

BỘ ĐỀ THI CUỐI KỲ MÔN ĐẠI SỐ

Dành cho sinh viên trường Đại học Bách khoa Hà Nội

Biên soạn: Tài liệu HUST

DANH SÁCH ĐỀ THI

ĐỂ CUỐI KÝ ĐẠI SỐ 20191 – ĐỂ 1 (Nhóm ngành 1)	2
ĐỀ CUỐI KỲ ĐẠI SỐ 20191 – ĐỀ 2 (N <mark>hóm ngàn</mark> h <mark>1)</mark>	
ĐỀ CUỐI KỲ ĐẠI SỐ 20191 – ĐỀ 3 (Nhóm ngành 1)	4
ĐỀ CUỐI KỲ ĐẠI SỐ 2 <mark>0191 – Đ</mark> Ề 4 (Nhóm ngành 1)	
ĐỀ CUỐI KỲ ĐẠI SỐ 20191 – ĐỀ 5 (Nhóm ngành 2)	6
ĐỀ CUỐI KỲ ĐẠI SỐ 20191 – ĐỀ 6 (Nhóm ngành 2)	
ĐỀ CUỐI KỲ ĐẠI SỐ 20191 – ĐỀ 7 (Nhóm ngành 3)	8
ĐỀ CUỐI KỲ ĐẠI SỐ 20193 – ĐỀ 2 (Nhóm ngành 1)	9
ĐỀ CUỐI KỲ ĐẠI SỐ 20193 – ĐỀ 4 (Nhóm ngành 2)	10
ĐỀ CUỐI KỲ ĐẠI SỐ 20181 – ĐỀ 1 (Nhóm ngành 1)	11
ĐỀ CUỐI KỲ ĐẠI SỐ 20181 – ĐỀ 2 (Nhóm ngành 1)	12
ĐỀ CUỐI KỲ ĐẠI SỐ 20181 – ĐỀ 3 (Nhóm ngành 1)	13
ĐỀ CUỐI KỲ ĐẠI SỐ 20181 – ĐỀ 4 (Nhóm ngành 1)	14
ĐỀ CUỐI KỲ ĐẠI SỐ 20181 – ĐỀ 5 (Nhóm ngành 2)	15
ĐỀ CUỐI KỲ ĐẠI SỐ 20181 – ĐỀ 8 (Nhóm ngành 3)	16
ĐỀ CUỐI KỲ ĐẠI SỐ 20183 – ĐỀ 1 (Nhóm ngành 1)	17
ĐỀ CUỐI KỲ ĐẠI SỐ 20171 – ĐỀ 1 (Nhóm ngành 1)	18
ĐỀ CUỐI KỲ ĐẠI SỐ 20171 – ĐỀ 3 (Nhóm ngành 1)	19
ĐỀ CUỐI KỲ ĐẠI SỐ 20171 – ĐỀ 4 (Nhóm ngành 1)	20
ĐỀ CUỐI KỲ ĐẠI SỐ 20171 – ĐỀ 5 (Nhóm ngành 2)	21
ĐỀ CUỐI KỲ ĐẠI SỐ 20173 – ĐỀ 5 (Nhóm ngành 3)	22
ĐỀ CUỐI KỲ ĐẠI SỐ 20173 – ĐỀ 6 (Nhóm ngành 3)	23

ĐỀ CUỐI KỲ ĐẠI SỐ 20191 - ĐỀ 1 (Nhóm ngành 1)

Câu 1 (1 điểm). Cho $z_n = \left(\frac{1+i\sqrt{3}}{\sqrt{3}+i}\right)^n$, $n \in \mathbb{N}$. Tìm n nhỏ nhất để $\operatorname{Re}(z_n) = 0$.

Câu 2 *(1 điểm)*. Chứng minh $W = \left\{ X \mid X = \begin{pmatrix} 0 & a+b \\ a-b & 0 \end{pmatrix} : a,b \in \mathbb{R} \right\}$ là không gian con của không gian véctơ các ma trận vuông cấp 2 trên \mathbb{R} . Tìm $\dim W$.

Câu 3 (2,5 điểm). Ký hiệu $P_2(x)$ là không gian véctơ các đa thức có bậc ≤ 2 .

- 1. Hệ $\left\{u_1(x) = 2 + x + 3x^2, u_2(x) = -1 + 2x, u_3(x) = 1 + 8x + 6x^2\right\}$ có phải là cơ sở của $P_2(x)$ không? Vì sao?
- 2. Cho toán tử tuyến tính $f: P_2(x) \rightarrow P_2(x)$ được xác định bởi:

$$f(a+bx+x^2) = 6a-2b-2c+(2a-3b)x+(4a+b-2c)x^2$$

- a) Viết ma trận của f theo cơ sở chính tắc $\left\{1,x,x^2\right\}$ của $P_2(x)$.
- b) Tìm $\dim \operatorname{Ker} f$.

Câu 4 (2,5 điểm). Trong \mathbb{R}^3 , tích vô hướng của $a=(a_1,a_2,a_3),b=(b_1,b_2,b_3)$ được xác định bởi $\langle a,b\rangle=a_1b_1+a_2b_2+a_3b_3$.

- 1. Cho $u_1 = (1,1,0), u_2 = (0,1,1)$. Tìm véctơ $v \neq (0,0,0)$ sao cho $\langle v,u \rangle = 0$ với mọi $u \in \operatorname{Span} \{u_1,u_2\}$.
- 2. Cho toán tử tuyến tính $f: \mathbb{R}^3 \to \mathbb{R}^3$ được xác định bởi:

$$f(x, y, z) = (2x-2y-2z, -2x+5y+z, 2x+y+5z)$$

Tìm cơ sở trực chuẩn của \mathbb{R}^3 để ma trận của f theo cơ sở đó là ma trận đường chéo.

Câu 5 (1 điểm). Với 0 < a, ký hiệu $C_{[-a,a]} = \{f(x) | f(x) \text{ liên tục trên } [-a,a]\}$. Ánh xạ

 $\Phi: C_{[-a,a]} \to \mathbb{R}, \Phi(f) = \int_{-a}^a f(x) \mathrm{d}x$ có phải là đơn ánh không? Tại sao?

Câu 6 (1 điểm). Cho A, B là 2 ma trận vuông cùng cấp thoả mãn $A^{2019}=0$ và AB=A+B. Chứng minh rằng $\det(B)=0$.

Câu 7 *(1 điểm).* Cho V là không gian véctơ hữu hạn chiều và toán tử tuyển tính $f:V \to V$. Chứng minh rằng $\dim \left(\operatorname{Ker} f^2 \right) \leq 2\dim \left(\operatorname{Ker} f \right)$.

ĐỀ CUỐI KỲ ĐẠI SỐ 20191 - ĐỀ 2 (Nhóm ngành 1)

Câu 1 (1 điểm). Cho $z_n = \left(\frac{\sqrt{2} + i\sqrt{6}}{-1 + i}\right)^n$, $n \in \mathbb{N}^*$. Tìm n nhỏ nhất để $\mathrm{Im}(z_n) = 0$.

Câu 2 *(1 điểm)*. Chứng minh $W = \left\{ X \mid X = \begin{pmatrix} a+b & 0 \\ 0 & a-b \end{pmatrix} : a,b \in \mathbb{R} \right\}$ là không gian con của không gian véctơ các ma trận vuông cấp 2 trên \mathbb{R} . Tìm $\dim W$.

Câu 3 (1 điểm). Ký hiệu $P_2(x)$ là không gian véctơ các đa thức có bậc ≤ 2 .

- 1. Hệ $\{u_1(x) = 1 x + x^2, u_2(x) = 3 + 2x 3x^2, u_3(x) = 1 + 3x 5x^2\}$ có phải là cơ sở của $P_2(x)$ không? Vì sao?
- 2. Cho toán tử tuyến tính $f: P_2(x) \rightarrow P_2(x)$ được xác định bởi:

$$f(a+bx+x^2)=2a-b+c+(a-2b)x+(a+b+c)x^2$$

- a) Viết ma trận của f theo cơ sở chính tắc $\left\{1,x,x^2\right\}$ của $P_2(x)$.
- b) Tìm $\dim \operatorname{Ker} f$.

