

Model 1

Contestau de manera clara i raonada una de les dues opcions proposades. Es disposa de 90 minuts.

Cada problema es puntua sobre 10 punts. Suposem que P_1 , P_2 , P_3 i P_4 son les qüalificacions dels problemes sobre 10. La qualificació final s'obté d'aplicar la fórmula següent: $\frac{4}{15} \cdot (P_1 + P_2 + P_3) + \frac{1}{5} \cdot P_4$. Es valoraran la correcció i la claredat en el llenguatge (matemàtic i no matemàtic) emprat per l'alumne. Es valoraran negativament els errors de càlcul.

Podeu utilitzar calculadora de qualsevol tipus, científica, gràfica o programable, però no s'autoritzarà l'ús de les que portin informació emmagatzemada o puguin transmetre-la.

OPCIÓ A

- 1. Les edats d'en Joan, en Miquel i en Gabriel sumen 70 anys. L'edat d'en Joan, el doble de l'edat d'en Miquel i el triple de l'edat d'en Gabriel sumen 160 anys i l'edat d'en Gabriel igual la suma de les edats d'en Joan i en Miquel. Calculau les edats d'en Joan, en Miquel i en Gabriel (7 punts) i quin any va néixer cadascun. (3 punts)
- 2. Entre dues torres de 15 i 25 metres d'alçada, respectivament, hi ha una distància de 30 metres. Enmig de les dues torres hi hem de posar una altra torreta de 5 metres d'alçada i hem d'estendre un cable que uneixi els extrems de dalt de la primera torre amb la torreta i els extrems de dalt d'aquesta amb la segona torre. On hem de situar la torreta de 5 metres perquè la longitud total del cable sigui mínima? (7 punts). Què val la llargada del cable en aquest cas? (3 punts)
- 3. Considerem el cub que apareix a la figura adjunta. Suposem que el punt C té coordenades (1,1,1), les arestes del cub són paral·leles als eixos coordenats (o sigui, l'aresta AE és paral·lela a l'eix X, l'aresta AD, a l'eix Y i l'aresta AB, a l'eix Z) i els costats del cub tenen llargada 2. Calculau el pla que passa pels punts A, E, C i G (7 punts) i la recta perpendicular al pla anterior que passa pel punt D. (3 punts)

- **4.** El temps que un alumne pot estar concentrat i escoltar el professor en una classe de Matemàtiques es modela com una distribució normal de mitjana 15 minuts i desviació típica 5 minuts.
 - a) Calculau la probabilitat que un alumne estigui concentrat més de 20 minuts. (3 punts)
 - b) Calculau la probabilitat que un alumne estigui concentrat entre 10 i 30 minuts. (3 punts)
 - c) Ens diuen que la probabilitat que un alumne estigui concentrat més de x minuts val 0.75. Calculau aquest valor de x minuts. (4 punts)

Model 1

OPCIÓ B

1. a) Discutiu per a quins valors de a el sistema següent és compatible:

$$\left. \begin{array}{ll}
 ax + y - 2z = & -1, \\
 -x + ay + z = & 2, \\
 3x + y - z = & 0, \\
 y + z = & 3.
 \end{array} \right\}$$

(6 punts)

b) Resoleu-lo en el cas en què sigui compatible

- (4 punts)
- 2. Considerem la funció $f(x) = x \cdot |x 1|$. Feu un dibuix aproximat de la funció anterior en l'interval [0,2]. (6 punts). Calculau l'àrea limitada per la gràfica de la funció anterior i l'eix de les X. (4 punts)
- **3.** Donats els punts A(1,0,3) i B(1,3,4), determinau els punts situats en el pla z=1 que formin amb els punts A i B un triangle equilàter. (6 punts) Calculau el volum del tetraedre format pels 3 punts anteriors i l'origen de coordenades. (4 punts)
- 4. Suposem que els estudiants de la UIB només tenen dos sistemes operatius als seus telèfons mòbils: Android i IOS (el dels iPhone). El 80% dels estudiants de la UIB tenen el sistema operatiu Android. El 25% de les al·lotes estudiants de la UIB tenen IOS al seu telèfon mòbil i el 45% dels estudiants de la UIB són al·lots.
 - a) Calculau la probabilitat que un al·lot de la UIB tingui IOS al seu telèfon mòbil. (6 punts)
 - b) Calculau la probabilitat que un estudiant que tingui Android al telèfon mòbil sigui al·lota. (4 punts)

Proves d'accés a la Universitat

Model 1

	0	1	2	3	4	5	6	7	8	9
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
3.5	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998
3.6	0.9998	0.9998	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.7	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.8	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.9	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
4.0	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
4.1	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000