DECOMPOSING UNITARY REPRESENTATIONS OF LOCALLY COMPACT GROUPS

JUSTIN KATZ

Let G be a locally compact group, which we will always assume to be Hausdorff and second countable. Let D be the collection of equivalence classes of irreducible unitary representations π such that for any (hence all) nonzero $u, v \in \mathcal{H}_{\pi}$ the function $\varphi_{\pi,u,v} : x \mapsto \langle \pi(x)u, v \rangle_{\pi}$ is in $L^2(G)$. If $\pi \in D$, then $\varphi_{\pi,u,v}$ generates a subrepresentation (a closed invariant subspace) of the right regular representation R in $L^2(G)$ that is isomorphic to π . Let \mathcal{E}_{π} denote the image in $L^2(G)$ of the functions $\varphi_{\pi,u,v}$. Define two subspaces of $L^2(G)$:

$$L^2_{\mathrm{disc}}(G) = \bigoplus_{\pi \in D} \mathcal{E}_{\pi}$$
 (Hilbert space direct sum)
 $L^2_{\mathrm{cts}}(G) = (L^2(G)_{\mathrm{disc}})^{\top},$

We call these the discrete and continuous parts of $L^2(G)$ respectively. By construction, $L^2_{\text{disc}}(G)$ is absolutely reducible: if $C(\pi, R)$ denotes the space of unitary operators intertwining π and R, set $m(\pi) = \dim C(\pi, R)$. Then

$$L^2_{\operatorname{disc}}(G) \approx \bigoplus_{\pi \in D} \pi^{\oplus m(\pi)}.$$

Whereas, by construction $L^2_{\text{cts}}(G)$ has no irreducible subrepresentations.

In these notes, I follow Folland (A course in abstract harmonic analysis) showing that $L^2_{\text{cts}}(G)$ decomposes as a direct integral (a generalization of direct sum) over irreducible representations.

1 Direct integrals

1.1 ...of trivial Hilbert bundles

Let (A, \mathcal{M}, μ) be a measure space, and $(\mathcal{H}, \langle \cdot, \cdot \rangle_{\mathcal{H}}, |\cdot|_{\mathcal{H}})$ a Hilbert space which we will always assume to be separable. We want to form a new Hilbert space 'over A.' A naive approach is to make the underlying vectorspace

$$\left[\int_{A}^{\bigoplus} \mathcal{H} \, \mathrm{d}\mu \right]_{\text{Naive}} = \bigoplus_{\alpha \in A} \mathcal{H}.$$

The elements of this space are then finitely supported \mathcal{H} valued functions on A with norm given by $|f|_{\text{Naive}}^2 = \sum_{\alpha \in A} |f(\alpha)|_{\mathcal{H}}^2$. In the case that A is uncountable, there is no way that this will be complete.

The missing ingredient from the naive approach was the measure-structure on A. Rather than requiring that the functions be finitely supported, we instead require that the functions be square-integrable, in the sense that the function

$$\alpha \mapsto |f(\alpha)|_{\mathcal{H}}^2$$

is square-integrable over A. This is the right idea: define the **direct integral** of \mathcal{H} over A with respect to μ to be

$$\int_A^{\oplus} \mathcal{H} \, \mathrm{d}\mu = L^2(A, \mathcal{H}, \mu) = \left\{ f : A \to \mathcal{H} \mid |f|^2 = \int_A |f(\alpha)|_{\mathcal{H}}^2 \, \mathrm{d}\mu(\alpha) < \infty \right\} / \ker(|\cdot|^2).$$

This is the direct integral of the **trivial Hilbert bundle** in the sense that the Hilbert space \mathcal{H} is fixed as we vary over A. We need to generalize this to allow a family of spaces H_{α} for $\alpha \in A$.

