Hierarchical models

Dr. Jarad Niemi

STAT 544 - Iowa State University

February 20, 2019

Outline

- Motivating example
 - Independent vs pooled estimates
- Hierarchical models
 - General structure
 - Posterior distribution
- Binomial hierarchial model
 - Posterior distribution
 - Prior distributions
- Stan analysis of binomial hierarchical model
 - informative prior
 - default prior
 - ullet integrating out heta
 - across seasons

Andre Dawkin's three-point percentage

Suppose Y_i are the number 3-pointers Andre Dawkin's makes in season i, and assume

$$Y_i \stackrel{ind}{\sim} Bin(n_i, \theta_i)$$

where

- n_i are the number of 3-pointers attempted and
- θ_i is the probability of making a 3-pointer in season i.

Do these models make sense?

- The 3-point percentage every season is the same, i.e. $\theta_i = \theta$.
- The 3-point percentage every season is independent of other seasons.
- The 3-point percentage every season should be similar to other seasons.

Andre Dawkin's three-point percentage

Suppose Y_i are the number of 3-pointers Andre Dawkin's makes in game i, and assume

$$Y_i \stackrel{ind}{\sim} Bin(n_i, \theta_i)$$

where

- n_i are the number of 3-pointers attempted in game i and
- θ_i is the probability of making a 3-pointer in game i.

Do these models make sense?

- The 3-point percentage every game is the same, i.e. $\theta_i = \theta$.
- The 3-point percentage every game is independent of other games.
- The 3-point percentage every game should be similar to other games.

Andre Dawkin's 3-point percentage

Andre Dawkin's 3-point percentage

	date	opponent	made	attempts
	11/8/13	davidson	0	0
2			0	0
	11/12/13	kansas	-	
3	11/15/13	florida atlantic	5	8
4	11/18/13	unc asheville	3	6
5	11/19/13	east carolina	0	1
6	11/24/13	vermont	3	9
7	11/27/13	alabama	0	2
8	11/29/13	arizona	1	1
9	12/3/13	michigan	2	2
10	12/16/13	gardner-webb	4	8
11	12/19/13	ucla	1	5
12	12/28/13	eastern michigan	6	10
13	12/31/13	elon	5	7
14	1/4/14	notre dame	1	4
15	1/7/14	georgia tech	1	5
16	1/11/14	clemson	0	4
17	1/13/14	virginia	1	1
18	1/18/14	nc state	3	7
19	1/22/14	miami	2	6
20	1/25/14	florida state	3	6
21	1/27/14	pitt	6	7
22	2/1/14	syracuse	4	9
23	2/4/14	wake forest	4	7
24	2/8/14	boston college	0	1

Hierarchical models

Consider the following model

$$y_i \overset{ind}{\sim} p(y|\theta_i)$$

$$\theta_i \overset{ind}{\sim} p(\theta|\phi)$$

$$\phi \sim p(\phi)$$

where

- y_i is observed,
- $\theta = (\theta_1, \dots, \theta_n)$ and ϕ are parameters, and
- ullet only ϕ has a prior that is set.

This is a hierarchical or multilevel model.

Posterior distribution for hierarchical models

The joint posterior distribution of interest in hierarchical models is

$$p(\theta,\phi|y) \propto p(y|\theta,\phi)p(\theta,\phi) = p(y|\theta)p(\theta|\phi)p(\phi) = \left[\prod_{i=1}^n p(y_i|\theta_i)p(\theta_i|\phi)\right]p(\phi).$$

