

Tema 6. Razonamiento Aproximado Razonamiento con imprecisión: lógica borrosa

Daniel Manrique

dmanrique@fi.upm.es D-2109

2019

Razonamiento con imprecisión Lógica borrosa

- Representación del conocimiento
- 2. Razonamiento en lógica borrosa
 - Controladores difusos

Bibliografía

Diapositivas (temas generales):

- Daniel Manrique, M. Carmen Suárez. Razonamiento con imprecisión: lógica borrosa.
 Apuntes y ejercicios. http://oa.upm.es/46795/, 2017.
- José Cuena. Sistemas Inteligentes. Conceptos, técnicas y métodos de construcción.
 Facultad de Informática Servicio de Publicaciones. Fundación General de la UPM.
 Madrid, 1997.
- G. J. Klir, B. Yuan. Fuzzy Sets and Fuzzy Logic. Theory and Applications. Prentice Hall PTR. New Jersey, 1995.

Temas específicos:

- J.M. Font, D. Manrique, J. Ríos. Evolutionary Construction and Adaptation of Intelligent Systems.
 Expert Systems With Applications, Vol. 37: 7711-7720, 2010.
- A. Carrascal, A. Díez, J.M. Font, D. Manrique. Evolutionary Generation of Fuzzy Knowledge Bases for Diagnosing Monitored Railway Systems. Proceedings of 22nd International Congress Condition Monitoring and Diagnostic Engineering Management, pp. 191-198, 2009. San Sebastián, España.
- J. Couchet, J.M. Font, D. Manrique. Using Evolved Fuzzy Neural Networks for Injury Detection form Isokinetic Curves. Proceedings of 28th International Conference on Innovative Techniques and Applications of Artificial Intelligence, pp. 225-238, 2008. Cambridge, UK.
- A. Carrascal, D. Manrique, J. Ríos, C. Rossi. Evolutionary Local Search of Fuzzy Rules through a novel Neuro-Fuzzy Encoding Method. International Journal of Evolutionary Computation, Vol. 11(4): 439-461, 2003.

Representación del conocimiento

- 1. Borrosidad, vaguedad, imprecisión.
- 2. Conjuntos borrosos.
- 3. Operaciones con conjuntos borrosos.

Imprecisión

- La lógica borrosa permite representar conjuntos con fronteras no precisas.
- La afirmación "x pertenece a A" no es cierta o falsa, sino que medible mediante una posibilidad en [0,1].
- Permite manejar la vaguedad o imprecisión.
 - "Día caluroso": la frontera entre caluroso y templado no es exacta.

¿Se puede suponer que si hay 30°C el día es caluroso, pero si hay 29.9°C, ¿entonces ya no lo es?

Imprecisión e incertidumbre

- Imprecisión: vaguedad, fronteras mal definidas.
- Incertidumbre: si lanzamos un dado hay seis sucesos (precisos), pero se desconoce qué saldrá.
- Aplicaciones de la lógica borrosa:
 - Sistemas basados en el conocimiento.
 - Control difuso.
 - Reconocimiento de patrones.
 - Proceso de encaje en marcos.

Representación del conocimiento

- Borrosidad, vaguedad, imprecisión.
- 2. Conjuntos borrosos.
- 3. Operaciones con conjuntos borrosos.

Conjuntos borrosos

- Conjunto borroso: aquél en donde la pertenencia de los elementos se define mediante una función de pertenencia o función de distribución de posibilidad.
 - μ_A : $X \to [0,1]$.
 - El conjunto borroso A tiene una función de pertenencia µ_A(x) que asigna a cada valor x∈X un número entre 0 (no pertenece) y 1 (sí pertenece).

Los valores intermedios representan pertenencia parcial. μ_{ααλ}

• Ejemplo: $\mu_{caluroso}$: $T^a \rightarrow [0,1]$:

Distribuciones típicas

Trapezoidales:

Triangulares:

Nítidas:

Ejemplo

Representación del conocimiento

- Borrosidad, vaguedad, imprecisión.
- Conjuntos borrosos.
- 3. Operaciones con conjuntos borrosos.