Câu 4 (2,5 điểm). Trong \mathbb{R}^3 tích vô hướng của $x = (x_1, x_2, x_3), y = (y_1, y_2, y_3)$ được xác định bởi $\langle x, y \rangle = x_1 y_1 + x_2 y_2 + x_3 y_3$.

- 1. Cho $u_1=(-2,1,1), u_2=(1,1,-1)$. Tìm véctơ $v\neq (0,0,0)$ sao cho $\langle v,u\rangle=0$ với mọi $u\in \mathrm{Span}\, \big\{u_1,u_2\big\}$.
- 2. Cho toán tử tuyến tính $f: \mathbb{R}^3 \to \mathbb{R}^3$ được xác định bởi:

$$f(x, y, z) = (3x - 2y, -2x, 5z)$$

Tìm cơ sở trực chuẩn của \mathbb{R}^3 để ma trận của f theo cơ sở đó là ma trận đường chéo.

Câu 5 (1 điểm). Với a < b, ký hiệu $C_{[a,b]} = \{f(x) | f(x) \text{ liên tục trên } [a,b]\}$. Ánh xạ

 $\Phi: C_{[a,b]} \to \mathbb{R}, \Phi(f) = \int_a^b f(x) dx$ có phải là toàn ánh không? Tại sao?

Câu 6 (1 điểm). Cho A, B là 2 ma trận vuông cùng cấp thoả mãn $B^{2020}=0$ và 2AB=2A+3B. Chứng minh rằng $\det(A)=0$.

Câu 7 (1 điểm). Cho V là không gian véctơ hữu hạn chiều và toán tử tuyến tính $f:V\to V$. Chứng minh rằng $\dim \left(\operatorname{Ker} f^2\right) \leq 2\dim (\operatorname{Ker} f)$.

ĐỀ CUỐI KỲ ĐẠI SỐ 20191 - ĐỀ 3 (Nhóm ngành 1)

Câu 1 (1 điểm). Cho $f(z) = z^3 - (2+i)z^2 + (2+2i)z - 2i$. Tính f(i) và giải phương trình f(z) = 0.

Câu 2 (1 điểm). Ánh xạ $f: \mathbb{R}^2 \to \mathbb{C}$, $f(x,y) = (x^2 + y) + (y-x)i$ có đơn ánh không? Vì sao?

Câu 3 *(1 điểm).* Tìm $a,b\in\mathbb{R}$ để hệ $\begin{cases} x+2y+az=3\\ 2x-y-az=1\\ 2x+y+z=b \end{cases}$ có vô số nghiệm.

Câu 4 (1,5 điểm). Cho $E=\{e_1,e_2,e_3\}$ là cơ sở trực chuẩn của không gian Euclide V và phép

biến đổi tuyến tính $f: V \to V$ có ma trận theo cơ sở E là $A = \begin{pmatrix} 1 & -1 & -1 \\ -1 & 1 & -1 \\ -1 & -1 & 1 \end{pmatrix}$. Tìm cơ sở trực

chuẩn $F = \{f_1, f_2, f_3\}$ sao cho ma trận của f theo cơ sở F là ma trận đường chéo.

Câu 5 (1 điểm). Cho $E = \{e_1, e_2, e_3\}$ là cơ sở của không gian véctơ V . Hệ các véctơ $F = \left\{ f_1 = 2e_1 + 4e_2 - e_3, f_2 = e_1 - 2e_2 + 2e_3, f_3 = e_1 + 6e_2 - 2e_3 \right\} \text{ c\'o phải là một cơ sở của } V \text{ hay } 1 + 2e_1 + 2e_2 + 2e_3 + 2e_$ không? Vì sao?

Câu 6 (2,5 điểm). Ký hiệu $P_2(x)$ là không gian véctơ các đa thức có bậc ≤ 2 .

1. Cho toán tử tuyến tính $f: P_2(x) \rightarrow P_2(x)$ xác định bởi:

$$f(ax^2 + bx + c) = (a-b)x^2 + (3b+c)x + a + 2b + c$$
. Tim dim Im f .

2. Trên $P_2(x)$ cho tích vô hướng $\langle p(x), q(x) \rangle = \int_0^1 p(x) q(x) dx$ và $u_1(x) = 1$;

 $u_2(x) = x^2; v(x) = x$. Tìm hình chiếu trực giao của véctơ v(x) lên Span $\{u_1, u_2\}$.

Câu 7 (1 điểm). Cho A là ma trận vuông cấp n khả nghịch thoả mãn $A = 4A^{-1}$. Tính $\det\left(A^{2019}-A\right).$

Câu 8 (1 điểm). Trong không gian véctơ các hàm số liên tục trên [a, b], chứng minh hệ véctơ $\left\{u_k(x) = \left|x - \lambda_k\right|, k = \overline{1,n} \text{ với } \lambda_i \neq \lambda_j, i \neq j; i, j = \overline{1,n}\right\} \text{ độc lập tuyến tính.}$

ĐỀ CUỐI KỲ ĐẠI SỐ 20191 - ĐỀ 4 (Nhóm ngành 1)

Câu 1 (1 điểm). Cho $f(z) = z^3 + (1+2i)z^2 + (1+2i)z + 2i$. Tính f(-2i) và giải phương trình f(z) = 0.

Câu 2 (1 điểm). Anh xạ $f: \mathbb{R}^2 \to \mathbb{C}$, $f(x,y) = (x^3 + 2y^2) + (3x^3 + 7y)i$ có toàn ánh không? Vì sao?

Câu 3 *(1 điểm).* Tìm $\lambda, \beta \in \mathbb{R}$ để hệ $\begin{cases} 2x + y + az = \beta - 2 \\ x + \lambda y + 2z = 3 \end{cases}$ có vô số nghiệm. $2x - \lambda y - z = 1$

Câu 4 (1 điểm). Cho $E = \{e_1, e_2, e_3\}$ là cơ sở trực chuẩn của không gian Euclide V và phép biến

đổi tuyến tính $f:V \to V$ có ma trận theo cơ sở E là $A=\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$. Tìm cơ sở trực chuẩn

 $F = \{f_1, f_2, f_3\}$ sao cho ma trận của f theo cơ sở F là ma trận đường chéo.

Câu 5 *(1 điểm)*. Cho $E=\left\{e_1,e_2,e_3\right\}$ là cơ sở của không gian véctơ V . Hệ các véctơ $F=\left\{f_1=e_1+2e_2-2e_3,f_2=2e_1-3e_2+e_3,f_3=3e_1-e_2-e_3\right\}$ có phải là một cơ sở của V hay không? Vì sao?

Câu 6 (2,5 điểm). Ký hiệu $P_2(x)$ là không gian véctơ các đa thức có bậc ≤ 2 .

1. Cho toán tử tuyến tính $f: P_2(x) \rightarrow P_2(x)$ xác định bởi:

$$f(a+bx+cx^2) = 2a-b+(2b+c)x+(a+b+c)x^2$$
. Tim dim Im f .

2. Trên $P_2(x)$ cho tích vô hướng $\langle p(x), q(x) \rangle = \int_0^1 p(x)q(x) dx$ và $u_1(x) = 1$;

 $u_2(x) = x$; $v(x) = x^2$. Tìm hình chiếu trực giao của véctơ v(x) lên $\mathrm{Span}\{u_1, u_2\}$.

Câu 7 (1 điểm). Cho A là ma trận vuông cấp n khả nghịch thoả mãn $9A = A^{-1}$. Tính $\det\left(A - A^{2017}\right)$.

Câu 8 (1 điểm). Trong không gian véctơ các hàm số liên tục trên [a, b], chứng minh hệ véctơ $\left\{u_k(x) = \left|x - \lambda_k\right|, k = \overline{1,n}\right\}$ với $\lambda_i \neq \lambda_j, i \neq j; i, j = \overline{1,n}\right\}$ độc lập tuyến tính.

