Лекция 4

Множественные тесты

Курс "Практическая аналитика данных", 2021

- **1. Введение**. Множественные тесты: когда и зачем
- **2. Дизайн эксперимента**. Специфика множественных тестов
- 3. Оценка результатов эксперимента. Виды ошибок при множественном тестировании. Таблица истинности для множественных статистических тестов
- 4. Методы контроля ошибок при множественном тестировании. FWER и методы его контроля. FDR и методы его контроля.
- **5.** Практическая часть. Программная реализация поправок для множественного тестирования. Пример оценки результатов и формирования выводов.

План лекции

1. Множественные тесты: когда и зачем

Когда использовать множественные тесты

Основные цели использования:

- быстро протестировать влияние разных изменений (нескольких номиналов промокодов, нескольких вариантов экрана главной, несколько вариантов корзины);
- протестировать изменения, воздействие которых необходимо оценивать только совместно
 (несколько вариантов ступенек для лесенок тарифов, разные тарифы на размещение, разные
 варианты сбора за лид/целевого пользователя/проданный товар или покупку, совершенную у
 партнёра на вашем сайте, разные варианты выдачи и модели ранжирования);
- на подгруппы действуют различающиеся факторы, влияющие на результат (разные гео-зоны внутри города, разные минимальные расстояния от стартовой позиции курьера, на которого назначается заказ, до точки сбора заказа и/или до адреса покупателя, разные города);
- глобальный контроль и А/А-тесты .

2. Дизайн эксперимента

Разбиение на группы

А/В/С-тест – поиск оптимальной цены:

A: 0%, B: +15%, C: -5%

Динамика покупок

Динамика покупок: выручка

А/В/С-тест – поиск оптимальной цены:

A: 100%, B: +10.01%, C: +11.34%

Распределение средних значений количества покупок в подгруппах

Диаграмма размаха средних значений количества покупок в подгруппах

3. Оценка результатов эксперимента

Оценка результатов

• Рассмотрим k гипотез H_0 :

$$H0i$$
 vs. $H1i$, $i = 1, ..., k$

	Н о не отклонена	Н о отклонена	Total
Но <i>верна</i>	υ	V	<i>k</i> _o
Но неверна	T	S	$k_{\scriptscriptstyle 1}$
Total	k-R	R	k

- k_0 количество верных нулевых гипотез,
- \mathbb{R} количество отклоненных нулевых гипотез.

Оценка результатов

• Ошибка при множественном тестировании:

$$\mathbb{P}(\text{significant}) = 1 - (1 - \alpha)^k$$

- \bullet При k=3 и lpha=0.05, $\mathbb{P}=0.14$.
- ❖ Поправки на множественное тестирование контроль ошибок:
 - * FWER: $FWER = \mathbb{P}(V \ge 1)$
 - FDR: $FDR = \mathbb{E}(V/R|R > 0)$

4. Методы контроля ошибок при множественном тестировании.

Методы контроля ошибок FWER и FDR

- FWER Familywise Error Rate групповая вероятность ошибки первого рода:
 - Метод Бонферрони
 - Метод Холма

- *FDR False Discovery Rate –* ожидаемая доля ложных отклонений гипотез или частота ложных срабатываний:
 - Метод Бенджамини-Хохберга

4.1. FWER и методы его контроля

FWER

• Familywise Error Rate – групповая вероятность ошибки первого рода:

$$FWER = \mathbb{P}(V \ge 1)$$

- Два типа методов контроля:
 - *Одношаговая* процедура: одновременно изменить все *p*-значения;
 - Последовательная процедура: последовательная корректировка p-значения и адаптивная реакция на результат.

Метод Бонферрони

 \bullet Рассмотрим k гипотез H0:

$$H_{0i} vs H_{1i}, i = 1, ..., k$$

- $p_1, ..., p_k$ величины p-value проверок k гипотез H_{0i}
- lackДля заданных $p_1, ..., p_k$ основная гипотеза H_{0i} отклоняется, если

$$p_i/k \geq \alpha$$
.

Метод Бонферрони

- Высокая вероятность $ошибок\ 2\ poda$.
- Быстрое снижение мощности теста при при росте k.

Пример: 10 тестов, $\alpha = 0.05$,

тогда необходимо получить

$$p = 5 \cdot 10 - 3 < 0.01$$
, i

чтобы сказать, что разница значимая.

