Lecture 7: The arithmetic of \mathbb{Z}

ENSIA 2023-2024

Contents

- Eulidean division
- ► GCD (Greatest common divisor), LCM (Least common multiple)
- Coprime numbers
- Congruences
- Prime numbers

Euclidean division

Theorem 1

 $\forall a \in \mathbb{Z}, \forall b \in \mathbb{N}^*$, there exist unique integers q and r such that a = bq + r and $0 \le r < b$.

a: dividend

b: divisor

q: quotient

r:remainder

Euclidean division

The existence

Let $a \in \mathbb{Z}, b \in \mathbb{N}^*$. Set

$$E = \{ p \in \mathbb{Z}; \ a \ge bp \}$$

If $a \ge 0$, $0 \in E$.

If a < 0, $a \in E$.

Then $E \neq \emptyset$.

On the other hand,

If $a \ge 0$ then $\forall p \in E, p \le a$.

If a < 0 then $\forall p \in E, p \leq -a$.

We deduce that E is a nonempty upper bounded subset of \mathbb{Z} . Then E admits a maximal element; denote $\max(E) = q$.

Euclidean division

Set a = bq + r, then r = a - bq. We have $r \in \mathbb{Z}$.

As $q \in E$, then $a \ge bq$, thus $r \ge 0$,

On the other hand, $q + 1 \notin E$ gives a < b(q + 1), thus r < b.

The unicity

Let (q,r) and $(q',r') \in \mathbb{Z}^2$ such that

a = bq + r with $0 \le r < b$ and a = bq' + r' with $0 \le r' < b$, thus

b(q-q')=r'-r and -b < r-r' < b. This implies that |q-q'| < 1, therefore

q = q' and r = r'.

GCD, LCM

Definition:

Let $a, b \in \mathbb{Z}^*$. We say that a divides b and we denote a / b if there exists $c \in \mathbb{Z}$ such that b = ac.

If a/b, we say that b is a multiple of a or that a is a divisor of b.

Let $a, b \in \mathbb{Z}^*$. The set of common divisors of a and b is finite and admits a greatest common divisor denoted GCD(a, b).

The set of elements of \mathbb{N}^* which are common multiples of a and b admits a least common multiple denoted LCM(a,b).

Notations: $GCD(a, b) = a \land b, LCM(a, b) = a \lor b$.

GCD, LCM

Proposition

Let $a, b \in \mathbb{Z}^*$. Set $a\mathbb{Z} + b\mathbb{Z} = \{x + y; x \in a\mathbb{Z}, y \in b\mathbb{Z}\}$.

- 1) $a/b \Leftrightarrow b\mathbb{Z} \subset a\mathbb{Z}$
- 2) $a\mathbb{Z} \cap b\mathbb{Z} = LCM(a,b)\mathbb{Z}$
- 3) $a\mathbb{Z} + b\mathbb{Z} = GCD(a, b)\mathbb{Z}$

GCD, LCM

Proof of 3)

 $a\mathbb{Z} + b\mathbb{Z}$ is a subgroup of $(\mathbb{Z}, +)$. Then there exists $n \in \mathbb{N}^*$ such that

 $a\mathbb{Z} + b\mathbb{Z} = n\mathbb{Z}.$

Set $a \wedge b = d$ and show that n = d.

We have d/a and d/b, then $a\mathbb{Z} \subseteq d\mathbb{Z}$ and $b\mathbb{Z} \subseteq d\mathbb{Z}$.

Therefore $a\mathbb{Z} + b\mathbb{Z} \subseteq d\mathbb{Z}$ and the $n\mathbb{Z} \subseteq d\mathbb{Z}$. This implies that d/n.

Then there exists $k \in \mathbb{N}^*$, n = dk.

We have $a \in n\mathbb{Z}$, so

n/a and $n/b \Rightarrow n$ is a common divisor of a and $b \Rightarrow n \leq d \Rightarrow n = d$.

Some properties

 $\forall a, b, \lambda \in \mathbb{Z}^*$, we have

- 1) $GCD(\lambda a, \lambda b) = |\lambda| GCD(a, b)$
- 2) LCM($\lambda a, \lambda b$) = $|\lambda| LCM(a, b)$
- 3) λ/a and $\lambda/b \Leftrightarrow \lambda/GCD(a,b)$
- 4) a/λ and $b/\lambda \Leftrightarrow LCM(a,b)/\lambda$
- 5) $GCD(a,b) = 1 \Longrightarrow LCM(a,b) = |ab|$

EUCLID'S ALGORITHM

We use the algorithm to compute de GCD.

