Number Base Case	information flow
$N = d_n R^n + d_1 R^1 + d_0 R^0$ the d specifies the Number system -> $d_2 ==$ binary	essentially information content over time
can also be written as R_2 This can also be used to expand numbers:	$H_0^* = \frac{\log_2(N)}{\tau} \left[\frac{bit}{a} \right]$
$ \begin{array}{l} N_{10}255 = 2*10^2 + 5*10^1 + 5*10^0 \\ N_2110 = 1*2^2 + 1*2^1 + 0*2^0 => N_{10}6 \end{array} $	information quantity
Quantities: N -> natural numbers Z -> full numbers	$I(x_k) = -log_2(P(x_k))[bit]$
Q -> rational numbers R -> real numbers Common number systems:	Entropy
Decimal: $N_{10} = n * 10^n 0 * 10^0$	Probability * information content
Binary: $N_2 = n * 2^n 0 * 2^0$ $2^{10} = 1024, 2^9 = 512, 2^8 = 256, 2^7 = 128, 2^6 = 64,$ $2^5 = 32, 2^4 = 16, 2^3 = 8, 2^2 = 4, 2^1 = 2, 2^0 = 1$	$H(X) = \sum_{k=1}^{N} P(x_k) * I(x_k) \left[\frac{bit}{symbol}\right]$
$2^{9} = 32, 2^{4} = 16, 2^{9} = 8, 2^{2} = 4, 2^{4} = 2, 2^{9} = 1$ Hexadecimal: $N_{1}6 = n * n^{16} 0 * 16^{0}$ notation: 0 1 2 3 4 5 6 7 8 9 A B C D E F	where X is the list of symbols
$16^5 = 1048576, 16^4 = 65536, 16^3 = 4096, 16^2 = 256.$	Sink Redundance / Code Redunca
$16^1 = 16, 16^0 = 1$ Modulo	$R_Q = H_0 - H(X)[\frac{bit}{symbol}]$ §6.5
$8 \mod 4 = (8) -> 0$, $8 \mod 3 = (6) -> 2$, $8 \mod 5 = (5) -> 3$ if $x < y$ in $x \mod y$ then the result will always be $x!$	
any negative numbers can be considered as NOTnegative aka only absolute values! modulo deals with x	$R_c = L - H(X) \left[\frac{bit}{symbol} \right]$
many programming languages actually do not follow this! they have their own implementation of modulo.	Code Word Length
$5 \equiv 3 \mod 2$ -> as $5 \mod 2 = 1$ and $3 \mod 2 = 1$ Codeword length	$L(x_k) = \text{rounded}(I(x_k))[bit]$
Byte = 8 bit Word = 16 or 32 bit TCP packet = 1024 bit	Median Code Word Length
Cyclic group Es sei $F(a) = a^3 + a + 1 = 0$,	$L = \sum_{k=1}^{N} P(x_k) * L(x_k) \left[\frac{bit}{symbol} \right]$
■ Dann können wir zunächst festhalten	
■ a = a	Entropy of the entire Code
a $a^2 = a^2$ aber a $a^3 = a + 1$	$H_c(X) = \sum_{k=1}^{N} P(x_k) * L(x_k) \left[\frac{bit}{sumbol} \right]$
$a^4 = a(a + 1) = a^2 + a$	H_c can be a real number -> $H_c \in \mathbb{R}$
$a^5 = a(a^2 + a) = a^3 + a^2 = a^2 + a + 1$	Für jede beliebige zugehörige Für jede beliebige Quelle kann eine
$\blacksquare a^6 = a(a^2 + a + 1) = a^3 + a^2 + a = a + 1 + a^2 + a = a^2 + 1$ $\blacksquare a^7 = a(a^2 + 1) = a^3 + a = a + 1 + a = 1$	Binärcodierung mit Binärcodierung gefunden werden, so Präfixeigenschaft ist die mittlere dass die folgende Ungleichung gilt:
$= a^{\beta} = a : der Zyklus beginnt von vorne!$	Codewortlänge nicht kleiner als die Lass die lolgende ongleichung gilt. Entropie <i>H(X)</i> :
$ = \{0, 1, a, a^2, a+1, a^2 + a, a^2 + a+1, a^2 + 1 \} $ $ = \{000, 001, 010, 100, 011, 110, 111, 101\} $	$H(X) \le L$ $H(X) \le L \le H(X) + 1$
WHAT THE FUCK	Sink without memory
Result Quantity the result of all possible outcomes it is denoted with: Ω	$P(x_k, y_k) = P(x_k) + P(y_i)$
A single element of the result list is: $\omega \rightarrow \omega \in \Omega$ The list of results is $ \Omega $	Sink with memory
Example Dice roll: $\Omega = \{1, 2, 3, 4, 5, 6\}$ best results $A \mid A \mid$	$P(x_k, y_i) = P(x_k) + P(x_k y_i)$
Probability: $P(A) = \frac{\text{best results}}{\text{all results}} = \frac{ A }{ \Omega } = \frac{ A }{n}$	Entropy without memory
So what is the probability of rolling a 6? only 1 good result! 1	$H(H,Y) = \sum_{x_k}^{N} \sum_{y_i}^{N} P(x_k, y_i) * (-log_2(P(x_k, y_i)))$
P(desired number to roll) = = -	Entropy with memory
6 possible results 6	
6 possible results 6 hence the chance is 1 in 6 Why this complicated method? You can modify desired results!	$H(H,Y) = \sum_{x_k}^{N} \sum_{y_i}^{N} P(x_k) *$
6 possible results 6 Why this complicated method? You can modify desired results! just change the A in P(A)! Inverse Probability: P(inverse) = 1 - P(A)	$H(H,Y) = \sum_{x_k}^{N} \sum_{y_i}^{N} P(x_k) * P(x_k, y_i) * (-log_2(P(x_k) * P(x_k y_i))$
$\begin{array}{c} 6 \text{ possible results} & 6 \\ \text{hence the chance is 1 in 6} \\ \text{Why this complicated method? You can modify desired results!} \\ \text{just change the A in P(A)!} \end{array}$	$H(H,Y) = \sum_{x_k}^{N} \sum_{y_i}^{N} P(x_k) *$ $P(x_k,y_i) * (-log_2(P(x_k) * P(x_k y_i))$ Encoding of Symbols • Ordne die Zeichen gemäss ihrer Auftrittswahrscheinlichkeit • Die beiden Zeichen mit der kleinsten Auftrittswahrscheinlichkeit
hence the chance is 1 in 6 Why this complicated method? You can modify desired results! just change the A in P(A)! Inverse Probability: P(inverse) = 1 - P(A) dice -> $1 - \frac{1}{6} = \frac{5}{6}$ Addition rule:	$\begin{split} H(H,Y) &= \sum_{x_k}^N \sum_{y_i}^N P(x_k) * \\ P(x_k,y_i) * (-log_2(P(x_k) * P(x_k y_i)) \\ \hline \text{Encoding of Symbols} \\ \cdot \text{Ordne die Zeichen gemäss ihrer Autriittswahrscheinlichkeit} \\ \cdot \text{Die beiden Zeichen mit der kleinsten Autriittswahrscheinlichkeit} \\ \text{haben die gleiche CW-Länge } L_N \\ \cdot \text{Sei } L_N \text{ die mittiere CW-Länge } L_N \end{split}$
hence the chance is 1 in 6 Why this complicated method? You can modify desired results! just change the A in P(A)! Inverse Probability: P(inverse) = 1 - P(A) dice -> $1 - \frac{1}{6} = \frac{5}{6}$ Addition rule: $P(A \cup B) = P(A) + P(B) - P(A \cap B)$	$\begin{split} H(H,Y) &= \sum_{x_k}^N \sum_{y_i}^N P(x_k) * \\ P(x_k,y_i) * (-log_2(P(x_k)*P(x_k y_i)) \\ \hline \text{Encoding of Symbols} \\ \cdot \text{Orden die Zeichen gemäss ihrer Auftrittswahrscheinlichkeit} \\ \cdot \text{Die beiden Zeichen mit der Kleinsten Auftrittswahrscheinlichkeit} \\ \cdot \text{haben die gleiche CW-Länge } L_N, \\ \cdot \text{Sel } L_N \text{ die mittiere CW-Länge } L_N, \\ \cdot \text{Sel } L_N \text{ die mittiere CW-Länge } L_N, \\ \text{die mittiere CW-Länge } L_N \text{ die Geben letzten zu einem einzigen Zeichen zusammengefasst werden, dann gilt:} \end{split}$
hence the chance is 1 in 6 Why this complicated method? You can modify desired results! just change the A in P(A)! Inverse Probability: P(inverse) = 1 - P(A) dice -> $1 - \frac{1}{6} = \frac{5}{6}$ Addition rule:	$\begin{split} H(H,Y) &= \sum_{x_k}^N \sum_{y_i}^N P(x_k) * \\ P(x_k,y_i) * (-log_2(P(x_k) * P(x_k y_i)) \\ \hline \text{Encoding of Symbols} \\ & \text{Ordne die Zeichen gemäss ihrer Autrittswahrscheinlichkeit} \\ & \text{Die beiden Zeichen mit der Keleinsten Autrittswahrscheinlichkeit} \\ & \text{haben die gleiche CW-Länge } L_N \\ & \text{Sel } L_N \text{ die mittere CW-Länge } L_N \\ & \text{die mittere CW-Länge für eine Guelle mit N Zeichen und } L_{N-1} \\ & \text{die mittere CW-Länge } L_N \\ & \text{die mittere CW-Länge } L_N \\ & \text{die mittere CW-Länge für eine Guelle mit N Zeichen und } L_{N-1} \\ & \text{die mittere CW-Länge für eine Guelle mit N Zeichen und } L_{N-1} \\ & \text{die mittere CW-Länge für eine Guelle mit N Zeichen und L_{N-1} \\ & \text{die mittere CW-Länge } L_N \\ & die$