Метод Холма

- Развитие метода поправки Бонферрони;
- \diamond Метод предполагает последовательное изменение p-value:
 - 1) нисходящая процедура сортировка реальных p-value по возрастанию:

$$p_1 \leq \cdots \leq p_k$$

2) нисходящая процедура — корректировка α :

$$\alpha'_i = \alpha / i$$

3) проверка до первой отвергнутой гипотезы H_{0i} : $p_i \ge \alpha'_i$ отвергается H_{0i} и все H_{0j} , j > i.

4.2. FDR и методы его контроля

FDR

• False Discovery Rate — ожидаемая доля ложных отклонений гипотез или частота ложных срабатываний:

$$FDR = \mathbb{E}(V/R|R > 0)$$

• Более строгий критерий:

$$\frac{\mathbb{E}(V)}{m} \le FDR \le FWER \le \mathbb{E}(V)$$

Метод Бенджамини-Хохберга

- Метод предполагает последовательное изменение *p-value*:
 - 1) сортировка реальных p-value по возрастанию:

$$p_1 \leq \cdots \leq p_k$$

2) восходящая процедура – корректировка α :

$$\alpha'_i = i \cdot \alpha / k$$

3) проверка до первой отвергнутой гипотезы H_{0i} : отвергается H_{0i} и все H_{0j} , j > i.

5. Программная реализация

Программная реализация

```
from scipy.stats import ttest_ind
from statsmodels.sandbox.stats.multicomp import multipletests
from bootstrapped import bootstrap as bs
from bootstrapped import compare_functions as bs_compare
from bootstrapped import stats_functions as bs_stats
# FWER: Бонферрони
bs_ab_estims = bs.bootstrap_ab(np.array(group_A), np.array(group_B), bs_stats.mean,
                               bs_compare.difference, num_iterations=5000,
                               alpha=0.05/3, iteration_batch_size=100, scale_test_by=1, num_threads=4)
bs_bc_estims = bs.bootstrap_ab(np.array(group_B), np.array(group_C), bs_stats.mean,
                               bs_compare.difference, num_iterations=5000,
                               alpha=0.05/3, iteration_batch_size=100, scale_test_by=1, num_threads=4)
bs_ac_estims = bs.bootstrap_ab(np.array(group_A), np.array(group_C), bs_stats.mean,
                               bs_compare.difference, num_iterations=5000,
                               alpha=0.05/3, iteration_batch_size=100, scale_test_by=1, num_threads=4)
```

Программная реализация

```
from scipy.stats import ttest_ind
from statsmodels.sandbox.stats.multicomp import multipletests
from bootstrapped import bootstrap as bs
from bootstrapped import stats_functions as bs_stats
bs_data_a = bs.bootstrap(np.array(group_A), stat_func=bs_stats.mean,
                      num_iterations=10000, iteration_batch_size=300, return_distribution=True)
bs_data_b = bs.bootstrap(np.array(group_B), stat_func=bs_stats.mean,
                      num_iterations=10000, iteration_batch_size=300, return_distribution=True)
bs_data_a = bs.bootstrap(np.array(group_C), stat_func=bs_stats.mean,
                      num_iterations=10000, iteration_batch_size=300, return_distribution=True)
stat_ab, p_ab = ttest_ind(pd.DataFrame(bs_data_a), pd.DataFrame(bs_data_b))
stat_bc, p_bc = ttest_ind(pd.DataFrame(bs_data_b), pd.DataFrame(bs_data_c))
stat_ac, p_ac = ttest_ind(pd.DataFrame(bs_data_a), pd.DataFrame(bs_data_c))
print(sorted([p_ab, p_bc, p_ac]))
# FWER: Холм
print("FWER: " + str(multipletests(sorted([p_ab, p_bc, p_ac]), alpha=0.05, method='holm', is_sorted = True)))
# FDR: Бенджамини-Хохберг
print("FDR: " + str(multipletests(sorted([p_ab, p_bc, p_ac]), alpha=0.05, method='fdr_bh', is_sorted = True)))
```

Пример интерпретации результатов

- Повышая цену в сегменте, мы можем повысить суммарную выручку, однако снизив цену можно увеличить выручку ещё больше за счет дополнительных покупок;
- Множественный тест, нивелировав недельные колебания спроса на продукт, позволил увидеть полезный insight: снижение цены приводит к большему увеличению выручки, чем её повышение.

Спасибо за внимание ©

Следующая лекция: временные ряды

