

JC10 Rec'd PCT/PTO 23 OCT 2001

FORM PTO-1390 OFFICE		U.S. DEPARTMENT OF COMMERCE PATENT AND TRADEMARK TRANSMITTAL LETTER TO THE UNITED STATES DESIGNATED/ELECTED OFFICE (DO/EO/US) CONCERNING A FILING UNDER 35 U.S.C. 371		ATTORNEY'S DOCKET NUMBER PF-0698 USN
INTERNATIONAL APPLICATION NO. PCT/US00/10884		INTERNATIONAL FILING DATE 20 April 2000		U.S. APPLICATION NO. (If known, see 37 CFR 1.5) TO BE ASSIGNED 10/019495
				PRIORITY DATE CLAIMED 23 April 1999
TITLE OF INVENTION HUMAN MEMBRANE-ASSOCIATED PROTEINS				
APPLICANT(S) FOR DO/EO/US HILLMAN, Jennifer L.; BANDMAN, Olga; TANG, Y. Tom; LAL, Preeti; YUE, Henry; REDDY, Roopa; AZIMZAI, Yalda; BAUGHN, Mariah R.				
<p>Applicant herewith submits to the United States Designated/Elected Office (DO/EO/US) the following items and other information:</p> <ol style="list-style-type: none"> 1. <input checked="" type="checkbox"/> This is the FIRST submission of items concerning a filing under 35 U.S.C. 371. 2. <input type="checkbox"/> This is a SECOND or SUBSEQUENT submission of items concerning a filing under 35 U.S.C. 371. 3. <input type="checkbox"/> This is an express request to promptly begin national examination procedures (35 U.S.C. 371 (f)). 4. <input type="checkbox"/> The US has been elected by the expiration of 19 months from the priority date (PCT Article 31). 5. <input checked="" type="checkbox"/> A copy of the International Application as filed (35 U.S.C. 371(c)(2)) <ol style="list-style-type: none"> a. <input type="checkbox"/> is attached hereto (required only if not communicated by the International Bureau) b. <input type="checkbox"/> has been communicated by the International Bureau. c. <input checked="" type="checkbox"/> is not required, as the application was filed in the United States Receiving Office (RO/US). 6. <input type="checkbox"/> An English language translation of the International Application as filed (35 U.S.C. 371(c)(2)). 7. <input checked="" type="checkbox"/> Amendments to the claims of the International Application under PCT Article 19 (35 U.S.C. 371(c)(3)) <ol style="list-style-type: none"> a. <input type="checkbox"/> are attached hereto (required only if not communicated by the International Bureau). b. <input type="checkbox"/> have been communicated by the International Bureau. c. <input type="checkbox"/> have not been made; however, the time limit for making such amendments has NOT expired. d. <input checked="" type="checkbox"/> have not been made and will not be/made. 8. <input type="checkbox"/> An English language translation of the amendments to the claims under PCT Article 19 (35 U.S.C. 371(c)(3)). 9. <input checked="" type="checkbox"/> An oath or declaration of the inventor(s) (35 U.S.C. 371(c)(4)). 10. <input type="checkbox"/> An English language translation of the annexes to the International Preliminary Examination Report under PCT Article 36 (35 U.S.C. 371(c)(5)). 				
Items 11 to 16 below concern document(s) or information included: <ol style="list-style-type: none"> 11. <input type="checkbox"/> An Information Disclosure Statement under 37 CFR 1.97 and 1.98. 12. <input checked="" type="checkbox"/> An assignment document for recording. A separate cover sheet in compliance with 37 CFR 3.27 and 3.31 is included. 13. <input checked="" type="checkbox"/> A FIRST preliminary amendment, as follows: Cancel in this application original claims #16, 19, and 22 before calculating the filing fee, without prejudice or disclaimer. Applicants submit that these claims were included in the application as filed in the interest of providing notice to the public of certain specific subject matter intended to be claimed, and are being canceled at this time in the interest of reducing filing costs. Applicants expressly state that these claims are not being canceled for reasons related to patentability, and are in fact fully supported by the specification as filed. Applicants expressly reserve the right to reinstate these claims or to add other claims during prosecution of this application or a continuation or divisional application. Applicants expressly do not disclaim the subject matter of any invention disclosed herein which is not set forth in the instantly filed claims. <input type="checkbox"/> A SECOND or SUBSEQUENT preliminary amendment. 14. <input type="checkbox"/> A substitute specification. 15. <input type="checkbox"/> A change of power of attorney and/or address letter. 16. <input type="checkbox"/> Other items or information: <ol style="list-style-type: none"> 1) Transmittal Letter (2 pp, in duplicate) 2) Return Postcard 3) Express Mail Label No.: EL 856 148772 US 4) Request to Transfer 5) Assignment (2 pp) and Assignment Cover Sheet (1page) 6) Oath & Declaration (5 pp) 				

U.S. APPLICATION NO. (if known, see 37 CFR 1.5) 10/019495		INTERNATIONAL APPLICATION NO.: PCT/US00/10882	ATTORNEY'S DOCKET NUMBER PF-0698 USN
<p>17. <input checked="" type="checkbox"/> The following fees are submitted:</p> <p>BASIC NATIONAL FEE (37 CFR 1.492(a)(1)-(5):</p> <p>Neither international preliminary examination fee (37 CFR 1.482) nor international search fee (37 CFR 1.445(a)(2)) paid to USPTO and International Search Report not prepared by the EPO or JPO.....\$1000.00</p> <p><input type="checkbox"/> International preliminary examination fee (37 CFR 1.482) not paid to USPTO but International Search Report prepared by the EPO or JPO..\$860.00</p> <p>International preliminary examination fee (37 CFR 1.482) not paid to USPTO but international search fee (37 CFR 1.445(a)(2)) paid to USPTO.....\$710.00</p> <p><input checked="" type="checkbox"/> International preliminary examination fee paid to USPTO (37 CFR 1.482) but all claims did not satisfy provisions of PCT Article 33(1)-(4).....\$690.00</p> <p><input type="checkbox"/> International preliminary examination fee paid to USPTO (37 CFR 1.482) and all claims satisfied provisions of PCT Article 33(1)-(4).....\$100.00</p>			
ENTER APPROPRIATE BASIC FEE AMOUNT =		\$740.00	
Surcharge of \$130.00 for furnishing the oath or declaration later than <input type="checkbox"/> 20 <input type="checkbox"/> 30 months from the earliest claimed priority date (37 CFR 1.492(e)).		\$	
CLAIMS	NUMBER FILED	NUMBER EXTRA	RATE
Total Claims	20 =	0	X \$ 18.00
Independent Claims	2 =	0	X \$ 80.00
MULTIPLE DEPENDENT CLAIM(S) (if applicable)		+ \$270.00	\$
TOTAL OF ABOVE CALCULATIONS =		\$	
<input type="checkbox"/> Applicant claims small entity status. See 37 CFR 1.27. The fees indicated above are reduced by 1/2.		\$	
SUBTOTAL		\$740.00	
=			
Processing fee of \$130.00 for furnishing the English translation later than <input type="checkbox"/> 20 <input type="checkbox"/> 30 months from the earliest claimed priority date (37 CFR 1.492(f)).		\$	
TOTAL NATIONAL FEE =		\$740.00	
Fee for recording the enclosed assignment (37 CFR 1.21(h)). The assignment must be accompanied by the appropriate cover sheet (37 CFR 3.28, 3.31). \$40.00 per property		\$0.00	
TOTAL FEES ENCLOSED =		\$740.00	
		Amount to be Refunded:	\$
		Charged:	\$
<p>a. <input type="checkbox"/> A check in the amount of \$ _____ to cover the above fees is enclosed.</p> <p>b. <input checked="" type="checkbox"/> Please charge my Deposit Account No. <u>09-0108</u> in the amount of \$<u>740.00</u> to cover the above fees.</p> <p>c. <input checked="" type="checkbox"/> The Commissioner is hereby authorized to charge any additional fees which may be required, or credit any overpayment to Deposit Account No. <u>09-0108</u>. A duplicate copy of this sheet is enclosed.</p>			
<p>NOTE: Where an appropriate time limit under 37 CFR 1.494 or 1.495 has not been met, a petition to revive (37 CFR 1.137(a) or (b)) must be filed and granted to restore the application to pending status.</p>			
<p>SEND ALL CORRESPONDENCE TO:</p> <p>INCYTE GENOMICS, INC. 3160 Porter Drive Palo Alto, CA 94304</p> <p> SIGNATURE</p> <p>NAME: Diana Hamlet-Cox</p>			
<p>REGISTRATION NUMBER: 33,302</p> <p>DATE: <u>23</u> October 2001</p>			

HUMAN MEMBRANE-ASSOCIATED PROTEINS**TECHNICAL FIELD**

This invention relates to nucleic acid and amino acid sequences of human membrane-associated proteins and to the use of these sequences in the diagnosis, treatment, and prevention of cell signaling, cell differentiation, and cell proliferation disorders.

BACKGROUND OF THE INVENTION

Eukaryotic cells are surrounded by plasma membranes which enclose the cell and maintain an environment inside the cell that is distinct from its surroundings. In addition, eukaryotic organisms are distinct from prokaryotes in that they possess many intracellular organelle and vesicle structures. Many of the metabolic reactions which distinguish eukaryotic biochemistry from prokaryotic biochemistry take place within these structures. The plasma membrane and the membranes surrounding organelles and vesicles are composed of phosphoglycerides, fatty acids, cholesterol, phospholipids, glycolipids, proteoglycans, and proteins. These components confer identity and functionality to the membranes with which they associate.

Integral Membrane Proteins

The majority of known integral membrane proteins are transmembrane proteins (TM) which are characterized by an extracellular, a transmembrane, and an intracellular domain. TM domains are typically comprised of 15 to 25 hydrophobic amino acids which are predicted to adopt an α -helical conformation. TM proteins are classified as bitopic (Types I and II) and polytopic (Types III and IV) (Singer, S.J. (1990) Annu. Rev. Cell Biol. 6:247-96). Bitopic proteins span the membrane once while polytopic proteins contain multiple membrane-spanning segments. TM proteins function as cell-surface receptors, receptor-interacting proteins, transporters of ions or metabolites, ion channels, cell anchoring proteins, and cell type-specific surface antigens.

Many membrane proteins (MPs) contain amino acid sequence motifs that target these proteins to specific subcellular sites. Examples of these motifs include PDZ domains, KDEL, RGD, NGR, and GSL sequence motifs, von Willebrand factor A (vWFA) domains, and EGF-like domains. RGD, NGR, and GSL motif-containing peptides have been used as drug delivery agents in cancer treatments which target tumor vasculature (Arap, W. et al. (1998) Science, 279:377-380). Furthermore, MPs may also contain amino acid sequence motifs, such as the carbohydrate recognition domain (CRD), that mediate interactions with extracellular or intracellular molecules.

In some cases TM proteins function as mediators of cell-cell attachment. For example, Emp (erythrocyte macrophage protein), which mediates attachment of erythroblasts to macrophages, has a putative TM domain near its N-terminus. It is postulated that Emp suppresses the process of

apoptosis by promoting terminal differentiation of erythroid cells when Emp-mediated contact is made between erythroblasts and macrophages (Hanspal, M. et al. (1998) *Blood* 92:2940-2950).

One function of TM proteins is to facilitate cell-cell communication. Neurexins are a family of neuronal cell surface receptor proteins, with single TM regions, that aid in axon guidance and 5 synaptogenesis. Neurexins exhibit extensive alternative splicing that produces hundreds of unique neurexins in the brain (Ushkaryov, Y.A. et. al. (1992) *Science* 257:50-56).

In some cases TM proteins serve as transporters or channels in the cell membrane. The Rh (Rhesus) erythrocyte blood group protein family serve such a function in erythrocyte membranes. The family includes both Rh50 glycoprotein and Rh30 polypeptides that together form a complex 10 essential for Rh antigen expression and erythrocyte membrane integrity. Mutations in Rh50 underlie Rh deficiency syndrome, an autosomal recessive disorder associated with chronic hemolytic anemia and spherostomatocytosis (Huang, C.H. (1998) *J. Biol. Chem.* 273:2207-2213).

Tumor antigens are cell surface molecules that are differentially expressed in tumor cells relative to normal cells. Tumor antigens distinguish tumor cells immunologically from normal cells 15 and provide diagnostic and therapeutic targets for human cancers. (Takagi, S. et al. (1995) *Int. J. Cancer* 61: 706-715; Liu, E. et al. (1992) *Oncogene* 7: 1027-1032.)

Other types of cell surface antigens include those identified on leukocytic cells of the immune system. These antigens have been identified using systematic, monoclonal antibody (mAb)-based "shot gun" techniques. These techniques have resulted in the production of hundreds of mAbs 20 directed against unknown cell surface leukocytic antigens. These antigens have been grouped into "clusters of differentiation" based on common immunocytochemical localization patterns in various differentiated and undifferentiated leukocytic cell types. Antigens in a given cluster are presumed to identify a single cell surface protein and are assigned a "CD" or "cluster of differentiation" designation. Some of the genes encoding proteins identified by CD antigens have been cloned and 25 verified by standard molecular biology techniques. CD antigens have been characterized as both transmembrane proteins and cell surface proteins anchored to the plasma membrane via covalent attachment to fatty acid-containing glycolipids such as glycosylphosphatidylinositol (GPI), discussed below. (Reviewed in Barclay, A. N. et al. (1995) The Leucocyte Antigen Facts Book, Academic Press, San Diego, CA, pp. 17-20.)

30 The TM cell surface glycoprotein CD69 is an early activation antigen of T lymphocytes. CD69 is homologous to members of a supergene family of type II integral membrane proteins having C-type lectin domains. Although the precise functions of the CD-69 antigen is not known, evidence suggests that these proteins transmit mitogenic signals across the plasma membrane and are up-regulated in response to lymphocyte activation (Hammann, J. et. al. (1993) *J. Immunol.* 150:4920-35 4927).

Peripheral and Anchored Membrane Proteins

Some membrane proteins are not membrane-spanning but are attached to the plasma membrane via membrane anchors or interactions with integral membrane proteins. Membrane anchors are covalently joined to a protein post-translationally and include such moieties as prenyl, myristyl, and glycosylphosphatidyl inositol (GPI) groups. Membrane localization of peripheral and anchored proteins is important for their function in processes such as receptor-mediated signal transduction. For example, prenylation of Ras is required for its localization to the plasma membrane and for its normal and oncogenic functions in signal transduction.

The Ly-6 antigens comprise a family of membrane-bound proteins expressed primarily on the surface of T-lymphocytes and, to a lesser extent, on the surface of other leukocytes and leukocyte precursors. (Reviewed in Barclay, A. N. et al. (1995) The Leucocyte Antigen Facts Book, Academic Press, San Diego, CA, pp. 352-354; Friedman, S. et al. (1990) Immunogenetics 31:104-111.) Ly-6 antigens are attached to the cell surface via GPI anchors. Ly-6 antigens are each about 135 amino acids in length and about 50% identical to one another. Although the precise functions of the Ly-6 antigens are not known, evidence suggests that these proteins transmit mitogenic signals across the plasma membrane and are up-regulated in response to lymphocyte activation.

An example of a peripheral membrane protein is the mucin glycoprotein ASGP-1 (ascites sialoglycoprotein-1) from cell line 13762 rat mammary adenocarcinoma. ASGP-1 binds to a transmembrane-spanning partner to form a heterodimeric complex on the cell surface. It is proposed that this complex affects the process of tumor progression by modulating growth factor activity (Wu, K. et al. (1994) J. Biol. Chem. 269:11950-11955).

The discovery of new human membrane-associated proteins and the polynucleotides encoding them satisfies a need in the art by providing new compositions which are useful in the diagnosis, prevention, and treatment of cell signaling, cell differentiation, and cell proliferation disorders.

25

SUMMARY OF THE INVENTION

The invention features purified polypeptides, human membrane-associated proteins, referred to collectively as "HUMAP" and individually as "HUMAP-1," "HUMAP-2," "HUMAP-3," "HUMAP-4," "HUMAP-5," "HUMAP-6," "HUMAP-7," "HUMAP-8," "HUMAP-9," "HUMAP-10," "HUMAP-11," "HUMAP-12," "HUMAP-13," "HUMAP-14," "HUMAP-15," "HUMAP-16," and "HUMAP-17." In one aspect, the invention provides an isolated polypeptide comprising a) an amino acid sequence selected from the group consisting of SEQ ID NO:1-17, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:1-17, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-17, or d) an immunogenic fragment of an amino acid

sequence selected from the group consisting of SEQ ID NO:1-17. In one alternative, the invention provides an isolated polypeptide comprising the amino acid sequence of SEQ ID NO:1-17.

The invention further provides an isolated polynucleotide encoding a polypeptide comprising a) an amino acid sequence selected from the group consisting of SEQ ID NO:1-17, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:1-17, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-17, or d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-17. In one alternative, the polynucleotide is selected from the group consisting of SEQ ID NO:18-34.

10 Additionally, the invention provides a recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide encoding a polypeptide comprising a) an amino acid sequence selected from the group consisting of SEQ ID NO:1-17, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:1-17, c) a biologically active fragment of an amino acid sequence selected
15 from the group consisting of SEQ ID NO:1-17, or d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-17. In one alternative, the invention provides a cell transformed with the recombinant polynucleotide. In another alternative, the invention provides a transgenic organism comprising the recombinant polynucleotide.

The invention also provides a method for producing a polypeptide comprising a) an amino acid sequence selected from the group consisting of SEQ ID NO:1-17, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:1-17, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-17, or d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-17. The method comprises a) culturing a cell under conditions suitable for expression of the polypeptide, wherein said cell is transformed with a recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide encoding the polypeptide, and b) recovering the polypeptide so expressed.

Additionally, the invention provides an isolated antibody which specifically binds to a polypeptide comprising a) an amino acid sequence selected from the group consisting of SEQ ID NO:1-17, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:1-17, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-17, or d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-17.

The invention further provides an isolated polynucleotide comprising a) a polynucleotide sequence selected from the group consisting of SEQ ID NO:18-34, b) a naturally occurring polynucleotide sequence having at least 90% sequence identity to a polynucleotide sequence selected from the group consisting of SEQ ID NO:18-34, c) a polynucleotide sequence complementary to a), or 5 d) a polynucleotide sequence complementary to b). In one alternative, the polynucleotide comprises at least 60 contiguous nucleotides.

Additionally, the invention provides a method for detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide comprising a) a polynucleotide sequence selected from the group consisting of SEQ ID NO:18-34, b) a naturally occurring 10 polynucleotide sequence having at least 90% sequence identity to a polynucleotide sequence selected from the group consisting of SEQ ID NO:18-34, c) a polynucleotide sequence complementary to a), or d) a polynucleotide sequence complementary to b). The method comprises a) hybridizing the sample with a probe comprising at least 16 contiguous nucleotides comprising a sequence complementary to said target polynucleotide in the sample, and which probe specifically hybridizes to said target 15 polynucleotide, under conditions whereby a hybridization complex is formed between said probe and said target polynucleotide, and b) detecting the presence or absence of said hybridization complex, and optionally, if present, the amount thereof. In one alternative, the probe comprises at least 30 contiguous nucleotides. In another alternative, the probe comprises at least 60 contiguous nucleotides.

The invention further provides a pharmaceutical composition comprising an effective amount 20 of a polypeptide comprising a) an amino acid sequence selected from the group consisting of SEQ ID NO:1-17, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:1-17, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-17, or d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-25 17, and a pharmaceutically acceptable excipient. The invention additionally provides a method of treating a disease or condition associated with decreased expression of functional HUMAP, comprising administering to a patient in need of such treatment the pharmaceutical composition.

The invention also provides a method for screening a compound for effectiveness as an agonist of a polypeptide comprising a) an amino acid sequence selected from the group consisting of 30 SEQ ID NO:1-17, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:1-17, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-17, or d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-17. The method comprises a) exposing a sample comprising the polypeptide to a compound,

and b) detecting agonist activity in the sample. In one alternative, the invention provides a pharmaceutical composition comprising an agonist compound identified by the method and a pharmaceutically acceptable excipient. In another alternative, the invention provides a method of treating a disease or condition associated with decreased expression of functional HUMAP,
5 comprising administering to a patient in need of such treatment the pharmaceutical composition.

Additionally, the invention provides a method for screening a compound for effectiveness as an antagonist of a polypeptide comprising a) an amino acid sequence selected from the group consisting of SEQ ID NO:1-17, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:1-17, c) a
10 biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-17, or d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-17. The method comprises a) exposing a sample comprising the polypeptide to a compound, and b) detecting antagonist activity in the sample. In one alternative, the invention provides a pharmaceutical composition comprising an antagonist compound identified by the method
15 and a pharmaceutically acceptable excipient. In another alternative, the invention provides a method of treating a disease or condition associated with overexpression of functional HUMAP, comprising administering to a patient in need of such treatment the pharmaceutical composition.

The invention further provides a method for screening a compound for effectiveness in altering expression of a target polynucleotide, wherein said target polynucleotide comprises a
20 sequence selected from the group consisting of SEQ ID NO:18-34, the method comprising a) exposing a sample comprising the target polynucleotide to a compound, and b) detecting altered expression of the target polynucleotide.

BRIEF DESCRIPTION OF THE TABLES

25 Table 1 shows polypeptide and nucleotide sequence identification numbers (SEQ ID NOS), clone identification numbers (clone IDs), cDNA libraries, and cDNA fragments used to assemble full-length sequences encoding HUMAP.

Table 2 shows features of each polypeptide sequence, including potential motifs, homologous sequences, and methods, algorithms, and searchable databases used for analysis of HUMAP.

30 Table 3 shows selected fragments of each nucleic acid sequence; the tissue-specific expression patterns of each nucleic acid sequence as determined by northern analysis; diseases, disorders, or conditions associated with these tissues; and the vector into which each cDNA was cloned.

Table 4 describes the tissues used to construct the cDNA libraries from which cDNA clones encoding HUMAP were isolated.

35 Table 5 shows the tools, programs, and algorithms used to analyze HUMAP, along with

applicable descriptions, references, and threshold parameters.

DESCRIPTION OF THE INVENTION

Before the present proteins, nucleotide sequences, and methods are described, it is understood
5 that this invention is not limited to the particular machines, materials and methods described, as these
may vary. It is also to be understood that the terminology used herein is for the purpose of describing
particular embodiments only, and is not intended to limit the scope of the present invention which will
be limited only by the appended claims.

It must be noted that as used herein and in the appended claims, the singular forms "a," "an,"
10 and "the" include plural reference unless the context clearly dictates otherwise. Thus, for example, a
reference to "a host cell" includes a plurality of such host cells, and a reference to "an antibody" is a
reference to one or more antibodies and equivalents thereof known to those skilled in the art, and so
forth.

Unless defined otherwise, all technical and scientific terms used herein have the same meanings
15 as commonly understood by one of ordinary skill in the art to which this invention belongs. Although
any machines, materials, and methods similar or equivalent to those described herein can be used to
practice or test the present invention, the preferred machines, materials and methods are now described.
All publications mentioned herein are cited for the purpose of describing and disclosing the cell lines,
protocols, reagents and vectors which are reported in the publications and which might be used in
20 connection with the invention. Nothing herein is to be construed as an admission that the invention is
not entitled to antedate such disclosure by virtue of prior invention.

DEFINITIONS

"HUMAP" refers to the amino acid sequences of substantially purified HUMAP obtained from
any species, particularly a mammalian species, including bovine, ovine, porcine, murine, equine, and
25 human, and from any source, whether natural, synthetic, semi-synthetic, or recombinant.

The term "agonist" refers to a molecule which intensifies or mimics the biological activity of
HUMAP. Agonists may include proteins, nucleic acids, carbohydrates, small molecules, or any other
compound or composition which modulates the activity of HUMAP either by directly interacting with
HUMAP or by acting on components of the biological pathway in which HUMAP participates.

30 An "allelic variant" is an alternative form of the gene encoding HUMAP. Allelic variants may
result from at least one mutation in the nucleic acid sequence and may result in altered mRNAs or in
polypeptides whose structure or function may or may not be altered. A gene may have none, one, or
many allelic variants of its naturally occurring form. Common mutational changes which give rise to
allelic variants are generally ascribed to natural deletions, additions, or substitutions of nucleotides.

Each of these types of changes may occur alone, or in combination with the others, one or more times in a given sequence.

“Altered” nucleic acid sequences encoding HUMAP include those sequences with deletions, insertions, or substitutions of different nucleotides, resulting in a polypeptide the same as HUMAP or a 5 polypeptide with at least one functional characteristic of HUMAP. Included within this definition are polymorphisms which may or may not be readily detectable using a particular oligonucleotide probe of the polynucleotide encoding HUMAP, and improper or unexpected hybridization to allelic variants, with a locus other than the normal chromosomal locus for the polynucleotide sequence encoding HUMAP. The encoded protein may also be “altered,” and may contain deletions, insertions, or 10 substitutions of amino acid residues which produce a silent change and result in a functionally equivalent HUMAP. Deliberate amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues, as long as the biological or immunological activity of HUMAP is retained. For example, negatively charged amino acids may include aspartic acid and glutamic acid, and positively charged 15 amino acids may include lysine and arginine. Amino acids with uncharged polar side chains having similar hydrophilicity values may include: asparagine and glutamine; and serine and threonine. Amino acids with uncharged side chains having similar hydrophilicity values may include: leucine, isoleucine, and valine; glycine and alanine; and phenylalanine and tyrosine.

The terms “amino acid” and “amino acid sequence” refer to an oligopeptide, peptide, 20 polypeptide, or protein sequence, or a fragment of any of these, and to naturally occurring or synthetic molecules. Where “amino acid sequence” is recited to refer to an amino acid sequence of a naturally occurring protein molecule, “amino acid sequence” and like terms are not meant to limit the amino acid sequence to the complete native amino acid sequence associated with the recited protein molecule.

“Amplification” relates to the production of additional copies of a nucleic acid sequence. 25 Amplification is generally carried out using polymerase chain reaction (PCR) technologies well known in the art.

The term “antagonist” refers to a molecule which inhibits or attenuates the biological activity of HUMAP. Antagonists may include proteins such as antibodies, nucleic acids, carbohydrates, small 30 molecules, or any other compound or composition which modulates the activity of HUMAP either by directly interacting with HUMAP or by acting on components of the biological pathway in which HUMAP participates.

The term “antibody” refers to intact immunoglobulin molecules as well as to fragments thereof, such as Fab, F(ab')₂, and Fv fragments, which are capable of binding an epitopic determinant. Antibodies that bind HUMAP polypeptides can be prepared using intact polypeptides or using 35 fragments containing small peptides of interest as the immunizing antigen. The polypeptide or

oligopeptide used to immunize an animal (e.g., a mouse, a rat, or a rabbit) can be derived from the translation of RNA, or synthesized chemically, and can be conjugated to a carrier protein if desired. Commonly used carriers that are chemically coupled to peptides include bovine serum albumin, thyroglobulin, and keyhole limpet hemocyanin (KLH). The coupled peptide is then used to immunize
5 the animal.

The term "antigenic determinant" refers to that region of a molecule (i.e., an epitope) that makes contact with a particular antibody. When a protein or a fragment of a protein is used to immunize a host animal, numerous regions of the protein may induce the production of antibodies which bind specifically to antigenic determinants (particular regions or three-dimensional structures on the
10 protein). An antigenic determinant may compete with the intact antigen (i.e., the immunogen used to elicit the immune response) for binding to an antibody.

The term "antisense" refers to any composition capable of base-pairing with the "sense" strand of a specific nucleic acid sequence. Antisense compositions may include DNA; RNA; peptide nucleic acid (PNA); oligonucleotides having modified backbone linkages such as phosphorothioates,
15 methylphosphonates, or benzylphosphonates; oligonucleotides having modified sugar groups such as 2'-methoxyethyl sugars or 2'-methoxyethoxy sugars; or oligonucleotides having modified bases such as 5-methyl cytosine, 2'-deoxyuracil, or 7-deaza-2'-deoxyguanosine. Antisense molecules may be produced by any method including chemical synthesis or transcription. Once introduced into a cell, the complementary antisense molecule base-pairs with a naturally occurring nucleic acid sequence
20 produced by the cell to form duplexes which block either transcription or translation. The designation "negative" or "minus" can refer to the antisense strand, and the designation "positive" or "plus" can refer to the sense strand of a reference DNA molecule.

The term "biologically active" refers to a protein having structural, regulatory, or biochemical functions of a naturally occurring molecule. Likewise, "immunologically active" refers to the capability
25 of the natural, recombinant, or synthetic HUMAP, or of any oligopeptide thereof, to induce a specific immune response in appropriate animals or cells and to bind with specific antibodies.

The terms "complementary" and "complementarity" refer to the natural binding of polynucleotides by base pairing. For example, the sequence "5' A-G-T 3'" bonds to the complementary sequence "3' T-C-A 5'." Complementarity between two single-stranded molecules may be "partial,"
30 such that only some of the nucleic acids bind, or it may be "complete," such that total complementarity exists between the single stranded molecules. The degree of complementarity between nucleic acid strands has significant effects on the efficiency and strength of the hybridization between the nucleic acid strands. This is of particular importance in amplification reactions, which depend upon binding between nucleic acid strands, and in the design and use of peptide nucleic acid (PNA) molecules.

A "composition comprising a given polynucleotide sequence" and a "composition comprising a given amino acid sequence" refer broadly to any composition containing the given polynucleotide or amino acid sequence. The composition may comprise a dry formulation or an aqueous solution.

Compositions comprising polynucleotide sequences encoding HUMAP or fragments of HUMAP may 5 be employed as hybridization probes. The probes may be stored in freeze-dried form and may be associated with a stabilizing agent such as a carbohydrate. In hybridizations, the probe may be deployed in an aqueous solution containing salts (e.g., NaCl), detergents (e.g., sodium dodecyl sulfate; SDS), and other components (e.g., Denhardt's solution, dry milk, salmon sperm DNA, etc.).

"Consensus sequence" refers to a nucleic acid sequence which has been resequenced to resolve 10 uncalled bases, extended using the XL-PCR kit (Perkin-Elmer, Norwalk CT) in the 5' and/or the 3' direction, and resequenced, or which has been assembled from the overlapping sequences of one or more Incyte Clones and, in some cases, one or more public domain ESTs, using a computer program for fragment assembly, such as the GELVIEW fragment assembly system (GCG, Madison WI). Some sequences have been both extended and assembled to produce the consensus sequence.

15 "Conservative amino acid substitutions" are those substitutions that, when made, least interfere with the properties of the original protein, i.e., the structure and especially the function of the protein is conserved and not significantly changed by such substitutions. The table below shows amino acids which may be substituted for an original amino acid in a protein and which are regarded as conservative amino acid substitutions.

	Original Residue	Conservative Substitution
20	Ala	Gly, Ser
	Arg	His, Lys
	Asn	Asp, Gln, His
	Asp	Asn, Glu
25	Cys	Ala, Ser
	Gln	Asn, Glu, His
	Glu	Asp, Gln, His
	Gly	Ala
	His	Asn, Arg, Gln, Glu
30	Ile	Leu, Val
	Leu	Ile, Val
	Lys	Arg, Gln, Glu
	Met	Leu, Ile
	Phe	His, Met, Leu, Trp, Tyr
35	Ser	Cys, Thr
	Thr	Ser, Val
	Trp	Phe, Tyr
	Tyr	His, Phe, Trp
	Val	Ile, Leu, Thr

40

Conservative amino acid substitutions generally maintain (a) the structure of the polypeptide

backbone in the area of the substitution, for example, as a beta sheet or alpha helical conformation.

(b) the charge or hydrophobicity of the molecule at the site of the substitution, and/or (c) the bulk of the side chain.

A "deletion" refers to a change in the amino acid or nucleotide sequence that results in the
5 absence of one or more amino acid residues or nucleotides.

The term "derivative" refers to the chemical modification of a polypeptide sequence, or a
polynucleotide sequence. Chemical modifications of a polynucleotide sequence can include, for
example, replacement of hydrogen by an alkyl, acyl, hydroxyl, or amino group. A derivative
polynucleotide encodes a polypeptide which retains at least one biological or immunological function of
10 the natural molecule. A derivative polypeptide is one modified by glycosylation, pegylation, or any
similar process that retains at least one biological or immunological function of the polypeptide from
which it was derived.

A "fragment" is a unique portion of HUMAP or the polynucleotide encoding HUMAP which
is identical in sequence to but shorter in length than the parent sequence. A fragment may comprise
15 up to the entire length of the defined sequence, minus one nucleotide/amino acid residue. For
example, a fragment may comprise from 5 to 1000 contiguous nucleotides or amino acid residues. A
fragment used as a probe, primer, antigen, therapeutic molecule, or for other purposes, may be at least
5, 10, 15, 16, 20, 25, 30, 40, 50, 60, 75, 100, 150, 250 or at least 500 contiguous nucleotides or
amino acid residues in length. Fragments may be preferentially selected from certain regions of a
20 molecule. For example, a polypeptide fragment may comprise a certain length of contiguous amino
acids selected from the first 250 or 500 amino acids (or first 25% or 50% of a polypeptide) as shown
in a certain defined sequence. Clearly these lengths are exemplary, and any length that is supported
by the specification, including the Sequence Listing, tables, and figures, may be encompassed by the
present embodiments.

25 A fragment of SEQ ID NO:18-34 comprises a region of unique polynucleotide sequence that
specifically identifies SEQ ID NO:18-34, for example, as distinct from any other sequence in the
same genome. A fragment of SEQ ID NO:18-34 is useful, for example, in hybridization and
amplification technologies and in analogous methods that distinguish SEQ ID NO:18-34 from related
polynucleotide sequences. The precise length of a fragment of SEQ ID NO:18-34 and the region of
30 SEQ ID NO:18-34 to which the fragment corresponds are routinely determinable by one of ordinary
skill in the art based on the intended purpose for the fragment.

A fragment of SEQ ID NO:1-17 is encoded by a fragment of SEQ ID NO:18-34. A fragment
of SEQ ID NO:1-17 comprises a region of unique amino acid sequence that specifically identifies
SEQ ID NO:1-17. For example, a fragment of SEQ ID NO:1-17 is useful as an immunogenic peptide
35 for the development of antibodies that specifically recognize SEQ ID NO:1-17. The precise length of

a fragment of SEQ ID NO:1-17 and the region of SEQ ID NO:1-17 to which the fragment corresponds are routinely determinable by one of ordinary skill in the art based on the intended purpose for the fragment.

The term "similarity" refers to a degree of complementarity. There may be partial similarity or 5 complete similarity. The word "identity" may substitute for the word "similarity." A partially complementary sequence that at least partially inhibits an identical sequence from hybridizing to a target nucleic acid is referred to as "substantially similar." The inhibition of hybridization of the completely complementary sequence to the target sequence may be examined using a hybridization assay (Southern or northern blot, solution hybridization, and the like) under conditions of reduced 10 stringency. A substantially similar sequence or hybridization probe will compete for and inhibit the binding of a completely similar (identical) sequence to the target sequence under conditions of reduced stringency. This is not to say that conditions of reduced stringency are such that non-specific binding is permitted, as reduced stringency conditions require that the binding of two sequences to one another be 15 a specific (i.e., a selective) interaction. The absence of non-specific binding may be tested by the use of a second target sequence which lacks even a partial degree of complementarity (e.g., less than about 30% similarity or identity). In the absence of non-specific binding, the substantially similar sequence or probe will not hybridize to the second non-complementary target sequence.

The phrases "percent identity" and "% identity," as applied to polynucleotide sequences, refer 20 to the percentage of residue matches between at least two polynucleotide sequences aligned using a standardized algorithm. Such an algorithm may insert, in a standardized and reproducible way, gaps in the sequences being compared in order to optimize alignment between two sequences, and therefore achieve a more meaningful comparison of the two sequences.

Percent identity between polynucleotide sequences may be determined using the default 25 parameters of the CLUSTAL V algorithm as incorporated into the MEGALIGN version 3.12e sequence alignment program. This program is part of the LASERGENE software package, a suite of molecular biological analysis programs (DNASTAR, Madison WI). CLUSTAL V is described in Higgins, D.G. and P.M. Sharp (1989) CABIOS 5:151-153 and in Higgins, D.G. et al. (1992) CABIOS 8:189-191. For pairwise alignments of polynucleotide sequences, the default parameters are set as follows: Ktuple=2, gap penalty=5, window=4, and "diagonals saved"=4. The "weighted" residue weight table is 30 selected as the default. Percent identity is reported by CLUSTAL V as the "percent similarity" between aligned polynucleotide sequence pairs.

Alternatively, a suite of commonly used and freely available sequence comparison algorithms is provided by the National Center for Biotechnology Information (NCBI) Basic Local Alignment Search Tool (BLAST) (Altschul, S.F. et al. (1990) J. Mol. Biol. 215:403-410), which is available from several 35 sources, including the NCBI, Bethesda, MD, and on the Internet at

<http://www.ncbi.nlm.nih.gov/BLAST/>. The BLAST software suite includes various sequence analysis programs including “blastn,” that is used to align a known polynucleotide sequence with other polynucleotide sequences from a variety of databases. Also available is a tool called “BLAST 2 Sequences” that is used for direct pairwise comparison of two nucleotide sequences. “BLAST 2 Sequences” can be accessed and used interactively at <http://www.ncbi.nlm.nih.gov/gorf/bl2.html>. The “BLAST 2 Sequences” tool can be used for both blastn and blastp (discussed below). BLAST programs are commonly used with gap and other parameters set to default settings. For example, to compare two nucleotide sequences, one may use blastn with the “BLAST 2 Sequences” tool Version 2.0.9 (May-07-1999) set at default parameters. Such default parameters may be, for example:

10 *Matrix: BLOSUM62*

Reward for match: 1

Penalty for mismatch: -2

Open Gap: 5 and Extension Gap: 2 penalties

Gap x drop-off: 50

15 *Expect: 10*

Word Size: 11

Filter: on

Percent identity may be measured over the length of an entire defined sequence, for example, as defined by a particular SEQ ID number, or may be measured over a shorter length, for example, over 20 the length of a fragment taken from a larger, defined sequence, for instance, a fragment of at least 20, at least 30, at least 40, at least 50, at least 70, at least 100, or at least 200 contiguous nucleotides. Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences shown herein, in the tables, figures, or Sequence Listing, may be used to describe a length over which percentage identity may be measured.

