Operadores e Estruturas de Decisão

Vanessa Braganholo vanessa@ic.uff.br

Aula de hoje...

Operadores

- Aritméticos (usados em contas)
- Relacionais (usados em comparações numéricas)
- Lógicos (usados em comparações lógicas)
- De atribuição (armazenamento de valores em variáveis)

Estruturas de decisão

- ▶ if...
- if...else
- if...elif...

Operadores aritméticos

Operador	Exemplo	Prioridade
(x)	$(1+2)*3 \rightarrow 9$	I
**	2 ** 3 > 8	2
+x	+15	3
-x	-(5+3) → -8	3
*	5 * 3→ 15	4
1	5 / 3 → 1.66	4
//	5 // 3 → I	4
%	5 % 3 → 2	4
+	5 + 3 → 8	5
-	5 - 3 → 2	5

Operadores aritméticos

- Operadores com a mesma prioridade (precedência) são analisados da esquerda para a direita
- Divisão de inteiros (//)
 - Numerador e denominador inteiros
 - Resultado é somente a parte inteira da divisão
- Divisão (/)
 - Resultado fracionário

Exemplo

Considerando

```
x = 512
v = 9.2 - (x // 10 - 14 / 5) + 14 * 0.1
Resolução de y
y = 9.2 - (512 // 10 - 14 / 5) + 14 * 0.1
y = 9.2 - (51 - 14 / 5) + 14 * 0.1
y = 9.2 - (51 - 2.8) + 14 * 0.1
y = 9.2 - 48.2 + 14 * 0.1
v = 9.2 - 48.2 + 1.4
y = -39 + 1.4
```

y = -37.6

Conversão de Tipos

- Em algumas situações o programador deseja transformar o tipo de uma expressão
 - Para isso, basta envolver a variável a ser transformada por "tipo(variável)"
- Exemplo: transformar um real em um inteiro

```
a = 5.1x = int(a)x vale 5
```

Exemplo: transformar um inteiro em um real

```
b = 5
y = float(b);
y vale 5.0
```

Exemplo

Considerando

$$x = int(3.3 / (5/2) - 5)$$

 $y = int(3.3) / (5/2) - 5$

Resolução de x

$$x = int(3.3 / (5/2) - 5)$$

 $x = int(3.3 / 2.5 - 5)$

$$x = int(1.32 - 5)$$

$$x = int(-3.68)$$

$$x = -3$$

Resolução de y

$$y = int(3.3) / (5/2) - 5$$

$$y = int(3.3) / 2.5 - 5$$

$$y = 3 / 2.5 - 5$$

$$y = 1.2 - 5$$

$$y = -3.8$$

Funções matemáticas: números e suas representações

Método	Descrição	Exemplo
math.ceil(x)	Arredonda para cima	math.ceil(5.3) \rightarrow 6
math.copysign(x, y)	Obtém um float com o valor absoluto de x, mas com o sinal de y	math.copysign(-5.3, 2) \rightarrow 5.3
math.fabs(x)	Valor absoluto de x	math.fabs(-5.3) \rightarrow 5.3
math.floor(expr)	Arredonda para baixo	math.floor(5.3) \rightarrow 5
math.fmod(x, y)	Resto da divisão de x por y (usar quando x ou y forem float, caso contrário usar %)	math.fmod(5.3, 2) → 1.2999
math.trunc(x)	Parte inteira de x	math.trunc(5.6) \rightarrow 5

Constantes: math.pi \rightarrow 3.141592... math.e \rightarrow 2.718281...

Para usar essas funções ou constantes, colocar import math no início do programa

Funções matemáticas: potência e funções logarítmicas

Método	Descrição	Exemplo
math.exp(x)	e**x	math.exp(2) → 7.38905609893065
math.log(x)	Logaritmo natural de x (base e)	math.log(2) → 0.6931471805599453
math.log(x, y)	Logaritmo de x na base y	math.log(2, 10) → 0.30102999566398114
math.pow(x, y)	x ** y	math.pow $(2,3) \rightarrow 8.0$
math.sqrt(x)	Raiz quadrada de x	math.sqrt(16) \rightarrow 4.0

Para usar essas funções, colocar **import math** no início do programa

Funções matemáticas: trigonometria

Função	Descrição	Exemplo
math.sin(x)	Seno	math.sin(0) \rightarrow 0.0
math.asin(x)	Arco seno	math.asin(I) \rightarrow 1.5707963267948966
math.cos(x)	Cosseno	$math.cos(0) \rightarrow 1.0$
math.acos(x)	Arco cosseno	math.acos(-1) → 3.141592653589793
math.tan(x)	Tangente	math.tan(I) → I.5574077246549023
math.atan(x)	Arco tangente	math.atan(I) \rightarrow 0.7853981633974483
math.degrees(x)	Converte radianos para graus	math.degrees(math.pi) → 180.0
math.radians(x)	Converte graus para radianos	math.radians(180) → 3.141592653589793

