How to measure the Doppler frequency o	f
a channel ccz, t)? => Autocorrelation	Function
Autocorrelation function.	
Ac(I,Iz; t;ttat) = E[C*CZ,t)CCZ, t+at)]	
Wide sense stationary:	
AcCI, Iz; t, t+st) is independent of t	
$A_{c}(T_{i}, T_{i}; \Delta t) = E[C^{*}(T_{i}, t) C(T_{i}, t+\Delta t)]$	10
Uncorrelated scattering:	
E[dm(t)dn(t)]= E[dm(t)] · E[dn(t)] · mi	FM.
- 0	

×

Actin Trist) E[C^(Z1,t) C(Z1,t+Dt)] : E[N(t) d n(t) e i pnt) S(Z1-Zn(t)) mid dm(t+st)e= +mct+st) S(Iz- Im(++st)) =E | 2 dn(t)dm(t+st) @e)(Pn(t)-Pm(t+st)) $S(T_1-T_n(t),S(T_2-T_m(t+\Delta t)))$ =#\(\text{P}\(\text{\formuller}\)\dn(t+\Delta t)\dn(t+\Delta t)\dn(t+\Delta t)) 8(Z1-Zn(t)) 8(Z2-Zn(t+st)) 2 E[Line dn(t+st)] S(TI- Tn(t)) S(TZ-Tn(t))) = E [Z dn(t)e)[(\phi_n(t)-\phi_n(t+\De)]\S(\tau_1-\tau_n)) 8[27-72] >Ac(I,Iz; st) is non-zero only when I=12 Accinati = Accinatist)/S(0) Or Ac(I; Dt) = Ac(I, I; Dt) /Sco) A((2,, 22; 1t)= A((1) st). 8((1-22)

8.0100 -000		SUSTech
Note that	\$n(t)= 271fcIn	(t) - 21, fo, n(t) +
\$n(t)- In(t+c	st) = 27(fc [n(t) -	- 27, fp, n(t) + (t) + 27, fn s(t+ pt) (t+ pt)
and lex	D, n to	At
Acciost) = El	820	SCI-In(t)]
= E (N	drit/ejznfp,n	
NIC)	[dn(t)] e) 27, fp.,	n(t))] e 127 fo.n. st
bservation:		lopendont variable.

= n=1 E[dn'tt) · S(I-In(t) Observation. Given I, treat st as independ the frequencies of Accipati's frequency components are the Doppler frequencies. -> Taking Fourier Transform W.Y.t. st, we get Voppler frequencies cattering function

Si(I,P) = SmAc(I, At)e-j27 PAt dist.

suppose constant !

Doppler

SUSTech
Sc(Z,P) shows the Popple frequencies in the paths with delay z.
Power Delay Profile.
Let st=0 in Ac(I;st). denote as Acq
Thus, Accz) = Accz; 0) Power Delay Profit
$A_{c}(z) = E_{c}(z,t) C(z,t)$ $= \sum_{n=1}^{N(t)} E_{c}(z,t) S(z-z_{n}(t))$
= Z E[dn (t)] = E [S(I- In(t))] 10 Average power of P Chance of delay
nth path = 7

Average channel power gain out de lay 7.

O Coherent Bandwidth:
Descript Bandwidth: How flat of the frequency selective facility
((f,t)= J-10 (1,t)e-j2nfzdz.
Frequency domain autocorrelation function.
Ac(f.f.; t.ttat) WSS
-Accf., fi, st)
= E[("(f,,t) ((f,,trat)]
= STONE [C*(I,t) C(I,tat)]esinfit
uncorrelated e-jextel dz. dz. [11
= Signature E (C*(I,t) C(I,t) C(I,t)) e jenfit concervelated scattering - Signature Ac(I, At) S[I,-I,]e-jenfit dI, dI dI, dI dI, dI dI, dI dI, dI
= (+10 Ac(Z, At) e-j22 f-f1)21 dz=Ac(of)
A-clot A) Fourier (runsform of AcCZO, St) W.Y.t. Z

