### Teorema do Limite Central

Bacharelado em Economia - FEA - Noturno

1º Semestre 2016

Profs. Fábio P. Machado e Gilberto A. Paula

#### Sumário

- Objetivos da Aula
- 2 Distribuição Binomia
- Distribuição de Poisson
- Distribuição Uniforme
- Distribuição Exponencial
- Teorema do Limite Central
- Tabela Normal
- 8 Exemplos

## **Objetivos da Aula**

#### Soma de Variáveis Aleatórias

O objetivo principal desta aula é estudar empiricamente a distribuição da soma de variáveis aleatórias quantitativas e enunciar o principal teorema da Estatística Teorema do Limite Central (Laplace, 1810).

## Notação

#### Soma de Variáveis Aleatórias

Vamos supor  $X_1,\ldots,X_n$  variáveis aleatórias independentes com mesma distribuição de média  $\mu$  e variância  $\sigma^2$  finitas. Vamos estudar a distribuição da soma

## Notação

#### Soma de Variáveis Aleatórias

Vamos supor  $X_1,\ldots,X_n$  variáveis aleatórias independentes com mesma distribuição de média  $\mu$  e variância  $\sigma^2$  finitas. Vamos estudar a distribuição da soma

$$X = X_1 + \cdots + X_n$$

## Notação

#### Soma de Variáveis Aleatórias

Vamos supor  $X_1,\ldots,X_n$  variáveis aleatórias independentes com mesma distribuição de média  $\mu$  e variância  $\sigma^2$  finitas. Vamos estudar a distribuição da soma

$$X = X_1 + \cdots + X_n$$

à medida que *n* cresce. Ou seja, vamos construir histogramas para a distribuição de *X* para diferentes valores de *n*.

#### Sumário

- Objetivos da Aula
- Distribuição Binomial
- O Distribuição de Poissor
- 4 Distribuição Uniforme
- Distribuição Exponencial
- Teorema do Limite Central
- Tabela Normal
- 8 Exemplos

## Distribuição Binomial

#### Distribuição Binomial

A distribuição binomial pode ser obtida através de n ensaios independentes de Bernoulli. Isto é, se  $X_i \sim \text{Be}(p)$  (i = 1, ..., n), então

## Distribuição Binomial

### Distribuição Binomial

A distribuição binomial pode ser obtida através de n ensaios independentes de Bernoulli. Isto é, se  $X_i \sim \text{Be}(p)$  (i = 1, ..., n), então

$$X = X_1 + \cdots + X_n \sim B(n, p).$$

## Distribuição Binomial

#### Distribuição Binomial

A distribuição binomial pode ser obtida através de n ensaios independentes de Bernoulli. Isto é, se  $X_i \sim \text{Be}(p)$  (i = 1, ..., n), então

$$X = X_1 + \cdots + X_n \sim B(n, p).$$

Temos ainda que E(X) = np e Var(X) = np(1 - p).

# Histogramas Distribuição Binomial

#### Descrição

A seguir serão construídos histogramas para a distribuição de  $X \sim B(n, p)$  variando-se o número de ensaios n e também a probabilidade de sucesso p.









#### Conclusões

#### Conclusões

Nota-se pelos gráficos que à medida que n cresce a distribuição de  $X \sim B(n, p)$  se aproxima da distribuição de  $Y \sim N(\mu_X, \sigma_X^2)$  em que  $\mu_X = np$  e  $\sigma_X^2 = np(1-p)$ .

#### Sumário

- Objetivos da Aula
- Distribuição Binomia
- Distribuição de Poisson
- Distribuição Uniforme
- Distribuição Exponencial
- Teorema do Limite Central
- Tabela Normal
- 8 Exemplos

## Distribuição de Poisson

#### Definição

Se X segue distribuição de Poisson de parâmetro  $\lambda$ . Isto é, se  $X \sim P(\lambda)$ , então a função de probabilidade de X fica dada por

## Distribuição de Poisson

#### Definição

Se X segue distribuição de Poisson de parâmetro  $\lambda$ . Isto é, se  $X \sim P(\lambda)$ , então a função de probabilidade de X fica dada por

$$P(X=x)=\frac{e^{-\lambda}\lambda^x}{x!},$$

## Distribuição de Poisson

### Definição

Se X segue distribuição de Poisson de parâmetro  $\lambda$ . Isto é, se  $X \sim P(\lambda)$ , então a função de probabilidade de X fica dada por

$$P(X=x)=\frac{e^{-\lambda}\lambda^x}{x!},$$

em que x = 0, 1, ... Temos ainda que  $E(X) = \lambda$  e  $Var(X) = \lambda$ .

