Cut-Simulation in Impredicative Logics

Christoph E. Benzmüller

and

Chad E. Brown and Michael Kohlhase

Saarland University and International University Bremen

IJCAR 2006, Seattle, US

- Study challenges for automating impredicate logics/HOL
 - Leibniz-equations
 - axioms of: comprehension, extensionality, induction, choice/description, etc.

- Study challenges for automating impredicate logics/HOL
 - Leibniz-equations
 - axioms of: comprehension, extensionality, induction, choice/description, etc.
- Cut-simulation
- Is 'cut-freeness' a meaningful criterion in our context?

- Study challenges for automating impredicate logics/HOL
 - Leibniz-equations
 - axioms of: comprehension, extensionality, induction, choice/description, etc.
- Cut-simulation
- Is 'cut-freeness' a meaningful criterion in our context?
- What is the connection between 'cut' and 'saturation'?
- Abstract cut-elimination result for HOL

- Study challenges for automating impredicate logics/HOL
 - Leibniz-equations
 - axioms of: comprehension, extensionality, induction, choice/description, etc.
- Cut-simulation
- Is 'cut-freeness' a meaningful criterion in our context?
- What is the connection between 'cut' and 'saturation'?
- Abstract cut-elimination result for HOL

Difficulty for AR: Impredicativity _

Notion: (Impredicativity)

- quantification over sets and predicates
- support impredicative definitions and reflection

Difficulty for AR: Impredicativity _

Notion: (Impredicativity)

- quantification over sets and predicates
- support impredicative definitions and reflection

Ex.: Automation already problematic for very simple quantifications over sets: ∃P (P 1)

Difficulty for AR: Impredicativity

Notion: (Impredicativity)

- quantification over sets and predicates
- support impredicative definitions and reflection

Ex.: Automation already problematic for very simple quantifications over sets: ∃P (P 1)

$$ightharpoonup P \longleftarrow \{x | true\}$$

$$P \leftarrow \{x | x = 1\}$$

$$P \longleftarrow \{x | x = 1 \lor x = 2\}$$

$$P \longleftarrow \{x | x > 0\}$$

$$(\lambda X T_o)$$

$$(\lambda X X = 1)$$

$$(\lambda X X = 1 \lor X = 2)$$

$$(\lambda X X > 0)$$

Difficulty for AR: Impredicativity

Notion: (Impredicativity)

- quantification over sets and predicates
- support impredicative definitions and reflection

Ex.: Automation already problematic for very simple quantifications over sets: ∃P (P 1)

$$\begin{array}{l} \text{P} \longleftarrow \{\text{x}|\text{true}\} \\ \text{P} \longleftarrow \{\text{x}|\text{x}=1\} \\ \text{P} \longleftarrow \{\text{x}|\text{x}=1 \lor \text{x}=2\} \\ \text{P} \longleftarrow \{\text{x}|\text{x}>0\} \end{array} \qquad \begin{array}{l} (\lambda \text{X} \ \text{\mathbf{T}_{o}}) \\ (\lambda \text{X} \ \text{X}=1) \\ (\lambda \text{X} \ \text{X}=2) \\ (\lambda \text{X} \ \text{X}>0) \end{array}$$

- etc.
- ullet unification not powerful enough \Longrightarrow guessing is state of the art
- problem not limited to HOL

HOL: Simple Types

Simple Types T:

o (truth values)

 ι (individuals)

 $(\alpha \rightarrow \beta)$ (functions from α to β)

HOL: Simply Typed λ -Terms

 X_{lpha}

Variables (\mathcal{V})

 a_{lpha}

Parameters (\mathcal{P})

 c_{lpha}

Constants (Σ)

 $(\mathbf{F}_{\alpha \to \beta} \, \mathbf{B}_{\alpha})_{\beta}$ Application

 $(\lambda Y_{\alpha} \mathbf{A}_{\beta})_{\alpha \to \beta}$ λ -abstraction

Typed Terms:

HOL: Simply Typed λ -Terms

 X_{lpha} Variables (\mathcal{V})

Parameters (\mathcal{P}) a_{α}

Constants (Σ) c_{lpha}

 $(\mathbf{F}_{\alpha \to \beta} \mathbf{B}_{\alpha})_{\beta}$ Application

 $(\lambda Y_{\alpha} \mathbf{A}_{\beta})_{\alpha \to \beta}$ λ -abstraction

Equality of terms:

Typed Terms:

Changing bound variables α -conversion

 $((\lambda Y_{\beta} \mathbf{A}_{\alpha}) \mathbf{B}) \xrightarrow{\beta} [\mathbf{B}/Y] \mathbf{A}$ β -reduction

 η -reduction $(\lambda Y_{\alpha} (\mathbf{F}_{\alpha \to \beta} Y)) \xrightarrow{\eta} \mathbf{F}$ $(Y_{\beta} \notin \mathbf{Free}(\mathbf{F}))$

- → T_o true
- \perp_{\circ} false
- $\neg_{o \rightarrow o}$ negation
- V_{o→o→o} disjunction
- $\supset_{o \to o \to o}$ implication
- \Rightarrow _{o \rightarrow o \rightarrow o} equivalence
- $\Pi^{\alpha}_{(\alpha \to \circ) \to \circ}$ universal quantification over type α (\forall types α)
- $\Sigma_{(\alpha \to \circ) \to \circ}^{\alpha}$ existential quantification over type α (\forall types α)
- $= \stackrel{\alpha}{\alpha \to \alpha \to 0} \text{ equality at type } \alpha \qquad (\forall \text{ types } \alpha)$

Our choice for signature Σ in this paper:

- $\neg_{o \rightarrow o}$ negation
- V_{o→o→o} disjunction
- $\Pi_{\circ(\circ\alpha)}^{\alpha}$ universal quantification over type α (\forall types α)

Our choice for signature Σ in this paper:

- $\neg_{\circ \rightarrow \circ}$ negation
- V_{o→o→o} disjunction
- \blacksquare $\Pi^{\alpha}_{\circ(\circ\alpha)}$ universal quantification over type α

 $(\forall \text{ types } \alpha)$

Use abbreviations for other logical operators

$$\mathbf{A} \vee \mathbf{B}$$
 means

$$(\vee \mathbf{A} \mathbf{B})$$

$$A \wedge B$$
 means

$$\neg(\neg \mathbf{A} \lor \neg \mathbf{B})$$

$$A \supset B$$
 means

$$\neg \mathbf{A} \vee \mathbf{B}$$

$$\mathbf{A} \Leftrightarrow \mathbf{B}$$
 means

$$(\mathbf{A}\supset\mathbf{B})\wedge(\mathbf{B}\supset\mathbf{A})$$

$$\forall X_{\alpha} A$$
 means

$$\Pi^{\alpha}(\lambda X_{\alpha} \mathbf{A})$$

$$\exists X_{\alpha} A$$
 means

$$\neg(\forall X_{\alpha} \neg A)$$

Our choice for signature Σ in this paper:

- $\neg_{o \rightarrow o}$ negation
- V_{o→o→o} disjunction
- \blacksquare $\Pi^{\alpha}_{\circ(\circ\alpha)}$ universal quantification over type α

(\forall types α)

Use Leibniz-equality to encode equality

$$\mathbf{A}_{\alpha} \doteq^{\alpha} \mathbf{B}_{\alpha}$$

means

$$\forall \mathsf{P}_{\alpha \to \mathsf{o}}(\mathsf{P} \mathbf{A} \supset \mathsf{P} \mathbf{B})$$

$$\Pi^{\alpha}(\lambda P_{\alpha \to o} \neg PA \vee PB)$$

We work with a one-sided sequent calculus:

We work with a one-sided sequent calculus:

examples for two-sided rules:

We work with a one-sided sequent calculus:

examples for two-sided rules:

$$rac{\Gamma \Longrightarrow oldsymbol{\Delta}, oldsymbol{A} ee oldsymbol{B}}{oldsymbol{\Gamma} \Longrightarrow oldsymbol{\Delta}, oldsymbol{A} ee oldsymbol{B}}$$

We work with a one-sided sequent calculus:

examples for two-sided rules:

$$rac{\Gamma \Longrightarrow \Delta, \mathbf{A}, \mathbf{B}}{\Gamma \Longrightarrow \Delta, \mathbf{A} ee \mathbf{B}} \, \mathcal{G}(ee_{Intro})$$

We work with a one-sided sequent calculus:

examples for two-sided rules:

$$rac{\Gamma \Longrightarrow \Delta, \mathbf{A}, \mathbf{B}}{\Gamma \Longrightarrow \Delta, \mathbf{A} ee \mathbf{B}} \, \mathcal{G}(ee_{Intro})$$

corresponding one-sided rules:

$$\frac{}{\neg(\Gamma)\cup\Delta,\mathbf{A}\vee\mathbf{B}}\mathcal{G}(\vee_{+})$$

 Δ ,**A** stands for $\Delta \cup \{A\}$

We work with a one-sided sequent calculus:

examples for two-sided rules:

$$rac{\Gamma \Longrightarrow \Delta, \mathbf{A}, \mathbf{B}}{\Gamma \Longrightarrow \Delta, \mathbf{A} ee \mathbf{B}} \, \mathcal{G}(ee_{Intro})$$

corresponding one-sided rules:

$$\frac{\neg(\Gamma) \cup \Delta, \mathbf{A}, \mathbf{B}}{\neg(\Gamma) \cup \Delta, \mathbf{A} \vee \mathbf{B}} \, \mathcal{G}(\vee_{+})$$

 Δ ,**A** stands for $\Delta \cup \{A\}$

We work with a one-sided sequent calculus:

examples for two-sided rules:

$$egin{aligned} rac{\Gamma \Longrightarrow \Delta, \mathbf{A}, \mathbf{B}}{\Gamma \Longrightarrow \Delta, \mathbf{A} \lor \mathbf{B}} \, \mathcal{G}(ee_{Intro}) & \overline{\Gamma, \mathbf{A} \lor \mathbf{B} \Longrightarrow \Delta} & \mathcal{G}(ee_{Elim}) \end{aligned}$$

corresponding one-sided rules:

$$\frac{\neg(\Gamma) \cup \Delta, \mathbf{A}, \mathbf{B}}{\neg(\Gamma) \cup \Delta, \mathbf{A} \vee \mathbf{B}} \, \mathcal{G}(\vee_{+})$$

 Δ ,**A** stands for $\Delta \cup \{A\}$

We work with a one-sided sequent calculus:

examples for two-sided rules:

$$rac{\Gamma \Longrightarrow \Delta, \mathbf{A}, \mathbf{B}}{\Gamma \Longrightarrow \Delta, \mathbf{A} \lor \mathbf{B}} \, \mathcal{G}(\lor_{Intro})$$

$$\frac{\Gamma \Longrightarrow \Delta, \mathbf{A}, \mathbf{B}}{\Gamma \Longrightarrow \Delta, \mathbf{A} \vee \mathbf{B}} \mathcal{G}(\vee_{Intro}) \qquad \frac{\Gamma, \mathbf{A} \Longrightarrow \Delta \quad \Gamma, \mathbf{B} \Longrightarrow \Delta}{\Gamma, \mathbf{A} \vee \mathbf{B} \Longrightarrow \Delta} \mathcal{G}(\vee_{Elim})$$

corresponding one-sided rules:

$$\frac{\neg(\Gamma) \cup \Delta, \mathbf{A}, \mathbf{B}}{\neg(\Gamma) \cup \Delta, \mathbf{A} \vee \mathbf{B}} \, \mathcal{G}(\vee_{+})$$

 \triangle ,**A** stands for $\triangle \cup \{A\}$

We work with a one-sided sequent calculus:

examples for two-sided rules:

$$rac{\Gamma \Longrightarrow \Delta, \mathbf{A}, \mathbf{B}}{\Gamma \Longrightarrow \Delta, \mathbf{A} \lor \mathbf{B}} \, \mathcal{G}(ee_{Intro})$$

$$\frac{\Gamma \Longrightarrow \Delta, \mathbf{A}, \mathbf{B}}{\Gamma \Longrightarrow \Delta, \mathbf{A} \vee \mathbf{B}} \, \mathcal{G}(\vee_{Intro}) \qquad \frac{\Gamma, \mathbf{A} \Longrightarrow \Delta}{\Gamma, \mathbf{A} \vee \mathbf{B} \Longrightarrow \Delta} \, \mathcal{G}(\vee_{Elim})$$

corresponding one-sided rules:

$$\frac{\neg(\Gamma) \cup \Delta, \mathbf{A}, \mathbf{B}}{\neg(\Gamma) \cup \Delta, \mathbf{A} \vee \mathbf{B}} \, \mathcal{G}(\vee_{+})$$

$$\frac{}{\neg(\Gamma)\cup\Delta,\neg(\mathbf{A}\vee\mathbf{B})}\mathcal{G}(\vee_{-})$$

$$\Delta$$
,**A** stands for $\Delta \cup \{A\}$

We work with a one-sided sequent calculus:

examples for two-sided rules:

$$rac{\Gamma \Longrightarrow \Delta, \mathbf{A}, \mathbf{B}}{\Gamma \Longrightarrow \Delta, \mathbf{A} \lor \mathbf{B}} \, \mathcal{G}(\lor_{Intro})$$

$$rac{\Gamma \Longrightarrow \Delta, \mathbf{A}, \mathbf{B}}{\Gamma \Longrightarrow \Delta, \mathbf{A} \lor \mathbf{B}} \mathcal{G}(\lor_{Intro}) \qquad rac{\Gamma, \mathbf{A} \Longrightarrow \Delta}{\Gamma, \mathbf{A} \lor \mathbf{B} \Longrightarrow \Delta} \mathcal{G}(\lor_{Elim})$$

corresponding one-sided rules:

$$\frac{\neg(\Gamma) \cup \Delta, \mathbf{A}, \mathbf{B}}{\neg(\Gamma) \cup \Delta, \mathbf{A} \vee \mathbf{B}} \, \mathcal{G}(\vee_{+})$$

$$\frac{\neg(\Gamma) \cup \Delta, \mathbf{A}, \mathbf{B}}{\neg(\Gamma) \cup \Delta, \mathbf{A} \vee \mathbf{B}} \mathcal{G}(\vee_{+}) \qquad \frac{\neg(\Gamma) \cup \Delta, \neg \mathbf{A} \quad \neg(\Gamma) \cup \Delta, \neg \mathbf{B}}{\neg(\Gamma) \cup \Delta, \neg(\mathbf{A} \vee \mathbf{B})} \mathcal{G}(\vee_{-})$$

