end if;
     if state = s6 then
             state <= s7;
             EN <= '1';
             data <= "10000100"; -- Display address.
     end if;
     if state = s7 then
             state <= s8;
             EN <= '0';
     end if;
     if state = s8 then
             RS <= '1'; -- Write data to LCD.
             state <= s9;
             EN <= '1';
             data <= "00101010"; --(*)
     end if;
     if state = s9 then
             state <= s10;
             EN <= '0';
     end if;
if state = s10 then
             state <= s11;
             EN <= '1';
             data <= "01010011"; --S
     end if;
     if state = s11 then
             state <= s12;
             EN <= '0';
     end if;
     if state = s12 then
             state <= s13;
             EN <= '1';
             data <= "01001011"; --K
     end if;
     if state = s13 then
             state <= s14;
             EN <= '0';
     end if;
     if state = s14 then
             state <= s15;
             EN <= '1';
             data <= "01001110"; --N
     end if;
```

```
if state = s15 then
                                 state <= s16;
                                 EN <= '0';
                         end if;
                         if state = s16 then
                                 state <= s17;
                                 EN <= '1';
                                 data <= "01000011"; --C
                         end if;
                         if state = s17 then
                                 state <= s18;
                                 EN <= '0';
                         end if;
                         if state = s18 then
                                 state <= s19;
                                 EN <= '1';
                                 data <= "01001111"; --O
                         end if;
                         if state = s19 then
                                 state <= s20;
                                 EN <= '0';
                         end if;
                         if state = s20 then
                                 state <= s21;
                                 EN <= '1';
                                 data <= "01000101"; --E
                         end if;
                         if state = s21 then
                                 state <= s22;
                                 EN <= '0';
                         end if;
                         if state = s22 then
                                 state <= s23;
                                 EN <= '1';
                                 data <= "00101010"; --(*)
                         end if;
                         if state = s23 then
                                 EN <= '0';
                         end if;
                end if;
        end process;
end Behavioral;
```



```
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--USE ieee.numeric_std.ALL;
ENTITY Icdtest IS
END lcdtest;
ARCHITECTURE behavior OF lcdtest IS
  -- Component Declaration for the Unit Under Test (UUT)
  COMPONENT Icd
  PORT(
     clk1: IN std logic;
     reset: IN std_logic;
     RS: OUT std_logic;
     EN: OUT std_logic;
     RW: OUT std logic;
     data: OUT std_logic_vector(7 downto 0)
    );
  END COMPONENT;
 --Inputs
 signal clk1 : std_logic := '0';
 signal reset : std_logic := '0';
        --Outputs
 signal RS : std_logic;
 signal EN: std_logic;
 signal RW: std_logic;
 signal data : std_logic_vector(7 downto 0);
 -- Clock period definitions
 constant clk1_period : time := 10 ns;
BEGIN
        -- Instantiate the Unit Under Test (UUT)
 uut: Icd PORT MAP (
     clk1 => clk1,
     reset => reset,
     RS => RS,
     EN => EN,
     RW => RW,
     data => data
    );
 -- Clock process definitions
```

```
clk1_process :process
begin
              clk1 <= '0';
              wait for clk1_period/2;
              clk1 <= '1';
              wait for clk1_period/2;
end process;
-- Stimulus process
stim_proc: process
begin
 -- hold reset state for 100 ns.
                       reset<='0';
 wait for clk1_period*10;
 -- insert stimulus here
 wait;
end process;
```



