Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP05/001977

International filing date:

03 February 2005 (03.02.2005)

Document type:

Certified copy of priority document

Document details:

Country/Office: JP

Number:

2004-305665

Filing date:

20 October 2004 (20.10.2004)

Date of receipt at the International Bureau: 24 March 2005 (24.03.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

日本国特許庁 JAPAN PATENT OFFICE

03. 2. 2005

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application: 2004年10月20日

出願番号

特願2004-305665

Application Number:

[ST. 10/C]:

[JP2004-305665]

出 願 人
Applicant(s):

富士写真フイルム株式会社

特許庁長官 Commissioner, Japan Patent Office 2005年 3月10日

11

特許願 【書類名】 【整理番号】 31-5034 平成16年10月20日 【提出日】 特許庁長官殿 【あて先】 【国際特許分類】 C09B 31/02 CO9D 11/00 B41J 2/01 【発明者】 神奈川県南足柄市中沼210番地 富士写真フイルム株式会社内 【住所又は居所】 原田 徹 【氏名】 【発明者】 神奈川県南足柄市中沼210番地 富士写真フイルム株式会社内 【住所又は居所】 矢吹 嘉治 【氏名】 【発明者】 静岡県富士宮市大中里200番地 富士写真フイルム株式会社内 【住所又は居所】 小澤 孝 【氏名】 【特許出願人】 【識別番号】 000005201 【氏名又は名称】 富士写真フイルム株式会社 【代理人】 100105647 【識別番号】 【弁理士】 【氏名又は名称】 小栗 昌平 03-5561-3990 【電話番号】 【選任した代理人】 100105474 【識別番号】 【弁理士】 【氏名又は名称】 本多 弘徳 03-5561-3990 【電話番号】 【選任した代理人】 100108589 【識別番号】 【弁理士】 市川 利光 【氏名又は名称】 03-5561-3990 【電話番号】 【選任した代理人】 【識別番号】 100115107 【弁理士】 【氏名又は名称】 高松 猛 【電話番号】 03-5561-3990 【選任した代理人】 【識別番号】 100090343 【弁理士】 【氏名又は名称】 濱田 百合子 【電話番号】 03-5561-3990 【先の出願に基づく優先権主張】 【出願番号】 特願2004-30288 平成16年 2月 6日 【出願日】 【手数料の表示】 【予納台帳番号】 092740

【納付金額】

16,000円

【提出物件の目録】

【物件名】

特許請求の範囲 1

【物件名】

明細書 1

【物件名】

要約書 1

【包括委任状番号】

0003489

【曹類名】特許請求の範囲

【請求項1】

下記一般式(1)で表される色素。

【化1】

一般式(1)

$$R_1$$
 N
 N
 MO
 Z
 R_2

(式中、 R_1 および R_2 は一価の基を示し、Zは窒素原子又は水素原子もしくは一価の基が結合した炭素原子を示し、Mは水素原子又はカチオンを示す。但し、分子中に 2 個のアゾ基を含む。)

【請求項2】

一般式 (1) で表される色素が下記一般式 (2)、一般式 (3)、又は一般式 (4)で表される色素のいずれかである請求項1に記載の色素。

【化2】

一般式(2)

(式中、 R_3 および R_4 は一価の基を示し、 Ar_1 および Ar_2 はアリール基又はヘテロ環基を示し、Mは水素原子又はカチオンを示す。)

【化3】

一般式(3)

(式中、 R_5 、 R_6 、 R_7 および R_8 は一価の基を示し、 Ar_3 は二価の連結基を示し、Mは水素原子又はカチオンを示す。)

【化4】

(式中、 R_9 および $R_{1\,0}$ は一価の基を示し、 Ar_4 および Ar_5 はアリール基又はヘテロ環基を示し、 Ar_6 は二価の連結基を示し、Mは水素原子又はカチオンを示す。)

【請求項3】

請求項2に記載の色素の一般式 (2) および (4) で表される色素において、Ar₁、Ar₂、Ar₄およびAr₅がそれぞれ下記式 (A) で表される請求項2に記載の色素。 式 (A)

【化5】

(式中、Raは一価の基を表す。)

【請求項4】

請求項1~3のいずれかに記載の色素を少なくとも一種含有するインク。

【請求項5】

請求項4に記載のインクを用いて画像形成するインクジェット記録方法。

【請求項6】

請求項1~3のいずれかに記載の色素を少なくとも一種含むインクシート。

【請求項7】

請求項1~3のいずれかに記載の色素を少なくとも一種含むカラートナー。

【請求項8】

請求項1~3のいずれかに記載の色素を少なくとも一種含むカラーフィルター。

【書類名】明細書

【発明の名称】色素、インク、インクジェット記録方法、インクシート、カラートナー及 びカラーフィルター

【技術分野】

[0001]

本発明は、インク、インクジェット記録方法、インクシート、カラートナー及びカラー フィルターに関する。

【背景技術】

[0002]

近年、画像記録材料としては、特にカラー画像を形成するための材料が主流であり、具 体的には、インクジェット方式の記録材料、感熱転写方式の記録材料、電子写真方式の記 録材料、転写式ハロゲン化銀感光材料、印刷インク、記録ペン等が盛んに利用されている 。また、撮影機器ではCCDなどの撮像素子において、ディスプレーではLCDやPDPにおいて 、カラー画像を記録・再現するためにカラーフィルターが使用されている。これらのカラ ー画像記録材料やカラーフィルターでは、フルカラー画像を表示あるいは記録する為に、 いわゆる加法混色法や減法混色法の3原色の色素(染料や顔料)が使用されているが、好 ましい色再現域を実現出来る吸収特性を有し、且つさまざまな使用条件、環境条件に耐え うる堅牢な色素がないのが実状であり、改善が強く望まれている。

[0003]

上記の各用途で使用する色素には、共通して次のような性質を具備している必要がある 。即ち、色再現性上好ましい吸収特性を有すること、使用される環境条件下における堅牢 性、例えば耐光性、耐熱性、耐湿性、オゾンなどの酸化性ガスに対する耐性、その他亜硫 酸ガスなどの耐薬品堅牢性が良好であること、インクでの保存安定性に優れること等であ り、良好なイエロー色相を有し、光、湿熱及び環境中の活性ガスに対して堅牢で、保存安 定性に優れた色素が強く望まれている。

[0004]

インクジェット記録用インクに用いられるイエローの色素骨格としてはアゾ系が代表的 である。代表的なアゾ色素としては、特開2003-277662号に堅牢なトリアジニ ルピラゾール骨格を有する色素が記載されているがさらにインクでの保存安定性に優れた 色素が望まれている。

【特許文献1】特開2003-277662号公報

【発明の開示】

【発明が解決しようとする課題】

[0005]

本発明は、前記従来における問題を解決し、以下の目的を達成することを課題とする。 即ち、本発明は、1)三原色の色素として色再現性に優れた吸収特性を有し、且つ光、 熱、湿度および環境中の活性ガスに対して十分な堅牢性を有し、インク中での保存安定性 に優れた色素を提供し、2)色相と堅牢性に優れた着色画像や着色材料を与える、インク ジェットなどの印刷用のインク、感熱記録材料におけるインクシート、電子写真用のカラ ートナー、LCD、PDPなどのディスプレイやCCDなどの撮像素子で用いられるカラーフィル ターなどの各種着色組成物を提供し、3)特に、インク中での保存安定性に優れ、良好な 色相を有し、光、湿熱及び環境中の活性ガス、特にオゾンガスに対して堅牢性の高い画像 を形成することができるインクジェット記録用インク及びインクジェット記録方法を提供 することを目的とする。

【課題を解決するための手段】

[0006]

本発明者らは、インク安定性に優れ、良好な色相を有し、且つ光、オゾンおよび湿熱に 対する堅牢性の高い色素を目指してピラゾリルアゾ色素誘導体を詳細に検討したところ、 下記一般式(I)で表される化合物により、前記課題を解決することができることを見出 し、本発明を完成するに至った。前記課題を解決するための手段は、以下の通りである。

<1>下記一般式(1)で表される色素。 $[0.0^{\circ}0.7]$ 【化1】

般式(1)

[0008]

(式中、R₁およびR₂は一価の基を示し、Zは窒素原子又は水素原子もしくは一価の基が結 合した炭素原子を示し、Mは水素原子又はカチオンを示す。但し、分子中に2個のアゾ基 を含む。)

