Matrix chain multiplication: A and B can be multiplied when number of row in A= number of column in B

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{21} & b_{21} & b_{21} \\ a_{21} & b_{11} + a_{12} & b_{21} + a_{13} & b_{31} \\ a_{21} & b_{11} + a_{22} & b_{21} + a_{23} & b_{31} \\ a_{21} & b_{11} + a_{22} & b_{21} + a_{23} & b_{31} \\ a_{21} & b_{12} + a_{23} & b_{32} \end{bmatrix}$$

$$A_{11} b_{12} + a_{12} b_{22} + a_{13} b_{32}$$

$$A_{21} b_{11} + a_{22} b_{21} + a_{23} b_{32}$$

$$A_{21} b_{12} + a_{22} b_{22} + a_{23} b_{32}$$

$$A_{21} b_{12} + a_{23} b_{32}$$

$$A_{22} b_{21} + a_{23} b_{32}$$

$$A_{23} b_{22} + a_{23} b_{32}$$

$$A_{24} b_{21} + a_{23} b_{32}$$

$$A_{25} b_{22} + a_{23} b_{32}$$

$$A_{26} b_{21} + a_{23} b_{32}$$

$$A_{27} b_{21} + a_{23} b_{32}$$

$$A_{28} b_{21} + a_{23} b_{32}$$

$$A_{29} b_{21} + a_{23} b_{32}$$

$$A_{21} b_{22} + a_{23} b_{32}$$

$$A_{21} b_{22} + a_{23} b_{32}$$

$$A_{22} b_{21} + a_{23} b_{32}$$

$$A_{23} b_{31} + a_{22} b_{32} + a_{33} b_{32}$$

$$A_{21} b_{22} + a_{23} b_{32}$$

$$A_{21} b_{22} + a_{23} b_{32}$$

$$A_{22} b_{21} + a_{23} b_{32}$$

$$A_{31} b_{32} + a_{32} b_{32}$$

$$A_{32} b_{31} + a_{32} b_{32}$$

$$A_{31} b_{32} + a_{32} b_{32}$$

$$A_{32} b_{31} + a_{32} b_{32}$$

$$A_{31} b_{32} + a_{32} b_{32}$$

$$A_{32} b_{31} + a_{32} b_{32}$$

$$A_{33} b_{32} + a_{33} b_{32}$$

$$A_{31} b_{32} + a_{32} b_{32}$$

$$A_{32} b_{31} + a_{32} b_{32}$$

$$A_{33} b_{32} + a_{33} b_{32}$$

$$A_{32} b_{31} + a_{32} b_{32}$$

$$A_{33} b_{32} + a_{33} b_{32}$$

$$A_{32} b_{31} + a_{32} b_{32}$$

$$A_{33} b_{32} + a_{33} b_{32}$$

$$A_{34} b_{32} + a_{34} b_{32}$$

$$A_{35} b_{32} + a_{35} b_{32$$

$$A_1 = 2 \times 3$$
 $A_2 = 3 \times 4$ $A_3 = 4 \times 2$.
Minimum multiplication to find AIA2A3.

$$A_1 = 2 \times 3$$
: $A_2 = 3 \times 4$ $A_3 = 4 \times 2$.
Minimum multiplication to find AIA2A3.

Minimum multiple daring
$$(A1.A2) \cdot A3$$
 $(A1.A2) \cdot A3$

Dimensions 2×4 4×2 .

Cost $2 \times 3 \times 4 = 24$

Resulting Dimension 2×4

Cost $2 \times 4 \times 2 = 16$

	3	2	3
1	O	24	
2		0	24
3			10

$$c[2/3] = c[2/2] + c[3/3] + 3*4*2$$
 $A_2 \quad A_3 \quad = 24$
 $A_2 \quad A_3$

A

$$A_1 = 2 \times 3$$
 $A_2 = 3 \times 4$ $A_3 = 4 \times 2$.

Ninimum multiplication to find ALA2A3.

$$c[1/3] = c[1/1] + c[2/3] + 2 \times 3 \times 2 = 0 + 24 + 12$$

= 36.
A, A₂ A₃

Topic- Short NotesWhat ?? Why?? How??? Prims

Algorithm.

The SC

Differences Greedy LE Of

DR 22 Divide Clay wer.

Difference heter 2 sorring algos.

Prims Vs Kruhd.

Prims Vs Ployd Wanhall

Vs Polyman Pord.

LCS >>

Pripare.