kobriendublin.wordpress.com

Twitter: @kobriendublin

Consider the sequence defined by the following Expression:

$$u_n = n^2 - n + 1.$$

Showing all your working, compute the sum of the first 100 terms of this sequence.

Important Theorems

Theorem 1

$$\sum_{k=1}^{n} 1 = n$$

Theorem 2

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

Important Theorems

Theorem 3

k=1

Theorem 4

$$\sum_{n=0}^{\infty} k^2 = \frac{n(n+1)(2n+1)}{6}$$

$$\sum_{k=1}^{n} x^{k} = \frac{x^{n+1} - 1}{x - 1}$$

for all $x \in \mathbb{R}$ with $x \neq 1$

$$u_n = n^2 - n + 1.$$

$$\sum_{k=1}^{100} u_n = \sum_{k=1}^{100} k^2 - \sum_{k=1}^{100} k + \sum_{k=1}^{100} 1$$

$$\sum_{k=1}^{100} 1 =$$

$$\sum_{k=1}^{100} \mathbf{k} =$$

$$\sum_{k=1}^{100} \mathbf{k}^2 =$$

$$\sum_{k=1}^{100} u_n = \sum_{k=1}^{100} k^2 - \sum_{k=1}^{100} k + \sum_{k=1}^{100} 1$$