多媒体技术基础实验一实验报告

计 15 班 申喆 2011011313

一、实验内容

本次实验分为两部分。

实验一主要是把 lena 图像转换为灰度图像之后进行 1D-DCT、2D-DCT 以及 2D-DCT on 8*8 blocks 变换并对比它们的时间复杂度和 psnr 值,之后分别用 1/4 1/16 1/64 系数并重复上述实验。

实验二主要是将 lena 的灰度图像分成 8*8 blocks 之后应用 2D DCT 变换,并用矩阵 Q 量化 DCT 系数,之后应用 2D IDCT 并计算 PSNR。对于所有的 blocks,计算平均的 psnr。之后用系数 a 乘以矩阵 Q 并重复上述过程,得到 psnr-a 曲线。用 cannon 以及 nikon 的 Q 矩阵重复实验。

二、实验文件结构及代码框架

1、实验文件结构

exp2_data_res 目录下为实验 2 的 psnr 矩阵,其中 Cannon_Q_block_psnr + a + .txt 为 Cannon 矩阵乘以系数 a 的 psnr 的结果, Nikon_Q_block_psnr + a + .txt 为 Nikon 矩阵乘以系数 a 的 psnr 的结果,Q_block_psnr + a + .txt 为单纯 Q 矩阵乘以系数 a 的 psnr 的结果。

res_pics 为实验过程中保存的图像。该目录下的 exp1 目录下的图片为实验 1 所得到的的图片,exp2 目录下的图片为实验 2 所得到的图片,其中 exp2 目录下的 as 文件夹存放的是用不同的 a 乘以矩阵 Q 之后所得到的图片,命名方式同之前的 psnr 矩阵结果。

src 目录下为源代码文件及 lena 原始图片和曲线结果。

2、实验代码框架

其中 exp1.m 为实验 1 的主程序部分, exp2.m 为实验 2 的主程序部分。PSNR.m 是计算 psnr 值得函数,调用 MSE.m 中的 MSE 函数,返回 psnr 值。 change_with_coeff.m 为 exp1.m 所调用,用于计算不同 coefficient 的值时的变换。 change_with_coeff_blocks.m 作用同之前的 change_with_coeff.m,只不过是针对 blocks 情况处理而已。

实验 1 中的转换成灰度图像直接调用了 matlab 中的 rgb2gray 函数,由于要求 1D-DCT 变换先做行变换再做列变换,而 matlab 中的 dct 函数仅对列做变化因此先将得到的矩阵转置,再调用 matlab 中的 dct 函数,将得到的矩阵再转置之后再做 dct 变换即可。IDCT 即为该过程的逆过程,调用 matlab 中的 idct 函数。而 2D-DCT 函数则是直接调用的 matlab 中的 DCT2 函数,IDCT 变换直接调用的是 matlab 中的 idct2 函数。对于 8*8 blocks,则是利用 matlab 中的 mat2cell 将矩阵分块后进行实验。对于 coefficient 情况,则是利用自己实现的函数来进行实验。

实验 2 算法即为最直观的函数调用。

三、实验结果

1、实验1

● 灰度图:

1D-DCT on the whole image

用时 0.1952s psnr=312.8534

• 2D-DCT on the whole image

用时 0.0343 psnr=312.7917

2D-DCT on 8*8 blocks

用时 0.3476 psnr=313.8932

● only using 1/4,1/16, 1/64 DCT coefficients(具体结果大图可见对应文件)

psnr 值如下表所示

	1D-DCT	2D-DCT	2D-DCT on blocks
1/4	36.2345	36.2345	34.8839
1/16	29.9222	29.9222	28.2162
1/64	25.8642	25.8642	23.6717

2、实验 2

● 把原图像分成 8*8 的 blocks 之后引入量化矩阵 Q

平均 psnr=74.4811

● 得到 Q-a 曲线

● 引入 Cannon 量化矩阵

平均 psnr=87.7596

● Cannon 量化矩阵的 Q-a 曲线

● 引入 Nikon 量化矩阵

平均 psnr=88.8013

● Nikon 量化矩阵的 Q-a 曲线

四、实验数据分析

1、实验1

Time Complexity

对于一个 N*N 的向量,由公式可知其计算时间复杂度为 2N^2,即 O(N^2),对于二维 DCT 变换,其时间复杂度为 N*N 即 O(N^2),而对于 8*8blocks,时间复杂度为 8*(N/8)^2,即时间复杂度也为 O(N^2)。

实验结果如图所示

	1D-DCT	2D-DCT	2D-DCT on blocks
Time Use	0.1952	0.0343	0.3476

PSNR

	1D-DCT	2D-DCT	2D-DCT on blocks
PSNR	312.8534	312.7917	313.8932

从以上数据可以看出,2D-DCT on 8*8 blocks 的 psnr 值最大,即变换效果最佳。而本次实验中 1D-DCT 与 2D-DCT 原理相同,2D-DCT 所消耗的时间小于 1D-DCT 但是最终效果比 1D-DCT 略微差一点。这样的结果有可能是因为计算过程中的精度所引起的。因此在实际应用过程中,如果对时间要求比较高则可以选用 2D-DCT, 对结果要求比较高可以选用 2D-DCT on 8*8 blocks 方法。

Using coefficients

	1D-DCT	2D-DCT	2D-DCT on blocks
1/4	36.2345	36.2345	34.8839
1/16	29.9222	29.9222	28.2162
1/64	25.8642	25.8642	23.6717

可以看出,随着 DCT 系数的增加,psnr 的值会减小,图片质量也会下降。本实验中保留的矩阵为原矩阵的左上方部分,这部分矩阵频率较低,可以降低还原图中的高频噪点。

2、实验 2

average psnr

	Q	Cannon Q	Nikon Q
average psnr	74.4811	87.7596	88.8013

由上表可以看出对于 a=1 时平均的 psnr 值 Nikon_Q>Cannon_Q>Q,因此可以 认为 Nikon 对图像的处理优于 Cannon,而 Cannon 优于原本的 Q。

a-Q

由实验结果中的 Q-a 曲线可以看出,在 a 比较小的时候 psnr 的值随着 a 的增大迅速减小,当 a=0.4 时出现转折,曲线趋势变缓。猜测 psnr 与 a 成负指数关系。因此实际应用中 a 的值要尽量小一些。

a-CannonQ

由实验结果中的曲线可以看出,在 a=0.4 附近和 a=1 附近曲线有了小的上升 趋势,但是整体呈下降趋势。因此在 a 不能达到很小的情况下,可以考虑在 这两个点附近微调以获得较好的图像。

a-NikonQ

由实验结果中的曲线可以看出,在 a=0.6 和 a=1.2 附近曲线有较为明显的上升,大约在 a=1.1 时曲线达到了附近的一个最小值,因此对于这种情况,可以将 Nikon 的 Q 乘以一个略大于 1 或者略小于 1 的系数 a,来获得有更优效果的图像。

factors that affect the design of quantization matrix

通过查阅资料,猜测影响量化矩阵设计的因素可能有人眼对于图片的敏感度。 人眼对于低频的更为敏感一些(Q 矩阵的左上角设计影响因素),对高频则更 为不敏感一些(Q 矩阵右下角设计影响因素)。实际生活中的 Q 矩阵通常被设定为一个默认的值,而自定义设计的量化表 Q 则可能更多的被放置在个人图像处理之中。

五、实验收获与总结

通过本次实验,了解了图像编码解码的一些过程,了解到了实际生活中一些 影响图片质量的本质性的东西,对图片的处理有了更加深刻的理解。