computing today No 4

February 79

THE NEW MAGAZINE
FOR SMALL SYSTEMS
WITH BIG IDEAS:

EXIDY SHOOTING GALLERY

The The The The The

Bally Video Game and Exidy Sorcerer Reviewed Program Development for MPU Users Softspot

Presented as a supplement to ETI.

computing today

February 1979

News Sorcerer Reviewed Program Development Artificial Intilligence **Book Service** Data Sheet Bally Arcade Reviewed Softspot

Bits And Pieces

Its Magic 6

Writing For MPUs 13

MPU IQ 17

26 I/O IC

30 Read Only Floppies

Game Or Computer? 31

Graphic Examples 39

EDITORIAL

ADVERTISING

PRODUCTION

Editor Gary Evans Production Pete Howells Technical Illustrator Paul Edwards Advertising Mark Strathern, David Sinfield, Joy Cheshire

See page 25 for important news about Computing Today

AD INDLA
AIRAMCO 47
ALMARC 48
BETOS LTD 44
COMP, COMP, COMP 42
HAPPY MEMORIES 2
HENRY'S 45
H.L. AUDIO 5
KIMBERLEY BUS RECORDS
47
LOTUS SOUND 2 & 3
LP ENTERPRISES 46
MICRODIGITAL 28& 29
MUSICPRINT COMP. PRO-
DUCTS 43
NASCOM 37, 41, 43, 45 & 47
NEWBEAR 16
RACE ELECTRONICS . 25
STRATHAND 11
TANGERINE 11
TARGET 48
TECH. BOOK SERVICE 43
TRANSAM 6
WARD-JAMES 48

HAPPY MEMORIES

ASCII KEYBOARDS £49 £1 p&p. Cursor Kit £2.50

All 128 ASCII characters, parallel output, 2 key rollover, Alpha lock, Auto-repeat, Two user-definable keys, positive and neg. strobe, All on 12½ x 6 inch PCB. Add-on five key cursor kit for up, down, left, right and home available. Send SAE for data sheet.

Scionce of Cambridge Mk. 14 Set of 18 Texas low-profile DIL sockets £2.80 2IL02450ns 89p, 16 up 86p, 64 up 83p 2ILO2 250 ns 110p, 16 up 107p, 64 up 104p 2114 450 ns 550p, 4 up 525p 2114 300 ns **625p**, 4 up **600p** 4116 DRAM **1050p**, 4 up **1000p** 2708 450 ns **675p**, 4 up **650p**

Texas low-profile DIL sockets
Pins 8 14 16 18 20 22 24 <u>28</u> 40
Pence 10 11 12 17 18 20 22 <u>28</u> 38
Antex 1mm bits for CX17 or CCN irons **45p**

Happy Memories, 5 Cranbury Terrace Southampton, Hants SO2 0LH

All prices include VAT. Add 20p postage except where shown. COD available at cost

PET CORNER

Lotus now carry an exciting range of products for your CBM PET.

Memory Expansion

★ Mounts inside PET

★ Runs from PET's own power supply

Takes 10 minutes to fit

Includes memory test program

6 month warranty

16k £276 + VAT

24k £337 + VAT

32k £394 + VAT

DUAL DRIVE MINIFLOPPY

- ★ Dual minifloppy with 100K per disk side — 200K online.
- ★ DISKMON in ROM on controller board, plugs into Expan-
- DISKMON automatically reorganizes free space after SAVE or ERASE.
- ★ Full disc software support.
- FORTRAN & PLM compilers in February.
- 90-day warranty on hard-
- Initial quantities limited.
- Available early January.
- Phone or write for full details.
- * Needs minimum 16K Expandapet expansion memory.

DKH641 Dual Minifloppy System

£916.00 plus 8% VAT

MUSIC BOX

Turns your PET into a programmable musical instrument. You can record and play up to 90 pages, 16 notes per page, change tempo, key, etc.

£37.50 inc. VAT & P&P

T.I.S. WORKBOOKS

A set of 5 workbooks to give you a full understanding of all the ins and outs of your PET more fully than any previous manuals.

£15.95 per set. inc. P&P **Dustcover £17.95 inc. VAT** & P&P

Lots of software and other goodies. Send large SAE.

COMPUTING TODAY — FEBRUARY 1979

The Age of Affordable Personal **Computing Has Finally Arrived**

Ohio Scientifics

Superboard II

Full 8K basic and 4K user RAM **Built and tested** £263.84

Ohio Scientific has made a major breakthrough in small computer technology which dramatically reduces the cost of personal computers. By use of custom LSI micro circuits, we have managed to put a complete ultra high performance computer and all necessary interfaces, including the keyboard and power supply, on a single printed circuit board. This new computer actually has more features and higher performance than some home or personal computers that are selling today for up to \$2000. It is more powerful than computer systems which cost over \$20,000 in the

This new machine can entertain your whole family with spectacular video games and cartoons, made possible by its ultra high resolution graphics and fast BASIC. It can help you with your personal finances and budget planning, made possible by its decimal arithmetic ability and cassette data storage capabilities. It can assist you in school or industry as an ultra powerful scientific calculator, made possible by its advanced scientific math functions and built-in "immediate" mode which allows complex problem solving without programming! This computer can actually entertain your children while it educates them in topics ranging from naming the President of the United States to tutoring trigonometry all possible by its fast extended BASIC graphics and data storage

The machine can be economically expanded to assist in your business, remotely control your home, communicate with other computers and perform many of the other tasks via the broadest lines of expansion accessories in the microcomputer industry.

This machine is super easy to use because it communicates naturally in BASIC, an English-like programming language. So you can easily instruct it or program it to do whatever you want, but you don't have to. You don't because it comes with a complete software library on cassette including programmes for each application stated above. Ohio Scientific also offers you hundreds of inexpensive programs on ready-to-run cassettes. Program it yourself or just enjoy it, the choice is yours.

Standard Features

- Uses the ultra powerful 6502 microprocessor
- 8K Microsoft BASIC-in-ROM Full feature BASIC runs faster than currently available personal computers and all 8080-based business com-
- 4K static RAM on board expandable to 8K
- Full 53-key keyboard with upper-lower case and user
- Kansas City standard audio cassette interface for high
- Full machine code monitor and 1/0 utilities in ROM
- Direct access video display has 1K of dedicated memory (besides 4K user memory), features upper case, lower case, graphics and gaming characters for an effective screen resolution of up to 256 by 256 points. Normal TV's with overscan display about 24 rows of 24 characters, without overscan up to 30 x 30 characters.

Extras

- Available expander board features 24K static RAM (additional mini-floppy interface, port adapter for printer and modem and OSI 48 line expansion interface.
- Assembler/editor and extended machine code monitor available.

Commands CONT	LIST	NEW	NULL	RUN	
Statements CLEAR GOTO NEXT REM	DATA GOSUB ONGOTO RESTORE	DEF IFGOTO ONGOSUB RETURN	DIM · IFTHEN POKE STOP	END INPUT PRINT	FOR LET READ

Expressions

-, +, *, /, ↑, NOT, AND, OR, >, <, <>, >=, <=,

RANGE 10-32 to 10+32

Functions ABS(X) LOG(X)	ATN(X) PEEK(I)	COS(X) POS(I)	EXP(X)	FRE(X) SGN(X)	INT(X) SIN(X)
SPC(Ì)	SQR(X)	TAB(Ì)	TAN(X)	USR(I)	,

String Functions ASC(X\$) CHR\$(I) FRE(X\$) LEFT \$(X\$,I) LEN(X\$) MID\$ (X\$,1,J) RIGHT\$(X\$,I) VAL(X\$) STR \$(X)

Plus variables, arrays and good editing facilities.

Fully built and tested. Requires only +5V at 3 amps and a videomonitor or TV and RF converter to

There is enormous interest in Superboard, so order early if you wish to avoid inevitably long delivery dates later this year.

FREE 15-DAY TRIAL

Lotus Sound have had so many enquiries with questions about various aspects of Superboard II

that in order to save time and ensure your satisfaction we are offering to return the full price to	
anyone who returns their machine, in good order, within 15 days of delivery.	Address
COLINID	
SOUND	
	1
4 MORGAN ST., LONDON E3 5AB	
(Phone for appointment)	
COMPUTING TODAY — FEBRUARY 1979	

	To: LOTUS SOUND 4 MORGAN ST., LONDON E3 5AB
	Please send me Ohio Scientific Superboard Computer(s) I enclose cheque / PO for £
	Name
1	Address
i	
	ETI 1

News

Hot Printer

The low cost, about £175, thermal printer from Bowmat joins the ranks of the low cost peripherals designed for small systems.

The TP-3150-2 features a single chip MPU to control print operation, resulting in a versatile device that can accept data is parallel or serial form with print direction and character rotation controllable by tying control pins to an applropriate level.

printer produces the The standard ASCII character subset as well as recognising line feed, carriage return and back space control characters. An integral 32 character buffer to speed parallel loading rounds off an impressive specification.

The mechanisms does not include a power supply, but for the low asking price you can't have everything.

Petsoft Programs

Petsoft, PO Box 9, Newbury, Berks, are producing an ever expanding range of software for the popular PET microcomputer. Their latest list of additions to their range include titles ranging from a program for solving linear programming problems (constrained maximization) using the simplex method to a package that draws a maze on the PETs screen from which the user must escape.

All existing titles have been

reduced in price by 8% and an SAE to Petsoft should secure you their catalogue which should make an interesting read.

Petsoft are also offering, for £10.75, a battery-powered head demagnetizer packed inside a cassette shell. This gets over the problems of residual magnetization of the cassette deck's heads without endangering the safety of any pro-

cassettes in the vicinity of PET when the device is used.

Elf 'Ere

H. L. Audio Ltd of 9B Garman Road, London, N17 0UR, are now offering the ELF 11 MPU Development Kit to the UK market. The system, very popular in the States, offers a hex keypad, LED display plus support components to implement a minimal RCA 1802 MPU test bed. An interesting feature is the ability of the ELF to generate alphanumeric or graphics characters on a TV screen in even its basic form.

PET Pieces

WITH thousands of PETs in the field the business of providing expansion boards for the basic machine looks an attractive proposition and many people are providing a range of interesting add ons for the beast. These range from the frivolous, PET music box, to the more meaty memory expansion boards and floppy drives.

Commodore themselves carry information on the increasing range of products in their excellent Users Club letter. Another company with a news sheet detailing PET goodies is Lotus Sound of 4 Morgan Street,

London, E3 5AB.

Lotus sell the above mentioned music box that allows one to compose up to 90 pages of music, a page being 16 notes. Some attractive sounding noises can be produced with this little box that, when used with PET, allows quite compre-hensive editing and formatting of the musical material.

The device also allows sound effects to be added to existing pro-

On a more serious note (sic) Lotus supply expansion memory boards in 16K, 24K and 32K increments.

The mother board fits inside the PET and runs off the unregulated DC supply of the machine. As the 32K Expandapet (what else could it be called) uses less power than 4K of standard PET memory, overloading of the PET's PSU is not a worry.

There are four slots for daughter boards on the main Expandpet board into which can be plugged EPROM boards $(2 \times 2780 + 2 \text{ paral-}$ lel I/O parts), S100 I/O driver boards, and experimenters' boards (a blank card providing an area for the development of custom circuits).

The mother board will also take the connections to the DKH641 dual

floppy drive unit.

This comes complete with cabinet and mains power supply — connect to Expandapet and you're up and running.

The unit features two 5½ in single sided disks providing about 100K of storage on each.

It will support the Centronic as well as PET printers and offers the commands shown below:

Oh — the price — £916 plus VAT. For more details of the above write to Lotus enclosing an SAE.

• DIR	Display contents of disk directory
FORMAT	
MEM	Display memory
SAVE	Save program on disk
● LOAD	Load program from disk
ERASE	Erase file from disk
• GO	Run machine langugage program
NEW	Reset machine language program pointers
PRNT	Commercial printer support
ODISK	Open disk DATA file
CDISK	Close disk DATA file
RDISK	Read disk DATA file
WDISK	Write disk DATA file
XEQ	load and run program overlay

Stop reading about computers and get your hands on one! with ELF11 and our new Shorr Course by Tom Pittmen, you can master computers in no time at all! ELF II demonstrates all 91 commands an RCA 1802 care execute and the Short Course quickly reaches you how to use aach of the 1802's capabilities ELF 11's video output lets you display an alphaniumenc readout or graphics on any TV screen or video monitor and enjoy the latest TV games. But that's not all, once you've mastered computer fundamentals ELF 11 can give you POWER with add-ons that are among the most advanced found anywhere. American 1EEE chapters plus hundreds of universities end major corporations have chosen the ELF 11 to introduce their students and personnel to microprocessor computing!

major corporations have chosen the ELF 11 to introduce their students and personnel to microprocessor computing!

Learn The Skill That May Suon Be Far Mora Important Than Your Colloge Degree!

The ability to use a computer may soon be more important to your earning power than college degree. Without a knowledge of computers you are always at the intercy of others when it comes to solving highly complex business, engineering, industrial and scientific protoloms. People who understand computers can command MONEY and to get in on the action, you must learn computers. Otherwise you will be left behind.

ELF 11 is the F-A-S-T Way to Learn.

Computer Fundementals!

Regardless of how minimal your computer background is now, you can learn to programma a computer in almost no time at all. That is because Netronics has developed a special Short Course on Microprocessor And Computer Programming in non-technical language that leads you through every one of the RCA COSMAC 1802's capabilities so you'll understend everything ELF 11 can do and how to get ELF 11 to do it!

All 91 commands that an 1802 can axecute ere explained to you, step-by-step. The text, written for Netronics by Tom Pittman, is a tremendous edvance ovor every othot programming book in print. Keyed specifically to the ELF 11, it's loaded with 'hands on' 'illustrations. When you're finished, ELF 11 and ton 1802 will no longer hold any mystorios for you. In fact, not only will you be able to use a personal computer creatively, you'll also be be ablo to understand computing articles in the technical press.

If you work with laige computers, ELF 11 and our Short Course will help you to understend whet mokes them teck.

A DYNAMITE PACKAGE FOR JUST 599 95 plus 8% VATI

With ELF 11, you learn to use machine lenguage — the fundamental language of all computers. Higher lovol languages such as FORTRAN and BASIC must be transleted into machine language before a computer can understand them. With ELF 11 you build a solid foundation in computers so you really know whar you're doing, no matter how complicated things get. Video output also makes ELF 11 unique amning computers selling for such a low price. Attached to your T.V. set, ELF 11 becomes a fobludious home entertainments centre. It is capable of providing endliss hours of fun for both adults and children of all ages! ELF 11 can create graphics, alphanumeric displays and fantastic video cames.

Only e low cost R.F. Modulator is required to connect ELF.11 to your T.V.'s aerial socket! (To order one see

COUPON DEIOW)
H.L. Audio, 138 Kingsland Road, London E2 88Y
SEND TODAY

ELF 11 s S card expansion bus (connectors not included) allows you to expand ELF 11 as your need for power grows. If you're an engineer or hobbyist you can also use ELF 11 as a counter, alarm, lock, thermostat, timor or for countless other applications

ELF 11 EXPLODES INTO A GIANT!

Thanks to engoing work by RCA and Netronics, ELF 11 add ons are among the most advanced anywhere. Plug in the GIANT BOARD and you can record and play back programmes, edit and debug programmes, communicate with remote devices and make things happen in the outside world. Add Kluge Board to get ELF 11 to solvo special problems such as operating e more complax alarm system or controlling a printing press. Add 4k RAM Board and you can write longer programmes, stora more information and solvo more sophisticated problems.

Expanded ELF 11 is perfect for engineering, business, industrial, sciontific and personed finance and Tax applications. No other small computer anywhore near ELF 11's low price is backed by such extensive research and development programmes.

applications. No other small computer anywhore near ELE 11's low price is backed by such ensive research and development programmes.

The ELF-Bug Monitor is an extramely recent breakthrough that lets you debug progremmes with lightning speed because the key to debugging is to know what's inside the registers of the microprocessor and, instead of single stepping through your programme, the ELF-Bug Monitor, utilising break points, lets you dealthy the entire contents of the registers on your TV. screen at any point in your programma. You find out immediately what's going on and can make any necessary changes. Programming is further simplified by displaying 24 Bytes of RAM with full address, blinking curser, and auto scrolling. A must for serious programmers! Netronics will soon be introducing the ELF-11 colour graphics and music system. — more breakthroughs that ELF-11 owners will be the first to enjoy!

NOW BASIC MAKES PROGRAMMING

Like all computers, ELF 11 understands only "mechine language" — the language computers use to talk to each other. But to make life easier for you we have developed an ELF 11 Tiny BASIC. It talks to ELF 11 in machine language to you can programme ELF 11 with simple words that can be typod out on a keyboard such as PRINT RUN end LOAO.

"ASK NOT WHAT YOUR COMPUTER CAN DO ... BUT WHAT IT CAN DO FOR YOU

Onn't be trapped into buying a dinosour simply bocause you can offord it and it's big. ELF. 11 is more fun then "big neme" computers that cost a lot more money. With ELF 11 you learn to write and run your own programmes. You're nover reduced to being o mere key punch operator working blindly with someona else's pradeveloped software.

No matter what your speciality is, owning a computer which you really know how to use is sure to make you a leader. ELF. 11 is the fastest way there is to get into computers. Order from the coupon below!

