CS372 FORMAL LANGUAGES & THE THEORY OF COMPUTATION

Dr.Nguyen Thi Thu Huong

Phone: +84 24 38696121, Mobi: +84 903253796

Email: huongnt@soict.hust.edu.vn,

huong.nguyenthithu@hust.edu.vn

Unit 4 Regular Pumping Lemma, Context Free Languages

The regular pumping lemma

- All regular languages have a special property.
- If a language does not have this property, it is not regular.
- The property states that all strings in the language can be "pumped" if they are at least as long as a certain special value, called the *pumping length*.

Theorem 4.1

If L is an infinite regular language, then there is a number p (the pumping length) where

- if w ∈L , |w| ≥ p, then w may be divided into three pieces, w = xyz, satisfying the following conditions:
 - 1. for each $i \ge 0$, $xy^iz \in L$,
 - 2. |y| > 0, and
 - 3. $|xy| \le p$.

Proof of theorem 4.1

- Assume L is an infinite regular language
- There exists a minimum DFA recognize L

- Consider string w∈ L with |w| ≥ p
- Assume w=a₁a₂...a_k. |w|=k ≥ p
- To accept w, the sequence of states that M entered has k+1 elements. Because M has only p states, by pigeonhole (Dirichlet) principle, two elements must be the same state, q.

First repeated elements: the same state q

There may be many states visited twice or more But q is the first repeated state

When M accept w

w can be divided in to 3 substrings w = xyz

Once w is considered

In DFA: w=xyz

Therefore:
$$x y^i z \in L$$
 $i = 0, 1, 2, ...$

Language recognized by M

Use the pumping lemma to prove that a language is not regular,

- Prove by contradiction
- Assume language L is regular
- Apply the pumping lemma to L
- Using the pumping lemma to obtain contradiction
- Conclude that L is not regular

Method

- Assume language L is regular
- Suppose p is number given by the pumping lemma
- Find string w in L, |w| ≥ p
- Demonstrate that w cannot be pumped by considering all ways of dividing w into x, y, and z, that is existence of i ≥ 0:

$$w' = xy^i z \notin L$$

 The existence of w' contradicts the pumping lemma if L were regular. Hence L cannot be regular.

Example

Prove that language $L = \{a^n b^n : n \ge 0\}$ is not regular

using the pumping lemma

$$L = \{a^n b^n : n \ge 0\}$$

- Assume L is a regular language.
- Because L is infinite, we can apply the pumping lemma

$$L = \{a^n b^n : n \ge 0\}$$

Suppose p is the number of the pumping lemma

Looking for a string $w: w \in L$

$$|w| \ge p$$

Found
$$w = a^p b^p$$

By Regular pumping lemma:

It's possible to write:
$$w = a^p b^p = x y z$$

with
$$|x y| \le p \quad |y| \ge 1$$

$$\mathbf{w} = xyz = \mathbf{a}^p \mathbf{b}^p = \underbrace{a...aa...aa...ab...b}_{x}$$

Therefore:
$$y = a^k$$
, $1 \le k \le p$

$$x y z = a^{p} b^{p} \quad y = a^{k}, \quad 1 \le k \le p$$

By Regular Pumping Lemma $x y^l z \in L$

$$i = 0, 1, 2, \dots$$

That's why: $x y^2 z \in L$

$$x y z = a^p b^p$$
 $y = a^k$, $1 \le k \le p$

By Regular Pumping Lemma $x y^2 z \in L$

$$xy^{2}z = \underbrace{a...aa...aa...aa...ab...b}_{x \quad y \quad y \quad z} \in L$$
Therefore: $a^{p+k}b^{p} \in L$

$$a^{p+k}b^{p} \in L$$

$$k \ge 1$$

However

$$L = \{a^n b^n : n \ge 0\}$$

$$a^{p+k}b^{p} \notin L$$

CONTRADICTION!!!

