Sistemas de Referência

1. Definição

Para definir um sistema de referência tridimensional, necessitamos de especificar:

- a) A localização da sua origem;
- b) A orientação dos seus três eixos;
- c) Os parâmetros (cartesianos ou curvilíneos) que definem a posição de um ponto.

2. Sistema de Referência Inercial (ou newtoniano)

Sistema de Referência em relação ao qual um corpo está em repouso ou apenas animado de um movimento de translação uniforme.

Geodesia Fisica – Aula 2 FCUL-EG

1

Sistemas de Referência

2.1. Sistemas de Referência Terrestre Ideal

Espaço euclidiano afim munido de uma base ortogonal fixa à Terra, de escala unitária e origem no centro de massa da Terra.

2.2. Sistemas de Referência Terrestre Convencional

- a) Sistema de <u>eixos ortogonais fixo à Terra</u>, cujo <u>eixo principal é paralelo ao eixo médio de rotação</u> com <u>origem próxima do centro de massa</u> da Terra e <u>escala próxima da unidade</u>
- b) A sua concretização é feita com base na medição de grandezas físicas (constante geopotencial GM, velocidade de rotação da terra ω , velocidade da luz C e/ou unidades de comprimento e escalas de tempo TU), na medição de grandezas geométricas e em algoritmos de cálculo.

Sistemas de Referência

2.3. Sistemas de Coordenadas

- a) Conjunto de grandezas <u>variáveis que definem a posição</u> de um ponto no espaco relativamente ao sistema de referência definido (sistema de eixos);
- b) Podem ser: <u>cartesianas</u> (tridimensionais x,y,z) ou <u>curvilíneas</u> (elipsoidais geodésicas φ , λ ,h).

2.4. Referencial

Materialização (rede de vértices geodésicos) que define no espaço terrestre o sistema de referência terrestre convencional. O referencial é uma concretização física do sistema de referência que permite definir a posição absoluta no espaço terrestre, enquanto que, um sistema de referência é fictício e resulta de uma definição matemática (conjunto de parâmetros).

Um Sistema de Referência pode ter várias realizações (referenciais), de épocas diferentes e com base em diferentes parametrizações.

Geodesia Física – Aula 2 FCUL-EG

3

Sistemas Fixos à Terra

3. Sistemas de Referência Globais fixos à Terra

- a) Sistemas geocêntricos que acompanham o movimento terrestre:
- b) Devido ao movimentos da Terra no espaço e ao facto de a Terra não ser rígida, tem que se estabelecer o referencial com base em convenções – Sistema Terrestre Convencional (CTS), relativo ao uma época bem definida;
- c) Um sistema convencional pode ser estabelecido através de um conjunto de coordenadas cartesianas de estações internacionais de referência pertencentes a uma rede terrestre global
- d) ECFRF Earth Centered Fixed Reference Frame; é um referencial associado a um CTS geocêntrico, com origens no Pólo Terrestre Convencional (CTP), substitui a antiga CIO, e ao Meridiano Internacional de Referência (IRM), substitui o antigo meridiano médio de Greenwich (GMO).

Geodesia Fisica – Aula 2 FCUL-EG

3. Sistemas de Referência Globais fixos à Terra

Geodesia Física – Aula 2

FCUL-EG

5

Sistemas Fixos à Terra

3.1 Referencial ITRF

- a) O referencial ITRF (*IERS Terrestrial Reference Frame*), estabelecido pela primeira vez em 1989, é definido pelo conjunto de coordenadas (e velocidades) de uma rede internacional de estações geodésicas do IERS e IGS, com actualização "bianual";
- b) A determinação destas coordenadas é feita a partir das várias técnicas de observação, quer astronómica quer de satélite (VLBI, SLR, GPS e DORIS);
- c) É a partir deste sistema que, por exemplo, são calculadas as efemérides de precisão dos satélites de GPS pelo IGS (http://lareg.ensg.ing.fr/ITRF) e nele se determinam as velocidades observadas das placas tectónicas;
- d) O nome de cada referencial designa-se por *ITRFnn* (ITRF93, ITRF97, etc.), para se mudar de um ITRF para outro recorre-se a um conjunto de 14 parâmetros (parâmetros Helmert e respectivas variações) para se proceder à designada *transformação de coordenadas*.

