Unsupervised and Online Learning Twitter API usecase

Sébastien Loustau, CEO @artfact

Nantes Machine Learning Meetup, 30 Mai 2016

Contents

Introduction to Online and Unsupervised Learning

Online Clustering

Twitter usecase introduction

Contents

Introduction to Online and Unsupervised Learning

Online Clustering

Twitter usecase introduction

$$x \longrightarrow \boxed{\mathsf{nature}} \longrightarrow y$$

▶ **prédire** la réponse *y* à partir de *x*,

$$x \longrightarrow \boxed{\mathsf{nature}} \longrightarrow y$$

- prédire la réponse y à partir de x,
- **comprendre** le lien entre x et y.

$$x \longrightarrow \boxed{\mathsf{nature}} \longrightarrow y$$

- prédire la réponse y à partir de x,
- **comprendre** le lien entre x et y.

$$x \longrightarrow \boxed{\mathsf{algorithm}} \longrightarrow \widehat{y}$$

Machine Supervised learning

$$x \longrightarrow \boxed{\mathsf{nature}} \longrightarrow y$$

- prédire la réponse y à partir de x,
- **comprendre** le lien entre *x* et *y*.

$$x \longrightarrow \boxed{\mathsf{algorithm}} \longrightarrow \widehat{y}$$

 $\mathsf{nature} \longrightarrow x$

nature
$$\longrightarrow x$$

décrire les observations x,

$$nature \longrightarrow x$$

- décrire les observations x,
- réduire la dimension de x,

 $nature \longrightarrow x$

- décrire les observations x,
- réduire la dimension de x,
- grouper les observations x.

$$nature \longrightarrow x$$

- décrire les observations x,
- réduire la dimension de x,
- grouper les observations x.

Algorithms

PCA, k-means, spectral k-means, hierarchical clustering, Gaussian mixtures, Principal curves analysis, word2vect...

Qu'est-ce que ça change ?

UNSUPERVISED LEARNING

$$x \longrightarrow \boxed{\mathsf{algorithm}} \longrightarrow \widehat{y}$$

$$x \longrightarrow \boxed{\mathsf{algorithm}} \longrightarrow \widehat{y}$$

▶ Build a model from a training sample $\{(X_i, Y_i), i = 1, ..., n\}$.

$$x \longrightarrow \boxed{\mathsf{algorithm}} \longrightarrow \widehat{y}$$

- ▶ Build a model from a training sample $\{(X_i, Y_i), i = 1, ..., n\}$.
- ▶ Observe new x and predict \hat{y} as above.

$$x \longrightarrow |\operatorname{algorithm}| \longrightarrow \widehat{y}$$

- ▶ Build a model from a training sample $\{(X_i, Y_i), i = 1, ..., n\}$.
- ▶ Observe new x and predict \hat{y} as above.
- Problem : overfitting !

$$x \longrightarrow |\operatorname{algorithm}| \longrightarrow \widehat{y}$$

- ▶ Build a model from a training sample $\{(X_i, Y_i), i = 1, ..., n\}$.
- Observe new x and predict \hat{y} as above.
- Problem : overfitting !

 Solution: Training set + test set, Leave-One-Out, V-fold Cross validation.

Unsupervised: science or art?

Statistical Learning

We observe a training set $\mathcal{D}_n = \{(X_i, Y_i), i = 1, ..., n\}.$

Statistical Learning

We observe a training set $\mathcal{D}_n = \{(X_i, Y_i), i = 1, ..., n\}$. New x arrives. We build a model/algorithm thanks to \mathcal{D}_n and predict \hat{y} .

Statistical Learning

We observe a training set $\mathcal{D}_n = \{(X_i, Y_i), i = 1, ..., n\}$. New x arrives. We build a model/algorithm thanks to \mathcal{D}_n and predict \hat{y} .

Online Learning

Data arrives sequentially.

Statistical Learning

We observe a training set $\mathcal{D}_n = \{(X_i, Y_i), i = 1, ..., n\}$. New x arrives. We build a model/algorithm thanks to \mathcal{D}_n and predict \hat{y} .

Online Learning

Data arrives sequentially. At each time t, we want to make a decision based on past observations.

Statistical Learning

We observe a training set $\mathcal{D}_n = \{(X_i, Y_i), i = 1, ..., n\}$. New x arrives. We build a model/algorithm thanks to \mathcal{D}_n and predict \hat{y} .

