Tall stature and small leaves: ecological strategies that enhance tree growth across the subtropical Brazilian Atlantic Forest

README file to conduct the analyses presented in the manuscript

Kauane Maiara Bordin

2025-02-22

This file describes the content of the folder to conduct the analyses of the above-titled manuscript.

The folder contains three folders: data, results, and scripts. In the data folder you will find the species.information.csv file, metadata from the species.information.csv file, and plot metadata. In the scripts folder there is a code.R file, and the results folder contains the main PCAs presented in the manuscript.

In the code.R script file, you will find all the functions and procedures to conduct the data analysis; in the species.information.csv file you will find the processed data for species used in the analysis.

The columns of species.information.csv file are the following:

- [1] Species = Species scientific name
- [2] Family = Species' family
- [3] Relative.Growth.Rate: Relative Growth Rate (RGR), obtained from the following equation: (dbh1/dbh0)/time, where dbh1 means dbh in mm in the second census, dbh0 is the dbh in mm in the first census, and time is the time census interval in years
- [4] Mean.absolute.growth.rates: Absolute Growth Rate (AGR) per species, obtained from the following equation: (dbh1-dbh0)/time, where dbh1 means dbh in mm in the second census, dbh0 is the dbh in mm in the first census, and time is the time census interval in years
- [5] SD.growth.rate: Standard deviation from the mean of the AGR per species
- [6] SLA: Specific Leaf Area, in cm2/g
- [7] LA: Leaf Area, in cm2
- [8] LDMC: Leaf Dry-Matter Content, in mg/g
- [9] LNC: Leaf Nitrogen Content, in %
- [10] LPC: Leaf Phosphorus Content, in %
- [11] WD: Wood Density, in g/cm3
- [12] Height: Height, in meters
- [13] Number.of.stems: Number of stems per species across the dataset
- [14] Median.height: Species median height across the dataset
- [15] Category: Categorisation as canopy or understory"

The R script contains the code below. To run the code, please remember to load the species.information.csv file.