NOW AVAILABLE FOR ELF		H L AUDIO LTO., DEPT E T I	
	ouise on Microprocessor & Computer Programming teaches you just about	138 KINGSLANO ROAO	
	know about ELF 11 or any RCA 1BD2 computer. Writren in non-technical	LONOON E2 8BY	
language, it's a learnin	g breakthrough for engineers and laymen alike. CS 00 post paid*	(TEL 01-739 1S82)	
	th plexiglasdust cover for ELF 11 1929 95' plus 11 50 p&p. R. F. modulotor for	Sole European Oistributors for Netionics	
use with T V set £3 00		R&D Ltd. U S A	
	cassette 1/0, RS 232-C/TTY 1/0, 8-bit P 1/0, decoders for 14 separate 1/0 am monitor/editor, \$39.95 plus \$1.00 p&p		
	ARD accepts up to 36 IC's \$17 00 plus SOp p&p	YES! I want to run programmes at home and heve enclosed 109 S6 in	
	essable to ony 4k page to 64k £89 95 plus £1.56 p&p	RCA COSMAC ELF11 kit S 94 including postage and V A T for pow	
Gold plated 86 pin cond	nectors (one required for each plug-in board). S 70' post paid	including postage and V A T for RCA 1802 Users Manual [] SS 9S inc	cluding postage and V A I for
Professional ASC11 Ke	yboard kit with 128 ASC11 upper/lower case set, 96 printable characters,	Short Courso On Microprocessor and Computer programming I want mine wired and tested with power supply RCA 1802 Users Mar	number of Chart Course and I had
	ty. logic selection and choice of 4 handshaking signels to mate with almost any	for just £164 10 including postage and V A T \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
computer £64 95° pos		V.A.T.) for the irems checked at the left	syment finerballing postage and
Deluxe metal cabinet to	r ASC11 Keyboard £19 95' plus £1 50 p&p	Total enclosed	
ELF 11 Tiny BASIC on	cassetto tape. Commands include SAVE, LOAD . , x, +, (), 26 variables A-Z,		
	, PRINT, GO TO, GO SUB, RETURN END, REM, CLEAR, LIST, RUN PLOT,	USE YOUR T ACCESS T BARCLAYCARO	
	fully documented and includes alphanumeric generator required to display	Interbank	
	ers directly on your TV screen without additional hardware. Also plays	Account No .	
	wing geme that uses ELF11's hex keyboard as a joystick. 4k memory required		
£14 9S' post paid		Signature	Exp dato
	urse on Tiny BASIC for ELF11 %5 DD' post paid ly (required whon adding 4k RAM) %19 9S'	CREDIT CARD PHONE ORDERS ACCEPTED. 01-739 1582 PRINT	
	stem Monitor on cassette tape. Allows displaying the contents of all registers on	Name	
	in your programme. Also displays 24 bytes of memory with full addrosses,	IVAITTE	
	o scrolling. A must for the serious programmer! \$14.95° posrpaid	Address	
	O-A converter, Light Pen, Controller Board, Colour Graphics & Music System	Audicas	
and more!			
'Plus VAT at B% on price an	nd postage		·

CALL OR WRITE FOR WIRED PRICES

OFALER ENQUIRIES INVITED

The exciting new TRITON

Personal Computer exclusively from:

TRANDAM

Building a better computer wasn't easy -but we did it.

Complete kit of parts available only £286 (+ VAT)

Basic in Rom: a powerful 2k Tiny basic resident on board, makes Triton unique, easy to use and versatile.

Graphics: 64 Graphic characters as well as full alpha numerics.

Single Board: Holds up to 8k of memory, 4k RAM and 4k ROM, supplied with 3k ROM and 2k RAM.

Memory Mapping: 2 mode VDU, I/O or memory mapped for animated graphics.

Cassette Interface: crystal controlled Modem tape I/O with auto start/stop + "named" file search.

UHF TV Interface: On board uhf modulator, plugs into TV aerial socket.

Comes Complete with KEYBOARD, CASE, POWER SUPPLY, THRO-HOLE PLATED QUALITY P.C.B. FULL DOCUMENTATION POWERFUL 1k MONITOR & 2k TINY BASIC PLUS ALL COMPONENTS INCL. IC SOCKETS. NOTE TV SET & CASSETTE NOT INCLUDED.

Expansion: Fully buffered for up to 65k of memory on expansion busbar.

TRANDAM

TRANSAM COMPONENTS LTD. I am interested in the Triton 12 CHAPEL STREET, NW1 Please send me the following Name_ A copy of your latest catalogue I enclose 30p + S.A.E. 9×7 Address (please print). A copy of the Triton Manual Lenclose €5 + 70p P & P. A complete kit of parts for Triton Computer, £286 + VAT + £4 P & P A Printed Circuit 8oard £50 + VAT & £1 P & P ETI 9 BARCLAYCARD, ACCESS, VISA & MASTER CHARGE ARE WELCOME SEND YOUR CARD NUMBER WITH TOTAL ENGLOSED 6 Cheque, Money Order, etc. ORDER

All components can be bought separately and eleven packs can be purchased on an easy-to-buy scheme. See catalogue.

The P.C.B. alone is £50 + VAT plus £1 for packing and postage.

VAT rate is 8% on all kit components.

TRANDAM

TRANSAM CDMPONENTS LTD. 12 CHAPEL STREET LONDON, NW1 TEL: 402 8137

NEXT TO EDGWARE ROAD TUBE STATION MET LINE., TRITON COMPUTER IS THE TRADE MARK OF TRANSAM COMPONENTS LTD

The Exidy Sorcerer

Phil Cohen reviews the Exidy Sorcerer — is it another PET or is it something more?

THE SORCERER is a Z-80 based multi-language system. It comes as a moulded plastic case containing CPU, RAM, monitor, keyboard and modems for TV and tape recorder. The price is somewhere around £850. A socket on the side of the case allows the insertion of 8k of ROM in a cartridge form.

First Impressions — Case and Keyboard

The Sorcerer is a *nice* machine. The keyboard is a pleasure to use — very chunky and with a separate numeric keypad. The top of the case is printed with a diagram of the keyboard so that the user can write the positions of his user-defined graphics (more about that later).

The ROM cartridge looks very much like an 8-track

tape cartridge — except that it has an edge-connector at the business end. The sockets at the back, as well as TV and tape inputs and outputs, include an RS232 interface (for teletype or similar) and a parallel interface with handshaking. The whole thing can just about be carried under one arm (although at £850-odd a time, I wouldn't recommend it), and it looks very smart indeed. The video output (which can easily be turned into UHF for a few pounds) produces a rock-steady picture giving 30 lines by 64 characters. The character set includes upper and lower case alphanumerics and a full graphics set including clubs, diamonds, hearts and spades! There are three shift keys:

SHIFT produces the upper case alphabet; GRAPHIC produces the full graphics set and

CONTROL produces ASCII control characters such as form feed, carriage return and bell. Pressing SHIFT and GRAPHIC together gives the user-defined character set stored in RAM. This can be altered from BASIC or machine code to give a set of 64 8 x 8 dot matrix characters. I don't know off-hand what the number of letters in the Greek alphabet is, but I'm sure it's less than 64! It is also possible to re-define the graphics characters in the same way, giving 128 possibilities.

There are two RESET keys—as a safety feature. Only pressing both at once has any effect. It's little tricks like that that make a machine a pleasure to use and cuts down the amount of profanity in the early stages! There's also a REPEAT key. Normally, a REPEAT key has to be pressed while pressing the character to be repeated. This one's different. When pressed, it repeats the last character to be input; this saves the trouble of pressing SHIFT, GRAPHIC, a letter and REPEAT all at the same time — a feat which is doubtless easy for internationally acclaimed pianists, but which I find a trifle difficult.

Back to BASICS

The BASIC comes in 8k of ROM — this may not seem like all that much, but it's Z-80 CODE, remember!

With the BASIC ROM cartridge plugged in, pressing RESET will give the impressive message: 31976 BYTES FREE.

This is the amount of space available for storing programs, variables or whatever. This is enough for a floating-point array with just under 7 000 elements! The version of BASIC is similar to that found in the Commodore PET — not surprising since both BASICS were designed by the same software company. The Sorcerer uses standard BASIC linereplacement editing with a colon separating statements on the same line. One thing I found out early on, though, is that the Sorcerer does not like long lines. On occasion I have managed to 'crash' the system completely, requiring reset to get any response. This can be achieved by INPUTting a string longer than one line. When writing a line of a program, the Sorcerer will accept up to two lines of

See how easy programming is? Just think of all the applications for this great machine.

Using the Sorcerer is as easy as typing. Try typing the LIST command and you will see your program displayed on the screen.

You must understand the keyboard if you are to have any meaningful conversations with Sorcerer.

The keyboard is similar to a standard typewriter keyboard, with a few additions. The letters and control keys are virtually in the same positions, but for your convenience and speed in numerical computations, a numeric pad is provided (see Figure 3).

Figure 3. The Keyboard (Characters without Shifting)

Since your Sorcerer has both upper and lower case characters, you will find its operation identical to a typewriter. And, since many programs are written only in upper case characters, there is a shift lock key for your convenience.

If you press a key without shifting, you will get a lower case character.

Figure 4. Characters with Shift Lock Key Depressed

When you simultaneously press the SHIFT LOOK key and a letter, you get the upper case representation or notation as shown in Figure 4.

Figure 5. Characters with Shift Lock and Graphics Keys Depressed

When you simultaneously press the $\frac{1}{2}$ key, $\frac{1}{2}$ key, and letter you get the graphic symbol shown in Figure 5.

The graphic symbols shown on the key tops are a special defined set for Sorcerer. They are used to draw pictures, lines and bar charts on the screen. They can be used just like any other letter or digit on the keyboard.

Figure 6. Characters with Shift Graphic Key Depressed

Pressing SHIFT and the GRAPHIC key simultaneously with any letter will give you one of your own characters. (See the SPECIAL OFFER-ING chapter for detailed instructions on how to program your own character set.)

23

Sorcerer

text but will ignore the second line! Although this seems like a major bug, it should be borne in mind that the Sorcerer's lines are 64 characters long and so most programs will not cause any problems.

The system commands are: (Square brackets indicate an optional parameter)

BYE	Hands	control	over to	the monitor.
			_	

CLEAR [n] Clears variable stack. n is the number of bytes available for

string storage after CLEAR.

CLOAD Loads a program from unit n. (default

name [n] is cassette)

Name is the file name (up to 5 chars). The BAUD rate is software-selectable at 1200 or 300 BAUD (see monitor

description).

CLOAD* Loads a numeric array called name n name from device n. This can be done

during a program — very useful for data storage but why not string

arrays as well?

Figure 7. Characters with Control Key Depressed

Figure 7 shows how you can perform the standard TTY and computer terminal functions, by pressing the $\colon to the continuous cont$ designated keys. These functions correspond to ASCII characters 0 through 31. If you are new to personal computing, you can ignore these completely.

Figure 7 also shows which keys control the video monitor cursor. With the CTAL key depressed, either of the HOME keys will put the cursor in home position (upper left corner of the screen), while an arrow key will move the cursor 1 space in the direction of the arrow.

It's about time to give this newly discovered keyboard a workout and there's no better way than by exploring BASIC.

CONT Continues execution at the point it was broken in at (BREAK is achieved by pressing CONTROL and C simult-

aneously)

CSAVE The opposite of CLOAD and

name [n] CLOAD*.

CSAVE* n name LIST [n]

Lists the program either from the start or from line number n. Surprisingly, there's no way to tell it to stop at a specified line, although the listing can be held at its current position by pressing RUN/STOP. This halts the processor until it is released.

NEW Deletes current program.

NULL n When using some peripherals, it is necessary to output a number of

NULL characters after each carriage return (to give the carriage time to return!) This sets the number.

RUN [n] Runs at start of program or at line n.

Most of these can be incorporated in a program (putting RUN at the start of a program is not recommended!)

Variables

The variable types are: floating point, string and array. There are no integer variables! Presumably, with 32k of memory to play with, the designers decided that most users wouldn't need the saving possible by using integers rather than floating-point numbers for large arrays. The arrays can be of up to 12 dimensions (in theory, there's no limit — but with a floating point array with each dimension's subscript range equal to 2, 12 dimensions gives 4096 elements).

The string variables can hold up to 255 elements each and the floating point range is 6 significant figures with a range of 1.70141E38 to 2.93874E-39. The six significant figure limit does not, however, apply to

arithmetic:

10 A = 1111111111111120 B = 1000000000000

30 PRINT A

40 A = A - B

50 B = B/10

60 GOTO 30

RUN

1.11111 E + 11

1.111111 E + 10

1.11112 E + 09

1.11121 E + 08

etc.

The results of the above run show that the actual arithmetic accuracy is 7 significant digits. The fact that the 'noise' digit is a 2 rather than a zero leads me to suspect that the storage is in a binary representation of some sort, rather than BCD.

Statements

The Sorcerer supports normal BASIC statements: DATA, DEF, DIM, END, FOR NEXT, GOTO, GOSUB, IF....GOTO, IF....THEN, IF....GOSUB, INPUT, LET (optional), ON....GOTO, ON....GOSUB, PRINT, READ, REM, RETURN, STOP. In addition to these it supports:

PEEK Allowing memory to be examined.
POKE Allowing memory to be changed.
RESTORE This starts READ at the first D

This starts READ at the first DATA statement again, allowing data to be

read more than once.

WAIT Stops execution until a particular bit pattern appears at a specified port — very useful for interfacing with miscellaneous mechanical hardware: limit

switches and the like.

OUT, INP These allow communication via the ports. Double-byte numbers can be sent

or received.

Functions

The intrinsic BASIC functions are:

ABS, ASC, ATN (arctan), CHR\$, COS, EXP, FRE (amount of memory left), INP, INT, LEFT\$, LEN (of a string), LOG (base e), MIDS, RND (random number-rectangular distribution), POS (cursor position), RIGHT\$, SGN, SIN, SPC (prints spaces), SQR, STR\$, TAB, TAN, USR (user-defined machine code subroutine with one parameter), VAL. The accuracy of these was limited by the 6-digit accuracy of the machine:

PRINT 30 ↑ 2

 (30^2)

900.001

PRINT 2 \wedge 13 (2¹³)

8192.01

The above represent the two worst errors I could find in about 15 mins, however, the computational accuracy in general was adequate.

Above and right: Examples of the Sorcerer's impressive graphics capability.

Error Messages and Software Fragility

The error messages are a little cryptic:

? UL ERROR or SN ERROR IN 20

for example, but they are fully explained in the manual. Anyway, which would you rather have — massive error messages or more functions?

Apart from long lines, the system seems quite stable — I 'crashed' it on only two occasions, one by entering too long a line on INPUTting a string and once by trying to get back into BASIC from the monitor while the ROM was removed! On both occasions, pressing the general reset got me out of trouble.

User-Defined Graphics

These can be changed by POKEing from BASIC or from the monitor. Each character requires eight two-byte numbers to define it and these are put into RAM between FEOO and FFFF, depending on which

Sorcerer

character is to be set. For example, to define the shifted graphic character associated with the "I" key (which happens to reside at the bottom of the user graphics RAM) as the Greek letter Omega (Ω), the memory locations FEOO to FEO7 are set to 00, 38, 44, 82, 82, 44, 22 and EE respectively. The bit-patterns of these, when laid out one under the other in sequence, form an Ω (try it, if you don't believe me!). Whenever shifted graphic "1" is used after this has been done, the letter Omega will appear.

The graphics held in RAM can, of course, be stored on tape — so you can have a tape for Greek maths, wargames, or whatever. (By the way, try 3C 7E DB E7 FF 42 7E 3C!)

Monitor

The monitor is 4K (and 4K of Z-80 code is quite a lot!). The commands are: (Parameters in square brackets are optional)

DUMP n [m] Displays memory contents from n to m — nice output format.

ENTER n Allows successive memory locations to be changed, starting with location

SAVE name n m [unit]

Saves memory onto tape with from n to m and sends output to the specified unit

unit.

The output header will contain the name, begin address, block size, file type and GO address.

LOAD [name] [unit] [n]

Loads file from specified unit. The start address will be the one in the tape header if n is not specified.

FILES [n] Lists information in headers coming from unit n.

GO n MOVE nl n2 Calls a program starting at n.

MOVE nl n2 [S]n3

This mirrors the Z-80 move instruction. It can either (depending on whether S is included) move information from n1 through n2 to locations beginning at n3, or move n3 locations starting at n1 to locations starting at n2.

TEST n m [C] Used to test RAM locations from n to m — inclusion of C makes it repeat continuously. This must be very useful for fault-finding in newly-

completed units.

PROMPT = n Changes the monitor prompt to character n. Can't see the use for this myself!

CREAT

Causes the creation of a 'BATCH' tape. This is a macro of monitor commands on a tape which can be played back and executed a number of times. This must be to enable full RAM and ROM testing automatically at the factory — other uses would include multi-pass compiler overlay and other exotic applications.

LIGI	tape as it is played back.
BATCH	Executes commands from a tape.
OVER	Returns control to the user from BATCH mode. This command would be the last on a BATCH tape.
SET S=n	Sets the delay between each letter output to the display. Used when output is to a slow printer.
SET $T = n$	n=0 means that the tape modem operates at 1200 baud; n=1 means, 300 baud.
SET F=n	Sets file type in tape header store. This is a two-byte number with which the user can label a file in any way he chooses.
SET X = n SET O = V O = P O = L O = S O = n	GO address in tape header. Changes output port to video, parallel output, Centronics printer driver, tape or address specified
SET I = K I = P I = S I = n	Sets input port to keyboard, parallel port, tape or specified address
PP	Jumps to plug-in ROM.

LIST Lists the BATCH commands from a

A very powerful selection altogether. Exidy hope to bring out a full assembler/editor which, in addition to the above, would make this an excellent development system.