# Histogramas Distribuição de Poisson

#### Descrição

A seguir serão construídos histogramas para a distribuição de

# Histogramas Distribuição de Poisson

#### Descrição

A seguir serão construídos histogramas para a distribuição de

$$X = X_1 + \cdots + X_n \sim P(n\lambda),$$

# Histogramas Distribuição de Poisson

#### Descrição

A seguir serão construídos histogramas para a distribuição de

$$X = X_1 + \cdots + X_n \sim P(n\lambda),$$

variando-se  $m = n\lambda$ , em que  $X_i \sim P(\lambda)$  independentes (i = 1, ..., n).

# Histogramas P(m)



# Histogramas P(m)



#### Conclusões

#### Conclusões

Nota-se pelos gráficos que à medida que m cresce a distribuição de  $X \sim P(m)$  se aproxima da distribuição de  $Y \sim N(\mu_X, \sigma_X^2)$  em que  $\mu_X = m$  e  $\sigma_X^2 = m$ .

#### Sumário

- Objetivos da Aula
- Distribuição Binomia
- Distribuição de Poisson
- Distribuição Uniforme
- Distribuição Exponencial
- Teorema do Limite Central
- Tabela Normal
- 8 Exemplos

#### Definição

Vamos supor que X é uma variável aleatória com distribuição uniforme no intervalo [a,b] ( $X \sim U[a,b]$ ), então

### Definição

Vamos supor que X é uma variável aleatória com distribuição uniforme no intervalo [a,b] ( $X \sim U[a,b]$ ), então

$$f(x)=\frac{1}{(b-a)}, \ a\leq x\leq b,$$

### Definição

Vamos supor que X é uma variável aleatória com distribuição uniforme no intervalo [a,b] ( $X \sim U[a,b]$ ), então

$$f(x)=\frac{1}{(b-a)}, \ a\leq x\leq b,$$

e f(x) = 0 em caso contrário.

## Definição

Vamos supor que X é uma variável aleatória com distribuição uniforme no intervalo [a,b] ( $X \sim U[a,b]$ ), então

$$f(x) = \frac{1}{(b-a)}, \ a \le x \le b,$$

e f(x) = 0 em caso contrário.

### Esperança e Variância

Temos que

### Definição

Vamos supor que X é uma variável aleatória com distribuição uniforme no intervalo [a,b] ( $X \sim U[a,b]$ ), então

$$f(x) = \frac{1}{(b-a)}, \ a \le x \le b,$$

e f(x) = 0 em caso contrário.

## Esperança e Variância

### Temos que

• 
$$E(X) = \frac{a+b}{2}$$

## Definição

Vamos supor que X é uma variável aleatória com distribuição uniforme no intervalo [a,b] ( $X \sim U[a,b]$ ), então

$$f(x) = \frac{1}{(b-a)}, \ a \le x \le b,$$

e f(x) = 0 em caso contrário.

## Esperança e Variância

#### Temos que

$$\bullet \ \mathsf{E}(X) = \tfrac{a+b}{2}$$

• 
$$Var(X) = \frac{(b-a)^2}{12}$$

# Distribuição Uniforme U[1,5]



# Histogramas Distribuição Uniforme

### Descrição

Vamos supor que  $X_i \sim U[1,5]$  independentes  $(i=1,\ldots,n)$ . A seguir serão construídos histogramas para a distribuição de  $X=X_1+\ldots+X_n$  variando-se o tamanho amostral n.

