ELEC5507 Assignment

Vanush Vaswani - 308196465 Zhaoyan Liu - 440092733 Stephen Tridgell - 309205867

May 29, 2014

Project Introduction

The goal of error control coding is to encode messages for transmission with redundancy such that the receiver can correct the errors in the transmission and recover the original data. In this project, encoders and decoders will be simulated and analysed by using MATLAB. The first section involves the design and simulation of the BCH code over BSC and AWGN channels. The second section uses LDPC codes to meet the requirements of a power limited system with very high reliability. Similar simulations are run and compared with the results of the BCH code.

Section I - BCH code

Question 1

What is the generator polynomial for this code? Use MATLABs behavior function to verify your answer

```
The generator polynomial for a n = 31, k = 16, and t = 3 BCH code is g(x) = x^{15} + x^{11} + x^{10} + x^9 + x^8 + x^7 + x^5 + x^3 + x^2 + x^1 + 1. This was verified with
```

```
[gen, t] = bchgenpoly(31,16)
```

Question 2

What is the minimum distance of this code?

For a BCH code, $d_{min} \ge 2 * t + 1 = 7$, this was verified using

```
gfweight(double(gen.x), 31)
```

which gave a minimum distance calculation of 7.

Question 3

Construct the reduced syndrome lookup table for this code. You need to write a program to do this since it is difficult to do it by hand. You do not need to include the whole array in your report due to its large size. Instead, just show the sub-array consisting of the first 5 rows in your report, and include a separate text file (*.txt) enumerating all the data in your electronic submission.

Generate the full syndrome lookup table by:

```
[h g k] = cyclgen(31, double(gen.x))
trt = syndtable(h)
```

This table can be reduced in size for more efficient implementation by using the cyclic properties of the BCH code. It is calculated in the script *computeReduced.m*. The first

5 rows are:

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	1	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	1	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	1	0	0

The corresponding syndromes for these error patterns are:

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	=	0
0	0	0	0	0	0	0	1	0	1	1	0	0	1	1	=	179
0	0	0	0	0	1	0	0	0	0	1	1	0	1	1	=	539
0	0	0	0	0	1	1	0	0	0	0	1	1	0	1	=	781
0	0	0	1	0	0	0	0	0	0	1	0	1	1	1	=	2071

The rest of the array is in *reducedSyndromeTable.csv*. This contains the error pattern in binary then the decimal representation of the syndrome with the left bit as the most significant bit.

Question 4

Based on the standard array you obtained in task 3, find out the weight distribution of the coset leaders.

For the full syndrome table, or standard array coset leaders, the weight distribution is calculated as follows:

```
weights = sum(trt')
A0 = sum(weights == 0)
A1 = sum(weights == 1)
A2 = sum(weights == 2)
A3 = sum(weights == 3)
A4 = sum(weights == 4)
A5 = sum(weights == 5)
```

Gives the weight distribution of $A_0=1$, $A_1=31$, $A_2=465$, $A_3=4495$, $A_4=13020$ and $A_5=14756$ where A_i is the number of weight i errors. This is the number of possible combinations up to A_3 where $A_i=\binom{31}{i}$. Similarly the weight distribution of the reduced syndrome table is calculated. This gave the weight distribution of $A_0=1$, $A_1=1$, $A_2=15$, $A_3=145$, $A_4=840$ and $A_5=2835$. This can be verified for A_1 , A_2 and A_3 as they contain 31 cycles of all words. Hence the total for A_3 is $\binom{31}{31}=145$.

Question 5

Design and implement an encoder using the generator polynomial for this BCH code.

The encoder with the generator polynomial was implemented using the cyclic properties of the code. The message, c(X), is shifted by n-k and divided by the generator polynomial to get the parity check bits by $b(X) = remainder[\frac{X^{n-k}c(X)}{g(X)}]$. The parity check bits are combined with the message for a systematic code. The function polBCHencoder.m implements the generator polynomial method of decoding the BCH code.

Ouestion 6a

Use MATLAB defined functions (eg. the decode function) to decode the BCH code.

This decoder is implemented using MATLABs function *decode()*. The matrix *trt* is the syndrome decoding table calculated above using the *syndtable()* function. This

decode method is based on the block properties of the code. The syndromes are calculated and the most likely codeword is decoded to by looking up the minimum weight. Th implementation is in the function *matlabBCHdecode.m*.

Question 6b

Design and implement a decoder using the syndrome decoding table in Task 3 for the BCH code.

