AUTO

POPULATION SIZE, MIGRATION, DIVERGENCE, ASSIGNMENT, HISTORY

Bayesian inference using the structured coalescent

Migrate-n version 5.0.0a [May-20-2017]

Using Intel AVX (Advanced Vector Extensions)

Compiled for PARALLEL computer architectures

One master and 40 compute nodes are available.

Program started at Sun Jul 23 19:32:46 2017

Program finished at Sun Jul 23 22:45:16 2017 [Runtime:0000:03:12:30]

Options

Datatype: DNA sequence data

Inheritance scalers in use for Thetas:

All loci use an inheritance scaler of 1.0

[The locus with a scaler of 1.0 used as reference]

Random number seed: (with internal timer) 647518915

Start parameters:

Theta values were generated Using a percent value of the prior

M values were generated Using a percent value of the prior

Connection matrix:

m = average (average over a group of Thetas or M,

s = symmetric migration M, S = symmetric 4Nm,

0 = zero, and not estimated,

* = migration free to vary, Thetas are on diagonal

1

d = row population split off column population, D = split and then migration

Population

1 Romanshorn 0 *

Order of parameters:

1 Θ_1 <displayed>

Mutation rate among loci: Mutation rate is constant for all loci

Analysis strategy: Bayesian inference

Exponential Distribution -Population size estimation:

Proposal distributions for parameter

Parameter Proposal Theta Metropolis sampling M Metropolis sampling Divergence Metropolis sampling Divergence Spread Metropolis sampling Genealogy Metropolis-Hastings

Prior distribution for parameter

Parameter Delta Prior Minimum Mean Maximum Bins UpdateFreq Theta -11 Uniform 0.000000 0.050 0.100 0.010 1500 0.20000

[-1 -1 means priors were set globally]

Markov chain settings: Long chain

Number of chains 50000 Recorded steps [a] 200 Increment (record every x step [b] Number of concurrent chains (replicates) [c]

20000000 Visited (sampled) parameter values [a*b*c] 10000 Number of discard trees per chain (burn-in)

Multiple Markov chains:

Static heating scheme 4 chains with temperatures

> 1000000.00 3.00 1.50 1.00

> > Swapping interval is 1

Print options:

Data file: infile.1.0 NO

Haplotyping is turned on:

Output file: outfile_1.0_0.6

Posterior distribution raw histogram file: bayesfile Raw data from the MCMC run: bayesallfile_1.0_0.6

Print data: No

Print genealogies [only some for some data type]: None

Data summary

Data file: infile.1.0
Datatype: Sequence data
Number of loci: 100

RA.	.4-4:			1.
Ινιι	ıtatı	onm	ioae	I.

Mutation	model:			
Locus S	ublocus	Mutationmodel	Mutationmodel parameters	
1	1	Jukes-Cantor	[Basefreq: =0.25]	
2	1	Jukes-Cantor	[Basefreq: =0.25]	
3	1	Jukes-Cantor	[Basefreq: =0.25]	
4	1	Jukes-Cantor	[Basefreq: =0.25]	
5	1	Jukes-Cantor	[Basefreq: =0.25]	
6	1	Jukes-Cantor	[Basefreq: =0.25]	
7	1	Jukes-Cantor	[Basefreq: =0.25]	
8	1	Jukes-Cantor	[Basefreq: =0.25]	
9	1	Jukes-Cantor	[Basefreq: =0.25]	
10	1	Jukes-Cantor	[Basefreq: =0.25]	
11	1	Jukes-Cantor	[Basefreq: =0.25]	
12	1	Jukes-Cantor	[Basefreq: =0.25]	
13	1	Jukes-Cantor	[Basefreq: =0.25]	
14	1	Jukes-Cantor	[Basefreq: =0.25]	
15	1	Jukes-Cantor	[Basefreq: =0.25]	
16	1	Jukes-Cantor	[Basefreq: =0.25]	
17	1	Jukes-Cantor	[Basefreq: =0.25]	
18	1	Jukes-Cantor	[Basefreq: =0.25]	
19	1	Jukes-Cantor	[Basefreq: =0.25]	
20	1	Jukes-Cantor	[Basefreq: =0.25]	
21	1	Jukes-Cantor	[Basefreq: =0.25]	
22	1	Jukes-Cantor	[Basefreq: =0.25]	
23	1	Jukes-Cantor	[Basefreq: =0.25]	
24	1	Jukes-Cantor	[Basefreq: =0.25]	
25	1	Jukes-Cantor	[Basefreq: =0.25]	
26	1	Jukes-Cantor	[Basefreq: =0.25]	
27	1	Jukes-Cantor	[Basefreq: =0.25]	
28	1	Jukes-Cantor	[Basefreq: =0.25]	
29	1	Jukes-Cantor	[Basefreq: =0.25]	
30	1	Jukes-Cantor	[Basefreq: =0.25]	
31	1	Jukes-Cantor	[Basefreq: =0.25]	
32	1	Jukes-Cantor	[Basefreq: =0.25]	
33	1	Jukes-Cantor	[Basefreq: =0.25]	
34	1	Jukes-Cantor	[Basefreq: =0.25]	

