

Contents

Aalto M, see Hopsu-Havu VK, et al. 161–164
Ackerson MV, see Colmers WF, et al. 505–515
Adachi T, Ohtsuka M, Hisano S, Tsuruo Y, Daikoku S: Ontogenetic appearance of somatostatin-containing nerve terminals in the median eminence of rats 47–51
Adamson TM, see Smolich JJ, et al. 117–119
Agrawal B, see Lentzen H, et al. 147–151
Alcorn D, Cheshire GR, Coghlan JP, Ryan GB: Peripolar cell hypertrophy in the renal juxtaglomerular region of newborn sheep 197–202
Anderson NC Jr., see Heidlage JF 393–397
Anthony ELP, King JC, Stopa EG: Immunocytochemical localization of LHRH in the median eminence, infundibular stalk, and neurohypophysis. Evidence for multiple sites of releasing hormone secretion in humans and other mammals 5–14
Aoki M, Ito M, Tavassoli M: Cellular and subcellular distribution of iron in the lamina propria of rat duodenum 685–692
Armato U, Mantero F: Primary tissue culture of human adrenocortical Conn's adenoma. Bromocriptine as a possible agonist-antagonist of angiotensin at the cellular level 67–72
Armbruster BL, see Walt H 487–490
Asari A, see Uchiyama Y 305–315
Au CYW, see Ng TB, et al. 651–659
Bär Th, Budi Santoso AW: Identification of pericytes in the central nervous system by means of silver staining of the basal lamina 491–493
Bartels H, Welsch U: Freeze-fracture study of the turtle lung. Rod-shaped particles in the plasma membrane of a mitochondria-rich pneumocyte in *Pseudemys (Chrysemys) scripta* 453–457
Baumann JB, see Häusler A, et al. 229–235
Beams HW, see Kessel RG, et al. 725–727
Bondi C, see Pascolini R, et al. 345–349
Brelinska R, Pilgrim C, Reisert I: Pathways of lymphocyte migration within the periarterial lymphoid sheath of rat spleen 661–667
Buchheim W, see Krisch B 439–452
Budi Santoso AW, see Bär Th 491–493
Bukovský A, Presl J, Holub M: The ovarian follicle as a model for the cell-mediated control of tissue growth 717–724
Bullock DW, see Ricketts AP, et al. 421–429
Burden HW, see Curry TE Jr., et al. 257–263
Burden HW, see Curry TE Jr., et al. 593–596
Burzawa-Gérard E, see Leeuw R de, et al. 669–675
Bustos-Obregón E, see Holstein AF, et al. 35–40
Caes F, Wilhelms G: Administration of caerulein to rats promotes antral epithelial cell renewal 711–715
Campbell GA, see Sterling K, et al. 321–325
Campbell GR, see Smolich JJ, et al. 117–119
Card JP, see Moore RY, et al. 41–46
Cheshire GR, see Alcorn D, et al. 197–202
Coghlan JP, see Alcorn D, et al. 197–202
Colmers WF, Hixon RF, Hanlon RT, Forsythe JW, Ackerson MV, Wiederhold ML, Hulet WH: "Spinner" cephalopods: defects of statocyst suprastructures in an invertebrate analogue of the vestibular apparatus 505–515
Coupland RE, see Kent C 189–195
Cronshaw J, Holmes WN, West RD: The effects of colchicine, vinblastine and cytochalasins on the corticotrophic responsiveness and ultrastructure of inner zone adrenocortical tissue in the Pekin duck 333–338
Curry TE Jr., Lawrence IE Jr., Burden HW: Ovarian sympathectomy in the guinea pig. I. Effects on follicular development during the estrous cycle 257–263
Curry TE Jr., Lawrence IE Jr., Burden HW: Ovarian sympathectomy in the guinea pig. II. Effects on follicular development during the prepubertal period and following exogenous gonadotropin stimulation 593–596
Dacheux F: Subcellular localization of gonadotrophic hormones in pituitary cells of the castrated pig with the use of pre- and post-embedding immunocytochemical methods 153–160
Daikoku S, see Adachi T, et al. 47–51
Davies TW, Erasmus DA: An ultrastructural study of the effect of parasitism by larval *Schistosoma mansoni* on the calcium reserves of the host, *Biomphalaria glabrata* 643–649
Diamond J, see Rosati D, et al. 373–381
Dijkstra CD, Kamperdijk EWA, Döpp EA: The ontogenetic development of the follicular dendritic cell. An ultrastructural study by means of intravenously injected horseradish peroxidase (HRP)-anti-HRP complexes as marker 203–206
Döpp EA, see Dijkstra CD, et al. 203–206
Dratwa M, LeFurgey A, Fisher CC: Effects of colchicine and cytochalasin B on hypertonicity-induced changes in toad urinary bladder 585–591
Dubois MP, see Georges D 165–170
Edwards JS, see Koontz MA 133–146
Egberts E, see Parmentier HK, et al. 99–105
Ehrlich D, see Saleh CN 601–609
Elekes K, S.-Rózsa K: Synaptic organization of a multifunctional interneuron in the central nervous system of *Helix pomatia* L. 677–683
Erasmus DA, see Davies TW 643–649
Ericson LE, see Nilsson M, et al. 87–97
Eys GJMM van, Wendelaar Bonga SE: Responses of the PAS-positive pars intermedia cells in the cichlid fish *Sarotherodon mossambicus* to ambient calcium and background adaptation 181–187
Fahrenkrug J, see Korf H-W 217–227
Forssmann WG, see Weihé E, et al. 527–540
Forsythe JW, see Colmers WF, et al. 505–515
Franzoni MF, Viglietti-Panzica C, Ramieri G, Panzica GC: A Golgi study on the neuronal morphology in the hypothalamus of the Japanese quail (*Coturnix coturnix japonica*). I. Tuberal and mammillary regions 357–364
French AS, see Kuster JE 129–131
Fridén J: Changes in human skeletal muscle induced by long-term eccentric exercise 365–372
Fujita T, see Iwanaga T 733–735
Georges D, Dubois MP: Methionine-enkephalin-like immunoreactivity in the nervous ganglion and the ovary of a protochordate, *Ciona intestinalis* 165–170
Girard J, see Häusler A, et al. 229–235
Giraud-Guille M-M: Calcification initiation sites in the crab cuticle: The interprismatic septa. An ultrastructural cytochemical study 413–420
Gnatzy W: 'Campaniform' structures on lobster antennae are dermal glands 729–731
Goos HJTh, see Leeuw R de, et al. 669–675
Groeneveld PHP, Rooijen N van: In vivo effects of lipopolysaccharide on lymphoid and non-lymphoid cells in the mouse spleen. Reduction of T-lymphocytes and phagocytosis in the inner parts of the periarteriolar lymphocyte sheath 637–642
Gustafson EL, see Moore RY, et al. 41–46
Hanlon RT, see Colmers WF, et al. 505–515
Harless S, see Thureson-Klein Å, et al. 53–65
Harris P, Shaw G: Intermediate filaments, microtubules and microfilaments in epidermis of sea urchin tube foot 27–33
Hartmann M, see Holstein AF, et al. 35–40
Häusler A, Oberholzer M, Baumann JB, Girard J, Heitz PU: Quantitative analysis of ACTH-immunoreactive cells in the anterior pituitary of young spontaneously hypertensive and normotensive rats 229–235
Hausman GJ, Novakofski JE, Martin RJ, Thomas GB: The development of adipocytes in primary stromal-vascular culture of fetal pig adipose tissue 459–464

