Aprendizaje automatizado

ESTIMACIÓN DE PARÁMETROS

Gibran Fuentes-Pineda Febrero 2019

Interpretaciones de la probabilidad

- · ¿Qué significan las probabilidades?
- · ¿Cómo las obtengo?
- · Ejemplo: lanzamiento de una moneda
 - · ¿Qué valores asigno a águila y a sol?
 - · ¿Qué representan esos valores?

Interpretación clásica

 Basado en principio de indiferencia: todas las posibilidades tienen la misma probabilidad

Interpretación clásica

- Basado en principio de indiferencia: todas las posibilidades tienen la misma probabilidad
- Ejemplo
 - · Lanzamiento de una moneda

$$P(S) = \frac{1}{2}, P(A) = \frac{1}{2}$$

Interpretación frecuentista

- Probabilidades representan aspectos reales del universo (perspectiva objetivista)
- Límite de las frecuencias en un gran número de experimentos
- Ejemplo
 - · Lanzamiento de una moneda: A, A, S, A, S, A, S, A, A

$$P(A) = \frac{6}{10}$$

$$P(S) = \frac{4}{10}$$

Interpretación bayesiana

- Probabilidades son grados de creencia de un observador (perspectiva subjetivista)
- · Probabilidades se actualizan con nueva evidencia
- Ejemplo
 - · Lanzamiento de una moneda. E = A, A, S, A, S, A, S, A, A

$$P(A|E) = \frac{P(E|A)P(A)}{P(E)}$$

$$P(S|E) = \frac{P(E|S)P(S)}{P(E)}$$

· Se asumen ciertas distribuciones en modelo, es decir,

$$\mathcal{X} \sim f(\theta)$$

· Se asumen ciertas distribuciones en modelo, es decir,

$$\mathcal{X} \sim f(\theta)$$

- · Lanzamiento de una moneda 50 veces (datos)
 - · Águila: 15 veces
 - · Sol: 35 veces

· Se asumen ciertas distribuciones en modelo, es decir,

$$\mathcal{X} \sim f(\theta)$$

- · Lanzamiento de una moneda 50 veces (datos)
 - · Águila: 15 veces
 - · Sol: 35 veces
- · Si asumimos una distribución de Bernoulli

$$Ber(x; q) = q^{x}(1-q)^{1-x},$$

· Se asumen ciertas distribuciones en modelo, es decir,

$$\mathcal{X} \sim f(\theta)$$

- · Lanzamiento de una moneda 50 veces (datos)
 - · Águila: 15 veces
 - · Sol: 35 veces
- · Si asumimos una distribución de Bernoulli

$$Ber(x; q) = q^{x}(1-q)^{1-x},$$

· ¿Qué parámetro q produjo los datos?

Estrategias generales de estimación de parámetros

1. Estimador de máxima verosimilitud (puntual)

$$\hat{\theta}_{\textit{EMV}} = \argmax_{\theta} P(\mathcal{X}|\theta)$$

2. Estimador de máximo a posteriori (puntual)

$$\hat{\theta}_{MAP} = rg \max_{\theta} \frac{P(\mathcal{X}|\theta)P(\theta)}{P(\mathcal{X})}$$

3. Estimador bayesiano (distribución completa)

$$P(\theta|\mathcal{X}) = \frac{P(\mathcal{X}|\theta)P(\theta)}{P(\mathcal{X})}$$

Estimador de máxima verosimilitud (EMV)

- Busca los valores de los parámetros que mejor se ajusten a los datos
- · Función de verosimilitud

$$\mathcal{L}(\theta|\mathcal{X}) = P(\mathcal{X}|\theta)$$

- Se aproxima al valor real del parámetro cuando $|\mathcal{X}| \to \infty$

EMV para distribución de Bernoulli

Función de verosimilitud (dadas n muestras)

$$\mathcal{L}(q|\mathcal{X}) = q^{x^{(1)}} (1-q)^{1-x^{(1)}} \times q^{x^{(2)}} (1-q)^{1-x^{(2)}} \times \dots \times q^{x^{(n)}} (1-q)^{1-x^{(n)}}$$

· Simplificando

$$\mathcal{L}(q|\mathcal{X}) = q^{\sum_{i=1}^{n} x^{(i)}} (1-q)^{n-\sum_{i=1}^{n} x^{(i)}}$$

· Aplicando el logaritmo

$$\log \mathcal{L}(q|\mathcal{X}) = \left(\sum_{i=1}^{n} x^{(i)}\right) \log q + \left(n - \sum_{i=1}^{n} x^{(i)}\right) \log (1-q)$$

