数理逻辑基础 作业 7

练习 15. 4. 设 x 不在 p 中自由出现. 求证:

$$1^{\circ} \vdash (p \to \forall xq) \to \forall x(p \to q)$$

$$2^{\circ} \vdash (p \to \exists xq) \to \exists x(p \to q)$$

解: 1° 要证明 $(p \to \forall xq) \to \forall x(p \to q)$, 只用证明 $\{p \to \forall xq\} \vdash \forall x(p \to q)$, 过程中除了 x 以外不使用别的 Gen 变元, 如下:

(1) $p \to \forall xq$ 假定

 $(2) \ \forall xq \to q \tag{K4}$

(3) $p \rightarrow q$

(4) $\forall x(p \to q)$

因为 x 不在 $p \to \forall xq$ 中自由出现, 由演绎定理, 不增加新的 Gen 变元就可得 $\vdash (p \to \forall q) \to \forall (p \to \forall q)$. 2° 这里先证明 $\vdash \neg (p \to q) \to p$ 和 $\vdash \neg (p \to q) \to \neg q$.

1. 利用演绎定理和反证律, 以下公式从 $\{\neg(p \to q), \neg p\}$ 可证:

(1) $\neg p$ 新假定

(2) $\neg p \rightarrow (p \rightarrow q)$ 否定前件律

(3) $p \to q$

 $(4) \neg (p \rightarrow q)$ 假定

由 (3), (4) 用反证律可得 $\{\neg(p \to q)\} \vdash p$, 再由演绎定理得到 $\vdash \neg(p \to q) \to p$.

2. 利用演绎定律和归谬律, 以下公式从 $\{\neg(p \to q), q\}$ 可证:

 \mathfrak{M} 新假定

$$(2) q \to (p \to q)$$
 (L1)

(3) $p \to q$

(4) $\neg(p \rightarrow q)$ 假定

由 (3), (4) 用归谬律可得 $\{\neg(p \to q)\} \vdash \neg q$, 再由演绎定理得到 $\vdash \neg(p \to q) \to \neg q$.

然后证明题中命题, 为此只用证 $\{p \to \exists xq\} \vdash \exists x(p \to q)$, 过程中不使用除 x 以外的 Gen 变元. 以下公式从 $\{p \to \exists xq, \forall x \neg (p \to q)\}$ 可证:

(1) $\forall x \neg (p \rightarrow q)$ 新假定

 $(2) \ \forall x \neg (p \to q) \to \neg (p \to q) \tag{K4}$

 $(3) \neg (p \rightarrow q) \tag{1}, (2), MP$

(4) $\neg (p \to q) \to p$ 已证明

(5) p

(6) $p \to \exists xq$ 假定

数理逻辑基础 作业 7 傅申 PB20000051

には明
(8)
$$\neg (p \rightarrow q) \rightarrow \neg q$$

(9) $\neg q$
(10) $\forall x \neg q$
(10) $\forall x \neg q$

因为 x 不在 $\forall x \neg (p \rightarrow q)$ 中自由出现, 由 (9), (10) 用归谬律可得 $\{p \rightarrow \exists xq\} \vdash \exists x(p \rightarrow q)$, 再用演绎定理得 到 $\vdash (p \rightarrow \exists xq) \rightarrow \exists x(p \rightarrow q)$.

练习 16. 1. 设 x 不在 q 中自由出现. 求证:

$$1^{\circ} \vdash (\exists xp \rightarrow q) \rightarrow \forall x(p \rightarrow q)$$

$$2^{\circ} \vdash \exists x(p \to q) \to (\forall xp \to q)$$

解: 1° 要证 $\vdash (\exists xp \to q) \to \forall x(p \to q)$, 只用证 $\{\exists xp \to q\} \vdash \forall x(p \to q)$, 过程中不使用除 x 以外的 Gen 变元.

(1) $\neg \forall x \neg p \rightarrow q$ 假定

(2) $(\neg \forall x \neg p \to q) \to (\neg q \to \neg \neg \forall x \neg p)$ 换位律

(3) $\neg q \rightarrow \neg \neg \forall x \neg p$

(4) $\neg\neg\forall x\neg p \rightarrow \forall x\neg p$ 双重否定律

(5) $\neg q \rightarrow \forall x \neg p$

(6) $\forall x \neg p \rightarrow \neg p$

(7) $\neg q \rightarrow \neg p$

 $(8) (\neg q \to \neg p) \to (p \to q) \tag{K3}$

 $(9) p \to q \tag{7}, (8), MP$

(10)
$$\forall x(p \to q)$$

因为 x 不在 $\exists xp \to q$ 中自由出现, 由演绎定理, 不增加新的 Gen 变元就可得 $\vdash (\exists xp \to q) \to \forall x(p \to q)$. 2° 要证 $\vdash \exists x(p \to q) \to (\forall xp \to q)$, 只用证 $\{\exists x(p \to q), \forall xp\} \vdash q$, 过程中不使用除 x 以外的 Gen 变元. 以下公式从 $\{\exists x(p \to q), \forall xp, \neg q\}$ 可证:

