ANSWER SCHEME

QUESTION	SOLUTION	MARKS
1 (a)	[Ft] = [mv - mu]	J1
	$MLT^{-1} = MLT^{-1}$ Therefore, the formulae are dimensionally homogeneous	K1
	-	
	$kgms^{-1}$	J1
(b)	$F_x = 10\cos 40 = 7.66N$	JU1
	$F_y = 10\sin 40 - 8 = -1.57 N$	JU1
		TOTAL: 5
2(a) (i)	$s_{AB} = 8 \times 2 = 16 \text{ m}$	J1
	$s_{BC} = 5 \times 4 = 20 \text{ m}$	(If all three
	$s_{CD} = 9 \times 3 = 27 \text{ m}$	correct)
(ii)		
	$s_{AD} = \sqrt{(20)^2 + (11)^2} = 22.83 m$	K1
(iii)		JU1
(iv)	, 16+20+271	
	Average speed = $\frac{16+20+27}{2+4+3} = 7 \text{ ms}^{-1}$	GJU1
	Average velocity = $\frac{22.83}{9}$ = 2.54 ms ⁻¹	GJU1
2(b) (i)	$s_x = u_x t$	
	$-25 = u_x(1.5)$	
	$u_x = -16.67 ms^{-1}$	J1
	$u_x = u\cos 60^{\circ}$	J1
	$16.67 = u \cos 60^{\circ}$	
	$u = 33.34 \text{ ms}^{-1}$	GJU1
	$s_{y} = u_{y}t - \frac{1}{2}gt^{2}$	
	$s_y = (u \sin 60^{\circ})(1.5) - \frac{1}{2}(9.81)(1.5^{\circ})$	
	$s_y = 32.27 m$	GJU1
2(b) (ii)	$v_x = -16.67 ms^{-1}$	
	$v_y^2 = u_y^2 - 2gs_y$	C1
	$v_y^2 = (33.34 \sin 60)^2 - 2(9.81)(32.27)$	G1
	$v_y = -14.16 ms^{-1}$	
	$v = \sqrt{v_x^2 + v_y^2}$	
	$v = \sqrt{(-16.67)^2 + (-14.15)^2}$	П 11
	$v = 21.86 ms^{-1}$	JU1
	. 1416.	
	$\theta = tan^{-1} \begin{vmatrix} -14.16 \\ -16.67 \end{vmatrix}$	
	$\theta = 40^{\circ}$	J1
L		1

		TOTAL :1
3(a) (i)	$\Delta p = m(v - u)$	G1
	$\Delta p = (0.080)(-22 - 32)$	
	$\Delta p = -4.32 \text{ kg m s}^{-1} \text{ (to the left) } @ \Delta p$ $= 4.32 \text{ kg m s}^{-1} \text{ (to the right)}$	JU1
3(a) (ii)	$F\Delta t = \Delta p$	
	$F = \frac{\Delta p}{\Delta t}$	
		
	$F = -\frac{4.32}{0.15} = -28.8 N$	
	$F = -28.8 \ N \ @ F = 28.8 \ N$	GJU1
3(b)(i)	$T_{x} = T \sin \theta$ $T_{x} = T \sin \theta$ $T_{x} = T \sin \theta$	
	$\bigvee_{W=mg=5g}$	
	$\sum_{T} F_x = 0$ $T \sin \theta = F$ $T \sin \theta = 45 \to (1)$	G1
	$\sum_{T} F_{y} = 0$ $T \cos \theta = W$	
	$T\cos\theta = W$ $T\cos\theta = 5 g \to (2)$	G1
	1 coso = 3 g / (2)	
	(1) ÷ (2)	
	$\tan\theta = \frac{45}{5(9.81)}$	
	$\theta = 42.5^{\circ}$	GJU1