1.2 ... of general Hilbert bundles

Throughout this section, fix the following data and terminology:

- The 'base space': (A, \mathcal{M}, μ) a measure space
- The 'fibers': For each $\alpha \in A$ a separable Hilbert space \mathcal{H}_{α} with norm and inner product denoted $|\cdot|_{\alpha}$ and $\langle\cdot,\cdot\rangle_{\alpha}$ respectively.
- A choice of 'basis sections': A countable set \mathcal{E} of maps $e: A \to \coprod_{\alpha \in A} \mathcal{H}_{\alpha}$ such that
 - (1) $e_{\alpha} \in \mathcal{H}_{\alpha}$ for all $\alpha \in A$ (think: section of a bundle).
 - (2) For fixed $e, e' \in \mathcal{E}$, the map $\alpha \mapsto \langle e_{\alpha}, e'_{\alpha} \rangle$ is measurable.
 - (3) For a fixed $\alpha \in A$, the set $\{e_{\alpha}\}$ is a Hilbert space basis of \mathcal{H}_{α} .

This data defines a **Hilbert bundle** over A. A function $f: A \to \coprod_{\alpha \in A} \mathcal{H}_{\alpha}$ such that $f_{\alpha} \in \mathcal{H}_{\alpha}$ is called a **section**. A section is **measurable** if the map $\alpha \mapsto \langle f_{\alpha}, e_{\alpha} \rangle_{\alpha}$ is, for each $e \in \mathcal{E}$.

Remark 1. In practice, Hilbert spaces are typically spaces of functions. Since sections are then 'function valued functions,' I denote evaluation at $\alpha \in A$ as a subscript.

Definition 1. The direct integral of the Hilbert bundle above (with respect to μ) is

$$\int_{A}^{\oplus} \mathcal{H}_{\alpha} \, \mathrm{d}\mu(\alpha) = \{ f : A \to \coprod_{\alpha \in A} \mathcal{H}_{\alpha} | f_{\alpha} \in \mathcal{H}_{\alpha}, \quad \int_{A} |f_{\alpha}|_{\alpha}^{2} \, \mathrm{d}\mu(\alpha) < \infty \} / \sim$$

where \sim denotes agreement away from set of measure zero. The elements of the direct integral are called **square integrable sections** of the Hilbert bundle.

Verification that this is a Hilbert space, with the inner product $\langle f, g \rangle = \int_A \langle f_\alpha, g_\alpha \rangle_\alpha \, d\mu(\alpha)$ is roughly the same argument that $L^2(A, \mu)$ is, along with Lebesgue's dominated convergence theorem.

The following are some quick exercises that I think are pretty important to grasp 'what's going on.'

Exercise 1. • Let A be a countable set, μ the counting measure on A, with arbitrary (separable) \mathcal{H}_{α} for all $\alpha \in A$. Show

$$\int_A^{\oplus} \mathcal{H}_{\alpha} \, \mathrm{d}\mu(\alpha) \approx \bigoplus_{\alpha \in A} \mathcal{H}_{\alpha}.$$

• Define a map $H_{\alpha'} \to \int^{\oplus} \mathcal{H}_{\alpha} d\mu(\alpha)$ by $v \mapsto f$ where f is the function on A such that $f_{\alpha} = 0$ unless $\alpha = \alpha'$, whereat $f_{\alpha'} = v$. For arbitrary μ on A, why is this not necessarily an embedding?

1.3 ... of operators

Consider a collection of unitary operators $T_{\alpha} \in \mathcal{L}(\mathcal{H}_{\alpha})$, (the latter is the space of bounded operators on \mathcal{H}_{α}) such that for any measurable section $\alpha \mapsto f_{\alpha}$, the section $\alpha \mapsto T_{\alpha}f_{\alpha}$ is measurable. Such a collection is called a **measurable field of operators**. Such a field gives rise to a unitary operator on $\int_A^{\oplus} \mathcal{H}_{\alpha} d\mu(\alpha)$ called the **direct integral of the field** T, denoted $\int_A^{\oplus} T_{\alpha} d\mu(\alpha)$ or just $\int_A^{\oplus} T$ if the rest of the data is clear. This operator acts on square integrable sections fibre—wise,

$$\left[\left(\int_{A}^{\oplus} T_{\alpha} \, \mathrm{d}\mu(\alpha) \right) f \right]_{\alpha} = T_{\alpha} f_{\alpha}.$$

Exercise 2. • Let A be a finite set, and μ be the counting measure. Fix a Hilbert space \mathcal{H} of dimension 1. Characterize the operators in $\int_A^{\oplus} \mathcal{H} d\mu(\alpha)$ that arise as the direct integral of |A| operators on \mathcal{H} .

