Cuerpo rígido | Tensores de inercia

- 1. Se tiene una barra de m=1 kg de sección despreciable frente a l=1 m. De alinear un eje (\hat{z}) con ella,
 - a) ; cuales son sus momentos de inercia?,
- b) ¿existen los productos de inercia?
- 2. Dibuje sistemas de ejes conveniente para calcular momentos de inercia.

- 3. Calcule para el sistema de ambas m (la masa de brazos y ejes es despreciable)
 - a) tensor de inercia $\overline{\overline{I}}$ respecto a A,
 - b) momento angular $\vec{L}\Big|_A = \overline{\overline{I}}\vec{\Omega}$ y torque $\vec{\tau} = \dot{\vec{L}}$.

La porción vertical de la barra se mantiene con rulemanes que impiden su movimiento vertical, pero posibilitan que el eje rote sin fricción con velocidad angular Ω , que puede no ser constante, respecto el marco inercial O_{xuz} .

- 4. Calcule los momentos de inercia para una molécula de H₂O. En CNPT se abre con un ángulo de 104,5° y median 95,84 pm entre O y H.
- 5. Tensor de inercia de un cubo con arista b. Encuentre:
 - a) Calcule el tensor de inercia desde el sistema de ejes x_i con origen en el centro de masa O.
 - b) Use la forma general del teorema de ejes paralelos de Steiner para calcularlo en el sistema X_i con origen en el vértice Q

6. En una plancha metálica se calaron dos aberturas en forma simétrica. Esta penduléa desde el punto A manteniendose siempre en el plano x, y por lo que es relevante conocer su momento de inercia I_{zz} . Por pesado se determinó la m de la planchuela calada y se midieron todas las dimensiones que indica la figura. Calcule I_{zz} desde A en función de esos datos.

7. Landau §32 6

Hallar la energía cinética de un cilindro homogéneo de radio a que rueda en el interior de una superficie cilíndrica de radio R.

8. Landau §32 2e y Landau §32 7

Mecánica General

DIT Departamento de Ingeniería mestigaciones Tecnológica

Calcule:

- a) En un sistema de ejes conveniente calcule el tensor de inercia de este cono homogéneo de altura h y radio en su base R.
- b) Energía cinética de dicho cono rodando sobre el plano XY. El contacto instantáneo \overline{OA} forma un X ángulo de θ con \hat{X} .