hence the chance is 1 in 6 Why this complicated method? You can modify desired results! just change the A in P(A)! Inverse Probability: P(inverse) = 1 - P(A) dice -> 1 - $\frac{1}{6} = \frac{5}{6}$ Addition rule: $P(A \cup B) = P(A) + P(B) - P(A \cap B)$!!The last part is needed, as otherwise the number would exceed the possible states!! $P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C)$	$\begin{split} H(H,Y) &= \sum_{x_k}^N \sum_{y_i}^N P(x_k) * \\ P(x_k,y_i) * (-log_2(P(x_k) * P(x_k y_i)) \\ \hline \text{Encoding of Symbols} \\ & \text{Ordne die Zeichen gemäss liter Auftrittswahrscheinlichkeit} \\ & \text{Die belden Zeichen mit der kleinsten Auftrittswahrscheinlichkeit} \\ & \text{haben die gleiche CW-Länge } L_N \\ & \text{Sel } L_N \text{ die mittere CW-Länge } L_N \\ & \text{die mittere CW-Länge trie ne Quelle mit } N \text{ Zeichen und } L_{N-1} \\ & \text{de mittere CW-Länge trie den Fall, dass die beiden letzten zu einem einzigen Seichen zusammengefasst werden, dann gitt:} \\ & L_N - (p(x_{N-1}) + p(x_N)) \cdot L(x_N) = L_{N-1} - (p(x_{N-1}) + p(x_N)) \cdot (L(X_N) - 1) \\ & \Rightarrow L_N = L_{N-1} + p(x_{N-1}) + p(x_N) \end{split}$
hence the chance is 1 in 6 Why this complicated method? You can modify desired results! just change the A in P(A)! Inverse Probability: P(inverse) = 1 - P(A) dice -> 1 - $\frac{1}{6}$ = $\frac{5}{6}$ Addition rule: $P(A \cup B) = P(A) + P(B) - P(A \cap B)$!!The last part is needed, as otherwise the number would exceed the possible states!! $P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C)$ Amount of possibilities:	$\begin{split} H(H,Y) &= \sum_{x_k}^N \sum_{y_i}^N P(x_k) * \\ P(x_k,y_i) * (-\log_2(P(x_k) * P(x_k y_i)) \\ \hline \text{Encoding of Symbols} \\ \cdot \text{Orden die Zeichen gemäss ihrer Auftrittswahrscheinlichkeit} \\ \cdot \text{Die beiden Zeichen mit der kleinsten Auftrittswahrscheinlichkeit} \\ \cdot \text{haben, die gleiche CW-Länge} \ L_N \\ \cdot \text{Sei} \ L_N \text{ die mittlere CW-Länge} \ L_N \\ \cdot \text{die mittlere CW-Länge für den Fall, dass die beiden letzten zu einem einzigen Zeichen zusammengefasst werden, dann gilt:} \\ L_N - (p(x_{N-1}) + p(x_N)) \cdot L(x_N) = L_{N-1} - (p(x_{N-1}) + p(x_N)) \cdot (L(X_N) - 1) \\ \Rightarrow L_N = L_{N-1} + p(x_{N-1}) + p(x_N) \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 0.22 & 0.19 & 0.15 & 0.12 & 0.08 & 0.07 & 0.07 & 0.06 & 0.04 \\ 1 & 2 & 3 & 4 & 8 & 9 & 5 & 6 & 7 \\ \hline 0.22 & 0.19 & 0.15 & 0.12 & 0.08 & 0.07 & 0.07 & 0.06 & 0.04 \\ 1 & 2 & 3 & 4 & 8 & 9 & 5 & 6 & 7 \\ \hline 0.21 & 0.12 & 0.08 & 0.07 & 0.07 & 0.06 & 0.04 \\ \hline 1 & 2 & 3 & 4 & 8 & 9 & 5 & 6 & 7 \\ \hline 0.22 & 0.19 & 0.15 & 0.12 & 0.08 & 0.07 & 0.07 & 0.06 & 0.04 \\ \hline 1 & 2 & 3 & 4 & 8 & 9 & 5 & 6 & 7 \\ \hline 0.21 & 0.12 & 0.08 & 0.07 & 0.07 & 0.06 & 0.04 \\ \hline 1 & 2 & 3 & 4 & 8 & 9 & 5 & 6 & 7 \\ \hline 0.22 & 0.19 & 0.15 & 0.12 & 0.08 & 0.07 & 0.07 & 0.06 & 0.04 \\ \hline 1 & 2 & 3 & 4 & 8 & 9 & 5 & 6 & 7 \\ \hline 0.21 & 0.12 & 0.08 & 0.07 & 0.07 & 0.06 & 0.04 \\ \hline 1 & 2 & 3 & 4 & 8 & 9 & 5 & 6 & 7 \\ \hline 0.22 & 0.19 & 0.15 & 0.12 & 0.08 & 0.07 & 0.07 & 0.06 & 0.04 \\ \hline 1 & 2 & 3 & 4 & 8 & 9 & 5 & 6 & 7 \\ \hline 0.21 & 0.12 & 0.08 & 0.07 & 0.07 & 0.06 & 0.04 \\ \hline 0.11 & 0.12 & 0.08 & 0.07 & 0.07 & 0.07 & 0.06 \\ \hline 0.22 & 0.19 & 0.15 & 0.12 & 0.08 & 0.07 & 0.07 & 0.06 & 0.04 \\ \hline 0.11 & 0.12 & 0.08 & 0.07 & 0.07 & 0.07 & 0.07 & 0.07 \\ \hline 0.12 & 0.12 & 0.08 & 0.07 & 0.07 & 0.07 & 0.07 & 0.07 \\ \hline 0.13 & 0.12 & 0.08 & 0.07 & 0.07 & 0.07 & 0.07 \\ \hline 0.14 & 0.12 & 0.08 & 0.07 & 0.07 & 0.07 & 0.07 \\ \hline 0.15 & 0.12 & 0.08 & 0.07 & 0.07 & 0.07 & 0.07 \\ \hline 0.15 & 0.07 & 0.07 & 0.07 & 0.07 & 0.07 \\ \hline 0.15 & 0.07 & 0.07 & 0.07 & 0.07 & 0.07 \\ \hline 0.15 & 0.07 & 0.07 & 0.07 & 0.07 \\ \hline 0.15 & 0.07 & 0.07 & 0.07 & 0.07 \\ \hline 0.15 & 0.07 & 0.07 & 0.07 & 0.07 \\ \hline$
hence the chance is 1 in 6 Why this complicated method? You can modify desired results! just change the A in P(A)! Inverse Probability: P(inverse) = 1 - P(A) dice -> 1 - $\frac{1}{6} = \frac{5}{6}$ Addition rule: $P(A \cup B) = P(A) + P(B) - P(A \cap B)$!!The last part is needed, as otherwise the number would exceed the possible states!! $P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C)$ Amount of possibilities: ordered probes with replication: 2 coins, head and tail, possibilities? $k = head/tail = 2 n = coins = 2$	$\begin{split} H(H,Y) &= \sum_{x_k}^N \sum_{y_i}^N P(x_k) * \\ P(x_k,y_i) * (-\log_2(P(x_k) * P(x_k y_i)) \\ \hline Encoding of Symbols \\ \cdot \text{ Ordne die Zeichen gemäss ihrer Auftrittswahrscheinlichkeit} \\ \cdot \text{ Die beiden Zeichen mit der kleinsten Auftrittswahrscheinlichkeit} \\ \text{ haben die gleiche CW-Länge } L_N \\ \cdot \text{ Sel } L_N \text{ die mittlere CW-Länge für eine Quelle mit N Zeichen und } L_{N-1} \text{ die mittlere CW-Länge für den Fall, dass die beiden letzten zu einem einzigen Zeichen zusammengefasst werden, dann gilt:} \\ L_N - (p(x_{N-1}) + p(x_N)) \cdot L(x_N) = L_{N-1} - (p(x_{N-1}) + p(x_N)) \cdot (L(X_N) - 1) \\ \Rightarrow L_N = L_{N-1} + p(x_{N-1}) + p(x_N) \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 0.22 & 0.19 & 0.15 & 0.12 & 0.08 & 0.07 & 0.06 & 0.04 \\ 1 & 2 & 3 & 4 & 8 & 9 & 5 & 6 & 7 \\ 0.22 & 0.19 & 0.15 & 0.12 & 0.1 & 0.08 & 0.07 & 0.07 \\ 1 & 2 & 3 & 6 & 7 & 4 & 8 & 9 & 5 \\ \end{split}$
hence the chance is 1 in 6 Why this complicated method? You can modify desired results! just change the A in P(A)! Inverse Probability: P(inverse) = 1 - P(A) $\frac{1}{6} = \frac{5}{6}$ Addition rule: $P(A \cup B) = P(A) + P(B) - P(A \cap B)$!!The last part is needed, as otherwise the number would exceed the possible states!! $P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C)$ Amount of possibilities: ordered probes with replication: 2 coins, head and tail, possibilities? $\mathbf{k} = \mathbf{head/tail} = 2$ $\mathbf{n} = \mathbf{n}^k = 2^2$	$\begin{split} H(H,Y) &= \sum_{x_k}^N \sum_{y_i}^N P(x_k) * \\ P(x_k,y_i) * (-log_2(P(x_k) * P(x_k y_i)) \\ \hline \text{Encoding of Symbols} \\ &\cdot \text{Ordne die Zeichen gemäss litrer Auftrittswahrscheinlichkeit} \\ &\cdot \text{Die beiden Zeichen mit der kleinsten Auftrittswahrscheinlichkeit} \\ &\cdot \text{haben die gleiche CW-Länge } L_N \\ &\cdot \text{Sel } L_N \text{ die mittere CW-Länge } L_N \\ &\cdot \text{Sel } L_N \text{ die mittere CW-Länge } L_N \\ &\cdot \text{die mittere CW-Länge für den Fall, dass die beiden letzten zu einem einzigen Zeichen zusammengefasst werden, dann gitt: \\ &\cdot L_N - (p(x_{N-1}) + p(x_N)) \cdot L(x_N) = L_{N-1} - (p(x_{N-1}) + p(x_N)) \cdot (L(X_N) - 1) \\ & \qquad $
