Análisis Probabilístico de Algoritmos

Pablo Rotondo

LIGM, Université Gustave Eiffel

ECI, Buenos Aires, 28 de Julio a 1 de Agosto, 2025.

Modalidad del curso

- Curso divido en 3 grandes módulos temáticos
- Cada clase estará divida en dos partes:
 15 min intro/exos + 1h15 + 15 min de pausa + 1h15
- Examen escrito al final de la última clase. Duración 1h

¿De qué trata este curso?

Analysis of Algorithms (AofA) is a field at the boundary of computer science and mathematics. The goal is to obtain a precise understanding of the asymptotic, average-case characteristics of algorithms and data structures. [...]

The area of Analysis of Algorithms is frequently traced to 27 July 1963, when Donald E. Knuth wrote "Notes on Open Addressing".

Del sitio de la comunidad **AofA**https://www.math.aau.at/AofA/

Wikipedia, CC BY-SA 3.0.

Contenido

- 1. Introducción al análisis probabilístico de algoritmos:
 - Motivación, ejemplos clásicos (sorting, hashing, ...)
 - Modelos modernos (branch prediction).
- 2. Introducción a la Combinatoria analítica:
 - Funciones generatrices ordinarias y exponenciales.
 - Singularidades, extracción de coeficientes y Teorema de Transferencia.
 - Aplicaciones algorítmicas.
- 3. Aplicaciones a la generación aleatoria de estructuras discretas¹:
 - Método recursivo.
 - Boltzmann samplers.

¹Si tiempo.

Outline

- 1. Introducción al análisis de algoritmos
 - Algoritmos de sorting
 - Tablas de Hash

Estudiar teóricamente la performance de un algoritmo:

- independientemente del lenguaje de programación,
- independientemente del hardware.

Estudiar teóricamente la performance de un algoritmo:

- independientemente del lenguaje de programación,
- independientemente del hardware.
- \Rightarrow contar operaciones concretas efectuadas.

Estudiar teóricamente la performance de un algoritmo:

- independientemente del lenguaje de programación,
- independientemente del hardware.
- ⇒ contar operaciones concretas efectuadas.

En los estudios más clásicos:

- Se considera solo el peor caso.
- Solo en orden de magnitud cuando el tamaño del input $n \to \infty$. Por ejemplo $O(n^2), O(n \log n)$, etc.

Estudiar teóricamente la performance de un algoritmo:

- independientemente del lenguaje de programación,
- independientemente del hardware.
- ⇒ contar operaciones concretas efectuadas.

En los estudios más clásicos:

- Se considera solo el peor caso.
- Solo en orden de magnitud cuando el tamaño del input $n \to \infty$. Por ejemplo $O(n^2), O(n \log n)$, etc.

Ejemplo

Consideremos el problema de ordenar un array de n elementos distintos.

Si contamos comparaciones:

- 1. Mergesort $\Theta(n \log n)$ en peor caso, Bubble sort y Quicksort $\Theta(n^2)$,
- 2. pero Quicksort se comporta en $O(n \log n)$ en media (valor esperado !)

Nociones básicas de probabilidad

La media de una variable aleatoria discreta X es

$$\mathbb{E}[X] = \sum_{k \in \mathbb{Z}} k \cdot \Pr(X = k),$$

cuando la suma converge absolutamente, es decir $\mathbb{E}[|X|] < \infty$.

Recordamos las siguientes propiedades básicas:

- \bullet Designaldad triangular: $|\mathbb{E}[X]| \leq \mathbb{E}[|X|]$
- La media es lineal $\mathbb{E}[aX + bY] = a\mathbb{E}[X] + b\mathbb{E}[Y]$.
- Para una función indicatriz $\mathbf{1}_A$ tenemos $\mathbb{E}[\mathbf{1}_A]$ = $\Pr(A)$.

Nociones básicas de probabilidad

La media de una variable aleatoria discreta X es

$$\mathbb{E}[X] = \sum_{k \in \mathbb{Z}} k \cdot \Pr(X = k),$$

cuando la suma converge absolutamente, es decir $\mathbb{E}[|X|] < \infty$.

Recordamos las siguientes propiedades básicas:

- Desigualdad triangular: $|\mathbb{E}[X]| \leq \mathbb{E}[|X|]$
- La media es lineal $\mathbb{E}[aX + bY] = a\mathbb{E}[X] + b\mathbb{E}[Y]$.
- Para una función indicatriz $\mathbf{1}_A$ tenemos $\mathbb{E}[\mathbf{1}_A] = \Pr(A)$.

Fórmula de la probabilidad total

Sean eventos S_1, S_2, \ldots disjuntos con $\bigcup_i S_i = \Omega$ (todo) :

$$\mathbb{E}[X] = \sum_{k=1}^{\infty} \Pr(S_k) \times \mathbb{E}[X|S_k].$$

Quicksort

Quicksort particiona según un pivot y luego continua recursivamente.

Quicksort

Por simplicidad² consideramos que el pivot es elegido determinísticamente:

```
def partition(arr, low, high):
    pivot = arr[high]
    i = low

for j in range(low, high):
        if arr[j] < pivot:
            arr[i], arr[j] = arr[j], arr[i]
            i += 1

arr[i], arr[high] = arr[high], arr[i]
    return i</pre>
```

Peor caso: o todos mayores, o todos menores que el pivot:

- Cantidad de comparaciones = $1 + 2 + \dots + (n-1) = \frac{n(n-1)}{2} = \Theta(n^2)$.
- Puede suceder si el array está ya ordenado!

²Mejor sería un pivot aleatorio, o permutar la entrada para evitar ataques.

Quicksort: modelo aleatorio

Veamos ahora qué sucede si el array es una permutación aleatoria

- cada permutación π de $(1,2,\ldots,n)$ tiene probabilidad $p(\pi)=1/n!$
- equivalente a elegir n números aleatorios del intervalo [0,1] \Longrightarrow argumento de simetría !

Quicksort: modelo aleatorio

Veamos ahora qué sucede si el array es una permutación aleatoria

- cada permutación π de $(1,2,\ldots,n)$ tiene probabilidad $p(\pi)=1/n!$
- equivalente a elegir n números aleatorios del intervalo [0,1] \Longrightarrow argumento de simetría !

Nos interesa la cantidad de comparaciones $C_n(\pi)$ necesarias para ordenar:

- En media $E_n = \mathbb{E}[C_n] = \sum_{\pi \in \mathcal{S}_n} C_n(\pi) \times p(\pi) = \frac{1}{n!} \sum_{\pi \in \mathcal{S}_n} C_n(\pi)$,
- En distribución $\Pr(C_n > \lambda) = \sum_{\pi \in S_n: C_n(\pi) > \lambda} p(\pi)$.

Quicksort: comportamiento en media

Para la media E_n de la cantidad de comparaciones C_n tenemos:

Proposición

Quicksort satisface $E_n = 2(n+1)H_n - 4n$, donde $H_n = 1 + \frac{1}{2} + \dots + \frac{1}{n}$ son las sumas armónicas.

Entonces $E_n \sim 2n \log n$ donde \log es el logaritmo natural (neperiano). ³

 $^{^3}$ Las sumas harmónicas satisfacen $H_n \sim \int_1^n \frac{dx}{x} = \log n.$

Análisis en media de Quicksort

Con probabilidad 1/n el rango de $\pi(n)$ es j, entonces

$$\begin{split} E_n &= \sum_{j=1}^n \mathbb{E}[C_n| \ \mathsf{pivot} = j] \cdot \Pr\left(\mathsf{pivot} = j\right) \,, \qquad \qquad \text{(prob. total)} \\ &= \frac{1}{n} \times \sum_{j=1}^n \mathbb{E}[C_n| \ \mathsf{pivot} = j] \,, \\ &= \frac{1}{n} \times \sum_{j=1}^n \mathbb{E}[C_{j-1} + \tilde{C}_{n-j} + n - 1] \,, \qquad \qquad \left(C_{j-1} \ \mathsf{y} \ \tilde{C}_{n-j} \ \mathsf{indep.}\right) \\ &= \frac{1}{n} \times \sum_{j=0}^{n-1} (E_j + E_{n-1-j}) + n - 1 \,. \qquad \qquad \text{(linealidad esperanza)} \end{split}$$

En la tercera línea \tilde{C}_{n-j} es el costo de ordenar el array de la parte alta, que contiene $j+1,\ldots,n$ en el orden inicial. Su distribución es la misma que C_{n-j} .

