CMU Reproducible Research Contest Submission

Ryan Elmore and Greg J. Matthews 9/25/2020

```
library(dplyr)
library(ggplot2)
library(lubridate)
library(xtable)
library(lme4)
```

Data Section

We merged three data sets together in order to complete this analysis. Unfortunately, one source is proprietary and we can't share the three raw data sets. However, we are able to share the final merged version.

```
df <- readRDS("../data/bangs-merged-final.rds") %>%
  mutate(has_bangs = if_else(has_bangs == "y", "Yes", "No"))
```

Table One

The following code produces Table 1 in Elmore and Matthews.

```
tab_one <- df %>%
  group_by(pi_pitch_group, has_bangs) %>%
  summarize(n = n()) %>%
  mutate(prop = n / sum(n))
print(xtable(tab_one, caption = "Table 1 from Elmore and Matthews."), type = "latex")
```

% latex table generated in R 3.5.1 by xtable 1.8-4 package % Fri Oct 2 15:25:54 2020

	pi_pitch_group	has_bangs	n	prop
1	СН	No	756	0.76
2	СН	Yes	235	0.24
3	CU	No	707	0.72
4	CU	Yes	270	0.28
5	FA	No	4128	0.98
6	FA	Yes	97	0.02
7	SL	No	1470	0.73
8	SL	Yes	538	0.27

Table 1: Table 1 from Elmore and Matthews.

Chi-Square Test

This test corresponds to the chi-square test given in the last paragraph on page 3 of the manuscript.

```
chisq.test(table(df$has_bangs, df$pi_pitch_group))
```

```
##
## Pearson's Chi-squared test
##
## data: table(df$has_bangs, df$pi_pitch_group)
## X-squared = 987.99, df = 3, p-value < 2.2e-16</pre>
```

Table Two

% latex table generated in R 3.5.1 by xtable 1.8-4 package % Fri Oct 2 15:25:54 2020

	0	1
No	3798	3263
Yes	678	462

Table 2: Table 2 (counts) from Elmore and Matthews

% latex table generated in R 3.5.1 by xtable 1.8-4 package % Fri Oct 2 15:25:54 2020

	0	1
No	0.538	0.462
Yes	0.595	0.405

Table 3: Table 2 (proportions) from Elmore and Matthews

Odds Ratios

The following test is given in the paragraph between Tables 1 and 2 on page 4.

Results Section

Swing Model Results

Some more data manipulation:

```
df <- readRDS("../data/bangs-merged-final.rds") %>%
  dplyr::rename(., description = description.x) %>%
  dplyr::mutate(.,
                has_bangs = if_else(has_bangs == "y", "Yes", "No"),
                count = paste(ball, "-", strike, sep = ""),
                is_swing = ifelse(swing == "swing",1,0),
                is_miss = ifelse(call_code %in% c("S","W"), 1, 0),
                is_contact = ifelse(call_code %in% c("S","W"), 0, 1),
                is_foul = ifelse(description %in%
                                   c("Foul", "Foul Tip", "Foul (Runner Going)"),1, 0),
                #is_fastball = ifelse(pitch_category == "FB", 1, 0),
                is_fastball = ifelse(pi_pitch_group == "FA", 1, 0),
                batter_mlbid = as.character(batter_mlbid))
swing_model <- glmer(is_swing ~ is_fastball + has_bangs + count +</pre>
                       cs_prob + (1|batter_mlbid),
                     family = binomial, data = df)
xtable(summary(swing_model)$coef, digits = rep(4, 5))
```

% latex table generated in R 3.5.1 by xtable 1.8-4 package % Fri Oct 2 15:26:10 2020

