Homework 2

Benjamin Noland

1. First, let $\theta_1, \theta_2 \in \Theta$ be such that θ_1 lies on the line segment connecting θ_0 and θ_2 ; that is, $\theta_1 \in L$, where $L = \{t\theta_0 + (1-t)\theta_2 : t \in [0,1]\}$. I claim that $K(\theta_1) \leq K(\theta_2)$. To see this, note that since K is convex,

$$K(t\theta_0 + (1-t)\theta_2) \le tK(\theta_0) + (1-t)K(\theta_2)$$
 for every $t \in [0,1]$.

In particular, since $\theta_1 \in L$, there exists $t' \in [0,1]$ such that $\theta_1 = t'\theta_0 + (1-t')\theta_2$. Hence,

$$K(\theta_1) = K(t'\theta_0 + (1 - t')\theta_2) \le t'K(\theta_0) + (1 - t')K(\theta_2)$$

$$\le t'K(\theta_2) + (1 - t')K(\theta_2) = K(\theta_2),$$

since θ_0 is a minimizer of K. This verifies the claim.

Now for the main result. Let $\epsilon > 0$. Write $B_{\epsilon}^c = \Theta \setminus B_{\epsilon}$. Since B_{ϵ} is a bounded set, and its boundary ∂B_{ϵ} is closed, it follows that ∂B_{ϵ} is bounded as well, so that ∂B_{ϵ} is compact. It is a well-known fact that a convex function on an open convex set is continuous; in particular, K is continuous on Θ . Thus the map $f:\Theta \to \mathbb{R}$ defined by $f(\theta) = K(\theta) - K(\theta_0)$ is continuous as well. Therefore, since ∂B_{ϵ} is compact, f attains a minimum value $\delta = \min_{\theta \in \partial B_{\epsilon}} f(\theta)$ on ∂B_{ϵ} . Moreover, since θ_0 is the unique minimizer of K, and $\theta_0 \notin \partial B_{\epsilon}$, we see that $\delta > 0$. Next, let $\theta \in B_{\epsilon}^c$. Let $L = \{t\theta_0 + (1-t)\theta : t \in [0,1]\}$ denote the line segment connecting θ_0 and θ . Then we can choose a point $\theta' \in L$ such that $\theta' \in \partial B_{\epsilon}$, and by the above claim, $K(\theta') \leq K(\theta)$, so that $K(\theta') - K(\theta) \geq 0$. Therefore,

$$K(\theta) - K(\theta_0) = [K(\theta) - K(\theta')] + [K(\theta') - K(\theta_0)]$$
$$= [K(\theta) - K(\theta')] + f(\theta')$$
$$\geq [K(\theta) - K(\theta')] + \delta \geq \delta > 0.$$

Hence,

$$\inf_{\theta \in B_{\epsilon}^{c}} [K(\theta) - K(\theta_{0})] \ge \delta > 0,$$

so that

$$\inf_{\theta \in B_{\epsilon}^{c}} K(\theta) > K(\theta_{0}),$$

as desired.

2. (i) Let $\epsilon > 0$ and $\delta > 0$, and let $\epsilon_0 = \min\{c\delta^2, \epsilon\}$. Then by hypothesis, there exists $N \geq 1$ such that

$$P\{|X_n| > \sqrt{\epsilon_0/c}\} \le \epsilon_0 \text{ for every } n \ge N,$$

where c > 0 is some constant. Hence for every $n \ge N$, since $\epsilon_0 \le c\delta^2$ (so that $\delta \ge \sqrt{\epsilon_0/c}$) and $\epsilon_0 \le \epsilon$, we have

$$P\{|X_n| > \delta\} \le P\{|X_n| > \sqrt{\epsilon_0/c}\} \le \epsilon_0 \le \epsilon$$

and therefore $X_n \stackrel{p}{\to} 0$, so that $X_n = o_p(1)$.

