A partial list of mathematical symbols and how to read them

Greek alphabet

A	α	alpha	В	β	beta	Γ	γ	gamma	Δ	δ	delta	Е	ϵ, ε	epsilon
Z	ζ	zeta	Н	η	eta	Θ	θ, ϑ	theta	Ι	ι	iota	K	κ	kappa
Λ	λ	lambda	Μ	μ	mu	N	ν	nu	Ξ	ξ	xi	О	0	omicron
П	π, ϖ	pi	Р	ρ, ϱ	rho	Σ	σ , ς	sigma	Т	au	tau	Υ	v	upsilon
Φ	ϕ, φ	phi	X	χ	chi	Ψ	ψ	psi	Ω	ω	omega			

Important sets

Ø	empty set		
N	natural numbers	$\{0,1,2,\ldots\}$	
N+	positive integer numbers	$\{1,2,\ldots\}$	
\mathbb{Z}	integer numbers	$\{\ldots, -2, -1, 0, 1, 2, \ldots\}$	
Q	rational numbers	$\{m/n: m \in \mathbb{Z}, n \in \mathbb{N}^+\}$	
\mathbb{R}	real numbers	$(-\infty, +\infty)$	
\mathbb{R}^+	positive real numbers	$(0,+\infty)$	
C	complex numbers	$\{x+iy:x,y\in\mathbb{R}\}$	(<i>i</i> is the imaginary unit, $i^2 = -1$)

Logical operators

A	for all, universal quantifier	$\forall n \in \mathbb{N}, n \geq 0$
3	exists, there is, existential quantifier	$\exists n \in \mathbb{N}, n \geq 7$
∃!	there is exactly one	$\exists ! n \in \mathbb{N}, n < 1$
\wedge	and	$(3>2)\wedge(2>1)$
	over an index set	$\bigwedge_{i\in\mathbb{N}} B_i = B_0 \wedge B_1 \wedge B_2 \wedge \cdots$
V	or	$(2 > 3) \lor (2 > 1)$
	over an index set	$\bigvee_{i\in\mathbb{N}} B_i = B_0 \vee B_1 \vee B_2 \vee \cdots$
\Rightarrow	implication, if-then	$\forall a, b \in \mathbb{R}, (a = b) \Rightarrow (a \ge b)$
\iff	biimplication, if-and-only-if	$\forall a, b \in \mathbb{R}, (a = b) \iff (b = a)$
	negation, not	$\neg(2>3)$
	alternative notations for negation	$\overline{(2>3)}$, $2 \not> 3$

Arithmetic operators

	absolute value	-7 = 7 = 7
\sum	summation	$\sum_{i \in \mathbb{N}^+} 2^{-i} = 1$
П	product	$\prod_{i=1}^{n} i = n!$
!	factorial	$7! = 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 = 5040$
$ \left(\begin{array}{c} n \\ m \end{array}\right) $	n choose m , combinatorial number	$\left(\begin{array}{c} n\\ m \end{array}\right) = \frac{n!}{(n-m)!m!}$
mod	modulo, remainder	$7 \mod 3 = 1, -8 \mod 5 = 2$
div	integer quotient	7 div 3 = 2, -8 div 5 = -2

Set operators

\in	in, membership	$a \in \{a, b, c\}$
U	union	$\{a,b,c\} \cup \{a,d\} = \{a,b,c,d\}$
	over an index set	$\bigcup_{i\in\mathbb{N}} S_i = S_0 \cup S_1 \cup S_2 \cup \cdots$
\cap	intersection	${a,b,c} \cap {a,d} = {a}$
	over an index set	$\bigcap_{i\in\mathbb{N}} S_i = S_0 \cap S_1 \cap S_2 \cap \cdots$
\	difference	$\{a,b,c\}\setminus\{a,d\}=\{b,c\}$
\supset	strict superset	$\mathbb{Z}\supset\mathbb{N}$
\supseteq	superset	$\mathbb{N} \subseteq \mathbb{N}$
	strict subset	$\mathbb{N}\subset\mathbb{Z}$
\subseteq	subset	$\mathbb{N}\subseteq\mathbb{N}$
2^A	power set of A	if $A = \{a, b, c\}$, then $2^A = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, A\}$

String, grammar, and formal language notation

λ	empty string (at times, ϵ is used instead of λ)	$\lambda a = a$
*	Kleene star, zero or more occurrences	$a^* = \{\epsilon, a, aa, aaa, \ldots\}$
+	one or more occurrences	$a^+ = \{a, aa, aaa, \ldots\}$
	string length	$ abc = 3, a^n = n, \epsilon = 0$
$A \to x$	A goes to x (grammar production)	
$A \Longrightarrow x$	$A ext{ derives } x$	
$A \stackrel{*}{\Longrightarrow} x$	A derives x in some number of steps	
$A \Longrightarrow_G x$	A derives x according to G	
$ \begin{array}{c c} A & \xrightarrow{G} x \\ \hline A & \xrightarrow{*} x \end{array} $	A derives x according to G in some number of steps	
$(q,aa) \vdash (p,a)$	(q,aa) yields (p,a) in one step	
$(q,aa) \stackrel{*}{\vdash} (p,a)$	(q,aa) yields (p,a) in some number of steps	
$(q,aa) \vdash_{M} (p,a)$	(q,aa) yields (p,a) in one step according to M	
$(q,aa) \stackrel{*}{\underset{M}{\vdash}} (p,a)$	(q,aa) yields (p,a) in some number of steps according to M	
$M \searrow w$	the Turing machine M halts on string w	
$M \nearrow w$	the Turing machine does not M halt on string w	

And remember...

0! = 1
$\forall n \in \mathbb{Z}, \forall m \in \mathbb{N}, m > 0 \Rightarrow n = (n \text{ div } m)m + (n \text{ mod } m)$
$\bigcup_{i\in\emptyset} S_i = \emptyset$
$\sum_{i \in \emptyset} n_i = 0$
$\prod_{i \in \emptyset} n_i = 1$