PLEASE NOTE that PC2 for understory was reversed for visualisation porpuses in the main file. # load packages and functions ----library(here) library(tidyverse) library(corrplot) library(MuMIn) library(ggfortify) library(lmerTest) library(visreg) library(ggpubr) library(gridExtra) library(vegan) library(dplyr) # function to estimate the effect of ecological strategies on tree growth models <- function(data.models, variable){</pre> #creading a list to save each model model0 <- list()</pre> model1 <- list()</pre> model2 <- list()</pre> model3 <- list()</pre> model4 <- list()</pre> model5 <- list()</pre> model6 <- list()</pre> model7 <- list()</pre> model.selection <- NULL</pre> if(variable == "rgr"){ m0 <- lm(log(rgr) ~1, data = data.models) #null model m1 <- lm(log(rgr)~PC1, data=data.models)</pre> m2 <- lm(log(rgr)~PC2, data=data.models)</pre> m3 <- lm(log(rgr)~PC3, data=data.models) m4 <- lm(log(rgr)~PC1+PC2, data=data.models) m5 <- lm(log(rgr)~PC1+PC2+PC3, data=data.models)</pre> m6 <- lm(log(rgr)~PC1+PC3, data = data.models)</pre> m7 <- lm(log(rgr)~PC2+PC3, data = data.models) model.selection = as.data.frame(model.sel(m0, m1,m2,m3,m4,m5,m6,m7)) model0 <- m0 model1 <- m1 model2 <- m2 model3 <- m3 $model4 \leftarrow m4$ model5 <- m5 model6 <- m6 $model7 \leftarrow m7$ return(list(model.selection = model.selection, m0=model0,

```
m1=model1,
              m2=model2,
              m3=model3,
              m4=model4,
              m5=model5,
              m6=model6,
              m7 = model7)
}
# function to generate plots for the PCAs generated
pca.vis <- function(data,pca,axis1,axis2,name){</pre>
  autoplot(pca,
           label= F, # keep as false
           data=data, # original data (csv file)
           colour="rgr", # colour of the shapes
           label.size=4, # label sizes
           shape="Forest.stratum", # distincts canopy from understory species
           size="rgr", # size of the shapes
           loadings=TRUE, # includes PCA loads
           loadings.label.repel = TRUE, # repel labels within the PCA
           loadings.colour="black", # arrow colour
           loadings.label=TRUE, # variables names
           loadings.label.size=4, # size of labels
           loadings.label.colour="black", # label colours
           x=axis1, y=axis2) + #PC axes to be plotted
    my theme+
    theme(aspect.ratio=1)+
    theme(text = element_text(size=15))+
    scale_colour_gradient(low = "#F0E442",high = "#009E73")+ # gradient of colours
    geom_vline(xintercept=0, color="gray80", linetype="dotted") +
    geom_hline(yintercept=0, color="gray80", linetype="dotted") +
    xlim(-0.4,0.4)+
    theme(plot.title=element_text(size=14,face="bold",hjust = 0.5))+
    labs(title=name)
}
# theme for plots
my theme <- theme light() +
  theme(panel.grid.major = element_blank(),
        panel.grid.minor = element_blank(),
        panel.background = element_blank()) +
  theme(legend.position = "none",
        text = element_text(size=15),
        plot.margin=unit(c(0.1, 1, 0.1, 0.1), "cm"),
        axis.text.x = element_text(size=15),
        axis.text.y = element_text(size = 15))
# load dataset -----
data <- read.csv(here::here("data", "species.information.csv"))</pre>
data <- data %>%
  mutate(rgr = Relative.Growth.Rate,
```

```
LA = log(LA))
# data filter -----
dat.total = data %>%
  mutate(Forest.stratum=Category)
dat.underst = data %>%
 filter(Category == "Understory") %>%
 mutate(Forest.stratum=Category)
dat.canop = data %>%
  filter(Category == "Canopy") %>%
  mutate(Forest.stratum=Category)
# PCAs ----
pca.tot <- dat.total %>%
  select(WD,SLA,LNC,LPC,LDMC,Height,LA)
pca.tot <- prcomp((pca.tot), center=T, scale=T)</pre>
pca.tot$rotation; summary(pca.tot)
                 PC1
                                                        PC4
##
                              PC2
                                          PC3
                                                                    PC5
                                                                                PC6
## WD
           0.2443495 -0.29307647
                                  0.78038647 -0.287917314 0.3125059 -0.02353600
## SLA
          -0.4974965 0.07092055 0.07561376 -0.369482234 0.4345247 -0.10701346
## LNC
          -0.4714853 -0.28457746 0.15637094 -0.171583319 -0.4334161 0.67294985
## LPC
          -0.4838034 -0.33479691 0.00909808 -0.043383558 -0.2857066 -0.69749982
## LDMC
           0.4159151 \ -0.49595346 \ \ 0.04626948 \ \ 0.003559261 \ -0.4037945 \ -0.14531742
## Height -0.1813472 -0.52212582 -0.05537034 0.682470385 0.4546754 0.13399879
## LA
          -0.1747977 \quad 0.44431740 \quad 0.59627019 \quad 0.532433127 \quad -0.2725266 \quad -0.09774379
##
                  PC7
           0.25354718
## WD
## SLA
          -0.63637202
## LNC
           0.04597306
## LPC
           0.28938918
## LDMC
          -0.62827068
## Height -0.03131706
          -0.22176578
## LA
## Importance of components:
##
                              PC1
