

Audio Foundation Models

Soham Deshmukh

ECE department
Carnegie Mellon University

Audio Understanding has multiple applications

Healthcare

Safety

Noise Monitoring

Predictive Maintenance

Content Retrieval

ML models built for each task and domain

Task-specific to Foundation Models

Towards foundation model paradigm

Computer Audition: From Task-Specific Machine Learning to Foundation Models, https://arxiv.org/abs/2407.15672

Audio Foundation Model

Multi-purpose ML model pre-trained on extensive audio datasets using self-supervised learning (SSL)

Pretraining on large datasets

Self-Supervised Learning

Multi-modal capabilities

Generalization and versatility

Adaptability

Emergent abilities

Audio-Language Models for Audio-Centric Tasks: A survey:

https://arxiv.org/abs/2501.15177

Contrastive pretraining for closeended tasks like classification and retrieval

Downtream Audio-Language Model

▲ Benchmark

Audio-Language Models for Audio-Centric Tasks: A survey:

Generative pretraining for both close-ended and open-ended tasks

Dataset

Audio-Language Pre-training

Downtream Audio-Language Model

Benchmark

Audio-Language Models for Audio-Centric Tasks: A survey:

https://arxiv.org/abs/2501.15177

"Simple" objective trained over millions of audio-text pairs

Audio-Language Models for Audio-Centric Tasks: A survey:

https://arxiv.org/abs/2501.15177

With scale, models start exhibiting new capabilities

"Simple" objective trained over millions of audio-text pairs

Audio-Language Models for Audio-Centric Tasks: A survey:

With scale, models start exhibiting new capabilities including the ability to reason over both audio-text

"Simple" objective trained over millions of audio-text pairs

Audio-Language Models for Audio-Centric Tasks: A survey:

https://arxiv.org/abs/2501.15177

A perspective of the area OOD **Adaptation** "Simple" objective trained over millions of pairs Techniques+ data **AFM** Base **Evaluating** architecture abilities

Today's talk

Talk outline

- 1. Contrastive Language-Audio Pretraining
- 2. Audio-conditioned next-token prediction
- 3. Deductive Reasoning

A typical model training

Collecting annotated data and training model using supervised learning

Predicts predefined classes

During inference, the model predicts 1 out of N classes

Overcoming predefined classes

Move from classifier to embeddings and use similarity measure to determine prediction

CLAP Contrastive Language-Audio Pretraining

CLAP: Learning Audio Concepts From Natural Language Supervision https://arxiv.org/abs/2206.04769, ICASSP 2023

1. Contrastive pretraining

1. Contrastive pretraining

Training consists of batch of N audio-text pairs

1. Contrastive pretraining

Independently encode audio-text pairs

1. Contrastive pretraining

Compute dot product to form similarity matrix

1. Contrastive pretraining

Minimize symmetric cross-entropy

Zero-shot classification

2. Zero-Shot classification

Training and evaluation dataset

- ☐ We use 128k audio-text pairs from 4 audio captioning datasets
- Some example captions

The drum fill for when somebody tells a joke in a stand-up comic or a show

Soundscape taken at 1 am in Paris at the second-floor balcony of an apartment. Place Saint Augustin

Using a knife to cut zucchini on a wooden cutting board

We use 16 datasets from 8 different domains as downstream tasks for evaluation

Training and evaluation dataset

- ☐ We use 128k audio-text pairs from 4 audio captioning datasets
- Some example captions

The drum fill for when somebody tells a joke in a stand-up comic or a show

Soundscape taken at 1 am in Paris at the second-floor balcony of an apartment. Place Saint Augustin

Using a knife to cut zucchini on a wooden cutting board

☐ We use 16 datasets from 8 different domains as downstream tasks for evaluation

Zero-Shot classification results

			Music						
Model	ESC50	FSD50K	US8K	DCASE17	AudioSet	Music	Music	Mri.	Mri.
Model				Task 4		Speech	Genres	Stroke	Tonic
Random	0.02	< 0.005	0.1	0.05	< 0.0018	0.5	0.1	0.1	0.1667
Benchmark (ZS)	0.6940[10]	0.0302[9]	0.6531[10]	-	-	-	-	-	-
CLAP(ZS)	0.826	0.3024	0.7324	0.3	0.058	1.0	0.252	0.3447	0.1965

