CS181 Lecture 18: Naïve Bayes and EM

Overview

- The Naïve Bayes model
- Discrete density estimation revisited
- Learning the Naïve Bayes model
- Autoclass: Naïve Bayes for clustering
- EM for Gaussian mixture models

Naïve Bayes model

- Naïve Bayes model: discrete attributes with finite number of values
- Parametric density estimation
- Naïve Bayes classification algorithm
- Autoclass clustering algorithm

Naïve Bayes model

- Want to estimate $P(X_1,...,X_n)$
- Assumption: all attributes independent of each other
 - same assumption as k-means, except this is a discrete

$$P(X_1,...,X_n) = \prod_{i=1}^{n} P(X_i)$$

- P(X_i) can be any distribution you like
- e.g. { 0.5 : red, 0.2 : blue, 0.3 : yellow }

Number of parameters

- Assume all attributes Boolean
- How many independent parameters in P(X₁,...,X_n) in general (with no independence assumptions)?
 - 2^n states of $X_1,...,X_n$
 - 1 constraint that total must sum to 1
 - 2n-1 independent parameters
- How many independent parameters in $\prod_{i=1}^{n} P(X_i)$?
 - 2 states of each Xi
 - 1 constraint for each \boldsymbol{X}_i
 - n parameters total

Savings

- Incredible savings in number of parameters
- ullet Representing $P(X_1,\ldots,X_n)$ explicitly suffers from curse of dimensionality
- Representing $\prod_{i=1}^{n} P(X_i)$ does not
- This savings results from very strong independence assumptions
- Naïve Bayes model performs very well when assumptions hold
- Performs very badly when variables are dependent

Naïve Bayes classifier

- Learn $P(X_1,...X_n \mid C) = \prod_{i=1}^{n} P(X_i \mid C)$ for each class
 - assumes that X_i and X_j are conditionally independent of each other given C
- Learn P(C)
- To classify: given x, choose c that maximizes $P(c \mid x) \propto P(c)P(x_i \mid c)$

Naïve Bayes classifier picture

Naïve Bayes and XOR

Hypothesis space

- Linear separators
- Attributes are independent
 - they act independently to produce classification
 - they do not interact
 - therefore they cannot capture concepts like XOR
- Just like perceptrons

An important point

- Many real world domains are not linearly separable
- Even for those domains there may be a pretty good linearly separable hypothesis
- You may be better off learning a linearly separable hypothesis than learning a richer hypothesis
 - stronger inductive bias easier to learn
- It has been found empirically that naïve Bayes can perform reasonably well in practice

Learning naïve Bayes

- In the following discussion we will assume that attributes and class are Boolean
- This is only to keep the notation simple
- Everything generalizes to the case where attributes and class have many possible values

Overview

- The Naïve Bayes model
- Discrete density estimation revisited
- Learning the Naïve Bayes model
- Autoclass: Naïve Bayes for clustering
- EM for Gaussian mixture models

A simple problem

- You are the manager of a soccer team
- You observe a sequence of games that your team plays
- Based on this, you wish to estimate the probability that your team will win a future game

Simplest formulation

- Variable X has states { f, t } (t = win)
- Parameter $\theta = P(X = t)$
- Observations $X^1 = t$, $X^2 = f$, $X^3 = f$
- These comprise the data D
- Task: estimate θ
- Use θ to estimate $P(X^4 = t)$

Maximum likelihood (ML)

- Likelihood: $L(\theta) = P(D \mid \theta) = P(X^1, X^2, X^3 \mid \theta)$
- ML Principle: Choose θ so as to maximize $L(\theta)$
- $L(\theta) = P(X^1 \mid \theta)P(X^2 \mid \theta)P(X^3 \mid \theta)$
- Log likelihood: $LL(\theta) = \log P(X^1 \mid \theta) + \log P(X^2 \mid \theta) + \log P(X^3 \mid \theta)$
- ML Principle equivalent: Choose θ so as to maximize $LL(\theta)$

In our example

- \bullet P(Xⁱ = t | θ) = θ
- $L(\theta) = P(X^1 = t, X^2 = f, X^3 = f \mid \theta) = \theta(1 \theta)(1 \theta)$
- LL(θ) = log θ + 2 log (1- θ)
- Set derivative to 0: $\frac{1}{\theta} \frac{2}{1-\theta} = 0$
- Solve to find $\theta = 1/3$