Geodesia Física – Aula 2

FCUL-EG

3.2 Distribuição mundial das estações ITRF

Geodesia Física - Aula 2

FCUL-EG

7

Sistemas Fixos à Terra

3.3 Sistema de Referência WGS84

- a) O WGS84 (World Geodetic System, estabelecido em 1984) é um sistema global de coordenadas associado ao sistema de posicionamento GPS;
- b) Definido pela *U.S. Defense Mapping Angency (NIMA*, actual NGA), este sistema é usado pelo próprio sistema GPS na determinação de efemérides radiodifundidas (órbitas), nas operações dos satélites e no cálculo convencional de coordenadas;
- c) O sistema teve como base um modelo gravitacional da Terra, e por isso o elipsóide associado é um elipsóide geocêntrico equipotencial de revolução, ou seja, está-lhe associado um campo gravítico normal com uma rotação definida;
- d) A sua definição foi feita com base nas observações existentes até 1984 de vários sistemas, nomeadamente, o sistema anterior ao GPS *TRANSIT*;
- e) Foram feitas inicialmente algumas revisões do seu elipsóide (actualmente próximo do GRS80) e foram feitas várias realizações do seu referencial (G730 em 1994, G873 em 1997, G1150 em 2001, e a última G1675 de 2005).

Geodesia Física – Aula 2

FCUL-EG

3.3 Sistema de Referência WGS84

f) Parâmetros originais do WGS84;

Semi-eixo maior Coef. esférico zonal de 2º grau Velocidade angular (da Terra) Constante gravitacional (da Terra) $\begin{aligned} &\text{a} = 6\ 378\ 137.000\ 00\ m\\ &\text{C}_{2,0} = \text{-}484.166\ 85\ x10^{\text{-}6}\\ &\omega_{\text{E}} = 7\ 292\ 115\ x10^{\text{-}11}\ \text{rad}\ \text{s}^{\text{-}1}\\ &\mu\ (\text{GM}) = 3\ 986\ 005\ x10^{8}\ \text{m}^{3}\ \text{s}^{\text{-}2} \end{aligned}$

g) Parâmetros derivados do WGS84

Semi-eixo menor Achatamento

Quadr. da 1ª excentricidade Quadr. da 2ª excentricidade b = 6 356 752.314 245 m f = 3.352 810 664 74 x10⁻³ e2 = 6.694 379 990 13 x10⁻³ e'2 = 6.739 496 742 26 x10⁻³

Geodesia Fisica – Aula 2 FCUL-EG

9

Sistemas Fixos à Terra

3.3 Sistema de Referência ETRS89

- a) O ETRS89 (European Terrestrial Reference System) é o sistema de referência geodésico geocêntrico fixo à placa euro-asiática, roda com a própria placa;
- b) Definido pela EUREF (sub-comissão da IAG) em 1990, é o sistema adoptado para a rede europeia da EUREF e é recomendado para ser usado por todos os países do continente europeu;
- c) Coincide com o sistema de referência ITRS à época 1989 (ITRF89), e tem o o elipsóide equipotencial de referência GRS80 associado;
- d) Sobre este sistema são definidos dois tipos de coordenadas: geodésicas (ϕ,λ,h) e cartesianas tridimensionais (x, y, z,), ao contrário do ITRF que só admite coordenadas cartesianas;
- e) Foi adoptado pelos países europeus, por imposição da Directiva INSPIRE, e já foi implementado em Portugal, originando o sistema de coordenadas cartográficas PT-TM06 (projecção Transversa-Mercator).

3.4 Sistema de Referência ETRS89

f) Parâmetros de definição do GRS80 (elipsóide equipotencial);

Semi-eixo maior a = 6 378 137.000 00 mFactor dinâmico da forma $J_2 = 108 263 \times 10^{-8}$

 $\begin{array}{ll} \mbox{Velocidade angular (da Terra)} & \omega_E = 7 \ 292 \ 115 \ x 10^{-11} \ rad \ s^{-1} \\ \mbox{Constante gravitacional (da Terra)} & \mbox{GM} = 3 \ 986 \ 005 \ x 10^8 \ m^3 \ s^{-2} \end{array}$

g) Parâmetros derivados

Semi-eixo menor b = 6 356 752.314 410 m Achatamento f = 3.352 810 681 18 x10⁻³ Quadr. da 1^a excentricidade e2 = 6.694 380 022 90 x10⁻³ Quadr. da 2^a excentricidade e'2 = 6.739 496 775 48 x10⁻³

Geodesia Física – Aula 2 FCUL-EG

11

Coordenadas Geodésicas 4. Elipsóide de Revolução O elipsóide de revolução é a forma geométrica que melhor se aproxima e ajusta à forma irregular e achatada da terra. a - semi-eixo maior b - semi-eixo menor

Coordenadas Geodésicas

4.1 Geodésicas Elipsoidais

- φ **latitude**: ângulo medido no meridiano entre a Normal ao elipsóide no ponto P e o plano do equador;
- λ longitude: ângulo rectilíneo entre o plano do meridiano internacional de referência e o plano do meridiano do ponto P;
- **h altitude**: distância medida sobre a normal ao elipsóide do ponto P , desde a superfície do elipsóide * até à superfície topográfica.