The joint posterior distribution can be decomposed via

$$p(\theta, \phi|y) = p(\theta|\phi, y)p(\phi|y)$$

where

$$p(\theta|\phi, y) \propto p(y|\theta)p(\theta|\phi) = \prod_{i=1}^{n} p(y_{i}|\theta_{i})p(\theta_{i}|\phi) \propto \prod_{i=1}^{n} p(\theta_{i}|\phi, y_{i})$$

$$p(\phi|y) \propto p(y|\phi)p(\phi)$$

$$p(y|\phi) = \int p(y|\theta)p(\theta|\phi)d\theta$$

$$= \int \cdots \int \prod_{i=1}^{n} \left[p(y_{i}|\theta_{i})p(\theta_{i}|\phi)\right]d\theta_{1} \cdots d\theta_{n}$$

$$= \prod_{i=1}^{n} \int p(y_{i}|\theta_{i})p(\theta_{i}|\phi)d\theta_{i}$$

$$= \prod_{i=1}^{n} p(y_{i}|\phi)$$

Three-pointer example

Our statistical model

$$Y_i \stackrel{ind}{\sim} Bin(n_i, \theta_i)$$

 $\theta_i \stackrel{ind}{\sim} Be(\alpha, \beta)$
 $\alpha, \beta \sim p(\alpha, \beta)$

In this example,

- $\phi = (\alpha, \beta)$
- $Be(\alpha,\beta)$ describes the variability in 3-point percentage across games, and
- we are going to learn about this variability.

Decomposed posterior

$$Y_i \stackrel{ind}{\sim} Bin(n_i, \theta_i) \quad \theta_i \stackrel{ind}{\sim} Be(\alpha, \beta) \quad \alpha, \beta \sim p(\alpha, \beta)$$

Conditional posterior for θ :

$$p(\theta|\alpha,\beta,y) = \prod_{i=1}^{n} p(\theta_i|\alpha,\beta,y_i) = \prod_{i=1}^{n} Be(\theta_i|\alpha+y_i,\beta+n_i-y_i)$$

Marginal posterior for (α, β) :

$$\begin{array}{ll} p(\alpha,\beta|y) & \propto p(y|\alpha,\beta)p(\alpha,\beta) \\ p(y|\alpha,\beta) & = \prod_{i=1}^n p(y_i|\alpha,\beta) = \prod_{i=1}^n \int p(y_i|\theta_i)p(\theta_i|\alpha,\beta)d\theta_i \\ & = \prod_{i=1}^n \int Bin(y_i|n_i,\theta_i)Be(\theta_i|\alpha,\beta)d\theta_i \\ & = \prod_{i=1}^n \int_0^1 \binom{n_i}{y_i}\theta_i^{y_i}(1-\theta_i)^{n_i-y_i}\frac{\theta_i^{\alpha-1}(1-\theta_i)^{\beta-1}}{B(\alpha,\beta)}d\theta_i \\ & = \prod_{i=1}^n \binom{n_i}{y_i}\frac{1}{B(\alpha,\beta)}\int_0^1 \theta_i^{\alpha+y_i-1}(1-\theta_i)^{\beta+n_i-y_i-1}d\theta_i \\ & = \prod_{i=1}^n \binom{n_i}{y_i}\frac{B(\alpha+y_i,\beta+n_i-y_i)}{B(\alpha,\beta)} \end{array}$$

Thus $u_i | \alpha, \beta \stackrel{ind}{\sim} \text{Beta-binomial}(n_i, \alpha, \beta)$.

A prior distribution for α and β

Recall the interpretation:

- ullet α : prior successes
- β : prior failures

A more natural parameterization is

- prior expectation: $\mu = \frac{\alpha}{\alpha + \beta}$
- prior sample size: $\eta = \alpha + \beta$

Place priors on these parameters or transformed to the real line:

- logit $\mu = \log(\mu/[1-\mu]) = \log(\alpha/\beta)$
- $\log \eta$

A prior distribution for α and β

It seems reasonable to assume the mean (μ) and size (η) are independent a priori:

$$p(\mu, \eta) = p(\mu)p(\eta)$$

Let's construct a prior that has

- $P(0.1 < \mu < 0.5) \approx 0.95$ since most college basketball players have a three-point percentage between 10% and 50% and
- is somewhat diffuse for η but has more mass for smaller values.

