### Perceptron

#### **ADALINE**

$$\Delta = \mu \cdot (o(t) - d(t)) \cdot xi$$

μ = taxa aprendizado

o(t) = valor obtido para o treino t

d(t) = valor desejado para o treino t

xi = sinal de entrada i

Inicializa os pesos das sinapses

$$g = 0$$

Repita

Para cada instancia de treino t

Calcula o valor do  $s = \sum xi$  . wi

Aplica a função de transferência ∂(s)

Calcula a taxa de erro

$$E(t) = o(t) - d(t)$$

Para cada sinal de entrada

Atualiza os valores dos pesos

$$\Delta i = \mu \cdot (o(t) - d(t)) \cdot xi$$

$$wi = wi + \Delta i$$

Verifica o erro global

$$Eg(t) = \sum E(t) / n$$
 
$$g += 1$$
 
$$Até Eg(t) < limit ou g > max_gerações$$

# Exemplo de aprendizado

|                  |     | Cientista = 0 | Escritor = 1 |
|------------------|-----|---------------|--------------|
| Einstein         | 0 0 | х             |              |
| Machado de Assis | 10  |               | х            |
| Newton           | 0 1 | х             |              |
| Dalton Trevisan  | 11  |               | x            |



$$W0 = 0$$
  
 $W1 = 0$   
 $W2 = 0$   
 $\mu = 1$ 

$$\partial(s) = 1$$
, se  $s > 0$   
0, caso contrário

## Para o primeiro exemplo

$$X1 = 0$$
$$X2 = 0$$

$$S = 1 * W0 + x1 * w1 + x2 * w2$$
  
= 1 \* 0 + 0 \* 0 + 0 \* 0  
= 0

$$\partial(s) = 0$$

$$o(t) = 0$$

$$d(t) = 0$$

$$\Delta 0 = \mu \cdot (o(t) - d(t)) \cdot 1$$
  
= 1 \cdot (0 - 0) \cdot 1 = 0

$$\Delta 1 = \mu \cdot (o(t) - d(t)) \cdot X1$$
  
= 1 \cdot (0 - 0) \cdot 0 = 0

$$\Delta 2 = \mu \cdot (o(t) - d(t)) \cdot X2$$
  
= 1 \cdot (0 - 0) \cdot 0 = 0

### Atualizando os pesos

$$W0 = 0 + 0 = 0$$
  
 $W1 = 0 + 0 = 0$   
 $W2 = 0 + 0 = 0$ 

## Para o segundo exemplo

$$X1 = 1$$
  
 $X2 = 0$   
 $Y = 1$ 

$$S = 1 * W0 + x1 * w1 + x2 * w2$$
  
= 1 \* 0 + 1 \* 0 + 0 \* 0  
= 0

$$\partial(s) = 0$$

$$o(t) = 0$$
  
  $d(t) = y = 1$ 

$$\Delta 0 = \mu \cdot (o(t) - d(t)) \cdot 1$$
  
= 1 \cdot (0 - 1) \cdot 1

$$\Delta 1 = \mu \cdot (o(t) - d(t)) \cdot X1$$
  
= 1 \cdot (0 - 1) \cdot 1

$$\Delta 2 = \mu \cdot (o(t) - d(t)) \cdot X2$$
  
= 1 \cdot (0 - 1) \cdot 0

$$W0 = 0 + (-1) = -1$$
  
 $W1 = 0 + (-1) = -1$   
 $W2 = 0 + 0 = 0$ 

Para o terceiro exemplo

$$X1 = 0$$
  
 $X2 = 1$   
 $Y = 0$ 

$$S = 1 * W0 + x1 * w1 + x2 * w2$$
  
= 1 \* (-1) + 0 \* (-1) + 1 \* 0  
= -1

$$\partial(s) = 0$$

Para o quarto exemplo

$$X1 = 1$$
  
 $X2 = 1$   
 $Y = 1$ 

$$S = 1 * W0 + x1 * w1 + x2 * w2$$
  
= 1 \* (-1) + 1 \* (-1) + 1 \* 1  
= -1

$$\partial(s) = 0$$

$$o(t) = 0$$
  
  $d(t) = y = 1$ 

$$\Delta 0 = \mu \cdot (o(t) - d(t)) \cdot 1$$
  
= 1 \cdot (0 - 1) \cdot 1  
= -1

$$\Delta 1 = \mu \cdot (o(t) - d(t)) \cdot X1$$
  
= 1 \cdot (0 - 1) \cdot 1

$$\Delta 2 = \mu \cdot (o(t) - d(t)) \cdot X2$$
  
= 1 \cdot (0 - 1) \cdot 1

$$W0 = -1 + (-1) = -2$$
  
 $W1 = -1 + (-1) = -2$   
 $W2 = 0 + (-1) = -1$ 

 voltamos para reprocessar toda a base de treino

|                       |     | Cientista = 0 | Escritor = 1 | Homem = 0 | Mulher = 1 |
|-----------------------|-----|---------------|--------------|-----------|------------|
| Einstein              | 0 0 | x             |              | х         |            |
| Clarice<br>Linspector | 10  |               | x            |           | х          |
| Marie Curie           | 0 1 | х             |              |           | х          |
| Dalton<br>Trevisan    | 11  |               | х            | х         |            |

