Approved For Release STAT 2009/08/19 :

CIA-RDP88-00904R000100120

Approved For Release 2009/08/19:

CIA-RDP88-00904R000100120

Вторая Международная конференция Организации Объединенных Наций по применению атомной энергии в мирных целях

A/CONF/15/P/2193 USSR ORIGINAL: RUSSIAN

Не подлежит оглашению до официального сообщения на Конференции

25 YEAR RE-REVIEW

ДВОЙНЫЕ ДИАТРАММЫ СОСТОЯНИЯ: UO₂ - Ae₂O₃, UO₂ - BeO, UO₂-M₉O

П.П.Будников, С.Г. Тресвятский, В.И.Кушаковский.

Работа по изучению взаимодействия окислов урана с другими окислами проводилась с 1952 г. по 1956 г. За это время некоторые авторы опубликовали результаты исследования упомянутых выше систем. Однако отличие наших данных от данных, огубликованных в литерату — ре, и различные точки зрения разных авторов на характер взаимодей— ствия в системе ио₂ — м₉ о явились причиной появления настояще— го доклада.

методика исследования и исходные материалы.

Для исследования систем были применены следующие методы:

- І. метод отжига и закалки;
- 2. метод высокотемпературного термического анализа;
- З. метод деформации конусов;
- 4. метод плавления образцов или порошков смесей в молибденовых или вольфрамовых тиглях.

Отжиг и закалка образцов производилась в печи с угольной нагревательной трубой (I).

Для создания внутри печи инертной газовой среды, через печь пропускался аргон, осущенный над КОН) и P_2O_5 Имеющийся в аргоне кислород поглощался медными стружками, нагретыми до 600° . Образцы в печи подвешивали на молибденовых проволоках в молибденовых тиг - лях. Температуру измеряли оптическим пирометром с исчезающей нитью, проградуированным в условиях опытов по температурам плавления неко-

торых высокоогнеупорных соединений и эвтектик (са Ae_2O_4 , Mg_2SiO_4 , Ae_2O_3 , эвтектики в системах $BeO-ThO_2$ и $CaO-ThO_2$, BeO, CaO, Mo, Z_2O_2). Закалка образцов происходила при сбрасывании их в нижнюю часть печи, охлаждаемую снаружи водой.

Фазовый анализ закаленных образцов производили путем снятия порошковых рентгенограмы на отфильтрованном 'Сы -излучении в камерах диаметром 57,86 или II4 мм и просмотра шлифов в отраженном свете. Состав образцов после термической обработки определяли химическим анализом.

Высокотемпературный термический анализ производили по методике, разработанной нами ранее (2). Для измерения температур использовали вольфрамо-молибденовые термопары, применение которых позволяло производить термический анализ до 2200°. Термопары гра дуировали в условиях опытов по температурам плавления высокоогне упорных соединений.

Спределение температур плавления методом деформации конусов производили по методике, описанной нами ранее (3).

Метод плавления в тиглях заключался в визуальном определении момента расплавления вещества в тигле и в сценке степени расплавления по характеру мениска расплава после охлаждения тигля. Кроме того, определение температур солидуса и ликвидуса производилось путем сравнения микроструктур или внешнего вида образцов, закаленных с различных температур.

Состав эвтектик определяли химическим анализом медленно закристаллизованных сплавов, микроструктура которых отвечала структуре чистой эвтектики.

В качестве исходных материалов применяли двускись урана и окислы алюминия, бериллия и магния высокой степени чистоты. Содержание в них примесей по данным спектрального анализа приво - дится в табл. І.

Смеси окислов составлялись через 5-10 мол %, а в отдельных случаях через I- 2 мол.%. Смешение производилось совместным растиранием окислов в ступке.

Результаты спектрального анализа окислов

ĺ					
Cr	не опр.		<10-3	E-0I	10_4
Mn	нет	3.10-3	8_0I>	3.IO-4	T0_4
Co	нет	3.IO-3	(IO_I	не	TO-4 IO-4
N.	14	-3 3.10	нет	нет	T0_4
Fe)IO_5	4-0I>	4_0I>	5.IO	
Ë	I0-2	не опр.		не опр.	
Si	>10-2	I-0I	не опр.	3 < 3.10 3 He onp.	
AC		IC_2	не опр.	10 <u>1</u>	
Ça	нет	не опр.	не опр.	3.104	T0_4
Mg	I0-2	_T0_5		I_OI	
Be	не опр.		4_0I>	4-0I	4_0I
Να	IO_I	<10-2	нет	I0-2	IO_3
Элемент.	Ales Os	Beo	MgO	700	Чувств. метода

CIICTELLA UO2 - AC. O.

