의 존 구 문 분 석 (Dependency Parsing)

남궁영 한국해양대학교 컴퓨터공학과 young_ng@kmou.ac.kr

2019. 04. 05.

Content

- Recap
 - Transition-based dependency parsing
- Korean Dependency Parsing
 - arc-standard (Nivre, 2004, 2008)
 - arc-eager (Nivre, 2003, 2008) ~ ☆한국어
- Treebank

:: KMOU NLP :: Lab seminar

:: R E C A P ::

Parsing

Syntactic Parsing

the process of analyzing the construction of a sentence
 by recognizing a sentence and assigning a syntactic structure to it

- **Input**: String or Grammar

Output: Parse tree(s)

Grammar & Parsing

Phrase Structure Grammar

- Constituents
- Consist of
 - Rules
 - Terminals & Non-terminals

Dependency Grammar

- Head-dependent relations
 - nodes: words
 - links: dependencies between words
- Suitable for free word-order languages

Dependency Tree

- ❖ A parse is a directed rooted tree:
 - Connected, Acyclic, Single-head
 - Arcs indicate certain grammatical relations between words
 - non-projective / projective
 - projective
 - the arc (i,l,j) implies that i \rightarrow * k for every k such that min(i, j) < k < max(i, j)
 - many DP algorithms can only handle projective trees
 - Non-projective trees do occur in natural language
 - Transition-based parsing
 - using a swap-transition
 - using more than one stack
 - Graph-based parsing
 - Minimum spanning tree algorithms

Arc-standard transition-based parser

Basic transition-based dependency parser

Shift

Reduce : create dependencies

Start:
$$\sigma = [ROOT], \beta = w_1, ..., w_n, A = \emptyset$$

1. Shift $\sigma, w_i | \beta, A \rightarrow \sigma | w_i, \beta, A$

2. Left-Arc_r $\sigma|w_i|w_j$, β , $A \rightarrow \sigma|w_j$, β , $A \cup \{r(w_j,w_i)\}$

3. Right-Arc_r $\sigma|w_i|w_j$, β , $A \rightarrow \sigma|w_i$, β , $A \cup \{r(w_i,w_j)\}$

Finish: $\sigma = [w]$, $\beta = \emptyset$

Neural Dependency Parsing (FFN)

Neural Dependency Parsing (stack LSTM)

❖ Transition-Based Dependency Parsing with Stack Long Short-Term Memory

- using three Stack-LSTM for S, B, A
- computes a composite representation of the stack states
 - → to predict an action to take

:: KMOU NLP :: Lab seminar

:: Korean Dependency Parsing ::

Arc-standard & Arc-eager

arc-standard

Shift
$$(\sigma, i|\beta, A) \Rightarrow (\sigma|i, \beta, A)$$

LArc
$$(\sigma|i|j,\beta,A) \Rightarrow (\sigma|j,\beta,A \cup \{(j \rightarrow i)\})$$

RArc
$$(\sigma|i|j,\beta,A) \Rightarrow (\sigma|i,\beta,A \cup \{(i \rightarrow j)\})$$

arc-eager

$$\begin{array}{ll} \textbf{Shift} & (\sigma,i|\beta,A) \Rightarrow (\sigma|i,\beta,A) \\ \textbf{LArc} & (\sigma|i,j|\beta,A) \Rightarrow (\sigma,j|\beta,A \cup \{(j \rightarrow i)\}) \\ \textbf{RArc} & (\sigma|i,j|\beta,A) \Rightarrow (\sigma|i|j,\beta,A \cup \{(i \rightarrow j)\}) \\ \textbf{Reduce} & (\sigma|i,\beta,A) \Rightarrow (\sigma,\beta,A) \\ \end{array}$$

- can create arcs earlier
- reduce when a node already find its head

Arc-standard (1)

