Лабораторная работа №8

Модель конкуренции двух фирм

Парфенова Елизавета Евгеньевна

Содержание

1	Цель работы	5
2	Задание	6
3	Теоретическое введение	9
4	Выполнение лабораторной работы	12
5	Выводы	21
Список литературы		22

Список иллюстраций

4.1	График изменения обортных средств двух фиррм в первом случае	
	на Julia	14
4.2	График изменения обортных средств двух фиррм в первом случае	
	на OpenModelica	16
4.3	График изменения обортных средств двух фиррм во втором случае	
	на Julia	18
4.4	График изменения обортных средств двух фиррм во втором случае	
	на OnenModelica	20

Список таблиц

1 Цель работы

Изучить разные случаи модели конкуренции двух фирм и построить соотвествующие этим случаям графики изменения обортных средств в Julia и OpenModelica

2 Задание

Мой вариант - вариант №8.

Задача. Вариант №8

Случай 1. Рассмотрим две фирмы, производящие взаимозаменяемые товары одинакового качества и находящиеся в одной рыночной нише. Считаем, что в рамках нашей модели конкурентная борьба ведётся только рыночными методами. То есть, конкуренты могут влиять на противника путем изменения параметров своего производства: себестоимость, время цикла, но не могут прямо вмешиваться в ситуацию на рынке («назначать» цену или влиять на потребителей каким-либо иным способом.) Будем считать, что постоянные издержки пренебрежимо малы, и в модели учитывать не будем. В этом случае динамика изменения объемов продаж фирмы 1 и фирмы 2 описывается следующей системой уравнений:

$$\begin{split} \frac{dM}{d\theta} &= M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a_1}{c_1} M_1^2 \\ \frac{dM}{d\theta} &= \frac{c_2}{c_1} M_2 - \frac{b}{c_1} M_1 M_2 - \frac{a_2}{c_1} M_2^2 \end{split}$$

где

$$a_1 = \frac{p_{cr}}{\tau_1^2 \tilde{p}_1^2 N q}$$

$$a_2 = \frac{p_{cr}}{\tau_2^2 \tilde{p}_2^2 N q}$$

$$b = \frac{p_{cr}}{\tau_1^2 \tilde{p}_1^2 \tau_2^2 \tilde{p}_2^2 N q}$$

$$c_1 = \frac{p_{cr} - \tilde{p}_1}{\tau_1 \tilde{p}_1}$$

$$c_2 = \frac{p_{cr} - \tilde{p}_2}{\tau_2 \tilde{p}_2}$$

Также введена нормировка $t=c_1\theta$

Случай 2. Рассмотрим модель, когда, помимо экономического фактора влияния (изменение себестоимости, производственного цикла, использование кредита и т.п.), используются еще и социально-психологические факторы — формирование общественного предпочтения одного товара другому, не зависимо от их качества и цены. В этом случае взаимодействие двух фирм будет зависеть друг от друга, соответственно коэффициент перед $M_1 M_2$ будет отличаться. Пусть в рамках рассматриваемой модели динамика изменения объемов продаж фирмы 1 и фирмы 2 описывается следующей системой уравнений:

$$\begin{split} \frac{dM}{d\theta} &= M_1 - (\frac{b}{c_1} + 0.0017) M_1 M_2 - \frac{a_1}{c_1} M_1^2 \\ &\frac{dM}{d\theta} = \frac{c_2}{c_1} M_2 - \frac{b}{c_1} M_1 M_2 - \frac{a_2}{c_1} M_2^2 \end{split}$$

Для обоих случаев рассмотрим задачу со следующими начальными условиями и параметрами:

$$M_0^1 = 2.5, M_0^2 = 1.8$$

$$p_{cr} = 20, N = 23, q = 1$$

$$\tau_1 = 16, \tau_2 = 19$$

$$\widetilde{p_1} = 13, \widetilde{p_2} = 11$$

Задание 1. Постройте графики изменения оборотных средств фирмы 1 и фир-

мы 2 без учета постоянных издержек и с веденной нормировкой для случая 1.

2. Постройте графики изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденной нормировкой для случая 2.

