1 Filtres numériques : introduction

1.1 Systèmes LTI

Soient les système suivants, indiquez si ces systèmes sont causaux, linéaires, invariants dans le temps et BIBO stables:

- $\mathcal{H}\{x[n]\} = nx[n]$
- $\mathcal{H}\{x[n]\} = x[-n]$
- $\mathcal{H}\{x[n]\} = x[n-3] + x[n-7]$
- $\bullet \ \mathcal{H}\{x[n]\} = x[4n+2]$
- $\mathcal{H}\{x[n]\} = x[n].e^{j2\pi n}$
- $\mathcal{H}\{x[n]\} = e^{-\jmath \omega n} x[n]$
- $\mathcal{H}{x[n]} = \sum_{k=n-n_o}^{n+n_o} x[k]$
- y[n] = ny[n-1] + x[n], avec x[n] = 0 pour $n > n_o$

1.2 Systèmes en série

Soient 3 systèmes (pas nécessairement LTI) en série :

- Système 1 : $\mathcal{H}\{x[n]\} = x[n/2]$ si n pair 0 sinon
- Système 2 : $\mathcal{H}\{x[n]\} = x[n] + 0.5x[n-1] + 0.25x[n-2]$
- Système $3: \mathcal{H}\{x[n]\} = x[2n]$

Donnez la fonction de transfert du système global, et indiquez si ce système est LTI.

1.3 Convolution

Soit le signal discret x[n] défini par (pour une valeur quelconque de M impaire):

$$x[n] = \left\{ \begin{array}{ll} M-n & 0 \leq n \leq M \\ M+n & -M \leq n \leq 0 \\ 0 & \text{sinon} \end{array} \right.$$

- Montrez que x[n] peut être exprimé comme étant la convolution entre deux signaux discrets $x_1[n]$ et $x_2[n]$.
- En fonction de ce résultat, calculez la DTFT de x[n].

1.4 Réponse impulsionnelle

Soit

$$h[n] = \begin{cases} 1 & 0 \le n \le 4\\ -1 & 5 \le n \le 6\\ 0 & \text{sinon} \end{cases}$$

- Déterminez et tracez la réponse du système dont la réponse impulsionnelle est h[n] à l'entrée x[n]=u[n-4]
- Soit

-
$$h_1[n] = 3(-1)^n (\frac{1}{4})^n u[n-2]$$

- $h_2[n] = h_3(n) = u[n+2]$
- $h_4[n] = \delta[n-1]$

Soit le système suivant :

Déterminez sa réponse impulsionnelle.

• Pour ce système, déterminez si le système est causal et BIBO stable.

1.5 filtrage à phase nulle

Soit l'opérateur de retournement temporel :

$$\mathcal{R}\{x[n]\} = x[-n]$$

Soit $\mathcal{H}\{\}$ un système LTI. Que pouvez vous dire du système suivant :

$$y[n] = \mathcal{R}\{\mathcal{H}\{\mathcal{R}\{\mathcal{H}\{x[n]\}\}\}\}$$

1.6 Théorème de convolution

Soit:

$$w_R[n] = \begin{cases} 1 & 0 \le n < M, \\ 0 & \text{sinon} \end{cases}$$

et

$$w_T[n] = \begin{cases} n+1 & 0 \le n < M, \\ 2*M - n - 1 & M \le n < 2*M - 1, \\ 0 & \text{sinon} \end{cases}$$

Exprimez la tranformée de Fourier W_T de $w_T[n]$ en fonction de la transformée de Fourier de $w_r[n]$.

1.7 Filtre IIR

Soit un filtre passe-bas idéal $H(e^{j\omega})$. Quelle devrait être le signal d'entrée x[n] du filtre pour que la sortie soit un signal à durée finie, et non nul ?

1.8 Filtres, réponse fréquentielle et linéarité de la phase

Pour les filtres suivants, donner la réponse fréquentielle (en amplitude et en phase), indiquez le type de filtre (passe-bas, passe-bande, ...), indiquez si le filtre est à phase linéaire et donnez son délai de groupe. On rappelle que le délai de groupe est donné par $\tau = -\frac{d\phi(\omega)}{2}$.

Pour tous les filtres suivants, h[n] = 0 si h[n] est non spécifié.

