lecture 08, functional completeness

phil1012 introductory logic

overview

this lecture

- some reflection on PL
- functional completeness: the idea that a given set of connectives is able to express all possible truth functions
- are the connectives of PL functionally complete?

learning outcomes

- after doing the relevant reading for this lecture, listening to the lecture, and attending the relevant tutorial, you will be able to:
 - explain what it means for a set of connectives to be functionally complete
 - define one set of connectives in terms of another set of connectives
 - determine whether a given set of connectives is functionally complete

required reading

• section 6.6 of chapter 6

functional completeness

functional completeness

- are our five connectives, in some sense, sufficient?
- are there formulas with truth conditions that cannot be constructed using our five connectives?
- are there any truth functions that cannot be expressed by some combination of our five connectives?
- ullet consider the equivalence of $(A \to B)$ and $(\neg A \lor B)$

A	B	$(A \rightarrow B)$	$(\neg A \lor B)$
Т	Т	Т	T
T F	Т	Т	${f T}$
T F	F	F	F
F	F	Т	Т

- \bullet we can construct a formula with the truth conditions of ($A \to B)$ using \neg and \vee
- ullet we can express the truth function expressed by ightarrow using \lnot and \lor
- \bullet so there's a sense in which we don't really need \rightarrow
- \bullet we could just use \neg and \lor instead of \rightarrow

 \bullet but now consider the truth table for a connective not included in our five, \vee

A	B	$(A \vee B)$
Т	Т	F
F	Т	Т
Т	F	Т
F	F	F

- can we construct a formula with the same truth conditions using connectives taken from our original five?
- it turns out that we can

	B	$(A \vee B)$	$\neg (A \leftrightarrow B)$
T F T	Т	F	F
F	Т	Т	${f T}$
Т	F	Т	${f T}$
F	F	F	F

- so there a sense in which we don't need to add \vee
- \bullet we can already express with our five connectives what we can express with \vee
- \bullet can we do what we just did for \rightarrow and $\underline{\vee}$ for any possible connective?
- can we express any possible truth function using just our five connectives?
- it turns out that we can
- with its five connectives, \neg , \land , \lor , \rightarrow , and \leftrightarrow , PL has the resources to construct a formula with any truth conditions whatsoever
- \bullet for any possible truth table, there is a formula of PL with that truth table
- our five connectives can express any possible truth function
- we call this feature, functional completeness
- a set of connectives is **functionally complete** if we can define all possible connectives from the connectives in that set
- let's prove it!
- first we'll get clearer on what it means to define one connective in terms of other connectives
- then we'll get clearer on the space of possible connectives
- then we'll prove that the set of connectives use in PL is functionally complete

defining one connective in terms of others

defining one connective in terms of others

- we can define connectives in terms of other connectives
- we show that a form using the connective to be defined is equivalent to a form using only the other connectives

- recall that two forms are **equivalent** if and only if they have the same truth value on every row of the truth table
- lets consider some examples
- \bullet the connective \rightarrow can be defined in terms of \neg and \vee

β	$(\alpha \to \beta)$	$(\neg \alpha \lor \beta)$			
Т	Т	Т			
F	F	F			
Т	Т	Т			
F	Т	Т			
	β Τ Γ Τ	T T F			

ullet the connective \leftrightarrow can be defined in terms of \to and \wedge

α	β	$(\alpha \leftrightarrow \beta)$	$((\alpha \to \beta) \land (\beta \to \alpha))$
Т	Т	Т	Т
\mathbf{T}		F	F
F	Т	Т	Т
F	F	Т	Т

 \bullet the connective \wedge can be defined in terms of \vee and \neg

$$\begin{array}{c|cccc} \alpha & \beta & (\alpha & \wedge & \beta) & \neg (\neg & \alpha & \vee & \neg & \beta) \\ \hline T & T & & T & & T \\ T & F & F & & F \\ F & T & F & & F \\ F & F & F & & F \end{array}$$

 \bullet the connective \vee can be defined in terms of \wedge and \neg

α	β	$(\alpha \vee \beta)$	$\neg(\neg\alpha\wedge\neg\beta)$
Т	Т	Т	Т
T F	F	Т	${f T}$
F	Т	Т	Т
F	F	F	F