25 Nucleic acid sequences that do not show a high degree of identity may nevertheless encode similar amino acid sequences due to the degeneracy of the genetic code. It is understood that changes in a nucleic acid sequence can be made using this degeneracy to produce multiple nucleic acid sequences that all encode substantially the same protein.

The phrases “percent identity” and “% identity,” as applied to polypeptide sequences, refer to 30 the percentage of residue matches between at least two polypeptide sequences aligned using a standardized algorithm. Methods of polypeptide sequence alignment are well-known. Some alignment methods take into account conservative amino acid substitutions. Such conservative substitutions, explained in more detail above, generally preserve the hydrophobicity and acidity at the site of substitution, thus preserving the structure (and therefore function) of the polypeptide.

Percent identity between polypeptide sequences may be determined using the default parameters of the CLUSTAL V algorithm as incorporated into the MEGALIGN version 3.12e sequence alignment program (described and referenced above). For pairwise alignments of polypeptide sequences using CLUSTAL V, the default parameters are set as follows: Ktuple=1, gap penalty=3, window=5, and 5 "diagonals saved"=5. The PAM250 matrix is selected as the default residue weight table. As with polynucleotide alignments, the percent identity is reported by CLUSTAL V as the "percent similarity" between aligned polypeptide sequence pairs.

Alternatively the NCBI BLAST software suite may be used. For example, for a pairwise comparison of two polypeptide sequences, one may use the "BLAST 2 Sequences" tool Version 2.0.9 10 (May-07-1999) with blastp set at default parameters. Such default parameters may be, for example:

Matrix: BLOSUM62

Open Gap: 11 and Extension Gap: 1 penalties

Gap x drop-off: 50

Expect: 10

15 *Word Size: 3*

Filter: on

Percent identity may be measured over the length of an entire defined polypeptide sequence, for example, as defined by a particular SEQ ID number, or may be measured over a shorter length, for example, over the length of a fragment taken from a larger, defined polypeptide sequence, for instance, 20 a fragment of at least 15, at least 20, at least 30, at least 40, at least 50, at least 70 or at least 150 contiguous residues. Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences shown herein, in the tables, figures or Sequence Listing, may be used to describe a length over which percentage identity may be measured.

"Human artificial chromosomes" (HACs) are linear microchromosomes which may contain 25 DNA sequences of about 6 kb to 10 Mb in size, and which contain all of the elements required for stable mitotic chromosome segregation and maintenance.

The term "humanized antibody" refers to antibody molecules in which the amino acid sequence in the non-antigen binding regions has been altered so that the antibody more closely resembles a human antibody, and still retains its original binding ability.

30 "Hybridization" refers to the process by which a polynucleotide strand anneals with a complementary strand through base pairing under defined hybridization conditions. Specific hybridization is an indication that two nucleic acid sequences share a high degree of identity. Specific hybridization complexes form under permissive annealing conditions and remain hybridized after the "washing" step(s). The washing step(s) is particularly important in determining the stringency of the

hybridization process, with more stringent conditions allowing less non-specific binding, i.e., binding between pairs of nucleic acid strands that are not perfectly matched. Permissive conditions for annealing of nucleic acid sequences are routinely determinable by one of ordinary skill in the art and may be consistent among hybridization experiments, whereas wash conditions may be varied among 5 experiments to achieve the desired stringency, and therefore hybridization specificity. Permissive annealing conditions occur, for example, at 68°C in the presence of about 6 x SSC, about 1% (w/v) SDS, and about 100 µg/ml denatured salmon sperm DNA.

Generally, stringency of hybridization is expressed, in part, with reference to the temperature under which the wash step is carried out. Generally, such wash temperatures are selected to be about 10 5°C to 20°C lower than the thermal melting point (T_m) for the specific sequence at a defined ionic strength and pH. The T_m is the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe. An equation for calculating T_m and conditions for nucleic acid hybridization are well known and can be found in Sambrook et al., 1989, Molecular Cloning: A Laboratory Manual, 2nd ed., vol. 1-3, Cold Spring Harbor Press, Plainview NY; specifically 15 see volume 2, chapter 9.

High stringency conditions for hybridization between polynucleotides of the present invention include wash conditions of 68°C in the presence of about 0.2 x SSC and about 0.1% SDS, for 1 hour. Alternatively, temperatures of about 65°C, 60°C, 55°C, or 42°C may be used. SSC concentration may be varied from about 0.1 to 2 x SSC, with SDS being present at about 0.1%. Typically, blocking 20 reagents are used to block non-specific hybridization. Such blocking reagents include, for instance, denatured salmon sperm DNA at about 100-200 µg/ml. Organic solvent, such as formamide at a concentration of about 35-50% v/v, may also be used under particular circumstances, such as for RNA:DNA hybridizations. Useful variations on these wash conditions will be readily apparent to those of ordinary skill in the art. Hybridization, particularly under high stringency conditions, may be 25 suggestive of evolutionary similarity between the nucleotides. Such similarity is strongly indicative of a similar role for the nucleotides and their encoded polypeptides.

The term "hybridization complex" refers to a complex formed between two nucleic acid sequences by virtue of the formation of hydrogen bonds between complementary bases. A hybridization complex may be formed in solution (e.g., C₀t or R₀t analysis) or formed between one nucleic acid 30 sequence present in solution and another nucleic acid sequence immobilized on a solid support (e.g., paper, membranes, filters, chips, pins or glass slides, or any other appropriate substrate to which cells or their nucleic acids have been fixed).

The words "insertion" and "addition" refer to changes in an amino acid or nucleotide sequence resulting in the addition of one or more amino acid residues or nucleotides, respectively.

“Immune response” can refer to conditions associated with inflammation, trauma, immune disorders, or infectious or genetic disease, etc. These conditions can be characterized by expression of various factors, e.g., cytokines, chemokines, and other signaling molecules, which may affect cellular and systemic defense systems.

5 An “immunogenic fragment” is a polypeptide or oligopeptide fragment of HUMAP which is capable of eliciting an immune response when introduced into a living organism, for example, a mammal. The term “immunogenic fragment” also includes any polypeptide or oligopeptide fragment of HUMAP which is useful in any of the antibody production methods disclosed herein or known in the art.

10 The term “microarray” refers to an arrangement of distinct polynucleotides on a substrate. The terms “element” and “array element” in a microarray context, refer to hybridizable polynucleotides arranged on the surface of a substrate.

15 The term “modulate” refers to a change in the activity of HUMAP. For example, modulation may cause an increase or a decrease in protein activity, binding characteristics, or any other biological, functional, or immunological properties of HUMAP.

The phrases “nucleic acid” and “nucleic acid sequence” refer to a nucleotide, oligonucleotide, polynucleotide, or any fragment thereof. These phrases also refer to DNA or RNA of genomic or synthetic origin which may be single-stranded or double-stranded and may represent the sense or the antisense strand, to peptide nucleic acid (PNA), or to any DNA-like or RNA-like material.

20 “Operably linked” refers to the situation in which a first nucleic acid sequence is placed in a functional relationship with the second nucleic acid sequence. For instance, a promoter is operably linked to a coding sequence if the promoter affects the transcription or expression of the coding sequence. Generally, operably linked DNA sequences may be in close proximity or contiguous and, where necessary to join two protein coding regions, in the same reading frame.

25 “Peptide nucleic acid” (PNA) refers to an antisense molecule or anti-gene agent which comprises an oligonucleotide of at least about 5 nucleotides in length linked to a peptide backbone of amino acid residues ending in lysine. The terminal lysine confers solubility to the composition. PNAs preferentially bind complementary single stranded DNA or RNA and stop transcript elongation, and may be pegylated to extend their lifespan in the cell.

30 “Probe” refers to nucleic acid sequences encoding HUMAP, their complements, or fragments thereof, which are used to detect identical, allelic or related nucleic acid sequences. Probes are isolated oligonucleotides or polynucleotides attached to a detectable label or reporter molecule. Typical labels include radioactive isotopes, ligands, chemiluminescent agents, and enzymes. “Primers” are short nucleic acids, usually DNA oligonucleotides, which may be annealed to a target polynucleotide by 35 complementary base-pairing. The primer may then be extended along the target DNA strand by a DNA

polymerase enzyme. Primer pairs can be used for amplification (and identification) of a nucleic acid sequence, e.g., by the polymerase chain reaction (PCR).

Probes and primers as used in the present invention typically comprise at least 15 contiguous nucleotides of a known sequence. In order to enhance specificity, longer probes and primers may also 5 be employed, such as probes and primers that comprise at least 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, or at least 150 consecutive nucleotides of the disclosed nucleic acid sequences. Probes and primers may be considerably longer than these examples, and it is understood that any length supported by the specification, including the tables, figures, and Sequence Listing, may be used.

Methods for preparing and using probes and primers are described in the references, for 10 example Sambrook et al., 1989, Molecular Cloning: A Laboratory Manual, 2nd ed., vol. 1-3, Cold Spring Harbor Press, Plainview NY; Ausubel et al., 1987, Current Protocols in Molecular Biology, Greene Publ. Assoc. & Wiley-Intersciences, New York NY; Innis et al., 1990, PCR Protocols. A Guide to Methods and Applications, Academic Press, San Diego CA. PCR primer pairs can be derived from a known sequence, for example, by using computer programs intended for that purpose such as Primer 15 (Version 0.5, 1991, Whitehead Institute for Biomedical Research, Cambridge MA).

Oligonucleotides for use as primers are selected using software known in the art for such purpose. For example, OLIGO 4.06 software is useful for the selection of PCR primer pairs of up to 100 nucleotides each, and for the analysis of oligonucleotides and larger polynucleotides of up to 5,000 nucleotides from an input polynucleotide sequence of up to 32 kilobases. Similar primer selection 20 programs have incorporated additional features for expanded capabilities. For example, the PrimOU primer selection program (available to the public from the Genome Center at University of Texas South West Medical Center, Dallas TX) is capable of choosing specific primers from megabase sequences and is thus useful for designing primers on a genome-wide scope. The Primer3 primer selection program (available to the public from the Whitehead Institute/MIT Center for Genome Research, 25 Cambridge MA) allows the user to input a "mispriming library," in which sequences to avoid as primer binding sites are user-specified. Primer3 is useful, in particular, for the selection of oligonucleotides for microarrays. (The source code for the latter two primer selection programs may also be obtained from their respective sources and modified to meet the user's specific needs.) The PrimeGen program (available to the public from the UK Human Genome Mapping Project Resource Centre, Cambridge 30 UK) designs primers based on multiple sequence alignments, thereby allowing selection of primers that hybridize to either the most conserved or least conserved regions of aligned nucleic acid sequences. Hence, this program is useful for identification of both unique and conserved oligonucleotides and polynucleotide fragments. The oligonucleotides and polynucleotide fragments identified by any of the above selection methods are useful in hybridization technologies, for example, as PCR or sequencing

primers, microarray elements, or specific probes to identify fully or partially complementary polynucleotides in a sample of nucleic acids. Methods of oligonucleotide selection are not limited to those described above.

A "recombinant nucleic acid" is a sequence that is not naturally occurring or has a sequence 5 that is made by an artificial combination of two or more otherwise separated segments of sequence. This artificial combination is often accomplished by chemical synthesis or, more commonly, by the artificial manipulation of isolated segments of nucleic acids, e.g., by genetic engineering techniques such as those described in Sambrook, *supra*. The term recombinant includes nucleic acids that have been altered solely by addition, substitution, or deletion of a portion of the nucleic acid. Frequently, a 10 recombinant nucleic acid may include a nucleic acid sequence operably linked to a promoter sequence. Such a recombinant nucleic acid may be part of a vector that is used, for example, to transform a cell.

Alternatively, such recombinant nucleic acids may be part of a viral vector, e.g., based on a vaccinia virus, that could be used to vaccinate a mammal wherein the recombinant nucleic acid is expressed, inducing a protective immunological response in the mammal.

15 An "RNA equivalent," in reference to a DNA sequence, is composed of the same linear sequence of nucleotides as the reference DNA sequence with the exception that all occurrences of the nitrogenous base thymine are replaced with uracil, and the sugar backbone is composed of ribose instead of deoxyribose.

The term "sample" is used in its broadest sense. A sample suspected of containing nucleic 20 acids encoding HUMAP, or fragments thereof, or HUMAP itself, may comprise a bodily fluid; an extract from a cell, chromosome, organelle, or membrane isolated from a cell; a cell; genomic DNA, RNA, or cDNA, in solution or bound to a substrate: a tissue; a tissue print; etc.

The terms "specific binding" and "specifically binding" refer to that interaction between a protein or peptide and an agonist, an antibody, an antagonist, a small molecule, or any natural or 25 synthetic binding composition. The interaction is dependent upon the presence of a particular structure of the protein, e.g., the antigenic determinant or epitope, recognized by the binding molecule. For example, if an antibody is specific for epitope "A," the presence of a polypeptide containing the epitope A, or the presence of free unlabeled A, in a reaction containing free labeled A and the antibody will reduce the amount of labeled A that binds to the antibody.

30 The term "substantially purified" refers to nucleic acid or amino acid sequences that are removed from their natural environment and are isolated or separated, and are at least 60% free, preferably at least 75% free, and most preferably at least 90% free from other components with which they are naturally associated.

A "substitution" refers to the replacement of one or more amino acids or nucleotides by

different amino acids or nucleotides, respectively.

"Substrate" refers to any suitable rigid or semi-rigid support including membranes, filters, chips, slides, wafers, fibers, magnetic or nonmagnetic beads, gels, tubing, plates, polymers, microparticles and capillaries. The substrate can have a variety of surface forms, such as wells, trenches, pins, channels and pores, to which polynucleotides or polypeptides are bound.

"Transformation" describes a process by which exogenous DNA enters and changes a recipient cell. Transformation may occur under natural or artificial conditions according to various methods well known in the art, and may rely on any known method for the insertion of foreign nucleic acid sequences into a prokaryotic or eukaryotic host cell. The method for transformation is selected based on the type of host cell being transformed and may include, but is not limited to, viral infection, electroporation, heat shock, lipofection, and particle bombardment. The term "transformed" cells includes stably transformed cells in which the inserted DNA is capable of replication either as an autonomously replicating plasmid or as part of the host chromosome, as well as transiently transformed cells which express the inserted DNA or RNA for limited periods of time.

A "transgenic organism," as used herein, is any organism, including but not limited to animals and plants, in which one or more of the cells of the organism contains heterologous nucleic acid introduced by way of human intervention, such as by transgenic techniques well known in the art. The nucleic acid is introduced into the cell, directly or indirectly by introduction into a precursor of the cell, by way of deliberate genetic manipulation, such as by microinjection or by infection with a recombinant virus. The term genetic manipulation does not include classical cross-breeding, or in vitro fertilization, but rather is directed to the introduction of a recombinant DNA molecule. The transgenic organisms contemplated in accordance with the present invention include bacteria, cyanobacteria, fungi, and plants and animals. The isolated DNA of the present invention can be introduced into the host by methods known in the art, for example infection, transfection, transformation or transconjugation. Techniques for transferring the DNA of the present invention into such organisms are widely known and provided in references such as Sambrook et al. (1989), supra.

A "variant" of a particular nucleic acid sequence is defined as a nucleic acid sequence having at least 40% sequence identity to the particular nucleic acid sequence over a certain length of one of the nucleic acid sequences using blastn with the "BLAST 2 Sequences" tool Version 2.0.9 (May-07-1999) set at default parameters. Such a pair of nucleic acids may show, for example, at least 50%, at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 95% or at least 98% or greater sequence identity over a certain defined length. A variant may be described as, for example, an "allelic" (as defined above), "splice," "species," or "polymorphic" variant. A splice variant may have significant identity to a reference molecule, but will generally have a greater or lesser number of polynucleotides

due to alternate splicing of exons during mRNA processing. The corresponding polypeptide may possess additional functional domains or lack domains that are present in the reference molecule. Species variants are polynucleotide sequences that vary from one species to another. The resulting polypeptides generally will have significant amino acid identity relative to each other. A polymorphic 5 variant is a variation in the polynucleotide sequence of a particular gene between individuals of a given species. Polymorphic variants also may encompass "single nucleotide polymorphisms" (SNPs) in which the polynucleotide sequence varies by one nucleotide base. The presence of SNPs may be indicative of, for example, a certain population, a disease state, or a propensity for a disease state.

A "variant" of a particular polypeptide sequence is defined as a polypeptide sequence having at 10 least 40% sequence identity to the particular polypeptide sequence over a certain length of one of the polypeptide sequences using blastp with the "BLAST 2 Sequences" tool Version 2.0.9 (May-07-1999) set at default parameters. Such a pair of polypeptides may show, for example, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, or at least 98% or greater sequence identity over a certain defined length of one of the polypeptides.

15 THE INVENTION

The invention is based on the discovery of new human membrane-associated proteins (HUMAP), the polynucleotides encoding HUMAP, and the use of these compositions for the diagnosis, treatment, or prevention of cell signaling, cell differentiation, and cell proliferation disorders.

Table 1 lists the Incyte clones used to assemble full length nucleotide sequences encoding 20 HUMAP. Columns 1 and 2 show the sequence identification numbers (SEQ ID NOs) of the polypeptide and nucleotide sequences, respectively. Column 3 shows the clone IDs of the Incyte clones in which nucleic acids encoding each HUMAP were identified, and column 4 shows the cDNA libraries from which these clones were isolated. Column 5 shows Incyte clones and their corresponding cDNA libraries. Clones for which cDNA libraries are not indicated were derived from pooled cDNA libraries. 25 The Incyte clones in column 5 were used to assemble the consensus nucleotide sequence of each HUMAP and are useful as fragments in hybridization technologies.

The columns of Table 2 show various properties of each of the polypeptides of the invention: 30 column 1 references the SEQ ID NO; column 2 shows the number of amino acid residues in each polypeptide; column 3 shows potential phosphorylation sites; column 4 shows potential glycosylation sites; column 5 shows the amino acid residues comprising signature sequences and motifs; column 6 shows homologous sequences as identified by BLAST analysis; and column 7 shows analytical methods and in some cases, searchable databases to which the analytical methods were applied. The methods of column 7 were used to characterize each polypeptide through sequence homology and protein motifs.

The columns of Table 3 show the tissue-specificity and diseases, disorders, or conditions 35 associated with nucleotide sequences encoding HUMAP. The first column of Table 3 lists the

nucleotide SEQ ID NOs. Column 2 lists fragments of the nucleotide sequences of column 1. These fragments are useful, for example, in hybridization or amplification technologies to identify SEQ ID NO:18-34 and to distinguish between SEQ ID NO:18-34 and related polynucleotide sequences. The polypeptides encoded by these fragments are useful, for example, as immunogenic peptides. Column 3 lists tissue categories which express HUMAP as a fraction of total tissues expressing HUMAP. Column 4 lists diseases, disorders, or conditions associated with those tissues expressing HUMAP as a fraction of total tissues expressing HUMAP. Column 5 lists the vectors used to subclone each cDNA library.

The columns of Table 4 show descriptions of the tissues used to construct the cDNA libraries from which cDNA clones encoding HUMAP were isolated. Column 1 references the nucleotide SEQ ID NOs, column 2 shows the cDNA libraries from which these clones were isolated, and column 3 shows the tissue origins and other descriptive information relevant to the cDNA libraries in column 2.

SEQ ID NO:31 maps to chromosome 4 within the interval from 77.30 to 88.50 centiMorgans.

The invention also encompasses HUMAP variants. A preferred HUMAP variant is one which has at least about 80%, or alternatively at least about 90%, or even at least about 95% amino acid sequence identity to the HUMAP amino acid sequence, and which contains at least one functional or structural characteristic of HUMAP.

The invention also encompasses polynucleotides which encode HUMAP. In a particular embodiment, the invention encompasses a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ID NO:18-34, which encodes HUMAP. The polynucleotide sequences of SEQ ID NO:18-34, as presented in the Sequence Listing, embrace the equivalent RNA sequences, wherein occurrences of the nitrogenous base thymine are replaced with uracil, and the sugar backbone is composed of ribose instead of deoxyribose.

The invention also encompasses a variant of a polynucleotide sequence encoding HUMAP. In particular, such a variant polynucleotide sequence will have at least about 80%, or alternatively at least about 85%, or even at least about 95% polynucleotide sequence identity to the polynucleotide sequence encoding HUMAP. A particular aspect of the invention encompasses a variant of a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ID NO:18-34 which has at least about 80%, or alternatively at least about 85%, or even at least about 95% polynucleotide sequence identity to a nucleic acid sequence selected from the group consisting of SEQ ID NO:18-34. Any one of the polynucleotide variants described above can encode an amino acid sequence which contains at least one functional or structural characteristic of HUMAP.

It will be appreciated by those skilled in the art that as a result of the degeneracy of the genetic code, a multitude of polynucleotide sequences encoding HUMAP, some bearing minimal similarity to

the polynucleotide sequences of any known and naturally occurring gene, may be produced. Thus, the invention contemplates each and every possible variation of polynucleotide sequence that could be made by selecting combinations based on possible codon choices. These combinations are made in accordance with the standard triplet genetic code as applied to the polynucleotide sequence of naturally occurring HUMAP, and all such variations are to be considered as being specifically disclosed.

Although nucleotide sequences which encode HUMAP and its variants are generally capable of hybridizing to the nucleotide sequence of the naturally occurring HUMAP under appropriately selected conditions of stringency, it may be advantageous to produce nucleotide sequences encoding HUMAP or its derivatives possessing a substantially different codon usage, e.g., inclusion of non-naturally occurring codons. Codons may be selected to increase the rate at which expression of the peptide occurs in a particular prokaryotic or eukaryotic host in accordance with the frequency with which particular codons are utilized by the host. Other reasons for substantially altering the nucleotide sequence encoding HUMAP and its derivatives without altering the encoded amino acid sequences include the production of RNA transcripts having more desirable properties, such as a greater half-life, than transcripts produced from the naturally occurring sequence.

The invention also encompasses production of DNA sequences which encode HUMAP and HUMAP derivatives, or fragments thereof, entirely by synthetic chemistry. After production, the synthetic sequence may be inserted into any of the many available expression vectors and cell systems using reagents well known in the art. Moreover, synthetic chemistry may be used to introduce mutations into a sequence encoding HUMAP or any fragment thereof.

Also encompassed by the invention are polynucleotide sequences that are capable of hybridizing to the claimed polynucleotide sequences, and, in particular, to those shown in SEQ ID NO:18-34 and fragments thereof under various conditions of stringency. (See, e.g., Wahl, G.M. and S.L. Berger (1987) Methods Enzymol. 152:399-407; Kimmel, A.R. (1987) Methods Enzymol. 152:507-511.) Hybridization conditions, including annealing and wash conditions, are described in "Definitions."

Methods for DNA sequencing are well known in the art and may be used to practice any of the embodiments of the invention. The methods may employ such enzymes as the Klenow fragment of DNA polymerase I, SEQUENASE (US Biochemical, Cleveland OH), Taq polymerase (Perkin-Elmer), thermostable T7 polymerase (Amersham Pharmacia Biotech, Piscataway NJ), or combinations of polymerases and proofreading exonucleases such as those found in the ELONGASE amplification system (Life Technologies, Gaithersburg MD). Preferably, sequence preparation is automated with machines such as the MICROLAB 2200 liquid transfer system (Hamilton, Reno NV), PTC200 thermal cycler (MJ Research, Watertown MA) and ABI CATALYST 800 thermal cycler (Perkin-Elmer).

Sequencing is then carried out using either the ABI 373 or 377 DNA sequencing system (Perkin-Elmer), the MEGABACE 1000 DNA sequencing system (Molecular Dynamics, Sunnyvale CA), or other systems known in the art. The resulting sequences are analyzed using a variety of algorithms which are well known in the art. (See, e.g., Ausubel, F.M. (1997) Short Protocols in Molecular Biology. John Wiley & Sons, New York NY, unit 7.7; Meyers, R.A. (1995) Molecular Biology and Biotechnology, Wiley VCH, New York NY, pp. 856-853.)

The nucleic acid sequences encoding HUMAP may be extended utilizing a partial nucleotide sequence and employing various PCR-based methods known in the art to detect upstream sequences, such as promoters and regulatory elements. For example, one method which may be employed, 5 restriction-site PCR, uses universal and nested primers to amplify unknown sequence from genomic DNA within a cloning vector. (See, e.g., Sarkar, G. (1993) *PCR Methods Applic.* 2:318-322.) Another method, inverse PCR, uses primers that extend in divergent directions to amplify unknown sequence from a circularized template. The template is derived from restriction fragments comprising a known genomic locus and surrounding sequences. (See, e.g., Triglia, T. et al. (1988) *Nucleic Acids 10 Res.* 16:8186.) A third method, capture PCR, involves PCR amplification of DNA fragments adjacent to known sequences in human and yeast artificial chromosome DNA. (See, e.g., Lagerstrom, M. et al. (1991) *PCR Methods Applic.* 1:111-119.) In this method, multiple restriction enzyme digestions and ligations may be used to insert an engineered double-stranded sequence into a region of unknown sequence before performing PCR. Other methods which may be used to retrieve unknown sequences 15 are known in the art. (See, e.g., Parker, J.D. et al. (1991) *Nucleic Acids Res.* 19:3055-3060). Additionally, one may use PCR, nested primers, and PROMOTERFINDER libraries (Clontech, Palo Alto CA) to walk genomic DNA. This procedure avoids the need to screen libraries and is useful in finding intron/exon junctions. For all PCR-based methods, primers may be designed using 20 commercially available software, such as OLIGO 4.06 Primer Analysis software (National Biosciences, Plymouth MN) or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the template at temperatures of about 68°C to 25 72°C.

When screening for full-length cDNAs, it is preferable to use libraries that have been size-selected to include larger cDNAs. In addition, random-primed libraries, which often include 30 sequences containing the 5' regions of genes, are preferable for situations in which an oligo d(T) library does not yield a full-length cDNA. Genomic libraries may be useful for extension of sequence into 5' non-transcribed regulatory regions.

Capillary electrophoresis systems which are commercially available may be used to analyze the size or confirm the nucleotide sequence of sequencing or PCR products. In particular, capillary

sequencing may employ flowable polymers for electrophoretic separation, four different nucleotide-specific, laser-stimulated fluorescent dyes, and a charge coupled device camera for detection of the emitted wavelengths. Output/light intensity may be converted to electrical signal using appropriate software (e.g., GENOTYPER and SEQUENCE NAVIGATOR, Perkin-Elmer), and the entire process from loading of samples to computer analysis and electronic data display may be computer controlled. Capillary electrophoresis is especially preferable for sequencing small DNA fragments which may be present in limited amounts in a particular sample.

In another embodiment of the invention, polynucleotide sequences or fragments thereof which encode HUMAP may be cloned in recombinant DNA molecules that direct expression of HUMAP, or fragments or functional equivalents thereof, in appropriate host cells. Due to the inherent degeneracy of the genetic code, other DNA sequences which encode substantially the same or a functionally equivalent amino acid sequence may be produced and used to express HUMAP.

The nucleotide sequences of the present invention can be engineered using methods generally known in the art in order to alter HUMAP-encoding sequences for a variety of purposes including, but not limited to, modification of the cloning, processing, and/or expression of the gene product. DNA shuffling by random fragmentation and PCR reassembly of gene fragments and synthetic oligonucleotides may be used to engineer the nucleotide sequences. For example, oligonucleotide-mediated site-directed mutagenesis may be used to introduce mutations that create new restriction sites, alter glycosylation patterns, change codon preference, produce splice variants, and so forth.

The nucleotides of the present invention may be subjected to DNA shuffling techniques such as MOLECULARBREEDING (Maxygen Inc., Santa Clara CA; described in U.S. Patent Number 5,837,458; Chang, C.-C. et al. (1999) Nat. Biotechnol. 17:793-797; Christians, F.C. et al. (1999) Nat. Biotechnol. 17:259-264; and Crameri, A. et al. (1996) Nat. Biotechnol. 14:315-319) to alter or improve the biological properties of HUMAP, such as its biological or enzymatic activity or its ability to bind to other molecules or compounds. DNA shuffling is a process by which a library of gene variants is produced using PCR-mediated recombination of gene fragments. The library is then subjected to selection or screening procedures that identify those gene variants with the desired properties. These preferred variants may then be pooled and further subjected to recursive rounds of DNA shuffling and selection/screening. Thus, genetic diversity is created through "artificial" breeding and rapid molecular evolution. For example, fragments of a single gene containing random point mutations may be recombined, screened, and then reshuffled until the desired properties are optimized. Alternatively, fragments of a given gene may be recombined with fragments of homologous genes in the same gene family, either from the same or different species, thereby maximizing the genetic diversity of multiple naturally occurring genes in a directed and controllable manner.

- In another embodiment, sequences encoding HUMAP may be synthesized, in whole or in part, using chemical methods well known in the art. (See, e.g., Caruthers, M.H. et al. (1980) Nucleic Acids Symp. Ser. 7:215-223; and Horn, T. et al. (1980) Nucleic Acids Symp. Ser. 7:225-232.) Alternatively, HUMAP itself or a fragment thereof may be synthesized using chemical methods. For example, peptide synthesis can be performed using various solid-phase techniques. (See, e.g., Roberge, J.Y. et al. (1995) Science 269:202-204.) Automated synthesis may be achieved using the ABI 431A peptide synthesizer (Perkin-Elmer). Additionally, the amino acid sequence of HUMAP, or any part thereof, may be altered during direct synthesis and/or combined with sequences from other proteins, or any part thereto, to produce a variant polypeptide.
- The peptide may be substantially purified by preparative high performance liquid chromatography. (See, e.g., Chiez, R.M. and F.Z. Regnier (1990) Methods Enzymol. 182:392-421.) The composition of the synthetic peptides may be confirmed by amino acid analysis or by sequencing. (See, e.g., Creighton, T. (1984) Proteins, Structures and Molecular Properties, WH Freeman, New York NY.)
- In order to express a biologically active HUMAP, the nucleotide sequences encoding HUMAP or derivatives thereof may be inserted into an appropriate expression vector, i.e., a vector which contains the necessary elements for transcriptional and translational control of the inserted coding sequence in a suitable host. These elements include regulatory sequences, such as enhancers, constitutive and inducible promoters, and 5' and 3' untranslated regions in the vector and in polynucleotide sequences encoding HUMAP. Such elements may vary in their strength and specificity. Specific initiation signals may also be used to achieve more efficient translation of sequences encoding HUMAP. Such signals include the ATG initiation codon and adjacent sequences, e.g. the Kozak sequence. In cases where sequences encoding HUMAP and its initiation codon and upstream regulatory sequences are inserted into the appropriate expression vector, no additional transcriptional or translational control signals may be needed. However, in cases where only coding sequence, or a fragment thereof, is inserted, exogenous translational control signals including an in-frame ATG initiation codon should be provided by the vector. Exogenous translational elements and initiation codons may be of various origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of enhancers appropriate for the particular host cell system used. (See, e.g., Scharf, D. et al. (1994) Results Probl. Cell Differ. 20:125-162.)

Methods which are well known to those skilled in the art may be used to construct expression vectors containing sequences encoding HUMAP and appropriate transcriptional and translational control elements. These methods include in vitro recombinant DNA techniques, synthetic techniques, and in vivo genetic recombination. (See, e.g., Sambrook, J. et al. (1989) Molecular Cloning, A

Laboratory Manual, Cold Spring Harbor Press, Plainview NY, ch. 4, 8, and 16-17; Ausubel, F.M. et al. (1995) Current Protocols in Molecular Biology, John Wiley & Sons, New York NY, ch. 9, 13, and 16.)

A variety of expression vector/host systems may be utilized to contain and express sequences encoding HUMAP. These include, but are not limited to, microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with yeast expression vectors; insect cell systems infected with viral expression vectors (e.g., baculovirus); plant cell systems transformed with viral expression vectors (e.g., cauliflower mosaic virus, CaMV, or tobacco mosaic virus, TMV) or with bacterial expression vectors (e.g., Ti or pBR322 plasmids); or animal cell systems. The invention is not limited by the host cell employed.

In bacterial systems, a number of cloning and expression vectors may be selected depending upon the use intended for polynucleotide sequences encoding HUMAP. For example, routine cloning, subcloning, and propagation of polynucleotide sequences encoding HUMAP can be achieved using a multifunctional E. coli vector such as PBLUESCRIPT (Stratagene, La Jolla CA) or PSPORT1 plasmid (Life Technologies). Ligation of sequences encoding HUMAP into the vector's multiple cloning site disrupts the lacZ gene, allowing a colorimetric screening procedure for identification of transformed bacteria containing recombinant molecules. In addition, these vectors may be useful for in vitro transcription, dideoxy sequencing, single strand rescue with helper phage, and creation of nested deletions in the cloned sequence. (See, e.g., Van Heeke, G. and S.M. Schuster (1989) J. Biol. Chem. 264:5503-5509.) When large quantities of HUMAP are needed, e.g. for the production of antibodies, vectors which direct high level expression of HUMAP may be used. For example, vectors containing the strong, inducible T5 or T7 bacteriophage promoter may be used.

Yeast expression systems may be used for production of HUMAP. A number of vectors containing constitutive or inducible promoters, such as alpha factor, alcohol oxidase, and PGH promoters, may be used in the yeast Saccharomyces cerevisiae or Pichia pastoris. In addition, such vectors direct either the secretion or intracellular retention of expressed proteins and enable integration of foreign sequences into the host genome for stable propagation. (See, e.g., Ausubel, 1995, supra; Bitter, G.A. et al. (1987) Methods Enzymol. 153:516-544; and Scorer, C.A. et al. (1994) BioTechnology 12:181-184.)

Plant systems may also be used for expression of HUMAP. Transcription of sequences encoding HUMAP may be driven viral promoters, e.g., the 35S and 19S promoters of CaMV used alone or in combination with the omega leader sequence from TMV (Takamatsu, N. (1987) EMBO J. 6:307-311). Alternatively, plant promoters such as the small subunit of RUBISCO or heat shock promoters may be used. (See, e.g., Coruzzi, G. et al. (1984) EMBO J. 3:1671-1680; Broglie, R. et al.

(1984) *Science* 224:838-843; and Winter, J. et al. (1991) *Results Probl. Cell Differ.* 17:85-105.) These constructs can be introduced into plant cells by direct DNA transformation or pathogen-mediated transfection. (See, e.g., *The McGraw Hill Yearbook of Science and Technology* (1992) McGraw Hill, New York NY, pp. 191-196.)

- 5 In mammalian cells, a number of viral-based expression systems may be utilized. In cases where an adenovirus is used as an expression vector, sequences encoding HUMAP may be ligated into an adenovirus transcription/translation complex consisting of the late promoter and tripartite leader sequence. Insertion in a non-essential E1 or E3 region of the viral genome may be used to obtain infective virus which expresses HUMAP in host cells. (See, e.g., Logan, J. and T. Shenk (1984) *Proc. Natl. Acad. Sci. USA* 81:3655-3659.) In addition, transcription enhancers, such as the Rous sarcoma virus (RSV) enhancer, may be used to increase expression in mammalian host cells. SV40 or EBV-based vectors may also be used for high-level protein expression.
- 10

Human artificial chromosomes (HACs) may also be employed to deliver larger fragments of DNA than can be contained in and expressed from a plasmid. HACs of about 6 kb to 10 Mb are constructed and delivered via conventional delivery methods (liposomes, polycationic amino polymers, or vesicles) for therapeutic purposes. (See, e.g., Harrington, J.J. et al. (1997) *Nat. Genet.* 15:345-355.)

- 15 For long term production of recombinant proteins in mammalian systems, stable expression of HUMAP in cell lines is preferred. For example, sequences encoding HUMAP can be transformed into cell lines using expression vectors which may contain viral origins of replication and/or endogenous expression elements and a selectable marker gene on the same or on a separate vector. Following the introduction of the vector, cells may be allowed to grow for about 1 to 2 days in enriched media before being switched to selective media. The purpose of the selectable marker is to confer resistance to a selective agent, and its presence allows growth and recovery of cells which successfully express the introduced sequences. Resistant clones of stably transformed cells may be propagated using tissue culture techniques appropriate to the cell type.
- 20

25 Any number of selection systems may be used to recover transformed cell lines. These include, but are not limited to, the herpes simplex virus thymidine kinase and adenine phosphoribosyltransferase genes, for use in *tk*⁻ and *apr*^r cells, respectively. (See, e.g., Wigler, M. et al. (1977) *Cell* 11:223-232; Lowy, I. et al. (1980) *Cell* 22:817-823.) Also, antimetabolite, antibiotic, or herbicide resistance can be used as the basis for selection. For example, *dhfr* confers resistance to methotrexate; *neo* confers resistance to the aminoglycosides neomycin and G-418; and *als* and *pat* confer resistance to chlorsulfuron and phosphinotricin acetyltransferase, respectively. (See, e.g., Wigler, M. et al. (1980) *Proc. Natl. Acad. Sci. USA* 77:3567-3570; Colbere-Garapin, F. et al. (1981) *J. Mol. Biol.* 150:1-14.) Additional selectable genes have been described, e.g., *trpB* and *hisD*, which alter cellular requirements

for metabolites. (See, e.g., Hartman, S.C. and R.C. Mulligan (1988) Proc. Natl. Acad. Sci. USA 85:8047-8051.) Visible markers, e.g., anthocyanins, green fluorescent proteins (GFP; Clontech), β glucuronidase and its substrate β -glucuronide, or luciferase and its substrate luciferin may be used. These markers can be used not only to identify transformants, but also to quantify the amount of
5 transient or stable protein expression attributable to a specific vector system. (See, e.g., Rhodes, C.A. (1995) Methods Mol. Biol. 55:121-131.)

Although the presence/absence of marker gene expression suggests that the gene of interest is also present, the presence and expression of the gene may need to be confirmed. For example, if the sequence encoding HUMAP is inserted within a marker gene sequence, transformed cells containing
10 sequences encoding HUMAP can be identified by the absence of marker gene function. Alternatively, a marker gene can be placed in tandem with a sequence encoding HUMAP under the control of a single promoter. Expression of the marker gene in response to induction or selection usually indicates expression of the tandem gene as well.