 \triangle ,**A** stands for $\triangle \cup \{A\}$

$$oxed{\Delta, \neg \mathbf{A}, \mathbf{A}} \mathcal{G}(init)$$

$$\frac{\mathbf{A} \text{ atomic (and } \beta\text{-normal)}}{\Delta, \neg \mathbf{A}, \mathbf{A}} \, \mathcal{G}(init)$$

$$\frac{\mathbf{A} \text{ atomic (and } \beta\text{-normal)}}{\Delta, \neg \mathbf{A}, \mathbf{A}} \mathcal{G}(init)$$

$$\frac{}{\Delta, \neg \neg \mathbf{A}} \mathcal{G}(\neg)$$

$$\frac{\mathbf{A} \text{ atomic (and } \beta\text{-normal)}}{\Delta, \neg \mathbf{A}, \mathbf{A}} \, \mathcal{G}(init)$$

$$\frac{\Delta, \mathbf{A}}{\Delta, \neg \neg \mathbf{A}} \mathcal{G}(\neg)$$

$$\frac{\mathbf{A} \text{ atomic (and } \beta\text{-normal)}}{\Delta, \neg \mathbf{A}, \mathbf{A}} \mathcal{G}(init)$$

$$\frac{\Delta, \neg \mathbf{A} \quad \Delta, \neg \mathbf{B}}{\Delta, \neg (\mathbf{A} \vee \mathbf{B})} \, \mathcal{G}(\vee_{-})$$

$$\frac{\Delta, \mathbf{A}}{\Delta, \neg \neg \mathbf{A}} \, \mathcal{G}(\neg)$$

$$rac{oldsymbol{\Delta}, \mathbf{A}, \mathbf{B}}{oldsymbol{\Delta}, (\mathbf{A} ee \mathbf{B})} \, \mathcal{G}(ee_+)$$

$$\frac{\mathbf{A} \text{ atomic (and } \beta\text{-normal)}}{\Delta, \neg \mathbf{A}, \mathbf{A}} \mathcal{G}(init)$$

$$\frac{\Delta, \neg \mathbf{A} \quad \Delta, \neg \mathbf{B}}{\Delta, \neg (\mathbf{A} \vee \mathbf{B})} \, \mathcal{G}(\vee_{-})$$

$$\frac{\phantom{(\mathcal{C})}}{\Delta,\neg\forall\mathsf{X}_{\alpha}\mathbf{A}\ (:=\neg\mathsf{\Pi}^{\alpha}\mathbf{A})}\mathcal{G}(\Pi_{-}^{\mathbf{C}})$$

$$\frac{\Delta, \mathbf{A}}{\Delta, \neg \neg \mathbf{A}} \mathcal{G}(\neg)$$

$$rac{oldsymbol{\Delta}, \mathbf{A}, \mathbf{B}}{oldsymbol{\Delta}, (\mathbf{A} ee \mathbf{B})} \, \mathcal{G}(ee_+)$$

$$\frac{\mathbf{A} \text{ atomic (and } \beta\text{-normal)}}{\Delta, \neg \mathbf{A}, \mathbf{A}} \mathcal{G}(init)$$

$$\frac{\Delta, \neg \mathbf{A} \quad \Delta, \neg \mathbf{B}}{\Delta, \neg (\mathbf{A} \vee \mathbf{B})} \, \mathcal{G}(\vee_{-})$$

$$\frac{\Delta, \mathbf{A}}{\Delta, \neg \neg \mathbf{A}} \mathcal{G}(\neg)$$

$$rac{oldsymbol{\Delta}, \mathbf{A}, \mathbf{B}}{oldsymbol{\Delta}, (\mathbf{A} ee \mathbf{B})} \, \mathcal{G}(ee_+)$$

$$\frac{\mathbf{A} \text{ atomic (and } \beta\text{-normal)}}{\Delta, \neg \mathbf{A}, \mathbf{A}} \mathcal{G}(init)$$

$$\frac{\Delta, \neg \mathbf{A} \quad \Delta, \neg \mathbf{B}}{\Delta, \neg (\mathbf{A} \vee \mathbf{B})} \, \mathcal{G}(\vee_{-})$$

$$\frac{\Delta, \neg(\mathbf{AC}) \downarrow_{\beta} \quad \mathbf{C} \in \mathit{cwff}_{\alpha}(\Sigma)}{\Delta, \neg \forall \mathsf{X}_{\alpha} \mathbf{A} \ (:= \neg \Pi^{\alpha} \mathbf{A})} \, \mathcal{G}(\Pi_{-}^{\mathbf{C}}) \qquad \qquad \underline{\Delta, \forall \mathsf{X}_{\alpha} \mathbf{A} \ (:= \Pi^{\alpha} \mathbf{A})} \, \mathcal{G}(\Pi_{+}^{c})$$

$$\frac{\Delta, \mathbf{A}}{\Delta, \neg \neg \mathbf{A}} \mathcal{G}(\neg)$$

$$rac{oldsymbol{\Delta}, \mathbf{A}, \mathbf{B}}{oldsymbol{\Delta}, (\mathbf{A} ee \mathbf{B})} \, \mathcal{G}(ee_+)$$

$$\Delta, \forall \mathsf{X}_{\alpha}\mathbf{A} \ (:= \mathsf{\Pi}^{\alpha}\mathbf{A})$$
 $\mathcal{G}(\Pi^{c}_{+})$

$$\frac{\mathbf{A} \text{ atomic (and } \beta\text{-normal)}}{\Delta, \neg \mathbf{A}, \mathbf{A}} \mathcal{G}(init)$$

$$\frac{\Delta, \neg \mathbf{A} \quad \Delta, \neg \mathbf{B}}{\Delta, \neg (\mathbf{A} \vee \mathbf{B})} \, \mathcal{G}(\vee_{-})$$

$$\frac{\Delta, \neg(\mathbf{AC}) \downarrow_{\beta} \quad \mathbf{C} \in \mathit{cwff}_{\alpha}(\Sigma)}{\Delta, \neg \forall \mathsf{X}_{\alpha} \mathbf{A} \ (:= \neg \Pi^{\alpha} \mathbf{A})} \, \mathcal{G}(\Pi_{-}^{\mathbf{C}}) \qquad \frac{\Delta, (\mathbf{Ac}) \downarrow_{\beta} \quad \mathsf{c}_{\alpha} \in \Sigma \ \mathsf{new}}{\Delta, \forall \mathsf{X}_{\alpha} \mathbf{A} \ (:= \Pi^{\alpha} \mathbf{A})} \, \mathcal{G}(\Pi_{+}^{c})$$

$$\frac{\Delta, \mathbf{A}}{\Delta, \neg \neg \mathbf{A}} \mathcal{G}(\neg)$$

$$rac{oldsymbol{\Delta}, \mathbf{A}, \mathbf{B}}{oldsymbol{\Delta}, (\mathbf{A} ee \mathbf{B})} \, \mathcal{G}(ee_+)$$

$$\frac{\Delta, (\mathbf{A}c) \downarrow_{\beta} \quad c_{\alpha} \in \Sigma \text{ new}}{\Delta, \forall \mathsf{X}_{\alpha} \mathbf{A} \ (:= \Pi^{\alpha} \mathbf{A})} \mathcal{G}(\Pi^{c}_{+})$$

The Sequent Calculus \mathcal{G}_{eta} _

Def.: The sequent calculus G_{β} is defined by the rules

$$\mathcal{G}(init)$$
, $\mathcal{G}(\neg)$, $\mathcal{G}(\vee_{-})$, $\mathcal{G}(\vee_{+})$, $\mathcal{G}(\Pi_{-}^{\mathbf{C}})$, $\mathcal{G}(\Pi_{+}^{c})$

The Sequent Calculus \mathcal{G}_{β} ____

Def.: The sequent calculus \mathcal{G}_{β} is defined by the rules

$$\mathcal{G}(init)$$
, $\mathcal{G}(\neg)$, $\mathcal{G}(\vee_{-})$, $\mathcal{G}(\vee_{+})$, $\mathcal{G}(\Pi_{-}^{\mathbf{C}})$, $\mathcal{G}(\Pi_{+}^{c})$

Analysis of admissibility of cut:

$$\frac{\Delta, \mathbf{C} \quad \Delta, \neg \mathbf{C}}{\Delta} \, \mathcal{G}(cut)$$

