الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

الدورة الاستثنائية: 2017

وزارة التربية الوطنية امتحان بكالوريا التعليم الثانوي

الشعبة: رياضيات

المدة: 04 سا و 30 د

اختبار في مادة: رياضيات

على المترشح أن يختار أحد الموضوعين الآتيين: الموضوع الأول

يحتوي الموضوع الأول على 03 صفحات (من الصفحة 1 من 5 إلى الصفحة 3 من 5)

التمرين الأول: (04 نقاط)

 $.63x + 5y = 159 \cdots (E)$ نعتبر المعادلة (E) ذات المجهولين الصّحيحين x و x

- 1) تحقّق أنّ العددين 5 و 63 أوّليان فيما بينهما ثمّ بيّن أنّ المعادلة (E) تقبل حلولا.
- . (E) عادت الثّنائية $(x\,;y)$ علاّ للمعادلة (E) فإنّ (E) غين الثّنائية ولا المعادلة ($(x\,;y)$ علاّ المعادلة ($(x\,;y)$
- .5 عدد طبيعي يكتب $\overline{\delta \alpha 0 \alpha}$ في نظام التّعداد ذي الأساس 7 ويكتب $\overline{\beta 10 \beta 0}$ في نظام التعداد ذي الأساس 5. جد العددين الطّبيعيين α و β ثمّ اكتب العدد α في النظام العشري.
 - .5 على 3 n ادرس حسب قيم العدد الطبيعى n ، باقى القسمة الإقليدية للعدد n على n
- ب) عيّن قيم العدد الطبيعي n حتّى يقبل العدد (x;y) عيّن قيم العدد الطبيعي n حتّى يقبل العدد (x;y) عيّن (x;y) المعادلة (E) و (x;y)

التمرين الثاني: (04 نقاط)

الفضاء منسوب إلى المعلم المتعامد المتجانس $(O;\vec{i},\vec{j},\vec{k})$ حيث المعلم المتعامد المتجانس

$$\begin{cases} x=3t \\ y=t+1 \end{cases}$$
 : $(t\in\mathbb{R})$ المعرّف بالتّمثيل الوسيطي الآتي $A(-\frac{2}{3};2;0)$ نعتبر النّقطة $z=-t+1$

- . (Δ) (Δ) الذي يشمل A ويحوي (Δ) الذي يشمل A ويحوي (Δ) الذي يشمل A ويحوي (Δ). الذي يشمل Δ ويعامد (Δ). بيّن أنّ Δ ويعامد (Δ).
 - $m \ x (m-2)y + 2(m+1)z m 4 = 0$ لتكن (P_m) من الفضاء حيث M(x;y;z) من الفضاء $m \ x (m-2)y + 2(m+1)z m 4 = 0$ و m وسيط حقيقي.

 (Δ) برهن أنّ : من أجل كل عدد حقيقي (P_m) ، ستو، ثمّ بيّن أنّ كل المستويات (P_m) تتقاطع وفق

 (P_m) أي تحقّق أنّ المستوي (P) هو المستوي (P_0) ثمّ عيّن قيمة الوسيط الحقيقي (P_m) التي يكون من أجلها و (P_m) متعامدين.

(Q) و (P_{-4}) ، (P_0) استنتج إحداثيات H نقطة تقاطع المستويات الثّلاث الثري و (P_{-4})

التمرين الثالث: (05 نقاط)

.
$$2z^2 - 10z + \frac{29}{2} = 0$$
 : المجهول تا المجهول المعادلة المعادلة المعادلة $\mathbb C$ المعادلة المركبة المعادلة المعادلة

. ($O; \overrightarrow{u}, \overrightarrow{v}$) المستوي المركب منسوب إلى المعلم المتعامد المتجانس (II

$$z_{D}=i$$
 و $z_{C}=-\overline{z}_{A}$ ، $z_{B}=rac{3}{2}\,e^{-irac{\pi}{2}}$ ، $z_{A}=rac{3}{2}+\sqrt{2}\,e^{irac{\pi}{4}}$ و $z_{C}=i$ و $z_{C}=0$ نعتبر النّقط $z_{C}=0$ و $z_{C}=0$ و $z_{C}=0$ و $z_{C}=0$ و $z_{C}=0$ نعتبر النّقط $z_{C}=0$ و $z_$

السّابق. $C \cdot B \cdot A$ و D و $C \cdot B \cdot A$ الشّكل الجبري ثمّ علّم النّقط المعلم السّابق. z_B و المعلم السّابق.

