CSC236 Worksheet 3

Hyungmo Gu

May 5, 2020

Question 1

• Given the statement to prove

P(x, y, z): There are no positive integers x, y, z such that $x^3 + 3y^3 = 9z^3$

Proof. We will prove P(x, y, z) using proof by contradiction.

Assume $\exists x, y, z \in \mathbb{N}^+$, $x^3 + 3y^3 = 9z^3$.

First, we need to show there is smallest element $x_0 \in X$ with $y_0, z_0 \in \mathbb{N}^+$ satisfying $x^3 + 3y^3 = 9z^3$, using well-ordering principle.

The header tells us there are elements $x, y, z \in \mathbb{N}^+$, satisfying $x^3 + 3y^3 = 9z^3$.

Then, we can write the set $X=\{x\mid x\in\mathbb{N}^+,\ \exists y,z\in\mathbb{N}^+,\ x^3+3y^3=9z^3\}$ is not empty.

Then, using principle of well-ordering, we can write that there is smallest positive natural number $x_0 \in X$ along with $y_0, z_0 \in \mathbb{N}^+$ satisfying $x^3 + 3y^3 = 9z^3$.

Second, we need to show that $x_1^3 = 9z_1^3 - 3y_1^3$ is satisfied, given $x_0 > x_1$.

We will do so in parts.

Part 1 (Showing $x_0 = 3 \cdot x_1$):

We know that

$$x_0^3 + 3y_0^3 = 9z_0^3 (1)$$

$$x_0^3 = 9z_0^3 - 3y_0^3 \tag{2}$$

Since $3 | 9z_0^3 - 3y_0^3$, we can write $3 | x_0^3$.

Then, since 3 is a prime number, by using the hint provided in question 3 of assignment 1, we can write there is $x_1 \in \mathbb{Z}$, $x_0 = 3 \cdot x_1$.

Then, because we know $x_0, 3 \in \mathbb{N}^+$, we can conclude $x_1 \in \mathbb{N}^+$.

Part 2 (Showing $y_0 = 3 \cdot y_1$):

We know that

$$x_0^3 + 3y_0^3 = 9z_0^3$$

$$3y_0^3 = 9z_0^3 - x_0^3$$
(3)

$$3y_0^3 = 9z_0^3 - x_0^3 \tag{4}$$

Then, using the fact $x_0 = 3 \cdot x_1$ from part 1, we can calculate

$$3y_0^3 = 9z_0^3 - 3^3x_1^3$$

$$y_0^3 = 3z_0^3 - 3^2x_1^3$$
(5)
(6)

$$y_0^3 = 3z_0^3 - 3^2x_1^3 \tag{6}$$

Since $3 \mid 3z_0^3 - 3^2x_1^3$, we can write that $3 \mid y_0^3$.

Then, since 3 is a prime number, by using the hint provided in question 3 of assignment 1, we can write there is $y_1 \in \mathbb{Z}$, $y_0 = 3 \cdot y_1$.

Then, because we know $y_0, 3 \in \mathbb{N}^+$, we can conclude $y_1 \in \mathbb{N}^+$.

Part 3 (Showing $z_0 = 3 \cdot z_1$):

We know that

$$9z_0^3 = x_0^3 + 3y_0^3 \tag{7}$$

Then, using the fact $x_0 = 3 \cdot x_1$ from part 1, and $y_0 = 3 \cdot y_1$ from part 2, we can calculate

$$9z_0^3 = 3^3x_1^3 + 3^4y_1^3 (8)$$

$$z_0^3 = 3x_1^3 + 3^2y_1^3 \tag{9}$$

Since $3 \mid 3x_1^3 + 3^2y_1^3$, we can write that $3 \mid z_0^3$.

Then, since 3 is a prime number, by using the hint provided in question 3 of assignment 1, we can write there is $z_1 \in \mathbb{Z}$, $z_0 = 3 \cdot z_1$.

Then, because we know $z_0, 3 \in \mathbb{N}^+$, we can conclude $z_1 \in \mathbb{N}^+$.

Part 4 (Showing $x_1^3 = 9z_1^3 - 3y_1^3$):

We know that

$$9z_0^3 = x_0^3 + 3y_0^3 \tag{10}$$

Then, using the fact $x_0 = 3 \cdot x_1$ from part 1, $y_0 = 3 \cdot y_1$ from part 2, and $z_0 = 3 \cdot z_1$ we can calculate

$$3^5 z_1^3 = 3^3 x_1^3 + 3^4 y_1^3 \tag{11}$$

$$3^2 z_1^3 = x_1^3 + 3y_1^3 (12)$$

$$9z_1^3 = x_1^3 + 3y_1^3 \tag{13}$$

Finally, the part 4 tells us

$$9z_1^3 = x_1^3 + 3y_1^3 (14)$$

where $x_1 < x_0$.

