Ch05 雜奏原理

05-1雜獎的基本原理

Liberary banks of land of land of land of lands of lands

- 2. O'Hoshing: Enobles access to table items in time that is relatively constant regardless of
 - Thosh function: Maps the search key of a table Hem into a location that will contain the
 - @ Hosh table: An arroy that contains the table items, as assigned by a hash function
 - ⑤ Each search key into a unique location] ⇒ perfect All the scarch key one known

05-2 雜基碰撞

- When hosh function map have two or more items ⇒ defferent search key
 ⇒ the same location
- 2 Ex: How many people assigned 12 months such that collision is higher than 0.5?

 sol: Prob[Notifierent months] = \frac{11\times \times \time

05-3 雜湊函數的郵件

- 1. Assign each search key to a single location
 - 10 Easy and fast to compute
 - @Places items evenly throughout the hash table
 - 1 Involves the entire worch key
 - 1 Uses a prime base, if it use modulo arithmotic

at 11 day life of day	100
05-4霜奏函數	
1. Simple hos function ① Digit selection ⇒ does not distribute items evenly ② Folding ⇒ involves the entire search key ③ Modulo curilmetic ⇒ the table size should be prime ④ Converting character strings ⇒ use integers in the host function instead of search strings	1
2 Ex: の 10027104 シ 10+2+71+4 シ8キアシ15 ② 10027104 シ 10+2+71 +4 シ8ア%13 コ9 ④ 10027104 シ 49+48+48+50+55+49+48+52=399シ399%13=9 AbCII	
05-5 以線性探索解决碰撞	
1. O Probe for an empty location in the hoch toble As the host toble fills, collisions increase. Allows has table to accommodate more than one item in the same location	
2. Ex: 10027146 => sum % q ([0] 10027126 [1] 10027126 [5] [5] 10027126 [
05-6 碰撞造成的主要群聚現象	- 5.
1. Linear prolong >> Primary clustering problem ① Item tend to cluster together and large cluster took to get even larger ② Large culster cause larg prolong sequences (sequential search) ② sal: Empty locations ofter deletions would incorrectly stop a probing sequence	
05-7以平方探索解決碰撞	
1. Search the first location and then continue at the increments of 1^2 , 2^2 , 3^2 and so on $10021207 \Rightarrow 5+1^2 \rightarrow [6]$ $5+2^2 \rightarrow [2]$ $5+4^2 \rightarrow [0]$	200
2.0 May not visit every location in the host toble Orifferent keys at the same location creat the same protong sequence	
@ Table size must be privile (1)	- m
	-2

_05-8 變量碰撞

- 1 Step size: he(lay) = 5 (sum %5)
- 2 table size vs. step size
 - 1 If they are rebaively prime, the probing separate will vist every location in the book table

eg table one =18 , stop size=4-

05-9分開鍵結與多容器

- I Budets => Each location in the lash table is itself an array
- 2. Separate chaining => 0 Each location is a linked list

@ Successfully resolves collisions

The size of the hash table is dynamic.

Beach hash table location leeps a linked list

05-10 雜凑機制的效率

- 1. Average-case Analysis
 o Current number of items in the table / table size
 - @ Measure how full a hash table is
 - @ Unsuccessful searches generally require more time than successful searches

05-11雜湊總站

1. Inefficient operation

- 1 Traversal → Visit all the dota in sorted order
- @ NN Search => Find the Hem that has the smallest or the largest
- @ Ronge Query > Find the From between two search lays
- 2. Data with Multiple organization
 - o Independent ⇒ Do not support all operations efficiently ⇒ Worte space
 - ② Interdependent ⇒ Provide a better way to support a multiple organization of data Enqueue V.S. Dequeue ⇒ O(n) vs.O(1) Hosh Table ⇒ O(log n) vs.O(1)
- 3. Summy
 - 10 hosh function should be extremely easy to compute and should scatter the keys evenly throughout the hosh table
 - @ Collision occurs when two different search legs bash into the same array location
 - 1 hashing does not efficiently support operations and require the items to be sorted

05-12 以雜凑執行連結查詢

1.E	x: Accident	Mointenance		[0] -> CBC-300 -> LCD-123	
	MXT-612 LCD-123 IGA-214 NCC-719 MXT-500 I KK-100	NCL-719 LKK-100 DHT-911	⇒	[2] -> NCC-719 -> DHT-911 1 probe MXT-612(0] MXT-500(2) 5 builds 1 CD-128(0] LKK-100(1) 6 probes	=10 Companions