образцов из смесей с различных темпе-Результаты рентгенографического исследования двуокиси урана с окисью алюминия, закаленных ратур, приведены в таблице 2.

Результаты исследования образцов из двуокиси урана с окисью алюминия.

обработки образцов Результаты рентгено- графического исследо-	вания		IO	457 EX	uo, ,a=5, 457 kX	Линый <i>яего</i> очень слабые а=5 11 кХ	uo_2 , $a=5$, 458 HX Re_2o_3 , $a=5$, 11 HX , $\alpha=5$, $\alpha=5$	ио, а=5, 458 кХ несполько линий ве, 0, , совпадающих с линия- ми ве, 0, на эталонной рентгеногранде.
образцов	условия Охлажде- Ния		O.	закален	11.] :: -	=
ботки	сре- да		∞	аргон	=		6	=
į.	время выдерж Ки		7	ћ9	30 14		IO 4	30 m
термической	теппера- тура 0	೮	9	I200	1900		1400	1920
Условия	темпера- тура пред- Варитель-	HOTO OÚRIE- Ta OG	5	1600			Расплавлен.	
зцов	по хин. анализу	AC203	7	19				
oopa %	ана	uOz	က	61				
Состав образцов пол. %	IKTOBOH	AC_03	2		ည္ပ		08	55
00	LIKXI	70n	i1	202	20		50	35

Прод. табл. 2.

IO	"u2,a=5,459 KX,	несколько линий яс ₂ 0 ₃	uo ₃ a=5,458 кХ,одна линия ве ₂ о ₃ совпадающая с линией на эталон- ной рентгенограм- ме.	402, a=5, 458 KX	402,a=5,458 KX
6	• охл.с	печъю	= !	Закален.	=
&	Вакуум	IO MM pr.cr.	том аргон	=	=
2	30M		IOM	ъ4	m 1
	1900		2000	1600	1800
5 1		•		Расплав- лен.	
14	62		* ***	•	22
[m]	38	· .	**** *** ** * * * * ****** * * * * * *	· · · · · · · · · · · · · · · · · · ·	78
2	09	• • • • •	· S	. 04	50
	40		20	09	80

Из данных, приведенных в табл.2, следует, что в системе $uo_2 - ne_2o_3$ в интервале температур I400-I900 существуют в равновесии две фазы- двуокись урана и окись алюминия (корунд). Периоды решеток окислов не изменяются с изменением состава и температуры отжига образцов, что указывает на отсутствие в системе новых химических соединений и твердых растворов.

При изучении макроструктуры плавленых образцов, в некоторых сплавах двускиси урана с окисью алюминия было обнаружено наличие двух, а иногда и трех горизонтальных слоев. Изучение мик роструктуры этих слоев показало, что при плавлении или кристал лизации сплавов происходит ликвация вследствие различия удельных весов корунда (4 г/см3), двуокиси урана (II г/см3) и эвтектики (7,4 г/см3 - по расчету). Было установлено, что в сплавах, содержащих избыток окиси алюминия против эвтектического, происходит всплывание кристаллов корунда, а в сплавах, содержащих избыток окиси урана, опускание на дно тигля кристаллов двуокиси урана. См.рис. Т и 2. Ликвация происходит наиболее интенсивно при плав лении смесей и слабее - при затвердевании расплавов. Исследование микроструктуры сплавов двуокиси урана с окисью алюминия подтвердило сделанный вывод о том, что система ио2 - не203 является простой эвтектической системой. Эвтектика содержит 74 мол. % $\operatorname{Re}_2 o_3$ и 26 мол. % uo_2 . Температура плавления эв тектики - $1900 \pm 10^{\circ}$. Это также было подтверждено высокотемпе ратурным термическим анализом. На всех кривых нагревания и ох лаждения, снятых со смесей, содержащих от II до 96 мол. % e_2o_3 , наблюдается эффект кристаллизации или плавления эвтектики при температуре $1900^{\circ} + 10^{\circ}$.

