기계학습 (2022년도 2학기)

Neural Networks

전북대학교 컴퓨터공학부

Inspiration: The Brain

• Our brain has $\sim 10^{11}$ neurons, each of which communicates (is connected) to $\sim 10^4$ other neurons

The basic computational unit of the brain: Neuron

Inspiration: The Brain

 Neurons receive input signals and accumulate voltage. After some threshold they will fire spiking responses.

Inspiration: The Brain

■ For neural nets, we use a much simpler model neuron, or unit:

- Compare with logistic regression: $y = \sigma(\mathbf{w}^T \mathbf{x} + b)$
- By throwing together lots of these incredibly simplistic neuron-like processing units, we can do some powerful computations!

- We can connect lots of units together into a directed acyclic graph.
- This gives a feed-forward neural network. That's in contrast to recurrent neural networks, which can have cycles.
- Typically, units are grouped together into layers.

- Each layer connects N input units to M output units.
- In the simplest case, all input units are connected to all output units. We call this a fully connected layer. We'll consider other layer types later.
- Note: the inputs and outputs for a layer are distinct from the inputs and outputs to the network.
- Recall from softmax regression: this means we need an $M \times N$ weight matrix.
- The output units are a function of the input units: $y = f(x) = \phi(\mathbf{W}\mathbf{x} + \mathbf{b})$
- A multilayer network consisting of fully connected layers is called a multilayer perceptron. Despite the name, it has nothing to do with perceptrons!

•••

Some activation functions:

Linear

$$y = z$$

Rectified Linear Unit (ReLU)

$$y = \max(0, z)$$

Soft ReLU

$$y = \log 1 + e^z$$

Some activation functions:

Hard Threshold

$$y = \begin{cases} 1 & \text{if } z > 0 \\ 0 & \text{if } z \le 0 \end{cases}$$

Logistic

$$y = \frac{1}{1 + e^{-z}}$$

Hyperbolic Tangent (tanh)

$$y = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

Designing a network to compute XOR: y = (x1 or x2) and not (x1 or x2)

Assume hard threshold activation function

Hard Threshold

$$y = \begin{cases} 1 & \text{if } z > 0 \\ 0 & \text{if } z \le 0 \end{cases}$$

- h_1 computes X_1 OR X_2
- h_2 computes X_1 AND X_2
- y computes h_1 AND NOT h_2

■ Each layer computes a function, so the network computes a composition of functions:

$$\mathbf{h}^{(1)} = f^{(1)}(\mathbf{x})$$
 $\mathbf{h}^{(2)} = f^{(2)}(\mathbf{h}^{(1)})$
 \vdots
 $\mathbf{y} = f^{(L)}(\mathbf{h}^{(L-1)})$

Or more simply:

$$\mathbf{y} = f^{(L)} \circ \cdots \circ f^{(1)}(\mathbf{x}).$$

 Neural nets provide modularity: we can implement each layer's computations as a black box.

Feature Learning

■ Neural nets can be viewed as a way of learning features:

■ The goal:

Feature Learning

■ Suppose we're trying to classify images of handwritten digits. Each image is represented as a vector of $28 \times 28 = 784$ pixel values.

■ Each first-layer hidden unit computes $\sigma(\mathbf{w}_i^T \mathbf{x})$. It acts as a **feature detector**.

■ We can visualize w by reshaping it into an image. Here's an example that

responds to a diagonal stroke.

Feature Learning

■ Here are some of the features learned by the first hidden layer of a handwritten digit classifier:

- We've seen that there are some functions that linear classifiers can't represent. Are deep networks any better?
- Any sequence of linear layers can be equivalently represented with a single linear layer.

$$\mathbf{y} = \underbrace{\mathbf{W}^{(3)}\mathbf{W}^{(2)}\mathbf{W}^{(1)}}_{\triangleq \mathbf{W}'}\mathbf{x}$$

- Deep linear networks are no more expressive than linear regression.
- Linear layers do have their uses

- Multilayer feed-forward neural nets with nonlinear activation functions are universal function approximators: they can approximate any function arbitrarily well.
- This has been shown for various activation functions (thresholds, logistic, ReLU, etc.)
 - Even though ReLU is "almost" linear, it's nonlinear enough.

