

MSYS

Microcontroller Systems

Lektion 19: A/D konvertering

Hvorfor ADC?

Figure 13-1. Microcontroller Connection to Sensor via ADC

ADC generelt

En A/D konverters referencespænding er 5 volt, og måleresultatet repræsenteres med 12 bit.

Hvad er A/D konverterens måleopløsning?

• A: 1,22 mV

• B: 12 mV

• C: 4,88 mV

• D: 5,12 mV

Offset error

Gain error

Integral non-linearitet

Mega32/Mega2560 ADC

AVR's ADC = "Successiv Approximation ADC"

Successive approximation

Successive approximation ADC

Blokdiagram, Mega2560 ADC

Slide 11

SCHOOL OF ENGINEERING

ADC enable

- Før ADC'en kan anvendes, skal den enables (skriv 1 til ADCSRA bit 7).
- Herved "tændes" for ADC'ens hardware.

"ADCW" = ADCH -> ADCL

15	14	13	12	11	10	9	8	_
-	-	_	_	-	-	ADC9	ADC8	ADCH
ADC7	ADC6	ADC5	ADC4	ADC3	ADC2	ADC1	ADC0	ADCL
7	6	5	4	2	2	4	٥	•

- A/D konverterens resultat (efter konvertering) vil være i registrene ADCH og ADCL.
- Kan kun aflæses (ikke skrives til).
- Vores compiler kan aflæse til en variabel på denne måde:

unsigned int x = ADCW.

ADC prescaler / clock

ADC prescaler

Bit	7	6	5	4	3	2	1	0	
	ADEN	ADSC	ADATE	ADIF	ADIE	ADPS2	ADPS1	ADPS0	ADCSRA
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

ADP\$2	ADPS1	ADPS0	Division Factor
0	0	0	2
0	0	1	2
0	1	0	4
0	1	1	8
1	0	0	16
1	0	1	32
1	1	0	64
1	1	1	128

OBS: ADC clock skal være mellem 50 kHz og 200 kHz!

(For at kunne opnå 10 bit præcision).

ADC timing

Konverterings-tid

	Condition	Sample & Hold (Cycles from Start of Conversion)	Conversion Time (Cycles)
	First conversion	14.5	25
	Normal conversions, single ended	1.5	13
	Auto Triggered conversions	2	13.5
	Normal conversions, differential	1.5/2.5	13/14

Eksempel:

f_{ADC} = 200 kHz => 13 cykles = 65 uS =>

15380 konverteringer / sekund

CPU clock frekvens = 16 MHz
 ADC prescaler = 128
 Antag 13 ADC clockperioder per konvertering.
 Hvor lang tid varer en A/D-konvertering?

A: 8 mikrosekunder

B: 104 mikrosekunder

C: 81 nanosekunder

Mega2560: Valg af reference

Bit	7	6	5	4	3	2	1	0	_
	REFS1	REFS0	ADLAR	MUX4	MUX3	MUX2	MUX1	MUX0	ADMUX
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

REFS1	REFS0	Voltage Reference Selection ⁽¹⁾	
0	0	AREF, Internal V _{REF} turned off	AREF = Ekstern pin
0	1	AVCC with external capacitor at AREF pin	AVCC = 5 volt
1	0	Internal 1.1V Voltage Reference with external capacito	Intern 1,1 volt
1	1	Internal 2.56V Voltage Reference with external capacit	
	•		Intern 2,56 volt

CPU clockfrekvensen er <u>12 MHz</u>.
 Vi ønsker, at ADC clock frekvensen er <u>mellem</u> <u>50 kHz og 200 kHz</u> (for bedste performance).
 Hvilken ADCSRA værdi er FORKERT?

```
A:
    ADCSRA = 0b10000111;
B:
    ADCSRA = 0b10000110;
C:
    ADCSRA = 0b10000101;
```


 Vi bruger ADC'en til at måle en fast DC spænding. ADC'ens output er 400, når spændingen er 2 volt. Hvad er ADC'ens output, når spændingen ændres til 1 volt?

```
A:
800
B:
400
C:
200
D:
100
```


 Vi bruger ADC'en til at måle en fast DC spænding. ADC'en output er 400, når referencen er 4 volt. Hvad er ADC'ens output, når referencen ændres til 2 volt?

```
A:
200
B:
300
C:
400
D:
800
```