hence the chance is 1 in 6 Why this complicated method? You can modify desired results! just change the A in P(A)! Inverse Probability: P(inverse) = 1 - P(A) $\frac{1}{6} = \frac{1}{6}$ Addition rule: $P(A \cup B) = P(A) + P(B) - P(A \cap B)$!!The last part is needed, as otherwise the number would exceed the possible states!! $P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C)$ Amount of possibilities: ordered probes with replication: $2 \text{ coins, head and tail, possibilities? } k = \text{head/tail} = 2 \text{ n=coins} = 2$ $\Omega = n^k = 2^2$ ordered probes without replication: $5 \text{ dices. How many combinations?}$	$\begin{split} H(H,Y) &= \sum_{x_k}^N \sum_{y_i}^N P(x_k) * \\ P(x_k,y_i) * (-\log_2(P(x_k) * P(x_k y_i)) \\ \hline Encoding of Symbols \\ \cdot \text{ Orden die Zeichen gemäss ihrer Auftrittswahrscheinlichkeit} \\ \cdot \text{ Die beiden Zeichen mit der Kleinsten Auftrittswahrscheinlichkeit} \\ \cdot \text{ Die beiden Zeichen mit der Kleinsten Auftrittswahrscheinlichkeit} \\ \cdot \text{ haben die gleiche CW-Länge } L_N \\ \cdot Sel :_{N} die mittere CW-Länge Liv, auch die mittere CW-Länge Liv, der den Fall, dass die beiden letzten zu einem einzigen Sciehen zusammengefasst werden, dann gitt: \\ l_N - (p(x_{N-1}) + p(x_N)) \cdot l(x_N) = l_{N-1} - (p(x_{N-1}) + p(x_N)) \cdot (l(X_N) - 1) \\ = l_N = l_{N-1} + p(x_{N-1}) + p(x_N) \\ \hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ \hline 0.22 & 0.19 & 0.15 & 0.12 & 0.08 & 0.07 & 0.07 & 0.06 & 0.04 \\ \hline 1 & 2 & 3 & 4 & 8 & 9 & 5 & 6 & 7 \\ \hline 0.22 & 0.19 & 0.15 & 0.12 & 0.1 & 0.08 & 0.07 & 0.07 \\ \hline 1 & 2 & 3 & 6 & 7 & 4 & 8 & 9 & 5 \\ \hline 0.22 & 0.19 & 0.15 & 0.14 & 0.12 & 0.1 & 0.08 \\ \hline 0.22 & 0.19 & 0.15 & 0.14 & 0.12 & 0.1 & 0.08 \\ \hline 1 & 2 & 8 & 9 & 5 & 3 & 6 & 7 & 4 \\ \hline 0.02 & 0.19 & 0.15 & 0.14 & 0.12 & 0.1 & 0.08 \\ \hline 1 & 2 & 8 & 9 & 5 & 3 & 6 & 7 & 4 \\ \hline 0.02 & 0.19 & 0.15 & 0.14 & 0.12 & 0.1 & 0.08 \\ \hline 1 & 2 & 8 & 9 & 5 & 3 & 6 & 7 & 4 \\ \hline 0.02 & 0.19 & 0.15 & 0.14 & 0.12 & 0.1 & 0.08 \\ \hline 1 & 2 & 8 & 9 & 5 & 3 & 6 & 7 & 4 \\ \hline 0.00 & 0.01 & 1 & 0 & 0.1 \\ \hline 0.02 & 0.01 & 1 & 0 & 0.1 \\ \hline 0.03 & 0.01 & 1 & 0 & 1 \\ \hline 0.04 & 0.01 & 1 & 0 & 1 \\ \hline 0.05 & 0.01 & 1 & 0 & 1 \\ \hline 0.05 & 0.01 & 1 & 0 & 1 \\ \hline 0.05 & 0.01 & 1 & 0 & 1 \\ \hline 0.05 & 0.01 & 1 & 0 & 1 \\ \hline 0.07 & 0.01 & 1 & 0 & 1 \\ \hline 0.08 & 0.07 & 0.07 & 0.07 \\ \hline 0.08 & 0.07 & 0.07 & 0.07 \\ \hline 0.09 & 0.01 & 1 & 0 & 1 \\ \hline 0.09 & 0.01 & 1 & 0 & 1 \\ \hline 0.09 & 0.01 & 1 & 0 & 1 \\ \hline 0.09 & 0.01 & 1 & 0 & 1 \\ \hline 0.09 & 0.01 & 1 & 0 & 1 \\ \hline 0.09 & 0.01 & 1 & 0 & 1 \\ \hline 0.09 & 0.01 & 1 & 0 & 1 \\ \hline 0.09 & 0.01 & 1 & 0 & 1 \\ \hline 0.09 & 0.01 & 1 & 0 & 1 \\ \hline 0.09 & 0.01 & 1 & 0 & 1 \\ \hline 0.09 & 0.01 & 1 & 0 & 1 \\ \hline 0.09 & 0.01 & 1 & 0 & 1 \\ \hline 0.09 & 0.01 & 1 & 0 & 1 \\ \hline 0.09 & 0.01 & 1 & 0 & 1 \\ \hline 0.09 & 0.01 & 1 & 0 & 1 \\ \hline 0.09 & 0$
hence the chance is 1 in 6 Why this complicated method? You can modify desired results! just change the A in P(A)! Inverse Probability: P(inverse) = 1 - P(A) $\frac{1}{6} = \frac{1}{6}$ Addition rule: $P(A \cup B) = P(A) + P(B) - P(A \cap B)$!!The last part is needed, as otherwise the number would exceed the possible states!! $P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C)$ Amount of possibilities: ordered probes with replication: $2 \text{ coins, head and tail, possibilities? } k = \text{head/tail} = 2 \text{ n=coins} = 2$ $\Omega = n^k = 2^2$ ordered probes without replication: $5 \text{ dices. How many combinations?}$	$\begin{split} H(H,Y) &= \sum_{x_k}^N \sum_{y_i}^N P(x_k) * \\ P(x_k,y_i) * (-\log_2(P(x_k) * P(x_k y_i)) \\ \hline \text{Encoding of Symbols} \\ \cdot \text{Ordne die Zeichen gemäss ihrer Auftrittswahrscheinlichkeit} \\ \cdot \text{Die beiden Zeichen mit der kleinsten Auftrittswahrscheinlichkeit} \\ \cdot \text{Die beiden Zeichen mit der kleinsten Auftrittswahrscheinlichkeit} \\ \cdot \text{haben die gleiche CW-Länge für eine Quelle mit N Zeichen und L_{x_i}, die mittlere CW-Länge für eine Guelle mit N Zeichen und L_{x_i}, die mittlere CW-Länge für eine Quelle mit N Zeichen und L_{x_i}, die mittlere CW-Länge für eine Quelle mit N Zeichen und L_{x_i}, die mittlere CW-Länge für eine Quelle mit N Zeichen und L_{x_i}, die mittlere CW-Länge für eine Quelle mit N Zeichen und L_{x_i}, die mittlere CW-Länge für eine Quelle mit N Zeichen und L_{x_i}, die mittlere CW-Länge für eine Quelle mit N Zeichen und L_{x_i}, die mittlere CW-Länge für eine Quelle mit N Zeichen und L_{x_i}, die mittlere CW-Länge für eine Quelle mit N Zeichen und L_{x_i}, die mittlere GW-Länge für eine Quelle mit N Zeichen und L_{x_i}, die mittlere QW-Länge für eine Quelle mit N Zeichen und L_{x_i}, die mittlere QW-Länge für eine Quelle mit N Zeichen und L_{x_i}, die mittlere QW-Länge für eine Quelle mit N Zeichen und L_{x_i}, die mittlere QW-Länge für eine Quelle mit N Zeichen und L_{x_i}, die mittlere QW-Länge für eine Quelle mit N Zeichen und L_{x_i}, die mittlere QW-Länge für eine Quelle mit N Zeichen und L_{x_i}, die mittlere QW-Länge für eine Quelle mit N Zeichen und L_{x_i}, die mittlere QW-Länge für eine Quelle mit N Zeichen und L_{x_i}, die mittlere QW-Länge für eine QW-Länge für $
hence the chance is 1 in 6 Why this complicated method? You can modify desired results! just change the A in P(A)! Inverse Probability: P(inverse) = 1 - P(A) $\frac{1}{6} = \frac{1}{6} = \frac{1}{6}$ Addition rule: $P(A \cup B) = P(A) + P(B) - P(A \cap B)$!!The last part is needed, as otherwise the number would exceed the possible states!! $P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C)$ Amount of possibilities: ordered probes with replication: $2 \text{ coins, head and tail, possibilities? } \mathbf{k} = \text{head/tail} = 2 \text{ n} = \text{coins} = 2$ $\Omega = n^k = 2^2$ ordered probes without replication: $5 \text{ dices. How many combinations?}$	$\begin{split} H(H,Y) &= \sum_{x_k}^N \sum_{y_i}^N P(x_k) * \\ P(x_k,y_i) * (-\log_2(P(x_k) * P(x_k y_i)) \\ \hline \text{Encoding of Symbols} \\ \cdot \text{ Orden die Zeichen gemäss ihrer Auftrittswahrscheinlichkeit} \\ \cdot \text{ Die beiden Zeichen mit der kleinsten Auftrittswahrscheinlichkeit} \\ \text{haben die gleiche CW-Länge für eine Quelle mit N Zeichen und L_{N-1} de mittere CW-Länge für eine Quelle mit N Zeichen und L_{N-1} de mittere CW-Länge für eine Quelle mit N Zeichen und L_{N-1} de mittere CW-Länge für eine Quelle mit N Zeichen und L_{N-1} de mittere CW-Länge für eine Quelle mit N Zeichen und L_{N-1} de mittere CW-Länge für eine Quelle mit N Zeichen und L_{N-1} de mittere CW-Länge für eine Quelle mit N Zeichen und L_{N-1} de mittere CW-Länge für eine Quelle mit N Zeichen und L_{N-1} de mittere CW-Länge für eine Piene Mittere DW-Länge für eine DW-Länge für eine Mittere DW-Länge für eine Mittere DW-Länge für eine DW-Länge für ein$
