ТЕХНОЛОГИЯ СОЗДАНИЯ И ВНЕДРЕНИЯ

АСУТП

Владимир Григорьевич Фельдман

ЗАО «Модульные Системы Торнадо»

Введение: СПЕЦИФИКА ОБЪЕКТА

АВТОМАТИЗАЦИИ

Системы управления объектами энергетики

Выработка = нагрузке

Частота в электрической сети

Управляемые и контролируемые потоки ТЭС и энергоблока

Воздействие на окружающую среду

Тема 1: ИНЖЕНЕРНАЯ ПОДГОТОВКА ПРОЕКТИРОВАНИЯ

Предпосылки успешной реализации системы

РЕЗУЛЬТАТ СОЗДАНИЯ АСУ ТП ЗАВИСИТ:

≻не только от правильной стратегии создания системы,

- не только от удачно применённых программных и технических средств,
- и не только от высококвалифицированных специалистов.

В значительной мере он определяется правильной и пунктуально соблюдаемой технологией выполнения работ по созданию системы

Основные разработчики АСУТП

Специалисты, владеющие методами применения средств автоматизации и методами алгоритмизации задач управления, которые поставлены технологами автоматизируемого оборудования

Специалисты по разработке КТС, к ним относятся две категории:

- разработчики ПТК, владеющие знаниями в области принципов и методов создания современных систем управления;
- разработчики периферийной части системы управления, обеспечивающие связь средств, образующих её, с технологическим оборудованием.

Технологи, глубоко разбирающиеся в протекании процесса, который нужно автоматизировать, владеющие подробной информацией о параметрах процессов, характеристиках оборудования и топологии его размещения.

Участники создания АСУТП

Опросные листы

1. Описание перечня автоматизируемых установок (котлы, турбины, главные схемы), их общих характеристик. Описание границ вспомогательных установок и подсистем (подачи топлива, установок сетевой воды).

Эти описания должны быть достаточны для подбора проекта-аналога.

- 2. Количество аналоговых и дискретных датчиков измерения всех видов параметров (температура, давление, уровень, расход, химический анализ, механические измерения, электрические параметры).
- 3. Количество арматуры запорной и регулирующей отдельно (с указанием типа привода: отдельно моторный и соленоидный).
- 4. Количество механизмов СН с электроприводом отдельно по видам напряжения двигателей и спецификой привода (регулируемая скорость, реверсирование).

Этих данных должно быть достаточно для расчёта входов/выходов системы.

5. Специфические требования объекта: имеющиеся площади для размещения средств автоматизации, необходимость интеграции в систему средств сохраняющихся на модернизируемом объекте и др.

Задачи составления ТКП

Концепция АСУТП

Состав системы управления

Непрограммируемые периферийные средства

Функции системы

Организация управления

Компоновка и размещение

Смета на проектирование

Добавить затраты на обеспечение условий существования системы : помещения, вентиляция, энергоснабжение, пожаротушение и др.

Варианты стадийности

Двухстадийное проектирование АСУТП принципиально новых объектов

Одностадийное проектирование АСУТП объектов, имеющих близкие аналоги

График создания АСУТП

Пример распределения работ

Nº □/⊓	Наименование документов и материалов	% от вида обесп.	Сметная сто имость	Разра ботчи к ПТК	Техно логи	Авто матчи ки
3	Информационное Обеспечение	100,00%				
3.1	Перечень входных сигналов и данных	15,00%	97 500,00		1,00	
3.2	Перечень выходных сигналов	13,00%	84 500,00		1,00	
3.3	Описание СКК	3,00%	19 500,00	0,70	0,30	
3.4	Чертежи форм видеокадров и их описание	31,00%	201 500,00	0,10		0,90
3.5	Массив входных/выходных данных	26,00%	169 000,00	0,70		0,30
3.6	Состав выходных данных	8,00%	52 000,00	0,50		0,50
3.7	Описание организации баз данных	4,00%	26 000,00	1,00		

