

LINDSTROM

Design of a Hydraulic
Shaft-Straightening Machine

Mechanical Engineering

B. S.

1911

UNIVERSITY OF ILLINOIS
LIBRARY

Class
1911

Book
L64

Volume

Digitized by the Internet Archive
in 2013

<http://archive.org/details/designofhydrauli00lind>

1022
55
27

**DESIGN OF A HYDRAULIC SHAFT-
STRAIGHTENING MACHINE**

BY

ARTHUR WILLIAM LINDSTROM

THESIS

FOR THE

DEGREE OF BACHELOR OF SCIENCE

IN

MECHANICAL ENGINEERING

COLLEGE OF ENGINEERING

UNIVERSITY OF ILLINOIS

1911

UNIVERSITY OF ILLINOIS

May 31

1911

THIS IS TO CERTIFY THAT THE THESIS PREPARED UNDER MY SUPERVISION BY

Arthur William Lindstrom

ENTITLED Design of a Hydraulic Shaft-Straightening Machine

IS APPROVED BY ME AS FULFILLING THIS PART OF THE REQUIREMENTS FOR THE

DEGREE OF Bachelor of Science in Mechanical
Engineering

W.O. Dunkin

Instructor in Charge

APPROVED:

J. A. Gooderough

HEAD OF DEPARTMENT OF

197679

1911
L64

DESIGN OF A HYDRAULIC

SHAFT STRAIGHTENING MACHINE

Table of Contents

	Page
Specifications - - - - -	1
Calculations - - - - -	2
Assembly - - - - -	11
Details - - - - -	12
Symbol Drawing - - - - -	19
Bill of Material - - - - -	20

Specifications

Maximum pressure on piston	75 tons
Unit pressure	2000 pounds per square inch
Total movement of piston	4 inches
Diameter of piston	10 inches
Capacity of machine- (fibre stress 50000 pounds)	
6 1/8 inch shaft on 30 inch centers	
6 3/4 " " " 40 " "	
7 1/8 " " " 48 " "	
7 3/4 " " " 60 " "	
Pump- Double cylinder, single acting, 3/4 inch diameter, 1 1/2 inch stroke	
Floor space- 12 feet by 3 feet	
Maximum height- 6 feet	

Calculations

Symbols used

M = bending moment

I = moment of inertia

c = distance from most remote fibre to gravity axis

S = working stress

d = diameter of section

p = unit pressure

P = total pressure

C = constant determined experimentally

F = friction

E = efficiency

t = thickness

r = radius

r_1 = inside radius

r_2 = outside radius

b = breadth

A. Piston

Total pressure - 75 tons

Unit pressure - 2000 pounds per square inch

$$\frac{75 \times 2000}{2000} = 75 \text{ square inches- area of piston}$$

Diameter corresponding = $9 \frac{13}{16}$ say 10 inches

Pressure exerted by 10 inch piston =

$$78.65 \times 2000 = 157000 \text{ pounds}$$

Fig. 1.

Efficiency of piston = $\frac{\text{Total Pressure} - \text{Friction}}{\text{Total Pressure}} 100$

$$E = \frac{\pi d^2 p / 4 - F}{\pi d^2 p / 4} 100$$

$F = Cpd$ — Hicks' formula (American Machinist-

Sep. 22, 1910)

Therefore

$$\begin{aligned} E &= 1 - \frac{4F}{\pi d^2 p} 100 = 1 - \frac{4Cpd}{\pi d^2 p} 100 \\ &= 1 - \frac{4C}{\pi d} 100 \end{aligned}$$

C varies from .0314 to .047 for different packings

Let $C = .04$

$$\begin{aligned} E &= 1 - \frac{4 \times .04}{\pi \times 10} 100 \\ &= (1 - .00509) 100 \\ &= 99.491 \end{aligned}$$

Force transmitted by piston

$$= 157000 \times .99491 = 156000$$

B. Piston Head

Fig. 2.

