#### Heaven's Light is Our Guide



Course No: 4000

### **Coronary Artery Disease(CAD) Prediction Using Machine Learning Methods**

#### **Presented By**

**Dibbo Barua Chamak** 

Roll: 1603117

Computer Science and Engineering,
Rajshahi University of Engineering and
Technology

#### **Supervised By**

Professor Dr. Md. Ali Hossain

**Professor** 

Computer Science and Engineering,
Rajshahi University of Engineering and

Technology

### **Presentation Outline**

- **■** Introduction
- **■** Literature Review
- Motivation
- Objectives
- Dataset
- **■** Dataset Analysis
- Methodology
- Results
- Conclusion
- **■** Future Work
- References

### Introduction

- Cardiovascular diseases (CVDs) are the leading cause of death globally.
- ➤ About 17.9 million people died from CVDs in 2019, representing 32% of all global deaths. Of these deaths, 85% were due to heart attack and stroke. (WHO report)
- Coronary Artery Disease(CAD) appears to be the most common Cardiovascular defect.
- Coronary artery disease is a narrowing or blockage of our coronary arteries usually caused by the buildup of fatty material called plaque.
- ➤ The major blood vessels that supply the heart (coronary arteries) struggle to send enough blood, oxygen and nutrients to the heart muscle.



Fig 1:Plaque builds up in the arteries

# Introduction(cont.)

- Coronary artery disease is also called coronary heart disease, ischemic heart disease and heart disease
- > Symptoms:
- Chest pain or discomfort (angina)
- Weakness, light-headedness, nausea (feeling sick to your stomach)
- Fatigue
- Pain or discomfort in the arms or shoulder
- Shortness of breath



Fig 2: Coronary Artery Disease

### **Literature Review**

**Title:** Coronary Artery Disease Prediction using Data Mining Techniques, Proceedings of the Third International Conference on Intelligent Sustainable Systems [ICISS 2020] IEEE Xplore Part Number: CFP20M19-ART; ISBN: 978-1-7281-7089-3

#### Review:

- This paper showed comparison among three machine learning methods- SVM ,Naïve bayes and Random Forest model.
- Random Forest showed better performance.
- It has considered 14 attributes to predict CAD.
- Here, the accuracy were low as compared to others.

#### **Limitations:**

• They have worked on a small dataset and their result accuracy were low as compared to others.

### **Literature Review(Cont.)**

**Title:** Early Prediction of Coronary Artery Disease (CAD) by Machine Learning Method -A Comparative Study, Journal of Artificial Intelligence and Capsule Networks (2021) Vol.03/ No.01 Pages: 17-33

#### Review:

- This paper showed Comparison of two classifier- Naïve Bayes & SVM.
- SVM showed better result than the Naïve Bayes classifier.
- It proposed SVM classifier with pooling layer which showed the better result.
- But it has considered 80 features to predict the CAD disease.

#### **Limitations:**

There is research gap in the early prediction of CAD based on clinical parameters.

### **Literature Review(Cont.)**

**Title:** Predicting coronary artery disease: a comparison between two data mining algorithms, Ayatollahi et al. BMC Public Health (2019) 19:448,https://doi.org/10.1186/s12889-019-6721-5

#### Review:

- This paper Compared between SVM & ANN model.
- SVM model showed higher accuracy and better performance than the ANN model.
- It has considered 25 features.
- It has used multilayer perceptron with 3 hidden layer in ANN model.

#### **Limitations:**

This paper suggested to use other Data Mining Algorithms to improve the positive predictive value of the disease prediction.

### **Motivation**

- With millions of people dying from the disease each year, early predictions can prolong human deaths from heart disease problems.
- > This motivates me to work on this topic to predict CAD in early Stage.

### **Objectives**

- > To predict Coronary Artery Disease with higher accuracy level .
- > To predict CAD using less feature than the previous works.
- > To show the Comparison between multiple classifiers.
- > To compare the performance of my work and the previous works.

### **Datasets**

- ➤ A dataset named 'heart\_statlog\_cleveland\_hungary' is used in this work.
- > The dataset consists of 1190 records of patients from US, UK, Switzerland and Hungary. It has 11 features and 1 target variable.