Property of ML

- $\theta = 1/3$ is exactly the fraction of observed games in which the team won
- This is no coincidence: the ML estimate for the probability of an event is always the fraction of time in which the event happened
- In other words, ML's estimate is exactly the one most suggested by the data

More generally

- Observations X¹,X²,...,X^N
- Let
 - N_t be the number of instances with value t
 - N_f be the number of instances with value f
- Maximum likelihood estimate for θ is:

$$\hat{\theta} = \frac{N_t}{N_t + N_f} = \frac{N_t}{N}$$

Problems with this approach

- Overfits: pays too much attention to noise in the data
 - if your team was particularly unlucky in losing two games, this will be ignored
- Ignores prior experience:
 - if you believe your team is a good team, you shouldn't totally discount that after losing two games
- Events that don't occur in the data are deemed impossible

Incorporating a prior

- **Prior**: $P(\theta)$ before seeing any data
- Posterior: $P(\theta \mid \mathbf{D})$
- Maximum a Posteriori principle (MAP): Choose θ so as to maximize $P(\theta \mid \mathbf{D})$
- Note $P(\theta \mid \mathbf{D})$ is proportional to $P(\theta)L(\theta)$

Beta distributions

- For learning the parameter of a Boolean random variable, an appropriate prior over θ is the **beta** distribution
- The beta distribution has two hyperparameters: α and β
- The hyperparameters control the shape of the prior
 - what we believe about θ
 - how peaked our beliefs are

Shape of the beta distribution

- α and β control how relatively likely true and false outcomes are
 - if α is large relative to $\beta,\,\theta$ will be more likely to be large

Shape of the beta distribution

- α and β control how relatively likely true and false outcomes are
 - if α is large relative to $\beta,\,\theta$ will be more likely to be large
- The magnitude of α and β control how peaked the beta distribution is
- if α and β are large, the beta will be sharply peaked

Magnitudes of α and β

Updating the prior

- To get the hyperparameters for the posterior, we take the hyperparameters in the prior, and add to them the actual observations that we get
- E.g.
 - prior is Beta(4,7)
 - we observe 1 positive and 4 negative
 - posterior is Beta(5,11)

Understanding the hyperparameters

- Hyperparameter α represents the number of previous **positive** observations that we have had, plus 1
- Similarly, β represents the number of previous **negative** observations that we have had, plus 1
- Hyperparameters in the prior as represent imaginary observations in our prior experience
 - the more we trust our prior experience, the larger the hyperparameters in the prior

Mode of the beta distribution

The mode of Beta(α, β) is $\frac{\alpha - 1}{\alpha + \beta - 2}$

• e.g. mode of Beta(2,3) is 1/3

Mean of the beta distribution

The mean of Beta(α , β) is $\frac{\alpha}{\alpha + \beta}$

• e.g. mean of Beta(2,3) is 2/5

MAP estimate

- The MAP estimate is the **mode** of the posterior
 - this is the fraction of the total (real and imaginary) number of observations that are true
 - e.g. for m positive instances out of N total

$$\hat{\theta}_{MAP} = \frac{m + \alpha - 1}{N + \alpha + \beta - 2}$$

In our example

Prior: Beta(5,3)

• Observations: $X^1 = t$, $X^2 = f$, $X^3 = f$

Posterior: Beta(6,5)

• MAP estimate: $\hat{\theta}_{MAP} = \frac{m + \alpha - 1}{N + \alpha + \beta - 2}$ $=\frac{1+5-1}{3+5+3-2}$

ML as MAP

- Maximum likelihood estimate: $\hat{\theta}_{ML} = \frac{m}{N}$
- MAP estimate: $\hat{\theta}_{MAP} = \frac{m + \alpha 1}{N + \alpha + \beta 2}$
- Maximum likelihood is equivalent to MAP with a uniform prior: Beta(1,1)
 - meaning there are no imaginary observations

Drawback of MAP

- Does not fully consider the range of possible values for θ
 - only chooses the maximum value
 - this value may not be representative

