(担当:佐藤 弘康)

□ 双曲線を理解するための問題

問題 **7.1** (双曲線の漸近線). 双曲線 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ を \mathcal{H} , 直線 $y = \frac{b}{a}x$ を l とする (a,b>0). 第 1 象限における \mathcal{H} 上の点 P に対し,点 P を通り l と直交する直線を l' と し,l と l' の交点を H とする.このとき,以下の問に答えなさい.

- (1) 点 P の座標を (X,Y) とするとき、l' の方程式を求めなさい.
- (2) 点 H の座標を a, b, X, Y を用いて表しなさい.

(3)
$$|PH| = \frac{a^2b^2}{\sqrt{a^2 + b^2}} \times \frac{1}{|bX + aY|}$$
 となることを示しなさい.

問題 **7.2** (双曲線の離心角). *1双曲線 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ を \mathcal{H} , 円 $x^2 + y^2 = a^2$ を \mathcal{C} とする. \mathcal{H} 上の点 P に対し,点 P から x 軸に下ろした垂線の足を Q とする.また,点 R を点 P と同じ象限にある \mathcal{C} 上の点で,直線 QR が R における \mathcal{C} の接線となるような点とする.このとき,以下の間に答えなさい.

- (1) 点 P の座標を (X,Y) とする. Y を a,b,X を用いて表しなさい. ただし, P は第 1 象限の点とする (X,Y>0).
- (2) 点 P の座標を (X,Y) のとき、Q の座標を答えなさい。
- (3) 点 Q を通り、傾きが m の直線を l とする、l の方程式を求めなさい、
- (4) $l \geq C$ の交点の数がただ 1 つであるとき, $m \geq a, X$ を用いて表しなさい.
- (5) 点 R の座標を求めなさい.
- (6) 点 R の座標を $(a\cos\theta, a\sin\theta)$ とおくとき、X,Y を a,b,θ を用いて表しなさい。

^{*1} 教科書 p.86 の図 4.4 を参照せよ.

(担当:佐藤 弘康)

□ 2 次式の行列表示を理解するための問題

問題 **7.3.** 行列
$$A = \begin{pmatrix} a & h \\ h & b \end{pmatrix}$$
, $\vec{x} = \begin{pmatrix} x \\ y \end{pmatrix}$, $\vec{b} = \begin{pmatrix} g \\ f \end{pmatrix}$ に対し,

$$\varphi(\vec{x}) = {}^t \vec{x} A \vec{x} + 2^t \vec{x} \vec{b} + c$$

とおく、このとき、以下の間に答えなさい。

- (1) $t\vec{x}A\vec{x} = ax^2 + 2hxy + by^2$ となることを確かめなさい.
- $(2) \ \vec{v} = \left(\begin{array}{c} \lambda \\ \mu \end{array}\right) \ \text{に対し}, \ \ ^t\!\vec{x} A \vec{v} = {}^t\!\vec{v} A \vec{x} \ \text{であることを確かめなさい}.$
- (3) $\varphi(\vec{X} + \vec{v}) = \vec{X}A\vec{X} + 2\vec{X}(A\vec{v} + \vec{b}) + \vec{v}\vec{A}\vec{v} + 2\vec{v}\vec{b} + c$ となることを確かめなさい.
- (4) $A\vec{v} + \vec{b} = \vec{0}$ かつ $\det(A) \neq 0$ (つまり、 $\vec{v} = -A^{-1}\vec{b}$) のとき、

$${}^{t}\vec{v}A\vec{v} + 2{}^{t}\vec{v}\vec{b} + c = \frac{\det(A_0)}{\det(A)}$$

となることを確かめなさい。ただし、

$$A_0 = \begin{pmatrix} a & h & g \\ h & b & f \\ \hline g & f & c \end{pmatrix} = \begin{pmatrix} A & \vec{b} \\ t \\ \vec{b} & c \end{pmatrix}.$$

問題 **7.4.** 2 次多項式 $\varphi(x,y)=3x^2-12xy-6y^2-6x-12y+13$ について、以下の問の答えなさい。

- $(1) \ \varphi(x,y) = \left(\begin{array}{cc} x & y \end{array}\right) A \left(\begin{array}{c} x \\ y \end{array}\right) 6y^2 6x 12y + 13$ と表すときの 2 次正方行列 A を書きなさい.
- $(2) \ \varphi(x,y) = \left(\begin{array}{ccc} x & y & 1 \end{array}\right) A_0 \left(\begin{array}{c} x \\ y \\ 1 \end{array}\right) \ {\it L表}$ と表すときの 3 次正方行列 A_0 を書きなさい.
- (3) $\det(A)$ および $\det(A_0)$ を求めなさい。
- (4) 座標の平行移動 $x = \bar{x} + \lambda$, $y = \bar{y} + \mu$ によって,方程式 $\varphi(x,y) = 0$ を $a\bar{x}^2 + 2h\bar{x}\bar{y} + b\bar{y}^2 + \bar{c} = 0$ と式変形できることを確かめ,そのときの λ , μ の値を求めなさい.