	Instrument	Acoustic Scene	Emotion Recognition		Keyword	Vocal Sound	Speaker
	Classification	Classification			Spotting	Classification	Counting
Model	Beijing	TUT2017	CRE	RAV	Speech	Vocal	Libri
Model	Opera	1012017	MA-D	DESS	Comm.	Sound	Count
Random	0.25	0.06	0.1667	0.125	0.083	0.1667	0.090
CLAP (ZS)	0.4746	0.2963	0.1784	0.1599	0.1063	0.4945	0.1788

Table 1. CLAP (ZS) Zero-Shot outperforms the literature.

Higher is better for all numbers, DCASE17 employs F1, FSD50K and AudioSet employs mAP, everything else uses accuracy.

Zero-Shot classification results

			Music						
Model	ESC50	FSD50K	US8K	DCASE17	AudioSet	Music	Music	Mri.	Mri.
				Task 4		Speech	Genres	Stroke	Tonic
Random	0.02	< 0.005	0.1	0.05	< 0.0018	0.5	0.1	0.1	0.1667
Benchmark (ZS)	0.6940[10]	0.0302[9]	0.6531[10]	-	-	-	-	-	-
CLAP(ZS)	0.826	0.3024	0.7324	0.3	0.058	1.0	0.252	0.3447	0.1965

	Instrument	Acoustic Scene	Emotion Recognition		Keyword	Vocal Sound	Speaker
	Classification	Classification			Spotting	Classification	Counting
Model	Beijing	TUT2017	CRE	RAV	Speech	Vocal	Libri
Model	Opera	1012017	MA-D	DESS	Comm.	Sound	Count
Random	0.25	0.06	0.1667	0.125	0.083	0.1667	0.090
CLAP (ZS)	0.4746	0.2963	0.1784	0.1599	0.1063	0.4945	0.1788

Table 1. CLAP (ZS) Zero-Shot outperforms the literature.

Higher is better for all numbers, DCASE17 employs F1, FSD50K and AudioSet employs mAP, everything else uses accuracy.

Zero-Shot and Supervised performance Best performance

Performance varies across domains

Scaling reduces gap in ZS and supervised. Best performance

Can be used for close-ended tasks, such as classification and retrieval However, inherently lack the capacity to perform open-ended tasks, such as Audio Captioning or Audio Question & Answering

Can be used for close-ended tasks, such as classification and retrieval

However, inherently lack the capacity to perform open-ended tasks, such as Audio Captioning or Audio Question & Answering

A unified model for both close-ended and open-ended tasks?

Talk outline

- 1. Contrastive-Language Audio Pretraining
- 2. Audio-conditioned next-token prediction
- 3. Deductive Reasoning

Pengi: An Audio Language Model

Audio input		Text input	Text output		
	ոկիսկիսկի	this is a sound of	train, railway and locomotive		
	ոկիոկիոկի	this emotion is	happy		
	ոկիոկիոկի	generate audio caption	the waves of the ocean crash onto the shore then recede		
	ոկիոկիոկի	question: what type of animal is making the light sound in the background?	it is a bird		

Pengi: An Audio Language Model for Audio Tasks https://arxiv.org/abs/2305.11834, NeurIPS 2023

Model architecture

Audio-task templates for training

Benchmarking Pengi on downstream tasks

	Audio Captioning ↑		Audio Q&A ↑	Sound Event Classification ↑			on ↑
Model	AudioCaps	Clotho	ClothoAQA	ESC50 FSD50K U		US8K	DCASE17 Task 4
CLAP*	Х	Х	Х	0.8916	0.3398	0.7661	0.3387
Pengi	0.4667	0.2709	0.6453	0.9195	0.4676	0.7185	0.3380

	Acoustic Scene Classification ↑	Mus	ic ↑	Instrument Classification ↑		Music Note Analysis↑		
Model	TUT2017	Music	Music	Beijing	Instrument	NS.	NS.	NS.
Model	Model 1012017	Speech	Genres	Opera	family	Pitch	Velocity	Qualities
CLAP*	0.3037	1.0	0.479	0.4025	0.415	0.1337	0.2185	0.2545
Pengi	0.3525	0.9688	0.3525	0.6229	0.5007	0.8676	0.3728	0.386