.
$$ABC$$
 على الشّكل الأسّي ثمّ استنتج طبيعة المثلث على الشّكل الأسّي ثمّ استنتج طبيعة المثلث $z_C - z_B$

- . ABCE جد لاحقة النّقطة E نظيرة B بالنسبة إلى D ثمّ استنتج طبيعة الرباعى E
- (3) اكتب العبارة المركبة للتّشابه المباشر S الذي مركزه B ويحوّل A إلى D ثمّ حدّد نسبته وزاويته.

$$egin{aligned} \left(A_n & Z_n
ight) & A_{n+1} = S(A_n) & e^{-i\frac{\pi}{4}(n+1)} \end{aligned}$$
 و $A_0 = A : كما يلي $A_0 = A : A_n$ كما يلون (4 A_n كما يلون النقط A_n كما يلون ا$

(AB) عين قيم n الطبيعية حتّى تنتمى النّقط A_n إلى المستقيم

التمرين الرابع: (07 نقاط)

 $g(x) = x + 2 - \ln x$ نعتبر الدّالة g المعرّفة على g(x) = 0 نعتبر الدّالة g(x) = 0 ثمّ استنتج إشارة g(x) .

.
$$f(x) = \frac{1}{2} \left(-x + e - \frac{\ln(x^2)}{x} \right)$$
: كما يلي \mathbb{R}^* كما يلي الدّالة f المعرّفة على (II

. $\|\vec{i}\| = 1$ مين عبد المستوي المنسوب إلى المعلم المتعامد المتعامد المتجانس $\left(O; \vec{i}, \vec{j} \right)$ حيث المستوي المنسوب إلى المعلم المتعامد المتعامد

.
$$f$$
 الدّالة $f'(x) = \frac{-g(x^2)}{2x^2}$ ، غير معدوم x غير الدّالة x غير الدّالة الدّالة x غير الدّالة الدّالة الدّالة x غير الدّالة الدّالة

يانيا. f(-x)+f(x) غير معدوم x غير النّتيجة بيانيا. (2) غير معدوم البّتيجة بيانيا.

$$\lim_{x \to -\infty} f(x)$$
 و $\lim_{x \to -\infty} f(x)$ تُمّ استنتج و $\lim_{x \to +\infty} f(x)$ و $\lim_{x \to +\infty} f(x)$ و احسب (ب

f شكّل جدول تغيّرات الدّالة f

$$\cdot$$
(Δ) بيّن أنّ المستقيم (C_f) بالنّسبة إلى $y=-rac{1}{2}x+rac{e}{2}$ بالنّسبة إلى (Δ) بيّن أنّ المستقيم (Δ) بالنّسبة إلى (Δ) بيّن أنّ المستقيم (Δ) بيّن أنّ المستقيم (Δ) بالنّسبة إلى (Δ) بين أنّ المستقيم (Δ) بالنّسبة إلى (Δ)

. امهما للمنحنى
$$(C_f)$$
 معامل توجيه كل منهما يساوي $\left(-\frac{1}{2}\right)$ ثمّ جِد معادلة لكلِّ منهما.

$$eta$$
 و $lpha$ المنحنى فاصلتاهما محور الفواصل في نقطتين فاصلتاهما و $lpha$ و $lpha$ بيّن أنّ المنحنى $lpha<0.5<$ و $lpha<0.5<$

- (C_f) ارسم المماسين والمستقيم (Δ) ثمّ المنحنى (5
- . المنحنى $x(e-2m) = \ln(x^2)$ عيّن قيم الوسيط الحقيقي m حتّى تقبل المعادلة $x(e-2m) = \ln(x^2)$ حلاّ وحيدا (6
 - نرمز بـ (C_f) والمستقيمات التي معادلاتها ((C_f) نرمز بـ $(A(\alpha))$ والمستقيمات التي معادلاتها ((C_f)

.
$$x+2y=e$$
 $y=1$ $x=1$

$$A(\alpha) = \frac{1}{2} (\ln \alpha)^2 cm^2$$
 تحقّق أنّ

الموضوع الثانى

يحتوي الموضوع الثاني على صفحتين (من الصفحة 4 من 5 إلى الصفحة 5 من 5)

التمرين الأول: (04 نقاط)

$$B(3;6;2)$$
 ، $A(2;6;4)$: نعتبر النّقط $|i||=1$ نعتبر المعلم المتعامد المتجانس $O(;i,j,k)$ حيث $O(;i,j,k)$ حيث $x=1+2\alpha-12\beta$ $y=3+3\alpha+10\beta$: $(\alpha\in\mathbb{R}\;;\beta\in\mathbb{R})$: المعرّف بالتّمثيل الوسيطي $C(0;3;3)$ و المستوي $C(0;3;3)$ و $z=1+\alpha-6\beta$

- احسب الجداء السّلمي $\overrightarrow{AB} \cdot \overrightarrow{AC}$ ثمّ استنتج طبيعة المثلث ABC واحسب مساحته.
- . (P) معادلة للمستوى (ABC) واكتب معادلة ديكارتية للمستوى (x-5y+3z+6=0) تحقّق أنّ
 - 2x+3y+z-12=0: المستوي ذو المعادلة (Q) المستوي ذو المعادلة

بيّن أنّ المستويين (P) و (Q) متعامدان، ثمّ عيّن تمثيلا وسيطيا لـ (Δ) مستقيم تقاطعهما.