Modem

The baud rate of the modem is software — programmable at 1200 or 300 baud. I subjected it to the acid test — my little portable cassette recorder with auto level control!

I had to hand some tapes which had been recorded at 1200 baud on a good machine — these played without a hitch. However, when I tried to record a program at 1200 baud, the Sorcerer couln't read it back — due, probably, to the fact that on small cassette recorders the playback circuitry is better than the record side, due to the availability of prerecorded tapes.

Anyway, when I tried the same thing at 300 baud it worked perfectly (although slower!).

I couldn't get the machine to accept wrong characters without noticing — I tried various tricks like re-recording file headers, fiddling with the plug on the signal cable and even varying the playback speed mechanically — all of these either:

a) had no effect, or

b) produced an error message.

One rather annoying response, however, was that after aborting an attempt to load a BASIC program, typing LIST caused the same line number (and nothing else!) to be repeated ad infinitum until stopped by interrupt.

The facility for recording arrays of data and replaying them with a single command is nice, if

marred by the fact that (as far as I can tell) it cannot be done with string arrays.

Manuals

The two manuals which are provided (one on the BASIC system and one on the system as a whole) are beautifully produced, although they contained the usual Americanisms which jarred occasionally ("In California the sales tax is 6%. This program will calculate your sales tax on any purchase . . .").

One annoying thing was that these were both learning texts — there's no quick-reference hard information manual. The manuals also leave a few things out — the USR () function (which allows entry to a user-defined machine code subroutine) is mentioned, but not how to tell the machine the start address.

The glossary in one of the manuals is worth

quoting:
"PRINTER — a computer output mechanism that delivers hard copy data". Come back, NASA, all is forgiven!

All in all, though, the manuals are very easy to follow and should provide an excellent 'bootstrap' for the beginner, as well as explaining the subtler parts fairly painlessly.

Accessories

At present, the Sorcerer is available with BASIC only. Exidy hope to bring out other ROM packs including a word processor, an assembler/editor and an APL

system. The re-definably graphics will prove useful in the latter, no doubt, as APL uses all manner of little squares, circles, dots, arrows and what-have-you.

An S-100 extension will also be available soon from Exidy and this will enable the machine to be expanded ad infinitum.

Summary

The Sorcerer is an excellent machine. What makes it different from the other units on the market is that it is designed for the amateur to use, but has full professional facilities. It would be quite happy linked to a mainframe — it even has the full ASCII control character set.

The BASIC is comprehensive and fast and the memory is massive. The best thing about it, though, is its flexibility. Anything which can be made useraccessible is made so. For instance, it is possible re-define, from BASIC, what size the string storage area is to be. It's this sort of user-transparency makes it so flexible.

The price is not high in comparison to other machines (it's cheaper than a PET with memory expansion).

If you want a machine for a sensible application (process control, invoicing or whatever), then this is a good buy.

The Sorcerer we reviewed was on loan to us from Teleplay (at 14 Station Road, New Barnet, Herts, EN5 10W).

(See page 16, ETI, Oct. '78 for feature details)

ORDERING INFORMATION

The normal **KIT price is £139.86**, which includes postage, packing and insurance and VAT @ 8%. HOWEVER, as an introductory gesture we are discounting this price by £10, for all orders received postmarked BEFORE 12th December, 1978.

If you require further information, send an A4 sized self-addressed envelope. If you wish to purchase a kit please send a cheque or money order made payable to

TANGERINE COMPUTER SYSTEMS LIMITED

RIVERMILL LODGE, LONDON ROAD, ST. IVES, CAMBS. PE17 4BR Tel. St. Ives (0480) 65666

Z80 Microcomputer kit Undoubtedly the finest value for money kit available anywhere. Fully socketed.

INTERFACE FOR:

TV (UHF) TV Monitor Cassette Teletype 32k Ram expansion board

> May be seen working 9 a.m. - 5 p.m. Mon.-Fri.

> > Callers welcome

Price £197.50 + VAT (8%)

STRATHAND 44 ST. ANDREW'S SQ. GLASGOW G1 5PL 041-552 6731

Callers welcome

Tel. order welcome with Access and Barclaycard

Program Development

Ron Wilson takes a look at operating systems using MIKBUG as an example.

AT PRESENT there are two approaches to becoming a microcomputer owner:

- 1. The integrated circuits MPU, ROMS, RAMS, PIA etc are purchased and the user designs his own microcomputer for his application. This method takes advantage of the special circumstances of each application.
- 2. A complete system is bought which has been designed, and if necessary built and tested. The complete system is of course capable of expansion by the addition of peripherals, extra memory and special purpose interface circuits.

The low component — cost is attractive in case 1 but consider this: WHEN POWER IS FIRST APPLIED WHAT HAPPENS? In both cases some type of **operating system** is needed.

An operating system is a complex program which operates and supervises the running and execution of the computer and other programs within the computer. In case 1 above the user is left to organise his own system and consequently needs to write some type of operating system to govern the system. In case 2 an operating system is usually provided by the manufacturer and for microprocessor systems comes in the form of a pre-programmed ROM.

As an example the features of a system provided by Motorola known as MIKBUG will be considered.

Mikbug

This is a loader and diagnostic control program that is supplied with certain of Motorola's complete systems. This program is contained in a pre-programmed ROM.

The various routines within MIKBUG may be called by entering on the keyboard one of the following single character calls:

L-Load Data into memory

P-Print/Punch Data from Memory

M-Memory Change

R—Display Contents of the CPU Registers

G—Go to Main Programmes

Other features include the capability to set breakpoints with memory change and the use of interrupts.

When power is first applied to a system governed by a MIKBUG operating system an asterisk (*) is displayed on the user's VDU in response to the user pressing the microcomputer RESET button.

The asterisk is very reassuring. Often whilst testing a program under development the system appears to 'die'. The faithful RESET brings it back to life with an asterisk.

The Rôle of Editors and Assemblers in Programming

The importance of the operating system has been considered earlier, however, other software packages are available to shorten the user's design and development cycle. The major packages are

A Source Program Editor and

An Assembler

In developing a program the sequence of events tends to be:

Problem Definition

Obtain Method of Solving Problem

Draw Flowcharts

Write Assembly Language Program

Edit Assembly Language Program

Assemble Mnemonics into Object Code

Run the Program

Correct Errors

Obtain a Record of the Validated Program

The bold sections show where the editor and assembler packages are used. Each computer system has its own editor which helps the user to format his source statements for suitable input to the assembler. The source program written mnemonics needs to be translated into numeric patterns. The resulting data, called object code, is generated from the source code by using an assembler. The input is the source program and the output is an assembly listing and object tape file. This file is normally in the form of a paper tape or cassette tape.

The Use of an Assembler

The manual translation of mnemonics into hexadecimal code is tedious and prone to error. This is particularly the case when calculating the addresses

for the Branch type of instruction. The normal method of programming uses an assembler software package as an aid in order to overcome these difficulties. The method of writing programs needs to be modified slightly to account for the special operation of the assembler program.

The format of the source program is very important. Some sample programs may help to illustrate the

essential features.

A Sample Program

NAM 6800RW1
OPT S, O
*2"S COMPLEMT PROGRAM
ORG O
LDAA #01H LOAD ACC A WITH O1 IN HEX
COMA FORM 1"S COMPLEMENT
INCA INC ACC A
SWI
END

A number of features are noticeable when the program is contrasted with writing directly in hexadecimal.

 Certain prefixes and suffixes adjoin the program, eg NAM, OPT.

2. Comments have been added.

3. In fact there are separate fields within a program line.

4. A software interrupt SW1 has been used. This is to

help in testing the program.

The separate fields within a source statement are LABEL, OPERATOR, OPERAND and COMMENT. The use of labels at the destinations of branch and jump instructions simplifies programs by eliminating the tedious calculations otherwise needed. The mnemonic operator is present in all statements, except when the statement is a comment only, however, the inclusion of an operand field depends upon which mnemonic operator is used. Comments are optional but they are a convenient way of producing a well-documented program.

The successive fields within a statement are separated by one or more SPACE characters.

The Sample Program Assembled

The assembler package when activated responds as shown below. The user then types 1P or 2P to indicate first pass or second pass of the source tape. The procedure in more detail is:

M6800 ASSEMBLER VERSION 1.2 ENTER PAS: 1P, 1S, 2P, 2L, 2T

1P

M6800 ASSEMBLER VERSION 1.2 ENTER PASS: 1P, 1S, 2P, 2L, 2T

2P

PAGE	001	6800	RW1	-
00001	001	0000	NAM	6800RWI
00002			OPT	s,O
00003		*2's	COMPI	LEMT PRO-
GRAM				

00004	0000		ORG	O	LOAD AC	CC A
00005	0000	86 01	LDA A	01H	WITH 01	l IN
00006	0002	43	COM A		HEX	
00007	0003	4C	INC A		FORM	1'S
80000	0004	3F	SWI		COMPLEM	IENT
00009			END		INC ACC	4

TOTAL ERRORS 00000

After the first pass the source tape must again be set so that the beginning of the tape is in a position to be read.

During the second pass through the program, a listing is printed which shows the address in the program counter, and the object code, along with the corresponding source statement (unless the listing is repressed by the "NOLIST" option under assembler directive "OPT" in the source program). Within the listing the errors are noted on the line preceding the source statement, by one or more of the codes.

Output is again shown to be highly structured.

NAM 6800RW2 OPT S,O *PROGRAMMABLE COUNTER ORG 100 LDAA #OAH LOAD ACC A WITH TEN

LDAB #OOH INITIALISE ACC B = O
BACK INCB INCREMENT B
CBA COMPARE ACC'S
BNE BACK BRANCH IF ACC A NOT = ACC B
SWI
END

This program contains a BRANCH instruction, BNE. A label BACK is used to define where to branch to. The assembled program is as follows:

M6800 ASSEMBLER VERSION 1.2 ENTER PASS: 1P, 1S, 2P, 2L, 2T

1P

M6800 ASSEMBLER VERSION 1.2 ENTER PASS: 1P, 1S, 2P, 2L, 2T

2P

PAGE	001	6800RW	2			
00001			NAM	6800RW2		
00002			OPT	S.O		
0003		*PRO	GRAMI	MABLE		
			COUNT	ER		
00004	0064		ORG	100		
00005	0064	86 OA	LDA	A #OAH		LOAD ACC A
00007	0066	C6 OO	LDA	B #OOH		WITH TEN
80000	0068	5C BAC	K	1NC	В	INITIALISE
00009	0069	0069	0069	11		ACCB = O
CAB						INCREMENT B
00010	0064	25 FC	BNE	BACK		COMPARE
00011	006C	SWI		_		ACC's
00012			END			BRANCH IF
BACK	0068					ACC A NOT-
TOTAL	ERRORS	00000				= ACC B

In order to understand the listing consider the line 00008 0068 5C BACK INCB INCREMENT B 00008 is the line number 0068 is the instruction address (Program Counter) 5C is the instruction (and operand) field

BACK is the label field INC B is the operator or mnemonic field INCREMENT B is the comments field

An asterisk (*) in the first character position of a statement causes the entire statement to become a comment.

As an example — *PROGRAMMABLE COUNTER. The aim is to use the assembler to obtain a tape of

the object code for the program under consideration.

The object tape for the second specimen program

has the following characters on it. S00B000036383030525732202B S10C0064860AC6005C1126FC3F6B

S903000FC

An advantage of using the assembler program is that knowledge of the exact hexadecimal codes for the program are not necessary. The next main concern is to run and test the program.

Running a Program

The object tape is loaded into the system. In this case the operating system is under the control of MIKBUG so after the computer systems has been reset then L is typed. This reads in the object tape via

the teletype.

Before the G command is given the beginning address of the user's program must be loaded into the program counter from the stack address A048 (MS byte) and A049 (LS byte). This is a feature of MIKBUG. This is achieved using the memory change feature M.

The first sample program was run as shown below:

*L

*M A048

Program Development

A048 00 **00** A049 6C **00** A04A 9C

*G D9 OA FF FCFC 0004 A042

The main features of MIKBUG are used in running this program. The bold sections indicate the user input, whereas any digit not inderlined was printed as MPU response. In this way A048 and A049 were set to 00 00 as defined by the ORG statement. The G caused the program to run until SW1 was executed. The print out following G results from SW1 and can be interpreted as condition codes (D9), B accumulator (OA), A accumulator (FF), index register (FCFC), program counter (0004) and stack pointer (A042).

The program loaded the A accumulator with 00000001 then complemented this to give 11111110 which was then incremented. The result 111111111, or FF in hexadecimal, is the two's complement of the

original number loaded into A.

Thus the operation of the program can be verified, in this case, by noting the contents of accumulator A, shown in the print out, following the G command.

The interrelation between the operating system, the editor and the assembler software has been introduced. Finally the reader is invited to consider the second sample program run shown below:

*L *M A048 *A048 00 00

*A049 04 **64**

*A04A 9C

*G D4 OA OA FCFC 006C A042

Did this program run correctly?

HEXADECIMAL CONVERSION

8		7			6	5		4		3		2		1	
Hex	Decimal	Hex	Decimal	Hex	Decimal	Hex	Decimal.	Hex	Decimal	Hex	Decimal	Hex	Decimal	Hex	Decimal
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	268,435,456	1	16,777,216	1	1,048,576	1	65,536	1	4,096	1	256	1	16	1	1
2	536,870,912	2	33,554,432	2	2,097,152	2	131,072	2	8,192	2	512	2	32	2	2
3	805,306,368	3	50,331,648	3	3,145,728	3	196,608	3	12,288	3	768	3	48	3	3 '
4	1,073,741,824	4	67,108,864	4	4,194,304	4	262,144	4	16,384	4	1,024	4	64	4	4
5	1,342,177,280	5	83,886,080	5	5,242,880	5	327,680	5.	20,480	5	1,280	5	80	5	5
6	1,610,612,736	6	100,663,296	6 .	6,291,456	6	393,216	6	24,576	6	1,536	6	96	6	. 6
7	1,879,048,192	7	117,440,512	7	7,340,032	7	458,752	7	28,672	7	1,792	7	112	7	7
8	2,147,483,648	8	134,217,728	8	8,388,608	8	524,288	8	32,768	8	2,048	8	128	8	8
9	2,415,919,104	9	150,994,944	9	9,437,184	9	589,824	9	36,864	9	٠2,304	9	144	9	9
Α	2,684,354,560	Α	167,772,160	Α	10,485,760	Ä	655,360	Α	40,960	Α	2,560	Α	160	Α	10
8	2,952,790,016	8	184,549,376	В	11,534,336	B.	720,896	В	45,056	В	2,816	В	176	8	11
С	3,221,225,472	С	201,326,592	С	12,582,912	С	7B6,432	С	49,152	С	3,072	, C	192	С	12
D	3,489,660,928	D	218,103,808	D	13,631,488	D	851,968	D	53 ,24 8	D	3,328	D	208	D	13
E	3,758,096,384	E	234,881,024	Е	14,680,064	E	917,504	Е	57,344	Е	3,584	E	224	Ε	14
F	4.026.531.840	F	251,658,240	F	15,728,640	F	983,040	F	61,440	F	3,840	F.	240	F	15
8 7 6				5		4		3		2		1			

HEXADECIMAL TO DECIMAL

- 1 Locate column of decimal numbers corresponding to left-most digit or letter of hexadecimal select from this column and record number that corresponds to position of hexadecimal digit or letter.
- Repeat step 1 for next (second from left) position.
 Repeat step 1 for units (third from left) position.
- 4 Add numbers selected from table to form decimal number.

DECIMAL TO HEXADECIMAL

- (A) select from table highest decimal number that is equal to or less than number to be converted.
 - (B) Record hexadecimal of column containing selected number. (C) Subtract selected decimal from number to be converted.
- 2 Using remainder from step 1 (C) repeat all of step 1 to develop second position of hexadecimal (and remainder).
- 3 Using remainder from step 2 repeat all of step 1 to develop units position of hexadecimal.
- 4 Combine terms to form hexadecimal number.

NewBear Computing Store

★ SYM-1 ★

(Formally VIM-1)

The new 6502 micro from Synertek. Fully assembled and tested

Ex Stock @ £199.00

+8% V.A.T. Carriage £1.00

NORTH STAR HORIZON

- ★ 5¼" floppy disc.
- * Low cost.
- * S100 Compatible new line.
- * Extended BASIC.

P&PP

.50

€7.50

Assembled and tested

£1,265 + 8% VAT

Kit £995 + 8% VAT

★NASCOM 1 ★

Z80 BASED MICROCOMPUTER KIT

Ex Stock @ £197.50

+ 8% VAT £1.00. Carriage

SEND FOR THIS MONTH'S SPECIAL OFFER LIST

Z80 CPU 2.5 MHz £13.99	2708 2716	£7.50
Z80 P10 PS	MIKBUG (13.65
£9.15	4116	£15.00
Z80 CTC PC		
€9.15	Interfacing	I.C.s
Z80A CPU 4MHz	SFF 96364	,
£20.00	1	£16.20
Z80A P10 £11.05 Z80A CTC £11.05	MC 148BP	€1.40
MC 6800 £8.75	MC 1489P	€1.40
MC 6820 £4.63	75150P	£1.30
MC 6850 £6.74	75150N	€1.20
MC 6810 £3.61	75154 4N33	£2.30
MC 8602P £2.88	AY-5-1013	£1.95 £4.50
MC14536P £3.69	6402	£4.50
MC 3459 £2.53	6571	£6.70
SC/MP II £10.30	2501	€6.50
6502 £14.93		20.00
8080A £8.00		
	Buffers	
Memories	81LS95	€1.30
2102-1 £1.25	81LS96	€1.30
2102L-1 £1.35	81LS97	€1.30
2112 £3.04	81LS98	€1.30
2513 £6.50	8T26	£1.84
SWATBUG £16.00	BT95 8T97	£1.60 £1.60
2114 £8.25	74367	£1.30
2114 60.23	74307	L1.30

24-HOUR TURNROUND ON ORDERS

Please edd 8% VAT to all prices. P&P 30p unless otherwise steted. Barclaycerd and Access welcome. Overseas orders issued with Pro-Forme Invoice. Send for catalogue to Newbeer Computing Store, Bone Lene, New-bury, Berks. Cellers welcome Mon.-Set., 9.00-5.30, but pleese phone us first on 0635-49223. New office — 2 Gatley Road, Cheadle, Cheshire. (Cellers only). Telephone 061-491 0134.