Let $a, b \in \mathbb{N}^*$ with $a \ge b$.

If b/a then $a \wedge b = b$.

If $b \nmid a$, we divide a by b using the euclidean division.

We have $a = bq_1 + r_1$ and $0 < r_1 < b, (q_1, r_1) \in \mathbb{N}^2$.

We show that $a \wedge b = b \wedge r_1$.

For all $c \in \mathbb{Z}$, we have

If (c / a and c / b) then $(c / a \text{ and } c / r_1)$ since $r_1 = a - bq_1$

If $(c / a \text{ and } c / r_1)$ then (c / b and c / a) since $a = bq_1 + r_1$

EUCLID'S ALGORITHM

The common divisors of a and b are then the common divisors of b and r_1 , and so $a \wedge b = b \wedge r_1$.

If r_1/b then $a \wedge b = b \wedge r_1 = r_1$.

If $r_1 \nmid b$, we repeat the process.

We construct ordered pairs $(q_1, r_1), (q_2, r_2), ...$ such that

$$a = bq_1 + r_1, 0 < r_1 < b,$$

 $b = r_1q_2 + r_2, 0 < r_2 < r_1$
 \vdots

As $b > r_1 > r_2$... and $b, r_1, r_2, ... \in \mathbb{N}^*$, The process stops after a finite number of steps.

EUCLID'S ALGORITHM

There exists then $N \in \mathbb{N}^*$ and $(q_1, r_1), (q_2, r_2), ..., (q_N, r_N)$ in \mathbb{N}^2 such that

$$a = bq_1 + r_1$$
, $0 < r_1 < b$,

$$b = r_1 q_2 + r_2$$
, $0 < r_2 < r_1$

:

$$r_{N-2} = r_{N-1}q_N + r_N$$
, $0 < r_N < r_{N-1}$ and r_N/r_{N-1}

We have then

$$a \wedge b = b \wedge r_1 = r_1 \wedge r_2 = \cdots = r_{N-1} \wedge r_N = r_N$$
.

Coprime numbers

Definition

Let $a, b \in \mathbb{Z}^*$. We say that a and b are coprime if $a \land b = 1$.

Bezout's Theorem

$$a \wedge b = 1 \Leftrightarrow \exists u, v \in \mathbb{Z}^*$$
 such that $au + bv = 1$

Gauss' theorem

 $\forall a, b, c \in \mathbb{Z}^*$, we have

$$a/bc$$
 and $a \wedge b = 1 \Longrightarrow a/c$

Theorem

$$\forall a, b \in \mathbb{Z}^*, (a \land b)(a \lor b) = |ab|.$$

Congruence

Let $n \in \mathbb{N}^*$. Recall the relation R defined on \mathbb{Z} by

$$x R y \iff x - y \in n\mathbb{Z}$$

is an equivalence relation.

Instead of xR y, we denote $x \equiv y[n]$ and we read

« x is congruent to y modulo n »

Rules of congruence

- 1) $x \equiv 0[n] \Rightarrow x$ is divisible by n
- 2) $x \equiv y[n] \Rightarrow x$ and y have the same reminder when dividing x and y by n
- 3) $x \equiv x'[n]$ and $y \equiv y'[n] \Longrightarrow x + y \equiv x' + y'[n]$ and $xy \equiv x'y'[n]$
- 4) $x \equiv y + z[n] \Rightarrow x z \equiv y[n]$
- 5) $\forall k \in \mathbb{Z}, x \equiv y[n] \Longrightarrow x + k \equiv y + k[n]$
- 6) $\forall k \in \mathbb{Z}, x \equiv y[n] \Longrightarrow kx \equiv ky[n]$
- \nearrow $\forall m \in \mathbb{N}^*, x \equiv y[n] \Longrightarrow x^m \equiv y^m[n]$
- 8) $\forall k \in \mathbb{Z}^*$ such that $k \land n = 1$, we have

$$kx \equiv ky[n] \Rightarrow x \equiv y[n]$$

Prime numbers

Definition

Let $p \in \mathbb{N}$. We say that p is prime if $p \ge 2$ and

$$\forall a \in \mathbb{N}^*, (a/p \implies a = 1 \text{ or } a = p)$$

A prime number $a \in \mathbb{Z}$ is an integer such that |a| is prime.

We will admit the following fundamental theorem of arithmetic:

Theorem

Any element of $\mathbb{N} - \{0,1\}$ can be represented uniquely as a product of prime numbers, up to the order of factors.