Heidlage JF, Anderson NC Jr.: Ultrastructure and morphometry of the stomach muscle of *Amphiuma tridactylum* 393-397

Heitz PU, see Häusler A, et al. 229-235

Henning U, see Schwemer J 293-303

Herken H, see Lentzen H, et al. 147-151

Hirabayashi M, Yamamoto T: An electron-microscopic study of the endothelium in mammalian bronchial microvasculature 19-25

Hisano S, see Adachi T, et al. 47-51

Hixon RF, see Colmers WF, et al. 505-515

Holmes WN, see Cronshaw J, et al. 333-338

Holstein AF, Bustos-Obregón E, Hartmann M: Dislocated type-A spermatogonia in human seminiferous tubules 35-40

Holub M, see Bukovský A, et al. 717-724

Hopsu-Havu VK, Joronen IA, Järvinen M, Rinne A, Aalto M: Cysteine proteinase inhibitors produced by mononuclear phagocytes 161-164

Hulet WH, see Colmers WF, et al. 505-515

Hummon MR: Reproduction and sexual development in a freshwater gastrotrich. 2. Kinetics and fine structure of postparthenogenic sperm formation 619-628

Hummon MR: Reproduction and sexual development in a freshwater gastrotrich. 3. Postparthenogenic development of primary oocytes and the X-body 629-636

Irby DC, see Kerr JB, et al. 699-709

Ito M, see Aoki M, et al. 685-692

Iwanaga T, Fujita T: Sustentacular cells in the fetal human adrenal medulla are immunoreactive with antibodies to brain S-100 protein 733-735

Järvinen M, see Hopsu-Havu VK, et al. 161-164

Joronen IA, see Hopsu-Havu VK, et al. 161-164

Józsa R, Vigh S, Schally AV, Mess B: Localization of corticotropin-releasing factor-containing neurons in the brain of the domestic fowl. An immunohistochemical study 245-248

Käufer I, see Ries S, et al. 1-3

Kallenbach RJ: Endoplasmic reticulum whorls as a source of membranes for early cytaster formation in parthenogenetically stimulated sea urchin eggs, 237-244

Kamperdijk EWA, see Dijkstra CD, et al. 203-206

Kawata M, Takeuchi Y, Ueda S, Matsuura T, Sano Y: Immunohistochemical demonstration of serotonin-containing nerve fibers in the hypothalamus of the monkey, *Macaca fasciata* 495-503

Kay J, see Reid WA, et al. 597-600

Kent C, Coupland RE: On the uptake and storage of 5-hydroxytryptamine, 5-hydroxytryptophan and catecholamines by adrenal chromaffin cells and nerve endings 189-195

Kerr JB, Mayberry RA, Irby DC: Morphometric studies on lipid inclusions in Sertoli cells during the spermatogenic cycle in the rat 699-709

Kessel RG, Beams HW, Tung HN: Relationships between annulate lamellae and filament bundles in oocytes of the zebrafish, *Brachydanio rerio* 725-727

Kikuchi S, Pévet P, Shiraishi K: A tubular configuration of the granular endoplasmic reticulum forming a raft-like parallel array in the pinealocytes of two species of Japanese moles (*Mogera kobea* and *M. wogura*) 15-18

King JC, see Anthony ELP, et al. 5-14

Klein R, see Thureson-Klein Å, et al. 53-65

Knibiehler B, Mirre C, Navarro A, Rosset R: Studies on chromatin organization in a nucleolus without fibrillar centres. Presence of a sub-nucleolar structure in KCo cells of *Drosophila* 279-288

Koontz MA, Edwards JS: Central projections of first-order ocellar interneurons in two orthopteroid insects *Acheta domesticus* and *Periplaneta americana*. A comparative study 133-146

Korf H-W, Fahrenkrug J: Ependymal and neuronal specializations in the lateral ventricle of the Pekin duck, *Anas platyrhynchos* 217-227