The Sequent Calculus \mathcal{G}_{β} ____

Def.: The sequent calculus \mathcal{G}_{β} is defined by the rules

$$\mathcal{G}(init), \mathcal{G}(\neg), \mathcal{G}(\vee_{-}), \mathcal{G}(\vee_{+}), \mathcal{G}(\Pi_{-}^{\mathbf{C}}), \mathcal{G}(\Pi_{+}^{c})$$

Analysis of admissibility of cut:

$$\frac{\Delta, \mathbf{C} \quad \Delta, \neg \mathbf{C}}{\Delta} \, \mathcal{G}(cut)$$

- Analysis of Soundness and Completeness:
 - we need appropriate notions of semantics for HOL
 - standard semantics not appropriate

elementary type theory (Andrews)

 \mathfrak{b} : Boolean extensionality $|\mathcal{D}_{\mathsf{o}}| = 2$ $\mathfrak{f}(=\eta + \xi)$: functional extensionality

see [Journal of Symbolic Logic (2004) 69(4)]

extensional type theory (Henkin semantics)

full function domains

 $\mathfrak{SI}(\Sigma)$

elementary type theory (Andrews)

see [Journal of Symbolic Logic (2004) 69(4)]

extensional type theory (Henkin semantics)

 $\mathfrak{SI}(\Sigma)$

elementary type theory (Andrews)

see [Journal of Symbolic Logic (2004) 69(4)]

extensional type theory (Henkin semantics)

elementary type theory (Andrews)

see [Journal of Symbolic Logic (2004) 69(4)]

extensional type theory (Henkin semantics)

elementary type theory (Andrews)

see [Journal of Symbolic Logic (2004) 69(4)]

extensional type theory (Henkin semantics)

elementary type theory (Andrews)

see [Journal of Symbolic Logic (2004) 69(4)]

extensional type theory (Henkin semantics)

elementary type theory (Andrews)

see [Journal of Symbolic Logic (2004) 69(4)]

extensional type theory (Henkin semantics)

elementary type theory (Andrews)

see [Journal of Symbolic Logic (2004) 69(4)]

extensional type theory (Henkin semantics)

elementary type theory (Andrews)

see [Journal of Symbolic Logic (2004) 69(4)]

extensional type theory (Henkin semantics)

Abstract Consistency Proof Method

Abstract Consistency Proof Method

Properties for \mathfrak{Acc}_{β} : (Γ_{Σ} is class of sets of formulas; $\Phi \in \Gamma_{\Sigma}$)

- If A is atomic, then $A \notin \Phi$ or $\nabla_{\!\!\scriptscriptstyle C}$ $\neg \mathbf{A} \notin \Phi$.
- ∇_{\neg} If $\neg\neg A \in \Phi$, then $\Phi, A \in \Gamma_{\Sigma}$.

- If $\mathbf{A} ee \mathbf{B} \in \Phi$, then $\Phi, \mathbf{A} \in \Gamma_{\!\!\!\! \Sigma}$ ∇ or $\Phi, \mathbf{B} \in \Gamma_{\Sigma}$.
- If $\neg (\mathbf{A} \lor \mathbf{B}) \in \Phi$, then $\nabla_{\!\!\!\wedge}$ $\Phi, \neg A, \neg B \in \Gamma$.
- If $\Pi^{\alpha}\mathbf{F}\in\Phi$, then $\Phi,\mathbf{FW}\in\mathbf{F}$ $\nabla_{\!\!\!\!/}$ for each $\mathbf{W} \in \mathit{cwff}_{\alpha}(\Sigma)$.
- If $\neg \Pi^{\alpha} \mathbf{F} \in$ $\nabla_{\!\exists}$ Φ, then $\Phi, \neg (\mathbf{F} \mathsf{w}) \ \in \ \mathsf{l}_{\Sigma} \ \mathsf{for any} \ \mathsf{pa-}$ rameter $w_{\alpha} \in \Sigma_{\alpha}$ which does not occur in any sentence of Φ .

Abstract Consistency Proof Method

Properties for \mathfrak{Acc}_{β} : ($\overline{\Sigma}$ is class of sets of formulas; $\Phi \in \Gamma_{\Sigma}$)

- If A is atomic, then $A \notin \Phi$ or $\neg \mathbf{A} \notin \Phi$.
- ∇_{\neg} If $\neg \neg A \in \Phi$, then $\Phi, A \in \overline{\Gamma_{\Sigma}}$.
- $\nabla_{\!\beta}$ If $\mathbf{A}{=}_{\beta}\mathbf{B}$ and $\mathbf{A}\in\Phi$, then $\Phi, B \in \mathcal{F}$.
- If $\mathbf{A}ee \mathbf{B} \in \Phi$, then $\Phi, \overline{\mathbf{A}} \in \overline{\mathsf{I}_{\!\Sigma}}$ ∇ or $\Phi, B \in \mathcal{F}$.
- $\nabla_{\!\!\wedge}$ If $\neg(\mathbf{A} \lor \mathbf{B}) \in \Phi$, then $\Phi, \neg A, \neg B \in \Gamma$.
- If $\Pi^{\alpha}\mathbf{F}\in\Phi$, then $\Phi,\mathbf{FW}\in \mathcal{F}$ $\nabla_{\!\!\!\!/}$ for each $\mathbf{W} \in \mathit{cwff}_{lpha}(\Sigma)$.
- If $\neg \Pi^{\alpha} \mathbf{F} \in$ ∇_{\exists} Φ, then $\Phi, \neg(\mathbf{F}\mathsf{w}) \in \mathsf{l}_{\Sigma}$ for any parameter $w_{\alpha} \in \Sigma_{\alpha}$ which does not occur in any sentence of Φ .

Properties for \mathfrak{Acc}_{β}

Properties for \mathfrak{Acc}_{β}

$$abla_{\mathfrak{h}}$$
 If $abla(\mathbf{A} \stackrel{=}{=}{}^{\circ} \mathbf{B}) \in \Phi$, then $\Phi, \mathbf{A},
abla \mathbf{B} \in \mathsf{I}_{\Sigma}$ or $\Phi,
abla, \mathbf{A}, \mathbf{B} \in \mathsf{I}_{\Sigma}$.

Properties for \mathfrak{Acc}_{β}

Properties for \mathfrak{Acc}_{β}

Properties for \mathfrak{Acc}_{β}

Properties for \mathfrak{Acc}_{β}

Properties for Extensionality

If $\neg (A \stackrel{=}{=}^{\circ} B) \in \Phi$, then $\Phi, A, \neg B \in \Gamma \text{ or } \Phi, \neg A, B \in$ $\sqrt{\Sigma}$. If $\mathbf{A} \stackrel{eta\eta}{=} \mathbf{B}$ and $\mathbf{A} \in \Phi$, then $\nabla_{\!\!\eta}$ $\Phi, \mathbf{B} \in \mathcal{F}$. If $\neg(\lambda X_{\alpha}.M$ $\nabla_{\!\!\xi}$ $\lambda X_{\alpha} N) \in$ then $\Phi, \neg([w/X]M \stackrel{.}{=}^{\beta} [w/X]N) \in$ $\Gamma_{\!\!\!\Sigma}$ for any new $w_{\alpha} \in \Sigma_{\alpha}$. If $\neg (\mathbf{G} \stackrel{.}{=}^{lpha
ightarrow eta} \mathbf{H}) \in \Phi$, then $\nabla_{\!f}$ $\Phi, \neg (\mathbf{G} \mathsf{w} \doteq^{\beta} \mathbf{H} \mathsf{w}) \in \mathsf{l}_{\Sigma}$ for any new $w_{\alpha} \in \Sigma_{\alpha}$.

Thm.: (Model Existence Theorem(s) for \mathfrak{Acc}_*)

If a class of sets of formulas Γ_{Σ}

is a saturated abstract consistency class in Acc*

then each $\Phi \in \Gamma_{\Sigma}$ is satisfied by a model \mathcal{M} in \mathfrak{M}_{*} .