- so, we can define connectives in terms of other connectives
- we show that a form using the connective to be defined is equivalent to a form using only the other connectives

the range of possible connectives

the range of possible connectives

- \bullet we want to show that we all possible connectives can be defined in terms of the five connectives of PL
- in order to do so we need to understand what all the possible connectives are
- there are zero place connectives, one place connectives, two place connectives, three place connectives, and so on
- possible zero place connectives

• possible one place connectives

α				
Т	Т	Т	F	F
F	т	F	т	F

- ullet we use $oxed{\mathbb{O}}_1$ for the first one-place connective
- the number in the circle represents the number of places of the connective
- the subscript represents the number of the connective

• possible one place connectives

α	\bigcirc_1	1)2	1)3	1)4
Т	Т	Т	F	F
F	Т	F	Т	F

• possible one place connectives

 \bullet $①_3$ is \neg

• possible two place connectives

α	β	2 ₁	2 ₂	2 ₃	24	2 ₅	2 ₆	2 ₇	2 ₈	2 ₉	② ₁₀	② ₁₁	② ₁₂	② ₁₃	214	② ₁₅	② ₁₆
Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	F	F	F	F	F	F	F	F
Т	F	Т	Т	Т	Т	F	F	F	F	Т	${f T}$	\mathbf{T}	${f T}$	F	F	F	F
F	Т	Т	Т	F	F	Т	Т	F	F	$^{\mathrm{T}}$	${f T}$	F	F	Т	${f T}$	F	F
F	F	Т	F	\mathbf{T}	F	$_{ m T}$	F	\mathbf{T}	F	Т	F	\mathbf{T}	F	\mathbf{T}	F	${f T}$	F

• possible two place connectives

α	β	2 ₁	٧	2 ₃	2)4	\rightarrow	26	\leftrightarrow	\wedge	2 ₉	② ₁₀	② ₁₁	2 ₁₂	2 ₁₃	214	② ₁₅	2 ₁₆
Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	F	F	F	F	F	F	F	F
Т	F	Т	Т	Т	Т	F	F	F	F	Т	Т	Т	Т	F	F	F	F
F	Т	Т	Т	F	F	Т	Т	F	F	Т	Т	F	F	Т	Т	F	F
F	F	Т	F	Т	F	Т	F	Т	F	Т	F	Т	F	Т	F	Т	F

- there are also three place connectives
- they look like this: \mathfrak{I}_1
- ullet they make propositions like this: $\mathfrak{I}_1(P,Q,R)$
- there are 256 three place connectives!
- there are also four place connectives
- they look like this: $\textcircled{4}_1$
- they make propositions like this: \bigcirc ₁(P,Q,R,S)
- there are 65,536 four place connectives!!

- obviously, we won't be proving that we can define any connective in terms of our five one by one!
- we better find a method that can obviously be extended to show that we can define any connective in terms of our five

defining any connective using \neg , \wedge , and \vee

defining any connective using \neg , \wedge , and \vee

- okay, we are finally ready to show that any possible connective can be defined in terms of our five
- \bullet in fact, we will show that any possible connective can be defined in terms of \neg , \wedge , and \vee
- obviously we aren't going to define them one by one
- we'll define the zero-place connectives first, one by one
- \bullet then we will develop a method for defining any n-place connective in terms of \neg , \wedge , and \vee
- the zero-place connectives \mathcal{T} and \mathcal{L} can be defined in terms of the connectives $\{\neg$, \wedge , \vee $\}$

$$\begin{array}{c|cccc} \alpha & T & (\alpha \vee \neg \alpha) & \bot & (\alpha \wedge \neg \alpha) \\ \hline T & T & T & F & F \\ F & T & T & F & F \end{array}$$