Kouyama N, Shimozawa T: The ecdysis of hair mechanoreceptors in crayfish 339-343

Krisch B, Buchheim W: Access and distribution of exogenous substances in the intercellular clefts of the rat adenohypophysis 439-452

Kriz W, see Mink D, et al. 567-576

Kucera J: Nonselective motor innervation of nuclear bag₁ intrafusal muscle fibers in the cat 383-391

Kuster JE, French AS: Duplication of a peripheral sensory neuron in the cockroach *Periplaneta americana* 129-131

Lawrence IE Jr., see Curry TE Jr., et al. 257-263

Lawrence IE Jr., see Curry TE Jr., et al. 593-596

Leeuw R de, Goos HJTh, Peute J, Pelt AMM van, Burzawa-Gérard E, Oordt PGWJ van: Isolation of gonadotrops from the pituitary of the African catfish, *Clarias lazera*. Morphological and physiological characterization of the purified cells 669-675

LeFurgey A, see Dratwa M, et al. 585-591

Leino RL, McCormick JH: Morphological and morphometrical changes in chloride cells of the gills of *Pimephales promelas* after chronic exposure to acid water 121-128

Lentzen H, Agrawal B, Noske W, Herken H: Isolation and characterization of internalized glioma cell membranes 147-151

Libelius R, see Tågerud S 73-79

Maloney JE, see Smolich JJ, et al. 117-119

Mantero F, see Armato U 67-72

Martin R, see Stoll G, et al. 561-566

Martin RJ, see Hausman GJ, et al. 459-464

Martinez Soriano F, Welker HA, Vollrath L: Correlation of the number of pineal "synaptic" ribbons and spherules with the level of serum melatonin over a 24-hour period in male rabbits 555-560

Matsuura T, see Kawata M, et al. 495-503

Mayberry RA, see Kerr JB, et al. 699-709

McCormick JH, see Leino RL 121-128

Mess B, see Józsa R, et al. 245-248

Michaels JE, Tornheim PA: Arachnoid mater of the bullfrog, *Rana catesbeiana*. A potential model for the study of intermediate filaments 693-697

Michna H: Morphometric analysis of loading-induced changes in collagen-fibril populations in young tendons 465-470

Mink D, Schiller A, Kriz W, Taugner R: Interendothelial junctions in kidney vessels 567-576

Mirre C, see Knibiehler B, et al. 279-288

Miyata K, Takaya K: Intercellular junctions between macrophages in the regional lymph node of the rat after injection of large doses of steroids 351-355

Miyazaki M, Toyota N, Shimada Y: Distribution of polymorphic forms of troponin components in extra- and intrafusal fibers of an avian slow muscle 541-548

Mizuhira Y, see Takahama H, et al. 431-438

Moore RY, Gustafson EL, Card JP: Identical immunoreactivity of afferents to the rat suprachiasmatic nucleus with antisera against avian pancreatic polypeptide, molluscan cardioexcitatory peptide and neuropeptide Y 41-46

Möri T, see Uchida TA, et al. 327-331

Moskalewski S, Thyberg J: Effects of bunaftine on morphology, microfilament integrity, and mitotic activity in cultured human fibroblasts and HeLa cells 107-115

Navarro A, see Knibiehler B, et al. 279-288

Newgreen D: Spreading of explants of embryonic chick mesenchymes and epithelia on fibronectin and laminin 265-277

Ng TB, Woo NYS, Tam PPL, Au CYW: Changes in metabolism and hepatic ultrastructure induced by estradiol and testosterone in immature female *Epinephelus akaara* (Teleostei, Serranidae) 651-659

Nilsson M, Överholm T, Ericson LE: In vivo shedding of apical plasma membrane in the thyroid follicle cells of the mouse 87-97