ĐỀ CUỐI KỲ ĐẠI SỐ 20191 - ĐỀ 5 (Nhóm ngành 2)

Câu 1 (1 điểm). Giải phương trình sau trong trường số phức: $z^3 - (2+3i)z^2 - (1-3i)z = 0$.

Câu 2 (1.5 điểm). Cho $A = \begin{pmatrix} 1 & 0 \\ c & 1 \end{pmatrix}$, với c là một số thực cho trước.

- a) Chứng minh rằng A luôn khả nghịch.
- b) Tìm ma trận X thoả mãn phương trình: $A^3X\left(A^{-1}\right)^2=E$, trong đó E là ma trận đơn vị cấp 2

Câu 3 (1.5 diểm). Biện luận số nghiệm của hệ phương trình sau theo hệ số thực m:

$$\begin{cases} x_1 - 2x_2 - x_3 + 3x_4 = 1\\ 2x_1 - 4x_2 + x_3 = 5\\ x_1 - 2x_2 + 2x_3 - 3x_4 = m \end{cases}$$

Trong trường hợp hệ vô số nghiệm, hãy biểu diễn nghiệm theo x_2, x_4 .

Câu 4 (2 điểm). Cho ánh xạ tuyến tính $f: \mathbb{R}^3 \to \mathbb{R}^3$ xác định bởi:

$$f(x, y, z) = (y + z, x + z, x + y), \forall (x, y, z) \in \mathbb{R}^3.$$

- a) Tìm các giá trị riêng của ánh xạ tuyến tính f
- b) Tìm một cơ sở của \mathbb{R}^3 để ma trận của f theo hệ cơ sở đó có dạng đường chéo.

Câu 5 (3 điểm). Trong không gian véctơ \mathbb{R}^4 trang bị tích vô hướng chính tắc, cho: $V = \operatorname{Span} \{ v_1 = (1;0;1;0), v_2 = (1;1;1;0), v_3 = (1;1;0;0), v_4 = (1;-1;3;0) \}.$

- a) Hệ véctơ $\left\{v_{j}\right\}_{j=1}^{4}$ có phải là một hệ trực giao không?
- b) Hãy tìm một hệ cơ sở của V .
- c) Tìm hình chiếu của véctơ $\omega = (2;0;-1;3)$ lên V .

Câu 6 (1 điểm). Giả sử rằng $A \in \mathfrak{M}_n(\mathbb{R})$ - tập các ma trận thực vuông cấp $n, A^{2019} = 0$ và A chéo hoá được. Chứng minh rằng: A phải là ma trận không.

ĐỀ CUỐI KỲ ĐẠI SỐ 20191 - ĐỀ 6 (Nhóm ngành 2)

Câu 1 (1 điểm). Giải phương trình trong trường số phức: $z^4 - (2+3i)z^3 - (1-3i)z^2 = 0$.

Câu 2 (1.5 điểm). Cho $A = \begin{pmatrix} 1 & c \\ 0 & 1 \end{pmatrix}$, với c là một số thực cho trước.

- a) Chứng minh rằng A luôn khả nghịch.
- b) Tìm ma trận X thoả mãn phương trình: $A^5X\left(A^{-1}\right)^4=E$, trong đó E là ma trận đơn vị cấp 2 **Câu 3** *(1 điểm)*.

$$\begin{cases} x_1 - 2x_2 - x_3 + 3x_4 = 1\\ 4x_1 - 8x_2 - x_3 + 6x_4 = 5\\ x_1 - 2x_2 + 2x_3 - 3x_4 = a \end{cases}$$

Trong trường hợp hệ vô số nghiệm, hãy biểu diễn nghiệm theo x_2, x_4 .

Câu 4 (1 điểm). Cho ánh xạ tuyến tính $f: P_2[x] \rightarrow P_2[x]$ xác định bởi:

$$f(1) = x + x^2$$
, $f(x) = 1 + x^2$, $f(x^2) = 1 + x$.

- a) Tìm các giá trị riêng của ánh xạ tuyến tính $\,f\,$
- b) Tìm một cơ sở của \mathbb{R}^3 để ma trận của f theo hệ cơ sở đó có dạng đường chéo.

Câu 5 (1 điểm). Trong không gian véctơ \mathbb{R}^4 trang bị tích vô hướng chính tắc, cho: $V = \operatorname{Span} \{ v_1 = (1; -1; 0; 1), v_2 = (1; 1; 0; 0), v_3 = (1; 1; 0; 1), v_4 = (0; -2; 0; -1) \}.$

- a) Hệ véctơ $\{v_j\}_{j=1}^4$ có phải là một hệ trực giao không?
- b) Hãy tìm một hệ cơ sở của ${\it V}$.
- c) Tìm hình chiếu của véctơ $\omega = (2;0;3;1)$ lên V.

Câu 6 (1 điểm). Giả sử rằng $A \in \mathfrak{M}_n(\mathbb{R})$ - tập các ma trận thực vuông cấp $n, A^{2019} = 0$ và A chéo hoá được. Chứng minh rằng: A phải là ma trận không.

ĐỀ CUỐI KỲ ĐẠI SỐ 20191 - ĐỀ 7 (Nhóm ngành 3)

Câu 1 (1 điểm). Cho các mệnh đề A, B, C. Các mệnh đề $A \lor (B \to C)$ và $(A \lor B) \to C$ có tương đương logic không? Vì sao?

Câu 2 (1 điểm). Giải phương trình phức sau: $z^4 - (2+4i)z^2 - 3 - 4i = 0$.

Câu 3 *(1 điểm)*. Cho ma trận vuông $A = \left[a_{ij}\right]_{3\times 3}$ và thực hiện đổi chỗ hàng 1 và hàng 2, ta thu được ma trận B. Chứng tỏ luôn tồn tại ma trận X để XA = B.

Câu 4 (2 điểm). Cho hệ
$$\begin{cases} x_1 - x_2 + 3x_3 + mx_4 = n + 1 \\ x_1 + x_2 + mx_3 + x_4 = n \\ x_1 + mx_2 + 4x_3 - x_4 = 2 \end{cases}$$
 (m, n là tham số).

- a) Tìm m, n để hệ có một nghiệm là (2;1;3;1).
- b) Tìm điều kiện của m, n để hệ có nghiệm.

Câu 5 (1 điểm). Trong \mathbb{R}^3 cho các véctơ:

$$u_1 = (1;0;1), u_2 = (-3;2;1), u_3 = (2;-1;0), u_4 = (5;6;7).$$
\$

Tìm số chiều của không gian $U = \operatorname{Span}(u_1, u_2, u_3)$ và kiểm tra xem u_4 có thuộc vào không gian U hay không?

Câu 6 (2.5 điểm). Cho biến đổi tuyến tính $f: P_1[x] \rightarrow P_1[x]$ xác định bởi:

$$f(a_0 + a_1x) = (a_0 + a_1) + (3a_0 - a_1)x.$$

- a) Tìm ma trận của f đối với cơ sở chính tắc của $P_1[x]$ và kiểm tra f có đơn ánh không?
- b) Tìm các trị riêng và các véctơ riêng của $\,f\,$.

Câu 7 (1.5 điểm). Trong \mathbb{R}^4 với tích vô hướng chính tắc, cho các véctơ:

$$u_1 = (1; 2; 1; 1), u_2 = (2; 1; 1; 2).$$

- a) Tìm một cơ sở trực chuẩn B của không gian $W = \operatorname{Span}(u_1, u_2)$.
- b) Tìm hình chiếu trực giao của véctơ $u=2u_1+3u_2\,$ lên không gian W .

ĐỀ CUỐI KỲ ĐẠI SỐ 20193 - ĐỀ 2 (Nhóm ngành 1)

Câu 1 (1 điểm). Cho ánh xạ $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + x$ và tập A= {0, 1, 2}.