hence the chance is 1 in 6 Why this complicated method? You can modify desired results! just change the A in P(A)! Inverse Probability: P(inverse) = 1 - P(A) $\frac{1}{6} = \frac{1}{6}$ Addition rule: $P(A \cup B) = P(A) + P(B) - P(A \cap B)$!!The last part is needed, as otherwise the number would exceed the possible states!! $P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C)$ Amount of possibilities: ordered probes with replication: $2 \text{ coins, head and tail, possibilities? } \mathbf{k} = \text{head/tail} = 2 \text{ n} = \text{coins} = 2$ $\Omega = n^k = 2^2$ ordered probes without replication: $5 \text{ dices. How many combinations?}$ dice numbers = $\mathbf{n} = 6$ (1-6), dice amount = $\mathbf{k} = 5$ possibilities = $\Omega = \frac{n!}{(n-k)!} = \Omega = \frac{6!}{(6-5)!} = 720$	$H(H,Y) = \sum_{x_k}^N \sum_{y_i}^N P(x_k) * \\ P(x_k,y_i) * (-\log_2(P(x_k) * P(x_k y_i))$ Encoding of Symbols o'rdne die Zeichen gemäss ihrer Auftrittswahrscheinlichkeit haben die Jeiche CW-Lange L_N selby, die mittlere CW-Lange für eine Quelle mit N Zeichen und L_{N-1} , die mittlere CW-Lange für eine Quelle mit N Zeichen und L_{N-1} , die mittlere CW-Lange für eine Quelle mit N Zeichen und L_{N-1} , die mittlere CW-Lange für eine Quelle mit N Zeichen und L_{N-1} , die mittlere CW-Lange für eine Quelle mit N Zeichen und L_{N-1} , die mittlere CW-Lange für eine Quelle mit N Zeichen und L_{N-1} , die mittlere CW-Lange für eine Quelle mit N Zeichen und L_{N-1} , die mittlere CW-Lange für eine Quelle mit N Zeichen und L_{N-1} , die mittlere CW-Lange für eine Quelle mit N Zeichen und L_{N-1} , die mittlere CW-Lange für eine Quelle mit N Zeichen und N Zeichen
hence the chance is 1 in 6 Why this complicated method? You can modify desired results! just change the A in P(A)! Inverse Probability: P(inverse) = 1 - P(A) dice -> 1 - $\frac{1}{6} = \frac{5}{6}$ Addition rule: $P(A \cup B) = P(A) + P(B) - P(A \cap B)$!!The last part is needed, as otherwise the number would exceed the possible states!! $P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C)$ Amount of possibilities: ordered probes with replication: 2 coins, head and tail, possibilities? k=head/tail=2 n=coins=2 $\Omega = n^k = 2^2$ ordered probes without replication: 5 dices. How many combinations? dice numbers = n = 6 (1-6), dice amount = k = 5 possibilities = $\Omega = \frac{n!}{(n-k)!} = \Omega = \frac{6!}{(6-5)!} = 720$ Or this: $\Omega = \prod_{n}^{n-k+1} n = \prod_{0}^{6-5+1} 6 = 2 * 35 * 6 = 720$ unordered probes whould only play once with the other.	$\begin{split} H(H,Y) &= \sum_{x_k}^N \sum_{y_i}^N P(x_k) * \\ P(x_k,y_i) * (-\log_2(P(x_k) * P(x_k y_i)) \\ \hline \text{Encoding of Symbols} \\ \cdot \text{ Ordine die Zeichen gemäss ihrer Auftrittswahrscheinlichkeit} \\ \cdot \text{ Die beiden Zeichen mit der kleinsten Auftrittswahrscheinlichkeit} \\ \cdot \text{ Die beiden Zeichen mit der kleinsten Auftrittswahrscheinlichkeit} \\ \cdot \text{ haben die gleiche CW-Länge } L_N \\ \cdot \text{ Sei } L_N \text{ die mittlere CW-Länge für den Fall, dass die beiden letzten zu einem einzigen Zeichen zusammengefasst werden, dann gilt:} \\ L_N - (p(x_{N-1}) + p(x_N)) \cdot l(x_N) = l_{N-1} - (p(x_{N-1}) + p(x_N)) \cdot l(l(X_N) - 1) \\ = l_N - l_N + l_N(x_N) + p(x_N)) \cdot l(l(X_N) - 1) \\ = l_N - l_N + l_N(x_N) + p(x_N) \cdot l(l(X_N) - 1) \\ = l_N - l_N + l_N(x_N) + p(x_N) \cdot l(l(X_N) - 1) \\ = l_N - l_N + l_N + l_N(x_N) \cdot l(l(X_N) - 1) \\ = l_N - l_N + l_N + l_N + l_N(x_N) \cdot l(l(X_N) - 1) \\ = l_N - l_N + $
hence the chance is 1 in 6 Why this complicated method? You can modify desired results! just change the A in P(A)! Inverse Probability: P(inverse) = 1 - P(A) dice -> 1 - $\frac{1}{6} = \frac{5}{6}$ Addition rule: $P(A \cup B) = P(A) + P(B) - P(A \cap B)$!!The last part is needed, as otherwise the number would exceed the possible states!! $P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C)$ Amount of possibilities: ordered probes with replication: 2 coins, head and tail, possibilities? k=head/tail=2 n=coins=2 $\Omega = n^k = 2^2$ ordered probes without replication: 5 dices. How many combinations? dice numbers = n = 6 (1-6), dice amount = k = 5 possibilities = $\Omega = \frac{n!}{(n-k)!} = \Omega = \frac{6!}{(6-5)!} = 720$ Or this: $\Omega = \prod_{n}^{n-k+1} n = \prod_{0}^{6-5+1} 6 = 2 * 35 * 6 = 720$ unordered probes whould only play once with the other.	$\begin{split} H(H,Y) &= \sum_{x_k}^N \sum_{y_i}^N P(x_k) * \\ P(x_k,y_i) * (-\log_2(P(x_k) * P(x_k y_i)) \\ \hline \text{Encoding of Symbols} \\ \cdot \text{Orde die Zeichen gemäss ihrer Auftrittswahrscheinlichkeit} \\ \cdot \text{Die beiden Zeichen mit der kleinisten Auftrittswahrscheinlichkeit} \\ \cdot \text{Die beiden Zeichen mit der kleinisten Auftrittswahrscheinlichkeit} \\ \cdot \text{haben die gleiche CW-Länge für eine Quelle mit N Zeichen und L_{N^-}; die mittlere CW-Länge für den Fall, dass die beiden letzten zu einem einzigen Zeichen zusammengefasst werden, dann gilt: $L_N - (p(x_{N-1}) + p(x_N)) \cdot L(x_N) = L_{N-1} - (p(x_{N-1}) + p(x_N)) \cdot (L(X_N) - 1) \\ &= L_N - (p(x_{N-1}) + p(x_N)) \cdot L(x_N) = L_{N-1} + p(x_{N-1}) + p(x_N)) \cdot (L(X_N) - 1) \\ &= L_N - (p(x_{N-1}) + p(x_N)) \cdot L(x_N) = L_N - (p(x_{N-1}) + p(x_N)) \cdot L(X_N) - 1) \\ &= L_N - (p(x_{N-1}) + p(x_N)) \cdot L(x_N) - 1) \\ &= L_N - (p(x_{N-1}) + p(x_N) \cdot L(x_N) - 1) \\ &= L_N - (p(x_{N-1}) + p(x_N) \cdot L(x_N) - 1) \\ &= L_N - (p(x_{N-1}) + p(x_N) \cdot L(x_N) - 1) \\ &= L_N - (p(x_{N-1}) + p(x_N) \cdot L(x_N) - 1) \\ &= L_N - (p(x_{N-1}) + p(x_N) \cdot L(x_N) - 1) \\ &= L_N - (p(x_{N-1}) + p(x_N) \cdot L(x_N) - 1$