<2> 一般式(1)で表される色素が下記一般式(2)、一般式(3)又は一般式(4) で表される色素のいずれかである<1>記載の色素。

[0009] 【化2】

一般式(2)

[0010]

(式中、R3およびR4は一価の基を示し、Ar1およびAr2はアリール基又はヘテロ環基を示 し、Mは水素原子又はカチオンを示す。)

[0011] 【化3】

一般式(3)

[0012]

(式中、 R_5 、 R_6 、 R_7 および R_8 は一価の基を示し、 Ar_3 は二価の連結基を示し、Mは水素 原子又はカチオンを示す。)

[0013]

【化4】

[0014]

(式中、 R_9 および R_{10} は一価の基を示し、 Ar_4 および Ar_5 はアリール基又はヘテロ環基を示し、 Ar_6 は二価の連結基を示し、Mは水素原子又はカチオンを示す。)

<3> <2>に記載の色素の一般式(2)および(4)で表される色素において、 Ar₁、Ar₂、Ar₄およびAr₅がそれぞれ下記式(A)で表される<2>に記載の色素。 式(A)

【化5】

(式中、Raは一価の基を表す。)

<4> <1>~<3>のいずれかに記載の色素を少なくとも一種含有するインク。

<5> <4>に記載のインクを用いて画像形成するインクジェット記録方法。

<6> <1>~<3>のいずれかに記載の色素を少なくとも一種含むインクシート。

<7> <1>~<3>のいずれかに記載の色素を少なくとも一種含むカラートナー。

<8> <1>~<3>のいずれかに記載の色素を少なくとも一種含むカラーフィルタ

【発明の効果】

[0015]

本発明の色素はインク中での保存安定性に優れ、三原色の色素として色再現性に優れた吸収特性を有し、且つ光、熱、湿度および環境中の活性ガスに対して十分な堅牢性を有する色素を有する。また、この色素は色相と堅牢性に優れた着色画像や着色材料を与える、インクジェットなどの印刷用のインク、感熱記録材料におけるインクシート、電子写真用のカラートナー、LCD、PDPなどのディスプレイやCCDなどの撮像素子で用いられるカラーフィルター、各種繊維の染色の為の染色液などの各種着色組成物用として好適である。特に、該色素の使用によりインクの保存安定性に優れ、良好な色相を有し、光及び環境中の活性ガス、特にオゾンガスに対して堅牢性の高い画像を形成することができるインクジェット記録用インク及びインクジェット記録方法を提供することができる。

【発明を実施するための最良の形態】

[0016]

以下、本発明について詳細に説明する。

[アゾ色素]

本発明におけるアゾ色素は前記一般式(1)で表されるアゾ色素である。

以下、一般式(1)について詳細に説明する。

 R_1 、 R_2 およびZの一価の基としては後述するアリール基の置換基と同じである。

前記色素はその分子中にアゾ基を2個有するが、[1]分子中に2個のアゾ基が置換した基を1つ有するか、[2]アゾ基を1個有する基を2つ有する。前記アゾ基が置換した基及び前記アゾ基を有する基としてはヘテロ環基が好ましい。ヘテロ環基を構成するヘテロ

環としては、例えば、5-ピラゾロン環、5-アミノピラゾール環、オキサゾロン環、バル ビツール酸環、ピリドン環、ローダニン環、ピラゾリジンジオン環、ピラゾロピリドン環 、メルドラム酸環が挙げられ、5-ピラゾロン環および5-アミノピラゾール環が好まし く、5-アミノピラゾールが特に好ましい。

本発明において、Mは水素原子又はカチオンである。Mで表されるカチオンとしては、ア ルカリ金属イオン、アンモニウム又は第4級アンモニウムカチオンであり、好ましくはLi 、Na、K、NH4、NR4である。但し、R はアルキル基およびアリール基であり後述するアル キル基およびアリール基と同じである。

[0017]

一般式 (1) で表されるアゾ色素のうち、好ましくは一般式 (2) 、 (3) および (4)) で表される色素である。

一般式 (2) のR3およびR4で表される一価の基は後述するアリール基の置換基と同じで ある。さらに、アルキル基、シクロアルキル基、アラルキル基、アルコキシ基、アリール 基、アミノ基、カルボキシル基(塩でもよい)、カルバモイル基が好ましく、アルキル基(好ましくは、炭素数1~5の低級アルキル基、例えばメチル、エチル、ブチル、t-ブチ ル)がより好ましい。これらの置換基の詳細は後述する置換基と同じである。

ArıおよびAr2で表されるヘテロ環基のヘテロ環としては、5員又は6員環のものが好ま しく、それらは更に縮環していてもよい。また、芳香族ヘテロ環であっても非芳香族ヘテ 口環であっても良い。例えば、ピリジン、ピラジン、ピリダジン、キノリン、イソキノリ ン、キナゾリン、シンノリン、フタラジン、キノキサリン、ピロール、インドール、フラ ン、ベンゾフラン、チオフェン、ベンゾチオフェン、ピラゾール、イミダゾール、ベンズ イミダゾール、トリアゾール、オキサゾール、ベンズオキサゾール、チアゾール、ベンゾ チアゾール、イソチアゾール、ベンズイソチアゾール、チアジアゾール、イソオキサゾー ル、ベンズイソオキサゾール、ピロリジン、ピペリジン、ピペラジン、イミダゾリジン、 チアゾリンなどが挙げられる。中では芳香族ヘテロ環基が好ましく、その好ましい例を先 と同様に例示すると、ピリジン、ピラジン、ピリダジン、ピラゾール、イミダゾール、ベ ンズイミダゾール、トリアゾール、ベンズオキサゾール、チアゾール、ベンゾチアゾール 、イソチアゾール、ベンズイソチアゾール、チアジアゾールが挙げられ、より好ましくは イミダゾール、ベンズオキサゾール、チアジアゾールが挙げられ、チアジアゾール(好ま しくは1,3,4ーチアジアゾール、1,2,4ーチアジアゾール)が最も好ましい。そ れらは置換基を有していても良く、置換基の例としては、後述するアリール基の置換基と 同じである。

Arı およびAr2で表されるアリール基としては置換もしくは無置換のアリール基が含まれ る。置換もしくは無置換のアリール基としては、炭素数6から30のアリール基が好まし い。アリール基の置換基の例としては、ハロゲン原子、アルキル基、シクロアルキル基、 、アラルキル基、アルケニル基、アルキニル基、アリール基、ヘテロ環基、シアノ基、ヒ ドロキシ基、ニトロ基、カルボキシル基(塩の形でもよい)、アルコキシ基、アリールオキ シ基、シリルオキシ基、ヘテロ環オキシ基、アシルオキシ基、カルバモイルオキシ基、ア ルコキシカルボニルオキシ基、アリールオキシカルボニルオキシ、アミノ基(アニリノ基 を含む)、アシルアミノ基、アミノカルボニルアミノ基、アルコキシカルボニルアミノ基 、アリールオキシカルボニルアミノ基、スルファモイルアミノ基、アルキル及びアリール スルホニルアミノ基、メルカプト基、アルキルチオ基、アリールチオ基、ヘテロ環チオ基 、スルファモイル基、スルホ基(塩の形でもよい)、アルキル及びアリールスルフィニル基 、アルキル及びアリールスルホニル基、アシル基、アリールオキシカルボニル基、アルコ キシカルボニル基、カルバモイル基、、イミド基、ホスフィノ基、ホスフィニル基、ホス フィニルオキシ基、ホスフィニルアミノ基、シリル基が例として挙げられる。

ArıおよびAr2で表されるアリール基としては置換フェニル基(置換基はカルボキシル基 又はスルホ基が好ましい) がより好ましい。

[0018]

前記アリール基の置換基を更に詳しく説明する。

ハロゲン原子は、塩素原子、臭素原子、ヨウ素原子を表す。

アルキル基は、置換もしくは無置換のアルキル基が含まれる。置換又は無置換のアルキ ル基は、炭素原子数が1~30のアルキル基が好ましい。置換基の例としては、アリール 基の置換基と同じものが挙げられる。中でも、ヒドロキシ基、アルコキシ基、シアノ基、 およびハロゲン原子、スルホ基(塩の形でもよい)およびカルボキシル基(塩の形でもよい) が好ましい。前記アルキル基の例には、メチル、エチル、ブチル、tーブチル、nーオク チル、エイコシル、2-クロロエチル、ヒドロキシエチル、シアノエチルおよび4-スル ホブチルを挙げることが出来る。

[0019]

