

UNIVERSAL
LIBRARY

OU_166099

UNIVERSAL
LIBRARY

OSMANIA UNIVERSITY LIBRARY

Call No

580

Accession No

Author

J 79 G

Jones, W L

Title German-English botanical Terminology

This book should be returned on or before the date last marked below

MURBY'S GERMAN-ENGLISH TERMINOLOGIES

GENERAL EDITOR: WILLIAM R. JONES, D.Sc., D.I.C., F.G.S., M.I.M.M.

GERMAN-ENGLISH
BOTANICAL
TERMINOLOGY

ENGLISCH-DEUTSCHE
BOTANISCHE
TERMINOLOGIE

GERMAN-ENGLISH BOTANICAL TERMINOLOGY

An Introduction to German and English
terms used in Botany, including Plant
Physiology, Ecology, Genetics, and
Plant Pathology

BY

HELEN ASHBY

Ph.D., D.I.C.

Formerly Lecturer in Plant Pathology
The Horticultural College, Swanley

ERIC ASHBY

D.Sc., D.I.C.

Professor of Botany, The University.
Sydney

Dr. HARALD RICHTER

of the Biologische Reichsanstalt,
Berlin-Dahlem

Dr. JOHANNES BÄRNER

of the Biologische Reichsanstalt,
Berlin-Dahlem

LONDON : THOMAS MURBY & CO., 1, FLEET LANE, E.C.4
LEIPZIG : MAX WEG, INSELSTRASSE, 20

ENGLISCH-DEUTSCHE BOTANISCHE TERMINOLOGIE

Eine Einführung in die im Deutschen und Englischen in der Botanik, einschliesslich Pflanzenphysiologie, Ökologie, Vererbungslehre und Pflanzenpathologie gebräuchlichen Ausdrücke

VON

Dr. HARALD RICHTER
an der Biologischen Reichsanstalt,
Berlin-Dahlem

Dr. JOHANNES BÄRNER
an der Biologischen Reichsanstalt,
Berlin-Dahlem

HELEN ASHBY

Ph.D., D.I.C.
Formerly Lecturer in Plant Pathology
The Horticultural College, Swanley

ERIC ASHBY

D.Sc., D.I.C.
Professor of Botany, The University,
Sydney

LONDON : THOMAS MURBY & CO., 1, FLEET LANE, E.C.4
· LEIPZIG : MAX WEG, INSELSTRASSE, 20

**PRINTED IN GREAT BRITAIN
BY
THE WOODBRIDGE PRESS, LTD., GUILDFORD.**

NOTE BY THE GENERAL EDITOR

THE encouraging reception given to the *German-English Geological Terminology* in English-speaking and German-speaking countries, and the almost unanimous wish expressed by the reviewers of that book, and by other scientists, that Messrs. Murby and Co. should also publish, on the same novel lines, Terminologies in other sciences, decided the publishers to undertake this work.

As General Editor of the series, and the person responsible for introducing this method of presentation, my part now consists almost entirely in selecting suitable English and German authors who are specialists in their particular science, and who have the necessary knowledge of the foreign language for effective collaboration.

Each author of the present volume is a highly qualified botanist who has had considerable experience in the application of the subject to economic problems, and in its presentation to graduate and post-graduate students.

WILLIAM R. JONES.

GEOLOGICAL DEPARTMENT,

IMPERIAL COLLEGE OF SCIENCE AND TECHNOLOGY,

LONDON, S.W.7.

July, 1938.

PREFACE

This book takes the form of a brief survey of Botanical Science, given in English and German. It is written to help the student to enlarge his vocabulary and to become familiar with the technical terms used by German and English-speaking botanists. Most of the German text is a literal translation of the English, involving some sacrifice of style, but in many instances a close agreement in words would have been impossible without losing clearness of meaning. Moreover, we believe that it is misleading to adhere too rigidly to a literal translation, for the two languages differ in their phraseology as much as in their vocabulary. Accordingly the student will find in this work, as in the literature of Botany itself, that the same idea is sometimes expressed differently in German and in English. We have eschewed controversial subjects, but where it has been necessary to introduce them we have chosen the opinion which most easily illustrates the nomenclature. Finally, no claim is made for completeness in the subject matter of the text, which must obviously be strictly limited if the book is not to become unwieldy.

The Authors and the Publishers are indebted to Dr. Maurice Ashby for completing the correction of proofs when Dr. Eric Ashby left for Australia to take up the post of Professor of Botany in the University of Sydney.

VORWORT

Dieses Buch soll eine kurze Übersicht über das Gebiet der Botanik in englischer und deutscher Sprache vermitteln. Es wurde geschrieben, um den Studierenden Gelegenheit zu geben, ihren Wortschatz zu bereichern und mit den technischen Ausdrücken der deutsch oder englisch sprechenden Botaniker vertraut zu werden. Der grösste Teil des deutschen Textes ist eine wörtliche Übersetzung des englischen, die zwangsläufig eine gewisse Vernachlässigung des Stils nach sich zog. In manchen Fällen jedoch musste, um den Sinn des Satzes nicht zu entstellen, von einer genauen Übereinstimmung der Wörter abgesehen werden. Auch glauben wir, dass das unbedingte Festhalten an einer wörtlichen Übersetzung falsch ist, weil beide Sprachen nicht nur in ihrem Wortschatz, sondern auch in ihrer Phraseologie voneinander abweichen. Daher wird der Studierende in diesem Buch, wie in der botanischen Literatur selbst, für gleiche Begriffe die unterschiedliche deutsche und englische Bezeichnungsweise finden. Umstrittene Themen sind möglichst vermieden worden; wo es jedoch nötig war, diese aufzunehmen, wurden die Darstellungen gewählt, die sich am besten mit der bestehenden Nomenklatur in Einklang bringen liessen. Endlich kann kein Anspruch auf Vollständigkeit des behandelten Stoffes erhoben werden, da für den Text, um das Buch nicht zu umfangreich zu gestalten, enge Grenzen gezogen waren.

CONTENTS

	PAGE
NOTE BY THE GENERAL EDITOR ...	v
PREFACE ...	vi
 CHAPTER	
I.—MORPHOLOGY ...	1
The study of external form and internal structure of the plant—Section I. Organography.	
II.—MORPHOLOGY (CTD.) ...	19
Section II. Internal structure—Anatomy and Histology.	
III.—CLASSIFICATION AND PHYLOGENY ...	33
Thallophyta — Bacteria — Cyanophyceæ — Myxomycetes — Flagellatae — Conjugatae — Diatomeæ — Chlorophyceæ — Characeæ — Phæophyceæ — Rhodophyceæ — Fungi — Lichens.	
IV.—CLASSIFICATION AND PHYLOGENY (CTD.) ...	55
Bryophyta — Pteridophyta — Spermatophyta — Gymnospermæ — Palæophytology.	
V.—CYTOLOGY AND GENETICS ...	79
Mitosis — Meiosis — Inheritance — Variation — Plant Breeding—Evolution.	
VI.—PHYSIOLOGY ...	91
The study of the vital processes of the plant—Metabolism —Absorption — Assimilation — Translocation — Transpiration—Growth—Irritability.	
VII.—ECOLOGY ...	103
Environmental factors—The soil—Light—Temperature—Water—Biotic factors—The analysis of vegetation—The classification of vegetation—The development of vegetation.	
VIII.—PLANT PATHOLOGY ...	121
Symptomatology — Etiology — Pathogenicity — Resistance to Disease—Plant Protection—Fungicides—Legislative Control.	
APPENDIX I. ...	137
The names of common, wild and cultivated plants especially occurring in Europe.	

INHALTSVERZEICHNIS

SEITE

VORWORT	vii
KAPITEL								
I.—MORPHOLOGIE	2
Die Lehre von der äusseren Form und dem inneren Bau der Pflanze—Abschnitt I. Organographie.								
II.—MORPHOLOGIE (FORTS.)	20
Abschnitt II. Innerer Bau—Anatomie und Histologie.								
III.—SYSTEMATIK UND PHYLOGENIE	34
Thallophyta — Bacteria — Cyanophyceæ — Myxomycetes — Flagellatae — Conjugatæ — Diatomeæ — Chlorophyceæ — Characeæ — Phæophyceæ — Rhodophyceæ — Pilze— Flechten.								
IV.—SYSTEMATIK UND PHYLOGENIE (FORTS.)	56
Bryophyta — Pteridophyta — Spermatophyta — Gymno- spermæ—Palæobotanik.								
V.—ZYTOLOGIE UND GENETIK	80
Mitosis — Meiosis — Vererbung — Variation — Pflan- zenzüchtung—Evolution.								
VI.—PHYSIOLOGIE	92
Die Lehre von den Lebenserscheinungen der Pflanze— Stoffwechsel — Absorption — Assimilation — Stoffwan- derung — Transpiration — Wachstum — Reizbarkeit.								
VII.—ÖKOLOGIE	104
Umweltfaktoren — Boden — Licht—Temperatur—Wasser — Biotische Faktoren — Die Analyse der Vegetation— Die Einteilung der Vegetation — Die Entwicklung der Vegetation.								
VIII.—PHYTOPATHOLOGIE	122
Symptomatik — Ätiologie — Pathogenität — Krankheits- resistenz — Pflanzenschutz — Gesetzliche Pflanzenschutz- massnahmen.								
ANHANG I.	137
Die Namen von gewöhnlichen, wilden und kultivierten Pflanzen die vornehmlich in Europa vorkommen.								

CONTENTS

	PAGE
APPENDIX II.	154
List of the most important common names of plant diseases.	
APPENDIX IIIa.	164
Abbreviations frequently used in German Botanical Literature.	
APPENDIX IIIb.	165
Abbreviations frequently used in English Botanical Literature.	
ENGLISH INDEX	167
GERMAN INDEX	182

	SEITE
ANHANG II.	154
Verzeichnis der wichtigsten Vulgäronamen von Pflanzenkrankheiten.	
ANHANG IIIa.	164
In der deutschen botanischen Literatur häufig benutzte Abkürzungen.	
ANHANG IIIb.	165
In der englischen botanischen Literatur häufig benutzte Abkürzungen.	
ENGLISCHES REGISTER	167
DEUTSCHES REGISTER	182

CHAPTER I

MORPHOLOGY

THE STUDY OF THE EXTERNAL FORM AND INTERNAL STRUCTURE OF THE PLANT

I. ORGANOGRAPHY

The plant body consists of distinct parts known as *organs*, e.g. vegetative and reproductive organs. In nature these component organs show great diversity in form and arrangement. *Morphology* investigates and compares their development (*Ontogeny*) as well as their structure (*Anatomy*). It also compares existing with fossil plants with the object of tracing the origin of these varied organs (*Phylogeny*). It distinguishes as *homologous*, organs of common origin and as *analogous* organs of common function. These comparisons reveal the natural relationships between plants and provide the data for a natural system of classification of the *vegetable kingdom*.

Plants are divided into *Phanerogams* and *Cryptogams*. *Phanerogams* (seed or flowering plants) are dispersed by seeds; they include Angiosperms (with *covered seeds*) and Gymnosperms (with *naked seeds*). *Cryptogams* (sporing or flowerless plants) are dispersed by spores; they include all groups below the seed plants.

A typical phanerogamic plant consists of *shoot* and *root*.

THE SHOOT

The term *shoot* includes the *stem*¹ and its *leaves*. The *stem*, or the upwardly growing *axis* of the plant terminates in a

¹ The German word "Stengel" is the botanical equivalent of the English word "stem"; the German word "Stiel" is equivalent to the English word "stalk," e.g. Blattstiel=leaf stalk. The German "Stamm" indicates in general a perennial, woody stem. It has, however, no exact equivalent in English and is translated variously as stalk, stem, trunk, according to the context.

KAPITEL I

MORPHOLOGIE

DIE LEHRE VON DER ÄUSSEREN FORM UND DEM INNEREN BAU DER PFLANZE

I. ORGANOGRAPHIE

Der Pflanzenkörper besteht aus verschiedenen Teilen, die als *Organe*, z.B. vegetative und reproduktive Organe, bezeichnet werden. In der Natur zeigen diese zusammengesetzten Organe grosse Verschiedenheit in Form und Anordnung. Die *Morphologie* untersucht und vergleicht sowohl ihre Entwicklung (*Ontogenie*) als auch ihre Struktur (*Anatomie*). Sie vergleicht auch bestehende mit fossilen Pflanzen zum Zwecke der Ergründung des Ursprungs dieser verschiedenartigen Organe (*Phylogenie*). Sie unterscheidet *homologe* Organe von gleichem Ursprung und *analoge* Organe von gleicher Funktion. Diese Vergleiche decken die natürlichen Verwandtschaften zwischen Pflanzen auf und liefern die Grundlage für ein natürliches System der *Einteilung des Pflanzenreichs*.

Die Pflanzen werden eingeteilt in *Phanerogamen* und *Kryptogamen*. Die Phanerogamen (*Samen-* oder *Blütenpflanzen*) werden durch *Samen* verbreitet; sie umfassen Angiospermen (*Bedecktsamige*) und Gymnospermen (*Nacktsamige*). Die Kryptogamen (*Sporenpflanzen* oder *blütenlose Pflanzen*) werden durch *Sporen* verbreitet; sie umfassen alle Gruppen unterhalb der Samenpflanzen.

Eine typische, phanerogame Pflanze besteht aus *Spross* und *Wurzel*.

DER SPROSS

Der Ausdruck *Spross* umfasst den *Stengel*¹ und seine *Blätter*. Der Stengel oder die aufwärts wachsende *Achse* der Pflanze endet

¹ Das deutsche Wort *Stengel* ist botanisch gleichbedeutend dem englischen Wort "stem"; das deutsche Wort "Stiel" gleichbedeutend dem englischen Wort "stalk"; z.B. Blattstiel=leaf stalk. Unter dem deutschen Wort "Stamm" versteht man im allgemeinen einen ausdauern den, holzigen Stengel. Es gibt jedoch keinen genauen, gleichbedeutenden Ausdruck im Englischen, man übersetzt es verschiedenartig mit *stalk*, *stem*, *trunk*, je nach dem Zusammenhang des Textes.

conical growing point. Rudimentary leaves appear as small protuberances on the growing point in *acropetal succession*, the youngest nearest the *apex*. The older leaves grow more rapidly than the younger and envelop the growing point to form a *bud*.

A bud is an undeveloped shoot. Buds may be *terminal* or *axillary*; *normal (exogenous)* or *adventitious (endogenous)*; *dormant* or actively growing. *Bulbils* and *gemmæ* are buds modified for storage and vegetative reproduction.

When a bud grows the axis elongates and the leaves expand. The zone of most rapid elongation lies behind the *terminal bud*. The parts of the stem where leaves arise are the *nodes*; the portions lying between the nodes are the *internodes*. In *grasses* growth occurs at the base of the internodes. This is termed *intercalary* growth. New shoots or *branches* develop from buds which are formed in the angle between stem and leaf. This angle is the *axil* and the bud is described as *axillary*.

Arrangement of leaves on the stem (phyllotaxis).—The distribution of leaves on a stem follows a regular scheme. When there is one leaf at each node the arrangement is *spiral* or *alternate* (described as di-, tri-, tetra-, or pentastichous according to the number of vertical rows formed). The angle between successive leaves is constant and is termed the *angle of divergence*. It is usually expressed as a fraction of the circumference ($1/2$, $1/3$, $2/5$, $5/13$), the *divergence*. When two leaves occur at each node the arrangement is *opposite*. When several leaves arise at each node forming a *whorl*, the arrangement is *verticillate (whorled)*. A notable case of verticillate arrangement is the *decussate*, where two leaves occur at each node, the angle of divergence between leaves at successive nodes amounting to 90° . Leaves may develop also on a subaerial stem (*cauline*) or on the crown of the root (*radical*).

Foliage leaves.—A typical foliage leaf consists of a *leaf blade (lamina)*, *leaf stalk (petiole)* and *leaf base*. If the leaf stalk is developed the leaf is *petiolate*, if absent, the leaf is *sessile*. The leaf base may be *amplexicaul*, *perfoliate* or *connate*. Occasionally paired leafy structures, *stipules*, arise from the leaf base. In the grasses the leaf base forms a *leaf sheaf* enveloping the stem. Leaves without leaf stalk and leaf base may become *adnate* to the stem and are then described as *decurrent*. The leaf blade is described as *entire* if *free from indentations*; if slightly indented as *serrate*, *dentate*, *crenate*, or *sinuate*; if the incisions do not extend as far as the middle of the blade, it is

in einem kegelförmigen *Vegetationspunkt*. Die Blattanlagen erscheinen als kleine Höcker am Vegetationspunkt in *akropetaler Reihenfolge*, die jüngsten dem *Gipfel* am nächsten. Die älteren Blätter wachsen schneller als die jüngeren und hüllen den Vegetationspunkt in Form einer *Knospe* ein.

Eine Knospe ist ein unentwickelter Spross. Knospen können *endständig* oder *achselständig* sein; *normal (exogen)* oder *adventiv (endogen)*, *schlafend* oder aktiv wachsend. *Bulbillen* und *Brutknospen* sind zur Speicherung und zur vegetativen Vermehrung umgewandelte Knospen.

Wenn eine Knospe treibt, streckt sich die Achse, und die Blätter entfalten sich. Die Zone des stärksten Wachstums liegt hinter der *Endknospe*. Die Teile des Stengels, an denen die Blätter entspringen, sind die *Knoten*, die dazwischen liegenden die *Internodien*. Bei den *Gräsern* findet das Wachstum an der Basis der Internodien statt. Dies nennt man *interkalares Wachstum*. Neue Sprosse oder *Zweige* entwickeln sich aus den Knospen, die in dem Winkel zwischen Stengel und Blatt gebildet werden. Dieser Winkel ist die *Achsel*, und die Knospe wird als *achselständig* bezeichnet.

Anordnung der Blätter am Stengel (Blattanordnung). —Die Verteilung der Blätter am Stengel folgt einem regelmässigen Schema. Wenn sich an jedem Knoten ein Blatt befindet, ist die Anordnung *spiralisch* oder *alternierend* (beschrieben als di-, tri-, tetra- oder pentastisch, je nach der Zahl der vertikalen Reihen, die gebildet werden). Der Winkel zwischen aufeinanderfolgenden Blättern ist konstant und wird als *Divergenzwinkel* bezeichnet. Er wird gewöhnlich als ein Bruchteil des Umfanges ($1/2$, $1/3$, $2/5$, $5/13$), die *Divergenz*, ausgedrückt. Wenn zwei Blätter an jedem Knoten sitzen, ist die Anordnung gegenständig. Wenn an jedem Knoten mehrere Blätter entspringen und einen *Quirl* bilden, ist die Anordnung *verticillat (wirtelig)*. Ein bemerkenswerter Fall verticillater Anordnung ist die *dekussierte*, bei der zwei Blätter an jedem Knoten sitzen und der Divergenzwinkel zwischen den Blättern aufeinanderfolgender Knoten 90° beträgt. Die Blätter können sich auch aus einem unterirdischen Stengel oder an der Wurzelkrone entwickeln.

Laubblätter. —Ein typisches Laubblatt besteht aus *Blattspreite (Lamina)*, *Blattstiél (Petiolus)* und *Blattgrund*. Wenn der Blattstiél entwickelt ist, ist das Blatt *gestielt*, wenn er fehlt, ist es *sitzend*. Der Blattgrund kann *stengelumfassend*, *verwachsen* oder *konisch* sein. Gelegentlich entspringen am Blattgrund paarige, blattähnliche Gebilde, die *Nebenblätter*. Bei den Gräsern kann der Blattgrund eine *Blattscheide* bilden, die den Stengel umgibt. Blätter ohne Blattstiél und Blattgrund können mit dem Stengel *verwachsen* sein und werden dann als *herablaufend* bezeichnet. Die Blattspreite wird als *ganzrandig* bezeichnet, wenn sie *ungezähnt* ist; wenn sie leicht gezackt ist, als

described as *lobed*; if they reach only midway between the margin and the midrib of the leaf, it is cleft (*pinnatifid*, *palmatifid*, *pectinate*); if they extend deeper it is *partite* (*pinnatipartite*, *palmatipartite*). The direction of the incisions is described as *palmate* or *pinnate* according as they run to the base of the lamina or toward the *midrib*. Where the divisions form distinct *leaflets* (*pinnæ*) separately inserted on the leaf stalk (*rachis*), the leaf is *compound*. In all other cases the leaf is *simple*. Compound leaves may be pinnately compound (*paripinnate*, *imparipinnate*, *bipinnate*) or palmately compound (*digitate*). In figure 1 are given some of the commoner shapes of leaves with the names attached to them.

FIGURE 1. SHAPES OF LEAVES.

1 *acicular*; 2 *linear*, apex truncated; 3 *lanceolate*; 4 *ovate*, apex obtuse, mucronate; 5 *elliptical*, apex acute; 6 *orbicular* or *rotund*, apex apiculate; 7 *spathulate*, apex emarginate; 8 *reniform*; 9 *cordate*, apex acuminate; 10 *sagittate*; 11 *hastate*; 12 *peltate*.

The leaf is traversed by a system of *veins* or *nerves*. The median vein which is a continuation of the petiole is the *midrib*. From the midrib arise *lateral veins*, which branch and *anastomose* to all parts of the leaf. This *system of venation* is known as *reticulate*. Where the veins run parallel to one another the venation is said to be *parallel*.

The occurrence of distinct kinds of leaves on the same plant is termed *heterophyly*. For example, many waterplants have *submerged* and *aerial leaves*. Many creeping plants show the phenomenon of *anisophyly*, i.e., the leaves on the *dorsal* and *ventral* sides of the shoot are different.

Foliage leaves of many *trees* or *shrubs* are shed periodically and the *leaf scars* mark the *place of attachment* of the leaves. When *leaf fall* occurs at the end of each *growth season*, these

gesägt, *gezähnt*, *gekerbt* oder *gewellt*; wenn sich die Einschnitte nicht bis zur Blattmitte erstrecken, wird sie als *gelappt* bezeichnet; wenn sie nur bis zur Mitte zwischen Rand und Mittelrippe des Blattes reichen, ist sie *gespalten* (*fiederspaltig*, *handförmig gespalten*); wenn sie sich tiefer erstrecken, ist sie *geteilt* (*fieder- teilig-*, *handförmig-geteilt*). Die Richtung der Einschnitte wird als *handförmig* oder *fiederartig* bezeichnet, gemäss ihrem Verlauf zur Basis der *Blattspreite* oder zur *Mittelrippe*. Wenn durch die Teilungen besondere, einzeln am *Blattstiel* (*Rachis*) sitzende *Blättchen* (*Fiederblätter*) gebildet werden, ist das Blatt *zusammengesetzt*. In allen anderen Fällen ist das Blatt *einfach*. Zusammengesetzte Blätter können gefiedert zusammengesetzt (*paarig*, *unpaarig*, *doppelt gefiedert*) oder handförmig zusammengesetzt (*gefingert*) sein. In Abbildung 1 sind einige der gewöhnlichen Blattformen mit den dazugehörigen Namen dargestellt.

ABB. 1. BLATTFORMEN.

1 *adelöförmig*; 2 *linealisch*, Spitze abgestumpft; 3 *lanzettlich*; 4 *eiförmig*, Spitze stumpf; 5 *elliptisch*, Spitze scharf; 6 *rund*; 7 *spatelförmig*, Spitze eingekerbt; 8 *nierenförmig*; 9 *herzformig*; 10 *pfeilförmig*; 11 *speerförmig*; 12 *schildförmig*.

Das Blatt wird von einem System von *Adern* oder *Nerven* durchzogen. Die mittlere Ader, die eine Fortsetzung des Stiels bildet, ist die *Mittelrippe*. Von der Mittelrippe entspringen die *Nebennerven*, die sich in allen Teilen des Blattes verzweigen und verästeln. Dieses *Adersystem* wird als *netzförmig* bezeichnet. Wenn die Adern einander parallel laufen, nennt man die Aderung *parallel*.

Das Vorkommen von verschiedenen Laubblattformen an derselben Pflanze wird als *Heterophylie* bezeichnet. Zum Beispiel haben viele Wasserpflanzen *untergetauchte* Blätter und *Airblätter*. Manche kriechenden Pflanzen zeigen das Phänomen der *Anisophylle*, d.h. die Blätter an der *dorsalen* und *ventralen* Seite des Sprosses sind verschieden.

Die *Laubblätter* vieler *Bäume* und *Sträucher* werden periodisch abgeworfen, und *Blattnarben* bezeichnen die *Ansatzstelle* der Blätter. Wenn der *Blattfall* am Ende jeder *Wach-*

woody plants are described as *deciduous*. If, however, the leaves remain active over several seasons, the plant is *evergreen*.

In addition to foliage leaves two other groups are distinguished. (1) *cotyledons* (*seed leaves*) and (2) leaves modified into *protecting organs* (*scale leaves*). The latter may be subdivided into *cataphylls*, e.g., *bud scales*, *rhizome scales*, *prophylls*, *bulb scales*, and into *hypophylls*, e.g., *bracts*, *bract scales*, *bracteoles*, *involucral leaves* (*Anemone*), *involucres*, *involucels*, *calyculi* (*Compositæ*), *spathes*, *glumes*, all of which subtend flowers.

Branching and modification of the shoot.—The main stem is the *primary axis* of the plant and from its lateral buds there may arise *lateral branches* (*secondary axes*). When the growth of the stem is continued indefinitely by the terminal bud it is said to be *monopodial*. If the growth is continued by successive lateral buds it is *sympodial*.

The aerial shoot may be *erect* or *prostrate*, or may creep along the ground as *suckers*, *runners* or *stolons*. If too weak to support itself it may climb as a *tendril-climber* (*Vitis*), *twiner* (*Convolvulus*) or *climber* (*Hedera Helix*). Subterranean shoots are known as *rhizomes*, or, if specially modified for storage, as *tubers*, *bulbs*, or *corms*.¹

A stem which assumes the function and shape of a leaf is a *cladode* (*phylloclade*), a petiole similarly modified is a *phyllode*. Many plants have herbaceous stems (*haulms*). Grasses have jointed stems (*culms*). Some stems and leaves are hollow (*fistular*). Shoots, leaves or petioles may be modified into *tendrils* for climbing (*shoot tendrils*: *Vitis*; *leaf tendrils*: *Lathyrus*; *petiole tendrils*: *Tropaeolum*). Leaves may be reduced into *spines* (*Berberis*) and stems into *thorns* (*Prunus spinosa*). Similar structures which are merely outgrowths of the epidermis are known as *emergences* or *prickles* (*Rosa*). In so-called *stem-succulents* the shoot is modified for *water storage* (*Cactaceæ*).

THE ROOT

The root is the downwardly growing axis of the plant. Its apical growing point is protected by a *root cap* from abrasion

¹ German "Knolle" is translated by the English "tuber." The botanical meaning is not the same. The word "Knolle" denotes (1) Wurzelknolle—root tuber, e.g. *Dahlia*; (2) Sprossknolle—corm, e.g. *Cyclamen*; (3) Sprossknolle—stem tuber, e.g. *Helianthus tuberosus*; (4) Rübe—storage root. The word "tuber" denotes (3) only.

tumsperiode erfolgt, werden diese holzigen Pflanzen *blattabwurfend* genannt. Wenn jedoch die Blätter während mehrerer Perioden tätig bleiben, ist die Pflanze *immergrün*.

Ausser den Laubblättern werden noch zwei Gruppen unterschieden: (1) *Kotyledonen* (*Keimblätter*) und (2) zu *Schutzorganen* umgebildete Blätter (*Schuppenblätter*). Die letzteren lassen sich wieder teilen — in *Niederblätter* z.B. *Knospenschuppen*, *Rhizomschuppen*, *Vorblätter*, *Zwiebelblätter* und — in *Hochblätter* z.B. *Deckblätter*, *Deckschuppen*, *Deckblättchen*, *Hüllblätter* (*Anemone*), *Hüllen* (*Involucrum*), *Hüllchen* (*Involucellum*), *Hüllkelch* (*Compositæ*), *Blütenscheiden*, *Spelzen*, welche vor den Blüten stehen.

Verzweigung und Umbildungen des Sprosses.—Der Hauptspross ist die primäre Achse der Pflanze, und aus ihren Seitenknospen können *Seitenzweige* (*sekundäre Achsen*) entspringen. Wenn das Wachstum des Stengels unbegrenzt durch die Endknospe fortgesetzt wird, nennt man es *monopodial*. Wenn das Wachstum durch aufeinanderfolgende Seitenknospen fortgesetzt wird, ist es *sympodial*.

Der oberirdische Spross kann *aufrecht* oder *liegend* sein oder kann am Erdboden entlangkriechen, wie *Ausläufer* oder *Stolonen*. Ist er zu schwach, sich selbst zu stützen, kann er als *Ranker* (*Vitis*), *Winder* (*Convolvulus*) oder *Klimmer* (*Hedera Helix*) klettern. Unterirdische Sprosse werden als *Rhizome* bezeichnet oder, wenn sie besonders zur Speicherung umgewandelt sind, als *Knollen*,¹ *Zwiebeln*, oder *Sprossknollen*.

Ein Stengel, der die Funktion und Gestalt eines Blattes annimmt, ist ein *Cladodium* (*Phyllocladium*), ein ähnlich umgewandelter Blattstiel ist ein *Phyllodium*. Viele Pflanzen haben krautige Stengel. Gräser haben knotige Stengel (Halme). Manche Stengel und Blätter sind hohl. Sprosse, Blätter oder Blattstiele können in *Kletterranken* umgewandelt werden (*Sprossranken*: *Vitis*; *Blattranken*: *Lathyrus*; *rankende Blattstiele*: *Tropæolum*). Blätter können zu *Blattdornen* (*Berberis*) und Stengel zu *Sprossdornen* (*Prunus spinosa*) reduziert werden. Ähnliche Gebilde, welche nur Auswüchse der Epidermis sind, werden als *Emergenzen* oder *Stacheln* (*Rosa*) bezeichnet. Bei den sog. *Stammsukkulanten* ist der Spross als *Wasserspeicher* ausgebildet (*Cactaceæ*).

DIE WURZEL

Die Wurzel ist die abwärts wachsende Achse der Pflanze. Ihr apikaler Vegetationspunkt ist durch eine *Wurzelhaube* gegen

¹ Das deutsche Wort "Knolle" wird mit dem englischen "tuber" übersetzt. Die botanische Bedeutung ist nicht die gleiche. Das Wort "Knolle" bedeutet. (1) Wurzelknolle—root tuber z.B. *Dahlia*; (2) Sprossknolle—corm z.B. *Cyclamen*; (3) Sprossknolle—stem tuber z.B. *Helianthus tuberosus*; (4) Rübe—storage root. Das Wort "tuber" gilt nur für (3).

by the soil. A root bears no leaves; the characteristic organs are the *root hairs*, which are located a short distance from the tip. The main axis of the *root system* is the *tap root*. If there is no well-developed tap-root, the root is *fibrous*. *Lateral roots* develop in acropetal succession and arise *endogenously*. *Adventitious roots* may arise from stems, roots, or even petioles. *Aerial roots* may function as *true roots* (*prop-roots* or *stilt-roots*), or as *climbing organs* (*holdfasts*), or, when they contain chlorophyll, as *assimilation-roots*. In many *swamp plants* club-shaped *respiratory-roots* (*pneumatophores*) emerge from the soil. Finally, *root-thorns* occur on the stem of certain palms. The roots of *parasitic plants* are reduced to *haustoria* (*Viscum*). If roots become *tuberous* they serve as *storage organs*. *Rhizoids* are root-like structures which, however, do not possess the characteristics of true roots.

REPRODUCTIVE ORGANS

Structure of the flower.—The flower consists of a *floral axis* or *receptacle* upon which the *floral leaves* are inserted in whorls or spirals. A complete flower possesses two rings of *floral envelopes*, the *sepals* and the *petals*. The sepals, usually green in colour, form the *calyx*, the petals, usually bright in colour, form the *corolla*. Such a flower has a *perianth*, i.e., the flower possesses two different *envelopes*; it is simultaneously *diplochlamydeous* and *heterochlamydeous*. A *perigone* is a flower which likewise has two circles of *perianth leaves*, but the sepals and petals are formed alike (*homiochlamydeous*). *Sepaloid* and *petaloid* perigones are distinguished.

Flowers with only one ring of floral envelopes (sepals or petals) are *haplochlamydeous* (*monochlamydeous*), if the rings of floral envelopes are entirely absent, the flower is naked (*achlamydeous*). If the calyx or the corolla only is absent, the flower is either *asepalous* or *apetalous*. The sepals and also the petals may be *polyphyllous* (*polysepalous*, *polypetalous*) or *gamophyllous* (*gamosepalous*, *gamopetalous*). On the *receptacle* (*torus*) are found the so-called *honey glands* (*nectaries*) which secrete a sugary solution attractive to insects. Within the perianth are situated one or more whorls of *stamens*, collectively termed the *androcium* and within these a whorl of *carpels* collectively termed the *gynoecium*.

Abschürfungen durch den Boden geschützt. Eine Wurzel trägt keine Blätter, ihre charakteristischen Organe sind die *Wurzelhaare*, die in kurzer Entfernung von der Spitze sitzen. Die Hauptachse des *Wurzelsystems* ist die *Hauptwurzel*. Wenn keine gut entwickelte Hauptwurzel vorhanden ist, ist die Wurzel *faserig*. Die *Seitenwurzeln* entwickeln sich in akropetaler Folge und entspringen *endogen*. *Adventivwurzeln* können aus Stengeln, Wurzeln oder gar Blattstielen entspringen. Luftwurzeln können als echte Wurzeln (*Stelzwurzeln*, *Stützwurzeln*) oder als Kletterorgane (*Haftwurzeln*) oder, wenn sie Chlorophyll enthalten, als *Assimulationswurzeln* dienen. Bei manchen *Sumpfpflanzen* treten kegelförmige *Atemwurzeln* (*Pneumatophoren*) aus dem Boden hervor. Endlich kommen am Stamm gewisser Palmen *Wurzeldornen* vor. Die Wurzeln parasitischer Pflanzen können zu *Haustorien* reduziert sein (*Viscum*). Wenn Wurzeln *knollenförmig* werden, dienen sie als *Speicherorgane*. *Rhizoide* sind wurzelähnliche Gebilde, die aber nicht die Charakteristika einer echten Wurzel besitzen.

FORTPFLANZUNGSORGANE (REPRODUKTIVE ORGANE)

Bau der Blüte.—Die Blüte besteht aus einer *Blütenachse* oder *Rezeptaculum*, an der die *Blütenblätter* in Quirlen oder Spiralen inseriert sind. Eine vollständige Blüte besitzt zwei *Hüllkreise*, die *Kelchblätter* (*Sepala*) und die *Blumenblätter* (*Petalæ*). Die meist grün gefärbten Kelchblätter bilden den *Kelch* (*Calix*), die meist bunten Blumenblätter bilden die *Blütenkrone* (*Corolla*). Eine solche Blüte hat ein *Perianth*, d.h. die Blüte besitzt zwei verschiedene Hüllblattkreise, sie ist *diplochlamydeisch* und gleichzeitig *heterochlamydeisch*. Ein *Perigon* ist eine Blüte, die ebenfalls zwei Kreise von Hüllblättern besitzt, jedoch sind Kelch- und Blumenblätter gleichartig ausgebildet (*homoiochlamydeisch*). Man unterscheidet *kelchblattartige* (*sepaloide*) und *blumenblattartige* (*petaloide*) Perigone.

Blüten mit nur einem Hüllkreis (Kelch- oder Blumenblätter) sind *haplochlamydeisch* (*monochlamydeisch*), fehlen die Hüllkreise ganz, so ist die Blüte nackt (*achlamydeisch*). Fehlt lediglich der Kelch oder die Korolle, ist die Blüte *asepal* oder *apetal*. Die Kelch- und auch die Blumenblätter können *getrenntblättrig* (*chorisepal*, *choripetal*) oder *verwachsenblättrig* (*synsepal*, *synpetal*) sein. Am *Blütenboden* finden sich oft sog. *Honigdrüsen* (*Nektarien*), welche eine zuckerhaltige, insektenanziehende Lösung ausscheiden. Innerhalb der Blütenhülle stehen ein oder mehrere Quirle von *Staubblättern* (*Stamina*), die in ihrer Gesamtheit als *Andrœceum* und innerhalb dieser ein Quirl von *Fruchtblättern* (*Karpelle*), die zusammen als *Gynæceum* bezeichnet werden.

The floral organs are arranged in *whorls* (*cyclic*) or in *spirals* (*acyclic*) or partly in whorls and partly in spirals (*hemicyclic*). A typical cyclic flower has sepals, petals, stamens and carpels in alternating whorls. A flower with one whorl of stamens is *haplostemonous*, with two whorls of stamens *diplostemonous* (*Lilium*) or *obdiplostemonous* (*Ericaceæ*). In the former case the stamens of the outer ring are situated opposite the sepals and in the latter case directly in front of the petals.

The Andrœcium. — Each stamen consists of a stalk or *filament* and of the *anther*. The latter consists of two pairs of *pollen sacs*, united by a continuation of the filament (*the connective*). The opening or *dehiscence* of the ripe anther may be towards the centre of the flower. In this case the anther is described as *introrse*. If the opening is toward the periphery, the anther is described as *extrorse*. If neither introrse nor extrorse the dehiscence is *marginal*.

Pollen grains, which do not escape by a *marginal slit*, escape through a *pore* or *valve*. In many plants pollen grains are smooth, dry and light, suitable for *wind distribution*; in others *spiny* and *adhesive*, suitable for *insect pollination*. Sterile stamens are termed *staminodes*.

The Gynæcium. — The carpels compose the gynæcium (*pistil*). If each carpel remains free, the gynæcium is *apocarpous*; if they unite with each other, *syncarpous*. A simple carpel consists of the *ovary* in which the *ovules* are formed, extended into a *style* and *stigma* which collects pollen grains.

The tissues of the ovary which bear the ovules are termed *placentas*. The midrib of the carpel is the *dorsal suture*, the line of union of the carpel margins is the *ventral suture*. The placentation may be *parietal*, *axile*, *basal* or *free central*. *False* or *true septa* divide the ovary into *chambers* or *loculi*.

Where, on account of the shape of the receptacle, the carpels occupy the highest position on the axis, the gynæcium is *superior* and the flower is *hypogynous*. If the receptacle is *basin-like*, and the carpels are attached to its base, the sepals and petals being on the rim, the gynæcium is still *superior* (intermediate position), but the flower is *perigynous*. When the receptacle is concave, and becomes adherent to the gynæcium, the latter is *inferior* and the flower is *epigynous*.

Die Blütenorgane sind in Kreisen (*zyklisch*) oder in einer Spirale (*azyklisch*) oder teils in Quirlen und teils in Spiralen (*hemizyklisch*) angeordnet. Eine typisch zyklische Blüte hat Kelchblätter, Blumenblätter, Staubblätter und Fruchtblätter in abwechselnden Quirlen. Eine Blüte mit einem Staubblattkreis ist *haplostemon* und mit zwei Staubblattkreisen *diplostemon* (*Lilium*) oder *obdiplostemon* (*Erica*). In ersterem Falle stehen die Staubblätter des äusseren Kreises vor den Kelchblättern und im letzteren unmittelbar vor den Blumenblättern.

Das Andrœcum. — Jedes Staubblatt besteht aus einem Faden oder *Filament* und der *Anthere*. Die letztere besteht aus zwei Paar *Pollensäcken*, die an der Fortsetzung des *Filaments* (dem *Konnektiv*) vereinigt sind. Die Öffnung oder das *Aufspringen* der reifen Anthere kann nach der Blütenmitte zu erfolgen. In diesem Falle wird die Anthere als *intrors* bezeichnet. Erfolgt die Öffnung nach der Peripherie zu, nennt man die Anthere *extrors*. Wenn weder intrors noch extrors vorliegt, erfolgt das Aufspringen *marginal*.

Pollenkörner, welche nicht durch einen *Randschlitz* freiwerden, treten durch eine *Pore* oder *Klappe* aus. Bei manchen Pflanzen sind die Pollenkörner glatt, trocken und leicht, zur Windverbreitung geeignet, bei anderen *stachelig* und *anhafrend*, für Insektenbestäubung geeignet. Sterile Staubblätter werden als *Staminodien* bezeichnet.

Das Gynæceum. — Die Fruchtblätter setzen das Gynæceum zusammen. Wenn jedes Fruchtblatt freistehend bleibt, ist das Gynæceum *apokarp*, wenn sie miteinander verwachsen, *synkarp*. Ein einfaches Fruchtblatt besteht aus dem *Fruchtknoten* (*Ovarium*), in dem die *Samenanlagen* gebildet werden und erweitert sich zu einem *Griffel* (*Stylus*) und einer *Narbe* (*Stigma*), die die Pollenkörner auffängt.

Die Gewebe des Fruchtknotens, die die Samenanlagen hervorbringen, werden als *Plazenten* bezeichnet. Die Mittelrippe des Fruchtblattes ist die *Rückennaht*, die Verwachungszone der Fruchtblattränder die *Bauchnaht*. Die Plazentenbildung kann *wandständig*, *zentralwinkelständig*, *grundständig* oder *frei zentral* sein. *Falsche* oder *echte Scheidewände* teilen den Fruchtknoten in *Kammern* oder *Fächer*.

Wenn die Fruchtblätter, infolge der Form des Rezeptakulums, die höchste Lage an der Achse einnehmen, ist das Gynæceum *oberständig*, und die Blüte ist *hypogyn*. Wenn das Rezeptakulum *schüsselförmig* ist, die Fruchtblätter an der Basis entspringen und die Kelch- und Blumenblätter am Rande stehen, ist das Gynæceum noch *oberständig* (mittelständig), aber die Blüte ist *perigyn*. Wenn das Rezeptakulum konkav ist und sich an das Gynæceum anlegt, ist das letztere *unterständig*, und die Blüte ist *epigyn*.

Most flowers possess both stamens and carpels; these are *monoclinous* (*hermaphrodite*). When stamens and carpels do not occur in the same flower, the flower is *diclinous* (*unisexual*), in this way *staminate* (male) and *carpellary* (pistillate, female) flowers arise. If hermaphrodite or staminate and carpellary flowers occur on the same individual, the plant is *monoecious*; if, however, only staminate or only carpellary flowers occur, the plant is *diœcious*.

The arrangement of the floral organs is represented schematically by the conventional floral diagram and a floral formula. The part of the flower toward the main axis is *adaxial*, the part away from the main axis is *abaxial*. The symmetry is said to be *actinomorphic* (*ray-shaped, radial*), *zygomorphic* (*monosymmetrical*) or asymmetric according to whether several, only one, or no plane of symmetry can be found.

INFLORESCENCE

As the solitary flower represents a single shoot specialised for reproduction, so the inflorescence represents a branched shoot for the same purpose. The axis of the inflorescence is the *peduncle*, its ultimate branches (the *rachides*) bear flowers. The axis of the flower is the pedicel. The branching of the inflorescence is either *racemose* (centripetal) or *cymose* (centrifugal). Further there are simple and compound inflorescences. In the following table are set out examples of some of the commoner forms of inflorescences.

1. *Simple racemose* (*botryose, monopodial*) inflorescences.
 - a. *raceme* *Cruciferæ*
 - b. *spike* *spikelet of grasses (Lolium)*
 - c. *spadix* *Arum*
 - d. *umbel* *Hedera*
 - e. *capitulum* *Compositæ*
2. *Compound racemose* inflorescences.
 - a. *panicle* *Agrostis*
 - b. *compound umbel* *Umbelliferæ*
3. *Simple cymose* (*sympodial*) inflorescences.
 - a. *pleiochasm* *Euphorbia*
 - b. *dichasium* *Caryophyllaceæ*
 - c. *monochasium* *Boraginaceæ*
 (1. *cincinnus* or *scorpioid cyme*; 2. *vovix* or
helicoid cyme)
4. *Compound cymose* inflorescences.
 - a. *cymose corymb* *Hydrangea arborescens*
 - b. *anthela* *Luzula*

Die meisten Blüten besitzen sowohl Staubblätter als auch Fruchtblätter, sie sind *monoklin* (*zwittrig*). Wenn Staubblätter und Fruchtblätter nicht in derselben Blüte auftreten, ist die Blüte *diklin* (*getrenntgeschlechtig*), es treten also *männliche* und *weibliche* Blüten auf. Wenn an demselben Individuum zwittrige oder männliche und weibliche Blüten vorkommen, ist die Pflanze *monözisch* (*einhäusig*), kommen jedoch nur männliche oder nur weibliche Blüten vor, ist sie *diözisch* (*zweihäusig*).

Die Anordnung der Blütenorgane wird schematisch dargestellt durch das herkömmliche Blütendiagramm und die Blütenformel. Der nach der Hauptachse zu gelegene Teil der Blüte ist *adaxial*, der von der Hauptachse abgewendete Teil ist *abaxial*. Die Symmetrie wird *aktinomorph* (*strahlig, radiär*), *zygomorph* (*gleichhälftig*) oder *asymmetrisch* genannt, je nachdem, ob mehrere, nur eine oder keine Symmetricebene festgestellt werden kann.

BLÜTENSTAND (INFLORESZENZ)

Während die Einzelblüte ein einzelner, für die Fortpflanzung spezialisierter Spross ist, stellt der *Blütenstand* einen verzweigten Spross für denselben Zweck dar. Die Achse des Blütenstandes ist der *Blütenstandsstiel*, seine äussersten Zweige tragen die Blüten. Die Achse der Blüte ist der *Blütenstiel*. Die Verzweigung des Blütenstandes ist entweder *racemös* (*traubig*) oder *cymös* (*trugdoldig*). Ferner gibt es einfache und zusammengesetzte Blütenstände. In der folgenden Tabelle sind Beispiele einiger gewöhnlicher Formen von Blütenständen zusammengestellt.

1. *Einfache racemöse Blütenstände.*
 - a. *Traube* *Cruciferæ*
 - b. *Ähre* *Ährchen der Gräser (Lolium)*
 - c. *Kolben* *Arum*
 - d. *Dolde* *Hedera*
 - e. *Köpfchen* *Compositæ*
2. *Zusammengesetzte racemöse Blütenstände.*
 - a. *Rispe* *Agrostis*
 - b. *zusammen- gesetzte Dolde* *Umbelliferæ*
3. *Einfache cymöse Blütenstände.*
 - a. *Pleiochasmus* *Euphorbia*
 - b. *Dichasium* *Caryophyllaceæ*
 - c. *Monochasium* *Borraginaceæ*
(1. *Wickel*, 2. *Schraubel*)
4. *Zusammengesetzte cymöse Blütenstände.*
 - a. *Trugdolde* *Hydrangea arborescens*
 - b. *Spirre* *Luzula*

The Fruit.—The ovule is an egg-shaped body attached to the placenta by a stalk, the *funicle*. The place of attachment is the *hilum*. The main mass of the ovule is the *nucellus* which is surrounded by two *integuments*, perforated at the *micropyle*. Within the nucellus lies the *embryo sac*. Three common types of ovule are distinguished; *orthotropous* (*atropous, erect*), *anatropous* (*inverted*) and *campylotropous* (*curved*). As a result of *fertilisation* and *maturity* the ovule becomes the *seed*. In the following table are set out the parts of the ovule and the corresponding parts of the seed into which they develop.

OVULE	SEED
<i>ovum</i>	<i>embryo</i>
<i>secondary nucleus</i>	<i>endosperm</i>
<i>nucellus</i>	<i>perisperm</i>
<i>integuments</i>	<i>testa or seed coat</i>
<i>micropyle</i>	<i>caruncle (<i>Ricinus communis</i>)</i>
<i>funicle</i>	<i>aril (<i>Taxus, Myristica</i>)</i>

After fertilisation growth is not confined to the ovule; the carpels are also stimulated to enlarge. Thus the *fruit* arises. *True fruits* which originate from the ovary alone are distinguished from *spurious (false) fruits* which are formed partly from receptacle and floral axis as well as the ovary. In many fruits (*Compositæ, Valerianaceæ*) the calyx modified to a *pappus* (*hairy tuft*) serves for distribution. The wall of the fruit is known as the *pericarp*. The pericarp may be differentiated into *exocarp*, *mesocarp*, and *endocarp*. Fruits are classified according to the nature of the *pericarp*, the three main classes being *dehiscent*, *indehiscent* and *schizocarpic*. In the following table brief descriptions of some of the commoner fruits are given.

TABLE OF COMMON FRUITS

A. DEHISCENT

i. DRY.

Jollicle, a single carpel splitting along the ventral suture (*Aconitum*).

legume, a single carpel splitting along ventral and dorsal sutures (*Vicia, Pisum*).

siliqua, two carpels which open along the *fusion suture* of their margins leaving a *false septum* behind. (*Sinapis: siliqua; Capsella Bursa-pastoris; silicula*.)

A siliqua split transversely into one seeded joints is a *lomentum* (*Raphanus*).

Die Frucht.—Die Samenanlage ist ein eiförmiger Körper, mit der Plazenta durch einen Stiel, den *Funiculus* (*Nabelstrang*), verbunden. Die Ansatzstelle ist das *Hilum* (*der Nabel*). Die Hauptmasse der Samenanlage ist der *Nucellus*, der von den zwei an der *Mikropyle* durchbrochenen *Integumenten* umschlossen wird. Innerhalb des *Nucellus* liegt der *Embryosack*. Man unterscheidet drei gewöhnliche Arten von Samenanlagen; *orthotrope* (*atrophe, gerade*), *anatrophe* (*umgewendete*) und *kampylotrope* (*gekrümmt*). Als Ergebnis der *Befruchtung* und *Reifung* wird die Samenanlage zum *Samen*. In der folgenden Tabelle werden die Teile der Samenanlage und die entsprechenden Teile des Samens, zu welchen sie sich entwickeln, gegenübergestellt.

SAMENANLAGE	SAME
<i>Eizelle</i>	<i>Embryo</i>
<i>sekundärer Embryo-</i>	
<i>sackkern (Zentralkern)</i>	<i>Endosperm</i>
<i>Nucellus</i>	<i>Perisperm</i>
<i>Integumente</i>	<i>Testa oder Samenschale</i>
<i>Mikropyle</i>	<i>Caruncula (<i>Ricinus communis</i>)</i>
<i>Funiculus</i>	<i>Arillus (<i>Taxus, Myristica</i>)</i>

Nach der Befruchtung ist das Wachstum nicht nur an die Samenanlage gebunden, sondern auch die Fruchtblätter werden zur Vergrösserung angeregt, so entsteht die *Frucht*. Man unterscheidet *echte Früchte*, die nur aus dem Fruchtknoten entstehen und *Scheinfrüchte*, an deren Bildung ausser dem Fruchtknoten Blütenboden und Blütenachse beteiligt sind. Bei manchen Früchten (*Compositæ, Valerianaceæ*) dient der zum *Pappus* (*Haarschopf*) umgebildete Kelch der Verbreitung. Die Fruchtwand wird als *Perikarp* bezeichnet. Das Perikarp kann in *Exokarp*, *Mesokarp* und *Endokarp* gegliedert sein. Die Früchte werden nach der Natur des Perikarps eingeteilt; die drei Hauptklassen sind *aufspringende*, nicht *aufspringende* und *schizokarpe* Früchte. In der folgenden Tabelle werden kurze Beschreibungen einiger gewöhnlicher Früchte gegeben.

TABELLE HÄUFIGER FRÜCHTE

A. AUFSPRINGEND (SPRINGFRÜCHTE)

1. TROCKEN.

Balgfrucht, ein Fruchtblatt, an der Bauchnaht aufspringend (*Aconitum*).

Hülse, ein Fruchtblatt, an Bauch- und Rückennaht aufspringend (*Vicia, Pisum*).

Schote, zwei Fruchtblätter, die sich an der *Verwachsungsnaht* ihrer Ränder öffnen und eine *falsche Scheidewand* zurücklassen (*Sinapis: Schote; Capsella Bursa-pastoris: Schötchen*).

Quer in einsame Glieder zerbrechende Schoten sind *Glieder-schoten* (*Raphanus*).

capsule, consists of two or more carpels and opens in various ways.

Special types are:—

septicidal capsule (*Colchicum*) dehiscing longitudinally along the true septa.

loculicidal capsule (*Iridaceæ*) dehiscing along the midrib of the carpel.

septifragal capsule (*Datura*) dehiscing simultaneously septically and loculicidally.

capsule opening by pores (*Papaver*) in the pericarp.

pyxidium (*Hyoscyamus*), capsule with transverse dehiscence opening by the separation of a lid.

2. FLESHY DEHISCENT FRUITS are less common. The horse chestnut capsules (*Æsculus*) are an example.

B. INDEHISCENT

1. DRY (always one-seeded).

achene (*Ranunculaceæ*, *Compositæ*), one carpel, pericarp not adhering to the testa.

caryopsis (*Gramineæ*), one carpel, membranous pericarp adhering closely to the seed.

nut (*Corylus*), one carpel, woody pericarp.

2. FLESHY (one and more seeded).

berry (*Ribes*), many-seeded, all layers of the pericarp succulent.

drupe (*Prunus*), one-seeded, the pericarp consists of woody endocarp, fleshy mesocarp and membranous exocarp.

C. SCHIZOCARPIC FRUITS

DRY, at maturity separate into *partial fruits* (*Malva*, *Erodium*).

If the floral axis (*Anacardium*) or the receptacle (*Fragaria*) as well as the ovary takes part in the formation of the fruit, then one is dealing with a *false fruit*. An example of the complete fusion of a true fruit with a false fruit is the apple.

The above fruits are *simple*. But one may have an *aggregate* of single fruits (e.g., the aggregate of drupes in the raspberry or of achenes, on a swollen receptacle modified into a false fruit, in the strawberry). Such fruits are *compound* (*aggregate fruits*). Often the axis of the *infructescence* may become thick and fleshy so that the infructescence appears as a single fruit (multiple or collective fruit), e.g., *Ficus*, *Carica*, *Morus*.

Kapsel, besteht aus zwei oder mehreren Fruchtblättern und kann sich verschiedenartig öffnen. Man unterscheidet:—
wandspaltige oder *septicide Kapsel* (*Colchicum*), öffnet sich längs der echten Scheidewand.
fachspaltige oder *loculicide Kapsel* (*Iridaceæ*), an den Mittelrippen der Fruchtblätter aufspringend.
wandbrüchige oder *septifrage Kapsel* (*Datura*) öffnet sich septicid und gleichzeitig loculicid.
Porenkapsel (*Papaver*), öffnet sich durch Löcher in der Fruchtwand.
Deckelkapsel (*Hyoscyamus*), öffnet sich durch Ablösung eines Deckels.

2. **FLEISCHIGE AUFSPRINGENDE FRÜCHTE** sind weniger häufig. Die Rosskastanienkapseln (*Æsculus*) sind ein Beispiel.

B. NICHT AUFSPRINGEND (SCHLIESSFRÜCHTE)

1. **TROCKEN** (stets einsamig).

Achäne (*Ranunculaceæ*, *Compositæ*), ein Fruchtblatt, Perikarp mit der Samenschale nicht verwachsen.

Karyopse (*Gramineæ*), ein Fruchtblatt, häutiges Perikarp, mit dem Samen fest verwachsen.

Nuss (*Corylus*), ein Fruchtblatt, holziges Perikarp.

2. **FLEISCHIG** (ein- und mehrsamig).

Beere (*Ribes*), mehrsamig, alle Schichten des Perikarps saftig.

Steinfrucht (*Prunus*), einsamig, das Perikarp besteht aus holzigem Endokarp, fleischigem Mesokarp und hautigem Exokarp.

C. SCHIZOKARPE FRÜCHTE

TROCKEN, bei der Reife in *Teilfrüchte* zerfallend (*Malva*, *Erodium*).

Ist an der Fruchtbildung ausser dem Fruchtknoten auch die Blütenachse (*Anacardium*) oder der Blütenboden (*Fragaria*) beteiligt, so handelt es sich um eine *Scheinfalte*. Ein Beispiel für die völlige Verwachsung einer echten Frucht mit einer Scheinfalte ist der Apfel.

Die oben genannten Früchte sind *einfach*. Es kann aber auch ein *Aggregat* von Einzelfrüchten auftreten (z.B. Aggregat von Steinfrüchten bei der Himbeere oder von Nüsschen auf einem angeschwollenen, zu einer Scheinfalte umgewandelten Blütenboden bei der Erdbeere). Derartige Früchte sind *zusammengesetzt* (*Sammelfrüchte*). Oft können sich auch die Achsen der Fruchstände fleischig verdicken, so dass der Fruchtstand als eine einzige Frucht erscheint z.B. *Ficus Carica*, *Morus*.

CHAPTER II

MORPHOLOGY (ctd.)

II. INTERNAL STRUCTURE—ANATOMY AND HISTOLOGY

The *plant body* is constructed of microscopically small chambers or *cells*. Single cells are often *spherical*, while in the higher plant cells are *cubical*, *rectangular*, *polyhedral*, or *prismatic*. Each cell consists of a firm membrane, the *cell wall*, which encloses a *cell cavity*, the *lumen*. Embryonic cells have the greater part of the lumen occupied by an oval body, the *nucleus*, and the remaining space by a finely granular viscid substance, the *cytoplasm*, in which highly *refractive* bodies (*chromatophores*) are found. Nucleus, cytoplasm, and chromatophores, form the living substance of the plant, the *protoplasm*. In older cells cavities (*vacuoles*) appear. These are filled with a watery fluid, the *cell sap*. In a fully grown cell the cytoplasm is reduced to a thin layer lining the inside of the cell; and the nucleus is either embedded in the *peripheral* layer or suspended in the centre of the cell by *bands of cytoplasm* which traverse the lumen. In the oldest cells cytoplasm is so reduced in amount that it is extremely difficult to distinguish it.

Protoplasm contains a complex mixture of *proteins*, each of which contains a number of *amino-acids* in the molecule. The proteins are *insoluble* in water but readily form *colloidal* solutions or “*sols*.” The liquid sol passes easily to a more rigid “*gel*” condition, and vice versa. The *viscosity* of protoplasm depends upon the sol and gel condition of its proteins. The dispersed particles of a colloidal solution are *aggregates* of molecules and they show continuous movement, known as *Brownian movement*. They provide a large *internal surface* to the disperse medium, and on that surface *adsorption* phenomena occur.

The *nucleus* has a definite outline, the *nuclear membrane*. The mass of the nucleus is made up of a *chromatin network*, *nucleoli* and a *nuclear cavity* within the network.

KAPITEL II

MORPHOLOGIE (Forts.)

II. INNERER BAU—ANATOMIE UND HISTOLOGIE

Der *Pflanzenkörper* setzt sich aus mikroskopisch kleinen Gebilden, den *Zellen*, zusammen. *Einzeller* sind meist *rund*, während die Zellen höherer Pflanzen *viereckig*, *rechteckig*, *vielseitig* oder *prismatisch* sind. Jede Zelle besitzt eine feste Membran, die *Zellwand*, welche einen *Zellraum*, das *Zellumen* abgrenzt. Bei embryonalen Zellen ist der grösste Teil des Lumens mit einem ovalen Körper, dem *Zellkern* und der restliche mit einer feingekörnten, zähen Substanz, dem *Zytoplasma*, ausgefüllt, in dem sich stark *lichtbrechende* Körper (*Chromatophoren*) befinden. Zellkern, Zytoplasma und Chromatophoren bilden die lebende Substanz der Pflanze, den *Protoplasm*. In älteren Zellen erscheinen Hohlräume (*Vakuolen*). Diese sind mit einer wässrigen Flüssigkeit, dem *Zellsaft*, gefüllt. Bei völlig entwickelten Zellen ist das Zytoplasma auf eine dünne Schicht, die an der Innenseite der Zellwand liegt, beschränkt, und der Zellkern ist entweder in dieser *peripherären* Schicht eingebettet oder in der Mitte der Zelle an *Zytoplasmasträngen*, die das Zellumen durchziehen, *aufgehängt*. In den ältesten Zellen ist das Zytoplasma meist so stark reduziert, dass es sehr schwer auffindbar ist.

Das *Protoplasma* enthält komplizierte *Eiweissverbindungen*, die im Molekül verschiedene *Aminosäuren* enthalten. Die Eiweissverbindungen sind in Wasser *unlöslich*, bilden jedoch *kolloidale* Lösungen oder "Sole." Das flüssige Sol kann leicht in einen festeren Zustand, das "Gel," übergehen und umgekehrt: Die *Viskosität* des Protoplasma ist von dem Sol- oder Gelzustand seiner Eiweissverbindungen abhängig. Die dispersen Teile von kolloidalen Lösungen sind *Anhäufungen* von Molekülen und befinden sich in dauernder Bewegung, die man als *Brown'sche Molekularbewegung* bezeichnet. Sie erzeugen eine grosse *innere Oberfläche* gegenüber dem Dispersionsmittel, und an dieser Oberfläche spielt sich das Phänomen der *Adsorption* ab.

Der *Zellkern* besitzt eine deutliche Abgrenzung, die *Zellkernwand*. Die Masse des Zellkerns enthält ein *Chromatingerüst*, die *Kernkörperchen* (*Nucleoli*) und einen *Kernraum* innerhalb des Chromatingerüsts.

Chromatophores.—The plastids of the embryonic cell may develop into *chromatophores* (*chloroplasts*, *leucoplasts*, or *chromoplasts*). Chloroplasts are green granules containing the *pigment chlorophyll*. Leucoplasts are colourless plastids. Chromoplasts contain no chlorophyll but other colouring matters, usually *derivatives of carotin* and *xanthophyll*.

The *cell sap* contains inorganic salts (*nitrates*, *phosphates*, etc.) and dissolved *assimilation products* (e.g., *sucrose*, *fructose*, *maltose*). Its acid reaction results from the presence of *organic acids*, generally *malic*, *tartaric* and *oxalic acids*. The colour of the cell sap is due to *anthocyanin* pigments. Solid *inclusions* both *crystalline* and *amorphous* in nature or *fat droplets* are conspicuous in the cell sap of certain plants. Some of these inclusions are constant in shape, e.g., *raphides* of *calcium oxalate* in the *Liliaceæ* and *cystoliths* of *calcium carbonate* in *Moraceæ*.

The *cell wall* consists of *celluloses*, *hemicelluloses*, and *pentosans* which may change during the life of the plant. The young cell wall is more *extensible* and more susceptible to water loss than the mature cell. Extension of the cell wall takes place by *apposition* or by *intussusception*. The chemical changes which reduce the permeability of the cell wall to water are *lignification*, or *wood formation*, *suberisation*, or the formation of *cork lamellæ*, and *cutinisation*, or the secondary deposition of cutin on the cellulose of the wall. The *middle lamella* is the original thin septum separating two cells and consists of *pectin*. The further deposition of lamellæ interferes with the passage of material between cells, but the primary wall persists at certain points, preserved in the form of circular or elliptical *pits* through which protoplasmic continuity is maintained. The *strands of protoplasm* connecting one cell with another are known as *plasmodesma*.

TISSUE FORMATION.

In the higher plants individual cells are arranged in groups known as *tissues*. Tissues may be formed by *differentiation* (e.g., *fibres*) or by *fusion* (e.g., *vessels*). Tissues are of two kinds, *meristematic tissue* and *permanent tissue*.

A meristematic tissue is distinguished according to its origin as *primary* (at the *growing point* in the stem and the root) or as *secondary* (when derived from permanent tissue, e.g., for the purpose of producing cork).

Permanent tissue is described as *primary* or *secondary* according as it is derived from *primary* or *secondary* meristem.

Chromatophoren.—Die Plastiden der embryonalen Zellen können sich zu *Chromatophoren* (*Chloroplasten*, *Leukoplasten* oder *Chromoplasten*) entwickeln. Die Chloroplasten sind grüne Körper, die *Chlorophyllfarbstoff* enthalten. Leukoplasten sind farblose Plastiden. Chromoplasten enthalten kein Chlorophyll sondern andere Farbstoffe, gewöhnlich *Abkömmlinge* des *Karotins* und *Xanthophylls*.

Der Zellsaft enthält anorganische Salze (*Nitrate*, *Phosphate* usw.) und gelöste *Assimilationsprodukte* (z.B. *Saccharose*, *Fruktose*, *Maltose*). Seine saure Reaktion führt von *organischen Säuren*, gewöhnlich von *Apfelsäure*, *Weinsäure* oder *Oxalsäure* her. Die Farbe des Zellsaftes wird durch *Anthozyanfarbstoffe* hervorgerufen. Im Zellsaft bestimmter Pflanzen sind *Einschlüsse kristallinischer* oder *amorpher* Natur oder *Fettropfchen* deutlich sichtbar. Einige dieser Einschlüsse sind von bestimmter Form z.B. *Raphiden* von *Kalziumoxalat* bei den *Liliaceen* und *Zystolithen* von *Kalziumkarbonat* bei den *Moraceen*.

Die Zellwand besteht aus *Zellulosen*, *Hemizellulosen* und *Pentosanen*, die sich während der Entwicklung der Pflanze verändern können. Die junge Zellwand ist stärker *dehnbar* und empfindlicher gegen Wasserverlust als die ältere Zelle. Die Zellwandzunahme geschieht entweder durch *Apposition* (*Anlagerung*) oder *Intussuszeption* (*Einlagerung*). Die chemischen Veränderungen, die eine Verminderung der Durchlässigkeit von Zellwänden für Wasser bewirken, sind *Lignifikation* oder *Verholzung*, *Suberineinlagerung* oder Bildung von *Korklamellen* und *Kutinisierung* oder sekundäre Ablagerung von *Kutin* auf die Zellulosewand. Die *Mittellamelle* ist die ursprüngliche dünne Scheidewand zwischen zwei Zellen, die aus *Pektin* besteht. Bei Auflagerung von weiteren Lamellen wird der Nährstoffaustausch zwischen den Zellen unterbunden, jedoch bleibt die ursprüngliche Zellwand an bestimmten Stellen in Form von runden oder ovalen, dünnen *Stellen* erhalten, durch die die protoplasmatische Verbindung bestehen bleibt. *Protoplasmafäden*, die von einer Zelle zur anderen gehen, nennt man *Plasmodesmen*.

GEWEBEBILDUNG

Bei höheren Pflanzen treten einzelne Zellen zu Gruppen, den *Geweben* zusammen. Die Gewebe können sich *differenzieren* (z.B. *Fasern*) oder Zellen können miteinander *fusionieren* (z.B. *Tracheen*). Es gibt zwei Arten von Geweben, *Bildungsgewebe* (*Meristeme*) und *Dauergewebe*.

Ein Bildungsgewebe wird seiner Entstehung nach als *primär* bezeichnet (an *Vegetationspunkten* des Sprosses und der Wurzel) und als *sekundär* (wenn es sich aus Dauergewebe entwickelt, z.B. um Kork zu bilden).

Ein Dauergewebe kann als primär oder sekundär bezeichnet werden, je nachdem es aus primärem oder sekundärem Meristem

It is distinguished as *parenchyma* or *prosenchyma* according to the shapes of the cells; further as *mechanical*, *conducting*, *ground*, *secretory* or *glandular* according to the function of the cells. The arrangement of these tissues in the stem, in the root and in the leaf is remarkably constant within the various groups of the Angiosperms.

All organs of the higher plants arise from the *apical cells* of the *growing points* by *anticlinal* and *periclinal* divisions. In the growing point three layers of cells are formed : (a) *dermatogen*, a superficial layer formed by anticlinal divisions and giving rise to the *epidermis*, (b) *periblem*, an intermediate series of cells, formed by periclinal and anticlinal divisions and giving rise to the *cortex* (and *mesophyll* of the *leaf*), (c) *plerome*, the innermost series, which divides in all directions and gives rise to the *pith* and to the *procambial strands* of the *stele*.

Calyptrogen is a layer of cells which lies in front of the growing point of the root and gives rise to the *root cap*.

Behind the growing point *differentiation* takes place. In the following section the tissues seen in transverse section of a *dicotyledonous* stem and root are described.

HERBACEOUS DICOTYLEDONOUS STEM

The stem is bounded by an *epidermis*, a single continuous *layer of cells* covered by *cuticle* and sometimes *impregnated* with *wax*. Beneath the epidermis is a band of parenchymatous tissue, the *cortex*. Some of these cortical tissues have their cellulose walls *thickened* at the corners, to form *collenchyma*. The inner cortical cells are thin walled and between them are more or less conspicuous *intercellular spaces*. The innermost layer is the *endodermis* or *starch sheath*. Within this is the *central cylinder* or *stele*, which comprises *pericycle*, *vascular bundles*, *medullary rays* and *medulla (pith)*.

The *pericycle* is a region of cells beneath the endodermis which frequently differentiates into *fibres (sclerenchyma)* in dicotyledonous plants.

The *vascular bundles* (also termed *conducting bundles*, *fibro-vascular bundles*, *mestome*) are the conducting strands and are supported by mechanical elements. They have two distinct parts: (1) The *primary phloem* (*sieve tube* portion or *leptome*) which lies towards the cortex, and (2) *primary xylem* or *woody* portion (*vascular* portion or *hadrome*) lies towards the pith. Between them is a meristematic layer, the *cambium*.

entsteht. Nach der Zellform unterscheidet man *Parenchym* und *Prosenchym*, ferner nach der Funktion der Zellen *mechanische*, *leitende Gewebe*, *Grundgewebe*, *Sekret-* und *Drüsenzellen*. Die Anordnung dieser Gewebe im Stengel, in der Wurzel und im Blatt sind innerhalb der verschiedenen Angiospermen-Gruppen auffällig gleichbleibend.

Sämtliche Organe der höheren Pflanze entstehen aus *Scheitelzellen* der *Vegetationspunkte* durch *antikline* und *perikline* Teilung. Im Vegetationspunkt werden drei Zellschichten gebildet: (a) das *Dermatogen*, eine äussere Schicht, die sich durch antikline Teilung der Zellen bildet und aus der die *Epidermis* entsteht, (b) das *Periblem*, eine mittlere Zellschicht, die durch perikline und antikline Teilung gebildet wird und aus der die *Rinde* (beim Blatt das *Blattmittelgewebe*, *Mesophyll*) entsteht, (c) das *Plerom*, die innersten Schichten, die sich nach allen Richtungen teilen und aus denen das *Mark* und die *Prokambium-Stränge* des *Zentralzylinders* entstehen.

Dem Vegetationspunkt der Wurzel ist eine Zellenlage, das *Calyptrogen* vorgelagert, aus dem die *Wurzelhaube* gebildet wird.

Hinter dem Vegetationspunkt tritt die *Differenzierung* ein. Im folgenden Abschnitt werden die Gewebe beschrieben, die im Querschnitt eines *dikotylen* Stammes und einer Wurzel vorkommen.

STENGEL EINER KRAUTIGEN DIKOTYLE

Der Stengel ist von einer *Epidermis* umgeben, einer fortlaufenden *Zellschicht*, die von der *Kutikula* bedeckt und manchmal mit *Wachs imprägniert* ist. Unterhalb der Epidermis befindet sich eine Zone aus parenchymatischem Gewebe, die *Rinde*. Einige dieser Rindenzellen zeigen in den Ecken eine *Verdickung* der Zellulosewand und bilden das *Kollenchym*. Die inneren Rindenzellen sind dünnwandig, und zwischen ihnen sind mehr oder weniger deutliche *Interzellularräume*. Die innerste Schicht ist die *Endodermis* oder *Stärkescheide*. Innerhalb dieser befindet sich der *Zentralzylinder* (Stele), der aus *Perizykel*, *Gefäßbündeln*, *Markstrahlen* und *Mark* besteht.

Das *Perizykel* ist eine Zellschicht unter der Endodermis, die bei Dicotyledonen öfter *Fasern* (*Sclerenchym*) bildet.

Die *Gefäßbündel* (*Leitbündel*, *Fibrovasalbündel*, *Mestom*) sind *Leitbahnen*, die durch mechanische Elemente gestützt werden. Sie besitzen zwei deutlich unterschiedene Teile: (1) Das *primäre Phloëm* (*Siebteil* oder *Leptom*), das nach der Rinde zu liegt und (2) das *primäre Xylem* oder der *Holzteil* (*Vasalteil*, *Hadrom*), der nach dem Mark zu liegt. Zwischen diesen liegt ein meristematisches Gewebe, das *Kambium*.

The tissues composing the *phloem* are:—*sieve tubes*, which are long and traversed by *oblique perforated septa*—the *sieve plates*. Further the phloem contains *companion cells*, *cambium cells*, *bast fibres* (*sclerenchymatous fibres*) and *phloem parenchyma*.

The tissues composing the *xylem* are:—*vessels*, which are open channels with *lignified* walls and no contents (formed by the fusion of two or more cells); *tracheids*¹ which are thin-walled, lignified and *pitted* cells without contents; and finally *libriform* tissue, *substitute fibres* and *xylem parenchyma*. The first formed vessels (*protoxylem*) lie nearest the pith and such an arrangement is said to be *endarch* (or the wood is *centrifugal*). From the protoxylem towards the periphery the structure of the vessels changes; the *annular* vessels of the protoxylem are succeeded by *spiral*, *reticulate*, *pitted* and *scalariform* vessels and by *fibrous tracheids*, in the *metaxylem*. The tracheids may be closed by *thyloses*.

The *cambial* cells maintain their activity. They are rectangular in transverse section, with conspicuous nuclei and small vacuoles.

In the *monocotyledonous* stem the stele is large relative to the cortex and the conducting bundles are *irregularly arranged* in it. The bundles are *closed*, without cambium, in contrast to the open bundle, with cambium, described above. A vascular bundle may be *collateral*, *bicollateral* or *concentric*.

CAMBIAL ACTIVITY AND THE WOODY STEM

Increase in girth of the stem (*secondary thickening*) depends on the activity of the cambium. The *fascicular* cambium first becomes active and subsequently *interfascicular* cambium is developed in the primary *medullary rays*. The cambium cuts off *xylem* (wood) towards the pith and *phloem* (bast) towards the periphery of the stem. *Resin canals* occur in the wood of gymnosperms. The products of division of certain cambial cells do not develop normally into *xylem* or *phloem*, but remain undifferentiated; so that *primary medullary rays* are continued and *secondary medullary rays* are formed.

The vessels formed by the cambium in the spring are *large* and numerous (*early wood*, *spring wood*). In the autumn the

¹ In English “*Tracheæ*” is a general term for all water conducting elements of the wood. It comprises true *vessels*, i.e. vessels arising by the fusion of cells, and *tracheids*, which represent single cells.

Das *Phloëmgewebe* setzt sich zusammen: aus *Siebröhren*, die langgestreckt sind und von *schrägliegenden durchlöcherten Querwänden*, den *Siebplatten*, unterbrochen werden. Ferner enthält das Phloëm *Geleitzellen*, *Kambiformzellen*, *Bastfasern* und *Siebparenchym*.

Das *Xylemgewebe* setzt sich zusammen: aus *Tracheen*,¹ das sind offene, inhaltslose Röhren mit *verholzter* Wandung (durch Fusion von zwei oder mehreren Zellen entstanden), aus *Tracheiden*,¹ das sind dünnwandige, verholzte und getüpfelte Zellen ohne Inhalt und schliesslich aus *Libriformfasern*, *Ersatzfasern* und *Holzparenchym*. Die zuerst gebildeten Tracheen (*Protoxylem*) liegen dem Mark am nächsten; eine derartige Bauart nennt man *endarch* (oder das Holz wird *zentrifugal* gebildet). Von dem Protoxylem nach der Peripherie hin verändert sich die Struktur der Tracheen; die Ringgefässe des Protoxylems werden später ersetzt durch *spiraling*, *netzförmig*, *pustelförmig* und *treppenförmig* verdickte Tracheen und durch *faserartige* Tracheiden im *Metaxylem*. Die Tracheen können durch *Thyllen* verschlossen werden.

Die Zellen des *Kambiums* behalten ihre Teilungsfähigkeit. Sie sind im Querschnitt rechtwinklig mit deutlichen Zellkernen und kleinen Vakuolen.

Beim *monokotylen* Stamm ist der innere Teil im Vergleich zur Rinde verhältnismässig breit, und die Leitbündel sind *unregelmässig angeordnet*. Die Leitbündel sind *geschlossen*, ohne Kambium, im Gegensatz zu den oben beschriebenen offenen Leitbündeln mit Kambium. Ein Gefässbündel kann *kollateral*, *bikollateral* oder *konzentrisch* sein.

DIE TÄTIGKEIT DES KAMBIUMS UND DER HOLZIGE STAMM

Das *Dickenwachstum* des Stammes (*sekundäres Dickenwachstum*) hängt von der Tätigkeit des Kambiums ab. Zunächst tritt das *Fascikularkambium* in Tätigkeit und darauffolgend entsteht in den primären *Markstrahlen* das *Interfascikularkambium*. Das Kambium scheidet nach dem Mark zu das *Xylem* (Holz) und nach der Peripherie des Stammes das *Phloëm* (Bast) ab. Härzkanäle (Harzgänge) findet man im Gymnospermenholz. Die Teilungsprodukte von gewissen Kambialzellen entwickeln sich nicht normal zu Xylem und Phloëm sondern bleiben unendifferenziert, so dass *primäre Markstrahlen* weitergebildet werden und *sekundäre Markstrahlen* entstehen.

Die Gefässe, die vom Kambium im Frühjahr gebildet werden, sind *weitlumig* und *zahlreich* (*Frühholz*, *Frühlingsholz*), im

¹ Im Englischen ist "Tracheae" eine allgemeine Bezeichnung für alle wasserleitenden Elemente des Holzes. Sie umfasst *Tracheen*, d.h. Gefässe, die durch Zellfusion entstehen und *Tracheiden*, die einzelne Zellen darstellen.

vessels are smaller and the proportion of tracheids increases (*late wood, autumn wood*). In winter the growth is at a standstill. This periodic activity of the cambium gives the appearance of *annual rings* which mark the yearly intervals of growth. The increment of wood is greater than that of bast, so that the *bulk* of the woody stem is xylem. Owing to the formation of *tannins, gums* and *colouring matters* the wood becomes dark with age, and in this condition it is known as *heart-wood* as distinct from *sap-wood (splint)*.

As a result of the expansion of the stele the epidermis is ruptured. A new meristem (the *phellogen*) originates in the cortex (or sometimes in the *pericycle*). This phellogen cuts off *cork cells (cork)* towards the periphery and *phelloderm* from which *secondary cortex* arises, towards the centre. *Periderm* is the name given to cork, phellogen and phelloderm. Secondary phellogen arises in the parenchyma of the bast. *Bark* is the name given to the dead tissue external to the secondary phellogen. *Ringed bark* is distinguished from *scaly bark*.

Since cork is *impervious* to water and gas, pockets of loose cells, *lenticels*, occur in the cork and through these *aeration* takes place.

HEALING OF WOUNDS

Woody plants react to wounding by the formation of *callus*. A *cork cambium* forming *wound cork* may develop in the callus. Wood produced over wounds is *callus wood*.

THE LEAF

The leaf forms a *lamina (blade)* and is bounded on the *adaxial* surface by the *upper* epidermis and on the *abaxial* surface by the *lower* epidermis. Between these layers lies a band of chlorophyll-containing tissue, the *mesophyll*. The upper mesophyll is the *palisade* parenchyma and the lower mesophyll is the *spongy* parenchyma. The lower, and sometimes also the upper epidermis, is interrupted by *stomata*. A *stoma* is a *pore* surrounded by two *guard cells*. Immediately behind the pore is a large *intercellular space (respiratory cavity, air chamber)* which communicates with the *intercellular system* of the plant. The *xylem* lies above the *phloem* in the *vascular bundle* of the leaf. The bundle is provided with a sheath (bundle sheath). Separation of the leaf from the plant is affected by the formation of an *absciss layer* at the base of the petiole.

