0,1

# **ARCHIVE COPY** DO NOT LOAN

A-10 CARRIAGE LOADS TEST



T. O. Shadow ARO, Inc., AEDC Division A Sverdrup Corporation Company Propulsion Wind Tunnel Facility Arnold Air Force Station, Tennessee

Period Covered: May 26 through June 3, 1978

Approved for public release; distribution unlimited.

Reviewed By:

Approved for Publication:

FOR THE COMMANDER

GREGORY COWLEY, 1st Lt, USAF Test Director, PWT Division Directorate of Test Operations

Chauncey & Smith, fe CHAUNCEY D. SMITH, JR, Lt Colonel, USAF

Director of Test Operations Deputy for Operations

Prepared for: Air Force Armament Laboratory (DLJCE)

Eglin Air Force Base, Florida, 32542.

ARNOLD ENGINEERING DEVELOPMENT CENTER AIR FORCE SYSTEMS COMMAND ARNOLD AIR FORCE STATION. TENNESSEE

딞 6

| ONOLAGGII ILD                                                                                             |                                          |                                                                |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------|--|--|--|--|
| REPORT DOCUMENTATION                                                                                      | READ INSTRUCTIONS BEFORE COMPLETING FORM |                                                                |  |  |  |  |
| 1. REPORT NUMBER 2. GOVT ACCESSION NO.                                                                    |                                          |                                                                |  |  |  |  |
| AEDC-TSR-78-P9                                                                                            |                                          |                                                                |  |  |  |  |
| 4. TITLE (and Subtitle)                                                                                   |                                          | 5. TYPE OF REPORT & PERIOD COVERED                             |  |  |  |  |
| A-10 Carriage Loads Test                                                                                  | Final Report<br>May 26 - June 3, 1978    |                                                                |  |  |  |  |
| <u>-</u>                                                                                                  | •                                        | 6. PERFORMING ORG. REPORT NUMBER                               |  |  |  |  |
| 7. AUTHOR(s)                                                                                              |                                          | 8. CONTRACT OR GRANT NUMBER(s)                                 |  |  |  |  |
| T. O. Shadow, ARO, Inc., a Sv<br>Corporation Company                                                      | erdrup                                   |                                                                |  |  |  |  |
| 9 PERFORMING ORGANIZATION NAME AND ADDRESS<br>Arnold Engineering Development<br>Air Force Systems Command |                                          | 10. PROGRAM ELEMENT, PROJECT, TASK<br>AREA & WORK UNIT NUMBERS |  |  |  |  |
| Arnold Air Force Station, Tenr                                                                            | nessee 37389                             | Program Element 65807F                                         |  |  |  |  |
| 11. CONTROLLING OFFICE NAME AND ADDRESS                                                                   |                                          | 12. REPORT DATE                                                |  |  |  |  |
| Air Force Armament Laboratory (AFATL/DLJCE)                                                               |                                          | June 1978  13. NUMBER OF PAGES  46                             |  |  |  |  |
| Eglin Air Force Base, Florida 14. MONITORING AGENCY NAME & ADDRESS(If different                           | 32342<br>t from Controlling Office)      | 15. SECURITY CLASS. (of this report)                           |  |  |  |  |
|                                                                                                           |                                          | Unclassified                                                   |  |  |  |  |
|                                                                                                           | •                                        | 15a. DECLASSIFICATION DOWNGRADING SCHEDULE N/A                 |  |  |  |  |
| 16. DISTRIBUTION STATEMENT (of this Report)                                                               |                                          |                                                                |  |  |  |  |
| Approved for public release;                                                                              | listribution u                           | nlimited.                                                      |  |  |  |  |
|                                                                                                           |                                          |                                                                |  |  |  |  |
| 17. DISTRIBUTION STATEMENT (of the abstract entered in                                                    | in Block 20, if different from           | m Report)                                                      |  |  |  |  |
|                                                                                                           | ,                                        |                                                                |  |  |  |  |
| •                                                                                                         |                                          |                                                                |  |  |  |  |
|                                                                                                           |                                          | İ                                                              |  |  |  |  |
| 18. SUPPLEMENTARY NOTES                                                                                   | ·                                        |                                                                |  |  |  |  |

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

· A-10 Aircraft Aerodynamic loads Wind tunnel tests Carriage loads Scale models

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

A wind tunnel test was conducted with a 0.05-scale model of the A-10 aircraft to obtain carriage loads data for various external store configurations. The external stores consisted of 14 different bombs and pods, four different loading racks, and three 600-gal ferrying tanks mounted in various combinations on all 11 pylons. The loads imposed by the stores on the pylons were measured on six of the 11 pylons with strain-gage balances mounted inside the pylons. Mach number was varied from 0.3 to 0.75 and aircraft sideslip angle was varied from -18 to 18 deg at constant angles of attack of 0, 5, 10 15. and 20 deg

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

# CONTENTS

|                            |                                                               | Page                            |
|----------------------------|---------------------------------------------------------------|---------------------------------|
|                            | NOMENCLATURE                                                  | 2                               |
| 1.0                        | INTRODUCTION                                                  | .4                              |
| 2.0                        | APPARATUS                                                     |                                 |
|                            | 2.1 Test Facility                                             | 5<br>5<br>6                     |
| 3.0                        | TEST DESCRIPTION                                              |                                 |
|                            | 3.1 Test Conditions and Procedures                            | 6<br>7<br>8                     |
| 4.0                        | DATA PACKAGE PRESENTATION                                     | 8                               |
|                            | APPENDIXES                                                    |                                 |
| I.                         | ILLUSTRATIONS                                                 |                                 |
| Figu                       | <u>re</u>                                                     |                                 |
| 1.<br>2.<br>3.<br>4.<br>5. | Tunnel Installation of Configuration 30 0.05-Scale A-10 Model | 9<br>10<br>11<br>17<br>24<br>27 |
| II.                        | TABLES                                                        |                                 |
| 1.<br>2.                   | Summary of Nominal Test Conditions                            | 33                              |
| 3.<br>4.<br>5.             | Points                                                        | 34<br>35<br>36<br>44            |

# NOMENCLATURE

ALFA Model angle of attack relative to the aircraft water-

line, deg

ALFI Support system angle of attack relative to the

wind tunnel centerline, deg

BETA Model angle of sideslip

BL Aircraft model buttline, in.

CLL Store rolling-moment coefficient, rolling moment/QSd

CN Store normal-force coefficient, normal force/QS

CLM Store pitching-moment coefficient, pitching

moment/QSd

CLN Store yawing-moment coefficient, yawing moment/QSd

CONF Store loading configuration (Fig. 5)

CY Store side-force coefficient, side force/QS

d Store reference length (Table 2), ft

FS Aircraft model fuselage station, in.

MACH, M Free-stream Mach number

MER Multiple ejection rack

MSER Multiple store ejection rack

P Free-stream static pressure, psfa

PART Part number

PHII Support system roll angle, deg

PT Free-stream total pressure, psfa

Q Free-stream dynamic pressure, psf

R Reynolds number, per ft

S Store reference area (Table 2), ft<sup>2</sup>

TER Triple ejection rack

TEST Test Number

TP Test point

TRL Triple rail launcher

TT Free-stream total temperature, °F

WL Aircraft model waterline, in.

XCP Store center of pressure,  $C_m/C_N$ , store reference

lengths

XMR Distance from store nose to the moment reference

point (Table 2), in.

ZMR Distance from store centerline to the rolling

moment reference point (Table 2), in.

COEFFICIENT SIGN CONVENTIONS, AS SEEN BY PILOT

CN Positive up

CY Positive along right wing

CLM Positive nose up

CLN Positive nose right

CLL Positive right wing down

Note: See Table 2 for reference dimensions and moment reference points.

#### 1.0 INTRODUCTION

A wind tunnel test was conducted to measure loads on stores mounted in the carriage position on a 0.05-scale model of the A-10 aircraft. The A-10 model was wind tunnel tested without installation of the Pave Penny pod and pylon. Six of the 11 A-10 pylons were equipped with internal strain-gage balances, each of which measured five-component force and moment data. Thirty-six configurations consisting of 15 different store models and four different loading racks mounted in various combinations on all 11 pylons were tested. Each configuration was tested at Mach numbers 0.3, 0.5, 0.65, and 0.75 at sideslip angles from -18 to 18 deg for constant angles of attack of 0, 5, 10, 15, and 20 deg. One symmetrical configuration (Configuration 30) was chosen to check for Reynolds number and aerodynamic hysteresis effects.

