目录

- 1. 产品图片
- 2. 特征
- 3. 引脚定义和介绍
- 4. 产品参数和规格
- 5. 外部参考原理图
- 6. 调试设备
- 7. 测试数据规格
- 8. 测试方案图表
- 9. AT 指令集
- 1. 产品图片

TX(1)

RX (2)

KEY (26)

LED (24)

3. 3V (12)

GND (13)

Ⅰ 性能概要 完整的蓝牙解决方案

- Ø 蓝牙 2.0 带 EDR, 2Mbps-3Mbps 调制度
- Ø 内置 2.4GHz 天线, 用户无需调试天线
- Ø 外置 8Mbit FLASH
- Ø 低电压 3.3V 工作
- Ø 可选 PIO 控制
- Ø 标准 HCI 端口(UART or USB)
- Ø USB 协议: Full Speed USB1.1, Compliant With 2.0
- Ø 模块可以作为 SMD 贴片工艺
- Ø RoHS 制程
- Ø 引脚半孔工艺
- Ø 数字 2.4GHz 无线收发射
- Ø CSR BC04 蓝牙芯片技术
- Ø 自适应跳频技术
- Ø 体积小,(27mm×13mm **≥**mm)
- Ø 简单的外围设计电路
- Ø 蓝牙 Class 2 功率级别
- Ø 存储温度:-40至+85度,工作温度:-25至+75度
- Ø 灵敏度 (误码率)达到 80dBm
- Ø -4 -> 6dBm 功率可调输出

- Ø 协波干扰: 2.4MHz, 发射功率 3 dBm
- Ø 误码率:0,但会在传输链路产生信号衰变,才有误码,如 RS232 和 TTL 线路处理线路中
- | 低功耗
- | 高性能无线收发系统
- | 低成本
- l 应用领域
 - Ø 蓝牙车载免提
 - Ø 蓝牙 GPS
 - Ø 蓝牙 PCMCIA, USB Dongle
 - Ø 蓝牙数据传送
- Ⅰ 软件
 - Ø CSR

3. 引脚定义和功能

本原理图与实物脚序一致

PIN Name	PIN#	Pad type	Description	Note		
GND	13 21	VSS	Ground pot			
	22					
1V8	14	VDD	Integrated 1.8V (+) supply			

			with On-chip linear regulator output within 1.7-1.9V	
VCC	12	3.3V		
AIO0	9	Bi-Directional	Programmable input/output line	
AIO1	10	Bi-Directional	Programmable input/output line	
PIO0	23	Bi-Directional RX EN	Programmable input/output line, control output for LNA(if fitted)	
PIO1	24	Bi-Directional TX EN	Programmable input/output line, control output for PA(if fitted)	
PIO2	25	Bi-Directional	Programmable input/output line	
PIO3	26	Bi-Directional	Programmable input/output line	
PIO4	27	Bi-Directional	Programmable input/output line	
PIO5	28	Bi-Directional	Programmable input/output line	
PIO6	29	Bi-Directional	Programmable input/output line	CLK_REQ
PIO7	30	Bi-Directional	Programmable input/output CLK_OUT line	
PIO8	31	Bi-Directional	Programmable input/output line	
PIO9	32	Bi-Directional	Programmable input/output line	
PIO10	33	Bi-Directional	Programmable input/output line	
PIO11	34	Bi-Directional	Programmable input/output line	

RESETB	11	CMOS Input		
		with weak		
		intemal		
		pull-down		
UART_RT	4	CMOS output,	UART request to send,	
S		tri-stable with	active low	
		weak internal		
		pull-up		
UART_CT	3	CMOS input with	UART clear to send, active	
S		weak internal	low	
		pull-down		
UART_RX	2	CMOS input with	UART Data input	
		weak internal		
		pull-down		
UART_TX	1	CMOS output,	UART Data output	
		Tri-stable with		
		weak internal		
		pull-up		
SPI_MOSI	17	CMOS input with	Serial peripheral interface	
		weak internal	data input	
		pull-down		
SPI_CSB	16	CMOS input with	Chip select for serial	
		weak internal	peripheral interface, active	
		pull-up	low	
SPI_CLK	19	CMOS input with	Serial peripheral interface	
		weak internal	clock	
		pull-down		
SPI_MISO	18	CMOS input with	Serial peripheral interface	
		weak internal	data Output	
		pull-down		
USB	15	Bi-Directional		
USB_+	20	Bi-Directional		

1.8V	14		可以外部供电 1.8V	默 认 为 内 部 供 电 1.8V
PCM_	5	Bi-Directional		
CLK				
	6	CMOS output		
PCM_OUT				
PCM_IN	7	CMOS Input		
PCM_ SYNC	8	Bi-Directional		

4. 产品参数和规格

27mm×13mm×2mm

上图为产品尺寸及外观,具体型号不同,模块稍有不同,但尺寸一样!