Mega32: ADC pins (= PA ben)

```
(XCK/T0) PB0 d
                                PA0 (ADC0)
      (T1) PB1 ☐
                                PA1 (ADC1)
(INT2/AIN0) PB2
                                PA2 (ADC2)
(OC0/AIN1) PB3 4
                          37
                                PA3 (ADC3)
     (SS) PB4 ☐ 5
                          36
                                PA4 (ADC4)
   (MOSI) PB5 ☐ 6
                          35
                                PA5 (ADC5)
   (MISO) PB6 2 7
                          34
                                PA6 (ADC6)
    (SCK) PB7 □
                          33
                                PAZ (ADC7)
       RESET 

                                AREF
                          32
         VCC 🗆
                           31
                                GND
                 10
         GND □
                                AVCC
                11
                          30
        XTAL2
                                PC7 (TOSC2)
                          29
                12
        XTAL1 |

□ PC6 (TOSC1)

                13
                          28
                             □ PC5 (TDI)
    (RXD) PD0 4 14
                          27
    (TXD) PD1 1 15

□ PC4 (TDO)

                          26
    (INTO) PD2 🗖
                                PC3 (TMS)
                16
                          25
    (INT1) PD3 🗖
                17
                          24
                                PC2 (TCK)
   (OC1B) PD4 ☐
                                PC1 (SDA)
                18
                          23
   (OC1A) PD5 🗖
                19
                          22
                                PC0 (SCL)
    (ICP1) PD6 🗖
                20
                          21
                                PD7 (OC2)
```


Mega2560: ADC pins (= PF og PK ben)

Mega2560: Valg af ADC-indgang (1)

7	6	5	4	3	2	1	0	_
REFS1	REFS0	ADLAR	MUX4	MUX3	MUX2	MUX1	MUX0	ADMUX
R/W	R/W	R/W	ΡW	R/W	R/W	R/W	BAA	
0	0	0	0	0	0	0	0	
7	6	5	4	3	2	1	0	_
-	ACME	-	-	MUX5	ADTS2	ADTS1	ADTS0	ADCSRB
R	R/W	R	R	R/W	R/W	R/W	R/W	
0	0	0	0	0	0	0	0	

MUX5:0	Single Ended Input	Positive Differential Input	Negative Differential Input	Gain
000000	ADC0			
000001	ADC1			
000010	ADC2			
000011	ADC3	"Single e	ended" = <u>En</u>	
000100	ADC4	spændin	g refereret til stel.	
000101	ADC5	•		
000110	ADC6			
000111	ADC7			

Mega2560: Valg af ADC-indgange (2)

MUX5:0	Single Ended Input	Positive Differential Input	Negative Differential Input	Gain
001000(1)		ADC0	ADC0	10×
001001(1)		ADC1	ADC0	10×
001010 ⁽¹⁾		ADC0	ADC0	200×
001011(1)		ADC1	ADC0	200×
001100 ⁽¹⁾		ADC2	ADC2	10×
001101 ⁽¹⁾		ADC3	ADC2	10×
001110 ⁽¹⁾		ADC2	ADC2	200×
001111 ⁽¹⁾		ADC3	ADC2	200×
010000	NI/A	ADC0	ADC1	1x
010001	N/A	ADC1	ADC1	1x
010010		ADC2	ADC1	1x
010011		ADC3	ADC1	1x
010100		ADC4	ADC1	1×
010101		ADC5	ADC1	1x
010110		ADC6	ADC1	1x
010111		ADC7	ADC1	1x
011000		ADC0	ADC2	1x
011001		ADC1	ADC2	1x
011010		ADC2	ADC2	1x
011011	N/A	ADC3	ADC2	1×
011100	IVA	ADC4	ADC2	1x
011101		ADC5	ADC2	1×

SCHOOL OF ENGINEERING

Mega2560: Valg af ADC-indgange (3)

	MUX5:0	Single Ended Input	Positive Differential Input	Negative Differential Input	Gain			
•[011110	1.1V (V _{BG})	_	N/A				
lacksquare	011111	0V (GND)	IVA					
	100000	ADC8						
	100001	ADC9						
	100010	ADC10						
	100011	ADC11		NI/A				
	100100	ADC12		N/A				
	100101	ADC13						
	100110	ADC14						
	100111	ADC15						

Mega2560: Valg af ADC-indgange (4)

