Regola di Leibniz

Alessio Serraino

March 6, 2016

<u>Teorema:</u> (Regola di Leibniz) Sia $\{a_n\}$ una successione monotona decrescente a termini definitivamente positivi. Sia inoltre $a_n \to 0$ per $n \to +\infty$.

Allora $\sum (-1)^n \cdot a_n$ è convergente, inolre la successione delle somme parziali di indice pari tende monotonamente a l, così come la successione delle somme parziali di indice dispari.

Dimostrazione:

Consideriamo la successione delle somme parziali di indice pari s_{2n}

$$s_0 = a_0$$

 $s_2 = a_0 - a_1 + a_2$
 $s_4 = a_0 - a_1 + a_2 - a_3 + a_4$

Poichè $a_1 > a_2$ per ipotesi $s_2 < s_0$, $a_3 > a_4$ per ipotesi $s_4 < s_2 < s_0$, in genere $s_{2(n+1)} < s_{2n} < s_0$. Quindi la successione s_{2n} è monotona decrescente. Consideriamo la successione delle somme parziali di indice dispari s_{2n+1}

$$s_1 = a_0 - a_1$$

 $s_3 = a_0 - a_1 + a_2 - a_3$
 $s_5 = a_0 - a_1 + a_2 - a_3 + a_4 - a_5$
...

Osserviamo che $s_1 < s_0$, $s_3 < s_2$, ..., in genere $s_{2n+1} < s_{2n}$. Inoltre analogamente alla successione delle somme parziali di indice pari possiamo costruire la catena di disequazioni $s_1 > s_{2n-1} > s_{2n+1}$. Quindi la successione s_{2n+1} è monotona decrescente, e superiormente limitata da ogni termine di s_{2n} (per esempio s_0). s_{2n} Invece è decrescente ed inferiormente limitata da ogni termine di s_{2n+1} (per esempio s_1). Quindi per il teorema di monotonia entrambe convergono.

$$s_{2n} \rightarrow l_1 \in \mathbb{R}$$

 $s_{2n+1} \rightarrow l_2 \in \mathbb{R}$

Ma la differenza $s_{2n} - s_{2n+1} = a_{2n+1}$. Il secondo termine tende a 0 per ipotesi, quindi passando al limite si verifica che: $l_1 - l_2 = 0$, ovvero $l_1 = l_2 = l$.

A questo punto abbiamo che entrambe le successioni $\{a_{2n}\}$ e $\{a_{2n+1}\}$ si mantengono definitivamente in un intorno di l, ovvero la successione $\{s_n\}$ si mantiene sempre in un intorno di l. Ne se gue che $s_n \to l \in \mathbb{R}$. Dimostrando il primo punto del teorema, $\sum {(-1)}^n \cdot a_n$ converge.

Inoltre osserviamo che s_{2n} è monotona decrescente, e si mantiene sempre

Inoltre osserviamo che s_{2n} è monotona decrescente, e si mantiene sempre strettamente sopra l. s_{2n+1} invece è monotona crescente, e si mantiene sempre strettamente sotto l. Quindi $s_{2n} \downarrow l$, ed $s_{2n+1} \uparrow l$, dimostrando il secondo punto.