CSR,BC417143B

V 2.0 2006/09/6

蓝牙 RF 模块

- 1. 采用 CSR BC4 +8M FLASH 方案
- 2. 具有 PIO0-PIO11、AIO0、AIO1、 USB、PCM、UART 及 SPI 接口, 模块内置 8MFLASH,功能强大, 用户可定制软件,适用于各种蓝牙 设备,内置 RF 天线,便于调试。

蓝牙协议版本	Bluetooth Specification V2.0 With EDR		
USB 协议	Full Speed USB V1.1		
USB Protocol	Compliant With USB V2.0		
頻率	2.4Ghz ISM band		
调制方式	GFSK(Gaussian Frequency Shift Keying)		
发射功率	-4 ->4 dBm, Class 2		
灵敏度	≤-80dBm at 0.1% BER		
通讯速率	Asynchronous:2Mbps(Max)		
供电电源	3.3V		
工作温度	-20~+55 Centigrade		
封装尺寸	27mmX13mmX2mm		

LV-BC-2.0

单位: mm

5. 参考原理图

对于 HC-04,HC-06 主机而言, WAKEUP 按下后会放弃记忆, 重新搜索新的从机, 如果不放弃记忆, 主机将一直搜索上一次配对过的从机, 直到搜到并配对成功为止, HC-04/06 的主机有个特性就是记忆最后一次配对过的从机。WAKEUP 对于从机而言没有意义。

6. 调试设备

6.1 仪器设备

电脑, 硬件, 3G 频率计 (SP3386), 3.15V DC 电源, 屏蔽房, MT8850A (or MT8852B), 蓝牙测试盒.

6.2 软件

7. 测试数据规格

			Test C	Test Condition 25	
		Min	Typ	Max	Unit
<u>1.</u>	Carrier Freq. (ISM Band)	2.4		2.4835	MHz
<u>2.</u>	RF O/P Power	-6	2	4	dBm
<u>3.</u>	Step size of Power control	2		8	dB
<u>5.</u>	Freq. Offset (Typical Carrier freq.)	-75		75	KHz
6.	Carrier Freq. drift (Hopping on, drift rate/50uS)	-20		20	KHz
	1 slot packet	-25		25	KHz
	3 slot packet	-40		-40	KHz
<u>7.</u>	Average Freq. Deviations (Hopping off, modulation	ı) 140		175	KHz
	Freq. Deviation	115			KHz
	Ratio of Freq. Deviation	0.8			
8.	Receive Sensitivity @< 0.1% BER(Bit error rate)-83			dBm

8. 测试方案图表

Fig 1. Programming and Freq. Alignment

Fig 2 RF parameter Test Procedure

Fig 3 Assemble/Alignment/Testing Flow Chart

9. AT 指令集

1、测试通讯

发送:AT(返回OK,一秒左右发一次)

返回:OK

2、改蓝牙串口通讯波特率

发送: AT+BAUD1 返回: OK1200

发送: AT+BAUD2 返回: OK2400

.

1-----1200

2-----2400

3-----4800

4-----9600

5-----19200

6-----38400

7-----57600

8-----115200

9-----230400

A-----460800

B-----921600

C-----1382400

不建议用在超过 115200 的波特率,信号的干扰会使系统不稳定。

设置超过 115200 后用电脑无法使用,要用单片机编程于高于 115200 才能使用此波特率和 重新发 AT 命令设低波特率

用 AT 命令设好波特率后,下次上电使用不需再设,可以掉电保存波特率。

3、改蓝牙名称

发送:AT+NAMEname

返回:OKsetname

参数 name: 所要设置的当前名称,即蓝牙被搜索到的名称。20 个字符以内。

例:发送 AT+NAMEbill_gates

返回 OKsetname

这时蓝牙名称改为 bill_gates 参数可以掉电保存,只需修改一次。PDA 端刷新服务可以看到更改后的蓝牙名称。

4、改蓝牙配对密码

发送:AT+PINxxxx

返回:OKsetpin

参数 xxxx: 所要设置的配对密码, 4 个字节, 此命令可用于从机或主机。从机是适配器或手机弹出要求输入配对密码窗口时, 手工输入此参数就可以连接从机。主蓝牙模块搜索从机后, 如果密码正确,则会自动配对, 主模块除了可以连接配对从模块外, 其他产品包含从模块的时候也可以连接配对, 比如含蓝牙的数码相机, 蓝牙 GPS, 蓝牙串口打印机, 等等, 特别地, 蓝牙 GPS 为典型例子

例:发送AT+PIN8888

返回 OKsetpin

这时蓝牙配对密码改为 8888,模块在出厂时的默认配对密码是 1234。 参数可以掉电保存,只需修改一次。

5、获取版权命令:AT+VERSION

返回 Linvor 则为正品