The syndrome can be obtained by multiplying received codeword with the transposed parity-check matrix H. The corresponded error pattern is found by performing a look up in the trt table calculated above. The corrected code is then the codeword plus the error pattern. Our implementation is shown in the function *syndLookupDecode.m*. The overhead of the decoder can be reduced by significantly reducing the size of the lookup table by using cyclic properties of the code. This was implemented using the reduced lookup table calculated previously. The recieved vector is shifted until its syndrome is recognized in the table. The error locations are then looked up in the table. The implementation of this is in *syndReducedLookupDecode.m*

Question 6c

Design and implement a decoder using the Berlekamps iterative procedure.

The implementation of Berlekamp's iterative procedure below used different notation to the textbook specified in http://www.mathworks.com.au/help/comm/ug/error-detection-and-correction.html allowing easier implementation of the procedure. See the function berlekamp_decode.m for the matlab code.

Figure 1: Flow chart of berlekamps algorithm from www.mathworks.com.au/help/comm/ug/error-detection-and-correction.html

This differs from the textbook method in its labeling of variables and a slight modification on the calculation of σ_{ρ} . It instead computes the this as the variable D with d_{ρ}

already divided through. This allows for easier implementation in software.

Sound analysis

Question 7

Simulate the implemented BCH encoder and decoder (using ANY method in Part 6) using the attached wave file (austinpowers.wav) in a BSC channel for different transition probabilities. Discuss the impact of changing different transition probability values.

The channel was simulated using the function *playAudioOverBSC.m.* Different transition probabilities were input into the function. With a transition probability of below 0.05 the sound could be heard with a little noise audible. As p increased above 0.15 the noise increased to the level where it could no longer be clearly heard. Above 0.2 it was difficult to hear anything at all other than noise.

The plots for different p-values are shown below as a qualitative indicator of noise levels.

Figure 2: BCH Audio over BSC (p = 0.01)

Figure 3: BCH Audio over BSC (p = 0.05)

Figure 4: BCH Audio over BSC (p = 0.1)

BER analysis

Question 8a and 8b

Simulation over BSC Simulate the BCH code in a BSC channel (you are allowed to use MATLAB defined functions) and plot the BER versus transition probability for coded and uncoded systems on the same graph. Plot BER versus $\frac{E_b}{N_0}$ for coded and uncoded systems on the same graph by assuming that the SNR (= $\frac{E_b}{N_0}$) is related to the transition probability for the coded system via $X_{dB,coded}=10\log_{10}(\frac{[Q^{-1}(p)]^2}{R})$ and that for uncoded system is $X_{dB,uncoded}=20\log_{10}(Q^{-1}(p))$, where $Q(x)=\frac{1}{\sqrt{2\pi}}\int\limits_x^{+\infty}e^{-\frac{z^2}{2}}dz$ and 0< p<0.5.

Simulation over AWGN channel with BPSK modulation $\{-1,1\}$ Simulate the BCH code in an AWGN channel (you are allowed to use MATLAB defined functions) and plot the BER versus the signal to noise ratio (SNR) for a BPSK coded and uncoded systems on the same graph by using a hard-decision demodulator and binary decoder.

The implementation of the simulation is in *bch_ber_simulation.m*. This produced the following plots.

Figure 5: Bit Error Rate vs. transition probability for BCH over BSC

Figure 6: Bit Error Rate vs. SNR for BCH over BSC

Figure 7: Bit Error Rate vs. SNR for BCH over AWGN

TODO: RESAVE AWGN plot

Question 8c

Draw a table detailing the coding gain for BER= $[10^{-2}, 10^{-3}, 10^{-4}, 10^{-5}, 10^{-6}]$ by reading the differences between the BER curves for BPSK coded and uncoded systems which have been obtained from simulations in part (a) and (b).

BER	Coding Gain (Hard decision)	Coding Gain (BSC)
10^{-2}		
10^{-3}		
10^{-4}		
10^{-5}		
10^{-6}		

Table 1: Coding gain for BCH

Question 8d

Find the asymptotic coding gain when $\frac{Eb}{N0}$ is very large from the formula which is given in the lecture notes and compare with simulation results.

Using the formula $G=10\log(R(t+1))$ in lecture 5 for large $\frac{Eb}{N0}$ where R=16/31 and t=3 results in a coding gain of G=3.1482 dB. Comparing this to the simulation results ... **TODO!!!**

Section II - LDPC

You are an engineer whose job is to design and analyze the performance of error control codes for different clients. Client 2 requires a code for satellite transmission of digital TV. The satellite is power limited and very high reliability is required (as close to Shannon capacity as possible). Low decoding complexity is desired, but is not essential.