ACTION	Stack	Buffer	Relation
	[0]	[19]	
shift	[0 1]	[29]	
shift	[0 1 2]	[39]	
Left-ARC	[0 2]	[39]	(NMOD, news→Econo)
shift	[0 2 3]	[49]	
Left-ARC	[0 3]	[49]	(SBJ, had→news)
shift	[0 3 4]	[59]	
shift	[0 3 4 5]	[69]	
Left-ARC	[0 3 5]	[69]	(NMOD, effect → little)
shift	[0 3 5 6]	[7 8 9]	

Arc-standard (2)

ACTION	Stack	Buffer	Relation
shift	[0 3 5 6]	[7 8 9]	
shift	[0 3 5 6 7]	[8 9]	
shift	[0 3 5 6 7 8]	[9]	
Left-ARC	[0 3 5 6 8]	[9]	(NMOD, market→finan)
Right-ARC	[0 3 5 6]	[9]	(PMOD, on→market)
Right-ARC	[0 3 5]	[9]	(NMOD, effect→on)
Right-ARC	[0 3]	[9]	(OBJ, had →effect)
shift	[0 3 9]	[]	

Arc-eager

ACTION	Stack	Buffer	Relation
	[0]	[19]	
shift	[0 1]	[29]	
Left-ARC	[0]	[39]	(NMOD, news→Econo)
shift	[0 2]	[39]	
Left-ARC	[0]	[39]	(SBJ, had→news)
Right-ARC	[0 3]	[49]	(ROOT, ROOT→had)
shift	[0 3 4]	[59]	
Left-ARC	[0 3]	[59]	(NMOD, effect → little)
Right-ARC	[0 3 5]	[69]	(OBJ, had→effect)

Korean Dependency Parsing

- ❖ Arc-eager + Backward transition-based dependency parsing
- ❖ 한국어의 지배소(head)는 대부분 후위에 위치
 - → Backward 방식이 유리
 - 문장의 용언(지배소)들이 먼저 stack에 쌓임
 - 특정 노드가 어느 용언에 지배되는지 결정하는데 도움

```
    <입력문장> CJ그룹이 대한통운 인수계약을 체결했다
    1. Stack=[root], Buffer=[체결했다<sub>4</sub> 인수계약을<sub>3</sub> 대한통운<sub>2</sub> CJ그룹이<sub>4</sub>], Arc={}
        Right-arc(VP)
    2. [root 체결했다<sub>4</sub>], [인수계약을<sub>3</sub>...], A={(root→체결했다<sub>4</sub>)}
        Right-arc(NP_OBJ)
    3. [root 체결했다<sub>4</sub> 인수계약을<sub>3</sub>], [대한통운<sub>2</sub>...], {(체결했다<sub>4</sub>→인수계약을<sub>3</sub>), ...}
        Right-arc(NP_MOD)
    4. [root 체결했다<sub>4</sub> 인수계약을<sub>3</sub> 대한통운<sub>2</sub>], [CJ그룹이<sub>4</sub>], {(인수계약을<sub>3</sub>→대한통운<sub>2</sub>), ...}
        Reduce
    5. [root 체결했다<sub>4</sub> 인수계약을<sub>3</sub>], [CJ그룹이<sub>4</sub>], {(인수계약을<sub>3</sub>→대한통운<sub>2</sub>), ...}
        Reduce
    6. [root 체결했다<sub>4</sub>], [CJ그룹이<sub>4</sub>], {(인수계약을<sub>3</sub>→대한통운<sub>2</sub>), ...}
        Right-arc(NP_SUB)
    7. [root 체결했다<sub>4</sub> CJ그룹이<sub>4</sub>], [], {(체결했다<sub>4</sub>→CJ그룹이<sub>4</sub>), ...}
```

:: KMOU NLP :: Lab seminar

:: Treebanks ::

--- Treebanks

- Treebanks are corpora in which each sentence has been <u>annotated</u> with a syntactic analysis.
- The annotation process requires detailed guidelines and measures for quality control.
- Producing a high-quality treebank is both time-consuming and expensive.