1.4 ... of representations

Let G be a locally compact group and consider a collection of unitary representations $\pi_{\alpha}: G \mapsto \mathcal{L}(\mathcal{H}_{\alpha})$. Further, suppose that for each $x \in G$ the field of operators $\pi_{\alpha}(x)$ is measurable, so that $\int_{-\infty}^{\oplus} \pi_{\alpha}(x) \, \mathrm{d}\mu(\alpha)$ defines a unitary operator on $\int_{-\infty}^{\oplus} \mathcal{H}_{\alpha} \, \mathrm{d}\mu(\alpha)$. We call such a collection a **field of unitary representations**. The map $x \mapsto \int_{-\infty}^{\oplus} \pi(x) \, \mathrm{d}\mu(\alpha)$ then defines a unitary representation² of G on $\int_{-\infty}^{\oplus} \mathcal{H}_{\alpha} \, \mathrm{d}\mu(\alpha)$.

2 Decomposing unitary representations

The theorem of this section, which decomposes a unitary representation into a direct integral of a field of representations, is phrased in terms of a choice of commutative (C^* , weakly closed) algebra of intertwining operators. Let's look at how this manifests in the simplest case:

Consider a finite group G, with an irreducible unitary representation of π on finite dimensional Hilbert space V. Now suppose τ is a unitary representation of G on W which is unitarily equivalent to $\pi \oplus \pi$ on $V \oplus V$. The algebra of intertwining operators $\operatorname{Hom}_{\tau}(W, W)$ is isomorphic to $M_2(\mathbb{C})$ (basically Schur's lemma).

Claim 1. A choice of isomorphism $\tau \approx \pi \oplus \pi$ is equivalent to a choice of maximal commutative subalgebra of $\operatorname{Hom}_{\tau}(W,W)$.

Proof. Given an isomorphism $\varphi: W \to V \oplus V$ intertwining τ and $\pi \oplus \pi$, take the preimage of the algebra of diagonal matrices in $\operatorname{End}(V) \oplus \operatorname{End}(V)$.

Given a maximal commutative subalgebra B of $\operatorname{Hom}_{\tau}(W,W)$, all operators in B can be simultaneously diagonalized. Since $\operatorname{Hom}_{\tau}(W,W)$ is isomorphic to $M_2(\mathbb{C})$, B must be two dimensional,

¹Exercise: check this ²Exercise: check this.

so pick basis vectors T, S. Since T, S are linearly independent, there must be an eigenspace W_1 on which their eigenvalues are distinct. Since T, S are intertwining operators W_1 is a τ invariant subspace (which is necessarily proper). Conclude that W_1 is equivalent to V, and by Schur, the equivalence is unique up to scale. The same argument shows that the orthogonal complement W_2 to W_1 is also equivalent to V. After taking some linear combination of T and S, we may assume that T and S are projections onto W_1 and W_2 respectively. Then $T \oplus S$ provides a G isomorphism $W \to W_1 \oplus W_2 \to V \oplus V$.

Paraphrasing: to decompose W into its irreducible subrepresentations, one must make a choice of orthogonal projections onto its invariant subspaces, which is a commutative subalgebra of intertwining operators. Now suppose G is a locally compact group and $\pi = \int_{-\infty}^{\oplus} \pi_{\alpha}$ on $\mathcal{H} = \int_{-\infty}^{\oplus} \mathcal{H}_{\alpha}$. Take a measurable subset $E \subset A$ and let χ_E be its characteristic function. Define an operator on $\int_{-\infty}^{\oplus} \mathcal{H}_{\alpha}$ by $[M_E f]_{\alpha} = \chi_E(\alpha) f_{\alpha}$. Then M_E is a projection onto a closed π -invariant subspace of \mathcal{H} . Note that the collection of M_E for all measurable E commute with one another, and will generate a commutative C^* algebra of intertwining operators.