SEND FOR OUR NEW CATALOGUE

COMPUTER DESIGNS

77-68 6800 Microcomputer

WB-1 TTL Microcomputer	€6.50	.50					
FROM ADAM OSBOURNE ASSOCIATES							
Introduction to Microcomputers							
Volume O The Beginners E		€5.95	.50				
Volume 2. Basic Concepts		€5.95	.50				
Volume 2 Some Real Prod	ucts June 1	977 Revisi	ion				
		€11.95	1.00				
8080A/8085 Assembly La	anguage Pro	gramming					
•		€6.95	.50				
6B00 Assembly Language	Programmir	ng					
	Ü	€6.95	.50				
Some Common Basic Prog	rammes	€5.95	.50				
6800 Programming for Log		€5.95	.50				
8080 Programming for Loc	gic Design	€5.95	.50				
Payroll with Cost Accounting	ng in Basic	€9.95	1.00				
Instant Freeze-Dried Comp	uter Progra						
By Jerald R. Brown		€4.95	.75				
My Computer Likes Me Wh	ien I Speak i						
0		€1.65	.30				
Computer Programs that W		€2.40	.75				
Basic Software Library	Volume 1	€17.50	.50				
	Volume 2	£17.50	.50				
	Volume 3	€26.95	.50				
	Volume 4	€7.95	.50				
	Volume 5	€7.95	.50				
	Volume 6	T.B.A.	.50				
	Volume 7	€26 95	.50				
NEW	воокѕ						
First Book of Kim		€7.00	.50				
Z80 Microcomputer Handl	nook	€7.25	.50				
Using the 6800 Mircoproc		€6.25	.50				
Micro 6502 Journal	C3301	€1.70	.50				
Learning Basic Fast		€6.30					
How to Program Microcom	autoro	€6.30	.50				
Getting involved with your			75.				
detting involved with your	Own Comp		25				
		€4.75	.75				
B080A Bugbook		€6.95	.75				
SYBEX							
Microprocessors C201		68.00	.50				
Microprocessor Interfacing	Techniques		50				

BEAR BAGS

1.	77-68 CPU PCB and Componer	nts
		£45.00
	77-68 LEDs and Switches	£14.95
	77-68 Power Supply	£17.95
4.	77-68 19 5u Rack and Backpl	lane
		£26.70+
5.	77-68 4K Ram PCB and Compo	onents
		€74.00
6.	77-68 Mon 1 PCB and Compor	ents
		€50.00
7.	4K Ram Exorciser PCB and Com	ponents
		£71.50
8.	8K Ram Exorciser PCB and Com	ponents
		£160.00°
9.	Petitevid VDU Kit	£85.00
10.	Kansas City Cassette Interface	€18.95
	UHF Modulator	€4.50
12.	77-68 VDU PCB and Componer	nts
		€69.50
. 13.	77-68 Mon 2 PCB and Compor	ents
		£t.b.a.
14.	Prom Programmer PCB and Cor	mponents
	J. C.	£35.00
15.	PROMVERTER (Enables a 270)	B to be used
	instead of MIKBUG)	€8.50
50r	Postage and Packing unless	c otherwise
stat	ed + £1.50 Postage and Packing	a officiante
161	00 Postage and Packing.	9.
C1.	oo rostage and racking.	

FLOPPY DISC DRIVES

5½ " SHUGART SA400 DISC DRIVE £255.00 Carriage by Securicor 'C' Rate £4.50
8 DRI SINGLE SIDED DOUBLE DENSITY £325.00
Carriage by Securicor 'C' Rate £5.00 8 DRI DOUBLE SIDED DOUBLE DENSITY
Carriage by Securicor 'C' Bate £5.00

Artificial Intelligence

M. C. Fairhurst of the Computers & Cybernetics Group, University of Kent, gives an introduction to the principles of some very exciting research that's being done there which could lead to a better understanding of the human brain — or a better computer.

ARTIFICIAL INTELLIGENCE — by which we mean the imitation by artificial systems of characteristics which we describe as intelligent when observed in humans - is a field which has attracted an increasingly large amount of research effort in recent years. While nowadays artificial intelligence is generally acknowledged as an academic discipline in its own right, the term is often used interchangeably with other terms such as bionics, robotics, and so on with the result that the layman becomes confused and the purist indignant. Whatever its precise terms of reference, what is clear is that artificial intelligence embraces concepts and theories from many different disciplines including mathematics, cybernetics, computer science, psychology, biology and others. A recent series of articles (ETI May 1978) has given a very comprehensive introduction to some current ideas in robotics while a subsequent article (ETI July 1978) on Brains and Computers introduced readers to the structure of the human brain and therefore the processes and mechanisms which underlie every aspect of human behaviour. It is hoped that this article, in so far as it presents an alternative approach to problems in artificial intelligence, will bring together some basic ideas from each of the two preceding ones.

The most prevalent philosophy for the design of an artificially intelligent system (for example, to provide the "brain" of, say, an industrial robot) is that either a general-purpose digital computer is programmed in such a way as to accomplish the desired task, or that some special-purpose computing system is explicitly designed to achieve the same result. While such a computer program or electronic design does not necessarily preclude the possibility of future self-programming or adaptation of behaviour, the essence of this approach to the design of an intelligent machine is that the "intelligence" is somehow imposed by means of external intervention or manipulation.

This is by no means the only design philosophy which might be adhered to. An alternative approach becomes immediately attractive if it is recognised that certain types of system possess inherent, as opposed to externally-imposed, intelligent characteristics. The problem of constructing an intelligent

M. C. Fairhurst of the University of Kent, author of this article

machine or robot then becomes one of *exploiting* these existing characteristics in a meaningful way rather than one of creating them in the first instance. We shall investigate the implications of pursuing this second approach, and we begin by exploring the nature of inherent intelligence in more detail.

Intelligence From Chaos?

Let us look for an example of intelligent behaviour in what at first sight may seem to be an unlikely situation. Figure 1 shows a network made up of interconnected electronic cells, each of which receives and generates binary signals. The operation of a cell may be easily represented by a table such as that of Table I, which lists all possible signal combinations at the input of the cell and the corresponding output signal in each case. Note that the variables Q0, Q1, Q2... can each be either 0 or I. The precise values given to these variables for any element define the *function* of that particular element

Input 1	Output 2	Input 3	Output
0	0	0	Q_0
0	0	1	Q_1
0	1	0	O_2
0	1	1	O_3
1	0	0	Q_4
			•
•	•	•	•
•	•		
•	•		•
•	•	•	
	•	•	•
•	•	•	
•	•	•	•
•	•	•	•
1	1	1	Q_{j}

Table 1: Association between possible sets of inputs and their corresponding outputs.

and determine exactly how the element will operate. For a cell with K inputs there are exactly 22k different functions which could be defined.

Readers familiar with the principles of digital circuit design will recognise that the electronic cells described are examples of logic gates, although here we assume that *any* function may exist and not only the more usually-encountered functions such as AND, OR, NAND etc). As an illustration, Table 2 shows a complete set of possible functions (f0-f15) for a cell with two inputs.

How may we usefully describe the behaviour of the overall network of cells? At any instant in time we list the output signal value of each cell in the network in order. This list, which will consist of each cell in the network in order. This list, which will consist of a string of 0s and 1s, defines the *state* of the network. However, because the elements are interconnected the output of one element may cause the input to another element to change, while this in turn may

cause the output of the next cell in the chain to change, and so on. In other words, at successive instants in time the state of the network may change. After a sufficient length of time, of course, because there are a limited number of possible states which exist 000...00,000...01,000...10,...,111...11, a state or a group of states must repeat. We can summarise the network behaviour by drawing a 'State transition diagram' which shows the changes from one state to the next in the network at successive instants in time. Part of one such state diagram is shown in Figure 2. Note that in order to get a general picture of what is happening in the network it is not necessary to label each individual state at this stage. We can see that in this example the network has just three modes of activity which may be said to be stable two of these stable modes correspond to the two cycles repeating groups) of states of three and five states respectively in length. The third corresponds to the single stable state – the state which recurs once reached. It can be seen that all other states, after a sufficient length of time, are ultimately drawn in to one of these stable areas of activity.

The crucial question which we now wish to ask concerns the sort of state transition diagram which we might expect for any particular configuration of elements in the network. For example, suppose that we connect together in a totally random way a number of elements whose functions are selected completely at random from the set of all possible functions. How will this network behave?

Experimental Results

In general terms, our intuition leads us to believe that a system whose specification is random will give rise to disorganised, unstable, possible chaotic, and certainly unintelligent behaviour. For example, let us consider a parallel with the random network situation taken from everyday life. Suppose, for instance, that I arrange my filing cabinet in such a way that I allow some of Mr Jones' letters to be filed under 'S' and others under 'T', wile Mr Brown's letters are put into a file marked 'Mr White' on odd days and a file marked 'Mr Green' on even days. Suppose that I further compound the disorganisation by putting all the P files in the A drawer, and so on. Surely I should not

Input 1	Input 2	Outp	out															
		f_0	f ₁	f_2	f_3	f_4	f ₅	f_6	f ₇	f ₈			f ₁₁	f ₁₂	f ₁₃	f ₁₄	f ₁₅	
0	0	0	0	Ò	0	0	0	0	0	1	1	1	1	1	1	1	1	
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1	
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	
1	1	0	1	0	1	0	1	, 0	1	0	1	0	1	0	1	0	1	

Table 2: All sixteen possible functions for a cell with two inputs

Artificial Intelligence

then expect my filing system to be even intelligible, let alone efficient!

To go back to the case of my random network of electronic cells, I should expect the randomness of the situation to give rise to unstable and unintelligible activity in the network, such random behaviour being characterised by the existence in the state diagram of many long strings of meaningless states and cyhcles

containing a large number of states.

It is at this point tht a surprising, but most interesting and highly significant observation can be made. In a large number of experiements on many different networks it has been found in practice that rather than the unstable chaos one might expect, a random network exhibits highly stable ar. ordered behaviour, represented by the existence of very few repeating cycles of states each cycle in itself comprising very few states. For example, a random network of 100 electronic cells - with the potential for existing in any one of 2100 states - was found typically to generate only about 10 cycles each consisting of no more than about 10 states. In other words, since after a sufficient length of time the network will be found to exist in one of only relatively few state cycles, we may say that the system has a restricted and manageable number of different modes of activity and is, therefore, stable. This inherent ability of the network to organise its behaviour into one of a well-defined number of modes of activity leads us to attribute to the network a pre-disposition for intelligent behaviour, in just the same way that we might feel inclined to attribute intelligence to our "chaotic" filing system if we opened a drawer to find out, despite our lack of coordination, all the files on "Mr Brown's interview" had ended up together in one place.

Three further points need to be made clear in the context of intelligence in networks of electronic processing cells. First, we may allow the network to interact with its environment by allowing some of the element input channels to be connected to the external world rather than to other cells. In this way the

network can be made to respond to some stimulus by following a trajectory of transitions to some state cycle. Second, if we arrange for the element functions to be variable i.e. we allow them to change if some appropriate signal is received) then the state structure is itself variable, and the network can be made to learn and thus make meaningful associations between external events and its own possible modes of activity. Third, in a practical context - which is of major significance to many readers of this magazine - all the required properties of ther electronic cells which are described above may be realised by utilising the commercially available, easily obtainable and very cheap random access memory device to implement the electronic cells which make up the network.

Although the idea will be pursued later it is worth pointing out at this stage that the overall structure of the electronic system as described is not unlike the structure of the brain. It has two extremely important features in this respect. First, the intelligence of the system is not localised in any specific area, but distributed over the entire network. As a result the system is much less susceptible to localised damage than more conventional electronic systems, in much the same way that our memory traces can often be retained despite severe disruption of the brain's activity. Second, the system processes its data in a parallel rather than serial mode, (all the cells operate simultaneously) with a consequent ability for high processing speeds.

Intelligence in Action

Let us suppose that we wish to construct a device which will automatically read and identify letters of the alphabet (clearly a task requiring intelligence, whether carried out by a man or a machine). A simple scheme for accomplishing this task is shown in Figure 3. A TV camera is used to sense the image which is then encoded (or "digitised") by means of suitable circuitry into a binary representation, and this coded

Fig 2. Part of a State Transition Diagram.

Fig 3. A simple method of recognizing visual patterns.

version of the input fed to a network of adaptive electronic cells as described.

We now exploit the natural intelligence of the network by modifying the element functions — in other words we "teach" the network — in such a way that it will respond to examples of a particular pattern class (e.g. the letter "A") by entering a particular state cycle, the equivalent of executing just one of its possible modes of activity. The classifier is then required to identify the cycle entered and hence signal the identity of the pattern which was received at the input.

It is easily seen that the system is making use of the natural stability of the network in so far as the number of states which need be identified is dramatically smaller than the total number of possible input patterns which may occur. It is exactly this property of the network which transforms the problem from one of identifying a potentially very large set of inputs to the much simpler problem of identifying one out of a much smaller number of possible cycles.

Intelligence and Models of the Brain

Of considerable interest in the context of the possible exploitation of the inherent intelligence of cellular electronic networks is the fact that the human brain is itself a cellular structure, whose processing units are biological computing cells called neurons (a description of the properties of neurons is given in "Brains and Computers", ETI July 1978). Although the computational mechanisms of electronic cells and biological neurons are very different, there are nevertheless certain similarities in terms of the respective functions performed. For example, both types of cell operate on signals which are essentially binary in nature — in terms of voltage levels in the electronic case and the generation or non-generation of voltage pulses in the biological case — and both compute a function relating an output signal to the pattern of signals appearing on their input channels at any instant. Structurally at least, therefore, the type of electronic network described above is a closer model of the brainthan is a conventional computer system.

Furtheramore it is possible, in principle at least, to characterise brain activity in terms of a state dia-

gram. Although a complete state diagram of the brain if it could be plotted exactly would contain about 21010 states (since it is estimated that the brain contains about 10¹⁰ neurons), a model of a neural network, which could of course be physically realised using our familiar electronic network structure, can be a very versatile means of characterising and formalising the brain mechanisms which underlie human behaviour.

In such a model, the transitions from one state to the next correspond to "thought processes", while learning is embodied in the fact that the element functions can change in response to information received by the network. It is possible, using this approach, to describe many psychological and physiological functions in terms of state-to-state activity, and processes such as recognition of environmental events, recall of stored information, long-term and short-term memory processes, and a mechanism of speech production are but a selection of functions which may be described and characterised in this way. The benefits likely to be obtained in this area are twofold since, not only can such endeavours lead towards a clearer implicit understanding of brain function itself, but such a characterisation of intelligent behaviour can give insight into the design of intelligent machines for many different purposes and applications.

What of the Future?

An article of this nature cannot hope to indicate all the areas of research currently in progress, nor deal in excessive detail with those topics which are described. Neither is it possible to predict with any degree of confidence likely levels of achievement of future generations of intelligent systems. One thing which is certain, however, is that the search for machines with a capacity for intelligent behaviour will continue and increase. One of the most encouraging features of the approach described here is that it focusses as a unified entity the work of engineers, physicists, mathematicians and even psychologists. It may be that the current trend towards cheaper and more readily available computing facilities and electronic components will provide exactly the right stimulus for even more widespread and interdisciplinary cooperation, and allow significant progress in this area. Indeed, it is this exciting possibility which is perhaps the main justification for the work described here.

Further Reading

Further reading on these and related topics can readily be found by scanning the scientific literature in cybernetics, computer science and digital electronics. To mention just one specific reference cannot do justice to such a wide and challenging field, but "The Metaphorical Brain" by M. A. Arbib offers a very readable and stimulating introduction to the basic aims of cybernetics, emphasising particularly the value of brain research in tackling engineering problems in artificial intelligence.

Artificial Intelligence

Phil Cohen visited the author of the above article at the Kent University to find out what the results of the research has been so far.

When I read the above article my immediate impression was: Fine, but does it work? To find out, I paid a visit to the Kent University's electronics lab, to see what they were up to.

While the system described in the above article is still in a fairly early stage of development, a very similar system built on slightly less advanced prin-

ciples was very much in evidence.

The first thing I was shown was a computer simulation of a 'learning net' in action. The machine was pretending to be a network of cells connected as

shown in Fig.5.

To explain its action: It was trying to recognise typewritten characters. Looking at figure 4, the digitised picture information is fed into the array at the top left of the diagram (the pattern shown is a letter "T").

There are several blocks of RAM attached to this array, each organised as 16 x 1 bits. The address lines are fed from different parts of the array, the entire

array being covered all in all.

This entire network (i.e. the part of Fig.4 inside the dotted line) is dedicated to recognising one character.

