1 実験の目的

トランジスタによって信号を適切に増幅するためにはバイアスの設定が重要となる。本実験では電界効果トランジスタのバイアス方法とソース接地増幅回路の基本特性を習得する。

2 実験の理論または原理

2.1 バイアス回路

トランジスタを動作させるために加える直流電圧を「バイアス電圧」といって、バイアスとして与える直流電流を「バイアス電流」と呼ぶ。適切に増幅された信号をトランジスタから得るためにはバイアスが必要になる。このバイアスを与える回路がバイアス回路であり、用途によっていくつかの回路が使い分けられている。

2.1.1 固定バイアス回路

固定バイアス回路では、ドレイン・ソース間電圧 V_{DS} を与える電源 V_{DD} に加えて、ゲート・ソース間電圧 V_{GS} を与える電源 V_{G} を別に設けて動作点を決定する。動作点はドレイン電流 I_{D} の変化に対して変わらないため、電力増幅などのドレイン電流 I_{D} が大きく変化する回路に用いられる。

2.1.2 自己バイアス回路

FET が小信号用として使われるときには、出力交流信号 d_i の振幅がそれほど大きくないので、ドレイン電流 I_D はほぼ一定とみなせる。そこで、ソースに直列に抵抗 R_S を接続するとその電圧降下をバイアスとして利用することができる。これを自己バイアス回路と呼ぶ。自己バイアス回路では、何らかの原因でドレイン電流 I_D が増加しても、ゲート・ソース間電圧 V_{GS} が $I_D \times R_S$ によって決定されるため ($V_{GS} = -R_S I_D$)、 V_{GS} がマイナス方向に増加して I_D の増加を抑える方向に働く。一方、 I_D が減少すると V_{GS} が減少して、 I_D の減少を抑える方向に働く。よって、自己バイアス回路は動作点の変動を防ぐように働くので小信号増幅回路では良く用いられる。一方、電力増幅回路のように I_D が大きく変化する回路に用いると、 I_D の変化を抑えるように働くため不都合が生じてしまう。

2.1.3 固定バイアス法と自己バイアス法を併用する方式

このバイアス方法は、固定バイアス法と自己バイアス法を併用したもので、両者の長所を兼ね備えたバイアス法で、一般的に使用されている。

2.1.4 固定バイアス法と自己バイアス法を併用する方式

バイアス回路における電圧と電流の関係

(a) ゲート・ソース間電圧 V_{GS} とドレイン電流 I_D との関係

$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2 \quad (1)$$

(b) ゲート電圧 V_G と R_1,R_2 (ブリーダ抵抗と呼ばれる) との関係

$$V_G = \frac{R_1}{R_1 + R_2} V_{DD} \quad (2)$$

(c) ゲート・ソース間電圧 V_{GS} とソース抵抗 R_S の関係

$$V_{GS} = V_G - I_D R_S \quad (3)$$

ゲート電圧に I_DR_S という電圧がフィードバックされ、安定度が改善される。

(d) ソース抵抗 R_S とドレイン電流 I_D との関係

$$R_s = \frac{1 - \left(\frac{I_D}{I_{DSS}}\right)^{\frac{1}{2}}}{I_D}$$

2.2 基本增幅回路

FET を使用する場合、その接地方式および出力の取り出し方により、次の3つに分類できる。

2.2.1 ソース接地増幅回路

ソース接地増幅回路は高入力インピーダンス, 電圧利得を大きくできるといった特徴があり, 良く用いられる回路である。

(a) 入力信号電圧 i_v とすると、ドレイン電流の交流分 D_i は次のように表される。

$$i_D = g_m V_i$$

(b) 出力電圧の交流分 o_v は次式で表される。

$$v_o = -i_D R_L = -g_m v_i R_L$$

(c) 電圧増幅度 v_A は次式で与えられる。

$$A_v = \frac{V_o}{V_i} = -g_m R_L$$

2.2.2 ドレイン接地増幅回路(ソース・フォロア増幅回路)

ドレイン接地増幅回路は電圧利得が1以上になることはないが, 高入力インピーダンスで入力信号を取り入れて, 低出力インピーダンスで信号を送り出す, インピーダンス変換回路として用いられる。

2.2.3 ゲート接地増幅回路

この方式の場合には、電圧利得はソース接地の場合と同じであるが、入力インピーダンスを小さくできる。この場合、トランジスタでもよいが、高周波での安定な増幅に利点がある。

3 実験の作業順序

回路におけるバイアス条件は次の2種類とする。

バイアス条件1

- $R_1 = 33 \text{ k}\Omega$
- $R_2 = 56 \text{ k}\Omega$
- $R_L = 2.2 \text{ k}\Omega$
- $R_S = 4.7 \text{ k}\Omega$