1.
$$h[-1] = 1, h[0] = 0, h[1] = 1$$

2.
$$h[-1] = 1, h[0] = 0, h[1] = -1$$

3.
$$h[0:4] = [1,2,3,2,1]$$

4.
$$h[0:3] = [1, 2, 2, 1]$$

5.
$$h[0:3] = [1, 2, -2, -1]$$

6.
$$h[0:4] = [1, -2, 3, -2, 1]$$

7.
$$h[0:3] = [1, -2, 2, -1]$$

8.
$$h[0:3] = [1, -2, 2, 1]$$

9.
$$h[0:4] = [1, -2, 3, 2, 1]$$

10.
$$h[n] = (-1)^n \lambda^n (1 - \lambda), n \ge 0$$

2 Transformées en z

Table de transformées en z

x[n]	X(z)	Région de convergence (ROC)
$\delta[n]$	1	$z\in\mathbb{C}$
u[n]	$\frac{z}{z-1}$	z > 1
$(-a)^n u(n)$	$\frac{z}{z+a}$	z > a
nu[n]	$rac{z}{(z-1)^2}$	z > 1
$n^2u[n]$	$\frac{z(z+1)}{(z-1)^3}$	z > 1
$e^{an}u[n]$	$\frac{z}{z - e^a}$	$ z > e^a $
$C_{k-1}^{n-1}e^{a(n-k)}u[n-k]$	$\frac{z}{(z-e^a)^k}$	$ z > e^a $
$\cos(\omega n)u[n]$	$\frac{z(z-\cos(\omega))}{z^2-2z\cos(\omega)+1}$	z > 1
$\sin(\omega n)u[n]$	$\frac{z\sin(\omega)}{z^2 - 2z\cos(\omega) + 1}$	z > 1
$\frac{1}{n}u[n-1]$	$\ln\left(\frac{z}{z-1}\right)$	z > 1
$\sin(\omega n + \theta)u[n]$	$\frac{z^2\sin(\theta) + z\sin(\omega - \theta)}{z^2 - 2z\cos(\omega) + 1}$	z > 1
$e^{an}\cos(\omega n)u[n]$	$\frac{z(z - e^a \cos(\omega))}{z^2 - 2ze^a \cos(\omega) + e^{2a}}$	$ z > e^a $ height

2.1

Soit
$$y[n] = nx[n]$$
, montrer que $Y(z) = -z \frac{dX(z)}{dz}$

2.2

Donnez les transformées en z des séquences suivantes et donnez leur ROC (région de convergence).

- $x[n] = \sin(\omega n + \theta)u[n]$
- $x[n] = \cos(\omega n)u[n]$
- $\bullet \ x[n] = \left\{ \begin{array}{ll} n, & 0 \leq n \leq 4 \\ 0, & \text{sinon} \end{array} \right.$
- $\bullet \ x[n] = a^n u[-n]$
- $x[n] = e^{-\alpha n}u[n]$

- $x[n] = e^{-\alpha n} \sin(\omega n) u[n]$
- $\bullet \ x[n] = n^2 u[n]$
- $y[n] = e^{an}x[n]$

2.3

Soit

$$H(z) = \frac{(z-1)^2}{z^2 + bz + (a)}$$

Donnez les conditions que doivent remplir les constantes réelle a et b pour que le filtre soit stable.

2.4

Soit un système, supposé stable, dont la fonction de transfert vaut :

$$H(z) = \frac{z}{4z^2 - 2\sqrt{2}z + 1}$$

déterminez sa réponse impulsionnelle.

2.5

Détermin ez les transformées inverses des systèmes suivants, supposés stables :

- $\bullet \ \frac{z}{z 0.8}$
- $\bullet \ \frac{z^2}{z^2 z + 0.5}$
- $\bullet \ \frac{z^2 + 2z + 1}{z^2 z + 0.5}$
- $\bullet \ \frac{z^2}{(z-a)(z-1)}$

2.6

Soit le système causal suivant, déterminez sa réponse à un échelon (u[n]).

$$H(z) = \frac{(z-1)^2}{z^2 - 0.32z + 0.8}$$

2.7

Soit un polynôme de type $a[0]x^N+a[1]x^{N-1}+\cdots+a[N-1]x+a[N].$ Alors, dans python, on écrit :

```
coeff=a
# Le premier coefficient de coeff est le coefficient qui correspond
# à la plus grande puissance de x
racines=np.roots(coeff) # donne les racines du polynome
# exemple
>>>coeff=[1 ,-1, 0.5]
>>>np.roots(coeff)
array([ 0.5+0.5j,  0.5-0.5j])
```

Soient les polynômes suivants, peuvent-ils être les dénominateurs d'un filtre causal stable ?