Bayesian approach

 Predict the outcome of the next game using the entire distribution over θ

$$\begin{split} P(X^4 \mid X^1, X^2, X^3) &= \int_0^1 P(X^4 \mid \theta) P(\theta \mid X^1, X^2, X^3) d\theta \\ &= \int_0^1 \theta P(\theta \mid X^1, X^2, X^3) d\theta \\ &= E \Big[\theta \mid X^1, X^2, X^3 \Big] \\ &= \textbf{mean of the posterior} \end{split}$$

for beta distribution

$$E[\theta] = \frac{m + \alpha}{N + \alpha + \beta}$$

Important note

- In the Bayesian approach $E[\theta]$ is not the estimate of θ
 - in fact, no estimate of θ is made
 - instead, a posterior distribution is maintained over the value of θ
- $E[\theta]$ is the estimate of the probability that a new instance is true
 - this is obtained by integrating over the posterior distribution

In our example

Prior: Beta(5,3)

• Observations: $X^1 = t$, $X^2 = f$, $X^3 = f$

Posterior: Beta(6,5)

 $P(X^4 | X^1, X^2, X^3) = \frac{m + \alpha}{N + \alpha + \beta}$ $= \frac{6}{11}$

• Compare to 5/9 for the MAP estimate

- Bayesian estimate is closer to ½

- more smoothed out

Overview

• The Naïve Bayes model

Discrete density estimation revisited

Learning the Naïve Bayes model

Autoclass: Naïve Bayes for clustering

• EM for Gaussian mixture models

Model parameters

$$P(C = T) = \theta_C$$

$$P(C = F) = 1 - \theta_C$$

$$P(X_i = T \mid C = T) = \theta_i^T$$

$$P(X_i = F \mid C = T) = 1 - \theta_i^T$$

$$P(X_i = T \mid C = F) = \theta_i^F$$

$$P(X_i = F \mid C = F) = 1 - \theta_i^F$$

$$\boldsymbol{\theta} = \langle \theta_{C}, \theta_{1}^{T}, \dots, \theta_{n}^{T}, \theta_{1}^{F}, \dots, \theta_{n}^{F} \rangle$$

2n + 1 parameters

Maximum Likelihood

• Goal: Choose $\theta_{\rm C}, \theta_{\rm 1}{}^{\rm T}, \ldots, \theta_{\rm n}{}^{\rm T}, \theta_{\rm 1}{}^{\rm F}, \ldots, \theta_{\rm n}{}^{\rm F}$ so as to maximize

$$L(\theta) = p(\mathbf{D} \mid \theta) = \prod_{i=1}^{N} p(x^{i} \mid \theta)$$

Approach: take derivatives

Can also use MAP or Bayesian approaches

Counts

N = total number of instances

 N_T = number of instances with class T

 N_F = number of instances with class F

 $N_{i,T}^{T}$ = number of instances with class T and X_{i} = T

 $N_{i,F}^{T}$ = number of instances with class T and X_{i} = F

 $N_{i,T}^{F}$ = number of instances with class F and X_{i} = T

 $N_{i,F}^{F}$ = number of instances with class F and X_{i} = F

4n+3 counts

Maximum likelihood for P(C)

$$\theta_{\rm C} = \frac{N_{\rm T}}{N}$$

• The probability of C being T is the fraction of times in the data C was T

This is the completely obvious result!

- just like Gaussian density estimator

MAP estimate for P(C)

- Prior over θ_c is beta(α_c , β_c)
- MAP estimate for θ_c is $\frac{N_{_T} + \alpha 1}{N + \alpha + \beta 2}$

Maximum Likelihood for $P(X^i \mid C)$

$$\theta_{i}^{T} = \frac{N_{i,T}^{T}}{N_{T}}$$

- \bullet Probability that X_i is T given that class is T is fraction of times that X_i is T out of all times that class is T
- Similarly, $\theta_i^F = \frac{N_{i,T}^F}{N_F}$

MAP estimate for $P(X^i \mid C)$

- Priors for probability that Xⁱ is true given the two possible classes
- prior given class T: beta(α_i^T,β_i^T)
- prior given class F: beta(α_i^F,β_i^F)
- MAP parameter estimates

$$\theta_{i}^{T} = \frac{N_{i,T}^{T} + \alpha_{i}^{T} - 1}{N_{i}^{T} + \alpha_{i}^{T} + \beta_{i}^{T} - 2} \qquad \theta_{i}^{F} = \frac{N_{i,T}^{F} + \alpha_{i}^{F} - 1}{N_{i}^{F} + \alpha_{i}^{F} + \beta_{i}^{F} - 2}$$