# Histogramas Soma de Uniformes



#### Conclusões

Nota-se pelos gráficos que à medida que n cresce a distribuição de

### Conclusões

Nota-se pelos gráficos que à medida que n cresce a distribuição de

$$X = X_1 + \cdots + X_n$$

#### Conclusões

Nota-se pelos gráficos que à medida que n cresce a distribuição de

$$X = X_1 + \cdots + X_n$$

#### Conclusões

Nota-se pelos gráficos que à medida que n cresce a distribuição de

$$X = X_1 + \cdots + X_n$$

• 
$$\mu_X = \frac{n(1+5)}{2} = 3n$$

#### Conclusões

Nota-se pelos gráficos que à medida que n cresce a distribuição de

$$X = X_1 + \cdots + X_n$$

- $\mu_X = \frac{n(1+5)}{2} = 3n$
- $\sigma_X^2 = \frac{n(5-1)^2}{12} = \frac{4n}{3}$

## Sumário

- Objetivos da Aula
- Distribuição Binomia
- Distribuição de Poisson
- Distribuição Uniforme
- 5 Distribuição Exponencial
- Teorema do Limite Central
- Tabela Normal
- 8 Exemplos

## Definição

Se X é uma variável aleatória com distribuição exponencial de parâmetro  $\lambda>0$ , a função densidade de probabilidade de X é definida por

## Definição

Se X é uma variável aleatória com distribuição exponencial de parâmetro  $\lambda>0$ , a função densidade de probabilidade de X é definida por

$$f(x) = \lambda e^{-\lambda x},$$

## Definição

Se X é uma variável aleatória com distribuição exponencial de parâmetro  $\lambda>0$ , a função densidade de probabilidade de X é definida por

$$f(x) = \lambda e^{-\lambda x},$$

em que x > 0. Notação  $X \sim \text{Exp}(\lambda)$ .

# Definição

Se X é uma variável aleatória com distribuição exponencial de parâmetro  $\lambda>0$ , a função densidade de probabilidade de X é definida por

$$f(x) = \lambda e^{-\lambda x}$$

em que x > 0. Notação  $X \sim \text{Exp}(\lambda)$ .

## Esperança e Variância

Temos que

# Definição

Se X é uma variável aleatória com distribuição exponencial de parâmetro  $\lambda>0$ , a função densidade de probabilidade de X é definida por

$$f(x) = \lambda e^{-\lambda x},$$

em que x > 0. Notação  $X \sim \text{Exp}(\lambda)$ .

## Esperança e Variância

## Temos que

• 
$$E(X) = \frac{1}{\lambda}$$

# Definição

Se X é uma variável aleatória com distribuição exponencial de parâmetro  $\lambda>0$ , a função densidade de probabilidade de X é definida por

$$f(x) = \lambda e^{-\lambda x},$$

em que x > 0. Notação  $X \sim \mathsf{Exp}(\lambda)$ .

## Esperança e Variância

## Temos que

- $E(X) = \frac{1}{\lambda}$
- $Var(X) = \frac{1}{\lambda^2}$

# Histogramas Distribuição Exponencial

## Definição

Vamos supor que  $X_i \sim \text{Exp}(\lambda)$  independentes (i = 1, ..., n). A seguir serão construídos histogramas para a distribuição de  $X = X_1 + ... + X_n$  variando-se  $\lambda$  e o tamanho amostral n.

# Distribuição Exponencail $\lambda = 1$



# Histogramas Soma de Exponenciais com $\lambda = 1$



# Distribuição Exponencial $\lambda = 3$



# Histogramas Soma de Exponenciais com $\lambda=3$



#### Conclusões

Nota-se pelos gráficos que à medida que n cresce a distribuição de

#### Conclusões

Nota-se pelos gráficos que à medida que n cresce a distribuição de

$$X = X_1 + \cdots + X_n$$

#### Conclusões

Nota-se pelos gráficos que à medida que n cresce a distribuição de

$$X = X_1 + \cdots + X_n$$

#### Conclusões

Nota-se pelos gráficos que à medida que n cresce a distribuição de

$$X = X_1 + \cdots + X_n$$

• 
$$\mu_X = n \frac{1}{\lambda} = \frac{n}{\lambda}$$

#### Conclusões

Nota-se pelos gráficos que à medida que n cresce a distribuição de

$$X = X_1 + \cdots + X_n$$

- $\bullet \ \mu_{\mathsf{X}} = n \frac{1}{\lambda} = \frac{n}{\lambda}$
- $\bullet \ \sigma_X^2 = n_{\frac{1}{\lambda^2}} = \frac{n}{\lambda^2}$

### Sumário

- Objetivos da Aula
- Distribuição Binomia
- Distribuição de Poisson
- Distribuição Uniforme
- Distribuição Exponencial
- Teorema do Limite Central
- Tabela Normal
- 8 Exemplos