Herbst sind die Gefäße enger, und die Zahl der Tracheiden nimmt zu (*Spätholz, Herbstholz*). Im Winter kommt das Wachstum zum Stillstand. Diese periodische Tätigkeit des Kambiums lässt die *Jahresringe* erscheinen, die die jährlichen Wachstumsintervalle anzeigen. Das Wachstum des Holzteils ist stärker als das des Siebteils, so dass die *Hauptmasse* des Stammes aus Xylem besteht. Durch Bildung von *Gerbsäure, Harz* und *Farbstoffen* wird das Holz mit zunehmendem Alter dunkler, und dann spricht man von *Kernholz* im Gegensatz zum *Splintholz (Splint)*.

Durch das Dickenwachstum des Zentralzylinders reisst die Epidermis. Ein neues Meristem (*das Phellogen*) entsteht in der Rinde (oder manchmal im *Perizykel*). Das Phellogen scheidet *Korkzellen (Kork)* nach aussen und *Phelloderm*, aus dem die sekundäre Rinde entsteht, nach innen ab. *Periderm* ist die Bezeichnung für Kork, Phellogen und Phelloderm. Sekundäres Phellogen entsteht im Parenchym der Bastzone. *Borke* nennt man das tote Gewebe, das ausserhalb des sekundären Phellogens liegt. Man unterscheidet *Ringelborke* und *Schuppenborke*.

Da Kork gegen Wasser und Gase *undurchlässig* ist, bilden sich im Kork Trichter mit lockeren Zellen, die *Lentizellen*, und durch diese kann die *Durchlüftung* vor sich gehen.

WUNDHEILUNG

Holzpflanzen reagieren auf die Verwundung durch die Bildung von *Kallus*. Ein *Korkkambium*, das *Wundkork* bildet, kann sich im Kallus entwickeln. Holz, das über der Verwundung erzeugt wird, nennt man *Kallusholz*.

DAS BLATT

Das Blatt bildet eine *Blattfläche* und wird an der *Oberseite* durch eine *obere* und an der *Unterseite* durch eine *untere* Epidermis begrenzt. Zwischen diesen beiden Schichten liegt ein *chlorophyllhaltiges* Gewebe, das *Mesophyll*. Das obere Mesophyll wird als *Palisadenparenchym* und das untere Mesophyll als *Schwammparenchym* bezeichnet. Die untere und in einigen Fällen auch die obere Epidermis wird durch *Spaltöffnungen (Stomata)* unterbrochen. Eine *Spaltöffnung* ist eine *Öffnung*, die von zwei *Schliesszellen* umrandet wird. Unmittelbar hinter dieser Öffnung befindet sich eine grosse *Interzellulare (Atemhöhle)*, welche mit dem *Interzellulärsystem* der Pflanze in Zusammenhang steht. Bei den *Gefäßbündeln* des Blattes liegt der Holzteil über dem Siebteil. Das Gefäßbündel ist mit einer Scheide versehen. Die *Loslösung* des Blattes von der Pflanze wird durch Bildung eines *Trennungsgewebes* an der Basis des Blattstieles erreicht.

THE ROOT

The arrangement of tissues is similar to that of the stem, but the proportion of cortex to stele is greater. The outermost layer of the root (*piliferous layer*) from which *root hairs* arise is non-cuticularised. The cortex has a well-defined outer layer, the *exodermis*, and a distinct innermost layer, the *endodermis*. The latter may often be distinguished by thickenings on the *radial walls*, the *Casparian strips*.

Within the stelar column, the phloem and xylem occur *alternately (radially)* round a very small pith. According to the number of xylem and phloem groups, a root is *diarch*, *triarch*, *tetrarch*, *pentarch* or *polyarch*. The arrangement of tissues is termed radial in contrast to the *collateral* arrangement in stems. Xylem develops *centripetally*, and therefore the metaxylem occupies the centre of the root and the protoxylem is toward the outside (*exarch*).

THE FLOWER

The *sepals* and *petals* of most flowers are simple in their anatomy, being simplified and modified leaves. The essential structures, the *stamens* (*microsporophylls*) and the *carpels* (*macrosporophylls*) arise as *papillæ* or *ridges* on an *apical cone*. Subsequent differentiation of their inner cells takes place with the production of *micro-* and *macrosporangia*.

The *pollen sac* (*microsporangium*) originates from a pollen sac *initial cell*, which enlarges and divides to give an *archesporium* and an *outer layer*, the wall of the pollen sac. This tissue possesses three layers of cells, the *tapetum*, the *fibrous layer* (*endothecium*) and the *epidermis*. The cells of the archesporium divide repeatedly and finally become isolated from each other. In this stage they are known as the *pollen mother cells* (*microspore mother cells*). By a *reduction division* (*meiosis*) they develop into *pollen grains* (*microspores*). The pollen grains often cling together in pyramidal groups of four (*tetrads*).

The mature pollen grain has an external wall, the *exine* (cell wall) and an *intine* (protoplasmic membrane). These enclose a *vegetative* and a *generative nucleus*. The latter divides again to form two *generative nuclei*, usually when the *pollen grain* grows out into the *pollen tube*.

The *ovule* (*macrosporangium*) develops as a small outgrowth of the carpel, consisting mainly of *nucellus*. Within this, there is a single celled *archesporium*, the *embryo sac mother cell* (*macrospore mother cell*) which undergoes reduction division. Of the four *daughter nuclei* formed, only one persists as the *primary*

DIE WURZEL

Die Anordnung der Gewebe ist der des Stammes ähnlich, aber der Anteil der Rinde im Verhältnis zum Zentralzylinder ist grösser. Die äusserste Schicht der Wurzel, aus der die *Wurzelhaare* entstehen, besitzt keine Kutikula. Die Rinde besteht aus einer äusseren Schicht, der *Exodermis* und einer deutlichen inneren Schicht, der *Endodermis*. Letztere ist öfter an einer Verdickung der *radialen* Zellwände, den *Casparischen Streifen*, kenntlich.

Im Zentralzylinder sind das Phloëm und Xylem *abwechselnd* (*radial*) um das verschwindend kleine Mark gelagert. Nach der Anzahl der Xylem- und Phloëm-Gruppen ist die Wurzel *diarch*, *triarch*, *tetrarch*, *pentarch* oder *polyarch*. Die Anordnung der Gewebe wird als *radial* bezeichnet, im Gegensatz zu der *kollateralen* im Stengel. Das Xylem entwickelt sich *zentripetal*, deshalb nimmt das Metaxylem die Mitte der Wurzel ein, und das Protoxylem liegt weiter aussen (*exarch*).

DIE BLÜTE

Die *Kelch-* und *Blumenblätter* der meisten Blüten sind einfach in ihrer Anatomie, sie stellen vereinfachte und abgeänderte Blätter dar. Die wesentlichen Bestandteile, die *Staubblätter* (*Mikrosporophylle*) und die *Fruchtblätter* (*Makrosporophylle*) entstehen als *Papillen* oder *Höcker* an einem *apikalen Kegel*. Bei der nachfolgenden Differenzierung der inneren Zellen werden *Mikro-* und *Makrosporangien* gebildet.

Der *Pollensack* (*Mikrosporangium*) entsteht aus einer Pollensack-*Initialzelle*, welche sich vergrössert und durch Teilung ein *Archespor* und eine *äussere Schicht*, die Wand des Pollensacks, bildet. Dieses Gewebe besitzt drei Zellreihen, die *Tapetenschicht*, die *Faserschicht* und die *Epidermis*. Die Zellen des Archespors teilen sich wiederholt und trennen sich schliesslich voneinander. In diesem Stadium werden sie als *Pollenmutterzellen* (*Mikrosporemutterzellen*) bezeichnet. Sie entwickeln sich durch *Reduktionsteilung* (*Meiosis*) zu *Pollenkörnern* (*Mikrosporen*). Die Pollenkörner hängen öfter in *pyramidenförmigen* Gruppen zu vieren (*Pollentetraden*) zusammen.

Das reife Pollenkorn besitzt eine äussere Wand, die *Exine* (Zellwand) und eine *Intine* (Protoplasmahaut). Diese schliesst einen *vegetativen Kern* und einen *generativen Kern* ein. Letzterer teilt sich wiederum in *zwei generative Kerne* und zwar meist, wenn das Pollenkorn zum Pollenschlauch auswächst.

Die *Samenanlage* (*Makrosporangium*) entwickelt sich aus einem kleinen Höcker des *Fruchtblattes* und besteht hauptsächlich aus dem *Nucellus*. In ihm befindet sich ein *einzelliges Archespor*, die *Embryosackmutterzelle* (*Makrosporenmutterzelle*), die in Reduktionsteilung übergeht. Von den vier gebildeten

nucleus of the embryo sac (macrospore).

The nucellus is surrounded by two *integuments* which have an opening at their tip, the *micropyle*. At the micropylar end of the mature *embryo sac* lie three nuclei which constitute the *egg apparatus*, an *ovum* and two *synergidae*. At the *chalazal* end there are three *antipodal* cells and in the centre two *polar nuclei* fused to form the *secondary nucleus* of the embryo sac (*central fusion nucleus*).

Fertilisation is the fusion of one *generative* nucleus of the pollen tube with the ovum of the embryo sac. The other generative nucleus unites with the secondary nucleus of the embryo sac, to form endosperm tissue. If the nucellus persists as a nutrient tissue, it is termed *perisperm*. Segmentation of the fertilised ovum gives rise to a *chain of cells*, the *proembryo*. From the proembryo, the *embryo*, the *hypophysis* and the *suspensor* are developed. Further segmentation of the embryo gives rise to the seed leaves (cotyledons), to the primary growing point of the shoot (*plumule*) and to the primary root (*radicle*).

Tochterkernen bleibt nur einer als primärer *Embryosackkern* (*Makrospore*) bestehen.

Der Nucellus ist von zwei *Integumenten* umgeben, die an der Spitze eine Öffnung, die *Mikropyle*, besitzen. Im reifen *Embryosack* liegen nach der Mikropyle zu drei Kerne, die den *Eiapparat* bilden, ein *Eikern* und zwei *Synergiden*. An dem nach der *Chalaza* liegenden Ende befinden sich drei *Antipoden*, und in der Mitte verschmelzen zwei Kerne (Polkerne) zum sekundären *Embryosackkern* (*Zentralkern*).

Der *Befruchtungsvorgang* ist die Verschmelzung des einen generativen Kerns vom Pollenschlauch mit dem Eikern des *Embryosacks*. Der andere generative Kern vereinigt sich mit dem sekundären *Embryosackkern*, aus ihm entsteht das *Endospermgewebe*. Wenn der Nucellus als Nährgewebe erhalten bleibt, nennt man ihn *Perisperm*. Durch Teilung der befruchteten Eizelle bildet sich eine *Zellkette*, der *Proembryo*. Aus dem Proembryo entwickeln sich der *Embryo*, die *Hypophyse* und der *Suspensor* (Keimträger). Weitere Teilungen des Embryo erzeugen die Keimblätter (Kotyledonen), den ersten jungen Hauptspross (*Plumula*) und die erste Wurzel (*Radicula*).

CHAPTER III

CLASSIFICATION AND PHYLOGENY

The chief consideration in classifying plants is their natural or *phylogenetic* relationship. It is assumed that organisms which show similar structure are related, and according to the closeness of their morphological resemblance plants are grouped into *species*, *genera*, *families* (*natural orders*), *cohorts* (*sub-classes*), *classes*, *sub-divisions* and *divisions*. The arrangement of plants according to the above standpoint is known as *Taxonomy* (*Systematics*). The systems undergo continuous modification and therefore *duplication* and *overlapping* of terms exist. In the ensuing chapters the system of Schenck and Karsten has generally been followed.

This classification divides the plant kingdom into four divisions :—

- | | |
|---|--|
| (1) <i>Thallophyta</i>
(2) <i>Bryophyta</i>
(3) <i>Pteridophyta</i>
(4) <i>Spermatophyta</i> | } Spore bearing plants or
<i>Cryptogams.</i>

Seed bearing plants or
<i>Phanerogams.</i> |
|---|--|

Pteridophytes are also termed *vascular cryptogams*. *Bryophytes*, *Pteridophytes*, and some *Spermatophytes* possess an *archegonium*, but the term *Archegoniatae* is usually confined to *Bryophytes* and *Pteridophytes*.

THALLOPHYTA

Thalloid plants are those which possess an *undifferentiated vegetative body*, termed a *thallus*. These organisms do not lie within a single evolutionary series, but may be derived from several simple forms. Several ascending and descending series (*progression* and *reduction*) can be clearly discerned, some of which have attained a high state of development as regards their *reproductive organs*. The study of *sexual* and *asexual reproduction* indicates that, in Thallophytes, the *sexual cell* has been derived from the *asexual spore*.

Sexual reproduction appears in two forms: *isogamy* and *heterogamy*. (1) Two similar gametes (*isogametes*) may conjugate to form a single celled *zygote* (or *zygospore*). The

KAPITEL III

SYSTEMATIK UND PHYLOGENIE

Für die Einteilung der Pflanzen sind die natürlichen oder *phylogenetischen* Verwandtschaften ausschlaggebend. Es wird angenommen, dass Organismen, die ähnliche Struktur zeigen, miteinander verwandt sind, und auf Grund ihrer morphologischen Ähnlichkeit werden die Pflanzen zu *Arten*, *Gattungen*, *Familien* (*natürliche Reihen*), *Unterklassen*, *Klassen*, *Unterabteilungen* und *Abteilungen* zusammengefasst. Die Anordnung der Pflanzen nach obigen Gesichtspunkten wird als *Systematik* bezeichnet. Die Systeme unterliegen dauernden Veränderungen, und daher kommen in der Nomenklatur *Wiederholungen* und *Überschneidungen* vor. In den folgenden Kapiteln ist im allgemeinen das System von Schenck und Karsten zugrundegelegt.

Die Systematik teilt das Pflanzenreich in vier Gruppen:

- | | |
|--------------------------|-----------------------------------|
| (1) <i>Thallophyta</i> | Sporenbildner oder
Kryptogamen |
| (2) <i>Bryophyta</i> | |
| (3) <i>Pteridophyta</i> | |
| (4) <i>Spermatophyta</i> | |
- Samenpflanzen oder *Phanerogamen*

Die Pteridophyten werden auch als *Gefäßkryptogamen* bezeichnet. *Bryophyten*, *Pteridophyten* und einige *Spermatophyten* besitzen ein *Archegonium*, jedoch ist die Bezeichnung *Archegoniaten* nur für die Bryophyten und Pteridophyten gebräuchlich.

THALLOPHYTA

Thalloidische Pflanzen sind solche, die einen *undifferenzierten*, *vegetativen* Körper, *Thallus* genannt, besitzen. Diese Organismen bilden keine vollkommen geschlossene Entwicklungsreihe, jedoch können sie von einigen einfachen Formen abgeleitet werden. Einige auf- und absteigende Linien (*Progressionen* und *Reduktionen*) können deutlich unterschieden werden, von denen einige in bezug auf ihre *Fortpflanzungsorgane* ein hohes Entwicklungsstadium erreicht haben. Die Beobachtung der *generativen* und *vegetativen* *Fortpflanzung* zeigt, dass bei den Thallophyten die *generativen* Zellen sich aus *vegetativen* Sporen entwickelt haben.

Die geschlechtliche Fortpflanzung tritt in zwei Formen auf: *Isogamie* und *Heterogamie*. (1.) Zwei gleichgrosse Gameten (*Isogameten*) können zu einer Zelle, der *Zygote* oder *Zygospore*

gametes are produced in *gametangia*, and may be *ciliated* (*plano-gametes*) or *non-ciliated* (*aplanogametes*).

(2) Two unlike gametes, a small, usually ciliated, male cell (*spermatozoid*) and a large, usually non-motile female cell (*oosphere, egg, ovum*) may fuse with the formation of a zygote, or *oospore*. If both cells are *motile* this is called *heterogamy*; if the female cell is *non-motile*, it is called *oogamy*. Spermatozoids are produced in *antheridia* and *oospheres* in *oogonia*.

Asexual reproduction takes place in three ways. (1) Division of the protoplasm within certain cells of the thallus known as *sporangia*. (2) By the process of *budding*. (3) By modification of vegetative cells to form *resting spores*. An actively moving ciliated spore is a *zoospore* or *swarm spore*. A non-motile spore is an *aplanospore*.

In some thallophytes reproduction is exclusively sexual, in many exclusively asexual, while reproduction in most thallophytes may be either sexual or asexual depending on external conditions. Sporangia and gametangia, including antheridia and oogonia, are regarded as *homologous* structures. If an asexual generation (*sporophyte*) follows on a sexual generation (*gametophyte*) there is said to be an *alternation of generations*.

CLASSIFICATION OF THALLOPHYTA

<i>Bacteria</i> = <i>Schizomycetes</i>	<i>Bacteria</i>	<i>} Schizophyta</i>
<i>Cyanophyceæ</i> = <i>Schizophyceæ</i>	<i>Blue-green Algæ</i>	
<i>Myxomycetes</i>	<i>Slime Fungi</i>	
<i>Flagellatae</i>	<i>Flagellates</i>	
<i>Dinoflagellatæ</i>	<i>Dinoflagellates</i>	
<i>Diatomeæ</i>	<i>Diatoms</i>	
<i>Conjugatae</i>	<i>Conjugates</i>	
<i>Chlorophyceæ</i>	<i>Green Algæ</i>	
<i>Phæophyceæ</i>	<i>Brown Algæ</i>	
<i>Characeæ</i>	<i>Stoneworts</i>	
<i>Rhodophyceæ</i>	<i>Red Algæ</i>	
<i>Fungi</i>	<i>Fungi</i>	

BACTERIA

The distinguishing features of bacteria are minute size, simple form, and exceptionally rapid multiplication. Bacterial cells range in size from 0.5 to 10.0 microns (μ). They are *unicellular* or *filamentous* organisms. The non-nucleated protoplasmic body is surrounded by a protein membrane, the *capsule*. The capsules of certain bacteria adhere together, forming a gelatinous mass or *zoogloea* colony. Motile bacteria have

verschmelzen. Die Gameten werden in *Gametangien* erzeugt und können *begeisselt* (*Planogameten*) oder *unbegeisselt* (*Aplanogameten*) sein.

(2.) Zwei ungleich grosse Gameten, eine kleine, gewöhnlich begeisselte, männliche Zelle (*Spermatozoid*), und eine grosse, gewöhnlich unbewegliche, weibliche Zelle (*Oosphäre*, *Eizelle*) verschmelzen miteinander unter Bildung einer *Zygote* oder *Oospore*. Wenn beide Zellen *beweglich* sind, spricht man von *Heterogamie*; wenn die weibliche Zelle *unbeweglich* ist, von *Oogamie*. Die Spermatozoiden werden in *Antheridien* und die *Oosphären* in *Oogonien* erzeugt.

Die vegetative Fortpflanzung kann auf drei Arten vor sich gehen. (1.) Teilung des Protoplasmas in bestimmten Thalluszellen, den *Sporangien*. (2.) Durch Bildung von *Brutknospen*. (3.) Durch Veränderung von vegetativen Zellen zu *Dauersporen*. Eine aktiv bewegliche, begeisselte Spore ist eine *Zoospore* oder *Schwärmspore*. Eine nicht bewegliche Spore ist eine *Aplanospore*.

Bei einigen Thallophyten ist die Fortpflanzung ausnahmslos generativ, bei vielen stets vegetativ, während sie bei den meisten Thallophyten je nach den äusseren Bedingungen vegetativ und generativ sein kann. Sporangien und Gametangien, einschliesslich Antheridien und Oogonien werden als *homologe* Bildungen angesehen. Folgt auf die *generative* Generation (*Gametophyt*) eine *vegetative* (*Sporophyt*), so liegt *Generationswechsel* vor.

EINTEILUNG DER THALLOPHYTEN

<i>Bacteria</i>	= <i>Schizomycetes</i>	Bakterien oder <i>Spaltpilze</i> ,	<i>Schizophyta</i>
<i>Cyanophyceæ</i>	= <i>Schizophyceæ</i>	<i>Spalt- oder Blaulalgen</i>	
<i>Myxomycetes</i>		<i>Schleimpilze</i>	
<i>Flagellatae</i>		<i>Flagellaten</i>	
<i>Dinoflagellatae</i>		<i>Dinoflagellaten</i>	
<i>Diatomeæ</i>		<i>Diatomeen oder Kieselalgen</i>	
<i>Conjugatae</i>		<i>Jochalgen</i>	
<i>Chlorophyceæ</i>		<i>Grünalgen</i>	
<i>Phæophyceæ</i>		<i>Braunalgen</i>	
<i>Characeæ</i>		<i>Armleuchteralgen</i>	
<i>Rhodophyceæ</i>		<i>Rotalgen</i>	
<i>Fungi</i>		<i>Pilze</i>	

. BACTERIA (SCHIZOMYCETES)

Charakteristische Merkmale der Bakterien sind geringe Grösse, einfache Form und ausserordentlich schnelle Vermehrung. Die Grösse von Bakterienzellen liegt zwischen 0,5 und 10 Mikron (μ). Sie stellen *einzelige* oder *fadenförmige* Organismen dar. Der zellkernlose Protoplasmakörper ist von einer Proteinmembran, der *Hülle*, umgeben. Die Hüllen bestimmter Bakterien heften sich aneinander und bilden gelatinöse

delicate *cilia* which project from the cell wall. The arrangement of these cilia is described as *monotrichous* (one *polar flagellum*), as *peritrichous* (*flagellæ* distributed over the cell), or as *lophotrichous* (*flagellæ* in tufts).

Bacteria multiply by *fission* in one, two, or three planes. Successive generations may remain attached and form characteristic colonies. *Sporulation* (*arthrospores* or *endospores*) occurs in many species under unfavourable conditions. The nomenclature of bacteriology is descriptive of the form and arrangement of the bacterial cells.

The simplest form is a spherical cell or *coccus*. Coccii may be in *pairs*:—*diplococci*; in *chains*:—*streptococci*; in irregular masses :—*staphylococci* or *micrococci*; in cubical packets :—*sarcinæ*; or they may be motile:—*planococci* and *planosarcinæ*.

Three types of *rod-shaped* cells are distinguished: a *bacterium* (short non-motile cell), a *bacillus* (a cell motile by means of peritrichous flagellæ), and a *pseudomonas* (a cell motile by lopho- or monotrichous flagellæ). Sporulation in rod-shaped cells may be *equatorial*, giving a spindle shape to the cell (*clostridium*); or *terminal*, giving a drum-stick shape to the cell (*plectridium*).

Curved or spiral cells may be non-motile :—*spirisoma*; comma-like :—*microspira* or *vibrio*; motile with polar flagellæ :—*spirillum*; long and flexible :—*spirochæte*.

Higher bacteria are filamentous and may show *false branching*. They are colourless and contain *sulphur granules* (*thiomicrostrea*) or contain *bacteria-purpurin* (*rhodobacteria*).

All the forms of bacteria may undergo distortion in artificial culture (*involution forms*); and many workers believe that certain forms exist in more than one shape, *i.e.*, are *pleomorphic*.

Note.—Classification of bacteria was originally based on the form of the bacterial cell. The modern classification takes into account beside the old morphological criteria certain physiological reactions, such as *staining reaction*, growth and form in culture, *aerobic* and *anaerobic* growth, gas formation, *pathogenicity*, etc.

CYANOPHYCEÆ (BLUE-GREEN ALGÆ)

Blue-green algæ resemble the filamentous bacteria, but the affinity is probably remote. The absence of sexual reproduction

Kolonien oder *Zoogloeeen*. Bewegliche Bakterien haben feine *Geisseln* (*Zilien*), die aus der Zellwand herausragen. Die Anordnung der Geisseln wird als *monotrich* (eine *polare Geissel*), *peritrich* (*Geisseln* über die ganze Zelle verteilt) oder *lophotrich* (*Geisseln* in *Büschen*) bezeichnet.

Bakterien vermehren sich durch *Spaltung* in ein, zwei oder drei Richtungen des Raumes. Die folgenden Generationen können in engem Zusammenhang bleiben und charakteristische Kolonien bilden. Bei vielen Arten tritt unter ungünstigen Lebensbedingungen *Sporenbildung* (*Arthrosporen* oder *Endosporen*) ein. Die Nomenklatur der Bakteriologie richtet sich nach der Form und Anordnung der Bakterienzellen.

Die einfachste Form ist die runde Zelle oder *Kokke*. Kokken können in *Paaren* vorkommen:—*Diplokokken*; in *Ketten*:—*Streptokokken*; in unregelmässigen Massen:—*Staphylokokken* oder *Mikrokokken*; in viereckigen Paketen:—*Sarzinien*; oder sie können beweglich sein:—*Planokokken* oder *Planosarzinien*.

Von *stäbchenförmigen* Zellen lassen sich drei Typen unterscheiden: *Bacterium* (kurze, unbewegliche Zellen); *Bacillus* (Zellen, die sich mit Hilfe von peritrichen Geisseln bewegen) und *Pseudomonas* (bewegliche Zellen mit lopho- oder monotrichen Geisseln). Die Sporenbildung in stäbchenförmigen Zellen kann *äquatorial* erfolgen, so dass die Zelle spindelförmig wird (*Clostridium*) oder *terminal*, wodurch die Zelle trommelschlegelartig aussieht (*Plectridium*).

Gebogene oder spiraling gewundene Zellen können unbeweglich sein:—*Spirisoma*; kommaförmig:—*Microspira* oder *Vibrio*; beweglich, mit polaren Geisseln:—*Spirillum*; lang und bieg sam:—*Spirochäta*.

Höhere Bakterien sind fadenförmig und können *unechte Verzweigungen* zeigen. Sie sind farblos und enthalten *Schwefelkörnchen* (*Thiobakterien*) oder *Bakteriopurpurin* (*Rhodobakterien*).

All diese Bakterienformen können unter künstlichen Kulturbedingungen Abweichungen (sog. *Involutionsformen*) zeigen, und manche Forscher glauben, dass gewisse Formen vielgestaltig vorkommen, d.h. sie sind *pleomorph*.

Bemerkung.—Die systematische Einteilung der Bakterien war ursprünglich auf die Form der Bakterienzelle aufgebaut. Die moderne Systematik zieht ausser den alten morphologischen Kriterien noch gewisse physiologische Reaktionen in die Betrachtung ein, z.B.: *Farbreaktion*, Wachstum und Form in Kultur, *aerobes* und *anaerobes* Wachstum, Gasbildung, *Pathogenität* usw.

CYANOPHYCEÆ (SPALT- ODER BLAUALGEN)

Die blaugrünen Algen ähneln den fadenförmigen Bakterien, doch dürfte ihre Verwandtschaft zu diesen wahrscheinlich sehr

and of swarm spores isolates them from other algal groups. The cells of the filaments reproduce by *fission* and adhere together, forming masses of blue-green jelly. They possess a pigment, *phycocyan*, which is mixed with chlorophyll and occurs in minute grains in the periphery of the protoplasm. *Heterocysts* or resting spores are characteristic modifications of the ordinary vegetative cell. The filament tends to break across at the heterocysts, forming rows of cells termed *hormogonia*. These are capable of creeping away from the parent and forming a new colony or *cœnobia*.

MYXOMYCETES (SLIME FUNGI)

Slime fungi are an independent group of lower *Thallophyta* which have attained a high degree of development particularly with regard to their fructifications.

The vegetative body is a *plasmodium*, a *naked protoplast* with many nuclei and capable of creeping by *pseudopodia*. When the plasmodium fructifies the entire protoplasmic mass either breaks into spores or forms separate sporangia. Each sporangium possesses a wall (*envelope, peridium*) which is supported by a *thread-like* or *net-like* cross-support, the *capillitium*. This invests spherical *uninucleate* spores which germinate to form *swarm spores*. Swarm spores may *encyst* temporarily forming *microcysts*, or divide repeatedly without encystment. Thereafter they withdraw their cilia and become *myxamœbæ*. The myxamœbæ coalesce to form a plasmodium, and can conjugate in pairs.

FLAGELLATÆ (FLAGELLATES)

Flagellates are a large group of unicellular organisms which possess the potential characters of both plant and animal cells. In their organisation, absence of cell wall, power of movement and encystment, they are antitypes of the *Protozoa*. Their nutrition is plant-like and in this respect they simulate green algæ. Their reproduction is asexual. The Flagellates are the lowest plants in which an indubitable nucleus occurs.

CONJUGATÆ (CONJUGATES)

The Conjugates are either unicellular or filamentous. Anatomically they show advance on account of their large peculiar chloroplasts which contain protein bodies, *pyrenoids*, and which

entfernt sein. Das Fehlen von geschlechtlicher Fortpflanzung und von Schwärmsporen trennt sie von den übrigen Algengruppen. Die Zellen der Fäden vermehren sich durch *Teilung*, bleiben zusammenhängend und bilden blaugrüne Gallertmassen. Sie besitzen einen Farbstoff, das *Phykozyan*, welches mit Chlorophyll gemischt und in kleinen Körnchen an der Peripherie des Protoplasmas eingelagert ist. *Heterocysten* oder Dauersporen sind charakteristische Veränderungen der normalen vegetativen Zellen. Die Zellfäden reissen später an den Heterocysten auseinander, und es entstehen Fadenbruchstücke, die *Hormogonien* genannt werden. Diese können sich kriechend vom Mutterorganismus fortbewegen und neue Kolonien oder *Cœnobien* bilden.

MYXOMYCETES (SCHLEIMPILZE)

Die Schleimpilze bilden eine unabhängige Gruppe von niederen *Thallophyten*, die, besonders in bezug auf ihre Fruktifikation, eine hohe Entwicklungsstufe erreicht haben.

Der Vegetationskörper ist das *Plasmodium*, ein *nackter*, vielkerniger, durch *Pseudopodien* zur Fortbewegung befähigter *Protoplasm*. Wenn das Plasmodium fruktifiziert, dann zerfällt entweder die ganze Protoplasmamasse in Sporen oder erzeugt abgegrenzte Sporangien. Jedes Sporangium besitzt eine Wandung (Hülle, *Peridium*), die von einem *fädigen* oder *netzartigen* Gerüst, dem *Kapillitium* abgesteift wird. Dieses schliesst runde, *einkernige* Sporen ein, die auskeimen und *Schwärmer* (*Myxamonaden*) erzeugen. Diese können sich vorübergehend *einkapseln* und *Mikrocysten* bilden oder sich wiederholt ohne Einkapselung teilen. Später ziehen sie ihre Geisseln ein und werden zu *Myxamöben*. Die Myxamöben fliessen zu einem Plasmodium zusammen und können sich paarweise vereinigen.

FLAGELLATÆ (FLAGELLATEN)

Die Flagellaten gehören zu einer grossen Gruppe einzelliger Organismen, die sowohl den Charakter pflanzlicher als auch tierischer Zellen besitzen. Durch ihren Aufbau, das Fehlen der Zellwand, die Fähigkeit, sich zu bewegen und sich einzukapseln, bilden sie das Gegenstück zu den *Protozoen*. Sie ernähren sich wie pflanzliche Organismen und ähneln damit den Grünalgen. Ihre Fortpflanzung ist ungeschlechtlich. Die Flagellaten gehören zu den niederen Pflanzen, die unzweifelhaft einen Zellkern besitzen.

CONJUGATÆ (JOCHALGEN)

Die Konjugaten sind entweder einzellig oder bilden Zellfäden. Anatomisch zeigen sie eine Weiterentwicklung durch ihre grossen, eigentümlichen Chloroplasten, die Eiweisskörn-

are surrounded by *starch grains*. Sexual reproduction appears in its simplest form, as the conjugation of non-motile *isogametes* formed in vegetative cells.

DIATOMÆ

The *diatoms*, a group of small unicellular algæ, found in fresh water and in the *plankton* of the ocean, are most nearly related to the *Conjugatæ*. Each individual consists of two *valves*, one of which clasps over the other, in such a way that a *valve-side* and a *girdle-side* are distinguished. The valves are *impregnated* with *silica* and possess *striæ*, *protuberances*, *pits*, *pores* and frequently a *cleft* in the middle. Multiplication by bipartition results in a continuous reduction in the size of the individual. When the minimal size is reached the individuals are transformed by conjugation to *auxospores*. In this condition they have no siliceous wall, but a *perizonium*, and they recover their original size.

CHLOROPHYCEÆ (GREEN ALGÆ)

The term *Chlorophyceæ* is now restricted to the *Isokontæ* (algæ whose *zoospores* possess cilia of equal length). The *Akontæ* (*Conjugatæ*) which have no ciliated zoospores and the small group of *Heterokontæ*, which have zoospores with unequal cilia, are now classified apart from the *Chlorophyceæ*.

The lower forms form a direct link with the Flagellates. The *Chlorophyceæ* have developed along three different lines.

(1) Aggregation of motile vegetative cells into colonies or *cœnobia*, with a distinct *division of labour* between members of the colony. This process is exemplified by the *Volvocales*, but has not developed further. Sexual reproduction in this series may be *isogamic*, as in *Chlamydomonas*, *oogamic*, as in *Volvox*, or may be intermediate between the two, as in *Pandorina*.

(2) The aggregation of cells which have taken part in cell division into thalloid masses of cells. In this series the change from isogamy to oogamy is shown in the transition from lower (*Ulothrix*) to higher (*Coleochæte*) forms. In the latter the sexes are clearly differentiated and the oospore is subsequently enclosed within the so-called "*fructification*." After reduction division of the oospore, this germinates into a multicellular body which ruptures the *oospore-envelope* and releases swarmspores, from which new plants develop (beginning of an *alternation of generations*).

chen, *Pyrenoide*, enthalten und von *Stärkekörnern* (*Stärkeherden*) umhüllt sind. Die geschlechtliche Fortpflanzung tritt in ihrer einfachsten Form als Verschmelzung von unbeweglichen *Iso-gameten* auf, die in vegetativen Zellen gebildet werden.

DIATOMEÆ (KIESELALGEN)

Die *Diutomeen*, eine Gruppe kleiner, einzelliger Algen, die im Süsswasser und im *Plankton* der Ozeane vorkommen, stehen den *Konjugaten* am nächsten. Jedes Individuum besitzt zwei übereinandergreifende *Schalen*, wodurch man eine *Schalen-* und eine *Gürtelseite* unterscheiden kann. Die Schalen sind mit *Kieselsäure* durchsetzt und besitzen *Streifen*, *Erhöhungen*, *Vertiefungen*, *Poren* und häufig in der Mitte eine *Furche*. Die Vermehrung durch Zweitteilung bewirkt ein dauerndes Kleinerwerden der Individuen. Wenn das Minimum an Grösse erreicht ist, werden *Auxosporen* durch Verschmelzung zweier Zellen gebildet. In diesem Falle besitzen sie keine Kieselsäurewand sondern ein *Perizonium* und erhalten dann ihre ursprüngliche Grösse wieder.

CHLOROPHYCEÆ (GRÜNALGEN)

Der Ausdruck *Chlorophyceæ* ist neuerdings auf die *Isocontæ* (Algen, deren *Zoosporen* gleich lange Geisseln besitzen) beschränkt. Die *Acontæ* (*Conjugatæ*) mit unbegeisselten Sporen und die kleine Gruppe der *Heterocontæ* mit ungleich langen Geisseln an den Sporen sind jetzt systematisch von den *Chlorophyceen* abgetrennt.

Ihre niederen Formen leiten sich direkt von den Flagellaten her. Die *Chlorophyceen* haben sich in drei verschiedenen Richtungen entwickelt.

(1) Vereinigung von beweglichen vegetativen Zellen zu Kolonien oder *Cönobien* mit deutlicher *Arbeitsteilung* innerhalb der Glieder einer Kolonie. Dieser Vorgang ist beispielsweise bei den *Volvocales* zu finden, hat sich aber dort nicht weiter entwickelt. Die geschlechtliche Fortpflanzung kann entweder durch *Isogamie*, wie bei *Chlamydomonas* oder durch *Oogamie*, wie bei *Volvox*, stattfinden, oder es treten Übergangsformen, wie bei *Pandorina*, auf.

(2) Vereinigung von Zellen, die in Teilung begriffen sind zu thallusartigen Zellkörpern. Bei diesen Klassen zeigt der Wechsel von Isogamie zu Oogamie den Übergang von niederen (*Ulothrix*) zu höheren Formen (*Coleochæte*). Bei letzterer sind die Geschlechter deutlich differenziert, und später wird die Oospore von einer sog. "Oosporenfrucht" umschlossen. Nach Reduktionsteilung der Oospore keimt diese zu einem vielzelligen Körpér, der die *Oosporenhülle* sprengt und Schwärmsporen entlässt, aus denen sich neue Pflanzen entwickeln. (Anfänge eines *Generationswechsels*.)

(3) The formation of unicellular tube-like thalloid plants (*Siphonales*). In *Caulerpa*, with the highest vegetative development, the thallus possesses a root-, stem- and leaf-like appearance, although it consists of one cell cavity only, strengthened by cross-supports (*trabeculae*).

CHARACEÆ (STONEWORTS)

The *Characeæ* (so-called Stoneworts) are a phylogenetically isolated group living in fresh or brackish water. Between long internodal cells there lie short nodal cells at which the thallus branches in whorls. The thallus is attached to the *substratum* by thread-like *rhizoids*. Growth takes place by means of an *apical cell*. In the long internodal cells, the nuclei divide *amitotically* (direct nuclear division). Every cell contains many chloroplasts.

Asexual reproduction by spores is completely lacking. Some *Characeæ* form *bulbils* (*starch-stars*) on the lower parts of their axes which are densely packed with starch and which serve as *hibernating* organs.

Sexual Reproduction: At the nodes of the lateral axes oogonia and antheridia are formed. The plants are mostly monœcious and only occasionally diœcious. The so-called antheridium is spherical and is bounded by eight *shields*. Each shield carries an inwardly-directed projection, the *manubrium*, on the end of which a large number of multicellular *filaments* (*spermatoogenous filaments*) are formed. These filaments are the true antheridia, and in their cells a spirally wound biciliate spermatozoid appears. By dehiscence of the wall of the antheridium the spermatozoids are set free and reach the surrounding water.

The oogonium contains only one oosphere which is surrounded by five spirally-wound cells (*enveloping tubes*). These end in a *corona* through an opening in which the spermatozoids fertilise the oosphere. From the fusion of the oosphere with the spermatozoids there arises an *oospore* which after reduction division germinates to give rise to new plants.

Some of the species of *Chara* reproduce *parthenogenetically* (*apogamy*) (e.g. *Chara crinata*). They are diploid since their oospores do not undergo reduction division on germinating into new plants, and consequently the diploid oosphere can develop directly into an oospore.

PHÆOPHYCEÆ (BROWN ALGÆ)

The brown algæ resemble the green algæ and may have been derived from the Flagellates. They compose the greater part of the *marine flora*, and have attained a great degree of vegetative complexity.

(3) Bildung einzelliger, schlauchförmiger Thalluspflanzen (*Siphonales* oder *Schlauchalgen*). Bei *Caulerpa*, mit der höchsten vegetativen Entwicklung, besitzt der Thallus ein wurzel-, stamm- und blattartiges Aussehen, obwohl er nur aus einem Zellraum, der durch ein fädiges Gerüst versteift wird, besteht.

CHARACEÆ (ARMLEUCHTERALGEN)

Die *Characeen* (sog. *Armleuchteralgen*) stellen eine phylogenetisch isolierte Gruppe dar und leben im Süss- oder *Brackwasser*. Zwischen langen Internodialzellen liegen kurze Knotenzellen, an denen sich der Thallus quirlförmig verzweigt. Der Thallus haftet mit fädigen *Rhizoiden* an dem *Substrat*. Das Wachstum geschieht mit Hilfe einer *Scheitelzelle*. In den langen Internodialzellen teilen sich die Zellkerne *amitotisch* (*direkte Zellkernteilung*). Jede Zelle enthält viele Chloroplasten.

Ungeschlechtliche Fortpflanzung durch Sporen fehlt gänzlich. Einige *Characeen* bilden an den unteren Teilen ihrer Achsen Knöllchen aus, die dicht mit Stärke gefüllt sind und als *Überwinterungsorgane* dienen.

Geschlechtliche Fortpflanzung: An den Knoten der Seitenachsen bilden sich Oogonien und Antheridien. Meist sind die Pflanzen monözisch, nur wenige sind diözisch. Das sog. Antheridium ist kugelig und wird durch acht *Schilder* abgegrenzt. Jedes Schild besitzt einen nach innen gekehrten Fortsatz (*Manubrium*), an dessen Ende sich eine grössere Anzahl vielzelliger *Zellfäden* bilden. Diese Zellfäden sind die echten Antheridien, in deren Zellen je ein spiraling gewundener, zweigeisseliger Spermatozoid entsteht. Durch Sprengung der Antheridienwände werden die Spermatozoiden frei und gelangen in das umgebende Wasser.

Das Oogonium enthält nur eine einzige Oosphäre, die von fünf schraubig gewundenen Zellen (*Hüllschläuchen*) umschlossen wird. Diese laufen in ein Krönchen aus, durch dessen Spalten die Spermatozoiden die Oosphäre befruchten können. Durch Fusion der Oosphäre mit dem Spermatozoid entsteht eine *Oospore*, die unter Reduktionsteilung zur neuen Pflanze keimt.

Einzelne *Chara*-Arten pflanzen sich *parthenogenetisch* (*Apogamie*) fort (z.B. *Chara crinata*). Sie sind diploid, da ihre Oospore bei der Keimung zur neuen Pflanze nicht in Reduktionsteilung übergeht, und infolgedessen die diploide Oosphäre sich direkt zur Oospore entwickeln kann.

PHÆOPHYCEÆ (BRAUNALGEN)

Die Braunalgen ähneln den Grünalgen und können von den Flagellaten abgeleitet werden. Sie bilden den überwiegenden Teil der *Meeresflora* und haben einen hohen Grad vegetativer Vielgestaltigkeit erreicht.

The characteristic brown colour is due to *fucoxanthin* (*phæophain*) which is present in addition to chlorophyll and other *carotinoid* pigments. The somatic organisation (plant soma) within this group varies extraordinarily. The thallus may have the form of a simple *disc*, a *uniseriate filament*, a *flattened lamina*, or may consist of a *cable-like* multicellular axis with *tufted branches* (*external ramuli*). The highly developed tissue system of the thalloid soma may attain gigantic proportions.

The *asexual* spore is an oval zoospore with two *lateral cilia*, one directed forwards and one backwards. Sexual reproduction varies from *isogamy* to a pronounced *oogamy*.

In the simplest brown algæ zoospores are formed in a *unicellular sporangium*, and gametes in a *plurilocular gamelangium*. Both haploid and diploid thalli develop. In higher forms, e.g. *Laminaria*, an alternation of generations and therefore *dimorphic* thalli occurs. In *Dictyota* the male and female gametophytes are distinct, and in addition there is a *tetrasporic thallus*. In *Fucus* the oogonia and antheridia are in *conceptacles*, which are sunk in the thallus and carry *paraphyses*.

RHODOPHYCEÆ (FLORIDEÆ, RED ALGÆ)

Red Algæ constitute an independent group of higher thallophytes without clear phylogenetic connection. They are the *seaweeds* of deep waters. The red-violet colour is due to *phycoerythrin*. The thallus is attached to the substratum by rhizoids or discoid *holdfasts*. They are distinguished from other algæ by their reproduction. Certain members of the group present a succession of three generations (e.g. *Polysiphonia*).

(1) The gametophyte generation produces male organs (*microgametangia* or *spermatangia*) in pairs at the end of branches. Each spermatangium forms a single *spermatium*. The gametophyte produces also a female organ, the *procarp*, which has two parts, a *carpogonium*, and a *trichogyne* (receptive organ), to which the spermatia become attached during fertilisation.

(2) The *carposporophyte* generation. Sporogenous filaments grow out from the fertilised carpogonium. These are not autotrophic, but nourished by *auxiliary cells* and surrounded by filaments growing up from the base of the carpogonium. The whole fructification is a *cystocarp*. Carpospores are formed by division of the sporogenous filaments, and are diploid.

(3) The *tetrasporophyte* generation. The carpospore germinates to form an autotrophic thallus which produces tetra-

Die charakteristische braune Farbe wird durch *Fucoxanthin* (*Phæophain*) hervorgerufen, welches mit Chlorophyll und anderen *karotinartigen* Farbstoffen vorkommt. Die Pflanzenkörper dieser Abteilung sind ausserordentlich verschieden. Der Thallus kann die Form eines einfachen *Diskus*, eines *einreihigen Zellfadens* und einer *flachen Scheibe* haben oder eine mehrzellige, *kabelähnliche* Hauptachse mit *büsselförmigen Verzweigungen* (*Nebenachsen*) besitzen. Die hochentwickelten Gewebesysteme der thalloidischen Körper erreichen riesige Ausmasse.

Die *ungeschlechtliche* Spore ist eine ovale Zoospore mit zwei seitlichen, nach vor- und rückwärts gerichteten Geisseln. Die geschlechtliche Vermehrung wechselt zwischen Isogamie und einer ausgesprochenen Oogamie.

Die Zoosporen der einfachsten Braunalgen werden in einem *unilokulären Sporangium* und die Gameten in einem *plurilokulären Gametangium* gebildet. Sowohl haploide wie diploide Thalli können sich entwickeln. Die höheren Formen, z.B. *Laminaria*, besitzen Generationswechsel und dementsprechend *verschieden gestaltige* Thalli. Bei *Dictyota* lassen sich männliche und weibliche Gametophyten unterscheiden und ausserdem kommen *Tetrasporophyten* vor. Bei *Fucus* stehen die Oogonien und Antheridien in *Konzeptakeln*, die im Thallus eingesenkt sind und *Paraphysen* tragen.

RHODOPHYCEÆ (FLORIDEEN ODER ROTALGEN)

Die Rotalgen stellen eine unabhängige Gruppe hochentwickelter Thallophyten ohne klaren phyllogenetischen Zusammenhang dar. Sie sind die *Meeresalgen* des tiefen Wassers. Die rotviolette Farbe wird durch *Phykoerythrin* hervorgerufen. Der Thallus haftet dem Substrat mit Haftfäden oder *Haftscheiben* an. Von den anderen Algen unterscheiden sie sich durch ihre Fortpflanzung. Einige Vertreter dieser Gruppe zeigen in ihrer Entwicklung drei Generationen (z.B. *Polysiphonia*).

(1) Der Gametophyt erzeugt paarweise an den Zweigenden männliche Organe (*Mikrogametangien* oder *Spermatangien*). Jedes Spermatangium bildet nur ein *Spermatium*. Der Gametophyt erzeugt ausserdem ein weibliches Organ, das *Procarpium*, bestehend aus zwei Teilen, einem *Carpogonium* und einer *Trichogyne* (Empfängnisfortsatz), an welcher die Spermatien während der Befruchtung anhaften.

(2) Der *Karposporophyt*. Sporogene Fäden wachsen aus dem befruchteten Carpogonium. Diese können nicht selbstständig leben sondern werden durch *Auxiliarzellen* ernährt und von Fäden umgeben, die aus der Basis des Karpogons sprossen. Der ganze Fruchtkörper wird als *Zystokarp* bezeichnet. Die Karposporen entstehen durch Teilung der sporogenen Fäden und sind diploid.

(3) Der *Tetrasporophyt*. Die Karpospore keimt zu einem selbstständigen Thallus, der Tetrasporen in *einfächerigen Sporan-*

spores in *unilocular* sporangia. These spores germinate to produce the gametophytic thallus.

FUNGI

The fungi are thallophytes which possess no chlorophyll and are therefore *saprophytic*, *parasitic* or *symbiotic* in their mode of nutrition. In origin fungi are *polyphyletic*, possibly being derived from the (unicellular) green algæ, and the (multicellular) red algæ. The study of fungi from all its various aspects is known as *mycology*.

The thallus is termed the *mycelium* (*spawn*); the individual filaments are termed *hyphæ*. Hyphæ are either *septate* or *non-septate*. Profuse branching and anastomosing of the hyphæ lead to the formation of a weft of threads or of a *pseudoparenchymatous* tissue (*plectenchyma*). Special plectenchymatous structures are *sclerotia*: tuber-like resting bodies bounded by a cortical layer; *rhizomorphs*: root-like hyphal strands; *stromata*: irregular flattened masses of tissue bearing reproductive bodies. *Appressoria* and *haustoria* are common in parasitic species.

Asexually produced spores provide for the rapid increase of the species. For the most part they have no significance in the alternation of generations. The following distinct forms occur:

Zoospores (*swarm spores*). Motile aquatic spores formed in *zoosporangia*.

Sporangiospores. Non-motile spores which are formed in sporangia, borne on erect hyphæ, the *sporangiophores*. Small reduced sporangia are termed *sporangiolia*.

Conidia are spores abstricted from the ends of hyphæ, termed *conidiophores*. The conidiophores may be grouped together to form an erect stalk or *coremium*; or they may form a *stroma-like cushion*: *sporodochium*; or a depressed saucer-like *acervulus*, or they may be produced in completely enclosed *pycnidia*. Conidia may propagate themselves further by *budding*.

Chlamydospores or thick-walled resting spores are formed by direct transformation of hyphal cells.

Oidia are barrel-shaped spores formed in chains.

Teleutospores of rusts and *brand* spores are resting spores.

Uredospores of rusts are accessory spores. A thick-walled uredospore is an *amphispore*.

Sexual reproduction in *Zygomycetes* is represented by the conjugation of two isomorphous gametes with the production of a *zygospore* or the development of a multinucleate gametangium

gien bildet. Durch Keimung dieser Sporen entwickelt sich der Gamethophyten-Thallus.

FUNGI (PILZE)

Die Pilze sind Thallophyten, die kein Chlorophyll besitzen und sich daher *saprophytisch*, *parasitisch* oder *symbiotisch* ernähren. Sie sind *polyphyletischen* Ursprungs und lassen sich möglicherweise von einzelligen Grünalgen (Schlauchalgen) und den mehrzelligen Rotalgen ableiten. Die Erforschung der Pilze unter den verschiedensten Gesichtspunkten wird als *Mykologie* bezeichnet.

Der Thallus wird *Myzel* genannt. Die einzelnen Fäden werden als *Hyphen* bezeichnet. Die Hyphen sind entweder *septiert* oder *unseptiert*. Reiche Verzweigung und Anastomose der Hyphen führen zur Bildung eines dichten Fadengeflechtes oder *pseudoparenchymatischen* Gewebes (*Plektenchym*). Besondere plektenchymatische Bildungen sind *Sklerotien*: *knollenförmige* Dauerformen, die von einer Rindenschicht umgeben sind; *Rhizomorphen*: wurzelähnliche Hyphenstränge; *Stromata*: unregelmäßige flache Gewebemassen, auf denen sich Fortpflanzungsorgane bilden. *Apressorien* und *Haustorien* kommen gewöhnlich bei parasitischen Arten vor.

Auf ungeschlechtlichem Wege erzeugte Sporen sorgen für eine schnelle Verbreitung der Arten. Für den Generationswechsel haben sie meist keine Bedeutung. Folgende deutlich unterschiedene Formen kommen vor:

Zoosporen (*Schwärmsporen*). Im Wasser bewegliche Sporen, die in *Zoosporangien* gebildet werden.

Sporangiosporen. Unbewegliche Sporen, die in Sporangien an aufrechten Hyphen, den *Sporangienträgern*, entstehen. Kleine, reduzierte Sporangien nennt man *Sporangiolen*.

Konidien sind Sporen, die an Hyphenenden, den *Konidienträgern*, abgeschnürt werden. Die Konidienträger können in Gruppen verwachsen sein, so dass sie einen aufrechten Stiel, *Koremium*, bilden, oder sie können ein *stromaähnliches Polster*, das *Sporodochium* oder einen schüsselartig eingesunkenen *Acervulus* erzeugen oder in allseitig geschlossenen *Pykniden* stehen. Konidien können sich ferner durch *Sprossung* selbst vermehren.

Chlamydosporen oder dickwandige Dauersporen entstehen durch direkte Umbildung von Hyphenzellen.

Oidien sind *tonnenförmige*, in Ketten gebildete Sporen.

Teleutosporen von Rostarten und *Brandsporen* sind Dauersporen.

Uredosporen der Rostpilze sind akzessorische Sporen (*Beisporen*). Eine dickwandige Uredospore ist eine *Amphispore*.

Die geschlechtliche Fortpflanzung bei den *Zygomyzeten* geschieht durch Verschmelzung zweier gleichwertiger Gametenzellen zu einer *Zygosporre* oder durch Entwicklung eines vielkernigen

without fusion into an *azygospore*. Conjugating thalli may be *homothallic* or *heterothallic*. Heterothallic fungi which conjugate when brought together are distinguished as *plus* and *minus strains*.

In *Oomycetes* reproduction takes place by the fusion of an antheridium and an oogonium with the aid of a *conjugation tube*. The protoplasm of the antheridium and oogonium which takes part in the fusion is termed *gonoplasm*, and the remainder is *periplasm*.

The more highly developed a fungus is, the more is its sexual reproduction reduced. Parthenogenesis and apogamy, *i.e.* the production of a sporophyte from a gametophyte without the intervention of sexual organs, occur frequently. When normal sexuality is retained in the *Ascomycetes* the female sexual organ (*archicarp*) is fertilised by a *spermatium* or by an antheridium, and from the fertilised oogonial cell of the *archicarp* (*ascogonium, carpogonium*) a number of filaments (*ascogenous hyphae*) grow out. The latter form *spore mother cells*, termed *asci*. The nuclei of each ascus divide meiotically with a following mitosis to form eight *ascospores*.

The asci, which are interspersed with *sterile paraphyses*, arrange themselves in a *hymenial* layer which rests on a *sub-hymenial* layer, and is protected by a *peridium*. The fructification thus formed is termed *sporocarp* or *ascocarp*. There are three kinds of ascocarp. An *apothecium* is an ascocarp with an *exposed hymenium*; a *peritheciun* is *flask-shaped* with a terminal *ostiole*; a *cleistocarp* is completely closed, generally contains only a few asci, and subsequently dehisces irregularly.

In *Basidiomycetes* fusion between male and female gametes does not occur. The mycelium has pairs of nuclei, termed *dikaryon*. In the formation of spore-mother cells, the *basidia*, the paired nuclei fuse (*karyogamy*) into a diploid *synkaryon* and immediately undergo reduction division with the formation of *basidiospores* which appear on *sterigmata*. From these spores there arises a mycelium with uninucleate cells (primary mycelium). These form anastomoses and thereby binucleate cells are again produced. This is secondary mycelium which generally shows very characteristic *clamp connections*.

In *smuts* and in *rusts* the basidium emerges from a thick-walled resting spore (*brand spore, teleutospore*) as a *promycelium* on which *basidiospores* (*sporidia*) are produced. The basidiospores of rusts germinate to form a mycelium which bears two kinds of spores:—(1) *spermatia (pycnidiospores)* in *spermogonia*

Gametangium ohne Gametenverschmelzung zu einer Azygospore. Verschmelzende Thalli können *homothallisch* oder *heterothallisch* sein. Bei heterothallischen Pilzen kann man *Plus-* und *Minus-*Stämme unterscheiden, die, wenn sie zusammentreffen, miteinander verschmelzen.

Bei den *Oomyzeten* geschieht die geschlechtliche Fortpflanzung durch Vereinigung eines Antheridium und eines Oogoniums mit Hilfe eines *Befruchtungsschlauches*. Das Protoplasma des Antheridium und des Oogonium, das an der Fusion teilnimmt, wird *Gonoplasma*, das zurückbleibende *Periplasma* genannt.

Je höher entwickelt der Pilz ist, desto reduzierter ist seine geschlechtliche Fortpflanzung. Parthenogenese und Apogamie, d.h. Entwicklung des Sporophyten aus dem Gametophyten ohne Sexualvorgang, kommen öfter vor. Wenn bei den *Ascomyceten* die normale geschlechtliche Fortpflanzung erhalten ist, wird das weibliche Sexualorgan (*Archikarp*) durch ein *Spermatium* oder durch ein Antheridium befruchtet, und aus der befruchteten Oogoniumzelle des *Archikarps* (*Askogon*, *Karpogon*) entsteht eine Anzahl von Fäden (*ascogene Hyphen*). Letztere erzeugen Sporenmutterzellen, die *Asci*. Die Kerne jedes Ascus teilen sich meiotisch mit nachfolgender Karyokinese und bilden acht *Ascosporen*.

Die Asci, die von sterilen *Paraphysen* durchsetzt sind, stehen auf einem *Hymenium*, das auf einer *subhymenialen* Schicht ruht und von einer *Peride* bedeckt wird. Der so gebildete Fruchtkörper wird als *Sporocarp* oder *Ascocarp* bezeichnet. Es gibt drei Arten von Ascocarpien. Ein *Apothecium* ist ein Ascocarp mit einem *freiliegenden Hymenium*; ein *Peritheciun* ist *flaschenförmig* mit einer endständigen Öffnung (*Ostiolum*); ein *Kleistocarp* ist vollkommen geschlossen, enthält meist nur wenige Asci und reißt später unregelmässig auf.

Bei den *Basidiomyceten* kommt eine Verschmelzung von männlichen und weiblichen Gameten nicht vor. Das Myzel besitzt Kernpaare und wird als *dikaryotisch* bezeichnet. Bei Bildung der Sporenmutterzelle, der *Basidie*, verschmilzt das Kernpaar (*Karyogamie*) zu einem diploiden Synkaryon und macht unmittelbar darauf eine Reduktionsteilung durch, unter Bildung von *Basidiosporen*, die an *Sterigmen* entstehen. Aus diesen Sporen entsteht ein Myzel mit einkernigen Zellen (primäres Myzel). Dieses bildet Anastomosen, wodurch wieder zweikernige Zellen entstehen. Das ist das sekundäre Myzel, das meist charakteristische *Schnallenbildung* zeigt.

Bei *Brand-* und *Rostpilzen* entsteht aus einer dickwandigen Dauerspore (*Brandspore*, *Teleutospore*) eine Basidie als *Promyzel*, an welchem *Basidiosporen* (*Sporidien*) gebildet werden. Die Basidiosporen des Rastes keimen zu einem Myzel, welches zwei Arten von Sporen bildet:—(1) *Spermatien* (*Pyknidiosporen*)

(*pycnidia*) whose function is controversial, and (2) basipetal rows of *æcidiospores* in *æcidia* (*cluster cups*). The cells at the periphery of the *æcidium* form a sheath (*pseudoperidium*). According to the characters of the pseudoperidium the *æcidium* becomes a *cæoma*, *ræstelia*, or *peridermium*.

In other Basidiomycetes the basidia form a hymenium on a subhymenial layer and are interspersed with paraphyses and swollen sterile cells (*cystidia*). The hymenium is spread over the surface of *wrinkles*, *folds*, *spines*, *teeth*, *gills*, *pits*, *pores*, or *tubes*. The central supporting tissue of the hymenium is the *trama*. In the more complex forms a special *fructification*, the *sporophore*, is developed. There are two kinds of sporophores: (1) with a hymenium which is enclosed in an envelope (*peridium*) until the spores are mature, e.g. subterranean *tuberous fructifications* and *puff-balls* and (2) with an exposed hymenium, e.g. *resupinate fructifications*, *brackets* and *toadstools*.

In the puff-ball type the fertile tissue, termed the *gleba*, is surrounded by an outer *hyphal cortex* (*peridium*). The gleba may be continuous or chambered. The chambers are termed *periola*. Spores are liberated by the rupture of the peridium and collapse of the gleba.

The toadstool type consists of a *stalk* (*stipe*) bearing a *cap* (*pileus*) with radial *gills* (*lamellæ*) or with a layer of tubes on the underside. The margin of the pileus is often connected to the stipe by a *veil* (*velum*). When the fructification grows the velum ruptures, leaving a membranous *ring* or *annulus* round the stipe. A special membrane, the *volva*, may cover the whole sporophore in the young stage.

LICHENS

Lichens are symbiotic organisms composed of a blue-green or green alga and an ascomycetous or basidiomycetous fungus (symbiotic parasitism). The *consortium* forms a distinct compound thallus. Two kinds are distinguished:—

(1) *Unstratified* or *homoiomerous* thalli which may be either filamentous, consisting of interwoven fungal and algal filaments, or *gelatinous*, consisting of gelatinous algal cells and interwoven hyphae.

(2) *Stratified*, or *heteromerous* thalli, in which algal cells (*gonidia*) are arranged in a *gonidial layer*. Beside this an inner *medullary* layer and an outer *cortical* layer can be distinguished.

Lichens with stratified thalli are divided into: *crustaceous lichens*, adhering over the whole surface of the substratum,

in *Spermogonien* (*Pyknidien*), deren Funktion umstritten ist, und (2) basipetale Ketten von *Æcidiosporen* in *Æcidien*. Die Zellen an der Peripherie der *Æcidie* erzeugen eine Hülle (*Pseudoperidie*). Dem Bau der Pseudoperidie entsprechend, werden die *Æcidien* als *Cæoma*, *Rœstelia* oder *Peridermium* bezeichnet.

Bei anderen Basidiomyceten bilden die Basidien auf einem subhymenialen Lager ein Hymenium und sind mit Paraphysen und angeschwollenen sterilen Zellen (*Cystiden*) durchsetzt. Das Hymenium überzieht die Oberfläche von *Runzeln*, *Falten*, *Stacheln*, *Zähnen*, *Lamellen*, *Gruben*, *Poren* oder *Röhren*. Das zentrale Stützgewebe des Hymeniums wird als *Trama* bezeichnet. Bei den höheren Formen wird ein besonderer *Fruchtträger*, *Sporophor*, entwickelt. Es gibt zwei Arten von Sporeenträgern: (1) mit einem Hymenium, das bis zur Sporenreife von einer Hülle umschlossen ist, z.B. unterirdische, *knollenförmige Fruchtkörper* und *Boviste* und (2) mit einem nach aussen hin liegenden Hymenium, z.B. *resupinate* Fruchtkörper, *Konsolenpilze* und *Hutpilze*.

Beim Bovist-Typ umhüllt eine aus Hyphen bestehende *Rindenschicht* (*Peridie*) die fertilen Gewebe, die als *Gleba* bezeichnet werden. Die Gleba kann einfächerig oder gekammert sein. Die Kammern werden als *Peridiolen* bezeichnet. Durch Aufreissen der Hülle und durch Zerfall der Gleba werden die Sporen frei.

Der *Hutpilz*-Typ besteht aus einem *Stiel* (*Stipes*) und einem *Hut* (*Pileus*) mit radialen *Spalten* (*Lamellen*) oder einer Röhrenschicht an der Unterseite. Häufig ist der Hutrand mit dem Stiel durch eine *Haut* (*Velum*) verbunden. Beim Wachstum des Fruchtkörpers reißt das Velum und hinterlässt am Stiel einen häutigen *Ring* oder *Annulus*. Eine besondere Hülle, die *Volva*, kann den ganzen Fruchtkörper im Jugendstadium umhüllen.

FLECHTEN

Die Flechten sind in Symbiose lebende Organismen, die aus Blau- oder Grünalgen und einem Ascomyceten oder Basidiomyceten bestehen (symbiotischer Parasitismus). Diese *Pflanzenvergesellschaftung* besitzt einen besonders zusammengesetzten Thallus. Zwei Arten werden unterschieden:

(1) *Ungeschichtete* oder *homoiomere* Thalli, welche entweder fädig sein können, wenn sie sich aus verflochtenen Pilz- und Algenfäden zusammensetzen oder *gallertartig*, wenn sie aus gallertigen, mit Pilzhyphen umflochtenen Algenzellen bestehen.

(2) *Geschichtete* oder *heteromere* Thalli, in welchen Algenzellen (*Gonidien*) in der sog. *Gonidialschicht* liegen. Außerdem unterscheidet man eine innere *Markschicht* und äussere *Rindschichten*.

Flechten mit geschichtetem Thallus werden eingeteilt in: *Krustenflechten*, in ihrer ganzen Ausdehnung mit dem Substrat

foliaceous lichens, leaflike, attached in places to the substratum and *fruticose lichens* with branched thalli fastened to the substratum by the base. There occur also among these differently constructed thalli, with a primary horizontal and a secondary vertical thallus (*podetum*) which bears the fructifications.

Reproduction takes place by detached thalloid parts forming new *rhizines*; also by *soredia*, isolated groups of algal and fungal cells; and by *apothecia*, which arise on podetia.

verbunden, *Laubflechten*, blattförmig, stellenweise mit der Unterlage verwachsen und *Strauchflechten*, mit verzweigten, an der Basis angehefteten Thalli. Es kommen auch in sich verschiedenen gebaute Thalli mit einem primären, horizontalen und einem sekundären, vertikalen Thallus (*Podetium*), der die Fruktifikationsorgane trägt, vor.

Die Vermehrung geschieht durch losgelöste Thallusteile, die neue *Rhizine* bilden, ferner durch *Soredien*, isolierte Gruppen von Algenzellen und Pilzhypfen, und durch *Apothecien*, die an Podetien entstehen.

CHAPTER IV

CLASSIFICATION AND PHYLOGENY (ctd.)

BRYOPHYTA, PTERIDOPHYTA AND GYMNOSPERMS

BRYOPHYTA (LIVERWORTS AND MOSSES)

The Bryophytes are distinguished from Thallophytes by the structure of their sexual organs (*antheridium* and *archegonium*) and by the regular alternation of generations in their life history : an *asexual diploid generation* (*sporophyte*) arises from a fertilised egg, and alternates with a *sexual haploid generation* (*gametophyte*) arising from a spore. The gametophyte may attain considerable development and persist as a perennial. *Sporogonia* or *capsules* are the most important parts of the sporophyte, which always develops on the gametophyte.

Bryophytes are subdivided into two classes; *Hepaticæ* (*Liverworts*) and *Musci* (*Mosses*).

SEXUAL OR PROEMBRYO GENERATION, GAMETOPHYTE (HAPLOID)

The spore germinates to form a *protonema* (*proembryo*), out of which the true moss plant bearing sexual organs is developed. The protonema of Liverworts in contrast to that of Mosses is small and insignificant. The vegetative body is either a prostrate dichotomously branched thallus (*thalloid Liverworts*) or a prostrate creeping stem with distinct leaves in lateral rows (*foliose Liverworts*). Successive leaves overlap each other and are described as *succubous* or *incubous*. The *dorsal* and *ventral* sides of the thallus are distinct. The latter bear *rhizoids* and small *scale leaves* known as *amphigastria*. Sexual organs are found on the dorsal side.

The protonema of the mosses is well developed and resembles a branched filamentous green alga, but is distinguished from this by its *oblique septation*. The moss plant which develops directly on it has an erect cylindrical stem with spirally arranged leaves. The conducting strands are composed of elongated cells. True

KAPITEL IV

SYSTEMATIK UND PHYLOGENIE (forts.)

BRYOPHYTA, PTERIDOPHYTA UND GYMNOSPERMÆ BRYOPHYTA (LEBERMOOSE UND LAUBMOOSE)

Die Bryophyten unterscheiden sich von Thallophyten durch den Bau ihrer Sexualorgane (*Antheridium* und *Archegonium*) und durch den regelmässigen Generationswechsel in ihrem Lebenskreislauf: eine *ungeschlechtliche diploide Generation* (*Sporophyt*) entsteht aus der befruchteten Eizelle und wechselt mit der *geschlechtlichen haploiden Generation* (*Gametophyt*), die aus der Spore entsteht, ab. Der Gametophyt kann eine beträchtliche Entwicklung erreichen und wie eine perennierende Pflanze ausdauernd sein. *Sporogonien* oder *Kapseln* sind die wichtigsten Teile des Sporophyten, der sich stets auf dem Gametophyten entwickelt.

Die Bryophyten werden in zwei Klassen eingeteilt: *Hepaticæ* (*Lebermoose*) und *Musci* (*Laubmoose*).

GESCHLECHTLICHE ODER PROEMBRYONALE GENERATION, GAMETOPHYT (HAPLOID)

Die Spore keimt zu einem *Protonema* (*Vorkeim*), aus dem sich die eigentliche, die Sexualorgane tragende Moospflanze entwickelt. Das Protonema der Lebermoose ist im Gegensatz zu den Laubmoosen klein und unbedeutend. Der vegetative Pflanzenkörper ist entweder ein niederliegender, dichotom verzweigter Thallus (*thalloidische Lebermoose*) oder ein niederliegender, kriechender Stengel mit deutlichen, seitlich in Reihen angeordneten Blättern (*belaubte Lebermoose*). Die aufeinanderfolgenden Blätter überdecken einander und werden als *ober- oder unterschlächtig* bezeichnet. Die *Ober-* und *Unterseite* des Thallus ist verschieden. Letztere erzeugt *Rhizoide* und kleine *Schuppenblätter*, sog. *Amphigastrien*. Die Sexualorgane befinden sich an der Oberseite.

Das Protonema der Laubmose ist gut entwickelt und gleicht einer fadenförmig verzweigten Grünalge, unterscheidet sich aber von dieser durch *schräge Zellteilung*. Die Laubmopflanze, die sich unmittelbar aus dem Protonema entwickelt, besitzt einen aufrechten, runden Stengel mit spiralförmig angeord-

roots are absent. Sexual organs are produced at the apices of the shoots.

Vegetative reproduction of the gametophyte takes place from *gemmae* formed in *gemmae cups* (*cupules*). Moreover, parts of the plant, if they become detached, easily regenerate.

The male sexual organs are antheridia, the female archegonia. Antheridia are stalked, spherical, club-shaped, or egg-shaped bodies. The wall of the antheridium is one layer thick and encloses cubical cells, each of which develops two spermatozoid mother cells. The spermatozoids, which are liberated in the presence of water, are short twisted filaments with two long cilia at the anterior end.

Archegonia are short stalked, flask-shaped organs with an upper narrow portion, the *neck*, which encloses several cells (*neck canal cells*) and leads to a basal dilated portion, the *venter*, which contains the ovum (*oosphere*) and a small cell at the entrance of the neck canal, the *ventral canal cell*. Swelling of the mucilaginous contents of the canal cells leads to the opening of the neck of the archegonium, which is then open for the entrance of sperms. The sperms are attracted chemically by proteins or cane-sugar liberated from the archegonium.

The archegonium of the Bryophytes differs from the oogonium of the Thallophytes in that the oosphere in Bryophytes is enclosed in a multicellular envelope.

In Liverworts the sexual organs are either sunk in the thallus or arise on special erect structures in lobed or rayed discs. In Mosses the sexual organs are borne on terminal branches (*acrocarpic*), or lateral branches (*pleurocarpic*), surrounded by an envelope of special leaves, the *perichaetium*.

ASEXUAL OR EMBRYO GENERATION, SPOROPHYTE (DIPLOID)

After fertilisation the ovum forms an embryo, from which a simple sporangium (sporogonium) is developed in Liverworts and a differentiated sporangium (capsule) with a *stalk* (*seta*) in Mosses. The *venter* of the archegonium continues to grow, and surrounds the embryo as a sheath. As the seta lengthens the sheath ruptures and is carried up as the *hood* or *calyptra* of the capsule (Mosses) or remains round the base of the sporogonium as a *vaginula* (Liverworts). In special cases the tissue adjoining the archegonium forms a pouch-like structure (*marsupium*)

neten Blättern. Die Leitungsbahnen setzen sich aus langgestreckten Zellen zusammen. Echte Wurzeln fehlen. Die Sexualorgane entstehen an den Enden der Sprosse.

Die vegetative Vermehrung des Gametophyten geschieht durch *Brutknospen*, die in *Brutbechern* erzeugt werden. Außerdem können Teile der Pflanze, wenn sie von ihr abgelöst werden, leicht regenerieren.

Die männlichen Sexualorgane sind die Antheridien, die weiblichen die Archegonien. Die Antheridien stellen gestielte, runde, keulen- oder eiförmige Körper dar. Die Wand des Antheridiums besteht aus einer Schicht und schliesst viereckige Zellen ein, deren jede sich zu zwei Spermatozoid-Mutterzellen entwickelt. Die Spermatozoiden, die bei Gegenwart von Wasser frei werden, sind kurze, gewundene Fäden mit zwei langen Geisseln am vorderen Ende.

Die Archegonien sind kurz gestielte, flaschenförmige Organe mit einem oberen schmalen Teil, *dem Hals*, der mehrere Zellen (*Halskanalzellen*) einschliesst und in einen ausgedehnten Basalteil, *den Bauch*, übergeht, der die Eizelle (*Oosphäre*) und eine kleine Zelle beim Übergang zum Halskanal, *die Bauchkanalzelle*, enthält. Durch *Aufquellen* des schleimigen Inhalts der Kanalzellen wird der Hals des Archegoniums zur Öffnung gebracht, welches dann für den Eintritt der Spermatozoiden geöffnet ist. Die Spermatozoiden werden chemotaktisch durch Proteinstoffe oder Rohrzucker, die vom Archegonium abgeschieden werden, angezogen.

Das Archegonium der Bryophyten unterscheidet sich vom Oogonium der Thallophyten dadurch, dass die Oosphäre bei den Bryophyten von einer mehrzelligen Hülle umschlossen wird.

Bei den Lebermoosen sind die Sexualorgane entweder in den Thallus eingesenkt oder entstehen an besonderen aufrechten Gebilden (Rezeptakeln), an lappigen oder sternförmigen Scheiben. Bei den Laubmoosen entstehen die Sexualorgane an endständigen (*akrokarp*) oder seitlichen (*pleurokarp*) Sprossen und werden von einer besonderen Blathülle, dem *Perichaetium*, umgeben.

UNGESCHLECHTLICHE ODER EMBRYONALE GENERATION, SPOROPHYT (DIPLOID)

Nach der Befruchtung bildet die Eizelle einen Embryo, aus dem sich bei den Lebermoosen ein einfaches Sporangium (Sporogon) und bei den Laubmoosen ein differenziertes Sporangium (Kapsel) mit *Stiel* (*Seta*) entwickelt. Der *Bauchteil* des Archegoniums wächst weiter und umgibt den Embryo mit einer Hülle. Wenn die Seta länger wird, zerreißt die Hülle und wird als *Haube* oder *Calyptra* von der Kapsel hochgehoben (*Laubmose*) oder bleibt rund um die Basis des Sporogons als *Vaginula* (*Lebermose*) stehen. In besonderen Fällen bildet das zum

enclosing both archegonium and embryo. In some mosses the sporophyte is carried up by a prolongation of the axis of the gametophyte, known as a *pseudopodium*.

The tissue of the capsule is differentiated at an early stage into a *peripheral layer (amphithecium)* and a central tract of cells (*endothecium*). The former gives rise to the wall of the capsule. The latter forms the archesporium, from the cells of which the spore mother cells (*sporogenous tissue*) is formed. In the Mosses the archesporium produces sporogenous tissue only. In the majority of Liverworts some of the cells derived from the archesporium remain sterile, forming *elaters* and *elaterophores*. These serve for nutrition and at the time of spore maturity effect a slow scattering of the *spore masses*. In Mosses no elaters are developed, but the endothecium may produce partially sterile layers in the form of a central *column (columella)*. The spore sac may surmount the dome-shaped columella, or form a hollow cylinder round it.

The capsule shows various peculiarities which assist in the distribution of the spores. The wall may rupture by teeth or valves, or may open by a lid (*operculum*). At the margin of the operculum there is in some species a ring of cells, the *annulus*, which brings about the separation of the operculum. At the top of the capsule is the *peristome*, a series of *hygroscopic* teeth, which assist in the dispersal of the dry spores. The prolonged base of certain capsules is termed the *apophysis*, and serves the sporophyte mainly for photosynthesis. Variations in the calyptra, operculum, and peristome, are used as the basis for classification.

Bryophytes are thought to have their origin among the earliest plants adapted to a *terrestrial* life. They are amphibious in that they require an aqueous medium for fertilisation and a medium of air for spore dispersal. Transition forms between Algae and Bryophytes are not known.

Two theories have been put forward to account for the evolution of the sporophyte. According to one opinion the *primal aquatic flora* was gametophytic and the sporophyte evolved first on the land.

The alternative hypothesis is that the sporophyte as well as the gametophyte belonged to the primal aquatic flora and that during colonisation of the land the sporophyte evolved further at the expense of the gametophyte, since the former was not dependent upon water.

Archegonium gehörige Gewebe ein beutelartiges Gebilde (*Marsupium*), das das Archegonium und den Embryo einschliesst. Bei einigen Laubmoosen wird der Sporophyt durch eine Verlängerung der Achse des Gametophyten, *Pseudopodium* genannt, emporgehoben.

Das Gewebe der Kapsel differenziert sich im Jugendstadium in eine *peripherie Schicht* (*Amphitheciun*) und eine innere Zellschicht (*Endothecium*). Aus ersterer entsteht die Wand der Kapsel. Letztere bildet das Archespor, aus dessen Zellen sich die Sporenmutterzellen (*sporogenes Gewebe*) bilden. Bei den Laubmoosen erzeugt das Archespor lediglich sporogenes Gewebe. Bei den meisten Lebermoosen bleiben einige Zellen, die vom Archespor stammen, steril und bilden die *Elateren* (*Schleuderzellen*) und die *Elaterenträger*. Sie dienen der Ernährung und bewirken zur Zeit der Sporenreife ein langsames Ausstreuen der *Sporenmassen*. Bei den Laubmoosen werden keine Elateren entwickelt, aber das Endothecium kann teilweise sterile Schichten in Form einer zentralen Säule (*Columella*) bilden. Der Sporensack kann die Columella kuppelförmig überdecken oder sie als Hohlzylinder umgeben.

Die Kapsel zeigt verschiedene Eigentümlichkeiten, die der Sporenverbreitung dienen. Die Zellwand kann zahnartig oder klappig aufreissen oder durch einen Deckel (*Operculum*) geöffnet werden. Bei bestimmten Arten befindet sich am Rande des Deckels ein Ring von Zellen, *der Annulus*, welcher die Abtrennung des Deckels bewirkt. Am oberen Ende der Kapsel sitzt das *Peristom*, eine Reihe von *hygroskopischen* Zähnen, die beim Herausschleudern der trockenen Sporen mitwirken. Die verlängerte Basis gewisser Kapseln wird *Apophyse* genannt und dient dem Sporophyten hauptsächlich zur Photosynthese. Verschiedenheiten der Calyptra, des Operculums und des Peristoms werden zur systematischen Eingliederung benutzt.

Von den Bryophyten nimmt man an, dass ihr Ursprung auf die ersten, dem *Landleben* angepassten Pflanzen zurückgeht. Sie sind insofern amphibisch, als sie zur Befruchtung Wasser benötigen, und die Sporenverbreitung durch die Luft erfolgt. Übergangsformen zwischen Algen und Bryophyten sind nicht bekannt.

Zwei Theorien haben die Entwicklung des Sporophyten zu erklären versucht. Nach der einen Ansicht war die *ursprüngliche Wasserflora* gametophytisch und der Sporophyt entwickelte sich erst auf dem Lande.

Die andere Annahme besagt, dass sowohl Sporophyt wie Gametophyt der ursprünglichen Wasserflora angehören, und dass bei der Besiedelung des Landes der Sporophyt sich auf Kosten des Gametophyten weiterentwickelte, da ersterer nicht vom Wasser abhängig ist.

PTERIDOPHYTA (CLUB MOSSES, HORSETAILS, FERNS)

Pteridophyta, also termed *Vascular Cryptogams*, are characterised by an alternation of generations in which the sporophyte is the more conspicuous. The gametophyte generation is the *prothallus* (*prothallium*), which bears antheridia and archegonia. The sporophyte generation bears spores in sporangia. The prothallus is an *ephemeral* thalloid structure, and the sporophyte is a *cormophyte* with a highly differentiated anatomy. The Pteridophytes are subdivided in *Filicales* (Ferns); *Equisitales* (Horsetails); *Lycopodiales* (Club Mosses).