Question 1

Design the code (e.g. type of code, code parameters, and other relevant information) and justify its design

To meet these requirements an LDPC code is used

For client 2, it is clear that an LDPC code will be necessary and these can provide performance that is close to the Shannon limit for an AWGN channel, compared to other modern codes. However, it is known that this is the case for very long block codes, which require computationally complex [TODOREF]. An existing solution for digital satellite television is present in the DVB-S2 standard, which uses LDPC as part of concatenated code with BCH coding [?]. However, the drawback of this scheme is the high decoding complexity, though this can be reduced somewhat by the special structure of the code [TODOREF]. Another factor to consider is the power limitation of the satellite, since a large LDPC block code will also entail high coding complexity, more hardware gates and thus more power. An alternative code choice is the (1152, 2304) LDPC block code used in IEEE-802.16-2005, also known as WiMax [TODOREF]. This code is also irregular, which is known to exhibit superior performance over regular LDPC codes.

TODO: Expand on justification, summarize into table

Sound analysis

Question 2

Simulate the chosen code using the attached wave file (austinpowers.wav) in a BSC channel for different transition probabilities (you are allowed to use MATLAB defined functions. Discuss the difference in sound quality compared to the BCH code in Section I, for different transition probabilities.

The code was simulated for the transition probabilities $p = \{0.01, 0.05, 0.1\}$. As a qualitative tool, plots of the waveform are included. Figures 1-3 provide a visual indicator of the noise.

Figure 8: LDPC Audio over BSC (p = 0.01)

Figure 9: LDPC Audio over BSC (p = 0.05)

Figure 10: LDPC Audio over BSC (p = 0.1)

As the bit errors increase due to the transition probability, the noise becomes more prevalent. However, it is improved relative to BCH in the case of p=0.05, showing LDPC has superior performance in this regard compared with BCH. However, there is not much difference in the case of p=0.1, showing that the code has reached it's performance limitation for the particular channel, which is due to effective hard-decision decoding that is involved in a BSC channel. TODO: is it?

Question 3a

Simulate the chosen code in a BSC channel (you are allowed to use MATLAB defined functions) and plot the BER versus transition probability for coded and uncoded systems on the same graph. Plot BER versus $\frac{E_b}{N_0}$ for coded and uncoded systems on the same graph by assuming that the SNR (= $\frac{E_b}{N_0}$) is related to the transition probability for the coded system via $X_{dB,coded}=10\log_{10}(\frac{[Q^{-1}(p)]^2}{R})$ and that for uncoded system is $X_{dB,uncoded}=20\log_{10}(Q^{-1}(p))$, where $Q(x)=\frac{1}{\sqrt{2\pi}}\int\limits_{x}^{+\infty}e^{-\frac{z^2}{2}}dz$ and 0< p<0.5.

Figure 11: BER vs transition probability for LDPC over BSC

Figure 12: BER vs EbNo for LDPC over BSC

BER analysis

Question 3b

Simulate the chosen code in an AWGN channel (you are allowed to use MATLAB defined functions) and plot the BER versus the signal to noise ratio (SNR) for a BPSK coded and uncoded systems on the same graph by using a hard-decision demodulator and binary decoder. Simulate the chosen code in an AWGN channel and plot the BER versus SNR on the same graph for a BPSK coded system by using a soft-decision decoder.

Figure 13: BER vs EbNo for Hard-decision demod and decoding (LDPC - AWGN)

Figure 14: BER vs EbNo for Soft-decision demod and decoding (LDPC - AWGN)

Question 3c

Draw a table detailing the coding gain for BER= $[10^{-2}, 10^{-3}, 10^{-4}, 10^{-5}, 10^{-6}]$ by reading the differences between the BER curves for BPSK coded and uncoded systems which have been obtained from simulations in part (a) and (b).

BER	Coding Gain (Hard decision)	Coding Gain (Soft decision)	Coding Gain (BSC
10^{-2}			
10^{-3}			
10^{-4}			
10^{-5}			
10^{-6}			

Table 2: Coding gain for LDPC

Question 3d

Find the asymptotic coding gain when $\frac{Eb}{N0}$ is very large from the formula which is given in the lecture notes and compare with simulation results.

