3- O MÉTODO SIMPLEX

3.1- Introdução

O Método Simplex é uma técnica utilizada para se determinar, numericamente, a solução ótima de um modelo de Programação Linear. Será desenvolvido inicialmente para Problemas de Programação Linear, na forma padrão, mas com as seguintes características para o sistema linear de equações:

- i) Todas as variáveis são não-negativas:
- ii) Todos os b_i são não-negativos;
- iii) Todas as equações iniciais do sistema são do tipo " ≤ ". Assim, na forma padrão, só encontra-se variáveis de folga.

Se uma das características vistas não ocorrer, então, casos especiais do método devem ser considerados e esses serão vistos na seção 3.8, como o Método Simplex de Duas Fases.

3.2- Introdução e fundamentos teóricos para o Método Simplex

3.2.1- Determinação de soluções básicas em um sistema de equações lineares $m \times n$, $m \le n$ (sistemas lineares)

Se ao resolver-se um sistema $\mathbf{A}\mathbf{x}=\mathbf{b}$, onde $\mathbf{A}\subset \mathbf{r}^{m\times m}$, $\mathbf{x}\in \mathbf{r}^m$ e $\mathbf{b}\in \mathbf{r}^m$ e \mathbf{A} fosse uma matriz inversível, então a solução seria facilmente determinada.

Porém, se dado um sistema
$$\mathbf{A}\mathbf{x} = \mathbf{b}$$
, onde:
$$\begin{cases} \mathbf{A} \in \mathfrak{R}^{\mathbf{m}\mathbf{x}\mathbf{n}} \\ \mathbf{b} \in \mathfrak{R}^{\mathbf{m}} & \mathbf{m} \leq \mathbf{n} \\ \mathbf{x} \in \mathfrak{R}^{\mathbf{n}} \end{cases}$$
 (3.1)

Tal que m≤ n, ou seja, sistema é retangular, como determinar soluções de **Ax=b**?

O sistema acima sempre tem solução?

Teorema 3.2.1.1:

Seja a matriz $\mathbf{A} \in \Re^{m \times n}$ com $m \le n$. Se a matriz \mathbf{A} possui m colunas $\mathbf{a_1}, \, \mathbf{a_2}, \ldots, \, \mathbf{a_m}$ linearmente independentes (Ll's), então para qualquer $\mathbf{b} \in \Re^m$, o sistema $\mathbf{A}\mathbf{x} = \mathbf{b}$ tem ao menos uma solução em \Re^n .

Definição 3.2.1.1:

Seja
$$\mathbf{A}\mathbf{x}=\mathbf{b}, \ \mathbf{A} \in \mathfrak{R}^{mxn}, \ \mathbf{b} \in \mathfrak{R}^m, \ \mathbf{x} \in \mathfrak{R}^n \ (m \le n).$$

Se **A** possui uma submatriz $\mathbf{B} \in \Re^{mxn}$ onde det $\mathbf{B} \neq 0$ então diz-se que **B** é uma submatriz base de **A**, o que é equivalente a dizer:

"Se A tem m colunas LI, então a matriz B formada por estas colunas é uma base para \Re^m ".

Definição 3.2.1.2 - Variáveis básicas e não básicas:

Considerando-se o sistema $\mathbf{A}\mathbf{x}=\mathbf{b}$, definido em (3.1) e $\mathbf{B}\in\Re^{\mathsf{mxm}}$ uma submatriz base de \mathbf{A} , então, as variáveis associadas à submatriz $\mathbf{B}\in\Re^{\mathsf{mxm}}$ são denominadas variáveis básicas.

Notação: variáveis básicas: x_B.

Definida a submatriz base **B** restam em **A** (n - m) colunas que chamará-se de submatriz não base **N**. As variáveis associadas a esta submatriz **N** são denominadas <u>variáveis não básicas</u>.

Notação: variáveis não básicas: x_N.

3.2.1.2- Uma possível solução para Ax=b da definição acima

Seja o sistema $\mathbf{A}\mathbf{x}=\mathbf{b}$ e suponha que extrai-se de \mathbf{A} uma submatriz $\mathbf{B} \in \Re^{\mathbf{m}\mathbf{x}\mathbf{m}}$.

Pelas definições anteriores pode-se fazer as seguintes partições no sistema $\mathbf{A}\mathbf{x}=\mathbf{b}$: $\mathbf{A}=[\mathbf{B};\mathbf{N}], \ \mathbf{x}=\begin{pmatrix}\mathbf{x_B}\\\mathbf{x_N}\end{pmatrix}.$

Logo pode-se escrever:

$$Ax=b \iff [B:N] \begin{bmatrix} x_B \\ x_N \end{bmatrix} = b \iff Bx_B+Nx_N=b.$$

Portanto, o sistema **Ax=b** é equivalente ao sistema:

$$\mathbf{B}\mathbf{x}_{\mathsf{B}} + \mathbf{N}\mathbf{x}_{\mathsf{N}} = \mathbf{b}.\tag{3.2}$$

Isto define que $x_B = B^{-1}b - B^{-1}Nx_N$ é uma possível solução de Ax=b.

Definição 3.2.1.3 - Solução básica de Ax=b:

Seja o sistema Ax=b definido em (3.1), então uma solução \bar{x} de Ax=b, ou seja, $A\bar{x}=b$, é denominada <u>solução básica</u>, se e somente se, em (3.2), $x_N=0$, então:

$$\mathbf{A}_{\mathbf{X}}^{-} = \mathbf{b} \iff \mathbf{x}_{\mathbf{B}}^{-} = \mathbf{B}^{-1}\mathbf{b}$$

x в: solução básica.

Definição 3.2.1.4 - Solução básica factível (viável):

 $\bar{\mathbf{x}}$ é denominada solução básica factível para $\mathbf{A}\mathbf{x}=\mathbf{b}$ se, e somente se:

$$\bar{x}_B = B^{-1}b \quad e \quad \bar{x}_N = 0$$
, para $\bar{x} \ge 0$ (ou seja $\bar{x}_B \ge 0$).

3.3- Definições e Teoremas Fundamentais

Seja o conjunto $\mathbf{S} = \{ \ \mathbf{x} \in \mathfrak{R}^{\mathbf{n}} \ \text{tal que } \mathbf{A}\mathbf{x} = \mathbf{b}, \ \mathbf{x} \geq 0 \}$ onde $\mathbf{A} \in \mathfrak{R}^{m \times n}$, $\mathbf{b} \in \mathfrak{R}^{m}$ e $\mathbf{x} \in \mathfrak{R}^{n}$ com $m \leq n$.

Definição 3.3.1:

x será um ponto extremo de S se possuir n-m variáveis nulas.

Teorema 3.3.1:

"O conjunto **S**, de todas as soluções factíveis do modelo de Programação Linear, é um conjunto convexo".

Prova:

Sejam \mathbf{x}^1 e $\mathbf{x}^2 \in \mathbf{S}$, $\lambda \in [0,1]$.

Mostrará-se que:

i)
$$\lambda x^1 + (1-\lambda)x^2 \in S$$
;

ii)
$$\lambda x^1 + (1-\lambda) x^2 \ge 0$$
.

Para se mostrar i) basta notar que,

Se
$$x^1 \in S$$
 e $x^2 \in S \Rightarrow Ax^1 = b \Rightarrow Ax^2 = b$;

Assim,
$$A(\lambda x^1 + (1-\lambda)x^2) = \lambda A x^1 + (1-\lambda) A x^2 = \lambda b + (1-\lambda)b = b$$
.

Logo,
$$A(\lambda x^1 + (1-\lambda)x^2) = b$$
.

Para se mostrar ii): $\mathbf{x}^1 \ge 0$ e $\mathbf{x}^2 \ge 0 \Rightarrow \lambda \mathbf{x}^1 \ge 0$ e $(1-\lambda) \mathbf{x}^2 \ge 0$; assim $\lambda \mathbf{x}^1 + (1-\lambda) \mathbf{x}^2 \ge 0$.

$$\therefore \lambda \mathbf{x}^1 + (1-\lambda) \mathbf{x}^2 \in \mathbf{S}$$
.

∴ **S** é convexo.

Teorema 3.3.2:

"Toda solução básica do sistema **Ax** = **b** é um ponto extremo do conjunto de soluções factíveis **S**".

Prova:

Seja $\mathbf{\bar{x}}$ uma solução básica associada a uma submatriz base $\mathbf{B} \in \mathfrak{R}^{^{mxm}}$.