The work reported herein was conducted at the Arnold Engineering Development Center (AEDC), Air Force Systems Command (AFSC) at the request of the Air Force Armament Laboratory (AFATL/DLJCE), Eglin Air Force Base, Florida, under Program Element 65807F. The AFATL project monitor was Dr. Larry Lijewski. The test results were obtained by ARO, Inc., AEDC Division (a Sverdrup Corporation Company), contract operator of AEDC, AFSC, Arnold Air Force Station, Tennessee. The test was conducted from May 26 through June 3, 1978, under ARO Project Number P41C-22.

The final data have been transmitted to the Air Force Armament Laboratory (AFATL/DLJCA), Eglin Air Force Base, Florida. Requests for these data must be referred to the Air Force Armament Laboratory (AFATL/DLJCE), Eglin Air Force Base, Florida, 32542. A copy of the final data is on file on microfilm at AEDC.

## 2.0 APPARATUS

# 2.1 TEST FACILITY

The Aerodynamic Wind Tunnel (4T) is a closed-loop, continuous flow, variable-density tunnel in which the Mach number can be varied from 0.1 to 1.3 and can be set at discrete Mach numbers of 1.6 and 2.0 by placing nozzle inserts over the permanent sonic nozzle. At all Mach numbers, the stagnation pressure can be varied from 300 to 3,700 psfa. The test section is 4 ft square and 12.5 ft long with perforated, variable porosity (0.5- to 10-percent open) walls. It is completely enclosed in a plenum chamber from which the air can be evacuated, allowing part of the tunnel airflow to be removed through the perforated walls of The model support system consists of a the test section. sector and sting attachment which has a pitch angle capability of -7.5 to 28 deg with respect to the tunnel centerline and a roll capability of -180 to 180 deg about the sting centerline. A more complete description of the tunnel may be found in the Test Facilities Handbook.

# 2.2 TEST ARTICLES

The 0.05-scale A-10 model and its associated hardware dimensions and details are presented in Figs. 1 through 3. The A-10 model has adjustable flaps, ailerons, speed brakes, elevators, and rudders, however, during this test all control surfaces were set to zero or the neutral position. Pylons 1, 3, 5, 6, 8, and 10 were equipped with balances (Fig. 3). The balances were fixed in the pylons with screws and pins and remained on the aircraft during the entire test. The remaining dummy pylons (2, 4, 7, 9, and 11) were also affixed to the aircraft at all times. The 0.05in. gap (Fig. 3) between the store and pylons that was present on the metric pylons was simulated on all dummy stores and racks with 0.05-in.-thick spacers at the attachment points. Details and dimensions of the external stores and racks are shown in Fig. 4. Figure 5 provides a key by which the various configurations are identified.

Test Facilities Handbook (Tenth Edition). "Propulsion Wind Tunnel Facility, Vol. 4." Arnold Engineering Development Center, May 1974.

# 2.3 TEST INSTRUMENTATION

Test instrumentation consisted of five-component carriage load balances within pylons 1, 3, 5, 6, 8, and 10 and an angular position indicator (API) for measuring the model attitude. The carriage load balances are an integral part of the pylons, and the loading racks or stores mount directly to the balance such that the balance measures the loads transmitted to the pylon by the rack or store. Because of space constraints, axial-force links could not be incorporated into the carraige load balances and hence, axial-force loads of the various store configurations could not be determined. The API consists of a strain gaged pendulum, encased in oil to damp out unwanted vibrations, that delivers an output proportional to model attitude. this case, the model was not only pitched but also rolled and hence, the API was calibrated over a range from -20 to 20 deg in pitch and from -180 to 180 deg in roll. balance and model attitude data were input into the PWT digital computer for online data reduction and display.

## 3.0 TEST DESCRIPTION

## 3.1 TEST CONDITIONS AND PROCEDURES

Carriage loads force and moment data were obtained using the pitch-pause technique to incrementally vary the A-10 model angle of sideslip while holding Mach number, total pressure, and angle of attack constant. The angle-of-sideslip range was -18 to 18 deg at Mach number 0.3, -15 to 15 deg at Mach number 0.5, and -12 to 12 deg at Mach numbers 0.65 and 0.75 while holding angle of attack constant at 0, 5, 10, 15, or 20 deg. In addition, an angle-of-attack sweep from 0 to 20 deg with sideslip angle zero was made at each Mach number. The combined attitude polars were run automatically using online computer facilities which set the model pitch and roll angles to give the prescribed values at angle of attack and sideslip.

Additional data were taken to ascertain the effects of Reynolds number and aerodynamic hysteresis. Unit Reynolds number was varied from  $_{0}$ .73 to 2.44 x  $_{0}$ /ft at Mach number 0.3, 1.14 to 2.75 x  $_{0}$ /ft at Mach number 0.5, and 1.51 to 3.58 x  $_{0}$ /ft at Mach number 0.75. Aerodynamic hysteresis was checked by varying angle of attack and sideslip through a complete positive and negative sweep cycle. A summary of the nominal test conditions set during the test is shown in Table 1.

The data were continuously monitored with the Tunnel 4T GT-42 real time graphics display. In addition, the data were also transmitted to the AEDC IBM-370/165 graphics system whereby the data could be recalled on the Tunnel 4T control room graphics terminal for analysis during the test. Examples of the graphics plots are presented in Fig. 6. Plots like these were used to identify Reynolds number and aerodynamic hysteresis effects on Configuration 30 and to monitor data consistency throughout the test.

# 3.2 DATA REDUCTION AND CORRECTIONS

The carriage loads force and moment data were reduced to coefficient form in the pylon-axis coordinate system. Pitching and yawing moments were referenced to a point midway between the store/rack mounting lugs on the balance centerline. Rolling moment was referenced to a point midway between the store/rack mounting lugs on the pylon lower surface. Pitching and yawing moments could not be transferred off the balance centerline since axial force was not measured for the reasons given in Section 2.3. With an estimated axial force, the pitching and yawing moments can be referenced about any other point with the following equations:

CLM(TRANSFERRED) = CLM(TABULATED) + x CN/d + z CA(EST)/d

CLN(TRANSFERRED) = CLN(TABULATED) + x CY/d - y CA(EST)/d

CLL (TRANSFERRED) = CLL (TABULATED) + y CN/d + (z - 0.18)CY/d

where x, y, and z are the distances along the store (pylon) axis from the pitch and yaw moment reference point to the desired reference point, and are positive in the aft, out right wing, and downward directions. CA(EST) is the estimated axial-force coefficient for the store of interest (positive downstream). A summary of the reference lengths, areas and moment reference points for each of the stores and mounting racks is given in Table 2.

Flow angle corrections were not determined during this test since no main aircraft balance was present. However, the model attitude was corrected using average values obtained during previous aircraft tests. The values of flow angle corrections used were 0.64 deg at  $M_{\infty}=0.3$ , 0.51 deg at  $M_{\infty}=0.5$ , 0.41 deg at  $M_{\infty}=0.65$  and 0.35 deg at  $M_{\infty}=0.75$ . Corrections for the components of model weight, normally termed static tares were also applied to the data.

# 3.3 UNCERTAINTY/PRECISION OF MEASUREMENT

The balance and instrumentation system uncertainties, based on a 95-percent confidence level, were combined with the uncertainties in the tunnel parameters, using a Taylor series approximation for error propagation, to estimate the uncertainties of the tunnel parameters and the aerodynamic coefficients. Representative uncertainties determined in tunnel parameters and aerodynamic coefficients are given in Table 3. The calculations shown are for the 600-gal ferrying tank mounted on pylon 6. The balance calibration uncertainties were approximately the same for all balances, hence, when reference areas and lengths are accounted for, the coefficient uncertainties shown are typical of all store and balance combinations. The precision in setting and maintaining a specific Mach number was ±0.005. The uncertainty in model angle of attack was  $\pm 0.1$  and in model roll angle was  $\pm 0.4$  deg.

# 4.0 DATA PACKAGE PRESENTATION

A summary of the test program listing part numbers for each test condition is presented in Table 4. A sample of the summary data tabulations is given in Table 5.