3(b)(ii)	FBD 3 correct – 1 mark $< 3 \text{ correct} - 0 \text{ mark}$ $\frac{f_k}{30^\circ}$	Dl
	$\sum F_y = 0$ $N = mg \cos 30^{\circ}$ $N = 2(9.81) \cos 30^{\circ}$ $N = 16.99 N$	
	$\sum F_X = ma$ $mg \sin 30^\circ - f_k = ma$ $mg \sin 30^\circ - \mu_k N = ma$ $2(9.81) \sin 30^\circ - \mu_k (16.99) = 2(4.0)$ $\mu_k = 0.107$	G1
	$\mu_k = 0.107$	G1
		JU1
		TOTAL: 10

4(a)		
	F=200N	
	Fr=70N	
	470	
	↓	
	W	
	Work Done by Force F	
	$Wforce = Fscos\theta$	
	$W = (200)(50)\cos(47)$	G1
	W = 6819.98 J	JU1
	Work Done by Friction	
	$Wfriction = Frscos\theta$	
	$W = (70)(50)\cos(180)$	
	W = -3500 J	GJU1
	Net Work Done	
	Wnet = Wforce - Wfriction	
	Wnet = 6819.98 - 3500	K1
	Wnet = 3319.98J	JU1
4(b)	(i) Potential Energy at Point A	
	$U_A = mgh$ $U_A = (4)(9.81)(40)$	G1
	$U_A = 1569.6J$	JU1
	(ii) Speed of sphere at point B	
	() Speed of spinote an point B	
	$K_B = U_A - U_B$	
	$\frac{1}{2}mv^2 = mgh_A - mgh_B$	
	$\frac{1}{2}mv^{-} = mgn_A - mgn_B$	K1

	$\frac{1}{2}(4)v^2 = (4)(9.81)(40) - (4)(9.81)(20)$	G1
	$\frac{1}{2}(4)v^2 = (4)(9.81)(20)$	
	$v^2 = 392.4$	
	$v = 19.81 ms^{-1}$	JU1
		TOTAL: 10
	$T = F_c$	K1
5	$T = \frac{mv^2}{r}$ $50 = \frac{(0.2)v^2}{1.5}$	(Hidden if start with formula)
	1.5	Gl
	$v^2 = 375$	
	$v = 19.37 ms^{-1}$	
		JU1
(()		TOTAL: 3
6(a)	(i) $\lambda_A = 2 m$	JU1 JU1
	$\lambda_{\scriptscriptstyle B} = 4 \; m$	
	(ii)	
	$v = f_A \lambda_A$ $12 = f_A(2)$ $f_A = 6 Hz$	G1 JU1
	$v = f_B \lambda_B$	
	$12 = f_B(4)$	G1
	$f_B = 3 Hz$	JU1
	(iii) $A_A = 0.5 m$	K1
	$A_B = 0.25 m$	K1

		<u> </u>
	$\omega_A = 2\pi f_A$	
	$=2\pi(6)$	
	$=12\pi \ rad \ s^{-1}$	G1
	$\omega_{_{\!B}}=2\pi f_{_{\!B}}$	
	$=2\pi(3)$	G1
	$=6\pi \ rad \ s^{-1}$	GI
	$v_{\max A} = A\omega_A$	
	$=0.5(12\pi)$	JU1
	$=6\pi$	
	$=18.85 \ m \ s^{-1}$	
	$v_{\max B} = A\omega_B$	
	$=0.25(6\pi)$	
	$=1.5\pi$	п.
	$= 4.71 m s^{-1}$	JU1
6(b)	$\mu = 0.1 \text{g cm}^{-1}$	
	$= 0.01 kg m^{-1}$	
	_	
	$v = \sqrt{\frac{T}{\mu}}$	
	<u>μ</u>	
	$=\sqrt{\frac{50}{0.01}}$	
		G1
	$= 70.71 m s^{-1}$	
	$f_n \le 20000$	
		K1
	$\frac{nv}{2l} \le 20000$	121
	n(70.71) < 20000	
	$\frac{n(70.71)}{2(0.6)} \le 20000$	
	<i>n</i> ≤ 339.41	
	n = 339	J1

