Construção do Modelo Teórico de Poisson - Maria Inez Rodrigues Miguel

Os experimentos que foram realizados, conforme se pode constatar, referem-se ao estudo da radioatividade. A variável estudada foi o número de partículas emitidas por uma fonte radioativa durante um intervalo de tempo de duração t; seja W_t essa variável aleatória. Em cada experimento, foi determinada a distribuição de freqüências por tabela e gráfico e foram obtidas algumas medidas, como média e variância. Pretende-se construir um Modelo Teórico a fim de determinar as probabilidades da variável aleatória W_t , cujas freqüências correspondentes se aproximem dos valores experimentais encontrados.

Pode-se considerar que a variável aleatória W_t: número de partículas emitidas por uma fonte radioativa em um intervalo de duração t assume os valores: 0, 1, 2, 3, ..., já que o Modelo Teórico deve possibilitar o estudo do número de partículas emitidas por qualquer fonte e qualquer duração para o intervalo de tempo. Considerando uma determinada fonte e um intervalo de duração t, seja a partição do tempo (Fig 1):

Figura 1. Partição do tempo

A distribuição de probabilidades da variável aleatória W_t está representada na Tabela 1.

Tabela 1. Distribuição de probabilidades da variável aleatória W_t

$$W_t$$
 0
 1
 2
 3
 ...

 $P(W_t)$
 $P(W_t = 0)$
 $P(W_t = 1)$
 $P(W_t = 2)$
 $P(W_t = 3)$
 ...

Cálculo de $P(W_t = 0)$

Considere as variáveis aleatórias, $W_{\Delta\,t}$ $W_{t+\Delta\,t}$ definidas pelo número de partículas emitidas, por essa fonte radioativa, nos intervalos de duração $\Delta\,t$ e $t+\Delta\,t$, respectivamente, como indicado na Figura 17.

Figura 2. Número de partículas no intervalo $[0, t+\Delta t]$

A fim de que o Modelo Teórico possa ser construído, algumas hipóteses devem ser admitidas, hipóteses essas sugeridas pela observação dos experimentos realizados.

Como a fonte é a mesma, é razoável admitir-se a hipótese (\mathbf{H}_1) de que a distribuição do número de emissões é a mesma para todos os intervalos da partição. Dessa forma, observa-se que W_t , $W_{\Delta t}$ e $W_{t+\Delta t}$ têm a mesma distribuição de probabilidades, cada uma em relação à duração do intervalo de tempo considerado. Portanto, tem-se que:

$$P(W_{t+\Lambda t} = 0) = P(W_t = 0 \cap W_{\Lambda t} = 0)$$
 (1)

Outra hipótese (H_2) a ser admitida é que os números de ocorrências registrados nos intervalos de tempo da partição são independentes entre si; dessa forma, as variáveis aleatórias, W_t e $W_{\Delta t}$, são estatisticamente independentes, donde se pode escrever que:

$$P(W_{t+\Lambda t} = 0) = P(W_t = 0) . P(W_{\Lambda t} = 0)$$
 (2)

Como $\,W_{\Delta t}\,$ tem a mesma distribuição de probabilidades de $\,W_t\,$, mudando apenas a duração do intervalo de tempo, tem-se:

Tabela 2. Distribuição de probabilidades da variável aleatória $W_{\Delta t}$

Como P(
$$W_{\Delta t} = 0$$
) + P($W_{\Delta t} = 1$) + P($W_{\Delta t} = 2$) + P($W_{\Delta t} = 3$) + ... = 1,

tem-se que:
$$P(W_{\Delta t} = 0) = 1 - P(W_{\Delta t} = 1) - \sum_{k=2}^{\infty} P(W_{\Delta t} = k)$$
.

