MATH2040C Homework 4

ZHENG Weijia (William, 1155124322)

March 4, 2021

Section 5.1, Q2(e)1

Given that $\beta = \{1 - x + x^3, 1 + x^2, 1, x + x^2\}$. And note that $T(1 - x + x^3) = -1 + x - x^3$. $T(1 + x^2) = -x - x^2 + x^3$. $T(1) = x^2$. $T(x+x^2) = -x - x^2.$

Hence $T(\beta) = \{-1 + x - x^3, -x - x^2 + x^3, x^2, -x - x^2\}.$

$$[T]_{\beta} = \begin{pmatrix} -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}.$$

Suppose β is containing T's eigenvectors, then $\exists \lambda \in F$ such that

$$T(1+x^2) = \lambda(1+x^2).$$

Then $\lambda + \lambda x^2 = -x - x^2 + x^3$. Note that the degree of them do not equal in any sense. Hence β is not a basis consisting of eigenvectors of T.

Section 5.1, Q2(f)2

Given that
$$\beta = \{ \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} -1 & 2 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 2 & 0 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & 2 \end{pmatrix} \}.$$

Note that
$$T \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} -3 & 0 \\ -3 & 0 \end{pmatrix} = -3 \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix},$$

$$T \begin{pmatrix} -1 & 2 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} -1 & 2 \\ 0 & 0 \end{pmatrix} = 1 \cdot \begin{pmatrix} -1 & 2 \\ 0 & 0 \end{pmatrix},$$

$$T \begin{pmatrix} 1 & 0 \\ 2 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 2 & 0 \end{pmatrix} = 1 \cdot \begin{pmatrix} 1 & 0 \\ 2 & 0 \end{pmatrix}, \text{ and}$$

$$T\begin{pmatrix} -1 & 2\\ 0 & 0 \end{pmatrix} = \begin{pmatrix} -1 & 2\\ 0 & 0 \end{pmatrix} = 1 \cdot \begin{pmatrix} -1 & 2\\ 0 & 0 \end{pmatrix}$$

$$T\begin{pmatrix} 1 & 0 \\ 2 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 2 & 0 \end{pmatrix} = 1 \cdot \begin{pmatrix} 1 & 0 \\ 2 & 0 \end{pmatrix}$$
, and

$$T\begin{pmatrix} -1 & 0 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 2 \end{pmatrix} = 1 \cdot \begin{pmatrix} -1 & 0 \\ 0 & 2 \end{pmatrix}.$$

Hence we deduce that β is a basis consisting of eigenvectors of T.

3 Section 5.1, Q3(d)

3.1 (i)

Given that $A = \begin{pmatrix} 2 & 0 & -1 \\ 4 & 1 & -4 \\ 2 & 0 & -1 \end{pmatrix}$, then its characteristic polynomial is

$$f_A(t) = \det \begin{pmatrix} 2-t & 0 & -1 \\ 4 & 1-t & -4 \\ 2 & 0 & -1-t \end{pmatrix} = -t(t-1)^2.$$

Observe the $f_A(t)$'s zeros, we have A should have 2 eigenvalues: 1 and 0.

3.2 (ii)

For eigenvalue 1, the corresponding eigenvectors should be in the span of set

$$\left\{ \begin{pmatrix} 1\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix} \right\}.$$

For eigenvalue 0, the corresponding eigenvectors should be in the span of set

$$\left\{ \begin{pmatrix} 1\\4\\2 \end{pmatrix} \right\}.$$

3.3 (iii)

In this case, the $n = 3, F = \mathbb{R}$. So $F^3 = \mathbb{R}^3$.

Note that $\left\{\begin{pmatrix}1\\0\\1\end{pmatrix},\begin{pmatrix}0\\1\\0\end{pmatrix},\begin{pmatrix}1\\4\\2\end{pmatrix}\right\}$ is a 3-linear-independent set. Hence it is a basis of \mathbb{R}^3 .

And by our conclusion above, these 3 vectors are eigenvectors of A.

3.4 (iv)

Let $Q = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 4 \\ 1 & 0 & 2 \end{pmatrix}$. Note that Q is invertible and $Q^{-1} = \begin{pmatrix} 2 & 0 & -1 \\ 4 & 1 & -4 \\ -1 & 0 & 1 \end{pmatrix}$.

Note that

$$Q^{-1}AQ = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

2

Section 5.1, Q4(h) 4

Let β be the standard basis. Note that $[T]_{\beta} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$. By extracting its characteristic polynomial, it is

$$f_T(t) = (t-1)^3(t+1) = 0.$$

And note that their corresponding eigenvectors to be $\left\{\begin{pmatrix}0\\1\\0\\0\end{pmatrix},\begin{pmatrix}0\\0\\1\\0\end{pmatrix},\begin{pmatrix}\frac{1}{0}\\0\\0\\-1\end{pmatrix},\begin{pmatrix}\frac{1}{0}\\0\\0\\-1\end{pmatrix}\right\}$.