Последовательная детализация исходных данных

Технологическое задание на автоматизацию

- исходные данные для проектирования

Описания

Технологические установки, охватываемые АСУТП, и их границы

Регламент технологического процесса на каждом автоматизируемом участке ТОУ

Топология размещения технологического оборудования

Принятая на объекте система классификации и кодирования

Условия Дистанционного управления

управления

Автоматического регулирования

Технологических защит

Блокировок и АВР

Логического управления

Сигнализации

Взаимодействия с другими системами

Возможного размещения помещений АСУТП

Характеристики

Технологического оборудования и параметров технологического процесса

Запорно-регулирующей арматуры с электро-, пневмо- и гидроприводом

Механизмов и их электропривода

Средств управления, поставляемых комплектно с технологическим оборудованием

Средств управления, интегрируемых в систему, которые приобретаются Заказчиком помимо основного ПТК

Энергоснабжения

Данные для заполнения опросных листов на расходомеры, уровнемеры и анализаторы

Указания ТЗ

Для разработчиков ТЗ содержит информацию о том, что и как они должны сделать по созданию системы

Для Заказчика ТЗ содержит информацию о том, как он должен подготовить объект внедрения системы и персонал к будущему её функционированию

Для будущей приёмочной комиссии ТЗ содержит информацию о том, что и как следует принимать, когда система будет предъявлена к сдаче.

Состав Технического Задания

- Описание объекта автоматизации и деление его на функциональные узлы
 - > Состав управляемых механизмов и арматуры
 - > Состав основных задач управления

Гребования к подготовке объекта для внедрения на нём АСУТП

- По подготовке технологического оборудования
- По обеспечивающим условиям помещениям, энергоснабжению, вентиляции, пожаротушению и т.д.
- По организации и комплектации лабораторий;
- > По подготовке оперативного и неоперативного персонала

Требования по выполнению системы:

- По составу и содержанию выполняемых функций
- По принципам реализации системы и её архитектуре
- По составу видов обеспечения;
- По быстродействию, надёжности и эргономике
- По составу документации
- По порядку контроля, приёмки и срокам создания системы

Подготовка технологического оборудования для автоматизации

- Механизмы должны иметь запас производительности, обеспечивающий необходимый диапазон регулирования. Чаще всего его не хватает ТДМ.
- Технологические установки должны обладать необходимым количеством электрифицированной арматуры, чтобы обеспечить управление от ПТК.
- Места врезки измерительных приборов должны отвечать требованиям метрологии.
- Расходные характеристики регулирующих органов должны быть близки к линейным.

Тема 2: **ОРГАНИЗАЦИЯ ПРОЕКТИРОВАНИЯ АСУТП**

Задачи управления проектами

Полноценное управление ходом проекта предусматривает:

- предварительное определение оптимального хода работ с обоснованной оценкой их взаимного влияния и сроков их выполнения;
- постоянный текущий контроль хода проекта, взаимное согласование и координацию действий собственных подразделений, смежников и субподрядчиков;
- прогнозирование нагрузки на подразделения и отдельных исполнителей, своевременную подготовку к пиковым ситуациям;
- возможно более раннее принятие мер при фактическом отклонении от договорных обязательств и намеченного хода событий.

Элементы линейного графика

						December 200
ID	Наименование работы	Длит	Начало	21 Nov	01 Dec	11 Dec
1	Схемы автоматизации	11 days	26.11.01			♥
2	По котлу	6 days	26.11.01		33%	
3	По турбине	5 days	04.12.01	04	.12	ОАСУ
4	Спецификации приборов	11 days	30.11.01	•		_
5	По котлу	6 days	30.11.01		5,	5 days
6	По турбине	6 days	07.12.01			ОАСУ
7	Заказ непрограммируемых	0 days	14.12.01			14.12
8	Принципиальные схемы	5 days	26.11.01		ОАСУ;ЭТО	
9	Схемы каб. связей	6 days	29.11.01			OA
10	Кабельный журнал	2 days	03.12.01		————OACY	,
11	Раскладка кабелей	6 days	05.12.01			это
12	Ведомость потребн. Каб	0 days	17.12.01			4 17

Тесное взаимодействие разработчиков

- Взаимная увязка плановых сроков работ между организациями.
- Своевременный обмен заданиями, в том числе предварительными и промежуточными материалами с непременным применением эффективных средств передачи информации: например, обмен заданиями по электронной почте.
- Согласование принимаемых технических и организационных решений, взаимное обсуждение проблемных вопросов.
- Ведение реестра выданных заданий.
- Использование единых для всех разработчиков версий инструментальных программных средств.
- Подчинение своих интересов общей конечной цели и задачам каждого этапа, заключающееся в максимальном раскрытии фронта работ для смежников выполнении, по возможности, в первую очередь работ, необходимых для смежников.