Noske W, see Lentzen H, et al. 147-151

Novakofski JE, see Hausman GJ, et al. 459-464

Nunez EA, see Sterling K, et al. 321–325
 Nurse CA, see Rosati D, et al. 373–381
 Oberholzer M, see Häusler A, et al. 229–235
 Öfverholm T, see Nilsson M, et al. 87–97
 Oh YK, see Uchida TA, et al. 327–331
 Ohtsuka M, see Adachi T, et al. 47–51
 Omura Y: Pattern of synaptic connections in the pineal organ of the ayu, *Plecoglossus altivelis* (Teleostei) 611–617
 Ordert PGWJ van, see Leeuw R de, et al. 669–675
 O'Shea JD, Wright PJ: Involution and regeneration of the endometrium following parturition in the ewe 477–485
 Panzica GC, see Franzoni MF, et al. 357–364
 Parmentier HK, Timmermans LPM, Egberts E: Monoclonal antibodies against spermatozoa of the common carp (*Cyprinus carpio* L.). I. A study of germ cell antigens in adult males and females 99–105
 Pascolini R, Tei S, Vagnetti D, Bondi C: Epidermal cell migration during wound healing in *Dugesia lugubris*. Observations based on scanning electron microscopy and treatment with cytochalasin 345–349
 Patton S, see Stemberger BH, et al. 471–475
 Pelt AMM van, see Leeuw R de, et al. 669–675
 Peruzzo B, see Yulis CR, et al. 141–180
 Peutte J, see Leeuw R de, et al. 669–675
 Pévet P, see Kikuchi S, et al. 15–18
 Pilgrim C, see Brelinska R, et al. 661–667
 Presl J, see Bukovský A, et al. 717–724
 Rama Krishna NS, see Subhedar N 399–411
 Ramieri G, see Franzoni MF, et al. 357–364
 Reid WA, Wongsorasak L, Svasti J, Valler MJ, Kay J: Identification of the acid proteinase in human seminal fluid as a gastrin originating in the prostate 597–600
 Reinacher M, see Ries S, et al. 1–3
 Reinecke M, see Weihe E, et al. 527–540
 Reisert I, see Brelinska R, et al. 661–667
 Rémy C, see Romeuf M 289–292
 Ribi WA: The first optic ganglion of the bee. V. Structural and functional characterization of centrifugally arranged interneurons 577–584
 Ricketts AP, Scott DW, Bullock DW: Radioiodinated surface proteins of separated cell types from rabbit endometrium in relation to the time of implantation 421–429
 Ries S, Käufer I, Reinacher M, Weiss E: Immunomorphologic characterization of chicken thrombocytes 1–3
 Rinne A, see Hopsu-Havu VK, et al. 161–164
 Rodriguez EM, see Yulis CR, et al. 141–180
 Rombout JHWM, Stroband HWJ, Taverne-Thiele JJ: Proliferation and differentiation of intestinal epithelial cells during development of *Barbus conchonius* (Teleostei, Cyprinidae) 207–216
 Romeuf M, Rémy C: Early immunohistochemical detection of somatostatin-like and methionine-enkephalin-like neuropeptides in the brain of the migratory locust embryo 289–292
 Rooijen N van, see Groeneveld PHP 637–642
 Rosati D, Nurse CA, Diamond J: Lectin-binding properties of the Merkel cell and other root sheath cells in perinatal rat vibrissae 373–381
 Rosset R, see Knibiehler B, et al. 279–288
 Ryan GB, see Alcorn D, et al. 197–202
 Saleh CN, Ehrlich D: Composition of the supraoptic decussation of the chick (*Gallus gallus*). A possible factor limiting interhemispheric transfer of visual information 601–609
 Sano Y, see Kawata M, et al. 495–503
 Sasaki F, see Takahama H, et al. 431–438
 Schally AV, see Józsa R, et al. 245–248
 Schiller A, see Mink D, et al. 567–576
 Schlüter U, see Schulz W-D, et al. 317–320
 Schulz W-D, Schlüter U, Seifert G: Extraocular photoreceptors in the brain of *Epilachna varivestis* (Coleoptera, Coccinellidae) 317–320
 Schwemer J, Henning U: Morphological correlates of visual pigment turnover in photoreceptors of the fly, *Calliphora erythrocephala* 293–303
 Scott DW, see Ricketts AP, et al. 421–429
 Seifert G, see Schulz W-D, et al. 317–320
 Shaw G, see Harris P 27–33
 Shimada Y, see Miyazaki M, et al. 541–548
 Shimada Y, see Toyota N 549–554
 Shimoza T, see Kouyama N 339–343
 Shiraishi K, see Kikuchi S, et al. 15–18
 Sidon EW, Youson JH: Relocalization of membrane enzymes accompanies biliary atresia in lamprey liver 81–86
 Smolich JJ, Campbell GR, Walker AM, Adamson TM, Maloney JE: Cluster microvilli in coronary endothelium 117–119
 S-Rózsa K, see Elekes K 677–683
 Stemberger BH, Walsh RM, Patton S: Morphometric evaluation of lipid droplet associations with secretory vesicles, mitochondria and other components in the lactating cell 471–475
 Sterling K, Campbell GA, Taliadouros GS, Nunez EA: Mitochondrial binding of triiodothyronine (T_3). Demonstration by electron-microscopic radioautography of dispersed liver cells 321–325
 Stoll G, Martin R, Voigt K-H: Control of peptide release from cells of the intermediate lobe of the rat pituitary 561–566
 Stopa EG, see Anthony ELP, et al. 5–14
 Stroband HWJ, see Rombout JHWM, et al. 207–216
 Subhedar N, Rama Krishna NS: A Golgi-type study of the hypothalamus of the lizard, *Calotes versicolor* 399–411
 Svasti J, see Reid WA, et al. 597–600
 Tägerud S, Libelius R: Lysosomes in skeletal muscle following denervation. Time course of horseradish peroxidase uptake and increase of lysosomal enzymes 73–79
 Takahama H, Mizuhira V, Sasaki F, Watanabe K: Satellite cells in the tail muscles of the urodean larvae during development 431–438
 Takaya K, see Miyata K 351–355
 Takeuchi IK: Electron-microscopic study of silver staining of nucleoli in growing oocytes of rat ovaries 249–255
 Takeuchi Y, see Kawata M, et al. 495–503
 Taliadouros GS, see Sterling K, et al. 321–325
 Tam PPL, see Ng TB, et al. 651–659
 Taugner R, see Mink D, et al. 567–576
 Tavassoli M, see Aoki M, et al. 685–692
 Taverne-Thiele JJ, see Rombout JHWM, et al. 207–216
 Tei S, see Pascolini R, et al. 345–349
 Thomas GB, see Hausman GJ, et al. 459–464
 Thureson-Klein Å, Harless S, Klein R: Ultrastructural changes in adrenaline- and SGC-cells after morphine coincide with alterations of adrenaline and dopamine levels 53–65
 Thyberg J, see Moskalewski S 107–115
 Timmermans LPM, see Parmentier HK, et al. 99–105
 Fisher CC, see Dratwa M, et al. 585–591
 Tornheim PA, see Michaels JE 693–697
 Toyota N, Shimada Y: Isoforms of troponin during regeneration of chicken skeletal muscle fibers after cold injury 549–554
 Toyota N, see Miyazaki M, et al. 541–548
 Tsuruo T, see Adachi T, et al. 47–51
 Tung HN, see Kessel RG, et al. 725–727
 Uchida TA, Mori T, Oh YK: Sperm invasion of the oviductal mucosa, fibroblastic phagocytosis and endometrial sloughing in the Japanese greater horseshoe bat, *Rhinolophus ferrumequinum nippon* 327–331
 Uchiyama Y, Asari A: A morphometric study of the variations in subcellular structures of rat hepatocytes during 24 hours 305–315
 Ueda S, see Kawata M, et al. 495–503
 Vagnetti D, see Pascolini R, et al. 345–349
 Valler MJ, see Reid WA, et al. 597–600
 Vigh S, see Józsa R, et al. 245–248
 Viglietti-Panzica C, see Franzoni MF, et al. 357–364