35	1	Jukes-Cantor	[Basefreq: =0.25]
36	1	Jukes-Cantor	[Basefreq: =0.25]
37	1	Jukes-Cantor	[Basefreq: =0.25]
38	1	Jukes-Cantor	[Basefreq: =0.25]
39	1	Jukes-Cantor	[Basefreq: =0.25]
40	1	Jukes-Cantor	[Basefreq: =0.25]
41	1	Jukes-Cantor	[Basefreq: =0.25]
42	1	Jukes-Cantor	[Basefreq: =0.25]
43	1	Jukes-Cantor	[Basefreq: =0.25]
44	1	Jukes-Cantor	[Basefreq: =0.25]
45	1	Jukes-Cantor	[Basefreq: =0.25]
46	1	Jukes-Cantor	[Basefreq: =0.25]
47	1	Jukes-Cantor	[Basefreq: =0.25]
48	1	Jukes-Cantor	[Basefreq: =0.25]
49	1	Jukes-Cantor	[Basefreq: =0.25]
50	1	Jukes-Cantor	[Basefreq: =0.25]
51	1	Jukes-Cantor	[Basefreq: =0.25]
52	1	Jukes-Cantor	[Basefreq: =0.25]
53	1	Jukes-Cantor	[Basefreq: =0.25]
54	1	Jukes-Cantor	[Basefreq: =0.25]
55	1	Jukes-Cantor	[Basefreq: =0.25]
56	1	Jukes-Cantor	[Basefreq: =0.25]
57	1	Jukes-Cantor	[Basefreq: =0.25]
58	1	Jukes-Cantor	[Basefreq: =0.25]
59	1	Jukes-Cantor	[Basefreq: =0.25]
60	1	Jukes-Cantor	[Basefreq: =0.25]
61	1	Jukes-Cantor	[Basefreq: =0.25]
62	1	Jukes-Cantor	[Basefreq: =0.25]
63	1	Jukes-Cantor	[Basefreq: =0.25]
64	1	Jukes-Cantor	[Basefreq: =0.25]
65	1	Jukes-Cantor	[Basefreq: =0.25]
66	1	Jukes-Cantor	[Basefreq: =0.25]
67	1	Jukes-Cantor	[Basefreq: =0.25]
68	1	Jukes-Cantor	[Basefreq: =0.25]
69	1	Jukes-Cantor	[Basefreq: =0.25]
70	1	Jukes-Cantor	[Basefreq: =0.25]
71	1	Jukes-Cantor	[Basefreq: =0.25]
72	1	Jukes-Cantor	[Basefreq: =0.25]
73	1	Jukes-Cantor	[Basefreq: =0.25]
74	1	Jukes-Cantor	[Basefreq: =0.25]
75	1	Jukes-Cantor	[Basefreq: =0.25]
76	1	Jukes-Cantor	[Basefreq: =0.25]
77	1	Jukes-Cantor	[Basefreq: =0.25]
78	1	Jukes-Cantor	[Basefreq: =0.25]
79	1	Jukes-Cantor	[Basefreq: =0.25]

				AUTO 5
80	1	Jukes-Cantor	[Basefreq: =0.25]	
81	1	Jukes-Cantor	[Basefreq: =0.25]	
82	1	Jukes-Cantor	[Basefreq: =0.25]	
83	1	Jukes-Cantor	[Basefreq: =0.25]	
84	1	Jukes-Cantor	[Basefreq: =0.25]	
85	1	Jukes-Cantor	[Basefreq: =0.25]	
86	1	Jukes-Cantor	[Basefreq: =0.25]	
87	1	Jukes-Cantor	[Basefreq: =0.25]	
88	1	Jukes-Cantor	[Basefreq: =0.25]	
89	1	Jukes-Cantor	[Basefreq: =0.25]	
90	1	Jukes-Cantor	[Basefreq: =0.25]	
91	1	Jukes-Cantor	[Basefreq: =0.25]	
92	1	Jukes-Cantor	[Basefreq: =0.25]	
93	1	Jukes-Cantor	[Basefreq: =0.25]	
94	1	Jukes-Cantor	[Basefreq: =0.25]	
95	1	Jukes-Cantor	[Basefreq: =0.25]	
96	1	Jukes-Cantor	[Basefreq: =0.25]	
97	1	Jukes-Cantor	[Basefreq: =0.25]	
98	1	Jukes-Cantor	[Basefreq: =0.25]	
99	1	Jukes-Cantor	[Basefreq: =0.25]	
100	1	Jukes-Cantor	[Basefreq: =0.25]	
Sites per	locus			
Locus		Sites		
1	1	0000		

Locus	Sites
1	10000
2	10000
3	10000
4	10000
5	10000
6	10000
7	10000
8	10000
9	10000
10	10000
11	10000
12	10000
13	10000
14	10000
15	10000
16	10000
17	10000
18	10000
19	10000
20	10000

