# Hoja de referencia VIP: Consejos y trucos sobre Aprendizaje Automático

## Afshine Amidi y Shervine Amidi

6 de octubre de 2018

 $\label{thm:continuous} Traducido\ por\ David\ Jiménez\ Paredes\ y\ Fernando\ Diaz.\ Revisado\ por\ Gustavo\ Velasco-Hernández\ y\ Alonso\ Melgar-Lopez.$ 

### Métricas para clasificación

En el contexto de una clasificación binaria, estas son las principales métricas que son importantes seguir para evaluar el rendimiento del modelo.

□ Matriz de confusión – La matriz de confusión (en inglés, Confusion matrix) se utiliza para tener una visión más completa al evaluar el rendimiento de un modelo. Se define de la siguiente manera:

#### Clase predicha

|            |   | +                                      | _                                |
|------------|---|----------------------------------------|----------------------------------|
| Clase real | + | <b>TP</b> True Positives               | FN False Negatives Type II error |
|            | _ | <b>FP</b> False Positives Type I error | <b>TN</b> True Negatives         |

□ Métricas principales – Las siguientes métricas se utilizan comúnmente para evaluar el rendimiento de los modelos de clasificación:

| Métrica                       | Fórmula                                                                                   | Interpretación                                  |  |
|-------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------|--|
| Exactitud                     | $\frac{\mathrm{TP} + \mathrm{TN}}{\mathrm{TP} + \mathrm{TN} + \mathrm{FP} + \mathrm{FN}}$ | Rendimiento general del modelo                  |  |
| Precisión                     | $\frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FP}}$                                           | Que tan precisas son las predicciones positivas |  |
| Exhaustividad<br>Sensibilidad | $\frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FN}}$                                           | Cobertura de la muestra positiva real           |  |
| Especificidad                 | $\frac{\mathrm{TN}}{\mathrm{TN} + \mathrm{FP}}$                                           | Cobertura de la muestra negativa real           |  |
| F1 score                      | $\frac{2\mathrm{TP}}{2\mathrm{TP} + \mathrm{FP} + \mathrm{FN}}$                           | Métrica híbrida útil para clases desbalanceadas |  |

□ ROC – La curva Característica Operativa del Receptor (en inglés, Receiver Operating Curve), también conocida como ROC, es una representación gráfica de la sensibilidad frente a la especificidad según se varía el umbral. Estas métricas se resumen en la siguiente tabla:

| Métrica                    | Fórmula                                         | Interpretación              |
|----------------------------|-------------------------------------------------|-----------------------------|
| True Positive Rate         | $\frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FN}}$ | Exhaustividad, sensibilidad |
| False Positive Rate<br>FPR | $\frac{\mathrm{FP}}{\mathrm{TN} + \mathrm{FP}}$ | 1-especificidad             |

□ AUC – El área bajo la curva Característica Operativa del Receptor, también conocida como AUC o AUROC (en inglés, *Area Under the Receiving Operating Curve*), es el área debajo del ROC, como se muestra en la siguiente figura:



#### Métricas de regresión

 $\square$  Métricas básicas – Dado un modelo de regresión f, las siguientes métricas se usan comúnmente para evaluar el rendimiento del modelo:

| Suma total de cuad.                                | Suma de cuad. explicada                               | Suma residual de cuad.                       |
|----------------------------------------------------|-------------------------------------------------------|----------------------------------------------|
| $SS_{tot} = \sum_{i=1}^{m} (y_i - \overline{y})^2$ | $SS_{reg} = \sum_{i=1}^{m} (f(x_i) - \overline{y})^2$ | $SS_{res} = \sum_{i=1}^{m} (y_i - f(x_i))^2$ |

 $\square$  Coeficiente de determinación – El coeficiente de determinación, a menudo indicado como  $R^2$  o  $r^2$ , proporciona una medida de lo bien que los resultados observados son replicados por el modelo y se define de la siguiente manera:

$$R^2 = 1 - \frac{SS_{res}}{SS_{tot}}$$

□ Métricas principales – Las siguientes métricas se utilizan comúnmente para evaluar el rendimiento de los modelos de regresión, teniendo en cuenta la cantidad de variables n que tienen en consideración:

| Cp de Mallow                                                      | AIC                           | BIC                       | $\mathbb{R}^2$ ajustado                  |
|-------------------------------------------------------------------|-------------------------------|---------------------------|------------------------------------------|
| $\frac{\mathrm{SS}_{\mathrm{res}} + 2(n+1)\widehat{\sigma}^2}{m}$ | $2\left[(n+2)-\log(L)\right]$ | $\log(m)(n+2) - 2\log(L)$ | $1 - \frac{(1 - R^2)(m - 1)}{m - n - 1}$ |

donde L es la probabilidad y  $\widehat{\sigma}^2$  es una estimación de la varianza asociada con cada respuesta.

