● 수학 영역 ●

정 단

_	-		-		-		-		_
1	3	2	4	3	2	4	4	5	(5)
6	2	7	1	8	3	9	(5)	10	2
11	3	12	1	13	1	14	4	15	3
16	(5)	17	1	18	(5)	19	4	20	2
21	(5)	22	7	23	18	24	70	25	84
26	128	27	48	28	25	29	31	30	149

해 설

1. [출제의도] 정수와 유리수의 연산 원리를 이용하여 식의 값을 계산한다.

$$\begin{aligned} 6 \div (-4) - \frac{5}{2} \times (-3) &= 6 \times \left(-\frac{1}{4} \right) + \frac{5}{2} \times 3 \\ &= -\frac{6}{4} + \frac{15}{2} \\ &= \frac{-3 + 15}{2} \\ &= \frac{12}{2} \\ &= 6 \end{aligned}$$

2. [출제의도] 다항식의 연산을 이용하여 식을 간단히

$$\begin{aligned} 2x(3x-1) - x(2x+3) &= 6x^2 - 2x - 2x^2 - 3x \\ &= 6x^2 - 2x^2 - 2x - 3x \\ &= (6-2)x^2 - (2+3)x \\ &= 4x^2 - 5x \end{aligned}$$

따라서 x^2 의 계수는 4이다.

3. [출제의도] 제곱근의 성질을 이용하여 주어진 식의 값을 계산한다.

$$\sqrt{\frac{2}{3}} \times \sqrt{\frac{15}{2}} + \sqrt{20} = \sqrt{\frac{2}{3} \times \frac{15}{2}} + \sqrt{4 \times 5}$$

$$= \sqrt{5} + 2\sqrt{5}$$

$$= 2\sqrt{5}$$

4. [출제의도] 완전제곱식의 뜻을 이해하여 상수항을 구 하다

 $9x^2 + 12x + k$ 가 완전제곱식이 되려면 $9x^2 + 12x + k = (3x)^2 + 2 \times (3x) \times 2 + k$

 $=(3x+2)^2$

이 되어야 한다.

따라서 $k=2^2=4$

5 [출제의도] 인체도형을 이해하여 위기듯의 높이를 구

원기둥의 높이를 x라 하고 원기둥의 전개도를 그리 면 다음과 같다.

밑넓이는 $2\times(\pi\times2^2)=8\pi$ 옆넓이는 $(2\pi \times 2) \times x = 4\pi x$ 이고 겉넓이가 38π이므로

$$x=\frac{30\pi}{4\pi}=\frac{15}{2}$$

따라서 구하는 높이는 $\frac{15}{2}$ 이다.

6. [출제의도] 일차함수의 그래프를 이해하여 일차함수 의 식을 구한다.

y=ax+b의 그래프는 $y=-\frac{2}{3}x$ 의 그래프와

평행하므로

 $y=-\frac{2}{2}x+b$ 의 그래프의 x절편이 3이므로

 $0 = -\frac{2}{3} \times 3 + b$

따라서
$$a+b=-\frac{2}{3}+2$$

$$=-\frac{2}{3}+\frac{6}{3}$$

$$=\frac{4}{3}$$

7. [출제의도] 줄기와 잎 그림을 이해하여 중앙값을 구

줄기와 잎 그림의 자료를 작은 값부터 크기순으로 나 열하면 4, 5, 11, 12, 14, 17, 17, 20, 21, 21, 25, 28, 29, 34, 34, 38, 39, 40, 40, 42이다.

자료의 개수가 짝수이므로 중앙값은 중앙에 위치한 10번째와 11번째에 위치한 두 값의 평균이다.

따라서 중앙값은 $\frac{21+25}{2}$ = 23(시간)이다.

8. [출제의도] 거듭제곱의 성질을 이용하여 자연수의 자 릿수를 구한다.

 $5^3 \times 6^4 = 5^3 \times (2 \times 3)^4$

 $=5^3 \times 2^4 \times 3^4$

 $=5^3\!\times\!2^3\!\times\!2\!\times\!3^4$

 $=162\times10^{3}$

= 162000

따라서 $5^3 \times 6^4$ 은 6자리의 수이므로 n=6이다.

9. [출제의도] 주어진 상황을 이해하여 확률을 구한다.

한 개의 주사위를 두 번 던질 때 일어날 수 있는 모 든 경우의 수는 6×6=36이다.

첫 번째 던져서 나온 눈의 수를 a, 두 번째 던져서 나온 눈의 수를 b라 할 때, a가 b보다 작은 경우를 순서쌍 (a, b)로 나타내면

(1, 2), (1, 3), (1, 4), (1, 5), (1, 6),

(2,3), (2,4), (2,5), (2,6),

(3, 4), (3, 5), (3, 6),

(4, 5), (4, 6),

이므로 경우의 수는 15이다.

따라서 구하는 확률은 $\frac{15}{36} = \frac{5}{12}$ 이다.

[다른 풀이]

한 개의 주사위를 두 번 던질 때 일어날 수 있는 모 든 경우의 수는 36이다.

첫 번째 던져서 나온 눈의 수와 두 번째 던져서 나온 눈의 수가 같은 경우의 수는 6이므로 서로 다른 경우 의 수는 30이다

첫 번째 던져서 나온 눈의 수가 두 번째 던져서 나온 눈의 수보다 큰 경우의 수와 작은 경우의 수가 서로 같으므로 첫 번째 던져서 나온 눈의 수가 두 번째 던 져서 나온 눈의 수보다 작은 경우의 수는

 $\frac{30}{2} = 15 \circ | \text{ T}.$

따라서 구하는 확률은 $\frac{15}{36} = \frac{5}{12}$ 이다.

10. [출제의도] 일차부등식이 참이 되는 자연수의 개수 를 이해하여 조건의 값을 구한다.

 $2a-x \le -3(x-2)$

 $2a-x \le -3x+6$

그러므로 $x \leq 3-a$

3-a가 정수이고 일차부등식이 참이 되는 자연수의 개수가 4이므로 3-a=4

11. [출제의도] 인수분해를 이용하여 직사각형의 둘레 의 길이를 추론한다.

[그림 1]의 도형의 넓이는

 $2x(x+2)-x=2x^2+4x-x$

 $=2x^{2}+3x$ =x(2x+3)

이고 [그림 2]의 직사각형의 넓이는

 $(가로의 길이) \times x$

이다

[그림 1]의 도형과 [그림 2]의 직사각형의 넓이가 서로 같으므로 가로의 길이는 2x+3이다.

따라서 [그림 2]의 직사각형의 둘레의 길이는 2(x+2x+3)=6x+6

12. [출제의도] 산점도를 이해하여 상황에 맞는 값을 구하다.

작년보다 올해 책을 더 많이 읽은 학생의 수는 그림에서 대각선의 위쪽에 있는 점의 개수이므로

그러므로 a=9

작년과 올해 해마다 5권 이상의 책을 읽은 학생의 수는 그림에서 표시한 부분과 같이 10이다.

그러므로 b=10

따라서 a+b=9+10=19

13. [출제의도] 주어진 상황을 연립방정식으로 표현하 고 실생활 문제를 해결한다.

선물 세트 A를 a상자, 선물 세트 B를 b상자 만드는 데 필요한 사탕의 개수는 20a+5b이고 쿠키의 개수는 15a+25b이다

주어진 조건에 따라 다음과 같이 연립방정식을 세울 수 있다.

 $(20a + 5b = 360 \cdots)$

 $\{15a + 25b = 440 \dots 2\}$

b의 계수의 절댓값이 같아지도록 ②의 양변을 5로 나누면

 $3a + 5b = 88 \cdot \dots \cdot (3)$

①에서 ③을 변끼리 빼면

17a=272

a = 16

a=16을 ③에 대입하면

 $3 \times 16 + 5b = 88$

48 + 5b = 88

5b = 40

b = 8

따라서 a+b=16+8=24

14. [출제의도] 정비례 관계와 반비례 관계를 이해하여 반비례 관계식을 구한다.

두 점 A, B의 x좌표의 합이 0이므로 점 A의 x좌표를 양수 p라 하면 점 B의 x좌표는 -p이다.

직선 $y=-\frac{1}{2}x$ 가 두 점 A, B를 지나므로

두 점 A, B의 좌표는

$$A(p, -\frac{1}{2}p), B(-p, \frac{1}{2}p)$$

그러므로 점 C 의 좌표는 $C\left(-p, -\frac{1}{2}p\right)$ 이다.

삼각형 ABC의 넓이가 16이므로

$$\begin{aligned} \frac{1}{2} \times \overline{\text{AC}} \times \overline{\text{BC}} &= \frac{1}{2} \times 2p \times p \\ &= p^2 \end{aligned}$$

-p= 16

p=4이므로 A(4, -2)이다.