Xác định f(A); $f^{-1}(A)$

Câu 2 (2 điểm). Cho hệ phương trình: $\begin{cases} x_1 + x_2 - x_3 + x_4 & = 2 \\ x_1 + 2x_2 + x_3 + 3x_4 & = 7 \\ -x_1 - 3x_2 + 2x_3 & = -2 \\ 3x_1 + 4x_2 - 4x_3 + (m+3)x_4 & = m+6 \end{cases}$

- a) Giải hệ phương trình bằng phương pháp khử Gauss với m=3.
- b) Tìm m để hệ phương trình có vô số nghiệm.

Câu 3 (3 điểm). Cho ánh xạ tuyến tính $f \mathbb{R}^3 \to \mathbb{R}^3$ xác định bởi:

$$f(x_1, x_2, x_3) = (6x_1 - 2x_2 + 5x_3, 2x_1 - x_2 + x_3, x_2 + 2x_3).$$

- a) Tìm ma trận của f trong cơ sở chính tắc của \mathbb{R}^3
- b) Tìm $\dim \operatorname{Im} f$; $\dim \operatorname{Ker} f$.
- c) Véctor u=(3, 2, 1) có thuộc Im f không? Tại sao?

Câu 4 (2 điểm). Chéo hoá ma trận $\begin{pmatrix} 12 & 3 & -3 \\ -8 & 2 & 4 \\ 10 & 5 & 1 \end{pmatrix}$ biết rằng 3; 6 là các trị riêng của nó.

Câu 5 (1.5 điểm). Cho không gian Euclide \mathbb{R}^3 với tích vô hướng chính tắc.

Cho $W = \text{Span}\{(1,1,1), (3,4,5), (6,7,8)\}.$

- a) Tìm một cơ sở trực chuẩn của W.
- b) Tìm hình chiếu trực giao của u=(4,2,6) lên W.

Câu 6 (1 điểm). Cho A là một ma trận thực vuông. Chứng minh rằng $\det(A^2 + I) \ge 0$, ở đó I là ma trận đơn vị cùng cấp với A.

ĐỀ CUỐI KỲ ĐẠI SỐ 20193 - ĐỀ 4 (Nhóm ngành 2)

Câu 1 (1 điểm). Cho các tập hợp A, B, C. Chứng minh rằng nếu $A \subset C$ thì $A \times B \subset C \times B$.

Câu 2 (2 điểm). Cho ánh xạ $f: \mathbb{R} \setminus \{2\} \to \mathbb{R}; g: \mathbb{R} \to \mathbb{R}$ xác định bởi:

$$f(x) = x + 2, g(x) = \frac{x^2 + 3}{x^2 + 4}.$$

- a) Ánh xạ q có phải toàn ánh không? Tìm Im g.
- b) Xác định ánh xạ tích $g^{\circ}f$.

Câu 3 (2 điểm). Cho các véctơ

 $u_1 = (-1, 4, -2, -5, 1), \quad u_2 = (5, 1, 7, 6, 2), \quad u_3 = (3, 2, 4, 6, 0), \quad u_4 = (2, -1, 3, 0, 2) \text{ trong không gian } \mathbb{R}^5$. Tìm số chiều và một cơ sở của không gian sinh bởi các véctơ này.

Câu 4 (1 điểm). Cho ánh xạ tuyến tính $f: P_3[x] \rightarrow P_2[x]$ xác định bởi:

$$f(a+bx+cx^2+dx^3)=(a+b)+2cx+dx^2$$
 với mọi $a,b,c,d \in \mathbb{R}$.

Xác định ma trận f theo cặp cơ sở chính tắc của các không gian $P_3[x]$, $P_2[x]$.

Câu 5 (2 điểm). Chéo hoá ma trận
$$A = \begin{bmatrix} 3 & 0 & 2 \\ -2 & 2 & -4 \\ 0 & 0 & 2 \end{bmatrix}$$
.

Câu 6 (1 điểm). Trong không gian Euclide \mathbb{R}^4 với tích vô hướng thông thường, cho các véctơ u=(-2,0,-1,1) và v=(1,-2,1,0).

- a) Tính khoảng cách giữa 2 véctơ u, v.
- b) Trực chuẩn hoá Gram-Schmidt hệ véctơ u, v.

Câu 7 (1 điểm). Cho α là argument của số phức $1+i\sqrt{2}$, và n là một số nguyên dương. Rút gọn số phức $z=(1+i\sqrt{2})^n+(1-i\sqrt{2})^n$ theo n và α .

ĐỀ CUỐI KỲ ĐẠI SỐ 20181 - ĐỀ 1 (Nhóm ngành 1)

Câu 1 (1 điểm). Cho các tập hợp con của \mathbb{R} là A = [1;3] và B = (m;m+3).

Tim m $\tilde{\text{de}}(A \setminus B) \subset (A \cap B)$.

Câu 2 (1 điểm). Tìm các số phức z thoả mãn $z^3 = 4\sqrt{3} - 4i$, với i là đơn vị ảo.

Câu 3 (1 điểm). Giải phương trình ma trận $\begin{bmatrix} 3 & 7 \\ 3 & 4 \end{bmatrix} X = \begin{bmatrix} 2 & 3 & 6 \\ 3 & 1 & 4 \end{bmatrix} - X$.

Câu 4 (4 điểm). Cho hệ phương trình $\begin{cases} x_1 - x_2 + x_3 + x_4 &= 0 \\ 2x_1 - x_2 + 3x_3 - 2x_4 &= 0 \text{ với m là tham số} \\ -x_1 + (m-3)x_2 - 3x_3 + 7x_4 &= m \end{cases}$

- a) Giải hệ phương trình khi m=2.
- b) Tìm m để hệ phương trình có nghiệm.
- c) Khi $m\!=\!0$, các nghiệm của hệ phương trình lập thành một không gian véctơ con U của \mathbb{R}^4 . Tìm số chiều và một cơ sở của U.
- d) Trong \mathbb{R}^4 với tích vô hướng chính tắc, tìm hình chiếu trực giao của v=(4;5;-6;-9) lên không gian con của U ở câu c.

Câu 5 (2 điểm). Cho biến đổi tuyến tính $f: \mathbb{R}^3 \to \mathbb{R}^3$ xác định bởi:

$$f(x_1; x_2; x_3) = (-2x_1 + 3x_2 + x_3; -x_1 - x_2 + x_3; -3x_1 + 2x_2 + 2x_3).$$

- a) Tìm m để véctơ $u=(1;3;m)\in {\rm Im}(f)$. Ánh xạ trên có phải là toàn ánh không? Vì sao?
- b) Tìm cơ sở của \mathbb{R}^3 để đối với cơ sở đó, ma trận của f có dạng đường chéo.

Câu 6 (1 điểm). Trong không gian véctơ các hàm số liên tục trên \mathbb{R} , chứng minh hệ véctơ $B = \{\sin x, \cos x, \sin 2x, \cos 2x, ..., \sin 10x, \cos 10x\}$ là hệ độc lập tuyến tính.

ĐỀ CUỐI KỲ ĐẠI SỐ 20181 - ĐỀ 2 (Nhóm ngành 1)

Câu 1 (1 điểm). Cho các tập hợp con của \mathbb{R} là A = [2;4] và B = (m;m+1).

Tim m $\overrightarrow{de}(B \setminus A) \subset (A \setminus B)$.

Câu 2 (1 điểm). Tìm các số phức z thoả mãn $z^3 = 4\sqrt{3} + 4i$, với i là đơn vị ảo.

Câu 3 (1 điểm). Giải phương trình ma trận $\begin{bmatrix} 3 & 2 \\ 5 & 4 \end{bmatrix} X = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} + X$.

