Further Primal-dual

Wednesday, May 3, 2017 1:40 PM

Facility Location problem

Primal

min Zfiyi + Zdij Xij max Zxj

∀j∈C: ∑xij = 1 (~j) ∀i∈F: ∑β. ≤ f;

∀i,j: y, - x; > 0 (β;) ∀ i ∈ F, : α; - β; ≤ d; ×, y > 0

Dual

Methodology:

- Start with a feasible dual $(\alpha, \beta \equiv D)$
- Start with a tensible over

 Feasible dual value < opt

 "Raise duals" st (2) it remains feasible, and

 (D) as we raise we get better

 | batter lower bounds on opt.
- When we reach a hindrance in raising dual,
 that is, when some dual constraint becomes tight;
 at that point "make a primal decision."

FL primal-dual Algorithm

	(1.b) Active clients: A; initially A = C.
	(1.c) "Tentatively" open facilities: OSF. Initially 0= &
	(1.d) Tight edges !- E = F x C; initially E = Ø
	(1.0) "Tentative" Assignment , ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
	(1.e) "Tentative" Assignment! &: C > O U { 1 } Initially, F(j) = 1 + j
_	Invariants: $()$ $\widetilde{\sigma}(j) = i \Rightarrow (i,j) \in E \neq i \in \widetilde{\sigma}$
_	Invariants: $(i,j) \in E \neq i \in \delta$ $(i,j) \in E \Rightarrow (i,j) \in E \neq i \in \delta$ $(i,j) \in E \Rightarrow (i,j) \in E \Rightarrow i \in \delta$ $(i,j) \in E \Rightarrow i \in \delta$
	$(3) \forall i \in 0 : $
/	\mathcal{C}
	Raise & s of every JEA, AND
	2) Raise &; s of every j \(A \), AND Raise B: of every (i,j) \(E \) where j \(A \)
	Caniform oute TILL
	(2-a) constraint: dj - Bj \le dj' be comes
	tight for some (iij) & E
	 If i∈ o (ie, i is tentatively open) Remone j from A
	- Remone j from A - & (j) = i
	- Don't add (ij) to E
	• If i & o,
	In this case, add (i,j) to E and get back to step 2
	(2.b) Constraint: "ZB; < f; becomes

tight for some it o

In this ase,

-"tentatively" spen i; 0=0+i

- Remove all j st (i,j) €E

- "fentatively" assign j to i $\sigma(j) = i$

Mobserre: All Invariants are satisfied.

(3) TERMINATION: Since any j&A is tentatively assigned, i.e., $\widetilde{\sigma}(j) \mapsto \widetilde{\sigma}$, $\widetilde{\sigma}$ the end we have $\widetilde{\sigma}: C \longrightarrow \widetilde{\delta}$ satisfying the 3 in. given above.

(4) CLEANING UP

- Consider a graph with the vertices O with an edge (i,i) in the graph if =j & C st. (i,j) & (i,j) are both tight.

- Let I be any MAXIMAL INDEPENDENT SET in H.
- Open all facilities in I - Assign clients to the nearest facility in I.

Analysis:

We need to bound both facility opening cost & connection costs.

- To argue about the latter, we explicitly define an assignment mapping $\sigma:C\to I$ & appear bound that.

- For any $j \in C$ st $\widetilde{\sigma}(j) \in I$, define $\sigma(j) = \widetilde{\sigma}(j)$

- For any $j \in C$ s.t. $\mathcal{F}(j) \triangleq I$ • let $\tilde{c} = \tilde{\mathcal{F}}(j)$

Since I is an MIS,
$$\exists i \in I$$
 st
 (i,i) is an edge in $\exists i \in I$
• $\sigma(j) = i$
• Let $C = C_1 \cup C_2$ where
 $C_1 = \{j \in C : \tilde{\sigma}(j) \in I\}$ and
 C_2 the rest
• $\forall j \in C_1 : d(\sigma(j),j) = d(\tilde{\delta}(j),j)$
 $= \forall j - \beta$
Figure $\exists j \in C_2 \Rightarrow \tilde{\sigma}(j) \notin I$
 $\Rightarrow \exists (i,i') \text{ edge in } \exists i \in \sigma(j)$
 $\exists j' \in C$ st
 $(j',i) \in E$... note j' could be j' .
 $d(j,i) \leq d(i,j') + d(i,j') + d(i,j')$

=
$$\alpha''_{j}$$
 - β''_{j} , α''_{j} + α''_{j} - β'''_{ij} \leq $2\alpha''_{j}$ + α''_{j} - β'''_{ij} \leq $2\alpha''_{j}$ + α''_{j} \leq $2\alpha''_{j}$ \leq $2\alpha''_$

- Opening cost:

$$Zf; = Z Z B;$$

$$i \in I j \in C B;$$

$$= \sum_{i \in I} j \in C_{i}$$

$$= \sum_{i \in I} j \in C_{i}$$
Since there is no algorated the algorated the algorated there is no algorated the algorated the algorated there is no algorated the algorated there is no algorated the algo

But (α, β) is a feasible dual, by design of the algorithm.