Voigt K-H, see Stoll G, et al. 561-566
Vollrath L, see Martinez Soriano F, et al. 555-560
Vongsorasak L, see Reid WA, et al. 597-600
Walker AM, see Smolich JJ, et al. 117-119
Walsh RM, see Stemberger BH, et al. 471-475
Walt H, Armbruster BL: Actin and RNA are components of the chromatoid bodies in spermatids of the rat 487-490
Watanabe K, see Takahama H, et al. 431-438
Weihe E, Reinecke M, Forssmann WG: Distribution of vasoactive intestinal polypeptide-like immunoreactivity in the mammalian heart. Interrelation with neuropeptid Y and substance P-like immunoreactive nerves 527-540
Weiss E, see Ries S, et al. 1-3
Welker HA, see Martinez Soriano F, et al. 555-560
Welsch U, see Bartels H 453-457
Wendelaar Bonga SE, see Eys GJJM van 181-187
West RD, see Cronshaw J, et al. 333-338
Wiederhold ML, see Colmers WF, et al. 505-515
Willems G, see Caes F 711-715
Wolosewick JJ: Distribution of actin in migrating leukocytes in vivo 517-525
Woo NYS, see Ng TB, et al. 651-659
Wright PJ, see O'Shea JD 477-485
Yamamoto T, see Hirabayashi M 19-25
Youson JH, see Sidon EW 81-86
Yulis CR, Peruzzo B, Rodriguez EM: Immunocytochemistry and ultrastructure of the neuropil located ventral to the rat supraoptic nucleus 141-180

Indexed in Current Contents

Subject Index

Absorptive cells
Aoki M 685–692

Acidification
Leino RL, et al. 121–128

Acid phosphatase
Lentzen H, et al. 147–151

Tägerud S, et al. 73–79

ACTH cells
Häusler A, et al. 229–235

Actin
Walt H, et al. 487–490
Wolosewick JJ 517–525

Adaptation
Frider J 365–372
Michna H 465–470

Adenosine triphosphatase
Sidon EW, et al. 81–86

Adipocytes
Hausman GJ, et al. 459–464

Adipose tissue
Hausman GJ, et al. 459–464

Adrenal cortex
Armatto U, et al. 67–72
Cronshaw J, et al. 333–338

Adrenaline
Thureson-Klein Å, et al.
53–65

Adrenal medulla
Iwanaga T, et al. 733–735
Kent C, et al. 189–195

Adrenergic innervation
Curry TE Jr., et al. 257–263,
593–596

Aging
Holstein AF, et al. 35–40

Alkaline phosphatase
Sidon EW, et al. 81–86

Angiotensin
Armatto U, et al. 67–72

Annulate lamellae
Kessel RG, et al. 725–727

Antennae
Gnatzy W 729–731

Arachnoid
Michaels JE, et al. 693–697
Bukovsky A, et al. 717–724

Autoradiography
Brelinska R, et al. 661–667
Kent C, et al. 189–195
Sterling K, et al. 321–325

Axons
Elekes K, et al. 677–683
Saleh CN, et al. 601–609

Basal lamina
Bär Th, et al. 491–493

Biliary system
Sidon EW, et al. 81–86

Blood cells
Ries S, et al. 1–3

Bone marrow
Wolosewick JJ 517–525

Brain
Romeuf M, et al. 289–292

Brain vessels
Bär Th, et al. 491–493

Bromocriptine
Armatto U, et al. 67–72

Bronchi
Hirabayashi M, et al. 19–25

Bunaftine
Moskalewski S, et al.
107–115

Ca^{++} -induced structural
changes
Eys van GJJM, et al. 181–187
Kallenbach RJ 237–244

Caerulein
Caes F, et al. 711–715

Calcification
Giraud-Guille M-M 413–420

Calcium cells
Davies TW, et al. 643–649

Calcium ions
Eys van GJJM, et al. 181–187

Campaniform sensilla
Gnatzy W 729–731

Carbonic anhydrase
Giraud-Guille M-M 413–420

Castration
Dacheux F 153–160

Catecholamines
Thureson-Klein Å, et al. 53–65

Cathepsin
Tägerud S, et al. 73–79

Caveolae
Michaels JE, et al. 693–697

Cell culture
Leeuw R de, et al. 669–675

Cell differentiation
Rombout JHWM, et al.
207–216

Cell division
Rombout JHWM, et al.
207–216

Cell junctions
Krisch B, et al. 439–452
Mink D, et al. 567–576

Cell membrane
Ricketts AP, et al. 421–429

Cell movements
Newgreen D 265–277
Pascolini R, et al. 345–349
Wolosewick JJ 517–525

