# **MEA2100 User Guide**

Aus Multi Channel Systems Wiki

### **Inhaltsverzeichnis**

- 1 Introduction
  - 1.1 System Overview
  - 1.2 Getting Started
  - 1.3 DSP
    - 1.3.1 Data Aquisition
      - 1.3.1.1 General Overview
      - 1.3.1.2 DSP Reception of Sweep and Digital data
    - 1.3.2 Stimulation
      - 1.3.2.1 General Overview
      - 1.3.2.2 Stimulus Pattern Upload
        - 1.3.2.2.1 DAC Units
        - 1.3.2.2.2 Sideband Data
      - 1.3.2.3 Electrode Configuration

        - 1.3.2.3.1 Electrode setup advice
        - 1.3.2.3.2 Stimulus channel setup advice ■ 1.3.2.3.3 List mode for advanced stimulation
      - 1.3.2.4 Standard Trigger
        - 1.3.2.4.1 Standard Trigger Setup
        - 1.3.2.4.2 Start Trigger
      - 1.3.2.5 Direct Streaming Mode triggered by SW
        - 1.3.2.5.1 Direct Steaming Trigger Setup
        - 1.3.2.5.2 Direct Steaming Data path Setup
    - 1.3.3 Digital Multiplexer
    - 1.3.4 Using McsUsbUpdate to review configuration
- 2 Data Format for > 16 bit
- 3 Register Interface
  - 3.1 Address Map (Address bits 15-12 determine the subcomponet)
  - 3.2 Interface Board Address Map (Address bits 11-0), Base Address: 0x0000:
  - 3.3 Mailbox Register Address Map (Address bits 11-0) Base Address: 0x1000:
  - 3.4 RAM Register Address Map (Address bits 11-0) Base Address: 0x2000:
  - 3.5 Headstage Board Address Map (Address bits 11-0) Base Address: HS1: 0x8000 HS2: 0xC000:
  - 3.6 Stimulus Board Address Map (Address bits 11-0) Base Address: HS1: 0x9000 and 0xA000 HS2: 0xD000 and 0xE000:
- 4 HS <-> STG interconection (bits 32-0)

# Introduction

# **System Overview**

The MEA2100 system consists of an interface board and one or two headstages.

The interface bord consists of:

- Two USB connectors for PC connection
- Two ports for one or two headstages
- 16 digital input and 16 output ports for triggering
- Eight additional analog inputs for monitoring
- DSP debug port
- Audio out
- A DSP
  - Who has access to the measured data stream for additional promt data calculation
  - Optional Stimulation control

The DSP can be programmed by the user, for example to do real-time signal analyses and programm feedback via the stimulation channels. A debug port is provided at the same connector as the analog inputs.

# Overview



The headstage consists of:

- Adapters for different MEAs (see options below)
  - Electronic for measurement
  - Stimulation of up to 120 electrodes

The headstages connect to an interface board.

The overview about HS options:



# **Getting Started**

To write code for the DSP, the following tools are needed:

- Code Composer Studio from Texas Instruments, which is the C compiler for the DSP [1] (http://processors.wiki.ti.com/index.php/Category:Code\_Composer\_Studio\_v4)
  - Documentation for this compiler: [2] (http://www.ti.com/lit/ug/spru187o/spru187o.pdf)
- 6455\_default\_package.zip to c:\ti\csl\TMS320C6454\default\_package
- ActivePython [3] (http://www.activestate.com/activepython/downloads)
- Visual Studio 2010, there is a free Express Edition available from Microsoft [4] (http://www.microsoft.com/visualstudio/en-us/products/2010-editions/visual-csharp-express)
- A Blackhawk XDS560v2 System Trace Emulator is of great help to debug DSP code [5] (http://www.blackhawk-dsp.com/products/XDS560v2.aspx). The part number is BH-XDS-560v2-BP. A reseller for US is http://www.corelis.com (http://www.corelis.com/products-blackhawk/XDS560\_Trace\_System.htm)

### **DSP**

The default setup of the system routes the data without DSP interaction from HS 1 to USB A and from HS2 to USB B Port. In this case the DSP is only able to monitor the sweep data.



The DSP can be programmed with user code to access the data stream from the headstages and the onboard ADCs of the interface board. The datastream can be send to the USB ports towards the PC. The DSP can also configure all parts of the MEA2100-System, including stimulation and trigger, exept the USB data stream configuration to the PC. By this a realtime feedback with low latency can be build.



The DSP used in the MEA2100 system is a TMS320C6454 (http://www.ti.com/product/tms320c6454) from Texas Instruments running at 819.2 MHz. He has access to the MEA2100 system via its external memory interface (EMIF). Access to the system is via three parts.

■ The Configuration of the MEA2100 is done with the register based interface. Therefore the DSP has the MEA address mapped into the range from 0xA0000000 to 0xAFFFFFFF. The different components of the MEA2100 use each a subrange of this address region. #Register Map In the FB\_Example Project, MEA21\_init.h defines Macros which can be useed to access these registers:

```
#define READ_REGISTER(reg) MEA21_REGISTER(reg)
#define WRITE_REGISTER(reg, value) MEA21_REGISTER(reg) = value
```

- Sweep and Digital data is transfered via a fifo-type interface, mapped into the DSP address range starting from 0xB0000000.
- One of two options of controlling the stimulation is the direct streaming mode. This can be done via the streaming port using address 0xC0000000.

#### **Data Aquisition**

#### **General Overview**

The MEA2100 System can measure analog signals from 120 electrodes per Headstage at 50kHz with 24bit resolution. On the interface board are 8 additional analog inputs for monitoring purposes(also 50kHz and 24bit resolution). Additional to the analog signals are several digital signals(configurable DSP in data).

#### DSP Reception of Sweep and Digital data

Sweep and Digital Data is available to the DSP through a FIFO type interface mapped to the address 0xB0000000 in the DSP memory map.

Each time (once every 20 us), when the MEA2100 has a new sweep of data available from the Datasources, the signal line (GPIO4) to the DSP will be toggled (enabled in Interconnection Logic). After the DSP has received this signal, it can read the new sweep data either by multiple reads from address 0xB0000000, or the more convenient way is to set up a DMA transfer which automatically transfers all data from the sweep into DSP memory. After the transfer is complete, a DMA completion interrupt can be called.

The example code in the FB\_Example project initializes and enables such a DMA transfer. In the example, each time after a new sweep of MEA2100 is available in DSP memory, the function interrupt6() is called. The new data is available to the user in the array MeaData[]. The data in this MeaData[] array automatically updates every 20 us when the DMA is running.

The setup and initialisation of the DMA is done in the init\_dma() function in MEA21\_init.c. Once it is up and running, it does the transfers automatic without CPU intervention, so no loose of CPU time in this mode.

One important Register for the readout of data is Register 0x400. This register controls which kind of data is transfered into the FIFO from MEA2100 to the DSP. It can enable data from Headstage 1, Headstage 2, or from the ADCs on the Interface board and some other helpfull data.

The line 94 of main.c

```
WRITE_REGISTER(DspIndataCtrl, DSPINDATACTRL_VALUE); // Enable Irq and HS1 Data
```

enables the data transfer from the FPGA to the FIFO towards the DSP.

The ADC Data blocks have the format

```
HS1 122 datawords (Header, 120 Data, Counter)
HS2 122 datawords (Header, 120 Data, Counter)
IF 9 datawords (Header, 8 Data)
HS1 Filtered Data 122 datawords (Header, 120 Data, Counter)
HS2 Filtered Data 122 datawords (Header, 120 Data, Counter)
```

which means, when you have enabled data from Headstage 1 (HS1), you will get 122 32-bit Datawords per sweep, where the first dataword is a header word, followed by 120 32-bit datawords of ADC data (Format is signed, the ADCs have 24 bit resolution), followed by a 32-bit counter which enumerates the sweep.

So, when data from Headstage 1 is enabled there will be at MeaData[0] the header, at MeaData[1] the data from the first ADC (MEA Hardware Channel Nr. 1) and so on.

The pointers in the irq.c example are intended to help to access the ADC data, HS1\_DATA\_OFFSET is defined to 1, because this is the location of the data from the first data channel.

```
Int32* restrict HS1_Data_p = (Int32 *)&MeaData[HS1_DATA_OFFSET];
```

HS1\_Data\_p is a pointer to the location within MeaData where the ADC data is located. When the code in the DSP needs to do some calculation on the sweep data, the data of interest should be copyed to a memory location under its control. You always need to remember that MeaData will be changed as soon as new sweep data is transfered by the DMA.

The Digital Data blocks have the format

```
Digital Data 28 datawords (Header, 27 Data)
Timestamp 3 datawords (Header, 2 Data)
```

### Stimulation



#### General Overview

Each headstage, which can measure from and stimulate up to 120 electrodes has two seperate modules (STG 1 and STG 2) for the stimulation. The first module is in control of electrode channels 1 to 60, the second module for electrode channels 61 to 120. Each of the two modules has access to three DAC pairs and three sideband channels.

There are two options of controling the stimulation in the modules:

- Configure Stimulus-Generator modules
- Direct streaming mode from DSP via streaming port

Within each module, the three DAC pairs and three sideband channels can be arbitrary controlled by three trigger statemachines.

These statemachines handle the stimulus pattern read out units (DAC/SBS) to whom they are assigned to (reg:0x104-0x108). The stimulus pattern is stored in onboard memory on the MEA2100 headstage where each module has its own independent memory. For the stimulation (DAC/SBS) the memory is organized in segments and blocks to support the stimulus with different stimulus pattern lists, to enable quick switching between lists of prepared patterns. The DACs update their output value every 20 us, resulting in an output rate of 50 kHz. Corresponding for the analog patterns, additional information is stored in memory regions called sidebands. These sideband data contain digital information for controling the switches and muxes to enable stimulation. The update of this data is also every 20 us.

- The electrical parameters are:
  - Voltage Mode: Range: +- 12 V, Resolution: 0.571 mV / digit (571 uV/digit)
  - Current Mode: Range: +- 1.5 mA, Resolution: 0.05 uA / digit (50 nA/digit)

The configuration of the Stimulus Generator consists of three parts:

- The stimulus pattern upload
- The electrode configuration
- The trigger setup

The configuration of the Direct Streaming mode can be done in two ways:

- When controled by Computer SW via DSP
- When fully controlled by DSP

#### Stimulus Pattern Upload

There are eight stimulus pattern read out units to read the stimulus pattern from the assigned memory block and support the data to the stimulation logic. In the default configuration, only six units are in use, where three support the data for the DAC pairs and three for the sideband signals.

Setup: Before the patterns can be uploaded into memory, the available 256 MByte of memory need to be devided in blocks and segments. These blocks and segments need to be assigned to the eight units. One option is to divide all available memory into eight blocks and ONE segment. A more advanced option is to subdivide the total memory into 256 segments, and then subdivide the memory within each of these segments into the eight blocks. This mode, called the segmented mode, allows to predefine and upload up to 256 independant stimulation patterns and quickly select amoung them within microseconds. The mode will be selected by a write to Memory Control Register (0x200) on each of the STG subsystems. Setting bit 28 one segment will be set up automatically. Setting bit 29 the memory is subdivided into 256 segments with interal logic.

Alternatively the size of each block and each segment can be subdivided individual with the needed amount of memory. This is controlled by the registers 0x200 to 0x2f0 and need to be done manualy. There the start pointer for each of the memory blocks need to be inserted. For example the memory block for DAC A and B (default setting of Register 0x1D0) is controlled by the registers 0x200 to 0x210. Register 0x200 is used to select a segment, and then the start address for this block in the selected segment is set via registers 0x204. In default Segment 0 is used. When segmented mode is chosen another segment is selected via register 0x200. Again the start address of the selected block is set via register 0x204. So register 0x200 selects the segment to be defined/modified and then the other registers reflect the corresponding block start pointer of the segment.



After the intendet memory layout is set up, each of the DAC and sideband memory blocks can be filled with data. Data is written to the blocks in a FIFO type mode via the Write DAC and Write SBS Data Registers (0xF20-0xF3C). Each write to one of these registers appends one 32bit data word to the corresponding block in the selected segment. When a data word is written to the Data Registers at address from 0xF40 to 0xF54, the pointer of the corresponding block is first set to Start. The segment will be changed as well in Register 0x200 (0x220,0x240,...,0x2E0). If the number of vectors for a stimulus pattern is more than the memory space allocated for one block, no hardware will limit the write to the memory (overlapping pattern memory). So the data of an other block will be overwriten! This will lead to unpredictable behavior during operation!

The 32 bit data word is described in Data Vector decoding.

The data vector (000) is either a value with a 16 bit amplitude for DACs or 16 bit Sideband Signal value for Sideband Channels. Bit 26 defines the timebase of this vector. A '0' defines that the value will be valid for one 20 us frame until the number of repeats (bits 25-16) will be decreased by one. If bit 26 is '1' the value will be valid for 1000 times 20 us until the decrement will be done.

Two kind of loops can be used. A single vector loop (001) and a long loop vector (010 in combination with 011) with two vectors keeping the information. For both types of loops the "number of repeats" are one based. Whereby a 0x1 will lead to ignore the vector and a 0x2 will repeat once. A value of 0x0 means to loop forever! The address offset is also one based. A 0x1 will jump backward one vector before the loop vectors. So nested loops for repetition of (sub-)blocks of data can be created. This avoids to store one stimulus multiple times.

### DAC Units

The stimulation module for the 60 electrode channels is subdivided in two halfs of 30 electrodes, where each half has its own set of three DACs. In default configuration these six DACs are combined into three DAC pairs, so that it looks like that there are three DACs available for each of the 60 electrodes.

For advanced applications, these DAC pairs can be broken up, allowing stimulation with three DACs available for each block of 30 electrodes. The DACs which are available to the lower 30 electrodes in a module are named DAC A, C and E, the DACs which are available to the upper 30 electrodes in a module are named DAC B, D and F.

In default configuration, DAC A and B form the DAC AB pair, likewise DAC C and D form the DAC CD pair, and DAC E and F form the DAC EF pair, making it look like there are three DACs named AB, CD and EF. Both DACs out of a DAC pair take their data out of the same memory block, thus always have the same analog output.

The DAC pairs are broken up by assigning each DAC to its own stimulus pattern read out unit of the available eight stimulus pattern supporting units. When all six DACS are to be used individually there are two units left to be shared among the three sidebands. The register which controls the DAC to stimulus pattern read out units is 0x1D0. For Sideband configuration it is register 0x1D4.

#### Sideband Data

A Sideband has two functions:

- These Sideband Signals (SBS) control the switches which connect the Stimulation DACs to the electrode and it controls the Amplifier Protection("Blanking") of ADC data while a Stimulus pulse is active. Each function is assigned to a bit in the 16 bit wide data stream:
  - Bit 0: Amplifier Protection Switch on Headstage/Blanking
  - Bit 3: Stimulation Switch Close
  - Bit 4: Stimulus Selector Enable
  - Bit 8: List Mode config ID increment on/to the Interface Board or Bit 15-8 List Mode config ID when source of ID is switched to SB bits
- It can be used to send data to the USB, to the DSP or to the digital outputs on the Interfaceboard which are synchronous to the running stimulation.



The diagram shows an example stimulus pattern together with the sideband datastream. As shown in the drawing, the Stimulation Switch can open with the end of the Stimulus. The Blanking signal should stay active for some additional time te, recommendations are 20 us for Voltage Stimulation and 20 us for Current Stimulation. Likewise, the Stimulation Selector should be kept for some additional time te, here the recommendation is 20 us for Voltage Stimulation and 20 us for Current Stimulation

### **Electrode Configuration**

To configure an eletrode for stimulation, each of the 120 electrodes has to be either assigned to one of the three DACs within its STG subsystem, or it can be in an "inactive" configuration. This is controlled by register 0x160-0x16C, the Electrode DAC Multiplexer assignment Register. These registers sets the Stimulus selectors to one of the four inputs. Two bits for each electrode either configure the electrode to be stimulated to DAC A/B, C/D or E/F. The bit pattern "00" configures the selector into an "inactive" mode, in which it is configured to fixed ground.

Behind the multiplexer, the Stimulation Enable switch connects the DAC selector output with the electrode. This will be configured in register 0x158-0x15C.

For Testing or for Measurement electrodes, each electrode can be set in "manual" mode. With this the DAC Multiplexer and the Stimulation Enable switch are set imidiatly in the state which is defined by register 0x160-0x16C for the DAC settings and 0x158-0x15C for the Stimulation Enable. During stimulation, when the system should be controlled by the sidband signals, the corresponding stimulation electrode needs to be set into dynamic (automatic) mode (register 0x120-0x12C).

In default setup the sideband 1 is assigned to DAC A/B, sideband 2 is assigned to DAC C/D and sideband 3 is assigned to DAC E/F. For advanced setup these defaults can be changed in register 0x154. For example all DACs can have assigned sideband 1 to it.

When an electrode is in automatic mode assigned to one of the three DACs, the DAC Select and Stimulation Enable register do not directly configure the state of the switches. Only when the Sideband datastream is running, the corresponding SBS vector to the current DAC vector determine the state of the switches. The default state, which is used when the sideband is not running or when the corresponding bit in the sideband datastream is zero, is for the Multiplexer to use its ground connected pin to be selected and the Elektrode Enable Switch is open. The default state of the switches, which is used when the signal from the electrodes is measured, is shown in blue in the schematic overview above. The sideband is a 16 bit wide data stream. Bit 0 of this data stream controls the Amplifier Protection Switch and the Blanking, Bit 3 controls the Stimulation Switch and Bit 4 is in control of the Stimulus Selector.

