Lecture 36: Dec 7

Last time

- MGF cont.
- Covariance and Correlation

Today

- Course evaluations (13/38)
- Final exam format
 - Final exam will be take home
 - Open book, open note, not open internet
 - Final exam will be released on Friday (12/09/2022) right after class
 - Final exam due 23:59 pm on Friday 12/16/2022.
 - Scan and submit your exam via email with a single pdf file
 - Send your email to both your instructor and your TA.
 - Submitted exams should be human-readable to receive non-zero scores.
- Random Samples
- Convergence
- Central Limit Theorem

Random Samples

Definition The random variables X_1, \ldots, X_n are called a random sample of size n from the population f(x) if X_1, \ldots, X_n are mutually independent and identically distributed (iid) random variables with the same pdf or pmf f(x).

If X_1, \ldots, X_n are iid, then their joint pdf or pmf is

$$f(x_1, \dots, x_n) = f(x_1)f(x_2)\dots f(x_n) = \prod_{j=1}^n f(x_j)$$

Statistics Let X_1, \ldots, X_n be a random sample and let $T(x_1, \ldots, x_n)$ be a function defined on \mathbb{R}^n . Then the random variable $Y = T(X_1, \ldots, X_n)$ is called a *statistic*. The probability distribution of Y is called the *sampling distribution* of Y.

Note: T is only a function of (x_1, \ldots, x_n) , no parameters.

Examples

sample mean
$$\bar{X} = \frac{1}{n} \sum_{j=1}^{n} X_j$$

sample variance $S^2 = \frac{1}{n-1} \sum_{j=1}^{n} (X_j - \bar{X})^2$
sample standard deviation $S = \sqrt{S^2}$
minimum $X_{(1)} = \min_{1 \leqslant i \leqslant n} X_i$

Properties Let x_1, \ldots, x_n be n numbers and define

$$\bar{x} = \frac{1}{n} \sum_{j=1}^{n} x_j, \quad s^2 = \frac{1}{n-1} \sum_{j=1}^{n} (x_j - \bar{x})^2$$

Then

$$\min_{a} \sum_{j=1}^{n} (x_j - a)^2 = \sum_{j=1}^{n} (x_j - \bar{x})^2$$
$$(n-1)s^2 = \sum_{j=1}^{n} (x_j - \bar{x})^2 = \sum_{j=1}^{n} x_j^2 - n\bar{x}^2$$

Residuals Lemma: Let X_1, \ldots, X_n be a random sample from a population with mean μ and variance σ^2 . Define the residuals $R_i = X_i - \bar{X}$. Then

$$E(R_i) = 0$$
, $Var(R_i) = \frac{n-1}{n}\sigma^2$
 $Cov(R_i, \bar{X}) = 0$, $Cov(R_i, R_j) = -\sigma^2/n$ if $i \neq j$

Theorem Let X_1, \ldots, X_n be a random sample from a population with mgf $M_X(t)$. Then the mgf of the sample mean is

$$M_{\bar{X}}(t) = \left[M_X(t/n) \right]^n$$

Convergence

Convergence in Probability A sequence of random variables X_1, \ldots, X_n converges in probability to a random variable X, denoted

$$X_n \stackrel{p}{\to} X$$

if for every $\epsilon > 0$,

$$\lim_{n \to \infty} \Pr(|X_n - X| < \epsilon) = 1$$

or equivalently

$$\lim_{n \to \infty} \Pr(|X_n - X| > \epsilon) = 0$$

In other words, X_n is more and more likely to be close to X, or less and less likely to be far from X.

Example Let $X_n = X + \epsilon_n$, where $\epsilon_n \sim N(0, 1/n)$ and X is an arbitrary random variable. Then, as $n \to \infty$,

$$X_n \stackrel{p}{\to} X$$

Weak law of large numbers (WLLN) Let Y_1, \ldots, Y_n be iid with common mean μ and variance σ^2 . Then, as $n \to \infty$,

$$\bar{Y}_n = \frac{1}{n} \sum_{j=1}^{n} Y_j \stackrel{p}{\to} \mu$$

Proof:

The proof is quite simple, being a straightforward application of Chebychev's Inequality. We have, for every $\epsilon > 0$,

$$\Pr(|\bar{Y}_n - \mu| \ge \epsilon) = \Pr(|\bar{Y}_n - \mu|^2 \ge \epsilon^2) \le \frac{E(\bar{Y} - \mu)^2}{\epsilon^2} = \frac{Var(\bar{Y})}{\epsilon^2} = \frac{\sigma^2}{n\epsilon^2} \to 0 \text{ as } n \to \infty$$

Convergence in Distribution A sequence of random variables X_1, \ldots, X_n converges in distribution to a random variable X, denoted

$$X_N \stackrel{d}{\to} X$$

if

$$\lim_{n \to \infty} F_{X_n}(x) = F_X(x)$$

This is also called *convergence in law* or *weak convergence*. In other words, the distribution of X_n is closer and closer to the distribution of X.

