Text Classification & Word Embedding

Classification, Evaluation, & Embedding

Ayoub Bagheri

a.bagheri@uu.nl

https://ayoubbagheri.nl/bigdata_NLP/

Outline

- Classification algorithms
- Evaluation
- Word embedding
- Skipgram learning
- Pre-trained embeddings
- State-of-the-art

Classification Algorithms

Hand-coded rules

- Rules based on combinations of words or other features
- Accuracy can be high: If rules carefully refined by expert
- But building and maintaining these rules is expensive
- Data/Domain specifics

Supervised Machine Learning

- Input:
 - a document d
 - a fixed set of classes $C = \{c_1, c_2, ..., c_l\}$
 - A training set of m hand-labeled documents $(d_1, c_1), \dots, (d_m, c_m)$
- Output:
 - a learned classifier *y:d* → *c*

Some of the methods

- K-nearest neighbors
- Naïve Bayes
- Logistic regression
- Support-vector machines
- Neural networks
- Deep learning

K-nearest neighbor

Finding Neighbors & Voting for Labels

Neural networks, "deep learning"

- Compositional approach to curve-fitting;
- "Biologically inspired" (but don't take that too seriously);
- Sound cool.

Neural network

Neural network

"Hidden" nodes:

Example:

$$h_1 = f(w_{11}x_1 + w_{12}x_2)$$

Output:

$$y = f(w_{21}h_1 + w_{22}h_2 + \dots + w_{25}h_5)$$

"Activation function":

- RElu f(z) =

What makes a neural net "deep"?

Neural Network Deep Learning Input Layer Hidden Layer Output Layer

Keep doing

$$z = g^{(n_h)}(g^{(\dots)}(g^{(2)}(g^{(1)}(\mathbf{x})))$$

then $y \approx f(z)$.

Deep learning

- Output of each hidden layer is input to subsequent one
- Allow representation learning by building complex features out of simpler ones
- Go deep: exponential advantages, less overfitting
- Aggressive parameterization + aggressive regularization
- Compositional: efficient parametrization
- Learn relevant features: "End-to-end"

Different architectures

- By adjusting the arrows, layers, and activation functions, you can create models that are tailored to specific data, e.g.
- Convolutional (CNN): images, text, sound
- Recurrent (RNN): time series, text
- Graph (GNN): networks

•

Deep learning in practice

- Good places to start:
 - https://keras.rstudio.com/
- ISLR Chapter 10

Chollet (R/Python version)

Evaluation

No free lunch

"Any two optimization algorithms are equivalent when their performance is averaged across all possible problems"

(Wolpert & MacReady)

Low

Confusion matrix

Accuracy

 Accuracy is a valid choice of evaluation for classification problems which are well balanced and not skewed.

Precision and recall

Precision: % of selected items that are correct
 Recall: % of correct items that are selected

- Precision is a valid choice of evaluation metric when we want to be very sure of our prediction.
- Recall is a valid choice of evaluation metric when we want to capture as many positives as possible.

relevant elements

How many selected items are relevant?

How many relevant items are selected?

Source: https://en.wikipedia.org/wiki/F-score

A combined measure: F

 A combined measure that assesses the P/R tradeoff is F measure (weighted harmonic mean):

$$F = \frac{1}{2 \frac{1}{P} + (1 - 2) \frac{1}{R}} = \frac{(b^2 + 1)PR}{b^2 P + R}$$

- The harmonic mean is a very conservative average
- People usually use balanced F1 measure
 - i.e., with β = 1 (that is, α = $\frac{1}{2}$): $F = \frac{2PR}{(P+R)}$

Word Embedding

Word representations

How can we represent the meaning of words?

So, we can ask:

- How similar is cat to dog, or Paris to London?
- How similar is document A to document B?

Word as vectors

Can we represent words as vectors?

The vector representations should:

- capture semantics
 - similar words should be close to each other in the vector space
 - relation between two vectors should reflect the relationship between the two words
- be efficient (vectors with fewer dimensions are easier to work with)
- be interpretable

Word as vectors

How similar are the following two words? (not similar 0–10 very similar)

smart and intelligent:

easy and big:

easy and difficult:

hard and difficult:

Word as vectors

How similar are the following two words? (not similar 0–10 very similar)

smart and intelligent: 9.20

easy and big: 1.12

easy and difficult: 0.58

hard and difficult: 8.77

(SimLex-999 dataset, https://fh295.github.io/simlex.html)

Words as Vectors

One-hot encoding

Map each word to a unique identifier e.g. cat (3) and dog (5).

Vector representation: all zeros, except 1 at the ID

cat	0	0	1	0	0	0	0
dog	0	0	0	0	1	0	0
car	0	0	0	0	0	0	1

One-hot encoding

Map each word to a unique identifier

e.g. cat (3) and dog (5).