Online Learning

Data arrives sequentially. At each time t, we want to make a decision based on past observations. No assumption over the data mechanism.

Game with expert advices

Game with expert advices

```
y = \frac{1}{2}, experts = 0
```

Game with expert advices

```
y = \frac{1}{2}, experts = 0
```

```
1 0 0 0 0 ... 0 1
```

```
0 1 0 0 0 0 ... 0 1
```

```
0 \quad x \quad 0 \quad 0 \quad 0 \quad 0 \quad \cdots \quad 0 \quad x
```

```
x x 1 1 1 \cdots x x
```

```
0 \quad x \quad 0 \quad 0 \quad 0 \quad \cdots \quad 0 \quad x
1 \quad x \quad x \quad 1 \quad 1 \quad 1 \quad \cdots \quad x \quad x
```

```
x \quad 0 \quad 0 \quad 0 \quad 0 \quad \cdots \quad 0 \quad x
1 \quad x \quad x \quad 1 \quad 1 \quad 1 \quad \cdots \quad x \quad x
     x \times 0 \quad 1 \quad 0 \quad \cdots \quad x \quad x
```

```
x \quad 0 \quad 0 \quad 0 \quad \cdots \quad 0 \quad x
1 \quad x \quad x \quad 1 \quad 1 \quad 1 \quad \cdots \quad x \quad x
  x x 0 1 0 \cdots x x
```

```
x \quad 0 \quad 0 \quad 0 \quad 0 \quad \cdots \quad 0 \quad x
1 \quad x \quad x \quad 1 \quad 1 \quad 1 \quad \cdots \quad x \quad x
   x \times x \times 1 \times \cdots \times x
```

```
x \quad 0 \quad 0 \quad 0 \quad \cdots \quad 0 \quad x
1 \quad x \quad x \quad 1 \quad 1 \quad 1 \quad \cdots \quad x \quad x
   x \times x \times 1 \times \cdots \times x
```

Let $W_k = \text{survivors after k mistakes}$.

Let $W_k = \text{survivors}$ after k mistakes. Then:

$$W_k \leq \frac{W_{k-1}}{2}$$

Let $W_k = \text{survivors}$ after k mistakes. Then:

$$W_k \le \frac{W_{k-1}}{2} \le \frac{W_{k-2}}{4}$$

Let $W_k = \text{survivors}$ after k mistakes. Then:

$$W_k \le \frac{W_{k-1}}{2} \le \frac{W_{k-2}}{4} \le \ldots \le \frac{W_0}{2^k}$$

Let $W_k = \text{survivors after k mistakes}$. Then:

$$W_k \le \frac{W_{k-1}}{2} \le \frac{W_{k-2}}{4} \le \ldots \le \frac{W_0}{2^k} = 2^{-k} N.$$

Let $W_k = \text{survivors after k mistakes}$. Then:

$$W_k \le \frac{W_{k-1}}{2} \le \frac{W_{k-2}}{4} \le \ldots \le \frac{W_0}{2^k} = 2^{-k} N.$$

We end up with $k \leq C \log N$!

 $lackbox{}(y_t)_{t=1}^{\mathcal{T}}, y_t \in \mathbb{R}$ a sequence of inputs,

- $(y_t)_{t=1}^T$, $y_t \in \mathbb{R}$ a sequence of inputs,
- $\{p_{k,t}, k = 1, ..., N\}_{t=1}^T$ expert advices.

- $(y_t)_{t=1}^T$, $y_t \in \mathbb{R}$ a sequence of inputs,
- $\{p_{k,t}, k = 1, ..., N\}_{t=1}^{T}$ expert advices.

Game protocol

$$\forall t = 1, \ldots, T$$
:

1. Observe $p_{k,t}$, $k = 1, \ldots, N$.

- $(y_t)_{t=1}^T$, $y_t \in \mathbb{R}$ a sequence of inputs,
- $\{p_{k,t}, k = 1, ..., N\}_{t=1}^{T}$ expert advices.

Game protocol

 $\forall t = 1, \ldots, T$:

- 1. Observe $p_{k,t}, k = 1, ..., N$.
- 2. Predict \hat{y}_t .

- $(y_t)_{t=1}^T$, $y_t \in \mathbb{R}$ a sequence of inputs,
- $\{p_{k,t}, k = 1, ..., N\}_{t=1}^{T}$ expert advices.

