Федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «ВЫСШАЯ ШКОЛА ЭКОНОМИКИ»

Московский институт электроники и математики им. Тихонова Департамент электронной инженерии

ОТЧЕТ О ПРАКТИЧЕСКОЙ РАБОТЕ №4

по дисциплине «Программные и аппаратные средства защиты информации» **«Криптографические ПАСЗИ»**

Студент гр. БИБ201					
Шадрунов Алексей					
Дата выполнения: 21 июня 2023 г.					
Преподаватель:					
Перов А. А.					
« » 2023 г.					

Содержание

1	Цель работы			
2	Ход	ц работ	гы	3
	2.1	GPG		3
		2.1.1	Создание ключевой пары	3
		2.1.2	Просмотр импортированных ключей	7
		2.1.3	Экспорт ключей	8
		2.1.4	Шифрование файла	9
		2.1.5	Расшифрование файла	10
	2.2	TrueC	rypt	11
		2.2.1	Установка	11
		2.2.2	Том из файла	11
		2.2.3	Шифрование системного раздела	16
3	Вы	воды с	о проделанной работе	21

1 Цель работы

Цель: работа с программно-аппаратными средствами криптографической защиты информации.

2 Ход работы

2.1 GPG

В Linux также есть средства для работы с ключами PGP. На их основе, например, строятся доверительные отношения при распространении ПО: разработчик подписывает дистрибутивы своим ключом, и клиенты могут проверить подлинность файла с помощью опубликованного второго ключа.

B Arch уже установлен пакет gnupg (https://wiki.archlinux.org/title/GnuPG)для работы с ключами (Рисунок 1).

Рисунок 1 – Версия дрд

2.1.1 Создание ключевой пары

Создадим ключевую пару (Рисунок 2). Во время создания утилита просит выбрать тип шифрования, длину ключа, срок действия, имя, адрес и комментарий. После этого появляется приглашение ввести пароль для ключа (Рисунок 3). После этого утилита сообщает, что публичный и секретный ключи созданы и подписаны (Рисунок 4).

```
alex@alex-nb ~/D/y/hw (main)> gpg --full-generate-key
gpg (GnuPG) 2.2.41; Copyright (C) 2022 g10 Code GmbH
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.
Please select what kind of key you want:
  (1) RSA and RSA (default)
  (2) DSA and Elgamal
  (3) DSA (sign only)
  (4) RSA (sign only)
 (14) Existing key from card
Your selection? 1
RSA keys may be between 1024 and 4096 bits long.
What keysize do you want? (3072)
Requested keysize is 3072 bits
Please specify how long the key should be valid.
        0 = key does not expire
     <n> = key expires in n days
     <n>w = key expires in n weeks
     <n>m = key expires in n months
     <n>y = key expires in n years
Key is valid for? (0) 365
Key expires at Thu 20 Jun 2024 08:38:57 PM MSK
Is this correct? (y/N) y
GnuPG needs to construct a user ID to identify your key.
Real name: Aleksey Shadrunov
Email address: asshadrunov@gmail.com
Comment: test key
You selected this USER-ID:
    "Aleksey Shadrunov (test key) <asshadrunov@gmail.com>"
Change (N)ame, (C)omment, (E)mail or (0)kay/(Q)uit? 0
```

Рисунок 2 – Версия дрд

Рисунок 3 – Версия дрд

```
We need to generate a lot of random bytes. It is a good idea to perform
some other action (type on the keyboard, move the mouse, utilize the
disks) during the prime generation; this gives the random number
generator a better chance to gain enough entropy.
gpg: directory '/home/alex/.gnupg/openpgp-revocs.d' created
gpg: revocation certificate stored as '/home/alex/.gnupg/openpgp-revocs.d/608EB2AA87
630E97C4442D6D83882AC56F3F549B.rev'
public and secret key created and signed.
dua
      rsa3072 2023-06-21 [SC] [expires: 2024-06-20]
      608EB2AA87630E97C4442D6D83882AC56F3F549B
uid
                         Aleksey Shadrunov (test key) <asshadrunov@gmail.com>
      rsa3072 2023-06-21 [E] [expires: 2024-06-20]
sub
alex@alex-nb ~/D/y/hw (main)>
```

Рисунок 4 – Версия дрд

Можем увидеть созданные ключи в /.gnupg (Рисунок 5).

pubring.kbx — контейнер с ключами, содержит один или несколько публичных ключей и сертификатов с метаданными. Этот файл позволяет импортировать публичный ключ в другие программы.