```
NET data(0) LOC =P62;
NET data(1) LOC =P63;
NET data(2) LOC =P64;
NET data(3) LOC =P65;
NET data(4) LOC =P67;
NET data(5) LOC =P68;
NET data(6) LOC =P71;
NET data(7) LOC =P72;
NET Clk LOC =P183;
NET reset LOC =P102;
NET RS LOC =P57;
NET EN LOC =P61;
NET RW LOC =P58;
Release 14.1 - xst P.15xf (nt64)
Copyright (c) 1995-2012 Xilinx, Inc. All rights reserved.
--> Parameter TMPDIR set to xst/projnav.tmp
Total REAL time to Xst completion: 0.00 secs
Total CPU time to Xst completion: 0.10 secs
--> Parameter xsthdpdir set to xst
Total REAL time to Xst completion: 0.00 secs
Total CPU time to Xst completion: 0.10 secs
--> Reading design: lcd.prj
TABLE OF CONTENTS
 1) Synthesis Options Summary
2) HDL Compilation
3) Design Hierarchy Analysis
4) HDL Analysis
5) HDL Synthesis
```

- 5.1) HDL Synthesis Report
- 6) Advanced HDL Synthesis
 - 6.1) Advanced HDL Synthesis Report
- 7) Low Level Synthesis
- 8) Partition Report
- 9) Final Report
 - 9.1) Device utilization summary
 - 9.2) Partition Resource Summary
 - 9.3) TIMING REPORT

______ **Synthesis Options Summary** ______ ---- Source Parameters

Input File Name : "Icd.prj"
Input Format : mixed
Ignore Synthesis Constraint File : NO

---- Target Parameters

Output File Name : "lcd"
Output Format : NGC

Target Device : xc3s400-4-pq208

---- Source Options

Top Module Name : lcd Automatic FSM Extraction : YES FSM Encoding Algorithm : Auto Safe Implementation : No FSM Style : LUT **RAM Extraction** : Yes **RAM Style** : Auto **ROM Extraction** : Yes Mux Style : Auto **Decoder Extraction** : YES Priority Encoder Extraction : Yes Shift Register Extraction : YES **Logical Shifter Extraction** : YES **XOR Collapsing** : YES **ROM Style** : Auto Mux Extraction : Yes Resource Sharing : YES

Asynchronous To Synchronous : NO

Multiplier Style : Auto

Automatic Register Balancing : No

---- Target Options

Add IO Buffers : YES

Global Maximum Fanout : 500
Add Generic Clock Buffer(BUFG) : 8
Register Duplication : YES
Slice Packing : YES

Optimize Instantiated Primitives : NO

Use Clock Enable : Yes
Use Synchronous Set : Yes
Use Synchronous Reset : Yes
Pack IO Registers into IOBs : Auto
Equivalent register Removal : YES

---- General Options

Optimization Goal : Speed
Optimization Effort : 1
Keep Hierarchy : No

Netlist Hierarchy : As_Optimized

RTL Output : Yes

Global Optimization Read Cores Write Timing Const Cross Clock Analysis Hierarchy Separato Bus Delimiter Case Specifier Slice Utilization Rat	: YES raints : NO : : NO : : / : <> : Maintain
BRAM Utilization Ra	
Verilog 2001 Auto BRAM Packing	: YES : : NO
Slice Utilization Rat	
=======================================	
	=======================================
	. Compilation *
	'C:/.Xilinx/lcd/lcd.vhd" in Library work. oral of Entity lcd is up to date.
* Design	+ Hierarchy Analysis *
	for entity <lcd> in library <work> (architecture <behavioral>).</behavioral></work></lcd>
* HC	e=====================================
WARNING:Xst:819 sensitivity list. To enare present in the sinitial design specificount>	d> in library <work> (Architecture <behavioral>). "C:/.Xilinx/lcd/lcd.vhd" line 36: One or more signals are missing in the process hable synthesis of FPGA/CPLD hardware, XST will assume that all necessary signals ensitivity list. Please note that the result of the synthesis may differ from the cation. The missing signals are: d. Unit <lcd> generated.</lcd></behavioral></work>
	======================================
Performing bidirect	ional port resolution
Synthesizing Unit <	cd>.
Related source fi	e is "C:/.Xilinx/lcd/lcd.vhd". machine <fsm_0> for signal <state>.</state></fsm_0>
	 24

```
| Transitions
           | 24
 Inputs
           | 0
 Outputs
           | 24
                       (rising_edge)
 | Clock
           clk1
                       (positive)
 Reset
           reset
 | Reset type
           asynchronous
 Reset State
            | s0
 | Power Up State | s0
            automatic
 | Encoding
 | Implementation | LUT
 Found 1-bit register for signal <RS>.
 Found 1-bit register for signal <EN>.
 Found 8-bit register for signal <data>.
 Found 23-bit up counter for signal <count>.
 Summary:
     inferred 1 Finite State Machine(s).
     inferred 1 Counter(s).
     inferred 10 D-type flip-flop(s).
Unit <lcd> synthesized.
HDL Synthesis Report
Macro Statistics
# Counters
                       : 1
23-bit up counter
                         : 1
# Registers
                       : 3
1-bit register
                       : 2
8-bit register
                       : 1
_____
         Advanced HDL Synthesis
______
Analyzing FSM <FSM 0> for best encoding.
Optimizing FSM <state/FSM> on signal <state[1:24]> with one-hot encoding.
State | Encoding
s0 | 000000000000000000000000001
```

s8	00000010000000000000000
s9	000000010000000000000000000000000000000
s10	00000000100000000000000
s11	00000000010000000000000
s12	00000000001000000000000
s13	00000000000100000000000
s14	00000000000010000000000
s15	0000000000001000000000
s16	0000000000000100000000
s17	0000000000000010000000
s18	0000000000000001000000
s19	0000000000000000100000
s20	0000000000000000000000000000000000000
s21	0000000000000000000000000000000000000
s22	0000000000000000000000000000000000000
s23	0000000000000000000000000000000000000

Advanced HDL Synthesis Report

Macro Statistics

FSMs : 1
Counters : 1
23-bit up counter : 1
Registers : 10
Flip-Flops : 10

Low Level Synthesis

WARNING:Xst:2677 - Node <count_21> of sequential type is unconnected in block <lcd>. WARNING:Xst:2677 - Node <count_22> of sequential type is unconnected in block <lcd>.

Optimizing unit <lcd> ...

Mapping all equations...

Building and optimizing final netlist ...

Found area constraint ratio of 100 (+ 5) on block lcd, actual ratio is 1.

Final Macro Processing ...

Final Register Report

Macro Statistics

Registers : 55 Flip-Flops : 55

