

CMM510: Data mining

Decision tree algorithms

- Improving performance

Decision Tree (revision?)

- Turns a dataset into if-then-else statements so that predictions on new data can be made.
- Which attribute comes first (or next)?
- Which attribute gives most "information gain"?
- Or which gives a purer node (Gini index)?
- Lab: Caret and first classification model

A word on last week's lab

- If you haven't tried it, try it today.
- Look for the "confusion matrix" for each model.
- Consider why models might be better or worse. "Getting more right" is usually considered "better" but not always.
- Is it better to get an unnecessary test for diabetes or get no test at all when you have it?

Contents

- Lowering priority of high-branching nodes gain ratio
- Coping with real data
 - numeric values
 - missing values
- Pruning removing tree branches
 - noisy data
- Winnowing feature selection
- Summary

Decision Tree Family of Algorithms

ID3 (public domain)

Basic method for constructing decision trees

Nominal attributes, Gain Ratio

C4.5 (public domain)

Improved method for real applications

Numeric attributes, missing values, noisy data, rule generation from trees

C5.0 (was commercial)

Improved pruning

Other tree-based algorithms

CART - classification and regression tree.
Uses *Gini Impurity* instead of *Information Gain*.

CHAID – CHisquared automatic interaction detector. Random forest – ensemble classification method based on decision trees (will see ensembles in another lecture).

 Gini Impurity: measure of how often a randomly chosen instance would be incorrectly classified if it was randomly assigned a class according to the distribution of the training set.

Noise

- Any data which cannot be interpreted correctly
 - Corrupt data
 - Meaningless data
- Causes are varied
 - Sensor malfunction
 - External event causing data misreading
 - Deliberate input of erroneous data
 - ... etc.
- Present in a large number of datasets
- Leads to overfitting

Overfitting

- Model fits the training data too well.
 - Including any noise
- Model does not generalise well to other data (e.g. testing set).
- Model performance (e.g. accuracy) on training set is superior to model performance on testing set.

Accuracy On Training Set

Decision trees purity criteria: Information gain

- Information Gain difference between
 - Information (entropy) contained in dataset (at node where attribute is considered for splitting)
 - Expected information from attribute split
- Expected Information from attribute splitting
 - weighted average of information from each partition
 - Is number of branches important?
 - Lots of branches more chance of pure node, i.e. classified subset
 - Very few branches less chance of pure node.

Highly-branching attributes

- Subsets are more likely to be pure if there is a large number of values
 - More branches, so fewer values per branch
- Attributes with a large number of values likely to have higher information gain.
- Information gain is biased towards choosing attributes with a large number of values
 - This may result in overfitting
- Gain ratio compensates (a little!) for this bias

Overfitting

- Happens when we split our dataset into too many tiny decisions.
- Also likely to happen as the number of attributes approaches the number of samples (i.e. the dataset is as wide as it is long)
- We have enough "names" that each of you probably has a unique name.

Root Node: ID code

- Assume weather data has ID code
 - Each instance has unique ID code
 - ID codes a, b, c, ..., n
 - Splitting on ID code leads to classified tree (max. information gain)
- info(Weather Data) = 0.940
- info(ID split) = info([0,1],[0,1],[1,0],...,[1,0],[0,1]) = 1/14*0+1/14*0+1/14*0+...+1/14*0+1/14*0
- Gain(ID) = 0.940 0 = 0.940 bits
 - Gain is maximal for ID code
- Not a useful decision node!

Gain Ratio

- Takes number and size of branches into account when choosing an attribute
- Information gain
 - entropy with respect to classification
- Gain ratio normalises information gain with entropy in attribute partition
 - entropy with respect to attribute partition
 - ignores classification

Example: Gain Ratio Outlook

- Information as before (entropy wrt classification)
 - info(data) = info([9,5]) = 0.940
 - *info(outlook) = 0.693*
- Gain as before
 - gain(outlook)= 0.940 0.693 = 0.247
- Information wrt Outlook partitions
 - 5 sunny, 4 cloudy, 5 rainy
 - info(data wrt outlook) = info([5,4,5]) = -5/14*log2(5/14) - 4/14 log2(4/14) - 5/14*log2(5/14) = 1.563
- GainRatio(outlook) = gain(outlook)/info(data wrt outlook)= 0.247/1.563 = 0.158