Therefore

Assumption "L is regular" is incorrect

Conclusion: L is not regular

Proof that $L = \{a^nb^n | n \ge 0\}$ is not regular

- Suppose L is regular. Since L is regular, we can apply the pumping lemma to L.
- Let p be the pumping length for L.
- Choose w = a^pb^p. Note that w ∈ L and |w| ≥ p.
- From the pumping lemma, there exists some x, y, z
 where xyz = w and |xy| ≤ p, |y| > 0, and ∀ i ≥ 0, xyⁱz ∈L.
- Because $|xy| \le p$, $y = a^k$, (y is all a's).
- We choose i = 2 and xyⁱz = a^{p+k}b^p. Because |y| > 0,ther xy²z ∉ L (the string has more a's than b's). Thus for all possible x, y, z: xyz = w, ∃i, xyⁱz ∉ L. Contradiction
- L is not regular.

Proof that $L = \{a^nb^m | n \ge m \ge 0\}$ is not regular

- Suppose L is regular. Since L is regular, we can apply the pumping lemma to L.
- Let p be the pumping length for L.
- Choose w = a^pb^p. Note that w ∈ L and |w| ≥ p.
- From the pumping lemma, there exists some x, y, z
 where xyz = w and |xy| ≤ p, |y| > 0, and ∀ i ≥ 0, xyⁱz ∈L.
- Because $|xy| \le p$, $y = a^k$, (y is all a's).
- We choose i = 0 and xyⁱz = a^{p-k}b^p. Because |y| > 0,
 xy⁰z = xz ∉ L (the string has less a's than b's). Thus for all possible x, y, z: xyz = w, ∃i, xyⁱz ∉ L. Contradiction
- L is not regular.

Context-Free Grammars

- Informal description
- Context-Free grammars
- Designing context-free grammars
- Ambiguity
- Chomsky normal form

Imagine a tiny set of syntax rules of English

```
<sentence>::=<noun phrase> <verb phrase>
                                                                          < noun>::= Boeing
<noun phrase>::= <noun>
                                                                          <noun> ::= Seattle
<verb phrase>::= <verb > <verb phrase>
                                                                          <verb>::= is
<verb phrase>::= <verb>  prepositional phrase>
                                                                          <verb>::= located
ositional phrase>::= constitution
                                                                          preposition>::= in
                                     <noun phrase>
                                    <sentence>
                   <noun phrase> <verb phrase>
                            <noun>verb> <verb phrase>
                              Boeing
                                             is <verb>                                                                                                                                                                                                                                                                                                                                                    <p
                                         located < preposition > < noun phrase >
                                                                    in <noun>
                                                                            Seattle
```

Grammar for arithmetic expressions

```
<expression> --> number

<expression> --> ( <expression> )

<expression> --> <expression> + <expression>

<expression> --> <expression> - <expression>

<expression> --> <expression> * <expression>

<expression> --> <expression> / <expression>
```

Context Free Grammars (CFG)

A context free grammar G has:

- A set of terminal symbols, Σ
- A set of nonterminal symbols, V
- A start symbol, S, which is a member of Δ
- A set R of production rules of the form A -> w, where A is a nonterminal and w is a string of terminal and nonterminal symbols or ε.

Formal definition of a context free grammar

A context-free grammar is a 4-tuple (V, Σ , R, S), where

- 1. V is a finite set called the *variables*,
- 2. Σ is a finite set, disjoint from V, called the *terminals*,
- 3. R is a finite set of *rules*, with each rule being a variable and a string of variables and terminals(form of a rule is $A \rightarrow \beta$ where $A \in V$ and $\beta \in (V \cup \Sigma)^*$)
- 4. $S \in V$ is the start variable.

Context Free Grammar Examples

Grammar of nested parentheses

$$G_1 = (V, \Sigma, R, S)$$
 where $V = \{S\}$
 $\Sigma = \{(,)\}$
 $R = \{S \rightarrow (S), S \rightarrow SS, S \rightarrow \epsilon\}$

Context Free Grammar Examples

The grammar of decimal numbers

$$G_2 = (V, \Sigma, R, S), V = \{S, A, B, C\},$$

 $\Sigma = \{+,-,.,0, 1, 2,...., 9\}$
R: $S \to +A \mid -A \mid A$
 $A \to B.B \mid B$
 $B \to BC \mid C$
 $C \to 0 \mid 1 \mid 2 \mid \mid 9$

Derivations

- When X consists only of terminal symbols, it is a string of the language denoted by the grammar.
- Each iteration of the loop is a derivation step.
- If an iteration has several nonterminals to choose from at some point, the rules of derivation would allow any of these to be applied.