	Emotion F	Recognition†	Vocal Sound Classification↑	Action Recog.↑	Survei llance.↑
Model	CRE MA-D	RAV DESS	Vocal Sound	ESC50 Actions	SESA
CLAP* Pengi	0.1512 0.1846	0.1692 0.2032	0.5522 0.6035	0.508 0.5277	0.7094 0.5402

Benchmarking Pengi on downstream tasks

	Audio Captioning ↑			Audio	Audio Q&A ↑ Sound Event Classification ↑						
	M	Iodel	AudioCap	s Clotho	Cloth	noAQA	ESC50	FSD501	K US8k	DCAS Task	
	Cl	LAP*	Х	Х		X	0.8916	0.3398	0.766	1 0.338	37
	P	engi	0.4667	0.2709	0.0	6453	0.9195	0.4676	0.718	5 0.338	80
	Acoustic Scene Classification↑		Music ↑ Instrume		nt Classification ↑ Musi		sic Note Ana	ılysis↑			
Mod	1-1	ті	IT2017	Music	Music	Beijing	Instru	ment	NS.	NS.	NS.
Model		TUT2017		Speech	Genres	Opera	fam	nily	Pitch	Velocity	Qualities
CLA	P*	0	0.3037	1.0	0.479	0.4025	0.4	15	0.1337	0.2185	0.2545
Pen	gi	0	.3525	0.9688	0.3525	0.6229	0.50	007	0.8676	0.3728	0.386

	Emotion F	Recognition [†]	Vocal Sound	Action	Survei
	Emotion Recognition		Classification↑	Recog.↑	llance.↑
Model	CRE	RAV	Vocal	ESC50	SESA
Model	MA-D	DESS	Sound	Actions	SESA
CLAP*	0.1512	0.1692	0.5522	0.508	0.7094
Pengi	0.1846	0.2032	0.6035	0.5277	0.5402

Benchmarking Pengi on downstream tasks

	Audio Captioning ↑		Audio Q&A ↑	Sound Event Classification ↑			on ↑
Model	AudioCaps	Clotho	ClothoAQA	ESC50	FSD50K	US8K	DCASE17 Task 4
CLAP* Pengi	X 0.4667	X 0.2709	X 0.6453	0.8916 0.9195	0.3398 0.4676	0.7661 0.7185	0.3387 0.3380

	Acoustic Scene Classification↑	Mus	ic ↑	Instrument Classification ↑		Music Note Analysis↑		lysis↑
Model	TUT2017	Music Speech	Music Genres	Beijing Opera	Instrument family	NS. Pitch	NS. Velocity	NS. Qualities
CLAP* Pengi	0.3037 0.3525	1.0 0.9688	0.479 0.3525	0.4025 0.6229	0.415 0.5007	0.1337 0.8676	0.2185 0.3728	0.2545 0.386

	Emotion I	Dagagnition A	Vocal Sound	Action	Survei
	Emotion Recognition↑		Classification↑	Recog.↑	llance.↑
Model	CRE	RAV	Vocal	ESC50	SESA
Model	MA-D	DESS	Sound	Actions	SESA
CLAP*	0.1512	0.1692	0.5522	0.508	0.7094
Pengi	0.1846	0.2032	0.6035	0.5277	0.5402

Contrastive and next-token pretraining

- CLAP can be used for zero-shot close-ended tasks, such as classification and retrieval
- Pengi an Audio-Language model that can perform both open-ended and close-ended downstream tasks
- Can be combined to get better models

Contrastive and next-token pretraining

- CLAP can be used for zero-shot close-ended tasks, such as classification and retrieval
- Pengi an Audio-Language model that can perform both open-ended and close-ended downstream tasks
- Can be combined to get better models

Talk outline

- 1. Contrastive-Language Audio Pretraining
- 2. Audio-conditioned next-token prediction
- 3. Deductive Reasoning

Scaling data and compute

Audio foundation models are trained on increasingly larger webscale data

Scaling data and compute

With scale, the model starts to encapsulate world-knowledge, exhibit emergent abilities and show primitive reasoning

Consider this conversation with audio assistant

Hi, I am an Audio Assistant, how may I help you?