Answer here

Question 4

Discuss the advantages/disadvantages of the code chosen in this section with the BCH code in Section 1 (eg. complexity, coding gain, efficiency)

BCH codes have significantly lower complexity than the LDPC as BCH has the properties that it is a cyclic, linear block code. This allows various decoding methods depending on resources available. BCH can also be systematic allowing for simpler decoding methods. LDPC codes are additionally large in size generally, compared to the BCH codes. This means that there is greater latency in the delivery of data. LDPC however, performs significantly better than BCH in terms of coding gain ... etc

Appendix - Matlab code

```
% simulations section 1) part 8)
% Find the BER over a BCH code
pValues = 0.001:0.001:0.35;
snrValues = -5:0.001:10;
repetitions = 500;
msg = rand(length(pValues)*repetitions, 16) > 0.5;
errors = rand(length(msg), 31) < ...
        repmat (reshape (repmat (pValues, repetitions, 1), 1, [])', 1, 31);
bch_encoded = encoder(msq);
bch_decoded = matlabBCHdecode(mod(bch_encoded + errors, 2));
bitErrs = reshape((sum(mod(bch_decoded' + msg',2))/16)', repetitions,
BER = sum(bitErrs)/length(bitErrs); % take the average
figure()
semilogy(pValues, BER);
title('Plot_of_BER_in_BCH_codes_in_a_BSC');
ylim([10^-6 10^0]);
xlabel('P...values');
ylabel('BER');
% Q(x) = 0.5 * (1 - erf(x/sqrt(2)))
% Q^{(-1)}(x) = sqrt(2) *erfinv(1 - 2x)
Xuncoded = 20.*log10(sqrt(2).*erfinv(1 - 2.*pValues));
Xcoded = Xuncoded - 10.*log10(16/31); % R = code Rate = k/n
semilogy([Xuncoded; Xcoded], BER);
title('Plot_of_BER_in_BCH_codes_in_a_BSC');
legend('Uncoded', 'Coded');
ylim([10^-6 10^0]);
xlabel('SNR');
ylabel('BER');
% section 1) q 8)b)
% SNR = 10*log10((1/ampl)^2), ampl = 10^(-SNR/20)
msg = rand(length(snrValues)*repetitions, 16) > 0.5;
bch_encoded = encoder(msq);
noise = randn(length(bch_encoded), 31).* ...
     repmat (reshape (repmat (10. ^ (-snrValues./20), repetitions,1) ...
            ,1,[])',1,31);
signal = 1 - 2.*bch_encoded;
bch_decoded = matlabBCHdecode((signal + noise) < 0); % Hard decision on
bitErrs = reshape((sum(mod(bch_decoded' + msg',2))./16)', repetitions,
BER = sum(bitErrs)/length(bitErrs); % take the average
noise = randn(length(msg), 16).* ...
     repmat(reshape(repmat(10.^(-snrValues./20),repetitions,1) ...
             ,1,[])',1,16);
signal = 1 - 2.*msg;
decoded = (signal + noise) < 0;</pre>
bitErrs = reshape((sum(mod(decoded' + msq',2))./16)', repetitions, []);
BER2 = sum(bitErrs)/length(bitErrs); % take the average
```

```
figure()
semilogy(snrValues, [BER2; BER]);
title('Plot_of_BER_in_BCH_codes_in_an_AWGN_BPSK');
legend('Uncoded', 'Coded');
ylim([10^-6 10^0]);
xlabel('SNR');
ylabel('BER');
```

```
load trt
% go through all errors
allCycles = trt;
uniqueTable = [];
for i = 1:31
   tmp = [trt(:,i:end) trt(:,1:(i-1))];
    allCycles(:,:,i) = tmp;
    uniqueTable = unique([uniqueTable; allCycles(:,:,i)], 'rows');
end
redTable = [];
for index = 1:31
    [~, intA, intB] = intersect(allCycles(:,:,index), uniqueTable, '
    rows');
    [~, I] = sort(intA);
    redTable = [redTable intB(I)];
end
uniqueIndexs = ones(length(uniqueTable),1);
for r = redTable'
    if sum(uniqueIndexs(r)) == 31
    uniqueIndexs(r(2:end)) = zeros(30,1);
elseif sum(uniqueIndexs(r)) ~= 1
       error ('huh?')
    end
end
uniqueIndexs(1) = 1; % all zero gets deleted
reducedTable = uniqueTable(find(uniqueIndexs),:);
[~, iA, iB] = intersect(reducedTable, trt, 'rows');
[~, I] = sort(iA);
syndromes = iB(I) - 1;
save('reducedTable.mat','syndromes', 'reducedTable');
```

```
function decoded_data = matlabBCHdecode(data_to_decode)
load trt
bchPol = [1 0 0 0 1 1 1 1 1 0 1 0 1 1 1 1];
decoded_data = decode(data_to_decode, 31, 16, 'cyclic/fmt', bchPol, trt);