# Electrode setup advice

- Decide wether your electrode is used as stimulation or measurement electrode (set corresponding bit in register 0x120-0x12C and 0x158-0x15C)
- Assign your stimulation electrode to a stimulation channel (DAC A to F) (set corresponding bits in register 0x160-0x16C)

#### Stimulus channel setup advice

Assign a sideband Channel to a stimulation channel (set in register 0x154)

Control:





#### List mode for advanced stimulation

There is the possibilty to predefine and quickly switch the electrodes between up to 256 different stimulation configurations. The DAC select and Stimulation Enable registers are actually an array of 256 independent configurations. During setup the register 0x150, the Electrode configuration ID CTRL register controls which configuration is to be defined. Here bits 0-7 define which one of the 256 possible configrations is selected for setup editing.

Bit 28 in the Electrode configuration ID CTRL register control how the configuration is selected during stimulation. This bit can either be "0" for taking configuration ID from the Interface Board. When this bit is set to "1" the "internal" configuration ID is active. Then bits 8 to 15 in the sideband datasteam define the active electrode configuration. In "external mode" the List Mode configuration ID is generated in the Trigger Block of the Interface Board.

#### Standard Trigger

### Standard Trigger Setup

For controling the stimulation three trigger statemachines are implemented. In the default configuration, each trigger has control of two stimulus pattern read out units. These units support data for one DAC pair and one sideband. So this controls one stimulus pattern and its corresponding digital information 0x104-0x108.

An example where more than one DAC is assigned to one trigger is, when multiple electrodes are to be stimulated, grouped into two blocks, where each of the two blocks has a different stimulation signal amplitude. To accomplish this, two DACs can be assigned to one trigger. As long as the timing of the two stimulation patterns for two stimulus groups are the same, they can share one sideband resulting in a setup where one trigger controls two DACS and one sideband.

When the two stimulation groups have differences in timing it is useful to use a seperate sidebands for each of these groups, thus resulting in a setup where one trigger controls two DACs and two sidebands.

The assignment of the three DAC pairs and three sidebands to the three triggers within each block is controlled by registers 0x104 for the DACs and by register 0x108 for the sideband channels. With this setup the controlling trigger for each DAC and sideband has to be choosen.

Start and Stop of the stimulation is always controlled at the level of the triggers, so that all DAC and sidebands which are grouped together to a specific trigger are started and keeped running in sync.

### Start Trigger

For the trigger to work, the first bit(0) in the Trigger Control Register 1 (0x200) on the Interface board has to be set to 1. This enables the trigger event packet to propagate from the interface board to the stimulus generators.

The Trigger ID registers (0x218 to 0x244) define for each trigger, which Stimulus-Pattern Memory-Segment to use when the corresponding trigger is startet. For single segment mode leave this register at the default value of 0.

To actually start a trigger manually, write a "1" to the bit which corresponds the trigger number in the Trigger Event Status register 0x214. For example to manually start trigger 1, write a value of 0x00000001 to register 0x214.

 $To \ start \ a \ trigger \ with \ external \ signals \ or \ other \ sources \ a \ Digital \ Multiplexer \ for \ source \ select \ is \ implemented \ (0x280-0x2AC).$ 



# Direct Streaming Mode triggered by SW

A further advanced mode for Stimulation is the DSP generated stimulus pattern direct streaming mode, which can be standard triggered and monitored by the computer SW. In this mode the trigger statemachine and memory on an STG will be bypassed and the DAC and SBS data will be send direct from the DSP to the stimulus logic. The setup for stimulus switch and selector still needs to be done as in standard mode.

### Direct Steaming Trigger Setup

To detect a trigger event on the DSP the digital data stream to the DSP needs to be enabled reg 0x400 bit 12. In this digital data stream the 8th and 18th vector reflect the trigger event information

# Direct Steaming Data path Setup

For controling the stimulation by direct streaming data to an STG, the data source for the DAC and SBS Data need to be switched to DSP. This needs to be done in register 0x100.

To start the distribution of the streaming data from the FIFO configure the register 0x430. After this the stimulus data can be send via the straming FIFO of the DSP. For this write 36 DWords to the address 0xC0000000 from the DSP.

- 24 DWords for DAC Data
  - 6 DWords to HS1 STG1 (DAC: A, C, E, B, D, F)
  - 6 DWords to HS1 STG2 (DAC: A, C, E, B, D, F)
  - 6 DWords to HS2 STG1 (DAC: A, C, E, B, D, F)
  - 6 DWords to HS2 STG2 (DAC: A, C, E, B, D, F)
- 12 DWords for SBS Data
  - 3 DWords to HS1 STG1 (SBS: 1, 2, 3)
  - 3 DWords to HS1 STG2 (SBS: 1, 2, 3)
  - 3 DWords to HS2 STG1 (SBS: 1, 2, 3)
  - 3 DWords to HS2 STG2 (SBS: 1, 2, 3)

Allways write 36 DWords, even when you switch only one STG to direct streaming mode, because the FIFO read logic expects 36 Data in the predefined order.



### **Digital Multiplexer**

There are multiple digital signals within the MEA2100 system, which represent internal states of the systems. These digital signals can be mapped

- To the digital outputs of the Interface board
- Into the digital datastream via the USB connection to the PC
- Used by the DSP
- With some restrictions used as triggers conditions for Stimulation
- With some restrictions used as list mode ID increment
- Trigger gated data start mode

The following digital signals are available for Digital Output and Digital Datastream to the computer and DSP

- Digital In bit 0 to 31; these are 32 bit taken from the rear side Digital Connector
- Digital Pulse Register bit 0 to 31; taken from Digital Pulse Register 0x700, valid for the duration defined in Register 0x704-0x710, started by a write to Register 0x700.
- Feedback Register bit 0 to 31; taken from Feedback Register 0x780
- Aux In bit 0 and 1; taken from the two lemo connectors on the Interface board.
- A fixed value of "0"
- A fixed value of "1"
- Trigger Status of the Stimulation Boards
- Any bit from all the Sideband Channels

There is a multiplexer for each bit of the digital datastream at register 0x880-0x8BC for USB connector A and register 0x8C0-0x8FC for USB connector B. For the digital output there is for each bit a register at 0x840-0x87C. There you can select its source from all selectable sources as descibed in the table above.

The multiplexer for the following digital signals are available to trigger the Stimulators

- A fixed value of "0"
- Digital In bit 0 to 31; these are 32 bit taken from the rear side Digital Connector
- Feedback Register bit 0 to 31; taken from Feedback Register 0x780
- Aux In bit 0 and 1; taken from the two lemo connectors on the Interface board.

The multiplxer for each trigger are located in register 0x280 to 0x2AC.

### Using McsUsbUpdate to review configuration

For reviewing the setup done with the DSP there is a program called McsUsbUpdate. With this program all relevant registers are reflected and according to the use case RO, RW, WO.











# Data Format for > 16 bit

|                       |                      | 24 bit Format, Little er            | ndian byteorder         |                       |               |  |  |
|-----------------------|----------------------|-------------------------------------|-------------------------|-----------------------|---------------|--|--|
| 15 14 13 12 11 10 9 8 | 7 6 5 4 3 2 1 0      | 15 14 13 12 11 10 9 8               | 7 6 5 4 3 2 1 0         | 15 14 13 12 11 10 9 8 | 7 6 5 4 3 2 1 |  |  |
| Byte 1                | Byte 2               | Byte 3                              | Byte 4                  | Byte 5                | Byte 6        |  |  |
| LSB 0                 | MSB 0                | HSB 0                               | LSB 1                   | MSB 1                 | HSB 1         |  |  |
|                       | 24 bit Format, MO    | C_Rack freundlich, eventuell alle   | LSBs als Block nach all | en 16 bit Kanälen     |               |  |  |
| 15 14 13 12 11 10 9 8 | 7 6 5 4 3 2 1 0      | 15   14   13   12   11   10   9   8 | 7 6 5 4 3 2 1 0         | 15 14 13 12 11 10 9 8 | 7 6 5 4 3 2 1 |  |  |
| Byte 1                | Byte 2               | Byte 3                              | Byte 4                  | Byte 5                | Byte 6        |  |  |
| MSB 0                 | HSB 0                | MSB 1                               | HSB 1                   | LSB 0                 | LSB 1         |  |  |
|                       | 32 bit Format, Littl | e endian byteorder                  |                         |                       |               |  |  |
| 15 14 13 12 11 10 9 8 | 7 6 5 4 3 2 1 0      | 15 14 13 12 11 10 9 8               | 7 6 5 4 3 2 1 0         |                       |               |  |  |
| Byte 1                | Byte 2               | Byte 3                              | Byte 4                  |                       |               |  |  |
| LSB 0                 | MSB 0                | HSB 0                               | LSB 1                   |                       |               |  |  |

# **Register Interface**

# Address Map (Address bits 15-12 determine the subcomponet)

When accessed from the DSP, all FPGA Registers are memory mapped to the address region from 0xA0000000 to 0xA0000FFFF.

```
0x0000 to 0x0FFF: Interfaceboard
0x1000 to 0x1FFF: Mailbox Registers on Interfaceboard
0x2000 to 0x2FFF: RAM Registers on Interfaceboard
0x2000 to 0x2FFF: RAM Registers on Interfaceboard
0x2000 to 0x2FFF: Headstage 0
0x3000 to 0x2FFF: STG1 on HS 0
0x4000 to 0x4FFF: STG2 on HS 0
0x4000 to 0x4FFF: STG2 on HS 0
0x4000 to 0x4FFF: STG2 on HS 1
0x6000 to 0x5FFFF: STG1 on HS 1
0x6000 to 0x5FFFF: STG1 on HS 1
```

Interface Board Address Map (Address bits 11-0), Base Address: 0x0000:

| 6.9.2016                                     |          |               |       |          |        | MEA2      | 100 Usei   | r Guid  | de – Multi C | Channe | Sys | tems  | Wiki  |        |       |          |       |      |       |               |       |         |      |
|----------------------------------------------|----------|---------------|-------|----------|--------|-----------|------------|---------|--------------|--------|-----|-------|-------|--------|-------|----------|-------|------|-------|---------------|-------|---------|------|
| Access time is 0,85 us for write             | es and ( | ),85 u        | ıs fo | r reads. |        |           |            |         |              |        |     |       |       |        |       |          |       |      |       |               |       |         |      |
| General Purpose Registers (s                 | hould l  | be im         | ıplen | nented   | in eve | ery Dev   | rice)      |         |              |        |     |       |       |        |       |          |       |      |       |               |       |         |      |
| Register                                     |          | 31            | 30    | 29 28    | 27     | 26 25     | 24 23      | 22      | 21 20 19     | 18 1   | 7 1 | 6 15  | 14 1  | 3 12   | 11    | 10 9     | 8     |      |       | 7             | -     | 5       | 5    |
| 0x000: Device ID Register                    |          | 0x00          | 0000  | 001 = 1  | MEA 2  | 21 Inter  | face FPC   | iΑ      |              |        |     |       |       |        |       |          |       |      |       |               |       |         |      |
| 0x004: HW/FPGA Version Re                    | egister  | HW            | //Boa | rd Vers  | sion   |           |            |         |              |        |     | FPG   | GA Ve | rsion: | 0x010 | )1 = In  | itial | Ve   | rsior | 1             |       |         |      |
| 0x008 : Configuration Registe                | er       | Rese          | erve  | d        |        |           |            |         |              |        |     |       |       |        |       |          | Су    | 2nc  | otCy: | 1 Re          | eserv | ved     | Ad   |
| GTP Registers (should be im                  | plemen   | ited i        | in ev | ery De   | vice)  |           |            |         |              |        |     |       |       |        |       |          |       |      |       |               |       |         |      |
| Register                                     |          |               | 31    | 30 29    | 28     | 27 26     | 25 24      | 23      | 22 21 20     | 19 1   | 8 1 | 7 16  | 15 1  | 4 13   | 12    | 11 10    | 9     | _    |       |               |       | 8       | _    |
| 0x010: GTP CTRL Register                     |          |               | Rese  | erved    | ,,     |           |            |         |              |        |     |       |       |        | ,     |          | Н     | (S 1 | Lin   | k ena         | ble   | HS      | 0 I  |
| 0x014: (RO)GTP Error count                   | er Regi: | ster          | HS    | 1        |        |           |            |         |              |        |     |       | HS 0  |        |       |          |       | _    |       |               |       |         | _    |
| 0x014: (WO)GTP Error count                   |          | $\rightarrow$ | Any   | Value    | Resets | the cou   | ınters     |         |              |        |     |       |       |        |       |          |       | _    |       |               |       |         | _    |
| Power and Reset Register (sh                 | ould b   | e imp         | plem  | ented i  | n ever | y Devi    | ce)        |         |              |        |     |       |       |        |       |          |       |      |       |               |       |         | _    |
| Register                                     | 31 30    | ) 29          | 28    | 27 2     | 6 25   | 24 2      | 3 22 2     | 1 20    | 19 18 1      | 7 16   | 15  | 14 13 | 3 12  | 11 1   | 0     |          | Т     | 9    |       | $\overline{}$ | 8     |         |      |
| 0x020: FPGA Reset                            | Reserv   | ved           |       |          |        |           |            |         |              |        |     |       |       |        |       |          |       | _    |       |               |       |         | _    |
| 0x024: Power Enable                          | Reserv   | ved           |       |          |        |           |            |         |              |        |     |       |       |        |       |          |       | _    |       |               |       |         | _    |
| 0x028: Trafo startup delay                   | Reserv   |               |       |          |        | Н         | S2 Delay   | v       |              |        | HS1 | Delay | ,     |        |       |          |       |      |       |               |       |         |      |
| 0x02C: LED config Register                   | Reserv   |               |       |          |        |           |            |         |              |        |     |       |       | L      | ED H  | S 1/2 a  | and   | IF r | regis | ter m         | ode   | enab    | _    |
| onoze. EED comig register                    | reser    |               |       |          |        |           |            |         |              |        |     |       |       |        |       | .5 1/2 0 | ina   | _    |       |               |       | Ciido   |      |
| Flash Memory Registers (sho                  | uld be   | impl          | leme  | nted in  | every  | Device    | e)         |         |              |        |     |       |       |        |       |          |       |      |       |               |       |         |      |
| Register                                     |          |               |       | 31 30    | 29     | 28 27     | 26 25      | 24      | 23 22 21     | 20 1   | 9 1 | 8 17  | 16 1  | 5 14   | 13    | 12 11    | 1     | 0    |       |               | 9     |         |      |
| 0x030: (WO)Flash Instruction                 | Code     | Regis         | -     | Reserv   |        |           |            | ш       | -            |        |     |       |       |        |       |          |       | _    |       |               | Sto   | p ins   | truc |
| 0x030: (RO)Flash Status Regi                 |          | regio         | J.C.I | Reserv   |        |           |            |         |              |        |     |       |       |        |       |          | F     | TFC  | ) en  | nnty          |       | O fi    |      |
| 0x034 : Flash Memory Addre                   |          | cter          | _     | Reserv   |        |           |            |         | Flash Addr   | ecc    |     |       |       |        |       |          | 1.    |      |       | трту          | 1 11  | <u></u> |      |
| 0x038 : Flash Data FIFO Reg                  |          | 5101          | _     |          |        | tos in 6/ | 1 DWord    | s to/fi | rom Flash    |        |     |       |       |        |       |          |       | _    |       |               |       |         | _    |
| 0x03C : Flash Clock Divider                  |          | r             | _     |          |        |           | e 38,4 M   |         | TOTH T TUSH  |        |     |       |       |        |       |          |       | _    |       |               |       |         | _    |
| Data Stream CTRL Registers                   |          | 1             |       | With     | 103 01 | 2 divide  | 2 30,4 141 | 112     |              |        |     |       |       |        |       |          |       |      |       |               |       |         | _    |
| Register                                     | 31       | 30            | 29    | 28 2     | 7 26   | 25 2      | 4 23 2     | 2 21    | 20           | 19     | 18  | 17    |       | 16     |       | 15 1     | 4     | 13   | 12    | 11            | 10    | 9 8     |      |
| 0x040: FIFO Interface CTRL                   | 1        |               |       |          | _      |           |            |         | 1            |        | _   | -     |       |        |       |          |       |      |       |               |       |         |      |
| Dev0                                         | Rese     | erved         |       |          |        |           |            |         |              |        |     |       |       |        |       |          |       |      |       |               |       |         |      |
| 0x042: FIFO Interface CTRL Dev2              | Rese     | erved         |       |          |        |           |            |         |              |        |     |       |       |        |       |          |       |      |       |               |       |         |      |
| 0x044: (W1Set) FIFO<br>Interface CTRL Dev0   | Rese     | erved         |       |          |        |           |            |         |              |        |     |       |       |        |       |          |       |      |       |               |       |         |      |
| 0x046: (W1Set) FIFO                          | -        |               |       |          |        |           |            |         |              |        |     |       |       |        |       |          |       |      |       |               |       |         |      |
| Interface CTRL Dev2                          | Rese     | erved         |       |          |        |           |            |         |              |        |     |       |       |        |       |          |       |      | _     |               |       |         |      |
| 0x048: (W1Clear) FIFO<br>Interface CTRL Dev0 | Rese     | erved         | l     |          |        |           |            |         |              |        |     |       |       |        |       |          |       |      |       |               |       |         |      |
| 0x04A: (W1Clear) FIFO<br>Interface CTRL Dev2 | Rese     | erved         |       |          |        |           |            |         |              |        |     |       |       |        |       |          |       |      |       |               |       |         |      |
| 0x04C: (RO)Enabled Annalog<br>Channels Dev0  | Rese     | erved         |       |          |        |           |            |         |              |        |     |       |       |        |       |          |       |      |       |               |       |         |      |
| 0x04E: (RO)Enabled Annalog<br>Channels Dev2  | Rese     | erved         |       |          |        |           |            |         |              |        |     |       |       |        |       |          |       |      |       |               |       |         |      |
| 0x050: (RO)Enabled Digital<br>Channels Dev0  | Rese     | erved         | [     |          |        |           |            |         |              |        |     |       |       |        |       |          |       |      |       |               |       |         |      |
| 0x052: (RO)Enabled Digital<br>Channels Dev2  | Rese     | erved         |       |          |        |           |            |         |              |        |     |       |       |        |       |          |       |      |       |               |       |         |      |
| 0.054.61                                     | _        |               |       |          |        |           |            |         |              |        |     |       |       |        |       | Т        |       | _    |       |               |       |         | _    |

