Carnegie Mellon

Towards Rapid Re-Certification Using Formal Analysis

Daniel Smullen
Travis Breaux
Carnegie Mellon University

including suggestions for reducing	ompleting and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar DMB control number.	arters Services, Directorate for Info	rmation Operations and Reports	, 1215 Jefferson Davis	Highway, Suite 1204, Arlington	
1. REPORT DATE MAY 2015	2. REPORT TYPE		3. DATES COVERED 00-00-2015 to 00-00-2015			
4. TITLE AND SUBTITLE				5a. CONTRACT	NUMBER	
Towards Rapid Re-Certification Using Formal Analysis				5b. GRANT NUMBER		
				5c. PROGRAM E	ELEMENT NUMBER	
6. AUTHOR(S)				5d. PROJECT NU	JMBER	
				5e. TASK NUME	BER	
				5f. WORK UNIT	NUMBER	
	ZATION NAME(S) AND AE (niversity,Institute of th,PA,15213			8. PERFORMING REPORT NUMB	G ORGANIZATION ER	
9. SPONSORING/MONITO	RING AGENCY NAME(S) A	ND ADDRESS(ES)		10. SPONSOR/M	ONITOR'S ACRONYM(S)	
				11. SPONSOR/M NUMBER(S)	ONITOR'S REPORT	
12. DISTRIBUTION/AVAII Approved for publ	LABILITY STATEMENT ic release; distributi	on unlimited				
13. SUPPLEMENTARY NO Presented at the 12	otes th Annual Acquisiti	ion Research Symp	osium held May 1	3-14, 2015 in	Monterey, CA.	
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFICATION OF:		17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON		
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Same as Report (SAR)	35	RESPONSIBLE PERSON	

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and

Report Documentation Page

Form Approved OMB No. 0704-0188

Outline

- 1. Problem Overview
 - Why is software (re)certification hard?
 - What's the risk?
- 2. What kind of solution is needed?
- 3. Technical Background
- 4. Approach, Running Example
 - Conflict Detection, Reconciliation
- 5. Recertification Triggers
- 6. Does it scale?
- 7. Future Work

Why is software (re)certification hard?

- Systems change, requirements evolve.
- As changes occur, how do we determine how the changes affect security?
 - Review, review, then review some more.

- DIACAP, -RMF for IS and PIT systems mandates continuous review process...
- Reviews require time, expertise, manpower, money.

RMF: 8510.01, March 2014

Step 6 MONITOR Security Controls

- Determine impact of changes to the system and environment
- · Assess selected controls annually
- Conduct needed remediation
- · Update security plan, SAR and PO
- · Report security status to AO
- · AO reviews reported status
- Implement system decommission strategy

Step 5 AUTHORIZE System

- Prepare the POA&M
- Submit Security Authorization Package (security plan, SAR and POA&M) to AO
- AO conducts final risk determination
- · AO makes authorization decision

EGORIZE System

- ategorize the system in accordance with the CNSSI 1253
- Initiate the Security Plan
- Register system with DoD Component Cybersecurity Program
- Assign qualified personnel to RMF roles

Step 4 ASSESS Security Controls

- Develop and approve Security
 Seessment Plan
 ess security controls
- · repares Security Assessment Re (AR)
- Conductions

Step 2 SELECT Security Controls

- Common Control Identification
- Select security controls
- Develop system-level continuous monitoring strategy
- Review and approve the security plan and continuous monitoring strategy
- · Apply overlays and tailor

Step 3 IMPLEMENT Security Controls

- Implement control solutions consistent with DoD Component Cybersecurity architectures
- Document security control implementation in the security plan

Step 2 SELECT Security Controls

- Common Control Identification
- Develop system-level continuous monitoring strategy
- Review and approve the security plan and continuous monitoring strategy

their orenate and taner

Step 4 ASSESS Security Controls

Develop and approve Security

Accomment Dlan

- Assess security controls
- SCA prepares Security Assessment Report (SAR)
- Conduct initial remediation actions

Assess, review, remediate... rinse, repeat...

