

A TWO STEP RSB ALGORITHM ON BETHE LATTICE SPIN GLASS

Relatore: Prof. Giorgio Parisi,

Candidato: Andrea Mazzei,

A.A. 2012/2013

Introduzione alla RSB

• Spin glass: sistema con interazioni in competizione.

- Tanti stati a basse temperature.
- ROTTURA DI ERGODICITÀ
- ROTTURA DI SIMMETRIA DI REPLICHE

RSB nella fisica sperimentale

 RSB evidence: La suscettività magnetica del sistema dipende dalla sua storia.

• FC e ZFC dipendono dalla distribuzione di overlap q(x) in due modi differenti.

[Djurberg C., Jonason K., Nordblad P.]

Cu:Mn13.5%

Introduzione 21/01/2014

Bethe lattice

- Coordinazione fissata.
- Connessione con un numero finito di (nuovi) vicini.
- Presenta una struttura ad albero.

$$\frac{L'\to\infty}{L\to\infty}\to 0$$

Perché Bethe lattice?

• Un modello intermedio tra il modello long range e modelli sensibilmente più complicati

- Teorema del limite centrale \rightarrow Complicazioni matematiche...
- L'approssimazione di Bethe è esatta su strutture ad albero

Bethe Lattice

Perché Bethe lattice?

Dal Bethe lattice...

...al grafo random.

No loops

Taglia dei loop O(logN)

I due modelli sono localmente equivalenti

Bethe Lattice 21/01/2014

Bethe lattice Ising spin glass

- Alte temperature: soluzione RS stabile.
- Basse temperature: Fase di spin glass.
- Soluzione approssimata ad uno step di RSB, valida ad ogni temperatura e distribuzione del disordine.

[M. Mezard, G. Parisi, 2001]

• È possibile aumentare la precisione della soluzione?

Bethe Lattice 21/01/2014

RSB su Bethe lattice

L'inserimento dello spin di cavità modifica la distribuzione degli stati.

[M.Mezard, G.Parisi]

$$Q_0(h_0) = C \int d\Delta F P_0(h_0, \Delta F) \exp(-\beta x \Delta F)$$
$$\operatorname{con} h_0 = \frac{1}{\beta} \operatorname{atanh}(\langle \sigma_0 \rangle)$$

RSB su Bethe lattice

N siti: ad ogni sito O sono associati M stati 🗆

Ogni stato contiene una famiglia di M substati. Ogni substato a sua volta...

Dallo studio dell'overlap tra le famiglie ai vari livelli deduciamo q(x).

RSB su Bethe lattice

Ogni volta che aggiungiamo un livello di RSB si aggiunge un parametro x. Il ripeso degli stati deve essere eseguito a tutti i livelli.

Il valore corretto della n-upla dei valori di x è quello che massimizza F.

RSB

Algoritmo a due step

• È possibile controllare se questa procedura è corretta:

MCMC sulla distribuzione dei campi locali

$$2RSB \rightarrow NM_1M_2$$
 campi locali

$$K = 6$$
 $T = 0.8$ [Carrus et al.]

Algoritmo a due step

Algoritmo

13

Massimizzazione dell'energia libera e corretta distribuzione degli stati

• Per poter misurare energia ed overlap dobbiamo trovare la coppia di parametri in ([0,1]x[0,1]) che massimizza F.

$$x_1 = 0.07$$
 $x_2 = 0.35$

Overlaps

• A due step di RSB ightarrow tre overlaps: self overlap q_0

$$q_0 = \sum_{\alpha \gamma} \tanh(\beta h_i^{\alpha \gamma}) \tanh(\beta h_i^{\alpha \gamma})$$

Overlaps

• A due step di RSB \rightarrow tre overlaps: samestate overlap q_1

$$q_{0} = \sum_{\alpha \gamma} \tanh(\beta h_{i}^{\alpha \gamma}) \tanh(\beta h_{i}^{\alpha \gamma})$$

$$q_{1} = \sum_{\gamma' \neq \gamma} \sum_{\alpha \gamma} \tanh(\beta h_{i}^{\alpha \gamma}) \tanh(\beta h_{i}^{\alpha \gamma'})$$