05-13 雜奏的應用

LEx: Nototion A 1 B 2 C 3 D 4	HI [0] 2 [1] 0 [2] 3 [3] 4	H2 [0] 6 [1] 1 [2] 3 [3] 1	CABAE 31212 LII	567 ;	ZXBABG 6342127 -	2626
1 25 1 2b	[4] T [5] 1 [6] 2 (key#2)	(4) 7 (key+3)%5		A 3 B 6	SABUD	ting:
	(iziys-1			0-12	EF	1 2

ChOb圖形概論

06-1七橋問題

1、V(G): verley set (項) E(G): edge set (退) G=[V,E]

degree: number of edges

2. vertex types > Odd or even degree (奇數or偶數)

06-2七橋問題的解決

1. Eulerian path/Euler wolk

⇒ visits every edge exactly once

⇒ 0 or 2 node with add degree

2. Eulerian circuit / Eular tour

⇒ begin and end at the same vertex

⇒ 0 node with odd degree

3. Edegree (V:)= |E(4)| x2

06-3應用於一筆畫

1、degree 為偶數才能一筆畫完(一直一出)

06-4圖形的相關術語

- 1. oundirected graph
 - 1 directed graph
 - ② odjacent vertices (相鄰)
 - 1 path
 - o cycle
 - 1 simple path
 - 1 simple cycle

Ob-5更多圖形的相關術語

- 1. O connected groph
 - Ocomplete graph
 - 3 strong connected graph
 - 1 weighted graph

06-6定義圖形的抽象資料型別

- 1. Oint numbertices;
 - @ int num Edges;
 - @ Int get Num Vertices ();
 - @ int getNumEdges ();
 - 6 int getWeight (Edge e);
 - @ void add (Edge e);
 - 1 void remove (Edge e);
- 2. most common implementations of a graph
 - ⇒ Adjacency wotrix
 - > Adjocency list

06-7相鄰矩陣

- 1. unweighted graph, matrix[i][j] is
 - ⇒ 1 (true) edge exists from vertex i to vertex j
 - ⇒ O (folse) edge not exists from vertex i to vertex j
- 2. weighted graph, motrix [i][j] 15
 - > the weight of edge from vertex i to vertex j
 - → oo (or O) no edge from vertex i to vertex j

06-8 相鄰串列

- 1. © array of n linked lists

 The linked list has a node for vertex j if edge exists from vertex i to vertex j
- 2. Adjacency matrix => Determine whether there is an edge from vertex i to vertex j is more efficiently
 - Adjacency list ⇒ Find all vertices adjacent to give vertex i is more efficiently
 ⇒ requires less space than adjacency matrix

06-9 循序表示法

1. nodes + edges

A undirected groph: |V|+2|E|+1

Atroverse(9) > O(V)2)

15 bool is Edge (Vertex u, Vertex v);

1) int getDegree (Vertex V);

@ bool is Connected (Groph 9);

@edgelist traverse (Graph 9);

Ob-10 圖形主訪

- 1. visit all the vertices that it can reach
- 2. prevent indefinite loops (break the cycle) ⇒ mark each vertex during a visit ⇒ never visit a vertex more than once

06-11 深度優先走訪

- 1. Depth-First Search (DFS) Traversal
 - ⇒ proceds along a path from a vertex as deeply into the graph as possible before backing up
 - ≥ last visited, first explored
 - > has a simple recursive form
 - ⇒ has on iterative form that uses a stack
- 2 recursive DFS (Vetex v)

 Mark v as visited;

 for (each unvisited vertex a adjacent to v)

 recursive DFS (a);

Ob-12 宽度優先走訪

- 1. Breadth-First Search (BF6) Traversal ⇒ visit every vertex adjacent to a vertex v before visiting any other vertex
 - → first visited, first explored
 - ⇒ Herative form uses a queue
 - -> recursive form is possible, not sample

2. iterative BFS (Vertex V)

9. createQueue();

q.enqueuery);

Mark v as visited;

white (19.18 Empty()) ?

q. dequeue(u);

for (each unvisited vertex w adjacent to u)[

Mork w as visited;

q.enqueue(w);

06-13圖形走訪序列

1. ex: z

×-Q

DF5: PRRX PW W5 ST WY YZ PRXWSTYZ

BFS: PR PW RX NO WY ST YZ PRWXSYTZ

07圖形應用

]-1初探拓楼拓排序

1. Topological order => directed graph without cycles (Acyclic Digraph or Directed Acyclic Graph, DAG)

Topological sorting >> Arranging the vertices into a topological order

07-2 拓樸排序的範例

07-3 拓樸排序的演算法版本一

I, topsort1: 0 find a vertex that has no succesor (aut-degree = 0)