The reference to such algebras in the following theorem is what allows one to modulate the fine-ness of the direct integral decomposition. On one extreme, a maximal commutative subalgebra of intertwining operators implies that the representations appearing in the direct integral are *irreducible*. On the other, the zero subalgebra makes the theorem vacuous.

Theorem 1. Let G be a locally compact group, π be a unitary representation on a separable Hilbert space \mathcal{H} , and B a weakly closed commutative C^* algebra of intertwining operators $\mathcal{H} \to \mathcal{H}$. Then there exists

- a measure space (A, \mathcal{M}, μ) ,
- a field of Hilbert spaces \mathcal{H}_{α} over A,
- a field of representations $\pi_{\alpha} \in \mathcal{L}(\mathcal{H}_{\alpha})$ over A,
- a unitary isomorphism $U: \mathcal{H} \to \int_A^{\oplus} \mathcal{H}_{\alpha} \, \mathrm{d}\mu(\alpha)$

such that

$$U\pi U^{-1} = \int_A^{\oplus} \pi_\alpha \,\mathrm{d}\mu(\alpha)$$

and

$$UBU^{-1}$$
 is the algebra of diagonal operators on $\int_{-\infty}^{\oplus} \mathcal{H}_{\alpha} d\mu(\alpha)$

By analogy to the Euclidean Fourier transform (of which this is a direct generalization), denote $U(\cdot)$ by $\hat{\cdot}$. Remind yourself that this means \hat{v} is a function on A, taking a value in H_{α} at $\alpha \in A$. This theorem says that the action of π on v is given by

$$a\pi(x)v = U^{-1}\left(\alpha \mapsto \pi_{\alpha}(x)[\hat{v}(\alpha)]\right)$$

and for any operator $T \in B$, there exists a $\varphi \in L^{\infty}(A)$ such that

$$Tv = U^{-1} \left[\alpha \mapsto \varphi(\alpha) \hat{f}(\alpha) \right].$$

³Exercise: check this

2.1 A brief interlude on the unitary dual

As a set, denote by \hat{G} the collection of irreducible unitary representations modulo unitary equivalence. In this section, I will briefly describe a σ -algebra of subsets of \hat{G} which, when G is 'good,' will let \hat{G} serve as A universally in the theorem above.

For each $n < \infty$, let \mathcal{H}_n denote a fixed Hilbert space of dimension n (say \mathbb{C}^n with the Euclidean inner product), and let \mathcal{H}_{∞} denote a fixed infinite dimensional separable Hilbert space (say $\ell^2(\mathbb{Z})$). Now for each n let $\mathrm{Irr}_n(G)$ denote the collection of irreducible unitary representations of G on \mathcal{H}_n . Note: we are not identifying unitarily equivalent representations yet. Let X_n denote the collection of matrix coefficient functions on $\mathrm{Irr}_n(G)$; i.e. maps $\mathrm{Irr}_n(G) \to \mathbb{C}$ of the form

$$\pi \mapsto \langle \pi(x)u, v \rangle.$$

Then set B_n to be the σ -algebra on $Irr_n(G)$ generated by X_n ; i.e. the smallest σ -algebra containing all preimages of subsets of \mathbb{C} under all maps in B_n .

Now let

$$\operatorname{Irr}(G) = \bigcup_{n \le \infty} \operatorname{Irr}_n(G).$$

Because we have not made any identifications, this union is disjoint. Define a σ -algebra on B by

$$E \in B \iff E \cap \operatorname{Irr}_n(G) \in B_n \text{ for all } n.$$

Now let $\cdot \mapsto [\cdot]$ be the map taking a unitary representation to its unitary equivalence class, which is a surjection $\operatorname{Irr}(G) \to \hat{G}$. Then define a σ -algebra, called the **Borel–Mackey** structure on \hat{G} , by pulling back along $[\cdot]$.