Bending moment at section "A A"

$$\begin{aligned} M &= pA \times r & r &= .212 D \\ &= 2000 \times \frac{\pi 10^2}{2 \times 4} \times .212 \\ &= 159,000 \text{ inch pounds} \end{aligned}$$

Use steel with unit stress of 16000 pounds per square inch

$$\frac{I}{c} = \frac{M}{S} = \frac{159000}{16000} = 9.95$$

$$bt^2/6 = 9.95$$

$$b = 10"$$

$$t^2 = 7.8$$

$$t = 2.8 \text{ say 3 inches}$$

C. Piston Rod

Use cold rolled steel- $S = 18000$ pounds per square inch

$$\frac{P}{S} = A$$

$$\frac{150000}{18000} = 8.34 \text{ square inches}$$

$$\text{Diameter} = 3.3 \text{ say } 3 \frac{1}{2} \text{ inches}$$

D. Cylinder Walls

Use cast steel $S = 10000$ pounds per square inch

Lames' formula for thick cylinders (Merriman-

Mechanics of Materials- p. 305)

$$r_2 = r_1 \sqrt{\frac{S + p}{S - p}}$$
$$= 5 \sqrt{\frac{10000 + 2000}{10000 - 2000}}$$
$$= 6.12$$

Therefore $t = 1 \frac{1}{8}$ inches

Clavarinos' formulae for thick cylinders (Merriman-

Mechanics of Materials- p. 392)

$$r_2 = r_1 \sqrt{\frac{3S + p}{3S - 4P}}$$
$$= 5 \sqrt{\frac{3 \times 10000 + 2000}{3 \times 10000 - 4 \times 2000}}$$
$$= 6.03$$

$t = 1 \frac{1}{8}$ inches

E. Cylinder Head

Use Merriman's formula (p.409- Merriman's Mechanics of Materials) for plate uniformly loaded and supported around edge.

$$t = r \sqrt{\frac{2p}{3S}}$$
$$= 5 \sqrt{\frac{2 \times 2000}{3 \times 10000}}$$
$$= 1.825$$
$$= 1 \frac{7}{8} \text{ inches}$$

Fig. 3.

F. Stud Bolts for Cylinder Head

12000 pounds per square inch = unit stress of bolts

$$\frac{150000}{12000} = 12.5 \text{ or total area of bolts}$$

Net area of $1\frac{1}{4}$ inch bolt = .894

$12.5 / .894$ or $16 - 1\frac{1}{4}$ inch stud bolts used.

G. Pinion to Raise Piston

Use 1 inch circular pitch, 10 teeth, pitch diameter = 3.183, $\frac{3}{4}$ inch face

H. Side Rod

Fig. 4.

Assume $2/3$ load supported on one rod

Tensile strength 16000 pounds per square inch

$$\frac{2}{3} \times \frac{150000}{16000} = 6.25 \text{ square inches net area}$$

Net diameter = 2 7/8 inches nominal diameter $3\frac{1}{4}$ "

I. Side Rod Supports

Investigate for shearing

Fig. 5.

$$\frac{2}{3} \times 150000 \times \frac{1}{20000} = 5 \text{ square inches}$$

Total area 35 square inches

Investigate for bending

$$M = \frac{2}{3} \times 150000 \times 3.5 = 350000 \text{ in./b.}$$

$$\frac{M}{S} = \frac{I}{c} = \frac{350000}{16000} = 21.9$$

$$\frac{I}{c} \text{ for section "AA"} = \frac{1}{6} \times 7 \times 5^2 = 29.15$$

J. Pump

Fig. 6.

Use double cylinder single acting pump

Diameter of plungers $3/4$ inch- stroke $1 \frac{1}{2}$ inches

Pressure on plunger = $\pi(.75)^2/4 \times 2000 = 884$ pounds

Ratio of arms 1 to 18

Pressure to be exerted by man = $884/18 = 50$ pounds

K. Pump Handle

$$M = 50 + 25 \text{ (for friction)} \quad 34 = 2550 \text{ pound-inches}$$

Fig. 7.

