- 1. Banque CCINP 2023: 31
- 2. Banque CCINP 2023: 32
- 3. Banque CCINP 2023: 42 (oui)
- 4. [Centrale] Équation du premier ordre
 - (a) Résoudre sur]0,1[et sur $]1,+\infty[$ l'équation $(*):(x\ln x)y'(x)+y(x)=x.$
 - (b) Montrer qu'il existe une unique solution de (*) de classe \mathcal{C}^{∞} sur \mathbb{R}_{+}^{*} .

5. [TPE] - Équation différentielle linéaire de Newton à coefficient intégrable

Soit l'équation différentielle (E): y'' + f(x)y = 0, où f est continue et intégrable sur \mathbb{R} .

- (a) Montrer que si y_1 et y_2 sont solutions de (E) alors $y'_1y_2 y'_2y_1$ est constante.
- (b) Montrer que si y est une solution de (E) bornée sur \mathbb{R} alors y'(x) admet une limite finie quand x tend vers $+\infty$, puis montrer que cette limite est nulle.
- (c) Montrer que (E) admet une solution non bornée.

6. [CCINP] - Équation du second ordre

On cherche à résoudre (E): $\forall t \in \mathbb{R}_+^*$, ty''(t) + ty'(t) - y(t) = 0.

- (a) Trouver les réels a tels que la fonction $h_a: t \mapsto t^a$ soit solution de (E).
- (b) Justifier que la fonction $g: t \mapsto e^{-t}/t^2$ admet une primitive sur \mathbb{R}_+^* .
- (c) Dresser le tableau de variations de $G: x \mapsto \int_1^x g(t) dtt$. Donner la limite de G en 0^+ et justifier que G admet une limite **finie** en $+\infty$.
- (d) Soient $f \in \mathcal{C}^2(\mathbb{R}_+^*, \mathbb{R})$, $s: t \mapsto tf(t)$ et $(E'): z'(t) + (1 + \frac{2}{t})z(t) = 0$. Montrer que s est solution de (E) si et seulement sif' est solution de (E').
- (e) Résoudre (E).

7. [Mines] (avec un tout petit peu de géométrie)

Soit le système différentiel X'(t) = AX(t) avec $A \in \mathcal{M}_3(\mathbb{R})$ antisymétrique.

- (a) Montrer que ||X(t)|| ne dépend pas de t.
- (b) Montrer, pour $Y \in \ker(A)$, que (X(t)|Y) ne dépend pas de t.
- (c) Montrer que X(t) est sur un cercle de \mathbb{R}^3 .

8. [Mines]

On cherche une fonction $y: \mathbb{R} \to \mathbb{R}$ vérifiant (E): -2y'' + xy' + y = 0 avec $y(0) = \sqrt{\pi}$ et y'(0) = 0.

En cas de convergence, on pose $f(x) = \int_{-\infty}^{+\infty} e^{tx-t^2} dt$.

On rappelle la valeur de l'intégrale de Gauss : $I=\int\limits_{-\infty}^{+\infty}e^{-t^2}dt=\sqrt{\pi}.$

- (a) Y a-t-il existence et/ou unicité d'une solution au problème posé?
- (b) Donner une expression explicite de y vérifiant les conditions ci-dessus (On pourra utiliser des séries entières).
- (c) Montrer que f est de classe C^2 sur \mathbb{R} . Trouver une équation différentielle vérifiée par f. Conclure.