Sufficient statistics

- These counts tell us all we need to know to estimate the parameters
- They are called sufficient statistics
- We don't need to know joint statistics of different variables
 - for example, we don't need to know how often X_1 and X_2 were both T when C was T
- Naïve Bayes' independence assumptions

Multi-valued class and attributes

- |C| = k and |X| = m
- Parameters
 - $P(C=c) = \theta_c$
- $P(X_i=x \mid C=c) = \theta_{i,x}^c$
- How many? k*m*n + k 1
- Counts
 - N = total number of instances
 - N_c = total number of instances with class c
 - $N_{i, \cdot}^{c}$ = total number of instances with class c and X_{i} = x
 - How many? k*m*n + k + 1

Pros and cons of naïve Bayes

- Advantages:
 - No curse of dimensionality
 - Simple, easy to implement
 - Fast learning
 - In each dimension, makes no assumption about form of distribution
- Disadvantages:
 - Can perform poorly if independence assumptions do not hold
 - Maximum likelihood can overfit data
 - but Bayesian approach is easy to implement

Naïve Bayes classifier applications

- Text classification
 - email: spam vs. not spam
 - news categories
 - emotion (ditto the donkey)

Overview

- The Naïve Bayes model
- Discrete density estimation revisited
- Learning the Naïve Bayes model
- Autoclass: Naïve Bayes for clustering
- EM for Gaussian mixture models

Autoclass

- Like Naïve Bayes, but for unsupervised learning
- Unlabeled training data $D^1,...,D^N$ where $D^i = \left\langle x_1^i,...x_n^i \right\rangle$
 - no class labels
- Goal: learn a Naïve Bayes model
 - P(C)
- P(X_i | C) for each attribute

Maximum likelihood

- Parameters: $\theta_{\rm C}$; $\theta_{\rm i}^{\rm T}$ and $\theta_{\rm i}^{\rm F}$ for each attribute
- Approach: find θ that maximizes

$$L(\theta) = p(\mathbf{D} \mid \theta) = \prod_{i=1}^{N} p(x^{i} \mid \theta)$$

- This is a difficult problem
 - we don't have sufficient statistics because the class labels are missing

Expectation-Maximization (EM)

- A general, powerful algorithm for learning probabilistic models from data that is not fully observed
- Works in many different frameworks
 - Autoclass is just one example

Two observations

- If we know the sufficient statistics of the data, we can choose parameter values so as to maximize the likelihood.
- If we know the model parameters, we can compute a probability distribution over the missing attributes. From these, we get the expected sufficient statistics.

Expected sufficient statistics

- From observed data and model parameters, we get the probability of every possible completion of the data
- Each completion defines sufficient statistics
- The expected sufficient statistics is the expectation, taken over all possible completions, of the sufficient statistics for each completion

EM (general form)

Set θ to some initial values.

Repeat:

$$\theta_{\text{old}} = \theta$$

E-step (Expectation): Compute the expected sufficient statistics.

M-step (Maximization): Choose θ so as to maximize the likelihood of the expected sufficient statistics.

Until θ is close to θ_{old}

Example: E step

 $P(\text{Completion 1}) \propto P(X_1 = F, X_2 = T, C = F) * P(X_1 = T, X_2 = T, C = F)$ $= P(C = F)P(X_1 = F | C = F)P(X_2 = T | C = F)$ $P(C = F)P(X_1 = T | C = F)P(X_2 = T | C = F)$ = 0.3 * 0.7 * 0.2 * 0.3 * 0.3 * 0.2 = 0.000756

Probabilities of completions

 $P(\text{Completion 1}) \approx 0.3 * 0.7 * 0.2 * 0.3 * 0.3 * 0.2 = 0.000756$ $P(\text{Completion 2}) \approx 0.3 * 0.7 * 0.2 * 0.7 * 0.9 * 0.6 = 0.015876$ $P(\text{Completion 3}) \approx 0.7 * 0.1 * 0.6 * 0.3 * 0.3 * 0.2 = 0.000756$ $P(\text{Completion 4}) \approx 0.7 * 0.1 * 0.6 * 0.7 * 0.9 * 0.6 = 0.015876$

