Wiktor Kuchta

7/4bD

Pojęcie \mathbb{Z} -modułu jest równoważne pojęciu grupy abelowej, więc \mathbb{Z} -moduły proste to grupy abelowe bez nietrywialnych podgrup właściwych. Takie grupy muszą być równe podgrupie generowanej przez dowolny element niezerowy, czyli są cykliczne. Grupa \mathbb{Z} ma nietrywialne podgrupy właściwe, zatem \mathbb{Z} -moduły proste to grupy cykliczne rzedu pierwszego.

Homomorfizm z grupy cyklicznej jest wyznaczony przez wartość dla 1. Dla każdej wartości w $\mathbb{Z}/p\mathbb{Z}$ otrzymujemy inny endomorfizm $\mathbb{Z}/p\mathbb{Z}$. Czyli pierścień endomorfizmów $\mathbb{Z}/p\mathbb{Z}$ jest mocy p, więc z tw. Wedderburna jest izomorficzny z ciałem F(p).

7/5D

Niech V to niezerowa przestrzeń liniowa nad ciałem K. Ta przestrzeń ma pewną bazę \mathcal{B} i każdy element możemy utożsamić z jego współrzędnymi w tej bazie (indeksowanymi elementami bazy).

Jest to oczywiście $\operatorname{End}_K(V)$ -moduł z operacją stosowania endomorfizmu na wektorze. To, że $\operatorname{End}_K(V)$ jest pierścieniem, wynika z nietrywialności V.

Taki endomorfizm jest jednoznacznie wyznaczony przez wartości dla elementów \mathcal{B} . Z kolei taka wartość to dowolna kombinacja liniowa współrzędnych, tzn. należy do wolnej grupy abelowej $V \cong \bigoplus_{b \in \mathcal{B}} K$. Czyli pierścień $\operatorname{End}_K(V)$ jest izomorficzny z $V^{\mathcal{B}}$.

Załóżmy nie wprost, że mamy nietrywialny podmoduł właściwy V' < V jako $\operatorname{End}_K(V)$ -moduł, czyli podprzestrzeń liniową niezmienniczą na wszystkie endomorfizmy V. Wtedy przestrzeń V' jest rozpinana przez pewnien układ wektorów \mathcal{C} , który się rozszerza do \mathcal{D} bazy V. Elementy V' mają zerowe współrzędne dla wektorów z $\mathcal{D} \setminus \mathcal{C}$. Istnieje endomorfizm V, który wektor z \mathcal{C} przekształca na wektor w $\mathcal{D} \setminus \mathcal{C}$, więc V' nie jest zamknięte na mnożenie przez skalar. Sprzeczność.

7/6D

Załóżmy, że M jest R-modułem. Wówczas M jest też R'-modułem, gdzie R' = $\operatorname{End}_R(M)$. Dla $r \in R$ definiujemy $f_r \colon M \to M$ przez $f_r(m) = rm$.

Niech $r', s' \in \operatorname{End}_R(M) = R'$ i $m_1, m_2 \in M$.

$$\begin{split} f_r(r'(m_1)+s'(m_2)) &= r(r'(m_1)+s'(m_2)) & \text{definicja } f_r \\ &= rr'(m_1)+rs'(m_2) & \text{rozdzielność mnożenia skalarnego} \\ &= r'(rm_1)+s'(rm_2) & R\text{-liniowość} \\ &= r'(f_r(m_1))+s'(f_r(m_2)) & \text{definicja } f_r \end{split}$$

Zatem f_r jest endomorfizmem R'-modułu M (jest funkcją R'-liniową).