Технологическое задание на автоматизацию Детальные характеристики Описание технологического Условия управления технологического оборудования объекта и топологии технологическим и параметров технологических размещения его процессов оборудованием составляющих Техническое задание на АСУТП Алгоритмы контроля Принципиальные Структурные схемы КТС и схемы электрические схемы и и управления, спецификации к ним автоматизации программы Проектная документация

Взаимодействие разработчиков и обмен заданиями, материалами, данными

Контроль и корректировка хода работ — основная задача управления ходом проекта

1. Текущий постоянный контроль и сопоставление хода работ с намеченными планами каждой организацией-соисполнителем разработки системы

- 2. Проведение организационно-технических совещаний для:
- совместной проверки хода работ и выявления причин отклонений от плана;
 - совместного поиска организационных и технических решений при нарушении хода работ;
- своевременной корректировки текущих рабочих графиков.

3. Своевременная информация всех исполнителей о принятых решениях, о поставленных задачах и сроках их исполнения.

Необходимость своевременной детализации решений

Задержка или неполнота необходимой исходной информации приводит к недостаточной проработке или задержке выпуска материалов, зависящих от неё.

Это всё равно придётся дорабатывать на последующих стадиях, но их позднее уточнение может потребовать доработки не только проекта АСУТП, но и смежных частей проекта, которые уже были выполнены вполне добротно и сами по себе не требовали изменений.

• То же самое происходит в тех случаях, когда из-за непродуманности решений на предыдущих стадиях их приходится не детализировать, а радикально изменять.

Проблемный прямой участок

Необходимые по расчёту прямые участки учтены компоновкой трубопроводов до выдачи задания на автоматизацию

Влияние технических решений на организационные

Информационная База Данных (БД)

Этапы заполнения и использования БД разработчиками, проектировщиками, технологами

- 1. для компоновки контроллеров
- 2. для разработки программ
- 3. для разработки таблиц подключения
- 4. для конфигурирования и привязки ПТК
- 5. для передачи Заказчику

Система классификации и кодирования

- СКК на базе KKS позволяет закодировать любые объекты энергопредприятия: технологические, средств автоматизации, электротехнические и т.д.
- Система классификации и кодирования выполняется иерархической таким образом, чтобы каждая очередная ступень кодирования детализировала предыдущую.

H2 3 HFC03 AT001 – котельная №2;

H2 **3**HFC03 AT001 – котел №3;

H2 3 HFC03 AT001 – производство тепла;

H2 3**HF**C03 AT001 – пылесистема;

H2 3**HFC**03 AT001 – мельничная подсистема;

H2 3HFC **03** AT001 – мельничная подсистема №3;

H2 3HFC03 **A**T001 – агрегат;

H2 3HFC03 **AT**001 – мельница;

H2 3HFC03 AT **001** _ **мельница №1**.

Унификация документов и методов работы

Унификация документов и методов работы важна на всех этапах и для всех участников создания АСУТП – и разработчиков, и монтажников, и наладчиков, и пользователей системы. Она обеспечивает:

- сокращение трудозатрат при разработке, наладке, изучении и освоении системы;
- уменьшение ошибок за счёт повторного использования «обкатанных» решений и методов на всех этапах разработки и жизненного цикла системы.

Поэтому, по мере возможности, в создании системы нужно унифицировать всё, что поддаётся унификации.

Унифицируются решения по часто повторяемым элементам. Например, схемы подключения датчиков и исполнительных механизмов выдаются в качестве заданий смежникам по разработке системы.

То же достигается повторным применением удачных материалов проекта. Этому способствует модульное деление при разработке всех видов технических и программных документов.

Высший уровень унификации обеспечивается применением САПР.

Выполнение работ по стандартам и нормативам

- Адаптация стандартов к условиям конкретных объектов
- Разработка внутренних стандартов, которые можно оперативно корректировать, учитывая приобретённый опыт

• Контроль за выходом новых нормативных документов и своевременный учёт их требований в создаваемых системах

В стандартах обобщён опыт многих высококвалифицированных специалистов, поэтому их использование - это и условие высокого уровня решений, и способ сокращения трудозатрат.