Figure 1 Tunnel Installation of Configuration 30







AILERON AND SPEED BRAKE



Figure 2 0.05-Scale A-10 Model



a. Pylon 1
Figure 3 A-10 Pylon Details



b. Pylon 3
Figure 3 Continued



DIMENSIONS IN INCHES

c. Pylon 5
Figure 3 Continued



d. Pylon 6

Figure 3 Continued



e. Pylon 8

Figure 3 Continued



f. Pylon 10

Figure 3 Concluded



# a. Racks

Figure 4 0.05-Scale External Stores and Racks



DIMENSIONS IN INCHES

b. ECM Pods

Figure 4 Continued



DIMENSIONS IN INCHES

c. AGM-65 and SUU-30 (H/B)

Figure 4 Continued



NOTES: 1. DIMENSIONS IN INCHES

2. MK-20 SHOWN ROLLED 45 deg

d. BLU-1, LAU-68 and MK-20

Figure 4 Continued



NOTES: 1. DIMENSIONS IN INCHES
2. GBU-12(B/B) SHOWN
ROLLED 45 deg

e. MK-82 Series
Figure 4 Continued



NOTES: 1. DIMENSIONS IN INCHES

2. GBU-10(C/B) SHOWN ROLLED 45 deg

# f. MK-84 Series

Figure 4 Continued



2.74

600-gal Tank

Figure 4 Concluded



NOTE: DARK SYMBOLS INDICATE METRIC PYLONS

a. Configurations 1 through 12Figure 5 Configuration Key



MOTE: DARK SYMBOLS INDICATE METRIC PYLONS

b. Configurations 13 through 24

Figure 5 Continued



BOTE: DARK SYMBOLS INDICATE METRIC PYLONS

c. Configurations 25 through 36 Figure 5 Concluded



a. CN versus ALFA, MACH = 0.3, BETA = 0 Figure 6 Sample Online Data Plots, Configuration 30



b. CLM versus ALFA, MACH = 0.3, BETA = 0
Figure 6 Continued



c. CLM versus ALFA, BETA = 0
Figure 6 Continued



d. CY versus ALFA , MACH = 0.3
 Figure 6 Continued



e. CLN versus ALFA , MACH = 0.75 Figure 6 Continued

f. CLN versus ALFA, MACH = 0.75
 Figure 6 Concluded

TABLE 1
SUMMARY OF NOMINAL TEST CONDITIONS

| MACH | PT    | Q   | P    | тт  | R x 10 <sup>-6</sup> |
|------|-------|-----|------|-----|----------------------|
| 0.30 | 800   | 47  | 752  | 82  | 0.73                 |
| 0.30 | 1200  | 71  | 1127 | 81  | 1.10                 |
| 0.30 | 2000* | 118 | 1879 | 89  | 1.80                 |
| 0.30 | 2800  | 166 | 2631 | 105 | 2.44                 |
| 0.50 | 800   | 118 | 674  | 81  | 1.14                 |
| 0.50 | 1200* | 177 | 1012 | 83  | 1.70                 |
| 0.50 | 2000  | 295 | 1686 | 96  | 2.75                 |
| 0.65 | 1200* | 267 | 903  | 83  | 2.06                 |
| 0.75 | 800   | 217 | 551  | 81  | 1.51                 |
| 0.75 | 1200* | 325 | 826  | 84  | 2.25                 |
| 0.75 | 2000  | 542 | 1377 | 102 | 3.58                 |

<sup>\*</sup> Primary Test Conditions



| STORE        | PYLON    | RACK     | XMR   | ZMR    | S       | d      |
|--------------|----------|----------|-------|--------|---------|--------|
| AGM-65       | 3        | TRL      | 2.725 | 0.3500 | 0.00196 | 0.0500 |
| ALQ-119-12   | 1        | -        | 4.800 | 0.3000 | 0.00196 | 0.0500 |
| ALQ-131(AB)  | 1        |          | 5.590 | 0.3850 | 0.00196 | 0.0500 |
| BLU-1(U)     | 8,10     | _        | 3.225 | 0.5187 | 0.00479 | 0.0781 |
| GBU-8/B      | 8        | _        | 3.974 | 0.5000 | 0.00442 | 0.0750 |
| GBU-10 (C/B) | 3,5,8    | _        | 5.060 | 0.5000 | 0.00442 | 0.0750 |
| GBU-12(B/B)  | 1,8      | _        | 3.960 | 0.3188 | 0.00158 | 0.0448 |
| GBU-15(CWW)  | 3        | _        | 4.251 | 0.5000 | 0.00442 | 0.0750 |
| GBU-15(PWW)  | 3        | _        | 4.251 | 0.5000 | 0.00442 | 0.0750 |
| LAU-68       | 8        | TER      | 1.610 | 1.0225 | 0.00134 | 0.0413 |
| MK-20        | 1        | _        | 2.201 | 0.3819 | 0.00240 | 0.0553 |
| MK-20        | 8        | MSER     | 4.552 | 0.8519 | 0.00240 | 0.0553 |
| MK-20        | 8        | TER      | 2.201 | 1.1060 | 0.00240 | 0.0553 |
| MK-82(GP)    | 1,3,5,10 | <b>–</b> | 1.910 | 0.3188 | 0.00158 | 0.0448 |
| MK-82(GP)    | 5        | MSER     | 4.261 | 0.7888 | 0.00158 | 0.0448 |
| MK-82(GP)    | 8        | TER      | 1.910 | 1.0438 | 0.00158 | 0.0448 |
| MK-82(SE)    | 5        | TER      | 1.910 | 1.0438 | 0.00158 | 0.0448 |
| 600 GAL.     | 6,8      | _        | 7.725 | 0.7980 | 0.01287 | 0.1280 |
| SUU-30(H/B)  | 1,5,10   | _        | 2.050 | 0.4530 | 0.00354 | 0.0672 |
| SUU-30(H/B)  | 3,8      | TER      | 2.050 | 1.1780 | 0.00354 | 0.0672 |
| SUU-30 (H/B) | 5,6,8    | MSER     | 4.401 | 0.9230 | 0.00354 | 0.0672 |
| SUU-30 (H/B) | 6        | MER      | 4.468 | 1.1780 | 0.00354 | 0.0672 |

Notes: 1. XMR Measured from Nose of Forward Store when Mounted on Rack.

2. ZMR Measured from Centerline of Lowest Store when Mounted on Rack.

TABLE 3
MEASUREMENT UNCERTAINTIES

|                |         | MA         | СН       | e Till aller en ekste et i est men ekste kanna kanna kanna ekste ekste ekste ekste ekste ekste ekste ekste eks |
|----------------|---------|------------|----------|----------------------------------------------------------------------------------------------------------------|
| DATA PARAMETER | 0.30    | 0.50       | 0.65     | 0.75                                                                                                           |
|                |         | DATA UNCER | TAINTIES |                                                                                                                |
| MACH           | ±0.0077 | ±0.0066    | ±0.0054  | ±0.0049                                                                                                        |
| PT             | ±4.3    | ±3.6       | ±3.6     | ±3.6                                                                                                           |
| P              | ±4.3    | ±3.3       | ±3.1     | ±2.9                                                                                                           |
| Q              | ±5.8    | ±4.3       | ±3.8     | ±3.5                                                                                                           |
| CN(CN = 0)     | ±0.092  | ±0.061     | ±0.041   | ±0.033                                                                                                         |
| CN(CN = 1)     | ±0.104  | ±0.066     | ±0.043   | ±0.035                                                                                                         |
| CY(CY = 0)     | ±0.085  | ±0.057     | ±0.037   | ±0.031                                                                                                         |
| CY(CY = 1)     | ±0.098  | ±0.06]     | ±0.040   | ±0.033                                                                                                         |
| CLM(CLM = 0)   | ±0.041  | ±0.027     | ±0.018   | ±0.015                                                                                                         |
| CLM(CLM = 1)   | ±0.064  | ±0.037     | ±0.023   | ±0.018                                                                                                         |
| CLN(CLN = 0)   | ±0.036  | ±0.024     | ±0.016   | ±0.013                                                                                                         |
| CLN(CLN = 1)   | ±0.061  | ±0.034     | ±0.021   | ±0.017                                                                                                         |
| CLL(CLL = 0)   | ±0.054  | ±0.036     | ±0.024   | ±0.020                                                                                                         |
| CLL(CLL = 1)   | ±0.073  | ±0.043     | ±0.028   | ±0.022                                                                                                         |

Note: Uncertainties Calculated at the Primary Test Conditions Listed in Table 1.