Substituindo o valor de $P(W_{\Delta t} = 0)$ na equação (2), tem-se:

$$P(W_{t+\Delta t} = 0) = P(W_t = 0) \cdot \left[1 - P(W_{\Delta t} = 1) - \sum_{k=2}^{\infty} P(W_{\Delta t} = k) \right]$$

de onde se obtém,

$$P(W_{t+\Delta t} = 0) = P(W_t = 0) - P(W_t = 0) \cdot \left[P(W_{\Delta t} = 1) + \sum_{k=2}^{\infty} P(W_{\Delta t} = k) \right]$$

ou ainda,

$$P(W_{t+\Delta t} = 0) - P(W_t = 0) = -P(W_t = 0) \cdot \left[P(W_{\Delta t} = 1) + \sum_{k=2}^{\infty} P(W_{\Delta t} = k) \right]$$

Dividindo ambos os termos por Δt , tem-se:

$$\frac{P(W_{t+\Delta t}=0)-P(W_t=0)}{\Delta \; t} = \text{-}\; P(W_t=0) \; . \; \left\lceil \frac{P(W_{\Delta t}=1)}{\Delta \; t} + \sum_{k=2}^{\infty} \frac{P(W_{\Delta t}=k)}{\Delta \; t} \right\rceil$$

Passando ao limite quando $\Delta t \rightarrow 0$ (Δt pequeno) tem-se:

$$\lim_{\Delta t \rightarrow 0} \frac{P(W_{t+\Delta t} = 0) - P(W_{t} = 0)}{\Delta t} = -P(W_{t} = 0) \cdot \left[\lim_{\Delta t \rightarrow 0} \frac{P(W_{\Delta t} = 1)}{\Delta t} + \sum_{k=2}^{\infty} \lim_{\Delta t \rightarrow 0} \frac{P(W_{\Delta t} = k)}{\Delta t} \right]$$
(3)

Levando-se em consideração os experimentos realizados, é razoável admitir-se a hipótese (H_3) de que **em um intervalo de pequena duração a probabilidade de se obter uma emissão é diretamente proporcional ao comprimento do intervalo**, isto é, existe um λ , real positivo, tal que:

$$P(W_{\Lambda t}=1) = \lambda \Delta t$$
 (ver texto sobre material radioativo) (4)

Admite-se, ainda, a hipótese (H₄) de que **em um intervalo de pequena duração a probabilidade de duas ou mais emissões é desprezível**, isto é,

$$P(W_{\Lambda t}=2) = P(W_{\Lambda t}=3) = ... = 0$$
, ou equivalentemente, $P(W_{\Lambda t}=k) = 0$, $\forall k \ge 2$ (5)

Substituindo (4) e (5) em (3), tem-se:

$$\lim_{\Delta t \to 0} \frac{\mathsf{P}(\mathsf{W}_{t+\Delta t} = 0) - \mathsf{P}(\mathsf{W}_t = 0)}{\Delta \, t} = -\, \mathsf{P}(\mathsf{W}_t = 0) \, . \, \left[\lim_{\Delta t \to 0} \frac{\lambda \, . \, \Delta \, t}{\Delta \, t} + \sum_{k=2}^{\infty} \lim_{\Delta t \to 0} \frac{0}{\Delta \, t} \right]$$

De onde se tem:

$$P'(W_t = 0) = -P(W_t = 0).\lambda$$
 ou $\frac{P'(W_t = 0)}{P(W_t = 0)} = -\lambda$

Integrando ambos os membros dessa última igualdade, vem:

$$\int \frac{P'\left(W_t=0\right)}{P(W_t=0)} dt = \int (-\lambda) \ dt \ , \ e, \ portanto, \qquad \int \frac{1}{P(W_t=0)} \ P'\left(W_t=0\right) dt = -\lambda \ t + c_1,$$

onde c₁ é real.

Assim, In $|P(W_t = 0)| + c_2 = -\lambda t + c_1$, onde c_1 e c_2 são reais.

