Exercícios I – Sistemas de Numeração, Lógica e Álgebra de Boole

ICC0001 – Introdução à Ciência da Computação Prof. Diego Buchinger

Importante: Apresentar todos os cálculos realizadas e indicar a base dos números.

Questão 1: Realize as seguintes operações de conversão de base de números inteiros:

a)
$$17_{10} = X_2$$

e)
$$142_5 = X_{11}$$

b)
$$29_{10} = X_7$$

f)
$$CA_{16} = X_2$$

c)
$$76_{10} = X_{16}$$

g)
$$67_8 = X_{16}$$

d)
$$1011101_2 = X_7$$

h)
$$9A_{12} = X_7$$

Questão 2: Realize as seguintes operações de conversão de base de números reais:

a)
$$0.625_{10} = X_2$$

d) CAF,
$$E_{16} = X_4$$

b)
$$21,32_{10} = X_5$$

e)
$$61,7_8 = X_2$$

c)
$$2.7_{10} = X_3$$

f)
$$55,02_4 = X_{16}$$

Questão 3: Represente os números negativos a seguir em binário, utilizando os formalismos: magnitude com sinal, complemento a um, complemento a dois e excesso 2^{m-1} utilizando 8 bits:

- a) -11_{10}
- b) -67₁₀
- c) -119_{10}

Questão 4: Com base nos dados presentes na tabela a seguir, calcule os valores de A, B, C, D, E e F nas unidades de medida requisitadas, considerando a codificação 8b/10b (2 bits de paridade – controle / segurança). Leve em consideração que:

1 KiB =
$$1024$$
 bytes; 1 KB = 10^3 bytes
1 MiB = 1024 KiB; 1 MB = 10^6 bytes
1 GiB = 1024 MiB; 1 GB = 10^9 bytes
1 Kbps = 10^3 bits/s; 1 Mb = 10^6 bits/s;

Tamanho Arquivo	Velocidade Conexão	Velocidade Dados	Tempo de Download
55 MB	10 Mbps	A (MB/s)	B (seg)
C (MB)	D (kbps)	7 KiB/s	1 hora
1,5 GB	E (Mbps)	F (MiB/s)	12,5 min

Questão 5: Construa as tabelas verdade para as funções lógicas a seguir:

a)
$$F(A, B) = (A + B). B$$

b)
$$F(A, B) = \overline{B} + \overline{A} \cdot B$$

c)
$$F(A, B) = \overline{A.B} \oplus (B.A)$$

d)
$$F(A, B) = !(\overline{A}. B + A. B + B)$$

e)
$$F(A, B, C) = C.B + A.(B + C)$$

f)
$$F(A, B, C) = (A \rightarrow B) \leftrightarrow (B, C)$$

Questão 6: Considere o seguinte esquema abaixo com quatro "interruptores": A, B, C e D. Escreva as funções booleanas que descrevem o comportamento dos LEDs 1, 2, 3 e diga em quais situações (estados dos interruptores) cada LED ficará acesso.

Questão 7: Simplifique as seguintes funções algebricamente **E** desenhe um esquema gráfico para representar as funções simplificadas:

a)
$$F = \overline{A.B} + AB$$

b)
$$F = A.B.C + A + C + \overline{B}$$

c)
$$F = \overline{A}$$
, B, \overline{C} , D + A, B, C, D + \overline{A} , B, C, D + A, B, \overline{C} , D

d)
$$F = A.\overline{B} + A + A.B$$

e)
$$F = (A.B + A.C + A.D).(\overline{B + D})$$

f)
$$F = A \leftrightarrow (A + B)'$$

Questão 8: Considere uma câmera que tira fotos de 5 megapixels. Se todos os pixels forem representados por um conjunto de bits, qual o tamanho do arquivo para fotos: (a) preto e branco, (b) 256 tons de cinza, (c) colorida com 24 bits [truecolor].

Questão 9: Como seria representada a palavra "Olá" (sem as aspas) em binário, utilizando a notação de símbolos da tabela ASCII estendida, na qual cada símbolo é representado por 8 bits.

Questão 10: Além do modelo de representação de cores RGB, no qual cada cor é representada pela combinação das cores vermelho, verde e azul, existe também outro modelo chamado de HSV ou HSB. Faça uma pesquisa e descreva como funciona este tipo de representação de cores.