SBML Model Report

Model name: "Talemi2015 - Persistent telomere-associated DNA damage foci (TAF), a measure to predict cancer risks"

February 11, 2016

1 General Overview

This is a document in SBML Level 2 Version 4 format. This model was created by the following two authors: Soheil Rastgou Talemi¹ and Joerg Schaber² at December 20th 2014 at 2:53 p.m. and last time modified at December 20th 2014 at 2:53 p.m. Table 1 gives an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	1
species types	0	species	6
events	1	constraints	0
reactions	6	function definitions	1
global parameters	15	unit definitions	3
rules	5	initial assignments	4

Model Notes

A Robust Model of DNA Damage Dynamics. Rasgou Talemi and Schaber, 12.20.2014.

OVGU University of Magdeburg, soheil.rastgou@med.ovgu.de

²OVGU University of Magdeburg, joerg.schaber@med.ovgu.de

2 Unit Definitions

This is an overview of five unit definitions of which two are predefined by SBML and not mentioned in the model.

2.1 Unit volume

Name volume

Definition dimensionless

2.2 Unit time

Name time

Definition 3600 s

2.3 Unit substance

Name substance

Definition item

2.4 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

 $\textbf{Definition}\ m^2$

2.5 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
compartment	compartment		3	1	dimensionless	Ø	

3.1 Compartment compartment

This is a three dimensional compartment with a constant size of one dimensionless.

Name compartment

4 Species

This model contains six species. The boundary condition of one of these species is set to true so that this species' amount cannot be changed by any reaction. Section 11 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Co	ndary ondi- ion
TAF	TAF	compartment	item $\cdot \Box$ dimensionless ⁻¹	1
FAST	FAST	compartment	item $\cdot \square$ E dimensionless ⁻¹	
FASTi	FASTi	compartment	item $\cdot \square$ E dimensionless ⁻¹	\exists
SLOWi	SLOWi	compartment	item $\cdot \square$ E dimensionless ⁻¹	∃
SLOW	SLOW	compartment	item $\cdot \Box$ \Box \Box dimensionless ⁻¹	∃
RP	RP	compartment	item $\cdot \square$ E dimensionless ⁻¹	=

5 Parameters

This model contains 15 global parameters.

Table 4: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Tot	Tot		1.879		
DNAdamagefoci-	- DNAdamagefoci_0		750.500		
_0					
Gy	Gy		20.000		
FociperGy	FociperGy		167.817		
$\mathtt{prop}_{\mathtt{C}}\mathtt{C}$	prop_C		0.023		
TAFO	TAF0		0.890		
$k_{-}TAF$	$k_{-}TAF$		0.791		
${\tt BaseDNAdamage}$	BaseDNAdamage		0.989		\square
${\tt percentTAF}$	percentTAF		47.358		
kcross	kcross	1	.51844699335433 · 10	-4	
TotalRP	TotalRP		20.000		
Toti	Toti		0.000		
${\tt Metabolite_1}$	Initial for TAF		0.890		
$ModelValue_3$	Initial for		167.817		
	FociperGy				
ModelValue_2	Initial for Gy		20.000		

6 Initialassignments

This is an overview of four initial assignments.

6.1 Initialassignment TAF

Derived unit contains undeclared units

Math TAF0

6.2 Initialassignment Metabolite_1

Derived unit item

Math [TAF]

6.3 Initialassignment ModelValue_3

Math FociperGy

6.4 Initialassignment ModelValue_2

Derived unit contains undeclared units

Math Gy

7 Function definition

This is an overview of one function definition.

7.1 Function definition comb_2dn_order_MA

Name comb 2dn order MA

Arguments S1, S2, k, Tot

Mathematical Expression

$$S1 \cdot k \cdot S2 \cdot Tot$$
 (1)

8 Rules

This is an overview of five rules.