```

```
function codeword = polBCHencoder(msg)
genPol = [1 0 0 0 1 1 1 1 1 0 1 0 1 1 1 1];
c = [msg zeros(1,15)];
[~, b] = gfdeconv(fliplr(c), fliplr(genPol));
b = [zeros(1,15 - length(b)) fliplr(b) zeros(1,16)];
codeword = b + [zeros(1,15) msg];
```

```
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 1 1 0 0 0 1 1 0 1
  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 1 1 1 1 0 0 0 1];
for index = 1:31
  s = [data_to_decode(index:end) data_to_decode(1:(index-1))]*H';
  s = bin2dec(int2str(mod(s,2)));
  if sum(syndromes == s) > 0
    errorInd = find(syndromes == s);
    errorLoc = reducedTable(errorInd,:);
    y = mod([data_to_decode(index:end) ...
      data_to_decode(1:(index-1))] + errorLoc, 2);
    decoded_data = [y((end - index+2):end) y(1:end -index + 1)];
    decoded_data = decoded_data(16:end);
    return
  end
end
error('HELP!_cant_find!')
```

```
function [data, decoded_data, error_locations] = ...
                    berlekamp_decode(data_to_decode)
% Parameters of n = 31, k = 16, t = 3 BCH
n = 31:
t = 3;
k = 16;
m = 5; % 2^5 = 32
% GF field vars
zero = gf(0, m);
one = gf(1, m);
alpha = gf(2, m);
codeword = qf(data_to_decode, m);
% compute the syndromes
S = codeword*(alpha.^([1:2*t]'*fliplr(0:30)))';
L = 0;
k = -1:
sigma = [one gf(zeros(1,(2*t - 1)), m)];
D = [zero one qf(zeros(1,(2*t - 2)), m)];
for n = 0: (2 *t - 1)
    discrepency = fliplr(S((n-L + 1):(n + 1)))*sigma(1:(L + 1))';
    if discrepency ~= 0
        sigma_star = sigma - discrepency*D;
        if L < n - k
            L_star = n - k;
            k = n - L;
            D = sigma/discrepency;
            L = L_star;
        end
        sigma = sigma_star;
    D = [zero D(1:(end-1))];
end
```

```
% Find roots of sigma
rootsOfSigma = [];
rootToTry = alpha.^(1:31);
for index = 1:length(rootToTry)
    % if sum is zero then is root
    if sigma*(rootToTry(index).^(0:(length(sigma) - 1)))' == zero
        rootsOfSigma = [rootsOfSigma index];
end
degree = find(sigma ~= zero);
degree = degree(end) - 1;
error_locations = zeros(1,length(data_to_decode));
if length(rootsOfSigma) < degree</pre>
    % disp('WARNING: Cannot correct more than 3 errors')
    decoded_data = data_to_decode;
    data = decoded_data(16:end); % assuming a systematic code
end
error_locations(rootsOfSigma) = ones(1,length(rootsOfSigma));
decoded_data = mod(data_to_decode + error_locations,2);
data = decoded_data(16:end); % assuming a systematic code
```

```
function codeword = encoder(msg)
codeword = mod(msa*G, 2);
```

```
function playAudioOverBSC(pVal)
[data, Fs] = wavread('austinpowers.wav', 'native');
data = de2bi(data);
% add a row of zeros as it is not divisible by 16
data = double(reshape([data; zeros(1,8)],[],16));
errors = rand(length(data),31) < pVal;
encoded_data_no_error = encoder(data);
encoded_data = mod(encoder(data) + errors,2);
decoded_data = reshape(matlabBCHdecode(encoded_data),[], 8);
% remove the last row of zeros again
decoded_data = bi2de(decoded_data(1:end-1,:));
soundsc(double(decoded data),Fs);
figure
plot (double (decoded_data));
plot_title = sprintf('Audio_over_BSC_channel_with_BCH_decoding_(p_=_%.2
    f)', pVal);
```

```
xlabel('Audio_Sample_number')
ylabel('Normalized_audio_magnitude')
title(plot_title)
```

```
function msg = syndLookupDecode(codeword)
load trt
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 1 1 1 1 1 0 0 0 1 1;
syndrome = bi2de(mod(codeword * H',2),'left-msb');
errLocations = trt(1+syndrome,:);
correctedcode = mod(errLocations+codeword, 2);
msg = correctedcode(:,16:end);
```

```
function binarywav = binary_to_wav(data)
    d = char(data+48);
    d1 = bin2dec(d);
    binarywav = d1./255;
    binarywav = binarywav - 0.5;
end
```

```
