Applying the Taylor series

TOTAL POINTS 5

1.Question 1

In the two previous videos, we have shown the short mathematical proofs for the Taylor series, and for special cases when the starting point is x=0, the Maclaurin series. In these set of questions, we will begin to work on applying the Taylor and Maclaurin series formula to obtain approximations of functions.

For the function $f(x) = e^{x^2}$ about x=0, using the the Maclaurin series formula, obtain an approximation up to the first three non zero terms.

1 / 1 point

 $f(x) = 1 + 2x + x^2 / 2 + \dots$

 $f(x) = 1 - x^2 - x^4 / 2 \dots$

 $f(x) = x^2 + x^4 / 2 + x^6 / 6 + \dots$

• $f(x) = 1 + x^2 + x^4 / 2 + \dots$

2.Question 2

Use the Taylor series formula to approximate the first three terms of the function f(x) = 1/x, expanded around the point p = 4.

$$f(x) = (x-4) / 16 + (x-4)^2 / 64 - (x-4)^3 / 256 \dots$$

$$f(x) = 1/4 - (x+4)/16 + (x+4)^2/64 + \dots$$

•
$$f(x) = 1/4 - (x-4)/16 + (x-4)^2/64 + \dots$$

3. Question 3

By finding the first three terms of the Taylor series shown above for the function $f(x)=\ln(x)$ (green line) about x=10, determine the magnitude of the difference of using the second order taylor expansion against the first order Taylor expansion when approximating to find the value of f(2).

1 / 1 point

- $\Delta f(2)=0.5$
- $\Delta f(2) = 0.32$
- $\Delta f(2)=1.0$
- $\Delta f(2)=0$

4.Question 4

In some cases, a Taylor series can be expressed in a general equation that allows us to find a particular nth term of our series. For example the function $f(x) = e^x$ has the general equation $f(x) = \sum_{n=0}^{\infty} x_n l_n!$. Therefore if we want to find the 3rd term in our Taylor series, substituting n=2 into the general equation gives us the term $x^2 / 2$. We know the Taylor series of the function e^x is $f(x) = 1 + x + x^2 / 2 + x^3 / 3! + \dots$ Now let us try a further working example of using general equations with Taylor series.

By evaluating the function $f(x) = 1 / (1-x)^2$ about the origin x=0, determine which general equation for the nth order term correctly represents f(x).

1 / 1 point

- $f(x) = \sum_{n=0}^{\infty} (1+n)(-x)^{n} (n)$
- $f(x) = \sum_{n=0}^{\infty} (2+n)(x)^{n}$ $f(x) = \sum_{n=0}^{\infty} (1+2n)(x)^{n}$ (n)
- $f(x) = \sum_{n=0}^{\infty} (1+n)x^{n}(n)$

5.Question 5

By evaluating the function $f(x) = \sqrt{4-x}f(x)=4-x$ at x = 0x=0, find the quadratic equation that approximates this function.

1 / 1 point

- $f(x) = 2 x \frac{x^3}{64} \cdot \frac{54}{100} = 2 x 64x3...$
- $f(x) = \frac{x}{4} \frac{x^2}{64} \cdot \frac{x}{2} = 4x^{-64x^2}...$
- f(x) = $2 + x + x^2 \cdot ldots f(x) = 2 + x + x^2 ...$
- f(x) = 2 $\frac{x}{4}$ $\frac{x^2}{64}$ \ldots f(x) = 2-4x-64x2...