Log file for Barrier Option

June 6, 2018

Contents

1	Introduction	1
2	Atom: "up-and-out; down-and-out"	1
3	The zoo	1
	3.1 vanilla	1
	3.2 single barrier, B	1
	3.3 double barrier, $\{L, U\}$	2

1 Introduction

The goal is to express all barrier option payoffs in terms of a unique "atom" formula. Rebates are not included at the moment.

2 Atom: "up-and-out; down-and-out"

The fundamental payoff of choice is relative to the "up-and-out; down-and-out" payoff. The barriers are L, U and the active window if the continuously monitored interval $[t_s, t_e]$. T_e is the expiry of the option, S the underlying and X the strike.

$$payoff = \max(S - X, 0) \, \mathbb{1}_{\forall t \in [t_s, t_e]: L < S(t) < U}$$

$$\equiv \operatorname{uodo}(S, X, L, U, \{t_s, t_e\}, T_e)$$
(1)

3 The zoo

3.1 vanilla

payoff =
$$\max(S - X, 0)$$

= $\operatorname{uodo}(S, X, 0, \infty, \{0, T_e\}, T_e)$ (2)

3.2 single barrier, B

"up-and-out" - $S_0 < B$

payoff =
$$\max(S - X, 0) \mathbb{1}_{\forall t \in [t_s, t_e]: S(t) < B}$$

= $\text{uodo}(S, X, 0, B, \{t_s, t_e\}, T_e)$ (3)

"down-and-out" - $B < S_0$

payoff =
$$\max(S - X, 0) \mathbb{1}_{\forall t \in [t_s, t_e]: B < S(t)}$$

= $\operatorname{uodo}(S, X, B, \infty, \{t_s, t_e\}, T_e)$ (4)

"down and in" - $B < S_0$

payoff =
$$\max(S - X, 0) \mathbb{1}_{\exists t^* \in [t_s, t_e]: S(t^*) < B}$$

= $\max(S - X, 0) \left(1 - \mathbb{1}_{\forall t \in [t_s, t_e]: B < S(t)}\right)$
= "vanilla" - "down-and-out"
= $\text{uodo}(S, X, 0, \infty, \{0, T_e\}, T_e) - \text{uodo}(S, X, B, \infty, \{t_s, t_e\}, T_e)$ (5)

"up and in" - $S_0 < B$

payoff =
$$\max(S - X, 0) \mathbb{1}_{\exists t^* \in [t_s, t_e]: B < S(t^*)}$$

= $\max(S - X, 0) \left(1 - \mathbb{1}_{\forall t \in [t_s, t_e]: S(t) < B}\right)$
= "vanilla" - "up-and-out"
= $\operatorname{uodo}(S, X, 0, \infty, \{0, T_e\}, T_e) - \operatorname{uodo}(S, X, 0, B, \{t_s, t_e\}, T_e)$ (6)

3.3 double barrier, $\{L, U\}$

"double knock-in" - $L < S_0 < {\cal U}$

payoff =
$$\max(S - X, 0) \, \mathbb{1}_{\exists t^* \in [t_s, t_e]: S(t^*) < L \mid |U < S(t^*)|}$$

= $\max(S - X, 0) \, \left(1 - \mathbb{1}_{\forall t \in [t_s, t_e]: L < S(t) < U}\right)$
= "vanilla" - "up-and-out; down-and-out"
= $\operatorname{uodo}(S, X, 0, \infty, \{0, T_e\}, T_e) - \operatorname{uodo}(S, X, L, U, \{t_s, t_e\}, T_e)$ (7)

References