Then, because we know x_0 is the smallest number satisfying $x^3 + 3y^3 = 9z^3$, we can conclude above leads to contradiction.

Then, we can conclude the the assumption is false.

Notes:

- Proof By Contradiction: $\neg P \Rightarrow \neg Q \land Q$ (Assuming we are proving $P \Rightarrow Q$)
- Principle of Well-Ordering: Any nonempty subset A of \mathbb{N} contains a minimum element; i.e. for any $A \subseteq \mathbb{N}$ such that $A \neq \emptyset$, there is some $a \in A$ such that for all $a' \in A$, $a \leq a'$.
- examples of well-ordered sets
 - 1. $\mathbb{N} \cup \{0\}$
 - 2. $\mathbb{N} \cup \{1, 2\}$
 - 3. $\{n \in \mathbb{N} : n > 5\}$
- examples of non-well-ordered sets
 - 1. \mathbb{R} and the open interval (0,2)
 - $2. \mathbb{Z}$
- Learned the P in $\neg P \Rightarrow \neg Q \land Q$ is the statement

P(x,y,z): There are no positive integers x,y,z such that $x^3+3y^3=9z^3$

And learned the Q is the principle of well-ordering on P.

- Learned the goal of contradiction is to show the assumption violates principle of well-ordering. That is, there is $x_1 \in X$ less than x_0 satisfying $x^3 + 3y^3 = 9z^3$
- Noticed professor reduced wordiness of work using short notations.

Then $x_0^3 + 3y_0^3 = 9z_0^3 \quad \Rightarrow \quad x_0^3 = 9z_0^3 - 3y_0^3 \Rightarrow 3 \mid x_0^3 \Rightarrow 3 \mid x_0 \quad \# \text{ by clue for A1 Q3}$ let $x_1 \in \mathbb{N}^+, 3x_1 = x_0 \quad \Rightarrow \quad 3^3x_1^3 = 9z_0^3 - 3y_0^3 \Rightarrow 3^2x_1^3 = 3z_0^3 - y_0^3 \quad \# \text{ divide through by 3}$ $\Rightarrow \quad y_0^3 = 3z_0^3 - 3^2x_1^3 \Rightarrow 3 \mid y_0^3 \Rightarrow 3 \mid y_0$ let $y_1 \in \mathbb{N}^+, 3y_1 = y_0 \quad \Rightarrow \quad 3^3y_1^3 = 3z_0^3 - 3^2x_1^3 \Rightarrow 3^2y_1^3 = z_0^3 - 3x_1^3 \quad \# \text{ divide through by 3}$ $\Rightarrow \quad 3x_1^3 + 3^2y_1^3 = z_0^3 \Rightarrow 3 \mid z_0$ let $z_1 \in \mathbb{N}^+, 3z_1 = z_0 \quad \Rightarrow \quad 3x_1^3 + 3^2y_1^3 = 3^3z_1^3 \Rightarrow x_1^3 + 3y_1^3 = 9z_1^3 \quad \# \text{ divide through by 3}$ $\Rightarrow \quad x_1 \in X$

Question 2

• Proof. Basis:

We need to show that the property is true for the simplest members x, y, z.

There are three cases: e = x, e = y and e = z. In each of the cases $s_2(e) = 1$ and $s_1(e) = 0$.

Using this fact, starting from the left hand side, we can conclude

$$s_1(e) = 0 = 3 \cdot 0 \tag{1}$$

$$= 3 \cdot (1-1) \tag{2}$$

$$= 3 \cdot (s_2(e) - 1) \tag{3}$$

Inductive Step:

Let e_1 and e_2 be arbitrary elements of ε . Assume $H(e_1, e_2) : P(e_1)$ and $P(e_2)$. That is, e_1 and e_2 have the property $s_1(e_1) = 3 \cdot (s_2(e) - 1)$ and $s_1(e_2) = 3 \cdot (s_2(e_2) - 1)$.

We need to show all possible combinations of e_1 and e_2 have the property. That is, $P((e_1 + e_2))$, $P((e_1 \times e_2))$.

