Diseño e Implementación de un CPU RISC de 32 bits en un FPGA

Ing. MSc. Aurelio Morales Villanueva

Facultad de Ingeniería Eléctrica y Electrónica Universidad Nacional de Ingeniería

http://fiee.uni.edu.pe

- Introducción
- CPUs tipos CISC y RISC
- Selección de modelo de CPU RISC de 32 bits
- Herramienta EDA de Diseño Digital
- CPU RISC Monociclo en un FPGA
- CPU RISC Pipeline en un FPGA
- Demostración
- Resumen

- Introducción
- CPUs tipos CISC y RISC
- Selección de modelo de CPU RISC de 32 bits
- Herramienta EDA de Diseño Digital
- CPU RISC Monociclo en un FPGA
- CPU RISC Pipeline en un FPGA
- Demostración
- Resumen

Introducción

Es muy conocido el auge que han tenido los microprocesadores en las últimas décadas. Hoy en día se cuenta con CPUs multicore.

Para fines de enseñanza e investigación, no se cuenta con una plataforma de hardware para el estudio de CPUs de arquitectura **RISC**.

También es conocido que existen fabricantes de SW y HW orientados a diseño digital especializado. Con el uso de dispositivos versátiles como los **FPGA** (Field Programmable Gate Array), asociados a herramientas **EDA** (Electronic Design Automation), es posible diseñar sistemas muy complejos.

Se buscará diseñar e implementar un CPU RISC de 32 bits del tipo pipeline escalar de 5 etapas en un FPGA.

- Introducción
- CPUs tipos CISC y RISC
- Selección de modelo de CPU RISC de 32 bits
- Herramienta EDA de Diseño Digital
- CPU RISC Monociclo en un FPGA
- CPU RISC Pipeline en un FPGA
- Demostración
- Resumen

CPUs tipo CISC y RISC

CPU tipo CISC (Complex Instruction Set Computer)

- Formato de instrucción de longitud variable.
- Gran cantidad de instrucciones.
- Algunas instrucciones son muy complejas.
- Algunos formatos de instrucciones son muy poco utilizados.
- Variados modos de direccionamiento.
- Instrucciones de manipulación de datos (aritméticas, lógicas y desplazamiento) pueden usar operandos de memoria.
- Generalmente las instrucciones de manipulación de datos incluyen dos operandos, donde un operando es a la vez fuente y destino.
- No hay restricciones en el uso de instrucciones con operandos de memoria.
- Por lo general tienen una Unidad de Control Microprogramada.

CPUs tipo CISC y RISC (cont.)

CPU tipo RISC (Reduced Instruction Set Computer)

- Formato de instrucción de longitud fija.
- Relativamente poca cantidad de instrucciones.
- Todas las instrucciones son simples.
- Pocos formatos de instrucciones.
- Pocos modos de direccionamiento.
- Instrucciones de manipulación de datos (aritméticas, lógicas y desplazamiento) solo usan operandos de registro.
- Generalmente las instrucciones de manipulación de datos incluyen tres operandos, dos fuentes y un destino.
- Instrucciones con operandos de memoria restringido solamente a carga y almacenamiento.
- Por lo general tienen una Unidad de Control Alambrada.

- Introducción
- CPUs tipos CISC y RISC
- Selección de modelo de CPU RISC de 32 bits
- Herramienta EDA de Diseño Digital
- CPU RISC Monociclo en un FPGA
- CPU RISC Pipeline en un FPGA
- Demostración
- Resumen

Selección de modelo de CPU RISC

Arquitectura del CPU

a) Arquitectura Von-Neumann

Un único medio de almacenamiento para las instrucciones y datos que maneja el CPU. Es decir una sola memoria.

Ocurre un "cuello de botella" cuando se desea realizar operaciones simultáneas (lectura de instrucción, y lectura/escritura en memoria)

b) Arquitectura Harvard

Dos medios de almacenamiento: uno para las instrucciones y otro para los datos. Es decir, dos memorias separadas.

Se puede trabajar independientemente con cada una de ellas.

Mejor desempeño que arquitectura Von-Neumann

Tiene relación con memoria cache L1 en los CPUs.

Organización del Camino de Datos (Datapath)

a) Organización de un solo Bus

Se necesitan dos registros intermedios para las operaciones aritméticas y lógicas. Como consecuencia, las operaciones son lentas.

Organización del Camino de Datos (Datapath)

b) Organización de dos Buses

Un bus para lectura de elementos, y un bus para escritura de elementos. Problema de contención en el bus de salida.

Organización del Camino de Datos (Datapath)

c) Organización de tres Buses

Se pueden leer dos elementos del "Register File". Buscar un balanceo de operandos en los buses de lectura. Organización preferida para CPU tipo RISC.

Selección de modelo de CPU RISC (cont.) Arquitectura del Juego de Instrucciones (ISA)

Criterios a tomar en cuenta:

- Ubicación de los operandos
- Direccionamiento de memoria
- Modos de direccionamiento
- Tipo y tamaño de los operandos
- Operaciones del juego de instrucciones
- Instrucciones de control de flujo
- Codificación del juego de instrucciones

Arquitectura del Juego de Instrucciones (ISA)

Ubicación de los operandos

- a) Arquitectura basada en Pila (Stack)
- b) Arquitectura basada en un Acumulador
- c) Arquitectura Registro-Memoria
- d) Arquitectura Registro-Registro

Opción d) se escoge para CPU RISC

Selección de modelo de CPU RISC (cont.) Arquitectura del Juego de Instrucciones (ISA)

Stack	Accumulator	Register (register-memory)	Register (load-store)
Push A	Load A	Load R1,A	Load R1,A
Push B	Add B	Add R3,R1,B	Load R2,B
Add	Store C	Store R3,C	Add R3,R1,R2
Pop C			Store R3,C

Implementación de C = A + B en las cuatro arquitecturas

A, B, y C son direcciones simbólicas de memoria. Ciclos *fetch* y *ejecución* se ven afectados por el tipo de instrucción.

Arquitectura del Juego de Instrucciones (ISA)

Direccionamiento de memoria

Consideraciones para datos e instrucciones multibyte:

a) Ordenamiento

- Little Endian
- Big Endian

En Little Endian el byte menos significativo ocupa la dirección menos significativa, y en Big Endian ocupa la dirección más significativa.

b) Alineamiento

- Instrucciones y Datos No Alineados
- Instrucciones y Datos Alineados

Instrucciones y Datos No Alineados se usa en CPUs del tipo CISC.

Arquitectura del Juego de Instrucciones (ISA)

Modos de direccionamiento

```
    Por registro
    Ej: add r1, r2 ; r1 ← r1 + r2
    Inmediato
    Ej: add r4, #200 ; r4 ← r4 + 200
    Con desplazamiento
    Ej: add r3, 100(r5); r3 ← r3 + mem[100 + r5]
    Indirecto por Registro
    Ej: add r6, (r9) ; r6 ← r6 + mem[r9]
    Directo
    Ej: add r1, (100) ; r1 ← r1 + mem[100]
    Indirecto
    Ej: add r3, @(100); r3 ← r3 + mem[mem[100]]
    Autoincremento
    Ej: add r5, r2+ ; r5 ← r5 + r2, r2 ← r2 + 1
    Autodecremento
    Ej: add r6, -r2 ; r2 ← r2 - 1, r6 ← r6 + r2
```

Complejidad del modo de direccionamiento afecta al ciclo *fetch* y *ejecución* de las instrucciones.

Debe escogerse el tamaño de los valores inmediatos y desplazamientos.

Arquitectura del Juego de Instrucciones (ISA)

• Tipo y tamaño de operandos

- Enteros, en representación de signo complemento a dos, de 8, 16, 32 y 64 bits.
- Caractéres ASCII (8 bits).

Números en punto flotante de 32 o 64 bits usando el estándar IEEE 754.

Selección de modelo de CPU RISC (cont.) Arquitectura del Juego de Instrucciones (ISA)

• Operaciones del juego de instrucciones

- Operaciones aritméticas, lógicas y desplazamiento: suma, resta, and, or, multiplicación, división, shl, shr
- Operaciones de transferencia de datos: carga, almacenamiento
- Operaciones de control: ramificaciones, saltos, llamado a subrutinas, retorno de subrutinas
- Operaciones del sistema: llamadas del sistema operativo
- Operaciones de punto flotante: suma, resta, multiplicación, división

Arquitectura del Juego de Instrucciones (ISA)

• Instrucciones de control de flujo

- ramificaciones condicionales (conditional branches)
- saltos incondicionales (jumps)
- Ilamados a rutinas (calls)
- retornos de las rutinas (returns)

Debe conocerse el tamaño del desplazamiento relativo al PC.

Frequency of branch instructions

Arquitectura del Juego de Instrucciones (ISA)

• Codificación del juego de instrucciones

Puntos de partida:

- > Formato de longitud de instrucción fija de 32 bits
- Register File de 32 registros
- Registros de 32 bits
- Solo intrucciones enteras

Entonces:

- ➤ 15 bits para especificar 3 operandos de registro, quedando 17 bits para especificar las operaciones.
- ➤ 16 bits para desplazamiento, quedando 16 bits para operación y operandos.
- Definir campos de operación, operandos y valores inmediatos.
- Formatos de instrucción deben favorecer fácil decodificación.