Fig. 8.

$$\frac{2550}{1200} = .2125 = \frac{I}{c} = \frac{b^2 t}{6}$$

$$\text{Let } b = 1 \frac{1}{4} \text{ then } b^2 = 1.565$$

$$t = .2125 \times 6/1.562$$

$$= .817 \text{ say } 7/8 \text{ inch.}$$

L. Tank

Volume of tank = stroke of piston x area of piston

$$= 4 \times 78.6 = 314.4 \text{ cubic inches}$$

Adding 50% volume becomes 468 cubic inches

Dimensions of tank $6 \times 6 \times 13 = 468$ cubic inches

M. Cross Beam

$$M = 75000 \times 7 = 525000 \text{ inch pounds}$$

$$\frac{I}{c} = \frac{525000}{10000} = 52.5$$

-9-

Fig. 10.

Fig. 9.

Section	Area	Mom. Arm	Mom.	c	I_{cg}	h	Ah^2	I	$\frac{I}{c}$
1	12	1	12		2	2.57	79.1	81.1	
2	8	4	32	3.57	3.62	.43	1.45	5.12	50.8
3	8	7	56		133	3.43	94	95.33	
	28		100					181.55	

N. Support Pins

Fig. 11.

$$M = 37500 \times 4 \frac{1}{8} - 37500 \times 1 \frac{11}{16}$$

$$= 91400 \text{ inch pounds}$$

$$\frac{M}{S} = \frac{91400}{16000} = 5.71$$

Diameter = 3 7/8 inches

Area of pin = 11.8

$$\frac{37500}{11.8} = 3180 \text{ pounds per square inch shearing stress}$$

$$\frac{37500}{1 \frac{1}{2} \times 3 \frac{7}{8}} = 6470 \text{ pounds per square inch bearing stress}$$

Use 1/2 inch eccentricity

O. "I" Beams

Fig. 12.

Maximum distance between supports when bending

5 feet 0 inches

$$M = 75000 \times 30 = 2,225,000 \text{ inch pounds}$$

$$\frac{M}{S} = \frac{I}{c} = \frac{2,225,000}{2 \times 16000} = 70.3$$

$$\frac{I}{c} = 70.3 \text{ for } 15"-70 \text{ lb. special or } 18"-70 \text{ lb. standard}$$

ard. Use 15"-70 lb. special *I beam*

MECH. ENGR. DEPARTMENT
UNIVERSITY OF ILLS.
THESES
ASSEMBLY OF HYDRAULIC
SHAFT STRAIGHTENING MACHINE
Plate No. 1 Scale 1:4
May 27-1911
Antonowich

13

Drill and Ream 3 1/4"

Ream for No 0 Taper Pin

Make Four-C.R. Steel
F.H.O.

(15)

DRILL & WHEEL
Make Four-Cast Iron

(13)

11
ROLLER FRAME

ROLLER FRAME - Make Two-Cast Steel

(12)

Drill and Ream 1/4" - 3 1/6" -
ROLLER - Make Four

F.H.O. Cast Iron

MECH.E.NG.DEPARTMENT
UNIVERSITY OF THESSALY

DETAILS OF HYDRAULIC
SHAFT STRAIGHTENING MACHINE
Plate N° 3 Scale 1" : 2"
May 27 1911 Confidante

Make Four ~ Cast Steel

U.S. Std. Thd.

CYLINDER STUDS
Make 16 ~ Mach Steel
㉑

MECH. ENG. DEPARTMENT
UNIVERSITY OF TORONTO
THESES
DETAILS OF HYDRAULIC
SHAFT STRAIGHTENING MACHINE
Plate No. 4 Scale 1:2
May 27/91

PLUNGER GUIDE
Make Two-Cast Steel

Make Two-Cast Steel

25

PUMP PLUNGER Make Two-C.R.Steel

U.S. Std Thd 12 pr.m Drill and Ream 49.
64

PLUNGER BUSHING

Made T. o - Brass

(27)

PLUNGER

PUMP HANDLE

OIL TANK
Make One ~ Cast Iron

23

**MECH. ENG. DEPARTMENT
UNIVERSITY OF ILLINOIS**

THESIS

**DETAILS OF HYDRAULIC
SHAFT STRAIGHTENING MACHINE**

Plate No. 6. Scale 1/8".