- Funções trigonométricas trabalham com radiano
- Existem algumas outras funções menos usadas

Números aleatórios

- Algumas aplicações necessitam que o computador sorteie um número
 - Função random.random()
 - Gera número pseudo aleatório entre 0 e 1
- Para usar, seguir esses passos

```
import random
random.seed(x) # informar um x qualquer
y = random.random()
# y conterá um número real sorteado
# entre 0 e 1
```

Números aleatórios

▶ É possível gerar números aleatórios inteiros

```
import random
random.seed(x) # informar um x qualquer
y = random.randint(3, 9)
# y conterá um número inteiro sorteado
# entre 3 e 9
```

Operadores relacionais

Operador	Exemplo	Prioridade
x < y	$5 < 3 \rightarrow False$	6
x <= y	$5 \le 3 \rightarrow False$	6
x > y	$5 > 3 \rightarrow True$	6
x >= y	$5 \ge 3 \rightarrow True$	6
× == y	$5 == 3 \rightarrow False$	6
x != y	$5 != 3 \rightarrow True$	6

- Prioridade sempre inferior aos operadores aritméticos
- Sempre têm resultado booleano

Operadores lógicos

Operador	Exemplo	Prioridade
not x	not True → False	7
x and y	True and False → False	8
x or y	True or False → True	9

- Prioridade sempre inferior aos operadores relacionais
- Sempre têm resultado booleano

Tabela verdade

a	b	not a	a and b	a or b
True	True	False	True	True
True	False	False	False	True
False	True	True	False	True
False	False	True	False	False

Atribuição

 Variável do lado esquerdo, valor ou expressão do lado direito

$$x = 0$$

Pode-se atribuir valor a várias varáveis ao mesmo tempo

$$x = y = z = 0 \# x$$
, y e z terão valor 0

 Pode-se também atribuir valores diferentes para variáveis diferentes ao mesmo tempo

```
x, y = 1, 2 # x terá o valor 1, e y terá o valor 2
```

Exemplo

Considerando

```
x = 10

y = -2

z = 5

w = x * y < z / x \text{ or } x / y > z * x \text{ and } z * y < x
```

Resolução de w

```
10 * -2 < 5 / 10 or 10 / -2 > 5 / 10 and 5 * -2 < 10 -20 < 0.5 or -5 > 0.5 and -10 < 10
```

True or False and True

True or False

True

Referência sobre operadores e prioridades

Tutorial do Python 3

https://docs.python.org/3.3/reference/ expressions.html#operator-precedence

Decisão

Mecanismos de decisão:

- **▶** if ...
 - Executa algo somente quando uma condição é verdadeira
- ▶ if... else
 - Bifurca a execução do código em função de uma condição
- if... elif...
 - Executa apenas o bloco em que a condição é verdadeira

Decisão do tipo if...

Pseudocódigo **Python** se **CONDIÇÃO** então if CONDIÇÃO: INSTRUÇÃO 1 INSTRUÇÃO 1 INSTRUÇÃO 2 INSTRUÇÃO 2 INSTRUÇÃO N INSTRUÇÃO N

Decisão do tipo if...

- Executa o bloco de instruções somente se a condição for verdadeira
- A condição é uma expressão booleana que pode fazer uso de quaisquer operadores
- O bloco é delimitado por TAB (endentação)

Exemplo de if...

Programa para informar o valor absoluto de um número:

```
numero = eval(input("Entre com um numero: "))
if numero < 0:
   numero = -numero
print(numero)</pre>
```

Decisão do tipo if... else

Pseudocódigo

```
Se CONDIÇÃO então
                           if CONDIÇÃO:
                             INSTRUÇÃO 1
  INSTRUÇÃO 1
                             INSTRUÇÃO 2
  INSTRUÇÃO 2
  INSTRUÇÃO N
                             INSTRUÇÃO N
Senão
                           else:
  INSTRUÇÃO 1
                             INSTRUÇÃO 1
  INSTRUÇÃO 2
                             INSTRUÇÃO 2
  INSTRUÇÃO N
                             INSTRUÇÃO N
```

Python

Decisão do tipo if... else

- Executa um ou o outro bloco de instruções em função da condição ser verdadeira ou falsa
- ▶ Valem as mesmas regras para *if*...
- Qualquer combinação de instrução individual ou em bloco é aceita no corpo do if ou do else
- Podem ser aninhados com outras estruturas do tipo if...else

Exemplo de if... else

Programa para informar se um número é par ou impar:

```
numero = eval(input('Entre com um número: '))
if numero % 2 == 0:
  print('O número é par.')
else:
  print('O número é impar.')
```

Decisão do tipo if... elif...

