An approach to Carpooling, an implemented solution for traffic and contamination problems.

Alfredo José Ospino Ariza Jonatan David Acevedo López Medellín, 21/05/2019

Data Structures

Figure 1: A HashMap of Linked Lists that holds all the nodes and also a Linked List that takes in all nodes that have been already visited.

Algorithm and Complexity

Figure 2: The addition of cars into the list of used an filled cars

	Subproblems	Complexity	Total Complexity	
 N = the number of nodes the map has. A = the amount of line that are read of the data set. C = the number of cars that are being used to "carpool". L = the length of the list of the first value of the map. 	Adding nodes(vertexes) to the map.	O(A)		
	Obtaining the furthest, "middlest", closest away node and adding the filled cars to the list.	O(L)	0/1 *1 N	
	Finding the cars needed to do the carpooling.	O(L)	O(L*Log N)	

Table 1: The Complexity of the algorithm

Algorithm design criteria

We based ourselves on something similar to a Binary Search, because this solution is very convenient for our problem, which is finding the least number of needed cars in a list, so at the end it is not very different to the previously mentioned algorithm.

	Dataset	Dataset	Dataset
	205	11	4
Best	0.0003	0.00025s	0.000241
case	s		s
Average	0.00045	0.000425s	0.000395
case	s		s
Worst	0.00062	0.0006 s	0.00055
case	s		s

Time and Memory Consumption

	Dataset	Dataset	Dataset
	205	11	4
Memory consumption	8.4 MB	16 MB	16 MB

Figure 3: Memory consumption of the carpooling algorithm.