21	10000
	10000
	10000
	10000
	10000
	10000
	10000
	10000
	10000
	10000
	10000
	10000
	10000
	10000
	10000
	10000
	10000
	10000
	10000
	10000
	10000
	10000
	10000
	10000
	10000
	10000
47	10000
48	10000
49	10000
50	10000
51	10000
52	10000
53	10000
54	10000
55	10000
56	10000
	10000
	10000
	10000
	10000
	10000
	10000
	10000
	10000
65	10000

66	10000				
67	10000				
68	10000				
69	10000				
70	10000				
71	10000				
72	10000				
73	10000				
74	10000				
75	10000				
76	10000				
77	10000				
78	10000				
79	10000				
80	10000				
81	10000				
82	10000				
83	10000				
84	10000				
85	10000				
86	10000				
87	10000				
88	10000				
89	10000				
90	10000				
91	10000				
92	10000				
93	10000				
94	10000				
95	10000				
96	10000				
97	10000				
98	10000				
99	10000				
100	10000				
	e variation and probab				
Locus S	Sublocus Region type	Rate of change	Probability	Patch size	
1	1 1	1.000	1.000	1.000	
2	1 1	1.000	1.000	1.000	
3	1 1	1.000	1.000	1.000	
4	1 1	1.000	1.000	1.000	
5	1 1	1.000	1.000	1.000	
6	1 1	1.000	1.000	1.000	

7 8	1	1				
1 X	1	1	1.000 1.000	1.000 1.000	1.000 1.000	
9	1	1	1.000	1.000	1.000	
10	1	1	1.000	1.000	1.000	
11	1	1	1.000	1.000	1.000	
12	1	1	1.000	1.000	1.000	
13	1	1	1.000	1.000	1.000	
14	1	1	1.000	1.000	1.000	
15	1	1	1.000	1.000	1.000	
16	1	1	1.000	1.000	1.000	
17	1	1	1.000	1.000	1.000	
18	1	1	1.000	1.000	1.000	
19	1	1	1.000	1.000	1.000	
20	1	1	1.000	1.000	1.000	
21	1	1	1.000	1.000	1.000	
22	1	1	1.000	1.000	1.000	
23	1	1	1.000	1.000	1.000	
24	1	1	1.000	1.000	1.000	
25	1	1	1.000	1.000	1.000	
26	1	1	1.000	1.000	1.000	
27	1	1	1.000	1.000	1.000	
28	1	1	1.000	1.000	1.000	
29	1	1	1.000	1.000	1.000	
30	1	1	1.000	1.000	1.000	
31	1	1	1.000	1.000	1.000	
32	1	1	1.000	1.000	1.000	
33	1	1	1.000	1.000	1.000	
34	1	1	1.000	1.000	1.000	
35	1	1	1.000	1.000	1.000	
36	1	1	1.000	1.000	1.000	
37	1	1	1.000	1.000	1.000	
38	1	1	1.000	1.000	1.000	
39	1	1	1.000	1.000	1.000	
40	1	1	1.000	1.000	1.000	
41	1	1	1.000	1.000	1.000	
42	1	1	1.000	1.000	1.000	
43	1	1	1.000	1.000	1.000	
44	1	1	1.000	1.000	1.000	
45	1	1	1.000	1.000	1.000	
46	1	1	1.000	1.000	1.000	
47	1	1	1.000	1.000	1.000	
48	1	1	1.000	1.000	1.000	
49	1	1	1.000	1.000	1.000	
50	1	1	1.000	1.000	1.000	
51	1	1	1.000	1.000	1.000	

			4.000	4.000	4 000	
52	1	1	1.000	1.000	1.000	
53	1	1	1.000	1.000	1.000	
54	1	1	1.000	1.000	1.000	
55	1	1	1.000	1.000	1.000	
56	1	1	1.000	1.000	1.000	
57	1	1	1.000	1.000	1.000	
58	1	1	1.000	1.000	1.000	
59	1	1	1.000	1.000	1.000	
60	1	1	1.000	1.000	1.000	
61	1	1	1.000	1.000	1.000	
62	1	1	1.000	1.000	1.000	
63	1	1	1.000	1.000	1.000	
64	1	1	1.000	1.000	1.000	
65	1	1	1.000	1.000	1.000	
66	1	1	1.000	1.000	1.000	
67	1	1	1.000	1.000	1.000	
68	1	1	1.000	1.000	1.000	
69	1	1	1.000	1.000	1.000	
70	1	1	1.000	1.000	1.000	
71	1	1	1.000	1.000	1.000	
72	1	1	1.000	1.000	1.000	
73	1	1	1.000	1.000	1.000	
74	1	1	1.000	1.000	1.000	
75	1	1	1.000	1.000	1.000	
76	1	1	1.000	1.000	1.000	
77	1	1	1.000	1.000	1.000	
78	1	1	1.000	1.000	1.000	
79	1	1	1.000	1.000	1.000	
80	1	1	1.000	1.000	1.000	
81	1	1	1.000	1.000	1.000	
82	1	1	1.000	1.000	1.000	
83	1	1	1.000	1.000	1.000	
84	1	1	1.000	1.000	1.000	
85	1	1	1.000	1.000	1.000	
86	1	1	1.000	1.000	1.000	
87	1	1	1.000	1.000	1.000	
88	1	1	1.000	1.000	1.000	
89	1	1	1.000	1.000	1.000	
90	1	1	1.000	1.000	1.000	
91	1	1	1.000	1.000	1.000	
92	1	1	1.000	1.000	1.000	
93	1	1	1.000	1.000	1.000	
94	1	1	1.000	1.000	1.000	
95	1	1	1.000	1.000	1.000	
96	1	1	1.000	1.000	1.000	