$$(1)$$
 $\forall xp$ 假定

$$(2) \ \forall xp \to p \tag{K4}$$

(3) p (1), (2), MP

(5) $\neg q \rightarrow \neg (p \rightarrow q)$

(6) $\neg q$ 新假定

 $(7) \neg (p \rightarrow q) \tag{6}, (5), MP$

(8) $\forall x \neg (p \rightarrow q)$

 $(9) \neg \forall x \neg (p \rightarrow q)$ 假定

其中式 (4) 的真值表见表 16.1, 因 Gen 变元 x 不在假定中自由出现, 由 (8), (9) 用反证律得 $\{\exists x(p \to q), \forall xp\} \vdash q$, 再用两次演绎定理得 $\vdash \exists x(p \to q) \to (\forall xp \to q)$.

数理逻辑基础 作业 7 傅申 PB20000051

表 16.1:
$$p \to (\neg q \to \neg (p \to q))$$
 的真值表
$$\frac{p \to (\neg q \to \neg (p \to q))}{1 \ 1 \ 0 \ 1 \ 1 \ 0 \ 1 \ 1 \ 0 \ 0}$$
$$\frac{1}{1} \ \frac{1}{1} \ \frac{$$

练习 16. 3. 找出与所给公式等价的前束范式.

$$3^{\circ} \ \forall x_1(R_1^1(x_1) \to R_1^2(x_1, x_2)) \to (\exists x_2 R_1^1(x_2) \to \exists x_3 R_1^3(x_2, x_3))$$

$$4^{\circ} \exists x_1 R_1^2(x_1, x_2) \to (R_1^1(x_1) \to \neg \exists x_3 R_1^2(x_1, x_3))$$

解: 3° 适当改变题中公式的约束变元得到等价的 q_1 :

$$q_1 = \forall x_1(R_1^1(x_1) \to R_1^2(x_1, x_2)) \to (\exists x_4 R_1^1(x_4) \to \exists x_3 R_1^3(x_2, x_3))$$

由 q_1 出发, 得到以下的等价公式:

$$q_2 = \exists x_1((R_1^1(x_1) \to R_1^2(x_1, x_2)) \to (\exists x_4 R_1^1(x_4) \to \exists x_3 R_1^3(x_2, x_3)))$$
(由命题 2-2°)

$$q_3 = \exists x_1((R_1^1(x_1) \to R_1^2(x_1, x_2)) \to \exists x_3(\exists x_4 R_1^1(x_4) \to R_1^3(x_2, x_3)))$$
 (由命题 2-2°)

$$q_4 = \exists x_1 \exists x_3 ((R_1^1(x_1) \to R_1^2(x_1, x_2)) \to (\exists x_4 R_1^1(x_4) \to R_1^3(x_2, x_3)))$$
 (h fight 2-2°)

$$q_5 = \exists x_1 \exists x_3 ((R_1^1(x_1) \to R_1^2(x_1, x_2)) \to \forall x_4 (R_1^1(x_4) \to R_1^3(x_2, x_3)))$$
 (由命题 2-2°)

$$q_6 = \exists x_1 \exists x_3 \forall x_4 ((R_1^1(x_1) \to R_1^2(x_1, x_2)) \to (R_1^1(x_4) \to R_1^3(x_2, x_3)))$$
(由命题 2-2°)

q6 即为所求的前束范式,即

$$\exists x_1 \exists x_3 \forall x_4 ((R_1^1(x_1) \to R_1^2(x_1, x_2)) \to (R_1^1(x_4) \to R_1^3(x_2, x_3)))$$

 4° 适当改变题中公式的约束变元得到等价的 q_1 :

$$q_1 = \exists x_4 R_1^2(x_4, x_2) \to (R_1^1(x_1) \to \neg \exists x_3 R_1^2(x_1, x_3))$$

由 q1 出发,得到以下的等价公式:

$$q_2 = \forall x_4(R_1^2(x_4, x_2) \to (R_1^1(x_1) \to \neg \exists x_3 R_1^2(x_1, x_3)))$$
 (由命题 2-2°)

$$q_3 = \forall x_4 (R_1^2(x_4, x_2) \to (R_1^1(x_1) \to \forall x_3 \neg R_1^2(x_1, x_3)))$$
 (由命题 2-3°)

$$q_4 = \forall x_4(R_1^2(x_4, x_2)) \to \forall x_3(R_1^1(x_1)) \to \neg R_1^2(x_1, x_3))$$
(由命题 2-2°)

$$q_5 = \forall x_4 \forall x_3 (R_1^2(x_4, x_2) \to (R_1^1(x_1) \to \neg R_1^2(x_1, x_3)))$$
 (由命题 2-2°)

 q_5 即为所求的前束范式, 利用 $\neg (p \land (q \land r)) = p \rightarrow \neg (q \land r) = p \rightarrow (q \rightarrow \neg r)$, 得到所求的前束范式

$$\forall x_4 \forall x_3 \neg (R_1^2(x_4, x_2) \land R_1^1(x_1) \land R_1^2(x_1, x_3))$$