Rectangulares ou cartesianas

- ${\bf X}$: distância OX medida sobre o eixo equatorial que intersecta o meridiano de referência das longitudes, desde a origem O até ao respectivo ponto de projecção;
- Y: distância OY medida sobre o eixo equatorial perpendicular ao plano do meridiano de referência das longitudes, desde a origem O até ao respectivo ponto de projecção;
- Z: distância OZ medida sobre o eixo de revolução (paralelo ao ERT), desde a origem O até ao respectivo ponto de projecção.

Geodesia Física - Aula 2

FCUL-EG

FCUL-EG

13

Coordenadas Geodésicas

4.2 Conversão de coordenadas geodésicas (sentido directo)

Geodésicas → Rectangulares

$$x_p = (N + h_p) \cos \varphi_p \cos \lambda_p$$
$$y_p = (N + h_p) \cos \varphi_p \sin \lambda_p$$
$$z_p = [N(I - e^2) + h_p] \sin \varphi_p$$

$$com N = \frac{a}{\sqrt{1 - e^2 sen^2 \varphi}}$$

Geodesia Física – Aula 2

Coordenadas Geodésicas

4.3 Conversão de coordenadas geodésicas (sentido inverso)

Rectangulares → Geodésicas

$$\lambda_{p} = arctg\left(\frac{y_{p}}{x_{p}}\right)$$

$$\varphi_{p} = arctg\left(\frac{z_{p} + e^{2}N sen\varphi}{\sqrt{x_{p}^{2} + y_{p}^{2}}}\right) \qquad tg(\varphi_{0}) = \frac{1}{\left(1 - e^{2}\right)} \cdot \frac{z_{p}}{\sqrt{x_{p}^{2} + y_{p}^{2}}}$$

$$h_{p} = \frac{\sqrt{x_{p}^{2} + y_{p}^{2}}}{cos\varphi} - N \qquad \text{ou} \qquad h_{p} = \frac{z_{p}}{sen\varphi} - N + e^{2}N$$

- A determinação de ϕ é feita por um processo iterativo, pois ϕ_p = $\phi(\phi_p)$ é uma função recursiva

Geodesia Fisica – Aula 2 FCUL-EG

15

Transformação de Coordenadas

- 5. Transformação tridimensional de Helmert entre STC
 - a) A transformação entre dois sistemas tridimensionais cartesianos é realizada, normalmente, através de uma Transformação de Helmert a 7 parâmetros (3 translações, 3 rotações e um factor de escala),:

 $\vec{X}_T = \vec{c} + \mu R \vec{X}$

onde

$$\vec{c} = \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} \quad \text{e} \quad R = \begin{bmatrix} 1 & d\alpha_3 & -d\alpha_2 \\ -d\alpha_3 & 1 & d\alpha_1 \\ d\alpha_2 & -d\alpha_1 & 1 \end{bmatrix}$$

Na sua forma matricial, para transformações com pequenas rotações, designada de **Método de Transformação Bürsa-Wolf**.

z-axisez z-axiset z-a

Rotações no sentido anti-horário, de acordo com o método "Coordinate Frame Rotation Transformation" (sentido horário: método "Position Vector Transformation")

Transformação tridimensional de Helmert entre STC

a) A transformação entre dois sistemas tridimensionais cartesianos é realizada, normalmente, através de uma Transformação de Helmert a 7 parâmetros (3 translações, 3 rotações e um factor de escala),:

17

Transformação de Coordenadas

5.1 Transformação tridimensional de Helmert

- b) Este tipo de transformação tem a vantagem de não ser necessário o conhecimento de informação *a priori* do sistema geodésico (parâmetros do elipsóide), é função apenas das coordenadas dos dois sistemas;
- c) Basta unicamente o conhecimento de 3 pontos no espaço com coordenadas conhecidas nos dois sistemas para se determinar o conjunto de parâmetros:
- d) Para a determinação de 7 parâmetros são necessárias 7 equações no mínimo;
- e) Cada ponto contribui com 3 equações de relação, uma por cada cóordenada;
- f) Se ambos os sistemas têm os seus eixos paralelos, então são necessários apenas 4 parâmetros, as 3 translações e o factor de escala;
- g) O factor de escala teoricamente não existe (escala unitária), mas devido à imprecisão das observações e à utilização de escalas de comprimento diferentes (metro padrão, velocidade da luz vezes unidade de tempo, etc.), resulta sempre um pequeno factor de escala próximo da unidade, μ = 1 + d μ .