점 A(4, -2)가 반비례 관계 $y = \frac{a}{x}$ 의 그래프 위의 점이므로

 $-\,2=\frac{a}{4}$

a = -8

15. [출제의도] 경우의 수를 구하여 주어진 조건을 만 족시키는 수의 합을 추론한다.

세 가지 경우로 나누어 구한다.

(i) B와 C가 모두 당번을 하는 경우

A, B, C 세 명이 당번을 하므로

당번을 정하는 방법은

(A, B, C), (A, C, B), (B, A, C),

(B, C, A), (C, A, B), (C, B, A)의 6가지이다.

그러므로 당번을 정하는 경우의 수는 6 이다.

(ii) B는 당번을 하고 C는 당번을 하지 않는 경우
 A, B가 당번을 하고, C는 당번을 하지 않으므로
 A, B, D 또는 A, B, E 세 명이 당번을 하므로
 당번을 정하는 방법은

(A, B, D), (A, D, B), (B, A, D),

 $(B,D,A),\ (D,A,B),\ (D,B,A),$

(A, B, E), (A, E, B), (B, A, E),

(B, E, A), (E, A, B), (E, B, A)의 12가지이다.

그러므로 당번을 정하는 경우의 수는 12 이다.

(iii) C는 당번을 하고 B는 당번을 하지 않는 경우 A, C가 당번을 하고, B는 당번을 하지 않으므로 A, C, D 또는 A, C, E 세 명이 당번을 하므로 당번을 정하는 방법은

(A, C, D), (A, D, C), (C, A, D),

(C, D, A), (D, A, C), (D, C, A),

(A, C, E), (A, E, C), (C, A, E),

(C, E, A), (E, A, C), (E, C, A)의 12가지이다.

그러므로 당번을 정하는 경우의 수는 12이다.
(i), (ii), (iii)에 의하여 당번을 정하는 경우의

(i), (ii), (iii)에 의하여 당번을 정하는 경우의 수 는 30 이다.

따라서 a=6, b=12, c=30에서 a+b+c=48

16. [출제의도] 외심의 성질을 이해하여 각의 크기를 구한다.

점 O는 삼각형 ABC의 외심이고 호 BC에 대한 원주 각의 크기가 52°이므로 호 BC에 대한 중심각 BOC의 크기는 104°이다. $\overline{OB} = \overline{OC}$ 이므로 삼각형 OBC는 이등변삼각형이다.

 \angle OBC = \angle BCO = 38°

또 $\overline{BD} = \overline{BC}$ 이므로 삼각형 BCD도 이등변삼각형이다. ∠BCD=∠BDC=71°

따라서

 \angle OCD = \angle BCD - \angle BCO

= 71° - 38°

= 33°

17. [출제의도] 제곱근의 성질을 이해하여 실생활 문제를 해결한다.

입장권의 넓이를 x라 하자.

고객용 부분의 넓이가 입장권의 넓이의 $\frac{\sqrt{15}}{5}$ 이므로

고객용 부분의 넓이는 $\frac{\sqrt{15}}{5}x$ 이고

회수용 부분의 넓이는 $x - \frac{\sqrt{15}}{5}x$ 이다.

회수용 부분의 넓이가 4이므로

$$x - \frac{\sqrt{15}}{5}x =$$

$$x\left(\frac{5-\sqrt{15}}{5}\right) = 4$$

$$=4 \times \frac{5}{5 - \sqrt{15}}$$

$$=\frac{20}{5-\sqrt{15}}$$

$$= \frac{20(5+\sqrt{15})}{(5-\sqrt{15})(5+\sqrt{15})}$$

$$=\frac{20(5+\sqrt{15})}{5^2-(\sqrt{15})^2}$$

$$=\frac{20(5+\sqrt{15})}{10}$$

$$=2(5+\sqrt{15})$$

 $=10+2\sqrt{15}$

따라서 입장권의 넓이는 $10+2\sqrt{15}$ 이다.

18. [출제의도] 주어진 상황을 이차방정식으로 표현하 고 선분의 길이를 구한다.

FD=x라 하자.

조건 (가)에서 $\overline{EB}:\overline{FD}=2:1$ 이므로

EB = 2x이고 0 < x < 1이다.