### SUMMARY OF TEST PROGRAM

## AFATL A-IO CARRIAGE LOADS TEST P4IC-22 TC544

| jar-fur-furimus-videatus-furimus-viscole |          |          |      | MACH | , PT | ·    |
|------------------------------------------|----------|----------|------|------|------|------|
| CONF.                                    | ALFA     | BETA     | 0.30 | 0.50 | 0.65 | 0.75 |
|                                          |          |          | 2000 | 1200 | 1200 | 1200 |
| /                                        | VARIABLE | 0        | 1092 | 1098 | 1104 | 1111 |
|                                          | 0        | VARIABLE | 1093 | 1099 | 1105 | 1114 |
|                                          | 5        |          | 1094 | 1100 | 1106 | 1/15 |
|                                          | 10       |          | 1095 | 1101 | 1107 | 1116 |
|                                          | 15       |          | 1096 | 1102 | 1108 | 1117 |
| A                                        | 20       | V        | 1097 | 1103 | 1110 | 1118 |
| 2                                        | VARIABLE | 0        | 106  | 112  | 118  | 124  |
|                                          | 0        | VARIABLE | 107  | 1/3  | 119  | 125  |
|                                          | 5        |          | 108  | 114  | 120  | 126  |
|                                          | 10       |          | 109  | 115  | 121  | 127  |
|                                          | 15       |          | 110  | 116  | 122  | 128  |
| V                                        | 20       | <b>₩</b> | 111  | 117  | 123  | 129  |
| 3                                        | VARIABLE | 0        | /33  | 139  | 145  | 151  |
|                                          | 0        | VARIABLE | 134  | 140  | 146  | 152  |
|                                          | 5        |          | 135  | 141  | 147  | 153  |
|                                          | 10       |          | 136  | 142  | 148  | 154. |
|                                          | 15       |          | 137  | 143  | 149  | 155  |
| V                                        | 20       | V ,      | 138  | 144  | 150  | 156  |
| 4                                        | VARIABLE | 0        | 160  | 166  | 172  | 178  |
|                                          | 0        | VARIABLE | 161  | 167  | /73  | 179  |
|                                          | 5        |          | 162  | 168  | 174  | 180  |
|                                          | 10       |          | 163  | 169  | 175  | 181  |
|                                          | 15       |          | 164  | 170  | 176  | 182  |
| <b>V</b>                                 | 20       | γ        | 165  | 17/  | 177  | 183  |
| 5                                        | VARIABLE | 0        | 187  | 193  | 199  | 205  |
|                                          | 0        | VARIABLE | 188  | 194  | 200  | 206  |
|                                          | 5        |          | 189  | 195  | 201  | 207  |
|                                          | 10       |          | 190  | 196  | 202  | 208  |
|                                          | 15       |          | 191  | 197  | 203  | 209  |
| <u> </u>                                 | 20       | V        | 192  | 198  | 204  | 210  |

## AFATL A-IO CARRIAGE LOADS TEST P4IC-22 TC544

| )     |          |          |      | MACH | , PT |      |
|-------|----------|----------|------|------|------|------|
| CONF. | ALFA     | BETA     | 0.30 | 0.50 | 0.65 | 0.75 |
|       |          |          | 2000 | 1200 | 1200 | 1200 |
| 6     | VARIABLE | 0        | 219  | 225  | 231  | 237  |
|       | 0        | VARIABLE | 220  | 226  | 232  | 238  |
|       | 5        |          | 221  | 227  | 233  | 239  |
|       | 10       |          | 222  | 228  | 234  | 240  |
|       | 15       |          | 223  | 229  | 235  | 241  |
| V     | 20       | V        | 224  | 230  | 236  | 242  |
| 7     | VARIABLE | 0        | 247  | 253  | 262  | 268  |
|       | 0        | VARIABLE | 248  | 254  | 263  | 269  |
|       | 5        |          | 249  | 258  | 264  | 270  |
|       | 10       |          | 250  | 259  | 265  | 271  |
|       | 15       |          | 251  | 260  | 266  | 272  |
| A     | 20       | ٧.       | 252  | 261  | 267  | 273  |
| 8     | VARIABLE | 0        | 279  | 287  | 293  | 302  |
|       | 0        | VARIABLE | 308  | 291  | 294  | 303  |
|       | 5        |          | 280  | 288  | 295  | 304  |
|       | 10       |          | 282  | 289  | 296  | 305  |
|       | 15       |          | 283  | 290  | 300  | 306  |
| V     | 20       |          | 285  | 292  | 301  | 307  |
| 9     | VARIABLE | 0        | 316  | 322  | 328  | 334  |
|       | 0        | VARIABLE | 317  | 323  | 329  | 335  |
|       | 5        |          | 318  | 324  | 330  | 336  |
|       | 10       |          | 319  | 325  | 331  | 337  |
|       | 15       |          | 320  | 326  | 332  | 338  |
| V     | 20       | Ą        | 321  | 327  | 333  | 339  |
| 10    | VARIABLE | 0        | 344  | 350  | 356  | 36Z  |
|       | 0        | VARIABLE | 345  | 351  | 357  | 363  |
|       | 5        |          | 346  | 352  | 358  | 364  |
|       | 10       |          | 347  | 353  | 359  | 365  |
|       | 15       |          | 348  | 354  |      |      |
| V     | 50       | V        | 349  | 355  | 361  | 367  |

## AFATL A-10 CARRIAGE LOADS TEST P41C-22 TC544

|      |          |          | ann air an ghaile ann an agus an | MACH | , PT | •    |
|------|----------|----------|----------------------------------------------------------------------|------|------|------|
| CONF | . ALFA   | BETA     | 0.30                                                                 | 0.50 | 0.65 | 0.75 |
|      |          |          | 2000                                                                 | 1200 | 1200 | 1200 |
| //   | VARIABLE | 0        | 372                                                                  | 378  | 384  | 390  |
|      | 0        | VARIABLE | 373                                                                  | 379  | 385  | 391  |
|      | 5        |          | 374                                                                  | 380  | 386  | 392  |
|      | 10       |          | 375                                                                  | 381  | 387  | 393  |
|      | 15       |          | 376                                                                  | 38Z  | 388  | 394  |
| V    | 20       | V        | 377                                                                  | 383  | 389  | 395  |
| 12   | VARIABLE | 0        | 401                                                                  | 407  | 413  | 419  |
|      | 0        | VARIABLE |                                                                      | 408  | 4/4  | 420  |
|      | 5        |          | 403                                                                  | 409  | 415  | 421  |
|      | 10       |          | 404                                                                  | 410  | 416  | 422  |
|      | 15       |          | 405                                                                  | 411  | 417  | 423  |
| V    | 20       | ٠.       | 406                                                                  | 412  | 418  | 424  |
| 13   | VARIABLE | 0        | 429                                                                  | 442  | 448  | 454  |
|      | 0        | VARIABLE | 430                                                                  | 443  | 449  | 455  |
|      | 5        |          | 43/                                                                  | 444  | 450  | 456  |
|      | 10       |          | 432                                                                  | 445  | 451  | 457  |
|      | 15       |          | 440                                                                  | 446  | 452  | 458  |
| V    | 20       | ₩ .      | 441                                                                  | 447  | 453  | 459  |
| 14   | VARIABLE | 0        | 464                                                                  | 470  | 476  | 482  |
|      | 0        | VARIABLE | 465                                                                  | 471  | 477  | 485  |
|      | 5        |          | 466                                                                  | 472  | 418  | 486  |
|      | 10       |          | 467                                                                  | 473  | 479  | 487  |
|      | 15       |          | 468                                                                  | 474  | 480  | 490  |
| V    | 20       | V        | 469                                                                  | 475  | 481  | 491  |
| 15   | VARIABLE | 0        | 495                                                                  | 501  | 507  | 513  |
|      | 0        | VARIABLE | 496                                                                  | 502  | 508  | 514  |
|      | 5        |          | 497                                                                  | 503  | 509  | 515  |
|      | 10       |          | 498                                                                  | 504  | 510  | 516  |
|      | 15       |          | 499                                                                  | 505  | 511  | 517  |
| V    | 20       | V        | 500                                                                  | 506  | 512  | 518  |

## AFATL A-10 CARRIAGE LOADS TEST P41C-22 TC544

|          |          |          | The second state of the se | MACH | , PT |      |
|----------|----------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|
| CON      | F. ALFA  | BETA     | 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.50 | 0.65 | 0.75 |
|          |          |          | 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1200 | 1200 | 1200 |
| 16       | VARIABLE | 0        | 523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 529  | 535  | 541  |
|          | 0        | VARIABLE | 524                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 530  | 536  | 542  |
|          | 5        |          | 525                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 531  | 537  | 543  |
|          | 10       |          | 526                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 532  | 538  | 544  |
|          | 15       |          | 527                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 533  | 539  | 545  |
| ٧        | 20       | ٧        | 528                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 534  | 540  | 546  |
| 17       | VARIABLE | 0        | 551                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 557  | 563  | 569  |
|          | 0        | VARIABLE | 552                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 558  | 564  | 570  |
|          | 5        |          | 553                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 559  | 565  | 571  |
|          | 10       |          | 554                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 560  | 566  | 572  |
|          | 15       |          | 555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 561  | 567  | 573  |
| V        | 20       |          | 556                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 562  | 568  | 574  |
| 18       | VARIABLE | 0        | 579                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 585  | 591  | 597  |
|          | 0        | VARIABLE | 580                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 586  | 592  | 598  |
|          | 5        |          | 581                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 587  | 593  | 599  |
|          | 10       |          | 582                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 588  | 594  | 600  |
|          | 15       |          | 583                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 589  | 595  | 601  |
| V        | 20       | V        | 584                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 590  | 596  | 602  |
| 19       | VARIABLE | 0        | 607                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 613  | 619  | 625  |
|          | 0        | VARIABLE | 608                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 614  | 620  | 626  |
|          | 5        |          | 609                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 615  | 621  | 627  |
|          | 10       |          | 610                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 616  | 622  | 628  |
|          | 15       |          | 611                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 617  | 623  | 629  |
| <b>V</b> | 20       | ٧        | 612                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 618  | 624  | 630  |
| 20       | VARIABLE | 0        | 635                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 641  | 647  | 653  |
|          | 0        | VARIABLE | 636                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 642  | 648  | 654  |
|          | 5        |          | 637                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 643  | 649  | 655  |
|          | 10       |          | 638                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 644  | 650  | 656  |
|          | 15       |          | 639                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 645  | 651  | 657  |
| <u> </u> | 50       | <u> </u> | 640                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 646  | 652  | 658  |