Câu 4 (4 điểm). Cho hệ phương trình $\begin{cases} x_1 - x_2 + x_3 - x_4 &= m \\ 3x_1 - 2x_2 + 2x_3 + x_4 &= 0 \\ -x_1 + mx_2 - 2x_3 - x_4 &= 0 \end{cases}$

- a) Giải hệ phương trình khi m=1.
- b) Tìm m để hệ phương trình vô nghiệm.
- c) Khi $m\!=\!0$, các nghiệm của hệ phương trình lập thành một không gian véctơ con U của \mathbb{R}^4 . Tìm số chiều và một cơ sở của U.
- d) Trong \mathbb{R}^4 với tích vô hướng chính tắc, tìm hình chiếu trực giao của $v=(5;\,2;\,4;\,-3)$ lên không gian con của U ở câu c.

Câu 5 (2 điểm). Cho biến đổi tuyến tính $f: \mathbb{R}^3 \to \mathbb{R}^3$ xác định bởi:

$$f(x_1; x_2; x_3) = (2x_1 - 3x_2 + x_3; x_1 + x_2 + x_3; 3x_1 - 2x_2 + 2x_3).$$

- a) Tìm m để véctơ $u = (3,5;m) \in \text{Im}(f)$. Ánh xạ trên có phải là toàn ánh không? Vì sao?
- b) Tìm cơ sở của \mathbb{R}^3 để đối với cơ sở đó, ma trận của f có dạng đường chéo.

Câu 6 (1 điểm). Trong không gian véctơ các hàm số liên tục trên \mathbb{R} , chứng minh hệ véctơ $B = \{\sin x, \cos x, \sin 2x, \cos 2x, ..., \sin 10x, \cos 10x\}$ là hệ độc lập tuyến tính.

ĐỀ CUỐI KỲ ĐẠI SỐ 20181 - ĐỀ 3 (Nhóm ngành 1)

Câu 1 (1 điểm). Cho cáo mệnh đề A, B, C. Lập bảng giá trị chân lý của mệnh đề: $(A \lor B) \to \overline{C}$.

Câu 2 (1.5 điểm). Cho ánh xạ $f: \mathbb{C} \to \mathbb{C}$ xác định bởi $f(z) = 2z^3 - 1$. Ảnh xạ f có phải là đơn ánh không? Vì sao? Xác định tích các môđun của các phần tử trong tập nghịch ảnh $f^{-1}(\{5+2i\})$.

Câu 3 (2 điểm). Cho ma trận
$$A = \begin{bmatrix} 1 & 3 & -2 \\ 2 & -1 & 3 \\ 3 & 2 & 1 \end{bmatrix}$$
.

- a) Tính $\det(A+2E)^5$, trong đó E là ma trận đơn vị cấp 3.
- b) Giải phương trình ma trận $AX = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^T$.

Câu 4 (1.5 điểm). Trong không gian $P_3[x]$, cho hệ vécto:

$$u_1 = 1 + 2x - x^3$$
, $u_2 = 2 - x + x^2 + 2x^3$, $u_3 = -1 + x - x^2 - x^3$, $u_4 = 4 + 2x^2$

và các không gian véctơ con $V_1=\operatorname{span}\left\{u_1,u_2\right\},V_2=\operatorname{span}\left\{u_3,u_4\right\}$. Tìm số chiều và một cơ sở của các không gian con V_1+V_2 và $V_1\cap V_2$

Câu 5 (2 điểm). Cho biến đồi tuyến tính trên không gian \mathbb{R}^3 xác định bởi:

$$f(1;2;-1) = (2;2;4), f(2;1;3) = (1;2;-1), f(1;1;2) = (2;3;1).$$

- a) Xác định $\operatorname{Im}(f)$
- b) Tìm các trị riêng của f

Câu 6 (2 điểm). Cho dạng toàn phương:

$$h(x_1, x_2, x_3) = ax_1^2 + 3x_2^2 + 2x_3^2 - 4x_1x_2 + 2x_1x_3 - 2x_2x_3$$

- a) Tìm điều kiện của a để dạng toàn phương xác định dương.
- b) Với a=2, ta có duy nhất một tích vô hướng $\langle u,v\rangle$ trên \mathbb{R}^3 thoả mãn $\langle u,u\rangle=h(u)$.

Tìm một cơ sở trực chuẩn của \mathbb{R}^3 với tích vô hướng này thông qua việc trực chuẩn hoá Gram-Smith cơ sở chính tắc của \mathbb{R}^3

ĐỀ CUỐI KỲ ĐẠI SỐ 20181 - ĐỀ 4 (Nhóm ngành 1)

Câu 1 (1 điểm). Cho các mệnh đề A, B, C. Lập bảng giá trị chân lý của mệnh đề: $\overline{A} \to (B \wedge C)$.\$

Câu 2 (1.5 điểm). Cho ánh xạ $f: \mathbb{C} \to \mathbb{C}$ xác định bởi $f(z) = 2z^3 + 1$. Ánh xạ f có phải là toàn ánh không? Vì sao? Xác định tích các môđun của các phần tử trong tập nghịch ảnh $f^{-1}(\{5-2i\})$

Câu 3 (2 điểm). Cho ma trận $A = \begin{bmatrix} 1 & 3 & 2 \\ 2 & -1 & -3 \\ 3 & 2 & -1 \end{bmatrix}$.

- a) Tính $det(A-2E)^5$, trong đó E là ma trận đơn vị cấp 3.
- b) Giải phương trình ma trận $XA = \begin{bmatrix} 0 & 0 \end{bmatrix}$.

Câu 4 (1.5 điểm). Trong không gian $P_3[x]$, cho hệ véctơ:

$$u_1 = 1 - 2x - x^3$$
, $u_2 = 2 - x - x^2 + 2x^3$, $u_3 = -1 + x - x^2 - x^3$, $u_4 = 4 - 4x + 2x^2 + 2x^3$

và các không gian véctơ con $V_1 = \operatorname{span}\{u_1,u_2\}, V_2 = \operatorname{span}\{u_3,u_4\}$. Tìm số chiều và một cơ sở của các không gian con $V_1 + V_2$ và $V_1 \cap V_2$

Câu 5 (2 điểm). Cho biến đổi tuyến tính trên không gian \mathbb{R}^3 xác định bởi:

$$f(2;3;-1) = (6;2;-2), f(1;1;3) = (2;3;-1), f(3;1;-1) = (5;4;-2).$$

- a) Xác định $\operatorname{Im}(f)$
- b) Tìm các trị riêng của f

Câu 6 (2 điểm). Cho dạng toàn phương:

$$h(x_1, x_2, x_3) = ax_1^2 + 3x_2^2 + 2x_3^2 + 4x_1x_2 - 2x_1x_3 + 2x_2x_3.$$

- a) Tìm điều kiện của a để dạng toàn phương xác định dương.
- b) Với a=2, ta có duy nhất một tích vô hướng $\langle u, v \rangle$ trên \mathbb{R}^3 thoả mãn $\langle u, u \rangle = h(u)$.

Tìm một cơ sở trực chuẩn của \mathbb{R}^3 với tích vô hướng này thông qua việc trực chuẩn hoá Gram-Smith cơ sở chính tắc của \mathbb{R}^3

ĐỀ CUỐI KỲ ĐẠI SỐ 20181 - ĐỀ 5 (Nhóm ngành 2)

Câu 1 (1 điểm). Tìm các nghiệm phức của phương trình $z^4 = (\sqrt{3} + i)^6$ thoả mãn điều kiện |z - 2i| < 3.

Câu 2 (1 điểm). Cho các ma trận
$$A = \begin{bmatrix} 1 & 3 \\ 4 & 4 \end{bmatrix}$$
, $B = \begin{bmatrix} 8 & 7 \\ 14 & 11 \end{bmatrix}$.

Tìm ma trận X thoả mãn AX = B - X.

Câu 3 (2 điểm). Trong không gian $P_2[x]$ cho các véctơ:

$$v_1 = 1 + x + x^2$$
, $v_2 = 2 + mx - x^2$, $v_3 = 4 + 5x + x^2$, $v = 10 + 11x - 5x^2$.