Cell proliferation
Caes F, et al. 711–715

Cell surface
Giraud-Guille M-M 413–420
Heidlage JF, et al. 393–397

Cerebrospinal fluid-contacting
neurons
Korf H-W, et al. 217–227

Chloride cells
Leino RL, et al. 121–128

Cholecystokinin
Caes F, et al. 711–715

Chordotonal organ
Kouyama N, et al. 339–343

Chromaffin cells
Kent C, et al. 189–195
Thureson-Klein Å, et al.
53–65

Chromatin
Knibiehler B, et al. 279–288

Chromatoid body
Walt H, et al. 487–490

Circadian clocks
Schulz W-D, et al. 317–320
Uchiyama Y, et al. 305–315

Circadian rhythm
Martinez Soriano F, et al.
555–560

Circumventricular organs (other
than listed)
Korf H-W, et al. 217–227

Colchicine
Cronshaw J, et al. 333–338
Dratwa M, et al. 585–591

Collagen fibers
Michna H 465–470

Color change
Eys van GJJM, et al. 181–187

Coronary vessels
Smolich JJ, et al. 117–119

Corticotropin releasing factor
Józsa R, et al. 245–248
Stoll G, et al. 561–566

Cuticle
Giraud-Guille M-M 413–420

Cytarchitectonic pattern
Franzoni MF, et al. 357–364
Subhedar N, et al. 399–411

Cytocalasin B
Cronshaw J, et al. 333–338
Dratwa M, et al. 585–591

Cytoskeleton
Wolosewick JJ 517–525

Degeneration
O'Shea JD, et al. 477–485

Dendritic reticulum cell
Dijkstra CD, et al. 203–206

Denervation
Tägerud S, et al. 73–79

Dermal glands
Gnatzy W 729–731

Development, ontogenetic
Adachi T, et al. 47–51
Kallenbach RJ 237–244
Rombout JHWM, et al.
207–216
Takahama H, et al. 431–438

DNA
Knibiehler B, et al. 279–288

Dopamine
Stoll G, et al. 561–566
Thureson-Klein Å, et al.
53–65

Duodenum
Aoki M 685–692

Dura mater
Krisch B, et al. 439–452

Endocytosis
Tägerud S, et al. 73–79

Endometrium
O'Shea JD, et al. 477–485
Ricketts AP, et al. 421–429
Uchida TA, et al. 327–331

Endoplasmic reticulum, rough
Kikuchi S, et al. 15–18

Endoplasmic reticulum, specialized
Kallenbach RJ 237–244
Kikuchi S, et al. 15–18

Endothelium
Bär Th, et al. 491–493
Hirabayashi M, et al. 19–25
Mink D, et al. 567–576
Smolich JJ, et al. 117–119

Ependyma
Korf H-W, et al. 217–227

Epidermis
Harris P, et al. 27–33
Pascolini R, et al. 345–349

Epithelial cells
Rombout JHWM, et al. 207–216

Epithelium
Leino RL, et al. 121–128
Newgreen D 265–277

Estradiol
Ng TB, et al. 651–659

Estrous cycle
Curry TE Jr., et al. 257–263

Fibroblasts
Moskalewski S, et al. 107–115
Uchida TA, et al. 327–331

Fibronectin
Newgreen D 265–277

Filaments, intermediate
Harris P, et al. 27–33
Michaels JE, et al. 693–697

FMRF amide (molluscan car-
dioexcitatory peptide)
Moore RY, et al. 41–46

Follicle maturation
Curry TE Jr., et al. 257–263,
593–596

Freeze-fracturing
Mink D, et al. 567–576

FSH
Dacheux F 153–160

Ganglia, invertebrate
Elekes K, et al. 677–683

Gap junctions
Omura Y 611–617

Gastric endocrine cells
Caes F, et al. 711–715

Gastric mucosa
Caes F, et al. 711–715

Gastricsin
Reid WA, et al. 597–600

Germ cells
Holstein AF, et al. 35–40
Parmentier HK, et al. 99–105

Germinal centers
Dijkstra CD, et al. 203–206

Gills
Leino RL, et al. 121–128

Glial cells (other than listed)
Bär Th, et al. 491–493

Glioma cells
Lentzen H, et al. 147–151

Glycoproteins
 Giraud-Guille M-M 413-420

Golgi impregnation
 Franzoni MF, et al. 357-364
 Subhedar N, et al. 399-411

Gonadotropic hormone(s)
 Curry TE Jr., et al. 593-596
 Dacheux F 153-160
 Leeuw R de, et al. 669-675

Gonadotrops
 Leeuw R de, et al. 669-675

Granulocytes
 Wolosewick JJ 517-525

Growth
 Bukovský A, et al. 717-724

Heart
 Smolich JJ, et al. 117-119
 Weihe E, et al. 527-540

Heart, conducting system
 Weihe E, et al. 527-540

Heart, innervation
 Weihe E, et al. 527-540

Hela cells
 Moskalewski S, et al. 107-115

Hepatocytes
 Sterling K, et al. 321-325
 Uchiyama Y, et al. 305-315

Horseradish peroxidase
 Tågerud S, et al. 73-79

6-Hydroxydopamine
 Stoll G, et al. 561-566

5-Hydroxytryptophan (5-HTP)
 Kent C, et al. 189-195

Hypertensive rats
 Häusler A, et al. 229-235

Hypertonicity
 Dratwa M, et al. 585-591

Hypothalamus
 Franzoni MF, et al. 357-364
 Józsa R, et al. 245-248
 Kawata M, et al. 495-503
 Subhedar N, et al. 399-411

Immune response
 Dijkstra CD, et al. 203-206

Infundibulum
 Anthony ELP, et al. 5-14

Intercellular clefts
 Krisch B, et al. 439-452

Intercellular junctions
 Miyata K, et al. 351-355

Interneurons
 Elekes K, et al. 677-683
 Koontz MA, et al. 133-146

Interstitial cells
 Rombout JHWM, et al. 207-216

Iodination
 Nilsson M, et al. 87-97

Iron
 Aoki M 685-692

Juxtaglomerular apparatus
 Alcorn D, et al. 197-202
 Mink D, et al. 567-576

Kidney
 Alcorn D, et al. 197-202
 Mink D, et al. 567-576

Lactation
 Stemberger BH, et al. 471-475

Lamina propria
 Aoki M 685-692

Laminin
 Newgreen D 265-277

Lateral geniculate nucleus
 Moore RY, et al. 41-46

Lectin-binding properties
 Rosati D, et al. 373-381

Leptomeninges
 Krisch B, et al. 439-452

LH
 Dacheux F 153-160

LHRH (Luliberin)
 Anthony ELP, et al. 5-14

Lipids
 Kerr JB, et al. 699-709
 Stemberger BH, et al. 471-475

Lipopolysaccharide
 Groeneveld PHP, et al. 637-642

Liver
 Ng TB, et al. 651-659
 Sidon EW, et al. 81-86
 Sterling K, et al. 321-325
 Uchiyama Y, et al. 305-315