Aside: there is also a topology on \hat{G} , called the Fell topology. The σ -algebra of Borel subsets with respect to the Fell topology is coarser than the Borel-Mackey algebra. In particular, singletons are in the Borel-Mackey algebra, but need not be in the Borel-Fell algebra. In any case, one should expect that the Fell topology is not Hausdorff at a handful of points, arising when a 'continuous' family of unitary irreps degenerate.

2.2 Some representation theoretic definitions

To strengthen the decomposition theorem above, we will need to isolate a class of groups for which \hat{G} is 'good.' We need some definitions to make this precise.

A measurable space (X, \mathcal{M}) is **standard** if it is measurably isomorphic to a Borel subset of a complete separable metric space⁴.

A unitary representation π of G is **primary** if the center of its algebra of intertwining operators is trivial (scalar multiples of the identity). Schur says that irreducible representations are primary, and if π is completely reducible (as a direct sum) then it is primary if and only if all of its irreducible subrepresentations are unitarily equivalent (the example of τ on W above is an example).

⁴Astonishingly (to me at least), there are only two options for such spaces: either X is countable and $\mathcal{M} = 2^X$, or X is measurably isomorphic to [0,1] with its Euclidean topology and its σ -algebra of Borel sets.

A group G is said to be **type I** if every primary representation is a direct sum of some irreducible subrepresentation. These are the 'good' groups

Theorem 2. A locally compact group G is type I if and only if its Borel-Mackey σ -algebra is standard.

2.3 Strengthening the decomposition

For each $n \leq \infty$, let $\hat{G}_n \subset G$ be the collection of unitary equivalence classes of n dimensional irreducible unitary representations of G. As before \mathcal{H}_n is a choice of fixed Hilbert space of dimension n. Then, with respect to the Borel-Mackey structure, there is a canonical 'locally trivial' measurable field of Hilbert spaces $\{H_p\}$ sitting over \hat{G} . That is, $\hat{G} = \coprod_{n \leq \infty} \hat{G}_n$ is a partition into measurable subsets such that $\mathcal{H}_p = \mathcal{H}_n$ for $p \in \hat{G}_n$.

Further, essentially by definition, there is a measurable field of representations $\{\pi_p\}$ over \hat{G} acting on the canonical field of Hilbert spaces $\{H_p\}$ such that $\pi_p \in p$ for all equivalence classes $p \in \hat{G}$. One must be a little careful in showing that the choice of representatives π_p can be made measurably in p.

Theorem 3. Suppose that G is locally compact and type 1, π a unitary representation of G on a separable Hilbert space, and \mathcal{H}_p , π_p are the fields over \hat{G} discussed in the preceding two paragraphs. Then there exist pairwise disjointly supported finite measures $\mu_1, ..., \mu_{\infty}$ on \hat{G} such that

$$\pi \approx \bigoplus_{n \le \infty} n \cdot \rho_n$$

where $n\rho_n$ denotes n copies of $\int^{\oplus} \pi_p d\mu_n(p)$.

2.4 Plancherel

Let $J^1 = L^1(G) \cap L^2(G)$ and let J^2 be the linear span of f * g for $f, g \in J^1$. For $f \in J^1$ define the Fourier transform

$$\hat{f}(\pi) = \int f(x)\pi(x^{-1}) \,\mathrm{d}x.$$

We think of $\hat{f}(\pi)$ as element of $\mathcal{H}_{\pi} \otimes \overline{\mathcal{H}_{\pi}}$. This is the same as viewing $\hat{f}(\pi)$ as a trace class operator on \mathcal{H}_{π} . Then we have the Plancherel's theorem:

Theorem 4. Let G be type 1 and unimodular. Then there is a measure μ on \hat{G} , uniquely determined by a choice of Haar on G, with the following properties:

- The Fourier transform maps J^1 unitarily into $\int^{\oplus} \mathcal{H}_{\pi} \otimes \mathcal{H}_{\overline{\pi}} d\mu$ which extends to a unitary isomorphism on $L^2(G)$.
- The Fourier transform intertwines the two sided regular representation τ with $\int^{\oplus} \pi \otimes \overline{\pi} d\mu(\pi)$.
- For $f, g \in J^1$

$$\int_{G} f(x)\overline{g}(x) dx = \int_{\hat{G}} \operatorname{tr}[\hat{f}(\pi)\hat{g}(\pi)^{*}] d\mu(\pi)$$