Estudio en media

La media es una buena medida cuando pensamos ejecutar muchas veces un algoritmo.

Teorema (Ley de los grandes números)

Si X_1, X_2, \ldots son independientes e identicamente distribuidas, con $\mathbb{E}[|X_1|] < \infty$, entonces con probabilidad 1 :

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} X_i = \mathbb{E}[X_1].$$

Estudio en media

La media es una buena medida cuando pensamos ejecutar muchas veces un algoritmo.

Teorema (Ley de los grandes números)

Si X_1, X_2, \ldots son independientes e identicamente distribuidas, con $\mathbb{E}[|X_1|] < \infty$, entonces con probabilidad 1 :

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} X_i = \mathbb{E}[X_1].$$

- ¿y si lo queremos ejecutar solamente una vez?
- ¿la media refleja la complejidad de una sola ejecución?

Estudio en media

La media es una buena medida cuando pensamos ejecutar muchas veces un algoritmo.

Teorema (Ley de los grandes números)

Si X_1, X_2, \ldots son independientes e identicamente distribuidas, con $\mathbb{E}[|X_1|] < \infty$, entonces con probabilidad 1 :

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} X_i = \mathbb{E}[X_1].$$

- ¿y si lo queremos ejecutar solamente una vez?
- ¿la media refleja la complejidad de una sola ejecución? En general: no.

Concentración en probabilidad

Decimos que una secuencia de variables aleatorias X_n satisface $X_n \sim f(n)$ en probabilidad sii, para cada $\varepsilon > 0$ fijo,

$$\Pr(X_n \in [(1-\varepsilon)f(n), (1+\varepsilon)f(n)]) \to 1.$$

⁴De hecho se sabe mucho más al respecto, ver el artículo: *C. McDiarmid y R. Hayward. 1992. Strong concentration for Quicksort. SODA '92.*

Concentración en probabilidad

Decimos que una secuencia de variables aleatorias X_n satisface $X_n \sim f(n)$ en probabilidad sii, para cada $\varepsilon > 0$ fijo,

$$\Pr(X_n \in [(1-\varepsilon)f(n), (1+\varepsilon)f(n)]) \to 1.$$

Probaremos más tarde que la cantidad de comparaciones C_n en quicksort⁴ satisface $C_n \sim 2n \log n$ en probabilidad.

Proposición

La cantidad de comparaciones satisface $C_n \sim 2n \log n$ en probabilidad.

Las funciones generatrices nos ahorrarán muchos cálculos.

⁴De hecho se sabe mucho más al respecto, ver el artículo: *C. McDiarmid y R. Hayward. 1992. Strong concentration for Quicksort. SODA '92.*

Optimalidad en media

Algoritmo basado en comparaciones se representa como árbol binario:

- nodos internos corresponden a comparaciones; rama izquierda False, rama derecha True.
- hojas corresponden a los posibles output del algoritmo.

Optimalidad en media y entropía

Hojas son permutaciones $\Rightarrow n!$ hojas.

- Altura del árbol [peor caso] es al menos $log_2(n!)$,
- $\bullet \log_2(n!) \sim n \log_2 n$

Optimalidad en media y entropía

Hojas son permutaciones $\Rightarrow n!$ hojas.

- Altura del árbol [peor caso] es al menos $log_2(n!)$,
- $\bullet \log_2(n!) \sim n \log_2 n$

Pero esto es también cierto para la media. Sea ℓ_π la profundidad de la hoja π , notar que $C_n(\pi)$ = ℓ_π es la cantidad de comparaciones,

Teorema (Profundidad media de un árbol binario)

Para cualquier distribución $\mathbf{p} = (p(\pi))_{\pi}$ sobre las hojas

$$\mathbb{E}[\ell] = \sum \ell_{\pi} p(\pi) \ge H_2(\mathbf{p}),$$

donde $H_2(\mathbf{p}) = -\sum_{\pi} p(\pi) \log_2 p(\pi)$ es la entropía binaria.

Optimalidad en media y entropía

Hojas son permutaciones $\Rightarrow n!$ hojas.

- lacksquare Altura del árbol [peor caso] es al menos $\log_2(n!)$,
- $\bullet \log_2(n!) \sim n \log_2 n$

Pero esto es también cierto para la media. Sea ℓ_π la profundidad de la hoja π , notar que $C_n(\pi)$ = ℓ_π es la cantidad de comparaciones,

Teorema (Profundidad media de un árbol binario)

Para cualquier distribución $\mathbf{p} = (p(\pi))_{\pi}$ sobre las hojas

$$\mathbb{E}[\ell] = \sum \ell_{\pi} p(\pi) \ge H_2(\mathbf{p}),$$

donde $H_2(\mathbf{p}) = -\sum_{\pi} p(\pi) \log_2 p(\pi)$ es la entropía binaria.

En nuestro caso $p(\pi) = 1/n!$ para cada permutación, y $\mathbb{E}[C_n] \ge \log_2 n!$.

Prueba: entropía es cota inferior

Lema

Para un árbol binario completo $\sum_{h \text{ hojas}} 2^{-\ell_h} = 1$

Lema

Para todo x > 0, $\log x \le x - 1$. La igualdad se verifica sii x = 1.

Prueba: entropía es cota inferior

Lema

Para un árbol binario completo $\sum_{h \text{ hojas}} 2^{-\ell_h} = 1$

Lema

Para todo x > 0, $\log x \le x - 1$. La igualdad se verifica sii x = 1.

Prueba del Teorema. Combinamos los lemas con las propiedades del logaritmo, interpretando $-\ell_h = \log 2^{-\ell_h}$.

 \bullet En nuestro modelo de quicksort el input π es una permutación uniforme :

$$\Pr(\pi = (a_1, \ldots, a_n)) = (n!)^{-1}.$$

 \bullet En nuestro modelo de quicksort el input π es una permutación uniforme :

$$\Pr(\pi = (a_1, \ldots, a_n)) = (n!)^{-1}.$$

• Corresponde a considerar n números (flotantes) de [0,1].

 \bullet En nuestro modelo de quicksort el input π es una permutación uniforme :

$$\Pr(\pi = (a_1, \ldots, a_n)) = (n!)^{-1}.$$

- Corresponde a considerar n números (flotantes) de [0,1].
- Razonable sin conocimiento a priori del input.

• En nuestro modelo de quicksort el input π es una permutación uniforme :

$$\Pr(\pi = (a_1, \dots, a_n)) = (n!)^{-1}.$$

- Corresponde a considerar n números (flotantes) de [0,1].
- Razonable sin conocimiento a priori del input.

Otros algoritmos (Powersort, Timsort, ...) suponen que el input puede estar parcialmente ordenado en pedazos:

• input dividido en *runs* crecientes/decrecientes de longitud a_1, \ldots, a_r .

$$[\underbrace{1,5,7}_{a_1=3},\underbrace{2,4,9}_{a_2=3},\underbrace{6,4,4}_{a_3=3},\underbrace{12,4}_{a_4=2}];$$

• En nuestro modelo de quicksort el input π es una permutación uniforme :

$$\Pr(\pi = (a_1, \dots, a_n)) = (n!)^{-1}.$$

- Corresponde a considerar n números (flotantes) de [0,1].
- Razonable sin conocimiento a priori del input.

