

ANSYS Composite PrepPost 19.0

Module 10: Progressive Failure and Crack Growth Analysis

- Two different approaches are available for interface delamination
- based on fracture criteria and fracture mechanics (VCCT-Based Crack Growth Simulation)
 Crack is initiated by an failure criteria and is developing along predefined path. Can be defined in ACP using interface layer

- 2. based on hardening-softening material laws (Cohesive Zone Materials)
 - 1) used with Interface Elements (Interface Delamination) Can be defined in ACP using interface layer
 - 2) used with Contact Elements (Contact Debonding)

- First approach: VCCT-Based Crack Growth Simulation
- Different Failure Criteria f (if f ≥ 1 failure occurs) are available
 - by direct input of the critical Energy-Release Rate

- by specifying a Fracture Criterion coming from the Engineering Data Page
- different Fracture Criteria are available

 Crack is initiated by failure criteria and is developing along a path made up from interface elements

- Second approach: Cohesive Zone Material
- Different Cohesive Zone Materials are available
 - for an interface modeling with Interface Elements (specify the CZM method, Interface Delamination)

for an interface modeling with Contact Elements

The crack growths according to the defined material behavior

Progressive Damage

- Analyzing the progressive damage of composite design is possible in ANSYS using additional material properties introduced into Engineering Data
- The user needs to define the failure criteria used for the compressive fiber and matrix failure as well as for tensile fiber and matrix failure.
- Maximum Stress, Maximum Strain, Puck, Hashin, LaRCO3 and LaRC 04 are available
- The user can define the stiffness reduction for all four failure modes

Progressive Damage

Model and Load

Damage Status

For more information check Workshop 16 – Modeling Progressive Damage – Advanced Example