What happens is this: During the 'teaching' mode, the letter to be recognised is fed in to the array. The 'teach enable' and the 'teach data' of the network are held high and a '1' will be fed into the location of each RAM which is indicated by the input pattern.

RAM which is indicated by the input pattern.

A variety of other patterns (i.e. other than "T") are then fed into the array and a "0" is fed into the

locations indicated by the new patterns.

During the run mode, an 'unknown' pattern is fed in and the network which has been 'taught' to recognise it will produce a lot of "1"s at the RAM outputs. Now looking at Fig.5, the system will see which

Now looking at Fig.5, the system will see which network is producing the most "1"s and will output the character that that network (the one with the

One of the data arrays provided by the GPO.

One of the research team gives the apparatus a phonetic example (i.e. sings to it!).

most "1"s) is trained for. In this way the system can cope with 'noisy' patterns — they will still (hopefully) produce more "1"s in their network than in any other.

At Kent University they are using the system on data supplied by the GPO. The data consists of arrays derived directly from typewritten material.

The result is a very 'noisy' pattern indeed — a human has to look twice at it! The system seems to

manage quite well, though.

An obvious application for this sort of system is in reading typed addresses for the GPO. Another, less obvious, use is in the teaching of handicapped children.

This sort of scene should be familiar to most ETI readers — an early prototype!

Teaching AidThe department has developed a stand-alone unit (see. photos) which will give an output which is proportional to hand-eye co-ordination.

What happens is this: Using a light pen, the teacher 'draws' a character (anything from a straight line to a pound sign) on an array of LEDs. These are multiplexed in such a way that the unit can follow the path of the pen.

The LEDs which have been pointed to remain on. In this way, the machine can be 'taught' to recognise the character.

Whenever the pupil 'writes' the same character, the unit will give an output which is related to how close

Artificial Intelligence

the input is to the character it has been 'taught' to recognise. When the correlation passes a pre-set threshold, a lamp lights as a reward.

The advantages of the unit over conventional methods are:

A) It means that one teacher can teach several pupils at a time.

B) The 'threshold' of the unit can be increased slowly as the pupil progresses.

C) Preliminary trials have shown that the unit is successful because the kids enjoy using it!

The Future

There is also research going on into using a similar system to recognise sounds rather than visual patterns. In this respect the system offers several advantages over existing methods — It uses easily

Artificial Intelligence

available RAM and a minimum of input 'preconditioning' circuitry (other similar systems use only a high-pass filter and a zero-crossing detector).

The tremendous advantage of this sort of character recognition over other systems is that it is cheap—the RAM is commercially available at a very low cost

per bit already.

There is absolutely no reason why, given the time, trouble, and ingenuity (and RAM), an amateur shouldn't be able to build a system similiar to the one in Fig.4 (or even Fig.5). We would, of course, be very interested to hear of anyone who has any success.

The machine in action — the light pen is being used to 'teach' it a character.

The underside of the LED array.

Letters

Dear Sir,

The article on shopping in the United States in "Microfile" Computing Today; November 1978, (Vol 7, No 11) overlooked the payment of Customs Duty and Value Added Tax. Most goods brought into this country from outside the EEC are liable to Customs Duty and Value Added Tax. This includes private importations of articles by post. Information concerning postal importation procedure is set out in more detail in Notice 143 obtainable from the Secretary HM Customs and Excise, Kent House, Upper Ground, London SE1 9PS, but a brief summary follows.

Any charges due are usually collected from the addressee by the Postman when he delivers the package. A label showing the amount payable (including the Post Office clearance fee) is fixed to the package. In certain cases the addressee is notified that a package has arrived at a Postal Depot, and is asked to complete a simple form. This form must be returned to the Postal Depot before the package can be delivered. No payment is to be sent, unless it is shown on the form that this should be done.

The charges which are assessed by the Customs Officer, who examines the package at a Postal Depot are usually a percentage of the current import value of the goods. This may not necessarily be the same as the value declared by the sender.

WHAT ARE THE RATES OF THESE CHARGES?

Items such as electronic micro-circuits, diodes, transistors, LED's and similar semi-conductor devices, are hable to duty at 17% and veiorem and to Value Added Tax at 8% or 12½%, of the duty inclusive value, if for use in domestic electrical appliances. Thus the total charge levied on goods valued at £20.00 could amount to more than £6.00 and on goods valued at £100.00 it could exceed £30.00. This increase of about a third in the price that the purchaser had expected to pay for the goods could come as a shock and I think you will agree that they should be made aware of this possibility.

C. M.. HUNTLY H.M. Customs and Excise Head of Information

UNREPEATABLE OFFER

EPROMS

UNTESTED ERASED EPROMS
1702A (2K BITS) £3.00
2758 (8K BITS) (limited qty)

£10.00

TRIACS

T2800D 8A 400V T2302B 2.5A 200V TIC225A 8A 100V £0.45

CMOS

CD4001BE (NOR GATE) £0.14 CD4049UBE (HEX INV BUFFER) £0.30

CD4050BE (HEX BUFFER)

£0.30

TRANSISTORS

BD175	£0.40
2N4921	£0.40
BC300	£0.25

DIODES

1N4001	£0.04
1N4002	£0.04
1N4004	£0.06

MICROCOMPUTER BARGAINS

We have a stock of untested microcomputer PCB's which are surplus to our requirements. Each PCB contains an Intel 4040 (CPU), 4201 (clock), 4289 (standard memory interface), 5MHZ crystal, zero crossover detector OCT, power on reset OCT, sockets for 5 x 1702A Eprom and on board power supply (50V 50 HZ input) regulated to provide 15v DC supply. These PCB's are sold as untested units with data on all chips and OCT diagram at the bargain price of £19.00.

Also available: --

1702A (programmed to your hexadecimal requirements)

4265 (general purpose input output device suitable for use with the above PCB) .. £5.00

Please add 28 pence P&P to your order and VAT at 8%

Cheque / Postal Order to: -

RACE ELECTRONICS LTD.

54/64, Morfa Road, Swansea Tel. (0729) 41241/462684 Mail Order supplies only

Please allow 21 days for delivery

YOU'VE ASKED FOR IT!

From next month Computing Today will go it alone.

Until now Computing Today has been presented as a free supplement to the ETI you know and love. Interest in the magazine has been so great, however, that were going to launch the magazine in its own right.

That means more news, more software, more hardware, ad more ideas, more of everything that we've been doing over the past months.

On sale the second Friday of every month.

Data Sheet

SF.F 96501 LOW SPEED MODEM (300 BAUD)

The SF.F 96501 circuit is a FSK (Frequency-Shift-Keying) modulator and demodulator compatible with CCITT standard low speed telephonic communication network (300 bauds).

PRINCIPAL FEATURES

- C-MOS technology
- Acoustic or electric coupling
- Cassette tape recorder coupling
- Originate and answer modes
- Half-duplex et full-duplex operation
- Line frequency detection
- Inputs and outputs compatible with C-MOS 4000 B serie
- Crystal oscillator

PINOUTS

- 1 CRT display input
- 2 Tape recorder enable input
- 3 Originate and answer mode
- 4 Half-full duplex operation input
- 5 Local operation input
- 6 Line modulator output
- 7 Line demodulator input
- 8 Vss
- 9 Line carrier detection input

Top view

- 10 Tape recorder demodulator input
- II N/C
- 12 Crystal Oscillator input
- 13 Crystal Oscillator output
- 14 Tape recorder modulator output
- 15 CRT display output
- $16 v_{dd}$.

Pin functions

Pins

Broches

CRT display input

This signal is a binary data input that is delivered in serial format from the CRT display to the modulators of the modem (line modulator or tape-recorder modulator). In this two cases this signal will be modulated using FSK techniques.

Cassette-tape recorder enable

2

When a logic "1" the cassette-tape recorder input is enabled into the modem.

Originate and answer modes

.

The mode input selects the pair of transmitting and receiving frequencies used during modulation and demodulation. When at logic "1", the modem operates in the answer mode. When at logic "0", the modem operates in the originate mode.

Local Operation

.

When at logic "1" both the line modulator output and the line demodulator input are inhibited. Then, the modem operates only with the CRT display and the cassette-tape recorder.

Line modulator output

6

The output line modulator is a sine wave produced by a digital-analogic synthesizer. It allows the realization of four following frequencies: 980, 1180, 1650, 1850 Hz.

Line demodulator input

7

The line demodulator input is the FSK signal; that is a square wave resulting from external filter and limiter.

Line carrier detection

(

A "1" state on this output indicates that the FSK signal from the telephone line is received and demodulated in the modem. When this output goes to a logic "0", the FSK signal is absent.

Data Sheet

Tape-recorder demodulator input
This input signal receives a square wave from the tape-recorder (1200 or 2400 hertz).

Crystal oscillator input, output 12-13 A standard 3.93216 MHz crystal is required to utilize the on chip oscillator. **Tape-recorder modulator output**This output delivers a square wave (1200 or 2400 hertz per second) to the tape-recorder.

CRT display output
This output sends out the binary data to the CRT display.

The DF F96501 is manufactured by Thomson-CSF Components, Ringway House, Bell Road, Daweshill, Basingstoke, RG 24 0QG and should be available soon.

Block diagram of the SF.F 96501

//ICRODIGITAL

OF MERSEYSIDE

The Microcomputer only shop providing a complete service from a single chip to a commercial data processing installation. Well worth a visit for a look around and a chat.

FREE with every Nascom purchased 10 C15 cassettes, 1 Coding Pad, Ribbon Cable for Keyboard, Keyboard Bleep Kit

Join the microcomputer revolution now with a Nascom 1. A complete computer on one board, connects to your domestic T.V. and cassette recorder. Unrivalled value for money: Z80, full professional quality QWERTY keyboard, powerful 1K Monitor, 2K RAM, good documentation and an active users club. Tried, tested and proven, in excess of 4,000 delivered. Kits and built up ex stock.

	3
Nascom I Kit	213,30
2.2 Amp power supply built	. 26.46
Buffer Board Kit	27.00
8K RAM Kit	. 91.00
16K RAM Kit	
32K RAM Kit	216.00
Tiny BASIC in EPROM	. 27.00

BOOKS	
Nascom Hardware Manual	1.50
Nascom Software Manual	1.50
Seminar Notes	
Z80 Programming Manual	
The Z80 Microcomputer Handboo	k

	1.33
Z80 Programming for Logic	
Design	5.95
ooig	0.00

SERVICE

Kits built, tested, burnt in and	
guaranteed	
Standard Repair Charge	27.00

BITS & PIECES

UHF Modulator with full	
instructions	
Keyboard Bleeper Kit	3.00
Keyboard ribbon cable, with	
plugs	4.00

availability of this superlative device.

Science of Cambridge APPLE II

This Kit is the least expensive complete home computer. Usually exstock, but ring to confirm.

. 0	
MK 14 Kit43	.15
Socket Set	.89
256 x 4 RAM (2 needed)3	
INS 8154 RAM I/O8	
Power Supply5	
Cassette Interface	
Revised Monitor in ROM8	.59

BOOKS

A guide to SC/MP Programming.	
A guide to KITBUG	1.00

Our "mainframe" microcomputer the CASU Super C has 22 S100 slots and runs a Z80 at 4 MHz. It is British and has excellent hardware and software support. Nice features: CP/M, real time clock, hardware floating point, high speed peripherals, etc.

A variety of commercial software packages are now available at reasonable prices.

Read the reviews and the other advertisements for this remarkable computer. Our price includes:

16K of RAM, 8K of Microsoft BASIC, Internal 240V U.K. Power Supply UHF Modulated Video Output £820.80

Newbear

We are stockists for Bearbags containing the 6800 based 77/68 system and for the new Panda integrated unit microcomputer with superb VDU and Basic in ROM.

Apple is a developed product with unmatched flexibility and versatility. Made to the highest professional standards, Apple brings commercial computer quality at the price of a good Hi-Fi system.

Simply the best

16K APPLE £1063.80

Memory expansion, Apple certified, including jumper blocks, instruction manual and test

16K		£	216	.00
51/4" 112K	minifl	орру	drive	with
controller	and	pow	erful	disk
operating		•	150	00
system		2	:405	J.UU

Manuals avaialable separately.

MAINS INTERFERENCE SUPPRESSOR

Computers are especially prone to interference from spurious signals in the mains supply. This unit cures most forms of this interference. Maximum current 3 Amps..... £12.18

CHROMA CHIME DOOR **CHIME KIT**

The computer everyone can and does use. Twenty three more tunes than the neighbours!..... £16.50

COMMODORE PET

Free PET BASIC tutorial with each PET bought from us.....£695.00

MONITFI

Digital desk clock and telephone charge calculator. U.K. model......£28.08

CHESS CHALLENGER

OTTEOO OTTALLET		
Level	1405	00
10	£185	.UU
Level		
3	2120	.00

MICRODIGITAL LTD.

25 BRUNSWICK STREET LIVERPOOL L2 0BJ

Tel: 051-236 0707

OPENING HOURS:

9-5.30 Monday to Saturday. Friendly, expert staff always on hand!

A selection from our range of semiconductor devices:

	£16.20
Z80 CPUSCIMP II CPU	£9.72
SCIMP II OF O	£9.12
augi Cho	£9.21
esun Cru	£10.14
6502 670	£10.00
6802 CPU	27.10
6850 AUIA	15.54
6402 UAD 1	£8.04
3881 PIU	. 8.04
2882 (10	£7.50
5204 UVE - 11011	£ ነሀ.ዕ\
2708 UVEPHOW	£8.04
R154 RAW IIO	23.1
2111 RAM 1103 DRAM	£1.1
1103 DRAM 4116 DRAM	£13.5
4116 DRAM	£12.6
4116 DRAM 96364 VDU	£4.
96364 VDU 6820 PIO	£4.
6820 PIO 6821 PIO	

Microdigital are worth a visit for just the books. The best selection of microcomputer literature in the country, our titles are added to almost daily. The following are a small sample to whet your appetite.

Phone in your **Access/Barclaycard** Number on 051-236-0707

or complete this order form

P(
Th	RODUCTORY	MI
	derstanding Micro. £7.9	l I w
5 M	derstanding Micro. £7.9 computers £6.3	Und
15	computers	N 4 1
M		
95	etting Acquainted	YO
E	etting Acquainted with Microcomputers£7.	Ge
75	with Microcomputers Introduction to Personal Computing. £6.	
., 0		
75	ne Home computer £2	-
, 0	ne Home computer Revolution	- 1
3 50	Revolution	
J. 50	Hardware Vol 2	۲
E 05	Hardware Home Computers Vol 2	
6 5N	Home Computers VOI 2 Software	1
5.50 E 05	Software Computers£	1
25.05	Understanding Computers Osborne Vol 0	4
14.05	Osborne Vol 1	6
11.95	Osborne Vol 0	0
	Ochorne voi E	32
£4.10	Getting involves	19
05	Getting Involved with your Own Computer How to Buy and use Minis	19
£7.90	HOW TO BUY ALLO	50
£5.9	How to Buy and use Minis and Micros.	69
	and Micros Computer Lib	.59
		.59
C7 5	0000	

8080/8085 Software Design. . £7.50 8080 Software Gourmet Guide and Cook Book. . . . £7.95 8080 Machine Language Programming £5.10 The 8080A Bugbook.....£7.95 8080 A/8085 Assembly Language Programming. £6.95 Logic Design......£5.95 CODING FORMS 8080 Programming for

HEAVYWEIGHTS Software Tools £7.20 Fundamental Algorithms. . . £8.50 Sorting and Searching....£17.85 Analysis and Design of Computer Dictionary and A Microprogrammed APL Implementation.....£14.75

OPULAR TITLES ne Cheap Video £5.15 Cookbook licroprocessors from Chips to Systems.....£7.95 Microprocessor Interfacing Techniques.....£7.95 Basic Computer Games....£5.50 Dr. Dobbs Volume One. £10.00

Our specially made, superior cassettes have the following features:

 Tape Made against DIN reference tape 45513/16C528V with anti-static carbon additive.

 Five screw case fixing and transport mechanism using precision stainless steel roller axles.

Two special, graphite impregnated slip shields guide tape edges to prevent pack scramble and dispel residual static.

10 Quality C15 cassettes with special labels.....£4.75

We have designed and printed a versatile universal microprocessor coding form.

Pads, approximately 100 sheets. 1 pad.....£2.38 Digital Circuits......£16.40 10 Pads......£20.00 Handbook...... £11.99 100 Pads..... £185.00

Prices all include V.A.T. and Carriage.

COMPLETE AND POST TO THE ADDRESS ABOVE

COMIL	LAND	F 0 3 1	10	1111	ADDI	-
			ΙE	NCL	OSE	

PLEASE SEND ME:	I ENCLOSE:
••••	CHEQUE/POSTAL ORDER NO
	BARCLAYCARD NO
	ACCESS CARD NO
	NAME
	ADDRESS

ETI BOOK SERVICE

-computing-

BASIC: A Self Teaching Guide (2nd Edition) by ALBRECHT, R. L.

£4.50

Teach yourself the programming language BASIC. You will learn how to use the computer as a tool in home or office and you will need no special maths or science background.

Illustrating BASIC by ALCOCK, D.

This hook presents a popular and widely available language called BASIC and explains how to write simple programs.

Gives a general overview of the technology design ideas and explains practical applications.

Applying Microprocessors by ALTMAN, L.

£12.00

Follow up volume which takes you into the second and third generation devices

Intro to Microprocessors by ASPINALL, D.

£6.00

Explains the characteristics of the component.

How to Buy and Use Minicomputers and Microcomputers £7,50 Discusses these smaller computers and shows how they can be used in a variety of practical and recreational tasks in the home or business.

