Digital Signal Processing for Music

Part 14: Digital Filters I

Andrew Beck

Filter - Broad Description

System that amplifies or attenuates certain components/aspects of a signal

Filter - Narrow

Linear time-invariant system for changing the magnitude and phase of specific frequency regions

- >> Example for other type of filters:
 - >> Adaptive and time-variant (e.g., denoising)
- >> Examples for "real-world" filters:
 - >> Reverberation
 - Absorption
 - >> Echo

Audio Equalization

- >> Parametric EQs
- >> Graphic EQs

Removal of Unwanted Components

- >>> Remove DC, rumble
- >>> Remove hum
- >>> Remove hiss

Pre-emphasis / De-emphasis

- >> Vinyl
- >> Old Dolby noise reduction systems

Weighting Function

>>> dBA, dBC, ...

(Parameter) Smoothing

>> Smooth sudden changes

Reminder: System Theory

>> Output of a system (filter) *y* computed by **convolution** of input *x* and impulse response *h*

$$y(t) = x(t) * h(t)$$

>> This is equivalent to a frequency domain multiplication

$$Y(\mathrm{j}\omega) = X(\mathrm{j}\omega) \cdot H(\mathrm{j}\omega)$$

$$H(\mathrm{j}\omega)=rac{Y(\mathrm{j}\omega)}{X(\mathrm{j}\omega)}$$

- >> Transfer function $H(j\omega)$ is complex, often represented as:
 - >> Magnitude $|H(j\omega)|$
 - >> Phase $\Phi_H(\mathrm{j}\omega)$

Common Transfer Function Shapes

Low/high pass filters

Band pass/band stop filters

Low/high shelving filters

Common Transfer Function Shapes

Peak filters

Resonanace/notch filters

Common Transfer Function Shapes

Filter Banks

Filter Banks

Filter Parameters - Lowpass/Highpass

- >> Cut-off frequency f_c
 - >>> Frequency marking the transition of pass to stop band
 - >> -3dB of pass band level
- >> Slope/steepness
 - >>> Measured in dB/octave or dB/decade
 - >> Typically directly related to filter order
- >>> Sometimes: resonance
 - >>> Level increase in narrow band around cut-off frequency

Filter Parameters - Bandpass/Bandstop

- >> Center frequency f_c
 - >>> Frequency marking the center of the pass or stop band
- \Rightarrow Bandwidth ΔB
 - >> Width of the pass band
 - >> at -3dB of max pass band level
- >>> Possibly: **slope**
 - >> Typically directly related to filter order

Filter Parameters - Peak

- >> Center frequency f_c
 - >>> Frequency marking the center of the peak
- >> Q factor or bandwidth ΔB
 - >> Width of the bell
 - >> at -3dB of max gain

$$Q=rac{f_c}{\Delta B}$$

>> Amplification / attenuation in dB

Filter Parameters - Overview

Parameter	Lowpass	Low Shelving	Band Pass	Peak	Resonance
Frequency	Cut-off	Cut-off	Center	Center	Center
Bandwidth/Q	Res. gain		ΔB	Q	
Gain		Yes		Yes	

Digital Filter Description

A filter is defined by its

- >> Complex transfer function $H(\mathrm{j}\omega)$
- >> Or ... its Impulse response h(t)
- >> Or ... its List of pole and zero positions in the Z-Plane

$$H(\mathrm{j}\omega)=\mathfrak{F}\{h(t)\}$$

Example Filter 1

$$y(i) = 0.5 \cdot x(i) + 0.5 \cdot x(i-1)$$

Example Filter 1: Transfer Function

$$egin{aligned} y(i) &= 0.5 \cdot x(i) + 0.5 \cdot x(i-1) \ H(z) &= 0.5 + 0.5 \cdot z^{-1} \ H(\mathrm{j}\omega) &= 0.5 + 0.5 \cdot e^{-\mathrm{j}\omega} \ |H(\mathrm{j}\omega)| &= 0.5 \cdot \left| e^{-\mathrm{j} \frac{\omega}{2}} \cdot \left(e^{\mathrm{j} \frac{\omega}{2}} + e^{-\mathrm{j} \frac{\omega}{2}}
ight)
ight| \ &= 0.5 \cdot \left| e^{-\mathrm{j} \frac{\omega}{2}}
ight| \cdot \left| \left(e^{\mathrm{j} \frac{\omega}{2}} + e^{-\mathrm{j} \frac{\omega}{2}}
ight)
ight| \ &= \left| \cos \left(\frac{\omega}{2}
ight)
ight| \end{aligned}$$

