Lab Number 5

EEE 108L – Electronics I - Laboratory

MOS Characteristics (One week)

Background

This lab will explore the DC characteristics of a MOS transistor. For the SPICE simulations and for the actual circuit, use the model of an n-channel transistor in the CD4007 MOS transistor.

Preliminary Calculations:

- 1. One of the conditions for forward active (saturation) region operation is $V_{DS} > (V_{GS} V_{th})$. Show that this condition is equivalent to $V_{GD} < V_{th}$.
- 2. For the circuit of Figure 1, if $R_D = 4.7k\Omega$, $V_{DD} = 5V$, $\lambda = 0$. Calculate I_D and state whether the device is in the cutoff, saturation (forward active) or linear (triode) region of operation if $V_{GS} = 1V$, 2V, and 4V.
- 3. Suppose that an n-channel MOSFET (not a CD4007 type) is measured to have $I_D=35\mu$ when $V_{GS}=1.46V$ and $I_D=430~\mu$ when $V_{GS}=2.18V$. Find V_{th} for this MOSFET.

SPICE Simulations:

- 1. Enter the circuit of Figure 1 into SPICE. Do not specify the W and L values of the MOSFET on the schematic; these values are already in the model file. Set $V_{DD} = 5V$.
- 2. Run DC Sweep. Sweep V_{GS} from 0 to 5 volts. Obtain a plot of I_D as a function of V_{GS} . Also add a trace that is a mathematical expression for the drain current in the forward active region. $I_D = K(V_{GS}-Vth)^2$

where
$$K = \frac{\mu C_{ox}}{2} \frac{W}{L}$$
,

 μ Cox is the SPICE model parameter K_P , Vth is the SPICE model parameter V_{TO} , and W and L are the transistor dimensions.) Refer to the model file of the CD4007 n-channel transistor to obtain these parameters.

- 3. Add a plot showing V_{GS} , V_{GD} , and V_{th} .
 - To plot V_{GD}, you will need to use a math function of two circuit voltages.
 - To plot V_{th} , just enter "1.6" as the trace expression.
- **4.** Using vertical lines drawn on the graph, label the three regions of operation: cutoff, forward active, and linear (triode).
- 5. Change the circuit by removing R_D and replacing it with a wire. Now, $V_{DS} = V_{DD}$. Assign a DC value of 2V to V_{GS} , and then sweep V_{DD} from 0 to 5V. Obtain a plot of I_D .
- **6.** Identify the value of V_{DS} at which the transistor transitions into its saturation (i.e., forward active) region.
- 7. Find an approximate value for $\Delta V_{DS} / \Delta I_{D}$ in each region.
- 8. In the linear region, find $R_{DS} = \Delta V_{DS}/\Delta I_D$ and compare it with $R_{DS} = \left[\mu C'_{ox} \frac{W}{L} (V_{GS} V_{th})\right]^{-1}$
- 9. In the saturation region, find $r_o = \Delta V_{DS} / \Delta I_D$ and compare it with $r_o = \frac{1}{\lambda I_D}$
- **10.** Put R_D back in the circuit. Repeat the simulation with the bulk terminal of the transistor connected to -1V instead of ground.
- **11.** Run Bias point and find the value of V_{th} .

Laboratory Measurements:

- 1. Construct the circuit of Figure 1. Use one of the n-channel transistors on the CD4007 that has separate source and bulk connections. Connect the bulk terminal (pin 7) to the source terminal externally. Use the value of R_D used before.
- 2. It is preferable to use independently adjustable positive power supplies for V_{DD} and V_{GS}. Set V_{DD} to 5V and sweep V_{GS} from 0-5V. Record V_{GS}, V_{DS}, and calculate I_D. Tabulate your data. Take 4 data points that are in the forward active region and four that are in the linear region.
- **3.** Determine values of V_{th} . Assume that $\lambda = 0$
- **4.** For the circuit of Figure 1, adjust V_{GS} so that $V_{DS} = 2V$. Record this value of V_{GS} , and do not change it.
- 5. Vary V_{DD} from zero to about 7 volts, recording V_{DS} and I_D at about four data points in the linear region and about four points in the saturation region. Tabulate your data.
- **6.** Connect the bulk terminal of the transistor under test to a fixed voltage equal to -1V.
- **7.** Find a new value of V_{th} .