- Universality for binary inputs and targets:
 - Hard threshold hidden units, linear output
 - Strategy: 2D hidden units, each of which responds to one particular input configuration

Only requires one hidden layer, though it needs to be extremely wide.

- What about the logistic activation function?
- You can approximate a hard threshold by scaling up the weights and biases:

■ This is good: logistic units are differentiable, so we can train them with gradient descent.

- Limits of universality
 - You may need to represent an exponentially large network.
 - If you can learn any function, you'll just overfit.
 - Really, we desire a compact representation.

Training neural networks with backpropagation

Recap: Gradient Descent

- Recall: gradient descent moves opposite the gradient(the direction of steepest descent)
- Weight space for a multilayer neural net: one coordinate for each weight or bias of the network, in all the layers
- Conceptually, not any different from what we've seen so far just higher dimensional and harder to visualize!
- We want to compute the cost gradient dJ/dw, which is the vector of partial derivatives.
 - This is the average of dJ/dw over all the training examples, so in this lecture we focus on computing dJ/dw.

- We've already been using the univariate Chain Rule.
- Recall: if f(x) and x(t) are univariate functions, then

$$\frac{\mathrm{d}}{\mathrm{d}t}f(x(t)) = \frac{\mathrm{d}f}{\mathrm{d}x}\frac{\mathrm{d}x}{\mathrm{d}t}$$

Recall: Univariate logistic least squares model

$$z = wx + b$$

$$y = \sigma(z)$$

$$\mathcal{L} = \frac{1}{2}(y - t)^2$$

Let's compute the loss derivatives.

How you would have done it in calculus class

$$\mathcal{L} = \frac{1}{2}(\sigma(wx+b)-t)^{2}$$

$$\frac{\partial \mathcal{L}}{\partial w} = \frac{\partial}{\partial w} \left[\frac{1}{2}(\sigma(wx+b)-t)^{2} \right]$$

$$= \frac{1}{2} \frac{\partial}{\partial w} (\sigma(wx+b)-t)^{2}$$

$$= (\sigma(wx+b)-t) \frac{\partial}{\partial w} (\sigma(wx+b)-t)$$

$$= (\sigma(wx+b)-t) \sigma'(wx+b) \frac{\partial}{\partial w} (wx+b)$$

$$= (\sigma(wx+b)-t) \sigma'(wx+b)$$

$$= (\sigma(wx+b)-t) \sigma'(wx+b)$$

$$= (\sigma(wx+b)-t) \sigma'(wx+b)$$

What are the disadvantages of this approach?

A more structured way to do it

Computing the loss:

$$z = wx + b$$
$$y = \sigma(z)$$
$$\mathcal{L} = \frac{1}{2}(y - t)^{2}$$

Computing the derivatives:

$$\frac{\mathrm{d}\mathcal{L}}{\mathrm{d}y} = y - t$$

$$\frac{\mathrm{d}\mathcal{L}}{\mathrm{d}z} = \frac{\mathrm{d}\mathcal{L}}{\mathrm{d}y} \,\sigma'(z)$$

$$\frac{\partial \mathcal{L}}{\partial w} = \frac{\mathrm{d}\mathcal{L}}{\mathrm{d}z} \,x$$

$$\frac{\partial \mathcal{L}}{\partial b} = \frac{\mathrm{d}\mathcal{L}}{\mathrm{d}z}$$

 Remember, the goal isn't to obtain closed-form solutions, but to be able to write a program that efficiently computes the derivatives.

- We can diagram out the computations using a computation graph.
- The nodes represent all the inputs and computed quantities, and the edges represent which nodes are computed directly as a function of which other nodes.

A slightly more convenient notation:

- Use \bar{y} to denote the derivative dL/dy, sometimes called the error signal.
- This emphasizes that the error signals are just values our program is computing (rather than a mathematical operation).