Então, sem perda de generalidade, suponha que, $\bar{x} = \begin{pmatrix} \bar{x}_B \\ \bar{x}_N \end{pmatrix}$ com $\bar{x}_N = \begin{pmatrix} \bar{x}_B \\ \bar{x}_N \end{pmatrix}$

0 para i = m+1,...,n.

Por contradição, suponha que \bar{x} não seja ponto extremo ou vértice de $\bf S$, então $\exists \ \bar{x}^1 \ e \ \bar{x}^2 \in \bf S$ tal que:

$$\overset{-}{x}=\lambda \overset{-}{x}{}^{1}+(1-\lambda)\overset{-}{x}{}^{2}\;;\;\;\lambda\in[0,1]\;\;e\;\;\overset{-}{x}{}^{1}\neq\overset{-}{x}{}^{2}\;\;\text{pois}\;\overset{-}{x}\neq0.$$

Desde que $\bar{x}_i = 0$ para $i = m+1,...,n \Rightarrow$

$$\begin{cases} \lambda_{\boldsymbol{x_i}}^{-1} = 0 \\ (1-\lambda)\boldsymbol{x_i}^{-2} = 0 \end{cases} \text{ para i=m+1,...,n} \qquad \Rightarrow \qquad \begin{cases} x_i^{-1} = 0 \\ x_i^{-2} = 0 \\ x_i^{-2} = 0 \end{cases} \text{ para i=m+1,...,n.}$$

$$\text{Logo}, \qquad \quad \bar{x}^{\, 1} = \begin{pmatrix} \bar{x} \, \frac{1}{B} \\ \bar{x} \, \frac{1}{N} \end{pmatrix} \qquad \text{e} \qquad \quad \bar{x}^{\, 2} = \begin{pmatrix} \bar{x} \, \frac{2}{B} \\ \bar{x} \, \frac{2}{N} \end{pmatrix} \quad .$$

$$\text{Como } \quad \bar{x}^1 \in \textbf{S} \quad \text{e} \quad \bar{x}^2 \in \textbf{S} \quad \Rightarrow \quad \begin{cases} \textbf{A} \overline{x}^1 = \textbf{b} \\ \textbf{A} \overline{x}^2 = \textbf{b} \end{cases} \quad \Rightarrow \quad \begin{cases} \textbf{B} \overline{x}_{\textbf{B}}^1 = \textbf{b} \\ \textbf{B} \overline{x}_{\textbf{B}}^2 = \textbf{b} \end{cases}$$

 \Rightarrow

$$\label{eq:Barrier} \mbox{\bf B} \ \ \bar{x} \ _{\mbox{\bf B}}^{\mbox{\bf 1}} \ \mbox{\bf -} \ \mbox{\bf B} \bar{x} \ _{\mbox{\bf B}}^{\mbox{\bf 2}} \ \ = \mbox{\bf B} \left(\bar{x} \ _{\mbox{\bf B}}^{\mbox{\bf 1}} \ - \ \bar{x} \ _{\mbox{\bf B}}^{\mbox{\bf 2}} \ \right) = \mbox{\bf b} \ \mbox{\bf -} \ \mbox{\bf b} \equiv 0 \ .$$

Mas $\bar{\mathbf{x}}_{\mathbf{B}}^{1} \neq \bar{\mathbf{x}}_{\mathbf{B}}^{2}$ e então $\bar{\mathbf{x}}_{\mathbf{B}}^{1} - \bar{\mathbf{x}}_{\mathbf{B}}^{2} \neq 0 \Rightarrow \mathbf{B} = 0$, contradição, pois por hipótese **B** é uma submatriz base e portanto não singular!

∴ "Toda solução básica do sistema Ax = b é um ponto extremo do conjunto de soluções factíveis S".

Teorema 3.3.3:

Sejam x^1 , x^2 ,..., x^p pontos extremos do conjunto S e seja S limitado.

Então, ∀x ∈ S, x pode ser escrito como combinação convexa dos

pontos extremos
$$\mathbf{x}^1$$
, \mathbf{x}^2 ,..., \mathbf{x}^p de \mathbf{S} , ou seja, $\mathbf{x} = \sum_{i=1}^p \lambda_i \mathbf{x}^i$ e $\sum_{i=1}^p \lambda_i = 1$.

Teorema 3. 3.4:

Se um problema de programação linear admitir solução ótima, então pelo menos um ponto extremo (vértice) do conjunto de pontos viáveis é uma solução ótima do problema.

Mostrará-se este teorema admitindo-se que o conjunto **S** é limitado.

Prova:

Sejam x^1 , x^2 ,..., x^p pontos extremos do conjunto **S** limitado.

Então, pelo teorema 3.3.3, $\forall \mathbf{x} \in \mathbf{S}$, \mathbf{x} pode ser escrito como combinação convexa dos pontos extremos \mathbf{x}^1 , \mathbf{x}^2 ,..., \mathbf{x}^p de \mathbf{S} , ou seja, \mathbf{x} =

$$\sum_{i=1}^{p} \lambda_i x^i e \sum_{i=1}^{p} \lambda_i = 1.$$

$$\text{Logo, } \boldsymbol{c}^{\mathsf{T}}\boldsymbol{x} = \boldsymbol{c}^{\mathsf{T}} \; (\sum_{i=1}^{p} \lambda_{i} \boldsymbol{x}^{i} \;) = \lambda_{1} \; \boldsymbol{c}^{\mathsf{T}}\boldsymbol{x}^{1} \; + \; \lambda_{2} \; \boldsymbol{c}^{\mathsf{T}}\boldsymbol{x}^{2} \; + \ldots + \; \lambda_{p} \; \boldsymbol{c}^{\mathsf{T}}\boldsymbol{x}^{p}.$$

Seja \mathbf{x}^* um ponto extremo tal que $\mathbf{c}^T \mathbf{x}^* \leq \mathbf{c}^T \mathbf{x}^i$ (i=1,...p).

Mas
$$\mathbf{c}^{\mathsf{T}}\mathbf{x} = \lambda_1 \mathbf{c}^{\mathsf{T}}\mathbf{x}^1 + \lambda_2 \mathbf{c}^{\mathsf{T}}\mathbf{x}^2 + ... + \lambda_p \mathbf{c}^{\mathsf{T}}\mathbf{x}^p \ge$$

$$\lambda_1 \mathbf{c}^\mathsf{T} \mathbf{x}^* + \lambda_2 \mathbf{c}^\mathsf{T} \mathbf{x}^* + \dots + \lambda_p \mathbf{c}^\mathsf{T} \mathbf{x}^* = \sum_{i=1}^p \lambda_i \mathbf{c}^\mathsf{T} \mathbf{x}^* = \mathbf{c}^\mathsf{T} \mathbf{x}^*.$$

Então, $\mathbf{c}^{\mathsf{T}}\mathbf{x}^{\star} \leq \mathbf{c}^{\mathsf{T}}\mathbf{x}$, $\forall \mathbf{x} \in \mathbf{S}$.

.: x* é um vértice ótimo (solução ótima) do problema.

Corolário 3.3.1:

"Se a função objetivo possui um máximo (mínimo) finito, então pelo menos uma solução ótima é um ponto extremo do conjunto convexo **S**".

Teorema 3.3.5:

Toda combinação convexa de soluções ótimas de um P.P.L. é também uma solução ótima do problema.

Corolário 3.3.2:

Se um P.P.L. admitir mais de uma solução ótima então admite infinitas soluções ótimas.

Corolário 3.3.3:

"Se a função objetivo assume o máximo (mínimo) em mais de um ponto extremo, então ela toma o mesmo valor para qualquer combinação convexa desses pontos extremos".

3.4- Os Passos do Método Simplex

Os passos abordados a seguir referem-se a um P.P.L. de minimização.

Para iniciarmos o Método Simplex necessita-se de uma solução básica viável inicial, a qual é, um dos pontos extremos. Este método verifica se a presente solução é ótima. Se esta não for é porque um dos demais pontos extremos adjacentes (vértice) fornecem valor menor para a função objetivo que a atual, quando o problema considerado é de minimização. Ele então faz uma mudança de vértice na direção que mais diminua a função objetivo e verifica se este novo vértice é ótimo.

O processo termina quando estando num ponto extremo, todos os outros pontos extremos adjacentes fornecem valores maiores para a função objetivo.