Dependency Treebank

- **❖** Prague Dep. treebank 3.0 (2013)
 - 1,506,484 words, 87,913 sentences
- ❖ Danish Dep. treebank 1.0 (2004)
 - 100,200 words, 5,540 sentences
- **❖** Quranic Arabic Dep. Treebank (QADT)
- **❖ Italian Stanford Dep. Treebank (ISDT)**
 - 298,344 words, 14,167 sentences
- Converted phrase-structured treebanks (e.g. Penn)
 - J. Chun, N. Han, J. D. Hwang, J. D. Choi. 2018. **Building Universal Dependency Treebanks in Korean**. Proceedings of the 11th LREC, pp. 2194-2202
 - Phrase structure trees in the Penn Korean Treebank & KAIST Treebank are automatically converted into dependency trees using head-finding rules and linguistic heuristics.

Korean Treebank (1)

- ❖ 21세기 세종 계획 (98'~07')
- ❖ 구문 분석 말뭉치 (21세기 세종 계획 국어기초자료구축)
 - 세종 '의미 분석 말뭉치 ' 에 통사 구조/기능 표지를 부가
- ❖ Size: 약 45만 (433, 839어절, 43,828문장)

Korean Treebank (2)

❖구문분석 말뭉치 구축 지침

• 구문 표지

	범주	사례	
S	문장		
Q	인 용 절	인용부호("") 안에 들어 있는 두 개 이상의 문장	
NP	체언구	체언(명사, 대명사, 수사)	
VΡ	<u>용언구</u>	용언(동사, 형용사, 보조용언)	
VNP	긍정 <u>지정사구</u>	긍정 지정사 '이다'와 결합한 구	
AP	부사구	부사	
DP	관형사구	관형사	
IP	감탄사구	감탄사	

·기능 표지

범주	사례
주어	주격 체언구, 명사 전성 용언구, 명사절
	(NP_SBJ, VP_SBJ, S_SBJ, VNP_SBJ)
목적어	목적격 체언구, 명사 전성 용언구, 명사절
	(NP_OBJ, VP_OBJ, S_OBJ, <u>VNP_OB</u> J)
보어	보격 체언구, 명사 전성 용언구, 인용절
	(NP_CMP, VP_CMP, S_CMP, VNP_CMP)
체언 수식어	관형격 <u>체언구</u> , 관형형 <u>용언구</u> , 관형절
	(NP_MOD, VP_MOD, S_MOD, <u>VNP_</u> MOD)
용언 수식어	부사격 <u>체언구</u> , <u>문말어미</u> +부사격조사
	(NP_AJT_VP_AJT, S_AJT, VNP_AJT)
접속어	접속격 체언(NP_CNJ, VNP_CNJ)
독립어	체언 (NP <u>INT</u>)
	주어 목적어 보어 체언 수식어 용언 수식어 접속어

예시)

```
(NP SBJ 우리/NP + 는/JX)
              (NP OBJ 오관/NNG + 울/JKO)
(VP
              (VP 통하/VV + 아/EC))
       (VP
                                           (NP AJT
                                                          (NP MOD 우주/NNG + 의/JKG)
              (NP OBJ
                             (VP_MOD
                                    (NP AJT 삼라만상/NNG + 에/JKB))
                             (VP MOD 관하/VV + L/ETM))
                     (NP OBJ 정보/NNG + 률/JKO))
              (VP
                      (NP AJT
                                    (NP MOD 나/NP + 의/JKG)
                             (NP_AJT 속/NNG + 으로/JKB))
```


Universal dependency treebank

- Universal Dependencies (UD)
 - developing cross-linguistically consistent treebank annotation for many languages, with the goal of facilitating multilingual parser development, cross-lingual learning, and parsing research from a language typology perspective.

감 사 합 니 다.

남궁영 한국해양대학교 컴퓨터공학과 young_ng@kmou.ac.kr

2019. 04. 05.