2016 G1

Ezra Guerrero Alvarez

November 18, 2021

2016 G1

2016 G1

In convex pentagon ABCDE with $\angle B > 90^\circ$, let F be a point on \overline{AC} such that $\angle FBC = 90^\circ$. It is given that FA = FB, DA = DC, EA = ED, and rays \overline{AC} and \overline{AD} trisect $\angle BAE$. Let M be the midpoint of \overline{CF} . Let X be the point such that AMXE is a parallelogram. Show that \overline{FX} , \overline{EM} , \overline{BD} are concurrent.

Let D' be the second intersection of \overrightarrow{AB} with the circumcircle of $\triangle BFC$. Now, since $\angle BAC = \angle CAD = \angle ACD$ and $\angle EDA = \angle EAD = \angle DAC$ we have $\overrightarrow{AB} \parallel \overrightarrow{CD}$ and $\overrightarrow{AC} \parallel \overrightarrow{ED}$. Now, note that

$$\angle CAD = \angle CAB = \angle FBA = \angle FCD'$$
,

so $\overline{\text{CD'}} \parallel \overline{\text{AD}}$. Hence, since DA = DC, ADCD' is a rhombus. Thus, $\overline{\text{AC}}$ is the perpendicular bisector of $\overline{\text{DD'}}$. However, $\overline{\text{AC}}$ is also a diameter of (FBC), so reflecting over it tells us D lies on this circle as well. Now, note that E, D, X are collinear because of $\overline{\text{AC}} \parallel \overline{\text{ED}}$. Thus, $\angle CDX = 180^{\circ} - \angle EDC = \angle EDA = \frac{1}{2}\angle CMX$. Thus, since M is the center of (FBC), X lies on the circle as well. Furthermore, we have

$$\angle FMX = 180^{\circ} - \angle MAE = 2(90^{\circ} - \angle CAD) = 2\angle BCD,$$

so FDXB must be an isosceles trapezoid. Finally, note that $\angle FXD = \angle FCD = \angle FAD$, so parallelogram AMXE implies AFXD and FMDE are parallelograms. Since MF = MD, we have EF = ED, so ME is the perpendicular bisector of \overline{FD} . Since FDXB is an isosceles trapezoid, it follows by symmetry that \overline{FX} , \overline{EM} , \overline{BD} concur.