バイアス条件 2

- $R_1 = 11 \text{ k}\Omega$
- $R_2 = 120 \text{ k}\Omega$
- $R_L = 4.7 \text{ k}\Omega$
- $R_S = 2.2 \text{ k}\Omega$

図1 回路図

3.1 ソース接地増幅回路におけるバイアス電圧の設定と測定

- 1. バイアス条件 1 の回路構成での各抵抗における電圧値 $V_{R1}, V_{R2}, V_{RL}, V_{RS}$ を計算する。
- 2. 配線後, 直流電圧を印加して V_{R1} , V_{R2} , V_{RL} , V_{RS} を測定する。さらに, ドレイン・ソース間電 $\to V_{DS}$, ゲート・ソース間電圧 V_{GS} を測定する。

3.2 ソース接地増幅回路におけるバイアス電圧の設定と測定

- 1. 入力信号 i_v を設定する。周波数を f=10[kHz] として、オシロスコープで入力信号波形を観測しながら振幅を 50[mV] 程度に設定する。このとき、入力信号の波形が歪まない電圧値に設定すること。
- 2. 入力信号の周波数を 10[Hz] 1000[kHz] まで変化させ、その時の入力電圧 iv と出力電圧 ov を測定する。このとき、入力信号の振幅を一定に保つように注意すること。また、周波数の 測定間隔はグラフを描きながら適切に設定すること。
- 3. 増幅度 v_A [倍] を電圧利得 v_G [dB] で表示する。

$$G_v = 20 \log A_v = 20 \log \frac{V_o}{V_i}$$

4 実験の結果

4.0.1 ドレイン接地増幅回路(ソース・フォロア増幅回路)

周波数が 0Hz から 300Hz の範囲で、出力電圧は 60mV から 200mV に上昇している。300Hz 以上では、周波数が 100kHz に達するまで出力電圧は 200mV で一定。100kHz を超えると、出力電圧は徐々に減少していく。一方で、入力電圧は 50mV でほぼ一定である。

図2 条件1トランジスタ1

表1 条件1トランジスタ1

表1 未行1 ドブンシヘグ I				
周波数 [Hz] ————	入力電圧 [mV]	出力電圧 [mV]	電圧利得 [dB]	
10	50.4	72	3.1	
20	51.2	112	6.8	
30	56.0	138	7.8	
40	53.6	126	7.4	
50	58.4	164	9.0	
70	49.6	176	11.0	
100	54.4	180	10.4	
200	50.4	192	11.6	
300	54.4	192	11.0	
400	52.0	196	11.5	
500	56.8	192	10.6	
700	51.2	188	11.3	
1000	51.2	196	11.7	
2000	51.2	192	11.5	
3000	52.8	196	11.4	
4000	50.4	196	11.8	
5000	54.4	192	11.0	
7000	52.0	200	11.7	
10000	55.2	200	11.2	
20000	56.8	196	10.8	
30000	49.6	196	11.9	
40000	53.6	196	11.3	
50000	52.8	196	11.4	
70000	52.8	200	11.6	
100000	52.8	200	11.6	
200000	53.6	196	11.3	
300000	52.0	196	11.5	
400000	48.8	196	12.1	
500000	48.0	192	12.0	
700000	48.8	188	11.7	
1000000	47.2	180	11.6	

周波数が 0Hz から 100Hz の範囲で、出力電圧は 80mV から 400mV に上昇している。100Hz 以上では、周波数が 100kHz に達するまで出力電圧は 400mV で一定。100kHz を超えると、出力電

圧は徐々に減少していく。一方で、入力電圧は $50 \mathrm{mV}$ でほぼ一定である。

図3 条件2トランジスタ1

表2 条件2トランジスタ1

周波数 [Hz]	入力電圧 [mV]	出力電圧 [mV]	電圧利得 [dB]	
10	48.8	168	10.7	
20	49.6	232	13.4	
30	49.6	288	15.3	
40	49.6	312	16.0	
50	49.6	336	16.6	
70	48.8	360	17.4	
100	49.6	384	17.8	
200	49.6	392	18.0	
300	50.4	400	18.0	
400	49.6	400	18.1	
500	50.4	408	18.2	
700	50.4	408	18.2	
1000	49.6	408	18.3	
2000	49.6	408	18.3	
3000	50.4	416	18.3	
4000	49.6	416	18.5	
5000	50.4	416	18.3	
7000	50.4	416	18.3	
10000	50.4	416	18.3	
20000	50.4	424	18.5	
30000	50.4	424	18.5	
40000	50.4	416	18.3	
50000	51.2	416	18.2	
70000	51.2	424	18.4	
100000	51.2	424	18.4	
200000	50.4	424	18.5	
300000	50.4	416	18.3	
400000	51.2	408	18.0	
500000	50.4	392	17.8	
700000	49.6	376	17.6	
1000000	50.4	352	16.9	
· · · · · · · · · · · · · · · · · · ·				