Стадии создания системы

Метрологическое обеспечение

Стадия ТЗ Стадия П Стадия РД Изготовление ПТК Наладка системы Приёмка системы

Требования к метрологическому обеспечению

Перечень ИК и выбор средств измерения

Разработка и согласование метрологических методик. Разработка ПО APM метролога. Спецификации лаб. оборудования

Аттестация ИК ПТК

Калибровка и поверка ИК системы, подготовка и проведение опытной эксплуатации и испытаний ИК

Приёмка и сертификация ИК системы

Тема 3: ПРИНЦИПИАЛЬНЫЕ РЕШЕНИЯ СТАДИИ ПРОЕКТ (П) И ДЕТАЛЬНЫЕ РЕШЕНИЯ СТАДИИ РАБОЧАЯ ДОКУМЕНТАЦИЯ (РД)

Схема автоматизации

Унифицированные контуры измерения и управления

Узловая роль схем автоматизации

Составляющие архитектуры ПТК

Видеограммы мнемосхем

Пространственное размещение КТС

Общие требования к составлению алгоритмов

- Описание алгоритмов всех задач, решаемых системой, составляет большой и очень важный раздел работ. Именно алгоритмическая начинка определяет интеллектуальный уровень АСУТП: чем более развиты алгоритмы, тем совершеннее система в плане выполняемых ею функций контроля и управления.
- Алгоритмы могут быть выполнены в графическом, табличном, текстовом или смешанном виде. Удобно, когда форма написания алгоритмов связана с традициями составления схем в конкретной области управления.
- Желательно, чтобы описание алгоритмов, выполнение прикладного обеспечения по ним и наладку вела одна и та же технологическая организация: неизбежно большое количество внесения корректив в алгоритмы, а если эти работы в одних руках, осуществить корректировку проще.
- Нужно предельно достоверно описать будущие действия системы в различных прогнозируемых ситуациях.

Описание алгоритмов

для технологического программирования

Алгоритмы разных функций удобно описывать при технологическом программировании разными языками, которые ближе всего к структуре соответствующих алгоритмов.

Характерными для описания алгоритмов являются следующие способы:

Графические:

- последовательные функциональные диаграммы процедурных шагов и условий переходов от одного шага к другому например, для ФГУ;
- функциональные блоковые диаграммы, построенные из различных функций, имеющихся в библиотеке (статические, динамические и логические преобразования, ПИД-регуляторы, например, для схем авторегулирования;
- язык релейной логики для построения релейных схем;

Текстовые:

- структурированный текст для табличного преобразования;
- язык инструкций низкого уровня для создания оптимизированных процедур.

п.3.2.1.

Формирование сигнала Осевой сдвиг ротора турбины"

Причины различия в требованиях к составу и форме информации на АРМ

Компоновка щитов управления

Обеспечение надёжности и живучести системы

- 1. Устойчивая к любому единичному отказу архитектура системы, дублированные и резервированные структуры
- 2. Проверенные решения и средства высокой надёжности
- 3. Модульное построение технических и программных средств систем
- 4. Малое энергопотребление
- 5. Специальные компоновочные решения, учитывающие структуру объекта
- 6. Автоматическая самодиагностика и автоматизированная диагностика
- 7. Обучение персонала, подробная эксплуатационная документация
- 8. Контроль качества на всех этапах создания системы
- 9. Защита от случайного или несанкционированного доступа

Разновидности принципиальных электрических схем

Схемы управления запорной и регулирующей арматурой

Схемы управления механизмами собственных нужд

Схемы электропитания различных потребителей системы управления

Главная схема, схемы распредустройств и их схемы управления

Принципиальная электрическая схема управления задвижкой

ОБОЗНАЧЕНИЕ	НАИМЕНОВАНИЕ	тип	Кол.	ПРИМ.
	Шкаф сборки задвижек Блоки БОЭ5405 и БОЭ9503			
SF1	Автомат	АП50Б-3МТ	1	
S1, S2	Рубильник	P-16	2	S2 установити дополн.
KMC1, KMT1	Пускатель магнитный	ПМЛ-1501046 2ПКЛ-204	2	
KA1	Реле токовое РТ-140		1	
KL1, KL2	Реле промежуточное	РПЛ-4004	2	
		ПКЛ-2204		
	Электропривод			
М	Двигатель		1	
SB1	Механический контакт штурвала		1	
SQ1 - SQ4	Выключатель конечный	MΠ-2101	4	
	У электропривода			
БЭ3	Блок электропривода задвижки БЭЗ (л. 8.2)		1	
SB2 - SB4	Выключатель кнопочный	КЕ-011, исп. 2	3	Компл. с БЭЗ
	Шкаф КФУ			
6CMH31.AZ1A01	Блок полевого интерфейса	БПИ	5	Для вентиля
6CMH31.AZ2B01				6LAB23AA101
6CMH31.AP3A01				4 присоеди
6CMH31.AZ1A02				нения
6CMH31.AZ2B02		1		

