2021 Virginia Construction Code

CHAPTER 23 WOOD

SECTION 2305 GENERAL DESIGN REQUIREMENTS FOR LATERAL FORCE-RESISTING SYSTEMS

2305.1 General.

Structures using wood-frame *shear walls* or wood-frame *diaphragms* to resist wind, seismic or other lateral*loads* shall be designed and constructed in accordance with AWC SDPWS and the applicable provisions of Sections 2305, 2306 and 2307.

2305.1.1 Openings in shear panels.

Openings in shear panels that materially affect their strength shall be detailed on the plans and shall have their edges adequately reinforced to transfer all shearing stresses.

2305.2 Diaphragm deflection.

The deflection of wood-frame diaphragms shall be determined in accordance with AWC SDPWS. The deflection (Δ_{dia}) of a blocked wood structural panel diaphragm uniformly fastened throughout with staples is permitted to be calculated in accordance with Equation 23-1. If not uniformly fastened, the constant 0.188 (For SI: 1/1627) in the third term shall be modified by an approved method.

 $\Delta_{dia} = 5vL^3/8EAW + vL/4Gt + 0.188Le_u + \Sigma(x\Delta_c)/2W$

For SI: $\Delta_{dia} = 0.052 \text{ } vL^3/\text{ } EAW + vL/4 \text{ } Gt + Le_n/1627 + \sum (x\Delta_c)/2 \text{ } W$

(Equation 23-1)

where:

- A =Area of chord cross section, in square inches (mm²).
- E = Modulus of elasticity of diaphragm chords, in pounds per square inch (N/mm2).
- e_n = Staple slip, in inches (mm) [see Table 2305.2(1)].
- Gt = Panel rigidity through the thickness, in pounds per inch (N/mm) of panel width or depth [see able 2305.2(2)].
- L = Diaphragm length (dimension perpendicular to the direction of the applied load), in feet (mm).
- v =Induced unit shear in pounds per linear foot (plf) (N/mm).
- W = Diaphragm width [in the direction of applied force, in feet (mm)].
- x = Distance from chord splice to nearest support, in feet (mm).
- Δ_{c} = Diaphragm chord splice slip at the induced unit shear, in inches (mm).
- Δ_{dia} = Maximum mid-span diaphragm deflection determined by elastic analysis, in inches (mm).

TABLE 2305.2(1)

e_n VALUES (inches) FOR USE IN CALCULATING DIAPHRAGM AND SHEAR WALL DEFLECTION DUE TO FASTENER SLIP (Structural I)^{a, c}

LOAD PER FASTENER ^b	FASTENER DESIGNATIONS 14-Ga staple × 2 inches long				
(pounds)					
60	0.011				
80	0.018				
100	0.028				
120	0.04				
140	0.053				
160	0.068				

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 pound = 4.448 N.

- a. Increase e_n values 20 percent for plywood grades other than Structural I.
- b. Load per fastener = maximum shear per foot divided by the number of fasteners per foot at interior panel edges.
- c. Decrease e_n values 50 percent for seasoned lumber (moisture content < 19 percent).

TABLE 2305.2(2)

VALUES OF Gt FOR USE IN CALCULATING DEFLECTION OF WOOD STRUCTURAL PANEL SHEAR WALLS AND

Copyright © 2024 International Code Council, Inc., or its licensors (ALL RIGHTS RESERVED).

Accessed by Venkatesh Shanmugam on 11/14/2024 pursuant to License Agreement with ICC. No further reproduction or distribution authorized. Any Unauthorized reproduction or distribution is a violation of the federal copyright, and subject to civil and criminal penalties thereunder.