 $\label{eq:como} \mbox{Como } P(W_t=0) \geq 0, \mbox{ tem-se: In } P(W_t=0) = -\,\lambda\,t + (c_1-c_2); \mbox{ considerando } c_3 = c_1 - c_2, \mbox{ vem que: In } P(W_t=0) = -\,\lambda\,t + c_3. \mbox{ e portanto, } e^{-\lambda\,t + c_3} = P(W_t=0) \mbox{ ,}$

ou ainda,
$$P(W_t = 0) = e^{-\lambda t} \cdot e^{c_3}$$
, isto é, $P(W_t = 0) = e^{-\lambda t} \cdot c_4$. (6)

É necessário admitir a hipótese (H₅) de que a probabilidade de nenhuma ocorrência em um intervalo de tempo nulo é um, isto é, se não tem intervalo de tempo

para a observação, com certeza, nenhuma emissão poderá ser observada. Note que a hipótese H_5 é imediata, mas é uma condição, para que se possa criar o Modelo Teórico.

Com essa hipótese, tem-se que $P(W_0=0)=1$; substituindo esse resultado em (6), tem-se que: $1=e^{-\lambda.0}$. $c_4\Rightarrow c_4=1$.

Dessa forma, chega-se a: $P(W_t = 0) = e^{-\lambda t}$, que é a probabilidade procurada.

Cálculo de P(W_t = 1)

Há dois casos exclusivos representados na Figura 18.

Figura 3. Emissão de uma partícula no intervalo [0, t+∆t]

$$\begin{split} P(W_{t+\Delta t} = 1) &= P\big[(W_t = 1 \ \cap \ W_{\Delta t} = 0) \ \cup \ (W_t = 0 \ \cap \ W_{\Delta t} = 1)\big] = \\ &= P(W_t = 1 \ \cap \ W_{\Delta t} = 0) + P(W_t = 0 \ \cap \ W_{\Delta t} = 1) = \\ &= P(W_t = 1) \ . \ P(W_{\Delta t} = 0) + P(W_t = 0) \ . \ P(W_{\Delta t} = 1) \end{split}$$

Substituindo os valores obtidos anteriormente, tem-se:

$$P(W_{t+\Delta t} = 1) = P(W_t = 1) . \left[1 - P(W_{\Delta t} = 1) - \sum_{k=2}^{\infty} P(W_{\Delta t} = k) \right] + e^{-\lambda t} . \ P(W_{\Delta t} = 1)$$

$$P(W_{t+\Delta t} = 1) - P(W_t = 1) = -P(W_t = 1). \left[P(W_{\Delta t} = 1) + \sum_{k=2}^{\infty} P(W_{\Delta t} = k) \right] + e^{-\lambda t}. P(W_{\Delta t} = 1)$$

Dividindo por Δt ambos os membros da igualdade acima e levando ao limite quando $\Delta t \rightarrow 0$ chega-se a:

$$P'(W_t = 1) = -P(W_t = 1).[\lambda + 0] + e^{-\lambda t}.\lambda$$
 ou $P'(W_t = 1) = -P(W_t = 1).\lambda + e^{-\lambda t}.\lambda$ (7)

A solução dessa última equação pode ser obtida, partindo-se da solução de:

 $P'(W_t=1)= -P(W_t=1).\lambda, \text{ que \'e o mesmo tipo de equação obtido anteriormente, cuja solução \'e: } P(W_t=1)=e^{-\lambda\,t}.c_4.\text{ A determinação do valor de } c_4 \'e \text{ um pouco diferente; note que esta deve ser a solução da equação: } P'(W_t=1)=-P(W_t=1).\lambda+e^{-\lambda\,t}.\lambda \text{ e para tal, } c_4 \text{ deve ser função de t. Admitindo, portanto, que } c_4=c(t), \text{ tem-se: } P(W_t=1)=e^{-\lambda\,t}.c(t) \text{ e conseqüentemente, } P'(W_t=1)=-\lambda.e^{-\lambda\,t}.c(t)+e^{-\lambda\,t}.c'(t). \text{ Substituindo esses dois resultados na equação } (7), \text{ pode-se encontrar o valor de } c(t).$