hence the chance is 1 in 6 Why this complicated method? You can modify desired results! just change the A in P(A)! Inverse Probability: P(inverse) = 1 - P(A) $\frac{1}{6} = \frac{1}{6} = \frac{1}{6}$ Addition rule: $P(A \cup B) = P(A) + P(B) - P(A \cap B)$!!The last part is needed, as otherwise the number would exceed the possible states!! $P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C)$ Amount of possibilities: ordered probes with replication: $2 \text{ coins, head and tail, possibilities? k=head/tail=2 n=coins=2}$ $\Omega = n^k = 2^2$ ordered probes without replication: $5 \text{ dices. How many combinations?}$ dice numbers = n = 6 (1-6), dice amount = k = 5 possibilities = $\Omega = \frac{n!}{(n-k)!} = \Omega = \frac{6!}{(6-5)!} = 720$ Or this: $\Omega = \prod_{n=k+1}^{n-k+1} n = \prod_{n=0}^{6-5+1} 6 = 2 * 35 * 6 = 720$ unordered probes wihout replication: $25 \text{ players, each should only play once with the other.}$ $\frac{n!}{k!(n-k)!} > \frac{25!}{2!(25-2)!} > \frac{\text{too big}}{\text{too big}} = 300$ as you can see the bottom is a BIG calculation, so	$\begin{split} H(H,Y) &= \sum_{x_k}^N \sum_{y_i}^N P(x_k) * \\ P(x_k,y_i) * (-\log_2(P(x_k) * P(x_k y_i)) \\ \hline Encoding of Symbols \\ \cdot \text{ Orde die Zeichen gemäss ihrer Auftrittswahrscheinlichkeit} \\ \cdot \text{ Die beiden Zeichen mit der kleinisten Auftrittswahrscheinlichkeit} \\ \cdot \text{ Die beiden Zeichen mit der kleinisten Auftrittswahrscheinlichkeit} \\ \cdot \text{ haben die gleiche CW-Länge für eine Quelle mit N Zeichen und L_{N^-}; die mittlere CW-Länge für eine Quelle mit N Zeichen und L_{N^-}; die mittlere CW-Länge für eine Quelle mit N Zeichen und L_{N^-}; die mittlere CW-Länge für eine Quelle mit N Zeichen und L_{N^-}; die mittlere CW-Länge für eine Quelle mit N Zeichen und L_{N^-}; die mittlere CW-Länge für eine Quelle mit N Zeichen und L_{N^-}; die mittlere CW-Länge für eine Quelle mit N Zeichen und L_{N^-}; die mittlere CW-Länge für eine Quelle mit N Zeichen und L_{N^-}; die mittlere CW-Länge für eine Quelle mit N Zeichen und L_{N^-}; die mittlere CW-Länge für eine Quelle mit N Zeichen und L_{N^-}; die mittlere CW-Länge für eine Quelle mit N Zeichen und L_{N^-}; die mittlere CW-Länge für eine Quelle mit N Zeichen und L_{N^-}; die mittlere CW-Länge für eine Quelle mit N Zeichen und L_{N^-}; die mittlere CW-Länge für eine Quelle mit N Zeichen und L_{N^-}; die mittlere CW-Länge für eine Quelle mit N Zeichen und L_{N^-}; die mittlere CW-Länge für eine Quelle mit N Zeichen und L_{N^-}; die mittlere CW-Länge für eine Quelle mit N Zeichen und L_{N^-}; die mittlere Picker und L_{N^-}; die mittlere$
hence the chance is 1 in 6 Why this complicated method? You can modify desired results! just change the A in P(A)! Inverse Probability: P(inverse) = 1 - P(A) $\frac{1}{6} = \frac{1}{6} = \frac{1}{6}$ Addition rule: $P(A \cup B) = P(A) + P(B) - P(A \cap B)$!!The last part is needed, as otherwise the number would exceed the possible states!! $P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C)$ Amount of possibilities: ordered probes with replication: $2 \text{ coins, head and tail, possibilities? k=head/tail=2 n=coins=2}$ $\Omega = n^k = 2^2$ ordered probes without replication: $5 \text{ dices. How many combinations?}$ dice numbers = n = 6 (1-6), dice amount = k = 5 possibilities = $\Omega = \frac{n!}{(n-k)!} = \Omega = \frac{6!}{(6-5)!} = 720$ Or this: $\Omega = \prod_{n=k+1}^{n-k+1} n = \prod_{n=0}^{6-5+1} 6 = 2 * 35 * 6 = 720$ unordered probes wihout replication: $25 \text{ players, each should only play once with the other.}$ $\frac{n!}{k!(n-k)!} > \frac{25!}{2!(25-2)!} > \frac{\text{too big}}{\text{too big}} = 300$ as you can see the bottom is a BIG calculation, so	$\begin{split} H(H,Y) &= \sum_{x_k}^N \sum_{y_i}^N P(x_k) * \\ P(x_k,y_i) * (-\log_2(P(x_k) * P(x_k y_i)) \\ \hline Encoding of Symbols \\ \cdot \text{ Orden die Zeichen gemäss ihrer Auftrittswahrscheinlichkeit} \\ \cdot \text{ Die beiden Zeichen mit der kleinsten Auftrittswahrscheinlichkeit} \\ \cdot \text{ Die beiden Zeichen mit der kleinsten Auftrittswahrscheinlichkeit} \\ \cdot \text{ haben die gleiche CW-Lange } L_N \\ \cdot \text{ Sei } L_N \text{ die mittlere CW-Lange für eine Quelle mit N Zeichen und } L_{N-1}, \\ \text{ die mittlere CW-Lange für den Fall, dass die beiden letzten zu einem einzigen Zeichen zusammengefasst werden, dann gilt: } \\ L_N - (p(x_{N-1}) + p(x_N)) \cdot \mathcal{L}(x_N) = L_{N-1} - (p(x_{N-1}) + p(x_N)) \cdot \mathcal{L}(\mathcal{L}(N) - 1) \\ \Rightarrow L_N - L_N + p(x_{N-1}) + p(x_N) \\ \Rightarrow L_N - L_N + p(x_{N-1}) + p(x_N) \\ 1 & 2 & 3 & 4 & 8 & 9 & 5 & 6 & 7 \\ 0.22 & 0.19 & 0.15 & 0.12 & 0.08 & 0.07 & 0.06 & 0.04 \\ 1 & 2 & 3 & 4 & 8 & 9 & 5 & 6 & 7 \\ 0.22 & 0.19 & 0.15 & 0.12 & 0.08 & 0.07 & 0.07 \\ 1 & 2 & 3 & 6 & 7 & 4 & 8 & 9 & 5 \\ 0.22 & 0.19 & 0.15 & 0.14 & 0.12 & 0.1 & 0.08 \\ 1 & 2 & 8 & 9 & 5 & 3 & 6 & 7 & 4 \\ 0.22 & 0.19 & 0.15 & 0.14 & 0.12 & 0.1 & 0.08 \\ 1 & 2 & 8 & 9 & 5 & 3 & 6 & 7 & 4 \\ 0.22 & 0.19 & 0.18 & 0.15 & 0.14 & 0.12 \\ 0.22 & 0.19 & 0.15 & 0.14 & 0.12 \\ 0.23 & 0.10 & 0.08 & 0.07 & 0.06 \\ 0.24 & 0$
hence the chance is 1 in 6 Why this complicated method? You can modify desired results! just change the A in P(A)! Inverse Probability: P(inverse) = 1 - P(A) $\frac{1}{6} = \frac{1}{6}$ Addition rule: $P(A \cup B) = P(A) + P(B) - P(A \cap B)$!!The last part is needed, as otherwise the number would exceed the possible states!! $P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C)$ $-P(B \cap C) + P(A \cap B \cap C)$ Amount of possibilities: ordered probes with replication: $2 \text{ coins, head and tail, possibilities? } \mathbf{k} = \text{head/tail} = 2 \text{ n} = \text{coins} = 2$ $\Omega = n^k = 2^2$ ordered probes without replication: $5 \text{ dices. How many combinations?}$ dice numbers = $\mathbf{n} = 6 (1-6)$, dice amount = $\mathbf{k} = 5$ possibilities = $\Omega = \frac{n!}{(n-k)!} = \Omega = \frac{6!}{(6-5)!} = 720$ Or this: $\Omega = \prod_{n}^{n-k+1} n = \prod_{0}^{6-5+1} 6 = 2 * 35 * 6 = 720$ unordered probes wihout replication: $25 \text{ players, each should only play once with the other.}$ $\Omega = \frac{n!}{k!(n-k)!} - \sum_{2!(25-2)!} - \sum_{100 \text{ big}} = 300$ as you can see the bottom is a BIG calculation, so $\Omega = \frac{\prod_{n}^{n-k+1} n}{k!} - \sum_{10} \frac{\prod_{25}^{25-2+1} 25}{2!} - \sum_{10} \frac{24 * 25}{2!} = 300$	$\begin{split} H(H,Y) &= \sum_{x_k}^N \sum_{y_i}^N P(x_k) * \\ P(x_k,y_i) * (-\log_2(P(x_k) * P(x_k y_i)) \\ \hline Encoding of Symbols \\ \cdot \text{Orde die Zeichen gemäss ihrer Auftrittswahrscheinlichkeit} \\ \cdot \text{Die beiden Zeichen mit der kleinsten Auftrittswahrscheinlichkeit} \\ \cdot \text{Die beiden Zeichen mit der kleinsten Auftrittswahrscheinlichkeit} \\ \cdot \text{Die beiden Zeichen mit der kleinsten Auftrittswahrscheinlichkeit} \\ \cdot \text{haben die gleiche W-Länge für eine Quelle mit N Zeichen und L_{N-1} die mittlere CW-Länge für eine Quelle mit N Zeichen und L_{N-1} die mittlere CW-Länge für eine Quelle mit N Zeichen und L_{N-1} die mittlere CW-Länge für eine Quelle mit N Zeichen und L_{N-1} die mittlere CW-Länge für eine Quelle mit N Zeichen und L_{N-1} die mittlere CW-Länge für eine Quelle mit N Zeichen und L_{N-1} die mittlere CW-Länge für eine Quelle mit N Zeichen und L_{N-1} die mittlere CW-Länge für eine Quelle mit N Zeichen und L_{N-1} die mittlere CW-Länge für eine Quelle mit N Zeichen und L_{N-1} die mittlere CW-Länge für eine Quelle mit N Zeichen und L_{N-1} die mittlere CW-Länge für eine Quelle mit N Zeichen und L_{N-1} die mittlere Quelle proposition auch general $