Definitions

- If u, v, and w are strings of variables and terminals, and A → w is a rule of the grammar, we say that uAv *yields* uwv, written uAv ⇒ uwv.
- Say that u derives v, written u ⇒ * v,
 - -if u = v or
 - if a sequence $u_1, u_2, ..., u_k$ exists for k ≥ 0 and

$$u \Rightarrow u_1 \Rightarrow u_2 \Rightarrow \dots \Rightarrow u_k \Rightarrow v$$
.

Example

- Consider grammar G₁ = ({S}, {(,)}, {S→
 (S), S→SS, S→ε}, S)
- A derivation that generate string (()()) is

$$S \Rightarrow (S)$$

$$\Rightarrow (SS)$$

$$\Rightarrow ((S)S)$$

$$\Rightarrow (()S)$$

$$\Rightarrow (()(S))$$

$$\Rightarrow (()(S))$$

Derivation Tree (Parse Tree)

Derivation tree is constructed with

- 1) Each tree vertex is a variable (nonterminal) or terminal or epsilon
- 2) The root vertex is S
- 3) Interior vertices are from V, leaf vertices are from \sum or ϵ
- 4) An interior vertex A has children, in order, left to right,
 X₁, X₂, ..., X_k when there is a rule in R of the form A -> X₁ X₂ ... X_k
- 5) A leaf can be ε only when there is a production $A \to \varepsilon$ and the leaf's parent can have only this child.

Example: Derivation tree of string (()())

Designing context free grammars

- Many CFLs are the union of simpler CFLs. To construct a CFG for a CFL, you can break into simpler pieces, do so and then construct individual grammars for each piece then merge the grammars to get the necessary CFG.
- If a CFL is regular, construct a DFA for that language and convert DFA into an equivalent CFG
- Certain CFLs contain strings with two substrings that are "linked", construct a CFG with a rule of the form R → uRv
- In more complex languages, the strings may contain certain structures that appear recursively as part of other (or the same) structures.

Ambiguity

- A string w is derived ambiguously in context-free grammar G if it has two or more different leftmost derivations.
- Grammar G is *ambiguous* if it generates some string ambiguously.

Example of an ambiguous grammar

Consider grammar G_3 $\langle EXPR \rangle \rightarrow \langle EXPR \rangle + \langle EXPR \rangle | \langle EXPR \rangle * \langle EXPR \rangle |$ $(\langle EXPR \rangle) | a$

This grammar generates 2 different parse trees for string a + a * a

Grammar G₃ is ambiguous

Disambiguation

 Find an unambiguous grammar that generates the same language.

```
<EXPR> → <EXPR> + <TERM> | <TERM> <

<TERM> → <TERM> * <FACTOR> | <FACTOR> </FACTOR> \rightarrow (<EXPR> ) | a
```

 Some context-free languages are inherently ambiguous because they can be generated only by ambiguous grammar.

Example: $\{a^ib^jc^k| i = j \text{ or } j = k\}.$

Chomsky Normal Form – CNF

A grammar where every production is either of the form $A \rightarrow BC$ or $A \rightarrow c$

where A, B, C are arbitrary variables and c an arbitrary symbol. If language contains ϵ , then we allow $S \to \epsilon$ where S is start symbol, and forbid S on RHS.

Example

$$S \rightarrow AS$$

$$S \rightarrow a$$

$$A \rightarrow SA$$

$$A \rightarrow b$$

CNF

$$S \rightarrow AS$$

$$S \rightarrow AAS$$

$$A \rightarrow SA$$

$$A \rightarrow aa$$

Non CNF

Theorem

- Any context-free language is generated by a context-free grammar in Chomsky normal form
- PROOF IDEA
 - Convert a grammar G into CNF

Method

- The conversion to Chomsky Normal Form has four main steps:
 - 1. Get rid of all ε productions.
 - 2. Get rid of all productions where RHS is one variable.
 - 3. Replace every production that is too long by shorter productions.
 - 4. Move all terminals to productions where RHS still have one terminal.