3 Теоретическое введение

Для построения модели конкуренции хотя бы двух фирм необходимо рассмотреть модель одной фирмы. Вначале рассмотрим модель фирмы, производящей продукт долговременного пользования, когда цена его определяется балансом спроса и предложения. Примем, что этот продукт занимает определенную нишу рынка и конкуренты в ней отсутствуют. Обозначим:

- N число потребителей производимого продукта.
- S доходы потребителей данного продукта. Считаем, что доходы всех потребителей одинаковы. Это предположение справедливо, если речь идет об одной рыночной нише, т.е. производимый продукт ориентирован на определенный слой населения.
 - M оборотные средства предприятия
 - au длительность производственного цикла
 - p рыночная цена товара
- \tilde{p} себестоимость продукта, то есть переменные издержки на производство единицы продукции
 - δ доля оборотных средств, идущая на покрытие переменных издержек
- k постоянные издержки, которые не зависят от количества выпускаемой продукции
- Q(S/p) функция спроса, зависящая от отношения дохода S к цене p. Она равна количеству продукта, потребляемого одним потребителем в единицу времени.

Функцию спроса товаров долговременного использования часто представля-

ют в простейшей форме:

$$Q=q-k\frac{p}{S}=q(1-\frac{p}{p_{cr}})$$

где q – максимальная потребность одного человека в продукте в единицу времени. Эта функция падает с ростом цены и при $p=p_{cr}$ (критическая стоимость продукта) потребители отказываются от приобретения товара. Величина $p_{cr}=Sq/k$. Параметр k – мера эластичности функции спроса по цене. Таким образом, функция спроса является пороговой (то есть, Q(S/p)=0 при $p\geq p_{cr}$) и обладает свойствами насыщения.

Уравнения динамики оборотных средств можно записать в виде:

$$\frac{dM}{dt} = -\frac{M\delta}{\tau} + NQp - k = -\frac{M\delta}{\tau} + Nq(1 - \frac{p}{p_{cr}})p - k$$

Уравнение для рыночной цены p представим в виде:

$$\frac{dp}{dt} = \gamma(-\frac{M\delta}{\tau\tilde{p}} + Nq(1 - \frac{p}{p_{cr}}))$$

Первый член соответствует количеству поставляемого на рынок товара (то есть, предложению), а второй член – спросу. Параметр γ зависит от скорости оборота товаров на рынке. Как правило, время торгового оборота существенно меньше времени производственного цикла τ . При заданном М уравнение описывает быстрое стремление цены к равновесному значению цены, которое устойчиво.

В этом случае уравнение можно заменить алгебраическим соотношением

$$-\frac{M\delta}{\tau\tilde{p}}+Nq(1-\frac{p}{p_{cr}})=0$$

равновесное значение цены p равно

$$p = p_{cr}(1 - \frac{M\delta}{\tau \tilde{p} N q})$$

Тогда уравнения динамики оборотных средств приобретает вид

$$\frac{dM}{dt} = -\frac{M\delta}{\tau}(\frac{p}{p_{cr}}-1) - M^2(\frac{\delta}{\tau\tilde{p}})^2\frac{p_{cr}}{Nq} - k$$

Это уравнение имеет два стационарных решения, соответствующих условию dM/dt=0

$$\widetilde{M_{1,2}} = \frac{1}{2}a \pm \sqrt{\frac{a^2}{4} - b}$$

где

$$a = Nq(1 - \frac{\tilde{p}}{p_{cr}}\tilde{p}\frac{\tau}{\delta}), b = kNq\frac{(\tau\tilde{p})^2}{p_{cr}\delta^2}$$

Получается, что при больших постоянных издержках (в случае $a^2 < 4b$) стационарных состояний нет. Это означает, что в этих условиях фирма не может функционировать стабильно, то есть, терпит банкротство. Однако, как правило, постоянные затраты малы по сравнению с переменными (то есть, $b << a^2$) и играют роль, только в случае, когда оборотные средства малы.

При b << a стационарные значения M равны

$$\widetilde{M_{+}} = Nq\frac{\tau}{\delta}(1-\frac{\tilde{p}}{p_{cr}})\tilde{p}, \widetilde{M_{-}} = k\tilde{p}\frac{\tau}{\delta(p_{cr}-\tilde{p})}$$

Первое состояние \widetilde{M}_+ устойчиво и соответствует стабильному функционированию предприятия. Второе состояние \widetilde{M_{-}} неустойчиво, так, что при $M<\widetilde{M}_-$ оборотные средства падают (dM/dt<0), то есть, фирма идет к банкротству. По смыслу \widetilde{M}_- соответствует начальному капиталу, необходимому для входа в рынок.