Portanto, a troca de vértice, faz uma variável não básica crescer (assumir valor positivo) ao mesmo tempo em que zera uma variável básica (para possibilitar a troca) conservando a factibilidade do Problema de Programação Linear.

Para isso, escolhemos uma variável, cujo custo relativo é mais negativo (não é regra geral), para entrar na base, e as trocas de vértices são feitas até que não exista mais nenhum custo relativo negativo.

A variável que sairá da base é aquela que ao se anular garante que as demais continuem maiores ou iguais a zero, quando aumentamos o valor da variável que entra na base (respeitando a factibilidade).

O Método Simplex compreenderá, portanto, os seguintes passos:

- i) Achar uma solução factível básica inicial;
- ii) Verificar se a solução atual é ótima. Se for, **pare**. Caso contrário, siga para o passo iii).
- iii) Determinar a variável não básica que deve entrar na base;
- iv) Determinar a variável básica que deve sair da base;
- v) Atualizar o sistema à fim de determinar a nova solução factível básica, e voltar ao passo ii.

Exemplo 3.4.1:

Seja o problema:

Max.
$$z = x_1 + x_2$$

Passando este problema para a forma padrão, temos a solução inicial:

Min.
$$-z = -x_1 - x_2$$

sujeito a:

Passo 1: Quadro 1

\mathbf{v}_{B}	X ₁	X ₂	X 3	X 4	X 5					
X ₃	2	1	1	0	0	8				
X ₄	1	2	0	1	0	7				
X ₅	0	1	0	0	1	3				
-Z	-1	-1	0	0	0	0				
$x^T =$	$x^{T} = (0, 0, 8, 7, 3)$									

Passo 2: Escolhemos x₁ para entrar na base:

$$x_1 = \varepsilon > 0$$

$$x_1 = x_2 = 0$$
, $x_3 = 8$, $x_4 = 7$, $x_5 = 3$

Tomando $x_1 = \varepsilon$ temos:

1^a equação:

$$2 x_1 + x_2 + x_3 = 8 \rightarrow 2 x_1 + x_3 = 8 \rightarrow x_3 = 8 - 2 x_1 \ge 0$$

2ª equação:

$$x_1 + 2 x_2 + x_4 = 7 \rightarrow x_1 + x_4 = 7 \rightarrow x_4 = 7 - x_1 \ge 0$$

3ª equação:

$$x_2 + x_5 = 3 \rightarrow x_5 = 3 \ge 0$$

Passo 3: Analisamos qual das três variáveis básicas deve sair da base:

$$x_3 = 8 - 2 \ x_1 \ge 0 \qquad \rightarrow \ para \ x_3 = 0 \quad \Leftrightarrow \quad 8 - 2 \ x_1 = 8 \ \rightarrow \ x_1 = 4$$

$$x_4 = 7 - x_1 \ge 0$$
 \rightarrow para $x_3 = 0$ \Leftrightarrow $7 - x_1 = 0$ \rightarrow $x_1 = 7$

 $x_5 = 3 - 0$ $x_1 \ge 0$ (para qualquer $\varepsilon > 0$, x_1 não afeta a factibilidade).

Para que x_3 e x_4 não percam sua factibilidade o menor valor que x_1 pode assumir é 4 e daí:

$$x_1 = \varepsilon = 4$$
 temos:

$$x_3 = 8 - 2.4 = 0$$
 $x_4 = 7 - 4 = 3$ $x_5 = 3$

ou seja,
$$x_1 = \varepsilon = \min \left\{ \frac{8}{2}, \frac{7}{1}, \frac{3}{0} \right\} = 4.$$

A variável a sair da base é x_3 e a variável a entrar na base é x_1 com o valor assumido por $\varepsilon > 0$, ou seja, $x_1 = 4$.

Nova base:
$$v_B = \{ x_1, x_4, x_5 \}$$
 e $v_N = \{ x_2, x_3 \}$.

Como o valor mínimo de ε ocorreu na 3^a equação então x_3 sai da base.. Então, o elemento a_{11} = 2 é o pivô da operação. Aplicando o pivoteamaneto gaussiano nas equações, obtemos o seguinte quadro:

Passo 4: Quadro 2:

\mathbf{v}_{B}	X ₁	\mathbf{X}_{2}	X 3	X 4	X 5	
X ₁	1	1/2	1/2	0	0	4
X ₄	0	3/2	-1/2	1	0	3
X 5	0	1	0	0	1	3
-Z	0	-1/2	1/2	0	0	-4

Passo 5: A solução é ótima? (z = 4)

Não, pois ainda existem custos relativos negativos, ou seja, a função objetivo ainda pode ser diminuída ou minimizada.

Passo 6: Variável que entra na base:

Custo mais negativo : x₂.

Daí
$$x_2 = \varepsilon = \min \left\{ \frac{4}{1/2}, \frac{3}{3/2}, \frac{3}{1} \right\} = 2.$$

Passo 7: Variável que sai:

$$x_3 = 8 - x_2 \ge 0$$
 \rightarrow para $x_3 = 0 \Leftrightarrow x_2 = 6$

$$x_4 = 3 - 3/2 \ x_2 \ge 0$$
 \rightarrow para $x_4 = 0 \Leftrightarrow x_2 = 0$

$$x_5 = 3 - x_2 \ge 0$$
 \rightarrow para $x_5 = 0$ \Leftrightarrow $x_2 = 1$

A variável a sair da base é x_4 e x_2 entra na base.

Nova base:
$$v_B = \{x_1, x_2, x_5\} e v_N = \{x_3, x_4\}.$$

Desde que o valor mínimo de ϵ ocorreu na 2^a equação, então x_4 sai da base e o elemento pivô da operação é $a_{22}=3/2$.

Aplicando o pivoteamento gaussiano, obtemos o próximo quadro:

P asso 8 : Quadro 3: Atualização do sistema em função da nova base:

\mathbf{v}_{B}	X ₁	X ₂	X 3	X 4	X ₅	
X ₁	1	0	2/3	-1/3	0	3
X ₂	0	1	-1/3	2/3	0	2
X ₅	0	0	1/3	-2/3	1	1
-Z	0	0	1/3	1/3	0	-5

Passo 9: A solução é ótima?:

Sim, pois não existe nenhum outro custo relativo negativo, ou seja, não podemos diminuir mais a função objetivo.

Portanto, a solução ótima é: $x^* = (x_1, x_2, x_3, x_4, x_5) = (3, 2, 0, 0, 1)$.

$$\mathbf{X}^* = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \end{pmatrix} \rightarrow \mathbf{Z}^* = \mathbf{5}.$$

3.5- O Método Simplex Revisado.

3.5.1- Considerações teóricas sobre o método.

Sem perda de generalidade, supondo-se que após algumas iterações do método é obtido o seguinte sistema a ser resolvido:

Então, a solução básica factível atual é:

$$\mathbf{x}_{B} = (x_{1},...,x_{m}) \text{ e } \mathbf{x}_{N} = (x_{m+1},...,x_{q},...,x_{n}), \text{ com } x_{i} = y_{i0} \geq 0 \text{ para } i = 1,...,m.$$

Para se obter a nova solução, suponha que fazemos a variável não básica x_q entrar na base.

Se o elemento pivô da operação é y_{pq} então x_p sai da base.

A nova solução deve estar na forma canônica e assim deve-se efetuar pivoteamento gaussiano em y_{pq} .

Os novos coeficientes do sistema serão dados por:

linha p:
$$y_{pj}' = y_{pj} / y_{pq}$$
; $j = 1,...,n$.
para $i \neq p$: $y_{ij}' = y_{ij} - y_{iq} * (y_{pj} / y_{pq})$.
para $j = 1, ..., n$.

3.5.2- Definição de ε.

Assumindo-se que $\mathbf{x_q} = \boldsymbol{\epsilon} \geq 0$, então, de acordo com o sistema de restrições (3.3).;

$$\mathbf{x}_{B} = \begin{pmatrix} x_{1} \\ \cdot \\ x_{p} \\ \cdot \\ \cdot \\ x_{m} \end{pmatrix} = \begin{pmatrix} y_{10} \\ \cdot \\ y_{p0} \\ \cdot \\ \cdot \\ y_{m0} \end{pmatrix} - \begin{pmatrix} y_{1q} \\ \cdot \\ \cdot \\ y_{pq} \\ \cdot \\ \cdot \\ y_{mq} \end{pmatrix} . \epsilon \geq 0,$$

que pode ser escrito por $x_B = y^0 - y^q$. $\varepsilon \ge 0$.

