1.	In triangle $\triangle ABC$, point D lies on AC and point E lies on BC . Angles ABC and EDC are right angles. Given that $CD=6cm, AD=7cm$ and $AB=5cm$, what is the area of $ABED$?
2.	Four congruent circles, each of which is tangent externally to two of the other three circles, are circumscribed by a square of area $144cm^2$. If a small circle is then placed in the centre so that it is tangent to each of the circles, what is the diameter of the small circle?
3.	In quadrilateral $PQRS$, side PQ is parallel to and 3 times as long as side SR . Diagonals PR and QS intersect at $O, PO: OR = 1:3$ and $QO: OS = 1:4$. If ΔPQO has area $2cm^2$, find the area of $PQRS$.
4.	ABCD is an isoceles trapezium with AB parallel to DC , $AC = DC$ and $AD = BC$. If the height of the trapezium is equal to AB , find the ratio of $AB : DC$.
5.	In triangle ABC , M and N are points on AB and AC respectively such that $AM:MB=1:3$ and $AN:NC=3:5$. What is the ratio of $[MNC]:[ABC]$?
6.	Six right-angled triangles are assembled together. Given $PQ = a$ and $QR = 8a$, find $(b - a)(b + a)$ in terms of a .
7.	On side BC of $\triangle ABC$ point A_1 is taken so that $BA_1:A_1C=2:1$. What is the ratio in which median CC_1 divides segment AA_1 ?

8. Square PQRS is inscribed into ΔABC so that vertices P and Q lie on sides AB and AC and vertices

R and S lie on BC. Express the length of the squares side through a and h_a .

- 9. Consider heights AA_1 and BB_1 in acute triangle $\triangle ABC$. Prove that $A_1C \cdot BC = B_1C \cdot AC$.
- 10. Consider height CH in right triangle ABC with right angle C. Prove that $AC_2 = AB \cdot AH$ and $CH_2 = AH \cdot BH$.
- * 11. Four isoceles right triangles are removed from the four corners of a square piece of paper so that a rectangle remains. What is the length of the diagonal of the rectangle if the sum of the areas of the cut-off pieces is $200cm^2$?
- ** 12. Congruent radii PS and QR intersect tangent SR. If the two disjoint shaded regions have equal area and if PS = 10cm, what is the area of rectangle PRQS?
- ** 13. An equilateral triangle ABC has area $\sqrt{3}$ and side length 2. Point P is an arbitrary point in the interior of the triangle. What is the sum of the distances from P to AB, AC and BC?
- ** 14. Prove that the medians of a triangle meet at one point and this point divides each median in the ratio of 2: 1 counting from the vertex. (A median is a line from a vertex to the opposite side that divides the side equally)