Computing the loss:

$$z = wx + b$$
$$y = \sigma(z)$$
$$\mathcal{L} = \frac{1}{2}(y - t)^{2}$$

Computing the derivatives:

$$\overline{y} = y - t$$

$$\overline{z} = \overline{y} \sigma'(z)$$

$$\overline{w} = \overline{z} x$$

$$\overline{b} = \overline{z}$$

Multivariate Chain Rule

■ **Problem**: what if the computation graph has **fan-out** > 1? This requires the multivariate Chain Rule!

L₂-Regularized regression

$$z = wx + b$$
 $y = \sigma(z)$
 $\mathcal{L} = \frac{1}{2}(y - t)^2$
 $\mathcal{R} = \frac{1}{2}w^2$
 $\mathcal{L}_{\mathrm{reg}} = \mathcal{L} + \lambda \mathcal{R}$

Softmax regression

$$z_{\ell} = \sum_{j} w_{\ell j} x_{j} + b_{\ell}$$

$$y_k = \frac{e^{z_k}}{\sum_{\ell} e^{z_{\ell}}}$$

$$\mathcal{L} = -\sum_k t_k \log y_k$$

Multivariate Chain Rule

■ Suppose we have a function f(x; y) and functions x(t) and y(t). (All the variables here are scalar-valued.) Then

$$\frac{\mathrm{d}}{\mathrm{d}t}f(x(t),y(t)) = \frac{\partial f}{\partial x}\frac{\mathrm{d}x}{\mathrm{d}t} + \frac{\partial f}{\partial y}\frac{\mathrm{d}y}{\mathrm{d}t}$$

Example:

$$f(x,y) = y + e^{xy}$$
$$x(t) = \cos t$$
$$y(t) = t^{2}$$

Plug in to Chain Rule:

$$\frac{\mathrm{d}f}{\mathrm{d}t} = \frac{\partial f}{\partial x} \frac{\mathrm{d}x}{\mathrm{d}t} + \frac{\partial f}{\partial y} \frac{\mathrm{d}y}{\mathrm{d}t}$$
$$= (ye^{xy}) \cdot (-\sin t) + (1 + xe^{xy}) \cdot 2t$$

Multivariable Chain Rule

■ In the context of backpropagation:

In our notation:

$$\overline{t} = \overline{x} \frac{\mathrm{d}x}{\mathrm{d}t} + \overline{y} \frac{\mathrm{d}y}{\mathrm{d}t}$$

Full backpropagation algorithm:

■ Let $v_1, ..., v_N$ be a **topological ordering** of the computation graph (i.e.

parents come before children.)

• v_N denotes the variable we're trying to compute derivatives of (e.g. loss).

forward pass
$$\begin{bmatrix} & \text{For } i=1,\ldots,N \\ & \text{Compute } v_i \text{ as a function of } \mathrm{Pa}(v_i) \end{bmatrix}$$
 backward pass
$$\begin{bmatrix} & \overline{v_N}=1 \\ & \text{For } i=N-1,\ldots,1 \\ & \overline{v_i}=\sum_{j\in \mathrm{Ch}(v_i)} \overline{v_j}\,\frac{\partial v_j}{\partial v_i} \end{bmatrix}$$

Example: univariate logistic least squares regression

Forward pass:

$$z = |wx + b|$$
 $y = \sigma(z)$
 $\mathcal{L} = \frac{1}{2}(y - t)^2$
 $\mathcal{R} = \frac{1}{2}w^2$
 $\mathcal{L}_{\text{reg}} = \mathcal{L} + \lambda \mathcal{R}$

Backward pass:

$$egin{aligned} \overline{\mathcal{L}}_{
m reg} &= 1 \ \overline{\mathcal{R}} &= \overline{\mathcal{L}}_{
m reg} \, rac{\mathrm{d} \mathcal{L}_{
m reg}}{\mathrm{d} \mathcal{R}} \ &= \overline{\mathcal{L}}_{
m reg} \, \lambda \ \overline{\mathcal{L}} &= \overline{\mathcal{L}}_{
m reg} \, rac{\mathrm{d} \mathcal{L}_{
m reg}}{\mathrm{d} \mathcal{L}} \ &= \overline{\mathcal{L}}_{
m reg} \ \overline{\mathcal{L}} \, rac{\mathrm{d} \mathcal{L}}{\mathrm{d} y} \ &= \overline{\mathcal{L}} \, (y-t) \end{aligned}$$