- .1 عدد حقیقي یختلف عن t نقطة من الفضاء إحداثیاتها t عند t عدد t عدد t عدد t نقطة من الفضاء إحداثیاتها (4
- . $\frac{35}{9}cm^3$ مجموعة النّقط M حتّى يكون حجم رباعي الوجوه MABC أصغر من أو يساوي

التمرين الثاني: (04 نقاط)

$$z^2-2(1-\sin\alpha)z+2(1-\sin\alpha)=0$$
 نعتبر في مجموعة الأعداد المركبة $\mathbb C$ ، المعادلة ((E) نعتبر في محدد حقيقي. (نرمز ب (E) نرمز ب (E) عدد حقيقي.

- $\cdot \alpha$ عيّن الحلّين z_1 و z_2 بدلالة (1
- $z_1^{2017} + z_2^{2017} = 1$ نضع $\alpha = \frac{\pi}{6}$ نضع (2
- . $(O; \overrightarrow{u}, \overrightarrow{v})$ المستوي المركب منسوب إلى المعلم المتعامد المتجانس (II

$$z_C=2z_A$$
 و $z_B=\overline{z}_A$ ، $z_A=rac{1}{2}+rac{\sqrt{3}}{2}i$ و $z_B=0$ و $z_B=0$ و نعتبر النّقط $z_A=0$ و $z_A=0$

- عيّن قيم العدد الطبيعي n التي يكون من أجلها $\left(rac{z_A}{z_B}
 ight)^n$ عددا حقيقيا موجبا تماما.
- z' النّعويل النّعطي الذي يحوّل النّعطة M ذات اللاّحقة z إلى النّعطة M' ذات اللاّحقة z' (2 . $z'=(1+z_A)z+2z_B$
 - عين طبيعة التّحويل S ثمّ حدّد عناصره المميّزة.
 - $k\in\mathbb{Z}$ و $\arg(\overline{z}-z_B)=-rac{\pi}{3}+2k\pi$ و π و m و m و m مجموعة النّقط m ذات اللّحقة ع
 - . تحقّق أنّ النّقطة C تنتمي إلى Γ ، ثمّ حدّد طبيعة Γ وأنشئها.

التمرين الثالث: (05 نقاط)

 $u_{n+1}=4u_n+1$ ، u_n عدد طبیعي $u_0=0$ عدد $u_0=0$ عدد الأوّل المعرّفة بحدِّها الأوّل عدد $u_0=0$ عدد المتتالية

 $u_n = \frac{1}{3}(4^n - 1)$ ، n عدد طبیعي (1 **(1**

ب) تحقّق أنّ: من أجل كل عدد طبيعي غير معدوم n العددان الطبيعيان u_{n+1} و u_{n+1} أوّليين فيما بينهما.

. $v_n = u_n + \frac{1}{3}$ ، n عدد طبیعي عدد (v_n) المعرّفة كما يلي: من أجل كل عدد طبيعي (v_n) المعرّفة كما يلي:

. v_0 أثبت أنّ المتتالية (v_n) هندسية يطلب تعيين أساسها q وحدّها الأوّل أ

 $S_n = v_0 + v_1 + v_2 + \dots + v_{3n}$ عبّر بدلالة n عن المجموع S_n حيث عبّر بدلالة

 $4^{n+1}-1$ و $1^{n}-1$ و $1^{n}-1$ عيّن من أجل كل عدد طبيعي 1^{n} غير معدوم ، القاسم المشترك الأكبر للعددين الطبيعيين $1^{n}-1$ و $1^{n}-1$

4) أ) ادرس حسب قيم العدد الطبيعي n ، باقي القسمة الإقليدية للعدد 4^n على 7 .

.7 القسمة على 7. $A_n = 9S_n - 6n - 3^{6n+4}$: المعرّف ب A_n المعرّف ب A_n القسمة على 7. القسمة على 7. التمرين الرابع A_n نقاط)

. $\|\vec{i}\| = 1cm$: حيث $(O; \vec{i}, \vec{j})$ المستوي منسوب إلى المعلم المتعامد المتعام

. نعتبر الدّالة f المعرّفة على $\mathbb R$ كما يلي: $f(x) = (x+1)^2 e^{-x}$ كما يلي (I

 $\lim_{x\to +\infty} f(x)$ و $\lim_{x\to -\infty} f(x)$ احسب (1

ادرس اتجاه تغیّر الدّالة f ثمّ شكّل جدول تغیراتها.

. (C) . ثمّ ارسم المنحنى (C) يقبل نقطتي انعطاف يطلب تعيين إحداثييهما، احسب (f(-2) ، ثمّ ارسم المنحنى (f(-2)

 $f_m(x) = (x^2 + mx + 1) e^{-x}$: يلكن m وسيط حقيقي ، نعتبر الدّالة f_m المعرّفة على \mathbb{R} كما يلي (II وليكن (C_m) تمثيلها البياني في المعلم السابق.