Let's assume an informative prior for μ and η perhaps

- $\mu \sim Be(6, 14)$
- $\eta \sim Exp(0.05)$

```
b = 14
```

Prior draws

```
n = 1e4
prior_draws = data.frame(mu = rbeta(n, a, b),
                       eta = rexp(n, e)) %>%
 mutate(alpha = eta*
        beta = eta*(1-mu))
prior_draws %>%
 tidyr::gather(parameter, value) %>%
 group_by(parameter) %>%
 summarize(lower95 = quantile(value, prob = 0.025),
           median = quantile(value, prob = 0.5),
           upper95 = quantile(value, prob = 0.975))
# A tibble: 4 x 4
 parameter lower95 median upper95
 <chr>>
           <dbl> <dbl>
                         <dbl>
1 alpha 0.129 3.87 23.9
2 beta 0.359 9.61 51.4
         0.514 13.8 72.4
3 eta
           0.124 0.292 0.511
4 m11
cor(prior_draws$alpha, prior_draws$beta)
[1] 0.7951507
```

```
model_informative_prior = "
data {
  int<lower=0> N: // data
  int<lower=0> n[N]:
  int<lower=0> v[N];
  real<lower=0> a; // prior
  real<lower=0> b:
  real<lower=0> e;
parameters {
  real<lower=0,upper=1> mu;
  real<lower=0> eta;
  real<lower=0,upper=1> theta[N];
transformed parameters {
  real<lower=0> alpha:
  real<lower=0> beta:
  alpha = eta* mu ;
  beta = eta*(1-mu):
model {
        ~ beta(a,b):
  mu
        ~ exponential(e);
  eta
  // implicit joint distributions
  theta ~ beta(alpha,beta);
        ~ binomial(n,theta);
```

Stan

stan

r

Inference for Stan model: 81628daed98038e2857f7d139bbc17f5.
4 chains, each with iter=10000; warmup=5000; thin=1;
post-warmup draws per chain=5000, total post-warmup draws=20000.

	mean	se_mean	sd	2.5%	25%	50%	75%	97.5%	n_eff	Rhat
mu	0.44	0.00	0.05	0.35	0.41	0.44	0.47	0.53	6217	1
eta	28.19	0.43	20.55	5.34	13.80	22.65	36.49	82.24	2326	1
alpha	12.42	0.19	9.23	2.24	5.93	9.92	16.22	36.81	2387	1
beta	15.76	0.24	11.55	3.05	7.74	12.63	20.30	46.07	2340	1
theta[1]	0.44	0.00	0.12	0.19	0.36	0.44	0.52	0.69	17667	1
theta[2]	0.44	0.00	0.12	0.19	0.36	0.44	0.52	0.69	16204	1
theta[3]	0.49	0.00	0.10	0.30	0.42	0.49	0.56	0.70	14599	1
theta[4]	0.45	0.00	0.10	0.26	0.38	0.45	0.52	0.66	18698	1
theta[5]	0.41	0.00	0.12	0.17	0.34	0.42	0.49	0.65	12542	1
theta[6]	0.41	0.00	0.10	0.22	0.34	0.41	0.47	0.59	14852	1
theta[7]	0.39	0.00	0.12	0.15	0.32	0.40	0.47	0.62	10969	1
theta[8]	0.47	0.00	0.12	0.24	0.39	0.46	0.54	0.72	17029	1
theta[9]	0.49	0.00	0.12	0.28	0.42	0.49	0.57	0.76	11266	1
theta[10]	0.46	0.00	0.10	0.27	0.39	0.45	0.52	0.66	18405	1
theta[11]	0.39	0.00	0.11	0.17	0.32	0.39	0.46	0.59	10145	1
theta[12]	0.49	0.00	0.10	0.31	0.43	0.49	0.55	0.69	14431	1
theta[13]	0.51	0.00	0.11	0.32	0.44	0.51	0.58	0.73	9785	1
theta[14]	0.41	0.00	0.11	0.18	0.34	0.41	0.48	0.62	12153	1
theta[15]	0.39	0.00	0.11	0.17	0.32	0.39	0.46	0.59	10404	1
theta[16]	0.36	0.00	0.11	0.12	0.29	0.37	0.44	0.57	6560	1
theta[17]	0.47	0.00	0.12	0.24	0.39	0.46	0.54	0.72	15400	1
theta[18]	0.44	0.00	0.10	0.24	0.37	0.44	0.50	0.64	18382	1
theta[19]	0.41	0.00	0.10	0.21	0.35	0.42	0.48	0.61	16023	1