De fato, $-\lambda . e^{-\lambda t} . c(t) + e^{-\lambda t} . c'(t) = -\lambda . e^{-\lambda t} . c(t) + e^{-\lambda t} . \lambda$, de onde se tem: $c'(t) = \lambda$ e por integração segue que $c(t) = \lambda . t + k$. Dessa forma, $P(W_t = 1) = e^{-\lambda t} . c_4 = e^{-\lambda t} . c(t)$ $\Rightarrow P(W_t = 1) = e^{-\lambda t} . \lambda . t + k$, onde k é um número real. Como $P(W_0 = 1) = 0$, pois, sem intervalo de tempo é impossível obter-se uma emissão, tem-se que: $0 = e^{-\lambda 0} . \lambda . 0 + k \Rightarrow k = 0$. Assim, a probabilidade procurada é: $P(W_t = 1) = e^{-\lambda t} . \lambda . t$

Cálculo de $P(W_t = 2)$

Existem três casos exclusivos a serem considerados: 2 e 0, 1 e 1, 0 e 2 representados na Figura 19.

$$\begin{split} P(W_{t+\Delta t} = 2) = & P\big[(W_t = 2 \ \cap \ W_{\Delta t} = 0) \ \cup \ (W_t = 1 \ \cap \ W_{\Delta t} = 1) \ \cup \ (W_t = 0 \ \cap \ W_{\Delta t} = 2) \big] = \\ = & P(W_t = 2 \ \cap \ W_{\Delta t} = 0) + P(W_t = 1 \ \cap \ W_{\Delta t} = 1) + P(W_t = 0 \ \cap \ W_{\Delta t} = 2) = \\ = & P(W_t = 2) \ . \ P(W_{\Delta t} = 0) + P(W_t = 1) \ . \ P(W_{\Delta t} = 1) + P(W_t = 0) \ . \ P(W_{\Delta t} = 2) \end{split}$$
 Substituindo-se os valores obtidos anteriormente vem:

$$P(W_{t+\Delta t} = 2) = P(W_t = 2) \cdot P(W_{\Delta t} = 0) + e^{-\lambda t} \cdot \lambda t \cdot P(W_{\Delta t} = 1) + e^{-\lambda t} \cdot P(W_{\Delta t} = 2) = P(W_{\Delta t} = 2) \cdot P(W_{\Delta t} = 1) + e^{-\lambda t} \cdot P(W_{\Delta t} = 1) + e^{-\lambda t} \cdot P(W_{\Delta t} = 1) = P(W_{\Delta t} = 1) \cdot P(W_{\Delta t} = 1) + e^{-\lambda t} \cdot P(W_{\Delta t} = 1) + e^{-\lambda t} \cdot P(W_{\Delta t} = 1) = P(W_{\Delta t} = 1) \cdot P(W_{\Delta t} = 1) + e^{-\lambda t} \cdot P(W_{\Delta t} = 1) + e^{-\lambda t} \cdot P(W_{\Delta t} = 1) = P(W_{\Delta t} = 1) \cdot P(W_{\Delta t} = 1) + e^{-\lambda t} \cdot P(W_{\Delta t} = 1) + e^{-\lambda t} \cdot P(W_{\Delta t} = 1) = P(W_{\Delta t} = 1) \cdot P(W_{\Delta t} = 1) + e^{-\lambda t} \cdot P(W_{\Delta t} = 1) +$$

onde se obtém: $P(W_{t+\Lambda t} = 2) - P(W_t = 2) =$

$$= - P(W_t = 2). \left[P(W_{\Delta t} = 1) + \sum_{k=2}^{\infty} P(W_{\Delta t} = k) \right] + e^{-\lambda t}.\lambda \ t. \ P(W_{\Delta t} = 1) + e^{-\lambda t}. \ P(W_{\Delta t} = 2) \ (Fig \ 4)$$

Dividindo por Δt ambos os membros da igualdade acima e levando ao limite quando $\Delta t \rightarrow 0$, chega-se a:

$$P'(W_t = 2) = -P(W_t = 2).[\lambda + 0] + e^{-\lambda t}.\lambda t . \lambda + e^{-\lambda t}.0$$
 ou
$$P'(W_t = 2) = -P(W_t = 2).\lambda + e^{-\lambda t}.\lambda^2 t$$

A solução desta última equação pode ser obtida, partindo-se de P'($W_t=2$)= -P($W_t=2$). λ , que é o mesmo tipo de equação obtido anteriormente, cuja solução é: $P(W_t=2)=e^{-\lambda\,t}\,.\,c_5\,.$