Channeloffset

Reserved

0x054: Channel config. HS1 Dev0

Reserved

| 16.9.2016                                       |            | MEA210                      | 00 User Guid    | le – Multi Ch            | annel Syst   | ems Wiki              |                       |                  |                 |                         |
|-------------------------------------------------|------------|-----------------------------|-----------------|--------------------------|--------------|-----------------------|-----------------------|------------------|-----------------|-------------------------|
| 0x056: Channel config. HS1<br>Dev2              | Reserved   |                             | Channeloffs     | set                      |              |                       |                       | Reserved         |                 |                         |
| 0x058: Channel config. HS2<br>Dev0              | Reserved   |                             | Channeloffs     | set                      |              |                       |                       | Reserved         |                 |                         |
| 0x05A: Channel config. HS2<br>Dev2              | Reserved   |                             | Channeloffs     | set                      |              |                       |                       | Reserved         |                 |                         |
| 0x05C: Channel config. DSP<br>Dev0              | Reserved   |                             | Channeloffs     | set                      |              |                       |                       | Reserved         |                 |                         |
| 0x05E: Channel config. DSP<br>Dev2              | Reserved   |                             | Channeloffs     | set                      |              |                       |                       | Reserved         |                 |                         |
| 0x060: Channel config. IF<br>Dev0               | Reserved   |                             | Channeloffs     | set                      |              |                       |                       | Reserved         |                 |                         |
| 0x062: Channel config. IF<br>Dev2               | Reserved   |                             | Channeloffs     | set                      |              |                       |                       | Reserved         |                 |                         |
| 0x064 - 0x6F: Reserved                          | Reserved   |                             |                 |                          |              |                       |                       | ı                |                 |                         |
| 0x070: Digital Data 1 low half<br>Enable Dev0   | Reserved   |                             |                 |                          |              | HS2<br>segm. ID<br>X2 | HS2<br>segm. ID<br>X1 | Reserved         |                 |                         |
| 0x072: Digital Data 1 low half<br>Enable Dev2   | Reserved   |                             |                 |                          |              | HS2<br>segm. ID<br>X2 | HS2<br>segm. ID<br>X1 | Reserved         |                 |                         |
| 0x074: Digital Data 1 up half<br>Enable Dev0    | Reserved   |                             |                 |                          |              | HS2 elec.<br>ID X2    | HS2 elec.<br>ID X1    | Reserved         |                 |                         |
| 0x076: Digital Data 1 up half<br>Enable Dev2    | Reserved   |                             |                 |                          |              | HS2 elec.<br>ID X2    | HS2 elec.<br>ID X1    | Reserved         |                 |                         |
| 0x080: Digital Data 2 low half<br>Enable Dev0   | Reserved   | HS2 DAC Data                | HS2<br>Sideband | HS2<br>Trigger<br>Status | Reserved     | HS1 DAC               | Data                  |                  | HS1<br>Sideband | HS1<br>Trigge<br>Status |
| 0x082: Digital Data 2 low half<br>Enable Dev2   | Reserved   | HS2 DAC Data                | HS2<br>Sideband | HS2<br>Trigger<br>Status | Reserved     | HS1 DAC               | Data                  |                  | HS1<br>Sideband | HS1<br>Trigge<br>Status |
| 0x084: Digital Data 2 up half<br>Enable Dev0    | Reserved   | HS2 DAC Data                | HS2<br>Sideband | HS2<br>Trigger<br>Status | Reserved     | HS1 DAC               | Data                  |                  | HS1<br>Sideband | HS1<br>Trigge<br>Status |
| 0x086: Digital Data 2 up half<br>Enable Dev2    | Reserved   | HS2 DAC Data                | HS2<br>Sideband | HS2<br>Trigger<br>Status | Reserved     | HS1 DAC               | Data                  |                  | HS1<br>Sideband | HS1<br>Trigge<br>Status |
| 0x088: FIFO/Channel2 Mode<br>CTRL Dev0          | Reserved   |                             |                 |                          |              |                       |                       | 16bit, 24bit, 32 | bit mode CT     | ΓRL*                    |
| 0x08A: FIFO/Channel Mode<br>CTRL Dev2           | Reserved   |                             |                 |                          |              |                       |                       | 16bit, 24bit, 32 | bit mode CT     | <br>ΓRL*                |
| 0x08C: Sampling Freq. Dev0                      | Reserved   |                             |                 |                          |              |                       |                       |                  |                 |                         |
| 0x08E: Sampling Freq. Dev2                      | Reserved   |                             |                 |                          |              |                       |                       |                  |                 |                         |
| 0x090: Gate Mask Dev0                           | Gate Mas   | k of Trigged Mode           |                 |                          |              |                       |                       |                  |                 |                         |
| 0x092: Gate Mask Dev2                           | Gate Mas   | k of Trigged Mode           |                 |                          |              |                       |                       |                  |                 |                         |
| 0x094: Compare Value of<br>Gate Mask Dev0       | Compare    | this Value against the Mult | tiplexed Data   | configured i             | n Register ( | )x900                 |                       |                  |                 |                         |
| 0x096: Compare Value of<br>Gate Mask Dev2       | Compare    | this Value against the Mult | tiplexed Data   | configured i             | n Register ( | )x900                 |                       |                  |                 |                         |
| 0x098: Amount of sweeps in<br>Trigged Mode Dev0 | Count Sta  | rt Value                    |                 |                          |              |                       |                       |                  |                 |                         |
| 0x09A: Amount of sweeps in<br>Trigged Mode Dev2 | Count Sta  | rt Value                    |                 |                          |              |                       |                       |                  |                 |                         |
| 0x09C: Current Count Value<br>Dev0              | Current re | emaining sweeps until Stop  | )               |                          |              |                       |                       |                  |                 |                         |
| 0x0B0: Endpoint FIFO Reset                      | Reserved   |                             |                 |                          |              |                       |                       |                  |                 |                         |
| 0x0F0: I2C Blocking for other Cypress           | Reserved   |                             |                 |                          |              |                       |                       |                  |                 |                         |
| *Decoding Table:                                |            |                             |                 |                          |              |                       |                       |                  |                 |                         |
| 5                                               |            |                             |                 |                          |              |                       |                       |                  |                 |                         |

bit 15 14 13 12 11 10 09 08 Description:
16 bit mode 0 0 0 0 5/U 0 0 0 Bits 23 & 14 downto 0
16 bit mode 0 0 0 1 5/U 0 0 0 Bits 23 & 15 downto 1

```
S/U 0 0 0 Bits 23 & 16 downto 2
S/U 0 0 0 Bits 23 & 17 downto 3
S/U 0 0 0 Bits 23 & 17 downto 3
S/U 0 0 0 Bits 23 & 18 downto 4
S/U 0 0 0 Bits 23 & 19 downto 5
S/U 0 0 0 Bits 23 & 21 downto 6
S/U 0 0 0 Bits 23 & 21 downto 7
S/U 0 0 0 Bits 23 & 21 downto 7
S/U 0 0 0 Bits 23 downto 8
S/U 0 0 1
S/U 0 1 1 all data 32 bit aligned
S/U : Signed or unsigned mode - 0 = unsigend, 1 = signed
                                                                                                         0
1
1
1
0
x
x
                                                                                                                             1
0
0
1
1
0
x
x
                                                                                                                                                 0
1
0
1
0
x
x
```

# **ADC Registers**

| Register                    | 31  | 30    | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 6 | 5 5 | 4 | 3 | 2 | 1 | 0          |
|-----------------------------|-----|-------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|---|---|-----|-----|---|---|---|---|------------|
| 0x100: ADC Control Register | Res | serve | ed |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |   |   |     |     |   |   |   |   | Start Stop |
| 0x104: Enable ADCs          | Res | serve | ed |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |   |   |     |     |   |   |   |   | ADC 1      |
| 0x108 - 0x1FC:              | Res | serve | ed |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |   |   |     |     |   |   |   |   |            |

# Trigger CTRL Register

| Register                                            | 31 3  | 0 29    | 28   | 8 27   |       | 26       | 25       | 24      | 23   | 22     | 21  | 20  | 19  | 18    | 17    | 16     | 15   | 14   | 13     | 12    | 11   | 10  |
|-----------------------------------------------------|-------|---------|------|--------|-------|----------|----------|---------|------|--------|-----|-----|-----|-------|-------|--------|------|------|--------|-------|------|-----|
| 0x200: Trigger CTRL Register 1                      | Reser | ved     |      | Tri    | igger | status 1 | eedbacl  | source  | Re   | eserve | ed  |     | ser | nd Ri | se/Fa | all se | pera | te p | er Tri | igger |      | _   |
| 0x214: Trigger Event Status Register                | Reser | ved     |      |        |       |          |          |         |      |        |     |     |     |       |       |        |      |      |        | 1     | Гrig | ge: |
| 0x218: Trigger Segment ID Register                  | Reser | ved     |      |        |       |          |          |         |      |        |     |     |     |       |       |        |      |      |        |       |      |     |
| 0x21C: Trigger Segment ID Register                  | Reser | ved     |      |        |       |          |          |         |      |        |     |     |     |       |       |        |      |      |        |       |      |     |
| 0x220: Trigger Segment ID Register                  | Reser | ved     |      |        |       |          |          |         |      |        |     |     |     |       |       |        |      |      |        |       |      | _   |
| 0x224: Trigger Segment ID Register                  | Reser | ved     |      |        |       |          |          |         |      |        |     |     |     |       |       |        |      |      |        |       |      |     |
| 0x228: Trigger Segment ID Register                  | Reser | ved     |      |        |       |          |          |         |      |        |     |     |     |       |       |        |      |      |        |       |      |     |
| 0x22C: Trigger Segment ID Register                  | Reser | ved     |      |        |       |          |          |         |      |        |     |     |     |       |       |        |      |      |        |       |      |     |
| 0x230: Trigger Segment ID Register                  | Reser | ved     |      |        |       |          |          |         |      |        |     |     |     |       |       |        |      |      |        |       |      |     |
| 0x234: Trigger Segment ID Register                  | Reser | ved     |      |        |       |          |          |         |      |        |     |     |     |       |       |        |      |      |        |       |      |     |
| 0x238: Trigger Segment ID Register                  | Reser | ved     |      |        |       |          |          |         |      |        |     |     |     |       |       |        |      |      |        |       |      |     |
| 0x23C: Trigger Segment ID Register                  | Reser | ved     |      |        |       |          |          |         |      |        |     |     |     |       |       |        |      |      |        |       |      |     |
| 0x240: Trigger Segment ID Register                  | Reser | ved     |      |        |       |          |          |         |      |        |     |     |     |       |       |        |      |      |        |       |      |     |
| 0x244: Trigger Segment ID Register                  | Reser | ved     |      |        |       |          |          |         |      |        |     |     |     |       |       |        |      |      |        |       |      |     |
| 0x260: Trigger status feedback HS1 Register (RO/RW) | Reser | ved     |      |        |       |          |          |         |      |        | Arı | med | 6   | 1     |       |        | Res  | erve | d      |       |      |     |
| 0x264: Trigger status feedback HS2 Register (RO/RW) | Reser | ved     |      |        |       |          |          |         |      |        | Arı | med | 6   | 1     |       |        | Res  | erve | d      |       |      |     |
| 0x280 - 0x294: External trigger source              | Data  | value 1 | froi | n 0 to | 99 fo | or Trig  | ger 1 to | 6 (Head | stag | ge 1)* | **  |     |     |       |       |        |      |      |        |       |      |     |
| 0x298 - 0x2AC: External trigger source              | Data  | value 1 | froi | n 0 to | 99 fo | or Trig  | ger 7 to | 12 (Hea | dsta | ige 2) | *** |     |     |       |       |        |      |      |        |       |      |     |

### **Digital IO Registers**

| Register                     | 31   | 30    | 29      | 28  | 27    | 26  | 25    | 24   | 23     | 22    | 21    | 20    | 19    | 18 | 17 | 16 | 15 | 14 | 4 13 | 3 12 | 2 1 | 1 | 10 | 9 8 | 3 7 | 6 | 5 | 4 | 3 2 | 2 1    | 0        | • |
|------------------------------|------|-------|---------|-----|-------|-----|-------|------|--------|-------|-------|-------|-------|----|----|----|----|----|------|------|-----|---|----|-----|-----|---|---|---|-----|--------|----------|---|
| 0x300: Digital Out Register  | Dat  | ta (R | (O)     |     |       |     |       |      |        |       |       |       |       |    |    |    |    |    |      |      |     |   |    |     |     |   |   |   |     |        |          | - |
| 0x304: Digital In Register   | Dat  | ta (R | (O)     |     |       |     |       |      |        |       |       |       |       |    |    |    |    |    |      |      |     |   |    |     |     |   |   |   |     |        |          | • |
| 0x308: Direction Register    | '1': | Inpu  | ıt, '0' | Out | put   |     |       |      |        |       |       |       |       |    |    |    |    |    |      |      |     |   |    |     |     |   |   |   |     |        |          | • |
| 0x30C: Interrupt Enable      | '1': | Inte  | rrupt   | ena | bled, | onl | y for | Inpu | ıts, ' | 0' In | terrı | ıpt d | isabl | ed |    |    |    |    |      |      |     |   |    |     |     |   |   |   |     |        |          | - |
| 0x310: Aux Data Out Register | Res  | serve | ed      |     |       |     |       |      |        |       |       |       |       |    |    |    |    |    |      |      |     |   |    |     |     |   |   |   |     | Aux    | Data     | - |
| 0x314: Aux Data In Register  | Res  | serve | ed      |     |       |     |       |      |        |       |       |       |       |    |    |    |    |    |      |      |     |   |    |     |     |   |   |   |     | Aux    | Data (I  | į |
| 0x318: Aux Data Dir Register | Res  | serve | ed      |     |       |     |       |      |        |       |       |       |       |    |    |    |    |    |      |      |     |   |    |     |     |   |   |   |     | '0': 1 | nput, '1 | - |