- a) Xác định m để hệ $B = \{v_1, v_2, v_3\}$ phụ thuộc tuyến tính.
- b) Với m=2, chứng minh B lập thành cơ sở của không gian $P_2[x]$. Tìm toạ độ của véctơ v đối với cơ sở B.

Câu 4 (3 điểm). Cho ánh xạ tuyến tính $f: \mathbb{R}^3 \to \mathbb{R}^3$ thoả mãn:

$$f(1,1,0) = (3,3,9), \quad f(2,-1,1) = (-1,3,1), \quad f(0,1,1) = (1,1,3).$$

- a) Lập ma trận của f đối với cơ sở chính tắc của \mathbb{R}^3 .
- b) Xác định f(3,4,5).
- c) Xác định số chiều và một cơ sở của ker $\,f\,$.

Câu 5 (2 điểm). Trong \mathbb{R}^4 với tích vô hướng chính tắc, cho các véctơ:

$$v_1 = (1,1,2,-1), \ v_2 = (1,2,1,1), \ v_3 = (3,4,5,-1). \text{ Cho } V = \text{Span}\{v_1,v_2,v_3\}.$$

- a) Xác định số chiều và một cơ sở của V.
- b) Tìm hình chiếu trực giao của vecto v=(4,1,0,4) lên V.

Câu 6 (1 điểm). Cho ma trận A cỡ $m \times n$ với $m \le n$, có hạng bằng m. Chứng minh tồn tại ma trận B cõ $n \times m$ sao cho AB = E, với E là ma trận đơn vị.

ĐỀ CUỐI KỲ ĐẠI SỐ 20181 - ĐỀ 8 (Nhóm ngành 3)

Câu 1 (1 điểm). Cho mệnh đề P: " $\forall x \in \mathbb{R}, \exists y \in \mathbb{R} : y < x$ ".

- a) Xác định mệnh đề phủ định của P.
- b) Mệnh đề P muốn khẳng định điều gì?

Câu 2 (1 điểm). Cho các tập hợp A, B, C. Chứng minh rằng:

$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$
.

Câu 3 (2 điểm). Cho các vecto $v_1 = (2,1,0,-3), v_2 = (1,-1,2,5), v_3 = (5,3,1,2), v_4 = (8,5,6,1).$

- a) Chứng minh v_1, v_2, v_3, v_4 lập thành một cơ sở của không gian \mathbb{R}^4 .
- b) Tìm toa đô của véctơ u = (23,14,17,-5) đối với cơ sở trên.

Câu 4 (3 điểm). Cho ánh xạ tuyến tính $f: \mathbb{R}^3 \to \mathbb{R}^3$ xác định bởi:

$$f(1,2,3) = (13,-7,-2), \quad f(1,2,0) = (4,2,-2), \quad f(2,0,0) = (4,0,4).$$

- a) Tìm ma trận của f đối với cơ sở chính tắc của \mathbb{R}^3 .
- b) Tìm các giá trị riêng, véctơ riêng của f .
- c) Tìm số chiều của không gian hạt nhân và không gian ảnh của f .

Câu 5 (2 điểm). Trong không gian \mathbb{R}^5 với tích vô hướng chính tắc, cho các véctơ:

$$v_1 = (1, -1, -1, 1, 1), \quad v_2 = (2, 1, 4, -4, 2), \quad v_3 = (4, -3, -2, 6, 0).$$

Ký hiệu V là không gian sinh bởi v_1, v_2, v_3 .

- a) Tìm một cơ sở trực chuẩn của V bằng phương pháp Gram-Schmidt.
- b) Tìm hình chiếu trực giao của véctơ v = (0, 2, 4, 6, 8) lên V .

Câu 6 (1 điểm). Chứng minh rằng nếu ma trận A đồng dạng với ma trận B, thì A^4 cũng đồng dạng với B^4 .

ĐỀ CUỐI KỲ ĐẠI SỐ 20183 - ĐỀ 1 (Nhóm ngành 1)

Câu 1. Xét xem mệnh đề sau đúng hay sai: "Nếu số thực x thoả mãn phương trình $x^2 - 2x + 10 = 0$ thì x phải là số âm".

Câu 2. Gọi $\mathbb C$ là tập hợp các số phức. Xét ánh xạ $f:\mathbb C\to\mathbb C$ xác định bởi công thức $f(z)=z^6-2z^3-2+i$. Xác định tập hợp $f^{-1}(\{1+i\})$.

Câu 3. Cho các ma trận
$$A = \begin{bmatrix} 2 & 1 & 2 \\ 1 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}, B = \begin{bmatrix} 4 & 3 & 4 \\ 4 & 2 & -2 \end{bmatrix}.$$

Tìm ma trân X thoả mãn XA = B.

Câu 4. Gọi G là tập hợp các ma trận vuông cấp n với định thức khác 0. Chúng minh rằng G là một nhóm với phép nhân ma trận.

Câu 5. Trong \mathbb{R}^4 với tích vô hướng chính tắc, cho các véctơ:

$$v_1 = (1;1;0;1), \quad v_2 = (2;1;-1;2), \quad v_3 = (-1;2;1;0), \quad v_4 = (1;2;-1;2).$$

Đặt
$$U = \operatorname{Span}\{v_1, v_2\}, V = \operatorname{Span}\{v_3, v_4\}.$$

- a) Tìm giá trị m sao cho véctơ $\alpha = (11;5;m;12)$ thuộc không gian U+V.
- b) Xác định số chiều và một cơ sở của $U \cap V$.
- c) Tìm hình chiếu trực giao của véctơ v = (3, 2, 0, 6) lên U.

Câu 6. Ánh xạ tuyến tính
$$f: P_2[x] \rightarrow P_2[x]$$
 có ma trận $A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 3 & -1 \\ 1 & 1 & 3 \end{bmatrix}$ đối với cơ sở

$$B = \{v_1, v_2, v_3\}$$
, với $v_1 = 1, v_2 = 1 + x, v_3 = 2 - x + x^2$.

- a) Xác định ma trận của f đối với cơ sở chính tắc $E = \{1, x, x^2\}$. Tính $f(4+3x+2x^2)$.
- b) Tìm số chiều và một cơ sở của $\ker(f)$.
- **Câu 7.** Cho A là ma trận thực vuông cấp 4. Biết rằng đa thức đặc trưng $\det(A \lambda E)$ nhận các số phức $\lambda_1 = 1 + 2i$ và $\lambda_2 = 3 2i$ làm nghiệm. Tính $\det(A)$.

ĐỀ CUỐI KỲ ĐẠI SỐ 20171 - ĐỀ 1 (Nhóm ngành 1)

Câu 1 (1 điểm). Cho ánh xạ $f: \mathbb{R} \to \mathbb{R}$ xác định bờ $f(x) = x^2 + 2x - 1$ và tập hợp $A = \{2; 1; -3\}$. Xác định tập ảnh f(A) và tập nghịch ảnh $f^{-1}(A)$.

Câu 2 (1.5 điểm). Cho phương trình phức $z^4 + 16i = 0$. Biểu diễn hình học các nghiệm của phương trình trên.

Câu 3 (1 điểm). Giải phương trình ma trận $AX + A^{T} = 2B$, với

$$A = \begin{bmatrix} 2 & -3 \\ -5 & 8 \end{bmatrix} \text{ và } B = \begin{bmatrix} -1 & 2 \\ 1 & -1 \end{bmatrix}.$$

Câu 4 (1 điểm). Tìm m để hệ phương trình $\begin{cases} mx_1 + 2x_2 - x_3 = 3 \\ x_1 + mx_2 + 2x_3 = 4 \end{cases}$ có nghiệm duy nhất. $2x_1 + 3x_2 + x_3 = -m$

Câu 5 (1.5 điểm). Trong không gian $P_2[x]$, cho các véctơ $u_1=1+x-x^2, u_2=3x-x^2$, $u_3=2+3x, \quad u_4=-1+x-2x^2$. Đặt $U_1=\mathrm{span}\left\{u_1,u_2\right\}$ và $U_2=\mathrm{span}\left\{u_3,u_4\right\}$. Xác định số chiều và một cơ sở của không gian $U_1\cap U_2$.

