presentation (1).md 2024-12-21

Цели и задачи

Цель лабораторной работы

Ознакомление с алгоритмами целочисленной арифметики многократной точности, а также их последующая программная реализация.

Выполнение лабораторной работы

Длинная арифметика

Высокоточная (длинная) арифметика — это операции (базовые арифметические действия, элементарные математические функции и пр.) над числами большой разрядности (многоразрядными числами), т.е. числами, разрядность которых превышает длину машинного слова универсальных процессоров общего назначения (более 128 бит).

Сложение неотрицательных целых чисел

- Вход. Два неотрицательных числа $u = u_1 u_2 \le u_n$ и $v = v_1 v_2 \le v_n$; разрядность чисел s^* ; основание системы счисления b^* .
- Выход. Сумма \$w = w_0 w_1 \ldots w_n\$, где \$w_0\$ цифра переноса, всегда равная \$0\$ либо \$1\$.
- 1. Присвоить \$j = n, k = 0\$ (\$j\$ идет по разрядам, \$k\$ следит за переносом).
- 2. Присвоить $w_j = (u_j + v_j + k) \pmod{b}$, где $k = \left(\frac{v_j + v_j + k}{b} \right)$.
- 3. Присвоить j = j 1. Если j > 0, то возвращаемся на шаг 2; если j = 0, то присвоить $w_0 = k$ и результат: w.

Вычитание неотрицательных целых чисел

- Вход. Два неотрицательных числа $u = u_1 u_2 \le u_n \le u \le v_1 v_2 \le v_n \le v$
- Выход. Разность \$w = w_0 w_1 \ldots w_n = u v\$.
- 1. Присвоить j = n, k = 0 (k -- заём из старшего разряда).
- 2. Присвоить $w_j = (u_j v_j + k) \pmod{b}$; $k = \left[\frac{v_j v_j + k}{b} \right]$.
- 3. Присвоить j = j 1. Если j > 0, то возвращаемся на шаг 2; если j = 0, то результат: w.

Умножение неотрицательных целых чисел столбиком

- Вход. Числа \$u = u_1 u_2 \ldots u_n\$, \$v = v_1 v_2 \ldots v_m\$; основание системы счисления \$b\$.
- Выход. Произведение \$w = uv = w_1 w_2 \ldots w_{m+n}\$.
- 1. Выполнить присвоения: $w_{m+1} = 0$, $w_{m+2} = 0$, $w_{m+n} = 0$, y = m (\$) перемещается по номерам разрядов числа v = 0 от младших к старшим).
- 2. Если \$v_j = 0\$, то присвоить \$w_j = 0\$ и перейти на шаг 6.

presentation (1).md 2024-12-21

Умножение неотрицательных целых чисел столбиком

- 3. Присвоить i = n, k = 0 (значение i идет по номерам разрядов числа u, k отвечает за перенос).
- 4. Присвоить $t = u_i \cdot v_j + w_{i+j} + k$, $v_{i+j} = t \cdot k$, $k = \left(\frac{t}{b} \right) \cdot k$.
- 5. Присвоить \$i = i 1\$. Если \$i > 0\$, то возвращаемся на шаг 4, иначе присвоить $\$w_j = k\$$.
- 6. Присвоить \$j = j 1\$. Если \$j > 0\$, то вернуться на шаг 2. Если \$j = 0\$, то результат: \$w\$.

Быстрый столбик

- Вход. Числа $u = u_1 u_2 \cdot u_n$, $v = v_1 v_2 \cdot u_n$; основание системы счисления $u = u_1 u_2 \cdot u_n$
- Выход. Произведение $w = uv = w_1 w_2 \cdot v_4 = w_1 w_2 \cdot v_$
- 1. Присвоить \$t = 0\$.
- 2. Для \$s\$ от \$0\$ до \$m + n 1\$ с шагом 1 выполнить шаги 3 и 4.
- 4. Присвоить $w_{m+n-s} = t \cdot \{b\}, t = \left(\frac{t}{b} \right)$. Результат: w.

Деление многоразрядных целых чисел

- Вход. Числа \$u = u_n \ldots u_1 u_0\$, \$v = v_t \ldots v_1 v_0, n \ge t \ge 1, v_t \ne 0\$.
- Выход. Частное \$q = q_{n-t} \ldots q_0\$, остаток \$r = r_t \ldots r_0\$.
- 1. Для \$j\$ от \$0\$ до \$n t\$ присвоить $$q_j = 0$$.
- 2. Пока $u \le v t$, выполнять: $q_n t$ = $q_n t$ + 1, u = u v t = $q_n t$ + 1, u = u v t = $q_n t$ = q
- 3. Для \$i = n, n 1, \dots , t + 1\$ выполнять пункты 3.1 3.4: 3.1. если $\$u_i \ge v_t\$$, то присвоить $\$q_{i t 1} = b 1\$$, иначе присвоить $\$q_{i t 1} = \dots = b 1\$$, иначе присвоить $\$q_{i t 1} = \dots = b 1\$$, иначе присвоить $\$q_{i t 1} = \dots = b 1\$$, $\dots = b 1\$$, \do
- 4. \$r = u\$. Результат: \$q\$ и \$r\$.

Пример работы алгоритма

Выводы

Результаты выполнения лабораторной работы

Изучили алгоритмы целочисленной арифметики.