```
______
        Partition Report *
______
Partition Implementation Status
_____
No Partitions were found in this design.
_____
______
        Final Report *
______
Final Results
RTL Top Level Output File Name : lcd.ngr
Top Level Output File Name : lcd
Output Format
            : NGC
Optimization Goal : Sp
             : Speed
Design Statistics
# IOs
          : 13
Cell Usage:
# BELS
          : 92
#
  GND
           : 1
#
 INV
          : 2
 LUT1
           : 20
#
#
 LUT2
           : 1
#
 LUT2_L
           : 3
#
  LUT3
           : 3
#
 LUT3 D
           : 1
#
 LUT4
           : 14
           : 1
#
 LUT4_D
#
 LUT4 L
           : 4
#
  MUXCY
            : 20
#
  VCC
          : 1
           : 21
  XORCY
#
# FlipFlops/Latches : 55
#
 FD
          : 21
  FDC
#
          : 22
# FDCE
           : 1
# FDE
          : 10
          : 1
  FDP
#
           : 2
# Clock Buffers
  BUFG
            : 1
           : 1
  BUFGP
```

IO Buffers

: 12

```
IBUF
        : 1
  OBUF
             : 11
______
Device utilization summary:
-----
Selected Device: 3s400pq208-4
Number of Slices:
                  35 out of 3584 0%
Number of Slice Flip Flops:
                   55 out of 7168 0%
                 49 out of 7168 0%
Number of 4 input LUTs:
Number of IOs:
                  13
Number of bonded IOBs: 13 out of 141 9%
Number of GCLKs: 2 out of 8 25%
Partition Resource Summary:
No Partitions were found in this design.
_____
______
TIMING REPORT
NOTE: THESE TIMING NUMBERS ARE ONLY A SYNTHESIS ESTIMATE.
  FOR ACCURATE TIMING INFORMATION PLEASE REFER TO THE TRACE REPORT
  GENERATED AFTER PLACE-and-ROUTE.
Clock Information:
-----+
Clock Signal | Clock buffer(FF name) | Load |
-----+
           | BUFG
                      | 34 |
count 201
            | BUFGP
Clk
                       | 21 |
Asynchronous Control Signals Information:
Control Signal | Buffer(FF name) | Load |
-----+
            | IBUF | 24 |
reset
-----+
Timing Summary:
-----
```

```
Speed Grade: -4
```

Minimum period: 6.071ns (Maximum Frequency: 164.717MHz)

Minimum input arrival time before clock: 4.921ns Maximum output required time after clock: 7.241ns Maximum combinational path delay: No path found

Timing Detail:

All values displayed in nanoseconds (ns)

Timing constraint: Default period analysis for Clock 'count 201'

Clock period: 6.071ns (frequency: 164.717MHz)
Total number of paths / destination ports: 193 / 33

Delay: 6.071ns (Levels of Logic = 3) Source: state_FSM_FFd4 (FF)

Destination: EN (FF)

Source Clock: count_201 rising Destination Clock: count_201 rising

Data Path: state_FSM_FFd4 to EN

Gate Net

Cell:in->out fanout Delay Delay Logical Name (Net Name)

FDC:C->Q 3 0.720 1.246 state_FSM_FFd4 (state_FSM_FFd4) LUT4:I0->O 1 0.551 1.140 EN_mux00009 (EN_mux00009) LUT3_D:I0->O 8 0.551 1.109 data_or000023 (data_or0000)

LUT4:I3->O 1 0.551 0.000 data mux0000<3>1 (data mux0000<3>)

FDE:D 0.203 data_4

Total 6.071ns (2.576ns logic, 3.495ns route)

(42.4% logic, 57.6% route)

Timing constraint: Default period analysis for Clock 'Clk' Clock period: 5.170ns (frequency: 193.424MHz)
Total number of paths / destination ports: 231 / 21

Delay: 5.170ns (Levels of Logic = 21)

Source: count_1 (FF)
Destination: count_20 (FF)
Source Clock: Clk rising
Destination Clock: Clk rising

Data Path: count_1 to count_20

Gate Net

Cell:in->out fanout Delay Delay Logical Name (Net Name)

FD:C->Q 1 0.720 1.140 count 1 (count 1)

