## 1/2 (Aq)·q > 0

per ogni  $\dot{q} \in \mathbb{R}^n$  e l'uguaglianza vale sab se  $\dot{q} = Q$ . Quindi  $\underline{A}$  é definita positivo.

Notiamo ele questa proprietà garantisce che & sios invoctibile.

# Potenza di forze e conservazione dell'energia meccanica

Def. Sia  $F \in \mathbb{R}^3$  una forza apente su un punto materiale (P, m) che si muore con relocità  $\underline{v}$ . Si chiama patenza sviluppata da F la quanti= tà scalare

$$T := \underline{F} \cdot \underline{\sigma}$$
.

Il concetto di potenza è strettamente legato a quello di energia cinetica di energia cinetica di

Teorema (olell'evergia civietica)

Sia T la potenza esplicata da tutte le forze Cattine esterne, attine intez ne, vincalari) di un sistema. Allora:

Fim. Six  $(P_i, m_i)$  il generico punto materiale del sistema e six  $P_i$  il risultante di tutte le forze apenti su di esso. Per la seconda equazione della meccanica vale  $m_i a_i = P_i$ , obs cui, moltiplicando scalarmente entranshi i membri per  $v_i$ ,

$$\begin{aligned} \mathbb{P}_{i} \cdot \underline{v}_{i} &= m_{i} \underline{\alpha}_{i} \cdot \underline{v}_{i} = m_{i} \underline{\alpha}_{i} \cdot \underline{v}_{i} \\ &= m_{i} \underline{\alpha}_{i} \cdot \underline{v}_{i} - m_{i} \underline{\alpha}_{i} \cdot \underline{v}_{i} \end{aligned}$$

$$= \frac{d}{dt} \frac{1}{2} m_{i} |\underline{v}_{i}|^{2}.$$

Sommando su tutti i punti del sistema otteniamo:

$$\frac{\sum_{i=1}^{N} \mathbb{R}_{i} \cdot \mathbb{D}_{i}}{\mathbb{T}} = \frac{d}{dt} \cdot \frac{1}{2} \sum_{i=1}^{N} m_{i} |\mathbb{D}_{i}|^{2}$$

dos qui le tesi.

Ø

Il terrema dell'energia cinetica appena dimostrato può, in alcuni casi, fornire un'equazione pura del moto. Ció é dovuto ai due risultati sepmenti.

Prop. (potenza dolle forze interne)

Sia  $f_{ij} = f_{ij} \frac{P_i - P_i}{|P_i - P_i|}$  le forza interno exercitata sul punto  $P_i$  del punto  $P_i - Allone$  los potenzos  $T^{(i)}$  elette forze interne vale

$$T^{(i)} = \frac{1}{2} \sum_{j=1}^{N} \sum_{i=1}^{j-1} \frac{f_{ij}}{|P_{i} - P_{i}|} \cdot \frac{d}{dt} |P_{j} - P_{i}|^{2}$$

Dim. Omesso (si redo il libro, pag. 241).

Ø

Questo risultato ci interesso penché dos esso deduciamo che in un moto ri= gido la patenza T(i) é nula. Infatti le distanza tra i punti si manten gono costanti e quindi de 1P;-Pi12=0 per opni i,j.

Allora in un moto rigido il teorema dell'energia cinetica divento:

$$\dot{\top} = \pi^{(a_{1}e)} + \pi^{(a)}$$

dose  $T^{(ae)}T^{(a)}$  sous rispettivamente le potense delle forse attive esterne e delle reazioni vincolari. Questa non è ancora un'equazione pero del moto a cause delle presenza del termine  $T^{(a)}$ , tuttavia:

Prop. (potenza delle reazioni vincolari)

La potenza della reazione vincolare explicator obs un vincolo ideale, hi=
latero e scleroromo e zero.

Dim. Per definizione, un vincolo ideale é tale che 51° = \$15P >0 per opni sportamento virtuale 5P ammissibile. Ricordiamo ehe 5P = 20t, dove 2 é una velocità virtuale. Se il vincolo è bilatero tutte le veloci = tà virtuali, e quindi tutti gli spostamenti virtuali, sono invertibili, per cui

Infine, se il vinado è saleronomo tro tutte le valocità virtuali c'e' anche quelle reale vi, per cui in particolore:

Ma \$\overline{\psi} \delta la potenza svibupparta dalla reazione vincolare corrispordente al vincola in questione, da in la tení.