How to Program Microcomputers by BARDEN, W.

£6.75

This book explains assembly-language programming of microcomputers hased on the Intel 8080, Motorola MC6800, and MOS Technology MCS6502 microprocessors.

Introduction to Microcomputers and Microprocessors

Provides the basic knowledge required to understand microprocessor systems. Presents a fundamental discussion of many topics in both hardware and software.

 $\begin{tabular}{ll} \bf Microprocessors \ in \ Instruments \ and \ Control \\ hy BIBBERO, R. J. \end{tabular}$

£7.50

Introduces the background elements, paying particular regard to the dynamics and computational instrumentation required to accomplish real-time data processing tasks.

Basic BASIC

£7.50

An introduction to computer programming in BASIC language.

Microprocessor Programming

for Computer Hobbyists by GRAHAM, N.

£7.00

£6,20

The Computer Book by HAVILAND, R. P.

Building super calculators and minicomputer hardware with calculator chips.

Microcomputers, Microcomproesors, Hardware

 $\begin{array}{c} \textbf{Software and Applications} \\ \textbf{by HILBURN, J. L.} \end{array}$

£14.25

Complete and practical introduction to the design, programming, operation, uses, and maintenance of modern microprocessors, their integrated circuits and other components.

Microprocessor Systems Design by KLINGMAN, E.

£14.35

Outstanding for its information on real microprocessors, this text is both an introduction and a detailed information source treating over a dozen processors, including new third generation devices. No prior knowledge of microprocessors or microelectronics is required of the reader.

BASIC Programming by KEMENY, J. G.

A basic text.

Microprocessor and Small Digital Computer

Systems for Engineers and Scientists hy KORN, G. A.

£19.00

This book covers the types, languages, design, software and applications of micro-

TV Typewriter Cookbook by LANCASTER, D.

An in-depth coverage of tv typewriters (tvt's)—the only truly low-cost microcomputer and small-system display interface. Covers tvt terminilogy, principles of operation, tv contigurations, memories, system design, cursor and update circuitry and techniques, hard copy, color graphics, and keyboards and encoders.

Microprocessors — Technology, Architecturc,

and Applications by McGLYNN, D. R.

£8.40

This introduction to the "computer-on-a-chip" provides a clear explanation of this important new device. It describes the computer elements and electronic semiconductor technologies that characterize microprocessors.

Programming Microprocessors
hy McMURRAN

A practical programming guide that includes architecture, arithmetic/logic operations, fixed and floating-point computations, data exchange with peripheral devices/compilers and other programming aids.

Microcomputer Based Design by PEATMAN, J. B.

€19.00

This book is intended for undergraduate courses on microprocessors.

Microprocessor and Microprocessor Systems by RAO, G. U.

£20.50

A completely up-to-date report on the state of the art of microprocessors and microcomputers, written by one of the leading experts. It thoroughly analyzes currently available equipment, including associated large scale integration hardware and firmware.

The 8080A Bugbook: Microcomputer Interfacing

and Programming by RONY, P. H.

The principles, concepts and applications of an 8-bit microcomputer based on the 8080 microprocessor IC chip. The emphasis is on the computer as a controller.

6800 Software Gourmet Guide and Cookbook by SCELBI

£7.80

8080 Softwarc Gourmet Guide and Cookbook

£7.80

Understanding Microcomputers

Gives the fundamental concepts of virtually all microcomputers

£7.60

by 5c ELBI

Microprocessors and Microcomputers by SOUCEK, B.

Here's a description of the application, programming, and interacing techniques common to all microprocessors. It concentrates on detailed descriptions of representative microprocessor families and includes explanations of digital codes, logical systems, and microcomputer organization.

Microcomputer Primer by WAITE, M.

Introduces the beginner to the basic principles of the microcomputers. Discusses the five main parts of a computer — central processing unit, memory, input/output interfaces, and programs. The important characteristics of several well-known microprocessors are given and a chapter is included on programming your own microcomputer

Microprocessor/Microprogramming Handbook

Authoritative practical guide to microprocessor construction, programming and

Your Own Computer

£1.80

HOW TO ORDER:

Make cheques etc payable to ETI Book Service. Payment in sterling only please. Orders should be sent to: ETI Book Service, PO Box 79, Maidenhead, Berks. All prices include P & P.

Bally Arcade: More Than Fun

The Arcade is part of a new wave of machines. But who's it for? Graham M. Wideman and Mark J. Czevwinski report.

IT HAS BEEN several months since we have looked at the "popular" computer scene and as expected the aim of some of the new products has moved still further toward the "consumer." In other words, companies are looking for bigger and bigger markets, to people who have (initially) less and less knowledge or experience of computers.

It was a couple of months after our February review that the Commodore PET was finally approved and offered for sale in Canada. Already there are a number of active and enthusiastic PET user clubs. The accessories and adjuncts also are now accessories are adjuncts also are now accessories.

coming available.

Meanwhile, at the Radio Shack camp, the TRS-80 (basic model reviewed in April) has also been available for some time, and is on display at numerous Radio Shack outlets. This machine can be had with or without the much improved BASIC language version known as "Level II". An extensive collection of accessories present and future strengthen Radio Shack's computer line.

Upon reviewing these two machines we were aware that they were a new step in microprocessor based computers, in that they required no hardware knowledge and allowed the owner to start with nothing more than the willingness to learn about BASIC. A big part of this was the fact that these machines have BASIC language built in (in ROM) so there's no time consuming loading of the BASIC interpreter off cassette, nor the agony and heartbreak of BASIC bomb-out due to a bug in your program. For anyone familiar with the earlier hobbyist (fanatic!) computers, this is real luxury!

The general public is at least becoming aware of these small computers, as the PET may be seen at several department stores, and the TRS-80 receives

national TV advertising publicity.

But will this attract the big market? How far can you go towards the consumer to get him to buy a computer? With these questions in mind we were very interested to see the Bally Arcade.

Fig 1. Calculator style keyboard is labelled with calculator functions. Arrow scrols display.

THE ARCADE ITSELF

The least you can buy is the Bally Arcade "box", which on the outside has a calculator style (and labelled) keyboard (Fig. 1), a slot for a Bally cassette (Fig. 3, more on this below), and on top a rack for storing such cassettes. On the back are a number of sockets for plug in accessories, included with the unit are two hand controls. From the back of the unit also extend the cables for power cord and output to your colour TV's antenna input.

So what can you do with this unit. It may sound initially like a disappointment at \$599, but this unit as it enables you to play 3 video games and to use the machine as a four function calculator with TV display. We have to say however that they are pretty amusing, interesting and skill testing games.

We spent hours with our favourite, "Gunfight," where two six-shooter equipped cowboys march onto the screen to the tune of "Home on the Range", and then each player with hand control walks his man around the screen shooting at each other. (Realistic gun sounds). Various obstacles appear in subsequent shootouts, cacti, trees and a wagon. The graphics and action are quite good, with varying gun angle, and bits of cactus and tree which can be shot off. More tunes are played if one cowboy hits the other, (who falls dead on the ground).

This and the other games, apart from being entertaining, demonstrate the machine's ability to produce four colour graphics, and play tunes, both of a nature very sophisticated in comparison to simple video games. One of the games in fact allows you to change (using the keyboard) each of the four colours to others.

The calculator feature was not very impressive, being a simple four function model (10 memories, floating point). It does allow you to see the preceding

steps (about 100) of your calculation like a printing calculator, which is good if you don't need the actual paper. One distressing point was that there is no minus sign to indicate a negative number, it simply turns from black to red, which is not so useful if you have a black and white TV. However, it does firmly tell the user that this is not just a video game.

THE "CASSETTE"

So fare we haven't stretched the capability of the micro-processor yet, so let's look at an as yet unused feature, the "cassette". It is not an audio tape cassette, but a similar looking package, which contains up to 8K of ROM (permanent memory), and has a row of

Fig 2. One of the two hand controls supplied with the Arcade. Sockets on the machine accommodate two more.

Bally Arcade:

contacts along the edge which connect to those in the cassette slot. (Fig 3). This is quite a clever concept in that the public is already familiar with audio cassettes of similar shape, and does not have to be introduced to a new plugging idea.

A wide range of games cassettes are or will be available at \$34.95, with such appetite whetting names as "Desert Fox", "Space Race", and "Red Baron" (represented on our cover), "Backgammon" and some "educational" games like "Spell'n'Score" and "Crosswords".

However, the most interesting cassette is the one that allows you to program the machine in BASIC language, price \$99.95.

BALLY BASIC

This is not a language for the serious programmer, since in the way of numbers it will handle integers only, up to about 33,000. However, it does include the familiar set of BASIC functions which enable the user to become acquainted with programming. The most important aspect here is motivation, and the user will find this, as Bally has made manipulation of the inputs, sound and graphics quite easy.

Hence the new programmer can quickly be designing his own games, "video art", accompanying tunes and some graphing etc. The BASIC instruction book is quite comprehensive and gentle in its explanations, and has numerous examples and entertaining programs.

taining programs.

The programmer has available 1800 "memory locations", 26 integer variables (A-Z) and one array called @. While there is no real character or string variable one can fudge it. An attempt to store a character (enclosed in quotes) in the @ array results

in its ASCII code value being stored. Hence @(1), "1" results in @(1) equalling 49. To recover the letter however you would have to write a program with lots of IF statements to decipher the section of the @ array which you know is supposed to be characters.

BASIC IN USE

The BASIC kit includes an "overlay" which fits over the keyboard to tell you its new functions. Just as a typewriter has two "cases", the keyboard now has five cases, with the bottom row used when selecting one of four "upper" cases. Referring to Fig. 5, the numbers (and similarly positioned functions) may be obtained by simply pressing that key. The functions such as FOR, TO, NEXT, GO TO etc are obtained by first pressing "WORDS" then the appropriate key. The letters and characters in the white boxes above each key are actually coloured, and are obtained by first pressing the same coloured button at the bottom next to the "WORDS" key.

Needless to say, this keyboard is cheaper than a full keyboard, and can be faster, in that only 2 keystrokes are required to enter something like "LINE" or "STEP" and so on, but it can get confusing. You can of course always see what you've entered since it's on the screen, (and when you push one of those other four buttons the screen changes to that colour!). If you make a mistake you can "backspace" over characters in the same line, but to go back and change a line already entered you'll have to retype the line.

There are two other buttons on the Bally, RESET and EJECT (cassette). You don't want to hit either of these after you've entered a program, otherwise agony! We dound the EJECT button much too easy to accidently brush, perhaps Bally could supply a piece of cardboard to stick over it!

Fig 3. Just stick it in and pop it down (left)."

Fig 5. BASIC overlay on keyboard shows functions and instructions available.

GRAPHICS

The very best part of this BASIC is the easy interfacing, best described by explaining some of the "machine variables". To input from a hand control, simply look at the values of JX, JY, TR or KN, which correspond to the joystick, trigger, knob positions. To pick the colours for the screen you set BC and FC from 1 to 256 to select the "background" and "foreground" colours. (Only two colours available when using BASIC). To draw on the screen you can write a dot, line or box using only one statement to specify its position, size, and colour. (Fig. 6)

While this is quite a respectable capability, it won't allow you to program games as complex graphically as the Bally has built in, due to speed and memory constraints.

SOUND

As each character is printed on the screen a note plays from the TV's speaker. The note varies with each character, may be raised or lowered by an octave using the multiply and divide signs, and made sharp or flat with the plus and minus signs. (Fig. 7) A simple PRINT statement with a series of numbers and

Fig 6. For graphics purposes the screen is divided into 88 x 160 squares.

Bally Arcade:

Fig 7 (above). The numbers corresponding to the musical scale.

Fig 9 (right). Cassette socket attached directly to the board.

signs plays an interesting tune. "Rests" are available, and the note speed can be varied using the machine variable NT. NT however also varies the print-out speed, so don't set it too slow while you're programming or you may never finish. Its initial value is quite satisfactory.

Now, to a musician this doesn't sound like a lot of capability (it's more than enough for punk rock). It's surprising how good it does sound, though, and the simplicity contributes to learning about sound and music. But please Bally, give us some nice satisfying gun and explosion sounds!

AUDIO CASSETTE

In order to store programs for long periods of time the user can purchase the BASIC audio interface to allow recording and retrieving with an ordinary cassette recorder.

HARDWARE

We took our review unit apart (carefully!) and here's what we found inside. Heart of the Arcade is the powerful Zilog Z80 microprocessor (actually Mostek's version: 3880). This is accompanied by 8K of ROM which stores the games, and 4K of RAM which mostly acts as the screen memory. Although the cassette pack is reportedly capable of containing 8K of additional ROM, ours appeared to have only 4K (Fig 10). When the BASIC cassette is in use, half of the 4K RAM is used for program storage, which means that only half as much screen memory is available explaining why only two colours are available to the programmer.

The various support chips are described in Fig. 8. Of special note is the "music processor" chip, which generates the musical tones of the chromatic scale from a single master oscillator.

As shown in Fig. 2 the hand controller gives 3 types of control: trigger, rotary, and "joystick". The trigger is simply a switch; the rotary control is a potentiometer; and the joystick uses four switch contacts, one each for 0, 90, 180, and 270 degrees, and pairs of

Fig 10. BASIC cassette exposed.

Bally Arcade:

Fig 11. Open hand control shows trigger switch, pot and four way joysswitch module.

those contacts used for the intermediate angles 45, 135, 225 and 315 degrees. We found that a little surgery with pliers was required to get.all the intermediate angles to work properly, but this was probably due to the hard use that the demo unit had received. This is not a high quality precision control by any means, but it certainly works, and hardware enthusiasts will easily be able to use their own switches and pots for other input applications. (Fig. 11).

WHAT'S COMING

What's available so far appears to be only the iceberg tip. The first upgrade will be a proper keyboard box, which will reportedly include an additional Z80, more RAM, and ROM containing a "serious" BASIC version, Interface for two independent screens and IEEE 488 bus is also being talked about. This is apparently to be introduced in January 79. Also coming are a printer, telephone interface, light pen and floppy disk. Do these sound like add-ons for a

It's pretty obvious that the Bally Arcade is in a new class of product, and will be the most "vertically" extensive product line we have seen so far. The machine has the capability to endear itself to all ages and familiarity-with-computer levels. Once the person is interested they will feel the desire to expand the system and not be afraid to dabble in programming, with the basic BASIC. After some confidence has been obtained with the concept of programming, the user might be encouraged to move up again to the keyboard expander box and advanced BASIC. This is a much more "expand-as-you-learn" approach than the kind of expandability of early home computers, where you had to be pretty knowledgeable to start, and expand as boards became available.

In fact, a learning experienced is that the Arcade is all about, not just in programming, but it is an

intriguing exercise in music composition (albeit quite simple), and in colour graphics it provides a no mess, no manual skill artistic tool.

WHERE

The Bally Arcade should start to appear in October 78. It is distributed by Paragon Enterprises, through Zenith Radio's dealer network and also through large department stores. Calculator shops may also be interested, Marketron is already planning to handle the product.

COMPETITION

If this market is going to be big, you can be sure that Bally aren't the only people who thought of getting into it. We have sketchy details of two other possibly similar products being announced in the US (where the Bally Arcade sells for \$300). Magnavox has its "Odyssey 2", which has a full touch keyboard and two joysticks, and a plug in cartridge system. It does not appear to have programming capabilities however. Meanwhile, there's a home computer from Interact, again with full keyboard, colour display output, but this time with an audio cassette unit built in; US \$499. Finally, Atari is rumoured to have something in the works. Even if it wasn't rumoured you can bet they have.

Approved Nascom UK Distributors

Nascom-1 available at £197.50 plus VAT from:

Barrow-in-Furness

Camera Centre

Tel: 0229-20473

Torquay

CC Electronics

Tel: 0803-22699

Egham & Manchester

Electrovalue

Tel: 07843-3603

Glenfield, Leicester

Eley Electronics

Tel: 0533-871522

London W2

Henrys Radio

Tel: 01-723 1008

Oldham, Lancs

Lock Distribution

Tel: 061-652 0431

Chesham, Bucks

Lynx Electronics

Tel: 02405-75151

Liverpool L2

Microdigital

Tel: 051-236 0707

New Barnet, Herts

Comp Components

Tel: 01-441 2922

Glasgow

Strathand

Tel: 041 552 6731

Bristol

Target Electronics

Tel: 0272 421196

Nascom Microcomputers

Softspot

Production of graphics via a system's BASIC interpreter results in problems due to the inherent slowness of such software. Machine code subroutines are a way to overcome this drawback. Here Mike Hughes has written such a program for the Triton.

Although it is quite easy to use the VDU function within TRITON'S BASIC to produce moving graphics on the display screen you are limited to the speed with which movements can be made. This is due to the inefficiency of an interpreter program. Much better use of TRITON'S memory mapped VDU can be made with programs written in machine code.

This one gives a picture of a simple railway engine followed by a couple of trucks which move across the screen from right to left. As they leave the screen on the left they re-enter again from the right but one line up the screen. The process continues until the train reaches the left-hand side of the fifth line from the top of the screen and then the program repeats itself.

Enter the program starting at address 1600H but when you run it you should start at 1602H. The reason for this is that locations 1600 and 1601 contain the necessary end of file address to allow you to run the program out to tape after you have keyed it in once.