```
LUT1:I0->0
                1 0.551 0.000 Mcount_count_cy<1>_rt (Mcount_count_cy<1>_rt)
  MUXCY:S->O
                 1  0.500  0.000  Mcount_count_cy<1> (Mcount_count_cy<1>)
                 1 0.064 0.000 Mcount count cy<2> (Mcount count cy<2>)
  MUXCY:CI->O
  MUXCY:CI->O
                 1 0.064 0.000 Mcount count cy<3> (Mcount count cy<3>)
  MUXCY:CI->O
                 1  0.064  0.000  Mcount_count_cy<4> (Mcount_count_cy<4>)
  MUXCY:CI->O
                 1 0.064 0.000 Mcount count cy<5> (Mcount count cy<5>)
                 1 0.064 0.000 Mcount count cy<6> (Mcount count cy<6>)
  MUXCY:CI->O
                 1 0.064 0.000 Mcount count cy<7> (Mcount count cy<7>)
  MUXCY:CI->O
                 1 0.064 0.000 Mcount_count_cy<8> (Mcount_count_cy<8>)
  MUXCY:CI->O
                 1 0.064 0.000 Mcount_count_cy<9> (Mcount_count_cy<9>)
  MUXCY:CI->O
  MUXCY:CI->O
                 1 0.064 0.000 Mcount_count_cy<10> (Mcount_count_cy<10>)
                 1 0.064 0.000 Mcount count cy<11> (Mcount count cy<11>)
  MUXCY:CI->O
                 1  0.064  0.000  Mcount_count_cy<12> (Mcount_count_cy<12>)
  MUXCY:CI->O
                 1 0.064 0.000 Mcount_count_cy<13> (Mcount_count_cy<13>)
  MUXCY:CI->O
  MUXCY:CI->O
                 1 0.064 0.000 Mcount count cy<14> (Mcount count cy<14>)
                 1 0.064 0.000 Mcount count cy<15> (Mcount count cy<15>)
  MUXCY:CI->O
                 1 0.064 0.000 Mcount count cy<16> (Mcount count cy<16>)
  MUXCY:CI->O
                 1 0.064 0.000 Mcount count cy<17> (Mcount count cy<17>)
  MUXCY:CI->O
  MUXCY:CI->O
                 1 0.064 0.000 Mcount_count_cy<18> (Mcount_count_cy<18>)
                 0 0.064 0.000 Mcount count cy<19> (Mcount count cy<19>)
  MUXCY:CI->O
                 1 0.904 0.000 Mcount count xor<20> (Result<20>)
  XORCY:CI->O
  FD:D
               0.203
                        count 20
               5.170ns (4.030ns logic, 1.140ns route)
 Total
                 (77.9% logic, 22.1% route)
______
Timing constraint: Default OFFSET IN BEFORE for Clock 'count' 201'
Total number of paths / destination ports: 10 / 10
______
Offset:
           4.921ns (Levels of Logic = 2)
            reset (PAD)
Source:
Destination:
             EN (FF)
Destination Clock: count 201 rising
 Data Path: reset to EN
              Gate Net
 Cell:in->out fanout Delay Delay Logical Name (Net Name)
  -----
  IBUF:I->O
               25 0.821 1.813 reset IBUF (reset IBUF)
  INV:I->O
              10 0.551 1.134 reset_inv1_INV_0 (reset_inv)
  FDE:CE
                0.602
                         ΕN
 Total
               4.921ns (1.974ns logic, 2.947ns route)
                 (40.1% logic, 59.9% route)
______
Timing constraint: Default OFFSET OUT AFTER for Clock 'count' 201'
```

Offset: 7.241ns (Levels of Logic = 1)

Total number of paths / destination ports: 10 / 10

Source: EN (FF)
Destination: EN (PAD)

Source Clock: count_201 rising

Data Path: EN to EN

Gate Net

Cell:in->out fanout Delay Delay Logical Name (Net Name)

FDE:C->Q 2 0.720 0.877 EN (EN_OBUF) OBUF:I->O 5.644 EN_OBUF (EN)

Total 7.241ns (6.364ns logic, 0.877ns route)

(87.9% logic, 12.1% route)

Total REAL time to Xst completion: 4.00 secs Total CPU time to Xst completion: 3.89 secs

-->

Total memory usage is 4509380 kilobytes

Number of errors : 0 (0 filtered) Number of warnings : 3 (0 filtered) Number of infos : 0 (0 filtered)