#	Outlook	Temperature	Humidity	Windy	Play
1	Sunny	Hot	High	False	No
2	Sunny	Hot	High	True	No
3	Cloudy	Hot	High	False	Yes
4	Rainy	Mild	High	False	Yes
5	Rainy	Cool	Normal	False	Yes
6	Rainy	Cool	Normal	True	No
7	Cloudy	Cool	Normal	True	Yes
8	Sunny	Mild	High	False	No
9	Sunny	Cool	Normal	False	Yes
10	Rainy	Mild	Normal	False	Yes
11	Sunny	Mild	Normal	True	Yes
12	Cloudy	Mild	High	True	Yes
13	Cloudy	Hot	Normal	False	Yes
14	Rainy	Mild	High	True	No

Example: Gain Ratio Temp

- Gain
 - info(data) = 0.940
 - *info(temp) = 0.911 bits*
 - *gain(temp) = 0.029 bits*
- Information wrt temperature partitions
 - 4 hot, 6 mild, 4 cool
 - info(data wrt temp) = info([4,6,4]) =-4/14* $\log_2(4/14) - 6/14 \log_2(6/14) - 4/14*\log_2(4/14)$ = 1.545
- GainRatio(temp)

gain(temp)/info(data wrt temp) = 0.029/1.545 = 0.019

ŧ	Outlook	Temperature	Humidity	Windy	Play
	Sunny	Hot	High	False	No
2	Sunny	Hot	High	True	No
}	Cloudy	Hot	High	False	Yes
ļ	Rainy	Mild	High	False	Yes
,	Rainy	Cool	Normal	False	Yes
,	Rainy	Cool	Normal	True	No
,	Cloudy	Cool	Normal	True	Yes
3	Sunny	Mild	High	False	No
)	Sunny	Cool	Normal	False	Yes
.0	Rainy	Mild	Normal	False	Yes
.1	Sunny	Mild	Normal	True	Yes
.2	Cloudy	Mild	High	True	Yes
.3	Cloudy	Hot	Normal	False	Yes
.4	Rainy	Mild	High	True	No
			<u> </u>		

Example: Gain Ratio Humidity

- Gain
 - info(data) = 0.940
 - *info*(humidity) = 0.790 bits
 - *gain(humidity) = 0.151 bits*
- Information wrt humidity partitions
 - 7 high, 7 normal
 - Info(data wrt humidity) = info([7,7]) = $-7/14*\log_2(7/14) - 7/14*\log_2(7/14) = 1$
- GainRatio(humidity)

gain(humidity)/info(data wrt humidity) = 0.151/1 = 0.151

#	Outlook	Temperature	Humidity	Windy	Play
1	Sunny	Hot	High	False	No
2	Sunny	Hot	High	True	No
3	Cloudy	Hot	High	False	Yes
4	Rainy	Mild	High	False	Yes
5	Rainy	Cool	Normal	False	Yes
6	Rainy	Cool	Normal	True	No
7	Cloudy	Cool	Normal	True	Yes
8	Sunny	Mild	High	False	No
9	Sunny	Cool	Normal	False	Yes
10	Rainy	Mild	Normal	False	Yes
11	Sunny	Mild	Normal	True	Yes
12	Cloudy	Mild	High	True	Yes
13	Cloudy	Hot	Normal	False	Yes
14	Rainy	Mild	High	True	No

Example: Gain Ratio Windy

- Gain
 - info(data) = 0.940
 - *info(windy) = 0.892 bits*
 - *gain(windy) = 0.048 bits*
- Information wrt windy partitions
 - 6 true, 8 false
 - Info(data wrt windy) = info([6,8]) =-6/14* $\log_2(6/14) - 8/14 \log_2(8/14) = 0.986$
- GainRatio(windy)

gain(windy)/info(data wrt windy)= 0.048/0.986 = 0.049

#	Outlook	Temperature	Humidity	Windy	Play
1	Sunny	Hot	High	False	No
2	Sunny	Hot	High	True	No
3	Cloudy	Hot	High	False	Yes
4	Rainy	Mild	High	False	Yes
5	Rainy	Cool	Normal	False	Yes
6	Rainy	Cool	Normal	True	No
7	Cloudy	Cool	Normal	True	Yes
8	Sunny	Mild	High	False	No
9	Sunny	Cool	Normal	False	Yes
10	Rainy	Mild	Normal	False	Yes
11	Sunny	Mild	Normal	True	Yes
12	Cloudy	Mild	High	True	Yes
13	Cloudy	Hot	Normal	False	Yes
14	Rainy	Mild	High	True	No

