Laws of Equivalence

Laws of Equivalence					
Given any statement variables p , q , and r , a tautology t and a contradiction c ,					
the following logical equivalences hold:					
1. Commutative laws:	$p \wedge q \equiv q \wedge p$	$p \vee q \equiv q \vee p$			
2. Associative laws:	$(p \land q) \land r \equiv p \land (q \land r)$	$(p \vee q) \vee r \equiv p \vee (q \vee r)$			
3. Distributive laws:	$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$			
4. Identity laws:	$p \wedge t \equiv p$	$p \vee c \equiv p$			
5. Negation laws:	$p \lor \sim p \equiv t$	$p \wedge \sim p \equiv c$			
6. Double negative law:	$\sim (\sim p) \equiv p$				
7. Idempotent laws:	$p \wedge p \equiv p$	$p \lor p \equiv p$			
8. DeMorgan's laws:	$\sim (p \land q) \equiv \sim p \lor \sim q$	$\sim (p \lor q) \equiv \sim p \land \sim q$			
9. Universal bounds laws:	$p \lor t \equiv t$	$p \wedge c \equiv c$			
10. Absorption laws:	$p \lor (p \land q) \equiv p$	$p \land (p \lor q) \equiv p$			
11. Negations of t and c :	$\sim t \equiv c$	$\sim c \equiv t$			
12. Definition of \rightarrow :	$p \to q \equiv \sim p \lor q$				
13. Definition of \leftrightarrow :	$p \leftrightarrow q \equiv (p \to q) \land (q \to p)$				

Rules of Inference

Modus Ponens	Modus Tollens	Conjunct	tion Transitivity		
$p \rightarrow q$	$p \rightarrow q$	p	p q		
<u>p</u>	$\sim q$	\underline{q}	$q \rightarrow r$		
∴ q	∴~ <i>p</i>	$\therefore p \land q$	$\therefore p \to r$		
Elimination			<u>Generalization</u>		
$p \lor q$	$p \lor q$	$\parallel \underline{p}$	q		
$\sim q$	-p	$ \therefore p \lor q$	$\therefore p \lor q$		
∴ p	$\therefore q$				
Specialization	Con	tradiction rule	Proof by division into cases		
			$p \lor q$		
$p \wedge q$ $p \wedge q$		$\sim p ightarrow c$	$p \to r$		
$\therefore p$ $\therefore q$		$\therefore p$	$\underline{q ightarrow r}$		
			<u> </u>		