· Derivando respecto a q, igualando a cero y despejando

$$\hat{q}_{EMV} = \frac{\sum_{i=1}^{n} x^{(i)}}{n}$$

EMV para distribución de normal

Función de verosimilitud (dadas n muestras)

$$\mathcal{L}(\mu, \sigma^2 | \mathcal{X}) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-(\mathbf{x}^{(i)} - \mu)}{2\sigma^2}}$$

· Aplicando el logaritmo

$$\mathcal{L}(\mu, \sigma^{2} | \mathcal{X}) = -\frac{1}{2} n \log 2\pi \sigma^{2} - \sum_{i=1}^{n} \frac{(x^{(i)} - \mu)^{2}}{2\sigma^{2}}$$

• Derivando respecto a μ y σ^2 e igualando a cero

$$\hat{\mu}_{EMV} = \frac{1}{n} \sum_{i=1}^{n} x^{(i)}$$

· Para la varianza

$$\hat{\sigma}_{EMV}^2 = \frac{1}{n} \sum_{i=1}^{n} (x^{(i)} - \hat{\mu}_{EMV})$$

EMV para otras distribuciones

Nombre	Definición	EMV
Poisson	$f(x;\lambda) = \frac{\lambda^x e^{-\lambda}}{x}$	$\hat{\lambda} = \frac{1}{n} \sum_{i=1}^{n} x^{(i)}$
Categórica	$f(x;\mathbf{q}) = \prod_{k=1}^{K} q_k^{[x=k]}$	$\hat{q}_k = \frac{1}{n^*} \sum_{i=1}^{n^*} x^{[x=k]}$
Multinomial	$f(\mathbf{x}; m, \mathbf{q}) = \frac{m!}{\prod_{k=1}^{K} x_k!} \prod_{k=1}^{K} q_k^{x_k}$	$\hat{q}_k = \frac{1}{n} \sum_{i=1}^n x_k^{(i)}$

$$n* = \sum_{i=1}^{n} \sum_{k=1}^{K} x_k^{(i)}$$

Estimador de máximo a posteriori (MAP)

• MAP: valor de θ con la probabilidad a posteriori más grande

$$\hat{\theta}_{MAP} = \arg\max_{\theta} P(\theta|\mathcal{X}) = \arg\max_{\theta} \frac{P(\mathcal{X}|\theta)P(\theta)}{P(\mathcal{X})}$$

Estimador de máximo a posteriori (MAP)

• MAP: valor de θ con la probabilidad a posteriori más grande

$$\hat{\theta}_{MAP} = \arg\max_{\theta} P(\theta|\mathcal{X}) = \arg\max_{\theta} \frac{P(\mathcal{X}|\theta)P(\theta)}{P(\mathcal{X})}$$

- · Incorpora información a priori sobre los parámetros
- · ¿Qué distribución a priori usamos?

Distribuciones a priori conjugadas

• $P(\theta)$ es una distribución a priori conjugada para $P(\mathcal{X}|\theta)$ si la distribución a posteriori es de la misma familia¹

Verosimilitud	Parám.	Conjugada	Hiperparám.
Bernoulli	q	Beta	α , β
Binomial	q	Beta	α , β
Multinomial	q	Dirichlet	α
Normal	μ	Normal	μ_0 , σ_0^2
$(\sigma^2$ conocida)			
Normal multivar.	μ	Normal	$oldsymbol{\mu}_0$, $oldsymbol{\Sigma}_0$
(Σ conocida)		multivar.	
Poisson	λ	Gamma	α , β

¹Puedes encontrar una lista de distribuciones a priori conjugadas en https://en.wikipedia.org/wiki/Conjugate_prior.

A priori conjugado de Bernoulli: Beta

 Dada la función de verosimilitud de la distribución Bernoulli y n muestras

$$\mathcal{L} = q^{x^{(1)}} (1-q)^{1-x^{(1)}} \times q^{x^{(2)}} (1-q)^{1-x^{(2)}} \times \dots \times q^{x^{(n)}} (1-q)^{1-x^{(n)}}$$

· Su a priori conjugada es la distribución Beta data por

$$P(q) = \frac{q^{\alpha - 1}(1 - q)^{\beta - 1}}{\mathsf{B}(\alpha, \beta)}$$

$$\begin{aligned} \operatorname{Moda} &= \frac{\alpha}{\alpha + \beta} \\ \operatorname{Media} &= \frac{\alpha}{\alpha + \beta - 2} \end{aligned}$$

MAP para distribución de Bernoulli (1)

 Valor del parámetro que maximice la distribución a posteriori

$$\hat{q}_{MAP} = \underset{q}{\operatorname{arg max}} P(q|\mathcal{X}) = \underset{q}{\operatorname{arg max}} \frac{P(\mathcal{X}|q)P(q)}{P(\mathcal{X})}$$

