Obtenha um autômato finito mínimo que reconheça a linguagem L formada pelas cadeias sobre $\{a,b,c\}$ a linguagem L formada pelas cadeias sobre $\{a,b,c\}$ em que a quantidade total de símbolos a seja sempre múltiplo de 3, ou seja $L = ((b \mid c)^* a(b \mid c)^* a(b$

- Uma das formas de se determinar se dois autômatos finitos aceitam a mesma linguagem consiste em reduzi-los às respectivas versões mínimas e depois compará-las. Por quê?
- 2. Para cada um dos autômatos finitos construídos nos Exercícios 79 e 82, obtenha a versão mínima equivalente.
- 13. Determine, para cada uma das linguagens abaixo especificadas, se existe algum autômato finito determinístico e sem transições em vazio com três estados que a aceite. Justifique suas respostas.
 - a) ab^*cd , sobre o alfabeto $\{a,b,c,d\}$;
 - b) $a^*(b \mid c)d$, sobre o alfabeto $\{a, b, c, d\}$;
 - c) $a(bc)^*(ea(bc)^*)^*d$, sobre o alfabeto $\{a, b, c, d, e\}$.
- 94. Determine, para cada uma das linguagens abaixo especificadas, quantos autômatos finitos determinísticos e sem transições em vazio distintos existem, que possuam apenas dois estados e aceitem a linguagem. Justifique suas respostas.
 - a) $a(bc)^*$;
 - b) $a(b | c)^*$;
 - c) $(ab | c)^*$.
- 95. Construa a versão mínima equivalente a cada um dos autômatos finitos apresentados a seguir:

