9/18/2019 (More) fin w/ moles! NH2 1xN = 1x14.01 (ammonia) | molerule NHz = 17.03 u NHz | Molar mass | mol NHz = 17.03 g NHz } | 6.022x10²³ molerulo NHz = 17.03 g NHz | 17.03⁹/mol Q: What mass do 2.5×1022 molecules of NHz weigh? 2.5×10²² molecules NH3 x 17.035 NH3 = 0.71g NH3 6.022×10²³ molecules NH3 Q: How many milligrams of NHs are there in a 0.0128mol sample? mg = 10-3 0.0128mol NH3 x 17.03g NH3 x mg = 218mg NH3

1 mol NH3 x 10-3g

Composition of compounds
-what are the element?
- what are mass %?
- can use to ID / check pusity/
ex: Calculate mass % elements in COCI2.
mass C
$1 \times C = 12.01 $ % $C = \frac{12.019/mol}{98.919/mol} \times 100 = 12.14% C$
molar mass _
1 x 0 = 16.00 ~ %0 = 16.009/mol x 100 = 16.18% 0
98.919/md
2 x Cl = 2x35.45 ~> 1.a=70.90.9mol x100 = 71.68% a
98:919/mol (+)
98.91 9/mol 100.00%.
242 C
Mass % D Formula mol. form. emp. por.
-reverse popular!
we actually only not the empirical formula their way
reverse proces! we actually only get the empirical formula this way.
Map: % elements assume #g elements -> mot elements
1009
find ratio + write formula!

	"Sugar" has 40.00%. C					
	6.717. H (and a molar					
3	53.287. 0 mass of 180.29/mon)					
	Assume 100g					
	40.00g C x 1mol C = 3.331 mol C [1.000 C					
	12.01g C					
	= 3-330mol					
5	6.71g H, Innol H = 6.66 mol H \ 2.00 H					
	1.008gH					
	53.28g0, 1mol 0 = 3-330 mol 0) [1.000 0'					
	16.0000					
	emp. 1xC = 12.01					
	empirical formula: CH,O ~ molar 2+H = 2+1.008					
	mass 1x0 = 16.00					
	30.029/mol					
	molar mass = n = 180.29/mol = 6.003					
	emp. molar mass 30.029/mol					
	≈ 6					
	molecular formula = (CH2O) = C6H12O6					
	mend of exam I material material					

Chapter 4 Chemical reactions + chemical quantities.							
(rxus)							
"Stoi	chiometry"						
burning methane:			hims	(a)			
8		chemical	equations (egs)	H) H			
H	00		(6)				
H(C)H)	<u>o</u> o -		000	A A			
H	eactant	"yields"	D	roducts			
CH4(9)+	20, (9)	-	$CO_2(g)$	+)H2012)			
		<u> </u>		Loefficient			
C; 1		C: 1		,,			
H: 4		H: X	4				
0: 144		0: 🔏	4				
			Ba	rlanced!			