Note that by the diagnoalizability of $[T]_{\beta}$, (for its every eigenvalue: 1 and -1: algebraic multiplicity equals geometric multiplicity) we have

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} = Q^{-1}[T]_{\beta}Q.$$

Where
$$Q = \begin{pmatrix} 0 & 0 & -1 & 1 \\ -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & -1 \end{pmatrix}$$
.

Regard Q as a change of basis matrix from another basis γ to our known standard basis β . Therefore, $Q = [I]_{\gamma}^{\beta}$.

Let $\gamma = \{y_1, y_2, y_3, y_4\}$. Therefore

$$[y_1, y_2, y_3, y_4]_{\beta} = \begin{pmatrix} 0 & 0 & -1 & 1 \\ -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & -1 \end{pmatrix}.$$

Hence,
$$y_1 = \begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix}$$
, $y_2 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $y_3 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$, $y_4 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

Hence, $y_1 = \begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix}$, $y_2 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $y_3 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$, $y_4 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. Note that $[T]_{\gamma} = \begin{pmatrix} 0 & 0 & -1 & 1 \\ -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & -1 \end{pmatrix}$. So γ is the ordered basis we need to find.

Section 5.1, Q4(e)5

Let $\beta = \{1+x, -3-13x+4x^2, -3+x\}$ be a ordered basis. Then

$$[T]_{\beta} = [4x + 4, 8x^2 - 26x - 6, 0]_{\beta} = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Which is a diagnoal matrix. Hence the β is what we want to find. And the eigenvalues of T are 4,2 and 0, with corresponding eigenvectors elements of the ordered basis β .

6 Section 5.1, Q17

6.1 (a)

Note that for the identity matrix I, $T(I) = I = 1 \cdot I$, hence 1 is a eigenvalue. Also note that for a matrix X with only 2 entries on the right top and left buttom being 1 and -1, then

$$T(X) = -X.$$

Hence -1 is a eigenvalue.

Suppose there exists some eigenvalue $|\lambda| \neq 1$ such that

$$A^T = \lambda A$$
.

Then we can deduce $\lambda A^T = A = \lambda^2 A$. Which implies $(1 - \lambda^2)A = 0$.

Because A is regarded as an eigenvector, hence it is not zero, so $1 - \lambda^2$ must be 0. But other than 1 and -1, it cannot be 0.

Hence 1, -1 are the only eigenvalues of A.

6.2 (b)

For eigenvalue 1, the corresponding eigenvectors are all symmetric matrices. For eigenvalue -1, the corresponding eigenvectors are all skew symmetric matrices.

6.3 (c)

Consider
$$\gamma = \{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \}.$$
Then $[T]_{\gamma} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$

Note that

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} = Q^{-1}[T]_{\gamma}Q,$$

where
$$Q = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$
.

Where \hat{Q} can be regarded as $[I]^{\gamma}_{\beta}$. Let $\beta = \{v_1, v_2, v_3, v_4\}$.

$$[I]_{\beta}^{\gamma} = [v_1, v_2, v_3, v_4]_{\gamma} = \begin{bmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}].$$

Hence the γ is the basis we want.

6.4 (d)

Note that for 1 as an eigenvalue, its corresponding eigenvectors are

$$E_1 = \{e_{1ij}, i \leq j\}.$$

Where the e_{1ij} are defined as a matrix with i-j's slot to be 1 and j-i's slot also being 1, while others remains 0.

And for -1 as an eigenvalue, its corresponding eigenvectors are

$$E_{-1} = \{e_{2ij}, i < j\}.$$

Where e_{2ij} is defined as a matrix with i-j's slot being 1 and j-i slot being -1.

Then, take $\gamma = \{e_{ij}, 1 \leq i, j \leq n\}$. Take $[E_1, E_{-1}]_{\gamma}$ as a change of order matrix.

If we regard the E_1, E_{-1} as a basis of $M_{n \times n}(\mathbb{R})$, then we can regard

$$[E_1, E_{-1}]_{\gamma} = [I(v_1), I(v_2), ..., I(v_{n^2})]_{\gamma}.$$

Note that the eigenvectors inside E_1, E_{-1} are all linear independent, and there are $\frac{n(n-1)}{2} + n + \frac{n(n-1)}{2} = n^2 = \dim M_{n \times n}(\mathbb{R})$. Hence $[E_1, E_{-1}]$ is a basis.

Than note that

$$\begin{pmatrix} \lambda_1 & \dots & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \lambda_n \end{pmatrix} = ([E_1, E_{-1}]_{\beta}^{\gamma})^{-1} [T]_{\gamma} [E_1, E_{-1}]_{\beta}^{\gamma}$$

where $|\lambda_i| = 1, \forall i$.

Deifine the $\beta = \{v_1, v_2, ..., v_{n^2}\} = \{ \text{ every column of } E_1, E_{-1} \}.$

Hence the β is the basis we want to find.