Durque in un moto rigido con vincoli ideali, balateri e selenonomi vale

$$\frac{1}{1} = \pi^{(a,e)}$$

che è un equazione puro del moto.

In fine, se il sistemo delle forze attive ammette un potenziale U=U(q), con  $q=(q_1,...,q_n)$ , alloro possiano sorivere il laurro elementare di tali forze ecme:

$$dL^{(a)} = \sum_{k=1}^{n} Q_k^{(a)} dq_k = \left(\sum_{k=1}^{n} \frac{\partial U}{\partial q_k} \dot{q}_k\right) dt = \frac{\partial}{\partial t} U(q) dt,$$

dos ari rediamo che TI (a) = U. Di qui seque il sequente integrale pri =

Teorema (conservazione dell'energia meccanica)

Consideriamo un sistema rigido sottoposto a vinedi ideali, beletri e soleroromi. Supponiaro inoltre che le forze attive esterne ammettano un potenziale. Detto

l'energia mecconica del sistema, risulta  $\dot{E} = 0$ .

Dim. Per le ipotesi poste vale T= T(a,e) e inotre T(a,e) = U\_ Allova:

$$\dot{T} = \dot{U} \Rightarrow \frac{d}{dt} (T - U) = 0.$$

### Meccanica lagrangiana

Consideriame un sistema di punti materiali  $\{(P_i, m_i)\}_{i=1}^N$  sottoposto a vin coli ideali obromi bilateri. Ci proporiamo di determinare una procedura che conduca alla scrittura generale di <u>equazioni pune del moto</u>, ossia equa= zioni in cui non compaiano le reazioni rincolari.

Per questo, consideriamo il secondo principio della meccanica per ciascun punto del sistema:

$$m_i \underline{\alpha}_i = \sum_j F_{ij}^{(a_i e)} + \sum_{j \neq i} f_{ij}^{(a_i i)} + \sum_j \underline{\Phi}_{ij}. \qquad (*)$$

Sia  $V_i:=s$  pan  $\{Q_k(P_i-o)\}_{k=1}^n$  le spazio tenpente alle (sotto-)varietà di  $\mathbb{R}^n$  su cui si muove l'i-esimo punto del sistema per effetto dei vincoli impo= sti su di esso e sia  $SP_i \in V_i$ ,

$$SP_{i} = \sum_{k=1}^{n} \frac{\partial (P_{i} - 0)}{\partial q_{k}} Sq_{k}$$

uno spostamento virtuale di Pi. Moltiplicando scalarmente l'equazione (\*) per 5Pi e sommando su i otteniamo:

$$\sum_{i=1}^{N} m_{i} \underline{\alpha}_{i} \cdot \widehat{SP}_{i} = \sum_{i=1}^{N} \sum_{j} F_{ij}^{(\alpha,e)} \cdot \widehat{SP}_{i} + \sum_{i=1}^{N} \sum_{j} f_{ij}^{(\alpha,e)} \cdot \widehat{SP}_{i} + \sum_{i=1}^{N} \sum_{j} f_{ij}^{(\alpha,e)} \cdot \widehat{SP}_{i}$$

$$= \widehat{SL}^{(\alpha,e)} + \widehat{SL}^{(\alpha,i)} + \widehat{SL}^{(\omega)}$$

Poiehé i vinedi sono ideali e bilateri, avremo  $SL^{(v)} = 0$ . Quindi possiamo Svivore:

$$\sum_{i=1}^{N} m_i \underline{\alpha}_i \cdot S\underline{P}_i = S\underline{L}^{(a)}, \qquad (**)$$

dove SL(a) é il lawro virtuale complessivo delle forse attive (esterne e interne

Sia  $R_i^{(a)} := \sum_j F_{ij}^{(a,e)} + \sum_{j \neq i} f_{ij}^{(a,i)}$  il risultante delle forse attine agenti su  $P_i$ . Allora:

$$SL^{(\alpha)} = \sum_{i=1}^{N} R_{i}^{(\alpha)} \cdot SP_{i} = \sum_{i=1}^{N} R_{i}^{(\omega)} \cdot \sum_{k=1}^{n} \frac{\partial (P_{i} - 0)}{\partial q_{k}} Sq_{k}$$

$$= \sum_{k=1}^{n} \left( \sum_{i=1}^{N} R_{i}^{(\alpha)} \cdot \frac{\partial (P_{i} - 0)}{\partial q_{k}} \right) Sq_{k} = \sum_{k=1}^{n} Q_{k}^{(\alpha)} Sq_{k}.$$

