Exercise 2.1

a. For a matrix $A \in \mathbb{R}^{m^*n}$, it can be decomposed into $A = UDV^T$

Now, for
$$A^{T}A = (UDV^{T})^{T} * (UDV^{T})$$

= $(U^{T}D^{T}V) * (UDV^{T})$
= $VD^{2}V^{T}$ [$D^{T} = D \& U^{T}U = I$]

Given, D contains the eigenvalues of $A^{T}A$, so from $A^{T}A = VD^{2}V^{T}$, we can come to the conclusion that the singular values of A are the square root of the eigenvalues of $A^{T}A$.

b. The answers are: (additional pdf attached for handwritten answer)

$$\lambda_1 = 2$$
 $\lambda_2 = 8$

$$\lambda_2 = 3$$

$$\lambda_3 = 9$$

Eigenvectors:

Corresponding to λ_1 : [0, -3/2, 1]

Corresponding to λ 2: [0, 0, 1]

Corresponding to λ 3: [7/69, 5/69, 1]

c. Relationship between **B** and **B**⁻¹: (handwritten proof in attached pdf)

The eigenvalues of B and B⁻¹ are reciprocals.

The eigenvectors of B and B⁻¹ are identical.

Between **B** and B^T :

Eigenvalues and eigenvectors are identical (since **B** is symmetric).