Otros algoritmos (Powersort, Timsort, ...) suponen que el input puede estar parcialmente ordenado en pedazos:

• input dividido en *runs* crecientes/decrecientes de longitud a_1, \ldots, a_r .

$$\underbrace{\left[\underbrace{1,5,7}_{a_1=3},\underbrace{2,4,9}_{a_2=3},\underbrace{6,4,4}_{a_3=3},\underbrace{12,4}_{a_4=2}\right]}_{a_3=3}; \text{ o quizás } \underbrace{\left[\underbrace{1,5,7}_{a_1=3},\underbrace{2,4,9}_{a_2=3},\underbrace{6,4}_{a_3=2},\underbrace{4,12}_{a_4=2},\underbrace{4}_{a_5=1}\right]}_{a_5=1}.$$

• En nuestro modelo de quicksort el input π es una permutación uniforme :

$$\Pr(\pi = (a_1, \dots, a_n)) = (n!)^{-1}.$$

- Corresponde a considerar n números (flotantes) de [0,1].
- Razonable sin conocimiento a priori del input.

Otros algoritmos (Powersort, Timsort, ...) suponen que el input puede estar parcialmente ordenado en pedazos:

• input dividido en *runs* crecientes/decrecientes de longitud a_1, \ldots, a_r .

$$\underbrace{[\,\underline{1,5,7}}_{a_1=3},\underbrace{2,4,9}_{a_2=3},\underbrace{6,4,4}_{a_3=3},\underbrace{12,4}_{a_4=2}]; \text{ o quizás } \underbrace{[\,\underline{1,5,7}}_{a_1=3},\underbrace{2,4,9}_{a_2=3},\underbrace{6,4}_{a_3=2},\underbrace{4,12}_{a_4=2},\underbrace{4}_{a_5=1}]\,.$$

merge(sort) inteligente aprovecha los runs existentes!

• En nuestro modelo de quicksort el input π es una permutación uniforme :

$$\Pr(\pi = (a_1, \dots, a_n)) = (n!)^{-1}.$$

- Corresponde a considerar n números (flotantes) de [0,1].
- Razonable sin conocimiento a priori del input.

Otros algoritmos (Powersort, Timsort, ...) suponen que el input puede estar parcialmente ordenado en pedazos:

• input dividido en *runs* crecientes/decrecientes de longitud a_1, \ldots, a_r .

$$\big[\underbrace{1,5,7}_{a_1=3},\underbrace{2,4,9}_{a_2=3},\underbrace{6,4,4}_{a_3=3},\underbrace{12,4}_{a_4=2}\big]; \text{ o quizás } \big[\underbrace{1,5,7}_{a_1=3},\underbrace{2,4,9}_{a_2=3},\underbrace{6,4}_{a_3=2},\underbrace{4,12}_{a_4=2},\underbrace{4}_{a_5=1}\big].$$

merge(sort) inteligente aprovecha los runs existentes!

La elección del modelo probabilista es un paso clave.

Fusión de dos runs

Run A: 2 | 5 | 7

Run B: 1 4 8 9

Resultado:

Suposición: la fusión (merge) de dos runs (corridas), de longitud a_1 y a_2 , cuesta a_1+a_2 .

Teorema

El costo C de cualquier algoritmo basado en la fusión de runs $^{\mathrm{a}}$ satisface

$$C(\pi) \ge n \cdot \mathcal{H}(\pi)$$
,

donde $\mathcal{H}=H_2(a_1/n,\ldots,a_r/n)=-\sum \frac{a_i}{n}\log_2\frac{a_i}{n}$ es la entropía de run de π .

^aSin contar la detección de runs.

Teorema

El costo C de cualquier algoritmo basado en la fusión de runs $^{\mathrm{a}}$ satisface

$$C(\pi) \ge n \cdot \mathcal{H}(\pi)$$
,

donde $\mathcal{H}=H_2(a_1/n,\ldots,a_r/n)=-\sum \frac{a_i}{n}\log_2\frac{a_i}{n}$ es la entropía de run de π .

^aSin contar la detección de runs.

Demostración.

■ Estrategia de fusión corresponde a árbol binario \Rightarrow costo $C = \sum a_i \ell_i$.

Teorema

El costo C de cualquier algoritmo basado en la fusión de runs $^{\mathrm{a}}$ satisface

$$C(\pi) \ge n \cdot \mathcal{H}(\pi)$$
,

donde $\mathcal{H}=H_2(a_1/n,\ldots,a_r/n)=-\sum \frac{a_i}{n}\log_2\frac{a_i}{n}$ es la entropía de run de π .

^aSin contar la detección de runs.

Demostración.

- Estrategia de fusión corresponde a árbol binario \Rightarrow costo $C = \sum a_i \ell_i$.
- Renormalizando obtenemos el resutlado.

Teorema

El costo C de cualquier algoritmo basado en la fusión de runs satisface

$$C(\pi) \ge n \cdot \mathcal{H}(\pi)$$
,

donde $\mathcal{H}=H_2(a_1/n,\ldots,a_r/n)=-\sum \frac{a_i}{n}\log_2\frac{a_i}{n}$ es la entropía de run de π .

 ${\mathcal H}$ puede ser mucho menor que $\log_2 n$.

Proposición

Tenemos $\mathcal{H} \leq \log_2 r$ donde r es la cantidad de runs.

Teorema

El costo C de cualquier algoritmo basado en la fusión de runs satisface

$$C(\pi) \ge n \cdot \mathcal{H}(\pi)$$
,

donde $\mathcal{H}=H_2(a_1/n,\ldots,a_r/n)=-\sum \frac{a_i}{n}\log_2\frac{a_i}{n}$ es la entropía de run de π .

 ${\mathcal H}$ puede ser mucho menor que $\log_2 n$.

Proposición

Tenemos $\mathcal{H} \leq \log_2 r$ donde r es la cantidad de runs.

 \Rightarrow Existen varios algoritmos en tiempo $\Theta(n\mathcal{H}+n)$.

No se pierde mucho trabajando solo con fusiones.

Teorema (Barbay, Navarro, '13)

Sea $C = C(a_1, ..., a_r)$ la clase de las permutaciones con runs de largo $a_1, a_2, ..., a_r$, con $a_i \ge 2$ para i = 1, ..., r-1.

Para todo algoritmo $\mathcal A$ basado en la comparación de pares de elementos, existe un elemento $\pi \in \mathcal C$ que requiere al menos $n\mathcal H - 3n$ comparaciones.

No se pierde mucho trabajando solo con fusiones.

Teorema (Barbay, Navarro, '13)

Sea $C = C(a_1, ..., a_r)$ la clase de las permutaciones con runs de largo $a_1, a_2, ..., a_r$, con $a_i \ge 2$ para i = 1, ..., r-1.

Para todo algoritmo $\mathcal A$ basado en la comparación de pares de elementos, existe un elemento $\pi \in \mathcal C$ que requiere al menos $n\mathcal H - 3n$ comparaciones.

Borrador de prueba.

Siempre existe π que requiere al menos $\log_2 |\mathcal{C}|$ operaciones.

Se necesita una cota, en este caso $2^{r-1}|\mathcal{C}| \geq \binom{n}{a_1,\dots,a_r}$.

TimSort

Tim Peters⁵ diseña en 2002 un nuevo algoritmo para Python:

This describes an adaptive, stable, natural mergesort, modestly called timsort (hey, I earned it <wink>). It has supernatural performance on many kinds of partially ordered arrays (less than lg(N!) comparisons needed, and as few as N-1), yet as fast as Python's previous highly tuned samplesort hybrid on random arrays.

In a nutshell, the main routine marches over the array once, left to right, alternately identifying the next run, then merging it into the previous runs "intelligently". Everything else is complication for speed, and some hard-won measure of memory efficiency.

⁵https://svn.python.org/projects/python/trunk/Objects/listsort.txt

TimSort principio e historia

- Leer runs de izquierda a derecha, agregándolas a una pila (stack).
- La pila $\rightarrow R_1, R_2, \dots$ debe satisfacer un *invariante*: si el invariante no se cumple, desencadena secuencia de fusiones.
- Merges se realizan entre runs adyacentes (localidad/cache).

TimSort principio e historia

- Leer runs de izquierda a derecha, agregándolas a una pila (stack).
- La pila $\rightarrow R_1, R_2, \dots$ debe satisfacer un *invariante*: si el invariante no se cumple, desencadena secuencia de fusiones.
- Merges se realizan entre runs adyacentes (localidad/cache).

Invariante inspirado por Fibonacci:

$$r_{i+2} > r_i + r_{i+1}$$
, $r_{i+1} > r_i$,

donde $r_i = |R_i|$ son las longitudes.

- Varias condiciones de merge ⇒ originalmente con bugs!
- Algoritmo era usado en Python [ahora PowerSort], usado en Java.
- Ha inspirado muchos algoritmos nuevos, basados en runs.

TimSort reglas e historia

```
Sea la pila \rightarrow R_1, R_2, \dots y las longitudes \rightarrow r_1, r_2, \dots
while runs fuera de pila \neq \emptyset do
    tomar primer run (izq. a der.) y agregar a la pila;
    while True do
         if r_1 > r_3 then
            merge R_2 and R_3
         else if r_1 \ge r_2 then
              merge R_1 and R_2:
         else if r_1 + r_2 \ge r_3 then
              merge R_1 and R_2;
         else if r_2 + r_3 \ge r_4 then
              merge R_1 and R_2:
         else
              break
```

TimSort reglas e historia

```
Sea la pila \rightarrow R_1, R_2, \dots y las longitudes \rightarrow r_1, r_2, \dots
while runs fuera de pila \neq \emptyset do
    tomar primer run (izq. a der.) y agregar a la pila;
    while True do
         if r_1 > r_3 then
              merge R_2 and R_3
         else if r_1 \ge r_2 then
              merge R_1 and R_2:
         else if r_1 + r_2 \ge r_3 then
              merge R_1 and R_2;
         else if r_2 + r_3 \ge r_4 then
              merge R_1 and R_2:
         else
              break
```

- La condición en rojo no estaba en la versión original. Bug descubierto por de Gouw et al (2015) cuando trataban de probar formalmente la corrección. $\hat{\pi}$
- Existía un segundo bug: el tamaño máximo de la pila en Java. Descubierto por Auger et al (2018) al realizar el análisis preciso del algoritmo. $\hat{\pi}$

Optimalidad en media y entropía

Teorema (Auger, Jugé, Nicaud, Pivoteau '18)

En el peor caso TimSort es $1,5 n\mathcal{H} + O(n)$.

Optimalidad en media y entropía

Teorema (Auger, Jugé, Nicaud, Pivoteau '18)

En el peor caso TimSort es $1,5 n\mathcal{H} + O(n)$.

TimSort no es óptimo

Teorema (Wild, Munro'18)

En el peor caso PowerSort es $n\mathcal{H} + O(n)$.

Optimalidad en media y entropía

Teorema (Auger, Jugé, Nicaud, Pivoteau '18)

En el peor caso TimSort es $1.5 n\mathcal{H} + O(n)$.

TimSort no es óptimo

Teorema (Wild, Munro'18)

En el peor caso PowerSort es $n\mathcal{H} + O(n)$.

Una permutación aleatoria (típica) tiene muchos runs cortos!

$$n = 20$$
: [11, 18, 1, 5, 2, 14, 20, 3, 8, 15, 6, 4, 16, 17, 13, 10, 19, 9, 7, 12].

$$\mathcal{H} = 3,1..., \log_2 20 = 4,3....$$

Probabilidad de run de largo $\geq k$

Sea S_i : run de longitud $\geq k$ comienza en i. Notar que $\Pr(S_i) \leq 2/k!$

Probabilidad de run de largo $\geq k$

Sea S_i : run de longitud $\geq k$ comienza en i. Notar que $\Pr(S_i) \leq 2/k!$

Técnica: Union bound

 $\Pr(A \cup B) \le \Pr(A) + \Pr(B)$

Probabilidad de run de largo $\geq k$

Sea S_i : run de longitud $\geq k$ comienza en i. Notar que $\Pr(S_i) \leq 2/k!$

Técnica: Union bound

$$\Pr(A \cup B) \le \Pr(A) + \Pr(B)$$

Por el union bound tenemos:

$$P(n,k) \coloneqq \Pr\big(\exists \mathsf{run} \ \mathsf{de} \ \mathsf{longitud} \ \ge k \big) = \Pr\big(\bigcup_i S_i \big) \le \sum_i \Pr\big(S_i \big) \le 2n/k! \,.$$

Proposición

$$P = P(n,k) \le \frac{2n}{(k/e)^k} = 2\exp(\log n - k\log k + k).$$

Entropía de corridas de permutación aleatoria

Utilizando

$$P = P(n,k) \le 2\exp(\log n - k\log k + k),$$

obtenemos que para $k \ge 2 \frac{\log n}{\log \log n}$, $P(n,k) \to 0$. Las runs son cortas !

Proposición

Con alta probabilidad (es decir $p \to 1$) todas las runs A_1, \dots, A_r de una permutación aleatoria uniforme satisfacen $A_i \le 2 \frac{\log n}{\log \log n}$.

Entropía de corridas de permutación aleatoria

Utilizando

$$P = P(n,k) \le 2\exp(\log n - k\log k + k),$$

obtenemos que para $k \ge 2 \frac{\log n}{\log \log n}$, $P(n,k) \to 0$. Las runs son cortas !

Proposición

Con alta probabilidad (es decir $p \to 1$) todas las runs A_1, \ldots, A_r de una permutación aleatoria uniforme satisfacen $A_i \le 2 \frac{\log n}{\log \log n}$.

Corolario

Con alta probabilidad, para una permutación aleatoria uniforme^a,

$$\mathcal{H} \geq \sum \frac{A_i}{n} \log_2 \left(\frac{n}{2(\log n)/\log \log n} \right) = \log_2 n + O(\log \log n), \quad n\mathcal{H} \sim n \log_2 n.$$

 a La constante del término O en realidad se puede calcular explícitamente y no depende de la secuencia de conjuntos elegidos, cuya probabilidad tiende a 1.

Entropía de corridas de permutación aleatoria

Utilizando

$$P = P(n,k) \le 2\exp(\log n - k\log k + k),$$

obtenemos que para $k \ge 2 \frac{\log n}{\log \log n}$, $P(n,k) \to 0$. Las runs son cortas !

Proposición

Con alta probabilidad (es decir $p \to 1$) todas las runs A_1, \ldots, A_r de una permutación aleatoria uniforme satisfacen $A_i \le 2 \frac{\log n}{\log \log n}$.

Corolario

Con alta probabilidad, para una permutación aleatoria uniforme^a,

$$\mathcal{H} \geq \sum \frac{A_i}{n} \log_2 \left(\frac{n}{2(\log n)/\log \log n} \right) = \log_2 n + O(\log \log n), \quad n\mathcal{H} \sim n \log_2 n.$$

 a La constante del término O en realidad se puede calcular explícitamente y no depende de la secuencia de conjuntos elegidos, cuya probabilidad tiende a 1.

⇒ Modelo de permutaciones uniformes ≠ modelo de runs largas

Con alta probabilidad y en media

Probamos que, con probabilidad $p \rightarrow 1$,

$$\mathcal{H} = \log_2 n + O(\log\log n),$$

es decir, que esto se cumple para $\pi \in A_n \subseteq S_n$ con $\Pr(A_n) \to 1$.