Câu 6 (2 điểm). Cho toán tử tuyến tính trên \mathbb{R}^3 xác định bởi:

$$f(1;2;-1) = (4;-2;-6);$$
 $f(1;1;2) = (5;5;0);$ $f(1;0;0) = (1;2;1)$

- a) Tìm m để $u = (6; -3; m) \in \text{Im}(f)$.
- b) Tìm các giá trị riêng và véctơ riêng của $\,f\,$.

Câu 7 (1.5 điểm). Trong \mathbb{R}^4 với tích vô hướng chính tắc.

a) Trực chuẩn hóa Gram-Schmidt hệ gồm 2 véctơ sau:

$$u_1 = (1;1;1;0)$$
 và $u_2 = (0;1;1;1)$.

b) Cho vecto v=(3;2 ;4 ;2). Xác định véctơ $u \in \operatorname{Span} \{u_1, u_2\}$ sao cho $\|u - v\|$ nhỏ nhất.

Câu 8 (0.5 điểm). Trong không gian $P_{2018}[x]$, tìm một cơ sở và số chiều của không gian $V = \{p(x) | p(1) = p(2) = 0\}$.

ĐỀ CUỐI KỲ ĐẠI SỐ 20171 - ĐỀ 3 (Nhóm ngành 1)

Câu 1 (1 điểm). Giải phương trình trên trường số phức: $(z+i)^7 = (z-i)^7$.

Câu 2 (1 điểm). Câu 2 (1 diểm). Giải phương trình ma trận: $\begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} X \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 0 \\ 2 & 2 \end{pmatrix}$.

Câu 3 (1.5 diểm). Giải và biện luận theo hệ số thực a hệ phương trình:

$$\begin{cases} x_1 + 2x_2 + x_3 &= 0\\ ax_2 + (1-a)x_3 + (a^2 + 1)x_4 &= 0\\ x_1 + (2-a)x_2 - x_3 - 2a^2x_4 &= 0 \end{cases}$$

Câu 4 (3 điểm). Cho ánh xạ tuyến tính $f: \mathbb{R}^3 \to \mathbb{R}^3$ xác định bởi:

$$f(x, y, z) = (4x - 2y + 2z, -2x + y - z, 2x - y + z).$$

- a) Với tích vô hướng chính tắc của \mathbb{R}^3 , hãy tìm một cơ sở trực chuẩn để ma trận của f theo hệ cơ sở đó có dạng đường chéo.
- b) Tìm toạ độ của véctơ $\omega = (1,0,1)$ theo hệ cơ sở trực chuẩn đó.
- c) Hãy tìm giá trị lớn nhất của biểu thức sau, với điều kiện $x^2 + y^2 + z^2 = 9$:

$$\phi(x, y, z) = 4x^2 + y^2 + z^2 - 4xy + 4xz - 2yz, \quad \forall (x, y, z) \in \mathbb{R}^3.$$

Câu 5 (1.5 điểm). Trong không ain vec to \mathbb{R}^4 trang bị tích vô hướng chính tắc, cho:

$$V_1 = \text{Span} \left\{ v_1 = (1; 2; 3; 1), v_2 = (1; 3; 3; 2) \right\}$$

$$V_2 = \text{Span} \left\{ v_3 = (1; 2; 5; 3), v_4 = (1; 3; 4; 3) \right\}$$

Tìm một cơ sở trực chuẩn của V_1+V_2 . Tìm hình chiếu của $\omega=(1;1;2;0)$ lên V_1+V_2 .

Câu 6 (1 điểm). Cho $P_2[x]$ là tập các đa thức hệ số thực có bậc nhỏ hơn hoặc bằng 2, và ánh xạ $\varphi: P_2[x] \to \mathbb{R}^3$ xác định bởi $\varphi(p(x)) = (p(0), p(1), p(-1))$. Hỏi φ có phải là một đẳng cấu không? Giải thích?

Câu 7 (1 điểm). Ký hiệu $\mathfrak{M}_{n,1}(\mathbb{R})$ là tập các ma trận thực kích cỡ $n \times 1$. Giả sử rằng A, B là 2 ma trận vuông thực cấp $n, (0 < n \in \mathbb{N})$ thoả mãn: $X^tAY = X^tBY, \forall X, Y \in \mathfrak{M}_{n,1}(\mathbb{R})$.

Chứng minh rằng A = B.

ĐỀ CUỐI KỲ ĐẠI SỐ 20171 - ĐỀ 4 (Nhóm ngành 1)

Câu 1 (1 điểm). Giải phương trình trên trường số phức: $(z+i)^9 = (z-i)^9$.

Câu 2 (1 điểm). Giaii phương trình ma trận:
$$\begin{pmatrix} 2 & 0 \\ 4 & 2 \end{pmatrix} X \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$
.

Câu 3 (1.5 \overrightarrow{diem}). Giải và biện luận theo hệ số thực a hệ phương trình:

$$\begin{cases} x_1 + 2x_2 - 2x_3 - x_4 &= 0\\ ax_2 + (1-a)x_3 + (a^2 + 1)x_4 &= 0\\ 2x_1 + (4-a)x_2 - 4x_3 - 2(a^2 + 1)x_4 &= 0 \end{cases}$$

Câu 4 (31.5 điểm). Cho ánh xạ tuyến tính $f: \mathbb{R}^3 \to \mathbb{R}^3$ xác định bởi

$$f(x, y, z) = (4x + 2y - 2z, 2x + y - z, -2x - y + z).$$

- a) Với tích vô hướng chính tắc của \mathbb{R}^3 , hãy tìm một cơ sở trực chuẩn để ma trận của f theo hệ cơ sở đó có dạng đường chéo.
- b) Tìm toạ độ của véctơ $\omega = (1,0,1)$ theo hệ cơ sở trực chuẩn đó.
- c) Hãy tìm giá trị lớn nhất của biểu thức sau, với điều kiện $x^2 + y^2 + z^2 = 16$:

$$\phi(x, y, z) = 4x^2 + y^2 + z^2 + 4xy - 4xz - 2yz, \forall (x, y, z) \in \mathbb{R}^3.$$

Câu 5 (1.5 điểm). Trong không ain vec to \mathbb{R}^4 trang bị tích vô hướng chính tắc, cho:

$$V_1 = \text{Span} \left\{ v_1 = (1; 2; 3; 1), v_2 = (1; 3; 3; 2) \right\}$$

$$V_2 = \text{Span} \left\{ v_3 = (1; 2; 5; 3), v_4 = (1; 3; 4; 3) \right\}$$

Tìm một cơ sở trực chuẩn của $V_1 \cap V_2$. Tìm hình chiếu của $\omega = (1;1;0;1)$ lên $V_1 \cap V_2$.

Câu 6 (1 điểm). Cho $P_2[x]$ là tập các đa thức hệ số thực có bậc nhỏ hơn hoặc bằng 2 , và ánh xạ $\varphi: P_2[x] \to \mathbb{R}^3$ xác định bởi $\varphi(p(x)) = (p(0), p(-1), p(1))$. Hỏi φ có phải là một đẳng cấu không? Giải thích?

Câu 7 (1 điểm). Ký hiệu $\mathfrak{M}_{n,1}(\mathbb{R})$ là tập các ma trận thực kích cỡ $n \times 1$. Giả sử rằng A, B là 2 ma trận vuông thực cấp $n, (0 < n \in \mathbb{N})$ thoả mãn: $X^tAY = X^tBY, \forall X, Y \in \mathfrak{M}_{n,1}(\mathbb{R})$. Chứng minh rằng A = B.

