Consequência Lógica e Argumentação

Esdras Lins Bispo Jr. bispojr@ufg.br

Lógica para Ciência da Computação Bacharelado em Ciência da Computação

22 de maio de 2014

Plano de Aula

- Pensamento
- 2 Avisos
- Revisão
- 4 Consequência Lógica
- 6 Argumentação

Sumário

- Pensamento
- 2 Avisos
- Revisão
- 4 Consequência Lógica
- 6 Argumentação

Pensamento

Pensamento

Frase

Ter a meta como alvo, mas viver pelo bom senso.

Quem?

Desconhecido ***

Sumário

- Pensamento
- 2 Avisos
- Revisão
- 4 Consequência Lógica
- 6 Argumentação

Avisos

Lista 03 - Exercícios

- Já disponível no Canvas;
- Data de Entrega: 02 de junho (Segunda-feira), até 17h.

Avisos

Lista 03 - Exercícios

- Já disponível no Canvas;
- Data de Entrega: 02 de junho (Segunda-feira), até 17h.

Datas importantes

- Prova 1: 20 de maio;
- Teste 2: 10 de junho;

Notícias do Santa Cruz

Sumário

- Pensamento
- 2 Avisos
- Revisão
- 4 Consequência Lógica
- 6 Argumentação

Eliminação da dupla negação

$$\neg \neg p \models p$$

Introdução da dupla negação

$$p \models \neg \neg p$$

Eliminação do ∧

$$p \land q \models p$$

$$p \land q \models q$$

Eliminação da dupla negação

$$\neg \neg p \models p$$

Introdução da dupla negação

$$p \models \neg \neg p$$

Eliminação do ∧

$$p \land q \models p$$

$$p \land q \models q$$

Adição do ∨

$$p \models p \lor q$$

Sumário

- Pensamento
- 2 Avisos
- Revisão
- 4 Consequência Lógica
- 6 Argumentação

Modus Ponens

$$(p \to q) \land p \models q$$

Modus Ponens

$$(p \to q) \land p \models q$$

Modus Tollens

$$(p \to q) \land \neg q \models \neg p$$

Modus Ponens

$$(p \rightarrow q) \land p \models q$$

Modus Tollens

$$(p \to q) \land \neg q \models \neg p$$

Redução ao absurdo

$$(p \rightarrow q) \land (p \rightarrow \neg q) \models \neg p$$

Modus Ponens

$$(p \rightarrow q) \land p \models q$$

Modus Tollens

$$(p \to q) \land \neg q \models \neg p$$

Redução ao absurdo

$$(p \rightarrow q) \land (p \rightarrow \neg q) \models \neg p$$

Silogismo Disjuntivo

$$(p \lor q) \land \neg p \models q$$

Sumário

- Pensamento
- 2 Avisos
- Revisão
- 4 Consequência Lógica
- 6 Argumentação

Argumento

Um argumento pode ser representado em forma simbólica como $p_1 \wedge p_2 \wedge p_3 \wedge \cdots \wedge p_n \models q$

Argumento

Um argumento pode ser representado em forma simbólica como $p_1 \wedge p_2 \wedge p_3 \wedge \cdots \wedge p_n \models q$ em que $p_1, p_2, p_3 \cdots, p_n$ e q são fórmulas proposicionais.

Argumento

Um argumento pode ser representado em forma simbólica como $p_1 \wedge p_2 \wedge p_3 \wedge \cdots \wedge p_n \models q$ em que $p_1, p_2, p_3 \cdots, p_n$ e q são fórmulas proposicionais.

Premissas

Chamamos $p_1, p_2, p_3, \dots, p_n$ de premissas (ou hipóteses) do argumento.

Argumento

Um argumento pode ser representado em forma simbólica como $p_1 \wedge p_2 \wedge p_3 \wedge \cdots \wedge p_n \models q$ em que $p_1, p_2, p_3 \cdots, p_n$ e q são fórmulas proposicionais.

Premissas

Chamamos $p_1, p_2, p_3, \dots, p_n$ de premissas (ou hipóteses) do argumento.

Conclusão

Chamamos q de conclusão do argumento.