Composición de fórmulas

- A partir de la cuantificación de la posibilidad de que sea cierta "x es p" expresado como μ_p(x):
 - $x \text{ es } p \text{ } y \text{ } q \text{: } \mu_{p \wedge q}(x).$
 - $x \text{ es } p \text{ ó } q: \mu_{p \vee q}(x)$
 - x no es p: $\mu_{\neg p}(x)$
 - Si x es p, entonces x es q: $\mu_{p\to q}(x)$
- Generalización a n dimensiones:
 - $\mu_{p \wedge q}(x_1, x_2, ..., x_n), \mu_{p \vee q}(x_1, x_2, ..., x_n), \text{ etc.}$

Extensión cilíndrica

- Para componer dos funciones, deben estar referidas a las mismas variables:
 - No es posible componer x es p e y es q: $\mu_p(x) \wedge \mu_q(y)$
- Para ello se calcula la extensión cilíndrica de $\mu_p(x)$ con y, y la extensión cilíndrica de $\mu_q(y)$ con x para obtener $\mu_p(x,y)$ y $\mu_q(x,y)$.
 - Entonces es posible: $\mu_{p^{n}}(x,y)$
- La extensión cilíndrica de μ_p ($x_1, x_2, ..., x_n$) con y es μ_p ($x_1, x_2, ..., x_n, y$) tal que cumple: $\forall y \ \mu_p(x_1, x_2, ..., x_n, y) = \mu_p(x_1, x_2, ..., x_n)$

Extensión cilíndrica. Ejemplo

- Se desea representar que la tarifa de un taxi es barata cuando la carrera es corta.
 - Se tiene μ_{corta} (distancia) y μ_{barato} (precio).
 - Se desea calcular µ_{corta^barato}(distancia, precio)

t-Norma, t-Conorma, negación

- Se manejan las siguientes funciones:
 - t-norma:
 - Conjunción (lógica), intersección (conjuntos)
 - T (x,y). $\mu_{p^{\wedge}q}(x) = T(\mu_p(x), \mu_q(x))$
 - t-conorma:
 - Disyunción (lógica), unión (conjuntos)
 - S (x,y). $\mu_{p\vee q}(x) = S(\mu_p(x), \mu_q(x))$
 - Negación:
 - N(x). $\mu_{\neg p}(x) = N(\mu_p(x))$.

Funciones T: t-normas

- Representa la conjunción o intersección.
- ∀x, y, z distribuciones de posibilidad. Propiedades:

```
1. T(x,1) = x (elemento neutro)

2. x \le y \to T(x,z) \le T(y,z) (monotonía)

3. T(x,y) = T(y,x) (conmutativa)

4. T(x,T(y,z)) = T(T(x,y),z) (asociativa)
```

Ejemplos:

```
    T(x,y) = mín (x,y) (mínimo)
    T(x,y) = P(x,y) = x·y (producto)
    T(x,y) = W(x,y) = máx (0,x+y-1) (Lukasiewicz)
    T(x,y) = Z(x,y) = x si y=1; y si x=1; 0 resto (drástica)
```

Funciones S: t-conormas

- Representa la disyunción.
- ∀ x, y, z distribuciones de posibilidad. Propiedades:

```
1. S(x,0) = x (elemento neutro)

2. x \le y \to S(x,z) \le S(y,z) (monotonía)

3. S(x,y) = S(y,x) (conmutativa)

4. S(x,S(y,z)) = S(S(x,y),z) (asociativa)
```

Ejemplos:

```
    S(x,y) = máx (x,y) (máximo)
    S(x,y) = P'(x,y) = x+y-x·y (suma-producto)
    S(x,y) = W'(x,y) = mín (1,x+y) (Lukasiewicz)
    S(x,y) = Z'(x,y) = x si y=0; y si x=0; 1 resto (drástica)
```

Funciones de negación

- Debe cumplir ∀x función de distribución de posibilidad:
 - 1. N(0) = 1; N(1) = 0 (condiciones frontera)
 - 2. $x \le y \rightarrow N(x) \ge N(y)$ (inversión de monotonía)
- Ejemplos:
 - N(x) = (1-x)
 - N (x) = $(1-x^2)^{1/2}$

Implicación difusa (I)