정사각형의 한 변의 길이가 2이므로

 $\overline{AE} = 2 - 2x$, $\overline{AF} = 2 - x$

그러므로 삼각형 AEF의 넓이는

 $\frac{1}{2}(2-2x)(2-x) = x^2-3x+2$

조건 (나)에 의하여

 $x^2 - 3x + 2 = \frac{10}{9}$

 $9x^2 - 27x + 8 = 0$

(3x-1)(3x-8)=0

 $x = \frac{1}{3}$ 또는 $x = \frac{8}{3}$

0 < x < 1이모로 $x = \frac{1}{3}$

따라서 선분 AF의 길이는

 $\overline{\rm AF} = \overline{\rm AD} - \overline{\rm FD}$

$$=2-\frac{1}{3}$$

 $=\frac{5}{3}$

19. [출제의도] 주어진 상황을 이차방정식으로 표현하고 실생활 문제를 해결한다.

정사각형 ABCD의 내부를 정사각형 모양의 타일로 가로 n개, 세로 n개 이어 붙여 채웠다고 하면

전체 타일의 개수는 n^2 이다.

정사각형 ABCD의 두 대각선이 교차하는 부분에 놓이는 타일의 모양은 n의 값에 따라 다음과 같이 두가지 형태가 있다.

(i) n이 홀수일 때

그림과 같이 두 대각선이 교차하는 부분에 검은 타일이 하나 겹쳐진다.

이제 정사각형 ABCD에 놓인 검은 타일을 서로 인접하게 한쪽으로 이동하여 정리하면 다음과 같 은 모양이 된다.

위 그림에서 흰 타일의 개수는

 $(n-4)(n-2)\!+\!1$

조건에서

(n-4)(n-2)+1=168

 $n^2 - 6n + 9 = 168$

 $n^2 - 6n - 159 = 0$ $n = 3 \pm \sqrt{168}$

 $n = 3 \pm \sqrt{168}$ = $3 \pm 2\sqrt{42}$

-312V42 따라서 조건을 만족시키는 홀수 n은 존재하지 않 느디

(ii) n이 짝수일 때

그림과 같이 두 대각선이 교차하는 부분에 검은 타일이 겹쳐지지 않는다.

이제 정사각형 ABCD에 놓인 검은 타일을 서로 인접하게 한쪽으로 이동하여 정리하면 다음과 같 은 모양이 된다.

위 그림에서 흰 타일의 개수는

(n-4)(n-2)

조건에서

(n-4)(n-2)=168

 $n^2 - 6n + 8 = 168$

 $n^2 - 6n - 160 = 0$

(n+10)(n-16)=0

n은 자연수이므로 n=16

따라서 전체 타일의 개수는 16²=256이므로 검은색 타일의 개수는 256-168=88이다.

20. [출제의도] 도형의 성질을 이용하여 삼각비의 값을 구한다.

점 F에서 선분 DE에 내린 수선의 발을 H라 하면 H는 선분 DE의 중점이다.

조건에 의해 FH=1이다.

∠BHF=90°, ∠HBF=45°이므로

삼각형 HBF는 직각이등변삼각형이다.

그러므로 $\overline{BH}=1$ 이 되어 $\overline{HA}=2$ 이다.

직각삼각형 FDH에서 ∠FDH=60°, FH=1이므로

$$\overline{\text{HD}} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$$
이다. 따라서

 $\overline{\mathrm{DA}} = \overline{\mathrm{HA}} - \overline{\mathrm{HD}}$

$$=2-\frac{\sqrt{3}}{3}$$

$$=\frac{6-\sqrt{3}}{3}$$

따라서

$$\tan x = \frac{\overline{DA}}{\overline{AC}}$$

$$= \frac{6 - \sqrt{3}}{3} \times \frac{1}{3}$$
$$= \frac{6 - \sqrt{3}}{3}$$

[다른 풀이]

점 F에서 선분 DE에 내린 수선의 발을 H라 하면 H는 선분 DE의 중점이다.

조건에 의해 FH=1이다.

∠BHF=∠BAC=90°이므로 HF // AC 이다.

따라서 $\overline{BH} : \overline{BA} = \overline{HF} : \overline{AC}$

이므로 $\overline{BH}=1$ 이 되어 $\overline{HA}=2$ 이다.

직각삼각형 FDH 에서 \angle FDH = 60° , $\overline{\text{FH}}$ = 1 이므로

$$\overline{\rm HD} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$$
이다. 따라서
$$\overline{\rm DA} = \overline{\rm HA} - \overline{\rm HD}$$

$$=2-\frac{\sqrt{3}}{3}$$

$$=\frac{6-\sqrt{3}}{3}$$

$$\tan x = \frac{\overline{DA}}{\overline{AC}}$$

$$=\frac{6-\sqrt{3}}{3}\times$$

21. [출제의도] 삼각형의 성질을 이용하여 <보기>의 참, 거짓을 판별한다.

