In [27]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

Out[28]:

		CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
	0	1	Male	19	15	39
	1	2	Male	21	15	81
	2	3	Female	20	16	6
	3	4	Female	23	16	77
	4	5	Female	31	17	40
	•••					
	195	196	Female	35	120	79
	196	197	Female	45	126	28
	197	198	Male	32	126	74
	198	199	Male	32	137	18
	199	200	Male	30	137	83

200 rows × 5 columns

In [29]: dataset.isnull().sum()

Out[29]: CustomerID 0
Gender 0
Age 0
Annual Income (k\$) 0
Spending Score (1-100) 0
dtype: int64

In [30]: dataset.describe()

Out[30]:	ut[30]: CustomerID		Age	Annual Income (k\$)	Spending Score (1-100)	
	count 200.000000		200.000000	200.000000	200.000000	
	mean	100.500000	38.850000	60.560000	50.200000	
	std	57.879185	13.969007	26.264721	25.823522	
	min	1.000000	18.000000	15.000000	1.000000	
	25%	50.750000	28.750000	41.500000	34.750000	
	50%	100.500000	36.000000	61.500000	50.000000	
	75 %	150.250000	49.000000	78.000000	73.000000	
	max	200.000000	70.000000	137.000000	99.000000	

In [31]: dataset.dtypes

Out[31]: CustomerID int64
Gender object
Age int64
Annual Income (k\$) int64
Spending Score (1-100) int64
dtype: object

In [32]: dataset['Gender'].value_counts()

```
Out[32]: Gender
          Female
                     112
          Male
                      88
          Name: count, dtype: int64
         annual_income=dataset['Annual Income (k$)']
In [33]:
          spending score=dataset['Spending Score (1-100)']
In [34]: sns.scatterplot(x=annual_income,y=spending_score,data=dataset)
Out[34]: <Axes: xlabel='Annual Income (k$)', ylabel='Spending Score (1-100)'>
            100
             80
        Spending Score (1-100)
             60
             40
```

20

0

20

40

120

140

100

80

Annual Income (k\$)

60

```
Out[37]: array([[ 15, 39],
               [ 15, 81],
               [ 16,
                      6],
               [ 16, 77],
               [ 17, 40],
               [ 17, 76],
               [ 18,
                     6],
               [ 18, 94],
               [ 19,
                      3],
               [ 19, 72],
               [ 19, 14],
               [ 19, 99],
               [ 20, 15],
               [ 20, 77],
               [ 20, 13],
               [ 20, 79],
               [ 21, 35],
               [ 21, 66],
               [ 23, 29],
               [ 23, 98],
               [ 24, 35],
               [ 24, 73],
               [ 25,
                     5],
               [ 25, 73],
               [ 28, 14],
               [ 28, 82],
               [ 28, 32],
               [ 28, 61],
               [ 29, 31],
               [ 29, 87],
               [ 30,
                      4],
               [ 30, 73],
               [ 33,
                      4],
               [ 33, 92],
               [ 33, 14],
               [ 33, 81],
               [ 34, 17],
               [ 34, 73],
               [ 37, 26],
               [ 37, 75],
```

```
[ 38, 35],
```

- [38, 92],
- [39, 36],
- [39, 61],
- [39, 28],
- [39, 65],
- [40, 55],
- [40, 47],
- [40, 42],
- [40, 42],
- [42, 52],
- [42, 60],
- [43, 54],
- [43, 60],
- [43, 45],
- [43, 41],
- [44, 50],
- [44, 46],
- [46, 51],
- [46, 46],
- [46, 56],
- [46, 55],
- [47, 52],
- [47, 59],
- [48, 51],
- [48, 59],
- [48, 50],
- [48, 48],
- [48, 59],
- [48, 47],
- [49, 55],
- [49, 42],
- [50, 49],
- [50, 56],
- [54, 47],
- [54, 54],
- [54, 53],
- [54, 48],
- [54, 52],
- [54, 42],
- [54, 51],

