M 431: Assignment 8

Nathan Stouffer

Page 87 — Problem 2

Problem. Let G be the group of all real-valued functions on the unit interval [0,1], where we define, for $f,g\in G$, addition by (f+g)(x)=f(x)+g(x) for every $x\in [0,1]$. If $N=\{f\in G\mid f(1/4)=0\}$, prove that $G/N\cong$ the real numbers under +.

Proof. Note that our ambient group G is abelian so any subgroup is a normal subgroup. We first claim that $N \leq G$ by showin the aesthetic definition holds for N. Certainly $id \in N$ for id(1/4) = 0. Now pick $f, g \in N$ and recall that $g^{-1} = -g$. Then $f + g^{-1} = f + (-g)$ and now evaluating at x = 1/4: (f + (-g))(1/4) = f(1/4) + (-g(1/4)) = 0 + -0 = 0 so $f + g^{-1} \in N$.

Now the quotient group $G/N=\{g+N\mid g\in G\}$ and (g+N)(1/4)=g(1/4)+N(1/4)=g(1/4)+0=g(1/4). Let's define the mapping $\psi:G/N\longrightarrow\mathbb{R}$ which takes g+N to g(1/4). We must verify four things for ψ to be an isomorphism: well-defined, homomorphism, onto, and 1-1.

Well-defined: pick $g+N=\bar{g}+N$. Then there exists some $f\in N$ such that $g=\bar{g}+f$ which implies that $\bar{g}=g+f$. Now consider $\psi(\bar{g}+N)=\psi(g+f+N)=(g+f)(1/4)=g(1/4)+f(1/4)=g(1/4)=\psi(g+N)$ where we know f(1/4)=0 since $f\in N$.

Homomorphism: fix g_1+N , $g_2+N \in G/N$. Certainly we have $\psi(g_1+N)+\psi(g_2+N)=g_1(1/4)+g_2(1/4)$. But we also have $\psi(g_1+N+g_2+N)=\psi(g_1+g_2+N)=(g_1+g_2)(1/4)=g_1(1/4)+g_2(1/4)$ so ψ is a homomorphism.

Onto: this is verified quite easily. If you give me an $x^* \in \mathbb{R}$, I will give you the function $f(x) = x^*$ for $x \in [0,1]$. Certainly $\psi(f+N) = f(1/4) = x^*$.

1-1: fix any $f_1, f_2 \in G$ such that $\psi(f_1 + N) = \psi(f_2 + N)$. We wish to show that $f_1 + N = f_2 + N$ which is true if there exists some $n \in N$ such that $f_1 = f_2 + n$. We will provide such a function n(x). Note that $\psi(f_1 + N) = \psi(f_2 + N) \implies f_1(1/4) = f_2(1/4)$. Here is our function defined on [0, 1]:

$$n(x) = \begin{cases} 0 & x = 1/4\\ f_1(x) - f_2(x) & x \neq 1/4 \end{cases}$$

Now consider $f_2(x) + n(x)$. If x = 1/4 then $f_2(1/4) + n(1/4) = f_2(1/4) + 0 = f_1(1/4)$. Then if $x \neq 1/4$ we have $f_2(x) + n(x) = f_2(x) + f_1(x) - f_2(x) = f_1(x)$. Thus $f_1(x) = f_2(x) + n(x)$ for all $x \in [0,1]$ and we have $f_1 = f_2 + n$ which implies that the cosets $f_1 + N$ and $f_2 + N$ are equal. Thus ψ is 1-1.

We have check everything we need to for ψ to be an isomorphism so the two groups are isomorphic!

3rd Iso Thm Example

Problem. Identify and illustrate with pictures the three quotient groups in the 3rd isomorphism theorem instantiated for $G = \mathbb{R} \times \mathbb{Z}_2$, $N = \mathbb{Z} \times \mathbb{Z}_2$, and $K = 2\mathbb{Z} \times \{0\}$.

Proof. For this problem and the next, I ended up drawing a lot of pictures so all my work is in the figures below.

$$G/N := \left\{ \begin{array}{ll} (x,i) + \mathbb{Z} \times \mathbb{Z}_{2} \ \middle| (x,i) \in \mathbb{R} \times \mathbb{Z}_{2} \end{array} \right\}$$

$$= \left\{ \begin{array}{ll} (x+\mathbb{Z}_{1}, i+\mathbb{Z}_{2}) \ \middle| (x,i) \in \mathbb{R} \times \mathbb{Z}_{2} \end{array} \right\}$$

$$\text{circle grp } \text{ just } \mathbb{Z}_{2} \text{ pf}$$

$$\vdots : 0 : i+\mathbb{Z}_{1} = \left\{ 0 + 0, 0 + 1 \right\} = \mathbb{Z}_{2}$$

$$\vdots : 1 : i+\mathbb{Z}_{2} = \left\{ 1 + 0, 1 + 1 \right\} = \mathbb{Z}_{2}$$

$$G/IC := \left\{ \begin{array}{c} (x,i) + 2Z \times \left\{ O3 \right\} & (x,i) \in \mathbb{R} \times \mathbb{Z}_2 \end{array} \right\}$$

$$= \left\{ \begin{array}{c} (x+2Z,i+0) \mid (x,i) \in \mathbb{R} \times \mathbb{Z}_2 \end{array} \right\}$$

$$\vdots$$

$$O$$

$$\downarrow \text{ the "fet" torus described in tecture}$$

$$O/IC = \underbrace{O/IC}$$

$$O$$

$$N/L := \left\{ (j, i) + 2\mathbb{Z} \times \{0\} \middle| (j, i) \in \mathbb{Z} \times \mathbb{Z}_{l} \right\}$$

$$= \left\{ (j + 2\mathbb{Z}, i + 0) \middle| (j, i) \in \mathbb{Z} \times \mathbb{Z}_{l} \right\}$$

$$\vdots$$

$$N/L = \vdots = 0$$

now consider
$$(G/u)/(N/u)$$
. if pts differ by 1, we identify then which gives $T^2 = S' \times S'$ just like G/N !

