

En \mathbb{P}_2 , determine si los polinomios 3 –x, 2 + x^2 y 4 + 5x –2 x^2 son linealmente dependientes o independientes.

SOLUCIÓN Si se utiliza la base
$$B_1 = \{1, x, x^2\}$$
 se tiene $(3 - x)_{B_1} = \begin{pmatrix} 3 \\ -1 \\ 0 \end{pmatrix}, (2 + x^2)_{B_1} = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$ $y (4 + 5x - 2x^2)_{B_1} = \begin{pmatrix} 4 \\ 5 \\ -2 \end{pmatrix}$. Entonces det $A = \begin{vmatrix} 3 & 2 & 4 \\ -1 & 0 & 5 \\ 0 & 1 & -2 \end{vmatrix} = -23 \neq 0$, con lo que los polinomios

son independientes

Determinación de si cuatro matrices de 2 × 2 son linealmente dependientes o independientes

En \mathbb{M}_{22} determine si las matrices $\begin{pmatrix} 1 & 2 \\ 3 & 6 \end{pmatrix}$, $\begin{pmatrix} -1 & 3 \\ -1 & 1 \end{pmatrix}$, $\begin{pmatrix} 2 & -1 \\ 0 & 1 \end{pmatrix}$ y $\begin{pmatrix} 1 & 4 \\ 4 & 9 \end{pmatrix}$ son linealmente dependientes o independientes.

SOLUCIÓN • Utilizando la base estándar
$$B_1 = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$$
 se

obtiene det $A = \begin{bmatrix} 1 & -1 & 2 & 1 \\ 2 & 3 & -1 & 4 \\ 3 & -1 & 0 & 4 \\ 6 & 1 & 1 & 9 \end{bmatrix} = 0$, de manera que las matrices son dependientes. Observe que det

A = 0 porque el cuarto renglón es la suma de los tres primeros. Además, observe que

$$-29\begin{pmatrix} 1 & 2 \\ 3 & 6 \end{pmatrix} - 7\begin{pmatrix} -1 & 3 \\ -1 & 1 \end{pmatrix} + \begin{pmatrix} 2 & -1 \\ 0 & 1 \end{pmatrix} + 20\begin{pmatrix} 1 & 4 \\ 4 & 9 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

lo que ilustra que las cuatro matrices son linealmente dependientes.

RESUMEN 5.6

• Sean $B_1 = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$ y $B_2 = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ dos bases para el espacio vectorial V. Si $\mathbf{x} \in V$ y $\mathbf{x} = b_1 \mathbf{u}_1 + b_2 \mathbf{u}_2 + \dots + b_n \mathbf{u}_n = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_n \mathbf{v}_n$

entonces se escribe
$$(\mathbf{x})_{B_1} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$$
 y $(\mathbf{x})_{B_2} = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix}$.

Suponga que $(\mathbf{u}_j)_{B_2} = \begin{pmatrix} a_{1f} \\ a_{2f} \\ \vdots \\ a_{nf} \end{pmatrix}$. Entonces la **matriz de transición** de B_1 a B_2 es la matriz de $n \times n$