SEXUAL OR PROEMBRYO GENERATION, GAMETO- PHYTE, PROTHALLUS (HAPLOID)

The gametophyte is always thalloid, and never so clearly differentiated as in the Mosses. It may resemble the thalloid Liverworts (*heart-shaped prothallus* of ferns). It may be branched and filamentous, further it may be subterranean, tuberous and saprophytic. Again it may live in *symbiosis* with a fungus, forming a *mycorrhiza* (*Lycopodium*), or it may be greatly reduced in size and develop completely within the wall of the spore (certain species of *Selaginella*).

The antheridia of Pteridophytes vary only slightly in structure from the *fundamental type* described under Bryophytes. The spermatozoa are spirally coiled bodies with cilia. The archegonia are uniform in type, each containing a single oosphere. Prothalli may be *monoecious*, *diaecious*, *unisexual*; in the last case the male prothallus is distinct in origin and form from the female. Prothalli may in rare instances develop on the leaf of a fern, without having been formed from a haploid spore. Such prothalli are said to be *aposporous*; the phenomenon is termed *apospory*.

After fertilisation the oosphere undergoes division. A *basal wall* divides the embryo into *epibasal* and *hypobasal hemispheres* and two other walls, each vertical to the basal wall, divide it into *octants*. From the epibasal cells, the stem, first leaves and primary root of the embryo develop. Growth of these organs takes place from an *apical cell*, and in some types from a group of *initial cells*. From the hypobasal cells, a foot-like mass of tissue, termed the *foot*, develops. This serves as an organ of attachment and absorption. A *suspensor* is a filament of cells which temporarily takes over the work of attachment in the *Lycopodineæ*. In some instances the sporophyte develops with-

PTERIDOPHYTA (BÄRLAPPGEWÄCHSE, SCHACHTELHALME, FARNE)

Die *Pteridophyten*, auch *Gefässkryptogamen* genannt, sind durch einen Generationswechsel, in dem der Sporophyt stark hervortritt, charakterisiert. Die gametophytische Generation ist das Prothallium, das Antheridien und Archegonien erzeugt. Die sporophytische Generation bringt Sporen in Sporangien hervor. Das Prothallium ist ein *kurzlebiges*, thalloidisches Gebilde, während der Sporophyt einen *Kormophyten* mit hoher anatomischer Differenzierung darstellt. Die Pteridophyten werden unterteilt in *Filicales* (Farne), *Equisitales* (Schachtelhalme) und *Lycopodiales* (Bärlappgewächse).

GESCHLECHTLICHE ODER PROEMBRYONALE GENERATION, GAMETOPHYT, PROTHALLIUM (HAPLOID)

Der Gametophyt ist stets thalloidisch und nie so deutlich differenziert wie bei den Moosen. Er kann den thalloidischen Lebermoosen ähneln (*herzförmiges Prothallium* der Farne). Er kann verzweigt und fälig, ferner unterirdisch lebend, knollenförmig und saprophytisch sein. Dann lebt er mit einem Pilz, eine *Mykorrhiza* bildend, in *Symbiose* (*Lycopodium*) oder ist in seiner Grösse stark reduziert und entwickelt sich bereits vollständig innerhalb der Sporenwand (gewisse *Sellaginella-Arten*).

Die Antheridien der Pteridophyten unterscheiden sich in ihrem Bau nur wenig von dem bei den Bryophyten beschriebenen *Grundtyp*. Die Spermatozoiden sind spiralig gewundene Körper mit Geisseln. Die Archegonien sind von gleichgestaltigem Typ, jedes enthält eine einzige Eizelle. Die Prothallien können *monözisch*, *diözisch* oder *unisexuell* sein; in letzterem Falle unterscheidet sich das männliche Prothallium nach Entstehung und Form von dem weiblichen. In seltenen Fällen können sich auf dem Farnblatt Prothallien entwickeln, ohne dass sie aus einer haploiden Spore hervorgegangen sind. Solche Prothallien werden *apospore* genannt; die Erscheinung wird mit *Aposporie* bezeichnet.

Nach der Befruchtung geht die Eizelle in Teilung über. Eine *Basalwand* teilt den Embryo in eine *obere* und *untere Hälfte*, und zwei weitere, senkrecht zur Basalwand stehende Quadrantenwände, teilen ihn in *Oktanten*. Aus den oberen Zellen entwickeln sich der Stengel, die ersten Blätter und die primäre Wurzel des Embryos. Das Wachstum dieser Organe wird durch eine *Spitzenzelle* und bei einigen Typen durch eine Gruppe von *Initialzellen* bewirkt. Aus den unteren Zellen entsteht ein füssartiges Gewebe, der *Fuss*. Dieser dient als Befestigungs- und Absorptionsorgan. Ein *Suspensor* ist ein Zellfaden, der bei den *Lycopodiaceen* vorübergehend die Aufgabe der Befestigung übernimmt.

out previous fertilisation out of a vegetative bud of the prothallus; this phenomenon is termed *apogamy*.

INTERNAL STRUCTURE OF THE SPOROPHYTE

The tissues of the stem of Pteridophytes is similar to that of Angiosperms (e.g. epidermis, cortex, endodermis, pericycle, vascular bundles, and pith). The distribution of these tissues, particularly of the vascular strands, is characteristic of different genera and serves as one basis for classifying existing and extinct Pteridophytes. The primitive forms have only one central cylinder (*stele*) composed of concentric phloem and xylem, termed a *protostele*. In more advanced forms there is a tendency for the central stele to break up into a number of *meristoles*. In this way it becomes dissected and changes from a *monostelic* to a *polystelic* condition. According to the degree of dissection of the stele, the following classification is made:—

- (1) *Protostele*. Central cylinder consisting of concentric phloem and xylem.
 - (2) *Medullated protostele* (Tansley). Protostele with inner pith.
 - (3) *Amphiphloic siphonostele*, with inner and outer phloem.
 - (4) *Ectophloic siphonostele*, with outer phloem only (*Solenostele* of Gwynne-Vaughan). According to Jeffrey protostely is only a case of reduced ectophloic siphonostely.
 - (5 and 6) *Phyllosiphonic siphonostele* and *cladosiphonic siphonostele*, according to whether *foliar gaps* or *ramular gaps* occur in the central cylinder. By these names Jeffrey denotes the gaps which occur in vascular tissue above the point where a vascular bundle has left. When these bundles are leaf traces they leave foliar gaps, and produce a phyllosiphonic siphonostele; when the bundles lead to lateral buds they are called ramular gaps, and the stele a cladosiphonic siphonostele. The former occurs in *Filicineæ* and Phanerogams, and the latter in Lycopods and *Equisitales* (Schoute).
 - (7) *Solenostele* (Brebner), a continuous amphiphloic cylinder with wide leaf gaps.
 - (8) *Dictyostele* (Brebner), a solenostele, when nothing but a network of bundles remains.
 - (9) *Meristele* (Gwynne-Vaughan) part of a central cylinder which has become separated (e.g. in *Polystely*).
- Secondary thickening does not occur in existing forms, but it is established from the study of fossil forms that secondary

In einigen Fällen entwickelt sich der Sporophyt ohne vorherige Befruchtung aus einer vegetativen Knospe des Prothalliums; diese Erscheinung nennt man *Apogamie*.

INNERER BAU DES SPOROPHYTEN

Die Gewebe des Pteridophytenstengels sind denen der Angiospermen ähnlich (z.B. Epidermis, Rinde, Endodermis, Perizykel, Leitbündel und Mark). Die Anordnung dieser Gewebe, besonders der Leitbündel, ist für die verschiedenen Arten charakteristisch und dient als eine Grundlage, die *bestehenden* und *ausgestorbenen* Pteridophyten zu klassifizieren. Die primitiven Formen besitzen nur einen *Zentralzylinder (Stele)*, der aus konzentrisch gelagertem Phloem und Xylem besteht und *Monostele* genannt wird. Bei höher entwickelten Formen bricht der zentrale Zylinder zu einer Anzahl von *Meristelen* auf. Auf diese Weise wird er zergliedert, und seine *monostelige* Beschaffenheit geht in eine *polystelige* über. Je nach dem Grad der Aufspaltung der Stele kennt man folgende Einteilung:

(1) *Monostele*. Zentralzylinder der aus konzentrisch gelagertem Phloem und Xylem besteht.

(2) *Tubularstele*, Monostele mit Mark im Innern.

(3) *Amphiphloische Siphonostele*, mit äusserem und innerem Phloem.

(4) *Ectophloische Siphonostele*, nur mit äusserem Phloem, *Solenostele* (von Gwynne-Vaughan). Nach Jeffrey ist die Monostele nur ein reduzierter Fall der ectophloischen Siphonostele.

(5 und 6) *Phyllosiphonische Siphonostele* und *kladosiphonische Siphonostele* je nachdem ob im Zentralzylinder "foliar gaps" (Blattlücken) oder "ramular gaps" (Zweiglücken) vorkommen. Unter diesem Namen versteht Jeffrey die Lücken, welche sich im vaskulären Gewebe oberhalb der Stelle bemerkbar machen, wo ein Gefäßbündel ausgetreten ist. Wenn diese Gefäßbündel Blattspuren sind, hinterlassen sie "foliar gaps" und erzeugen die phyllosiphonische Siphonostele, wenn diese Gefäßbündel nach Seitenknospen abzweigen, werden sie "ramular gaps" und die Stele wird eine kladosiphonische Siphonostele genannt. Erstere findet sich bei *Filicineen* und *Phanerogamen*, letztere bei *Lycopodiien* und *Equisitales* (Schoute).

(7) *Solenostele* (Brebner), ein kontinuierlicher, amphiphloischer Zylinder mit breiten Blattlücken.

(8) *Dictyostelete* (Brebner), eine Solenostele, wenn nur ein Netzwerk von Bündeln übrigbleibt.

(9) *Meristele* (Gwynne-Vaughan), ein Teil des Zentralzylinders, der sich abgesondert hat (z.B. bei *Polystele*).

Sekundäres Dickenwachstum ist bei den lebenden Formen nicht vorhanden, aber durch das Studium fossiler Arten wurde

thickening did occur in extinct pteridophytes. The conducting elements of the xylem are composed of tracheids only, *scalariform* tracheids being typical. Bands of *sclerenchyma* often accompany the vascular strands. According to the relative positions of the metaxylem in relation to the protoxylem, wood is described as *centrifugal* (*endarch*) or *centripetal* (*exarch*). When the protoxylem lies between two groups of metaxylem the wood is *mesarch*.

Peculiar anatomical features of the Isoetales are the *elongated* cells (*trabeculae*) in the sporangium; and of the Equisitales, the *vallecular canals* (irregular hollow spaces in the cortex) and *carinal canals* in the vascular bundles.

EXTERNAL FEATURES OF THE SPOROPHYTE

In the Ferns the stem is usually unbranched, and the leaves are termed *fronds*. The fronds may be simple, *pinnate* or *bipinnate*; they are covered with *hairs* (*ramentæ*) or *chaffy scales* (*palæ*) when young, and are rolled in the bud in a *circinate* (*spiral*) manner.

The Horsetails have a verticillately branched stem which bears small scale-like leaves in whorls.

The Club Mosses have frequently a dichotomously branched stem with simple triangular leaves. The leaf base is *amplexicaul* (*clasping the stem*) and in Selaginella the leaf may possess a groove (*fovea*) and a membranous scale (*ligule*) on the adaxial side of the leaf. A leafless branch possessing roots is termed a *rhizophore*.

Vascular Cryptogams may be divided into those with large leaves and leaf gaps (*megaphyllous*, with *phyllisiphonic stele*), and those with small leaves without leaf gaps (*microphyllous*, with *cladosiphonic stele*). The Ferns belong to the former group and the Lycopods to the latter.

SPORES AND SPORANGIA

Sporangia are produced in receptacles. They are borne on fertile leaves termed sporophylls which are aggregated together in some Pteridophytes into typical *cones* (*strobili*). The sporangia may either occur in groups, the so-called *sori* or occur singly (*monangial sorus*). They may be free or protected by an outgrowth of the *sporophyll* known as the *indusium*, or they may be completely enveloped by the sporophyll forming a closed chamber or *sporocarp*. The sporophylls may be similar to the sterile leaves or modified into *peltate* and other forms. The sporangium-bearing organs of the Equisetales are not homologous to sporophylls of Ferns, and are called *sporangophores*.

festgestellt, dass sekundäres Dickenwachstum bei ausgestorbenen Pteridophyten vorkommt. Die leitenden Elemente des Xylems bestehen nur aus Tracheiden; *treppenförmig verdickte* Tracheiden sind typisch. Oft begleiten Bänder von *sklerenchymatischen* Zellen die Leitbündel. Nach der Lage des Metaxylems zum Protoxylem bezeichnet man das Holz als *zentrifugal (endarch)* oder als *zentripetal (exarch)*. Liegt das Protoxylem zwischen zwei Metaxylemen, ist das Holz *mesarch*.

Besondere anatomische Merkmale sind bei den Isoetaceen *balkenförmige* Zellgruppen (*Trabeculae*) im Sporangium und bei den Equisetaceen *Vallekularhöhlen* (unregelmäßige Hohlräume in der Rinde) und *Karinalhöhlen* in den Leitbündeln.

AUSSERE MERKMALE DES SPOROPHYTEN

Bei den Farnen ist der Stengel gewöhnlich unverzweigt, und die Blätter werden als *Wedel* bezeichnet. Die Wedel können einfach, *gesiedert* oder *doppelt gesiedert* sein, sie sind in der Jugend mit *Haaren (Ramenta)* oder *Spreuschuppen (Palea)* bedeckt und in der Knospe *schneckenförmig (spiraling)* eingerollt.

Die Schachtelhalme haben einen wirtelig verzweigten Stengel, der kleine, schuppenartige, quirlig stehende Blätter trägt.

Die Bärlappgewächse besitzen meist einen dichotomisch verzweigten Stengel mit einfachen dreieckigen Blättern. Die Blattbasis ist *amplexicaul (stengelumfassend)*, und bei Selaginella kann das Blatt eine Vertiefung (*Fovea*) und ein häutchenartiges Blättchen (*Ligula*) an seiner Innenseite besitzen. Ein blattloser Zweig, der Wurzeln besitzt, wird *Rhizophor* genannt.

Die Gefässkryptogamen werden eingeteilt in solche mit breiten Blättern und Blattlücken (mit *phyllotropischer Stele*) und solche mit schmalen Blättern ohne Blattlücken (mit *kladosiphonischer Stele*). Die Farne gehören zu der ersten Gruppe und die Bärlappgewächse zu letzterer.

SPOREN UND SPORANGIEN

Die Sporangien werden an Rezeptakeln erzeugt. Sie entstehen an fertilen Blättern, den Sporophyllen, die bei einigen Pteridophyten zu typischen *Zapfen* zusammentreten. Die Sporangien kommen entweder in Gruppen, in den sog. *Sori*, oder einzeln (*monangischer Sorus*) vor. Sie liegen frei oder sind durch einen Auswuchs des *Sporophylls*, das *Indusium*, geschützt, oder sie sind durch das Sporophyll vollkommen eingehüllt, so dass eine geschlossene Kammer oder das *Sporokarp* entsteht. Die Sporophylle können den sterilen Blättern ähneln oder zu *schildartigen* und anderen Formen umgebildet sein. Die Sporangien tragenden Organe der Equisitales sind den Sporophyllen der Farne nicht homolog und werden *Sporangiophore* genannt.

DEVELOPMENT OF THE SPORANGIUM

In *leptosporangiate* Ferns the sporangium develops from a single epidermal cell by segmentation. A central tetrahedral cell constitutes the archesporium, and the superficial cells form the wall and the nutritive tapetum. The archesporium forms twelve to sixteen spore mother cells. In *eusporangiate* Ferns the sporangium develops from a group of epidermal cells; the archesporium is not tetrahedral and forms many spore mother cells. The spores are formed in tetrads. The spore wall consists of three layers, the *exospore*, the *epi-* or *perispore* and the *endospore*. The exospore may be ornamented in various ways or may have *massulae* (spherical bodies), as in the *Salviniæ*.

The sporangium is reniform, and is partially or completely bounded by an *annulus*. When the sporangium is ripe, the cells of the annulus dry out (*inbibition mechanism*) and the sporangium ruptures at a weak place in the wall (the *stomium*), at which, owing to the jerking back of the annulus, the spores are thrown out.

The spores of many Pteridophytes are of the same size (*homosporous*), and give rise to a prothallus on which antheridia or archegonia may arise, or both on the same prothallus. Some Pteridophytes (e.g. *Selaginella*) produce two kinds of spores:—microspores in microsporangia, and macrospores in macrosporangia (megasporangia). They are *heterosporous*. The microspores produce male prothalli only (*microprothalli*), and the macrospores female prothalli (*macroprothalli*) only.

It is believed that the transition from homospory to heterospory is the first step in the evolution toward seed plants. The seed plants have arisen under various conditions from the Pteridophytes. In this the essential change is the reduction to a single megaspore, which forms the prothallus in the sporangium and is later fertilised there. The development of the embryo is arrested at an early stage, it falls from the mother plant together with the sporangium (the integuments becoming thickened to form the testa) and represents the seed.

Although the seed-like structure in certain fossil Pteridophytes has been established (e.g. *Miadesmia*) the seed is a marked peculiarity of the *Spermatophyta* as opposed to the *Pteridophyta*. The *Spermatophyta* are divided into those plants with exposed ovules (Gymnosperms) and those with covered ovules (Angiosperms). In the latter the ovule is enclosed by the sporophyll (carpel), and the pollen is collected by an outgrowth of the carpel (the style and stigma). In the former group the ovule lies on

ENTWICKLUNG DES SPORANGIUM

Die *leptosporangiaten* Farne entwickeln das Sporangium aus einer einzigen epidermalen Zelle durch Teilung. Eine zentrale tetraedrische Zelle erzeugt das Archespor, und die oberste Zelle bildet die Wand und die zur Ernährung dienende Tapetenschicht. Das Archespor erzeugt 12 bis 16 Sporenmutterzellen. Bei *eusporangiaten* Farnen entwickelt sich das Sporangium aus einer Gruppe von epidermalen Zellen; das Archespor ist nicht tetraedrisch und bildet viele Sporenmutterzellen. Die Sporen entstehen in Tetraden. Die Sporenwandung setzt sich aus drei Schichten, dem *Exosporium*, dem *Epi-* oder *Perisporium* und dem *Endosporium* zusammen. Das Exospor kann verschiedenartig ausgestaltet sein oder wie bei den *Salviniaceen* *Massulæ* (ballenartige Körper) besitzen.

Das Sporangium ist nierenförmig und von einem *Annulus* teilweise oder ganz umgeben. Bei der Reife des Sporangium trocknen die Annuluszellen ein (*Imbibitionsmechanismus*), und das Sporangium reißt an einer schwachen Stelle der Wandung (dem *Stomium*) auf, wobei durch Zurückschnellen des Annulus die Sporen weggeschleudert werden.

Die Sporen vieler Pteridophyten sind von gleicher Grösse (*isospor*) und bilden bei der Weiterentwicklung ein Prothallium, auf welchem Antheridien oder Archegonien oder beide auf demselben Prothallium entstehen. Einige Pteridophyten (z.B. *Selaginella*) erzeugen zwei Arten von Sporen: Mikrosporen in Mikrosporangien und Makrosporen in Makrosporangien (*Megasporangien*), sie sind *heterospor*. Die Mikrosporen bilden lediglich männliche Prothallien (*Mikroprothallien*) und die Makrosporen nur weibliche (*Makroprothallien*).

Man nimmt an, dass der Übergang von der Isosporie zur Heterosporie der erste Schritt in der Entwicklung zur Samenpflanze ist. Die Samenpflanzen sind unter verschiedenen Bedingungen aus den Pteridophyten entstanden. Dabei ist das Wesentlichste die Reduktion auf eine einzige Megaspore, die im Sporangium das Prothallium entwickelt und später dort befruchtet wird. Die Entwicklung des Embryos ist an ein frühes Stadium gebunden, er fällt zusammen mit dem Sporangium (wobei die Integumente sich zur Testa verdicken) von der Mutterpflanze ab und stellt den Samen dar.

Obwohl samenähnliche Gebilde bei gewissen fossilen Pteridophyten (z.B. *Miadesmia*) festgestellt wurden, ist der Same eine kennzeichnende Eigenschaft der *Spermatophyten* im Gegensatz zu den *Pteridophyten*. Die *Spermatophyten* werden in Pflanzen mit nackten Samenanlagen (*Gymnospermæ*) und in solche mit bedeckten Samenanlagen (*Angiospermæ*) eingeteilt. Bei letzteren ist die Samenanlage von dem Sporophyll (Karpell) umschlossen, und der Pollen wird durch einen Auswuchs des Karpells

the surface of the sporophyll, and the pollen falls directly on the micropyle.

The prothalli, which are autotrophic or saprophytic in the Pteridophytes, are parasitic on the sporophyte generation in the Spermatophytes.

GYMNOSPERMÆ

CLASSIFICATION OF GYMNOSPERMS

<i>Cycadofilicales</i>	or <i>Pteridospermæ</i> (fern-like seed plants)
	—fossil species only
<i>Bennetitales</i>	} fossil species only
<i>Cordaitales</i>	
<i>Cycadales</i>	
<i>Ginkgoales</i>	
<i>Coniferales</i>	
<i>Gnetales</i>	

SEXUAL GENERATION, GAMETOPHYTE (HAPLOID)

The macrospore arises from a *linear tetrad division* in the spore mother cell. Of the four cells only one survives. This macrospore increases rapidly in size, crushing the surrounding tissue, and begins to divide to form the prothallial tissue, without being shed from the sporangium. The prothallial tissue, termed endosperm, bears at its apex several archegonia. This prothallial tissue is not to be confused with "endosperm" in Angiosperms, which represents a triploid tissue originating from the fusion of two polar nucleii and one male nucleus (generative nucleus of the pollen tube = microgamete) (p. 31). The archegonia are simpler than those of Pteridophytes and may consist of an ovum, a ventral canal cell and two neck-canal cells. In Gnetum no endosperm is present, but the macrospore possesses *multinucleate (coenocytic) protoplasm* and archegonia are not differentiated.

The macrosporangium, which encloses the female prothallus, is known as the *ovule* in *Spermatophyta*. It consists in the Gymnosperms of the *nuccellus*, surrounded except at one point with one or two *integuments*. In many Gymnosperms there is a single three layered integument; the layers being distinguished as: outer fleshy layer (*sarcotesta*), middle stony layer (*sclerotesta*), and inner fleshy layer (*endotesta*). The *passage* com-

(Stylus=Griffel und Stigma=Narbe) aufgefangen. Bei der ersten Gruppe liegt die Samenanlage an der Oberfläche des Sporophylls, und der Polleninhalt gelangt unmittelbar auf die Mikropyle.

Die Prothallien, die sich bei den Pteridophyten autotroph oder saprophytisch ernähren, leben bei den Samenpflanzen parasitisch auf der Sporophytengeneration.

GYMNOSPERMÆ

KLASSIFIZIERUNG DER GYMNOSPERMEN

Cycadofilicales oder *Pteridospermæ* (Samanfarne) — nur fossile Arten

<i>Bennetitales</i>	}	nur fossile Arten
<i>Cordaitales</i>		
<i>Cycadales</i>		
<i>Ginkgoales</i>		
<i>Coniferales</i>		
<i>Gnetales</i>		

GESCHLECHTLICHE GENERATION, GAMETOPHYT (HAPLOID)

Die Makrospore entsteht durch *lineare Tetrade teilung* in der Sporenmutterzelle. Von den vier Zellen bleibt nur eine erhalten. Diese Makrospore nimmt, in das umliegende Gewebe sich einpressend, rasch an Größe zu und beginnt unter Bildung eines prothallienartigen Gewebes sich zu teilen, ohne sich dabei vom Sporangium abzutrennen. Das Prothalliumgewebe, Endosperm genannt, erzeugt am Scheitel einige Archegonien. Dieses Prothalliumgewebe ist nicht mit dem Endosperm der Angiospermen zu verwechseln, welches ein triploides Gewebe darstellt, das durch Fusion zweier Polkerne und eines männlichen Kerns (generativer Kern des Pollenschlauches = Mikrogamet) entstanden ist (S. 32). Die Archegonien sind einfacher als bei den Pteridophyten und können aus einer Eizelle, einer Bauchkanalzelle und aus zwei Halskanalzellen bestehen. Bei Gnetum ist kein Endosperm vorhanden, sondern die Makrospore besitzt *zahlreiche, im Plasma verteilte Kerne*, und Archegonien sind nicht zu erkennen.

Das Makrosporangium, das das weibliche Prothallium einschließt, wird bei den *Spermatophyten* als *Samenanlage* bezeichnet. Sie besteht bei den Gymnospermen aus dem *Nucellus*, der abgesehen von einer einzigen Stelle durch ein *Integument* oder auch zwei *Integumenta* umhüllt wird. Bei vielen Gymnospermen ist ein einziges dreischichtiges Integument vorhanden. Die Schichten werden als äußere fleischige Schicht (*Sarkotesta*),

municating between the nucellus and the outside of the integuments is the *micropyle*. At the base of the micropyle, and above the archegonia, is usually a more or less deep cavity, the so-called pollen chamber, which at the time of fertilisation is filled with fluid secretions from the adjacent cells of the nucellus.

The microspore, termed the pollen grain, is shed from the sporangium, and carried by wind. It germinates to form a pro-thallus of a few cells only. These cells are distinguished as vegetative cells (commonly two, and usually ephemeral): *pollen-tube nucleus cell* and the *stalk cell* (a remnant of the antheridium), and two *generative cells* (male nuclei). Among primitive Gymnosperms, the *Cycadales* and *Ginkgoales*, the male nuclei are motile, and are called sperms or antherozoids. Sperms possess a *spiral band of cilia* and are derived from a special body known as a *blepharoplast*. The male nuclei (microgametes) reach the pollen chamber and the mouth of the archegonium by means of a pollen tube which is often branched and can be haustorial in structure.

The microspores are contained in pollen sacs (micro-sporangia). These are sometimes fused into a *synangium* at the apex of the sporophyll (stamen).

ASEXUAL GENERATION, SPOROPHYTE GENERATION (DIPLOID)

Following fertilisation the ovum divides to form a *many-celled pro-embryo* (in Cycads) or four *pro-embryos* on long *suspensors* (Conifers). The developing seed therefore passes through a *poly-embryonic stage* for a short period. By means of the suspensors the pro-embryos are projected into the tissue of the endosperm. Only one embryo matures at the expense of the others. It consists of two or more cotyledons, *plumule*, *hypocotyl* and *radicle*. From the seed develops a *polycotyledonous seedling*.

EXTERNAL FEATURES

Gymnosperms are *woody trees* and *shrubs*, and are found in *tropical*, *temperate*, and *arctic* climates. The majority are *evergreen*, a few are *deciduous*. The system of branching is always *axillary*, but the development of lateral buds is limited to certain *loci* on the primary and secondary axes. The main axis is indefinite in length, and usually more vigorous than the lateral

steinharte mittlere Schicht (*Sklerotesta*) und innere fleischige Schicht (*Endotesta*) unterschieden. Die *Verbindung* zwischen dem Nucellus und der Aussenseite der Integumente ist die *Mikropyle*. An der Basis der Mikropyle und über den Archegonien befindet sich gewöhnlich eine mehr oder weniger tiefe Höhlung, die sog. Pollenkammer, die zur Zeit der Befruchtung mit flüssigen Ausscheidungen der angrenzenden Nucellus-Zellen angefüllt ist.

Die Mikrospore, Pollenkorn genannt, lösst sich vom Mikrosporangium ab und wird durch den Wind verbreitet. Sie keimt zu einem Prothallium, das aus nur wenigen Zellen besteht. Von diesen Zellen unterscheidet man vegetative Zellen (gewöhnlich zwei und meist kurzlebig): die *Pollenschlauchkernzelle* und die *Stielzelle* (ein Überrest des Antheridiums) und zwei generative Zellen (männliche Kerne). Bei den primitiven Gymnospermen, den *Cycadales* und *Ginkgoales*, sind die männlichen Kerne beweglich und werden Spermatozoiden oder Antherozoiden genannt. Diese Spermatozoiden besitzen ein *Spiralband von Zilien* und bilden sich aus einem besonderen Körper, dem *Blepharoplasten*. Die männlichen Kerne (Mikrogameten) gelangen mit Hilfe eines Pollenschlauches, der öfter Verzweigungen zeigt und haustorienartig ausgebildet sein kann, in die Pollenkammer und an die Öffnung der Archegonien.

Die Mikrosporen befinden sich in den Pollensäcken (Mikrosporangien). Diese sind manchmal zu einem *Synangium* an der Spitze des Sporophylls (Staubblatt oder Staminum) verschmolzen.

UNGESCHLECHTLICHE GENERATION, SPOROPHYT (DIPLOID)

Nach der Befruchtung teilt sich die Eizelle zu einem vielzelligen *Proembryo* (bei den Cycadaceen) oder in vier *Proembryonen* mit langen *Suspensoren* (Coniferen). Der sich entwickelnde Same durchläuft also für kurze Zeit ein *polyembryonales Stadium*. Mit Hilfe der Suspensoren gelangen die Proembryonen in das Endospermgewebe. Nur ein Embryo entwickelt sich auf Kosten der anderen weiter. Er besteht aus zwei oder mehreren Kotyledonen, der *Plumula*, dem *Hypokotyl* und der *Radikula*. Aus dem Samen entwickelt sich ein zwei- oder *mehrkeimblättriger Sämling*.

ÄUSSERE MERKMALE

Die Gymnospermen sind *Bäume* oder *Sträucher* und kommen in *tropischen*, *gemässigten* und *arktischen* Klimaten vor. Die Mehrzahl ist *immergrün*, und nur wenige *werfen das Laub ab*. Sie verzweigen sich immer *axillar*, jedoch ist die Bildung von Seitenknospen an bestimmte *Zonen* der primären und sekundären Achsen gebunden. Die Hauptachse wächst unbegrenzt in die

axes. The typical growth is *pyramidal* or *conical*, but sometimes the position and growth of the branches is irregular (e.g. Cedar of Lebanon). In Cycads lateral branching is *suppressed*. In many of the *Pinaceæ* (Pine, Larch, Cedar) two kinds of shoots are distinguished: *long shoots* which continue the branching of the tree, and *short shoots (spurs)* which arise in the axils of leaves on the long shoots. The leaves occur in pairs, in tufts or rosettes on the spurs, but these never produce secondary shoots.

Two types of leaves are found: foliage leaves and scale leaves. Foliage leaves are usually persistent. They may be broad, *fan-like*, and *leathery* in texture (Cycads); *two-lobed* (*Ginkgo*); small, undivided, *acicular* (Conifers); thick, connate, and adpressed to the stem (Cypress); and broad, *reticulate veined* (*Gnetum*). In one genus (*Phyllocladus*) the leaves are replaced by *cladodes* (phylloclades). The *phyllotaxis* may be *spiral*, *alternate*, *decussate*, or *whorled*.

INTERNAL STRUCTURE

The peculiarities of gymnospermous anatomy are:—*collateral vascular bundles* (usually *endarch*) in a *medullated* protoxyle, secondary thickening, absence of so-called “*true*” vessels in the wood, and the presence of fibrous *tracheids* with circular *bordered pits*, *albuminous cells* in the medullary rays, *resin passages*, lined with *epithelial* cells; phloem elements without companion cells; and in the leaf, *transfusion tissue* between the assimilating tissue and the vascular bundle. In the *Gnetales* *true vessels* are found. In species of Cycads irregular secondary thickening is found, conditioned by an incomplete concentric zone of cambium. These cambia give occasionally collateral or concentric bundles. The anatomy of the Cycads is distinguished also by the circularly arranged *leaf traces (terminal rosette)* and the *coralloid roots*, which grow upward and dichotomise, and in whose tissues are found both bacteria and blue-green algae as symbionts.

INFLORESCENCES

The flowers of Gymnosperms are unisexual (except *Bennetitales*) and the plants may be either monoecious or dioecious. Male flowers are more numerous than female. The male flowers consist of *microsporophylls (stamens)* and the female of *macrosporophylls (carpels)*. Perianth leaves are found only in the *Gnetales* (*perigon* in *Ephedra*).

Länge und ist gewöhnlich stärker als die Seitenachsen ausgebildet. Die typische Wuchsform ist *pyramidenartig* oder *kegelig*, manchmal jedoch sind Insertion und Wachstum der Zweige unregelmässiger (z.B. Libanonzeder). Bei Cycas ist die seitliche Verzweigung *zurückgedrängt*. Bei vielen Pinaceen (Kiefer, Lärche, Zeder) unterscheidet man zwei Arten von Trieben: *Langtriebe*, welche die Zweige des Baumes fortsetzen und *Kurztriebe*, die in den Blattachsen am Langtrieb entstehen. Die Blätter stehen paarweise, in Büscheln oder Rosetten an den Kurztrieben, die aber nie sekundäre Triebe hervorbringen.

Zwei Blatttypen treten auf: Laubblätter und Schuppenblätter. Die Laubblätter sind gewöhnlich ausdauernd, sie können breit, fächerartig und *lederig* (Cycas), *zweilappig* (Ginkgo), klein, ungegliedert, *nadelförmig* (Coniferæ), dick, verwachsen und der Achse anliegend (Zypresse), breit und *netzförmig geadert* (Gnetum) sein. Bei einer Gattung (Phyllocladus) werden die Blätter durch *Kladodien* (Phyllokladien) ersetzt. Die *Blattinsertion* kann *spiraling*, *gegenständig*, *dekussiert* oder *quirlig* sein.

INNERER BAU

Eigentümlichkeiten der Gymnospermen-Anatomie sind: *kollaterale Gefäßbündel* (gewöhnlich *endarch*) in einer mit *Mark* versehenen Protosteile, sekundäres Dickenwachstum, Fehlen von sog. Gefässen (*Tracheen*) im Holz und Anwesenheit von faserförmigen Tracheiden mit kreisförmig *umrandeten Tüpfeln* (*Hoftüpfel*), *eiweißhaltige Zellen* in den Markstrahlen, *Harzgänge*, begrenzt durch *epithelartige Zellen*, Phloëmgewebe ohne Geleitzellen und im Blatt *Transfusionsgewebe* zwischen dem Assimilationsgewebe und den Leitbündeln. Bei den *Gnetales* finden sich echte Gefäße (*Tracheen*). Bei den Cycas-Arten tritt, bedingt durch eine unvollständige, konzentrische Kambiumzone, ein unregelmässiges Dickenwachstum auf. Diese Kambien bilden gelegentlich kollaterale oder konzentrische Bündel. Weiter zeichnen sich die Cycas-Arten durch die kreisförmig angeordneten *Blattnarben* (*gipfelständige Rosette*) und die *korallenähnlichen Wurzeln*, die aufwärts und gabelig wachsen, aus. In ihren Geweben halten sich Bakterien und blaugrüne Algen als Symbionten auf.

BLÜTENSTÄNDE

Die Blüten der Gymnospermen sind (mit Ausnahme der *Bennetitales*) getrennt geschlechtlich (eingeschlechtlich), und die Pflanzen sind entweder monözisch oder diözisch. Die männlichen Blüten sind in grösserer Zahl als die weiblichen vorhanden. Die männlichen Blüten bestehen aus *Mikrosporophyllen* (*Stamina* = *Staubgefässe*) und die weiblichen aus *Makrosporophyllen* (*Karpelle* = *Fruchtblätter*). Nur bei den *Gnetales* sind Blütenhüllblätter (*Perigon* bei *Ephedra*) vorhanden.

The male flower consists typically of an axis with spirally arranged sporophylls (*simple strobilus*¹). The male strobili are either terminal on small leafy shoots or axillary in the leaves of large shoots. They may be *pendulous* or *erect*, and the sporophyll is generally differentiated into a slender stalk and a *peltate lamina*. Microsporangia are borne on the lower (abaxial) side of the lamina. On dehiscence the sporangia split by means of a fibrous *exothecium*. The microspores (pollen grains) are wind-borne, and their buoyancy is sometimes increased (*Pinus*) by *wing-like extensions* (*air sacs*) of the exine.

The female flowers vary considerably, but the macrosporophylls are generally borne on lateral branches from a central axis (compound strobilus). In the *Pinaceæ* two ovules are found on the adaxial side of an *ovuliferous scale* which is borne in the axil of a bract on the main axis of the cone. The *bract* and ovuliferous scale are partly fused. In the Yew (*Taxus*) and in *Ginkgo* the female strobilus is still compound, but the number of sporophylls is reduced to two, and one ovule usually aborts. The macrosporophyll in *Ginkgo* surrounds the ovule as a collar-like outgrowth. The significance of the *aril* in *Taxus* is doubtful. *Araucaria* is the only conifer which possesses a solitary ovule on each carpel.

The macrosporangia (ovules), of which there are generally two, are found on the upper surface of the ovuliferous scale; they may be *marginal*, *median*, or *basal*. They are generally *orthotropous* or *anatropous*.

NOTES ON FOSSIL BOTANY (PALÆOPHYTOLOGY)

Fossil Botany is the study of *fossil plants*, and a comparison of their morphology with that of living plants. As early as the Palæozoic Gymnosperms and *Pteridophyta* occur. Some Gymnosperms (e.g. *Cordaites*) have a *seed structure* and anatomy as highly developed as that of any Conifer. Angiosperms do not appear until the *Cretaceous*.

The modes of preservation are:—(i) *incrustation* by mineral matter and (ii) *petrifaction*. Incrustations or *impressions* show nothing of the anatomy of the specimen. They show the exact

¹ In German it is not possible to use the expressions “*simple* and *compound strobilus*” since *strobilus* denotes the female flower only.

Die männliche Blüte besteht regelmässig aus einer Achse mit spiraling inserierten Sporophyllen (*einfacher Zapfen*¹). Die männlichen Blüten sind entweder endständig an kurzen, beblaubten Sprossen oder achselständig an den Blättern der Langtriebe. Sie können *hängend* oder *aufrecht* sein, und das Sporophyll gliedert sich im allgemeinen in einen dünnen Stiel und in eine *schildförmige Blattfläche*. Die Mikrosporangien entstehen an der unteren (abaxialen) Seite des Blättchens. Beim Öffnen springt das Sporangium mit Hilfe eines faserigen *Exotheciums* auf. Die Mikrosporen (Pollenkörner) werden durch den Wind verbreitet, ihre *Tragfähigkeit* wird öfter durch *flügelartige Verbreiterungen* (Flugblasen) der Exine vergrössert (*Pinus*).

Die weiblichen Blüten variieren beträchtlich, jedoch entstehen die Makrosporophylle im allgemeinen an seitlichen Verzweigungen der Hauptachse (zusammengesetzter Zapfen¹). Die *Pinaceen* besitzen zwei Samenanlagen an der Innenseite einer *Fruchtschuppe*, die sich in der Achsel eines Deckblattes an der Hauptachse des Zapfens bildet. Die *Deck-* und *Fruchtschuppe* sind teilweise miteinander verwachsen. Bei der Eibe (*Taxus*) und beim *Ginkgo* ist der weibliche Zapfen noch zusammengesetzt, aber die Zahl der Sporophylle verringert sich auf zwei, wobei eine Samenanlage gewöhnlich unterdrückt wird. Das Makrosporophyll umgibt bei *Ginkgo* die Samenanlage als kragenartige Wucherung. Die Bedeutung des *Arillus* (*Samenmantel*) bei *Taxus* ist zweifelhaft. *Araucaria* ist die einzige Conifere, die je Fruchtblatt nur eine Samenanlage besitzt.

Die Makrosporangien (Samenanlagen), von denen im allgemeinen zwei vorhanden sind, befinden sich auf der inneren Oberfläche der Fruchtschuppe und können *rand-*, *mittel-* oder *grundständig* sein. Sie sind gewöhnlich *orthotrop* oder *anatrop*.

BEMERKUNGEN ÜBER PALÆOBOTANIK (PALÆOPHYTOLOGIE)

Die Palæobotanik beschäftigt sich mit der Erforschung von *fossilen Pflanzen* und vergleicht ihre Morphologie mit der lebender Pflanzen. Schon im Palaeozoikum kommen Gymnospermen und *Pteridophyten* vor. Einige Gymnospermen (z.B. *Cordaites*) zeigen einen *Samenbau* und eine ebenso hoch entwickelte Anatomie wie die der Coniferen. Die Angiospermen treten bis zur *Kreidezeit* nicht in Erscheinung.

Die Erhaltungsarten sind:—(i) *Inkrustierung* durch mineralesche Stoffe und (ii) *Versteinerung*. Inkrustierungen oder *Abdrücke* geben keine Auskunft über die Anatomie der Exem-

¹ Im Deutschen sind die Ausdrücke "*ein/acher* und *zusammengesetzter* *Zapfen*" ungebräuchlich, als Zapfen werden nur die weiblichen Blüten bezeichnet.

form of internal or external surfaces. Petrifications are fossils in which the whole substance of the specimen has been impregnated by mineral matter in solution and preserved in solid form. Petrifications are either *calcified* or *silicified*; they are commonly found in *nodules* (*e.g.* *coal balls*). They are examined by taking sections, from which *film transfers* may be made with celloidion.

Certain structures peculiar to fossils and not previously defined are treated below.

Aphlebiæ are *stipellar* or *ramenta-like* growths on the *rachis* of fossil ferns and Pteridosperms.

Parichnos is the name given to two *scars* on either side of the *vascular trace* of the leaf, on the stem of *Lepidodendron*.

Infranodal canals are radial canals in the *parenchyma* of the *medullary ray* of *Calamites*.

Cupules are modified leaflets of fronds enclosing seeds in the *Pteridospermæ*.

It should be noticed that the word *seed* is restricted in living plants to a *modified ovule* containing a *fertilised egg* in the form of a *resting embryo*. In Palæobotany the word *seed* is extended to ovules at any stage of development, so that an ovule in which archegonia are found is referred to as a *seed*.

The investigations in Palæobotany have shown that certain morphological characters change continuously. Hence they are termed *evolutionary characters*, and yield an *evolutionary "trend."* As examples may be cited the *reduction of the number of cells* in the male gametophyte of Gymnosperms, the *transition from exarch to endarch xylem*, the *elaboration of stelar structure* in the ferns, etc. A "*primitive*" character may have persisted from earlier times (*palingenetic*) or may have reappeared (*cœnogenetic*).

plare. Sie zeigen die genaue Form der Innen- oder Aussenflächen. Versteinerungen sind Fossilien, bei denen die gesamte Substanz des ganzen Exemplars durch gelöste mineralische Stoffe imprägniert und in fester Form erhalten wurde. Versteinerungen sind entweder *verkalkt* oder *verkieselst*. Sie werden gewöhnlich in *Nieren* (z.B. *Dolomitknollen*) gefunden. Zur Untersuchung werden sie in kleine Teile zerlegt, aus denen mit Hilfe von Celloidin *Dünnenschliffe* angefertigt werden können.

Besondere Gebilde, die nur bei Fossilien vorkommen und vorher nicht beschrieben sind, sollen nachfolgend behandelt werden.

Aphlebien sind *blättchen-* oder *schuppenähnliche* Bildungen an den *Hauptachsen* fossiler Farne und Pteridospermen.

Parichnos nennt man zwei *Narben* an der einen Seite der *Gefäßstränge* des Blattes am Stamm von *Lepidodendron*.

Infranodal-Kanäle sind radial verlaufende Kanäle im Parenchym der Markstrahlen von *Calamites*.

Cupulæ sind umgewandelte Farnblättchen, die bei den Pteridospermen die Samen einschliessen.

Es sei hierbei erwähnt, dass das Wort *Same* bei der lebenden Pflanze für eine *umgewandelte Samenanlage* geprägt wurde, die das *befruchtete Ei* in Form eines *ruhenden Embryo* enthält. In der Palaeobotanik ist das Wort *Same* auf jedes Entwicklungsstadium der Samenanlage ausgedehnt, so dass eine Samenanlage mit Archegonien ebenfalls als *Same* bezeichnet wird.

Die Untersuchungen der Palaeobotanik haben gezeigt, dass sich gewisse morphologische Eigenschaften fortlaufend verändern. Sie werden daher als *Entwicklungsmerkmale* bezeichnet und ergeben eine Entwicklungsreihe. Als Beispiele seien hier genannt: die *Zellverringerung* bei den männlichen Gametophyten der Gymnospermen, der *Übergang* von einem *exarchen* zu einem *endarchen Xylem*, die *Weiterentwicklung* der stelaren Struktur bei den Farnen usw. Ein "*primitives*" Merkmal kann aus früheren Zeiten stammen (*palingenetisch*) oder erneut in Erscheinung treten (*zoenogenetisch*).

CHAPTER V

CYTOLOGY AND GENETICS

CYTOLOGY

Cytology is the study of *cells*, as opposed to *histology*, which is the study of *tissues*. In cytology interest is confined to the *protoplasm* (*cytoplasm* and *nucleus*) and is not concerned with the *cell wall*.

The cytoplasm is *granular*, and the nucleus more *refractive* and more densely granular than the cytoplasm. Cells in an active condition have prominent *nuclei*, with colourless spherical *nucleoli*.

(i) **Nuclear Division. Mitosis.**—Every cell is derived by division from a pre-existing cell; the process is generally accompanied by a nuclear division (*mitosis* or *karyokinesis*). At the onset of division the *granular chromatin* is transformed into a *spireme thread* (*prophase*), which loses water and breaks transversely into a number of rods (*chromosomes*); these subsequently split longitudinally into identical halves (*chromatids*). These arrange themselves in a single plane at the equator of the cell and become attached to a series of protoplasmic threads which converge at the *poles* of the cell to form a *nuclear spindle*. The *point of attachment* to the spindle determines whether the chromosomes shall be *V-shaped*, *hooked*, or *straight*. This is the *metaphase* (*aster stage*) of division, and is a relatively stable condition. It is followed by a phase of great activity, the *anaphase* (*diaster stage*). The daughter chromosomes are drawn toward the poles of the spindle, where they crowd together round the *centrosomes*. In the next period, known as the *telophase* (*dispireme stage*), the chromosomes again become *reticulate*, the *nucleoli* and *nuclear membrane* separate out, and finally the chromosomes become invisible. Simultaneously the cytoplasm thickens along the equatorial plate (cell plate) to form a cell wall, thus dividing the *mother cell* into two *daughter cells*.

The value of mitosis to the organism lies in the fact that by this mechanism every cell in the soma contains the same array of chromosomes. The importance of this in *inheritance* is discussed below. Occasionally *amitotic* divisions occur. Neither of the

KAPITEL V

ZYTOLOGIE UND GENETIK

ZYTOLOGIE

Die *Zytologie* beschäftigt sich mit der *Zelle*, im Gegensatz zur *Histologie*, die sich mit dem Studium der *Gewebe* befasst. In der Zytologie ist das Interesse auf das *Protoplasma* (*Zytoplasma* und *Zellkern*) und nicht auf die *Zellwand* gerichtet.

Das Zytoplasma ist *körnig*, und der Zellkern ist stärker *lichtbrechend* und dichter granuliert als das Zytoplasma. Lebhaft tätige Zellen besitzen deutlich sichtbare *Kerne* mit farblosen, runden *Kernkörperchen* (*Nucleoli*).

(i) **Zellkernteilung. Mitosis.**—Jede Zelle entsteht durch Teilung einer vorher bestehenden. Dieser Vorgang ist meist von einer Kernteilung (*Mitosis*, indirekte Kernteilung oder *Karyokinese*) begleitet. Zu Beginn der Teilung wird das *körnige Chromatingerüst* in das *Spiremstadium* (*Prophase*) übergeführt, verliert an Wasser und zerfällt durch Querteilung in eine Anzahl Stäbchen (*Chromosomen*); später teilen sich diese längs in gleichwertige Hälften (*Chromatiden*). Diese ordnen sich in einer Ebene in der Mitte der Zelle an und sind mit Protoplasmafäden verbunden, die an den *Polen* der Zellen zusammenlaufen und so die *Kernspindel* bilden. Der *Anheftungspunkt* an der Spindel ist dafür massgebend, ob die Chromosomen *V-förmig*, *hakenförmig* oder *gerade* sein werden. Das ist die *Metaphase* (*Asterstadium*) der Teilung, die einen verhältnismässig stabilen Zustand darstellt. Sie wird abgelöst von einer Phase starker Zelltätigkeit, der *Anaphase* (*Diasterstadium*). Die Tochterchromosomen werden an die Pole der Kernspindel gezogen, wo sie sich um die *Zentrosomen* scharren. Im nächsten Stadium, der *Telophase* (*Dispiremstadium*), werden die Chromosomen wieder *netzförmig*, Nucleolen und *Kernmembran* werden abgeschieden, und endlich werden die Chromosomen unsichtbar. Gleichzeitig verdichtet sich das Protoplasma an der Äquatorialplatte (*Zellplatte*) zu einer Zellwand und teilt so die *Mutterzelle* in zwei *Tochterzellen*.

Bei der Mitosis ist es für den Organismus wesentlich, dass durch die Art der Teilung jede Zelle im Soma den gleichen Satz von Chromosomen enthält. Ihre Bedeutung in bezug auf die *Vererbung* wird später geschildert. Gelegentlich findet *ami-*

daughter cells of such a division has the complete array of chromosomes. This abnormal division is chiefly confined to pathological tissue.

(ii) **Nuclear Division. Meiosis.**—The essential process in sexual reproduction is the *fusion* of *male* and *female gametes* with the production of a *zygote* which possesses a double set of chromosomes, one set from the male, and one corresponding set from the female. This fusion is known as *syngamy* or *fertilisation*. The sexually produced individual has therefore the *diploid* or *somatic* number of chromosomes ($2x$).

Reduction division, or *meiosis*, is a special form of nuclear division; whereby the chromosome number is reduced to half, i.e., the *diploid* phase ($2x$) is succeeded by the *haploid* phase (x).

During the prophase of meiotic division, and before normal splitting of the spireme thread has taken place, *homologous* chromosomes associate in *pairs* (derived from male and female parents). This pairing is *synapsis* (*syndesis*) or *zygotene*. When splitting occurs, therefore, four chromatids lie side by side. During the momentary association of corresponding chromosomes an exchange of material may occur between them, a process known as *crossing over*. Immediately afterwards the homologous chromosomes move apart (*disjunction*) and pass to the poles of the cell. Each new cell therefore receives half the somatic number of chromosomes, and the two cells are dissimilar in their constitution of chromosomes. A new metaphase follows immediately in these dissimilar cells, during which halves of each complete chromosome separate, so that in the final telophase there are four nuclei.

(iii) **Significance of Chromosomes.** — Chromosomes are the *bearers* of *heritable characters* from parent to offspring. Each species of plant has a constant and typical *chromosome number*. Deviation from the usual chromosome number may occur and the commonest form is *re-duplication*.

A plant with three times the haploid or *basic* number of chromosomes ($3x$) is a *triploid*. If it has four times the number, it is a *tetraploid* ($4x$), if it has many times the haploid number, it is a *polyploid*. Missing or supernumerary chromosomes are due either to failure of two chromosomes to separate during meiosis (*non-disjunction*) or to the breaking of chromosomes (*fragmentation*). A plant showing this form of chromosome variation is a *heteroploid*. A *trisomic* plant is one which has a limited number of homologous chromosomes three times in contrast to the triploid, which has three of the complete complement of chromosomes.

totische Teilung (direkte Kernteilung) statt. Bei dieser Teilung besitzt keine der Tochterzellen den vollständigen Satz von Chromosomen. Diese anormale Teilung kommt hauptsächlich in *pathologischen* Geweben vor.

(ii) **Zellkernteilung. Meiosis.** — Das Wesentliche bei der *geschlechtlichen* Fortpflanzung ist die *Vereinigung* von *männlichen* und *weiblichen* *Gameten* (*Geschlechtszellen*) unter Bildung einer *Zygote*, die einen doppelten Chromosomensatz, einen männlicher und einen weiblicher Herkunft, enthält. Diese Verschmelzung wird als *Syngamie* oder *Befruchtung* bezeichnet. Das auf geschlechtlichem Wege entstandene Individuum hat daher den *diploiden* oder *somatischen* Chromosomensatz ($2x$).

Die *Reduktionsteilung* oder *Meiosis* ist eine besondere Art der Kernteilung. Hierbei wird die Chromosomenzahl auf die Hälfte reduziert, d.h. die *diploide* Phase ($2x$) wird durch die *haploide* abgelöst (x).

Während der Prophase der meiotischen Teilung und vor Auflösung des Spiremstadiums vereinigen sich *homologe* Chromosomen (von männlichen und weiblichen Eltern stammend) zu *Paaren*. Diese Paarung ist die *Synapsis* (*Syndesis*) oder "zygotene." Bei dieser Auflösung liegen daher vier Chromatiden nebeneinander. Während der kurzen Anlagerung entsprechender Chromosomen kann ein Säfteaustausch zwischen ihnen eintreten. Den Vorgang bezeichnet man mit "crossing over." Unmittelbar danach trennen sich die homologen Chromosomen wieder und bewegen sich nach den Polen der Zelle. Jede neue Zelle erhält daher die halbe Chromosomenzahl, und die beiden Zellen sind in ihrer chromosomal Konstitution verschieden. In diesen ungleichen Zellen folgt nun unmittelbar eine neue Metaphase, bei der die Chromosomen geteilt werden, so dass in der End- oder Telophase vier Zellkerne entstanden sind.

(iii) **Bedeutung der Chromosomen.** — Die Chromosomen sind die *Träger* der *erblichen Eigenschaften* von den Eltern auf die Nachkommen. Jede Pflanzenart hat eine konstante und für sie typische *Chromosomenzahl*. Eine Abweichung von der gewöhnlichen Chromosomenzahl ist möglich, die häufigste Form ist die *Chromosomenverdoppelung*. Eine Pflanze, welche das dreifache der haploiden oder *Grundchromosomenzahl* hat, ist *triploid* ($3x$), wenn sie die vierfache Zahl hat, ist sie *tetraploid* ($4x$), und hat sie ein mehrfaches der haploiden Zahl, so ist sie *polyploid*. Unter- oder überzählige Chromosomensätze entstehen entweder dadurch, dass sich bei der Meiosis zwei Chromosomen nicht trennen ("Non-disjunction") oder durch das Zerbrechen von Chromosomen ("Fragmentation"). Eine Pflanze, die diese Chromosomenabweichungen zeigt, ist *heteroploid*. Eine *trisomische* Pflanze besitzt eine beschränkte Anzahl gleichartiger Chromosomen dreifach, im Gegensatz zur triploiden Pflanze, die den dreifachen, vollständigen Chromosomensatz enthält.

Chromosomes are distinct from each other in form and size. Each is a compound body, consisting of small bead-like bodies (*chromomeres*) arranged in order along the length of the chromosome. The chromosomes probably retain their identity in the resting nucleus, although they are not visible; the number of chromosomes issuing from a resting nucleus is the same as the number which formed it. There is a tendency for *synaptic mates* (*homologous chromosomes*) to lie in pairs in the diploid nucleus at the onset of division. Pairs of chromosomes which behave normally are termed *autosomes*, unlike pairs or unpaired chromosomes are termed *hetero-chromosomes*. Sex *chromosomes* are typical hetero-chromosomes. In the *diœcious Rumex* there are fifteen *somatic* chromosomes, of which six pairs are autosomes, denoted by *a*, and three are heterochromosomes, denoted by *M*, *m₁* and *m₂*. Two kinds of pollen result: *6a + M*, and *6a + m₁ + m₂*. The latter kind of pollen is *male-determining*.

GENETICS

Genetics is the study of the principles governing *heredity* and *variation*. Heredity may be considered as the tendency for *offspring* to resemble their *parents* in certain respects. The method of investigation used is that devised by Mendel. He studied the inheritance of single pairs of contrasting characters (*allelomorphs*), *i.e.*, tall and dwarf peas, green pod and yellow pod, wrinkled and smooth seeds, etc. He produced hybrids by *crossing*, and thereby obtaining the *first filial generation* (*F₁*). The *F₁* generation was then *selfed*, to produce the second filial generation (*F₂*). The populations of these two generations were then compared with those of the original parents. It was found that in the *F₁* population only one allelomorph of a pair was apparent (*e.g.*, green parent crossed with yellow parent:—green *F₁*). The parental character which appears is *dominant*; the parental character which is suppressed is *recessive*. In the *F₂* population *segregation* of the *characters* occurs, so that in the simplest case the dominant appears in 75 per cent. of the offspring and the recessive in 25 per cent.

Every heritable character in the plant is represented in the *gametes* by a unit of inheritance (*factor*, or *gene*) located on a chromosome. In the *progeny* a pair of factors is present for every character. If the two factors are identical the plant is said to be *homozygous* for the factor; if the two factors are unlike the plant is *heterozygous* for the factor. If homozygous the plant will *breed true* for the factor, if heterozygous it will not breed true. The *genetic composition* (*genotype*) of a plant cannot be assumed from its appearance (*phenotype*). The

Die Chromosomen unterscheiden sich voneinander in Form und Grösse. Jedes stellt einen zusammengesetzten Körper dar, der aus kleinen, tropfenförmigen Körperchen (*Chromomeren*), die linear innerhalb des Chromosoms angeordnet sind, besteht. Die Chromosomen bleiben wahrscheinlich auch im ruhenden Kern erhalten, sind jedoch dort nicht sichtbar. Die Zahl der Chromosomen, die aus einem ruhenden Kern hervorgeht, ist die gleiche wie die, aus welcher der Kern vorher gebildet wurde. Die *homologen Partner* haben das Bestreben, sich bei Beginn der Teilung im diploiden Kern paarweise anzutunnen. Chromosomenpaare, die sich normal verhalten, werden als *Autosomen*, ungleiche Paare oder unpaarige Chromosomen werden als *Heterochromosomen* bezeichnet. *Geschlechtschromosomen* sind typische Heterochromosomen. Beim diözischen *Rumex* sind 15 somatische Chromosomen vorhanden, davon sind 6 Paare Autosomen, mit a, und drei sind Heterochromosomen, mit M, m_1 und m_2 bezeichnet. Daraus ergeben sich zwei Pollenarten: $6a + M$ und $6a + m_1 + m_2$. Letztere Pollenart ist *männlich bestimmend*.

GENETIK

Die Genetik beschäftigt sich mit den Ursachen der *Vererbung* und der *Variation*. Als Vererbung bezeichnet man die Tatsache, dass die *Nachkommen* den *Eltern* in gewissen Merkmalen ähneln. Hierfür hat Mendel eine Untersuchungsmethode ausgearbeitet. Er studierte die Vererbung bei einzelnen Paaren entgegengesetzter Eigenschaften (*Allelomorphe*), z.B. lang- und kurzwüchsige Erbsen, grüne und gelbe Hülsen, runzelige und glatte Samen usw. Er erzeugte *Bastarde* durch *Kreuzung* und erhielt dadurch die *erste Tochtergeneration* (F_1). Um eine weitere Generation (F_2) zu erhalten, wurde die F_1 -Generation geselbstet. Die Populationen dieser beiden Generationen wurden dann mit denen der ursprünglichen, Stammeltern verglichen. Es zeigte sich, dass in der F_1 -Population lediglich ein Allelomorph von einem Paar in Erscheinung trat (z.B. grüner Elter mit gelbem Elter gekreuzt: grüne F_1). Die elterliche Eigenschaft, die in Erscheinung tritt, ist *dominierend*, die andere, die unterdrückt wird, ist *recessiv*. In der F_2 -Population spalten die *Eigenschaften* so auf, dass im einfachsten Falle die dominierende bei 75% und die rezessive bei 25% der Nachkommenschaft auftritt.

Jede erbliche Eigenschaft der Pflanze ist in den *Gameten* durch Erbinheiten (*Faktoren* oder *Gene*) in den Chromosomen verankert. Bei den *Nachkommen* tritt für jede Eigenschaft ein Faktorenpaar auf. Wenn die beiden Faktoren gleich sind, so ist die Pflanze für diese Eigenschaft *homozygotisch*, sind die beiden Faktoren ungleich, ist die Pflanze hierfür *heterozygotisch*. Ist eine Pflanze für einen Faktor homozygotisch, so wird sie diesen *rein vererben*; bei Heterozygoten ist dies nicht der Fall. Die *erbliche Zusam-*

composition of a hybrid can be ascertained by crossing it with the recessive form (*back cross*). *Complete dominance* appears in a wide range of characters, but it is not universal. Sometimes the hybrid in F_1 has a character intermediate between those of the two parents (*intermediate inheritance*).

Often, different allelomorphs segregate independently of each other. But when two genes are located on the same chromosome the corresponding characters may remain together in segregation. This is the phenomenon of *linkage*. If *crossing over* occurs between the chromosomes the linkage may be broken.

Variation is the difference between related organisms. It may be *insignificant* or *conspicuous*; *quantitative* or *qualitative*; *physiological* or *anatomical*; *continuous* or *discontinuous*. Variations are grouped in two categories according to their causes :—

- (i) *Environmental*, or *induced* variations produced by factors in the environment, and
- (ii) *Autogenous* produced by changes within the organism itself.

When a particular environment impresses new characters on a plant, these characters are termed *acquired* characters. Lamarckism asserts that they are *heritable*. Darwin considered that some are heritable. Weissmann maintained that environment modifies the *soma* but does not affect the *germ plasm*.

A cause of variation in many hybrids is the *re-distribution* of factors, rather than the appearance of new factors. This is known as *recombination*. *Mutation* (any sudden and permanent variation which breeds true) allows some change in the gene which leads to the appearance of a new factor, or to the loss of a factor. Other variations are the consequence of changes in the number or balance of chromosomes (chromosome *aberration*). Unbalanced chromosomes lead to *sterility* or lower the *fertility* in plants. For example, the hybrid of *Triticum durum* and *T. monococcum* has no *functional germ cells*.

Bud variations (sports) are due to gene mutations in the somatic cells, or to segregation of factors during somatic division.

Graft hybrids (chimæras) occur when a bud is formed on a *graft surface*, and so contains tissues of both *scion* and *stock*.

mensetzung (Genotyp) der Pflanze kann nicht durch den äusseren Erscheinungstyp (*Phænotyp*) beeinflusst werden. Die Zusammensetzung eines Bastards kann durch Kreuzung desselben mit der rezessiven Form (*Rückkreuzung*) ermittelt werden. *Vollständige Dominanz* tritt in vielen Merkmalen zutage, ist aber nicht allgemein. Manchmal zeigt der Bastard eine gleichmässige Mischung der Eigenschaften beider Eltern in F_1 (*intermediäre Vererbung*).

Oft spalten verschiedene Allelomorphe unabhängig voneinander auf. Sind jedoch zwei Gene in demselben Chromosom verankert, so können übereinstimmende Eigenschaften bei der Trennung zusammenbleiben. Diese Erscheinung nennt man *Faktorenkoppelung*. Bei dem "*crossing over*" der Chromosomen kann die Faktorenkoppelung zerstört werden.

Als *Variation* bezeichnet man die Unterschiede zwischen verwandten Organismen. Sie kann mehr oder weniger stark *ausgeprägt* sein, *quantitativ* oder *qualitativ*, *physiologisch* oder *anatomisch*, *dauernd* oder mit *Unterbrechungen* auftretend. Die Variationserscheinungen lassen sich ihren Ursachen nach in zwei Gruppen einteilen:

- (i) *Umweltbedingte*, die durch *Aussenfaktoren* hervorgerufen werden und
- (ii) *Autogene*, die durch Änderungen innerhalb des Organismus selbst hervorgerufen werden.

Wenn eine aussergewöhnliche Umgebung neue Eigenschaften an einer Pflanze hervorruft, so bezeichnet man diese Eigenschaften als *erworrene*. Der Lamarckismus steht auf dem Standpunkt, dass diese *erblich* sind. Darwin hielt einige dieser Eigenschaften für erblich. Weissmann behauptete, dass die Umwelt das *Soma* aber nicht das *Keimplasma* verändert.

Als Ursache für Variationen kann man bei vielen Bastarden eher *Neuverteilung* von Faktoren, als das Auftreten neuer Faktoren annehmen. Dies wird als *Neukombination* bezeichnet. Bei der *Mutation* (irgendeine plötzliche oder dauernde Variation, die sich rein vererbt) treten Änderungen in den Genen auf, dies führt zur Bildung eines neuen Faktors oder zum Verlust eines schon vorhandenen. Andere Variationen sind die Folge einer Veränderung in der Zahl der Chromosomen und im Gleichgewicht des Chromosomensatzes (z.B. *Chromosomen-Aberration*). Unausgeglichen Chromosomen können zur *Sterilität* führen oder verringern die *Fruchtbarkeit* der Pflanzen z.B. hat der Bastard aus *Triticum durum* und *T. monococcum* keine *funktionsfähigen Keimzellen*.

Knospenvariationen (Sports) entstehen durch Genmutationen in den somatischen Zellen oder durch eine Faktorentrennung während der somatischen Teilung.

Pfropfbastarde (Chimären) entstehen, wenn sich eine Knospe an der *Pfropfungsfläche* bildet und auf diese Weise Gewebe vom

Sectional and *periclinal chimæras* are known.

A single gene (factor) may have *multiple effects*, and two or more genes may interact to produce a single phenotypic character. When two or more factors interact to produce a character different from that due to either alone, the factors are called *complementary*. When two factors affect the same character in the same way (e.g., merely intensifying each other) they are called *polymeric (multiple) factors*. A factor which causes the death of the individual (e.g., absence of chlorophyll, producing an *albino* plant) is called a *lethal factor*.

TERMINOLOGY IN PLANT BREEDING

The empirical *selection* of food and forage plants dates back some 5,000 years. Systematic plant breeding is only about 200 years old. The plant breeder cultivates *superior* plants with the object of increasing the *yield, quality, disease resistance, or hardness* of the stock. The methods employed are:—*mass selection, pure line selection, hybridisation, and clone selection*.

Mass selection, or the selection of the best plants in a population for seed production, depends for its effectiveness on the *genetic variability* of the population. A mixed population consists of a number of *biotypes: intensive* and *continuous* selection maintains a stock of the most desirable biotypes.

The separation of a pure line is the selection of seed from a single *self-fertilised* individual. Continued *selfing* or *inbreeding* eliminates the *heterozygotes* in the progeny and isolates pure *genotypes*. When the progeny all breed true a pure line or strain is established. Selection of the best plants within a pure line effects no improvement.

Hybridisation is the method of combining Mendelian factors of two selected parents, thus establishing a new type. *Strains, varieties, and occasionally even species and genera* can be crossed in this way.

In some instances the crossing of inbred strains gives marked *hybrid vigour (heterosis)*, and the hybrid may be utilised directly as commercial stock (maize). In inter-specific hybrids the seed is often sterile, or in some cases the one cross is fertile while the *reciprocal cross* is not (e.g., female (\female) wheat crossed with male (\male) rye is fertile, whereas male (\male) wheat crossed with female (\female) rye is not).

Reis und von der *Unterlage* enthält. Man unterscheidet *Sekatorial-* und *Periklinalchimären*.

Ein einzelnes Gen (Faktor) kann *multiple Effekte* haben, und zwei oder mehrere Gene können imstande sein, einen Phänotyp zu erzeugen. Wenn zwei oder mehrere Faktoren zusammen ein neues Merkmal hervorbringen, das sich von dem Merkmal der einzelnen Faktoren unterscheidet, so bezeichnet man diese Faktoren als *komplementär*. Wenn zwei oder mehrere Faktoren in gleicher Weise dieselbe Eigenschaft hervorrufen (d.h. einander verstärken), liegt homologe *Polymerie* vor. Ein Faktor, der den Tod des Individuums verursacht (z.B. Fehlen von Chlorophyll und dadurch Entstehen eines *Albinismus*), wird *Letalfaktor* genannt.

TERMINOLOGIE IN DER PFLANZENZÜCHTUNG

Die empirische *Auslese* der Nähr- und Futterpflanzen liegt ungefähr 5000 Jahre zurück. Die systematische Pflanzenzüchtung ist nur etwa 200 Jahre alt. Der Pflanzenzüchter kultiviert *hochwertige* Pflanzen mit dem Ziel, den *Ertrag*, die *Güte*, die *Widerstandsfähigkeit* gegen *Krankheiten* oder die *Lagerfestigkeit* zu erhöhen. Die angewandten Methoden sind: *Massenauslese*, *Auslese von reinen Linien*, *Bastardierung* und *Klonauslese*.

Die *Massenauslese* oder die Auslese der besten Pflanzen einer Population zur Samenerzeugung ist hinsichtlich ihres Erfolges abhängig von der *genetischen Variabilität* der Population. Eine gemischte Population besteht aus einer Anzahl von *Biotypen*: *intensive* und *dauernde* Auslese erzeugt einen Stamm der erwünschten Biotypen.

Die Abtrennung einer reinen Linie geschieht durch Auslese von Samen eines einzigen *selbstbefruchteten* Individuums. Dauernde *Selbstung* und *Inzucht* verringert die *Heterozygoten* in der Nachkommenschaft und isoliert reine *Genotypen*. Wenn die gesamte Nachkommenschaft rein weitervererbt, ist eine reine Linie oder ein reiner Stamm entstanden. Die Auswahl der besten Pflanzen innerhalb einer reinen Linie bringt keinen Vorteil.

Bei der Bastardierung werden Mendel-Faktoren zweier ausgewählter Elternformen kombiniert, so dass daraus eine neue Sorte entsteht. Auf diese Weise können *Stämme*, *Varietäten* und gelegentlich sogar *Arten* und *Gattungen* gekreuzt werden.

Manchmal entstehen durch Kreuzung von ingezüchteten Stämmen besonders *kräftige Bastarde* (*Heterosis*), die dann unmittelbar als Nutzpflanzen verwendet werden können (Mais). Bei Artbastarden ist der Samen oft steril, oder in einigen Fällen ist die eine Kreuzung fertil, während die *reziproke Kreuzung* steril bleibt (z.B. Weizen ♀ mit Roggen ♂ gekreuzt ist fertil, während Weizen ♂ mit Roggen ♀ gekreuzt steril bleibt).

EVOLUTION

It is customary to include a discussion of *evolution* in the treatment of genetics. Genetics, however, has thrown comparatively little light on the methods and course of evolution, and the principal evidence for its occurrence among plants is to be found in *palaeontology* and *comparative morphology*.

The contributions made by genetics to the problem of evolution (phylogeny) are:—1. certain mathematical theories which show how rapidly physiological dominance of one type over another will result in the *extermination* of the inferior type; and 2. a demonstration that new types, the raw material of evolution, may arise in three ways:

- (i) recombination of genes in hybrids.
- (ii) polyploidy, and other chromosome aberrations.
- (iii) mutations, permanent changes in the loci of inheritance.

EVOLUTION

Gewöhnlich schliesst eine Abhandlung über Genetik eine Be trachtung der *Evolution* ein. Die Genetik hat jedoch die Methoden und den Verlauf der Entwicklung nur verhältnismäsig wenig geklärt. Dagegen liefern die *Paläontologie* und die *vergleichende Morphologie* die hauptsächlichsten Daten für eine Entwicklungsgeschichte des Pflanzenreiches.

Die Beiträge der Genetik zum Problem der Evolution (Phylogenie) sind : 1. gewisse mathematische Theorien, die zeigen, wie schnell die physiologische Überlegenheit eines Typs über einen anderen die Vernichtung des unterlegenen herbeiführen wird und 2. die Erkenntnis, dass neue Typen als Ausgangsmaterial für die Weiterentwicklung auf drei Arten entstehen können:

- (i) Neukombination von Genen bei Bastarden.
- (ii) Polyploidie und andere chromosomale Abweichungen.
- (iii) Mutationen, die bleibende Änderungen der Erbanlagen bewirken.

CHAPTER VI

PHYSIOLOGY

The STUDY OF THE VITAL PROCESSES OF THE PLANT

All the phenomena of life depend upon the living *protoplasm* and its response to factors in the *outer world*. In fact, these attributes of protoplasm are used to distinguish *living* from *non-living* material. *Vital activity* is manifested in various ways, and it is the purpose of *physiology* to describe these vital phenomena and to investigate their causes by *experiment*. The vital phenomena exhibited by the plant may be classified as follows :— *Metabolism, Growth, Irritability, Reproduction.*

METABOLISM

Metabolism is a general expression; it includes the *building up* and *breaking down* of materials in the living organism. The building up of food materials is said to be an *anabolic* process, and the breakdown of food materials is said to be *katabolic*.

(a) **Anabolic Processes.**—The anabolic processes, *i.e.*, the intake of food materials, and the building up of these into living tissue, are commonly known as *nutrition*. Nutrition involves *absorption, assimilation, and translocation.*

ABSORPTION. — Plant tissue consists mainly of water. The residual solid matter (5 to 30 per cent.) is made up of combustible organic substances (*compounds of carbon, hydrogen, oxygen, and nitrogen*) and of ash (*compounds of sulphur, phosphorus, potassium, calcium, magnesium, iron, sodium, chlorine, silicon, etc.*). The method of growing plants in water cultures has shown that certain of the elements of the ash are indispensable, while other elements are not essential. These elements are the raw material for metabolism and are absorbed by the plant in the form of *water-soluble or gaseous compounds*. Carbon is absorbed as *carbon dioxide* from the atmosphere, hydrogen and oxygen in the form of *water*, nitrogen as *nitrates or ammonium salts*, and inorganic elements as *mineral salts* in aqueous solution from the soil. The absorption of water and inorganic salts can therefore be considered together.

KAPITEL VI

PHYSIOLOGIE

DIE LEHRE VON DEN LEBENSERSCHEINUNGEN DER PFLANZE

Alle Erscheinungen des Lebens sind vom lebenden *Protoplasma* und seiner Reaktion auf Faktoren der *Umwelt* abhängig. Tatsächlich werden diese Eigenschaften des Protoplasmas benutzt, um *lebende* von *unlebter* Materie zu unterscheiden. Die *Lebenstätigkeit* wird in verschiedener Weise augenscheinlich, und es ist der Zweck der *Physiologie*, diese Lebenserscheinungen zu beschreiben und ihre Ursachen *experimentell* zu erforschen. Die Lebensäußerungen der Pflanzen können wie folgt eingeteilt werden: *Stoffwechsel*, *Wachstum*, *Reizbarkeit*, *Fortpflanzung*.

STOFFWECHSEL

Die Bezeichnung Stoffwechsel ist ein allgemeiner Ausdruck. Er umfasst *Aufbau* und *Abbau* von Stoffen im lebenden Organismus. Der Gewinn an Nährstoffen wird als *Aufbauprozess*, der Verlust an Nährstoffen als *Abbauprozess* bezeichnet.

(a) **Aufbauprozesse.**—Die Aufbauprozesse, d.h. die Aufnahme von Nährstoffen und die Bildung von lebendem Gewebe aus diesen, werden gewöhnlich als *Ernährung* bezeichnet. Die Ernährung umfasst *Absorption*, *Assimilation* und *Stoffwanderung*.

ABSORPTION.—Das Pflanzengewebe besteht hauptsächlich aus Wasser. Die restliche feste Materie (5 bis 30%) besteht aus brennbaren, organischen Substanzen (*Verbindungen* von *Kohlenstoff*, *Wasserstoff*, *Sauerstoff* und *Stickstoff*) und aus *Asche* (*Verbindungen* von *Schwefel*, *Phosphor*, *Kalium*, *Kalzium*, *Magnesium*, *Eisen*, *Natrium*, *Chlor*, *Silizium* usw.). Die Methode, Pflanzen in Wasserkulturen zu ziehen, hat gezeigt, dass gewisse Elemente der Asche unentbehrlich sind, während andere Elemente nicht unbedingt notwendig sind. Diese Elemente sind die Rohstoffe für den Stoffwechsel und werden von der Pflanze in Form von *wasserlöslichen* oder *gasförmigen* Verbindungen absorbiert. Kohlenstoff wird als *Kohlendioxyd* aus der Luft absorbiert, Wasserstoff und Sauerstoff in Form von *Wasser*, Stickstoff als *Nitrat* oder *Ammoniumsalze* und anorganische Elemente als *Mineralsalze* in wässriger Lösung aus dem Boden.

Both *cellulose* and protoplasm are *colloids* and have the power of *imbibing water*, i.e., of swelling when put into water. The process of *imbibition* entails the adsorption of water on the colloidal particles; when the maximum amount of water has been adsorbed (imbibed) the colloid is said to be *saturated*. The water of imbibition (unlike the *water of constitution*) is given up again when the colloid is dried.

The cell wall is *completely permeable* to water and salts; the protoplasmic membrane is *semi-permeable*. It excludes the passage of certain *ions* and allows others to pass into the cell sap. It also prevents substances dissolved in the sap from passing out. In this way substances may be *accumulated* in the cell sap, which occupies the *vacuole* of the cell. There is a *diffusion* of water into the cell which tends to reduce the concentration of dissolved substances inside the cell: this water is said to diffuse in by *osmotic pressure*, and the process is called *osmosis*. The water within the cell exerts a pressure on the protoplasmic membrane and cell wall. The *elastic* cell wall exerts a *counter pressure (turgor pressure)* which eventually prevents further diffusion of water into the cell. The cell is then said to be *turgid*. The force tending to draw water into the cell (*suction pressure*) is therefore the difference between the osmotic pressure (suction of cell contents) and the turgor pressure (*wall pressure*):—

$$\text{osmotic pressure} - \text{turgor pressure} = \text{suction pressure.}$$

When a cell is immersed in a solution of higher osmotic pressure than that of the cell sap, the water in the cell passes out, the cell collapses, and is said to be *plasmolysed*.

Since the protoplasmic wall is semi-permeable, the salts enter the root hairs with water. So long as the suction pressure of the root hairs is greater than the osmotic pressure of the soil solution the absorption of water and salts can continue.

ASSIMILATION.—Assimilation in the wider sense can be considered in two divisions: the assimilation of carbon dioxide and water into *sugars*, *starch*, *cellulose*, etc., and the assimilation of nitrogen into *proteins* and *protoplasm*. The former process (assimilation in the narrow sense) is known as *photosynthesis*.

Photosynthesis is the *reduction* of carbon dioxide in sunlight, by the aid of *chlorophyll*, with the formation of an organic com-

Die Absorption von Wasser und anorganischen Salzen kann deshalb gemeinsam betrachtet werden.

Sowohl Zellulose als auch Protoplasma sind *Kolloide* und haben das Vermögen *Wasser aufzunehmen*, d.h. zu quellen, wenn sie in Wasser gelegt werden. Der Prozess der *Imbibition* hat die Adsorption von Wasser an die kolloidalen Teilchen zur Folge; wenn die maximale Wassermenge adsorbiert (imbibiert) ist, wird das Kolloid als *gesättigt* bezeichnet. Das Imbibitions-wasser (im Gegensatz zum *Konstitutionswasser*) wird wieder abgegeben, wenn das Kolloid austrocknet.

Die Zellwand ist für Wasser und Salze *vollkommen durchlässig* (*permeabel*); die Protoplasmahaut ist *semipermeabel*. Sie schliesst den Durchtritt gewisser *Ionen* aus und gestattet anderen in den Zellsaft einzutreten. Sie verhindert auch den Austritt im Zellsaft gelöster Substanzen. Auf diese Art können Substanzen im Zellsaft, der die *Vakuole* der Zelle ausfüllt, *angehäuft* werden. Es besteht eine *Diffusion* von Wasser in die Zelle hinein, mit der Tendenz, die Konzentration der gelösten Substanzen innerhalb der Zelle zu vermindern: man sagt, dieses Wasser diffundiert durch *osmotischen Druck* hinein, und der Vorgang wird *Osmose* genannt. Das Wasser innerhalb der Zelle erzeugt einen Druck auf die Protoplasmahaut und die Zellwand. Die *elastische* Zellwand bringt einen *Gegendruck* (*Turgordruck*) hervor, der unter Umständen eine weitere Diffusion von Wasser in die Zelle verhindert. Die Zelle wird dann als *turgeszent* bezeichnet. Die Kraft, die versucht, Wasser in die Zelle zu ziehen (*Saugung*), ist daher gleich der Differenz zwischen osmotischem Druck (Saugung des Zellinhaltes) und Turgordruck (*Wanddruck*):—

osmotischer Druck – Turgordruck = Saugung

Wenn eine Zelle in eine Lösung getaucht wird, die einen höheren osmotischen Druck als der Zellsaft hat, tritt das Wasser aus der Zelle aus, die Zelle kollabiert und wird als *plasmolytiert* bezeichnet.