Thus we have depicted the groups!

2rd Iso Thm Example

Problem. Identify and illustrate with pictures all the groups involved in the 2nd isomorhpism theorem isntantiated for $G = \mathbb{R} \times \mathbb{R}$, $N = \mathbb{Z} \times \mathbb{R}$, $H = \mathbb{R} \times \{0\}$. In particular, draw the cosets making up the quotient groups and recognize the groups as familiar concrete groups.

Proof.

$$HN := \left\{ \begin{array}{cccc} (x,0) + (k,\bar{x}) & \chi, \bar{\chi} \in \mathbb{R} & k \in \mathbb{Z} \end{array} \right\}$$
 but x,k are arbitrary in their respective as
$$50 \quad x + k = x' \quad \text{any element of } \mathbb{R}, \quad 50$$

$$= \left\{ \left(x + k, \bar{\chi} \right) & \chi, \bar{\chi} \in \mathbb{R} \quad k \in \mathbb{Z} \right\}$$

$$HN = \mathbb{R} \times \mathbb{R}$$

Thus we have depicted the groups!

Page 96 — Problem 5

Problem. Let G be a finite group, $N_1, N_2, ..., N_k$ normal subgroups of G such that $G = N_1 N_2 \cdots N_k$ and $|G| = |N_1| |N_2| \cdots |N_k|$. Prove that G is the direct product of $N_1, N_2, ..., N_k$.

Proof. This one threw me for a loop, I could not come up with a rigorous proof of the statement. Here is what I got. G is the direct product of $N_1, N_2, \ldots N_k$ if and only if $N_1 \times N_2 \times \cdots \times N_k$ is isomorphic to G. Consider the function $\psi: N_1 \times N_2 \times \cdots \times N_k \longrightarrow G$ defined by taking (n_1, n_2, \ldots, n_k) to $n_1 n_2 \cdots n_k$. Since $G = N_1 N_2 \cdots N_k$ we know ψ to be a surjection. Furthermore, since $|G| = |N_1||N_2||\cdots|N_k| = |N_1 \times N_2 \times \cdots \times N_k|$ and each cardinality is finite, we can deduce that ψ is also an injection.

It only remains to show that ψ is a homomorphism. That is, we must show that

$$\psi((n_1, n_2, \dots, n_k))\psi((\bar{n}_1, \bar{n}_2, \dots, \bar{n}_k)) = \psi((n_1, \dots, n_k)(\bar{n}_1, \dots, \bar{n}_k))$$

Cetainly the LHS is $n_1 \cdots n_k \bar{n}_1 \cdots \bar{n}_k$ and the RHS is $\psi(n_1 \bar{n}_1, \dots, n_k \bar{n}_k) = n_1 \bar{n}_1 \cdots n_k \bar{n}_k$. However, I could not not figure out a way to show that the RHS equals the LHS.

Page 96 — Problem 6

Problem. Let G be a group, N_1, N_2, \ldots, N_k normal subgroups of G such that:

- $(1) G = N_1 N_2 \cdots N_k$
- (2) For each $i, N_i \cap (N_1 N_2 \cdots N_{i-1} N_{i+1} \cdots N_k) = (e)$

Prove that G is the direct product of N_1, N_2, \dots, N_k

Proof. We begin with a lemma that is a consequence of property (2). Given a fixed N_i , let H_i be the product of any selection of $\bar{N}_i = N_1, ..., N_{i-1}, N_{i+1}, ..., N_k$. We claim that $N_i \cap H_i = (e)$. Here is the proof. Certainly $e \in H_i$ and $e \in N_i$ so $e \in N_i \cap H_i$. From property (2), we know that N intersect all the other normal subgroups N_j is (e). Further, we know H_i must be a subset of $N_1, ..., N_{i-1}, N_{i+1}, ..., N_k$ for every element of H_i can be written as an element of \bar{N}_i with e chosen as the element for sets that were not selected for H_i . Thus we are just constricting one of the sets involved in an intersection (and we certainly keep the elements that are already in the intersection) so $N_i \cap H_i = (e)$.

Now let's proceed by induction. For a base case, take $K_2 = N_1N_2$. By the lemma just proven, we have $N_1 \cap N_2 = (e)$ and the corollary on page 95 of the textbook tells us that K_2 is the internal product of N_1 and N_2 . Futhermore, $K_2 \leq G$ since $N_1, N_2 \leq G$. Now suppose for some $j \in \{2, 3, ..., k-1\}$ that K_j is the direct product $K_j = N_1N_2 \cdots N_j$. We will show that $K_{j+1} = N_1N_2 \cdots N_jN_{j+1}$ is also a direct product. The lemma tells us that $K_j \cap N_{j+1} = (e)$ and we can apply the corollary again to say that K_{j+1} is the direct product of $N_1N_2 \cdots N_jN_{j+1}$.

Thus, by induction, every K_j for $j \in \{2, 3, ..., k\}$ is the direct product of $N_1 N_2 \cdots N_j$. This implies that $G = N_1 N_2 \cdots N_k$ is a direct product as well!