                                     PC2
                                            PC3
                                                    PC4
                                                            PC5
                                                                    PC6
                           1.5832 1.1647 0.9771 0.9446 0.76846 0.61574 0.56583
## Standard deviation
## Proportion of Variance 0.3581 0.1938 0.1364 0.1275 0.08436 0.05416 0.04574
## Cumulative Proportion 0.3581 0.5519 0.6883 0.8157 0.90010 0.95426 1.00000
pca.und <- dat.underst %>%
  select(WD,SLA,LNC,LPC,LDMC,Height,LA)
pca.und <- prcomp((pca.und), center=T, scale=T)</pre>
pca.und$rotation; summary(pca.und)
##
                  PC1
                               PC2
                                           PC3
                                                        PC4
                                                                    PC5
                                                                                 PC6
## WD
           0.15353194 0.43534695 -0.73994011 0.13784604 -0.35949634 0.05326392
## SLA
          -0.50006311 0.06793126 0.06298567 -0.09351331 -0.70344925 -0.14203316
## LNC
          -0.50266312 0.24588652 -0.06499206 -0.11090288 0.25823898 0.77604463
## LPC
          -0.41170420 0.39237501 -0.15931452 -0.29855704 0.45324491 -0.59613678
           0.47672209 \quad 0.36271694 \ -0.09619232 \ -0.07884483 \quad 0.18981548 \quad 0.07434413
## LDMC
## Height -0.06943068 0.52363809 0.44482015 0.71606291 0.01177756 -0.07176604
          -0.26853250 -0.43090558 -0.46021564 0.59317399 0.26006649 -0.09320841
## LA
##
                  PC7
```

```
## WD
         -0.29717574
## SLA
          0.46647190
## LNC
          0.03759733
## LPC
         -0.03484354
## LDMC
          0.76429447
## Height -0.07129097
## LA
          0.31974125
##
  Importance of components:
                                          PC3
                                                 PC4
                                                         PC5
                                                                 PC6
##
                            PC1
                                   PC2
                                                                         PC7
## Standard deviation
                         1.6504 1.2828 0.9802 0.81784 0.70639 0.52571 0.47531
## Proportion of Variance 0.3891 0.2351 0.1373 0.09555 0.07128 0.03948 0.03227
## Cumulative Proportion 0.3891 0.6242 0.7614 0.85696 0.92824 0.96773 1.00000
pca.canop <- dat.canop %>%
 select(WD,SLA,LNC,LPC,LDMC,Height,LA)
pca.canop <- prcomp((pca.canop), center=T, scale=T)</pre>
pca.canop$rotation; summary(pca.canop)
##
                                          PC3
                                                      PC4
                                                                PC5
                                                                            PC6
                  PC1
                              PC2
## WD
          0.354733857 -0.11271208
                                  0.50375258 -0.17041090 -0.7082462 -0.01867387
## SLA
         -0.498832414 0.03952174
                                   ## LNC
         -0.383150666 -0.49153948
                                   0.39480303 -0.03825775 0.1180672 0.65522607
## LPC
         -0.542069584 -0.11219386 0.03232505 -0.13960989 0.1028309 -0.32813185
## LDMC
          0.293363161 - 0.53224808 \quad 0.02078247 - 0.59713182 \quad 0.3273792 - 0.36370239
## Height -0.313970559 0.12044458 -0.49362029 -0.61364276 -0.4420329 0.22499933
          0.006840354
                       ## LA
##
                  PC7
         -0.276933199
## WD
## SLA
          0.550105163
## LNC
          0.104834879
## LPC
         -0.744843993
## LDMC
          0.184919322
## Height 0.143803227
         -0.005904489
## LA
## Importance of components:
                                          PC3
                                                       PC5
##
                            PC1
                                   PC2
                                                 PC4
                                                              PC6
                                                                      PC7
## Standard deviation
                         1.6147 1.0859 0.9908 0.9227 0.8494 0.6199 0.52413
## Proportion of Variance 0.3725 0.1685 0.1402 0.1216 0.1031 0.0549 0.03924
## Cumulative Proportion 0.3725 0.5409 0.6812 0.8028 0.9059 0.9608 1.00000
# data for analysis ----
dat.total <- dat.total %>%
 mutate(PC1 = (pca.tot$x[,1])) \%>\%
 mutate(PC2 = (pca.tot$x[,2])) \%
 mutate(PC3 = (pca.tot\$x[,3]))
dat.underst <- dat.underst %>%
 mutate(PC1 = (pca.und\$x[,1])) \%>\%
 mutate(PC2 = (pca.und$x[,2])) \%>\%
 mutate(PC3 = (pca.und\$x[,3]))
dat.canop <- dat.canop %>%
 mutate(PC1 = (pca.canop$x[,1])) %>%
 mutate(PC2 = (pca.canop$x[,2])) %>%
```

```
mutate(PC3 = (pca.canop$x[,3]))