## Enunciado para a Soma Amostral

Para variáveis aleatórias  $X_1, \ldots, X_n$  independentes e com mesma distribuição de média  $\mu$  e variância  $\sigma^2$  finitas, a distribuição da soma

## Enunciado para a Soma Amostral

Para variáveis aleatórias  $X_1, \ldots, X_n$  independentes e com mesma distribuição de média  $\mu$  e variância  $\sigma^2$  finitas, a distribuição da soma

$$X = X_1 + \cdots + X_n$$

## Enunciado para a Soma Amostral

Para variáveis aleatórias  $X_1, \ldots, X_n$  independentes e com mesma distribuição de média  $\mu$  e variância  $\sigma^2$  finitas, a distribuição da soma

$$X = X_1 + \cdots + X_n$$

se aproxima à medida que n cresce da distribuição de Y  $\sim N(\mu_X, \sigma_X^2)$ , em que  $\mu_X = n\mu$  e  $\sigma_Y^2 = n\sigma^2$ .

# Aproximação para n Grande

$$P(a \le X \le b) \cong P(a \le Y \le b)$$

$$= P\left(\frac{a - n\mu}{\sigma\sqrt{n}} \le Z \le \frac{b - n\mu}{\sigma\sqrt{n}}\right),$$

# Aproximação para n Grande

$$P(a \le X \le b) \cong P(a \le Y \le b)$$

$$= P\left(\frac{a - n\mu}{\sigma\sqrt{n}} \le Z \le \frac{b - n\mu}{\sigma\sqrt{n}}\right),$$

em que  $Z \sim N(0, 1)$ .

## Aproximação para n Grande

$$P(a \le X \le b) \cong P(a \le Y \le b)$$

$$= P\left(\frac{a - n\mu}{\sigma\sqrt{n}} \le Z \le \frac{b - n\mu}{\sigma\sqrt{n}}\right),$$

em que  $Z \sim N(0, 1)$ .

Observação: correção de continuidade pode ser aplicada apenas para variáveis aleatórias discretas, tais como binomial e Poisson.

### Média Amostral

Para a média amostral

#### Média Amostral

Para a média amostral  $\bar{X} = \frac{X_1 + \dots + X_n}{n}$  temos que

#### Média Amostral

Para a média amostral  $\bar{X} = \frac{X_1 + \dots + X_n}{n}$  temos que

$$E(\bar{X}) = \frac{E(X_1) + \dots + E(X_n)}{n}$$

$$= \frac{n\mu}{n} = \mu \text{ e}$$

$$Var(\bar{X}) = \frac{Var(X_1) + \dots + Var(X_n)}{n^2}$$

$$= \frac{n\sigma^2}{n^2} = \frac{\sigma^2}{n}.$$

# Enunciado para a Média Amostral

Para variáveis aleatórias  $X_1, \ldots, X_n$  independentes e com mesma distribuição de média  $\mu$  e variância  $\sigma^2$  finitas, a distribuição da média amostral

## Enunciado para a Média Amostral

Para variáveis aleatórias  $X_1, \ldots, X_n$  independentes e com mesma distribuição de média  $\mu$  e variância  $\sigma^2$  finitas, a distribuição da média amostral

$$\bar{X} = \frac{X_1 + \dots + X_n}{n}$$

## Enunciado para a Média Amostral

Para variáveis aleatórias  $X_1, \ldots, X_n$  independentes e com mesma distribuição de média  $\mu$  e variância  $\sigma^2$  finitas, a distribuição da média amostral

$$\bar{X} = \frac{X_1 + \dots + X_n}{n}$$

se aproxima à medida que n cresce da distribuição de Y  $\sim N(\mu_{\bar{X}}, \sigma_{\bar{X}}^2)$ , em que  $\mu_{\bar{X}} = \mu$  e  $\sigma_{\bar{X}}^2 = \frac{\sigma^2}{n}$ .

# Aproximação para n Grande

$$P(a \le \bar{X} \le b) \cong P(a \le Y \le b)$$

$$= P\left(\frac{a - \mu}{\sigma/\sqrt{n}} \le Z \le \frac{b - \mu}{\sigma/\sqrt{n}}\right),$$

#### **Teorema do Limite Central**

## Aproximação para n Grande

$$P(a \le \bar{X} \le b) \cong P(a \le Y \le b)$$

$$= P\left(\frac{a - \mu}{\sigma/\sqrt{n}} \le Z \le \frac{b - \mu}{\sigma/\sqrt{n}}\right),$$

em que  $Z \sim N(0, 1)$ .