- Se han visto las operaciones:
 - T(x,y), S(x,y) y N(x)
 - Conjuntos:
 - Intersección, unión y complementario
 - Lógica:
 - Conjunción, disyunción y negación
- En lógica borrosa se define la implicación a través de la función binaria J (x,y).

$$\mu_{p\rightarrow q}(x) = J(\mu_p(x), \mu_q(x))$$

Implicación difusa (II)

- De la lógica clásica, se tiene que:
 - $A \rightarrow B = \neg A \lor B$
 - J(x,y) = S(N(x),y).
- Tomando N(x) = 1-x, se tiene:

```
• Con S(x,y) = máx(x,y) J(x,y) = máx(1-x,y)
```

- Con $S(x,y) = P'(x,y) = x+y-x\cdot y$ $J(x,y) = 1-x+x\cdot y$
- $S(x,y) = W'(x,y) = \min(1,x+y)$ $J(x,y) = \min(1,1-x+y)$
- S(x,y) = Z'(x,y) = x si y=0; y si x=0; 1 restoJ(x,y) = y si x=1; 1-x si y=0; 1 resto
- J (x,y) = mín (x,y). Implicación de Mamdani

Índice

- Representación del conocimiento con lógica borrosa
- 2. Razonamiento en lógica borrosa
 - Controladores difusos

Modus ponens generalizado

Modus ponens:

Regla: Si X es A, entonces Y es B

Hecho: X es A.

Conclusión: Y es B

- En lógica borrosa se puede generalizar al no requerir X es A, sino X es A':
 - Modus ponens generalizado:

Regla: Si X es A, entonces Y es B

Hecho: X es A'

Conclusión: Y es B'

• La función de posibilidad de $\mu_{B'}$ se calcula con RCI.

Regla composicional de inferencia

$$\mu_{B'}(y) = \sup_{x \in X} \{T(\mu_{A'}(x), \mu_{A \to B}(x, y))\}$$

Inferencia difusa con RCI

- Datos: X es A: $\mu_A(x)$, Y es B: $\mu_B(y)$, X es A': $\mu_{A'}(x)$
- Objetivo: cálculo µ_{B'}(y)
- 1. Calcular $\mu_{A\to B}(x,y)$ a partir de $\mu_A(x)$ y $\mu_B(y)$
 - Es necesario realizar las extensiones cilíndricas: $μ_A(x)$ con y, $μ_B(y)$ con x
 - Se emplea para la implicación cualquier función J(x,y). E.g. Zadeh: $J(x,y)=m\acute{a}x$ (1-x, y).
- 2. Calcular $T(\mu_{A'}(x), \mu_{A\to B}(x,y))$.
 - Se realiza la extensión cilíndrica de μ_{A'}(x) con y.
 - Se emplea una T-norma. T(x,y) = min(x,y).
- Calcular el supremo en x de $T(\mu_{A'}(x,y), \mu_{A\to B}(x,y))$, que está en función de x e y.
 - Se obtiene la distribución de posibilidad sobre la dimensión y: $\mu_{B'}(y)$, es decir, las posibilidades de y es B'.

Motor de inferencia borroso

- Base de conocimiento:
 - R1: Si X es A₁, entonces Y es B₁.
 - R2: Si X es A₂, entonces Y es B₂.
 - **....**
 - Rn: Si X es A_n, entonces Y es B_n.
 - Hecho: X es A'
- Se aplica la RCI a cada regla, obteniendo:
 - $\mu_{B1'}(y)$, $\mu_{B2'}(y)$, ..., $\mu_{Bn'}(y)$.
- A partir de las distribuciones anteriores, se calcula la distribución final y es B' mediante la t-conorma S.
 - $\mu_{B'}(y) = S(\mu_{B1'}(y), \mu_{B2'}(y), ..., \mu_{Bn'}(y)).$

Índice

- Representación del conocimiento con lógica borrosa
- 2. Razonamiento en lógica borrosa
 - Controladores difusos

Controladores difusos

- Se emplean para controlar sistemas inestables.
- El control tiene por objeto garantizar una salida en el sistema a pesar de las perturbaciones que le afectan.
- Ejemplos:
 - Sistemas de navegación.
 - Sistemas de climatización.
 - Sistemas de ventilación (túneles, garajes).