# growth models -----
set.seed(999)
# all species
data.models <- dat.total</pre>
total <- models(data.models = data.models, variable = "rgr")</pre>
total.modelselection <- total$model.selection %>% mutate(resu.from = "total.model")
total_best.model <- total$m2 # most parcimonious model</pre>
boot.total = car::Boot(total_best.model, R=9999)
CI.total = confint(boot.total); CI.total
## Bootstrap bca confidence intervals
##
##
                   2.5 %
                              97.5 %
## (Intercept) -1.4229962 -1.33010927
              -0.1040547 -0.02874394
summary(total_best.model)
##
## Call:
## lm(formula = log(rgr) ~ PC2, data = data.models)
## Residuals:
       Min
                 1Q Median
                                   30
                                           Max
## -0.44639 -0.16103 -0.04717 0.09694 1.21212
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## PC2
              -0.06462
                          0.02056 -3.142 0.00212 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.2624 on 119 degrees of freedom
## Multiple R-squared: 0.07662,
                                  Adjusted R-squared: 0.06886
## F-statistic: 9.874 on 1 and 119 DF, p-value: 0.002116
r2.total = RsquareAdj(total_best.model)
results.total <- broom::tidy(total_best.model) %>%
 mutate(`CI 2.5%` = confint(boot.total)[,1],
         CI 97.5\% = confint(boot.total)[,2])%>%
 slice(-1) %>%
 mutate(`R2 adj` = r2.total$adj.r.squared,
        resu.from = "total.model"); results.total
## # A tibble: 1 x 9
    term estimate std.error statistic p.value `CI 2.5%` `CI 97.5%` `R2 adj`
##
    <chr>>
             <dbl>
                       <dbl>
                                 <dbl> <dbl>
                                                   <dbl>
                                                              <dbl>
                                                                       <dbl>
                      0.0206
## 1 PC2
           -0.0646
                                 -3.14 0.00212
                                                            -0.0287
                                                                      0.0689
                                                  -0.104
## # i 1 more variable: resu.from <chr>
# understory species
data.models <- dat.underst</pre>
```

```
unders <- models(data.models = data.models, variable = "rgr")</pre>
unders.modelselection <- unders$model.selection%>% mutate(resu.from = "understory.model")
unders_best.model <- unders$m2 # most parcimonious model</pre>
boot.unders = car::Boot(unders_best.model, R=9999)
CI.unders = confint(boot.unders); CI.unders
## Bootstrap bca confidence intervals
##
##
                     2.5 %
                               97.5 %
## (Intercept) -1.38927213 -1.2607656
               0.04370804 0.1377501
summary(unders best.model)
##
## Call:
## lm(formula = log(rgr) ~ PC2, data = data.models)
##
## Residuals:
                  1Q
##
        Min
                     Median
                                    3Q
                                            Max
## -0.37058 -0.15171 -0.06700 0.08513 1.19439
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -1.33800
                           0.03150 -42.478 < 2e-16 ***
                           0.02474 3.557 0.000694 ***
## PC2
               0.08799
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.2616 on 67 degrees of freedom
## Multiple R-squared: 0.1589, Adjusted R-squared: 0.1463
## F-statistic: 12.65 on 1 and 67 DF, p-value: 0.0006938
r2.und = RsquareAdj(unders best.model)
results.und <- broom::tidy(unders_best.model) %>%
  mutate(`CI 2.5%` = confint(boot.unders)[,1],
         CI 97.5% = confint(boot.unders)[,2])%>%
  slice(-1) %>%
  mutate(`R2 adj` = r2.und$adj.r.squared,
         resu.from = "understory.model"); results.und
## # A tibble: 1 x 9
##
    term estimate std.error statistic p.value `CI 2.5%` `CI 97.5%` `R2 adj`
              <dbl>
                       <dbl>
                               <dbl>
                                           <dbl>
                                                     <dbl>
                                                                 <dbl>
                                                                          <dbl>
            0.0880
                       0.0247
                                   3.56 0.000694
                                                    0.0437
                                                                 0.138
                                                                          0.146
## # i 1 more variable: resu.from <chr>
# canopy species
data.models <- dat.canop</pre>
canop <- models(data.models = data.models, variable = "rgr")</pre>
canop.modelselection <- canop$model.selection %>% mutate(resu.from = "canopy.model")
canop_best.model <- canop$m6 # most parcimonious model</pre>
boot.canop = car::Boot(canop_best.model, R=9999)
CI.canop = confint(boot.canop); CI.canop
```