### Sumário

- Objetivos da Aula
- Distribuição Binomia
- Distribuição de Poisson
- Distribuição Uniforme
- Distribuição Exponencial
- Teorema do Limite Central
- Tabela Normal
- 8 Exemplos

### Cálculo de Probabilidades

Descrição de  $A(z) = P(Z \le z), z \ge 0$ 



### Distribuição Normal Padrão: Valores de $A(z) = P(Z \le z)$

|     | Segunda Decimal de z |        |        |        |        |        |        |        |        |        |
|-----|----------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| z   | 0                    | 1      | 2      | 3      | 4      | 5      | 6      | 7      | 8      | 9      |
| 0.0 | 0.5000               | 0.5040 | 0.5080 | 0.5120 | 0.5160 | 0.5199 | 0.5239 | 0.5279 | 0.5319 | 0.5359 |
| 0.1 | 0.5398               | 0.5438 | 0.5478 | 0.5517 | 0.5557 | 0.5596 | 0.5636 | 0.5675 | 0.5714 | 0.5753 |
| 0.2 | 0.5793               | 0.5832 | 0.5871 | 0.5910 | 0.5948 | 0.5987 | 0.6026 | 0.6064 | 0.6103 | 0.6141 |
| 0.3 | 0.6179               | 0.6217 | 0.6255 | 0.6293 | 0.6331 | 0.6368 | 0.6406 | 0.6443 | 0.6480 | 0.6517 |
| 0.4 | 0.6554               | 0.6591 | 0.6628 | 0.6664 | 0.6700 | 0.6736 | 0.6772 | 0.6808 | 0.6844 | 0.6879 |
| 0.5 | 0.6915               | 0.6950 | 0.6985 | 0.7019 | 0.7054 | 0.7088 | 0.7123 | 0.7157 | 0.7190 | 0.7224 |
| 0.6 | 0.7257               | 0.7291 | 0.7324 | 0.7357 | 0.7389 | 0.7422 | 0.7454 | 0.7486 | 0.7517 | 0.7549 |
| 0.7 | 0.7580               | 0.7611 | 0.7642 | 0.7673 | 0.7704 | 0.7734 | 0.7764 | 0.7794 | 0.7823 | 0.7852 |
| 8.0 | 0.7881               | 0.7910 | 0.7939 | 0.7967 | 0.7995 | 0.8023 | 0.8051 | 0.8078 | 0.8106 | 0.8133 |
| 0.9 | 0.8159               | 0.8186 | 0.8212 | 0.8238 | 0.8264 | 0.8289 | 0.8315 | 0.8340 | 0.8365 | 0.8389 |
| 1.0 | 0.8413               | 0.8438 | 0.8461 | 0.8485 | 0.8508 | 0.8531 | 0.8554 | 0.8577 | 0.8599 | 0.8621 |
| 1.1 | 0.8643               | 0.8665 | 0.8686 | 0.8708 | 0.8729 | 0.8749 | 0.8770 | 0.8790 | 0.8810 | 0.8830 |
| 1.2 | 0.8849               | 0.8869 | 0.8888 | 0.8907 | 0.8925 | 0.8944 | 0.8962 | 0.8980 | 0.8997 | 0.9015 |
| 1.3 | 0.9032               | 0.9049 | 0.9066 | 0.9082 | 0.9099 | 0.9115 | 0.9131 | 0.9147 | 0.9162 | 0.9177 |
| 1.4 | 0.9192               | 0.9207 | 0.9222 | 0.9236 | 0.9251 | 0.9265 | 0.9279 | 0.9292 | 0.9306 | 0.9319 |
| 1.5 | 0.9332               | 0.9345 | 0.9357 | 0.9370 | 0.9382 | 0.9394 | 0.9406 | 0.9418 | 0.9429 | 0.9441 |
| 1.6 | 0.9452               | 0.9463 | 0.9474 | 0.9484 | 0.9495 | 0.9505 | 0.9515 | 0.9525 | 0.9535 | 0.9545 |
| 1.7 | 0.9554               | 0.9564 | 0.9573 | 0.9582 | 0.9591 | 0.9599 | 0.9608 | 0.9616 | 0.9625 | 0.9633 |
| 1.8 | 0.9641               | 0.9649 | 0.9656 | 0.9664 | 0.9671 | 0.9678 | 0.9686 | 0.9693 | 0.9699 | 0.9706 |
| 1.9 | 0.9713               | 0.9719 | 0.9726 | 0.9732 | 0.9738 | 0.9744 | 0.9750 | 0.9756 | 0.9761 | 0.9767 |
| 2.0 | 0.9772               | 0.9778 | 0.9783 | 0.9788 | 0.9793 | 0.9798 | 0.9803 | 0.9808 | 0.9812 | 0.9817 |

