Project 4: Central Limit Theorem Simulate RVs with Arbitrary Distributions

1. The Central Limit Theorem

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from scipy.stats import norm
a, b = 1, 3
N = 10000
mu w = (a + b) / 2
sigmaW = np.sqrt((b - a) ** 2 / 12)
stack_sizes = [1, 5, 10, 15]
results = []
for n in stack sizes:
  results.append((n, mu_s, sigmaS))
  stackThicknesses = [np.sum((b - a) * np.random.rand(n) + a) for in range(N)]
  plt.hist(stackThicknesses, bins=30, density=True, alpha=0.6, color='g',
label="Simulated PDF")
  x = np.linspace(min(stackThicknesses), max(stackThicknesses), 1000)
  plt.plot(x, norm.pdf(x, mu_s, sigmaS), 'r-', lw=2, label="Normal PDF")
  plt.title(f"Stack of {n} Books")
  plt.legend()
```

```
plt.grid()
  plt.show()

results_df = pd.DataFrame(results, columns=["Number of Books (n)", "Mean Thickness
  (cm)", "Std. Dev. Thickness (cm)"])
print(results_df)
```


Number of books n	Mean thickness of a stack of <i>n</i> books (cm)	Standard deviation of the thickness for <i>n</i> books
n=1	$\mu_{_{\scriptscriptstyle W}}=2$	$\sigma_{w} = 0.577$
n=5	$\mu_{\scriptscriptstyle W} =$ 10	$\sigma_{\scriptscriptstyle W}$ = 1.29
n=10	$\mu_{\scriptscriptstyle w} = 20$	$\sigma_{\scriptscriptstyle w}$ = 1.825
n=15	$\mu_{\scriptscriptstyle W} =$ 30	$\sigma_{w} = 2.236$

2. Exponentially Distributed Random Variables

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from scipy.stats import norm
a, b = 1, 3
N = 10000
mu_w = (a + b) / 2
sigmaW = np.sqrt((b - a) ** 2 / 12)
stack_sizes = [1, 5, 10, 15]
results = []
for n in stack sizes:
  results.append((n, mu s, sigmaS))
  stackThicknesses = [np.sum((b - a) * np.random.rand(n) + a) for _ in range(N)]
  plt.hist(stackThicknesses, bins=30, density=True, alpha=0.6, color='g',
label="Simulated PDF")
  x = np.linspace(min(stackThicknesses), max(stackThicknesses), 1000)
  plt.plot(x, norm.pdf(x, mu s, sigmaS), 'r-', lw=2, label="Normal PDF")
  plt.legend()
results df = pd.DataFrame(results, columns=["Number of Books (n)", "Mean Thickness
(cm)", "Std. Dev. Thickness (cm)"])
print(results df)
```


3. Distribution of the Sum of RVs

```
import numpy as np
import matplotlib.pyplot as plt
N = 10000
lambda param = 2
num bins = 50
U = np.random.uniform(0, 1, N)
T = -np.log(1 - U) / lambda_param
plt.figure(figsize=(10, 6))
plt.hist(T, bins=num_bins, density=True, alpha=0.6, color='blue', label='Histogram')
t = np.linspace(0, np.max(T), 1000)
f T = lambda param * np.exp(-lambda param * t)
plt.plot(t, f T, 'r', lw=2, label='Exponential PDF')
plt.title('Histogram of Battery Lifetime and Exponential PDF')
plt.xlabel('Battery Lifetime (T)')
plt.ylabel('Probability Density')
plt.legend()
plt.grid(True)
plt.show()
```


- 1. From the histogram and overlay, it's clear that the probability for S > 1095 (3 years) is extremely low, near 0.
- 2. The probability that the carton lasts between 2.0 and 2.5 years is effectively 0 due to the rapid decay of the exponential distribution.

QUESTION	ANS.
1. Probability that the carton will last longer than 2.5 years	0.0
2. Probability that the carton will last between 1.50 and 2.0years	0.0