@ Add the vortex to the beginning of a list

® Remove that vertex from the groph, as well as all edges that lead to it

Repeat the previous steps until the groph is empty immediate predecessors

2. Ex: out-degree

Number of Timhediote successors

Al - CAL ALGO - DO -DM CAL

DM

07-4 拓樸排序的演算法版本二

1. topSort 2: a modification of iterative DFS

@ push all vertices that no predecessor auto a stock

@ each time you pap a vertex from the stock, add it to beginning of a list of vertices

@ when end, the list of vertices will be in topological order

2. iterative DF5 (Vertex v)

5. creatStock(); 5. push(V); Mark v as visited;

White(!s.isEmpty())[

u=s.getTop(); if(unvisited vertex w is adjacent to u)[

s.push(w); Mark w as visited;

else s.pop();

07-5生成樹的簡介

- I. A tree is an undirected connected graph without cycles (acyclic)
- 2. A spooning tree of a connected undirected graph G is

⇒ A subgraph of G that contains all of G's vertices and enough of its edges to form a

=> Application example: communication network

3. Obtain a spanning from a connected undirected graph with cycles => Remove edges until there are no cycles

ON-b生成樹的特性

1, Connected underected graph > 10 has n vertices must have at least n-1 edges 1 has n vertices and exactly n-1 edges cannot contain a cycle @ has n vertices and more than n-1 edges must contain at least one

2. Two graphs Go and H are Isomorphic if and only if there is a bijection of between their vertex sets

2 node => 22.2=1 3 node = 33-2=3 > n^-2 4 node = 4+2=16

07-7以耆呂弗序列記錄一棵樹

1. Each labeled tree with n vertices has a unique Printer sequence of length n-2

2. Conversion algorithms > Leaf with the smallest label => Keep the label of its parent

3. Each Prater sequence of length n-2 has a unique labeled tree with n vertics

4. Ex: degree $A \longrightarrow B \rightarrow C$ 0 B-A-D-E 0 D->B 0

07-8 普呂佛序列的轉換練習

07-9以深度優先走訪建立生成樹

1. Use DFS and BFS and mark the edges that you follow

2. iterative DFS (Vertex v)

5. createStock(); count = 0;

5. push(v);

Mork v as visited;

While (!s.isEmpty() && count < |V|-1)[

U.5.getTop();

if (unvisited vortex w is adjacent to u)[

5. push(w); count++;

Mark w as visited;

else s.pop.();
J

T A-B-C-P
T B-A-C-P
T C-A-B
T P-A-B

DFS traversal sequence: AB &C BD

DBA

07-10最小生成樹

1. Cost of sponning tree ⇒ 5um of the edge weights on a spanning tree

2. Minimum spanning tree of a connected undirected graph has a minimal edge-weight sum ⇒ A porticular graph could have several minimum spanning trees

07-11 12 海滨省总量小生成村

- I o find the least-cost edge (v, u) from a visited vertex v to some unvisited vertex
 - 3 Mark 11 as visited
 - DAdd the vertex a and the edge (v, w) to the minimum sponning tree
 - @ Repeat the above stops until all vertices are visited
- 2. prime Algorithm (Vertex v) Marky as visited ; count =0 ; whole (country | vi-1) (v, u) = the loot-cost edge from visited to unisited Mark u. 06 visited is Add (V, u) into MST's count ++3

07-12 以 Kruskal 演算法示量小生成樹

- 1,0 Create a firest, where each vertex is a tree
 - @ Find the least-cost edge (v, u) where vertex v and vertex u are from two different
 - Merge the trees of vertex v and vertex u, and odd the edge (v, u) to the minimum sponning tree
 - @ Repeat the above steps until IVI-1 edge
- 2. Kruskal Algorithm()
 - Assign a unique label to each vertex; count=0; while (count < 1 VI-1) (v,u) = the least-cost edge of two vertices with different labels Assign win(u,v) to all vertices with these two labels is Add (Vou) into MST; count ++;

OT-13以sollin 演算法求最小生成村

I Create a forest, where each vertex is a tree

2 For each tree T, do the following steps:

O find least-cost edge (Vs U) where vertex is in T and vertex u is outside T

1) Merge the trees of vertex v and vertex u, and odd the edge(v, u)