## Distribuição Normal Padrão: Valores de $A(z) = P(Z \le z)$

|     | Segunda Decimal de z |        |        |        |        |        |        |        |        |        |  |
|-----|----------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--|
| Z   | 0                    | 1      | 2      | 3      | 4      | 5      | 6      | 7      | 8      | 9      |  |
| 2.1 | 0.9821               | 0.9826 | 0.9830 | 0.9834 | 0.9838 | 0.9842 | 0.9846 | 0.9850 | 0.9854 | 0.9857 |  |
| 2.2 | 0.9861               | 0.9864 | 0.9868 | 0.9871 | 0.9875 | 0.9878 | 0.9881 | 0.9884 | 0.9887 | 0.9890 |  |
| 2.3 | 0.9893               | 0.9896 | 0.9898 | 0.9901 | 0.9904 | 0.9906 | 0.9909 | 0.9911 | 0.9913 | 0.9916 |  |
| 2.4 | 0.9918               | 0.9920 | 0.9922 | 0.9925 | 0.9927 | 0.9929 | 0.9931 | 0.9932 | 0.9934 | 0.9936 |  |
| 2.5 | 0.9938               | 0.9940 | 0.9941 | 0.9943 | 0.9945 | 0.9946 | 0.9948 | 0.9949 | 0.9951 | 0.9952 |  |
| 2.6 | 0.9953               | 0.9955 | 0.9956 | 0.9957 | 0.9959 | 0.9960 | 0.9961 | 0.9962 | 0.9963 | 0.9964 |  |
| 2.7 | 0.9965               | 0.9966 | 0.9967 | 0.9968 | 0.9969 | 0.9970 | 0.9971 | 0.9972 | 0.9973 | 0.9974 |  |
| 2.8 | 0.9974               | 0.9975 | 0.9976 | 0.9977 | 0.9977 | 0.9978 | 0.9979 | 0.9979 | 0.9980 | 0.9981 |  |
| 2.9 | 0.9981               | 0.9982 | 0.9982 | 0.9983 | 0.9984 | 0.9984 | 0.9985 | 0.9985 | 0.9986 | 0.9986 |  |
| 3.0 | 0.9987               | 0.9987 | 0.9987 | 0.9988 | 0.9988 | 0.9989 | 0.9989 | 0.9989 | 0.9990 | 0.9990 |  |
| 3.1 | 0.9990               | 0.9991 | 0.9991 | 0.9991 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | 0.9993 | 0.9993 |  |
| 3.2 | 0.9993               | 0.9993 | 0.9994 | 0.9994 | 0.9994 | 0.9994 | 0.9994 | 0.9995 | 0.9995 | 0.9995 |  |
| 3.3 | 0.9995               | 0.9995 | 0.9995 | 0.9996 | 0.9996 | 0.9996 | 0.9996 | 0.9996 | 0.9996 | 0.9997 |  |
| 3.4 | 0.9997               | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9998 |  |
| 3.5 | 0.9998               | 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.9998 |  |
| 3.6 | 0.9998               | 0.9998 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 |  |
| 3.7 | 0.9999               | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 |  |
| 3.8 | 0.9999               | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 |  |
| 3.9 | 1.0000               | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |  |

### Sumário

- Objetivos da Aula
- Distribuição Binomia
- Distribuição de Poisson
- Distribuição Uniforme
- Distribuição Exponencial
- Teorema do Limite Centra
- Tabela Normal
- 8 Exemplos

### Exemplo 1

Uma loja recebe em média 16 clientes por dia com desvio padrão de 4 clientes. Calcule aproximadamente a probabilidade de num período de 30 dias a loja receber mais do que 500 clientes. Calcule também a probabilidade aproximada de nesse mesmo período a média de clientes ultrapassar a 18 clientes.