Закрытые ключи находятся в папке private-keys-v1.d. В папке openpgp-revocs.d/ находится сертификат для отзыва ключей.

```
alex@alex-nb ~/.gnupg> tree

crls.d
    DIR.txt
    openpgp-revocs.d
    608EB2AA87630E97C4442D6D83882AC56F3F549B.rev
    private-keys-v1.d
    86DCF063C34897159D41EEB9ADC140AEEDBEBFEB.key
    D2999E102FA0CC7CDD6A11676B9994E75B5DB966.key
    pubring.kbx
    pubring.kbx~
    trustdb.gpg

4 directories, 7 files
alex@alex-nb ~/.gnupg>
```

Рисунок 5 - /.gnupg

Также ключи можно посмотреть в приложении Passwords and Keys (пакет seahorse).

Рисунок 6 – Passwords and Keys

Рисунок 7 – Passwords and Keys

2.1.2 Просмотр импортированных ключей

Для этого выполним команду gpg --list-keys (Рисунок 8). Видно, что я импортировал ключ для установки Spotify, для драйвера eToken 5110 от Thales и для чего-то ещё. Также можно посмотреть имеющиеся у меня закрытые ключи командой gpg --list-secret-keys (Рисунок 9).

```
alex@alex-nb ~/.g/private-keys-v1.d> gpg --list-keys
/home/alex/.gnupg/pubring.kbx
      rsa4096 2021-10-27 [SC] [expired: 2023-01-20]
pub
      F9A211976ED662F00E59361E5E3C45D7B312C643
uid
              [ expired] Spotify Public Repository Signing Key <tux@spotify.com>
     rsa3072 2020-06-16 [SC]
pub
     B37EBA84D2EB0C786F91EEF77F8AA801285DEE57
uid
              [ unknown] Thales DIS <nobody@supportportal.thalesgroup.com>
sub
     rsa3072 2020-06-16 [E]
pub
      rsa3072 2021-07-30 [SC] [expires: 2024-01-08]
      19882D92DDA4C400C22C0D56CC2AF4472167BE03
              [ unknown] Thomas E. Dickey (self-signed w/o SHA1) <dickey@invisible-island.
uid
net>
uid
              [ unknown] Thomas E. Dickey (use for email) <dickey@his.com>
      rsa3072 2021-07-30 [E] [expires: 2024-01-08]
sub
      rsa3072 2023-06-21 [SC] [expires: 2024-06-20]
pub
      608EB2AA87630E97C4442D6D83882AC56F3F549B
uid
              [ultimate] Aleksey Shadrunov (test key) <asshadrunov@gmail.com>
      rsa3072 2023-06-21 [E] [expires: 2024-06-20]
sub
```

Рисунок 8 – Public keys

Рисунок 9 – Private keys

2.1.3 Экспорт ключей

Для экспорта выполним команду gpg --export --armor --output my-key.asc asshadrunov@gmail.com. Файл появляется в директории (Рисунок 10). Внутри у него записаны байты в стандартной для ключей форме (Рисунок 11).

```
alex@alex-nb ~/D/y/h/4 (main)> gpg --export --armor --output my-key.asc asshadrunov@gmail.alex@alex-nb ~/D/y/h/4 (main)> ls -la
total 12
drwxr-xr-x 2 alex alex 4096 Jun 21 20:59 ./
drwxr-xr-x 6 alex alex 4096 Jun 21 20:32 ../
-rw-r--r- 1 alex alex 2480 Jun 21 20:59 my-key.asc
alex@alex-nb ~/D/y/h/4 (main)>
```

Рисунок 10 – Export key

Рисунок 11 – Inside asc file

Также утилита позволяет экспортировать ключ на публичные серверы ключей. Такой, например, предоставляет Ubuntu.