Для вентиля на трубопроводе заполнения трубной системы ПВД 6LAB23AA101 ручное управление выполняется по схеме:

Схема кабельных связей

Позиция прибора	6MAB01CT001 6MAB02CT001	6MAB13CT001M6MAB14CT001M	6LBH41CT001 6LB	H41CT501	6MAC10CT001 6MAC10CT002	2 6NAA11CT001 6NAA12CT00
Измеряемая величина		Т	е м п	е р	a m y p	а
Измеряемая среда	Пар	Металл		П	a p	
Место установки	В стопорном клапане С.Д. 6МАВО2	Перепускные трубы ЦСД слева	Паропро Г.П.П. насброс	•	На выхлопе ЦНД	В отборе В отборе к ПСГ-1 к ПСГ-2
N MBH или установочный чертеж	Применительно МВН1550-63	MBH 1526-63	Применительно Прим МВН1550—63 МЕ	менительно ВН1544-63	Примените	льно МВН 1513-63
Назначение измерения	КИП, сигнализация	к и п	IZIAD.	КИП	КИП, сигнализация	к и п
Условные обозначения			1 2 2	1		
Маркировка контрольного кабеля или провода					6GH007–3100 KBBIЭнг 5x1,5 6GH007–3101 KBBIЭнг 5x1,5	6GH007—3102 КВВГЭнг 5м',5 6GH007—3103 КВВГЭнг 5м',5
Коробка зажимов, ящик зажимов , заводской клеммник	6MABUICT001-1 6MABUICT001-2 6MABUICT001-3 6MABUICT001-3 6MABUICT001-3 6MABUICT001-3 6MABUICT001-3 7 8 8	6MAB/3CT001M-1	9	6GH0 (K3-1	6WACTOCTOOT-1 6WACTOCTOOT-2 6WACTOCTOOT-3 6WACTOCTOOT-3 6WACTOCTOOT-3 6WACTOCTOOZ-1 6WACTOCTOOZ-1 6WACTOCTOOZ-3	6NAA1CT001-4 6 6NAA1CT001-1 9 6NAA1CT001-3 10 6NAA1CT001-3 11 6NAA7CT001-4 12 6NAA7CT001-4 15 6NAA7CT001-4 16 6NAA7CT001-4 16 6NAA7CT001-4 16
Маркировка контрольного кабеля	6GH005-3300 KMTB3"M" 8x1,5	6GH109-3300 KMTB3"M" 8A,5	6CMM08-3101 ПППЭ"XK" 2x1,5		6СН007—3300 КВВГЭнг 10М,5	6GH007—3301 КВВГЭнг 10xl,5
N панелей		БЩУ КФУ 6СММ	A801	<u>Ряд</u>	А КФУ 6СММ51А	БЩУ КФУ 6СММО9А

Организационная структура

Тема 4: Изготовление ПТК и внедрение АСУТП

Изготовление технических средств ПТК

- Разработка конструкторской документации ПТК.
- Заказ и комплектация.

- Сборка и тестирование отдельных контроллеров на монтажном участке разработчика системы.
- Калибровка модулей.

- Интеграционное тестирование ПТК с участием персонала Заказчика.
- Упаковка и отгрузка.

График разработки ПТК

Работа	Длит	Qtr 4, 2003
		Oct Nov Dec Jan Feb Mar Apr May Jur
Структурная схема	10 d	0%
Системное ПО	40 d	0%
Прикладное ПО	70 d	0%
Компоновка контроллеров	20 d	_0%
Задание конструкторам	2 d	50%
Конструкторская документация	20 d	0%
Заказ комплектующих	3 d	── 0%
Комплектация	60 d	_0%
Калибровка модулей	10 d	0%
Сборка контроллеров	20 d	0%
Индивидуальное тестирование	20 d	0%
Программа интеграц. тестирования	10 d	™ 0%
Интеграционное тестирование	10 d	
Упаковка, отпрузка	10 d	0%