Logo,
$$\mathbf{x_q} = \mathbf{\varepsilon} = \frac{y_{p0}}{y_{pq}} = \min \left\{ \frac{y_{i0}}{y_{iq}} \text{ tal que } y_{iq} > 0 \right\}.$$

Assim, $\mathbf{x_q} = \mathbf{\epsilon} \geq 0$ entra na base , $\mathbf{x_p} = 0$ sai da base e um novo vértice é alcançado.

Se $y_{iq} < 0$, $\forall \, i$, então a solução é ilimitada pois $\forall \, \epsilon \geq 0 \,$ tem-se que:

$$y_{i0}$$
 - y_{iq} . $\epsilon \geq 0$.

3.5.3- Decréscimo da função objetivo.

A função objetivo pode ser escrita por $\mathbf{z} = \mathbf{c_B}^\mathsf{T} \mathbf{x_B} + \mathbf{c_N}^\mathsf{T} \mathbf{x_n}$.

Após x_q entrar na base tem-se:

$$\begin{split} \boldsymbol{z} &= \boldsymbol{c_B}^T \; \boldsymbol{x_B} + \boldsymbol{c_N}^T \boldsymbol{x_n} = \boldsymbol{c_B}^T \; (\boldsymbol{y^0} - \boldsymbol{y^q} \; . \; \; \boldsymbol{\epsilon}) + \boldsymbol{c_N}^T \boldsymbol{x_n} = \\ \boldsymbol{c_B}^T \; \boldsymbol{y^0} - \boldsymbol{c_B}^T \; \boldsymbol{y^q} . \; \; \boldsymbol{\epsilon} \; + \boldsymbol{c_q} \, \boldsymbol{\epsilon} = \boldsymbol{z_0} + (\boldsymbol{c_q} - \boldsymbol{z_q}) \; \; \boldsymbol{\epsilon} \; . \end{split}$$

Denominando-se $r_q = c_q - z_q$, se $c_q - z_q < 0$ então, desde que $\varepsilon > 0$,

$$\mathbf{Z}_0 + (\mathbf{C}_{\mathbf{q}} - \mathbf{Z}_{\mathbf{q}}) \, \boldsymbol{\varepsilon} = \mathbf{Z}_0 + \mathbf{r}_{\mathbf{q}} \, \boldsymbol{\varepsilon} < \mathbf{Z}_0 .$$

Logo, para $r_q < 0$ tem-se garantido o decréscimo para a função objetivo. r_q é denominado custo relativo.

Com as considerações teóricas feitas sobre o sistema de restrições e sobre a função objetivo pode-se enunciar procedimentos para se resolver o problema de programação linear com restrições de desigualdade tipo " \leq ", utilizando o método simplex na forma revisada que será visto a seguir.

3.6- Os Passos do Método Simplex Revisado

A forma revisada do método simplex é esta:

Dada a inversa B^{-1} de uma base corrente, considerando $A = [a^1, ..., a^q, ..., a^n]$ e a solução corrente $x_B = B^{-1}b = y^k$:

Passo 1:

Calcule o coeficiente de custo relativo $\mathbf{r_N}^T = \mathbf{c_N}^T - \mathbf{c_B}^T \mathbf{B}^{-1} \mathbf{N}$.

Isto pode ser feito primeiro calculando-se $\mathbf{w}^T = \mathbf{c}_B^T \mathbf{B}^{-1}$ e então o vetor custo relativo será, $\mathbf{r}_N^T = \mathbf{c}_N^T - \mathbf{w}^T \mathbf{N}$.

Se $\mathbf{r_N} \ge 0$, pare pois a solução corrente é ótima. Caso contrário:

Passo 2:

Determine qual vetor $\mathbf{a}^{\mathbf{q}}$ deve entrar na base selecionando o coeficiente de custo relativo mais negativo (não é regra geral). Calcule:

 $y^q = B^{-1} a^q$ que expressa o novo vetor coluna a^q na base nova.

Passo 3:

Se não existe nenhum $y_{iq} > 0$ pare, o problema é ilimitado. Caso contrário, calcule os quocientes $\frac{y_{i0}}{y_{iq}}$ para $y_{iq} > 0$, para determinar qual variável

irá sair da base. Se \min { $\frac{y_{i0}}{y_{iq}}$ tal que $y_{iq} > 0$ } = $\frac{y_{p0}}{y_{pq}}$, então $x_p = 0$ sai da

base e $\mathbf{x_q} = \frac{y_{p0}}{y_{pq}} > \mathbf{0}$ entra na base.

Passo 4:

Atualize \mathbf{B}^{-1} efetuando pivoteamento gaussiano em torno de \mathbf{y}_{pq} . Calcule a nov a solução corrente $\mathbf{x}_{B} = \mathbf{B}^{-1}\mathbf{b}$ e volte ao passo 1

Exemplo 3.6.1:

Considerando o exemplo 4.7.1 resolvido por quadros e seguindo os procedimentos vistos tem-se:

$$\mathbf{c}^{\mathsf{T}} = [-1, -1, 0, 0, 0]$$
 coeficientes de custo relativo.

Solução inicial:

Var. bás.	B ⁻¹	\mathbf{x}_{B}
3	1 0 0	8
4	0 1 0	7
5	0 0 1	3

Calcule
$$\mathbf{w}^T = \mathbf{c_B}^T \mathbf{B}^{-1} = [0,0,0] \quad e \ \mathbf{r_N}^T = \mathbf{c_N}^T - \mathbf{w}^T \mathbf{N} = [-1,-1].$$

Fazendo-se \mathbf{a}^1 entrar na base temos o quadro a ser atualizado: $\mathbf{y}^1 = \mathbf{B}^{-1} \mathbf{a}^1$.

Var. bás.	B ⁻¹	XΒ	y ¹
3	1 0 0	8	$2 \leftarrow \text{piv\^o} (a_{11} = 2)$
4	0 1 0	7	1
5	0 0 1	3	0

Após efetuar os quocientes: $\{ 8/2, 7/1,3/0 \}$, seleciona-se o elemento pivô, define-se qual variável irá sair da base e atualiza-se a \mathbf{B}^{-1} :

Var. bás.		B ⁻¹		\mathbf{x}_{B}
1	1/2	0	0	4
4	-1/2	1	0	3
5	0	0	1	3

Então, $\mathbf{w}^{T} = [-1/2, 0, 0]$ e $\mathbf{r}_{N}^{T} = [-1/2, -1/2] = [\mathbf{r}_{2}, \mathbf{r}_{3}]$. Seleciona-se então \mathbf{a}^{2} para entrar na base: $\mathbf{y}^{2} = \mathbf{B}^{-1} \mathbf{a}^{2}$

Var. bás.	B ⁻¹	\mathbf{x}_{B}	y ²
1	-1/2 0 0	4	1/2
4	-1/2 1 0	3	$3/2 \leftarrow \text{piv\^o} (a_{22} = 3/2)$
5	0 0 1	3	1

Efetuando-se os quocientes: $\{4/(3/2), 3/(3/2), 3/1\}$, selecionamos o elemento pivô e a variável a sair da base. Atualizando a \mathbf{B}^{-1} tem-se:

Var. bás.	B ⁻¹		ΧB
1	2/3 -1/3	0	3
2	-1/3 2/3	0	2
5	1/3 -2/3	3 1	1

Então,
$$\mathbf{w}^{T} = \mathbf{c_{B}}^{T} \mathbf{B}^{-1}$$
 e $\mathbf{r_{N}}^{T} = \mathbf{c_{N}}^{T} - \mathbf{w}^{T} \mathbf{N} = [1/3, 1/3] = [r_3, r_4]$

Como não tem-se mais custos relativos negativos, esta é a solução ótima do problema.

3.7- O algoritmo Simplex

3.7.1- Direções de busca

O teorema a seguir mostra que o conjunto solução do sistema $\mathbf{A}\mathbf{x} = \mathbf{b}$, é completamente determinado a partir de uma solução particular e do subespaço $\mathbf{N}(\mathbf{A})$.

Teorema 3.7.1.1:

Seja $\overline{\mathbf{x}}$ uma solução do sistema $\mathbf{A}\mathbf{x} = \mathbf{b}$. Então, $\mathbf{x} \in \mathfrak{R}^{\mathbf{n}}$ satisfaz o sistema $\mathbf{A}\mathbf{x} = \mathbf{b}$ se e somente se $\mathbf{x} = \overline{\mathbf{x}} + \mathbf{d}$, tal que $\mathbf{d} \in \mathbf{N}(\mathbf{A})$.