May 27, 1941.

Drill and Tap U.S Std Thd - 8 per.in.
for 3 $\frac{1}{2}$ " Bolt

PISTON HEAD
Make One ~ Cast Steel

(28)

MAIN CYLINDER
Make One ~ Cast Steel

(1)

Drill and Ream 3 $\frac{23}{64}$ "

MECH.ENG. DEPARTMENT
UNIV. OF ILLS.
THE S/I'S

DETAILS OF HYDRAULIC
SHAFT STRAIGHTENING MACHINE
Plate No 7 Scale 1" = 2"
Mar 27-1911 Cont'd

MECH. ENGR. DEPARTMENT
UNIVERSITY OF ILLINOIS
THESES
ASSEMBLY OF HYDRAULIC
SHAFT STRAIGHTENING MACHINE
Plate No. 9 Scale 1/4"
MAY 27-1911

Bill of Material

Piece No.	Name	Material	Number Wanted	Plate No.
1	Main Cylinder	Cast Steel	1	7
2	Cylinder Head	" "	1	2
3	Side Rod	Machine Steel	2	2
4	Piston Rod	" "	1	2
5	Handle	Cold Rolled Steel	1	2
6		" " "	1	2
7	Pump Bolt	Machine Steel	3	2
8		Cold Rolled Steel	1	2
9	Washer	" " "	8	2
10	Hexagonal Nut	Machine Steel	4	2
11	Cross Bar	Cast Steel	1	3
12	Roller Frame	" "	2	3
13	Carriage Wheel	Cast Iron	4	3
14	Roller	" "	4	3
15	Roller Pin	Cold Rolled Steel	4	3
16	Support Pad	Cast Steel	2	4
17	Support Frame	Cast Iron	2	4
18	Support Pin	Machine Steel	2	4
19	Handle	Wrought Iron	2	4
20	Support Bearing	Cast Steel	4	4
21	Cap Stud Bolt	Machine Steel	16	4
22	Pump Body	Cast Steel	1	5
23	Oil Tank	Cast Iron	1	6

Bill of Material-cont.

Piece No.	Name	Material	Number Wanted	Plate No.
24	Pump Handle	Cast Steel	1	6
25	Plunger Guide	" "	2	6
26	Pump Plunger	Cold Rolled Steel	2	6
27	Plunger Bushing	Brass	2	6
28	Piston Head	Cast Steel	1	7
29	Feet	Cast Iron	2	8
30	Lifting Pinion	" "	1	8

Stock List

Name	Number Wanted	Size	Remarks
Vertical Check Valve	4	3/4"	Outside Thread
Stop Valve	1	3/4"	" "
Bronze Coupling	9		For 3/4" pipe
Bronze Elbow	1	6" x 3"	" " "
" "	2	4" x 3"	" " "
" "	1	3" x 3"	" " "
Hydraulic Pipe	7 ft.	3/4"	
Steel Cross	1	4" x 2 3/4"	Inside Thread for 3/4" pipe
Machine Bolt with nuts	4	3/4" x 5"	Finished
" " " "	4	1/2"x 12"	Rough
" " " "	4	1/2"x 10"	"
" " " "	4	1/2" x 2"	"
" " " "	4	3/4" x 3"	"
Hexagonal Nuts	16	1"	U.S. Std. Thd.
Cap Screws	11	3/8" x 1"	
I-Beams	2	15"-70#- 12 ft. long	
U-Packing	1	10" Outside Diameter	
Flange Packing	1	3/4" Inside Diameter	
Hydraulic Gauge	1		With Safety Valve
Spring Weighted Safety Valve	1	2000 #/sq.in.	
Bronze-T	2	7" x 1 1/2"	For 3/4" pipe

UNIVERSITY OF ILLINOIS-URBANA

3 0112 086858070