Pregunta

¿Qué podemos decir sobre la esperanza $\mathbb{E}[\mathcal{H}]$?

Con alta probabilidad y en media

Probamos que, con probabilidad $p \rightarrow 1$,

$$\mathcal{H} = \log_2 n + O(\log \log n),$$

es decir, que esto se cumple para $\pi \in A_n \subseteq S_n$ con $\Pr(A_n) \to 1$.

Pregunta

¿Qué podemos decir sobre la esperanza $\mathbb{E}[\mathcal{H}]$?

$$\mathbb{E}[\mathcal{H}] = \Pr(A_n) \times \mathbb{E}[\mathcal{H} | A_n] + \Pr(A_n^c) \times \mathbb{E}[\mathcal{H} | A_n^c],$$

$$\geq \Pr(A_n) \times \mathbb{E}[\mathcal{H} | A_n],$$

$$= \Pr(A_n) \times (\log_2 n + O(\log \log n)).$$

Con alta probabilidad y en media

Probamos que, con probabilidad $p \rightarrow 1$,

$$\mathcal{H} = \log_2 n + O(\log \log n),$$

es decir, que esto se cumple para $\pi \in A_n \subseteq S_n$ con $\Pr(A_n) \to 1$.

Pregunta

¿Qué podemos decir sobre la esperanza $\mathbb{E}[\mathcal{H}]$?

$$\mathbb{E}[\mathcal{H}] = \Pr(A_n) \times \mathbb{E}[\mathcal{H} | A_n] + \Pr(A_n^c) \times \mathbb{E}[\mathcal{H} | A_n^c],$$

$$\geq \Pr(A_n) \times \mathbb{E}[\mathcal{H} | A_n],$$

$$= \Pr(A_n) \times (\log_2 n + O(\log \log n)).$$

Para la cota superior tenemos suerte: $\mathcal{H} \leq \log_2(n)$ siempre.

Conclusión: $\mathbb{E}[\mathcal{H}] \sim \log_2 n$ también.

Problema: número de runs

```
def runs(arr): # arr = permutacion
    res = []
    i, n = 0, len(arr)
    while i < n:
        i = i + 1
        if j < n and arr[i] <= arr[j]:</pre>
            # creciente
            while j < n and arr[j - 1] <= arr[j]:
                i += 1
        elif j < n and arr[i] > arr[j]:
            # decreciente
            while j < n and arr[j - 1] > arr[j]:
                i += 1
        else:
            # elemento aislado
            i = i + 1
        res.append(j - i)
        i = i
    return res
```

Problema: número de runs

Problema

La cantidad esperada de runs es $\mathbb{E}[r] \sim cn$ para una cierta c > 0.

Veamos la permutación como una secuencia X_1, X_2, \ldots de números iid de [0,1].

- (a) Probar $runs(X_1, \ldots, X_{i+j}) \le runs(X_1, \ldots, X_i) + runs(X_{i+1}, \ldots, X_{i+j})$.
- (b) Probar que $e_k \coloneqq \mathbb{E}[runs(X_1,\ldots,X_k)]$ satisface $e_{i+j} \le e_i + e_j$ para todo $i,j \ge 0$. Concluirque $e_k/k \to c$ para cierta $c \ge 0$.
- (c) Mostrarque la constante es positiva c > 0.

Entropía de corrida: modelo aleatorio

Distribución de Zipf

Dado $\alpha > 1$, consideramos

$$\Pr(\ell = k) \propto k^{-\alpha}$$
.

Cuando $\alpha \le 2$, la longitud esperada de ℓ es infinita.

Entropía de corrida: modelo aleatorio

Distribución de Zipf

Dado $\alpha > 1$, consideramos

$$\Pr(\ell = k) \propto k^{-\alpha}$$
.

Cuando $\alpha \le 2$, la longitud esperada de ℓ es infinita.

■ Valores más irregulares. Ejemplo con $\alpha = 3/2$

Usada para modelar frecuencias de palabras en lenguaje natural.

Entropía de corrida: modelo aleatorio

Distribución de Zipf

Dado $\alpha > 1$, consideramos

$$\Pr(\ell = k) \propto k^{-\alpha}$$
.

Cuando $\alpha \le 2$, la longitud esperada de ℓ es infinita.

■ Valores más irregulares. Ejemplo con $\alpha = 3/2$

Usada para modelar frecuencias de palabras en lenguaje natural.

¿Modelo más razonable para la distribución de longitud de runs?

Para aprender más

- Nicolas Auger, Vincent Jugé, Cyril Nicaud, y Carine Pivoteau, On the Worst-Case Complexity of TimSort https://arxiv.org/pdf/1805.08612
- Jérémy Barbay y Gonzalo Navarro,
 On compressing permutations and adaptive sorting.
 http://dx.doi.org/10.1016/j.tcs.2013.10.019
- Nearly-Optimal Mergesorts: Fast, Practical Sorting Methods That Optimally Adapt to Existing Runs, https://doi.org/10.4230/LIPIcs.ESA.2018.63

Motivación

Implementar un array asociativo m:

- universo \mathcal{U} de claves $k \in \mathcal{U}$ grande,
- asociar a cada clave k un valor m[k],
- insertar, buscar, borrar...

Motivación

Implementar un array asociativo m:

- universo \mathcal{U} de claves $k \in \mathcal{U}$ grande,
- asociar a cada clave k un valor m[k],
- insertar, buscar, borrar...

Las tablas de Hash:

- Idea : utilizar un array A pequeño, de tamaño $K \ll |\mathcal{U}|$
 - considerar una función $h: \mathcal{U} \to \mathbb{Z}$ pseudo-aleatoria,
 - insertar k en A[i] donde $i = h(k) \mod K$. [modelo : i es uniforme]
- **Problema** : colisiones, dos *keys* k_1 y k_2 con $h(k_1) = h(k_2)$.

Las colisiones están relacionadas con la famosa paradoja del cumpleaños:

Paradoja del cumpleaños

¿Cuál es el **número mínimo de personas** requerido para que la probabilidad de que dos o más personas tengan el mismo cumplea \tilde{n} os^a sea mayor que 1/2?.

^asolo el día del año, no el año

Las colisiones están relacionadas con la famosa paradoja del cumpleaños:

Paradoja del cumpleaños

¿Cuál es el **número mínimo de personas** requerido para que la probabilidad de que dos o más personas tengan el mismo cumplea \tilde{n} os^a sea mayor que 1/2?.

asolo el día del año, no el año

Más en general, ¿cuántas personas para la primera "colisión"?

Las colisiones están relacionadas con la famosa paradoja del cumpleaños:

Paradoja del cumpleaños

¿Cuál es el **número mínimo de personas** requerido para que la probabilidad de que dos o más personas tengan el mismo cumplea \tilde{n} os^a sea mayor que 1/2?.

asolo el día del año, no el año

Más en general, ¿cuántas personas para la primera "colisión"?

- Supongamos que tenemos K posibles valores (K = 365),
- y consideramos n elementos (las personas),
- ¿cuál es la probabilidad de que hayan dos elementos iguales?

Modelo: cada valor tiene probabilidad 1/K, elementos independientes.

$$p_n = \Pr(n \text{ valores distintos}) = \prod_{i=1}^{n-1} (1 - \frac{i}{K}).$$

La probabilidad de al menos un cumpleaños repetido es $q_n = 1 - p_n$.

Estimemos la probabilidad de n valores distintos: $p_n = \prod_{i=1}^{n-1} \left(1 - \frac{i}{K}\right)$,

Estimemos la probabilidad de n valores distintos: $p_n = \prod_{i=1}^{n-1} \left(1 - \frac{i}{K}\right)$,

Proposición

Considerando $n \sim \sqrt{2\theta K}$ con $K \to \infty$, $p_n \sim e^{-\theta}$.

