Exploration de la notion de méta-apprentissage

Dans quelle mesure un système apprenant peut « prendre conscience » de ses performances et altérer son comportement ?

Yann Boniface, Alain Dutech, Nicolas Rougier, Matthieu Zimmer

Loria

21 mai 2012

Inspiration : Conscience et méta-représentations Articles

- Consciousness and metarepresentation : A computational sketch
 [Alex Cleeremans, Bert Timmermans, Antoine Pasquali]
- Know thyself: Metacognitive networks and mesures of consciousness

[Antoine Pasquali, Bert Timmermans, Alex Cleeremans]

Plan

Dupliquer le premier réseau

Amélioration de l'apprentissage

La base de départ / Rappel

- 20 entrées (représentant les chiffres)
- le premier réseau discrime les 10 chiffres
- winner-take-all sur les sorties

- la couche cachée du premier réseau sert d'entrée au second
- le second réseau apprend à dupliquer toutes les couches du premier

Résultat sur la base d'entrée de l'article

- la couche cachée et la couche de sortie ne posent aucun problèmes d'apprentissage
- les performances du second réseau dépendent principalement de sa capacité à reproduire les entrées

Dans la couche cachée du FoN : les entrées du SoN

- stabilisation très rapidement (autour de la 50^{ième} époque en moyenne)
- entrées peu variables et stable favorisant son apprentissage

Passage à niveau

- chiffres manuscrits sur 256 neurones d'entrées
- Le premier réseau discrime 1600 chiffres
- Winner-take-all sur les sorties

- la couche cachée du premier réseau sert d'entrée au second
- le second réseau apprend à dupliquer toutes les couches du premier

Résultats

- la couche cachée et la couche de sortie s'apprennent toujours bien
- il n'arrive plus à dupliquer les entrées
- ça fonctionne dans l'article car il n'y a que 10 entrées différentes Loria

Dans la couche cachée du FoN : les entrées du SoN

- il existe différentes valeurs de la couche cachée, représentant le même nombre
- une même valeur discrétisée peut correspondre à plusieurs couleurs

Représentation interne

- il n'est pas si mauvais
- factorisation et perte d'information dans la couche cachée du FoN

Changement de tâche avec blocage de l'apprentissage

Dupliquer le premier réseau

Amélioration de l'apprentissage

La base de départ / Rappel

- 7 entrées (afficheur digital)
- le premier réseau discrime les 10 chiffres
- winner-take-all sur les sorties

- la couche cachée du premier réseau sert d'entrée au second
- le second réseau apprend à parier sur la qualité de la réponse du premier Loria

Résultat sur la base d'entrée de l'article

Performances de classification

- poids initilisés sur [-0.25; 0.25]
- momentum : 0
- non exploitable

Paramètre du second réseau :

- poids initilisés sur [-1; 1]
- momentum: 0.5
- exploitable

Passage à niveau

- chiffres manuscrits sur 256 neurones d'entrées
- Le premier réseau discrime 1600 chiffres
- Winner-take-all sur les sorties

- la couche cachée du premier réseau sert d'entrée au second
- le second réseau apprend à parier sur la qualité de la réponse du premier

Architectures de feedback

Second neurone le plus élevé quand pari bas

Second réseau enregistre l'indice (par activation) du neurone contenant la bonne réponse

Second réseau contrôle le taux d'apprentissage et le momentum du premier réseau

Les sorties du second réseaux deviennent des entrées supplémentaires au premier

3ème réseau de perceptron

3ème réseau de perceptron sur la couche cachée

Résultat concluants

3ème réseau de perceptron

Limitations

Le nombre de neurone dans la couche cachée du FoN déterminent beaucoup les performances :

- si il est "normal", le second réseau n'arrivera pas à parier efficacement, et se contente de parier haut
- si il est élevé, le second réseau parie correctement, mais le premier réseau est détérioré.
 - De sorte que même avec l'augmentation de performance du SoN, il ne dépasse pas un FoN bien réglé

Limitations

