Lecture 3: Divide-and-Conquer

THE DIVIDE-AND-CONQUER DESIGN PARADIGM

- 1. Divide the problem (instance) into subproblems.
- 2. *Conquer* the subproblems by solving them recursively.
- 3. Combine subproblem solutions.

EXAMPLE: MERGE SORT

- 1. Divide: Trivial.
- 2. Conquer: Recursively sort 2 subarrays.
- 3. Combine: Linear-time merge.

MASTER THEOREM (REPRISE)

$$T(n) = a T(n/b) + f(n)$$

$$CASE 1: f(n) = O(n^{\log_b a - \varepsilon})$$

$$\Rightarrow T(n) = \Theta(n^{\log_b a}).$$

$$CASE 2: f(n) = \Theta(n^{\log_b a} \lg^k n)$$

$$\Rightarrow T(n) = \Theta(n^{\log_b a} \lg^{k+1} n).$$

$$CASE 3: f(n) = \Omega(n^{\log_b a + \varepsilon}) \text{ and } af(n/b) \le cf(n)$$

$$\Rightarrow T(n) = \Theta(f(n)).$$

$$Merge sort: a = 2, b = 2 \Rightarrow n^{\log_b a} = n$$

$$\Rightarrow CASE 2 (k = 0) \Rightarrow T(n) = \Theta(n \lg n).$$

Find an element in a sorted array:

- 1. Divide: Check middle element.
- 2. Conquer: Recursively search 1 subarray.
- 3. Combine: Trivial.

Example: Find 9

Find an element in a sorted array:

- 1. Divide: Check middle element.
- 2. Conquer: Recursively search 1 subarray.
- 3. Combine: Trivial.

Example: Find 9

Find an element in a sorted array:

- 1. Divide: Check middle element.
- 2. Conquer: Recursively search 1 subarray.
- 3. Combine: Trivial.

Example: Find 9

Find an element in a sorted array:

- 1. Divide: Check middle element.
- 2. Conquer: Recursively search 1 subarray.
- 3. Combine: Trivial.

Example: Find 9

Find an element in a sorted array:

- 1. Divide: Check middle element.
- 2. Conquer: Recursively search 1 subarray.
- 3. Combine: Trivial.

Example: Find 9

Find an element in a sorted array:

- 1. Divide: Check middle element.
- 2. Conquer: Recursively search 1 subarray.
- 3. Combine: Trivial.

Example: Find 9

RECURRENCE FOR BINARY SEARCH

$$n^{\log_b a} = n^{\log_2 1} = n^0 = 1 \implies \text{Case 2} (k = 0)$$

 $\implies T(n) = \Theta(\lg n)$.

POWERING A NUMBER

Problem: Compute a^n , where $n \in \mathbb{N}$.

Naive algorithm: $\Theta(n)$.

Divide-and-conquer algorithm:

$$a^{n} = \begin{cases} a^{n/2} \cdot a^{n/2} & \text{if } n \text{ is even;} \\ a^{(n-1)/2} \cdot a^{(n-1)/2} \cdot a & \text{if } n \text{ is odd.} \end{cases}$$

$$T(n) = T(n/2) + \Theta(1) \implies T(n) = \Theta(\lg n)$$
.

FIBONACCI NUMBERS

Recursive definition:

$$F_{n} = \begin{cases} 0 & \text{if } n = 0; \\ 1 & \text{if } n = 1; \\ F_{n-1} + F_{n-2} & \text{if } n \ge 2. \end{cases}$$

$$0 \quad 1 \quad 1 \quad 2 \quad 3 \quad 5 \quad 8 \quad 13 \quad 21 \quad 34 \quad \cdots$$

Naive recursive algorithm: $\Omega(\phi^n)$ (exponential time), where $\phi = (1 + \sqrt{5})/2$ is the *golden ratio*.

COMPUTING FIBONACCI NUMBERS

Naive recursive squaring:

 $F_n = \phi^n / \sqrt{5}$ rounded to the nearest integer.

- Recursive squaring: $\Theta(\lg n)$ time.
- This method is unreliable, since floating-point arithmetic is prone to round-off errors.

Bottom-up:

- Compute $F_0, F_1, F_2, ..., F_n$ in order, forming each number by summing the two previous.
- Running time: $\Theta(n)$.

RECURSIVE SQUARING

Theorem:
$$\begin{bmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^n.$$

Algorithm: Recursive squaring.

Time =
$$\Theta(\lg n)$$
.