% Plots coded and uncoded Eb/No given transition probabilities
% and the code rate. Formulas given in project notes
function plot_ebno(transition_prob, bers, uncoded_bers, code_rate)
    % Replace zero's with episolon for plot-friendliness
   bers(bers==0) = 10e-10;
   uncoded_bers(uncoded_bers==0) = 10e-10;
    % Determine Eb/No for coded/uncoded
   ebno_coded = 10*log10 ( (qfuncinv(transition_prob).^2) / (
    code rate));
   ebno = 20*log10(qfuncinv(transition_prob));
    % Plot Eb/No vs for coded/uncoded
   figure
    semilogy(ebno_coded(2:end-1), bers(2:end-1), 'g');
   hold on
   semilogy(ebno(2:end-1), uncoded_bers(2:end-1));
   legend('Coded_BSC', 'Uncoded_BSC');
xlabel('Eb/No_(dB)');
   ylabel('Bit_Error_Rate')
   xlim([0 10])
   ylim([10^-6 10^0]);
   title('Bit_Error_Rate_vs._Eb/No_(dB)_for_LDPC_code');
   hold off
end
```

```
% Simulate LDPC over AWGN with BPSK
% with hard decision demod and hard decision decoder
close all
clear all
% Import LDPC parity matrix
load ldpc_h
ldpc_h = sparse(ldpc_h);
% Generate EbNo's
ebnos = -2:12;
% LDPC Encoder/Decoder
hEnc = comm.LDPCEncoder(ldpc_h);
% Hard decision by default
hDec = comm.LDPCDecoder(ldpc_h, 'MaximumIterationCount', 5);
hMod = comm.PSKModulator(2);
hDemodHard = comm.PSKDemodulator(2, 'BitOutput', true, ...
           'DecisionMethod','Hard_decision');
hError = comm.ErrorRate;
hError_uncoded = comm.ErrorRate;
bers = [];
bers_uncoded = [];
% For each eb/no, encode using LDPC, modulate, demodulate,
% decode, then determine error rate. Do the same for uncoded
numErrors = 0;
i = 0;
for e = ebnos
    % Create noisy channel using EbNo.
    hChan = comm.AWGNChannel('NoiseMethod', 'Signal_to_noise_ratio_(SNR
    )', 'SNR', e);
    while i < 1000
        % Generate data
        data = logical(randi([0 1], 1152, 1));
        % Encode data
        encodedData = step(hEnc, data);
        % Modulate encoded data
        modData = step(hMod, encodedData);
        % Modulate uncoded data
        modData_uncoded = step(hMod, data);
        % Add AWGN noise according to EbNo.
        noisySignal = step(hChan, modData);
        noisySignal_uncoded = step(hChan, modData_uncoded);
        % Demod
        receivedSignal = step(hDemodHard, noisySignal);
        receivedSignal_uncoded = step(hDemodHard, noisySignal_uncoded);
        % The output is bits. Need to convert to log-likelihood ratio
```

```
% for LDPC
        % More positive = likely to be 0
        % More negative = likely to be 1
        receivedSignal(receivedSignal==0) = 10000;
        receivedSignal(receivedSignal==1) = -10000;
        %receivedSignal_uncoded(receivedSignal_uncoded>0) = 0;
        %receivedSignal_uncoded(receivedSignal_uncoded<0) = 1;</pre>
        % LDPC decode
        dataDec = step(hDec, receivedSignal);
        % Determine error rate
        errorstats = step(hError, data, dataDec);
        errorstats_uncoded = step(hError_uncoded, data, logical(
    receivedSignal_uncoded));
        i = i + 1
    end
    bers = [bers errorstats(1) ];
    bers_uncoded = [bers_uncoded errorstats_uncoded(1)];
    i = 0;
    % Reset error stats
    reset (hError);
    reset (hError_uncoded);
end
bers(bers == 0) = 10e-15;
figure
semilogy(ebnos, bers);
hold on
semilogy(ebnos, bers_uncoded, 'r');
legend('Coded', 'Uncoded');
ylim([10^-6 10^-1])
xlabel('Eb/No_(dB)')
ylabel('Bit_Error_Rate')
title('BER_vs_EB/No_for_LDPC_Hard-decision_(BPSK)')
%fprintf('Error rate
                          = %1.2f\nNumber of errors = %d\n', ...
       errorstats(1), errorstats(2))
```

```
hEnc = comm.LDPCEncoder(ldpc_h);
hDec = comm.LDPCDecoder(ldpc_h, 'MaximumIterationCount', 5);
% Go through perfect BPSK mod/demod (no noise) - this is because the
   LDPC Decoder