Thm.: (Model Existence Theorem(s) for \mathfrak{Acc}_*)

If a class of sets of formulas Γ_{Σ} is a saturated abstract consistency class in \mathfrak{Acc}_* then each $\Phi \in \Gamma_{\Sigma}$ is satisfied by a model \mathcal{M} in \mathfrak{M}_* .

Appl.: (Completeness proofs by pure syntactical means)
Sufficient syntactical criteria for completeness of a calculus Gwrt. model class \mathfrak{M}_* :

Thm.: (Model Existence Theorem(s) for \mathfrak{Acc}_*)

If a class of sets of formulas Γ_{Σ} is a saturated abstract consistency class in \mathfrak{Acc}_* then each $\Phi \in \Gamma_{\Sigma}$ is satisfied by a model \mathcal{M} in \mathfrak{M}_* .

Appl.: (Completeness proofs by pure syntactical means) Sufficient syntactical criteria for completeness of a calculus G wrt. model class \mathfrak{M}_* :

 $\Gamma_{\Sigma}^{G} := \{\Phi | \Phi \text{ is G-consistent} \}$ is a saturated \mathfrak{Acc}_{*}

Thm.: (Model Existence Theorem(s) for \mathfrak{Acc}_*)

If a class of sets of formulas Γ_{Σ} is a saturated abstract consistency class in \mathfrak{Acc}_* then each $\Phi \in \Gamma_{\Sigma}$ is satisfied by a model \mathcal{M} in \mathfrak{M}_* .

Appl.: (Completeness proofs by pure syntactical means)
Sufficient syntactical criteria for completeness of a calculus Gwrt. model class \mathfrak{M}_* :

 $\Gamma_{\Sigma}^{G} := \{\Phi | \Phi \text{ is G-consistent} \}$ is a saturated \mathfrak{Acc}_{*}

Def.: (Saturated)

 Γ_{Σ} is saturated if for all $\Phi \in \Gamma_{\Sigma}$ and formulas **A**:

Thm.: (Model Existence Theorem(s) for \mathfrak{Acc}_*)

If a class of sets of formulas Γ_{Σ} is a saturated abstract consistency class in \mathfrak{Acc}_* then each $\Phi \in \Gamma_{\Sigma}$ is satisfied by a model \mathcal{M} in \mathfrak{M}_* .

Appl.: (Completeness proofs by pure syntactical means)
Sufficient syntactical criteria for completeness of a calculus G
wrt. model class \mathfrak{M}_* :

 $\Gamma_{\!\Sigma}^{\mathsf{G}} := \{ \Phi | \Phi \text{ is G-consistent} \} \text{ is a saturated } \mathfrak{Acc}_*$

Def.: (Saturated)

 Γ_{Σ} is saturated if for all $\Phi \in \Gamma_{\Sigma}$ and formulas **A**:

 ∇_{sat} Either $\Phi, \mathbf{A} \in \Gamma_{\Sigma}$ or $\Phi, \neg \mathbf{A} \in \Gamma_{\Sigma}$

The Sequent Calculus \mathcal{G}_{eta} _

Thm.: (Soundness of \mathcal{G}_{β} for \mathfrak{M}_{*})

 \mathcal{G}_{β} is sound for the eight model classes \mathfrak{M}_* .

The Sequent Calculus \mathcal{G}_{β}

Thm.: (Soundness of \mathcal{G}_{β} for \mathfrak{M}_{*})

 \mathcal{G}_{β} is sound for the eight model classes \mathfrak{M}_* .

Thm.: (Completeness of \mathcal{G}_{β} for $\mathfrak{M}_{\beta}(\Sigma)$)

The calculus \mathcal{G}_{β} is complete for the model class $\mathfrak{M}_{\beta}(\Sigma)$.

The Sequent Calculus \mathcal{G}_{eta} _

Thm.: (Soundness of \mathcal{G}_{β} for \mathfrak{M}_{*}) $\mathcal{G}_{\beta} \text{ is sound for the eight model classes } \mathfrak{M}_{*}.$

Thm.: (Completeness of \mathcal{G}_{β} for $\mathfrak{M}_{\beta}(\Sigma)$)
The calculus \mathcal{G}_{β} is complete for the model class $\mathfrak{M}_{\beta}(\Sigma)$.

Proof: Show $\Gamma_{\Sigma}^{\mathcal{G}_{\beta}} := \{ \Phi | \Phi \text{ finite and } \mathcal{G}_{\beta}\text{-consistent (i.e. } \not\vdash_{\mathcal{G}_{\beta}} \neg \Phi \downarrow_{\beta}) \}$ is a saturated abstract consistency class in \mathfrak{Acc}_{β} .

The Sequent Calculus \mathcal{G}_{eta} _

Thm.: (Soundness of \mathcal{G}_{β} for \mathfrak{M}_{*}) $\mathcal{G}_{\beta} \text{ is sound for the eight model classes } \mathfrak{M}_{*}.$

Thm.: (Completeness of \mathcal{G}_{β} for $\mathfrak{M}_{\beta}(\Sigma)$)
The calculus \mathcal{G}_{β} is complete for the model class $\mathfrak{M}_{\beta}(\Sigma)$.

Proof: Show $\Gamma_{\Sigma}^{\mathcal{G}_{\beta}} := \{ \Phi | \Phi \text{ finite and } \mathcal{G}_{\beta}\text{-consistent (i.e. } \not\vdash_{\mathcal{G}_{\beta}} \neg \Phi \downarrow_{\beta}) \}$ is a saturated abstract consistency class in \mathfrak{Acc}_{β} .

Thm.: (Cut and Saturation) $\Gamma_{\Sigma}^{\mathcal{G}_{\beta}} \text{ is saturated if and only if } \mathcal{G}(cut) \text{ is admissible in } \mathcal{G}_{\beta}.$

The Sequent Calculus \mathcal{G}_{β} _

Thm.: (Soundness of \mathcal{G}_{β} for \mathfrak{M}_{*}) $\mathcal{G}_{\beta} \text{ is sound for the eight model classes } \mathfrak{M}_{*}.$

Thm.: (Completeness of \mathcal{G}_{β} for $\mathfrak{M}_{\beta}(\Sigma)$)
The calculus \mathcal{G}_{β} is complete for the model class $\mathfrak{M}_{\beta}(\Sigma)$.

Proof: Show $\Gamma_{\Sigma}^{\mathcal{G}_{\beta}} := \{ \Phi | \Phi \text{ finite and } \mathcal{G}_{\beta}\text{-consistent (i.e. } \not\vdash_{\mathcal{G}_{\beta}} \neg \Phi \downarrow_{\beta}) \}$ is a saturated abstract consistency class in \mathfrak{Acc}_{β} .

Thm.: (Cut and Saturation) $\Gamma_{\Sigma}^{\mathcal{G}_{\beta}} \text{ is saturated if and only if } \mathcal{G}(cut) \text{ is admissible in } \mathcal{G}_{\beta}.$

Cor.: (Cut-freeness of \mathcal{G}_{β})
The cut rule $\mathcal{G}(cut)$ is admissible in \mathcal{G}_{β} .

k-Admissibility_

Def.: We say a sequent calculus rule

$$\frac{\Delta_1 \quad \cdots \quad \Delta_n}{\Delta}$$
 $_r$ is admissible in ${\cal G}$

if
$$\Vdash_{\mathcal{G}} \Delta$$
 holds whenever $\Vdash_{\mathcal{G}} \Delta_i$ $(\forall \ 1 \leq i \leq n)$.

k-Admissibility

Def.: We say a sequent calculus rule

$$\frac{\Delta_1 \quad \cdots \quad \Delta_n}{\Delta}$$
 r is admissible in $\mathcal G$

if $\Vdash_{\mathcal{G}} \Delta$ holds whenever $\Vdash_{\mathcal{G}} \Delta_i$ $(\forall \ 1 \leq i \leq n)$.