Dados do Problema

#### Dados do Problema

• 
$$E(U) = \mu = 16$$

#### Dados do Problema

- $E(U) = \mu = 16$
- $Var(U) = \sigma^2 = 4^2 = 16$

#### Dados do Problema

Seja *U*:número de clientes que a loja recebe num dia. Temos que

- $E(U) = \mu = 16$
- $Var(U) = \sigma^2 = 4^2 = 16$

### Soma Amostral

#### Dados do Problema

Seja *U*:número de clientes que a loja recebe num dia. Temos que

- $E(U) = \mu = 16$
- $Var(U) = \sigma^2 = 4^2 = 16$

### Soma Amostral

• 
$$\mu_X = n \times \mu = 30 \times 16 = 480$$

#### Dados do Problema

Seja *U*:número de clientes que a loja recebe num dia. Temos que

- $E(U) = \mu = 16$
- $Var(U) = \sigma^2 = 4^2 = 16$

### Soma Amostral

- $\mu_X = n \times \mu = 30 \times 16 = 480$
- $\sigma_X^2 = n \times \sigma^2 = 30 \times 16 = 480$

#### Dados do Problema

Seja *U*:número de clientes que a loja recebe num dia. Temos que

- $E(U) = \mu = 16$
- $Var(U) = \sigma^2 = 4^2 = 16$

### Soma Amostral

- $\mu_X = n \times \mu = 30 \times 16 = 480$
- $\sigma_X^2 = n \times \sigma^2 = 30 \times 16 = 480$
- $\sigma_X = \sqrt{480} \cong 21,91$

#### Média Amostral

#### Média Amostral

• 
$$\mu_{\bar{x}} = \mu = 16$$

#### Média Amostral

Seja  $\bar{X}$ :número médio de clientes que a loja recebe em 30 dias.

### Temos que

• 
$$\mu_{\bar{X}} = \mu = 16$$

• 
$$\sigma_{\bar{X}}^2 = \frac{\sigma^2}{n} = \frac{16}{30} \cong 0,533$$

#### Média Amostral

Seja  $\bar{X}$ :número médio de clientes que a loja recebe em 30 dias.

### Temos que

• 
$$\mu_{\bar{X}} = \mu = 16$$

• 
$$\sigma_{\bar{X}}^2 = \frac{\sigma^2}{n} = \frac{16}{30} \cong 0,533$$

• 
$$\sigma_{\bar{X}} = \sqrt{0,533} \cong 0,73$$

#### Cálculo da Probabilidade

A probabilidade da loja receber mais do que 500 clientes em 30 dias fica dada por

#### Cálculo da Probabilidade

A probabilidade da loja receber mais do que 500 clientes em 30 dias fica dada por

$$P(X \ge 501) \cong P\left(Z \ge \frac{501 - \mu_X}{\sigma_X}\right)$$

$$= P\left(Z \ge \frac{501 - 480}{21,91}\right)$$

$$= P(Z \ge 0,96)$$

$$= 1 - P(Z \le 0,96)$$

$$= 1 - A(0,96)$$

$$= 1 - 0,8315$$

$$= 0,1685(16,85\%).$$

#### Cálculo da Probabilidade

A probabilidade da média de clientes ultrapassar 18 clientes em 30 dias fica dada por

#### Cálculo da Probabilidade

A probabilidade da média de clientes ultrapassar 18 clientes em 30 dias fica dada por

$$P(\bar{X} > 18) \cong P\left(Z > \frac{18 - \mu_{\bar{X}}}{\sigma_{\bar{X}}}\right)$$

$$= P\left(Z > \frac{18 - 16}{0,73}\right)$$

$$= P(Z > 2,74)$$

$$= 1 - P(Z \le 2,74)$$

$$= 1 - A(2,74)$$

$$= 1 - 0.9969$$

$$= 0,0031(0,31\%).$$

### Exemplo 2

Sabe-se que numa corrida de revesamento de 42 km com 8 atletas (cada um correndo 5,25 km) o tempo que cada atleta demora para completar o percurso tem distribuição aproximadamente normal de média 30 minutos e desvio padrão de 8 minutos. Se 8 atletas são escolhidos ao acaso para um prova, qual a probabilidade da equipe completar o percurso em menos de 3 horas? E em mais de 4 horas? Qual é tempo que apenas 5% das equipes farão abaixo dele?