ĐỀ CUỐI KỲ ĐẠI SỐ 20171 - ĐỀ 5 (Nhóm ngành 2)

Câu 1 (2 điểm). Giải phương trình trong tập sồ phức:

a)
$$z^2 - (\sqrt{3} + 1)iz - 1 - \sqrt{3} + (1 - \sqrt{3})i = 0$$
. b) $\frac{1}{(2z + 9)^{22}} - \frac{(\sqrt{3} + 1)i}{(2z + 9)^{11}} - 1 - \sqrt{3} + (1 - \sqrt{3})i = 0$

Câu 2 (1 điểm). Cho các ma trận:

$$A = \begin{pmatrix} 1 & -1 & 2 \\ 3 & 1 & -1 \\ 1 & 0 & 2 \end{pmatrix}, B = \begin{pmatrix} 1 & -3 & 1 \\ 1 & 0 & -2 \\ 2 & 1 & -1 \end{pmatrix}, C = \begin{pmatrix} -1 & -2 & 3 \\ 2 & 3 & -6 \\ -2 & 0 & 0 \end{pmatrix}$$

Tìm ma trận X sao cho AX - B = CX.

Câu 3 (1 điểm). Tìm m và n sao cho không gian nghiệm của hệ phương trình sau có số chiều là 2

$$\begin{cases} x_1 - 2x_2 + mx_3 + 3x_4 = 0 \\ 2x_1 - x_2 + 2x_3 + 3x_4 = 0 \\ 2x_1 + 2x_2 - x_3 + nx_4 = 0 \end{cases}$$

Câu 4 (1 điểm). Cho ánh xạ tuyến tính $f: \mathbb{R}^3 \to \mathbb{R}^4$ với:

$$f(x_1, x_2, x_3) = (x_1 + 2x_2 - 3x_3, 3x_1 - x_2 + 2x_3, -7x_1 + 7x_2 - 12x_3, -5x_1 + 4x_2 - 7x_3)$$

 $\forall (x_1, x_2, x_3) \in \mathbb{R}^3$. Tìm số chiều và cơ sở của không gian Im f .

Câu 5 (2 điểm). Cho ma trận
$$A = \begin{pmatrix} -6 & -4 & 4 \\ 4 & 4 & -2 \\ -14 & -7 & 9 \end{pmatrix}$$
.

Hãy tính các giá trị riêng của A, sau đó chéo hoá ma trận A.

Câu 6 (2 điểm). Trong \mathbb{R}^4 với tích vô hướng chính tắc, cho ba vecto $v_1 = (1;0;-1;0), \ v_2 = (1;-2m;m;1), \ v_3 = (1;1;1;0).$

- a) Tìm m để hai véctơ v_1, v_2 trực giao với nhau, và với m tìm được đó, hãy chúmg minh rằng hệ vecto $\{v_1, v_2, v_3\}$ là độc lập tuyến tính.
- b) Với m tìm được ở trên, hãy tính hình chiếu trực giao của vecto u=(0;2;1;-1) lên không gian Span $\{v_1,v_2,v_3\}$.

Câu 7 (1 điểm). Cho A là ma trận thực vuông cấp n chéo hoá được, và $p(\lambda)$ là đa thức đặc trưng của A (tức là $p(\lambda) = |A - \lambda I|$, với $\lambda \in \mathbb{R}$). Chứng minh rằng p(A) = O.

ĐỀ CUỐI KỲ ĐẠI SỐ 20173 - ĐỀ 5 (Nhóm ngành 3)

Câu 1 (2 điểm).

1) Cho ánh xạ $f:[1;+\infty) \to (-2;+\infty)$ xác định bởi f(x)=2x-2. Ánh xạ f có phải là ánh xạ toàn ánh không? Vì sao?

2) Cho số phức
$$z = \frac{1+2i}{2-i}$$
, với $i^2 = -1$. Tính $\sqrt[6]{z}$.

Câu 2 (2 điểm). Cho các ma trận $A = \begin{pmatrix} 2 & -1 & 2 \\ 4 & 1 & 3 \\ m & 0 & 1 \end{pmatrix}, B = \begin{pmatrix} 6 & 1 \\ 15 & 4 \\ 4 & 1 \end{pmatrix}, m$ là tham số.

- 1) Khi m=1, tìm ma trận X thoả mãn AX=B.
- 2) Tìm m để ma trận A có hạng nhỏ nhất.

Câu 3 (3 diem). Kí hiệu G là tập nghiệm của hệ phương trình:

$$\begin{cases}
-3x_1 + x_2 + 3x_3 + x_4 = 0 \\
-2x_1 + x_2 + x_3 + x_4 = 0 \\
-7x_1 + 2x_2 + 8x_3 + 2x_4 = 0
\end{cases}$$

- 1) Chứng minh G là không gian con của \mathbb{R}^4 .
- 2) Xác định một cơ sở của $\it G$.
- 3) Tìm hình chiếu trực giao của véctơ u = (1, -2, 0, 1) trên G.

Câu 4 (2 điểm). Cho toán tử tuyến tính $f: \mathbb{R}^3 \to \mathbb{R}^3$ xác định bởi:

$$f(2;1;-1) = (0;1;3), \quad f(1;2;1) = (3;2;3), \quad f(1;-1;2) = (1;3;0).$$

- 1) Tìm ma trận A của f theo cơ sở chính tắc của \mathbb{R}^3 .
- 2) Tìm một cơ sở của \mathbb{R}^3 (nếu có) để ma trận của f theo cơ sở đó là ma trận đường chéo.

Câu 5 (1 điểm). Cho A là ma trận thực, vuông cấp n và E là ma trận đơn vị cùng cấp. Chứng minh rằng $\det\left(A^2+4E\right)\geq 0$..

ĐỀ CUỐI KỲ ĐẠI SỐ 20173 - ĐỀ 6 (Nhóm ngành 3)

Câu 1 (2 điểm).

- 1) Cho ánh xạ $g:(-\infty;-1] \to [-2;+\infty)$ xác định bởi g(x)=-2x-2. Ánh xạ f có phải là ánh xạ đơn ánh không? Vì sao?
- 2) Cho số phức $z = \frac{5+i}{3-2i}$, với $i^2 = -1$. Tính z^{2018} .

Câu 2 (2 điểm). Cho các ma trận $A = \begin{pmatrix} 2 & 1 & 3 \\ 1 & n & 2 \\ 3 & 1 & 4 \end{pmatrix}, C = \begin{pmatrix} 13 & 4 & 19 \\ 4 & 1 & 6 \end{pmatrix}, m$ là tham số.

- 1) Khi n=0, tìm ma trận X thoả mãn XA=C.
- 2) Tìm n để ma trận A có hạng lớn nhất.

Câu 3 (3 diem). Kí hiệu S là tập nghiệm của hệ phương trình:

$$\begin{cases}
-3x_1 + x_2 + 3x_3 + x_4 = 0 \\
-2x_1 + x_2 + x_3 + x_4 = 0 \\
-7x_1 + 2x_2 + 8x_3 + 2x_4 = 0
\end{cases}$$

- 1) Chứng minh G là không gian con của \mathbb{R}^4 .
- 2) Xác định một cơ sở của $\it S$.
- 3) Tìm hình chiếu trực giao của véctơ u = (0;1;2;5) trên S.

Câu 4 (2 điểm). Ký hiệu $P_2[x]$ là không gian các đa thức hệ số thực, có bậc ≤ 2 .

Cho toán tử tuyến tính $g: P_2[x] \rightarrow P_2[x]$ xác định bởi:

$$g(2+x-x^2) = x+3x^2$$
, $g(1+2x+x^2) = 3+2x+3x^2$, $g(1-x+2x^2) = 1+3x$.

- 1) Tìm ma trận A của f theo cơ sở chính tắc của \mathbb{R}^3 .
- 2) Tìm một cơ sở của $P_2[x]$ (nếu có) để ma trận của g theo cơ sở đó là ma trận đường chéo.

Câu 5 (1 điểm). Cho A là ma trận thực, vuông cấp n và E là ma trận đơn vị cùng cấp. Chứng minh rằng $\det\left(A^2+9E\right)\geq 0$.