### **DSP Registers**

Register

| Register                                    | 31 | 30    | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15                         | 14                         | 13      | 12                    | 11               | 10                | 9                 | 8     |
|---------------------------------------------|----|-------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----------------------------|----------------------------|---------|-----------------------|------------------|-------------------|-------------------|-------|
| 0x400:<br>DSP<br>Indata<br>CTRL<br>Register | R  | eserv | ed |    |    |    |    |    |    |    |    |    |    |    |    |    | Filtered<br>HS2<br>Data en | Filtered<br>HS1<br>Data en | Data en | Digital<br>Data<br>en | IF<br>Data<br>en | HS2<br>Data<br>en | HS1<br>Data<br>en | Int e |
| 0x404:<br>DSP<br>Outdata                    | R  | eserv | ed |    |    |    |    |    |    |    |    |    |    |    |    |    |                            |                            |         |                       |                  |                   |                   | Int e |

|                                                            |                             |              |        |                         |                     |          |             |           | 1                                 |
|------------------------------------------------------------|-----------------------------|--------------|--------|-------------------------|---------------------|----------|-------------|-----------|-----------------------------------|
| 0x408:<br>DSP In<br>Fifo Status<br>Flags (RO)              | Reserved                    |              |        |                         |                     |          |             |           |                                   |
| 0x40C:<br>DSP Out<br>Fifo Status<br>Flags (RO)             | Reserved                    |              |        |                         |                     |          |             |           |                                   |
| 0x410:<br>DSP<br>Indata<br>Threshold<br>Register           | Reserved                    | Fifo full TH |        |                         |                     | Reserved |             | Fifo e    | mpty                              |
| 0x414:<br>DSP<br>Outdata<br>Threshold<br>Register          | Reserved                    | Fifo full TH |        |                         |                     | Reserved |             | Fifo e    | mpty                              |
| 0x420:<br>DSP Boot<br>conf.<br>Register                    | Reserved                    |              | Bootmo | ode                     |                     | Reserved |             | Reset     | POI                               |
| 0x424:<br>DSP<br>Mailbox<br>CTRL<br>Register               | Reserved                    |              |        |                         |                     |          |             |           | Mai<br>to E<br>int<br>enal<br>(GP |
| 0x428:<br>DSP<br>Mailbox<br>Last used<br>Addr.<br>Register | Reserved                    |              |        |                         |                     |          | Last used A | Address 1 | for wi                            |
| 0x430:<br>DSP<br>Streamdata<br>CTRL<br>Register            | Reserved                    |              |        | Keep last<br>Streamdata | Enable<br>Streaming | Reserved | '           |           | Int 6                             |
| 0x434:<br>DSP<br>Stream<br>Fifo Status<br>Flags (RO)       | Reserved                    |              |        | ,                       |                     |          |             |           | •                                 |
| Filter coeffic                                             | cents                       |              |        |                         |                     |          |             |           |                                   |
| 0x600:<br>Filter 1<br>coefficent<br>b[0]                   | Filter coefficent b[0] as ( | Q1.30 value  |        |                         |                     |          |             |           |                                   |
| 0x608:<br>Filter 1<br>coefficent<br>b[1]                   | Filter coefficent b[1] as ( | Q1.30 value  |        |                         |                     |          |             |           |                                   |
| 0x60C:<br>Filter 1<br>coefficent<br>a[1]                   | Filter coefficent a[1] as ( | Q1.30 value  |        |                         |                     |          |             |           |                                   |
| 0x610:<br>Filter 1<br>coefficent<br>b[2]                   | Filter coefficent b[2] as ( | Q1.30 value  |        |                         |                     |          |             |           |                                   |
| 0x614:<br>Filter 1<br>coefficent<br>a[2]                   | Filter coefficent a[2] as ( | Q1.30 value  |        |                         |                     |          |             |           |                                   |
| 0x61C:<br>Filter 1<br>CTRL                                 | Reserved                    |              |        |                         |                     |          |             |           |                                   |
| 0x620:<br>Filter 2<br>coefficent<br>b[0]                   | Filter coefficent b[0] as ( | Q1.30 value  |        |                         |                     |          |             |           |                                   |
| 0x628:<br>Filter 2<br>coefficent<br>b[1]                   | Filter coefficent b[1] as ( | Q1.30 value  |        |                         |                     |          |             |           |                                   |

| 0.5.2010                                                                                                      | WED2100 03cl Guide - Walt Original Oystoria Wiki |
|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| 0x62C:<br>Filter 2<br>coefficent<br>a[1]                                                                      | Filter coefficent a[1] as Q1.30 value            |
| 0x630:<br>Filter 2<br>coefficent<br>b[2]                                                                      | Filter coefficent b[2] as Q1.30 value            |
| 0x634:<br>Filter 2<br>coefficent<br>a[2]                                                                      | Filter coefficent a[2] as Q1.30 value            |
| 0x63C:<br>Filter 2<br>CTRL                                                                                    | Reserved                                         |
| 0x640:<br>Filter 3<br>coefficent<br>b[0]                                                                      | Filter coefficent b[0] as Q1.30 value            |
| 0x648:<br>Filter 3<br>coefficent<br>b[1]                                                                      | Filter coefficent b[1] as Q1.30 value            |
| 0x64C:<br>Filter 3<br>coefficent<br>a[1]                                                                      | Filter coefficent a[1] as Q1.30 value            |
| 0x650:<br>Filter 3<br>coefficent<br>b[2]                                                                      | Filter coefficent b[2] as Q1.30 value            |
| 0x654:<br>Filter 3<br>coefficent<br>a[2]                                                                      | Filter coefficent a[2] as Q1.30 value            |
| 0x65C:<br>Filter 3<br>CTRL                                                                                    | Reserved                                         |
| 0x660:<br>Filter 4<br>coefficent<br>b[0]                                                                      | Filter coefficent b[0] as Q1.30 value            |
| 0x668:<br>Filter 4<br>coefficent<br>b[1]                                                                      | Filter coefficent b[1] as Q1.30 value            |
| 0x66C:<br>Filter 4<br>coefficent<br>a[1]                                                                      | Filter coefficent a[1] as Q1.30 value            |
| 0x670:<br>Filter 4<br>coefficent<br>b[2]                                                                      | Filter coefficent b[2] as Q1.30 value            |
| 0x674:<br>Filter 4<br>coefficent<br>a[2]                                                                      | Filter coefficent a[2] as Q1.30 value            |
| 0x67C:<br>Filter 4<br>CTRL                                                                                    | Reserved                                         |
| Configurable                                                                                                  | DSP in Data overview:                            |
| HS2<br>IF<br>Filtered HS1<br>Filtered HS2<br>Digital<br>- Header<br>- Digital M<br>- Digital I<br>- Digital I |                                                  |

```
- Aux In:
       Bit 0: Input Level of Aux 1
Bit 1: Input Level of Aux 2
- Trigger Status from HS1:
                Bits 0 - 11 Trigger Statemachine status (2 bit per trigger: 00: not Armed, 01: Armed, 10: Triggerd (running), 11: Reserved)
Bits 16 - 21 Trigger Event (1: Trigger event occured)
Bits 24 - 29 Trigger Event Type (1: begin of Trigger event, 0: end of Trigger event)
           SBS1 from HS1:
Bits 0 - 15: Headstage 1: Sideband 1 from STG 1
Bits 16 - 31: Headstage 1: Sideband 1 from STG 2
       - SBS2 from HS1:
Bits 0 - 15: Headstage 1: Sideband 2 from STG 1
Bits 16 - 31: Headstage 1: Sideband 2 from STG 2
      - SBS3 from HS1:
Bits 0 - 15: Headstage 1: Sideband 3 from STG 1
Bits 16 - 31: Headstage 1: Sideband 3 from STG 2
      - DAC A+B from HS1 of STG1:
Bits 0 - 15: Headstage 1: DAC A from STG 1
Bits 16 - 31: Headstage 1: DAC B from STG 1
           DAC C+D from HS1 of STG1:
Bits 0 - 15: Headstage 1: DAC C from STG 1
Bits 16 - 31: Headstage 1: DAC D from STG 1
        - DAC E+F from HS1 of STG1:
                Bits 0 - 15: Headstage 1: DAC E from STG 1
Bits 16 - 31: Headstage 1: DAC F from STG 1
       - DAC A+B from HS1 of STG2:
Bits 0 - 15: Headstage 1: DAC A from STG 2
Bits 16 - 31: Headstage 1: DAC B from STG 2
        - DAC C+D from HS1 of STG2:
           Bits 0 - 15: Headstage 1: DAC C from STG 2
Bits 16 - 31: Headstage 1: DAC D from STG 2
DAC E+F from HS1 of STG2:
     DAC EFF from HS1 of STG2:

Bits 0 - 15: Headstage 1: DAC E from STG 2

Bits 16 - 31: Headstage 1: DAC F from STG 2

Bits 16 - 31: Headstage 1: DAC F from STG 2

Seg. & Elec. ID from HS1 of STG1:

Bits 0 - 7: current Segment ID

Bits 16 - 23: Electrode Config ID

Seg. & Elec. ID from HS1 of STG2:

Bits 0 - 7: current Segment ID

Bits 16 - 23: Electrode Config ID

Trigger Status from HS2:

Bits 0 - 11 Trigger Statemachine status (2 bit per trigger: 00: not Armed, 01: Armed, 10: Triggerd (running), 11: Reserved)

Bits 16 - 21 Trigger Event (1: Trigger event occured)

Bits 24 - 29 Trigger Event Type (1: begin of Trigger event, 0: end of Trigger event)

SBS1 from HS2:

Bits 0 - 15: Headstage 2: Sideband 1 from STG 1
       Bits 0 - 15: Headstage 2: Sideband 1 from STG 1
Bits 16 - 31: Headstage 2: Sideband 1 from STG 2
- SBS2 from HS2:
           Bits 0 - 15: Headstage 2: Sideband 2 from STG 1
Bits 16 - 31: Headstage 2: Sideband 2 from STG 2
SBS3 from HS2:
        Bits 0 - 15: Headstage 2: Sideband 3 from STG 1
Bits 16 - 31: Headstage 2: Sideband 3 from STG 2
- DAC A+B from HS2 of STG1:
       Bits 0 - 15: Headstage 2: DAC A from STG 1
Bits 16 - 31: Headstage 2: DAC B from STG 1
- DAC C+D from HS2 of STG1:
               Bits 0 - 15: Headstage 2: DAC C from STG 1
Bits 16 - 31: Headstage 2: DAC D from STG 1
AC E+F from HS2 of STG1:
    DAC 54 From HS2 of STG1:

Bits 0 - 15: Headstage 2: DAC E from STG 1
Bits 16 - 31: Headstage 2: DAC F from STG 1
Bits 16 - 31: Headstage 2: DAC F from STG 1
Bits 0 - 15: Headstage 2: DAC A from STG 1
Bits 0 - 15: Headstage 2: DAC A from STG 2
Bits 16 - 31: Headstage 2: DAC B from STG 2
DAC C+D from HS2 of STG2:
Bits 0 - 15: Headstage 2: DAC C from STG 2
Bits 16 - 31: Headstage 2: DAC D from STG 2
DAC E+F from HS2 of STG2:
Bits 0 - 15: Headstage 2: DAC E from STG 2
Bits 16 - 31: Headstage 2: DAC F from STG 2
Seg. & Elec. ID from HS2 of STG1:
Bits 0 - 7: current Segment ID
Bits 16 - 23: Electrode Config ID
Seg. & Elec. ID from HS2 of STG2:
Bits 0 - 7: current Segment ID
Bits 16 - 23: Electrode Config ID

mestamp 3 Datawords (Header, 2x Counter == 6
                                    3 Datawords (Header, 2x Counter == 64 bit Counter)
The header has the format
 The neader has the FOTHMAL : 1, when data from a headstage is enabled and the HS is not connected, otherwise 0
Bit 24 to 30 : Data Source enumeration (see below)
Bit 9 to 23 : Reserved (Always Zero)
Bit 0 to 7 : The number of datapoints + counter values following this header, 0x79 for Headstage data (120 + 1)
  .....
Data Source enumeration:
 1: Headstage 1
2: Headstage 2
3: Analog Data from Interfaceboard
 4: Headstage 1 filtered Data
5: Headstage 2 filtered Data
6: Digital Data
7: Timestamp counter
```

### Audio DAC Registers

| Register                       | 31  | 30   | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19     | 18      | 17      | 16      | 15  | 14    | 13 | 12 | 11 | 10 | 9 | 8 | 7 6  | 5 4  | 3 2    |
|--------------------------------|-----|------|----|----|----|----|----|----|----|----|----|----|--------|---------|---------|---------|-----|-------|----|----|----|----|---|---|------|------|--------|
| 0x500: Right Audio Channel     | Res | erve | ed |    |    |    |    |    |    |    |    |    | Source | e (DSP, | IF, HS2 | 2, HS1) | Res | serve | d  |    |    |    |   |   | Chan | nel  |        |
| 0x504: Left Audio Channel      | Res | erve | ed |    |    |    |    |    |    |    |    |    | Source | e (DSP, | IF, HS2 | 2, HS1) | Res | serve | d  |    |    |    |   |   | Chan | nel  |        |
| 0x510: Right Audio Attenuation | Res | erve | ed |    |    |    |    |    |    |    |    |    |        |         |         |         |     |       |    |    |    |    |   |   |      | Atte | nuatio |
| 0x514: Left Audio Attenuation  | Res | erve | ed |    |    |    |    |    |    |    |    |    |        |         |         |         |     |       |    |    |    |    |   |   |      | Atte | nuatio |

Source decoding: 0: No source 1: HS1 2: HS2 3: IF 4: DSP(bits 23 - 0)

#### **Digital Data Registers**

| Register                                                   | 31   | 30   | 29      | 28     | 2'   | 7 26     | 25     | 2    | 4 23     | 2      | 2 21   | ı    | 20 19       | 18      | 17     | 16   | 1:   | 5 1 | 4 1   | 3 1 | 2 11  |
|------------------------------------------------------------|------|------|---------|--------|------|----------|--------|------|----------|--------|--------|------|-------------|---------|--------|------|------|-----|-------|-----|-------|
| 0x700: Digital Pulse Register                              | bits | can  | only    | be set | t he | ere, and | l will | be   | clear    | ed af  | ter th | e ti | me define   | ed in 1 | eg 0x  | 704  | to 0 | x71 | 0     |     |       |
| 0x704: Digital Pulse Duration 1                            | Dur  | atio | n of E  | igital | l D  | ata in i | nultip | ple  | of 20    | us fo  | or Pul | se l | Register l  | oits 0  | to 7   |      |      |     |       |     |       |
| 0x708: Digital Pulse Duration 2                            | Dur  | atio | n of E  | igital | l D  | ata in ı | nultip | ple  | of 20    | us fo  | or Pul | se l | Register l  | oits 8  | to 15  |      |      |     |       |     |       |
| 0x70c: Digital Pulse Duration 3                            | Dur  | atio | n of E  | igital | l D  | ata in ı | nultip | ple  | of 20    | us fo  | or Pul | se l | Register l  | oits 16 | to 23  | 3    |      |     |       |     |       |
| 0x710: Digital Pulse Duration 4                            | Dur  | atio | n of E  | igital | l D  | ata in ı | nultip | ple  | of 20    | us fo  | or Pul | se l | Register l  | oits 24 | to 3   | 1    |      |     |       |     |       |
| 0x780: Feedback Data                                       | Data | a    |         |        |      |          |        |      |          |        |        |      |             |         |        |      |      |     |       |     |       |
| 0x800: Data to Data Stream                                 | 'Dig | ital | Data-   | Strea  | m'   | face in  | data   |      |          |        |        |      |             |         |        |      |      |     |       |     |       |
| 0x804: Dig. Data Delay                                     | Res  | erve | ed      |        |      |          |        |      |          |        |        |      |             |         |        |      |      |     |       |     |       |
| 0x808: delay configuration                                 | Swi  | tch  | of dat  | awor   | ds i | if delay | ed or  | r di | irect*   |        |        |      |             |         |        |      |      |     |       |     |       |
| 0x840 - 0x87C: Select mux for Dig out                      | Data | a va | lue fro | om 0   | to . | 315 **   | ** for | Di   | igital o | out: 1 | 2 to 3 | 2(e  | ven bits)   |         |        |      | D    | ata | value | fro | m 0 t |
| 0x880 - 0x8BC: Select mux for Dig Data to USB-A            | Data | a va | lue fro | om 0   | to : | 315 **   | ** for | Di   | igital l | Data   | strea  | m te | o Host: 2   | to 32   | (even  | bits | s) D | ata | value | fro | m 0 t |
| 0x8C0 - 0x8FC: Select mux for Dig Data to USB-B            | Data | a va | lue fro | om 0   | to : | 315 **   | ** for | Di   | igital l | Data   | strea  | m te | o Host: 2   | to 32   | (even  | bits | s) D | ata | value | fro | m 0 t |
| 0x900 - 0x93C: Select mux for Trigger of Gated Mode to USB | Data | a va | lue fro | om 0   | to : | 315 **   | ** for | Tr   | rigger   | of G   | ate to | Но   | ost: 2 to 3 | 2(eve   | n bits | 5)   | D    | ata | value | fro | m 0 t |

\*Decoding Table:

Digital In Data (bit 1)
Digital Out Data (bit 2)
Feedback (bit 4)
Aux In
Trigger Statemashine Status from H51 (bit 8)
SBS from H51 Channel 1 of X1 and X2 (bit 10)
SBS from H51 Channel 2 of X1 and X2 (bit 10)
SBS from H51 Channel 3 of X1 and X2 (bit 11)
DAC A+B From H51 of X1 (bit 12)
DAC C+D from H51 of X1 (bit 13)
DAC E+F from H51 of X1 (bit 14)
DAC A+B From H51 of X2 (bit 15)
DAC C+D from H51 of X2 (bit 16)
DAC E+F from H51 of X2 (bit 16)
DAC E+F from H51 of X2 (bit 16)
DAC SBS from H52 Channel 1 of X1 and X2 (bit 20)
SBS from H52 Channel 1 of X1 and X2 (bit 20)
SBS from H52 Channel 3 of X1 and X2 (bit 21)
SBS from H52 Channel 3 of X1 and X2 (bit 22)
SBS from H52 Channel 3 of X1 and X2 (bit 23)
DAC A+B from H52 of X1 (bit 24)
DAC C+D from H52 of X1 (bit 25)
DAC E+F from H52 of X1 (bit 26)
DAC A+B from H52 of X1 (bit 26)
DAC C+F from H52 of X2 (bit 28)
DAC E+F from H52 of X2 (bit 29)

# List Mode Register

| Register                                   | 31                         | 30  | 29 28 | 3 27 | 26 | 25 | 24 | 23 | 22   | 21  | 20    | 19 | 18 | 17 | 16 | 15  | 14    | 13 | 12 | 11 1  | 10  |
|--------------------------------------------|----------------------------|-----|-------|------|----|----|----|----|------|-----|-------|----|----|----|----|-----|-------|----|----|-------|-----|
| 0xA00 - 0xA2C: Config ID boundarys         | set first config ID to end | Res | erved |      |    |    |    | Со | nfig | Sta | rt ID |    |    |    |    | Res | ervec | i  |    |       |     |
| 0xA40: Config ID Manual/current for SBS 1  | Reserved                   |     |       |      |    |    |    |    |      |     |       |    |    |    |    |     |       |    |    |       |     |
| 0xA4C: Config ID Manual/current for SBS 4  | Reserved                   |     |       |      |    |    |    |    |      |     |       |    |    |    |    |     |       |    |    |       |     |
| 0xA58: Config ID Manual/current for SBS 7  | Reserved                   |     |       |      |    |    |    |    |      |     |       |    |    |    |    |     |       |    |    |       |     |
| 0xA64: Config ID Manual/current for SBS 10 | Reserved                   |     |       |      |    |    |    |    |      |     |       |    |    |    |    |     |       |    |    |       |     |
| 0xA80: Config ID trigger source            | Reserved                   |     |       |      |    |    |    |    |      |     |       |    |    |    |    |     |       |    |    |       |     |
| 0xA8C: Config ID trigger source            | Reserved                   |     |       |      |    |    |    |    |      |     |       |    |    |    |    |     |       |    |    |       |     |
| 0xA98: Config ID trigger source            | Reserved                   |     |       |      |    |    |    |    |      |     |       |    |    |    |    |     |       |    |    |       |     |
| 0xAA4: Config ID trigger source            | Reserved                   |     |       |      |    |    |    |    |      |     |       |    |    |    |    |     |       |    |    |       |     |
| 0xAC0: (Re-)Start List mode increment      | Reserved                   |     |       |      |    |    |    |    |      |     |       |    |    |    |    |     |       |    |    | 1 bit | per |
| 0xAC4: Stop List mode increment            | Reserved                   |     |       |      |    |    |    |    |      |     |       |    |    |    |    |     |       |    |    | 1 bit | per |