Estimate	Std. Error	z value	$\Pr(> \mathbf{z})$
-2.4732	0.0969	-25.5306	0.0000
0.0595	0.0559	1.0640	0.2873
-0.3219	0.0814	-3.9571	0.0001
1.1748	0.0926	12.6926	0.0000
1.9016	0.1251	15.2033	0.0000
0.5399	0.0940	5.7404	0.0000
1.4700	0.0966	15.2107	0.0000
2.1657	0.1043	20.7643	0.0000
0.5262	0.1381	3.8106	0.0001
1.5122	0.1176	12.8588	0.0000
2.4929	0.1102	22.6132	0.0000
-1.1318	0.2820	-4.0137	0.0001
1.3395	0.1670	8.0204	0.0000
2.4642	0.1367	18.0259	0.0000
2.5031	0.0712	35.1390	0.0000
	-2.4732 0.0595 -0.3219 1.1748 1.9016 0.5399 1.4700 2.1657 0.5262 1.5122 2.4929 -1.1318 1.3395 2.4642	-2.4732 0.0969 0.0595 0.0559 -0.3219 0.0814 1.1748 0.0926 1.9016 0.1251 0.5399 0.0940 1.4700 0.0966 2.1657 0.1043 0.5262 0.1381 1.5122 0.1176 2.4929 0.1102 -1.1318 0.2820 1.3395 0.1670 2.4642 0.1367	-2.4732 0.0969 -25.5306 0.0595 0.0559 1.0640 -0.3219 0.0814 -3.9571 1.1748 0.0926 12.6926 1.9016 0.1251 15.2033 0.5399 0.0940 5.7404 1.4700 0.0966 15.2107 2.1657 0.1043 20.7643 0.5262 0.1381 3.8106 1.5122 0.1176 12.8588 2.4929 0.1102 22.6132 -1.1318 0.2820 -4.0137 1.3395 0.1670 8.0204 2.4642 0.1367 18.0259

Confidence Interval

The point estimates and confidence intervals given in the first paragraph in Section 4.

```
## 2.5 % 97.5 %
## has_bangsYes 0.6176514 0.8497081
```

Contact Model

```
swings <- df %>%
  dplyr::filter(., is_swing == 1)
dim(swings)[1]
```

Table 3

[1] 3725

% latex table generated in R 3.5.1 by x table 1.8-4 package % Fri Oct 2 15:26:17 2020

	Estimate	Std. Error	z value	$\Pr(> z)$
(Intercept)	-0.2019	0.1386	-1.4563	0.1453
$\operatorname{cs_prob}$	1.8999	0.1160	16.3727	0.0000
$is_fastball$	0.9691	0.1008	9.6098	0.0000
$has_bangsYes$	0.5905	0.2203	2.6801	0.0074
$is_fastball:has_bangsYes$	-1.1931	0.4512	-2.6441	0.0082