Da die Protoplasmahaut semipermeabel ist, dringen die Salze mit dem Wasser in die Wurzelhaare ein. Solange die Saugung der Wurzelhaare grösser ist als der osmotische Druck der Bodenlösung, kann sich die Absorption von Wasser und Salzen fortsetzen.

ASSIMILATION.—Die Assimilation im weiteren Sinne zerfällt in zwei Arten: die Assimilation von Kohlendioxyd und Wasser zu *Zucker*, *Stärke*, *Zellulose* usw. und die Assimilation von Stickstoff zu *Proteinen* und *Plasma*. Der erstgenannte Vorgang (Assimilation in engerem Sinne) wird als *Photosynthese* bezeichnet.

Die Photosynthese ist die *Reduktion* von Kohlendioxyd im Sonnenlicht mit Hilfe des *Chlorophylls* unter Bildung einer

pound with water. A series of reactions occur, some *photochemical* and some *chemical*, and it is assumed that *formaldehyde* is formed according to the equation : -

Formaldehyde immediately *polymerises* to form *glucose*, *fructose*, or *sucrose*. These are the first products which can be detected in the leaf :

Eudiometric measurement supports this view, for, during normal photosynthesis equal volumes of oxygen and carbon dioxide are interchanged, as would be expected from a combination of the two equations above.

The energy for these processes is obtained from the *visible rays* of the *spectrum*, principally from the *yellow* and *red rays*. It is important that the reaction is *endothermic*, and that the plant in this way is able to accumulate solar *energy*. Plants which lack chlorophyll are unable to synthesise their carbon compounds from carbon dioxide, and are said to be *heterotrophic*, in contrast to green plants which are *autotrophic*.

The carbohydrate may be stored as *monosaccharides* (*glucose*, *fructose*, etc.), *disaccharides* (*sucrose*, *maltose*, etc.) or *polysaccharides* (*starch*, *inulin*, etc.) or may be used as cellulose in the structure of the cells of the plant. Starch may subsequently be transformed to sugar, through the action of an *enzyme*, *diastase*. Cellulose, with the exception of hemicellulose, cannot be broken down in the living plant to sugars.

The part played by chlorophyll in photosynthesis is not clear. It is present in a colloidal form in *chloroplasts* and it is not used up in carbon assimilation.

The assimilation of nitrogen is a more recondite process. The nitrate (or ammonium) is probably *reduced* (by the action of an enzyme, *reductase*) to *amino-acids* such as *leucin*, *tyrosin*, or *asparagin*; this is followed by a *condensation* to *polypeptides*, *peptone* and *protein*. The proteins are either stored as *albumin*, *globulin*, *glutelin* and *protamine* or used for the manufacture of protoplasm.

Some plants (Soya beans) store their energy as *fats* rather than as carbohydrates or proteins. These fats are *esters* of *glycerol*, and are formed from sugars.

organischen Verbindung mit Wasser. Es treten eine Reihe von Reaktionen, einige *photochemische* und einige *chemische* auf, und man nimmt an, dass *Formaldehyd* gebildet wird nach folgender Gleichung :

Formaldehyd wird unmittelbar zu *Glukose*, *Fruktose* oder *Rohrzucker* polymerisiert. Dies sind die ersten Produkte, die im Blatt festgestellt werden können :

Die *eudiometrische Messung* stützt diese Ansicht; denn, während der normalen Photosynthese werden gleiche Mengen von Sauerstoff und Kohlendioxyd ausgetauscht, wie es von einer Kombination der beiden obigen Gleichungen zu erwarten wäre :

Die Energie für diese Prozesse wird aus den *sichtbaren Strahlen* des *Spektrums* gewonnen, hauptsächlich aus den *gelben* und *roten Strahlen*. Es ist wichtig, dass die Reaktion *endotherm* verläuft und dass die Pflanze auf diese Weise fähig ist, *Sonnenenergie* zu speichern. Pflanzen, denen das Chlorophyll fehlt, sind unfähig, ihre Kohlenstoffverbindungen aus Kohlendioxyd aufzubauen und werden als *heterotroph* bezeichnet, im Gegensatz zu grünen Pflanzen, die *autotroph* sind.

Die Kohlehydrate können gespeichert werden als *Monosaccharide* (*Glukose*, *Fruktose* usw.), *Disaccharide* (*Saccharose*, *Maltose* usw.) oder *Polysaccharide* (*Stärke*, *Inulin* usw.) oder können als Zellulose zum Zellbau der Pflanze verwendet werden. Stärke kann später in Zucker umgewandelt werden durch die Tätigkeit eines *Enzyms*, der *Diastase*. Zellulose, mit Ausnahme der Reservezellulose, kann in der lebenden Pflanze nicht zu Zucker abgebaut werden.

Die Rolle, die das Chlorophyll bei der Photosynthese spielt, ist nicht klar. Es ist in kolloidaler Form im *Chloroplasten* vorhanden und wird bei der Kohlenstoffassimilation nicht verbraucht.

Die Assimilation des Stickstoffs ist ein weniger bekannter Prozess. Das Nitrat (oder Ammonium) wird wahrscheinlich *reduziert* (durch die Tätigkeit eines Enzyms, der *Reduktase*) zu Aminosäuren wie *Leucin*, *Tyrosin* oder *Asparagin*; darauf folgt eine *Kondensation* zu *Polypeptiden*, *Pepton* und *Protein*. Die Proteine werden entweder als *Albumin*, *Globulin*, *Glutein* und *Protamin* gespeichert oder zum Aufbau des Protoplasma verwendet.

Manche Pflanzen (Sojabohne) speichern ihre Energie weniger in Form von Kohlehydraten oder Proteinen sondern als *Fette*. Diese Fette sind *Ester* des *Glyzerins* und werden aus Zuckern gebildet.

TRANSLOCATION. — It is clearly necessary that assimilated materials shall be *translocated* from one part of the plant to another. This can be effected only if the materials are in *solution*. Before translocation, insoluble materials are *hydrolysed*. Hydrolysis is a *reversible reaction* effected in the plant by enzymes, which are *organic catalysts*. Common hydrolysing enzymes are:

Lipase: hydrolyses *fats* to *fatty acids* and *glycerin*

Diastase: " *starch* to *maltose*

Maltase: " *maltose* to *glucose*

Invertase: " *sucrose* to *glucose* and *fructose*

Proteases: hydrolyse *protein* to *polypeptides*, *peptone* and *amino-acids*.

It is assumed that translocation takes place chiefly through the phloem, but the factors which produce the *diffusion gradient* necessary for rapid translocation are very obscure.

(b) **Katabolic Processes.** — In the *katabolic processes*, commonly known as *respiration*, the energy fixed by the plant from *solar radiation* is liberated in such a form that it can be used for work in the plant. This may be represented by the equation :

Respiration is thus an *oxidation process*, and is *exothermic*. Sucrose and starch are converted into monosaccharides before they are *respired*. In the respiration of glucose the ratio of carbon dioxide liberated to oxygen consumed is unity (*respiratory quotient*). Other stored substances (fats and proteins) can also be respired, but in these instances the respiratory quotient is greater or less than unity.

Respiration in which atmospheric oxygen is utilised is known as *aerobic respiration*. In the absence of air some plants may respire *anaerobically*. In this process the sugar is broken down to alcohol and carbon dioxide, and considerably less energy (24,000 cal.) is released. Anaerobic respiration of carbohydrates results in *fermentation*, and is used commercially in the production of beers and wines. Anaerobic respiration of proteins results in *putrefaction*, and produces substances such as *indol* and *skatol*, with disagreeable odours.

Transpiration. — *Transpiration*, although it is not a typical metabolic process, can be considered here.

In order to enable free access of carbon dioxide to the leaf the *stomata* must remain open during photosynthesis. A conse-

STOFFWANDERUNG.—Es ist selbstverständlich nötig, dass die assimilierten Stoffe von einem Teil der Pflanze zum anderen transportiert werden. Dies kann nur erfolgen, wenn die Stoffe in *Lösung* sind. Vor dem Transport werden unlösliche Stoffe hydrolysiert. Die Hydrolyse ist eine *reversible Reaktion*, die in der Pflanze durch Enzyme, welche *organische Katalysatoren* darstellen, ausgelöst wird. Häufige hydrolytische Enzyme sind:

Lipase: hydrolysiert *Fette* in *Fettsäuren* und *Glyzerin*

Diestase: „ *Stärke* in *Maltose*

Maltase: „ *Maltose* in *Glukose*

Invertase: „ *Saccharose* in *Glukose* und *Fruktose*

Proteasen: hydrolysieren *Protein* in *Polypeptide*, *Pepton* und *Aminosäuren*.

Man nimmt an, dass die Stoffwanderung hauptsächlich durch das Phloëm stattfindet, aber die Faktoren, die das *Diffusionsgefälle* erzeugen, das für schnelle Stoffwanderung erforderlich ist, sind völlig ungeklärt.

(b) **Abbauprozesse.**—Bei den *Abbauprozessen*, gewöhnlich *Respiration* (*Atmung*) genannt, wird die durch die Pflanze aus den *Sonnenstrahlen* festgelegte Energie in der Form frei, dass sie Arbeit in der Pflanze leisten kann. Dies kann dargestellt werden durch die Gleichung:

Die Respiration ist also ein *Oxydationsprozess* und ist *exotherm*. Saccharose und Stärke werden in Monosaccharide verwandelt, ehe sie veratmet werden. Bei der Respiration von Glukose ist das Verhältnis von freiwerdendem Kohlendioxyd zu verbrauchtem Sauerstoff gleich eins (*Respirationsquotient*). Andere gespeicherte Substanzen (Fette und Proteine) können ebenfalls veratmet werden, aber in diesen Fällen wird der Respirationsquotient grösser oder kleiner als eins.

Die Respiration, bei der atmosphärischer Sauerstoff verwertet wird, wird als *aerobe Atmung* bezeichnet. Bei der Abwesenheit von Luft können manche Pflanzen *anaerob* atmen. Bei diesem Prozess wird der Zucker in Alkohol und Kohlendioxyd abgebaut und beträchtlich weniger Energie (24,000 cal.) frei. Anaerobe Veratmung von Kohlehydraten hat *Gärung* zur Folge und wird technisch bei der Herstellung von Bieren und Weinen ausgenutzt. Anaerobe Veratmung von Proteinen führt zu *Fäulnis* und erzeugt Substanzen, wie *Indol* und *Skatol*, mit unangenehmem Gerüchen.

Transpiration.—Die *Transpiration* soll, obgleich sie kein typischer Stoffwechselprozess ist, in diesem Zusammenhang behandelt werden.

Um den Zutritt von Kohlendioxyd in das Blatt zu ermöglichen, müssen die *Stomata* während der Photosynthese geöffnet

quence of this is that the turgid cells of the *mesophyll* are in contact with dry air, and *evaporation* from the surface of the cells takes place. Since the cells cannot function unless they remain turgid, the water vapour which evaporates must be replaced by water from another part of the plant. There arises in this way a *transpiration stream* through the plant. Water enters from the soil through the root hairs. From these hairs there is a *gradient of suction pressure* to the xylem, through which the water travels to the leaves, where it is evaporated as *water vapour* from the mesophyll cells. The force which moves the transpiration stream is therefore the drying out (and hence increased suction pressure) of the mesophyll cells. By virtue of the *cohesion* of water the *water column* in the xylem does not break until a pressure of 4,500 pounds to the square inch is exerted upon it, a pressure which is never reached under normal conditions. Another force which contributes to the transpiration stream at certain times of the year is the *root pressure*. This appears on wounding, and is known to gardeners as *bleeding*.

Transpiration has been considered a "necessary evil," but discounting water lost through the stomata, inorganic salts are distributed rapidly over the plant, and the leaves are cooled when subjected to strong *insolation*.

GROWTH

The concept *growth* embraces many activities of the plant, e.g., *increase in weight*, *increase in size*, *development of organs*, etc. A convenient definition of growth is the following, although it does not cover all its aspects: Growth is a permanent and irreversible increase in size. It involves *multiplication*, *expansion*, and *differentiation* of cells.

Growth of an annual plant begins with *germination* and continues until the *ripening of seed*. The *rate of growth* is initially slow, rises later to a maximum, and falls again in the *period of senescence*. These phases constitute the *grand period of growth*. Since measurement of the *increase in height* of a plant neglects *growth due to thickness* and the production of *lateral branches*, a better measure of growth is the increase in *dry weight*. The weight of a plant increases in the same manner as a sum of money accumulating at continuous compound interest. The *relative growth rate* (*efficiency index*) corresponds to the *rate of interest*.

sein. Eine Folge davon ist, dass die turgeszenten Zellen des *Mesophylls* mit trockener Luft in Berührung sind, und eine *Verdunstung* an der Oberfläche dieser Zellen stattfindet. Da die Zellen nicht funktionsfähig sein können, wenn sie nicht turgeszent bleiben, muss der Wasserdampf, der verdunstet, durch Wasser aus einem anderen Teil der Pflanze ersetzt werden. Auf diese Weise entsteht ein *Transpirationsstrom* durch die Pflanze. Das Wasser dringt vom Boden durch die Wurzelhaare ein. Von diesen Haaren besteht ein *Saugungszug* nach dem Xylem, durch das das Wasser in die Blätter wandert, wo es aus den Mesophyllzellen als *Wasserdampf* verdunstet. Die Kraft, die den Transpirationsstrom in Bewegung setzt, wird daher durch Austrocknen (und die dadurch grösser werdende Saugung) der Mesophyllzellen hervorgerufen. Vermöge der *Kohäsion* des Wassers reisst die *Wassersäule* im Xylem solange nicht auseinander, bis nicht ein Druck von etwa 320 kg je qcm auf sie ausgeübt wird, ein Druck, der unter normalen Bedingungen nie erreicht wird. Eine andere Kraft, die zu gewissen Jahreszeiten beim Transpirationsstrom mitwirkt, ist der *Wurzeldruck*. Dieser tritt bei Verwundung in Erscheinung und ist den Gärtnern als *Bluten* bekannt.

Die Transpiration ist als "notwendiges Übel" betrachtet worden, jedoch werden, abgesehen von dem Wasserverlust durch die Stomata, die anorganischen Salze auf diese Weise schnell in der Pflanze verteilt, und die Blätter werden bei zu starker Sonnenbestrahlung gekühlt.

DAS WACHSTUM

Der Begriff *Wachstum* schliesst verschiedene Funktionen der Pflanze ein, z.B. *Vermehrung des Gewichtes*, *Zunahme an Grösse*, *Ausbildung von Organen* usw. Eine geeignete Definition für Wachstum, wenn sie auch nicht in jeder Hinsicht zutrifft, ist folgende: Wachstum ist eine dauernde und irreversible Grössenzunahme. Sie umfasst *Vermehrung*, *Ausdehnung* und *Differenzierung* von Zellen.

Das Wachstum einer einjährigen Pflanze beginnt mit der *Keimung* und dauert bis zur *Samenreife* an. Die *Wachstums geschwindigkeit* ist anfangs gering, steigt später zu einem Maximum an und fällt im *Alter* wieder ab. Diese Phasen bilden die *große Periode des Wachstums*. Da die Messung der *Längenzunahme* einer Pflanze das *Dickenwachstum* und die Bildung von *Seitenzweigen* vernachlässigt, stellt die Zunahme an *Trockengewicht* eine bessere Wachstumsmessung dar. Das Gewicht einer Pflanze nimmt in derselben Weise zu, wie eine bei fortlaufendem Zinseszins anwachsende Geldsumme. Die *relative Wachstumsgeschwindigkeit* (*Leistungsindex*) entspricht dem *Zinsfuß*.

Regeneration is another aspect of growth. In certain instances organs which have been removed or wounded can be replaced by the development of existing buds (*dormant buds*) or by the formation of new *growing points* from mature tissues. Wounding removes the existing *correlation* which *inhibited* those cells from developing before.

Propagation by means of *cuttings* is a special case of regeneration. *Root-* and *shoot-cuttings* show marked *polarity*, i.e., a tendency for *shoots* to develop only at the top end and roots only at the bottom.

The growth of organisms may be distinguished from that of crystals, by the development of a community of cells, in which all the parts are correlated with one another.

IRRITABILITY

Irritability is a property of protoplasm and can appear in response to changes in *light*, *moisture*, *gravity*, etc. Factors which produce such a *response* are described as *stimuli*. Reaction to a stimulus occurs in three phases:—1. *Perception* (*induction*, *stimulation*, *excitation*), in the region of the stimulus; 2. *Conduction* which proceeds (often by *hormones*) along root or stem; 3. *Response*, which may appear at some distance from the stimulus, as *curvature*, in the higher plants, and as *movement* (*locomotion*) in some lower plants. When the curvature or movement depends upon the direction of the stimulus the response is a *tropism*, e.g., *geotropism*, *phototropism*, *hydrotropism*. Where the curvature is independent of the direction of the stimulus the response is a *nastic movement*, e.g. *photonasty*, *thermonasty*, *nyctinasty* (*sleep movements* of flowers and leaves), *chemonasty* (movement of the tentacles of *Drosera*), *seismonasty* (in *Mimosa pudica*), and *traumonasty* (in wounds). Where a ciliate or an amœboid cell changes its position as a result of stimulation, the response is a *taxis*, e.g., *phototaxis*, *chemotaxis*.

Roots are *positively geotropic*, stems usually *negatively geotropic*, and leaves are *plagiotropic* (*transversely geotropic*, *dia-geotropic*). The stimulus exerted on a root by *gravity* is proportional to the *sine* of the *angle of deflection* from the vertical. On the other hand, roots are *negatively phototropic* and stems are *positively phototropic*. *Chemotropism* is exhibited by *pollen tubes*. *Haptotropism* (*thigmotropism*) is a phenomenon of tendrils. The sperms of the fern are chemotactically sensitive and free swimming *Algæ* are phototactically sensitive.

Neubildungen stellen eine andere Erscheinungsform des Wachstums dar. In gewissen Fällen können Organe, die beseitigt oder verwundet worden sind, durch die Entwicklung vorhandener Knospen (*schlafender Augen*) oder durch Bildung neuer *Vegetationspunkte* aus Dauergeweben ersetzt werden. Durch Verwundung werden die bestehenden *Wechselbeziehungen* (*Korrelationen*) aufgehoben, durch die diese Zellen vorher an der Weiterentwicklung gehindert wurden.

Vermehrung durch *Stecklinge* ist ein besonderer Fall von Neubildung. *Wurzel-* und *Sprossestecklinge* zeigen ausgeprägte *Polarität*, d.h. die Tendenz, *Trieb*e nur am Spitzende und *Wurzeln* nur am unteren Teil zu entwickeln.

Das Wachstum von Organismen unterscheidet sich von dem der Kristalle durch Entwicklung eines Zellverbandes, in dem alle Teile in Wechselbeziehung zueinander stehen.

REIZBARKEIT

Reizbarkeit ist eine Eigenschaft des Protoplasma und kann als Reaktion auf Änderungen der *Belichtung*, der *Feuchtigkeit*, der *Schwerkraft* usw. in Erscheinung treten. Faktoren, die solche *Reaktionen* hervorrufen, werden als *Reize* bezeichnet. Die Reaktion auf einen Reiz erfolgt in drei Phasen: 1. *Perzeption* [oder *Reizaufnahme*] (*Induktionswirkung*, *Stimulation*, *Excitation*) in der reizaufnehmenden Zone; 2. *Reizleitung*, die sich (oft durch *Hormone*) längs der Wurzel oder des Stengels fortpflanzt; 3. *Reaktion*, die in einiger Entfernung vom Reiz in Erscheinung treten kann, als *Krümmung* bei den höheren Pflanzen und als *Bewegung* (*Ortsveränderung*) bei manchen niederen Pflanzen. Wenn die Krümmung von der Richtung des Reizes abhängig ist, handelt es sich um *Tropismus*, z.B. *Geotropismus*, *Phototropismus*, *Hydrotropismus*. Wenn eine Krümmung oder Bewegung unabhängig von der Reizrichtung ist, ist die Reaktion eine *Nastie*, z.B. *Photonastie*, *Thermonastie*, *Nyktinastie* (*Schlafbewegungen* von Blüten und Blättern), *Chemonastie* (Bewegung der Tentakeln von *Drosera*), *Seismonastie* (bei *Mimosa pudica*) und *Traumonastie* (bei *Verwundung*). Wenn sich eine begeisselte Zelle oder eine Amöbe durch Reizung fortbewegt, bezeichnet man die Reaktion als *Taxis*, z.B. *Phototaxis*, *Chemotaxis*.

Wurzeln sind *positiv geotrop*, Stengel gewöhnlich *negativ geotrop* und Blätter *plagiotrop* (*transversalgeotrop*, *diageotrop*). Der Reiz, der durch die *Schwerkraft* auf eine Wurzel ausgeübt wird, ist proportional dem *Sinus* des *Abweichungswinkels* von der Vertikalen. Andererseits sind Wurzeln *negativ* und Stengel *positiv phototrop*. *Chemotropismus* weisen *Pollenschläuche* auf. *Haptotropismus* (*Thigmotropismus*) kommt bei Ranken vor. Chemotaktisch reizbar sind die Spermatozoiden der Farne und phototaktisch frei schwimmende Grünalgen.

CHAPTER VII

ECOLOGY

Plant Ecology is the study of individual species or of vegetation as a whole in relation to the *environment*: the former is known as *autecology* and the latter as *synecology*. Ecology has developed somewhat independently in different countries and the result has been a very great variety and confusion of *terms* and *classifications*. Of the variety of these expressions only the more important can be mentioned in this chapter.

The principal object of autecology is the study of the *adaptations* of individual species to their *habitats*. Synecology is concerned with the relation between vegetation as a whole and the environment, in addition to the *classification* of vegetation, its *historical development*, and its *organisation*.

ENVIRONMENTAL FACTORS

The principal environmental factors which affect vegetation are:—*Edaphic* factors (*the soil*), *climatic* factors (*light, temperature, rainfall*), and *biotic* factors (*animals and man*).

Soil.—The soil from the standpoint of Plant Ecology may be defined as that part of the *Earth's crust* which bears *vegetation*. The *raw material* of soil is the *original rock*, which undergoes a *process of weathering*, by the agency of *frost, rain, and wind*. The soil contains all the elements necessary for the maintenance of vegetation, except *carbon*, which is derived from the *air*, and *nitrogen*. Nitrogen is derived from *organic matter* which breaks down in the soil to form *humus*. Both the formation of humus and the subsequent weathering of the rock is greatly influenced by the *micro-flora* and *fauna* of the soil.

The type of soil which is formed from a rock depends upon the climate, notwithstanding local differences due to derivation from acid or calcareous rock. Several classifications of soils according to climate have been published, of which the following is an example.

KAPITEL VII

ÖKOLOGIE

Pflanzenökologie ist die Lehre von einzelnen Arten oder von der Vegetation als Ganzes in Beziehung zur *Umwelt*: erstere wird als *Autökologie*, letztere als *Synökologie* bezeichnet. Die Ökologie hat sich in den verschiedenen Ländern ziemlich unabhängig entwickelt, wodurch eine grosse Mannigfaltigkeit und Unklarheit in den *Fachausdrücken* und in der *Klassifizierung* entstand. Aus der Fülle der bestehenden Fachausdrücke können im Rahmen dieses Kapitels nur die wichtigsten Erwähnung finden.

Die Hauptaufgabe der Autökologie ist die Lehre von der *Anpassung* einzelner Arten an ihre *Standorte*. Die Synökologie beschäftigt sich mit der Beziehung der Vegetation als Ganzes zur Umwelt, ausserdem mit der *Einteilung* der Vegetation, ihrer *geschichtlichen Entwicklung* und ihrem *Aufbau*.

UMWELTFAKTOREN

Die Hauptumweltfaktoren, welche die Vegetation beeinflussen, sind:—*Edaphische Faktoren* (*Boden*), *klimatische Faktoren* (*Licht, Temperatur, Niederschläge*) und *biotische Faktoren* (*Tierwelt, Mensch*).

Boden. — Als Boden kann man im Hinblick auf die Pflanzenökologie den Teil der *Erdrinde* bezeichnen, der *Vegetation* trägt. Der *Rohstoff* des Bodens ist das *ursprüngliche Gestein*, welches einem *Verwitterungsprozess* durch die Wirkung von *Frost, Regen* und *Wind* ausgesetzt ist. Der Boden enthält alle für die Ernährung der Vegetation notwendigen Elemente, mit Ausnahme von *Kohlenstoff*, der aus der *Luft* stammt, und *Stickstoff*. Der Stickstoff röhrt von *organischer Substanz* her, die sich im Boden zersetzt und *Humus* bildet. Sowohl die *Humusbildung* wie auch die nachfolgende *Verwitterung* des Gesteins wird durch die *Mikro-Flora* und -*Fauna* des Bodens massgebend beeinflusst.

Der Bodentyp, der aus einem Gestein gebildet wird, hängt vom Klima ab, ungeachtet örtlicher Verschiedenheiten, wie sie sich durch Umwandlung von saurem oder kalkhaltigem Gestein ergeben. Nach dem Klima sind verschiedene Gruppierungen der Böden vorgenommen worden. Dafür folgendes Beispiel:

Climate	Annual rainfall	Type of soil	Vegetation
arid	less than 200 mm.	very little weathering, poor in nutrients, efflorescence of salts	desert
semi-arid	200 to 400 mm.	chestnut soils, poor in humus	savannahs and some deserts
semi-humid	400 to 500 mm.	black earths or tscher-nosems	prairies and steppes
humid	500 to 600 mm.	brown earths	European deciduous forest
very humid, cold	600+ mm.	podzols, acid soils	moors and heaths and conifer forest
very humid, hot	600+ mm.	laterites, red soils	tropical vegetation

Both temperature and rainfall play a part in the *evolution of a soil*, and it has been shown that from the *ratio* of rainfall to evaporation the soil type can be roughly predicted.

The *properties* of a soil depend as much on its *physical* as on its *chemical constitution*. In a physical analysis soils are classified according to the *size of the particles*. The classification is arbitrary, and the following is an example :—

Name	Size of particles
gravel	more than 2 mm. diameter
sand	2·0 to 0·2 mm. diameter
fine sand	0·2 to 0·06 mm. diameter
" flour " sand	0·06 to 0·02 mm. diameter
coarse silt	0·02 to 0·006 mm. diameter
fine silt	0·006 to 0·002 mm. diameter
clay	less than 0·002 mm. diameter i.e., 2000 $\mu\mu$ diameter

Clay particles exhibit *colloidal* phenomena, and are essential to a good soil in order that it shall hold water and nutrient salts.

Most soils contain sufficient salts to support vegetation, but the type of vegetation may depend on the *hydrogen ion concentration* of the soil (pH), and on the relative abundance or scarcity of *calcium (lime)*. Plants which require lime in the soil are said to be *calcicolous*; plants which cannot endure lime are *calciphobous*. It is doubtful whether the presence of *calcicoles* or *calciphobes* is really dependent upon the presence or absence of lime.

Water is present in the soil in three states. (1) *Gravitational water*, which runs through the soil to the *water table* below; (2) *capillary water*, which is held in the *interstices* of the soil by

Klima	jährliche Nieder- schlags- menge	Bodenart	Vegetation
arid	unter 200 mm	sehr wenig Verwitterung, arm an Nährstoffen, <i>Salzausblühungen</i>	<i>Wüste</i>
semi-arid	200 bis 400 mm	<i>kastanienbraune Böden,</i> humusarm	<i>Savannen und einige Wüsten</i>
semi-humid	400 bis 500 mm	<i>Schwarzerde oder Tschernosem</i>	<i>Prärien und Steppen</i>
humid	500 bis 600 mm	<i>Braunerden</i>	<i>Europäische, sommergrüne Laubwälder</i>
stark humid, kühl	über 600 mm	<i>Podsole, saure Böden</i>	<i>Moore, Heiden und Nadelwälder</i>
stark humid, warm	über 600 mm	<i>Laterite, Roterden</i>	<i>Tropische Vegetation</i>

Sowohl Temperatur als auch Regenmenge spielen bei der Bodenbildung eine Rolle, und man hat erkannt, dass die Bodenart aus dem Verhältnis von Regenmenge und Verdunstung ungefähr vorausgesagt werden kann.

Die *Eigenschaften* eines Bodens hängen von seiner *physikalischen* und *chemischen* Beschaffenheit ab. Bei der physikalischen Analyse werden die Böden nach der *Korngrösse* eingeteilt. Die Gruppierung ist willkürlich; in folgenden ein Beispiel dafür:

Name	Korngrösse
<i>Grand</i>	über 2 mm Durchmesser
<i>Sand</i>	2·0 bis 0·2 mm Durchmesser
<i>Feinsand</i>	0·2 bis 0·06 mm Durchmesser
<i>Flugsand</i>	0·06 bis 0·02 mm Durchmesser
<i>Grobschlamm</i>	0·02 bis 0·006 mm Durchmesser
<i>Feinschlamm</i>	0·006 bis 0·002 mm Durchmesser
<i>Ton</i>	unter 0·002 mm Durchmesser d.h. 2000 $\mu\mu$ Durchmesser

Die *Tonteilchen* besitzen *kolloidale* Eigenschaften und sind für einen guten Boden wichtig, da sie Wasser und Nährsalze festhalten.

Die meisten Böden enthalten die für die Vegetation nötigen Salze in ausreichender Menge, jedoch kann die Art der Vegetation von der *Wasserstoffionenkonzentration* des Bodens (*pH*) und von dem relativen Überschuss oder Mangel an *Kalzium* (*Kalk*) abhängen. Pflanzen, die Kalk im Boden brauchen, werden *kalkliebend* genannt, Pflanzen, die Kalk nicht vertragen können, *kalkfeindlich*. Es ist zweifelhaft, ob die Gegenwart von *kalkliebenden* oder *kalkfeindlichen* Pflanzen tatsächlich immer auf Vorkommen oder Fehlen von Kalk beruht.

Wasser ist im Bodem in dreierlei Formen vorhanden. (1) *Sickerwasser*, das durch den Boden nach dem *Grundwasserspiegel* abfließt, (2) *Kapillarwasser*, das in den *Bodenzwischenräumen*

capillary attraction; (3) *adsorbed water*, which is present on the surface of the colloidal particles and cannot be removed except by heating the soil; water in this form is therefore not available to plants.

The *water holding capacity* of the soil is a measure of the water retained against *gravity*, by capillary attraction and adsorption. In America an attempt has been made to measure the amount of *unavailable* adsorbed water by finding the water content of the soil at which a plant *wilts*. This amount of water is known as the *wilting point*. If the soil is *centrifuged* with a force 1,000 times gravity all the water is removed except one fraction, known as the *moisture equivalent*. The moisture equivalent is approximately 1·87 times the wilting point.

Light. — The influence of *light* on the plant is twofold. The *red-yellow* end of the *spectrum* is important in that it supplies the *energy* for *photosynthesis*. The *violet* end of the spectrum has a *formative* effect on the *morphology* and *growth* of the plant. The *length of illumination*, in certain instances, determines the *time of flowering*. Finally, light is necessary to break the *dormancy* of certain seeds and initiate *germination*.

It is clear that a plant cannot live in a light intensity too low for the manufacture of the carbohydrates necessary for its maintenance. The light intensity at which a plant will just maintain itself is known as the *compensation point*. Above this intensity the plant will *gain* in *dry weight*. Below it the plant will *starve*.

Compensation points differ for different plants and accordingly some can live in the shade (*sciophytes*, *shade-plants*, e.g., *Oxalis*) while some can live only in the open (*heliophytes*, *light plants*, e.g., *Nasturtium*). Certain plants (*Beech*, *Fagus sylvatica*) produce in sunlight thick leaves with two or more layers of palisade tissue (*sun leaves*); and in the shade produce thinner leaves with only one layer of palisade tissue (*shade leaves*). Such plants are usually *shade-tolerant*, i.e., able to endure shady habitats. Other trees are unable to grow in the shade at all; these are *shade-intolerant* (e.g., *Betula alba* and species of *Populus* and *Salix*).

In complete darkness symptoms known as *etiolation* are produced. No chlorophyll is manufactured (there are exceptions), *lignification* and the formation of *cutin* is suppressed, and internodes are abnormally elongated.

The *duration of light (length of day)* may determine whether a plant flowers or remains vegetative. Certain plants (*Aster*,

durch *kapillare Anziehung* festgehalten wird, (3) *Adsorptionswasser*, das an der *Oberfläche* der kolloidalen Teilchen vorhanden ist und nur durch Erhitzung des Bodens frei wird. Deshalb ist Wasser in dieser Form für die Pflanzen nicht nutzbar.

Die *Wasserkapazität* des Bodens ist die Wassermenge, die entgegen der *Schwerkraft* durch kapillare Anziehung und Adsorption zurückgehalten wird. In Amerika ist der Versuch gemacht worden, die Menge des *nicht nutzbaren* Adsorptionswassers zu messen, durch Ermittelung des Wassergehaltes des Bodens, bei dem eine Pflanze *welkt*. Diese Wassermenge wird als *Welkepunkt* bezeichnet. Wenn der Boden mit 1,000 facher Schwerkraft *zentrifugiert* wird, wird das ganze Wasser mit Ausnahme eines als *Feuchtigkeitsaequivalent* bezeichneten Bruchteiles entfernt. Das Feuchtigkeitsaequivalent beträgt annähernd das 1·87 fache des Welkepunktes.

Licht. — Das *Licht* wirkt in zweierlei Weise auf die Pflanze ein. Der *rote* bis *gelbe* Bereich des *Spektrums* ist insofern wichtig, als er die *Energie* für die *Photosynthese* liefert. Der *violette* Teil des Spektrums hat eine *formgebende* Wirkung auf die *Gestalt* und das *Wachstum* der Pflanze. Die *Belichtungsdauer* ist in gewissen Fällen für die *Blütezeit* massgebend. Endlich ist auch Licht erforderlich, um die *Ruhe* bestimmter Samen zu *brechen* und die *Keimung* einzuleiten.

Es ist verständlich, dass eine Pflanze nicht bei einer Lichtintensität leben kann, die zu gering ist, um die für ihr Leben notwendigen Kohlehydrate zu erzeugen. Die Lichtintensität, bei der eine Pflanze sich gerade selbst erhalten kann, wird als *Kompensationspunkt* bezeichnet. Oberhalb dieser Lichtintensität wird die Pflanze an *Trockengewicht zunehmen*, unterhalb wird sie *verkümmern*.

Die Kompensationspunkte der verschiedenen Pflanzen weichen voneinander ab; so können manche im Schatten leben (*Sciophyten*, *Schattenpflanzen*, z.B. *Oxalis*), während manche nur im Hellen gedeihen können (*Heliophyten*, *Lichtpflanzen*, z.B. *Nasturtium*). Bestimmte Gewächse (*Buche*, *Fagus silvatica*) bringen im Sonnenlicht dicke Blätter mit zwei oder mehr Palisadenschichten (*Lichtblätter*) und im Schatten dünnere Blätter mit nur einer Palisadenschicht (*Schattenblätter*) hervor. Solche Pflanzen sind gewöhnlich *schattentolerant*, d.h. sie können schattige Standorte ertragen. Andere Bäume dagegen sind überhaupt nicht fähig, im Schatten zu wachsen, sie sind *schattenintolerant* (z.B. *Betula alba* und Arten von *Populus* und *Salix*).

In völliger Dunkelheit entstehen Symptome, die als *Etiolierung* bezeichnet werden. Hierbei wird kein Chlorophyll gebildet (es gibt Ausnahmen!), die *Verholzung* und *Kutinisierung* ist gehemmt und die Internodien sind anormal *verlängert*.

Von der *Belichtungsdauer* (*Tageslänge*) kann es abhängen, ob eine Pflanze blüht oder vegetativ bleibt. Gewisse Pflanzen

Salvia) flower only in a short day (*short day plants*). Others (*radish, beet*) are *long day plants*, and will not flower if constantly exposed to a short day. A third group of plants (*tomato*) is indifferent to the length of day. The phenomenon as a whole is called *photoperiodism*.

Temperature.—Temperature has been called the *master factor* in the distribution of vegetation. The metabolism of the plant can only continue within a narrow range of temperature, and the intensity of the metabolic processes are easily influenced by changes of temperature within that range. The *thermal death point* varies from 40°C . (some *arctic* plants) to 80°C . (some *thermophilic* bacteria). Seeds during *dormancy* endure much higher temperatures than growing plants and many *spores* of *bacteria* can stand temperatures of more than 100°C . The *freezing point* for some *arctic* plants is as low as -60°C . while some seeds and spores can endure temperatures as low as -258°C . without being harmed.

Only rarely do these extremes affect vegetation in Nature. Of far greater importance is the length of the *frost-free* period. Annuals must complete their life cycle within this period, *i.e.*, they must *set seed*, or they would otherwise be exterminated. The length, therefore, of the frost-free period and the average temperature within that period are the important aspects of the *temperature climate*.

The length of the frost-free period increases with decreasing *latitude*. At the same latitude, the period decreases from the *sea-coasts* to the centres of *continents*. This normal relationship is much modified by *cold air drainage* into *valleys*, and by *ocean currents* and winds.

Water.—The water factor includes the integrated effects of *rainfall, humidity* of the air, and *soil moisture*. Plants vary widely in their *ability to resist drought* or to endure excess of moisture, and they may be roughly classified from this standpoint into:—

hydrophytes:—plants capable of living wholly or partly immersed in water.

hygrophytes:—plants able to live only in high humidities, *e.g.*, forest floor.

mesophytes:—plants which live in an adequate water supply, and are not able to endure excess of water or prolonged drought.

xerophytes:—plants which are able to live under conditions of prolonged water shortage.

(*Aster*, *Salbei*) blühen nur am Kurztag (*Kurztagpflanzen*). Andere (*Rettich*, *Runkelrübe*) sind *Langtagpflanzen* und blühen nicht, wenn sie dauernd kurzer Belichtung (Kurztag) ausgesetzt sind. Eine dritte Pflanzengruppe (*Tomate*) ist unterschiedlichen Tageslängen gegenüber unempfindlich. Die Erscheinungen in ihrer Gesamtheit werden als *Photoperiodizität* bezeichnet.

Temperatur. — Die Temperatur wird für die Ausbreitung der Vegetation als *Hauptfaktor* angesehen. Der Stoffwechsel einer Pflanze kann nur innerhalb eines engen Temperaturbereichs vorsichgehen, und die Intensität der Lebensvorgänge wird von Temperaturänderungen innerhalb dieses Bereichs wesentlich beeinflusst. Der *thermale Tötungspunkt* schwankt von 40°C. (einige *arktische* Pflanzen) bis zu 80°C. (einige *thermophile* Bakterien). In *Keimruhe* befindliche Samen ertragen erheblich höhere Temperaturen als die wachsende Pflanze, und manche *Bakteriensporen* können Temperaturen von mehr als 100°C. überstehen. Der *Erfrierpunkt* (*Kältetodpunkt*) liegt für einige arktische Pflanzen bei -60°C., während manche Samen und Sporen Temperaturen bis zu -258°C., ohne geschädigt zu werden, ertragen können.

Nur selten begegnet die Vegetation in der Natur diesen Extremen. Von weit grösserer Bedeutung ist die Länge der *frostfreien* Periode. Einjährige Pflanzen müssen ihren Lebenskreislauf innerhalb dieses Zeitraumes vollenden, d.h. sie müssen zur *Samenbildung* kommen, da sie sonst aussterben würden. Die Dauer der frostfreien Zeit und die Durchschnittstemperatur innerhalb dieser Zeit sind daher für das *Temperaturklima* ausschlaggebend. Die Länge des frostfreien Zeitraumes nimmt mit abnehmender *geographischer Breite* zu. Bei gleicher Breitenlage nimmt die frostfreie Periode von den *Meeresküsten* nach dem Innern der *Kontinente* ab. Diese normalen Verhältnisse werden durch *Kaltluftabfluss* in *Täler*, durch *Meeresströmungen* und *Winde* stark verändert.

Wasser. — Unter Wasser als ökologischen Faktor versteht man die sich ergänzenden Wirkungen von *Niederschlagsmenge*, *Luft-* und *Bodenfeuchtigkeit*. Die Pflanzen zeigen in ihrer *Widerstandsfähigkeit* gegen *Trockenheit* und gegen übermässige Feuchtigkeit grosse Unterschiede und können von diesem Standpunkt aus eingeteilt werden in:

Hydrophyten: Pflanzen, die ganz oder teilweise unter Wasser leben können.

Hygrophyten: Pflanzen, die nur bei hoher Feuchtigkeit, z.B. im Waldboden wachsen.

Mesophyten: Pflanzen, die bei angemessener Wasserversorgung leben und weder Wasserüberfluss noch längere Trockenheit ertragen können.

Xerophyten: Pflanzen, die längere Zeit unter Wassermangel leben können.

Associated with these types are various *anatomical* and *morphological* peculiarities. Hydrophytes have no *cuticle* on the *submerged organs*, very little *mechanical tissue*, often *dissected leaves*, and large *internal air spaces (aerenchyma)*. In a few instances the flowers are adapted for water pollination.

The xerophytes may be classified into *succulents* (*Cacti*, *Euphorbia* spp); *ephemerals*, which complete their *life cycle* during a wet period and remain for the rest of the time in a *resting condition*; and lastly *sclerophytes*. The sclerophytes are often characterised by a number of *xeromorphic characters*, e.g., thick cuticle, sunken stomata, hairiness, waxy coatings to leaves, highly developed lignification, etc. These characters do not, however, label a plant as a xerophyte. They are present also in certain mesophytes, e.g., *marsh plants*, *heath plants*, *salt marsh plants (halophytes)*. It has been assumed that these plants are physiological xerophytes, and suffer from *physiological drought*, but experimental evidence does not support this.

Biotic Factors. — The distribution of vegetation is influenced also by animals and man. These agencies in so far as they affect plants are termed biotic factors. For example, *grazing* by *rabbits*, *cattle*, or *sheep*, may alter completely the vegetation of a region. Similar effects can be brought about by *fires* and the *felling of forests*.

Insects are another biotic factor of importance. On the one hand they are necessary for the *cross pollination* of *entomophilous* flowers (as opposed to *anemophilous* flowers which are pollinated by wind); on the other hand, insect *parasites* may destroy the plants by feeding on them.

It is hardly possible to disentangle the effects of the separate factors on vegetation, because they interact in such a complex fashion. Consequently the best measure of the environment is the vegetation itself, and this fact is widely used in practical ecology. Certain species are known as *plant indicators* since they will grow only under restricted climatic or edaphic conditions.

THE ANALYSIS OF VEGETATION

The first step in the *analysis of vegetation* is a *primary survey (reconnaissance)* in which the general *physiognomy* of the vegetation is noted, and perhaps a *list of species* is made.

It is customary to set against the species listed certain *frequency symbols* (degree of abundance), e.g.,

Diese Typen zeigen verschiedene *anatomische* und *morphologische* Eigentümlichkeiten. Hydrophyten besitzen an den *untergetauchten* Organen keine *Kutikula*, sehr geringe *mechanische Gewebe*, oft *zerschlitzte Blätter* und grosse *Interzellularen (Aerenchyme)*. In einigen Fällen sind die Blüten für Wasserbestäubung eingerichtet.

Die Xerophyten können eingeteilt werden in *Sukkulanten (Kakteen, Euphorbia spp.)*, *ephemere Pflanzen*, die ihren *Lebenskreislauf* während einer Regenperiode vollenden und die übrige Zeit in einem *Ruhe stadium* verharren und endlich *Sclerophyten*. Diese besitzen meist einige *xeromorphe Merkmale*, z.B. dicke *Kutikula*, *eingesenkte Stomata*, *Behaarung*, Blätter mit *Wachssüberzügen*, starke Verholzung usw. Man kann jedoch aus diesen Merkmalen nicht unbedingt auf einen Xerophyten schliessen. Sie sind auch bei gewissen Mesophyten vorhanden, z.B. *Sumpfpflanzen*, *Heidepflanzen*, *Salzsumpfpflanzen (Halophyten)*. Man nimmt an, dass diese Pflanzen *physiologische Xerophyten* sind und unter *physiologischer Trockenheit* leiden, aber dafür ist der experimentelle Beweis nicht erbracht.

Biotische Faktoren. — Die Verteilung der Vegetation wird auch durch Tiere und den Menschen beeinflusst. Diese Wirkungen, sofern sie Pflanzen betreffen, werden als biotische Faktoren bezeichnet. Z.B. kann das *Weiden* von *Kaninchen*, *Rindvieh* oder *Schafen* die Vegetation eines Bereiches völlig verändern. Ähnliche Wirkungen können *Brände* und *Waldfällungen* haben.

Ein anderer wichtiger biotischer Faktor sind die *Insekten*. Einerseits sind sie erforderlich für die *Bestäubung entomphiler Blüten* (im Gegensatz zu *anemophilen* Blüten, die durch den Wind bestäubt werden), andererseits können *parasitische Insekten* Pflanzen durch Frass zerstören.

Es ist kaum möglich, die Wirkungen der einzelnen Faktoren auf die Vegetation zu entwirren, weil sie sich in so komplizierter Weise beeinflussen. Folglich ist der beste Maßstab für die Umwelt die Vegetation selbst, und diese Tatsache wird weitgehend in der praktischen Ökologie benutzt. Gewisse Arten sind als *Indikatorpflanzen* bekannt, da sie nur unter beschränkten klimatischen oder edaphischen Bedingungen gedeihen.

DIE ANALYSE DER VEGETATION

Der erste Schritt in der *Vegetationsanalyse* ist eine *Anfangsübersicht (Rekognosierung)*, in der die allgemeine *Physiognomie* der Vegetation umrissen und vielleicht ein *Artenverzeichnis* aufgestellt wird. Es ist üblich, vor die verzeichneten Arten gewisse *Häufigkeitszeichen* (Abundanzgrade) zu setzen, z.B.:

In England :	In Germany : ¹
d = dominant	soc. = sociales
a = abundant	cop. = copiosæ
f = frequent	sp. = sparsæ
o = occasional	sol. = solitariæ
r = rare	greg. = gregariæ ("lokal herdenweise," corresponds to the English "local")
vr = very rare	
l = local	

This may be followed by an enumeration of the *growth forms* (*life forms*), i.e., *trees*, *shrubs*, *herbs*, *rosette plants*, etc.

Another classification of life forms was devised by Raunkiaer, which depends upon the position of the vegetative resting organs with reference to the soil. He distinguishes :—

(i) *phanerophytes*, with overwintering buds, and branches standing high above the soil (e.g., trees and bushes).

(ii) *chamæphytes*, with buds near the surface of the soil (e.g., certain shrubs and low bushes).

(iii) *hemicryptophytes*, whose winter buds are protected by soil or the remains of leaves.

(iv) *cryptophytes*, with buds under the earth, including *geophytes*, with *creeping runners* or *rhizomes*, *bulbs*, *corms*, etc.

(v) *therophytes*, or *annuals* which endure unfavourable seasons as seeds.

The frequencies of these different life forms in any region is called the *biological spectrum*.

In order to obtain a closer survey of a plant habitat, the area under investigation is split up into sections, e.g., *quadrats*. The branch of ecology known as *plant sociology* has specialised in the technique of the detailed analysis of vegetation. The characters commonly analysed are :—

Quantitative. — (a) *density* of species. This is given by the amount of area available for each individual, and is expressed

by the *fraction*:—
$$\frac{\text{area}}{\text{number of individuals}}$$

(b) *degree of covering* of a species (*dominance*). This is measured by estimation, and the scale suggested by Hult and Sernander (Hult-Sernander scale) is commonly used.

¹ Scale according to Drude.

In England:

d = dominant

a = abundant

f = frequent

o = occasional

r = rare

vr = very rare

l = local

In Deutschland:

soc. = sociales

cop. = copiosæ

sp. = sparsæ

sol. = solitariæ

greg. = gregariæ ("lokal herdenweise," entspricht dem englischen "local")

Ferner kann noch eine Aufzählung der *Wachstumsformen* (*Lebensformen*) folgen, z.B. *Bäume*, *Sträucher*, *Kräuter*, *Rosettenpflanzen* usw.

Von Raunkiaer wurde eine andere Einteilung nach den Lebensformen, die sich nach der Lage der ruhenden Vegetationsorgane zum Boden richtet, aufgestellt. Er unterscheidet:

(i) *Phanerophyten* (*Lufstpflanzen*) mit überwinternden Knospen und hoch über dem Boden stehenden Ästen (z.B. Bäume u. Sträucher).

(ii) *Chamæphyten* (*Bodenflächenpflanzen*) mit Knospen in Nähe der Bodenoberfläche (z.B. gewisse Sträucher und niedrige Büsche).

(iii) *Hemikryptophyten* (*Erdkrustenpflanzen*), deren Winterknospen durch Boden oder Blattüberreste geschützt sind.

(iv) *Kryptophyten* (*Erdpflanzen*) mit unterirdischen Knospen, einschliesslich *Geophyten* mit kriechenden Ausläufern oder Rhizomen, Zwiebeln, Knollen usw.

(v) *Therophyten* oder *einjährige Pflanzen*, die ungünstige Jahreszeiten mit Hilfe ihrer Samen überdauern.

Die Häufigkeit dieser verschiedenen Lebensformen in einem Gebiet wird das *biologische Spektrum* genannt.

Um eine genaue Übersicht von dem Pflanzenbestand zu bekommen, grenzt man in dem zu untersuchenden Gebiet Ausschnitte, z.B. *Quadrate*, ab. Der als *Pflanzensoziologie* bezeichnete Zweig der Ökologie hat die Technik der ausführlichen Vegetationsanalyse besonders entwickelt. Die gewöhnlich analysierten Merkmale sind:

Quantitative Merkmale.—(a) *Dichtigkeit* der Arten. Sie ist durch den für jedes Individuum verfügbaren Flächenraum bedingt und wird durch den *Bruch*:

$$\frac{\text{Fläche}}{\text{Individuenzahl}} \text{ ausgedrückt.}$$

(b) *Deckungsgrad* einer Art (*Dominanz*). Dieser wird durch Schätzung bestimmt, und zwar wird gewöhnlich folgende, von Hult und Sernander vorgeschlagene Abstufung (Hult-Sernander Skala) benutzt.

number	percentage area covered.
1	0 to 6
2	6 to 12
3	12 to 25
4	25 to 50
5	50 to 100 per cent.

(c) *frequency*.¹ This is measured as the *percentage of quadrats* in which the species in question occurs.

(d) *propinquity*. This is a measure (usually on an arbitrary scale) of the degree of association of the individuals of a species.

Qualitative.—(a) *stratification*. Under this heading is discussed the arrangement of the vegetation in layers, e.g., tree layer, shrub layer, herb layer, moss and lichen layer, etc.

(b) *vitality of the species*.

(c) *periodicity*. Most associations exhibit different aspects in different seasons. These are known as *spring aspect*, *summer aspect*, etc.

THE CLASSIFICATION OF VEGETATION

Without any analysis at all it is possible to classify vegetation in *oak woods*, *pine woods*, *heaths*, etc. These divisions are called *associations*. They are characterised by one or more *dominant* plants and other *subordinate* plants. An association in which only one dominant occurs is called a *consociation* (i.e., *Calluna vulgaris* consociation in *heath association*). Associations are further subdivided into *societies* of *pure stands of species* (e.g., *Polytrichum* society in *heath association*).² *Plant community* is a general term for a unit of vegetation, irrespective of its precise ecological classification, e.g., *meadow*, *wood*, *marsh*.

Associations are determined by the plants available for *colonisation*, and by local edaphic and climatic conditions. They may be grouped into *formations*, which are the broad climatic types of vegetation, e.g., *conifer forest*, *summer deciduous forest*, *prairies*, *deserts*.

¹ This is often called "distribution" in English, and "frequency" in English is roughly equivalent to the German "Abundanz."

² The sub-division of associations into consociations and societies is used less in Germany than in England because of the restriction of the concept of association. The narrower this is, the smaller is the number of dominant species. On the other hand, whether pure stands are large or small is inherent in the determinations of *sociability*. Braun-Blanquet, for example, distinguishes five grades of sociability: 1. growing in one place, singly; 2. grouped or tufted; 3. small patches or cushions; 4. small colonies or carpets; 5. crowds, pure populations.

Zahl	Prozentsatz der bedeckten Fläche
1	0 bis 6
2	6 bis 12
3	12 bis 25
4	25 bis 50
5	50 bis 100 Prozent.

(c) *Frequenz*.¹ Sie wird als *Prozentsatz der Quadrate*, in denen die in Rede stehenden Arten auftreten, ausgedrückt.

(d) *Häufungsweise*. Dies ist ein Masstab (gewöhnlich in willkürlicher Abstufung) für den Häufungsgrad von Individuen einer Art.

Qualitative Merkmale. — (a) *Schichtung*. Unter diesem Kennwort wird die Anordnung der Vegetation nach Schichten untersucht, z.B. Baumschicht, Strauchschicht, Kräuterschicht, Moos- und Flechtenschicht usw.

(b) *Vitalität der Arten*.

(c) *Periodizität*. Die meisten Assoziationen zeigen in den verschiedenen Jahreszeiten verschiedenes Aussehen. Dies bezeichnet man als *Frühlingsaspekt*, *Sommeraspekt* usw.

EINTEILUNG DER VEGETATION

Ohne Zuhilfenahme irgendwelcher Analysen lässt sich die Vegetation in *Eichenwälder*, *Kiefernwälder*, *Heiden* usw. einteilen. Diese Gruppierungen werden *Assoziationen* genannt. Sie sind durch eine oder mehrere *dominierende* und andere *untergeordnete* Pflanzenarten charakterisiert. Eine Assoziation, in der nur eine Pflanzenart dominierend auftritt, wird als *Konsoziation* bezeichnet (z.B. *Calluna vulgaris*-Konsoziation in *Heideassoziation*). Assoziationen werden ferner in *Verbände* von *Artenreinbeständen* (z.B. *Polytrichum*-Verband in Heideassoziation) unterteilt.² *Pflanzengemeinschaft* ist ein allgemeiner Ausdruck für eine Vegetationseinheit ohne Rücksicht auf ihre bestimmte ökologische Einteilung, z.B. *Wiese*, *Wald*, *Sumpf*.

Assoziationen werden durch die für die *Besiedelung* verfügbaren Pflanzen und durch die örtlichen edaphischen und klimatischen Bedingungen bestimmt. Sie können zu *Formationen*, die umfangreiche, klimatisch bedingte Vegetationstypen darstellen, zusammengefasst werden, z.B. *Nadelwälder*, *sommergrüne Wälder*, *Prärien*, *Wüsten*.

¹ Diese wird im Englischen oft als "distribution" bezeichnet, und das englische "frequency" entspricht ungefähr dem deutschen "Abundanz".

² Die Unterteilung der Assoziationen in Konsoziationen und Verbände wird durch Einengung des Assoziationsbegriffes in Deutschland weniger gebraucht als in England. Je enger dieser gefasst wird, desto geringer wird die Zahl der dominierenden Arten. Dagegen werden die grösseren oder kleineren Reinbestände durch Angaben über die *Sociabilität* berücksichtigt. Braun-Blanquet unterscheidet beispielsweise fünf Sozialitätsgrade: 1. *einseln*; 2. *gruppenweise*; 3. *truppweise*; 4. *scharenweise*; 5. *herdenweise*.

Associations are recognised from the species which compose them, formations from the physiognomy of the vegetation.

THE DEVELOPMENT OF VEGETATION

A bare *area* does not become colonised immediately. The first plants to occupy the area are *pioneers* (*first colony*). They are exterminated by competition with their successors ("transitional colony"), until finally the mature association, known as a *climax*, is formed. Unless the climate changes the climax is stable. This process of *colonisation*, *competition* and evolution of the vegetation is known as *succession*. If the succession begins in water and hydrophytes are gradually replaced by mesophytes, it is a *hydrosere*, or *hydrarch succession*. If it begins on bare rock, colonised by *xeric* lichens and mosses, gradually replaced by more *mesic* plants, it is a *xerosere* or *xerarch succession*. When fire or other causes interrupt the course of a succession, a *secondary succession* is initiated. A succession may be deflected by external agencies (e.g., *draining* of a marsh, *flooding* of a field), or maintained in a *sub-climax* (e.g., by animals—*grazing*—or by Man—*mowing*). The climax may be climatic or edaphic according to whether it is controlled by the climate or by local soil conditions.

Definitions of some of the most important natural plant communities in Germany and Britain:

Mashes originate generally by the *silting up* of standing water (*lakes*) or slowly flowing water (*rivers*) and are a transition toward *fen* (*fenland*).¹ *Fen* is determined by edaphic factors, the necessary water being supplied from the soil (*telluric water*), and being, as a rule, rich in mineral salts. The soil reaction is generally neutral or alkaline.¹ The surface of the fen is scarcely higher than the water table. *Cyperaceæ* and *Juncaceæ* form the bulk of the vegetation. Normally fen develops into *fenwood* (*carr*), characterised by the *alder* (*Alnus glutinosa*). The silting up of flowing water results in "alluvial woods" instead of carr, which run in a wide zone on either side of some big rivers. The characteristic trees of these woods are *Willow* (*Salix*), *Poplar*

¹ "Flachmoor" and "fen" have not precisely the same meaning. Flachmoor is flat or slightly concave in section, in contrast to Hochmoor, which is convex, owing to the mode of growth of *Sphagnum*. Fen is always alkaline, whereas Flachmoor may occasionally be acid in reaction. Weber's Niederungsmoor more closely resembles fen.

Assoziationen werden an den Arten, aus denen sie zusammensetzen, Formationen an der Physiognomie der Vegetation erkannt.

DIE ENTWICKLUNG DER VEGETATION

Ein vegetationsloses *Areal* wird nicht plötzlich besiedelt. Die ersten Pflanzen, die ein Areal besiedeln, bilden den *Anfangsverein* ("Pioniere"). Sie werden nach und nach im Wettbewerb mit ihren Nachfolgern unterdrückt (*Übergangsverein*), bis sich schliesslich die endgültige Assoziation, der *Klimaxverein* (*Schlussverein*), gebildet hat. Vorausgesetzt, dass sich das Klima nicht ändert, ist der Klimaxverein beständig. Dieser Prozess der *Besiedelung*, des *Konkurrenzkampfes* und der Entwicklung der *Vegetation* wird als *Sukzession* bezeichnet. Wenn eine Sukzession im Wasser beginnt und nach und nach Hydrophyten durch Mesophyten abgelöst werden, handelt es sich um eine *hydrosere* oder *hydrarche Sukzession*. Wenn sie auf kahlem Felsen beginnt, der durch *xerophytische* Flechten und Moose besiedelt wird, die allmählich durch *Mesophyten* ersetzt werden, liegt eine *xerosere* oder *xerarche Sukzession* vor. Wenn Feuer oder andere Ursachen den Ablauf einer Sukzession unterbrechen, beginnt eine *sekundäre Sukzession*. Eine Sukzession kann durch äussere Einflüsse gestört werden (z.B. durch *Trockenlegung* eines Sumpfes oder durch *Überflutung* eines Feldes) oder kann in einer *Sub-Klimaxform* erhalten werden (z.B. durch Tiere (*Beweidung*) oder durch den Menschen (*Wiesennahd*)). Die Klimaxform kann klimatisch oder edaphisch bedingt sein, je nachdem, ob sie durch das Klima oder durch örtliche Bodenverhältnisse entscheidend beeinflusst wird.

Definitionen der wichtigsten, in Deutschland und England vorkommenden natürlichen Pflanzengemeinschaften:

Sümpfe entstehen in der Regel durch *Verlandung* von stehenden (Seen) oder langsam fliessenden Gewässern (Flüsse) und bilden den Übergang zu den *Flachmooren* oder *Niederungsmooren*.¹ Letztere sind edaphisch bedingt, die erforderliche Feuchtigkeit wird durch das Grundwasser geliefert, das in der Regel reich an Mineralstoffen ist. Die Bodenreaktion ist meist neutral oder alkalisch.¹ Die Oberfläche des Flachmoors erhebt sich kaum über den *Grundwasserspiegel*. Die Hauptmasse der Vegetation bilden *Cyperaceen* und *Juncaceen*. Normalerweise gehen die Flachmoore in *Bruchwälder* über, deren Charakterbaum die *Schwarzerle* (*Alnus glutinosa*) ist. Bei der Verlandung fliessender Gewässer entstehen an Stelle der Bruchwälder die

¹ "Flachmoor" und "fen" haben nicht genau die gleiche Bedeutung. Flachmoor ist eben oder leicht konkav im Querschnitt, im Unterschied zu dem Hochmoor, welches durch das Wachstum von *Sphagnum* konvex ist. Fen ist immer alkalisch, während Flachmoor gelegentlich sauer sein kann. Weber's Niederungsmaar gleicht mehr dem fen.

(*Populus*), Elm (*Ulmus*) and Oak (*Quercus*).

Moors are determined principally by climate. The necessary water is supplied as rain, and their development depends upon the presence of peat mosses (e.g., *Sphagnum*). In contrast to fen water, the water of moors is very poor in mineral salts, and the soil reaction is very acid. The surface is curved convexly and the moor grows *centrifugally* in all directions. Moors may be formed on acid sandy soils, by the silting up of water poor in mineral salts, by the turning of forests into bogs, or from fens. When moors arise from fens "transitional moors" occur as transition stages.¹

Heaths are found on acid sandy soils, poor in nutrients (*white earths*). They are drier than moors, and are characterised principally by *ling* (*Calluna vulgaris*).

Dunes are hilly deposits of sand formed by *wind action*, found principally along *sea coasts*. Characteristic plants are the *lyme grass* (*Elymus arenarius*) and *marram grass* (*Ammophila arenaria*).

Forest is the normal climax to successions in Germany and Great Britain. Most forests, however, are no longer natural plant communities, but are *artificial*, and influenced by Man.

These transitions between fen and moor have not been given names by British writers. There is no English equivalent of *Zwischenmoor* or *Übergangsmoor*.

Auenwälder, die auf weite Strecken manche grösseren Flüsse begleiten. Ihre Charakterbäume sind: *Weide* (*Salix*), *Pappel* (*Populus*), *Ulme* (*Ulmus*) und *Eiche* (*Quercus*).

Die *Hochmoore* sind vorwiegend klimatisch bedingt. Die erforderliche Feuchtigkeit wird durch Niederschläge geliefert, und die Entstehung ist an die Anwesenheit von *Torfmoosen* (z.B. *Sphagnum*) gebunden. Das Wasser der Hochmoore ist im Gegensatz zu dem der Flachmoore sehr arm an Mineralsalzen, die Bodenreaktion stark sauer. Die Oberfläche ist uhrglasförmig gewölbt, das Moor wächst *zentrifugal* nach allen Seiten. Hochmoore können sich auf sauren Sandböden bilden oder durch Verlandung nährstoffärmer Gewässer oder durch Versumpfung von Wäldern oder aus Flachmooren entstehen. Wenn Hochmoore aus Niederungsmooren entstehen, treten als Bindeglieder *Zwischenmoore* oder *Übergangsmoore* auf.¹

Die *Heide* findet sich auf nährstoffarmen, sauren Sandböden (*Bleicherde*, *Rohhumus*!). Sie sind trockener als Hochmoore und sind vor allem durch die *Besenheide* (*Calluna vulgaris*) charakterisiert.

Dünen sind hügelige, durch Windverwehung gebildete Sandablagerungen, die sich vor allem längs der *Meeresküste* finden. Als Charakterpflanze sind der *Strandhafer* (*Elymus arenarius*) und das *Sandgras* (*Ammophila arenaria*) zu nennen.

Wälder sind die normale Klimaxform der Sukzession in Deutschland und England. Die meisten Wälder sind jedoch keine natürlichen Pflanzengemeinschaften sondern *künstliche*, von den Menschen beeinflusste.

¹ Die englischen Botaniker haben diesen Übergängen zwischen Hochmoor und Niederungsmoor keine Namen gegeben. Es gibt keinen gleichwertigen Ausdruck für Zwischenmoor oder Übergangsmoor.

CHAPTER VIII

PATHOLOGY

Plant Pathology (Phytopathology) is the branch of Botany which deals with the *diseases* of plants. A disease is defined as any deviation from the normal healthy condition which impairs the form or the functions of the plant. The *symptoms* of a plant disease are usually not *specific*; therefore they cannot be used alone as a means of *identification (diagnosis)*, but they do give some indication of the cause of the disease, *i.e. etiology*. The *common names* of plant diseases are mostly descriptions of the symptoms (*phenomena of the disease*), whereby different *groups of symptoms* are distinguished.

SYMPTOMATOLOGY¹

- (1) Wilting phenomena, *e.g.* consequence of sudden drought (heat scorch), root rots (damping-off), foot rots, true wilt diseases (tracheomycoses).
- (2) Discolorations. They arise either through more or less serious loss of chlorophyll (pallor) or through the formation of abnormal colours, as yellow, orange, purple, brown, red, black.
 - (a) General discolorations, *e.g.* yellowing during the etiolation of the shoot, chlorosis (jaundice), whiteheads of *Gramineæ*, silver leaf, albinism.
 - (b) Partial discolouration, *e.g.* variegation, mosaic diseases.
 - (c) Spots, *e.g.* leaf spots, stem spots, tuber spots, streak, stripe, anthracnose, bark blight, scab, internal spots, bitterpit.
- (3) Dying-back (necrosis) of organs.
 - (a) Premature dropping of organs, *e.g.* leaf-fall diseases, dropping of flowers and fruits.
 - (b) Withering, *e.g.* drying up of the entire plant, leaf blight, blossom wilt, withertip, twig blight.
 - (c) Rotting, *e.g.* root-, stem-, and collar-rot (footrot, blackleg); tuber-, rhizome- and bulb-rot; bud-, flower- and fruit-rot; wood- and bark-rot; white-, brown-, red- and black-rot, etc.
- (4) Changes in form.
 - (I) Hypotrophy (sub-normal development of cell size) and
 - (II) Hypoplasia in the narrower sense (sub-normal multiplication of cells); and hyperplasia: hypertrophy (supranormal development of cell size) and hyperplasia in the narrower sense (supranormal multiplication of cells).

¹ Classification after Morstatt, in Sorauer, *Handbuch der Pflanzenkrankheiten* I, 1, p. 90, 6th edn. Berlin, 1933.

KAPITEL VIII

PATHOLOGIE

Die *Pflanzenpathologie* (*Phytopathologie*) ist der Zweig der Botanik, der sich mit den *Krankheiten* der Pflanzen befasst. Als Krankheit wird jegliche Abweichung vom normalen, gesunden Zustand bezeichnet, die die Form oder die Funktionen der Pflanze beeinträchtigt. Die *Symptome* einer Pflanzenkrankheit sind gewöhnlich nicht *spezifisch*; sie können daher nicht als alleiniges Mittel zur *Identifizierung* (*Diagnose*) benutzt werden, aber sie geben einen gewissen Hinweis auf die Ursache der Krankheit, d. h. auf die *Ätiologie*. Die *Vulgärsymptome* von Pflanzenkrankheiten sind meist Beschreibungen der Symptome (*Krankheitserscheinungen*), wobei verschiedene *Symptomgruppen* unterschieden werden können.

SYMPTOMATIK¹

- (1) Welkeerscheinungen z.B. Folge von plötzlicher Trockenheit (Hitzeschlag), Wurzelfäulen, Fusskrankheiten, echte Welkekrankheiten (Tracheomykosen).
- (2) Verfarbungen. Sie entstehen entweder durch mehr oder weniger starken Verlust des Chlorophylls (Entfarbungen) oder durch Ausbildung anormaler Farben, wie gelb, orange, purpur, braun, rot, schwarz.
 - (a) Allgemeine Verfärbungen z.B. Vergilben beim Etiolieren der Triebe, Chlorose (Gelbsucht), Weissährigkeit der *Gramineen*, Milchglanz, Albinismus.
 - (b) Teilweise Verfärbung z.B. Panaschierung (Buntblättrigkeit), Mosaikkrankheiten.
 - (c) Flecke z.B. Blattflecke, Stengelflecke, Knollenflecke, Strichel, Streifen, Brenner, Rindenbrand, Schorf, innere Trockenflecke, Stippflecke.
- (3) Absterben von Organen.
 - (a) Vorzeitiges Abwerfen von Organen z.B. Blattfallkrankheiten, Abwerfen von Blüten und Früchten.
 - (b) Dürren z.B. Vertrocknen ganzer Pflanzen, Blattdürre, Blütedürre, Spitzendürre, Zweigsterben.
 - (c) Fäulen z.B. Wurzel-, Stengel- und Stengelgrundfäule (Fusskrankheit, Schwarzbeinigkeit), Knollen-, Rhizom- und Zwiebelfäule, Knospen-, Blüten- und Fruchtfaule, Holz- und Rindenfäule, Weiss-, Braun-, Rot-, Schwarzfäule usw.
- (4) Formveränderungen.
 - (I) Hypotrophien (unternormale Größenentwicklung der Zellen) und
 - (II) Hypoplasien im engeren Sinne (unternormale Vermehrung der Zellen) und die Hyperplasien: Hypertrophien (übernormale Größenentwicklung der Zellen) und Hyperplasien im engeren Sinne (übernormale Vermehrung der Zellen).

¹ Einteilung nach Morstatt, in Sorauer, *Handbuch der Pflanzenkrankheiten* I., 1, S. 90, 6. Aufl., Berlin, 1933.

- (a) Changes in size, e.g. dwarfing (nanism), gigantism.
- (b) Simple changes in form, e.g. modified growth forms (excentric growth of wood), modified forms of organs (leaf-rolling, curling, crinkling).
- (c) Abnormalities (teratological forms), e.g. fasciation, torsion, diaphysis phyllomania.
- (d) Hyperhydric growth, e.g., dropsy (œdema), lenticel excrescences, cork excrescences, intumescences.
- (e) New Structures.
 - (a) Galls. These can be divided into organoid galls (e.g. witches' broom) and histoid galls (e.g. tumours, tubercles, cankers).

According to their causes, they may be classified as bacterial galls (bacteriocecidia), fungal galls (mycocecidia), and animal galls (zoocecidia).
 - (β) Multiple bud formation, e.g. polyclady, rosette formation, bark proliferations.
- (5) Wounds.
 - (a) Wounds due to atmospheric agencies, e.g. hail damage, frost splitting, damage due to snow, wind and lightning.
 - (b) Canker wounds, e.g. *Nectria* canker.
 - (c) Browsing by animals.
- (6) Exudations, e.g. guttation, exudations of gum (gummosis), and of resin (resinosis).
- (7) Epiphytes and parasites as the main symptoms of disease.
 - (a) Epiphytes, e.g. mosses, lichens, sooty moulds.
 - (b) Epiphytic parasites, e.g. mistletoe (*Viscum*), dodder (*Cuscuta*), broomrape (*Orobanche*), powdery mildew (*Erysiphaceæ*).
- (8) Fruiting bodies and permanent tissues of fungi, e.g. downy mildew (*Peronosporaceæ*), rusts (*Uredinales*), smuts (*Ustilaginales*), tree-dwelling *Hymenomycetes* (*Polyporaceæ*, etc.), sclerotia (Ergot).

ETIOLOGY

Diseases are classified according to their causes as follows:

Non-parasitic or physiological diseases.¹

Virus diseases.

Parasitic diseases.

Parasitic diseases may be further subdivided into bacterial diseases, fungal diseases, and diseases caused by animals.

Non-parasitic diseases are caused by extremely varied inanimate (*abiotic*) factors in the environment or by some *auto-nomous internal derangements*. Unfavourable environmental factors are for instance: *low temperature*, *frost*, *high temperature*, *water-logging*, *drought*, unfavourable physical properties or *reaction of the soil*, *deficient or unbalanced nutrition*, *harmful gases (smoke injury)* and excessive wounding (e.g. *hail injury*).

¹ The expression "physiological disease" is no longer used in Germany.

- (a) Größenveränderungen z.B. Zwergwuchs (Nanismus), Riesenwuchs.
- (b) Einfache Formveränderungen z.B. veränderte Wuchsformen (exzentrisches Holzwachstum), veränderte Formen von Organen (Blattrollung, Kräuselung, Verkrümmung).
- (c) Missbildungen (Terata) z.B. Verbänderung (Fasziation), Zwangsdrehung (Torsion), Durchwachsung, Vergrünung oder Verlaubung (Phyllomanie).
- (d) Wucherungen z.B. Wassersucht (Ödem), Lentizellenwucherungen, Korkwucherungen, Intumeszenzen.
- (e) Neubildungen.
 - (a) Gallen. Sie können eingeteilt werden in organoide Gallen (z.B. Hexenbesen) und histoide Gallen (z.B. Tumoren, Tuberkeeln, Krebsknoten).
Nach den Erregern lassen sie sich einteilen in Bakteriengallen (Bakteriozezidien), Pilzgallen (Mykozezidien) und Tiergallen (Zoozezidien).
 - (β) Vermehrte Knospenbildung z.B. Zweigsucht, Rosettentriebe, Kropfmaserbildung.
- (5) Wunden.
 - (a) Wunden durch atmosphärische Einflüsse z.B. Hagelschlag, Frostspalten, Schneebrech, Windbruch, Blitzschlag
 - (b) Krebswunden z.B. *Nektria*-Krebs.
 - (c) Tierfrass.
- (6) Ausscheidungen z.B. Guttation, Gummifluss (Gummosis), Harzfluss (Resinosis).
- (7) Epiphyten und Parasiten als Hauptsymptome von Krankheiten.
 - (a) Epiphyten z.B. Moose, Flechten, Russstau.
 - (b) Epiphytische Parasiten z.B. Mistel (*Viscum*), Seide (*Cuscuta*), Sonnerwurz (*Orobanche*), Mehltau (*Erysiphaceæ*).
- (8) Fruchtformen und Dauerzustände von Pilzen z.B. falscher Mehltau (*Peronosporaceæ*), Rostpilze (*Uredinales*), Brandpilze (*Ustilaginales*), baumbewohnende Hymenomyceten (*Polyporaceen* usw.), Sklerotienbildung (Mutterkorn).

ÄTIOLOGIE

Die Krankheiten werden nach ihren Ursachen wie folgt eingeteilt:

Nichtparasitäre oder physiologische¹ Krankheiten.

Viruskrankheiten (Virosen).

Parasitäre Krankheiten.

Die parasitären Krankheiten lassen sich weiter unterteilen in bakterielle Krankheiten (Bakteriosen), pilzliche Krankheiten (Mykosen) und tierische Erkrankungen (Zoonosen).

Nichtparasitäre Krankheiten können durch die verschiedensten unbelebten (*abiotischen*) Faktoren der Umwelt oder durch *autonom entstehende innere Störungen* verursacht werden. Ungünstige Umweltfaktoren sind beispielsweise: Kälte, Frost, Hitze, stauende Nässe, Trockenheit, ungünstige physikalische Beschaffenheit oder Reaktion des Bodens, mangelhafte oder einseitige Ernährung, schädliche Gase (Rauchschäden) und

¹ Der Ausdruck "physiologische Krankheiten" ist in Deutschland nicht mehr gebräuchlich.

The real cause of many of the non-parasitic maladies is still unknown.

Virus diseases are caused by an infective *principle* termed a virus. This principle is present in the cell sap of infected plants and can be *transmitted* from diseased to healthy tissue by the juice. The *transmissibility* varies for different viruses; infection may be carried over by *abrasion* and *contact*, by *needle inoculation*, by *insect punctures*, and in some instances by *grafting* and *inoculation* only. The *symptomatology* is extremely confused because several independent viruses may infect one and the same host plant simultaneously and because the symptoms of any specific virus on different varieties of a given host are not constant. Certain host plants or distinct varieties of a species of host plant show no symptoms of disease, although they contain a virus and their sap is infective. Such plants are termed "*carriers*."

Insects which transmit virus diseases are called "*vectors*"¹ in English. In some instances there is a definite specificity between a virus and *transmitting insect*. The virus often requires an incubation period in the insect body before the transmission can take place. Certain virus diseases represent no one uniform principle, but consist of two or more *complexes* or *races*, which under given circumstances may be separated by insect transmission to a suitable host plant. This selective alternating-action between the insect and certain host plants is one means of purifying infective material. Separation of pure virus cultures is required, preliminary to standardisation of the symptoms.

It is still disputed, whether the infective principle is an *organised living unit* or an *unorganised toxic substance*. *Intracellular inclusions*, described as "*X*" bodies or *Iwanowski bodies*, which are commonly found in affected leaves are considered to be *degeneration products* of the protoplasm. The virus is ultra-microscopic and passes through bacteria filters (Chamberland and Berkefeld filter candles) without loss of *virulence*. Its size is comparable to that of a *bacteriophage*. *Expressed juices* from virus-sick parts of plants are frequently extremely resistant to high temperatures, to chemical treatment and to prolonged keeping. They can be very greatly diluted without loss of infective power.

¹ In German there is no special technical expression, but such general expressions as *transmitter*, *virus transmitter*, *transmitting insect* are used.

starke Verwundung (z.B. *Hagelschlag*). Die eigentlichen Ursachen zahlreicher nichtparasitärer Krankheiten sind noch unbekannt.

Viruskrankheiten werden durch ein infektiöses *Prinzip*, das man als Virus bezeichnet, verursacht. Dieses Prinzip befindet sich im Zellsaft infizierter Pflanzen und lässt sich vom kranken zum gesunden Gewebe durch den Saft *übertragen*. Die *Übertragbarkeit* ist bei den verschiedenen Viren unterschiedlich. Die Infektion kann durch *Abreibung* und *Berührung*, durch *Nadelstichimpfung*, durch *Insektenstiche*, in manchen Fällen auch nur durch *Pfropfen* und *Okulieren* erfolgen. Die *Symptomatik* ist äusserst verworren, weil verschiedene selbständige Viren ein und dieselbe Wirtspflanze gleichzeitig infizieren können, und weil die Symptome eines spezifischen Virus auf verschiedenen Sorten einer gegcbenen Pflanze nicht konstant sind. Gewisse Wirtspflanzen oder bestimmte Sorten einer Wirtspflanzenart bringen keine Krankheitssymptome hervor, obgleich sie ein Virus enthalten und ihr Saft infektiös wirkt. Derartige Pflanzen bezeichnet man als "Zwischenträger."

Insekten, die Viruskrankheiten übertragen, werden im Englischen "Vectors"¹ genannt. In manchen Fällen bestehen bestimmte Beziehungen zwischen einer Viruskrankheit und dem *übertragenden Insekt*. Oft benötigt auch das Virus eine Inkubationszeit im Insektenkörper, ehe die Übertragung erfolgen kann. Gewisse Viruskrankheiten stellen kein einheitliches Prinzip dar sondern bestehen aus zwei oder mehr *Komplexen* oder *Rassen*, die sich unter Umständen durch Insektenübertragung auf geeignete Wirtspflanzen trennen lassen. Diese selektive Wechselwirkung zwischen Insekt und gewissen Wirtspflanzen ist ein Mittel, das infektiöse Material zu reinigen. Die Isolierung reiner Viruskulturen ist zunächst zur Festlegung der Symptome erforderlich.