. أثبت أنّ جميع المنحنيات (C_m) تشمل نقطة ثابتة ω يطلب تعيين إحداثييها (1

ادرس اتجاه تغير الدّالة f_m واستنتج قيم m التي من أجلها تقبل الدّالة f_m قيمتين حدّيتين يطلب تعيينهما.

. $x_m=1-m$ نقطة من المنحنى (C_m) فاصلتها M_m حيث M_m نقطة من المنحنى m يمسح m فإنّ تتمى إلى منحن يطلب تعيين معادلة له.

. (C_m) و (C) ادرس حسب قيم الوسيط الحقيقي $m \neq 2$ ، حيث $m \neq 2$ ، حيث (C) و (C_m)

احسب بدلالة العدد الحقيقي الموجب تماما α ، α مساحة الحيز المستوي المحدّد بالمنحنيين . $\lim_{\alpha\to +\infty}A(\alpha)$: والمستقيمين اللّذين معادلتيهما: 0 و x=0 و x=0 و المستقيمين اللّذين معادلتيهما: x=0

انتهى الموضوع الثاني

الإجابة النموذجية لموضوع اختبار مادة : الرياضيات /الشعبة : رياضيات / بكالوريا استثنائية : 2017

العلامة		äula VI. valie
مجموع	مجزأة	عناصر الإجابة

الموضوع الأول

		552-65-3
		التمرين الأول: (04نقاط)
	0.25	1)التحقّق أنّ العددين 5 و 63 أوّليان فيما بينهما.
0.50	0.25	. تبيين أنّ المعادلة (E) تقبل حلولا
	0.50	$x\equiv 3\lceil 5 ceil$ البرهان أنّه إذا كانت الثّنائية $(x;y)$ حلاّ للمعادلة (E) فإنّ (E)
01.25		استنتاج حلول المعادلة (E) .
	0.75	$S_{(E)} = \left\{ \left(5k+3\;; -63k-6 ight)/k \in \mathbb{Z} ight\}$ هي $\left(E ight)$ هي المعادلة
		: eta ایجاد العددین الطّبیعیین $lpha$ و
	0.25	$0 \le eta < 5$ یکافئ $a = \overline{5\alpha0\alpha}^7 = \overline{\beta10\beta0}^5$ مع $a < 7 \ge 0$ و $a < 7 \ge 0$
		$0\!\leq\!eta\!<\!5$ تكافئ $9\!\leq\!eta\!<\!5$ مع $0\!\leq\!lpha\!<\!7$ و
01	0.50	etaبالتالي نجد $lpha=6$ و $lpha=3$
	0.25	$\lambda+2=2017$ كتابة العدد $2+\lambda$ في النظام العشري:
		4) أ) دراسة حسب قيم العدد الطبيعي n ، بواقي القسمة الإقليدية للعدد 3^n على 5 .
	0.75	$3^{4p} \equiv 1[5], 3^{4p+1} \equiv 3[5], 3^{4p+2} \equiv 4[5], 3^{4p+3} \equiv 2[5], p \in \mathbb{N}$
01.25		ب) قيم العدد الطبيعي n حتّى يقبل العدد $+4n+1438^{2017}$ القسمة على $+3$:
	0.50	$3+4n+3\equiv 0[5]$ تكافئ $3^{x-y}+4n+1438^{2017}\equiv 0[5]$
	0.30	$n = 5k'+1, k' \in \mathbb{N}:$ اي
		التمرين الثاني: (04 نقاط)
	0.25	اً) التحقّق أنّ النّقطة A لا تنتمي إلى (Δ) .
	0.50	كتابة تمثيل وسيطي للمستوي (P) الذي يشمل A ويحوي (Δ) .
01	4	$\int x = -\frac{2}{3} + 3\alpha - \frac{2}{3}\beta$
		$\begin{cases} y = 2 + \alpha + \beta & , (\alpha; \beta) \in \mathbb{R}^2 \end{cases}$
		$z = -\alpha - \beta$
	0.25	
	0.25	(Δ) بيان أنّ $x+y-z=0$ هي معادلة ديكارتية للمستوي (Q) الذي يشمل A و يعامد (Δ) .
	0.25	رهان أنّ: من أجل كل عدد حقيقي (P_m) ، ستو (P_m) مستو المان أنّ: من أجل كل عدد حقيقي (P_m)
	0.25	بما أن المعادلة الديكارتية من الشكل $ax+by+cz+d=0$ و لاتوجد قيمة لـ m تحقق $(m;-m+2;2m+2)=(0;0;0)$ فإن من أجل كل $(m;-m+2;2m+2)=(0;0;0)$
		(m, m, 2, 2m, 2)

الإجابة النموذجية لموضوع اختبار مادة : الرياضيات /الشعبة : رياضيات / بكالوريا استثنائية : 2017