В обсуждаемой модели параметр δ всюду входит в сочетании с τ . Это значит, что уменьшение доли оборотных средств, вкладываемых в производство, эквивалентно удлинению производственного цикла. Поэтому мы в дальнейшем положим: $\delta=1$, а параметр τ будем считать временем цикла. [1]

4 Выполнение лабораторной работы

Построение графиков. Случай 1

Для первого случая характерна следующая математичсекая модель:

$$\begin{split} \frac{dM}{d\theta} &= M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a_1}{c_1} M_1^2 \\ \frac{dM}{d\theta} &= \frac{c_2}{c_1} M_2 - \frac{b}{c_1} M_1 M_2 - \frac{a_2}{c_1} M_2^2 \end{split}$$

Для построения графика на основе этой математичсекой модели был написан следующий код на Julia:

Использованные библиотеки

using Plots
using DifferentialEquations

#Необходимые константы

$$M0_1 = 2.5$$

$$M0_2 = 1.8$$

$$p_c = 20.0$$

$$N = 23.0$$

$$q = 1.0$$

$$tau_1 = 16.0$$

```
tau_2 = 19.0
p_1 = 13.0
p_2 = 11.0
#Вычисление параметров
a_1 = p_c/(tau_1*tau_1*p_1*p_1*N*q)
a_2 = p_c/(tau_2*tau_2*p_2*p_2*N*q)
b = p_c/(tau_1*tau_1*p_1*p_1*tau_2*tau_2*p_2*p_2*N*q)
c_1 = (p_c-p_1)/(tau_1*p_1)
c_2 = (p_c-p_2)/(tau_2*p_2)
# Начальные условия
start = [M0_1, M0_2]
timee = (0.0, 30.0)
# Функция мат.модели
function one_fun(du, u, p, t)
   du[1] = u[1] - b/c_1*u[1]*u[2]-a_1/c_1*u[1]*u[1]
   du[2] = c_2/c_1*u[2] - b/c_1*u[1]*u[2]-a_2/c_1*u[2]*u[2]
end
# Задание проблемы и ее решение
equat = ODEProblem(one_fun, start, timee)
```

solv = solve(equat, dtmax=0.01)

```
M_1 = [u[1] \text{ for } u \text{ in solv.u}]

M_2 = [u[2] \text{ for } u \text{ in solv.u}]
```

Построение графиков и сохранение изображения

plot1 = plot(dpi = 600, legend =:bottomright, bg =:white, title="Изменение оборотных plot!(plot1, solv.t, M_1, label="Изменения объемов продаж 1 фирмы", color =:green) plot!(plot1, solv.t, M_2, label="Изменения объемов продаж 2 фирмы", color =:blue)

savefig(plot1, "lab08_1.png")

В результате работы кода получился такой график (рис. 4.1):

Рис. 4.1: График изменения обортных средств двух фиррм в первом случае на Iulia

Для построения графика в этом же случае в OpenModelica получилась такая модель:

model one_fun
parameter Real M0_1 = 2.5;

```
parameter Real M0_2 = 1.8;
Real p_c = 20.0;
Real N = 23.0;
Real q = 1.0;
Real tau_1 = 16.0;
Real tau_2 = 19.0;
Real p_1 = 13.0;
Real p_2 = 11.0;
Real a_1 = p_c/(tau_1*tau_1*p_1*p_1*N*q);
Real a_2 = p_c/(tau_2*tau_2*p_2*p_2*N*q);
Real b = p_c/(tau_1*tau_1*p_1*p_1*tau_2*tau_2*p_2*p_2*n*q);
Real c_1 = (p_c-p_1)/(tau_1*p_1);
Real c_2 = (p_c-p_2)/(tau_2*p_2);
Real M1(start = M0_1);
Real M2(start = M0_2);
equation
der(M1) = M1 - b/c_1 * M1 * M2 - a_1/c_1 * M1 * M1;
der(M2) = c_2/c_1 * M2 - b/c_1 * M1 * M2 - a_2/c_1*M2*M2;
end one_fun;
```

В результате моделирования получился такой график(рис. 4.2):

Рис. 4.2: График изменения обортных средств двух фиррм в первом случае на OpenModelica

Графики, построенные на Julia и OpenModelica, совпали.