• For $h \in J^2$ one has

$$h(x) = \int \operatorname{tr}[\hat{\pi}(x)\hat{h}(\pi)] d\mu(\pi).$$

3 explicit examples

In all the examples, G is of type 1. We apply the theorem to the unitary representation of G on $L^2(G)$ acting via right translation. The output of the theorem is always a measurable field of representations π_p on the canonical field of Hilbert spaces \mathcal{H}_p over \hat{G} , along with a measure $d\mu$. The measure is what we'll be looking at. Further, the collection of subrepresentations (not necessarily irreducible) correspond to elements of the direct integral supported on a measurable subset of the \hat{G} . The *irreducible* subspaces correspond to points in \hat{G} with nonzero measure.

3.1 $L^2(\mathbb{R})$

Let $G = \mathbb{R}$. By Schur's lemma, any irreducible unitary representation of G must be one dimensional. For each $t \in \mathbb{R}$, define the character $\xi_t : \mathbb{R} \mapsto \operatorname{Aut}(\mathbb{C}) = \mathbb{C}^{\times}$ by $\xi_t(x) = e^{-2\pi i x t} =: \langle \xi_t, x \rangle$. This defines an irreducible unitary representation of G on \mathbb{C} , viewed as a 1 dimensional complex vectorspace. It is classical that $\hat{G} = \{\xi_t \mid t \in \mathbb{R}\} \approx \mathbb{R}$ where the identification is as topological groups (hence also as measure spaces). Let $\mathcal{H}_t = \mathbb{C}$ for all $t \in \mathbb{R} = \hat{G}$, and μ be the Lebesgue measure. Then for $f \in L^1(\mathbb{R}) \cap L^2(\mathbb{R})$ define a map U, taking values in $\int^{\oplus} \mathcal{H}_t d\mu(t)$ by

(1)
$$[Uf](t) = \int_{\mathbb{R}} \xi_t(x) f(x) d\mu(x).$$

U is unitary on $L^2(\mathbb{R}) \cap L^1(\mathbb{R})$ and extends to a unitary isomorphism $L^2(\mathbb{R}) \to \int^{\oplus} \mathcal{H}_t d\mu(t)$, which we still denote by U. Then for any $f \in L^2(\mathbb{R})$, and $t \in \mathbb{R}$,

$$[UR_y f][(t) = \int_{-\infty}^{\oplus} \xi_t(y) [Uf](t) d\mu(t) = [\xi_t(y) Uf](t)] = e^{2\pi i t y} [Uf](t).$$

With respect to the Lebesgue measure, all points in \hat{G} have measure zero, which is one explanation for why $L^2(\mathbb{R})$ has no *irreducible* subrepresentations. The non-irreducible subrepresentations are all of the form $U^{-1} \int_E^{\oplus} \mathcal{H}_t \, \mathrm{d}\mu(t) = \{ f \in L^2(\mathbb{R}) \mid Uf \text{ is supported on } E \}$ where $E \subset \mathbb{R}$ is measurable. One should think about why the sequence of representations $U^{-1} \int_{(-1/n,1/n)}^{\oplus} \mathcal{H}_t \, \mathrm{d}\mu(t)$ does not 'converge' in any meaningful sense.

3.2 $L^2(\mathbb{R}/\mathbb{Z})$

We'll look at $L^2(\mathbb{R}/\mathbb{Z})$ as a unitary representation in two different ways. First, \mathbb{R}/\mathbb{Z} is itself a compact abelian group, so the theorem applies to decompose $L^2(\mathbb{R}/\mathbb{Z})$ with respect to unitary irreps of \mathbb{R}/\mathbb{Z} . Second, \mathbb{R} acts on \mathbb{R}/\mathbb{Z} by translation, which induces a unitary action of \mathbb{R} on $L^2(\mathbb{R}/\mathbb{Z})$. The theorem applies here too.