Prova:

Sendo \bar{x} uma solução do sistema Ax = b então $A\bar{x} = b$.

A nova solução $\mathbf{x} = \overline{\mathbf{x}} + \mathbf{d}$ satisfaz o sistema $\mathbf{A}\mathbf{x} = \mathbf{b}$ \Leftrightarrow $\mathbf{A}(\overline{\mathbf{x}} + \mathbf{d}) = \mathbf{b} \Leftrightarrow \mathbf{A}\overline{\mathbf{x}} + \mathbf{A}\mathbf{d} = \mathbf{b} \Leftrightarrow \mathbf{A}\mathbf{d} = 0 \Leftrightarrow \mathbf{d} \in \mathbf{N}(\mathbf{A}).$

Portanto, o conjunto das soluções de um sistema $\mathbf{A}\mathbf{x} = \mathbf{b}$ é a translação do sub-espaço $\mathbf{N}(\mathbf{A})$ por qualquer solução perturbada \mathbf{x} do sistema :

$$\{\overline{\mathbf{x}}\} + \mathbf{N}(\mathbf{A}) = \{\mathbf{x} \in \mathfrak{R}^n \text{ tal que } \mathbf{x} = \overline{\mathbf{x}} + \mathbf{N}(\mathbf{A})\}.$$

Foi visto que, considerando-se a partição básica da matriz $\bf A$ e do vetor $\bf x$, era válido que: $\bf x_B = \bf B^{-1}\bf b - \bf B^{-1}\bf N x_N$, com a solução básica factível escrita por $\bf x_B = \bf B^{-1}\bf b$.

Se considerar-se $\overline{\mathbf{x}}$ uma solução para o sistema $\mathbf{A}\mathbf{x} = \mathbf{b}$, então pode-se escrever $\overline{\mathbf{x}}_B = \mathbf{B}^{-1}\mathbf{b} - \mathbf{B}^{-1}\mathbf{N}\overline{\mathbf{x}}_N$ tal que a solução básica factível é escrita por $\overline{\mathbf{x}}_B = \mathbf{B}^{-1}\mathbf{b}$.

Note que se perturbarmos \bar{x}_N por um vetor d_N :

$$x_N = \overline{x}_N + d_N;$$

podemos obter nova solução para o sistema $\mathbf{A}\mathbf{x} = \mathbf{b}$, bastando fazer a substituição:

$$\overset{-}{x}_B = B^{\text{-1}}b - B^{\text{-1}}N \; x_N = \left(\; B^{\text{-1}}b - B^{\text{-1}}N \overset{-}{x}_N \; \right) - B^{\text{-1}}N \; d_N = \overset{-}{x}_B \; + d_B \; ;$$
 onde $d_B = - B^{\text{-1}}N \; d_N.$

Assim, a nova solução é: $\mathbf{x} = \overline{\mathbf{x}} + \mathbf{d}$ com;

$$\mathbf{X} = \begin{pmatrix} \mathbf{X}_{B} \\ \mathbf{X}_{N} \end{pmatrix} \; ; \; \mathbf{X} = \begin{pmatrix} \mathbf{X}_{B} \\ \mathbf{X}_{N} \end{pmatrix} \; \mathbf{e} \; \; \mathbf{d} = \begin{pmatrix} \mathbf{d}_{B} \\ \mathbf{d}_{N} \end{pmatrix},$$

obtidos acima.

Pela definição de **d**:

$$d_B = - \ B^{\text{-}1} N \ d_N \ \Leftrightarrow \ B d_B + N d_N = 0 \ \Leftrightarrow \ Ad = 0 \ \Leftrightarrow \ d \in \ N(A).$$

Observe com isto que foi determinado um procedimento para determinar $d \in N(A)$, bastando para isto se atribuir um valor $d_N = \overline{d}_N$. Isto pode ser feito escolhendo-se:

 $\overline{\mathbf{d}}_{N} = \mathbf{e}^{j}$, j = 1,2,...,n-m; onde \mathbf{e}^{j} é vetor canônico do \mathfrak{R}^{n-m} , que determinam n-m vetores linearmente independentes em $\mathbf{N}(\mathbf{A})$.

Tem-se assim, os vetores de **N**(**A**):

$$\mathbf{d}^{j} = \begin{pmatrix} -\mathbf{B}^{-1}\mathbf{N}^{j} \\ \mathbf{e}^{j} \end{pmatrix}, j = 1,2,...,n-m;$$

onde $\mathbf{N^J}$ é a j-ésima coluna da matriz \mathbf{N} que corresponde ao vetor coluna $\mathbf{a^j}$ da matriz \mathbf{A} . Tais vetores, além de serem linearmente independentes, geram o sub-espaço $\mathbf{N}(\mathbf{A})$, ou seja, $\forall \ \mathbf{d} \in \mathbf{N}(\mathbf{A})$ então $\mathbf{d} = \sum_{i=1}^{n-m} \mathbf{d^j}$.

Construiu-se assim, uma base de **N**(**A**) e segue o seguinte resultado:

Teorema 3.7.1.2:

Seja
$$A \in \Re^{mxn}$$
, posto $(A) = m$. Então, $dim(N(A)) = n-m$.

Uma nova solução obtida por uma perturbação na direção di:

$$\boldsymbol{x}=\stackrel{-}{\boldsymbol{x}}\,+\,\epsilon\,\boldsymbol{d}^{j}\;,\;\epsilon\,>0,$$

corresponde à estratégia de alterar apenas a j-ésima componente do vetor das variáveis não básicas:

$$\begin{cases} x_{N_j} = \overline{x}_{N_j} + \varepsilon = \varepsilon, & j = q \\ x_N = \overline{x}_N = 0, & j \neq q \end{cases};$$

Tal estratégia é denominada "estratégia simplex", que corresponde a adotar a direção **d**^j definida acima. Assim as direções **d**^j são denominadas de "direções simplex".

3.7.2- Determinação do passo

Considere a seguinte definição dos conjuntos baseados na partição básica e não básica da matriz **A**:

 $I_B = \{ j \text{ tal que } j \text{ \'e um \'indice coluna relacionado à base } B \};$

 $I_N = \{ j \text{ tal que } j \text{ \'e um índice coluna relacionado à } N \}.$

Em uma iteração corrente, se tiver-se a solução básica factível $\bar{\mathbf{x}} = \begin{pmatrix} \bar{\mathbf{x}}_{\mathbf{B}} \\ \bar{\mathbf{x}}_{\mathbf{N}} \end{pmatrix}$, então, para a obtenção de uma nova solução a factibilidade será

garantida se:

$$\bar{\mathbf{x}} + \varepsilon \mathbf{d} \ge 0 \iff \bar{\mathbf{x}}_{\mathbf{B}} + \varepsilon \mathbf{d}_{\mathbf{B}} \ge 0 \iff (\bar{\mathbf{x}}_{\mathbf{B}})_{i} + \varepsilon (\mathbf{d}_{\mathbf{B}})_{i} \ge 0, i \in \mathbf{I}_{\mathbf{B}}.$$

Isto ocorre se e somente se:

$$\epsilon = \text{min} \, \{ \ \frac{-(\overline{x}_{_B})_{_i}}{(d_{_B})_{_i}} \ \text{tal que} \ (\textbf{d}_{\textbf{B}})_{_i} \ <0 \ , \, i \in \ \textbf{I}_{\textbf{B}} \, \}.$$

Se o mínimo ocorre para $\varepsilon = -(\overline{\mathbf{x}}_{B})_{p}/(\mathbf{d}_{B})_{p}$, $p \in I_{B}$ então

 $(\overline{\mathbf{x}}_{\mathbf{B}})_{p} + \varepsilon (\mathbf{d}_{\mathbf{B}})_{p} = 0$, então $(\overline{\mathbf{x}}_{\mathbf{B}})_{p}$ se torna não básica e é substituída por $(\overline{\mathbf{x}}_{\mathbf{N}})_{q} = \varepsilon$, $q \in \mathbf{I}_{\mathbf{N}}$.

Se $(\textbf{d}_{\textbf{B}})_i > 0$, $\forall \, i \in \textbf{I}_{\textbf{B}}$, então o conjunto de soluções factíveis é ilimitado.