Probabilities of completions

P(Completion 1) = 0.0227 P(Completion 2) = 0.4773 P(Completion 3) = 0.0227P(Completion 4) = 0.4773

Expected sufficient statistics

 $E[N_{\rm T}] = 0.0227^*0 + 0.4773^*1 + 0.0227^*1 + 0.4773^*2 = 1.4546$

 $E[N_F] = N - E[N_T] = 2 - 1.4546 = 0.5454$

 $E[N^{\tau}_{1,7}] = 0.0227^*0 + 0.4773^*1 + 0.0227^*0 + 0.4773^*1 = 0.9546$

 $E[N^F_{1,7}] = 0.0227^*1 + 0.4773^*0 + 0.0227^*1 + 0.4773^*0 = 0.0454$

 $E[N_{2,T}^T] = 1.4546$ $E[N_{2,T}^T] = 0.5454$

Maximum likelihood estimates

$$E[N_T] = 1.4546$$
 $E[N_F] = 0.5454$ $E[N_{1,T}] = 0.9546$ $E[N_{2,T}] = 1.4546$ $E[N_{2,T}] = 0.5454$

$$\begin{array}{l} \theta_C = E[N_T] \ / \ N = 1.4546 \ / \ 2 = 0.7273 \\ \theta_1^T = E[N_{T_1,T}] \ / \ E[N_T] = 0.9546 \ / \ 1.4546 = 0.6563 \\ \theta_1^F = E[N_{T_1,T}] \ / \ E[N_F] = 0.0454 \ / \ 0.5454 = 0.0832 \\ \theta_2^T = E[N_{2,T}^T] \ / \ E[N_T] = 1.4546 \ / \ 1.4546 = 1 \\ \theta_2^T = E[N_{2,T}^T] \ / \ E[N_F] = 0.5454 \ / \ 0.5454 = 1 \end{array}$$

Problem

- What is the problem with the approach I just showed you?
- Number of completions is exponential in number of instances

Key observation

- We don't care about exact completions, only expected sufficient statistics
- Each instance contributes separately to expected sufficient statistics
- So, we can
 - enumerate completions of each instance separately
 - get probability of each completion
 - get expected contribution of that instance to sufficient statistics

E step for naïve Bayes

- ullet $E[N_T]$ is the expected number of instances in which the class is T
- Each instance has a probability of the class being T
- \bullet Each instance contributes that probability to $E[N_T]$
- In symbols: $E[N_T] = \sum_{j=1}^N P(C^j = T \mid x_1^j, ..., x_n^j)$ $\propto \sum_{j=1}^N P(C^j = T) \prod_{i=1}^n P(x_i^j \mid C^j = T)$

E step for naïve Bayes cont'd

- • $E\left[N_{i,T}^{T}\right]$ is the expected number of times the class is T when X_{i} is T
- If an instance has $X_i \neq T$, it contributes 0 to $E \left \lceil \mathbf{N}_{i,T}^T \right \rceil$
- If an instance has $X_i = T$, it contributes the probability that the class is T to $E[N_{i,T}^T]$

$$\begin{split} \bullet \text{ In symbols:} \quad & E\big[N_{i,T}^T\big] = \sum_{j:x_i^j = T}^N P(C^j = T \,|\, x_1^j,...,x_n^j) \\ & \propto \sum_{j:x_i^j = T}^N P(C^j = T) \prod_{i=1}^n P(x_i^j \,|\, C^j = T) \end{split}$$

A notational convenience

- Encode T as 1, F as 0
- Then

$$P(x_i^j | C^j = T) = (\theta_i^T)^{x_i^j} (1 - \theta_i^T)^{(1 - x_i^j)}$$

$$P(x_i^j | C^j = F) = (\theta_i^F)^{x_i^j} (1 - \theta_i^F)^{(1 - x_i^j)}$$

 This has no significance, just makes the algorithm easier to write down

Autoclass algorithm

Set $\theta_{\rm C}$, $\theta_{\rm i}^{\rm T}$ and $\theta_{\rm i}^{\rm F}$ to arbitrary values for all attributes

Repeat until convergence:

Expectation step

Maximization step

Autoclass: expectation step

$$\begin{split} E[N_T] &= 0 \\ E\left[N_{i,T}^T\right] &= 0 \quad \text{for all instances} \\ E\left[N_{i,T}^F\right] &= 0 \quad \text{for all instances} \\ E\left[N_{i,T}^F\right] &= 0 \quad \text{for all instances} \\ For each instance D^i: \\ p_T &= \theta_c \prod_{i=1}^n (\theta_i^T)^{x_i^l} (1-\theta_i^T)^{(1-x_i^l)} \\ p_F &= (1-\theta_c) \prod_{i=1}^n (\theta_i^F)^{x_i^l} (1-\theta_i^F)^{(1-x_i^l)} \\ q &= \frac{p_T}{p_T+p_F} \\ E[N_T] &+= q \\ \text{for each attribute } i$: \\ if $x_i == T$: \\ E\left[N_{i,T}^T\right] &+= q \\$$

Autoclass: maximization step

$$\theta_{\rm C} = \frac{{\rm E}[{\rm N}_{\rm T}]}{{\rm N}}$$

For each attribute i:

$$\theta_{i}^{T} = \frac{E[N_{i,T}^{T}]}{E[N_{T}]}$$

$$\theta_{i}^{F} = \frac{E[N_{i,T}^{F}]}{N - E[N_{T}]}$$

Example: E step

$$\begin{array}{l} \theta_{C} = 0.7 \\ \theta_{1}^{T} = 0.9 \\ \theta_{1}^{F} = 0.3 \\ \end{array} \qquad \begin{array}{l} \mathbf{D} = \frac{X_{1}X_{2}}{F\ T} \\ T\ T \\ \end{array} \qquad \begin{array}{l} \mathbf{E}\left[N_{\mathrm{T}}^{\mathrm{T}}\right] = 0 \\ \mathbf{E}\left[N_{\mathrm{L,T}}^{\mathrm{T}}\right] = 0 \end{array}$$

Example: E step

$$\begin{array}{lll} \theta_{C} = 0.7 & & & & \\ \theta_{1}^{T} = 0.9 & & & & \\ \theta_{1}^{F} = 0.3 & & & \\ \theta_{2}^{T} = 0.6 & & & & \\ \theta_{2}^{F} = 0.2 & & & & \\ E\left[N_{1,T}^{T}\right] = 0.0 \\ E\left[N_{1,T}^{T}\right] = 0.0 \\ E\left[N_{1,T}^{T}\right] = 0.0 \\ E\left[N_{2,T}^{T}\right] = 0.5 \\ E\left[N_{2,T}^{T}\right] = 0.5 \end{array}$$
 For instance 1:
$$p_{T} = 0.7*(0.9^{0}*0.1^{1})*(0.6^{1}*0.4^{0}) \\ = 0.042 \end{array}$$

rinstance 1:
$$\begin{aligned} p_T &= 0.7*(0.9^0*0.1^1)*(0.6^1*0.4^0) \\ &= 0.042 \\ p_F &= 0.3*(0.3^0*0.7^1)*(0.2^1*0.8^0) \\ &= 0.042 \\ q &= \frac{0.042}{0.042+0.042} = 0.5 \end{aligned}$$

Example: E step

$$\begin{array}{ll} \theta_{C} = 0.7 & X_{1}X_{2} \\ \theta_{1}^{T} = 0.9 & \mathbf{D} = \frac{X_{1}X_{2}}{F\ T} & \mathbf{E}\left[N_{1,T}^{T}\right] = 0.5 \\ \theta_{1}^{F} = 0.3 & T\ T & \mathbf{E}\left[N_{1,T}^{T}\right] = 0.0 \\ \theta_{2}^{T} = 0.6 & \mathbf{E}\left[N_{1,T}^{F}\right] = 0.0 \\ \theta_{2}^{F} = 0.2 & \mathbf{E}\left[N_{2,T}^{F}\right] = 0.5 \\ \mathbf{E}\left[N_{2,T}^{F}\right] = 0.5 \end{array}$$

$$For instance 2: p_{T} = 0.7*(0.9^{1}*0.1^{0})*(0.6^{1}*0.4^{0}) \\ = 0.378 \\ p_{F} = 0.3*(0.3^{1}*0.7^{0})*(0.2^{1}*0.8^{0}) \\ = 0.018 \\ q = \frac{0.378}{0.378 + 0.018} = 0.95 \end{array}$$