В результате проведенных исследований была построена диаграмма состояния $uo_2 - ae_2o_3$, представленная на рис a.

Предлагаемая нами диаграмма состояния системы $uo_2 - ac_2o_3$ отличается от ранее опубликованной Ламбертсоном и Мюллером (4 рис. Зб) отсутствием области расслаивания в жидком состоянии и , в связи с этим, иным положением линий ликвидуса. Причина ошибочных выводов Ламбертсона и Мюллера заключается в том, что они

- 7 -

приняли осаждение кристаллов со, в сплавах со, а явление несмешиваемости двух жидкостей. Наши данные об отсутствии в изученной системе новых химических соединений и твердых растворов совпадают с результатами Ламбертсона и Мюллера (4) и Ланга с сотрудниками (5). Результаты исследования Ланга с сотрудниками (6) по определению температур солидуса и ликвидуса смесей, прилегающих к эвтектической, совпадают с нашими результата — ми.

CUCTEMA UO2 - BeO

Результаты рентгенографического исследования фазового состава смесей двуокиси урана с окисью бериллия после различной термической обработки приведены в таблице 3.

Из данных, приведенных в табл. З, следует, что в системе MO_2 — ВеО в интервале температур $I400-2200^{\circ}$ находятся в равновесии две фазы — двуокись урана и окись бериллия. Периоды решеток двуокиси урана и окиси бериллия не изменяются с изменением состава и температуры, что указывает на отсутствие в системе uo_2 — вео новых химических соединений и твердых растворов. При изучении микроструктур сплавов была обнаружена ликвация по удельному весу, подобная вышеописанной ликвации в сплавах UO_2 — AC_2O_3 . Однако ликвация в системе UO_2 — BeO выражена слабее, что объясняется, повидимому, большей вязкостью расплава эвтектики в этой системе.

На основании рентгенографических, микроскопических и термо - графических исследований было установлено, что в системе имеет - ся эвтектика между uo_2 и Beo, содержащая 68 мол % окиси бериллия и 32 мол. % двуокиси урана. Температура плавления эвтектики $2170 \pm 20^{\circ}$. Построенная на основании этих данных диаграмма состояния системы двуокись урана — окись бериллия представлена на рис. 4а.

Наши результаты совпадают с результатами Ланга с сотрудни - ками (5), которые не обнаружили образования новых химических со - единений и твердых растворов в системе uo_2 - BeO в интервале $800-1800^{\circ}$. Однако состав эвтектики значительно отличается от состава (63 мол. % Beo), найденного Лангом с сотрудниками (6).

Таблица 3.

Результаты исследования образцов из смесей

UO2 C BeO

GOCTAB	•	МОЛ. %	 	T	Условия термической			Результати пентрено-
Шихтовой	OM	_	HO XIM.		образисв	•		графического анализа
BeO	402	1	700	Темпера- тура ос	Время выдерж- ки	Среда	Условия охлавде- ния	
Þ	2	ဏ	4	J. C.	. 9	7	8	6
100	0			Плавле – ный		аргон	охл. с печью	Решетка вео ,а=2,693кX c=4, 37 кX, c/a=I,623
7,66	0,3			1700	2 ч	Baxyyw 10 mm Pm. cm.	Закален	Решетка иод и решетка в.о.;а=2,694 кХ, с =4,372 кХ, са=1,623
90	IO	93	2	I800	2 u	<u>-</u>	1 1	uo, a=5,458 KX, BeO, a=2,693 KX,c=4,37 KX, c/a =I,623
06	IO	16	9	I700	2 ч	аргон	=	uq,a=5,458 KX; M Be0
08	20	18	61	2200	IO M	=	=	402, a=5,459 KX

2834-5

Прод.табл.№ 3

6	40, a=5,458 ICX	402, a=5,458 KX	402, a=5,457 KX	ио, а=5,458 кХ		
8	закален.	""	=	ı.		
7	аргон	=	=	=	· · · · · · · · · · · · · · · · · · ·	
9	FOI	ЬI	2 ч	2 d		
5	1400	2000	1700	1700		
4		·	*	79		
ന				21		
2	50	. 30	50	99		
إشا	80	20	20	20		

CUCTEMA UO2 - MgO

Результаты, полученные нами при рентгенографическом исследовании образцов из двускиси урана и окиси магния, закаленных с различных температур, приведены в таблице 4.

