The Riemann-Roch theorem

Following some unpublished results by A. Grothendieck

Armand BOREL and Jean-Pierre SERRE

1958

!TODO!

Translator's note. What follows is a translation of the paper "Le théorème de Riemann-Roch", Armand Borel and Jean-Pierre Serre. *Bulletin de la S.M.F.*, tome 86 (1958), p. 97–136.

!TODO! old pages

Introduction

What follows constitutes the notes from a seminar that took place in Princeton in the autumn of 1957 on the works of Grothendieck; the new results that are included are due to Grothendieck; our contribution is solely of an editorial nature.

The "Riemann-Roch theorem" of which we speak here holds true for (non-singular) algebraic varieties over a field of arbitrary characteristic; in the classical case, where the base field is \mathbb{C} , this theorem encapsulates, as a particular example, the result proven a few years ago by Hirzebruch.[?]

The full statement and proof of the Riemann-Roch theorem can be found in sections 7 to 16, with the last section being devoted to an application. Sections 1 to 6 contain some preliminaries on coherent algebraic sheaves [?]. The terminology that we follow is the same as in [?], up to one difference: to conform with a custom which is becoming more and more widespread, we use the word "morphism" instead of "regular maps".

1 Auxiliary results on sheaves

(All the varieties considered below are algebraic varieties over an algebraically closed field k of arbitrary characteristic. Unless otherwise mentioned, all the sheaves considered are coherent algebraic sheaves.)

Proposition 1. Let U be an open subset of a variety V, and let \mathscr{F} be a coherent sheaf on V and \mathscr{G} a coherent subsheaf of $\mathscr{F}|U$ (the restriction of \mathscr{F} to U). Then there exists a coherent sheaf $\mathscr{G}' \subset \mathscr{F}$ such that $\mathscr{G}'|U = \mathscr{G}$.

(In fact, the proof will show that there exists a *largest* such sheaf having this property.)

Proof. For every open subset $W \subset V$, we define \mathscr{G}'_W as the set of sections of \mathscr{F} over W that belong to \mathscr{G} over $U \cap W$. Everything reduces to showing that the sheaf \mathscr{G}' associated to this presheaf is coherent. Since this is a local questions, we can suppose that V is an affine variety. Let A be its coordinate ring. There exist elements $f_i \in A$ such that $U = \bigcup V_{f_i}$, where $V_{f_i} = U_i$ denotes the set of points of V where $f_i \neq 0$. If, in the definition of \mathscr{G}' , we replace the open subset U by the open subset U_i , then we obtain a sheaf $\mathscr{G}'_i \subset \mathscr{F}$, and it is clear that $\mathscr{G}' = \bigcap \mathscr{G}'_i$. By known results on coherent sheaves [?, p. 209], it suffices to show that the \mathscr{G}'_i are coherent. We can thus restrict to considering the case where V is affine, and where $U = V_f$, for some $f \in A$. In this case, the sheaf \mathscr{F} is defined by an A-module M, and the subsheaf \mathscr{G} of $\mathscr{F}|U$ is defined by a submodule N of $M_f = M \otimes_A A_f$. Let N' be the inverse image of N in M under the canonical map $M \to M_f$. The module N' then corresponds to a coherent subsheaf of \mathscr{F} , and we can immediately verify (by taking the $V_{f'}$ to be the W, for example) that this sheaf is exactly \mathscr{G}' , which finishes the proof.

Lemma 1. Let U be an open subset of an affine variety V, and let \mathscr{F} be a (coherent) sheaf on U. Then \mathscr{F} is generated by its sections (over U).

Proof. Let $x \in U$, and let f be a regular function on V, zero on $V \setminus U$ and non-zero at x. We have $V_f \subset U \subset V$. Since V_f is affine, we know [?] that \mathscr{F}_x is generated by its sections over V_f , and it thus suffices to prove that these sections can be extended to U, after multiplying by a suitable power of f. This follows from the more general following lemma:

Lemma 2. Let X be a variety, f a regular function on X, \mathscr{F} a sheaf on X, and s a section of \mathscr{F} over $U = X_f$. Then there exists an integer n > 0 such that $f^n s$ can be extended to a section of \mathscr{F} over X.

Proof. We can cover X by finitely many affine opens X_i . By applying [?, lemma 1, p. 247] (or by arguing directly, as in proposition 1), we see that there exists an integer n and sections s_i of \mathscr{F} over the X_i that extend $f^n s$ over $X_i \cap U$. Since the $s_i - s_j$ are zero on $X_i \cap X_j \cap U$, there exists an integer m such that $f^m(s_i - s_j) = 0$ on $X_i \cap X_j$ ([?, p. 235], or arguing directly), and m can be chosen independent of the pair (i, j). The $f^m s_i$ then define a section s' of \mathscr{F} over X that indeed extend $f^{n+m}s$.

References