SOME NOTES

On

Day 4: Sensors and Real-World Applications

 $\mathbf{B}\mathbf{Y}$

Pratik Dahal PUR081BCT050

To

Robotics Club

TRIBHUWAN UNIVERSITY

Institute of Engineering

ROBOTICS CLUB

PURWANCHAL CAMPUS

DHARAN, NEPAL

1 What I learnt today

1.1 Different types of sensors used

Today, in the session, i got to know about the different types of sensors and also got hands-on experience of using them in circuit setup. Those sensors were:

- Ultrasonic Sensors
- Colour Sensor
- IR sensor

Other contents and assignment on following pages.

Short Notes: IR Sensor and Ultrasonic Sensor with Arduino

2 IR Sensor to Light LED

Working Principle

An IR sensor detects the presence of an object based on infrared light reflection. When an object is detected, the sensor outputs a LOW signal (0), which can be used to turn ON an LED.

Circuit Description

- IR sensor OUT pin \rightarrow Digital pin 2 on Arduino
- LED anode \rightarrow Digital pin 13 (or any other)
- LED cathode \rightarrow GND (via 220 resistor)
- IR sensor VCC and GND \rightarrow Arduino 5V and GND

Arduino Code

```
const int irPin = 2;
const int ledPin = 13;

void setup() -
   pinMode(irPin, INPUT);
   pinMode(ledPin, OUTPUT);

void loop() -
   int irValue = digitalRead(irPin);
   if (irValue == LOW) - // Object detected
      digitalWrite(ledPin, HIGH);
   else -
      digitalWrite(ledPin, LOW);
```

Listing 1: IR Sensor to Control LED

3 Ultrasonic Sensor to Detect Distance

Working Principle

The ultrasonic sensor (HC-SR04) sends out ultrasonic sound waves. The time taken for the echo to return is measured to calculate the distance.

Circuit Description

- VCC \rightarrow 5V on Arduino
- GND \rightarrow GND on Arduino
- Trig \rightarrow Digital pin 9
- Echo \rightarrow Digital pin 10

Arduino Code

```
const int trigPin = 9;
const int echoPin = 10;
void setup() -
 pinMode(trigPin, OUTPUT);
 pinMode(echoPin, INPUT);
 Serial.begin(9600);
void loop() -
  digitalWrite(trigPin, LOW);
  delayMicroseconds(2);
  digitalWrite(trigPin, HIGH);
  delayMicroseconds(10);
  digitalWrite(trigPin, LOW);
  long duration = pulseIn(echoPin, HIGH);
  float distance = duration * 0.034 / 2;
 Serial.print("Distance: ");
  Serial.print(distance);
  Serial.println(" cm");
  delay(500);
```

Listing 2: Ultrasonic Sensor Distance Detection

4 Day-04 Assignment

Design a circuit using Arduino and ultrasonic sensor where an LED turns ON if an object is detected within 10 cm in tinkercad.

Figure 1: Circuit Setup

```
1 const int trigPin = 9;
    const int echoPin = 10;
 3 const int ledPin = 7;
 5 void setup() {
      pinMode(trigPin, OUTPUT);
pinMode(echoPin, INPUT);
pinMode(ledPin, OUTPUT);
Serial.begin(9600);
10 }
11
12 void loop() {
13 // Send ultrasonic pulse
        digitalWrite(trigPin, LOW);
        delayMicroseconds(2);
       digitalWrite(trigPin, HIGH);
delayMicroseconds(10);
16
17
        digitalWrite(trigPin, LOW);
19
20
21
       // Read the echo pulse
long duration = pulseIn(echoPin, HIGH);
23
24
25
       // Calculate distance (in cm)
float distance = duration * 0.034 / 2;
26
27
28
29
30
        Serial.print("Distance: ");
       Serial.print(distance);
Serial.println(" cm");
        // Turn LED ON if object is within 10 cm
        if (distance <= 10) {
          digitalWrite(ledPin, HIGH);
33
34
35
36
37
38 }
          digitalWrite(ledPin, LOW);
        delay(500);
```

Figure 2: Code