

Ayudantía 4 - Repaso I1

5 de abril de 2024

Héctor Núñez, Paula Grune, Manuel Irarrázaval

1. Interpretaciones

Debemos notar que para cada una de las estructuras solo una de las cuatro fórmulas será verdadera, es decir, la fórmula debe distinguir a cada estructura. En particular, las fórmulas van a distinguir propiedades del dominio de cada una de las estructuras.

Sean las siguientes fórmulas:

•
$$\phi_{\text{denso}} = \forall x \forall y (x < y \rightarrow \exists z (x < z \land z < y))$$

•
$$\phi_{\text{minimo}} = \exists x \forall y (\neg (y < x))$$

Entonces, construimos las fórmulas:

- $\phi_1 = (\neg \phi_{\text{denso}} \land \phi_{\text{minimo}})$
- $\phi_2 = (\neg \phi_{\text{denso}} \land \neg \phi_{\text{mínimo}})$
- $\phi_3 = (\phi_{\text{denso}} \wedge \neg \phi_{\text{minimo}})$
- $\phi_4 = (\phi_{\text{denso}} \wedge \phi_{\text{mínimo}})$

1.1. Explicación de las fórmulas:

- $\phi_{\text{mínimo}}$: Esta fórmula establece que existe un elemento que no tiene elemento menor en el dominio. Esto es verdadero para \mathbb{N} (con el mínimo elemento 1) y $\mathbb{Q} \cap [0, 1]$ (con el mínimo elemento 0), y falso para \mathbb{Z} y \mathbb{Q} que no tienen un elemento mínimo.
- ϕ_{denso} : Esta fórmula establece que entre cualesquiera dos elementos distintos, existe otro elemento. Esto es verdadero para \mathbb{Q} y $\mathbb{Q} \cap [0,1]$, y falso para \mathbb{N} y \mathbb{Z} donde hay elementos consecutivos.

Combinando estas propiedades:

- $\phi_1 = (\neg \phi_{\text{denso}} \land \phi_{\text{minimo}})$: Es verdadera para \mathbb{N} porque no es denso (e.g., no hay un número entre 1 y 2) y tiene un minimo elemento (1). Es falsa para las otras estructuras.
- $\phi_2 = (\neg \phi_{\text{denso}} \land \neg \phi_{\text{minimo}})$: Es verdadera para \mathbb{Z} porque no es denso y no tiene un elemento minimo. Es falsa para las otras estructuras.
- $\phi_3 = (\phi_{\text{denso}} \wedge \neg \phi_{\text{minimo}})$: Es verdadera para \mathbb{Q} porque es denso y no tiene un elemento minimo. Es falsa para las otras estructuras.
- $\phi_4 = (\phi_{\text{denso}} \land \phi_{\text{minimo}})$: Es verdadera para $\mathbb{Q} \cap [0, 1]$ porque es denso y tiene un elemento minimo (0). Es falsa para las otras estructuras.

2. Modelamiento de Lógica de Predicados/Lógica de primer orden

Sea \leq y = símbolos de predicado binario y P un símbolo de predicado unario. Considere la interpretación $\mathcal I$ definida como:

$$\mathcal{I}(\text{dom}) := \mathbb{N}$$

$$\mathcal{I}(=) := n = m \text{ si y solo si } n \text{ es igual a } m.$$

$$\mathcal{I}(\leq) := n \leq m \text{ si y solo si } n \text{ es menor o igual que } m.$$

$$\mathcal{I}(P) := P(n) \text{ si y solo si } n \text{ es primo}$$

Escriba la siguiente expresión en lógica de predicados sobre la interpretación \mathcal{I} :

"Para todo par de números primos distintos de 2 y 3, hay un número natural entre ellos que no es primo"

Solución

Considere los siguientes predicados:

- $Entre(x, y, z) := x \le y \le z \land \neg(x = y) \land \neg(y = z)$ (y está entre x y z).
- $S(x,y) := x < y \land \neg(x=y) \land (\neg \exists z.Entre(x,z,y)) \ (y \text{ es sucesor de } x).$
- $0(x) := \forall y.(x < y) (x \text{ es } 0).$
- $1(x) := \exists y.(0(y) \land S(y,x)) \ (x \text{ es } 1).$
- $2(x) := \exists y.(1(y) \land S(y,x)) \ (x \text{ es } 2).$
- $3(x) := \exists y.(2(y) \land S(y,x)) \ (x \text{ es } 3).$
- $PrimoNo2No3(x) := P(x) \land \neg 2(x) \land \neg 3(x)$ (x es un número primo distinto de 2 y 3).

Usando estos predicados, la oración pedida es la siguiente:

$$\forall x \forall y. ((PrimoNo2No3(x) \land PrimoNo2No3(y)) \rightarrow (\exists z. (Entre(x, z, y) \land \neg P(z))))$$

3. Satisfacibilidad

Sean p_1, \ldots, p_n variables proposicionales. Por el hint del enunciado sabemos que existen 2^{2^n} tablas de verdad distintas. Fijando la valuación $(0, 0, 0, \ldots, 0)$ como verdadera en todas las tablas, dado que b_i puede tomar el valor 0 o 1, se tiene que para $b = (1, b_2, b_3, \ldots, b_{2^n})$ existen 2^{2^n-1} valores distintos, generando así 2^{2^n-1} tablas de verdad distintas.

La construcción de estas tablas se puede visualizar como:

p_1	p_2	p_3		p_n	α_i
0	0	0		0	1
0	0	0		0	b_2
÷	:	:	٠.	:	:
1	1	1		1	b_{2^n}

Sea $\vec{v_i}$ la valuación en la fila i de la tabla de verdad. Dado el argumento anterior, se tienen $m=2^{2^n-1}$ tablas de verdad distintas tal que para la valuación $(0,0,0,\ldots,0)$ es verdadero. Sean T_1,\ldots,T_m con $m=2^{2^n-1}$ tablas distintas. Como se vio en clases, por cada tabla T_i es posible construir una fórmula α_i tal que $b_j=1$ si, y solo si, $\alpha_i(\vec{v_j})=1$.

Nos queda demostrar los siguientes puntos sobre $\alpha_1, \ldots, \alpha_m$:

- 1. $\alpha_i \not\equiv \alpha_j$ para todo $i \neq j$: Como T_i y T_j son distintas tablas de verdad entonces tenemos que existe una fila k tal que $T_i(\vec{v}_k) \neq T_j(\vec{v}_k)$. Entonces $\alpha_i(\vec{v}_k) \not\equiv \alpha_j(\vec{v}_k)$, lo que implica que $\alpha_i \not\equiv \alpha_j$.
- 2. $m = 2^{2^{n}-1}$: Por construcción, se generaron $2^{2^{n}-1}$ tablas de verdad distintas, por lo tanto, $m = 2^{2^{n}-1}$.
- 3. $\Sigma = \{\alpha_1, \ldots, \alpha_m\}$ es satisfacible: Con la valuación $(0, 0, 0, \ldots, 0)$ se cumple que $\alpha_i(0, 0, 0, \ldots, 0) = 1$ para todo i. Entonces Σ es satisfacible.