シクロアルキル基は、置換もしくは無置換のシクロアルキル基が含まれる。置換基又は 無置換のシクロアルキル基は、炭素原子数が5~30のシクロアルキル基が好ましい。置 換基の例としては、アリール基の置換基と同じものが挙げられる。前記シクロアルキル基 の例にはシクロヘキシル、シクロペンチル、4-n-ドデシルシクロヘキシルを挙げること が出来る。

[0020]

アラルキル基は、置換もしくは無置換のアラルキル基が含まれる。置換もしくは無置換 のアラルキル基としては、炭素原子数が7~30のアラルキル基が好ましい。置換基の例 としては、アリール基の置換基と同じものが挙げられる。前記アラルキルの例にはベンジ ルおよび2-フェネチルを挙げることが出来る。

アルケニル基は、直鎖、分岐、環状の置換もしくは無置換のアルケニル基を表す。好ま しくは炭素数2-30の置換又は無置換のアルケニル基、例えば、ビニル、アリル、プレ ニル、ゲラニル、オレイル、2-シクロペンテン-1-イル、2-シクロヘキセン-1-イルなどを挙げることが出来る。

[0021]

アルキニル基は、炭素数2から30の置換又は無置換のアルキニル基であり、例えば、 エチニル、プロパルギルを挙げることが出来る。

アリール基は炭素数6から30の置換もしくは無置換のアリール基、例えばフェニル、 p ートリル、ナフチル、m – クロロフェニル、 o – ヘキサデカノイルアミノフェニルであ

ヘテロ環基は5又は6員の置換もしくは無置換の、芳香族もしくは非芳香族のヘテロ環 化合物から一個の水素原子を取り除いた一価の基であり、更に好ましくは、炭素数3から 30の5もしくは6員の芳香族のヘテロ環基である。例えば、2-フリル、2-チエニル 、2-ピリミジニル、2-ベンゾチアゾリル、モルホリノである。

[0022]

アルコキシ基は置換もしくは無置換のアルコキシ基が含まれる。置換もしくは無置換の アルコキシ基としては、炭素原子数が1乃至30のアルコキシ基が好ましい。置換基の例 としては、アリール基の置換基と同じものが挙げられる。前記アルコキシ基の例には、メ トキシ、エトキシ、イソプロポキシ、n-オクチルオキシ、メトキシエトキシ、ヒドロキシ[・] エトキシおよび3-カルボキシプロポキシなどを挙げることが出来る。

[0023]

アリールオキシ基は、炭素数6から30の置換もしくは無置換のアリールオキシ基、例 えば、フェノキシ、2ーメチルフェノキシ、4-t-ブチルフェノキシ、3-ニトロフェ ノキシ、2ーテトラデカノイルアミノフェノキシである。

シリルオキシ基は、炭素数3から20のシリルオキシ基、例えば、トリメチルシリルオ キシ、tーブチルジメチルシリルオキシである。

ヘテロ環オキシ基は、炭素数2から30の置換もしくは無置換のヘテロ環オキシ基、例 えば、1-フェニルテトラゾールー5-オキシ、2-テトラヒドロピラニルオキシである

アシルオキシ基はホルミルオキシ基、炭素数2から30の置換もしくは無置換のアルキ ルカルボニルオキシ基、炭素数6から30の置換もしくは無置換のアリールカルボニルオ キシ基、例えば、ホルミルオキシ、アセチルオキシ、ピバロイルオキシ、ステアロイルオキシ、ベンゾイルオキシ、p-メトキシフェニルカルボニルオキシである。

カルバモイルオキシ基は、炭素数 1 から 3 0 の置換もしくは無置換のカルバモイルオキシ基、例えば、N, N-ジメチルカルバモイルオキシ、<math>N, N-ジエチルカルバモイルオキシ、モルホリノカルボニルオキシ、<math>N, N-ジ-n-オクチルアミノカルボニルオキシ、<math>N-n-オクチルカルバモイルオキシである。

アルコキシカルボニルオキシ基は、炭素数2から30の置換もしくは無置換アルコキシカルボニルオキシ基、例えばメトキシカルボニルオキシ、エトキシカルボニルオキシ、tーブトキシカルボニルオキシ、nーオクチルカルボニルオキシである。

アリールオキシカルボニルオキシ基は、炭素数 7 から 3 0 の置換もしくは無置換のアリールオキシカルボニルオキシ基、例えば、フェノキシカルボニルオキシ、p-xトキシフェノキシカルボニルオキシ、p-nーヘキサデシルオキシフェノキシカルボニルオキシである。

[0024]

アミノ基は、炭素数 1 から 3 0 の置換もしくは無置換のアルキルアミノ基、炭素数 6 から 3 0 の置換もしくは無置換のアリールアミノ基、例えば、アミノ、メチルアミノ、ジメチルアミノ、アニリノ、N-メチルーアニリノ、ジフェニルアミノ、ヒドロキシエチルアミノ、カルボキシエチルアミノ、スルフォエチルアミノ、3, 5 - ジカルボキシアニリノである。

アシルアミノ基は、ホルミルアミノ基、炭素数1から30の置換もしくは無置換のアルキルカルボニルアミノ基、炭素数6から30の置換もしくは無置換のアリールカルボニルアミノ基、例えば、ホルミルアミノ、アセチルアミノ、ピバロイルアミノ、ラウロイルアミノ、ベンゾイルアミノ、3,4,5-トリーnーオクチルオキシフェニルカルボニルアミノである。

アミノカルボニルアミノ基は、炭素数1から30の置換もしくは無置換のアミノカルボニルアミノ、例えば、カルバモイルアミノ、N, N-ジメチルアミノカルボニルアミノ、N, N-ジエチルアミノカルボニルアミノ、モルホリノカルボニルアミノである。

アルコキシカルボニルアミノ基は炭素数 2 から 3 0 の置換もしくは無置換アルコキシカルボニルアミノ基、例えば、メトキシカルボニルアミノ、エトキシカルボニルアミノ、 t ープトキシカルボニルアミノ、 n ーオクタデシルオキシカルボニルアミノ、 N ーメチルーメトキシカルボニルアミノである。

アリールオキシカルボニルアミノ基は、炭素数7から30の置換もしくは無置換のアリールオキシカルボニルアミノ基、例えば、フェノキシカルボニルアミノ、p-クロロフェノキシカルボニルアミノ、m-n-オクチルオキシフェノキシカルボニルアミノである。

スルファモイルアミノ基は、炭素数0から30の置換もしくは無置換のスルファモイルアミノ基、例えば、スルファモイルアミノ、N, N-ジメチルアミノスルホニルアミノ、N-n-オクチルアミノスルホニルアミノである。

アルキル及びアリールスルホニルアミノ基は炭素数1から30の置換もしくは無置換のアルキルスルホニルアミノ、炭素数6から30の置換もしくは無置換のアリールスルホニルアミノ、例えば、メチルスルホニルアミノ、ブチルスルホニルアミノ、フェニルスルホニルアミノ、2,3,5ートリクロロフェニルスルホニルアミノ、pーメチルフェニルスルホニルアミノである。

[0025]

アルキルチオ基は、炭素数1から30の置換もしくは無置換のアルキルチオ基、例えばメチルチオ、エチルチオ、n-ヘキサデシルチオである。

アリールチオ基は炭素数6から30の置換もしくは無置換のアリールチオ、例えば、フェニルチオ、p-クロロフェニルチオ、m-メトキシフェニルチオである。

ヘテロ環チオ基は炭素数2から30の置換又は無置換のヘテロ環チオ基、例えば、2-ベンゾチアゾリルチオ、1-フェニルテトラゾール-5-イルチオである。

[0026]

スルファモイル基は炭素数0から30の置換もしくは無置換のスルファモイル基、例え ば、N-エチルスルファモイル、<math>N-(3-ドデシルオキシプロピル) スルファモイル、 N, N - \mathbb{N} + \mathbb{N} ァモイル、N- (N'-フェニルカルバモイル) スルファモイル) である。

アルキル及びアリールスルフィニル基は、炭素数1から30の置換又は無置換のアルキ ルスルフィニル基、6から30の置換又は無置換のアリールスルフィニル基、例えば、メ チルスルフィニル、エチルスルフィニル、フェニルスルフィニル、pーメチルフェニルス ルフィニルである。

アルキル及びアリールスルホニル基は、炭素数1から30の置換又は無置換のアルキル スルホニル基、6から30の置換又は無置換のアリールスルホニル基、例えば、メチルス ルホニル、エチルスルホニル、フェニルスルホニル、pーメチルフェニルスルホニルであ る。

