Seminar class 3

Exercise 1 (exercise 6.7 in the book)

We have shown that for a finite hypothesis class \mathcal{H} , $VCdim(\mathcal{H}) \leq \lfloor log(|\mathcal{H}|) \rfloor$. However, this is just an upper bound. The VC-dimension of a class can be much lower than that:

- Find an example of a class H of functions over the real interval X = [0, 1] such that \mathcal{H} is infinite while $VCdim(\mathcal{H}) = 1$.
- Give an example of a finite hypothesis class H over the domain X = [0, 1], where $VCdim(\mathcal{H}) = \lfloor \log_2(|\mathcal{H}|) \rfloor$.

Exercise 2 (exercise 6.5 in the book)

VC-dimension of axis aligned rectangles in \mathbb{R}^d : Let $\mathcal{H}^d_{\text{rec}}$ be the class of axis aligned rectangles in \mathbb{R}^d . We have already seen that $VCdim(\mathcal{H}^2_{\text{rec}}) = 4$. Prove that in general, $VCdim(\mathcal{H}_{rec}^d) = 2d$.

Exercise 3 (exercise 6.6 in the book)

VC-dimension of Boolean conjunctions: Let \mathcal{H}_{con}^d be the class of Boolean conjunctions over the variables $x_1, ..., x_d$ $(d \ge 2)$. We already know that this class is finite and thus (agnostic) PAC learnable. In this question we calculate $VCdim(\mathcal{H}_{con}^d)$.

- 1. Show that $|\mathcal{H}_{con}^d| \leq 3^d + 1$. 2. Conclude that $VCdim(\mathcal{H}) \leq d \log 3$.
- 3. Show that \mathcal{H}_{con}^d shatters the set of unit vectors $\{\mathbf{e}_i : i \leq d\}$.
- 4. (**) Show that $VCdim(\mathcal{H}^d_{con}) \leq d$.

 Hint: Assume by contradiction that there exists a set $C = \{c_1, \dots, c_{d+1}\}$ that is

shattered by \mathcal{H}_{con}^d . Let h_1, \ldots, h_{d+1} be hypotheses in \mathcal{H}_{con}^d that satisfy

$$\forall i, j \in [d+1], \ h_i(c_j) = \begin{cases} 0 & i = j \\ 1 & \text{otherwise} \end{cases}$$

For each $i \in [d+1]$, h_i (or more accurately, the conjunction that corresponds to h_i) contains some literal ℓ_i which is false on c_i and true on c_j for each $j \neq i$. Use the Pigeonhole principle to show that there must be a pair $i < j \le d+1$ such that ℓ_i and ℓ_j use the same x_k and use that fact to derive a contradiction to the requirements from the conjunctions h_i , h_j .

5. Consider the class \mathcal{H}^d_{mcon} of monotone Boolean conjunctions over $\{0,1\}^d$. Monotonicity here means that the conjunctions do not contain negations. As in \mathcal{H}_{con}^d , the empty conjunction is interpreted as the all-positive hypothesis. We augment \mathcal{H}_{mcon}^d with the all-negative hypothesis h^- . Show that $VCdim(\mathcal{H}_{mcon}^d) = d$.

Exercise 4 (exercise 6.9 in the book)

Let \mathcal{H} be the class of signed intervals, that is, $\mathcal{H} = \{h_{a,b,s} : a \le b, s \in \{-1,1\}\}$ where

$$h_{a,b,s}(x) = \begin{cases} s & \text{if } x \in [a,b] \\ -s & \text{if } x \notin [a,b] \end{cases}$$

Calculate $VCdim(\mathcal{H})$.

Exercise 5 (exercise 3.13 in the book "Foundations of Machine Learning", 2nd edition)

3.13 VC-dimension of union of k intervals. What is the VC-dimension of subsets of the real line formed by the union of k intervals?

Exercise 6 (exercise 3.15 in the book "Foundations of Machine Learning", 2nd edition)

VC-dimension of subsets. What is the VC-dimension of the set of subsets I_{α} of the real line parameterized by a single parameter α : $I_{\alpha} = [\alpha, \alpha+1] \cup [\alpha+2, +\infty)$?