

## Shahjalal University of Science and Technology, Sylhet

## Department of Physics

B.Sc. Honours 2<sup>nd</sup> Year 1<sup>st</sup> Semester Examination, 2013 (Session 2011-2012)

PHY 205B 2.0 Cr. Physics for Biologists Full Marks : 60 Time 2:00 Hours

[Answer any four questions, The figure on the right margin indicate full marks]

| l. | (a)        | Explain Coulomb's law in electrostatics.                                                                                                                                                                                                                                                                                         | 3   |
|----|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|    | (c)<br>{k) | Define electric field and electric potential.                                                                                                                                                                                                                                                                                    | 4   |
|    | (d)        | electric charges a distance & apart. ? Two charged balls are 20.0 cm apart. They are moved, and the force on each of them is found to have been tripled. How far apart are they now?                                                                                                                                             | 4   |
| 2. | (j/)       | Define lines of force. Sketch lines of force for (i) a positive point charge (ii) a negative point charge, (iii) an electric dipole, and (iv) two positive point charges.                                                                                                                                                        | 4   |
|    | (R)        | How can uniform electric field be produced? A particle of mass m and charge q is placed at rest in a uniform electric field and released. Describe its motion.                                                                                                                                                                   | 6   |
|    | (4)        | State Gauss's law for electrostatics. Show that the Coulomb's law can be deduced from the Gauss's law.                                                                                                                                                                                                                           | 5   |
| 3. | (a)        | Define electric potential. Find an expression for the electric potential due to a uniformly charged circular disk with charge density $\sigma$ , at a point P on the axis,                                                                                                                                                       | 10  |
|    | (ხ)        | where P is located at a distance r from the centre of the disk. A Define electric potential energy. What is the electric potential energy for the three charges $(q_1=+1.0\times10^{-7} \text{ C}, q_2=-4.0\times10^{-7} \text{ C}, q_3=+2.0\times10^{-7} \text{ C})$ located at the corners of a triangle with a=b=c=10 cm $-5$ | 5   |
| 4. | (z)        | Define magnetic flux. Find an expression for the magnetic force, when a positive test charge is fired with velocity $\vec{V}$ and discuss when it is maximum and minimum.                                                                                                                                                        | 4   |
|    | (R)        | Compare electric and magnetic force.                                                                                                                                                                                                                                                                                             | 1   |
|    | A          | Write short notes on (i) Lorentz relation, (ii) Ampere's law, (iii) Solenoid, (iv) Biot-Savart law (v) Faraday's law and (vi) Lenz's law.                                                                                                                                                                                        | 10  |
| 5. | (a)        | What is interference of light?                                                                                                                                                                                                                                                                                                   | 3   |
| J. | (b)        | What are coherent sources? Explain the importance of such sources in interference phenomenon.                                                                                                                                                                                                                                    | 3+2 |
|    | (c)        | Show that the fringe width $\beta$ , in Young,s experiment is given by $\beta=D\lambda/d$ , where d is the distance between two coherent sources, D is the distance between source and screen and $\lambda$ is the wavelength of the source of light.                                                                            | 7   |
| 6. | (a)        | Define diffraction of light. Discuss the basic difference between Fresnel and Fraunhofer diffraction.                                                                                                                                                                                                                            | 3   |
|    | (b)<br>(c) | Define transmission grating. Find an expression for the transmission grating. Find an expression for the dispersive power of grating. A diffraction grating which has 400 lines to a cm is used at normal incidence. Calculate the dispersive power of the grating in the third order spectrum in the wavelength                 | 6   |
|    |            | region 5000 Å.                                                                                                                                                                                                                                                                                                                   |     |

@@@@@@@@