Terminologia

Terminologia,

ullet q é uma consequência lógica de p_1,p_2,p_3,\cdots,p_n

Terminologia

• q pode ser deduzido logicamente de $p_1, p_2, p_3, \cdots, p_n$

Terminologia

• q é uma conclusão lógica de $p_1, p_2, p_3, \cdots, p_n$

Terminologia

• $p_1, p_2, p_3, \dots, p_n$ implica logicamente em q

Terminologia

• q segue logicamente de $p_1, p_2, p_3, \dots, p_n$

Terminologia

- q é uma consequência lógica de $p_1, p_2, p_3, \cdots, p_n$
- q pode ser deduzido logicamente de $p_1, p_2, p_3, \dots, p_n$
- q é uma conclusão lógica de $p_1, p_2, p_3, \cdots, p_n$
- $p_1, p_2, p_3, \dots, p_n$ implica logicamente em q
- q segue logicamente de $p_1, p_2, p_3, \dots, p_n$

Argumento Válido

Um argumento é válido se $p_1 \wedge p_2 \wedge p_3 \wedge \cdots \wedge p_n \models q$ for válida.

Argumento Válido

Um argumento é válido se $p_1 \wedge p_2 \wedge p_3 \wedge \cdots \wedge p_n \models q$ for válida.

Exemplos

Argumento Válido

Um argumento é válido se $p_1 \wedge p_2 \wedge p_3 \wedge \cdots \wedge p_n \models q$ for válida.

Exemplos

• $p \land q \models r$ é um argumento válido?

Argumento Válido

Um argumento é válido se $p_1 \wedge p_2 \wedge p_3 \wedge \cdots \wedge p_n \models q$ for válida.

Exemplos

• $p \models p \lor q$ é um argumento válido?

Argumento Válido

Um argumento é válido se $p_1 \wedge p_2 \wedge p_3 \wedge \cdots \wedge p_n \models q$ for válida.

Exemplos

• $(p \rightarrow q) \land p \models q$ é um argumento válido?

Argumento Válido

Um argumento é válido se $p_1 \wedge p_2 \wedge p_3 \wedge \cdots \wedge p_n \models q$ for válida.

Exemplos

• $(p \rightarrow q) \land q \models p$ é um argumento válido?

Argumento Válido

Um argumento é válido se $p_1 \wedge p_2 \wedge p_3 \wedge \cdots \wedge p_n \models q$ for válida.

Exemplos

- $p \land q \models r$ é um argumento válido?
- $p \models p \lor q$ é um argumento válido?
- $(p \rightarrow q) \land p \models q$ é um argumento válido?
- $(p \rightarrow q) \land q \models p$ é um argumento válido?

Problema É possível garantir a validade de um argumento sem ter que recorrer à construção de uma tabela-verdade?

Problema É possível garantir a validade de um argumento sem ter que recorrer à construção de uma tabela-verdade?

Exemplos

Problema É possível garantir a validade de um argumento sem ter que recorrer à construção de uma tabela-verdade?

Exemplos

• $(p \rightarrow q) \land (p \land r) \models q$ é um argumento válido?

Problema É possível garantir a validade de um argumento sem ter que recorrer à construção de uma tabela-verdade?

Exemplos

• $(p \land q) \land ((p \lor r) \rightarrow s)) \models p \land s$ é um argumento válido?

Problema É possível garantir a validade de um argumento sem ter que recorrer à construção de uma tabela-verdade?

Exemplos

• $(p \rightarrow (q \rightarrow r)) \land (p \rightarrow q) \land p \models r$ é um argumento válido?

Problema É possível garantir a validade de um argumento sem ter que recorrer à construção de uma tabela-verdade?

Exemplos

- $(p \rightarrow q) \land (p \land r) \models q$ é um argumento válido?
- $(p \land q) \land ((p \lor r) \rightarrow s)) \models p \land s$ é um argumento válido?
- $(p \rightarrow (q \rightarrow r)) \land (p \rightarrow q) \land p \models r$ é um argumento válido?

Onde estudar mais...

Seção 1.3: Lógica Proposicional

GERSTING, J. L. Fundamentos Matemáticos para a Ciência da Computação: um tratamento moderno de matemática discreta. Rio de Janeiro: LTC, 2004.

Consequência Lógica e Argumentação

Esdras Lins Bispo Jr. bispojr@ufg.br

Lógica para Ciência da Computação Bacharelado em Ciência da Computação

22 de maio de 2014