# Mini DMA Registers (only on Rev with USB 3.0)

| Register                          | 31 30   | 29 | 28 | 27 | 26 | 25 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 2 | 2 1 | T |
|-----------------------------------|---------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|---|---|---|---|---|---|-----|-----|---|
| 0xE00: DMA CTRL Register          | Reserve | ed |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |   |   |   |   |   |   |     |     | I |
| O-EOA - FERR Address Dtv Resistan | D       | 1  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |   |   |   |   |   |   |     |     |   |

| UAEU4. EEI KUIII AUGICSS I II. KEGISICI | NOSCI VOU |          |
|-----------------------------------------|-----------|----------|
| 0xE08 : EEPRom Data Ptr. Register       | Reserved  | Reserved |

### EEProm Registers (only on Rev with USB 3.0)

| Register                                    | 31     | 30      | 29       | 28     | 27      | 26     | 25     | 24    | 23    | 22    | 21   | 20    | 19   | 1   | 8 1  | 17   | 16  | 15  | 14 | 13 | 12 | 11 | 10       |
|---------------------------------------------|--------|---------|----------|--------|---------|--------|--------|-------|-------|-------|------|-------|------|-----|------|------|-----|-----|----|----|----|----|----------|
| 0xF00: (WO)EEPRom Instruction Code Register | Reser  | ved     |          | ·      |         |        |        |       |       |       |      |       |      |     |      |      |     |     |    |    |    |    |          |
| 0xF00: (RO)EEPRom Status Register           | Reser  | ved     |          |        |         |        |        |       |       |       |      |       |      |     |      |      |     |     |    |    |    |    | FIFO_emp |
| 0xF04 : EEPRom Memory Address Register      | Reser  | ved     |          |        |         |        |        |       | Fla   | sh A  | ddre | ess   |      |     |      |      |     |     |    |    |    |    |          |
| 0xF08 : EEPRom Data FIFO Register           | 256 D  | ata Byt | es in 6  | 4 DWo  | rds to/ | from   | Flas   | sh    |       |       |      |       |      |     |      |      |     |     |    |    |    |    |          |
| 0xF0C : EEPROM HW configuration Register    | Addre  | ss leng | th (1,2, | 3 Byte | s) Clo  | ock I  | Divid  | ler R | legis | ter ( | Mul  | tiple | s of | 2 d | ivid | le 3 | 8,4 | MH: | z) |    |    |    |          |
| 0xF10 : EEPROM Offset Register              | Offset | for rea | ds and   | writes | to the  | EEp    | rom    |       |       |       |      |       |      |     |      |      |     |     |    |    |    |    |          |
| 0xF14 : EEPROM Size Register                | Size o | f the E | Eprom    | Block  | availal | ole fo | or thi | s Im  | age   |       |      |       |      |     |      |      |     |     |    |    |    |    |          |

### Multiboot Registers (only on Rev with USB 3.0)

| Register                                     | 31   | 30   | 29   | 28    | 27     | 26   | 25   | 24   | 23    | 22   | 21  | 20   | 19    | 18   | 17   | 16  | 1:  | 5 14  | 1.   | 3 1   | 12 1  | 11   | 10     | 8    | 7 6   | 5 4     |
|----------------------------------------------|------|------|------|-------|--------|------|------|------|-------|------|-----|------|-------|------|------|-----|-----|-------|------|-------|-------|------|--------|------|-------|---------|
| 0xF80: FPGA GENERAL2 Register                | Res  | erve | d    |       |        |      |      |      |       |      |     |      |       |      |      |     | G   | ENE   | RA   | L2    | data  |      |        |      |       |         |
| 0xF84: FPGA GENERAL5 Register                | Res  | erve | d    |       |        |      |      |      |       |      |     |      |       |      |      |     | G   | ENE   | RA   | L5 (  | data  |      |        |      |       |         |
| 0xF90: direct connection to FPGA SPI Flash   | Res  | erve | d    |       |        |      |      |      |       |      |     |      |       |      |      |     | ,   |       |      |       |       |      |        |      |       |         |
| 0xF94: Config EEprom Base                    | Res  | erve | d    |       |        |      |      |      |       |      |     |      |       |      |      |     | ba  | ase a | ddre | ess o | of co | nfig | g eep  | rom  |       |         |
| 0xF98: FX3-USB Bootstrap Firmware            | rese | erve | i    |       |        |      |      |      |       |      |     |      |       |      |      |     | F   | irmw  | are  | Ver   | sion  | of l | FX3    | Boot | strap | code tl |
| 0xF9C: FX3-USB Bootstrap Firmware other port | rese | erve | i    |       |        |      |      |      |       |      |     |      |       |      |      |     | F   | irmw  | are  | Ver   | sion  | of l | FX3    | Boot | strap | code o  |
| 0xFB0: Message to other Cypress              | Αw   | rite | will | cau   | se ar  | inte | rrup | t on | the o | ther | Cyp | ress | , wit | th a | read | you | cai | n che | ck i | s it  | is re | ad a | ılreac | ly   |       |         |
| 0xFB4: Read Only: Message from other Cypress | Eac  | h bi | t wh | ich i | is set | will | be r | eset | on re | ad   |     |      |       |      |      |     |     |       |      |       |       |      |        |      |       |         |

# Changed Register Information of Interface FPGA

| Register                             | from            | to              | in Revision | USB Rev |
|--------------------------------------|-----------------|-----------------|-------------|---------|
| Electrode config/segment ID register | 0x0208 - 0x0234 | 0x0218 - 0x0244 | 0.05        | 0.27    |
| Event Status Register                | 0x0238          | 0x0214          | 0.05        | 0.27    |
| ADC Filter                           | 0x0120 - 0x0138 | 0x0600 - 0x0674 | 0.05        |         |
| FIFO/Channel Mode CTRL DevX          | 0x0068 - 0x006B | 0x006C - 0x006F | 0.05        |         |
| Sampling Freq. DevX                  | 0x006C - 0x006F | 0x0070 - 0x0073 | 0.05        |         |
| DIGITAL_CHANNELS_L                   | 0x0064 - 0x0067 | 0x0080 - 0x0083 | 0.07        | 0.42    |
| DIGITAL_CHANNELS_H                   | 0x0068 - 0x006B | 0x0084 - 0x0087 | 0.07        | 0.42    |
| FIFO/Channel Mode CTRL DevX          | 0x006C - 0x006F | 0x0088 - 0x008B | 0.07        | 0.42    |
| Sampling Freq. DevX                  | 0x0070 - 0x0073 | 0x008C - 0x008F | 0.07        | 0.42    |
| Select mux for Dig Data              | 0x0340 - 0x03FC | 0x0840 - 0x08FC | 0.09        | 0.51    |

# \*\*\*Decoding Table:

```
Value Source
0 : '0' (default for all bits)
32 - 1 : Digital In bit 31 downto 0
64 - 33 : Feedback bit 31 downto 0
66 - 65 : Aux In bit 1 downto 0
98 - 67 : Digital Pulse Register bit 31 downto 0
99 : '1'
100 : SBS bit 8 of each Trigger is all STGs (only for Config ID)
1101 : DACQ Cypress 1 Virtuel Device 1 is started
102 : DACQ Cypress 1 Virtuel Device 2 is started
103 : DACQ Cypress 2 Virtuel Device 1 is started
104 : DACQ Cypress 2 Virtuel Device 2 is started
105 : DACQ Cypress 2 Virtuel Device 2 is started
106 : DACQ Cypress 2 Virtuel Device 2 is started
```

# \*\*\*\* Decoding Table:

```
Value Source
31 - 0 : Digital In bit 31 downto 0
63 - 32 : Digital Pulse bit 31 downto 0
95 - 64 : Feedback bit 31 downto 0
97 - 96 : Aux In bit 1 downto 0
99 - 98 : "10" fix Values
101 - 100 : Trigger Status HS1 STG X1 Trigger 1
103 - 102 : Trigger Status HS1 STG X1 Trigger 2
105 - 104 : Trigger Status HS1 STG X1 Trigger 3
107 - 106 : Trigger Status HS1 STG X2 Trigger 1
109 - 108 : Trigger Status HS1 STG X2 Trigger 1
109 - 108 : Trigger Status HS1 STG X2 Trigger 2
111 - 110 : Trigger Status HS1 STG X2 Trigger 2
111 - 110 : Trigger Status HS1 STG X2 Trigger 2
112 - 112 : Sideband signals HS1 STG X1 Trigger 1
```

```
143 - 128 : Sideband signals HS1 STG X1 Trigger 2
159 - 144 : Sideband signals HS1 STG X1 Trigger 3
175 - 160 : Sideband signals HS1 STG X2 Trigger 1
191 - 176 : Sideband signals HS1 STG X2 Trigger 2
197 - 192 : Sideband signals HS1 STG X2 Trigger 3
199 - 208 : Trigger Status HS2 STG X1 Trigger 1
191 - 210 : Trigger Status HS2 STG X1 Trigger 1
191 - 210 : Trigger Status HS2 STG X1 Trigger 2
193 - 212 : Trigger Status HS2 STG X1 Trigger 3
193 - 212 : Trigger Status HS2 STG X2 Trigger 3
194 - 216 : Trigger Status HS2 STG X2 Trigger 1
197 - 216 : Trigger Status HS2 STG X2 Trigger 1
197 - 216 : Trigger Status HS2 STG X2 Trigger 2
197 - 218 : Trigger Status HS2 STG X2 Trigger 3
195 - 220 : Sideband signals HS2 STG X1 Trigger 1
195 - 236 : Sideband signals HS2 STG X1 Trigger 2
197 - 288 : Sideband signals HS2 STG X1 Trigger 1
199 - 284 : Sideband signals HS2 STG X2 Trigger 1
199 - 284 : Sideband signals HS2 STG X2 Trigger 2
199 - 284 : Sideband signals HS2 STG X2 Trigger 2
190 - 284 : Sideband signals HS2 STG X2 Trigger 2
190 - 284 : Sideband signals HS2 STG X2 Trigger 2
191 - 285 : Sideband signals HS2 STG X2 Trigger 2
191 - 286 : Sideband signals HS2 STG X2 Trigger 3
190 - 284 : Sideband signals HS2 STG X2 Trigger 2
191 - 285 : Sideband signals HS2 STG X2 Trigger 2
191 - 285 : Sideband signals HS2 STG X2 Trigger 2
191 - 286 : Sideband signals HS2 STG X2 Trigger 2
191 - 286 : Sideband signals HS2 STG X2 Trigger 2
191 - 286 : Sideband signals HS2 STG X2 Trigger 2
```

# Mailbox Register Address Map (Address bits 11-0) Base Address: 0x1000:

| Mailbox to DSP                      |     |       |       |       |       |       |       |       |    |      |    |    |    |    |    |    |    |    |    |    |    |    |   |   |     |     |   |     |   |   |
|-------------------------------------|-----|-------|-------|-------|-------|-------|-------|-------|----|------|----|----|----|----|----|----|----|----|----|----|----|----|---|---|-----|-----|---|-----|---|---|
| Register                            | 31  | 30    | 29    | 28    | 27    | 26    | 25    | 24    | 23 | 22   | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 0 | 5 5 | 4 | 3 2 | 1 | 0 |
| 0x000 - 0xFFC: Mailbox<br>Registers | wri | ite w | ill g | enera | ate a | n Int | errup | ot or | GP | 6 Li | ne |    |    |    |    |    |    |    |    |    |    |    |   |   |     |     |   |     |   |   |

# RAM Register Address Map (Address bits 11-0) Base Address: 0x2000:

| Mailbox to DSP               |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |   |   |   |   |     |     |     |     |
|------------------------------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|---|---|---|---|-----|-----|-----|-----|
| Register                     | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 4 | 1 3 | 2 1 | 1 0 |
| 0x000 - 0xFFC: RAM Registers |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |   |   |   |   |     |     |     |     |

Headstage Board Address Map (Address bits 11-0) Base Address: HS1: 0x8000 HS2: 0xC000:

Access time is 2,2 us for writes and 2,4 us for reads.

# General Purpose Registers (should be implemented in every Device)

| Register                        | 31   30   29   28   27   26   25   24   23   22   21   20   19   18   17   1 | 5 15 14 13 12 11 10 9     | 8             | 7 6      | 5      |
|---------------------------------|------------------------------------------------------------------------------|---------------------------|---------------|----------|--------|
| 0x000: Device ID Register       | 0x00000002 = MEA 21 Headstage FPGA                                           |                           |               |          |        |
| 0x004: HW/FPGA Version Register | HW/Board Version                                                             | FPGA Version: 0x0101 = In | itial Version |          |        |
| 0x008 : Configuration Register  | Reserved                                                                     |                           | STG Presend   | Reserved | Ad     |
| 0x00c : Channel Limit           | Reserved                                                                     |                           |               | Number o | of suj |

\*Decoding Table:

0: 2 x 60 MEA 1: 1 x 60 MEA 2: 1 x 120 MEA 3: special

# GTP Registers (should be implemented in every Device)

| Register                              | 31  | 30    | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 4 | 3 | 2 1 |
|---------------------------------------|-----|-------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|---|---|---|---|-----|---|-----|
| 0x010: GTP CTRL Register              | Res | serve | ed |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |   |   |   |   |     |   |     |
| 0x014: (RO)GTP Error counter Register | Res | serve | ed |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |   |   |   |   |     |   |     |
| 0x014: (WO)GTP Error counter Reset    | Res | serve | ed |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |   |   |   |   |     |   |     |

# Reset Register (should be implemented in every Device)

| Register            | 31  | 30    | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 5 | 4 | 3 | 2            | 1      |
|---------------------|-----|-------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|---|---|---|-----|---|---|--------------|--------|
| 0x020: FPGA Reset   | Res | erve  | ed |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |   |   |   |     |   |   | STG X2 Reset | STG X1 |
| 0x024: Power Enable | Res | serve | ed |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |   |   |   |     |   |   |              |        |

# Flash Memory Registers (should be implemented in/for every Device)

| Register                                   | 31            | 30              | 29   | 28   | 27   | 26   | 25    | 24    | 23   | 22    | 21   | 20  | 19    | 18    | 17  | 16 | 15 | 14 | 13 | 12 | 11 | 10   |
|--------------------------------------------|---------------|-----------------|------|------|------|------|-------|-------|------|-------|------|-----|-------|-------|-----|----|----|----|----|----|----|------|
| 0x030: (WO)Flash Instruction Code Register | Reserved      |                 |      |      |      |      |       |       |      |       |      |     |       |       |     |    |    |    |    |    |    |      |
| 0x030: (RO)Flash Status Register           | Reserved      |                 |      |      |      |      |       |       |      |       |      |     |       |       |     |    |    |    |    |    |    | FIFO |
| 0x034 : Flash Memory Address Register      | Reserved      |                 |      |      |      |      |       |       | Fla  | sh A  | ddre | SS  |       |       |     |    |    |    |    |    |    |      |
| 0x038 : Flash Data FIFO Register           | 256 Data Byte | es in 64 DWords | to/f | rom  | Flas | h    |       |       |      |       |      |     |       |       |     |    |    |    |    |    |    |      |
| 0x03C : Flash HW configuration register    | Address lengt | h (1,2,3 Bytes) | Clo  | ck [ | ivid | er R | egist | er (N | Mult | iples | of 2 | div | ide 3 | 8,4 1 | MHz | )  |    |    |    |    |    |      |

