

Marta Fernández-Diego

Mónica Martínez-Gómez

José-MaríaTorralba-Martínez

UNIVERSIDAD POLITÉCNICA DE VALENCIA SPAIN

INTRODUCTION

- Data quality = fundamental determinant of empirical results in software projects dataset
 - Which datasets are more reliable?
 - How to choose the specific projects?
- Data quality = large concept
 - Completeness
 - Accuracy or absence of noise
 - Timeliness
 - Outliers or atypical observations

INVESTIGATION QUESTIONS

- I. Which studies explicitly consider data quality meta-data in the preprocessing of data?
- II. How data quality meta-data criteria can influence the results?

I. REVIEW OF DATA QUALITY META-DATA CRITERIA

Which studies, related with prediction models and based on ISBSG (International Software Benchmarking Standards Group) dataset, explicitly consider data quality meta-data in the preprocessing of data?

- 1. ISBSG data quality variables
- 2. Method and results of the review

1. ISBSG DATA QUALITY VARIABLES

- 2 variables
 - 1. Data Quality Rating
 - 2. Unadjusted Function Point (UFP) Rating
- Assessing projects data quality
- Rated in 4 categories
 - A. Absolute integrity
 - B. Integrity possibly affected
 - C. Integrity not assured
 - D. Little credibility
- Completeness of the case

2. METHOD AND RESULTS OF THE REVIEW

Review method

- Databases: ACM, IEEE Xplore, ScienceDirect, Web of Knowledge
- Search terms: "ISBSG", "ISBSG & quality"
- Hand search
- Information extracted
 - Year of publication / ISBSG Release
 - Data Quality Rating / UFP Rating
 - Topic related with prediction models
 - Use of Size/Effort variables
 - Number of projects selected for analysis

2. METHOD AND RESULTS OF THE REVIEW

Results from the 26 papers retrieved

- Topic related with prediction models
 - 17 papers related with effort estimation
 - Size, duration, team size, substitution cost, defect estimation and productivity
- Data Quality Rating
 - 17 papers using data graded as A or B
- UFP Rating
 - 2 articles from the same first author, Gencel
 - Latest paper from 2010

II. EXPERIMENTAL RESULTS

Which is the effect of data quality meta-data criteria in the number of selected projects that can have influence in the behavior of the models obtained?

- 1. Strength of the association for general data quality by functional size quality
- 2. Influence of data quality meta-data in the sample size
- 3. The case study: Productivity evolution over time

1. STRENGTH OF THE ASSOCIATION FOR GENERAL DATA QUALITY BY FUNCTIONAL SIZE QUALITY

 Data quality meta-data distribution in the ISBSG dataset Release 11

		Data Quality Rating				
		A B C D	A B C	A B	A	
UFP Rating	A B C D ND	5052	4907	4744	928	
	A B C D	4512	4389	4243	840	
	A B C	4497	4385	4243	840	
	A B	3369	3288	3184	836	
	A	2328	2277	2202	676	

- Moderate positive association between both variables
 - Gamma = 0.525

2. INFLUENCE OF DATA QUALITY META-DATA IN THE SAMPLE SIZE

Initial data preparation

- Large heterogeneous dataset
- Selection criteria for productivity concerns
 - All projects dated with the implementation date
 - Comparable definition for size
 - Comparable definition for effort along whole life cycle projects

Results

- 830 remained projects from the initial 5052
- 4222 removed, representing 83.5% of total

2. INFLUENCE OF DATA QUALITY META-DATA IN THE SAMPLE SIZE

Data quality selection

Remained projects applying different data quality ratings

		Data Quality Rating				
		A B C D	A B C	A B	A	
UFP Rating	A B D	830	820	802	316	
	A B	828	820	802	316	
	A	545	537	521	262	

Results

Data quality criteria may not add value

3. THE CASE STUDY: PRODUCTIVITY EVOLUTION OVER TIME

- 4 study cases
 - A sample of 802 projects corresponding to (A | B) & (a | b)
 - A sample of 521 projects corresponding to (A | B) & a
 - A sample of 316 projects corresponding to A & (a | b)
 - A sample of 262 projects corresponding to A & a
- Evolution of mean productivity over time
- Evolution of Byear (regression coefficients) over time
- Observations derived from the analysis of the 4 selected cases

3. THE CASE STUDY: PRODUCTIVITY EVOLUTION OVER TIME

Evolution of mean productivity over time

- Productivity measured as the ratio Size/Effort
- Evolution of mean productivity over time
 - Figure 1
- Results
 - "A & a" plot appears to be the smooth approximation of the other ones

3. THE CASE STUDY: PRODUCTIVITY EVOLUTION OVER TIME

Evolution of Byear over time

Linear regression model relating effort with size

$$\ln(Effort) = C + B_{gg} \ln(Size_{gg}) + B_{gg} \ln(Size_{gg}) + \cdots + B_{gg} \ln(Size_{gg})$$

- Evolution of Byear over time
 - Figure 2
- Results
 - Trend towards a decline in productivity, even if variable

3. THE CASE STUDY: PRODUCTIVITY EVOLUTION OVER TIME

Observations derived from the analysis of the 4 selected cases

- Distribution of projects over time depending on data quality requirements
 - Major percentage decrease occurs in the interval between 2001 and 2005
- Mean and variance of productivity ratio depending on data quality requirements
 - Mean: Both factors statistically significant, but not the interaction between them
 - Variance: only Data Quality Rating

CONCLUSIONS

- Criteria adopted by other researchers with respect to data quality meta-data
- Redundancy between the initial data preparation and data quality meta-data in terms of completeness
- Some variability pointed out in the behavior of the models obtained by varying these criteria
 - Reduction in the sample size
 - Different proportion of removed projects over time
 - Variation in average productivity
- Interaction and simple effects of both variables in the average and variance of Size/Effort variables?

Marta Fernández-Diego

Mónica Martínez-Gómez

José-MaríaTorralba-Martínez

UNIVERSIDAD POLITÉCNICA DE VALENCIA SPAIN

