

Universidade Federal de Uberlândia

FEELT - Faculdade de Engenharia Elétrica

Sistemas e Controle

Roteiro 01A

Gabriel Alves Caixeta Custódio - 12011ECP008

Uberlândia 2023

Questão 01

O vídeo discute a importância da teoria de controle no design de sistemas autônomos e sua aplicação em diversos domínios, como automobilismo, controle de edifícios e processos industriais. Ele destaca a diferença entre controle em malha aberta (feedforward) e controle em malha fechada (feedback), explicando como ambos funcionam e quando são utilizados.

No controle em malha aberta, o sistema recebe comandos de referência e gera saídas sem medir o estado atual do sistema, sendo mais adequado para sistemas com comportamento previsível. Por outro lado, o controle em malha fechada utiliza sensores para medir o estado atual do sistema, comparando-o com a referência e ajustando as entradas de controle conforme necessário. Esse método é mais robusto e adequado para sistemas sujeitos a distúrbios e incertezas.

O vídeo também aborda o planejamento, a importância da observabilidade e da estimativa de estado, além da análise, simulação e teste de sistemas controlados. Ele destaca a necessidade de modelos matemáticos precisos para o design e análise de sistemas de controle.

No geral, o vídeo fornece uma visão abrangente da teoria de controle e sua aplicação em sistemas autônomos.

Questão 02

a)

Equações diferenciais ordinárias (ODE) são aquelas que possuem somente uma entrada, normalmente tempo (exemplo: posição, velocidade e aceleração de um pêndulo variando no tempo). Equações diferenciais parciais (PDE) são aquelas que possuem mais de uma entrada, como se vários valores variam com o tempo (exemplo: distribuição da temperatura em um corpo no tempo - equação do calor).

<u>b)</u>

É um gráfico cujos eixos representam posição e momento. Fisicamente cada ponto do espaço fásico representa um possível estado do sistema mecânico.

<u>c)</u>

É uma série de Taylor onde os termos da série são matrizes iguais a A. É aplicado em mecânica quântica, sendo um exemplo a equação de Schrodinger.

Questão 03

Um sistema de controle é um conjunto de dispositivos e algoritmos que operam em conjunto para regular ou gerenciar o comportamento de um sistema dinâmico. Esses sistemas são essenciais em uma variedade de aplicações, desde automação industrial até veículos autônomos e controle de processos em edifícios. Alguns tópicos fundamentais para sistemas de controle incluem:

Controle em Malha Aberta (Feedforward): Esse método envolve a geração de comandos de controle sem medir o estado atual do sistema. É adequado para sistemas com comportamento previsível.

Controle em Malha Fechada (Feedback): Nesse caso, sensores medem o estado atual do sistema e ajustam as entradas de controle com base na diferença entre o estado atual e a referência. É mais robusto em relação a distúrbios e incertezas. Planejamento: A criação de um plano de referência é fundamental para definir o que o sistema de controle deve alcançar, considerando os objetivos e restrições.

Observabilidade: É a capacidade de medir ou observar o estado do sistema. Deve-se garantir que todos os estados relevantes sejam observáveis.

Estimação de Estado: Quando os sensores têm ruído ou não medem todos os estados diretamente, técnicas de estimação de estado são necessárias para obter uma estimativa precisa do estado do sistema.

Modelagem Matemática: O desenvolvimento de modelos matemáticos precisos do sistema é crucial para o design e análise de controladores.

Análise e Simulação: Essas etapas envolvem verificar se o sistema atende aos requisitos de desempenho e estabilidade, frequentemente utilizando ferramentas como diagramas de corpo, Nichols e Nyquist, além de simulações computacionais.

Teste: Os sistemas de controle devem ser testados na prática para garantir que funcionem conforme o esperado e cumpram suas funções de forma segura e eficiente.

Em resumo, um sistema de controle é um conjunto de técnicas e ferramentas que permitem regular o comportamento de sistemas dinâmicos, abrangendo desde o planejamento até a implementação prática e testes para garantir o desempenho desejado.

Questão 04

1.3:

```
1 clc, clear, close all

2 %% Dados
4 b = 1.5; % N*s/m
5 k = 20; % N/m
6 m = 3; % kg
7 g = 9.81; % m/s2
```


1.4 Alternativa A

Velocidade

1	clc, clear, close all	
2		
3	%% Dados	
4	R = 1e3; % 1kohm	
5	L = 1e-3; % 1mH	
6	C = 1e-6; % 1uF	

Alternativa B

<u>1.6</u>

1	clc, clear, close all
2	
3	%% Dados
4	m = 1.2; % kg
5	l = 1.5; % m
6	b = 1.5; % kg/m
7	g = 9.81; % m/s2
8	J = 6.765; % kg*m2
9	TetaIn = 0.523599; % rads (30 graus)
10	
11	%% Alternativa A
12	Tc = 0; % N*m
13	
14	%% Alternativa B
15	% Tc = 7.7; % N*m

