Learning to Rank Overview

Introduction of machine learning algorithms for ranking problem

I want top php engineers

I want top php engineers

How to decide an order for these developers?

Ranking Everywhere

- Article ranking in community search page
- Article Infinite Scroll
 - Once the article opened, how to decide next 10 articles we recommend
- Applicant Quality Score
 - How to select top quality applicants to review first
- Codementor Request Matching

•

Native Ranking System

Native Ranking Methods

- The ranking expression is human experience
 - Need many time to tuning models
 - Hard to scale out if number of features increases
 - Overfitting problem
- Is it possible to use machine learning to solve ranking problem?

Learning to Rank System

Supervised Methods

5

Top

- Model Complexity: O(|q|*n_q)
 - q: number of queries
 - n_q: number of matched documents of query q
- Algorithms
 - SVM, McRank, SLR ...

- Pros
 - Easy and intuitive to implement
 - Fast modeling
- Cons
 - Cannot consider ordering
 - Labeling is hard

Top

- Model Complexity: O(|q| * n^2)
- Algorithms
 - RankNet, IR-SVM, RankBoost

- Pros
 - Consider relative order
 - Most popular concept in real world
- Cons
 - Need to generate O(n^2) tags, high cost
 - Not consider the relevance between query and document

Numerical Methods

Top

Top

Which one is better ordering?

Best Order

Measure the difference with best orders

One of the orders

- Model Complexity: O(|q| * n!)
 - Many researches focus on reducing model complexity by numerical methods
- Algorithms
 - AdaRank, ListNet, SVM-MAP ...

- Pros
 - Consider all situations
 - Based on the origin problem definition
- Cons
 - O(n!) permutations (hard to implement and time bound)
 - Hard to optimize (objective functions not always continuous)

Practical Issues

- What is the objective metrics we pursue?
- How to generate labels?
- Cold-start problem

Objective Metrics

- Based on application
- Search
 - Most page views
 - Click Through Rate (CTR)
- CMX Job match
 - Contract Conversion Rate (CCR)
 - Interview Conversion Rate (ICR)

Labeling Problem

- How to label data if we have nothing
 - Small dataset human labeling is ok
 - Large dataset
 - Semi-supervised learning
 - Matrix factorization

Labeling Problem Semi-supervised

Iterative training with relevance Labels

- Rule-based models
- Human ranking expressions

Labeling Problem Semi-supervised

Pseudo Labeling

Labeling Problem - Matrix Factorization

When data size is large, we can label part of pairs

	Feature 1	Feature 2	_		Item 1	Item 2	Item 3	Item 5
User 1	?	?	X	Feature	1 ?	?	? 1	7
User 2	?	?		Feature	2 ?	?	? 1	?
User 3	?	?						
User 4	?	?						
User 5	?	?		Item 1	Item 2	Item 3	Item 4	Item 5
			User 1	°?	3	0?	3	0?
			User 2	4	٥.5	0.5	2	0?
			User 3	0.3	0.5	3	0?	0?
			User 4	3	°?	4	°?	3
			User 5	4	3	°?	4	0.5

Cold-start Problem

- Occurs in using some online metrics as features
 - Click count
 - View count
- How to handle new items?
 - Find similar items based on static features

Reference

Ranking

- http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.222.6261&rep=rep1&type=pdf
- http://www.shuang0420.com/2016/10/25/Search%20Engines%E7%AC%94%E8%AE%B0%20-%20Learning%20to%20Rank/
- http://net.pku.edu.cn/~wbia/2011/slides/LEARNING%20TO%20RANK%20TUTORIAL%20-%20tyliu.pdf
- https://people.cs.umass.edu/~jpjiang/cs646/16 learning to rank.pdf

Semi-supervised learning techniques

- https://www.analyticsvidhya.com/blog/2017/09/pseudo-labelling-semi-supervised-learning-technique/
- https://datawhatnow.com/pseudo-labeling-semi-supervised-learning/