0.5

1

2

3

UNIVERSIDADE DE AVEIRO

DEPARTAMENTO DE ELECTRÓNICA, TELECOMUNICAÇÕES E INFORMÁTICA

Introdução à Arquitetura de Computadores (2018/2019)

Teste Prático 1 – 21 de Março de 2019 – Duração: 55m

Notas Importantes:

Justifique todas as suas respostas.

O teste é individual e sem consulta

	O teste e individual e serii consulta.
	Não é permitida a utilização de calculadora.
	Nome: No Mec
	Grupo I
1.	Considere o número 84 escrito na base 10.
1.	
	a. Represente-o na <u>base 2</u> , na <u>base 8</u> e na <u>base 16</u> .
	b. Determine a representação de -84 em sinal e módulo com 8 bits.
	c. Determine a representação de -84 em complemento para 2 com 8 bits.
	nsiderando os números seguintes representados <u>sem sinal</u> , com 8 bits, efetue a soma e indique se o resultado é
repr	sentável em 8 bits.
	01010011 ₂ +10010101 ₂ =
2b. (onsiderando os números da questão anterior representados em complemento para 2 com 8 bits indique se
ocor	eu overflow.
	·
4	4h 4- 2- 2h 2 4 5 C- Ch C- Cd 7- 7h 0

1.5

1

1

1

3. Efectue a multiplicação em binário dos seguintes números:

1011 ₂ *0101 ₂ =		

4. Converta o número seguinte para binário tendo o cuidado de manter aproximadamente a precisão da representação original:

9.6 ₁₀ =		

Grupo II

5. Usando os teoremas da Álgebra de Boole, simplifique a expressão seguinte (justifique cada passo):

$$Y = \bar{A}B + C + AB\bar{C}$$

6. Considere a tabela de verdade seguinte onde a função lógica G é expressa em função das entradas A, B e C.

Α	В	С	G
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

1a	1b	1c	2a	2b	3	4	5	6a	6b	6c	6d	7a	7b	8
2	0.5	1	1	1	1	1	2	1	1.5	2	1	1	1	3

	The rester ratio 1, 21 de Margo de 2015	1 46. 5/ 1
a)	Represente a função G na primeira forma canónica, isto é, como uma soma de mintermos.	
b)	Usando um mapa de Karnaugh, determine uma expressão simplificada para a função G.	
,		
c)	Desenhe o circuito lógico que implementa a expressão obtida na alínea anterior.	
	(Caso não tenha respondido à alínea anterior considere a expressão $G = \bar{A}\bar{C} + \bar{A}B + AB\bar{C}$)	
-1\	Degree state of the State Core former MAND MAND	
d)	Represente a função G na forma NAND-NAND.	
7. Cons	idere o circuito lógico da figura seguinte:	
	a D	
	> [→] ≫ ^y	
	b	
7-) -		
/a) Esci	reva a equação algébrica que o descreve:	
I		

1a	1b	1c	2a	2b	3	4	5	6a	6b	6c	6d	7a	7b	8
2	0.5	1	1	1	1	1	2	1	1.5	2	1	1	1	3

8. Projete um circuito detetor de diferenças, de modo que a saída I seja 1, sempre que as entradas A e B sejam diferentes e 0 nos restantes casos. Considere entradas de dois bits A_1A_0 e B_1B_0 . Sugestão: Escreva a tabela de verdade do circuito, obtenha uma expressão simplificada de I e desenhe o circuito.	

1a	1b	1c	2a	2b	3	4	5	6a	6b	6c	6d	7a	7b	8
2	0.5	1	1	1	1	1	2	1	1.5	2	1	1	1	3