EE 660 – Computer Architecture

(UH Manoa, Spring 2021)

Homework 1

February 10, 2021

Instructor: Galen Sasaki Name: Frendy Lio Can

Problem B.1

- a) $AMAT = cache_{hit} + cache_{miss} = 97\% * 1 + 3\% * 110 = 4.27$ cycles.
- b) $Hit_{rate} = \frac{64KB}{1GB} = 0.000064$ $AMAT = cache_{hit} + cache_{miss} = 0.000064 * 1 + (1 - 0.000064) * 110 = 109.99$ cycles.
- c) The cache memory would be of not use as when the cache is disabled the cycles are 105 which is lower than 109.99 (from problem b).
- d) Let Memory Access Time with no cache be, T_{off} ; with cache, T_{on} ; miss rate, m_{rate} .

Therefore,

$$T_{on} = (1 - miss_{rate})(T_{off} - G) + miss_{rate}(T_{off+L}).$$

We also know that cache is not useful when,

$$T_{off} \le (1 - miss_{rate})(T_{off} - G) + miss_{rate}(T_{off+L}).$$

 $miss_{rate} \ge \frac{G}{G+L} \ge \frac{104}{109} \approx 0.95$

Therefore, the highest miss rate after the cache use would be disadvantageous is 95%.

Problem B.8

- a) Assuming the misses are not overlapped in memory, this imply that their effects will be accumulated. Therefore, it will take 4*100 = 400 cycles.
- b) Since the cache line size is 16 bytes, then every 4 iteration will mess elements a,b,c, and d. Thus, in average number of cycles an average iteration will take is $\frac{400}{4} = 100$ cycles.
- c) Same as b), instead it will be every 16 iteration. Thus, in average number of cycles an average iteration will take is $\frac{400}{16} = 25$ cycles.
- d) If the cache is direct-mapped and its size is reduced to 2048 bytes. It will make every array access to be a miss. This is true because for each a_i, b_i, c_i and d_i will map to the same cache line. This implies that every iteration will have 3 read misses (a_i, b_i, c_i) and 1 write miss (d_i) . Beside this, we know that there will be a cost of a write back for d_i that goes from iteration 1 through 511.

Therefore, the average number of cycles is $(4 + \frac{511}{512}) * 100$

Problem B.12

a) Let $AMAT_{direct}$ be the direct-mapped cache; $AMAT_{associative}$ the 4-way associative cache; and, m_i the miss rate of a cache. Therefore, if the miss penalty is 100ns we can conclude the following. $AMAT_{direct} = 0.22 + 100 * m_1$

$$AMAT_{associative} = 0.52 + 100 * m_2$$

Thus, it will be advantageous to use the smaller cache when:

 $\begin{aligned} & \text{AMAT}_{direct} \leq \text{AMAT}_{associative} \\ & 0.22 + 100 * m_1 \leq 0.52 + 100 * m_2 \\ & m_1 \leq 0.003 + m_2 \end{aligned}$

b) We know that AMAT = Hit time = Miss Rate * Miss Penalty, where

Miss Penalty = Hit Time * Cycles. Therefore,

Miss penalty of 10: $m_1 \le 0.136 + 2.364m_2$

Miss penalty of 1000: $m_1 \le 0.0136 + 2.364m_2$

Thus, you should use a smaller cache when the data being cache is small.

Problem C.1

a)

Register	Line #s of the instructions	Type of data dependencies, e.g., RAW, WAR, WAW
x1	1,2	RAW
x1	1,2	WAW
x2	4,5	RAW
x4	5, 6	RAW

b)

Code			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Loop: Id	ld	x1,0(x2)	F	D	Х	М	W							6 V				g 10		
3	addi	x1,x1,1		F	S	s	D	Х	М	W										
0	sd	x1,0(x2)	0 0			AF Ja	F	S	5	D	Х	М	W	e e						
	addi	x2,x2,4								F	D	Х	М	W						
	sub	x4,x3,x2									F	S	s	D	Х	М	W			
	bnez	x4,Loop	8 3				80 8			33				F	S	S	D	Х	M	W

The loop takes 1586 cycles.

We know that $x_3 = x_2 + 396$ which implies that the loop will run $\frac{396}{4} = 99$ times. We also know that due to flushing, the loop will take 16 cycles. We also know that the last loop will run 18 cycles. Therefore, the total of cycles is 98 * 16 + 18 = 1586.

Problem C.3

- a) We know that MEM stage is the slowest, 2ns and the pipeline register delay is 0.1ns. Therefore the clock cycle time is 2.1ns.
- b) We know that the ideal CPI is 1. Since there is a stall every 4 instruction. CPI = $1+\frac{1}{4}=1.25$
- c) Speedup = $\frac{I*1*7}{I*1.25*2.1} = 2.67$.
- The speedup would be equal to the number of tasks/instruction

Problem C.7

- a) Execution time of 5-stage = $I*(1+\frac{1}{5})*1=1.20I$ Execution time of 12-stage = $I*(1+\frac{3}{8})*0.6=0.825I$ Speedup = $\frac{1.25}{0.825}=1.45$
- b) $CPI_{5-stages} = \frac{6}{5} + 0.20 * 0.05 * 2 = 1.22$ $CPI_{12-stages} = \frac{11}{8} + 0.20 * 0.05 * 5 = 1.425$