Из данных, приведенных в табл. 4, следует, что период решетки двускием урана зависит как от температуры закалки образцов,
так и от содержания в образцах окиси магния. (рис. 5). Для выяснения составов образующихся твердых растворов свободную окись магния из сплавов выщелачивали 3-5М раствором хлористого аммония и
в нерастворимом остатке определяли содержание урана и магния, с
одновременным рентгенографическим определением периода решетки
твердого раствора. Полученная зависимость периода решетки твердого раствора от состава представлена на рис. 6.

То обстоятельство, что растворимость окиси магния в двуокиси урана зависит от избытка окиси магния, указывает, что систе — ма $uo_2 - m_3o$ не является истинной конденсированной систе — мой, а является каким-то разрезом тройной системы $uo_2 - m_3o$ -o, причем источником кислорода, повидимому, является сама окись магния вследствие ее термической диссоциации при нагревании. Поэтому представляло интерес изучение системы $uo_2 - m_3o$ в газовой среде, содержащей кислород, например, в среде воздуха. Повышение растворимости окиси магния в двуокиси урана в этом случае явилось бы подтверждением высказанных точек зрения.

Такие исследования были проведены. Образцы из смесей дву - окиси урана с окисью магния до температуры 1700 нагревали в среде воздуха в криптоловой печи при свободной циркуляции воздуха. Плавление образцов производилось в вольтовой дуге по методике, описанной нами ранее (7).

Результаты рентгенографических и микроструктурных исследований образцов, нагретых в среде воздуха, приведены в таблице 5.

Из данных, приведенных в табл. 5, следует, что двуокись урана с окисью магния образует в среде воздуха ограниченную область твердых растворов с решеткой двуокиси урана и содержанием окиси магния до 37 мол. % (при т-рах 1600-1750°). Зависимость перио -

4

Результаты рентренографического исследования смесей двуокиси урана с окисью магния в аргоне.

173	анализа		Q _M 0, KX	, 0	IO	4,204		4,204	4,205	4.204	4.205	700 7	+ O 1		4,203	. :				
I	1	-	Quoz, KX		6	5,43		5,453	5,455	5,445	5,443	5.44T	00:1	0,400	5,437	5,434	5.434	5,44	5,439	· ·
аботни образцов	Условия	ОХЛАПДЕ-	7	C	Ω	OXI C	1164510	sakallen.	=	***		=	***	,		охл. с	neubo	закален.	=1	-
oop	Вреця	BELTCDE		C	,	30 M	TO	לל כ ל	ъ 9	4 4	מ	7,5 4	ದ)	m OT	ъ Н	Z 4	30 11	h 9	
терыической	•	· Darypa · Or	د.	\(\frac{1}{2} \)		2300	Tann		1500	I 700	I700	I200	2000			2300	2300	t	2000	! ! !
Условия	Предвари-	OOME		Ω.			X	H		†* 6		E D.T.		м О(1- I-	_01		18000	Baryym.	
%	HO KMI.		402	-4			10				(12	15 15					22		
B Lio.			Mg0	က		; <u>.</u>	8		- ··		(χ χ	82					23		 ! !
CocraB	BON BON		Mg0 UO2	2	1	H .	90 IO	90 TO					0	0.10	· •) 			0	!
	i m	!	[3		n j	υ 1 (U١	O.	1 0)	9) (ω (3	06) C	•	8	S 6	8	

4	
H.	
O	
Ta	
Д.	
0	
印	

	IO	CHOCKED HE	HEN OKNON	магния.				Линий ови-	CI Marhina					
	2)	5.4575		5,45 <u>I</u>	7,44%	2,446	5,435	5.454	5,4537	5,446	5.454	5.456	5,453	
C	Ω	закален	=	! =			OXII.C	закален.	= 1	OXII.C	печью	='	=	
	,	1 00		⊐ [†]	л· -1 (ア	33 33	H	t d	IO M	2 4	ы Н	IO M	
7	0	I700	T.000	2000		2000	2300	I 700	I 700	2300	2000	2000	2300	
ı		·												
7	-		45)					92		80			
	,		55						24		20			
2		45	45	4:5	4		20	20	20	20	80	90	06	
. []		55	55	55	r)		20	30	30	30	20	IO	01	

- I3 -

да решетки твердых растворов от состава приведена на рис. 7.