Figura 4. Emissão de duas partículas no intervalo [0, t+∆t]

A determinação do valor de c_5 é feita de modo análogo ao que foi feito para c_4 . Note que $P(W_t=2)=e^{-\lambda\,t}$. c_5 , deve ser a solução da equação:

$$P'(W_t = 2) = -P(W_t = 2) \cdot \lambda + e^{-\lambda t} \cdot \lambda^2 t$$
 (8)

e para tal, c_5 deve ser função de t. Admitindo $c_5 = c(t)$, tem-se:

$$P\big(W_t=2\big)=e^{-\lambda\,t}\,.\,c(t)\;e\;consequentemente,\;P'\left(W_t=2\right)=-\lambda.e^{-\lambda\,t}.c(t)+e^{-\lambda\,t}.c'\left(t\right).$$

Substituindo-se esses dois resultados na equação (8), pode-se encontrar o valor de c(t). De fato, $-\lambda . e^{-\lambda \, t} . c(t) + e^{-\lambda \, t} . c(t) = -\lambda . e^{-\lambda \, t} . c(t) + e^{-\lambda \, t} . c(t)$

De onde se tem: c' (t) = λ^2 t . Integrando, tem-se que c (t) = $\frac{\lambda^2 t^2}{2}$ + k. Dessa forma,

$$P\big(W_t=2\big)=e^{-\lambda\,t}\,.\,c_5\,=\,e^{-\lambda\,t}\,.c(t)\,\Rightarrow\,P\big(W_t=2\big)=\,e^{-\lambda\,t}\,.\Bigg(\frac{\lambda^2t^2}{2}+k\Bigg),\,\text{onde k\'e uma constante}$$

Como P(W₀ = 2) = 0, isto é, se não há intervalo de tempo é impossível observar duas emissões, tem-se que: $0 = e^{-\lambda\,0} \cdot \left(\frac{\lambda^2 0^2}{2} + k\right) \Rightarrow k = 0.$

Assim, a probabilidade procurada é: $P(W_t = 2) = e^{-\lambda t} \cdot \frac{\lambda^2 t^2}{2} = e^{-\lambda t} \cdot \frac{(\lambda t)^2}{2}$.

Cálculo de P(W_t = 3)

Existem quatro casos exclusivos a serem considerados.

$$\begin{split} &P(W_{t+\Delta t}=3) = \\ &= P\big[(W_t=3 \cap W_{\Delta t}=0) \cup (W_t=2 \cap W_{\Delta t}=1) \cup (W_t=1 \cap W_{\Delta t}=2) \cup (W_t=0 \cap W_{\Delta t}=3)\big] = \\ &= P(W_t=3 \cap W_{\Delta t}=0) + P(W_t=2 \cap W_{\Delta t}=1) + P(W_t=1 \cap W_{\Delta t}=2) + \\ &+ P(W_t=0 \cap W_{\Delta t}=3) = \\ &= P(W_t=3) \cdot P(W_{\Delta t}=0) + P(W_t=2) \cdot P(W_{\Delta t}=1) + P(W_t=1) \cdot P(W_{\Delta t}=2) + \\ &+ P(W_t=0) \cdot P(W_{\Delta t}=3) \end{split}$$

Substituindo-se os valores obtidos anteriormente, obtém-se:

$$\begin{split} &P(W_{t+\Delta t}=3) = \\ &= P(W_t=3) \cdot P(W_{\Delta t}=0) + e^{-\lambda \, t} \cdot \frac{\lambda^2 \, t^2}{2} \cdot P(W_{\Delta t}=1) + e^{-\lambda \, t} \cdot \lambda \, t \cdot P(W_{\Delta t}=2) + e^{-\lambda \, t} \cdot P(W_{\Delta t}=3) = \\ &= P(W_t=3) \cdot \left[1 - P(W_{\Delta t}=1) - \sum_{k=2}^{\infty} P(W_{\Delta t}=k) \right] + e^{-\lambda \, t} \cdot \frac{\lambda^2 \, t^2}{2} \cdot P(W_{\Delta t}=1) + e^{-\lambda \, t} \cdot \lambda \, t \cdot P(W_{\Delta t}=2) + e^{-\lambda \, t} \cdot P(W_{\Delta t}=3) \end{split}$$

