Optimization methods

Simon Grimm

MCMC methods

- Single chain methods need more than 500000 interatios
- Often too slow

Parallel MCMC methods

- Affine invariant method
- DEMCMC

Use parallel chains to speed up calculation

DEMCMC, emcee

Problem with curvatures

Ter Braak 2006

Rosenbrock function

$$f = (a - x) * (a - x) + b * (y - x * x) * (y - x * x)$$

$$a = 1.0$$

 $b = 100.0$

SVGD

Stein Variational gradient descent

Algorithm 1 Bayesian Inference via Variational Gradient Descent

Input: A target distribution with density function p(x) and a set of initial particles $\{x_i^0\}_{i=1}^n$.

Output: A set of particles $\{x_i\}_{i=1}^n$ that approximates the target distribution.

for iteration ℓ do

$$x_i^{\ell+1} \leftarrow x_i^{\ell} + \epsilon_{\ell} \hat{\phi}^*(x_i^{\ell}) \quad \text{where} \quad \hat{\phi}^*(x) = \frac{1}{n} \sum_{j=1}^n \left[k(x_j^{\ell}, x) \nabla_{x_j^{\ell}} \log p(x_j^{\ell}) + \nabla_{x_j^{\ell}} k(x_j^{\ell}, x) \right],$$
 (8)

where ϵ_{ℓ} is the step size at the ℓ -th iteration.

end for

Liu & Wang 2019

SVGD

- Particle method
- Can be parallelzed easily

AdaGrad

RMSprop

Adadelta

Adam

Steepest descent with line search

Nelder Mead, downhill simplex

LBFGS, second order

SVGD with RMSprop

Increase repulsive term

SVGD with higher orders

Annealed SVGD

Figure 2: Mode covering of SVGD. We compare the final stationary distribution of standard SVGD (green) from two different initialization (black) and A-SVGD (blue) to approximate a mixture of Gaussians (red).

D'Angelo & Fortuin 2021