Es ist noch umstritten, ob das infektiöse Prinzip *ein organisierter, lebender Körper* oder eine *unorganisierte toxische Substanz* ist. *Intrazelluläre*, als "X"-Körperchen oder *Iwanowskische Körperchen* bezeichnete *Einschlüsse*, die gewöhnlich in erkrankten Geweben gefunden werden, werden als *Degenerationsprodukte* des Protoplasma angesehen. Das Virus ist ultramikroskopisch und geht durch Bakterienfilter (Chamberland- und Berkefeldfilter) ohne *Virulenzverlust* hindurch. Seine Grösse ist mit der eines *Bakteriophagen* vergleichbar. *Pressäfte* aus viruskranken Pflanzenteilen sind häufig äusserst widerstandsfähig gegen hohe Temperaturen, chemische Behandlung und lange Aufbewahrung. Sie lassen sich ausserordentlich stark verdünnen, ohne ihre Infektionskraft zu verlieren.

¹ Im Deutschen kennt man dafür keinen besonderen Fachausdruck sondern gebraucht allgemeine Bezeichnungen wie Überträger, Virusüberträger, übertragendes Insekt usw.

Parasitic diseases are caused by living organisms, both animal and vegetable. The plant parasitised is termed the *host* and the attacking organism the *parasite*. The commonest parasitic plants are fungi, bacteria, slime-moulds and certain angiosperms. The commonest parasitic animals attacking plants are insects, mites and eelworms. A parasitic plant is mostly termed a *pathogen*,¹ a parasitic animal is usually termed a *pest* or *enemy*.² The injury caused by pathogens is mostly distinct from that caused by pests. The study of these two aspects of disease has been conducted separately as *Plant Pathology*, which relates to the injury and damage caused by pathogens and as *Economic Entomology* which relates to the injury and damage caused by insect and allied pests. Pathology in this restricted sense is a branch of Botany.

PATHOGENICITY

The capacity of an organism to produce disease is termed *pathogenicity*. The proof of pathogenicity is a routine process of three steps: (1) the *isolation* of the pathogen in pure culture; (2) the *inoculation* of the pure culture into healthy host plants; (3) the *recovery* of the same organism in pure culture from the artificially inoculated plants.

Isolation methods depend on the use of *sterile media* (*nutrient substrata*). The following types of media are in general use: *obliquely cut, cylindrical pieces* of solid vegetable substance (e.g. potato tuber, root vegetables, wood, etc.); plant extracts in the form of liquors from boiling (*decoctions*) or *infusions*; *meat* and *milk extracts* and artificial *nutrient solutions*. The media may be used liquid or solidified by means of *gelatin* or *agar-agar*. The latter media are contained in *test-tubes* closed with *cotton wool plugs* (*slant-, roll-, or stab cultures*) or are poured as required into sterilised plates (*Petri-dishes*).

¹ The German conception "*Erreger*" and the English conception "*pathogen*" are not equivalent in so far as the word "pathogen" is used only for plant parasites, whereas the German word "*Erreger*" can be used also of certain animal parasites (e.g. mites and eelworms).

² The expressions "pest" and "enemy" in this sense can be translated by the German word "*Schädling*" only, although there is also in German the popular expression "*Pflanzenfeind*," which denotes any living thing which injures plants.

Parasitäre Krankheiten werden durch lebende Organismen, tierische wie pflanzliche, verursacht. Die parasitierte Pflanze wird als *Wirt*, der angreifende Organismus als *Parasit* bezeichnet. Die häufigsten parasitischen Pflanzen sind Pilze, Bakterien, Schleimpilze und gewisse Angiospermen. Die häufigsten pflanzenparasitären Tiere sind Insekten, Milben, und Älchen. Ein pflanzlicher Parasit wird meist als *Krankheitserreger*,¹ ein tierischer Parasit gewöhnlich als *Schädling*² bezeichnet. Die durch pflanzliche Krankheitserreger hervorgerufene Schädigung ist meist von der durch Schädlinge verursachten verschieden. Die Untersuchung dieser zwei Erscheinungsformen von Krankheiten ist getrennt durchgeführt worden als *Pflanzenpathologie*, die sich auf die Schädigung und den Verlust durch pflanzliche Krankheitserreger bezieht und als *Angewandte Entomologie*, die sich mit der Schädigung und dem Verlust durch Insekten und ähnlichen Schädlingen befasst. Die Pathologie in diesem engeren Sinne ist ein Zweig der Botanik.

PATHOGENITÄT

Die Fähigkeit eines Organismus, eine Krankheit hervorzurufen, wird als *Pathogenität* bezeichnet. Der Nachweis der Pathogenität geschieht in einem allgemein üblichen Verfahren in drei Etappen: (1) die *Isolierung* des Erregers in Reinkultur; (2) die *Einimpfung* der Reinkultur in gesunde Wirtspflanzen; (3) die *Rückgewinnung* desselben Organismus in Reinkultur von den künstlich infizierten Pflanzen.

Die Isolierungsmethoden beruhen auf dem Gebrauch *steriler Medien* (*Nährböden*). Im allgemeinen sind folgende Nährbodentypen gebräuchlich: *schräg geschnittene, zylindrische Stücke* fester pflanzlicher Substanzen (z.B. Kartoffelknolle, Rübe, Holz usw.); Pflanzenextrakte in Form von *Abkochungen* (*Dekokten*) oder *Aufgüßen*; *Fleisch- und Milchextrakte* und künstliche *Nährösungen*. Die Medien können flüssig oder mit Hilfe von *Gelatine* oder *Agar-Agar* verfestigt, verwendet werden. Die letzteren Medien werden in mit *Wattestopfen* verschlossenen *Reagenzgläsern* gehalten (*Schräg-, Roll- oder Stichkulturen*) oder werden nach Bedarf in sterilisierte Platten (*Petrischalen*) aus gegossen.

¹ Der deutsche Begriff "*Erreger*" und der englische Begriff "*pathogen*" decken sich insofern nicht ganz, als das Wort "*pathogen*", nur bei pflanzlichen Parasiten Anwendung findet, während das deutsche Wort "*Erreger*" auch bei gewissen tierischen Parasiten (z.B. Milben und Älchen) gebraucht werden kann.

² Die Ausdrücke "*pest*" und "*enemy*" können in diesem Sinne nur durch das deutsche Wort "*Schädling*" übersetzt werden, obwohl es auch im Deutschen den populären Ausdruck "*Pflanzenfeind*" gibt, womit man jedes Lebewesen, das den Pflanzen schädlich wird, bezeichnen kann.

The *methods of isolation* are two: the *spore culture method* and the *tissue culture method*. In the former plates are poured from *serial dilutions* of a *spore suspension* and a *subculture* is made from a colony lying well-isolated after the *incubation period*. In the latter pieces of diseased tissue are plated out on a *selective medium* and after the incubation, subcultures are taken from the periphery of the growing mycelium. In critical cases *single spore cultures* or *hyphal tip cultures* are taken from the cultures so obtained.

In the artificial infection of leaves and herbaceous stems the *inoculum* is placed on the surface in a drop of water. In addition the surface may be pricked with a sterile needle or scarified with a scalpel. To infect fruits, tubers, etc., a *wedge of tissue* is removed, the inoculum is inserted, the wedge is replaced and the wound is sealed with wax. In a woody stem a "T"-shaped cut is made, the inoculum is inserted and the wound is bound. Seeds are immersed in a *spore suspension* or the *seed-bed* is infected. The study of the pathogen is completed by *identification* of the organism, by *establishing its life history*, its *host range* and *geographic distribution*.

Parasites are described as *obligate* when they cannot exist on any substrate except the host; as *facultative saprophytes* when they are normally parasitic but may exist for short periods as saprophytes; as *facultative parasites* when they are normally saprophytic but may under certain conditions become parasitic. Parasites may be classed further as (1) *generalised* and (2) *specialised*. Generalised parasites are those which attack many unrelated host plants and usually destroy the host tissue by enzyme action. They live on the dead material after the manner of saprophytes. Specialised parasites are highly selective with regard to their particular host: *biological forms (strains, races or physiological species)* become adapted to the *varieties* of the host. These conditions are found in the case of obligate parasites, where, mostly, the destruction of the host tissue is delayed, at least, until the fungus has reproduced. This type approximates to the *symbiotic relationships* of *endotrophic* and *ectotrophic mycorrhiza*, where probably no injury is caused to either partner in the association.

Es gibt zwei *Isolierungsverfahren*: die *Sporenkultur-* und die *Gewebekulturmethode*. Bei ersterer werden von *abgestuften Verdünnungen* einer *Sporenaufschwemmung* Platten gegossen, und nach der *Bebrütung* wird von einer gut isoliert liegenden Kolonie eine *Abimpfung* gemacht. Bei der letzteren werden Stücke von erkanktem Gewebe auf einem *selektiv wirkenden Medium* in Platten ausgelegt, und nach der Bebrütung werden Abimpfungen von der Peripherie des wachsenden Mysels vorgenommen. In kritischen Fällen werden von den so erhaltenen Kulturen noch *Einzelsporkulturen* oder *Hyphenendkulturen* hergestellt.

Bei der künstlichen Infektion von Blättern und krautigen Stengeln bringt man das *Infektionsmaterial* in einem Wassertropfen auf die Oberfläche. Ausserdem kann die Oberfläche mit einer sterilen Nadel angestochen oder mit einem Skalpel geritzt werden. Zur Infektion von Früchten, Knollen usw. entfernt man einen *Gewebekeil*, bringt das Infektionsmaterial ein, setzt den Keil wieder ein und überstreicht die Wunde mit Wachs. Bei holzigen Stengeln macht man einen T-Schnitt, bringt das Infektionsmaterial ein und verbindet die Wunde. Samen werden in eine *Sporenaufschwemmung* getaucht, oder das *Saatbeet* wird infiziert. Die Untersuchung des Erregers wird vervollständigt durch die *Bestimmung* des Organismus, durch *Feststellung* seines *Lebenskreislaufs*, seines *Wirtspflanzenbereichs* und seiner *geographischen Verbreitung*.

Parasiten werden als *obligate Parasiten* bezeichnet, wenn sie auf keinem anderen Substrat ausser der Wirtspflanze gedeihen können; als *fakultative Saprophyten*, wenn sie normalerweise Parasiten sind, aber für kurze Zeit auch als Saprophyten leben können; als *fakultative Parasiten*, wenn sie normalerweise saprophytisch leben, aber unter gewissen Bedingungen parasitisch, werden können. Die Parasiten können ferner in (1) *allgemeine* und (2) *spezialisierte* eingeteilt werden. Allgemeine Parasiten sind solche, die zahlreiche, nicht nahe verwandte Wirtspflanzen befallen und gewöhnlich das Wirtsgewebe durch Enzymwirkung zerstören. Sie leben dann auf dem toten Material nach Art von Saprophyten. Spezialisierte Parasiten sind hochgradig selektiv in bezug auf ihre spezielle Wirtspflanze; *biologische Formen* (*Stämme, Rassen* oder *physiologische Arten*) passen sich den *Varietäten* des Wirts an. Diese Verhältnisse finden wir bei den obligaten Parasiten, wobei meist die Zerstörung des Wirtsgewebes hinausgeschoben wird, wenigstens solange, bis der Pilz sich fortgepflanzt hat. Dieser Typ leitet zu den *symbiotischen Verhältnissen* der *endotrophen* und *ektotrophen Mykorrhiza* über, wobei wahrscheinlich beide Partner der *Vergesellschaftung* keinerlei Schaden erleiden.

RESISTANCE TO DISEASE

Resistance is the capability to withstand disease. *Susceptibility* is the disposition to disease. The degree of resistance may fluctuate from feeble to complete. *Complete resistance* is *immunity*.

Resistance may be *accidental* in that a susceptible plant may escape disease in a particular environment. On the other hand, any climatic or nutritively-conditioned factor in the environment may cause the diminution or the loss of the natural resistance of a plant and so *predispose* it to an attack of disease. Susceptibility and *environmental predisposition* are two distinct phenomena, which, of course, frequently coincide in their effect.

True resistance depends upon inherent qualities of the plant protoplasm, *i.e.* upon internal factors as apart from environmental factors. The quality of resistance behaves as a single or multiple Mendelian factor and is usually dominant in the F_1 generation. Resistant varieties may be found in two ways; by *selection* and by *hybridisation*.

The features of plants which are believed to confer resistance are (1) those morphological characters which prevent mechanical penetration by the fungus, such as cuticle, hairs, waxes and the composition of the cell-wall, and (2) those physiological features which inhibit the vitality of the parasite, such as composition and acidity of the cell sap, availability of the plant protein for the parasite, presence of tannins, anthocyanins, rapidity of cork formation, osmotic pressure, antagonism between the physiological reactions of host and parasite and finally *over-susceptibility* of the *host tissue* which leads to an isolation of the attacking organism from its food supply.

The occurrence of disease is described as *sporadic*, when it attacks only scattered individuals in a community; as *endemic*, when it appears in a particular *locality* or *country*; as *epidemic*, when it attacks a whole population.

PLANT PROTECTION

In the control of plant diseases *preventive measures* are used more than *curative measures*. The latter are limited to the *destruction* of certain parasites after *attack* on the plant is established, and to the pruning of trees.

The preventive measures are classified as follows:—

KRANKHEITSRESISTENZ

Resistenz ist die *Fähigkeit*, Krankheiten zu *widerstehen*. *Anfälligkeit* ist die *Krankheitsdisposition*. Der *Resistenzgrad* kann von schwach bis vollständig schwanken. *Vollständige Resistenz* bedeutet *Immunität*.

Die Resistenz kann *zufällig* sein, so dass eine anfällige Pflanze in einer besonderen Umgebung einer Krankheit entgehen kann. Andererseits kann irgendein klimatischer oder ernährungsbedingter Umweltfaktor die Abschwächung oder den Verlust der natürlichen Resistenz einer Pflanze verursachen und sie so für eine Erkrankung *prädisponieren*. Anfälligkeit und *umweltbedingte Prädisposition* sind zwei verschiedene Phänomene, die sich in ihrer Auswirkung allerdings häufig überschneiden.

Echte Resistenz beruht auf ererbten Eigenschaften des pflanzlichen Protoplasma, d. h. auf inneren Faktoren im Gegensatz zu Umweltfaktoren. Die Resistenzeigenschaft verhält sich wie ein einzelner oder multipler mendelnder Faktor und dominiert gewöhnlich in der F_1 -Generation. Resistente Sorten können auf zweierlei Weise gefunden werden: durch *Auslese* und durch *Bastardierung*.

Die Eigenarten von Pflanzen, von denen man annimmt, dass sie die Resistenz bewirken sind (1) morphologische Eigenschaften, die das mechanische Eindringen des Pilzes verhindern, wie Kutikula, Behaarung, Wachsschichten und die Zusammensetzung der Zellwand und (2) physiologische Eigenschaften, die die Lebensfähigkeit des Parasiten ausschliessen, wie Zusammensetzung und Azidität des Zellsaftes, Ausnutzbarkeit des pflanzlichen Eiweisses für den Parasiten, Anwesenheit von Gerbstoffen und Anthozyanen, Schnelligkeit der Korkbildung, osmotischer Druck, Antagonismus zwischen den physiologischen Reaktionen von Wirt und Parasit und endlich *Überempfindlichkeit* des *Wirtsgewebes*, die zu einer Isolierung des angreifenden Organismus von seiner Nährstoffquelle führt.

Das Auftreten einer Krankheit bezeichnet man als *sporadisch*, wenn sie nur vereinzelte Individuen einer Gemeinschaft befällt; als *endemisch*, wenn sie in einer begrenzten *Örtlichkeit* oder *Gegend* auftritt; als *epidemisch*, wenn sie eine ganze Population befällt.

PFLANZENSCHUTZ

Bei der *Bekämpfung* von Pflanzenkrankheiten werden mehr *vorbeugende* als *heilende Massnahmen* angewendet. Die letzteren sind beschränkt auf die *Vernichtung* gewisser Parasiten, nachdem der *Befall* der Pflanze stattgefunden hat, und auf das Ausschneiden von Bäumen.

Die vorbeugenden Massnahmen lassen sich wie folgt ein teilen:

- (1) Cultivation or resistant varieties.
- (2) *Plant sanitation*, including :
 - (a) destruction of infective materials.
 - (b) *pruning* of trees.
 - (c) *rogueing* and *extermination* of diseased plants from a *crop*.
 - (d) *eradication* of alternative hosts, complementary or wild host plants.
 - (e) use of *disease-free seed* and propagative material.
- (3) *Cultural measures*,¹ including :
 - (a) *crop rotation*.
 - (b) *soil disinfection*.
 - (c) *drainage*.
 - (d) modification in the *time of sowing*.
- (4) Use of *fungicides*.
- (5) *Legislative control*.

Fungicides are toxic chemicals, which kill fungi or prevent their attack by a *protective action* on the foliage of plants. They are classified according to the physical state in which they are applied. A *spray* is a fungicide applied in the form of an *aqueous solution*, a *suspension* or an *emulsion*. A *dust* is a fungicide applied in the form of a finely divided *powder* or *adsorbed* on a finely divided *carrier*. A *fumigant* is a fungicide applied in the form of a gas.

Spreaders are added to *spray fluids* to increase the power of *wetting* or *spreading*. Spreaders in common use are *soaps*, *casein derivatives* and *gelatin*. Frequently also *inert substances* are added, which either as *adhesive agents* (*stickers*) increase the adhesive power of the toxic material on the leaf or in the case of suspensions, as *dispersing agents* prevent the sedimentation of the solid particles. *Various gums*, *flour paste* and *sugar* are commonly used for this purpose.

According to the practical purpose for which they are applied, fungicides are divided into three principal groups :

- (1) *Seed steeps* (primarily mercury and formaldehyde containing remedies).
- (2) *Sprays and dusts* (primarily sulphur and copper containing remedies, in special cases also soft soap and formaldehyde).
- (3) *Soil disinfectants* (primarily formaldehyde and mercury remedies, occasionally also lime).

¹ Cultural measures can be equally well included as a subgroup within group (2), Plant sanitation.

- (1) Anbau resistenter Sorten.
- (2) *Pflanzenhygiene*, umfassend :
 - (a) Vernichtung infektiösen Materials.
 - (b) Ausschneiden von Bäumen.
 - (c) Ausreissen und Vertilgen kranker Pflanzen aus einem Bestand.
 - (d) Ausrotten von Zwischenwirten, von zusätzlichen oder wilden Wirtspflanzen.
 - (e) Verwendung von *krankheitsfreiem Saatgut* und Vermehrungsmaterial.
- (3) *Kulturmassnahmen*,¹ umfassend :
 - (a) *Fruchtfolge*.
 - (b) *Bodendesinfektion*.
 - (c) *Drainage*.
 - (d) Verlegung der Saatzeit.
- (4) Anwendung von *Fungiziden*.
- (5) *Gesetzliche Pflanzenschutzmassnahmen*.

Fungizide sind toxische Chemikalien, welche die Pilze töten oder ihren Angriff durch eine *Schutzwirkung* auf den Blättern der Pflanzen verhindern. Sie werden nach dem physikalischen Zustand, in dem sie verwendet werden, eingeteilt. Ein *Spritzmittel* (*Spritzbrühe*) ist ein Fungizid, das in Form einer wässrigen Lösung, einer Suspension oder einer Emulsion angewendet wird. Ein *Stäubemittel* ist ein Fungizid, das in Form eines feinen Pulvers oder an eine fein verteilte Trägersubstanz adsorbiert verwendet wird. Ein *Räuchermittel* ist ein in Gasform angewendetes Fungizid.

Netzmittel werden *Spritzflüssigkeiten* zugesetzt, um ihre *Benetzungsfähigkeit* und *Ausbreitungsfähigkeit* zu erhöhen. Allgemein gebräuchliche Netzmittel sind *Seifen*, *Caseinderivate* und *Gelatine*. Häufig werden noch *Inertstoffe* zugesetzt, die entweder als *Haftmittel* die Haftfähigkeit der toxischen Substanz auf dem Blatt erhöhen oder im Falle von Suspensionen als *Dispersionsmittel* die Sedimentation fester Teilchen verhindern sollen. *Gummiarten*, *Mehlkleister* und *Zucker* sind allgemein für diese Zwecke im Gebrauch.

Nach ihrem praktischen Verwendungszweck lassen sich die Fungizide in drei Hauptgruppen einteilen :

- (1) *Saatbeizmittel* (vor allem quecksilber- und formaldehydhaltige Mittel).
- (2) *Spritz- und Stäubemittel* (vor allem schwefel- und kupferhaltige Mittel, in Spezialfällen auch Schmierseife und Formaldehyd).
- (3) *Bodendesinfektionsmittel* (vor allem Formaldehyd und Quecksilbermittel, gelegentlich auch Kalk).

¹ Die Kulturmassnahmen lassen sich ebensogut als Untergruppe zur Gruppe (2) *Pflanzenhygiene* auffassen.

LEGISLATIVE CONTROL

The *protection* of plants against certain serious diseases is compulsory in many countries. The necessary *legislative measures* are drawn up by the *Plant Protection Service* from time to time. They are enforced by a system of *inspection* of *growing crops*, of *market consignments*, and of *imports*. The legal *Orders* are designed (1) to prevent the *introduction* of new diseases from abroad and (2) to eradicate or check the spread of diseases already causing considerable *economic loss*. In the first instance the importation of living plants is restricted and certain importations are placed under *quarantine*; in the second instance the sale or movement of plants infected with certain diseases is prohibited, the destruction of certain plant residues is compulsory and the growing of susceptible varieties in areas declared "*infected*" for any specific disease is forbidden.

GESETZLICHE PFLANZENSCHUTZMASSNAHMEN

Der *Schutz* der Pflanzen gegen gewisse ernstliche Krankheiten wird in vielen Ländern zwangsläufig durchgeführt. Die notwendigen *gesetzlichen Massnahmen* werden von Zeit zu Zeit vom *Pflanzenschutzdienst* ausgearbeitet. Sie werden gestützt durch ein System der *Überwachung* der *Kulturen*, des *Warenverkehrs* und der *Einfuhr*. Die gesetzlichen *Bestimmungen* werden erlassen, (1) um die *Einschleppung* neuer Krankheiten vom Auslande her zu verhindern und (2) um Krankheiten, die bereits beträchtlichen *wirtschaftlichen Schaden* verursachen, auszutilgen oder an der Ausbreitung zu hindern. Im ersten Fall wird die Einfuhr lebender Pflanzen eingeschränkt und bestimmte Einfuhren werden unter *Quarantäne* gestellt, im zweiten Fall wird der Verkauf oder die Versendung von Pflanzen, die von bestimmten Krankheiten befallen sind, verboten, die Vernichtung gewisser Pflanzenreste wird erzwungen und der Anbau anfälliger Sorten in Gebieten, die für irgend eine Krankheit als *verseucht* erklärt sind, wird verboten.

APPENDIX I

THE NAMES OF COMMON, WILD AND CULTIVATED PLANTS ESPECIALLY OCCURRING IN EUROPE

ANHANG I

DIE NAMEN VON GEWÖHNLICHEN, WILDEN UND KULTIVIERTEN PFLANZEN, DIE VORNEHMLICH IN EUROPA VORKOMMEN

ENGLISCHER NAME ENGLISH NAME	LATEINISCHER NAME LATIN NAME	DEUTSCHER NAME GERMAN NAME
PHANEROGAMS .	PHANEROGAMÆ	SAMENPFLANZEN
	A	
Gymnosperms	<i>Gymnospermæ</i>	Nacktsamige
CONIFERS	<i>CONIFERÆ</i>	NADELHÖLZER
	<i>Taxaceæ</i>	<i>kibengewächse</i>
Yew	<i>Taxus baccata</i>	Eibe
	<i>Pinaceæ</i>	
Firs	<i>Abies spp.</i>	Weisstanne, Edeltanne
Cedars	<i>Cedrus spp.</i>	Zeder
Larches	<i>Larix spp.</i>	Lärche
Spruces	<i>Picea spp.</i>	Fichte
Pines	<i>Pinus spp.</i>	Kiefer
Weymouth Pine	<i>Pinus Strobus</i>	Stroe, Weymouthskiefer
Douglas Fir	<i>Pseudotsuga Douglasii</i>	Douglastanne
Hemlock Spruce	<i>Tsuga canadensis</i>	Hemlocktanne
	<i>Taxodiaceæ</i>	
Redwood	<i>Sequoia sempervirens</i>	Mammutbaum
Swamp-cypress	<i>Taxodium spp.</i>	Sumpfzypresse
	<i>Cupressaceæ</i>	
Juniper	<i>Juniperus communis</i>	Wacholder
Savin	<i>Juniperus sabina</i>	Sadebaum
Thuja	<i>Thuja spp.</i>	Lebensbaum
	B	
Angiosperms	Angiospermæ	Bedecktsamige
MONOCOTYLEDONS	MONOCOTYLE- DONEÆ	EINKEIMBLÄTTRIGE
	<i>Typhaceæ</i>	
Cat's Tail, Reed Mace	<i>Typha latifolia</i>	<i>Rohrkolbengewächse</i>
		Rohrkolben, Lieschekolben
Pondweeds	<i>Potamogetonaceæ</i>	<i>Laichkrautgewächse</i>
Grass-wrack, Eel-grass	<i>Potamogeton spp.</i>	Laichkraut
	<i>Zostera marina</i>	Seegras
	<i>Najadaceæ</i>	<i>Nixkrautgewächse</i>
Marsh Arrow-grass	<i>Triglochin palustre</i>	Sumpf-Dreizack

ENGLISCHER NAME ENGLISH NAME	LATEINISCHER NAME LATIN NAME	DEUTSCHER NAME GERMAN NAME
Water Plantain Arrowhead	<i>Alismataceæ</i> <i>Alisma Plantago</i> <i>Sagittaria sagittifolia</i>	<i>Froschloßelgewächse</i> <i>Froschlöffel</i> <i>Pfeilkraut</i>
Flowering Rush	<i>Butomaceæ</i> <i>Butomus umbellatus</i>	<i>Schwanenblumen- gewächse</i> <i>Wasserliesch,</i> <i>Schwanenblume</i>
Canadian Waterweed Frogbit	<i>Hydrocharitaceæ</i> <i>Elodea canadensis</i> <i>Hydrocharis Morsus- ranæ</i>	<i>Froschbissgewächse</i> <i>Wasserpest</i> <i>Froschbiss</i>
Water Soldier	<i>Stratiotes aloides</i>	Krebsschere, Wasserschere
<i>Grasses</i>	<i>Gramineæ</i>	<i>Gräser</i>
Couch, Quitch, Twitch Bent-grasses	<i>Agropyrum repens</i>	Quecke, Päde
Fiorin	<i>Agrostis spp.</i>	Straussgras
	<i>Agrostis alba</i>	Weisses Straussgras, Fioringras
Silky Bent	<i>Agrostis Spica-venti</i>	Windhalm
Hair-grasses	<i>Aira spp.</i>	Schmiele
Meadow Foxtail	<i>Alopecurus pratensis</i>	Wiesen-Fuchsschwanz
Marram	<i>Ammophila arenaria</i>	Sand-Helmgras
Sorghum	<i>Andropogon spp.</i>	Bartgras
Sweet Vernal	<i>Anthoxanthum odoratum</i>	Ruchgras
Tall Oat-grass, French Rye-Grass, False Oat- grass	<i>Arrhenatherum elatius</i>	Glatthafer, Französisches Raygras
Wild Oat	<i>Avena fatua</i>	Flughafer, Windhafer
Cultivated Oat	<i>Avena sativa</i>	Saathafer
Bristle-pointed Oat	<i>Avena strigosa</i>	Rauhafer, Sandhafer
False Brome-grasses	<i>Brachypodium spp.</i>	Zwenke
Quake-grass	<i>Briza spp.</i>	Zittergras
Brome-grasses	<i>Bromus spp.</i>	Trespe
Soft Brome	<i>Bromus mollis</i>	Weiche Trespe
Ryelike Brome	<i>Bromus secalinus</i>	Roggentrespe
Sterile Brome	<i>Bromus sterilis</i>	Taube Trespe
Small Reed	<i>Calamagrostis sp.</i>	Reitgras
Crested Dog's-tail	<i>Cynosurus cristatus</i>	Kammgras
Cock's-foot	<i>Dactylis glomerata</i>	Knaulgras
Tussock-grass, Tufted Hair-grass	<i>Deschampsia cæpitosa</i>	Rasenschmiele
Lyme-grass	<i>Elymus arenarius</i>	Strandhafer
Fescue-grasses	<i>Festuca spp.</i>	Schwingel
Sheep's Fescue	<i>Festuca ovina</i>	Schafschwingel
Reed Glyceria	<i>Glyceria aquatica</i>	Wasserschwaden
Manna-grass	<i>Glyceria fluitans</i>	Mannagras
Soft Grasses, Yorkshire Fog	<i>Holcus spp.</i>	Honiggras
Two-rowed Barley	<i>Hordeum distichum</i>	Zweizeilige Gerste
Four-rowed Barley	<i>Hordeum tetrastichum</i>	Vierzeilige Gerste
Six-rowed Barley	<i>Hordeum hexastichum</i>	Sechszeilige Gerste
Perennial Rye-grass	<i>Lolium perenne</i>	Englisches Raygras
Darnel Rye-grass	<i>Lolium temulentum</i>	Taumel-Lolch
Melick	<i>Melica sp.</i>	Perlgras
Purple Molinia	<i>Molinia cærulea</i>	Pfeifengras
Mat-grass	<i>Nardus stricta</i>	Borstengras

ENGLISCHER NAME ENGLISH NAME	LATEINISCHER NAME LATIN NAME	DEUTSCHER NAME GERMAN NAME
Rice	<i>Oryza sativa</i>	Reis
Panicum, Barnyard-grass (U.S.A.)	<i>Panicum Crus-galli</i>	Hühnerhirse
Panicum	<i>Panicum glaucum</i>	Gilbfennich, Fennichgras
Indian Millet	<i>Panicum miliaceum</i>	Hirse
Reed-grass	<i>Phalaris arundinacea</i>	Rohr-Glanzgras
Canary-grass	<i>Phalaris canariensis</i>	Kanariengras
Timothy	<i>Phleum pratense</i>	Lieschgras, Timotheus-gras
Common Reed	<i>Phragmites communis</i>	Rohr, Schilf
Meadow-grasses	<i>Poa spp.</i>	Rispengras
Sugar Cane	<i>Saccharum officinarum</i>	Zuckerrohr
Rye	<i>Secale cereale</i>	Roggen
Feather-grass	<i>Stipa pennata</i>	Feder-Pfriemengras
Yellow or Golden Oat	<i>Trisetum flavescens</i>	Goldhafer
Emmer Wheat	<i>Triticum dicoccum</i>	Emmer
Flint or Hard Wheat	<i>Triticum durum</i>	Hartweizen
Spelt Wheat	<i>Triticum monococcum</i>	Einkorn
Polish Wheat	<i>Triticum polonicum</i>	Polnischer Weizen
Spelt Wheat	<i>Triticum Spelta</i>	Spelzweizen, Vesen
Rivet Wheat	<i>Triticum turgidum</i>	Rauhweizen
Soft Wheat	<i>Triticum vulgare</i>	Gemeiner Weizen
Maize, Indian Corn	<i>Zea mays</i>	Mais
Sedges	<i>Cyperaceæ</i>	<i>Riedgraser, Sauergräser</i>
Carnation-grass	<i>Carex spp.</i>	Segge, Riedgras
Cotton- or Sedge-grass	<i>Carex panicea</i>	Hirseartiges Riedgras
Scirpus	<i>Eriophorum spp.</i>	Wollgras
Bulrush	<i>Scirpus spp.</i>	Binse
	<i>Scirpus lacustris</i>	See-Binse, Teich-Binse
Palms	<i>Palmae</i>	<i>Palmen</i>
Rattan Cane Palm	<i>Calamus Rotang</i>	Rotangpalme, Spanisch-Rohr
Dwarf Palm (decorative)	<i>Chamærops humilis</i>	Zwergpalme
Coconut Palm	<i>Cocos nucifera</i>	Kokospalme
Oil-Palm	<i>Eleis guineensis</i>	Ölpalme
Date-Palm	<i>Phœnix dactylifera</i>	Dattelpalme
Corozo Nut Palm (vegetable Ivory)	<i>Phytelephas macrocarpa</i>	Steinnusspalme
Sweet Sedge, Sweet Flag	<i>Araceæ</i>	<i>Aronstabgewächse</i>
Lords and Ladies, Cuckoo-pint, Wake Robin	<i>Acorus Calamus</i>	Kalmus
Duckweed	<i>Arum maculatum</i>	Aronstab
Rush	<i>Lemnaceæ</i>	<i>Wasserlinsen</i>
Woodrush	<i>Lemna minor</i>	Entengrütze, Wasserlinse
Lily Family	<i>Juncaceæ</i>	<i>Simsen</i>
Allium	<i>Juncus spp.</i>	Simse
Shallot	<i>Luzula spp.</i>	Hainsimse
Onion	<i>Liliaceæ</i>	<i>Liliengewächse</i>
Leek	<i>Allium spp.</i>	Lauch
Garlic	<i>Allium ascalonicum</i>	Schalotte
Chives	<i>Allium Cepa</i>	Speisezwiebel
	<i>Allium Porrum</i>	Porree
	<i>Allium sativum</i>	Knoblauch
	<i>Allium Schœnoprásum</i>	Schnittlauch

ENGLISCHER NAME ENGLISH NAME	LATEINISCHER NAME LATIN NAME	DEUTSCHER NAME GERMAN NAME
Crow Garlic <i>Anthericum</i>	Allium vineale <i>Anthericum</i> spp.	Weinbergs-Lauch Graslilie
Asparagus	<i>Asparagus officinalis</i>	Spargel
Meadow Saffron	<i>Colchicum autumnale</i>	Herbstzeitlose
Lily-of-the-Valley	<i>Convallaria majalis</i>	Maiglöckchen
Lily	<i>Lilium</i> spp.	Lilie
May Lily	<i>Majanthemum</i> spp.	Schattenblümchen
Grape Hyacinth	<i>Muscari racemosum</i>	Traubenvyazinthe
Bog Asphodel	<i>Narthecium ossifragum</i>	Beinbrech
Nodding Star-of-Bethlehem	<i>Ornithogalum nutans</i>	Nickender Milchstern
Star-of-Bethlehem	<i>Ornithogalum umbellatum</i>	Doldiger Milchstern
Herb Paris	<i>Paris quadrifolia</i>	Einbeere
Solomon's Seal	<i>Polygonatum multiflorum</i>	Salomonssiegel
Butcher's Broom	<i>Ruscus aculeatus</i>	Mäusedorn
Wild Hyacinth, Bluebell	<i>Scilla nonscripta</i>	Hyazinthe, Hasenglöckchen
Tulip	<i>Tulipa</i> spp.	Tulpe
Squill	<i>Urginea maritima</i>	Meerzwiebel
Snowdrop	<i>Amaryllidaceæ</i>	Narzissenengewächse
Snowflake	<i>Galanthus nivalis</i>	Schneeglöckchen
Daffodil	<i>Leucojum</i> sp.	Märzenbecher, Knotenblume
Black Bryony	<i>Narcissus Pseudo-Narcissus</i>	Narzisse
Crocus	<i>Dioscoreaceæ</i>	Yamswurzelgewächse
Gladiolus	<i>Tamus communis</i>	Schmeerwurz
Yellow Flag	<i>Iridaceæ</i>	Schwertliliengewächse
Orchids	<i>Crocus sativus</i>	Krokus, Safran
Man Orchis	<i>Gladiolus communis</i>	Gladiole
Lady's Slipper	<i>Iris Pseudacorus</i>	Gelbe Schwertlilie
Helleborine	<i>Orchidaceæ</i>	Orchideen
Musk Orchis	<i>Aceras anthropophora</i>	Ohnhorn
Twayblade	<i>Cypripedium Calceolus</i>	Frauenschuh
Bog Orchis	<i>Epipactis palustris</i>	Sumpfwurz
Bird's Nest Orchis	<i>Herminium Monorchis</i>	Einknolle
Bee Orchis	<i>Listera ovata</i>	Wald-Zweiblatt, Rattenschwanz
Purple Orchis	<i>Malaxis paludosa</i>	Sumpf-Weichwurz
Green-winged Orchis	<i>Neottia Nidus-avis</i>	Vogelnestwurz
Lady's Tresses	<i>Ophrys apifera</i>	Bienenragwurz
Vanilla	<i>Orchis mascula</i>	Kuckucks-Knabenkraut
Angiosperms	<i>Orchis morio</i>	Kleines Knabenkraut, Salep-Orchis
DICOTYLEDONS	<i>Spiranthes autumnalis</i>	Herbst-Drehwurz
Black Pepper	<i>Vanilla planifolia</i>	Vanille
Poplar	B. Angiospermæ DICOTYLEDONEÆ	Bedecktsamige ZWEIKEIMBLÄTTRIGE
	<i>Piperaceæ</i>	<i>Pfeffergewächse</i>
	<i>Piper nigrum</i>	Schwarzer Pfeffer
	<i>Salicaceæ</i>	Weidengewächse
	<i>Populus alba</i>	Silberpappel, Weisspappel

ENGLISCHER NAME ENGLISH NAME	LATEINISCHER NAME LATIN NAME	DEUTSCHER NAME GERMAN NAME
Black Poplar	<i>Populus nigra</i>	Schwarzpappel
Aspen	<i>Populus tremula</i>	Zitterpappel, Espe
White Willow	<i>Salix alba</i>	Silberweide
Sallow	<i>Salix Caprea</i>	Sahlweide
Crack Willow, Withy	<i>Salix fragilis</i>	Bruchweide
Dwarf Willow	<i>Salix herbacea</i>	Krautweide
Bay Willow	<i>Salix pentandra</i>	Lorbeerweide
Osier.	<i>Salix viminalis</i>	Korbweide
Walnut	<i>Juglandaceæ</i>	<i>Nussbaumgewächse</i>
Sweet Gale	<i>Juglans spp.</i>	Walnuss
Alder	<i>Myricaceæ</i>	<i>Gagelstraucher</i>
White or Grey Alder	<i>Myrica Gale</i>	Echter Gagelstrauch
Birch	<i>Betulaceæ</i>	<i>Birkengewächse</i>
Hornbeam	<i>Alnus glutinosa</i>	Roterle, Schwarzerle
Hazel, Nut	<i>Alnus incana</i>	Weisserle, Grauerle
	<i>Betula alba</i>	Birke
	<i>Carpinus Betulus</i>	Hainbuche, Weissbuche
	<i>Corylus Avellana</i>	Haselnuss
Spanish Chestnut	<i>Fagaceæ</i>	<i>Hüllfrüchler, Buchengewächse</i>
Beech	<i>Castanea sativa</i>	Edelkastanie, Echte Kastanie
British Oak	<i>Fagus silvatica</i>	Rotbuche
Durmast Oak	<i>Quercus Robur</i>	Sommereiche, Stieleiche
Cork Oak	<i>Quercus sessiliflora</i>	Wintereiche, Steineiche
	<i>Quercus Suber</i>	Korkeiche
Nettle-tree	<i>Ulmaceæ</i>	<i>Ulmengewächse</i>
Common Elm	<i>Celtis sp.</i>	Zürgelbaum
—	<i>Ulmus campestris</i>	Feldulme, Rotrüster
Wych Elm	<i>Ulmus effusa</i>	Flatter-Ulme, Weissrüster
Hemp	<i>Ulmus glabra</i>	Bergulme, Bergrüster
Fig	<i>Moraceæ</i>	<i>Maulbeergewächse</i>
Wild Hop	<i>Cannabis sativa</i>	Hanf
Mulberry	<i>Ficus Carica</i>	Feige
	<i>Humulus Lupulus</i>	Hopfen
Stinging Nettle	<i>Morus spp.</i>	Maulbeerbaum
Small Nettle	<i>Urticaceæ</i>	<i>Nesselgewächse</i>
	<i>Urtica dioica</i>	Grosse Brennessel
	<i>Urtica urens</i>	Kleine Brennessel
Sandal-wood	<i>Santalaceæ</i>	<i>Sandelgewächse</i>
Thesium	<i>Santalum album</i>	Sandelholz
Bastard Toadflax	<i>Thesium spp.</i>	Leinblatt
	<i>Thesium linophyllum</i>	Leinblättriger Bergflachs
Loranthus	<i>Loranthaceæ</i>	<i>Mistelgewächse</i>
	<i>Loranthus europæus</i>	Europäische Riemenblume
Mistletoe	<i>Viscum album</i>	Mistel
Birthwort, Pelican Flower	<i>Aristolochiaceæ</i>	<i>Osterluzeigewächse</i>
Dutchman's Pipe	<i>Aristolochia spp.</i>	Osterluzei
Asarabacca	<i>Aristolochia Siphonopetalum</i>	Pfeifenstrauch
	<i>Asarum europæum</i>	Haselwurz

ENGLISCHER NAME ENGLISH NAME	LATEINISCHER NAME LATIN NAME	DEUTSCHER NAME GERMAN NAME
Dock Family	<i>Polygonaceæ</i>	<i>Knöterichgewächse</i>
Buckwheat	<i>Fagopyrum esculentum</i>	Buchweizen, Heidekorn
Knotweed, Knotgrass	<i>Polygonum aviculare</i>	Vogel-Knöterich
Bistort, Snakegrass	<i>Polygonum Bistorta</i>	Nattern-Knöterich
Black Bindweed	<i>Polygonum Convolvulus</i>	Winden-Knöterich
Persicary	<i>Polygonum Persicaria</i>	Floh-Knöterich
Rhubarb	<i>Rheum spp.</i>	Rhabarber
Sorrel, Sour Dock	<i>Rumex Acetosa</i>	Sauer-Ampfer
Sheep's Sorrel	<i>Rumex Acetosella</i>	Kleiner Ampfer
Curled Dock	<i>Rumex crispus</i>	Krauser Ampfer
Broad-leaved Dock	<i>Rumex obtusifolius</i>	Stumpfblättriger Ampfer
Garden Orache	<i>Chenopodiaceæ</i>	<i>Meldengewächse</i>
Sea Purslane	<i>Atriplex hortensis</i>	Garten-Melde
Wild Beet	<i>Atriplex portulacoides</i>	Portulak-Salzmelde
Mangold, Mangel Wurzel	<i>Beta marítima</i>	Wilde Runkel
Garden Beet	<i>Beta vulgaris var. Cicla</i>	Mangold
Sugar Beet	<i>Beta vulgaris var. Rapa</i>	Runkelrube
Goosefoot	<i>Beta vulgaris var. saccharifera</i>	Zuckerrübe
All-good, Good King Henry	<i>Chenopodium album</i>	Weisser Gänsefuss
Marsh Samphire	<i>Chenopodium Bonus-Henricus</i>	Guter Heinrich
Spinach	<i>Salicornia herbacea</i>	Glasschmalz
Prince's Feather	<i>Spinacia oleracea</i>	Spinat
Corn Cockle	<i>Amarantaceæ</i>	<i>Fuchsschwanzgewächse</i>
Vernal Sandwort	<i>Amaranthus spp.</i>	Fuchsschwanz
Sandwort	<i>Caryophyllaceæ</i>	<i>Nelkengewächse</i>
Mouse-ear Chickweed	<i>Agrostemma Githago</i>	Kornrade
Carnation, Pink	<i>Alsine verna</i>	Frühlings-Miere
Gypsophila	<i>Arenaria spp.</i>	Sandkraut
Lychnis	<i>Cerastium spp.</i>	Hornkraut
Ragged Robin	<i>Dianthus spp.</i>	Nelke
Campion	<i>Gypsophila spp.</i>	Gipskraut
Soapwort	<i>Lychnis spp.</i>	Lichtnelke
Knawel	<i>Lychnis Flos-cuculi</i>	Kuckucks-Lichtnelke
Bladder Campion	<i>Melandrium album</i>	Weisse Tagnelke
Spurry	<i>Saponaria officinalis</i>	Seifenkraut
Stitchwort	<i>Scleranthus spp.</i>	Knäuel
Chickweed	<i>Silene inflata</i>	Aufgeblasenes Leim-kraut
Catchfly	<i>Spergula spp.</i>	Spörgel
Yellow Water Lily, Brandy-bottle	<i>Stellaria Holostea</i>	Wald-Sternmiere
White Water Lily	<i>Stellaria media</i>	Vogelmiere
Monkshood, Wolfsbane	<i>Viscaria vulgaris</i>	Pechnelke
Baneberry	<i>Nymphaeaceæ</i>	<i>Wasserrosengewächse</i>
Pheasant's Eye	<i>Nuphar luteum</i>	Gelbe Teichrose, Mum-mel
Wood Anemone	<i>Nymphaea alba</i>	Weisse Seerose
Columbine	<i>Ranunculaceæ</i>	<i>Hahnenfußgewächse</i>
	<i>Aconitum napellus</i>	Sturmhut, Blauer Eisen-hut
	<i>Actaea spicata</i>	Christophskraut
	<i>Adonis autumnalis</i>	Herbst-Adonisröschen
	<i>Anemone nemorosa</i>	Busch-Windröschen
	<i>Aquilegia vulgaris</i>	Gemeiner Akelei

ENGLISCHER NAME ENGLISH NAME	LATEINISCHER NAME LATIN NAME	DEUTSCHER NAME GERMAN NAME
Marsh Marigold	<i>Caltha palustris</i>	Sumpfdotterblume
Bugbane	<i>Cimicifuga foetida</i>	Wanzenkraut
Traveller's Joy	<i>Clematis vitalba</i>	Waldrebe
Larkspur	<i>Delphinium spp.</i>	Rittersporn
Hellebore	<i>Helleborus spp.</i>	Niesswurz
Christmas Rose	<i>Helleborus niger</i>	Schwarze Niesswurz, Christrose
Bear's-foot	<i>Helleborus viridis</i>	Grüne Niesswurz
Hepatica	<i>Hepatica triloba</i>	Leberblümchen
Mousetail	<i>Myosurus minimus</i>	Mäuseschwänzchen
Love-in-the-Mist, Devil-in-the-Bush	<i>Nigella sativa</i>	Schwarzkümmel
Paeony	<i>Paeonia spp.</i>	Pfingstrose
Pasque-flower	<i>Pulsatilla vulgaris</i>	Kuhschelle, Teufelsbart
Buttercup	<i>Ranunculus spp.</i>	Hahnenfuss
Crowfoot	<i>Ranunculus acris</i>	Scharfer Hahnenfuss
Bulbous Buttercup	<i>Ranunculus bulbosus</i>	Knolliger Hahnenfuss
Lesser Celandine	<i>Ranunculus Ficaria</i>	Scharbockskraut
Greater Spearwort	<i>Ranunculus Lingua</i>	Grosser Hahnenfuss
Creeping Buttercup	<i>Ranunculus repens</i>	Kriechender Hahnenfuss
Meadow Rue	<i>Thalictrum flavum</i>	Gelbe Wiesenraute
Globe Flower	<i>Trollius europaeus</i>	Trollblume
Barberry	<i>Berberidaceæ</i>	<i>Berberitzengewächse</i>
	<i>Berberis vulgaris</i>	Berberitze, Sauerdorn
Tulip-tree	<i>Magnoliaceæ</i>	<i>Magnoliengewächse</i>
Magnolia	<i>Liriodendron tulipifera</i>	Tulpenbaum
	<i>Magnolia spp.</i>	Magnolie
Camphor	<i>Lauraceæ</i>	<i>Lorbeer gewächse</i>
Cinnamon	<i>Cinnamomum camphora</i>	Kampferbaum
	<i>Cinnamomum zeylanicum</i>	Zimtbaum
True Laurel, Sweet Bay	<i>Laurus nobilis</i>	Lorbeer
Corydalis	<i>Papaveraceæ</i>	<i>Mohn gewächse</i>
Dicentra	<i>Corydalis spp.</i>	Lerchensporn
Fumitory	<i>Dicentra spp.</i>	Herzblume
Field Poppy	<i>Fumaria officinalis</i>	Erdrach
	<i>Papaver Rhœas</i>	Feld-Mohn, Feuer-Mohn, Klatschrose
Opium Poppy	<i>Papaver somniferum</i>	Gartenmohn
<i>Crucifers</i>	<i>Cruciferæ</i>	<i>Kreuzblütler</i>
Garlic Mustard	<i>Alliaria officinalis</i>	Lauchkraut
Alyssum	<i>Alyssum spp.</i>	Steinkraut
Rock Cress	<i>Arabis spp.</i>	Gänsekresse
Rape	<i>Brassica Napus var. arvensis</i>	Raps
Swede	<i>Brassica Napus var. Napobrassica</i>	Kohlrübe
Black Mustard	<i>Brassica nigra</i>	Schwarzer Senf
Cabbage	<i>Brassica oleracea</i>	Kohl
Kale	<i>Brassica oleracea</i> var. <i>acephala</i>	Stauden-Winterkohl, Grünkohl
Cauliflower, Broccoli	<i>Brassica oleracea</i> var. <i>Botrytis</i>	Blumenkohl
Cultivated Cabbage (red and white)	<i>Brassica oleracea</i> var. <i>capitata</i>	Kopfkohl
Brussels Sprout	<i>Brassica oleracea</i> var. <i>gemmifera</i>	Rosenkohl

ENGLISCHER NAME ENGLISH NAME	LATEINISCHER NAME LATIN NAME	DEUTSCHER NAME GERMAN NAME
Kohlrabi	Brassica oleracea var. gongylodes	Kohlrabi
Savoy Cabbage	Brassica oleracea var. Sabauda	Welschkohl, Wirsing
Wild Cabbage	Brassica oleracea var. silvestris	Wilder Kohl
Turnip	Brassica Rapa	Rubsen, Wasserrübe, Weisse Rübe, Turnips
Sea Rocket	Cakile maritima	Europäischer Meersenf
Gold-of-pleasure	Camelina sp.	Dotter
Shepherd's Purse	Capsella Bursa-Pastoris	Hirtentäschel
Lady's Smock, Cuckoo-flower	Cardamine pratensis	Wiesenschaumkraut
Wallflower	Cheiranthus Cheiri	Goldlack
Horse Radish	Cochlearia armoracia	Meerrettich
Seakale	Crambe maritima	Meerkohl
Whitlow-grass	Draba verna	Frühlings-Hungerblume
Treacle Mustard	Erysimum spp.	Schotendotter, Schöterich
Bitter Candytuft	Iberis amara	Bittere Schleifenblume, Bitterer Bauernsenf
Dyer's Woad	Isatis tinctoria	Färber-Waid
Pepperwort, Cress	Lepidium campestre	Feld-Kresse
Honesty	Lunaria annua	Silberblatt
Stock	Matthiola spp.	Levkoje
Water Cress	Nasturtium officinale	Brunnenkresse
Wild Radish	Raphanus Raphanistrum	Hederich
Garden Radish	Raphanus sativus	Rettich
White Mustard	Sinapis alba	Weisser Senf
Charlock	Sinapis arvensis	Ackersenf
Hedge Mustard	Sisymbrium officinale	Weg-Rauke
<hr/>		
Cut-leaved Mignonette	<i>Resedaceæ</i>	
Common Mignonette	Reseda lutea	Gelbe Resede
—	Reseda luteola	Färber-Resede
	Reseda odorata	Wohlriechende Resede
<hr/>		
Venus' fly-trap	<i>Droseraceæ</i>	
Sundew	Dionaea muscipula	Venusfliegenfalle
	Drosera rotundifolia	Rundblättriger Sonnentau
<hr/>		
Navelwort	<i>Crassulaceæ</i>	
Stonecrop	Cotyledon Umbilicus	Dickblattgewächse
Wall-pepper	Sedum spp.	Venusnabel
Houseleek	Sedum acre	Fetthenne, Fettkraut
	Sempervivum tectorum	Mauerpfiffer
<hr/>		
Golden Saxifrage	<i>Saxifragaceæ</i>	
	Chrysosplenium oppositifolium	Steinbrechgewächse
	Hydrangea spp.	Schwefelmilzkraut
Hydrangea	Parnassia palustris	Hortensie
Grass-of-Parnassus	Philadelphus spp.	Sumpf-Herzblatt
Syringa		Falscher Pfeifenstrauch, Falscher Jasmin
<hr/>		
Gooseberry	Ribes grossularia	Stachelbeere
Black Currant	Ribes nigrum	Schwarze Johannisbeere
Red and White Currant	Ribes rubrum	Rote Johannisbeere
Saxifrage	Saxifraga spp.	Steinbrech

ENGLISCHER NAME ENGLISH NAME	LATEINISCHER NAME LATIN NAME	DEUTSCHER NAME GERMAN NAME
Plane	<i>Platanaceæ</i> <i>Platanus</i> spp.	<i>Platanengewächse</i> Platane
Rose Family	<i>Rosaceæ</i>	<i>Rosengewächse</i>
Agrimony	<i>Agrimonia</i> Eupatoria	Odermennig
Lady's Mantle	<i>Alchemilla vulgaris</i>	Gemeiner Frauenmantel
—	<i>Amelanchier vulgaris</i>	Felsenbirne
Wood Spiræa	<i>Aruncus silvester</i>	Geissbart
Cotoneaster	<i>Cotoneaster</i> spp.	Steinmispel, Zwerg-mispel
Hawthorn, May	<i>Crataegus Oxyacantha</i>	Weissdorn
Quince	<i>Cydonia vulgaris</i>	Quitte
Meadow Sweet	<i>Filipendula Ulmaria</i>	Mädesüss, Johanniswedel
Strawberry	<i>Fragaria vesca</i>	Erdbeere
Common Avens	<i>Geum urbanum</i>	Echte Nelkenwurz
Medlar	<i>Mespilus germanica</i>	Mispel
Silver Weed	<i>Potentilla anserina</i>	Gänsefingerkraut
Cinquefoil	<i>Potentilla reptans</i>	Fünffingerkraut, Kriechendes Fingerkraut
Tormentil	<i>Potentilla Tormentilla</i>	Blutwurz, Tormentill
Almond	<i>Prunus Amygdalus</i>	Mandel
Apricot	<i>Prunus armeniaca</i>	Aprikose
Gean	<i>Prunus avium</i>	Süsskirsche
Wild Cherry	<i>Prunus Cerasus</i>	Sauerkirsche
Plum, Prune	<i>Prunus domestica</i>	Pflaume, Zwetsche
Bullace, Damson	<i>Prunus insititia</i>	Pflaume, Zwetsche
Cherry Laurel	<i>Prunus Lauro-cerasus</i>	Kirschlorbeer
Mahaleb	<i>Prunus Mahaleb</i>	Steinweichsel
Bird Cherry	<i>Prunus Padus</i>	Traubenkirsche
Peach and Nectarine	<i>Prunus Persica</i>	Pfirsich
Buckthorn, Blackthorn, Sloe	<i>Prunus spinosa</i>	Schwarzdorn, Schleh-dorn
Whitebeam Tree	<i>Pyrus¹ Aria</i>	Mehlbeerbaum
Rowan Tree	<i>Pyrus Aucuparia</i>	Fberesche
Pear	<i>Pyrus communis</i>	Birne
Apple	<i>Pyrus Malus</i>	Apfel
Wild Service Tree	<i>Pyrus terminalis</i>	Elsbeerbaum, Ruhrbirne
Field Rose	<i>Rosa arvensis</i>	Feld-Rose, Wilde Kletterrose
Dog Rose	<i>Rosa canina</i>	Hunds-Rose
Sweet Briar	<i>Rosa rubiginosa</i>	Wein-Rose
Dewberry	<i>Rubus cæsius</i>	Kratzbeere
Bramble, Blackberry	<i>Rubus fruticosus</i>	Brombeere
Raspberry	<i>Rubus Idæus</i>	Himbeere
Salad Burnet	<i>Sanguisorba minor</i>	Kleiner Wiesenknopf
Greater Burnet	<i>Sanguisorba officinalis</i>	Grosser Wiesenknopf
Spiræa	<i>Spiræa</i> spp.	Spierstrauch
Legumes	<i>Leguminosæ</i>	<i>Hülsenfruchtler</i>
Acacia	<i>Acacia</i> spp.	Akazie
Kidney Vetch, Ladies' Fingers	<i>Anthyllis Vulneraria</i>	Wundklee
Ground-, earth-, or pea- nut	<i>Arachis hypogæa</i>	Erdnuss
Milk-Vetch	<i>Astragalus glycyphyllos</i>	Süßholz
—	<i>Caragana</i> spp.	Erbsenstrauch
St. John's Bread	<i>Ceratonia Siliqua</i>	Johannisbrotbaum

¹*Pyrus* is spelt *Pirus* in German botanical works.

¹In deutschen botanischen Büchern mit "i" geschrieben.

ENGLISCHER NAME ENGLISH NAME	LATEINISCHER NAME LATIN NAME	DEUTSCHER NAME GERMAN NAME
Judas Tree	<i>Cercis siliquastrum</i>	Judasbaum
Bladder-senna	<i>Colutea arborescens</i>	Blasenstrauch
—	<i>Coronilla spp.</i>	Kronenwicke
Laburnum	<i>Cytisus Laburnum</i>	Goldregen
Broom	<i>Cytisus scoparius</i>	Besenstrauch, Besenginster
Goat's rue	<i>Galaea officinalis</i>	Geissraute
Petty Whin	<i>Genista anglica</i>	Englischer Ginster
Dyer's Greenweed	<i>Genista tinctoria</i>	Färbe-Ginster
Sweet Pea	<i>Lathyrus spp.</i>	Platterbse
Everlasting Pea	<i>Lathyrus sylvestris</i>	Wald-Platterbse
—	<i>Lathyrus tuberosus</i>	Knollige Platterbse
Lentil	<i>Lens esculenta</i>	Linse
Bird's Foot Trefoil	<i>Lotus corniculatus</i>	Wiesen-Hornklee
Lupin	<i>Lupinus spp.</i>	Lupine, Wolfsbohne
Lucerne, Alfalfa	<i>Medicago sativa</i>	Luzerne
Melilot, Sweet Clover	<i>Melilotus spp.</i>	Honigklee, Steinklee
Sainfoin	<i>Onobrychis sativa</i>	Esparsette
Rest Harrow	<i>Ononis spp.</i>	Hauhechel
Birdsfoot	<i>Ornithopus spp.</i>	Klaubenschote, Vogelfuss
Seradella	<i>Ornithopus sativus</i>	Seradella
Scarlet Runner, Kidney Bean	<i>Phaseolus spp.</i>	Bohne
Garden and Field Pea	<i>Pisum spp.</i>	Saat-Erbse
False Acacia	<i>Robinia Pseudacacia</i>	Falsche Akazie, Robinie
Soya Bean	<i>Soja hispida</i>	Sojabohne
Alsike, Swedish Clover	<i>Trifolium hybridum</i>	Bastard-Klee
Crimson Clover	<i>Trifolium incarnatum</i>	Inkarnat-Klee
Zigzag, Meadow Clover	<i>Trifolium medium</i>	Mittlerer Klee
Red or Purple Clover	<i>Trifolium pratense</i>	Rotklee
White or Dutch Clover	<i>Trifolium repens</i>	Weissklee
Furze, Gorse, Whin	<i>Ulex europaeus</i>	Stechginster, Heckensame
Broad Bean	<i>Vicia Faba</i>	Pferdebohne, Saubohne
Vetch, Tares	<i>Vicia sativa</i>	Saat-Wicke
Wistaria	<i>Wistaria chinensis</i>	Glyzine
Geranium Family	<i>Geraniaceæ</i>	Storzschnabelgewächse
Erodium	<i>Erodium cicutarium</i>	Reiherschnabel
Meadow Geranium	<i>Geranium pratense</i>	Wiesen-Storzschnabel
Herb Robert	<i>Geranium Robertianum</i>	Ruprechtskraut
Wood Sorrel	<i>Oxalidaceæ</i>	Sauerkleegewächse
	<i>Oxalis Acetosella</i>	Wald-Sauerklee
Purging Flax	<i>Linaceæ</i>	Leingewächse
Common Flax, Linseed	<i>Linum catharticum</i>	Purgir-Lein
	<i>Linum usitatissimum</i>	Lein, Flachs
Seville Orange	<i>Rutaceæ</i>	Rautengewächse
	<i>Citrus aurantium var. amara</i>	Pomeranze
Orange	<i>Citrus aurantium var. dulcis</i>	Apfelsine, Orange
Grape Fruit	<i>Citrus decumana</i>	Grape Frucht
Lemon	<i>Citrus limonia</i>	Limone, Zitrone
Sweet Lime	<i>Citrus limetta</i>	Limette
Mandarin	<i>Citrus nobilis</i>	Mandarine
Rue	<i>Ruta graveolens</i>	Gartenraute
Milkwort	<i>Polygalaceæ</i>	Kreuzblumen
	<i>Polygala vulgaris</i>	Gemeine Kreuzblume

ENGLISCHER NAME ENGLISH NAME	LATEINISCHER NAME LATIN NAME	DEUTSCHER NAME GERMAN NAME
Cypress Spurge Caper Spurge	<i>Euphorbiaceæ</i> Euphorbia Cyparissias Euphorbia Lathyris	Wolfsmilchgewächse Zypressen-Wolfsmilch Kreuzblättrige Wolfs- milch
Petty Spurge Para Rubber Dog's Mercury	Euphorbia Peplus Hevea brasiliensis Mercurialis perennis	Garten-Wolfsmilch Kautschukbaum Ausdauerndes Bingel- kraut
Castor-oil Plant	Ricinus communis	Wunderbaum, Rizinus
Water Starwort	<i>Callitrichaceæ</i> Callitrichæ spp.	Wassersterngewächse Wasserstern
Box	<i>Buxaceæ</i> Buxus sempervirens	Buchsbaum
Crowberry	<i>Empetraceæ</i> Empetrum nigrum	Krähenbeeren Rauschbeere, Krähen- beere
Wig-tree Poison Ivy	<i>Anacardiaceæ</i> Rhus cotinus Rhus toxicodendron	Sumachgewächse Perückenstrauch Gift-Sumach
Holly	<i>Aquifoliaceæ</i> Ilex Aquifolium	Stechpalmenengewächse Stechpalme
Spindle Tree	<i>Celastrinaceæ</i> Euonymus europaeus	Baumwürgergewächse Pfaffenbüchchen, Spindel- baum
Maple Sycamore Norway Maple	<i>Aceraceæ</i> Acer campestris Acer Pseudo-platanus Acer platinoides	Ahornengewächse Feld-Ahorn Berg-Ahorn Spitz-Ahorn
Horse Chestnut	<i>Hippocastanaceæ</i> Æsculus Hippocastanum	Rosskastaniengewächse Gemeine Roskastanie
Balsam Touch-me-not	<i>Balsaminaceæ</i> Impatiens Balsamina Impatiens Noli-me- tangere	Balsaminengewächse Balsamine Springkraut, Rühr-mich- nicht-an
Buckthorn Alder Buckthorn	<i>Rhamnaceæ</i> Rhamnus catharticus Rhamnus Frangula	Kreuzdornengewächse Kreuzdorn Faulbaum
Virginia Creeper	<i>Vitaceæ</i> Parthenocissus quinquefolia	Rebengewächse Wilder Wein
Grape Vine	Vitis vinifera	Weinrebe
Lime-tree Broad-leaved Lime-tree	<i>Tiliaceæ</i> Tilia cordata Tilia platyphyllos	Lindengewächse Winter-Linde Sommer-Linde
Marsh Mallow Hollyhock Cotton Dwarf Mallow Common Mallow	<i>Malvaceæ</i> Althæa officinalis Althæa rosea Gossypium spp. Malva neglecta Malva sylvestris ¹	Malvengewächse Eibisch Stockrose Baumwolle Käsepappel Wilde Malve
Kola Nut Tree Cacao, Cocoa	<i>Sterculiaceæ</i> Cola vera Theobroma Cacao	Kolanussbaum Kakaobaum

¹Sylvestris is spelt silvestris in German botanical works.

¹In deutschen botanischen Büchern mit "i" geschrieben.

ENGLISCHER NAME ENGLISH NAME	LATEINISCHER NAME LATIN NAME	DEUTSCHER NAME GERMAN NAME
Camellia	<i>Theaceæ</i>	Kamelie
Tea plant	<i>Thea japonica</i>	Teestrauch
St. John's-wort	<i>Thea sinensis</i>	<i>Johanniskrautgewächse</i>
Common Rockrose	<i>Hypericaceæ</i>	Echtes Johanniskraut, Tüpfel-Hartheu
Dog Violet	<i>Hypericum perforatum</i>	
Sweet Violet		
Heartsease, Pansy		
Begonia	<i>Cistaceæ</i>	<i>Zistrosengewächse</i>
Daphne	<i>Helianthemum vulgare</i>	Gemeines Sonnenröschen
Spurge Laurel	<i>Violaceæ</i>	<i>Veilchengewächse</i>
Oleaster	<i>Viola canina</i>	Hunds-Veilchen
Sallow-Thorn, Sea Buckthorn	<i>Viola odorata</i>	Wohlriechendes Veilchen
Purple Loosestrife	<i>Viola tricolor</i>	Stiefmütterchen
Pomegranate	<i>Begoniaceæ</i>	<i>Schießblattgewächse</i>
Eucalyptus, Gums	<i>Begonia spp.</i>	Schießblatt
Myrtle	<i>Thymeleaceæ</i>	<i>Seidelbastgewächse</i>
Allspice	<i>Daphne spp.</i>	Seidelbast, Kellerhals
Enchanter's Nightshade	<i>Daphne Laureola</i>	Lorbeer-Seidelbast
Great Willow Herb	<i>Elagnaceæ</i>	<i>Ölweidengewächse</i>
Evening Primrose	<i>Eleagnus sp.</i>	Ölweide
Horn-nut	<i>Hippophaë rhamnoides</i>	Sanddorn, Seedorn
Water-milfoil	<i>Lythraceæ</i>	<i>Weiderichgewächse</i>
Marestail	<i>Lythrum Salicaria</i>	Blut-Weiderich
Ivy	<i>Punicaceæ</i>	<i>Granatapfelgewächse</i>
Ginseng	<i>Punica granatum</i>	Granatapfel
Umbellifers	<i>Myrtaceæ</i>	<i>Myrtengewächse</i>
Gout Weed, Bishop's Weed	<i>Eucalyptus spp.</i>	Fieberbaum, Eukalyptus
Fool's Parsley	<i>Myrtus communis</i>	Myrte
Celery	<i>Pimenta officinalis</i>	Nelkenpfeffer, Piment
Cultivated Angelica	<i>Circæa lutetiana</i>	<i>Nachtkerzengewächse</i>
Wild Angelica	<i>Epilobium hirsutum</i>	Gemeines Hexenkraut
Caraway	<i>Œnothera biennis</i>	Zottiges Weidenröschen
Cultivated Chervil (of France)	<i>Trapa natans</i>	Nachtkerze
Wild Chervil	<i>Halorrhagaceæ</i>	Wassernuss
Bulbous-rooted Chervil	<i>Myriophyllum spp.</i>	<i>Seebeerenengewächse</i>
Rough Chervil	<i>Hippuridaceæ</i>	Tausendblatt
	<i>Hippuris spp.</i>	<i>Tannenwedelgewächse</i>
	<i>Araliaceæ</i>	Tannenwedel
	<i>Hedera helix</i>	<i>Efeugewächse</i>
	<i>Panax quinquefolia</i>	Efeu
	<i>Umbelliferæ</i>	Ginseng
	<i>Ægopodium Podagraria</i>	<i>Doldengewächse</i>
		Geissfuss, Giersch
	<i>Æthusa Cynapium</i>	Hundspetersilie
	<i>Apium graveolens</i>	Sellerie
	<i>Angelica Archangelica</i>	Engelwurz
	<i>Angelica sylvestris</i> ¹	Wilde Brustwurz
	<i>Carum Carvi</i>	Kümmel
	<i>Chærefolium Cerefolium</i>	Garten-Kerbel, Echter Kerbel
	<i>Chærefolium sylvestre</i>	Wiesen-Kerbel
	<i>Chærophylloum bulbosum</i>	Rüben-Kälberkropf
	<i>Chærophylloum temulum</i>	Taumel-Kälberkropf

¹Sylvestris is spelt silvestris in German botanical works.

¹In deutschen botanischen Büchern mit "i" geschrieben.

ENGLISCHER NAME ENGLISH NAME	LATEINISCHER NAME LATIN NAME	DEUTSCHER NAME GERMAN NAME
Cowbane, Water Hemlock	<i>Cicuta virosa</i>	Wasserschierling
Hemlock	<i>Conium maculatum</i>	Schierling
Earthnut, Pignut	<i>Conopodium majus</i>	Französische Erdkastanie
Coriander	<i>Coriandrum sativum</i>	Koriander
Samphire	<i>Crithmum maritimum</i>	See-Bazille, Seefenchel
Carrot	<i>Daucus Carota</i>	Mohrrube, Möhre
Sea Holly	<i>Eryngium maritimum</i>	Stranddistel
Fennel	<i>Foeniculum officinale</i>	Fenchel
Cow Parsnip, Hogweed	<i>Heracleum Sphondylium</i>	Wiesen-Bärenklau
Pennywort	<i>Hydrocotyle vulgaris</i>	Gemeiner Wassernabel
Masterwort	<i>Imperatoria ostruthium</i>	Meisterwurz
Sulphurwort	<i>Levisticum officinale</i>	Liebstöckel
Sweet Cicely	<i>Myrrhis odorata</i>	Wohlriechende Süßdolde
Water Dropwort	<i>(Enanthe fistulosa</i>	Röhren-Rebendolde
Fine-leaved Dropwort	<i>(Enanthe l'hellandrium</i>	Pferdekümmel
Parsnip	<i>Pastinaca sativa</i>	Pastinak
Parsley	<i>Petroselinum sativum</i>	Petersilie
Hog's Fennel	<i>Peucedanum spp.</i>	Haarstrang
Aniseed	<i>Pimpinella Anisum</i>	Anis
Burnet Saxifrage	<i>Pimpinella saxifraga</i>	Kleine Bibernelle
Sanicle	<i>Sanicula europaea</i>	Wald-Sanikel
Water Parsnip	<i>Sium latifolium</i>	Grosser Merk
Cornelian Cherry	<i>Cornaceæ</i>	<i>Hornstrauchgewächse</i>
Dogwood	<i>Cornus mas</i>	Kornelkirsche
Strawberry Tree	<i>Cornus sanguinea</i>	Hartriegel, Hornstrauch
Bearberry	<i>Ericaceæ</i>	<i>Heidekrautgewächse</i>
Ling, Common Heather	<i>Arbutus Unedo</i>	Erdbeebaum
Bell Heather	<i>Arctostaphylos Uva-ursi</i>	Bärentraube
Ledum (Wild Rosemary)	<i>Calluna vulgaris</i>	Heidekraut, Besenheide
Common Wintergreen	<i>Erica cinerea</i>	Graue Glockenheide
Rhododendron	<i>Ledum palustre</i>	Porst, Kienporst
Whortleberry, Bilberry, Blaeberry	<i>Pyrola minor</i>	Kleines Wintergrün
Cranberry	<i>Rhododendron spp.</i>	Alpenrose, Rhododen- dron
Bog Whortleberry, Bilberry	<i>Vaccinium Myrtillus</i>	Heidelbeere, Blaubeere
Cowberry, Whimberry	<i>Vaccinium oxycoccus</i>	Moosbeere
Pimpernells	<i>Vaccinium uliginosum</i>	Moorbeere, Rauschbeere
Cyclamen, Sowbread	<i>Vaccinium Vitis-Idaea</i>	Preisselbeere
Moneywort, Creeping Jenny	<i>Primulaceæ</i>	<i>Schlüsselblumengewächse</i>
Primrose	<i>Anagallis spp.</i>	Gauchheil
Auricula	<i>Cyclamen europaeum</i>	Alpenveilchen
Cowslip	<i>Lysimachia Nummularia</i>	Pfennigkraut
Thrift, Sea Pink	<i>Primula acaulis</i>	Schaftlose Schlüssel- blume
Sea Lavender	<i>Primula auricula</i>	Alpen-Aurikel
Plumbago	<i>Primula veris</i>	Schlüsselblume, Him- melschlüssel
Ebony Tree	<i>Plumbaginaceæ</i>	<i>Bleiwurzgewächse</i>
Ash	<i>Armeria vulgaris</i>	Grasnelke
	<i>Limonium vulgare</i>	Widerstoss
	<i>Plumbago spp.</i>	Bleiwurz
	<i>Ebenaceæ</i>	<i>Ebenholzgewächse</i>
	<i>Diospyros ebenum</i>	Ebenholzbaum
	<i>Oleaceæ</i>	<i>Ölbaumgewächse</i>
	<i>Fraxinus excelsior</i>	Esche

ENGLISCHER NAME ENGLISH NAME	LATEINISCHER NAME LATIN NAME	DEUTSCHER NAME GERMAN NAME
Jasmine	<i>Jasminum</i> spp.	Jasmin
Privet	<i>Ligustrum vulgare</i>	Liguster
Olive	<i>Olea europaea</i>	Ölbaum
Lilac	<i>Syringa</i> spp.	Flieder
Yellowwort	<i>Gentianaceæ</i>	<i>Enziangewächse</i>
Centaury	<i>Chlora</i> spp.	Bitterling
Gentian	<i>Erythraea</i> <i>Centaurium</i>	Tausendgüldenkraut
Bog-bean, Buck-bean	<i>Gentiana</i> spp.	Enzian
Oleander	<i>Menyanthes trifoliata</i>	Sumpf-Bitterklee
Periwinkle	<i>Apocynaceæ</i>	<i>Hundstdodgewächse</i>
Asclepiads	<i>Nerium oleander</i>	Oleander
Asclepiad, Silkweed	<i>Vinca</i> spp.	Sinngrün
Lesser Bindweed	<i>Asclepiadaceæ</i>	<i>Seidenpflanzen</i>
Great Bindweed	<i>Vincetoxicum officinale</i>	Schwalbenwurz
Dodder	<i>Convolvulaceæ</i>	<i>Windengewächse</i>
Sweet Potato	<i>Convolvulus arvensis</i>	Ackerwinde
Forget-me-not Family	<i>Convolvulus Sepium</i>	Zaunwinde, Uferwinde
Bugloss	<i>Cuscuta</i> spp.	Seide
Anchusa	<i>Ipomoea Batatas</i>	Batate, Süßkartoffel
Borage	<i>Boraginaceæ</i> ¹	<i>Rauhblattgewächse</i>
Hound's Tongue	<i>Anchusa arvensis</i>	Krummhals
Viper's Bugloss	<i>Anchusa officinalis</i>	Gemeine Ochsenzunge
Gromwell	<i>Borago officinalis</i> ¹	Boretsch
Forget-me-not	<i>Cynoglossum officinale</i>	Hundszunge
Lungwort	<i>Echium vulgare</i>	Natterkopf
Comfrey	<i>Lithospermum</i> spp.	Steinsame
Vervain	<i>Myosotis</i> spp.	Vergissmeinnicht
Labiates	<i>Pulmonaria officinalis</i>	Lungenkraut
Bugle	<i>Symphytum officinale</i>	Beinwell
Hemp-nettle	<i>Verbenaceæ</i>	<i>Eisenkrautgewächse</i>
Ground-ivy	<i>Verbena officinalis</i>	Eisenkraut
Hyssop	<i>Labiatæ</i>	<i>Lippenblüter</i>
White Dead Nettle	<i>Ajuga reptans</i>	Günsel
Yellow Archangel	<i>Galeopsis Tetrahit</i>	Gemeine Hanfnessel, Gemeiner Hohlzahn
Lavender	<i>Glechoma hederacea</i>	Gundermann, Gundel-rebe
Horehound	<i>Hyssopus officinalis</i>	Isop, Ysop
Balm	<i>Lamium album</i>	Weisse Taubnessel
Water Mint (variety of)	<i>Lamium Galeobdolon</i>	Gelbe Taubnessel, Goldnessel
Peppermint	<i>Lavandula spica</i>	I. a. v. el
Pennyroyal	<i>Marrubium vulgare</i>	Weisser Andorn
Basil	<i>Melissa</i> spp.	Melisse
Sweet Marjoram	<i>Mentha crispa</i>	Krauseminze
Wild Marjoram	<i>Mentha piperita</i>	Pfefferminze
Self-heal	<i>Mentha Pulegium</i>	Poleiminze
Rosemary	<i>Ocimum Basilicum</i>	Basilie, Basilikum
Garden Sage	<i>Origanum Majorana</i>	Majoran
Savoury	<i>Origanum vulgare</i>	Brauner Dost
Wild Basil, Hedge Calamint	<i>Prunella vulgaris</i>	Brunelle
	<i>Rosmarinus officinalis</i>	Rosmarin
	<i>Salvia officinalis</i>	Salbei
	<i>Satureia hortensis</i>	Pfefferkraut, Bohnenkraut
	<i>Satureia vulgaris</i>	Wirbeldost

¹ Usually spelt Borraginaceæ and Borrago in German botanical works.

¹ In deutschen botanischen Büchern häufig mit zwei "r" geschrieben.