% requires log-likelihood ratios
hMod = comm.PSKModulator(2, 'BitInput',true);
hDemod = comm.PSKDemodulator(2, 'BitOutput', true, ...
            'DecisionMethod','Approximate_log-likelihood_ratio');
hError = comm.ErrorRate;
% Generate arrays of BER
bers = [];
i = 0;
disp ('Running_simulation_...')
for p = ps
    hError = comm.ErrorRate;
    % Encode data
    data_enc = step(hEnc, data);
    % BSC channel
    data_enc_bsc = bsc(double(data_enc), p);
    data_bsc = bsc(double(data), p);
    % Mod/demod
    data_enc_bsc_mod = step(hMod, data_enc_bsc);
    data_enc_bsc_demod = step(hDemod, data_enc_bsc_mod);
    % Decode
    data_dec = step(hDec, data_enc_bsc_demod);
    % Get BER
    errorstats = step(hError, data, data_dec);
   bers = [bers errorstats(1)];
end
disp('Plotting_BER_vs_p_...')
plot_ber(ps, bers);
disp ('Plotting_BER_vs_EBNo_...')
plot_ebno(ps, bers, ps, 0.5);
```

```
function wavbinary = wav_to_binary(filename)
    [x, Fs] = wavread(filename, 'native');
    x1 = x - min(x);
    s = dec2bin(x);
    wavbinary = double(s) - 48;
end
```

```
% Given an array of tranisition probbilities and
% error rates for a code, plot them
function plot_ber(transition_prob, bers)
% Plot transition probability vs BER
bers(bers==0) = 10e-10;
figure
semilogy(transition_prob, bers,'r');
hold on
```

```
xlabel('Transition_probability_(p)');
ylabel('Bit_error_rate_(BER)');
semilogy(transition_prob, transition_prob);
legend('Coded', 'Uncoded');
ylim([10^-6 10^0]);
title('Bit_Error_Rate_vs._Transition_probability_(p)_for_LDPC_code')
hold off
end
```

```
load ldpc_h
ldpc_h = sparse(ldpc_h);
ebno = 0
   for e = ebno
        hEnc = comm.LDPCEncoder(ldpc_h);
         hMod = comm.PSKModulator(2, 'BitInput',true);
         hChan = comm.AWGNChannel(...
                  'NoiseMethod', 'Signal to noise ratio (Eb/No)', 'EbNo', e
    );
        hDemod = comm.PSKDemodulator(2, 'BitOutput', true, ...
                  'DecisionMethod','Approximate_log-likelihood_ratio',
                  'Variance', 1/10^(hChan.SNR/10));
        hDec = comm.LDPCDecoder(ldpc_h);
         hError = comm.ErrorRate;
         for counter = 1:10
             counter
           data
                            = logical(randi([0 1], 1152, 1));
                          = step(hEnc, data);
= step(hMod, encodedData);
           encodedData
           modSignal
           receivedSignal = step(hChan, modSignal);
           demodSignal
                           = step(hDemod, receivedSignal);
= step(hDec, demodSignal);
           receivedBits
           data == receivedBits
           errorStats
                            = step(hError, data, receivedBits);
         \label{lem:first} \textbf{fprintf}('\texttt{Error\_rate\_\_\_\_\$1.8f} \land \texttt{NNumber\_of\_errors\_=\_\$d} \land \texttt{n'},
           errorStats(1), errorStats(2))
   end
```

```
hMod = comm.PSKModulator(2);
hDemodHard = comm.PSKDemodulator(2, 'BitOutput',true,...
            'DecisionMethod', 'Approximate_log-likelihood_ratio');
hError = comm.ErrorRate;
hError_uncoded = comm.ErrorRate;
bers = [];
bers_uncoded = [];
% For each eb/no, encode using LDPC, modulate, demodulate,
% decode, then determine error rate. Do the same for uncoded
numErrors = 0;
i = 0;
for e = ebnos
    % Create noisy channel using EbNo.
    hChan = comm.AWGNChannel('NoiseMethod', 'Signal_to_noise_ratio_(SNR
    )', 'SNR', e);
    while i < 1000
        % Generate data
        data = logical(randi([0 1], 1152, 1));
        % Encode data
        encodedData = step(hEnc, data);
        % Modulate encoded data
        modData = step(hMod, encodedData);
        % Modulate uncoded data
        modData_uncoded = step(hMod, data);
        % Add AWGN noise according to EbNo.