Confidence Intervals

name	int	slope
George Springer	-0.56	1.34
Yulieski Gurriel	-0.03	0.95
Jonathan Davis	-0.88	0.88
Jacob Marisnick	-0.80	0.87
James Gattis	-0.22	0.72
William Reddick	0.06	0.70
Max Stassi	-0.20	0.64
Carlos Correa	-0.15	0.62
Carlos Beltran	-0.01	0.61
Juan Centeno	-0.22	0.58
Alex Bregman	-0.14	0.57
Derek Fisher	-0.54	0.56
Norichika Aoki	0.11	0.56
Cameron Maybin	-0.41	0.55
Anthony Kemp	-0.05	0.52
Jose Altuve	0.22	0.48
Andrew Reed	-0.38	0.44
Brian McCann	0.22	0.39
Tyler White	-0.25	0.09
Marwin Gonzalez	-0.14	-0.40

```
#Bootstrap
nsim <- 500
for (i in 1:nsim){#print(i)
  ind <- sample(1:nrow(swings), nrow(swings), replace = TRUE)</pre>
  swings boot <- swings[ind, ]</pre>
  contact_model_boot <- glmer(is_contact ~ cs_prob + is_fastball*has_bangs +</pre>
                                 (1 + has_bangs|batter_mlbid) + (1|mlbid),
                               data = swings_boot,
                               family = "binomial")
 r_effects <- data.frame(batter_mlbid =</pre>
                             row.names(coef(contact_model_boot)$batter_mlbid),
                           int = coef(contact_model_boot)$batter_mlbid$`(Intercept)`,
                           slope = coef(contact_model_boot)$batter_mlbid$has_bangsYes)
 r_effects <- merge(ids, r_effects, by.x = "batter_mlbid", by.y = "batter_mlbid")
  r_effects <- r_effects[order(-r_effects$slope), ]</pre>
  r_effects$name <- paste(r_effects$batter_first, r_effects$batter_last)</pre>
  if (i == 1){
    int_boot <- merge(ids, r_effects[, c("batter_mlbid","int")],</pre>
                       by.x = "batter_mlbid",
                       by.y = "batter mlbid" ,
                       all.x = TRUE)
 } else {
    int_boot <- merge(int_boot, r_effects[, c("batter_mlbid", "int")],</pre>
                       by.x = "batter_mlbid",
                       by.y = "batter_mlbid" ,
                       all.x = TRUE)
 }
```

```
if (i == 1){
    slope_boot <- merge(ids, r_effects[, c("batter_mlbid", "slope")],</pre>
                         by.x = "batter_mlbid",
                         by.y = "batter_mlbid",
                         all.x = TRUE)
  } else {
    slope_boot <- merge(slope_boot, r_effects[, c("batter_mlbid", "slope")],</pre>
                         by.x = "batter mlbid",
                         by.y = "batter_mlbid" ,
                         all.x = TRUE)
 }
  newdat <- data.frame(cs_prob = median(swings$cs_prob),</pre>
                        is_fastball = c(0,0,1,1),
                       has_bangs = c("No","Yes","No","Yes"))
  mm <- model.matrix(~ cs_prob+ is_fastball*has_bangs , newdat) ## create
  newdat$y <- mm%*%fixef(contact_model_boot)</pre>
  newdat$p <- exp(newdat$y)/(1+exp(newdat$y))</pre>
# predict(contact_model_boot, newdat, re.form = NA, type = "response") #would give the same results
  OR_offspeed[i] <- odds(newdat$p[newdat$is_fastball == 0 &</pre>
                                     newdat$has bangs == "Yes"]) /
    odds(newdat$p[newdat$is_fastball == 0 & newdat$has_bangs == "No"])
  OR fastball[i] <- odds(newdat$p[newdat$is fastball == 1 &
                                     newdat$has_bangs == "Yes"]) /
    odds(newdat$p[newdat$is_fastball == 1 & newdat$has_bangs == "No"])
quantile(OR_offspeed, c(0.025, 0.975))
2.5%
        97.5%
1.341864 2.674534
quantile(OR_fastball, c(0.025, 0.975))
2.5%
          97.5%
0.2271006 \ 1.7739218
quantile(log(OR_offspeed), c(0.025, 0.975))
2.5%
          97.5%
0.2940328 0.9837725
r_effects <- data.frame(batter_mlbid = row.names(coef(contact_model) $batter_mlbid), int = coef(contact_s
r_effects <- merge(ids,r_effects, by.x = "batter_mlbid",by.y = "batter_mlbid")</pre>
r_effects <- r_effects[order(-r_effects$slope),]</pre>
r_effects$name <- paste(r_effects$batter_first, r_effects$batter_last)</pre>
ci_rand_slope <- cbind(slope_boot[,1:3],t(apply(slope_boot[,-c(1:3)],1,function(x){exp(quantile(x, c(0.
r_effects <- merge(r_effects,ci_rand_slope, by.x = "batter_mlbid", by.y = "batter_mlbid",all.x = TRUE)
```

```
r_effects$OR_out <- pasteO(round(exp(r_effects$slope),3)," (",round((r_effects$^2.5%^),3),", ",round((r_effects$^2.5%^),3),", "
```

% latex table generated in R 3.5.1 by xtable 1.8-4 package % Fri Oct 2 13:51:03 2020

name	OR_out
George Springer	3.81 (2.042, 12.864)
Yulieski Gurriel	2.586 (1.485, 7.279)
Jonathan Davis	$2.416 \ (0.869, 12.011)$
Jacob Marisnick	2.377 (1.25, 5.765)
James Gattis	2.05 (1.017, 4.541)
William Reddick	2.01 (1.368, 4.722)
Max Stassi	1.898 (1.326, 3.376)
Carlos Correa	1.864 (1.079, 4.182)
Carlos Beltran	$1.848 \ (1.074, 4.146)$
Juan Centeno	$1.794 \ (0.777, 4.035)$
Alex Bregman	$1.774 \ (0.891, \ 3.771)$
Derek Fisher	$1.751\ (0.742,\ 4.259)$
Norichika Aoki	1.75 (1.122, 3.52)
Cameron Maybin	1.737 (0.763, 3.907)
Anthony Kemp	$1.68 \ (1.008, \ 2.747)$
Jose Altuve	1.609 (0.769, 4.547)
Andrew Reed	$1.547 \ (0.275, \ 2.998)$
Brian McCann	$1.48 \ (0.646, \ 3.772)$
Tyler White	$1.093\ (0.231,\ 2.335)$
Marwin Gonzalez	$0.671\ (0.262,\ 1.199)$

