Multiple Regression Part 4: General Linear Regression Model

STAT 705: Regression and Analysis of Variance

General Linear Regression Model

$$Y_i = \beta_0 + \beta_1 Z_{1i} + \beta_2 Z_{2i} + \dots + \beta_p Z_{p,i} + \varepsilon_i \quad i = 1, 2, \dots n$$

- Number of terms (p) is limited only by the sample size (p < n − 1)
- "General" model because
 - The Z's can be X's (observed variables in the data set)
 - The Z's can be functions of the X's
 - The Z's can represent non-numeric data (e.g., gender)
- The model is still "linear" because it is linear in the $\beta \mbox{'s}$

Z's can be Functions of the X's

- Suppose there are two measured variables (X_1 and X_2) in the data set.
- The Z's could be

$$\blacksquare$$
 $Z_1 = X_1$; $Z_2 = X_2$, $Z_3 = X_1^2$, $Z_4 = X_2^2$, $Z_5 = X_1X_2$

Then the model is

$$Y_i = \beta_o + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{1i}^2 + \beta_4 X_{2i}^2 + \beta_5 X_{1i} X_{2i} + \varepsilon_i \quad i = 1, 2, \dots n$$

 The additional terms allow the least squares plane to become a least squares surface

Response Surfaces

- Although these surfaces appear complicated, the model is still linear in the β 's, and all our work with multiple regression models is still valid and applicable.
 - We use Least Squares method to estimate the β 's
 - For specified values of the predictors, the expected value of Y is the corresponding point on the response surface.

Some Terminology

- A 'first order' model has no squared terms
 - e.g. a first order model with two predictors

$$Y_{i} = \beta_{0} + \beta_{1} X_{1i} + \beta_{2} X_{2i} + \varepsilon_{i}$$

- A 'second order' model has squared terms
 - e.g. a second order model with one predictor $Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{1i}^2 + \varepsilon_i$
- An 'interaction' term is the product of two predictors
- An 'additive' model has no interaction terms
- A 'nonlinear' model is not linear in the β 's
 - e.g. $Y_i = \beta_0 \exp(\beta_1 X_i) + \varepsilon_i$ or $Y_i = \beta_0 X_i^{\beta_1} + \varepsilon_i$

"All Models are Wrong..."

- It can be quite tricky to decide which, if any, transformed predictor variables should be considered for inclusion in the model
 - Knowledge of the subject matter might provide clues
 - There are an infinite number of possibilities (e.g., X², X³, log(X), 1/X, square root of X, ...)
 - Limit the scope to something that is reasonable
- Remember: "All models are wrong, but some are useful."
- We are looking for a "useful" model

Example

- A data set contains two measured predictors (X₁ and X₂) and a response (Y)
- Data and SAS program are in the file 'FitInteraction.sas'
- We will fit a model to these data
- This is fake data, so there is no story to put the data in context.

First Model

- Fit a first order model with no interaction
- This is the simplest model that uses all the data.

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \varepsilon_i$$

```
data fake;
input x1 x2 y @@;
x1sq = x1**2;
x2sq = x2**2;
datalines;
```


Create new variables to hold X_1^2 and X_2^2 .

We will use these in the second model.

```
. . . data goes here . . .
```

```
proc reg data=fake plots=residuals;
model y = x1 x2;
run;
```

The "plots=residuals" option generates a new kind of residual plot

Diagnostic Plots for First Model

- Normal probability plot (on the bottom) could be okay
- The residual plot (on the top) has a very distinct quadratic shape
- We <u>must</u> modify this model
- Add a squared term to the model
- Since there are two predictors, we must decide which one (or both) we should square

Partial Residual Plots

Plot the residuals against each of the **original predictors**. Generated by the 'plots=diagnostics' option on PROC REG.

Both graphs show a quadratic pattern, but it is more distinct for X_2 . We will include squared terms for <u>both</u> of these variables.

Diagnostic Plots for Second Model

$$Y_{i} = \beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{2i} + \beta_{3}X_{1i}^{2} + \beta_{4}X_{2i}^{2} + \varepsilon_{i}$$

- Both of these graphs look very good
- MUCH better than the first model
- We will use this model to proceed with the analysis

Results of Second Model

Analysis of Variance						
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F	
Model	4	91624	22906	139.09	<.0001	
Error	45	7410.81752	164.68483			
Corrected Total	49	99035				

This model is highly significant.

Root MSE	12.83296	R-Square	0.9252
Dependent Mean	169.76200	Adj R-Sq	0.9185
Coeff Var	7.55938		

This is an extraordinarily large R². (This rarely happens with 'real' data.)