# ADC Registers

|             | 30                   | 29                    | 28                                                                                                             | 27       | 26                                                                                                                 | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 24                                                                                                                                                                                                                                                                                           | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 17                                                                                                                                                                                        | 16                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------|----------------------|-----------------------|----------------------------------------------------------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reset done? | Artif.<br>Data       | Force<br>data<br>keep | Rese                                                                                                           | erved    | Enable Data<br>keep on<br>Measurement<br>channels,<br>post filter                                                  | Enable Data<br>keep on<br>Measurement<br>channels,<br>mid filter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Enable Data<br>keep on<br>Measurement<br>channels, pre<br>filter                                                                                                                                                                                                                             | Rese                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | erveo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Enable Data keep on Stimulation channels, post filter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Enable Data keep on Stimulation channels, mid filter                                                                                                                                      | Enable Data keep on Stimulation channels, pre filter                                                                                                                                                                                                                                                                                                                                                                                       | Offset<br>correction<br>Enable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Reserv      | ed                   |                       |                                                                                                                |          |                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Reserv      | red                  | Electro               | ode 30                                                                                                         | 0 - 1    |                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Reserv      | ed                   | Electro               | ode 60                                                                                                         | 0 - 31   |                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Reserv      | ed                   | Electro               | ode 90                                                                                                         | 0 - 61   |                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Reserv      | ed                   | Electro               | ode 11                                                                                                         | 19 - 91  |                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | Reserv Reserv Reserv |                       | Reserved  Reserved  Reserved  Electro  Reserved  Electro  Electro  Electro  Electro  Electro  Electro  Electro | Reserved | Reserved  Reserved  Reserved  Reserved  Electrode 30 - 1  Reserved  Electrode 60 - 31  Reserved  Electrode 90 - 61 | Reserved  Reserved | Resett done?       Artif. Data       Force data keep       Reserved       keep on Measurement channels, post filter       keep on Measurement channels, mid filter         Reserved       Electrode 30 - 1         Reserved       Electrode 60 - 31         Reserved       Electrode 90 - 61 | Reserved  Reserv | Reserved  Reserv | Reserved  Reserved | Reserved  Reserved | Reserved  Reserved | Reserved  Reserved | Reset done? Artif. Data Reserved Electrode 30 - 1  Reserved Electrode 90 - 61 | Reset done?       Artif. Data       Force data keep       Reserved       Reserved       keep on Measurement channels, post filter       keep on Measurement channels, mid filter       keep on Measurement channels, pre filter       Reserved       Reserved       Bata keep on Stimulation channels, post filter       Stimulation channels, mid filter         Reserved       Electrode 30 - 1         Reserved       Electrode 60 - 31 | Reset done? Data keep on Measurement channels, post filter  Reserved  Reserv |

|     |                                                                          |                |                                                                | •                         |                |          |
|-----|--------------------------------------------------------------------------|----------------|----------------------------------------------------------------|---------------------------|----------------|----------|
|     | 0x118:<br>ADC<br>settings                                                | Reserved       |                                                                |                           | ADC Power MODE | Reserved |
|     | 0x11C:<br>Filter and<br>ADC Gain                                         | Gain of Filter | coefficient + ADC Gain for GUI SW configuration, default 0x800 | 00 07D0; 2000 meaning 2.0 |                |          |
|     | 0x140:<br>Open<br>Amplifier<br>Protection<br>Switch<br>while<br>Blanking | Reserved       | Electrode 30 - 1                                               |                           |                |          |
|     | 0x144:<br>Open<br>Amplifier<br>Protection<br>Switch<br>while<br>Blanking | Reserved       | Electrode 60 - 31                                              |                           |                |          |
|     | 0x148:<br>Open<br>Amplifier<br>Protection<br>Switch<br>while<br>Blanking | Reserved       | Electrode 90 - 61                                              |                           |                |          |
|     | 0x14C:<br>Open<br>Amplifier<br>Protection<br>Switch<br>while<br>Blanking | Reserved       | Electrode 119 - 91                                             |                           |                |          |
|     | 0x150:<br>Enable<br>Blanking                                             | Reserved       | Electrode 30 - 1                                               |                           |                |          |
|     | 0x154:<br>Enable<br>Blanking                                             | Reserved       | Electrode 60 - 31                                              |                           |                |          |
|     | 0x158:<br>Enable<br>Blanking                                             | Reserved       | Electrode 90 - 61                                              |                           |                |          |
|     | 0x15C:<br>Enable<br>Blanking                                             | Reserved       | Electrode 119 - 91                                             |                           |                |          |
|     | 0x160:<br>Stimulus<br>Data keep<br>pre filter                            | Reserved       |                                                                | onset delay               |                | Reserved |
|     | 0x164:<br>Stimulus<br>Data keep<br>mid filter                            | Reserved       |                                                                | onset delay               |                | Reserved |
|     | 0x168:<br>Stimulus<br>Data keep<br>post filter                           | Reserved       |                                                                | onset delay               |                | Reserved |
|     | 0x170:<br>Non-<br>Stimulus<br>Data keep<br>pre filter                    | Reserved       |                                                                | onset delay               |                | Reserved |
|     | 0x174:<br>Non-<br>Stimulus<br>Data keep<br>mid filter                    | Reserved       |                                                                | onset delay               |                | Reserved |
|     | 0x178:<br>Non-<br>Stimulus<br>Data keep<br>post filter                   | Reserved       |                                                                | onset delay               |                | Reserved |
|     | 0x180:<br>Channel<br>Index                                               | Reserved       |                                                                |                           |                |          |
| . 1 |                                                                          | •              | '                                                              | -                         |                |          |

| 16.9.2016                                                       |                 | MEA2100 User Guide – Multi C                                  | nannei Systems Wiki                                             |              |
|-----------------------------------------------------------------|-----------------|---------------------------------------------------------------|-----------------------------------------------------------------|--------------|
| 0x184:<br>Current<br>ADC Value                                  | Reserved        |                                                               | Reflects the ADC Value of the channel selected in Reg. 0x18     | 0            |
| 0x188:<br>Current<br>DC<br>Channel<br>offset                    | Reserved        |                                                               | Reflects the DC offset correction Value of the channel selected | ed in Reg. ( |
| 0x1F0:<br>Stimulation<br>Channel<br>copy                        | Reserved        | Electrode 30 - 1 Reflects the STG Register 0x158 and 0x15C fo | r monitoring if information is on HS                            |              |
| 0x1F4:<br>Stimulation<br>Channel<br>copy                        | Reserved        | Electrode 60 - 31                                             |                                                                 |              |
| 0x1F8:<br>Stimulation<br>Channel<br>copy                        | Reserved        | Electrode 90 - 61                                             |                                                                 |              |
| 0x1FC:<br>Stimulation<br>Channel<br>copy                        | Reserved        | Electrode 119 - 91                                            |                                                                 |              |
| 0x600:<br>Filter 1<br>coefficent<br>b[0]                        | Filter coeffice | ent b[0] as Q1.16 value                                       |                                                                 |              |
| 0x604:<br>Reserved<br>(DC)                                      | Reserved        |                                                               |                                                                 |              |
| 0x608:<br>Filter 1<br>coefficent<br>b[1]                        | Filter coeffice | ent b[1] as Q1.16 value                                       |                                                                 |              |
| 0x60C:<br>Filter 1<br>coefficent<br>a[1]                        | Filter coeffice | ent a[1] as Q1.30 value                                       |                                                                 |              |
| 0x610:<br>Filter 1<br>coefficent<br>b[2]                        | Filter coeffice | ent b[2] as Q1.16 value                                       |                                                                 |              |
| 0x614:<br>Filter 1<br>coefficent<br>a[2]                        | Filter coeffice | ent a[2] as Q1.30 value                                       |                                                                 |              |
| 0x618:<br>Filter 1<br>coefficent<br>a[1]ext.<br>and<br>a[2]ext. | Filter Coef. A  | 2 lower bits -31 downto -46                                   |                                                                 | Filter Co    |
| 0x61C:<br>Filter 1<br>CTRL                                      | Reserved        |                                                               |                                                                 |              |
| 0x620:<br>Filter 2<br>coefficent<br>b[0]                        | Filter coeffice | ent b[0] as Q1.16 value                                       |                                                                 |              |
| 0x624:<br>Reserved<br>(DC)                                      | Reserved        |                                                               |                                                                 |              |
| 0x628:<br>Filter 2<br>coefficent<br>b[1]                        | Filter coeffice | ent b[1] as Q1.16 value                                       |                                                                 |              |
| 0x62C:<br>Filter 2<br>coefficent<br>a[1]                        | Filter coeffice | ent a[1] as Q1.30 value                                       |                                                                 |              |
| 0x630:<br>Filter 2<br>coefficent<br>b[2]                        | Filter coeffice | ent b[2] as Q1.16 value                                       |                                                                 | 07/20        |

| 0.9.2016                                                        | MEA2100 Oser Guide – Multi Channel Systems Wiki |           |
|-----------------------------------------------------------------|-------------------------------------------------|-----------|
| 0x634:<br>Filter 2<br>coefficent<br>a[2]                        | Filter coefficent a[2] as Q1.30 value           |           |
| 0x638:<br>Filter 2<br>coefficent<br>a[1]ext.<br>and<br>a[2]ext. | Filter Coef. A2 lower bits -31 downto -46       | Filter Co |
| 0x63C:<br>Filter 2<br>CTRL                                      | Reserved                                        | ·         |
| 0x640:<br>Filter 3<br>coefficent<br>b[0]                        | Filter coefficent b[0] as Q1.16 value           |           |
| 0x644:<br>Reserved<br>(DC)                                      | Reserved                                        |           |
| 0x648:<br>Filter 3<br>coefficent<br>b[1]                        | Filter coefficent b[1] as Q1.16 value           |           |
| 0x64C:<br>Filter 3<br>coefficent<br>a[1]                        | Filter coefficent a[1] as Q1.30 value           |           |
| 0x650:<br>Filter 3<br>coefficent<br>b[2]                        | Filter coefficent b[2] as Q1.16 value           |           |
| 0x654:<br>Filter 3<br>coefficent<br>a[2]                        | Filter coefficent a[2] as Q1.30 value           |           |
| 0x658:<br>Filter 3<br>coefficent<br>a[1]ext.<br>and<br>a[2]ext. | Filter Coef. A2 lower bits -31 downto -46       | Filter Co |
| 0x65C:<br>Filter 3<br>CTRL                                      | Reserved                                        |           |
| 0x660:<br>Filter 4<br>coefficent<br>b[0]                        | Filter coefficent b[0] as Q1.16 value           |           |
| 0x664:<br>Reserved<br>(DC)                                      | Reserved                                        |           |
| 0x668:<br>Filter 4<br>coefficent<br>b[1]                        | Filter coefficent b[1] as Q1.16 value           |           |
| 0x66C:<br>Filter 4<br>coefficent<br>a[1]                        | Filter coefficent a[1] as Q1.30 value           |           |
| 0x670:<br>Filter 4<br>coefficent<br>b[2]                        | Filter coefficent b[2] as Q1.16 value           |           |
| 0x674:<br>Filter 4<br>coefficent<br>a[2]                        | Filter coefficent a[2] as Q1.30 value           |           |
| 0x678:<br>Filter 4<br>coefficent<br>a[1]ext.<br>and<br>a[2]ext. | Filter Coef. A2 lower bits -31 downto -46       | Filter Co |
| l<br>                                                           | I                                               |           |

| 6.9.2016                                  | MEA2100 User Guide – Multi C                                     | nannei Systems Wiki |           |
|-------------------------------------------|------------------------------------------------------------------|---------------------|-----------|
| 0x67C:<br>Filter 4<br>CTRL                | Reserved                                                         |                     |           |
| 0x6A0:<br>Filter 2<br>coefficent<br>b2[0] | Filter coefficent b2[0] as Q1.16 value for one clock after blank |                     |           |
| 0x6A8:<br>Filter 2<br>coefficent<br>b2[1] | Filter coefficent b2[1] as Q1.16 value for one clock after blank |                     |           |
| 0x6AC:<br>Filter 2<br>coefficent<br>a2[1] | Filter coefficent a2[1] as Q1.30 value for one clock after blank |                     |           |
| 0x6B0:<br>Filter 2<br>coefficent<br>b2[2] | Filter coefficent b2[2] as Q1.16 value for one clock after blank |                     |           |
| 0x6B4:<br>Filter 2<br>coefficent<br>a2[2] | Filter coefficent a2[2] as Q1.30 value for one clock after blank |                     |           |
| 0x6c0:<br>Filter Info                     | Corner frequency of Hardware Filter in mHz                       |                     |           |
| 0x6c4:<br>Filter Info                     | Hardware Filter order                                            | Band: Lowpass       | Family: 1 |
| 0x6d0:<br>Filter Info                     | Corner frequency of Highpass Filter in mHz                       |                     |           |
| 0x6d4:<br>Filter Info                     | Highpass Filter order                                            | Band: Highpass      | Family: 1 |
| 0x6e0:<br>Filter Info                     | Corner frequency of Lowpass Filter in mHz                        |                     |           |
| 0x6e4:<br>Filter Info                     | Lowpass Filter order                                             | Band: Lowpass       | Family: 1 |

# EEProm Registers

| Register                                       | 31   | 30              | 29   | 28     | 27   | 26   | 25    | 24    | 23    | 22     | 21   | 20    | 19   | 18  | 17    | 16   | 15 | 14  | 1. | 3 1 | 12 | 11 | 10         | 9                   | 8                  |
|------------------------------------------------|------|-----------------|------|--------|------|------|-------|-------|-------|--------|------|-------|------|-----|-------|------|----|-----|----|-----|----|----|------------|---------------------|--------------------|
| 0x300: (WO)EEPROM<br>Instruction Code Register | Rese | erved           |      |        |      |      |       |       |       |        |      |       |      |     |       |      |    |     |    |     |    |    |            | Stop<br>instruction | Fifo Reset         |
| 0x300: (RO)EEPRom Status<br>Register           | Rese | erved           |      |        |      |      |       |       |       |        |      |       |      |     |       |      |    |     |    |     |    |    | FIFO_empty | FIFO_full           | Statemachi<br>busy |
| 0x304 : EEPRom Memory<br>Address Register      | Rese | erved           |      |        |      |      |       |       | Fla   | sh A   | ddre | ess   |      |     |       |      |    |     |    |     |    |    |            |                     |                    |
| 0x308 : EEPRom Data FIFO<br>Register           | 256  | Data            | Byte | s in 6 | 4 DV | Vord | s to/ | from  | Flas  | sh     |      |       |      |     |       |      |    |     |    |     |    |    |            |                     |                    |
| 0x30C : EEPROM HW configuration register       |      | ress l<br>,3 By | _    | 1      | Clo  | ck D | Divid | ler R | egist | ter (1 | Mult | iples | of 2 | div | ide 3 | 88,4 | Μŀ | (z) |    |     |    |    |            |                     |                    |

# Mini DMA Registers

| Register                             | 31 | 30    | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15  | 14   | 13 | 12 | 11 | 10 | 9 | 8 ( | 7 6 | 5 | 4 3 | 3 2 | 1 ( |
|--------------------------------------|----|-------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|-----|------|----|----|----|----|---|-----|-----|---|-----|-----|-----|
| 0xE00: DMA CTRL Register             | Re | serve | ed |    |    |    |    |    |    |    |    |    |    |    |    |    |     |      |    |    |    |    |   |     |     |   |     |     | I   |
| 0xE04 : EEPRom Address Ptr. Register | Re | serve | ed |    |    |    |    |    |    |    |    |    |    |    |    |    |     |      |    |    |    |    |   |     |     |   |     |     |     |
| 0xE08 : EEPRom Data Ptr. Register    | Re | serve | ed |    |    |    |    |    |    |    |    |    |    |    |    |    | Res | erve | d  |    |    |    |   |     |     |   |     |     |     |

# Mini DMA command overview

| Command | Bit 31 to 24 | Bit 23 to 0   | Description                         |
|---------|--------------|---------------|-------------------------------------|
| STP     | 0xFF         | 0xXXXXXX      | Stop DMA                            |
| SDTA    | 0x01         | 0x008RegAddr. | Store Next Data to Register Address |
| DATA    | 0xData       | 0xData        | Data expected after SDTA command    |

# Changed Register Information of Headstage FPGA

| Register          | from            | to                                    | in Revision |
|-------------------|-----------------|---------------------------------------|-------------|
| ADC Filter        | 0x0120 - 0x0138 | 0x0600 - 0x0674                       | 0.04        |
| ADC Filter enable | 0x100 bits 4:1  | 0x61C, 0x63C, 0x65C, 0x67C each bit 0 | 1.15        |

Stimulus Board Address Map (Address bits 11-0) Base Address: HS1: 0x9000 and 0xA000 HS2: 0xD000 and 0xE000:

Access time is 4,3 us for writes and 6,4 us for reads.