العلامة		7.1.50
مجموع	مجزأة	عناصر الإجابة
0.75		(Δ) تتقاطع وفق (Δ) . تتقاطع وفق تتقاطع وفق المستويات تتقاطع وفق تتبيين أنّ كل المستويات (P_m)
		m(x-y+2z-1)+(2y+2z-4)=0 تكافئ $m(x-y+2z-1)+(2y+2z-4)=0$ تكافئ
	0.50	$x-(m-2)y+2(m+1)z-m-4=0:\mathbb{R}$ من اجل کل m من اجل کل من
		(Δ) إذن جميع المستويات تتقاطع وفق مستقيم ثم نتحقق أنه $x-y+2z-1=0$ إذن جميع المستويات تتقاطع وفق المستويات $2y+2$
	0.25	. (P_0) هو المستوي (P) هو المستوي أنّ المستوي (P_0) هو المستوي (P_0) هو المستوي (P_0) هو المستوي
0.1		تعيين قيمة الوسيط الحقيقي m التي يكون من أجلها (P_m) و (P_0) متعامدين:
01	0.25	$m{=}{-}4$ يعامد (P_0) من أجل (P_m)
		(Q) باستنتاج إحداثيات H نقطة نقاطع المستويات الثّلاث (P_{-4}) ، و
	0.50	$(P_0) \cap (P_{-4}) \cap (Q) = (\Delta) \cap (Q) = \{H(0;1;1)\}$
	0.25	4) تبيين أنّ المثلث AOH قائم ·
		$rac{11}{9}cm^3$ هو $MAOH$ وحداثيات النقط M من المستقيم Δ حتى يكون λ حجم رياعي الوجوه
01.25	0.25	$v = \frac{11}{9} t $ نجد :مساحة AOH تساوي AOH نجد
	0.25	
		t=-1 بالتالي $t=1$ يكافئ $t=1$ أو $t=1$ أو
	0.50	. ي 13;2;0) $M(-3;0;2)$
		التمرين الثالث: (05 نقاط)
0.50	0.50	$S = \left\{ \frac{5}{2} - i \right. ; \frac{5}{2} + i \right\} \cdot 2z^2 - 10z + \frac{29}{2} = 0 :$ حل المعادلة (I
	0.50	$z_B=-rac{3}{2}\;i\;$ و $z_A=rac{5}{2}+i:$ و کتابة العددین z_B و کتابة العددین (أ (1 (II
		$\cdot \; D$ و $C \cdot B \cdot A$ و تعليم النّقط
01.75		
	0.50	
	0.25	$rac{z_A-z_B}{z_C-z_B}$ ب) الكتابة على الشّكل الآسي: $e^{-irac{\pi}{2}}$
	0.50	المثلث ABC قائم في B و متساوي الساقين.

الإجابة النموذجية لموضوع اختبار مادة : الرياضيات /الشعبة : رياضيات / بكالوريا استثنائية : 2017

العلامة		7.1.81
مجموع	مجزأة	عناصر الإجابة
0.50	0.25	$Z_D = rac{7}{2}i$: D نظيرة B بالنسبة إلى (3) لاحقة النّقطة
0.50	0.25	. مربع ABCD
0.1	0.50	z'العبارة المركبة للتشابه المباشر S الذي مركزه B ويحوّل A إلى D هي : $(3$
01	0.50	تحدید النسبة و الزاویة للتشابه $rac{\pi}{2}:S$ و $rac{\pi}{4}$ زاویة له.
	0.75	$z_n - z_B = 5 \left(rac{\sqrt{2}}{2} ight)^{n+1} e^{irac{\pi}{4}(n+1)}$ ، n عدد طبیعي (أ (4) البرهان بالتّراجع أنّ : من أجل كل عدد طبیعي
01.25	0.25	$rg(z_n-z_B)=rg(z_0-z_B)$ ب النَقط A_n تنتمي إلى π النَقط π تنتمي إلى النَقط تكافئ π تكافئ π تكافئ π تكافئ π
	0.25	$n=4k$ $(k\in\mathbb{N})$: نجد
		التمرين الرابع:(07 نقاط)
	0.25	$g'(x) = rac{x-1}{x}$: الدالة المشتقة : g الجاه تغيّر الدّالة g الحام الدّالة المشتقة : $g'(x) = rac{x-1}{x}$
0.75	0.25	$[1;+\infty[$ الدالة g متناقصة تماما على المجال $[1;0]$ و متزايدة تماما على المجال
	0.25	$g(x) \! > \! 0$: نن $g(x) \! \geq \! 3$ ، $g(x) \! \geq \! 3$ ، $g(x) \! \geq \! 3$ اذن $g(x) \! \geq \! 3$
0.50	0.25	$f'(x) = \frac{-g(x^2)}{2x^2}$ ، غير معدوم x غير معدوم (x غير أنّ : من أجل كل عدد حقيقي x غير معدوم (x
	0.25	$]0\;;+\infty$ و $[0\;]-\infty;0$ و اتجاه تغیّر الدّالة $[0\;]0\;;+\infty$ متناقصة تماما على كل من المجالين
	0.25	f(-x)+f(x)=e غير معدوم x غير معدوم (1) أ من أجل كل عدد حقيقي أ غير معدوم
	0.25	تفسير النّتيجة بيانيا: المنحنى (C_f) يقبل النقطة $\Omega(0;rac{e}{2})$ مركز تناظر له.
	0.50	$\lim_{x \to \infty} f(x) = +\infty$ و $\lim_{x \to +\infty} f(x) = -\infty$ (ب
01.75	0.50	$\lim_{x \to \infty} f(x) = \lim_{-x \to \infty} (e - f(-x)) = -\infty \lim_{x \to \infty} f(x) = \lim_{-x \to +\infty} (e - f(-x)) = +\infty$
		f جدول تغیّرات الدّالة f
O	0.25	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