Além disso, se duas ou mais componentes de $\overline{\mathbf{x}}_{B}$ se anularem para um mesmo valor de ϵ , temos o caso de degeneração da base.

3.7.3- Critério de mudança de base.

Considere o vetor custo relativo $\mathbf{r_N}^\mathsf{T} = \mathbf{c_N}^\mathsf{T} - \mathbf{c_B}^\mathsf{T} \, \mathbf{B}^{-1} \mathbf{N}$, já visto.

Este pode ser escrito por: $r_j = c_j - c_B^T B^{-1}(a_N)_j$ para $j \in I_N$.

Se $\exists j \in I_N$ tal que $r_j \leq 0$, então é interessante fazer x_j assumir valor positivo e entrar na base, pois \mathbf{d}^j é uma direção de descida, ou seja, $\mathbf{c}^\mathsf{T}(\overline{\mathbf{x}} + \epsilon \, \mathbf{d}^j) \leq \mathbf{c}^\mathsf{T} \overline{\mathbf{x}}$. Isto é utilizado como critério de mudança de base.

Se $r_j \geq 0$, $\forall j \in I_N$ então a otimalidade é atingida pois não conseguimos mais decréscimos para a função objetivo e isto é utilizado como critério de parada.

Após as considerações anteriores pode-se enunciar um algoritmo que segue os seguintes passos.

3.7.4- Algoritmo

Dada a solução básica inicial: $\mathbf{x}_{\mathbf{B}}^{0} = \mathbf{B}_{0}^{-1}\mathbf{b} = \mathbf{y}^{0}$ com k=0, faça:

Passo 1-

Calcule o coeficiente de custo relativo $(\mathbf{r}_{N}^{k})^{T} = (\mathbf{c}_{N}^{k})^{T} - (\mathbf{c}_{B}^{k})^{T} \mathbf{B}_{k} \mathbf{N}_{k}$.

Isto pode ser feito primeiro calculando-se $\mathbf{w}_{B}^{k} = (\mathbf{c}_{B}^{k})^{T} \mathbf{B}_{k}$ e então o vetor custo relativo será, $(\mathbf{r}_{N}^{k})^{T} = (\mathbf{c}_{N}^{k})^{T} - (\mathbf{w}_{B}^{k})^{T} \mathbf{N}_{k}$.

Se $(\mathbf{r_N^k})^T \ge 0$, pare pois a solução corrente é ótima. Caso contrário:

Passo 2-

Determine ($\mathbf{r}_N^K)_q = \min$ { ($\mathbf{r}_N^K)_j$ tal que ($\mathbf{r}_N^K)_j$ < 0, para $j \in I_N$ }, para determinar qual vetor de N_k irá entrar na base.

Passo 3-

Calcule
$$d_B^k = -B_k^{-1}(a_N)_q = (y^k)_q$$
;

Passo 4-

Se não existe $j \in I_N$ tal que $r_j^k \le 0$, então pare, o problema não tem solução , caso contrário determine:

 $-(\overline{\boldsymbol{x}}_{B}^{k})_{p}/(\boldsymbol{d}_{B}^{k})_{p}=\boldsymbol{\epsilon}=\boldsymbol{min}\;\{-(\overline{\boldsymbol{x}}_{B}^{K})_{i}/(\boldsymbol{d}_{B}^{k})_{i}\;\;\text{tal que}\;(\boldsymbol{d}_{B}^{k})_{i}\;<0\;,\;i\in\;\boldsymbol{I}_{B}\;\},\;\;\text{para determinar o vetor de}\;\boldsymbol{B}_{k}\;\text{a sair da base}.$

Passo 5-

Atualize:

$$\begin{array}{l} (\; \boldsymbol{B}^{\,k+1})_p \; \leftarrow (\; \boldsymbol{N}^k)_q \; ; \\ (\; \boldsymbol{N}^{k+1})_q \; \leftarrow (\; \boldsymbol{B}^k)_p \; ; \\ \boldsymbol{x}^k_B = \boldsymbol{B}^{-1}_k \, \boldsymbol{b} \; = \boldsymbol{y}^k \; ; \\ k \; \leftarrow \; k+1 \; . \end{array}$$

3.8- Casos especiais do Método Simplex

3.8.1- Empate na entrada

Quando houver empate na escolha da variável que entra na base, devese tomar a decisão arbitrariamente. A única implicação envolvida é que podese escolher um caminho mais longo ou mais curto para se chegar à solução ótima.

3.8.2- Empate na saída (degeneração)

Poderá ocorrer que durante a escolha de uma variável para sair da base, temos, empate, isto é, duas ou mais variáveis se anulam com o crescimento da variável que está entrando na base. Neste caso ocorre o que chamamos de degeneração (temos uma solução básica factível degenerada). A escolha também é arbitrária (uma das variáveis básicas assume valor zero).

Temos, então, que a mesma solução é obtida através de bases diferentes. Isso ocorre devido a hiperdeterminação de pontos extremos.

Exemplo 3.8.2.1

Maximizar
$$z = 5x_1 + 2x_2$$

Sujeito a:

$$x_1 \le 3$$
 $x_2 \le 4$
 $4x_1 + 3x_2 \le 12$
 $x_1; x_2 \ge 0$

3.8.3- Problemas com múltiplas soluções

Eventualmente, um modelo de Programação Linear pode apresentar mais de uma solução ótima. Quando isso ocorre, o Método Simplex é capaz de acusá-lo, pois o custo de uma variável não-básica é nulo. Dizemos, então, que o sistema tem múltiplas soluções ótimas.

Exemplo 3.8.3.1:

Maximizar
$$z = x_1 + 2x_2$$

Sujeito a:

$$x_1 \le 3$$
 $x_2 \le 4$
 $x_1 + 2x_2 \le 9$
 $x_1; x_2 \ge 0$

3.8.4- Solução ilimitada

Quando aplicamos o Método Simplex e nenhuma restrição impede o crescimento da variável que entra na base, ou seja, não conseguimos zerar uma variável básica, dizemos que o problema tem solução ilimitada.

Neste caso, o problema tem solução básica factível mas não tem solução ótima.

Exemplo 3.8.4.1:

Maximizar
$$z = x_1 + 2x_2$$

Sujeito a:

$$4x_1 + x_2 \ge 20$$
 $x_1 + 2x_2 \ge 10$
 $x_1 \ge 2$
 $x_1; x_2 \ge 0$

3.9- O Método Simplex duas fases

Nos problemas onde as restrições são do tipo "≤" (menor ou igual) é sempre possível obtermos uma submatriz (identidade) com o auxilio das variáveis de folga, e assim a solução inicial é óbvia.

Porém, quando não temos uma solução inicial óbvia, ou seja, não conseguimos uma submatriz base (identidade) necessitamos de um procedimento para desenvolvê-la. Isto ocorre quando o problema de Programação Linear tiver restrições de "=" (igualdade) e ou restrições do tipo "≥" (maior ou igual).

Exemplo 3.9.1:

max.
$$z = 6 x_1 - x_2$$

sujeito a:

$$4 x_1 + x_2 \le 21$$

$$2 x_1 + 3 x_2 \ge 13$$

$$x_1 - x_2 = -1$$

$$x_1 e x_2 \ge 0$$

Passando o problema para a forma padrão, termos:

min.
$$-z = -6 x_1 + x_2$$

sujeito a:

$$4 x_1 + x_2 + x_3 = 21$$

$$2 x_1 + 3 x_2 - x_4 = 13$$

$$- x_1 + x_2 = 1$$

$$x_1, x_2, x_3, x_4 \ge 0.$$

No quadro:

	X ₁	X ₂	X 3	X 4	
-	4	1	1	0	21
	2	3	0	-1	13
	-1	1	0	0	1
_	-6	1	0	0	

Portanto, não temos solução inicial óbvia. Como obter a solução inicial?

Para resolvê-lo usamos um procedimento chamado <u>Fase 1 do Método</u> <u>Simplex</u>, que consiste em explorar um problema auxiliar, equivalente ao PPL inicial, com região factível ampliada.

3.9.1 Introdução de variáveis artificiais

Introduzimos no problema de programação linear (já na forma padrão) variáveis artificiais nas restrições do tipo "=" e "≥".

