Introduction to Theory of Safe Decision Making

Dr. Akhil Anand

1st AID Scientific Workshop, Trondheim

Forewords & Disclaimer

Objectives:

- Put in place some common concepts & language
- Identify some key points in safe decision making
- Connect to AI

Disclaimer: we are a broad group who needs to get to know each others scientifically.

Apologies if I don't "hit" the right level for all.

I have favored simplicity over "absolute" rigor.

Safety in the real world

Constrained MDPs

$$\pi^{\star} = rg \max_{\pi} \quad \mathrm{E} \left[\sum_{\mathsf{time}} \mathsf{Utility} \right]$$
 s.t. Constraints ok at all time

Constrained MDPs

$$\pi^{\star} = rg \max_{\pi} \quad \mathrm{E}\left[\sum_{\mathrm{time}} \mathsf{Utility}
ight]$$
 s.t. Constraints ok at all time

$$m{\pi}^{\star} = rg\max_{m{\pi}} \;\; \mathrm{E}\left[\sum_{\mathsf{time}} \left(\mathsf{Utility} - \left\{ egin{array}{ll} 0 & \mathsf{if} & \mathsf{Constraint} \; \mathsf{ok} \\ \infty & \mathsf{if} & \mathsf{Constraint} \; \mathsf{not} \; \mathsf{ok} \end{array}
ight)
ight]$$

Constrained MDPs

$$\pi^\star = rg\max_{\pi} \ \ \mathrm{E}\left[\sum_{\mathsf{time}} \mathsf{Utility}
ight]$$
 s.t. Constraints ok at all time

$$\boldsymbol{\pi}^{\star} = \mathop{\mathsf{arg\,max}}_{\boldsymbol{\pi}} \quad \mathrm{E}\left[\sum_{\mathsf{time}} \left(\mathsf{Utility} - \left\{ \begin{array}{ccc} \mathbf{0} & \mathsf{if} & \mathsf{Constraint\ ok} \\ \infty & \mathsf{if} & \mathsf{Constraint\ not\ ok} \end{array} \right) \right]$$

Build policy using

- \bullet Perfect model of the real world $\hat{\mathrm{P}}[s_+|s,a] = \mathrm{P}[s_+|s,a]$
- Model "pessimistic" about the uncertainties

... to evaluate " $\mathrm{E}[\cdot]$ "

- Model must "contain" the uncertainty
- "Container" (set) should be simple for computational reasons
- Trajectories predicted by pessimistic model will "cover" the real world
- Decision policy wants to be safe w.r.t. the "containers"

Distribution of one-step forward

- Model must "contain" the uncertainty
- "Container" (set) should be simple for computational reasons
- Trajectories predicted by pessimistic model will "cover" the real world
- Decision policy wants to be safe w.r.t. the "containers"

Distribution of one-step forward with "container"

- Model must "contain" the uncertainty
- "Container" (set) should be simple for computational reasons
- Trajectories predicted by pessimistic model will "cover" the real world
- Decision policy wants to be safe w.r.t. the "containers"

Trajectories

- Model must "contain" the uncertainty
- "Container" (set) should be simple for computational reasons
- Trajectories predicted by pessimistic model will "cover" the real world
- Decision policy wants to be safe w.r.t. the "containers"

- Model must "contain" the uncertainty
- "Container" (set) should be simple for computational reasons
- Trajectories predicted by pessimistic model will "cover" the real world
- Decision policy wants to be safe w.r.t. the "containers"

- Model must "contain" the uncertainty
- "Container" (set) should be simple for computational reasons
- Trajectories predicted by pessimistic model will "cover" the real world
- Decision policy wants to be safe w.r.t. the "containers"

- Model must "contain" the uncertainty
- "Container" (set) should be simple for computational reasons
- Trajectories predicted by pessimistic model will "cover" the real world
- Decision policy wants to be safe w.r.t. the "containers"

- Model must "contain" the uncertainty
- "Container" (set) should be simple for computational reasons
- Trajectories predicted by pessimistic model will "cover" the real world
- Decision policy wants to be safe w.r.t. the "containers"

- Model must "contain" the uncertainty
- "Container" (set) should be simple for computational reasons
- Trajectories predicted by pessimistic model will "cover" the real world
- Decision policy wants to be safe w.r.t. the "containers"

Trajectories with "containers"

7/9

- Model must "contain" the uncertainty
- "Container" (set) should be simple for computational reasons
- Trajectories predicted by pessimistic model will "cover" the real world
- Decision policy wants to be safe w.r.t. the "containers"

Trajectories with "containers"

7/9

- Model must "contain" the uncertainty
- "Container" (set) should be simple for computational reasons
- Trajectories predicted by pessimistic model will "cover" the real world
- Decision policy wants to be safe w.r.t. the "containers"

- Model must "contain" the uncertainty
- "Container" (set) should be simple for computational reasons
- Trajectories predicted by pessimistic model will "cover" the real world
- Decision policy wants to be safe w.r.t. the "containers"

Remarks

- The propagation of the "containers" in the model predictions can be expensive / difficult
- Policy based on worst-case perspective makes the decisions highly conservative
- Often labelled "Robust" decision making

MDPs with probabilistic safety

In words

$$oldsymbol{\pi}^{\star} = rg \max_{oldsymbol{\pi}} \ \mathrm{E} \left[\sum_{\mathsf{time}} \mathsf{Utility}
ight]$$

s.t. Probability of no violation $\geq c$

Formally

$$\pi^{\star} = \operatorname*{arg\,max}_{\pi} \quad \mathrm{E}\left[\sum_{k=0}^{\infty} \gamma^{k} L\left(\mathbf{s}_{k}, \mathbf{a}_{k}\right)
ight]$$
 s.t. $P\left[\mathbf{s}_{0, \dots, \infty} \in \mathbb{S}\right] \geq c$

