UC Berkeley

Department of Electrical Engineering and Computer Sciences

EECS 126: Probability and Random Processes

Discussion 12

Spring 2023

1. Exponential MLE, MAP, and Hypothesis Testing

Let X be Exponentially distributed with rate 1. Given X, the random variable Y is Exponentially distributed with parameter X.

- a. Find $MLE(X \mid Y)$.
- b. Find $MAP(X \mid Y)$.
- c. Let c > 1. Suppose that
 - The null hypothesis is X = 1: $Y \sim \text{Exponential}(1)$, and
 - The alternative hypothesis is X = c: $Y \sim \text{Exponential}(c)$.

Find the decision rule \hat{X} (a function of Y) that maximizes $\mathbb{P}(\hat{X} = 1 \mid X = 1)$ subject to $\mathbb{P}(\hat{X} = 1 \mid X = c) \leq 5\%$.

Solution:

a. The derivative of the log-likelihood function of Y given X is

$$\frac{\partial}{\partial x} \ln f_{Y|X}(y \mid x) = \frac{\partial}{\partial x} \ln(xe^{-xy}) = \frac{\partial}{\partial x} (\ln x - xy) = \frac{1}{x} - y,$$

which equals zero when x = 1/y. Thus $MLE(X \mid Y) = 1/Y$.

b. The posterior distribution of X is

$$f_{X|Y}(x \mid y) \propto f_{Y|X}(y \mid x) \cdot f_X(x) = xe^{-x(y+1)},$$

so we can maximize $\ln x - x(y+1)$ over x. Its derivative 1/x - 1 - y equals zero when 1/x = 1 + y, and thus MAP $(X \mid Y) = 1/(1 + Y)$.

c. The likelihood ratio is

$$L(y) = \frac{f_{Y|X}(y \mid c)}{f_{Y|X}(y \mid 1)} = \frac{ce^{-cy}}{e^{-y}} = ce^{-(c-1)y},$$

which is decreasing in y. Then the decision rule will be of the form $\hat{X} = \mathbb{1}_{Y>t}$, where the threshold is determined by

$$\mathbb{P}(\hat{X} = 1 \mid X = c) = \mathbb{P}(Y > t \mid X = c) = e^{-ct} = 0.05$$

to be $t = (\ln 20)/c$.

2. Hypothesis Testing for Bernoulli Random Variables

Suppose that

- The null hypothesis is X = 0: $Y \sim \text{Bernoulli}(\frac{1}{4})$, and
- The alternative hypothesis is X = 1: $Y \sim \text{Bernoulli}(\frac{3}{4})$.

Using the Neyman–Pearson formulation of hypothesis testing, find the optimal randomized decision rule \hat{X} with respect to the criterion

min
$$\mathbb{P}(\hat{X} = 0 \mid X = 1)$$

s.t. $\mathbb{P}(\hat{X} = 1 \mid X = 0) \le \beta$,

where $\beta \in [0, 1]$ is a given upper bound on the probability of false alarm (PFA).

(Note that the Neyman–Pearson decision rule may change depending on the value of β . In particular, consider the two separate cases of $\beta \leq \frac{1}{4}$ and $\beta > \frac{1}{4}$.)

Solution: The likelihood ratio is the discrete function

$$L(y) = \frac{f_{Y|X}(y \mid 1)}{f_{Y|X}(y \mid 0)} = \begin{cases} 3 & \text{if } y = 1\\ \frac{1}{3} & \text{if } y = 0. \end{cases}$$

By Neyman–Pearson, the optimal decision rule with randomization is given by

• If $\mathbb{P}(Y = 1 \mid X = 0) = \frac{1}{4} \ge \beta$, then

$$\hat{X} = \begin{cases} 0 & \text{if } Y = 0\\ \text{Bernoulli}(\gamma) & \text{with } \gamma = \beta/\frac{1}{4} \text{ if } Y = 1. \end{cases}$$

• Otherwise, the threshold is Y = 0, and

$$\hat{X} = \begin{cases} \text{Bernoulli}(\gamma) & \text{with } \gamma = \frac{4}{3}\beta - \frac{1}{3} \text{ if } Y = 0\\ 1 & \text{if } Y = 1. \end{cases}$$

The value of γ above is chosen to make

$$\mathsf{PFA} = \mathbb{P}(Y = 1 \mid X = 0) + \gamma \cdot \mathbb{P}(Y = 0 \mid X = 0) = \frac{1}{4} + \frac{3}{4}\gamma = \beta.$$

3. Hypothesis Testing for Uniform Random Variables

Suppose that

- The null hypothesis is X = 0: $Y \sim \text{Uniform}([-1, 1])$, and
- The alternative hypothesis is X = 1: $Y \sim \text{Uniform}([0, 2])$.

Using the Neyman–Pearson formulation of hypothesis testing, find the optimal randomized decision rule \hat{X} with respect to the criterion

min
$$\mathbb{P}(\hat{X} = 0 \mid X = 1)$$

s.t. $\mathbb{P}(\hat{X} = 1 \mid X = 0) \le \beta$,

where $\beta \in [0, \frac{1}{2}]$ is a given upper bound on the probability of false alarm (PFA).

Solution: The likelihood ratio is the discrete function

$$L(y) = \frac{f_{Y|X}(y \mid 1)}{f_{Y|X}(y \mid 0)} = \frac{\mathbb{1}_{\{0 \le y \le 2\}}}{\mathbb{1}_{\{-1 \le y \le 1\}}} = \begin{cases} 0 & \text{if } y < 0\\ 1 & \text{if } y \in [0, 1]\\ \infty & \text{if } y > 1. \end{cases}$$

Thus, $\hat{X} = 0$ if Y < 0 and $\hat{X} = 1$ if Y > 1. Otherwise, when $Y \in [0, 1]$, we need to introduce randomization to ensure that

$$\mathsf{PFA} = \mathbb{P}(\hat{X} = 1 \mid X = 0) = \gamma \cdot \mathbb{P}(Y \in [0, 1] \mid X = 0) = \beta,$$

so we set $\hat{X} = 1$ with probability $\gamma = 2\beta$.