[0027]

アシル基はホルミル基、炭素数2から30の置換又は無置換のアルキルカルボニル基、 、炭素数7から30の置換もしくは無置換のアリールカルボニル基、炭素数4から30の 置換もしくは無置換の炭素原子でカルボニル基と結合しているヘテロ環カルボニル基、例 えば、アセチル、ピバロイル、2-クロロアセチル、ステアロイル、ベンゾイル、p-n ーオクチルオキシフェニルカルボニル、2―ピリジルカルボニル、2―フリルカルボニル である。

[0028]

アリールオキシカルボニル基は、炭素数7から30の置換もしくは無置換のアリールオ キシカルボニル基、例えば、フェノキシカルボニル、οークロロフェノキシカルボニル、 mーニトロフェノキシカルボニル、p-t-ブチルフェノキシカルボニルである。

アルコキシカルボニル基は、炭素数2から30の置換もしくは無置換アルコキシカルボ ニル基、例えば、メトキシカルボニル、エトキシカルボニル、tーブトキシカルボニル、 n-オクタデシルオキシカルボニルである。

カルバモイル基は、炭素数1から30の置換もしくは無置換のカルバモイル、例えば、 カルバモイル、Nーメチルカルバモイル、N, N-ジメチルカルバモイル、N, N-ジー n-オクチルカルバモイル、N- (メチルスルホニル) カルバモイルである。

[0029]

ホスフィノ基は、炭素数2から30の置換もしくは無置換のホスフィノ基、例えば、ジ メチルホスフィノ、ジフェニルホスフィノ、メチルフェノキシホスフィノである。

ホスフィニル基は、炭素数2から30の置換もしくは無置換のホスフィニル基、例えば 、ホスフィニル、ジオクチルオキシホスフィニル、ジエトキシホスフィニルである。

ホスフィニルオキシ基は、炭素数2から30の置換もしくは無置換のホスフィニルオキ シ基、例えば、ジフェノキシホスフィニルオキシ、ジオクチルオキシホスフィニルオキシ である。

ホスフィニルアミノ基は、炭素数2から30の置換もしくは無置換のホスフィニルアミ ノ基、例えば、ジメトキシホスフィニルアミノ、ジメチルアミノホスフィニルアミノであ

シリル基は、炭素数3から30の置換もしくは無置換のシリル基、例えば、トリメチル シリル、t-ブチルジメチルシリル、フェニルジメチルシリルである。

[0030]

上記のアリール基の置換基の中で、水素原子を有するものは、これを取り去り更に上記 の基で置換されていても良い。そのような官能基の例としては、アルキルカルボニルアミ ノスルホニル基、アリールカルボニルアミノスルホニル基、アルキルスルホニルアミノカ ルボニル基、アリールスルホニルアミノカルボニル基が挙げられる。その例としては、メ チルスルホニルアミノカルボニル、p-メチルフェニルスルホニルアミノカルボニル、ア セチルアミノスルホニル、ベンゾイルアミノスルホニル基が挙げられる。

[0031]

前記一般式 (2) において、Ar1及びAr2がヘテロ環基であることが好ましい。さらに、 Arı及びAr2が前記式(A)で表される色素であることが最も好ましい。

式 (A) 中、R a は一価の基を表す。R a で表される一価の基は、一般式 (1) の R_1 お よびR2で表される一価の基と同義であり、好ましい範囲も同様である。Raは、より好ま しくは-L-Ph、又は-Ph (Phは置換又は無置換のフェニル基を表し、置換基とし ては一般式(1)のR₁およびR₂で表される一価の基と同義である。Lは二価の連結基を表 し、一般式(3)のAr3と同義である。)であり、さらに好ましくは-S-Ph、又は - P h である (P h は置換又は無置換のフェニル基を表す)。

[0032]

一般式 (3) について詳細に説明する。R5およびR6で表される一価の基は一般式 (2) のR₃およびR₄の一価の基と同じである。R₇およびR₈で表される一価の基は前述のアリール の置換基と同じである。さらに、 R_7 および R_8 はハロゲン原子、OM(Mは水素原子又はカチオン)、アルコキシ基、アルキルチオ基、アリールチオ基、アミノ基、ヘテロ環基が好ま しい。これらの置換基は前述と同じである。

Ar3で表される二価の連結基はアルキレン基(例、メチレン、エチレン、プロピレン、 ブチレン、ペンチレン)、アルケニレン基(例、エテニレン、プロペニレン)、アルキニ レン基(例、エチニレン、プロピニレン)、アリーレン基(例、フェニレン、ナフチレン)、二価のヘテロ環基(例、6-クロロー1、3、5-トリアジンー2、4-ジイル基、 ピリミジン2、4ージイル基、キノキサリン-2、3ージイル基、ピリダジン-3,6-ジイル)、-0-、-CO-、-NR- (Rは水素原子、アルキル基又はアリール基)、-S-、-SO2-、-SO-又はこれらの組み合わせ(例えば-NHCH2CH2NH-、-NHCONH-等)であ ることが好ましい。

アルキレン基、アルケニレン基、アルキニレン基、アリーレン基、二価のヘテロ環基、 Rのアルキル基又はアリール基は、置換基を有していてもよい。置換基の例としては、ア リール基の置換基と同じである。Rのアルキル基およびアリール基は前述と同義である。

さらに好ましくは、炭素数10以下のアルキレン基、炭素数10以下のアルケニレン基 、炭素数10以下のアルキニレン基、炭素数6以上10以下のアリーレン基、ーSー、ーS O-、-SO₂-又はこれらの組み合わせ (例えば-SCH₂CH₂S-、-SCH₂CH₂CH₂S-等)であるこ とがさらに好ましい。

二価の連結基の総炭素数は0乃至50であることが好ましく、0乃至30であることが より好ましく、0乃至10であることが最も好ましい。

[0033]

一般式(4)について詳細に説明する。 R_9 および $R_{1\,0}$ の一価の基は一般式(2)の R_3 お よびR4の一価の基と同じである。Ar4およびAr5で表されるアリール基およびヘテロ環基は 一般式(2)のArıおよびAr2のアリール基およびヘテロ環基と同じであり、ヘテロ環基が 好ましい。Ar6で表される二価の連結基は一般式(3)のAr3の二価の連結基と同じである

一般式 (2)、 (3) および (4) の中で一般式 (2) で表される色素が最も好ましい

[0034]

本発明において、一般式(1)、(2)、(3)および(4)で表される化合物が親水 性を必要とする場合は、分子内に 2 個以上の親水性基を有することが好ましく、 2 ~ 1 0 個の親水性基を有することがさらに好ましく、3~6個の親水性基を有することが特に好 ましい。但し、媒体として水を使用しない場合は親水性基を有していなくてよい。

親水性基としてはイオン性解離基である限りいかなるものであってもよい。具体的には スルホ基、カルボキシル基(それらの塩を含む)、水酸基(塩でもよい)、ホスホノ基(塩で もよい) 又は4級アンモニウムを挙げることが出来る。好ましくはスルホ基、カルボキシ ル基、水酸基(それらの塩を含む)である。

前記一般式(1)(2)(3)および(4)で表される色素は、色再現性の観点から、 H₂O中で380~490 n mの最大吸収波長(λ max)を有することが好ましく、400~ 480nmのλmaxを有することがさらに好ましく、420~460nmのλmaxを有する ことが特に好ましい。

[0035]

前記一般式 (1) (2) (3) および (4) で表される色素の具体例(例示色素 $1\sim5$ 7)を以下に示すが、本発明に用いられる色素は、下記の例に限定されるものではない。 [0036]

また、以下の具体例の構造は遊離の酸の形で示されるが、任意の塩として用いても良い ことは言うまでもない。好ましいカウンターカチオンとしては、アルカリ金属(例えば、 リチウム、ナトリウム、カリウム)、アンモニウム、及び有機のカチオン(例えばピリジ ニウム、テトラメチルアンモニウム、グアニジウム)を挙げることができる。

[0037] 【化6】

Dye	Ar	Dye	Ar
1	N-N S-S-COOH	8	SC ₂ H ₄ SO ₃ H
2	N-N s	9	N Ph
3	N-N s	10	ON SO₃H
4	N−N —SC ₃ H ₆ COOH	11	N CN CH₂COOH
5	N-N _// \>—SMe	12	————SO₃H
6	N−N _// SCH₂CHMe₂	13	N-N _//_S/_COOH
7	- N-N		

