

Università degli Studi di L'Aquila

Seconda Prova Parziale di Algoritmi e Strutture Dati con Laboratorio

Mercoledì 17 Febbraio 2010 – Proff. Guido Proietti e Giovanna Melideo

Scrivi i tuoi dati \Longrightarrow	Cognome:	Nome:	Matricola:
ESERCIZIO 1	Risposte Esatte:	Risposte Omesse:	Risposte Errate:

ESERCIZIO 1 (Teoria): Domande a risposta multipla

Premessa: Questa parte è costituita da 10 domande a risposta multipla. Per ciascuna domanda vengono fornite 4 risposte, di cui soltanto una è corretta. Per rispondere utilizzare la griglia annessa, barrando con una \times la casella corrispondente alla risposta prescelta. È consentito omettere la risposta. In caso di errore, contornare con un cerchietto la × erroneamente apposta (ovvero, in questo modo ⊗) e rifare la x sulla nuova risposta prescelta. Se una domanda presenta più di una risposta, verrà considerata omessa. Per tutti i quesiti verrà attribuito un identico punteggio, e cioè: risposta esatta 3 punti, risposta omessa 0 punti, risposta sbagliata -1 punto. Il voto relativo a questa parte è ottenuto sommando i punti ottenuti e normalizzando su base 30. Se tale somma è negativa, verrà assegnato 0.

1. In una tavola ad accesso diretto di dimensione m con un fattore di carico $\alpha = 1\%$, l'inserimento di un elemento di un dizionario di n elementi costa:

*d) $\Theta(1)$ a) $\Theta(m)$ b) $\Omega(n)$ c) $\Theta(\log n)$

2. Siano X e Y due stringhe di lunghezza m ed n. Qual è la complessità dell'algoritmo per la determinazione della distanza tra X e ${\cal Y}$ basato sulla tecnica della programmazione dinamica?

c) O(m+n)b) O(n)

3. La visita in ampiezza del grafo $a = \frac{2}{8}$ 3 eseguita partendo dal nodo d
 <u>non</u> può visitare i nodi nella sequenza:

b) debca *c) dbaec

- 4. L'algoritmo di Bellman e Ford applicato ad un grafo pesato con un numero di archi $m = \Theta(n \log n)$, ha complessità: b) $\Theta(n+m)$ c) $\Theta(n^3)$ *d) $O(n^2 \log n)$
- 5. Dato un grafo pesato e completo con n vertici, l'algoritmo di Dijkstra realizzato con un heap binario costa: *a) $O(n^2 \log n)$ b) $\Theta(m + n \log n)$ c) $\Theta(n^2)$ d) $O(n \log n)$
- 6. Sia d_{xy}^k il costo di un cammino minimo k-vincolato da x a y, secondo la definizione di Floyd e Warshall. Risulta:

a) $d_{xy}^k = \min\{d_{xy}^{k-1}, d_{xv_k}^{k-1} + d_{v_kx}^{k-1}\}$ *b) $d_{xy}^k = \min\{d_{xy}^{k-1}, d_{xv_k}^{k-1} + d_{v_ky}^{k-1}\}$ c) $d_{xy}^k = \min\{d_{xy}^{k-1}, d_{xv_k}^{k-1} + d_{v_ky}^{k-1}\}$ d) $d_{xy}^k = \min\{d_{xy}^k, d_{xv_k}^{k-1} + d_{v_ky}^{k-1}\}$

7. Usando gli alberi QuickUnion e l'euristica dell'unione pesata by size, il problema della gestione di n insiemi disgiunti sottoposti

ad n-1 Union ed m Find può essere risolto in: a) $\Theta(n)$ b) $\Theta(m)$ c) $\Theta(m^2)$ *d) $O(m + n \log n)$

- 8. Dato un grafo pesato con n vertici ed m archi, l'algoritmo di Kruskal esegue un numero di operazioni Union(u,v) pari a: *b) $\Theta(n)$ c) $\Theta(m \log n)$ d) $\Theta(\log n)$
- 9. Dato un grafo pesato con n vertici ed m = O(n) archi, l'algoritmo di Prim realizzato con heap di Fibonacci costa: *d) $O(n \log n)$ a) $\Theta(n^2)$ b) $\Theta(n+m)$ c) O(m)
- 10. Dato un grafo pesato con n vertici ed m archi, il costo di una fase dell'algoritmo di Borůvka è pari a:

b) O(n)c) $\Theta(m + n \log n)$ d) $\Theta(m \log n)$

Griglia Risposte

	Domanda										
Risposta	1	2	3	4	5	6	7	8	9	10	
a											
b											
С											
d											