Dados do Problema

Seja *T*:tempo que um atleta demora para completar o percurso. Temos que

#### Dados do Problema

Seja T:tempo que um atleta demora para completar o percurso. Temos que

• 
$$E(T) = \mu = 30$$

#### Dados do Problema

Seja *T*:tempo que um atleta demora para completar o percurso. Temos que

- $E(T) = \mu = 30$
- $Var(T) = \sigma^2 = 8^2 = 64$

#### Dados do Problema

Seja *T*:tempo que um atleta demora para completar o percurso. Temos que

- $E(T) = \mu = 30$
- $Var(T) = \sigma^2 = 8^2 = 64$

### Soma Amostral

### Dados do Problema

Seja *T*:tempo que um atleta demora para completar o percurso. Temos que

- $E(T) = \mu = 30$
- $Var(T) = \sigma^2 = 8^2 = 64$

### Soma Amostral

• 
$$\mu_X = n \times \mu = 8 \times 30 = 240$$

#### Dados do Problema

Seja T:tempo que um atleta demora para completar o percurso. Temos que

- $E(T) = \mu = 30$
- $Var(T) = \sigma^2 = 8^2 = 64$

### Soma Amostral

- $\mu_X = n \times \mu = 8 \times 30 = 240$
- $\sigma_X^2 = n \times \sigma^2 = 8 \times 64 = 512$

#### Dados do Problema

Seja *T*:tempo que um atleta demora para completar o percurso. Temos que

- $E(T) = \mu = 30$
- $Var(T) = \sigma^2 = 8^2 = 64$

### Soma Amostral

- $\mu_X = n \times \mu = 8 \times 30 = 240$
- $\sigma_X^2 = n \times \sigma^2 = 8 \times 64 = 512$
- $\sigma_X = \sqrt{512} \cong 22,63$

#### Cálculo da Probabilidade

A probabilidade da equipe completar o percurso em menos de 3 horas (180 minutos) fica dada por

#### Cálculo da Probabilidade

A probabilidade da equipe completar o percurso em menos de 3 horas (180 minutos) fica dada por

$$P(X < 180) = P\left(Z < \frac{180 - \mu_X}{\sigma_X}\right)$$

$$= P\left(Z < \frac{180 - 240}{22,63}\right)$$

$$= P(Z < -2,65)$$

$$= P(Z > 2,65)$$

$$= 1 - P(z \le 2,65)$$

$$= 1 - 0,996$$

$$= 0,004(0,4\%).$$

#### Cálculo da Probabilidade

A probabilidade da equipe completar o percurso em mais de 4 horas (240 minutos) fica dada por

#### Cálculo da Probabilidade

A probabilidade da equipe completar o percurso em mais de 4 horas (240 minutos) fica dada por

$$P(X > 240) = P\left(Z > \frac{240 - \mu_X}{\sigma_X}\right)$$

$$= P\left(Z > \frac{240 - 240}{22,63}\right)$$

$$= P(Z > 0)$$

$$= 0,5(50\%).$$

### Cálculo do Tempo

Seja  $t_0$  o tempo superado por 95% das equipes (apenas 5% das equipes fazem abaixo desse tempo). Temos que

### Cálculo do Tempo

Seja  $t_0$  o tempo superado por 95% das equipes (apenas 5% das equipes fazem abaixo desse tempo). Temos que

$$P(X < t_0) = P\left(Z < \frac{t_0 - \mu_X}{\sigma_X}\right)$$
$$= P\left(Z < \frac{t_0 - 240}{22,63}\right)$$
$$= P(Z < a) = 0,05,$$

### Cálculo do Tempo

Seja  $t_0$  o tempo superado por 95% das equipes (apenas 5% das equipes fazem abaixo desse tempo). Temos que

$$P(X < t_0) = P\left(Z < \frac{t_0 - \mu_X}{\sigma_X}\right)$$
$$= P\left(Z < \frac{t_0 - 240}{22,63}\right)$$
$$= P(Z < a) = 0,05,$$

em que  $a = (t_0 - 240)/22,63$ . Pela tabela normal a = -1,64. Assim, obtemos  $t_0 = 240 - 1,64 \times 22,63 \cong 203$  minutos.