 Como buscamos el máximo no es necesario calcular la probabilidad marginal, por lo tanto

$$\hat{q}_{MAP} = rg \max_{q} P(\mathcal{X}|q) P(q)$$

$$\hat{q}_{MAP} = rg \max_{q} \left(\prod_{i=1}^{|\mathcal{X}|} P(x^{(i)}|q) \right) P(q)$$

$$P(q|\mathcal{X}) \propto \left(\prod_{i=1}^{|\mathcal{X}|} Ber(x^{(i)}|q) \right) Beta(q|\alpha, \beta)$$

MAP para distribución de Bernoulli (2)

- Dada la función de verosimilitud de la distribución Bernoulli y n muestras
- · ¿Por qué la distribución Beta?

$$P(q|\mathcal{X}) \propto q^{\sum_{i=1}^{n} x^{(i)}} (1-q)^{n-\sum_{i=1}^{n} x^{(i)}} q^{\alpha-1} (1-q)^{\beta-1}$$

$$P(q|\mathcal{X}) = Beta(q|\alpha + \sum_{i=1}^{n} x^{(i)}, \beta + (n - \sum_{i=1}^{n} x^{(i)}))$$

MAP para distribución de Bernoulli (3)

· Aplicando el logaritmo a $P(q|\mathcal{X})$

$$\hat{q}_{MAP} = \underset{q}{\operatorname{arg\,max}} \left(\sum_{i=1}^{n} \log Ber(x^{(i)}|q) \right) + \log Beta(q|\alpha, \beta)$$

· Derivando respecto a q y encontrando el máximo

$$\hat{q}_{MAP} = \frac{\sum_{i=1}^{n} x^{(i)} + \alpha - 1}{n + \beta + \alpha - 2}$$

MAP para otras distribuciones

Nombre	MAP	
Poisson	$\hat{\lambda} = \frac{\sum_{i=1}^{n} x^{(i)} + \alpha - 1}{n + \beta}$	
Categórica	$\hat{q}_k = \frac{1}{n} \sum_{i=1}^n x^{[x=k]}$	
Multinomial	$\hat{q}_{k} = \frac{\sum_{i=1}^{n*} x_{k}^{(i)} + \alpha_{k}}{n* + \sum_{k=1}^{K} \alpha_{k} - K}$	
Normal (σ^2 conocido)	$\hat{\mu} = \frac{\sigma_0^2 \left(\sum_{i=1}^n x^{(i)} \right) + \sigma^2 \mu_0}{\sigma_0^2 n + \sigma^2}$	

Estimador bayesiano

• No sólo obtiene el valor de θ del máximo a posteriori, estima la distribución a posteriori completa

$$P(\theta|\mathcal{X}) = \frac{P(\mathcal{X}|\theta)P(\theta)}{P(\mathcal{X})}$$

• Dado un nuevo dato \widetilde{x} , la distribución predictiva a posteriori está dada por

$$P(\widetilde{X}|\mathcal{X}) = \int_{\theta} P(\widetilde{X}|\theta, \mathcal{X}) P(\theta|\mathcal{X}) d\theta$$

Estimador bayesiano para distribución de Bernoulli

 Usando la Beta como distribución a priori conjugada, tenemos

$$P(q|\mathcal{X}) = Beta\left(q|\alpha + \sum_{i=1}^{n} x^{(i)}, \beta + (n - \sum_{i=1}^{n} x^{(i)})\right)$$

· Dado un nuevo dato \widetilde{x} , la distribución predictiva a posteriori está dada por

$$\begin{split} P(\widetilde{\mathbf{x}}|\mathcal{X}) &= \int_{\theta} P(\widetilde{\mathbf{x}}|\theta, \mathcal{X}) P(\theta|\mathcal{X}) d\theta \\ &= \int_{q} q \cdot Beta(q|\alpha + \sum_{i=1}^{n} \mathbf{x}^{(i)}, \beta + (n - \sum_{i=1}^{n} \mathbf{x}^{(i)})) dq \\ &= \mathbb{E}[P(q|\mathcal{X})] = \frac{\alpha + \sum_{i=1}^{n} \mathbf{x}^{(i)}}{\alpha + \sum_{i=1}^{n} \mathbf{x}^{(i)} + \beta + (n - \sum_{i=1}^{n} \mathbf{x}^{(i)})} \end{split}$$

Estimador bayesiano para distribución normal

• Suponiendo σ^2 conocida, la distribución a priori conjugada sobre μ es una normal:

$$P(\mu) = \mathcal{N}(\mu_0, \sigma_0^2)$$

· La distribución a posteriori es también normal:

$$P(\mu|\mathcal{X}) = \mathcal{N}\left(\underbrace{\frac{1}{\frac{1}{\sigma_0^2} + \frac{n}{\sigma^2}} \left[\frac{\mu_0}{\sigma_0^2} + \frac{\sum_{i=1}^n \chi^{(i)}}{\sigma^2}\right]}_{\mu_p}, \underbrace{\left[\frac{1}{\sigma_0^2} + \frac{n}{\sigma^2}\right]^{-1}}_{\sigma_p^2}\right)$$