All irreducible finite dimensional unitary reps of \mathbb{R}/\mathbb{Z} are 1 dimensional. Take a smooth function $f \in L^2(\mathbb{R}/\mathbb{Z})$ and identify it with a smooth \mathbb{Z} periodic function on \mathbb{R} which we still call f. Then observe that for any $x \in \mathbb{R}$ $\Delta f(x+t) = [\Delta f](x+t)$ for each $t \in \mathbb{R}$, where $\Delta = d^2/dx^2$ is

the one dimensional Laplacian. Since Δ commutes with translation, it stabilizes the irreducible subrepresentations. Since those subspaces are 1-dimensional, they must be eigenspaces for Δ . Integration by parts twice, on \mathbb{R}/\mathbb{Z} , shows that eigenvalues must be nonpositive real. That is to say, if f spans an irreducible subrepresentation for \mathbb{R}/\mathbb{Z} in $L^2(\mathbb{R}/\mathbb{Z})$ then its lift to \mathbb{R} must satisfy the following ordinary differential equation with initial conditions

$$f'' = -\lambda^2 f$$
 for some $\lambda^2 \in \mathbb{R}$, $f(0) = f(1)$.

All solutions to the differential equation on \mathbb{R} are of the form $f(x) = e^{\pm i\lambda x}$, and the initial condition forces $e^{\pm i\lambda} = 1$, so $\lambda \in 2\pi i\mathbb{Z}$. If $\lambda = 2\pi in \neq 0$ then $\xi_n(x) = e^{2\pi inx}$ is an eigenfunction and spans an irreducible representation. If $\lambda = 0$ then f satisfies the differential equation f'' = 0 which means f' is constant. The only smooth periodic function f such that f' is constant is itself a constant function. We have shown that $\{[\xi_n] : n \in \mathbb{Z}\} \subset \mathbb{R}/\mathbb{Z}$. To show the opposite containment, use the fact that any unitary rep of an abelian group acts as a unitary character. Thus \mathbb{R}/\mathbb{Z} is in bijection with \mathbb{Z} and we'll take for granted that this is actually an isomorphism of topological groups. Let $\mathcal{H}_n = \mathbb{C}$ for all $n \in \mathbb{R}/\mathbb{Z} = \mathbb{Z}$ and let η denote the counting measure. Then for $f \in L^2$, define an operator $U : L^2(\mathbb{R}/\mathbb{Z}) \to \int_{\mathbb{Z}}^{\oplus} \mathcal{H}_n \, \mathrm{d}\eta(n) = \bigoplus_{n \in \mathbb{Z}} \mathcal{H}_n$ (Hilbert space direct sum) by

$$[Uf](n) = \int_{\mathbb{R}/\mathbb{Z}} \xi_n(x) f(x) \, \mathrm{d}\eta(x).$$

Then for any $f \in L^2(\mathbb{R}/\mathbb{Z})$ and $y \in \mathbb{R}/\mathbb{Z}$ we have

$$[UR_y f](n) = \xi_n(x) [Uf](n).$$

With respect to the counting measure all points in \hat{G} have measure one, so all irreducible finite dimensional unitary representations of G appear in $L^2(\mathbb{R}/\mathbb{Z})$ as direct summands. All subrepresentations can be obtained as (Hilbert space) direct sums of irreducibles.

Now we look at $L^2(\mathbb{R}/\mathbb{Z})$ as a unitary representation of \mathbb{R} . The parameter space in the direct integral decomposition $\int_{\mathbb{R}}^{\oplus} \mathcal{H}_t \, d\eta$ remains \mathbb{R} , but the measure $d\eta$ will not be Lebesgue. Instead, it must be supported on the representations ξ_t which are invariant under translation by the subgroup \mathbb{Z} . That is, $\xi_t(x+1) = \xi_t(x)$ for all $x \in \mathbb{R}$. This is to say that $e^{2\pi i t(1+x)} = e^{2\pi i tx}$, whence we recover $t = n \in \mathbb{Z}$. Let η be the counting measure on this copy of $\mathbb{Z} \subset \mathbb{R} = \hat{G}$. The definition of our operator U is identical to that in equation (1), with $d\eta$ replacing $d\mu$. Now lets look at the 0 element of the direct integral. It is an equivalence class:

$$0 = \left\{ f : \mathbb{R} \to \mathbb{C} \mid \int_{\mathbb{R}} |f(x)|^2 \, \mathrm{d}\eta(x) = 0 \right\}.$$