На основании этих данных была построена ориентировочная диаграмма состояния системы UO2+x- MgO в среде воздуха в температурном интервале I500-2800°. Построенная диаграмма состояния представлена на рис. 8. Очевидно, что, если кислород способствует растворению M_9 о в uo_{2+x} , то нагревание твердых растворов, полученных на воздухе, в бескислородной газовой среде должно приводить к их распаду. Это было подтверждено экспериментально путем нагревания образца твердого раствора, содержащего 33 мол. % мдо, при 2000° в среде аргона. Выпадающую из твердого раствора окись магния обнаруживали микроскопически в шлифе в виде округлых зерен, а период решетки твердого раствора при этом увеличивался с 5,27 кХ до 5,45 кХ, и в твердом растворе сохранялось только около 3 мол. % окиси магния.

На основании приведенных данных можно было предположить, что в идеализированном виде, без учета окисления двуокиси урана кислородом окиси магния при температурах выше 1500° , система 1500° , система 1500° , простой эвтектической.

Проведенные определения температур ликвидуса и солидуса этой системы подтвердили правильность сделанного предположения. Построенная на основании этих данных идеализированная диаграмма состояния $uo_2 - Mgo$ представлена на рис 9.

Необходимо отметить, что и в этой системе наблюдается ликвация с участием твердых фаз, подобная описанной выше для систем $uo_2 - a\varepsilon_2 o_3$ и $uo_2 - BeO$.

Расслаивание жидких фаз, найденное Ламбертсоном и Мюллером (4, рис. IO), нами обнаружено не было. Установленный состав эвтектики (53 мол. $\% M_9$ 0) также значительно отличается от состава эвтектики, приводимого в вышецитированной работе.

Результаты Ланга с сотрудниками (5), которые не обнаружили взаимодействия между uo_2 и mgo в интервале $400-1800^{\circ}$, подтверждают наши выводы об отсутствии растворимости окиси магния в двуокиси урана стехиометрического состава. Согласно Ламбертсону и Мюллеру (4) в системе $uo_2 - mgo$ выше 1200° происходит окисление uo_2 до uo_{2+x} кислородом окиси магния, однако свои выводы эти авторы сделали только на основании понижения периода

Габлица 5.

Результаты рентгенографического и микроструктурного анализов образцов, нагретых на воздухе.

Результаты микрострук- турного	анализа	6							= 1	= 1		विद्युष्ट जिल्ला	Две фазы			1 1 1 1 1
Результаты фазо- вого рентгенов- ского анализа		∞	Решетка изов	Решетка иот	a=5,423	Pemerka no.	Pemerka uo.	Pemerka uo.	Remerka no.	Pemerka uo,	а=5,671 Решетка чо ₂	есть линии мао	a=5,254	Решетка м ₉ 0 a=4,20		
Содержание	4	7	U0 _{2,62}	U02,26		UO2,241	WO _{2,236}	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -						- · · · -		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Время выдерж-	ки (мин)	9	09	40	*	H2	T5		30	30	OI	ΟI) 		· · ·	
Темпера- тура	္ပံုဝ	5	I450	I550		I600	I200				1600					
M	MgO	7			-14 4				20	34		• - ••••			***	1
мол. % По хим. анализу	2011	က				- ·•	•	1 00	80	99	· emiliani · ep · · p	9 4 9 Ma . A. Ju Aga. 4ga. 4	*** * * * *.			1
STAB 1 BOM	Мво	2		- Professional Control	•	-		101	20	က္ဆ	20	29	•		er given	
Состав Шихтовой	40°	} {	I00	100		I00	IOO	06	တ္ထ	29	50	ໝ		** The bb. a result of		

Прод.табл.5.