Overlaps

• A due step di RSB \rightarrow tre overlaps: interstate overlap q_2

$$q_{0} = \sum_{\alpha\gamma} \tanh(\beta h_{i}^{\alpha\gamma}) \tanh(\beta h_{i}^{\alpha\gamma})$$

$$q_{1} = \sum_{\gamma' \neq \gamma} \sum_{\alpha\gamma} \tanh(\beta h_{i}^{\alpha\gamma}) \tanh(\beta h_{i}^{\alpha\gamma'})$$

$$q_{2} = \sum_{\gamma' \neq \gamma} \sum_{\alpha\gamma} \tanh(\beta h_{i}^{\alpha\gamma}) \tanh(\beta h_{i}^{\alpha\gamma'})$$

$$\alpha' \neq \alpha$$

Forma di q(x)

Approssimazione della funzione di overlap:

q_0	0.79
q_1	0.36
q_2	0.19

18

$$P(q) = \delta(q - q_0)(1 - x_2) + \delta(q - q_1)(x_2 - x_1) + \delta(q - q_2)(x_1 - 0)$$

Confronti

	U	F	q			R
RS*	-1.816	-1.863	0.686			0
1RSB**	-1.800	-1.858	0.779	0.304		0.047
2RSB	-1.80	-1.85	0.79	0.36	0.19	0.06
SIM.***	-1.7999		q(x)			0.055

```
* [Bethe, Peierls]
```

^{** [}Mezard, Parisi]

^{*** [}Carrus et al.]

Conclusioni

- 1. Le fluttuazioni sulle misure delle osservabili sono alte, data la taglia non molto grande del sistema (fino a $150 \times 150 \times 150$), tuttavia..
- 2. ...i risultati ottenuti indicano che l'estensione a più livelli di RSB fornisce le corrette osservabili per il BLSG.
- 3. L'estensione a livelli maggiori di 2 comporta un alto utilizzo di risorse di calcolo, data la struttura dell'algoritmo

Conclusioni 21/01/2014

Grazie per l'attenzione,

Marie

Email: andreamazzei88@gmail.com

Conclusioni 21/01/2014

Appendice A: Tecnica di ripeso

La più semplice: i nuovi stati vengono scelti tra quelli già esistenti, con una probabilità assegnata in funzione del peso.

Ogni peso è dato da

$$p_{\alpha} = \frac{\exp(-\beta x \Delta F^{\alpha})}{\sum_{\alpha'} \exp(-\beta x \Delta F^{\alpha'})}$$

Si possono pensare procedure alternative,

Migliore precisione, a scapito di una maggiore richiesta di operazioni

Appendice B: Effetti di taglia finita

Errore $\sim 1/\sqrt{N}$ Errore $\sim 1/\sqrt{M_i}$

Limite termodinamico estrapolato da un fit.

Da quali taglie dipende maggiormente l'errore?

Appendice 21/01/2014

Appendice C: Alcuni aspetti matematici

Media di F per il livello $\it l$

$$\langle F \rangle_l = -\frac{1}{\beta x_l} \log(\sum_{\alpha} \exp(-\beta x_l F^{\alpha}))$$

Calcolo di F al livello zero

$$F = \frac{k+1}{2}F_{link} - kF_{sito}$$

Calcolo di F sulle foglie

$$F_{site} = \sum_{i} \log \left(\frac{\cosh(\beta J_i)}{\cosh(\beta u_i)} \right) + \log(2\cosh(\beta \sum_{i} u_i))$$

$$F_{link} = \sum_{i} \log \left(\frac{\cosh(\beta J_i) \cosh(\beta K_i)}{\cosh(\beta u_i) \cosh(\beta v_i)} \right) +$$

$$\log \sum_{\sigma_0, \tau_0} \exp(\beta J \sigma_0 \tau_0 + \beta \sigma_0 \sum u_i + \beta \tau_0 \sum v_i)$$

Appendice C: Alcuni aspetti matematici

Distribuzione dei campi locali prima dell'inserimento dello spin di cavità

$$P_0(h_0) = \int \prod_{i=1}^k [Q_i(h_i)dh_i] \delta(h_0 - \sum_{i=1}^k u(J_i, h_i))$$

 $\tanh(\beta u(J,h)) = \tanh(\beta J) \tanh(\beta h)$

Appendice 21/01/2014

Appendice D: Una prima sottostima

Appendice 21/01/2014