In general, host cells that contain the nucleic acid sequence encoding HUMAP and that express
15 HUMAP may be identified by a variety of procedures known to those of skill in the art. These procedures include, but are not limited to, DNA-DNA or DNA-RNA hybridizations, PCR amplification, and protein bioassay or immunoassay techniques which include membrane, solution, or chip based technologies for the detection and/or quantification of nucleic acid or protein sequences.

Immunological methods for detecting and measuring the expression of HUMAP using either
20 specific polyclonal or monoclonal antibodies are known in the art. Examples of such techniques include enzyme-linked immunosorbent assays (ELISAs), radioimmunoassays (RIAs), and fluorescence activated cell sorting (FACS). A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering epitopes on HUMAP is preferred, but a competitive binding assay may be employed. These and other assays are well known in the art. (See, e.g., Hampton, R. et
25 al. (1990) Serological Methods, a Laboratory Manual, APS Press, St. Paul MN, Sect. IV; Coligan, J.E. et al. (1997) Current Protocols in Immunology, Greene Pub. Associates and Wiley-Interscience, New York NY; and Pound, J.D. (1998) Immunochemical Protocols, Humana Press, Totowa NJ.)

A wide variety of labels and conjugation techniques are known by those skilled in the art and may be used in various nucleic acid and amino acid assays. Means for producing labeled hybridization
30 or PCR probes for detecting sequences related to polynucleotides encoding HUMAP include oligolabeling, nick translation, end-labeling, or PCR amplification using a labeled nucleotide. Alternatively, the sequences encoding HUMAP, or any fragments thereof, may be cloned into a vector for the production of an mRNA probe. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes in vitro by addition of an appropriate RNA polymerase

such as T7, T3, or SP6 and labeled nucleotides. These procedures may be conducted using a variety of commercially available kits, such as those provided by Amersham Pharmacia Biotech, Promega (Madison WI), and US Biochemical. Suitable reporter molecules or labels which may be used for ease of detection include radionuclides, enzymes, fluorescent, chemiluminescent, or chromogenic agents, as well as substrates, cofactors, inhibitors, magnetic particles, and the like.

Host cells transformed with nucleotide sequences encoding HUMAP may be cultured under conditions suitable for the expression and recovery of the protein from cell culture. The protein produced by a transformed cell may be secreted or retained intracellularly depending on the sequence and/or the vector used. As will be understood by those of skill in the art, expression vectors containing polynucleotides which encode HUMAP may be designed to contain signal sequences which direct secretion of HUMAP through a prokaryotic or eukaryotic cell membrane.

In addition, a host cell strain may be chosen for its ability to modulate expression of the inserted sequences or to process the expressed protein in the desired fashion. Such modifications of the polypeptide include, but are not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation, and acylation. Post-translational processing which cleaves a "pro" or "pre" form of the protein may also be used to specify protein targeting, folding, and/or activity. Different host cells which have specific cellular machinery and characteristic mechanisms for post-translational activities (e.g., CHO, HeLa, MDCK, HEK293, and WI38) are available from the American Type Culture Collection (ATCC, Manassas VA) and may be chosen to ensure the correct modification and processing of the foreign protein.

In another embodiment of the invention, natural, modified, or recombinant nucleic acid sequences encoding HUMAP may be ligated to a heterologous sequence resulting in translation of a fusion protein in any of the aforementioned host systems. For example, a chimeric HUMAP protein containing a heterologous moiety that can be recognized by a commercially available antibody may facilitate the screening of peptide libraries for inhibitors of HUMAP activity. Heterologous protein and peptide moieties may also facilitate purification of fusion proteins using commercially available affinity matrices. Such moieties include, but are not limited to, glutathione S-transferase (GST), maltose binding protein (MBP), thioredoxin (Trx), calmodulin binding peptide (CBP), 6-His, FLAG, *c-myc*, and hemagglutinin (HA). GST, MBP, Trx, CBP, and 6-His enable purification of their cognate fusion proteins on immobilized glutathione, maltose, phenylarsine oxide, calmodulin, and metal-chelate resins, respectively. FLAG, *c-myc*, and hemagglutinin (HA) enable immunoaffinity purification of fusion proteins using commercially available monoclonal and polyclonal antibodies that specifically recognize these epitope tags. A fusion protein may also be engineered to contain a proteolytic cleavage site located between the HUMAP encoding sequence and the heterologous protein sequence, so that

HUMAP may be cleaved away from the heterologous moiety following purification. Methods for fusion protein expression and purification are discussed in Ausubel (1995, *supra*, ch. 10). A variety of commercially available kits may also be used to facilitate expression and purification of fusion proteins.

In a further embodiment of the invention, synthesis of radiolabeled HUMAP may be achieved *in vitro* using the TNT rabbit reticulocyte lysate or wheat germ extract system (Promega). These systems couple transcription and translation of protein-coding sequences operably associated with the T7, T3, or SP6 promoters. Translation takes place in the presence of a radiolabeled amino acid precursor, for example, ³⁵S-methionine.

Fragments of HUMAP may be produced not only by recombinant means, but also by direct peptide synthesis using solid-phase techniques. (See, e.g., Creighton, *supra*, pp. 55-60.) Protein synthesis may be performed by manual techniques or by automation. Automated synthesis may be achieved, for example, using the ABI 431A peptide synthesizer (Perkin-Elmer). Various fragments of HUMAP may be synthesized separately and then combined to produce the full length molecule.

THERAPEUTICS

Chemical and structural similarity, e.g., in the context of sequences and motifs, exists between regions of HUMAP and human membrane-associated proteins. In addition, the expression of HUMAP is closely associated with cell proliferation, cancer, and inflammation. Therefore, HUMAP appears to play a role in cell signaling, cell differentiation, and cell proliferation disorders. In the treatment of disorders associated with increased HUMAP expression or activity, it is desirable to decrease the expression or activity of HUMAP. In the treatment of disorders associated with decreased HUMAP expression or activity, it is desirable to increase the expression or activity of HUMAP.

Therefore, in one embodiment, HUMAP or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of HUMAP. Examples of such disorders include, but are not limited to, a cell proliferative disorder such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia, and cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus; a cell differentiation disorder including developmental disorders such as renal tubular acidosis, anemia, Cushing's syndrome, achondroplastic dwarfism, Duchenne and Becker muscular dystrophy, epilepsy, gonadal dysgenesis, WAGR syndrome (Wilms' tumor, aniridia, genitourinary abnormalities, and mental retardation),

Smith-Magenis syndrome, myelodysplastic syndrome, hereditary mucoepithelial dysplasia, hereditary keratodermas, hereditary neuropathies such as Charcot-Marie-Tooth disease and neurofibromatosis, hypothyroidism, hydrocephalus, seizure disorders such as Sydenham's chorea and cerebral palsy, spina bifida, anencephaly, craniorachischisis, congenital glaucoma, cataract, and sensorineural hearing loss and disorders of immune cell activation; and a disorder of cell signaling including endocrine disorders such as disorders of the hypothalamus and pituitary resulting from lesions such as primary brain tumors, adenomas, infarction associated with pregnancy, hypophysectomy, aneurysms, vascular malformations, thrombosis, infections, immunological disorders, and complications due to head trauma; disorders associated with hyperpituitarism including acromegaly, gigantism, and syndrome of inappropriate antidiuretic hormone (ADH) secretion (SIADH) often caused by benign adenoma; disorders associated with hypothyroidism including goiter, myxedema, acute thyroiditis associated with bacterial infection; disorders associated with hyperparathyroidism including Conn disease (chronic hypercalcemia); pancreatic disorders such as Type I or Type II diabetes mellitus and associated complications; disorders associated with the adrenals such as hyperplasia, carcinoma, or adenoma of the adrenal cortex, hypertension associated with alkalosis; disorders associated with gonadal steroid hormones such as: in women, abnormal prolactin production, infertility, endometriosis, perturbations of the menstrual cycle, polycystic ovarian disease, hyperprolactinemia, isolated gonadotropin deficiency, amenorrhea, galactorrhea, hermaphroditism, hirsutism and virilization, breast cancer, and, in post-menopausal women, osteoporosis; and, in men, Leydig cell deficiency, male climacteric phase, and germinal cell aplasia, hypergonadal disorders associated with Leydig cell tumors, androgen resistance associated with absence of androgen receptors, syndrome of 5 α -reductase, and gynecomastia.

In another embodiment, a vector capable of expressing HUMAP or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of HUMAP including, but not limited to, those described above.

In a further embodiment, a pharmaceutical composition comprising a substantially purified HUMAP in conjunction with a suitable pharmaceutical carrier may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of HUMAP including, but not limited to, those provided above.

In still another embodiment, an agonist which modulates the activity of HUMAP may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of HUMAP including, but not limited to, those listed above.

In a further embodiment, an antagonist of HUMAP may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of HUMAP. Examples of such disorders include, but are not limited to, those cell signaling, cell differentiation, and cell proliferation

disorders described above. In one aspect, an antibody which specifically binds HUMAP may be used directly as an antagonist or indirectly as a targeting or delivery mechanism for bringing a pharmaceutical agent to cells or tissues which express HUMAP.

In an additional embodiment, a vector expressing the complement of the polynucleotide

- 5 encoding HUMAP may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of HUMAP including, but not limited to, those described above.

In other embodiments, any of the proteins, antagonists, antibodies, agonists, complementary sequences, or vectors of the invention may be administered in combination with other appropriate therapeutic agents. Selection of the appropriate agents for use in combination therapy may be made by 10 one of ordinary skill in the art, according to conventional pharmaceutical principles. The combination of therapeutic agents may act synergistically to effect the treatment or prevention of the various disorders described above. Using this approach, one may be able to achieve therapeutic efficacy with lower dosages of each agent, thus reducing the potential for adverse side effects.

An antagonist of HUMAP may be produced using methods which are generally known in the

- 15 art. In particular, purified HUMAP may be used to produce antibodies or to screen libraries of pharmaceutical agents to identify those which specifically bind HUMAP. Antibodies to HUMAP may also be generated using methods that are well known in the art. Such antibodies may include, but are not limited to, polyclonal, monoclonal, chimeric, and single chain antibodies, Fab fragments, and fragments produced by a Fab expression library. Neutralizing antibodies (i.e., those which inhibit 20 dimer formation) are generally preferred for therapeutic use.

For the production of antibodies, various hosts including goats, rabbits, rats, mice, humans, and others may be immunized by injection with HUMAP or with any fragment or oligopeptide thereof which has immunogenic properties. Depending on the host species, various adjuvants may be used to increase immunological response. Such adjuvants include, but are not limited to, Freund's, mineral gels 25 such as aluminum hydroxide, and surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, KLH, and dinitrophenol. Among adjuvants used in humans, BCG (bacilli Calmette-Guerin) and Corynebacterium parvum are especially preferable.

It is preferred that the oligopeptides, peptides, or fragments used to induce antibodies to HUMAP have an amino acid sequence consisting of at least about 5 amino acids, and generally will 30 consist of at least about 10 amino acids. It is also preferable that these oligopeptides, peptides, or fragments are identical to a portion of the amino acid sequence of the natural protein and contain the entire amino acid sequence of a small, naturally occurring molecule. Short stretches of HUMAP amino acids may be fused with those of another protein, such as KLH, and antibodies to the chimeric molecule may be produced.

Monoclonal antibodies to HUMAP may be prepared using any technique which provides for the production of antibody molecules by continuous cell lines in culture. These include, but are not limited to, the hybridoma technique, the human B-cell hybridoma technique, and the EBV-hybridoma technique. (See, e.g., Kohler, G. et al. (1975) *Nature* 256:495-497; Kozbor, D. et al. (1985) *J.*

- 5 *Immunol. Methods* 81:31-42; Cote, R.J. et al. (1983) *Proc. Natl. Acad. Sci. USA* 80:2026-2030; and Cole, S.P. et al. (1984) *Mol. Cell Biol.* 62:109-120.)

In addition, techniques developed for the production of "chimeric antibodies," such as the splicing of mouse antibody genes to human antibody genes to obtain a molecule with appropriate antigen specificity and biological activity, can be used. (See, e.g., Morrison, S.L. et al. (1984) *Proc.*
10 *Natl. Acad. Sci. USA* 81:6851-6855; Neuberger, M.S. et al. (1984) *Nature* 312:604-608; and Takeda, S. et al. (1985) *Nature* 314:452-454.) Alternatively, techniques described for the production of single chain antibodies may be adapted, using methods known in the art, to produce HUMAP-specific single chain antibodies. Antibodies with related specificity, but of distinct idiosyncratic composition, may be generated by chain shuffling from random combinatorial immunoglobulin libraries. (See, e.g., Burton,
15 D.R. (1991) *Proc. Natl. Acad. Sci. USA* 88:10134-10137.)

Antibodies may also be produced by inducing *in vivo* production in the lymphocyte population or by screening immunoglobulin libraries or panels of highly specific binding reagents as disclosed in the literature. (See, e.g., Orlandi, R. et al. (1989) *Proc. Natl. Acad. Sci. USA* 86:3833-3837; Winter, G. et al. (1991) *Nature* 349:293-299.)

20 Antibody fragments which contain specific binding sites for HUMAP may also be generated. For example, such fragments include, but are not limited to, F(ab')₂ fragments produced by pepsin digestion of the antibody molecule and Fab fragments generated by reducing the disulfide bridges of the F(ab')₂ fragments. Alternatively, Fab expression libraries may be constructed to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity. (See, e.g., Huse, W.D. et al.
25 (1989) *Science* 246:1275-1281.)

Various immunoassays may be used for screening to identify antibodies having the desired specificity. Numerous protocols for competitive binding or immunoradiometric assays using either polyclonal or monoclonal antibodies with established specificities are well known in the art. Such immunoassays typically involve the measurement of complex formation between HUMAP and its
30 specific antibody. A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering HUMAP epitopes is generally used, but a competitive binding assay may also be employed (Pound, supra).

Various methods such as Scatchard analysis in conjunction with radioimmunoassay techniques may be used to assess the affinity of antibodies for HUMAP. Affinity is expressed as an association

constant, K_a , which is defined as the molar concentration of HUMAP-antibody complex divided by the molar concentrations of free antigen and free antibody under equilibrium conditions. The K_a determined for a preparation of polyclonal antibodies, which are heterogeneous in their affinities for multiple HUMAP epitopes, represents the average affinity, or avidity, of the antibodies for HUMAP. The K_a determined for a preparation of monoclonal antibodies, which are monospecific for a particular HUMAP epitope, represents a true measure of affinity. High-affinity antibody preparations with K_a ranging from about 10^9 to 10^{12} L/mole are preferred for use in immunoassays in which the HUMAP-antibody complex must withstand rigorous manipulations. Low-affinity antibody preparations with K_a ranging from about 10^6 to 10^7 L/mole are preferred for use in immunopurification and similar procedures which ultimately require dissociation of HUMAP, preferably in active form, from the antibody (Catty, D. (1988) Antibodies, Volume I: A Practical Approach, IRL Press, Washington, DC; Liddell, J.E. and Cryer, A. (1991) A Practical Guide to Monoclonal Antibodies, John Wiley & Sons, New York NY).

The titer and avidity of polyclonal antibody preparations may be further evaluated to determine the quality and suitability of such preparations for certain downstream applications. For example, a polyclonal antibody preparation containing at least 1-2 mg specific antibody/ml, preferably 5-10 mg specific antibody/ml, is generally employed in procedures requiring precipitation of HUMAP-antibody complexes. Procedures for evaluating antibody specificity, titer, and avidity, and guidelines for antibody quality and usage in various applications, are generally available. (See, e.g., Catty, supra, and Coligan et al. supra.)

In another embodiment of the invention, the polynucleotides encoding HUMAP, or any fragment or complement thereof, may be used for therapeutic purposes. In one aspect, the complement of the polynucleotide encoding HUMAP may be used in situations in which it would be desirable to block the transcription of the mRNA. In particular, cells may be transformed with sequences complementary to polynucleotides encoding HUMAP. Thus, complementary molecules or fragments may be used to modulate HUMAP activity, or to achieve regulation of gene function. Such technology is now well known in the art, and sense or antisense oligonucleotides or larger fragments can be designed from various locations along the coding or control regions of sequences encoding HUMAP.

Expression vectors derived from retroviruses, adenoviruses, or herpes or vaccinia viruses, or from various bacterial plasmids, may be used for delivery of nucleotide sequences to the targeted organ, tissue, or cell population. Methods which are well known to those skilled in the art can be used to construct vectors to express nucleic acid sequences complementary to the polynucleotides encoding HUMAP. (See, e.g., Sambrook, supra; Ausubel, 1995, supra.)

Genes encoding HUMAP can be turned off by transforming a cell or tissue with expression

vectors which express high levels of a polynucleotide, or fragment thereof, encoding HUMAP. Such constructs may be used to introduce untranslatable sense or antisense sequences into a cell. Even in the absence of integration into the DNA, such vectors may continue to transcribe RNA molecules until they are disabled by endogenous nucleases. Transient expression may last for a month or more with a
5 non-replicating vector, and may last even longer if appropriate replication elements are part of the vector system.

As mentioned above, modifications of gene expression can be obtained by designing complementary sequences or antisense molecules (DNA, RNA, or PNA) to the control, 5', or regulatory regions of the gene encoding HUMAP. Oligonucleotides derived from the transcription initiation site,
10 e.g., between about positions -10 and +10 from the start site, may be employed. Similarly, inhibition can be achieved using triple helix base-pairing methodology. Triple helix pairing is useful because it causes inhibition of the ability of the double helix to open sufficiently for the binding of polymerases, transcription factors, or regulatory molecules. Recent therapeutic advances using triplex DNA have been described in the literature. (See, e.g., Gee, J.E. et al. (1994) in Huber, B.E. and B.I. Carr,
15 Molecular and Immunologic Approaches, Futura Publishing, Mt. Kisco NY, pp. 163-177.) A complementary sequence or antisense molecule may also be designed to block translation of mRNA by preventing the transcript from binding to ribosomes.

Ribozymes, enzymatic RNA molecules, may also be used to catalyze the specific cleavage of RNA. The mechanism of ribozyme action involves sequence-specific hybridization of the ribozyme
20 molecule to complementary target RNA, followed by endonucleolytic cleavage. For example, engineered hammerhead motif ribozyme molecules may specifically and efficiently catalyze endonucleolytic cleavage of sequences encoding HUMAP.

Specific ribozyme cleavage sites within any potential RNA target are initially identified by scanning the target molecule for ribozyme cleavage sites, including the following sequences: GUA,
25 GUU, and GUC. Once identified, short RNA sequences of between 15 and 20 ribonucleotides, corresponding to the region of the target gene containing the cleavage site, may be evaluated for secondary structural features which may render the oligonucleotide inoperable. The suitability of candidate targets may also be evaluated by testing accessibility to hybridization with complementary oligonucleotides using ribonuclease protection assays.

30 Complementary ribonucleic acid molecules and ribozymes of the invention may be prepared by any method known in the art for the synthesis of nucleic acid molecules. These include techniques for chemically synthesizing oligonucleotides such as solid phase phosphoramidite chemical synthesis. Alternatively, RNA molecules may be generated by in vitro and in vivo transcription of DNA sequences encoding HUMAP. Such DNA sequences may be incorporated into a wide variety of vectors with

suitable RNA polymerase promoters such as T7 or SP6. Alternatively, these cDNA constructs that synthesize complementary RNA, constitutively or inducibly, can be introduced into cell lines, cells, or tissues.

RNA molecules may be modified to increase intracellular stability and half-life. Possible

- 5 modifications include, but are not limited to, the addition of flanking sequences at the 5' and/or 3' ends of the molecule, or the use of phosphorothioate or 2' O-methyl rather than phosphodiesterase linkages within the backbone of the molecule. This concept is inherent in the production of PNAs and can be extended in all of these molecules by the inclusion of nontraditional bases such as inosine, queosine, and wybutosine, as well as acetyl-, methyl-, thio-, and similarly modified forms of adenine, cytidine,
10 guanine, thymine, and uridine which are not as easily recognized by endogenous endonucleases.

Many methods for introducing vectors into cells or tissues are available and equally suitable for use in vivo, in vitro, and ex vivo. For ex vivo therapy, vectors may be introduced into stem cells taken from the patient and clonally propagated for autologous transplant back into that same patient.

- Delivery by transfection, by liposome injections, or by polycationic amino polymers may be achieved
15 using methods which are well known in the art. (See, e.g., Goldman, C.K. et al. (1997) Nat. Biotechnol. 15:462-466.)

Any of the therapeutic methods described above may be applied to any subject in need of such therapy, including, for example, mammals such as humans, dogs, cats, cows, horses, rabbits, and monkeys.

- 20 An additional embodiment of the invention relates to the administration of a pharmaceutical or sterile composition, in conjunction with a pharmaceutically acceptable carrier, for any of the therapeutic effects discussed above. Such pharmaceutical compositions may consist of HUMAP, antibodies to HUMAP, and mimetics, agonists, antagonists, or inhibitors of HUMAP. The compositions may be administered alone or in combination with at least one other agent, such as a stabilizing compound,
25 which may be administered in any sterile, biocompatible pharmaceutical carrier including, but not limited to, saline, buffered saline, dextrose, and water. The compositions may be administered to a patient alone, or in combination with other agents, drugs, or hormones.

- The pharmaceutical compositions utilized in this invention may be administered by any number of routes including, but not limited to, oral, intravenous, intramuscular, intra-arterial, intramedullary,
30 intrathecal, intraventricular, transdermal, subcutaneous, intraperitoneal, intranasal, enteral, topical, sublingual, or rectal means.

In addition to the active ingredients, these pharmaceutical compositions may contain suitable pharmaceutically-acceptable carriers comprising excipients and auxiliaries which facilitate processing of the active compounds into preparations which can be used pharmaceutically. Further details on

techniques for formulation and administration may be found in the latest edition of Remington's Pharmaceutical Sciences (Maack Publishing, Easton PA).

Pharmaceutical compositions for oral administration can be formulated using pharmaceutically acceptable carriers well known in the art in dosages suitable for oral administration. Such carriers 5 enable the pharmaceutical compositions to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions, and the like, for ingestion by the patient.

Pharmaceutical preparations for oral use can be obtained through combining active compounds with solid excipient and processing the resultant mixture of granules (optionally, after grinding) to obtain tablets or dragee cores. Suitable auxiliaries can be added, if desired. Suitable excipients include 10 carbohydrate or protein fillers, such as sugars, including lactose, sucrose, mannitol, and sorbitol; starch from corn, wheat, rice, potato, or other plants; cellulose, such as methyl cellulose, hydroxypropylmethyl-cellulose, or sodium carboxymethylcellulose; gums, including arabic and tragacanth; and proteins, such as gelatin and collagen. If desired, disintegrating or solubilizing agents may be added, such as the cross-linked polyvinyl pyrrolidone, agar, and alginic acid or a salt thereof, 15 such as sodium alginate.

Dragee cores may be used in conjunction with suitable coatings, such as concentrated sugar solutions, which may also contain gum arabic, talc, polyvinylpyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures. Dyestuffs or pigments may be added to the tablets or dragee coatings for product identification or to 20 characterize the quantity of active compound, i.e., dosage.

Pharmaceutical preparations which can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a coating, such as glycerol or sorbitol. Push-fit capsules can contain active ingredients mixed with fillers or binders, such as lactose or starches, lubricants, such as talc or magnesium stearate, and, optionally, stabilizers. In soft capsules, 25 the active compounds may be dissolved or suspended in suitable liquids, such as fatty oils, liquid, or liquid polyethylene glycol with or without stabilizers.

Pharmaceutical formulations suitable for parenteral administration may be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hanks' solution, Ringer's solution, or physiologically buffered saline. Aqueous injection suspensions may contain substances 30 which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. Additionally, suspensions of the active compounds may be prepared as appropriate oily injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils, such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate, triglycerides, or liposomes. Non-lipid polycationic amino polymers may also be used for delivery. Optionally, the suspension may also contain suitable

stabilizers or agents to increase the solubility of the compounds and allow for the preparation of highly concentrated solutions.

For topical or nasal administration, penetrants appropriate to the particular barrier to be permeated are used in the formulation. Such penetrants are generally known in the art.

5 The pharmaceutical compositions of the present invention may be manufactured in a manner that is known in the art, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping, or lyophilizing processes.

The pharmaceutical composition may be provided as a salt and can be formed with many acids, including but not limited to, hydrochloric, sulfuric, acetic, lactic, tartaric, malic, and succinic acids.

10 Salts tend to be more soluble in aqueous or other protonic solvents than are the corresponding free base forms. In other cases, the preparation may be a lyophilized powder which may contain any or all of the following: 1 mM to 50 mM histidine, 0.1% to 2% sucrose, and 2% to 7% mannitol, at a pH range of 4.5 to 5.5, that is combined with buffer prior to use.

15 After pharmaceutical compositions have been prepared, they can be placed in an appropriate container and labeled for treatment of an indicated condition. For administration of HUMAP, such labeling would include amount, frequency, and method of administration.

Pharmaceutical compositions suitable for use in the invention include compositions wherein the active ingredients are contained in an effective amount to achieve the intended purpose. The determination of an effective dose is well within the capability of those skilled in the art.

20 For any compound, the therapeutically effective dose can be estimated initially either in cell culture assays, e.g., of neoplastic cells, or in animal models such as mice, rats, rabbits, dogs, or pigs. An animal model may also be used to determine the appropriate concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans.

25 A therapeutically effective dose refers to that amount of active ingredient, for example HUMAP or fragments thereof, antibodies of HUMAP, and agonists, antagonists or inhibitors of HUMAP, which ameliorates the symptoms or condition. Therapeutic efficacy and toxicity may be determined by standard pharmaceutical procedures in cell cultures or with experimental animals, such as by calculating the ED₅₀ (the dose therapeutically effective in 50% of the population) or LD₅₀ (the dose lethal to 50% of the population) statistics. The dose ratio of toxic to therapeutic effects is the therapeutic index, which can be expressed as the LD₅₀/ED₅₀ ratio. Pharmaceutical compositions which exhibit large therapeutic indices are preferred. The data obtained from cell culture assays and animal studies are used to formulate a range of dosage for human use. The dosage contained in such compositions is preferably within a range of circulating concentrations that includes the ED₅₀ with little

or no toxicity. The dosage varies within this range depending upon the dosage form employed, the sensitivity of the patient, and the route of administration.

The exact dosage will be determined by the practitioner, in light of factors related to the subject requiring treatment. Dosage and administration are adjusted to provide sufficient levels of the active moiety or to maintain the desired effect. Factors which may be taken into account include the severity of the disease state, the general health of the subject, the age, weight, and gender of the subject, time and frequency of administration, drug combination(s), reaction sensitivities, and response to therapy. Long-acting pharmaceutical compositions may be administered every 3 to 4 days, every week, or biweekly depending on the half-life and clearance rate of the particular formulation.

Normal dosage amounts may vary from about 0.1 μg to 100,000 μg , up to a total dose of about 1 gram, depending upon the route of administration. Guidance as to particular dosages and methods of delivery is provided in the literature and generally available to practitioners in the art. Those skilled in the art will employ different formulations for nucleotides than for proteins or their inhibitors. Similarly, delivery of polynucleotides or polypeptides will be specific to particular cells, conditions, locations, etc.

DIAGNOSTICS

In another embodiment, antibodies which specifically bind HUMAP may be used for the diagnosis of disorders characterized by expression of HUMAP, or in assays to monitor patients being treated with HUMAP or agonists, antagonists, or inhibitors of HUMAP. Antibodies useful for diagnostic purposes may be prepared in the same manner as described above for therapeutics. Diagnostic assays for HUMAP include methods which utilize the antibody and a label to detect HUMAP in human body fluids or in extracts of cells or tissues. The antibodies may be used with or without modification, and may be labeled by covalent or non-covalent attachment of a reporter molecule. A wide variety of reporter molecules, several of which are described above, are known in the art and may be used.

A variety of protocols for measuring HUMAP, including ELISAs, RIAs, and FACS, are known in the art and provide a basis for diagnosing altered or abnormal levels of HUMAP expression. Normal or standard values for HUMAP expression are established by combining body fluids or cell extracts taken from normal mammalian subjects, for example, human subjects, with antibody to HUMAP under conditions suitable for complex formation. The amount of standard complex formation may be quantitated by various methods, such as photometric means. Quantities of HUMAP expressed in subject, control, and disease samples from biopsied tissues are compared with the standard values. Deviation between standard and subject values establishes the parameters for diagnosing disease.

In another embodiment of the invention, the polynucleotides encoding HUMAP may be used for

diagnostic purposes. The polynucleotides which may be used include oligonucleotide sequences, complementary RNA and DNA molecules, and PNAs. The polynucleotides may be used to detect and quantify gene expression in biopsied tissues in which expression of HUMAP may be correlated with disease. The diagnostic assay may be used to determine absence, presence, and excess expression of 5 HUMAP, and to monitor regulation of HUMAP levels during therapeutic intervention.

In one aspect, hybridization with PCR probes which are capable of detecting polynucleotide sequences, including genomic sequences, encoding HUMAP or closely related molecules may be used to identify nucleic acid sequences which encode HUMAP. The specificity of the probe, whether it is made from a highly specific region, e.g., the 5' regulatory region, or from a less specific region, e.g., a 10 conserved motif, and the stringency of the hybridization or amplification will determine whether the probe identifies only naturally occurring sequences encoding HUMAP, allelic variants, or related sequences.

Probes may also be used for the detection of related sequences, and may have at least 50% sequence identity to any of the HUMAP encoding sequences. The hybridization probes of the subject 15 invention may be DNA or RNA and may be derived from the sequence of SEQ ID NO:18-34 or from genomic sequences including promoters, enhancers, and introns of the HUMAP gene.

Means for producing specific hybridization probes for DNAs encoding HUMAP include the cloning of polynucleotide sequences encoding HUMAP or HUMAP derivatives into vectors for the production of mRNA probes. Such vectors are known in the art, are commercially available, and may 20 be used to synthesize RNA probes *in vitro* by means of the addition of the appropriate RNA polymerases and the appropriate labeled nucleotides. Hybridization probes may be labeled by a variety of reporter groups, for example, by radionuclides such as ^{32}P or ^{35}S , or by enzymatic labels, such as alkaline phosphatase coupled to the probe via avidin/biotin coupling systems, and the like.

Polynucleotide sequences encoding HUMAP may be used for the diagnosis of disorders 25 associated with expression of HUMAP. Examples of such disorders include, but are not limited to, a cell proliferative disorder such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia, and cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in 30 particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus; a cell differentiation disorder including developmental disorders such as renal tubular acidosis, anemia, Cushing's syndrome, achondroplastic dwarfism, Duchenne and Becker muscular dystrophy, epilepsy, gonadal 35 dysgenesis, WAGR syndrome (Wilms' tumor, aniridia, genitourinary abnormalities, and mental

retardation), Smith-Magenis syndrome, myelodysplastic syndrome, hereditary mucoepithelial dysplasia, hereditary keratodermas, hereditary neuropathies such as Charcot-Marie-Tooth disease and neurofibromatosis, hypothyroidism, hydrocephalus, seizure disorders such as Sydenham's chorea and cerebral palsy, spina bifida, anencephaly, craniorachischisis, congenital glaucoma, cataract, and
5 sensorineural hearing loss and disorders of immune cell activation; and a disorder of cell signaling including endocrine disorders such as disorders of the hypothalamus and pituitary resulting from lesions such as primary brain tumors, adenomas, infarction associated with pregnancy, hypophysectomy, aneurysms, vascular malformations, thrombosis, infections, immunological disorders, and complications due to head trauma; disorders associated with hyperpituitarism including
10 acromegaly, giantism, and syndrome of inappropriate antidiuretic hormone (ADH) secretion (SIADH) often caused by benign adenoma; disorders associated with hypothyroidism including goiter, myxedema, acute thyroiditis associated with bacterial infection; disorders associated with hyperparathyroidism including Conn disease (chronic hypercalcemia); pancreatic disorders such as Type I or Type II diabetes mellitus and associated complications; disorders associated with the
15 adrenals such as hyperplasia, carcinoma, or adenoma of the adrenal cortex, hypertension associated with alkalosis; disorders associated with gonadal steroid hormones such as: in women, abnormal prolactin production, infertility, endometriosis, perturbations of the menstrual cycle, polycystic ovarian disease, hyperprolactinemia, isolated gonadotropin deficiency, amenorrhea, galactorrhea, hermaphroditism, hirsutism and virilization, breast cancer, and, in post-menopausal women,
20 osteoporosis; and, in men, Leydig cell deficiency, male climacteric phase, and germinal cell aplasia, hypergonadal disorders associated with Leydig cell tumors, androgen resistance associated with absence of androgen receptors, syndrome of 5 α -reductase, and gynecomastia. The polynucleotide sequences encoding HUMAP may be used in Southern or northern analysis, dot blot, or other membrane-based technologies; in PCR technologies; in dipstick, pin, and multiformat ELISA-like
25 assays; and in microarrays utilizing fluids or tissues from patients to detect altered HUMAP expression. Such qualitative or quantitative methods are well known in the art.

In a particular aspect, the nucleotide sequences encoding HUMAP may be useful in assays that detect the presence of associated disorders, particularly those mentioned above. The nucleotide sequences encoding HUMAP may be labeled by standard methods and added to a fluid or tissue sample
30 from a patient under conditions suitable for the formation of hybridization complexes. After a suitable incubation period, the sample is washed and the signal is quantified and compared with a standard value. If the amount of signal in the patient sample is significantly altered in comparison to a control sample then the presence of altered levels of nucleotide sequences encoding HUMAP in the sample indicates the presence of the associated disorder. Such assays may also be used to evaluate the efficacy
35 of a particular therapeutic treatment regimen in animal studies, in clinical trials, or to monitor the

treatment of an individual patient.

In order to provide a basis for the diagnosis of a disorder associated with expression of HUMAP, a normal or standard profile for expression is established. This may be accomplished by combining body fluids or cell extracts taken from normal subjects, either animal or human, with a sequence, or a fragment thereof, encoding HUMAP, under conditions suitable for hybridization or amplification. Standard hybridization may be quantified by comparing the values obtained from normal subjects with values from an experiment in which a known amount of a substantially purified polynucleotide is used. Standard values obtained in this manner may be compared with values obtained from samples from patients who are symptomatic for a disorder. Deviation from standard values is used to establish the presence of a disorder.

Once the presence of a disorder is established and a treatment protocol is initiated, hybridization assays may be repeated on a regular basis to determine if the level of expression in the patient begins to approximate that which is observed in the normal subject. The results obtained from successive assays may be used to show the efficacy of treatment over a period ranging from several days to months.

With respect to cancer, the presence of an abnormal amount of transcript (either under- or overexpressed) in biopsied tissue from an individual may indicate a predisposition for the development of the disease, or may provide a means for detecting the disease prior to the appearance of actual clinical symptoms. A more definitive diagnosis of this type may allow health professionals to employ preventative measures or aggressive treatment earlier thereby preventing the development or further progression of the cancer.

Additional diagnostic uses for oligonucleotides designed from the sequences encoding HUMAP may involve the use of PCR. These oligomers may be chemically synthesized, generated enzymatically, or produced in vitro. Oligomers will preferably contain a fragment of a polynucleotide encoding HUMAP, or a fragment of a polynucleotide complementary to the polynucleotide encoding HUMAP, and will be employed under optimized conditions for identification of a specific gene or condition. Oligomers may also be employed under less stringent conditions for detection or quantification of closely related DNA or RNA sequences.

Methods which may also be used to quantify the expression of HUMAP include radiolabeling or biotinylation nucleotides, coamplification of a control nucleic acid, and interpolating results from standard curves. (See, e.g., Melby, P.C. et al. (1993) J. Immunol. Methods 159:235-244; Duplaa, C. et al. (1993) Anal. Biochem. 212:229-236.) The speed of quantitation of multiple samples may be accelerated by running the assay in a high-throughput format where the oligomer of interest is presented in various dilutions and a spectrophotometric or colorimetric response gives rapid quantitation.

In further embodiments, oligonucleotides or longer fragments derived from any of the polynucleotide sequences described herein may be used as targets in a microarray. The microarray can be used to monitor the expression level of large numbers of genes simultaneously and to identify genetic variants, mutations, and polymorphisms. This information may be used to determine gene function, to understand the genetic basis of a disorder, to diagnose a disorder, and to develop and monitor the activities of therapeutic agents.

5 Microarrays may be prepared, used, and analyzed using methods known in the art. (See, e.g., Brennan, T.M. et al. (1995) U.S. Patent No. 5,474,796; Schena, M. et al. (1996) Proc. Natl. Acad. Sci. USA 93:10614-10619; Baldeschweiler et al. (1995) PCT application WO95/251116; Shalon, D. et al. 10 (1995) PCT application WO95/35505; Heller, R.A. et al. (1997) Proc. Natl. Acad. Sci. USA 94:2150-2155; and Heller, M.J. et al. (1997) U.S. Patent No. 5,605,662.)

In another embodiment of the invention, nucleic acid sequences encoding HUMAP may be used to generate hybridization probes useful in mapping the naturally occurring genomic sequence. The sequences may be mapped to a particular chromosome, to a specific region of a chromosome, or to 15 artificial chromosome constructions, e.g., human artificial chromosomes (HACs), yeast artificial chromosomes (YACs), bacterial artificial chromosomes (BACs), bacterial P1 constructions, or single chromosome cDNA libraries. (See, e.g., Harrington, J.J. et al. (1997) Nat. Genet. 15:345-355; Price, C.M. (1993) Blood Rev. 7:127-134; and Trask, B.J. (1991) Trends Genet. 7:149-154.)

Fluorescent in situ hybridization (FISH) may be correlated with other physical chromosome 20 mapping techniques and genetic map data. (See, e.g., Heinz-Ulrich, et al. (1995) in Meyers, supra, pp. 965-968.) Examples of genetic map data can be found in various scientific journals or at the Online Mendelian Inheritance in Man (OMIM) World Wide Web site. Correlation between the location of the gene encoding HUMAP on a physical chromosomal map and a specific disorder, or a predisposition to a specific disorder, may help define the region of DNA associated with that disorder. The nucleotide 25 sequences of the invention may be used to detect differences in gene sequences among normal, carrier, and affected individuals.

In situ hybridization of chromosomal preparations and physical mapping techniques, such as linkage analysis using established chromosomal markers, may be used for extending genetic maps. Often the placement of a gene on the chromosome of another mammalian species, such as mouse, may 30 reveal associated markers even if the number or arm of a particular human chromosome is not known. New sequences can be assigned to chromosomal arms by physical mapping. This provides valuable information to investigators searching for disease genes using positional cloning or other gene discovery techniques. Once the disease or syndrome has been crudely localized by genetic linkage to a particular genomic region, e.g., ataxia-telangiectasia to 11q22-23, any sequences mapping to that area may

represent associated or regulatory genes for further investigation. (See, e.g., Gatti, R.A. et al. (1988) Nature 336:577-580.) The nucleotide sequence of the subject invention may also be used to detect differences in the chromosomal location due to translocation, inversion, etc., among normal, carrier, or affected individuals.

5 In another embodiment of the invention, HUMAP, its catalytic or immunogenic fragments, or oligopeptides thereof can be used for screening libraries of compounds in any of a variety of drug screening techniques. The fragment employed in such screening may be free in solution, affixed to a solid support, borne on a cell surface, or located intracellularly. The formation of binding complexes between HUMAP and the agent being tested may be measured.

10 Another technique for drug screening provides for high throughput screening of compounds having suitable binding affinity to the protein of interest. (See, e.g., Geysen, et al. (1984) PCT application WO84/03564.) In this method, large numbers of different small test compounds are synthesized on a solid substrate. The test compounds are reacted with HUMAP, or fragments thereof, and washed. Bound HUMAP is then detected by methods well known in the art. Purified HUMAP can
15 also be coated directly onto plates for use in the aforementioned drug screening techniques. Alternatively, non-neutralizing antibodies can be used to capture the peptide and immobilize it on a solid support.

In another embodiment, one may use competitive drug screening assays in which neutralizing antibodies capable of binding HUMAP specifically compete with a test compound for binding
20 HUMAP. In this manner, antibodies can be used to detect the presence of any peptide which shares one or more antigenic determinants with HUMAP.

In additional embodiments, the nucleotide sequences which encode HUMAP may be used in any molecular biology techniques that have yet to be developed, provided the new techniques rely on properties of nucleotide sequences that are currently known, including, but not limited to, such
25 properties as the triplet genetic code and specific base pair interactions.

Without further elaboration, it is believed that one skilled in the art can, using the preceding description, utilize the present invention to its fullest extent. The following preferred specific embodiments are, therefore, to be construed as merely illustrative, and not limitative of the remainder of the disclosure in any way whatsoever.

30 The disclosures of all patents, applications, and publications mentioned above and below, in particular U.S. Ser. No. 60/130,694 and U.S. Ser. No. 60/140,580, are hereby expressly incorporated by reference.

EXAMPLES

I. Construction of cDNA Libraries

RNA was purchased from Clontech or isolated from tissues described in Table 4. Some tissues were homogenized and lysed in guanidinium isothiocyanate, while others were homogenized and lysed
5 in phenol or in a suitable mixture of denaturants, such as TRIZOL (Life Technologies), a monophasic solution of phenol and guanidine isothiocyanate. The resulting lysates were centrifuged over CsCl cushions or extracted with chloroform. RNA was precipitated from the lysates with either isopropanol or sodium acetate and ethanol, or by other routine methods.

Phenol extraction and precipitation of RNA were repeated as necessary to increase RNA
10 purity. In some cases, RNA was treated with DNase. For most libraries, poly(A+) RNA was isolated using oligo d(T)-coupled paramagnetic particles (Promega), OLIGOTEX latex particles (QIAGEN, Chatsworth CA), or an OLIGOTEX mRNA purification kit (QIAGEN). Alternatively, RNA was isolated directly from tissue lysates using other RNA isolation kits, e.g., the POLY(A)PURE mRNA purification kit (Ambion, Austin TX).

15 In some cases, Stratagene was provided with RNA and constructed the corresponding cDNA libraries. Otherwise, cDNA was synthesized and cDNA libraries were constructed with the UNIZAP vector system (Stratagene) or SUPERSCRIPT plasmid system (Life Technologies), using the recommended procedures or similar methods known in the art. (See, e.g., Ausubel, 1997, *supra*, units 5.1-6.6.) Reverse transcription was initiated using oligo d(T) or random primers. Synthetic
20 oligonucleotide adapters were ligated to double stranded cDNA, and the cDNA was digested with the appropriate restriction enzyme or enzymes. For most libraries, the cDNA was size-selected (300-1000 bp) using SEPHACRYL S1000, SEPHAROSE CL2B, or SEPHAROSE CL4B column chromatography (Amersham Pharmacia Biotech) or preparative agarose gel electrophoresis. cDNAs were ligated into compatible restriction enzyme sites of the polylinker of a suitable plasmid, e.g.,
25 PBLUESCRIPT plasmid (Stratagene), PSPORT1 plasmid (Life Technologies), pcDNA2.1 plasmid (Invitrogen, Carlsbad CA), or pINCY plasmid (Incyte Pharmaceuticals, Palo Alto CA). Recombinant plasmids were transformed into competent *E. coli* cells including XL1-Blue, XL1-BlueMRF, or SOLR from Stratagene or DH5α, DH10B, or ElectroMAX DH10B from Life Technologies.

II. Isolation of cDNA Clones

30 Plasmids were recovered from host cells by *in vivo* excision using the UNIZAP vector system (Stratagene) or by cell lysis. Plasmids were purified using at least one of the following: a Magic or WIZARD Minipreps DNA purification system (Promega); an AGTC Miniprep purification kit (Edge Biosystems, Gaithersburg MD); and QIAWELL 8 Plasmid, QIAWELL 8 Plus Plasmid, QIAWELL 8 Ultra Plasmid purification systems or the R.E.A.L. PREP 96 plasmid purification kit from QIAGEN.

Following precipitation, plasmids were resuspended in 0.1 ml of distilled water and stored, with or without lyophilization, at 4°C.

Alternatively, plasmid DNA was amplified from host cell lysates using direct link PCR in a high-throughput format (Rao, V.B. (1994) Anal. Biochem. 216:1-14). Host cell lysis and thermal 5 cycling steps were carried out in a single reaction mixture. Samples were processed and stored in 384-well plates, and the concentration of amplified plasmid DNA was quantified fluorometrically using PICOGREEN dye (Molecular Probes, Eugene OR) and a FLUOROSCAN II fluorescence scanner (Labsystems Oy, Helsinki, Finland).

III. Sequencing and Analysis

10 cDNA sequencing reactions were processed using standard methods or high-throughput instrumentation such as the ABI CATALYST 800 (Perkin-Elmer) thermal cycler or the PTC-200 thermal cycler (MJ Research) in conjunction with the HYDRA microdispenser (Robbins Scientific) or the MICROLAB 2200 (Hamilton) liquid transfer system. cDNA sequencing reactions were prepared using reagents provided by Amersham Pharmacia Biotech or supplied in ABI sequencing kits such as 15 the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (Perkin-Elmer).

Electrophoretic separation of cDNA sequencing reactions and detection of labeled polynucleotides were carried out using the MEGABACE 1000 DNA sequencing system (Molecular Dynamics); the ABI PRISM 373 or 377 sequencing system (Perkin-Elmer) in conjunction with standard ABI protocols and base calling software; or other sequence analysis systems known in the art. Reading frames within the 20 cDNA sequences were identified using standard methods (reviewed in Ausubel, 1997, supra, unit 7.7). Some of the cDNA sequences were selected for extension using the techniques disclosed in Example VI.

The polynucleotide sequences derived from cDNA sequencing were assembled and analyzed using a combination of software programs which utilize algorithms well known to those skilled in the art. Table 5 summarizes the tools, programs, and algorithms used and provides applicable descriptions, 25 references, and threshold parameters. The first column of Table 5 shows the tools, programs, and algorithms used, the second column provides brief descriptions thereof, the third column presents appropriate references, all of which are incorporated by reference herein in their entirety, and the fourth column presents, where applicable, the scores, probability values, and other parameters used to evaluate the strength of a match between two sequences (the higher the score, the greater the homology between 30 two sequences). Sequences were analyzed using MACDNASIS PRO software (Hitachi Software Engineering, South San Francisco CA) and LASERGENE software (DNASTAR). Polynucleotide and polypeptide sequence alignments were generated using the default parameters specified by the clustal algorithm as incorporated into the MEGALIGN multisequence alignment program (DNASTAR), which also calculates the percent identity between aligned sequences.

The polynucleotide sequences were validated by removing vector, linker, and polyA sequences and by masking ambiguous bases, using algorithms and programs based on BLAST, dynamic programming, and dinucleotide nearest neighbor analysis. The sequences were then queried against a selection of public databases such as the GenBank primate, rodent, mammalian, vertebrate, and 5 eukaryote databases, and BLOCKS, PRINTS, DOMO, PRODOM, and PFAM to acquire annotation using programs based on BLAST, FASTA, and BLIMPS. The sequences were assembled into full length polynucleotide sequences using programs based on Phred, Phrap, and Consed, and were screened for open reading frames using programs based on GeneMark, BLAST, and FASTA. The full length polynucleotide sequences were translated to derive the corresponding full length amino acid sequences, 10 and these full length sequences were subsequently analyzed by querying against databases such as the GenBank databases (described above), SwissProt, BLOCKS, PRINTS, DOMO, PRODOM, Prosite, and Hidden Markov Model (HMM)-based protein family databases such as PFAM. HMM is a probabilistic approach which analyzes consensus primary structures of gene families. (See, e.g., Eddy, S.R. (1996) *Curr. Opin. Struct. Biol.* 6:361-365.)

15 The programs described above for the assembly and analysis of full length polynucleotide and amino acid sequences were also used to identify polynucleotide sequence fragments from SEQ ID NO:18-34. Fragments from about 20 to about 4000 nucleotides which are useful in hybridization and amplification technologies were described in The Invention section above.

IV. Northern Analysis

20 Northern analysis is a laboratory technique used to detect the presence of a transcript of a gene and involves the hybridization of a labeled nucleotide sequence to a membrane on which RNAs from a particular cell type or tissue have been bound. (See, e.g., Sambrook, *supra*, ch. 7; Ausubel, 1995, *supra*, ch. 4 and 16.)

Analogous computer techniques applying BLAST were used to search for identical or related 25 molecules in nucleotide databases such as GenBank or LIFESEQ (Incyte Pharmaceuticals). This analysis is much faster than multiple membrane-based hybridizations. In addition, the sensitivity of the computer search can be modified to determine whether any particular match is categorized as exact or similar. The basis of the search is the product score, which is defined as:

$$\frac{\% \text{ sequence identity} \times \% \text{ maximum BLAST score}}{100}$$

30

100

The product score takes into account both the degree of similarity between two sequences and the length of the sequence match. For example, with a product score of 40, the match will be exact within a 1% to 2% error, and, with a product score of 70, the match will be exact. Similar molecules are usually identified by selecting those which show product scores between 15 and 40, although lower scores may

identify related molecules.

The results of northern analyses are reported as a percentage distribution of libraries in which the transcript encoding HUMAP occurred. Analysis involved the categorization of cDNA libraries by organ/tissue and disease. The organ/tissue categories included cardiovascular, dermatologic, 5 developmental, endocrine, gastrointestinal, hematopoietic/immune, musculoskeletal, nervous, reproductive, and urologic. The disease/condition categories included cancer, inflammation, trauma, cell proliferation, neurological, and pooled. For each category, the number of libraries expressing the sequence of interest was counted and divided by the total number of libraries across all categories.

Percentage values of tissue-specific and disease- or condition-specific expression are reported in Table 10 3.

V. Chromosomal Mapping of HUMAP Encoding Polynucleotides

The cDNA sequences which were used to assemble SEQ ID NO:27-34 were compared with sequences from the Incyte LIFESEQ database and public domain databases using BLAST and other implementations of the Smith-Waterman algorithm. Sequences from these databases that matched 15 SEQ ID NO:18-34 were assembled into clusters of contiguous and overlapping sequences using assembly algorithms such as Phrap (Table 5). Radiation hybrid and genetic mapping data available from public resources such as the Stanford Human Genome Center (SHGC), Whitehead Institute for Genome Research (WIGR), and Généthon were used to determine if any of the clustered sequences had been previously mapped. Inclusion of a mapped sequence in a cluster resulted in the assignment 20 of all sequences of that cluster, including its particular SEQ ID NO:, to that map location.

The genetic map location of SEQ ID NO:31 is described in The Invention as range, or interval, of a human chromosome. The map position of an interval, in centiMorgans, is measured relative to the terminus of the chromosome's p-arm. (The centiMorgan (cM) is a unit of measurement based on recombination frequencies between chromosomal markers. On average, 1 cM is roughly 25 equivalent to 1 megabase (Mb) of DNA in humans, although this can vary widely due to hot and cold spots of recombination.) The cM distances are based on genetic markers mapped by Généthon which provide boundaries for radiation hybrid markers whose sequences were included in each of the clusters.

VI. Extension of HUMAP Encoding Polynucleotides

30 The full length nucleic acid sequences of SEQ ID NO:18-34 were produced by extension of an appropriate fragment of the full length molecule using oligonucleotide primers designed from this fragment. One primer was synthesized to initiate 5' extension of the known fragment, and the other primer, to initiate 3' extension of the known fragment. The initial primers were designed using OLIGO 4.06 software (National Biosciences), or another appropriate program, to be about 22 to 30 nucleotides 35 in length, to have a GC content of about 50% or more, and to anneal to the target sequence at

temperatures of about 68°C to about 72°C. Any stretch of nucleotides which would result in hairpin structures and primer-primer dimerizations was avoided.

Selected human cDNA libraries were used to extend the sequence. If more than one extension was necessary or desired, additional or nested sets of primers were designed.

5 High fidelity amplification was obtained by PCR using methods well known in the art. PCR was performed in 96-well plates using the PTC-200 thermal cycler (MJ Research, Inc.). The reaction mix contained DNA template, 200 nmol of each primer, reaction buffer containing Mg²⁺, (NH₄)₂SO₄, and β-mercaptoethanol, Taq DNA polymerase (Amersham Pharmacia Biotech), ELONGASE enzyme (Life Technologies), and Pfu DNA polymerase (Stratagene), with the following parameters for primer pair PCI A and PCI B: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 68°C, 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68°C, 5 min; Step 7: storage at 4°C. In the alternative, the parameters for primer pair T7 and SK+ were as follows: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 57°C, 1 min; Step 4: 68°C, 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68°C, 5 min; Step 7: storage at 4°C.

10 The concentration of DNA in each well was determined by dispensing 100 μl PICOGREEN quantitation reagent (0.25% (v/v) PICOGREEN; Molecular Probes, Eugene OR) dissolved in 1X TE and 0.5 μl of undiluted PCR product into each well of an opaque fluorimeter plate (Corning Costar, Acton MA), allowing the DNA to bind to the reagent. The plate was scanned in a Fluoroskan II (Labsystems Oy, Helsinki, Finland) to measure the fluorescence of the sample and to quantify the 15 concentration of DNA. A 5 μl to 10 μl aliquot of the reaction mixture was analyzed by electrophoresis on a 1 % agarose mini-gel to determine which reactions were successful in extending the sequence.

20 The extended nucleotides were desalted and concentrated, transferred to 384-well plates, digested with CviJI cholera virus endonuclease (Molecular Biology Research, Madison WI), and sonicated or sheared prior to religation into pUC 18 vector (Amersham Pharmacia Biotech). For 25 shotgun sequencing, the digested nucleotides were separated on low concentration (0.6 to 0.8%) agarose gels, fragments were excised, and agar digested with Agar ACE (Promega). Extended clones were religated using T4 ligase (New England Biolabs, Beverly MA) into pUC 18 vector (Amersham Pharmacia Biotech), treated with Pfu DNA polymerase (Stratagene) to fill-in restriction site overhangs, and transfected into competent *E. coli* cells. Transformed cells were selected on antibiotic-containing 30 media, individual colonies were picked and cultured overnight at 37°C in 384-well plates in LB/2x carb liquid media.

The cells were lysed, and DNA was amplified by PCR using Taq DNA polymerase (Amersham Pharmacia Biotech) and Pfu DNA polymerase (Stratagene) with the following parameters: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 72°C, 2 min; Step 5: steps 2,

3, and 4 repeated 29 times; Step 6: 72°C, 5 min; Step 7: storage at 4°C. DNA was quantified by PICOGREEN reagent (Molecular Probes) as described above. Samples with low DNA recoveries were reamplified using the same conditions as described above. Samples were diluted with 20% dimethylsulfoxide (1:2, v/v), and sequenced using DYENAMIC energy transfer sequencing primers and 5 the DYENAMIC DIRECT kit (Amersham Pharmacia Biotech) or the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (Perkin-Elmer).

In like manner, the nucleotide sequences of SEQ ID NO:18-34 are used to obtain 5' regulatory sequences using the procedure above, oligonucleotides designed for such extension, and an appropriate genomic library.

10 VII. Labeling and Use of Individual Hybridization Probes

Hybridization probes derived from SEQ ID NO:18-34 are employed to screen cDNAs, genomic DNAs, or mRNAs. Although the labeling of oligonucleotides, consisting of about 20 base pairs, is specifically described, essentially the same procedure is used with larger nucleotide fragments. Oligonucleotides are designed using state-of-the-art software such as OLIGO 4.06 software (National 15 Biosciences) and labeled by combining 50 pmol of each oligomer, 250 µCi of [γ -³²P] adenosine triphosphate (Amersham Pharmacia Biotech), and T4 polynucleotide kinase (DuPont NEN, Boston MA). The labeled oligonucleotides are substantially purified using a SEPHADEX G-25 superfine size exclusion dextran bead column (Amersham Pharmacia Biotech). An aliquot containing 10⁷ counts per minute of the labeled probe is used in a typical membrane-based hybridization analysis of human 20 genomic DNA digested with one of the following endonucleases: Ase I, Bgl II, Eco RI, Pst I, Xba I, or Pvu II (DuPont NEN).

The DNA from each digest is fractionated on a 0.7% agarose gel and transferred to nylon membranes (Nytran Plus, Schleicher & Schuell, Durham NH). Hybridization is carried out for 16 hours at 40°C. To remove nonspecific signals, blots are sequentially washed at room temperature 25 under conditions of up to, for example, 0.1 x saline sodium citrate and 0.5% sodium dodecyl sulfate. Hybridization patterns are visualized using autoradiography or an alternative imaging means and compared.

VIII. Microarrays

A chemical coupling procedure and an ink jet device can be used to synthesize array elements 30 on the surface of a substrate. (See, e.g., Baldeschweiler, supra.) An array analogous to a dot or slot blot may also be used to arrange and link elements to the surface of a substrate using thermal, UV, chemical, or mechanical bonding procedures. A typical array may be produced by hand or using available methods and machines and contain any appropriate number of elements. After hybridization, nonhybridized probes are removed and a scanner used to determine the levels and patterns of

fluorescence. The degree of complementarity and the relative abundance of each probe which hybridizes to an element on the microarray may be assessed through analysis of the scanned images.

Full-length cDNAs, Expressed Sequence Tags (ESTs), or fragments thereof may comprise the elements of the microarray. Fragments suitable for hybridization can be selected using software well known in the art such as LASERGENE software (DNASTAR). Full-length cDNAs, ESTs, or fragments thereof corresponding to one of the nucleotide sequences of the present invention, or selected at random from a cDNA library relevant to the present invention, are arranged on an appropriate substrate, e.g., a glass slide. The cDNA is fixed to the slide using, e.g., UV cross-linking followed by thermal and chemical treatments and subsequent drying. (See, e.g., Schena, M. et al. (1995) *Science* 270:467-470; Shalon, D. et al. (1996) *Genome Res.* 6:639-645.) Fluorescent probes are prepared and used for hybridization to the elements on the substrate. The substrate is analyzed by procedures described above.

IX. Complementary Polynucleotides

Sequences complementary to the HUMAP-encoding sequences, or any parts thereof, are used to detect, decrease, or inhibit expression of naturally occurring HUMAP. Although use of oligonucleotides comprising from about 15 to 30 base pairs is described, essentially the same procedure is used with smaller or with larger sequence fragments. Appropriate oligonucleotides are designed using OLIGO 4.06 software (National Biosciences) and the coding sequence of HUMAP. To inhibit transcription, a complementary oligonucleotide is designed from the most unique 5' sequence and used to prevent promoter binding to the coding sequence. To inhibit translation, a complementary oligonucleotide is designed to prevent ribosomal binding to the HUMAP-encoding transcript.

X. Expression of HUMAP

Expression and purification of HUMAP is achieved using bacterial or virus-based expression systems. For expression of HUMAP in bacteria, cDNA is subcloned into an appropriate vector containing an antibiotic resistance gene and an inducible promoter that directs high levels of cDNA transcription. Examples of such promoters include, but are not limited to, the *trp-lac* (*tac*) hybrid promoter and the T5 or T7 bacteriophage promoter in conjunction with the *lac* operator regulatory element. Recombinant vectors are transformed into suitable bacterial hosts, e.g., BL21(DE3).

Antibiotic resistant bacteria express HUMAP upon induction with isopropyl beta-D-thiogalactopyranoside (IPTG). Expression of HUMAP in eukaryotic cells is achieved by infecting insect or mammalian cell lines with recombinant *Autographica californica* nuclear polyhedrosis virus (AcMNPV), commonly known as baculovirus. The nonessential polyhedrin gene of baculovirus is replaced with cDNA encoding HUMAP by either homologous recombination or bacterial-mediated transposition involving transfer plasmid intermediates. Viral infectivity is maintained and the strong

polyhedrin promoter drives high levels of cDNA transcription. Recombinant baculovirus is used to infect Spodoptera frugiperda (Sf9) insect cells in most cases, or human hepatocytes, in some cases. Infection of the latter requires additional genetic modifications to baculovirus. (See Engelhard, E.K. et al. (1994) Proc. Natl. Acad. Sci. USA 91:3224-3227; Sandig, V. et al. (1996) Hum. Gene Ther.

5 7:1937-1945.)

In most expression systems, HUMAP is synthesized as a fusion protein with, e.g., glutathione S-transferase (GST) or a peptide epitope tag, such as FLAG or 6-His, permitting rapid, single-step, affinity-based purification of recombinant fusion protein from crude cell lysates. GST, a 26-kilodalton enzyme from Schistosoma japonicum, enables the purification of fusion proteins on immobilized 10 glutathione under conditions that maintain protein activity and antigenicity (Amersham Pharmacia Biotech). Following purification, the GST moiety can be proteolytically cleaved from HUMAP at specifically engineered sites. FLAG, an 8-amino acid peptide, enables immunoaffinity purification using commercially available monoclonal and polyclonal anti-FLAG antibodies (Eastman Kodak). 6-His, a stretch of six consecutive histidine residues, enables purification on metal-chelate resins 15 (QIAGEN). Methods for protein expression and purification are discussed in Ausubel (1995, supra, ch. 10 and 16). Purified HUMAP obtained by these methods can be used directly in the following activity assay.

XI. Demonstration of HUMAP Activity

HUMAP activity is demonstrated using a generic immunoblotting strategy or through a 20 HUMAP-specific activity assay as outlined below. As a general approach, cell lines or tissues transformed with a vector containing HUMAP coding sequences can be assayed for HUMAP activity by immunoblotting. Transformed cells are denatured in SDS in the presence of β -mercaptoethanol, nucleic acids are removed by ethanol precipitation, and proteins are purified by acetone precipitation. Pellets are resuspended in 20 mM tris buffer at pH 7.5 and incubated with Protein G-Sepharose pre-25 coated with an antibody specific for HUMAP. After washing, the Sepharose beads are boiled in electrophoresis sample buffer, and the eluted proteins subjected to SDS-PAGE. Proteins are transferred from the SDS-PAGE gel to a membrane for immunoblotting, and the HUMAP activity is assessed by visualizing and quantifying bands on the blot using antibody specific for HUMAP as the primary antibody and 125 I-labeled IgG specific for the primary antibody as the secondary antibody.

30 A specific assay for HUMAP activity measures the expression of HUMAP on the cell surface. cDNA encoding HUMAP is transfected into a mammalian (non-human) cell line. Cell surface proteins are labeled with biotin as described in de la Fuente, M.A.. et al. ((1997) Blood 90:2398-2405). Immunoprecipitations are performed using HUMAP-specific antibodies, and immunoprecipitated samples are analyzed using SDS-PAGE and immunoblotting techniques. The ratio of labeled

immunoprecipitant to unlabeled immunoprecipitant is proportional to the amount of HUMAP expressed on the cell surface.

XII. Functional Assays

HUMAP function is assessed by expressing the sequences encoding HUMAP at

- 5 physiologically elevated levels in mammalian cell culture systems. cDNA is subcloned into a mammalian expression vector containing a strong promoter that drives high levels of cDNA expression. Vectors of choice include pCMV SPORT plasmid (Life Technologies) and pCR3.1 plasmid (Invitrogen), both of which contain the cytomegalovirus promoter. 5-10 μ g of recombinant vector are transiently transfected into a human cell line, for example, an endothelial or hematopoietic cell line,
- 10 using either liposome formulations or electroporation. 1-2 μ g of an additional plasmid containing sequences encoding a marker protein are co-transfected. Expression of a marker protein provides a means to distinguish transfected cells from nontransfected cells and is a reliable predictor of cDNA expression from the recombinant vector. Marker proteins of choice include, e.g., Green Fluorescent Protein (GFP; Clontech), CD64, or a CD64-GFP fusion protein. Flow cytometry (FCM), an
- 15 automated, laser optics-based technique, is used to identify transfected cells expressing GFP or CD64-GFP and to evaluate the apoptotic state of the cells and other cellular properties. FCM detects and quantifies the uptake of fluorescent molecules that diagnose events preceding or coincident with cell death. These events include changes in nuclear DNA content as measured by staining of DNA with propidium iodide; changes in cell size and granularity as measured by forward light scatter and 90
- 20 degree side light scatter; down-regulation of DNA synthesis as measured by decrease in bromodeoxyuridine uptake; alterations in expression of cell surface and intracellular proteins as measured by reactivity with specific antibodies; and alterations in plasma membrane composition as measured by the binding of fluorescein-conjugated Annexin V protein to the cell surface. Methods in flow cytometry are discussed in Ormerod, M.G. (1994) Flow Cytometry, Oxford, New York NY.

- 25 The influence of HUMAP on gene expression can be assessed using highly purified populations of cells transfected with sequences encoding HUMAP and either CD64 or CD64-GFP. CD64 and CD64-GFP are expressed on the surface of transfected cells and bind to conserved regions of human immunoglobulin G (IgG). Transfected cells are efficiently separated from nontransfected cells using magnetic beads coated with either human IgG or antibody against CD64 (DYNAL, Lake Success
- 30 NY). mRNA can be purified from the cells using methods well known by those of skill in the art. Expression of mRNA encoding HUMAP and other genes of interest can be analyzed by northern analysis or microarray techniques.

XIII. Production of HUMAP Specific Antibodies

HUMAP substantially purified using polyacrylamide gel electrophoresis (PAGE; see, e.g., Harrington, M.G. (1990) Methods Enzymol. 182:488-495), or other purification techniques, is used to immunize rabbits and to produce antibodies using standard protocols.

5 Alternatively, the HUMAP amino acid sequence is analyzed using LASERGENE software (DNASTAR) to determine regions of high immunogenicity, and a corresponding oligopeptide is synthesized and used to raise antibodies by means known to those of skill in the art. Methods for selection of appropriate epitopes, such as those near the C-terminus or in hydrophilic regions are well described in the art. (See, e.g., Ausubel, 1995, supra, ch. 11.)

10 Typically, oligopeptides of about 15 residues in length are synthesized using an ABI 431A peptide synthesizer (Perkin-Elmer) using fmoc-chemistry and coupled to KLH (Sigma-Aldrich, St. Louis MO) by reaction with N-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS) to increase immunogenicity. (See, e.g., Ausubel, 1995, supra.) Rabbits are immunized with the oligopeptide-KLH complex in complete Freund's adjuvant. Resulting antisera are tested for antipeptide and anti-HUMAP 15 activity by, for example, binding the peptide or HUMAP to a substrate, blocking with 1% BSA, reacting with rabbit antisera, washing, and reacting with radio-iodinated goat anti-rabbit IgG.

XIV. Purification of Naturally Occurring HUMAP Using Specific Antibodies

Naturally occurring or recombinant HUMAP is substantially purified by immunoaffinity chromatography using antibodies specific for HUMAP. An immunoaffinity column is constructed by 20 covalently coupling anti-HUMAP antibody to an activated chromatographic resin, such as CNBr-activated SEPHAROSE (Amersham Pharmacia Biotech). After the coupling, the resin is blocked and washed according to the manufacturer's instructions.

Media containing HUMAP are passed over the immunoaffinity column, and the column is washed under conditions that allow the preferential absorbance of HUMAP (e.g., high ionic strength 25 buffers in the presence of detergent). The column is eluted under conditions that disrupt antibody/HUMAP binding (e.g., a buffer of pH 2 to pH 3, or a high concentration of a chaotrope, such as urea or thiocyanate ion), and HUMAP is collected.

XV. Identification of Molecules Which Interact with HUMAP

HUMAP, or biologically active fragments thereof, are labeled with ¹²⁵I Bolton-Hunter reagent. 30 (See, e.g., Bolton A.E. and W.M. Hunter (1973) Biochem. J. 133:529-539.) Candidate molecules previously arrayed in the wells of a multi-well plate are incubated with the labeled HUMAP, washed, and any wells with labeled HUMAP complex are assayed. Data obtained using different concentrations of HUMAP are used to calculate values for the number, affinity, and association of HUMAP with the candidate molecules.

Alternatively, molecules interacting with HUMAP are analyzed using the yeast two-hybrid system as described in Fields, S. and O. Song (1989, Nature 340:245-246), or using commercially available kits based on the two-hybrid system, such as the MATCHMAKER system (Clontech).

- 5 Various modifications and variations of the described methods and systems of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with certain embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are obvious
10 to those skilled in molecular biology or related fields are intended to be within the scope of the following claims.

Table 1

Polypeptide SEQ ID NO:	Nucleotide SEQ ID NO:	Clone ID	Library	Fragments	
1	18	402771	TMLR3DT01	402771H1 and 402771R6 (TMLR3DT01), 1466864F1 (PANCTUT02), 1509777F1 (LJUNGNOT14), 3114223F6 (BRSTNOT17)	
2	19	1296216	PGANNNOT03	1296216F6 and 1296216H1 (PGANNNOT03), 3722537T6 (BRSTNOT23), 4632932F6 (GBLADIT02)	
3	20	1693173	COLNNOT23	693242X11 and 693242X12 (LUNGTTU02), 811145R1 and 811145T1 (LUNGNOT04), 1651914F6 (PROSTUT08), 1693173H1 (COLNNOT23), 1728640H1 (PROSNOT14), 1928183T6 (BRSTNOT02), 2189248X11F1 (PROSNOT26)	
4	21	2095069	BRAITUT02	644829R6 (BRSTTUT02), 1805492F6 (SINTNOT13), 1967480R6 (BRSTNOT04), 2054057R6 and 2054057T6 (BEPINOT01), 2095069H1 (BRAITUT02), 4842212H1 (OSTENOT01)	
5	22	2645927	OVARUT04	2645927H1 (OVARUT04), 3055070F6 (LNODNOT08), SBZA00651V1, SBZA00323V1, SBZA02480V1, SBZA01011V1, SBZA02764V1	
6	23	2732365	OVARUT04	1384071F1 (BRAITUT08), 2732365H1 (OVARTUT04), 2957169F6 and 2957169T6 (KIDNFET01), 3442683H1 (PENCNOT06), 5576210H1 (BRAPNOT04)	
7	24	35336577	KIDNNNOT25	136112H1 (SYNORAB01), 754315R1 (BRAITUT02), 2514029T6 (LLVVRTUT04), 35336577H1 (KIDNNNOT25)	
8	25	5587790	ENDINOT02	875452R1 (LUNGAST01), 1281518T1 (COLNNOT16), 1499814F1 (SINTBST01), 2695347H1 (UTRSNOT12), 5587790H1 (ENDINOT02), SATB00548F1, SATB00117F1	
9	26	5733930	KIDCTMT01	142450F1 (TLIMNOR01), 489394R6 (HNT2AGT01), 676769R6 (CRBLNOT01), 996762R1 (KIDNTUT01), 1620177T6 (BRAITUT13), 1880279F6 (LEUKNOT03), 1959869R6 (BRSTNOT04), 2138005F6 (ENDCNNOT01), 2195440F6 (THP1NOT01), 26660706F6 (LUNGTTU09), 2866032F6 (KIDNNNOT20), 3099462H1 (CERVNOT03), 57333930H1 (KIDCTMT01)	
10	27	645566	BRSTTUT02	645566H1 (BRSTTUT02), 645566T6 (BRSTTUT02), 2219640F6 (LUNGNOT18), 2667331T6 (ESQGTUT02), 2791342F6 (COLNTUT16), 3689033H1 (HEAANOT01), SBBA03918F1, SBBA04464F1, SBBA05733F1	
11	28	1503111	BRAITUT07	1426356H1 (SINTBST01), 1503111H1 (BRAITUT07), 3494933F6 (ADRETUT07), 4309056F6 (BRAUNCT01), SBRA03432D1.comp, SBRA01635D1.comp, SBRA04091D1.comp, SBOA04382D1, SBOA03157D1	

Table 1 (cont'd)

Polypeptide SEQ ID NO:	Nucleotide SEQ ID NO:	Clone ID	Library	Fragments
12	29	1984287	LUNGAST01	488790R7 (HNT2AGT01), 488790T7 (HNT2AGT01), 1390203H1 (EOSINOT01), 1984287H1 (LUNGAST01), 1984287R6 (LUNGAST01), 3636154H1 (LIVRNOT03), SATB005684F1, SAZA01496F1, SATB00480F1,
13	30	2055289	BEPINOT01	936961H1 (CERVNOT01), 1452058F1 (PENITUT01), 1819965F6 (GBLATUT01), 2055289H1 (BEPINOT01), 3095524H1 (CERVNOT03), 3381923H1 (ESOGNOT04), 3814228F6 (TONSNOT03), 4554433H1 (KERAUNTO1), 4556224H1 (KERAUNTO1)
14	31	2279216	PROSNON01	589153X13 (UTRSNOT01), 1345342F6 (PROSNOT11), 2279216H1 (PROSNON01), 2279216T6 (PROSNON01), 2308003X12C1 (NGANNOT01), 2600037F6 (UTRSNOT10), 2600037T6 (UTRSNOT10), 3382277F6 (ESOGNOT04), SAGA00340R1, SAGA0047R1
15	32	2590650	LUNGNOT22	2590650H1 (LUNGNOT22), 2591745F6 (LUNGNOT22), 2591745T6 (LUNGNOT22)
16	33	2814726	OVARNOT10	2665352F6 (ADRENOT08), 2814726H1 (OVARNOT10), 2814726T6 (OVARNOT10), 3248008H1 (SEMVNOT03), 3249557F7 (SEMVNOT03), SBLA02275F1, SBLA01251F1
17	34	4628933	FIBRTXT02	2626682F6 (PROSTUT12), 4628933F6 (FIBRTXT02), 4628933H1 (FIBRTXT02)

Table 2

Poly-peptide Seq ID NO:	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Genbank homologs	Homologous sequences	Analytical Methods
1	175	S30 S75 T81 S161	N70 N136	Transmembrane domain I88-L114; Y116-N136; G139-T158	Proteolipid protein 2 [Mus musculus] (g5771451)	HMMER BLAST
2	161	T19	N59	Transmembrane domain M1-E18; T113-L132; M131-V147	Endogenous retrovirus envelope protein (g1196425)	HMMER BLAST
3	563	S11 S55 S62 S127 T135 S139 T141 S204 S332 S338 S362 S432 T154 S169 T198 T446 S514 Y463	N3 N26 N53 N79 N97 N133 N148 N196 N203 N251 N270 N336 N343 N443	Transmembrane domain F520-V541	mucin Muc4 [Mus musculus] (g6685155)	HMMER BLAST
4	396	T175 S69 S149 T162 S194 S226 S231 S388 T13 T21 S95 S199 S308 S369	N185 N282	Erythroblast macrophage protein EMP (g3789917)	BLAST	
5	265	T262 T7 S97 S155 S191 T261	N2	Transmembrane domain V64-K92 GNS1-SUR4 Integral memb. Protein family E10-E265	Membrane glycoprotein CIG30 (g2289244)	HMMER BLAST PFAM/BLOCKS
6	328	S24 S14 S91 S188	SH3 domain Y254-A308	Colon cancer antigen NY-CO-31 (g3170194)	HMMER BLAST PFAM PRINTS	

Table 2 (cont'd)

Poly-Peptide Seq ID NO:	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Genbank homologs	Homologous sequences	Analytical Methods
7 202		S104 T132 S147 S158 S63 S124		Signal peptide M1-A26 Growth factor and cytokine family G108-S114	Vitelline membrane outer layer protein I (g487906)	HMMER BLAST SPscan Motifs
8 96		S82 T91 S96 S98	G46	Transmembrane domain C11-Y27		HMMER
9 651		S404 T68 T110 S132 S179 S206 S222 T265 T508 S571 S575 S587 S601 S634 T19 S85 T97 S178 T228 S264 S310 S363 S419 T425 T452 S527	N29 N176 N503 N569	Transmembrane domain S458-G475	Human sperm specific surface protein (g3116015)	HMMER BLAST
10 443		T105 T89 T98 S224 S240 S242 S254 S365 S366 T127 S330 S427 S435	N96	Signal peptide M1-G33 Transmembrane domain F374-L393 Glucocorticoid receptor G238-I258 Von Willebrand factor type A domain R3111-L328	Lpe10p [Saccharomyces cerevisiae] (g1079682)	SPScan BLIMPS_PRINTS MOTIFS HMMER BLAST_genbank
11 667		S53 T108 T120 S160 T203 T310 T335 S341 S346 S347 T359 T396 T400 T447 S467 T543 S77 S107 S110 S284 T322 T323 T390 T460 T493 S549 S650 Y624 Y665	N184 N282 N326 N640	Signal peptide M1-S35 Transmembrane domain M594-A612 ATP/GTP-binding site motif A (P loop) A85-S92	Neurexin III-beta [Bos taurus] (g451076)	SPScan BLAST_genbank MOTIFS HMMER

Table 2 (cont'd)

Poly-peptide Seq ID NO:	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Genbank homologs	Homologous sequences	Analytical Methods
12	475	S134 T192 S123 S315 S348 T375 S437 Y124 Y188	N132 N373 N376 N386 N441	Signal peptide M1-P60 Transmembrane domain A157-W177	Erythroid membrane-associated protein ERMAP [Mus musculus] (g6901674)	SPScan BLAST_genbank MOTIFS HMMER
13	479	S50 S62 T295 S42 T45 T386 T452	N48 N284 N442	Signal peptide M1-Y32 Transmembrane domain M300-V322; L398-L416; L151-N171; L16-Y32; N342-A362; Y84-M106 Ammonium transport family I21-Y435	Erythrocyte membrane glycoprotein Rh 50 [Homo sapiens] (g2909819)	SPScan BLIMPS_BLOCKS BLIMPS_PRINTS BLAST_genbank MOTIFS HMMER HMMER_PFFAM
14	599	T128 T85 S94 S156 S157 S164 S179 T221 T271 T287 S315 S317 S372 T408 T20 T124 T127 T147 S173 T176 T235 T250 T295 S335 S451 S454 T463 T472		N214 N269 N345 N415	Lamina-associated polypeptide 1C [Rattus norvegicus] (LAP1C) (g769855)	BLAST_genbank MOTIFS
15	299	S52 T218 T232 S149 T197 S227 S283 Y207		N189	Signal peptide M1-T23 [Homo sapiens] (g1369904)	SPScan BLAST_genbank MOTIFS HMMER
16	359	S25 S106 T107 S113 S130 S138 S158 S248 S258 S275 T305 S311 T49 S75 S209 S231			TOP AP integral membrane protein [Gallus gallus] (g642486)	BLAST_genbank MOTIFS

Table 2 (cont'd)

Poly-peptide Seq ID NO:	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Genbank homologs	Homologous sequences	Analytical Methods
17	160	T98 S119 S125 S148	N78 N130 N146	Signal peptide M1-A53 Transmembrane domain L30-W49	Lectin-like NK cell receptor LLT1 [Homo sapiens] (g6651065)	SPScan BLAST_genbank MOTIFS HMMER

Table 3

Nucleotide SEQ ID NO:	Nucleotide Range of Useful Fragment	Tissue Expression (Fraction of Total)	Disease or Condition (Fraction of Total)	Vector
18	22-67	Hematopoietic/Immune (0.233) Gastrointestinal (0.186) Reproductive (0.163)	Cancer and cell proliferation (0.479) Inflammation (0.396)	PBLUESCRIPT
19	702-747	Hematopoietic/Immune (0.333) Nervous (0.333) Reproductive (0.222)	Cancer and cell proliferation (0.500) Inflammation (0.333)	pINCY
20	649-694	Gastrointestinal (0.611) Reproductive (0.222) Cardiovascular (0.111)	Cancer and cell proliferation (0.579) Inflammation (0.421)	pINCY
21	298-342	Reproductive (0.200) Nervous (0.192)	Cancer and cell proliferation (0.684) Inflammation (0.265)	PSPORT1
22	417-462	Gastrointestinal (0.125) Hematopoietic/Immune (0.125) Reproductive (0.286) Gastrointestinal (0.214) Musculoskeletal (0.143) Nervous (0.143)	Cancer and cell proliferation (0.667) Inflammation (0.133)	pINCY
23	460-505	Reproductive (0.500) Gastrointestinal (0.143) Hematopoietic/Immune (0.143) Nervous (0.143)	Cancer and cell proliferation (0.647) Inflammation (0.294)	pINCY
24	254-299	Developmental (0.200) Hematopoietic/Immune (0.200) Musculoskeletal (0.200) Nervous (0.200)	Cancer and cell proliferation (0.640) Inflammation (0.400)	pINCY
25	120-166	Reproductive (0.258) Hematopoietic/Immune (0.204) Nervous (0.129)	Cancer and cell proliferation (0.636) Inflammation (0.366)	pINCY
26	388-433	Nervous (0.292) Reproductive (0.169) Gastrointestinal (0.135)	Cancer and cell proliferation (0.629) Inflammation (0.320)	pINCY
27	159-203 1101-1145	Hematopoietic/Immune (0.135) Gastrointestinal (0.281) Reproductive (0.219) Nervous (0.188)	Cancer and cell proliferation (0.594) Inflammation (0.344)	PSPORT1

Table 3 (cont'd)

Nucleotide SEQ ID NO:	Nucleotide Range of Useful Fragment	Tissue Expression (Fraction of Total)	Disease or Condition (Fraction of Total)	Vector
28	662-706 1802-1846	Nervous (0.600) Gastrointestinal (0.200) Reproductive (0.133)	Cancer and cell proliferation (0.267) Inflammation (0.467)	pINCY
29	400-444	Developmental (0.176) Gastrointestinal (0.176) Hematopoietic/Immune (0.176) Nervous (0.176)	Cancer and cell proliferation (0.588) Inflammation (0.294)	PSPORT1
30	301-345 1207-1251	Gastrointestinal (0.286) Reproductive (0.286) Urologic (0.214)	Cancer and cell proliferation (0.643) Inflammation (0.357)	PSPORT1
31	461-505 1325-1369	Reproductive (0.319) Hematopoietic/Immune (0.159) Nervous (0.145)	Cancer and cell proliferation (0.565) Inflammation (0.348)	PSPORT1
32	487-531	Cardiovascular (0.667)	Cancer and cell proliferation (0.630) Inflammation (0.370)	pINCY
33	507-551	Reproductive (0.296) Gastrointestinal (0.222) Cardiovascular (0.185)	Cancer and cell proliferation (0.593) Inflammation (0.259)	pINCY
34	163-207	Dermatologic (0.500) Reproductive (0.500)	Cancer and cell proliferation (0.500)	pINCY

Table 4

Nucleotide SEQ ID NO:	Library	Library Comment
18	TMLR3DT01	Library was constructed using RNA isolated from non-adherent and adherent peripheral blood mononuclear cells collected from two unrelated Caucasian male donors (25 and 29 years old). Cells from each donor were purified on Ficoll Hypaque, then co-cultured for 96 hours in medium containing normal human serum at a cell density of 2x10E6 cells/ml.
19	PGANNOT03	Library was constructed using RNA isolated from paraganglionic tumor tissue removed from the intra-abdominal region of a 46-year-old Caucasian male during exploratory laparotomy. Pathology indicated a benign paraganglioma and was associated with a grade 2 renal cell carcinoma, clear cell type, which did not penetrate the capsule.
20	COLNOT23	Library was constructed using RNA isolated from diseased colon tissue removed from a 16-year-old Caucasian male during a total colectomy with abdominal/peritoneal resection. Pathology indicated gastritis and pancolonitis consistent with the acute phase of ulcerative colitis. Inflammation was more severe in the transverse colon, with inflammation confined to the mucosa. There was only mild involvement of the ascending and sigmoid colon. Family history included irritable bowel syndrome.
21	BRAUTU02	Library was constructed using RNA isolated from brain tumor tissue removed from the frontal lobe of a 58-year-old Caucasian male during excision of a cerebral meningeal lesion. Pathology indicated a grade 2 metastatic hypernephroma. Patient history included a grade 2 renal cell carcinoma, insomnia, and chronic airway obstruction. Family history included a malignant neoplasm of the kidney.
22	OVARTU04	Library was constructed using RNA isolated from ovarian tumor tissue removed from a 53-year-old Caucasian female during a total abdominal hysterectomy, removal of the fallopian tubes and ovaries, regional lymph node excision, peritoneal tissue destruction, and incidental appendectomy. Pathology indicated grade 1 transitional cell carcinoma of the right ovary. The left ovary had a hemorrhagic corpus luteum. The uterus had multiple leiomyomas (1 submucosal, 11 intramural), and the endometrium was inactive. The cul-de-sac contained abundant histiocytes and rare clusters of mesothelial cells. Patient history included breast fibrosclerosis and chronic stomach ulcer. Family history included acute stomach ulcer with perforation, breast cancer, bladder cancer, rectal/anal cancer, benign hypertension, coronary angioplasty, and hyperlipidemia.

Table 4 (cont'd)

Nucleotide SEQ ID NO:	Library	Library Comment
23	OVARTUT04	Library was constructed using RNA isolated from ovarian tumor tissue removed from a 53-year-old Caucasian female during a total abdominal hysterectomy, removal of the fallopian tubes and ovaries, regional lymph node excision, peritoneal tissue destruction, and incidental appendectomy. Pathology indicated grade 1 transitional cell carcinoma of the right ovary. The left ovary had a hemorrhagic corpus luteum. The uterus had multiple leiomyomas (1 submucosal, 11 intramural), and the endometrium was inactive. The cul-de-sac contained abundant histiocytes and rare clusters of mesothelial cells. Patient history included breast fibroclerosis and chronic stomach ulcer. Family history included acute stomach ulcer with perforation, breast cancer, bladder cancer, rectal/anal cancer, benign hypertension, coronary angioplasty, and hyperlipidemia.
24	KIDNNOT25	Library was constructed using RNA isolated from kidney tissue removed from the left lower kidney pole of a 42-year-old Caucasian female during nephroureterectomy. Pathology indicated slight hydronephrosis and nephrolithiasis. Patient history included calculus of the kidney.
25	ENDINT02	Library was constructed using RNA isolated from treated iliac artery endothelial cells removed from a Black female. The cells were treated with TNF alpha (10ng/ml) and IL-1 beta (10ng/ml) for 20 hours.
26	KIDCTMT01	Library was constructed using RNA isolated from kidney cortex tissue removed from a 65-year-old male during nephroureterectomy. Pathology for the associated tumor tissue indicated grade 3 renal cell carcinoma within the mid-portion of the kidney and the renal capsule.
27	BRSTTUT02	Library was constructed using RNA isolated from breast tumor tissue removed from a 54-year-old Caucasian female during a bilateral radical mastectomy with reconstruction. Pathology indicated residual invasive grade 3 mammary ductal adenocarcinoma. The remaining breast parenchyma exhibited proliferative fibrocytic changes without atypia. One of 10 axillary lymph nodes had metastatic tumor as a microscopic intranodal focus. Patient history included kidney infection and condyloma acuminate. Family history included benign hypertension, hyperlipidemia, and a malignant colon neoplasm.
28	BRAITUT07	Library was constructed using RNA isolated from left frontal lobe tumor tissue removed from the brain of a 32-year-old Caucasian male during excision of a cerebral meningeal lesion. Pathology indicated low grade desmoplastic neuronal neoplasm, type not otherwise specified. The lesion formed a firm, circumscribed cyst-associated mass involving white matter and cortex. No definite glial component was evident to suggest a diagnosis of ganglioglioma. Family history included atherosclerotic coronary artery disease.
29	LUNGAST01	Library was constructed using RNA isolated from the lung tissue of a 17-year-old Caucasian male, who died from head trauma. Patient history included asthma.

Table 4 (cont'd)

Nucleotide SEQ ID NO:	Library	Library Comment
30	BEPINOT01	Library was constructed using RNA isolated from a bronchial epithelium primary cell line derived from a 54-year-old Caucasian male.
31	PROSNON01	Library was constructed from 4.4 million independent clones from a normal prostate library. Starting RNA was made from prostate tissue removed from a 28-year-old Caucasian male who died from a self-inflicted gunshot wound. The normalization and hybridization conditions were adapted from Soares, M.B. et al. (1994) Proc. Natl. Acad. Sci. USA 91:9228-9232, using a longer (19 hour) reannealing hybridization period.
32	LUNGNOT22	Library was constructed using RNA isolated from lung tissue removed from a 58-year-old Caucasian female. The tissue sample used to construct this library was found to have tumor contaminant upon microscopic examination. Pathology for the associated tumor tissue indicated a caseating granuloma. Family history included congestive heart failure, breast cancer, secondary bone cancer, acute myocardial infarction and atherosclerotic coronary artery disease.
33	OVARNOT09	Library was constructed using RNA isolated from ovarian tissue removed from a 28-year-old Caucasian female during a vaginal hysterectomy and removal of the fallopian tubes and ovaries. Pathology indicated multiple follicular cysts ranging in size from 0.4 to 1.5 cm in the right and left ovaries, chronic cervicitis and squamous metaplasia of the cervix, and endometrium in weakly proliferative phase. Family history included benign hypertension, hyperlipidemia, and atherosclerotic coronary artery disease.
34	FIBRTXT02	Library was constructed using RNA isolated from treated dermal fibroblast tissue removed from the breast of a 31-year-old Caucasian female. The cells were treated with 9CIS Retinoic Acid, 1 microm for 20 hours.

What is claimed is:

1. An isolated polypeptide comprising an amino acid sequence selected from the group consisting of:

- 5 a) an amino acid sequence selected from the group consisting of SEQ ID NO:1-17,
b) a naturally occurring amino acid sequence having at least 90% sequence identity to an
amino acid sequence selected from the group consisting of SEQ ID NO:1-17,
c) a biologically active fragment of an amino acid sequence selected from the group
consisting of SEQ ID NO:1-17, and
10 d) an immunogenic fragment of an amino acid sequence selected from the group consisting
of SEQ ID NO:1-17.

2. An isolated polypeptide of claim 1 selected from the group consisting of SEQ ID NO:1-
17.

- 15 3. An isolated polynucleotide encoding a polypeptide of claim 1.

4. An isolated polynucleotide of claim 3 selected from the group consisting of SEQ ID
NO:18-34.

- 20 5. A recombinant polynucleotide comprising a promoter sequence operably linked to a
polynucleotide of claim 3.

6. A cell transformed with a recombinant polynucleotide of claim 5.

- 25 7. A transgenic organism comprising a recombinant polynucleotide of claim 5.

8. A method for producing a polypeptide of claim 1, the method comprising:
a) culturing a cell under conditions suitable for expression of the polypeptide, wherein said
30 cell is transformed with a recombinant polynucleotide, and said recombinant polynucleotide
comprises a promoter sequence operably linked to a polynucleotide encoding the polypeptide of claim
1, and
b) recovering the polypeptide so expressed.
- 35 9. An isolated antibody which specifically binds to a polypeptide of claim 1.

10. An isolated polynucleotide comprising a polynucleotide sequence selected from the group consisting of:

- a) a polynucleotide sequence selected from the group consisting of SEQ ID NO:18-34,
- b) a naturally occurring polynucleotide sequence having at least 90% sequence identity to a polynucleotide sequence selected from the group consisting of SEQ ID NO:18-34,
- c) a polynucleotide sequence complementary to a),
- d) a polynucleotide sequence complementary to b), and
- e) an RNA equivalent of a)-d).

10 11. An isolated polynucleotide comprising at least 60 contiguous nucleotides of a polynucleotide of claim 10.

12. A method for detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide of claim 10, the method comprising:

15 a) hybridizing the sample with a probe comprising at least 16 contiguous nucleotides comprising a sequence complementary to said target polynucleotide in the sample, and which probe specifically hybridizes to said target polynucleotide, under conditions whereby a hybridization complex is formed between said probe and said target polynucleotide, and

20 b) detecting the presence or absence of said hybridization complex, and, optionally, if present, the amount thereof.

13. A method of claim 12, wherein the probe comprises at least 30 contiguous nucleotides.

14. A method of claim 12, wherein the probe comprises at least 60 contiguous nucleotides.

25 15. A pharmaceutical composition comprising an effective amount of a polypeptide of claim 1 and a pharmaceutically acceptable excipient.

30 16. A method for treating a disease or condition associated with decreased expression of functional HUMAP, comprising administering to a patient in need of such treatment the pharmaceutical composition of claim 15.

17. A method for screening a compound for effectiveness as an agonist of a polypeptide of claim 1, the method comprising:

35 a) exposing a sample comprising a polypeptide of claim 1 to a compound, and

b) detecting agonist activity in the sample.

18. A pharmaceutical composition comprising an agonist compound identified by a method of claim 17 and a pharmaceutically acceptable excipient.

5

19. A method for treating a disease or condition associated with decreased expression of functional HUMAP, comprising administering to a patient in need of such treatment a pharmaceutical composition of claim 18.

10 20. A method for screening a compound for effectiveness as an antagonist of a polypeptide of claim 1, the method comprising:

- a) exposing a sample comprising a polypeptide of claim 1 to a compound, and
- b) detecting antagonist activity in the sample.

15 21. A pharmaceutical composition comprising an antagonist compound identified by a method of claim 20 and a pharmaceutically acceptable excipient.

20 22. A method for treating a disease or condition associated with overexpression of functional HUMAP, comprising administering to a patient in need of such treatment a pharmaceutical composition of claim 21.

23. A method for screening a compound for effectiveness in altering expression of a target polynucleotide, wherein said target polynucleotide comprises a sequence of claim 4, the method comprising:

- 25
- a) exposing a sample comprising the target polynucleotide to a compound, and
 - b) detecting altered expression of the target polynucleotide.

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
2 November 2000 (02.11.2000)

PCT

(10) International Publication Number
WO 00/65054 A3

(51) International Patent Classification⁷: **C12N 15/12**, C07K 14/705, 16/28, C12Q 1/68, A61K 38/17, G01N 33/53

[IN/US]; 123 W. McKinley Drive, Sunnyvale, CA 94086 (US). AZIMZAI, Yalda [US/US]; 2045 Rock Springs Drive, Hayward, CA 94545 (US). BAUGHN, Mariah, R. [US/US]; 14244 Santiago Road, San Leandro, CA 94577 (US).

(21) International Application Number: PCT/US00/10884

(74) Agents: HAMLET-COX, Diana et al.; Incyte Genomics, Inc., 3160 Porter Drive, Palo Alto, CA 94304 (US).

(22) International Filing Date: 20 April 2000 (20.04.2000)

(81) Designated States (national): AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW.

(23) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/130,694 23 April 1999 (23.04.1999) US
60/140,580 23 June 1999 (23.06.1999) US

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

(63) Related by continuation (CON) or continuation-in-part (CIP) to earlier applications:

US	60/130,694 (CIP)
Filed on	23 April 1999 (23.04.1999)
US	60/140,580 (CIP)
Filed on	23 June 1999 (23.06.1999)

(71) Applicant (for all designated States except US): INCYTE GENOMICS, INC. [US/US]; 3160 Porter Drive, Palo Alto, CA 94304 (US).

Published:

- With international search report.
- Before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments.

(72) Inventors; and

(75) Inventors/Applicants (for US only): HILLMAN, Jennifer, L. [US/US]; 230 Monroe Drive #12, Mountain View, CA 94040 (US). BANDMAN, Olga [US/US]; 366 Anna Avenue, Mountain View, CA 94043 (US). TANG, Y., Tom [CN/US]; 4230 Ranwick Court, San Jose, CA 95118 (US). LAL, Preeti [IN/US]; 2382 Lass Drive, Santa Clara, CA 95054 (US). YUE, Henry [US/US]; 826 Lois Avenue, Sunnyvale, CA 94087 (US). REDDY, Roopa

(88) Date of publication of the international search report:
15 February 2001

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 00/65054 A3

(54) Title: HUMAN MEMBRANE-ASSOCIATED PROTEINS

(57) Abstract: The invention provides human membrane-associated proteins (HUMAP) and polynucleotides which identify and encode HUMAP. The invention also provides expression vectors, host cells, antibodies, agonists, and antagonists. The invention also provides methods for diagnosing, treating, or preventing disorders associated with expression of HUMAP.

10/019495
JC13 Rec'd PCT/PTO 23 OCT 2001
PCT/US00/10884

WO 00/65054

SEQUENCE LISTING

<110> INCYTE GENOMICS, INC.
HILLMAN, Jennifer L.
BANDMAN, Olga
TANG, Y. Tom
LAL, Preeti
YUE, Henry
REDDY, Roopa
AZIMZAI, Yalda
BAUGHN, Mariah R.

<120> HUMAN MEMBRANE-ASSOCIATED PROTEINS

<130> PF-0698 PCT

<140> To Be Assigned
<141> Herewith

<150> 60/130,694; 60/140,580
<151> 1999-04-23; 1999-06-23

<160> 34

<170> PERL Program

<210> 1
<211> 175
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No.: 402771CD1

<400> 1
Met Ser His Gly Ala Gly Leu Val Arg Thr Thr Cys Ser Ser Gly
1 5 10 15
Ser Ala Leu Gly Pro Gly Ala Gly Ala Ala Gln Pro Ser Ala Ser
20 25 30
Pro Leu Glu Gly Leu Leu Asp Leu Ser Tyr Pro Arg Thr His Ala
35 40 45
Ala Leu Leu Lys Val Ala Gln Met Val Thr Leu Leu Ile Ala Phe
50 55 60
Ile Cys Val Arg Ser Ser Leu Trp Thr Asn Tyr Ser Ala Tyr Ser
65 70 75
Tyr Phe Glu Val Val Thr Ile Cys Asp Leu Ile Met Ile Leu Ala
80 85 90
Phe Tyr Leu Val His Leu Phe Arg Phe Tyr Arg Val Leu Thr Cys
95 100 105
Ile Ser Trp Pro Leu Ser Glu Leu Leu His Tyr Leu Ile Gly Thr
110 115 120
Leu Leu Leu Leu Ile Ala Ser Ile Val Ala Ala Ser Lys Ser Tyr
125 130 135
Asn Gln Ser Gly Leu Val Ala Gly Ala Ile Phe Gly Phe Met Ala
140 145 150
Thr Phe Leu Cys Met Ala Ser Ile Trp Leu Ser Tyr Lys Ile Ser
155 160 165
Cys Val Thr Gln Ser Thr Asp Ala Ala Val
170 175

<210> 2
<211> 161
<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No.: 1296216CD1

<400> 2

Met	Leu	Asn	Trp	Ile	Ile	Arg	Leu	Gln	Ala	Ile	Leu	Glu	Ile	Ile
1				5					10					15
Thr	Ser	Glu	Thr	Gly	Arg	Ala	Leu	Thr	Leu	Leu	Ala	Gln	Gln	Glu
				20					25					30
Thr	Gln	Met	Arg	Asn	Ala	Ile	Tyr	Gln	Asn	Arg	Leu	Ala	Leu	Asp
				35					40					45
Tyr	Leu	Leu	Ala	Ala	Glu	Gly	Gly	Val	Cys	Glu	Lys	Phe	Asn	Leu
				50					55					60
Thr	Lys	Cys	Cys	Leu	Gln	Arg	Asp	Asp	Gln	Gly	Gln	Val	Val	Lys
				65					70					75
Asn	Ile	Val	Arg	Asp	Met	Thr	Lys	Leu	Ala	His	Val	Pro	Met	Gln
				80					85					90
Val	Trp	His	Arg	Phe	Asp	Pro	Gly	Ser	Leu	Phe	Gly	Lys	Trp	Leu
				95					100					105
Pro	Ala	Leu	Gly	Gly	Phe	Lys	Thr	Leu	Ile	Ile	Gly	Met	Ile	Met
				110					115					120
Val	Leu	Gly	Thr	Cys	Met	Leu	Leu	Pro	Cys	Met	Leu	Pro	Ile	Phe
				125					130					135
Leu	Gln	Leu	Leu	Arg	Ser	Phe	Val	Ile	Thr	Leu	Val	His	Gln	Lys
				140					145					150
Thr	Ser	Ala	Gln	Val	Tyr	Tyr	Met	Asn	His	Tyr				
				155					160					

<210> 3

<211> 563

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No.: 1693173CD1

<400> 3

Met	Pro	Asn	Gly	Ser	Thr	Ile	Pro	Pro	Gly	Ser	Pro	Glu	Glu	Met
1				5					10					15
Leu	Phe	His	Phe	Gly	Met	Thr	Trp	Gln	Ile	Asn	Gly	Thr	Gly	Leu
				20					25					30
Leu	Gly	Lys	Arg	Asn	Asp	Gln	Leu	Pro	Ser	Asn	Phe	Thr	Pro	Val
				35					40					45
Phe	Tyr	Ser	Gln	Leu	Gln	Lys	Asn	Ser	Ser	Trp	Ala	Glu	His	Leu
				50					55					60
Ile	Ser	Asn	Cys	Asp	Gly	Asp	Ser	Ser	Cys	Ile	Tyr	Asp	Thr	Leu
				65					70					75
Ala	Leu	Arg	Asn	Ala	Ser	Ile	Gly	Leu	His	Thr	Arg	Glu	Val	Ser
				80					85					90
Lys	Asn	Tyr	Glu	Gln	Ala	Asn	Ala	Thr	Leu	Asn	Gln	Tyr	Pro	Pro
				95					100					105
Ser	Ile	Asn	Gly	Gly	Arg	Val	Ile	Glu	Ala	Tyr	Lys	Gly	Gln	Thr
				110					115					120
Thr	Leu	Ile	Gln	Tyr	Thr	Ser	Asn	Ala	Glu	Asp	Ala	Asn	Phe	Thr
				125					130					135
Leu	Arg	Asp	Ser	Cys	Thr	Asp	Leu	Glu	Leu	Phe	Glu	Asn	Gly	Thr
				140					145					150
Leu	Leu	Trp	Thr	Pro	Lys	Ser	Leu	Glu	Pro	Phe	Thr	Leu	Glu	Ile
				155					160					165
Leu	Ala	Arg	Ser	Ala	Lys	Ile	Gly	Leu	Ala	Ser	Ala	Leu	Gln	Pro
				170					175					180
Arg	Thr	Val	Val	Cys	His	Cys	Asn	Ala	Glu	Ser	Gln	Cys	Leu	Tyr
				185					190					195

Asn	Gln	Thr	Ser	Arg	Val	Gly	Asn	Ser	Ser	Leu	Glu	Val	Ala	Gly
				200					205					210
Cys	Lys	Cys	Asp	Gly	Gly	Thr	Phe	Gly	Arg	Tyr	Cys	Glu	Gly	Ser
				215					220					225
Glu	Asp	Ala	Cys	Glu	Glu	Pro	Cys	Phe	Pro	Ser	Val	His	Cys	Val
				230					235					240
Pro	Gly	Lys	Gly	Cys	Glu	Ala	Cys	Pro	Pro	Asn	Leu	Thr	Gly	Asp
				245					250					255
Gly	Arg	His	Cys	Ala	Ala	Leu	Gly	Ser	Ser	Phe	Leu	Cys	Gln	Asn
				260					265					270
Gln	Ser	Cys	Pro	Val	Asn	Tyr	Cys	Tyr	Asn	Gln	Gly	His	Cys	Tyr
				275					280					285
Ile	Ser	Gln	Thr	Leu	Gly	Cys	Gln	Pro	Met	Cys	Thr	Cys	Pro	Pro
				290					295					300
Ala	Phe	Thr	Asp	Ser	Arg	Cys	Phe	Leu	Ala	Gly	Asn	Asn	Phe	Ser
				305					310					315
Pro	Thr	Val	Asn	Leu	Glu	Leu	Pro	Leu	Arg	Val	Ile	Gln	Leu	Leu
				320					325					330
Leu	Ser	Glu	Glu	Glu	Asn	Ala	Ser	Met	Ala	Glu	Val	Asn	Ala	Ser
				335					340					345
Val	Ala	Tyr	Arg	Leu	Gly	Thr	Leu	Asp	Met	Arg	Ala	Phe	Leu	Arg
				350					355					360
Asn	Ser	Gln	Val	Glu	Arg	Ile	Asp	Ser	Ala	Ala	Pro	Ala	Ser	Gly
				365					370					375
Ser	Pro	Ile	Gln	His	Trp	Met	Val	Ile	Ser	Glu	Phe	Gln	Tyr	Arg
				380					385					390
Pro	Arg	Gly	Pro	Val	Ile	Asp	Phe	Leu	Asn	Asn	Gln	Leu	Leu	Ala
				395					400					405
Ala	Val	Val	Glu	Ala	Phe	Leu	Tyr	His	Val	Pro	Arg	Arg	Ser	Glu
				410					415					420
Glu	Pro	Arg	Asn	Asp	Val	Val	Phe	Gln	Pro	Ile	Ser	Gly	Glu	Asp
				425					430					435
Val	Arg	Asp	Val	Thr	Ala	Leu	Asn	Val	Ser	Thr	Leu	Lys	Ala	Tyr
				440					445					450
Phe	Arg	Cys	Asp	Gly	Tyr	Lys	Gly	Tyr	Asp	Leu	Val	Tyr	Ser	Pro
				455					460					465
Gln	Ser	Gly	Phe	Thr	Cys	Val	Ser	Pro	Cys	Ser	Arg	Gly	Tyr	Cys
				470					475					480
Asp	His	Gly	Gly	Gln	Cys	Gln	His	Leu	Pro	Ser	Gly	Pro	Arg	Cys
				485					490					495
Ser	Cys	Val	Ser	Phe	Ser	Ile	Tyr	Thr	Ala	Trp	Gly	Glu	His	Cys
				500					505					510
Glu	His	Leu	Ser	Met	Lys	Leu	Asp	Ala	Phe	Phe	Gly	Ile	Phe	Phe
				515					520					525
Gly	Val	Leu	Gly	Gly	Leu	Leu	Leu	Leu	Gly	Val	Gly	Thr	Phe	Val
				530					535					540
Val	Leu	Arg	Phe	Trp	Gly	Cys	Ser	Gly	Ala	Arg	Phe	Ser	Tyr	Phe
				545					550					555
Leu	Asn	Ser	Ala	Glu	Ala	Leu	Pro							
				560										

<210> 4
<211> 396
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No.: 2095069CD1

<400> 4
Met Ala Val Gln Glu Ser Ala Ala Gln Leu Ser Met Thr Leu Lys
1 5 10 15
Val Gln Glu Tyr Pro Thr Leu Lys Val Pro Tyr Glu Thr Leu Asn
20 25 30
Lys Arg Phe Arg Ala Ala Gln Lys Asn Ile Asp Arg Glu Thr Ser

35		40		45
His Val Thr Met Val Val Ala Glu Leu Glu		Lys Thr Leu Ser Gly		
50		55		60
Cys Pro Ala Val Asp Ser Val Val Ser Leu		Leu Asp Gly Val Val		
65		70		75
Glu Lys Leu Ser Val Leu Lys Arg Lys Ala		Val Glu Ser Ile Gln		
80		85		90
Ala Glu Asp Glu Ser Ala Lys Leu Cys Lys		Arg Arg Ile Glu His		
95		100		105
Leu Lys Glu His Ser Ser Asp Gln Pro Ala		Ala Ala Ser Val Trp		
110		115		120
Lys Arg Lys Arg Met Asp Arg Met Met Val		Glu His Leu Leu Arg		
125		130		135
Cys Gly Tyr Tyr Asn Thr Ala Val Lys Leu		Ala Arg Gln Ser Gly		
140		145		150
Ile Glu Asp Leu Val Asn Ile Glu Met Phe		Leu Thr Ala Lys Glu		
155		160		165
Val Glu Glu Ser Leu Glu Arg Arg Glu Thr		Ala Thr Cys Leu Ala		
170		175		180
Trp Cys His Asp Asn Lys Ser Arg Leu Arg		Lys Met Lys Ser Cys		
185		190		195
Leu Glu Phe Ser Leu Arg Ile Gln Glu Phe		Ile Glu Leu Ile Arg		
200		205		210
Gln Asn Lys Arg Leu Asp Ala Val Arg His		Ala Arg Lys His Phe		
215		220		225
Ser Gln Ala Glu Gly Ser Gln Leu Asp Glu		Val Arg Gln Ala Met		
230		235		240
Gly Met Leu Ala Phe Pro Pro Asp Thr His		Ile Ser Pro Tyr Lys		
245		250		255
Asp Leu Leu Asp Pro Ala Arg Trp Arg Met		Leu Ile Gln Gln Phe		
260		265		270
Arg Tyr Asp Asn Tyr Arg Leu His Gln Leu		Gly Asn Asn Ser Val		
275		280		285
Phe Thr Leu Thr Leu Gln Ala Gly Leu Ser		Ala Ile Lys Thr Pro		
290		295		300
Gln Cys Tyr Lys Glu Asp Gly Ser Ser Lys		Ser Pro Asp Cys Pro		
305		310		315
Val Cys Ser Arg Ser Leu Asn Lys Leu Ala		Gln Pro Leu Pro Met		
320		325		330
Ala His Cys Ala Asn Ser Arg Leu Val Cys		Lys Ile Ser Gly Asp		
335		340		345
Val Met Asn Glu Asn Asn Pro Pro Met Met		Leu Pro Asn Gly Tyr		
350		355		360
Val Tyr Gly Tyr Asn Ser Leu Leu Ser Ile		Arg Gln Asp Asp Lys		
365		370		375
Val Val Cys Pro Arg Thr Lys Glu Val Phe		His Phe Ser Gln Ala		
380		385		390
Glu Lys Val Tyr Ile Met				
	395			

<210> 5
<211> 265
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No.: 2645927CD1

<400> 5
Met Asn Met Ser Val Leu Thr Leu Gln Glu Tyr Glu Phe Glu Lys
1 5 10 15
Gln Phe Asn Glu Asn Glu Ala Ile Gln Trp Met Gln Glu Asn Trp
20 25 30
Lys Lys Ser Phe Leu Phe Ser Ala Leu Tyr Ala Ala Phe Ile Phe
35 40 45

Gly	Gly	Arg	His	Leu	Met	Asn	Lys	Arg	Ala	Lys	Phe	Glu	Leu	Arg
				50						55				60
Lys	Pro	Leu	Val	Leu	Trp	Ser	Leu	Thr	Leu	Ala	Val	Phe	Ser	Ile
				65					70					75
Phe	Gly	Ala	Leu	Arg	Thr	Gly	Ala	Tyr	Met	Val	Tyr	Ile	Leu	Met
				80					85					90
Thr	Lys	Gly	Leu	Lys	Gln	Ser	Val	Cys	Asp	Gln	Gly	Phe	Tyr	Asn
				95					100					105
Gly	Pro	Val	Ser	Lys	Phe	Trp	Ala	Tyr	Ala	Phe	Val	Leu	Ser	Lys
				110					115					120
Ala	Pro	Glu	Leu	Gly	Asp	Thr	Ile	Phe	Ile	Ile	Leu	Arg	Lys	Gln
				125					130					135
Lys	Leu	Ile	Phe	Leu	His	Trp	Tyr	His	His	Ile	Thr	Val	Leu	Leu
				140					145					150
Tyr	Ser	Trp	Tyr	Ser	Tyr	Lys	Asp	Met	Val	Ala	Gly	Gly	Gly	Trp
				155					160					165
Phe	Met	Thr	Met	Asn	Tyr	Gly	Val	His	Ala	Val	Met	Tyr	Ser	Tyr
				170					175					180
Tyr	Ala	Leu	Arg	Ala	Ala	Gly	Phe	Arg	Val	Ser	Arg	Lys	Phe	Ala
				185					190					195
Met	Phe	Ile	Thr	Leu	Ser	Gln	Ile	Thr	Gln	Met	Leu	Met	Gly	Cys
				200					205					210
Val	Val	Asn	Tyr	Leu	Val	Phe	Cys	Trp	Met	Gln	His	Asp	Gln	Cys
				215					220					225
His	Ser	His	Phe	Gln	Asn	Ile	Phe	Trp	Ser	Ser	Leu	Met	Tyr	Leu
				230					235					240
Ser	Tyr	Leu	Val	Leu	Phe	Cys	His	Phe	Phe	Phe	Glu	Ala	Tyr	Ile
				245					250					255
Gly	Lys	Met	Arg	Lys	Thr	Thr	Lys	Ala	Glu					
				260					265					

<210> 6
<211> 328
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No.: 2732365CD1

<400> 6															
Met	Ser	Lys	Trp	Pro	Glu	Gly	Ser	Leu	Asn	Gly	Leu	Asp	Ser	Ala	
1				5					10					15	
Leu	Asp	Gln	Val	Gln	Arg	Arg	Gly	Ser	Leu	Pro	Pro	Arg	Gln	Val	
				20					25					30	
Pro	Arg	Gly	Glu	Val	Phe	Arg	Pro	His	Arg	Trp	His	Leu	Lys	His	
				35					40					45	
Leu	Glu	Pro	Val	Asp	Phe	Leu	Gly	Lys	Ala	Lys	Val	Val	Ala	Ser	
				50					55					60	
Ala	Ile	Pro	Asp	Asp	Gln	Gly	Trp	Gly	Val	Arg	Pro	Gln	Gln	Pro	
				65					70					75	
Gln	Gly	Pro	Gly	Ala	Asn	His	Asp	Ala	Arg	Ser	Leu	Ile	Met	Asp	
				80					85					90	
Ser	Pro	Arg	Ala	Gly	Thr	His	Gln	Gly	Pro	Leu	Asp	Ala	Glu	Thr	
				95					100					105	
Glu	Val	Gly	Ala	Asp	Arg	Cys	Thr	Ser	Thr	Ala	Tyr	Gln	Glu	Gln	
				110					115					120	
Arg	Pro	Gln	Val	Glu	Gln	Val	Gly	Lys	Gln	Ala	Pro	Leu	Ser	Pro	
				125					130					135	
Gly	Leu	Pro	Ala	Met	Gly	Gly	Pro	Gly	Pro	Gly	Pro	Cys	Glu	Asp	
				140					145					150	
Pro	Ala	Gly	Ala	Gly	Gly	Val	Gly	Ala	Gly	Gly	Ser	Glu	Pro	Leu	
				155					160					165	
Val	Thr	Val	Thr	Val	Gln	Cys	Ala	Phe	Thr	Val	Ala	Leu	Arg	Ala	
				170					175					180	
Arg	Arg	Gly	Ala	Asp	Leu	Ser	Ser	Leu	Arg	Ala	Leu	Leu	Gly	Gln	

	185		190		195									
Ala	Leu	Pro	His	Gln	Ala	Gln	Leu	Gly	Gln	Leu	Ser	Tyr	Leu	Ala
				200			205							210
Pro	Gly	Glu	Asp	Gly	His	Trp	Val	Pro	Ile	Pro	Glu	Glu	Glu	Ser
				215				220						225
Leu	Gln	Arg	Ala	Trp	Gln	Asp	Ala	Ala	Ala	Cys	Pro	Arg	Gly	Leu
				230				235						240
Gln	Leu	Gln	Cys	Arg	Gly	Ala	Gly	Gly	Arg	Pro	Val	Leu	Tyr	Gln
				245				250						255
Val	Val	Ala	Gln	His	Ser	Tyr	Ser	Ala	Gln	Gly	Pro	Glu	Asp	Leu
				260				265						270
Gly	Phe	Arg	Gln	Gly	Asp	Thr	Val	Asp	Val	Leu	Cys	Glu	Val	Asp
				275				280						285
Gln	Ala	Trp	Leu	Glu	Gly	His	Cys	Asp	Gly	Arg	Ile	Gly	Ile	Phe
				290				295						300
Pro	Lys	Cys	Phe	Val	Val	Pro	Ala	Gly	Pro	Arg	Met	Ser	Gly	Ala
				305				310						315
Pro	Gly	Arg	Leu	Pro	Arg	Ser	Gln	Gln	Gly	Asp	Gln	Pro		
				320				325						

<210> 7
<211> 202
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No.: 3536577CD1

	400	7												
Met	Glu	Arg	Gly	Ala	Gly	Ala	Lys	Leu	Leu	Pro	Leu	Leu	Leu	Leu
				1			5		10					15
Leu	Arg	Ala	Thr	Gly	Phe	Thr	Cys	Ala	Gln	Ala	Asp	Gly	Arg	Asn
							20		25					30
Gly	Tyr	Thr	Ala	Val	Ile	Glu	Val	Thr	Ser	Gly	Gly	Pro	Trp	Gly
							35		40					45
Asp	Trp	Ala	Trp	Pro	Glu	Met	Cys	Pro	Asp	Gly	Phe	Phe	Ala	Ser
							50		55					60
Gly	Phe	Ser	Leu	Lys	Val	Glu	Pro	Pro	Gln	Gly	Ile	Pro	Gly	Asp
							65		70					75
Asp	Thr	Ala	Leu	Asn	Gly	Ile	Arg	Leu	His	Cys	Ala	Arg	Gly	Asn
							80		85					90
Val	Leu	Gly	Asn	Thr	His	Val	Val	Glu	Ser	Gln	Ser	Gly	Ser	Trp
							95		100					105
Gly	Glu	Trp	Ser	Glu	Pro	Leu	Trp	Cys	Arg	Gly	Gly	Ala	Tyr	Leu
							110		115					120
Val	Ala	Phe	Ser	Leu	Arg	Val	Glu	Ala	Pro	Thr	Thr	Leu	Gly	Asp
							125		130					135
Asn	Thr	Ala	Ala	Asn	Asn	Val	Arg	Phe	Arg	Cys	Ser	Asp	Gly	Glu
							140		145					150
Glu	Leu	Gln	Gly	Pro	Gly	Leu	Ser	Trp	Gly	Asp	Phe	Gly	Asp	Trp
							155		160					165
Ser	Asp	His	Cys	Pro	Lys	Gly	Ala	Cys	Gly	Leu	Gln	Thr	Lys	Ile
							170		175					180
Gln	Gly	Pro	Arg	Gly	Leu	Gly	Asp	Asp	Thr	Ala	Leu	Asn	Asp	Ala
							185		190					195
Arg	Leu	Phe	Cys	Cys	Arg	Ser								
							200							

<210> 8
<211> 96
<212> PRT
<213> Homo sapiens

<220>

<221> misc_feature
<223> Incyte ID No.: 5587790CD1

<400> 8
Met Gln Leu Asn Asp Lys Trp Gln Gly Leu Cys Trp Pro Met Met
1 5 10 15
Asp Phe Leu Arg Cys Val Thr Ala Ala Leu Ile Tyr Phe Ala Ile
20 25 30
Ser Ile Thr Ala Ile Ala Lys Tyr Ser Asp Gly Ala Ser Lys Ala
35 40 45
Ala Gly Val Phe Gly Phe Phe Ala Thr Ile Val Phe Ala Thr Asp
50 55 60
Phe Tyr Leu Ile Phe Asn Asp Val Ala Lys Phe Leu Lys Gln Gly
65 70 75
Asp Ser Ala Asp Glu Thr Thr Ala His Lys Thr Glu Glu Glu Asn
80 85 90
Ser Asp Ser Asp Ser Asp
95

<210> 9
<211> 651
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No.: 5733930CD1

<400> 9
Met Lys Asn Val Pro Val Pro Val Tyr Cys Arg Pro Leu Val Glu
1 5 10 15
Lys Asp Pro Thr Met Lys Leu Trp Cys Ala Ala Gly Val Asn Leu
20 25 30
Ser Gly Trp Arg Pro Asn Glu Asp Asp Ala Gly Asn Gly Val Lys
35 40 45
Pro Ala Pro Gly Arg Asp Pro Leu Thr Cys Asp Arg Glu Gly Asp
50 55 60
Gly Glu Pro Lys Ser Ala His Thr Ser Pro Glu Lys Lys Lys Ala
65 70 75
Lys Glu Leu Pro Glu Met Asp Ala Thr Ser Ser Arg Val Trp Ile
80 85 90
Leu Thr Ser Thr Leu Thr Thr Ser Lys Val Val Ile Ile Asp Ala
95 100 105
Asn Gln Pro Gly Thr Val Val Asp Gln Phe Thr Val Cys Asn Ala
110 115 120
His Val Leu Cys Ile Ser Ser Ile Pro Ala Ala Ser Asp Ser Asp
125 130 135
Tyr Pro Pro Gly Glu Met Phe Leu Asp Ser Asp Val Asn Pro Glu
140 145 150
Asp Pro Gly Ala Asp Gly Val Leu Ala Gly Ile Thr Leu Val Gly
155 160 165
Cys Ala Thr Arg Cys Asn Val Pro Arg Ser Asn Cys Ser Ser Arg
170 175 180
Gly Asp Thr Pro Val Leu Asp Lys Gly Gln Gly Glu Val Ala Thr
185 190 195
Ile Ala Asn Gly Lys Val Asn Pro Ser Gln Ser Thr Glu Glu Ala
200 205 210
Thr Glu Ala Thr Glu Val Pro Asp Pro Gly Pro Ser Glu Pro Glu
215 220 225
Thr Ala Thr Leu Arg Pro Gly Pro Leu Thr Glu His Val Phe Thr
230 235 240
Asp Pro Ala Pro Thr Pro Ser Ser Gly Pro Gln Pro Gly Ser Glu
245 250 255
Asn Gly Pro Glu Pro Asp Ser Ser Ser Thr Arg Pro Glu Pro Glu
260 265 270
Pro Ser Gly Asp Pro Thr Gly Ala Gly Ser Ser Ala Ala Pro Thr

275	Met Trp Leu Gly Ala Gln Asn Gly Trp	280	Leu Tyr Val His Ser	285	Aia
290	295	300			
Val Ala Asn Trp Lys Lys Cys Leu His	Ser Ile Lys Leu Lys	310	Asp	315	
305	325	330			
Ser Val Leu Ser Leu Val His Val Lys	Gly Arg Val Leu Val	340	Ala	345	
320	355	360			
Leu Ala Asp Gly Thr Leu Ala Ile Phe	His Arg Gly Glu Asp	370	Gly	375	
335	385	390			
Gln Trp Asp Leu Ser Asn Tyr His Leu	Met Asp Leu Gly His	400	Pro	405	
350	415	420			
His His Ser Ile Arg Cys Met Ala Val	Val Tyr Asp Arg Val	415	Trp	420	
365	430	435			
Cys Gly Tyr Lys Asn Lys Val His Val	Ile Gln Pro Lys Thr	445	Met	450	
380	460	465			
Gln Ile Glu Lys Ser Phe Asp Ala His	Pro Arg Arg Glu Ser	475	Gln	480	
395	505	510			
Val Arg Gln Leu Ala Trp Ile Gly Asp	Gly Val Trp Val Ser	520	Ile	525	
410	535	540			
Arg Leu Asp Ser Thr Leu Arg Leu Tyr	His Ala His Thr His	550	Gln	555	
425	565	570			
His Leu Gln Asp Val Asp Ile Glu Pro	Tyr Val Ser Lys Met	580	Leu	585	
440	595	600			
Gly Thr Gly Lys Leu Gly Phe Ser Phe	Val Arg Ile Thr Ala	610	Leu	615	
455	625	630			
Leu Val Ala Gly Ser Arg Leu Trp Val	Gly Thr Gly Asn Gly	640	Val	645	
470	655	660			
Val Ile Ser Ile Pro Leu Thr Glu Thr	Val Val Leu His Arg	670	Gly	675	
485	685	690			
Gln Leu Leu Gly Leu Arg Ala Asn Lys	Thr Ser Pro Thr Ser	705	Gly	710	
500	720	725			
Glu Gly Ala Arg Pro Gly Gly Ile Ile	His Val Tyr Gly Asp	735	Asp	740	
515	750	755			
Ser Ser Asp Arg Ala Ala Ser Ser Phe	Ile Pro Tyr Cys Ser	765	Met	770	
530	780	785			
Ala Gln Ala Gln Leu Cys Phe His Gly	His Arg Asp Ala Val	795	Lys	800	
545	810	815			
Phe Phe Val Ser Val Pro Gly Asn Val	Leu Ala Thr Leu Asn	825	Gly	830	
560	840	845			
Ser Val Leu Asp Ser Pro Ala Glu Gly	Pro Gly Pro Ala Ala	855	Pro	860	
575	870	875			
Ala Ser Glu Val Glu Gly Gln Lys Leu	Arg Asn Val Leu Val	885	Leu	890	
590	900	905			
Ser Gly Gly Glu Gly Tyr Ile Asp Phe	Ile Gly Asp Gly	915	Glu	920	
605	925	930			
Asp Asp Glu Thr Glu Glu Gly Ala Gly	Asp Met Ser Gln Val	940	Lys	945	
620	950	955			
Pro Val Leu Ser Lys Ala Glu Arg Ser	His Ile Ile Val Trp	965	Gln	970	
635	975	980			
Val Ser Tyr Thr Pro Glu		990			
650					

<210> 10
<211> 443
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No.: 645566CD1

<400> 10
Met Glu Cys Leu Arg Ser Leu Pro Cys Leu Leu Pro Arg Ala Met
1 5 10 15
Arg Leu Pro Arg Arg Thr Leu Cys Ala Leu Ala Leu Asp Val Thr
20 25 30

Ser	Val	Gly	Pro	Pro	Val	Ala	Ala	Cys	Gly	Arg	Arg	Ala	Asn	Leu
35								40						45
Ile	Gly	Arg	Ser	Arg	Ala	Ala	Gln	Leu	Cys	Gly	Pro	Asp	Arg	Leu
	50							55						60
Arg	Val	Ala	Gly	Glu	Val	His	Arg	Phe	Arg	Thr	Ser	Asp	Val	Ser
	65							70						75
Gln	Ala	Thr	Leu	Ala	Ser	Val	Ala	Pro	Val	Phe	Thr	Val	Thr	Lys
	80							85						90
Phe	Asp	Lys	Gln	Gly	Asn	Val	Thr	Ser	Phe	Glu	Arg	Lys	Lys	Thr
	95							100						105
Glu	Leu	Tyr	Gln	Glu	Leu	Gly	Leu	Gln	Ala	Arg	Asp	Leu	Arg	Phe
	110							115						120
Gln	His	Val	Met	Ser	Ile	Thr	Val	Arg	Asn	Asn	Arg	Ile	Ile	Met
	125							130						135
Arg	Met	Glu	Tyr	Leu	Lys	Ala	Val	Ile	Thr	Pro	Glu	Cys	Leu	Leu
	140							145						150
Ile	Leu	Asp	Tyr	Arg	Asn	Leu	Asn	Leu	Glu	Gln	Trp	Leu	Phe	Arg
	155							160						165
Glu	Leu	Pro	Ser	Gln	Leu	Ser	Gly	Glu	Gly	Gln	Leu	Val	Thr	Tyr
	170							175						180
Pro	Leu	Pro	Phe	Glu	Phe	Arg	Ala	Ile	Glu	Ala	Leu	Leu	Gln	Tyr
	185							190						195
Trp	Ile	Asn	Thr	Leu	Gln	Gly	Lys	Leu	Ser	Ile	Leu	Gln	Pro	Leu
	200							205						210
Ile	Leu	Glu	Thr	Leu	Asp	Ala	Leu	Val	Asp	Pro	Lys	His	Ser	Ser
	215							220						225
Val	Asp	Arg	Ser	Lys	Leu	His	Ile	Leu	Leu	Gln	Asn	Gly	Lys	Ser
	230							235						240
Leu	Ser	Glu	Leu	Glu	Thr	Asp	Ile	Lys	Ile	Phe	Lys	Glu	Ser	Ile
	245							250						255
Leu	Glu	Ile	Leu	Asp	Glu	Glu	Glu	Leu	Leu	Glu	Glu	Leu	Cys	Val
	260							265						270
Ser	Lys	Trp	Ser	Asp	Pro	Gln	Val	Phe	Glu	Lys	Ser	Ser	Ala	Gly
	275							280						285
Ile	Asp	His	Ala	Glu	Glu	Met	Glu	Leu	Leu	Glu	Asn	Tyr	Tyr	
	290							295						300
Arg	Leu	Ala	Asp	Asp	Leu	Ser	Asn	Ala	Ala	Arg	Glu	Leu	Arg	Val
	305							310						315
Leu	Ile	Asp	Asp	Ser	Gln	Ser	Ile	Ile	Phe	Ile	Asn	Leu	Asp	Ser
	320							325						330
His	Arg	Asn	Val	Met	Met	Arg	Leu	Asn	Leu	Gln	Leu	Thr	Met	Gly
	335							340						345
Thr	Phe	Ser	Leu	Ser	Leu	Phe	Gly	Leu	Met	Gly	Val	Ala	Phe	Gly
	350							355						360
Met	Asn	Leu	Glu	Ser	Ser	Leu	Glu	Glu	Asp	His	Arg	Ile	Phe	Trp
	365							370						375
Leu	Ile	Thr	Gly	Ile	Met	Phe	Met	Gly	Ser	Gly	Leu	Ile	Trp	Arg
	380							385						390
Arg	Leu	Leu	Ser	Phe	Leu	Gly	Arg	Gln	Leu	Glu	Ala	Pro	Leu	Pro
	395							400						405
Pro	Met	Met	Ala	Ser	Leu	Pro	Lys	Lys	Thr	Leu	Leu	Ala	Asp	Arg
	410							415						420
Ser	Met	Glu	Leu	Lys	Asn	Ser	Leu	Arg	Leu	Asp	Gly	Leu	Gly	Ser
	425							430						435
Gly	Arg	Ser	Ile	Leu	Thr	Asn	Arg							
	440													

<210> 11
<211> 667
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No.: 1503111CD1

<400> 11
 Met His Leu Arg Ile His Ala Arg Arg Ser Pro Pro Arg Arg Pro
 1 5 10 15
 Ala Trp Thr Leu Gly Ile Trp Phe Leu Phe Trp Gly Cys Ile Val
 20 25 30
 Ser Ser Val Trp Ser Ser Ser Asn Val Ala Ser Ser Ser Ser Thr
 35 40 45
 Ser Ser Ser Pro Gly Ser His Ser Gln His Glu His His Phe His
 50 55 60
 Gly Ser Lys His His Ser Val Pro Ile Ser Ile Tyr Arg Ser Pro
 65 70 75
 Val Ser Leu Arg Gly Gly His Ala Gly Ala Thr Tyr Ile Phe Gly
 80 85 90
 Lys Ser Gly Gly Leu Ile Leu Tyr Thr Trp Pro Ala Asn Asp Arg
 95 100 105
 Pro Ser Thr Arg Ser Asp Arg Leu Ala Val Gly Phe Ser Thr Thr
 110 115 120
 Val Lys Asp Gly Ile Leu Val Arg Ile Asp Ser Ala Pro Gly Leu
 125 130 135
 Gly Asp Phe Leu Gln Leu His Ile Glu Gln Gly Lys Ile Gly Val
 140 145 150
 Val Phe Asn Ile Gly Thr Val Asp Ile Ser Ile Lys Glu Glu Arg
 155 160 165
 Thr Pro Val Asn Asp Gly Lys Tyr His Val Val Arg Phe Thr Arg
 170 175 180
 Asn Gly Gly Asn Ala Thr Leu Gln Val Asp Asn Trp Pro Val Asn
 185 190 195
 Glu His Tyr Pro Thr Gly Asn Thr Asp Asn Glu Arg Phe Gln Met
 200 205 210
 Val Lys Gln Lys Ile Pro Phe Lys Tyr Asn Arg Pro Val Glu Glu
 215 220 225
 Trp Leu Gln Glu Lys Gly Arg Gln Leu Thr Ile Phe Asn Thr Gln
 230 235 240
 Ala Gln Ile Ala Ile Gly Gly Lys Asp Lys Gly Arg Leu Phe Gln
 245 250 255
 Gly Gln Leu Ser Gly Leu Tyr Tyr Asp Gly Leu Lys Val Leu Asn
 260 265 270
 Met Ala Ala Glu Asn Asn Pro Asn Ile Lys Ile Asn Gly Ser Val
 275 280 285
 Arg Leu Val Gly Glu Val Pro Ser Ile Leu Gly Thr Thr Gln Thr
 290 295 300
 Thr Ser Met Pro Pro Glu Met Ser Thr Thr Val Met Glu Thr Thr
 305 310 315
 Thr Thr Met Ala Thr Thr Thr Arg Lys Asn Arg Ser Thr Ala
 320 325 330
 Ser Ile Gln Pro Thr Ser Asp Asp Leu Val Ser Ser Ala Glu Cys
 335 340 345
 Ser Ser Asp Asp Glu Asp Phe Val Glu Cys Glu Pro Ser Thr Gly
 350 355 360
 Gly Glu Leu Val Ile Pro Leu Leu Val Glu Asp Pro Leu Ala Thr
 365 370 375
 Pro Pro Ile Ala Thr Arg Ala Pro Ser Ile Thr Leu Pro Pro Thr
 380 385 390
 Phe Arg Pro Leu Leu Thr Ile Ile Glu Thr Thr Lys Asp Ser Leu
 395 400 405
 Ser Met Thr Ser Glu Ala Gly Leu Pro Cys Leu Ser Asp Gln Gly
 410 415 420
 Ser Asp Gly Cys Asp Asp Asp Gly Leu Val Ile Ser Gly Tyr Gly
 425 430 435
 Ser Gly Glu Thr Phe Asp Ser Asn Leu Pro Pro Thr Asp Asp Glu
 440 445 450
 Asp Phe Tyr Thr Thr Phe Ser Leu Val Thr Asp Lys Ser Leu Ser
 455 460 465
 Thr Ser Ile Phe Glu Gly Gly Tyr Lys Ala His Ala Pro Lys Trp
 470 475 480
 Glu Ser Lys Asp Phe Arg Pro Asn Lys Val Ser Glu Thr Ser Arg
 485 490 495

WO 00/65054

PCT/US00/10884

Thr	Thr	Thr	Thr	Ser	Leu	Ser	Pro	Glu	Leu	Ile	Arg	Phe	Thr	Ala
				500				505					510	
Ser	Ser	Ser	Ser	Gly	Met	Val	Pro	Lys	Leu	Pro	Ala	Gly	Lys	Met
				515				520					525	
Asn	Asn	Arg	Asp	Leu	Lys	Pro	Gln	Pro	Asp	Ile	Val	Leu	Leu	Pro
				530				535					540	
Leu	Pro	Thr	Ala	Tyr	Glu	Leu	Asp	Ser	Thr	Lys	Leu	Lys	Ser	Pro
				545				550					555	
Leu	Ile	Thr	Ser	Pro	Met	Phe	Arg	Asn	Val	Pro	Thr	Ala	Asn	Pro
				560				565					570	
Thr	Glu	Pro	Gly	Ile	Arg	Arg	Val	Pro	Gly	Ala	Ser	Glu	Val	Ile
				575				580					585	
Arg	Glu	Ser	Ser	Ser	Thr	Thr	Gly	Met	Val	Val	Gly	Ile	Val	Ala
				590				595					600	
Ala	Ala	Ala	Leu	Cys	Ile	Leu	Ile	Leu	Leu	Tyr	Ala	Met	Tyr	Lys
				605				610					615	
Tyr	Arg	Asn	Arg	Asp	Glu	Gly	Ser	Tyr	Gln	Val	Asp	Glu	Thr	Arg
				620				625					630	
Asn	Tyr	Ile	Ser	Asn	Ser	Ala	Gln	Ser	Asn	Gly	Thr	Leu	Met	Lys
				635				640					645	
Glu	Lys	Gln	Gln	Ser	Ser	Lys	Ser	Gly	His	Lys	Lys	Gln	Lys	Asn
				650				655					660	
Lys	Asp	Arg	Glu	Tyr	Tyr	Tyr	Val							
				665										

<210> 12
<211> 475
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No.: 1984287CD1

<400> 12															
Met	Glu	Met	Ala	Ser	Ser	Ala	Gly	Ser	Trp	Leu	Ser	Gly	Cys	Leu	
1				5					10					15	
Ile	Pro	Leu	Val	Phe	Leu	Arg	Leu	Ser	Val	Tyr	Val	Ser	Gly	His	
					20				25					30	
Ala	Gly	Asp	Ala	Gly	Lys	Phe	His	Val	Ala	Leu	Leu	Gly	Gly	Thr	
					35				40					45	
Ala	Glu	Leu	Leu	Cys	Pro	Leu	Ser	Leu	Trp	Pro	Gly	Thr	Val	Pro	
					50				55					60	
Lys	Glu	Val	Arg	Trp	Leu	Arg	Ser	Pro	Phe	Pro	Gln	Arg	Ser	Gln	
					65				70					75	
Ala	Val	His	Ile	Phe	Arg	Asp	Gly	Lys	Asp	Gln	Asp	Glu	Asp	Leu	
					80				85					90	
Met	Pro	Glu	Tyr	Lys	Gly	Arg	Thr	Val	Leu	Val	Arg	Asp	Ala	Gln	
					95				100					105	
Glu	Gly	Ser	Val	Thr	Leu	Gln	Ile	Leu	Asp	Val	Arg	Leu	Glu	Asp	
					110				115					120	
Gln	Gly	Ser	Tyr	Arg	Cys	Leu	Ile	Gln	Val	Gly	Asn	Leu	Ser	Lys	
					125				130					135	
Glu	Asp	Thr	Val	Ile	Leu	Gln	Val	Ala	Ala	Pro	Ser	Val	Gly	Ser	
					140				145					150	
Leu	Ser	Pro	Ser	Ala	Val	Ala	Leu	Ala	Val	Ile	Leu	Pro	Val	Leu	
					155				160					165	
Val	Leu	Leu	Ile	Met	Val	Cys	Leu	Cys	Leu	Ile	Trp	Lys	Gln	Arg	
					170				175					180	
Arg	Ala	Lys	Glu	Lys	Leu	Leu	Tyr	Glu	His	Val	Thr	Glu	Val	Asp	
					185				190					195	
Asn	Leu	Leu	Ser	Asp	His	Ala	Lys	Glu	Lys	Gly	Lys	Leu	His	Lys	
					200				205					210	
Ala	Val	Lys	Lys	Leu	Arg	Ser	Glu	Leu	Lys	Leu	Lys	Arg	Ala	Ala	
					215				220					225	
Ala	Asn	Ser	Gly	Trp	Arg	Arg	Ala	Arg	Leu	His	Phe	Val	Ala	Val	

Thr	Leu	Asp	Pro	Asp	Thr	Ala	His	Pro	Lys	Leu	Ile	Leu	Ser	Glu
230				245					250					255
Asp	Gln	Arg	Cys	Val	Arg	Leu	Gly	Asp	Arg	Arg	Gln	Pro	Val	Pro
				260					265					270
Asp	Asn	Pro	Gln	Arg	Phe	Asp	Phe	Val	Val	Ser	Ile	Leu	Gly	Ser
				275					280					285
Glu	Tyr	Phe	Thr	Thr	Gly	Cys	His	Tyr	Trp	Glu	Val	Tyr	Val	Gly
				290					295					300
Asp	Lys	Thr	Lys	Trp	Ile	Leu	Gly	Val	Cys	Ser	Glu	Ser	Val	Ser
				305					310					315
Arg	Lys	Gly	Lys	Val	Thr	Ala	Ser	Pro	Ala	Asn	Gly	His	Trp	Leu
				320					325					330
Leu	Arg	Gln	Ser	Arg	Gly	Asn	Glu	Tyr	Glu	Ala	Leu	Thr	Ser	Pro
				335					340					345
Gln	Thr	Ser	Phe	Arg	Leu	Lys	Glu	Pro	Pro	Arg	Cys	Val	Gly	Ile
				350					355					360
Phe	Leu	Asp	Tyr	Glu	Ala	Gly	Val	Ile	Ser	Phe	Tyr	Asn	Val	Thr
				365					370					375
Asn	Lys	Ser	His	Ile	Phe	Thr	Phe	Thr	His	Asn	Phe	Ser	Gly	Pro
				380					385					390
Leu	Arg	Pro	Phe	Phe	Glu	Pro	Cys	Leu	His	Asp	Gly	Gly	Lys	Asn
				395					400					405
Thr	Ala	Pro	Leu	Val	Ile	Cys	Ser	Glu	Leu	His	Lys	Ser	Glu	Glu
				410					415					420
Ser	Ile	Val	Pro	Arg	Pro	Glu	Gly	Lys	Gly	His	Ala	Asn	Gly	Asp
				425					430					435
Val	Ser	Leu	Lys	Val	Asn	Ser	Ser	Leu	Leu	Pro	Pro	Lys	Ala	Pro
				440					445					450
Glu	Leu	Lys	Asp	Ile	Ile	Leu	Ser	Leu	Pro	Pro	Asp	Leu	Gly	Pro
				455					460					465
Ala	Leu	Gln	Glu	Leu	Lys	Ala	Pro	Ser	Phe					
				470					475					

<210> 13
<211> 479
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No.: 2055289CD1

<400> 13
Met Ala Trp Asn Thr Asn Leu Arg Trp Arg Leu Pro Leu Thr Cys
1 5 10 15
Leu Leu Leu Gln Val Ile Met Val Ile Leu Phe Gly Val Phe Val
20 25 30
Arg Tyr Asp Phe Glu Ala Asp Ala His Trp Trp Ser Glu Arg Thr
35 40 45
His Lys Asn Leu Ser Asp Met Glu Asn Glu Phe Tyr Tyr Arg Tyr
50 55 60
Pro Ser Phe Gln Asp Val His Val Met Val Phe Val Gly Phe Gly
65 70 75
Phe Leu Met Thr Phe Leu Gln Arg Tyr Gly Phe Ser Ala Val Gly
80 85 90
Phe Asn Phe Leu Leu Ala Ala Phe Gly Ile Gln Trp Ala Leu Leu
95 100 105
Met Gln Gly Trp Phe His Phe Leu Gln Asp Arg Tyr Ile Val Val
110 115 120
Gly Val Glu Asn Leu Ile Asn Ala Asp Phe Cys Val Ala Ser Val
125 130 135
Cys Val Ala Phe Gly Ala Val Leu Gly Lys Val Ser Pro Ile Gln
140 145 150
Leu Leu Ile Met Thr Phe Phe Gln Val Thr Leu Phe Ala Val Asn

Glu	Phe	Ile	Leu	Leu	Asn	Leu	Leu	Lys	Val	Lys	Asp	Ala	Gly	165
155														
														170
														175
Ser	Met	Thr	Ile	His	Thr	Phe	Gly	Ala	Tyr	Phe	Gly	Leu	Thr	180
														185
														190
Thr	Arg	Ile	Leu	Tyr	Arg	Arg	Asn	Leu	Glu	Gln	Ser	Lys	Glu	195
														200
														205
Gln	Asn	Ser	Val	Tyr	Gln	Ser	Asp	Leu	Phe	Ala	Met	Ile	Gly	210
														215
Leu	Phe	Leu	Trp	Met	Tyr	Trp	Pro	Ser	Phe	Asn	Ser	Ala	Ile	225
														230
Tyr	His	Gly	Asp	Ser	Gln	His	Arg	Ala	Ala	Ile	Asn	Thr	Tyr	240
														245
Ser	Leu	Ala	Ala	Cys	Val	Leu	Thr	Ser	Val	Ala	Ile	Ser	Ser	255
														260
Leu	His	Lys	Lys	Gly	Lys	Leu	Asp	Met	Val	His	Ile	Gln	Asn	265
														275
Thr	Leu	Ala	Gly	Gly	Val	Ala	Val	Gly	Thr	Ala	Ala	Glu	Met	270
														290
Leu	Met	Pro	Tyr	Gly	Ala	Leu	Ile	Ile	Gly	Phe	Val	Cys	Gly	300
														305
Ile	Ser	Thr	Leu	Gly	Phe	Val	Tyr	Leu	Thr	Pro	Phe	Leu	Glu	315
														320
Arg	Leu	His	Ile	Gln	Asp	Thr	Cys	Gly	Ile	Asn	Asn	Leu	His	325
														335
Ile	Pro	Gly	Ile	Ile	Gly	Gly	Ile	Val	Gly	Ala	Val	Thr	Ala	330
														350
Ser	Ala	Ser	Leu	Glu	Val	Tyr	Gly	Lys	Glu	Gly	Leu	Val	His	345
														365
Phe	Asp	Phe	Gln	Gly	Phe	Asn	Gly	Asp	Trp	Thr	Ala	Arg	Thr	355
														380
Gly	Lys	Phe	Gln	Ile	Tyr	Gly	Leu	Leu	Val	Thr	Leu	Ala	Met	360
														395
Leu	Met	Gly	Gly	Ile	Ile	Val	Gly	Leu	Ile	Leu	Arg	Leu	Pro	405
														410
Trp	Gly	Gln	Pro	Ser	Asp	Glu	Asn	Cys	Phe	Glu	Asp	Ala	Tyr	420
														425
Trp	Glu	Met	Pro	Glu	Gly	Asn	Ser	Thr	Val	Tyr	Ile	Pro	Glu	435
														440
Pro	Thr	Phe	Lys	Pro	Ser	Gly	Pro	Ser	Val	Pro	Ser	Val	Pro	450
														455
Val	Ser	Pro	Leu	Pro	Met	Ala	Ser	Ser	Val	Pro	Leu	Val	Pro	465
														470
														475

<210> 14
<211> 599
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No.: 2279216CD1

<400> 14
Met Ala Gly Asp Gly Arg Arg Ala Glu Ala Val Arg Glu Gly Trp
1 5 10 15
Gly Val Tyr Val Thr Pro Arg Ala Pro Ile Arg Glu Gly Arg Gly
20 25 30
Arg Leu Ala Pro Gln Asn Gly Gly Cys Ser Asp Ala Pro Ala Tyr
35 40 45
Arg Thr Pro Pro Ser His Gln Gly Arg Arg Glu Val Arg Phe Ser
50 55 60
Asp Glu Pro Pro Glu Val Tyr Gly Asp Phe Glu Pro Leu Val Ala
65 70 75
Lys Glu Arg Ser Pro Val Gly Lys Arg Thr Arg Leu Glu Glu Phe
80 85 90

Arg	Ser	Asp	Ser	Ala	Lys	Glu	Glu	Val	Arg	Glu	Ser	Ala	Tyr	Tyr
				95		100				100			105	
Leu	Arg	Ser	Arg	Gln	Arg	Arg	Gln	Pro	Arg	Pro	Gln	Glu	Thr	Glu
				110		115				115			120	
Glu	Met	Lys	Thr	Arg	Arg	Thr	Thr	Arg	Leu	Gln	Gln	Gln	His	Ser
				125		130				130			135	
Glu	Gln	Pro	Pro	Leu	Gln	Pro	Ser	Pro	Val	Met	Thr	Arg	Arg	Gly
				140		145				145			150	
Leu	Arg	Asp	Ser	His	Ser	Ser	Glu	Glu	Asp	Glu	Ala	Ser	Ser	Gln
				155		160				160			165	
Thr	Asp	Leu	Ser	Gln	Thr	Ile	Ser	Lys	Lys	Thr	Val	Arg	Ser	Ile
				170		175				175			180	
Gln	Glu	Ala	Pro	Ala	Val	Ser	Glu	Asp	Leu	Val	Ile	Arg	Leu	Arg
				185		190				190			195	
Arg	Pro	Pro	Leu	Arg	Tyr	Pro	Arg	Tyr	Glu	Ala	Thr	Ser	Val	Gln
				200		205				205			210	
Gln	Lys	Val	Asn	Phe	Ser	Glu	Glu	Gly	Glu	Thr	Glu	Glu	Asp	Asp
				215		220				220			225	
Gln	Asp	Ser	Ser	His	Ser	Ser	Val	Thr	Thr	Val	Lys	Ala	Arg	Ser
				230		235				235			240	
Arg	Asp	Ser	Asp	Glu	Ser	Gly	Asp	Lys	Thr	Thr	Arg	Ser	Ser	Ser
				245		250				250			255	
Gln	Tyr	Ile	Glu	Ser	Phe	Trp	Gln	Ser	Ser	Gln	Ser	Gln	Asn	Phe
				260		265				265			270	
Thr	Ala	His	Asp	Lys	Gln	Pro	Ser	Val	Leu	Ser	Ser	Gly	Tyr	Gln
				275		280				280			285	
Lys	Thr	Pro	Gln	Glu	Trp	Ala	Pro	Gln	Thr	Ala	Arg	Ile	Arg	Thr
				290		295				295			300	
Arg	Met	Gln	Thr	Ser	Ser	Pro	Gly	Lys	Ser	Ser	Ile	Tyr	Gly	Ser
				305		310				310			315	
Phe	Ser	Asp	Asp	Asp	Ser	Ile	Leu	Lys	Ser	Glu	Leu	Gly	Asn	Gln
				320		325				325			330	
Ser	Pro	Ser	Thr	Ser	Ser	Arg	Gln	Val	Thr	Gly	Gln	Pro	Gln	Asn
				335		340				340			345	
Ala	Ser	Phe	Val	Lys	Arg	Asn	Arg	Trp	Trp	Leu	Leu	Pro	Leu	Ile
				350		355				355			360	
Ala	Ala	Leu	Ala	Ser	Gly	Ser	Phe	Trp	Phe	Phe	Ser	Thr	Pro	Glu
				365		370				370			375	
Val	Glu	Thr	Thr	Ala	Val	Gln	Glu	Phe	Gln	Asn	Gln	Met	Asn	Gln
				380		385				385			390	
Leu	Lys	Asn	Lys	Tyr	Gln	Gly	Gln	Asp	Glu	Lys	Leu	Trp	Lys	Arg
				395		400				400			405	
Ser	Gln	Thr	Phe	Leu	Glu	Lys	His	Leu	Asn	Ser	Ser	His	Pro	Arg
				410		415				415			420	
Ser	Gln	Pro	Ala	Ile	Leu	Leu	Leu	Thr	Ala	Ala	Arg	Asp	Ala	Glu
				425		430				430			435	
Glu	Ala	Leu	Arg	Cys	Leu	Ser	Glu	Gln	Ile	Ala	Asp	Ala	Tyr	Ser
				440		445				445			450	
Ser	Phe	Arg	Ser	Val	Arg	Ala	Ile	Arg	Ile	Asp	Gly	Thr	Asp	Lys
				455		460				460			465	
Ala	Thr	Gln	Asp	Ser	Asp	Thr	Val	Lys	Leu	Glu	Val	Asp	Gln	Glu
				470		475				475			480	
Leu	Ser	Asn	Gly	Phe	Lys	Asn	Gly	Gln	Asn	Ala	Ala	Val	Val	His
				485		490				490			495	
Arg	Phe	Glu	Ser	Phe	Pro	Ala	Gly	Ser	Thr	Leu	Ile	Phe	Tyr	Lys
				500		505				505			510	
Tyr	Cys	Asp	His	Glu	Asn	Ala	Ala	Phe	Lys	Asp	Val	Ala	Leu	Val
				515		520				520			525	
Leu	Thr	Val	Leu	Leu	Glu	Glu	Glu	Thr	Leu	Gly	Thr	Ser	Leu	Gly
				530		535				535			540	
Leu	Lys	Glu	Val	Glu	Glu	Lys	Val	Arg	Asp	Phe	Leu	Lys	Val	Lys
				545		550				550			555	
Phe	Thr	Asn	Ser	Asn	Thr	Pro	Asn	Ser	Tyr	Asn	His	Met	Asp	Pro
				560		565				565			570	
Asp	Lys	Leu	Asn	Gly	Leu	Trp	Ser	Arg	Ile	Ser	His	Leu	Val	Leu
				575		580				580			585	
Pro	Val	Gln	Pro	Glu	Asn	Ala	Leu	Lys	Arg	Gly	Ile	Cys	Leu	

590

595

<210> 15
<211> 299
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No.: 2590650CD1

