Making softmax sofe
$$\mathbf{S} = \mathbf{Q}\mathbf{K}^{\top} \in \mathbb{R}^{N \times N}, \quad \mathbf{P} = \operatorname{softmax}(\mathbf{S}) \in \mathbb{R}^{N \times N}, \quad \mathbf{O} = \mathbf{P}\mathbf{V} \in \mathbb{R}^{N \times d},$$

$$\mathbf{d}_{\mathbf{A}}\mathbf{D}$$

			(0	'')								•	
q ^T k,	9, K2	$q_i^{\tau} k_i$	9, k4	9, Tk5			0.1	0.05	0.5	0.15	0.2	1=3C=1	
						Softmax	•				•		
					•		•		•		•		
			•	٠			•			٠	٠	_	
q ^r k,	9 k2	95 k3	95k4	95 ks			0.3	0.1	0.35	0.2	0.05	⇒>∑=1	
							(5,5)						
		5,5)											
												1	

Given a vetor XERN, the noft-max is defined as:

softwax
$$(x^i) = \frac{2^{-1}}{8^n} e^{x^2}$$

But there's a problem! If the values of the vector are large, the exponential will explose!

Numerically untable = commot le représented with a float 32 or float 16

Luckly, we have a solution:

$$\frac{e^{x_i}}{e^{x_i}} = \frac{e^{x_i}}{e^{x_i}} = \frac{e^{x_i}}{e^{x_i}}$$

So we con "smeak in" a constant in the exponential to deviceose its organisment and make it neumonically stable.

We will choose $K = \max_{i} (X_i)$

Softmax (xi) =
$$\frac{e^{x_i - x_{\text{MAX}}}}{\sum_{j=1}^{N} e^{x_i - x_{\text{MAX}}}}$$

given a NXN matrix, for each row.

- i) Find the max value among all elements Time complexity: O(N) Memory reads : O(N)
- 2) Colculate the normalization factor Time complexity: O(N) Memory reads: O(N)
- 3) Apply the softmax to each element of the vector Time Complexity: O(N) Memory reads: O(N) Prendocade:

Softmax
$$(x_i) = \frac{e^{x_i - x_{max}}}{\sum_{j=1}^{N} e^{x_i - x_{max}}}$$

$$m_{i} = \max(m_{i-1}, x_{i})$$

$$for i = 1 to N$$

$$for J = 1 to N$$

$$for K = 1 to N$$

$$for K = 1 to N$$

$$x_{k} \leftarrow \frac{e^{x_{k} - m_{N}}}{l_{N}}$$

Let's see a practical example

$$X = \begin{bmatrix} 3, & 2, 5, & 1 \end{bmatrix}$$
 softmax $(X_i) = \frac{e^{X_i - X_{MAX}}}{\sum_{j=1}^{N} e^{X_i - X_{MAX}}}$

1)
$$\chi_{\text{max}} = 5$$

2) $\chi_{\text{max}} = 5$
4) $\chi_{\text{max}} = 5$
2) $\chi_{\text{max}} = 5$
4) $\chi_{\text{max}} = 5$
4) $\chi_{\text{max}} = 5$
5) $\chi_{\text{max}} = 5$
6) $\chi_{\text{max}} = 5$
7) $\chi_{\text{max}} = 5$
8) $\chi_{\text{max}} = 5$
1) $\chi_{\text{max}} = 5$
1) $\chi_{\text{max}} = 5$
1) $\chi_{\text{max}} = 5$
2) $\chi_{\text{max}} = 5$
1) $\chi_{\text{max}} = 5$
2) $\chi_{\text{max}} = 5$
2) $\chi_{\text{max}} = 5$
2) $\chi_{\text{max}} = 5$
2) $\chi_{\text{max}} = 5$
3) $\chi_{\text{max}} = 5$
4) $\chi_{\text{max}} = 5$
2) $\chi_{\text{max}} = 5$
3) $\chi_{\text{max}} = 5$
4) $\chi_{\text{max}} = 5$
5) $\chi_{\text{max}} = 5$
6) $\chi_{\text{max}} = 5$
6) $\chi_{\text{max}} = 5$
6) $\chi_{\text{max}} = 5$
7) $\chi_{\text{max}} = 5$
8) χ_{\text

3)
$$X_1 = \frac{e^{3-5}}{\ell}$$
 $X_2 = \frac{e^{2-5}}{\ell}$ $X_3 = \frac{e^{5-5}}{\ell}$ $X_4 = \frac{e^{1-5}}{\ell}$

To apply the softmax to a NXN matrix, we need to look each of its elements 3 times, and it must le done requentially...

Is there a letter way?