Vector representation: all zeros, except 1 at the ID

cat	0	0	1	0	0	0	0
dog	0	0	0	0	1	0	0
car	0	0	0	0	0	0	1

What are limitations of one-hot encodings?

One-hot encoding

Map each word to a unique identifier

e.g. cat (3) and dog (5).

Vector representation: all zeros, except 1 at the ID

cat	0	0	1	0	0	0	0
dog	0	0	0	0	1	0	0
car	0	0	0	0	0	0	1

Even related words have distinct vectors!

High number of dimensions

Distributional hypothesis: Words that occur in similar contexts tend to have similar meanings.

You shall know a word by the company it keeps. (Firth, J. R. 1957:11)

Word vectors based on co-occurrences

documents as context word-document matrix

	doc_1	doc_2	doc_3	doc_4	doc_5	doc_6	doc_7
cat	5	2	0	1	4	0	0
dog	7	3	1	0	2	0	0
car	0	0	1	3	2	1	1

Word vectors based on co-occurrences

documents as context word-document matrix

	doc_1	doc_2	doc_3	doc_4	doc_5	doc_6	doc_7
cat	5	2	0	1	4	0	0
dog	7	3	1	0	2	0	0
car	0	0	1	3	2	1	1

neighboring words as context word-word matrix

	cat	dog	car	bike	book	house	e tree
cat	0	3	1	1	1	2	3
dog	3	0	2	1	1	3	1
car	0	O	1	3	2	1	1

Word vectors based on co-occurrences

There are many variants:

- Context (words, documents, which window size, etc.)
- Weighting (raw frequency, etc.)

Vectors are sparse: Many zero entries.

Therefore: Dimensionality reduction is often used (e.g., SVD)

These methods are sometimes called **count-based** methods as they work directly on **co-occurrence** counts.

Word embeddings

Vectors are short;
 typically 50-1024
 dimensions ©

- cat 0.52 0.48 -0.01 ··· 0.28 dog 0.32 0.42 -0.09 ··· 0.78
- Vectors are dense (mostly non-zero values)
- Very effective for many
 NLP tasks ☺
- Individual dimensions are less interpretable 🕾

How do we learn word embeddings?

Learning word embeddings

Learning word embeddings

Training data for word embeddings

- Use text itself as training data for the model!
 - A form of self-supervision.
- Train a **classifier** (neural network, logistic regression, or SVM, etc.) to predict the next word given previous words.

Exercise: Word prediction task

Yesterday I went to the ?

A new study has highlighted the positive?

Which word comes next?

Word2Vec

- Popular embedding method
- Very fast to train

- Can you find 5 nearest words to "epidemiology"? (use Word2Vec all)
- https://projector.tensorflow.org/

Word2Vec

The domestic **cat** is a small, typically furry carnivorous mammal w_{-2} w_{-1} w_0 w_1 w_2 w_3 w_4 w_5

We have **target** words (cat) and **context** words (here: window size = 5).

Word2Vec

- Instead of counting how often each word w occurs near a target word
 - Train a classifier on a binary prediction task:
 - Is w likely to show up near target?
- We don't actually care about this task
 - But we'll take the learned classifier weights as the word embeddings
- Big idea: self-supervision
 - A word c that occurs near target in the corpus as the gold "correct answer" for supervised learning
 - No need for human labels
 - Bengio et al. (2003); Collobert et al. (2011)

Word2Vec algorithms

Continuous Bag-Of-Words (CBOW)

one snowy ? she went

Word2Vec algorithms

Continuous Bag-Of-Words (CBOW)

one snowy ? she went

skipgram

? ? day ? ?

Skipgram overview

The domestic cat is a small, typically furry carnivorous mammal

1. Create examples

- Positive examples: Target word and neighboring context
- Negative examples: Target word and randomly sampled words from the lexicon (negative sampling)
- 2. Train a **logistic regression** model to distinguish between the positive and negative examples
- 3. The resulting **weights** are the embeddings!

word (w)	context (c)	label
cat	small	1
cat	furry	1
cat	car	O

Embedding vectors are essentially a byproduct!

Pre-trained Embeddings

Pre-trained embeddings

- I want to build a system to **solve a task** (e.g., sentiment analysis)
 - Use pre-trained embeddings. Should I fine-tune?
 - Lots of data: yes
 - Just a small dataset: no

- Analysis (e.g., bias, semantic change)
 - Train embeddings from scratch

Layer embedding in Keras

State-Of-The-Art

State-of-the-art

- Recurrent neural networks
 - LSTM
 - GRU
 - Bi-directional networks
- Contextual embeddings
- Transformers: https://app.inferkit.com/demo

Practical 2