stan

```
plot(r, pars=c('eta', 'alpha', 'beta'))

ci_level: 0.8 (80% intervals)
outer_level: 0.95 (95% intervals)
```


stan

```
plot(r, pars=c('mu', 'theta'))
```


Comparing independent and hierarchical models

A prior distribution for α and β

In Bayesian Data Analysis (3rd ed) page 110, several priors are discussed

- $(\log(\alpha/\beta), \log(\alpha+\beta)) \propto 1$ leads to an improper posterior.
- $(\log(\alpha/\beta), \log(\alpha+\beta)) \sim Unif([-10^{10}, 10^{10}] \times [-10^{10}, 10^{10}])$ while proper and seemingly vague is a very informative prior.
- $(\log(\alpha/\beta), \log(\alpha+\beta)) \propto \alpha\beta(\alpha+\beta)^{-5/2}$ which leads to a proper posterior and is equivalent to $p(\alpha, \beta) \propto (\alpha+\beta)^{-5/2}$.

Stan - default prior

```
model_default_prior = "
data {
 int<lower=0> N:
 int<lower=0> n[N];
 int<lower=0> v[N]:
parameters {
 real<lower=0> alpha;
 real<lower=0> beta:
 real<lower=0,upper=1> theta[N];
model {
 // default prior
 target += -5*log(alpha+beta)/2;
 // implicit joint distributions
 theta ~ beta(alpha,beta):
        ~ binomial(n.theta):
m2 = stan_model(model_code=model_default_prior)
r2 = sampling(m2, dat, c("alpha", "beta", "theta"), iter=10000,
              control = list(adapt delta = 0.9))
Warning: There were 2145 divergent transitions after warmup. Increasing adapt_delta above 0.9 may help.
See
http://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
Warning: There were 4 chains where the estimated Bayesian Fraction of Missing Information was low. See
```

Marginal posterior for α, β

An alternative to jointly sampling θ, α, β is to

- 1. sample $\alpha, \beta \sim p(\alpha, \beta|y)$, and then
- 2. sample $\theta_i \stackrel{ind}{\sim} p(\theta_i | \alpha, \beta, y_i) \stackrel{d}{=} Be(\alpha + y_i, \beta + n_i y_i)$.

The maginal posterior for α, β is

$$p(\alpha,\beta|y) \propto p(y|\alpha,\beta)p(\alpha,\beta) = \left[\prod_{i=1}^n \mathsf{Beta-binomial}(y_i|n_i,\alpha,\beta)\right]p(\alpha,\beta)$$

Stan - beta-binomial

```
# Marginalized (integrated) theta out of the model
model_marginalized = "
data {
  int<lower=0> N:
  int<lower=0> n[N]:
  int<lower=0> y[N];
parameters {
  real<lower=0> alpha;
  real<lower=0> beta;
model {
  target += -5*log(alpha+beta)/2;
        ~ beta_binomial(n,alpha,beta);
generated quantities {
  real<lower=0,upper=1> theta[N];
  for (i in 1:N)
    theta[i] = beta_rng(alpha+y[i],beta+n[i]-y[i]);
m3 = stan_model(model_code=model_marginalized)
r3 = sampling(m3, dat, iter = 10000)
```

