

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» $(M\Gamma T Y \text{ им. H. Э. Баумана})$

ФАКУЛЬТЕТ _	Фундаментальные науки
КАФЕДРА	Прикладная математика

Отчет по лабораторной работе №3 на тему:

" Численное решение краевых задач для одномерного волнового уравнения"

Студент	ФН2-61Б		М. А. Каган
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Студент	ФН2-61Б		И.А. Яковлев
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Проверил			А. О. Гусев
проверня		(Подпись, дата)	(И.О. Фамилия)

Оглавление

Контрольные вопросы	3
Дополнительные вопросы	3

Контрольные вопросы

1. Предложите разностные схемы, отличные от схемы «крест», для численного решения волнового уравнения с граничными условиями.

Ответ:

(а) Неявная схема:

$$\frac{\hat{y} - 2y + \check{y}}{\tau^2} = \frac{\hat{y}_{+1} - 2\hat{y} + \hat{y}_{-1}}{h^2}$$

(b) Экстраполяционная схема:

$$\frac{\hat{y} - 2y + \check{y}}{\tau^2} = \frac{\check{y}_{+1} - 2\check{y} + \check{y}_{-1}}{h^2}$$

2. Предложите способ контроля точности полученного решения.

Omeem:

Зная порядок аппроксимации схемы, по правилу Рунге каждые два шага можно оценивать погрешность решения и при, необходимости, уменьшать шаг интегрирования по времени.

Дополнительные вопросы

1. Представление волнового уравнения, через гиперболическую систему. Характеристики.

Ответ:

Волновое уравнение:

$$u_{xx} = a^2 u_{tt}$$

Введем новые переменные: $v = u_x$, $h = c v_t$. Тогда получаем уравнение:

$$v_x = c h_t$$

Поскольку две неизвестных, а уравнение одно, дополним условием регулярности:

$$u_{tx} = u_{xt}$$
$$\frac{h_x}{c} = v_t$$

$$h_x = c \, v_t$$

Пусть $U=(v,h)^{\rm T},~{\rm A}=\left(\begin{smallmatrix}0&c\\c&0\end{smallmatrix}\right),$ тогда систему можно представить в следующем виде:

$$U_x - A U_t = 0$$

Собственные значения матрицы $\lambda_{1,2} = \pm c$. Поскольку $\lambda_1 \neq \lambda_2$ и $\lambda_{1,2} \in \mathbb{R}$, полученная система действительно является гиперболической.

Характеристиками в гиперболической системе называют семейство кривых удовлетворяющие уравнению $\frac{dx}{dt} = \lambda_k$. В данном случае характеристиками являются кривые вида:

$$x \pm at = c, \quad c \in \mathbb{R}$$

2. Как находить промежуточные точки для оценки погрешности в переменном шаге по пространству

Ответ: Пусть $y_{i+1/2}$ значение в узле, которое необходимо аппроксимировать. Тогда возможны следующие способы:

- (a) Среднее ближайших узлов: $y_{i+1/2} \approx \frac{y_i + y_{i+1}}{2}$;
- (b) Использование кубического сплайна;
- (с) Аппроксимация полиномом Эрмита;