Game protocol

$$\forall t = 1, \ldots, T$$
:

- 1. Observe $p_{k,t}$, k = 1, ..., N.
- 2. Predict \hat{y}_t
- 3. Observe y_t and pay
 - $\ell(\hat{y}_t, y_t)$ for your algorithm,
 - $\ell(p_{k,t}, y_t)$ for expert number k.

- $(y_t)_{t=1}^T$, $y_t \in \mathbb{R}$ a sequence of inputs,
- $\{p_{k,t}, k = 1, ..., N\}_{t=1}^{T}$ expert advices.

Game protocol

 $\forall t = 1, \ldots, T$:

- 1. Observe $p_{k,t}$, k = 1, ..., N.
- 2. Predict \hat{y}_t
- 3. Observe y_t and pay
 - $\ell(\hat{y}_t, y_t)$ for your algorithm,
 - $\ell(p_{k,t}, y_t)$ for expert number k.

Popular loss functions include $\ell(\hat{y},y)=(\hat{y}-y)^2$, $|\hat{y}-y|$, $(1-\hat{y}y)_+$.

General result

In the general case, we want to control the "regret" :

$$\sum_{t=1}^{T} (\hat{y}_t - y_t)^2 - \sum_{t=1}^{T} (y_t^* - y_t)^2,$$

where (y_t^*) is the best expert.

General result

In the general case, we want to control the "regret" :

$$\sum_{t=1}^{T} (\hat{y}_t - y_t)^2 - \sum_{t=1}^{T} (y_t^* - y_t)^2,$$

where (y_t^*) is the best expert.

Cesa-Bianci & Lugosi, 2006

If $\ell(\cdot,z)$ is convex and [0,1]-bounded :

$$\sum_{t=1}^T \ell(\hat{y}_t, y_t) - \min_{k=1,\dots N} \sum_{t=1}^T \ell(p_{k,t}, y_t) \leq \frac{\log N}{\lambda} + \frac{\lambda T}{8},$$

General result

In the general case, we want to control the "regret" :

$$\sum_{t=1}^{T} (\hat{y}_t - y_t)^2 - \sum_{t=1}^{T} (y_t^* - y_t)^2,$$

where (y_t^*) is the best expert.

Cesa-Bianci & Lugosi, 2006

If $\ell(\cdot,z)$ is convex and [0,1]-bounded :

$$\sum_{t=1}^{T} \ell(\hat{y}_t, y_t) - \min_{k=1,\dots N} \sum_{t=1}^{T} \ell(p_{k,t}, y_t) \leq \frac{\log N}{\lambda} + \frac{\lambda T}{8},$$

where:

$$\hat{y}_{t} = \sum_{k=1}^{N} \frac{e^{-\lambda \sum_{u=1}^{t-1} \ell(p_{k,u},y_{u})}}{W_{t-1}} p_{k,t}, \ \forall t = 1, \ldots, T.$$

Contents

Introduction to Online and Unsupervised Learning

Online Clustering

Twitter usecase introduction

Principle : clustering as prediction !

- Principle : clustering as prediction !
- Sparsity assumption : points are grouped into s clusters.

- Principle : clustering as prediction !
- Sparsity assumption : points are grouped into s clusters.
- ► Use PAC-Bayesian regularization to choose the number of clusters.

- Principle : clustering as prediction !
- Sparsity assumption: points are grouped into s clusters.
- ► Use PAC-Bayesian regularization to choose the number of clusters.

We prove new kind of sparsity regret bounds:

$$\sum_{t=1}^{T} \ell(\hat{\mathbf{c}}_t, x_t) - \inf_{\mathbf{c} \in \mathbb{R}^{dp}} \left\{ \sum_{t=1}^{T} \ell(\mathbf{c}, x_t) + \lambda |\mathbf{c}|_0 \right\},$$

- Principle : clustering as prediction !
- Sparsity assumption: points are grouped into s clusters.
- ► Use PAC-Bayesian regularization to choose the number of clusters.