- Good in theory, but in practice?
 Everything is done manually; i.e. slowly.
- Cannot scale as complexity increases.
- Mobile? Cloud-based platforms?
- Constant change.
- Constantly increasing complexity.

What's the risk?

- Fast and loose: data spills.
 - Quick and dirty, miss critical faults.
- Slow and steady: lose agility.
 - Must avoid review "backlog mission impossible".
 - Adversaries will roll out new systems faster than us.
- Can't just throw more experts at the problem...
 - Brooks' Law.
 - Too many cooks! Increases accidental complexity.
 - "9 women can't make a baby in 1 month!"

What kind of solution is needed?

- Use automation.
- Scale with evolving architectural assumptions.
- Do analysis computationally.
- Focus on adding new features, let the analysis determine the impact.
- Result: Rapid analysis at recertification (or design) time.
- Focus on the parts that commensurate with risk:
 - Data.
 - Secure enclave boundaries.
 - Changes.

What parts do we focus on?

Technical Background

- Application Profile Language, model-checking.
- Semantic parameterization (Breaux et al., 2008)
 - Actions on data; actors, objects, purposes, source, destination.
- Bell-LaPadula: high-, low-confidentiality.
- Characterize the purpose; security level.
- Express compositions; logical subsumption.
 - Containment
 - Disjointness
- This forms the basis for our application profile language.

Technical Background

Running Example

- Public accounts of real-world ship.
- Zumwalt-class destroyer.
- TSCE Infrastructure
- 6 MLOC
- Focus on software requirements:
 - Sensory and information sharing capabilities.

Approach

- Application profiles
 - Actions on data:
 - Collection
 - Use
 - Transfer
 - Traces:
 - Collection-Use
 - Collection-Transfer
 - Vice-versa

Approach

- Conflict Detection
 - Policy may specify a prohibition and a right on the same data, for the same purpose.
 - Leads to conflict.

1. Permit collection of collected radar data from Zumwalt's radar system, designating it as high-confidentiality data.

Application Profile Language	Formalization in Description Logic	
	$T \models p_0 \equiv COLLECT \sqcap \exists hasObject.$	
radar_system FOR high_confidentiality	collected_radar_data □	
	∃ <i>hasSource</i> . radar_system □	
	$\exists hasPurpose.$ high_confidentiality	

2. Permit transfer of data about enemy vessels to friendly fleet members for general, low-confidentiality purposes.

Application Profile Language	Formalization in Description Logic	
P TRANSFER enemy_data TO	$T \models p_1 \equiv TRANSFER \sqcap \exists hasObject.$	
<pre>friendly_fleet FOR low_confidentiality</pre>	enemy_data □	
	∃ <i>has</i> Target. radar_system □	
	$\exists hasPurpose.$ low_confidentiality	

3. Permit transfer of all collected radar data to friendly fleet members for general, low confidentiality purposes. *This rule generates a conflict, which is explained below.*

Application Profile Language	Formalization in Description Logic	
P TRANSFER collected_radar_data TO	$T \models p_2 \equiv \text{TRANSFER} \sqcap \exists \text{hasObject.}$	
friendly_fleet FOR low_confidentiality	collected_radar_data □	
	∃ <i>has</i> Target. friendly_fleet □	
	$\exists hasPurpose.$ low_confidentiality	

4. Permit transfer of data about friendly vessels to friendly fleet members for specific, high-confidentiality purposes.

Application Profile Language	Formalization in Description Logic
P TRANSFER friendly_data TO	$T \models p_3 \equiv \text{TRANSFER} \sqcap \exists \text{hasObject}.$
friendly_fleet FOR	friendly_data □
high_confidentiality	∃ <i>has</i> Target. friendly_fleet □
	$\exists hasPurpose.$ high_confidentiality