George Springer specific statistics

```
sum(swings$batter == "George Springer")
## [1] 390
sum(swings$batter == "George Springer" & swings$is_fastball == 0)
## [1] 165
gs <- subset(swings, batter == "George Springer" & is_fastball == 0)
#n swings on off speed pitches with x contacts given no bangs prior to pitch
(n <- sum(gs$has_bangs == "No"))
## [1] 119
(x <- sum(gs$has_bangs == "No" & gs$is_contact == 0))
## [1] 40
prop.test(x, n)
##
## 1-sample proportions test with continuity correction
##</pre>
```

```
## data: x out of n, null probability 0.5
## X-squared = 12.134, df = 1, p-value = 0.000495
## alternative hypothesis: true p is not equal to 0.5
## 95 percent confidence interval:
## 0.2537486 0.4292675
## sample estimates:
           р
## 0.3361345
#n swings on off speed pitches with x contacts given bangs prior to pitch
(n <- sum(gs$has_bangs == "Yes"))</pre>
## [1] 46
(x <- sum(gs$has_bangs == "Yes" & gs$is_contact == 0))</pre>
## [1] 3
prop.test(x,n)
   1-sample proportions test with continuity correction
##
## data: x out of n, null probability 0.5
## X-squared = 33.065, df = 1, p-value = 8.912e-09
## alternative hypothesis: true p is not equal to 0.5
## 95 percent confidence interval:
## 0.01699566 0.18929259
## sample estimates:
##
## 0.06521739
```

Exit Velocity Model

Table 4

```
print(xtable(summary(speed_model)$coef, caption = "Table 4 in Elmore Matthews"))
```

% latex table generated in R 3.5.1 by xtable 1.8-4 package % Fri Oct 2 15:26:28 2020

	Estimate	Std. Error	t value
(Intercept)	76.00	0.94	80.75
$\operatorname{cs_prob}$	8.36	0.91	9.18
$is_fastball$	2.20	0.70	3.15
$has_bangsYes$	2.39	1.05	2.27

Table 4: Table 4 in Elmore Matthews

Table 4 P-Values

Session Information

sessionInfo()

```
## R version 3.5.1 (2018-07-02)
## Platform: x86_64-apple-darwin15.6.0 (64-bit)
## Running under: macOS Sierra 10.12.6
##
## Matrix products: default
## BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib
##
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
## attached base packages:
## [1] stats
                graphics grDevices utils
                                               datasets methods
                                                                   base
##
## other attached packages:
## [1] lme4_1.1-17
                       Matrix_1.2-14
                                       xtable_1.8-4
                                                       lubridate_1.7.4
## [5] ggplot2_3.3.2
                       dplyr_0.8.5
##
## loaded via a namespace (and not attached):
## [1] Rcpp_1.0.4
                         highr 0.8
                                          later 1.0.0
                                                           questionr 0.7.0
## [5] nloptr_1.0.4
                         pillar_1.4.3
                                                           tools_3.5.1
                                          compiler_3.5.1
## [9] digest_0.6.25
                         nlme_3.1-137
                                          evaluate 0.14
                                                           tibble_2.1.3
## [13] lifecycle_0.1.0 gtable_0.3.0
                                          lattice_0.20-35
                                                           pkgconfig_2.0.3
## [17] rlang_0.4.5
                         rstudioapi_0.10
                                          shiny_1.4.0.2
                                                           yam1_2.2.0
## [21] xfun_0.11
                         fastmap_1.0.1
                                          withr_2.1.2
                                                           stringr_1.4.0
## [25] knitr_1.26
                         vctrs_0.2.4
                                          rprojroot_1.3-2
                                                           grid_3.5.1
## [29] tidyselect_1.0.0 glue_1.3.2
                                          R6_2.4.1
                                                           rmarkdown_1.10
## [33] minqa_1.2.4
                                                           promises_1.1.0
                         purrr_0.3.3
                                          magrittr_1.5
## [37] backports_1.1.5 scales_1.1.0
                                          htmltools_0.4.0 splines_3.5.1
## [41] MASS_7.3-50
                         assertthat_0.2.1 mime_0.9
                                                           colorspace_1.3-2
                                                           munsell_0.5.0
## [45] httpuv_1.5.2
                         miniUI_0.1.1.1
                                          stringi_1.4.3
## [49] crayon_1.3.4
```