- **1.** Demostrar que la trayectoria $\mathbf{c} : [-1,1] \subset \mathbb{R} \to \mathbb{R}^3$ definida por $\mathbf{c}(t) = (t^2 + t + 1, t^2 1, t + 2)$ se encuentra contenida en el plano z = x y. Hallar la ecuación de la recta tangente a esta trayectoria en el punto $\mathbf{c}(0) \in \mathbb{R}^3$.
- **2.** Demostrar que si $(x,y) \in \mathbb{R}^2$ se tiene que $|x|^3 \leq (x^2 + y^2)^{\frac{3}{2}}$. Utilizar este hecho para calcular

$$\lim_{(x,y)\to(0,0)} \frac{x^3 + y^3}{x^2 + y^2}$$

explicando todos los pasos que se dan para obtener el resultado.

- **3.** Sea $g: \mathbb{R}^2 \to \mathbb{R}^3$ una función diferenciable. Sea $g = (g_1, g_2, g_3)$ y supongamos que $\nabla g_1(0,0) = (1,2), \nabla g_2(0,0) = (0,5)$ y $\nabla g_3(0,0) = (-1,3)$. Si $f: \mathbb{R}^3 \to \mathbb{R}$ es una función diferenciable y tal que $\nabla f(g(0,0)) = (3,-2,4)$, hallar $\nabla (f \circ g)(0,0)$.
- 4. Sea la función

$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$

- Estudiar la continuidad de f en (0,0).
- Hallar $\frac{\partial f}{\partial x}(0,0), \frac{\partial f}{\partial y}(0,0).$
- Estudiar la continuidad de $\frac{\partial f}{\partial x}$ y $\frac{\partial f}{\partial y}$ en (0,0).
- ¿Es f diferenciable en (0,0)?