ㄱ. 점 P는 삼각형 ABC의 두 중선의 교점이므로 삼각형 ABC의 무게중심이다.

그러므로 AP : PM = 2:1

 $\overline{\mathrm{AP}}:\overline{\mathrm{AM}}=2:3$

따라서 3AP=2AM (참)

ㄴ. 두 점 M, N이 각각 두 변 BC, AC의 중점이므 로 삼각형의 중점연결정리에 의하여

 $\overline{MN} = \frac{1}{2} \overline{AB} = 3 \circ | \Gamma |$.

 $\overline{NP} = x$ 라 하자.

점 P가 삼각형 ABC의 무게중심이므로

 $\overline{\mathrm{BP}}:\overline{\mathrm{NP}}=2:1$ 에서

두 직각삼각형 BMP와 PMN에서

피타고라스 정리에 의하여

 $\overline{PM}^2 = \overline{BM}^2 - \overline{BP}^2$

 $= \overline{MN}^2 - \overline{NP}^2$

이ㅁ로

 $4^2 - (2x)^2 = 3^2 - x^2$

 $16 - 4x^2 = 9 - x^2$

x는 양수이므로 $x = \sqrt{\frac{7}{3}} = \frac{\sqrt{21}}{3}$

 $\overline{BN} = \overline{BP} + \overline{NP}$

$$=3\times\frac{\sqrt{21}}{3}$$

= √21 (참)

C. 직각삼각형 ABP에서 피타고라스 정리에 의하여

$$\overline{AP}^2 = \overline{AB}^2 - \overline{BP}^2$$

$$= \epsilon^2 - (2\pi)^2$$

$$=6^2-(2x)^2$$

$$=6^2 - \left(\frac{2\sqrt{21}}{3}\right)^2$$

$$=36-\frac{28}{}$$

$$=\frac{1}{3}$$
 $-\frac{1}{80}$

$$\overline{AP} = \sqrt{\frac{80}{3}}$$

ㄴ에서 $\overline{BN} = \sqrt{21}$ 이므로

삼각형 ABN의 넓이는 $\triangle ABN = \frac{1}{2} \times \overline{BN} \times \overline{AP}$

$$=\frac{1}{2}\times\sqrt{21}\times\frac{4\sqrt{15}}{3}$$

 $= 2\sqrt{35}$

점 N은 선분 AC의 중점이므로

삼각형 ABC의 넓이는

 $\triangle ABC = 2 \times \triangle ABN$

=
$$4\sqrt{35}$$
 (참)

따라서 옳은 것은 ㄱ, ㄴ, ㄷ이다.

22. [출제의도] 등식의 성질을 이해하여 일차방정식의 해를 구한다.

 $\frac{5-x}{2} = x - 8$ 의 양변에 2를 곱하면

5 - x = 2x - 16

따라서 a=7

23. [출제의도] 소인수분해를 이해하여 자연수의 개수

99를 소인수분해하면

 $99 = 3^2 \times 11$

이므로 99와 서로소인 자연수는 3과 11을 소인수로 갖지 않는다.

30 이하의 자연수 중 3을 소인수로 갖는 자연수는

3, 6, 9, 12, 15, 18, 21, 24, 27, 30의 10개, 11을 소인수로 갖는 자연수는 11, 22의 2개이다.

따라서 30 이하의 자연수 중 99와 서로소인 자연수의 개수는

30 - (10 + 2) = 30 - 12

24. [출제의도] 히스토그램을 해석하여 실생활 문제를 해결하다

마스크의 일일 판매량이

30개 이상 40개 미만인 계급의 도수는 12,

40개 이상 50개 미만인 계급의 도수는 6,

50개 이상 60개 미만인 계급의 도수는 3

이므로 마스크의 일일 판매량이 30개 이상인 일수는

12+6+3=21

이다.

따라서 구하는 비율은

 $\frac{21}{30} \times 100 = 70(\%)$

이므로

25. [출제의도] 정수와 유리수의 개념을 이해하여 정수 의 개수를 구하다.

조건 (가)를 만족시키는 정수 a는

-49, -48, -47, \cdots , -1, 0, 1, \cdots , 47, 48, 49의 99개이다.

 $\frac{a}{7}$ 가 정수인 a는

 $0, \pm 7, \pm 14, \pm 21, \pm 28, \pm 35, \pm 42, \pm 49$

의 15개이고

조건 (나)에서 $\frac{a}{7}$ 는 정수가 아닌 유리수이므로

조건을 만족시키는 정수 a의 개수는

99 - 15 = 84

26. [출제의도] 삼각형의 닮음을 이용하여 도형의 넓이 문제를 해결한다.

