Pedro Numes 109368
Andrei Bonb 109 762

1.
$$w = (x^{T} \cdot x)^{-1} \cdot x^{T} \cdot z$$

$$\begin{bmatrix}
1 & \theta(a,2) \\
1 & \theta(1,1) \\
1 & 0(3,2) \\
1 & \phi(6,3) \\
1 & 0(8,1)
\end{bmatrix} = \begin{bmatrix}
1 & 4 \\
1 & 1 \\
1 & 18 \\
1 & 8
\end{bmatrix}$$

$$x^{T} = \begin{bmatrix}
1 & 1 & 1 & 1 & 1 \\
4 & 1 & 6 & 18 & 8
\end{bmatrix}$$

$$x^{T} \cdot x = \begin{bmatrix}
1 & 1 & 1 & 1 & 1 \\
4 & 1 & 6 & 18 & 8
\end{bmatrix}$$

$$(x^{T} \cdot x)^{-1} = \underbrace{1}_{836} \begin{bmatrix} 444 - 37 \\ -37 & 5 \end{bmatrix} = \begin{bmatrix} 0,52751 & -0,04426 \\ -0,09426 & 0,00598 \end{bmatrix}$$

$$\begin{bmatrix}
1 & \phi(8,12) \\
1 & \phi(1,14) \\
1 & \phi(3,12) \\
1 & \phi(6,13) \\
1 & \phi(6,13)$$

2. $\omega = (X^T \cdot X + \lambda \cdot I)^{-1} \cdot X^T \cdot Z$

u) =	Го	.2:	291	15	C),31	56	7	D,	,17	14	7	_	D,	171	167		Ο,	113	3 7 .°	۹ (7	ے ع،	_ 5	
		1			2															, 00				1,		
																								3,8 10,	-	
	=		0,	97 50	31°	9																		_8,	5]	
		ł	- -	SO	92		<u> </u>																			
	4			_	0,	97	- 3/	19	-4	- 1	0.5	69	2	ı (ħ(.Y4	. ч	2	\							
	Jn	NUM	١		ر,						۰,۰		<u>ر</u>	,	γ\	01	, ()		,							
	T.,	. +	١.,	R	. ماء		70.0		-~	•	•	^ ^ ^ ^ ^ ^ ^ ^ ^ ^	h	+1		φ.	7ء،	.م		ρ.	c: -	. t	ماء	(TO 0	0C0	
Si	JW!	f;	Car	ηH	100	S	ho	wit	rss Ng	H	at	אל	wi 290	Jos	u UZ	ati	OW 1172	24	PA	t' ct	الع	ly Ly	pe	mal	泛	-3 !S
اما	3	_ ' t	ue nt	igh	ts	te		ne	ver	14 14	04 	ല :	fi	ttio	ng L	. t	(eo tl	mu tan	hi')و مام	th	و ز	عود مامد	omo	· 44	١.
2	om t	ni b	unci oct:	OM	NOC	ρ	bo	th.	DINC Pa	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		, ^	m d	,,,	a II	ing	7: L	ent.	اعام معاداً	ω ς	k 0	עש	یرصا ک∶ما	1100. hts	, (us Vus
_,)IIC (911		· ·	1Τ	U	٠,,	T~	۰ ک		•	V.) <i>'</i>	~C	112	1111	, .	·wq		/CC	700	19			
ac	Ingonia	vim	9	۵	w	T one	5	stat	sle	6W	ode	21.	, C) ′	~~	"(3	1111	, ,	79		/ CC		`J		1	
ac	hie	vim	9	۵.	w	T one	3	stat) le	m	iodi	2l.) ′		"(3			9		, (3.		``J			
a (hie	ViM	9	۵	m	T one	8	stat) le	S M	ıodı	21.) ′		11.3					/Q		ני"			
ac	hie	ViM	9	۵	m	ons	8	stat) le	6VM	ıodı	21.) '					9		/\lambda		``J			
ac	hie	vim	9	۵	m	one	8	stat) le	699	100L	21.)							700		`J'			
a(hie	vim	9	۵	m	One		stat	ple	699	node	21.				"13										
ac	hie	vim	9	۵	m	Tons	~	stat) le	634	noolu	21.				"(3										
a(hie	Vim	9	۵	m	200		stak) le	6W	a code	21.														
a(hie	Vim	3	•	m	CORR		stat	s le	SW	nools	21.														
a(hie	Vim	3	a	m	CORR		stat	s le	om	nools	21.														
a(hie	Vim	3	a	m	CONS		stat) le	om/	look	21.														

