UM EXERCÍCIO DO MÉTODO DAS APROXIMAÇÕES SUCESSIVAS QUESTÃO DE CONVERGÊNCIA

- MAT 271 Cálculo Numérico PER3/2021/UFV
- Professor Amarísio Araújo DMA/UFV

EXERCÍCIO

Temos abaixo: uma equação com uma solução única no intervalo [1,2]; uma aproximação inicial dessa solução e duas possíveis funções de iteração para o Método das Aproximações Sucessivas:

$$xe^{x} - 10 = 0$$
; $x_{0} = 1$; $\varphi_{1}(x) = 10e^{-x}$; $\varphi_{2}(x) = x - \frac{xe^{x} - 10}{15}$.

Vamos verificar se as duas funções, $\varphi_1(x)$ e $\varphi_2(x)$, podem ser usadas no Método das Aproximações Sucessivas, com garantia de convergência.

$$xe^x - 10 = 0 \Longrightarrow xe^x = 10 \Longrightarrow x = \frac{10}{e^x} \Longrightarrow x = 10e^{-x}, x \in \mathbb{R}$$

$$xe^x - 10 = 0 \Leftrightarrow x = 10e^{-x}, x \in [1,2]$$
 $f(x) = 0 \Leftrightarrow x = \varphi_1(x), x \in [1,2]$

$$f(x) = 0 \Leftrightarrow x = \varphi_1(x), x \in [1,2]$$

$$xe^{x} - 10 = 0 \Rightarrow -\frac{xe^{x} - 10}{15} = 0 \Rightarrow x - \frac{xe^{x} - 10}{15} = x \Rightarrow x = x - \frac{(xe^{x} - 10)}{15}, x \in \mathbb{R}$$

$$xe^{x} - 10 = 0 \Leftrightarrow x = x - \frac{(xe^{x} - 10)}{15}, xe[1,2]$$
 $f(x) = 0 \Leftrightarrow x = \varphi_{2}(x), xe[1,2]$

Verificação da garantia de convergência das funções de iteração dadas:

Antes, vamos ter uma ideia da localização da solução da equação $xe^x - 10 = 0$ em [1,2] :

Esboçando o gráfico de $f(x) = xe^x - 10$ em [1,2] :

Pelo esboço acima, vemos que a solução está no intervalo $[1.6,1.8] \subset [1,2]$.

Verificando a garantia de convergência para a função $\varphi_1(x) = 10e^{-x}$:

 φ_1 é derivável no intervalo [1,2]

$$\varphi_1'(x) = -10e^{-x}$$
 $|\varphi_1'(x)| = 10e^{-x}$

Esboçando o gráfico de $|\varphi_1'(x)| = 10e^{-x}$ em [1,2] :

Pelo esboço de $|{\varphi_1}'(x)|$, vemos que $|{\varphi_1}'(x)| > 1$ para todo x no intervalo [1,2].

Portanto a função $\varphi_1(x)=10e^{-x}$ não pode ser usada no método das aproximações sucessivas, com garantia de convergência, para encontrar uma aproximação da solução da equação $xe^x-10=0$.

ANALITICAMENTE: Mostra-se que $|{\varphi_1}'(x)|$ é decrescente em [1,2] e que $|{\varphi_1}'(2)| > 1$.

Verificando a garantia de convergência para a função $\varphi_2(x) = x - \frac{xe^x - 10}{15}$:

 φ_2 é derivável no intervalo [1,2]

$$\varphi_2'(x) = 1 - (\frac{1+x}{15})e^x$$
 $|\varphi_2'(x)| = \left|1 - (\frac{1+x}{15})e^x\right|$

Esboçando o gráfico de $|\varphi_2'(x)|$ em [1,2] :

Pelo esboço de $|{\varphi_2}'(x)|$, vemos que $|{\varphi_2}'(x)| < 1$ para todo x no intervalo [1,2].

Portanto a função $\varphi_2(x) = x - \frac{xe^x - 10}{15}$ pode ser usada no método das aproximações sucessivas, com garantia de convergência, para encontrar uma aproximação da solução da equação $xe^x - 10 = 0$.

ANALITICAMENTE: Mostra-se que, em [1,2], $|\varphi_2'(x)|$ atinge valor máximo em x=1, sendo esse valor máximo $|\varphi_2'(1)| < 1$.