内容提要

- ■基本假设
- 天阻尼自由振动
- ■能量法求固有频率
- ■有阻尼自由振动
- 简谐激励下的强迫振动
- ■非简谐激励下的强迫振动

振动类型

按激励特性划分:

- 自由振动 没有外部激励,或者外部激励除去后, 系统自身的振动。
- 强迫振动 系统在作为时间函数的外部激励下发生的振动,这种外部激励不受系统运动的影响。
- **自激振动** 系统由系统本身运动所诱发和控制的激励下发生的振动。
- 参激振动 激励源为系统本身含随时间变化的参数,这种激励所引起的振动。

1 基本假设 (1)

- 系统运动只沿一个方向,只用一个坐标就可以定义。
- 系统仅由三个基本元件(质量元件、弹性元件和阻尼元件)组成,且构成下图模型。

1 基本假设 (2)

- 系统参数全部为常数,系统是**线性、时不变**参数系统
 - 线性系统的定义
 - 齐次性

对于一个函数 y=f(x) 来说,如果他有线性性,则必须要满足两个法则:比例性和叠加性

■叠加性

1. **比例性**: 对于任意的 a ,都有 ay=f(ax) 成立,即 x 扩大倍, y 也扩大 a 倍。

2. 叠加性: 若 $y_1=f(x_1)$, $y_2=f(x_2)$, 则 $(y_1+y_2)=f(x_1+x_2)$

■ 系统可以采用常系数、线性常微分方程表示

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + a_1 \frac{\mathrm{d}x}{\mathrm{d}t} + a_2 x = f(t)$$

1 基本假设 (3)

■ 举例——单摆: 可绕轴转动的细长杆加上端部的重锤(杆的质量和锤的体积可忽略不计),组成单摆。

2 无阻尼自由振动

- ■物理模型和数学方程
- 特征方程和无阻尼自由振动的解
- 系统的固有频率
- 实例分析

2.1 物理模型和数学方程

- 无阻尼—— c=0
- 自由振动—— f(t) = 0
- 初始条件—— $x(0) = x_0, \dot{x}(0) = v_0$

2.2 特征方程和无阻尼自由振动的解(1)

■ 数学模型

数学模型
$$m\ddot{x} + kx = 0 \qquad \qquad \ddot{x} + \omega_{n}^{2}x = 0, \qquad \omega_{n} = \sqrt{\frac{k}{m}}$$

$$\Leftrightarrow x = Be^{\lambda t}, B \neq 0 \qquad \qquad \text{特征方程}$$

$$\lambda^{2}Be^{\lambda t} + \omega_{n}^{2}Be^{\lambda t} = 0 \qquad \qquad \lambda^{2} + \omega_{n}^{2} = 0$$

$$\longrightarrow \lambda_{1} = i\omega_{n}, \lambda_{2} = -i\omega_{n} \qquad \qquad \text{特征值}$$

2.2 特征方程和无阻尼自由振动的解(2)

■ 数学模型的解

$$x = B_1 e^{\lambda_1 t} + B_2 e^{\lambda_2 t}$$
 将 $x(0) = x_0, \dot{x}(0) = v_0$ 代入,得:
$$\begin{cases} B_1 = (x_0 + \frac{v_0}{i\omega_n}) / 2 \\ B_2 = (x_0 - \frac{v_0}{i\omega_n}) / 2 \end{cases}$$

2.2 特征方程和无阻尼自由振动的解(3)

■数学模型的解

$$e^{\mathrm{i}\theta} = \cos\theta + \mathrm{i}\sin\theta$$

$$x(t) = x_0 \cos \omega_n t + \frac{v_0}{\omega_n} \sin \omega_n t = A \sin(\omega_n t + \varphi)$$

$$A = \sqrt{x_0^2 + \left(\frac{v_0}{\omega_n}\right)^2},$$

$$\varphi = \tan^{-1} \frac{x_0 \omega_n}{v_0}$$

2.3 系统的固有频率

系统的固有频率仅和系统参数有关,和初始 条件无关。

$$\omega_n = \sqrt{\frac{k}{m}}$$

2.4 实例分析(1)

■ 单摆: 可绕轴转动的细长杆加上端部的重锤(杆的质量和锤的 体积可忽略不计), 试确定重锤的运动方程及振动固有频率。

•运动方程

$$l\ddot{\theta}+g\theta=0$$

•固有频率

$$\omega_{\rm n} = \sqrt{\frac{g}{l}}$$
 $\vec{\mathbb{R}}$
 $f_{\rm n} = \frac{1}{2\pi} \sqrt{\frac{g}{l}}$

