Shift Microoperations

- There are three types of shifts
 - Logical shift
 - Circular shift
 - Arithmetic shift
- What differentiates them is the information that goes into the serial input
 - A right shift operation

• A left shift operation

Logical Shift

- In a logical shift the serial input to the shift is a 0.
- A right logical shift operation:

A left logical shift operation:

- In a Register Transfer Language, the following notation is used
 - shl for a logical shift left
 - shr for a logical shift right
 - Examples:
 - R2 ← *shr* R2
 - R3 ← shl R3

Circular Shift

- In a circular shift the serial input is the bit that is shifted out of the other end of the register.
- A right circular shift operation:

A left circular shift operation:

- In a RTL, the following notation is used
 - cil for a circular shift left
 - cir for a circular shift right
 - Examples:
 - R2 ← cir R2
 - R3 ← *cil* R3

Arithmetic Shift

- An arithmetic shift is meant for signed binary numbers (integer)
- An arithmetic left shift multiplies a signed number by two
- An arithmetic right shift divides a signed number by two
- Sign bit: 0 for positive and 1 for negative
- The main distinction of an arithmetic shift is that it must keep the sign of the number the same as it performs the multiplication or division
- A right arithmetic shift operation:

A left arithmetic shift operation:

Arithmetic Shift

An left arithmetic shift operation must be checked for the <u>overflow</u>

- In a RTL, the following notation is used
 - ashl for an arithmetic shift left
 - ashr for an arithmetic shift right
 - Examples:
 - » $R2 \leftarrow ashr R2$
 - » R3 ← ashl R3

 An arithmetic left shift multiplies a signed number by

- A) 4
- B) 8
- **C)** 2
- D) 16

Hardware Implementation of Shift Microoperation

Function Table

Select		output		
S	H0	H1	H2	НЗ
0	IR	A0	A1	A2
1	A1	A2	A3	IL

Hardware Implementation

Function table

$S_1 S_0$	Output	μ-operation
0 0	$F = A \wedge B$	AND
0 1	$F = A \vee B$	OR
1 0	F = A ⊕ B	XOR
1 1	F = A'	Complement

 In context of arithmetic shift left operation, which of the following Gate is used to check the overflow?

- A) OR
- B) XOR
- C) XNOR
- D) NOR