Objetivos

- 1. Ensaiar o motor de corrente contínua em vazio;
- 2. Determinar os parâmetros da máquina de corrente contínua;
- 3. Simulação dinâmica do comportamento do motor no MATLAB/SIMULINK.
- 4. Enviar para josesergio@alu.ufc.br até 21/01/2025 às 09:59.

PRÁTICA Nº 06 - Estudo do Motor de Corrente Contínua

INTRODUÇÃO TEÓRICA

Uma máquina de corrente contínua é caracterizada por operar em valores constantes de tensão, velocidade, conjugado, etc. Chamamos esse estado de operação de estado permanente. Contudo, é óbvio que a máquina parte do repouso e depois de um certo tempo tende a operar em estado permanente, essa transição é denominada de estado transitório.

Para podermos estudar tanto o estado transitório quanto o estado permanente, precisamos criar um modelo que represente a máquina de corrente contínua. Esse modelo é baseado em suas equações elétricas, mecânicas e eletromecânicas, que expressam o seu relacionamento através de uma função de transferência.

Equações do motor de corrente contínua no domínio do tempo:

Equação Elétrica:
$$Vt(t) - Ra \cdot ia(t) + La \cdot \frac{d ia(t)}{dt} + E(t)$$

Equações Mecânicas:
$$Tg(t) = Tw(t) + Tj(t) + Tc(t)$$

$$Tw(t) = B \cdot w(t) + Tf(t)$$

$$Tj(t) = J \cdot \frac{d w(t)}{dt}$$

Equações Eletromecânicas: $Tg(t) = k \cdot \phi \cdot ia(t)$

$$E(t) = k \cdot \phi \cdot w(t)$$

Da equação elétrica vemos que a tensão terminal, Vt(t) é igual a resistência de armadura, Ra, vezes a corrente de armadura, ia(t), mais a indutância da armadura, La, vezes a derivada da corrente de armadura mais a tensão de armadura, E(t).

Das equações mecânicas temos que o torque gerado, Tg(t), deve se igualar ao conjugado das perdas, Tw(t), mais o conjugado da inércia, Tj(t), mais o conjugado da carga, Tc(t).

O conjugado das perdas possui uma componente chamada de amortecimento viscoso do motor e da carga, B.w(t), que é linear e proporcional à rotação, onde B é o coeficiente de atrito viscoso e w(t) a velocidade de rotação do eixo, e uma componente não linear, Tf(t), que se refere ao atrito na carga e no motor. Devido a essa componente ser bem menor em relação ao amortecimento viscoso, ela é desconsiderada no nosso modelo.

O conjugado referente à inércia do eixo é igual a J, que é o momento de inércia do motor e da carga, vezes a derivada da velocidade de rotação do eixo.

Das equações eletromecânicas vemos que o conjugado gerado é igual a uma constante, k, vezes o fluxo, ϕ , vezes a corrente de armadura e que a tensão de armadura é igual a uma constante vezes o fluxo vezes a velocidade de rotação do eixo.

Para podermos construir a função de transferência, passamos as equações no domínio do tempo para o domínio da frequência usando a transformada de Laplace.

Equações do motor de corrente contínua no domínio da freqüência:

Equação Elétrica: $Vt(s) - Ra \cdot Ia(s) + s \cdot La \cdot Ia(s) + E(s)$

Equações Mecânicas: $Tg(s) = J \cdot s \cdot W(s) + B \cdot W(s) + Tc(s)$

Equações Eletromecânicas: $Tg(s) = k \cdot \phi \cdot Ia(s)$

$$E(s) = k \cdot \phi \cdot W(s)$$

Com algumas manipulações algébricas podemos montar a função de transferência do motor de corrente contínua, representado aqui através do diagrama de blocos:

PROCEDIMENTO

1 Determinação da resistência e da indutância de armadura e do campo

Com o campo desligado, alimente a armadura com um tensão contínua até que a corrente de armadura seja de 10A (ensaio de curto-circuito). Caso o motor comece a girar, segure o eixo do mesmo com a mão para que não se perca energia com o atrito do rotor.

$$Ra = \frac{Va}{Ia} = \frac{9}{10} = 0.9\Omega \text{ (calculado)}$$
 $Ra = 2.4\Omega \text{ (medido)}$

Ainda com o campo desligado, alimente a armadura com uma tensão alternada até que a corrente alternada na armadura seja de 5A.

