In the following problems, find the root as specified using the regula-falsi method (method of false position).

- **1.** Find the positive root of $x^3 = 2x + 5$. (Do only four iterations). (A.U. Nov. / Dec. 2006)
- **2.** Find an approximate root of $x \log_{10} x 1.2 = 0$.
- **3.** Solve the equation $x \tan x = -1$, starting with a = 2.5 and b = 3, correct to three decimal places.
- **4.** Find the root of $xe^x = 3$, correct to two decimal places.
- **5.** Find the smallest positive root of $x e^{-x} = 0$, correct to three decimal places.
- **6.** Find the smallest positive root of $x^4 x 10 = 0$, correct to three decimal places.

In the following problems, find the root as specified using the Newton-Raphson method.

- **7.** Find the smallest positive root of $x^4 x = 10$, correct to three decimal places.
- **8.** Find the root between 0 and 1 of $x^3 = 6x 4$, correct to two decimal places.
- **9.** Find the real root of the equation $3x = \cos x + 1$. (A.U. Nov./Dec. 2006)
- **10.** Find a root of $x \log_{10} x 1.2 = 0$, correct to three decimal places.

(A.U. Nov./Dec. 2004)

- 11. Find the root of $x = 2 \sin x$, near 1.9, correct to three decimal places.
- **12.** (*i*) Write an iteration formula for finding \sqrt{N} where N is a real number.

(A.U. Nov./Dec. 2006, A.U. Nov./Dec. 2003)

(ii) Hence, evaluate $\sqrt{142}$, correct to three decimal places.

- 13. (i) Write an iteration formula for finding the value of 1/N, where N is a real number.
 - (ii) Hence, evaluate 1/26, correct to four decimal places.
- **14.** Find the root of the equation $\sin x = 1 + x^3$, which lies in the interval (-2, -1), correct to three decimal places.
- **15.** Find the approximate root of $xe^x = 3$, correct to three decimal places.

In the following problems, find the root as specified using the iteration method/method of successive approximations/fixed point iteration method.

- **16.** Find the smallest positive root of $x^2 5x + 1 = 0$, correct to four decimal places.
- 17. Find the smallest positive root of $x^5 64x + 30 = 0$, correct to four decimal places.
- **18.** Find the smallest negative root in magnitude of $3x^3 x + 1 = 0$, correct to four decimal places.
- **19.** Find the smallest positive root of $x = e^{-x}$, correct to two decimal places.
- **20.** Find the real root of the equation $\cos x = 3x 1$.

(A.U. Nov./Dec. 2006)

- **21.** The equation $x^2 + ax + b = 0$, has two real roots α and β . Show that the iteration method
 - (i) $x_{k+1} = -\,(\alpha x_k + b)/x_k,$ is convergent near $x = \alpha,$ if $\mid \, \alpha \, \mid \, > \, \mid \, \beta \, \mid \, ,$
 - (ii) $x_{k+1} = -b/(x_k + a)$, is convergent near $x = \alpha$, if $\mid \alpha \mid < \mid \beta \mid$.