Dye	R	Ar
14	ОН	-SC₂H₄S-
15	ОН	-SC₃H ₆ S- HOOC. ∠COOH
16	ОН	HOOC COOH
17	ОН	_s_s_
18	он .	-s-⟨¯>-s- N·N
19	ОН	Me CN -s N s-
20	-HN-COOH	-SC₂H₄S-
21	-NHC₂H₄SO₃H	-SC₂H₄S-
22	-N(CH ₂ COOH) ₂	-SC ₂ H ₄ S-
23	-N(C ₄ H ₉) ₂	-SC₂H₄S-
24	-NH ₂	-SC₂H₄S-
25	-SC ₃ H ₆ SO ₃ H	-SC ₂ H ₄ S-
26	-NHC₂H₄SO₃H	
27	-NHC₂H₄SO₃H	NHCONH

【0039】 【化8】

Dye

Dye

[0043]

【化12】

[0044]

本発明の色素は後記の色素1等の合成法に順じて、色素1以外の色素も合成できる。

[0045] 本発明の色素の用途としては、画像、特にカラー画像を形成するための画像記録材料が 挙げられ、具体的には、以下に詳述するインクジェット方式記録材料を始めとして、感熱 記録材料、感圧記録材料、電子写真方式を用いる記録材料、転写式ハロゲン化銀感光材料 、印刷インク、記録ペン等があり、好ましくはインクジェット方式記録材料、感熱記録材 料、電子写真方式を用いる記録材料であり、更に好ましくはインクジェット方式記録材料 である。

また、CCDなどの固体撮像素子やLCD、PDP等のディスプレーで用いられるカラー画像を 記録・再現するためのカラーフィルター、各種繊維の染色の為の染色液にも適用できる。

本発明の色素は、その用途に適した溶解性、分散性、熱移動性などの物性を、置換基で 調整して使用する。また、本発明の色素は、用いられる系に応じて溶解状態、乳化分散状 態、さらには固体分散状態でも使用する事が出来る。

[0046]

[インク]

本発明のインクは、少なくとも一種の本発明の色素を含有するインクを意味する。本発 出証特2005-3020577 明のインクは、媒体を含有させることができるが、媒体として溶媒を用いた場合は特にイ ンクジェット記録用インクとして好適である。本発明のインクは、媒体として、親油性媒 体や水性媒体を用いて、それらの中に、本発明の色素を溶解及び/又は分散させることに よって作製することができる。好ましくは、水性媒体を用いる場合である。本発明のイン クには、媒体を除いたインク用組成物も含まれる。本発明のインクは、必要に応じてその 他の添加剤を、本発明の効果を害しない範囲内において含有しうる。その他の添加剤とし ては、例えば、乾燥防止剤(湿潤剤)、褪色防止剤、乳化安定剤、浸透促進剤、紫外線吸 収剤、防腐剤、防黴剤、pH調整剤、表面張力調整剤、消泡剤、粘度調整剤、分散剤、分 散安定剤、防錆剤、キレート剤等の公知の添加剤(特開2003-306623号公報に 記載)が挙げられる。これらの各種添加剤は、水溶性インクの場合にはインク液に直接添 加する。油溶性染料を分散物の形で用いる場合には、染料分散物の調製後分散物に添加す るのが一般的であるが、調製時に油相又は水相に添加してもよい。

[0047]

本発明の色素を水性媒体に分散させる場合は、特開平11-286637号、特開20 01-240763(特願2000-78491)号、特開2001-262039(特願 2000-80259)号、特開2001-247788(特願2000-62370)号 のように色素と油溶性ポリマーとを含有する着色微粒子を水性媒体に分散したり、特開 2 001-262018(特願2000-78454)号、特開2001-240763(特 願2000-78491)号、特開2001-335734(特願2000-203856)号、特願2000-203857号のように高沸点有機溶媒に溶解した本発明の色素を 水性媒体中に分散することが好ましい。本発明の色素を水性媒体に分散させる場合の具体 的な方法、使用する油溶性ポリマー、高沸点有機溶剤、添加剤及びそれらの使用量は、前 記特許文献に記載されたものを好ましく使用することができる。あるいは、前記アゾ色素 を固体のまま微粒子状態に分散してもよい。分散時には、分散剤や界面活性剤を使用する ことができる。分散装置としては、簡単なスターラーやインペラー攪拌方式、インライン 攪拌方式、ミル方式(例えば、コロイドミル、ボールミル、サンドミル、アトライター、 ロールミル、アジテーターミル等)、超音波方式、高圧乳化分散方式(高圧ホモジナイザ ー;具体的な市販装置としてはゴーリンホモジナイザー、マイクロフルイダイザー、De BEE2000等)を使用することができる。上記のインクジェット記録用インクの調製 方法については、先述の特許文献以外にも特開平5-148436号、同5-29531 2号、同7-97541号、同7-82515号、同7-118584号、特開平11-286637号、特開2001-271003(特願2000-87539)号の各公報 に詳細が記載されていて、本発明のインクジェット記録用インクの調製にも利用できる。

[0048]

前記水性媒体は、水を主成分とし、所望により、水混和性有機溶剤を添加した混合物を 用いることができる。前記水混和性有機溶剤の例は特開2003-306623号公報に 記載のものが使用できる。尚、前記水混和性有機溶剤は、二種類以上を併用してもよい。

[0049]

本発明のインクジェット記録用インク100質量部中に、本発明の色素を0.1質量部 以上20質量部以下含有するのが好ましく、0.2質量部以上10質量部以下含有するの がより好ましく、0.5~9質量部含有するのがさらに好ましい。また、本発明のインク ジェット用インクには、本発明の色素とともに、他の色素を併用してもよい。2種類以上 の色素を併用する場合は、色素の含有量の合計が前記範囲となっているのが好ましい。

[0050]

本発明のインクは、単色の画像形成のみならず、フルカラーの画像形成に用いることが できる。フルカラー画像を形成するために、マゼンタ色調インク、シアン色調インク、及 びイエロー色調インクを用いることができ、また、色調を整えるために、更にブラック色 調インクを用いてもよい。

[0051]

さらに、本発明におけるインクジェット記録用インクは、上記本発明における色素の他 出証特2005-3020577 に別のイエロー染料を同時に用いることが出来る。適用できるイエロー染料、適用できる マゼンタ染料、適用できるシアン染料としては、各々任意のものを使用する事が出来るが 、特開2003-306623号公報の段落番号0090~0092に記載の各染料が利 用できる。適用できる黒色材としては、ジスアゾ、トリスアゾ、テトラアゾ染料のほか、 カーボンブラックの分散体を挙げることができる。

[0052]

[インクジェット記録方法]

本発明のインクジェット記録方法は、前記インクジェット記録用インクにエネルギーを 供与して、公知の受像材料、即ち普通紙、樹脂コート紙、例えば特開平8-169172 号公報、同8-27693号公報、同2-276670号公報、同7-276789号公 報、同9-323475号公報、特開昭62-238783号公報、特開平10-153 989号公報、同10-217473号公報、同10-235995号公報、同10-3 37947号公報、同10-217597号公報、同10-337947号公報等に記載 されているインクジェット専用紙、フィルム、電子写真共用紙、布帛、ガラス、金属、陶 磁器等に画像を形成する。なお、本発明のインクジェット記録方法として特開2003-306623号公報の段落番号0093~0105の記載が適用できる。

[0053]

画像を形成する際に、光沢性や耐水性を与えたり耐候性を改善する目的からポリマーラ テックス化合物を併用してもよい。ラテックス化合物を受像材料に付与する時期について は、着色剤を付与する前であっても、後であっても、また同時であってもよく、したがっ て添加する場所も受像紙中であっても、インク中であってもよく、あるいはポリマーラテ ックス単独の液状物として使用しても良い。具体的には、特開2002-166638(特願2000-363090)、特開2002-121440(特願2000-31523 1)、特開2002-154201(特願2000-354380)、特開2002-14 4696(特願2000-343944)、特開2002-080759(特願2000-268952)、特願2000-299465、特願2000-297365に記載され た方法を好ましく用いることができる。

[0054]

[カラートナー]

本発明のカラートナー100質量部中の本発明の色素の含有量は特に制限がないが、 0 1質量部以上含有するのが好ましく、1~20質量部がより好ましく、2~10質量部 含有するのが最も好ましい。

本発明の色素を導入するカラートナー用バインダー樹脂としては一般に使用される全て のバインダーが使用出来る。例えば、スチレン系樹脂・アクリル系樹脂・スチレン/アク リル系樹脂・ポリエステル樹脂等が挙げられる。