97	1	1	1.000	1.000	1.000	
98	1	1	1.000	1.000	1.000	
99	1	1	1.000	1.000	1.000	
100	1	1	1.000	1.000	1.000	
Population		·		11000	Locus	Gene copies
	nshorn_0				1	10
					2	10
					3	10
					4	10
					5	10
					6	10
					7	10
					8	10
					9	10
					10	10
					11	10
					12	10
					13	10
					14	10
					15	10
					16	10
					17	10
					18	10
					19	10
					20	10
					21	10
					22	10
					23	10
					24	10
					25	10
					26	10
					27	10
					28	10
					29	10
					30	10
					31	10
					32	10
					33	10
					34	10
					35	10
					36	10
					37	10
					38	10
					39	10
					40	10

41	10
42	10
43	10
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
61	
62	
63	
64	
65	
66	
67	
68	
69	
70	
71	
72	
73	
74	
75	
76	
77	
78	
79	
80	
81	
82	
83	
84	
85	10

	22	10	
	86	10	
	87	10	
	88	10	
	89	10	
	90	10	
	91	10	
	92	10	
	93	10	
	94	10	
	95	10	
	96	10	
	97	10	
	98	10	
	99	10	
	100	10	
Total of all populations	1	10	
Total of all populations	2	10	
	3	10	
	4	10	
	5		
		10	
	6	10	
	7	10	
	8	10	
	9	10	
	10	10	
	11	10	
	12	10	
	13	10	
	14	10	
	15	10	
	16	10	
	17	10	
	18	10	
	19	10	
	20	10	
	21	10	
	22	10	
	23	10	
	24	10	
	25	10	
	26	10	
	27	10	
	28	10	
	29	10	
	30	10	
	30	10	

31	10
32	10
33	10
34	10
35	10
36	10
37	10
38	10
39	10
40	10
41	10
42	10
43	10
44	10
45	10
46	10
47	10
48	10
49	10
50	10
51	10
52	10
53	10
54	10
55	10
56	10
57	10
58	10
59	10
60	10
61	10
62	10
63	10
64	10
65	10
66	10
67	10
68	10
69	10
70	10
71	10
72	10
73	10
74	10
75	10

7	76	10
	77	10
	78	10
	79	10
	30	10
	31	10
	32	10
	33	10
	34	10
	35	10
	36	10
	37	10
	38	10
	39	10
	90	10
	91	10
	92	10
	93	10
	94	10
g	95	10
g	96	10
	97	10
g	98	10
	9	10
10		10

Bayesian Analysis: Posterior distribution table

Locus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
1	Θ_1	0.02933	0.04367	0.04770	0.04933	0.05153	0.04383	0.07909
2	Θ_1	0.03600	0.04520	0.04790	0.04987	0.05167	0.04630	0.08724
3	Θ_1	0.03073	0.04307	0.04777	0.04953	0.05160	0.04437	0.08139
4	Θ_1	0.03173	0.04367	0.04783	0.04980	0.05160	0.04483	0.08259
5	Θ_1	0.03273	0.04407	0.04797	0.04980	0.05167	0.04523	0.08197
6	Θ_1	0.03087	0.04340	0.04783	0.04973	0.05160	0.04463	0.08159
7	Θ_1	0.03327	0.04413	0.04783	0.04973	0.05153	0.04530	0.08399
8	Θ_1	0.03333	0.04413	0.04783	0.04973	0.05167	0.04537	0.08497
9	Θ_1	0.03173	0.04407	0.04783	0.04987	0.05160	0.04517	0.08310
10	Θ_1	0.03060	0.03533	0.04777	0.05107	0.05153	0.04437	0.07880
11	Θ_1	0.03253	0.04367	0.04790	0.04973	0.05160	0.04490	0.08220
12	Θ_1	0.03353	0.04527	0.04797	0.04947	0.05153	0.04543	0.08434
13	Θ_1	0.03300	0.04447	0.04783	0.04980	0.05160	0.04557	0.08459
14	Θ_1	0.03213	0.03480	0.04783	0.05120	0.05153	0.04477	0.08208
15	Θ_1	0.03240	0.04500	0.04777	0.04947	0.05160	0.04517	0.08451
16	Θ_1	0.03113	0.04340	0.04770	0.04953	0.05160	0.04463	0.08269
17	Θ_1	0.03233	0.04367	0.04783	0.04967	0.05160	0.04490	0.08212
18	Θ_1	0.02707	0.04280	0.04770	0.04947	0.05147	0.04303	0.07718