Esquema control difuso

Variables de estado:

- s₁, s₂, ..., s_n: estado del sistema. Temperatura.
- e_1 , e_2 , ..., e_n : desvíos (error) con respecto al valor de referencia. Temperatura con respecto a 20 °C: ΔT^a
- Δe_1 , Δe_2 , ..., Δe_n : tendencia del error: T^a / t

Acciones:

v₁, v₂, ..., v_m: cambios a realizar en los actuadores.
 Administrar la potencia de la caldera.

Modelo de control difuso

Los valores de las variables de estado y acciones pueden ser etiquetas lingüísticas (valores cualitativos) que son representados por funciones de posibilidad:

$$R_1$$
: Si $e=A_1, ..., \Delta e=B_1, ...,$ entonces $v=C_1$

- En lo que sigue, se utilizarán reglas del tipo:
 - Si e=A, $\Delta e=B$, entonces v=C
 - Cada valor de e, Δe y v son etiquetas lingüísticas con su correspondiente función de posibilidad. Por ejemplo, para e:

Notación

- Dada la regla: Si e=A y Δe=B, entonces v = C
 - A, B y C son funciones de posibilidad:
 - $\mu_A(e)$, $\mu_B(\Delta e)$, $\mu_C(v)$
- La notación será la siguiente:
 - Si e = A(e) y Δ e=B(Δ e), entonces v = C(v)
- Un controlador difuso posee una base de conocimiento de reglas del tipo:
 - R1: Si e = $A_1(e)$ y $\Delta e = B_1(\Delta e)$, entonces v = $C_1(v)$
 - R2: Si e = $A_2(e)$ y $\Delta e = B_2(\Delta e)$, entonces v = $C_2(v)$
 - ...
 - Rn: Si e = $A_n(e)$ y $\Delta e = B_n(\Delta e)$, entonces v = $C_n(v)$
 - En un momento el estado del sistema es:
 - $e = A(e) y \Delta e = B(\Delta e)$.
 - Tras un proceso de inferencia, el controlador responde para mantener el equilibrio: v = C(v)

Regla composicional de inferencia

El proceso de inferencia emplea la regla composicional de inferencia:

$$\mu_{B'}(y) = \sup_{x \in X} \{T(\mu_{A'}(x), \mu_{A \to B}(x, y))\}$$

- y es v. La acción a tomar.
- x es bidimensional: e y Δe .
- $\mu_{B'}(y) = C'(v)$. Distrib. de posib. de la acción a tomar.
- $\mu_{A'}(x) = A'(e) \wedge B'(\Delta e)$. Estado actual del sistema.
- $\mu_{A\to B}(x,y) = R_i$: $A_i(e) \land B_i(\Delta e) \to v = C_i(v)$

$$C'_{i}(v) = \sup_{e \land e} \left\{ T(A'(e) \land B'(\Delta e), A_{i}(e) \land B_{i}(\Delta e) \rightarrow C_{i}(v)) \right\}$$

Inferencia en controladores (I)

- T(x,y) = min(x,y).
- J (x,y) = min(x,y). Mamdani.

$$C_{i}^{'}(v) = \sup_{e, \Delta e} \left\{ T(A'(e)^{A}B'(\Delta e), A_{i}(e)^{A}B_{i}(\Delta e) \rightarrow C_{i}(v)) \right\}$$

$$C_{i}^{'}(v) = \underset{e,\Delta e}{Sup} \Big\{ min \Big(min(A'(e), B'(\Delta e)), min(min(A_{i}(e), B_{i}(\Delta e)), C_{i}(v)) \Big) \Big\}$$

Asociatividad:

$$C_{i}^{'}(v) = \min \Biggl(\min \Biggl(Sup_{e} \Bigl\{ \min \Bigl(A'(e), A_{i}(e) \Bigr) \Bigr\}, Sup_{\Delta e} \Bigl\{ \min \bigl(B'(\Delta e), B_{i}(\Delta e) \bigr) \Bigr\} \Biggr), C_{i}(v) \Biggr)$$