8.1 Rule Tot

Rule Tot is an assignment rule for parameter Tot:

$$Tot = BaseDNAdamage + [FAST] + [FASTi] + [SLOW] + [SLOWi] + [TAF]$$
 (2)

8.2 Rule DNAdamagefoci_0

Rule DNAdamagefoci_0 is an assignment rule for parameter DNAdamagefoci_0:

DNAdamagefoci_0 =
$$\sqrt{2} \cdot \text{ModelValue}_3$$
 (3)

8.3 Rule percentTAF

Rule percentTAF is an assignment rule for parameter percentTAF:

$$percentTAF = \frac{100 \cdot [TAF]}{Tot}$$
 (4)

8.4 Rule TotalRP

Rule TotalRP is an assignment rule for parameter TotalRP:

$$TotalRP = [FAST] + [RP] + [SLOW]$$
 (5)

Derived unit item

8.5 Rule Toti

Rule Toti is an assignment rule for parameter Toti:

$$Toti = [FASTi] + [SLOWi]$$
 (6)

Derived unit item

9 Event

This is an overview of one event. Each event is initiated whenever its trigger condition switches from false to true. A delay function postpones the effects of an event to a later time point. At the time of execution, an event can assign values to species, parameters or compartments if these are not set to constant.

9.1 Event DNAdamage

Name DNAdamage

Trigger condition

$$time > 0 (7)$$

Assignments

$$TAF = Metabolite_1 + k_TAF \cdot \sqrt{2}$$
 (8)

$$SLOWi = prop_C \cdot DNAdamagefoci_0$$
 (9)

$$FASTi = (1 - prop_C) \cdot DNAdamagefoci_0$$
 (10)

10 Reactions

This model contains six reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

N⁰	Id	Name	Reaction Equation	SBO
1	rf	rf	$FAST \xrightarrow{FAST} RP$	
2	rs	rs	$SLOW \xrightarrow{SLOW} RP$	
3	v1	v1	$FASTi + RP \xrightarrow{FASTi, RP} FAST$	
4	v3	v3	$SLOWi + RP \xrightarrow{SLOWi, RP} SLOW$	
5	vcross1	vcross1	$FASTi + RP \xrightarrow{FASTi, RP} FAST$	
6	vcross2	vcross2	$SLOWi + RP \xrightarrow{SLOWi, RP} SLOW$	

10.1 Reaction rf

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name rf

Reaction equation

$$FAST \xrightarrow{FAST} RP \tag{11}$$

Reactant

Table 6: Properties of each reactant.

Id	Name	SBO
FAST	FAST	

Modifier

Table 7: Properties of each modifier.

Id	Name	SBO
FAST	FAST	

Product

Table 8: Properties of each product.

Id	Name	SBO
RP	RP	

Kinetic Law

$$v_1 = \text{vol}\left(\text{compartment}\right) \cdot \text{k1} \cdot [\text{FAST}]$$
 (12)

Table 9: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k1	k1	2000.0	

10.2 Reaction rs

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name rs

Reaction equation

$$SLOW \xrightarrow{SLOW} RP \tag{13}$$

Reactant

Table 10: Properties of each reactant.

Id	Name	SBO
SLOW	SLOW	

Modifier

Table 11: Properties of each modifier.

Id	Name	SBO
SLOW	SLOW	

Product

Table 12: Properties of each product.

Id	Name	SBO
RP	RP	

Kinetic Law

$$v_2 = \text{vol}\left(\text{compartment}\right) \cdot \text{k1} \cdot [\text{SLOW}]$$
 (14)

Table 13: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k1	k1	0.005	

10.3 Reaction v1

This is an irreversible reaction of two reactants forming one product influenced by two modifiers.

Name v1

Reaction equation

$$FASTi + RP \xrightarrow{FASTi, RP} FAST$$
 (15)

Reactants

Table 14: Properties of each reactant.

Id	Name	SBO
FASTi	FASTi	
RP	RP	

Modifiers

Table 15: Properties of each modifier.

Id	Name	SBO
FASTi	FASTi	
RP	RP	

Product

Table 16: Properties of each product.

Id	Name	SBO
FAST	FAST	

Kinetic Law

$$v_3 = \text{vol} (\text{compartment}) \cdot \text{k1} \cdot [\text{FASTi}] \cdot [\text{RP}]$$
 (16)

Table 17: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k1	k1	0.005	

10.4 Reaction v3

This is an irreversible reaction of two reactants forming one product influenced by two modifiers.

Name v3

Reaction equation

$$SLOWi + RP \xrightarrow{SLOWi, RP} SLOW$$
 (17)

Reactants

Table 18: Properties of each reactant.

Id	Name	SBO
SLOWi	SLOWi	
RP	RP	

Modifiers

Table 19: Properties of each modifier.

Id	Name	SBO
SLOWi	SLOWi	
RP	RP	

Product

Table 20: Properties of each product.