삼각형 ABC의 넓이를 S라 하자.

 $\overline{AE} = \overline{EB}$ 에서 $\overline{AB} = 2 \times \overline{AE}$

 $\overline{AG} = \overline{GC}$ 에서 $\overline{AC} = 2 \times \overline{AG}$

이므로 삼각형 AEG와 삼각형 ABC는 닮은 토형이 다. 이 두 삼각형의 닮음비가 1:2이므로

$$\triangle AEG = \frac{1}{4} \times \triangle ABC$$

$$= \frac{S}{4} \cdot \dots \cdot \bigcirc$$

또, $\overline{AD} = \overline{DE}$ 에서 $\overline{AE} = 2 \times \overline{AD}$

 $\overline{AF} = \overline{FG}$ 에서 $\overline{AG} = 2 \times \overline{AF}$

 $\overline{AB} = 2 \times \overline{AE} = 2 \times (2 \times \overline{AD}) = 4 \times \overline{AD}$

 $\overline{AC} = 2 \times \overline{AG} = 2 \times \left(2 \times \overline{AF}\right) = 4 \times \overline{AF}$

이므로 삼각형 ADF와 삼각형 ABC는 닮은 도형이다. 이 두 삼각형의 닮음비가 1:4이므로

$$\triangle ADF = \frac{1}{16} \times \triangle ABC$$
$$= \frac{S}{16} \cdots \bigcirc$$

①, ⓒ에 의하여

 \Box DEGF= \triangle AEG- \triangle ADF

$$= \frac{S}{4} - \frac{S}{16}$$
$$= \frac{3}{16}S$$
$$= 24$$

따라서 $S = 24 \times \frac{16}{3} = 128$

27. [출제의도] 이차함수의 그래프와 제곱근의 성질을 이용하여 문제를 해결한다.

점 A(p,3)이 이차함수 $y=ax^2$ 의 그래프 위의 점이므

$$3 = ap^2$$
, $p^2 = \frac{3}{a}$, $p = \pm \sqrt{\frac{3}{a}}$

$$p < 0$$
이므로 $p = -\sqrt{\frac{3}{a}}$ 이다.

 $y=ax^2$ 의 그래프는 y축에 대칭이므로 $q=\sqrt{\frac{3}{2}}$ 이다

$$\overline{\mathrm{CD}} = 1 - (-1) = 2,$$

$$\overline{\rm AB} = \sqrt{\frac{3}{a}} - \left(-\sqrt{\frac{3}{a}}\right) = 2\sqrt{\frac{3}{a}}$$

이고 사다리꼴 ACDB의 높이는 3-(-1)=4이므로

 $\square ACDB = \frac{1}{2} \times (\overline{CD} + \overline{AB}) \times 4$

$$=\frac{1}{2}\times\left(2+2\sqrt{\frac{3}{a}}\right)\times4$$

$$= 4 + 4\sqrt{\frac{3}{a}}$$

$$= 4 + \sqrt{\frac{48}{a}}$$

사각형 ACDB의 넓이가 자연수가 되려면

$$\sqrt{\frac{48}{a}}$$
 이 자연수이어야 한다.

 $\sqrt{rac{48}{a}} = \sqrt{rac{3 imes 4^2}{a}}$ 이 자연수가 되기 위한 자연수 a의

값은 3×1², 3×2², 3×4²이다. 따라서 a의 최댓값은 48이다.

28. [출제의도] 피타고라스 정리와 삼각형의 넓이를 활 용하여 삼각비를 구한다.

점 D에서 선분 AC의 연장선에 내린 수선의 발을 H

 $\overline{\mathrm{ND}} = \overline{\mathrm{CH}} = 9$ 이므로

 $\overline{\rm AH} = \overline{\rm AC} + \overline{\rm CH} = 16 + 9 = 25$

$$\overline{\mathrm{DH}} = \overline{\mathrm{NC}} = \frac{1}{2} \times \overline{\mathrm{BC}} = 15$$

직각삼각형 ADH에서 피타고라스 정리에 의하여

 $\overline{AD} = \sqrt{\overline{AH}^2 + \overline{DH}^2} = \sqrt{25^2 + 15^2} = 5\sqrt{34}$

