Digital Circuits and Systems

Karnaugh Maps

Shankar Balachandran*
Associate Professor, CSE Department
Indian Institute of Technology Madras

*Currently a Visiting Professor at IIT Bombay

Karnaugh Maps

- Truth tables are a convenient form to represent equations but they don't aid in the simplification of logic equations.
- Karnaugh maps (K-maps) are similar to TT's and they lead to graphical methods for boolean expression simplification.
- A K-map is a multi-dimensional tabulation of function values.
- Each minterm is assigned an entry (a cell) in the table. The cell contains the value of the function for the corresponding minterm.

2 variable K-map: f(a,b)

3-variable K-map: f(a,b,c)

OR

4-variable K-map: f(a,b,c,d)

f(a,b,c,d)			c		•	f(a,b,c,d) ab				a			
8	ab	00	01	11	10	1	(cd^{a}	00	01	11	10	
	00	m_{oooo}	m ₀₀₀₁	m ₀₀₁₁	m ₀₀₁₀			00	m _{oooo}	m ₀₁₀₀	m ₁₁₀₀	m ₁₀₀₀	
	01	m ₀₁₀₀	m ₀₁₀₁	m ₀₁₁₁	m ₀₁₁₀		OR b	01	m ₀₀₀₁	m ₀₁₀₁	m ₁₁₀₁	m ₁₀₀₁	
a	11	m ₁₁₀₀	m ₁₁₀₁	m ₁₁₁₁	m ₁₁₁₀			11	m ₀₀₁₁	m ₀₁₁₁	m ₁₁₁₁	m ₁₀₁₁	
	10	m ₁₀₀₀	m ₁₀₀₁	m ₁₀₁₁	m ₁₀₁₀		c	10	m ₀₀₁₀	m ₀₁₁₀	m ₁₁₁₀	m ₁₀₁₀	•
d						b							

$$f = a + bc + \overline{d}$$

	j ar se ra						
f(a,b,c,d) cd							
ab \	00	01	11	10			
00				_			
	$\overline{\mathrm{d}}$			$\overline{\mathrm{d}}$			
01			bc	bc			
O1	$\overline{\mathrm{d}}$			$\overline{\mathbf{d}}$			
11	a	a	a bc	a bc			
	$\overline{\mathrm{d}}$			$\overline{\mathrm{d}}$			
10	a	a	a	a			
10	$\overline{\mathrm{d}}$			$\overline{\mathrm{d}}$			

a

 $\overline{\mathbf{d}}$

a

10

a

a

 $\overline{\mathbf{d}}$

 $f = a + bc + \overline{d}$

K-map Example 1'

$$f = a + bc + \overline{d}$$

$$cd \qquad bo \qquad 01 \qquad 11 \qquad 10$$

$$00 \qquad \overline{d} \qquad \overline{d} \qquad \overline{d} \qquad \overline{d}$$

$$01 \qquad \qquad bc \qquad a \qquad bc \qquad a$$

$$11 \qquad \qquad bc \quad a \quad bc \quad a$$

$$10 \qquad \overline{d} \qquad \overline{d} \qquad \overline{d} \qquad \overline{d}$$

Note: This K-map is drawn by swapping the placement of variable pairs ab and cd

$$f = a + bc + \overline{d}$$

f(a,b,c,d)									
cd ab	00	01	11	10					
00	$\frac{1}{\overline{d}}$	1 <u>d</u>	$\begin{array}{ccc} a & & \\ & 1 & \\ & & \overline{d} \end{array}$	$\begin{bmatrix} a \\ & 1 \\ & \overline{d} \end{bmatrix}$					
01	0	0	a 1	a 1					
11	0	bc 1	a bc	a 1					
10	1 <u>d</u>	bc 1 d	$\begin{array}{ccc} a & bc \\ & 1 & \overline{d} \end{array}$	a 1 d					

K-map Example 2

$$f(w,x,y,z) = \overline{wz} + x\overline{y} + \overline{x}$$

K-map Example 2

$$f(w,x,y,z) = \overline{wz} + x\overline{y} + \overline{x}$$

K-Map Properties

Minterms mapped to any two adjacent cells differ in exactly one bit position

Example
$$f(w,x,y,z) = \sum_{x,y,z} (0,2,3,4,6,8,10,11)$$

Karnaugh Maps

The sum of two minterms in adjacent cells can be simplified to a single product (AND) term with one less variable.

Example

If we combine adjacent minterms in the first column we get,

$$\overline{a}\overline{b}\overline{c} + a\overline{b}\overline{c} = \overline{b}\overline{c}(\overline{a} + a) = \overline{b}\overline{c}$$

That is, variable a is eliminated.

Example

$$f(a,b,c)$$
 be a 00 01 11 10 0 1 1 1 1

If we combine adjacent minterms like what is shown above we get,

$$\overline{a}bc + \overline{a}b\overline{c} = \overline{a}b(\overline{c} + c) = \overline{a}b$$

That is, variable c is eliminated.

End of Week 2: Module 8

Thank You