ENGLISCHER NAME ENGLISH NAME	LATEINISCHER NAME LATIN NAME	DEUTSCHER NAME GERMAN NAME
Skullcap	<i>Scutellaria galericulata</i>	Sumpf-Helmkraut
Woundwort	<i>Stachys germanica</i>	Deutscher Wollziest
Betony	<i>Stachys officinalis</i>	Betonie
Wood Sage	<i>Teucrium Scorodonia</i>	Salbei-Gamander
Wild Thyme	<i>Thymus Serpyllum</i>	Quendel, Feldkümmel
Common Thyme	<i>Thymus vulgaris</i>	Thymian
Deadly Nightshade	<i>.Solanaceæ</i>	<i>Nachtschattengewächse</i>
Red or Cayenne Pepper	<i>Atropa Belladonna</i>	Tollkirsche
	<i>Capsicum annum</i>	Spanischer Pfeffer, Paprika
Thorn Apple	<i>Datura Stramonium</i>	Stechapfel
Henbane	<i>Hyoscyamus niger</i>	Bilsenkraut
Tea-plant	<i>Lycium barbarum</i>	Teufelszwirn
Tobacco (variety of)	<i>Nicotiana rustica</i>	Bauerntabak
Virginia Tobacco	<i>Nicotiana tabacum</i>	Virginischer Tabak
Winter Cherry	<i>Physalis Alkekengi</i>	Judenkirche
Nightshade, Bittersweet	<i>Solanum Dulcamara</i>	Bitter-süss
Tomato	<i>Solanum Lycopersicum</i>	Tomate
Egg Plant	<i>Solanum Melongena</i>	Vierfrucht
Black Nightshade	<i>Solanum nigrum</i>	Schwarzer Nachtschatten
Potato	<i>Solanum tuberosum</i>	Kartoffel
Yellow Rattle	<i>Scrophulariaceæ</i>	<i>Rachenblütler</i>
Snapdragon	<i>Alectrolophus spp.</i>	Klapptopf
Calceolaria	<i>Antirrhinum spp.</i>	Löwenmaul
Foxglove	<i>Calceolaria spp.</i>	Pantoffelblume
Eyebright	<i>Digitalis purpurea</i>	Roter Fingerhut
Gratiola, Hedge-hyssop	<i>Euphrasia officinalis</i>	Augentrost
Toadflax	<i>Gratiola spp.</i>	Gnadenkraut
Cow-wheat	<i>Linaria vulgaris</i>	Leinkraut
Lousewort	<i>Melampyrum spp.</i>	Wachtelweizen
Figwort	<i>Pedicularis sylvatica</i>	Wald-Läusekraut
Mullein	<i>Scrophularia nodosa</i>	Knotige Braunwurz
Speedwell	<i>Verbascum spp.</i>	Königsckerze
	<i>Veronica spp.</i>	Ehrenpreis
Catalpa	<i>Bignoniaceæ</i>	Trompetenbaum
Toothwort	<i>Catalpa bignonioides</i>	<i>Sommerwurzgewächse</i>
Broomrape	<i>Orobanchaceæ</i>	Schuppenwurz
	<i>Lathraea squamaria</i>	Sommerwurz
Butterwort	<i>Orobanche spp.</i>	<i>Wasserhelmangewächse</i>
Bladderwort	<i>Lentibulariaceæ</i>	Gemeines Fettkraut
	<i>Pinguicula vulgaris</i>	Gemeiner Wasserhelman
Globularia	<i>Utricularia vulgaris</i>	<i>Kugelblumengewächse</i>
Ribwort Plantain	<i>Globulariaceæ</i>	Kugelblume
Broad Leaved Plantain	<i>Globularia spp.</i>	<i>Wegerichgewächse</i>
Woodruff	<i>Plantaginaceæ</i>	Spitzwegerich
Cinchona	<i>Plantago lanceolata</i>	Grosser Wegerich
Coffee	<i>Plantago major</i>	<i>Krappgewächse</i>
Goosegrass, Cleavers	<i>Rubiaceæ</i>	Waldmeister
	<i>Asperula odorata</i>	Chinarindenbaum
Ladies' Bedstraw	<i>Cinchona spp.</i>	Kaffeebaum
Dyers' Madder	<i>Coffea spp.</i>	Klebkraut, Kletten-Labkraut
Moschatel	<i>Galium Aparine</i>	Echtes Labkraut
	<i>Galium verum</i>	Färberrotte, Krapp
	<i>Rubia tinctoria</i>	<i>Geissblattgewächse</i>
	<i>Caprifoliaceæ</i>	Moschuskraut, Bisam-kraut
	<i>Adoxa Moschatellina</i>	

ENGLISCHER NAME ENGLISH NAME	LATEINISCHER NAME LATIN NAME	DEUTSCHER NAME GERMAN NAME
Perfoliate Honeysuckle	<i>Lonicera Caprifolium</i>	Geissblatt, Jelänger-jelieber
Honeysuckle, Woodbine	<i>Lonicera Periclymenum</i>	Deutsches Geissblatt
Fly Honeysuckle	<i>Lonicera Xystotheum</i>	Rote Heckenkirsche
Dwarf Elder, Dane-wort	<i>Sambucus Ebulus</i>	Zwerg-Holunder, Attich
Elder	<i>Sambucus nigra</i>	Swarzer Holunder
Snowberry	<i>Symporicarpus racemosus</i>	Schneebeere
Wayfaring-tree	<i>Viburnum Lantana</i>	Wolliger Schneeball
Guilder Rose	<i>Viburnum Opulus</i>	Gemeiner Schneeball
Valerian	<i>Valerianaceæ</i>	<i>Baldriangewächse</i>
Lamb's Lettuce	<i>Valeriana officinalis</i>	Gemeiner Baldrian
	<i>Valerianella olitoria</i>	Gemeiner Feldsalat, Rapünzchen
Fuller's Teasel	<i>Dipsacaceæ</i>	<i>Kardengewächse</i>
Wild Teasel	<i>Dipsacus fullonum</i>	Weberkarde
Field Scabious	<i>Dipsacus sylvestris</i> ¹	Wilde Karde
Devil's Bit	<i>Knautia arvensis</i>	Acker-Witwenblume
	<i>Succisa pratensis</i>	Teufelsabbiss
White Bryony	<i>Cucurbitaceæ</i>	<i>Kürbisgewächse</i>
Water Melon	<i>Bryonia dioica</i>	Rote Zaunrübe
Gherkin	<i>Citrullus vulgaris</i>	Wasser-Melone
Melon	<i>Cucumis anguria</i>	Angurie
Cantaloupe	<i>Cucumis melo</i>	Gemeine Melone
Snake Melon	<i>Cucumis melo var.</i>	Kantaloupe
Cucumber	<i>Cucumis sativus</i>	Schlängengurke
"Gourd"	<i>Cucurbita Lagenaria</i>	Gurke
Giant Pumpkin	<i>Cucurbita maxima</i>	Flaschenkürbis
Pumpkin (var. Squash and Vegetable Marrow)	<i>Cucurbita Pepo</i>	Riesenkürbis
		Gemeiner Kürbis
Campanula	<i>Campanulaceæ</i>	<i>Glockenblumengewächse</i>
Harebell	<i>Campanula spp.</i>	Glockenblume
	<i>Campanula rotundifolia</i>	Rundblättrige Glockenblume
Sheep's Bit	<i>Jasione montana</i>	Berg-Sandglöckchen
Rampion	<i>Phyteuma spp.</i>	Teufelskralle
Ear-like Rampion	<i>Phyteuma spicatum</i>	Rapunzel
Composites	<i>Compositæ</i>	<i>Korbblütler</i>
Milfoil, Yarrow	<i>Achillea Millefolium</i>	Gemeine Schafgarbe
Sneezewort	<i>Achillea Ptarmica</i>	Bertram-Schafgarbe
Corn Chamomile	<i>Anthemis arvensis</i>	Acker-Hundskamille
Stink Mayweed	<i>Anthemis Cotula</i>	Stinkende Hundskamille
Chamomile	<i>Anthemis nobilis</i>	Römische Kamille
Burdock	<i>Arctium Lappa</i>	Grosse Klette
Arnica	<i>Arnica montana</i>	Berg-Wohlverleih, Arnika
Wormwood, Absinth	<i>Artemisia Absinthium</i>	Wermut, Absinth
Artemisia (Insect Powder plant)	<i>Artemisia Dracunculus</i>	Estragon
Mugwort	<i>Artemisia vulgaris</i>	Beifuss
Sea Aster	<i>Aster Tripolium</i>	Strand-Sternblume
Daisy	<i>Bellis perennis</i>	Gänseblümchen
Marigold	<i>Calendula spp.</i>	Ringelblume
China Aster	<i>Callistephus chinensis</i>	Sommeraster

¹Sylvestris is spelt silvestris in German botanical works.

¹In deutschen botanischen Büchern mit "i" geschrieben.

ENGLISCHER NAME ENGLISH NAME	LATEINISCHER NAME LATIN NAME	DEUTSCHER NAME GERMAN NAME
Weather Thistle	Carlina acaulis	Silberdistel, Wetterdistel
Safflower	Carthamus tinctorius	Safflor, Färberdistel
Cornflower, Bluebottle	Centaurea cyanus	Kornblume
Knapweed, Hardheads	Centaurea nigra	Schwarze Flockenblume
Ox-eye Daisy	Chrysanthemum Leucanthemum	Wiesen-Wucherblume, Marguerite
Corn Marigold	Chrysanthemum segetum	Saat-Wucherblume
Endive	Cichorium Endivia	Endivie
Chicory, Succory	Cichorium Intybus	Wegwarte, Zichorie
Ground Thistle	Cirsium acaule	Stengellose Kratzdistel
Creeping Thistle	Cirsium arvense	Ackerdistel
Spear Thistle	Cirsium lanceolatum	Gemeine Kratzdistel
Cabbage-like Cirsium	Cirsium oleraceum	Kohldistel
Common Benedict	Cnicus benedictus	Benediktenkraut
Cardoon	Cynara Cardunculus	Artischocke
Globe Artichoke	Cynara Scolymus	Artischocke
Dahlia	Dahlia variabilis	Dahlie, Georgine
Globe Thistle	Echinops spp.	Kugeldistel
Fleabane	Erigeron spp.	Berufskraut
Hemp Agrimony	Eupatorium canna- binum	Wasserdost
Galinsoga	Galinsoga parviflora	Franzosenkraut, Klein- blütiges Knopfkraut
Marsh Cudweed	Gnaphalium uliginosum	Sumpf-Ruhrkraut
Sunflower	Helianthus annuus	Sonnenblume
Jerusalem Artichoke	Helianthus tuberosus	Frödbirne, Topinambur
Everlastings	Helichrysum spp.	Strohblume, Immortelle
Hawkweed	Hieracium spp.	Habichtskraut
Cat's Ear	Hypochaeris radicata	Gemeines Ferkelkraut
Fleabane	Inula dysenterica	Grosses Flohkraut, Ruhrwurz
Elecampane	Inula Helenium	Echter Alant
Lettuce	Lactuca sativa	Salat, Gartenlattich
Prickly Lettuce, Hemlock Lettuce	Lactuca virosa	Giftlattich
Nipplewort	Lapsana communis	Rainkohl
Hawkbit	Leontodon spp.	Löwenzahn
Edelweiss	Leontopodium alpinum	Edelweiss
Madi, Tarweed	Madia sativa	Ölmadie
Wild Chamomile	Matricaria Chamomilla	Echte Kamille
Cotton Thistle	Onopordon Acanthium	Gemeine Eselsdistel
Butterbur	Petasites officinalis	Gemeine Pestwurz
Dalmatian Insect Powder Plant, Pyrethrum	Pyrethrum cinerari- folium	Dalmatinische Insek- tenblume
Scorzonera	Scorzonera hispanica	Schwarzwurzel
Ragwort	Senecio Jacobaea	Jakobs-Kreuzkraut
Groundsel	Senecio vulgaris	Gemeines Kreuzkraut
Milk Thistle	Silybum Marianum	Mariendistel
Golden Rod	Solidago Virgaurea	Goldrute
Sowthistle	Sonchus arvensis	Saudistel, Acker- Gänsedistel
French and African Marigold	Tagetes spp.	Studentenblume
Tansy	Tanacetum vulgare	Rainfarn
Dandelion	Taraxacum officinale	Löwenzahn, Kuhblume
Salsify	Tragopogon porrifolius	Lauchblättriger Bocks- bart, Haferwurzel
Goat's Beard, Meadow Salsify	Tragopogon pratensis	Wiesen-Bocksbart
Coltsfoot	Tussilago Farfara	Huflattich

APPENDIX II
LIST OF THE MOST IMPORTANT COMMON NAMES OF PLANT DISEASES
ANHANG II

VERZEICHNIS DER WICHTIGSTEN VULGÄRNAMEN VON PFLANZENKRANKHEITEN

ENGLISH NAME	HOST	CAUSE	URSACHE	WIRTPFLANZE	DEUTSCHER NAME
Chlorosis	—	Malnutrition: Fe, Mg-deficiency Mn, Ca-excess	<i>Non-parasitic</i> Ernährungsstörung: Fe, Mg-Mangel; Mn, Ca-Uberschuss	—	Chlorose
Exanthema	Citrus	Malnutrition: N-excess	Nichtparasitär Ernährungsstörung: N-Überschuss	Citrus	Exanthema
Grey Leaf	Oats	Malnutrition: Alkali Injury	Ernährungsstörung: Alkalischäden	Hafer	Dörrfleckenkrankheit
Heart Rot	Beet	Malnutrition : B-deficiency	Ernährungsstörung: Bormangel	Rübe	Herz- und Trocken-fäule
lodging	Cereals	Malnutrition : N-excess, Too thick sowing	Ernährungsstörung: N-Überschuss, zu dichte Saat	Getreide	Lagern
ntumescences	—	Unfavourable moisture conditions	Ungünstige Feuchtigkeits-verhältnisse	—	Intumeszenzen
Edema, Dropsy	—	Unfavourable moisture conditions	Ungünstige Feuchtigkeits-verhältnisse	—	Ödem, Wassersucht
Bitter-Pit, Cork	Apple	Unfavourable moisture conditions	Ungünstige Feuchtigkeits-verhältnisse	Apfel	Stippflecken, Stippigkeit
Glassiness, Water-core	„	Unfavourable moisture conditions	Ungünstige Feuchtigkeits-verhältnisse	„	Glasigwerden
Black Heart	Potato	Deficiency of O ₂ , Heat injury	Sauerstoffmangel, Hitzeschäden	Kartoffel	Schwarzherzigkeit
Sunsald	Fruit trees, Glasshouse Crops	Excessive radiation	zu starke Sonnenbestrahlung	Obstbäume, Gewächshauspflanzen	Sonnenbrand
Etiolation	—	Unfavourable light conditions	Ungünstige Lichtver-hältnisse	—	Etiolierung, Vergeilen
Blossom End Rot	Tomato	Unknown	Unbekannt	Tomate	Blütenendfäule

ENGLISH NAME	HOST	CAUSE	URSACHE	DEUTSCHE NAME
	WIRTPFLANZE			
Sprain, Internal Rust, Infected Chlorosis	Potato	Unknown	Unbekannt	Pfropfenbildung
Spot	"	"	"	Eisenfleckigkeit
Spot	Abutilon	Virus	Virus	Infektöse Chlorose, infektöse Bunt-
				blättrigkeit
				Rosettenkrankheit
Rosette Disease	Peach, Peanut, Wheat	"	"	Kartoffel
				"
				Abutilon
Yellows	Aster, Peach, Tomato	"	"	Pfirsich, Erd-
				nuss, Weizen
				Aster, Pfirsich, Gelbsucht
Curly Top	Sugar Beet	"	"	Zucker- u. Run-
				kelrübe
Bunchy Top	Banana	"	"	Kohlkopfkrankheit
Mosaic	—	"	"	Mosaikkrankheit
Streak	—	"	"	Streifenkrankheit
Rugose Mosaic	Potato	"	"	Kräuselkrankheit
				Bukettkrankheit
				Strichelkrankheit
				Blattrollkrankheit,
				Phloemnekrose
				Spindelknollenkrank-heit
Streak	"	"	"	Hexenbesenkrankheit
Leaf Roll, Phloem	"	"	"	Aukubamosaik
Spindle-tuber Disease	Necrosis	"	"	Ringfleckigkeit
				Farnblättrigkeit
				Bronzefleckenkrank-heit
Witches Broom	"	"	"	Seitenfäule
Aucuba Mosaic	Tomato	"	"	Buntstreifigkeit
Ring Spot	Tobacco Tomato	"	"	Kräuselkrankheit
Fernleaf	"	"	"	Röllkrankheit
Spotted Wilt	"	"	"	Pockenkrankheit
Side Rot	Pineapple	"	"	Ananas
Breaking	Tulip	"	"	Tulpe
Nettlehead	Hop	"	"	Hopfen
Curl	Raspberry	"	"	Himbeere
	Plum Pox	"	"	Pflaume

ENGLISH NAME	HOST	CAUSE	URSACHE	WIRTSPELZANZE	DEUTSCHER NAME
Wilt	Cucumber	<i>Bacteria</i>	<i>Bakterien</i>	Gurke	Welkekrankheit
Soft Rot, Root Rot	Root Crops	Bacillus tracheiphilus	carotovorus	Wurzelhäuse	Weichhäule
Black Leg, Black Stalk Rot	Potato	"	phytophthora	Kartoffel	Schwarzbeinigkeit
Fire Blight	Fruit Trees	"	amylovorus	Obstbäume	Feuerbrand
Crown Rot	Rhubarb	Bacterium Rhaponticum		Rhabarber	Wurzelhalsfäule
Brown Rot	Solanaceæ	Pseudomonas solanacearum		Solanaceæ	Schleimkrankheit
Black Rot, Brown Rot	Cruciferæ	"	campbellis	Cruciferæ	Schwarz- oder Brauntrockenfäule
Angular Leaf Spot	Cotton	"	maliacearum	Baumwolle	Eckige Blattfleckenerkrankheit
Blight	Bean	"	phaseoli	Bohne	Bohnenbrand
Halo Blight	"	"	Medicaginis	"	Fettfleckenerkrankheit
Stem Blight, Pod Spot	Pea	var. phaseolicola	pisi	Erbse	Stengelbrand, Hülsenflecken
Marginal Blight	Lettuce	"	marginalis	Salat	Kansas-Salatkrankheit
Wild Fire	Tobacco	"	tabacum	Tabak	Wildfeuer
Crown Gall	Fruit Trees and numerous other plants	tumefaciens		Obstbäume und andere Pflanzen	Wurzelkropf
Canker	Citrus	"	citri	Citrus	Krebs
Yellow Disease	Hyacinth	"	hyacinthi	Hyazinthe	Geißfuß
Brown Blotch	Mushroom	"	Tolaasi	Champignon	Blaue Flecke
Common Scab	Potato	Actinomyces scabies		Kartoffel	Schorf
Finger and Toe, Club Root Powdery Scab, Corky Scab	Cruciferæ	<i>Myxomycetes</i>	Plasmodiospora brassicae	Cruciferæ	Kohlherne, Kohlkropf
	Potato		Spongopora subterranea	Kartoffel	Pulverschorf
Wart Disease	Potato	<i>Fungi Chytridiales</i>	Synchytrium endobioticum	Kartoffel	Krebs
Crown Wart	Lucerne		Uropyctis alfalfaæ	Luzerne	Wurzelkrebs
Seedling Disease	Cruciferæ		Ophiodium brassicæ	Cruciferæ	Umfalkkrankheit
Blight	Flax		Ophiodium radicis	Flachs	Wurzelbrand

ENGLISH NAME	HOST	CAUSE	URSACHE	WIRTSPLANZE	DEUTSCHE NAME
Damping-off, Stem Rot	—	<i>Pythium</i> spp.	—	Citrus Tulpe Kartoffel	Umfalkrankheit Braunfäule Umfallen
Brown Rot	Citrus	<i>Pythiacystis citrophthora</i>	Citrus	Tulpe	Kraut- und Knollenfäule
Shanking	Tulip	<i>Phytophthora cryptogea</i>	“	Kartoffel	Rottäule
Late Blight	Potato	<i>infestans</i>	“	“	Fruchtfäule
Pink Rot	”	“	“	“	Lanastrankheit
Buck Eye Rot	Tomato	“	“	Tomate	Weisser Rost
Blight	Tobacco	“	“	Tabak	
White Blister, White Rust	Cruciferæ,	“	“	Cruciferæ,	
Downy Mildew	Salsify	<i>Albugo</i> spp.	“	Schwarzwurzel	
	Grape, Sun-flower, Umbellifera	<i>Plasmopara</i> spp.	Wein, Sonnen-blume,	Wein, Sonnen-blume	
” “	Cucumber	<i>Pseudoperonospora</i> spp.	Umbelliferæ	Umbelliferæ	
” “	Hop	<i>Peronospora</i> spp.	Gurke, Hopfen	Gurke, Hopfen	“ “ “
Soft Rot, Mouldy Rot, Leak	Cruciferæ, Leguminosæ, Beet, Spinach, Onion	<i>Rhizopus stolonifer</i>	Cruciferæ, Leguminosæ, Rübe, Spinat, Zwiebel	Cruciferæ, Leguminosæ, Rübe, Spinat, Zwiebel	Wattfäule
Peach Leaf Curl	Fruits	<i>Mucorales</i>	Früchte		
Pocket Plum	Peach, Almond	<i>Erysipales</i>			
Witches' Broom	Plum	<i>Taphrina deformans</i>	Pfirsich, Mandel	Pfirsich, Mandel	Kräusekrankheit
Cherry Curl	Cherry	“	Pflaume	Pflaume	Taschenkrankheit,
Leaf Blister	“	“	Kirsche	Kirsche	Hexenbesen
Yellow Leaf Blister	Pear	“	“	“	Kräuseblätter
	Poplar	“	“	Birne	Blasenkrankheit,
Blue-Green Mould	Fruits	<i>Plectoscales</i>	Pappel	Pappel	Blasenkrankheit
Blue Mould	Citrus—Fruits	<i>Penicillium crustaceum</i>			
Black Root Rot	Tobacco, Lupin, etc.	“			
		<i>Thielavia basicola</i>	Obst	Citrus-Früchte	Grünfäule, Blaufäule
			Lupin	Tabak, Lupine	“ “ Wurzelbräune, Wurzelschwarzfäule
				usw.	

ENGLISH NAME	HOST	CAUSE	URSACHE	WIRTSPLANZ	DEUTSCHE NAME
Leaf Fleck Scar	Pear Apple Pear Cereals	<i>Sphæriales</i> <i>Mycosphaerella sentina</i> <i>Venturia inaequalis</i> ", <i>Ophiobolus graminis</i>	Birne Apfel, Birne Getreide	Weissfleckenkrankheit Schorf Schwarzbeinigkeit Frucht- und Stengelfäule	
" Whitehead, Take-all Fruit and Stem Rot Cherry Leaf Scorch Bitter Rot	Tomato Cherry Apple	<i>Didymella lycopersici</i> <i>Gnomonia erythrostoia</i> <i>Glomerella cingulata</i> (<i>Gleosporium fructigenum</i>)	Tomate Kirsche Apfel	Blattläuse, Blattseuche Bitterfäule	
Canker or Blister Sclerotinia Rot or Root Rot	Larch Field and Garden Crop Plants	<i>Pezizales</i> <i>Dasycyphus calycinus</i> <i>Sclerotinia sclerotiorum</i>	Larche Feld- und Garten- gewächse	Krebs Stengel- und Wurzelfäule, Knollen- fäule	
Black Slime Blossom Wilt, Spur Blight, Wither Tip, Brown Rot Brown Rot	Hyacinth Stone Fruits	" "	Hyazinthe bulborum (<i>Monilia cinerea</i>)	Schwarzer Rott Blüten- und Zweigdürrre, Grind- fäule, Polsterschimmel	
Root Rot Anthracose, Leaf Spot	Apple, Pear	" (")	Steinobst	Grindfäule, Polsterschimmel, Schwarzfäule	
Leaf Spot	Clover, Lucerne Currant, Gooseberry	" Pseudopeziza ribis	Klee, Luzerne Johannisbeere, Stachelbeere	Kleekrebs Blattfallkrankheit	
Bark Canker	Clover	" Phacidiella discolor	Klee	Klappenschorf, Blattfleckener- krankheit	
Loose Smut Covered Smut Loose Smut Covered Smut Loose Smut Maize Smut, Boil Smut	Apple, Pear	" Oats ", Barley ", Wheat Maize	Apfel, Birne	Rindenbrand	
Loose Smut Covered Smut Loose Smut Covered Smut Loose Smut Maize Smut, Boil Smut	Ustilaginales	<i>Ustilago avenæ</i> " levis " nuda " hordei " mada f.sp. tritici " zeæ	Hafer " Gerste " Weizen Mais	Flugbrand Gedeckter Brand, Hartbrand Flugbrand, Nacktbrand Gedeckter Brand, Hartbrand Flugbrand Maisbrand, Beulerbrand	

ENGLISH NAME	HOST	CAUSE	URSACHE	WIRTSPELZANZ	DEUTSCHER NAME
Leaf Smut Covered Kernel Smut, Grain smut	Grasses Millet	<i>Ustilaginaceae</i> <i>Ustilago striæformis</i> <i>Sphacelotheca sorghi</i>	<i>cruenta</i> " " " " " " " " <i>Sorosporium reilianum</i> <i>Tilletia tritici</i> " " " " " " " " <i>Tuburcinia occulta</i>	Gräser Hirse	Streifenbrand Gedeckter Brand
Loose Kernel Smut Head Smut Bunt, Stinking Smut Stripe Smut Flag Smut Onion Smut	" Wheat Rye Wheat Onion				Staubbrand Kopfbrand Stein-, Stink-, Schmierbrand Stengelbrand Streifenbrand Zwiebelbrand
Rust	Beet, Mangold Bean Pea and Cypress-Spurge	<i>Uromyces betæ</i> " " " " " " " " <i>appendiculatus</i> " " " " " " " " <i>pisi</i> " " " " " " " "	Rübe, Mangold Bohne Erbse u. Zypressen-wolfsmilch	Rübenrost Bohnenrost Erbserost	
Black Stem Rust	Cereals: Wheat Oats Rye Wheat Rye Barley Wheat Oats Plum and Pear and Juniper White Pine and Ribes Pine	<i>Puccinia graminis</i> " " " " " " " " f.sp. <i>tritici</i> " " " " " " " " <i>avenæ</i> <i>secalis</i> " " " " " " " " <i>triticina</i> " " " " " " " " <i>dispersa</i> <i>simplex</i> " " " " " " " " <i>glumarum</i> <i>coronifera</i> " " " " " " " " <i>prun-spinosæ</i> " " " " " " " " <i>Gymnosporangium sabinae</i> " " " " " " " " <i>Peridermium strobi</i> (<i>Cronartium ribicola</i>) <i>Peridermium pini-acicola</i> (<i>Coleosporium spp.</i>)	Getreide: Weizen Hafer Roggen Weizen Roggen Gerste Weizen Hafer Pflaume und Anemone Birne und Juniperus Weymouthskiefer und Ribes Kiefer Blasenrost	Braunrost " " " " " " " " Zwergrost, Braunrost Geblrost Kronerost Pflaumenrost Gitterrost Blasenrost	Schwarzrost
Brown Rust	" " " " " " " "				
Brown or Dwarf Rust Yellow or Stripe Rust Crown Rust Cluster Cup Rust	" " " " " " " "				
" " " " " " " "					
Blister Rust					
Cluster Cup Rust					

ENGLISH NAME	HOST	CAUSE	URSACHE	WIRTSPLANZE	DEUTSCHER NAME
Gall	Azalea	<i>Exobasidiales</i>	Exobasidium japonicum	Azalea	Klumpenblätter, Löffelkrankheit, Ohrläppchenkrankheit
,	Rhododendron	"	rhododendri	Rhododendron	Alpenrosenäpfel, Saftäpfel
Black Scurf, Black Speck	Potato	<i>Hypochnus solani</i>		Kartoffel	Grind, Pockenkrankheit, Weißhosigkeit, Filzkrankheit
Stem Canker, Collar Rot, Damping off, Bed Rot	Herbaceous Plants	"	"	Krautige Pflanzen	Keim- und Stengelfäule, Umfallkrankheit, Vermehrungspilz
Silver Leaf	Fruit Trees	<i>Stereum purpureum</i>		Obstbäume	Milchglanz
Dry Rot	Timber	Merulius lachrymans		Bauholz	Trockenfäule, Hausschwamm
White Heart Wood Rot, Tinder Beech	Beech	Fomes fomentarius		Buche	Weissfäule, Zunderschwamm
White Heart Wood Rot, False Fungus	Deciduous Trees	"	"	Laubböhlzer	Weissfäule, Feuerschwamm
Tinder Fungus	Conifers	<i>Trametes pini</i>		Nadelhöhlzer	Kernfäule, Ringschäle, Kiefernbaumschwamm
Brown Rot, Ring Shake		"	"	"	Stockfäule, Wurzelzschwamm
Root Rot	Trees and Shrubs	<i>Armillaria mellea</i>			
	Pastures and Meadows	Marasmius oreades, Clitocybe spp.		Bäume und Sträucher	
		<i>Sphaerophridales</i>		Weiden und Wiesen	
Apple Blotch	Apple	Phyllosticta solitaria			Phyllosticta-Flecken
Root Rot	Celery	Phoma apicola			Schorffrankheit
Dry Rot	Turnips	"			Trockenfäule
Blackleg	Cabbage	lingam			Schwarzbeinigkeit, Fallsucht,
		"			Krebsstrünke
Fruit Rot, Black Rot	Tomato	"			
Stem End Rot, Melanose	Citrus	destructiva			
Pod Spot, Leaf Spot	Pea	Phomopsis citri			
Leaf Spot, Blight	Celery	Ascochyta pisii			
Leaf Scorch	Azalea	Septoria apii			
		" azaleæ			

ENGLISH NAME	HOST	CAUSE	URSACHE	WIRTSPELZEN	DEUTSCHER NAME
Leaf Blotch, Brown Spot	Chrysanthemum	<i>Sphaeropidales</i>	Septoria chrysanthemella	Chrysanthemum	Blattfleckenkrankheit
Hard Rot	Gladiolus	"	gladioli nodorum	Gladiolus	Hartfaule
Gum Blotch	Wheat		Dilophospora graminis	Weizen,	Braunfäigkeit
Twist	Rye		Coniothyrium Wernsdorffiae	Roggen	Federbuschsporenkrankheit
Brand Canker	Rose		rosarum	Rose	Brandflecken, Zweigkrebs
Graft Canker	"		"	"	Zweigkrebs
Dry Rot	Maize	Diplodia zeæ		"	Trockenfaule
Fly Speck	Apple	Leptothyrium pomi		"	Fliegenflecken
Anthracnose	Grape	<i>Melanconiales</i>	Gloeosporium ampelophagum	Wein	Schwarzer Brenner, Anthraknose, Pechkrankheit, Pocken
Scorch	Clover		" caulinorum	Klee	Stengelbrenner
Anthracnose	Bean		Colletotrichum lindemuthianum	Bohne	Brennfleckenkrankheit
Black Dot	Cucumber	"	oligochatum	Gurke	Anthraknose
	Potato	"	atra-	Kartoffel	Fusskrankheit
Smudge	Onion	"	mentarium	Zwiebel	Schalenflecken
Seedling Blight	Flax	"	circinans	Flachs	Sämlingssterben
Black Spot, Leaf Blotch	Rose	"	lini	Rose	Schwätzfleckigkeit, Sternrusstau
Ring Spot	Lettuce	Marssonina rosea		Salat	Blattfaule
Leaf Scorch	Strawberry	"	pannoniana	Erdbeere	Blattfleckenkrankheit
Leaf Blotch	Barley	"	fragariae	Gerste,	"
Leaf Rot	Rye	"	graminicola	Roggen	Bandstreifenkrankheit
	Carnation	Pseudodiscosia dianthi	"	Nelke	
Skin Spot	Potato	<i>Hypocreales</i>	Oospora pustulans	Kartoffel	Oospora-Flecken
Grey Mould, Die-back	Herbaceous and Woody Plants		Botrytis cinerea	Krautige und holzige Pflanzen	Grauschimmel, Stengelfäule
Smoulder	Narcissus		narcissicola	Narcissus	Blatt- und Triebfäule
Fire or Blight	Tulip		tulipe	Tulpe	Grauschimmelkrankheit, Blattbrand
Neck Rot	Onion	" allii	"	Zwiebel	Halsfäule, Grauschimmel
Scab	Citrus			Citrus	Schorf

ENGLISH NAME	HOST	CAUSE	URSACHE	WIRTSPLANZE	DEUTSCHER NAME
Wilt	Potato	<i>Hypomyces</i>	<i>Vorticillium albo-atrum</i>	Kartoffel	Welkekrankheit
Sleepy Disease	Tomato	"	"	Tomate	"
Blue Stripe Wilt	Raspberry	<i>Trichothecium roseum</i>	"	Himbeere	Bitterfäule
Pink Mould	Apple, Pear	<i>Mycogone perniciosa</i>	"	Apfel, Birne	Weisschimmel
White Mould	Mushroom	<i>Ramularia armoraciae</i>	"	Champignon	Blattfleckenerkrankheit
Pale Spot	Horse Radish	<i>Cladosporium fulvum</i>	"	Meerrettich	Braunfleckenerkrankheit,
Leaf Mould	Tomato	"	"	Tomate	Samtfeckenkrankheit
Gummiosis	Cucumber	<i>cucumerinum</i>	"	Gurke	Kräze
Black Mould	Cereals	<i>herbarum</i>	"	Getreide	Schwärze
Leaf Stripe	Barley	<i>Helminthosporium graminicola</i>	"	Gerste	Streifenkrankheit
Net Blotch	Oats	"	"	"	Netzflecken
Leaf Spot	Carnation	<i>Heterosporium echinulatum</i>	"	"	Braunfleckigkeit
Ring Spot	Iris	"	"	"	Schwärze
Leaf Spot	Potato	<i>Alternaria solani</i>	"	"	Blattdürre
Early Blight	"	<i>Spondylocladium atrovirens</i>	"	"	Dörrfleckenerkrankheit
Silver Scurf	Beet	<i>Cercospora beticola</i>	"	"	Silberschorf, Silberflecken
Leaf Spot	Cucumber	<i>Corynespora melonis</i>	"	"	Blattfleckenerkrankheit
Leaf Blotch	Cabbage	<i>Fusarium conglutinans</i>	"	"	Blattbrand
Wilt, Yellow's	Tomato	<i>bulbosum</i> var. <i>lycopersici</i>	"	"	Welkekrankheit
Wilt	Flax	"	"	"	"
"	Banana	<i>oxy sporum</i> var. <i>cultivense</i>	"	"	"
Panama Disease	Potato	"	"	Kartoffel	Welkekrankheit, Panamakrankheit
Dry Rot, Winter Rot	Wheat	<i>ceruleum</i>	"	Weizen	Trockenfäule, Lagerfäule
Seedling Blight, Foot Rot,	"	"	"	"	Fusskrankheit, Wurzelstockfäule
Stem and Ear Blight	"	"	"	"	"
Violet Root Rot	Tulip	<i>Myelia sterilia</i>	"	Tulpe	Violetter Wurzeltöter
Grey Bulb Rot	Onion	<i>Rhizoctonia crocorum</i>	"	"	Sklerotienkrankheit,
White Rot	"	<i>Sclerotium tuliparum</i>	"	"	Zwiebelgraufäule
		"	"	"	Weissfäule, Verschimmeln

APPENDIX IIIa

ANHANG IIIa

ABBREVIATIONS FREQUENTLY USED IN GERMAN BOTANICAL LITERATURE

IN DER DEUTSCHEN BOTANISCHEN LITERATUR HÄUFIG BENUTZTE ABKÜRZUNGEN

a.a.O.	am angeführten Ort	<i>loc. cit.</i>
Abb.	Abbildung	figure
Bd.	Band	Volume
Ber.	Berichte	Proceedings
betr.	betreffend	concerning, with reference to
bez., bzw.	beziehungsweise	respectively
bezgl.	bezüglich	with regard to
Chem.	Chemie	Chemistry
dgl.	der- desgleichen	the like, the same
d.h.	das heisst	i.e.
fl. pl.	flore pleno, mit gefüllter Blüte	in flower, in full bloom
Forts.	Fortsetzung	continuation
Fortschr.	Fortschritte	Advances
foss.	fossil	fossil
geb.	gebaut, angepflanzt	planted
gem.	gemein	common
Ges.	Gesellschaft	Society
H.	Heft	Part, of a volume
Handb.	Handbuch	Handbook
Jahrb.	Jahrbuch	Yearbook
I.c.	<i>loco citato</i>	<i>loc. cit.</i>
nat. Gr.	natürliche Grösse	natural size
obs.	obsolet, nicht mehr gebräuchlich	obsolete
Off.	offizinell	officinal
resp.	respektive	respectively
S.	Seite	page
s.	siehe	see
sog.	sogenannt	so called
Taf.	Tafel	plate
u.a.	und andere -s	and others
u. dgl.	und dergleichen	and the like
usw.	und so weiter	etc., and so forth
Verf., Verff.	Verfasser	author -s
vgl.	vergleiche	compare, cf.
vergr.	vergrössert	magnified, enlarged
z.B.	zum Beispiel	for example, e.g.
Zeitschr., Z.	Zeitschrift	Journal

APPENDIX IIIb

ANHANG IIIb

ABBREVIATIONS FREQUENTLY USED IN ENGLISH BOTANICAL LITERATURE

IN DER ENGLISCHEN BOTANISCHEN LITERATUR HÄUFIG BENUTZTE ABKÜRZUNGEN

Ag.	Agriculture	Landwirtschaft
Ann.	Annals	Annalen, Jahrbucher
Amer.	American	americanische
App.	Appendix	Anhang
aq.	<i>aqua</i> (water)	Wasser
B.M.	British Museum	Britisches Museum
Bot.	Botany	Botanik
C.	centigrade	Celsius
cf.	compare	vgl.
c., circ.	<i>circa</i> (about)	ungefähr, etwa
cit.	citation	Zitat
cwt.	hundredweight	Zentner
Dept.	Department	Bezirk, Abteilung
diam.	diameter	Durchmesser
e.g.	<i>exempli gratia</i> (for example)	zum Beispiel
etc.	<i>et cetera</i>	u.s.w.
et seq.	<i>et sequens, sequentes</i> (and the following)	und die folgenden, folgende
F., Fahr.	Fahrenheit	Fahrenheit
F.L.S.	Fellow of the Linnean Society	Mitglied der Linné Gesellschaft
ff.	following	folgenden
fig.	figure	Abbildung
ft.	foot	Fuss
Gaz.	Gazette	Zeitung
ib., ibid.	<i>ibidem</i> (in the same place)	am selben Orte
id.	<i>idem</i> (the same)	dasselbe
i.e.	<i>id est</i> (that is)	das heisst
in.	inch	Zoll
ital.	italics	Kursivdruck
J., Jour.	Journal	Zeitschrift, Journal
lb.	pound weight	Pfund
loc. cit.	<i>loco citato</i> (in the place cited)	am angeführten Ort
MS., MSS.	manuscript -s	Handschrift -en
nat. size	natural size	natürliche Grösse
Nat. Hist.	natural history	Naturgeschichte
N.B.	<i>nota bene</i> (mark well)	Merkzeichen
oz.	ounce	Unze
p., pp.	page -s	Seite -n

APPENDIX IIIb (*cont.*)
ANHANG IIIb (*Forts.*)

par.	paragraph	Abschnitt, Paragraph
per cent.	<i>per centum</i>	Prozent
Res.	Research	Untersuchungen
<i>seq.</i>	<i>sequens, sequentes</i> (the following)	die folgenden
Soc.	Society	Verein, Gesellschaft.
Trans.	Transactions	Verhandlungen
U.S.A.	United States of America	Vereinigten Staaten von Nordamerika
ut sup., u.s	<i>ut supra</i> (as above)	wie oben
<i>vid., v.</i>	<i>vide</i> (see)	vgl., siehe
<i>viz.</i>	<i>videlicet</i> (namely)	nämlich
Vol. -s	Volume -s	Band, Bände
wt.	weight	Gewicht

ENGLISH INDEX

(ENGLISCHES REGISTER)

A Abaxial, 13 — surface, 27 Aberration, 85 Ability to resist drought, 109 Abiotic factors, 123 Abrasion, 125 Absciss layer, 27 Absinth, 152 Absorption, 91 Acacia, 145 —, false, 146 Acervulus, 47 Accidental resistance, 131 Accumulated substances, 93 Achlamydeous, 9 Acicular leaf, 5 Acid soils, 105 Acquired characters, 85 Acrocarpic, 57 Acropetal succession, 3 Actinomorphic, 13 Acuminate, 5 Aecial arrangement, 11 Adaptations, 103 Adaxial, 13 — surface, 27 Adhesive agents, 133 — pollen grains, 11 Adnate leaf, 3 Adsorbed water, 107 Adsorption, 19 Adventitious, 3 — root, 9 <i>Æcidia</i> , 51 <i>Æcidiospores</i> , 51 Aeration, 27 Aerenchyma, 111 Aerial leaf, 5 — root, 9 Aerobic growth, 37 — respiration, 97 Agar agar, 127 Aggregates of molecules, 19 Agrimony, 145 —, hemp, 153 Air, 103 — chamber, 27 — sacs, 75 Albino plant, 87 Albumin, 95 Albuminous cells, 73 Alder, 141 — buckthorn, 147 —, grey, 141 —, white, 141 Alfalfa, 146 Allelomorphs, 83 All-good, 142	Allium, 139 Allspice, 148 “ Alluvial woods,” 117 Almond, 145 Alsike, 146 Alternate phyllotaxis, 73 — xylem and phloem, 29 Alternation of generations, 35, 41 Alyssum, 143 American gooseberry mildew, 158 Amino-acids, 19, 95, 97 Amitotic divisions, 79 Amitotically, 43 Ammonium salts, 91 Amorphous, 21 Amphigastria, 55 Amphiphloic siphonostele, 63 Amphispore, 47 Amphithecium, 59 Amplexicaul leaf base, 3, 65 Anabolic process, 91 Anaerobic growth, 37 Anaerobically respiring plants, 97 Analogous, 1 Analysis of vegetation, 111 Anaphase, 79 Anastomose, 5 Anatomical, 111 — variation, 85 Anatomy, 1 Anatropous, 15, 75 Anchusa, 150 Androcium, 9, 11 Anemone, wood, 142 Anemophilous flowers, 111 Angelica, cultivated, 148 —, wild, 148 Angle of deflection, 101 — — divergence, 3 Angular leaf spot, 156 Animals, 103 Aniseed, 149 Anisophylly, 5 Annual rings, 27 Annuals, 113 Annular vessels, 25 Annulus, 51, 59, 67 Anthela, 13 Anther, 11 Anthericum, 140 Antheridium, 35, 55 Anthocyanin, 21 Anthracnose, 159, 162 Anticlinial, 23 Antipodal cells, 31 Apetalous, 9	Apex, 3 Aphlebiæ, 77 Apical cell, 23, 43, 61 — cone, 29 Apiculate, 5 Aplanogametes, 35 Aplanospore, 35 Apocarpous, 11 Apogamy, 43, 63 Apophysis, 59 Aposporous, 61 Apospory, 61 Apothecium, 49, 51 Apple, 145 — blotch, 161 —, thorn, 151 Apposition, 21 Appressoria, 47 Apricot, 145 Aquous solution, 133 Archegonium, 33, 55, 57 Archesporium, 29 Archicarp, 49 Arctic climate, 71 — plants, 109 Area, 117 Aril, 15, 75 Arnica, 152 Arrangement of tissues, 23 Arrow-grass, marsh, 137 Arrowhead, 198 Artemisia, 152 Arthrospheres, 37 Artichoke, globe, 153 —, Jerusalem, 153 Artificial forests, 119 <i>Asaibacca</i> , 141 Asci, 49 Asclepiad, 150 Ascocarp, 49 Ascogenous hyphæ, 49 Ascogonium, 49 Ascospores, 49 Asepalous, 9 Asexual diploid generation, 55 — generation, 35 — reproduction, 33 — spores, 33, 45 Ash, 91, 149 Asparagus, 140 Aspen, 141 Asphodel, bog, 140 Assimilation, 91 — products, 21 —, root, 9 Associations, 115 —, mycorrhizic, 129 Aster, China, 152 —, sea, 152
---	--	---

Aster stage, 79
Atropous, 15
 Attack, parasitic, 131
Aucuba mosaic, 155
Auricula, 149
 Autecology, 103
 Autogenous variation, 85
 Autonomous internal derangements, 123
 Autosomes, 83
 Autotropic, 95
 Autumn wood, 27
 Auxiliary cells, 45
 Auxospores, 41
 Avens, common, 145
 Axil, 3
 Axile placentation, 11
 Axillary branching, 71
 — bud, 3
 Axis, 1
 Azygospore, 49

B

Bacillus, 37
 Back cross, 85
 Bacteria, 35, 109
Bacteri-a-purpurin, 37
 Bacteriophage, 125
Bacterium, 37
 Balm, 150
Balsam, 147
 Bands of cytoplasm, 19
Baneberry, 142
Barberry, 143
 Bark, 27
 — canker, 159
Barley, four-rowed, 138
 —, six-rowed, 138
 —, two-rowed, 138
Barnyard-grass, 139
 Barrel-shaped spores, 47
Basal ovule, 75
 — placentation, 11
 — wall, 61
 Basic number, 81
Basidia, 49
Basidiomycetes, 49
Basidiospores, 49
Basil, 150
 —, wild, 150
Basin-like receptacle, 11
Bast fibres, 25
Bastard toadflax, 141
Bay, sweet, 143
Bean, broad, 146
 —, kidney, 146
 —, soya, 146
Bearberry, 149
 Bearers of hereditable characters, 81
Bear's-foot, 143
Bed rot, 161
Bedstraw, ladies', 151
Bee orchis, 140
Beech, 141
Beet, garden, 142
 —, sugar, 142
 —, wild, 142
Begonia, 148
Benedict, common, 153
Bent-grass, 138
 —, silky, 138
Berry, 17
Betony, 150
Bicollateral bundle, 25

Bilberry, 149
Bindweed, black, 142
 —, great, 150
 —, lesser, 150
 Biological forms, 129
 — spectrum, 113
 Biotic factors, 103
 Biotypes, 87
Bipinnate hairs, 65
 — leaves, 5, 65
Birch, 141
Bird's nest orchis, 140
Birdsfoot, 146
 — trefoil, 146
Birthwort, 141
Bishop's weed, 148
Bistort, 142
Bitter rot, 159
Bitter-pit, 154
Bittersweet, 151
Blackberry, 145
Blueberry, 149
Black blotch, 158
 — dot, 162
 — earths, 105
 — heart, 154
 — knot, 158
 — leg, 156, 161
 — mould, 163
 — pepper, 140
 — pustule, 158
 — root rot, 157
 — rot, 156, 158, 161
 — scurf, 161
 — slime, 159
 — speck, 161
 — spot, 162
 — stalk rot, 156
 — stem rust, 160
Blackthorn, 145
Bladder campion, 142
Bladder-senna, 146
Bladderwort, 151
Blade, 27
Bleeding, 99
Blepharoplast, 71
Blight, 156, 157, 161, 162
 —, early, 163
 —, fire, 156
 —, halo, 156
 —, late, 157
 —, marginal, 156
 —, seedling, 158, 162, 163
 —, stem, 156
 —, stem and ear, 163
 —, spur, 159
Blister, 159
 —, leaf, 157
 —, rust, 160
 —, white, 157
 —, yellow, 157
Blossom end rot, 154
 — wilt, 159
Blotch, apple, 161
 —, black, 158
 —, glume, 162
 —, leaf, 163
 —, net, 163
Bluebell, 140
Bluebottle, 158
Blue-green algae, 35
 — mould, 157
 — mould, 157
 — stripe wilt, 163
Bog asphodel, 140

Bog orchis, 140
Bog-bean, 150
Boil smut, 159
Borage, 150
 Bordered pits, 73
Bostryx, 13
Botryose, 13
Box, 147
Brackets, 51
Brackish water, 43
Bract, 7, 75
 — scale, 7
Bracteole, 7
Bramble, 145
Branch, 3, 5
Brand canker, 162
 — spore, 47, 49
Brandy-bottle, 142
Break the dormancy, 107
Breaking-down of materials, 91
Breaking, 155
Breed true, 83
Briar, sweet, 145
Broad bean, 146
Broccoli, 143
Brome, ryelike, 138
 —, soft, 138
 —, sterile, 138
Brome-grass, false, 138
Broom, 146
Broomrape, 151
Brown algae, 35
 — blotch, 156
 — earths, 105
 — rot, 156, 157, 159, 161
 — rust, 160
 — spot, 162
Brownian movement, 19
Brussels sprout, 143
Bryony, black, 140
 —, white, 152
Buck eye rot, 157
Buck-bean, 150
Buckthorn, 145, 147
 —, alder, 147
 —, sea, 148
Buckwheat, 142
Bud, 3
 — scale, 7
 — variations, 85
Budding, 35, 47
Bugbane, 143
Bugle, 150
Bugloss, 150
 —, viper's, 150
Building-up of materials, 91
Bulb, 7, 113
 — rot, grey, 163
 — scale, 7
Bulbil, 3, 43
Bulk, of stem, 27
Bullace, 145
Bulrush, 139
Bunchy top, 155
Bunt, 160
Buoyancy, 75
Burdock, 152
Burnet, greater, 145
 —, salad, 145
 — saxifrage, 149
Butcher's broom, 140
Butterbur, 153
Buttercup, 143
 —, bulbous, 143
 —, creeping, 143

Butterwort, 151

C

Cabbage, 143
—, cultivated, 143
—, Savoy, 144
—, wild, 145
Cable-like axis, 45
Cacao, 147
Calaminth, hedge, 150
Calceolaria, 151
Calcicoles, 105
Calcicolous, 105
Calcified impression, 77
Calciphobes, 105
Calciphobous, 105
Calcium, 91, 105
— carbonate, 21
— oxalate, 21
callus, 27
— wood, 27
Calyculi, 7
Calyptra, 57
Calyptron, 23
Calyx, 9
Cambial activity, 25
Cambium, 23
— cells, 25
Camellia, 148
Campanula, 152
Camphor, 143
Campion, 142
—, bladder, 142
Campylostropous, 15
Canadian waterweed, 138
Canary-grass, 139
Candytuft, bitter, 144
Canker, 156, 158, 159
—, bark, 159
—, brand, 162
—, graft, 162
—, stem, 161
Cantaloupe, 152
Cap, 51
Capacity to withstand disease, 131
Capillary attraction, 107
— water, 105
Capillitium, 39
Capitulum, 13
Capsule, 17, 35, 55
Caraway, 148
Carbon, 91, 103
— dioxide, 91
Cardoon, 153
Carinal canals, 65
Carnation, 142
Carnation-grass, 139
Carotin, 21
Carotinoid pigments, 45
Carpel, 9, 29, 73
Carpellary flower, 13
Carpogonium, 45, 49
Carposporophyte generation, 45
Carr, 117
Carriers, 125, 133
Carrot, 149
Caruncle, 15
Caryopsis, 17
Casein derivatives, 133
Casparian strip, 29
Castor-oil plant, 147

Catalpa, 151
Cataphyll, 7
Catchfly, 142
Cat's ear, 153
— tail, 157
Cattle, 111
Cauliflower, 143
Cauline leaf, 3
Cedar, 137
Celandine, Lesser, 143
Celery, 148
Cell, 19, 79
— cavity, 19, 43
— sap, 19
— wall, 19, 21, 79
Celluloses, 21, 93
Centaur, 150
Central cylinder, 23, 63
— fusion nucleus, 31
Centrifugal, 25
— xylem, 65
Centripetal development, 29
Centrifuged soil, 107
Centrosomes, 79
Chaffy scales, 65
Chain of cells, 31
Chalazal end, 31
Chamaephytes, 113
Chamomile, 152
—, corn, 152
—, wild, 153
Characters, 83
Charlock, 144
Chemical constitution of a soil, 105
— reactions, 95
Chemonasty, 101
Chemotaxis, 101
Chemotropism, 101
Cherry, bird, 145
—, Cornelian, 149
— curl, 157
— laurel, 145
— leaf scorch, 159
— wild, 145
— winter, 151
Chervil, bulbous-rooted, 148
—, cultivated, 148
—, rough, 148
—, wild, 148
Chestnut, horse, 147
— soils, 105
— Spanish, 141
Chickweed, 142
— mouse-ear, 142
Chicory, 153
Chimæras, 85
Chives, 139
Chlamydospores, 47
Chlorine, 91
Chlorophyll, 93
Chloroplasts, 21, 95
Chlorosis, 154
—, infectious, 154
Choke, 158
Christmas rose, 143
Chromatids, 79
Chromatin network, 19
Chromatophores, 19, 21
Chromosomes, 83
Chromoplasts, 21
Chromosome, 79
— number, 81
Cilia, 87
Ciliated gametes 35

Cinchona, 151
Cincinnus, 13
Cinnamon, 143
Cinquefoil, 145
Circinate, 65
Cirsium, cabbage-like, 153
Cladode, 7, 73
Cladosiphonic, 65
— siphonostele, 63
Clamp connections, 49
Classes, 83
Classification, 1, 33
— ecological, 103
Clay, 105
— particles, 105
Cleavers, 151
Cleft, 41
Cleistocarp, 49
Climatic factors, 103
Climax, 117
Climber, 7
Climbing organs, 9
Clone selection, 87
Closed bundles, 25
Clostridium, 37
Clove pink, 142
Clover, crimson, 146
—, Dutch, 146
—, meadow, 146
—, purple, 146
—, red, 146
—, Swedish, 146
—, sweet, 146
—, white, 146
Club mosses, 61
— root, 156
Cluster cup rust, 160
— cups, 51
Coal balls, 77
Coarse silt, 105
Coccus, 37
Cock's-foot, 138
Cocoa, 147
Coconut palm, 139
Cenobia, 39, 41
Cenocytic protoplasm, 69
Cœnogenetic, 77
Cœoma, 51
Coffee, 151
Cohesion of water, 99
Cohorts, 83
Cold air drainage, 109
Collar rot, 161
Collateral, 29
— bundle, 25, 73
Collenchyma, 23
Colloidal solutions, 19
— phenomena, 105
Colloids, 93
Colonisation, 115, 117
Colouring matter, 27
Coltsfoot, 153
Columbine, 142
Columella, 59
Column, 59
Comfrey, 150
Common names, 121
Companion cells, 25
Comparative morphology, 89
Compensation point, 107
Competition, 117
Complementary, 87
— factors, 87
Complete dominance, 85
— resistance, 131

Completely permeable wall, 98
 Complexes, 125
 Compound leaf, 5
 — fruits, 17
 — racemose inflorescence, 13
 Compounds, chemical, 91
 Concave receptacle, 11
 Concentric bundle, 25
 Conceptacles, 45
 Conducting bundles, 23
 — tissue, 23
 Conduction, 101
 Cones, 65
 Conical growth, 73
 Conidia, 47
 Conidiophores, 47
 Conifer forest, 105, 115
 Conjugate, 33
 Conjugates, 35
 Conjugation tube, 49
 Connate leaf base, 3
 Connective, 11
 Consociation, 115
 Consortium, 51
 Conspicuous variation, 85
 Contacts infection, 125
 Continents, 109
 Continuous selection, 87
 — variation, 85
 Control of plant diseases, 131
 Coral spot, 158
 Coralloid roots, 73
 Cordate leaf, 5
 Coremium, 47
 Coriander, 149
 Cork, 27, 154
 — cambium, 27
 — cells, 27
 — lamellæ, 21
 Corky scab, 156
 Corm, 7, 113
 Cormophyte, 61
 Corn cockle, 142
 Cornelian cherry, 149
 Cornflower, 153
 —, Indian, 139
 Corolla, 9
 Corona, 43
 Corozo nut palm, 139
 Correlation, 101
 Cortex, 23
 Cortical layer, 51
 Corydalis, 143
 Cotoneaster, 145
 Cotton, 147
 — wool plugs, 127
 Cotton-grass, 139
 Cotyledons, 7
 Couch-grass, 138
 Counter-pressure, 93
 Covered kernel smut, 160
 — seeds, 1
 — smut, 159
 Cow parsnip, 149
 Cowbane, 148
 Cowberry, 149
 Cowslip, 149
 Cow-wheat, 151
 Cranberry, 149
 Creeper, Virginia, 147
 Creeping Jenny, 149
 — runners, 113
 Crenate leaf, 3
 Cress, 144

cell Cress, bitter, 144
 —, rock, 143
 —, water, 144
 Crested dog's-tail, 138
 Cretaceous, 75
 Crocus, 140
 Crop rotation, 133
 Cross pollination, 111
 Crossing, 83
 — over, 81, 85
 Cross-supports, 43
 Crow garlic, 140
 Crowberry, 147
 Crowfoot, 143
 Crown gall, 156
 — rot, 156
 — rust, 160
 — wart, 156
 Crustaceous lichens, 51
 Cryptogam, 1, 33
 Crystalline, 21
 Cubical, 19
 Cuckoo-flower, 144
 Cuckoo-pint, 139
 Cucumber, 152
 Cudweed, marsh, 153
 Culm, 7
 Cultural measures, 133
 Cupules, 57, 77
 Curative measures, 131
 Curl, 153
 —, cherry, 157
 —, peach leaf, 157
 Curly top, 155
 Currant, black, 144
 —, red, 144
 —, white, 144
 Curvature, 101
 Cuticle, 111
 Cutin, 107
 Cutinisation, 21
 Cuttings, 101
 Cyclamen, 149
 Cyclic arrangement, 11
 Cylindrical pieces, 127
 Cymose, 13
 — corymb, 13
 Cystidia, 51
 Cystocarp, 45
 Cystoliths, 21
 Cytology, 79
 Cytoplasm, 19, 79

D

Daffodil, 140
 Dahlia, 153
 Daisy, 152
 —, Ox-eye, 153
 Dalmatian insect powder plant, 153
 Damping-off, 157, 161
 Damson, 145
 Dandelion, 153
 Danewort, 152
 Daphne, 148
 Date Palm, 139
 Daughter cell, 79
 — nucleus, 29
 Dead nettle, white, 150
 Deadly nightshade, 151
 Deciduous, 7, 71
 — forest, 105
 Decoctions, 127
 Decurrent leaf, 3
 Decussate leaves, 3

Decussate phyllotaxis, 73
 Deficient nutrition, 123
 Degeneration products, 125
 Degree of covering, 113
 — — resistance, 131
 Dehiscence, 11
 Dehiscent fruit, 15
 Density of species, 113
 Dentate leaf, 3
 Derivatives of carotin, etc., 21
 Dermatogen, 23
 Deserts, 105, 115
 Destruction of parasites, 131
 Development of organs, 99
 Devil-in-the-Bush, 143
 Devil's Bit, 152
 Dewberry, 145
 Dia-geotropic, 101
 Diagnosis, 121
 Diarch, 29
 Diastase, 95, 97
 Diaster stage, 79
 Diatoms, 35, 41
 Dicentra, 143
 Dichasium, 13
 Didinosis, 13
 Dicotyledonous, 23
 Dictyostele, 63
 Die-back, 158, 162
 Differentiation of cells, 21, 23,
 99
 Diffusion of water, 93
 — gradient, 97
 Digitate leaf, 5
 Dikaryon, 49
 Dimorphic thallus, 45
 Dinoflagellates, 35
 Dioecious, 13, 61
 Diplochlamydeous, 9
 Diploid, 81
 Diplostemonous, 11
 Disaccharides, 95
 Disc, 45
 Disease resistance, 87
 Disease-free seed, 133
 Diseases, 121
 Disjunction, 81
 Dispersing agents, 133
 Dispreme stage, 79
 Disposition to disease, 131
 Dissected leaves, 111
 Distribution, 115
 Divergence, 3
 Division of labour, 41
 Divisions, 33
 Dock, broad-leaved, 142
 —, curled, 142
 —, sour, 142
 Dodder, 150
 Dog's Mercury, 147
 Dogwood, 149
 Dominance, 113
 Dominant, 83
 Dormancy, 107, 109
 Dormant, 3
 — buds, 101
 Dorsal side, 5
 — — of thallus, 55
 — suture, 11
 Dot, black, 162
 Downy mildew, 157
 Drainage, 133
 Draining of a marsh, 117
 Dropsy, 154
 Dropwort, fine-leaved, 149

ENGLISH INDEX

Dropwort, water, 149
 Drought, 128
 Dry rot, 161, 162, 163
 — weight, 99, 107
 Duckweed, 139
 Dunes, 119
 Duplication, 33
 Duration of light, 107
 Dust, 133
 Dutch elm disease, 158
 Dutchman's pipe, 141
 Dwarf rust, 160
 Dyer's greenweed, 146
 — madder, 151
 — woad, 144

E

Early blight, 163
 — wood, 25
 Earth-nut, 145, 149
 Earth's crust, 103
 Ebony tree, 149
 Economic entomology, 127
 — loss, 135
 Ectophloic siphonostele, 63
 Ectotropic mycorrhiza, 129
 Edaphic factors, 103
 Edelweiss, 153
 Eel-grass, 137
 Efficiency index, 99
 Efflorescence of salts, 105
 Egg, 35
 — apparatus, 31
 — plant, 151
 Elaboration of stelar structure, 77
 Elastic cell-wall, 93
 Elaterophores, 59
 Elaters, 59
 Elder, 152
 —, dwarf, 152
 Elecampane, 153
 Elliptical leaf, 5
 Elm, common, 141
 — wych, 141
 Elongated cells, 65
 Emarginate, 5
 Embryo, 15, 31
 — sac, 15, 31
 — sac mother cell, 29
 Emergence, 7
 Emulsion, 133
 Enchanter's nightshade, 148
 Encyst, 39
 Endarch, 25, 65, 73, 77
 Endemic, occurrence of disease, 131
 Endive, 153
 Endocarp, 15
 Endodermis, 23, 29
 Endogenous bud, 3
 — root, 9
 Endosperm, 15
 Endospore, 37, 67
 Endotesta, 69
 Endothecium, 29, 59
 Endotropic mycorrhiza, 129
 Enemy, 127
 Energy, 107
 Entire leaf, 3
 Entomophilous flowers, 111
 Envelope, 9
 Enveloping tubes, 43

Environment, 103
 Environmental predisposition, 131
 — variations, 85
 Enzyme, 95
 Ephemeral prothallus, 61
 Ephemerals, 111
 Epibasal hemisphere, 61
 Epidemic, 131
 Epidermis, 23, 29, 33
 Epigynous flower, 11
 Epispose, 67
 Epithelial cells, 73
 Equatorial sporulation, 37
 Eradicating alternative hosts, 133
 Erect shoot, 7
 — strobili, 75
 Ergot, 158
 Erodium, 146
 Esters, 95
 Etiolation, 107, 154
 Etiology, 121
 Eucalyptus, 148
 Eudiometric measurement, 95
 European gooseberry mildew, 158
 Eusporangiatae, 67
 Evaporation, 99
 Evening primrose, 148
 Evergreen, 7, 71
 Everlastings, 153
 Evolution, 89
 — of soil, 105
 Evolutionary characters, 77
 — "trend," 77
 Exanthema, 154
 Exarch, 29, 65, 77
 Excitation, 101
 Exine, 29
 Existing Pteridophytes, 63
 Exocarp, 15
 Exodermis, 29
 Exogenous, 3
 Exospore, 67
 Exothecium, 75
 Exothermic reaction, 97
 Expansion of cells, 99
 Experiment, 91
 Exposed hymenium, 49
 Expressed juices, 125
 Extensible cell wall, 21
 Extermination, 89
 — of diseased plants, 133
 External ramuli, 45
 Extinct Pteridophytes, 61
 Extrorse, 11
 Eyebright, 151
 Eye-rot, 158

F

Factor, 83
 Facultative parasites, 129
 — saprophytes, 129
 Fairy rings, 161
 False acacia, 146
 — branching, 37
 — fruit, 15
 — septum, 11, 15
 — tinder fungus, 161
 Families, 33
 Fan-like leaves, 73
 Fascicular cambium, 25
 Fat droplets, 21

Fats, 95
 Fatty acids, 97
 Feather-grass, 139
 Felling of forests, 109
 Fen, 117
 Fenland, 117
 Fennel, 149
 —, hog's, 149
 Fenwood, 117
 Fermentation, 97
 Fernleaf, 155
 Ferns, 61
 Fertilisation, 15, 31, 81
 Fertilised eggs, 77
 Fertility, 85
 Fescue, sheep's, 138
 Fescue-grass, 138
 Fibres, 21, 23
 Fibrous layer, 29
 — root, 9
 — tracheids, 25
 Fibro-vascular bundles, 23
 Fig, 141
 Figwort, 151
 Filament, 11, 43
 Filamentous, 35
 Film transfers, 77
 Fine sand, 105
 — silt, 105
 Finger and toe, 156
 Fiorin, 138
 Fir, 137
 —, Douglas, 137
 Fire, 162
 — blight, 156
 Fires, 111
 First colony, 117
 — filial generation, 83
 Fission, 37, 39
 Fistular stem, 7
 Flag smut, 160
 —, sweet, 139
 —, yellow, 140
 Flagellates, 35
 Flagellum, 37
 Flask-shaped, 49
 Flattened lamina, 45
 Flax, common, 146
 —, purging, 146
 Fleabane (Erigeron), 153
 — (Inula), 153
 Flooding, 117
 Floral axis, 9
 — leaves, 9
 Flour-paste, 133
 "Flour" sand, 105
 Flower structure, 9
 Flowering plants, 1
 Flowerless plants, 1
 Fly speck, 162
 Folds, 51
 Foliacous lichens, 53
 Foliage leaf, 3, 5
 Foliar gaps, 63
 Foliose liverworts, 55
 Follicle, 15
 Fool's parsley, 148
 Foot, 61
 — rot, 158, 163
 Forest, 119
 Forget-me-not, 150
 Form, 1
 Formaldehyde, 95
 Formations, 115

Formative effect, 107
 Fossil botany, 75
 — plants, 75
 Fovea, 65
 Foxglove, 151
 Foxtail, meadow, 138
 Fraction, 113
 Fragmentation, 81
 Free central placentation, 11
 Freezing point, 109
 Frequency, 115
 — symbols, 111
 Fresh water, 43
 Frogbit, 138
 Fronds, 65
 Frost, 103, 123
 Frost-free period, 109
 Fructicose lichens, 53
 Fructification, 41, 51
 Fructose, 21, 95
 Fruit, 15
 Fruit and stem rot, 159
 — rot, 161
 Fucoxanthin, 45
 Fumigant, 133
 Fumitory, 143
 Functional germ cells, 85
 Fundamental type of antheridium, 61
 Fungi, 35
 Fungicides, 133
 Funicle, 15
 Furze, 146
 Fusion, 21, 81
 — of female gametes, 81
 — of male gametes, 81
 — suture, 15

G

Gain, 107
 Gale, sweet, 141
 Galinsoga, 153
 Gall, 161
 Gametangia, 35
 Gametes, 33, 81, 83
 Gametophyte, 35, 55
 Gamopetalous, 9
 Gamophyllous, 9
 Garlic, 139
 —, crow, 140
 — mustard, 143
 Gaseous compounds, 91
 Gean, 145
 Gel, 19
 Gelatin, 127, 133
 Gelatinous thalli, 51
 Gemma, 3, 57
 Gemmae cups, 57
 Gene, 83
 Genera, 33, 87
 Generalised parasites, 129
 Generative cells, 71
 — nucleus, 29, 31
 Genetic composition, 83
 — variability, 87
 Genotype, 83, 87
 Gentian, 150
 Geographic distribution, 129
 Geophytes, 113
 Geotropism, 101
 Geranium, meadow, 146
 Germ plasm, 85
 Germination, 99, 107
 Gherkin, 152
 Gills, 51

Ginseng, 148
 Girdle-side, 41
 Gladiolus, 140
 Glandular tissue, 23
 Glassiness, 154
 Gleba, 51
 Globe artichoke, 153
 — flower, 143
 Globularia, 151
 Globulin, 95
 Glucose, 95
 Glume, 7
 — blotch, 162
 Glutelin, 95
 Glycerin, 97
 Glycerol, 95
 Goat's beard, 153
 — rue, 146
 Golden rod, 153
 Gold-of-pleasure, 144
 Gonidia, 51
 Gonidial layer, 51
 Gonoplasms, 49
 Good King Henry, 142
 Gooseberry, 144
 Goosefoot, 142
 Goosegrass, 151
 Gorse, 146
 Gourd, 152
 Gout weed, 148
 Gradient of suction pressure, 99
 Graft canker, 162
 — hybrids, 85
 — surface, 85
 Grafting, 125
 Grain smut, 160
 Grand period of growth, 99
 Granular chromatin, 79
 Granular cytoplasm, 79
 Grape fruit, 146
 — vine, 147
 Grasses, 3, 138, 139
 Grass-of-Parnassus, 144
 Grass-wrack, 137
 Gratiola, 151
 Gravel, 105
 Gravitational water, 105
 Gravity, 101, 107
 Grazing, 111, 117
 Green-winged orchis, 140
 Grey bulb rot, 163
 — leaf, 154
 — mould, 162
 Gromwell, 150
 Ground tissue, 23
 Ground-ivy, 150
 Groundnut, 145
 Groundsel, 153
 Groups of symptoms, 121
 Growing crops, inspection of, 135
 — point, 3, 21
 Growth, 91, 99, 107
 — due to thickness, 99
 — forms, 113
 Guard cells, 29
 Guelder rose, 152
 Gummosis, 163
 Gums, 27, 133, 148
 Gynoecium, 9, 11
 Gypsophila, 142

H

Habitats, 103

Hadrome, 23
 Hail injury, 123
 Hair-grass, 138
 Hairiness, 111
 Halo blight, 156
 Halophytes, 111
 Haplochlamydous, 9
 Haplod, 81
 — generation, 55
 Haplostenemous, 11
 Haptotropism, 101
 Hard rot, 162
 Hardheads, 153
 Hardiness, 87
 Harebell, 152
 Harmful gases, 123
 Hastate leaf, 5
 Haulm, 7
 Haustorium, 9, 47
 Hawkbit, 153
 Hawkweed, 153
 Hawthorn, 145
 Hazel, 141
 Head smut, 160
 Healing of wounds, 27
 Heart rot, 154
 Heartsease, 148
 Heart-shaped prothallus, 61
 Heart-wood, 27
 — — rot, white, 161
 Heath association, 115
 — plants, 111
 Heather, bell, 149
 —, common, 149
 Heaths, 105, 115, 119
 Hedge calaminth, 150
 Hedge-hyssop, 151
 Helcoid cyme, 13
 Heliophytes, 107
 Hellebore, 143
 Helleborine, 140
 Hemicelluloses, 21
 Hemicyptophytes, 113
 Hemicyclic, 11
 Hemlock, 149
 — lettuce, 153
 — spruce, 137
 Hemp, 141
 — agrimony, 153
 Hemp-nettle, 150
 Henbane, 151
 Hepatica, 143
 Herb Paris, 140
 — Robert, 146
 Herbs, 113
 Heredity, 83
 Heritable characters, 81, 85
 Hermaphrodite, 13
 Heterochlamydous, 9
 Hetero-chromosomes, 83
 Heterocysts, 39
 Heterogamy, 33, 35
 Heteromerous thalli, 51
 Heterophilly, 5
 Heteroploid, 81
 Heterosis, 87
 Heterosporous, 67
 Heterothallic, 49
 Heterotrophic plants, 95
 Heterozygote, 87
 Heterozygous, 83
 Hibernating organs, 43
 High temperature, 123
 Hilum, 15
 Histology, 79

ENGLISH INDEX

Historical development, 103
Hog's fennel, 149
Hogweed, 149
Holdfast, 9
Holly, 147
 — sea, 149
Hollyhock, 147
Homiochlamydeous, 9
Homoiomerous thallus, 51
Homologous, 1
 — chromosomes, 31, 63
 — structures, 35
Homosporous, 67
Homothallic thallus, 49
Homozygous, 83
Honesty, 144
Honey agaric, 161
 — glands, 9
Honeysuckle, 152
 —, fly, 152
 —, perfoliate, 151
Hood, 57
Hooked chromosome, 79
Hop, wild, 141
Horehound, 150
Hormogonia, 39
Hermones, 101
Hornbeam, 141
Horn-nut, 148
Horse chestnut, 147
 — radish, 144
Horse-tails, 61
Host, 127
 — range, 129
 — tissue, 131
Hound's tongue, 150
Houseleek, 144
Humidity, 109
Humus, 103
Hyacinth, grape, 140
 —, wild, 140
Hybrid vigour, 87
Hybridisation, 87, 131
Hydrangea, 144
Hydrarch succession, 117
Hydrogen, 91
 — ion concentration, 105
Hydrolyse, 97
Hydrophytes, 109
Hydrosere, 117
Hydrotropism, 101
Hygrophytes, 109
Hygroscopic teeth, 59
Hyemenal layer, 49
Hyphe, 47
Hyphal tip cultures, 129
Hypobasal hemisphere, 61
Hypocotyl, 71
Hypogynous flower, 11
Hypophysis, 31
Hypsophyll, 7
Hyssop, 150

Identification, 121, 129
Imbibing water, 93
Imbibition, 93
 — mechanism, 67
Immunity, 131
Imparipinnate leaf, 5
Impervious to water, 27
Imports, 135
Impregnated, 23
 — valves, 41
Impression, fossil, 75

I

Inbreeding, 87
Inclusions, 21
Increase in girth, 25
 — in height, 99
 — in size, 99
 — in weight, 99
Incrustation, fossil, 75
Incubation period, 129
Incubous leaves, 55
Indehiscent fruit, 15, 17
Indian corn, 139
Indol, 97
Induced variation, 85
Induction, 101
Indusium, 65
Inert substances, 133
 “ Infected ” areas, 135
Infectious chlorosis, 155
Inferior gynoecium, 11
Inflorescence, 18
Infranodal canal, 77
Infusions, 127
Inheritance, 79
Inhibited cells, 101
Initial cell, 29, 61
Inoculation, 125, 127
Inoculum, 129
Insect pollination, 11
 — powder plant, 152, 153
 — punctures, 125
Insects, 111
Insignificant variation, 85
Insolation, 99
Insoluble proteins, 19
Inspection of growing crops, 135
Integument, 15, 31, 69
Intensive selection, 87
Intercalary growth, 3
Intercellular space, 23, 27
 — system, 27
Interfascicular cambium, 25
Intermediate inheritance, 85
Internal air spaces, 111
 — rust spot, 155
 — surface, 19
Internode, 3
Interstices, 105
Intine, 29
Intracellular inclusions, 125
Introduction of diseases, 135
Introrse, 11
Intumescences, 154
Intussusception, 21
Inulin, 95
Invertase, 97
Involucel, 7
Involucral leaf, 7
Involure, 7
Involution forms, 37
Ions, 93
Iron, 91
Irregularly arranged bundles, 25
Irritability, 91, 101
Isogamete, 33, 41
Isogamic, 41
Isogamy, 33
Isolation of pathogen, 127
Ivy, 148
 —, poison, 147
Iwanowski bodies, 125

J

Jasmine, 149

K

Jerusalem artichoke, 153
Judas tree, 146
Juniper, 137

L

Laburnum, 146
Ladies' bedstraw, 151
Lady's fingers, 145
 — mantle, 145
 — slipper, 140
 — smock, 144
 — tresses, 140
Lamb's lettuce, 152
Lamellæ, 51
Lamina, 3, 5, 27
Lanceolate leaf, 5
Larch, 137
Large vessels, 25
Larkspur, 143
Late blight, 157
 — wood, 27
Lateral branch, 7, 99
 — cilia, 45
 — root, 9
 — vein, 5
Laterites, 105
Latitude, 109
Laurel, cherry, 145
 —, spurge, 148
 —, true, 143
Lavender, 150
 —, sea, 149
Layer of cells, 23
Leaf, 1, 23
 — base, 3
 — blade, 3
 — blister, 157
 — blotch, 162, 163
 — fall, 5
 — fleck, 159
 — mould, 163
 — roll, 155
 — rot, 162
 — scar, 5
 — scorch, 161, 162
 —, cherry, 159
 — sheath, 3
 — smut, 160
 — spot, 158, 159, 161, 163
 — — angular, 156
 — stalk, 3
 — stripe, 163
 — trace, 73
Leaflet, 5
Leak, 157
Leathery leaves,
Ledum, 149
Leek, 139
Legislative control, 133
 — measures, 135

- Legume, 15
 Lemon, 146
 Length of day, 107
 — illumination, 107
 Lenticels, 27
 Lentil, 146
 Leptome, 29
 Leptosporangiate ferns, 67
 Lethal factor, 87
 Lettuce, 153
 — hemlock, 153
 — lamb's, 152
 — prickly, 153
 Leucin, 95
 Leucoplasts, 21
 Libriform tissue, 25
 Life cycle, 111
 — forms, 113
 — history (of pathogen), 129
 Light, 101, 103
 — plants, 107
 Lignification, 21, 107
 Lignified walls, 25
 Ligule, 65
 Lilac, 150
 Lily, 14
 —, May, 140
 Lily-of-the-Valley, 140
 Lime, 105
 —, sweet, 146
 Lime-tree, 147
 —, broad-leaved, 147
 Linear leaf, 5
 — tetrad division, 69
 Ling, 149
 Linkage, 85
 Linseed, 146
 Lipase, 97
 List of species, 111
 Liverworts, 65, 57
 Living material, 91
 Lobed leaf, 5
 Loci, 71
 Locomotion, 101
 Loculus, 11
 Lodging, 154
 Lomentum, 15
 Long day plants, 109
 — shoots, 73
 Loose kernel smut, 160
 — smut, 159
 Loosestrife, purple, 148
 Lophotrichous, 87
 Loranthus, 141
 Lords and Ladies, 139
 Loss of virulence, 125
 Lousewort, 151
 Love-in-the-Mist, 143
 Low temperature, 123
 Lower epidermis, 27
 Lucerne, 146
 Lumen, 19
 Lungwort, 150
 Lupin, 146
 Lychnis, 142
 Lyme-grass, 138
- M**
- Macroprothalli, 67
 Macrosporangium, 29
 Macrospore, 31
 — mother cell, 29
 Macrosporophylls, 29, 73
 Madder, dyers', 151
 Madi, 153
- Magnesium, 91
 Magnolia, 143
 Mahaleb, 145
 Maize, 139
 — smut, 159
 Male determining, 83
 Malic acid, 21
 Mallow, common, 147
 —, dwarf, 147
 —, marsh, 147
 Maltose, 21, 95, 97
 Man, 103
 — orchis, 140
 Mandarin, 146
 Mangold wurzel, 142
 Mangold, 142
 Mannagrass, 138
 Manubrium, 43
 Many-celled pro-embryo, 71
 Maple, 147
 Marestail, 148
 Marginal blight, 156
 — dehiscence, 11
 — ovule, 75
 — slit, 11
 Marigold, 152
 —, African, 153
 —, corn, 153
 —, French, 153
 —, marsh, 143
 Marine flora, 43
 Marjoram, sweet, 150
 —, wild, 150
 Market consignments, 135
 Marram, 138
 Marrow, vegetable, 152
 Marsh, 115, 117
 — arrow-grass, 137
 — mallow, 147
 — marigold, 143
 — plants, 111
 — samphire, 142
 Marsupium, 57
 Mass selection, 87
 Massulae, 67
 Master factor, 109
 Masterwort, 149
 Mat-grass, 138
 Maturation, 15
 May, 145
 Mayweed, stink, 152
 Meadow, 115
 — ruc, 143
 — saffron, 140
 — sweet, 145
 Meadow-grass, 139
 Meat extracts, 127
 Mechanical tissue, 23, 111
 Median ovule, 75
 Medlar, 145
 Medulla, 23
 Medullary layer, 51
 — ray, 23, 25
 Medullated protostele, 63
 Meiosis, 29, 81
 Megaphyllous, 65
 Melanoze, 161
 Melick, 138
 Melilot, 146
 Melon, 152
 —, snake, 152
 —, water, 152
 Meristele, 69
 Meristematic tissue, 21
 Mesarch, 65
 Mesic, 117
- Mesocarp, 15
 Mesophyll, 23, 27, 99
 Mesophytes, 109
 Mestome, 23
 Metabolism, 91
 Metaphase, 79
 Metaxylem, 25
 Methods of isolation, 129
 Microcysts, 39
 Micro-fauna, 103
 Micro-flora, 103
 Microgametangia, 45
 Microphyllous, 65
 Micropothallii, 67
 Micropyle, 15, 31, 71
 Microspira, 37
 Microsporangium, 29
 Microspore, 29
 — mother cells, 29
 Microsporophylls, 29, 73
 Middle lamella, 21
 Midrib, 5
 Mignonette, common, 144
 —, cut-leaved, 144
 Mildew, American gooseberry, 158
 —, downy, 157
 —, European gooseberry, 158
 —, powdery, 158
 Milfoil, 152
 —, water, 148
 Milk extracts, 127
 Milkweed, 150
 Milkwort, 146
 Millet, Indian, 139
 Mineral salts, 91
 Mint, water, 150
 Minus strain, 49
 Mistletoe, 141
 Mitosis, 79
 Modified ovule, 77
 Moisture, 101
 — equivalent, 107
 Molinia, purple, 138
 Monangial sorus, 65
 Moneywort, 149
 Monkshood, 142
 Monochasium, 13
 Monochlamydous, 9
 Monoclinous flower, 13
 Monocotyledonous, 25
 Monoeious, 13, 61
 Monopodial, 7
 Monosaccharides, 95
 Monostelic, 63
 Monosymmetrical, 13
 Monotrichous, 37
 Moors, 105, 117
 Morphological, 111
 Morphology, 1, 107
 Mosaic, 155
 —, Aucuba, 155
 —, rugose, 155
 Moschatel, 151
 Mosses, 57
 Mother cell, 79
 Motile cell, 35
 Mould, 158
 —, black, 163
 —, blue, 157
 —, blue-green, 157
 —, grey, 162
 —, leaf, 163
 —, pink, 163
 —, white, 163

Mouldy rot, 157
 Mouse-ear chickweed, 142
 Mousetail, 143
 Movement in lower plants, 101
 Mowing, 117
 Mucronate leaf, 5
 Mugwort, 153
 Mulberry, 141
 Mullein, 151
 Multinucleate protoplasm, 69
 Multiple effects, 87
 — factors, 87
 Multiplication of cells, 99
 Must orchis, 140
 Mustard, black, 143
 —, garlic, 143, 144
 —, hedge, 144
 —, white, 144
 Mutation, 85
 Mycelium, 47
 Mycology, 97
 Mycorrhiza, 61
 Myrtle, 148
 Myxamœbæ, 39
 Myxomycetes, 35

