Librería de análisis de datos: Pandas

Pandas - Guía de referencia

Importar la librería

import pandas as pd

Series

Índice Valores

 	Las Series son una estructura de datos de 1 dimensión con
 	índice asociado basado en
 	etiquetas.

s = pd.Series(data, index, dtype, name, ...)

index= Valores tomados como índice de la serie. dtype= Tipo de dato de la serie. name= Nombre de la serie.

data= Contenido de la serie creada.

Con listas

pd.Series([1, 2, 3], index = ['a', 'b', 'c'])

Con diccionarios

pd.Series({'a': 1, 'b': 2, 'c': 3})

a 1

b 2

c 3 dtype: int64

DataFrame

Columnas				
Filas				

Los DataFrame son una estructura de datos de 2 dimensión con índices asociados a filas y columnas basado en ... etiquetas.

df = pd.DataFrame(data, index, columns, ...)

index= Valores tomados como índice de las filas. columns= Valores tomados como índice de las columnas.

data= Contenido del DataFrame creado.

Con arreglos pd.DataFrame([[1, 2], [3, 4]], columns= ['a', 'b'])

Con diccionarios

 $pd.DataFrame(\{ 'a' : [1, 3], 'b' : [2, 4] \})$

	а	b
0	1	2
1	3	4

Combinación de datos

pd.concat([df_a, df_b])

 $pd.concat([df_a, df_b], axis = 1)$

 $pd.join(df_a, df_b, how = ___)$

 $pd.merge(df_a, df_b, on = 'col', how = _)$

Agrupar datos

df.groupby('A').agg('B': function , 'C': function, ...)

df.groupby('A').*

Funciones de .first() agregación .last() predefinidas. .sum() .prod() .size() .mean()

Asignar valores escalares

Importar datos

pd.read* pd.read_csv(ruta, ...) pd.read_excel(ruta, ...) pd.read_table(ruta, ...) pd.read_json(ruta, ...) pd.read_sql(query, conector, ...)

Exportar datos

```
df.to_*

df.to_csv(...)

df.to_excel(...)

df.to_latex(...)

df.to_json(...)

df.to_clipboard(...)

...
```

Selección por etiquetas

df.loc['id']	Fila con etiqueta 'id'.
df.loc['a' : 'f']	Elementos en las filas entre a y f.
df.loc[['a', 'c']]	Elementos en las fila a y c.
df.loc['i, 'col']	Elemento en la fila i y columna col.
df.loc[:, 'col']	Elementos en columna 'col.
df.at['x', 'y']	Elemento en la celda (x, y).

Visualizar datos

```
df.plot.*
                      Gráfica de líneas
df.plot.line(...)
df.plot.bar(...)
                      Gráfica de barras
                      Gráfica circular
df.plot.pie(...)
                     Histograma
df.plot.hist(...)
df.plot.box(...)
                      Diagrama de cajas
df.plot.scatter(...)
                     Diagrama de dispersión
df.plot.area(...)
                      Gráfica de áreas
df.plot.hexbin(...)
                     Gráfica hexagonal
```

Selección por posición

```
df.iloc[0] Fila en la posición 0.

df.iloc[0:5] Elementos en las filas entre 0 y 10.

df.iloc[[0, 1]] Elementos en las fila 0 y 1.

df.iloc[0, 3] Elemento en la fila 0 y columna 3.

df.iloc[:, 2] Elementos en columna 2.
```

Selección condicional

(1, 2).

Elemento en la celda

Series (<, >, >=, <=, ==, !=) valor Arreglo de booleanos usado para indexar.

```
df[ df['col'] > 0 ]
Selección de filas que cumplan una condición
```

df.where(df < 0, -df)</pre>

df.at[1, 2]

Reemplazar filas que cumplan la condición con el valor de la celda de otro DataFrame.

df.mask(df > 0, -df)

Reemplazar filas que **NO** cumplan la condición con el valor de la celda de otro DataFrame.

df.query('(a < b) & (b < c)')

Selección condicional con una sintaxis especial basada en nombres de columnas.

Selección de filas

<pre>df.head(n) df.tail(n)</pre>	Selecciona	las primeras n filas las últimas n filas
df.sample(n)	Selecciona	n filas aleatorias
<pre>df.nsmallest(n, 'col')</pre>	Selecciona	las n filas menores.
<pre>df.nlargest(n, 'col')</pre>	Selecciona	las n filas mayores.

Describir datos

```
df['col'].min( )
                        Valor mínimo
df['col'].max( )
                        Valor máximo
df['col'].mean( )
                        Media aritmética
df['col'].mode( )
                        Moda
df['col'].median( )
                        Mediana
df['col'].std( )
                        Desviación estándar
df['col'].var( )
                        Varianza
df['col'].quantile(q)
                        Cuantil en posición q
df['col'].skew()
                        Asimetría
df['col'].kurt()
                        Curtosis
df['col'].corr()
                        Correlación
df.pivot_table(...)
                        Tablas de pivote
pd.crosstab(...)
                        Tabla de contingencia
```

Operaciones en objetos

df['c'] = df['a'] + df['b'] Operadores entre objetos

df['col'] = 0

Limpieza de datos

```
df.replace(...)
                           Reemplazar valores
df.drop_duplicates()
                           Eliminar filas repetidas
                           Eliminar valores faltantes
df.dropna()
                           Imputar valores faltantes
df.fillna(valor)
                           Filas con valores faltantes
df.isna()
df.notna()
                           Filas sin valores faltantes
df['col'].unique()
                           Valores únicos de la fila
                          Conteo de valores por
df['col'].value_counts()
                           columna
```

Utilidades generales