PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation

李声涛 17214643 宋日辉 17214675 黄莉 17214619 管卓群 17214612 周晓梅 17214729

School of Data and Computer Science, SYSU

December 19, 2017

Group 10

PointNet

1/29

Content

- Introduction
- Problem Statement
- Deep Learning on Point Sets
- Experiment
- Conclusion

Introduction

- Title:
 - PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
- Keywords:
 - Deep Learning
 - Point Sets (3D)
 - · Classification and Segmentation
 - PointNet

Deep Learning

- Part of a broader family of machine learning methods
- Based on learning data representations
- Deep learning architectures: DNN, DBN, RNN, CNN...

(a) Deep Learning Structure

Point Sets

- A set of points.
- 2D point: (x, y)
- 3D point: (x, y, z)

(b) 2D Point Set

(c) 3D Point Set (Point Cloud)

Classification and Segmentation

- Classification: distinguish different classes
- Segmentation: figure out different parts

(d) Room

Neural Network Based Methods

- Volumetric CNNs: 3D voxel grids
 - Constrained by resolution

(e) 3D ShapeNet

Neural Network Based Methods

- Multi-view CNNs: collections of images
 - Nontrivial to extend them to scene understanding or other 3D tasks.

(f) MVCNN

PointNet

- A novel deep net architecture
- Input: points
- Output: points and scores for each label
- Tasks: 3D shape classification, shape part segmentation, and scene semantic parsing
- Simple, effective and robust

Figure: Task of PointNet

Problem Statement

- A point cloud is represented as a set of 3D points:
 - $\{P_i|i=1,...,n\}$
 - $P_i = (x, y, z)$
 - Extra feature channels: color, normal, etc.

Object Classification

- The input:
 Directly sampled from a shape

 Pre-segmented from a scene point cloud.
- The output:
 This deep network outputs k scores for all the k candidate classes.

Semantic Segmentation

- The input:
 A single object for part region segmentation
 A sub-volume from a 3D scene for object region segmentation.
- The output: This model will output $n \times m$ scores for each of the n points and each of the m semantic subcategories.

Deep Learning on Point Sets

- Properties of Point Sets
- PointNet Architecture

Properties of Point Sets

- Unordered
- Interaction among points
- Invariance under transformations

PointNet Architecture

- Symmetry Function for Unordered Input
- Local and Global Information Aggregation
- Joint Alignment Network

Figure: Architecture

Experiments

- Applications
- Architecture Design Analysis
- Visualizing PointNet
- Time and Space Complexity Analysis

Applications-3D Object Classification

- 12,311 CAD models
- from 40 man-made object categories,
- split into 9,843 for training and 2,468 for testing

	input	#views	accuracy	accuracy
			avg. class	overall
SPH [11]	mesh	-	68.2	-
3DShapeNets [25]	volume	1	77.3	84.7
VoxNet [15]	volume	12	83.0	85.9
Subvolume [16]	volume	20	86.0	89.2
LFD [25]	image	10	75.5	-
MVCNN [20]	image	80	90.1	-
Ours baseline	point	-	72.6	77.4
Ours PointNet	point	1	86.2	89.2
T 11 4 61 10 11 11 11 11 11 11 11 11 11 11 11 11				

Table 1. Classification results on ModelNet40. Our net achieves state-of-the-art among deep nets on 3D input.

Applications-3D Object Part Segmentation

- ShapeNet part data set
- 16,881 shapes from 16 categories, annotated with 50 parts in total
- mloU?

Applications-Semantic Segmentation in Scenes

- Stanford 3D semantic parsing data set
- The dataset contains 3D scans from Matterport scanners in 6 areas including 271 rooms. Each point in the scan is annotated with one of the semantic labels from 13 categories (chair, table, floor, wall etc)

Applications-Semantic Segmentation in Scenes

	mean IoU	overall accuracy
Ours baseline	20.12	53.19
Ours PointNet	47.71	78.62

Table 3. **Results on semantic segmentation in scenes.** Metric is average IoU over 13 classes (structural and furniture elements plus clutter) and classification accuracy calculated on points.

	table	chair	sofa	board	mean
# instance	455	1363	55	137	
Armeni et al. [1]	46.02	16.15	6.78	3.91	18.22
Ours	46.67	33.80	4.76	11.72	24.24

Table 4. **Results on 3D object detection in scenes.** Metric is average precision with threshold IoU 0.5 computed in 3D volumes.

Architecture Design Analysis

- Three approaches to achieve order invariance.
- ModelNet40 shape classification problem

Architecture Design Analysis

- Effectiveness of Input and Feature Transformations
- ModelNet40 shape classification problem

Transform	accuracy
none	87.1
input (3x3)	87.9
feature (64x64)	86.9
feature $(64x64)$ + reg.	87.4
both	89.2

Architecture Design Analysis

- Robustness Test
- ModelNet40 shape classification problem

Visualizing PointNet

 ullet critical point sets C_S & the upper-bound shapes N_S

Time and Space Complexity Analysis

- PointNet's space and time, complexity is O(N)
- point cloud classification: 1K objects/second
- semantic segmentation: 2 rooms/second
- 1080X GPU on TensorFlow

	#params	FLOPs/sample
PointNet (vanilla)	0.8M	148M
PointNet	3.5M	440M
Subvolume [16]	16.6M	3633M
MVCNN [20]	60.0M	62057M

Conclusion

- A brief introduction
- PointNet architecture
- Experiment result

Repeat the experiment

- Tensorflow
- CPU: i7 5700
- GPU: Geforce 1070
- Training time: 2h31min(classification) and 16h28min(part segmentation)

Heuristics

- Use it on robots
- Learn to create a novel structure
- Figure out a research idea

Traditional Point Cloud Processing

- Edge-based methods
- Model-based methods
- Region-based methods
- Attributes-based methods
- Graph-based methods

(a) A cup on the desk

(b) A part of leg