$$La = \frac{\sqrt{\left(\frac{Va}{Ia}\right)^2 - Ra^2}}{2.\pi \cdot f} = \frac{\sqrt{\left(\frac{37.6}{5}\right)^2 - 2.4^2}}{2.\pi \cdot 60} = 19,90mH \text{ (calculado)} \qquad La = 10,43mH \text{ (medido)}$$

Aplicando o mesmo procedimento para o campo, obtemos:

$$Rf = 558\Omega$$
 (medido)

$$Lf = 77,96mH \text{ (medido)}$$

2 Determinação da constante da força contra-eletromotriz (k, φ)

$$k \cdot \Phi = \frac{Vt - Ra \cdot ia}{\omega_m}$$

$$\overline{k \cdot \Phi} = 1,28$$

Ia (A)	w (rpm)	Va (V)	w (rad/s)	k. q
1,05	1632	220	170,90	1,27
1,02	1549	215	162,21	1,31
1,00	1551	210	162,42	1,27
0,98	1481	200	155,08	1,27
0,96	1407	190	147,34	1,27
0,95	1328	180	139,06	1,27
0,94	1257	170	131,63	1,27

3 Determinação da constante de atrito viscoso (B)

$$Tm = B.\omega_m$$

$$Tm = \frac{Eg.Ia}{\omega_m} \qquad B = \frac{Eg.Ia}{\omega_m^2} \qquad B = 0,0078$$

$$B = \frac{Eg.Id}{\omega_m^2}$$

$$B = 0.0078$$

4 Determinação do momento de inércia (J) através do teste "run down"

$$J = \frac{k.\phi.t}{Ra.\ln\left(\frac{Vt}{Vt - k.\phi.\omega_0}\right)}$$

$$J = \frac{k.\phi.t}{Ra.\ln\left(\frac{Vt}{Vt - k.\phi.\omega_0}\right)} \qquad J = \frac{1,28.37}{2,4.\ln\left(\frac{220}{220 - 1,28.170,9}\right)} \qquad J = 3,79$$

Onde t é o tempo que a máquina leva para parar quando está girando com velocidade wo (estado permanente) e é desligada. (sem carga)

RESUMO DOS PARÂMETROS OBTIDOS:

$$Ra = 2.4 \Omega$$

$$La = 10,43 \text{ mH}$$

$$Rf = 558 \Omega$$

$$Lf = 77,96 \text{ mH}$$

$$K.\phi = 1,28$$

$$B = 0.0078$$

$$J = 3.79$$

SIMULAÇÃO UTILIZANDO O SIMULINK

Utilize o diagrama de blocos anterior para fazer suas simulações.

SIMULAÇÃO DO MODELO SEM RESISTÊNCIA DE PARTIDA Simulação sem carga:

(arquivo labMCC.slx)

Verifique a corrente de armadura e a velocidade de rotação do eixo do motor CC.

Simulação com carga:

Verifique o que acontece com a corrente de armadura e a velocidade de rotação do eixo do motor CC.

Após a máquina entrar em estado permanente (40s), aplique uma carga nominal de 20 N/m² e verifique o que acontece com a corrente de armadura e a velocidade de rotação do motor.

SIMULAÇÃO DO MODELO COM RESISTÊNCIA DE PARTIDA

(arquivo labmaq F.slx)

O motor CC é caracterizado por uma corrente de partida alta. Desse modo, é conveniente controlar a corrente de partida do motor e, uma maneira simples de se fazer isto é inserir uma resistência em série com o circuito de armadura (reostato de partida). Após a partida do motor essa resistência é gradualmente retirada do circuito. Assim, verifique a corrente de armadura e a velocidade de rotação do eixo do motor CC, quando se conecta um resistor de partida na armadura. Faça simulações com carga e sem carga.

CONCLUSÃO

Explique, baseado nas respostas obtidas, cada uma das simulações feitas no Simulink. Por que a corrente apresenta um pico na resposta a um degrau de tensão, enquanto que a velocidade não o apresenta.

- SIMULAÇÃO UTILIZANDO O MATLAB

Nesta simulação pode-se utilizar o sistema representado pelas equações diferenciais ou na forma de variáveis de estado.

