

Checkpoint: Supervised Learning

Student Academic Outcome Artificial Intelligence - IART 2024 - 2025

> Artur Telo Luís Gonçalo Joaquim Vale Remelhe Nuno Pinho Fernandes

Specification

Applying **supervised learning** to predict student academic outcomes: **Graduate**, **Dropout**, or **Enrolled**

Dataset includes:

- **Demographic data** (e.g., age, gender)
- Academic performance (grades, attendance, past qualifications)
- Behavioral data (units completed per semester)
- Socioeconomic factors (scholarship, employment, economic difficulties)

Goal:

Identify key factors influencing student outcomes and enable early detection of students at risk of dropping out.

Related Work

Supervised Machine Learning Algorithms for Predicting Student Dropout and Academic Success: A Comparative Study:

https://link.springer.com/article/10.1007/s44163-023-00079-z

Predicting Student Dropouts with Machine Learning: An Empirical Study: https://www.sciencedirect.com/science/article/pii/S0160791X24000228

Educational Data Mining: Prediction of Students' Academic

Performance: https://slejournal.springeropen.com/articles/10.1186/s40561-022-00192-z

Tools & Success Metrics

Jupyter Notebook – Central workspace for organizing code, models, and results

Pandas – Data manipulation and analysis of structured datasets

NumPy – Efficient numerical computations

Scikit-Learn – Preprocessing, model building, and evaluation

Matplotlib & Seaborn – Visualization of data and results

Metrics:

- **Accuracy**: Proportion of correct predictions
- **Recall**: Ability to correctly identify relevant cases
- F measure: Combine Accuracy and Recall

Algorithms

Logistic Regression – Linear model used for binary and multiclass classification -> estimates probabilities using a logistic function.

Decision Tree – Flowchart-like model that splits data based on feature values to make decisions.

Random Forest – Ensemble of decision trees which improves accuracy by averaging their predictions.

k-Nearest Neighbour - Simple and effective algorithm used for both classification and regression

Dataset Overview

Dataset Characteristics:

- Training Data: 76,518 student records with 38 features
- Target Variable : Three classes (Graduate, Dropout, Enrolled)

Feature Categories:

- Demographic: Marital status, age at enrollment, gender, nationality
- Academic: Previous qualifications, admission grades, curricular units performance
- Socioeconomic: Scholarship holder, debtor status, tuition fees status
- Economic Context: Unemployment rate, inflation rate, GDP
- Data Quality: No missing values detected
- Class Distribution: Multi-class classification problem requiring balanced evaluation

Data Preprocessing Pipeline

Key Preprocessing Steps:

- Feature Scaling: StandardScaler for numerical features normalization
- <u>Data Splitting:</u> Train-validation-test split for robust evaluation
- Feature Engineering:
- Handling categorical variables with appropriate encoding
- Academic performance metrics aggregation
- Semester-wise performance analysis
- Pipeline Integration: Scikit-learn pipelines for reproducible preprocessing
- Cross-Validation: Stratified sampling to maintain class distribution

Algorithm Implementation:

- Logistic Regression: Multi-class classification with regularization
- <u>Decision Tree:</u> Entropy-based splitting with pruning parameters
- Random Forest: 100+ estimators with feature importance analysis
- K-Nearest Neighbors: Optimized k-value through cross-validation

Training Strategy:

- Hyperparameter Tuning: GridSearchCV and RandomizedSearchCV
- Cross-Validation: 5-fold stratified validation
- <u>Performance Optimization:</u> Feature selection and model ensemble techniques

Evaluation Results & Model Comparison

Performance Metrics Achieved:

- Accuracy: 70-75% across different models 2
- Precision : Class-specific precision for Graduate/Dropout/Enrolled
- Recall : Early detection capability for at-risk students
- F1-Score : Balanced performance measure

Model Ranking:

- 1. Random Forest: Best overall performance with feature importance insights
- 2. Logistic Regression : Strong baseline with interpretable coefficients
- 3. Decision Tree: Good interpretability but prone to overfitting
- 4. K-Nearest Neighbors : Effective for local pattern recognition

- The ROC curve is particularly valuable for showing the trade-off between sensitivity and specificity

	Model	Accuracy	Precision	Recall	F1 Score	Training Time (s)	Testing Time (s)
3	Random Forest	95.25	95.25	95.25	95.25	14.1528	0.4219
1	Decision Tree	91.46	91.62	91.46	91.45	1.2591	0.0069
0	Logistic Regression	88.97	89.18	88.97	88.96	0.4828	0.0026
2	k-Nearest Neighbors	88.33	88.35	88.33	88.33	0.1009	5.3719

Critical Success Factors Identified:

- Academic Performance: Curricular units approved/failed in both semesters
- Previous Qualifications: Admission grades and previous qualification scores
- Attendance Patterns: Daytime vs evening attendance correlation
- Economic Indicators: GDP, unemployment rate impact on dropout risk
- Demographic Factors: Age at enrollment and scholarship status

Risk Indicators for Dropout:

- Low curricular units approval rate
- Poor performance in first semester evaluations
- Economic hardship indicators
- Irregular attendance patterns

- This visualization highlights which features had the most impact on predictions
- It provides insights into the factors that most strongly influence student outcomes

Conclusion

Project Achievements:

- Successfully implemented multi-class classification for student outcome prediction
- Achieved competitive accuracy rates comparable to literature standards 1
- Identified key risk factors for early intervention strategies
- Developed reproducible ML pipeline for educational institutions