Security Function Inverses

Consider a *bijective* function $f: X \to Y$.

Define another function g:Y o X so that for $x \in X$ and $y \in Y$ if f(x) = y then g(y) = x.

Now, the function g is said to be the inverse function of f and is denoted as $g = f^{-1}$.

In this task, you'll be given an integer n and a bijective function $f:X \to X$ where $X=\{1,2,3,\ldots,n\}$.

Output the inverse of f.

Input Format

There are 2 lines in the input.

The first line contains a single positive integer n.

The second line contains n space separated integers, the values of $f(1), f(2), f(3), \ldots, f(n)$, respectively.

Constraints

 $1 \le n \le 20$

Output Format

Output n lines. The i^{th} line should contain the value of $f^{-1}(i)$.

Sample Input#00

3

Sample Output#00

1 2

3

123

Sample Input#01

3 231

Sample Output#01

3 1 2

Explanation

First sample :-

Basically, this is the function f(x)=x. Hence, it's the inverse of itself.

Second Sample :-

Here you can see that

$$f(1) = 2 \ f(2) = 3 \ f(3) = 1$$

hence
$$f^{-1}(1)$$
 is 3 $f^{-1}(2)$ is 1 $f^{-1}(3)$ is 2

One way to confirm is $f(f^{-1}(x))=x$.