No exemplo anterior:

min.
$$-z = -6 x_1 + x_2$$

$$4 x_1 + x_2 + x_3 = 21$$

$$2 x_1 + 3 x_2 - x_4 + x_1^a = 13$$

$$- x_1 + x_2 + x_2^a = 1$$

$$x_1, x_2, x_3, x_4, x_1^a, x_2^a \ge 0.$$

Esse problema de programação linear é denominado <u>relaxado</u> ou <u>artificial</u>, ou seja, a região factível é ampliada.

No quadro:

	X ₁	X ₂	X 3	X 4	x ^a ₁	x ^a ₂	
 X	4	1	1	0	0	0	21
Х	2	3	0	-1	1	0	13
Х	-1	1	0	0	0	1	1
	-6	1	0	0	0	0	0

Obtem-se uma solução inicial óbvia fazendo-se $x_1 = x_2 = x_4 = 0$, com $x_B = (x_3, x_1^a, x_2^a) = (21, 13, 1)$ e $x_N = (x_1, x_2, x_4) = (0, 0, 0)$.

Diz-se que as restrições:

a)
$$2 x_1 + 3 x_2 \ge 13$$

b)
$$x_1 - x_2 = -1$$

foram relaxadas pois:

a)
$$2 x_1 + 3 x_2 - x_4 + x_1^a = 13$$

Se
$$x_4 = 0$$
 e $x_1^a \ge 0 \Rightarrow 2x_1 + 3x_2 \le 13$

Se
$$x_4 > 0$$
 e $x_1^a = 0 \Rightarrow 2 x_1 + 3 x_2 \ge 13$

b) -
$$x_1 + x_2 + x_2^a = 1$$

Se
$$x_2^a = 0 \Rightarrow x_1 - x_2 = -1$$
. Se $x_2^a > 0 \Rightarrow x_1 - x_2 \le -1$.

Consequentemente relaxou-se o conjunto das restrições (ampliou-se esse conjunto), como é visto na figura 3.1.

Figura 3.1 – Conjunto de soluções ampliado

O Método Simplex duas fases resolve o problema de programação linear relaxado (ou auxiliar) até zerar as variáveis artificiais (Fase 1), obtendo assim uma solução factível para o problema de Programação Linear inicial, podendo ser a solução ótima caso não exista custo relativo negativo (Fase 2).

Observações:

1) O Problema de Programação Linear inicial tem solução factível se as variáveis artificiais se anularem.

Problema de Programação Linear inicial inicial na forma padrão:

minimizar
$$\mathbf{c}^{\mathsf{T}} \mathbf{x}$$

sujeito a $\mathbf{A}\mathbf{x} = \mathbf{b}$ (3.4)
 $\mathbf{x} \ge 0$

Problema de Programação Linear relaxado:

minimizar
$$c^T x$$

s.a $\mathbf{A}\mathbf{x} + \mathbf{x}^a = \mathbf{b}$ (3.5)
 $\mathbf{x}, \mathbf{x}^a \ge 0$

Problema de Programação Linear inicial tem solução ótima $\Leftrightarrow \mathbf{x}^a = 0$.

De (3.4) tem-se
$$Ax = b$$
, $x \ge 0$.
De (3.5) tem-se $Ax + x^a = b$, $x, x^a \ge 0$.

Então: $\mathbf{A}\mathbf{x} + \mathbf{x}^{\mathbf{a}} = \mathbf{b} \iff \mathbf{x}^{\mathbf{a}} = 0$.

- 2) Seja o problema original de maximização ou de minimização, o problema auxiliar sempre será de minimização;
- 3) O problema auxiliar é sempre viável (sempre admite solução);

4) Se atingirmos a solução ótima com as variáveis artificiais diferentes de zero, portanto com o valor da função objetivo artificial diferente de zero, o problema original é um problema inviável.

A função objetivo artificial é formada pela soma das variáveis artificiais, ou seja: $z^a(\mathbf{x}) = x^a_1 + x^a_2 + ... + x^a_p$ com $p \le m$.

Considerando o exemplo anterior, termos:

$$z^{a}(x) = x^{a}_{1} + x^{a}_{2}$$
 onde:
$$x^{a}_{1} = 13 - 2 x_{1} - 3 x_{2} + x_{4}$$

$$x^{a}_{2} = 1 + x_{1} - x_{2}.$$
 Logo
$$z^{a}(x) = 14 - x_{1} - 4 x_{2} + x_{4} \implies 14 = -x_{1} - 4 x_{2} + x_{4}.$$

Através de quadros, temos:

Quadro 1:

	X 1	X ₂	X 3	X 4	x ^a ₁	x ^a ₂	
X 3	4	1	1	0	0	0	21
x ^a ₁	2	3	0	-1	1	0	13
x ^a ₂	-1	1	0	0	0	1	1
z ^a	-1	-4	0	1	0	0	-14
Z	-6	1	0	0	0	0	0

Aplicando o Método Simplex para obter $x_1^a = x_2^a = 0$.

Fase 1:

Como $r_2^a = -4$, x_2 entra na base.

$$x_2 = \varepsilon = \min \left\{ \frac{21}{1}, \frac{13}{3}, \frac{1}{1} \right\} = 1 \implies x_2^a$$
 sai da base.

Quadro 2:

	X 1	X ₂	X 3	X 4	x ^a ₁	x ^a ₂	
X 3	5	0	1	0	0	-1	20
x ^a ₁	5	0	0	-1	1	-3	10
X ₂	-1	1	0	0	0	1	1
z ^a	-5	0	0	1	0	4	-10
Z	-5	0	0	0	0	-1	-1

Como $r_1^a = -5$, x_1 entra na base.

$$x_1 = \varepsilon = \min \left\{ \frac{20}{5}, \frac{10}{5}, \frac{1}{-1} \right\} = 2, x_1^a \text{ sai da base.}$$

Quadro 3:

	X 1	X ₂	X 3	X 4	x ^a ₁	x ^a ₂	
X 3	0	0	1	1	-1	2	10
X ₁	1	0	0	-1/5	1/5	-3/5	2
X ₂	0	1	0	-1/5	1/5	2/5	3
z ^a	0	0	0	0	1	1	0
Z	0	0	0	-1	1	1	9

Como as variáveis artificiais são zero, então $z^a = 0$ e tem-se uma solução factível para o problema inicial.

Fase 2:

Elimina-se as variáveis artificiais do quadro e a função objetivo artificial, ficando-se somente só com o problema inicial.

Quadro 4:

	X ₁	X ₂	X 3	X 4	
X ₃	0	0	1	1	10
X ₁	1	0	0	-1/5	2
X ₂	0	1	0	-1/5	3
	0	0	0	-1	9

Como
$$r_4$$
 =-1, x_3 sai da base; $x_4 = \varepsilon = min\left\{\frac{10}{1}, \frac{2}{-1/5}, \frac{3}{-1/5}\right\} = 10 \implies x_4$ entra na

base.

Quadro 5:

	X ₁	X ₂	X 3	X 4	
X ₄	0	0	1	1	10
X ₁	1	0	1/5	0	4
X ₂	0	1	1/5	0	5
	0	0	1	0	10

Quadro ótimo:

$$x_B = (x_4, x_1, x_2) = (10, 4, 5), x_N = (x_3) = (0)$$

 $x^* = (4, 5, 0, 10) e z^* = 19.$

3.9.2 Algoritmo para o problema com variáveis artificiais

Um algoritmo análogo àquele visto na seção 3.7.4 é definido para o caso de introdução de variáveis artificiais no PPL original. Agora, consideram-se duas fases, as quais utilizam a execução daquele algoritmo:

Fase 1: Considera-se o PPL original relaxado pela introdução das variáveis artificiais e aplica-se o algoritmo, já visto na seção citada, na tentativa de se zerar estas variáveis, mas, considerando-se para a atualização das variáveis, a função objetivo artificial. Se conseguir-se atingir a solução ótima do PPL relaxado com as variáveis artificiais diferentes de zero, então, pare, pois o PPL original é inviável. Caso contrário vá para a fase 2;

Fase 2: Nesta fase, agora com uma solução inicial para o PPL original, é verificado, inicialmente, se o custo relativo desta solução é maior ou igual a zero. Se for, pare, a solução atual é ótima. Caso contrário, aplica-se o algoritmo definido na seção 3.7.4 até se obter a solução ótima do PPL original.

3.10- Exercícios.