(ii) Suppose that for every $\epsilon > 0$ there exists $N \geq 1$ such that

$$P\{|X_n| > M(\epsilon)\} \le \epsilon$$
 for every $n \ge N$,

where $M: \mathbb{R} \to \mathbb{R}^{>0}$ (here $\mathbb{R}^{>0}$ denotes the set of positive real numbers) is a strictly-increasing function. I claim that $X_n = o_p(1)$.

Let $\epsilon > 0$ and $\delta > 0$. Note that since M is strictly-increasing, it has an inverse $M^{-1}: \mathbb{R}^{>0} \to \mathbb{R}$. Let $\epsilon_0 = \min\{M^{-1}(\delta), \epsilon\}$. Then by hypothesis there exists $N \geq 1$ such that

$$P\{|X_n| > M(\epsilon_0)\} \le \epsilon_0$$
 for every $n \ge N$.

Since $\epsilon_0 \leq M^{-1}(\delta)$, the fact that M is strictly increasing implies that $M(\epsilon_0) \leq \delta$. Moreover, $\epsilon_0 \leq \epsilon$, and therefore, for every $n \geq N$,

$$P\{|X_n| > \delta\} \le P\{|X_n| > M(\epsilon_0)\} \le \epsilon_0 \le \epsilon.$$

Thus $X_n \stackrel{p}{\to} 0$, so that $X_n = o_p(1)$.

3. (i) Let $\epsilon > 0$. Then Markov's Inequality implies that

$$P\{|Z_n^2| \ge \epsilon\} = P\{Z_n^2 \ge \epsilon\} \le \frac{E(Z_n^2)}{\epsilon}.$$

Thus, since $E(Z_n^2) \to 0$ as $n \to \infty$ by hypothesis, we see that $P\{|Z_n^2| \ge \epsilon\} \to 0$ as $n \to \infty$, as well. Thus $Z_n^2 \stackrel{p}{\to} 0$. Now, define a map $f: \mathbb{R}^{\ge 0} \to \mathbb{R}$ (here $\mathbb{R}^{\ge 0}$ denotes the set of non-negative real numbers) by $f(x) = \sqrt{x}$. Then we can write $Z_n = f(Z_n^2)$. Since f is everywhere continuous, the Continuous Mapping Theorem implies that $f(Z_n^2) \stackrel{p}{\to} f(0)$, so that $Z_n \stackrel{p}{\to} 0$.

(ii) Suppose $f: \mathbb{R} \to \mathbb{R}^{\geq 0}$ is a function with a continuous inverse $f^{-1}: \mathbb{R}^{\geq 0} \to \mathbb{R}$ such that $f^{-1}(0) = 0$, and that f satisfies $\mathrm{E}(f(Z_n)) \to 0$ as $n \to \infty$. I claim that $Z_n \stackrel{p}{\to} 0$.

Let $\epsilon > 0$. Then Markov's Inequality implies that

$$P\{|f(Z_n)| \ge \epsilon\} = P\{f(Z_n) \ge \epsilon\} \le \frac{E(f(Z_n))}{\epsilon}.$$

Thus since $E(f(Z_n)) \to 0$ as $n \to \infty$ by hypothesis, we see that $P\{|f(Z_n)| \ge \epsilon\} \to 0$ as $n \to \infty$, as well. Thus $f(Z_n) \xrightarrow{p} 0$. Moreover, since f has a continuous inverse f^{-1} , the Continuous Mapping Theorem implies that $f^{-1}(f(Z_n)) \xrightarrow{p} f^{-1}(0)$. Thus, since $f^{-1}(0) = 0$ by hypothesis, we see that $Z_n \xrightarrow{p} 0$.