Bootstrap bca confidence intervals

```
##
                     2.5 %
                                 97.5 %
##
## (Intercept) -1.49175728 -1.370656229
               -0.09909675 0.005043703
## PC1
## PC3
               -0.17391935 -0.050602092
summary(canop_best.model)
##
## Call:
## lm(formula = log(rgr) ~ PC1 + PC3, data = data.models)
## Residuals:
##
                  1Q
                     Median
                                    3Q
                                            Max
       Min
## -0.30371 -0.13658 -0.04186 0.07318 0.58988
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
                           0.03048 -47.231 < 2e-16 ***
## (Intercept) -1.43956
               -0.03841
                           0.01906 -2.015 0.04940 *
## PC1
## PC3
               -0.10480
                           0.03106 -3.374 0.00146 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.2198 on 49 degrees of freedom
## Multiple R-squared: 0.2396, Adjusted R-squared: 0.2086
## F-statistic: 7.721 on 2 and 49 DF, p-value: 0.001216
r2.can = RsquareAdj(canop_best.model)
results.can <- broom::tidy(canop best.model) %>%
  mutate(`CI 2.5%` = confint(boot.canop)[,1],
         CI 97.5% = confint(boot.canop)[,2])%>%
  slice(-1) %>%
  mutate(`R2 adj` = r2.can$adj.r.squared,
         resu.from = "canopy.model"); results.can
## # A tibble: 2 x 9
     term estimate std.error statistic p.value `CI 2.5%' `CI 97.5%' `R2 adj'
                        <dbl>
     <chr>>
              <dbl>
                                  <dbl>
                                          <dbl>
                                                    <dbl>
                                                                         <dh1>
                                                                <dbl>
## 1 PC1
            -0.0384
                       0.0191
                                  -2.02 0.0494
                                                  -0.0991
                                                             0.00504
                                                                         0.209
## 2 PC3
            -0.105
                       0.0311
                                  -3.37 0.00146
                                                  -0.174
                                                            -0.0506
                                                                         0.209
## # i 1 more variable: resu.from <chr>
results = bind_rows(results.total,results.und,results.can)
model.sel = bind_rows(total.modelselection, unders.modelselection, canop.modelselection)
# PCA plots ----
a <- pca.vis(data = dat.total,pca = pca.tot,axis1 = 1,axis2 = 2, name = "All")+labs(tag="a)")
b <- pca.vis(data = dat.total,pca = pca.tot,axis1 = 1,axis2 = 3, name = "All")+labs(tag="d)")
c <- pca.vis(data = dat.underst,pca = pca.und,axis1 = 1,axis2 = 2, name = "Understory")+labs(tag="c)")+</pre>
d <- pca.vis(data = dat.underst,pca = pca.und,axis1 = 1,axis2 = 3, name = "Understory")+labs(tag="f)")+
e <- pca.vis(data = dat.canop,pca = pca.canop,axis1 = 1,axis2 = 2, name = "Canopy")+labs(tag="b)")
f <- pca.vis(data = dat.canop,pca = pca.canop,axis1 = 1,axis2 = 3, name = "Canopy")+labs(tag="e)")
#png('results/principal.components.plot.png', units="in", width=13, height=8, res=300)
```

