Syntagmatic Relation Discovery: Conditional Entropy

ChengXiang "Cheng" Zhai
Department of Computer Science
University of Illinois at Urbana-Champaign

Syntagmatic Relation Discovery: Conditional Entropy

What If We Know More About a Text Segment?

Prediction question: Is "meat" present (or absent) in this segment?

Does presence of "eats" help predict the presence of "meat"? Does it reduce the uncertainty about "meat", i.e., H(X_{meat})?

What if we know of the absence of "eats"? Does it also help?

Conditional Entropy

Know nothing about the segment

Know "eats" is present ($X_{eats} = 1$)

$$p(X_{meat} = 1)$$
 $p(X_{meat} = 1 | X_{eats} = 1)$

$$p(X_{meat} = 0)$$
 ----- $p(X_{meat} = 0 | X_{eats} = 1)$

$$H(X_{meat}) = -p(X_{meat} = 0) \log_2 p(X_{meat} = 0) - p(X_{meat} = 1) \log_2 p(X_{meat} = 1)$$

$$H(X_{meat} | X_{eats} = 1) = -p(X_{meat} = 0 | X_{eats} = 1) \log_2 p(X_{meat} = 0 | X_{eats} = 1)$$

$$-p(X_{meat} = 1 | X_{eats} = 1) \log_2 p(X_{meat} = 1 | X_{eats} = 1)$$

$$H(X_{meat} / X_{eats} = 0)$$
 can be defined similarly

Conditional Entropy: Complete Definition

$$\begin{split} & \boldsymbol{H}(\boldsymbol{X}_{meat} \, / \, \boldsymbol{X}_{eats} \,) = \sum_{\mathbf{u} \in \{0,1\}} [p(\boldsymbol{X}_{eats} = \mathbf{u}) \, \, \boldsymbol{H}(\boldsymbol{X}_{meat} = \mathbf{v} \, | \, \boldsymbol{X}_{eats} = \mathbf{u})] \\ & = \sum_{\mathbf{u} \in \{0,1\}} [p(\boldsymbol{X}_{eats} = \mathbf{u}) \, \sum_{\mathbf{v} \in \{0,1\}} [-p(\boldsymbol{X}_{meat} = \mathbf{v} \, | \, \boldsymbol{X}_{eats} = \mathbf{u}) \, \log_2 p(\boldsymbol{X}_{meat} = \mathbf{v} \, | \, \boldsymbol{X}_{eats} = \mathbf{u})]] \end{split}$$

In general, for any discrete random variables X and Y, we have $H(X) \ge H(X|Y)$

What's the minimum possible value of H(X|Y)?

Conditional Entropy to Capture Syntagmatic Relation

$$H(X_{meat} \mid X_{eats}) = \sum_{u \in \{0,1\}} [p(X_{eats} = u) \mid H(X_{meat} = v \mid X_{eats} = u)]$$

$$H(X_{meat} \mid X_{meat}) = ?$$

Which is smaller? $H(X_{meat}|X_{the})$ or $H(X_{meat}|X_{eats})$? For which word w, does $H(X_{meat}|X_{w})$ reach its minimum (i.e., 0)? For which word w, does $H(X_{meat}|X_{w})$ reach its maximum, $H(X_{meat})$?

Conditional Entropy for Mining Syntagmatic Relations

- For each word W1
 - For every other word W2, compute conditional entropy $H(X_{W1}|X_{W2})$
 - Sort all the candidate words in ascending order of $H(X_{W1}|X_{W2})$
 - Take the top-ranked candidate words as words that have potential syntagmatic relations with W1
 - Need to use a threshold for each W1
- However, while $H(X_{W1}|X_{W2})$ and $H(X_{W1}|X_{W3})$ are comparable, $H(X_{W1}|X_{W2})$ and $H(X_{W3}|X_{W2})$ aren't!

How can we mine the strongest K syntagmatic relations from a collection?