"The Art of Forecasting"

Learning Objectives

- Describe what forecasting is
- Explain time series & its components
- Forecast using trend models
 - Simple Linear Regression

What Is Forecasting?

- Process of predicting a future event
- Underlying basis of all business decisions
 - Production
 - Inventory
 - Personnel
 - Facilities

Quantitative Forecasting

- Select several forecasting methods
- 'Forecast' the past
- Evaluate forecasts
- Select best method
- Forecast the future
- Monitor continuously forecast accuracy

Quantitative Forecasting

Quantitative Forecasting

Time Series Models

Quantitative Forecasting

Time Series
Models

Causal Models

Quantitative Forecasting

Time Series Models Causal Models

Moving Average

Exponential Smoothing

Trend Models

Quantitative Forecasting Time Series Causal **Models Models Moving Trend Exponential** Regression **Smoothing Average Models**

Quantitative Forecasting Time Series Causal **Models** Models **Moving Trend Exponential** Regression **Smoothing Average Models**

What is a Time Series?

- Set of evenly spaced numerical data
 - Obtained by observing response variable at regular time periods
- Forecast based only on past values
 - Assumes that factors influencing past, present,
 & future will continue
- Example
 - Year: 1995 1996 1997 1998 1999
 - Sales: 78.7 63.5 89.7 93.2 92.1

Time series data is a sequence of observations

- collected from a process
- with equally spaced periods of time.

Time series is dynamic, it does change over time.

When working with time series data, it is paramount that the data is plotted so the researcher can view the data.

Trend Component

- Persistent, overall upward or downward pattern
- Due to population, technology etc.
- Several years duration

Response

Trend Component

Overall Upward or Downward Movement

Cyclical Component

- Repeating up & down movements
- Due to interactions of factors influencing economy
- Usually 2-10 years duration

Response

Mo., Qtr., Yr.

Cyclical Component

- Upward or Downward Swings
- May Vary in Length

Seasonal Component

- Regular pattern of up & down fluctuations
- Due to weather, customs etc.
- Occurs within one year

Response

Seasonal Component

- Upward or Downward Swings
- Regular Patterns

Time (Monthly or Quarterly)

Irregular Component

- Erratic, unsystematic, 'residual' fluctuations
- Due to random variation or unforeseen 1984-1994 T/Maker Co.

events

- Union strike
- War
- Short duration & nonrepeating

Random or Irregular Component

- Erratic, Nonsystematic, Random,
 'Residual' Fluctuations
- Due to Random Variations of
 - Nature
 - Accidents

Short Duration and Non-repeating

Plotting Time Series Data

Intra-Campus Bus Passengers

Data collected by Coop Student (10/6/95)

Moving Average Method

Time Series Forecasting

Moving Average Method

- Series of arithmetic means
- Used only for smoothing
 - Provides overall impression of data over time

Moving Average Method

- Series of arithmetic means
- Used only for smoothing
 - Provides overall impression of data over time

Used for elementary forecasting

Moving Average Graph

Moving Average [An Example]

You work for Firestone Tire. You want to smooth random fluctuations using a 3-period moving average.

1995	20,000
1996	24,000
1997	22,000
1998	26,000
1999	25.000

Moving Average [Solution]

<u>Year</u>	Sales MA	(3) in 1,000
1995	20,000	NA
1996	24,000	(20+24+22)/3 = 22
1997	22,000	(24+22+26)/3 = 24
1998	26,000	(22+26+25)/3 = 24
1999	25,000	NA

Moving Average

Year	Response		Moving Ave ■
1994	2		NA
1995	5	>	3
1996	2		3
1997	2		3.67
1998	7	_	5
1999	6		NA

Linear Time-Series Forecasting Model

Time Series Forecasting

Linear Time-Series Forecasting Model

- Used for forecasting trend
- Relationship between response variable *Y* & time *X* is a linear function
- Coded X values used often

- Year X:	1995	1996	1997	1998	1999
– Coded year:	0	1	2	3	4
- Sales <i>Y</i> :	78.7	63.5	89.7	93.2	92.1

Linear Time-Series Model

$$\hat{Y}_i = b_0 + b_1 X_{1i}$$

Linear Time-Series Model [An Example]

You're a marketing analyst for Hasbro Toys. Using coded years, you find $Y_i = .6 + .7X_i$.

1995	1
1996	1
1997	2
1998	2
1999	4

Forecast 2000 sales.

Linear Time-Series [Example]

<u>Year</u>	Coded Year	Sales (Units)
1995	0	1
1996	1	1
1997	2	2
1998	3	2
1999	4	4
2000	5 ——	?

2000 forecast sales: $Y_i = .6 + .7 \cdot (5) = 4.1$

The equation would be different if 'Year' used.

The Linear Trend Model

Year Coded Sales

94	0	2
95	1	5
oe .	9	2

Excel Output

	Coefficients
Intercept	2.14285714
X Variable	0.74285714

$$\hat{Y}_i = b_0 + b_1 X_i = 2.143 + .743 X_i$$

Time Series Plot

Time Series Plot [Revised]

Seasonality Plot

Revised Surgery Data (Seasonal Decomposition)

Trend Analysis

Revised Surgery Data
(Trend Analysis)

