CV Project: Fruits

Author: Abdelrhman Wael Ahmed

Table of Contents

- 1. Introduction
- 2. Objectives
- 3. Dataset Description
- 4. Data Preprocessing
- 5. Model Architectures
- 6. Training Setup
- 7. Evaluation Metrics & Results
- 8. Discussion & Challenges
- 9. Conclusion & Future Work
- 10. References

1. Introduction

This project explores fruit image classification, detection, and generation using deep learning. We use MobileNetV2 for classification, YOLOv8 for object detection, and GANs for image generation, leveraging the Fruits-360 dataset.

2. Objectives

- Accurately classify fruit images into their respective categories.
- Detect and localize fruits in images using object detection.
- Generate new, realistic fruit images using GANs.

3. Dataset Description

- Fruits-360: Over 70,000 images, 100x100 pixels, 131 fruit classes.
- Source:

https://www.kaggle.com/datasets/moltean/fruits

- Structure: Images are organized in class folders, with separate Training and Test directories.
- Sample Images: (See notebooks for visualizations)

4. Data Preprocessing

- Images resized to 100x100 pixels.
- Dataset split into train/val/test (70/15/15).
- Data augmentation (rotation, flip, etc.) and normalization applied.
- For YOLO, bounding boxes generated for each fruit.
- For GANs, images are resized and normalized to [-1, 1].

5. Model Architectures

MobileNetV2 (Classification)

- Pretrained on ImageNet, top removed.
- Added global average pooling and dense layers.
- Output layer: softmax for multi-class classification.

YOLOv8 (Detection)

- YOLOv8n pretrained weights.
- Custom data.yaml and label files generated.

GANs (Image Generation)

- DCGAN-style Generator and Discriminator implemented in PyTorch.
- Generator: Transposed convolutions to upsample noise to images.
- Discriminator: Convolutions to classify real vs. fake images.

6. Training Setup

- MobileNetV2: Adam optimizer, learning rate 0.0001, early stopping, model checkpointing, 30 epochs max.
- YOLOv8: 30 epochs, batch size 16, image size 640.
- GANs: 30 epochs, batch size 128, Adam optimizer, learning rate 0.0002.
- Hardware: GPU-accelerated environment (e.g., Kaggle, Colab).

7. Evaluation Metrics & Results

- MobileNetV2: Categorical accuracy, loss curves.
- YOLOv8: mAP, precision, recall (see YOLO logs).
- GANs: Visual inspection of generated images, loss curves.
- Results:
 - MobileNetV2 Test Accuracy: ~99%
- YOLOv8: High detection accuracy, robust bounding boxes.
- GANs: Generated realistic fruit images after training (see GAN notebook for samples).
- Plots: Training/validation accuracy and loss curves (see notebooks).

8. Discussion & Challenges

- Data augmentation improved generalization.
- Some fruit classes are visually similar, leading to occasional misclassifications.
- YOLOv8 performance depends on label quality and dataset balance.
- GANs require careful tuning and sufficient data for realistic image generation.

9. Conclusion & Future Work

- MobileNetV2 is highly effective for fruit classification.
- YOLOv8 provides strong detection results.
- GANs can generate realistic fruit images, useful for data augmentation.
- Future work: more data, advanced augmentation, improved GAN architectures, real-world deployment.

10. References

- Fruits-360 Dataset:

https://www.kaggle.com/datasets/moltean/fruits

- MobileNetV2: https://arxiv.org/abs/1801.04381
- YOLOv8: https://docs.ultralytics.com/
- DCGAN: https://arxiv.org/abs/1511.06434