Class Information

- Eighth homework has been posted.
- Second project extension: Monday, April 21, 11:59pm.
- Sakai submission will be set up soon.

Review: Dependence — Basics

Theorem

Any reordering transformation that preserves every dependence (i.e., visits first the source, and then the sink of the dependence) in a program preserves the meaning of that program.

Note: Dependence starts with the notion of a sequential execution, i.e., starts with a sequential program.

Review: Dependence Analysis for Array References

A loop-independent dependence exists regardless of the loop structure. The source and sink of the dependence occur on the same loop iteration.

A loop-carried dependence is induced by the iterations of a loop. The source and sink of the dependence occur on different loop iterations.

Loop-carried dependences can inhibit parallelization and loop transformations

Dependence Testing

Given

do
$$i_1 = L_1, U_1$$
...

do $i_n = L_n, U_n$
 $S_1 \qquad \text{A}(f_1(i_1, \dots, i_n), \dots, f_m(i_1, \dots, i_n)) = \dots$
 $S_2 \qquad \dots = \text{A}(g_1(i_1, \dots, i_n), \dots, g_m(i_1, \dots, i_n))$

A dependence between statement S_1 and S_2 , denoted $S_1\delta S_2$, indicates that S_1 , the source, must be executed before S_2 , the sink on some iteration of the nest.

Let $\alpha \& \beta$ be a vector of n integers within the ranges of the lower and upper bounds of the n loops.

Does
$$\exists \alpha \leq \beta$$
, s.t.
$$f_k(\alpha) = g_k(\beta) \quad \forall k, \ 1 \leq k \leq m ?$$

Iteration Space

• lexicographical (sequential) order for the above iteration space is

$$(1,1), (1,2), \ldots, (1,6)$$

 $(2,2), (2,3), \ldots (2,6)$
 \ldots
 $(5,5), (5,6)$

• given $I = (i_1, \dots, i_n)$ and $I' = (i'_1, \dots, i'_n)$, I < I' iff $(i_1, i_2, \dots, i_k) = (i'_1, i'_2, \dots, i'_k) \& i_{k+1} < i'_{k+1}$

Distance & Direction Vectors

do I = 1, N do J = 1, N S_2 A(I,J) = A(I-1,J-1) S_3 B(I,J) = B(I-1,J+1) enddo enddo

Distance Vector = number of iterations between accesses to the same location

Direction Vector = direction in iteration space (=,<,>)

distance vector

direction vector

 $S_1\delta S_1$

(0,1)

(=,<)

 $S_2\delta S_2$

(1,1)

(<,<)

 $S_3\delta S_3$

(1,-1)

(<,>)

Which Loops are Parallel?

do I = 1, N
do J = 1, N

$$S_1$$
 A(I,J) = A(I,J-1)
do I = 1, N
do J = 1, N
 S_2 A(I,J) = A(I-1,J-1)
do I = 1, N
do J = 1, N
 S_3 B(I,J) = B(I-1,J+1)

- a dependence $D = (d_1, \ldots, d_k)$ is *carried* at *level* i, if d_i is the first nonzero element of the distance/direction vector
- a loop l_i is parallel, if $\not\exists$ a dependence D_j carried at level i

	distance vector	direction vector
$\forall D_j$	$d_1,\ldots,d_{i-1} > 0$	$d_1, \ldots, d_{i-1} = "<"$
OR	$d_1, \dots, d_i = 0$	$d_1, \dots, d_i = "="$