BOARD PAPER QUESTIONS

1. Given $5 \cos A - 12 \sin A = 0$, evaluate without using tables:

$$\frac{\sin A + \cos A}{2\cos A - \sin A}.$$
 [1995]

2. If $2 \sin A - 1 = 0$, show that:

$$\sin 3A = 3 \sin A - 4 \sin^3 A$$
. [2001]

3. Prove that:
$$1 - \frac{\cos^2 \theta}{1 + \sin \theta} = \sin \theta$$
. [2001]

4. If $\sin x = \frac{3}{5}$ and $\cos y = \frac{12}{13}$; evaluate

(a)
$$secant^2 x$$
 (b) $tan x + tan y$. [2003]

- 5. Without using tables, find the value of $14 \sin 30^\circ + 6 \cos 60^\circ 5 \tan 45^\circ$. [2004]
- **6.** Prove that $(1 + \tan A)^2 + (1 \tan A)^2 = 2 \sec^2 A$. **[2005]**
- 7. Prove that $\frac{\sin \theta \tan \theta}{1 \cos \theta} = 1 + \sec \theta$. [2006]
- **8.** Prove that identity: $\frac{\sec A 1}{\sec A + 1} = \frac{1 \cos A}{1 + \cos A}$. [2007]

9. Prove the identity:

$$\frac{\sin A}{1 + \cos A} = \csc A - \cot A.$$
 [2008]

10. Prove that following identity:

$$\frac{\sin A}{1 + \cos A} + \frac{1 + \cos A}{\sin A} = 2 \csc A.$$
 [2009]

11. Prove that
$$\frac{\tan^2 \theta}{(\sec \theta - 1)^2} = \frac{1 + \cos \theta}{1 - \cos \theta}$$
. [2012]

12. Show that
$$\sqrt{\frac{1-\cos A}{1+\cos A}} = \frac{\sin A}{1+\cos A}$$
. [2000, 2013]

13. Prove the identity

$$(\sin \theta + \cos \theta) (\tan \theta + \cot \theta) = \sec \theta + \csc \theta.$$

[2014]

- 14. Prove that $\frac{\cos A}{1+\sin A} + \tan A = \sec A$. [2016]
- **15.** Prove that $(1 + \cot \theta \csc \theta) (1 + \tan \theta + \sec \theta) = 2$ **[2018]**
- **16.** Prove that $(\csc \theta \sin \theta) (\sec \theta \cos \theta) (\tan \theta + \cot \theta) = 1$ [2019]