Stan

Stan - beta-binomial

```
Inference for Stan model: 690888f74d999a6a8ba05f22d06a00df.
4 chains, each with iter=10000; warmup=5000; thin=1;
post-warmup draws per chain=5000, total post-warmup draws=20000.
```

		se_mean	sd	2.5%	25%	50%	75%		n_eff	Rhat
alpha	9292.69	6582.63	883453.80	1.80	6.04	15.69	59.93	4440.68	18012	1
beta	8972.73	6099.40	813300.64	2.05	6.93	17.57	66.53	5011.78	17780	1
theta[1]	0.47	0.00	0.12	0.21	0.41	0.47	0.54	0.74	18590	1
theta[2]	0.47	0.00	0.12	0.21	0.41	0.47	0.53	0.73	18123	1
theta[3]	0.51	0.00	0.10	0.33	0.44	0.50	0.56	0.72	15106	1
theta[4]	0.48	0.00	0.10	0.28	0.42	0.47	0.53	0.67	19252	1
theta[5]	0.45	0.00	0.12	0.18	0.39	0.46	0.52	0.67	14645	1
theta[6]	0.44	0.00	0.09	0.23	0.38	0.44	0.50	0.60	12404	1
theta[7]	0.43	0.00	0.12	0.15	0.37	0.44	0.50	0.63	9920	1
theta[8]	0.50	0.00	0.12	0.27	0.43	0.49	0.55	0.78	15303	1
theta[9]	0.52	0.00	0.12	0.31	0.44	0.50	0.58	0.80	11289	1
theta[10]	0.48	0.00	0.09	0.29	0.42	0.48	0.53	0.67	19366	1
theta[11]	0.42	0.00	0.11	0.18	0.36	0.44	0.49	0.61	9856	1
theta[12]	0.51	0.00	0.09	0.34	0.45	0.50	0.56	0.71	13818	1
theta[13]	0.52	0.00	0.10	0.35	0.46	0.51	0.58	0.76	8746	1
theta[14]	0.44	0.00	0.11	0.19	0.38	0.45	0.50	0.63	12348	1
theta[15]	0.42	0.00	0.11	0.18	0.36	0.44	0.49	0.61	9765	1
theta[16]	0.40	0.00	0.12	0.12	0.33	0.42	0.48	0.59	6552	1
theta[17]	0.50	0.00	0.12	0.27	0.43	0.49	0.56	0.78	15239	1
theta[18]	0.46	0.00	0.09	0.27	0.41	0.46	0.52	0.65	18245	1
theta[19]	0.44	0.00	0.10	0.22	0.39	0.45	0.51	0.62	13366	1
theta[20]	0.48	0.00	0.10	0.28	0.42	0.48	0.53	0.68	19259	1
theta[21]	0.56	0.00	0.12	0.38	0.47	0.53	0.62	0.82	6119	1
theta[22]	0.46	0.00	0.09	0.28	0.41	0.47	0.52	0.65	18251	1
theta[23]	0.49	0.00	0.10	0.31	0.43	0.49	0.55	0.71	16955	1
theta[24]	0.45	0.00	0.12	0.18	0.39	0.46	0.52	0.67	13191	1

Posterior samples for α and β

```
samples = extract(r3, c("alpha", "beta"))
ggpairs(data.frame(log_alpha = log(as.numeric(samples$alpha)),
                   log_beta = log(as.numeric(samples$beta))),
       lower = list(continuous='density')) + theme_bw()
```


Comparing all models

Posterior sample for θ_{22}

```
game = 22
theta22 = extract(r3, "theta")$theta[,game]
hist(theta22, 100,
    main=paste("Posterior for game against", d$opponent[game], "on", d$date[game]),
    xlab="3-point probability",
    ylab="Posterior")
```


θ s are not independent in the posterior

3-point percentage across seasons

An alternative to modeling game-specific 3-point percentage is to model 3-point percentage in a season. The model is exactly the same, but the data changes.

	season	У	n
1	1	36	95
2	2	64	150
3	3	67	171
4	4	64	152

Due to the low number of seasons (observations), we will use an informative prior for α and β .