(担当:佐藤 弘康)

□ 2 次曲線の分類に関する問題

問題 7.5. 次の2次方程式が有心2次曲線か無心2次曲線か考察しなさい *2

(1)
$$x^2 - xy + y^2 + 2x + 2y - 1 = 0$$

(2)
$$16x^2 - 24xy + 9y^2 + 5x - 10y + 5 = 0$$

問題 7.6 (問題 7.4 の続き). 2 次多項式 $\bar{\varphi}(\bar{x},\bar{y}) = 3\bar{x}^2 - 12\bar{x}\bar{y} - 6\bar{y}^2 + 18$ について、以 下の問の答えなさい.

$$(1) \ \bar{\varphi}(\bar{x},\bar{y}) = \left(\begin{array}{cc} \bar{x} & \bar{y} \end{array}\right) \bar{A} \left(\begin{array}{c} \bar{x} \\ \bar{y} \end{array}\right) + 18 \ {\it E}$$
表すときの 2 次正方行列 \bar{A} を書きなさい.

$$\begin{array}{l} (1) \ \bar{\varphi}(\bar{x},\bar{y}) = \left(\begin{array}{cc} \bar{x} & \bar{y} \end{array} \right) \bar{A} \left(\begin{array}{c} \bar{x} \\ \bar{y} \end{array} \right) + 18 \ {\it L}$$
表すときの 2 次正方行列 \bar{A} を書きなさい。
$$(2) \ \bar{\varphi}(\bar{x},\bar{y}) = \left(\begin{array}{cc} \bar{x} & \bar{y} & 1 \end{array} \right) \bar{A}_0 \left(\begin{array}{c} \bar{x} \\ \bar{y} \\ 1 \end{array} \right) \ {\it L}$$
 と表すときの 3 次正方行列 \bar{A}_0 を書きなさい。

- (3) $\det(\bar{A})$ および $\det(\bar{A}_0)$ を求めなさい.
- (4) 行列 \bar{A} の固有値と固有ベクトルを求めなさい.
- (5) 行列 \bar{A} の固有ベクトル $\vec{p_1}, \vec{p_2}$ で, $\|\vec{p_1}\| = \|\vec{p_2}\| = 1$ かつ $\vec{p_1} \cdot \vec{p_2} = 0$ を満たす組を 1つ求めなさい.
- (6) (5) で定めたベクトルを並べて 2 次正方行列 $P = (\vec{p_1} \ \vec{p_2})$ を作りなさい.

(7) (6) で定めた行列
$$P$$
 に対し, $\begin{pmatrix} \bar{x} \\ \bar{y} \end{pmatrix} = P \begin{pmatrix} \tilde{x} \\ \tilde{y} \end{pmatrix}$ と座標変換する.このとき,方程式 $\bar{\varphi}(\bar{x},\bar{y}) = 0$ を \tilde{x},\tilde{y} の方程式として表しなさい.

問題 7.7 (問題 7.5(1) の続き). 2 次方程式 $\bar{x}^2 - \bar{x}\bar{y} + \bar{y}^2 - 5 = 0$ が表す図形はどのよう な2次曲線か、問題7.6を参考にて考察しなさい。

問題 7.8 (問題 7.5(2) の続き). 2 次方程式 $16x^2 - 24xy + 9y^2 + 5x - 10y + 5 = 0$ が表 す2次曲線は無心2次曲線である.この2次曲線について次の問に答えなさい.

- (1) 問題 7.6 の手順を参考に、直交行列による座標変換を用いて方程式の 2 次の項を簡 略化しなさい.
- (2) (1) の座標変換を施した方程式に対し、1次の項を消せる場合は座標の平行移動に より消しなさい.
- (3) この2次曲線がどのような形の2次曲線か答えなさい。

^{*&}lt;sup>2</sup> ContourPlot を使って、*Mathematica* で 2 次曲線を描画してみよう.