Criptografia simetrică

- Am studiat sisteme simetrice care criptează bit cu bit sisteme de criptare fluide;
- Vom studia sisteme simetrice care criptează câte n biţi simulan - sisteme de criptare bloc;

Securitatea Sistemelor Informatice

2/38

Sisteme bloc vs. sisteme fluide

... d.p.d.v. al modului de criptare:

Sisteme fluide

- criptarea biţilor se realizează individual
- criptarea unui bit din textul clar este independentă de orice alt bit din textul clar

Sisteme bloc

- criptarea se realizează în blocuri de câte n biți
- criptarea unui bit din textul clar este dependentă de biţii din textul clar care aparţin aceluiaşi bloc

Sisteme bloc vs. sisteme fluide

Securitatea Sistemelor Informatice

3/38

Sisteme bloc vs. sisteme fluide

... d.p.d.v. tradițional, în practică:

Sisteme fluide

- necesități computaționale reduse
- utilizare: telefoane mobile, dispozitive încorporate, PDA
- par să fie mai puţin sigure, multe sunt sparte

Sisteme bloc

- necesități computaționale mai avansate
- ▶ utilizare: internet
- par să fie mai sigure, prezintă încredere mai mare

Securitatea Sistemelor Informatice 4/38 , Securitatea Sistemelor Informatice 5/38

Sisteme bloc

- ► Introducem noțiunea de permutare pseudoaleatoare sau PRP(PseudoRandom Permutation)
- ▶ În analogie cu ce știm deja:
 - ▶ PRP sunt necesare pentru construcția sistemelor bloc

așa cum

▶ PRG sunt necesare pentru construcția sistemelor fluide

Securitatea Sistemelor Informatice

6/38

PRP

- ► Ramâne să definim noțiunea de permutare pseudoaleatoare sau PRP (PseudoRandom Permutation);
- Acesta este o funcție **deterministă** și **bijectivă** care pentru o cheie fixată produce la ieșire o **permutare** a intrării ...
- ▶ ... indistinctibilă față de o permutare aleatoare;
- ▶ În plus, atât funcția cât și inversa sa sunt eficient calculabile.

Sisteme bloc

Sisteme fluide k

Sisteme bloc

Securitatea Sistemelor Informatice

7/38

PRP

Definiție

O permutare pseudoaleatoare definită peste (K, X) este o funcție bijectivă

$$F: \mathcal{X} \times \mathcal{K} \to \mathcal{X}$$

care satisface următoarele proprietăți:

- 1. Eficiență: $\forall k \in \mathcal{K}, x \in \mathcal{X}, \exists$ algoritmi determiniști polinomiali care calculează $F_k(x)$ și $F_k^{-1}(x)$
- 2. Pseudoaleatorism: \forall algoritm PPT \mathcal{D} , \exists o funcție neglijabilă negl a.î.:

$$|Pr[D(r)=1]-Pr[D(F_k(\cdot))=1]| \leq negl(n)$$

unde $r \leftarrow^R Perm(X), k \leftarrow^R \mathcal{K}$

Notații

- $F_k(x) = F(k, x)$ o cheie este în general (aleator) aleasă și apoi fixată
- $ightharpoonup Perm(X) = mulțimea tuturor funcțiilor bijective de la <math>\mathcal{X}$ la \mathcal{X}
- $\mathcal{X} = \{0,1\}^n$
- $ightharpoonup \mathcal{D} = \mathit{Distinguisher}$ care are acces la $\mathit{oracolul}$ de evaluare a funcției

Securitatea Sistemelor Informatice

10/38

Securitatea Sistemelor Informatice

11/38

PRF

Definiție

O funcție pseudoaleatoare definită peste $(\mathcal{K}, \mathcal{X}, \mathcal{Y})$ este o funcție bijectivă

$$F: \mathcal{X} \times \mathcal{K} \to \mathcal{Y}$$

care satisface următoarele proprietăți:

- 1. Eficiență: $\forall k \in \mathcal{K}, x \in \mathcal{X}, \exists$ algoritm determinist polinomial care calculează $F_k(x)$
- 2. Pseudoaleatorism: \forall algoritm PPT \mathcal{D} , \exists o funcție neglijabilă negl a.î.:

$$|Pr[D(r) = 1] - Pr[D(F_k(\cdot)) = 1]| \le negl(n)$$

unde $r \leftarrow^R Func(X, Y), k \leftarrow^R K$

Notatii

PRF

► $F_k(x) = F(k, x)$ o cheie este în general (aleator) aleasă și apoi fixată

► Introducem noțiunea de funcție pseudoaleatoare sau PRF

Acesta este o funcție cu cheie care este indistinctibilă față de

o funcție aleatoare (cu același domeniu și mulțime de valori).