### **Datasets**

|   | age | sex | chest pain type | resting bp s | cholesterol | fasting blood sugar | resting ecg | max heart rate | exercise angina | oldpeak | ST slope | target |
|---|-----|-----|-----------------|--------------|-------------|---------------------|-------------|----------------|-----------------|---------|----------|--------|
| 0 | 40  | 1   | 2               | 140          | 289         | 0                   | 0           | 172            | 0               | 0.0     | 1        | 0      |
| 1 | 49  | 0   | 3               | 160          | 180         | 0                   | 0           | 156            | 0               | 1.0     | 2        | 1      |
| 2 | 37  | 1   | 2               | 130          | 283         | 0                   | 1           | 98             | 0               | 0.0     | 1        | 0      |
| 3 | 48  | 0   | 4               | 138          | 214         | 0                   | 0           | 108            | 1               | 1.5     | 2        | 1      |
| 4 | 54  | 1   | 3               | 150          | 195         | 0                   | 0           | 122            | 0               | 0.0     | 1        | 0      |

Fig 3: Dataset Information

Chest pain Type: sex: fasting blood sugar: Resting electrocardiographic exercise induced angina:

0: typical angina 1: male > 120 mg/dl results: 1: yes
1: atypical angina 0: formula 1: true 0: no

1: atypical angina 0: female 1: true 0: normal 0: no

2: non-anginal pain 0: false 1: having ST-T wave abnormality (T wave)

### **Datasets Analysis**



Fig 4: Number of CAD patients in Dataset

# Datasets Analysis (cont.)



Fig 5: Chest pain type VS Target in Dataset



Fig 6: Scatterplot

### **Datasets Analysis(cont.)**

**Learning Methods** 





# Methodology

- > First, we will take raw Input Data
- > Then we will preprocess those data & convert the categorical variables into nominal variables
- > then we will apply classifiers(SVM, Naïve Bayes, Random forest, Neural Network) to classify CAD.
- ➤ After that we will evaluation the performance & see the result



Fig 8: Block diagram of Methodology

#### > SVM:



Fig 9: Support Vector Machine

#### > SVM with RBF kernel

#### Formula:

$$K(X1, X2) = \exp{-\frac{\|X1 - X2\|^2}{2\sigma^2}}$$

#### Where,

- σ' is the variance and our hyperparameter,
- | | X1 X2 | | is the Euclidean (L2-norm)
   Distance between two points X1 and X2



Fig 10: Example of Radial Basis Function (RBF) kernel mapping data from non linear separable space to high-dimensional separable space.

> SVM with RBF kernel

> C=1000, gamma=0.0001, kernel=rbf

> Results:

• Accuracy: 0.86

• Precision: 0.97

• Recall: 0.69

• F1 Score: 0.81

| Accuracy = TP+TN/TP+FP+FN+TN | Recall = TP/TP+FN                                        |
|------------------------------|----------------------------------------------------------|
| Precision = TP/TP+FP         | F1 Score = 2*(Recall * Precision) / (Recall + Precision) |

- ➤ Naïve Bayes:
- > Formula:
- > Bayes Theorem:

$$P(A \mid B) = P(B \mid A) * P(A)/P(B)$$

**➤ Naïve Bayes:** 

> Result:

Accuracy: 0.84

• Precision: 0.84

• Recall: 0.85

• F1 Score: 0.85

| Accuracy = TP+TN/TP+FP+FN+TN | Recall = TP/TP+FN                                        |
|------------------------------|----------------------------------------------------------|
| Precision = TP/TP+FP         | F1 Score = 2*(Recall * Precision) / (Recall + Precision) |

#### Random Forest Classifier:



Fig 11: Overview of Random Forest Classifier

- > Random Forest Classifier:
- Random Hyperparameter Grid:

```
{'bootstrap': True,
    'max_depth': 70,
    'max_features': 'auto',
    'min_samples_leaf': 4,
    'min_samples_split': 10,
    'n_estimators': 400}
```

#### > Random Forest Classifier:

> Results:

Accuracy: 0.94

• **Precision: 0.97** 

Recall: 0.91

• F1 Score: 0.94

| Accuracy = TP+TN/TP+FP+FN+TN | Recall = TP/TP+FN                                        |
|------------------------------|----------------------------------------------------------|
| Precision = TP/TP+FP         | F1 Score = 2*(Recall * Precision) / (Recall + Precision) |