Def.: For any $k \ge 0$, we call an admissible rule r

k-admissible

if elimination of any instance of r causes $\leq k$ additional steps.

k-Admissibility ____

Def.: We say a sequent calculus rule

$$\frac{\Delta_1 \quad \cdots \quad \Delta_n}{\Delta}$$
 r is admissible in $\mathcal G$

if $\Vdash_{\mathcal{G}} \Delta$ holds whenever $\Vdash_{\mathcal{G}} \Delta_i$ $(\forall \ 1 \leq i \leq n)$.

Def.: For any $k \ge 0$, we call an admissible rule r

k-admissible

if elimination of any instance of r causes $\leq k$ additional steps.

Idea: k-admissible (or k-derivable) rules are effectively simulated by the calculus

Is $\mathcal{G}(cut)$ k-Admissible in \mathcal{G}_{β} ?

Claim: $\mathcal{G}(cut)$ is not k-admissible (i.e. not effectively simulated) in \mathcal{G}_{β} for any $k \in \mathbb{N}$.

Is $\mathcal{G}(cut)$ k-Admissible in \mathcal{G}_{β} ?

Claim: $\mathcal{G}(cut)$ is not k-admissible (i.e. not effectively simulated) in \mathcal{G}_{β} for any $k \in \mathbb{N}$.

Why?

- \mathcal{G}_{β} cannot use higher-order to prove a first-order sequent Δ
- hyper-exponential speed-up results for first-order logic

Is $\mathcal{G}(cut)$ k-Admissible in \mathcal{G}_{β} ?

Claim: $\mathcal{G}(cut)$ is not k-admissible (i.e. not effectively simulated) in \mathcal{G}_{β} for any $k \in \mathbb{N}$.

Why?

- \mathcal{G}_{β} cannot use higher-order to prove a first-order sequent Δ
- hyper-exponential speed-up results for first-order logic

Oops!: $\mathcal{G}(cut)$ becomes k-admissible (i.e. can be effectively simulated) in \mathcal{G}_{β} if certain formulas are available the sequent Δ we wish to prove.

Is $\mathcal{G}(cut)$ k-Admissible in \mathcal{G}_{β} ?

Claim: $\mathcal{G}(cut)$ is not k-admissible (i.e. not effectively simulated) in \mathcal{G}_{β} for any $k \in \mathbb{N}$.

Why?

- \mathcal{G}_{β} cannot use higher-order to prove a first-order sequent Δ
- hyper-exponential speed-up results for first-order logic

Oops!: $\mathcal{G}(cut)$ becomes k-admissible (i.e. can be effectively simulated) in \mathcal{G}_{β} if certain formulas are available the sequent Δ we wish to prove.

Hence: Certain formulas allow for effective cut-simulation.

Thread to the suitability of a calculus for proof automation!

IJCAR'06, Seattle - p.18

Cut-Simulation

Leibniz-equations support Cut-Simulation

Ex.: Available Leibniz-equations $\mathbf{M} \stackrel{\cdot}{=}^{\alpha} \mathbf{N} \ (:= \forall \mathsf{P}_{\mathsf{o}\alpha} \neg \mathsf{PM} \lor \mathsf{PN}))$ support cut-simulation in \mathcal{G}_{β} in only 3 steps. $(\mathcal{G}(cut) \text{ is 3-derivable, hence 3-admissible, in } \mathcal{G}_{\beta})$

Leibniz-equations support Cut-Simulation

Ex.: Available Leibniz-equations $\mathbf{M} \stackrel{:}{=}^{\alpha} \mathbf{N} \ (:= \forall \mathsf{P}_{\mathsf{o}\alpha} \neg \mathsf{PM} \lor \mathsf{PN}))$ support cut-simulation in \mathcal{G}_{β} in only 3 steps. $(\mathcal{G}(\mathit{cut}) \text{ is 3-derivable, hence 3-admissible, in } \mathcal{G}_{\beta})$

Proof:

$$\frac{\Delta, \mathbf{C}}{\Delta, \neg \neg \mathbf{C}} \, \mathcal{G}(\neg) \qquad \Delta, \neg \mathbf{C}}{\Delta, \neg \neg \mathbf{C}} \, \mathcal{G}(\lor_{-}) \qquad \qquad \Delta, \neg (\neg \mathbf{C} \lor \mathbf{C}) \qquad \mathcal{G}(\lor_{-}) \qquad \qquad \mathcal{G}(\Pi_{-}^{\lambda X_{\alpha} \cdot \mathbf{C}}) \qquad \qquad \mathcal{G}(\Pi_{-}^{\lambda X_{\alpha} \cdot \mathbf{C}})$$

The extensionality axioms are usually added to HOL systems (e.g. [Huet73]) to reach Henkin completeness.

 The extensionality axioms are usually added to HOL systems (e.g. [Huet73]) to reach Henkin completeness.

Def.: The Boolean extensionality axiom \mathcal{B}_{o} is:

$$\forall A_{o} \forall B_{o} (A \Leftrightarrow B) \Rightarrow A \stackrel{:}{=} B$$

 The extensionality axioms are usually added to HOL systems (e.g. [Huet73]) to reach Henkin completeness.

Def.: The Boolean extensionality axiom \mathcal{B}_{o} is:

$$\forall A_{o} \forall B_{o} (A \Leftrightarrow B) \Rightarrow A \stackrel{:}{=} B$$

Def.: The infinitely many functional extensionality axioms $\mathcal{F}_{\alpha\beta}$ are:

$$\forall \mathsf{F}_{\alpha \to \beta^{\blacksquare}} \forall \mathsf{G}_{\alpha \to \beta^{\blacksquare}} (\forall \mathsf{X}_{\alpha^{\blacksquare}} \mathsf{FX} \stackrel{\dot{=}}{=}^{\beta} \mathsf{GX}) \Rightarrow \mathsf{F} \stackrel{\dot{=}}{=}^{\alpha \to \beta} \mathsf{G}$$

 The extensionality axioms are usually added to HOL systems (e.g. [Huet73]) to reach Henkin completeness.

Def.: The Boolean extensionality axiom \mathcal{B}_{o} is:

$$\forall A_{o} \forall B_{o} (A \Leftrightarrow B) \Rightarrow A \stackrel{:}{=} B$$

Def.: The infinitely many functional extensionality axioms $\mathcal{F}_{\alpha\beta}$ are:

$$\forall \mathsf{F}_{\alpha \to \beta^{\blacksquare}} \forall \mathsf{G}_{\alpha \to \beta^{\blacksquare}} (\forall \mathsf{X}_{\alpha^{\blacksquare}} \mathsf{FX} \stackrel{\dot{=}}{=}^{\beta} \mathsf{GX}) \Rightarrow \mathsf{F} \stackrel{\dot{=}}{=}^{\alpha \to \beta} \mathsf{G}$$

Is adding these axioms a suitable option for proof automation?