N

Naked protoplast, 39
 — seeds, 1
 Nastic movement, 101
 Natural orders, 33
 Navelwort, 144
 Neck, 57
 — canal cells, 57
 — rot, 162
 Nectarine, 145
 Nectary, 9
 Needle inoculation, 125
 Negatively geotropic, 101
 — phototropic, 101
 Nerve, 5
 Net blotch, 163
 Net-like cross support, 39
 Nettle, small, 141
 —, stinging, 141
 Nettlehead, 155
 Nettle-tree, 141
 Nightshade, 151
 —, black, 151
 —, deadly, 151
 —, enchanter's, 148
 Nipplewort, 153
 Nitrates, 21, 91
 Nitrogen, 91, 103
 Node, 3
 Nodules, 77
 Non-ciliated gametes, 35
 Non-disjunction, 8
 Non-living material, 91
 Non-motile, 35
 Non-parasitic diseases, 123
 Non-septate hyphæ, 47
 Normal bud, 6
 Nucellus, 15, 29, 69
 Nuclear cavity, 19
 — membrane, 19, 79
 — spindle, 79
 Nucleoli, 19, 79
 Nucleus, 19, 79
 Nut, 141
 Nutrient solutions, 127
 — substrata, 127
 Nutrients, 105
 Nutrition, 91
 Nyctinasty, 101

Oak, British, 141
 —, cork, 141
 —, Durmast, 141
 — woods, 115
 Oat, bristle-pointed, 138
 —, cultivated, 138
 —, golden, 139
 —, wild, 138
 —, yellow, 139
 Oat-grass, false, 138
 —, tall, 138
 Obdiplostemonous, 11
 Obligate parasites, 129
 Oblique perforated septa, 25
 — septation, 55
 Obliquely cut, 127
 Ocean currents, 109
 Octants, 61
 Cœdema, 154
 Offspring, 83
 Oidia, 47
 Oil palm, 139
 Oleander, 150
 Oleaster, 148
 Olive, 150
 Onion, 139
 — smut, 160
 Ontogeny, 1
 Oogamic, 41
 Oogamy, 35
 Oogonia, 35
 Oomycetes, 49
 Oosphere, 35, 57
 Oospore, 35, 43
 — envelope, 41
 Operculum, 59
 Opposite, 3
 Orache, garden, 142
 Orange, 146
 —, Seville, 146
 Orbicular leaf, 5
 Orchids, 140
 Orchis, bee, 140
 —, bird's nest
 —, bog, 140
 —, green-winged, 140
 —, man, 140
 —, musk, 140
 —, purple, 140
 Orders (legal), 135
 — natural, 33
 Organ, 1
 Organic acids, 21
 — catalysts, 97
 — matter, 103
 Organisation, 103
 Organised living unit, 125
 Organography, 1
 Original rock, 103
 Orthotropous, 15, 75
 Osier, 141
 Osmosis, 93
 Osmotic pressure, 93
 Ostiole, 49
 Outer hyphal cortex, 51
 — layer, 29
 — world, 91
 Ovary, 11
 Ovate leaf, 5
 Overlapping of terms, 33
 Over-susceptibility, 131
 Ovule, 11, 29, 69
 Ovuliferous scale, 75
 Ovum, 15, 31, 85, 57
 Oxalic acid, 21

P

Pæony, 143
 Pairs, 81
 Palæ, 65
 Palæontology, 89
 Palæophytology, 75
 Pale spot, 163
 Palingenetic, 77
 Palisade parenchyma, 27
 Palm, coconut, 139
 —, Corozo nut, 139
 —, date, 139
 —, dwarf, 139
 —, oil, 139
 —, rattan cane, 139
 Palmate, 5
 Palmatid, 5
 Palmatipartite, 5
 Panama disease, 163
 Panicle, 13
 Panicum, 139
 Pansy, 148
 Papillæ, 29
 Pappus, 13, 15
 Para rubber, 147
 Parallel venation, 5
 Paraphyses, 45
 Parasite, 111, 127
 Parasitic diseases, 127
 — nutrition, 47
 — plant, 9
 Parenchyma, 23
 Parents, 83
 Parichnos, 77
 Parietal placentation, 11
 Paripinnate, 5
 Parsley, 149
 —, fool's, 148
 Parsnip, 149
 —, cow, 149
 —, water, 149
 Parthenogenetically, 43
 Partite, 5
 Pasque-flower, 143
 Pathogen, 127
 Pathogenicity, 37, 127
 Pathological tissue, 81
 Pea, everlasting, 146
 —, field, 146
 —, garden, 146
 —, sweet, 146
 Peach, 145
 — leaf curl, 157
 Peanut, 145
 Pear, 145
 Peat mosses, 117
 Pectin, 21
 Pectinate, 5
 Peduncle, 13
 Pelican flower, 141
 Peltate, 65
 — lamina, 75
 — leaf, 5
 Pendulous strobili, 75
 Pennyroyal, 150
 Pennywort, 149
 Pentarch, 29
 Pentosans, 21
 Pepper, 140, 151
 Peppermint, 150
 Pepperwort, 144
 Peptone, 95, 97

- Percentage of quadrats, 115
 Perception, 101
 Perfoliate leaf base, 3
 Perianth, 9
 — leaves, 9
 Periblem, 23
 Pericarp, 13, 15
 Perichaetium, 57
 Periclinal, 23
 — chimæras, 87
 Pericycle, 23, 27
 Periderm, 27
 Peridermium, 51
 Peridiola, 51
 Peridium, 39, 49, 51
 Perigone, 9, 73
 Perigynous flower, 11
 Period of senescence, 99
 Periodicity, 115
 Peripheral layer, 19, 59
 Periplasm, 49
 Perisperm, 13, 15, 31
 Perispore, 67
 Peristome, 59
 Perithecium, 49
 Peritrichous, 37
 Periwinkle, 150
 Perizonium, 41
 Permanent tissue, 21
 Persicary, 142
 Pest, 127
 Petal, 9, 29
 Petaloid, 9
 Petiole, 3
 Petiolate, 5
 Petri-dishes, 127
 Petrification, 75
 Petty whin, 146
 Phæophain, 45
 Phanerogam, 1, 33
 Phanerophyte, 113
 Pheasant's eye, 142
 Phelloderm, 27
 Phellogen, 27
 Phenomena of the disease, 121
 Phenotype, 83
 Phloem, 25
 — necrosis, 155
 — parenchyma, 25
 Phosphates, 21
 Phosphorus, 91
 Photochemical reactions, 95
 Photonasty, 101
 Photoperiodism, 109
 Photosynthesis, 98, 107
 Phototaxis, 101
 Phototropism, 101
 Phycocyan, 39
 Phycoerythrin, 45
 Phylloclade, 7
 Phylloide, 7
 Phyllosiphonic, 65
 —, siphonostele, 63
 Phyllotaxis, 9, 73
 Phylogenetic, 33
 Phylogeny, 1, 33
 Physical constitution of a soil, 105
 Physiognomy, 111
 Physiological drought, 111
 — species, 129
 — variation, 85
 Physiology, 91
 Phytopathology, 121
 Pigment, chlorophyll, 21
 Pignut, 149
 Pileus, 51
 Piliferous layer, 29
 Pimpernells, 149
 Pine, 137
 —, Weymouth, 137
 — woods, 115
 Pink mould, 163
 Pink rot, 157
 Pinna, 5
 Pinnate, 5, 65
 Pinnatifid, 5
 Pinnatipartite, 5
 Pioneers, 117
 Pith, 23
 Pits, 21, 41, 51
 Pitted cells, 25
 — vessels, 25
 Placenta, 11
 Plagiotropic, 101
 Plane, 145
 Plankton, 41
 Planogametes, 35
 Planosarcinae, 37
 Plant body, 19
 — community, 115
 — ecology, 103
 — indicators, 111
 — pathology, 121, 127
 — protection service, 135
 — sanitation, 133
 — sociology, 113
 Plantain, broad leaved, 151
 —, ribwort, 151
 —, water, 188
 Plasmodesma, 21
 Plasmodium, 39
 Plasmolysed cell, 93
 Plectenchyma, 47
 Plectridium, 37
 Pleiochasmus, 13
 Plemomorphic, 37
 Plerome, 23
 Pleurocarpic, 57
 Plum, 145
 — pocket, 157
 — pox, 155
 — wart, 158
 Plumbago, 149
 Plumule, 31, 71
 Plurilocular gametangium, 45
 Plus strain, 49
 Pneumatophore, 9
 Pod spot, 156, 161
 Podetum, 53
 Podsol, 105
 Point of attachment, 79
 Poison ivy, 147
 Polar flagellum, 37
 — nuclei, 31
 Polarity, 101
 Pole, 79
 Pollen grain, 11, 29
 — mother cells, 29
 — sac, 11, 29
 — tube, 29
 — nucleus cell, 71
 Polyarch, 29
 Polycotyledonous seedling, 71
 Poly-embryonic stage, 71
 Polyhedral, 19
 Polymeric factors, 87
 Polymerises, 95
 Polypeptide, 97
 Polypetalous, 9
 Polyphyletic origin, 47
 Polyphyllous, 9
 Polyploid, 81
 Polysaccharides, 95
 Polysepalous, 9
 Polystelic condition, 63
 Pomegranate, 148
 Pondweed, 137
 Poplar, 140
 —, black, 141
 Poppy, field, 143
 —, opium 143
 Pore, 11, 27, 41, 51
 Positively phototropic, 101
 Potassium, 91
 Potato, 151
 —, sweet, 150
 Powder, 133
 Powdery mildew, 158
 — scab, 156
 Prairies, 105, 115
 Predispose to disease attack, 131
 Preventive measures, 131
 Prickles, 7
 Prickly lettuce, 153
 Primal aquatic flora, 59
 Primary axis, 7
 — medullary rays, 25
 — nucleus, 31
 — phloem, 23
 — survey, 111
 — tissue, 21
 — xylem, 23
 " Primitive " character, 77
 Primrose, 149
 —, evening, 148
 Prince's feather, 142
 Principle, infective, 125
 Prismatic, 19
 Privet, 150
 Procambial strands, 23
 Procarp, 45
 Process of weathering, 103
 Proembryo, 31, 55, 71
 Progeny, 83
 Progression, 33
 Promycelium, 49
 Propagation, 101
 Properties of a soil, 105
 Prophase, 79
 Prophyll, 7
 Propinquity, 115
 Prop-root, 9
 Prosenchyma, 23
 Prostrate shoot, 7
 Protamine, 95
 Protea-es, 97
 Protecting organs, 7
 Protection of plants, 135
 Protective action, 138
 Protein, 19, 93
 Prothallus, 61
 Prothallium, 61
 Protonema, 55
 Protoplasm, 19, 79, 91
 Protoste, 63
 Protoxylem, 25
 Protuberances, 41
 Prune, 145
 Pruning of trees, 133
 Pseudomonas, 87
 Pseudoparenchymatous tissue, 47
 Pseudoperidium, 51

Pseudopodia, 39, 59
 Puff-balls, 51
 Pumpkin, 152
 —, giant, 152
 Pure line selection, 87
 — stands of species, 115
 Purple loosestrife, 148
 — orchis, 140
 Purslane, sea, 142
 Pustule, black, 158
 Putrefaction, 97
 Pycnidiospores, 49
 Pycnidium, 47, 51
 Pyramidal group, 29
 — growth, 73
 Pyrenoids, 39
 Pyrethrum, 159
 Pyxidium, 17

Q

Quadrats, 113
 Qualitative variation, 85
 Quality, 87
 Quantitative variation, 85
 Quarantine, 135
 Quince, 145
 Quitch-grass, 138

R

Rabbits, 111
 Raceme, 13
 Racemose, 13
 Races, 125, 129
 Rachide, 13
 Rachis, 5, 77
 Radial, 13
 —, walls, 29
 —, xylem and phloem, 29
 Radical leaf, 3
 Radicle, 31, 71
 Radish, garden, 144
 —, horse, 144
 —, wild, 144
 Ragged robin, 142
 Ragwort, 153
 Rain, 103
 Rainfall, 103, 109
 Ramentæ, 65
 Ramenta-like growths, 77
 Rampion, 152
 —, ear-like, 152
 Ramular gaps, 63
 Rape, 143
 Raphides, 21
 Raspberry, 145
 Rate of growth, 99
 — interest, 99
 Ratio, 105
 Rattan cane palm, 139
 Raw material of soil, 103
 Ray-shaped, 13
 Reaction of the soil, 123
 Receptacle, 9
 Recessive, 83
 Reciprocal cross, 87
 Recombination, 85
 Reconnaissance, 111
 Recovery of plant pathogen, 127
 Rectangular, 19
 Red algæ, 35
 — rays, 95
 — soils, 105
 — spot disease, 158
 Redwood, 137

Red-yellow end of spectrum, 107
 Redistribution of factors, 85
 Reduced nitrate, 95
 Reductase, 95
 Reduction, 33
 — division, 29, 81
 — of carbon dioxide, 93
 — of number of cells, 77
 Re-duplication, 81
 Reed, common, 139
 — glyceria, 138
 — mace, 197
 —, small, 138
 Reed-grass, 139
 Refractive, 79
 — bodies, 19
 Regeneration, 101
 Relative growth rate, 99
 Reniform, 5
 Reproduction, 91
 Reproductive organs, 9, 33
 Resin canals, 25
 — passages, 73
 Resistance, 131
 Respiration, 97
 Respiratory cavity, 27
 — quotient, 97
 — root, 9
 Respired starch and sugar, 97
 Response, 101
 Rest Harrow, 146
 Resting condition, 111
 — embryo, 77
 — spores, 35
 Resupinate fructifications, 51
 Reticulate chromosomes, 79
 — veined leaves, 73
 — venation, 5
 — vessels, 25
 Reversible reaction, 97
 Rhizines, 53
 Rhizoid, 9, 43, 55
 Rhizome, 7, 113
 — scale, 7
 Rhizomorphs, 47
 Rhizophore, 65
 Rhododendron, 149
 Rhubarb, 142
 Ribwort plantain, 151
 Ridges, 29
 Ring, 51
 — shake, 161
 — spot, 155, 162, 163
 Ringed bark, 27
 Ripening of seed, 99
 Rivers, 117
 Rock cress, 143
 Rocket, sea, 144
 Rockrose, common, 148
 Rod-shaped cells, 37
 Rœstelia, 51
 Rogueing, 133
 Roll cultures, 127
 Root, 1, 7
 — cap, 7, 23
 — cutting, 101
 — hair, 9, 29
 — pressure, 99
 — rot, 156, 159, 161
 — — —, violet, 163
 — — —, white, 158
 — system, 9
 Root-thorn, 9
 Rose, dog, 145
 — field, 145

Rose, Guelder, 152
 Rosemary, 150
 —, wild, 149
 Rosette disease, 155
 — plants, 113
 Rot, bed, 161
 — bitter, 159
 — black, 156, 158, 161
 — black root, 157
 — black stalk, 156
 — blossom end, 154
 — brown, 156, 157, 159, 161
 — buck eye, 157
 — collar, 161
 — crown, 156
 — dry, 161, 162, 163
 — foot, 158, 163
 — fruit, 161
 — fruit and stem, 159
 — grey bulb, 163
 — hard, 162
 — heart, 154
 — leaf, 162
 — mouldy, 157
 — neck, 162
 — pink, 157
 — root, 156, 159, 161
 — sclerotinia, 159
 — side, 155
 — soft, 156, 157
 — stem, 157
 — stem end, 161
 — violet root, 163
 — white, 163
 — white heart wood, 161
 — white root, 158
 — winter, 163

Rotund, 5
 Rowan, 145
 Rubber, Para, 147
 Rue, 146
 — Goat's, 146
 — meadow, 143
 Runner, 7
 Rush, 139
 —, flowering, 138
 Rust, 160
 —, black stem, 160
 —, blister, 160
 —, brown, 160
 —, cluster cup, 160
 —, crown, 160
 —, dwarf, 160
 —, spot, internal, 155
 —, stripe, 160
 —, yellow, 160
 —, white, 157

Rusts, 49
 Rye, 139
 Ryegrass, Darnel, 138
 —, French, 138
 —, perennial, 138

S

Safflower, 153
 Saffron, meadow, 140
 Sage, garden, 150
 —, wood, 151
 Sagittate leaf, 5
 Sainfoin, 146
 St John's bread, 145
 St. John's-wort, 148
 Salad burnet, 145
 Sallow, 141
 Sallowthorn, 148

- Salsify, 153
 —, meadow, 153
 Saltmarsh plants, 111
 Samphire, 149
 —, marsh, 142
 Sand, 105
 Sandal-wood, 141
 Sandwort, 142
 —, vernal, 142
 Sanicle, 149
 Saprophytic nutrition, 47
 Sap-wood, 27
 Saturated colloid, 93
 Savannahs, 105
 Savin, 137
 Savory, 150
 Saxifrage, 144
 —, burnet, 149
 —, golden, 144
 Scab, 158, 159, 162
 —, common, 156
 —, corky, 156
 —, powdery, 156
 Scabious, field, 153
 Scalariform tracheids, 65
 — vessels, 25
 Scale leaf, 7, 55
 Scaly bark, 27
 Scar, 77
 Scarlet runner, 146
 Schizocarpic fruit, 15, 17
 Scion, 85
 Sciophytes, 107
 Scirpus, 139
 Sclerenchyma, 23, 65
 Sclerenchymatous fibres, 25
 Sclerophytes, 111
 Sclerostesta, 69
 Sclerotia, 47
 Sclerotinia rot, 159
 Scorch, 162
 —, leaf, 161, 162
 Scorpoid cyme, 13
 Scorzonera, 153
 Scurf, black, 161
 Sea buckthorn, 148
 — coasts, 109, 119
 — holly, 149
 — lavender, 149
 — pink, 149
 — purslane, 142
 — rocket, 144
 Seakale, 144
 Sea-weeds, 45
 Secondary axis, 7
 — cortex, 27
 — medullary rays, 25
 — nucleus, 15, 31
 — succession, 117
 — thickening, 26
 — tissue, 21
 Secretion, 9
 Secretory tissue, 23
 Sectional chimæras, 87
 Sedge, sweet, 139
 Sedges, 139
 Sedge-grass, 139
 Seed, 1, 15, 77
 — bed, 129
 — coat, 15
 — fossil, 77
 — leaves, 7
 — plant, 1
 — steeps, 133
 — structure, 75
- Seed-bearing plants, 33
 Seedling blight, 158, 162, 163
 — disease, 156
 Segregation, 83
 Seismonasty, 101
 Selection, 87, 131
 Selective medium, 129
 Selfed, 83
 Self-fertilised, 87
 Self-heal, 150
 Selfing, 87
 Semi-permeable protoplasmic membrane, 93
 Sepal, 9, 29
 Sepaloid, 9
 Separation of the leaf, 27
 Septate hyphae, 47
 Septicidal capsule, 17
 Septifragal capsule, 17
 Seradella, 146
 Serial dilutions, 129
 Serrate leaf, 3
 Sessile leaf, 3
 Set seed, 109
 Seta, 57
 Sex chromosomes, 83
 Sexual cell, 33
 — generation, 33
 — haploid generation, 55
 — reproduction, 33, 81
 Shade leaves, 107
 — plants, 107
 Shade-intolerant, 107
 Shade-tolerant, 107
 Shallot, 139
 Shanking, 157
 Sheep, 111
 Sheep's bit, 152
 — fescue, 138
 — sorrel, 142
 Shepherd's purse, 144
 Shields, 43
 Shoot, 1
 — cutting, 101
 — tendril, 7
 Short day plants, 109
 — shoots, 73
 Shrub, 5, 71, 113
 Side rot, 155
 Sieve plates, 25
 — tube, 23, 25
 Silica, 41
 Silicified impression, 77
 Silicon, 91
 Silicula, 15
 Silqua, 15
 Silver leaf, 161, 163
 — weed, 145
 Simple fruit, 17
 — leaf, 5
 — strobilus, 75
 Sine of angle of deflection, 101
 Single cells, 19
 — spore cultures, 129
 Sinuate leaf, 3
 Size of the particles, 105
 Skatol, 97
 Skin spot, 162
 Skullcap, 150
 Slant cultures, 127
 Sleep movements, 101
 Sleepy disease, 163
 Sloe, 145
 Smoke injury, 123
- Smoulder, 162
 Smudge, 162
 Smut, boil, 159
 —, covered, 159
 —, — kernel, 160
 —, flag, 160
 —, grain, 160
 —, head, 160
 —, leaf, 160
 —, loose, 159
 —, loose kernel, 160
 —, maize, 160
 —, onion, 160
 —, stinking, 160
 —, stripe, 160
 Smuts, 49
 Snapdragon, 151
 Sneezewort, 152
 Snowberry, 152
 Snowdrop, 140
 Snowflake, 140
 Soaps, 133
 Soapwort, 142
 Societies, 115
 Sodium, 91
 Soft grasses, 138
 — rot, 156, 157
 Soil, 103
 — disinfectants, 133
 — disinfection, 133
 — moisture, 109
 Solar radiation, 97
 Solenostele, 63
 Solomon's seal, 140
 Sols, 19
 Solution, 97
 Soma, 79, 85
 Somatic chromosomes, 83
 — number of chromosomes, 81
 Sooty spot, 158
 Soredia, 51
 Sorghum, 138
 Sori, 65
 Sorrel, 142
 —, sheep's, 142
 —, wood, 146
 Sowbread, 149
 Soya bean, 146
 Snakegrass, 142
 Spadix, 13
 Spanish chestnut, 141
 Spathé, 7
 Spathulate leaf, 5
 Spawn, 47
 Spearwort, greater, 143
 Specialised parasites, 129
 Species, 33, 87
 Specific symptoms, 121
 Speck, black, 161
 Spectrum, 95, 107
 Speedwell, 151
 Spermatangia, 45
 Spermatogenous filaments, 43
 Spermatozoid, 35
 Spermatium, 45, 49
 Spermogonia, 49
 Spherical, 19
 Spike, 13
 Spindle tree, 147
 Spindle-tuber disease, 155
 Spine, 7, 51
 Spiny pollen grain, 11
 Spiræa, wood, 145
 Spiral, 11

Spiral band of cilia, 71
 — phyllotaxis, 3
 — vessels, 25
 Spireme thread, 79
 Splint, 27
 Spongy parenchyma, 27
 Sporadic, 131
 Sporangia, 35
 Sporangiola, 47
 Sporangiospores, 47, 65
 Spore, 1, 109
 — culture method, 129
 — masses, 59
 — mother cells, 49
 — suspension, 129
 Spore-bearing plants, 33
 Sporidia, 49
 Sporing plants, 1
 Sporocarp, 49, 65
 Sporodochium, 47
 Sporogenous tissue, 59
 Sporogonia, 55
 Sporophore, 51
 Sporophyll, 65
 Sporophyte, 38, 55
 Sports, 85
 Sporulation, 37
 Spot, angular leaf, 156
 —, black, 162
 —, brown, 162
 —, coral, 158
 —, internal rust, 155
 —, leaf, 158, 159, 161, 163
 —, pale, 163
 —, pod, 156, 161
 —, red, 158
 —, ring, 155, 162, 163
 —, skin, 162
 —, sooty, 158
 Spotted wilt, 155
 Sprain, 155
 Spraing, 155
 Spray, 138
 — fluids, 193
 Spreaders, 133
 Spreading, 133
 Spring aspect of an association, 115
 — wood, 25
 Sprout, Brussels, 143
 Spruce, 137
 —, hemlock, 137
 Spur blight, 159
 Spurge, Caper, 147
 —, Cyprus, 147
 —, petty, 147
 —, laurel, 148
 Spurious fruit, 15
 Spurry, 142
 Spurs, 73
 Squash, 152
 Squill, 140
 Stab cultures, 127
 Staining reaction, 37
 Stalk, 51, 57
 —, cell, 71
 Stamen, 9, 29, 73
 Staminate flower, 18
 Staminodes, 11
 Star of Bethlehem, 140
 —, nodding, 140
 Starch, 93, 95
 — grains, 41
 — sheath, 28
 — stars, 43

Starve, 107
 Starwort, water, 147
 Stele, 23, 63
 Stem, 1
 — and ear blight, 163
 — blight, 156
 — canker, 161
 — end rot, 161
 — rot, 157
 — rust, black, 160
 Stem-succulent, 7
 Steppes, 105
 Sterigmata, 49
 Sterile media, 127
 — paraphyses, 49
 Sterility, 85
 Sticklers, 133
 Stigma, 11
 Stilt root, 9
 Stimulation, 101
 Stimuli, 101
 Stinging nettle, 141
 Stinking smut, 160
 Stipe, 51
 Stipellar growths, 77
 Stipules, 3
 Stitchwort, 142
 Stock, 85, 144
 Stolon, 7
 Stoma, 27, 97
 Stomium, 67
 Stonecrop, 144
 Stoneworts, 43
 Storage organs, 9
 Straight chromosome, 79
 Strains, 87, 129
 Strands of protoplasm, 21
 Stratification, 115
 Stratified thalli, 51
 Strawberry, 145
 — tree, 149
 Streak, 155
 Striae, 41
 Stripe, leaf, 163
 — rust, 160
 — smut, 160
 Strobili, 65
 Stroma-like cushion, 47
 Stromata, 47
 Structure, 1
 Style, 11
 Sub-class, 33
 Sub-climax, 117
 Subculture, 129
 Sub-divisions, 33
 Suberisation, 21
 Sub-hymenial layer, 49
 Submerged leaf, 5
 Subordinate plants, 115
 Substitute fibres, 25
 Substratum, 43
 Succession, 117
 Succory, 153
 Succous leaves, 55
 Succulent pericarp, 17
 Succulents, 111
 Sucker, 7
 Sucrose, 21, 95
 Suction pressure, 93
 Sugar beet, 142
 — cane, 139
 Sugars, 93, 133
 Sulphur, 91
 — granules, 37
 Sulphurwort, 149

Summer aspect (of an association), 115
 — deciduous forest, 115
 Sun leaves, 107
 Sundew, 144
 Sunflower, 153
 Sunken stomata, 111
 Sunscald, 154
 Superior, 87
 — gynoecium, 11
 Suppressed branching, 73
 Surface of soil particles, 107
 Susceptibility, 131
 Suspended nucleus, 19
 Suspension, 133
 Suspensor, 31, 61, 71
 Swamp plants, 9
 Swamp-cypress, 137
 Swarm spore, 35, 37, 39
 Swede, 143
 Sweet Cicely, 149
 — flag, 139
 — gale, 141
 — potato, 150
 — sedge, 139
 — vernal, 138
 Swelling, 37
 Sycamore, 147
 Symbiosis, 61
 Symbiotic nutrition, 47
 — relationships, 129
 Sympodial, 7
 Symptomatology, 121, 125
 Symptoms, 121
 Synangium, 71
 Synapsis, 81
 Synaptic mates, 83
 Syncarpous, 11
 Syndesis, 81
 Syncology, 103
 Synergidae, 31
 Syngamy, 81
 Syncaryon, 49
 Syringa, 144
 System of venation, 5
 Systematics, 33

T

Take-all, 159
 Tannins, 27
 Tansy, 153
 Tap root, 9
 Tapetum, 29
 Tares, 146
 Tartaric acid, 21
 Tarweed, 153
 Taxis, 101
 Taxonomy, 33
 Tea plant, 148, 151
 Teasel, Fuller's, 152
 —, wild, 152
 Teeth, 51
 Teleutospore, 47, 49
 Telluric water, 117
 Telophase, 79
 Temperature, 103
 — climate, 71
 Tendril, 7
 — climber, 7
 Terminal bud, 3
 — rosette, 73
 — sporulation, 37
 Terms, ecological, 103
 Terrestrial life, 59
 Testa, 15

Test-tube, 127
Tetrads, 29
Tetraploid, 81
Tetrarch, 29
Tetrasporic thallus, 45
Tetrasporophyte generation, 45
Thalloid, 33
— liverworts, 55
Thallus, 33
Thermal death point, 109
Thermonasty, 101
Thermophilic bacteria, 109
Therophytes, 113
Thickened corner, 23
Thigmotropism, 101
Thistle, creeping, 153
—, cotton, 153
—, globe, 153
—, ground, 153
—, milk, 153
—, sow, 153
—, spear, 153
—, weather, 152
Thorn, 7
— apple, 151
Thread-like cross support, 39
Thrift, 149
Thuja, 137
Thyme, common, 151
— wild, 151
Time of flowering, 107
Timothy, 139
Tinder fungus, 161
—, false, 161
Tissue culture method, 129
Tissues, 21, 79
Toadflax, 151
—, bastard, 141
Toadstools, 51
Tobacco, 151
—, Virginia, 151
Tomato, 109, 151
Toothwort, 151
Tormentil, 145
Torus, 9
Touch-me-not, 147
Trabecula, 43, 65
Tracheæ, 25
Tracheids, 25, 73
Trama, 51
Transition, 77
Transitional colony, 117
— moors, 119
Translocated, 97
Translocation, 91
Transmissibility, 125
Transmitted disease, 125
Transmitting insect, 125
Transpiration, 97
— stream, 97
Transversely geotropic, 101
Traumonasty, 101
Traveller's Joy, 143
Treacle mustard, 144
Trees, 5, 113
Triarch, 29
Trichogyne, 45
Triploid, 81
Trisomic plant, 8
Tropical climate, 71
— vegetation, 105
True root, 9
— septa, 11
— vessels, 73
Tschernosems, 105

Tuber, 7
Tuber-like resting bodies, 47
Tuberous fructifications, 51
— root, 7
Tubes, 51
Tufted branches, 45
— hair-grass, 138
Tufts of flagellæ, 37
Tulip, 140
Tulip-tree, 143
Turgid, 93
Turgor-pressure, 93
Turnip, 144
Tussock-grass, 138
Twayblade, 140
Twiner, 7
Twist, 162
Twitch-grass, 138
Two-lobed leaves, 73
Tyloses, 25
Tyrosin, 95

U

Unibel, 13
Unavailable water, 107
Unbalanced nutrition, 123
Undifferentiated vegetative body, 33
Unicellular, 35
Unilocular sporangium, 45, 47
Uninucleate spores, 39
Uniseriate filament, 45
Unisexual, 61
— flower, 13
Unorganised toxic substance, 125
Unstratified thalli, 51
Upper epidermis, 27
Uredospores, 47

V

V-shaped chromosome, 79
Vacuole, 19, 93
Vaginula, 57
Valerian, 152
Vallecular canals, 65
Valleys, 109
Valve, 11, 41
Valve-side, 41
Vanilla, 140
Variation, 83, 85
Varieties, 87
— of host, 129
Vascular bundle, 23, 27
— cryptogams, 33, 61
— portion, 23
— trace, 77
Vectors, 125
Vegetable ivory, 139
— kingdom, 1
Vegetation, 103
Vegetative nucleus, 29
Veil, 51
Vein, 5
Velum, 51
Venation, system of, 5
Venter, 57
Ventral canal cell, 57
— side, 5
— — of thallus, 55
— suture, 11
Venus' fly-trap, 144
Verticillate, 3
Verbain, 150

Vessels, 21, 25
Vetch, 146
—, kidney, 145
—, milk, 145
Vine, grape, 147
Violet, dog, 148
— end of spectrum, 107
— root rot, 163
—, sweet, 148
Viper's bugloss, 150
Virginia creeper, 147
Virus diseases, 125
Viscosity, 19
Visible rays, 95
Vital activity, 91
Vitality, 115
Volva, 51

W

Wake robin, 139
Wallflower, 144
Wall-pepper, 144
Wall-pressure, 93
Walnut, 141
Wart, crown, 156
— disease, 156
—, plum, 158
Water, 91
— column, 99
— holding capacity, 107
— lily, white, 142
— —, yellow, 142
— of constitution, 93
— soldier, 138
— storage, 7
— table, 105
— vapour, 99
Water-core, 154
Water-logging, 123
Water-soluble compound, 91
Waterweed, Canadian, 138
Wax, 23
Waxy coatings, 111
Wayfaring-tree, 152
Weather thistle, 152
Weathering, 105
Wedge of tissue, 129
Wetting, 133
Wheat, Emmer, 139
—, flint, 139
—, hard, 139
—, Polish, 139
—, rivet, 139
—, soft, 139
—, spelt, 139
White blister, 157
— earths, 119
— heart wood rot, 161
— mould, 163
— root rot, 158
— rot, 163
— rust, 157
Whitebeam, 145
Whitehead, 159
Whimberry, 149
Whin, 146
—, petty, 146
Whitlow-grass, 144
Whorl, 3, 11
Whorled phyllotaxis, 73
Whortleberry, 149
—, bog, 149
Wig-tree, 147

Wild fire, 156
 — service, 145
 Willow, bay, 141
 —, crack, 141
 —, dwarf, 141
 —, herb, great, 148
 —, white, 141
 Wilt, 107, 156, 163
 —, blossom, 159
 —, blue stripe, 163
 Wilting point, 107
 Wind, 108
 — action, 119
 — distribution, 11
 Wing-like extensions, 75
 Winter rot, 163
 Wintergreen, 149
 Wistaria, 146
 Witches' broom, 123, 155, 157
 Wither tip, 159
 Withy, 141
 Wolfsbane, 142

Wood, 23, 115
 — anemone, 142
 — formation, 21
 — sage, 151
 — sorrel, 146
 Woodbine, 152
 Woodruff, 151
 Woodrush, 139
 Woody trees, 71
 Wormwood, 152
 Wound cork, 27
 Woundwort, 151
 Wrinkles, 51

X

"X" bodies, 125
 Xanthophyll, 21
 Xeric lichens, 117
 Xeromorphic characters, 111
 Xerophytes, 109
 Xerosere, 117
 Xylem, 25
 — parenchyma, 25

V

Yarrow, 152
 Yellow Archangel, 150
 — disease, 156
 — rattle, 151
 — rays of spectrum, 95
 — rust, 160

Yellows, 155, 163
 Yellowwort, 146
 Yew, 137
 Yield, 87

Yorkshire fog, 138

Z

Zigzag, 146
 Zoogloea, 35
 Zoosporangia, 47
 Zoospore, 35, 41, 47
 Zygomorphic, 13
 Zygospore, 39
 Zygote, 39, 81
 Zygotene, 81

DEUTSCHES REGISTER (GERMAN INDEX)

A

abaxial, 14
Abbauprozess, 92, 98
Aberration der Chromosomen, 86
Abimpfung, 130
Abkochung, 128
Absinth, 152
Absorption, 92
Abteilung 34
Abundanz, 116
Abundanzgrade, 112
Abweichungswinkel, 102
Acervulus, 48
Achane, 18
achlamydeisch, 10
achselständig, 4
Ackerdistel, 153
Acker-Gansedistel, 153
— Hundskamille, 152
Ackersenf, 144
Ackerkirsche, 150
Acker-Witwenblume, 152
Aconte, 42
adaxial, 14
Adonisröschen, Herbst, 142
Adsorption, 20
Adsorptionswasser, 108
Adventivwurzel, 10
Aecidie, 52
Aecidiospore, 52
Ahre, 14
Arenchyme, 112
ærope Atmung, 98
Atiologie, 122, 124
Ahorn, Berg-, 147
— Feld-, 147
— Spitz-, 147
Akazie, 145
— Falsche, 146
Akelei, Gemeiner, 142
akrokarp, 58
aktinomorph, 14
akkessorische Spore, 48
Alant, Echter, 153
Albinismus, 88, 122
Albumin, 96
Algen, 36, 38
Allelomorphe, 84
Alpen-Aurikel, 149
Alpenrose, 149
Alpenrosenäpfel, 161
Alpenveilchen, 149
Amerikanischer Stachelbeer-mehltau, 158
Aminosäuren, 96
amitotische Kernteilung, 80
— Teilung, 44
Ampfer, Kleiner, 142
— Krauser, 142

Ampfer, Sauer-, 142
—, Stumpfblattriger, 142
Amphigastrien, 56
amphiphloische Siphonostele, 64
Amphithecum, 60
anærope Atmung, 98
analoge Organe, 2
Anaphase, 80
Anatomie, 2, 20
anatrophe Samenanlage, 16
Andorn, Weisser, 150
Androceum, 10, 12
anemophile Blüten, 112
Anfalligkeit, 132
Anfangsverein, 118
Angurie, 152
Anis, 149
Anisophyllic, 6
Anlagerung, 22
Annulus, 52, 60, 68
Anpassung an den Standort, 104
Anterale, 12
Antheriden, 36
Antheridium, 56
Anthozyan, 22
Anthraknose, 162
antikline Teilung, 24
Antipoden, 32
apetal, 10
Apfel, 145
Apfelmehltau, 158
Apfelsaure, 22
Apfelsine, 146
Aphlebien, 78
Aplanogameten, 36
Aplanospore, 36
Apogamic, 44, 64
apokarp, 12
Apophyse, 60
Aposporie, 62
Apothecium, 50
Apposition, 22
Apressorium, 48
Aprikose, 145
Araucaria, 76
Archegoniaten, 34
Archegonium, 34, 56
Archespor, 30
Archikarp, 50
Arillus, 16, 76
Armleuchteralgen, 36, 44
Arnika, 152
Aronstab, 139
Art, 34
Artenreinbestand, 116
Artenverzeichnis, 112
Arthropozie, 98
Artischocke, 153
Asche, 92
Ascocarp, 50

Ascospore, 50
Ascus, 50
asepal, 10
Askogon, 50
Askomyceten, 50
Asparagin, 96
Assimilation, 92, 94
Assimilationsprodukte, 22
Assimilationswurzel, 10
Assoziation, 116
Aster, Sommer-, 152
Asterstadium, 80
asymmetrische Blüten, 14
Atemhöhle, 28
Atemwurzel, 10
Atmung, 98
atrophe Samenanlage, 16
Attich, 152
Auenwald, 120
Aufbauprozess, 92
Aufgeblasenes Leimkraut, 142
Aufguss, 128
Augentrost, 151
Aukubamosaik, 155
Ausbreitungsfähigkeit, 134
Ausdauerndes Bingelkraut, 14
Ausläufer, 8
Auslese, 88
autogene Variation, 86
Autokologie, 104
Autosomen, 84
Autotrophie, 96
Auxiliarzelle, 46
Auxospore, 42
azyklisch, 12

B

Bacillus, 38
Bacteria, 36
Bacterium, 38
Bärenklau, Wiesen-, 149
Barentraube, 149
Bärlapptgewächse, 62
bakterielle Krankheiten, 124
Bakterien, 36
Bakteriengallen, 124
Bakteriensporen, 110
Bakteriophagen, 126
Bakteriopurpurin, 38
Bakteriosen, 124
Bakteriozezidien, 124
Baldrian, Gemeiner, 152
Balgrücht, 16
Balsamine, 147
Bandstreifenkrankheit, 162
Bartgras, 138
Basidie, 50
Basidiomyzeten, 50
Basidiospore, 50

- Basille, 150
 Basilikum, 150
 Bast, 26
 Bastard, 84
 Bastardierung, 88
 Bastardklee, 146
 Bastfasern, 26
 Batate, 150
 Bauchkanalzelle, 58
 Bauchnaht, 12
 Bauerntabak, 151
 Baum, 72
 Bäume, 114
 Baumwolle, 147
 Bazille, See., 149
 Bebrütung, 180
 Bedecktsame, 2
 Beere, 18
 Befruchtung, 16, 82
 Befruchtungsschlauch, 50
 Befruchtungsvorgang, 32
 Beifuss, 153
 Beinbrech, 140
 Beinwell, 150
 Beispore, 48
 Beizmittel, 184
 Bekämpfung von Pflanzenkrankheiten, 132
 Belichtungsdauer, 108
 Benediktenkraut, 153
 Benetzungsfähigkeit, 134
 Berberitze, 143
 Berg-Ahorn, 147
 Bergflachs, Bergblättriger, 141
 Bergrüster, 141
 Berg-Sandglöckchen, 152
 Bergulme, 141
 Berg-Wohlverleih, 152
 Berufskraut, 153
 Besenheide, 120, 149
 Besenginster, 146
 Besenstrauß, 146
 Besiedelung eines Areals, 116, 118
 Bestäubung, 112
 Betonie, 151
 Beulenbrand, 159
 Bewegung, 102
 Beweidung, 118
 Bibernelle, Kleine, 149
 Bienenragwurz, 140
 bikollaterale Gefäßbündel, 26
 Bildungsgewebe, 22
 Bilsenkraut, 151
 Bingelkraut, Ausdauerndes, 147
 Binse, 139
 —, See-, 139
 —, Teich-, 139
 biologische Formen, 130
 biologisches Spektrum, 114
 biotische Faktoren, 104, 112
 Blatotyp, 88
 Birke, 141
 Birne, 145
 Bisamkraut, 151
 Bittere Schleifenblume, 144
 Bitterer Bauernsenf, 144
 Bitterfäule, 159, 163
 Bitterklee, Sumpf-. 150
 Bitterling, 150
 Bittersüß, 151
 Blasenkrankheit, 157
 Blasenrost, 160
 Blasenstrauch, 146
 Blatt, 4, 28
 blattabwerfend, 8
 Blattanordnung, 4
 Blattbeulen, 157
 Blattbrand, 162, 163
 Blattbräune, 159
 Blattdornen, 8
 Blattdurre, 122, 163
 Blattfall, 6
 Blattfallkrankheit, 159, 161
 Blattfallkrankheiten, 122
 Blattfäule, 162
 Blattfläche, 28
 Blattflecke, 122
 Blattfleckenerkrankheit, 158, 159, 161, 162, 163
 —, Eckige, 156
 Blattgrund, 4
 Blattlücken, 64
 Blattmittegewebe, 24
 Blattnarbe, 6, 74
 Blattrollkrankheit, 155
 Blattrolbung, 124
 Blattscheide, 4
 Blattspreite, 4
 Blattstiell, 4
 Blattschorf, 158
 Blattseuche, 159
 Blatt- und Triebfäule, 162
 Blaualgen, 36, 38
 Blaubeere, 149
 Blauer Eisenhut, 142
 Blaufäule, 157
 Bleicherde, 120
 Bleiwlz, 149
 Blepharoplasten, 72
 Blitzschalg, 124
 Blüte, 10, 30
 Blütenachse, 10
 Blütenblätter, 10
 Blütedürre, 122
 Blütenendfaule, 154
 Blütenfäule, 122
 Blütenkrone, 10
 Blütenpflanzen, 2
 Blutenscheide, 8
 Blütenstand, 14
 Blütenstandsstiell, 14
 Blütenstiell, 14
 Blüten- und Zweigdürre, 159
 Blumenblätter, 10, 90
 Blumenkohl, 143
 Blüten, 100
 Blut-Weiderich, 148
 Blutwurz, 145
 Bocksbart, Lauchblättriger, 153
 —, Wiesen, 153
 Boden, 104
 Bodenbildung, 104
 Bodendesinfektion, 134
 Bodendesinfektionsmittel, 134
 Bodeneigenschaften, 106
 Bodenfeuchtigkeit, 110
 Bodenfächchenpflanzen, 114
 Bodenreaktion, 124
 Bohne, 146
 —, Pferde-, 146
 —, Sau-, 146
 —, Soja, 143
 Bohnenbrand, 156
 Bohnenkraut, 150
 Bohnenrost, 160
 Boretsch, 150
 Borkre, 28
 Borstengras, 138
 Bovist, 52
 Brand, Beulen-, 159
 —, Blatt-, 162, 163
 —, Bohnen-, 156
 —, Feuer-, 158
 Brand, Flug-, 159
 —, Gedeckter, 159, 160
 —, Hart-, 159
 —, Kopf-, 160
 —, Mais-, 159
 —, Nacht-, 159
 —, Rinden-, 159
 —, Schmier-, 160
 —, Sonnen-, 154
 —, Staub-, 160
 —, Stein-, 160
 —, Stengel-, 156, 160
 —, Stink-, 160
 —, Streifen-, 160
 —, Wurzel-, 156
 —, Zwiebel-, 160
 Brandflecken, 162
 Brandpilze, 50, 124
 Brandspore, 48, 50
 Braunalgen, 36, 44
 Braunerde, 106
 Brauner Dost, 150
 Braunfäule, 122, 157
 Braunfleckenerkrankheit, 163
 Braunfleckigkeit, 156, 162, 163
 Braunrost, 160
 Brauntrockenfaule, 156
 Braunwurz, Knotige, 151
 Brenner, 122
 —, Schwarzer, 162
 —, Stengel-, 162
 Brennessel, Kleine, 141
 —, Grosse, 141
 Brennfleckenerkrankheit, 161, 162
 Brombeere, 145
 Bronzefleckenerkrankheit, 155
 Brown'sche Molekularbewegung, 20
 Bruchwald, 118
 Bruchweide, 141
 Brunelle, 150
 Brunnenkresse, 144
 Brustwurz, Wilde, 148
 Brutbecher, 58
 Brutknospe, 4, 36
 Brutknospen, 58
 Bryophyta, 34, 56
 Buche, 108
 —, Hain-, 141
 —, Rot-, 141
 —, Weiss-, 141
 Buchsbaum, 147
 Buchweizen, 142
 Bukettkrankheit, 155
 Bulbille, 4
 Buntblättrigkeit, 122
 Buntstreifigkeit, 155
 Busch-Windröschen, 142

C

- Cæoma, 52
 Calix, 10
 Calyptra der Laubmoose, 58
 Calyptron, 24
 Caruncula, 16
 Casparische Streifen, 30
 Chalaza, 32
 Chamæphyten, 114
 Characeæ, 36, 44
 Chemonastie, 102
 Chemotaxis, 102
 Chemotropismus, 102
 Chimäre, 86
 Chinarindenbaum, 151

Chlamydomonas, 43
 Chlamydospore, 48
 Chlor, 92
 Chlorophyceæ, 36, 42
 Chlorophyll, 94
 Chlorophyllfarbstoff, 22
 Chloroplast, 96
 Chloroplasten, 22
 Chlorose, 122, 154
 —, Infektiose, 155
 choripetal, 10
 chorpidal, 10
 Christophskraut, 142
 Christrose, 143
 Chromatid, 80
 Chromatingerüst, 20, 80
 Chromatophoren, 20, 22
 Chromomeren, 84
 Chromoplasten, 22
 Chromosomen, 80
 Chromosomen-Aberration, 86
 Chromosomenverdoppelung, 82
 Chromosorenzahl, 82
 Cladodium, 8
 Clostridium, 38
 Cœnobien, 40
 Coleochæte, 42
 Columella, 60
 Coniferæ, 74
 Conjugatae, 36, 40
 Corolla, 10
 crossing over, 82
 Cupula, 78
 Cyanophyceæ, 36, 38
 Cycas, 74
 cymöse Verzweigung, 14
 Cyperaceen, 118
 Cystiden, 52

D

Dachwurz, 144
 Dahlia, 153
 Dalmatinische Insektenblume, 153
 Dattelpalme, 139
 Dauergewebe, 22
 Dauerspore, 36
 Deckblätter, 8
 Deckelkapsel, 18
 Deckschuppen, 8
 Deckungsgrad, 114
 Dekot, 128
 dekussierte Blattanordnung, 4
 Dermatogen, 24
 Deutscher Wollzieht, 151
 Deutsches Geissblatt, 152
 diageotrop, 102
 Diagnose von Pflanzenkrankheiten, 122
 diarrh, 30
 Diastase, 96, 98
 Diasterstadium, 80
 Diatomæ, 36, 42
 Dichasium, 14
 Dichtigkeit der Arten, 114
 Dickenwachstum, 26, 100
 Dictyostele, 64
 Dictyota, 46
 Differenzierung der Gewebe, 22, 24
 Diffusion, 94
 dikaryotisches Myzel, 50
 diklin, 14
 Dinoflagellæ, 36
 diözisch, 14

diplochlamydeisch, 10
 diploide Generation, 56
 diploide Phase, 82
 Diplokokke, 38
 diplostemon, 12
 direkte Kernteilung, 82
 Disaccharide, 96
 Dispersionsmittel, 134
 Dispiremstadium, 80
 Distel, Acker-, 153
 —, Färber-, 153
 —, Kohl-, 153
 —, Kugel-, 153
 —, Marien-, 153
 —, Sau-, 153
 —, Silber-, 153
 —, Strand-, 149
 —, Wetter-, 153
 Divergenzwinkel, 4
 Dörrfleckenkrankheit, 154, 163
 Dolde, 14
 Doldiger Milchstern, 140
 Dolomitknolle, 78
 Dominanz, 114
 dominierende Eigenschaft, 84
 doppelt gefiedert, 6
 dorsal, 6
 Dost, Brauner, 150
 Dotter, 144
 Douglastanne, 137
 Drainage, 134
 Drehwurz Herbst-, 140
 Dreizack, Sumpf-, 137
 Drüsenzellen, 24
 Dünen, 120
 Durchlüftung, 28
 Durchwachsung, 124

■

Ebenholzbaum, 149
 Eberesche, 145
 Echte Kamille, 153
 — Kastanie, 141
 — Nelkenwurz, 145
 Echter Alant, 153
 — Gagelstrauch, 141
 — Kerbel, 148
 — Mchitau, 158
 Echtes Johanniskraut, 148
 — Labkraut, 151
 Eckige Blattfleckenerkrankheit, 156
 ectoploische Siphonostele, 64
 edaphische Faktoren, 104
 Edelkastanie, 141
 Edeltanne, 137
 Edelweiss, 153
 Efeu, 148
 Ehrenpreis, 151
 Eibe, 137
 Eibisch, 147
 Eiche, 120
 —, Kork-, 141
 —, Sommer-, 141
 —, Stein-, 141
 —, Stiel-, 141
 —, Winter-, 141
 Eichenwald, 116
 Eikern, 32
 Einbeere, 140
 einfach, 6
 Einführungüberwachung, 136
 einhäusig, 14
 Einknolle, 140
 Einkorn, 139

Einlagerung, 22
 Einschleppung von Krankheiten, 136
 Einzeller, 20
 Einzelsporkultur, 130
 Eisen, 92
 Eisenfleckigkeit, 155
 Eisenhut, Blauer, 142
 Eisenkraut, 150
 Eiweißverbindung, 20
 Eizelle, 16, 36
 Elateren, 60
 Elaterenträger, 60
 Elsbeerbaum, 145
 Eltern, 84
 Embryo, 16, 32
 Embryosack, 16, 32
 Embryosackkern, 32
 Embryosackmutterzelle, 30
 Emergenzen, 8
 Emmer, 139
 Empfängnisfortsatz, 46
 endarch, 26, 66
 endemisch, 132
 Endive, 153
 Endodermis, 24, 30
 endogen, 10
 Endokarp, 16
 Endosperm, 16
 Endospermgeweb, 32
 Endospore, 38
 Endotesta, 72
 Endothecium, 60
 endständig, 4
 Engelwurz, 148
 Englischer Ginster, 146
 Englisches Raygras, 138
 Entengrütze, 139
 Entfärbung, 122
 Entomologie, angewandte, 128
 entomophile Blüten, 112
 Enzian, 150
 ephemere Pflanzen, 112
 epidemisch, 132
 Epidermis, 24
 epigyn, 12
 Equisitales, 62
 Erbse, Platt-, 146
 —, Saat-, 146
 Erbsenrost, 160
 Erbsenstrauch, 145
 Erdbeerbaum, 149
 Erdbeere, 145
 Erdbirne, 153
 Erdkastanie, Französische, 149
 Erdkrustenpflanzen, 114
 Erdnuss, 145
 Erdpfanzen, 114
 Erdrauch, 143
 Erfrierpunkt, 110
 Ersatzfasern, 26
 Erstickungsschimmel, 158
 erworbene Eigenschaften, 86
 Esche, 149
 Eselsdistel, Gemeine, 153
 Esparsette, 146
 Espe, 141
 Ester, 96
 Estragon, 152
 Etiolierung, 108, 122, 154
 Eukalyptus, 148
 Europäische Riemchenblume, 141
 Europäischer Meersenf, 144
 — Stachelbeermehltau, 158
 Evolution, 90
 Exanthema, 154
 exarch, 68

Excitation, 102

Exodermis, 30

Exokarp, 16

Exothecium, 76

extrors, 12

F

fachspaltige Kapsel, 18

Fächer, 12

Färbe-Ginster, 146

Färberdistel, 153

Färberröte, 151

Färber-Waid, 144

Fäule, 122

—, Bitter-, 159, 163

—, Blatt-, 162

—, Blatt- und Trieb-, 162

—, Blau-, 157

—, Blutenden-, 154

—, Braun-, 157

—, Brauntrocken-, 156

—, Frucht-, 157, 159

—, Frucht- und Stengel-, 159

—, Grind-, 159

—, Grün-, 157

—, Hals-, 162

—, Hart-, 162

—, Herz- und Trocken-, 154

—, Keim- und Stengel-, 161

—, Kern-, 161

—, Knollen-, 159

—, Kraut- und Knollen-, 157

—, Lager-, 163

—, Rinden-, 158

—, Rot-, 157

—, Schwarz-, 156, 158, 159, 161

—, Seiten-, 155

—, Stengel-, 159, 162

—, Stengel- und Wurzel-, 159

—, Stielend-, 161

—, Stock-, 161

—, Trocken-, 161, 162, 163

—, Weich-, 156

—, Weiss-, 161, 163

—, Wurzel-, 161

—, Wurzelhals-, 156

—, Wurzelschwarz-, 157

—, Wurzelstock-, 163

Faulnis, 98

Faktor, 84

Faktorenkopplung, 86

Fallsucht, 161

Falsche Akazie, 146

Falscher Jasmin, 144

— Mehltau, 157

— Pfeifenstrauch, 144

falscher Mehltau, 124

Familie, 34

Farbreaktion, 38

Farbstoffe, 28

Farnblättrigkeit, 155

Farne, 62

Fascikularkambium, 26

Fasern, 22, 24

Faserschicht, 30

Fasziation, 124

Faulebaum, 147

Federbuschsporenkrankheit, 162

Feder-Pfriemengras, 139

Feige, 141

Feinsand, 106

Feinschlamm, 106

Feld-Ahorn, 147

Feld-Kresse, 144

Feldkümmel, 151

Feld-Mohn, 143

Feld-Rose, 145

Feldsalat, Gemeiner, 152

Feldulme, 141

Felsenbirne, 145

Fenchel, 149

Fennichgras, 139

Ferkelkraut, Gemeines, 153

Fett, 96, 98

Fettfleckenerkrankheit, 156

Fetthenne, 144

Fettkraut, 144

—, Gemeines, 151

Fettropfchen, 22

Feuchtigkeitsäquivalent, 108

Feuerbrand, 156

Feuer-Mohn, 143

Feuerschwamm, 161

Fibrovasalbündel, 24

Fichte, 137

Fieberbaum, 148

Fiederblätter, 6

fiederspaltig, 6

Filament, 12

Filicatae, 62

Filzkrankheit, 161

Fingerhut, Roter, 151

Fingerkraut, Funf-, 145

—, Gänse-, 145

—, Kriechendes, 145

Fioringras, 138

Flachmoor, 118

Flachs, 146

Flagellatæ, 36, 40

Flaschenkürbis, 152

Flatter-Ulme, 141

Flechten, 52, 124

Flecke, 122

Flecken, Brand-, 162

—, Fliegen-, 162

—, Hülsen-, 156

—, Netz-, 163

—, Oospora, 162

—, Phyllosticta-, 161

—, Schalen-, 162

—, Silber-, 163

—, Stipp-, 154

Fleckenerkrankheit, Blatt-, 158,

159, 161, 162, 163

—, Braun-, 163

—, Brenn-, 161, 162

—, Bronze-, 155

—, Dörr-, 154, 163

—, Fleisch-, 158

—, Samt-, 163

—, Weiss-, 159

Fleckigkeit, Braun-, 156, 162,

163

—, Eisen-, 155

—, Ring-, 155

—, Rot-, 158

—, Schwarz-, 162

Fleischfleckenerkrankheit, 158

Flieder, 150

Fliegenflecken, 162

Flockenblume, Schwarze, 153

Floh-Knöterich, 142

Flohkraut, Grosses, 153

Flugblase, 76

Flugbrand, 159

Flughafet, 138

Flugsand, 106

foliar raps, 64

Formaldehyd, 96

Formationen, 116

Formveränderung, 124

Fortpflanzungsorgane, 10, 34

Fovea, 66

Fragmentation, 82

Franzosenkraut, 153

Französische Erdkastanie, 149

Französisches Raygras, 138

Frauenmantel, Gemeiner, 145

Frauenschuh, 140

Frequenz, 116

Froschbiss, 138

Froschloeffel, 138

Frost, 104, 124

frostfreie Periode, 110

Frostpalten, 124

Frucht, 16

Fruchtblatt, 10, 12, 30, 74

Fruchtfäule, 122, 157

Frucht- und Stengelfäule, 159

Fruchtkolpe, 134

Fruchtknoten, 12

Fruchtschuppe, 76

Fruhholz, 26

Frühlingsaspekt, 116

Frühlingsholz, 26

Frühlings-Hungerblume, 144

Frühlings-Miere, 142

Fruktose, 22, 96

Fuchsschwanz, 142

—, Wiesen-, 138

Fucoxanthin, 46

Fucus, 46

Fünffingerkraut, 145

Fungi, 36, 48

Fungizide, 134

Funiculus, 16

Fusskrankheit, 122, 158, 162, 163

G

Ganzeblumchen, 152

Gänsedistel, Acker-, 153

Gänsefingerkraut, 145

Gänselfuss, Weisser, 142

Gänsekresse, 143

Gärung, 98

Gagelstrauch, Echter, 141

Gallen, 124

Gamander, Salbei-, 151

Gametangien, 36

Gametangium, pluriloculäres, 46

Gameten, 34, 82, 84

Gametophyt, 36, 56

ganzrandig, 4

Garten-Kerbel, 148

Gartenlattich, 153

Garten-Melde, 142

Gartenmohn, 143

Gartenraute, 146

Garten-Wolfsmilch, 147

Gattung, 34

Gauchheil, 149

Gedeckter Brand, 150, 160

Gefäßbündel, 24

Gefäßkryptogamen, 34, 62

gefingert, 6

Geissbart, 145

Geißblatt, 152

—, Deutsches, 152

Geissel, 38

Geissfuss, 148

Geissraute, 146

gekerbt, 6

gekrümmt Samenanlage, 16

Gel, 20

gelappt, 6

Gelbe Resede, 144

- Gelbe Schwertlilie, 140
 — Taubnessel, 150
 — Leichrose, 142
 — Wiesenraute, 143
 Gelber Rotz, 156
 Gelbkrankheit, 156
 Gelbrost, 160
 Gelbsucht, 122, 155
 Geleitzellen, 26
 Gen, 84
 Generationswechsel, 36
 — der Farne, 62
 — der Moose, 56
 generative Fortpflanzung, 34
 generativer Kern, 30
 Genetik, 84
 genetische Variabilität, 88
 Genotyp, 86, 88
 Geophyten, 114
 Georgine, 153
 Geotropismus, 102
 gerade Samenanlage, 16
 Gerbsaure, 28
 Gerste, 138
 gesägt, 6
 geschichteter Thallus, 52
 geschlechtliche Fortpflanzung, 82
 Geschlechtschromosomen, 84
 geschlossene Leitbündel, 26
 gesetzliche Pflanzenschutzmassnahmen, 136
 gespalten, 6
 gestielt, 4
 getrenntblattrig, 10
 getrenntgeschlechtig, 14
 Gewebe, 22
 Gewebekultur, 130
 gewellt, 6
 gezähnt, 6
 Giersch, 148
 Giftlattich, 153
 Gift-Sumach, 147
 Gilbfennich, 139
 Ginkgo, 76
 Ginseng, 148
 Ginster, Besen-, 146
 —, Englischer, 146
 —, Farbe-, 146
 —, Stech-, 146
 Gipskraut, 142
 Gitterrost, 160
 Gladiole, 140
 Glanzgras, Rohr, 139
 Glasigwerden, 154
 Glasschmalz, 142
 Glatthafer, 138
 Gleba, 52
 Gliederschote, 16
 Globulin, 96
 Glockenblume, 152
 —, Rundblattrige, 152
 Glockenheide, Graue, 149
 Glukose, 96
 Gluten, 96
 Glycerin, 96
 Glyzine, 146
 Gnadenkraut, 151
 Goldhafer, 139
 Goldlack, 144
 Goldnessel, 150
 Goldregen, 146
 Goldrute, 153
 Gonidialschicht, 52
 Genidie, 52
 Gonoplasma, 50
 Gräser, 138, 139
- Granatapfel, 148
 Grand, 106
 Grape Frucht, 146
 Graslilie, 140
 Grasnelke, 149
 Graue Glockenheide, 149
 Grauralle, 141
 Grauschimmel, 162
 Grauschimmelkrankheit, 162
 Griffel, 12
 Grind, 161
 Grindfaule, 159
 Grobschlamm, 106
 Grosses Brennnessel, 141
 — Klette, 152
 Grosser Hahnenfuss, 143
 — Merk, 149
 — Wegerich, 151
 — Wiesenknopf, 145
 Grosses Flohkraut, 153
 Grunalgen, 36, 42
 Grüne Niesswurz, 143
 Grünfäule, 157
 Grünkohl, 143
 Grundgewebe, 24
 grundständig, 12
 Grundwasserspiegel, 106, 118
 gruppenweise, 116
 Gunsel, 150
 Gurtelseite der Diatomeen, 42
 Gummifluss, 124
 Gummosis, 124
 Gundelrebe, 150
 Gundermann, 150
 Gurke, 152
 —, Schlangen-, 152
 Guter Heinrich, 142
 Guttation, 124
 Gymnosperma, 70
 Gynæcum, 10, 12
- H**
- Haarschopf, 16
 Haarstrang, 149
 Habichtskraut, 153
 Hadrom, 24
 Häufigkeitszeichen, 112
 Haufungsweise, 116
 Hafer, 138
 Haferwurzel, 153
 Haftmittel, 134
 Haftscheibe der Rotalgen, 46
 Haftwurzel, 10
 Hagelschlag, 124
 Hahnfuss, 143
 —, Grosser, 143
 —, Knolliger, 143
 —, Kriechender, 143
 —, Scharfer, 143
 Hainbuche, 141
 Hainsimsse, 139
 Hallimasch, 161
 Halm, 8
 Halophyten, 112
 Halsfalte, 162
 Halskanalzelle, 58
 handförmig, 6
 Hanf, 141
 Hanfnessel, Gemeine, 150
 haploide Generation, 56
 — Phase, 82
 haplostemon, 12
 Haptotropismus, 102
 Hartbrand, 159
 Hartfäule, 162
 Hartriegel, 149
- Hartweizer, 139
 Harz, 28
 Harzfluss, 124
 Harzgange, 26, 74
 Haselnuss, 141
 Haselwurz, 141
 Hasenglockchen, 140
 Haube der Laubmoose, 58
 Hauhechel, 146
 Hauptwurzel, 10
 Hausschwamm, 161
 Haustorien, 10
 Haustorium, 48
 Hauswurz, 144
 Heckenkirsche, Rote, 152
 Heckensame, 146
 Hederich, 144
 Heide, 106, 116, 120
 Heidekorn, 142
 Heidekraut, 149
 Heidelbeere, 149
 Heidepflanzen, 112
 Heliophyten, 108
 Helmgras, Sand-, 138
 Hemikryptophyten, 114
 Hemizellulose, 22
 hemizyklisch, 12
 Hemlockanne, 137
 Hepaticæ, 56
 Herbst-Adonisroschen, 142
 Herbst-Dchwurz, 140
 Herbstholtz, 28
 Herbstzeitlose, 140
 herdenweise, 116
 Herzblume, 143
 Herz- und Trockenfaule, 154
 heterochlamydisch, 10
 Heterochromosomen, 84
 Heterocontæ, 42
 Heterocysten, 40
 Heterogamie, 34
 heteromerer Thallus, 52
 Heterophyllic, 6
 heteroploid, 82
 Heterosis, 88
 heterothallische Pilze, 50
 Heterotrophic, 96
 heterozygot, 84
 Hexenbesen, 124, 157
 Hexenbesenkrankheit, 155
 Hexenkraut, Gemeines, 148
 Hexenringe, 161
 Hilum, 16
 Himbeere, 145
 Himmelschlüssel, 149
 Hirse, 139
 Hirseartiges Riedgras, 139
 Hirntaschel, 144
 histoide Gallen, 124
 Histologie, 20
 Hitze, 124
 Hitzschlag, 122
 Hochblätter, 8
 Hochmoor, 120
 Hoftupfel, 74
 Hohlzahn, Gemeiner, 150
 Holunder, Schwarzer, 159
 —, Zwerg-, 152
 Holz, 26
 Holzfäule, 122
 Holzparenchym, 26
 Holzteil, 24
 homoiomerer Thallus, 52
 homiochlamydisch, 10
 homologe Organe, 2
 homothallische Pilze, 50
 homozygot, 84

- Honigdrüsen, 10
 Honiggras, 198
 Honigklee, 146
 Hopfen, 141
 Hormogonien, 40
 Hormone, 102
 Hornklee, Wiesen-, 146
 Hornkraut, 142
 Hornstrauch, 149
 Hortensie, 144
 Hühnerhirse, 189
 Hüllblätter, 8
 Hüllchen, 8
 Hüllkelch, 8
 Hüllkreis, 10
 Hüllschläuche der Characeen, 44
 Hülse, 16
 Hülsenflecken, 156
 Huftattich, 153
 Humus, 104
 Hundskamille, Acker-, 152
 —, Stinkende, 152
 Hundspetersilie, 148
 Hunds-Rose, 145
 —, Veilchen, 148
 Hundszunge, 150
 Hutpilz, 52
 Hyazinthe, 140
 —, Trauben-, 140
 hydrarche Sukzession, 118
 Hydrolyse, 98
 Hydrophyten, 110
 hydroserne Sukzession, 118
 Hydrotropismus, 102
 Hygrophyten, 110
 Hyumenium, 50
 Hyperplasie, 122
 Hypertrophic, 122
 Hype, 48
 Hypohenendkultur, 130
 hypogyn, 12
 Hypokotyl, 72
 Hypophyse, 32
 Hypoplasie, 122
 Hypotrophic, 122
- I**
- Identifizierung, 122
 Imbibition, 94
 Imbibitionsmechanismus, 68
 Imbibitionswasser, 94
 immergrün, 8, 72
 Immortelle, 153
 Immunität, 132
 Indikatorpflanzen, 112
 Indol, 98
 Induktionswirkung, 102
 Indusium, 66
 Inertstoffe, 134
 Infektion, künstliche, 130
 Infektionsmaterial, 130
 Infektiose Buntblättrigkeit, 155
 — Chlorose, 155
 Infloreszenz, 14
 Infranodal-Kanäle, 78
 Inkarnat-Klee, 146
 Inkrustierung, 76
 Insektenbestäubung, 12
 Insektenblume, Dalmatinische, 183
 Integument, 16, 32, 70
 Interfascikulkarkambium, 26
 interkalares Wachstum, 4
 intermediäre Vererbung, 86
- Internodien, 4
 Interzellulare, 28
 Interzellularen, 112
 Interzellularräume, 24
 Interzellulärssystem, 28
 intrors, 12
 Intumeszenzen, 124, 154
 Intussusception, 22
 Inulin, 96
 Invertase, 98
 Involucellum, 8
 Involcrum, 8
 Involutionsformen, 38
 Inzucht, 88
 Isocontæ, 42
 Isogameten, 34, 42
 Isogamie, 34, 42
 Isolierung von Krankheitserregern, 128
 Isop, 150
 Iwanowskische Körperchen, 126
- J**
- Jahresringe, 28
 Jakobs-Kreuzkraut, 153
 Jasmin, 150
 —, Falscher, 144
 Jelängerjerieber, 152
 Jochalgen, 36, 40
 Johannisbeere, Rote, 144
 —, Schwarze, 144
 Johanniskrautbaum, 145
 Johanniskraut, Echtes, 148
 Johannswedel, 145
 Judasbaum, 146
 Judenkirsche, 151
 Juncaceen, 118
- K**
- Kalberkropf, Ruben-, 148
 —, Taunel-, 148
 Kälte, 124
 Kältetodpunkt, 110
 Käsepappel, 147
 Kaffeebaum, 151
 Kakaobaum, 147
 Kakteen, 112
 Kalium, 92
 Kalk, 106
 kalkfeindliche Pflanzen, 106
 kalkliebende Pflanzen, 106
 Kallus, 28
 Kallusholz, 28
 Kalmus, 139
 Kalzium, 92
 Kalziumkarbonat, 22
 Kalziumoxalat, 22
 Kambiumzellen, 26
 Kambium, 24, 26
 Kamelie, 148
 Kamille, Echte, 153
 —, Römische, 152
 Kammer, 12
 Kammingras, 138
 Kampferbaum, 143
 kampylotrope Samenanlage, 16
 Kanariengras, 139
 Kansas-Salatkrankheit, 156
 Kantalupe, 152
 Kapillarwasser, 106
 Kapillitium, 40
 Kapsel, 18
 Karde, Wilde, 152
 Karinalhöhle, 66
 Karotin, 22
- Karpell, 74
 Karpelle, 10
 Karpogon, 50
 Karpogonium, 46
 Karposporophyt, 46
 Kartoffel, 151
 Karyogamie, 50
 Karyokinese, 80
 Karyopse, 18
 Kastanie, Echte, 141
 —, Edel, 141
 Katalysatoren, organische, 98
 Kautschukbaum, 147
 Keimblätter, 8, 32
 Keimplasma, 86
 Keimruhe der Samen, 108
 Keimträger, 32
 Keim- und Stengelfaule, 161
 Keimung, 100
 Kelch, 10
 Kelchblätter, 10, 30
 Kellerhals, 148
 Kerbel, Echter, 148
 —, Garten-, 148
 —, Wiesen, 148
 Kernfäule, 161
 Kernholz, 28
 Kernkörperchen, 20, 80
 Kernmembran, 80
 Kernraum, 20
 Kiefer, 137
 —, Weymouths-, 137
 Kiefernbaumschwämme, 161
 Kiefernadelblasenrost, 160
 Kiefernwald, 116
 Kienporst, 149
 Kieselalgen, 36, 42
 Kieseläsche, 42
 Kirsche, Sauer-, 145
 —, Süss-, 145
 —, Toll-, 151
 —, Trauben-, 145
 Kirschchlorbeer, 145
 Kladosien, 74
 kladosiphonische Siphonostele, 64
 Klappenschorf, 159
 Klappertopf, 151
 Klasse, 34
 Klatschrose, 143
 Klaue-Schote, 146
 Klebkraut, 151
 Klee, Bastard-, 146
 —, Inkarnat-, 146
 —, Mittlerer, 146
 —, Rot-, 146
 —, Weiss-, 146
 Kleekrebs, 159
 Kleinblütiges Knopfkraut, 153
 Kleine Bibernelle, 149
 — Brennassel, 141
 Kleiner Ampfer, 142
 — Wiesenknopf, 145
 Kleines Knabenkraut, 140
 — Wintergrün, 149
 Kleistokarp, 50
 Klette, Große, 152
 Kletten-Labkraut, 151
 Kletterranke, 8
 Kletterrose, Wilde, 145
 klimatische Faktoren, 104, 108
 Klimaxverein, 118
 Klimmer, 8
 Klonauslese, 88
 Klumpenblätter, 161
 Knabenkraut, Kleines, 140
 —, Kuckucks-, 140

Knäuel, 142
 Knaulgras, 138
 Knoblauch, 139
 Knöterich, Floh-, 142
 —, Nattern-, 142
 —, Vogel-, 142
 —, Winden-, 142
 Knolle, 8, 114
 Knollenfäule, 122, 159
 Knollenflecke, 122
 Knollige Platterbe, 146
 Knolliger Hahnenfuss, 143
 Knopfkraut, Kleinblütiges, 153
 Knospe, 4
 Knospenfäule, 122
 Knospenschuppen, 8
 Knospenvariation, 86
 Knoten, Stengel-, 4
 Knotenblume, 140
 Knotige Braunwurz, 151
 Königskerze, 151
 Köpfchen, 14
 Kohäsion, 100
 Kohl, 143
 —, Wilder, 144
 Kohldistel, 153
 Kohlendioxyd, 92
 Kohlenstoff, 92, 104
 Kohlhernie, 156
 Kohlkopfkrankheit, 155
 Kohlkropf, 156
 Kohlrabi, 144
 Kohlrübe, 143
 Kokke, 38
 Kokospalme, 139
 Kolanussbaum, 147
 Kolben, 14
 kollaterale Gefäßbündel, 26, 74
 Kollenchym, 24
 kolloidalre Lösung, 20
 Kolloide, 94
 Kompensationspunkt, 108
 komplementäre Faktoren, 88
 Kondensation, 96
 Konidien, 48
 Konidienträger, 48
 Konkurrenzkampf, 118
 Konnektiv, 12
 Konsolenpilz, 52
 Konsoziation, 116
 Konstitutionswasser, 94
 konzentrische Gefäßbündel, 26
 Konzeptakel, 46
 Kopfbrand, 160
 Kopfkohl, 148
 Korbweide, 141
 Koreum, 48
 Koriander, 149
 Kork, 28
 Körkeiche, 141
 Korkambium, 28
 Korklamelle, 22
 Korkwucherung, 124
 Korkzellen, 28
 Kornblume, 153
 Kornelkirsche, 149
 Korngrösse des Bodens, 106
 Kornrade, 142
 Korrelation, 102
 Kotyledonen, 8, 32
 Krähenbeere, 147
 Kräte, 163
 Kräuselblätter, 157
 Kräuselkrankheit, 155, 157
 Kräuselung, 124
 Krauter, 114
 Krankheiten, 122

Krankheitsdisposition, 132
 Krankheitserreger, 128
 Krankheitsscheinung, 122
 Krankheitsresistenz, 132
 Krapp, 151
 Kratzbeere, 145
 Kratzdistel, Gemeine, 153
 —, Stengellose, 153
 Krausminze, 150
 Krauser Ampfer, 142
 Kraut- und Knollenfäule, 157
 Krautweide, 141
 Krebs, 156, 158, 159
 —, Klee, 159
 —, Wurzel, 156
 —, Zweig, 162
 Krebsknoten, 124, 158
 Krebsschere, 138
 Krebsstrünke, 161
 Krebswunden, 124
 Kresse, Brunnen-, 144
 —, Feld-, 144
 Kreuzblume, Gemeine, 146
 Kreuzblättrige Wolfsmilch, 147
 Kreuzdorn, 147
 Kreuzkraut, Gemeine, 153
 —, Jakobs, 153
 Kreuzung, 84, 88
 Kriechender Hahnenfuss, 143
 Kriechendes Fingerkraut, 145
 Kroks, 140
 Kropfmaserbildung, 124
 Kropf, Kohl-, 156
 —, Wurzel, 156
 Kronenrost, 160
 Kronenwicke, 146
 Krümzung, 102
 Krummhals 150
 Krustenflechten, 52
 Kryptogamen, 2, 34
 Kryptophyten, 114
 Kuckucks-Knabenkraut, 140
 —, Lichtnelke, 142
 Kümmel, 148
 Kürbis, Flaschen-, 152
 —, Gemeiner, 152
 —, Riesen-, 152
 Kugelblume, 151
 Kugeldistel, 153
 Kuhblume, 153
 Kuhschelle, 143
 Kulturmassnahmen, 134
 Kurztagpflanzen, 110
 Kurztrieb, 74
 Kutikula, 24
 Kutinisierung, 22, 108

L

Labkraut, Echtes, 151
 —, Kletten, 151
 Längenwachstum, 100
 Lärche, 137
 Läusekraut, Wald-, 151
 Lagerfaule, 163
 Lagerfestigkeit, 88
 Lagern, 154
 Laichkraut, 137
 Laichkrautgewächse, 137
 Lamelle, 52
 Laminaria, 46
 Lanaskrankheit, 157
 Langtagpflanzen, 110
 Langtrieb, 74
 Laterit, 106
 Laubblatt, 4
 Laubflechten, 54

.....noose, 56
 Lauch, 139
 —, Knob-, 139
 —, Schnitt-, 139
 —, Weinbergs-, 140
 Lauchblättriger Bocksbart, 153
 Lauchkraut, 143
 Lavendel, 150
 Lebensbaum, 137
 Lebensformen, 114
 Lebenskreislauf, 130
 Lebenstätigkeit, 92
 Leberblümchen, 143
 Lebernioose, 56
 Leimkraut, Aufgeblasenes, 142
 Lein, 146
 —, Purgir., 146
 Leinblatt, 141
 Leinblättriger Bergflachs, 141
 Leinkraut, 151
 Leistungindex, 100
 Leitbahnen, 24
 Leitbündel, 24
 Lentizellen, 28
 Lentizellenwucherung, 124
 Leptom, 24
 Lerchensporn, 143
 Letalfaktor, 88
 Leucin, 96
 Leukoplasten, 22
 Levkoje, 144
 Libriformfasern, 21
 Licht, 104, 108
 Lichtblätter, 108
 Lichtintensität, 108
 Lichtnelke, 142
 —, Kuckucks-, 142
 Lichtpflanzen, 108
 Liebstöckel, 149
 Lieschkolben, 137
 Lieschgras, 139
 Lignifikation, 22
 Ligula, 66
 Liguster, 150
 Lilie, 140
 Limette, 146
 Limone, 146
 Linde, Sommer-, 147
 —, Winter-, 147
 Linse, 146
 Lipase, 98
 loculicide Kapsel, 18
 Löffelkrankheit, 161
 Löwenmaul, 151
 Löwenzahn, 153
 Lohe, 158
 Lolch, Taumel-, 138
 lophotrichie Begeisselung, 38
 Lorbeer, 143
 —, Kirsch-, 145
 —, Seidelbast, 148
 Lorbeerweide, 141
 Luftblätter, 6
 Luftfeuchtigkeit, 110
 Luftpflanzen, 114
 Luftwurzel, 10
 Lungenkraut, 150
 Lupine, 146
 Luzerne, 146
 Lycopodiaceae, 62

M

Mädesüß, 145
 Märzenbecher, 140
 Mäusedorn, 140
 Mäuseschwänzchen, 143

Magnesium, 92
 Magnolie, 143
 Maiglöckchen, 140
 Mais, 139
 Maisbrand, 159
 Makroprothallium, 68
 Makrosporangien, 30
 Makrosporangium, 30
 Makrospore, 32
 Makrosporenmutterzelle, 30
 Makrosporophyll, 30, 74
 Maltase, 98
 Maltose, 22, 96
 Malve, Wilde, 147
 Mammutbaum, 137
 Mandarine, 146
 Mandel, 145
 Mangold, 142
 Mannagras, 138
 Manubrium, 44
 Marguerite, 153
 Mariendistel, 153
 Majoran, 150
 Mark, 24
 Marksicht der Flechten, 52
 Markstrahlen, 24, 26
 Marsupium, 60
 Massenauslese, 88
 Massulae, 68
 Maulbeerbaum, 141
 Mauerpfleffer, 144
 Meerkohl, 144
 Meerrettich, 144
 Meersenf, Europäischer, 144
 Meerzwiebel, 140
 Mehlierbaum, 145
 Mehikleister, 134
 Mehltau, 124
 — Amerikanischer Stachelbeer-, 158
 — Apfel, 158
 — Echter, 158
 — Europäischer Stachelbeer-, 158
 — Falscher, 157
 Meiosis, 30, 82
 Meisterwurz, 149
 Melisse, 150
 Melone, Gemeine, 152
 — Wasser-, 152
 Meristele, 64
 Meristem, 22
 Merk, Grosser, 149
 mesarch, 66
 Mesokarp, 16
 Mesophyll, 24, 100
 Mesophyten, 110
 Mestom, 24
 Metaphase, 80
 Metaxylem, 26
 Microspira, 38
 Mikrocysten, 40
 Mikroflora des Bodens, 104
 Mikrogametangium, 46
 Mikrokokke, 38
 Mikroprothallium, 68
 Mikropyle, 16, 32, 72
 Mikrosporangien, 30
 Mikrospore, 30
 Mikrosporenmutterzelle, 30
 Mikrosporophyll, 30, 74
 Milchglanz, 122, 161
 Milchstern, Doldiger, 140
 — Nickender, 140
 Mineralsalze, 92
 Mispel, 145
 Missbildungen, 124