$$\overline{z} = \overline{y} \frac{dy}{dz}$$

$$= \overline{y} \sigma'(z)$$

$$\overline{w} = \overline{z} \frac{\partial z}{\partial w} + \overline{\mathcal{R}} \frac{d\mathcal{R}}{dw}$$

$$= \overline{z} x + \overline{\mathcal{R}} w$$

$$\overline{b} = \overline{z} \frac{\partial z}{\partial b}$$

$$= \overline{z}$$

Multilayer Perceptron (multiple outputs):

Forward pass:

$$z_i = \sum_{j} w_{ij}^{(1)} x_j + b_i^{(1)}$$
 $h_i = \sigma(z_i)$
 $y_k = \sum_{i} w_{ki}^{(2)} h_i + b_k^{(2)}$
 $\mathcal{L} = \frac{1}{2} \sum_{k} (y_k - t_k)^2$

Backward pass:

$$\overline{\mathcal{L}} = 1$$
 $\overline{y_k} = \overline{\mathcal{L}} (y_k - t_k)$
 $\overline{w_{ki}^{(2)}} = \overline{y_k} h_i$
 $\overline{b_k^{(2)}} = \overline{y_k}$
 $\overline{h_i} = \sum_k \overline{y_k} w_{ki}^{(2)}$
 $\overline{z_i} = \overline{h_i} \sigma'(z_i)$
 $\overline{w_{ij}^{(1)}} = \overline{z_i} x_j$
 $\overline{b_i^{(1)}} = \overline{z_i}$

In vectorized form:

Forward pass:

$$\mathbf{z} = \mathbf{W}^{(1)}\mathbf{x} + \mathbf{b}^{(1)}$$
 $\mathbf{h} = \sigma(\mathbf{z})$
 $\mathbf{y} = \mathbf{W}^{(2)}\mathbf{h} + \mathbf{b}^{(2)}$
 $\mathcal{L} = \frac{1}{2}\|\mathbf{t} - \mathbf{y}\|^2$

Backward pass:

$$egin{aligned} \overline{\mathcal{L}} &= 1 \ \overline{\mathbf{y}} &= \overline{\mathcal{L}} \left(\mathbf{y} - \mathbf{t}
ight) \ \overline{\mathbf{W}^{(2)}} &= \overline{\mathbf{y}} \mathbf{h}^{ op} \ \overline{\mathbf{b}^{(2)}} &= \overline{\mathbf{y}} \ \overline{\mathbf{h}} &= \mathbf{W}^{(2) op} \overline{\mathbf{y}} \ \overline{\mathbf{z}} &= \overline{\mathbf{h}} \circ \sigma'(\mathbf{z}) \ \overline{\mathbf{W}^{(1)}} &= \overline{\mathbf{z}} \mathbf{x}^{ op} \ \overline{\mathbf{b}^{(1)}} &= \overline{\mathbf{z}} \end{aligned}$$

Computational Cost

Computational cost of forward pass: one add-multiply operation per weight

$$z_i = \sum_j w_{ij}^{(1)} x_j + b_i^{(1)}$$

Computational cost of backward pass: two add-multiply operations per weight

$$\overline{w_{ki}^{(2)}} = \overline{y_k} h_i$$

$$\overline{h_i} = \sum_k \overline{y_k} w_{ki}^{(2)}$$

- Rule of thumb: the backward pass is about as expensive as two forward passes.
- For a multilayer perceptron, this means the cost is linear in the number of layers, quadratic in the number of units per layer.

- Backprop is used to train the overwhelming majority of neural nets today.
 - Even optimization algorithms much fancier than gradient descent (e.g. second-order methods) use backprop to compute the gradients.
- Despite its practical success, backprop is believed to be neurally implausible.
 - No evidence for biological signals analogous to error derivatives.
 - Forward & backward weights are tied in backprop.
 - Backprop requires synchronous update (1 forward followed by 1 backward).
 - All the biologically plausible alternatives we know about learn much more slowly (on computers).