The University of Sheffield Department of Electronic and Electrical Engineering

EEE123 Problem Sheet

Background Knowledge Exercises

1 Work out in symbolic terms the Thevenin equivalent circuit of figure 1.

Analyse figure 2 using loop analysis and superposition and hence evaluate I_1 and V_3 . Calculate the Norton equivalent circuit components that will represent figure 2. What value of V_2 would make $I_1 = 0$? (0.706A, 7.88V, $I_N = 5.58$, $R_N = 1.41\Omega$, 15V)

Analyse figure 3 using loop analysis and superposition and hence evaluate I_1 and V_3 . Calculate the Thevenin equivalent circuit components that will represent figure 3. What value of I would make $V_3 = 0$? (3A, -6V, $V_{TH} = -6$ V, $R_{TH} = 2.4\Omega$, 1.25A)

In the following equations Z represents impedance, R_X (or r_X) represents resistance, C_X represents capacitance, L_X represents inductance and ω is angular frequency. I_X is current, V_X is voltage and I_X is any subscript. By checking dimensional consistency, identify those equations that must be incorrect together with the term(s) causing the problem.

(i)
$$I_B = \frac{V_1 - V_2}{R_4} + \frac{V_S - V_2}{R_{17} - R_9} + \frac{I_5}{R_6} + \frac{I_4}{2}$$

(ii)
$$V_O - I_2 R_6 = 6V_3 + \frac{I_3 (R_1 + R_2) + I_4 (R_8 + 1)}{\frac{R_7}{R_6} + \frac{R_5}{R_4} + R_3}$$

(iii)
$$r_{o} = \frac{\frac{(\beta + 1)R_{E}}{r_{be} + (\beta + 1)R_{E}} \cdot \frac{R_{B} / / r_{it}}{R_{S} + R_{B} / / r_{it}}}{\frac{(\beta + 1) R_{B} / / r_{be}}{r_{be} (R_{S} + R_{B} / / r_{be})}} \text{ where } \beta \text{ is a constant.}$$

(iv)
$$v_i (j\omega)^2 C_1 C_2 R_1 R_2 = v_o (1 + j\omega C_2 R_1 + j\omega (C_1 + C_2) R_2 + (j\omega)^2 C_1 C_2 R_1 R_2 + j\omega C_2 R_1 R_2)$$

(v)
$$\frac{v_o}{v_i} = \frac{-j\omega C_2 R_1}{1 + j\omega (C_1 + C_2)R_2^2 + (j\omega) C_1 R_2 C_2 R_1}$$

(vi)
$$Z = 1 + \frac{j\omega L}{1 + j\omega CR}$$

(vii)
$$Z = \frac{R_1 - \omega^2 L C R_2 + j \omega (L + C R_1 R_2)}{1 - \omega^2 L C + j \omega C (R_1 + R_2)}$$