# General Purpose Registers (should be implemented in every Device)

| Register                        | 31  | 30                                | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19  | 18    | 17     | 16   | 15  | 14   | 13    | 12    | 11   | 10   | 9   | 8     | 7    | 6    | 5 . | 4 3 | 3 2 | 1 | [ |
|---------------------------------|-----|-----------------------------------|----|----|----|----|----|----|----|----|----|----|-----|-------|--------|------|-----|------|-------|-------|------|------|-----|-------|------|------|-----|-----|-----|---|---|
| 0x000: Device ID Register       | 0x0 | 0x00000003 = MEA 21 Stimulus FPGA |    |    |    |    |    |    |    |    |    |    |     |       |        |      |     |      |       |       |      |      |     |       |      |      |     |     |     |   |   |
| 0x004: HW/FPGA Version Register | Res | served                            |    |    |    |    |    |    |    |    |    |    | HW. | /Boar | rd Vei | sion | FPG | GA V | Versi | on: ( | 0x01 | 01 = | Ini | itial | l Ve | rsic | n   |     |     |   |   |

# SPI Registers (should be implemented in every Device)

| Register                 | 31  | 30    | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|--------------------------|-----|-------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|---|---|---|---|---|---|---|---|---|---|
| 0x010: SPI CTRL Register | Res | serve | ed |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |   |   |   |   |   |   |   |   |   |   |

# Reset Register (should be implemented in every Device)

| Register |                       | 31  | 30    | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 6 | 5 | 4 | 3 | 2           |
|----------|-----------------------|-----|-------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|---|---|-----|---|---|---|-------------|
| 0x020: F | PGA Reset (WO)        | Res | serve | ed |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |   |   |     |   |   |   | DDR Block R |
| 0x024: F | PGA Reset Status (RO) | Res | serve | ed |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |   |   |     |   |   |   | DDR Block P |
| 0x028: S | ystem Pll CTRL (WO)   | Res | serve | ed |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |   |   |     |   |   |   |             |

# Flash Memory Registers (should be implemented in/for every Device)

| Register                                   | 31  | 30       | 29    | 28    | 27    | 26   | 25    | 24     | 23  | 22   | 21   | 20 | 19 | 18 | 17 | 7 1 | 6 | 15 | 14 | 13 | 12 | 11 | 10 |          | 9             |
|--------------------------------------------|-----|----------|-------|-------|-------|------|-------|--------|-----|------|------|----|----|----|----|-----|---|----|----|----|----|----|----|----------|---------------|
| 0x030: (WO)Flash Instruction Code Register | Res | erve     | d     |       |       |      |       |        |     |      |      |    |    |    |    |     |   |    |    |    |    |    |    |          | Stop instruct |
| 0x030: (RO)Flash Status Register           | Res | Reserved |       |       |       |      |       |        |     |      |      |    |    |    |    |     |   |    |    |    |    |    | FI | FO_empty | FIFO_full     |
| 0x034 : Flash Memory Address Register      | Res | Reserved |       |       |       |      |       |        | Fla | sh A | ddre | ss |    |    |    |     |   |    |    |    |    |    |    |          |               |
| 0x038 : Flash Data FIFO Register           | 256 | Dat      | a By  | tes i | in 64 | I DW | /ords | s to/i | rom | Flas | h    |    |    |    |    |     |   |    |    |    |    |    |    |          |               |
| 0x03C : Flash Clock Divider Register       | Mu  | ltiple   | es of | 2 di  | ivide | 38,  | 4 M   | Hz     |     |      |      |    |    |    |    |     |   |    |    |    |    |    |    |          |               |

# **DAC Registers**

| Register                                            | 31       | 30     | 29 | 28 | 27 | 26 | 25      | 24 | 23   | 22     | 21    | 20    | 19    | 18     | 17      | 16     | 15     | 14   | 13                                 | 12                                 | 11                                 | 10                                 | 9                                  |
|-----------------------------------------------------|----------|--------|----|----|----|----|---------|----|------|--------|-------|-------|-------|--------|---------|--------|--------|------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|
| 0x100:<br>DAC<br>Control<br>Register                | Reserved |        |    |    |    |    |         |    |      |        |       |       |       |        |         |        |        |      | 0: Current<br>1: Voltage<br>DAC: F | 0: Current<br>1: Voltage<br>DAC: E | 0: Current<br>1: Voltage<br>DAC: D | 0: Current<br>1: Voltage<br>DAC: C | 0: Current<br>1: Voltage<br>DAC: B |
| 0x104:<br>Trigger<br>select* for<br>Stim MEM<br>FSM | Reserved |        |    |    |    |    | Me<br>7 | m  | Rese | erved  |       |       |       |        | Me<br>5 | em     | Res    | erve | ed                                 | •                                  | •                                  |                                    | Mem 3                              |
| 0x108:<br>Trigger<br>select* for<br>Stim MEM<br>FSM | Reserved |        |    |    |    |    | Me<br>8 | m  | Rese | erved  |       |       |       |        | Ме<br>6 | em     | Res    | erve | ed                                 |                                    |                                    |                                    | Mem 4                              |
| 0x10C:<br>Stop<br>Trigger<br>Register               | Reserved |        |    |    |    |    |         |    |      |        |       |       |       |        |         |        |        |      |                                    |                                    |                                    |                                    |                                    |
| 0x110:<br>Trigger<br>conf.<br>Register**            | Reserved |        |    |    |    |    |         |    |      |        |       |       |       |        |         |        |        |      |                                    |                                    |                                    |                                    |                                    |
| 0x114:<br>Trigger<br>conf.<br>Register**            | Reserved |        |    |    |    |    |         |    |      |        |       |       |       |        |         |        |        |      |                                    |                                    |                                    |                                    |                                    |
| 0x118:<br>Trigger<br>conf.<br>Register**            | Reserved |        |    |    |    |    |         |    |      |        |       |       |       |        |         |        |        |      |                                    |                                    |                                    |                                    |                                    |
| 0x11C:<br>Reserved                                  | Reserved |        |    |    |    |    |         |    |      |        |       |       |       |        |         |        |        |      |                                    |                                    |                                    |                                    |                                    |
| 0x120:<br>Electrode<br>ttp://wiki.mcs               | Reserved | iki/in |    |    |    |    |         |    |      | 11 / 2 | Autoi | matio | c mod | de: 00 | , oth   | ner bi | it cor | nbir | nations are re                     | eserved)                           |                                    |                                    | 31/38                              |

| 5.9.2016                                         |           |                                            |            |           | IVILAZI     | 00 036    | Guide – IVI  | uiti Ciia | nnei Systems Wiki |       |
|--------------------------------------------------|-----------|--------------------------------------------|------------|-----------|-------------|-----------|--------------|-----------|-------------------|-------|
| Mode                                             |           |                                            |            |           |             |           |              |           |                   |       |
| 0x124:<br>Electrode<br>Mode                      | Reserved  | Electrod                                   | le 30 - 16 |           |             |           |              |           |                   |       |
| 0x128:<br>Electrode<br>Mode                      | Reserved  | Electrod                                   | le 45 - 31 |           |             |           |              |           |                   |       |
| 0x12C:<br>Electrode<br>Mode                      | Reserved  | Electrod                                   | le 60 - 46 |           |             |           |              |           |                   |       |
| 0x130:<br>Reserved                               | Reserved  | ·                                          |            |           |             |           |              |           |                   |       |
| 0x134:<br>Reserved                               | Reserved  |                                            |            |           |             |           |              |           |                   |       |
| 0x138:<br>Reserved                               | Reserved  |                                            |            |           |             |           |              |           |                   |       |
| 0x13C:<br>Reserved                               | Reserved  |                                            |            |           |             |           |              |           |                   |       |
| 0x140:<br>Reserved                               | Reserved  |                                            |            |           |             |           |              |           |                   |       |
| 0x144:<br>Reserved                               | Reserved  |                                            |            |           |             |           |              |           |                   |       |
| 0x148:<br>Reserved                               | Reserved  |                                            |            |           |             |           |              |           |                   |       |
| 0x14C:<br>Reserved                               | Reserved  |                                            |            |           |             |           |              |           |                   |       |
| 0x150:<br>Electr.<br>conf. ID<br>CTRL f.<br>Auto | Reserved  | Electrode configuration source 0:int/1:ext | Reserve    | ed        |             |           |              |           |                   |       |
| 0x154:<br>DAC<br>Sideband<br>Select***           | Reserved  |                                            | •          | DAC<br>F  | Reserved    | DAC<br>D  | Reserved     | DAC<br>B  | Reserved          | DAC E |
| 0x158:<br>Stimulation<br>Enable                  | Reserved  | Electr. 3                                  | 0 - 1 (Seg | ment ID   | depending   | on bits 7 | :0 of reg. 0 | x150)     |                   |       |
| 0x15C:<br>Stimulation<br>Enable                  | Reserved  | Electr. 6                                  | 0 - 31 (Se | egment II | ) depending | g on bits | 7:0 of reg.  | 0x150)    |                   |       |
| 0x160:<br>Electrode<br>DAC<br>select****         | Reserved  | Electr. 1                                  | 5 - 1 (Seg | ment ID   | depending   | on bits 7 | :0 of reg. 0 | x150)     |                   |       |
| 0x164:<br>Electrode<br>DAC<br>select****         | Reserved  | Electr. 3                                  | 0 - 16 (Se | egment II | ) depending | g on bits | 7:0 of reg.  | 0x150)    |                   |       |
| 0x168:<br>Electrode<br>DAC<br>select****         | Reserved  | Electr. 4                                  | 5 - 31 (Se | egment II | ) depending | g on bits | 7:0 of reg.  | 0x150)    |                   |       |
| 0x16C:<br>Electrode<br>DAC<br>select****         | Reserved  | Electr. 6                                  | 0 - 46 (Se | egment II | ) depending | g on bits | 7:0 of reg.  | 0x150)    |                   |       |
| 0x170:<br>Event Cnt.<br>Max val                  | Trigger 1 | '                                          |            |           |             |           |              |           |                   |       |
| 0x174:<br>Event Cnt.<br>Max val                  | Trigger 2 |                                            |            |           |             |           |              |           |                   |       |
| 0x178:<br>Event Cnt.<br>Max val                  | Trigger 3 |                                            |            |           |             |           |              |           |                   |       |
| 0x17C:<br>Reserved                               | Reserved  |                                            |            |           |             |           |              |           |                   |       |
| 0x180:<br>Event Cnt.<br>Cur. val                 | Trigger 1 |                                            |            |           |             |           |              |           |                   |       |

| 0x184:<br>Event Cnt.<br>Cur. val           | Trigger 2 |       |       |       |       |          |       |
|--------------------------------------------|-----------|-------|-------|-------|-------|----------|-------|
| 0x188:<br>Event Cnt.<br>Cur. val           | Trigger 3 |       |       |       |       |          |       |
| 0x18C:<br>Reserved                         | Reserved  |       |       |       |       |          |       |
| 0x190:<br>Repeat<br>Trigger #<br>times     | Trigger 1 |       |       |       |       |          |       |
| 0x194:<br>Repeat<br>Trigger #<br>times     | Trigger 2 |       |       |       |       |          |       |
| 0x198:<br>Repeat<br>Trigger #<br>times     | Trigger 3 |       |       |       |       |          |       |
| 0x19C:<br>Reserved                         | Reserved  |       |       |       |       |          |       |
| 0x1A0:<br>Repeat<br>times<br>counter       | Trigger 1 |       |       |       |       |          |       |
| 0x1A4:<br>Repeat<br>times<br>counter       | Trigger 2 |       |       |       |       |          |       |
| 0x1A8:<br>Repeat<br>times<br>counter       | Trigger 3 |       |       |       |       |          |       |
| 0x1AC:<br>Reserved                         | Reserved  |       |       |       |       |          |       |
| 0x1B0:<br>Read Ptr.<br>Cur. pos.           | Stim 1    |       |       |       |       |          |       |
| 0x1B4:<br>Read Ptr.<br>Cur. pos.           | Stim 2    |       |       |       |       |          |       |
| 0x1B8:<br>Read Ptr.<br>Cur. pos.           | Stim 3    |       |       |       |       |          |       |
| 0x1BC:<br>Read Ptr.<br>Cur. pos.           | Stim 4    |       |       |       |       |          |       |
| 0x1C0:<br>Read Ptr.<br>Cur. pos.           | Stim 5    |       |       |       |       |          |       |
| 0x1C4:<br>Read Ptr.<br>Cur. pos.           | Stim 6    |       |       |       |       |          |       |
| 0x1C8:<br>Read Ptr.<br>Cur. pos.           | Stim 7    |       |       |       |       |          |       |
| 0x1CC:<br>Read Ptr.<br>Cur. pos.           | Stim 8    |       |       |       |       |          |       |
| 0x1D0:<br>DAC Data<br>Source<br>select**** | Reserved  | DAC F | DAC D | DAC B |       | Reserved | DAC E |
| 0x1D4:<br>SBS Data<br>Source<br>select**** | Reserved  |       |       |       |       |          | SBS 3 |
| 0x1E0:<br>DAC<br>Weighting<br>Factor       | Reserved  |       |       |       | DAC A |          |       |
|                                            |           |       |       |       |       |          |       |

| 10.3.2010                                                                                                                                            |                                                                                                   |                                                                                                                            |                                                                                                             | WILAZ 100 US        | oci Oulue – ivi | uiti Chaine Sys   | CIIIS VVII         | NI       |         |       |       |     |       |
|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------|-----------------|-------------------|--------------------|----------|---------|-------|-------|-----|-------|
| 0x1E4:<br>DAC<br>Weighting<br>Factor                                                                                                                 | Reserved                                                                                          |                                                                                                                            |                                                                                                             |                     |                 | DAC C             |                    |          |         |       |       |     |       |
| 0x1E8:<br>DAC<br>Weighting<br>Factor                                                                                                                 | Reserved                                                                                          |                                                                                                                            |                                                                                                             |                     |                 | DAC E             |                    |          |         |       |       |     |       |
| 0x1F0:<br>DAC<br>Weighting<br>Factor                                                                                                                 | Reserved                                                                                          |                                                                                                                            |                                                                                                             |                     |                 | DAC B             |                    |          |         |       |       |     |       |
| 0x1F4:<br>DAC<br>Weighting<br>Factor                                                                                                                 | Reserved                                                                                          |                                                                                                                            |                                                                                                             |                     |                 | DAC D             |                    |          |         |       |       |     |       |
| 0x1F8:<br>DAC<br>Weighting<br>Factor                                                                                                                 | Reserved                                                                                          |                                                                                                                            |                                                                                                             |                     |                 | DAC F             |                    |          |         |       |       |     |       |
| SBS: Side Ban                                                                                                                                        | d Signal                                                                                          |                                                                                                                            |                                                                                                             |                     |                 | <u> </u>          |                    |          |         |       |       |     |       |
| *Decoding Tab                                                                                                                                        | le:                                                                                               |                                                                                                                            |                                                                                                             |                     |                 |                   |                    |          |         |       |       |     |       |
| 00: Trigger 1<br>01: Trigger 2<br>10: Trigger 3<br>11: Reserved                                                                                      |                                                                                                   |                                                                                                                            |                                                                                                             |                     |                 |                   |                    |          |         |       |       |     |       |
| **Decoding Ta                                                                                                                                        | ble:                                                                                              |                                                                                                                            |                                                                                                             |                     |                 |                   |                    |          |         |       |       |     |       |
| Bit 3:1:     0: Stop s     1: Restar     2: Ignore     3: Gate s Bit 5:4:     0: Stop s     1: Restar     2: Ignore bit 7-6: Status                  |                                                                                                   | t recuring o<br>e at recurin<br>continue pro<br>t trigger ev<br>t occuring o<br>e at occurin<br>continue pr<br>achine (00: | g of same trigger<br>cessing<br>ent<br>f other trigger<br>g of other trigge<br>ocessing<br>not Armed, 01: A | r event             |                 |                   |                    |          |         |       |       |     |       |
| F                                                                                                                                                    | abie:<br>                                                                                         |                                                                                                                            |                                                                                                             |                     |                 |                   |                    |          |         |       |       |     |       |
| 00: SBS 1<br>01: SBS 2<br>10: SBS 3<br>11: Reserved, n                                                                                               | ot Valid                                                                                          |                                                                                                                            |                                                                                                             |                     |                 |                   |                    |          |         |       |       |     |       |
| ****Decoding                                                                                                                                         | Table:                                                                                            |                                                                                                                            |                                                                                                             |                     |                 |                   |                    |          |         |       |       |     |       |
| 00: GND<br>01: DAC A/B<br>10: DAC C/D<br>11: DAC E/F                                                                                                 |                                                                                                   |                                                                                                                            |                                                                                                             |                     |                 |                   |                    |          |         |       |       |     |       |
| *****Decoding                                                                                                                                        | Table:                                                                                            |                                                                                                                            |                                                                                                             |                     |                 |                   |                    |          |         |       |       |     |       |
| 0000: Stimmulus<br>0001: Stimmulus<br>0010: Stimmulus<br>0011: Stimmulus<br>0100: Stimmulus<br>0101: Stimmulus<br>0110: Stimmulus<br>0111: Stimmulus | 2 Data Stream 3 Data Stream 4 Data Stream 5 Data Stream 6 Data Stream 7 Data Stream 8 Data Stream |                                                                                                                            |                                                                                                             |                     |                 |                   |                    |          |         |       |       |     |       |
| Stimulus Patte                                                                                                                                       | ern Memory Po                                                                                     | inter Regis                                                                                                                | sters                                                                                                       |                     |                 |                   |                    |          |         |       |       |     |       |
| Register                                                                                                                                             |                                                                                                   | 31 30                                                                                                                      | 29                                                                                                          | 28                  | 27 26 25        | 24 23 22 21       | <b>20   19  </b> 1 | 18 17 16 | 5 15 14 | 13 12 | 11 10 | 9 8 | 7 6   |
| 0x200: MEM                                                                                                                                           | Control Stim 1                                                                                    | Reserved                                                                                                                   | Init Ptr all**                                                                                              | Init Ptr Seg.0**    | Reserved        |                   |                    |          |         |       |       |     | Segme |
| 0x204: Start I                                                                                                                                       | Pointer Stim 1                                                                                    | Memory                                                                                                                     | Pointer (DAC A                                                                                              | A and B select this | Data source     | n reg. 0x1D0 by o | lefault)           |          |         |       |       |     |       |
| 0x208: End P                                                                                                                                         | ointer Stim 1                                                                                     | Memory 1                                                                                                                   | Pointer                                                                                                     |                     |                 |                   |                    |          |         |       |       |     |       |
| 0x20C: Write                                                                                                                                         | Pointer Stim 1                                                                                    | Memory                                                                                                                     | Pointer, write w                                                                                            | ill clear Channel   |                 |                   |                    |          |         |       |       |     |       |
| 0x210: Read                                                                                                                                          | Pointer Stim 1                                                                                    | Memory 1                                                                                                                   | Pointer                                                                                                     |                     |                 |                   |                    |          |         |       |       |     |       |
| 0x220: MEM                                                                                                                                           | Control Stim 2                                                                                    | Reserved                                                                                                                   |                                                                                                             |                     |                 |                   |                    |          |         |       |       |     | Segm  |
| 0x224: Start I                                                                                                                                       | Pointer Stim 2                                                                                    | Memory                                                                                                                     | Pointer (SBS 1                                                                                              | select this Data so | ource in reg. 0 | x1D4 by default)  |                    |          |         |       |       |     |       |
| 0x228: End P                                                                                                                                         | ointer Stim 2                                                                                     | Memory 1                                                                                                                   | Pointer                                                                                                     |                     |                 |                   |                    |          |         |       |       |     |       |