Конструкторская разработка

- Обеспечение максимальной производительности при разработке любой документации требует соблюдения принципа модульности, создания шаблонов многократного использования, составление стандартного набора документов по разделу проекта. Конструкторская документация в этом отношении одна из наиболее «унифицируемых» частей документации.
- Многие из конструкторских документов нужны только изготовителю изделий, поэтому выделение части конструкторской документации, которая может быть полезна Заказчику и должна передаваться ему в составе эксплуатационной документации, является самостоятельной задачей.
- Конструкторская документация должна дать исчерпывающее представление об изделии, которое может потребоваться при его изготовлении и испытании:
 - габариты и внешний вид изделия в сборе,
 - компоновка комплектующих изделий,
 - коммутационные связи между элементами изделия,
 - кодирование всех элементов и всех связей,
 - технические характеристики всех элементов,
 - порядок испытания и эксплуатации изделия,
 - требования по упаковке, транспортировке и хранению,
 - формуляр изделия.

Монтажный участок и полигон

Монтажный участок - необходимое подразделение для комплектации, изготовления, всех видов испытаний и упаковки отдельных составляющих ПТК

Испытательный полигон у разработчика и изготовителя ПТК может быть совмещён с монтажным участком, он позволяет:

- провести испытание программируемых средств на работоспособность,
- проверить выполнение значительной части системных функций и пользовательских программ,
- ознакомить представителей Заказчика с основными особенностями системы до того, как ПТК отправлен на монтажную площадку.

Без предварительной отладки ПТК на полигоне возрастает вероятность проблемных ситуаций на объекте

Подготовка объекта к вводу АСУТП

- Обучение персонала
- Реорганизация обслуживающих подразделений в цехе ТАИ

- Комплектация лабораторных приборов и стендов

- Корректировка должностных инструкций

Подготовка персонала Заказчика

Персонал Заказчика, которому предстоит обслуживать систему, должен быть подготовлен до начала интеграционного теста системы, чтобы участвовать в нём

Соисполнители
- к началу
совместной
работы

Оперативный технологический персонал Заказчика - к моменту поузловой наладки системы на объекте

Адресная

Прочий персонал Заказчика

- к моменту приёма системы в опытную эксплуатацию

Опережающая

Ожидаемые результаты обучения соисполнителей и Заказчика

Прямыми результатами этого должны стать:

- ускорение работ соисполнителей;
- успешное преодоление недоверия Заказчика к новым средствам и реакции «отторжения», которая наблюдается в ряде случаев при недостаточно подготовленном персонале;
- успешное освоение системы после её ввода;
- использование творческого потенциала
 Заказчика в создаваемой системе и появление у него возможности реализации своих замыслов с использованием новых средств.

Комплектация и монтаж системы

Комплектация оборудования

Проведение монтажных работ на объекте:

- входной контроль оборудования
- монтаж периферийных средств системы
- комплексирование ПТК и монтаж
- шеф-монтаж и авторский надзор

Пуско-наладочные работы

- Автономная наладка технических и программных средств на объекте после монтажа
- Поузловая наладка системы совместно с отдельными технологическими агрегатами по мере монтажной готовности технологического оборудования.
- Комплексная наладка всех средств системы и её предварительные испытания

Состав эксплуатационной и организационной документации

<u>Эксплуатационная</u>

Общее описание системы

Инструкции по эксплуатации КТС

РП АРМ оператора-технолога

РП АРМ обслуживающего персонала АСУ ТП

Инструкция по формированию и ведению БД

Метрологические методики

Конструкторская документация

Формуляр на систему

Организационная

Программа и методика испытаний системы и ее составляющих

Опытная эксплуатация

- Проверка качества функционирования системы в различных режимах.
- Фиксация и сбор статистики отказов и сбоев для объективной оценки работы системы
- Корректировка документации и программ по изменениям, принятым в процессе наладки
- Наладка части программных средств, отнесённых на опытную эксплуатацию.
- Приёмочные испытания

Промышленная эксплуатация

 Гарантийное и сервисное обслуживание системы

 Доработка системы по выявленным недостаткам

• Периодическое обследование объекта разработчиком с целью сбора и анализа информации о качестве функционирования системы и совершенствования своих решений

Управление оборудованием ТЭС

Надёжное энергоснабжение потребителей

Минимум негативного воздействия на окружающую среду

Высокие экономические показатели

Сохранность оборудования и безопасность персонала