$$Q_{k}^{(\alpha)}$$

Arabpamente, risulta:

$$\sum_{i=1}^{N} m_{i} \underline{\alpha}_{i} \cdot \underline{SP}_{i} = \sum_{i=1}^{N} m_{i} \underline{\alpha}_{i} \cdot \sum_{k=1}^{N} \frac{\partial (P_{i} - 0)}{\partial q_{k}} \underline{Sq}_{k}$$

$$= \sum_{k=1}^{N} \left( \sum_{i=1}^{N} m_{i} \underline{\alpha}_{i} \cdot \frac{\partial (P_{i} - 0)}{\partial q_{k}} \right) \underline{Sq}_{k},$$

quindi dall'equazione (\*\*) otteniamo, raccoglierdo Equi in entrambi i membri,

$$\sum_{k=1}^{n} \left( \sum_{i=1}^{N} m_{i} \underline{\alpha}_{i} \cdot \frac{\partial (P_{i} - 0)}{\partial q_{k}} - Q_{k}^{(q)} \right) \delta q_{k} = 0.$$
 (\*\*\*)

Poriamo, per brevita,

$$T_{k} := \sum_{i=1}^{N} m_{i} \underline{\alpha}_{i} \cdot \frac{\partial (P_{i} - 0)}{\partial q_{k}}, \qquad k = 1, ..., n.$$

Poiché i vincoli sono donomi, tutti gli incrementi virtuali  $S_{lk}$  delle coordinate lagrangiane sono indipendenti e automaticamente ammessi dai vincoli. Si noti che lo stesso non si può dire degli spostamenti virtuali  $S_{lk}^{2}$  nollo (\*\*\*) pro:

prio a causa dei vinadi. Dunque, per l'arbitrarietà dei Eq., dalla (\*\*\*) segue:

$$T_k = Q_k^{(a)}, \quad k = 1,...,n.$$

Si noti che questo è un sistema di n equazioni pune del moto, poiché il contributo delle reszioni vincolari al lavoro virtuale è stato annullato dal = l'ipotesi di vincoli bilateri ideali.

Prop. Sia T l'energia cinetiea del sistema. Alloro:

$$T_k = \frac{d}{dt} \left( \frac{\partial T}{\partial \dot{q}_k} \right) - \frac{\partial T}{\partial q_k}, \quad k = 1, ..., n_-$$

Dim. Dalla definitione di Tk abbiauxe:

$$\begin{split} T_k &= \sum_{i=1}^N m_i \underline{\alpha}_i \cdot \frac{O(P_i - 0)}{Oq_k} = \sum_{i=1}^N m_i \underline{\alpha}_i \cdot \frac{O(P_i - 0)}{Oq_k} \\ &= \sum_{i=1}^N m_i \underline{d}_i \left(\underline{\alpha}_i \cdot \frac{O(P_i - 0)}{Oq_k}\right) - \sum_{i=1}^N m_i \underline{\sigma}_i \cdot \underline{d}_i \cdot \frac{O(P_i - 0)}{Oq_k} \,. \end{split}$$

Se  $P_i - 0 = \underline{r}_i(q_1, ..., q_n, t)$  (i vincoli possovo essere recromi) alloros:

$$\underline{\alpha}_{i} = \underline{r}_{i} = \sum_{k=1}^{n} \frac{\partial \underline{r}_{i}}{\partial q_{k}} \dot{q}_{k} + \frac{\partial \underline{r}_{i}}{\partial t}$$

e gindre

$$\frac{\partial \underline{v}_i}{\partial \dot{q}_k} = \frac{\partial \underline{r}_i}{\partial q_k} = \frac{\partial (P_i - 0)}{\partial q_k}.$$

Inothe:

$$\frac{\partial \mathcal{D}_{i}}{\partial q_{k}} = \frac{\partial}{\partial q_{k}} \left( \sum_{h=1}^{n} \frac{\partial \mathcal{D}_{i}}{\partial q_{h}} q_{h} + \frac{\partial \mathcal{D}_{i}}{\partial t} \right)$$

$$= \sum_{h=1}^{n} \frac{\partial^{2} \mathcal{D}_{i}}{\partial q_{k}} q_{h} + \frac{\partial^{2} \mathcal{D}_{i}}{\partial q_{k}} = \frac{\partial}{\partial t} \frac{\partial \mathcal{D}_{i}}{\partial q_{k}} = \frac{\partial}{\partial t} \frac{\partial \mathcal{D}_{i}}{\partial q_{k}}.$$