- $z^2 z + 0.5$
- $z^5 + 2z^4 + z^2 + 0.5$
- $z^5 + 0.3z^4 0.6z^3 0.7z^2 + 0.16$

2.8

Soit le filtre FIR de fonction de transfert :

$$H(z) = (1 - z^{-1})^3 (1 + z^{-1})^3$$

- 1. Tracez son diagramme de pôles et zéros
- 2. Tracez $|H(e^{j\omega})|$
- 3. Classez ce filtre (passe-bas / Passe haut, / passe ou stop bande).

2.9

Soient les 6 filtres (FIR) suivants, donnez les correspondances entre les figures (pole/zéro - réponse impulsionnelle - réponse fréquentielle) ,

2.10

Soient les 6 filtres suivants, donnez les correspondances entre les figures (pole/zéro réponse impulsionnelle - réponse fréquentielle) ,

3 Processus aléatoires

3.1 Fréquence aléatoire

On définit le processus stochastique $X[n] = a\cos(2\pi F n)$ où F est une variable aléatoire, uniformément répartie sur [0, W], et a une constante réelle.

- 1. Tracer plusieurs réalisations x[n].
- 2. Calculer la moyenne statistique $m_{X[n]}$.
- 3. Calculer la fonction d'autocorrélation statistique $R_X[l,k]$.
- 4. Examiner la stationnarité de X[n].

3.2 Amplitude aléatoire

On définit le processus stochastique $X[n] = A\cos(2\pi f n)$ où A est une variable aléatoire, uniformément répartie sur [0,1], et f une constante réelle.

- 1-4. Mêmes questions que pour l'exercice 3.1.
 - 5. Déterminer la densité de probabilité du premier ordre $f_{X[t]}(x;n)$.

3.3 Phase aléatoire

On définit le processus stochastique $X[n] = a\cos(2\pi f n + \Theta)$ où Θ est une variable aléatoire, uniformément répartie sur $[0,2\pi[$, et a,f sont des constantes réelles. Mêmes questions que pour l'exercice 3.2.

3.4 Somme de deux sinusoïdes

Soit un processus $X[n]=A\cos\omega n+B\sin\omega n$, où A et B sont deux variables aléatoires indépendantes, centrées, de variances égales à σ_A^2 et σ_B^2 , et où ω est une constante. Est-ce que X[n] est stationnaire ?

3.5 Filtrage de bruit blanc

Soit un bruit blanc X[n] de moyenne nulle et de puissance $\sigma_X^2=1$. Ce bruit passe dans un filtre FIR tel que Y[n]=X[n]-2.X[n-1]+X[n-2].

- Calculez la fonction de corrélation de $R_Y[k]$ de Y.
- Calculez la densité spectrale de puissance de la sortie du filtre, faites le graphe de la dsp.

3.6 Filtrage de bruit blanc

Soit un bruit blanc X[n] de moyenne $m_X=2$ et de variance $\sigma_X^2=1$. Ce bruit passe dans un filtre FIR tel que Y[n]=X[n]+2.X[n-1]+X[n-2].

- Calculez la fonction de corrélation de $R_Y[k]$ de Y.
- Calculez la densité spectrale de puissance de la sortie du filtre, faites le graphe de la dsp.

3.7 Rapport Signal/bruit

Soit une sinusoïde $X(t)=a.sin(2\pi ft)$ de fréquence f=5000Hz et d'amplitude a=10mV. Ce signal est noyé dans un bruit (N(t))de densité spectrale de puissance $S_N(f)=-30dBm/Hz$ (Y(t)=X(t)+N(t))

- 1. On filtre le signal Y(t) par un filtre passe-bas idéal à 10 KHz (on l'appelera $Y_f(t)$: quel est le rapport signal sur bruit résultant
- 2. On échantillonne le signal à 30 kéchs/sec :
 - Représentez la densité spectrale de puissance de $Y_f(t)$ et déterminez le rapport signal/bruit.
 - Idem pour une fréquence d'échantillonnage de 18 kéchs/sec.
- 3. On filtre le signal échantillonné par un passe bande centré en 5 KHz et de largeur de bande 100 Hz : quel est le rapport signal bruit en sortie.

3.8 Signal de télécomms

On considère le processus stochastique X(t) dont une réalisation est présentée cidessous. Il s'agit d'une séquence aléatoire de symboles binaires :

- Le 1 et le 0 sont représentés par une impulsion d'amplitude +A et A, respectivement, de durée T_o (une constante).
- Les impulsions ne sont pas synchronisées : le délai T_d du début de la première impulsion après l'instant t=0 est une variable aléatoire, uniformément répartie entre 0 et T_o .
- Les symboles 0 et 1 sont équiprobables et indépendants. Calculer :
 - 1. La fonction de probabilité $f_{X(t)}(x)$.
 - 2. La moyenne statistique E[X(t)].
 - 3. La fonction d'autocorrélation de X(t).
 - 4. La densité spectrale de puissance $S_X(f)$ de X(t).
 - 5. La densité spectrale d'énergie d'une impulsion d'amplitude A et de durée égale à T_o .