hence the chance is 1 in 6 Why this complicated method? You can modify desired results! just change the A in P(A)! Inverse Probability: P(inverse) = 1 - P(A) dice -> 1 - $\frac{1}{6} = \frac{5}{6}$ Addition rule: $P(A \cup B) = P(A) + P(B) - P(A \cap B)$!!The last part is needed, as otherwise the number would exceed the possible states!! $P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C)$ Amount of possibilities: ordered probes with replication: 2 coins, head and tail, possibilities? k=head/tail=2 n=coins=2 $\Omega = n^k = 2^2$ ordered probes without replication: 5 dices. How many combinations? dices. How many combinations? dices. How many combinations? $\Omega = \prod_{n=1}^{n-k+1} n = \prod_{n=1}^{6-5+1} 6 = 2 * 35 * 6 = 720$ unordered probes wihout replication: 25 players, each should only play once with the other. $\Omega = \prod_{n=1}^{n-k+1} n = \prod_{n=1}^{6-5+1} 6 = 2 * 35 * 6 = 720$ unordered probes whout replication: 3 a you can see the bottom is a BIG calculation, so $\Omega = \frac{n!}{n} - k + 1 = \frac{n!}{n} - \sum_{n=1}^{25-2+1} 25 - \sum_{n=1}^{24 * 25} 25 = 300$ Note that k can also be defined as the length of the tuple we want to receive.	$\begin{split} H(H,Y) &= \sum_{x_k}^N \sum_{y_i}^N P(x_k) * \\ P(x_k,y_i) * (-\log_2(P(x_k)*P(x_k y_i)) \\ \hline Encoding of Symbols \\ \cdot \text{Orde die Zeichen gemäss ihrer Auftrittswahrscheinlichkeit} \\ \cdot \text{Die beiden Zeichen mit der kleinsten Auftrittswahrscheinlichkeit} \\ \cdot \text{Die beiden Zeichen mit der kleinsten Auftrittswahrscheinlichkeit} \\ \cdot \text{haben die gleiche CW-Länge } L_N \\ \cdot \text{Sei } L_N \text{ die mittlere CW-Länge für eine Quelle mit N Zeichen und } L_{N-1} \text{ die mittlere CW-Länge für den Fall, dass die beiden letzten zu einem einzigen Zeichen zusammengefasst werden, dann gilt: } L_N - (p(x_{N-1}) + p(x_N)) \cdot L(x_N) = L_{N-1} - (p(x_{N-1}) + p(x_N)) \cdot (L(X_N) - 1) \\ = \lambda_{n} = L_{n-1} + p(x_{N-1}) + p(x_N) \cdot L(X_N) - 1 \\ = \lambda_{n} = L_{n-1} + p(x_{N-1}) + p(x_N) \cdot L(X_N) - 1 \\ = \lambda_{n} = L_{n-1} + p(x_{N-1}) + p(x_N) \cdot L(X_N) - 1 \\ = \lambda_{n} = L_{n-1} + p(x_{N-1}) + p(x_N) \cdot L(X_N) - 1 \\ = \lambda_{n} = L_{n-1} + p(x_{N-1}) + p(x_N) \cdot L(X_N) - 1 \\ = \lambda_{n} = L_{n-1} + p(x_{N-1}) + p(x_N) \cdot L(X_N) - 1 \\ = \lambda_{n} = L_{n-1} + p(x_{N-1}) + p(x_N) \cdot L(X_N) - 1 \\ = \lambda_{n} = L_{n-1} + p(x_{N-1}) + p(x_N) \cdot L(X_N) - 1 \\ = \lambda_{n} = L_{n-1} + p(x_{N-1}) + p(x_N) \cdot L(X_N) - 1 \\ = \lambda_{n} = L_{n-1} + p(x_{N-1}) + p(x_N) \cdot L(X_N) - 1 \\ = \lambda_{n} = L_{n-1} + p(x_{N-1}) + p(x_N) \cdot L(X_N) - 1 \\ = \lambda_{n} = L_{n-1} + p(x_{N-1}) + p(x_N) \cdot L(X_N) - 1 \\ = \lambda_{n} = L_{n-1} + p(x_{N-1}) + p(x_N) \cdot L(X_N) - 1 \\ = \lambda_{n} = L_{n-1} + p(x_{N-1}) + p(x_N) \cdot L(X_N) - 1 \\ = \lambda_{n} = L_{n-1} + p(x_{N-1}) + p(x_N) \cdot L(X_N) - 1 \\ = \lambda_{n} = L_{n-1} + p(x_{N-1}) + p(x_N) \cdot L(X_N) - 1 \\ = \lambda_{n} = L_{n-1} + p(x_{N-1}) + p(x_N) \cdot L(X_N) - 1 \\ = \lambda_{n} = L_{n-1} + p(x_{N-1}) + p(x_N) \cdot L(X_N) - 1 \\ = \lambda_{n} = L_{n-1} + p(x_{N-1}) + p(x_N) \cdot L(X_N) - 1 \\ = \lambda_{n} = L_{n-1} + p(x_{N-1}) + p(x_N) \cdot L(X_N) - 1 \\ = \lambda_{n} = L_{n-1} + p(x_{N-1}) +$
hence the chance is 1 in 6 Why this complicated method? You can modify desired results! just change the A in P(A)! Inverse Probability: P(inverse) = 1 - P(A) $\frac{1}{1} \frac{1}{1} \frac{1}{$	$\begin{split} H(H,Y) &= \sum_{x_k}^N \sum_{y_i}^N P(x_k) * \\ P(x_k,y_i) * (-\log_2(P(x_k) * P(x_k y_i)) \\ \hline Encoding of Symbols \\ \cdot \text{ Orde die Zeichen gemäss ihrer Auftrittswahrscheinlichkeit} \\ \cdot \text{ Die beiden Zeichen mit der kleinisten Auftrittswahrscheinlichkeit} \\ \cdot \text{ Die beiden Zeichen mit der kleinisten Auftrittswahrscheinlichkeit} \\ \cdot \text{ Die beiden Zeichen mit der kleinisten Auftrittswahrscheinlichkeit} \\ \text{ haben die gleiche CW-Lange für den Fall, dass die beiden letzten zu einem einzigen Zeichen zusammengefasst werden, dann gilt:} \\ \cdot \text{ Sei } l_{x} \text{ die mittlere CW-Länge für den Fall, dass die beiden letzten zu einem einzigen Zeichen zusammengefasst werden, dann gilt:} \\ l_{N} - (p(x_{N-1}) + p(x_N)) \cdot l(x_N) = l_{N-1} - (p(x_{N-1}) + p(x_N)) \cdot (l(X_N) - 1) \\ \Rightarrow l_{N-1} + p(x_{N-1}) + p(x_N) \\ \Rightarrow l_{N-1} + p(x_{N-1}) + p(x_N) \\ \Rightarrow l_{N-1} + p(x_{N-1}) + p(x_N) \\ \Rightarrow l_{N-1} + l_{N-1} + p(x_{N-1}) + p(x_N) \\ \Rightarrow l_{N-1} + l_{N-1} + p(x_{N-1}) + p(x_N) \\ \Rightarrow l_{N-1} + l_{N-1} + p(x_{N-1}) + p(x_N) \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + p(x_N) \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + $
hence the chance is 1 in 6 Why this complicated method? You can modify desired results! just change the A in P(A)! Inverse Probability: P(inverse) = 1 - P(A) $\frac{1}{6} = \frac{1}{6} = \frac{1}{6}$ Addition rule: $P(A \cup B) = P(A) + P(B) - P(A \cap B)$!!The last part is needed, as otherwise the number would exceed the possible states!! $P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C)$ $P(B \cap C) + P(A \cap B \cap C)$ Amount of possibilities: ordered probes with replication: 2 coins, head and tail, possibilities? k=head/tail=2 n=coins=2 $\Omega = n^k = 2^2$ ordered probes without replication: 5 dices. How many combinations? dice numbers = n = 6 (1-6), dice amount = k = 5 possibilities = $\Omega = \frac{n!}{(n-k)!} = \Omega = \frac{6!}{(6-5)!} = 720$ Or this: $\Omega = \prod_{n}^{n-k+1} n = \prod_{0}^{6-5+1} 6 = 2 * 35 * 6 = 720$ unordered probes wihout replication: $25 \text{ players, each should only play once with the other.}$ $\Omega = \frac{n!}{k!(n-k)!} > \frac{25!}{2!(25-2)!} > \frac{\text{too big}}{\text{too big}} = 300$ as you can see the bottom is a BIG calculation, so $\Omega = \frac{\prod_{n}^{n-k+1} n}{k!} > \frac{\prod_{0}^{25-2+1} 25}{2!} > \frac{24 * 25}{2} = 300$ Note that k can also be defined as the length of the tuple we want to receive. $P(P \text{Player,Player}) > 2$	$\begin{split} H(H,Y) &= \sum_{x_k}^N \sum_{y_i}^N P(x_k) * \\ P(x_k,y_i) * (-\log_2(P(x_k) * P(x_k y_i)) \\ \hline Encoding of Symbols \\ \cdot \text{ Orde die Zeichen gemäss ihrer Auftrittswahrscheinlichkeit} \\ \cdot \text{ Die beiden Zeichen mit der kleinisten Auftrittswahrscheinlichkeit} \\ \cdot \text{ Die beiden Zeichen mit der kleinisten Auftrittswahrscheinlichkeit} \\ \cdot \text{ Die beiden Zeichen mit der kleinisten Auftrittswahrscheinlichkeit} \\ \text{ haben die gleiche CW-Lange für den Fall, dass die beiden letzten zu einem einzigen Zeichen zusammengefasst werden, dann gilt:} \\ \cdot \text{ Sei } l_{x} \text{ die mittlere CW-Länge für den Fall, dass die beiden letzten zu einem einzigen Zeichen zusammengefasst werden, dann gilt:} \\ l_{N} - (p(x_{N-1}) + p(x_N)) \cdot l(x_N) = l_{N-1} - (p(x_{N-1}) + p(x_N)) \cdot (l(X_N) - 1) \\ \Rightarrow l_{N-1} + p(x_{N-1}) + p(x_N) \\ \Rightarrow l_{N-1} + p(x_{N-1}) + p(x_N) \\ \Rightarrow l_{N-1} + p(x_{N-1}) + p(x_N) \\ \Rightarrow l_{N-1} + l_{N-1} + p(x_{N-1}) + p(x_N) \\ \Rightarrow l_{N-1} + l_{N-1} + p(x_{N-1}) + p(x_N) \\ \Rightarrow l_{N-1} + l_{N-1} + p(x_{N-1}) + p(x_N) \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + p(x_N) \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + $
hence the chance is 1 in 6 Why this complicated method? You can modify desired results! just change the A in P(A)! Inverse Probability: P(inverse) = 1 - P(A) dice -> 1 - $\frac{1}{6} = \frac{5}{6}$ Addition rule: $P(A \cup B) = P(A) + P(B) - P(A \cap B)$!!The last part is needed, as otherwise the number would exceed the possible states!! $P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C)$ Amount of possibilities: ordered probes with replication: 2 coins, head and tail, possibilities? k=head/tail=2 n=coins=2 $\Omega = n^k = 2^2$ ordered probes without replication: 5 dices. How many combinations? dice numbers = n = 6 (1-6), dice amount = k = 5 possibilities = $\Omega = \frac{n!}{(n-k)!} = \Omega = \frac{6!}{(6-5)!} = 720$ Or this: $\Omega = \prod_{n=0}^{n-k+1} n = \prod_{n=0}^{6-5+1} 6 = 2 * 35 * 6 = 720$ unordered probes wihout replication: 25 players, each should only play once with the other. $\Omega = \frac{n!}{k!(n-k)!} > \frac{25!}{2!(25-2)!} > \frac{\text{too big}}{\text{too big}} = 300$ as you can see the bottom is a BIG calculation, so $\Omega = \frac{\prod_{n=0}^{n-k+1} n}{k!} > \frac{\prod_{n=0}^{25-2+1} 25}{2!} > \frac{24 * 25}{2!} = 300$ Note that k can also be defined as the length of the tuple we want to receive. $P(Player, Player) > 2$ Source to Sink Information	$\begin{split} H(H,Y) &= \sum_{x_k}^N \sum_{y_i}^N P(x_k) * \\ P(x_k,y_i) * (-\log_2(P(x_k) * P(x_k y_i)) \\ \hline Encoding of Symbols \\ \cdot \text{ Orde die Zeichen gemäss ihrer Auftrittswahrscheinlichkeit} \\ \cdot \text{ Die beiden Zeichen mit der kleinisten Auftrittswahrscheinlichkeit} \\ \cdot \text{ Die beiden Zeichen mit der kleinisten Auftrittswahrscheinlichkeit} \\ \cdot \text{ Die beiden Zeichen mit der kleinisten Auftrittswahrscheinlichkeit} \\ \text{ haben die gleiche CW-Lange für den Fall, dass die beiden letzten zu einem einzigen Zeichen zusammengefasst werden, dann gilt:} \\ \cdot \text{ Sei } l_{x} \text{ die mittlere CW-Länge für den Fall, dass die beiden letzten zu einem einzigen Zeichen zusammengefasst werden, dann gilt:} \\ l_{N} - (p(x_{N-1}) + p(x_N)) \cdot l(x_N) = l_{N-1} - (p(x_{N-1}) + p(x_N)) \cdot (l(X_N) - 1) \\ \Rightarrow l_{N-1} + p(x_{N-1}) + p(x_N) \\ \Rightarrow l_{N-1} + p(x_{N-1}) + p(x_N) \\ \Rightarrow l_{N-1} + p(x_{N-1}) + p(x_N) \\ \Rightarrow l_{N-1} + l_{N-1} + p(x_{N-1}) + p(x_N) \\ \Rightarrow l_{N-1} + l_{N-1} + p(x_{N-1}) + p(x_N) \\ \Rightarrow l_{N-1} + l_{N-1} + p(x_{N-1}) + p(x_N) \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + p(x_N) \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + $
hence the chance is 1 in 6 Why this complicated method? You can modify desired results! just change the A in P(A)! Inverse Probability: P(inverse) = 1 - P(A) $\frac{1}{1} \frac{1}{1} \frac{1}{$	$\begin{split} H(H,Y) &= \sum_{x_k}^N \sum_{y_i}^N P(x_k) * \\ P(x_k,y_i) * (-\log_2(P(x_k) * P(x_k y_i)) \\ \hline Encoding of Symbols \\ \cdot \text{ Orde die Zeichen gemäss ihrer Auftrittswahrscheinlichkeit} \\ \cdot \text{ Die beiden Zeichen mit der kleinisten Auftrittswahrscheinlichkeit} \\ \cdot \text{ Die beiden Zeichen mit der kleinisten Auftrittswahrscheinlichkeit} \\ \cdot \text{ Die beiden Zeichen mit der kleinisten Auftrittswahrscheinlichkeit} \\ \text{ haben die gleiche CW-Lange für den Fall, dass die beiden letzten zu einem einzigen Zeichen zusammengefasst werden, dann gilt:} \\ \cdot \text{ Sei } l_{x} \text{ die mittlere CW-Länge für den Fall, dass die beiden letzten zu einem einzigen Zeichen zusammengefasst werden, dann gilt:} \\ l_{N} - (p(x_{N-1}) + p(x_N)) \cdot l(x_N) = l_{N-1} - (p(x_{N-1}) + p(x_N)) \cdot (l(X_N) - 1) \\ \Rightarrow l_{N-1} + p(x_{N-1}) + p(x_N) \\ \Rightarrow l_{N-1} + p(x_{N-1}) + p(x_N) \\ \Rightarrow l_{N-1} + p(x_{N-1}) + p(x_N) \\ \Rightarrow l_{N-1} + l_{N-1} + p(x_{N-1}) + p(x_N) \\ \Rightarrow l_{N-1} + l_{N-1} + p(x_{N-1}) + p(x_N) \\ \Rightarrow l_{N-1} + l_{N-1} + p(x_{N-1}) + p(x_N) \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + p(x_N) \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + $
hence the chance is 1 in 6 Why this complicated method? You can modify desired results! just change the A in P(A)! Inverse Probability: P(inverse) = 1 - P(A) $\frac{1}{10000000000000000000000000000000000$	$\begin{split} H(H,Y) &= \sum_{x_k}^N \sum_{y_i}^N P(x_k) * \\ P(x_k,y_i) * (-\log_2(P(x_k) * P(x_k y_i)) \\ \hline Encoding of Symbols \\ \cdot \text{ Orde die Zeichen gemäss ihrer Auftrittswahrscheinlichkeit} \\ \cdot \text{ Die beiden Zeichen mit der kleinisten Auftrittswahrscheinlichkeit} \\ \cdot \text{ Die beiden Zeichen mit der kleinisten Auftrittswahrscheinlichkeit} \\ \cdot \text{ Die beiden Zeichen mit der kleinisten Auftrittswahrscheinlichkeit} \\ \text{ haben die gleiche CW-Lange für den Fall, dass die beiden letzten zu einem einzigen Zeichen zusammengefasst werden, dann gilt:} \\ \cdot \text{ Sei } l_{x} \text{ die mittlere CW-Länge für den Fall, dass die beiden letzten zu einem einzigen Zeichen zusammengefasst werden, dann gilt:} \\ l_{N} - (p(x_{N-1}) + p(x_N)) \cdot l(x_N) = l_{N-1} - (p(x_{N-1}) + p(x_N)) \cdot (l(X_N) - 1) \\ \Rightarrow l_{N-1} + p(x_{N-1}) + p(x_N) \\ \Rightarrow l_{N-1} + p(x_{N-1}) + p(x_N) \\ \Rightarrow l_{N-1} + p(x_{N-1}) + p(x_N) \\ \Rightarrow l_{N-1} + l_{N-1} + p(x_{N-1}) + p(x_N) \\ \Rightarrow l_{N-1} + l_{N-1} + p(x_{N-1}) + p(x_N) \\ \Rightarrow l_{N-1} + l_{N-1} + p(x_{N-1}) + p(x_N) \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + p(x_N) \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + $
hence the chance is 1 in 6 Why this complicated method? You can modify desired results! just change the A in P(A)! Inverse Probability: P(inverse) = 1 - P(A) $\frac{1}{6} = \frac{1}{6}$ Addition rule: $P(A \cup B) = P(A) + P(B) - P(A \cap B)$!!The last part is needed, as otherwise the number would exceed the possible states!! $P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C)$ Amount of possibilities: ordered probes with replication: 2 coins, head and tail, possibilities? k=head/tail=2 n=coins=2 $\Omega = n^k = 2^2$ ordered probes without replication: 5 dices. How many combinations? dice numbers = n = 6 (1-6), dice amount = k = 5 possibilities = $\Omega = \frac{n!}{(n-k)!} = \Omega = \frac{6!}{(6-5)!} = 720$ Or this: $\Omega = \prod_{n=k+1}^{n-k+1} n = \prod_{n=0}^{6-5+1} 6 = 2 * 3 5 * 6 = 720$ unordered probes wihout replication: $25 \text{ players, each should only play once with the other.}$ $\Omega = \frac{n!}{k!(n-k)!} > \frac{25!}{2!(25-2)!} > \frac{\text{too big}}{\text{too big}} = 300$ as you can see the bottom is a BIG calculation, so $\Omega = \frac{\prod_{n=k+1}^{n-k+1} n}{k!} > \frac{\prod_{n=0}^{25-2+1} 25}{2!} > \frac{24 * 25}{2} = 300$ Note that k can also be defined as the length of the tuple we want to receive. $P(P \text{apprich} \text{defined} \text$	$\begin{split} H(H,Y) &= \sum_{x_k}^N \sum_{y_i}^N P(x_k) * \\ P(x_k,y_i) * (-\log_2(P(x_k) * P(x_k y_i)) \\ \hline Encoding of Symbols \\ \cdot \text{ Orde die Zeichen gemäss ihrer Auftrittswahrscheinlichkeit} \\ \cdot \text{ Die beiden Zeichen mit der kleinisten Auftrittswahrscheinlichkeit} \\ \cdot \text{ Die beiden Zeichen mit der kleinisten Auftrittswahrscheinlichkeit} \\ \cdot \text{ Die beiden Zeichen mit der kleinisten Auftrittswahrscheinlichkeit} \\ \text{ haben die gleiche CW-Lange für den Fall, dass die beiden letzten zu einem einzigen Zeichen zusammengefasst werden, dann gilt:} \\ \cdot \text{ Sei } l_{x} \text{ die mittlere CW-Länge für den Fall, dass die beiden letzten zu einem einzigen Zeichen zusammengefasst werden, dann gilt:} \\ l_{N} - (p(x_{N-1}) + p(x_N)) \cdot l(x_N) = l_{N-1} - (p(x_{N-1}) + p(x_N)) \cdot (l(X_N) - 1) \\ \Rightarrow l_{N-1} + p(x_{N-1}) + p(x_N) \\ \Rightarrow l_{N-1} + p(x_{N-1}) + p(x_N) \\ \Rightarrow l_{N-1} + p(x_{N-1}) + p(x_N) \\ \Rightarrow l_{N-1} + l_{N-1} + p(x_{N-1}) + p(x_N) \\ \Rightarrow l_{N-1} + l_{N-1} + p(x_{N-1}) + p(x_N) \\ \Rightarrow l_{N-1} + l_{N-1} + p(x_{N-1}) + p(x_N) \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + p(x_N) \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + $
hence the chance is 1 in 6 Why this complicated method? You can modify desired results! just change the A in P(A)! Inverse Probability: P(inverse) = 1 - P(A) $\frac{1}{100} = \frac{1}{6} = \frac{1}{6}$ Addition rule: $P(A \cup B) = P(A) + P(B) - P(A \cap B)$!!The last part is needed, as otherwise the number would exceed the possible states!! $P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C)$ Amount of possibilities: ordered probes with replication: 2 coins, head and tail, possibilities? k=head/tail=2 n=coins=2 $\Omega = n^k = 2^2$ ordered probes without replication: 5 dices. How many combinations? dice numbers = n = 6 (1-6), dice amount = k = 5 possibilities = $\Omega = \frac{n!}{(n-k)!} = \Omega = \frac{6!}{(6-5)!} = 720$ Or this: $\Omega = \prod_{n=k+1}^{n-k+1} n = \prod_{n=0}^{6-5+1} 6 = 2 * 3 5 * 6 = 720$ unordered probes wihout replication: $25 \text{ players, each should only play once with the other.}$ $\Omega = \frac{n!}{k!(n-k)!} > \frac{2!}{2!(25-2)!} > \frac{100 \text{ big}}{100 \text{ big}} = 300$ as you can see the bottom is a BIG calculation, so $\Omega = \frac{\prod_{n=k+1}^{n-k+1} n}{k!} > \frac{\prod_{n=0}^{25-2+1} 25}{2!} > \frac{24 * 25}{2} = 300$ Note that k can also be defined as the length of the tuple we want to receive. $P(\text{Player,Player}) > 2$ Source to Sink Information Nachricht Constelling & Bedoutung redundant nicht-redundant relevant Zeichenvorrat bei Quelle und Senke verschieden relevant Xeichenvorrat bei Quelle und Senke verschieden Xeichenvorrat Xeichenvorrat Xeichenvorrat Xeichenvorrat Xeichenvorrat Xeichenvorrat Xeichenvorrat Xeichenvorrat	$\begin{split} H(H,Y) &= \sum_{x_k}^N \sum_{y_i}^N P(x_k) * \\ P(x_k,y_i) * (-\log_2(P(x_k) * P(x_k y_i)) \\ \hline Encoding of Symbols \\ \cdot \text{ Orde die Zeichen gemäss ihrer Auftrittswahrscheinlichkeit} \\ \cdot \text{ Die beiden Zeichen mit der kleinisten Auftrittswahrscheinlichkeit} \\ \cdot \text{ Die beiden Zeichen mit der kleinisten Auftrittswahrscheinlichkeit} \\ \cdot \text{ Die beiden Zeichen mit der kleinisten Auftrittswahrscheinlichkeit} \\ \text{ haben die gleiche CW-Lange für den Fall, dass die beiden letzten zu einem einzigen Zeichen zusammengefasst werden, dann gilt:} \\ \cdot \text{ Sei } l_{x} \text{ die mittlere CW-Länge für den Fall, dass die beiden letzten zu einem einzigen Zeichen zusammengefasst werden, dann gilt:} \\ l_{N} - (p(x_{N-1}) + p(x_N)) \cdot l(x_N) = l_{N-1} - (p(x_{N-1}) + p(x_N)) \cdot (l(X_N) - 1) \\ \Rightarrow l_{N-1} + p(x_{N-1}) + p(x_N) \\ \Rightarrow l_{N-1} + p(x_{N-1}) + p(x_N) \\ \Rightarrow l_{N-1} + p(x_{N-1}) + p(x_N) \\ \Rightarrow l_{N-1} + l_{N-1} + p(x_{N-1}) + p(x_N) \\ \Rightarrow l_{N-1} + l_{N-1} + p(x_{N-1}) + p(x_N) \\ \Rightarrow l_{N-1} + l_{N-1} + p(x_{N-1}) + p(x_N) \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + p(x_N) \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + $
hence the chance is 1 in 6 Why this complicated method? You can modify desired results! just change the A in P(A)! Inverse Probability: P(inverse) = 1 - P(A) dice -> 1 - $\frac{1}{6} = \frac{5}{6}$ Addition rule: $P(A \cup B) = P(A) + P(B) - P(A \cap B)$!!The last part is needed, as otherwise the number would exceed the possible states!! $P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C)$ Amount of possibilities: ordered probes with replication: 2 coins, head and tail, possibilities? k=head/tail=2 n=coins=2 $\Omega = n^k = 2^2$ ordered probes without replication: 5 dices. How many combinations? dice numbers = n = 6 (1-6), dice amount = k = 5 possibilities = $\Omega = \frac{n!}{(n-k)!} = \Omega = \frac{6!}{(6-5)!} = 720$ Or this: $\Omega = \prod_{n=k+1}^{n-k+1} n = \prod_{n=0}^{6-5+1} 6 = 2 * 35 * 6 = 720$ unordered probes wihout replication: 25 players, each should only play once with the other. $\Omega = \frac{n!}{k!(n-k)!} > \frac{25!}{2!(25-2)!} $	$\begin{split} H(H,Y) &= \sum_{x_k}^N \sum_{y_i}^N P(x_k) * \\ P(x_k,y_i) * (-\log_2(P(x_k) * P(x_k y_i)) \\ \hline Encoding of Symbols \\ \cdot \text{ Orde die Zeichen gemäss ihrer Auftrittswahrscheinlichkeit} \\ \cdot \text{ Die beiden Zeichen mit der kleinisten Auftrittswahrscheinlichkeit} \\ \cdot \text{ Die beiden Zeichen mit der kleinisten Auftrittswahrscheinlichkeit} \\ \cdot \text{ Die beiden Zeichen mit der kleinisten Auftrittswahrscheinlichkeit} \\ \text{ haben die gleiche CW-Lange für den Fall, dass die beiden letzten zu einem einzigen Zeichen zusammengefasst werden, dann gilt:} \\ \cdot \text{ Sei } l_{x} \text{ die mittlere CW-Länge für den Fall, dass die beiden letzten zu einem einzigen Zeichen zusammengefasst werden, dann gilt:} \\ l_{N} - (p(x_{N-1}) + p(x_N)) \cdot l(x_N) = l_{N-1} - (p(x_{N-1}) + p(x_N)) \cdot (l(X_N) - 1) \\ \Rightarrow l_{N-1} + p(x_{N-1}) + p(x_N) \\ \Rightarrow l_{N-1} + p(x_{N-1}) + p(x_N) \\ \Rightarrow l_{N-1} + p(x_{N-1}) + p(x_N) \\ \Rightarrow l_{N-1} + l_{N-1} + p(x_{N-1}) + p(x_N) \\ \Rightarrow l_{N-1} + l_{N-1} + p(x_{N-1}) + p(x_N) \\ \Rightarrow l_{N-1} + l_{N-1} + p(x_{N-1}) + p(x_N) \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + p(x_N) \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + l_{N-1} + l_{N-1} + l_{N-1} \\ \Rightarrow l_{N-1} + $