Lung
 Bartels H, et al. 453-457

Lymph nodes
 Miyata K, et al. 351-355

Lymphocytes
 Brelińska R, et al. 661-667
 Groeneveld PHP, et al. 637-642

B-lymphocytes
 Ries S, et al. 1-3

T-lymphocytes
 Groeneveld PHP, et al. 637-642

Lysosomes
 Tågerud S, et al. 73-79

Macrophages
 Dijkstra CD, et al. 203-206
 Hopsu-Havu VK, et al. 161-164
 Miyata K, et al. 351-355

Mechanoreceptors
 Kouryama N, et al. 339-343

Kuster JE, et al. 129-131

Rosati D, et al. 373-381

Median eminence
 Adachi T, et al. 47-51
 Anthony ELP, et al. 5-14
 Józsa R, et al. 245-248

Meiosis
 Takeuchi IK 249-255

Melatonin
 Martínez Soriano F, et al. 555-560

Membrane dynamics
 Kallenbach RJ 237-244
 Lentzen H, et al. 147-151
 Nilsson M, et al. 87-97
 Schwemer J, et al. 293-303

Membrane particles
 Schwemer J, et al. 293-303

Membrane surface
 Rosati D, et al. 373-381

Merkel cells
 Rosati D, et al. 373-381

Mesenchymal cells
 Newgreen D 265-277

Metamorphosis
 Schulz W-D, et al. 317-320

Met-enkephalin
 Romeuf M, et al. 289-292

Met-enkephalin-like immunoreactivity
 Georges D, et al. 165-170
 Romeuf M, et al. 289-292

Microfilaments
 Harris P, et al. 27-33
 Kessel RG, et al. 725-727
 Moskalewski S, et al. 107-115

Microtubules
 Harris P, et al. 27-33
 Michaels JE, et al. 693-697

Microvasculature
 Hirabayashi M, et al. 19-25

Microvilli
 Smolich JJ, et al. 117-119

Milk secretion
 Stemberger BH, et al. 471-475

Mitochondria
 Bartels H, et al. 453-457
 Stemberger BH, et al. 471-475
 Sterling K, et al. 321-325

Mitoses
 Moskalewski S, et al. 107-115
 Rombout JHWM, et al. 207-216

Mitotic activity
 Caes F, et al. 711-715

Moltung
 Kouyama N, et al. 339-343

Monocytes
 Hopsu-Havu VK, et al. 161-164

Monoclonal antibodies
 Parmentier HK, et al. 99-105

Morphine
 Thureson-Klein Å, et al. 53-65

Motoneurones
 Kucera J 383-391

Muscle cells
 Miyazaki M, et al. 541-548
 Toyota N, et al. 549-554

Muscle, skeletal
 Fridén J 365-372
 Miyazaki M, et al. 541-548
 Tågerud S, et al. 73-79
 Takahama H, et al. 431-438
 Toyota N, et al. 549-554

Muscle, smooth
 Heidlage JF, et al. 393-397

Muscle spindles
 Kucera J 383-391

Myofilaments
 Fridén J 365-372

Neuroendocrine regulation
 Kawata M, et al. 495-503

Neurons
 Franzoni MF, et al. 357-364

Neuropeptide immunocytochemistry
 Georges D, et al. 165-170
 Yulis CR, et al. 141-180

Neuropeptide Y
 Moore RY, et al. 41-46

Neuropil
 Ribi WA 577-584
 Yulis CR, et al. 141-180

Neurosecretory cells
 Romeuf M, et al. 289-292

Neurotensin
 Weihe E, et al. 527-540

Neurotensin-containing neurons
 Weihe E, et al. 527-540

Nidation
 Ricketts AP, et al. 421-429

Noradrenaline
 Kent C, et al. 189-195

Nucleoli
 Knibiehler B, et al. 279-288
 Takeuchi IK 249-255

5'-Nucleotidase activity
 Sidon EW, et al. 81-86

Nucleus accumbens
 Korf H-W, et al. 217-227

Ocellus
 Koontz MA, et al. 133-146

Oocytes
 Hummon MR 619-628,
 629-636
 Kessel RG, et al. 725-727
 Takeuchi IK 249-255

Optic lobe
 Koontz MA, et al. 133-146
 Schulz W-D, et al. 317-320

Organum vasculosum laminae terminalis
 Józsa R, et al. 245-248

Osmotic stress
 Yulis CR, et al. 141-180

Ovarian follicles
 Bukovský A, et al. 717-724

Ovaries
 Bukovský A, et al. 717-724
 Curry TE Jr., et al. 257-263,
 593-596
 Georges D, et al. 165-170

Oviduct
 Uchida TA, et al. 327-331

Oxytocin
 Yulis CR, et al. 141-180

Pancreatic polypeptide (PP)
 Moore RY, et al. 41-46

Pancreatic polypeptide-like substances
 Moore RY, et al. 41-46

Parasitic larva
 Davies TW, et al. 643-649

Parthenogenesis
 Hummon MR 619-628,
 629-636

Parturition
 O'Shea JD, et al. 477-485

Peptide hormones
 Stoll G, et al. 561-566

Pericytes
Bär Th, et al. 491–493

Peripolar cells
Alcorn D, et al. 197–202

Permeability
Hirabayashi M, et al. 19–25

Peroxidase
Aoki M 685–692
Nilsson M, et al. 87–97

Peroxisomes
Nilsson M, et al. 87–97

Phagocytes
Hopsu-Havu VK, et al.
161–164

Phagocytosis
Groeneveld PHP, et al.
637–642
Lentzen H, et al. 147–151
Uchida TA, et al. 327–331

