- Fecha de entrega:
- 1. Utilice el *Método Delta* (aproximación por expansión por series de Taylor, propagación de error), para justificar que si

$$\sigma_y^2 \propto [\mathrm{E}(y)]^3$$

 $Y=1/\sqrt{y}$, es la transformación que estabiliza la varianza. Esto es, $\sigma_V^2 \propto \text{constante}$.

2. Muestre que la transformación potencia de Box-Cox

$$y^{(\lambda)} = \begin{cases} \frac{y^{\lambda} - 1}{\lambda \dot{y}^{\lambda - 1}}, & \lambda \neq 0 \\ \dot{y} \log y, & \lambda = 0 \end{cases}$$

como función de λ , es continua en $\lambda = 0$. En la expresión anterior, $\dot{y} = (\prod_{i=1}^{n} y_i)^{1/n}$, es el promedio geométrico de las respuestas y_i ,

3. En un estudio sobre consumo de agua (m³/mes) en cierta ciudad se supuso que el consumo estaría relacionado con el correspondiente consumo de energía eléctrica (kw/hr.). Construya un modelo que relacione ambos consumos, considerando el consumo de agua como la respuesta.

Elabore un reporte de no más de 6 cuartillas respondiendo los incisos a - h. Se sugiere que considere los siguientes puntos:

- Utilice solamente los decimales que considere necesarios.
- En su reporte, toda gráfica debe estar etiquetada "Figura 1." y mencionada en el texto del reporte.
- El mismo comentario si incluye tablas.
- Si utilizó algún aplicación de cómputo, no incluya el código.
- De incluir información adicional, considere el uso de apéndices.
- a) Grafique los datos y comente.
- b) Ajuste un modelo de regresión lineal simple sobre los datos sin transformar.
- c) Verifique su modelo via análisis de residuales. Comente.
- d) Aplique la transformación de Box-Cox y construya un intervalo del $100(1-\alpha)$ % de confianza para λ . ¿Que valor de λ elegiría para la trasformación? Comente.
- e) Grafique $y^{(\lambda)}$ vs. x. Comente.
- f) Ajuste el modelo correspondiente y valídelo. Comente.
- g) Construya in intervalo del 90 % confianza para el consumo *medio* esperada si el consumo de energía eléctrica es de 7.57 kw/hr. (Nota: el intervalo es para el consumo de agua, no la respuesta transformada.).
- h) Construya in intervalo de predicción de 95 % para la demanda esperada si la generación de energía es de 5.1 kw/hr.

Tabla 1: Consumo eléctrico (kw/hr.) y consumo de agua (m $^3/{\rm mes}).$

	consumo			consumo	
obs.	eléctrico	agua	obs.	eléctrico	agua
1	0.16	3.76	26	5.17	9.66
2	0.44	4.05	27	5.38	7.55
3	0.63	4.26	28	5.63	12.89
4	0.76	4.37	29	5.78	11.30
5	1.04	4.51	30	5.98	13.62
6	1.19	5.26	31	6.21	9.85
7	1.44	5.46	32	6.42	6.44
8	1.63	4.29	33	6.56	4.86
9	1.80	6.46	34	6.82	9.77
10	1.99	6.08	35	6.99	10.08
11	2.20	5.21	36	7.19	11.75
12	2.43	5.18	37	7.43	16.44
13	2.58	6.02	38	7.62	17.68
14	2.83	7.82	39	7.81	21.73
15	3.01	6.82	40	8.02	15.49
16	3.23	6.54	41	8.18	11.01
17	3.40	6.09	42	8.44	14.92
18	3.60	7.54	43	8.57	11.19
19	3.78	9.14	44	8.80	12.17
20	3.97	8.58	45	9.03	15.11
21	4.19	7.51	46	9.24	13.41
22	4.43	10.61	47	9.38	17.79
23	4.60	5.60	48	9.63	16.03
24	4.82	7.82	49	9.83	15.53
25	4.97	5.46	50	9.96	15.85