Face Recognition Using Vgg16

Imagenet

High level category	# synset (subcategories)	Avg # images per synset	Total # images	
amphibian	94	591	56K	
animal	3822	732	2799K	
appliance	51	1164	59K	
bird	856	949	812K	
covering	946	819	774K	
device	2385	675	1610K	
fabric	262	690	181K	
fish	566	494	280K	
flower	462	735	339K	
food	1495	670	1001K	
fruit	309	607	188K	
fungus	303	453	137K	
furniture	187	1043	195K	
geological formation	151	838	127K	
invertebrate	728	573	417K	
mammal	1138	821	934K	
musical instrument	157	891	140K	
plant	1666	600	999K	
reptile	268	707	190K	
sport	166	1207	200K	
structure	1239	763	946K	
tool	316	551	174K	
tree	993	568	564K	
utensil	86	912	78K	
vegetable	176	764	135K	
vehicle	481	778	374K	
person	2035	468	952K	

VGGFace

• Number Of Images= 2.6 million

• Number Of subjects=2,622

ImageNet Pre-trained models

Available models

Model	Size Top-1 Accuracy		Top-5 Accuracy	Parameters	Depth	
Xception	88 MB	0.790	0.945	22,910,480	126	
VGG16	528 MB	0.713	0.901	138,357,544	23	
VGG19	549 MB	0.713	0.900	143,667,240	26	
ResNet50	98 MB	0.749	0.921	25,636,712	-	
ResNet101	171 MB	0.764	0.928	44,707,176	-	
ResNet152	232 MB	0.766	0.931	60,419,944	-	
ResNet50V2	98 MB	0.760	0.930	25,613,800	-	
ResNet101V2	171 MB	0.772	0.938	44,675,560	-	
ResNet152V2	232 MB	0.780	0.942	60,380,648	0-	
InceptionV3	92 MB	0.779	0.937	23,851,784	159	
InceptionResNetV2	215 MB	0.803	0.953	55,873,736	572	
MobileNet	16 MB	0.704	0.895	4,253,864	88	
MobileNetV2	14 MB	0.713	0.901	3,538,984	88	
DenseNet121	33 MB	0.750	0.923	8,062,504	121	
DenseNet169	57 MB	0.762	0.932	14,307,880	169	
DenseNet201	80 MB	0.773	0.936	20,242,984	201	
NASNetMobile	23 MB	0.744	0.919	5,326,716	-	
NASNetLarge	343 MB	0.825	0.960	88,949,818	-	
EfficientNetB0	29 MB	-	-	5,330,571	-	
EfficientNetB1	31 MB	-	-	7,856,239	-	
EfficientNetB2	36 MB	-	-	9,177,569	12	
EfficientNetB3	48 MB	-	-	12,320,535	-	
EfficientNetB4	75 MB	-	-	19,466,823	-	
EfficientNetB5	118 MB	-	-	30,562,527	-	
EfficientNetB6	166 MB	-	-	43,265,143	0-	
EfficientNetB7	256 MB	-	-	66,658,687	-	

Oxford VGGFace Implementation

- from keras_vggface.vggface import VGGFace
- vggface = VGGFace(model='vgg16')
- vggface = VGGFace(model='resnet50')
- vggface = VGGFace(model='senet50')

Flowchart

Imported Network

Program results

```
cLayer =
    SoftmaxLayer with properties:
        Name: 'fc8|softmax'

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 4).

inputSize =
    224    224    3

numClasses =
    5
```

Transfer all layers except 2 last ones

- Extract 2 last layers (Fc8 & Soft max)
- layersTransfer = net.Layers(1:end-2);
- Train the extracted layers with our images
- 5 celebrates dataset used to train the last layers.
- About 100 images

Training Progress

Training on single GPU.