MUX5:0	Single Ended Input	Positive Differential Input	Negative Differential Input	Gain
101000 ⁽¹⁾		ADC8	ADC8	10×
101001(1)		ADC9	ADC8	10×
101010 ⁽¹⁾		ADC8	ADC8	200×
101011 ⁽¹⁾		ADC9	ADC8	200×
101100 ⁽¹⁾		ADC10	ADC10	10×
101101(1)		ADC11	ADC10	10×
101110 ⁽¹⁾		ADC10	ADC10	200×
101111 ⁽¹⁾		ADC11	ADC10	200×
110000		ADC8	ADC9	1×
110001		ADC9	ADC9	1×
110010	N/A	ADC10	ADC9	1×
110011		ADC11	ADC9	1×
110100		ADC12	ADC9	1×
110101		ADC13	ADC9	1×
110110		ADC14	ADC9	1×
110111		ADC15	ADC9	1×
111000		ADC8	ADC10	1×
111001		ADC9	ADC10	1×
111010		ADC10	ADC10	1×
111011		ADC11	ADC10	1×
111100		ADC12	ADC10	1×
111101	N/A	ADC13	ADC10	1×
111110	Reserved		N/A	
111111	Reserved		N/A	

VERSITY
SCHOOL OF ENGINEERING

RHUS

Normal / "Left Adjust Result"

Bit	7	6	3	4	3	2	1	0	_
	REFS1	REFS0	ADLAR	MUX4	MUX3	MUX2	MUX1	MUX0	ADMUX
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

Bit	15	14	13	12	11	10	9	8	
	-	-	-	-	-	-	ADC9	ADC8	ADCH
	ADC7	ADC6	ADC5	ADC4	ADC3	ADC2	ADC1	ADC0	ADCL
	7	6	5	4	3	2	1	0	•
Read/Write	R	R	R	R	R	R	R	R	
	R	R	R	R	R	R	R	R	
Initial ∀alue	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	

Bit	15	14	13	12	11	10	9	8	_
	ADC9	ADC8	ADC7	ADC6	ADC5	ADC4	ADC3	ADC2	ADCH
	ADC1	ADC0	-	-	-	-	-	-	ADCL
	7	6	5	4	3	2	1	0	•
Read/Write	R	R	R	R	R	R	R	R	
	R	R	R	R	R	R	R	R	
Initial ∀alue	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	

ADCH and ADCL Data registers

- ADCH:ADCL store the results of conversion.
- The 10 bit result can be right or left justified:

ADCH

Vores compiler:
ADCW er ADCH—ADCL:
x = ADCW;

ADCL

ADLAR = 0 ← Anbefales!

ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADC1 ADC0 ADC9 ADC8 ADLAR = 1**ADCH ADCL** ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADC8 ADC1 ADC0 ADC9 SCHOOL OF ENGINEERING Slide 30

ADC start ("trigger")

"Manuel" START

- Bit ADSC = 1 : Konvertering starter.
 ADCSRA |= 0b01000000;
- Bit ADSC == 0 : Konvertering slut.
 while (ADCSRA & 0b01000000)
 {}
 // Herefter kan ADC aflæses
 x = ADCW;

Mega2560: Automatisk START ("trigger")

ADTS2	ADTS1	ADTS0	Trigger Source ← "Interrupt fra"		
0	0	0	Free Running mode		
0	0	1	Analog Comparator		
0	1	0	External Interrupt Request 0		
0	1	1	Timer/Counter0 Compare Match A		
1	0	0	Timer/Counter0 Overflow		
1	0	1	Timer/Counter1 Compare Match B		
1	1	0	Timer/Counter1 Overflow		
1	1	1	Timer/Counter1 Capture Event		

ADC interrupt

- ADIE: "ADC interrupt enable".
 1 => Der genereres ADC-interrupt, hvis global interrupt enable også er sat.
- (ADIF: "ADC interrupt flag")
 Sættes høj efter hver konvertering.
 <u>Nulstilles automatisk i interruptrutinen</u> ELLER ved at skrive et 1-tal til bit ADIF.

Eksempel: Niveau-tester

LAB13

Der skal anvendes en skruetrækker med en speciel lille kærv for at justere på potentiometeret.

OBS: Brug ikke for mange kræfter! Du kan komme til at ødelægge potentiometeret.

Skruetrækkeren vil kunne lånes til øvelsen.

Ved at skrue på potentiometeret kan vi justere spændingen på ADC0 benet mellem 0 og 5 volt.

- "Manuel" start
- Aflæs og display potentiometer-spændingen

- Automatisk "Start on Timer 1 overflow"
- ADC interrupt enabled
- Aflæs og display potentiometer-spændingen

Simpel regulering:

Juster spændingen over kondensatoren, så den bliver den samme som spændingen fra potentiometeret.

- ADC0 er måling fra potentiometeret
- ADC1 er måling fra kondensatoren

Forslag til yderligere studie

http://www.youtube.com/watch?v=cjmcAE1L6OQ&list=PLgO01FhQgwvuPxEFDRkYilPJiZfsSrQax

http://www.youtube.com/watch?v=hRIVGx-fTKs

Slut på lektion 19

Slide 44