Soluções prova 3

Questão 1

- a) Podemos somar $x_1 \le 9$ e $x_1 4x_2 \le 0$ para obter $2x_1 4x_2 \le 9$. Um corte de Chvátal-Gomory com u = 1/2 produz a desigualdade válida $x_1 2x_2 \le 4$ que x não satisfaz.
- b) Um processo similar com o corte de Chvátal-Gomory produz

$$9/12.4x_1 + 12/12.4x_2 + 8/12.4x_3 + 17/12.4x_4 + 13/12.4x_5 \geq 50/12.4 \qquad \text{Divisão por } 12/4$$

$$x_1 + x_2 + x_3 + 2x_4 + 2x_5 \geq 50/12.4 \quad \text{Aplicando } \lceil \cdot \rceil \text{ no lado esq.}$$

$$x_1 + x_2 + x_3 + 2x_4 + 2x_5 \geq 5 \qquad \text{Pela integralidade}$$

Questão 2

A segunda família de restrições não altera a fato da matriz ser TU, porque os coeficientes dos x_a são os mesmos da primeira família multiplicado por -1. O grafo

possui triângulos $\Delta = \{\{b,c,d\},\{a,c,f\},\{a,b,e\},\{d,e,f\}\}$ e matriz

$$\begin{pmatrix} \mathbf{0} & \mathbf{1} & \mathbf{1} & 1 & 0 & 0 \\ \mathbf{1} & \mathbf{0} & \mathbf{1} & 0 & 0 & 1 \\ \mathbf{1} & \mathbf{1} & \mathbf{0} & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 \end{pmatrix}$$

cuja submatriz em negrito não é totalmente unimodular.

Questão 3

a) Temos os cortes

$$\begin{array}{rclrr} x_6 = & -1/2 & +1/2x_3 & +1/2x_4 \\ x_6 = & -1/2 & +1/22x_3 & +7/22x_4 \\ x_6 = & -1/2 & +3/22x_3 & +21/22x_4 \end{array}$$

b) Com variáveis originais temos

$$3x_1 + 2x_2 \le 17$$
$$x_2 \le 3$$
$$3x_2 \le 10$$

Questão 4

- a) O valor atual é o z^* máximo 165.25 porque nesse subproblema ainda podemos alcançar este valor.
- b) Não, porque o limite inferior é ainda $-\infty$.
- c) Sim. O algoritmo sempre seleciona uma variável fracionária x=b e ramifica para $x \leq \lfloor b \rfloor$ e $x \geq \lceil b \rceil$. Os subproblemas da tabela não resultam de uma expansão completa desse método, logo alguns subproblemas já foram descartados. Como não temos ainda solução inteira, só podem ter sidos cortes por inviabilidade.

Questão 5

- a) Sim. A determinante de uma matriz em blocos é o produto das determinantes dos blocos. Cada submatriz quadrada de $\begin{pmatrix} A & 0 \\ 0 & A \end{pmatrix}$ consiste em dois blocos que são submatrizes quadradas de A com determinante em $\{0,-1,1\}$, logo a determinante da submatriz també é em $\{0,-1,1\}$.
- b) Não. A matriz

$$\begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix}$$

é TU, mas

$$\begin{pmatrix} 0 & \mathbf{1} & 0 & -\mathbf{1} \\ -1 & \mathbf{1} & 1 & \mathbf{1} \end{pmatrix}$$

não é: a submatriz em negrito não é TU.

Questão 6

a) É simples verificar graficamente que S é este conjunto:

b) A envoltória convexa é dada pelas restrições azuis. Eles são

$$x_1 \ge 1$$

$$x_2 \ge 2$$

$$-x_1 + x_2 \le 1$$

$$-x_1 + x_2 \ge -1$$

$$x_1 + x_2 \le 5.$$