Results of Second Model

Parameter Estimates					
		Parameter	Standard		
Variable	DF	Estimate	Error	t Value	Pr > t
Intercept	1	242.73456	13.36723	18.16	<.0001
x1	1	-5.84354	3.67487	-1.59	0.1188
x2	1	4.00068	3.96260	1.01	0.3181
x1sq	1	-0.46071	0.32827	-1.40	0.1673
x2sq	1	-1.36271	0.34632	-3.93	0.0003

The estimated model is

$$Y = 242.73 - 5.84X_1 + 4.00X_2 - 0.46X_1^2 - 1.36X_2^2$$

- Only the intercept and X_2^2 are significant predictors
- We should keep X_2^2 and its lower-order term (X_2) in the model
- Can we remove X_1 and X_1^2 ?

A Question

- Should we use the 'full' model or will the smaller ('reduced') model suffice?
- Full model: $Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{1i}^2 + \beta_4 X_{2i}^2 + \varepsilon_i$
- Reduced: $Y_i = \tau_0 + \tau_1 X_{2i} + \tau_2 X_{2i}^2 + \varepsilon_i$

(The τ 's are simply the coefficients. We use a different Greek letter because they can have different values than the β 's in the full model.)

This is equivalent to testing the hypotheses

$$H_0$$
: $\beta_1 = \beta_3 = 0$ vs. H_a : β_1 or β_3 is not 0

A New Hypothesis Test

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{1i}^2 + \beta_4 X_{2i}^2 + \varepsilon_i$$

- Hypotheses: H_0 : $\beta_1 = \beta_3 = 0$ vs. H_a : β_1 or β_3 is not 0
- These hypotheses are different than the ones we have previously encountered
 - The ANOVA F test examines <u>all</u> the slopes (β_1 through β_4)
 - The t tests examine <u>one</u> slope at a time
 - We want to test <u>two</u> of the four slopes
- If the null hypothesis is true (i.e., 'under H₀'), then the model becomes the reduced model
 - Reduced model is sometimes called the null model

F Test for Nested Models

- The full model must have all the terms that are in the reduced model (i.e., the models must be nested)
 - Test is also called a 'comparison of models' F test or a 'partial' F test
- This test will require some hand calculations
 - 1. Fit the full model (in SAS) and record SS and df for Error
 - 2. Fit the reduced model (in SAS) and record SS and df *for Error*
 - 3. Calculate the test statistic (by hand, formula on next slide)
 - 4. Under H_0 , the test statistic follows an F distribution
 - 5. Find critical value in F table and make the conclusion

F Test for Nested Models

Analysis of Variance – FULL MODEL					
		Sum of	Mean		
Source	DF	Squares	Square		
Model	4	91624	22906		
Error	45	7410.81752	164.68483		
Corrected Total	49	99035			

Analysis of Variance – REDUCED MODEL					
		Sum of	Mean		
Source	DF	Squares	Square		
Model	2	46402	23201		
Error	47	52633	1119.84083		
Corrected Total	49	99035			

Test statistic:

$$F = \frac{\frac{SSE(Red) - SSE(Full)}{dfE(Red) - dfE(Full)}}{\frac{SSE(Full)}{dfE(Full)}} = \frac{\frac{52633 - 7410.81752}{47 - 45}}{\frac{7410.81752}{45}} = \frac{\frac{45222.18}{2}}{\frac{7410.81752}{45}}$$

F = 137.3

Reference distribution: F, with df 2 and 45

Nested Model F Test, Continued

- Find the critical value in the F table
 - df numerator = 2 (because we are testing 2 parameters)
 - df denominator = 45 (this dfE in full model)
 - Significance level α = 0.05
 - Critical value is between 3.23 and 3.15
- Compare the test statistic to critical value
 - 137.3 is much greater than 3.2
 - We strongly reject H₀
- Conclusion: We should use the full model.

Is This a Contradiction?

- From the individual t tests, neither X_1 nor its square are significant in the full model (So it seems we should be able to remove them)
- Nested model F test indicates we should use the full model
- This is NOT a contradiction
 - The t tests are testing each parameter <u>assuming the other terms are</u> <u>kept in the model</u>
 - For testing X_1 : p-value = .1188 $\Rightarrow X_1$ can be removed from the model, provided X_2 , X_2^2 and X_1^2 stay in the model
 - For testing X_1^2 : p-value = .1673 \Rightarrow X_1^2 can be removed from the model, provided X_2 , X_2^2 and X_1 stay in the model
 - The nested model F test indicates we cannot remove both X₁ and X₁²

What You Should Know

- Use SAS to fit general linear models
 - Investigate when transformed variables may be beneficial to the model
 - Create transformed variables in SAS data step
- When to use and how to interpret
 - Overall ANOVA F test
 - Individual t tests
 - Nested F test
- Perform the nested F test by hand