Example Filter 1: Visualization

Example Filter 2

$$egin{aligned} y(i) &= 0.5 \cdot x(i) - 0.5 \cdot x(i-1) \ H(z) &= 0.5 - 0.5 \cdot z^{-1} \ |H(\mathrm{j}\omega)| &= \left|\sin\left(rac{\omega}{2}
ight)
ight| \end{aligned}$$

Example Filter 2: Visualization

Example Filter 3

$$egin{aligned} y(i) &= 0.5 \cdot x(i) - 0.5 \cdot x(i-N) \ H(z) &= 0.5 - 0.5 \cdot z^{-N} \ |H(\mathrm{j}\omega)| &= 0.5 \cdot \left| e^{-\mathrm{j} rac{N\omega}{2}} \cdot \left(e^{\mathrm{j} rac{N\omega}{2}} - e^{-\mathrm{j} rac{N\omega}{2}}
ight)
ight| \ &= \left| \sin \left(rac{N\omega}{2}
ight)
ight| \end{aligned}$$

Example Filter 3: Visualization

Example Filter 4

$$y(i) = rac{1}{\mathcal{J}} \sum_{j=0}^{\mathcal{J}-1} x(i-j)$$

Example Filter 4: Transfer Function/Visualization

$$H(\mathrm{j}\omega) = e^{-\mathrm{j}\mathcal{J}rac{\omega}{2}} \, rac{\sin\left(\mathcal{J}\cdotrac{\omega}{2}
ight)}{\mathcal{J}\cdot\sin\left(rac{\omega}{2}
ight)}$$

Example Filter 4: Recursive Implementation

$$egin{aligned} y(i) &= \sum_{j=0}^{\mathcal{J}-1} rac{1}{\mathcal{J}} \cdot x(i-j) \ &= rac{1}{\mathcal{J}} \cdot ig(x(i) - x(i-\mathcal{J})ig) + \sum_{j=1}^{\mathcal{J}} rac{1}{\mathcal{J}} \cdot x(i-j) \ &= rac{1}{\mathcal{J}} \cdot ig(x(i) - x(i-\mathcal{J})ig) + y(i-1) \end{aligned}$$

Not applicable with windowed coefficients!

Example Filter 5

$$y(i) = (1-lpha)\cdot x(i) + lpha\cdot y(i-1)$$

= $x(i) + lpha\cdot (y(i-1)-x(i))$

Example Filter 5: Transfer Function

$$egin{aligned} y(i) &= (1-lpha) \cdot x(i) + lpha \cdot y(i-1) \ H(z) &= rac{1-lpha}{1-lpha z^{-1}} \ H(\mathrm{j}\omega) &= rac{1-lpha}{1-lpha e^{-\mathrm{j}\omega}} \ |H(\mathrm{j}\omega)| &= \left|rac{1-lpha}{1-lpha e^{-\mathrm{j}\omega}}
ight| \ &= rac{1-lpha}{\sqrt{(1+lpha^2-2lpha\cos(\omega))}} \end{aligned}$$

Example Filter 5: Visualization

Example Filter 6

$$y(i) = b_0 \cdot x(i) - a_N \cdot y(i-N)$$

Example Filter 6: Transfer Function/Visualization

$$H(\mathrm{j}\omega) = rac{b_0}{1-a_N \cdot e^{-\mathrm{j}\omega N}}$$

Biquad: Structure

Biquad: Structure

$$ext{diff eq}: y(i) = \sum_{k=0}^{K_1} b_k \cdot x(i-k) + \sum_{k=1}^{K_2} -a_k \cdot y(i-k)$$

$$ext{trans. fct}: H(z) = rac{Y(z)}{X(z)} = rac{\sum_{k=0}^{K_1} b_k \cdot z^{-k}}{1 + \sum_{k=1}^{K_2} a_k \cdot z^{-k}}$$

Summary

- >>> Filter (equalization) can be used for various tasks
 - >> Changing the sound quality of a signal
 - >> Hiding unwanted frequency components
 - >>> Smoothing
 - >>> Processing for measurement and transmission
- >> Most common audio filter types are:
 - >> Low/high pass
 - >> Peak
 - >> Shelving

Summary

- >> Filter parameters include:
 - >>> Frequency (mid, cutoff)
 - >> Bandwidth or Q
 - >> Gain
- >> Filter Orders:
 - >> Typical orders are 1st, 2nd, maybe 4th
 - >> Higher order give more flexibility wrt transfer function
 - >> Higher orders are difficult to design and control