직각삼각형 CDH에서 피타고라스 정리에 의하여

 $\overline{\mathrm{CD}} = \sqrt{\overline{\mathrm{CH}}^2 + \overline{\mathrm{DH}}^2} = \sqrt{9^2 + 15^2} = 3\sqrt{34}$

$$\triangle ADC = \frac{1}{2} \times \overline{AD} \times \overline{CD} \times \sin x$$

$$=\frac{1}{2}\times5\sqrt{34}\times3\sqrt{34}\times\sin x$$

 $=255\times\sin x$

또, 삼각형 ADC는 밑변이 선분 AC이고, 높이가 선분 NC 이므로

$$\triangle ADC = \frac{1}{2} \times \overline{AC} \times \overline{NC}$$

$$= \frac{1}{2} \times 16 \times 15$$

= 120

 $255 \times \sin x = 120$ 에서

$$\sin x = \frac{120}{255} = \frac{8}{17}$$

따라서 p=17, q=8이므로 p+q=25

[다른 풀이]

직각삼각형 ABC에서 피타고라스 정리에 의하여 $\overline{AB}^2 = \overline{AC}^2 + \overline{BC}^2$

$$=16^2+30^2$$

$$=34^{2}$$

이므로 $\overline{AB} = 34$

직각삼각형 ABC는 선분 AB를 지름으로 하고 중심 이 M인 원에 내접한다.

삼각형의 중점연결정리에 의하여

$$\overline{MN} = \frac{1}{2} \times \overline{AC} = 8$$

 $\overline{\text{MD}} = \overline{\text{MN}} + \overline{\text{ND}} = 8 + 9 = 17$

이므로 점 D는 원 위의 점이다.

원주각의 성질에 의하여

 $x = \angle ADC = \angle ABC$

그러므로 $\sin x = \sin (\angle ABC) = \frac{\overline{AC}}{\overline{AB}} = \frac{16}{34} = \frac{8}{17}$

따라서 p=17, q=8이므로 p+q=25

29. [출제의도] 이차함수의 성질과 삼각형의 넓이를 이 용하여 함수의 식을 구한다.

이차함수 $y=-x^2+2x$ 에서

$$y = -x^2 + 2x$$

 $=-(x-1)^2+1$

이므로 꼭짓점 A의 좌표는 A(1,1)이다.

이차함수 $y = ax^2 + bx + c(a > 0)$ 의

꼭짓점의 좌표가 (1,1)이므로

 $y = ax^2 + bx + c$

 $= a(x-1)^2 + 1$

 $=ax^2-2ax+a+1$

따라서 b=-2a, c=a+1 ····· ①

이차함수 $y = ax^2 + bx + c$ 의 그래프가

y축과 만나는 점이 (0, c)이므로

점 B의 좌표는 B(0, c)(c>1)이다.

이차함수 $y=ax^2+bx+c$ 의 그래프의 축인 직선 x=1

에 대하여 대칭이므로 점 C의 좌표는 C(2, c)이다. 두 점 A와 C를 지나는 직선은 기울기가

 $\frac{c-1}{2-1} = c-1$ 이고 점 (1, 1)을 지나므로

직선의 방정식은 y = (c-1)x + 2 - c이다.

직선의 y절편이 2-c이므로

점 D의 좌표는 D(0, 2-c) 이다.

두 점 B와 C는 y좌표가 같고,

BC=2, BD=2c-2이므로

삼각형 BDC의 넓이는

 $\frac{1}{2} \times 2 \times (2c-2) = 12$

$$\frac{1}{2} \times 2 \times (2c-2)$$

2c-2=12

Э에서 a=6, b=-12

따라서 2a-b+c=12+12+7=31

30. [출제의도] 삼각형의 닮음과 원의 성질을 이용하여 주어진 문제를 해결한다.

AB= AC= 25 이므로

삼각형 ABC는 이등변삼각형이다.

점 D가 점 A에서 변 BC에 내린 수선의 발이므로

 $\overline{BC} = 30$ 에서 $\overline{BD} = \overline{DC} = 15$

두 삼각형 ADC, BEC에서

∠C가 공통이고 ∠ADC=∠BEC=90°이므로

△ADC∽△BEC이다.

 $\overline{AC} : \overline{CD} = \overline{BC} : \overline{CE}$ 이고

25:15=30: EE이므로 EE=18이다.

DE 가 원의 지름이므로 ∠DGE = 90°

 $\angle BEC = \angle DGC = 90^{\circ}$ 이므로 $\overline{DG} /\!\!/ \overline{BE}$

점 D가 변 BC의 중점이므로 $\overline{EG} = \overline{GC} = 9$ DE 가 원의 지름이므로 ∠EFD=90°가 되어

삼각형 EFC는 직각삼각형이다.