2.1.4 Шифрование файла

Для шифрования файла нужно импортировать публичный ключ получателя. Так как мой ключ уже импортирован, зашифруем файл file.txt для меня. Для этого выполняю команду gpg --recipient asshadrunov@gmail.com --encrypt file.txt (Рисунок 12). Зашифрованный файл появляется в директории (file.txt.gpg).

```
alex@alex-nb ~/D/y/h/4 (main)> gpg --recipient asshadrunov@gmail.com --encrypt file.txt
alex@alex-nb ~/D/y/h/4 (main)> ls -la
total 20
drwxr-xr-x 2 alex alex 4096 Jun 21 21:06 ./
drwxr-xr-x 6 alex alex 4096 Jun 21 20:32 ../
-rw-r--r- 1 alex alex 12 Jun 21 21:04 file.txt
-rw-r--r- 1 alex alex 478 Jun 21 21:06 file.txt.gpg
-rw-r--r- 1 alex alex 2480 Jun 21 20:59 my-key.asc
alex@alex-nb ~/D/y/h/4 (main)>
```

Рисунок 12 – Encrypted file

Можем зашифровать файл в ASCII-виде с помощью опции --armor (Рисунок 13). Тогда его зашифрованное содержимое легко посмотреть и передать сообщением (Рисунок 14).

```
alex@alex-nb ~/D/y/h/4 (main) [2]> gpg --recipient asshadrunov@gmail.com --armor --encrypt fil
e.txt
alex@alex-nb ~/D/y/h/4 (main)> ls -la
total 24
drwxr-xr-x 2 alex alex 4096 Jun 21 21:10 ./
drwxr-xr-x 6 alex alex 4096 Jun 21 20:32 ../
-rw-r--r-- 1 alex alex 12 Jun 21 21:04 file.txt
-rw-r--r-- 1 alex alex 711 Jun 21 21:10 file.txt.asc
-rw-r--r-- 1 alex alex 478 Jun 21 21:06 file.txt.gpg
-rw-r--r-- 1 alex alex 2480 Jun 21 20:59 my-key.asc
alex@alex-nb ~/D/y/h/4 (main)> []
```

Рисунок 13 – ASCII file

Рисунок 14 – ASCII file

2.1.5 Расшифрование файла

Расшифрование произодится командой ggpg --decrypt file.txt.asc (Рисунок 12). Приглашение попросит ввести парольную фразу от ключа.

Рисунок 15 – Decrypted file

2.2 TrueCrypt

2.2.1 Установка

Установим TrueCrypt на виртуальную машину (Рисунок 16).

Рисунок 16 – Installation

2.2.2 Том из файла

Создадим том TrueCrypt. Для этого откроем окно программы и выберем Create Volume (Рисунок 17).

Рисунок 17 – TrueCrypt

На следующем шаге выбираем файловый контейнер, выбираем расположение, размер тома, задаём пароль (Рисунки 18-22).

Рисунок 18 – Create container

Рисунок 19 – Location

Рисунок 20 – Volume size

Рисунок 21 – Password

Теперь мы можем нажать Select File, а затем Mount, после чего том смонтируется к диску Q: (Рисунок 22). При этом этот диск отображается в системе (в Проводнике).

Рисунок 22 – Mounted volume

Если нажать Dismount, всё вернётся как было (Рисунок 23).

Рисунок 23 – Dismount

2.2.3 Шифрование системного раздела

Запустим System > Encrypt system partition. Далее выбираем область для шифрования (только раздел с Windows), опции шифрования, пароль. После этого мастер сгенерирует ключи и попросит записать их на диск. Это можно пропустить, если запустить мастера с ключом /n. После этого система предложит перезагрузить компьютер (Рисунки 24-28).

Рисунок 24 – Encrypt system partition

Рисунок 25 – Encryption options

Рисунок 26 – Password

Рисунок 27 – Keys generated

Рисунок 28 – Prompt ro reboot

При перезагрузке вместо загрузчика Windows мы увидим TrueCrypt Boot Loader, который просит ввести пароль, чтобы расшифровать раздел с Windows (Рисунок 29).

Рисунок 29 – TrueCrypt Boot Loader

После успешного ввода пароля загрузка продолжается (Рисунок 30), а мастер сообщает нам, что проверка пройдена (Рисунок 31).

Рисунок 30 – Windows loading

Рисунок 31 – Pretest completed

После этого начинается шифрование диска. Прогресс виден на рисунке 32.

Рисунок 32 – Disk encryption

После этого раздел C: отображается в TrueCrypt как зашифрованный том (Рисунок 33).

Рисунок 33 – System partition in TrueCrypt

3 Выводы о проделанной работе

Я изучил работу с программно-аппаратными средствами криптографической защиты информации на примере программы для шифрования gpg и программы для шифрования томов TrueCrypt.