Software Engineering using Formal Methods

Lecture Notes by Thomas Schulz Last Update: February 29, 2012 - 15:38

Lecture held in WS 2011/12 by: Prof. Dr. Reiner Hähnle Dr. Richard Bubel

Contents

Di	sclaimer II						
M	otiva	tion	III				
1	Mod	deling & Model Checking with Promela & Spin	1				
	1.1	PROMELA Introduction	1				
	1.2	Verifying with Spin	2				
	1.3	Modeling Concurrency	3				
	1.4	Introduction to Promela/Spin	4				
	1.5	Modeling Distribution	5				
	1.6	Propositional Logic & Temporal Logic (1)	6				
	1.7	Temporal Logic (2)	7				
	1.8	Channels & Linear Temporal Logic	8				
	1.9	Temporal Model Checking with Spin	9				
2	Mod	deling & Verification with JML & KEY	10				
	2.1	First-Order Logic (Syntax and Semantics)	10				
	2.2	First-Order Logic – Calculus	11				
	2.3	JML (1)	12				
	2.4	JML (2)	13				
	2.5	Dynamic Logic 1	14				
	2.6	Dynamic Logic Calculus	15				
	2.7	Proof-Obligations	16				
	2.8	Loop Invariants	17				

Ī

Disclaimer

This document is a summary of the lecture "Software Engineering using Formal Methods". It was created for personal study and exam preaparation.

The author do not warrant or assume any legal responsibility for the accuracy, completeness, or usefulness of any information described in this document.

Motivation

Defects in Software can cause (financially) *severe* and *omnipresent* failures. Unfortunately, best practices known from other engineering disciplines are not adaptable to developing software (see Table 1).

Table 1: Hardware vs. Software

Best Practices for Hardware	Why not for Software?
Redundancy	Does not help against bugs!
Separation of Subsystems	Usually not (completely) possible!
Precise Calculation	Software is too complex!
Follow patterns	No mature methods in SE!
Robust Design	Local Errors often affect the whole system!

One possible approach is to test a software product, but this shows only the *presence* of errors, not their *absence*. Besides, testing is always incomplete, expensive and time consuming.

This motivates the topic of the lecture. Formal methods provide tools to verify correctness and completeness. The idea for both parts of this course is to provide a specification of a system, provide a specification of the requirements and (semi-)automatically check whether the specification meets the requirements. The first part discusses an approach for concurrent processes while the second part adresses object-oriented programs.

1 Modeling & Model Checking with Promela & Spin

1.1 PROMELA Introduction

	1.	.2	Verify	/ing	with	SPIN
--	----	----	--------	------	------	------

1.3	Modeling	g Concurrency
-----	----------	---------------

1.4	Introduction	to Promela/	'SPIN

1.	5	Mode	elina	Dist	ribi	ution
•		IVIOU	- 111119	ינום		acioni

1.6 Propositional Logic & Temporal Logic (1)

1.7	Temporal	Logic ((2)
		,	\ — ,

1.8 Channels & Linear Temporal Logic

1.9	1.9 Temporal Model Checking with Spin	I.9 Temporal Model Checking with Spin					

2 Modeling & Verification with JML & KEY

2.1 First-Order Logic (Syntax and Semantics)

2.2	First-	Order	Logic -	· Calcu	lus
-----	--------	-------	---------	---------	-----

2.3 JML (1)

2.4 JML (2)

~ F	_				4
2.5	DVn	amic	LOO	IIC	1
	_ ,	~		,	-

2.6	Dyna	mic L	ogic	Cal	lcul	us
-----	------	-------	------	-----	------	----

2.7	Proof	-Oblic	ations
,		ONING	, a c. o

				-
) X	Loop	1 Inv	/arıa	ntc
2.0		, ,,,,	aria	1163