Inferencia en controladores (II)

$$\begin{aligned} & \text{Antecedente} \\ & C_{i}^{'}(v) = \text{m\'in} \Bigg(\underset{e}{\text{m\'in}} \Big(Sup \Big\{ \text{m\'in} \Big(A^{'}(e), A_{i}(e) \Big) \Big\}, \\ & Sup \Big\{ \text{m\'in} \Big(B^{'}(\Delta e), B_{i}(\Delta e) \Big) \Big\} \Big), \\ & C_{i}^{'}(v) = \text{m\'in} \Bigg(\underset{e}{\text{m\'in}} \Big(A^{'}(e), A_{i}^{'}(e) \Big) \Big\}, \\ & Sup \Big\{ \text{m\'in} \Big(B^{'}(\Delta e), B_{i}^{'}(\Delta e) \Big) \Big\} \Big), \\ & C_{i}^{'}(v) = \text{m\'in} \Bigg(\underset{e}{\text{m\'in}} \Big(A^{'}(e), A_{i}^{'}(e) \Big) \Big\}, \\ & Sup \Big\{ \underset{\Delta e}{\text{m\'in}} \Big(A^{'}(e), A_{i}^{'}(e) \Big) \Big\}, \\ & Sup \Big\{ \underset{\Delta e}{\text{m\'in}} \Big(A^{'}(e), A_{i}^{'}(e) \Big) \Big\}, \\ & Sup \Big\{ \underset{\Delta e}{\text{m\'in}} \Big(A^{'}(e), A_{i}^{'}(e) \Big) \Big\}, \\ & Sup \Big\{ \underset{\Delta e}{\text{m\'in}} \Big(A^{'}(e), A_{i}^{'}(e) \Big) \Big\}, \\ & Sup \Big\{ \underset{\Delta e}{\text{m\'in}} \Big(A^{'}(e), A_{i}^{'}(e) \Big) \Big\}, \\ & Sup \Big\{ \underset{\Delta e}{\text{m\'in}} \Big(A^{'}(e), A_{i}^{'}(e) \Big) \Big\}, \\ & Sup \Big\{ \underset{\Delta e}{\text{m\'in}} \Big(A^{'}(e), A_{i}^{'}(e) \Big) \Big\}, \\ & Sup \Big\{ \underset{\Delta e}{\text{m\'in}} \Big(A^{'}(e), A_{i}^{'}(e) \Big) \Big\}, \\ & Sup \Big\{ \underset{\Delta e}{\text{m\'in}} \Big(A^{'}(e), A_{i}^{'}(e) \Big) \Big\}, \\ & Sup \Big\{ \underset{\Delta e}{\text{m\'in}} \Big(A^{'}(e), A_{i}^{'}(e) \Big) \Big\}, \\ & Sup \Big\{ \underset{\Delta e}{\text{m\'in}} \Big(A^{'}(e), A_{i}^{'}(e) \Big) \Big\}, \\ & Sup \Big\{ \underset{\Delta e}{\text{m\'in}} \Big(A^{'}(e), A_{i}^{'}(e) \Big) \Big\}, \\ & Sup \Big\{ \underset{\Delta e}{\text{m\'in}} \Big(A^{'}(e), A_{i}^{'}(e) \Big\}, \\ & Sup \Big\{ \underset{\Delta e}{\text{m\'in}} \Big(A^{'}(e), A_{i}^{'}(e) \Big\}, \\ & Sup \Big\{ \underset{\Delta e}{\text{m\'in}} \Big(A^{'}(e), A_{i}^{'}(e) \Big\}, \\ & Sup \Big\{ \underset{\Delta e}{\text{m\'in}} \Big(A^{'}(e), A_{i}^{'}(e) \Big\}, \\ & Sup \Big\{ \underset{\Delta e}{\text{m\'in}} \Big(A^{'}(e), A_{i}^{'}(e) \Big\}, \\ & Sup \Big\{ \underset{\Delta e}{\text{m\'in}} \Big(A^{'}(e), A_{i}^{'}(e) \Big\}, \\ & Sup \Big\{ \underset{\Delta e}{\text{m\'in}} \Big(A^{'}(e), A_{i}^{'}(e) \Big\}, \\ & Sup \Big\{ \underset{\Delta e}{\text{m\'in}} \Big(A^{'}(e), A_{i}^{'}(e) \Big\}, \\ & Sup \Big\{ \underset{\Delta e}{\text{m\'in}} \Big(A^{'}(e), A_{i}^{'}(e) \Big\}, \\ & Sup \Big\{ \underset{\Delta e}{\text{m\'in}} \Big(A^{'}(e), A_{i}^{'}(e) \Big\}, \\ & Sup \Big\{ \underset{\Delta e}{\text{m\'in}} \Big(A^{'}(e), A_{i}^{'}(e) \Big\}, \\ & Sup \Big\{ \underset{\Delta e}{\text{m\'in}} \Big(A^{'}(e), A_{i}^{'}(e) \Big\}, \\ & Sup \Big\{ \underset{\Delta e}{\text{m\'in}} \Big(A^{'}(e), A_{i}^{'}(e) \Big\}, \\ & Sup \Big\{ \underset{\Delta e}{\text{m\'in}} \Big(A^{'}(e), A_{i}^{'}(e) \Big\}, \\ & Sup \Big\{ \underset{\Delta e}{\text{m\'in}} \Big(A^{'}(e), A_{i}^{'}(e) \Big\}, \\ & Sup \Big\{ \underset{\Delta e}{\text{m\'in}} \Big(A^{'}(e), A_{i}^{'}(e) \Big\}, \\ & Sup \Big\{ \underset{\Delta e}{\text{m\'in}} \Big\}, \\ &$$

