1. Clique

• Decision version of Clique Given a graph G = (V, E) and a target value k, does the graph have a clique (complete subgraph) on (at least) k vertices?

• Clique(D) is in \mathcal{NP}

A candidate solution t to this problem consists of a subset S of vertices. Given an instance (G, k) of Clique(D) and a candidate solution t, we can quickly confirm that (G, k) is a **yes** instance of Clique(D) —that is, G has a clique on k vertices— as follows: check that S contains k vertices; for every pair of vertices in S, confirm that there exists an edge between them. This requires, e.g., $O(n^2)$ time.

- Reduction from Independent Set(D) to Clique(D): Given an instance (G = (V, E), k) of IS(D), construct an instance (G' = (V, E'), k) of Clique(D) where E' contains precisely the edges that do not appear in G. The transformation from G to its complement G' requires polynomial time.
- Proof of equivalence of instances. Clearly an independent set S in G forms a clique in G', and vice versa. Equivalence of the instances is now straightforward.

2. Subgraph Isomorphism

- Decision version of Subgraph Isomorphism Given a graph G = (V, E) and another graph H, does G have a subgraph isomorphic to H?
- ullet Subgraph Isomorphism(D) is in \mathcal{NP}

A candidate solution t to this problem consists of a subgraph G' = (V', E') of G, where $V' \subseteq V, E' \subseteq E$ and a mapping f from the vertices in H to the vertices in G'. Given an instance (G, H) of Subgraph Isomorphism(D) and a candidate solution t, we can quickly confirm that (G, H) is a **yes** instance of the problem —that is, G contains a subgraph isomorphic to H— as follows: rename the vertices and edges in G' using the mapping f, and confirm that G' is identical to H.

• Reduction from Clique(D) to Subgraph Isomorphism(D): Given an instance (G, k) of Clique(D), construct the input (G, H) to Subgraph Isomorphism(D), where H is a clique on k vertices. The transformation requires polynomial time.

• Proof of equivalence of instances.

If G contains a clique of k vertices, then H is a subgraph of G. Conversely, if H is a subgraph of G, then G has a clique on k vertices.

3. Dense Subgraph

• Decision version of Dense Subgraph

Given a graph G = (V, E) and two integers a and b, does G have a subgraph on a vertices with at least b edges among them?

ullet Dense Subgraph(D) is in \mathcal{NP}

A candidate solution t to this problem consists of a subset S of vertices in G. Given an instance (G, a, b) of Dense Subgraph(D) and a candidate solution t, we can quickly confirm that (G, a, b) is a **yes** instance of the problem—that is, G contains a subgraph on a vertices with at least b edges among them— as follows: confirm S contains a vertices and ensure there are at least b edges among the a vertices (e.g., in time O(m)).

- Reduction from Clique(D) to Dense Subgraph(D) Given an instance (G, k) of Clique(D), construct the instance (G, a, b) of Dense Subgraph(D) where a = k, $b = \binom{k}{2}$. This requires O(1) time.
- Proof of equivalence of instances.

A clique on k vertices is the complete graph on k vertices, hence has $\binom{k}{2}$ edges. Equivalence of the instances is now straightforward.

• Decision version of (undirected) Dominating Set

Given an undirected graph G = (V, E) and a target value k, does the graph have a dominating set of size at most k?

ullet Dominating Set(D) is in \mathcal{NP}

A candidate solution t to this problem consists of a subset S of vertices. Given an instance (G, k) of Dominating Set(D) and a candidate solution t, we can quickly confirm that (G, k) is a **yes** instance of the problem —that is, G has a dominating set of size at most k— as follows: confirm that S contains K vertices; for every vertex $V \in V$, confirm that either $V \in S$ or there exists an edge (u, v) such that $u \in S$. This requires time O(n + m).

• Reduction from Vertex Cover(D) to Dominating Set(D):

We will transform an arbitrary instance of VC(D) into an instance of Dominating Set(D). Given a pair (G = (V, E), k), which is the input to VC(D), we will transform it into the input (G' = (V', E'), k) of Dominating Set(D) using the hint: for every edge $e = (u, v) \in E$, introduce a node $x_e \in V'$, and edges (u, x_e) and (x_e, v) .

Then V' consists of all the vertices in V and the new vertices x_e , and E' consists of all the edges in E and the new edges as above. Clearly the transformation requires polynomial time.

- Proof of equivalence of instances.
 - \Rightarrow Suppose G has a vertex cover S of size k. Then S is a dominating set of size k in G'. For suppose a vertex $u \in G'$ is not in S and none of its immediate neighbors is in S.
 - * If $u \in V$, then none of the edges incident to u is covered by S in G.
 - * If $u = x_e$ for some $e \in E$, then e is not covered in G.

In both cases, we conclude that S is not a vertex cover, thus contradicting our initial assumption.