الإجابة النموذجية لموضوع اختبار مادة : الرياضيات /الشعبة : رياضيات / بكالوريا استثنائية : 2017

العلامة			
مجموع	مجزأة	عناصر الإجابة	
	0.25	$:(C_f)$ تبيين أنّ المستقيم (Δ) ذا المعادلة $y=-rac{1}{2}x+rac{e}{2}$ مقارب لـ مقارب المعادلة $\lim_{ x \to+\infty}\left[f(x)-(-rac{1}{2}x+rac{e}{2}) ight]=0$	(I)
0.75	0.50	(Δ) بالنسبة إلى (Δ) : $x\in]-\infty;-1[\cup]0;1[$	(_م
		$A_{ m l}\left(1;rac{e-1}{2} ight)$ متقاطعان في النقطتين $A_{ m -l}\left(-1;rac{e+1}{2} ight)$ متقاطعان في النقطتين	ٔ و ۱
	0.50	$-rac{1}{2}$ اثنات أنّه يوجد مماسان للمنحنى (C_f) معامل توجيه كل منهما يساوي $x_1=-e$ و $x_0=e$ و $g(x^2)=x^2$ تكافئ $f'(x)=-rac{1}{2}$	
01.50	0.50	$(T_{-e}): y = -\frac{1}{2}x + \frac{e}{2} + \frac{1}{e}$ و $(T_e): y = -\frac{1}{2}x + \frac{e}{2} - \frac{1}{e}:$ عادلة لكلِّ من المماسين	مع
	0.50	eta ببيين أنّ المنحنى (C_f) يقطع حامل محور الفواصل في نقطتين فاصلتاهما $lpha$	ب
		-0.5 < β < -0.4 و 2 < α < 2.1	
	0.25) رسم : المماسين .	(5
	0.25	رسم : المستقيم (Δ) .	
0.75	0.25	$: (C_f)$	

الإجابة النموذجية لموضوع اختبار مادة : الرياضيات /الشعبة : رياضيات / بكالوريا استثنائية : 2017

(مة	العلا	7.1.541 12-
مجموع	مجزأة	عناصر الإجابة
0.50	0.25	حلاً وحيدا: $x(e-2m) = \ln(x^2)$ حلاً وحيدا: $x(e-2m) = \ln(x^2)$ عيين قيم الوسيط الحقيقي $x(e-2m) = \ln(x^2)$ تكافئ $x(e-2m) = \ln(x^2)$ مجموعة قيم x هي $x = \frac{1}{2} + \frac{1}{e}$ عن $x = \frac{1}{2} + $
0.50	0.25	$A(\alpha) = \int_{1}^{\alpha} \left[y - f(x) \right] dx = \frac{1}{2} \int_{1}^{\alpha} \left[\frac{\ln(x)}{x} \right] dx : A(\alpha) $
	0.25	$A(\alpha) = \frac{1}{2} \left(\ln \alpha \right)^2 cm^2$: التحقق أن

الإجابة النموذجية لموضوع اختبار مادة : الرياضيات /الشعبة : رياضيات / بكالوريا استثنائية : 2017

العلامة		7.1.21
مجموع	مجزأة	عناصر الإجابة

الموضوع الثاني:

**	* · · · · · · · · · · · · · · · · · · ·				
العلامة		عناصر الإجابة			
مجموع	مجزأة				
		التمرين الأول : (04)نقاط)			
	0.25	$\overrightarrow{AB}.\overrightarrow{AC}=0:\overrightarrow{AB}\overrightarrow{AC}$ عساب الجداء السّلمي (1			
01	0.25	$.S_{ABC}^{}=rac{\sqrt{70}}{2}u.a:$ المثلث ABC قائم في A مساحته			
	0.50	2			
01	0.50	. (ABC) معادلة للمستوي $6x-5y+3z+6=0$ معادلة (2			
O1	0.50	x-2z+1=0 : (P) معادلة المستوي			
	0.25	و (Q) و (P) متعامدان. (Q) تبيين أنّ المستويين (P)			
	0.75	تعیین تمثیل وسیطی لـ (Δ) مستقیم تقاطعهما:			
01		$\int x = 1 - 12\beta$			
		$\begin{cases} y = 3 + 10\beta & (\beta \in \mathbb{R}) \end{cases}$			
		$z=1-6\beta$			
		مجموعة النقط M حتّى يكون حجم رباعي الوجوه $MABC$ أصغر من أو يساوي M خيين (Γ) مجموعة النقط M			
	0.25	$V = \frac{1}{3}S_{(ABC)} \times d(M; (ABC)) = \frac{35 t-1 }{9}u.v$ لدينا			
01	0.25	$t\in [0;1[\cup]1;2]$ معناه $V<rac{35}{9}u.v$			
		x = 2t - 1			
	0.50	$K(1;3;1)$ القطعة المستقيمة المعرفة كما يلي $X = -rac{5}{3}t + rac{14}{3}$ $Y = -rac{5}{3}t + rac{14}{3}$ القطعة المستقيمة المعرفة كما يلي $Y = -rac{5}{3}t + rac{14}{3}$			
	4	z=t			
		التمرين الثاني: (04 نقاط)			
		lpha : $lpha$ بدلالة $lpha$ بدلالة $lpha$ بدلالة (1 ($lpha$			
0.75	0.25	$\Delta = -4\cos^2\alpha = (2i\cos\alpha)^2$			
	0.50	$1-\sinlpha+i\coslpha$ و $1-\sinlpha-i\coslpha$			
		$z_1^{2017} + z_2^{2017} = 1$ تبيين أنّ: 1			
0.50	0.50				

الإجابة النموذجية لموضوع اختبار مادة : الرياضيات /الشعبة : رياضيات / بكالوريا استثنائية : 2017

العلامة		المار
مجموع	مجزأة	عناصر الإجابة
01	0.25	ال تعیین قیم n بحیث یکون $(rac{Z_A}{Z_B})^n$ حقیقیا موجبا تماما. $(rac{Z_A}{Z_B})^n=e^{irac{2n\pi}{3}}$: لدینا
01	0.25	k $\frac{2n\pi}{3}=2k\pi$ عدد طبیعي موجب تماما یعني k $\frac{2n\pi}{3}=2k\pi$ عدد طبیعي و بالتالي k $n=3k$ عدد طبیعی
		(2) طبيعة التّحويل 3 و عناصره المميّزة :
01	0.25x4	. تشابه مباشر مرکزه النقطة C ، نسبته $\sqrt{3}$ و $\sqrt{6}$ و زاوية له $\sqrt{6}$
	0.25	: (Γ) تنتمي إلى (Γ) تنتمي إلى ((Γ)
	0.25	تحديد طبيعة (Γ) وإنشائها: AC . AC هي نصف المستقيم Γ
0.75	0.25	
		التمرين الثالث:(05 نقاط)
01.25	3x0.25	$u_n = \frac{1}{3}(4^n - 1)$ ، n عدد طبیعي (1) ازن: من أجل كل عدد طبیعي (1) عدد طبیعي
	0.50	ب) العددان الطبيعيان u_n و u_{n+1} أوّليان فيما بينهما. (مبرهنة بيزو أو أي طريقة أخرى).
1.25	0.25 2x0.25	$v_{n+1}=4.v_n:$ من أجل كل n طبيعي $v_{n+1}=4.v_n:$ الأساس و الحد الأول $v_0=rac{1}{3}$ ، $q=4:$ الأساس و الحد الأول
V	0.50	$S_n = \frac{1}{9} (4^{3n+1} - 1)$: S_n ب) المجموع (ب
0.75	0.75	: $4^{n+1}-1$ و 4^n-1 و 4^n-1 و 4^n-1 و 4^n-1 و 4^n-1 القاسم المشترك الأكبر للعددين الطبيعيين 4^n-1 و

الإجابة النموذجية لموضوع اختبار مادة : الرياضيات /الشعبة : رياضيات / بكالوريا استثنائية : 2017