Example: E step

$$\begin{array}{lll} \theta_{C} = 0.7 \\ \theta_{1}^{T} = 0.9 \\ \theta_{1}^{F} = 0.3 \\ \theta_{2}^{T} = 0.6 \\ \theta_{2}^{F} = 0.2 \end{array} \quad \begin{array}{ll} \underline{X_{1} X_{2}} \\ F T \\ T T \end{array} \quad \begin{array}{ll} E \left[N_{T} \right] = 1.45 \\ E \left[N_{1,T}^{T} \right] = 0.95 \\ E \left[N_{1,T}^{T} \right] = 0.05 \\ E \left[N_{1,T}^{T} \right] = 0.05 \\ E \left[N_{2,T}^{T} \right] = 1.45 \end{array}$$

For instance 2:
$$p_T = 0.7*(0.9^1*0.1^0)*(0.6^1*0.4^0) \\ = 0.378 \\ p_F = 0.3*(0.3^1*0.7^0)*(0.2^1*0.8^0) \\ = 0.018 \\ q = \frac{0.378}{0.378+0.018} = 0.95$$

$$\begin{array}{lll} \theta_{C} = 0.7 & & & & & \\ \theta_{1}{}^{T} = 0.9 & & & & & \\ \theta_{1}{}^{F} = 0.3 & & & & & \\ \theta_{2}{}^{T} = 0.6 & & & & & \\ \theta_{2}{}^{F} = 0.2 & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & &$$

$$\theta_{\rm C} = \frac{1.45}{2.0} = 0.72$$

$$\theta_{\rm I}^{\rm T} = \frac{0.95}{1.45} = 0.65$$

$$\theta_{\rm I}^{\rm T} = \frac{0.05}{0.55} = 0.09$$

$$\theta_{\rm I}^{\rm F} = \frac{0.55}{0.55} = 1.0$$

Convergence

- EM improves the likelihood on every iteration
- It is guaranteed to converge to a maximum of the likelihood function
- But it may be a local maximum!
 - as with neural networks, this can be a serious problem

A Tip

- Don't start EM with symmetric parameter values
 - in particular, don't start with uniform
- If you do, it won't have any information to tip things one way or the other
- Symmetric parameter values are a saddle point

Overview

- The Naïve Bayes model
- Discrete density estimation revisited
- Learning the Naïve Bayes model
- Autoclass: Naïve Bayes for clustering
- EM for Gaussian mixture models

Continuous attributes

- Autoclass assumes discrete attributes
 - uses counts for each value to estimate parameters
- Many domains are more naturally represented as continuous values
 - x,y(,z) locations
 - time

Continuous attributes so far...

- Density estimation
 - univariate and multivariate Gaussians
- Clustering
 - hierarchical agglomerative clustering
 - k-means

Mixture of Gaussians

•
$$p(x) = \sum_{j=1}^{k} \mathcal{N}(x \mid \mu_{j}, \Sigma_{j}) P(c_{j})$$

- k-means is a mixture of Gaussians where
 - covariance is diagonal, equal in all dimension, and equal for all clusters

$$\begin{array}{lll} \text{P(C) is uniform} \\ \text{p(x)} \approx \sum_{j=1}^k \mathcal{N}(\text{x} \mid \boldsymbol{\mu}_j, \boldsymbol{\Sigma}) & \quad \boldsymbol{\Sigma} = \begin{bmatrix} & \sigma^2 & 0 & 0 \\ & 0 & \ddots & 0 \\ & 0 & 0 & \sigma^2 \end{bmatrix}$$

Mixture of Gaussians parameters

- Means of Gaussians: μ_i
- Covariances of Gaussians: Σ_i
- Mixing coefficients (P(C)): π_j
- $\sum_{i=1}^{K} \pi_{i} = 1$
- ullet Assignment of instances to Gaussians: $\gamma_{i,j}$
 - instances are assigned to multiple clusters: soft assignment

$$\cdot \sum_{j=1}^k \gamma_{i,j} = 1$$

Mixture of Gaussians algorithm

MixtureOfGaussiansEM($\{x^1,...,x^N\}$, k) =

Assign instances to clusters arbitrarily

Maximization step to initialize parameters

Repeat until convergence:

Expectation step

Maximization step

Mixture of Gaussians E step

For each instance i:

For each cluster j

compute cluster responsibility

$$\gamma_{i,j} = \frac{\pi_k \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{m=1}^k \pi_m \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_m, \boldsymbol{\Sigma}_m)}$$

Mixture of Gaussians M step

For each cluster j:

$$\begin{aligned} \mathbf{N}_{j} &= \sum_{i=1}^{N} \gamma_{i,j} \\ \boldsymbol{\mu}_{j} &= \frac{1}{N_{j}} \sum_{i=1}^{N} \gamma_{i,j} \mathbf{x}^{i} \\ \boldsymbol{\Sigma}_{j} &= \frac{1}{N_{j}} \sum_{i=1}^{N} \gamma_{i,j} (\mathbf{x}^{i} - \boldsymbol{\mu}_{j}) (\mathbf{x}^{i} - \boldsymbol{\mu}_{j})^{T} \\ \boldsymbol{\pi}_{j} &= \frac{N_{j}}{N} \end{aligned}$$

Old faithful data

After first M step

[Bishop, 2006]

Gaussian mixtures and naïve Bayes

- Naïve Bayes assumption was that the attributes were independent
- What does the naïve Bayes assumption mean for a mixture of Gaussians model?
 - diagonal covariance matrix
- Often this assumption is made because it is easier to fit a model with fewer parameters
 - still more flexible than k-means
 - · learned variance in each dimension
 - non-uniform P(C)

More EM hints

- As with Autoclass, don't initialize with symmetric parameters
- Susceptible to local optima, so do random restarts

Local optima

• With variable covariance, what is global optimum for this data?

Local optima

 With variable covariance, what is global optimum for this data?

More EM hints

- As with Autoclass, don't initialize with symmetric parameters
- Susceptible to local optima, so do random restarts
 - but sometimes we don't actually want the global optimum!

Using logs

During E step, exponentiation can get ugly

$$\gamma_{i,j} = \frac{\pi_k \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{m=1}^k \pi_m \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_m, \boldsymbol{\Sigma}_m)}$$

$$\mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{\frac{n}{2}} |\boldsymbol{\Sigma}|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right)$$

• We can take the log and then exponentiate

We can take the log and then exponentiate
$$\gamma_{i,j} = \exp \left(\log \pi_k \mathcal{N}(\mathbf{x} \,|\, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) - \log \sum_{m=1}^k \pi_m \mathcal{N}(\mathbf{x} \,|\, \boldsymbol{\mu}_m, \boldsymbol{\Sigma}_m) \right)$$

Logsumexp

$$\gamma_{i,j} = \exp\left(\log \pi_k \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) - \log \sum_{m=1}^k \pi_m \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_m, \boldsymbol{\Sigma}_m)\right)$$

 $\log \sum exp(-x_i) \text{if some } x_i \text{ is too big, no good!}$

Logsumexp

$$\begin{split} \log \sum_{i} \exp(-x_{i}) \\ a &= \max_{i} x_{i} \\ \log \left[\sum_{i} \exp(x_{i}) \right] = \log \left[\sum_{i} \exp(x_{i} - a + a) \right] \\ &= \log \left[\sum_{i} \exp(-x_{i} + a) \exp(-a) \right] \\ &= \log \left[\exp(-a) \sum_{i} \exp(-x_{i} + a) \right] \\ &= -a + \log \left[\sum_{i} \exp(-x_{i} + a) \right] \end{split}$$

Logsumexp

$$\gamma_{i,j} = \exp\left(\log \pi_k \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) - \log \sum_{m=1}^k \pi_m \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_m, \boldsymbol{\Sigma}_m)\right)$$

 $\log \sum exp(-x_i) \text{if some } x_i \text{ is too big, no good!}$

$$a = \max_{i} x_{i}$$

$$\log \left[\sum_{i} \exp(-x_{i}) \right] = -a + \log \left[\sum_{i} \exp(-x_{i} + a) \right]$$

Generalized EM

- For Gaussians, we can find maximum likelihood parameters analytically
- For some likelihood functions, this is not true
- For EM to work, need only that M step increase the likelihood
- Can use other methods to increase likelihood
 - e.g. gradient descent
- BUT, if so, not always clear the EM is useful
 - could maximize likelihood function directly