Digital Design and Computer Organization Laboratory UE19CS206

3rd Semester, Academic Year 2020-21

Date:

Name : Achyut Jagini	SRN: PES2UG19CS013	Section : A

Experiment Number: 7 Week #: 7

Title of the Program:

16 Bit Microprocessor Control Logic

Aim of the Program:

To Design and Implement the Microprocessor Control logic, which is essentially a finite state machine

Code (mproc.v)

```
Users > achyutjagini > Desktop > ddco lab > Week7 > ≡ mproc.v > ...
       module ir (input wire clk, reset, load, input wire [15:0] din, output wire [15:0] dout);
      dfrl dfrl_0 (clk,reset,load,din[0],dout[0]);
      dfrl dfrl_1 (clk,reset,load,din[1],dout[1]);
      dfrl dfrl_2 (clk,reset,load,din[2],dout[2]);
      dfrl dfrl_3 (clk,reset,load,din[3],dout[3]);
       dfrl dfrl_4 (clk,reset,load,din[4],dout[4]);
      dfrl dfrl_5 (clk,reset,load,din[5],dout[5]);
      dfrl dfrl_6 (clk,reset,load,din[6],dout[6]);
      dfrl dfrl_7 (clk,reset,load,din[7],dout[7]);
       dfrl dfrl_8 (clk,reset,load,din[8],dout[8]);
      dfrl dfrl_9 (clk,reset,load,din[9],dout[9]);
      dfrl dfrl_a (clk,reset,load,din[10],dout[10]);
      dfrl dfrl_b (clk,reset,load,din[11],dout[11]);
       dfrl dfrl_c (clk,reset,load,din[12],dout[12]);
       dfrl dfrl_d (clk,reset,load,din[13],dout[13]);
       dfrl dfrl_e (clk,reset,load,din[14],dout[14]);
```

```
assign rd_addr_b =cur_ins[5:5];

assign wr_addr =cur_ins[8:6];

assign op =cur_ins[10:9];

endmodule

module mproc (input wire clk, reset, input wire [15:0] ins, output wire [15:0] addr);

wire pc_inc, cout;

wire [2:0] rd_addr_a, rd_addr_b, wr_addr;

wire [1:0] op;

wire [15:0] cur_ins, d_out_a, d_out_b;

pc_pc_0 (clk,reset,pc_inc,1'b0,1'b0,16'b0,addr);

ir ir_0 (clk,reset,load_ir,ins,cur_ins);

control_logic control_logic_0 (clk,reset,cur_ins,rd_addr_a,rd_addr_b,wr_addr,op,pc_inc,load_ir,wr_reg);

reg_alu reg_alu_0 (clk,reset,1'b1,wr_reg,op,rd_addr_a,rd_addr_b,wr_addr,16'b0,d_out_a,d_out_b,cout);

endmodule
```

cur_ins [15:0]	ram	Octal Value Of cur_ins	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
0040 (Hex)	ram [0]	16'o 000100;	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	d_out_a+ d_out_b= FFFF+FFFF =FFFE with carry =1
0281 (Hex)	ram [1]	16'o 001100;	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	1	d_out_a- d_out_b= FFFE-FFFF =FFFF with borrow=1
04D1 (Hex)	ram [2]	16'o 002100	0	0	0	0	0	1	0	0	1	1	0	1	0	0	0	1	d_out_a AND d_out_b= FFFE AND FFFF=FFFE
071A (Hex)	ram [3]	16'o 003100;	0	0	0	0	0	1	1	1	0	0	0	1	1	0	1	0	d_out_a OR d_out_b= FFFF OR FFFE=FFFF

Output waveform

SCREENSHOT1(ADD Instruction)

cur_ins [15:0]	ram	Octal Value Of cur_ins	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
0040 (Hex)	ram [0]	16'o 000100;	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	d_out_a+ d_out_b= FFFF+FFFF =FFFE with carry =1

SCREENSHOT2(SUBTRACT Instruction)

cur_ins [15:0]	ram	Octal Value Of cur_ins	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
0281 (Hex)	ram [1]	16'o 001100;	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	1	d_out_a- d_out_b= FFFE-FFFF =FFFF with borrow=1

SCREENSHOT 3(AND Instruction)

cur_i [15:0	ram	Octal Value Of cur_ins	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
04D1 (Hex)	ram [2]	16'o 002100	0	0	0	0	0	1	0	0	1	1	0	1	0	0	0	1	d_out_a AND d_out_b= FFFE AND FFFF=FFFE

SCREENSHOT 4 (OR Instruction)

cur_ins [15:0]	ram	Octal Value of cur_ins	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
071A (Hex)	ram [3]	16'o 003100;	0	0	0	0	0	1	1	1	0	0	0	1	1	0	1	0	d_out_a OR d_out_b= FFFF OR
																			FFFE=FFFF

