Rotman

Master of Management Analytics

INTRO TO SQL

Bootcamp

What's SQL (Structured Query Language)

- Most widely used database (DB) language
 - a domain specific language (managing data stored in relational DB)

- Not a proprietary language
 - Open specifications/standards
 - All major DBMS (DB Mgmt. System) vendors implement ANSI Standard SQL
 - However, SQL Extensions are usually DB specific

Powerful despite simplicity

What's DB and DB Management System

What's a database: A collection of data in an organized way

- Relational DB
 - tables
 - columns/fields/variables and datatypes
 - rows/records/observations
 - primary key, foreign key, constraints and relationships (discuss later)
- What is DBMS (DB Management System)?
 - e.g. MySQL, MariaDB, PostgreSQL, SQLite, Microsoft SQL Server, Oracle, etc.

Connect to a DB and use SQL – DB Client

- DB specific management client
 - command-line console
 - GUI client (e.g. <u>DB Browser for SQLite</u>, <u>MySQL Workbench</u>, <u>MS SSMS</u>)

- Generic DB client can connect to different DBs through connectors
 - GUI client (e.g. <u>DBeaver</u>, <u>Navicat</u>)
 - Programming language (e.g. Python + <u>SQLAlchemy</u> + DBAPI (e.g. <u>SQLite</u>, <u>MySQL</u>, <u>PostgreSQL</u>, etc.), R + <u>dbplyr</u>)

Beyond a relational DB language

• SAS's PROC SQL

- Spark's SparkSQL
 - Apache Spark is a big data computing framework
- Hive's HiveQL, an SQL-like query language
 - Apache Hive is a distributed data warehouse (data warehouse?)
- Google Bigquery's SQL
 - Bigquery is Google's data warehouse

ref. <u>Database vs data warehouse</u>; <u>Data warehouse vs data lake</u>

note: NoSQL DB?

SQL Hands-on Exercises

Course website: https://tdmdal.github.io/mma-sql/

Notebook and Google Colab

- Why SQLite?
 - a small, fast, self-contained, high-reliability, full-featured, SQL DB engine
 - perfect for learning SQL

Primary key, foreign key, constraints and relationships

Orders

♀ OrderID CustomerID **EmployeeID Employees** OrderDate F EmployeeID RequiredDate LastName ShippedDate First Name ShipVia Title Freight TitleOfCourtesy ShipName Birth Date ShipAddress HireDate ShipCity Address ShipRegion City ShipPostalCode Region ShipCountry PostalCode Country HomePhone Extension Photo Notes ReportsTo PhotoPath

Hands-on Part 1: Warm up

• Retrieve data: SELECT...FROM...

Sort retrieved data: SELECT...FROM...ORDER BY...

• Filter data: SELECT...FROM...WHERE...; IN, NOT, LIKE and % wildcard

Create calculated fields: mathematical calculations (e.g. +, -, *,
 /); data manipulation functions (e.g. DATE(), | |)

Hands-on Part 2: Summarize and Group Data

- Summarize data using aggregate functions (e.g. COUNT(), MIN(), MAX(), and AVG()).
- Group data and filter groups: SELECT...FROM...GROUP BY...HAVING...
- SELECT clause ordering: SELECT...FROM...WHERE...GROUP BY...HAVING...ORDER BY...
- Filter data by subquery: SELECT...FROM...WHERE...(SELECT...FROM...)

Hands-on Part 2: Join Tables

• Inner join: SELECT...FROM...INNER JOIN...ON...

• Left join: SELECT...FROM...LEFT JOIN...ON...

• Other join variations.

Join – Inner Join

SELECT *
FROM Table1
 INNER JOIN Table2
 ON Table1.pk = Table2.fk;

Table1

pk	t1c1
1	а
2	b

fk	t2c1
1	С
1	d
3	е

pk	t1c1	fk	t2c1
1	а	1	С
1	а	1	d

Join – Left (Outer) Join


```
SELECT *
FROM Table1
  LEFT JOIN Table2
  ON Table1.pk = Table2.fk;
```

Table1

pk	t1c1
1	а
2	b

fk	t2c1
1	С
1	d
3	е

pk	t1c1	fk	t2c1
1	а	1	С
1	a	1	d
2	b	null	null

Join - Left (Outer) Join With Exclusion

		pk	t1c
able1	Table2	1	а
		2	b

SELECT * FROM Table1 LEFT JOIN Table2 ON Table1.pk = Table2.fk WHERE Table2.fk is NULL;

t1c1	fk	t2c1
а	1	С
b	1	d
	3	е

Table2

pk	t1c1	fk	t2c1
2	b	null	null

Join - Right Outer Join*

Tabl	e1
------	----

pk	t1c1
1	а
2	b

Table2

fk	t2c1
1	С
1	d
3	е

SELECT *
FROM Table2
LEFT JOIN Table1
ON Table2.fk = Table1.pk
SELECT *
FROM Table1
RIGHT JOIN Table2
ON Table1.pk = Table2.fk;

SQLite doesn't support RIGHT JOIN key word, but some DBMSs do (e.g. MySQL).

pk	t1c1	fk	t2c1
1	а	1	С
1	a	1	d
null	null	3	е

Join - Right Outer Join With Exclusion*

Table1

pk	t1c1
1	а
2	b

Table2

fk	t2c1
1	С
1	d
3	е

pk	t1c1	fk	t2c1
null	null	3	е

SQLite doesn't support RIGHT JOIN key word, but some DBMSs do (e.g. MySQL).

Join - Full Outer Join

SELECT pk, t1c1, fk, t2c1
FROM Table1
 LEFT JOIN Table2
 ON Table1.pk = Table2.fk
UNION
SELECT pk, t1c1, fk, t2c1
FROM Table2
 LEFT JOIN Table1
 ON Table2.fk = Table1.pk;

Table1

pk	t1c1
1	а
2	b

fk	t2c1
1	С
1	d
3	е

pk	t1c1	fk	t2c1
1	а	1	С
1	а	1	d
2	b	null	null
null	null	3	е

Join – Full Outer Join

SELECT pk, t1c1, fk, t2c1
FROM Table1
 LEFT JOIN Table2
 ON Table1.pk = Table2.fk
WHERE Table2.fk is NULL
UNION
SELECT pk, t1c1, fk, t2c1
FROM Table2
 LEFT JOIN Table1
 ON Table2.fk = Table1.pk
WHERE Table1.pk is NULL;

Table1

pk	t1c1
1	а
2	b

fk	t2c1
1	С
1	d
3	е

pk	t1c1	fk	t2c1
2	b	null	null
null	null	3	е

Others

• CTE and temporary table

• Self-join

CASE keyword

UNION keyword

Many things we didn't cover

- Insert data (INSERT INTO...VALUES...; INSERT INTO...SELECT...FROM...)
- Update data (UPDATE...SET...WHERE...)
- Delete data (DELETE FROM...WHERE...)

- Manipulate tables (CREATE TABLE...; ALTER TABLE...; DROP TABLE...)
- Views (CREATE VIEW...AS...)

The list goes on and on

- Stored procedures
- Functions
- Transaction processing
- Cursors (going through table row by row)
- WINDOW function
- Query optimization
- DB permissions & security
- ...