Computation Theory (COMP 170), Fall 2020 Recitation 05

The pumping lemma for context-free languages states that if A is context-free then

- $\exists p \geq 1$ such that
- $\forall w \in A \text{ with } w \in A \text{ and } |w| \ge p$
- $\exists x, y, u, v, z$ where $w = xyuvz, yv \neq \varepsilon$, and $|yuv| \leq p$, such that
- $\forall i \geq 0, xy^i uv^i z \in A$.

[1] Context-Free

Consider the language $L = \{0^m 1^n \mid m < n\}.$

a. Show that this language is context-free, and give an informal explanation of your solution.

b. Since this language is context-free, whatever the pumping length p is, we know that the following string must satisfy it: $0^p 1^{p+1}$.

Given that fact, what do we know about the segment yuv of the string, containing the two pumpable portions? Where can it occur? Where must it not occur?

[2] Not Context-Free

Let $\Sigma = \{a, b, \$\}$. Consider the following two languages:

$$A = \{t \$ t^R | t \in \{a, b\}^*\}$$
$$B = \{t \$ t^R \$ t | t \in \{a, b\}^*\}$$

where $t^R = rev(t)$ is the reverse of string t.

 ${f a.}$ The first of these, A, is context-free. Give a grammar for that language and explain your solution (informally).

 \mathbf{b} . The second language, B, is not context-free. Show this, using the pumping lemma.

[3] Pushdown Automata

Let $\Sigma = \{a,b\}$, and for any string $w \in \Sigma^*$, let rev(w) denote the reverse of w, and let inv(w) denote the result of turning all a's into b's, and all b's into a's. E.g. if w = babb then rev(w) = bbab and inv(w) = abaa. Define

$$A = \{w \mid rev(w) = inv(w)\}.$$

So the string $baabba \in A$, but baab is not. Specify a PDA that recognizes A, using a transition diagram to describe δ .