Relation between "in distribution" and "in probability" Theorem:

1. Convergence in probability implies convergence in distribution:

$$X_n \stackrel{p}{\to} X \Rightarrow X_n \stackrel{d}{\to} X$$

2. Suppose $X_n \stackrel{d}{\to} X$ where X has a degenerate distribution, i.e. $\Pr\{X = a\} = 1$ for some $a \in \mathbb{R}$. Then,

$$X_n \stackrel{d}{\to} a \Rightarrow X_n \stackrel{p}{\to} a$$

Convergence in Distribution via Convergence of Mgfs Theorem: Suppose the mgf $M_n(t)$ of Y_n exists for |t| < h, and the mgf M(t) of Y exists for $|t| < h_1 < h$. Then,

$$Y_n \stackrel{d}{\to} Y \iff \lim_{n \to \infty} M_n(t) = M(t), \quad |t| < h_1$$

Example Let $X_{\lambda} \sim Poisson(\lambda)$. Then, as $\lambda \to \infty$,

$$\frac{X_{\lambda} - \lambda}{\lambda} \stackrel{p}{\to} 0$$

$$\frac{X_{\lambda} - \lambda}{\sqrt{\lambda}} \stackrel{d}{\to} N(0, 1)$$

Central Limit Theorem Let X_1, X_2, \ldots, X_n be a sequence of iid random variables whose mgfs exist in a neighborhood of 0 (that is, $M_{X_i}(t)$ exists for |t| < h, for some positive h > 0). Let $EX_i = \mu$ and $Var(X_i) = \sigma^2 > 0$. (Both μ and σ^2 are finite since the mgf exists) Define $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$. Let $G_n(x)$ denote the cdf of $\sqrt{n}(\bar{X}_n - \mu)/\sigma$. Then, for any $x, -\infty < x < \infty$,

$$\lim_{n \to \infty} G_n(x) = \int_{-\infty}^x \frac{1}{\sqrt{2\pi}} e^{-y^2/2} dy;$$

that is, $\sqrt{n}(\bar{X}_n - \mu)/\sigma$ has a limiting standard normal distribution, in other words, $\sqrt{n}(\bar{X}_n - \mu)/\sigma \xrightarrow{d} N(0,1)$

Proof:

Define $Y_i = (X_i - \mu)/\sigma$, and let $M_Y(t)$ denote the common mgf of Y_i s, which exists for $|t| < \sigma h$ and $M_Y(t) = M_{\frac{1}{\sigma}X_i - \mu/\sigma}(t) = e^{-\frac{\mu}{\sigma}t} M_X(\frac{t}{\sigma})$. Since

$$\frac{\sqrt{n}(\bar{X}_n)}{\sigma} = \frac{1}{\sqrt{n}} \sum_{i=1}^n Y_i,$$

we have,

$$M_{\sqrt{n}(\bar{X}_n - \mu)/\sigma}(t) = M_{\sum_{i=1}^n Y_i/\sqrt{n}}(t)$$
$$= M_{\sum_{i=1}^n Y_i}(t/\sqrt{n})$$
$$= \left[M_Y(t/\sqrt{n})\right]^n.$$

We now expand $M_Y(t/\sqrt{n})$ in a Taylor series (power series) around 0.

$$M_Y(\frac{t}{\sqrt{n}}) = \sum_{k=0}^{\infty} M_Y^{(k)}(0) \frac{(t/\sqrt{n})^k}{k!},$$

where $M_Y^{(k)}(0) = (d^k/dt^k)M_Y(t)|_{t=0}$. Since the mgfs exist for |t| < h, the power series expansion is valid if $t < \sqrt{n}\sigma h$.

Using the facts that $M_Y^{(0)} = 1$, $M_Y^{(1)} = 0$, and $M_Y^{(2)} = 1$ (by construction, the mean and variance of Y are 0 and 1), we have

$$M_Y(\frac{t}{\sqrt{n}}) = 1 + \frac{(t/\sqrt{n})^2}{2!} + R_Y(\frac{t}{\sqrt{n}}),$$

where R_Y is the remainder term in the Taylor expansion such that

$$\lim_{n\to\infty} \frac{R_Y(t/\sqrt{n})}{(t/\sqrt{n})^2} = 0.$$

Therefore, for any fixed t, we can write

$$\lim_{n \to \infty} \left[M_Y(\frac{t}{\sqrt{n}}) \right]^n = \lim_{n \to \infty} \left[1 + \frac{(t/\sqrt{n})^2}{2!} + R_Y(\frac{t}{\sqrt{n}}) \right]^n$$
$$= \lim_{n \to \infty} \left[1 + \frac{1}{n} \left(\frac{t^2}{2} + nR_Y(\frac{t}{\sqrt{n}}) \right) \right]^n$$
$$= e^{t^2/2}$$