(PseudoRandom Function)...

pseudoaleatoare:

... ca o generalizare a noțiunii de permutare

- ightharpoonup Func(X, Y) = mulţimea funcţiilor de la \mathcal{X} la \mathcal{Y}
- $\mathcal{X} = \{0,1\}^n$, $\mathcal{Y} = \{0,1\}^n$ considerăm în general că *PRF păstrează lungimea*
- $ightharpoonup \mathcal{D} = \textit{Distinguisher}$ care are acces la *oracolul* de evaluare a funcției

 $PRP \subseteq PRF$

- ▶ Întrebare: De ce *PRF* poate fi privită ca o generalizare a *PRP*?
- ▶ Răspuns: *PRP* este *PRF* care satisface:
 - 1. $\mathcal{X} = \mathcal{Y}$
 - 2. este inversabilă
 - 3. calculul funcției inverse este eficient

Securitatea Sistemelor Informatice

14/38

Securitatea Sistemelor Informatice

15/38

Construcții

Răspuns: PRP ⇒ PRF

PRP este o particularizare a *PRF* : $\mathcal{X} \times \mathcal{K} \rightarrow Y$ care satisface:

- 1. $\mathcal{X} = \mathcal{Y}$
- 2. este inversabilă
- 3. calculul funcției inverse este eficient

▶ PRF ⇒ PRG
Pornind de la PRF se poate construi PRG

▶ PRG ⇒ PRF
Pornind de la PRG se poate construi PRF

▶ PRP ⇒ PRF
Pornind de la PRP se poate construi PRF

▶ PRF ⇒ PRP
Pornind de la PRF se poate construi PRP

Întrebare: Care dintre aceste construcții este trivială?

Construcții

▶ PRF ⇒ PRG
Pornind de la PRF se poate construi PRG

PRG ⇒ PRF
Pornind de la PRG se poate construi PRF

PRP ⇒ PRF √
Pornind de la PRP se poate construi PRF

▶ PRF ⇒ PRP
Pornind de la PRF se poate construi PRP

$PRF \Rightarrow PRG$

- ▶ Considerăm $F: \mathcal{K} \times \{0,1\}^n \rightarrow \{0,1\}^n$ PRF;
- ▶ Construim $G: \mathcal{K} \to \{0,1\}^{nl}$ *PRG* sigur:

$$G(k) = F_k(0)||F_k(1)||\dots||F_k(I-1)|$$

- ▶ Întrebare: De ce este *G* sigur?
- ▶ Răspuns: $F_k(\cdot)$ este *indistinctibilă* față de o funcție aleatoare $\Rightarrow G(k)$ este *indistinctibilă* față de o secvență aleatoare de lungime ln.
- ► Avantaj: Construcția este paralelizabilă

Securitatea Sistemelor Informatice

18/38

$PRG \Rightarrow PRF$

► Construcția pentru un singur bit de intrare...

Construcții

- PRF ⇒ PRG √
 Pornind de la PRF se poate construi PRG
- ▶ PRG ⇒ PRF
 Pornind de la PRG se poate construi PRF
- PRP ⇒ PRF √
 Pornind de la PRP se poate construi PRF
- ▶ PRF ⇒ PRP
 Pornind de la PRF se poate construi PRP

Securitatea Sistemelor Informatice

19/38

$PRG \Rightarrow PRF$

...se poate generaliza pentru un număr oarecare de biți

$PRG \Rightarrow PRF$

- Construcția poate fi reprezentată ca un arbore binar cu cheia k rădăcină;
- Pentru un nod de valoare k', copilul stâng ia valoarea $G_0(k')$ și copilul drept ia valoare $G_1(k')$;
- ▶ Valoarea funcției $F_k(x) = F_k(x_0, ..., x_{n-1})$ este obținută prin parcurgerea arborelui în funcție de x;
- ► Adâncimea arborelui este *liniară* în *n* (*n*);
- ▶ Dimensiunea arborelui este *exponențială* în $n(2^n)$;
- ▶ NU se utilizează în practică din cauza performanței scăzute.

Securitatea Sistemelor Informatice

23/38

Securitatea Sistemelor Informatice

24/38

$PRF \Rightarrow PRP$

Teoremă (Luby-Rackoff 5)

Dacă $F: \mathcal{K} \times \{0,1\}^n \to \{0,1\}^n$ este PRF, se poate construi $F': \mathcal{K} \times \{0,1\}^2 \to \{0,1\}^2$ PRP.

Construcția folosește runde Feistel, pe care le vom prezenta într-un curs ulterior.

Construcții

- PRF ⇒ PRG √
 Pornind de la PRF se poate construi PRG
- PRG ⇒ PRF √
 Pornind de la PRG se poate construi PRF
- PRP ⇒ PRF √
 Pornind de la PRP se poate construi PRF
- ▶ PRF ⇒ PRP
 Pornind de la PRF se poate construi PRP

Moduri de utilizare

- ► Să continuam cu ceva mai practic...
- ▶ Întrebare: Ce se întâmplă dacă lungimea mesajului clar este mai mică decât dimensiunea unui bloc?
- ► Răspuns: Se completează cu biţi: 1 0 ...0;
- ▶ Întrebare: Ce se întâmplă dacă lungimea mesajului clar este mai mare decât lungimea unui bloc?
- Răspuns: Se utilizează un mod de operare (ECB, CBC, OFB, CTR);
- Notăm cu F_k un sistem de criptare bloc (i.e. PRP) cu cheia k fixată.