Remove ε - rules

ε - rule:

$$X \to \varepsilon$$

Nullable variables:

$$Y \Rightarrow \ldots \Rightarrow \varepsilon$$

Example:

$$S \rightarrow aMb$$

$$M \rightarrow aMb$$

$$M \to \varepsilon$$

Nullable variable

ε - rule:

Remove ε - rules

- Determine the nullable variables (those that generate ε)
- Go through all productions, and for each, omit every possible subset of nullable variables.
- Delete all productions with empty RHS.
- If the start variable is nullable then create a new start state S', and add the rules to the grammar S' \rightarrow S | ϵ

Unit rule is the rule of the form:

$$X \to Y$$

where both X and Y are nonterminals

Example: $S \to aA$ $A \to a$ $A \to B$ Unit rule $B \to A$ $B \to bb$

For all rules of form $B \rightarrow u$, add the rule $A \rightarrow u$ unless this was a unit rule previously removed

$$S \rightarrow aA$$
 $A \rightarrow a$
 $A \rightarrow B$
 $B \rightarrow A$
 $B \rightarrow bb$
 $S \rightarrow aA \mid aB$
 $A \rightarrow a \mid bb$
 $A \rightarrow B$
 $B \rightarrow A$
 $B \rightarrow bb$

$$S \rightarrow aA \mid aB$$

$$A \rightarrow a$$

$$B \rightarrow A$$

$$B \rightarrow bb$$

$$S \rightarrow aA \mid aB \mid aA$$

$$A \rightarrow a \mid bb$$

$$B \rightarrow bb \mid a$$

Remove duplicate rules

Result

$$S \rightarrow aA \mid aB \mid aA$$
 $S \rightarrow aA \mid aB$
 $A \rightarrow a \mid bb$
 $B \rightarrow bb \mid a$ $A \rightarrow a \mid bb \mid a$
 $A \rightarrow bb \mid a$

Convert a CFG to Chomsky Normal Form

Consider grammar G:

$$S \to ABa$$
 G is not in CNF $A \to aab$
$$B \to Ac$$

We will convert grammar G to CNF

Replace Long Productions by Shorter Ones

 Replace each rule A → u₁u₂ · · · u_k, where k ≥ 3 and each u_i is a variable or terminal symbol, with the set of rules

- $\circ A \rightarrow u_1 A_1$
- $\circ A_1 \rightarrow u_2 A_2$
- $\circ A_2 \rightarrow u_3 A_3, \ldots,$
- \circ A_{k-2} \rightarrow u_{k-1}u_k. The Ai's are new variables
- Replace any terminal u_i in the preceding rule(s) with the new variable U_i and add the rule U_i → u_i.

Example

Convert G to CNF

$$S \rightarrow aSb|\epsilon$$

Make new start variable

 The new start variable will not appear on the RHS of any rule

$$S' \rightarrow S \mid \epsilon$$

 $S \rightarrow aSb \mid \epsilon$

Remove ε-rules

Grammar before removing

$$S' \rightarrow S \mid \epsilon$$

 $S \rightarrow aSb \mid \epsilon$

Grammar after removing

$$S' \rightarrow S \mid \varepsilon$$

S \rightarrow aSb |ab

Grammar before removing S' → S

$$S' \rightarrow S \mid \epsilon$$

 $S \rightarrow aSb \mid ab$
Grammar after removing $S' \rightarrow S$
 $S' \rightarrow aSb \mid ab \mid \epsilon$
 $S \rightarrow aSb \mid ab$

Replace long rules and terminals

Before replacing long rules

$$S' \rightarrow aSb \mid ab \mid \epsilon$$

 $S \rightarrow aSb \mid ab$

Replace S → aSb using new variable A₁

S'
$$\rightarrow$$
 aA₁| ab | ϵ
A₁ \rightarrow Sb
S \rightarrow aA₁ | ab
A₁ \rightarrow Sb

Replace a with U, b with V and add rules U → a, V → b

$$S' \rightarrow UA_1 | UV | \epsilon$$
 $A_1 \rightarrow SV$
 $S \rightarrow UA_1 | UV$
 $- U \rightarrow a, V \rightarrow b$