Geodesia Física - Aula 2

FCUL-EG

5.1 Transformação tridimensional de Helmert

h) Como os eixos normalmente são quase paralelos, as rotações resultam muito pequenas, e sendo os ângulos muito pequenos as funções co-seno e seno simplificam-se (cos d α = 1, sen d α = d α) dando origem a uma matriz de rotação (produto de 3 matrizes de rotação) muito simplificada:

$$R = \begin{bmatrix} I & d\alpha_3 & -d\alpha_2 \\ -d\alpha_3 & I & d\alpha_1 \\ d\alpha_2 & -d\alpha_1 & I \end{bmatrix} = I + dR$$

 i) O sistema de equações deve ser escrito na forma de modelo linearizado, e com redundância de dados (mais de 3 pontos) o sistema é resolvido pelo método de ajustamento de mínimos quadrados:

$$\begin{aligned} &A_i \cdot d\vec{p} = \vec{L} \\ &d\vec{p} = \left(A_i^T \cdot A_i \right)^{-1} \cdot A_i^T \cdot \vec{L} \end{aligned}$$

Geodesia Física - Aula 2

FCUL-EG

19

Transformação de Coordenadas

5.1 Transformação tridimensional de Helmert

j) Na relação inicial do sistema de equações deve-se considerar o seguinte:

$$\vec{c} = (\vec{c}) + d\vec{c}; \quad \mu = 1 + d\mu; \quad R = I + dR$$

resultando:

$$\vec{X}_{T_i} - \vec{X}_i - (\vec{c}) = d\vec{c} + \vec{X}d\mu + \vec{X}dR$$

k) Obtém-se então o sistema na forma linearizada: $A_i \cdot d\vec{p} = \vec{L}_i$

onde

$$A_{i} = \begin{bmatrix} I & 0 & 0 & x_{i} & 0 & -z_{i} & y_{i} \\ 0 & I & 0 & y_{i} & z_{i} & 0 & -x_{i} \\ 0 & 0 & I & z_{i} - y_{I} & x_{i} & 0 \end{bmatrix} \qquad \qquad \vec{L}_{i} = \begin{bmatrix} x_{T_{i}} - x_{i} - c_{I} \\ y_{T_{i}} - y_{i} - c_{2} \\ z_{T_{i}} - z_{i} - c_{3} \end{bmatrix}$$

$$com \vec{L}_{i} = \vec{0}$$

 $d\vec{p} = \begin{bmatrix} dc_1 & dc_2 & dc_3 & d\mu & d\alpha_1 & d\alpha_2 & d\alpha_3 \end{bmatrix}^T$

5.1 Transformação tridimensional de Helmert

- ∴Em resumo: escolhe-se um conjunto de pontos (>2) nos quais são conhecidas as coordenadas em ambos os sistemas;
 - determinam-se os parâmetros por mínimos quadrados;
 - aplicam-se os parâmetros de transformação aos restantes pontos dos quais só se conhecem as coordenadas num dos sistemas.
- \therefore A transformação inversa é simétrica, i.é., basta aplicar os parâmetros com sinal contrário

Geodesia Fisica – Aula 2 FCUL-EG

21

Transformação de Coordenadas

5.2 Parâmetros Nacionais da Transformação de Bürsa-Wolf

a) (sentido das rotações: horário, "Position Vector Transformation")

ETRS89 para:	ΔX (m)	ΔY (m)	ΔZ (m)	Rx (")	Ry (")	Rz (")	Escala (ppm)
Datum Lx	+283.088	+70.693	-117.445	+1.157	-0.059	+0.652	+4.058
Datum 73	+230.994	-102.591	-25.199	-0.633	+0.239	-0.900	-1.950

b) (sentido das rotações: horário, "Position Vector Transformation")

Datum 73 para:	ΔX (m)	ΔY (m)	ΔZ (m)	Rx (")	Ry (")	Rz (")	Escala (ppm)
Datum Lx	+49.137	+179.924	-95.757	-2.00	+0.33	-1.42	+6.80
ED50	-170.885	+223.069	+141.98	-0.79	-0.22	-0.65	+5.63

Nota: O IGP (DGT) aplica as rotações de acordo com "Position Vector Transformation"

5.2 Parâmetros Nacionais da Transformação de Bürsa-Wolf

c) Aplicação dos Parâmetros na Transformação de Coordenadas

DX (m)	DY (m)	DZ (m)	Esc (ppm)	Rot. X (")	Rot. Y (")	Rot. Z (")
-231,03	102,62	26,84	1,786	-0,615	0,198	1,786
		-	1 00000179	-2 9816F-06	9 5993F-07	8 6588F-06

X= -231,030 4936181,238 -5,333 -3,820 = 4935941,056m -11,865 102,620 -42,741 -615881,109 -615833,095m 26,840 4,738 -1,836 3979416,127 **3979445,869**m

Geodesia Física – Aula 2 FCUL-EG