3. Report step 2 until only one tree is left

4. sollin Algorithmic) Assign a unique label to each vertex; size=1V13

while (size>1)

Initialize Edges [1 .. size] as empty sets;

for each vertex V

L=V.lobel;

(v, u) = the loost-cost edge from v to u for any vertex with a different label;

if (Edges[1]. weight > (y, u). weight)

Edges[L]=(v,u);

for each edge (V, u) in Edges but not in M5T

Assign min(v.lobel, u.lobel) to vertices in the sets of v and u;

Add (vsu) to MST; size --;

07-14初採最短路徑

1. Sortest poth between two vertices in a weighted graph is the path that has the smallest sum of its edge weights

OT-15以Dijkstra) 寅算法求最短路徑

1.Ex:

step	٧	vertexort	[0]	[1]	[2]	[3]	[4]
1	-	0	0	8	5	9	4
2	4	0,4	0	7	5	8	4
3	2	0,4,2	0	7	5	8	4
4 5	3	0,4,2,1,3	0	7	5	8	4

07-16最短路徑數

- I. O Instictive vertexSet & weight & V=Vois
 - 1 Update neight each vertex u not in vertex bet, which is adjacent to V weight [w] = min [weight [u], weight [v] + edge Weight [v, u]]
 - D Final shorest partly from to be a among all path states from O, passes vertices in vertexet, and ends at a vertex not in vertexset if (weightful is minimum) vertex(et = vertex6et + [u];
 - @ Repeat steps 2, 3 until no more vertex can be added
- 2. Dijkstra Algorishmi vertex Vo)

weight[a..n]= [0,00,...00];

vertexset= 03 v=Vo3

do I Add v into vertexset;

for edgel v, u) where u is not in vertexset weight[u] = min [weight[u], weight[v] + edge Weight[v, u];

chespest = 003

for vertex u. not in vertexset

if (weight[u] < cheapest)[

V=Us cheapest = weight[4];

] while (cheopest < 00)

07-17 Dikstra 演算法的範例

1. Ex:

vertexSet = [A,D,B] weight = [0,7,00,5,00,11,00]

07-18 Dijlestra 演算法的正確性

 $1, \mathfrak{g}(\mathsf{p}) \geq \mathfrak{g}(\mathsf{p}') + \mathfrak{g}(\mathsf{x},\mathsf{y}) \geq \mathfrak{d}(\mathsf{x}) + \mathfrak{g}(\mathsf{x},\mathsf{y}) \geq \pi(\mathsf{y}) + \pi(\mathsf{y})$ defin of ruy)

weights

Dislistra choose V instead of y

07-19 Dijkstra演算法的應用

07-20 任氣點上間的最短路徑

1. Floyd-Worsholl algrithm

**D Introduce distance mother D'= adjacency matrix;

@ For k=0 to |V|-1

DK DK-1; 11 Add vertex & into vertexbet

For 1 = 0 to | V |-1

For je o to MI-1

0°[1,2] = min[0'[1,2], 0'[1,0] + 0'[0,2]]

07-21 Floyd 演算法的範例

1. 白向圖Ex:

01012	D°I	0	1	2	
0 0 4 11		0			
1 60 2	1	6	0	2	
23000	2	3	7	0	
09012	0'	0	1	2	
The same of the sa	D			6	
0046	O	950			
0 0 4 6 2 2 3 7 0	1		D		

2、無向圖Ex:

PABCD	DIABCD
0 4 2 8	A 0 4 2 7
4 0 1 3	B 4 0 13
2 1 0 10	C 2 1 0 4
8 3 10 0	D 7 3 4 0

0³ | AB C D A 0 3 2 6 B 3 0 | 3 C 2 | 0 4 D 6 3 4 0

○7-22以AF演算法 求最短路徑

- 1. OBFS by looping a priority queue and traversing a poth of the lowest expected total
 - (2) Combines two pieces of information
 - Dijkotra's algorithm: favor vertices dose to the origin
 - => Greedy best-first search: favor vertices close to the god

2. Ex:

h(B) = 14 < 7+9 h(L) = 12 < 5+9 h(D) = 17

h(0)=17 h(E)=9 h(F)=11 f(B) = g(B) + h(B) = 7 + 14 = 21f(0) = g(0) + h(0) = 5 + 17 = 22

f(0)=5+17=22 f(c)=9(c)+b(c)=7+8+12=27 f(E)=9(E)+b(E)=7+7+9=23

f(c) =15+12=27 f(E) =14+9=29 f(F) =9(F)+h(F)=5+6+11=22