- Modelo de Estado para Excitação Constante

A representação do modelo dinâmico da máquina de corrente contínua na forma de equações de variáveis de estado é o seguinte:

$$\begin{bmatrix}
\frac{di_a}{dt} \\
\frac{dw_m}{dt}
\end{bmatrix} = \begin{bmatrix}
-r_a/l_a & -k_e \lambda_e/l_a \\
k_e \lambda_e/J_m & -F_m/J_m
\end{bmatrix} \begin{bmatrix}
i_a \\
w_m
\end{bmatrix} + \begin{bmatrix}
1/l_a & 0 \\
0 & 1/J_m
\end{bmatrix} \begin{bmatrix}
v_a \\
c_m
\end{bmatrix}$$
(7)

Por exemplo, quando a velocidade é a variável de saída a equação de saída se escreve:

$$\begin{bmatrix} w_m \end{bmatrix} = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} i_a \\ w_m \end{bmatrix} \tag{8}$$

- Características do Funcionamento do Motor CC

A função do motor CC em acionamentos a velocidade variável é impor á uma carga mecânica qualquer no eixo do motor, representada pelo conjugado mecânico c_m , uma velocidade desejada w_m^* , dita de referência. A tensão de alimentação v_a é a variável de entrada que permite alterar a velocidade, a saída do processo. A tensão de alimentação também afeta a corrente i_a de armadura. Outras variáveis físicas importantes do processo são o conjugado eletromagnético c_e , proporcional à corrente i_a , e o conjugado mecânico c_m , considerado como uma perturbação. Tensão, corrente, velocidade e conjugados são grandezas físicas do motor que devem ser mantidas dentro de certos limites máximos. J_m é a constante de atrito viscoso.

O regime permanente de funcionamento do motor pode ser obtido facilmente a partir do sistema de equações (7), fazendo-se os termos em d/dt iguais a zero. Assim, escreve-se:

$$i_a = \frac{1}{DT_m la} Va + \frac{k_e \lambda_e}{DJ_m la} c_m \tag{9}$$

$$w_m = \frac{k_e \lambda_e}{DJ_m la} Va - \frac{1}{DT_a J_m} c_m \tag{10}$$

onde: $T_a = l_a/ra$ é a constante de tempo elétrica da armadura, $T_m = J_m/F_m$ é a constante de tempo

mecânica do motor e $D = \frac{1}{T_a T_m} + \frac{k_e^2 \lambda_e^2}{l_a J_m}$ é o determinante da matriz dinâmica no sistema (7). Observa-se que a corrente i_a aumenta com v_a e c_m e w_m aumenta com v_a e diminui com c_m .

- Análise no Tempo e na Freqüência do Motor CC

A caracterização do motor CC é realizada neste experimento no domínio do tempo, por meio da resposta ao degrau, e no domínio da frequência, por meio do diagrama de Bode. Inicialmente, determina-se a evolução no tempo da corrente de armadura i_a e da velocidade w_m , para degraus unitários de tensão e de conjugado mecânico. Em seguida, é determinada a resposta em frequência do motor visualizada por meio do diagrama de bode.

- Simulação do motor CC

Na simulação do motor de corrente contínua deve-se obter a evolução no tempo das variáveis de estado do motor, corrente i_a e velocidade w_m , em função da tensão v_a e do conjugado mecânico c_m . A determinação dessas variáveis é feita fazendo-se a solução das equações diferenciais características do motor em função de v_a e c_m . O motor CC é modelado como um sistema linear com parâmetros constantes. Assim, para as formas usuais de sinais utilizados para excitar os sistemas em controle, é possível se obter soluções analíticas simples para as variáveis de saída do motor CC. Mas, como se está interessado em um procedimento de simulação rápido com entrada v_a e c_m quaisquer, um programa de simulação baseado na integração numérica da equação (7) é preferível. Em um programa de simulação, para um processo dinâmico genérico, é comum utilizar um método de integração numérica, p. ex., o método de Runge-Kutta. Entretanto, como o modelo do motor CC é linear, é possível utilizar uma função simples do MATLAB na simulação do motor.

- Simulação para uma entrada qualquer

Para simular um sistema linear, contínuo no tempo, para entradas quaisquer, pode-se utilizar o comando *lsim* do MATLAB. Para sistemas na representação em variáveis de estados

$$\frac{dx}{dt} = Ax + Bu \tag{11}$$

$$y = Cx + Du \tag{12}$$

Tal comando pode ter as seguintes formas

Onde T é um vetor que indica o intervalo de tempo onde deseja-se observar os resultados de simulação (por exemplo T = [0:0.001:1]); U corresponde ao vetor dos sinais de entrada (por exemplo U = [ones(t)' zeros(t)'] e Xo é o vetor de condições iniciais, usado apenas quando existem condições iniciais não nulas. Este comando também pode ser usado com outros formatos, por exemplo, quando a representação usada é uma função de transferência (para ver todos os formatos use o comando help lsim). Comandos para visualizar gráficos Para visualizar as variáveis calculadas, usa-se o comando plot.

