

Fachbereich Mathematik und Statistik

Klausur zu Computereinsatz in der Mathematik

Name	Vorname	Matrikel-Nr.	Studiengang	

Allgemeine Richtlinien:

- 1. Diese Klausur beinhaltet **sechs** verschiedene Aufgaben (Rückseite beachten). Kontrollieren Sie Ihr Exemplar, ein Austauschexemplar kann Ihnen sofort ausgehändigt werden.
- 2. Verwenden Sie für jede Aufgabe ein neues Blatt.
- 3. Schreiben Sie Ihren Namen auf dieses Deckblatt und auf jedes einzelne Aufgabenblatt. Ihre Matrikelnummer muss auf dem Deckblatt erscheinen.
- 4. Schreiben Sie mit Tinte oder Kugelschreiber.
- 5. **Zugelassene Hilfsmittel:** Vorher abgegebener Spickzettel (2 Seiten DIN A 4), welcher dieser Klausur beiliegt. Alle anderen Hilfsmittel sind verboten und führen zum Ausschluss von der Klausur.
- 6. Die Klausur dauert 60 Minuten.
- 7. Zum Bestehen sind mindestens 15 Punkte erforderlich.

Viel Erfolg!

Korrektur

	Aufg. 1	Aufg. 2	Aufg. 3	Aufg. 4	Aufg. 5	Aufg. 6	gesamt	Note
Punkte	5	6	5	4	5	5	30	-
erreicht								

Aufgabe 1: (5 Punkte)

a) Erstellen Sie ein Latex-Programm (ohne Präambel), das den folgenden Ausdruck erzeugt (die Nummerierung soll automatisch erfolgen):

1 Numerische Integration

1.1 Einleitung

Bei der Numerischen Integration wird ein Integral durch eine Summe approximiert:

$$\int_{a}^{b} f(x) dx \approx \sum_{i=1}^{m} w_{i} f(x_{i})$$

mit $w_i \in \mathbb{R}$ (i = 1, ..., m) und $a \le x_1 < ... < x_m \le b$.

1.2 Beispiele

Beispiele sind die Trapezregel und die Keplersche Fassregel.

b) Welchen Ausdruck erzeugt die folgende Latex-Sequenz?

```
Sei f \in C^4[a,b]. Dann gilt für die Keplersche Fassregel die Fehlerdarstellung R(f) = -\frac{(b-a)^5}{2880} f^{(4)}(xi) mit einem Zwischenwert x \in (a,b).
```

Aufgabe 2: (6 Punkte)

- a) Erstellen Sie eine Matlab-Funktion L(x,a,b,c) für die Funktion $L(x) = \frac{a}{1+\exp(b-cx)}$.
- b) Schreiben Sie ein Matlab-Programm, welches über den Bildschirm die Parameter a, b und c einliest und dann unter Verwendung von a)
- (1) die Funktion L(x) im Intervall [0,10] zeichnet. Die Graphik soll die Überschrift Logistische Kurve, die x-Achsenbeschriftung Zeit und die y-Achsenbeschriftung Tiere haben.
- (2) für $x_i = i$ (i = 0, ..., 10) eine Wertetabelle von L(x) erstellt und diese in übersichtlicher Form in die Datei Aufgabe2.aus schreibt (x_i -Werte mit 3 Nachkommastellen, die Funktionswerte mit 10 Nachkommastellen).
- (3) in das Schaubild von (1) die Umkehrfunktion zu L(x), $x \in [0, 10]$ zeichnet (auf möglichst einfache Weise).

Aufgabe 3: (5 Punkte)

- a) Es seien x = 1 und y = -2. Welchen Wert liefern die folgenden Matlab-Ausdrücke?
 - (1) $\sim (x < 0 \& y > = -5)$
 - (2) $z = 3.*(x \sim y)$
- b) Welche Ergebnisse (auf dem Bildschirm) erzeugt das folgende Matlab-Programm?

Aufgabe 4: (4 Punkte)

a) Schreiben Sie ein Matlab-Programm, welches die 20×20 -Matrix

$$A = \begin{pmatrix} 4 & -2 & 0 & \cdots & 0 \\ -2 & 4 & -2 & \ddots & \vdots \\ 0 & -2 & 4 & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & -2 \\ 0 & \cdots & 0 & -2 & 4 \end{pmatrix}$$

belegt.

b) Erstellen Sie ein Matlab-Programm, das den Wurf einer Münze (Kopf oder Zahl) simuliert.

Aufgabe 5: (5 Punkte)

- a) Es seien $p(x) = x^6 4x^4 + x^3 10$ und $\xi = -2$. Berechnen Sie mit Hilfe des Hornerschemas $p(\xi), p'(\xi)$ und $p^{(2)}(\xi)$.
- **b)** Im Dualsystem hat die Zahl x die Darstellung 1011.001111 Welche Darstellung hat x im Hexadezimalsystem?

Aufgabe 6: (5 Punkte)

- a) Berechnen Sie mit Maple:
- (1) von der Funktion $h(x,y,z) = \sqrt{x^2 + y^2 + (z-4)^2}$ die zweite partielle Ableitung $h_{zz}(x,y,z)$.
- (2) das Taylor-Polynom vom Grad 6 zum Entwicklungspunkt $x_0 = 2$ von

$$f(x) = \frac{\exp(x)}{x^3 + 3x^2 + 3x + 1} .$$

(3) alle Lösungen von

$$5\cos(x^2 + y^2) = 2$$
$$3x^4 + 5y^2 = 8$$

b) Welches Ergebnis liefert der folgende Maple-Befehl?