INFO-H-403 Bases de données Séance d'exercices 5 Algèbre relationnelle : deuxième partie

F. Servais et B. Verhaegen

26 octobre 2009

Division

- ▶ La division de R(A,B) par S(B) retourne les A de R qui y apparaissent avec tout élément de S.
- Syntaxe:
 - ► relation/relation ou
 - ► relation ÷ relation
- La première relation doit au moins contenir les mêmes attributs que la deuxième.

Division: Exemple

R		S
Α	В	В
a1	b1	b1
a1	b2	b2
a1	b3	b3
a1	b4	
a2	b1	
a2	b3	
а3	b2	
а3	b3	
a3	b4	
a4	b1	
a4	b2	
a4	b3	

Division: Exemple 2

Retrouver le nom des employés qui travaillent sur tous les projets sur lesquels Smith travaile.

```
Smith \leftarrow \sigma_{\mathsf{LName}='\mathsf{Smith}'}(\mathsf{Employee})

SmithPNos \leftarrow \pi_{\mathsf{PNo}}(\mathsf{WorksOn} *_{\mathsf{ESSN}=\mathsf{SSN}} \mathsf{Smith})

SSNPNos \leftarrow \pi_{\mathsf{PNo},\mathsf{ESSN}}(\mathsf{WorksOn})

SSNS(SSN) \leftarrow \mathsf{SSNPNos} \div \mathsf{SmithPNos}

Result \leftarrow \pi_{\mathsf{FName},\mathsf{LName}}(\mathsf{SSNS} * \mathsf{Employee})
```

Division: Exemple 2

$\begin{array}{l} SSNS(SSN) \leftarrow SSNPNos \div SmithPNos \\ Result \leftarrow \pi_{FName,LName}(SSNS*Employee) \end{array}$

SSNPNos

331111105				
ESSN	PNo			
123456789	1			
123456789	2			
666884444	3			
453453453	1			
453453453	2			
333445555	2			
333445555	3			
333445555	10			
333445555	20			
999887777	30			
999887777	10			
987987987	10			
987987987	30			
987654321	30			
987654321	20			
888665555	20			

SmithPNos

PNo
1
2

SSNS

	SSN		
ĺ	123456789		
İ	453453453		

Result

FName	LName
John	Smith
Joyce	English

Redéfinition de la division

 $R \div S = T$ est équivalent à

$$T_1 \leftarrow \pi_A(R)$$

$$T_2 \leftarrow \pi_A((T_1 \times S) - R)$$

$$T \leftarrow T_1 - T_2$$

R	
Α	В
a1	b1
a1	b2
a1	b3
a1	b4
a2	b1
a2	b3
a3	b2
a3	b3
a3	b4
a4	b1
a4	b2
a4	b3

S	
В	
b1	
b2	
b3	;
R÷	3
Α	
a1	
a4	ļ

T_1	$T_1 \times S$	
А	Α	В
a1	a1	b1
a2	a1	b2
a3	a1	b3
a4	a2	b1
	a2	b2
T_2	a2	b3
А	a3	b1
a2	a3	b2
a3	a3	b3
	a4	b1
	a4	b2

a4

b3

Jointure (rappel)

R		S		
Α	В		С	D
a	b		b	С
С	b		e b	a
d	e		b	d
е	f			

$R \bowtie_{B=C} S$				
Α	В	С	D	
a	b	b	С	
а	b	b	d	
С	b	b	С	
С	b	b	d	
d	e	e	a	

► Le tuple (e,f) de R n'est pas préservé.

Jointure externe (outer join)

- Jointure qui préserve les informations des opérandes.
- ▶ Jointure externe gauche (left outer join)
 - Préserve les informations de l'opérande gauche.
 - Si pas de correspondances avec l'opérande droite, valeurs nulles.
 - ► Syntaxe : relation \(\square\) \(\square\) condition relation
- Même principe pour la jointure externe droite (right outer join, ⋈□) et la jointure externe totale (full outer join, □⋈□).

Jointure externe : Exemple

R		S		
Α	В		С	D
a	b		b	С
С	b		e	a
d	e		b	d
e	f			

R ⊐⋈ _{B=C} S				
Α	В	С	D	
а	b	b	С	
a	b	b	d	
С	b	b	С	
c d	b	b	d	
l	e	е	a	
e	f	null	null	

Rappel des notations

- Sélection : $\sigma_{\rm condition}({\rm relation})$
- ightharpoonup Projection : $\pi_{\rm attributs}({\rm relation})$
- ▶ Union : relation ∪ relation
- \triangleright Intersection : relation \cap relation
- ▶ Différence : relation relation
- ▶ Produit cartésien : relation × relation
- ▶ Jointure : relation ⋈_{condition} relation
- ▶ Jointure naturelle : relation * relation
- ▶ Jointure externe gauche : relation □ condition relation
- ▶ Jointure externe droite : relation ⋈ condition relation
- ▶ Jointure externe totale : relation □ □ condition relation
- Division :
 - relation/relation
 - ▶ ou relation ÷ relation
- Renommage :
 - $ightharpoonup \alpha_{\text{attribut:attribut}} (\text{relation})$
 - ou relation(nouveauxAttributs) ← relation