Estimemos la probabilidad de n valores distintos: $p_n = \prod_{i=1}^{n-1} \left(1 - \frac{i}{K}\right)$,

Proposición

Considerando $n \sim \sqrt{2\theta K}$ con $K \to \infty$, $p_n \sim e^{-\theta}$.

Demostración.

Para la prueba usamos las desigualdades $1+x\leq e^x$, válida para $x\in\mathbb{R}$, y $1+x\geq e^{x-x^2/2}$, válida para $x\in[0,1]$.

Estimemos la probabilidad de n valores distintos: $p_n = \prod_{i=1}^{n-1} \left(1 - \frac{i}{K}\right)$,

Proposición

Considerando $n \sim \sqrt{2\theta K}$ con $K \to \infty$, $p_n \sim e^{-\theta}$.

Demostración.

Para la prueba usamos las desigualdades $1+x\leq e^x$, válida para $x\in\mathbb{R}$, y $1+x\geq e^{x-x^2/2}$, válida para $x\in[0,1].$

Primera colisión ocurre (con gran proba.) cuando n es de orden \sqrt{K} .

Illustración de la aproximación: $n \sim \sqrt{2\theta K}$, $p_n \sim e^{-\theta}$ con $\theta = \log 2$

Tablas de Hash requieren un mecanismo de resolución de colisiones:

- Política de resolución de colisiones :
 - 1. [External Hashing] Cada célula A[i] contiene una lista encadenada.
 - 2. [Internal Hashing / Open addressing] Si la célula está ya ocupada, buscar otra en el mismo array.
- Política de rehashing :
 - si tasa de ocupación 6 del array A es alta, nuevo array de tamaño mayor,
 - necesario re-insertar todo. [paso lento!]

⁶"Load factor" en inglés.

Tablas de Hash requieren un mecanismo de resolución de colisiones:

- Política de resolución de colisiones :
 - 1. [External Hashing] Cada célula A[i] contiene una lista encadenada.

2. [Internal Hashing / Open addressing] Si la célula está ya ocupada, buscar otra en el mismo array.

Política de rehashing :

- ${\rm -}\,$ si tasa de ocupación ${\rm ^6}$ del array A es alta, nuevo array de tamaño mayor,
- necesario re-insertar todo. [paso lento!]

Tablas de Hash requieren un mecanismo de resolución de colisiones:

- Política de resolución de colisiones :
 - 1. [External Hashing] Cada célula A[i] contiene una lista encadenada.
 - 2. [Internal Hashing / Open addressing] Si la célula está ya ocupada, buscar otra en el mismo array.

[la flecha roja es indicativa]

Política de rehashing :

- si tasa de ocupación 6 del array A es alta, nuevo array de tamaño mayor,
- necesario re-insertar todo. [paso lento!]

^{6&}quot;Load factor" en inglés.

Rehashing

Cuando el load factor $\alpha = n/K$ excede un valor dado γ (p.e., $\gamma = 0.85$), considerar un array nuevo con capacidad K' = 2K.

Proposición (Clásica)

El costo amortizado por inserción es constante.

Concepto: costo amortizado

En lugar de considerar el costo de una sola operación c_t , nos interesa el costo medio de la secuencia total de operaciones $\frac{1}{T}\sum_{t=1}^{T}c_t$.

⁷Aquí no consideramos que el tamaño puede reducirse.

Rehashing

Proposición (Clásica)

El costo amortizado de los rehash, por inserción, es constante.

Demostración.

• Sin supresiones o búsquedas. Para T operaciones (inserciones) tenemos que $\gamma K/2 \le T \le \gamma K$. El costo acumulado de los rehashes, en inserciones

$$\gamma K/2 + \gamma K/4 + \ldots \le \gamma K \le 2T$$
.

Rehashing

Proposición (Clásica)

El costo amortizado de los rehash, por inserción, es constante.

Demostración.

• Sin supresiones o búsquedas. Para T operaciones (inserciones) tenemos que $\gamma K/2 \le T \le \gamma K$. El costo acumulado de los rehashes, en inserciones

$$\gamma K/2 + \gamma K/4 + \ldots \le \gamma K \le 2T$$
.

• Supresiones y búsquedas: considerando la aleatoriedad de la función de hash son $\Theta(1)$ en media.

Cada celda A[i] contiene una lista encadenada

Cada celda A[i] contiene una lista encadenada

Observación

Cada celda contiene en media $\alpha = n/K$ elementos.

Proposición (Lookup)

Con alta probabilidad $(K o \infty)$, ninguna lista tiene longitud mayor que $2 \frac{\log K}{\log \log K}$.

Consideremos solo inserciones. Sea $\gamma > 0$ la tasa de ocupación máxima, $n/K \le \gamma$.

Proposición (Lookup)

Con alta probabilidad $(K \to \infty)$, ninguna lista tiene longitud mayor que $2\frac{\log K}{\log \log K}$.

Consideremos solo inserciones. Sea $\gamma > 0$ la tasa de ocupación máxima, $n/K \le \gamma$.

Proposición (Lookup)

Con alta probabilidad $(K \to \infty)$, ninguna lista tiene longitud mayor que $2 \frac{\log K}{\log \log K}$.

Sketch de demostración.

Sea $X_1,..,X_n$ la secuencia de celda elegidas para las n inserciones.

- 1. Consideramos celda C_0 , y sea $C_0(n)$ la lista luego de n inserciones.
- 2. Probamos $\Pr(|C_0(n)| \ge m) \le \binom{n}{m} K^{-m}$ por el union-bound.
- 3. Si consideramos cualquier celda, por el union-bound

$$P_m := \Pr(\exists j : |C_j(n)| \ge m) \le \exp(\log K + m \log g(K) + m - m \log m).$$

Ahora, tomando $m = 2 \frac{\log K}{\log \log K}$ probamos que la cota tiende a 0.

Problema: carga máxima variable

Problema

Observar que la longitud media de las listas es $\leq g(K)$.

Notar que la capacidad de la tabla de hash es $n \leq Kg(K)$.

Problema: carga máxima variable

Problema

Observar que la longitud media de las listas es $\leq g(K)$.

Notar que la capacidad de la tabla de hash es $n \leq Kg(K)$.

Recordamos que $P_m \coloneqq \Pr(\exists j : |C_j(n)| \ge m)$, satisface

$$P_m \le \exp(\log K + m \log g(K) + m - m \log m).$$

- 1. Considerar $g(K) = \sqrt{\log K}$. Probar que que $P_m \to 0$ para $m = 2 \frac{\log K}{\log \log K}$.
- 2. Considerar $g(K) = \log K$. Probar $P_m \to 0$ para $m = (\log K)^2$. ¿Para $m = (\log K)$ podemos tener $P_m \to 0$?

Internal hashing / Open addressing

Internal hashing: Si la celda está ya ocupada, buscar otra en el mismo array.

- Internal hashing / Open addressing es más común en la actualidad.
- Muchas estrategias para decidir la secuencia (probe sequence).

Internal hashing / Open addressing

Internal hashing: Si la celda está ya ocupada, buscar otra en el mismo array.

- Internal hashing / Open addressing es más común en la actualidad.
- Muchas estrategias para decidir la secuencia (probe sequence).

Probing sequence / secuencia de búsqueda

Para buscar/inserir un elemento x:

- Comenzar por $i_0 = h(x) \mod K$.
- Si posición ocupada por otra clave, seguir para i_1, i_2, \ldots etc.

Internal hashing / Open addressing

Internal hashing: Si la celda está ya ocupada, buscar otra en el mismo array.

- Internal hashing / Open addressing es más común en la actualidad.
- Muchas estrategias para decidir la secuencia (probe sequence).