| 6.9.2016                    | MEA2100 User Guide – Multi Channel Systems Wiki                               |       |
|-----------------------------|-------------------------------------------------------------------------------|-------|
| 0x22C: Write Pointer Stim 2 | Memory Pointer, write will clear Channel                                      |       |
| 0x230: Read Pointer Stim 2  | Memory Pointer                                                                |       |
| 0x240: MEM Control Stim 3   | Reserved                                                                      | Segme |
| 0x244: Start Pointer Stim 3 | Memory Pointer (DAC C and D select this Data source in reg. 0x1D0 by default) | •     |
| 0x248: End Pointer Stim 3   | Memory Pointer                                                                |       |
| 0x24C: Write Pointer Stim 3 | Memory Pointer, write will clear Channel                                      |       |
| 0x250: Read Pointer Stim 3  | Memory Pointer                                                                |       |
| 0x260: MEM Control Stim 4   | Reserved                                                                      | Segmo |
| 0x264: Start Pointer Stim 4 | Memory Pointer (SBS 2 select this Data source in reg. 0x1D4 by default)       | •     |
| 0x268: End Pointer Stim 4   | Memory Pointer                                                                |       |
| 0x26C: Write Pointer Stim 4 | Memory Pointer, write will clear Channel                                      |       |
| 0x270: Read Pointer Stim 4  | Memory Pointer                                                                |       |
| 0x280: MEM Control Stim 5   | Reserved                                                                      | Segmo |
| 0x284: Start Pointer Stim 5 | Memory Pointer (DAC E and F select this Data source in reg. 0x1D0 by default) | •     |
| 0x288: End Pointer Stim 5   | Memory Pointer                                                                |       |
| 0x28C: Write Pointer Stim 5 | Memory Pointer, write will clear Channel                                      |       |
| 0x290: Read Pointer Stim 5  | Memory Pointer                                                                |       |
| 0x2A0: MEM Control Stim 6   | Reserved                                                                      | Segmo |
| 0x2A4: Start Pointer Stim 6 | Memory Pointer (SBS 3 select this Data source in reg. 0x1D4 by default)       | •     |
| 0x2A8: End Pointer Stim 6   | Memory Pointer                                                                |       |
| 0x2AC: Write Pointer Stim 6 | Memory Pointer, write will clear Channel                                      |       |
| 0x2B0: Read Pointer Stim 6  | Memory Pointer                                                                |       |
| 0x2C0: MEM Control Stim 7   | Reserved                                                                      | Segme |
| 0x2C4: Start Pointer Stim 7 | Memory Pointer (unused by default)                                            | ·     |
| 0x2C8: End Pointer Stim 7   | Memory Pointer                                                                |       |
| 0x2CC: Write Pointer Stim 7 | Memory Pointer, write will clear Channel                                      |       |
| 0x2D0: Read Pointer Stim 7  | Memory Pointer                                                                |       |
| 0x2E0: MEM Control Stim 8   | Reserved                                                                      | Segme |
| 0x2E4: Start Pointer Stim 8 | Memory Pointer (unused by default)                                            | ·     |
| 0x2E8: End Pointer Stim 8   | Memory Pointer                                                                |       |
| 0x2EC: Write Pointer Stim 8 | Memory Pointer, write will clear Channel                                      |       |
| 0x2F0: Read Pointer Stim 8  | Memory Pointer                                                                |       |

\*Segments:

Segment 0 to 255 reflect the Segment ID 0 to 255 of Trigger

Poll Bit after writing a '1' until it is '0' to wait on end of request!

# **EEProm Registers**

| Register                                    | 31                                                                                   | 30       | 29 | 28 | 27 | 26 | 25 | 24 | 23  | 22   | 21       | 20  | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 |
|---------------------------------------------|--------------------------------------------------------------------------------------|----------|----|----|----|----|----|----|-----|------|----------|-----|----|----|----|----|----|----|----|----|----|----|
| 0x300: (WO)EEPRom Instruction Code Register | Reserv                                                                               | Reserved |    |    |    |    |    |    |     |      |          |     |    |    |    |    |    |    |    |    |    |    |
| 0x300: (RO)EEPRom Status Register           | Reserv                                                                               | Reserved |    |    |    |    |    |    |     |      | FIFO_emp |     |    |    |    |    |    |    |    |    |    |    |
| 0x304 : EEPRom Memory Address Register      | Reserv                                                                               | Reserved |    |    |    |    |    |    | Fla | sh A | ddre     | ess |    |    |    |    |    |    |    |    |    |    |
| 0x308 : EEPRom Data FIFO Register           | 256 Data Bytes in 64 DWords to/from Flash                                            |          |    |    |    |    |    |    |     |      |          |     |    |    |    |    |    |    |    |    |    |    |
| 0x30C : EEPROM HW configuration register    | Address length (1,2,3 Bytes) Clock Divider Register (Multiples of 2 divide 38,4 MHz) |          |    |    |    |    |    |    |     |      |          |     |    |    |    |    |    |    |    |    |    |    |

# **Memory Registers**

| Register                           | 31   | 30    | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17                                   | 16                 | 15  | 14    | 13 | 12 | 11 | 10                       |
|------------------------------------|------|-------|----|----|----|----|----|----|----|----|----|----|----|----|--------------------------------------|--------------------|-----|-------|----|----|----|--------------------------|
| 0x400: MEM Test Status<br>Register | Rese | erved |    |    |    |    |    |    |    |    |    |    |    |    | MEM Test<br>read/write in<br>process | MEM Test<br>failed | Res | serve | ed |    |    | MEM<br>statemach<br>busy |

<sup>\*\*</sup>Initialisation:

| 0x404: MEM Test<br>Register                | Reserved                                                                      |                                                                                                | Stop<br>Test | MEM Statemachine start | Write/notRead | Reserved |  |  |  |  |  |  |  |
|--------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------|------------------------|---------------|----------|--|--|--|--|--|--|--|
| 0x408: MEM Pattern<br>Register             | Pattern                                                                       |                                                                                                |              |                        |               |          |  |  |  |  |  |  |  |
| 0x40C: MEM Test Fail<br>Counter Register   | # of data of                                                                  | # of data compare fails (writes clear value)                                                   |              |                        |               |          |  |  |  |  |  |  |  |
| 0x410: MEM Test<br>Address Ptr. Register   | Reserved                                                                      | Reserved Reflects the address Pointer to see the progress of the test (max Value: h"0FFFFF80") |              |                        |               |          |  |  |  |  |  |  |  |
| 0x414: First Fail Address<br>Ptr. Register | Reserved Reflects the address Pointer of the first failed address of mem test |                                                                                                |              |                        |               |          |  |  |  |  |  |  |  |
| 0x420: MEM Status<br>Register              | Reserved                                                                      |                                                                                                |              |                        |               |          |  |  |  |  |  |  |  |

\*Pattermode options:

0: Counter 1: Pattern 2: Shift Pattern right 3: Shift Pattern left 4: Toggle Pattern after every write

# DAC HW Configuration Registers

|                                |        |      |         |      |       |     |     |     |      |    |   |     |   |    |    |    |    |    |    |      | ,   |     |    |    | _ |   |   |   |     |     |   |   |
|--------------------------------|--------|------|---------|------|-------|-----|-----|-----|------|----|---|-----|---|----|----|----|----|----|----|------|-----|-----|----|----|---|---|---|---|-----|-----|---|---|
| Register                       | 31 30  | 29   | 28      | 27   | 26    | 25  | 24  | 23  | 3 22 | 21 | 2 | 0 1 | 9 | 18 | 17 | 16 | 1: | 5  | 14 | 13   | 1:  | 2 1 | 11 | 10 | 9 | 8 | 7 | 6 | 5 4 | 1 3 | 2 | 1 |
| 0x500: Voltage Range Reg.      | Value; | Defa | ult: 02 | (000 | 00 2  | EE0 | (12 | 000 | mV   | )  |   |     |   |    |    |    |    |    |    |      |     |     |    |    |   |   |   |   |     |     |   |   |
| 0x504: Voltage Resolution Reg. | Value; | Defa | ult: 02 | (80  | 00 02 | 23B | (57 | 1 u | V)   |    |   |     |   |    |    |    |    |    |    |      |     |     |    |    |   |   |   |   |     |     |   |   |
| 0x508: Current Range Reg.      | Value; | Defa | ult: 02 | (000 | 00 0: | 5DC | (15 | 500 | uA)  |    |   |     |   |    |    |    |    |    |    |      |     |     |    |    |   |   |   |   |     |     |   |   |
| 0x50C: Current Resolution Reg. | Value; | Defa | ult: 02 | (000 | 00 00 | 032 | (50 | nA) | )    |    |   |     |   |    |    |    |    |    |    |      |     |     |    |    |   |   |   |   |     |     |   |   |
| 0x520: DAC Offset correction   | Reserv | ed   |         |      |       |     |     |     |      |    |   |     |   |    |    |    | D  | AC | A  | offs | set |     |    |    |   |   |   |   |     |     |   |   |
| 0x524: DAC Offset correction   | Reserv | ed   |         |      |       |     |     |     |      |    |   |     |   |    |    |    | D  | AC | C  | offs | set |     |    |    |   |   |   |   |     |     |   |   |
| 0x528: DAC Offset correction   | Reserv | ed   |         |      |       |     |     |     |      |    |   |     |   |    |    |    | D  | AC | Е  | offs | et  |     |    |    |   |   |   |   |     |     |   |   |
| 0x530: DAC Offset correction   | Reserv | ed   |         |      |       |     |     |     |      |    |   |     |   |    |    |    | D  | AC | В  | offs | set |     |    |    |   |   |   |   |     |     |   |   |
| 0x534: DAC Offset correction   | Reserv | ed   |         |      |       |     |     |     |      |    |   |     |   |    |    |    | D  | AC | D  | offs | set |     |    |    |   |   |   |   |     |     |   |   |
| 0x538: DAC Offset correction   | Reserv | ed   |         |      |       |     |     |     |      |    |   |     |   |    |    |    | D  | AC | F  | offs | et  |     |    |    |   |   |   |   |     |     |   |   |

# Memory Access

| Register                                    | Byte 4  | Byte 3    | Byte 2    | Byte 1  |
|---------------------------------------------|---------|-----------|-----------|---------|
| 0xF00: MEM Write Address Register           | MEM A   | .ddress(R | RW)       |         |
| 0xF04: MEM Data Register                    | Write D | ata (WO)  | ), Read D | ata(RO) |
| 0xF08 - 0xF1C: Reserved                     | Reserve | d         |           |         |
| 0xF20: Write Stim 1 Data Register           | Channel | 0 Data V  | Vector*   |         |
| 0xF24: Write Stim 2 Data Register           | Channel | 1 Data V  | Vector*   |         |
| 0xF28: Write Stim 3 Data Register           | Channel | 2 Data V  | Vector*   |         |
| 0xF2C: Write Stim 4 Data Register           | Channel | 3 Data V  | Vector*   |         |
| 0xF30: Write Stim 5 Data Register           | Channel | 4 Data V  | Vector*   |         |
| 0xF34: Write Stim 6 Data Register           | Channel | 5 Data V  | Vector*   |         |
| 0xF38: Write Stim 7 Data Register           | Channel | 6 Data V  | Vector*   |         |
| 0xF3C: Write Stim 8 Data Register           | Channel | 7 Data V  | Vector*   |         |
| 0xF40: Clear and Write Stim 1 Data Register | Channel | 0 Data V  | Vector*   |         |
| 0xF44: Clear and Write Stim 2 Data Register | Channel | 1 Data V  | Vector*   |         |
| 0xF48: Clear and Write Stim 3 Data Register | Channel | 2 Data V  | Vector*   |         |
| 0xF4C: Clear and Write Stim 4 Data Register | Channel | 3 Data V  | Vector*   |         |
| 0xF50: Clear and Write Stim 5 Data Register | Channel | 4 Data V  | Vector*   |         |
| 0xF54: Clear and Write Stim 6 Data Register | Channel | 5 Data V  | Vector*   |         |
|                                             |         |           |           |         |

```
0xF58: Clear and Write Stim 7 Data Register
                                                                        Channel 6 Data Vector*
 0xF5C: Clear and Write Stim 8 Data Register
                                                                        Channel 7 Data Vector*
Sideband Data:
Bit 0: Amplifier Protection Switch on Headstage/Blanking
Bit 3: Stimulation Switch
Bit 4: Stimulus Selector
 *Data Vector decoding:
 Bit 31: Reserved
Bit 30 - 28:
000: DAC/SBS Data Vector
      001: Loopptr. Vector
010: Long Loop Ptr. Vector
011: Long Loop Ctr. Vector
100: Reserved
      110: Reserved
      111: END Command
   .....
  Bit 27: Reserved
  Bit 27: Reserved

Bit 26: Repeat Timebase (0: 20 us, 1: 1000*20us)

Bit 25 - 16: Number of Repeats (0: Pattern is used 1x Timebase; 1: Pattern is used for 2x Timebase; ...)

Bit 15 - 0: DAC data value (unsigned 16 bit value, 0x8000 is zero level) / SBS data value

SBS Bit 0: Amplifier Protection Switch/Blanking

SBS Bit 3: Stimulation Switch

SBS Bit 4: Stimulus Select

SBS Bit 4: Stimulus Select
        SBS Bit 8-15 : Electrode Config ID
  Loop Ptr. Vector(001):
Bit 27 - 26: Loop Level
Bit 25 - 16: Number of Repeats (2: Vectors are repeated once, thus used twice)
Bit 15 - 0 : Address Offset (Number of Vectors to jump backward, 1: One Vector before the Loop
   Long Loop Ptr. Vector(010):
  Bit 27 - 0 : Address Offset (Number of Vectors to jump backward)
  Long Loop Ctr. Vector(011):
Bit 27 - 0 : Number of Repeats
  End Command(111):
```

# **HS <-> STG interconection (bits 32-0)**

| STG | HS conn | ector |             |                      |                       |
|-----|---------|-------|-------------|----------------------|-----------------------|
| Pin | Name    | Bit   | HS FPGA Pin | Function             | to FPGA: STG FPGA Pin |
| 3   | STG01   | 0     | V1          | Reset                | X2                    |
| 4   | STG02   | 1     | V2          | Suspend              | X2                    |
| 5   | STG03   | 2     | Т3          | Reserved             | X2                    |
| 6   | STG04   | 3     | U1          | Reserved             | X2                    |
| 7   | STG05   | 4     | T1          | Reserved             | X2                    |
| 8   | STG06   | 5     | V3          | Reserved             | X2                    |
| 9   | STG07   | 6     | Р3          | Reserved             | X2                    |
| 10  | STG08   | 7     | R1          | Blanking             | X2                    |
| 11  | STG09   | 8     | V3          | 50 kHz Impulse       | X2                    |
| 12  | STG10   | 9     | W1          | SPI: read data ready | X2                    |
| 13  | STG11   | 10    | Y1          | SPI: SCLK            | X2                    |
| 14  | STG12   | 11    | Y2          | SPI: CS              | X2                    |
| 15  | STG13   | 12    | W3          | SPI: MOSI            | X2                    |
| 16  | STG14   | 13    | AA1         | SPI: MISO            | X2                    |
| 17  | STG15   | 14    | AA2         | 25.6 MHz clock       | X1,X2                 |
| 18  | STG16   | 15    | Y3          | 400 kHz Power sync.  | X1,X2                 |
| 19  | STG17   | 16    | Н6          | 400 kHz Power sync.  | X1,X2                 |
| 20  | STG18   | 17    | H4          | 38.4 MHz clock       | X1,X2                 |
| 21  | STG19   | 18    | G3          | Reset                | X1                    |
| 22  | STG20   | 19    | Н8          | Suspend              | X1                    |
| 23  | STG21   | 20    | G6          | Reserved             | X1                    |
| 24  | STG22   | 21    | G4          | Reserved             | X1                    |
| 25  | STG23   | 22    | F5          | Reserved             | X1                    |
| 26  | STG24   | 23    | G7          | Reserved             | X1                    |
| 27  | STG25   | 24    | H5          | Reserved             | X1                    |
| 28  | STG26   | 25    | J7          | Blanking             | X1                    |
| 29  | STG27   | 26    | J3          | 50 kHz               | X1                    |
| 30  | STG28   | 27    | J4          | SPI: read data ready | X1                    |
| 31  | STG29   | 28    | J6          | SPI: SCLK            | X1                    |
| 32  | STG30   | 29    | K4          | SPI: CS              | X1                    |
| 33  | STG31   | 30    | K5          | SPI: MOSI            | X1                    |
| 34  | STG32   | 31    | K6          | SPI: MISO            | X1                    |

 $Von \ , http://wiki.mcs.de.com/wiki/index.php?title=MEA2100\_User\_Guide\&oldid=19747 ``aligned and aligned and aligned aligned aligned and aligned aligned aligned aligned and aligned aligned$ 

<sup>■</sup> Diese Seite wurde zuletzt am 19. November 2015 um 14:41 Uhr geändert.