AS1056 - Mathematics for Actuarial Science. Chapter 3, Tutorial 2.

Emilio Luis Sáenz Guillén

Bayes Business School. City, University of London.

November 3, 2023

(i) Calculate the derivative of $f(x)=x^{-1}\ln(x)=\frac{\ln(x)}{x}$ over the domain x>0.

(i) Calculate the derivative of $f(x)=x^{-1}\ln(x)=\frac{\ln(x)}{x}$ over the domain x>0.

Answer:

$$f'(x) = -x^{-2}\ln(x) + x^{-1}x^{-1} = -x^{-2}\ln(x) + x^{-2} =$$
$$= \frac{1}{x^2} [1 - \ln(x)]$$

(ii) Sketch the graph of f.

Graph for ln(x)/x

Let us check analytically that:

- 1. "As $x \to 0^+$, $f(x) \to -\infty$."
- **2.** "f first reaches 0 at x=1."
- 3. "f has a maximum at x=e."
- **4.** "f(x) is increasing for $x \in (0, e)$ and decreasing for $x \in (e, +\infty)$."
- 5. " $\lim_{x \to +\infty} f(x) = 0$."

Let us check analytically that:

- 1. "As $x \to 0^+$, $f(x) \to -\infty$."
- **2.** "f first reaches 0 at x=1."
- 3. "f has a maximum at x=e."
- **4.** "f(x) is increasing for $x \in (0, e)$ and decreasing for $x \in (e, +\infty)$."
- 5. " $\lim_{x \to +\infty} f(x) = 0$."

Summary

The function f(x) is defined for all x in the interval $(0,+\infty)$. It increases from $-\infty$ to e^{-1} as x moves from 0 to e. f(x) has a root at x=1 and at x=e, f(x) achieves its maximum value of e^{-1} . Then it decreases to 0 as x goes from e to $+\infty$.

(iii) For which values of x is there more than one value of y which satisfies the equation $x \ln(y) = y \ln(x)$?

(iii) For which values of x is there more than one value of y which satisfies the equation $x \ln(y) = y \ln(x)$?

Note that we can rewrite $x\ln(y)=y\ln(x)$ as $\frac{\ln(y)}{y}=\frac{\ln(x)}{x}$, i.e., as f(y)=f(x), thus:

- It is clear that y = x is always a solution
- Moreover, based on the properties of f(x) that we have just discussed we'll be able to describe the behaviour of this new equation too.

- (iv) For which values of x does the equation $x \ln(y) = 2y \ln(x)$ have:
 - (a) no solutions
 - (b) one solution
 - (c) two solutions?

- (iv) For which values of x does the equation $x \ln(y) = 2y \ln(x)$ have:
 - (a) no solutions
 - (b) one solution
 - (c) two solutions?

Let us rewrite
$$x\ln(y)=y\ln(x)$$
 as $\frac{\ln(y)}{y}=2\times\frac{\ln(x)}{x}$, i.e., $f(y)=2\times f(x)$ or $f(x)=\frac{1}{2}f(y)$.

Reconsider the intervals for \boldsymbol{x} we've been analysing thus far:

- $x \in (0,1]$
- $x \in (1,e)$ and $x \in (e,+\infty)$ and x = e

Use the formula $\cos\left(\frac{\pi}{5}\right) = -\cos\left(2 \times \frac{2\pi}{5}\right)$ to obtain a cubic equation satisfied by the value of $\cos\left(\frac{\pi}{5}\right)$.

Use the formula $\cos\left(\frac{\pi}{5}\right) = -\cos\left(2\times\frac{2\pi}{5}\right)$ to obtain a cubic equation satisfied by the value of $\cos\left(\frac{\pi}{5}\right)$.

Trigonometric identities

•
$$\cos(\pi - x) = -\cos(\pi) \implies \cos\left(\frac{\pi}{5}\right) = -\cos\left(2 \times \frac{2\pi}{5}\right)$$
 for $x = \frac{4\pi}{5}$

$$\cdot \cos(2x) = 2\cos^2(x) - 1$$