COURSE PLAN

Department :

MATHEMATICS

Course Name & code

ENGINEERING MATHEMATICSIII & MAT 2155

Semester& branch

III SEMESTER & CSE/ICT/CC

Name of the faculty

Enter name of the faculty.

No of contact hours/week:

L	T	Р	С
2	1	0	3

ASSESSMENT PLAN

Course Outcomes (COs)

	At the end of this course, the studentshould be able to:	No. of Contact Hours	Marks
CO1:	Understandconcepts fo combinatorics and apply them.	8	10
CO2:	Understandconcepts in Bodean Algebra and apply them to Bodean functions.	8	10
CO3:	Understandconcepts of graphtheory and their applications.	8	10
CO4:	Understandconcepts of grouptheory and apply them.	10	12
CO5:	Understandconcepts of propositional and predicate calculus.	6	08
	Total		

(Page 1 of 5)

MIT/GEN/F-01/R1

Components Quizzes		SessionalTests	End Semester/ Make-up Examination	
Duration	20 to 30 minutes	60 minutes	180 minutes	
Weightage	20 % (4 X 5 marks)	30 % (2 X 15 Marks)	50 % (1 X 50 Marks)	
Typology of Questions	Understanding/Comprehension; Application;Analysis;Synthesis; Evaluation	Knowledge/Recall; Understanding/ Comprehension; Application	Understanding/ Comprehension; Application; Analysis; Synthesis; Evaluation	
Answer one randomly selected question from the problemshe et (Students can refer their class notes)		MCQ: 10 questions (0.5 marks) Short Answers: 5 questions (2 marks)	Answer all 5 full questions of 10 marks each. Each question may have 2 to 3 parts of 3/4/5/6/7 marks	
Schedule	4, 7, 10, and 13 th week of academic calendar	Calendaredactivity	Calendaredactivity	
Topics Covered	Quiz 1 (L 1-9 & T 1-3) (CO1-2) Quiz 2 (L 10-18 & T 4-6) (CO2-3) Quiz 3 (L 19-27 & T 7-10) (CO3-4) Quiz 4 (L 28-36 & T y7-y8) (CO4-5)	Test 1 (L 1-16 & T 1-5) (CO1-2) Test 2 (L 17-34 & T 6-11) (CO3-4)	Comprehensive examination covering full syllabus. Students are expected to answer all questions (CO1-5)	

Course Plan

L. No./ T. No.	Topics	Course Outcome Addressed
L0	Introduction to the course	CO1-CO5
L1	Permutations and Combinations: With and without repetition, identical objects, examples	CO1
L2	Distributions, Problems on permutations and combinations	CO1
L3	Tutorial	CO1
L4	Principle of Inclusion and Exclusion (statement orly), problems, derangement	CO1
L5	Partitions and Compositions, Ferrers Graph, Generating Functions	CO1
L6	Tutorial	CO1
L7	Ordering of permutations – Lexicographical and reverse Lexicographical, Fike's ordering of permutations	CO1
L8	Relations on a set and types of relations	CO2
L9	Tutorial	CO2
L 10	Partial Ordering Relations and Posets, Chains and anti-Chains	CO2
L 11	Boun d ,Lattices and examples	CO2
L12	Tutorial	CO2

L 13	Basic pro perties of algebraic systems defined by lattices	CO2
L 14	Distributive Lattices and Complemented Lattices	CO2
L 15	Tutorial	CO2
L 16	BodeanLatticesandBodeanAlgebra	CO2
L 17	Graphs – Basic definitions, Basic properties and problems, Isomorphism and self- complementary graphs, problems	CO3
L 18		CO3
L 19	Conrected ressof a graph, Eulerian and Hamiltonian graphs, Center, radius, diameter of a graph	CO3
L 20	TresandProperties	CO3
L 21	Tutorial	CO3
L 22	Matrices related to graphs	CO3
L 23	Dijkstra's algorithmfor findng the shortest path	CO3
L 24	Tutorial	CO3
L 25	Semi-groups, Monoids and Groups – Definitions and examples	CO4
L 26	Elementary pro perties of groups and problems	CO4
L 27	Tutorial	CO4
L 28	Subgroups and related problems	CO4
L 29	Cosets of a groupandrelated problems	CO4
L 30	Tutorial	CO4
L 31	Lagrange's Theorem and related problems, Cyclic groups and proerties	CO4
L 32	Normal subgroups and properties	CO4
L 33	Tutorial	CO4
L 34	Codes and Group codes	CO4
L 35	Propositional calculus – Basic definitions, Connectives Well-formed formulas and tautologies	CO5
L 36		CO5
L 37	Equivalence formulas and tautological implications, inference theory of propositional calculus	CO5
L 38	Predicate calculus – Basic denfifitions, quantifications	CO5
L 39	Tutorial	CO5
L 40	Inferencetheory of Predicated calculus	CO5

Re	fei	er	C	es:
----	-----	----	---	-----

- 1. C.L.Liu, Elements of Discrete Mathematics, Mc Graw Hill, 1986
- J.P. Trembaly and R. Manohar, Discrete Mathematics Structures with application to computer 2. science, Mc Graw Hill, 1987.
- E.S. Pageand L.B. Wilson, An introduction to computational combinations, Cambridge Uni. Press. 3. 1979
- NarasinghDeo, Graphtheory with Application to computer science, PHI, 1987. 4.
- 5. F. Harary, Graph Theory, Arosa Publishing House, New Delhi, secondedition, 1990
- 6. Alan Tucker, Applied Combinatorics, John Wiley and sons, Inc. 1996.
- 7. Click or tap here to enter text.

Submitted by: Mrs. Kavitha Kopp la

(Signature of the faculty)

Date: 19-07-2019

Approved by:

Dr. SudhakaraG

(Signature of HOD)

Date: 19-07-2019

FACULTY MEMBERS TEACHING THE COURSE (IF MULTIPLE SECTIONS EXIST):

NOOETT MEMBERS TEXCHING THE	<u> COOKSE</u>	(III MOETH EEGECTIONS EXIST):	
FACULTY	SECTION	FACULTY	SECTION
VM	CSE(A)	KAB	CC(A)
SNU	CSE(B)	SHK	CC(B)
DS	CSE(C)	VM	ICT(A)
ABB	CSE(D)	KK	ICT(B)

(Page 4 of 5)

MIT/GEN/F-01/R1

l			
<i>(</i>	(Page 5 of 5)		MIT/GEN/F-01/R1
_			, ,,