

Mathématiques

Classe: BAC

Chapitre: Dérivabilité

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

Exercice 1

(5) 25 min

5 pts

La courbe ci-dessous, est la représentation graphique d'une fonction f définie sur $IR \setminus \{1\}$. On a tracé sur le graphique les asymptotes à **(C)** (droites bleues en pointillés) Par lecture graphique compléter :

- **1°) a)** f(-4) et f(2).

 - **b)** $\lim_{x \to \infty} f(x)$; $\lim_{x \to +\infty} f(x)$; $\lim_{x \to 1} f(x)$. **c)** $\lim_{x \to +\infty} f(x) + x + 3$ et $\lim_{x \to +\infty} \frac{2}{f(x) 1}$.
- **2°) a)** f'(-4) ; f'(-1) ; $f_g'(-2)$ et f''(-1).
 - **b)** Quel est le signe de $f''\left(\frac{-1}{2}\right)$?
- 3°) a) f est-elle dérivable à droite en -2? Déterminer alors $\lim_{x\to(-2)^+} \frac{f(x)-4}{x+2}$.

- b) Déterminer une équation de la tangente T au point d'abscisse −1.
- **4°) a)** Déterminer le signe de f sur IR $\setminus \{1\}$.
 - **b)** Dresser le tableau de variation de la fonction f sur IR $\setminus \{1\}$.
- **5°)** Soit g la restriction de f sur l'intervalle $]1;+\infty[$. On désigne par (C_a) la courbe représentative de g et par (Γ) la courbe qui est symétrique de (C_g) par rapport à la droite d'équation y = x.

Tracer les courbes (C_q) et (Γ) .

Exercice 2

(S) 20 min

4 pts

Dans le graphique ci-dessous (C_g) est la courbe représentative, dans un repère orthonormé $(0,\vec{i},\vec{j})$, d'une fonction g dérivable sur IR.

- ullet (\mathcal{C}_g) Possède une asymptote oblique Δ au voisinage de $-\infty$.
- \bullet L'axe des abscisses est asymptote à (\mathcal{C}_g) au voisinage de $+\infty$.

1°) Déterminer par une lecture graphique :

$$\lim_{x\to +\infty} g, \lim_{x\to -\infty} (g(x)+3x), g\circ g(0), (g\circ g)'(0) \text{ et } g\circ g([-2,+\infty[).$$

- **2°)** Montrer que l'équation g'(x) = -1 admet au moins une solution $c \in]-3,-2[$.
- **3°)** Soit f la fonction dérivable sur IR qui s'annule en (-4) et dont la fonction dérivée f' est la fonction g.

La courbe (C_f) représentative de f possède une branche parabolique de direction celle de l'axe des abscisses au voisinage de $+\infty$ et une branche parabolique de direction celle de l'axe des ordonnées au voisinage de $-\infty$.

- a) Dresser le tableau de variation de f sur IR et donner $\lim_{x\to +\infty} \frac{f(x)}{x}$ et $\lim_{x\to -\infty} \frac{f(x)}{x}$.
- **b)** Justifier que (C_f) possède un unique point d'inflexion I qu'on précisera l'abscisse.

Exercice 3

(5) 25 min

5 pts

Soit la suite (u_n) définie sur IN par : $u_0 = 1$ et pour tout $n \in IN$: $u_{n+1} = u_n + \frac{1}{4}(2 - u_n^2)$.

- **1°)** Soit la fonction f définie sur [1,2] par : $f(x) = x + \frac{1}{4}(2-x^2)$.
 - a) Montrer que pour tout $x \in [1,2], |f'(x)| \le \frac{1}{2}$.
 - **b)** Montrer que pour tout $x \in [1,2]$ on a : $\left| f(x) \sqrt{2} \right| \le \frac{1}{2} \left| x \sqrt{2} \right|$.
- **2°) a)** Montrer par récurrence, que pour tout $n \in IN$, $1 \le u_n \le 2$.
 - **b)** Montrer, que pour tout $n \in \mathbb{N}$, $\left|u_{n+1} \sqrt{2}\right| \le \frac{1}{2} \left|u_n \sqrt{2}\right|$
 - **c)** En déduire que pour tout $n \in IN$, $\left|u_n \sqrt{2}\right| \le \left(\frac{1}{2}\right)^n$. Déterminer alors $\lim_{n \to +\infty} u_n$.

Exercice 4

5 pts

Dans l'annexe ci-jointe Figure 1, on a tracer dans un repère orthonormé $\left(O,\vec{i},\vec{j}\right)$ la courbe C représentative d'une fonction f définie continue et strictement croissante sur $[-1;+\infty[$ et dérivable sur $]-1;+\infty[$.

La courbe C admet:

- Une demi-tangente verticale au points A(-1,-1).
- Une tangente horizontale au point O.
- Une tangente T au point $B\left(1,\frac{1}{2}\right)$ passant par le point $C\left(\frac{1}{2},0\right)$.

- 1) Par lecture graphique:
 - a) Déterminer f'(0); f'(1); $\lim_{x \to -1^+} \frac{f(x)+1}{x+1}$ et $\lim_{x \to +\infty} \frac{f(x)}{x}$.

- b) Dresser le tableau de variation de f.
- 2) Montrer que C admet dans $\left[-1,1\right]$ une tangente parallèle à T .
- 3) Soit u et h les fonctions définies sur $]-1;+\infty[$ par $:u(x)=\frac{-x}{x+1}$ et h=fou. Calculer $\lim_{x\to-1^+}h(x)$, $\lim_{x\to+\infty}h(x)$ et h'(0).

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

www.takiacademy.com

73.832.000