Pitch Detection: Music, Physics, and the Brain

Tom Goodman

University of Birmingham

Wednesday 30th January 2018

Contents

- Aim of Pitch Detection
- Historical Background
- A Little Music Theory
- Physics of Sound
- Proposed Real-Time Algorithm
- Future Considerations
- Biological Inspiration for the Future
- Fin.

Aim

Take in an acoustic musical signal, and output the notes present.

Aim

A Little History

history

Pythagoras & Early Music (c. 550BC)

Helmholtz & the Rise of Psychoacoustics (1800s)

Some Basic Music Theory

Categorising Notes

Categorising Notes

Musical Notes

Standing Waves

Harmonics

Implications

Timbre

The Fourier Transform

Overview

Assumption - No Undertones

Clustering

"Band-Pass" Filter

Selection Loop & α -cutoff

Notes Reduce

Testing

Results

	Precision	Recall	Specificity	Accuracy	F-Score
Test 1	78.09%	93.89%	83.00%	86.89%	84.78%
Test 2	100.00%	97.22%	100.00%	97.85%	98.55%
Test 3	82.46%	75.67%	77.52%	76.36%	78.85%
Test 4	86.31%	82.50%	53.33%	75.83%	83.47%
Test 5	65.08%	100.00%	64.29%	79.07%	78.47%
$\overline{\mu}$	82.39%	89.86%	75.63%	83.20%	84.82%

Further Considerations

- Adapt evaluation to use a larger & more widely-adopted dataset (eg. MAPS)
- Adapt 'Notes Reduce' to model harmonics on an instrument-to-instrument basis
- Apply source separation to reduce polyphonic problems to multiple monophonic problems
- Take temporal aspects of sound into account
- Take inspiration from biological systems for pitch detection in humans (such as the ear/brain)

Some Thoughts for the Future

- Do the ear and brain process monophonic and polyphonic signals in different ways?
- How does the brain subconsciously abstract timbre?
- Can we build models and solutions in similar ways?

Questions?

Tom Goodman t.a.goodman@cs.bham.ac.uk http://tomg.io/ Office 218

School of Computer Science University of Birmingham

Slides at http://tomg.io/research-skills-slides.pdf Paper at http://tomg/io/isspit-1.pdf

Feel free to ask any questions!