Charlie Godfrey

godfrey-cw.github.io | godfrey.cw@gmail.com | www.linkedin.com/in/godfrey-cw

Skills_

- **Research**: empirical science of foundation models, novel deep learning architecture components, interpretable and explainable AI, evaluating and understanding trustworthiness of machine learning systems.
- Data modalities: computer vision, reinforcement learning, natural language processing.
- **Tools**: Python (PyTorch, HuggingFace, DeepSpeed, NumPy, SciPy, Pandas, lightgbm, scikit-learn, Matplotlib, Seaborn, Jupyter Notebooks), Git, Bash, Linux, cluster computing (SLURM), AWS EC2, Azure VMs, Tensorboard. MLFlow.

Experience_

Research Associate, Machine Learning, Pacific Northwest National Laboratory

October 2021 - Present

National Security Directorate, Mathematics of Data Science Team

- Adapted high-efficiency MosaicBERT language model training to internal cluster computer environment, obtaining 50% improvement in throughput (tokens/second) and dramatically reducing cost of training; in situations where compute budget was fixed, this resulted in increased model accuracy.
- Improved performance of segmentation models for multispectral satellite images (5 % relative increase in Intersection-over-Union) by implementing multi-GPU distributed training, which facilitated learning for more epochs.
- Accelerated training of neural image compressors (from 3 minutes to 6 seconds per epoch) with a modernized data loading and preprocessing pipeline. This allowed for more rapid hyperparameter sweeps to optimize performance.
- Investigated safety and security of machine learning systems; constructed datasets to measure out-of-distribution performance of computer vision models.
- Presented results to senior leadership and project sponsors in the form of slide decks and technical reports comfortable conveying research findings at appropriate level of technical detail.

Program Associate, Mathematical Sciences Research Institute

March-May 2019

- Participated in the Birational Geometry and Moduli Spaces semester program.
- Presented research on logarithmic Chow-to-Hodge cycle maps at the institute's graduate student seminar.

Education_

PhD in Mathematics, The University of Washington-Seattle

June 2021

- Thesis: Higher Direct Images of Ideal Sheaves, Correspondences in Log Hodge Cohomology and Globally F-Full Varieties.
- Completed the eScience Institute's Advanced Graduate Data Science Option (PhD-level courses in machine learning, data visualization and statistical inference, implemented machine learning methods like LASSO, kernel regression and k-means clustering in raw NumPy and SciPy).
- Department of Mathematics Graduate Fellowship (2018-2019).

Student, MSRI Mathematics of Machine Learning Summer Graduate School

July 29-August 9 2019

- Attended mini-courses and problem sessions on statistical learning, convex optimization, deep learning and reinforcement learning.
- Presented an expository account of recent work on linear stochastic bandits.

Master's of Science in Mathematics, The University of Washington-Seattle Bachelor's of Science in Mathematics and Physics, The University of Wisconsin-Madison

June 2018 May 2014

			•	
M	en	ıt∩	rır	าσ
. • 1	\sim	$\cdot \cdot \cdot$		15-

Industry Mentor, Math-to-Industry Boot Camp

July 2023-August 2023

- Mentored a team of math PhD students evaluating the usefulness of GPT-type large language models for scientific knowledge retrieval and the robustness of Segment Anything for person (e.g. pedestrian) detection.
- To facilitate this capstone project, implemented a Segment Anything inference endpoint using TorchServe and provided a notebook demonstrating inference using the HuggingFace API.

Graduate Mentor, Washington Experimental Math Laboratory

January 2019-December 2020

• Mentored undergraduate research projects on foundations of quantum mechanics and mathematical epidemiology.

Publications

Main Track

- 1. Davis Brown, **Charles Godfrey**, Nicholas Konz, Jonathan Tu and Henry Kvinge. Understanding the Innerworkings of Language Models Through Representation Dissimilarity. In *EMNLP* 2023.
- 2. Kelsey Lieberman, James Diffenderfer, **Charles Godfrey** and Bhavya Kailkhura. Neural Image Compression: Generalization, Robustness, and Spectral Biases. In *NeurIPS* 2023 (was also selected for an oral presentation at the *ICML* 2023 Workshop Neural Compression: From Information Theory to Applications).
- 3. **Charles Godfrey**, Davis Brown (equal contribution), Tegan Emerson and Henry Kvinge. On the Symmetries of Deep Learning Models and their Internal Representations. In *NeurIPS* 2022. **Code available at** github.com/pnnl/modelsym.

Workshop

- 1. **Charles Godfrey**, Henry Kvinge, Elise Bishoff, Myles Mckay, Davis Brown, Tim Doster and Eleanor Byler. How many dimensions are required to find an adversarial example? In *The 3rd Workshop of Adversarial Machine Learning on Computer Vision at CVPR* 2023, **selected for oral presentation**.
- 2. **Charles Godfrey**, Michael Rawson, Henry Kvinge and Davis Brown. Fast computation of permutation equivariant layers with the partition algebra. In *ICLR* 2023 Workshop on Physics for Machine Learning.
- 3. Davis Brown, **Charles Godfrey** (equal contribution), Cody Nizinski, Jonathan Tu, Henry Kvinge. Robustness of edited neural networks. In *ICLR* 2023 Workshop on Mathematical and Empirical Understanding of Foundation Models.
- 4. Henry Kvinge, Davis Brown and **Charles Godfrey**. Exploring the Representation Manifolds of Stable Diffusion Through the Lens of Intrinsic Dimension. In ICLR 2023 Workshop on Mathematical and Empirical Understanding of Foundation Models, **featured in The Gradient**.
- 5. **Charles Godfrey**, Elise Bishoff, Myles McKay and Eleanor Byler. Impact of architecture on robustness and interpretability of multispectral deep neural networks. In SPIE Defense + Commercial Sensing 2023.
- 6. Elizabeth Coda, Nico Courts, Colby Wight, Loc Truong, WoongJo Choi, **Charles Godfrey**, Tegan Emerson, Keerti Kappagantula and Henry Kvinge. Fiber bundle morphisms as a framework for modeling many-to-many maps. In *ICLR 2022 Workshop on Geometrical and Topological Representation Learning*.

Preprints_

1. Correspondences in log Hodge cohomology (2023).

- 2. Henry Kvinge, Grayson Jorgenson, Davis Brown, **Charles Godfrey** and Tegan Emerson. Neural frames: A Tool for Studying the Tangent Bundles Underlying Image Datasets and How Deep Learning Models Process Them (2022).
- 3. **Charles Godfrey**, Elise Bishoff, Myles Mckay, Davis Brown, Grayson Jorgenson, Henry Kvinge and Eleanor Byler. Testing predictions of representation cost theory with CNNs (2022). Code available at https://github.com/pnnl/frequency_sensitivity.
- 4. Takumi Murayama and **Charles Godfrey**. Pure subrings of Du Bois singularities are Du Bois singularities (2022).
- 5. Higher direct images of ideal sheaves (2022).

Invited Talks_

- 1. June 2023 ICERM Mathematical and Scientific Machine Learning Workshop.
- 2. February 2023 Boston College Math and Machine Learning Seminar.
- 3. January 2023 Joint Mathematics Meetings (Boston, MA).
- 4. November 2022 Purdue Algebraic Geometry Seminar.
- 5. October 2020 AMS Fall Eastern Sectional Special Session on Algebraic Singularities in Arbitrary Characteristic.