Sequent Calculus $\mathcal{G}^{\mathsf{E}}_{eta}$ _

Def.: (Sequent Calculus $\mathcal{G}_{\beta}^{\mathsf{E}}$)

Sequent Calculus $\mathcal{G}^{\mathsf{E}}_{\beta}$ _

Def.: (Sequent Calculus $\mathcal{G}_{\beta}^{\mathsf{E}}$)

We define $\mathcal{G}^{\mathsf{E}}_{\beta} := \mathcal{G}_{\beta} \cup \{\mathcal{G}(\mathcal{F}_{\!lpha\!eta}), \mathcal{G}(\mathcal{B})\}$

$$\frac{\Delta, \neg \mathcal{F}_{\alpha\beta} \quad \alpha\beta \in \mathcal{T}}{\Delta} \, \mathcal{G}(\mathcal{F}_{\alpha\beta}) \qquad \frac{\Delta, \neg \mathcal{B}_{o}}{\Delta} \, \mathcal{G}(\mathcal{B})$$

$$\frac{\Delta, \neg \mathcal{B}_{o}}{\Delta} \, \mathcal{G}(\mathcal{B})$$

Sequent Calculus $\mathcal{G}^{\mathsf{E}}_{\!eta}$ $_$

Def.: (Sequent Calculus $\mathcal{G}_{\beta}^{\mathsf{E}}$)

We define $\mathcal{G}^{\mathsf{E}}_{\!eta} := \mathcal{G}_{\!eta} \cup \{\mathcal{G}(\mathcal{F}_{\!lpha\!eta}), \mathcal{G}(\mathcal{B})\}$

$$\frac{\Delta, \neg \mathcal{F}_{\alpha\beta} \quad \alpha\beta \in \mathcal{T}}{\Delta} \, \mathcal{G}(\mathcal{F}_{\alpha\beta}) \qquad \frac{\Delta, \neg \mathcal{B}_{o}}{\Delta} \, \mathcal{G}(\mathcal{B})$$

Thm.: (Soundness and Completeness of \mathcal{G}_{β}^{E})

 $\mathcal{G}_{\beta}^{\mathsf{E}}$ is sound and complete for Henkin semantics.

Sequent Calculus $\mathcal{G}^{\mathsf{E}}_{\!eta}$ _

Def.: (Sequent Calculus $\mathcal{G}_{\beta}^{\mathsf{E}}$)

We define $\mathcal{G}^{\mathsf{E}}_{\beta} := \mathcal{G}_{\beta} \cup \{\mathcal{G}(\mathcal{F}_{\!lpha\!eta}), \mathcal{G}(\mathcal{B})\}$

$$\frac{\Delta, \neg \mathcal{F}_{\alpha\beta} \quad \alpha\beta \in \mathcal{T}}{\Delta} \, \mathcal{G}(\mathcal{F}_{\alpha\beta}) \qquad \frac{\Delta, \neg \mathcal{B}_{o}}{\Delta} \, \mathcal{G}(\mathcal{B})$$

Thm.: (Soundness and Completeness of $\mathcal{G}_{\beta}^{\mathsf{E}}$)

 $\mathcal{G}_{\beta}^{\mathsf{E}}$ is sound and complete for Henkin semantics.

But: $\mathcal{G}_{\beta}^{\mathsf{E}}$ supports effective cut-simulation.

Ex.: The functional extensionality axioms support effective cut-simulation in $\mathcal{G}_{\beta}^{\mathsf{E}}$ in 12-steps.

($\mathcal{G}(cut)$ is 12-derivable, hence 12-admissible, in $\mathcal{G}_{\beta}^{\mathsf{E}}$)

Ex.: The functional extensionality axioms support effective cut-simulation in $\mathcal{G}_{\beta}^{\mathsf{E}}$ in 12-steps.

($\mathcal{G}(cut)$ is 12-derivable, hence 12-admissible, in $\mathcal{G}_{\beta}^{\mathsf{E}}$)

Proof:

3 steps; easy
$$\frac{\Delta, \mathsf{fa} \stackrel{\dot{=}^{\beta}}{\mathsf{fa}}}{\Delta, (\forall \mathsf{X}_{\alpha^{\bullet}} \mathsf{fX} \stackrel{\dot{=}^{\beta}}{\mathsf{fX}})} \underbrace{\mathcal{G}(\Pi^{a_{\alpha}}_{+})}_{\mathcal{G}(\neg)} \quad \Delta, \mathbf{C} \quad \Delta, \neg \mathbf{C}$$

$$\frac{\Delta, \neg \forall \mathsf{X}_{\alpha^{\bullet}} \mathsf{fX} \stackrel{\dot{=}^{\beta}}{\mathsf{fX}}}{\Delta, \neg \forall \mathsf{X}_{\alpha^{\bullet}} \mathsf{fX} \stackrel{\dot{=}^{\beta}}{\mathsf{fX}}} \underbrace{\mathcal{G}(\neg)}_{\mathcal{G}(\neg)} \quad 3 \text{ steps; see before}$$

$$\frac{\Delta, \neg \forall \mathsf{X}_{\alpha^{\bullet}} \mathsf{fX} \stackrel{\dot{=}^{\beta}}{\mathsf{fX}}}{\Delta, \neg (\mathsf{f} \stackrel{\dot{=}^{\alpha \to \beta}}{\mathsf{f}} \mathsf{f})} \underbrace{\mathcal{G}(\lor_{-})}_{\mathcal{G}(\lor_{-})}$$

$$\frac{\Delta, \neg \mathcal{F}_{\alpha\beta}}{\Delta} \underbrace{\mathcal{G}(\mathcal{F}_{\alpha\beta})}_{\mathcal{G}(\mathcal{F}_{\alpha\beta})}$$

Ex.: It also works with Boolean extensionality axiom – in 15 steps.

Ex.: It also works with Boolean extensionality axiom – in 15 steps.

Proof:

Reflexivity definition of equality (Andrews)

4 steps

Reflexivity definition of equality (Andrews)

4 steps

Instances of Comprehension axioms

16 steps

Reflexivity definition of equality (Andrews)

4 steps

Instances of Comprehension axioms

16 steps

Axiom of Induction

18 steps

Reflexivity definition of equality (Andrews)
 4 steps

Instances of Comprehension axioms
 16 steps

Axiom of Induction18 steps

Axiom of Choice7 steps

Reflexivity definition of equality (Andrews)
 4 steps

Instances of Comprehension axioms
 16 steps

Axiom of Induction18 steps

Axiom of Choice7 steps

Axiom of Description25 steps

Axiom of Description

25 steps

Reflexivity definition of equality (Andrews)	4 steps
Instances of Comprehension axioms	16 steps
Axiom of Induction	18 steps
Axiom of Choice	7 steps

Axiom of Excluded Middle 3 steps

	Reflexivity	/ definition	of ec	quality	(Andrews)	4 ste	ps
--	-------------	--------------	-------	---------	-----------	-------	----

Instances of Comprehension axioms
 16 steps

Axiom of Induction18 steps

Axiom of Choice7 steps

Axiom of Description25 steps

Axiom of Excluded Middle3 steps

????

Key: Avoid cut-strong axioms (here extensionality)

Key: Avoid cut-strong axioms (here extensionality)

Def.: We define calculus $\mathcal{G}_{\beta fb} := \mathcal{G}_{\beta} \cup \{\mathcal{G}(\mathfrak{f}), \mathcal{G}(\mathfrak{b}), \mathcal{G}(Init^{\dot{=}}), \mathcal{G}(d)\}$

$$\frac{\Delta, (\forall X_{\alpha} \mathbf{F} X \stackrel{:}{=}^{\beta} \mathbf{G} X) \downarrow_{\beta}}{\Delta, (\mathbf{F} \stackrel{:}{=}^{\alpha \to \beta} \mathbf{G})} \mathcal{G}(\mathfrak{f}) \qquad \frac{\Delta, \neg \mathbf{A}, \mathbf{B} \quad \Delta, \neg \mathbf{B}, \mathbf{A}}{\Delta, (\mathbf{A} \stackrel{:}{=}^{\circ} \mathbf{B})} \mathcal{G}(\mathfrak{b})$$

$$\frac{\Delta, \mathbf{A} \stackrel{=}{=} {}^{\mathsf{o}} \mathbf{B} \quad \dagger}{\Delta, \neg \mathbf{A}, \mathbf{B}} \mathcal{G}(Init^{\stackrel{=}{=}}) \quad \frac{\Delta, \mathbf{A}^{1} \stackrel{=}{=} {}^{\alpha_{1}} \mathbf{B}^{1} \cdots \Delta, \mathbf{A}^{n} \stackrel{=}{=} {}^{\alpha_{n}} \mathbf{B}^{n} \quad \ddagger}{\Delta, \mathsf{h} \overline{\mathbf{A}^{n}} \stackrel{=}{=} {}^{\beta} \mathsf{h} \overline{\mathbf{B}^{n}}} \mathcal{G}(d)$$