3. MAE = 1 [] Zi - Zi]

MAE $= \frac{1}{5} \left(\frac{13.5 - 3.57956}{11 - 1,99091} + \cdots \right) = 1,120926$

MAE TraimRidge = 1 (| 3,5-3,25003 | + | 1-1,5424 | + ···) = 1,094584

 $MAE_{Test OLS} = \frac{1}{3} (11 - 1,461361 + \cdots) = 0,862143$ MAE Testridge = 1 () 1-0,97319) +000) = 0,616587 MAE(OLS) > MAE (Ridge), in both training and testing. This means that Ridge has a better performance, therefore generalizing better. The expected was that the MAE im Training would be better for OLS, because OLS is more prome to overfitting we achived the oposite, because regularization smooths the coeficients, reducing the influence of outliers or extreme feature values. With a small dataset, this affect can lead to a improvement even on the training set.

$$\begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 2 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 2 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 2 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1$$

$$\begin{bmatrix} 0,7 \end{bmatrix} \begin{bmatrix} 0,66819. \end{bmatrix}$$

$$\begin{bmatrix} 2 \end{bmatrix} \begin{bmatrix} 2 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 \end{bmatrix} \begin{bmatrix} 0,62246 \\ 0,64566 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 4,25016 \\ 3,58197 \end{bmatrix}$$

$$\begin{bmatrix} 2 \end{bmatrix} = \begin{bmatrix} 2 \end{bmatrix} \begin{bmatrix} 0,56135 \\ 0,28777 \\ 0,15088 \end{bmatrix}$$

Back Propagation: $t = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \qquad \begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 0,56135 \\ 0,28777 \\ 0,15088 \end{bmatrix}$ $w^{2} = w^{2} - \eta \quad \frac{\partial E}{\partial w^{2}}$ $\frac{\partial E}{\partial w^{2}} = \frac{\partial E}{\partial x^{2}} \quad \frac{\partial E}{\partial x^{2}} = S^{2} \cdot (\chi^{2})^{T}$

$$\frac{\partial E}{\partial w^{(2)}} = \frac{\partial E}{\partial z^{(2)}} \frac{\partial E}{\partial w^{(2)}} = \frac{\partial E}{\partial z^{(2)}} \frac{\partial E}{\partial w^{(2)}} = \frac{\partial E}{\partial z^{(2)}} \frac{\partial E}{\partial z^{(2)}} = \frac{\partial E}{\partial z^{(2)}} \frac{\partial E}{\partial z^{(2)}} = \frac{\partial E}{\partial z^{(2)}} \frac{\partial E}{\partial z^{(2)}} \frac{\partial E}{\partial z^{(2)}} = \frac{\partial E}{\partial z^{(2)}} \frac{\partial E}{\partial z^{(2)$$

$$\begin{bmatrix} 2 \\ 1 \\ 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} -0.27304 \\ 0.18580 \\ 0.19229 \\ 0.09392 \\ 0.09742 \\ 0.10082 \end{bmatrix}$$

$$\begin{bmatrix} 1.13652 \\ 2.14161 \\ 0.95304 \\ 0.95129 \\ 0.94959 \end{bmatrix}$$

