Assignment 3: Dependencies, Decompositions, Normal forms

1. a) Step 1 - Split the RHSs to get our initial set of FDs, S1:

 $M \rightarrow I$

 $M \rightarrow J$

M -> L

J -> L

J -> I

JN -> K

JN -> M

 $M \rightarrow J$

KLN -> M

K -> I

K -> J

K -> L

IJ -> K

Step 2 - For each FD, try to reduce the LHS:

No singleton LHS will yield to anything, so we can ignore those one.

JN -> K, JN -> M:

J+ = IJKL, N+ = N

Therefore, can't reduce anything

KLN -> M:

K+ = IJKL, L+ = L, N+ = N

Therefore, we can eliminate L resulting in KN -> M

IJ -> K:

I+=I, J+=IJKL

Therefore, we can eliminate I resulting in J -> K

Our new set of FDs, let's call it S2:

- (a) M -> I
- (b) $M \rightarrow J$
- (c) $M \rightarrow L$
- (d) J -> L
- (e) J->I
- (f) JN -> K
- (g) JN -> M
- (h) KN -> M
- (i) K -> I
- (j) K -> J

- (k) $K \rightarrow L$
- (I) J -> K

Step 3 - Eliminate Redundancies:

- (a) $M^{+}_{S2-(a)} = IJKL$. (Remove)
- (b) $M^{+}_{S2-(b)} = ML$. (Need)
- (c) $M^{+}_{S2-(c)} = IJK\underline{L}M$. (Remove)
- (d) $J_{S2-(d)}^+ = IJKL.$ (Remove)
- (e) $J_{S2-(e)}^+ = IJKL$. (Remove)
- (f) $JN^{+}_{S2-(f)} = IJ\underline{K}LNM$. (Remove)
- (g) $JN^{+}_{S2-(g)} = IJKLN\underline{M}$. (Remove)
- (h) $KN^{+}_{S2-(h)} = IJKLN$. (Need)
- (i) $K^{+}_{S2-(i)} = JKL$. (Need)
- (j) $K^{+}_{S2-(j)} = IKL$. (Need)
- (k) $K^{+}_{S2-(k)} = JKI$. (Need)
- (I) $J_{S2-(I)}^+ = J$. (Need)

Therefore, the minimal basis:

$$M \rightarrow J$$
, $KN \rightarrow M$, $K \rightarrow L$, $K \rightarrow J$, $K \rightarrow I$, $J \rightarrow K$

b) All Keys for R

- The only letter that only appears on LHS is N which means it must be in every key
- OP doesn't appear in any of the FDs, therefore it must appear in every key
- IJKLM appear on both the RHS and LHS and as a result we would need to check every letter individually

Step 1: Check Singletons:

- NOPI⁺ = NOPI (Not a Key)
- NOPJ⁺ = IJKLMNOP (Key)
- NOPK⁺ = IJKLMNOP (Key)
- NOPL⁺ = NOPL (Not a Key)
- NOPM⁺ = IJKLMNOP (Key)

Step 2: Append Either J, K, or M to get a key involving I or L:

- NOPLM⁺ = IJKLMNOP
- NOPLK+ = IJKLMNOP
- NOPLJ⁺ = IJKLMNOP
- NOPIM+ = IJKLMNOP
- NOPIK+ = IJKLMNOP
- NOPIJ+ = IJKLMNOP

Therefore, all the possible keys are NOPLM, NOPLK, NOPLJ, NOPIM, NOPIK, NOPIJ, NOPM, NOPK, NOPJ.

c) Step 1: use Minimal Basis obtained in a) and merge RHSs where necessary:

$$M \rightarrow J$$
, $KN \rightarrow M$, $K \rightarrow IJL$, $J \rightarrow K$

Step 2: Group up into a set of relations:

R1(MJ), R2(KNM), R3(KIJL), R4(JK)

Step 3: Remove R4 since JK appears in R3 as well and add attributes OP as its own Relation:

Therefore, the final decomposition is:

R1(MJ), R2(KNM), R3(KIJL), R5(OP)

d) Step 1: Project each FD onto each relation to find if a relation violates BCNF:

J -> K projects onto relation R3, J^+ = KIJL.

This means that J is not a super key.

Therefore, redundancy is allowed in this schema

2. a) J -> FGI, F -> D, DEI -> F

b) Step 1 - Decompose DEI -> F:

 $DEI^+ = DEFI$

S1(DEFI) and S2(CDGHJ)

Step 2 - Project FDs onto S1:

 $D^+ = D$

 $E^+ = E$

 $F^+ = FD$

F -> D which violates BCNF

Step 3 - Decompose S1 Further:

S3(FD) and S4(EFI)

Step 4 - Project FDs onto S3:

 $D^+ = D$

 $F^+ = FD$

F -> D, this means that F is a super key of S3.

Therefore, the relation satisfies BCNF

Step 4 - Project FDs onto S4:

 $E^+ = E$

 $F^+ = FD$

 $I^{+} = I$

 $EF^+ = EFD$

 $EI^+ = EI$

 $FI^+ = FDI$

Therefore, this relation satisfies BCNF

Step 5 - Project FDs onto S2:

C⁺ = CDEFGHIJ

 $D^+ = D$

G⁺= G

 $H^+ = H$

 $J^+ = JFGID$

C -> EH is a super key.

J -> FGI violates BCNF.

Step 6 - Decompose S2 Further:

S5(GJ) and S6(CDHJ)

Step 7 - Project FDs onto S5:

G⁺ = G

J⁺ = JFGI

J -> FGI is a super key.

Therefore, this relation satisfies BCNF.

Step 8 - Project FDs onto S6:

C+ = CDEFGHIJ

 $D^+ = D$

 $G^+ = G$

 $H^+ = H$ $J^+ = JFGI$ $DJ^+ = DDFGIJ$ $DH^+ = DH$ $HJ^+ = JFGIDH$

Therefore, this relation satisfies BCNF.

Step 9 - Solution:

The following relations all satisfy BCNF:

S3(FD): F -> D

S4(EFI): No FDs

S5(GJ): J -> FGI

S6(CDHJ): No FDs