- [54, 55],
- [54, 41],
- [54, 44],
- [54, 57],
- [54, 46],
- [57, 58],
- [57, 55],
- [58, 60],
- [58, 46],
- [59, 55],
- [59, 41],
- [60, 49],
- [60, 40],
- [60, 42],
- [60, 52],
- [60, 47],
- [60, 50],
- [61, 42],
- [61, 49],
- [62, 41],
- [62, 48],
- [62, 59],
- [62, 55],
- [62, 56],
- [62, 42],
- [63, 50],
- [63, 46],
- [63, 43],
- [63, 48],
- [63, 52],
- [63, 54],
- [64, 42],
- [64, 46],
- [65, 48],
- [65, 50],
- [65, 43],
- [65, 59],
- [67, 43],
- [67, 57],
- [67, 56],
- [67, 40],

```
[ 69, 58],
```

- [69, 91],
- [70, 29],
- [70, 77],
- [71, 35],
- [71, 95],
- [71, 11],
- [71, 75],
- [71, 9],
- [71, 75],
- [72, 34],
- [72, 71],
- [73, 5],
- [73, 88],
- [73, 7],
- [73, 73],
- [74, 10],
- [74, 72],
- [75, 5],
- [75, 93],
- [76, 40],
- [76, 87],
- [77, 12],
- [77, 97],
- [77, 36],
- [77, 74],
- [78, 22],
- [78, 90],
- [78, 17],
- [78, 88],
- [78, 20],
- [78, 76],
- [78, 16],
- [78, 89],
- [78, 1],
- [78, 78],
- [78, 1],
- [78, 73],
- [79, 35],
- [79, 83],
- [81, 5],

```
[ 81, 93],
[ 85, 26],
[ 85, 75],
[ 86, 20],
[ 86, 95],
[ 87, 27],
[ 87, 63],
[ 87, 13],
[ 87, 75],
[ 87, 10],
[ 87, 92],
[ 88, 13],
[ 88, 86],
[ 88, 15],
[ 88, 69],
[ 93, 14],
[ 93, 90],
[ 97, 32],
[ 97, 86],
[ 98, 15],
[ 98, 88],
[ 99, 39],
[ 99, 97],
[101, 24],
[101, 68],
[103, 17],
[103, 85],
[103, 23],
[103, 69],
[113,
       8],
[113, 91],
[120, 16],
[120, 79],
[126, 28],
[126, 74],
[137, 18],
[137, 83]], dtype=int64)
```

```
In [38]: from sklearn.cluster import KMeans
    wcss=[]
```

```
for i in range(1,11):
    km=KMeans(n_clusters=i,init='k-means++',random_state=42)
    km.fit(x)
    wcss.append(km.inertia_)

In [39]:
    sns.set()
    plt.plot(range(1,11),wcss,marker='o')
    plt.xlabel('no of cluster')
    plt.ylabel('wcss')
    plt.title('elbow point')
Out[39]: Text(0.5, 1.0, 'elbow point')
```



```
In [40]: plt.figure(figsize=(10,5))
    plt.plot([i for i in range(1,11)],wcss,marker='o')
    plt.xlabel('no of cluster')
    plt.xticks([i for i in range(1,11)])
    plt.ylabel('wcss')
    plt.show()
```


In [41]: kmeans=KMeans(n_clusters=5,init='k-means++',random_state=42)
 y=kmeans.fit_predict(x)
 print(y)

```
1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1
In [45]: plt.figure(figsize=(8,8))
     plt.scatter(x[y=0,0], x[y=0,1], s=50, c='green', label='cluster 1')
     plt.scatter(x[y==1,0], x[y==1,1], s=50, c='red', label='cluster 2')
     plt.scatter(x[y==2,0], x[y==2,1], s=50, c='yellow', label='cluster 3')
     plt.scatter(x[y==3,0], x[y==3,1], s=50, c='violet', label='cluster 4')
     plt.scatter(x[y=4,0], x[y=4,1], s=50, c='blue', label='cluster 5')
     plt.scatter(kmeans.cluster centers [:,0], kmeans.cluster centers [:,1], s=100, c='cyan', label='centroids')
     plt.title('customer groups')
     plt.xlabel('annual income')
     plt.ylabel('spending score')
     plt.show()
```


In []:			
In []:			