Migrate 5.0.0a: (http://popgen.sc.fsu.edu) [program run on 19:32:46]

19	Θ_1	0.03427	0.04453	0.04790	0.04980	0.05167	0.04570	0.08510
20	Θ_1	0.03400	0.04533	0.04803	0.04960	0.05167	0.04557	0.08474
21	Θ_1	0.03200	0.04473	0.04783	0.04947	0.05160	0.04490	0.08369
22	Θ_1	0.03313	0.04400	0.04783	0.04980	0.05160	0.04523	0.08345
23	Θ_1	0.02960	0.04267	0.04777	0.04960	0.05153	0.04397	0.07890
24	Θ_1	0.03493	0.04553	0.04790	0.04947	0.05160	0.04577	0.08658
25	Θ_1	0.03220	0.04393	0.04790	0.04987	0.05173	0.04510	0.08345
26	Θ_1	0.03367	0.04427	0.04790	0.04980	0.05160	0.04543	0.08377
27	Θ_1	0.03400	0.04433	0.04783	0.04967	0.05167	0.04557	0.08461
28	Θ_1	0.03380	0.04460	0.04790	0.04967	0.05180	0.04583	0.08471
29	Θ_1	0.03013	0.04267	0.04777	0.04960	0.05153	0.04390	0.07793
30	Θ_1	0.03067	0.04393	0.04783	0.04953	0.05153	0.04430	0.08109
31	Θ_1	0.03420	0.04473	0.04790	0.04980	0.05160	0.04590	0.08439
32	Θ_1	0.02920	0.04253	0.04777	0.04967	0.05153	0.04377	0.07614
33	Θ_1	0.03267	0.04393	0.04797	0.04987	0.05167	0.04510	0.08401
34	Θ_1	0.03027	0.04300	0.04790	0.04987	0.05160	0.04417	0.07850
35	Θ_1	0.03207	0.04453	0.04783	0.04953	0.05153	0.04470	0.08120
36	Θ_1	0.03120	0.04340	0.04770	0.04967	0.05160	0.04463	0.08324
37	Θ_1	0.03380	0.04513	0.04777	0.04927	0.05153	0.04530	0.08454
38	Θ_1	0.03260	0.04393	0.04783	0.04967	0.05167	0.04517	0.08275
39	Θ_1	0.02900	0.04327	0.04770	0.04933	0.05140	0.04343	0.07474
40	Θ_1	0.03240	0.04407	0.04790	0.04987	0.05160	0.04517	0.08312
41	Θ_1	0.02300	0.03980	0.04750	0.04900	0.05107	0.04003	0.06313

Locus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
42	Θ_1	0.03213	0.04447	0.04783	0.04927	0.05160	0.04463	0.08255
43	Θ_1	0.03253	0.04373	0.04783	0.04967	0.05160	0.04497	0.08312
44	Θ_1	0.03247	0.04467	0.04783	0.04933	0.05160	0.04483	0.08148
45	Θ_1	0.03200	0.04473	0.04790	0.04947	0.05153	0.04503	0.08413
46	Θ_1	0.03153	0.04347	0.04783	0.04973	0.05153	0.04470	0.08171
47	Θ_1	0.03207	0.03833	0.04783	0.05080	0.05153	0.04483	0.08117
48	Θ_1	0.02967	0.04273	0.04770	0.04967	0.05153	0.04397	0.07867
49	Θ_1	0.03340	0.04413	0.04777	0.04960	0.05167	0.04537	0.08361
50	Θ_1	0.03180	0.04447	0.04783	0.04940	0.05160	0.04463	0.08212
51	Θ_1	0.03540	0.04520	0.04810	0.05007	0.05173	0.04630	0.08698
52	Θ_1	0.03033	0.04287	0.04777	0.04960	0.05147	0.04410	0.08012
53	Θ_1	0.03327	0.04400	0.04790	0.04980	0.05160	0.04517	0.08287
54	Θ_1	0.03173	0.04353	0.04777	0.04967	0.05153	0.04477	0.07958
55	Θ_1	0.03280	0.04400	0.04777	0.04967	0.05160	0.04523	0.08186
56	Θ_1	0.03267	0.04407	0.04790	0.04980	0.05160	0.04523	0.08436
57	Θ_1	0.03207	0.04413	0.04783	0.04980	0.05167	0.04530	0.08230
58	Θ_1	0.02880	0.04200	0.04770	0.04960	0.05147	0.04330	0.07364
59	Θ_1	0.03267	0.04420	0.04790	0.04987	0.05167	0.04530	0.08272
60	Θ_1	0.03320	0.04453	0.04790	0.04993	0.05173	0.04563	0.08336
61	Θ_1	0.03320	0.04500	0.04790	0.04940	0.05160	0.04517	0.08422