4. Since K is twice-differentiable, it is possible to expand it into a second-order Taylor series about θ_0 . Specifically, we can write

$$K(\theta_0 + \alpha/\sqrt{n}) = K(\theta_0) + (\theta_0 + \alpha/\sqrt{n} - \theta_0)^T \left(\frac{\partial}{\partial \theta} K(\theta_0)\right) + \frac{1}{2} (\theta_0 + \alpha/\sqrt{n} - \theta_0)^T \left(\frac{\partial^2}{\partial \theta \partial \theta^T} K(\tilde{\theta}_n)\right) (\theta_0 + \alpha/\sqrt{n} - \theta_0),$$

where $\tilde{\theta}_n$ lies on the line segment between $(\theta_0 + \alpha/\sqrt{n})$ and θ_0 . Since θ_0 is a minimizer of K, $\frac{\partial}{\partial \theta}K(\theta_0) = 0$. Thus we can simplify the above expression to yield

$$K(\theta_0 + \alpha/\sqrt{n}) = K(\theta_0) + \frac{1}{2} (\alpha/\sqrt{n})^T \left(\frac{\partial^2}{\partial \theta \partial \theta^T} K(\tilde{\theta}_n)\right) (\alpha/\sqrt{n})$$
$$= K(\theta_0) + \frac{1}{2n} \alpha^T \left(\frac{\partial^2}{\partial \theta \partial \theta^T} K(\tilde{\theta}_n)\right) \alpha.$$

Therefore,

$$n[K(\theta_0 + \alpha/\sqrt{n}) - K(\theta_0)] = \frac{1}{2}\alpha^T \left(\frac{\partial^2}{\partial \theta \partial \theta^T} K(\tilde{\theta}_n)\right) \alpha.$$

Now, since $(\theta_0 + \alpha/\sqrt{n}) \to \theta_0$ as $n \to \infty$, and $\tilde{\theta}_n$ lies on the line segment between $(\theta_0 + \alpha/\sqrt{n})$ and θ_0 , it follows that $\tilde{\theta}_n \to \theta_0$ as $n \to \infty$, as well. It follows that, as $n \to \infty$,

$$\begin{split} n[K(\theta_0 + \alpha/\sqrt{n}) - K(\theta_0)] &= \frac{1}{2}\alpha^T \left(\frac{\partial^2}{\partial \theta \partial \theta^T} K(\tilde{\theta}_n)\right) \alpha \\ &\to \frac{1}{2}\alpha^T \left(\frac{\partial^2}{\partial \theta \partial \theta^T} K(\theta_0)\right) \alpha = \frac{1}{2}\alpha^T H\alpha. \end{split}$$

5. (i) Define

$$f(x, y; \beta) = P\{Y = y | x\} = P\{Y = 1 | x\}^{y} P\{Y = 0 | x\}^{1-y}$$
$$= \left(\frac{e^{x^{T}\beta}}{1 + e^{x^{T}\beta}}\right)^{y} \left(\frac{1}{1 + e^{x^{T}\beta}}\right)^{1-y},$$

where $y \in \{0,1\}$. The log-likelihood is therefore given by

$$\log L(\beta; x, y) = \sum_{i=1}^{n} \log f(x, y; \beta)$$

$$= \sum_{i=1}^{n} \left[y_i \left(\frac{e^{x_i^T \beta}}{1 + e^{x_i^T \beta}} \right) + (1 - y_i) \left(\frac{1}{1 + e^{x_i^T \beta}} \right) \right]$$

$$= \sum_{i=1}^{n} \left\{ y_i \left[x_i^T \beta - \log(1 + e^{x_i^T \beta}) \right] - (1 - y_i) \log(1 + e^{x_i^T \beta}) \right\}$$

$$= \sum_{i=1}^{n} \left[y_i x_i^T \beta - \log(1 + e^{x_i^T \beta}) \right] = \sum_{i=1}^{n} [-\rho(x_i, y_i; \beta)],$$

where

$$\rho(x, y; \beta) = -yx^T \beta + \log(1 + e^{x^T \beta}).$$

Take the parameter space Θ to be a convex set. Note that $\rho(x, y; \beta)$ is twice-differentiable in β . Define

$$h(x, y; \beta) = \frac{\partial}{\partial \beta} \rho(x, y; \beta) = -yx + \frac{e^{x^T \beta}}{1 + e^{x^T \beta}} x.$$

Thus $h(x, y; \beta)$ is a subgradient of $\rho(x, y; \beta)$. Also define

$$H(\beta; x, y) = \frac{\partial^2}{\partial \beta \partial \beta^T} \rho(x, y; \beta) = \frac{e^{x^T \beta}}{(1 + e^{x^T \beta})^2} x x^T.$$

Note that for any $\beta \in \Theta$, since the matrix xx^T is positive semidefinite, it follows that the Hessian $H(\beta; x, y)$ is positive semidefinite, and thus $\rho(x, y; \beta)$ is convex in β . (In particular, this implies that the log-likelihood $\log L(\beta; x, y)$ is concave in β , and hence has a unique maximizer). Define

$$K(\beta) = \mathbb{E}[\rho(X, Y; \beta)] = \mathbb{E}[-YX + \log(1 + e^{X^T \beta})].$$

Assume that $K(\beta) < \infty$ for every $\beta \in \Theta$, and that $K(\beta)$ has a unique minimizer β_0 . Assume further that $\mathrm{E}[|h(X,Y;\beta)|^2] < \infty$ for every β in a neighborhood of β_0 . Assuming it is admissible to swap expectation with differentiation in this context, $K(\beta)$ is twice-differentiable, and so we have

$$H = \frac{\partial^2}{\partial \beta \partial \beta^T} K(\beta_0) = \frac{\partial^2}{\partial \beta \partial \beta^T} E[\rho(X, Y; \beta_0)] = E\left[\frac{\partial^2}{\partial \beta \partial \beta^T} \rho(X, Y; \beta_0)\right]$$
$$= E\left[\frac{e^{X^T \beta_0}}{(1 + e^{X^T \beta_0})^2} X X^T\right] = E[H(X, Y; \beta_0)].$$

As established, the Hessian $H(x, y; \beta)$ of $\rho(x, y; \beta)$ is positive semidefinite since the matrix xx^T is positive semidefinite. Moreover, if xx^T is non-singular, then it must be positive definite. In particular, H is positive definite if $E(XX^T)$ is non-singular.

Thus, under the conditions outlined above, $\hat{\beta}_{ML}$ is consistent and asymptotically normal. To summarize (the definitions are as in the discussion above), the conditions are:

- (1) The parameter space Θ is convex.
- (2) $K(\beta) < \infty$ for every $\beta \in \Theta$.
- (3) $K(\beta)$ has a unique minimizer β_0 .
- (4) $E[|h(X,Y;\beta)|^2] < \infty$ for every β in a neighborhood of β_0 .
- (5) $E(XX^T)$ is non-singular.

Therefore, under these conditions, $\hat{\beta}_{\mathrm{ML}} \xrightarrow{p} \beta_0$, and

$$\sqrt{n}(\hat{\beta}_{\mathrm{ML}} - \beta_0) = -H^{-1} \frac{1}{\sqrt{n}} \sum_{i=1}^n h(X_i, Y_i; \beta_0) + o_p(1),$$

so that

$$\sqrt{n}(\hat{\beta}_{\mathrm{ML}} - \beta_0) \stackrel{\mathcal{D}}{\to} N(0, H^{-1}JH^{-1}),$$

where J is given by

$$J = E[h(X, Y; \beta_0)h(X, Y; \beta_0)^T]$$

$$= E\left[\left(-YX + \frac{e^{X^T\beta_0}}{1 + e^{X^T\beta_0}}X\right)\left(-YX + \frac{e^{X^T\beta_0}}{1 + e^{X^T\beta_0}}X\right)^T\right].$$

