Multi-seasonal time series decomposition using MSTL

Time series decomposition

Contents

MSTL ALGORITHM

MSTL: What is it?

- Mutliple Seasonal-Trend decomposition using Loess (MSTL).
- A method to decompose a time series into a trend component, multiple seasonal components, and a residual component by repeatedly applying STL.

$$y_t = \hat{T}_t + \hat{S}_t^{(1)} + \hat{S}_t^{(2)} + \dots + \hat{S}_t^{(N)} + \hat{R}_t$$

$$\uparrow$$
Trend Seasonal Residual component component

- MSTL, like STL, assumes the time series can be broken into an additive decomposition.
- Transform the time series (e.g., using Box Cox) if it is not additive.

MSTL: How does it work?

- User specifies number of seasonal components and their seasonal periods.
- Example: Hourly data and there is daily and weekly seasonality, then periods = (24, 24*7).

^{*} Learn more about Friedman's Supersmoother and python implementation <u>here</u> and <u>here</u>.

MSTL: How does it work?

- User specifies number of seasonal components and their seasonal periods.
- Example: Hourly data and there is daily and weekly seasonality, then periods = (24, 24*7).

^{*} Learn more about Friedman's Supersmoother and python implementation <u>here</u> and <u>here</u>.

MSTL: How does it work?

Step 1

 Iteratively extract each seasonal component using STL.

Step 2

 Refine each extracted seasonal component.

Step 3

• Extract the trend from the final STL fit.

Step 4

Extract the residual component.

Step 1: extract seasonal components

- Iterate through each seasonal component starting from the shortest period (e.g., daily) to the longest period (e.g., yearly).
- On each iteration, we extract the seasonal component via STL and then subtract it from the time series.
- Continue until all seasonalities have been extracted.

Step 2: refine each seasonal component

- We currently have an estimate for each seasonal component and a deseasonalized time series.
- Iterate over each seasonal component again.
- Add each seasonal component back to the de-seasonalized time series.
- Extract the same seasonal component back using STL.
- Subtract this new estimate of the seasonal component from the time series.
- Do this for each seasonal component.

Step 3: extract the trend component

- Extract the trend component from the last STL fit used at end of step 2.
- This is the trend component for MSTL.

Repeat for all other seasonalities

Step 3: extract the trend component

- Extract the trend component from the last STL fit used at end of step 2.
- This is the trend component for MSTL.

Step 4: Extract the residual component

- Subtract the trend component (from step 3) from the de-seasonalized time series at the end of step 2.
- Now we have:
 - Trend component
 - Daily seasonal component
 - Weekly seasonal component
 - Residual component

Step 4: Extract the residual component

- Subtract the trend component (from step 3) from the de-seasonalized time series at the end of step 2.
- Now we have:
 - Trend component
 - Daily seasonal component
 - Weekly seasonal component
 - Residual component

Reminder: STL most important parameters

- n_p (period): The seasonal period (e.g., for daily data and weekly seasonality this would be 7). Normally determined by the use case.
- n_s (seasonal): Determines smoothness and uniformity of seasonal component. Default value of 7 typically good enough.

MSTL: Parameters

- Periods: The period of each seasonal component that we want to extract.
 - Determined by the use case (i.e., you know which seasonalities are important).
 - Use ACF or PACF (next section) to identify seasonalities.
 - Example: periods = (24, 24*7) for daily and weekly seasonality on hourly data.
- Windows: The smoothing parameter associated with each seasonal component.
 - Default values from experimentation on weekly and hourly time series [1].

Default value = 7 + 4 * i; i = 0, 1, ..., number of seasonal components

- Reasoning: Longer seasonal components may require a larger smoothing window.
- Example: windows = (7, 11)
- Need to tune and inspect results otherwise, try the default values as a starting point.

MSTL: Parameters

• **STL Parameters**: All the other STL parameters can also be set, however, the default values are normally used.

Symbol	Statsmodels	Description	Typical value
n_i	inner_iter	Number of inner loops	2 or 3
$d_{\scriptscriptstyle S}$	seasonal_deg	Degree for LOESS for cycle-subseries (aka seasonal component)	1 or in rare cases 0 (see notebook)
n_l	low_pass	Window size for LOESS for low pass filter of cycle- subseries	n_p or the next largest odd integer
d_l	low_pass_deg	Degree for LOESS for low pass filter of cycle-subseries	1
n_T	trend	Window size for LOESS for Trend	1.5 to $2 \times n_p$
d_T	trend_deg	Degree for LOESS for Trend	1
n_o	outer_iter	Number of iterations in the outer loop	1 or 2
N/A	robust	A flag to indicate whether to use robustness weights	Set true if suspect outliers exist

Implementation

statsmodels.tsa.seasonal.MSTL

class statsmodels.tsa.seasonal.MSTL(endog, periods=None, windows=None, Imbda=None, iterate=2, stl_kwargs=None)[source]

Season-Trend decomposition using LOESS for multiple seasonalities.

Parameters

endog : array_like

Data to be decomposed. Must be squeezable to 1-d.

```
periods : {int, array_like, None}, optional
```

Periodicity of the seasonal components. If None and endog is a pandas Series or DataFrame, attempts to determine from endog. If endog is a ndarray, periods must be provided.

```
windows : {int, array_like, None}, optional
```

Length of the seasonal smoothers for each corresponding period. Must be an odd integer, and should normally be >= 7 (default). If None then default values determined using 7 + 4 * np.arange(1, n + 1, 1) where n is number of seasonal components.

```
res.seasonal.head()
                      seasonal_24 seasonal_168
                 ds
2012-01-01 00:00:00
                     -1694.799788
                                    -165.282860
2012-01-01 01:00:00
                     -1602.267142
                                    -231.770996
2012-01-01 02:00:00
                     -2205.330138
                                    -260.793169
2012-01-01 03:00:00 -2455.880584
                                    -387.594018
2012-01-01 04:00:00 -2372.200885
                                    -656.522701
```

Summary

MSTL is a method to decompose multi-seasonal time series by repeatedly applying STL.

It is accurate, computationally efficient, outlier robust, models changing seasonality, and relatively simple.