## AFATL A-10 CARRIAGE LOADS TEST

P41C-22

TC 544

|    |          |          |          |             | MACH | , PT |      |
|----|----------|----------|----------|-------------|------|------|------|
| CO | NF.      | ALFA     | BETA     | 0.30        | 0.50 | 0.65 | 0.75 |
|    |          |          |          | 2000        | 1200 | 1200 | 1200 |
| 2  | /        | VARIABLE | 0        | 661         | 667  | 683  | 688  |
|    |          | 0        | VARIABLE | 662         | 668  | 682  | 689  |
|    |          | 5        |          | 663         | 669  | 684  | 690  |
|    |          | 10       |          | 664         | 670  | 685  | 691  |
|    |          | 15       |          | 665         | 671  | 686  | 692  |
| \  | <b>)</b> | 20       | <b>V</b> | 666         | 672  | 687  | 693  |
| 2. | 2        | VARIABLE | 0        | 699         | 705  | 7//  | 7/7  |
|    |          | 0        | VARIABLE | 700         | 706  | 7/2  | 723  |
|    |          | 5        |          | 701         | 707  | 7/3  | 719  |
|    |          | 10       |          | 702         | 708  | 714  | 720  |
|    |          | 15       |          | 703         | 709  | 715  | 721  |
| 1  | ,        | 20       | 4        | 704         | 710  | 716  | 722  |
| 2  | 3        | VARIABLE | 0        | 728         | 734  | 740  | 746  |
|    |          | 0        | VARIABLE | 729         | 735  | 741  | 747  |
|    |          | 5        |          | 730         | 736  | 742  | 748  |
|    |          | -10      |          | 731         | 737  | 743  | 749  |
|    |          | . 15     |          | 732         | 738  | 744  | 750  |
| ,  | <u> </u> | 20       | 4        | <i>73</i> 3 | 739  | 745  | 751  |
| 2  | 4        | VARIABLE | 0        | 755         | 761  | 767  | 773  |
|    |          | 0        | VARIABLE | 756         | 762  | 768  | 774  |
|    |          | 5        |          | 757         | 763  | 769  | 775  |
|    |          | 10       |          | 758         | 764  | 770  | 776  |
|    |          | 15       |          | 759         | 765  | 771  | 777  |
|    |          | 20       |          | 760         | 766  | 772  | 778  |
| 2. | 5_       | VARIABLE | 0        | 782         | 790  | 796  | 802  |
|    |          | 0        | VARIABLE | <i>7</i> 83 | 791  | 797  | 803  |
|    |          | 5        |          | 784         | 792  | 798  | 804  |
|    |          | 10       |          | 787         | 793  | 799  | 805  |
|    |          | 15       |          | 788         | 794  | 800  | 806  |
|    |          | 20       | V        | 789         | 795  | 801  | 807  |

## AFATL A-IO CARRIAGE LOADS TEST P4IC-22 TC544

| 1     |          |          |      | MACH | , PT | •    |
|-------|----------|----------|------|------|------|------|
| CONF. | ALFA     | BETA     | 0.30 | 0.50 | 0.65 | 0.75 |
|       |          |          | 2000 | 1200 | 1200 | 1200 |
| 26    | VARIABLE | 0        | 1064 | 1070 | 1076 | 1082 |
|       | 0        | VARIABLE | 1065 | 1071 | 1077 | 1083 |
|       | 5        |          | 1066 | 1072 | 1078 | 1084 |
|       | 10       |          | 1067 | 1073 | 1079 | 1085 |
|       | 15       |          | 1068 | 1074 | 1080 | 1086 |
| V     | 20       | V        | 1069 | 1075 | 1081 | 1087 |
| 27    | VARIABLE | 0        | 811  | 817  | 823  | 829  |
|       | 0        | VARIABLE |      | 818  | 824  | 830  |
|       | 5        |          | 813  | 819  | 825  | 83/  |
|       | 10       |          | 814  | 820  | 826  | 832  |
|       | 15       |          | 815  | 821  | 827  | 833  |
| V     | 20       | ٧.       | 816  | 822  | 828  | 834  |
| 28    | VARIABLE | 0        | 841  | 847  | 853  | 859  |
|       | 0        | VARIABLE | 842  | 848  | 854  | 860  |
|       | 5        |          | 843  | 849  | 855  | 861  |
|       | 10       |          | 844  | 850  | 856  | 862  |
|       | 15       |          | 845  | 851  | 857  | 863  |
| V     | 20       | V        | 846  | 852  | 858  | 864  |
| 29    | VARIABLE | 0        | 869  | 875  | 881  | 887  |
|       | 0        | VARIABLE | 870  | 876  | 882  | 888  |
|       | 5        |          | 871  | 877  | 883  | 889  |
|       | 10       |          | 872  | 878  | 884  | 890  |
|       | 15       |          | 873  | 879  | 885  | 891  |
| ٧     | 20       | .V       | 874  | 880  | 886  | 892  |
| 30    | VARIABLE | 0        | 55   | 64   | 79   | 85   |
|       | 0        | VARIABLE | 91   | 65   | 80   | 86   |
|       | 5        |          | 92   | 77   | 81   | 87   |
|       | 10       |          | 61*  | 74   | 82   | 88   |
|       | 15       |          | 93   | 75   | 83   | 89   |
| ٧     | 20       |          | 63*  | 78   | 84   | 90   |

\* <u>PT = 1200</u>

## AFATL A-IO CARRIAGE LOADS TEST P4IC-22 TC544

|          |          |          |      | MACH | , PT |      |
|----------|----------|----------|------|------|------|------|
| CON      | F. ALFA  | BETA     | 0.30 | 0.50 | 0.65 | 0.75 |
|          |          |          | 2000 | 1200 | 1200 | 1200 |
| 3/       | VARIABLE | 0        | 897  | 903  | 909  | 915  |
|          | 0        | VARIABLE | i    | 904  | 910  | 916  |
|          | 5        |          | 899  | 905  | 911  | 917  |
|          | 10       |          | 900  | 906  | 912  | 918  |
|          | 15       |          | 901  | 907  | 913  | 919  |
| ٧        | 20       | V        | 902  | 908  | 914  | 920  |
| 32       | VARIABLE | 0        | 925  | 931  | 937  | 943  |
|          | 0        | VARIABLE |      | 932  | 938  | 944  |
|          | 5        |          | 927  | 933  | 939  | 945  |
|          | 10       |          | 928  | 934  | 940  | 946  |
|          | 15       |          | 929  | 935  | 941  | 947  |
| V        | 20       | V .      | 930  | 936  | 942  | 948  |
| 33       | VARIABLE | 0        | 956  | 962  | 968  | 974  |
|          | 0        | VARIABLE | 957  | 963  | 969  | 975  |
|          | 5        |          | 958  | 964  | 970  | 976  |
|          | 10       |          | 959  | 965  | 971  | 917  |
|          | 15       |          | 960  | 966  | 972  | 978  |
| <b>V</b> | 20       |          | 961  | 967  | 973  | 979  |
| 34       | VARIABLE | 0        | 984  | 990  | 996  | 1002 |
|          | 0        | VARIABLE | 985  | 991  | 997  | 1003 |
|          | 5        |          | 986  | 992  | 998  | 1004 |
|          | 10       |          | 987  | 993  | 999  | 1005 |
|          | 15       |          | 988  | 994  | 1000 | 1006 |
| V        | 20       | ٧        | 989  | 995  | 1001 | 1007 |
| 35       | VARIABLE | 0        | 1011 | 1017 | 1023 | 1029 |
|          | 0        | VARIABLE | 1012 | 1018 | 1024 | 1030 |
|          | 5        |          | 1013 | 1019 | 1025 | 1031 |
|          | 10       |          | 1014 | 1020 | 1026 | 1032 |
|          | 15       |          | 1015 | 1021 | 1027 | 1033 |
| 4        | 20       | V        | 1016 | 1022 | 1028 | 1034 |