	 6 6		,				Округлые зерна, сцементирован- ные эвтектикой	日日	дельные дендри- ты <u>мао</u> Округлые зерна мао окружен -	ные эвтектикой.	
			a=>,338 Pemerka uo., a=5,266	Pemerra 402, a=5,26	есть линии решетки м ₉ 0	Pemerka uo., a=5,455	Решетка <i>ио</i> ., а=5,27	Решетка ио ₂ , a=5,25	линии очень раз- мытые совпалают	с линдями пре- дыдущей рентге- нограммы Есть	ЛИНИИ м90 Ом90 =4,20 КХ
!	2	1				-					
 	9		12	12		без выд.	-	⊢	H-1		
1 1	ŗV.	 	1700			2800 <u>+</u> I00	1900 <u>+</u> 50	I750 <u>±</u> 50	1850 <u>+</u> 30		
1	7	 :									
	 ന					=			·	The state of the s	
	 - 	20	ස	29			33	20	29		
1	 	80	29	ಜ		100 100	29	20	80	**************************************	

решетки двускиси урана; твердые растворы авторы не пытались обнаружить никакими другими методами.

Результаты наших исследований по изучению взаимодействия UOz c MgO в твердых фазах частично совпадают с результа тами Андерсона и Джонсона (8). Как правило, совпадают резуль таты тех опытов, которые Андерсон и Джонсон (8) проводили в тиглях из тантала при высоких температурах, и не совпадают ре зультаты опытов, проведенных в тиглях из окиси магния при низ ких температурах (до 1700°). По их данным максимальная раствов ио наблюдается при IICO. Однако для опытов римость при низких температурах Андерсон и Джонсон (8) использовали смеси, приготовленные совместным осаждением гидроокисей (M_g^{+2} , U_g^{+1}) и, как указывают сами авторы, частично окисленные. Окисленный осадон являлся источником кислорода, который способствовал окиси магния в двуокиси урана при низких темпе растворению parypax.

JUTEPATYPA

- I. Löwenstein E., Elektrische Hochtemperaturöfen bis 3300°C, Z. f. anorg. und allg. Chem., I54, I73-I77, (I926)
- 2. Будников П.П. и Тресвятский С.Г., <u>Методика высокотем</u>пературного термического анализа,
 Огнеупоры, (№ 4), I66-I73, (I955)
- 3. Будников П.П. и Тресвятский С.Г., <u>Диаграмма плавкости системы СаО.—СаБ.</u>,
 ДАН СССР, 89, (№3), 479-482, (1953)
- 4. Lambertson W.A. and Mueller M.H., <u>Uranium Oxide Phase</u>

 <u>Equilibrium Systems: 1, U02-A1203-, 11, U02-MgO.</u> J.

 Am.Cer.Soc., 36, (No IO), 329-334, (1953)
- 5. Lang S.M., Fillmore C.L., Roth R.S., N.B.S. Interim Report to AEC, 1952. / B39mo u3 "An Annotated Bibliog-raphy of selected References on the Solid-State Reactions of the Uranium Oxides" by Lang S.M. Washington/.
- 6. Lang S.M., Knudsen F.P., Fillmore C.L. and Roth R.S.,

 High-temperature Reaction of Uranium dioxide with various Metal Oxides, N.B.S.C. 568, Washington, 1956.
- 7. Будников П.П. и Тресвятский С.Г. Методика определения температуры ликвидуса и солидуса при изучении диаграмм плавкости и диаграмм состояния высокоогнеупорных окислов. Сб. Физико- химические основы керамики, Промстройиздат, М-1956.
- 8. Anderson J.S, and Johnson K.D.B., The Oxides of Uranium.Part 111. The System UO2-MgO-O.

 J.Chem.Soc., 1731-1737, /1953/.

Рис.І. Полированные вертикальные разрезы сплавов двускиси урана с окисью алю-миния х 2.

І. 78 мол. \$\frac{1}{2}O_3\$, температура 1950°
2. 71 " " 1910°
3. 65 " " 2050°
4. 65 " " 1900°
5. 60 " " 1900°
6. 50 " " 2000°
7. 40 " " 2300°

Рис. 2. Микроструктура слитка на границе двух слоев. Светлые округлые зерна и ден-дриты — двуокись урана, окруженная эвтектикой. 50 мол. % Al_2O_3 , т-ра 2000^0 , х 200

28

2834-57

2200

20

1,800

Рис.6. Зависимость периода решетки твердого раствора от его состава.

Рис.5. Зависимость С ио, от состава и температуры отжига образцов

2834-5%