#### Selección de modelo

 $\hfill\Box$  Vocabulario – Al seleccionar un modelo, distinguimos 3 partes diferentes de los datos que tenemos de la siguiente manera:

| Entrenamiento            | Validación                 | Prueba                   |
|--------------------------|----------------------------|--------------------------|
| - Modelo es entrenado    | - Modelo es evaluado       | - Modelo da predicciones |
| - Generalmente el $80\%$ | - Generalmente $20\%$      | - Datos no vistos        |
| del conjunto de datos    | - También llamado hold-out |                          |
|                          | o conjunto de desarrollo   |                          |

Una vez que se ha elegido el modelo, se entrena sobre todo el conjunto de datos y se testea sobre el conjunto de prueba no visto. Estos están representados en la figura a continuación:



□ Validación cruzada – La validación cruzada, también denominada CV (en inglés, *Cross validation*), es un método que se utiliza para seleccionar un modelo que no confíe demasiado en el conjunto de entrenamiento inicial. Los diferentes tipos se resumen en la tabla a continuación:

| k-fold                                    | Leave-p-out                                |  |
|-------------------------------------------|--------------------------------------------|--|
| - Entrenamiento sobre los conjuntos $k-1$ | - Entrenamiento en observaciones $n-p$     |  |
| y evaluación en el restante               | y evaluación en los $p$ restantes          |  |
| - Generalmente $k = 5$ o 10               | - El caso $p = 1$ se llama $leave-one-out$ |  |

El método más comúnmente utilizado se denomina validación cruzada k-fold y divide los datos de entrenamiento en k conjuntos para validar el modelo sobre un conjunto mientras se entrena el modelo en los otros k-1 conjuntos, todo esto k veces. El error luego se promedia sobre los k conjuntos y se denomina error de validación cruzada.

| Conjunto | Datos         |            | Error de validación | Error de validación cruzada        |
|----------|---------------|------------|---------------------|------------------------------------|
| 1        |               |            | $\epsilon_1$        |                                    |
| 2        |               |            | $\epsilon_2$        | $\epsilon_1 + \ldots + \epsilon_k$ |
| :        | <u>:</u>      |            | :                   | k                                  |
| k        |               |            | $\epsilon_k$        |                                    |
|          | Entrenamiento | Validación |                     |                                    |

□ Regularización – El procedimiento de regularización tiene como objetivo evitar que el modelo se sobreajuste a los datos y, por lo tanto, resuelve los problemas de alta varianza. La siguiente tabla resume los diferentes tipos de técnicas de regularización comúnmente utilizadas:

| LASSO                                     | Ridge                              | Elastic Net                                                                                                                         |
|-------------------------------------------|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| - Reduce los coeficientes a 0             | Hace que los coeficientes          | Compensación entre la                                                                                                               |
| - Bueno para la selección<br>de variables | sean más pequeños                  | selección de variables y<br>los coeficientes pequeños                                                                               |
| $ \theta $                                | $ \theta _2 \le 1$                 | $(1-\alpha)  \theta  _1 + \alpha  \theta  _2^2 \leqslant 1$                                                                         |
| $ \ldots + \lambda  \theta  _1$           | $  \dots + \lambda   \theta  _2^2$ | $ \dots + \lambda \left[ (1 - \alpha)   \theta  _1 + \alpha   \theta  _2^2 \right] $ $ \lambda \in \mathbb{R},  \alpha \in [0, 1] $ |
| $\lambda \in \mathbb{R}$                  | $\lambda \in \mathbb{R}$           | $\lambda \in \mathbb{R},  \alpha \in [0,1]$                                                                                         |

### Diagnóstico

□ Sesgo – El sesgo (en inglés, *Bias*) de un modelo es la diferencia entre la predicción esperada y el modelo correcto que tratamos de predecir para determinados puntos de datos.

 $\hfill \Box$  Varianza – La varianza (en inglés, Variance) de un modelo es la variabilidad de la predicción del modelo para puntos de datos dados.

□ Corrección de sesgo/varianza – Cuanto más simple es el modelo, mayor es el sesgo, y cuanto más complejo es el modelo, mayor es la varianza.

|           | Underfitting                                                                                                    | Just right                                                              | Overfitting                                                                                                      |
|-----------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Síntomas  | - Error de entrenamiento<br>alto<br>- Error de entrenamiento<br>cercano al error de prue-<br>ba<br>- Sesgo alto | - Error de entrenamiento<br>légèrement inférieure<br>à l'erreur de test | - Error de entrenamiento muy bajo - Error de entrenamiento mucho más bajo que el error de prueba - Varianza alta |
| Regresión |                                                                                                                 |                                                                         | My                                                                                                               |



 $\blacksquare$  Análisis de errores – El análisis de errores analiza la causa raíz de la diferencia de rendimiento entre los modelos actuales y perfectos.

 $\hfill \Box$  Análisis ablativo – El análisis ablativo analiza la causa raíz de la diferencia en el rendimiento entre los modelos actuales y de referencia.