Importance Sampling

What is Importance Sampling?

What?

- Monte Carlo technique for estimating $\mathbb{E}_{\pi}[\phi(X)]$
- ► Sample from proposal q instead of target π
- ► Reweight samples to correct bias

Why?

- ightharpoonup Target π difficult to sample from
- ► Focus sampling in important regions
- Works with unnormalized distributions
- ► All samples are used (unlike rejection)

How? The key identity:

$$\mathbb{E}_{\pi}[\phi(X)] = \int \phi(x)\pi(x)dx$$
$$= \int \phi(x)\frac{\pi(x)}{q(x)}q(x)dx$$
$$= \mathbb{E}_{q}[\phi(X)w(X)]$$

Algorithm

- 1. Sample $X_1, \ldots, X_n \sim q$
- 2. Compute $w(X_i) = \pi(X_i)/q(X_i)$
- 3. Estimate: $\hat{I} = \frac{1}{n} \sum_{i=1}^{n} \phi(X_i) w(X_i)$

Key Properties & Unnormalized Distributions

Properties of IS Estimator:

- ▶ Unbiased: $\mathbb{E}_q[\hat{I}] = \mathbb{E}_{\pi}[\phi(X)]$
- ► Consistent: $\hat{I} \xrightarrow{n \to \infty} \mathbb{E}_{\pi}[\phi(X)]$ (LLN)
- ► Variance:

$$\operatorname{Var}_q[\hat{I}] = \frac{1}{n} \operatorname{Var}_q[\phi(X)w(X)]$$

Requirements:

- ▶ q(x) > 0 whenever $\pi(x)\phi(x) \neq 0$
- $\blacktriangleright \mathbb{E}_q[|\phi(X)w(X)|] < \infty$

Unnormalized Distributions:

When $\pi(x) = \tilde{\pi}(x)/Z$ with unknown Z:

Self-Normalized IS

- ▶ Weights: $\tilde{w}(x) = \tilde{\pi}(x)/q(x)$
- ► Estimator:

$$\hat{I}_{SN} = \frac{\sum_{i=1}^{n} \phi(X_i) \tilde{w}(X_i)}{\sum_{i=1}^{n} \tilde{w}(X_i)}$$

- ► Biased but consistent
- ▶ Bias: O(1/n)

Why Weight Distribution Matters & ESS

Weight Distribution Impact:

- ► High weight variance ⇒ poor estimates
- ► Few samples dominate the sum
- ▶ Ideal case: all weights equal $(q = \pi)$
- $ightharpoonup Var_q[w(X)]$ determines convergence

Example Weight Degeneracy:

weight

Effective Sample Size (ESS):

Definition

ESS =
$$\frac{(\sum_{i=1}^{n} w_i)^2}{\sum_{i=1}^{n} w_i^2}$$

Interpretation:

- Number of "equivalent" samples from π
- ▶ Range: 1 < ESS < n
- ightharpoonup ESS = n when all weights equal
- ightharpoonup ESS = 1 when one weight dominates

Why ESS Matters:

Choosing Good Proposals & Dimensional Scaling

Good Proposal Properties:

- 1. Heavier tails than π
- 2. Easy to sample from
- 3. Similar shape to $\pi |\phi|$
- 4. Covers support of π
- 5. Minimizes $Var_q[\phi(X)w(X)]$

Common Choices:

- ► Student-t for Gaussian targets
- ► Mixture distributions
- ► Previous MCMC output

Curse of Dimensionality:

Gaussian Example

For
$$\pi = \mathcal{N}(0, I_d)$$
, $q = \mathcal{N}(0, \sigma^2 I_d)$:

$$\operatorname{Var}_q[w(X)] = \left(\frac{\sigma^4}{2\sigma^2 - 1}\right)^{d/2} - 1$$

Numerical Example:

$$egin{array}{cccc} d & \sigma & {\sf Var}_q[w(X)] \ 10 & 1.2 & pprox 5.6 \ 50 & 1.2 & pprox 850 \ 100 & 1.2 & pprox {f 1.8} imes {f 10}^4 \end{array}$$

Importance Sampling vs. Rejection Sampling

Aspect
Sample usage
Efficiency
High dimensions
Proposal req.
Output
Normalizing const.

Failure mode

Importance Sampling All samples (weighted) Depends on weight variance Poor (variance explodes) q>0 where $\pi\phi\neq0$ Weighted samples Not required Unbiased (or consistent)

Rejection Sampling Some samples rejected Depends on acceptance rate Very poor (accept rate \rightarrow 0) Need $Mq \geq \pi$ everywhere Exact samples from π Required (for bound M) Unbiased (exact) No samples produced

Key Insight

Bias

Both methods suffer from curse of dimensionality, but:

► IS degrades gracefully - still provides estimates (with high variance)

High variance

Summary: Best Practices

Strengths:

- √ Handles complex distributions
- √ Unbiased estimates
- \checkmark Works with unnormalized π
- √ All samples contribute
- ✓ Flexible proposal choice

Limitations:

- × Curse of dimensionality
- × Sensitive to proposal choice
- × Weight degeneracy issues
- × Can have infinite variance

Best Practices:

- 1. Monitor ESS regularly
- Check weight distribution for outliers
- 3. **Use heavy-tailed proposals** (e.g., *t*-distribution)
- 4. Consider adaptive IS to improve q
- 5. Multiple IS for robustness
- Diagnostic plots: weights, ESS over time

Rule of Thumb

If ESS < n/10, reconsider your proposal!