Basic Group Theory and Ring Theory

Yunhai Xiang

August 5, 2019

Contents

1	Groups and Subgroups	2
2	Cyclic Groups and Quotient Groups	2
3	Normal Subgroups	2
4	Isomorphisms and Homomorphisms	2
5	Group Actions	2
6	Fundamental Theory of Abelian Groups	2
7	Rings	2
8	Rings and Ideals	3

7 RINGS 2

- 1 Groups and Subgroups
- 2 Cyclic Groups and Quotient Groups
- 3 Normal Subgroups
- 4 Isomorphisms and Homomorphisms
- 5 Group Actions
- 6 Fundamental Theory of Abelian Groups
- 7 Rings

Definition 7.1. A **ring** is a group R under the operation $+: R \times R \to R$ (which we call the addition) and with an additional operation $\cdot: R \times R \to R$ (which we call the multiplication) such that for $a, b, c \in R$,

- 1. (ab)c = a(bc), and
- 2. a(b+c) = ab + ac and (b+c)a = ba + ca

Note that we denote $a \cdot b$ as ab, and a + (-b) as a - b. If a ring R is such that there exists $1 \in R$ such that 1a = a1 = a for all $a \in R$ then R is said to be **unital**. If a ring R is such that ab = ba for all $a, b \in R$, then R is said to be **communtative**.

Definition 7.2. Let R be a unital ring, and let $a \in R$ be nonzero. If there exists $b \in R$ such that ab = 1 then we say that b is the **inverse** of a and a is a **unit** or a is **invertible**, and we write $b = a^{-1}$. If there exists nonzero $b \in R$ such that ab = 0 then a is said to be a **zero** divisor.

Proposition 7.3 (Facts about units and zero divisors). Let R be a unital ring, then

- 1. $1 \in R$ is unique,
- 2. for a unit $a \in R$, a^{-1} is unique,
- 3. for a unit $a \in R$, $(a^{-1})^{-1} = a$,
- 4. a zero divisor is not a unit and a unit is not a zero divisor.

Definition 7.4. If R is a ring and $S \subseteq R$ is also a ring under the same operations then we say S is a **subring** of R.

8 Rings and Ideals

Definition 8.1. Let R be a unital ring, we define the **characteristic** of R as the least positive integer n such that the sum of n numbers of 1 is 0,

$$\operatorname{char} R = \min \{ n \in \mathbf{Z}^+ \mid \underbrace{1 + 1 + \dots + 1}_{n} = 0 \}$$

and if such positive integer does not exist, we say that the characteristic is infinite, and we write char $R = \infty$.

Proposition 8.2. If R is an integral domain then char R = 0 or char R = p for some prime p.

Proof. Suppose the converse that char R = ab for some integers 1 < a, b < n, since n = char R is the least positive integer such that $\sum_{i=1}^{n} 1 = 0$, we have $\sum_{i=1}^{a} 1 \neq 0$ and $\sum_{j=1}^{b} 1 \neq 0$, since R is an integeral domain,

$$0 \neq \left(\sum_{i=1}^{a} 1\right) \left(\sum_{j=1}^{b} 1\right) = \sum_{i=1}^{a} \sum_{j=1}^{b} 1 = \sum_{i=1}^{\operatorname{char} R} 1 = 0$$

a contradiction.

Definition 8.3. Let R be a ring, $S \subseteq R$ is a **subring** of R if S is also a ring under the same operations as R. If S is a subring of R and $S \neq R$ then we say S is a **proper subring**.

Proposition 8.4. (Subring Test) Let R be a ring and $S \subseteq R$ a nonempty subset, then S is a subring iff

- 1. $a, b \in S$ implies $a b \in S$, and
- 2. $a, b \in S$ implies $ab \in S$.

Definition 8.5. Let R be a ring and I a subring of R, then I is an **ideal** if $a \in I$, $r \in R$ implies $ar, ra \in I$. If I is an ideal of R and $I \neq R$ then we say I is a **proper ideal**.

Proposition 8.6. The only ideals of a field F are $\{0\}$ and F.

Definition 8.7. Let R be a communitative and unital ring then an ideal I of R is a **principle** ideal if there exists $x \in R$ such that $I = \langle x \rangle$, where

$$\langle x \rangle = \{ rx \mid r \in R \}$$

and we say that x is the **generator** of the ideal I. Moreover, an integral domain R is called a **principle ideal domain** if all of its ideals are principle ideals.