PDF from: http://codes.iccsafe.org/content/VACC2021P1/chapter-23wood#VACC2021P1 Ch23 Sec2305

DIAPHRAGMS

	SPAN RATING	VALUES OF Gt (lb/in. panel depth or width)								
PANEL TYPE		Structural Sheathing				Structural I				
		Plywood			OSB	Plywood			OSB	
		3-ply	4-ply	5-ply ^a	ОЗВ	3-ply	4-ply	5-ply ^a	USB	
Sheathing	24/0	25,000	32,500	37,500	77,500	32,500	42,500	41,500	77,500	
	24/16	27,000	35,000	40,500	83,500	35,000	45,500	44,500	83,500	
	32/16	27,000	35,000	40,500	83,500	35,000	45,500	44,500	83,500	
	40/20	28,500	37,000	43,000	88,500	37,000	48,000	47,500	88,500	
	48/24	31,000	40,500	46,500	96,000	40,500	52,500	51,000	96,000	
Single Floor	16 o.c.	27,000	35,000	40,500	83,500	35,000	45,500	44,500	83,500	
	20 o.c.	28,000	36,500	42,000	87,000	36,500	47,500	46,000	87,000	
	24 o.c.	30,000	39,000	45,000	93,000	39,000	50,500	49,500	93,000	
	32 o.c.	36,000	47,000	54,000	110,000	47,000	61,000	59,500	110,000	
	48 o.c.	50,500	65,500	76,000	155,000	65,500	85,000	83,500	155,000	

		Structural Sheathing				Structural I		
	Thickness (in.)	A-A, A-C	Marine	All Other Grades	A-A, A-C	Marine	All Other Grades	
Sanded Plywood	1/4	24,000	31,000	24,000	31,000	31,000	31,000	
	¹¹ / ₃₂	25,500	33,000	25,500	33,000	33,000	33,000	
	3/8	26,000	34,000	26,000	34,000	34,000	34,000	
	¹⁵ / ₃₂	38,000	49,500	38,000	49,500	49,500	49,500	
	1/2	38,500	50,000	38,500	50,000	50,000	50,000	
	¹⁹ / ₃₂	49,000	63,500	49,000	63,500	63,500	63,500	
	⁵ / ₈	49,500	64,500	49,500	64,500	64,500	64,500	
	²³ / ₃₂	50,500	65,500	50,500	65,500	65,500	65,500	
	3/4	51,000	66,500	51,000	66,500	66,500	66,500	
	7/8	52,500	68,500	52,500	68,500	68,500	68,500	
	1	73,500	95,500	73,500	95,500	95,500	95,500	
	11/8	75,000	97,500	75,000	97,500	97,500	97,500	

For SI: 1 inch = 25.4 mm, 1 pound/inch = 0.1751 N/mm.

a. 5-ply applies to plywood with five or more layers. For 5-ply plywood with three layers, use values for 4-ply panels.

2305.3 Shear wall deflection.

The deflection of wood-frameshear walls shall be determined in accordance with AWC SDPWS. The deflection (Δ_{SW}) of a blocked wood structural panel shear wall uniformly fastened throughout with staples is permitted to be calculated in accordance with Equation 23-2.

$$\Delta_{sw} = 8vh^3/EAb + vh/4Gt + 0.75he_n + d_ah/b$$

For SI:
$$\Delta_{\text{SW}} = vh^3/3EAb + vh/Gt + \frac{he_n}{407.6} + d_ah/b$$
 (Equation 23-2)

where:

A =Area of end-post cross section in square inches (mm²).

b =Shear wall length, in feet (mm).

 d_a = Total vertical elongation of wall anchorage system (such as fastener slip, device elongation, rod elongation) in inches (mm), at the induced unit shear in the shear wall (v).

E = Modulus of elasticity of end posts, in pounds persquare inch (N/mm^2) .

 e_n = Staple slip, in inches (mm) [seeTable 2305.2(1)].

Gt = Panel rigidity through the thickness, in pounds per inch (N/mm) of panel width or depth [see able 2305.2(2)].

h = Shear wall height, in feet (mm).

v =Induced unit shear, in pounds per linear foot (N/mm).

 Δ_{SW} = Maximum shear wall deflection determined by elastic analysis, in inches (mm).

Copyright © 2024 International Code Council, Inc., or its licensors (ALL RIGHTS RESERVED).

Accessed by Venkatesh Shanmugam on 11/14/2024 pursuant to License Agreement with ICC. No further reproduction or distribution authorized. Any Unauthorized reproduction or distribution is a violation of the federal copyright, and subject to civil and criminal penalties thereunder.