Построение графиков. Случай 2

Для второго случая характерна уже другая математичсекая модель:

$$\begin{split} \frac{dM}{d\theta} &= M_1 - (\frac{b}{c_1} + 0.0017) M_1 M_2 - \frac{a_1}{c_1} M_1^2 \\ \frac{dM}{d\theta} &= \frac{c_2}{c_1} M_2 - \frac{b}{c_1} M_1 M_2 - \frac{a_2}{c_1} M_2^2 \end{split}$$

Код на Julia для данной мат.модели выглядит так:

Использованные библиотеки

using Plots
using DifferentialEquations

#Необходимые константы

$$M0_1 = 2.5$$

$$M0_2 = 1.8$$

$$p_c = 20.0$$

$$N = 23.0$$

$$q = 1.0$$

$$tau_1 = 16.0$$

$$tau_2 = 19.0$$

$$p_1 = 13.0$$

$$p_2 = 11.0$$

#Вычисление параметров

$$a_1 = p_c/(tau_1*tau_1*p_1*p_1*N*q)$$

$$a_2 = p_c/(tau_2*tau_2*p_2*p_2*N*q)$$

$$b = p_c/(tau_1*tau_1*p_1*p_1*tau_2*tau_2*p_2*p_2*N*q)$$

$$c_1 = (p_c-p_1)/(tau_1*p_1)$$

$$c_2 = (p_c-p_2)/(tau_2*p_2)$$

Начальные условия

$$start = [M0_1, M0_2]$$

timee =
$$(0.0, 30.0)$$

Функция мат.модели

function two_fun(du, u, p, t)

$$du[1] = u[1] - (b/c_1 + 0.0017)*u[1]*u[2] - a_1/c_1*u[1]*u[1]$$

$$du[2] = c_2/c_1*u[2] - b/c_1*u[1]*u[2]-a_2/c_1*u[2]*u[2]$$

end

Задание проблемы и ее решение

equat = ODEProblem(two_fun, start, timee)
solv = solve(equat, dtmax=0.01)

 $M_1 = [u[1] \text{ for } u \text{ in solv.} u]$

 $M_2 = [u[2] \text{ for } u \text{ in solv.} u]$

Построение графиков и сохранение изображения

plot1 = plot(dpi = 600, legend =:bottomright, bg =:white, title="Изменение оборотных plot!(plot1, solv.t, M_1, label="Изменения объемов продаж 1 фирмы", color =:green) plot!(plot1, solv.t, M_2, label="Изменения объемов продаж 2 фирмы", color =:blue)

savefig(plot1, "lab08_2.png")

В результате получился следующий график (рис. 4.3):

Рис. 4.3: График изменения обортных средств двух фиррм во втором случае на Julia

Модель в OpenModelica для того же случая:

```
model two_fun
parameter Real M0_1 = 2.5;
parameter Real M0_2 = 1.8;
Real p_c = 20.0;
Real N = 23.0;
Real q = 1.0;
Real tau_1 = 16.0;
Real tau_2 = 19.0;
Real p_1 = 13.0;
Real p_2 = 11.0;
Real a_1 = p_c/(tau_1*tau_1*p_1*p_1*N*q);
Real a_2 = p_c/(tau_2*tau_2*p_2*p_2*N*q);
Real b = p_c/(tau_1*tau_1*p_1*p_1*tau_2*tau_2*p_2*p_2*N*q);
Real c_1 = (p_c-p_1)/(tau_1*p_1);
Real c_2 = (p_c-p_2)/(tau_2*p_2);
Real M1(start = M0_1);
Real M2(start = M0_2);
equation
der(M1) = M1 - (b/c_1 + 0.0017) * M1 * M2 - a_1/c_1 * M1 * M1;
der(M2) = c_2/c_1 * M2 - b/c_1 * M1 * M2 - a_2/c_1*M2*M2;
end two_fun;
```

В результате моделирования получился такой график(рис. 4.4):

Рис. 4.4: График изменения обортных средств двух фиррм во втором случае на OpenModelica

Графики на двух языках программирования также совпали

5 Выводы

Мы изучили модель конкуренции двух фирм и построили графики обортных средств этих фирм в 2 разных случаях на Julia и OpenModelica

Список литературы

1. Д. С. Чернавский М.-Г.М.З. А. В. Щербаков. Модель конкуренции. Москва: Ордена Ленина ИНСТИТУТ ПРИКЛАДНОЙ МАТЕМАТИКИ имени М.В. Келдыша Российской академии наук, 2006. 23 с.