3.10.1) Resolva geometricamente e pelo método Simplex os seguintes PPL's:

a)
$$maximizar 5 x_1 + 6x_2$$

$$\begin{cases} x_1 + 3x_2 \le 5 \\ 4x_1 + 9x_2 \le 12 \\ x_1, x_2 \ge 0 \end{cases};$$

b) maximizar
$$4 x_1 + 2x_2$$
 sujeito a:

$$\begin{cases} 2x_1 + x_2 \le 8 \\ x_1 + 2x_2 \le 7 \\ 0x_1 + x_2 \le 3 \\ x_1, x_2 \ge 0 \end{cases},$$

c) $maximizar x_2$

sujeito a:

$$\begin{cases} 4x_1 + 4x_2 \le 28 \\ 2x_1 + 0x_2 \le 10 \\ -x_1 + 3x_2 \le 9 \\ 0x_1 + x_2 \le 4 \\ x_1, x_2 \ge 0 \end{cases}$$

d) maximizar $x_1 + x_2$

sujeito a:

$$\begin{cases} x_1 + 4x_2 \ge 4 \\ 3x_1 + x_2 = 1 \\ x_1, x_2 \ge 0 \end{cases}$$
;

e) PPL com múltiplas soluções:

maximizar $x_1 + x_2$

sujeito a:

$$\begin{cases}
-2x_1 + x_2 \le 2 \\
x_1 - 2x_2 \le 2 \\
x_1 + x_2 \le 4 \\
x_1, x_2 \ge 0
\end{cases}$$

3.10.2) Dado o PPL:

minimizar
$$z = -2 x_1 + x_2 - x_3$$

$$\begin{cases} x_1 + x_2 + x_3 \le 6 \\ -x_1 + 2x_2 + 0x_3 \le 4; \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

- a) Resolva-o pelo método simplex;
- b) o que acontece se trocarmos $c_2 = 1$ por $c_2' = -3$. O quadro ótimo se altera?

3.10.3) Sejam \bar{x}, \bar{s} soluções factíveis para os seguintes sistemas de restrições:

$$Ax = b, x \ge 0$$
 $(S_1);$ $Ax + s = b, s \ge 0$ (S_2)

Considerando-se as novas soluções $\bar{x} + \epsilon \, \mathbf{d_x} \, \mathbf{e} \, \, \bar{\mathbf{s}} \, + \epsilon \, \mathbf{d_s} \, , \, \epsilon \, \geq 0$:

- a) mostre que d_x é uma direção factível para (S_1) se $d_x \in N(A)$;
- b) se $\mathbf{A}^{\mathsf{T}}\mathbf{A}$ é uma matriz não singular, então: $\mathbf{d}_{\mathsf{s}} \in \mathsf{Im}(\mathbf{A})$ e $\mathbf{d}_{\mathsf{x}} = -[\mathbf{A}^{\mathsf{T}}\mathbf{A}]^{-1}\mathbf{A} \, \mathbf{d}_{\mathsf{s}}$;
- c) considerando-se o problema de minimizar $\mathbf{c}^{\mathsf{T}}\mathbf{x}$, de condições sobre $\mathbf{d}_{\mathbf{x}}$ para que esta seja uma direção de descida;
- d) se a restrição **(S₁)** é alterada para { Ax = b, $0 \le x \le h$, $h \in \Re^n$ }, como fica a nova determinação de $\epsilon \ge 0$ para o método Simplex ?
- 3.10.4) Baseado na escolha de $\epsilon \geq 0$, do ítem d) do exercício 3.10.2) resolva o seguinte PPL com variáveis canalizadas:

maximizar $5 x_1 + 6 x_2$

sujeito a:

$$\begin{cases} x_1 + 3x_2 \le 5 \\ 4x_1 + 9x_2 \le 12 \\ 0 \le x_1 \le 2, \ 0 \le x_2 \le 1 \end{cases};$$

3.10.5) Considere o seguinte problema de programação linear:

minimizar
$$z = 3x_1 + 4x_2 + 5x_3$$

$$\begin{cases} x_1 + 2x_2 + 3x_3 \ge 5 \\ 2x_1 + 2x_2 + x_3 \ge 6 \\ 0x_1 + 0x_2 + x_3 \ge 0 \\ x_1, x_2, x_3 \ge 0 \end{cases};$$

- a) resolva-o pelo método simplex duas fases;
- b) se o vetor **b** for trocado para $\mathbf{b}^{(\alpha)} = \begin{pmatrix} 5+2\alpha \\ 6-2\alpha \\ 0+\alpha \end{pmatrix}$, com $\alpha \geq 0$, analise o problema em função de α para que não se altere a base ótima;
- c) idem , se o vetor **c** for trocado para $\mathbf{c}^{(\alpha)} = (3 \alpha, 4 + \alpha, 5 \alpha)$.

3.10.6) Suponha que para um PPL tem-se o seguinte quadro ótimo:

	X ₁	X ₂	X ₃	X_4	ΧB
X ₁	0	1	5/19	-3/19	45/19
X ₂	1	0	-2/19	5/19	20/19
Z	0	0	5/19	16/19	235/19

$$\mathbf{b} = \begin{pmatrix} 15 \\ 10 \end{pmatrix}; \mathbf{c} = \begin{pmatrix} 5 \\ 3 \end{pmatrix}$$

 $\mathbf{r}^{\mathsf{T}} = (0;0;5/19;16/19) \text{ e } z^{*} = 235/19;$

- a) Escreva o PPL original;
- b) Se mudar-se o valor de b_2 para b_2 (α) = 10 α , estude condições sobre α para que o PPL não mude a base ótima.

3.10.7) Um jovem pretente prestar um concurso público cujo exame envolve duas disciplinas, D1 e D2. Ele sabe que, para cada hora de estudo, pode obter 2 pontos na nota da disciplina D1 e 3 pontos na D2 e que o rendimento é proporcional ao seu esforço. Ele dispõe de no máximo 50 horas para os estudos até o dia do exame. Para ser aprovado deverá obter na disciplina D1 um mínimo de 20 pontos, na D2, no mínimo 30, e o total de pontos deverá ser de pelo menos 70. Como, além da aprovação, ele gostaria de alcançar a melhor classificação possível, qual a melhor forma de distribuir as horas disponíveis para seu estudo?

3.10.8) Uma pessoa em dieta necessita ingerir pelo menos 20 unidades de vitamina A, 10 unidades de vitamina B e 2 unidades de vitamina C. Ela deve conseguir essas vitaminas a partir de dois tipos diferentes de alimentos: A1 e A2. A quantidade de vitaminas que esses produtos contém por unidades e o preço unitário de cada um estão expressos na seguinte tabela:

	Vitamina A	Vitamina B	Vitamina C	Preço Unitário
Alimento A1	4	1	1	30 u.m.
Alimento A2	1	2		20 u.m.

Qual a programação de compra dos alimentos A1 e A2 que essa pessoa deve fazer para cumprir sua dieta, ao menor custo possível?

3.10.9) Uma companhia fabrica um produto a partir de dos igredientes, A e B. Cada quilo de A contém 50 unidades do produto P_1 , 4 unidades do produto P_2 , 2 unidades do produto P_3 e custa 100 u.m.. Cada quilo de B contém 3 unidades de produto P_1 , 5 unidades de produto P_2 , 10 unidades de produto P_3 e custa 150 u.m.. A mistura deve conter pelo menos 20 unidades de P_1 , 18 unidades de P_2 e 30 unidades de P_3 .

Resolva este problema para que o custo do produto seja o menor possível.

3.10.10) Um depósito de 200000 m^2 deve ser alocado para armazenar três tipos de produtos, P_1 , P_2 e P_3 . Sabe-se que P_2 não deve ocupar mais espaço do que P_1 , que o espaço ocupado por P_1 não deve ser maior que 3000 m^2 a mais que a soma das áreas de P_2 e P_3 , e que os espaços ocupados por P_2 e P_3 devem Ter pelo menos 5000 m^2 . Sabendo que o lucro de P_1 é 10000 u.m., de P_2 eé 8000 u.m. e de P_3 é 5000 u.m. por m^2 , resolva este problema de modo que o lucro seja o maior possível.

3.10.11) No **Método Simplex de 2 Fases**, o problema auxiliar da fase 1 pode ser inviável? Por quê? Pode ser ilimitado? Por quê?

Na próxima seção serão vistos conceitos do tópico Dualidade em Programação Linear. A análise destes servirá para definir-se um outro método para resolução de Problemas de Programação Linear denominado de "Dual-Simplex".