Riprendendo l'espressione di Tr posiamo quindi scrivere:

$$T_{k} = \sum_{i=1}^{N} m_{i} \frac{d}{dt} \left( \underbrace{\sigma_{i}} \cdot \underbrace{\frac{\partial \sigma_{i}}{\partial q_{k}}} \right) - \sum_{i=1}^{N} m_{i} \underbrace{\sigma_{i}} \cdot \underbrace{\frac{\partial \sigma_{i}}{\partial q_{k}}}$$

$$= \sum_{i=1}^{N} m_{i} \frac{d}{dt} \left[ \underbrace{\frac{1}{2} \underbrace{\partial_{i}}_{\partial q_{k}} (\underbrace{\sigma_{i}} \cdot \underbrace{\sigma_{i}})}_{-i=1} \right] - \sum_{i=1}^{N} m_{i} \underbrace{\left[ \underbrace{\frac{1}{2} \underbrace{\partial_{i}}_{\partial q_{k}} (\underbrace{\sigma_{i}} \cdot \underbrace{\sigma_{i}})}_{-i=1} \right]}_{-i=1}$$

$$= \underbrace{\frac{1}{2} \underbrace{\partial_{i}}_{\partial q_{k}} \underbrace{\int_{i=1}^{N} \underbrace{\partial_{i}}_{\partial q_{k}} (\underbrace{\sigma_{i}} \cdot \underbrace{\sigma_{i}})}_{-i=1} \right]}_{T}$$

$$= \underbrace{\frac{1}{2} \underbrace{\partial_{i}}_{\partial q_{k}} \underbrace{\int_{i=1}^{N} \underbrace{\partial_{i}}_{\partial q_{k}} (\underbrace{\sigma_{i}} \cdot \underbrace{\sigma_{i}})}_{-i=1} \underbrace{\int_{i=1}^{N} \underbrace{\partial_{i}}_{\partial q_{k}} (\underbrace{\sigma_{i}} \cdot \underbrace{\sigma_{i}})}_{-i=1} \right]}_{T}$$

$$= \underbrace{\frac{1}{2} \underbrace{\partial_{i}}_{\partial q_{k}} \underbrace{\partial_{i}}_{\partial q_{k}} - \underbrace{\partial_{i}}_{\partial q_{k}} \underbrace{\partial_{i}}_{-i=1} \underbrace{\partial$$

Grazie a questa proposizione, il sistema di equazioni pure della dinamica precedentemente determinato può parsi nella forma:

$$\frac{d}{dt}\frac{\partial T}{\partial q_k} - \frac{\partial T}{\partial q_k} = Q_k^{(a)}, \quad k = 1,...,n,$$

che sono dette le <u>equazioni di lagrange</u> del moto.

#### Lagrangiana

Pleando il sistema di forze attive considerato ammette un potenziale U, le equazioni di laprange assumono una forma particolarmente espressiva.

Per discutere questo caso, premettiame il sepuente fatto:

Prop. Se il sistema di farze attive ammette un potenziale albora le forze attize ve generalizzate  $Q_k^{(a)}$  non dipendono oblle velocità lagrangiane  $\{q_k\}_{k=1}^n$  né obli tempo.

Dim. Se une forme differenziale in m variabili generiche p.,..., Pm:

$$\Psi_{1}(p_{1},...,p_{m})dp_{1}+...+\Psi_{m}(p_{1},...,p_{m})dp_{m}=\sum_{j=1}^{m}\Psi_{j}(p_{1},...,p_{m})dp_{j}$$

ammette un patenziale U = U (p, ..., pm) allone

$$\overline{\Psi}_{j} = \partial_{p_{j}} U, \quad j = 1, ..., m$$

e, per il teorema di Schwartz, vale

$$\frac{\partial^2 U}{\partial p_i \partial p_j} = \frac{\partial^2 U}{\partial p_j \partial p_j}, \quad \forall i,j = 1,...,m,$$

du cui le cerdizione di compatibilità sui coefficienti delle forma:

$$\frac{\partial \mathcal{P}_{i}}{\partial p_{i}} = \frac{\partial \mathcal{P}_{i}}{\partial p_{j}}, \quad \forall i, j = 1, ..., m.$$

Supponiano che le force generalizzate  $Q_k^{(a)}$  dipendano in generale da  $q_1,\dots$   $q_n$ , do  $q_1,\dots$ ,  $q_n$  e do t, cioè dalle m=2n+1 variabili

$$\beta_1 = q_1, ..., \beta_n = q_n$$
  
 $\beta_{n+1} = q_1, ..., \beta_{2n} = q_n$   
 $\beta_{2n+1} = t$ .