Proof of theorem. (Induction on *n*.)

Base
$$(n = 1)$$
:
$$\begin{bmatrix} F_2 & F_1 \\ F_1 & F_0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^{1}.$$

RECURSIVE SQUARING

Inductive step $(n \ge 2)$:

$$\begin{bmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{bmatrix} = \begin{bmatrix} F_n & F_{n-1} \\ F_{n-1} & F_{n-2} \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^{n-1} \cdot \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^n$$

MATRIX MULTIPLICATION

Input:
$$A = [a_{ij}], B = [b_{ij}].$$

Output: $C = [c_{ij}] = A \cdot B.$ $i, j = 1, 2, ..., n.$

$$\begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \cdots & c_{nn} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \cdot \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nn} \end{bmatrix}$$

$$c_{ij} = \sum_{k=1}^{n} a_{ik} \cdot b_{kj}$$

STANDARD ALGORITHM

```
for i \leftarrow 1 to n
do for j \leftarrow 1 to n
do c_{ij} \leftarrow 0
for k \leftarrow 1 to n
do c_{ij} \leftarrow c_{ij} + a_{ik} \cdot b_{kj}

Running time = \Theta(n^3)
```

DIVIDE-AND-CONQUER ALGORITHM

IDEA:

 $n \times n$ matrix = 2×2 matrix of $(n/2) \times (n/2)$ submatrices:

$$\begin{bmatrix} r \mid s \\ t \mid u \end{bmatrix} = \begin{bmatrix} a \mid b \\ c \mid d \end{bmatrix} \cdot \begin{bmatrix} e \mid f \\ g \mid h \end{bmatrix}$$

$$C = A \cdot B$$

$$r = ae + bg$$

 $s = af + bh$
 $t = ce + dh$
 $u = cf + dh$
8 mults of $(n/2) \times (n/2)$ submatrices
4 adds of $(n/2) \times (n/2)$ submatrices

ANALYSIS OF D&C ALGORITHM

$$n^{\log_b a} = n^{\log_2 8} = n^3 \implies \text{CASE } 1 \implies T(n) = \Theta(n^3).$$

No better than the ordinary algorithm.

STRASSEN'S IDEA

• Multiply 2×2 matrices with only 7 recursive mults.

$$P_1 = a \cdot (f - h)$$

 $P_2 = (a + b) \cdot h$
 $P_3 = (c + d) \cdot e$
 $P_4 = d \cdot (g - e)$
 $P_5 = (a + d) \cdot (e + h)$
 $P_6 = (b - d) \cdot (g + h)$
 $P_7 = (a - c) \cdot (e + f)$

$$r = P_5 + P_4 - P_2 + P_6$$

$$s = P_1 + P_2$$

$$t = P_3 + P_4$$

$$u = P_5 + P_1 - P_3 - P_7$$

7 mults, 18 adds/subs.
Note: No reliance on commutativity of mult!

STRASSEN'S IDEA

• Multiply 2×2 matrices with only 7 recursive mults.

$$P_{1} = a \cdot (f - h) \qquad r = P_{5} + P_{4} - P_{2} + P_{6}$$

$$P_{2} = (a + b) \cdot h \qquad = (a + d)(e + h)$$

$$P_{3} = (c + d) \cdot e \qquad + d(g - e) - (a + b)h$$

$$P_{4} = d \cdot (g - e) \qquad + (b - d)(g + h)$$

$$P_{5} = (a + d) \cdot (e + h) \qquad = ae + ah + de + dh$$

$$P_{6} = (b - d) \cdot (g + h) \qquad + dg - de - ah - bh$$

$$P_{7} = (a - c) \cdot (e + f) \qquad + bg + bh - dg - dh$$

$$= ae + bg$$

STRASSEN'S ALGORITHM

- 1. Divide: Partition A and B into $(n/2) \times (n/2)$ submatrices. Form terms to be multiplied using + and -.
- 2. Conquer: Perform 7 multiplications of $(n/2)\times(n/2)$ submatrices recursively.
- 3. Combine: Form C using + and on $(n/2)\times(n/2)$ submatrices.

$$T(n) = 7 T(n/2) + \Theta(n^2)$$

ANALYSIS OF STRASSEN

$$T(n) = 7 T(n/2) + \Theta(n^2)$$

$$n^{\log_b a} = n^{\log_2 7} \approx n^{2.81} \implies \text{Case 1} \implies T(n) = \Theta(n^{\lg 7}).$$