Consider this conversation with audio assistant

ıllıılı

I recorded my car engine's sound on my iPhone. Any chance you could tell me if it sounds like something serious? Hi, I am an Audio Assistant, how may I help you?

Consider this conversation with audio

assistant

I recorded my car engine's sound on my iPhone. Any chance you could tell me if it sounds like something serious? Hi, I am an Audio Assistant, how may I help you?

It seems your engine is experiencing a knocking sound, which might indicate detonation. It is likely caused by fuel issues or a misfiring cylinder.

Consider this conversation with audio

assistant

I recorded my car engine's sound on my iPhone. Any chance you could tell me if it sounds like something serious?

It seems your engine is experiencing a knocking sound, which might indicate detonation. It is likely caused by fuel issues or a misfiring cylinder.

Consider this conversation with audio assistant

I recorded my car engine's sound on my iPhone. Any chance you could tell me if it sounds like something serious?

What should I do?

Hi, I am an Audio Assistant, how may I help you?

It seems your engine is experiencing a knocking sound, which might indicate detonation. It is likely caused by fuel issues or a misfiring cylinder.

I recommend having a mechanic check your fuel injectors and spark plugs. If left unchecked, this issue could damage the engine.

The audio assistant shows primitive reasoning abilities in the conversation

Indicate detonation. It is likely caused by fuel issues or a misfiring cylinder

Perception and understanding

engine knocking sound

car sounds, engine issues, misfiring cylinder ..

The audio assistant shows primitive reasoning abilities in the conversation

Perception and understanding

engine knocking sound

World knowledge

car sounds, engine issues, misfiring cylinder ..

Logical deduction

Indicate detonation. It is likely caused by fuel issues or a misfiring cylinder

Benchmarking logical reasoning abilities is necessary to estimate performance in real-world scenarios

To evaluate auditory deductive reasoning for humans

Three possible scenarios

- 1. *P* contains sufficient evidence to affirm the truth of *H*
- 2. *P* does not have enough information to either confirm or deny *H*
- 3. *P* have substantial evidence to deduce that *H* is false.

Introduce Audio Entailment task

Audio Entailment: Assessing Deductive Reasoning for Audio Understanding https://arxiv.org/abs/2407.18062, AAAI 2025

Audio Entailment task dataset

1. Data Sources

2. Explanation Generation

Benchmarking AFM on Audio Entailment task

(1) Larger language models improve deductive reasoning but are challenging to ground in audio (hallucinate)

Changing stopwords like "it" to "the" in the prompts of SALMONN and GAMA, leads to them changing the deductions

(2) Training AFMs to predict uncertainty improves their ability to detect plausible scenario

GAMA and LTU, trained with 6.5% "I d on't know" or "cannot answer due to i nsufficient information" data, better p redict when audio lacks sufficient evid ence to confirm or deny a hypothesis, but only if prompts align with training data.

(3) Contrastive models are competitive on the task of deductive reasoning*

Despite nonoverlapping, linearly incr easing thresholds, F1 scores are arou nd 50%, showing the CLAP similarity s core changes linearly with hypothesis -audio premise closeness.

(3) Contrastive models are competitive on the task of deductive reasoning

Despite nonoverlapping, linearly incr easing thresholds, F1 scores are arou nd 50%, showing the CLAP similarity s core changes linearly with hypothesis -audio premise closeness.

How do we improve deductive reasoning of AFMs at test-time?

Caption the audio before performing deductive reasoning

Caption the audio before performing deductive reasoning

Caption the audio before performing deductive reasoning

Caption the audio before performing deductive reasoning

Model	Method	ACC	P	R	F1
Qwen-AC	base	0.5442	0.5604	0.5442	0.4975
Qwen-AC	cap	0.6083	0.5964	0.6083	0.5601
CLAP 23	concat	0.8329	0.8361	0.8329	0.8336
CLAP 23	cap	0.8640	0.8671	0.8640	0.8647

Improves performance by 6% for Zero-shot and 3% for the Linear-probe setup

Talk summary + future directions

