Turing-Equivalence of $Th(\mathcal{N}, +, \times)$

An interjection not found in the book

Peano Arithmetic

- Axioms of natural arithmetic made by Giuseppe Peano
- ► The natural numbers with addition and multiplication
 - ightharpoonup AKA $Th(\mathcal{N},+,\times)$
- Later used by Gödel, Church, and Turing to kill logic

Implicit Functions and Iteration in Peano Arithmetic

- ▶ We are limited to two relations: + and ×
- ▶ However, we can use these to construct more!
 - Even recursive ones
 - ► They just have to be implicit

Ex:

$$\forall a, b[(Square(a) = b) \leftrightarrow (b = a \cdot a)]$$

Preliminary Functions

- We can add and multiply, but we need a lot more!
- We can implicitly define subtraction, exponentiation, division, modulo
- ► As well as some special encoding functions Get₂ and Set₂
- ► These can get and set bits from an arbitrary-length binary integer

Let $\phi_{preliminary}$ be the equation describing these functions.

Preliminary Functions (Formally)

$$\phi_{preliminary} = \forall a, b, c([(a - b = c) \leftrightarrow (a = c + b)])$$

$$\wedge \left[\left(\frac{a}{b} = c \right) \leftrightarrow (a = bc) \right]$$

$$\wedge \left[(Rem(a, b) = c) \leftrightarrow \exists d[db + c = a] \right]$$

$$\wedge \left[(a^{0} = 1) \wedge (b > 0 \rightarrow (a^{b} = a \cdot a^{b-1})) \right]$$

$$\wedge \left[Log(b^{a}, b) = a \right]$$

$$\wedge \left[Get_{2}(a, b) = \frac{Rem(a, 2^{b+1}) - Rem(a, 2^{b-1})}{2^{b}} \right]$$

$$\wedge \left[Set_{2}(a, b, c) = a + (c - Get_{2}(a, b)) \cdot 2^{b} \right])$$

We could bring this to prenex normal form, but it doesn't really matter

Gödel Numberings of TMs

- We previously gave a configuration as $w_l q_i w_r$ for some state q_i and tape content $w_l w_r$
- ► This will be too clunky for Gödel numbering!
- Let $n = |w_l|$, let w be a binary integer encoding $w_l w_r$

Def: A Gödel TM encoding. For configuration $C = w_l q_i w_r$ where $n = |w_l|$, let w be a positive binary integer encoding of $w_l w_r$. Then, a Gödel encoding of C is given by $2^i 3^n 5^w$.

Encoding the Transition Function

▶ We want to create some implicit function T which takes us from one configuration to the next

T:

- For all state indices i, j, R/W head position n, string content encoding w, binary tape character z, and $\Delta \in \{-1, 1\}$:
- ▶ If $\delta(q_i, Get_2(w, n)) = (q_i, z, \Delta)$, then
- $T(2^{i}3^{n}5^{w}) = 2^{j}3^{n+\Delta}5^{Set_{2}(w,n,z)}$
- T can be encoded in Peano arithmetic as a large piecewise function

Let ϕ_T be the formula describing T.

Encoding TM Simulation

- ► Here's where loops come in
- ▶ For every configuration C_t :

$$\ldots \land \forall t[C_{t+1} = T(C_t)]$$

We can then specify some initial configuration on the input string encoding in binary as w: $C_0 = 2^0 3^0 5^w$

The Acceptance Problem in Peano Arithmetic

If we let the index of the accepting state q_A be A, we can ask "Does this TM accept?" as:

$$\phi_{A} = \\ \wedge \phi_{preliminary} \\ \wedge \phi_{T} \\ \wedge \forall t [C_{t+1} = T(C_{t})] \\ \wedge [C_{0} = 2^{0}3^{0}5^{w}] \\ \wedge \exists h, \mu, \omega [C_{h} = 2^{A}3^{\mu}5^{\omega}]$$

 $Th(\mathcal{N},+,\times)$ is Turing complete!