<400> 15
Met Asp Leu Leu Trp Ile Leu Pro Ser Leu Trp Leu Leu Leu Leu
1 5 10 15
Gly Gly Pro Ala Cys Leu Lys Thr Gln Glu His Pro Ser Cys Pro
20 25 30
Gly Pro Arg Glu Leu Glu Ala Ser Lys Val Val Leu Leu Pro Ser
35 40 45
Cys Pro Gly Ala Pro Gly Ser Pro Gly Glu Lys Gly Ala Pro Gly
50 55 60
Pro Gln Gly Pro Pro Gly Pro Pro Gly Lys Met Gly Pro Lys Gly
65 70 75
Glu Pro Gly Asp Pro Val Asn Leu Leu Arg Cys Gln Glu Gly Pro
80 85 90
Arg Asn Cys Arg Glu Leu Leu Ser Gln Gly Ala Thr Leu Ser Gly
95 100 105
Trp Tyr His Leu Cys Leu Pro Glu Gly Arg Ala Leu Pro Val Phe
110 115 120
Cys Asp Met Asp Thr Glu Gly Gly Trp Leu Val Phe Gln Arg
125 130 135
Arg Gln Asp Gly Ser Val Asp Phe Phe Arg Ser Trp Ser Ser Tyr
140 145 150
Arg Ala Gly Phe Gly Asn Gln Glu Ser Glu Phe Trp Leu Gly Asn
155 160 165
Glu Asn Leu His Gln Leu Thr Leu Gln Gly Asn Trp Glu Leu Arg
170 175 180
Val Glu Leu Glu Asp Phe Asn Gly Asn Arg Thr Phe Ala His Tyr
185 190 195
Ala Thr Phe Arg Leu Leu Gly Glu Val Asp His Tyr Gln Leu Ala
200 205 210
Leu Gly Lys Phe Ser Glu Gly Thr Ala Gly Asp Ser Leu Ser Leu
215 220 225
His Ser Gly Arg Pro Phe Thr Thr Tyr Asp Ala Asp His Asp Ser
230 235 240
Ser Asn Ser Asn Cys Ala Val Ile Val His Gly Ala Trp Trp Tyr
245 250 255
Ala Ser Cys Tyr Arg Ser Asn Leu Asn Gly Arg Tyr Ala Val Ser
260 265 270
Glu Ala Ala Ala His Lys Tyr Gly Ile Asp Trp Ala Ser Gly Arg
275 280 285
Gly Val Gly His Pro Tyr Arg Arg Val Arg Met Met Leu Arg
290 295

<210> 16
<211> 359
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feataure
<223> Incyte ID No.: 2814726CD1

<400> 16
Met Asp Glu Gln Asp Leu Asn Glu Pro Leu Ala Lys Val Ser Leu
1 5 10 15

Leu	Lys	Asp	Asp	Leu	Gln	Gly	Ala	Gln	Ser	Glu	Ile	Glu	Ala	Lys
				20			25						30	
Gln	Glu	Ile	Gln	His	Leu	Arg	Lys	Glu	Leu	Ile	Glu	Ala	Gln	Glu
				35			40						45	
Leu	Ala	Arg	Thr	Ser	Lys	Gln	Lys	Cys	Phe	Glu	Leu	Gln	Ala	Leu
				50			55						60	
Leu	Glu	Glu	Glu	Arg	Lys	Ala	Tyr	Arg	Asn	Gln	Val	Glu	Glu	Ser
				65			70						75	
Thr	Lys	Gln	Ile	Gln	Val	Leu	Gln	Ala	Gln	Leu	Gln	Arg	Leu	His
				80			85						90	
Ile	Asp	Thr	Glu	Asn	Leu	Arg	Glu	Glu	Lys	Asp	Ser	Glu	Ile	Thr
				95			100						105	
Ser	Thr	Arg	Asp	Glu	Leu	Leu	Ser	Ala	Arg	Asp	Glu	Ile	Leu	Leu
				110			115						120	
Leu	His	Gln	Ala	Ala	Ala	Lys	Val	Ala	Ser	Glu	Arg	Asp	Thr	Asp
				125			130						135	
Ile	Ala	Ser	Leu	Gln	Glu	Glu	Leu	Lys	Lys	Val	Arg	Ala	Glu	Leu
				140			145						150	
Glu	Arg	Trp	Arg	Lys	Ala	Ala	Ser	Glu	Tyr	Glu	Lys	Glu	Ile	Thr
				155			160						165	
Ser	Leu	Gln	Asn	Ser	Phe	Gln	Leu	Arg	Cys	Gln	Gln	Cys	Glu	Asp
				170			175						180	
Gln	Gln	Arg	Glu	Glu	Ala	Thr	Arg	Leu	Gln	Gly	Glu	Leu	Glu	Lys
				185			190						195	
Leu	Arg	Lys	Glu	Trp	Asn	Ala	Leu	Glu	Thr	Glu	Cys	His	Ser	Leu
				200			205						210	
Lys	Arg	Glu	Asn	Val	Leu	Leu	Ser	Ser	Glu	Leu	Gln	Arg	Gln	Glu
				215			220						225	
Lys	Glu	Leu	His	Asn	Ser	Gln	Lys	Gln	Ser	Leu	Glu	Leu	Thr	Ser
				230			235						240	
Asp	Leu	Ser	Ile	Leu	Gln	Met	Ser	Arg	Lys	Glu	Leu	Glu	Asn	Gln
				245			250						255	
Val	Gly	Ser	Leu	Lys	Glu	Gln	His	Leu	Arg	Asp	Ser	Ala	Asp	Leu
				260			265						270	
Lys	Thr	Leu	Leu	Ser	Lys	Ala	Glu	Asn	Gln	Ala	Lys	Asp	Val	Gln
				275			280						285	
Lys	Glu	Tyr	Glu	Lys	Thr	Gln	Thr	Val	Leu	Ser	Glu	Leu	Lys	Leu
				290			295						300	
Lys	Phe	Glu	Met	Thr	Glu	Gln	Glu	Lys	Gln	Ser	Ile	Thr	Asp	Glu
				305			310						315	
Leu	Lys	Gln	Cys	Lys	Asn	Asn	Leu	Lys	Leu	Leu	Arg	Glu	Lys	Gly
				320			325						330	
Asn	Asn	Pro	Ser	Ile	Leu	Gln	Pro	Val	Pro	Ala	Val	Phe	Ile	Gly
				335			340						345	
Leu	Phe	Leu	Ala	Phe	Leu	Phe	Trp	Cys	Phe	Gly	Pro	Leu	Trp	
				350			355							

<210> 17
<211> 160
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No.: 4628933CD1

<400> 17
Met Ile Asn Pro Glu Leu Arg Asp Gly Arg Ala Asp Gly Phe Ile
1 5 10 15
His Arg Ile Val Pro Lys Leu Ile Gln Asn Trp Lys Ile Gly Leu
. 20 25 30
Met Cys Phe Leu Ser Ile Ile Ile Thr Thr Val Cys Ile Ile Met
35 40 45
Ile Ala Thr Trp Ser Lys His Ala Lys Pro Val Ala Cys Ser Gly
50 55 60

Asp	Trp	Leu	Gly	Val	Arg	Asp	Lys	Cys	Phe	Tyr	Phe	Ser	Asp	Asp
	65							70						75
Thr	Arg	Asn	Trp	Thr	Ala	Ser	Lys	Ile	Phe	Cys	Ser	Leu	Gln	Lys
		80						85						90
Ala	Glu	Leu	Ala	Gln	Ile	Asp	Thr	Gln	Glu	Asp	Met	Glu	Phe	Leu
								95						105
Lys	Arg	Tyr	Ala	Gly	Thr	Asp	Met	His	Trp	Ile	Gly	Leu	Ser	Arg
								110						120
Lys	Gln	Gly	Asp	Ser	Trp	Lys	Trp	Thr	Asn	Gly	Thr	Thr	Phe	Asn
								125						135
Gly	Trp	Pro	Ser	Asn	Ser	Lys	Trp	Ser	Cys	Asn	Trp	Ser	Leu	Arg
								140						150
Gln	Trp	Leu	Leu	Leu	Leu	Gly	Pro	Leu	Arg					
								155						160

<210> 18
<211> 1147
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No.: 402771CB1

<400> 18
gcgagctggg gccgcgaat gtcgcacgga gcccggctcg tccgcaccac gtgcagcagc 60
ggcagcgcgc tcggaccggg ggccggcgcg gcccagccca gcgcgagccc ctggagggg 120
ctgctggacc tcagctaccc cccgcacccac gcggccctgc tgaaagtggc gcaaattggc 180
acctctgtga ttgccttcat ctgtgtggg agctccctgt ggaccaacta cagcgcctac 240
agctactttg aagtggtcac catttgcac ttgataatga tcctcgccctt ttacctggc 300
cacctcttcc gcttctaccg cgtgtcacc tgcgtcacc tgatcagct ggccccgtc 360
caactatttaa tcggtaccct gctctccctc atgcctcca ttgtggcagc ttccaagagt 420
tacaaccaga ggggacttgtt agccggagcg atctttgggt tcatggccac cttectctgc 480
atggcaagggc tatggctgtc ctataagatc tcgtgtgtaa cccagttccac agatgcagcc 540
gtctgtatgg gccacaaccc cttaggcccctt caggagctt gcagagagga ggacgtgtac 600
tccaggcggag gcctctggac ctgtgttctt gtgcacaaagt cctgtcaggc tggtgggcac 660
cagggaaaggc ctgcaccctc ttccctgtctt cccaggaagc cagtccttg agtcctctgag 720
ccagccggaa actcttcctc cagccttccg gggagaacat ccctccattt ctgggaaagg 780
aaagcagcctt ccaggaaat gtttctgtcc ttccctgttc tagaaccacc tcaggtactg 840
atgaaccacc ctttagacacat ctgtgtgtttt ttgtgtataac tcccgctaa atcccttcta 900
cttcactctt caggggatgtt agtgcctta agaaacaaat ccctgtccta atttatctag 960
cttgcgtatc cggctttaga gataccctt ttccctgtt gaggcgtgcc tgtagaaaca 1020
ctatgtggtc agcctgtccc caaggagatc ttgtgtctcc tctccatctc tgcccttgg 1080
accagtgtgc atgtgtttgtt gtgttttttta ataaaatatt gactcggcca gtaaaaaaaa 1140
aaaaaaaaa 1147

<210> 19
<211> 1260
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No.: 1296216CB1

<400> 19
gcttagggcc atccacaatc tcatcaagac tggatggctc cgcgtggact atactggata 60
tgttaggcaca gaggctacac tcagttacct gatcaatggg caggtagtt tgtcattggc 120
accattaagc catcctttt cctactgccc ataaaaacag gtgacccctt aggtttccct 180
gtctatgcct cccaaagaaaa gaggagcata gctatagcaa attggaaaaga tgatgagtg 240
tgccccggaa ggtatcataca gtactatagg cctgccacat gggcacaaga cgactcatag 300
ggataccata cccccatcta catgctcaac tggatcatac gtttacaggc catcttagaa 360
ataatcaacta gtgaaactgg cagagcttta actcttttag cccagcagga aacccaaatg 420
agaaatgcca tctatcagaa tagattggcc tttagactatt tgctggcagc tgaaggagga 480
gtctgtgaaa aattcaactt gaccaagtgc tgcgtgcataa gagatgtca aggacaagta 540
gtcaaaaaata tagtttagaga catgacaaag ctggcacatg taccatgc gtttggcat 600

aggtttgatc ctggatccct gtttggaaaa tggcttccag ctctaggagg atttaaaact 660
 cttataatag gaatgataat ggtgttagga acctgcatt tactcccctg tatgttaccc 720
 atatttctcc agttactaag aagcttcgtt atcaccttag ttcatcaaaa gacctcagca 780
 caagtatact acatgaatca ctattgatct gtctcacagg aagatctaga tagtgaggat 840
 gataatgaga actcccaact gtgagttagg ttctcaaagg ggggaatgag gagagaggcc 900
 atttctctta ctgtccccctt tctccaaaga aaaggaggaa gtaaaaaactg aaaaaataac 960
 agactgtatc gcaccactgg ccaggccctg aggttaaaga ttaaccaca ccctaaccgc 1020
 ttgtgtatc tatagatcac agacaatgtt atggagaaac acttgcttgc ctcaccaccc 1080
 ccacctagcc atgtacccca tgcttgtca atctatcacy acccttcat gtggaccct 1140
 tagagctgta agcccttaaa agggccaaga actctttctc tggactcag ttcttgagac 1200
 gcaagctgc cgatgctctt ggccgaataa agcctttcc ttctttaaaa aaaaaaaaaa 1260

<210> 20
<211> 2387
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No.: 1693173CB1

<400> 20
 gccatccttt ctccctttcc tcttgcttcc cacatcctcc cgccttcctc caccgctgcc 60
 cgcgtttctt cccggccctc ccgaaggcag acgggcaggg tgtgaggggcc cgtcctcccg 120
 gtcctccctgg aggctgaca gcgggtgca gaggcagggc tgccaggccc tggcctctcc 180
 ccactcgctc cgccggatgc tccccagaa ggggacaccc gctgtcccg ggtggccaaac 240
 ctcccactct gtccctcagg ggtctggaaat aacaatccag aggacgactt caggatgccc 300
 aatggctcca ccattcccccc agggagccct gaggagatgc tttccactt tggaatgacc 360
 tggcagatca acgggacagg cctccttggc aagaggaatg accagctgcc ttccaacttc 420
 acccctgttt tctactcaca actgcaaaaaa aacagctctt gggctgaaca ttgtatctcc 480
 aactgtgacg gagatagctc atgcatttat gacaccctgg ccctgcgca cgcgaagcatc 540
 ggacttcaca cgagggaaatg cagtaaaaaac tacggcagg cgaacgcccac cctcaatcag 600
 taccggccctt ccatcaatgg tggtcggtg attgaagctt acaaggggca gaccacgctg 660
 attcgttaca ccagcaatgc tgaggatgcc aacctcacgc tcagagacag ctgcaccgac 720
 ttggagctct ttgagaatgg gacgttgcgtg tgacacccca agtgcgtgaa gccatttact 780
 ctggagattt tagcaagaag tgccaagatt ggcttggcat ctgcactcca gcccaggact 840
 gtggctgtcc attgcaatgc agagagccag tggttgcata atcagaccag caggggtggc 900
 aactccccc tggaggtggc tggctcaag tggtacgggg gcacccctgg cccgctactgc 960
 gagggtctccg aggatgcctg tgaggagccg tgcttccca gttgcacttgcg cgttccctgg 1020
 aagggtctcg aggctgccttcc tccaaacctg actggggatg ggcggcaactg tgccgctctg 1080
 gggagctctt ccctgttca gaaggatcc tgccctgtga attactgta caatcaaggc 1140
 cactgttaca tctcccaagac tctgggtctgt cagccatgt gcaccccttgc cccagcccttc 1200
 actgacagcc gctgtttctt ggctggaaac aacctcagtc caactgtcaa cctagaactt 1260
 cccttaagag tcatccagct tttgcactt gaaaggaaaa atgcctccat ggcagaggc 1320
 aacgcctcg tggcatacag actggggacc ctggacatgc gggccttctt ccccaacagc 1380
 caagtggaaac gaatcgattc tgcagcaccg gcctcggaa gccccatcca acactggatg 1440
 gtcatctcg agttccagta ccggccctcg ggcccggtca ttgacttccctt gaacaaccag 1500
 ctgctggcccg cggtgggtgg ggcgttctt taccacgtt cccggaggag tgaggagccc 1560
 aggaacgacg tggttccca gcccattttc ggggaagatc tgccgtatgtt gacaggccctg 1620
 aacgtgacca cgctgaaggc ttacttcaga tgccatggctt acaagggtca cgacccgttgc 1680
 tacagcccccc agagccgctt cacctgcgtt tccccgttca gttagggcttca ctgtgaccat 1740
 ggaggccagt gccagcacct gcccagtggg ccccgcttca gctgtgttgc ctctccatc 1800
 tacacggccct gggggagca ctgtgacac ctgagcatga aactcgacgc gttcttccggc 1860
 atcttcttttgg ggttcttggg cggccttttgc ctgtgggggg tcgggacgtt cgtggctctg 1920
 cgttcttggg gttgttccgg gcccagggttcc tccttatttcc tgaactcagc tgaggccctt 1980
 ccttgaagggg gcagctgtgg ccttaggttcc ctcaagactc acctcatctt taccgcacat 2040
 ttaaggcgcc attgtttttgg gggacttggaa aaagggaagg tgactgaagg ctgtcaggat 2100
 ttctcaaggaa gaatgataatc tggaaatcaa gacaagacta taccttaccc ataggcgac 2160
 gtgcacaggg ggaggccata aagatcaaaccatc atgcattggat gggtccttccac gcagacacac 2220
 ccacagaagg acactagccct gtgcacgcgt gctgtccgcac acacacacac gagttcataa 2280
 tgggtgtatg gcccataatc aagcaaaaatc ttctgcaca caaaaactctc tggtttactt 2340
 caaattaactt ctatttaat aaagtcttc tgacttttttgc tgccttc 2387

<210> 21
<211> 2172

<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No.: 2095069CB1

<400> 21
ccggccccgt aatgttttgg ccgcttcaag atggcggtgc aggagtccgc ggctcagttg 60
tccatgaccc tgaagggtcca ggagtacccg accctcaagg tgccctacga gacgctgaac 120
aaacgctttc gcccgcgtca gaagaacatt gacccgggaga ccagccacgt caccatggtg 180
gtggccgagc tggagaagac gttgagcggc tggcccgccg tggactccgt ggtcagcctg 240
ctggacggcg tggtgagaa gtcagcgtc ctcagagaga aggccgggtga atccatccag 300
gccgaggacg agagcggccaa gtcgttcaaa cgccggatcg agcaccaa agagcatagc 360
agcgaccagg ccggccggc cagcgttgg aagaggaagc gcatggatcg catgatggtg 420
gagcacctgc tgcgttgcgg ctactacaac acggctgtca agctggcgcg ccagagcggc 480
atcgaggacc tagtgaatat ttagatgttc ctgacggcca aagaggttga ggagtccctg 540
gagaggcgtg agacggccac ctgcctggcc tggtgcctatg acaacaagtccgg 600
aagatgaaga gtcgccttgg gttcagccctc agaatccagg agttcattga actcatccgg 660
cagaataaga gactggacgc tggagacat gcaagaaagc acttcagcca agcagaagg 720
agccagctgg acgagggtgcg ccaggccatg ggcgtctgg cttcccccgcg 780
atctcccccgt acaaggacat ttggacact gcacgggtgc ggtatgtatg ccagcgttc 840
cggtacgaca actaccgact acaccatcg gaaaacattt ctgtgttac ctcaccctg 900
caggtggcc ttcagccat caagacacca cagtgctaca aggaggacgg cagtcacaag 960
agccctgact gccctgtgtg cagccgttcc ctgaaacaagc tggcgcagcc cctgcccatt 1020
gcccaactgtg ccaactcccg cctggcttcg aagatttctg ggcacgttatg 1080
aatccgcccc ttagtgcgtcc caacggctac gtctacggct acaattctct gctttctatc 1140
cgtaagatg ataaagtctgt gtggccggaga accaaaaaaag acttccactt ctacacaagcc 1200
gagaagggtt acatcatgtt ggccccacgt cgtgaagcgc acgcctcg 1260
atggggcggg gaggccacgc cttcccttcg tcccacgtc cagcctcg 1320
gtttcttgcg accaaagatc cgtgagcaac gataaataact cttaggaaga gagaaaataa 1380
ggtttcataa gtttgtactt gaaaacattt ggattggtag gattttgtaa cacgtcaacc 1440
atttgatgtc tctgaaaagt actttcaact tgcgaaggaa actcttctt aaagactgac 1500
ctaaacaccg agggaaactt aagaacgtt aaaatataagg agtccgtat ttccctgtgt 1560
tttcagttt ttccttctg tgaacgtat gactggaga acgggcttgg ctttcaccac 1620
ttctcttgcg ccctggccgt gcccggggaa gtggcagcgg caccggactg acctgcagt 1680
accgcgatg cccggccacg agggacactt atggcttcat tegagatgt ctggccaaac 1740
gcctggcgcc gccaccgtcg ggggctggct tcgaggacgc cgcctgcct cgcgggtcg 1800
gtcccgccgg atgtgttcgt acgtgcatac ttccatatac acatcgccgg gctgtgttcg 1860
tagctgcgtc gtttcgatatac cacaccctct gtgtccgc ttacttcctg cttcgagaat 1920
gtataacgtg gaaatccacg ggaccaaatt tctgcagagg cttgcccggta tggttccata 1980
actgttagagt ctaattgtca tccattacag aaattaatcg ttcaagttaaa agaagtaactg 2040
atgacttttca aaaacaaatg aaccaccgtt gtcgacagag aaccgtatcg tagaggtttt 2100
tagtttagtgc ttatgttgc atgttgcgt tgacttagcta ataaactgtta aatgtaaacc 2160
aaaaaaaaaa aa 2172

<210> 22
<211> 2328
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No.: 2645927CB1

<400> 22
cgcaggcaat gtcagccct ggatgttagct gagaggctgg gagaagagac gaccgcttgg 60
gaccgagcgg cgtggggaaag acctaggggg gtgggtgggg gaagcagaca ggagaacact 120
cgaaatcaag cgctttacat attatttat ttgtataga gaacacgtat cgactccgaa 180
gatcagcccc aatgaacatg tcaatgttgc ctatcataaga atatgaatc gaaaagcagt 240
tcaacgagaa tgaagccatc caatggatgc agggaaactg gaagaaatct ttctgtttt 300
ctgtctgttgc tgcgtccctt atattcggtt gtcggcacct aatgaatataa cgagcaaaatg 360
ttgaacttagt gaaaggcattt gtcgtctgtt ctctgaccct tgcgttccat agtatattcg 420
gtgtcttcg aactgggtgt tatatgggtt acatgttgc gaccaaaaggc ctgaaggcgt 480
cagttgtga ccagggtttt tacaatggac ctgtcagcaa attctggct tatgcatttg 540
tgctaagcaa agcaccggaa cttaggatataa caatattcat tattctgagg aagcagaagc 600
tgatcttccct gcaactggat caccacatca ctgtgtccct gtactcttgg tactcctaca 660

aagacatgg tgcgggggga ggttggtca tgactatgaa ctatggcgtg cacgcccgtga 720
 tttactctt atatgcctt cggcgccgag gttccgagt ctcccgaaag ttgccatgt 780
 tcacccacgt gtcccgatc actcagatgc tggggctg tgggttaac tacctggct 840
 tctgctggat gcagcatgac cagtgtcaact ctactttca gaacatctt tggctctcac 900
 tcatgtaccc cagctaccc tggctcttcc gccatttctt ctttggaggcc tacatcgcca 960
 aatacgaggaa aacaacgaaa gctgaatagt gttggactg aggaggaagc catagcttag 1020
 ggtcatcaag aaaaataata gacaaaagaa aatggcacaag gaaatcacac gtggtgca 1080
 taaaacaaaaaaa caaaacatga gcaaaccacaa aacccaaggc agcttagggtaaatttaggtt 1140
 gatttaaccc agtaagttt tgatccttt agggtgagga ctcaactgagtcacccat 1200
 ctccaaagcac tgctgctggaa agacccatt cccttttat ctatcaactc taggacaagg 1260
 gagaacaaaaaa gcaagccaga agcagaggag actaatcaaa ggcaaaacaaa ggcttataac 1320
 acataggaaa aaatgtattt actaagtgtc acatttctt aagatgaaag atttttactc 1380
 tagaaaactgt gcgagcacaa cacacacaaat ctttctaacc tttatggaca ctaaactgaa 1440
 gccaatagaa aagacaaaaaa tgaaagagac acagggtgtt tatctagaac gataatgctt 1500
 ttgcagggaaac taaaggctttt taaagaaatg ccagctgtg tagaccctt gggaaaagat 1560
 gtcttaatca tcctttagaa aacagatgtt aacaactata ttcaactaa cttcatcttc 1620
 actgcatacg ctcaggctag tgagtttgc aaaaaccaag ggggtgaata cttccccaaag 1680
 attcttcctg ggaggatggaa aacagtgcag cccaggtccc atggggcag ctccatccca 1740
 gagcatttctt gatagttgaa ctgtatattt tactcttaag tgagatatgtt agcattatcc 1800
 ttttgttcag ttgccccggg cttttgaaca gaagagtaaa tacagaattt aaaaagataa 1860
 acactcaacc aaacaatgtg aaaacgggtt ctgttagtatt tgtaaaaagg cccggcccaag 1920
 gaccactgtg agctggaaaaa gggagaaagg cagtggaaa agaggtgagc cgaagatcaa 1980
 ttgcacagac agatgggtgtc tatggccctc cctgtttgac ttccacacaca ctcataactt 2040
 tccaaatgaa accccacagc atagcgatc ttttgcataat ttttgcataat tccaaaaggaa 2100
 aatcacaggg ctgttcgaaa tattggggaa acactgtgtt tctgcataat ctgcatttgc 2160
 tccccaaagca atgttagaggt gtttaaaggg ccctctgtc gctgagtggc aataactacaa 2220
 caaaacttcaa ggcaagttt gctgaaaaca gttgacaaca aaggggcccc atacacttat 2280
 ccctcaaatt ttaagtgtata tgaaataactt gtcatgtctt tggccaaa 2328

<210> 23
 <211> 1361
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No.: 2732365CB1

<400> 23
 gggctgcgtg caccgtctgg cgggggaccc cgaggccgcg ctgcgggcat ttgaccaagc 60
 cgtgaccaag gacacactgca tggcggttgg ctcttccag cgaggagtgg ccaacttcca 120
 gctggcaagg ggaccccccgc tgcccacagg ttccaggagg ctctgtctga cttctggctg 180
 gccctggagc agctgagggg ccacgctgcc atcactaca cgcagctggg cctgcccgtt 240
 aagctgcaag cctgggggtt gctacacaaat gtggcgtcgg cacagtgcac gctggggctc 300
 tggacagagg cggccagcag cctaagggg gccatgtcca agtggccga ggggtccctg 360
 aatggcctgg actcagccctt gggacaaatg cagagacggg gtcactgccc gccacggcag 420
 gtcccccagg gcgaggtctt cccggcccccac cgggtgcacc tgaagcactt ggagcccggt 480
 gattttctgg gcaaggccaa ggtgggtggcc tctgcccattt ccgacgacca gggctggggc 540
 gtcccccctc agcagccaca gggaccagga gcgaaaccatg atgcaggc cctaattatg 600
 gactcccaaa gagctggcac ccaccaggcc cccctcgatg cagagacaga ggtcggtgt 660
 gaccgctgca cgtcgaactgc ctaccaggag cagaggcccc aggtggagca agttggcaaa 720
 caggctctc tctcccccagg gtcggccgca atggggggggc ctggcccccgg cccctgtgag 780
 gaccccgccg gtcgtggggg agtaggtgtca gggggctccg agccctgtgt gactgtcacc 840
 gtgcagtgtc cttccacagg gggccctggg gcacaaagag gagccgaccc gtcggccctg 900
 cgggactgc tggccaagg cttccctcac caggcccagg ttggcaact cagttaccta 960
 gccccagggtt aggacgggca ctgggtcccc atccccagg aggagtcgt gcagagggcc 1020
 tggcaggacg cagctgcctg ccccaaggggg ctgcagctgc agtgcagggg agccgggggt 1080
 cggccggctcc tctaccagg ggtggcccaag cacagctact ccggccaggg gccagaggac 1140
 ctgggcttcc gacaggggga cacgggtggac gtcctgtgt aagtggacca ggcattggctg 1200
 gagggccact gtgacggccg catcgccatc ttcccaagt gtcctgtgtt ccccgccggc 1260
 cctcgatgt caggagcccc cggccggctt ccccgatccc agcaggaga tcagccctaa 1320
 tgcgtgtc tccatgtatc tttaataaaa aacaaccccc a 1361

<210> 24
 <211> 789
 <212> DNA
 <213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No.: 3536577CB1

<400> 24

atgggattag	tttgggttt	cacttaatct	gggaggccct	tccgcaatcg	gagccctcac	60
agaggccaaa	ctgatataaa	tctgcttagg	aggcctgatt	cacagacgct	acaggatgga	120
gcggggcgca	ggagccaagc	tgctgccgt	gctgctgctt	ctggggcgca	ctgggttcac	180
atgtgcacag	gcagatggcc	ggaacggcta	cacggcggtc	atcgaagtga	ccagcggggg	240
tcctggggc	gactgggcct	ggcctgagat	gtgtcccgt	ggattcttcg	ccagcgggtt	300
ctcgctcaag	gtggagccctc	cccaaggcat	tcctggcgac	gacactgcac	tgaatggat	360
cagggtcaca	tgcgccgcgc	ggaacgtctt	aggaataacg	cacgtggtag	agtcccagtc	420
tgaagctgg	ggcgaatgga	gtgagccgt	gtgtgtcgc	ggcggccct	acctagtgc	480
tttctcgctt	cgcgtggagg	caccacacgac	cctcggtgac	aacacagcag	cgaacaacgt	540
gcgttccgc	tgttcagacg	gcgaggaact	gcaggggcct	gggctgagct	ggggagactt	600
tggagactgg	agtgaccatt	gccccaaagg	cgcgtgcggc	ctgcagacca	agatccaggg	660
acctagaggc	ctcgccgatg	acactgcgt	gaacgacgcg	cgcttattct	gctgccgcag	720
ttaaacggcg	ccgcccggc	cgctctctcc	cgggccagga	ggctagtccc	acctcttgct	780
ataaaaact						789

<210> 25
<211> 1793
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No.: 5587790CB1

<400> 25

cagacccccga	ccccgacccg	gaccccgagc	ctggccggcg	ctcccgcccc	ggcccccggg	60
tccccgggct	ccgcgcctcg	ctgcccggcg	gggtttctt	ctgtctcttc	aaaggccggc	120
tccctgtggc	cgagtcgggt	ctctcattca	tcacttttat	ctgctatgtg	gcgtccctcag	180
catctgcctt	cctcacageg	cctctgtgg	agttctgtt	ggcctttgtac	ttctctttt	240
ctgatgcccatt	gcagctgaat	gacaagtggc	aggcttgc	ctggccatg	atggacttcc	300
tgcgtgtgt	caccggggcc	ctcatctact	ttgttatctc	catcacggcc	atcgccaagt	360
actcggatgg	ggcttccaaa	ggcgctgggg	tgtttggctt	ctttgcattc	atcgtgtttt	420
caactgattt	ctacctgatc	ttaacgacg	tggccaaatt	cctcaaaaca	ggggactctg	480
cagatgagac	cacagccac	aagacagaag	aagagaattc	cgactcggac	tctgactgaa	540
ggcctggcg	gtgccttggc	aacctgagcc	acacaggcc	ccacccctgt	gcctcacagg	600
gttcgtggc	gttggagccg	aggcctggac	ttctgagttt	cagagggggc	tgcggacaca	660
gcaggcccccc	tacagcctca	gtttctgc	gagcccgacc	taccagctt	gccttcagc	720
tcagcaactgt	tgaccacgt	gcgtatgggg	gcattttggg	tatcccactc	cttctcccc	780
tttctgtccc	acaggccttc	agccctttaa	cgtctctgcc	aaaaaccaggc	acaaggagac	840
aaagcagagc	cttgtctgtt	tctggggcagc	aggtgttcca	tgctgctagg	tggcgggggt	900
cgggggtctt	ctgtttcaact	aacaggaaca	aagacagaaa	ccatgacagg	gctgccccgc	960
caggccccgg	tgggttgtc	tgcacttggt	gtctctgcc	acaccagcca	cttgggtgac	1020
aatgaccctt	ccaagaatct	ttgggttcaag	gagcaccagg	tccctttca	ttcttgaagc	1080
agggagaaat	tgacccttgc	tttgcgtggcc	aggaagtggg	gtcggcacc	cataactaac	1140
accccccacc	cttggaaacc	atgtttctgt	gggggtgat	gaccatctg	ggtctaagac	1200
tgtttcaaag	aagagctcat	agactgactg	gtccagaaga	cagaggtac	aacagtggca	1260
tcacagtgc	agtgtcatgg	ggagctgggc	gggcccagcc	aaacccttct	tcttctttaga	1320
gcccgccag	caggcaggag	ttcctggacc	ctcaggacag	tgaacttcca	gacctcagg	1380
caggtctatg	ggccactgca	ggagatgaga	ccagccttct	gtgttccat	aacgatttat	1440
actgtgtatc	tgttttgc	gaaattttgt	aacttttat	attttttat	gcaaaagcag	1500
cttcttaaca	gatggcattt	tctgtgactc	taggcctcac	aaaagagcca	gagttctgga	1560
cccatgtttt	gagcatttgc	agccttattt	tcttgcgtgt	gaatcttta	ccctgaaaaaa	1620
aagccataat	gaattaagcc	agactgacca	cttgcgttgg	gtgtgtgtt	aaaaaaacca	1680
gagcaataat	gttgggttatt	gtatcaggct	tcagtagaaaa	ctggtaacac	caatgtggat	1740
cctgacagct	ttcagttta	gaaaaatac	acgtgaaatc	tgaaaaaaaa	aaa	1793

<210> 26
<211> 3694
<212> DNA
<213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No.: 5733930CB1

<400> 26

ctggcagggtt	cctagtgagc	ctcctgggc	ggggctcgga	gggtcgagaa	aggagccccg	60
cggctccac	gcccccacct	gcctccagtc	ttgaagtggc	tctgcccaca	gaagctggca	120
gccctacctg	tctcagattt	ctggagggtat	gggttaggagc	cagggttcgt	gcccacggcg	180
cctccctgct	ccctgcagct	gagtcccaac	ggggggccagg	aggacacgcg	gatgaagaac	240
gtgccggtgc	cggtgtactg	ccgcctctg	gtggagaagg	accccaccat	gaagctgtgg	300
tgtgccgcgg	cgctcaacct	gagcgggtgg	aggcccaatg	aggacgacgc	tggaaatgg	360
gtcaagccag	cgccaggccg	cgatccccctg	acctgcgacc	gcgaaggaga	cggcgagccc	420
aagagcggcc	acacgtctcc	cgagaagaag	aaggccaagg	agctccctga	aatggacgccc	480
accctccagcc	gggtgtggat	ctgaccgc	accctgcacca	ccagcaaggt	ggtgatcatc	540
gacgccaacc	agccccggcac	gtgtggggac	cagttcaccg	tctgcaacgc	gcacgtgctg	600
tgcatactcca	gcatccccgc	ggccagcgac	agcgactacc	ctccccggga	gatgttccctg	660
gacagcgacg	tgaacccaga	ggacccgggc	gcagatggcg	tgctggccgg	tatcaccctg	720
gtgggctgtg	ccacccgctg	caacgtgcg	cggagcaact	gtctccccc	agggacacc	780
ccagtgttag	acaagggca	gggggaggtg	gccaccatcg	ccaaacggaa	ggtcaacccg	840
tcccagtcca	cagaggaggc	cacagaggcc	acggaggtgc	cagaccctgg	gcccagcgag	900
ccagagacag	ccacattgcg	gcccgggcct	ctcacagagc	acgtcttcac	tgacccagcc	960
ccgacccctgt	cctctggcc	ccagctgtgc	agcgagaacg	ggccagagcc	tgacagcagc	1020
agcacacggc	cgagccaga	gcccagcgg	gaccacacgg	gagcaggcag	cagtgtgc	1080
cccaccatgt	ggctgggagc	ccagaacgc	tggctctatg	tgcactcggc	tgtggccaac	1140
tggaaagaagt	gcctgcactc	catcaagctg	aaggattctg	tgctgagcc	ggtgcattgtc	1200
aaaggccgtg	tgctgggtgc	tctggggac	gggaccctgg	ccatcttcca	ccgtgggtgaa	1260
gatggccagt	gggatctgag	caactatcac	ctaattggacc	tggccaccc	gcaccactcc	1320
atccgctgca	tggctgttgt	gtacgaccgc	gtgtgggtg	gtctacaagaa	caaggtgcac	1380
gtcatccagc	ccaagaccat	gcagatagag	aagtcttttg	acgcccaccc	gccccgggag	1440
agccagggtgc	ggcagctggc	gtggatcg	gtggcgat	gggtgtccat	ccgcctggac	1500
tccaccctga	ggctctacca	tgcacacacg	caccagcatc	tacaggacgt	ggacatttgag	1560
ccctacgtca	gcaagatgt	aggactgtgc	aagctgggtt	tctcttcgt	acgcatcagc	1620
gccctgcttg	tcgccccggc	ccggctctgg	gtgggcaccc	gcaacggagt	ggtcatctcc	1680
atccccctga	cagagactgt	gttcctgcac	cgagggccagc	tcctgggct	ccgagccaa	1740
aagacatccc	ccacctctgg	ggagggccgc	ctgtccccgg	gcatcatcca	ctgttatggc	1800
gatgacagca	gtgacagggc	ggccagcagc	ttcatcccc	actgctccat	ggcccaggcc	1860
cagctatgt	tccatggca	ccgcgtatgc	gtgaaggttt	ttgtctcggt	gccagggaa	1920
gtgttggcca	ccctgaatgg	cagtgtgc	gacagcccag	ccgagggccc	tggccagct	1980
gcccctgcct	cggaggtcg	ggggccaga	ctggcggac	tgctgggtct	gagcggcggg	2040
gagggctaca	tcgacttccg	cattggagac	ggagaggacg	acgagacgga	ggagggcgca	2100
ggggacatga	gccaggtgaa	gcccgtgc	tccaaggcag	agcgcagtca	catcategt	2160
tggcagggtgt	cctacacccc	cgagtgaagc	tgctccctg	cctggcccga	cctgtacata	2220
ggaccccccga	ccacctgacc	cccgccccggc	ccgcggggta	gccagccagg	cgccgcccgc	2280
cctcttctaa	cctctcaacc	tgcagtttc	acctggatct	ggcccctcca	gccccggagg	2340
agtgcgggg	tgcggatcg	ctggggaggag	gagggggagg	tgcttccac	ccgagggggaa	2400
gatgtctcg	ggacagtttc	ccggggcag	cctggcc	ttccagecca	gagtcttcaa	2460
gtccaggggca	ccttgggccc	agcgcaggca	gaatccagg	tgttcctggc	tctaccctgg	2520
gcctcctact	ccccagcacc	cctggaggag	gcaggggctc	cccgccgccc	aggctgcctg	2580
ccctggggccc	acctctgcat	gctgctcatg	gggcacccct	gcctcttgg	ccctcactct	2640
gccttagggga	gctggggcag	gcactagct	ttgcccagg	aggtggcc	caggctgccc	2700
aggtgcctgc	accccagccg	gccttctctg	gggcctcccc	gtcgtcaagc	ctctatcctg	2760
tctgtccccca	ccccagctgt	ccccgtccca	gggagctggc	ataaaagcac	gaggcccggc	2820
tccctggggc	agctgttgt	gaacagagac	tgctaccata	tcctgccc	gcaggcaggc	2880
tcttgcgcgc	ccccgttgt	ccccgttgtcc	cccaggctt	gcctgggcag	aagactcacc	2940
ttggaggagt	ggggccctgg	gtctctgtccc	tcccaaga	ccccagggtg	ggatttctea	3000
ggctgccagg	cgaggcccag	gcctcaggaa	gaaggggagg	ccctggccct	ctccgggatc	3060
agtccttagga	cacaggctca	gcctcagg	gatggggat	gatgtgtcc	cgggggctgc	3120
ctcctgcacg	gggctccacg	gagcccagct	cccagacacg	ctactaagt	cctagggtt	3180
cccgctgtgg	cctgctccca	gggagcaaca	gagaggccac	caagcagagg	cccgtggggc	3240
tgaggatgga	ggcgccccca	gcccactcca	agcccgac	gggcagacgc	caccctggac	3300
tgctctccct	gcccagctgg	gcctctctgg	cctatttctt	ccttccaggc	ccactgcact	3360
cctgtctggg	aggcccttat	gagggcaggc	cagccccgc	accacccccc	aaccagagaa	3420
gcacagatct	tggggagctg	ccccacaagc	cccgtggcc	accggggtt	cgagccgcgt	3480
cgctgccggc	tttccccac	caccctgc	cctccactgt	gatgtatgtc	cgctccctcg	3540
tctgtcccc	caggatctcg	aagtgtactc	gggctgagca	gtggggccggc	tgggggaggg	3600
gtgacgatcc	tcctcaggct	ttggccctgc	aagcaaacc	acatatctgc	tctgtatgt	3660
ataaatgtct	taacgtcgta	aaaaaaaaaa	aaaa			3694