Probing sequence / secuencia de búsqueda

Para buscar/inserir un elemento x:

- Comenzar por $i_0 = h(x) \mod K$.
- Si posición ocupada por otra clave, seguir para i_1,i_2,\ldots etc.

Módulo K.

- Linear probing: $i_1 = i_0 + 1$, $i_2 = i_1 + 1$, ...
- **Quadratic probing:** $i_1 = i_0 + 1$, $i_2 = i_1 + 2$, ..., $i_j = i_{j-1} + j$, ...
- **Double hashing:** $\Delta(x) = h_2(x)$, $i_1 = i_0 + \Delta$, $i_2 = i_1 + \Delta$, . . .

El comportamiento de linear y quadratic probing es complejo:

• Linear probing presenta el llamado *primary clustering*, pero aprovecha localidad (memoria cache).

El comportamiento de linear y quadratic probing es complejo:

■ Linear probing presenta el llamado *primary clustering*, pero aprovecha localidad (memoria cache).

 Quadratic probing se comporta inicialmente en modo similar a linear probing, pero luego los saltos aumentan en tamaño.

El comportamiento de linear y quadratic probing es complejo:

■ Linear probing presenta el llamado *primary clustering*, pero aprovecha localidad (memoria cache).

 Quadratic probing se comporta inicialmente en modo similar a linear probing, pero luego los saltos aumentan en tamaño.

Modelos simplificados para el análisis:

- Uniform probing: secuencia de búsqueda es una permutación $\pi \in \mathcal{S}_K$ aleatoria.
- Random probing: secuencia de búsqueda de números aleatorios uniformes (incluso repetidos).

45 / 57

Parámetros de interés [análisis sin supresiones]

- 1. Búsqueda exitosa: buscar un elemento presente.
- 2. Búsqueda no exitosa: buscar un elemento no presente.

Parámetros de interés [análisis sin supresiones]

- 1. Búsqueda exitosa: buscar un elemento presente.
- 2. Búsqueda no exitosa: buscar un elemento no presente.

¿ Estrategia de inserción ?

First Come First Serve (FCFS)

Los elementos se insertan donde termina su búsqueda no exitosa.

Es decir, los elementos ya insertados no se desplazan

En tiempo: Inserción n-ésima = búsqueda no exitosa con n-1 elementos

Parámetros de interés [análisis sin supresiones]

- 1. Búsqueda exitosa: buscar un elemento presente.
- 2. Búsqueda no exitosa: buscar un elemento no presente.

¿ Estrategia de inserción ?

First Come First Serve (FCFS)

Los elementos se insertan donde termina su búsqueda no exitosa.

Es decir, los elementos ya insertados no se desplazan

En tiempo: Inserción n-ésima = búsqueda no exitosa con n-1 elementos

Pregunta

Existen otras políticas de inserción. Robin hood desplaza el elemento que está más cerca de su posición inicial. ¿Esto cambia la media? ¿La varianza?

Random probing: búsqueda no exitosa

Buscar un elemento no presente corresponde a una inserción.

Teorema

El costo medio de una búsqueda no exitosa, cuando hay n elementos, es

$$U_n = \frac{1}{1-\alpha}, \qquad \alpha = \frac{n}{K}.$$

Random probing: búsqueda no exitosa

Buscar un elemento no presente corresponde a una inserción.

Teorema

El costo medio de una búsqueda no exitosa, cuando hay n elementos, es

$$U_n = \frac{1}{1-\alpha}$$
, $\alpha = \frac{n}{K}$.

No hay concentración: ley ~ geométrica.

Random probing: búsqueda exitosa

Teorema

El costo medio de una búsqueda exitosa es

$$S_n = \frac{1}{\alpha} \log \left(\frac{1}{1 - \alpha} \right) + O(n^{-1}).$$

Random probing: búsqueda exitosa

Teorema

El costo medio de una búsqueda exitosa es

$$S_n = \frac{1}{\alpha} \log \left(\frac{1}{1 - \alpha} \right) + O(n^{-1}).$$

Técnica: aproximar sumas con integrales

Si f es positiva, monótona y acotada:

$$\sum_{j=a}^{b-1} f(\frac{j}{N}) \cdot \frac{1}{N} = \int_{a/N}^{b/N} f(x) dx + O(N^{-1}).$$

Random probing: búsqueda exitosa

Teorema

El costo medio de una búsqueda exitosa es

$$S_n = \frac{1}{\alpha} \log \left(\frac{1}{1 - \alpha} \right) + O(n^{-1}).$$

Técnica: aproximar sumas con integrales

Si f es positiva, monótona y acotada:

$$\sum_{j=a}^{b-1} f(\frac{j}{N}) \cdot \frac{1}{N} = \int_{a/N}^{b/N} f(x) dx + O(N^{-1}).$$

Fórmula de Euler-Maclaurin

No es necesario que las funciones sean monótonas, si son derivables

Proposición (Fórmula de primer orden)

Sea f de clase C^1 en [m,n]

$$\sum_{j=m}^{n} f(j) = \int_{m}^{n} f(x)dx + \frac{f(n) + f(m)}{2} + \int_{m}^{n} f'(x)P_{1}(x),$$

donde $P_1(x) = x - \lfloor x \rfloor - \frac{1}{2}$ [periódica, con integral 0 sobre el período].

Fórmula de Euler-Maclaurin

No es necesario que las funciones sean monótonas, si son derivables

Proposición (Fórmula de primer orden)

Sea f de clase C^1 en [m,n]

$$\sum_{j=m}^{n} f(j) = \int_{m}^{n} f(x)dx + \frac{f(n) + f(m)}{2} + \int_{m}^{n} f'(x)P_{1}(x),$$

donde $P_1(x) = x - \lfloor x \rfloor - \frac{1}{2}$ [periódica, con integral 0 sobre el período].

Ejemplo.
$$H_n = \sum_{j=1}^n \frac{1}{j} = \log n + \gamma + O(n^{-1})$$
 donde $\gamma = 0.57721...$

Fórmula de Euler-Maclaurin

No es necesario que las funciones sean monótonas, si son derivables

Proposición (Fórmula de primer orden)

Sea f de clase C^1 en [m,n]

$$\sum_{j=m}^{n} f(j) = \int_{m}^{n} f(x)dx + \frac{f(n) + f(m)}{2} + \int_{m}^{n} f'(x)P_{1}(x),$$

donde $P_1(x) = x - \lfloor x \rfloor - \frac{1}{2}$ [periódica, con integral 0 sobre el período].

Ejemplo.
$$H_n = \sum_{j=1}^n \frac{1}{j} = \log n + \gamma + O(n^{-1})$$
 donde $\gamma = 0.57721...$

Corolario

Sea f de clase C^1 en [A,B], y sean $N\cdot A\leq a\leq b\leq N\cdot B$, uniformemente

$$\sum_{j=a}^{b-1} f(\frac{j}{N}) \frac{1}{N} = \int_{a/N}^{b/N} f(x) dx + O(N^{-1}).$$

Uniform hashing

En Uniform Hashing las secuencias de búsqueda son permutaciones de \mathcal{S}_K

- Eliminar la posibilidad de elementos repetidos no cambia sustancialmente el resultado.
- Esto es esperado: si la secuencia de búsqueda es $\ll \sqrt{K}$ no esperamos repetidos (paradoja del cumpleaños).

Teorema (Búsqueda en Uniform hashing, Peterson '57)

El costo medio de una búsqueda con uniform hashing es

$$U_n = \frac{K+1}{K-n+1} \sim \frac{1}{1-\alpha}, \qquad S_n \sim \frac{1}{\alpha} \log\left(\frac{1}{1-\alpha}\right).$$

Uniform hashing

En Uniform Hashing las secuencias de búsqueda son permutaciones de \mathcal{S}_K

- Eliminar la posibilidad de elementos repetidos no cambia sustancialmente el resultado.
- Esto es esperado: si la secuencia de búsqueda es $\ll \sqrt{K}$ no esperamos repetidos (paradoja del cumpleaños).

