CS F364 Design & Analysis of Algorithms

ALGORITHMS - COMPLEXITY

Complexity Class NP-complete

- Definition
- Circuit-SAT is NP-complete

COMPLEXITY CLASSES — N₽-COMPLETE

- A problem is said to be **NP-hard** if all problems in **NP** (polynomially) reduce to it
 - i.e. π is NP-hard if
 - o for each π' in NP: $\pi' \preceq \pi$
- \circ A problem π is said to be **NP-complete**
 - if π is NP-hard and
 - if π is in NP.

PROBLEMS - COMPLEXITY - CIRCUIT-SAT

- A Boolean (combinational) circuit can be modeled as a directed graph:
 - Gates are vertices
 - Input lines to a gate are incoming edges and are labeled with input values
 - Outputs of a gate driven to input lines of other gates are outgoing edges
 - o All outgoing edges of a given gate have the same label.
- For simplicity, we assume:
 - Gates are unary/binary i.e. at most two inputs per gate
 - The final output is not driven.
 - o i.e. Gates forming the final outputs of the circuit have no outgoing edges.

Problems – Complexity – Circuit-sat [2]

o Definition:

- Given a Boolean circuit (modeled as a graph as mentioned in the previous slide),
- find whether there exists a sequence of input values such that the result is an output of 1.

Cook-Levin Theorem :

• CIRCUIT-SAT is NP-complete.

• Proof:

- CIRCUIT-SAT is in \mathbb{NP} . (Lemma 1) and
- For any problem π in NP, π reduces in polynomial time to CIRCUIT-SAT. (Lemma 2)

PROBLEMS - COMPLEXITY - CIRCUIT-SAT IS IN NP

- o Lemma 1:
 - CIRCUIT-SAT is in NP.
- Proof:
 - Given a certificate
 - oi.e. a combination of Boolean values assigned to the input variables,
 - it can be verified whether the circuit outputs 1
 by executing the circuit
 - in time (linearly) proportional to the number of gates (i.e. input size).

PROBLEMS - COMPLEXITY - CIRCUIT-SAT IS IN NP- HARD

o Lemma 2:

For any problem π in **NP**, π reduces to CIRCUIT-SAT.

- Proof:
 - Consider any problem π in NP.
 - o We need to reduce π to **CIRCUIT-SAT** i.e.
 - owe need a polynomial-time mapping:
 - that converts an (input) instance x of π to a Boolean combinational circuit S
 - such that
 - $\pi(x)$ is 1 iff S is satisfiable
 - We design such a mapping in the following slides.

REDUCING ANY **NP** PROBLEM TO **CIRCUIT-SAT**

• Reduction:

- Consider any problem π in NP.
 - oThere exists a deterministic algorithm A_{π} for verifying a certificate c(x) of any input x of size n for π such that
 - $\circ A_{\pi}$ takes p'(n) time where p' is a polynomial function.
 - olf A_{π} takes p(n) time, it will be using
 - oat most p(n) bits of space at any step of the computation
 - where p(n) = c*p'(n) for some constant c
- We design a mapping procedure, say cc (for <u>circuit</u> <u>constructor</u>):
 - o that takes \mathbf{A}_{π} and constructs <u>a Boolean combinational</u> <u>circuit</u> \mathbf{S} in polynomial time such that
 - π(x) is 1 iff
 S is satisfiable

DESIGN OF A CIRCUIT CONSTRUCTOR

- o cc(A):
 - Consider one step of computation in A:
 at most p(n) bits of input and at most p(n) bits of output

Construct a circuit S_k to implement the single step k of A
 oas a combinational circuit mapping the input (of a step) to the output (of a step)

o cc(A):

 Construct a circuit S which is a cascade of S_k circuits – p(n) of them – such that the output of jth circuit is the input of (j+1)st circuit.

- S' is the circuit implementing algorithm A i.e. it has 2 inputs:
 ox (which is an input instance of problem π) and
 oc(x) (which is a certificate for x)
- and it produces a 1 if the certificate is valid.

This ensures that S' is satisfiable iff $\pi(x)$ is 1

PROBLEMS - COMPLEXITY - CIRCUIT-SAT IS IN NP- HARD

- Proof (of Lemma 2) continued:
 - Verify these claims:
 - o Circuit S' is satisfied if and only if there exists a certificate y such that A(x,y) = 1.
 - o Time complexity of cc is polynomial in n, where n is the size of the input instance to π .