TABLE 4 Concluded

### AFATL A-IO CARRIAGE LOADS TEST P4IC-22 TC544

|     |          |          |            |      | MACH | , PT |      |
|-----|----------|----------|------------|------|------|------|------|
| COI | NF.      | ALFA     | вета       | 0.30 | 0.50 | 0.65 | 0.75 |
|     |          |          |            | 2000 | 1200 | 1200 | 1200 |
| 36  | >        | VARIABLE | 0          | 1038 | 1044 | 1050 | 1056 |
|     |          | 0        | VARIABLE   | 1039 | 1045 | 1051 | 1057 |
|     |          | 5        |            | 1040 | 1046 | 1052 | 1058 |
|     |          | 10       |            | 1041 | 1047 | 1053 | 1059 |
|     |          | 15       |            | 1042 | 1048 | 1054 | 1060 |
|     | <b>,</b> | 20       | <b>V</b> . | 1043 | 1049 | 1055 | 1061 |

# REYNOLDS NUMBER AND HYSTERESIS CHECKS CONFIGURATION 30

|     | <del>-</del> | A1.75A   | DETA    |    |      | MA   | CH   |      |
|-----|--------------|----------|---------|----|------|------|------|------|
| Р   | <br>         | ALFA     | BETA    | _  | 0.30 | 0.50 | 0.65 | 0.75 |
| 80  | 00           | VARIABLE | 0       |    | 46   | 49   |      | 52   |
|     |              | 0        | VARIAB  | _E | 47   | 50   |      | 53   |
| ٧   | 1            | 15       | V       |    | 48   | 51   |      | 73   |
| 120 | 00           | VARIABLE | 0       |    | 55   | 64   | 79   | 85   |
|     |              | 0        | VARIABL | E. | 56   | 65   | 80   | 86   |
|     |              | 5        |         |    | 60   | 77.  | 81   | 87   |
|     |              | 10       |         |    | 61   | 74   | 82   | 88   |
|     |              | - 15     |         |    | 62   | 75   | 83   | 89   |
| V   | 1            | 20       | ٧       |    | 63   | 78   | 84   | 90   |
| 200 | 00           | VARIABLE | 0       |    | 91   | 94   |      | 97   |
|     |              | 0        | VARIABL | E. | 92   | 95   |      | 98   |
|     |              | 15       |         |    | 93   | 96   |      | 99   |
| 280 | 00           | VARIABLE | 0       |    | 100  |      |      |      |
|     |              | 0        | VARIABL | Ε. | 101  |      |      |      |
| V   |              | 15       | 4       |    | 102  |      |      |      |

### SAMPLE TABULATED DATA FORMATS

|               | TEST 544             |               |              | NNESSEE    |              |                                          |            |        |                                  |               |          |                              |             |             |                  |  |
|---------------|----------------------|---------------|--------------|------------|--------------|------------------------------------------|------------|--------|----------------------------------|---------------|----------|------------------------------|-------------|-------------|------------------|--|
|               |                      | PART_         | 46 AF        | ATL AT10   | ÇARRIAGE     | LOADS TES                                | i <b>7</b> |        |                                  |               |          |                              |             |             |                  |  |
|               | SUMMARY<br>Date 5/2  | 1             |              |            |              |                                          |            |        | •                                |               |          |                              | TR.         | ANSONI      | C 4T             |  |
|               |                      |               |              |            |              |                                          |            |        | . All for the later of the later |               |          |                              |             | <del></del> |                  |  |
|               |                      | PT            | P<br>754 4   | Q T        | Y RX10       | 6 CONF                                   |            |        |                                  |               |          | <del></del>                  |             |             |                  |  |
|               | <b>0.</b> 5885 8     | 02.8          |              |            | 3,6 0,72     | •                                        |            |        |                                  |               |          |                              |             |             |                  |  |
|               | STERE HK-82          | /69 M         | 2<br>K=82/69 | 3<br>AGM=6 | 4<br>5 WV-82 | VCD MR-8                                 | 5          |        |                                  | , ce          | 8        | 99<br>AGM=65<br>TRL          | 10          | 8 WY        | 11               |  |
|               | RACK                 | , wr          |              | TRL        | T            | R_                                       | 2/ur       | PILON  | 70402                            | / 47          | TER      | IRL                          | MK404/G     | r PIN       | -02/GP           |  |
|               |                      |               |              |            |              |                                          |            |        |                                  |               |          |                              |             |             |                  |  |
|               |                      |               |              |            |              |                                          |            |        |                                  |               |          | المامة المراسعة الماسية الم  |             |             |                  |  |
| <sub></sub> . | P ALFA               | BETA          | ALFI         | PHII       | CN           | PYLON 1<br>CY CL                         | H CLN      |        | XÇP                              |               | PYLO     |                              | N CLL       | V 6 0       |                  |  |
|               | 3 -3,99              | 0.00          |              | 0:0        |              |                                          | 7 =0,997   | 70.029 | ₹3,693                           | ~4.097        | 1.134-1  | CLM CLI<br>4,307 1,62        | 2 0,488     | 3.492       |                  |  |
|               | 4 2,09               | <b>~</b> 0.00 |              | 0 : 1      | 0.949 0      | ,875 -3,18                               | 12 71,014  | ₹0.219 | -3,353                           | <b>~3,332</b> | 1,486-1  | 3,234 1,15                   | 1 =0.659    | 3,972       |                  |  |
| <u> </u>      | 60,03                | 0,00          |              | 0,0        |              | ·716 -3.02                               |            |        | -3,104                           | -1,692        | 1,188-1  | 2,293 0,69                   |             |             |                  |  |
|               | 7 1,96               | 0.00          |              | 0.0        |              | .527 -2.72                               |            |        | <b>43,466</b>                    |               |          |                              | 0 =0.237    |             |                  |  |
|               | 8 3,94               | 0.00          |              | 0:0        |              | .476 -2.53<br>.307 -2.22                 |            |        | -3,891                           |               | 0.704-1  | 1.029 0.45<br>0.459 0.35     | 3 -0.200-   |             |                  |  |
| 1             | 7,98                 | 0.00          |              | 0:0        |              | 128 -1,91                                |            |        |                                  |               |          | 9,636 0,14                   |             |             |                  |  |
| i             | 11 9,98              | 0,00          |              | 0.0        |              | 057 -1.62                                |            |        | -3,296                           | 2,665         | 0.010 -  | 8.867 -0.05                  | 8 -0.067    |             |                  |  |
| 1             | 10,96                | 0.00          |              | 0 0        |              | .001 -1.47                               |            | 0,522  | -3,729                           | 2,957         | -0,182 - | 8.389 -0.14                  | 8 0.118     | -2,837      | )<br><del></del> |  |
|               | 12.06                | 0.00          |              | 0.0        |              | 052 -1.40                                |            |        | -4,009                           |               |          | 8.078 =0.15                  |             |             |                  |  |
|               | 16 12,95<br>16 14,15 | 0.00          |              | 0:0        |              | .135 -1.29<br>.253 -1.10                 |            |        | -2,700<br>-2,384                 |               |          | 7,690 -0,18<br>7,117 -0,17   |             |             |                  |  |
|               | 15.08                | 0.00          | •            | 0.0        |              | 336 -0.96                                |            |        | -2.594                           |               |          | 7.083 -0.15                  |             |             |                  |  |
|               | 15.91                | 0.00          |              | 0.0        |              | .392 -G.69                               |            |        | -1.712                           |               |          | 6.767 -0.16                  |             |             |                  |  |
| 2             | 17.07                | 0,00          |              | 0 • 0      |              | 433 -0.76                                |            |        | -1.726                           |               |          | 6.722 -0.20                  |             |             |                  |  |
|               | 22 17,96             | 0.00          |              | 0 * 0      | 0.530 -0     | 491 -0.74                                | 2 0,535    | 1.056  | -1.400                           | 6.341         | -1,524 - | 6.838 -0.14                  | 5 0.446     |             |                  |  |
|               | 23 _ 19,03           | 0.00          |              | 0 • 0      |              | .552 -0.75                               |            |        | -1.020                           |               |          | 6.734 -0.10                  |             |             |                  |  |
|               | 24 19,96<br>25 19,04 | 0,00          |              | 0 : 0      |              | ,594 <b>-</b> 0,75<br>,509 <b>-</b> 0,72 |            |        | -1.027                           |               |          | 6,508 -0,06                  |             |             |                  |  |
|               | 26 18.02             | 0.00          |              | _ 0:0      |              | 465 -0.67                                |            | 1.069  | -1.411                           |               |          | 6.613 -0.13<br>6.843 -0.18   |             |             |                  |  |
|               | 27 16,99             | 0.00          |              | 0.0        |              | ,450 -0.76                               |            |        | -1.720                           |               |          | 6,730 -0,31                  |             |             |                  |  |
| 2             | 28 16,15             | 0.00          | 15,19        | 0.0        | 0.499 -0     | ,354 -0,84                               | 2 0,467    | 1.094  | -1,689                           | 5,229         | -1.021 - | 6,944 -0,26                  | 8 0.472     | -1,328      |                  |  |
| 3             | 14,94                | 0.00          |              | 0 + 0      |              | ,302 -1.02                               |            |        | -1,999                           |               |          | 7.075 -0.18                  |             |             |                  |  |
|               | 31 14.04             | 0.00          |              | 010        |              | ,242 -1:12                               |            |        | -2,992                           |               |          | 7.273 -0.20                  |             |             |                  |  |
|               | 32 13.01<br>33 12.03 | 0.00<br>0.00  |              | 0.0        |              | .196 <b>-1,2</b> 8<br>.013 <b>-1,3</b> 9 |            |        | -2.689<br>-3.144                 |               |          | 7.658 -0.12<br>8.123 -0.14   |             |             |                  |  |
|               | 34 10.98             | 0.00          |              | 0.0        |              | .041 -1.47                               |            | •      | -3,679                           |               |          | 8,471 -0,10                  |             |             |                  |  |
|               | 9,91                 | 0.00          |              | 0.0        |              | 029 -1.08                                |            |        | -3.159                           |               |          | 8,906 -0,06                  |             |             |                  |  |
|               | 36 0,03              | 0.00          | 7,24         | 0.0        | 0.505 0      | .166 -1.80                               | 9 -0.347   | 0.577  | -3.579                           | 2,253         | 0,210 -  | 9.656 0.17                   | 5 0,003     |             |                  |  |
| _             | 5,99                 | 0.00          |              | 0 . 0      |              | ,306 -2,22                               |            |        | -3,378                           |               |          | 0.554 0.37                   |             |             |                  |  |
|               | 38 3,99<br>39 2,00   | 0,00          |              | 0 • 0 -    |              | .439 -2.53<br>.581 -2.79                 |            |        | -3,846                           |               |          | 0,865 _ 0.45<br>1.893 _ 0.49 |             |             |                  |  |
|               |                      |               |              |            |              |                                          |            |        |                                  |               |          |                              | , com 4 m G | 30.645      |                  |  |

