Cooper Johnston

Linear Algebra

Contents

0	Sets	s and Proofs	5
	0.1	Sets	5
	0.2	Propositional logic	5
	0.3	Proofs	5
1	Vect	tors	7
	1.1	Vector spaces	7

Chapter 0

Sets and Proofs

0.1 Sets

We will begin by exploring the concept of a set through what is sometimes called intuitive or naive set theory. A more rigorous approach, axiomatic set theory, is outside the scope of this course. For the purposes of this course, our intuitive treatment of sets will suffice.

Definition 0.1.1. A set is a well-defined collection of objects.

0.2 Propositional logic

0.3 Proofs

Chapter 1

Vectors

1.1 Vector spaces

Definition 1.1.1. Let F be a set and let + and \cdot be two operations defined for elements of F. F, together with the operations + and \cdot , is called a field if all of the following axioms are satisfied:

1. + and · are associative, i.e. for all $a, b, c \in F$, we have

$$(a+b)+c=a+(b+c)$$
 and $(a\cdot b)\cdot c=a\cdot (b\cdot c)$.

2. + and · are commutative, i.e. for all $a, b \in F$, we have

$$a + b = b + a$$
 and $a \cdot b = b \cdot a$.

3. There exists an element $0_F \in F$, called the additive identity, such that for all $a \in F$, we have

$$a + 0_F = a$$
.

4. There exists an element $1_F \in F$, called the multiplicative identity, such that for all $a \in F$, we have

$$a \cdot 1_F = a$$
.

5. For every $a \in F$, there exists an element $-a \in F$, called the additive inverse of a, such that

$$a + (-a) = 0_F.$$

6. For every $a \in F$ other than 0_F , there exists an element $a^{-1} \in F$, called the multiplicative inverse of a, such that

$$a\cdot a^{-1}=1_F.$$

7. · is distributive over +, i.e. for all $a, b, c \in F$, we have

$$a \cdot (b+c) = (a \cdot b) + (a \cdot c).$$

Example 1.1.2. Show that the set of real numbers \mathbb{R} , together with standard addition and multiplication, is a field.

7

8 1 Vectors

Solution. We will prove this result by examining each of the axioms one-by-one:

- 1. We already know that standard addition and multiplication are associative.
- 2. We also know that standard addition and multiplication are commutative.
- 3. The additive identity is the number 0.
- 4. The multiplicative identity is the number 1.
- 5. For any $x \in \mathbb{R}$, the additive inverse is the number -x.
- 6. For any $x \in \mathbb{R}$ other than 0, the multiplicative inverse is the number 1/x.
- 7. We already know that standard multiplication is distributive over standard addition.

Hence, \mathbb{R} is a field.

Example 1.1.3. Show that the set of integers \mathbb{Z} , together with standard addition and multiplication, is not a field.

Solution. The multiplicative identity is the number 1. Consider the number $2 \in \mathbb{Z}$. There does not exist a number $n \in \mathbb{Z}$ such that 2n = 1; that is, 2 does not have a multiplicative inverse in \mathbb{Z} . Hence, \mathbb{Z} is not a field.