 \Leftarrow Suppose S' is a dominating set of size k in G'. Construct a vertex cover S in G as follows: for every $v \in S' \cap V$, include v in S. For every $x_e \in S'$, include one of the endpoints of $e \in E$ in S.

Then the vertices in S form a vertex cover of size k in G. For suppose there is an edge e = (u, v) not covered by S. Then $u, v \notin S'$, and $x_e \notin S'$ (otherwise, u or v would appear in S). Then S' is not a dominating set in G': vertex x_e is not in S', and none of its two immediate neighbors u, v are in S' either.

• Decision version of node-disjoint paths

Given a directed graph G = (V, E), a collection of paths $P = \{P_1, \dots, P_c\}$ and a target value k, are there at least k node-disjoint paths in P?

ullet Node-disjoint paths(D) is in \mathcal{NP}

A candidate solution t to this problem consists of k subsets S_1, \ldots, S_k of vertices. Given an instance ((G, P), k) of Node-disjoint paths(D) and a candidate solution t, we can quickly confirm that ((G, P), k) is a **yes** instance of the problem—that is, G has k node-disjoint paths—as follows: first, confirm that each path S_j appears in the collection P; then for every vertex $i \in V$, ensure that it does not appear more than once in all of S_1, \ldots, S_k . Both of these steps can be implemented in polynomial time.

• Reduction from Independent Set(D) to Node-disjoint paths(D):

We will transform an arbitrary instance of Independent Set(D) into an instance of Node-disjoint paths(D). Given a pair (G = (V, E), k), which is the input to IS(D), we will transform it into the input $(G' = (V', E'), P_1, \ldots, P_c, k)$ of Node-disjoint paths(D) using the hint: for every edge $e \in E$, introduce a node $e \in V'$; make G' the complete directed graph on V'.

We now proceed to defining the collection of paths in G'. For every vertex $i \in S$, let Inc(i) be the set of its incident edges; then Inc(i) is a set of vertices in G'. Further, the vertices in Inc(i) form a path in G' (the order of the vertices in Inc(i) does not matter since G' is the complete graph on V'). We now define c = n, so that there are n possible paths in G', with path P_i defined by the set of vertices Inc(i). Thus each path in G' corresponds to a vertex in G.

Clearly the transformation can be completed in polynomial time.

- Proof of equivalence of instances.
 - \Rightarrow Suppose G has an independent set $S = \{v_1, \ldots, v_k\}$ of size k. We claim that the k paths defined by $Inc(v_1), \ldots, Inc(v_k)$ in G' are node-disjoint. For suppose a vertex $e \in V'$ appears in two paths, say, the paths corresponding to vertices i and j in S. Then $e \in Inc(i)$ and $e \in Inc(j)$, that is, e joins i and j. Hence S is not an independent set.
 - \Leftarrow Suppose there are k node-disjoint paths in G' from the collection of paths P_1, \ldots, P_n . We claim that the vertices in G corresponding to these paths form an independent set. For suppose P_i and P_j are among the k node-disjoint paths in G' but there is an edge e = (i, j) between vertices i and j in G. Then $e \in Inc(i)$ and $e \in Inc(j)$. Since $P_i = Inc(i)$ and $P_j = Inc(j)$, vertex e appears in both paths. Thus P_i and P_j are not node-disjoint.

1. We will reduce this problem to Max Flow, thus proving that it can be solved in polynomial time.

Given a directed G = (V, E) and two vertices $s, t \in V$, construct a flow network G' = (V, E, c), where s is the source, t is the sink and $c_e = 1$ for every edge $e \in E$. The transformation requires polynomial time.

We now claim that there are k simple edge-disjoint paths in G if and only if the value of the max flow in G' is at least k.

- \Rightarrow Suppose G has k simple edge-disjoint paths from s to t. Then we can send 1 unit of flow across each of these paths in G', obtaining a flow of value k in in G'.
- \Leftarrow Suppose the value of the max flow in G' is k. Since the capacities in the network are integers, by the integrality theorem, there is a max flow where every flow value is integer. Since every edge has a capacity of 1, every flow value in this integral max flow vector is either 0 or 1. By capacity constraints, for the max flow to have value k, there are k edges out of the source that each carry a flow of value 1. By flow conservation, each of these edges starts a path that must end at t. If the path is simple, it is one of the paths we are looking for; else if there is a cycle in the path, decrease the flow along the cycle to be 0: we now have a simple s-t path along which the flow is 1.

Note that the k simple paths constructed in this way are indeed edgedisjoint: for suppose two paths starting at s, ending at t and each carrying a flow of value 1 shared an edge that does not leave s or enter t. Then the flow on this edge should be at least 2, violating capacity constraints.