	$f_n = \frac{nv}{2l}$	G1
	$f_{339} = \frac{339(70.71)}{2(0.6)}$	
	` '	
	=19975.58 Hz	JU1
6(c)	(i)	
	Open pipe	
	$f_n = \frac{nv}{2l}$	
	2 <i>l</i>	
	$f_{1(A)} = \frac{1(343)}{2l_A} = 256$	G1
	$l_A = 0.67 m$	
	$f_{1(B)} = \frac{1(343)}{2l_B} = 440$	C1
	D D	G1
	$l_{\scriptscriptstyle A}=0.39~m$	
		G1
	$l_T = l_A + l_B$	
	= 0.67 + 0.39 $= 1.06 m$	JU1
	(ii)	
	$f_n = \frac{nv}{2l}$ $f_{1(T)} = \frac{1(343)}{2(1.06)}$	G1
	$f = \frac{1(343)}{1}$	
	=161.79~Hz	JU1
7(a)	$l = 75 \text{ cm} = 0.75 \text{ m}; d = 0.55 \text{ mm} = 0.55 \text{ x} \cdot 10^{-3} \text{ m};$	TOTAL: 23
/(a)		
	$r = 0.275 \text{ mm} = 0.275 \times 10^{-3} \text{ m};$ $m = 25 \text{ kg};$	
	m = 25 kg; $\Delta l = 1.10 \text{ mm} = 1.10 \text{ x } 10^{-3} \text{ m}$	
		17.1
	$6 \qquad = \frac{F}{A} = 4 \frac{mg}{\pi r^2}$	K1
	$= 4 \frac{(25)(9.81)}{\pi [0.275 \times 10^{-3}]^2}$	G1

	$\therefore 6 = 1.032 \times 10^9 \text{N.m}^{-2}$	JU1
7(b)	$\Delta T = -30 ^{\circ}C$, $x = 0.02 \text{m}$	
	The rate of heat flow, $\frac{Q}{t} = -\frac{kA\Delta T}{x}$	
	_ (0.01)(0.8)(-3)	K1
	$= -\frac{(0.01)(0.8)(-3)}{(0.02)}$	G1
	= 12.0 W	J1
	Therefore,	
	$Q = 12 \div 60$	K1
	=0.2 J	G JU1
		TOTAL: 8
8(a)	(i)	TOTALL
	$PV = nRT$ $(1 \times 10^5)(0.04) = n(8.31)(273)$	K1
	$(1 \times 10^{3})(0.04) = n(8.31)(2/3)$ $n = 1.76 \text{ moles}$	GJU1
	(ii)	
	$U = \frac{f}{2}nRT, \qquad f = 3$	K1
	$U = \frac{3}{2}(1.76)(8.31)(273)$	GJ U1
	U = 5989 I	
(b)	(i)	
	Using Charles's Law	
	$\frac{V_1}{T_1} = \frac{V_2}{T_2}$	
	$\frac{30 \times 10^{-3}}{300.15} = \frac{80 \times 10^{-3}}{T_2} \to T_2 = 800.4 K$	GJU1
	(ii)	
	Using Pressure's Law	
	$\frac{P_2}{T_2} = \frac{P_3}{T_3}$	GJU1
	$\frac{0.2 \times 10^6}{800.4} = \frac{P_3}{200.15} \to P_3 = 5 \times 10^4 Pa$	
	For process CD, use Boyle's Law	

$(5 \times 10^4)(80) = P_4(60) \rightarrow P_4 = 6.67 \times 10^4 Pa$	GJU1
(iii)	
$W = nRT \ln \left(\frac{V_4}{V_3} \right)$	
$W = P_3 V_3 \ln \left(\frac{V_4}{V_3} \right)$	
$W = PV \ln\left(\frac{V_4}{V_3}\right)$	GJU1
$W = (5 \times 10^4)(80 \times 10^{-3}) \ln\left(\frac{60}{80}\right) = -1150.7 J$	
(iv)	
3 shapes correct – 1 mark	
Label axes and values correctly – 1 mark	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	D2
	TOTAL: 10