Id	Name	SBO
SLOW	SLOW	

Kinetic Law

$$v_4 = \text{vol}\left(\text{compartment}\right) \cdot \text{k1} \cdot [\text{SLOWi}] \cdot [\text{RP}]$$
 (18)

Table 21: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1	k1	4	4.67362 · 10 ⁻⁴	4	

10.5 Reaction vcross1

This is an irreversible reaction of two reactants forming one product influenced by two modifiers.

Name vcross1

Reaction equation

$$FASTi + RP \xrightarrow{FASTi, RP} FAST$$
 (19)

Reactants

Table 22: Properties of each reactant.

Id	Name	SBO
FASTi	FASTi	
RP	RP	

Modifiers

Table 23: Properties of each modifier.

Id	Name	SBO
FASTi	FASTi	
RP	RP	

Product

Table 24: Properties of each product.

Id	Name	SBO
FAST	FAST	

Kinetic Law

Derived unit contains undeclared units

$$v_5 = \text{vol} (\text{compartment}) \cdot \text{comb_2dn_order_MA} ([\text{FASTi}], [\text{RP}], \text{kcross}, \text{Toti})$$
 (20)

$$comb_2dn_order_MA(S1,S2,k,Tot) = S1 \cdot k \cdot S2 \cdot Tot$$
 (21)

$$comb_2dn_order_MA(S1,S2,k,Tot) = S1 \cdot k \cdot S2 \cdot Tot$$
 (22)

10.6 Reaction vcross2

This is an irreversible reaction of two reactants forming one product influenced by two modifiers.

Name vcross2

Reaction equation

$$SLOWi + RP \xrightarrow{SLOWi, RP} SLOW$$
 (23)

Reactants

Table 25: Properties of each reactant.

Id	Name	SBO
SLOWi	SLOWi	
RP	RP	

Modifiers

Table 26: Properties of each modifier.

Id	Name	SBO
SLOWi	SLOWi	
RP	RP	

Product

Table 27: Properties of each product.

Id	Name	SBO
SLOW	SLOW	

Kinetic Law

Derived unit contains undeclared units

$$v_6 = \text{vol} (\text{compartment}) \cdot \text{comb_2dn_order_MA} ([\text{SLOWi}], [\text{RP}], \text{kcross}, \text{Toti})$$
 (24)

$$comb_2dn_order_MA(S1, S2, k, Tot) = S1 \cdot k \cdot S2 \cdot Tot$$
 (25)

$$comb_2dn_order_MA(S1, S2, k, Tot) = S1 \cdot k \cdot S2 \cdot Tot$$
 (26)

11 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions> 0 for certain species.

11.1 Species TAF

Name TAF

Initial concentration 0.889883170980968 item · dimensionless⁻¹

Initial assignment TAF

Involved in event DNAdamage

one event influences the species' quantity.

11.2 Species FAST

Name FAST

Initial concentration 0 item · dimensionless⁻¹

This species takes part in four reactions (as a reactant in rf and as a product in v1, vcross1 and as a modifier in rf).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{FAST} = |v_3| + |v_5| - |v_1| \tag{27}$$

11.3 Species FASTi

Name FASTi

Initial concentration 0 item · dimensionless⁻¹

Involved in event DNAdamage

This species takes part in four reactions (as a reactant in v1, vcross1 and as a modifier in v1, vcross1).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{FASTi} = -v_3 - v_5 \tag{28}$$

Furthermore, one event influences this species' rate of change.

11.4 Species SLOWi

Name SLOWi

Initial concentration 0 item \cdot dimensionless⁻¹

Involved in event DNAdamage

This species takes part in four reactions (as a reactant in v3, vcross2 and as a modifier in v3, vcross2).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{SLOWi} = -v_4 - v_6 \tag{29}$$

Furthermore, one event influences this species' rate of change.

11.5 Species SLOW

Name SLOW

Initial concentration 0 item · dimensionless⁻¹

This species takes part in four reactions (as a reactant in rs and as a product in v3, vcross2 and as a modifier in rs).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{SLOW} = |v_4| + |v_6| - |v_2| \tag{30}$$

11.6 Species RP

Name RP

Initial concentration 20 item · dimensionless⁻¹

This species takes part in ten reactions (as a reactant in v1, v3, vcross1, vcross2 and as a product in rf, rs and as a modifier in v1, v3, vcross1, vcross2).

$$\frac{d}{dt}RP = |v_1| + |v_2| - |v_3| - |v_4| - |v_5| - |v_6|$$
(31)

 $\mathfrak{BML2}^{lAT}$ EX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany