Tecnologia industrial

SÈRIE 1

Primera part

Exercici 1

Q1 d **Q2** a **Q3** a **Q4** d **Q5** b

Exercici 2

	d	v_3	V ₂₅	m		
a)	0	0	0	0		
	0	0	1	$X \leftarrow No$ és possible		
	0	1	0	0		
	0	1	1	0	b) Amb $X = 0$	$m = d \cdot v_3 \cdot \overline{v}_{25}$
	1	0	0	0		
	1	0	1	$X \leftarrow No$ és possible		
	1	1	0	1		
	1	1	1	0		

Segona part

OPCIÓ A

Exercici 3

a)
$$L_A = 2r + \pi r = 3085 \text{ mm}$$

 $L_B = 2r + 2b = 2700 \text{ mm}$

b)
$$t_{\text{total}} = \frac{2r + b + 2\pi r}{V} = 1{,}144 \text{ min} = 68{,}64 \text{ s} \rightarrow$$

c)
$$m = \rho (2 e S_A + 2 e S_B) = 2 e \rho \left(\frac{\pi r^2}{2} + r b \right) = 30,46 \text{ kg}$$

Taula desplegada
$$\rightarrow \frac{2 \pi r + 2 b}{0.85 \text{ m}} = 6,200 \rightarrow 6 \text{ persones}$$

Exercici 4

a)
$$P = \frac{U^2}{R} \rightarrow R = \frac{U^2}{P} = 10,29 \Omega$$

b) En un cicle:
$$P_1 = \frac{E_{\text{cicle}}}{t_{\text{cicle}}} = \frac{P t_{\text{on}}}{(t_{\text{on}} + t_{\text{off}})} = 7,099 \text{ W}$$

c)
$$f = \frac{1}{(t_{\text{on}} + t_{\text{off}})} = \frac{1}{(0.36 + 0.35) \cdot 10^{-3}} = 1408 \text{ Hz}$$

d)
$$P_2 = \frac{P t_{on}}{(t_{on} + t_{off})} \rightarrow t_{off} = \frac{P t_{on}}{P_2} - t_{on} = 0,09 \text{ ms}$$

OPCIÓ B

Exercici 3

a)
$$E_d = \frac{E_{dia}/2}{\eta} = 1,333 \text{ kW h} = 4,800 \text{ MJ}$$

b)
$$E_d = \rho V g h \rightarrow V = \frac{E_d}{\rho g h} = 34,96 \text{ m}^3$$

c)
$$P_h = q \rho g h$$

$$P_{\text{elèct.}} = P_{\text{h}} \, \eta = q \, \rho \, g \, h \, \eta = 617.8 \, \text{W}$$

Exercici 4

c)
$$|OP| = \frac{h}{\sin 45^{\circ}}$$

Per
$$\varphi = 0^{\circ}$$
 $\tan \beta = \frac{h}{\left(b + |OP|\right)} \rightarrow \beta = \arctan\left(\frac{h}{\left(b + h/\sin 45^{\circ}\right)}\right) = 16,45^{\circ}$

Per
$$\varphi = 90^{\circ}$$
 $\tan \beta = \frac{b}{\left(\left|\mathsf{OP}\right| - h\right)} \rightarrow \beta = \operatorname{atan}\left(\frac{b}{\left(h/\sin 45^{\circ} - h\right)}\right) = 78,14^{\circ}$