Poiché il laura virtuale si soriue:  $SL^{(a)} = \sum_{k=1}^{n} Q_{k}^{(a)} \mathcal{F}_{q_{k}}$ , rispetto

alle forma generale della forma differenziale abbiano:

$$\Psi_{1} = Q_{1}^{(a)}, \dots, \quad \Psi_{n} = Q_{n}^{(a)}$$

$$\Psi_{n+1} = \dots = \Psi_{2n} = \Psi_{2n+1} = 0.$$

Durque le condizioni di compatibilità danno

$$\frac{\partial \mathcal{P}_{i}}{\partial \rho_{i}} = \frac{\partial \mathcal{Q}_{i}^{(a)}}{\partial \dot{q}_{i-n}} = \frac{\partial \mathcal{P}_{i}}{\partial q_{j}} = 0 \quad \forall i = n+1, ..., 2n+1$$

$$j = 1, ..., n$$

e dunque  $Q_j^{(a)}$  non dipende da alcuna q'i ne dost por opni j=1,..., n. Z

In consequenta della precedente propositione, un potentiale U, se esiste, dipende al più dalle n coordinate lagrangiane  $q_1, \dots, q_n$ . In tal caso risultos

$$Q_k^{(a)} = \frac{\partial U}{\partial q_k}$$

e quirdi é possibile serviere le equazioni di lagrange come:

$$\frac{d}{dt} \frac{\partial T}{\partial \dot{q}_k} - \frac{\partial T}{\partial q_k} = \frac{\partial U}{\partial q_k} \implies \frac{d}{dt} \frac{\partial T}{\partial \dot{q}_k} - \frac{\partial}{\partial q_k} (T+U) = 0.$$

Inoltre, essendo U indipendente dos que dos t, abbiamo equivalentemente

$$\frac{d}{dt}\frac{\partial}{\partial k}(T+U)-\frac{\partial}{\partial k}(T+U)=0,$$

perché  $\partial q_k U = 0$  e at  $\partial q_k U = 0$ . Introducendo la <u>lagrangian</u>

troviano infine:

$$\frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \dot{q}_{k}} - \frac{\partial \mathcal{L}}{\partial q_{k}} = 0, \quad k = 1, ..., n.$$

Oss. É bene non confordere la lagrangiana di un sistema con l'energia meccanica. Entrambe si definiscono per un sistema di forze attive che ammetta un potenziale, ma:

La quantità - U è anche chiamata l'energia potenziale dolle forze attive.

Prop. (Integrale primo dei momenti cinetici)

Se la lagrangiana nou di pende dos una corta coordinata lagrangiana 9k allora la funzione 3g/k è un integrale primo del moto.

Oss. La quantità  $\partial_{q_k}^2 \mathcal{L}$  é detta <u>momento cinetico</u> e la cardinata lagrangiana  $q_k$  da cui  $\mathcal{L}$  non dipende é detta ecordinata ciclico (o <u>ignora</u> = bile).

Dim. Dalle equationi di lagrange, poiché  $\partial_{q_k} \mathcal{L} = 0$  perché  $\mathcal{L}$  nou dipende dou  $q_k$ , si hou

$$\frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \dot{q}_{k}} = 0$$

e quindi  $\frac{\partial \mathcal{L}}{\partial \dot{q}_k}$  é conservata nel tempo.