        noisySignal = step(hChan, modData);
        noisySignal_uncoded = step(hChan, modData_uncoded);
        % Demod
        receivedSignal = step(hDemodHard, noisySignal);
        receivedSignal_uncoded = step(hDemodHard, noisySignal_uncoded);
        receivedSignal_uncoded(receivedSignal_uncoded>0) = 0;
        receivedSignal_uncoded(receivedSignal_uncoded<0) = 1;</pre>
        % LDPC decode
        dataDec = step(hDec, receivedSignal);
        dataDecThreshold = dataDec;
        dataDecThreshold(dataDecThreshold>0) = 0;
        dataDecThreshold(dataDecThreshold<0) = 1;</pre>
        % Determine error rate
        errorstats = step(hError, data, logical(dataDecThreshold));
        errorstats_uncoded = step(hError_uncoded, data, logical(
    receivedSignal_uncoded));
        i = i + 1
    end
```

```
bers = [bers errorstats(1) ];
    bers_uncoded = [bers_uncoded errorstats_uncoded(1)];
    i = 0;
    % Reset error stats
    reset (hError);
    reset (hError_uncoded);
end
bers(bers < 10e-10) = 10e-15;
bers_uncoded(bers_uncoded < 10e-10) = 10e-15;</pre>
figure
semilogy(ebnos, bers);
hold on
semilogy(ebnos, bers_uncoded, 'r');
legend('Coded', 'Uncoded');
ylim([10^-7 10^-1])
xlabel('Eb/No_(dB)')
ylabel('Bit_Error_Rate')
\textbf{title}(\textit{'}\texttt{BER\_vs\_EB/No\_for\_LDPC\_Soft-decision\_(BPSK)'})
%fprintf('Error rate
                           = %1.2f\nNumber of errors = %d\n', ...
       errorstats(1), errorstats(2))
```

```
% Simulate LDPC encoding of audio
% Author: Vanush Vaswani
% Import LDPC parity matrix
load ldpc_h
ldpc_h = sparse(ldpc_h);
bsc_p = 0.1;
% Get wav data
data = wav_to_binary('austinpowers.wav');
data_t = data';
% Convert data to column vector
data_col = data_t(:);
k = 1152;
num_cols = floor(numel(data_col)/k);
% Clip data to an integer number of messages (K = 1152)
data_col = data_col(1:k*num_cols);
% Messages to columns
data_col = logical(vec2mat(data_col, num_cols));
[nrow, ncol] = size(data_col);
% LDPC Encoder/Decoder
hEnc = comm.LDPCEncoder(ldpc_h);
hDec = comm.LDPCDecoder(ldpc_h,'MaximumIterationCount', 20);
% Go through perfect BPSK mod/demod - this is because the LDPC Decoder
% requires log-likelihood ratios
hMod = comm.PSKModulator(2, 'BitInput', true); % Don't we want (2 ...
   for a BPSK?
hDemod = comm.PSKDemodulator(2, 'BitOutput', true, ...
           'DecisionMethod','Approximate_log-likelihood_ratio');
```

```
hError = comm.ErrorRate;
received_matrix = zeros(k, num_cols);
disp ('Running_simulation_..._')
% For each message (frame of raw audio), generate code word. Then mod/
   demod, then decode
for i = 1:ncol
    disp(i);
    % Encode
    data_encoded = step(hEnc, data_col(:,i));
    % Go through BSC (add bit errors)
    data_encoded_bsc = bsc(double(data_encoded), bsc_p);
    errors = data_encoded == data_encoded_bsc;
    error_rate = length(find(errors == 0))/numel(errors)
    %data_encoded_bsc = data_encoded;
    % Modulate
    data_encoded_bsc_mod = step(hMod, logical(data_encoded_bsc));
    % Demodulate
    data_encoded_bsc_demod = step(hDemod, data_encoded_bsc_mod);
    % Decode
    received_bits = step(hDec, data_encoded_bsc_demod);
    % Store in rx matrix
    received_matrix(:,i) = received_bits;
    errorStats = step(hError, data_col(:,i), received_bits);
end
fprintf('Error_rate____=_%1.2f\nNumber_of_errors_=_%d\n', ...
      errorStats(1), errorStats(2))
rxdata = received_matrix';
rxdata = rxdata(:);
rxdata = vec2mat(rxdata, 8);
rxwav = binary_to_wav(rxdata);
fprintf('Plotting_corrected_audio_with_BSC_p_=_%d\n', bsc_p)
plot(rxwav)
plot_title = sprintf('Audio_over_BSC_channel_with_LDPC_decoding_(p_=_
    %.2f)', bsc_p);
xlabel('Audio_sample_number')
ylabel('Normalized_audio_magnitude')
title (plot_title)
sound(rxwav, 11025);
```