$$C'_{i}(v) = \min(\min(NA_{i1},NA_{i2}),C_{i}(v))$$

$$C'_{i}(v) = \min(NA_{i}, C_{i}(v))$$

Interpretación geométrica

Procedimiento general

- Dada una base de conocimiento:
 - R1: Si e = $A_1(e)$ y $\Delta e = B_1(\Delta e)$, entonces v = $C_1(v)$
 - · ..
 - Rn: Si e = $A_n(e)$ y $\Delta e = B_n(\Delta e)$, entonces $v = C_n(v)$
 - Hecho: $e = A'(e) y \Delta e = B'(\Delta e)$.
 - Objetivo: v = C'(v)

Procedimiento:

- Para cada regla Ri, se obtiene:
 - $NA_i = min\{Sup_e[min(A'(e),A_i(e))],Sup_{\Delta e}[min(B'(\Delta e),B_i(\Delta e))]\}$
 - La distribución del consecuente C_i'(v)=mín(NA_i,C_i(c))
- Se obtiene la unión: de los $C_i'(v)$ de las reglas que se disparan
 - $C'(v) = \bigcup_{i} \{C'_{i}(v)\} = máx_{i} \{C'_{i}(v)\}$
- 3. Desborrocificación de C'(v)

Desborrocificación Método del centro de gravedad

- Cálculo de la proyección en el eje x del centro de gravedad de la distribución.
- Se debe muestrear suficientemente fino para cubrir adecuadamente la función.
- Un muestreo excesivo exige gran carga computacional.
- Para generalizar $\mu_A(x) = \mu_{B'}(y)$

$$g = \frac{\sum_{i=1}^{N} x_{i} \cdot \mu_{A}(x_{i})}{\sum_{i=1}^{N} \mu_{A}(x_{i})}$$

Desborrocificación Método Σ_{cuenta}

- Objetivo:
 - Dado un conjunto de distribuciones de posibilidad
 μ_{B1}(x), μ_{B2}(x), ..., μ_{Bn}(x)
 - Encontrar qué $\mu_{Bi}(x)$ se *parece* más a una dada $\mu_A(x)$.
- La Σ_{cuenta} es una medida proporcional al área de la distribución.
 - Se basa en la discretización de la función de distribución.

$$\sum_{\text{cuenta}} (A) = \sum_{i=1}^{N} \mu_A(x_i)$$

El método elige como más *parecido* a $\mu_A(x)$ aquella $\mu_{Bi}(x)$ que máximiza: $\sum_{i} (A^AB_i)$

$$\sum_{\text{cuenta}} (B_i/A) = \frac{\sum_{\text{cuenta}} (A^{\land}B_i)}{\sum_{\text{cuenta}} (B_i)}$$