1600 1601		DATA		AE 16	End of file address (used by tape 1/O)
1602 1603	START	CALL	CLRSCN	CD 34	Clear screen; reset cursor
1604		* * * * * * *	A PARTIES A	01	
1605 1606		LXI H	LNTBL	21 A8	Load start of line character position index table
1607		_		16	maex table
1608		MVIM	60H	36	Starting low order address in VDU
1609		_		60	for first character of first line
160A		INX H	1011	23	Increment table pointer
160B 160C		MVIM	13H	36 13	Starting high address in VDU for first line character
160D		INX H		23	Increment table pointer
160E		MVIM	AOH	36	Starting low address in VDU for
160F		_		A0	second line character
1610		INX H	1011	23	Increment table pointer
1611 1612		MV1M	13H	36 13	Starting high address in VDU for second line character
1613		INX H		23	Infrement table pointer
1614		MVIM	EOH	36	Starting low address for VDU for
1615		_		E0	third line character
1616		INX H	4077	23	Increment table pointer
1617		MVIM	13H	36 13	Starting high address in VDU for
1618 1619	MOV1	LXI D	LNEI	13	third line character Point DE to start of first line
16IA	1410 4 1	_	BITEI	5D	graphics data table
I6IB		_		16	8
161 C		LHLD	LNTBL	2A	Load HL with first character address
161D		_		A8 16	in first line of VDU (obtained
16IE 16IF		DCX H		2B	from table) Decrement VDU character pointer
1620		MOV A, H		7C	Check if high order address points
1621		CPI	10H	FE	to fourth line on screen
1622				10	
1623		JZ	START	CA	lf it does; start again
1624		_		02	

1625				16	
1625 1626		SHLD	LNTBL	$\frac{16}{22}$	Store fresh start of first line
1627		_		A8	in table
1628 1629		CALL	MVLNE	16 CD	Mayo graphics data to VDU
162 <i>5</i> 162 <i>A</i>		-	O	52	Move graphics data to VDU
162B				16	
162C 162D	MOV2	LXI D	LNE2	11 76	Point DE to start of second line
162E		_		16	graphics data table
162F		LHLD	LNTBL+2	2A	Load HL with first character address
1630 1631		_		AA 16	' in second line of VDU
1632		DCX H		2B	Decrement VDU character pointer
1633		SHLD	LNTBL+2	22	Store fresh start of second line
1634		_		AA 16	in table
1635 1636		CALL	MVLNE	CD	Move graphics data to VDU
1637		_		52	Stapmes and to 12 c
1638	MOVZ		LNIES	16	Doint DE to start of third line
1639 163A	MOV3	LXI D	LNE3	11 8F	Point DE to start of third line graphics data table
163B		_		16	
163C		LHLD	LNTBL+4	2A AC	Load HL with first character address
163D 163E		_		16	in third line of VDU
163F		DCX H		2B	Decrement VDU character pointer
1640		SHLD	LNTBL+4	22	Store fresh start of third line
1641 1642		_	4	AC 16	in table
1643		CALL	MVLNE	CD	Move graphics data to VDU
1644		_		52	
1645 1646	DLY	LXI B	2000H	16 01	Load BC with time delay byte 2000
1647				00	(these two bytes may be altered
1648		—		20	by the user)
1649 164 A		DCX B MOV A, C		0B 79	Decrement BC Move contents oc C to accumulator
164B	*	ORA B		B0	OR B with contents of accumulator
164C		JNZ	DLY+3	C2	If not zero; keep decrementing
164D 164E				49 16	
164F		JMP	MOV1	C3	Repeat complete move cycle
1650		_		19	
1651 1652	MVLNE	MVI B	19H	16 06	Set B to number of characters in a line which have
1653	, 21,12	_		19	to be moved
1654		LDAX D		l A	Get character from data table
1655 1656		MOV M, A INX D		77 13	Store it in VDU memory Increment table pointer
1657		INX H		23	Increment VDU memory pointer
1658		DCR B		05	Decrement character counter
1659 165A		RZ JMP	MVLME+2	C8 C3	Return if zero Otherwise keep transferring data
165B		_	TTT T ENTITE 1 E	54	omerwise keep transferring data
165C	LANGS		CDACE	16	
165D 165E	LNEI	DATA	SPACE SPACE	20 20	Data for first line
165F			GRAPHIC	7A	
1660			SPACE	20	
$\begin{array}{c} 1661 \\ 1662 \end{array}$			SPACE SPACE	20 20	1
1663			GRAPHIC	7A	

1664 1665 1666 1667 1668 1669 166A 166B 166C 166D 166E 166F 1670 1671 1672 1673 1674			GRAPHIC SPACE SPACE T R I T O N SPACE SPACE T R I T O N	19 20 54 52 49 54 4F 4E 20 54 52 49 54 4F 4E	y
1675 1676 1677 1678 1679 167A 167B 167C 167D 167E 1681 1682 1683 1684 1685 1686 1687 1688 1688 1688 168A 168B 168C 168D 168E	LNE2	DATA	SPACE GRAPHIC	20 15 7A 7A 7A 7A 7A 7A 7A 7A 7A 7A 7A 7A 7A	Data for second line
168F 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 169A 169B 169C 169D 169E 169F 16A0 16A1 16A2	LNE3	DATA	SPACE O GRAPHIC O GRAPHIC O GRAPHIC O SPACE SPACE SPACE SPACE O SPACE SPACE SPACE O	20 4F 73 4F 73 4F 73 4F 20 20 20 4F 20 20 4F 20 20 4F 20 20 4F 20 20 4F 20 20 4F 20 20 4F 20 4F 20 4F 20 20 4F 20 20 20 20 20 20 20 20 20 20 20 20 20	Data for third line

Softspot

			CDACE	20
16A3			SPACE	20
16A4			SPACE	20
16A5			0	4F
			SPACE	20
16A6				
16A7			SPACE	20
16A8	LNTRL.	TABLE		

Note that the table of data between 165D and 16A7 contains the hexadecimal codes for alpha and graphic characters which make up the picture. The picture is contained within three lines. There are twenty-five characters making up each line of the picture and the last one in each case is a SPACE (Hex code 20). Provided you work within this 25 character/3 line format you can substitute codes for your own graphics but you MUST finish each group of 25 with a space code otherwise you will leave a trail behind the moving picture!

KEEPING TRACK OF VDU MEMORY MAPPING

The TRITON has a special 1024 byte memory which is used by the Thompson CFS Chip for the screen display. When using TINY BASIC, data bytes can be written into this memory using the VDU command.

Unfortunately, the memory is a write only memory and once written to, it is not possible to access the

information again.

When programming, the programmer sometimes requires to keep track of which bytes of the VDU memory have been used. To do this using the array @ would require 1024 elements (each of 2 bytes). Even if the characters were packed two per element, 1024 bytes of array would be used.

A much better way to keep track of which bytes of VDU memory have been used is to use a bit map. To do this in TINY BASIC we make use of the array @ and use 15 bits of each element. Therefore only 69 elements of the array are used to map all 1024 bytes.

At the start of the programme it is necessary to zero the bit map

10 FOR I = O TO 68

 $20 \, (\hat{a}) \, (I) = 0$

30 NEXT I

A subroutine is then used to test if the required byte has been used

100 X = N

110 GOSUB 500

120 IF Y = 1 PRINT 'BYTE USED'

130 IF Y = O VDU N, 122

Start of table containing VDU's initial character positions

As variants you can alter the speed of movement by changing the timing byte in locations 1647 and 1648 (make these 00 to 10 respectively to double the speed). You can also change the jump instruction after location 1623 so that the screen is not cleared after a complete cycle. To do this enter 05 and 16 in locations 1624 and 1625 respectively.

Using the logic of this demonstration as an example you should be able to devise moving pictures of your own.

Written for the Nascom

Among the programs written to run on the Nascom-1 and available now are:

ICL Dataskil Letter Editor

This software provides a comprehensive set of data operations. Text can be input, displayed, edited, stored on tape, retrieved and further amended. Control functions include cursor, character, word, line, scrolling, tabbing, tape store and retrieve, text printing. All in less than 2K byte plus workspace for up to almost two full screens. Price on cassette £70 plus VAT.

TINY BASIC

A 2K BASIC Interpreter in 2x2708 EPROM. Normal commands: 1–32767 MSL/single array/arithmetic constant/<>≦≥ = ≠/strings valid in print/listing description and user manual/additional three level keyboard control/compatible with NASBUG and B.Bug Price £25 Plus VAT.

An extended version of the above is our TINY BASIC PLUS which has all the TINY BASIC functions <u>plus</u> increased operator manipulation in all sub-routines. Price in 3x2708 EPROM £32 plus VAT.

ZEAP

An editor assembler which runs under NASBUG and provides the powerful advantages of writing programs in Z80 assembly language instead of directly in machine code. Uses less than 3K bytes of memory and is supplied on cassette priced £30 plus VAT.

121 High Street, Berkhampsted, Herts.

Tel: (04427) 74343

Nascom Microcomputers

Softspot

N is the number of byte of screen memory to be tested. GOSUB 500 executes the subroutine which tests if the byte has been used

Y is set to 1 if the byte has already been used and 0 if not. The bytes position in the bit map is set on during the routine for future subroutine calls.

The bit testing and setting routine is as follows:

A = X/15510 B = X-A*15+1520 530 C = (a)(A)540 d = 16384550 FOR E = 1 TO 15560 IF C < D GOTO 590 570 IF E = B GOTO 640580 C = C - DIF E = B GOTO 620590 600 D = D/2**NEXT E** 610 620 $\widehat{\omega}(A) = \widehat{\omega}(A) + D$ ŘÈTÚRŇ 630 640 **RETURN** 650

The routine first takes the memory index X and

splits it tinto the element index and bit number. The contents of the appropriate element is then extracted and the process of testing if the appropriate bit is on is started. The routine is complicated by the fact that other higher bits may be on in the element and it is not possible to test just a specific bit.

Therefore the routine starts with the highest possible bit position and tests if this is on. If not on, the routine checks if this was the required bit. If it was, it is turned on in the array and the routine returns to the caller indicating the bit was off when tested.

If the tested bit is off but it is not the required bit, the routine selects the next highest bit and starts the testing again.

If the tested bit is on, the routine checks if this was the required bit. If it was, the routine returns to the caller indicating the bit was already on when tested.

If the tested bit is on but it is not the required bit, the bit is turned off in the variable containing the elements contents and the routine continues to test the next highest bit.

This is all very complicated but a quick test during some values will show how it works.

Some people will notice that statement 590 is sometimes executed unnecessarily. It was felt that a GOTO command after statement 580 would not make the routine much faster and only uses up more memory.

The COMP NASCOM \$100 expansion kit for STATIC RAM and EPROM boards Ex stock-Available now £47.50

Why not do it the Cary way (and now!)
Comp brings to you an S100 Motherboard (with full buffering) to connect to your NASCOM 1.

This easy to construct kit contains all that you need to add on (trouble free) S100 STATIC RAM, 16k or 8k and EPROM boards.

Please make cheques and postal orders payable to COMP, or phone your order quoting BARCLAYCARD or ACCESS number.

14 Station Road, New Barnet, Herts, EN5 1QW.
Telephone: 01-441 2922 (Sales) 01-449 6596
CLOSE TO NEW BARNET BR STATION — MOORGATE LINE
OPEN — 10am to 7pm — Monday to Saturday

A more interesting way to learn

LOW COST R.F. MODULATOR Only £ 2.—

includes p.&p.!

Converts ordinary T.V. into Video-Monitor. Use it for computing or video games. This board has a special Video IC and is easy to build (ten minutes). No special adjustenents, works always. Tuning by turning potentio-meter.

Low Power 5 volt. Kit includes all parts, epoxy p.c. board and assembly instructions written in English.

How to order: Just put two benknotes of £ 1.— (totel £ 2.—) in an envelop, put your name end eddress on the bock (in capitals please) and send it to us. Dr. send us your undersigned Bercleys or Eurochaque for a value of £ 2.—.

Address to: Musicprint Computer Products B.Y., P.D. Box 410, 4200 AK GDRINCHEM, THE NETHERLANDS Your video R.F. Modulator will be shipped the same doy we receive your order

deolor inquirios invited

LOW COST CASSETTE INTERFACE

Convert your cassette-recorder into a digitalrecorder Easy to build, no adjustments! Uses Kansas City Standard. High speed, tilt 1200 Baud. Full Duplox, which means that you can (it neccessary) use thin interface with 2 cassetterecorders at one time. Audio in and outputs connects directly to cassette recorder. Oata in en outputs are T.T.L. compatible. Low Powor, only 5 volt needed. Kit includes all parts, hoavy epoxy p.c. board with edge connoctor and clearly written manual in English. Board also available assembled and tested for £ 11,75 incl. p.&p.

p.&p.

How to ordor: Send us your Borcloys or Eurnchoque in an envolop, put your name in capitals on the bock or send the total amount of your order in banknotes in an envolop to us, you receive the difference (25 p.) in the pockage bock. Kill £ 8,75 includes p.&p. Assembled and tested (gueronteed for 90 days) £ 11,75 incl. p.&p. Send your order to: Musicprint Computer Products b.v., P.D. Box 410, 4200 AK GDRINCHEM, THE NETHERLANDS. Phone 010 - 31 18 30 - 24693, Your cassette interface will be shipped the some doy we receive your order.

doalor inquirios invited

One year, three seminars and 12,000 kits later, Nascom presents

APPLICATIONS

Two one day seminars to be held in London in the Spring of 1979.

Day one will be on small business applications. Day two will be specifically aimed at the personal user.

Write for further details now.

121 High Street, Berkhampsted, Herts.

Tel: (04427) 74343

Britain is a nation of PET lovers

- * CAPABLE just like a traditional computer.
- * UNDERSTANDABLE fast, comprehensive and powerful BASIC is one of the easiest computer languages to learn, understand and use. Machine language accessibility for the professionals.
- * PERSONAL easily portable and operated just "plug in" and go. Unique graphics make fascinating displays.
- * EXPANDABLE built in IEEE-488 output, 8K RAM expandable to 32K, parallel user port 2nd. Cassette interface.
- * SERVICEABLE easily serviced only 3p.c. boards all readilly accessible.

Features of PETS extended BASIC include

Integer, floating point and string variables; A full set of scientific functions, Logical operators, Multi-statement lines. String functions, Left \$, Right \$, Mid \$, Chr \$, Val, Str \$, Peek, Poke, Usr, Sys, to interface to memory and machine language subtrontines. Time of day variable.

Future Commodore developments * FLOPPY DISC * PRINTER * MEMORY EXPANSION * MODEM

Extensive software readily available.

Contact your nearest PET dealer, call today for a demonstration

AUTHORISED PET COMMODORE DEALERS

Bristol

Sumlock Tabdown Ltd 0272-26685

Derby

Davidson-Richards (Int) Ltd 0332-366803

Durham

Dyson Instruments 0385-66937

Grimsby

Allen Computers 0472-40568

Guildford

P.P.M. 0483-37337

Hemel Hempstead

Data Efficiency Ltd 0442-57137

Kettering

H.B. Computers Ltd 0536-83922

Liverpool

Dams Office Equipment Ltd 051-227-3301

London W.C.2

TLC World Trading Ltd 01-839-3893

Manchester

Cytek (UK) Ltd 061 832-7604

Sumlock Electronic

Services 061-228-3507

Newport

G.R. Electronics Ltd 0633-67426

Northern Ireland

Medical & Scientific 08462~77533

Nottingham

Betos (Systems) Ltd 0602-48108

Reading

C.S.E. (Computers) 0734-61492

Southampton

Symtec Systems Ltd 0703-37731

Thame, Oxon

Memec Systems Ltd 084-421-2149

Woking

Petalect Ltd 048-62-69032

In case of difficulty call COMMODORE SYSTEMS DIVISION 360 Euston Road, London. Tel. 01-388-5702

MICRO-COMPUTER NASCOM I

for the HOBBYIST

As reviewed in E.T.I. Nov. '78: "Overall the Nascom is an excellent unit"

THE COMPLETE MICRO-COMPUTER

NOW FREE "B" BUG

WITH EVERY NASCOM **FEATURES**

- FEATURES

 Supplied in kit form for self-assembly
 Full documentation supplied
 Fully screened double-aded plated through hole printed circuit board
 Full 48 key keybnant nichidad
 2K x 8 Ram
 1K x 8 monitor program in Eprom
 Pownrful Mostok ZHO CPU
 16 x 48 character display interface to std un-modified T.V.
 T.V. display memory mapped for high speed access
 On board expansion to 2K x 8 Eprom
 On board expansion to 2K x 8 Eprom
 On board expansion to endditional 16 I/O linos
 Memory may be expanded to full 60K (plus 4K existing on board)

SOFTWARE FEATURES

- TK x 8 monitor program providing 8 operating commends, supporting Mem examine/modify, tabulate, copy. Reflective monitor infelressing for flexible monitor expansion through user
- purposes Monitor authors include \rightarrow dolay ASCII coding, binary to hex conversion, clr screen, arroll up, atting print, cursor shift and many others

EXPANSION

- * Expansion haller b	oard		£25.00
MEMORY KITS (mg	lusive all hardware)		
8K			£85.00
16K			£140.00
32K			£200.00
	oders and all hardware exce	pt ICS	£35.00

NEW 'B-IIIUG' extended monitor in 2K of EPROM Fully software compatible with NASBUG, supporting additional features — Gull keyboard shift for all 128 charactors, full cursor movement routines, Read and Write commands (for inserting ASCII cute directly into programme). Arith command (for calculating relative purps), Generate command (for automatic programme start). Intelligent cepy (for non-instructive re-location of OATA), Random, block handling ASCII to BCD and BCO to ASCII routines and many more.

2 EPROMS—I full discumentation—£21.66.

* S.a.a. for full axpansion details.