Photoreceptor cells
Schwemer J, et al. 293–303

Photoreceptors, extraocular
Schulz W-D, et al. 317–320

Pinealocytes
Kikuchi S, et al. 15–18

Pineal organ
Martinez Soriano F, et al.
555–560
Omura Y 611–617

Pineal photoreceptors
Omura Y 611–617

Pineal synaptic ribbons
Omura Y 611–617

Pituitary gland, pars anterior
Dacheux F 153–160
Häusler A, et al. 229–235
Krisch B, et al. 439–452
Leeuw R de, et al. 669–675

Pituitary gland, pars intermedia
Eys van GJMM, et al. 181–187
Stoll G, et al. 561–566

Pituitary gland, pars nervosa
Anthony ELP, et al. 5–14

Plasmalemma
Bartels H, et al. 453–457

Prostate gland
Kessel RG, et al. 725–727
Reid WA, et al. 597–600

Proteinases
Hopsu-Havu VK, et al.
161–164
Reid WA, et al. 597–600

Pulmonary epithelium
Bartels H, et al. 453–457

Regeneration
O'Shea JD, et al. 477–485
Toyota N, et al. 549–554

Renal vasculature
Mink D, et al. 567–576

Reproductive system, female
Hummon MR 619–628,
629–636

Reproductive system, male
Parmentier HK, et al. 99–105

Rhabdomeres
Schwemer J, et al. 293–303

Rhodopsin
Schwemer J, et al. 293–303

Ribosomal RNA synthesis
Armatto U, et al. 67–72

RNA
Walt H, et al. 487–490

S-100 protein
Iwanaga T, et al. 733–735

Satellite cells, muscle
Takahama H, et al. 431–438

Secretory granules
Alcorn D, et al. 197–202
Stemberger BH, et al.
471–475

Seminal fluid
Reid WA, et al. 597–600

Sensilla
Kuster JE, et al. 129–131

Sensomotor system
Kucera J 383–391

Sensory apparatus
Colmers WF, et al. 505–515

Sensory cells
Kuster JE, et al. 129–131

Septum
Korf H-W, et al. 217–227

Serotonin
Kawata M, et al. 495–503
Kent C, et al. 189–195

Sertoli cells
Kerr JB, et al. 699–709

Sexual maturation
Hummon MR 619–628,
629–636

Shell formation
Davies TW, et al. 643–649

Somatostatin
Romeuf M, et al. 289–292

Somatostatin system
Adachi T, et al. 47–51

Somatostatin-immunoreactivity
Adachi T, et al. 47–51

Somatostatin-like compounds
Romeuf M, et al. 289–292

Spermatids
Walt H, et al. 487–490

Spermatocytes
Walt H, et al. 487–490

Spermatogenesis
Holstein AF, et al. 35–40
Kerr JB, et al. 699–709
Walt H, et al. 487–490

Spermatozoa
Parmentier HK, et al. 99–105
Uchida TA, et al. 327–331

Spleen
Brelinská R, et al. 661–667
Dijkstra CD, et al. 203–206
Groeneveld PHP, et al.
637–642

Statocysts
Colmers WF, et al. 505–515

Stoliths
Colmers WF, et al. 505–515

Steroids
Miyata K, et al. 351–355
Ng TB, et al. 651–659

Stomach
Heidlage JF, et al. 393–397

Substance P
Weihe E, et al. 527–540

Suprachiasmatic nucleus
Moore RY, et al. 41–46

Supraoptic decussation
Saleh CN, et al. 601–609

Supraoptic nuclei
Yulis CR, et al. 141–180

Surface antigens
Parmentier HK, et al.
99–105

Sustentacular cells
Iwanaga T, et al. 733–735

Sympathectomy
Curry TE Jr, et al. 257–263,
593–596

Sympathetic innervation
Curry TE Jr, et al. 593–596

Synapses
Elekes K, et al. 677–683
Omura Y 611–617
Ribi WA 577–584

Synaptic ribbons
Martinez Soriano F, et al.
555–560
Omura Y 611–617

Synaptic spherules
Martinez Soriano F, et al.
555–560

Synaptosomal complexes
Hummon MR 619–628,
629–636

Tendon
Michna H 465–470

Testis
Holstein AF, et al. 35–40
Kerr JB, et al. 699–709

Testosterone
Ng TB, et al. 651–659

Thrombocytes
Ries S, et al. 1–3

Thyroid gland
Nilsson M, et al. 87–97

Thyroid hormones
Sterling K, et al. 321–325

Tissue culture
Hausman GJ, et al. 459–464
Moskalewski S, et al.
107–115

Tropinin
Miyazaki M, et al. 541–548
Toyota N, et al. 549–554

Tube foot
Harris P, et al. 27–33

Urinary bladder
Dratwa M, et al. 585–591

Uterus
O'Shea JD, et al. 477–485
Ricketts AP, et al. 421–429

Vasoactive intestinal polypeptide (VIP)
Korf H-W, et al. 217–227
Weihe E, et al. 527–540

Vasopressin
Yulis CR, et al. 141–180

Ventricles, of brain
Korf H-W, et al. 217–227

Vinblastine
Cronshaw J, et al. 333–338

Visual interneurons
Ribi WA 577–584

Visual pigment
Schwemer J, et al. 293–303

Visual system
Ribi WA 577–584
Saleh CN, et al. 601–609

Vitellogenesis
Ng TB, et al. 651–659

Wound healing
Pascolini R, et al. 345–349

X-body
Hummon MR 619–628,
629–636

X-ray diffraction
Aoki M 685–692