Semantic Web - Tutorial #8

Isabelle Kuhlmann

Institute for Web Science & Technologies University of Koblenz-Landau

June 24, 2021 | Assignment 7

1: Ontology Matching

Ontology O1:

1: Ontology Matching

Ontology O2:

Task: What are the Levenshtein distances between all possible pairs of o1:hasLeader, o1:hasMayor, and o1:hasCapital?

Levenshtein Distance

The Levenshtein Distance, also referred to as *Edit Distance*, measures the difference between two sequences by counting the minimum number of edit operations required to transform one sequence into the other one.

Edit operations:

- ► Replace: "aa" → "ab"
- ► Insert: "aa" → "aab"
- **▶ Delete:** "aa" → "a"

Example: Levenshtein Distance between water and wine:

We can perform the following three operations:

- 1. Replace the "a" in water with "i" → witer
- 2. Replace "t" with "n" \rightarrow winer
- 3. Delete "r" → wine

Consequently: lev(water, wine) = 3

We can also use a table to compute the Levenshtein distance. The basic setup of such a table looks as follows:

If we are in cell \boldsymbol{x} , we can use the following key:

replace	insert
delete	x

Now x is equal to:

- ▶ The minimum of the values in those three cells, if the two corresponding characters match
- ► The minimum of the values in those three cells + 1, if the two corresponding characters do not match

Let us consider the example with water and wine once again.

Remember:

replace	insert
delete	x

	ε	W	a	t	е	r
ε	0	1 0 1 2 3	2	3	4	5
W	1	0	1	2	3	4
i	2	1	1	2	3	4
n	3	2	2	2	3	4
е	4	3	3	3	2	3

Task: What are the Levenshtein distances between all possible pairs of o1:hasLeader, o1:hasMayor, and o1:hasCapital?

lev(hasMayor, hasLeader) = 4:

- Insert: hasMayor → hasMeayor
- 2. Replace: hasMeayor → hasLeayor
- 3. Replace: hasLeayor → hasLeador
- 4. Replace: hasLeador → hasLeader

	ε	h	a	s	М	a	у	0	r
ε	0	1	2	3	4	5	6	7	8
h	1	0	1	2	3	4	5	6	7
a	2	1	0	1	2	2	3	4	5
S	3	2	1	0	1	2	3	4	5
L	4	3	2	1	1	2	3	4	5
е	5	4	3	2	2	2	3	4	5
a	6	5	3	3	3	2	3	4	5
d	7	6	4	4	4	3	3	4	5
е	8	7	5	5	5	4	4	4	5
r	9	8	6	6	6	5	5	5	4

lev(hasLeader, hasCapital) = 7:

- 1. Replace: hasLeader → hasCeader
- 2. Replace: hasCeader → hasCaader
- 3. Replace: hasCaader → hasCapder
- 4. Replace: hasCapder → hasCapier
- 5. Replace: hasCapier → hasCapitr
- 6. Replace: hasCapitr → hasCapita
- 7. Insert: hasCapita \rightarrow hasCapita1

lev(hasMayor, hasCapital) = 6:

- Replace: hasMayor → hasCayor
- 2. Replace: hasCayor → hasCapor
- 3. Replace: hasCapor → hasCapir
- 4. Replace: hasCapir → hasCapi<u>t</u>
- 5. Insert: hasCapit → hasCapita
- 6. Insert: hasCapita → hasCapital

1: Ontology Matching | Suffix Similarity

Task: Calculate the suffix similarity for both o2:mayor and o2:population to elements in O1. Indicate the pair(s) with the confidence value higher than zero.

- ► The confidence value of o2:mayor and and o1:hasMayor is $\frac{5}{8}$.
- ► For o2:population there exists no suffix similarity with any element from O1 with a confidence level > 0.

1: Ontology Matching | Graph-based Techniques

Task: Using graph-based techniques, identify at least one pair of entities between non-leaf elements of O1 and O2 that are similar.

The following pairs are similar, from a graph-based perspective:

- ► (o1:City, o2:State)
- ► (o1:Place, o2:Place)

Question 2 - Alignment

Given two strings s1 and s2, let N be the size of the longest string, and L be the Levenshtein distance between s1 and s2. The normalized Levenshtein distance is $(N - \underline{L})/N$.

http://example.org/places/Berlin,	http://dbpedia.org/page/Berlin	10	0.68
http://example.org/places/Berlin	http://www.geonames.org/2950159/berlin.html	23	0.46
http://example.org/institutions/Reichstag	http://dbpedia.org/page/Reichstag_building	28	0.34
http://example.org/institutions/Reichstag	http://dbpedia.org/page/Reichstag	19	0.53
http://example.org/people/JimRakete	https://en.wikipedia.org/Jim/Jim_Rakete	18	0.48
http://example.org/people/JimRakete	https://www.discogs.com/artist/1866244-Jim-Rakete	29	0.48
http://example.org/artwork/LaTrahisonDesImages	https://de.wikipedia.org/wiki/La_trahison_des_images	23	0.55
http://example.org/artwork/LaTrahisonDesImages	https://www.wikidata.org/wiki/Q1061035	35	0.24
http://example.org/places/Myanmar	https://en.wikipedia.org/wiki/Myanmar	17	0.54
http://example.org/places/Myanmar	http://dbpedia.org/page/Myanmar	10	0.70

Conf.