Pode-se escrever, portanto, que:

$$\begin{split} &P(W_{t+\Delta t}=3) - P\big(W_t=3\big) = \\ &= - P(W_t=3). \Bigg[P\big(W_{\Delta t}=1\big) + \sum_{k=2}^{\infty} P\big(W_{\Delta t}=k\big) \Bigg] + e^{-\lambda \, t} \cdot \frac{\lambda^2 \, t^2}{2} \cdot P(W_{\Delta t}=1) + e^{-\lambda \, t} \cdot \lambda \, t \cdot P(W_{\Delta t}=2) + \\ &+ e^{-\lambda \, t} \, P(W_{\Delta t}=3) \end{split}$$

Dividindo por Δt ambos os membros da igualdade acima e levando ao limite quando $\Delta t \rightarrow 0$, chega-se a:

$$\begin{split} P'\left(W_{t}=3\right) &= \text{-P}(W_{t}=3).[\lambda + 0] + e^{-\lambda \, t}.\frac{\lambda^{2} \, t^{2}}{2}.\,\lambda + \, e^{-\lambda \, t}.\lambda \, t \, .\, 0 + e^{-\lambda \, t}.0 \\ \\ \text{ou, } P'\left(W_{t}=3\right) &= \text{-P}(W_{t}=3).\,\lambda + \, e^{-\lambda \, t}.\frac{\lambda^{3} t^{2}}{2}. \end{split}$$

A solução desta última equação pode ser obtida, partindo-se da solução de $P'(W_t=3)=\ -P(W_t=3).\lambda,\ \text{que \'e o mesmo tipo de equação obtido antes; assim,}$ $P(W_t=3)=e^{-\lambda\,t}\,.\,c_6\,.$

A determinação do valor de c_6 é feita de modo análogo ao que foi feito para c_4 . Note que $P(W_t=3)=e^{-\lambda\,t}$. c_6 , deve ser a solução da equação:

$$P'(W_t = 3) = -P(W_t = 3) \cdot \lambda + e^{-\lambda t} \cdot \frac{\lambda^3 t^2}{2}$$
 (9)

e para tal, c_6 deve ser função de t. Admitindo $c_6 = c(t)$, tem-se:

$$P(W_t = 3) = e^{-\lambda t} \cdot c(t)$$
 e consequentemente, $P'(W_t = 3) = -\lambda \cdot e^{-\lambda t} \cdot c(t) + e^{-\lambda t} \cdot c'(t)$

Substituindo os dois resultados na equação (9), pode-se encontrar o valor de c(t).

De fato,
$$-\lambda . e^{-\lambda \, t} . c(t) + e^{-\lambda \, t} . c'(t) = -\lambda . e^{-\lambda \, t} . c(t) + e^{-\lambda \, t} . \frac{\lambda^3 t^2}{2}$$
, de onde se tem:

c' (t) =
$$\frac{\lambda^3 t^2}{2}$$
, que integrando, chega-se a: c (t) = $\frac{\lambda^3 t^3}{2.3}$ + k.

$$\text{Dessa forma, } P\big(W_t=3\big)=e^{-\lambda\,t}\,.\,c_6\,=\,e^{-\lambda\,t}\,.c(t)\, \Rightarrow\, P\big(W_t=3\big)=\,e^{-\lambda\,t}\,.\left(\frac{\lambda^3t^3}{3.2}+k\right),\,k\,\,\acute{\text{e}}\,\,cte.$$

Como P(W₀ = 3) = 0, tem-se que:
$$0 = e^{-\lambda 0} \cdot \left(\frac{\lambda^3 0^3}{3.2} + k\right) \implies k = 0.$$

Assim, a probabilidade procurada é:
$$P(W_t = 3) = e^{-\lambda t} \cdot \frac{(\lambda t)^3}{3!}$$
.