Associados com plot existem outros comandos tais como grid, title, xlable e ylable. Use o comando help para obter mais informações sobre os mesmos.

- Diagrama de Bode

O MATLAB possui a função *Bode* que permite obter de um sistema na forma de estado, seu diagrama de Bode em amplitude e frequência para uma faixa de frequência determinada. Para se obter a amplitude (vetor Ampl) e a fase (vetor Fase) do diagrama de Bode do sistema de estado A, B, C, D, (11)-(12), para a enésima entrada (nu) e numa dada faixa de frequência (vetor W) executa-se o seguinte comando:

```
nu = 1;

W = logspace(-1, 3, 500);

[Ampl, Fase] =bode(A, B, C, D, nu, W)

semilogx(W, 20*log10(Ampl)); % Amplitude em dB

semilogx(W, Fase); % Fase em graus
```

É necessário utilizar a função *logspace* para se gerar um vetor W cujos elementos são valores de frequência espaçados de forma logarítmica.

- Preparação para o procedimento experimental

- 1. Faça a análise dimensional (Sistema de unidades MKS) das equações dinâmicas da máquina de corrente contínua e determine a unidade das variáveis marcadas com "MKS" presentes no texto.
- **2.** Determine as funções de transferência da velocidade w_m em função da tensão de alimentação v_a e do conjugado de carga c_m :
- **3.** Calcule os pólos das funções de transferência obtidas no ítem 2 considerando um motor de corrente contínua com os seguintes parâmetros:

```
Ra = 60m; La = 1.8 \text{ mH}; ke = 0.8 \text{ [MKS]}; Fm = 0.01 \text{ [MKS]} Jm = 1.5 \text{ ou } 0.1 \text{ [MKS]}, \lambda_e = 1 \text{Wb}
```

- Procedimento Experimental

1. Alimente o motor de Jm = 1.5 [MKS] com um degrau de tensão unitário (1V) a partir do repouso (ia = 0, w_m = 0) e em vazio (cm = 0), seguido de um degrau unitário de conjugado mecânico. Determine os valores máximos e de regime permanente e o tempo de subida (intervalo de tempo entre a partida e valor máximo) de ia e wm: Para isto use:

```
T = [0:0:002:2]; U = [ones(t)' cm']

cm = [zeros(size(0:0.002:0.998)) ones(size(0.1:0.002:2))]
```

Trace, usando a função plot, e imprima o gráfico relativo às curvas de ia e w_m versus o tempo.

- 2. Repita o item anterior com Jm = 0:1 [MKS] medindo, também, a frequência de oscilação amortecida.
- **3.** Trace os diagramas de Bode das funções de transferência Wm(s)/Va(s) e Ia(s)/Va(s). Para isso, utilize a função bode existente no MATLAB e a função *logspace* para gerar um intervalo logarítmico de frequências. Utilize Jm = 1.5 [MKS].
- 4. Repita o ítem 1 e 3 com ke = 0.1 [MKS].

Relatório

1. Determine, para Jm = 1.5 [MKS]; e c_m = 0 e 1.0 Nm, os valores de regime permanente de i_a e w_m e compare-os com os valores obtidos no ítem 1 do procedimento experimental.

- **2.** Determine para Jm = 0.1 [MKS] ; ke = 0:8 [MKS] e cm = 0 e cm = 1.0 Nm, os valores de regime permanente e a frequência de oscilação amortecida de i_a e w_m e compare-os com aqueles valores obtidos no ítem 2 do procedimento experimental.
- **3.** Observando os diagramas de Bode obtidos nos itens 3 e 4 do procedimento experimental, diga o que a constante ke indica no modelo do motor.
- **4.** Explique, baseado nas funções de transferência, porque a corrente apresenta um pico na resposta a um degrau de tensão, enquanto que a velocidade não o apresenta.

BIBLIOGRAFIA

- 1. Ogata, Katsuhiko. "Engenharia de Controle Moderno", Prentice Hall do Brasil Ltda, Rio de Janeiro, 1993.
- 2. SEN, P. C.: "Principles of electric machines and power electronics", John Wiley & Sons, New York, 1989.
- 3. FITZGERALD, A. E.; KINGSLEY Jr, C. & KUSKO, A. Máquinas Elétricas. 1a ed., São Paulo: McGraw-Hill do Brasil, 1975.