

PHYS 5319-001: Math Methods in Physics III Monte Carlo Simulation on Ising Model

Instructor: Dr. Qiming Zhang

Office: CPB 336

Phone: 817-272-2020

Email: zhang@uta.edu

Statistical Mechanics (recap)

- Study the overall behavior of a system of many particles.
- A macroscopic state: V, T, P, magnetization (M), etc.
- A microscopic state: $\{\vec{r}_i, \vec{p}_i\}$ (i = 1, 2, ..., N)a point in Γ -space, changing with time
- 1 macro state → huge number of microscopic states
- Ensemble: a collection of all these microscopic states
- All the macro (measurable) physics quantities came from the ensemble average. $\langle A \rangle_t = \frac{1}{\tau} \int_{-\tau}^{\tau} A(t) dt$

$$\langle A \rangle = \sum_{\alpha} A_{\alpha} P_{\alpha} \qquad \langle A \rangle$$

where P_{α} : probability for microstate α

More Stat Mech recap

- Canonical ensemble: constant (N, V, T) if the total energy of the system is E_{α} for α –th state/configuration,

$$P_{\alpha} \sim e^{-E_{\alpha}/kT}$$

where k is Boltzmann constant

- So, all the microscopic states has contributions.
- Partition function $Q_N = \sum_{\alpha} e^{-E_{\alpha}/kT} \Rightarrow$ macro properties
- But Q_N is hard to obtained unless the inter-particle interaction is negligible: $E_\alpha = \sum \varepsilon_i$

$$Q_N = \frac{1}{N!} Q_1^N$$

where $Q_1 = \sum_n e^{-\varepsilon_1(n)/kT}$ n: single particle state

Phase & phase transition

- Phase: a physically distinctive form of a substance
 e.g. solid, liquid, gas, plasma
- Phase transition: a transformation from one to another at T=T_c
- Different phases for a solid carbon:

diamond & graphite

• Magnetic ordering of matter:

paramagnetic, ferromagnetic, antiferromagnetic

Magnetic Ordering

Ising Model

U=- /~ .H 二十八十

An array of *N* magnetic dipoles ("spins") on fixed points (lattice) in a uniform magnetic field *H*.

$$E_I\{s_i\} = -\sum_{\langle ij \rangle} J_{ij} s_i s_j - \frac{H}{L} \sum_{i=1}^{N} s_i$$

 $S_i=1$ or -1 (up or down); $\langle ij \rangle$ only consider the nearest neighbor; J_{ii} (>0) is the coupling constants.

For a system of N spins $(N \to \infty)$, each spin configuration is a micro-state (α) . probability $P_{\alpha} \sim e^{-E_{\alpha}/kT}$

A macroscopic measurement $\langle A \rangle = \sum_{\alpha} A_{\alpha} P_{\alpha}$

High T Solved Ising - 1925 Onsager – 1944

e.g.
$$M = \sum_{\alpha} M_{\alpha} P_{\alpha}$$

But, how many α ? 2^N

Mean field theory

Each spin (moment μ) is in a "smeared-out" (mean field) environment.

i.e.
$$M = \sum_{i} \langle S_i \rangle = N \langle S \rangle$$

In an external magnetic field (H=B/ μ_0): $E = -J \sum_{\langle ij \rangle} S_i S_j - \mu H \sum_i S_i$

$$E = -J \sum_{\langle ij \rangle} S_i S_j - \mu H \sum_i S_i$$

or
$$E = \sum_{i} \{ -(J \sum_{j \neq i} S_i) S_j - \mu H S_i \} - \sum_{i} \{ \sum_{j \neq i} S_j \}$$

Like an effective field $H_{eff} = \frac{J}{II} \sum \langle S \rangle = \frac{ZJ}{III} \langle S \rangle$

- Now $H+H_{eff} \to H'$. For $S_i=\pm 1$, $\varepsilon_i=\varepsilon_\pm=\mp \mu H'$
- $Q_1 = \sum_i e^{-\varepsilon_i/kT} = e^{\mu H'/kT} + e^{-\mu H'/kT} \Rightarrow \text{probability } p_+ = e^{\mp \mu H'/kT}/Q_1$ $\langle S \rangle = \sum_i S_i p_i = p_+ - p_- = tanh(\mu H'/kT)$ recall $H' = H + \frac{2J}{\mu} \langle S \rangle$
- So, we have an equation $\langle S \rangle = tanh(\frac{H}{LT} + \frac{ZJ}{LT} \langle S \rangle)$ no analytic solution
- **Graphical solution** (For external H=0) $T < T_{c}$

$$\langle S \rangle = -s_0, 0, s_0$$

$$T_c = \frac{k}{\pi L}$$

$$\langle S \rangle = -s_0, 0, s_0$$

Since
$$M=N$$
, we have

$$M > 0$$
 at $T < T_c$
 $M = 0$ at $T > T_c$

In general,
$$M \propto (T - T_c)^{\beta}$$

β: critical exponent

Bose-Einstein Condensation