Apoiado nos resultados anteriores, pode-se fazer a conjectura de que a distribuição de probabilidades da variável aleatória W_t: número de partículas emitidas em um intervalo de duração t é dada pela fórmula:

$$P(W_t = k) = e^{-\lambda t} \cdot \frac{(\lambda t)^k}{k!}$$
 para $k = 0, 1, 2, 3, 4,...$

A fórmula é a representação algébrica dos valores da Tabela 3.

Tabela 3. Distribuição de probabilidades da variável aleatória W_t

A fim de constatar que a conjectura feita define uma distribuição de probabilidades, é necessário verificar se a soma das probabilidades é igual a um. De fato: $P(W_t = 0) + P(W_t = 1) + P(W_t = 2) + P(W_t = 3) + P(W_t = 4) + \dots =$

$$= e^{-\lambda t} \cdot \frac{(\lambda t)^{0}}{0!} + e^{-\lambda t} \cdot \frac{(\lambda t)^{1}}{1!} + e^{-\lambda t} \cdot \frac{(\lambda t)^{2}}{2!} + e^{-\lambda t} \cdot \frac{(\lambda t)^{3}}{3!} + e^{-\lambda t} \cdot \frac{(\lambda t)^{4}}{4!} + \dots =$$

(colocando-se $e^{-\lambda t}$ em evidência e usando-se o resultado do desenvolvimento em série de Mac Laurin da função $e^{\lambda t}$, tem-se o resultado a seguir)

$$= \, e^{-\lambda \,\,t} \quad \left\lceil \frac{(\lambda \,t)^0}{0\,!} + \frac{(\lambda \,t)^1}{1!} + \frac{(\lambda \,t)^2}{2\,!} + \frac{(\lambda \,t)^3}{3\,!} + \frac{(\lambda \,t)^4}{4\,!} + \ldots \right\rceil = \, e^{-\lambda \,t} \,. \, e^{\lambda \,t} = e^0 = 1 \,.$$

A variável aleatória discreta W_t definida por: número de partículas emitidas em um intervalo de duração t tem distribuição de probabilidades dada pela fórmula:

$$P(W_t = k) = e^{-\lambda t} \cdot \frac{(\lambda t)^k}{k!}$$
 para $k = 0, 1, 2, 3, 4,...$

e é definida como sendo uma variável aleatória discreta com distribuição de Poisson e parâmetro λt , cuja representação é: $W_t \sim P(\lambda t)$.

As Hipóteses de Poisson

As cinco hipóteses que foram necessárias, a fim de se construir o Modelo de Poisson são conhecidas com o nome de Hipóteses de Poisson ou Postulados de Poisson:

H₁. A distribuição do número de emissões é a mesma para todos os intervalos da partição. As variáveis aleatórias associadas ao número de emissões em intervalos de tempo não sobrepostos são independentes.

H₂. Os números de ocorrências registrados nos intervalos de tempo da partição são independentes entre si. O nº de partículas emitidas tem a mesma distribuição, em qualquer intervalo; ele depende apenas do comprimento do intervalo e não dos extremos.

H₃. Em um intervalo de pequena duração, a probabilidade de se obter uma emissão é diretamente proporcional ao comprimento do intervalo. Em um intervalo suficientemente pequeno, a probabilidade de haver só uma emissão é diretamente proporcional ao comprimento do intervalo: $P(W_{\Delta t}=1)=\lambda.\Delta t$.

 H_4 . Em um intervalo de pequena duração a probabilidade de duas ou mais emissões é desprezível. Em um intervalo suficientemente pequeno, a probabilidade de haver duas ou mais emissões é desprezível, isto é, $P(W_{\Lambda t}=k)\cong 0$, para todo $k\geq 2$.

 H_5 . A probabilidade de nenhuma ocorrência em um intervalo de tempo nulo é um. Chamada condição inicial do modelo, se t=0, (comprimento do intervalo de tempo é zero) com certeza não teremos emissões, isto é, $P(W_0=0)=1$. Como conseqüência, $P(W_0=k)=0$, para todo $k\geq 1$.