Example: Gain Ratios

Gain Ratios

```
    GainRatio(outlook) = 0.247/1.563 = 0.158
    GainRatio(temp) = 0.029/1.545 = 0.019
    GainRatio(humidity) = 0.151/1 = 0.151
    GainRatio(windy) = 0.048/0.986 = 0.049
```

- Outlook still selected as root node
 - But humidity is much closer choice

Problems with Gain Ratio

- Extreme scenario with very high number of values
 - reject attribute even if high gain or gain ratio
- Gain ratio may overcompensate
 - may choose an attribute because its intrinsic information is very low
 - Standard solution
 - only consider attributes with greater than average information gain
 - calculate information gain for all attributes
 - calculate gain ratio for those with > average gain
 - choose attribute with highest gain ratio

Contents (2)

- Lowering priority of high-branching nodes
- Coping with real data
 - numeric values
 - missing values
- Pruning removing tree branches
 - noisy data
- Winnowing feature selection
- Summary

Numeric Attributes

- Standard method
 - Binary splits (e.g. temp < 45).
- Different from nominal attributes
 - Every attribute has many possible split points.
- Solution is straightforward extension
 - Evaluate information gain (or gain ratio) for every possible split point of attribute.
 - Choose "best" split point.
 - Gain for best split point is gain for attribute.
- Computationally more demanding
 - Many possible split points.

Example – numeric values

Outlook	Temperature	Humidity	Windy	Play
Sunny	85	85	False	No
Sunny	80	90	True	No
Cloudy	83	86	False	Yes
Rainy	70	96	False	Yes
Rainy	68	80	False	Yes
Rainy	65	70	True	No
Cloudy	64	65	True	Yes
Sunny	72	95	False	No
Sunny	69	70	False	Yes
Rainy	75	80	False	Yes
Sunny	75	70	True	Yes
Cloudy	72	90	True	Yes
Cloudy	81	75	False	Yes
Rainy	71	91	True	no

May want to standardise or normalise numeric values BEFORE treebuilding.

- Maximum value
- Minimum value

Weather Example

- Split on temperature attribute according to class value
 - Order values (keep class)
 - Split points
 - Mid point between
 2 values
 where class changes

(71+72)/2 = 71.5

- Normal info gain calculation
 - temperature < 71.5: 4 yes and 2 no
 - temperature >= 71.5: 5 yes and 3 no
 - I([4,2],[5,3])=6/14 * I([4,2])+8/14 * I([5,3]) = 0.939
- But do for each split point
 - 64.5, 66.5, 70.5, 71.5, 73.5, 77.5, 80.5, 84

Notes on Binary Splits

- Nominal attributes
 - Information is exhausted using one multi-way split
- Not so for binary splits on numeric attributes
 - Same numeric attribute may be tested several times along path
- Disadvantage: tree relatively hard to read
- Possible remedies
 - Pre-discretisation of numeric attributes
 - multi-way splits instead of binary ones

... Numeric Attributes

 Numeric attributes can be used many times as the root of the subtree

Contents (3)

- Lowering priority of high-branching nodes
- Coping with real data
 - numeric values
 - missing values
- Pruning removing tree branches
 - noisy data
- Summary

Missing Values

- Represented as NA in R
 - Create a new value if "being missing" is significant.
 - Otherwise, utilise other values in the instance without highlighting missing value.
- C5 splits instances with missing values into pieces when
 - Learning decision tree.
 - Applying decision tree to classify new problems.

Missing Values: Learning

- Sums of weights not counts
 - Split for information gain
 - e.g. 11 instances including 1 with a missing value

• 5.5+2.2+3.3=11

... Missing Values: Learning

- Split instance for class distribution
 - e.g. binary class -Yes, No
- Assume that instance with missing value is of class Yes

4 yes, 1 no [5 instances]. Add 5/10 to yes

Info can be calculated as before e.g. Info(7, 4), info(4.5,1), etc.