2.4 实例分析(2)

■ 一轻质悬臂梁,长为l,弯曲刚度为EI,其中自由端有一个集 中质量m。列出系统振动的运动方程,确定其固有频率。

•梁右端横向振动时的弹簧常数

$$k = \frac{F}{\delta_s} = \frac{F}{Fl^3/3EI} = \frac{3EI}{l^3}$$

2.4 实例分析(3)

 扭摆,如图所示。圆轴的扭转弹簧系数为k(N·m/rad) ,质量不计,圆盘对转轴的转动惯量为I。设有力矩作 用在圆盘上,使圆盘转过某一角度θ后突然释放,求 扭摆的振动微分方程及固有频率。

•运动方程

$$I\ddot{\theta} + k\theta = 0$$

•固有频率

$$\omega_{\rm n} = \sqrt{\frac{k}{I}}$$
 \vec{x}
 \vec{y}
 $\vec{y$

2.4 实例分析(4)

■ 提升机系统: 提升重物重量 $W = 1.47 \times 10^5 \, \mathrm{N}$, 钢索的弹簧常数为 $k = 5.78 \times 10^6 \, \mathrm{N/m}$ 。 重物以 每秒15米的速度向下传送,今钢索上端突然被卡住,试求钢索中的最大张力。

2.4 实例分析(5)

■ 提升机系统(续)

将坐标原点取在绳被卡住瞬时重物所在位置。

$$x_0 = 0$$
 $\dot{x}_0 = v_0$ 重物的振动方程为

$$x(t) = \frac{v_0}{\omega_{\rm n}} \sin(\omega_{\rm n} t)$$

$$\omega_{\rm n} = \sqrt{\frac{gk}{W}}$$

2.4 实例分析(6)

■ 提升机系统(续)

绳中的最大张力等于静张力与因振动引起的动张力之和:

$$T_{\text{max}} = T_s + kA = W + k \frac{v_0}{\omega_n} = W + v_0 \sqrt{\frac{W}{g}k}$$
$$= 1.47 \times 10^5 + 0.74 \times 10^5 = 2.21 \times 10^5 (N)$$

为了减少振动引起的动张力,应当降低升降系统的刚度

三、能量法求固有频率

3 能量法求固有频率

- ■能量法的原理
- 运动方程的建立
- ■固有频率的求法

3.1 能量法的原理

对于能量无耗散的振动系统,在自由振动时系统的机械能守恒。

$$T+U=$$
常数 或 $\frac{\mathrm{d}}{\mathrm{d}t}(T+U)=0$ T ——动能 U ——势能

■ 动能和势能的最大值相等

$$T_{\mathrm{max}} = U_{\mathrm{max}}$$

3.2 运动方程的建立

■ 无阻尼单自由度系统

3.3 固有频率的求法(1)

■由运动方程可以解得

$$x(t) = A\sin(\omega_{\rm n}t + \psi)$$

■动能的最大值和势能的最大值相等

$$\frac{1}{2}m(\omega_{n}A)^{2} = \frac{1}{2}kA^{2} \qquad \longrightarrow \qquad \omega_{n} = \sqrt{\frac{k}{m}}$$

3.3 固有频率的求法 (2)

实例:图示弹簧-质量系统,若计及弹簧质量,且弹 簧长度为 l (悬挂质量后),质量均匀分布,单位长 度质量为 ρ,试确定系统的固有频率。

- 当系统有位移 x 和速度 \dot{x} 时, 弹簧距离上端 u 处微段 du 具有位 移 ux/l ,速度 $u\dot{x}/l$ 。
- 弹簧的总动能为:

$$T_{1} = \int_{0}^{l} \frac{1}{2} \rho \left(\frac{u \dot{x}}{l} \right)^{2} du = \frac{1}{2} \cdot \frac{\rho l}{3} \cdot \dot{x}^{2} = \frac{1}{2} \cdot \frac{m_{t}}{3} \cdot \dot{x}^{2}$$

弹簧质量

3.3 固有频率的求法 (3)

• 系统总动能:
$$T = T_1 + T_2 = \frac{1}{2} \cdot \frac{m_t}{3} \cdot \dot{x}^2 + \frac{1}{2} \cdot m \cdot \dot{x}^2$$

• 系统总势能:
$$U = \frac{1}{2}kx^2$$

• 根据前面所述:
$$x(t) = A\sin(\omega_n t + \psi)$$

• 系统固有频率:
$$\omega_{\rm n} = \sqrt{\frac{k}{m + \frac{m_t}{3}}}$$

