

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA DEPARTAMENTO DE ENGENHARIA ELÉTRICA

Professor: Jalberth Fernandes de Araujo

Dispositivos Eletrônicos

Avaliação 1 - TBJ

NOME:	NOTA:
MAT.:	DATA://

ATENÇÃO: (*) Elabore um vídeo, de até 10 minutos, mostrando a montagem, funcionamento, análises e explicações da questão a seguir. (*) Use um simulador de sua preferência (Sugestão: LTspice). (*) Tudo deve ser feito usando o simulador, mas você pode usar cálculos teóricos para fundamentar e justificar suas explicações e análises. (*) Caso você ultrapasse os 10 minutos do vídeo, serão descontados 10% da nota total a cada 30 segundos de atraso, contando a partir dos 10 minutos. (*) Envie o link do vídeo no formulário de envio dessa avaliação. (*) Apenas uma pessoa da equipe precisa enviar o link do vídeo. (*) O link do vídeo deve estar habilitado para qualquer pessoa com o link poder acessá-lo.

QUESTÃO 1 (10,0 PONTOS)

A tabela apresentada no item "a" foi construída tomando como base o circuito da figura abaixo.

a) Construa a curva característica do transistor ($I_C \times V_{CE}$) usando os dados da tabela abaixo.

V _B (V)	Vce (V)	I _C (A)
0.65	5.00	2.99e-3
0.65	4.25	2.98e-3
0.65	3.93	2.97e-3
0.65	3.52	2.96e-3
0.65	3.32	2.95e-3
0.65	3.03	2.94e-3
0.65	2.5	2.92e-3
0.65	2.12	2.91e-3
0.65	1.96	2.9e-3
0.65	1.44	2.88e-3
0.65	0.95	2.85e-3
0.65	0.59	2.81e-3
0.65	0.26	2.55e-3
0.65	0.23	2.44e-3
0.65	0.17	2.13e-3
0.64	0.14	1.66e-3
0.63	0.1	0.99e-3
0.62	92.3e-3	0.77e-3
0.61	77.5e-3	0.5e-3
0.6	66.1e-3	0.34e-3
0.6	56.9e-3	0.24e-3

- b) A curva característica está conforme você esperava? Justifique sua resposta.
- c) Ao observar o gráfico, identifique as regiões de operação do transistor.
- d) Determine os valores da corrente de base do transistor. Justifique sua resposta.
- e) Determine os valores de β para cada ponto da curva característica.

- f) O que acontece com os valores de β à medida que V_{CE} diminui? Justifique sua resposta.
- g) Os valores de β da região ativa estão dentro do esperado? Justifique sua resposta.
- h) Qual é o valor da tensão de Early? Justifique sua resposta. (Dica: utilize o Cftool do Matlab)
- i) Qual é o valor da resistência (r_o) de saída entre coletor e emissor? Justifique sua resposta.

Dados do Datasheet:

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be opera ble above the recommended operating conditions and stressing the parts to these levels is not recommended. In addi tion, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. Values are at T_A = 25°C unless otherwise noted.

Symbol	Parameter		Value	Unit	
V _{CBO}	E	3C546	80		
	Collector-Base Voltage	BC547 / BC550	50	v	
		BC548 / BC549	30		
V _{CEO}	Collector-Emitter Voltage	BC546	65		
		BC547 / BC550	45	v	
		BC548 / BC549	30	7	
V _{EBO}	Emitter-Base Voltage	BC546 / BC547	6	v	
		BC548 / BC549 / BC550	5	_ v	
l _C	Collector Current (DC)	100	mA		
Pc	Collector Power Dissipation	500	mW		
TJ	Junction Temperature		150	°C	
TSTG	Storage Temperature Range		-65 to +150	°C	
- 516		00.10 . 100			

Electrical Characteristics

Values are at T_A = 25°C unless otherwise noted

Symbol	Parameter		Parameter Conditions		Min.	Тур.	Max.	Unit
I _{CBO}	Collector Cut-Off Current		V _{CB} = 30 V, I _E = 0			15	nΑ	
h _{FE}	DC Current Gain		V _{CE} = 5 V, I _C = 2 mA	110		800		
V _{CE} (sat)	Collector-Emitter Saturation Voltage		I _C = 10 mA, I _B = 0.5 mA		90	250	mV	
			I _C = 100 mA, I _B = 5 mA		250	600		
V _{BE} (sat)	Base-Emitter Saturation Voltage		I _C = 10 mA, I _B = 0.5 mA		700		mV	
			I _C = 100 mA, I _B = 5 mA		900			
\/ (on)	Base-Emitter On Voltage		V _{CE} = 5 V, I _C = 2 mA	580	660	700	mV	
V _{BE} (on)			V _{CE} = 5 V, I _C = 10 mA			720		
f _T	Current Gain Bandwidth Product		V _{CE} = 5 V, I _C = 10 mA, f = 100 MHz		300		мн	
Cop	Output Capacitance		V _{CB} = 10 V, I _E = 0, f = 1 MHz		3.5	6.0	pF	
CB	Input Capacitance		V _{EB} = 0.5 V, I _C = 0, f = 1 MHz		9		pF	
	BC546 / BC547 / BC548 Noise BC549 / BC550 Bc549	$V_{CF} = 5 \text{ V, } I_{C} = 200 \mu\text{A,}$		2.0	10.0			
NF			$f = 1 \text{ kHz}, R_G = 2 \text{ k}\Omega$		1.2	4.0	dB	
		BC549	V _{CF} = 5 V, I _C = 200 μA,		1.4	4.0		
	BC550		$R_G = 2 k\Omega$, $f = 30 \text{ to } 15000 \text{ MHz}$		1.4	3.0		

h _{FE} Classification						
Classification	A	В	С			
h _{FE}	110 ~ 220	200 ~ 450	420 ~ 800			

© 2002 Fairchild Semiconductor Corporation BC546 / BC547 / BC548 / BC549 / BC550 Rev. 1.1.1 www.fairchildsemi.co