3.9 Simulation de signaux de télécoms et DSP

TBC

4 Echantillonnage et interpolation

4.1

Soit le signal continu y(t) obtenu par convolusion des signaux $x_1(t)$ et $x_2(t)$, à bande limitée tels que $|X_1(\Omega)|=0$ pour $|\Omega|>1000\pi$ et $|X_2(\Omega)|=0$ pour $|\Omega|>2000\pi$.

On échantillonne y(t) tel que $y_e(t)=\sum_{n=-\infty}^{\infty}y(nT)\delta(t-nT)$. Indiquez les valeurs que peut prendre T tel que y(t) peut être reconstruit à partir de $y_e(t)$.

4.2

Soit un signal x(t). On échantillonne ce signal avec une période d'échantillonnage $T_s = 10^{-4}s$. Pour chacun des cas suivants, indiquez si le théorème d'échantillonnage garantit que x(t) peut être parfaitement reconstruit à partir du signal échantillonné.

- 1. $X(\Omega) = 0 \text{ pour } |\Omega| > 5000\pi$
- 2. $X(\Omega) = 0 \text{ pour } |\Omega| > 15000\pi$
- 3. $\Re\{X(\Omega)\} = 0$ pour $|\Omega| > 5000\pi$
- 4. x(t) réel et $X(\Omega) = 0$ pour $\Omega > 5000\pi$
- 5. x(t) réel et $X(\Omega) = 0$ pour $\Omega < -15000\pi$
- 6. $X(\Omega) * X(\Omega) = 0$ pour $|\Omega| > 10000\pi$
- 7. $|X(\Omega)| = 0 \text{ pour } |\Omega| > 5000\pi$

4.3 Echantillonnage et filtrage

Soit un signal réel $x_c(t)$ à temps continu, avec le support spectral $\Omega = [-2\pi 5.10^3, 2\pi 5.10^3]$. Ce signal est échantillonné à une fréquence d'échantillonnage $\frac{1}{T_1}$. Ensuite, il passe dans un filtre de réponse fréquentielle :

$$H(e^{j\omega}) = \left\{ \begin{array}{ll} 1 & |\omega| \leq \frac{\pi}{2} \\ 0 & \frac{\pi}{2} < |\omega| < \pi \end{array} \right.$$

Ensuite, le signal passe dans un convertisseur temps discret/temps continu idéal (interpolateur idéal), en supposant que l'intervalle entre deux échantillons vaut T_2 pour donner le signal $y_c(t)$.

Tracez les graphes de $Y_C(j\Omega)$ pour :

- \bullet $\frac{1}{T_1} = \frac{1}{T_2} = 10^4$
- \bullet $\frac{1}{T_1} = \frac{1}{T_2} = 2.10^4$
- $\frac{1}{T_1} = 2.10^4$; $\frac{1}{T_2} = 10^4$
- $\frac{1}{T_1} = 10^4$; $\frac{1}{T_2} = 2.10^4$

4.4 Changement de fréquence d'échantillonnage

Soit un signal de parole $x_c(t)$ échantillonné à 10 kéchs/seconde, l'échantillonneur étant précédé d'un filtre anti-repli idéal. On notera le signal échantillonné $x_1[n]$. Ce même signal de parole $x_c(t)$ est échantillonné à 6 kéchs/seconde, toujours avec un filtre anti-repli, pour donner $x_2[n]$.

Concevez une chaîne purement numérique (rééchantillonnage et filtrage) qui fournit $x_2[n]$ à partir de $x_1[n]$

4.5 Quand la condition de Shannon est violée ... tout n'est pas perdu

Soit x(t), de bande limitée Ω_N . On échantillonne ce signal à la fréquence $F_s=1/T_s$ et on interpole le signal échantillonné par un filtre idéal $T_s\Pi_{\Omega_s/2}(\Omega)$. Ce signal reconstruit est appelé $x_r(t)$.

Si $\Omega_s > 2\Omega_N$, on sait que $x_r(t) \neq x(t)$.

On vous demande de démontrer que, quel que soit x(t), $x_r(kT_s) = x(kT_s)$.

Suggestion : considérer les valeurs de v tel que $\frac{\sin(v)}{v}=0$ ainsi que la limite $\lim_{t\to kT}x_r(t)$.