Задание #1

6 сентября

Задача 1

Опишите все различные структуры полугруппы на множестве из двух элементов.

Задача 2

Приведите пример моноида и элемента, у которого есть только левый (правый) обратный

Задача 3

Пусть X — множество. Опишите все обратимые слева (справа) и удовлетворяющие свойству сокращения слева (справа) элементы моноида $\mathrm{Map}(X,X)$.

Задача 4

Опишите все автоморфизмы и все подгруппы в следующих группах: \mathbb{Z} , $\mathbb{Z}/n\mathbb{Z}$, \mathfrak{S}_3 , \mathfrak{S}_4 .

Задача 5

Пусть n и m — целые положительные взаимно простые числа. Постройте изоморфизм групп $\mathbb{Z}/nm\mathbb{Z}$ и $\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}$.

Задача 6

Пусть Σ — множество, M — моноид. Постройте естественную биекцию из множества $\mathrm{Hom}(\Sigma^*,M)$ (гомоморфизмов моноидов) в множество $\mathrm{Map}(\Sigma,M)$ (отображений множеств).

Задача 7

Пусть M — коммутативный моноид. Назовем его группификацией пару (G,ι) , где G — абелева группа, а $\iota:M\to G$ — гомоморфизм моноидов, удовлетворяющих следующему ствойству: для любого гомоморфзма $f:M\to G'$ из моноида M в абелеву группу G существует единственный гомоморфизм групп $g:G\to G'$, такой что $f=g\circ\iota$. Покажите, что для любых двух группификаций (G_1,ι_1) и (G_2,ι_2) моноида M группы G_1 и G_2 изоморфны.

Задача 8

Покажите, что группа Гротендика является группификацией.

Задача 9

Пусть M — коммутативный моноид. Покажите, что естественное отображение $\iota: M \to G(M)$ в его группу Гротендика инъективно тогда и только тогда, когда M — моноид с сокращением. Покажите, что ι — изоморфизм тогда и только тогда, когда M — группа.