Teorema (Búsqueda en Uniform hashing, Peterson '57)

El costo medio de una búsqueda con uniform hashing es

$$U_n = \frac{K+1}{K-n+1} \sim \frac{1}{1-\alpha}, \qquad S_n \sim \frac{1}{\alpha} \log \left(\frac{1}{1-\alpha}\right).$$

Ejercicio

Probar que $U_n = \frac{K+1}{K-n+1}$.

Linear probing

Linear probing es más complejo

Teorema (Búsqueda en Linear probing, Knuth '63)

No exitosa
$$\sim \frac{1}{2} \left(1 + \frac{1}{(1-\alpha)^2} \right)$$
, Exitosa $\sim \frac{1}{2} \left(1 + \frac{1}{1-\alpha} \right)$.

Linear probing

Linear probing es más complejo

Teorema (Búsqueda en Linear probing, Knuth '63)

No exitosa
$$\sim \frac{1}{2} \left(1 + \frac{1}{(1-\alpha)^2} \right)$$
, Exitosa $\sim \frac{1}{2} \left(1 + \frac{1}{1-\alpha} \right)$.

Se trata del artículo histórico de Donald. E. Knuth que da origen al área:

NOTES ON "OPEN" ADDRESSING

Don Knuth 7/22/63

1. Introduction and Definitions. Open addressing is a widely-used technique for keeping "symbol tables." The method was first used in 1954 by Samuel, Amdahl, and Boehme in an assembly program for the IBM 701. An extensive discussion of the method was given by Peterson in 1957 [1], and frequent references have been made to it ever since (e.g. Schay and Spruth [2], Iverson [3]). However, the timing characteristics have apparently never been exactly established, and indeed the author has heard reports of several reputable mathematicians who failed to find the solutions after some trial. Therefore it is the purpose of this note to indicate one way by which the solution can be obtained.

Linear probing

Linear probing es más complejo

Teorema (Búsqueda en Linear probing, Knuth '63)

No exitosa
$$\sim \frac{1}{2} \left(1 + \frac{1}{(1-\alpha)^2} \right)$$
, Exitosa $\sim \frac{1}{2} \left(1 + \frac{1}{1-\alpha} \right)$.

El punto clave del análisis es el siguiente lema:

Lema

La probabilidad de tener las celdas C[0] y C[k+1] vacías y $C[1], \ldots, C[k]$ ocupadas es:

$$\frac{1}{K^n} \binom{n}{k} (k+1)^k \left(1 - \frac{k}{k+1} \right) (K - k - 1)^{n-k} \left(1 - \frac{n-k}{K - k - 1} \right)$$

Linear probing II

Por la simetría, para cualquier posición i (no solo 0) tenemos probabilidad

$$p_k(n,K) := \frac{K-n-1}{K^n} \binom{n}{k} (k+1)^{k-1} (K-k-1)^{n-k-1},$$

de tener un segmento ocupado de longitud k que inicia en i.

Linear probing II

Por la simetría, para cualquier posición i (no solo 0) tenemos probabilidad

$$p_k(n,K) := \frac{K-n-1}{K^n} \binom{n}{k} (k+1)^{k-1} (K-k-1)^{n-k-1},$$

de tener un segmento ocupado de longitud k que inicia en i.

Proposición

La probabilidad de tener una búsqueda no exitosa con k+1 intentos es

$$P_k(n,K) = \sum_{j=k}^n p_j(n,K).$$

Más aún, el costo de la búsqueda no exitosa

$$U_n = \frac{1}{2} (1 + Q_1(K, n)),$$

donde
$$Q_1(m,n) := \frac{m-n-1}{m^n} \sum_k \binom{n}{k} (k+1)^{k+1} (m-k-1)^{n-k-1}$$
.

Linear probing III

Proposición

$$Q_1(m,n) = \sum_{k=0}^{n} (k+1) \frac{n \dots (n-k+1)}{m^k} = \sum_{k=0}^{\infty} (k+1) \frac{n^k}{m^k} \prod_{j=0}^{k-1} (1-\frac{j}{n}).$$

Demostración.

No trivial. Ver ejercicio 6.4.27 de TAOCP de Knuth, Vol. 3.

Se puede aproximar fácilmente

$$Q_1(m,n) \le \sum_{k=0}^n (k+1) \frac{n^k}{m^k} < \sum_{k=0}^\infty (k+1) \frac{n^k}{m^k} = \frac{1}{(1-(n/m))^2}.$$

Linear probing III

Proposición

$$Q_1(m,n) = \sum_{k=0}^n (k+1) \frac{n \dots (n-k+1)}{m^k} = \sum_{k=0}^\infty (k+1) \frac{n^k}{m^k} \prod_{j=0}^{k-1} (1-\frac{j}{n}).$$

Demostración.

No trivial. Ver ejercicio 6.4.27 de TAOCP de Knuth, Vol. 3.

Se puede aproximar fácilmente

$$Q_1(m,n) \le \sum_{k=0}^n (k+1) \frac{n^k}{m^k} < \sum_{k=0}^\infty (k+1) \frac{n^k}{m^k} = \frac{1}{(1-(n/m))^2}.$$

Obtenemos $U_n \leq \frac{1}{2} \left(1 + \frac{1}{(1-\alpha)^2} \right)$.

Linear probing III

Proposición

$$Q_1(m,n) = \sum_{k=0}^n (k+1) \frac{n \dots (n-k+1)}{m^k} = \sum_{k=0}^\infty (k+1) \frac{n^k}{m^k} \prod_{j=0}^{k-1} (1-\frac{j}{n}).$$

Demostración.

No trivial. Ver ejercicio 6.4.27 de TAOCP de Knuth, Vol. 3.

$$Q_1(m,n) \le \sum_{k=0}^{n} (k+1) \frac{n^k}{m^k} < \sum_{k=0}^{\infty} (k+1) \frac{n^k}{m^k} = \frac{1}{(1-(n/m))^2}.$$

Obtenemos $U_n \leq \frac{1}{2} \left(1 + \frac{1}{(1-\alpha)^2} \right)$.

Ejercicio

Deducir que $S_n \leq \frac{1}{2} \left(1 + \frac{1}{1-\alpha}\right)$.

Comparación de tiempos de búsqueda según α

Linear probing: análisis en tabla completa

Consideremos n = K - 1, es decir la tabla tiene solamente una celda libre

Proposición

El costo medio de una búsqueda no exitosa es (K+1)/2.

Pero, más interesante,

Proposición

El costo medio de una búsqueda exitosa es $S_n \sim \sqrt{\pi K/8}$.

El tiempo necesario para encontrar un elemento presente se deteriora, pero no linealmente en ${\cal K}.$

Y si hay supresiones

Para borrar:

 Introducir tombstones (marcas especiales) para indicar que la celda alguna vez fue ocupada,

- Las tombstones ocupan una celda, y se cuenta para los rehashings.
- Se puede insertar un elemento en un tombstone.

Para aprender más

- Philippe Flajolet, Patricio Poblete, Alfredo Viola, On the Analysis of Linear Probing. https://hal.science/inria-00073424
- Donald E. Knuth, The Art of Computer Programming, Vol. 3: Sorting and Searching.
- Donald E. Knuth
 Notes on Open Addressing.
 https://jeffe.cs.illinois.edu/teaching/datastructures/2011/notes/knuth-OALP.pdf
- Conrado Martínez, Cyril Nicaud y Pablo Rotondo Mathematical models to analyze Lua hybrid tables. Preprint https://arxiv.org/abs/2208.13602