Ø

Esempi

#### 1) Pendolo físico

Consideriamo nuovamente il caso del pendelo fisico illustrato il fi=

quera:



Ricaviamo l'equazione pura del moto mediante l'equazione di lagranpe. L'unica forza attivo apente sul sistemo è la forza pero P = mgj appli = cata in G con  $G - O = h \sin\theta i + h \cos\theta j$ . D'unque:

$$SL^{(a)} = ing j \cdot SG = ing j \cdot (hcos \theta_{\underline{i}} - hsin \theta_{\underline{j}}) S\theta$$
  
= -ingh sin  $\theta S\theta$ ,

olor cui identifichiamo la farza generalizzata  $Q_0^{(a)} = -mgh \sin \theta$ . Calculiamo ora l'energia cinetica del pendolo. Poiché c'é il punto fisso  $Q_0$ , possiamo scriuere direttamente

$$T = \frac{1}{2} k_0 \cdot \omega = \frac{1}{2} I_0 \omega \cdot \omega = \frac{1}{2} I_{0,2} \omega^2$$

essendo  $\omega = \omega \underline{k}$  la velocità anyolare del pendels e Ia, z il momento di inez Zia rispetto all'asse z. Per completone il calcolo di T determiniamo  $\omega$  dalla Legge di distribuzione delle velocità per il corpo rigido:

$$\underline{\sigma}_{G} = \underline{\omega} \times (G - 0)$$

e quindi

$$h\dot{\theta}(\cos\theta_{\dot{l}} - \sin\theta_{\dot{l}}) = \omega_{\dot{k}} \times h(\sin\theta_{\dot{l}} + \cos\theta_{\dot{l}})$$

$$= \omega_{\dot{k}} (\sin\theta_{\dot{l}} - \cos\theta_{\dot{l}})$$

dos cui  $\omega = -\mathring{\Theta}$ . Dunque:

Risulta pencios:

$$\frac{d}{dt}\frac{\partial T}{\partial \dot{\phi}} = \frac{d}{dt}\frac{\partial}{\partial \dot{\phi}}\left(\frac{1}{2}D_{,z}\dot{\phi}^{2}\right) = \frac{d}{dt}\left(D_{,z}\dot{\phi}\right) = D_{,z}\ddot{\phi}$$

$$\frac{\partial T}{\partial \phi} = 0$$

e infine:

$$\frac{d}{dt}\frac{\partial T}{\partial \theta} - \frac{\partial T}{\partial \theta} = Q_{\theta}^{(a)} \implies T_{0,z}\dot{\theta} = - mgh \sin\theta$$

Overo l'equazione già ricavata per mezzo delle equazioni cardinali del=

Vediamo che por questo sistemos è anche possibile soiurre una lagrangiana. Per questo dobbiamo procurarci un potenziale U=U(O) delle forze attive definito dalla relazione

$$V' = Q_{\theta}^{(\alpha)} = - \operatorname{mgh} \sin \theta,$$

quindi U(0) = mgh cos0+G. Not sequito sceptieremo G=0. Alloros

la lagrangiaux è:

$$L = T + U = \frac{1}{2} I_{0,z} \dot{\theta}^2 + mgh \cos\theta$$
.

Osserviano che L'dipende esplicitamente dos O, quindi non abbiano l'inte = grale primo del momento einetico de L. Tultavia vale l'integrale primo del l'energia meccanica:

$$E = T - U = \frac{1}{2} I_{0,2} \dot{\theta}^2 - \text{mgh cos} \theta = \text{costaute}.$$

# 2) Asta scarrende lungo ma quida orizzontale

Consideriamo il sepuente sistemo:



in oui l'auto AB di lunghezza l>0 é supposto omogenea e i vincoli lisci. Poiché l'auto può oscillare nel piaro Oxy e l'estremo B può scorrere lungo l'asse x sono necessarie le due ecordinate lagrangiane  $\theta \in [0, 2\pi)$  e  $x \in \mathbb{R}$  per decrivere univocamente le configurazioni del sistema.

L'unica forza attivos apente é il per dell'astos P = mgj applicato

in G con

$$G-O=\left(x+\frac{1}{2}\sin\Theta\right)\dot{L}+\frac{1}{2}\cos\Theta\dot{J}.$$

Lo spostamento virtuale di G si scrive:

$$SG = \frac{\partial(G-0)}{\partial P} + \frac{\partial(G-0)}{\partial x} S_{x}$$

$$= \frac{1}{2} (\cos\theta \hat{i} - \sin\theta \hat{j}) S_{x} + S_{x} \hat{i}$$

e quindi:

$$SL^{(a)} = P.SG = mgj. \left[\frac{l}{2}(\cos\theta i - \sin\theta j)S\theta + Sxi\right]$$
$$= -\frac{l}{2}mgl\sin\theta S\theta$$

olor oui nicoviamo  $Q_{\theta}^{(a)} = -\frac{1}{2} \text{mglsin} \theta \in Q_{x}^{(a)} = 0$ .

