Markdown in Stata

1. What is markdown?

Markdown is a markup language that can be written using a plain text editor. It allows plain text content to be formatted with simple markup syntax.

2. Why should we study markdown?

- Markdown's syntax is easy to learn, and its feature is more powerful than plain text.
- It is easy to turn markdown into ppt,pdf and a word document.

3. What can we use markdown to do?

3.1 make a to-do list

- [] read a book
- [x] do homework
- [x] watch a movie

3.2 write formula

 $E = mc^2$

4. How to use markdown?

4.1 title

H1:# Header 1

H2:## Header 2

H3:### Header 3

H4:### Header 4

H5:#### Header 5

H6:##### Header 6

4.2 Italic and bold

ltalic **bold**

5. How to combine markdown and stata?

5.1 Requirements

The command uses an external Markdown processor, John MacFarlane's **pandoc**, which can be downloaded for Linux, Mac or Windows from *pandoc.org/installing*. Generating Word documents requires Pandoc2.0 or higher. It also requires the Stata command **whereis**, available from SSC. This command is used to keep track of ancillary programs and is usually installed together with **markstat**. After downloading pandoc, you save the location of the executable in the whereis database by running the command *whereis pandoc* location.

If you want to generate PDF output you also need LaTeX, specifically **pdflatex**, which comes with MiKTeX on Windows, MacTeX on Macs or Live TeX on Linux. You save the location of the converter by running the command *whereis pdflatex* location. This is also used for Beamer presentations.

5.2 code

whereis pandoc "C:15.exe" whereis pdflatex "C:152.964.exe" markstat using filename [, pdf docx slides beamer mathjax bundle bibliography strict nodo nor keep]

6. example

6.1 Nerlove

- . clear
- . import excel "C:\Users\Sabrina\Desktop\econometrics\nerlove.xls", firstrow cl
 > ear
- . la data "Nerlove 1963 paper"
- . describe

Contains	data	
obs:		145
vars:		5

size: 4,060

Nerlove 1963 paper

variable name	storage type	display format	value label	variable label	
TC	double	%10.0g		TC	
Q	int	%10.0g		Q	
PL	double	%10.0g		PL	
PF	double	%10.0g		PF	
PK	int	%10.0g		PK	

Sorted by:

Note: Dataset has changed since last saved.

. list TC Q

	тс	Q
1.	.082	2
2.	.661	3
3. 4.	.99 .315	4 4
4. 5.	.197	4 5
٠,	.197	
6.	.098	9
7.	.949	11
8.	.675	13
9.	.525	13
10.	.501	22
11.	1.194	25
12.	.67	25
13.	.349	35
14.	.423	39
15.	.501	43
16.	.55	63
17.	.795	68
18.	.664	81
19.	.705	84
20.	.903	73
21.	1.504	99
22.	1.615	101
23.	1.127	119
24.	.718	120
25.	2.414	122
26.	1.13	130
27.	.992	138
28.	1.554	149
29.	1.225	196
30.	1.565	197
31.	1.936	209
32.	3.154	214
33.	2.599	220
34.	3.298	234
35.	2.441	235
36.	2.031	253
37.	4.666	279
38.	1.834	290

39. 40.	2.072 2.039	290 295
41. 42. 43. 44. 45.	3.398 3.083 2.344 2.382 2.657	299 324 333 338 353
46. 47. 48. 49.	1.705 3.23 5.049 3.814 4.58	353 416 420 456 484
51. 52. 53. 54. 55.	4.358 4.714 4.357 3.919 3.442	516 550 563 566 592
56. 57. 58. 59.	4.898 3.584 5.535 4.406 4.289	671 696 719 742 795
61. 62. 63. 64.	6.731 6.895 5.112 5.141 5.72	800 808 811 855 860
66. 67. 68. 69.	4.691 6.832 4.813 6.754 5.127	909 913 924 984 991
71. 72. 73. 74. 75.	6.388 4.509 7.185 6.8 7.743	1000 1098 1109 1118 1122
76. 77. 78. 79.	7.968 8.858 8.588 6.449 8.488	1137 1156 1166 1170 1215
81.	8.877	1279

82. 83. 84. 85.	10.274 6.024 8.258 13.376	
86. 87. 88. 89.	10.69 8.308 6.082 9.284 10.879	1420 1474 1497 1545 1649
91. 92. 93. 94.	8.477 6.877 15.106 8.031 8.082	1668 1782 1831 1833 1838
96. 97. 98. 99.	10.866 8.596 8.673 15.437 8.211	1787 1918 1930 2028 2057
101. 102. 103. 104. 105.	11.982 16.674 12.62 12.905 11.615	2084 2226 2304 2341 2353
106. 107. 108. 109.	9.321 12.962 16.932 9.648 18.35	2367 2451 2457 2507 2530
111. 112. 113. 114. 115.	17.333 12.015 11.32 22.337 19.035	2576 2607 2870 2993 3202
116. 117. 118. 119.	12.205 17.078 25.528 24.021 32.197	3286 3312 3498 3538 3794
121. 122. 123. 124. 125.	26.652 20.164 14.132 21.41 23.244	3841 4014 4217 4305 4494

126.	29.845	
127.	32.318	5277
128.	21.988	5283
129.	35.229	5668
130.	17.467	5681
131.	22.828	5819
132.	33.154	6000
133.	32.228	6119
134.	34.168	6136
135.	40.594	7193
136.	33.354	7886
137.	64.542	8419
	0.75.=	0
138.	41.238	8642
139.	47.993	8787
140.	69.878	9484
141.	44.894	9956
142.	67.12	11477
143.	73.05	11796
144.	139.422	14359
144.	119.939	16719
140.	113.339	10/19

- . hist Q, width(1000) frequency
 (bin=17, start=2, width=1000)
- . kdensity Q
- . scatter TC Q
- . gen n=_n
- . scatter TC Q, mlabel(n) mlabpos(6)
- . twoway (scatter TC Q)(lfit TC Q)
- . graph save scatter1
 (file scatter1.gph saved)
- . graph save scatter2
 (file scatter2.gph saved)
- . graph combine scatter1.gph scatter2.gph
- . graph export scatter3.png
 (file scatter3.png written in PNG format)

scatter

6.2 a new one

Let us read the fuel efficiency data that ships with Stata

```
. sysuse auto, clear
(1978 Automobile Data)
```

To study how fuel efficiency depends on weight it is useful to transform the dependent variable from "miles per gallon" to "gallons per 100 miles"

```
. gen gphm = 100/mpg
```

We then obtain a fairly linear relationship

```
. twoway scatter gphm weight || lfit gphm weight ///
> , ytitle(Gallons per Mile) legend(off)
```

```
. graph export auto.png, width(500) replace
(file auto.png written in PNG format)
```


The regression equation estimated by OLS is

. regress gphm weight

Source	SS	df	MS	Number F(1, 72		404 =4
Model Residual	87.2964969 32.2797639	1 72	87.2964969 .448330054	Prob > R-squar	F = ed =	0.0000 0.7300
Total	119.576261	73	1.63803097	- Adj R-s ' Root MS	•	017205
gphm	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
weight _cons	.001407 .7707669	.0001008 .3142571		0.000 0.017	.001206 .1443069	.0016081 1.397227

Thus, a car that weighs 1,000 pounds more than another requires on average an extra 1.4 gallons to travel 100 miles. That's all for now!