7 Section 5.1, Q18

7.1 (a)

If A is not invertible, then let c = 0. We have

$$\det\left(A+cB\right) = \det A = 0.$$

Since A is singular as we supposed.

If A is invertible, then note that $A = AB^{-1}B$, then

$$\det(A + cB) = \det AB^{-1}B + cB = \det(AB^{-1} + cI)\det(B).$$

Note that $det(B) \neq 0$ and $det(AB^{-1} + cI) = 0$ if -c is the eigenvalue of AB^{-1} . And by the fundemental theorem of algebra, there must exist such c.

Done.

7.2 (b)

Let
$$A = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}$$
 and $B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.
Note that $\det(A) = 2 \neq 0$. And $\forall c \in \mathbb{C}$,

$$\det(A + cB) = \det(\begin{pmatrix} 2 & 1 + c \\ 0 & 1 \end{pmatrix}) = 2 \neq 0.$$

Therefore, A and A+cB are both invertible.

Section 5.2, Q3(c)8

Note that $V = \mathbb{R}^3$. Define $\gamma = \{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \}$ and hence $T(\gamma) = \{ \begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix} \}$ And we can see that the characteristic polynomial of $[T]_{\gamma} = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ is

$$f_T(t) = (2-t)(t^2+1).$$

Which only have one eigenvalue in \mathbb{R} . Hence it only have not enough eigenvalues, hence not diagnoalizabile.

9 Section 5.2, Q8

$$1 \le \gamma_T(\lambda_1) = \dim(E_{\lambda_1}) = n - 1.$$

$$1 \le \gamma_T(\lambda_2) = \dim(E_{\lambda_2}).$$

$$1 \leq \gamma_T(\lambda_2) = \dim(E_{\lambda_2}).$$

Take n-1 orthogonal and eigenvectors from E_{λ_1} denote them as $v_1, v_2, ..., v_{n-1}$.

And then take 1 eigenvector from E_{λ_2} , make it orthogonal to $v_1, v_2, ..., v_{n-1}$ and denote it as w.

Because
$$Q^TQ = \begin{pmatrix} v_1 \\ v_2 \\ \dots \\ v_n \\ w \end{pmatrix} \begin{pmatrix} v_1 & v_2 & \dots & v_n & w \end{pmatrix} = I$$
. Because every v_i, w are orthogonal.

Then, note that

$$Q^{-1}AQ = Q^{T}[\lambda_{1}v_{1}, \lambda_{1}v_{2}, ..., \lambda_{1}v_{n-1}, \lambda_{2}w] = \begin{pmatrix} v_{1} \\ v_{2} \\ ... \\ v_{n} \\ w \end{pmatrix} [\lambda_{1}v_{1}, \lambda_{1}v_{2}, ..., \lambda_{1}v_{n-1}, \lambda_{2}w]$$

Which is that
$$Q^{-1}AQ = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_1 & \dots & \dots \\ \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \lambda_2 \end{pmatrix}$$
.

Therefore, A is diagnoalizabile.

10 Section 5.2, Q13

10.1 (a)

Consider matrix $A = \begin{pmatrix} 1 & 2 \\ 1 & 0 \end{pmatrix}$. We know that A has 2 eigenvalues 2 and -1, with corresponding eigenvectors $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} -1 \\ 1 \end{pmatrix}$.

And $A^T = \begin{pmatrix} 1 & 1 \\ 2 & 0 \end{pmatrix}$, while having a eigenvalue 2, its corresponding eigenvector is $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$. So the eigenbasis E_2 of A and A^T are not the same for sure.

10.2 (b)

 $\forall \lambda$, where λ is a eigenvalue of A (hence also an eigenvalue of A^T).

We have dim (E_{λ}) = dim $N(A - \lambda I) = n - rank(A - \lambda I)$.

Note that \forall matrix M, we have $rank(M) = rank(M^T)$.

Then $rank((A - \lambda I)^T) = rank(A^T - \lambda I)$. Then note that

$$\dim(E_{\lambda}) = n - rank(A^{T} - \lambda I) = \dim N(A^{T} - \lambda I) = \dim(E'_{\lambda}).$$

Done.

10.3 (c)

If A is diagnoalizabile, then $\forall 1 \leq i \leq k$, A's eigenvalue λ_i 's algebraic multiplicity $m_i = \dim(E_{\lambda_i})$.

Note that A^T shares the same eigenvalues with A and their characteristic polynomials are also the same. Hence all the m_i 's are still.

By the result from (b),

$$\dim(E_{\lambda_i}) = \dim(E'_{\lambda_i}), \forall 1 \le i \le k$$

where E'_{λ} is the eigenspace of λ_i of A^T .

Then we have

$$m_i = \dim(E'_{\lambda_i}), \forall 1 \le i \le k.$$

Hence A^T is diagnoalizabile.