العلامة		7.1.50
مجموع	مجزأة	عناصر الإجابة
	01	بواقي القسمة الإقليدية للعدد 4^n على 7 :
1.75	01	$4^{3p} \equiv 1[7], 4^{3p+1} \equiv 4[7], 4^{3p+2} \equiv 2[7] / p \in \mathbb{N}$
1.75	0.75	:7 قيم العدد الطبيعي n حتّى يقبل العدد A_n القسمة على A_n :
	0.75	$n=7k+1,/k\in IN$ تكافئ $A_n\equiv 0$
		التمرين الرابع: (07 نقاط)
0.50	0.50	$\lim_{x \to +\infty} f(x) = 0 \lim_{x \to -\infty} f(x) = +\infty \text{(1)} \text{(I)}$
	0.25	$f'(x) = (-x^2 + 1)e^{-x}$: لدينا : f اتجاه تغيّر الدّالة f
	0.25	$[-1;1]:$ الدالة f متناقصة تماما على المجالين: $[-1;1]:$ ∞ , $[-1;1]:$ و متزايدة تماما على المجال
		f الدالة f : f عنيرات الدالة
0.75		$x -\infty -1 +\infty$
	0.25	$f'(x)$ - ϕ + ϕ -
		$f(x)$ $+\infty$ $\frac{4}{e}$
	0.25	$f''(x) = (x^2 - 2x - 1)e^{-x}$ المنحنى (C) يقبل نقطتي انعطاف: لدينا (C
	0.70	(C) الدالة المشتقة الثانية تنعدم عند كل من $x_1 = 1 - \sqrt{2}$ و $x_1 = 1 - \sqrt{2}$ مغيرة إشارتها. أي للمنحني
	0.50	$(1+\sqrt{2};(2+\sqrt{2})^2e^{-\sqrt{2}-1})$ ، $(1-\sqrt{2};(2-\sqrt{2})^2e^{\sqrt{2}-1})$. نقطتي انعطاف
	0.25	$f(-2) = e^2$
1.50		رسم المنحني (C) :
	0.50	
	0.30	13
		ω : ω تشمل نقطة ثابتة (C_m) تشمل تقطة ثابتة (ω جميع المنحنيات (ω
0.50	0.50	$(x^2+1) e^{-x} - y + mx = 0$ ، \mathbb{R} من أجل كل m من
		$\omega(0;1):$ تعني $x=0$ و $x=0$ و $x=0$ إذن
	0.25	$f_m'(x) = (-x^2 + (2-m)x + m - 1)e^{-x}$: اتجاه تغیر الدّالة f_m : الدینا (2
		$-x^2+(2-m)x+m-1$ من إشارة f_m '(x) من إشارة
	0.35	$\Delta=m^2$: المميز
	0.25	

الإجابة النموذجية لموضوع اختبار مادة : الرياضيات /الشعبة : رياضيات / بكالوريا استثنائية : 2017

العلامة		7 1.891
مجموع	مجزأة	عناصر الإجابة
	0.25	. \mathbb{R} الدالة f_m متناقصة تماما على $m=0$
		$[1\ ; +\infty[$ و $]-\infty\ ; 1-m$ و $[1\ ; +\infty[$ و $m\succ 0$ الدالة $[m\succ 0]$ و الدالة $[m\succ 0]$
1.75	0.25	[1-m;1] ومتزايدة تماما على المجال
		$[1;1-m]$ ومتزایدة تماما علی $[m+\infty[$ و $]-\infty\;;1$ و متزایدة تماما علی m
	0.25	$m\in IR^*$: قيم m التي من أجلها تقبل الدّالة f_m قيمتين حدّيتين $m\in IR^*$
	0.50	$f_m\left(1-m ight)=(-m+2)e^{m-1}$ و $f_m\left(1 ight)=(2+m)e^{-1}: m\in IR^*$ القيمتين الحدّيتين من اجل
0.50	0.50	$y=(1+x)e^{-x}$: يندما m يمسح M_m ، تتتمي إلى منحن:لدينا $y=(2-m)e^{-1+m}$ أي M_m ، \mathbb{R} عندما
		. معادلة له $y=\left(1+x ight)e^{-x}$ بالتالي $M_{_{m}}:$ معادلة له
		$:(C_m)$ و (C) الوضعية النسبية للمنحنيين المنحنيين (C) و الوضعية النسبية المنحنيين المنحنيين المنحنيين (C_m)
		$f_m(x) - f(x) = (m-2)xe^{-x}$: (C _m) و (C) دراسة الوضع النسبي لـ (C) و
0.70	0.50	m>2: الحالة الأولى $m>2:$ مناب المراك ال
0.50		$x>0$ تحت (C_m) من أجل $x<0$ و (C_m) فوق (C_m) من أجل $m<2$: الحالة الثانية
		m < 2: الحالة النابية $x < 0$ من أجل $x < 0$ و $x < 0$ فوق $x < 0$ من أجل $x < 0$ تحت $x < 0$ من أجل $x < 0$ فوق $x < 0$ من أجل $x < 0$
		ω في الحالتين (C_m) و (C_m) يتقاطعان في النقطة ω
		A(lpha) المساحة ($lpha$ الموجب تماما الموجب تماما المساحة (5
01	0.50	$A(\alpha) = \int_{0}^{\alpha} [f_3(x) - f(x)] dx = \int_{0}^{\alpha} x e^{-x} dx = \left[(-x - 1)e^{-x} \right]_{0}^{\alpha}$: باستعمال المكاملة بالتجزئة نجد
	0.25	$A(\alpha) = (-\alpha e^{-\alpha} - e^{-\alpha} + 1)$ إذن :
	0.25	$\lim_{x \to +\infty} A(\alpha) = 1$