Investigação Operacional Gestão de projetos

15 de maio de 2023

Construção de um edifício

Actividade	Descrição	Precedências imediatas	Duração (semanas)
A	Escavações		2
В	Fundações	Α	4
C	Estrutura	В	8
D	Cobertura	С	1
E	Paredes Exteriores	В	2
F	Paredes Interiores	В	3
G	Infaestruturas	D, E, F	4
Н	Revestimentos Int.	G	2
1	Revestimentos Ext.	G	3
J	Instalar Vãos Int.	Н	1
K	Instalar Vãos Ext.	1	2
L	Inst. Equip. Fixo	Н	2
M	Testar Infraestruturas	G	1

Projeto: conjunto de actividades;

- Projeto: conjunto de actividades;
- Actividades

- Projeto: conjunto de actividades;
- Actividades
 - duração;

- Projeto: conjunto de actividades;
- Actividades
 - duração;
 - precedências imediatas;

- Projeto: conjunto de actividades;
- Actividades
 - duração;
 - precedências imediatas;
- Representação em Rede (AOA Actividades nos arcos)

- Projeto: conjunto de actividades;
- Actividades
 - duração;
 - precedências imediatas;
- Representação em Rede (AOA Actividades nos arcos)

Arcos: actividades;

- Projeto: conjunto de actividades;
- Actividades
 - duração;
 - precedências imediatas;
- Representação em Rede (AOA Actividades nos arcos)

- Arcos: actividades;
- Nós: início/conclusão das actividades que divergem/convergem nos nós

1. O **nó** $\bf 1$ representa o início do projeto. Do nó 1 divergem os arcos que representam atividades sem precedências.

1. O **nó** 1 representa o início do projeto. Do nó 1 divergem os arcos que representam atividades sem precedências.

2. O **nó final** *f* representa a conclusão do projeto. No nó *f* convergem os arcos que representam atividades sem sucessores.

2. O **nó final** *f* representa a conclusão do projeto. No nó *f* convergem os arcos que representam atividades sem sucessores.

3. Os nós são numerados de forma que, em qualquer arco (i,j), tem-se i < j.

3. Os nós são numerados de forma que, em qualquer arco (i,j), tem-se i < j.

4. A reunião dos arcos dos caminhos $1 \to i$ representam o conjunto das atividades que precedem as atividades que divergem de i

4. A reunião dos arcos dos caminhos $1 \to i$ representam o conjunto das atividades que precedem as atividades que divergem de i

5. Cada atividade é representada por um único arco.

5. Cada atividade é representada por um único arco.

6. Não há mais do que arco a ligar um par de nós

6. Não há mais do que arco a ligar um par de nós

As regras 5 e 6 podem forçar a utilização de actividades **fictícias**: actividades com **duração zero**.

- ► As regras 5 e 6 podem forçar a utilização de actividades **fictícias**: actividades com **duração zero**.
- ► Exemplo: as atividades A e B não têm precedentes e precedem C.

- ► As regras 5 e 6 podem forçar a utilização de actividades **fictícias**: actividades com **duração zero**.
- Exemplo: as atividades A e B não têm precedentes e precedem C.

- ► As regras 5 e 6 podem forçar a utilização de actividades **fictícias**: actividades com **duração zero**.
- Exemplo: as atividades A e B não têm precedentes e precedem C.

- ► As regras 5 e 6 podem forçar a utilização de actividades **fictícias**: actividades com **duração zero**.
- Exemplo: as atividades A e B não têm precedentes e precedem C.

Actividade	Precedências imediatas	Duração (dias)
А		5
В		7
С	A, B	3
D	Α	10
E	С	9
F	С	6
G	D, E	8

Actividade	Precedências imediatas	Duração (dias)
Α		5
В		7
С	A, B	3
D	A	10
E	С	9
F	С	6
G	D, E	8

Actividade	Precedências imediatas	Duração (dias)
А		1
В		1
C		11
D	A, B	2
E	B, C	1

Actividade	Precedências imediatas	Duração (dias)
А		1
В		1
C		11
D	A, B	2
Ε	B, C	1

Actividade	Precedências imediatas	Duração (dias)
А		1
В		1
С		11
D	A, B	2
Е	B, C	1

Instance mais cedo (imc)

Instance mais cedo (imc)

```
imc(1)=0;
```

Instance mais cedo (imc)

```
imc(1)=0;
para j = 2, 3, ..., f
```

Instance mais cedo (imc)

```
\begin{split} & \operatorname{imc}(1) {=} 0; \\ & \operatorname{para} \ j = 2, 3, \dots, f \\ & \operatorname{imc}(j) {=} \ \operatorname{max}\{\operatorname{imc}(i) + \operatorname{dura} \tilde{\operatorname{cao}}(i,j), \ \operatorname{para} \ \operatorname{todo} \ \operatorname{o} \ \operatorname{arco} \ (i,j)\} \end{split}
```

Instance mais cedo (imc)

```
\begin{split} & \operatorname{imc}(1) {=} 0; \\ & \operatorname{para} \ j = 2, 3, \dots, f \\ & \operatorname{imc}(j) {=} \ \operatorname{max}\{\operatorname{imc}(i) + \operatorname{dura} \zeta \tilde{\operatorname{ao}}(i,j), \ \operatorname{para} \ \operatorname{todo} \ \operatorname{o} \ \operatorname{arco} \ (i,j)\} \end{split}
```


Instance mais cedo (imc)

instante mais cedo no nó i – instante mais cedo que o acontecimento representado por i pode ocorrer.

```
\begin{split} & \operatorname{imc}(1) {=} 0; \\ & \operatorname{para} \ j = 2, 3, \dots, f \\ & \operatorname{imc}(j) {=} \ \operatorname{max}\{\operatorname{imc}(i) + \operatorname{dura} \tilde{\operatorname{qao}}(i,j), \ \operatorname{para} \ \operatorname{todo} \ \operatorname{o} \ \operatorname{arco} \ (i,j)\} \end{split}
```


Instance mais tarde (imt)

Instance mais tarde (imt)

$$imt(f)=imc(f);$$

Instance mais tarde (imt)

$$imt(f)=imc(f);$$

para $i = f - 1, f - 2, ..., 1$

Instance mais tarde (imt)

```
\begin{split} & \operatorname{imt}(f) {=} \operatorname{imc}(f); \\ & \operatorname{para} \ i = f-1, f-2, \dots, 1 \\ & \operatorname{imt}(i) {=} \ \operatorname{min}\{\operatorname{imt}(j) - \operatorname{dura}\tilde{\operatorname{qao}}(i,j), \ \operatorname{para} \ \operatorname{todo} \ \operatorname{o} \ \operatorname{arco} \ (i,j)\} \end{split}
```


Instance mais tarde (imt)

```
\begin{split} & \operatorname{imt}(f) {=} \operatorname{imc}(f); \\ & \operatorname{para} \ i = f-1, f-2, \dots, 1 \\ & \operatorname{imt}(i) {=} \ \operatorname{min}\{\operatorname{imt}(j) - \operatorname{dura}\tilde{\operatorname{qao}}(i,j), \ \operatorname{para} \ \operatorname{todo} \ \operatorname{o} \ \operatorname{arco} \ (i,j)\} \end{split}
```


Folga total no arco (i, j) (FT)

atraso máximo do início da atividade representada por (i,j) sem alterar a duração do projeto.

Folga total no arco (i, j) (FT)

atraso máximo do início da atividade representada por (i,j) sem alterar a duração do projeto.

► FT(i,j) = imt(j) - imc(i) - duração(i,j);

Folga total no arco (i,j) (FT)

atraso máximo do início da atividade representada por (i,j) sem alterar a duração do projeto.

- FT(i,j) = imt(j) imc(i) duração(i,j);
- Uma atividade é critica se tem folga total igual a 0;

Folga total no arco (i,j) (FT)

atraso máximo do início da atividade representada por (i,j) sem alterar a duração do projeto.

- ► FT(i,j) = imt(j) imc(i) duração(i,j);
- Uma atividade é critica se tem folga total igual a 0;
- ▶ Um caminho $1 \mapsto f$ é crítico se todos os arcos são críticos.

Exemplo

Determinar imc, imt, FT, caminho crítico e a duração total do projeto.

Actividade	Descrição	Precedências imediatas	Duração (semanas)
A	Escavações		2
В	Fundações	Α	4
С	Estrutura	В	8
D	Cobertura	С	1
E	Paredes Exteriores	В	2
F	Paredes Interiores	В	3
G	Infaestruturas	D, E, F	4
Н	Revestimentos Int.	G	2
I	Revestimentos Ext.	G	3
J	Instalar Vãos Int.	Н	1
K	Instalar Vãos Ext.	I	2
L	Inst. Equip. Fixo	Н	2
М	Testar Infraestruturas	G	1

Exemplo

Determinar imc, imt, FT, caminho crítico e a duração total do projeto.

Actividade	Precedências	Duração(semanas)
A		2
В	Α	4
C	В	10
D	С	6
E	С	7
F	С	4
G	D	7
Н	F	5
I	E,H	8
J	1	4
K	I	5
L	J,K	6
M	F,G	9
N	М	2

Exemplo-rede

Gestão de recursos: projeto

Atividade	Precedência	Duração (u.t.)	Recursos necessários
А		8	10
В	A, C	26	6
С		10	8
D	C	16	10
E	C	6	14
F		16	8
G	E,F	18	10

Gestão de recursos: rede

Diagrama de Gantt

é um gráfico de barras horizontal;

- é um gráfico de barras horizontal;
- as atividades são dispostas no eixo vertical;

- é um gráfico de barras horizontal;
- as atividades são dispostas no eixo vertical;
- o eixo horizontal marca o tempo;

- é um gráfico de barras horizontal;
- as atividades são dispostas no eixo vertical;
- o eixo horizontal marca o tempo;
- as atividades críticas são agendadas no momento mais cedo;

- é um gráfico de barras horizontal;
- as atividades são dispostas no eixo vertical;
- o eixo horizontal marca o tempo;
- as atividades críticas são agendadas no momento mais cedo;
- a posição destas não pode ser mudada;

- é um gráfico de barras horizontal;
- as atividades são dispostas no eixo vertical;
- o eixo horizontal marca o tempo;
- as atividades críticas são agendadas no momento mais cedo;
- a posição destas não pode ser mudada;
- as não críticas tem uma folga no agendamento.

Agendamento

Agendamento

Gestão de recursos

Agendamento

Gestão de recursos

Agendamento

Agendamento

Atrasar início da atividade D.

Agendamento

Atrasar início da atividade D.

Gestão de recursos

Objetivo

Minimizar o número máximo de recursos em utilização.

Gestão de recursos

Objetivo

Minimizar o número máximo de recursos em utilização.

Variáveis de decisão x_j - instante que ocorre o acontecimento (nó) j

Variáveis de decisão

 x_j - instante que ocorre o acontecimento (nó) j

Formulação

min
$$x_f$$

s. a $x_1 = 0$
 $x_j \ge x_i + d_{ij}$, para todo o arco (i,j) ,

em que d_{ij} é a duração do arco (i,j).

Exemplo

Actividade	Precedências imediatas	Duração (semanas)
A		6
В		9
C	A, B	8
D	A, B	7
Е	D	10
F	C, E	12

 $min x_6$

min
$$x_6$$

s. a $x_1 = 0$,

$$\begin{array}{ll} \text{min} & x_6 \\ \text{s. a} & x_1 = 0, \\ & x_2 \geq x_1 + 9, \end{array}$$

min
$$x_6$$

s. a $x_1 = 0$,
 $x_2 \ge x_1 + 9$,
 $x_3 \ge x_1 + 6$, $x_3 \ge x_2$,

min
$$x_6$$

s. a $x_1 = 0$,
 $x_2 \ge x_1 + 9$,
 $x_3 \ge x_1 + 6$, $x_3 \ge x_2$,
 $x_4 \ge x_3 + 7$,

$$\begin{array}{ll} \min & x_6 \\ \text{s. a} & x_1 = 0, \\ & x_2 \geq x_1 + 9, \\ & x_3 \geq x_1 + 6, \quad x_3 \geq x_2, \\ & x_4 \geq x_3 + 7, \\ & x_5 \geq x_3 + 8, \quad x_5 \geq x_4 + 10, \end{array}$$

min
$$x_6$$

s. a $x_1 = 0$,
 $x_2 \ge x_1 + 9$,
 $x_3 \ge x_1 + 6$, $x_3 \ge x_2$,
 $x_4 \ge x_3 + 7$,
 $x_5 \ge x_3 + 8$, $x_5 \ge x_4 + 10$,
 $x_6 \ge x_5 + 12$.

Redução da duração do projeto vs Custo

Problema

Determinar as durações das atividades que permitem concluir o projeto em ${\cal T}$ unidades de tempo, com custo total mínimo.

- $ightharpoonup c_{ij}$ custo unitário de redução da atividade (i,j);
- ▶ d_{ij} duração da atividade (i, j);
- $ightharpoonup r_{ij}$ na duração da atividade (i,j);
- $ightharpoonup r_{ij} \geq r$;
- $ightharpoonup r_{ij} \leq R$;

Redução da duração do projeto vs Custo

Problema

Determinar as durações das atividades que permitem concluir o projeto em ${\cal T}$ unidades de tempo, com custo total mínimo.

Formulação

$$\begin{aligned} & \min \quad \sum c_{ij}r_{ij} \\ & \text{s. a} \quad r_{ij} \geq r, \\ & \quad r_{ij} \leq R, \\ & \quad x_{j} \geq x_{i} + (d_{ij} - r_{ij}), \\ & \quad x_{1} = 0, \\ & \quad x_{f} \leq T. \end{aligned}$$

Reduzir a duração do projeto para 25 dias

A duração de cada atividade pode ser reduzida até 5 dias.

Tabela: Custo de reduzir/dia:

Α	В	С	D	Е	F
10	20	3	30	40	50

Modelo em programação linear

a- número de dias de redução da atividade A; b- número de dias de redução da atividade B; c,d,e,f- número de dias de redução das atividades C,D,Ee F respetivamente;

min
$$10a + 20b + 3c + 7d + 40e + 50f$$

s. a $a \le 5$, $b \le 5$, $c \le 5$, $d \le 5$, $e \le 5$, $f \le 5$
 $x_1 = 0$, $x_6 \le 25$
 $x_2 \ge x_1 + (9 - b)$,
 $x_3 \ge x_1 + (6 - a)$, $x_3 \ge x_2$,
 $x_3 \ge x_2$,
 $x_4 \ge x_3 + (7 - d)$,
 $x_5 \ge x_3 + (8 - c)$, $x_5 \ge x_4 + (10 - e)$
 $x_6 \ge x_5 + (12 - f)$.

Atividade	Precedências imediatas	Duração (dias)	Custo (Euros) de redução/dia	Redução Máxima
А		5	30	2
В	Α	8	15	3
С	В	10	20	1
D	В	5	40	2
E	В	4	20	2
F	Е	6	30	3
G	C, F	3	40	1

- 1. Desenhe a rede do projeto
- 2. Calcule a folga total de cada atividade e identifique o caminho crítico
- 3. Formule em programação linear um modelo que permita reduzir a duração do projeto para 20 dias, minimizando o custo total de reduzir a duração das atividades.

A duração de cada atividade é uma variável aleatória.

A duração de cada atividade é uma variável aleatória.

Três estimativas da duração:

m - mais provável (moda da distr. de prob.)

A duração de cada atividade é uma variável aleatória.

Três estimativas da duração:

- m mais provável (moda da distr. de prob.)
- a otimista (tudo corre o melhor possível)

A duração de cada atividade é uma variável aleatória.

Três estimativas da duração:

- m mais provável (moda da distr. de prob.)
- a otimista (tudo corre o melhor possível)
- b pessimista (tudo corre mal... mas corre)

Hipótese 1

 T_{ij} , a duração da atividade (i,j), é variável aleatória com distribuição de probabilidade beta.

Hipótese 1

 T_{ij} , a duração da atividade (i,j), é variável aleatória com distribuição de probabilidade beta.

Hipótese 1

 T_{ij} , a duração da atividade (i,j), é variável aleatória com distribuição de probabilidade beta.

Hipótese 2

As durações das atividades são variáveis aleatórias independentes.

Hipótese 2

As durações das atividades são variáveis aleatórias independentes.

Seja P um caminho qualquer na rede do projeto.

Duração média de P

$$\sum_{(i,j)\in P} E(T_{ij})$$

Hipótese 2

As durações das atividades são variáveis aleatórias independentes.

Seja P um caminho qualquer na rede do projeto.

Duração média de P

$$\sum_{(i,j)\in P} E(T_{ij})$$

Variância da duração de P

$$\sum_{(i,j)\in P} var(T_{ij})$$

► T-variável aleatória duração do projeto;

- ▶ T-variável aleatória duração do projeto;
- ▶ $T = \max T_P$, em que P é um caminho qualquer $1 \mapsto f$.

- ▶ T-variável aleatória duração do projeto;
- ▶ $T = \max T_P$, em que P é um caminho qualquer $1 \mapsto f$.

- T-variável aleatória duração do projeto;
- ▶ $T = \max T_P$, em que P é um caminho qualquer $1 \mapsto f$.

Hipótese 3

 $T=T_{CC}$, em que CC é um caminho crítico relativamente aos valores médios das durações das atividades

- T-variável aleatória duração do projeto;
- ▶ $T = \max T_P$, em que P é um caminho qualquer $1 \mapsto f$.

Hipótese 3

 $T=T_{CC}$, em que CC é um caminho crítico relativamente aos valores médios das durações das atividades

Hipótese 4

T tem distribuição normal $N(\mu, \sigma)$,

$$\mu = \sum_{(i,j)\in CC} E(T_{ij})$$

$$\sigma^2 = \sum_{(i,j)\in CC} var(T_{ij})$$

Qual a probabilidade do projeto terminar antes de 50 dias?

Assuma que as durações indicadas são valores os médios de duração e também respectivas variâncias.

atividade	а	b	m
(1, 2)	4	8	6
(1,3)	2	8	4
(2,4)	1	7	3
(3,4)	6	12	9
(3,5)	5	15	10
(3,6)	7	18	12
(4,7)	5	12	9
(5,7)	1	3	2
(6,8)	2	6	3
(7,9)	10	20	15
(8,9)	6	11	9

- 1. Determine o caminho crítico (relativamente a m).
- Estabeleça uma formulação linear para obter a duração (relativamente a m) do caminho crítico
- 3. Qual a probabilidade do projeto estar concluído em não mais do que 40 dias?

Considere o projeto com as seguintes características:

Atividade	Precedências Imediatas	Duração média (dias)	Desvio padrão
А	С	8	1
В	D, F, G	12	3
C	K	9	1
D	E, J	12	2
E		10	3
F	E	15	4
G		18	4
Н	G	15	3
I	В, С, Н	13	2
J		9	1
K	E	12	2

- 1. Desenhe a rede do projeto.
- 2. Calcule a duração média mínima e o correspondente caminho crítico.

Considere o projeto com as seguintes características:

Atividade	Precedências Imediatas	Duração média (dias)	Desvio padrão
A	С	8	1
В	D, F, G	12	3
C	K	9	1
D	E, J	12	2
Е		10	3
F	Е	15	4
G		18	4
Н	G	15	3
I	В, С, Н	13	2
J		9	1
K	E	12	2

- 4. Calcule a probabilidade da duração do projeto: a) ser menor ou igual 45 dias; b) ser maior ou igual a 55 dias.
- 5. Com probabilidade 99%, qual é a duração mínima do projeto?