62	Θ_1	0.03393	0.04540	0.04790	0.04947	0.05167	0.04563	0.08474
63	Θ_1	0.03273	0.04400	0.04783	0.04980	0.05153	0.04517	0.08386
64	Θ_1	0.03120	0.04333	0.04797	0.04980	0.05160	0.04450	0.07887
65	Θ_1	0.03147	0.04333	0.04777	0.04967	0.05153	0.04457	0.08146
66	Θ_1	0.03227	0.04393	0.04790	0.04980	0.05173	0.04510	0.08350
67	Θ_1	0.03007	0.04287	0.04783	0.04980	0.05147	0.04403	0.07964
68	Θ_1	0.03393	0.04480	0.04817	0.05007	0.05173	0.04590	0.08668
69	Θ_1	0.03293	0.04413	0.04797	0.04980	0.05167	0.04530	0.08471
70	Θ_1	0.03240	0.04460	0.04790	0.04967	0.05167	0.04497	0.08320
71	Θ_1	0.03240	0.04413	0.04783	0.04980	0.05173	0.04523	0.08359
72	Θ_1	0.03313	0.04500	0.04790	0.04960	0.05160	0.04537	0.08350
73	Θ_1	0.03607	0.04480	0.04797	0.04973	0.05153	0.04603	0.08633
74	Θ_1	0.03093	0.04333	0.04777	0.04967	0.05167	0.04457	0.08103
75	Θ_1	0.03073	0.04413	0.04777	0.04940	0.05147	0.04430	0.07880
76	Θ_1	0.03407	0.04467	0.04797	0.04993	0.05167	0.04577	0.08517
77	Θ_1	0.03227	0.04467	0.04783	0.04953	0.05160	0.04490	0.08355
78	Θ_1	0.03393	0.04440	0.04797	0.04980	0.05173	0.04557	0.08354
79	Θ_1	0.03313	0.04420	0.04790	0.04980	0.05167	0.04537	0.08346
80	Θ_1	0.03347	0.04413	0.04790	0.04980	0.05160	0.04537	0.08351
81	Θ_1	0.03527	0.04500	0.04810	0.05007	0.05173	0.04603	0.08689
82	Θ_1	0.03013	0.04300	0.04777	0.04960	0.05160	0.04423	0.07817
83	Θ_1	0.03133	0.04367	0.04777	0.04967	0.05153	0.04450	0.07903
84	Θ_1	0.03353	0.04480	0.04803	0.05007	0.05173	0.04590	0.08635

Migrate 5.0.0a: (http://popgen.sc.fsu.edu) [program run on 19:32:46]

Locus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
85	Θ_1	0.03147	0.04333	0.04770	0.04960	0.05153	0.04457	0.08100
86	Θ_1	0.03360	0.04487	0.04803	0.05007	0.05160	0.04590	0.08461
87	Θ_1	0.02413	0.04047	0.04757	0.04893	0.05113	0.04083	0.06482
88	Θ_1	0.02947	0.04367	0.04777	0.04947	0.05147	0.04383	0.07680
89	Θ_1	0.03293	0.04447	0.04797	0.05000	0.05167	0.04557	0.08440
90	Θ_1	0.02907	0.04220	0.04777	0.04960	0.05147	0.04350	0.07572
91	Θ_1	0.03247	0.04393	0.04783	0.04980	0.05160	0.04510	0.08222
92	Θ_1	0.02993	0.04293	0.04777	0.04967	0.05153	0.04417	0.07893
93	Θ_1	0.03160	0.04367	0.04777	0.04967	0.05153	0.04490	0.08182
94	Θ_1	0.03320	0.04400	0.04797	0.04987	0.05167	0.04517	0.08375
95	Θ_1	0.03233	0.04367	0.04790	0.04973	0.05153	0.04490	0.08257
96	Θ_1	0.03227	0.04420	0.04790	0.04993	0.05167	0.04530	0.08415
97	Θ_1	0.03247	0.04493	0.04783	0.04940	0.05160	0.04510	0.08200
98	Θ_1	0.03200	0.04480	0.04797	0.04947	0.05153	0.04497	0.08225
99	Θ_1	0.03447	0.04500	0.04797	0.04993	0.05173	0.04610	0.08565
100	Θ_1	0.03233	0.04360	0.04790	0.04953	0.05160	0.04490	0.08299
All	Θ_1	0.00633	0.01007	0.01143	0.01273	0.01500	0.01130	0.09945

Citation suggestions:

Beerli P., 2006. Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22:341-345

Beerli P., 2007. Estimation of the population scaled mutation rate from microsatellite data, Genetics, 177:1967-1968.

Beerli P., 2009. How to use MIGRATE or why are Markov chain Monte Carlo programs difficult to use?					
In Population Genetics for Animal Conservation, G. Bertorelle, M. W. Bruford, H. C. Hauffe, A. Rizzoli,					
and C. Vernesi, eds., vol. 17 of Conservation Biology, Cambridge University Press, Cambridge UK, pp. 42-79.					

Bayesian Analysis: Posterior distribution over all loci

Log-Probability of the data given the model (marginal likelihood)

Use this value for Bayes factor calculations: $BF = Exp[\ ln(Prob(D \mid thisModel) - ln(\ Prob(\ D \mid otherModel)) \\ or \ as \ LBF = 2 \ (ln(Prob(D \mid thisModel) - ln(\ Prob(\ D \mid otherModel))) \\ shows the \ support for \ thisModel]$

Locus	TI(1a)	BTI(1b)	SS(2)	HS(3)
1	-15782.86	-15351.28	-15394.94	-15448.42
2	-17294.16	-16584.09	-16603.59	-16646.80
3	-16302.37	-15680.78	-15698.13	-15748.09
4	-15958.52	-15435.77	-15470.28	-15517.82
5	-16665.02	-15852.87	-15835.81	-15885.14
6	-15798.89	-15344.41	-15389.10	-15439.06
7	-17967.52	-16664.91	-16565.67	-16611.58
8	-16368.24	-15725.53	-15743.49	-15787.80
9	-16173.79	-15514.99	-15520.55	-15572.61
10	-15700.44	-15106.17	-15118.36	-15172.57
11	-15851.08	-15424.18	-15474.85	-15524.55
12	-18022.47	-16429.85	-16268.89	-16317.32
13	-16349.23	-15695.31	-15709.30	-15753.60
14	-16229.47	-15717.16	-15757.03	-15804.83
15	-16027.28	-15512.93	-15554.28	-15598.65
16	-15985.85	-15458.92	-15494.59	-15541.04
17	-16078.65	-15489.34	-15510.56	-15559.34
18	-15244.09	-14964.84	-15033.12	-15087.76
19	-16442.24	-15914.50	-15954.11	-16000.74
20	-17321.86	-16197.20	-16124.80	-16171.91
21	-17209.49	-16323.72	-16299.25	-16347.48
22	-16524.44	-15767.25	-15761.08	-15808.08
23	-15241.71	-14877.29	-14931.34	-14983.59
24	-18230.78	-16817.47	-16703.24	-16744.12
25	-16879.06	-15963.24	-15928.90	-15976.05
26	-16400.62	-15877.99	-15918.13	-15966.63
27	-15862.11	-15413.24	-15464.01	-15508.47
28	-16586.38	-15847.36	-15846.90	-15892.15
29	-15066.92	-14726.76	-14782.29	-14835.29

Migrate 5.0.0a: (http://popgen.sc.fsu.edu) [program run on 19:32:46]

30	-16993.60	-15925.05	-15857.77	-15908.38
31	-17596.33	-16212.30	-16090.35	-16140.36
32	-15814.31	-15245.85	-15261.50	-15316.38
33	-16421.09	-15807.31	-15831.03	-15876.96
34	-15010.10	-14701.77	-14764.57	-14816.01
35	-15327.44	-14878.38	-14918.89	-14968.64
36	-15986.23	-15499.12	-15543.17	-15589.84
37	-16492.40	-15965.21	-16006.52	-16051.33
38	-15674.20	-15128.09	-15154.85	-15203.50
39	-15299.12	-14763.64	-14779.11	-14835.84
40	-16477.82	-15698.58	-15686.12	-15736.56
41	-14479.35	-14257.32	-14319.89	-14384.03
42	-18459.78	-16783.71	-14791.14	-16660.67
43	-16694.21	-16011.84	-14793.14	-16068.91
44	-16100.38	-15430.51	-15269.95	-15486.64
45	-16727.26	-16234.49	-15931.09	-16331.32
46	-16739.48	-15855.02	-14919.85	-15872.82
47	-15880.77	-15249.73	-15123.86	-15309.34
48	-16275.23	-15800.98	-15834.97	-15896.51
49	-15954.98	-15409.26	-15439.43	-15486.70
50	-15761.65	-15278.26	-15318.82	-15366.86
51	-17350.75	-16534.58	-14944.96	-16573.30
52	-16053.84	-15560.76	-15599.13	-15650.30
53	-17050.05	-16042.39	-15860.04	-16038.78
54	-16152.11	-15510.51	-15518.72	-15571.71
55	-16008.05	-15577.72	-15628.67	-15679.18
56	-17359.62	-16427.49	-15706.25	-16444.00
57	-17145.25	-16030.51	-15043.50	-16006.79
58	-14577.69	-14349.30	-14418.86	-14475.43
59	-15454.99	-15099.62	-15162.01	-15211.01
60	-18058.78	-16508.52	-15518.35	-16406.23
61	-16799.57	-15951.95	-15692.48	-15977.46
62	-16906.43	-16212.71	-15561.53	-16271.59
63	-17878.65	-16748.66	-15158.75	-16730.30
64	-16429.69	-15483.17	-15428.94	-15487.18
65	-16288.57	-15638.11	-15473.24	-15698.65
66	-17843.06	-16416.82	-15953.70	-16336.32
67	-15539.33	-15117.64	-15165.26	-15215.54
68	-19575.65	-17672.14	-16606.04	-17515.50
69	-16633.96	-15864.55	-15392.44	-15904.30
70	-16890.27	-16052.34	-15742.17	-16081.66
71	-15768.01	-15364.98	-15422.57	-15470.52
72	-16576.63	-16005.41	-15827.98	-16085.08
73	-17257.13	-16454.83	-15409.49	-16494.20
74	-16665.65	-15678.14	-15496.45	-15674.01
L				

75	-17747.77	-16482.02	-16379.97	-16435.65
76	-18555.85	-17085.35	-16004.02	-17010.02
77	-16315.23	-15570.91	-15563.64	-15612.48
78	-16727.19	-16158.07	-15707.70	-16239.60
79	-16919.28	-15894.12	-15837.13	-15884.81
80	-16937.72	-16202.44	-16208.14	-16253.80
81	-18170.85	-17065.26	-14344.61	-17055.58
82	-15051.25	-14672.10	-14719.65	-14774.10
83	-15188.57	-14836.67	-14424.14	-14944.83
84	-19103.14	-17457.47	-15277.15	-17346.45
85	-15902.80	-15342.89	-15369.26	-15419.43
86	-16477.39	-15794.25	-15170.09	-15849.65
87	-18309.78	-16238.12	-15423.21	-16032.08
88	-16574.32	-15648.91	-15602.78	-15657.47
89	-16315.81	-15852.49	-15446.57	-15952.26
90	-15565.42	-15019.95	-15036.08	-15092.93
91	-16034.68	-15515.84	-15551.02	-15602.18
92	-17205.63	-15956.45	-15516.34	-15904.57
93	-16236.30	-15587.09	-15598.67	-15647.46
94	-16955.31	-16005.93	-15625.58	-16013.02
95	-16085.12	-15494.40	-15516.00	-15563.96
96	-16448.13	-15878.33	-15913.39	-15959.47
97	-15688.28	-15293.97	-15349.94	-15399.03
98	-15716.44	-15274.30	-15322.58	-15370.59
99	-18283.24	-17062.92	-15611.04	-17033.31
100	-15871.72	-15350.00	-15167.80	-15432.67
All	-1652258.28	-1576734.87	-1550786.74	-1580921.61

- (1a) TI: Thermodynamic integration: log(Prob(D|Model)): Good approximation with many temperatures (1b) BTI: Bezier-approximated Thermodynamic integration: when using few temperatures USE THIS!
- (2) SS: Steppingstone Sampling (Xie et al 2011)
- (3) HS: Harmonic mean approximation: Overestimates the marginal likelihood, poor variance [Scaling factor = 123.938839]

Citation suggestions:

Beerli P. and M. Palczewski, 2010. Unified framework to evaluate panmixia and migration direction among multiple sampling locations, Genetics, 185: 313-326.

Palczewski M. and P. Beerli, 2014. Population model comparison using multi-locus datasets.

In M.-H. Chen, L. Kuo, and P. O. Lewis, editors, Bayesian Phylogenetics: Methods, Algorithms, and Applications, pages 187-200. CRC Press, 2014.

Xie W., P. O. Lewis, Y. Fan, L. Kuo, and M.-H. Chen. 2011. Improving marginal likelihood estimation for Bayesian phylogenetic model selection. Systematic Biology, 60(2):150â 160, 2011.

Acceptance ratios for all parameters and the genealogies

Parameter	Accepted changes	Ratio
Θ_1 Genealogies	379371543/400004830 78567761/1599995170	0.94842 0.04910

MCMC-Autocorrelation and Effective MCMC Sample Size

Parameter	Autocorrelation	Effective Sampe Size
Θ_1 Genealogies	0.51270 0.33480	8327854.50 13190246.78

Average temperatures during the run

Chain Temperatures 1 0.00000 2 0.00000 3 0.00000 4 0.00000

Adaptive heating often fails, if the average temperatures are very close together try to rerun using static heating! If you want to compare models using marginal likelihoods then you MUST use static heating

Potential Problems

This section reports potential problems with your run, but such reporting is often not very accurate. Whith many parameters in a multilocus analysi s, it is very common that some parameters for some loci will not be very informative, triggering suggestions (for example to increase the prior ran ge) that are not sensible. This suggestion tool will improve with time, therefore do not blindly follow its suggestions. If some parameters are fla

gged, inspect the tables carefully and judge wether an action is required. For example, if you run a Bayesian inference with sequence data, for mac roscopic species there is rarely the need to increase the prior for Theta beyond 0.1; but if you use microsatellites it is rather common that your prior distribution for Theta should have a range from 0.0 to 100 or more. With many populations (>3) it is also very common that some migration rou tes are estimated poorly because the data contains little or no information for that route. Increasing the range will not help in such situations, reducing number of parameters may help in such situations.		
No warning was recorded during the run		