5. Prohibit transfer of friendly fleet data to anyone for general, low confidentiality purposes. *This rule conflicts with Rule 3, explained below.*

Application Profile Language	Formalization in Description Logic	
R TRANSFER friendly_data TO anyone FOR	$T \models r_0 \equiv TRANSFER \sqcap \exists hasObject.$	
low_confidentiality	collected_radar_data □	
	∃ <i>has</i> Target. Actor □	
	$\exists hasPurpose.$ low_confidentiality	

Reconciliation

- Two reconciliation approaches identified:
 - Redaction
 - Generalization
- One approach that defeats these measures:
 - Merging

Redaction

- Eliminate a subsumption relationship within a collection.
- Permits the new (redacted) collection to be used for lowconfidentiality purposes.

D redacted_radar_data <
enemy_fleet_data, terrain_data</pre>

Redaction

```
SPEC POLICY
P COLLECT collected_radar_data FROM radar_system FOR high_confidentiality
P TRANSFER enemy_data TO friendly_fleet FOR low_confidentiality

REDACT(collected_radar_data -> redacted_radar_data, friendly_data, low_confidentiality)

P TRANSFER redacted_radar_data TO friendly_fleet FOR low_confidentiality
P TRANSFER friendly_data TO friendly_fleet FOR high_confidentiality

R TRANSFER friendly_data TO anyone FOR low_confidentiality
```


Generalization

- Some types of data can be fuzzified.
 - Add noise, decrease fidelity.
- Numerical data:
 - Coordinates, time...
- All collections' members must be generalized.

Merging

- Combine redacted data with un-redacted to recreate original.
- Combine generalized data with de-noised data to recreate original.

Distinguishing the Merging Risk

Policy Violation

- Collect data for highconfidentiality purpose.
- Collect other data for lowconfidentiality purpose.

Repurpose high-confidentiality data, violate policy.

Merging

- Collect data for lowconfidentiality purpose.
 - Data is subset of redacted superset.
- Collect related data for lowconfidentiality purpose.
 - Data is negation of superset and redacted superset.
- 3. Merge two disjoint collections.

Similarly purposed data flows may be merged.

Merging Risk Mitigation

- Can catch merging risks as a result of conflict analysis.
 - Check subsumed purposes.
 - Trace data flows, transfer only what data is needed.

Mitigates human error due to missed interpretations.

Recertification Triggers

How do you know when to run the analysis?

- Reconcile a conflict? Rerun, recheck.
- Add a new feature? Rerun, recheck.
- Modify the policy? Rerun, recheck.

Rapid analysis means recertification is rapid.

Does it scale?

 How fast can we do analysis? Is it fast enough to let us rerun whenever we want?

• Simulations; 27 repetitions, increasing number of rules [0-80], 1.13 conflicts per increasing rule.

No objective basis for comparison.

Profile Size vs. Reasoning Time

Profile Size vs. Detected Conflicts

Does it scale?

 No statistically significant relationship between performance and number of conflicts.

$$\{\underline{r}(874) = .36, \underline{p} > .05\}$$

Average Profile Parsing Time	<1 second	
Largest Profile Size	80 rules	
Longest Profile Processing Time	400 seconds	
Average Conflicts per Statement	1.13	

Conclusions

- Yes, it scales:
 - Analysis can scale in quasilinear time.
- Simulations show that even huge profiles can be analyzed in roughly 7 minutes.
- What do we mean by huge profiles?
 - Hundreds of data flows.
 - Hundreds of rule combinations.
 - Hundreds of conflicts.

Future Work

- Extend automation to provide "hints" to analysts.
 - Profile development environment.
 - Automate reconciliation strategies.

Characterize performance gain against manual processes.

Questions?

Daniel Smullen

Graduate Research Assistant, Carnegie Mellon University

dsmullen@cs.cmu.edu

Travis Breaux

Assistant Professor, Carnegie Mellon University

breaux@cs.cmu.edu