Modul ECB (Electronic Code Book)

Securitatea Sistemelor Informatice

27/38

Modul ECB (Electronic Code Book)

Figure: Imagine preluată de pe https://en.wikipedia.org/

Figura din mijloc este criptarea imaginii din stânga în modul ECB. In dreapta este aceeași imagine criptată folosind un mod sigur.

Modul ECB (Electronic Code Book)

- Pare modul cel mai **natural** de a cripta mai multe blocuri;
- ightharpoonup Pentru decriptare, F_k trebuie să fie **inversabliă**;
- Este paralelizabil;
- Este **determinist**, deci este **nesigur**;
- ▶ Întrebare: Ce informații poate să ofere modul de criptare ECB unui adversar pasiv?
- ► Răspuns: Un adversar pasiv detectează repetarea unui bloc de text clar pentru că se repetă blocul criptat corespunzător;
- ► Modul ECB NU trebuie utilizat în practică!

Securitatea Sistemelor Informatice

28/38

Modul CBC (Cipher Block Chaining)

Modul CBC (Cipher Block Chaining)

- ► *IV* este o ales în mod aleator la criptare;
- ► IV se transmite în clar pentru ca este necesar la decriptare;
- \triangleright Pentru decriptare, F_k trebuie să fie **inversabliă**;
- Este **secvențial**, un dezavantaj major dacă se poate utiliza procesarea paralelă.

Securitatea Sistemelor Informatice

31/38

Modul OFB (Output FeedBack)

- Generează o secvență pseudoaleatoare care se XOR-ează mesajului clar;
- ► *IV* este o ales în mod aleator la criptare;
- ► *IV* se transmite în clar pentru ca este necesar la decriptare;
- $ightharpoonup F_k$ nu trebuie neapărat să fie inversabliă;
- Este **secvențial**, însă secvența pseudoaleatoare poate fi pre-procesată anterior decriptării.

Modul OFB (Output FeedBack)

Securitatea Sistemelor Informatice

32/38

Modul CTR (Counter)

Securitatea Sistemelor Informatice 33/38 , Securitatea Sistemelor Informatice 34/38

Modul CTR (Counter)

- Generează o secvență pseudoaleatoare care se XOR-ează mesajului clar;
- ctr este o ales în mod aleator la criptare;
- ctr se transmite în clar pentru ca este necesar la decriptare;
- $ightharpoonup F_k$ nu trebuie neapărat să fie inversabliă;
- ► Este paralelizabil;
- În plus, secvența pseudoaleatoare poate fi pre-procesată anterior decriptării.

Securitatea Sistemelor Informatice

35/38

Câteva considerații practice

- ► modurile CTR, OFB și CBC sunt CPA-sigure
- ▶ modurile CBC, OFB şi CTR folosesc un IV uniform aleator asigură faptul că F_k este mereu evaluat pe intrări diferite (previne situația în care adversarul afla informații la vederea de intrări identice)
- ▶ CTR IV ales uniform de lungime 3n/4 înseamnă că IV se repetă după criptarea aprox. $q(n) = 2^{2n/8}$ mesaje
- Dacă n=64 atunci $q\approx 17.000.000$ ceea ce e puțin pentru zilele noastre
- Dacă n=128 și vrem să folosim CTR avand garanția că IV se repetă cu probabilitate cel mult 2^{-40} , rezultă $q\approx 2^{28}$ mesaje (calculand q din $\frac{q^2}{2^{3n/4}+1}\leq 2^{-40}$)

Modul CTR (Counter)

- ► Generează o secvență pseudoaleatoare care se XOR-ează mesajului clar;
- ctr este o ales în mod aleator la criptare si se transmite în clar pentru ca este necesar la decriptare;
- ightharpoonup Este **paralelizabil**; F_k nu trebuie neapărat să fie inversabliă;
- ▶ În plus, secvenţa pseudoaleatoare poate fi pre-procesată anterior decriptării.
- ► CTR poate fi văzut și ca un sistem fluid nesincronizat:
 - ▶ pentru criptarea unui mesaj de lungime $I < 2^{n/4}$ blocuri, se alege un IV uniform din $\{0,1\}^{2n/4}$
 - fiecare bloc de text criptat este calculat $y_i = F_k(|V||i)$ unde i este codificat ca un string pe n/4 biți

Securitatea Sistemelor Informatice

36/38

Câteva considerații practice - IV folosit greșit

- ► Ce se întâmplă dacă IV se repetă?
- ▶ Pentru modurile OFB si CTR, întregul stream pseudoaleator (cu care se face xor pe mesaj) se repetă
- ▶ Dacă IV nu este uniform aleator (deci este predictibil), CTR este sigur dar CBC nu este sigur.