Stan - beta-binomial

```
model_seasons = "
data {
  int<lower=0> N; int<lower=0> n[N]; int<lower=0> y[N];
  real<lower=0> a; real<lower=0> b; real<lower=0> e;
parameters {
  real<lower=0,upper=1> mu;
  real<lower=0> eta;
transformed parameters {
  real<lower=0> alpha;
  real<lower=0> beta:
  alpha = eta * mu;
  beta = eta * (1-mu);
model {
      " beta(a,b);
  eta ~ exponential(e):
      ~ beta binomial(n.alpha.beta);
generated quantities {
  real<lower=0.upper=1> theta[N]:
  for (i in 1:N) theta[i] = beta_rng(alpha+v[i], beta+n[i]-v[i]);
dat = list(N = nrow(d), y = d\$y, n = d\$n, a = a, b = b, e = e)
m4 = stan model(model code = model seasons)
r_seasons = sampling(m4, dat,
                     c("alpha", "beta", "mu", "eta", "theta"))
```

Stan - hierarchical model for seasons

Inference for Stan model: add4563cfb5d1f9dead00bcc0fd9c410.
4 chains, each with iter=2000; warmup=1000; thin=1;
post-warmup draws per chain=1000, total post-warmup draws=4000.

	mean	se_mean	sd	2.5%	25%	50%	75%	97.5%	n_eff	Rhat
alpha	4.87	0.06	3.00	0.96	2.72	4.25	6.34	12.30	2286	1
beta	7.89	0.08	4.40	1.76	4.69	7.04	10.23	18.68	2740	1
mu	0.38	0.00	0.06	0.25	0.34	0.38	0.42	0.50	2312	1
eta	12.76	0.14	7.23	2.84	7.53	11.33	16.44	30.86	2524	1
theta[1]	0.38	0.00	0.05	0.29	0.35	0.38	0.41	0.47	4117	1
theta[2]	0.42	0.00	0.04	0.35	0.40	0.42	0.45	0.50	4105	1
theta[3]	0.39	0.00	0.04	0.32	0.37	0.39	0.42	0.46	3655	1
theta[4]	0.42	0.00	0.04	0.35	0.39	0.42	0.44	0.49	3886	1
lp	-402.05	0.03	1.06	-404.97	-402.48	-401.71	-401.29	-401.02	1430	1

Samples were drawn using NUTS(diag_e) at Wed Feb 20 11:32:10 2019. For each parameter, n_eff is a crude measure of effective sample size, and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat=1).

Stan - hierarchical model for seasons

Stan - hierarchical model for seasons

Probabilities that 3-point percentage is greater in season 4 than in the other seasons:

```
theta = extract(r_seasons, "theta")[[1]]
mean(theta[,4] > theta[,1])

[1] 0.7415

mean(theta[,4] > theta[,2])

[1] 0.461

mean(theta[,4] > theta[,3])

[1] 0.69775
```

Summary - hierarchical models

Two-level hierarchical model:

$$y_i \stackrel{ind}{\sim} p(y|\theta) \qquad \theta_i \stackrel{ind}{\sim} p(\theta|\phi) \qquad \phi \sim p(\phi)$$

Conditional independencies:

- $y_i \perp \!\!\! \perp y_i | \theta$ for $i \neq j$
- $\theta_i \perp \!\!\! \perp \theta_j | \phi$ for $i \neq j$
- $y \perp \!\!\! \perp \phi | \theta$
- $y_i \perp \!\!\! \perp y_j | \phi$ for $i \neq j$
- $\theta_i \perp \!\!\! \perp \theta_j | \phi, y$ for $i \neq j$

Summary - extension to more levels

Three-level hierarchical model:

$$y \sim p(y|\theta)$$
 $\theta \sim p(\theta|\phi)$ $\phi \sim p(\phi|\psi)$ $\psi \sim p(\psi)$

When deriving posteriors, remember the conditional independence structure, e.g.

$$p(\theta, \phi, \psi|y) \propto p(y|\theta)p(\theta|\phi)p(\phi|\psi)p(\psi)$$