トナーに対して流動性向上、帯電制御等を目的として無機微粉末、有機微粒子を外部添 加しても良い。表面をアルキル基含有のカップリング剤等で処理したシリカ微粒子、チタ ニア微粒子が好ましく用いられる。なお、これらは数平均一次粒子径が10~500nm のものが好ましく、さらにはトナー中に0.1~20質量%添加するのが好ましい。

[0055]

離型剤としては、従来使用されている離型剤は全て使用することができる。具体的には 、低分子量ポリプロピレン・低分子量ポリエチレン・エチレンープロピレン共重合体等の オレフィン類、マイクロクリスタリンワックス・カルナウバワックス・サゾールワックス ・パラフィンワックス等があげられる。これらの添加量はトナー中に1~5質量%添加す ることが好ましい。

[0056]

荷電制御剤としては、必要に応じて添加しても良いが、発色性の点から無色のものが好 ましい。例えば4級アンモニウム塩構造のもの、カリックスアレン構造を有するものなど があげられる。

[0057]

キャリアとしては、鉄・フェライト等の磁性材料粒子のみで構成される非被覆キャリア 、磁性材料粒子表面を樹脂等によって被覆した樹脂被覆キャリアのいずれを使用してもよ い。このキャリアの平均粒径は体積平均粒径で30~150μmが好ましい。

本発明のトナーが適用される画像形成方法としては、特に限定されるものではないが、 例えば感光体上に繰り返しカラー画像を形成した後に転写を行い画像を形成する方法や、 感光体に形成された画像を逐次中間転写体等へ転写し、カラー画像を中間転写体等に形成 した後に紙等の画像形成部材へ転写しカラー画像を形成する方法等があげられる。

[0059]

[感熱記録(転写)材料]

感熱記録材料は、支持体上に本発明の色素をバインダーとともに塗設したインクシート 、及び画像記録信号に従ってサーマルヘッドから加えられた熱エネルギーに対応して移行 してきた色素を固定する受像シートから構成される。インクシートは、本発明の化合物を バインダーと共に溶剤中に溶解することによって、或いは溶媒中に微粒子状に分散させる ことによってインク液を調製し、該インクを支持体上に塗布して適宜に乾燥することによ り形成することができる。支持体上のインクの塗布量は特に制限するものではないが、好 ましくは $30\sim1000$ mg/ m^2 である。好ましいバインダー樹脂、インク溶媒、支持 体、更には受像シートについては、特開平7-137466号に記載されたものを好まし く用いることができる。

[0060]

該感熱記録材料をフルカラー画像記録が可能な感熱記録材料に適用するには、シアン画 像を形成することができる熱拡散性シアン色素を含有するシアンインクシート、マゼンタ 画像を形成することができる熱拡散性マゼンタ色素を含有するマゼンタインクシート、イ エロー画像を形成することができる熱拡散性イエロー色素を含有するイエローインクシー トを支持体上に順次塗設して形成する事が好ましい。また、必要に応じて他に黒色画像形 成物質を含むインクシートがさらに形成されていても良い。

[0061]

[カラーフィルター]

カラーフィルターの形成方法としては、初めにフォトレジストによりパターンを形成し 、次いで染色する方法、或いは特開平4-163552号、特開平4-128703号、 特開平4-175753号公報で開示されているように色素を添加したフォトレジストに よりパターンを形成する方法がある。本発明の色素をカラーフィルターに導入する場合に 用いられる方法としては、これらのいずれの方法を用いても良いが、好ましい方法として は、特開平4-175753号や特開平6-35182号に記載されたところの、熱硬化 性樹脂、キノンジアジド化合物、架橋剤、色素及び溶剤を含有してなるポジ型レジスト組 成物、並びに、それを基体上に塗布後、マスクを通して露光し、該露光部を現像してポジ 型レジストパターンを形成させ、上記ポジ型レジストパターンを全面露光し、次いで露光 後のポジ型レジストパターンを硬化させることからなるカラーフィルターの形成方法を挙 げる事ができる。又、常法に従いブラックマトリックスを形成させ、RGB原色系あるい はY、M、C補色系カラーフィルターを得ることができる。カラーフィルターの場合も色 素の使用量の制限はないが0.1~50質量%が好ましい。

[0062]

この際使用する熱硬化性樹脂、キノンジアジド化合物、架橋剤、及び溶剤とそれらの使 用量については、前記特許文献に記載されているものを好ましく使用することができる。

[0063]

[実施例]

以下、本発明を実施例によって説明するが、本発明はこれに限定されるものではない。 【実施例1】

[0064]

代表例として色素 1 の合成法を記述する。合成例での各工程は公知の合成法(特開 2 0 出証特2005-3020577 03-277662号公報及び特願2003-286844号明細書が参照できる。)を 用いて合成可能である。

[0065] 【化13】

[0066]

[合成例] (1) NaHCO₃ 18.5gおよびH₂O 185mlを40℃に加温し、a 18 . 4gおよびアセトン48mlの溶液を加え、一時間攪拌した。アセトンを濃縮した後、 ヒドラジン40gを加え室温で3時間攪拌し、析出した結晶をろ過し、14gのbを得た

(2) b 10.5g、c 20gおよびH2O 330mlの混合物に1N-NaOH1 0 m 1 加え、3時間加温した。ろ過し、口液を酢酸で酸性にして析出した結晶ろ過し、4 gのdを得た。

(3) 15gのeをジアゾ化し、d 3g、MeOH100mlおよびAcOK16g の混合物に5℃で加えた。析出した結晶をろ過し、セファデックスを用いてカラムクロマ トを行い、4.9gの色素(Dye)1を得た。

 $\lambda \max 451$. 7 nm (H₂O) , ϵ : 5. 88×10⁴ (dm³. cm/mol) 他の色素も同様に合成することが出来る。

【実施例2】

[0067]

以下に色素20の合成例を示す。前記色素1の合成法を適用することで色素20が同様 に合成できる。合成した色素のH2O中でのλmaxを表1に示した。

[0068]

【化14】

[0069] 【表1】

表 1

Dye.	λ _{max} (H ₂ O)
3	4 5 2 n m
2 0	4 2 2 n m
2 1	4 2 1 n m
2 8	4 5 0 n m
4 0	456.8nm
4.1	463.1nm
4 4	453.6nm

【実施例3】

[0070]

下記の成分に超純水(抵抗値18MΩ以上)を加え1リッターとした後、30~40℃ で加熱しながら 1 時間撹拌した。その後、平均孔径 $0.25 \mu m$ のミクロフィルターで減圧濾 過してイエローインク液Υ-101を調製した。

[イエローインク Y-101処方]

(固形分)

本発明の色素1

プロキセル (ゼネカ製)

尿素

40g/1 1.5g/l20g/1

出証特2005-3020577

(液体成分)

トリエチレングリコールモノブチルエーテル(DGB) 100g/l115g/l グリセリン(GR) 100g/1トリエチレングリコール(TEG) 35g/l 2 - ピロリドン 8g/1 トリエタノールアミン(TEA) 10g/l

サーフィノールSTG(SW) 前記色素を、下記表2に示すように変更した以外は、インク液Y-101の調製と同様 にして、インク液Υ-102を作製した。

この際に、比較用のインク液として表 2 中の比較色素 a および b を用いてインク液 1 0 1および102を作成した。

色素を変更する場合は、色素の添加量がインク液Y-101に対して等モルとなるよう に使用した。

以上の各実施例(インク液Y101、102)及び比較例(インク液101、102) のインクジェット用インクについて、下記評価を行った。その結果を表 2 に示した。

なお、表 2 において、「色調」、「耐光性」、「耐オゾン(ガス)性」、「熱堅牢性」 は、各インクジェット用インクを、EPSON社製インクジェットプリンターG800の イエローインクのカートリッジに装填し、階段状に濃度が変化したイエローの単色画像パ ターンならびにグレーの画像パターンを印字させた。受像シートはエプソンインクジェッ トプリンタ用写真用紙<光沢>に画像を印刷し、画像品質ならびに画像堅牢性の評価を行っ た。

(評価実験)

<色調>

色調については、目視にてA(最良)、B(良好)及びC(不良)の3段階で評価した 。また、写真用紙<光沢>でのλmaxの値を示した。

<耐光性>

印字直後の画像濃度Ciを反射濃度計 (X-rite 310TR) にて測定した後、アトラス社製 ウェザーメーターを用い画像にキセノン光(8万5千ルックス)を7日照射した後、再び 画像濃度Cfを測定し染料残存率Cf/Ci×100を求め評価を行った。染料残像率について反射 濃度が1、1.5、2の3点にて評価し、いずれの濃度でも染料残存率が70%以上の場 合をA、2点が70%未満の場合をB、全ての濃度で70%未満の場合をCとした。

<耐オゾン(ガス)性>

前記画像を形成したフォト光沢紙を、オゾンガス濃度が5 p p m に設定されたボックス 内に10日間放置し、オゾンガス下放置前後の画像濃度を反射濃度計(X-rite 310TR) を用いて測定し、色素残存率として評価した。尚、前記反射濃度は、1、1.5及び2. 0の3点で測定した。ボックス内のオゾンガス濃度は、APPLICS製オゾンガスモニ ター(モデル:OZG-EM-01)を用いて設定した。

何れの濃度でも染料残存率が80%以上の場合をA、1又は2点が80%未満をB、全 ての濃度で70%未満の場合をCとして、三段階で評価した。

<熱堅牢性>

80℃70%RHの条件下に10日間、試料を保存する前後での濃度を反射濃度計(Xrite 310TR) にて測定し染料残存率を求め評価した。染料残像率について反射濃度が1 、1.5、2の3点にて評価し、いずれの濃度でも染料残存率が90%以上の場合をA、 2点が90%未満の場合をB、全ての濃度で90%未満の場合をCとした。

くインク安定性>

上記で得られたインク液を70℃で6日間経時し、液体クロマトグラフィーにて染料残 存率を求め評価した。染料残存率が95%以上をA、95%未満85%以上をB、85% 未満をCとした。

得られた結果を表に示す。

[0071]

【表2】

表 2

30	22						145 AV.
F-W-4-2	色素	色調 (λmax)	耐光性	耐オゾン性	熱堅牢性	インク安定性	備考
試料	巴米	C310-3	12.5		۸	A	本発明
Y101	1	A (455nm)	Α	A			
		A (453nm)	l A	A	Α	A	本発明
Y102	4		 		A	R	比較例
101	la	A (446nm)	A	A	^		
	 	4 (440)	A	A	A	C	比較例
102	l b	A (448nm)	1 ^				

[0072]

表の結果から明らかなように、本発明のインクを使用した系ではすべての性能に優れて いることがわかる。特に比較例に対してインク安定性が優れている。

[0073]

【化15】

比較色素b

KOOC

$$V_{N}$$
 V_{N}
 V_{N

【実施例4】

[0074]

実施例3で作製した同じインクを、実施例3の同機にて画像を富士写真フイルム製イン クジェットペーパーフォト光沢紙「画彩」にプリントし、実施例3と同様な評価を行った ところ、実施例3と同様な結果が得られた。

【実施例5】

[0075]

(インク液Dの作製)

本発明の色素 6 2.5g、ジオクチルスルホコハク酸ナトリウム 7.04gを、下記 高沸点有機溶媒(s-2)4.22g、下記高沸点有機溶媒(s-11)5.63g及び 酢酸エチル50ml中に70℃にて溶解させた。この溶液中に500mlの脱イオン水を マグネチックスターラーで撹拌しながら添加し、水中油滴型の粗粒分散物を作製した。次 にこの粗粒分散物を、マイクロフルイダイザー (MICROFLUIDEX INC) に

COOK

て600barの圧力で5回通過させることで微粒子化を行った。更にでき上がった乳化 物をロータリーエバポレーターにて酢酸エチルの臭気が無くなるまで脱溶媒を行った。こ うして得られた疎水性染料の微細乳化物に、ジエチレングリコール140g、グリセリン 50g、SURFYNOL465 (AirProducts&Chemicals社) 7 g、脱イオン水900mlを添加してインク液Dを作製した。このインクのpH8.5、 粘度4.1mPa·S、表面張力33mN/mであった。

[0076] 【化16】

[0077]

(インク液103の作製)

インク液Dの本発明の色素を等モルの下記表3の比較色素に変更した以外は、インク液 Dと同様にインク液103を作製した。インク液のpH、粘度、表面張力はインク液Dと 同じであった。

[0078]

(画像記録及び評価)

インク液Dび比較用インク液103について下記評価を行った。その結果を下記表3に 示す。

尚、表 3 において、「色調 (λ max)」、「耐光性」、「耐オゾン (ガス) 性」、「耐熱 性」および「インク安定性」の内容はそれぞれ実施例3で述べたものと同じである。

[0079] 【表3】

表 3

ſ	32.0	A 事	色調 (lmax)	耐光性	耐がソ性	耐熱性	インク安定性
	試料	色素	A (450nm)	Δ	A	A	A
Ì	D	6		<u> </u>	C	Α	Α
1	103	比較色素C	B (430nm)		<u> </u>		1

[0080] 【化17】

【実施例6】

比較色素c

[0081] 表3から明らかなように、本発明のインクジェット用インクは色調に優れ、耐光性、耐 オゾン性、耐熱性およびインク安定性に優れるものであった。

[0082]

実施例5で作製した同じインクを、実施例5の同機にて画像を富士写真フイルム製イン クジェットペーパーフォト光沢紙「画彩」にプリントし、実施例5と同様な評価を行った ところ、実施例5と同様な結果が得られた。

【実施例7】

[0083]

本発明の色素 5 3 質量部、トナー用樹脂〔スチレンーアクリル酸エステル共重合体; 商品名 ハイマーTB-1000F(三洋化成製)〕100質量部をボールミルで混合粉 砕後、150℃に加熱して熔融混和を行い、冷却後ハンマーミルを用いて粗粉砕し、次い でエアージェット方式による微粉砕機で微粉砕した。更に分級して1~20マイクロを選 択し、トナーとした。このトナー10部に対しキャリヤー鉄粉(商品名 EFV250/ 400;日本鉄粉製)900質量部を均一に混合し現像剤とした。同様に、表4に示す着 色剤を3質量部使用した以外は同様にしてサンプルを調製した。これらの現像剤を用いて 乾式普通紙電子写真複写機〔商品名 NP-5000;キャノン(株)製〕で複写を行っ た。

[0084]

評価テストは、本発明のカラートナーを用いた現像剤によって上記画像形成方法により 紙およびOHP上に、それぞれ反射画像(紙上の画像)および透過画像(OHP画像)を 作製し、以下に示す方法で実施した。なお、トナー付着量は0.7±0.05 (mg/c m²) の範囲で評価した。

[0085]

得られた画像について、色相と光堅牢性を評価した。色相については、目視にて最良、 良好及び不良の3段階で評価した。評価結果を下記表4に示す。下記表4中、○は色相が 最良;△は良好であったことを示し、×は色相が不良であったことを示す。光堅牢性につ いては、記録した直後の画像濃度Ciを測定した後、ウェザーメーター(アトラスC.1 65)を用いて、画像にキセノン光(8万5千ルクス)を5日間照射した後、再び画像濃 度Cfを測定し、キセノン光照射前後の画像濃度の差から色素残存率((Ci-Cf) /Ci| ×100%) を算出し、評価した。画像濃度は反射濃度計 (X-Rite310 TR)を用いて測定した。評価結果を下記表4に示す。下記表4中、色素残存率が90% より大の場合を○、90~80%の場合を△、80%未満の場合を×として示した。

[0086]

〇HP画像の透明性については下記方法にて評価した。日立製作所製「330型自記分 光光度計」によりトナーが担持されていないOHP用シートをリファレンスとして画像の 可視分光透過率を測定し、650nmでの分光透過率を求め、OHP画像の透明性の尺度 とした。分光透過率が80%より大を○、70~80%を△、70%未満を×とした。以 上の、結果を表4に示す。

[0087] 【表4】

表 4

表 4	名字录号 台相 光堅牢性 透明性			
1	色素番号	色相	九至午江_	227312
			0	0
本発明	5	+		1
比較例	C. I. Solvent.	Δ	\	
\	Yellow162	<u> </u>		_l

[0088]

表4から明らかなように、本発明のカラートナーを用いることにより忠実な色再現と高 いOHP品質を示すので、本発明のカラートナーはフルカラートナーとして使用するのに 適している。さらに耐光性が良好なので長期にわたって保存ができる画像を提供すること が可能である。

【実施例8】

[0089]

<熱転写色素供与材料の作成>

支持体として裏面に耐熱滑性処理が施された厚さ 6 μ mのポリエチレンテレフタレート フィルム(帝人製)を使用し、フィルムの表面上に下記組成の熱転写色素供与層用塗料組 成物をワイヤーバーコーティングにより乾燥時の厚みが 1. 5 μ mとなるように塗布形成 し、熱転写色素供与材料(5-1)を作成した。

熱転写色素供与層用塗料組成物:

10ミリモル 色素 5 ポリビニルブチラール樹脂 (電気化学製デンカブチラール5000-A) 3 g 40m l トルエン 40m l メチルエチルケトン

0.2m l ポリイソシアネート(武田薬品製 タケネートD110N)

次に上記色素5を表5に記載の比較色素に変えた以外は、上記と同様にして、本発明の 熱転写色素供与材料及び比較用熱転写色素供与材料(5-2)を作成した。

[0090]

(熱転写受像材料の作成) 支持体として厚み150μmの合成紙(王子油化製YUPO -FPG-150)を用い、表面に下記組成物をワイヤーバーコーティングにより乾燥時 の厚さが 8 μ mとなるように塗布して熱転写受像材料を作製した。乾燥は、ドライヤーで 仮乾燥後、温度100℃のオーブン中で30分間行った。

受像層用塗料組成物:

又像個用生作性がは、(本学公割がイロンー280)	22 g
ポリエステル樹脂(東洋紡製バイロン-280)	4 g
ポリイソシアネート(大日本インキ化学製KP-90)	0.5 g
アミノ変性シリコーンオイル (信越シリコーン製KF-857)	
メチルエチルケトン	85m l
メナルエテルグドン	85m l
トルエン	15m l
シクロヘキサノン	10111 1

[0091]

上記のようにして得られた熱転写色素供与材料(5-1)、(5-2)と熱転写受像材 料とを、熱転写色素供与層と受像層とが接するようにして重ね合わせ、熱転写色素供与材 料の支持体側からサーマルヘッドを使用し、サーマルヘッドの出力0.25W/ドット、 パルス巾0. 15~15ミリ秒、ドット密度6ドット/mmの条件で印字を行い、受像材料 の受像層にイエロー色の色素を像状に染着させた。得られた画像の最大発色濃度を表5に 示す。本発明の熱転写色素供与材料 (5-1) では、転写むらのない鮮明な画像記録が得 られた。次に、上記のようにして得られた記録済の各熱転写受像材料を5日間、Xeライ ト(17000ルクス)で照射し、色像の光安定性を調べた。ステータスA反射濃度1. 0を示す部分の照射後のステータスA反射濃度を測定し、照射前の反射濃度1.0に対す る残存率(百分率)でその安定度を評価した。結果を表5に記した。

100921 【表 5】

表 5			ale ED eta kil.	洪 丰
おた写名事供与材料	色 素	最大濃度	光堅牢性	備考
熱転写色素供与材料		1 0	90	本発明
5-1	5	1.0		11. ** 89
	比較染料d	1.8	5 2	比較用
1 5-2	1 2072	<u> </u>		

[0093]

【化18】

比較色素d

[0094]

上記のように本発明の色素は、比較用の染料と比較して光堅牢性にすぐれていた。又、 色相も鮮であった

【実施例9】

[0095]

カラーフィルターの製造方法については、シリコンウエハーに熱硬化性樹脂、キノンジ アジド化合物、架橋剤、色素及び溶剤を含むポジ型レジスト組成物をスピンコートし、加 熱により溶剤を蒸発させた後、マスクを通して露光を行い、キノンジアジド化合物を分解 させた。必要により、加熱後、現像してモザイクパターンを得た。露光は日立製作所(株) 製 i 線露光ステッパーHITACHI LD-5010-i(NA=0.40) により行った。又、現像液は住友 化学工業(株)製SOPD又はSOPD-Bを用いた。

<ポジ型レジスト組成物の調整>

m-クレゾール/p-クレゾール/ホルムアルデヒド(反応モル比=5/5/7.5) 混合物から得られたクレゾールノボラック樹脂(ポリスチレン換算質量平均分子量430 0) 3.4 質量部、下式

[0096]

【化19】

[0097]

で示されるフェノール化合物を用いて製造された o ーナフトキノンジアジドー 5 ースルホ ン酸エステル(平均2個の水酸基がエステル化されている)1.8質量部、ヘキサメトキ シメチロール化メラミン 0.8 質量部、乳酸エチル 20質量部及び表 6に示す本発明の色 素1質量部を混合してポジ型レジスト組成物を得た。

<カラーフィルターの調製>

得られたポジ型レジスト組成物をシリコンウエハーにスピンコートした後、溶剤を蒸発 させた。シリコンウエハーを露光後、100℃で加熱し、次いでアルカリ現像により露光 部を除去して 0.8μ mの解像度を有するポジ型着色パターンを得た。これを全面露光後 、150℃・15分加熱してイエローの補色系カラーフィルターを得た。

<比較例>

上記実施例で用いた本発明のイエロー色素に変えて、住友化学工業(株)製オレオゾー ルイエロー2G 1質量部を混合してポジ型レジスト組成物を得た。このポジ型レジスト 組成物をシリコンウエハーにスピンコートした後、溶剤を蒸発させた。シリコンウエハー

を露光後、アルカリ現像して 1 μ mの解像度を有するポジ型着色パターンを得た。これを 全面露光後、150℃・10分加熱してイエローカラーフィルターを得た。

<評価>

得られたイエローカラーフィルターの透過スペクトルを測定し、色再現上重要なスペク トルの短波側、長波側の切れを相対評価した。○は良好、△は何とか許容できるレベル、 ×は許容できないレベルを表す。また、ウェザーメーター(アトラスC. I65)を用い て、キセノン光 (850001x) を7日間照射し、キセノン照射前後の画像濃度を測定 し、色素残存率として評価した。

[0098] 【表6】

来ら

表 6			
	色素No.	吸収特性	光堅牢性
	5	0	96%
本発明	オレオソ* ールイエロー2G	Δ	59%
比較例	1017 -101 IN ZU		

[0099]

比較例と比べ本発明の色素はスペクトルの短波側、長波側の切れが急峻であり、色再現 性に優れることがわかる。また、比較化合物に対し光堅牢性が優れている事が分かった。

【書類名】要約書

【要約】

良好な色相を有し、各種使用条件、環境条件下に於いて堅牢性の高い画像を形 【課題】 成可能な、特にインク用に好適な色素を提供する。

下記一般式(1)で表される色素。 【解決手段】

【化1】

一般式(1)

(式中、 R_1 および R_2 は一価の基を示し、Zは窒素原子又は水素原子もしくは一価の基が 結合した炭素原子を示し、Mは水素原子又はカチオンを示す。但し、分子中に2個のアゾ 基を含む。)

【選択図】 なし

特願2004-305665

認定・付加情報

特許出願の番号

特願2004-305665

受付番号

50401790245

書類名

特許願

担当官

第六担当上席

0095

作成日

平成16年10月25日

<認定情報・付加情報>

【特許出願人】

【識別番号】

000005201

【住所又は居所】

神奈川県南足柄市中沼210番地

【氏名又は名称】

富士写真フイルム株式会社

【代理人】

申請人

【識別番号】

100105647

【住所又は居所】

東京都港区赤坂一丁目12番32号 アーク森ビ

ル13階 栄光特許事務所

【氏名又は名称】

小栗 昌平

【選任した代理人】

【識別番号】

100105474

【住所又は居所】

東京都港区赤坂1丁目12番32号 アーク森ビ

ル13階 栄光特許事務所

【氏名又は名称】

本多 弘徳

【選任した代理人】

【識別番号】

100108589

【住所又は居所】

東京都港区赤坂1丁目12番32号 アーク森ビ

ル13階 栄光特許事務所

【氏名又は名称】

市川 利光

【選任した代理人】

【識別番号】

100115107

【住所又は居所】

東京都港区赤坂1丁目12番32号 アーク森ビ

ル13階 栄光特許事務所

【氏名又は名称】

高松 猛

【選任した代理人】

【識別番号】

100090343

【住所又は居所】

東京都港区赤坂1丁目12番32号 アーク森ビ

ル13階 栄光特許事務所

【氏名又は名称】

濱田 百合子

出証特2005-3020577

ページ: 1/E

特願2004-305665

出願人履歴情報

識別番号

[000005201]

1. 変更年月日 [変更理由] 住 所 氏 名 1990年 8月14日 新規登録 神奈川県南足柄市中沼210番地 富士写真フイルム株式会社