There are two cases, depending on how e is constructed from e_1 and e_2 : $e = (e_1 + e_2)$, $e = (e_1 \times e_2)$. In each case we have

$$s_1(e) = s_1(e_1) + s_1(e_2) + 3$$
 (4)

$$s_2(e) = s_2(e_2) + s_2(e_2) (5)$$

Then, using above fact, we can conclude

$$s_1(e) = s_1(e_1) + s_1(e_2) + 3$$
 [by 4]

$$= 3 \cdot (s_2(e_1) - 1) + 3 \cdot (s_2(e_2) - 1) + 3$$
 [by induction hypothesis] (7)

$$= 3 \cdot s_2(e_1) - 3 + 3 \cdot s_2(e_2) - 3 + 3 \tag{8}$$

$$= 3 \cdot s_2(e_1) + 3 \cdot s_2(e_2) - 6 + 3 \tag{9}$$

$$= 3 \cdot (s_2(e_1) + s_2(e_2)) - 3 \tag{10}$$

$$= 3 \cdot s_2(e) - 3$$
 [by 5] (11)

Notes:

• Structural Induction

- is a proof method used in mathematical logic, computer science, graph theory.
- is a generalization of mathematical induction over natural numbers.
- is a recursion method
- Example:

Define ε : The smallest set such that

- * $x, y, z \in \varepsilon \# \text{ variables}$
- * $e_1, e_2 \in \varepsilon \Rightarrow (e_1 + e_2), (e_1 e_2), (e_1 \times e_2), (e_1 \div e_2) \in \varepsilon \# \text{ operators}$

(steps omitted). Prove P(e): $\mathbf{vr}(e) = \mathbf{op}(e) + 1 \# \mathbf{vr}$ means number of variable, \mathbf{op} means number of operators

to prove above using structural induction:

1. **Verify Base Case(s):** Show that the property is true for the simplest members, x,y,z. That is show P(x), P(y), and P(z).

There are three cases: e = x, e = y, and e = z. In each case $\mathbf{vr}(e) = 1$ and $\mathbf{op}(e) = 0$, so P(e) holds for the basis.

2. **Inductive Step:** Let e_1 and e_2 be arbitrary elements of ε . Assume $H(e_1, e_2)$: $P(e_1)$ and $P(e_2)$. That is, e_1 and e_2 have the property $\mathbf{vr}(e_1) = \mathbf{op}(e_1) + 1$ and $\mathbf{vr}(e_2) = \mathbf{op}(e_2) + 1$.

We need to show all possible combinations of e_1 and e_2 have the property. That is, $P((e_1 + e_2))$, $P((e_1 - e_2))$, $P((e_1 \times e_2))$, and $P((e_1 \div e_2))$.

There are four cases, depending on how e is constructed from e_1 and e_2 : $e = (e_1 + e_2)$, $e = (e_1 - e_2)$, $e = (e_1 \times e_2)$ and $e = (e_1 \div e_2)$. In each case we have

$$\mathbf{vr}(e) = \mathbf{vr}(e_1) + \mathbf{vr}(e_2) \tag{12}$$

$$\mathbf{op}(e) = \mathbf{op}(e_1) + \mathbf{op}(e_2) + 1 \# + 1 \text{ is from } + \text{ in } e_1 + e_2$$
 (13)

Thus,

$$\mathbf{vr}(e) = \mathbf{vr}(e_1) + \mathbf{vr}(e_2)$$
 [by (4.1)] (14)
 $= (\mathbf{op}(e_1) + 1) + (\mathbf{op}(e_2) + 1)$ [by induction hypothesis] (15)
 $= (\mathbf{op}(e_1) + \mathbf{op}(e_2)) + 2$ (16)
 $= (\mathbf{op}(e) - 1) + 2$ [by (4.2)] (17)
 $= \mathbf{op}(e) + 1$ (18)

Question 3

Rough Work:

Define the set of non-empty full binary trees, \mathcal{T} , as the smallest set such that:

- a. Any single node is an element of \mathcal{T}
- b. If $t_1, t_2 \in \mathcal{T}$, n is a node that belongs to neither t_1 nor t_2 , and t_1, t_2 have no nodes in common, then n together with edges to the **root nodes** t_1 and t_2 is also an element of \mathcal{T} .

Prove P(t): leaf_node(t) = internal_node(t) + 1

1. Basis

There is one case, where t is the binary tree with one node. In this case, the node is leaf node. So, $\mathbf{leaf_node}(t) = 1$. So, P(t) holds for the case.

2. Inductive Step

Let t_1 and t_2 be arbitrary element of \mathcal{T} . Assume $H(t_1, t_2) : P(t_1)$ and $P(t_2)$. That is, t_1 and t_2 have the property $\mathbf{leaf_node}(t_1) = \mathbf{internal_node}(t_1) + 1$ and $\mathbf{leaf_node}(t_2) = \mathbf{internal_node}(t_2) + 1$. Let n be a node that belongs to neither t_1 nor t_2 . Assume t_1 and t_2 have no nodes in common.

We need to show P(t) follows. That is, $\mathbf{leaf_node}(t) = \mathbf{internal_node}(t) + 1$.

1. a