- > Neural Network(Multi-Layer Perceptron):
- ➤ Hyperparameter tuning setup:
- **→** hidden\_layer\_sizes : (5,10,15,20,25,)
- > solver='lbfgs'
- activation='relu'
- > max\_iter=200



Fig12: Multi-Layer Perceptron

- > Neural Network(Multi-Layer Perceptron):
- > ReLU(Rectified Linear Unit) Activation Function:



Fig13: ReLU function

> Neural Network(Multi-Layer Perceptron):

> Results:

• Accuracy: 0.81

• Precision: 0.82

• Recall: 0.83

• F1 Score: 0.82

| Accuracy = TP+TN/TP+FP+FN+TN | Recall = TP/TP+FN                                        |
|------------------------------|----------------------------------------------------------|
| Precision = TP/TP+FP         | F1 Score = 2*(Recall * Precision) / (Recall + Precision) |

### Results

| Classifiers            | <b>Previous Accuracy</b> | <b>Present Accuracy</b> |  |
|------------------------|--------------------------|-------------------------|--|
| Support Vector Machine | 0.86                     | 0.85                    |  |
| Naive Bayes            | 0.82 0.84                |                         |  |
| Random Forest          | 0.90                     | 0.94                    |  |
| Neural Network         | -                        | 0.81                    |  |

| Classifiers            | Precision | Recall | F1 Score |
|------------------------|-----------|--------|----------|
| Support Vector Machine | 0.97      | 0.69   | 0.81     |
| Naive Bayes            | 0.84      | 0.85   | 0.85     |
| Random Forest          | 0.97      | 0.91   | 0.94     |
| Neural Network         | 0.82      | 0.83   | 0.82     |

Fig 14: Comparison of Accuracy

Fig 15: Precision, Recall, F1 score of classifiers

# Results(cont.)



Fig 16: Result Analysis in my work

### Results





Fig 17: Confusion Matrix of SVM,NB

### Results





Fig 18: Confusion Matrix of RF & NN

### Conclusion

- > Four alternative Classification algorithms were used to classify CAD disease.
- ➤ A dataset with 1190 instances were used in this process.
- > Random Forest Classifier showed the better accuracy.

### **Future Work**

- > Performing classification using these classifiers on new dataset with more instances and features
- > Combination of other classifier may show better result
- ➤ New Dataset with more features on Neural Network may show better accuracy.

### References

- ➤ Early Prediction of Coronary Artery Disease (CAD) by Machine Learning Method -A Comparative Study, Journal of Artificial Intelligence and Capsule Networks (2021) Vol.03/ No.01 Pages: 17-33
- Predicting coronary artery disease: a comparison between two data mining algorithms, Ayatollahi et al. BMC Public Health (2019) 19:448,https://doi.org/10.1186/s12889-019-6721-5
- Coronary Artery Disease Prediction using Data Mining Techniques, Proceedings of the Third International Conference on Intelligent Sustainable Systems [ICISS 2020] IEEE Xplore Part Number: CFP20M19-ART; ISBN: 978-1-7281-7089-3
- Modele de graphe et modele de langue pour la reconnaissance de scenes visuelles, Trong-Ton Pham

### References(cont.)

- ➤ Venkataramana Veeramsetty, A. Thrishul Kumar, B. Navya, T. Bhavan, and Y. Hrishikesh "Heart disease prediction using machine learning algorithms", AIP Conference Proceedings 2418, 040013 (2022) https://doi.org/10.1063/5.0081782
- dataset link- https://www.kaggle.com/ronitf/heart-disease-uci
- > WHO, "Cardiovascular diseases (cvds), available at: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)."
- https://www.cdc.gov/heartdisease/coronary\_ad.htm
- https://gfycat.com/gifs/search/coronary+heart+disease

# References(cont.)

- > CDC, "Coronary artery disease, available at: https://www.cdc.gov/heartdisease/coronaryad.htm."
- DeepAi, "Neural network, what is a neural network?, available: https://deepai.org/machine-learning-glossary-and-terms/neural-network.
- ➤ Javapoint, "Support vector machine algorithm, available at: https://www.javatpoint.com/machine-learning-support-vector-machine-algorithm."

# Thank You, Any Questions?