점 G는 선분 EC의 중점이므로

직각삼각형 EFC의 외심이다.

따라서 $\overline{FG} = \overline{GC} = 9$

두 삼각형 ADC, EFC에서

∠C는 공통이고 ∠ADC=∠EFC=90°이므로

△ADC∽△EFC이다.

 $\overline{CA}:\overline{CE} = \overline{CD}:\overline{CF}$ 이고

25:18=15: $\overline{\text{CF}}$ 이므로 $\overline{\text{CF}} = \frac{54}{5}$ 이다.

그러므로 삼각형 GFC의 둘레의 길이는

 $\overline{\mathrm{GF}}+\overline{\mathrm{FC}}+\overline{\mathrm{CG}}=9+\frac{54}{5}+9=\frac{144}{5}$ 이다. 따라서 $p=5,\ q=144$ 이므로 p+q=149

[다른 풀이]

AB=AC=25이므로

삼각형 ABC는 이등변삼각형이다.

점 D가 점 A에서 변 BC에 내린 수선의 발이므로

 $\overline{BC} = 30$ 에서 $\overline{BD} = \overline{DC} = 15$

직각삼각형 ABD에서 피타고라스 정리에 의하여

 $\overline{AD} = \sqrt{\overline{AB}^2 - \overline{BD}^2}$

 $= \sqrt{25^2 - 15^2}$

=20

삼각형 ABC의 넓이에서

 $\frac{1}{2} \times \overline{BC} \times \overline{AD} = \frac{1}{2} \times \overline{AC} \times \overline{BE}$

 $\frac{1}{2} \times 30 \times 20 = \frac{1}{2} \times 25 \times \overline{BE}$

 $\overline{BE} = 24$

직각삼각형 BCE에서 피타고라스 정리에 의하여

 $\overline{\mathrm{EC}} = \sqrt{\overline{\mathrm{BC}}^2 - \overline{\mathrm{BE}}^2}$

 $=\sqrt{30^2-24^2}$

= 18

선분 DE가 원의 지름이므로 ∠DGE=90°

 $\angle BEC = \angle DGC = 90^{\circ}$ 이므로 $\overline{DG} /\!\!/ \overline{BE}$

 $\overline{BD} = \overline{DC}$ 이므로 삼각형의 중점연결정리에 의하여 $\overline{EG} = \overline{GC} = 9$

조건에 의해 사각형 EDFG는 원에 내접한다.

원에 내접하는 사각형에서 두 대각의 합은 180°이므로

 $\angle FGE + \angle EDF = 180^{\circ}$

또, ∠FGE+∠CGF=180°이므로

 \angle FGE + \angle EDF = \angle FGE + \angle CGF

 $\angle EDF = \angle CGF \cdots \bigcirc$

이때 ∠GCF는 공통이므로

두 삼각형 CGF, CDE는 닮음이다.

삼각형 ABD의 외접원을 O라 하자.

 $\angle AEB = 90^{\circ}$ 이므로 점 E는 원 O 위에 있다.

즉, 사각형 ABDE는 원 O에 내접한다.

원에 내접하는 사각형에서 두 대각의 합은

180° 이므로

 $\angle BAE + \angle BDE = 180^{\circ}$

또, ∠BDE+∠CDE=180°이므로

 $\angle BAE + \angle BDE = \angle BDE + \angle CDE$

 $\angle BAE = \angle CDE \cdots \bigcirc$

두 각 CDE, EDF는 같은 각이므로

③, ⓒ에서 ∠BAE = ∠CGF

두 각 BAC, BAE는 같은 각이므로

 $\angle BAC = \angle CGF$

삼각형 ABC와 삼각형 GFC에서 ∠C는 공통이고

∠BAC = ∠FGC 이므로 △ABC∽△GFC

삼각형 ABC가 이등변삼각형이므로

삼각형 GFC도 이등변삼각형이다.

그러므로 $\overline{GF} = \overline{GC} = 9$

 $\overline{AC}:\overline{GC}=\overline{BC}:\overline{FC}$ 에서 $25:9=30:\overline{FC}$ 이므로

 $\overline{FC} = \frac{54}{5}$

그러므로 삼각형 GFC의 둘레의 길이는

 $\overline{\mathrm{GF}} + \overline{\mathrm{FC}} + \overline{\mathrm{CG}} = 9 + \frac{54}{5} + 9 = \frac{144}{5} \, \mathrm{old}.$

따라서 p=5, q=144이므로 p+q=149