一. 关于复合函数求导

1. 考虑偏微分方程

$$Az_{xx} + 2Bz_{xy} + Cz_{yy} = 0, (1)$$

其中 A,B,C 均为实常数. 假设 $B^2-AC>0$ 且 $C\neq 0$. 记 α,β 为一元二次方程 $Ct^2+2Bt+A=0$ 的两个互异的实根,证明

(i) 方程 (1) 在可逆线性变换 $u = x + \alpha y$, $v = x + \beta y$ 下, 可等价地化为

$$w_{uv} = 0. (2)$$

等价的意思是, 若 z(x,y) 是方程 (1) 的解, 则 w(u,v) = z(x(u,v),y(u,v)) 是方程 (2) 的解, 这里 x = x(u,v), y = y(u,v) 是线性变换 $u = x + \alpha y$, $v = x + \beta y$ 的逆变换; 反之, 若 w = w(u,v) 是方程 (2) 的解, 则 $z(x,y) = w(x + \alpha y, x + \beta y)$ 是方程 (1) 的解.

(ii) 方程(1)的一般解为

$$z(x,y) = f(x + \alpha y) + g(x + \beta y), \tag{3}$$

其中 f(t) 和 g(t) 均为 \mathbb{R}^1 上的任意二次连续可微函数.

2. 设函数 f(x,y) 在平面开区域 Ω 上有连续的偏导数, Ω 包含单位圆周 Γ : $x^2+y^2=1$. 证明在单位圆 Γ 上存在两个点 $P_i \in \Gamma$, 使得

$$(yf_x - xf_y)\Big|_{P_i} = 0, \quad i = 1, 2.$$
 (4)

二. 关于 Taylor 展式

1. 写出函数 $z = \cos(x^2 + y^2)$ 在原点 (0,0) 处的 Taylor 展式, 带 Peano 余项 $o(\rho^2)$, 以及 带二阶 Lagrange 余项. (课本第81-82页, 习题1.8题1(1))

- 2. 求函数 $\ln(1+x+y+z)$ 在点 (0,0,0) 处的两个 Taylor 展开式, 一个带 Peano 余项 $o(\rho^2)$, 其中 $\rho^2=x^2+y^2+z^2$, 一个带二阶 Lagrange 余项. (课本第81-82页, 习题1.8题1(3))
- 3. 由隐函数定理可知, 方程 $x+y+z+xyz^3=0$ 在原点 (0,0,0) 附近确定了一个隐函数 z=z(x,y). 求函数 z(x,y) 在原点处带 Peano 余项 $o(\rho^2)$ 的二阶 Taylor 展式.

三. 关于极值问题

1. 求函数 $u = \ln x + 2 \ln y + 3 \ln z$ 在球面 $x^2 + y^2 + z^2 = 6r^2$ 位于第一卦限(即 x, y, z > 0) 上的最大值. 并由此证明对任意正实数 a, b, c, 下述不等式成立:

$$ab^2c^3 \le 108\left(\frac{a+b+c}{6}\right)^6.$$

- 2. 求函数 z = xy(4 x y) 在由三条直线 x = 1, y = 0 和 x + y = 6 所围有界闭区域上的最大值.
- 3. 求函数 z(x,y) 的极值, 其中 z(x,y) 为方程 $2x^2 + 2y^2 + z^2 + 8xz z + 8 = 0$ 所确定的 隐函数. (这是课本第93页习题1.9题2).