Mistel, 124, 141
 Mitosis, 80
 Mittelamelle, 22
 Mittelrippe, 6
 mittelständig, 12
 Mittlerer Klee, 146
 Mohre, 149
 Mohn, Feld-, 143
 — Feuer-, 143
 — Garten-, 143
 Molekularbewegung,
 Brown'sche, 20
 Monochasium, 14
 monochlamydisch, 10
 monoklin, 14
 monopodial, 8
 Monosaccharide, 96
 Monostele, 64
 monotrich Begeisselung, 38
 monözisch, 14
 Moor, 106
 Moorbeere, 149
 Moosebeere, 149
 Moose, 56, 124
 Mohrrübe, 149
 Morphologie, 2
 Mosaik, Aukuba-, 155
 Mosaikkrankheit, 122, 155
 Moschuskraut, 151
 multiple Effekte, 88
 Mummel, 142
 Musci, 56
 Mutation, 86
 Mutterkorn, 124, 158
 Mykologie, 48
 Myorrhiza, 62, 130
 Mykosen, 124
 Mykoziden, 124
 Myrtle, 148
 Myxämöbe, 40
 Myxamonaden, 40
 Myxomycetes, 36, 40

N

Nabel, 16
 Nabelstrang, 16
 Nachkommen, 84
 Nachtkerze, 148
 Nachtschatten, Schwarzer, 151
 Nacktbrand, 159
 Nacktsamige, 2
 Nadelholzer, 137
 Nadelwald, 106, 116
 Nahrboden, 128
 Nahrlosung, 128
 Nasse, 124
 Nanismus, 124
 Narbe, 12
 Narrentaschen, 157
 Narzisse, 140
 Nastie, 102
 Nasturtium, 108
 Natrium, 92
 Natterkopf, 150
 Nattern-Knoterich, 142
 Nebenblätter, 4
 Nekrose, Phloem-, 155
 Nektarien, 10
 Nelke, 142
 Nelken, 142
 — Gras, 149
 Nelkenpfeffer, 148
 Nelkenwurz, Echte, 145
 Netzflecken, 163
 netzförmige Verdickung 26
 netzförmiges Adersystem, 6

Netzmittel, 134
 Neubildungen, 102
 Neukombination, 86
 nichtparasitäre Krankheiten, 124

Nickender Milchstern, 140
 Niederblätter, 8
 Niederschlagsmenge, 110
 Niederschläge, 104, 110
 Niederungsmoor, 118
 Niere, 78
 Niesswurz, 143
 — Grün, 143
 — Schwarze, 143
 Non-disjunction, 82
 Nyktinastie, 102
 Nucellus, 16, 30, 70
 Nucleolus, 20, 80
 Nuss, 18

O

obdiplostemon, 12
 oberschlächtig, 56
 Oberseite, Blatt-, 28
 oberständig, 12
 Ochsenzunge, Gemeine, 150
 Odernennig, 145
 Ödem, 124, 154
 Ökologie, 104
 Ölbaum, 150
 Ölmaide, 153
 Olpalme, 139
 Ölweide, 148
 offene Leitbündel, 26
 Ohnhorn, 140
 Ohrläppchenkrankheit, 161
 Oidien, 48
 Oktanten, 62
 Okulieren, 126
 Oleander, 150
 Ontogenie, 2
 Oogamic, 36, 42
 Oogenien, 36
 Oomyzeten, 50
 Oosphare, 36
 Oospora-Flecken, 162
 Oospore, 36, 44
 Oosporenfrucht, 42
 Oosporenhülle, 42
 Operculum, 60
 Orange, 146
 Orchideen, 140
 Orchis, Salep-, 140
 organische Säuren, 22
 — Substanz, 104
 Organographie, 2
 organoide Gallen, 124
 orthotrope Samenanlage, 16
 Ortsveränderung, 102
 Osmose, 94
 Osterluzei, 141
 Ostiolum, 50
 Ovarium, 12
 Oxalis, 108
 Oxalsäure, 22
 Oxydationsprozess, 98

P

paarig gefiedert, 6
 Pade, 138
 Palæ, 66
 Palæotitarik, 76
 Palisadenparenchym, 28
 Palmen, 139
 Panamakrankheit, 163

- Panaschierung, 122
 Pandorina, 42
 Pantoffelblume, 151
 Pappel, 120
 —, Schwarz-, 141
 —, Silber-, 140
 —, Weiss-, 140
 —, Zitter-, 141
 Pappus, 16
 Paprika, 151
 Paraphyse, 46, 50
 Parasit, 128
 parasitäre Krankheiten, 124, 128
 parasitische Ernährung, 48
 Parenchym, 24
 Parichnos, 78
 Pastinak, 149
 Pathogenitat, 128
 Pathologie, 122
 Pechkrankheit, 162
 Pektin, 22
 pentarch, 30
 Pentosane, 22
 Pepton, 96
 Perianth, 10
 Periblem, 24
 Perichaetium, 58
 Periderm, 28
 Peplidermum, 52
 Peridie, 50
 Peridiole, 52
 Peridium, 40
 Perigon, 10, 74
 perigyn, 12
 Perikarp, 16
 Periklinalchimäre, 88
 perikline Teilung, 24
 Periodizität, 116
 Periplasma, 50
 Perisperm, 16
 Peristom, 60
 Peritheciun, 50
 peritrichie Begeisselung, 38
 Perzonium, 42
 Perizyklo, 24, 28
 Perlgras, 138
 Permeabilität, 94
 Peruckenstrauß, 147
 Perzeption, 102
 Pestwurz, Gemeine, 153
 Petala, 10
 Petersilie, 149
 Petrischale, 128
 Pfaffenhutchen, 147
 Pfeffer, Mauer, 144
 —, Schwarzer, 140
 —, Spanischer, 151
 Pfefferkraut, 150
 Pfefferminze, 150
 Pfeifengras, 138
 Pfeifenstrauch, 141
 —, Falscher, 144
 Pfeilkraut, 138
 Pfennigkraut, 149
 Pferdbohne, 146
 Pferdekümmel, 149
 Pfingstrose, 143
 Pfirsich, 145
 Pflanzenfeind, 128
 Pflanzengemeinschaft, 116
 Pflanzenhygiene, 134
 Pflanzenpathologie, 122, 128
 Pflanzenquarantäne, 133
 Pflanzenschutz, 132
 Pflanzenschutzdienst, 136
 Pflanzensoziologie, 114
 Pflanzenzüchtung, 88
 Pflaume, 145
 Pflaumenrost, 160
 Pfiemengras, Feder-, 139
 Phænotyp, 86
 Pfröpfbastard, 86
 Pfröpfen, 126
 Pfröpfenbildung, 155
 Phæophain, 46
 Phæophytæ, 36, 44
 Phanerogamen, 2, 34
 Phanerophyten, 114
 Phelloderm, 28
 Phellogen, 28
 Phloem, 24
 Phloemnekrose, 155
 Phosphor, 92
 Photonastic, 102
 Photoperiodizität, 110
 Photosynthese, 94
 Phototaxis, 102
 Phototropismus, 102
 Phycoerythrin, 46
 Phykozytan, 40
 Phyllodium, 8
 Phyllokadien, 74
 Phyllokadium, 8
 Phyllomanie, 124
 phyllosiphonische Sophonoste, 64
 Phyllosticta-Flecken, 161
 Phylogenie, 2, 34
 Physiognomie, 112
 Physiologie, 92
 physiologische Art, 130
 — Trockenheit, 112
 Pileus, 52
 Pilze, 36, 48
 Pilzgallen, 124
 pilzliche Krankheiten, 124
 Piment, 148
 Pionier, 118
 plagiotrop, 102
 Plankton, 42
 Planogameten, 36
 Planokokke, 38
 Planosarzinene, 38
 Plasmodesmen, 22
 Plasmodium, 40
 Plasmolyse, 94
 Plastiden, 22
 Platane, 145
 Platterbse, 146
 —, Knollige, 146
 —, Wald-, 146
 Plazenta, 12
 Plectridium, 38
 Pliochemasium, 14
 Plektenchym, 48
 Plerom, 24
 pleurokarp, 58
 Plumula, 32, 72
 pluriloculäres Gametangium, 46
 Pneumatophoren, 10
 Pocken, 162
 Pockenkrankheit, 155, 161
 Podetium, 54
 Podsol, 106
 Polarität, 102
 Poleiminze, 150
 Polkern, 32
 Pollenkorn, 12
 Pollenkörner, 30
 Pollenmutterzelle, 20
 Pollensack, 12, 30
 — Initialzelle, 30
- Pollenschlauch, 30
 Pollenschläucherkernzelle, 72
 Pollentetraden, 80
 Polnischer Weizen, 139
 Polsterschimmel, 159
 polyarch, 30
 polyembryonales Stadium, 72
 Polymerie, 88
 Polypeptide, 96
 polyploid, 82
 Polysaccharide, 96
 Polysiphonia, 46
 Polystolie, 64
 Pomeranzie, 146
 Pore, 52
 Porenkapsel, 18
 Porrec, 139
 Porst, 149
 Portulak-Salzmelde, 142
 Prädisposition, 132
 Prärie, 106, 116
 Preisselbeere, 149
 Procarpium, 46
 Proembryo, 32, 72
 Prokambiumstränge, 24
 Promyzel, 50
 Prophase, 80
 Prosenchym, 24
 Protamin, 96
 Protease, 98
 Protein, 94, 96
 Prothallium, 62
 Protonema, 56
 Protoplasma, 80, 92
 Protoplasmatafaden, 22
 Protoplast, 20
 Protoxylem, 26
 Pseudomonas, 38
 Pseudoperidie, 52
 Pseudopodium, 40, 60
 Pteridophyta, 34, 62
 Pteridospermen, 78
 Pulverschorf, 156
 Purgir-Lein, 146
 pustelformige Verdickung, 26
 Pyknidie, 52
 Pyknidiospore, 50
 Pyrenoide, 42
- Q
- Quarantane, 136
 Quecke, 138
 Quendel, 151
 Quirl, 4
 Quitte, 145
- R
- racemöse Verzweigung, 14
 Rachis, 6
 Radicula, 32, 72
 Rauchermittel, 134
 Rainfarm, 153
 Rainkohl, 153
 Ramentæ, 66
 ramular gaps, 64
 Ranke, 8
 Ranker, 8
 Raphiden, 22
 Raps, 143
 Rapünchen, 152
 Rapunzel, 152
 Rasenschmiede, 133
 Rasse, 130
 Rattenschwanz, 140
 Rauchschaden, 124

DEUTSCHES REGISTER

Rauhafer, 138
 Rauhweizen, 139
 Rauschbeere, 147, 149
 Raygras, Englisches, 138
 —, Franzosisches, 138
 Reagenglas, 128
 Reaktion, 102
 Rebendolde, Röhren-, 149
 Keduktase, 96
 Reduktionsteilung, 80, 82
 Reduktion von Kohlendioxyd, 94
 Regen, 104
 Reifung, 16
 Reihe, 34
 Reiherschnabel, 146
 reine Linien, 88
 Reis, 139
 Reitgras, 138
 Reizaufnahme, 102
 Reizbarkeit, 92, 102
 Reize, 102
 Reizleitung, 102
 Rekognosierung, 112
 Resede, Färber-, 144
 —, Gelbe, 144
 —, Wohlriechende, 144
 Resinosis, 124
 Resistenz, 132
 Respiration, 98
 Respirationsquotient, 98
 resupinate Fruchtkörper, 52
 Rettich, 110, 144
 —, Meer-, 144
 Rezeptaculum, 10
 Rezeptakel, 58
 rezessive Eigenschaft, 84
 reziproke Kreuzung, 88
 Rhabarber, 142
 Rhizine, 54
 Rhizoide, 10, 56
 Rhizoiden, 44
 Rhizom, 114
 Rhizomfäule, 122
 Rhizomorphen, 48
 Rhizomschuppen, 8
 Rhizophor, 66
 Rhodobakterien, 38
 Rhododendron, 149
 Rhodophyceæ, 36, 46
 Riedgras, 139
 —, Hirseartiges, 139
 Riemchenblume, Europäische, 141
 Riesenwuchs, 124
 Rinde, 24
 Rindenbrand, 122, 159
 Rindenfäule, 122, 158
 Rindenschicht der Flechten, 52
 Ringelblume, 152
 Ringelborke, 28
 Ringfleckigkeit, 155
 Ringschäle, 161
 Rispe, 14
 Rispengras, 139
 Rittersporn, 143
 Rizinus, 147
 Robinia, 146
 Röhre, 52
 Röhren-Rebendolde, 149
 Römische Kamille, 152
 Rœstelia, 52
 Roggen, 139
 Roggentrespe, 138
 Rohhumus, 120
 Rohr, 139

Rohr, Spanisch, 139
 Rohr-Glanzgras, 139
 Rohrkolben, 137
 Rohrzucker, 96
 Rollkrankheit, 155
 Rollkultur, 128
 Rose, Alpen-, 149
 —, Feld-, 145
 —, Hunds-, 145
 —, Wein-, 145
 Rosenkohl, 143
 Rosettenkrankheit, 155
 Rosettenpflanzen, 114
 Rosettentriebe, 124
 Rosmarin, 150
 Rosskastanie, Gemeine, 147
 Rost, Blasen-, 160
 —, Bohnen-, 160
 —, Braun-, 160
 —, Erbsen-, 160
 —, Gelb-, 160
 —, Gitter-, 160
 —, Kiefernadelblasen-, 160
 —, Kronen-, 160
 —, Pfauen-, 160
 —, Rüben-, 160
 —, Schwarz-, 160
 —, Weisser, 157
 —, Zwerg-, 160
 Rostpilze, 50, 124
 Rotalgen, 36, 46
 Rotangpalme, 139
 Rotbutche, 141
 Rote Heckenkirsche, 152
 — Johannisbeere, 144
 — Zaunrübe, 152
 Roterde, 106
 Roter Fingerhut, 151
 Roterle, 141
 Rotfäule, 122, 157
 Rotfleckigkeit, 158
 Rotklee, 146
 Rotpustelkrankheit, 158
 Roträster, 141
 Rotz, Gelber, 156
 —, Schwarzer, 159
 Ruchgras, 138
 Rübe, Mohr-, 148
 —, Wasser-, 144
 —, Weiss-, 144
 —, Zucker-, 142
 Rübchen-Kalberkropf, 148
 Rubenrost, 160
 Rübsen, 144
 Rückennaht, 12
 Rückkreuzung, 86
 Rühr-mich-nicht-an, 147
 Ruhestation, 112
 Ruhrbirne, 145
 Ruhrkraut, Sumpf-, 153
 Ruhrwurz, 153
 Rundblättrige Glockenblume, 153
 Rundblättriger Sonnentau, 144
 Runkelrübe, 110, 142
 Runkel, Wilde, 142
 Ruprechtskraut, 146
 Russau, 124

S

Saatbeet, 130
 Saatbeizmittel, 134
 Saat-Erbse, 146
 — Wicke, 146

Saat-Wucherblume, 153
 Saathafner, 138
 Saatzeit, 134
 Saccharose, 22, 96
 Sadebaum, 137
 Sämlingssterben, 162
 Sämlingskrankheit, 158
 Säure, organische, 22
 Saflor, 153
 Satran, 140
 Saftapfel, 161
 Sahlweide, 141
 Salat, 153
 Salatkrankheit, Kansas-, 156
 Salbei, 110, 150
 — Gamander, 151
 Salep-Orchis, 140
 Salomonssiegel, 140
 Salzausblühungen, 106
 Salzsumpfblumen, 112
 Samen, 16
 Samenanlage, 12, 16, 30, 70
 Samenmantel, 76
 Samenpflanzen, 2, 34
 Samenreife, 100
 Samenschale, 16
 Sammelfrucht, 18
 Samtfeckenkrankheit, 163
 Sand, 106
 Sanddorn, 148
 Sandelholz, 141
 Sandglöckchen, Berg-, 152
 Sandgras, 120
 Sandhafer, 138
 Sand-Helmgras, 138
 Sandkraut, 142
 Sanikel, Wald-, 149
 saprophytische Ernährung, 48
 Sarkotesta, 70
 Sarzinien, 98
 Saubohne, 146
 Saudistel, 153
 Sauer-Ampfer, 142
 Sauerdorn, 143
 Sauerkirsche, 145
 Sauerklee, Wald-, 146
 Sauerstoff, 92
 Saugung, 94
 Saugungszug, 100
 Savanne, 106
 Schachtelhalme, 62
 Schädling, 128
 Schafgarbe, Bertram-, 152
 —, Gemeine, 152
 Schafschwingel, 138
 Schaftlose Schlüsselblume, 149
 Schalen, Diatomeen, 42
 Schalenflecken, 162
 Schalotte, 139
 Scharbockskraut, 143
 scharweise, 116
 Scharfer Hahnenfuß, 143
 Schattenblätter, 108
 Schattenblümchen, 140
 Schattenpflanzen, 108
 Schattentoleranz, 108
 Scheebruch, 124
 Scheidewand, 16
 Scheinfalte, 16, 18
 Scheitelzelle des Vegetationspunktes, 24
 Schere, Wasser-, 138
 Schichtung, 116
 Schiebblatt, 148
 Schierling, 149
 — Wasser-, 149
 Schilf, 139

- Schimmel, Erstickungs-, 158
 —, Grau-, 162
 —, Polster-, 159
 —, Schnee-, 158
 —, Weiss-, 163
 —, Wurzel-, 158
 schizokarpe Früchte, 16
 Schizomycetes, 96
 Schizophyceæ, 36, 38
 Schizophyta, 36
 Schlafbewegung, 102
 schlafende Knospe, 4
 Schlangengurke, 152
 Schlauchalgen, 44
 Schlehdorn, 145
 Schleimkrankheit, 156
 Schleimpilze, 36, 40
 Schleuderzellen, 60
 Schliessfrucht, 18
 Schliesszellen, 28
 Schlüsselblume, 149
 —, Schaftlose, 149
 Schlussverein, 118
 Schmeerwurz, 140
 Schmiele, 198
 Schnallenbildung, 50
 Schneball, Geminer, 152
 —, Wolliger, 152
 Schneebere, 152
 Schneeglöckchen, 140
 Schneeschirmnel., 158
 Schnittlauch, 139
 Schötchen, 16
 Schöterich, 144
 Schorf, 122, 156, 158, 159, 162
 —, Blatt, 158
 —, Klappen, 159
 —, Pulver, 156
 —, Silber-, 163
 Schorfkrankheit, 161
 Schote, 16
 Schotendotter, 144
 Schrägkultur, 128
 Schraubel, 14
 schüsselförmig, 12
 Schuppenblätter, 18, 56
 Schuppenborke, 28
 Schwärmer, 40
 Schwärmspore, 36, 48
 Schwärze, 163
 Schwalbenwurz, 150
 Schwamm, Feuer, 161
 —, Haus, 161
 —, Kieferbaum, 161
 Schwammparenchym, 28
 Schwanenblume, 138
 Schwarzbeinigkeit, 122, 156, 159, 161
 Schwarzdorn, 145
 Schwarze Flockenblume, 153
 —, Johannisbeere, 144
 —, Niesswurz, 143
 Schwarzer Brenner, 162
 —, Nachtschatten, 151
 —, Rott., 159
 —, Senf, 143
 Schwarzerde, 106
 Schwazerle, 118, 141
 Schwarzfäule, 122, 156, 158, 159, 161
 Schwarzfleckigkeit, 162
 Schwarzherzigkeit, 154
 Schwarzkümmel, 143
 Schwarzpappel, 141
 Schwarzpustelkrankheit, 158
 Schwarzrost, 160
 Schwarzwerden, 158
- Schwarzwurzel, 153
 Schwefel, 93
 Schwefelkörnchen, 38
 Schwefelmilzkraut, 144
 Schwerkraft, 102
 Schwerlilie, Gelbe, 140
 Schuppenwurz, 151
 Schwingel, 198
 Sciophyten, 108
 Sclerenchym, 24
 Sclerophyten, 112
 Sechszeitige Gerste, 138
 See-Bazille, 149
 — -Binse, 139
 Seedorn, 148
 Seefenchel, 149
 Seegras, 137
 Seerose, Weisse, 142
 Seide, 124, 150
 Seidelbast, 148
 —, Lorbeer-, 148
 Seifenkraut, 142
 Seismonastie, 102
 Seitenfalte, 155
 Seitenzweig, 8
 Seitenwurzel, 10
 Segge, 139
 Sekretzellen, 24
 Sektorialchimare, 88
 sekundäre Sukzession, 118
 sekundäres Dickenwachstum, 26
 Selbstung, 84, 88
 Sellerie, 148
 Semipermeabilität, 94
 Senf, Schwarzer, 143
 —, Weisser, 144
 Sepala, 10
 septicide Kapsel, 18
 septitive Kapsel, 18
 Serradella, 146
 Seta, 58
 Sickerwasser, 106
 Siebparenchym, 26
 Siebplatten, 26
 Siebrohren, 26
 Siebtitel, 24
 Silberblatt, 144
 Silberdistel, 153
 Silberflecken, 163
 Silberpappel, 140
 Silberschorf, 163
 Silberweide, 141
 Silizium, 92
 Simse, 139
 Sinngrtin, 150
 Siphonales, 44
 Siphonostele, 64
 sitzend, 4
 Skatol, 98
 Sklerotesta, 72
 Sklerotien, 48
 Sklerotienkrankheit, 163
 Sojabohne, 146
 Sol, 20
 Sol-nostele, 64
 Soma, 86
 somatischer Chromosomensatz, 82
 Sommeraspekt, 116
 Sommeraster, 152
 Sommerreiche, 141
 sommergrüner Laubwald, 106
 — Wald, 116
 Sommerwurz, 124
 Sommer-Linde, 147
 Sommerwurz, 151
- Sonnenbestrahlung, 100
 Sonnenblume, 153
 Sonnenbrand, 154
 Sonnenenergie, 96
 Sonnenröschen, Gemeines, 148
 Sonnentau, Rundblättriger, 144
 Soredien, 54
 Sorus, 66
 Soziabilität, 116
 Spätholz, 28
 Spaltalgen, 36, 38
 Spaltöffnung, 28
 Spaltipilze, 36
 Spaltung, 38
 Spanischer Pfeffer, 151
 Spanisch Rohr, 139
 Spargel, 140
 Speiszwiebel, 139
 Spelzen, 8
 Spelzweizen, 139
 Spermatangium, 46
 Spermatien, 50
 Spermatium, 46, 50
 Spermatophyta, 34, 70
 Spermatozoid, 36
 Spermogonium, 52
 Spierstrauch, 145
 Spinat, 142
 Spindelbaum, 147
 Spindelnollenkrankheit, 155
 spiralige Verdickung, 26
 Spiremstadium, 80
 Spirillum, 38
 Spirisoma, 38
 Spirochæta, 38
 Spirre, 14
 Spitz-Ahorn, 147
 Spitzendürre, 122
 Spitzwegerich, 151
 Splint, 28
 Splintholz, 28
 Spörkel, 142
 sporadisch, 132
 Sporangien, 36
 Sporangienträger, 48
 Sporangiolen, 48
 Sporangiophore, 66
 Sporangiospore, 48
 Sporangium, unikoläres, 46
 Sporenaufschwemmung, 130
 Sporenbildner, 34
 Sporenbildung der Bakterien, 38
 Sporenkultur, 139
 Sporenmutterzelle, 50
 Sporenpflanzen, 2
 Sporidie, 50
 Sporodochium, 48
 Sporogonium, 56
 Sporokarp, 50, 66
 Sporophor, 52
 Sporophyll, 66
 Sporophyt, 36, 56
 Sports, 86
 Spreuschuppen, 66
 Springfrucht, 16
 Springkraut, 147
 Spritzbrühe, 134
 Spritzmittel, 134
 Spross, 2
 Sprossdornen, 8
 Sprossknolle, 8
 Sprossranke, 8
 Sprosssteckling, 102
 Sprossung, 48
 Stachel, 8

- Stachelbeere, 144
 Stachelbeermehltau, Amerikanischer, 158
 —, Europäischer, 158
 Stärke, 94
 Stärkeherde, 42
 Stärkekörner, 42
 Stärkescheide, 24
 Stäubemittel, 134
 Stamina, 10, 74
 Staminodien, 12
 Stamm, 2
 Stammsukkulanten, 8
 Standortsanpassung, 104
 Staphylokokke, 38
 Staubbald, 10, 12, 30
 Staubbbrand, 160
 Staubgefäß, 74
 Stauden-Winterkohl, 143
 Stechapfel, 151
 Stechginster, 146
 Stechpalme, 147
 Steckling, 102
 Steinbrech, 144
 Steineiche, 141
 Steinfrucht, 18
 Steinklee, 146
 Steinkraut, 143
 Steinmispel, 145
 Steinnusspalme, 139
 Steinsame, 150
 Steinwechsel, 145
 Stele, 64
 Stelzwurzel, 10
 Stengel, 2
 Stengelbrand, 156, 160
 Stengelbrenner, 162
 Stengelfäule, 122, 159, 162
 Stengelflecke, 122
 Stengellose Kratzdistel, 153
 stengelumfassend, 4
 Stengel- und Wurzelsaule, 159
 Steppe, 106
 Sterigma, 50
 Sterilität, 86
 Sternblume, Strand-, 152
 Sternmiere, Wald-, 142
 Sternrusstau, 162
 Stichkultur, 128
 Stickstoff, 92, 104
 Stieffutterchen, 148
 Stieleiche, 141
 Stiel der Pilze, 52
 Stielendfäule, 161
 Stielzelle, 72
 Stigma, 12
 Stimulation, 102
 Stipes, 52
 Stippflecke, 122, 154
 Stippigkeit, 154
 Stockfaule, 161
 Stockrose, 147
 Stoffwanderung, 92, 98
 Stoffwechsel, 92
 Stolonen, 8
 Stomata, 28, 98
 Stomium, 68
 Storchschnabel, Wiesen-, 146
 Sträucher, 114
 Stranddistel, 149
 Strandhafer, 120, 138
 Strand-Sternblume, 152
 Strauch, 72
 Strauchflechten, 54
 Straussgras, 138
 —, Weisses, 138
 Streifen, 182
- Streifenbrand, 160
 Streifekrankheit, 155, 163
 Streifigkeit, Bunt-, 155
 Streptokokke, 38
 Strichel, 122
 Strichelkrankheit, 155
 Strohblume, 153
 Strom, 48
 Studentenblume, 153
 Stutzwurzel, 10
 Stumpfbältriger Ampfer, 142
 Sturmhat, 142
 Stylus, 12
 Suberineinlagerung, 22
 Sub-Klimaxform, 118
 Süssdolde, Wohlriechende, 149
 Süssholz, 145
 Süsskartoffel, 150
 Süsskirsche, 145
 Sukkulanten, 112
 Sukzession, 118
 Sumach, Gift-, 147
 Sumpf, 116, 118
 Sumpf-Bitterkerze, 150
 — Dreizack, 137
 — Helmkräut, 151
 — Herzblatt, 144
 — Ruhrkraut, 153
 — Weichwurz, 140
 Sumpfdotterblume, 143
 Sumpfpflanzen, 112
 Sumpfwurz, 140
 Sumpfzypresse, 137
 Suspensor, 32, 62, 72
 Symbiose, 62
 symbiotische Ernährung, 48
 sympodial, 8
 Symptomatik, 122
 — der Viruskrankheiten, 126
 Symptome von Pflanzenkrankheiten, 122
 Synangium, 72
 Synapsis, 82
 Syndesis, 82
 Syngiden, 32
 Syngamie, 82
 synkarp, 12
 Synkaryon, 50
 Synökologie, 104
 synetal, 10
 synsepal, 10
 Systematik, 34
- T
- Tabak, Virginischer, 151
 Tageslänge, 108
 Tagnelke, Weisse, 142
 Tannen, 137
 Tannenwedel, 148
 Tapetenschicht, 30
 Taschenkrankheit, 157
 Taube Trespe, 138
 Taubnessel, Gelbe, 150
 —, Weisse, 150
 Taumel-Kälberkopf, 148
 — Lölch, 138
 Tausendblatt, 148
 Tausendguldenkraut, 150
 Taxis, 102
 Taxus, 76
 Teestrauch, 148
 Teich-Binsse, 139
 Teichrose, Gelbe, 142
 Teleutospore, 48, 50
 Telophase, 80
- Temperatur, 104, 110
 Temperaturklima, 110
 Terata, 124
 Testa, 16
 Tetradeiteilung, lineare, 70
 tetraploid, 82
 tetrach, 30
 Tetrasporophyt, 46
 Teufelsabbiss, 152
 Teufelsbart, 143
 Teufelskralle, 152
 Teufelszwirn, 151
 thalloidische Pflanzen, 34
 Thallophyta, 34
 Thallus, 34
 thermaler Tötungspunkt, 110
 Thermenastie, 102
 Therophyten, 114
 Thigmotropismus, 102
 Thiobakterien, 38
 Thylien, 26
 Thymian, 151
 Tiergallen, 124
 tierische Erkrankungen, 124
 Timotheusgras, 139
 Tochtergeneration, 84
 Tollkirsche, 151
 Tomate, 110, 151
 Ton, 106
 Topinambur, 153
 Torfmoos, 120
 Tormentill, 145
 Torsion, 124
 Trabeculae, 66
 Tracheen, 22, 26, 74
 Tracheiden, 26, 74
 Tracheomykose, 122
 Tragersubstanz, 134
 Trama, 52
 Transfusionsgewebe, 74
 Transpirationsstrom, 100
 transversalgeotrop, 102
 Traube, 14
 Traubenzyahzinthe, 140
 Traubenkirsche, 145
 traubige Verzweigung, 14
 Traumonastie, 102
 Trennungsgewebe, 28
 treppenförmige Verdickung, 26
 Trespe, 138
 —, Roggen-, 138
 —, Taube, 138
 —, Weiche, 138
 triarch, 30
 Trichogyne, 46
 triploid, 82
 trisomisch, 82
 Trockenfäule, 161, 162, 163
 Trockenflecke, 122
 Trocken Gewicht, 100
 Trockenheit, 110, 124
 Trockenlegung, 118
 Trollblume, 143
 Trompetenbaum, 151
 tropische Vegetation, 106
 Tropismus, 102
 Trugdolde, 14
 trugdoldige Verzweigung, 14
 truppweise, 116
 Tschernosem, 106
 Tuberkel, 124
 Tubularstele, 64
 Tüpfel, 74
 — Hartheu, 148
 Tulpe, 140
 Tulpenbaum, 143
 Tumoren, 124

Turgeszenz, 94
Turgordruck, 94
Turnips, 144
Tyrosin, 96

U

Überflutung, 118
Übergangsmoor, 120
Übergangsverein, 118
Überwachung der Einfuhr, 136
Uferwinde, 150
Ulme, 120,
—, Berg-, 141
—, Feld-, 141
—, Flatter-, 141
Ulmenserben, 158
Ulothrix, 42
Umfallen, 157
Umfallkrankheit, 156, 157,
161
umgewendete Samenanlage, 16
umweltbedingte Variation, 86
Umweltfaktoren, 104
unechte Verzweigung, 38
ungeschlechterter Thallus, 52
unilokulares Sporangium, 46
unpaarig gefiedert, 6
Unterarbeitung, 34
Unterklasse, 34
unterschlachtig, 56
Unterseite, Blatt-, 28
unterständig, 12
Uredospore, 48

V

Vaginula, 58
Vakuole, 94
Vallekularhöhle, 66
Vanille, 140
Variation, 84, 86
Vasalteil, 24
Vector, 126
Vegetation, 104
Vegetationsanalyse, 112
Vegetationsteilung, 116
Vegetationspunkt, 4, 22, 24
—, Neubildung, 102
vegetative Fortpflanzung, 34
vegetativer Kern, 30
Veilchen, Alpen-, 149
—, Hunds-, 148
—, Wohlriechendes, 148
Velum, 52
ventral, 6
Venusfliegenfalle, 144
Venusnabel, 144
Verbände von Pflanzenarten
116
Verbänderung, 124
Vererbung, 84
Verdunstung, 100
Verfarbung, 123
Vergeilen, 154
Vergilben, 122
Vergissmeinnicht, 150
Vergrünung, 124
Verholzung, 22, 108
Verkrümmung, 124
Verlandung, 118
Verlaubung, 124
Vermehrung, 102
Vermehrungspilz, 161
Verschimmeln, 163
verseuchtes Gebiet, 136
Versteinerung, 76

verwachsen, 4
verwachsenblättrig, 10
Verwachsungsnaht, 16
Verwitterung, 104
Verwundung, 102
Vesen, 139
Vibrio, 38
Vierfrucht, 151
Vierzeilige Gerste, 138
Violetter Wurzelotter, 163
Virginischer Tabak, 151
Viruskrankheiten, 124, 126
Viskosität des Plasma, 20
Vitalität, 116
Vogelfuss, 146
Vogel-Knoterich, 142
Vogelnestwurz, 140
Volva, 52
Volvocales, 42
Volvox, 42
Vorblätter, 8
Vorkeim, 56
Vulgarnamen von Pflanzen-
krankheiten, 122

W

Wachholder, 137
Wachstum, 92, 100
Wachstumsformen, 114
Wachstumsgeschwindigkeit,
100
Wachtelweizen, 151
Wald, 116
Waldfällung, 112
Wald-Lausekraut, 151
Waldmeister, 151
Wald-Platterbse, 146
Waldrebe, 143
Wald-Sanikel, 149
—, Sauerklee, 146
—, Sternmiere, 142
—, Zweiblatt, 140
Walnuss, 141
wandbrüchige Kapsel, 18
Wanddruck, 94
wandspaltige Kapsel 18
wandständig, 12
Wanzenkraut, 143
Wasserdampf, 100
Wasserdstot, 153
Wasserhelm, Gemeiner, 151
Wasserkapazität des Bodens,
108
Wasserliesch, 138
Wasserlinsen, 139
Wasser-Melone, 152
Wassernabel, Gemeiner, 149
Wassernuss, 148
Wasserpest, 138
Wasserrübe, 144
Wasserschierling, 149
Wasserschwaden, 138
Wasserstern, 147
Wasserstoff, 92
Wasserstoffionenkonzentration,
106
Wassersucht, 124, 154
Wattefäule, 157
Wattestopfen, 128
Weberkarde, 152
Wedel, 66
Wegerich, Grosser, 151
Weg-Rauke, 144
Wegwarte, 153
Weichfäule, 156

Weiche Trespe, 138
Weichwurz, Sumpf-, 140
Weide, 120
—, Bruch-, 141
—, Korb-, 141
—, Kraut-, 141
—, Lorbeer-, 141
—, Sahl-, 141
—, Silber-, 141
Weidenroschen, Zottiges, 148
Weiderich, Blut, 148
Wein, Wilder, 147
Weinberg-Lauch, 140
Weinrebe, 147
Wein-Rose, 145
Weinsäure, 22
Weissahrigkeit, 122
Weisser Andorn, 150
— Gänselfuss, 142
— Rost, 157
— Senf, 144
Weisserle, 141
Weissfäule, 122, 161, 163
Weissfleckenerkrankheit, 159
Weisshosigkeit, 161
Weissklee, 146
Weisspappel, 140
Weisse Rube, 144
Weissruster, 141
Weisschimmel, 163
Weisstanne, 137
weitlumige Gefässe, 26
Weizen, 139
Welckerkrankheit, 122, 156, 163
Welkepunkt, 108
Welschkohl, 144
Wermut, 152
Wetterdistel, 153
Wickel, 14
Widerstoss, 149
Wiese, 116
Wiesen-Bärenklau, 149
—, Bocksbart, 153
—, Fuchsschwanz, 138
—, Hornklee, 146
—, Kerbel, 148
Wiesenknopf, Grosser, 145
—, Kleiner, 145
Wiesenmahd, 118
Wiesenraute, Gelbe, 143
Wiesensaumkraut, 144
Wiesen-Storchschnabel, 146
—, Wucherblume, 153
Wilde Brustwurz, 148
—, Karde, 152
—, Kletterrose, 145
—, Malve, 147
—, Runkel, 142
Wilder Kohl, 144
—, Wein, 147
Wildfeuer, 156
Wind, 104
Windbruch, 124
Wind-Knoterich, 142
Winder, 8
Windhafer, 138
Windhalm, 138
Windroschen, Busch-, 142
Windverbreitung, 12
Wintereiche, 141
Wintergrün, Kleines, 149
Winterkohl, Stauden-, 143
Winter-Linde, 147
Wirbeldost, 150
Wirsing, 144
wirtelige Blattanordnung,
Wirtspflanze, 128

DEUTSCHES REGISTER

Wirtspflanzenbereich, 190
 Wohlriechende Süßdolde, 149
 Wohlriechendes Veilchen, 148
 Wohlverleih, Berg-, 152
 Wolfsbohne, 146
 Wolfsmilch, Garten-, 147
 —, Kreuzblättrige, 147
 —, Zypressen, 147
 Wollgras, 139
 Wolliges Schneeball, 152
 Wollziest, Deutscher, 151
 Wucherblume, Saat-, 153
 —, Wiesen-, 153
 Wucherungen, 124
 Wüste, 106, 116
 Wunden, 124
 Wunderbaum, 147
 Wundheilung, 28
 Wundklee, 145
 Wundkork, 28
 Wurzel, 2, 8, 30
 Wurzelbrand, 156
 Wurzelbräune, 157
 Wurzeldornen, 10
 Wurzeldruck, 100
 Wurzelfäule, 122, 161
 Wurzelhalsfäule, 156
 Wurzelhaare, 10, 30
 Wurzelhaube, 8, 24
 Wurzelknolle, 8
 Wurzelkrebs, 156
 Wurzelkropf, 156
 Wurzelstockling, 102
 Wurzelstockfäule, 163
 Wurzeltöter, Violetter, 163
 Wurzelschimmel, 158
 Wurzelschwamm, 161
 Wurzelschwarzfäule, 157

X

Xanthophyll, 22
 xerarche Sukzession, 118
 xeromorphe Merkmale, 112

Xerophyten, 110
 xerosere Sukzession, 118
 X-Körperchen, 126
 Xylem, 24

Y

Ysop, 150

Z

Zapfen, 66, 76
 Zaunrübe, Rote, 152
 Zaunwinde, 150
 Zeder, 137
 Zelle, 20
 Zellkern, 20, 80
 Zellkernteilung, 80
 Zellkernwand, 20
 Zellraum, 20
 Zellsaft, 20
 Zellulose, 22, 94
 Zellumen, 20
 Zellwand, 20, 22
 Zentralkern, 32
 zentralwinkelständig, 12
 Zentralzylinder, 24, 64
 zentrifugale Holzbildung, 26, 66
 zentripetale Holzbildung, 66
 — Xylembildung, 30
 Zentrosomen, 80
 Zichorie, 153
 Zilien, 38
 Zimtbaum, 143
 Zitrone, 146
 Zittergras, 138
 Zitterpappel, 141
 Zoogloeeen, 38
 Zoonosen, 124
 Zoosporangium, 48
 Zoospore, 36, 48

Zoozezidien, 124
 Zottiges Weidenröschen, 148
 Zucker, 94
 Zuckerrohr, 139
 Zuckerrübe, 142
 Zürgelbaum, 141
 zusammengesetzt, 6
 Zwangsrehung, 124
 Zweiblatt, Wald-, 140
 Zweig, 4
 Zweigkrebs, 162
 Zweiglücken, 64
 Zweigsucht, 124
 zweihäusig, 14
 zweizeilige Gerste, 138
 Zwenke, 138
 Zwerp-Holunder, 152
 Zwerghimspel, 145
 Zwergpalme, 139
 Zwergrost, 160
 Zwergwuchs, 124
 Zwetsche, 145
 Zwiebel, 8, 114
 Zwiebelblätter, 8
 Zwiebelbrand, 160
 Zwiebelfäule, 122
 Zwiebelgräfääule, 163
 Zwiebel, Meer-, 140
 —, Speise-, 139
 Zweigsterben, 122
 Zwischenmoor, 120
 Zwischenträger, 126
 Zwischenwirt, 134
 zwittrig, 14
 zygomorph, 14
 Zygomyzeten, 48
 Zygospore, 34, 48
 Zygote, 34, 82
 zyklisch, 12
 Zypressen-Wolfsmilch, 147
 Zystokarp, 46
 Zystolithen, 22
 Zytologie, 80
 Zytoplasma, 20, 80

MURBY'S BOOKS IN SCIENCE

JANUARY, 1940
SUMMARISED LIST

*Giving in heavy italics
increased prices from
January 1st of certain
books owing to war costs*

*Prospectuses may be obtained of many of
the books announced in this Summarised
list, and an explanatory catalogue of
Science books will be ready shortly.*

Books published later than Autumn, 1937
and forthcoming books are marked

Imported (agency) books marked † are subject
to variations in price owing to fluctuations in exchange

Postages are given for the guidance of the bookseller and the purchaser

THOMAS MURBY & CO., 1 FLEET LANE, LONDON, E.C.4
Telegrams: *Murbyology, Cent, London*; Cables: *Murbyology, London*; Telephone: *Central 4821*

Printed in Great Britain

Crystallography

ELEMENTARY CRYSTALLOGRAPHY. By J. W. EVANS, D.Sc., F.R.S., F.G.S., and G. M. DAVIES, M.Sc., F.G.S. *2nd Edition.* Ready February, 1940 **6s. 6d.** net, postage 4d.

PATTERNS FOR THE CONSTRUCTION OF 36 CRYSTAL MODELS REPRESENTING ACTUAL MINERALS. Designed by F. SMITHSON, Ph.D., F.G.S. **4s. 6d.** net, postage 2d.; cards for mounting **1s.**, mounted **8s.**, postage 3d. Models made up **32s.**

CRYSTALLOGRAPHIC NETS for constructing 41 models representing simple forms By J. B. JORDAN. With instructions **3s. 6d.** net; postage 1d.; on card ready for making into models. **8s.** net; made-up, price **23s.**

GRAPHICAL AND TABULAR METHODS IN CRYSTALLOGRAPHY. By T. V. BARKER, **14s.** net, postage 5d.

THE STUDY OF CRYSTALS. A general Introduction. By T. V. BARKER. **8s. 6d.** net, postage 6d.

SYSTEMATIC CRYSTALLOGRAPHY. An Essay on Crystal Description, Classification and Identification. By T. V. BARKER, **7s. 6d.** net, postage 6d.

Stereographic Nets. 24 sheets. **3s.**

Palaeontology

AN INTRODUCTION TO PALÆONTOLOGY. By A. MORLEY DAVIES, A.R.C.S., D.Sc., F.G.S., Assistant Professor of Palæontology, Imperial College of Science. **10s. 6d.** net, postage 5d.

TYPE AMMONITES. By S. S. BUCKMAN. Published in 72 parts, of which some are now out of print. *Particulars on application.*

TERTIARY FAUNAS. A text-book for Oilfield Palæontologists and Students of Geology. By A. MORLEY DAVIES, A.R.C.S., D.Sc. F.G.S. *Vol. I., THE COMPOSITION OF TERTIARY FAUNAS.* **24s.** net. Postage: inland 6d., foreign 10d. *Vol. II., THE SEQUENCE OF TERTIARY FAUNAS.* **16s. 6d.** net. Postage: inland 6d., foreign 8d.

EVOLUTION AND ITS MODERN CRITICS. By A. MORLEY DAVIES, D.Sc. Designed primarily as a reply to Mr. Dewar, the author of *Difficulties of the Evolution Theory*. In England of late years the literary disbelievers have become more assertive, encouraged by the rejection of the theory by two or three qualified biologists. **8s. 6d.** net, postage 5d.

THE DINOSAURS. A Short History of a Great Group of Extinct Reptiles. By W. E. SWINTON, Ph.D., F.G.S., F.R.S.E. of the Department of Geology, British Museum (Natural History). Fully illustrated. **16s.** net. Postage: inland 6d., foreign 6d.

Thomas Murby & Co., 1, Fleet Lane, Ludgate Circus, London, B.C.4

HANDBOOK OF THE GEOLOGY OF GREAT BRITAIN. Edited by J. W. EVANS, C.B.E., D.Sc., F.R.S., and C. J. STUBBLEFIELD, Ph.D. Contributors: P. G. H. Boswell, D.Sc., A. Morley Davies, D.Sc., C. Davison, Sc.D., H. Dewey, J. W. Evans, C.B.E., D.Sc., F.R.S., E. J. Garwood, Sc.D., F.R.S., J. W. Gregory, D.Sc., F.R.S., A. Harker, F.R.S., O. T. Jones, D.Sc., F.R.S., P. F. Kendall, D.Sc., F.R.S., J. Parkinson, Sc.D., G. H. Plymen, Ph.D., Linsdall Richardson, F.R.S.E., G. Slater, D.Sc., H. C. Versey, D.Sc., W. W. Watts, Sc.D., F.R.S., W. B. Wright, Sc.D. "The book represents an authoritative conspectus of the present state of our knowledge of British Stratigraphy." xii + 556 pp., 24 Tables, 67 Figures. Full Bibliographies and Index. **26s.** net. Postage: foreign 1s. 2d.. inland 7d.

STUDENT'S ISSUE of the above with same contents, bound in brown cloth, ink lettering, **22s. 6d.** net.

HANDBOOK OF THE GEOLOGY OF IRELAND. By the late PROFESSOR GRENVILLE A. J. COLE, D.Sc., F.R.S., M.R.I.A., Director of the Geological Survey of Ireland and T. HALLISSY, B.A., M.R.I.A., of the Geological Survey of Ireland. **9s. 6d.** net., postage 5d.

AN INTRODUCTION TO STRATIGRAPHY (British Isles). By L. DUDLEY STAMP, B.A., D.Sc., A.K.C., F.G.S. Second edition revised throughout and enlarged. **10s. 6d.** net. Postage: inland 6d., abroad 7d.

THE DORSET COAST: A Geological Guide. By G. M. DAVIES, M.Sc., F.G.S. Cloth **6s. 6d.** net. In two parts (paper covers), Part I., Western Section, **2s. 9d.** net. Part II., Central and Eastern Sections, **3s. 9d.** net. Postage: Bound 4d., Parts 2d.

GEOLOGICAL SECTIONS OF PARTS OF THE DORSET COAST. By G. M. DAVIES, M.Sc., F.G.S. 50 sets of three diagrams, **13s. 6d.**; 25 sets, **7s.** Single sets, **4d.**

● **THE GEOLOGY OF LONDON AND SOUTH-EAST ENGLAND.** By G. M. DAVIES, M.Sc., F.G.S. Deals with an area reaching as far north as Hunstanton (Norfolk) and as far west as Bournemouth. 63 figures, 4 plates. **8s.** net, postage 5d.

UNDERGROUND SOUTH-EASTERN ENGLAND. A Three-Dimensional Map of the Weald, London Basin and Chiltern Hills, By L. J. CHUBB, Ph.D., M.Sc., F.G.S. In coloured sheets to be made up. **12s. 6d.** net. Binding equipment **2s.** Made up **25s.** Postage: Sheets, inland 6d., abroad 10d. Made up, inland 6d.. abroad 10d.

THE IGNEOUS ROCKS OF THE MOUNTSORREL DISTRICT. By E. E. LOWE, B.Sc., Ph.D. **6s. 6d.** net, postage 3d.

MAP OF THE BRITISH ISLES with Geological Boundaries. For students to colour. 2d. each, postage 1d. **1s. 6d.** per doz., **15s.** per gross, postage extra.

GEOLOGICAL MAP OF THE BRITISH ISLES. In 10 colours. Natural Scale 1: 3,500,000. **2½d.**, postage 1d.

LOCAL GEOLOGY. A Guide to Sources of Information on the Geology of the British Isles. By A. MORLEY DAVIES., D.Sc., F.R.G.S., F.G.S. *2nd Edition revised 1927.* **1s.** net, postage 1d.

● **GEOLOGY OF CHINA.** By J. S. LEE, D.Sc., Professor of Geology in the Peking University. The book deals with the physical geography, stratigraphy and tectonics of China, with a discussion on wider problems of continental movement. Numerous maps, diagrams and half-tone illustrations of fossils and land-forms. **31s. 6d.** net. Postage: inland 6d., foreign 11d.

● **LEXICON DE STRATIGRAPHIE. VOL. I.: AFRICA.** Compiled by a Commission appointed by the XVth International Geological Congress. **35s.** net. Postage: inland 6d., foreign 9d.

GEOLOGY OF S.W. ECUADOR. By Dr. G. SHEPPARD, State Geologist of the Republic of Ecuador, with a Chapter on the Tertiary Larger Foraminifera of Ecuador by Dr. T. WAYLAND VAUGHAN. Deals with the Physical Geography and Stratigraphy of the area; and with the Petroleum Geology. **27s. 6d.** net. Postage: inland 6d., foreign 7d.

†**THE GEOLOGY OF VENEZUELA AND TRINIDAD.** By RALPH ALEXANDER LIDDLE. xxix. + 552 pp. 709 illustrations; 24 sections and maps, **\$7.50.** Postage: inland 7d., foreign 1s. 3d.

‡**ALBERTA STRATIGRAPHY. (Stratigraphy of Plains of Southern Alberta.)** A symposium by sixteen contributors. Reprinted from the Bulletin of the American Association of Petroleum Geologists, 1931. 166 pages, 60 illustrations including geological map. **\$3.00.** Postage: inland 6d., foreign 9d.

● †**MIOCENE STRATIGRAPHY OF CALIFORNIA.** By ROBERT M. KLEINPELL. Upwards of 300 pages, 22 plates of fossil figures, 14 line drawings, 20 tables and charts. **\$5.** Postage: inland 7d., foreign 1s.

†**THE STRUCTURAL EVOLUTION of SOUTHERN CALIFORNIA.** By H. D. READ and J. S. HOLLISTER. **\$2.** The coloured map (24in. x 31in.) may be had separately. **50 cents.** Postage 6d., map 2d.

Thomas Murby & Co., 1, Fleet Lane, Ludgate Circus, London, E.C.4

Regional Geology

GULF COAST OIL FIELDS. A Symposium on Gulf Coast Cenozoic.
By 52 authors. Chiefly papers reprinted from the *Bulletin of the American Association of Petroleum Geologists*. 1,100+pp., 292 figs, 19 half-tone plates. **\$4.** Postage: inland 8d., foreign 1s. 4d.

GEOLOGY OF THE TAMPICO REGION, MEXICO. By JOHN M. MUIR. 300 pp., 15 half-tone plates, 41 line drawings, 9 tables. **\$4.50.** Postage: inland 6d., foreign 7d.

GÉOLOGIE DE LA MÉDITERRANÉE OCCIDENTALE. Published under the direction of Prof. J. MARCET RIBA.

Vol. I. 1929-30. *Le XIV^e Congrès Géologique International et les excursions dans les Pays Catalans.* xliv + 252 pp. **£1 12s.**

Vol. II. 1930-32 *Communications faites sur la Région Catalans à l'occasion des Excursions du Congrès.* Nos. 1-48. 575 pp. **50s.**

Vol. III. 1930-37. *Etudes sur la Minéralogie et la Géologie de la Région Catalane.* 382 pp. **65s.**

Vol. IV. *Les Chaînes Bétique et Subbétiques.* 312 pp. **50s.**

• Vol. V. *Les Chaînes Nord Africaines.* 136 pp. **32s.**

Bibliographie Général du Congrès Géologique International (XIV^e Session, Espagne). 1s. 6d.

Bibliographie Géologique du L'Espagne. 2s. 6d. net.

Montserrat. Esquisse physiographique illustrée. 1s. 6d.

Region Volcanique d'Olot. 5s.

Region Volcanica Catalana. 3s.

Seismology

GREAT EARTHQUAKES. By C. DAVISON, Sc.D., F.G.S. Describes and records scientific data of the world's great earthquakes; the Lisbon Earthquake of 1755 to the Hawkes Bay (New Zealand) Earthquake of 1931. (The Great Japanese Earthquake (1923) is not described here, having been described in an earlier volume.) **18s. net.** Postage: inland 6d., foreign 7d.

THE JAPANESE EARTHQUAKE OF 1923. By C. DAVISON, Sc.D., F.G.S. Describes the great Japanese disaster and deals with this earthquake as an event in the history of the earth. 40 diagrams, **8s. net,** postage 6d.

STUDIES IN THE PERIODICITY OF EARTHQUAKES. By C. DAVISON, Sc.D., F.G.S. The author has revised and considerably extended his studies on the periodicity of earthquakes. **14s. net,** postage 4d.

Thomas Murby & Co., 1, Fleet Lane, Ludgate Circus, London, E.C.4

For Students of Geology and Geography

● **AN INTRODUCTION TO GEOLOGY.** By A. E. TRUEMAN, D.Sc., F.G.S., Professor of Geology in the University of Glasgow. This book covers the syllabus proposed for school courses by the British Association Committee on the Teaching of Geology. **4s. net, postage 4d.**

EARTH-LORE: Geology without Jargon. By Professor S. J. SHAND, D.Sc., F.G.S. A broad survey of geology for the general reader, *2nd Edition (revised and enlarged)*. 16 plates, 33 text figures **4s. net, postage 4d.**

The sales of this book in U.S.A. and Canada are in the hands of E. P. Dutton Company, Inc., N.Y.

GEOLOGICAL MODELS. By FRANK SMITHSON, Ph.D., F G.S. *Particulars of made up Models, etc., on application.*

BLOCK MODELS. Patterns for Construction and Notes.

1st SERIES (Faulting, Folding, etc.); 12 models. **1s. 9d.** net, postage 1d.

2nd SERIES (Igneous Phenomena, etc.); 14 models. **1s. 9d.** net, postage 1d.

SIMPLE RELIEF MODELS. Patterns. **6s.** net, postage 5d.

Brochures for Teachers of Geography by Dr. L. Dudley Stamp.

Descriptive two collections (of 30 specimens in each).

NOTES ON COMMON ROCKS. 6d. net, postage $\frac{1}{2}$ d.

NOTES ON SOME ECONOMIC MINERALS AND ROCKS. *New edition shortly.*

A GEOLOGICAL CHART. By COL. F. G. TALBOT. Suitable for hanging in the Class Room. Gives in clear and simple form the main outlines of geological history. **1s. 6d.** net, postage 2d.

OUTLINES OF GLACIAL GEOLOGY. By F. T. THWAITE, University of Wisconsin. (Photo-Lithoprint of Typewritten Manuscript, 1937.) 115 pp., 90 figs. **\$2.50** net, postage 6d.

MEMO-MAPS. Small blank maps for use with geological and other collections for recording geographical distribution, and for other uses. 25 of one kind, **6d.** net, postage 1d. 1,000 **16s.**

World, Western Europe, British Isles, England and Wales (with county boundaries), Scotland (with county boundaries), Asia, India, Africa, North America, South America, Australia.

LOCAL GEOGRAPHY. By C. G. BEASLEY, B.A. **1s.** net, postage 1d. The ideal guide for Schools undertaking Regional Surveys.

THE RIVER SEVERN FROM SOURCE TO MOUTH. By M. LANCHESTER. Starting at the peat bog in which the Severn rises, the authoress tramped the whole distance to the river-mouth. 58 sketches and map. **2s. 9d.** net, postage 4d.

Geological Mapping

METHODS IN GEOLOGICAL SURVEYING. By DR. E. GREENLY and DR. HOWEL WILLIAMS. **18s.** net. Postage; inland 6d., foreign 10d.

DIP AND STRIKE PROBLEMS, mathematically surveyed. By KENNETH W. EARLE, D.Sc., F.G.S. Deals with the trigonometrical, geometrical and graphical solution of such problems as are likely to confront the practical and mining geologist in the field. **12s. 6d.** net, postage 5d.

A SERIES OF ELEMENTARY EXERCISES UPON GEOLOGICAL MAPS. By JOHN I. PLATT, M.Sc., F.G.S. *2nd Edition (revised and enlarged).* **1s. 9d.** postage 3d.

SINGLE MAPS. The following exercises are available in single sheets: Nos. 2, 4, 6, 7, 8, 12, 13, 17, 19, 22, 24 and 26. Prices: **10d.** a dozen for any map of which less than a gross is ordered; **9s.** a gross for any one map of which a gross or more is ordered.

SIMPLE GEOLOGICAL STRUCTURES. A Series of Notes and Map-Exercises. By JOHN I. PLATT, M.Sc., F.G.S., and JOHN CHALLINOR, M.A., F.G.S. *2nd Edition.* **2s. 9d.** net, postage 3d.

NOTES ON GEOLOGICAL MAP READING. By A. HARKER, LL.D., F.R.S., F.G.S., with 40 illustrations. **3s. 6d.** net, postage 3d.

PROFILE SHEETS, for drawing sections from Contour Maps, **1d.** each, 10 for **6d.**, postage **1½d.**; 100 for **4s. 9d.**, postage **6d.**

Economic Geology

USEFUL ASPECTS OF GEOLOGY: An Introduction to Geological Science for Engineers, Mining Men and all interested in the Mineral Industries. By Professor S. J. SHAND. *2nd Edition (revised and extended).* **6s. 6d.** net, postage 4d

A PRACTICAL HANDBOOK OF WATER SUPPLY. By F. DIXBY, D.Sc., F.G.S., Director of the Geological Survey, Nyasaland, Geological and other aspects of water supply. **21s.** net. Postage, inland 6d., foreign 1s.

GEOLOGY OF NATURAL GAS: A Symposium. Edited by HENRY A. LEV. xii. + 1227 pp Numerous illustrations. **\$6.00.** Postage: inland 8d., abroad 1s. 4d. Consists of thirty-eight papers prepared by forty-seven authors.

COMPREHENSIVE INDEX OF THE PUBLICATIONS OF THE AMERICAN ASSOCIATION OF PETROLEUM GEOLOGISTS from 1917-1936, covering the *Bulletin* and other A.A.P.G. Publications. 382 pages double col. **\$3.** Postage: inland 7d., abroad 10d.

Thomas Murby & Co., 1, Fleet Lane, Ludgate Circus, London, E.C.4

Geological Terminology

GERMAN-ENGLISH GEOLOGICAL TERMINOLOGY. By W. R. JONES, D.Sc., F.G.S., M.I.M.M., and Dr. A. CISSARZ. An introduction to German and English terms used in Geology. **14s.** net. Postage: inland 6d., foreign 7d.

The above is uniform with the *German-English Terminologies in Chemistry, Botany and Physics*. See pp. 15 and 16.

A FRENCH-ENGLISH VOCABULARY IN GEOLOGY AND PHYSICAL GEOGRAPHY. By G. M. DAVIES, M.Sc., F.G.S. **6s. 6d.** net, postage 3d.

● GEOLOGY AND ALLIED SCIENCES. A Thesaurus and a Coordination of English and German Specific and General Terms. By Walther Huebner. Part One: German-English, **\$7.50**. Part Two, English-German, will be ready towards the end of the year, **\$7.50**. This dictionary contains 25,000 words, with cross-references about 35,000 words in each language. Published in New York by the Veritas Press (1939).

Also for the General Reader

IAUTOBIOGRAPHY OF EARTH. By T. H. BRADLEY. A light and interesting account of the Earth's history, written by a man with a genuine gift for vivid description. A sustained sense of drama dominates the book. The impressionist illustrations are in keeping with the author's style. **\$3.00.** Postage: inland 6d., abroad 8d.

● A HAND THROUGH TIME; Memories — Romantic and Geological; Studies in the Arts and Religion; and the grounds of Confidence in Immortality. By EDWARD GREENLY. Liberally illustrated. In two vols. **20s.** net. Post: inland 8d., foreign 1s. 6d.

THE POETRY OF GEOLOGY. By KENNETH KNIGHT HALLOWES, M.A. Consists of an essay on the Poetry of Geological Science and thirty poems by the author. **6s.** net, postage 3d.

OTHER BOOKS of interest to the general reader.

Useful Aspects of Geology. By Professor Shand. (p. 9); **Earth Lore.** By Professor Shand. (p. 8); **The Dinosaurs** By Dr. W. E. Swinton. (p. 4); **Limestones.** By Dr. F. J. North. (p. 3); **Opal.** By T. C. Wollaston. (p. 2); **Evolution and its Modern Critics.** By Dr. A. M. Davies. (p. 4).

Geology—Periodicals

I ANNOTATED BIBLIOGRAPHY OF ECONOMIC GEOLOGY. For all subjects bearing on Economic Geology. **\$5.00** per year.

‡ECONOMIC GEOLOGY. Annual Subscription **\$5.75.**

‡INDEX OF "ECONOMIC GEOLOGY." A ten-volume index, covering volumes XXI. XXX. **\$2.10.**

‡BULLETIN OF THE AMERICAN ASSOCIATION OF PETROLEUM GEOLOGISTS. Monthly. Subscription **\$15.40** per annum.

Thomas Murby & Co., 1, Fleet Lane, Ludgate Circus, London, E.C.4

Land Utilisation and Regional Survey

MAPS OF THE UTILISATION SURVEY OF GREAT BRITAIN.

Prepared by the Land Utilisation Survey under the Directorship of Dr. L. DUDLEY STAMP, B.A., F.G.S., from a field survey. Prices : Flat and unmounted, 4s. net (post free, 4s. 3d.). Mounted on linen and folded in covers, 5s. net (post free, 5s. 2d.). Set of first 12 sheets, unmounted, 36s. net (post free, 36s. 6d.), mounted 45s. net.

ONE-INCH MAPS.

ENGLAND AND WALES.—No. 7 Newcastle-on-Tyne, 11 Durham and Sunderland, 12 Keswick and Ambleside, 29 Preston, Southport and Blackpool, 30 Blackburn, 35 Liverpool and Birkenhead, 36 Bolton and Manchester, 37 Barnsley, 43 Chester, 44 Northwich and Macclesfield, 46 The Dukeries, 54 Nottingham, 55 Grantham, 56 Boston, 57 Fakenham, 58 Cromer, 62 Burton and Walsall, 63 Leicester, 64 Peterborough, 65 Wisbech, 66 Swaffham, 67 Norwich and Great Yarmouth, 72 Birmingham, 76 Thetford, 77 Lowestoft and Waveney Valley, 81 Worcester, 82 Stratford-on-Avon, 84 Bedford, 87 Ipswich, 88 St. David's and Cardigan, 95 Luton, 96 Hertford and Bishop's Stortford, 99 Pembroke and Tenby, 100 Llanelli, 101 Swansea and Aberdare, 102 Newport, 103 Stroud and Chepstow, 106 Watford and N.W. London, 107 N.E. London, and Epping Forest, 108 Southend-on-Sea, 109 Pontypridd and Barry, 112 Marlborough, 113 Reading and Newbury, 114 Windsor, 115 S.E. London and Sevenoaks, 117 East Kent, 120 Bridgwater, 123 Winchester, 132 Portsmouth and Southampton, 133 Chichester and Worthing, 134 Brighton and Eastbourne, 141 Bournemouth and Swanage, 142 Isle of Wight, 146 Land's End and Lizard.

MORE RECENT.—No. 16 Whitby and Saltburn, 22 Pickering and Thirsk, 31 Leeds and Bradford, 33 & 34 Hull, 38 Doncaster, 39 Scunthorpe and Market Rasen, 45 Buxton and Matlock, 52 Stoke-on-Trent, 53 Derby, 61 Wolverhampton, 71 Kidderminster, 85 Cambridge, 87 Ipswich, 97 and part of 98, Colchester and Clacton-on-Sea, 110 & 111 Bath and Bristol, 116 Chatham and Maidstone, 122 Salisbury and Bulford, 124 Guildford and Horsham, 125 Tunbridge Wells, 126 and part of 135, Weald of Kent and Hastings, 138 Dartmoor and Exeter.

SCOTLAND.—No. 4 South Mainland—Shetland Isles, 12 Wick, 45 Aberdeen, 53 Sound of Mull, 59 Iona and Colonsay, 60 North Jura and Firth of Lorne, 68 Firth of Forth, 74 Edinburgh.

MORE RECENT — No. 6 Orkney Is. (Mainland), 78 Kilmarnock and Ayr.

An Outline Description of the First Twelve Sheets. By L. D. STAMP and E. C. WILLATTS. With illustrations and coloured specimen map, 1s., postage 1d.

Wall Maps on Linen:—**London** (4 sheets) 25s., with rollers 28s., **Norfolk** (4 sheets) 25s., with rollers 28s.; **Mull** (3 sheets) 18s., with rollers 21s. Dissected maps to order at same prices.

THE LAND OF BRITAIN. Final Report of the Survey. ENGLAND—Part 78, Berkshire, 2s. 6d., postage 5d.; Part 53, Rutland, 2s., postage 3d.; Part 69, Lincolnshire—(Parts of Holland) 2s. 6d. postage 5d.; Part 70, Norfolk, 4s., postage 6d.; Part 79, Middlesex and London, 4s., postage 5d.; Part 86, Somerset, 4s., postage 5d. SCOTLAND—Part 1, Ayrshire, 2s. 6d., postage 5d.; Part 2, Moray and Nairn, 2s., postage 3d.; Part 3, Sutherland, 2s. 6d., postage 3d.; Part 4, Orkney, 2s. 6d., postage 4d.; WALES—Part 31, Glamorgan, 2s. 6d., postage 5d.; Part 32, Pembrokeshire, 2s. 6d., postage 4d.

ATLAS OF CROYDON AND DISTRICT Prepared by the Croydon Natural History and Scientific Society. Editor, C. C. Fagg, F.G.S. First Issue (loose leaf binder and several maps). 13s. 6d. net. Second Issue, 3s. 3d. net. First and Second Issue in binder, 16s. 6d. net. Postages extra.

SOIL SCIENCE

SOILS. Their Origin, Constitution and Classification. An Introduction to Pedology. By G. W. ROBINSON, Sc.D., Professor of Agricultural Chemistry in the University College of N. Wales, Bangor. [Recently appointed Director of Soil Survey for England and Wales.] Second edition revised, 1936. Reprinted 1938. 20s. net. Postage: inland 6d., foreign 9d.

● **SOIL ANALYSIS : A Handbook of Physical and Chemical Methods.** By C. H. WRIGHT, M.A., F.I.C., former Senior Agricultural Chemist, Nigeria. Second edition. 14s. net. Postage 6d.

● **THE PRINCIPLES OF SOIL SCIENCE.** By Professor A. A. J. DE' SIGMOND. Professor of Agricultural Technology, University of Technical Sciences, Budapest. The main theme of the book is the author's system of soil classification already known internationally but never before described in detail in English. 24s. net. Postage: inland 6d., foreign 10d.

† **THE GREAT SOIL GROUPS OF THE WORLD, AND THEIR DEVELOPMENT.** By Prof. Dr. K. D. GLIVKA, Director of the Agricultural Institute, Leningrad. Translation by C. F. MARBUT, 235 pp., Mimeographed 1928. \$3.25. Postage: inland 6d., foreign 8d.

THE CYCLE OF WEATHERING. By Prof. B. B. POLYNOV, of the Dokuchaiev Soil Institute, Moscow, corresponding member of the Academy of Sciences. U.S.S.R. Translated by Dr. ALEXANDER MUIR, of the Macaulay Institute of Soil Research, Aberdeen. 11s. 6d. net. Postage: inland 6d., foreign 8d.

THE KATAMORPHISM OF IGNEOUS ROCKS UNDER HUMID TROPICAL CONDITIONS By the late Prof. SIR J. B. HARRISON. An important work on rock weathering and soil formation. 5s. net.

● **MOTHER EARTH.** Letters on Soil, addressed to Prof. R. G. STAPLEDON, C.B.E., M.A., by Prof. G. W. ROBINSON, Sc.D., Author of *Soils*. This book sets forth in terms intelligible to the general reader modern views on the soil. 5s. 6d. net. Postage 5d.

● **THE SOILS OF PALESTINE.** Studies in Soil Formation and Land Utilisation in the Mediterranean. By Dr. A. REIFENBERG, Hebrew University, Jerusalem. Translated by Dr. C. L. WHITTES. 14s. net. Postage 4d.

● **SOILS OF THE LUSITANO-IBERIAN PENINSULA.** By Prof. EMILE H. DEL VILLAR. In Spanish and English (English translation by Prof. G. W. ROBINSON). Price with map 44s. for countries outside Spain. Postage: inland 6d. abroad 1s. Map alone 13s., in 17 colours (rolled or folded) now ready.

OTHER BOOKS useful to Soil Science Students:

Boswell's **Mineralogy of Sedimentary Rocks.** See p. 3.

Milner's **Sedimentary Petrography.** See p. 3

Thomas Murby & Co., 1, Fleet Lane, Ludgate Circus, London, B.C.4

A PROVISIONAL SOIL MAP OF EAST AFRICA (Kenya, Uganda, Tanganyika, and Zanzibar) with memoir by G. MILNE. The map and short descriptive memoir now published are intended as a summary of progress in the investigation planned by the Director of the East African Agricultural Research Station, Amani, in the fields of "soil systematics," or classification by morphology, and in "soil geography," or the distribution of soil types in relation to the natural features of the country. **5s.** Post 3d.

TECHNICAL COMMUNICATIONS OF THE IMPERIAL BUREAU OF SOIL SCIENCE : Nos. 24—33. **2s.**

No. 24, Laterite and Laterite Soils; No. 26, The Dispersion of Soils in Mechanical Analysis; No. 27, Land Amelioration in Germany; No. 28, Soil Erosion (By T. Eden); No. 29, Soil, Vegetation and Climate; No. 30, The Determination of Exchangeable Bases in Soils; No. 33, Organic Manures (By S. H. Jenkins, Ph.D., F.I.C.); No. 34, Tropical Soils in relation to Tropical Crops **2s. 6d.**; No. 35, The Design and Analysis of Factorial Experiments (By F. Yates, M.A.), **5s.**; ● No. 36, Erosion and Soil Conservation (By G. V. Jacks and R. C. Whyte), **5s.** ● No. 37, Soil Structure (By Dr. E. W. Russell) **2s.** ● No. 38, Soil-borne Fungi and the Control of Root Disease, **2s. 6d.** *Forthcoming*: ● No. 39, Soil Moisture; ● No. 40, Minor Elements in Soil and Plant Nutrition. *Particulars of Nos. 7 to 23 on application.*

TRANSACTIONS OF THE THIRD INTERNATIONAL CONGRESS OF SOIL SCIENCE (1935), held at Oxford, July 30th to August 7th. Subjects dealt with: Soil Physics; Soil Chemistry; Soil Microbiology; Soil Fertility; Soil Genesis; Morphology and Cartography; Soil Technology.

Vol. I.—COMMISSION PAPERS. 440 pp. In paper covers.

To members of the International Society of Soil Science, **25s.** net. To non-members, **30s.** net. Postage: inland 6d.; foreign 8d. Vols. II. and III out of print.

Soil Science—Periodical Publications

SOILS AND FERTILIZERS. A periodical issued **every two months** incorporating the *Monthly Letters* of the Imperial Bureau of Soil Science; about 400 abstracts of newly published methods; and *Summaries of Recent Reports*—Nos. 1 to 3 ready, subscription rate (foreign): ordinary edition, **25s.** per annum, single copies, British or foreign, **5s.**

BIBLIOGRAPHY OF SOIL SCIENCE, FERTILIZERS AND GENERAL AGRONOMY 1931-1934. Over 6,000 references to papers, bulletins and reports published throughout the world. Entries carefully classified according to Universal Decimal System of Classification. Compiled by the IMPERIAL BUREAU OF SOIL SCIENCE. 504 pp. **25s.** net.

● **BIBLIOGRAPHY OF SOIL SCIENCE FERTILIZERS, AND GENERAL AGRONOMY, 1934-1937.** Contains 7,500 references to papers published during period and embraces every subject directly or remotely connected with the soil. There is an author index of 4,500 names. 556 pp. **25s.** net.

**GUIDE-BOOK FOR THE EXCURSION ROUND BRITAIN OF
THE THIRD INTERNATIONAL CONGRESS OF SOIL
SCIENCE.** The most up-to-date account of British Soils.
iv. + 74 pp. 2s. 6d. net.

**PROCEEDINGS OF THE SECOND INTERNATIONAL CON-
GRESS OF SOIL SCIENCE,** Leningrad (Moscow, U.S.S.R.,
1930).

VOL.	I.—Soil Physics. (1932). Pp. xxxi + 304	13s.
"	II.—Soil Chemistry. (1933). Pp. xxiv + 225	8s. 6d.
"	III.—Soil Biology. (1932). Pp. xix + 303	13s.
"	IV.—Soil Fertility. (1932). Pp. xviii + 264	13s.
"	V.—Classification, Geography and Cartography of Soils, (1932). Pp. xxiii + 424	17s.
"	VI.—Application of Soil Science to Agricultural Tech- nology. (1932). Pp. xxii + 320	13s.
"	VII.—General Plenary Sessions, Excursions	[Out of print]

Fuller particulars of the above and of other publications of the Soviet Section of the International Society of Soil Science will be sent on application.
Postage approx.: inland 6d., foreign 9d. per vol.

**ADDITIONAL PUBLICATIONS OF THE SOVIET SECTION
OF THE INTERNATIONAL SOCIETY OF SOIL SCIENCE.**

Pedology in USSR., 1935, 7s. Soil Microbiology in the USSR., 1933, 7s. Bodenfruchtbarkeit und Anwendung der Dungern in der UdSSR., 1933, 8s. Bodenchemie in der UdSSR., 1934, 4s. 6d. The Problem of Soil Structure, 1933, 4s. 6d. Problèmes de la Physique du Sol, 1934, 8s. Classification Geography and Cartography of Soil in USSR. (awaiting price).

- **AGRICULTURAL ANALYSIS:** A Handbook of Methods excluding those for Soils. By C. H. WRIGHT, M.A., F.I.C., Author of *Soil Analysis*. Gives the working details of the methods of analysis of fertilisers, feeding stuffs, milk, milk products, insecticides and fungicides. For advanced students and agricultural chemists. 17s. 6d. net. Postage: inland 6d., foreign 8d.
-

- **ELEMENTARY FOREST MENSURATION.** By M. R. K. JERRAM, late Indian Forest Service, Assistant Lecturer in Forestry, University College of North Wales. Theory of Tree Measurement, Measurement of Felled and Standing Trees Volume Tables, Increment of Individual Trees, Measurement of Woods, Yield Tables, Measurement of Forests, etc. 9s. net. Postage 4d.
-

- **AN OUTLINE OF FORESTRY.** By THOMAS THOMSON, M.Sc., Head of the Department of Forestry, University College of N. Wales, Bangor, and M. R. K. JERRAM, M.C., Late Indian Forest Service, Assistant Lecturer in Forestry, University College of N. Wales. Its four parts deal with: (i) Forest Policy, (ii) Forest Bionomics, (iii) Forest Economics, (iv) Forest Management. 8s. net. Postage 5d.
-

BOTANY AND ZOOLOGY

● **GERMAN-ENGLISH BOTANICAL TERMINOLOGY.** By Dr. E. & Prof. H. ASHBY, Dr. H. RICHTER and Dr. BÄRNER. A concise account of Botany in parallel texts of German and English. **11s. net.** Postage 6d.

GERMAN-ENGLISH ZOOLOGICAL TERMINOLOGY. By T. L. GREEN, B.Sc., A.R.C.S., and J. M. WATSON, A.R.C.S., and Dr. HEINZ GRAUPNER. *In preparation.*

THE WOAD PLANT AND ITS DYE, By J. B. HURRY, M.A., M.D. 360 pages, 2-coloured plate and numerous other plates and text figures. **21s. net.** Postage: inland 6d., foreign 9d.

For books on **Forestry** see p. 14.

CHEMISTRY

CHEMICAL CALCULATIONS: THEIR THEORY AND PRACTICE.

By A. KING, M.Sc., and Dr. J. S. ANDERSON, both of the Chemistry Department of the Imperial College of Science and Technology, South Kensington. For first year students in Universities and for higher classes in Schools. *Second Edition*, with 25 additional exercises, and issued at **2s. 9d. net.** Postage 4d.

INORGANIC PREPARATIONS. By A. KING, M.Sc., A.R.C.S., D.I.C. A logical arrangement of experiments with sufficient theoretical matter for the student to correlate theory with practice. Detailed directions for about 190 preparations, and about an equal number briefly sketched. **6s. net.** postage 4d.

GERMAN-ENGLISH CHEMICAL TERMINOLOGY. By A. KING, M.Sc., and Dr. H. FROMHERZ. An introduction to Chemistry in English and German. In Murby's German-English Terminologies. **14s. net.** Postage: inland 6d., foreign 7d.

The sale of this book in U.S.A. and Canada is in the hands of D. Van Nostrand Company (Inc.), New York.

SILICATE ANALYSIS: A Manual for Geologists and Chemists, with Chapters on Check Calculations and Geo-Chemical Data. By A. W. GROVE, D.Sc., Ph.D., D.I.C., F.G.S. Foreword by Prof. ARTHUR HOLMES. **14s. net.** Postage: inland 6d., foreign 7d.

Soil Analysis. By C. H. WRIGHT, M.A., F.I.C. See p. 12.

Agricultural Analysis, By C. H. WRIGHT, M.A., F.I.C. See p. 14.

PHYSICS

- **GERMAN-ENGLISH PHYSICS TERMINOLOGY.** By E. R. FRANCIS, B.Sc., Hons. (London) A.L.A., with the collaboration of Dr. VON AUWERS. *In preparation.*

TRILINEAR COÖRDINATE PAPER. For use in plotting three variables, in petrology, chemistry, physics, etc. Each side 20 cms., divided into 100 parts, every fifth line heavy. Price, 10 sheets for **1s. 4d.**, **20 2s. 8d.**, **50 5s.**

HOBBS' ARITHMETIC OF ELECTRICAL MEASUREMENTS.

Revised and Edited by A. RISDON PALMER, B.Sc., B.A., Head of the Matriculation Department, the Polytechnic, W. 9th Reprint of the 16th Edition. With answers. **2s. 3d.** net, postage 2d.

In each chapter a brief explanation is followed by fully worked examples, and numerous well selected examples for the student to work.

MAGNETIC MEASUREMENTS AND EXPERIMENTS. By A. RISDON PALMER, B.Sc., B.A. With answers. **2s. 3d.** net, postage 2d. *Second Impression.*

Each chapter contains a set of experiments, arranged to reduce a duplication of apparatus as far as possible (or graphical questions), a short account of the theory to supplement the class lesson, some fully worked examples, and a set of carefully graduated exercises.

ELECTRICAL EXPERIMENTS. By A. RISDON PALMER, B.Sc., B.A. **2s. 3d.** net, postage 2d. *Second Impression.*

A course of Experimental Electricity for one or two years. Details are given as to apparatus and the method of procedure, and the setting out of results.

GENERAL SCIENCE

- **THE THEORY AND PRACTICE OF GENERAL SCIENCE.** By H. S. SHELTON. A book for the teacher, explaining what *General Science* is and how it differs from Science as taught on conventional lines. **3s. 9d.** net. Postage 3d.

PSYCHOLOGY

WHEN TEMPERAMENTS CLASH. A Study of the Components of Human Temperaments. By MURDO MACKENZIE. **7s. 6d.** net. Postage 5d.

Thomas Murby & Co., 1, Fleet Lane, Ludgate Circus, London, B.C.4