THER HARDIMARE

	UIDER DANDI	MANL	
*	3A power supply for up to 4K expansion		 £19.90
	8A power supply for larger than 4K expansion		£60.00
	Expansion conf forme		 £29.50
*	Programming minimal		 £4.00
	Hardware & waltware manuals (supplied in kit)		£3.00

Export Trade, Government and Educational Enquiries Invited

Aild VAT at 8% on all items except manuals **Demonstrations Continuous at our Store**

Construction Manuals Separately £3.00

Complete Kits NOW IN STOCK £197.50 POSTPAID

Sole Appointed London

HENRY'S RADIO 404 Edgware Rd. London W2 England PHONE (01)723 1008

available at £25.00 plus VAT. Stockists

Computer standard

3A PSU

Computers require a reliable and even power supply. The redesigned and uprated Nascom 3A PSU meets these requirements. Its output voltages are +5V 3A; +12V 1A; -12V 1A; -5V 1A. And are sufficient to drive the Nascom-1, buffer board and up to 32K of RAM. It has LED displays on all the outputs and will fit into the Nascom frame to be announced soon. Price of PSU kit-£24.50 plus VAT.

A buffer board kit with edge connectors suitable for the NASBUS and with edge connectors and interconnectors to attach directly to the Nascom-1 is

Nascom Microcomputers

121 High Street, Berkhampsted, Herts.

Tel: (04427) 74343

Room ET 313 Kingston Road, Ilford Essex IG1 1PJ, England

From the respresentatives in Europe . . . for America's leading Micro-computer magazines and books, for the hobbyist, educationist and professional alike, we bring you a little light browsing!

Reading maketh a full man Francis Bacon (1561-1626)

Introduction to Microcomputers: Volume 0: The Boginners Book	€5.95	First Book of Kim Microprocessors from Chips to Systems	£6.50 £7.95
Volume 1: Basic Concepts	€5.95	Microprocessor Interfacing Techniques	£7.95
Volumo 2. Soma Real Microprocessors (without binder)	£18.95	Z80 Microcomputer Handbook	£7.50
Volume 2: Some Real Microprocessors (with binder)	€24.70	T.V. Typewriter Cookbook	£7.50
Volume 3: Some Real Support Oevices (without binder)	£11.95	T.T.L. Cookbook	£7.50
Volume 3: Some Real Support Oevices (with binder)	£17.70	CMOS Cookbook	£7.95
6 Updating supplements for Vol. 2 (for 1 year)	£17.70	IC OP Amp Cookbook	£9.50
6 Updating supplements for Vol. 2 (for 1 year)	£18.95	RTL Cookbook	€4.25
b opdating supplements for vol. 3 (for 1 year)			
6 Updating supplements for Vol. 2 6 Updating supplements for Vol. 3 6 Honor (specify for Vol. 2 or Vol. 3)	7 £30.00		
Binder (energy for Vol. 2 or Vol. 2)	£5.75	Some Common BASIC Programs	£5.95
1 Updating supplement for Vol. 2	£5.75 £4.00	Computer Programs that Work (in BASIC)	£2.55
1 Updating supplement for Vol. 2	£4.00		
Topdating supplement for vol.,5	14.00		
		Introduction to Personal and Business Computing	£4.95
6800 Programming for Logic Design	£5.95	Getting Involved with Your Own Computer	£4.75
8080 Programming for Logic Design	£5.95	Your Home Computer	£7.95
Z80 Programming for Logic Design	£5.95	How to Profit from your Personal Computer	£5.50
		Reference Book of Personal & Home Computing	£4.95
Basis Courier C		Hobby Computers aro Here	£3.95
Basic Computer Games	£5.50	Now Hobby Computers	£3.95
What To Do After You Hit Return	€7.00	Understanding Microcomputers end small Computer Systems	£7.95
8080 Galaxy Game	£7.95		
The Colossal Computer Cartoon Book	£3.95	Instant BASIC	
Computer Rage (A Board Game)	€6.95		£7.50
Artist and Computer	€3.95	My Computer Likes Me When I speak in BASIC Basic BASIC	£2.75
Games with a Pocket Calculator	£1.75	Advanced BASIC	£6.50
Games, Tricks and Puzzles for a Hand Calculator	£2.49		£6.00
		Introduction to PASCAL	T.B.A.
Z60 Instruction Handbook	£4.00	A	24
8080 Programmers Pocket Guide	£2.25	Accounts Payable & Account Receivable	£10.95
8080 Hex Code Card	£2.25	Payroll with Cost Accounting	£10.95
8080 Octal Code Card	£2.25	General Ledger	£10.95
•	22.25		
Dr. Dodd Journal Vot. 1	£10.00	BASIC Software Library:	
Best of Byte	£10.00	Vol. 1. Business and Games Programs	£17.50
Scelbi Byte Primer	£0.95	Vol. 2: Maths, Engineering, Statistical Programs	£17.50
Best of Creetive Computing: Vol. 1	£8.95	Vol. 3: Advanced Business Programs	£26.95
Best of Creative Computing: Vol. 1	£8.95	Vol. 4: General Purpose Programs	£7.95
Best of Micro		Vol. 5: Experimentors Programs	£7.95
Dest of Micro	£6.95	Vol. 6: Miniature Business System	£32.50
		Vol. 7: Chess/Medbil/Wdpros Programs	£26.95
8080A/8085 Assembly Language Programming	€6.95	0	
6800 Assembler Language Programming	£6.95	8080 Standard Monitor	£9.95
8080 Software Gourmet Guide and Cookbook	£7.95	8080 Standard Editor	€9.95
6800 Software Gourmet Guide and Cookbook	£7.95	8080 Standard Assembler	£15.95
Microcomputer Programming: 6502/6800	T.B.A.	Bar Code Loader for 6800, 8080, Z80 & 6502 Micros	£1.75
,		Tiny Assembler for 6800 Systems	£5.75
MAGAZINE SUBSCRIPTIONS		MAGAZINE BACK ISSUES	
	U.K. Overseas	Personal Computing	£1.75
Subscriptions start within 3 weeks	price price	Interface Age	£2.25
Personal Computing (12 per year)	£18.00 £17.00	Dr Dobbs Journal	£1.75
Interface Age (12 per year)	£20.00 £20.50	ROM	£1.75
Dr Dobbs Journal (10 per year)	£13.00 £13.50	Computer Music Journal	£2.50
Computer Music Journal (4 per year)	£6.50 £9.00	Peoples Computers	£1.75
Peoples Computers (6 per year)	£8.00 £8.50	BYTE	£2.25
8YTE (12 per yoar)	£21.00 £21.00	Creative Computing	£1.75
Creative Computing (12 per year)	£18.00 £16.50	Celculators & Computers	£1.75
Calculators and Computers (7 per year)	£10.00 £10.50	Kilobaud	£2.25
Kilobaud (12 per year)	£20.00 £21.00	73	£2.25
73 (12 per year)	£20.00 £21.00	Micro-6502 Journel	£1.50

HOW TO ORDER

Tick required items or write letter

Please note our prices include postage and packing, but not insurance, if wanted edd 12p for every £10 of **books** ordered

Make cheques, PO's etc. payable to: — L.P. Enterprises.

CREDIT CARDS accepted

BARCLAYCARD VISA/ACCESS

DINERS CLUB/AMERICAN EXPRESS

Phone: 01-553 1001 for Credit Card

orders (24-hr service)

Send to eddress above Indicete Peyment Method:	All Orders must be Prepaid Total Enclosed £
My cheque, P.O., I M.O is enclosed in Sterling on U.K. Bank	
Charge to 8arclaycard/Visa/Accoss/Diners/American Expross	
Credit Card No	Expiry Date
Name	
Address	
	POSTCOOE
Signature	

All publications are published in U.S.A. and shipped air-freight by **L.P. Enterprises.** In unusual cases, processing may exceed 30 days. Trade enquires welcome.

Airamco Ltd. MICRO COMPUTER PRODUCTS

Distributors for JADE COMPUTER PRODUCTS
All products brand new with full industrial specification

STOP PRESS!

SD SALES Z-80 STARTER KIT

Single card development system — like a KIM or D2 but uses ZB0, on board PROM PROG up to 2K RAM. 2 x 5100 sockets provided for on board — plus many new features

KIT PRICE	 	 	£159.00
ASSEMBLED + GUARANTEE	 	 	. €249.95

S100 COMPUTER CARDS KIT	ASSEMBLED	BARE BOARD
Mother Board £71.00	€82.50	€26.25
Desk Top Rack, 12 slot mother		
board + 15A @8V, 2A @ + 16V		
Jade 8080A CPU BOARD £75 00	0100 50	000 50
Jade 8K static RAM BOARD	€122.50	£22.50.
450nS £94,50	€112.50	€19.95
Jade 8K static HAM BOARD		615.55
350nS E104.95 Jade 8K static RAM BOARD	£119.96	€19.95
250nS £127.50 S.D. Sales ''EXPANDORAM''	€142.50	€19.95
Dynamic Momory 375nS necess		
time 8K £113.25		
Memory 375nS nacess time 16K		
£189.00	£229.00	£189.00
Memory 375nS nacess time 32K £297.00	£337.00	£297.00
Memory 37bnS access time 64K	2337.00	6297.00
£513.00	€553.00	€513.00
VERSALLOPPY DISK CONTROL-		
LER (up to 4 drives 51/4 or 8)		
	£165.00	
SHUGARI (I Drivin	£385.00	
PERTEC 51/4 Drivis ——	€225.00	
Components	AY-5-2736	ε9.50

2708 1024xH I	PROM €6.99
2516 2048 x 8	I PHOM
	. €29.90

. £3,50 II for £26.00

Nota Naw Dynama:		16K
4118 16loc	DIIA	0.50

'AY 5101'LUART	€4.50
AY51014 UART(5V)	€6.50
AY53600 I NCODER	€9.99
80804 (11)	€8.99
2114 (450mm)	F6 75

AY-5-2736 £9.50
21L02-1 450nS £1.20
8 for €7.92
21L02 250nS £1,40
8 for £9.60
2112-1 256x4 (450) . £2.25
4044 4Kx1 (450) £7.45
4045 1Kx4 (450) £8.25
New Device MK4118 N4 (24
pin) 1k x 8 bit static RAM 250.
NS. Similar pin out to 270B
EPROM. Price £16.50. Each
data available.
data available. 8212 £2.49
8212 £2.49 8216 £2.75
8212 £2.49 8216 £2.75
8212 £2.49 8216 £2.75
8212 £2.49 8216 £2.75 8224-4 £7.46
8212 £2.49 8216 £2.75 8224-4 £7.46 8226 £2.95
8212 £2.49 8216 £2.75 8224-4 £7.46 8226 £2.95 3881 £9.50 3882 £9.50
8212 £2.49 8216 £2.75 8224-4 £7.46 8226 £2.95 3881 £9.50 3882 £9.50
8212 £2.49 8216 £2.75 8224-4 £7.46 8226 £2.95 3B81 £9.50 3882 £9.50 \$100 Skts £3.30

.....£1,25

Secondhand ASR 33 Teletype with paper tape£399.00 Shugan Floppy Disc Drive Controllers, 8-inch and 5-inch

81LS97

All Prinos EXCLUDE VAT @ 8%

Trade descounts on Quantity Please add 1.1.00 P&P for \$100 items then add VAT @ 8%

24 In Administration order service with ACCLSS or BARCLAY-CARD

MAIL ORDER ONLY

40p P&P, then add VAT @ 8%. AIRAMCO LTD.
30 WITCHES LINN
ARDROSSAN
AYRSHIRE
KA22 8BR
TEL. 0294 65530
TELEX 779808 RAMCO
Semiconductor pricos are always changing and the trend is generally downwards. So ring for latest up-to-date details.

For components pleaso add

Hard Copy

This printer puts word processing within the scope of your pocket

TOP QUALITY TYPESCRIPT. SOLENOID DRIVEN FOR TTL CONTROL. ROM DECODED TO ACCEPT ASCII PARALLEL DATA INPUT. 8 CPS. 11" CARRIAGE (125 CHARS)

Fully built with psu and case . . . £182.86

Also supplied as print mechanism only.
Includes motor, solenoids and driver circuits.
Add your own logic and case . . . £144.65

Add £3.50 p&p, then add VAT.

Other printers available; tally-roll dot matrix printer and low cost teleprinter. Send for details.

KIMBERLEY BUSINESS RECORDS 2, Hartington Road, Gosport, Hants.

GOSPORT 86642

The great RAM sale

The Nascom system offers major expansion at sale prices. To give you as much choice as possible we offer RAM boards in three configurations to accommodate up to 16 memory ICs of either MK4027 or MK4116, all socketed.

The memory board kit options are:

8K £85.00 16K £140.00 32K £200.00

Boards will also accommodate up to four EPROMS of type 2708 at £10.50 plus VAT each. And if you wish to upgrade 16K to 32K it will only cost you an additional £70.

Memory boards plug straight into a NASBUS and an edge connector is included for this. All boards must be used in conjunction with the buffer board which, like the memory boards, is available in kit form ex-stock from approved Nascom distributors.

Nascom Microcomputers

121 High Street, Berkhampsted, Herts.

Tel: (04427) 74343.

COMPUTING TODAY — FEBRUARY 1979

W-JE

2708 EPROM PROGRAMMER

Program your own 2708s in approx. 5 mins. 9%" x 7" STAND-ALONE UNIT **COMPLETE WITH**

★ 1Kx8NMOSSTATIC RAM

* HEXADECIMAL KEYPAD FOR **DATA ENTRY**

★ POWER SUPPLY CONNECTOR -

requires 30V unreg. 50mA 12V reg. 75mA 5V reg. 0.5A -5V reg. 50mA

★ SLIDE SWITCH, SELECT 2708 or 2704

★ RESET KEY

★ ZERO INSERTION FORCE SOCKET TO HOLD EPROM

7 CONTROL KEYS-Program, Verify, Copy, Clear, Write Buffer, Read Prom, Read Buffer

COMPLETE UNIT **ASSEMBLED & TESTED** AS ILLUSTRATED £130 UNIT . . . £25

OPTIONAL. **POWER SUPPLY**

Prices include postage, packing & VAT

WARD-JANES ELECTRONICS LTD. THE GREEN, WELLINGBOROUGH RD. **RUSHDEN, NORTHANTS**

Telephone: Rushden (09334) 59263

THE TOTAL SOLUTION FROM ALMARC

Now Almarc & Vector Graphic offer the complete solution to your computing needs for £2300.00°. The Vector MZ needs only the addition of a V.D.U. and it's ready to go. Completely assembled and fully tested, the Vector MZ offers the following features as standard:-

- S-100 bus
- 4 MHz Z80A processor
- 158 instructions
- Two quad density Micropolis floppies over 630k bytes on line
- Serial port
- Two parallel ports
- 32K static ram
- 12K prom/ram board with extended monitor
- Extended disc Basic

Simply connect your peripherals (Elbit V.D.Us & Centronics printers are available from Almarc) and you're up and running and, because the MZ uses the S-100 bus, you can plug in a massive range of add-on units.

STOP PRESS: CPM now aveilable for NZ

Ring or write for a demonstration to:-

ALMARC DATA SYSTEMS LTD.

29 Chesterfield Drive Burton Joyce, Nottingham Tel: 0602 248565

*Discount terms available

TARGET ELECTRONICS FORMERLY "THE RADIO SHOP"

T29

16 Cherry Lane Bristol BS1 3NG

(6)

Size 60 mm x 45mm x 40mm

043 0-30μA 045 0-50μA

0410

2213

5012

0-1Amp 0-50v AC 0-300c AC "S" Meter Vu Meter 0-50µa 0-100µA 0-500µA 0-1mA T25 0-5mA T36 T26 T27 T28 0-10mA 0-50mA 0-100mA T40 T41 T42 T43 50-0-50µ A 100-0-100µ A 500-0-500µ A

0-50mA 0-30v DC Price €5.10 P&P 25o Size 110mm x 82mm x 43mm

10 0-100μ flA Price £5.90 10 or more 10% Discount. P&P 50p

TRANSISTOR SPEAKERS

10 or more 10% Oiscount. P&P 25p

0420 0-200μA 0450 0-500μA

64ohms

8ohms

8ohms 80hms 80hms 80hms

PANEL METER

with ILLUMINATION WIRING Oials are clearly figured on bright white for easy reading. 2.5% F.S.D. accuracy. Zero adjustment et front. Cushioned pointer stops. Complete with mounting nuts and

Prewired and heve lamp terminals installed

Snap off front cover and insert Lamp Kit

(opp. extra). 65p

TRANSFIRMEDS

PRIMA	NSFUKM RIES 240V	FK2	
TR1	6-0-6	100MA	80p
TR2	9-0-9	75MA	83p
TR3	12-0-12	50MA	90p
TR4	12-0-12	100MA	£1.10
TR1A	6-0-6	100MA	92p
TR2A	9-0-9	Int screen 75MA	£1.00
TR3A	12-0-12	Int screen 50MA	£1.10

Int screen

OESOLOERING TOOLS

2½ 2½ 2½

P&P 25p incs. Spare Nozzle 4111 4112 £5.65 £7.42

NASCOM 1 Z80 MICROCOMPUTER KIT BARCLAYCARD Includes interfece for: TV or Monitor — cassette, dump-Teletype — spare, PIO, Expansion RAM-8OARD up to 32K.

Potential: High Level Language, Wilni Floppy Disk, Excellent 280 evaluation kit. £197.50 + VAT

Please add 12½% VAT. Remainder 8% VAT Large selection of aluminium boxes & Instrument Cases. Phone in your Access or Barclaycard order. Catalogue 25p post paid