Per scriusie l'energia cinetica del sistemo conviene fare riferimento al baricentro, non essendari alcun punto oblibator istantamente fisso.
Otteniamo (cfr. auche il Teoremos di König):

$$T = \frac{1}{2} m |\Omega_{G}|^{2} + \frac{1}{2} k_{G} \cdot \Omega$$

$$= \frac{1}{2} m |\Omega_{G}|^{2} + \frac{1}{2} k_{G} \cdot \Omega$$

$$= \frac{1}{2} m |\Omega_{G}|^{2} + \frac{1}{2} k_{G} \cdot \Omega$$

Calcalamo quindi:

$$\underline{\nabla}_{G} = \frac{d}{dt}(G-0) = (\dot{x} + \frac{1}{2}\cos\theta\dot{\theta})\dot{\underline{c}} - \frac{1}{2}\sin\theta\dot{\theta}\dot{\underline{\underline{f}}}$$

$$\underline{|\underline{\nabla}_{G}|^{2}} = (\dot{x} + \frac{1}{2}\cos\theta\dot{\theta})^{2} + \frac{1^{2}}{4}\sin^{2}\theta\dot{\theta}^{2}$$

$$= \dot{x}^{2} + \log \theta \dot{\theta} \dot{x} + \frac{l^{2}}{4} \cos^{2}\theta \dot{\theta}^{2} + \frac{l^{2}}{4} \sin^{2}\theta \dot{\theta}^{2}$$

$$= \dot{x}^{2} + \log \theta \dot{\theta} \dot{x} + \frac{l^{2}}{4} \dot{\theta}^{2}$$

Sappiano inoltre che  $I_{G,Z} = \frac{1}{42}ml^2$ . Determiniano in fine la velocità an golare dell'asta dalla legge di distribusione delle velocità applicata ai punti  $G \in B$ , con  $B-O=\times \underline{i}$  e quindi  $\underline{v}_B=\times \underline{i}$ :

$$\underline{\mathcal{O}}_{G} = \underline{\mathcal{O}}_{B} + \omega_{k} \times (G - B)$$

$$(\dot{x} + \frac{1}{2}\cos\theta\dot{\theta})\dot{\underline{i}} - \frac{1}{2}\sin\theta\dot{\theta}\dot{\underline{j}} = \dot{x}\dot{\underline{i}} + \omega_{k} \times \frac{1}{2}(\sin\theta\dot{\underline{i}} + \cos\theta\dot{\underline{j}})$$

$$= \dot{x}\dot{\underline{i}} + \frac{1}{2}\omega l(\sin\theta\dot{\underline{j}} - \cos\theta\dot{\underline{i}})$$

$$= \frac{1}{2}\theta l(\cos\theta\dot{\underline{i}} - \sin\theta\dot{\underline{j}}) = \frac{1}{2}\omega l(-\cos\theta\dot{\underline{i}} + \sin\theta\dot{\underline{j}})$$

Obs cui nuovamente  $\omega = -\dot{\Theta}_-$  Dunque:

$$T = \frac{1}{2}m\left(\dot{x}^{2} + l\cos\theta\dot{\theta}\dot{x} + \frac{l^{2}}{4}\dot{\theta}^{2}\right) + \frac{1}{2} \cdot \frac{1}{12}me^{2}\dot{\theta}^{2}$$

$$= \frac{1}{2}m\dot{x}^{2} + \frac{1}{2}ml\cos\theta\dot{\theta}\dot{x} + \frac{5}{24}me^{2}\dot{\theta}^{2}.$$

la prima equazione di lapranje si scrive:

$$\frac{d}{dt}\frac{\partial T}{\partial \theta} - \frac{\partial T}{\partial \theta} = Q_{\theta}^{(a)}.$$

Abbiano in particolare:

$$\frac{d}{dt} \frac{\partial T}{\partial \dot{\theta}} = \frac{d}{dt} \left( \frac{1}{2} \text{ me cas} \partial_{\dot{x}} + \frac{5}{12} \text{ me}^2 \dot{\theta} \right)$$

$$= -\frac{1}{2} \text{me sin} \Theta \dot{\Theta} \dot{x} + \frac{1}{2} \text{me cos} \Theta \dot{x} + \frac{5}{42} \text{me}^2 \ddot{\Theta}$$

$$\frac{\partial T}{\partial \theta} = -\frac{1}{2} \text{ml sur } \theta \dot{x}$$