- Introducción
- CPUs tipos CISC y RISC
- Selección de modelo de CPU RISC de 32 bits
- Herramienta EDA de Diseño Digital
- CPU RISC Monociclo en un FPGA
- CPU RISC Pipeline en un FPGA
- Demostración
- Resumen

Herramienta EDA de Diseño Digital

Quartus II de Altera Corporation

- Herramienta para diseño e implementación de sistemas digitales.
- Múltiples formas para especificar el diseño: Gráfica, Texto (lenguajes VHDL, AHDL, Verilog), Diagrama de Bloques.
- Posibilidad de generar sistemas completos en un chip, conocido como SoPC (System on Programmable Chip).
- Integración HW y SW usando el IDE (Integrated Development Environment).
- Muchas utilidades para depuración de proyectos.
- Soporte de amplia variedad de dispositivos (CPLDs y FPGAs).

Herramienta EDA de Diseño Digital (cont.)

Metodología de Diseño de Quartus II

Herramienta EDA de Diseño Digital (cont.)

Entorno de Trabajo de Herramienta EDA Quartus II

- Introducción
- CPUs tipos CISC y RISC
- Selección de modelo de CPU RISC de 32 bits
- Herramienta EDA de Diseño Digital
- CPU RISC Monociclo en un FPGA
- CPU RISC Pipeline en un FPGA
- Demostración
- Resumen

CPU RISC Monociclo en un FPGA

Versión reducida y compatible con CPU RISC de Arquitectura MIPS (Microprocessor without Interlock Pipeline Stages) de 32 bits:

- Formato de Instrucción de longitud fija de 32 bits.
- 32 registros enteros de 32 bits.
- Solo instrucciones enteras.
- Ejecución de instrucciones en 1 pulso de reloj.

campo posición de bit

ор	rs	rt	rd	shamt	func
32-26	25-21	20-16	15-11	10-6	5-0

a) Instrucción de Formato R

campo posición de bit

ор	rs	rt	Address or Immediate #
32-26	25-21	20-16	15-0

b) Instrucción de Formato I

campo posición de bit

ор	Address
32-26	25-0

c) Instrucción de Formato J

CPU RISC Monociclo en un FPGA (cont.)

Modos de direccionamiento

CPU RISC Monociclo en un FPGA (cont.)

Diagrama simplificado de implementación monociclo de CPU RISC

CPU RISC Monociclo en un FPGA (cont.)

Implementación de CPU RISC monociclo en tarjeta DE2 de Altera

- Introducción
- CPUs tipos CISC y RISC
- Selección de modelo de CPU RISC de 32 bits
- Herramienta EDA de Diseño Digital
- CPU RISC Monociclo en un FPGA
- CPU RISC Pipeline en un FPGA
- Demostración
- Resumen

CPU RISC Pipeline en un FPGA (cont.)

Pipeline: comparación

UNI-FIEE

Ing. MSc. Aurelio Morales V.

CPU RISC Pipeline en un FPGA

Conceptos para implementación pipeline

- Identificar las fases por las que puede pasar una instrucción.
- Distinguir las unidades funcionales involucradas en cada fase de la instrucción.
- Separar las unidades funcionales mediante registros.

Problemas que se presentan

Dependencias de datos RAW (Read after Write)

```
Ej: add r2, r3, r4 ; r2 \leftarrow r3 + r4 sub r6, r2, r7 ; r6 \leftarrow r2+ r7
```

• Ejecución de instrucciones de ramificación

Solución a los problemas

Bloques HDU (Hazard Detection Unit) y FU (Forwarding Unit)

CPU RISC Pipeline en un FPGA (cont.)

- Introducción
- CPUs tipos CISC y RISC
- Selección de modelo de CPU RISC de 32 bits
- Herramienta EDA de Diseño Digital
- CPU RISC Monociclo en un FPGA
- CPU RISC Pipeline en un FPGA
- Demostración
- Resumen

Demostración

- Implementación pipeline del CPU RISC de 32 bits. Incluye bloques HDU y FU.
- Implementación en tarjeta de desarrollo DE2 de Altera.
- Dispositivo FPGA Cyclone I EP2C35F672C6 de Altera.
- Interfaz a video VGA 1024x768 y visualizador LCD.
- Herramienta EDA Quartus II.
- Especificación de diseño usando lenguaje VHDL.
- Implementa un "emulador" de un CPU RISC.
- Para fines educacionales y de investigación en el campo de Arquitectura de Computadoras.

- Introducción
- CPUs tipos CISC y RISC
- Selección de modelo de CPU RISC de 32 bits
- Herramienta EDA de Diseño Digital
- CPU RISC Monociclo en un FPGA
- CPU RISC Pipeline en un FPGA
- Demostración
- Resumen

Resumen

- Revisión de CPUs CISC y RISC
- Implementación de un CPU RISC en un FPGA
- Demostración

Referencias

- http://en.wikipedia.org/wiki/RISC
- http://en.wikipedia.org/wiki/FPGA
- http://es.wikipedia.org/wiki/Arquitectura_MIPS
- http://www.altera.com