Epoch	Iteration 	Time Elapsed (hh:mm:ss)	Mini-batch Accuracy	Validation Accuracy	Mini-batch Loss	Validation Loss	Base Learning Rate	
1 /	1 /	00:00:02	10.00%	21.43%	6.5863	3.5478	1.0000e-04	
rning: GF	PU is low on me	∌mory, which can s	low performance	, due to additir	onal data transf	ers with main r	memory. Try reducing	g the 'MiniBatchSi
aining or	ption. This war	rning will not app	ear again unles	s you run the /	command: warning	('on', 'nnet_cnr	n:warning:GPULowOnMe	emory').
1 /	3 /	00:00:07	30.00%	42.86%	2.0705	2.9877	1.0000e-04	
1 /	6 /	00:00:13	70.00%	60.71%	1.2677	1.9878	1.0000e-04	
2	9 1	00:00:18	90.00%	75.00%	0.2288	1.2047	1.0000e-04	
2	12	00:00:24	70.00%	71.43%	1.3975	1.1586	1.0000e-04	
3 1	15	00:00:30	60.00%	67.86%	0.7832	1.3325	1.0000e-04	
3 j	18	00:00:36	70.00%	75.00%	0.5995	1.5357	1.0000e-04 i	
4 1	21	00:00:42	90.00%	78.57%	0.2674	1.5767	1.0000e-04	
4 1	24	00:00:48	90.00%	78.57%	0.1500	1.6170	1.0000e-04	
5 j	27	00:00:54	100.00%	78.57%	0.1116	1.6098	1.0000e-04	
5	30	00:01:00	90.00%	78.57%	0.1049	1.4717	1.0000e-04	
6	33	00:01:06	100.00%	78.57%	0.0938	1.3989	1.0000e-04	
6	36	00:01:12	100.00%	82.14%	0.1731	1.3590	1.0000e-04	

Elapsed time is 77.728312 seconds.

accuracy =

0.8214

Training Progress

Face recognition of 28 validation images

Added preprocessing method

. 1- MTCNN

2-vision.CascadeObjectDetector

Multi-task Cascaded Convolutional Network (MTCNN)

• Has three convolutional networks (P-Net, R-Net, and O-Net)

How does MTCNN work?

Test image

Image pyramid

Train a Cascade Object Detector

- The cascade object detector uses the Viola-Jones algorithm to detect people's faces, noses, eyes, mouth, or upper body.
- Robust
- Real time
- Face detection only (not recognition)

Viola-Jones algorithm

- The algorithm has four stages:
- 1-Haar Feature Selection
- 2-Creating an Integral Image
- 3-Adaboost Training
- 4-Cascading Classifiers

Haar Features

All human faces share some similar properties.
 These regularities may be matched using Haar Features.

Haar Features

Integral Image Representation

The Value of any point in an Integral Image, is the sum of all the pixels above and left of that point.

5	2	3	4	1
1	5	4	2	3
2	2	1	3	4
3	5	6	4	5
4	1	3	2	6

			_		_
0	0	0	0	0	0
0	5	7	10	14	15
0	6	13	20	26	30
0	8	17	25	34	42
0	11	25	39	52	65
0	15	30	47	62	81

Adaboost Training

Haar Cascade Classifiers

Accuracy after preprocessing methods

Train and validation process

numClasses =

5

Elapsed time is 19.224704 seconds.

Training on single GPU.

Epoch	Iteration	Time Elapsed (hh:mm:ss)	Mini-batch Accuracy	Validation Accuracy	Mini-batch Loss	Validation Loss	Base Learning Rate
1	1	00:00:03	10.00%	42.86%	5.0264	2.9255	1.0000e-04
arning: GPU	is low on me	mory, which can s	low performance	due to addition	onal data transf	ers with main m	emory. Try
educing the	'MiniBatchSi:	ze' training opti	on. This warning	g will not appe	ear again unless	you run the co	mmand:
arning('on'	, 'nnet cnn:wa	rning:GPULowOnMem	ory').				
1	3	00:00:07	60.00%	82.14%	1.2987	0.5291	1.0000e-04
1	6	00:00:13	70.00%	89.29%	1.0913	0.4721	1.0000e-04
2	9	00:00:18	100.00%	89.29%	0.0546	0.7639	1.0000e-04
2	12	00:00:24	90.00%	85.71%	0.3008	0.9998	1.0000e-04
3	15	00:00:30	100.00%	92.86%	0.0001	0.9117	1.0000e-04
3	18	00:00:35	80.00%	92.86%	0.8042	0.7740	1.0000e-04
4	21	00:00:41	70.00%	96.43%	1.4708	0.5731	1.0000e-04
4	24	00:00:47	90.00%	96.43%	0.1795	0.5694	1.0000e-04
5	27	00:00:52	100.00%	96.43%	0.0633	0.5626	1.0000e-0
5 j	30	00:00:58	100.00%	96.43%	0.0046	0.5406	1.0000e-0
6	33	00:01:04	80.00%	96.43%	0.3559	0.5179	1.0000e-0
6 j	36	00:01:09	100.00%	96.43%	0.0953	0.4940	1.0000e-0

Elapsed time is 78.803296 seconds.

accuracy =

0.9643

Face recognition of 28 validation images