e quindi:

$$-\frac{1}{2} \text{ me sind } \ddot{\theta} \ddot{x} + \frac{1}{2} \text{ me cos} \ddot{\theta} \ddot{x} + \frac{5}{12} \text{ me find} + \frac{1}{2} \text{ me sind} \ddot{\theta} \ddot{x} = -\frac{1}{2} \text{ mg faind}$$

$$= \cos \theta \ddot{x} + \frac{5}{6} l \ddot{\theta} = -g \sin \theta.$$

la secorda equazione di lapranje si scrive:

$$\frac{d}{dt}\frac{\partial T}{\partial x} - \frac{\partial T}{\partial x} = Q_x^{(a)}.$$

In particulare:

$$\frac{d}{dt} \frac{\partial T}{\partial x} = \frac{d}{dt} \left( m\dot{x} + \frac{1}{2} ml \cos \theta \dot{\theta} \right)$$

$$= m\dot{x}^{\circ} + \frac{1}{2} ml \cos \theta \ddot{\theta} - \frac{1}{2} ml \sin \theta \dot{\theta}^{\circ}$$

$$\frac{\partial T}{\partial x} = 0$$

e quindi:

$$|M\ddot{x} + \frac{1}{2}MR\cos\theta \ddot{\theta} - \frac{1}{2}MR\sin\theta \dot{\theta}^{2} = 0$$

$$\ddot{x} + \frac{1}{2}(\cos\theta \ddot{\theta} - \sin\theta \dot{\theta}^{2}) = 0.$$

Volendo determinare la lagrangiana è necessario procurarsi un poten= ziale. Sarà  $U=U(\Phi,x)$  definito dalle relazioni:

$$\begin{cases} Q_{\Phi} U = Q_{\Phi}^{(a)} = -\frac{1}{2} \text{mglsin} \Theta \\ Q_{\chi} U = Q_{\chi}^{(a)} = O. \end{cases}$$

Dalla seconda ricariamo U = U(O), che sostituita nella prima da:

$$U(0) = -\frac{1}{2} mg \left\{ \int \sin \theta \, d\theta = \frac{1}{2} mg \left( \cos \theta + G \right) \right\}$$

Sceptiendo G = 0 abbiamo la laprangia nos

$$\mathcal{L} = T + U = \frac{1}{2} m \dot{x}^2 + \frac{1}{2} m l \cos \theta \dot{\theta} \dot{x} + \frac{5}{24} m l^2 \dot{\theta}^2 + \frac{1}{2} m g l \cos \theta.$$

Poiché L non dipende explicitamente dos x, il momento cinetico  $\partial_x L$  é conservato, cioé:

$$\frac{\partial \mathcal{L}}{\partial \dot{x}} = m\dot{x} + \frac{1}{2}ml\cos\theta\dot{\theta}$$
 é extrete nel tempo.

Poidré i vincoli sous supposti ideali (per le validità delle equazioni di lagrange), il vincolo a cui è soppetto l'estremo B dell'astor è in particolore liscio. In fatti tutti gli spetamenti virtuali di B suo invertibili, perio EB è ortoponale all'asse x. Allore nessuro forza esterno apente sul sistemo hor componente crizzontale e quindi la componente crizzontale obella quantità di moto del sistemo si dece conservere. Cisé

$$m \underline{v}_{G} \cdot \underline{\hat{i}} = \text{costante}$$

$$m \left[ \left( \dot{x} + \frac{1}{2} \cos \theta \dot{\theta} \right) \underline{\hat{i}} - \frac{1}{2} \sin \theta \dot{\theta} \underline{\hat{j}} \right] \cdot \underline{\hat{i}} = \text{costante}$$

$$m \dot{x} + \frac{1}{2} \text{ml} \cos \theta \dot{\theta} = \text{costante}.$$

Vediano quindi che, in questo caso, l'integrale primo del momento cinetico d'à L'ecrotisponde all'integrale primo della componente orizzontale oble quantità di moto.

Vale pi ovviamente anche l'integrale primo dell'enoggia neccarica:

$$E = T - U = \frac{1}{2} \text{ m} \dot{x}^2 + \frac{1}{2} \text{ ml cos} \dot{\theta} \dot{x} + \frac{5}{24} \text{ ml}^2 \dot{\theta} - \frac{1}{2} \text{ mgl cos} \dot{\theta}$$

$$= \cos t_{\text{outle}}.$$