HYPERBOLIC REPRESENTATION LEARNING IN MULTI-LAYER TISSUE NETWORKS

European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning

> 23-25 April 2025 Bruges, Belgium

Domonkos Pogány¹, Péter Antal¹

MOTIVATION

Predicting tissue-specific protein functions and interactions (PPI) is essential for understanding human biology and diseases. Yet, current solutions overlook the geometry of multi-layer PPI networks.

CONTRIBUTION

- Proposed a contextualized, tissuespecific representation learning method in non-Euclidean space.
- Compared Euclidean (\mathcal{E}) and hyperbolic (\mathcal{H}) embeddings.

RESULTS

- Hyperbolic geometry captures the structure of multi-layer PPI networks with less distortion.
- Hyperbolic embeddings improve tissuespecific protein function prediction.

HYPERBOLIC GEOMETRY

In \mathcal{E} , there is exactly one; in \mathcal{H} , there are at least two parallels through any external point to a given line.

In \mathcal{H} , the area grows exponentially; in \mathcal{E} , it grows only polynomially with respect to the radius.

is, therefore, suitable for embedding trees / scale-free networks with many leaves / small degree nodes [1].

METHODS

Tissue hierarchy with 112 internal and 107 leaf nodes containing tissue-specific PPI networks and binary-labeled protein functions.

OhmNet model [2]: Leaf nodes: **Node2Vec** embeddings on PPI networks with **hierarchy regularization** to align proteins across tissues. Internal nodes: **Average** of the child and parent embeddings.

The hyperbolic version utilizes the Lorentz manifold and distance for the Node2Vec and hierarchy regularization, and it applies the Lorentz centroid for the internal representations.

RESULTS

Distortion between manifold distances in the embedding space and shortest-path distances in the PPI networks is lower in \mathcal{H} .

Embeddings in \mathcal{H} achieve superior performance in tissue-specific protein function prediction. Both linear classifiers (relying on a single global separating hyperplane) and K-Nearest Neighbors classifiers (capturing the local structure) perform better in hyperbolic space.

[1] Krioukov, D., Papadopoulos, F., Kitsak, M., Vahdat, A., & Boguná, M. (2010). Hyperbolic geometry of complex networks. Physical Review E—Statistical, Nonlinear, and Soft Matter Physics, 82(3), 036106. [2] Zitnik, M., & Leskovec, J. (2017). Predicting multicellular function through multi-layer tissue networks. *Bioinformatics*, 33(14), i190-i198.