· La distribución predictiva a posteriori está dada por:

$$P(\widetilde{x}|\mathcal{X}) = \mathcal{N}(\mu_p, \sigma_p^2 + \sigma^2)$$

Estimador bayesiano para otras distribuciones

Nombre	A posteriori	Predictiva
Poisson	$\Gamma(\alpha + \sum_{i=1}^{n} x^{(i)}, \beta + n)$	$P(\widetilde{\mathbf{X}}) = NB(\alpha', \beta')$
	$i=1$ β'	
Cat	$\mathit{Dir}(lpha + c)$	$P(\widetilde{x} = k) = \frac{\alpha_k + c_k}{\sum_{k=1}^{K} \alpha_k + n}$
Mult.	$\mathit{Dir}(lpha + c)$	$P(\widetilde{x} = k) = DirMult(\widetilde{x} \alpha + c)$

$$\mathbf{c} = [c_1, \dots, c_K] = [\sum_{i=1}^n x^{[x=1]}, \dots, \sum_{i=1}^n x^{[x=K]]}$$

$$n* = \sum_{i=1}^{n} \sum_{k=1}^{K} x_k^{(i)}$$

Clasificador bayesiano ingenuo: modelo generativo

- Modela distribución conjunta de atributos y clases
 P(x₁,...,x_d,y), asumiendo independencia condicional de los atributos dada la clase
- Independencia condicional: X y Y son condicionalmente independientes dado Z si

$$P(X, Y|Z) = P(X|Z)P(Y|Z)$$
$$P(X|Y, Z) = P(X|Z)$$

 En el clasificador bayesiano ingenuo, la probabilidad conjunta está dada por

$$P(x_1,\ldots,x_d,y) = \left(\prod_{j=1}^d P(x_j|y=c)\right)P(y=c)$$

Clasificador bayesiano ingenuo: representación gráfica

 El clasificador bayesiano ingenuo se puede representar como un modelo gráfico probabilista simple

· De forma más compacta en notación de placas:

Clasificador bayesiano ingenuo: predicción

• Para obtener la probabilidad de cada clase para un nuevo dato $\widetilde{\mathbf{x}} = [\widetilde{x}_1, \dots, \widetilde{x}_d]$ usamos teorema de bayes

$$P(y=c|\widetilde{X}_1,\ldots,\widetilde{X}_d) = \frac{P(\widetilde{X}_1,\ldots,\widetilde{X}_d|y=c)P(y=c)}{P(\widetilde{X}_1,\ldots,\widetilde{X}_d)}$$

· Debido a que

$$\left(\prod_{j=1}^d P(\widetilde{x}_j|y=c)\right)P(y=c)\propto P(y=c|\widetilde{x}_1,\ldots,\widetilde{x}_d)$$

• Podemos obtener la clase más probable como:²:

$$\hat{y} = \underset{y}{\operatorname{arg max}} \left(\prod_{j=1}^{d} P(\widetilde{x}_{j}|y=c) \right) P(y=c)$$

²En algunas aplicaciones se requiere conocer las probabilidades para la toma de decisiones, por lo que es necesario calcular $P(\widetilde{x}_1, \dots, \widetilde{x}_d)$

Detección de correo basura

 Considera n correos electrónicos representados como bolsas de palabras y sus correspondientes etiquetas

$$\mathcal{X} = (\mathbf{x}^{(1)}, \dot{\mathbf{y}}^{(1)}), \dots, \dot{\mathbf{x}}^{(n)}, \mathbf{y}^{(n)}))$$

- Vectores $\mathbf{x}^{(i)} = [x_1^{(i)}, \dots x_d^{(i)}]$
- $x_j^{(i)}$ es el número de veces que la palabra j ocurre en el correo i ($x_j^{(i)} \in [0,1]$ si el esquema es binario)
- · Presuponiendo esquema binario y clasificación binaria:

$$x_j \sim Ber(q_j), j = 1, \dots, d$$

 $y \sim Ber(q_y)$

Clasificador bayesiano ingenuo

- Entrenamiento: se estiman los parámetros q_1, \ldots, q_d condicionadas a las clases (y = 0 y y = 1) y el parámetro de la distribución a priori de la clase q_v
- Predicción: dado un nuevo documento $\tilde{\mathbf{x}} = [\tilde{x}_1, \dots \tilde{x}_d]$, podemos obtener su clase más probable usando los parámetros estimados

$$\hat{y} = \underset{y}{\operatorname{arg max}} \left(\prod_{j=1}^{d} Ber(x_j; \hat{q}_j) \right) Ber(y; \hat{q}_y)$$