阻尼振动和受迫振动物理实验

谢泽钰 1

1. 实验目的

- 1.1. 观测阻尼振动,学习测量振动系统基本参数的方法.
- 1.2. 研究受迫振动的幅频特性和相频特性,观察共振现象.
- 1.3. 观测不同阻尼对受迫振动的影响.
 - 2. 实验仪器
 - 3. 实验原理
- 3.1. **有粘滞阻尼的阻尼振动**. 对于弹簧与摆轮组成的振动系统(如图 1 所示),设 摆轮转动惯量为 J,粘滞阻尼的阻尼力矩大小定义为角速度 $\frac{d\theta}{dt}$ 与阻尼力矩系数 γ 的乘积,弹簧劲度系数为 k,弹簧的反抗力矩为 $-k\theta$ 。忽略弹簧的等效转动惯量,则转角 θ 的运动方程为

$$J\frac{d^2\theta}{dt^2} + \gamma \frac{d\theta}{dt} + k\theta = 0 \quad (1)$$

记 ω_0 为无阻尼时自由振动的固有角频率,其值为 $\omega_0=\sqrt{\frac{k}{J}}$,定义阻尼系数 β 为 $\beta=\frac{\gamma}{2J}$,则式 (1) 变为

$$J\frac{d^2\theta}{dt^2} + 2\beta\omega_0\frac{d\theta}{dt} + \omega_0^2\theta = 0 \quad (2)$$

对于弱阻尼即 $2\beta\omega_0 \ll 1$ 的情况,阻尼振动运动方程 (1) 的解为

$$\theta = \theta_i e^{-\beta t} \cos(\omega t + \varphi) \quad (3)$$

式中 θ_i 为摆幅 , φ 为初始相位。由上式可知 , 阻尼振动角频率为 $\omega=\sqrt{\omega_0^2-\beta^2}$, 相应的阻尼振动周期为 $T=\frac{2\pi}{\sqrt{\omega_0^2-\beta^2}}$ 。

E-mail address: xie-zy20@mails.tsinghua.edu.cn.

Date: 2024 年 4 月 1 日.

¹ 致理书院, 致理-数 02, 学号 2020012544

- 4. 实验内容
- 5. 数据处理及结果
 - 6. 实验小结
 - 7. 原始数据记录

References