Exercice 1 [Equivalence de définitions de $H^1(]0;1[)$.] Soit $u \in L^2(0;1)$. Montrer que les trois propositions suivantes sont équivalentes :

(i) Il existe $g \in L^2(0;1)$ tel que

$$\forall \phi \in \mathcal{D}(]0;1[), \quad \int_0^1 u(x)\phi'(x) \, dx = -\int_0^1 g(x)\phi(x) \, dx.$$

(ii) Il existe une constante C telle que

$$\forall \phi \in \mathcal{D}(]0;1[), \quad \left| \int_0^1 u(x)\phi'(x) \, dx \right| \le C \, \|\phi\|_{L^2(0;1)}.$$

(iii) Il existe une constante C telle que, pour tout ouvert ω tel que $\bar{\omega} \subset]0;1[$ et pour tout $h \in \mathbb{R}$ tel que $|h| < \operatorname{dist}(\bar{\omega}, \mathbb{R} \setminus]0;1[)$, on a

$$\|\tau_h u - u\|_{L^2(\omega)} = \left[\int_{\omega} \left(u(x+h) - u(x) \right)^2 dx \right]^{1/2} \le C |h|.$$

Lorsque ces définitions sont vérifiées, on vérifie facilement que la plus petite constante possible C est identique dans (ii) et (iii), qu'elle est égale à la norme $L^2(0;1)$ de la fonction g de (i) (qui est la dérivée de u au sens des distributions), et on définit la norme $H^1(]0;1[)$ de u par

$$||u||_{H^1(]0;1[)} = \left[||u||_{L^2(0;1)}^2 + ||g||_{L^2(0;1)}^2\right]^{1/2}.$$

Exercice 2 [Propriétés des fonctions de $H^1(]0;1[)$.] On définit conformément à l'exercice précédent

$$H^1(]0;1[) = \left\{ u \in L^2(0;1) \mid u' \in L^2(0;1) \right\}$$

où u' est défini au sens des distributions.

A- Continuité

On définit l'espace

$$\mathcal{H}(]0;1[) = \left\{ u \in C(]0;1[) \mid \exists g \in L^2(0;1) \mid u(x) = u(0) + \int_0^x g(t) \, dt, \quad x \in]0;1[\right\}.$$

- 1. Montrer que $\mathcal{H}(]0;1[)\subset H^1(]0;1[)$.
- 2. Soit $(u_n)_{n\in\mathbb{N}}$ une suite de $C^{\infty}([0;1])$ convergeant vers u dans $H^1(]0;1[)$. Montrer que $\{u_n, n\in\mathbb{N}\}$ est un sous-ensemble borné de C([0,1]) (pour la norme infinie), uniformément équicontinu.
- 3. Montrer que $\mathcal{H}(]0;1[) = H^1(]0;1[)$.

B- Trace au bord

1. Montrer que $H^1(]0;1[)$ s'injecte continûment dans $\mathcal{C}([0;1])$. En déduire que l'application de trace

$$\gamma: \left\{ \begin{array}{ccc} \mathcal{D}([0;1]) & \to & \mathbb{R}^2 \\ u & \mapsto & (u(0), u(1)) \end{array} \right.$$

se prolonge par continuité à $H^1(]0;1[)$.

2. Montrer que $H_0^1(]0;1[)=\ker\gamma$. Rappel : par définition $H_0^1(]0;1[)$ est le complété de $\mathcal{D}(]0;1[)$ pour la norme H^1 .

Exercice 3 [Résolution d'un problème posé sous forme variationnelle.] Pour $u, v \in H^1(]0, 1[)$, on note Du, Dv leurs dérivées au sens des distributions et on pose

$$a(u,v) = \left(\int_0^1 Du Dv\right) + \left(\int_0^1 uv\right) - \left(\int_0^1 u\right) \left(\int_0^1 v\right).$$

Soit $k \in \mathbb{R}$, $k \neq 1$. On pose $V = \{v \in H^1([0,1]); \gamma v(0) = k\gamma v(1)\}.$

- 1. Montrer que V est un sous espace vectoriel fermé de $H^1(]0,1[)$. Dans la suite, on munit V du produit scalaire de $H^1(]0,1[)$ (ce qui en fait un Hilbert).
- 2. Montrer qu'il existe C > 0 (ne dépendant que de k) telle que

$$\forall v \in V, \quad \|v\|_{L^{\infty}(0,1)} \le C \|Dv\|_{L^{2}(0,1)}.$$

<u>Indication</u>: On pourra commencer par montrer qu'il existe $C_1 > 0$ tel que

$$\forall v \in V, \quad |v(1)| \le C_1 \|Dv\|_{L^2(0,1)}.$$

3. Montrer que la forme bilinéaire a est coercive sur V. En déduire que, pour tout $f \in L^2(0,1)$, il existe un unique $u \in V$ tel que

$$\forall v \in V, \quad a(u,v) = \int_0^1 fv. \tag{1}$$

- 4. Soient $f \in L^2(0,1)$, et $u \in V$ la solution de (2). Montrer que $u \in H^2(]0,1[)$, i.e. $u \in H^1(]0,1[)$ et $Du \in H^1(]0,1[)$.
- 5. Soient $f \in C([0,1])$, et $u \in V$ la solution de (2). Montrer que u est l'unique solution du problème suivant

$$\begin{cases} u \in C^2([0,1]), \\ \forall x \in [0,1], -u"(x) + u(x) - \int_0^1 u(y) dy = f(x), \\ u(0) = ku(1), u'(1) = ku'(0). \end{cases}$$