44

|             | DATE 5/2                        | 2/78            | <u> </u>         |                             | ÇARRIA     | GE LOA  | DS TEST          | parales decrea - tas faces. |                  |                    |       |                    |               |               | TR.            | inson I | Ç 4 <b>7</b> |              |
|-------------|---------------------------------|-----------------|------------------|-----------------------------|------------|---------|------------------|-----------------------------|------------------|--------------------|-------|--------------------|---------------|---------------|----------------|---------|--------------|--------------|
| <del></del> | MACH F                          | 7<br>12.8 7     |                  | Q T                         | T AX       | 10=6    | CONF             |                             |                  | <del></del>        |       |                    |               |               |                | -       |              |              |
|             | PYLON 1<br>STORE MK-82,<br>RACK |                 | 2<br>=82/GP      | 47,2 8<br>3<br>AGH-5<br>TRL | 3,6 Q.1    |         | -                |                             |                  |                    |       |                    |               |               | 10<br>MK=82/GI |         | 11<br>-82/GP |              |
|             |                                 |                 |                  |                             | <u>-</u> . | <br>PYI | LON 5            |                             | ; ·              |                    |       | PYL                | •             |               |                |         |              |              |
|             | TP ALFA<br>3 +3,99<br>4 =2,09   | BETA<br>0.00    | ALF1 -4,54       | PHII                        |            |         | 0.324            | 01200                       | 15000            | 271011             |       | PYL<br>CY<br>0,000 | CLM<br>0.000_ | CLN<br>_0:000 | CLL<br>0,000   | XC;     |              |              |
|             | 6 0.03                          | .0.00<br>_ 0.00 | -2,56<br>-0,61   | 0:1                         |            |         | 0.116            | 0.040                       | -2,631<br>-2,484 | 0,724              | 0.000 | 0.000              | 0.000         | 0,000         | 0.000          | 0,000   |              |              |
|             | 7 1.96<br>8 3.94                | 0.00            | 1,29<br>3,27     | 0 • 0                       |            |         | -0:139<br>-0:162 |                             | -2,444<br>-2,597 |                    | 0.000 | 0.000              | 0.000         | 0,000         | 0.000          | 0.000   |              |              |
|             | 9 6.03                          | 0.00            | 5,29<br>7,20     | 0.0                         | 0:136      | 0.293   | -0.136<br>-0.134 | 0.847                       | -2,625           | -1.002             | 0.000 |                    | 0.000         | 0,000         |                | 0,000   |              |              |
|             | 11 9,98<br>12 10,96             | 0.00            | 9,18<br>10,18    | 0 : 0                       | 0.130      | 0,199   | =0.127<br>=0.125 | 0,907                       | -2,540<br>-2,526 | <del>-</del> 0,975 | 0.000 | 0,000              | 0.000         | 0,000         | 0,000          | 0,000   |              |              |
|             | 15 12,06<br>16 12,95            | 0.00            | 11,20<br>12,12   | 0.0                         |            | 0.189   | -0.027           | 0,961                       | -2,536<br>-2,570 | -0,160             | 0.000 | 0,000              | 0.000         | 0,000         | 0,000          | 0,000   |              |              |
|             | 18 14.15<br>19 15.08            | 0.00            | 13,39            | 0.0                         | 0.069      | 0.205   | 0.122            | 1,054                       | -2,528           | 1.767              | 0.000 | 0.000              | 0.000         | 0.000         |                | 0,000   |              |              |
|             | 20 15,91                        | - 0.00          | 15,16            | 0.0                         | 0.024      | 0.245   | 0.054            | 1,052                       | <b>72,562</b>    | 1,134<br>0,520     | 0.000 | 0,000              | 0.000         | 0,000         |                | 0,000   |              |              |
|             | 21 17,07<br>22 17,96            | 0.00            | 16,25<br>17,16   | 0 0 0                       |            | 0.260   | 0.079            | 1,044                       | -2,590<br>-2,598 | 1,089<br>0,437     | 0,000 |                    | 0.000         | 0.000         |                | 0,000   |              |              |
|             | 23 19,03<br>24 19,96            | 0.00            | 18,20<br>19,15   | 0:0                         | 0.004      |         | 0.024            |                             | -2,730<br>-2,566 |                    | 0.000 |                    | 0.000         | 0.000         | 0.000          | 0,000   |              |              |
|             | 25 19.04                        | 0.00            | 18,21            | 0 : 0                       | 0.219      | 0.201   | 0.004            | 0,904                       | -2,540           | 0,019              | 0.000 | 0.000              | 0.000         | 0.000         | 0,000          | 0.000   |              | ·            |
|             | 26 18,02<br>27 16,99            | 0.00            | 17,18            | 0 + 0                       | 0.091      | 0.200   | 0.050<br>0.117   |                             | -2,764<br>-2,550 |                    | 0.000 |                    | 0.000         | 0.000         |                | 0,000   |              | •            |
|             | 28 16.15<br>30 14.94            | 0.00            | 15,19 ~<br>14,14 | 0.0                         | 0.152      | 0.163   | -0.024           | 0,925                       | -2,550           | -0,159             | 0.000 | 0.000              | 0.000         | 0.000         | 0.000          | 0,000   |              |              |
|             | 31 14,04                        | 0.00            | 13,22            | 0 : 0                       |            |         | 0.033            | 1,105                       | -2,741<br>-2,515 | 1,770              | 0.000 |                    | 0.000         | 0,000         |                | 0,000   |              | <del>-</del> |
|             | 32 - 13 01 -<br>12 03 -         | 0.00            | 12,17<br>11,16   |                             |            |         | 0.075<br>-0.027  | 1:050                       | -2,544<br>-2,552 | 0,364              | 0.000 |                    | 0.000         | 0.000         | 0.000          | 0.000   |              |              |
|             | 34 10,98                        | 0.00            | 10,11            | 0:0                         | 0.036      | 0,161   | 0.016            | 0,918                       | -2,680           | 0,458              | 0.000 | 0.000              | 0.000         | 0.000         | 0,000          | 0,000   |              |              |
|             | 35 9,91<br>36 8,03              | 0.00            | 9,12<br>7,24     | 0.0                         | 0.130      | 0,199   | -0:126<br>-0:132 |                             | -2,530<br>-2,742 |                    | 0.000 |                    | 0.000         | 0.000         |                | 0,000   |              |              |
|             | 37 5,99                         | 0.00            | 5,23             | 0.0                         | 0.098      | 0.277   | +0.229           | 0,891                       | -2,427           | -2,347             | 0.600 | 0.000              | 0.000         | 0.000         | 0.000          | 0,000   |              |              |
| <u> </u>    | 38 3,99<br>39 2,00              | 0.00            | 3,27<br>1,32     | 0.0                         |            |         | -0.138<br>-0.140 | 0,797                       | 42,590<br>42,804 | -1,035             | 0.000 | 0.000              | 0.000         | 0.000         |                | 0,000   |              | <del>:</del> |
|             | 40 -0.01                        | .0.00           | ÷0,65            |                             |            |         | -0.072           |                             | -2,627           |                    | 0.000 |                    |               |               |                |         |              |              |