We prove new kind of sparsity regret bounds:

$$\sum_{t=1}^T \ell(\hat{\mathbf{c}}_t, x_t) - \inf_{\mathbf{c} \in \mathbb{R}^{d_p}} \left\{ \sum_{t=1}^T \ell(\mathbf{c}, x_t) + \lambda |\mathbf{c}|_0 \right\},$$

where $|\mathbf{c}|_0 = \mathsf{card}\{j=1,\ldots,p: c_j
eq 0_{\mathbb{R}^d}\}$ and

$$\ell(\mathbf{c}, x) = \min_{j=1,\dots,p} \|c_j - x\|_2^2.$$

Contents

Introduction to Online and Unsupervised Learning

Online Clustering

Twitter usecase introduction

A Federal Judge May Have Just Handed Democrats Victory By Giving Trump The Worst News Ever https://t.co/fuNnDwLJNL

A Federal Judge May Have Just Handed Democrats Victory By Giving Trump The Worst News Ever https://t.co/fuNnDwLJNL @joshbranson: Fine, I agree with Trump on one thing: Billy Joel is awesome. https://t.co/EB8KmsJzW6

```
A Federal Judge May Have Just Handed Democrats Victory By Giving Trump The Worst News Ever https://t.co/fuNnDwLJNL @joshbranson: Fine, I agree with Trump on one thing: Billy Joel is awesome. https://t.co/EB8KmsJzW6 @realDonaldTrump Trump: Evil supervillan! https://t.co/Xswmh39EYa
```

```
A Federal Judge May Have Just Handed Democrats Victory By Giving Trump The Worst News Ever https://t.co/fuNnDwLJNL @joshbranson: Fine, I agree with Trump on one thing: Billy Joel is awesome. https://t.co/EB8KmsJzW6 @realDonaldTrump Trump: Evil supervillan! https://t.co/Xswmh39EYa
```

Meaning? Sentiment? From words to vectors?

The main challenge of NLP is vectorization of words.

➤ One hot representation : each word is a vector with one 1 and A LOT of zeroes :

- ➤ One hot representation : each word is a vector with one 1 and A LOT of zeroes :
 - hotel = $(0, 0, 0, 1, 0, 0, \dots, 0)$
 - Budapest = (0, 0, 1, 0, 0, 0, ..., 0)

- ➤ One hot representation : each word is a vector with one 1 and A LOT of zeroes :
 - hotel = $(0, 0, 0, 1, 0, 0, \dots, 0)$
 - Budapest = $(0, 0, 1, 0, 0, 0, \dots, 0)$
- ▶ Problem since $\langle \text{hotel}, \text{motel} \rangle = 0$.

- ➤ One hot representation : each word is a vector with one 1 and A LOT of zeroes :
 - hotel = $(0, 0, 0, 1, 0, 0, \dots, 0)$
 - Budapest = (0, 0, 1, 0, 0, 0, ..., 0)
- ▶ Problem since $\langle hotel, motel \rangle = 0$.
- Gigantic dimension!

Represent a word by means of its neighbors.

Represent a word by means of its neighbors.

Given a corpus:

I love swimming and dancing. I love NLP.

Represent a word by means of its neighbors.

- ▶ Given a corpus: I love swimming and dancing. I love NLP.
- Choose a window-size.

Represent a word by means of its neighbors.

▶ Given a corpus: I love swimming and dancing. I love NLP.

- Choose a window-size.
- Compute the coocurence matrix:

	Ι	love	dancing	swimming	NLP	and
I	2	2	1	1	1	0
love	2	2	1	1	1	1
dancing	1	1	1	1	0	1
swimming	1	1	1	1	0	1
NLP	1	1	0	0	0	1
and	0	1	1	1	0	1

▶ Other solution : directly learn low dimensional word vectors.

- ▶ Other solution : directly learn low dimensional word vectors.
- ▶ Idea : predict, given each word one at a time, the word to the left and the word to the right.

- Other solution : directly learn low dimensional word vectors.
- Idea: predict, given each word one at a time, the word to the left and the word to the right.
- Maximize the likelihood of any context word given the center word:

$$\max_{\theta} \frac{1}{T} \sum_{t=1}^{T} \sum_{-m \leq j \leq m} \log \mathbb{P}(w_{t+j}|w_t),$$

- Other solution : directly learn low dimensional word vectors.
- Idea: predict, given each word one at a time, the word to the left and the word to the right.
- Maximize the likelihood of any context word given the center word:

$$\max_{\theta} \frac{1}{T} \sum_{t=1}^{T} \sum_{-m \leq i \leq m} \log \mathbb{P}(w_{t+j} | w_t),$$

where

$$p(o|c) = \frac{\exp\left(\langle u_{o}, v_{c} \rangle\right)}{\sum_{w=1}^{W} \exp\left(\langle u_{w}, v_{c} \rangle\right)}.$$

Optimization with Online Stochastic Gradient Descent.

Word2vect: linear relationships