2. We will reduce this problem to the problem of finding k edge-disjoint paths in a directed graph.

Given a directed graph G = (V, E) and two special vertices s, t, construct a flow network G' = (V, E, c) where s is the source, t is the sink, all edges have capacity 1 and all vertices (except for s, t) have capacity 1.

We will show that G has k **node**-disjoint s-t paths if and only if the max flow in G' is at least k.

 \Rightarrow Suppose G has k node-disjoint paths from s to t. Then we can send 1 unit of flow across each of these paths in G'. Clearly the resulting flow in G' satisfies all node / edge capacity constraints, and flow conservation constraints, and its value is k.

 \Leftarrow Suppose the value of the max flow in G' is k.

Let G'' be the flow network where every node u is replaced by two new uncapacitated nodes u_{in} and u_{out} , and an edge (u_{in}, u_{out}) with capacity 1, such that

- all incoming edges to u now enter u_{in} ; and
- all outgoing edges from u now leave u_{out} .

Note that this is a regular flow network where only edges have capacities.

From problem 8ii in HW5, we know that G' has a max flow of value k if and only if G'' has a max flow of value k. Now from part 1 of this problem, since the max flow in G'' is k, there are k edge-disjoint s-t paths in G''. For every such path, contract all vertices u_{in} and u_{out} into a single vertex u. We claim that the k resulting paths are **node**-disjoint s-t paths in G.

For suppose P_1 and P_2 are two of the k edge-disjoint s-t paths in G'' but, after contraction of the vertices, the resulting paths in G share a node u. Since in G' all incoming edges to u enter u_{in} , and all outgoing edges from u leave u_{out} , it must be that edge (u_{in}, u_{out}) appeared in both P_1 and P_2 , contradicting the fact that P_1 and P_2 are edge-disjoint.

1. Min-cost flow

$$\min_{f_{ij} \geq 0} \sum_{f_{ij}} a_{ij} f_{ij}$$
 subject to
$$\sum_{(i,j) \in E} f_{ij} - \sum_{(j,i) \in E} f_{ji} = s_i \quad \text{, for all } i \in V$$

$$f_{ij} \leq c_{ij} \qquad \text{, for all } (i,j) \in E$$

2. Assignment problem

For every pair $(i, j) \in A$, define the binary variable

$$x_{ij} = \begin{cases} 1, & \text{if person } i \text{ is assigned to job } j \\ 0, & \text{otherwise} \end{cases}$$

Constraints: every person must have one job and every job must be assigned to one person.

$$\max_{x_{ij}} \sum_{(i,j)\in A} a_{ij} x_{ij}$$
subject to
$$\sum_{j:(i,j)\in A} x_{ij} = 1 \quad \text{for all } i \in P$$
$$\sum_{i:(i,j)\in A} x_{ij} = 1 \quad \text{for all } j \in J$$
$$x_{ij} \in \{0,1\} \quad \text{for all } (i,j) \in A$$

3. Uncapacitated facility location

For every facility $i \in F$ and every client $j \in D$, define the binary variable

$$y_{ij} = \begin{cases} 1, & \text{if client } j \text{ is assigned to facility } i \\ 0, & \text{otherwise} \end{cases}$$

Also, for every facility $i \in F$ define the binary variable

$$x_i = \begin{cases} 1, & \text{if facility } i \text{ is open} \\ 0, & \text{otherwise} \end{cases}$$

Constraints: every client must be assigned to one facility; if a client is a assigned to a facility, then that facility must be open.

$$\min_{x_i, y_{ij}} \sum_{i \in F} f_i x_i + \sum_{i \in F, j \in D} c_{ij} y_{ij}$$
subject to
$$\sum_{i \in F} y_{ij} = 1 \qquad \text{for all } j \in D$$

$$y_{ij} \le x_i \qquad \text{for all } j \in D, \text{ for all } i \in F$$

$$y_{ij} \in \{0, 1\} \qquad \text{for all } i \in F, j \in D$$

$$x_i \in \{0, 1\} \qquad \text{for all } i \in F$$

4. Bin packing

Let m be the total number of possible sizes for the items. Enumerate every valid configuration $C^j = (t_1^j, t_2^j, \dots, t_m^j)$ —that is, every configuration C^j such that

$$\sum_{1 \le i \le m} t_i^j s_i \le 1.$$

Assume there are N valid configurations. For every valid configuration define the integer variable

 $x_j =$ number of bins packed according to configuration C^j .

Therefore, our program will have N variables.

Constraints: all items must be placed in bins.

Suppose there are a_i items of size s_i in our input.

$$\begin{aligned} & \min_{x_j} & & \sum_{1 \leq j \leq N} x_j \\ & \text{subject to} & & \sum_{1 \leq j \leq N} t_i^j x_j \geq a_i & \text{ for all } 1 \leq i \leq m \\ & & & x_j \in Z_+ & \text{ for all } 1 \leq j \leq N \end{aligned}$$