These are precisely the functions supported away from \mathbb{Z} . Thus each class in $\int_{\mathbb{R}}^{\oplus} \mathcal{H}_t \, d\eta(t)$ has exactly one representative supported on \mathbb{Z} . This provides the bijection between this decomposition and the preceding.

Note: The second example is the one which will apply to the decomposition of $L^2(G(\mathbb{Q}) \setminus G(\mathbb{A}))$ as a unitary rep of $G(\mathbb{A})$. The key point is that looking at functions on a *quotient* of G corresponds to a measure supported on a *subspace* of \hat{G} .

3.3
$$L^2(\mathrm{SL}_2(\mathbb{R}))$$

Let $G = \mathrm{SL}_2(\mathbb{R})$ and define subgroups

$$A = \left\{ a_t = \begin{bmatrix} e^t & 0 \\ 0 & e^{-t} \end{bmatrix} \mid t \in \mathbb{R} \right\}$$

$$N = \left\{ N_x = \begin{bmatrix} 1 & x \\ 0 & 1 \end{bmatrix} \mid x \in \mathbb{R} \right\},$$

$$K = \left\{ r_\theta = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \mid \theta \in [0, 2\pi) \right\}$$

$$P = AN$$

The following is an exhaustive non-redundant list of irreducible unitary reps of G

- The trivial representation,
- The discrete series, δ_n^{\pm} $(n \geq 2)$. Let H_n^+ be the collection of holomorphic f on the upper half plane \mathfrak{h} equipped with the norm $|f|_n^2 = \int_h |f(x+iy)|^2 y^n \frac{\mathrm{d} x \, \mathrm{d} y}{y^2}$. Define the representation

$$\delta_n^+ \begin{bmatrix} a & b \\ c & d \end{bmatrix} f(\tau) = (cz+d)^{-n} f(\frac{az+b}{cz+d}).$$

The action δ_n^- is the same as δ_n^+ , but is on the space of *anti*-holomorphic functions. • The mock discrete series (or limit of discrete series): Let H_1^{\pm} be the space of holomorphic (resp. antiholomorphic) functions on h such that

$$|f|_1^2 = \sup_{y>0} \int_{\mathbb{R}} |f(x+iy)|^2 dx < \infty.$$

The representation is defined by the formula above.

- The unramified spherical principal series: for $s \ge 0$ define a character χ_t on P by $\chi_s(a_t n_x) =$ $|e^t|^{is}$ and let $\pi_{is} = \operatorname{ind}_P^G(\chi_s)$.
- The aspherical principal series: same as before, but s>0 and χ_s is twisted by the sign
- The complementary series: for $s \in (0,1)$ let the space of k_s be all $f: \mathbb{R} \to \mathbb{C}$ so that

$$|f|_s^2 = s/2 \int f(x)\overline{f}(y)|x - y|^{s-1} dx dy < \infty$$

and define the action

$$k_s \begin{bmatrix} a & b \\ c & d \end{bmatrix} f(x) = |cx + d|^{-1-s} f(\frac{az+b}{cz+d}).$$

So

$$\hat{G} = \{1\} \cup \{\delta_n^{\pm} : n \ge 1\} \cup \{\pi_{is}^{+} : s \ge 0\} \cup \{\pi_{is}^{-} : s > 0\} \cup \{k_s : 0 < s < 1\}.$$

The plancherel measure is given by

$$d\mu(\pi_{it}^+) = \frac{t}{2} \tanh \frac{\pi t}{2} dt$$

$$d\mu(\pi_{it}^-) = \frac{t}{2} \coth \frac{\pi t}{2} dt$$

$$d\mu(\delta_n^+) = d\mu(\delta_n^-) = n - 1.$$