Lecture 2 Conceiving Your Vis Design

Perception:

- Identification and interpretation of sensory information
- First processing (edges, planes) in visual cortex
- From the physical stimulus to recognising information
- Reflexes, not conscious
- e.g. hearing someone speak

Cognition:

- processing of information, applying knowledge, conclusion, drawing, problem solving, leaning, relations between objects, ong-term memory
- e.g. understanding the language and the words

Ames Room

- Demonstrate that we have no general purpose, vision.
- What we see depends on our goals and expectations

Change blidness:

- * a change in a scene might be invisible to many people because of a great blank slate in between that is shown
- * It might be a visualisation of streaming data that changes, then you are also blinking. And a bit in between those blinks, you are running into the change blindness problem
- * Details of an image cannot be remembered across separate scenes except in areas with forces attention
- * Interruption amplifies this effect
 - * e.g. a blink, eye saccade, or blank screen)
- * No failure of vision system, failure based on inappropriate attentional guidance
- * Relevant for visualisation when using animation to encode time-dependent data
- * The more changing elements you add to a scene, the more severe the effect gets

Inattention Blindness:

- * If you have a scene, then you can fail to notice parts of the scene that are in plain sight
- * Person fails to notice stimulus in plain sight
- * Stimulus usually unexpected but fully visible
- * Depends on attention and expectations

Pre-attentive Features:

- * Perceptional effect
- * Flickr/motion is distracting because it grabs attention —> rarely used in visualisation.
- * Combination of difference in hue and different in shape does not work
- * Properties detected by the low-level visual system
 - * Very rapid, very accurate, processed in parallel
 - * Happens before focused attention
 - * Attention is very important for cognition
- * Low-level vision is driven by object features(colour, shape, borders) rather than a conscious effort where to look
- * To find meaning in what we see we must selectively pay attention to what is important
- * Attention is driven by **preexisting knowledge**, **expectations**, and **goals stored in long-term** memory

Dimension of Color

- * Hue: what actually refer to as the colour, Luke yellow, red, blue and soon
 - * No clear order
- * Saturation: purity of a colour
 - * Perceived as ordered
- * Brightness, luminance, value: lightness or darkness of a color
 - * Perceived as ordered
 - * In theory, you could use those different dimensions independent of each other. But it is not recommended, because humans are not able to separate those three channels
- * Order blacks by colour is subjective, but order by brightness is more objective.

Three important colour cases

- * Qualitative scale (for categorical data)
 - * Do not use more than 7-10 colours
- * Sequential scale (for ordered data)
 - * Use one hue and vary the separation or vary the brightness
- * Diverging scale (for ordered data)
 - * Having a neutral point(usually white or yellow) in the centre like a zero
 - * Shape can encode much more categories than colour

Rainbow Colormap

- * Problematic:
 - * It is impossible for us to interpret that without the legend
 - * Have this permanent look-up task to see what colours are matched to which they ranges
 - * It is impossible for us to intuitively perceive this
 - * Therefore, using colour to order is problematic
 - * Using brightness is easy
 - * Rainbow colour scale is perceptually non-linear
 - * Segmentation effect: because of this non-linearity, we might see areas that are not there

The Alphabet of Visualisation: Visual Marks and Channels

Marks:

- * Points
- * Lines
- * Areas

Channels(aka visual variables):

- * change appearance of marks based on attribute
- * Way to control appearance of marks proportional to or based on attributes
- * Magnitude Channels/Ordered Attributes: ordinal & quantitative attributes
 - * Position on common scale
 - * Position on unaligned scale
 - * Length (1D size)
 - * Tilt/angle
 - * Area (2D size)
 - * Depth (3D position)
 - * Color luminance
 - * Color saturation Curvature
 - * Volume (3D size)
- * Identity Channels: categorical attributes

- * Spatial region
- * Color hue
- * Motion
- * Shape

Characteristics of Channels

- * Selective
 - * Is a mark distinct from other marks?
 - * Can we make out the difference between two marks?
- * Associative
 - * Does it support grouping?
- * Quantitative
 - * Can we quantify the difference between two marks?
- * Order
 - * Can we see a change in order?
- * Length
 - * How many unique marks can we see?

Position

- * Strongest channel!
- * Problems:
 - * Not available for maps
 - * Visual clutter (too many elements in close proximity)
- * Characteristics
 - * Selective: yes
 - * Associative: yes
 - * Quantitative: yes
 - * Order: yes
 - * Length: fairly big
- * 3D could be problematic for abstract data because you run into various problems

Length (1D) & Area (2D)

- * Good for 1D, OK for 2D, Bad for 3D
- * Easy to see which one is bigger
- * Aligned bars use position redundantly
- * Characteristics
 - * Selective: yes
 - * Associative: yes
 - * Quantitative: yes
 - * Order: yes
 - * Length: high

Brightness & Saturation

- * OK for quantitative data when pos, length & area are used
- * Not very many shades recognisable
- * Characteristics
 - * Selective: yes
 - * Associative: yes
 - * Quantitative: somewhat (with problems)
 - * Order: yes

* Length: limited

Color

- * Good for categorical data
- * Limited number of categories/length (~7-10!) Does not work well for quantitative data!
- * Lots of pitfalls! Be careful!
- * Rules of thumb:
 - * Minimize color use for encoding data
 - * Use for highlighting
- * Characteristics
 - * Selective: yes
 - * Associative: yes
 - * Quantitative: no
 - * Order: no
 - * Length: limited

Shape

- * Great to recognize many classes
- * Limited grouping, no ordering
- * Characteristics
 - * Selective: yes
 - * Associative: limited
 - * Quantitative: no
 - * Order: no
 - * Length: vast

Redundant Encoding / double encoding:

- * use the same channel for the same or you use multiple channels for the same attribute
- * You can always do to stress that something is really important by justing assigning two channels to

Separability of Attributes

- * Position + colour: still fully separately
- * Size + colour: already some interference
- * Width + height: some/significant interference
- * Red green: major interference

Gestalt Laws

- * Understand pattern perception
- * Perceptual hysteresis
 - * Once you've seen it, you can't un-see it!
 - * If you've seen it before, your brain will immediately recognise it and group this
- * The whole is greater than the same of the parts
- * Grouping principle: connection is a very strong grouping principle, can overrule others.
 - * Proximity: if two points are close to each other, they will be perceived as group
 - * Color
 - * Size
 - * Shape

Tufte's Design Principles

- * Clear, detailed, and thorough labeling and appropriate scales
- * Size of the graphic effect should be directly proportional to the numerical quantities
 - * "lie factor"
- * Maximize data-ink ratio
- * Avoid chart junk

Scale Distortions change the whole story

- * What are your bounds upper and lower?
- * What scale works?
 - * Linear? Log? Clipping? Breaks?
 - * Zero-based or not
 - * Large or small scale in x and y
 - * Absolute or relative numbers
- * How can you make things comparable?

"Lie factor:

- * Smartphone marketshare of Apple
 - * Rotated the pie chart in a way that Apple is in the front
 - * Slightly tilted to make it appear bigger
 - * The number of pixels that are purple are much lower than the number of pixels that are green because of the three-dimensional tilt

Maximize Data-ink ratio:

- * Don't use ink for the shadow
- * Don't use ink the 3D effects

Avoid chart junk:

* Extraneous visual elements that distract from the messages

Rules of Thumb:

- * No Unjustified 3D
 - * Exception: 3D Phenomena
 - * Perspective distortion: things that are further will appear smaller