Missing Values: Classification

- Same procedure
- Probability distributions merged using weights
 - e.g. X is unknown for new problem
 - Class is Blue?
 - Weight = (5.5*4.5+2.2*0.2+3.3*2.3)/11= 0.5*4.5+0.2*0.2+0.3*2.3 = 2.25+0.04+0.69 = 2.98
 - Class is Red?
 - Weight = (5.5*1+2.2*2+3.3*1)/11= 0.5*1+0.2*2+0.3*1=0.5+0.4+0.3=1.2

Contents (4)

- Lowering priority of high-branching nodes
- Coping with real data
 - numeric values
 - missing values
- Pruning removing tree branches
 - noisy data
- Winnowing feature selection
- Summary

Problems with Noisy Data

- Noisy data
 - Wrong attribute values are assigned to instances.
 - Wrong class is assigned to instances.
- Some tree branches may be undesirable
 - Caused by noisy data.
 - Use irrelevant features.
- Pruning simplifies decision tree
 - Prevents over-fitting to noise in data.
 - Prevents over-fitting sparse data.

Decision Tree – example of overfitting

Decision Tree – example of overfitting (2)

Simpler tree – no overfitting

Simple Decision Tree

- <100% accuracy on training set
- good generalisation

Pruning

- Two strategies
 - Pre-pruning (forward/on-line pruning)
 - stops growing a branch when information becomes unreliable
 - Post-pruning (backward pruning)
 - takes a fully-grown decision tree and discards unreliable parts

Pre-Pruning

- Stops growing tree
 - Information gain for all attributes is below threshold.
 - Further growing does not improve leaf error threshold.
- Minimum number of instances (cases) in the (2) most popular branches from a node.
 - E.g. instance threshold of 3
 - minimum number of 3 instances in 2 most popular branches
 - Increase –this parameter if a lot of noisy data
- Pre-pruning may suffer early stopping
 - Growth may stop prematurely
 - May miss out on interactions between attributes i.e. misses out on the combination-lock effect

Post-Pruning

- Builds full tree first and prunes afterwards
 - Attribute interactions are visible in fully-grown tree.
 - When are subtrees due to chance effects?
 - Error estimation determines whether to prune.
- Two main pruning operations
 - Subtree replacement
 - Bottom-up
 - Tree considered for replacement once all subtrees are done
 - Subtree raising
 - Generally more expensive (complicated!)

Post-Pruning: Subtree Replacement

• Bottom-up: Tree considered for replacement once all subtrees have been

Post-Pruning: Subtree Replacement (2)

• Bottom-up: Tree considered for replacement once all subtrees have been

Post-Pruning: Subtree Raising

• Deletes node and redistributes instances

Slower than subtree replacement

• Worthwhile?

• Used by C4.5!

Leaf or subtree

Post-Pruning: Subtree Raising (2)

• Deletes node and redistributes instances

Slower than subtree replacement

• Worthwhile?

• Instances in branches of deleted node (4 and 5)

Re-distributed

When to Post-Prune?

- Pruning happens if estimated error does not increase
- Error on training data is not useful
 - results in almost no pruning
- Pruning parameter is Confidence Factor
 - Default value is 0.25 (25%).
 - Lower values incur heavier pruning.

Contents (5)

- Lowering priority of high-branching nodes gain ratio
- Coping with real data
 - numeric values
 - missing values
- Pruning removing tree branches
 - noisy data
- Winnowing feature selection
- Summary

Winnowing

- Keep only useful attributes (features)
- Data split in half.
- For each attribute
 - Remove attribute
 - Build model with half the data (instances)
 - Test model on other half of data (instances)
 - If removal of attribute does not increase error rate, mark attribute as "useless".
- Build model using only attributes which have not been deemed "useless".

Other pre-processing methods

- Standardisation (centre and scale so mean =0 and SD = 1).
- Normalisation.
- Binarisation.
- Imputation missing values replaced. E.g. by value of most similar instance (example).
- Transformation: e.g.
 - Principal Component Analysis transforms data to a smaller space of (new) uncorrelated variables.
 - Independent Component Analysis obtains variables which are linear combinations of the original ones. These new variables are independent.
- Attribute selection techniques different to winnowing.

Summary

- Decision trees can handle
 - Noisy data
 - Numeric data
 - Missing values
- Pruning avoids overfitting
 - Pre-pruning
 - does not grow branches if only few errors/instances, e.g. minimum number of instances
 - Post-pruning
 - removes branches when classification error is small, e.g. confidence factor.
- Winnowing selects attributes to be considered in model building.
- There are lots of pre-processing techniques which can be used with decision trees.