3 E = 5 [2]

$$= (w^{[2]})^{T} \cdot \int^{[2]} o \chi^{[1]} \circ (1 - \chi^{[1]})$$

$$= (w^{[2]})^{T} \cdot \int^{[2]} o \chi^{[1]} \circ (1 - \chi^{[1]})$$

$$= (w^{[2]})^{T} \cdot \int^{[2]} o \chi^{[1]} \circ (1 - \chi^{[1]})$$

$$= (w^{[2]})^{T} \cdot \int^{[2]} o \chi^{[1]} \circ (1 - \chi^{[1]})$$

$$= (w^{[2]})^{T} \cdot \int^{[2]} o \chi^{[1]} \circ (1 - \chi^{[1]})$$

$$= (w^{[2]})^{T} \cdot \int^{[2]} o \chi^{[1]} \circ (1 - \chi^{[1]})$$

$$= (w^{[2]})^{T} \cdot \int^{[2]} o \chi^{[1]} \circ (1 - \chi^{[1]})$$

$$= (w^{[2]})^{T} \cdot \int^{[2]} o \chi^{[1]} \circ (1 - \chi^{[1]})$$

$$= (w^{[2]})^{T} \cdot \int^{[2]} o \chi^{[1]} \circ (1 - \chi^{[1]})$$

$$= (w^{[2]})^{T} \cdot \int^{[2]} o \chi^{[1]} \circ (1 - \chi^{[1]})$$

$$= (w^{[2]})^{T} \cdot \int^{[2]} o \chi^{[1]} \circ (1 - \chi^{[1]})$$

$$= (w^{[2]})^{T} \cdot \int^{[2]} o \chi^{[1]} \circ (1 - \chi^{[1]})$$

$$= (w^{[2]})^{T} \cdot \int^{[2]} o \chi^{[1]} \circ (1 - \chi^{[1]})$$

$$= (w^{[2]})^{T} \cdot \int^{[2]} o \chi^{[1]} \circ (1 - \chi^{[1]})$$

$$= (w^{[2]})^{T} \cdot \int^{[2]} o \chi^{[1]} \circ (1 - \chi^{[1]})$$

$$= (w^{[2]})^{T} \cdot \int^{[2]} o \chi^{[1]} \circ (1 - \chi^{[1]})$$

$$= (w^{[2]})^{T} \cdot \int^{[2]} o \chi^{[1]} \circ (1 - \chi^{[1]})$$

$$= (w^{[2]})^{T} \cdot \int^{[2]} o \chi^{[1]} \circ (1 - \chi^{[1]})$$

$$= (w^{[2]})^{T} \cdot \int^{[2]} o \chi^{[1]} \circ (1 - \chi^{[1]})$$

$$= (w^{[2]})^{T} \cdot \int^{[2]} o \chi^{[1]} \circ (1 - \chi^{[1]})$$

$$= (w^{[2]})^{T} \cdot \int^{[2]} o \chi^{[1]} \circ (1 - \chi^{[1]})$$

$$= (w^{[2]})^{T} \cdot \int^{[2]} o \chi^{[1]} \circ (1 - \chi^{[1]})$$

$$= (w^{[2]})^{T} \cdot \int^{[2]} o \chi^{[1]} \circ (1 - \chi^{[1]})$$

$$= (w^{[2]})^{T} \cdot \int^{[2]} o \chi^{[1]} \circ (1 - \chi^{[1]})$$

$$= (w^{[2]})^{T} \cdot \int^{[2]} o \chi^{[1]} \circ (1 - \chi^{[1]})$$

$$= (w^{[2]})^{T} \cdot \int^{[2]} o \chi^{[1]} \circ (1 - \chi^{[1]})$$

$$= (w^{[2]})^{T} \cdot \int^{[2]} o \chi^{[2]} \circ (1 - \chi^{[1]})$$

$$= (w^{[2]})^{T} \cdot \int^{[2]} o \chi^{[2]} \circ (1 - \chi^{[1]})$$

$$= (w^{[2]})^{T} \cdot \int^{[2]} o \chi^{[2]} \circ (1 - \chi^{[2]})$$

$$= (w^{[2]})^{T} \cdot \int^{[2]} o \chi^{[2]} \circ (1 - \chi^{[2]})$$

$$= (w^{[2]})^{T} \cdot \int^{[2]} o \chi^{[2]} \circ (1 - \chi^{[2]})$$

$$= (w^{[2]})^{T} \cdot \int^{[2]} o \chi^{[2]} \circ (1 - \chi^{[2]})$$

$$= (w^{[2]})^{T} \cdot \int^{[2]} o \chi^{[2]} \circ (1 - \chi^{[2]})$$

$$= (w^{[2]})^{T} \cdot \int^{[2]} o \chi^{[2]} \circ (1 - \chi^{[2]})$$

$$= (w^{[2]})^{T} \cdot \int^{[2]} o \chi^{[2]} \circ (1 - \chi^{[2]})$$

$$= (w^{[2]})^{T} \cdot \int^{[2]} o \chi^{[2]} \circ (1 - \chi^{[2]})$$

$$= (w^{[2]})^{T} \cdot \int^{[2]} o \chi^{[2]} \circ (1 - \chi^{[2]})$$

$$= (w^{[2]})^{T} \cdot \int^{[2]} o \chi^{[2]} \circ (1 - \chi^{$$

0 0,22878

10,22171

= |-0,24708 |

-0,53821

= |-0,05653

-0,11933