<211> 27
<211> 2000
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No.: 645566CB1

<400> 27

cgacaggta	gagctgcggc	ctgagcagcc	agcgccggc	atgaagggtct	ggggctctggc	60
tgctgcctgc	ttcttgcgcc	agcacatgg	aatgcctgcg	cagtttaccc	tgcttcctgc	120
ccgcgcgat	gagactccc	ccggggacgc	tgtgtccct	ggccttggac	gtgacctctg	180
tggtcctcc	cgtgtgcgc	tcggggccgg	gagccaacct	gattggaaagg	agccgagcgg	240
cgcagcttg	cggggccgc	cggctccgc	tggcaggtga	agtgcacccgg	tttagaacct	300
ctgacgtctc	tcaagccact	ttagccagtg	tagccccagt	atttactgtg	acaaaatttg	360
acaaacaggg	aaacgttaact	tctttgaaa	ggaagaaaaac	tgaattatac	caagagttag	420
gtcttcaagc	cagagatttg	agatttcagc	atgtaatgag	tatcacagtc	agaaaacaata	480
ggatttatcat	gagaatggag	tatttgaag	ctgtgtataac	tccagagtgt	cttctgatata	540
tagattatcg	taattttaaac	ttagagcaat	ggctgttccg	ggaactccct	tcacagttgt	600
ctggagaggg	tcaactcggt	acatccccc	tacctttga	gttttagagct	atagaagcac	660
tcctgcaata	ttggatcaac	acccttcagg	ggaaaacttag	cattttgcag	ccactgatcc	720
tttagacaccc	ggatgttttgc	gtggacccca	aacattctc	tgttagacaga	agcaaactgc	780
acattttact	acagaatggc	aaaagtctat	cagagttaga	aacagatatt	aaaatttca	840
aagagtcaat	tttggagatc	ttggatgagg	aagagttgt	agaagagtc	tgtgtatcaa	900
aatggagtga	cccacaagtc	tttggaaaaga	gcagtgtctgg	gattgaccat	gcagaagaaa	960
tggagttgct	gttggaaaac	tactaccgt	tggctgacga	tctctccat	gcagctcggt	1020
agcttagggt	gctgtattgt	gattcacaaa	gtatttattt	cattaatctg	gacagccacc	1080
gaaacgtgtat	gatggatgtt	aatctacagc	tgaccatggg	aaccttcct	cttcgcctct	1140
ttggactaat	gggagttgt	tttggatatga	atttggatc	ttcccttgaa	gaggaccata	1200
gaatttttttgc	gctgattaca	ggaattatgt	tcatgggaag	tggcctcatc	tggaggcgcc	1260
tgcttcatt	ccttggacga	cagctagaag	ctccattgcc	tcctatgatg	gcttcttac	1320
ctaaaaagac	tcttctggca	gatagaagca	tggattgaa	aaatagcctc	agactggatg	1380
gacttggatc	aggaaggagc	atcctaaca	accgttagga	acagccccgt	ggatactgaa	1440
gttttttttgc	tggttagttac	aggaaaactc	tgatactctt	tttatttattt	tctgtatag	1500
agtcagacac	ttgaaaaaaa	ctaatgttg	aagacaaaaaa	tatttggca	gtcacaatac	1560
cagaactgg	ttgcattttc	agaattctga	gttaaagaaa	caaagtattt	gcttgtaaa	1620
aggccaaaat	tctatttcct	acaaacttta	aatgtgttt	ttatagatgt	gatatgaggc	1680
aacacaagca	cagacagtt	catagattt	aatttataca	tatcaagaaa	atgcatttt	1740
catgtctaat	gaagcgtagg	aacttgacaa	gcccataggt	agctatagtt	ctttgtcagt	1800
atagggaatt	atgttcatgt	gaatttcctg	attctcaggt	gactaaaaag	ctagcattct	1860
atgtattaac	cttacaacag	actctgttaag	tttgagctt	aaaaaccaaa	ctttgacata	1920
accttatttc	ttgtatgtc	ccctttttt	ttataaaaagg	tgaataaaaaa	gaaataattt	1980
aatatcaaaa	aaaaaaaaaa					2000

<211> 28
<211> 2973
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No.: 1503111CB1

<400> 28

cggtcgagg	gaaacaggaa	aataaaaaatg	ttcaaaactcc	ttggatgttg	ggataaaactc	60
acctgaaccc	acttgggttc	gggctgcctc	cttctcttcc	ttcattgcca	ccttcctct	120
gtgtggctcc	cgggaggtgt	cggtaatgc	atcagactcg	aagtqctag	agatccggag	180
gaagccgcgc	cggtctccc	ctgacatgcg	tggcatggc	gggctccgt	ggaggtttgc	240
tatacctggg	aggacacctgg	cattctaaat	ttcagctccg	ggaaagagaa	ggggcttttt	300
gccttttatac	tttttttttgc	tttcttttaa	gttagtaattt	tttaactgtat	tcattgtttg	360
gaaagcgcatt	attgcttccc	tcttccccca	attctggcaa	ctcttcctcc	tgctatgatg	420
ggcccttgggg	catcatgaac	tcttattactc	ctcactggct	ggaattcaaa	ctgcccattct	480
gttagtggtcc	cgtgcgttgc	ccatgcaccc	gagaatccac	gcgagacgga	gccttcctcg	540
ccggccggcc	tggacgcttg	ggatctgggtt	cctttctgg	ggatgtatcg	tcagctctgt	600
atggagttct	tctaattgttag	tttcctccctc	ctccacactct	tcctcgccgg	ggtctcactc	660
tcagcacgag	caccatttcc	atggcagcaa	gcatcactca	gtgccttattt	ctatctatcg	720

ttcccccgtt	tcccttcgag	gaggacacgc	tggcgctacg	tacatcttg	ggaaaaagtgg	780
tggcattatc	ctctacaccc	ggccagccaa	tgacaggccc	agcacgcgt	ctgaccgcct	840
tgcctgggc	ttcagcacca	ctgtgaagga	tggcatctt	gtccgcac	acagtgc	900
agacttgtt	gacttcctcc	agttcacat	agaacagggg	aaaattggag	ttgtcttcaa	960
cattggcaca	gttgcacatct	ccatcaaaga	ggagagaacc	cctgttaatg	acggcaaata	1020
ccatgtggta	cgcttcacca	ggaacggcgg	caacgcacc	ctgcagggtt	acaactggcc	1080
agtgaatgaa	cattatccca	caggcaaac	tgataatgaa	cgcttccaa	tggtaaaaca	1140
gaaaatcccc	ttcaaatata	atcggcctgt	agaggagttt	ctgcaggaaa	aaggccggca	1200
gttaaccatc	ttcaacactc	aggcgaaat	agccattgtt	ggaaaggaca	aaggacgcct	1260
cttccaaggc	caactctctg	ggctctatta	tgtatgtttt	aaagtactga	acatggcggc	1320
tgagaacaac	cccaatatta	aaatcaatgg	aagtgttgg	ctgggttggag	aagtcccattc	1380
aattttggga	acaacacaga	cgacccat	gccaccagaa	atgtctacta	ctgtcatgga	1440
aaccactact	acaatggcga	ctaccacaac	ccgtaaagaat	cgctctacag	ccagcattca	1500
gccaacatca	gatgatctt	tttcatctgc	tgaatgttca	agtgtatgtt	aagactttgt	1560
tgaatgttgg	ccgatgtacag	gagggtgattt	agtatccct	cttcttggat	aagacccttt	1620
agctatccct	cctattgtca	ctcgtgcacc	tccattaca	ctcccccta	ccttcgccc	1680
cctcctcacc	attatttggaa	ccaccaaaa	ttccctgtcc	atgacctctg	aggcggggtt	1740
accttgcctt	tcggaccacaa	gcagcgatgg	ttgtgtatgt	gatgggttgg	tgatatctgg	1800
gtatggctca	ggggaaaccc	ttgactctaa	cctgccccct	actgtatgtt	aagatttttta	1860
caccacccctc	tccttggtaa	cagataagag	tctttccact	tcaatcttcg	aagggtggcta	1920
caaagcacat	gcccggaaat	ggaaatccaa	ggacttttaga	cctaacaag	tctccgaaac	1980
tagtaggact	actaccacat	cttataccccc	tgagctgatc	cgcttccacag	cttccctcct	2040
gtctgggat	gtgccccaaat	tgccagctgg	caaaatgaat	aaccgtgatc	tcaaaccacca	2100
gcctgatata	gtcttgcctc	cggtccccac	tgccatgatg	ctagacagca	ccaaactgaa	2160
gagcccaacta	attacttccc	ccatgttccg	taatgtgccc	acagcaaaacc	ccacggagcc	2220
gggaatcaga	cggttccgg	gggcctcaga	gggtatccgg	gagtcgagca	gcacaacagg	2280
gatggcgtc	ggcattgtgg	ctgctgcccc	cctctgcata	ttgatcttcc	tgtacgcccc	2340
gtacaagtac	aggaacaggg	acgaggggtc	ctatcaatgt	gacgagacgc	ggaactacat	2400
cagcaactcc	gcccagagca	acggcacgct	catgaaggag	aagcagcaga	gctcgaagag	2460
cggccacaag	aaacagaaaa	acaaggacag	gggatattac	gtgtaaacat	gcaaacactg	2520
ctcacacgcg	agttttcaca	gttatttcta	tccacgccta	tgaatcttt	gacgggtgaga	2580
tctcacagat	gtcagaactt	ctggaaactt	gaaaatgggtt	ataataaccac	gactctgggt	2640
gggaaaaccc	ttttttaaag	gacacacaca	cacacagcga	tgcacatctc	tctaaagctc	2700
agccacggct	ggggcaaggt	cccagcggtc	gctggggagac	agaaggtttt	gtgcctctgt	2760
gtatcataaa	gcacacactt	agcgctctgg	agccggacgg	tggctccacc	acttccgcag	2820
gcctggaaac	ttccttctcc	ggaggaccc	ttactaaaag	gtagaagact	tcatggctt	2880
cttgttccat	aactccaatg	gagtctgtaa	tgtttgtgaa	gcttgactgt	aaccatgttt	2940
tttctgttaa	gatatgtaaa	aagcgaaacgt	atc			2973

<210> 29
<211> 2394
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No.: 1984287CB1

<400> 29	aggaaaatgg	cggtcgctgg	agccggccac	caagaggctt	gggagtcgt	acctttcccg	60
accggggccac	tggaaagtgg	agcctccgac	gagtcgcaga	caacgcctcc	gggagggcct	120	
tcctgtatgcg	cttgcctgt	ccctgggttc	tctgcata	gaaggagtgt	tcccagctt	180	
caaactccat	ctttgcctgt	gagaggaaaca	agcgtccctg	atccagaagg	tgttcggatg	240	
gagatggcga	gttctgtctt	ctcttgggtc	tctgggtcc	tcattccctt	tgtttccctc	300	
cggctgtctg	tgtatgttc	aggccacgca	ggggatgcgg	gcaagtccaa	cgtggcccta	360	
ctagggggca	cagccgagct	gtctgcctt	ctctccctt	ggcccccggac	ggtacccaag	420	
gaggtgaggt	ggctgcggtc	ccatccccc	cagcgtctcc	aggctgttca	catattccgg	480	
gatgggaagg	accaggatga	agatctgtat	ccggaaatata	aggggaggac	ggtgctagtg	540	
agagatgccc	aagagggaaag	tgtcaatctg	cagatcctt	acgtgcgcct	tgaggaccaa	600	
gggtcttacc	gatgtctgtat	ccaagttgaa	aatctgagta	aagaggacac	cgtgatccctg	660	
cagggttgcag	ccccatctgt	ggggagtc	tccccctc	cagtggctt	ggctgtgatc	720	
ctgcctgtcc	tggtaatctt	catcatgtt	tgcctttgc	ttatctggaa	gcaaagaaga	780	
gcaaaaagaaa	agcttctcta	tgaacatgtt	acggaggtgg	acaatcttct	ttcagaccat	840	
gctaaagaaa	aaggaaaact	ccataaaagct	gtcaagaaac	tccggagtga	actgaagttt	900	
aaaagagctg	cagcaactc	aggctggaga	agagcccggt	tgcattttgt	ggcagtgacc	960	
ctggaccacag	acacagcaca	tcccaaactc	atcctttctg	aggaccaaag	atgtgttcaagg	1020	
cttggagaca	gacggcagcc	tgtacctgac	aaccccccaga	gatttgattt	cgttgcagc	1080	

atccttaggct	ctgagttactt	cacgactggc	tgccactact	gggagggtgta	tgtgggagac	1140
aagaccataat	ggattcttgg	agtatgtgt	gagtcagtg	gcaggaaggg	gaaggttact	1200
gcctcacctg	ccaatggaca	ctggcttctg	cgacagagtc	gtgggaatga	gtatgaagct	1260
ctcacatccc	cgcagaccc	cttcgcctt	aaagagcctc	cacggtgtgt	ggggattttc	1320
ctggactatg	aaggagggt	catctttt	tacaatgtga	ccacaactgtc	ccacatcttt	1380
actttcaccc	acaatttctc	tggccccctt	cgcccttct	ttgacacttt	cttcatgtat	1440
ggaggaaaaaa	acacagcacc	tctagtatt	tgttcagaac	tacacaaatc	agaggaatca	1500
attgtccccca	ggccagaagg	gaaaggccat	gctaattggag	atgtgtccct	caaggtaaac	1560
tcttctttac	taccccgaa	ggccccagag	ctgaaggata	taatcctgtc	cttgccccct	1620
gaccttggcc	cagcccttca	ggagctcaag	gctcttttt	tttagggata	tgccacattt	1680
cctgctccca	tcaccatcca	gcccgacacc	ctggacttca	gtcccttggc	ccaaacccat	1740
gattatggaa	cgtctttca	ccttaaccctt	aatcccgacc	cttttgtgtt	ttcttattgt	1800
accacttttcc	tccaggccct	cagtttgcatt	gcttacccctt	cttctaaagg	attgaagctc	1860
ccagtgtacctt	ggagggaggaa	ttccttggaaa	ccaaacaatc	atgttaggt	cagggtgaga	1920
tgttgaatat	gtgttaccaa	gatacagcac	aggttcagg	aaaagagttc	gctactccag	1980
gggttatTTA	gaagacactt	tctctgcctc	atcctgcctt	caagctttag	tcaagaagtt	2040
atggccccc	gtccctgact	tcttacttat	cccattgagg	actgcctttc	tctctctcag	2100
ttctgggc	tgcctcccaa	agtcagctct	ctaaaagcaa	gcatgttttt	agaccactca	2160
ctctttccct	cttttttcag	gaatgtatt	ggaaaggctg	atgagtaaaa	cataccatcc	2220
ttttcttattt	tcttgatgt	gtttacaaca	tagtttgtt	atatccagag	ctaatgtaca	2280
tgctttcaaa	actaatatct	cctgttgcatt	ataacttaggt	acagcgactt	taaatacagt	2340
tgctataatc	ctgaaaagcc	ccaggagcac	atcaggqqaqc	tqqqaaacac	agtt	2394

<210> 30
<211> 1853
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte ID No.: 2055289CB1

<400>	30					
gctgccagcc	cggccaggca	cccctgcagc	atggccttgg	acacccaacct	ccgctggcg	60
ctgccgtca	cctgcctgt	cctgcagggt	attatgggt	ttctcttcgg	ggtgttcgt	120
cgctacact	tcgaggccg	cgccccactgg	tggtcagaga	ggacgcacaa	gaacttgagc	180
gacatggaga	acaatttcta	ctatcgctac	ccaagcttcc	aggacgtgca	cgtgtatgg	240
ttcggtggct	tccgtttcc	catgactttc	ctgcagcgct	acggcttcag	ccgcgtggc	300
ttcaacttcc	tgttggcagc	cttcggcatc	cagtgggcgc	tgctcatgca	gggctgttcc	360
cacttcttac	aagaccgcta	catcgctgt	ggcgtggaga	acccatcaa	cgtgtacttc	420
tgcggtggct	ctgtctgtgt	ggccttgggg	gcagttctgg	gtaaaagtca	ccccatttcag	480
ctgctcatca	tgactttctt	ccaagtgacc	ctcttcgt	tgaatgagtt	catttcctt	540
aacctgtctaa	aggtgaagga	tgcaggaggc	tccatgacca	tccacacatt	tggccctac	600
tttgggctca	cagtgacccg	gatcccttac	cgacgcaacc	tagagcagag	caaggagaga	660
cagaattctg	tgtaccagtc	ggaccccttt	gccatgattt	gcacccctt	cctgtgtatg	720
tactggccca	gcttcaactc	agccatatcc	taccatgggg	acagccagca	ccgagccgc	780
atcaacaccc	actgcttcctt	ggcagccctgc	gtgttaccc	cggtggcaat	atccagtgc	840
ctgcacaaga	aggcgaagct	ggacatggtg	cacatccaga	atgccacgct	cgcaggaggg	900
gtggccgtgg	gtaccgctgc	tgagatgtat	ctcatgcctt	acggtgcctt	catcatcgcc	960
ttcgctctgcg	gcatcatctc	caccctgggt	tttgtatacc	tgacccatt	cctggagttc	1020
cggtgcaca	tccaggacac	atgtggcatt	aacaatctgc	atggcattcc	tggcatcata	1080
ggccgcatcg	tgggtgtctg	gacagccggc	tccggcagcc	ttgaagtcta	tggaaaagaa	1140
gggtttgtcc	atccctttga	cttcaaggt	ttcaacgggg	actggaccgc	aagaacacag	1200
ggaaagtcc	agatttatgg	tctcttgggt	accctggcc	tggccctgtat	gggtggcatc	1260
attgtggggc	tcattttgag	attaccattc	tggggacaac	cttcagatga	gaactgttt	1320
gaggatgcgg	tctactggga	gatgcctgaa	gggaacagca	ctgtctacat	ccctgaggac	1380
cccacccctca	agccctcagg	accctcagta	ccctcagtagc	ccatgggtgtc	cccaactaccc	1440
atggcttcct	cgttaccctt	ggtacccctag	gctcccaggg	cagtgagga	gcaggctcca	1500
caagactgtcc	tggggccccag	aggagctgtt	gctgaccctag	ctagggacgc	aagagttagc	1560
aaggcagcacc	ccccacccctgt	ggcttggcc	caaggtgcct	ccacccctgc	cctcccttc	1620
atcccaagggg	gtctgcctga	gaatggagaa	ggagaaggtca	caaagtggcc	atccaagccg	1680
ggttctggct	gcagaagttc	tgcctctgca	tggggcttgc	gccacattgg	agaaaaaacag	1740
gctcaaagt	gggctgggac	ctgggggtg	aacctgagct	ctcccaggag	acaacttagc	1800
tgccagtcac	cacccatgag	gctttctac	cccgtgcctg	cacccctggcc	aqc	1853

<210> 31
<211> 3617

<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte ID No.: 2279216CB1

<400>	31	gaccgtgctca	gccaggaggc	gggagcgatc	cacagcagct	gaccaggctc	aggcagtgt	60
ctctctgagt	cctcaagata	caccatggc	ccagaggcag	tttgctaca	cagcagcgc	120		
gacgcaggcg	gcccggccca	cgactcgaa	ctgctccct	gaccacagcg	gccaccgccc	180		
aacaccccc	agaagccatc	gccaccac	gcaggagaac	ctagggtcca	taaaggccatc	240		
ttcgcgatc	actaaagcta	cgtcaaca	tatggcggc	gacggggcgg	gggcagaggc	300		
ggtgcggaa	ggatgggtt	tgtacgtc	ccccaggcc	cccatcccgag	agggaaagggg	360		
ccggctcgcc	cctcaaatt	gcccgtcag	cgatgcgc	gcttacagaa	ctccctcg	420		
gcaccaggc	cgccggaa	tgagg	ggacgaggc	ccagaagtgt	acggcgactt	480		
cgagccctg	gtggccaa	aaagg	ggtggaaaa	cgaaccggc	tagaagagtt	540		
ccggtcgat	tctgcgaa	aggaagt	agaaagcgc	tactac	ggtctaggca	600		
gcccggcag	ccgcgaccc	aggaaacc	ggaaatgaag	acgcgaagga	ctaccgcct	660		
tcagcagc	cactcagac	agcc	acagccgtc	cctgttat	ccaggagagg	720		
gctgcggac	tctcat	ctgaa	tgaag	tccaaact	atthaagcca	780		
aacgatctca	aagaaaact	tcagg	acaagaggt	ccagcgt	gtgaagat	840		
tgtatcagg	ttacgtc	ccc	atacc	tat	ccagt	900		
acagaaggc	aatttctct	aagaagg	aact	gat	acagctct	960		
cagcagtgtc	actactgtt	aggcc	cagg	gat	gat	1020		
caccagatca	tctagtca	atata	at	ttt	gtcaaaactt	1080		
cacagctcat	gataagca	ctt	aag	tc	ctcccagg	1140		
atgggcccc	caaa	ctg	agg	at	cagg	1200		
ttcaatata	ttc	at	cat	aa	ttggaa	1260		
gtcaccatca	act	cc	gac	aa	ttttgt	1320		
gaggaacc	ttgt	cc	act	at	ttttgt	1380		
ctttagtact	cct	aa	acc	tt	ttccaga	1440		
acttaagaat	aagt	aa	gtc	aa	agat	1500		
ggaaaaaacat	cttaat	agat	gtc	aa	at	1560		
tgcccggagat	gct	gaga	actt	tt	tt	1620		
ttctttcg	tg	gg	tag	tc	tc	1680		
tgatactgtc	act	gg	at	at	ca	1740		
tgcagctgt	tg	ac	gt	tt	cc	1800		
atattgtgc	at	cc	tc	tt	tt	1860		
ggaggaagag	ac	cc	ct	tt	tt	1920		
tttcttaaa	gt	ca	aa	tc	tc	1980		
agacaaact	at	gg	gg	tc	tct	2040		
aatgcct	aa	gg	gt	tt	act	2100		
aagtctg	att	tt	tt	tc	at	2160		
gaactgtt	ttt	aa	tt	ta	at	2220		
cattcaacct	aa	tt	tt	ca	aa	2280		
taaagg	tt	at	at	tt	tt	2340		
ggctgagtt	tt	ac	tt	tt	tt	2400		
ccttcctgat	ttt	ta	tt	tt	tt	2460		
cccttaat	ta	cc	tt	tt	tt	2520		
ttccttagt	tc	tc	tt	ta	tt	2580		
aattttt	ttt	tt	tt	ta	tt	2640		
ggaaagct	agg	gg	tt	tt	tt	2700		
gttat	ttt	at	tt	tt	tt	2760		
tccttc	ttt	aa	tt	tt	tt	2820		
taatatt	ttt	aa	tt	tt	tt	2880		
aggtcaga	ttt	aa	tt	tt	tt	2940		
caaaaatt	ctt	gg	tt	tt	tt	3000		
caggagaatt	ttt	gg	tt	tt	tt	3060		
ccctcc	ttt	gg	tt	tt	tt	3120		
aagaaaagaa	aa	gg	tt	tt	tt	3180		
acagt	ttt	gg	tt	tt	tt	3240		
agtgtat	cc	gg	tt	tt	tt	3300		
cgccact	cc	gg	tt	tt	tt	3360		
gttctgt	cc	gg	tt	tt	tt	3420		
tctctgc	cc	gg	tt	tt	tt	3480		
ctgagg	cc	gg	tt	tt	tt	3540		
cactcg	cc	gg	tt	tt	tt	3540		

WO 00/65054

PCT/US00/10884

gtctgcagcg aaaggcgaag agcaggcgcg tcccgaagac gactccggtg ccatatccgt 3600
gcgcatnggt cggaacca 3617

<210> 32
<211> 1029
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No.: 2590650CB1

<400> 32
ggtgggcccc gcaagatgga tctactgtgg atcctgcctt ccctgtggct tctcctgctt 60
ggggggcctg cctgcctgaa gaccaggaa caccggact gcccaggacc cagggaaactg 120
gaagccagca aagttgtcct cctgcccagt tgtcccgag ctccaggaaag tcctggggag 180
aaggggagcc caggtcctca aggggccacct ggaccaccag gcaagatggg ccccaagggt 240
gagccaggag atccagtgaa ctcgtcccg tgccaggaag gcccaggaaa ctgccgggag 300
ctgttgagcc agggcccac cttgagccgc ttgttaccatc tgccttacc tgccttacc 360
gcctcccgatc tctttgtgaa catggacacc gaggggggcg gctggctgg tttcagagg 420
cgccaggatg gttctgtgaa ttcttcctcc tcttggctt cctacagac aggttttggg 480
aaccaagagt ctgaattctg gctgggaaat gagaatttgc accagttac tctccagggt 540
aactgggagc tgcgggtaga gctggaaagac ttaatggta accgtacttt cgcccaactat 600
gcgaccttcc gcctccctgg tgaggttagac cactaccagg tggcaacttggg caagttctca 660
gagggcactg caggggattt cctgagccctc cacagtggga ggccttac cacctatgac 720
gctgaccacg attcaagcaa cagcaactgt gcagtgattt tccacgggtgc ctgggttat 780
gcacccctgtt accgatcaaa tctcaatggt cgctatcgat tgccttggc tggcccccac 840
aaatggcatttgc ttgactgggc ctcaggccgt ggttggggcc aecctaccg cagggttcgg 900
atgatgcttc gatagggcac tctggcagcc agtgcctta tctcttcgtt acagttccg 960
gatcgtagc caccttgcct ttgccaacca cctctgtttt cctgtccaca tttaaaaata 1020
aatcattt 1029

<210> 33
<211> 1923
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No.: 2814726CB1

<400> 33
aacgtttatt ttccctggca gagaagctga tcgtcgagg gcatctaacc aaagcggtag 60
aagaaacaaa gctttcaaaa gaaaatcaga caagagcaaa agaatctgat ttttcagata 120
ctctgagtcc aagcaaggaa aaaagcagtg acgacactac agatgccaa atggatgagc 180
aagacctaataa tgagcccttt gccaaagtgt ccctttaaa agatgacttgc cagggtgcac 240
agtcagaaat tgaggcaaaag caagaaatac agcatcttcg aaaggaattt atcgaagccc 300
aggagcttagc tagaacaagt aaacaaaaat gcttgaact tcaagcttt ttggaagaag 360
aaagaaaaagc ctagtgcataa caagttgggg aatccactaa acaaaatcag gttttcaag 420
cccaatttgcg gagggtacac atcgatactg agaatcttcg ggaggagaag gacagtggaa 480
tcacaagtatc tagatgttgc ttgcattgtt cccggatgtt aattttgttc cttcatcaag 540
cagcagcaaa gttgccttgc gaggccgaca ctgcatttc ttctttacaa gaagagctt 600
agaaggttagc agctgagttt gaggccgtgc gggaaagcgc gtctgaatat gagaagaaaa 660
tcacaagtct gcaaaacagt ttccatgttca gatgtcaaca gtgtgaggac cagcagagag 720
aagaagcaac aaggttgcgg ggtgaacttgc agaagtttagt aaaggaatgg aatgcattgg 780
aaaccgaatg ccatttcataa aaaaggggaaa atgtttgtt atcatcgaaa ctgcaacggc 840
aagaaaaaaa attcacaaat tctcagaacg agatgtttaga gcttaccatg gatccagca 900
ttcttcataat gtcttagaaaaa gaaacttggg atcaagtggg atccttggaaa gaacagcatac 960
ttccggatttgc agtgcatttta aaaaacttcc tcagtaggc agaaaaacca gcaaaaggatg 1020
tgcagaaaaga gtatggaaaac acacagactg tacttcaga actgaaggtaaagttgaaa 1080
tgactgagca gggaaagcgc tcaatcacag atgagctaa acagtgtaaa aacaacctga 1140
agctgctccg agagaaaagga aataatccctt ccatattaca acccgtccca gccgttattca 1200
tcggcctatt cctggcttcc ttgtttgtt gttccgtcc attgtgttag agaaaagaaaac 1260
cctggccctg gatgcccattt ttggctgccc tggttgcagt aacagccatc gtgtgtacg 1320
tgccagggtct ggcaggatc tctccatgttgc agcgttccctt gagtccgtac accgtccctcc 1380
ctctagaagc tggcatcaca ctcatgttgc ggacaaacag aaccattttc ttctctttta 1440
cctcttaaaa cagcagaatc acaagaatc agctgttaggg tcattgtctt aaatttatata 1500

aatgttatct gtctataaaag aagatataaa atttgactt tattctactg taagcaataa 1560
tttgcttgc aaaaaaaaaa atttagtatgt taagattctg aatattatgg 1620
tggcctaaag taggcttctt ggtacaccag attatttata acattaaatt tatgagtatt 1680
ttactctgaa ttctgtatcac cagataatcc atttttctga tttgataact acccaaacc 1740
aacaaccaat acatacatgg gaagagaggc cctgtgtct cagtgcstat cagtttgaaa 1800
tatatacaca tatatatatt ttttacatatt ttacgccatt ttacttgcgt atgaaaccac 1860
ttagctattt ggaacaagac tttagagacaa ctatttgcgt ggatttttt ttttttaagg 1920
taa 1923

<210> 34
<211> 837
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No.: 4628933CB1

<400> 34
atcggttagc gccttgccat gattaatcca gagctgcggg atggcagagc tgatggcttc 60
atacatcgga tagttccaa gttgatacaa aactggaaga ttggccttat gtgcttcctg 120
agtattatta ttactacagt ttgcattatt atgatagcca catggtccaa gcatgctaaa 180
cctgtggcat gttcagggga ctggcttggg gtgagagata agtgtttcta tttttctgat 240
gataccagaa attggacacgc cagtaaaata ttttgttagtt tgcagaaaagc agaacttgct 300
cagattgata cacaagaaga catggaattt ttgaagaggt acgcaggaac tgatatgcac 360
tggattggac taagcagggaa acaaggagat tcttggaaat ggacaaaatgg caccacattc 420
aatgggtggc catcaaactc caaatggctc tgcaactggc gcctccgaca atggcttctt 480
ctgtgggac cccttagata ggcctctgag ggagctctga ctgcggttc cccaaaacaa 540
tgtccccctgt cagcagggaaag cagttaaagat caatcttcat ctttatccca atccttaata 600
taacggcagt tagatgtact tcttttagagt ggggaatgag acagccaagt aaaaagaggt 660
ccctggagaa actccgactg gtccgcgcac tgggggtggag cctcgggagg tttacccgtt 720
tgcagagggg gtagcttgc ctctcccgta ccaggggtgtt aacctgggaa ttcaatctgt 780
gagatgggggg cctgttaaca ggcacctctc tagcttact gaatttttt cctttc 837

**DECLARATION AND POWER OF ATTORNEY FOR
UNITED STATES PATENT APPLICATION**

As a below named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below next to my name, and

I believe that I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if more than one name is listed below) of the subject matter which is claimed and for which a United States patent is sought on the invention entitled

HUMAN MEMBRANE-ASSOCIATED PROTEINS

the specification of which:

/ X / is attached hereto.

/ ___ / was filed on _____ as application Serial No. _____ and if this box contains an X / ___ /, was amended on _____.

/ X / was filed as Patent Cooperation Treaty international application No. PCT/US00/10884 on April 20, 2000, if this box contains an X / ___ /, was amended on under Patent Cooperation Treaty Article 19 on _____ 2001, and if this box contains an X / ___ /, was amended on _____.

I hereby state that I have reviewed and understand the contents of the above-identified specification, including the claims, as amended by any amendment referred to above.

I acknowledge my duty to disclose information which is material to the examination of this application in accordance with Title 37, Code of Federal Regulations, §1.56(a).

I hereby claim the benefit under Title 35, United States Code, §119 or §365(a)-(b) of any foreign application(s) for patent or inventor's certificate indicated below and of any Patent Cooperation Treaty international applications(s) designating at least one country other than the United States indicated below and have also identified below any foreign application(s) for patent or inventor's certificate and Patent Cooperation Treaty international application(s) designating at least one country other than the United States for the same subject matter and having a filing date before that of the application for said subject matter the priority of which is claimed:

Docket No.: PF-0698 USN

Country	Number	Filing Date	Priority Claimed
			/ Yes / No
			/ Yes / No

I hereby claim the benefit under Title 35, United States Code, §119(e) of any United States provisional application(s) listed below.

Application Serial No.	Filed	Status (Pending, Abandoned, Patented)
60/130,694	April 23, 1999	Expired
60/140,580	June 23, 1999	Expired

I hereby claim the benefit under Title 35, United States Code, §120 of any United States application(s) listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in said prior application(s) in the manner required by the first paragraph of Title 35, United States Code §112, I acknowledge my duty to disclose material information as defined in Title 37 Code of Federal Regulations, §1.56(a) which occurred between the filing date(s) of the prior application(s) and the national or Patent Cooperation Treaty international filing date of this application:

Application Serial No.	Filed	Status (Pending, Abandoned, Patented)

I hereby appoint the following:

Lucy J. Billings	Reg. No. <u>36,749</u>
Michael C. Cerrone	Reg. No. <u>39,132</u>
Diana Hamlet-Cox	Reg. No. <u>33,302</u>
Richard C. Ekstrom	Reg. No. <u>37,027</u>
Barrie D. Greene	Reg. No. <u>46,740</u>
Lynn E. Murry	Reg. No. <u>42,918</u>
Shirley A. Recipon	Reg. No. <u>47,016</u>
Susan K. Sather	Reg. No. <u>44,316</u>
Michelle M. Stempien	Reg. No. <u>41,327</u>
David G. Streeter	Reg. No. <u>43,168</u>
P. Ben Wang	Reg. No. <u>41,420</u>

respectively and individually, as my patent attorneys and/or agents, with full power of substitution and revocation, to prosecute this application and to transact all business in the Patent and Trademark Office connected therewith. Please address all communications to:

**LEGAL DEPARTMENT
INCYTE GENOMICS, INC.
3160 PORTER DRIVE, PALO ALTO, CA 94304**

TEL: 650-855-0555 FAX: 650-849-8886 or 650-845-4166

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issuing thereon.

First Joint Inventor:

Full name: Jennifer L. Hillman
JLH
Signature: Jennifer L. Hillman
Date: September 21, 2001
Citizenship: United States
Residence: Mountain View, California *CA*
P.O. Address: 230 Monroe Drive, #17
Mountain View, California 94040

Second Joint Inventor:

Full name: Olga Bandman
OB
Signature: Olga Bandman
Date: 26 September, 2001
Citizenship: United States
Residence: Mountain View, California *CA*
P.O. Address: 366 Anna Avenue
Mountain View, California 94043

Third Joint Inventor:

zw

Full name: Y. Tom Tang
Signature: U. Tom Tang
Date: Sept. 10, 2001
Citizenship: United States
Residence: San Jose, California *CA*
P.O. Address: 4230 Ranwick Court
San Jose, California 95118

Fourth Joint Inventor:

YLW

Full name: Preeti Lal
Signature: Preeti Lal
Date: September 10, 2001
Citizenship: India
Residence: Santa Clara, California *CA*
P.O. Address: P.O. Box 5142
Santa Clara, California 95056

Fifth Joint Inventor:

SW

Full name: Henry Yue
Signature: Henry Yue
Date: September 24, 2001
Citizenship: United States
Residence: Sunnyvale, California *CA*
P.O. Address: 826 Lois Avenue
Sunnyvale, California 94087

Docket No.: PF-0698 USN

Sixth Joint Inventor:

RR

Full name:

Roopa Reddy

Signature:

Roopa Reddy

Date:

September 10th, 2001

Citizenship:

India

Residence:

Sunnyvale, California

CA

P.O. Address:

1233 W. McKinley Avenue, #3
Sunnyvale, California 94086

Seventh Joint Inventor:

TA

Full name:

Yalda Azimzai

Signature:

Yalda Azimzai

Date:

September 13, 2001

Citizenship:

United States

Residence:

Castro Valley, California

CA

P.O. Address:

5518 Boulder Canyon Drive
Castro Valley, California 94552

Eighth Joint Inventor:

SW

Full name:

Mariah R. Baughn

Signature:

Mariah R. Baughn

Date:

September 5, 2001

Citizenship:

United States

Residence:

San Leandro, California

CA

P.O. Address:

14244 Santiago Road
San Leandro, California 94577