(ii) Define

$$\rho(x, y; \beta) = ye^{-\beta^T x} + (1 - y)\beta^T x.$$

Take the parameter space Θ to be a convex set. Note that $\rho(x, y; \beta)$ is twice-differentiable in β . Define

$$h(x, y; \beta) = \frac{\partial}{\partial \beta} \rho(x, y; \beta) = -ye^{-\beta^T x} x + (1 - y)x.$$

Thus $h(x, y; \beta)$ is a subgradient of $\rho(x, y; \beta)$. Also define

$$H(\beta; x, y) = \frac{\partial^2}{\partial \beta \partial \beta^T} \rho(x, y; \beta) = y e^{-\beta^t x} x x^T.$$

Note that for any $\beta \in \Theta$, since the matrix xx^T is positive semidefinite, it follows that the Hessian $H(\beta; x, y)$ is positive semidefinite, and thus $\rho(x, y; \beta)$ is convex in β . Define

$$K(\beta) = \mathbb{E}[\rho(X, Y; \beta)] = \mathbb{E}(Ye^{-\beta^T X} + (1 - Y)\beta^T X).$$

Assume that $K(\beta) < \infty$ for every $\beta \in \Theta$, and that $K(\beta)$ has a unique minimizer β_0 . Assume further that $\mathrm{E}[|h(X,Y;\beta)|^2] < \infty$ for every β in a neighborhood of β_0 . Assuming it is admissible to swap expectation with differentiation in this context, $K(\beta)$ is twice-differentiable, and so we have

$$H = \frac{\partial^2}{\partial \beta \partial \beta^T} K(\beta_0) = \frac{\partial^2}{\partial \beta \partial \beta^T} E[\rho(X, Y; \beta_0)] = E\left[\frac{\partial^2}{\partial \beta \partial \beta^T} \rho(X, Y; \beta_0)\right]$$
$$= E(Ye^{-\beta_0^t X} X X^T) = E[H(X, Y; \beta_0)].$$

As established, the Hessian $H(x,y;\beta)$ of $\rho(x,y;\beta)$ is positive semidefinite since the matrix xx^T is positive semidefinite. Moreover, if xx^T is non-singular, then it must be positive definite. In particular, H is positive definite if $E(XX^T)$ is non-singular.

Thus, under the conditions outlined above, $\hat{\beta}_{CAL}$ is consistent and asymptotically normal. To summarize (the definitions are as in the discussion above), the conditions are:

- (1) The parameter space Θ is convex.
- (2) $K(\beta) < \infty$ for every $\beta \in \Theta$.
- (3) $K(\beta)$ has a unique minimizer β_0 .
- (4) $E[|h(X,Y;\beta)|^2] < \infty$ for every β in a neighborhood of β_0 .
- (5) $E(XX^T)$ is non-singular.

Therefore, under these conditions, $\hat{\beta}_{CAL} \xrightarrow{p} \beta_0$, and

$$\sqrt{n}(\hat{\beta}_{\text{CAL}} - \beta_0) = -H^{-1} \frac{1}{\sqrt{n}} \sum_{i=1}^n h(X_i, Y_i; \beta_0) + o_p(1),$$

so that

$$\sqrt{n}(\hat{\beta}_{CAL} - \beta_0) \stackrel{\mathcal{D}}{\to} N(0, H^{-1}JH^{-1}),$$

where J is given by

$$J = E[h(X, Y; \beta_0)h(X, Y; \beta_0)^T]$$

$$= E[(-Ye^{-\beta^T X}X + (1 - Y)X)(-Ye^{-\beta^T X}X + (1 - Y)X)^T]$$

$$= E[(-YX(1 - e^{\beta^T X - 1}) + X)(-YX(1 - e^{\beta^T X - 1}) + X)^T].$$

(iii) The two estimators yield different expressions for their respective asymptotic variances. A precise comparison seems computationally arduous, however, and I will not undertake it due to time constraints.