45

|                        | IND TUNNEL        | ÇOHPANY              |           |             |                  |                  |                  |               |       |              |                      |           |                                        |       |               |  |
|------------------------|-------------------|----------------------|-----------|-------------|------------------|------------------|------------------|---------------|-------|--------------|----------------------|-----------|----------------------------------------|-------|---------------|--|
| ARNOLD ATR F           |                   |                      |           |             |                  |                  |                  |               |       |              |                      |           |                                        |       |               |  |
| TEST 544               | PART 46           | AFATL_AT             | 10 ÇARRIA | GE LOAD:    | S TEST           |                  |                  |               |       |              |                      |           |                                        |       |               |  |
| DATE 5/2               | 6/78              |                      |           |             |                  |                  |                  |               |       |              |                      |           | ************************************** | NSONI | C 49          |  |
|                        |                   |                      |           |             |                  |                  |                  |               |       |              |                      |           |                                        |       |               |  |
| MACH<br>               | PT P<br>02.8 754, | 9 47.2               | TT RX     |             | ONF              |                  |                  |               |       |              |                      |           |                                        |       |               |  |
| · - •                  |                   |                      |           |             |                  |                  |                  |               |       |              |                      |           |                                        |       |               |  |
| PYLON 1<br>Store Mk=82 |                   | GP AGH               | -65 MK=   | .4<br>82/GP | MK=82            | /GP              | PÝLON            |               | /GP P | 6<br>K=82/GP |                      | )<br>1=65 | MK-82/0                                | ) MK  | -11<br>-82/GP |  |
| RACK                   |                   |                      | RL        | TER         |                  |                  |                  |               |       | YER_         |                      | RL        |                                        |       |               |  |
| <del> </del>           |                   |                      |           |             |                  |                  |                  |               |       |              |                      |           |                                        |       |               |  |
| 4                      |                   |                      |           | 0.41        | <b>a</b> n 9     |                  |                  |               |       | - M.         |                      |           |                                        |       |               |  |
| TP ALFA                | BETA A            | LFI PHII             |           | CY          | ON 8<br>Clm      | CLN              | CLL              | XCP           | CN    | - PYLC       | ON 10<br>Clm         | CLN       | Cii                                    | χC    | Р             |  |
|                        | 0,00              | 4,54 0.              | 0 0.507   | -0.417      | -5.041           | 0,997            | <b>70:287</b>    | -9,949        | 0.793 | 20 t129."    | 1,342                | 1.029     | 0,536                                  | 1,692 |               |  |
| 4 -2.09<br>6 0.03      |                   | 2,56 0,<br>0,61 0,   |           | -0.306 ·    |                  | 0,893            | -0.561           | <b>76,864</b> | 0,802 | 90,082 ·     | 1,360                | 1,109     | 0,399 •                                | 1,697 |               |  |
| 7 1,96                 | 0.00              | 1.29 0.              |           | -0.084      |                  |                  | -0.534           |               |       | 0,003        | 1.464                | 0,986     | 0,388                                  |       |               |  |
| 8 3,94                 | 0.00              | 3,270.               | 0 0.710   | -0.003      | -3,984           | 0,696            | mg,692           | -5,613        | 0,914 |              | 1.540                |           | 0,412                                  |       |               |  |
| 9 6,03                 | 0.00              | 5,29 0:              | 0 0.646   | 0.161       |                  |                  |                  |               | 0.878 | 0.055        | 1,665                | 1,038     | 0.446                                  | 1,897 |               |  |
| 10 7.98<br>11 9.98     | 0,00              | 7,20 0,<br>9,18 0;   |           | 0,257       |                  |                  | <b>₹0.618</b>    | 75,661        | 0.819 | 0.094        | 1,745                | 1:040     | _ 0.459 1                              |       |               |  |
| 12 10,96               |                   | LÕ.18 Ö.             |           | 0.392       | -3.406           | 0,142            | 70.750           | m4.831        | 0.671 | 0,148 ·      |                      |           | 0,632                                  |       |               |  |
| 15 12.06               |                   | 11,20 0.             |           | 0.434       | 3,356            | 0,277            | -1.096           | -3,871        | 0.577 | 0,241        |                      | 0.869     | 0,500                                  |       |               |  |
| 16 12,95               |                   | 2.12 0.              |           |             |                  | 00,452           |                  |               | 0.712 | 0.244        |                      | 0,877     | 0,504                                  |       |               |  |
| 18 14.15<br>19 15.08   |                   | L3,39 0,<br>L4,24 0. |           | 0.606       | -3,449<br>-7 517 | P0,623           | <b>♥0.859</b>    | -3,815        | 0.743 |              |                      | 0,896     | 0,476                                  |       |               |  |
| 26 15.94               |                   | 5,16                 |           | 0.702       | -3.482           | -0,797           | 71.017           | #3.881        | 0.656 |              | •1,842 _<br>•1,915 - |           | 0.474                                  |       |               |  |
| 21 17,07               |                   | 16,25 0.             |           | 0.710       | -3,558           | e0,852           | -1,201           | -3.852        | 0.744 |              |                      | 1,029     | 0,283                                  |       |               |  |
| 22 17,96               |                   | 17.16 0.             |           | 0.790       | -3,770           | FO.836           | -1.001           | -3,291        | 0.780 |              | 1.907                |           | 0.456                                  |       |               |  |
| 23 19,03<br>24 19,96   |                   | 18,20 0.             |           |             |                  | 1,238            |                  |               | 0.673 | 0.045        |                      | 1,325     | 0,468                                  |       |               |  |
| 24 19.96<br>25 19.04   |                   | 19,15 0.<br>18,21 0. |           |             |                  | -1,140<br>-1,126 |                  |               | 0.718 | 0.062        | -1,991<br>-1,993     | 1,235     | 0,468                                  |       |               |  |
| 24 48 44               |                   | 7.18                 |           | 0,768       | -5,123           | 1.085            | -1.193           | -3.525        | 0.736 |              | 2.011                | 1.246     | 0,465                                  |       |               |  |
| 27 16,99               |                   | 16.17 0.             |           | 0.840       | -5,037           | P1.055           | -1.156           | -3,777        | 0.695 | 0.061        | 1 928                | 1,239     | 0.302                                  |       |               |  |
| 28 10.15               |                   | 5,19 0,              |           |             |                  | 70,958           |                  |               | 0.735 |              |                      |           | 0.482                                  |       |               |  |
| 3014.94<br>3114.04     |                   | 14,14 0.<br>13,22 0. |           |             |                  | #0,732<br>#0,665 |                  |               | 0.711 | 0,162        |                      | 1,016     | 0.323                                  |       |               |  |
| 3213,01                |                   | 2.17                 |           |             |                  | 0,459            |                  |               | 0.052 | 0,213        |                      | 0,905     | 0.491                                  |       |               |  |
| 33 12.03               |                   | 1.16 0.              | 0 0.791   | 0.436       | -3,415           | 0,281            | -0.743           | -4.320        |       | 0,227        |                      | 0,969     | 0.670                                  |       |               |  |
| _ 34 10,98             |                   | 0,11 0,              |           | 0.289       | -3,385           | -0.141           | -0.745           | -4,832        | 0.621 | 0,213        | 1,763                | 0,906     | 0.491                                  | 2,841 |               |  |
| 35 9,91                | 0.00              | 9,12 0,              |           |             |                  | -0,047           | 701572           | -4,421        | 0,632 |              |                      | 0.956     | 0.159                                  |       |               |  |
| 368;03<br>5:99         | 0,00              | 7,24 0,<br>5,23 0,   |           | 0,242       |                  |                  | -0.439<br>-0.476 |               | 0.580 |              |                      |           | 0,473                                  |       |               |  |
| 38 3.99                | 0.00              | 3,27                 |           | #0,004 ·    |                  |                  | -0,514           |               |       | 0.094        |                      | 1.043     | 0.450                                  |       |               |  |
|                        | 0.00              | 1.32                 |           | -0.070      | ÷4,314           | 0.743            | -0.725           | -6.372        |       |              | 1,549                |           | - 0, 438-                              | 2.189 |               |  |
| 39 2.00<br>40 -0.01    |                   | -0,65 0,             |           | -0.110      |                  |                  |                  |               |       | 0.015        |                      |           |                                        |       |               |  |

9