Matheschülerzirkel Universität Augsburg Schuljahr 2013/2013 Klasse 7./8. – Gruppe 3

Zirkelzettel vom 7. und 21. Februar 2014

Erinnerung: Die Menge der natürlichen Zahlen ist $\mathbb{N} = \{1, 2, 3, ...\}$.

Aufgabe 1. Geometrische Reihe

Zeige: Für alle natürlichen Zahlen $n \in \mathbb{N}$ gilt: $\sum_{k=1}^{n} \frac{1}{2^k} = 1 - \frac{1}{2^n}$.

Aufgabe 2. Gauss-Formel

Zeige: Für alle natürlichen Zahlen $n \in \mathbb{N}$ gilt: $\sum_{k=1}^{n} k = \frac{n \cdot (n+1)}{2}$.

Aufgabe 3. Induktionsungleichung

Zeige, dass für alle natürlichen Zahlen $n \geq 4$ gilt: $\ n! \geq 2^n \geq n^2$

Aufgabe 4. Pyramidalzahlen

Zeige: Für alle $n \in \mathbb{N}$ gilt: $\sum\limits_{k=1}^n k^2 = \frac{n \cdot (n+1) \cdot (2n+1)}{6}$

Aufgabe 5. Fibonacci-Zahlen

Die Fibonacci-Zahlen sind definiert durch

$$F_1 := 1, \quad F_2 := 1, \quad F_{n+2} = F_{n+1} + F_n \text{ für } n \in \mathbb{N}.$$

Zeige durch Induktion, dass für $n \in \mathbb{N}$ gilt:

$$F_n = \frac{a^n - b^n}{\sqrt{5}}$$
, wobei $a := \frac{1 + \sqrt{5}}{2}$, $b := \frac{1 - \sqrt{5}}{2}$.

Aufgabe 6. Pascals Dreieck

In Pascals Dreieck ist jede Zahl die Summe der Zahlen darüber:

Zeige, dass für alle $n \in \mathbb{N}$ gilt: Die Summe der Zahlen in der n-ten Zeile ist 2^{n-1} .

Aufgabe 7. Tetrominos auf dem Schachfeld

Ein Tetromino ist ein Stein, der zwei Schachbrettfelder breit und zwei Schachbrettfelder hoch ist und genau drei Schachbrettfelder überdeckt, also gewissermaßen ein (2×2) -Quadrat, aus dem eine Ecke entfernt wurde. Zeige per Induktion, dass es für alle $n\in\mathbb{N}$ möglich ist, ein quadratisches Brett, das 2^n Felder breit und hoch ist, und aus dem eine Ecke entfernt wurde, mit Tetrominos zu belegen.

Aufgabe 8. Fehlerhafte Induktion

Wir behaupten, dass in einer Herde Pferde alle Tiere die gleiche Farbe haben. Unser "Beweis" für diese kühne Behauptung ist folgender:

Wir führen Induktion über die Anzahl der Pferde in einer Herde durch.

Induktionsanfang (n = 1): Klar: In einer Herde, die aus nur einem Pferd besteht, haben alle Tiere die gleiche Farbe.

Induktionsschritt: Angenommen, wir haben eine Herde mit n+1 Pferden. Wir greifen uns aus dieser Herde wahllos ein Tier P_0 heraus. Die verbleibenden Tiere bilden eine Herde bestehend aus n Pferden. Nach Induktionsannahme haben sie alle die gleiche Farbe. Nun führen wir das Pferd P_0 wieder mit dem Rest der Herde zusammen und greifen uns ein anderes Pferd P_1 mit $P_0 \neq P_1$ heraus. Die verbleibenden Tiere bilden eine Herde mit n Pferden, haben also wieder alle die gleiche Farbe. Damit wissen wir: Das Pferd P_1 hat die gleiche Farbe wie alle anderen Tiere außer P_2 und P_2 hat die gleiche Farbe wir alle anderen Tiere außer P_1 . Somit hat auch P_1 die gleiche Farbe wie P_2 und somit hat die gesamte Herde die gleiche Farbe.

Frage: Wo liegt der Fehler?

Aufgabe 9. Turnier

In einem Fechtturnier mit 2^n Teilnehmern kämpft jeder Fechter genau einmal gegen jeden anderen. Kein Kampf endet unentschieden. Eine Reporterin möchte nacheinander Einzelinterviews mit n+1 Fechtern führen. Diese sollen so ausgewählt werden, dass jeder interviewte Fechter gegen alle Fechter, die vor ihm interviewt wurden, gesiegt hat.

Zeige zunächst, dass die Reporterin für n=1 und n=2 eine entsprechende Auswahl von Fechtern für die Interviews treffen kann. Zeige dann durch Induktion, dass dies auch für beliebige natürliche Zahlen n möglich ist.

Aufgabe 10. Gesättigte gerichtete Graphen

Auf der rechten Seiten siehst du einen gesättigten gerichteten Graphen mit 5 Knoten (graue Kreise). Die Pfeile zwischen den Knoten werden auch Kanten genannt. Wir sagen, dass wir einen Knoten B von einem anderen Knoten A direkt erreichen können, wenn eine Kanten von A nach B verläuft (also die Pfeilspitze zu B zeigt). Ein Knoten B kann von einem anderen Knoten A in zwei Schritten erreicht werden, wenn es einen Knoten C gibt, sodass C von A direkt erreichbar ist und B von C direkt erreichbar ist.

Im Beispiel ist der Knoten 3 vom Knoten 1 in zwei Schritten erreichbar, aber andersrum der Knoten 1 nicht vom Knoten 3 in zwei Schritten erreichbar. Außerdem ist der Knoten 2 von jedem anderen Knoten in höchstens zwei Schritten erreichbar.

Zeige, dass es in jedem gesättigten gerichteten Graphen mit n Knoten einen Knoten gibt, der von jedem anderen Knoten in höchstens zwei Schritten erreicht werden kann.