

Scaling Networks

Cisco Networking Academy® Mind Wide Open™

- 6.0 Introduction
- 6.1 Multiarea OSPF
- 6.2 Configuring Multiarea OSPF
- 6.3 Summary

Presentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Chapter 6: Objectives

After completing this chapter, students will be able to:

- Explain why multiarea OSPF is used.
- Explain how multiarea OSPF uses link-state advertisements in order to maintain routing tables.
- Explain how OSPF established neighbor adjacencies in a multiarea OSPF implementation.
- Configure multiarea OSPFv2 in a routed network.
- Configure multiarea route summarization in a routed network.
- Verify multiarea OSPFv2 operations.

6.1 Multiarea OSPF Operation

Cisco Networking Academy® Mind Wide Open®

Why Multiarea OSPF? Single-Area OSPF

Single-area OSPF is useful in smaller networks. If an area becomes too big, the following issues must be addressed:

- Large routing table (no summarization by default)
- Large link-state database (LSDB)
- Frequent SPF algorithm calculations

Why Multiarea OSPF? Multiarea OSPF

Multiarea OSPF requires a hierarchical network design and the main area is called the backbone area, or area 0, and all other areas must connect to the backbone area.

OSPF Two-Layer Area Hierarchy

Multiarea OSPF is implemented in a two-layer area hierarchy:

- Backbone (transit) area
 - Area whose primary function is the fast and efficient movement of IP packets.
 - Interconnects with other OSPF area types.
 - Called OSPF area 0, to which all other areas directly connect.
- Regular (nonbackbone) area
 - Connects users and resources.
 - A regular area does not allow traffic from another area to use its links to reach other areas.

Types of OSPF Routers

Types of OSPF Routers (cont.)

Types of OSPF Routers (cont.)

Types of OSPF Routers (cont.)

LSA Type	Description			
1	Router LSA			
2	Network LSA			
3 and 4	Summary LSAs			
5	AS External LSA			
6	Multicast OSPF LSA			
7	Defined for NSSAs			
8	External Attributes LSA for Border Gateway Protocol (BGP)			
9, 10, or 11	Opaque LSAs			

Most common and covered in this course - 1 thru 5

Presentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Multiarea OSPF LSA Operation OSPF LSA Type 1

OSPF LSA Operation OSPF LSA Type 2

Multiarea OSPF LSA Operation OSPF LSA Type 3

Multiarea OSPF LSA Operation OSPF LSA Type 4

OSPF LSA Type 5

OSPF Routing Tables and Route Types

OSPF Routing Table Entries

- O Router (type 1) and network (type 2) LSAs describe the details within an area (the route is intra-area).
- O IA Summary LSAs appear in the routing table as IA (interarea routes)
- O E1 or OE 2 External LSAs external type 1 (E1) or external type 2 (E2) routes

Router and Network Routing Table Entries

```
R1# show ip route
Codes: L - local, C-connected, S-static, R-RIP, M-mobile, B-BGP
      D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
      N1 - OSFF NSSA external type 1, N2 - OSFF NSSA external type 2
      E1 - OSPF external type 1, E2 - OSPF external type 2
      i - IS-IS, su-IS-IS summary, L1-IS-IS level-1, L2-IS-IS level-2
      ia - IS-IS inter area, *-candidate default, U-per-user static route
      o - ODR, P-periodic downloaded static route, H-NHRP, 1-LISP
      + - replicated route, % - next hop override
Gateway of last resort is 192.168.10.2 to network 0.0.0.0
0*E2 0.0.0.0/0 [110/1] via 192.168.10.2, 00:00:19, Serial0/0/0
     10.0.0.0/8 is variably subnetted, 5 subnets, 2 masks
      10.1.1.0/24 is directly connected, GigabitEthernet0/0
      10.1.1.1/32 is directly connected, GigabitEthernet0/0
     10.1.2.0/24 is directly connected, GigabitEthernet0/1
      10.1.2.1/32 is directly connected, GigabitEthernet0/1
      10.2.1.0/24 [110/648] via 192.168.10.2, 00:04:34, Serial0/0/0
O IA 192.168.1.0/24 [110/1295] via 192.168.10.2, 00:01:48, Serial0/0/0
O IA 192.168.2.0/24 [110/1295] via 192.168.10.2, 00:01:48, Serial0/0/0
     192.168.10.0/24 is variably subnetted, 3 subnets, 2 masks
      192.168.10.0/30 is directly connected, Serial0/0/0
      192.168.10.1/32 is directly connected, Serial0/0/0
      192.168.10.4/30 [110/1294] via 192.168.10.2, 00:01:55, Serial0/0/0
R1#
```

OSPF Routing Tables and Route Types

OSPF Routing Table Entries (cont.)

- O Router (type 1) and network (type 2) LSAs describe the details within an area (the route is intra-area)
- O IA Summary LSAs appear in the routing table as IA (interarea routes)
- O E1 or OE 2 External LSAs external type 1 (E1) or external type 2 (E2) routes

OSPFv3 Routing Table Entries R1# show ipv6 route IPv6 Routing Table - default - 9 entries Codes:C - Connected, L - Local, S - Static, U-Per-user Static route B - BGP, R - RIP, H - NHRP, I1 - ISIS L1 I2 - ISIS L2, IA - ISIS interarea, IS - ISIS summary, D - EIGRP EX - EIGRF external, ND-ND Default, NDp-ND Prefix, DCE-Destination NDr - Redirect, O-OSPF Intra, OI-OSPF Inter, OE1-OSPF ext 1 OE2 - OSFF ext 2, ON1 - OSFF NSSA ext 1, ON2 - OSFF NSSA ext 2 OE2 ::/0 [110/1], tag 10 via FE80::2, Serial0/0/0 2001:DB8:CAFE:1::/64 [0/0] via GigabitEthernet0/0, directly connected 2001:DB8:CAFE:1::1/128 [0/0] via GigabitEthernet0/0, receive 2001:DB8:CAFE:2::/64 [110/648] via FE80::2, Serial0/0/0 2001:DB8:CAFE:3::/64 [110/1295] via FE80::2, Serial0/0/0 2001:DB8:CAFE:A001::/64 [0/0] via Serial0/0/0, directly connected 2001:DB8:CAFE:A001::1/128 [0/0] via Serial0/0/0, receive 2001:DB8:CAFE:A002::/64 [110/1294] via FE80::2, Serial0/0/0 FF00::/8 [0/0] via NullO, receive R1#

OSPF Routing Tables and Route Types

OSPF Route Calculation

- 1. All routers calculate the best paths to destinations within their area (intraarea) and add these entries to the routing table.
- 2. All routers calculate the best paths to the other areas within the internetwork (interarea) or type 3 and type 4 LSAs.
- 3. All routers calculate the best paths to the external autonomous system (type 5) destinations. These are noted with either an O E1 or an O E2 route designator.

Steps to OSPF Convergence

- Calculate intra-area OSPF routes.
- Calculate best path to interarea OSPF routes.
- Calculate best path route to external non-OSPF networks.

6.2 Configuring Multiarea OSPF

Cisco Networking Academy® Mind Wide Open®

Implementation Plan Steps

- 1. Gather the network requirements and parameters.
- 2. Define the OSPF parameters.
- Configure OSPF.
- Verify OSPF.

Configuring Multiarea OSPF

Configuring Multiarea OSPF

Configuring Multiarea OSPF

Configuring Multiarea OSPFv3

OSPF Route Summarization

- R1 forwards a summary LSA to the core router C1.
- C1, in turn, forwards the summary LSA to R2 and R3.
- R2 and R3 then forward it to their respective internal routers.

Interarea and External Route Summarization

Occurs on ABRs and applies to routes from within each area

Interarea and External Route Summarization (cont.)

Specific to external routes that are injected into OSPF via route redistribution; ASBRs summarize external routes

Interarea Route Summarization

Interarea Route Summarization (cont.)

Verify the R1 Routing Table Before Summarization

Verify the R3 Routing Table Before Summarization

Calculating the Summary Route

Presentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Configuring Interarea Route Summarization

```
R1 (config) # router ospf 10
                  R1 (config-router) # area 1 range 10.1.0.0 255.255.252.0
                  R1 (config-router) #
      R1
R1# show ip route ospf | begin Gateway
Gateway of last resort is not set
     10.0.0.0/8 is variably subnetted, 6 subnets, 3 masks
        10.1.0.0/22 is a summary, 00:00:09, Null0
        10.2.1.0/24 [110/648] via 192.168.10.2, 00:00:09,
serial0/0/0
O IA 192.168.1.0/24 [110/1295] via 192.168.10.2, 00:00:09,
                                                                                      R3
serial0/0/0
O IA 192.168.2.0/24 [110/1295] via 192.168.10.2, 00:0
serial0/0/0
                                                         R3# show ip route ospf | begin Gateway
     192.168.10.0/24 is variably subnetted, 3 subnets
                                                         Gateway of last resort is not set
masks
        192.168.10.4/30 [110/1294] via 192.168.10.2,
                                                               10.0.0.0/8 is variably subnetted, 2 subnets, 2 masks
00:00:09, Serial0/0/0
                                                                 10.1.0.0/22 [110/1295] via 192.168.10.5, 00:00:06,
                                                         OIA
R1#
                                                         Serial0/0/1
                                                                 10.2.1.0/24 [110/648] via 192.168.10.5, 00:29:23,
                                                         Serial0/0/1
                                                               192.168.10.0/24 is variably subnetted, 3 subnets, 2
                                                         masks
                                                                  192.168.10.0/30 [110/1294] via 192.168.10.5,
                                                         00:29:23, Serial0/0/1
                                                         R3#
```

_____3

Verifying Multiarea OSPF

The same verification commands are used to verify single-area OSPF and can be used to verify multiarea OSPF:

- show ip ospf neighbor
- show ip ospf
- show ip ospf interface

Commands specific to multiarea information include:

- show ip protocols
- show ip ospf interface brief
- show ip route ospf
- show ip ospf database

Note: For OSPFv3, substitute **ip** with **ipv6**.

Verifying General Multiarea OSPF Settings

```
R1# show ip protocols
*** IP Routing is NSF aware ***
Routing Protocol is "ospf 10"
  Outgoing update filter list for all interfaces is not set
 Incoming update filter list for all interfaces is not set
  Router ID 1.1.1.1
  It is an area border router
 Number of areas in this router is 2. 2 normal 0 stub 0 nssa
 Maximum path: 4
 Routing for Networks:
   10.1.1.1 0.0.0.0 area 1
   10.1.2.1 0.0.0.0 area 1
    192.168.10.1 0.0.0.0 area 0
 Routing Information Sources:
    Gateway
                    Distance
                                 Last Update
    3.3.3.3
                                 02:20:36
                        110
    2.2.2.2
                        110
                                 02:20:39
 Distance: (default is 110)
R1#
```

```
R1# show ip ospf interface brief
Interface PID
              Area IP Address/Mask Cost State Nbrs F/C
se0/0/0
         10
              0 192.168.10.1/30 64 P2P 1/1
         10
              1 10.1.2.1/24
Gi0/1
                                            0/0
Gi0/0
         10
                   10.1.1.1/24
                                            0/0
                                       DR
R1#
```

Verifying Multiarea OSPF Verify the OSPF Routes

```
R1# show ip route ospf | begin Gateway
Gateway of last resort is not set
     10.0.0.0/8 is variably subnetted, 5 subnets, 2 masks
      10.2.1.0/24 [110/648] via 192.168.10.2, 00:26:03,
                                                  Serial0/0/0
O IA 192.168.1.0/24 [110/1295] via 192.168.10.2, 00:26:03,
                                                  Serial0/0/0
O IA 192.168.2.0/24 [110/1295] via 192.168.10.2, 00:26:03,
                                                  Serial0/0/0
     192.168.10.0/24 is variably subnetted, 3 subnets, 2 masks
      192.168.10.4/30 [110/1294] via 192.168.10.2, 00:26:03,
                                                  serial0/0/0
R1#
```

Presentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Verifying the Multiarea OSPF LSDB

Verifying the OSPF LSDB on R1						
R1# show ip	-		D /1 1 1 1)	(Process ID 10)		
· ·	oser Router	MICII I	D (1.1.1.1)	(FIOCESS ID IV)		
			States (Area			
Link ID	ADV Router	Age	Seq#	Checksum Link count		
1.1.1.1						
2.2.2.2						
3.3.3.3						
Summary Net Link States (Area 0)						
Link ID						
10.1.1.0						
10.1.2.0						
192.168.1.0						
192.168.2.0	3.3.3.3	681	0x80000005	0x006957		
	Router	Link	States (Area	1)		
Link TD				Checksum Link count		
1.1.1.1	1.1.1.1	725	0x80000006	0x007D7C 2		
Summary Net Link States (Area 1)						
Link ID	ADV Router	Age	Seq#	Checksum		
10.2.1.0	1.1.1.1					
192.168.1.0	1.1.1.1	725	0x80000005	0x00B593		
192.168.2.0	1.1.1.1	725	0x80000005	0x00AA9D		
192.168.10.0	1.1.1.1	725	0x80000005	0x00B3D0		
192.168.10.4	1.1.1.1	725	0x80000005	0x000E32		
R1#						

Verifying Multiarea OSPFv3


```
R1# show ipv6 protocols

IPv6 Routing Protocol is "connected"

IPv6 Routing Protocol is "ND"

IPv6 Routing Protocol is "ospf 10"

Router ID 1.1.1.1

Area border router

Number of areas: 2 normal, 0 stub, 0 nssa

Interfaces (Area 0):

Serial0/0/0

Interfaces (Area 1):

GigabitEthernet0/0

Redistribution:

None

R1#
```

```
R1# show ipv6 ospf interface brief
Interface PID Area Intf ID Cost State Nbrs F/C
Se0/0/0 10 0 6 647 P2P 1/1
Gi0/0 10 1 3 1 DR 0/0
R1#
```

Verifying Multiarea OSPFv3 (cont.)

R1# show ipv6 route ospf

Verifying Multiarea OSPFv3 (cont.)


```
R1# show ipv6 ospf database
        OSPFv3 Router with ID (1.1.1.1) (Process ID 10)
                 Router Link States (Area 0)
                               Fragment ID Link count Bits
ADV Router
             Age
                    seq#
1.1.1.1
                   0x800000002 0
 2.2.2.2
            1484
                   0x800000002 0
                                                       None
 3.3.3.3
                   0x80000001 0
             Inter Area Prefix Link States (Area 0)
                                 Prefix
ADV Router
             Age
                     sea#
1.1.1.1
             1833
                     0x80000001 2001:DB8:CAFE:1::/64
 3.3.3.3
             1476
                     0x80000001 2001:DB8:CAFE:3::/64
             Link (Type-8) Link States (Area 0)
                                 Link ID
                                           Interface
ADV Router
             Age
                     sea#
1.1.1.1
                                           Se0/0/0
             1843
                     0x80000001 6
 2.2.2.2
             1619
                     0x80000001 6
                                           se0/0/0
             Intra Area Prefix Link States (Area 0)
```

Chapter 6: Summary

Multiarea OSPF Summary

- Better choice for larger networks than single-area.
- Solves the issues of large routing table, large LSDB, and frequent SPF algorithm calculations.
- Main area is called the backbone area, or area 0.
- Recalculating the database is kept within an area.
- Four different types of OSPF routers:
 - Internal router
 - Backbone router
 - ABR
 - ASBR
- A router simply becomes an ABR when it has two network statements in different areas.

resentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Chapter 6: Summary

Multiarea OSPF Summary (cont.)

- Link-state advertisements (LSAs) are the building blocks of OSPF.
 - Type 1 LSAs are referred to as the router link entries.
 - Type 2 LSAs are referred to as the network link entries and are flooded by a DR.
 - Type 3 LSAs are referred to as the summary link entries and are created and propagated by ABRs.
 - A type 4 summary LSA is generated by an ABR only when an ASBR exists within an area.
 - Type 5 external LSAs describe routes to networks outside the OSPF autonomous system, originated by the ASBR and are flooded to the entire autonomous system.
- SPF tree is used to determine the best paths.
- OSPF routes in an IPv4 routing table are identified using the following descriptors: O, O IA, O E1, or O E2.

Multiarea OSPF Summary (cont.)

The following example displays a multiarea OSPF configuration:

```
R1 (config) # router ospf 10
R1 (config-router) # router-id 1.1.1.1
R1 (config-router) # network 10.1.1.1 0.0.0.0 area 1
R1 (config-router) # network 10.1.2.1 0.0.0.0 area 1
R1 (config-router) # network 192.168.10.1 0.0.0.0 area 0
```

 Does not perform autosummarization, but can be manually configured using the summary-address address mask router configuration mode command

Presentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Multiarea OSPF Summary (cont.)

- The following commands are used to verify OSPF configurations:
 - show ip ospf neighbor
 - show ip ospf
 - show ip ospf interface
 - show ip protocols
 - show ip ospf interface brief
 - show ip route ospf
 - show ip ospf database

Cisco | Networking Academy® | Mind Wide Open™