- so there's a sense in which we don't need the zero place connectives
- remember that to define one connective in terms of others, it is enough to show that formulas using them are equivalent
- now we show that any n-place connective can be defined in terms of { \neg , \wedge , \vee } by the following procedure
- take some n-place connective. call it '*'
- ullet and take any function from n truth values to truth values

$$\begin{array}{c|cccc} \alpha & \beta & (\alpha & \star & \beta) \\ \hline T & T & & T \\ T & F & & F \\ F & T & & T \\ F & F & & F \end{array}$$

- \bullet now take the conjunctions which 'describe' the rows in which (α * β) is true
- in this case: $(\neg \alpha \land \beta)$, $(\alpha \land \beta)$

$$\begin{array}{c|cccc}
\alpha & \beta & (\alpha & \star & \beta) \\
\hline
T & T & & T \\
T & F & F \\
F & T & & T
\end{array}$$

- in other words
 - if α is true on the row on which $(\alpha * \beta)$ is true, then make α the first conjunct
 - \circ if it is false, make $\neg \alpha$ the first conjunct
 - do the same for $\beta\,,$ and then do the same for each row on which $(\alpha$ * $\beta)$ is true
- by this method we get: $(\neg \alpha \land \beta)$, $(\alpha \land \beta)$
- now form a disjunction from the conjunctions you got from the previous step: $(\ \neg \alpha \wedge \beta) \lor (\ \alpha \wedge \beta)$
- and you are done!
- to see that you are done, you can put the disjunction into the table, and you will see that it is equivalent to the formula using '*'

		$(\alpha * \beta)$	$(\neg \alpha \land \beta) \lor (\alpha \land \beta)$
T T F	Т	Т	Т
Τ	F	F	F
F	Т	Т	Т
F	F	F	F

- any n-place connective can be defined in terms of $\{\neg, \land, \lor\}$ by this procedure!
- ullet it should be obvious that for any truth table whatsoever, we only need \neg , \wedge , and \vee to carry out the procedure of describing the row on which some proposition is true and making a disjunction of these conjunctions
- \bullet by this method we prove that { \neg , $\ \land$, $\ \lor$ } is a functionally complete set of connectives!

functionally complete sets of connectives

functionally complete sets of connectives

- \bullet okay, we just proved that {¬, \land , \lor } is a functionally complete set of connectives
- now let's consider the general case of functionally complete sets of connectives
- let's do so by considering some consequences of the fact that $\{\neg, \land, \lor\}$ is a functionally complete set of connectives
- fact: the set of connectives $\{\neg, \land, \lor\}$ is functionally complete
- \bullet to show that some set of connectives is functionally complete, it suffices to show that \neg , \wedge , and \vee , can be defined using members of that set
 - o if {¬, \land , \lor } is functionally complete, and ¬, \land , and \lor can be defined in terms of some other set of connectives, then that set must be functionally complete too
- fact: the set of connectives $\{\neg, \land\}$ is functionally complete
- \bullet $proof \colon \neg$, $\ \land$, and $\ \lor$ can be defined in terms of \neg and $\ \land$ alone, and

- fact: the set of connectives $\{\neg, \lor\}$ is functionally complete
- proof: \neg , \wedge , and \vee can be defined in terms of \neg and \vee alone, and $\{\neg$, \wedge , and \vee } is functionally complete
- fun fact: $\{2_9\}$ is a functionally complete set of connectives
- to sum up, then
- to show that some set of connectives is functionally complete, it suffices to show that \neg , and either \land or \lor , can be defined using members of that set (for then you can rely on the proof that $\{\neg$, \land , \lor } is functionally complete above)
- to show that a set of connectives is not functionally complete, we need to show that there is *some* connective that cannot be defined in terms of those in the set

wrapping up

this lecture

- with its five connectives, \neg , \land , \lor , \rightarrow , and \leftrightarrow , PL has the resources to construct a formula with any truth conditions whatsoever
- in other words, the set of connectives in PL are functionally complete
- \bullet you (probably) will not be required to prove that {¬, \land , \lor } is functionally complete
- but you will be required to prove that some given set of connectives is functionally complete
- \bullet to do so, you need only show that \neg , \wedge and \vee can be defined in terms of the connectives you are given

next lectures

- lecture 09, issues in translation: conjunction
- lecture 10, trees for PL