† A,B atomic
$$\ddagger$$
 $n \ge 1, \beta \in \{o, \iota\}, h_{\overline{\alpha^n} \to \beta} \in \Sigma$ parameter

Key: Avoid cut-strong axioms (here extensionality)

Def.: We define calculus $\mathcal{G}_{\beta\mathfrak{f}\mathfrak{b}}:=\mathcal{G}_{\beta}\cup\{\mathcal{G}(\mathfrak{f}),\mathcal{G}(\mathfrak{b}),\mathcal{G}(Init^{\dot{=}}),\mathcal{G}(d)\}$

$$\frac{\Delta, (\forall X_{\alpha} \mathbf{F} X \stackrel{:}{=}^{\beta} \mathbf{G} X) \downarrow_{\beta}}{\Delta, (\mathbf{F} \stackrel{:}{=}^{\alpha \to \beta} \mathbf{G})} \mathcal{G}(\mathfrak{f}) \qquad \frac{\Delta, \neg \mathbf{A}, \mathbf{B} \quad \Delta, \neg \mathbf{B}, \mathbf{A}}{\Delta, (\mathbf{A} \stackrel{:}{=}^{\circ} \mathbf{B})} \mathcal{G}(\mathfrak{b})$$

$$\frac{\Delta, \mathbf{A} \stackrel{=}{=} {}^{\mathsf{o}} \mathbf{B} \quad \dagger}{\Delta, \neg \mathbf{A}, \mathbf{B}} \mathcal{G}(Init^{\stackrel{=}{=}}) \quad \frac{\Delta, \mathbf{A}^{1} \stackrel{=}{=} {}^{\alpha_{1}} \mathbf{B}^{1} \cdots \Delta, \mathbf{A}^{n} \stackrel{=}{=} {}^{\alpha_{n}} \mathbf{B}^{n} \quad \ddagger}{\Delta, \mathsf{h} \overline{\mathbf{A}^{n}} \stackrel{=}{=} {}^{\beta} \mathsf{h} \overline{\mathbf{B}^{n}}} \mathcal{G}(d)$$

† A,B atomic
$$\ddagger$$
 $n \ge 1, \beta \in \{o, \iota\}, h_{\overline{\alpha^n} \to \beta} \in \Sigma$ parameter

Thm.: The calculus $\mathcal{G}_{\beta fb}$ is sound and complete for Henkin semantics.

Key: Avoid cut-strong axioms (here extensionality)

Def.: We define calculus $\mathcal{G}_{\beta\mathfrak{f}\mathfrak{b}}:=\mathcal{G}_{\beta}\cup\{\mathcal{G}(\mathfrak{f}),\mathcal{G}(\mathfrak{b}),\mathcal{G}(Init^{\dot{=}}),\mathcal{G}(d)\}$

$$\frac{\Delta, (\forall X_{\alpha} \mathbf{F} X \stackrel{:}{=}^{\beta} \mathbf{G} X) \downarrow_{\beta}}{\Delta, (\mathbf{F} \stackrel{:}{=}^{\alpha \to \beta} \mathbf{G})} \mathcal{G}(\mathfrak{f}) \qquad \frac{\Delta, \neg \mathbf{A}, \mathbf{B} \quad \Delta, \neg \mathbf{B}, \mathbf{A}}{\Delta, (\mathbf{A} \stackrel{:}{=}^{\circ} \mathbf{B})} \mathcal{G}(\mathfrak{b})$$

$$\frac{\Delta, \mathbf{A} \stackrel{\dot{=}}{\circ} \mathbf{B} \quad \dagger}{\Delta, \neg \mathbf{A}, \mathbf{B}} \mathcal{G}(Init^{\dot{=}}) \quad \frac{\Delta, \mathbf{A}^{1} \stackrel{\dot{=}}{=}^{\alpha_{1}} \mathbf{B}^{1} \cdots \Delta, \mathbf{A}^{n} \stackrel{\dot{=}}{=}^{\alpha_{n}} \mathbf{B}^{n} \quad \ddagger}{\Delta, h \overline{\mathbf{A}^{n}} \stackrel{\dot{=}}{=}^{\beta} h \overline{\mathbf{B}^{n}}} \mathcal{G}(d)$$

† A,B atomic
$$\ddagger$$
 $n \ge 1, \beta \in \{o, \iota\}, h_{\overline{\alpha^n} \to \beta} \in \Sigma$ parameter

Thm.: The calculus $\mathcal{G}_{\beta fb}$ is sound and complete for Henkin semantics.

Claim: $\mathcal{G}_{\beta fb}$ does not support effective cut-simulation

Abstract Cut-Elimination Result

The rules $\mathcal{G}(Init^{\dot{=}}), \mathcal{G}(d)$ motivate corresponding abstract consistency conditions for Henkin semantics

$$\begin{array}{ll} \nabla_{\!d} & \text{If } \neg (h\overline{\mathbf{A}^n} \doteq^\beta h\overline{\mathbf{B}^n}) \in \Phi \text{ for some types } \alpha_i \text{ where} \\ & \beta \in \{\mathsf{o}, \iota\} \text{ and } h_{\overline{\alpha^n} \to \beta} \in \Sigma \text{ is a parameter, then} \\ & \text{there is an i } (1 \leq i \leq \mathsf{n}) \text{ such that} \\ & \Phi * \neg (\mathbf{A}^i \doteq^{\alpha^i} \mathbf{B}^i) \in \mathsf{\Gamma}_{\!\Sigma}. \end{array}$$

which sufficiently replace the strong saturation condition $\nabla_{\!\!\!\text{sat}}$

Abstract Cut-Elimination Result

The rules $\mathcal{G}(Init^{\dot{=}}), \mathcal{G}(d)$ motivate corresponding abstract consistency conditions for Henkin semantics

$$abla_{m} ext{ If } \mathbf{A}, \mathbf{B} \in \textit{cwff}_{o}(\Sigma) ext{ are atomic and } \mathbf{A}, \neg \mathbf{B} \in \Phi, \\ ext{ then } \Phi * \neg (\mathbf{A} \stackrel{.}{=}^{o} \mathbf{B}) \in \Gamma_{\!\!\Sigma}.$$

which sufficiently replace the strong saturation condition $\nabla_{\!\!\!\text{sat}}$

abstract cut-elimination result for Henkin-semantics

Conclusion

- Issues for the automation of IL:
 - avoid naive treatment of cut-strong axioms and formulas
 - only some first steps achieved: comprehension, extensionality, primitive equality

Conclusion

- Issues for the automation of IL:
 - avoid naive treatment of cut-strong axioms and formulas
 - only some first steps achieved: comprehension, extensionality, primitive equality
- Debatable:
 - How useful is 'cut-freeness' criterion in IL?
 (without also considering cut-simulation)

Conclusion

- Issues for the automation of IL:
 - avoid naive treatment of cut-strong axioms and formulas
 - only some first steps achieved: comprehension, extensionality, primitive equality
- Debatable:
 - How useful is 'cut-freeness' criterion in IL? (without also considering cut-simulation)
- Further work:
 - ... research is only at its very beginning ...