周波数が 0Hz から 100Hz の範囲で、出力電圧は 60mV から 300mV に上昇している。100Hz 以上では、周波数が 100kHz に達するまで出力電圧は 300mV で一定。100kHz を超えると、出力電

圧は徐々に減少していく。一方で、入力電圧は $50 \mathrm{mV}$ でほぼ一定である。

図4 条件1トランジスタ2

図5 Fig.19 J-FET dynamic property

表3 条件1トランジスタ2

	76 7611 1		
周波数 [Hz]	入力電圧 [mV]	出力電圧 [mV]	電圧利得 [dB]
10	56.8	90	4.0
20	50.4	102	6.1
30	51.2	134	8.4
40	52.8	158	9.5
50	55.2	180	10.3
70	52.8	212	12.1
100	51.2	264	14.2
200	57.6	280	13.7
300	56	286	14.2
400	52	288	14.9
500	56	288	14.2
700	55.2	288	14.3
1000	56	290	14.3
2000	50.4	292	15.3
3000	52.8	292	14.9
4000	51.2	292	15.1
5000	53.6	294	14.8
7000	51.2	294	15.2
10000	56	296	14.5
20000	52.8	296	15.0
30000	52	298	15.2
40000	52.8	298	15.0
50000	53.6	296	14.8
70000	52	298	15.2
100000	53.6	300	15.0
200000	55.2	296	14.6
300000	49.6	294	15.5
400000	48.8	290	15.5
500000	49.6	290	15.3
700000	52	282	14.7
1000000	48.8	270	14.9

周波数が 0Hz から 100Hz の範囲で、出力電圧は 80mV から 400mV に上昇している。100Hz 以上では、周波数が 100kHz に達するまで出力電圧は 400mV で一定。100kHz を超えると、出力電

圧は徐々に減少していく。一方で、入力電圧は $50 \mathrm{mV}$ でほぼ一定である。

図6 条件2トランジスタ2

表4 条件2トランジスタ2

	入力電圧 [mV]	出力電圧 [mV]	
10	44	152	10.8
20	49.6	224	13.1
30	42.4	288	16.6
40	45.6	328	17.1
50	48.8	356	17.3
70	44	392	19.0
100	44.8	412	19.3
200	46.4	440	19.5
300	44.8	444	19.9
400	44	444	20.1
500	46.4	448	19.7
700	48	452	19.5
1000	44.8	448	20.0
2000	46.4	452	19.8
3000	48	456	19.6
4000	45.6	456	20.0
5000	47.2	456	19.7
7000	50.4	452	19.1
10000	48	460	19.6
20000	48	456	19.6
30000	48	464	19.7
40000	46.4	464	20.0
50000	48.8	460	19.5
70000	46.4	460	19.9
100000	44	460	20.4
200000	46.4	456	19.8
300000	44.4	440	19.9
400000	45.6	436	19.6
500000	42.4	424	20.0
700000	44.8	404	19.1
1000000	44	364	18.4

5 実験の考察およびまとめ

5.0.1 実測した平坦な部分の電圧増幅度と計算による電圧増幅度

実験では、同一の条件下で異なるトランジスタの電圧利得を比較した。トランジスタ1とトランジスタ2を比較したところ、トランジスタ2の方が電圧利得が顕著に高いことが観察された。この結果は、トランジスタの種類や製造プロセスによって、その電気的特性が大きく異なることを示している。また、この差異はトランジスタの内部構造や材質の違いによるものと考えられる。

5.0.2 二種類の FET の実験結果を比較し、わかったこと

この実験では、2種類の FET(2SK30ATM トランジスタと J211 トランジスタ)の性能を比較した。特に、トランジスタ 2(2SK30ATM)の方が電圧利得が高いことが明らかになった。この結果から、2SK30ATM トランジスタが特定のアプリケーションにおいて、より適した選択肢である可能性が示唆される。また、異なるトランジスタが異なる特性を持つことから、その使用目的に応じて適切なトランジスタを選択することの重要性が強調される。

5.0.3 FET の特徴について

2SK30ATMトランジスタは、J211に比べてゲート-ドレイン破壊電圧が高く、ゲート-ドレイン漏れ電流が低いことが観察される。また、このトランジスタは入力およびフィードバック容量が高く、特定の電子回路において安定した性能を提供することが期待される。一方、J211トランジスタは、より高いドレイン電流に対応し、順方向トランスコンダクタンスと出力コンダクタンスが高いことが特徴である。これは、高電流を扱う回路において J211 が優れた選択であることを示唆している。この二つのトランジスタの比較から、それぞれのトランジスタが特定のアプリケーションにおいて異なる強みを持っていることが理解できる。