Pseudocódigo

```
Python
Se CONDIÇÃO então
                             if CONDIÇÃO:
  INSTRUÇÃO 1
                               INSTRUÇÃO 1
  INSTRUÇÃO 2
                               INSTRUÇÃO 2
  INSTRUÇÃO N
Senão Se CONDIÇÃO então
                               INSTRUÇÃO N
            INSTRUÇÃO 1
                             elif CONDIÇÃO:
            INSTRUÇÃO 2
                               INSTRUÇÃO 1
                               INSTRUÇÃO 2
            INSTRUÇÃO N
                               INSTRUÇÃO N
```

Decisão do tipo if... elif...

- Apenas o bloco no qual a condição é verdadeira
- É possível colocar tantos *elif* quantos forem necessários
- Qualquer combinação de instrução individual ou em bloco é aceita no corpo do if ou do elif
- É possível adicionar um **else** ao final de tudo
 - Nesse caso, se nenhuma condição for verdadeira, o bloco do else será executado

```
if CONDIÇÃO:
  INSTRUÇÃO 1
  INSTRUÇÃO N
elif CONDIÇÃO:
  INSTRUÇÃO 1
  INSTRUÇÃO N
elif CONDIÇÃO:
  INSTRUÇÃO 1
  INSTRUÇÃO N
else:
```

Exemplo: Programa para informar o número de dias de um mês qualquer

```
mes = eval(input('Entre com um mês (1 a 12): '))
if (mes==1)or(mes==3)or(mes==5)or(mes==7)or(mes==8)or(mes==10)or(mes==12):
    print('Esse mes tem 31 dias.')
elif (mes==4) or (mes==6) or (mes==9) or (mes==11):
    print('Esse mes tem 30 dias.')
else:
    ano = eval(input('Entre com o ano (4 dígitos): '))
    if (ano % 400 == 0) or (ano % 4 == 0) and (ano % 100 != 0):
        print('Esse mes tem 29 dias.')
    else:
        print('Esse mes tem 28 dias.')
```

Escopo de variáveis

- Variável só é visível dentro do seu "escopo"
- Variável global
 - Variável declarada (usada pela primeira vez) fora de um bloco
 - Pode ser acessada e modificada de qualquer lugar
- Variável local
 - Variável declarada (usada pela primeira vez) dentro de um bloco
 - Só existe se esse bloco for executado
- Revisitaremos esse assunto mais adiante na disciplina

```
nome = input('Digite o nome da pessoa: ')
sexo = input('Digite o sexo da pessoa (F/M): ')
if (sexo == 'M'):
   idade = input('Digite a idade da pessoa: ')
print(nome, 'tem', idade, 'anos')
```

```
nome = input('Digite o nome da pessoa: ')
sexo = input('Digite o sexo da pessoa (F/M): ')
if (sexo == 'M'):
   idade = input('Digite a idade da pessoa: ')
print(nome, 'tem', idade, 'anos')
```

nome e sexo são variáveis globais

```
nome = input('Digite o nome da pessoa: ')
sexo = input('Digite o sexo da pessoa (F/M): ')
if (sexo == 'M'):
    idade = input('Digite a idade da pessoa: ')
print(nome, 'tem', idade, 'anos')
```

idade é variável local

– só existe se o código

dentro do if for

executado

```
nome = input('Digite o nome da pessoa: ')
sexo = input('Digite o sexo da pessoa (F/M): ')
if (sexo == 'M'):
   idade = input('Digite a idade da pessoa: ')
print(nome, 'tem', idade, 'anos')
```

Se sexo for F, esse comando dará erro, pois variável idade não terá sido criada pelo Python

Faça um programa que calcule o IMC de uma pessoa (IMC = massa em kg / altura em metros elevado ao quadrado) e informe a sua classificação segundo a tabela a seguir, obtida na Wikipédia

IMC	Classificação
< 18,5	Abaixo do Peso
18,6 – 24,9	Saudável
25,0 – 29,9	Peso em excesso
30,0 – 34,9	Obesidade Grau I
35,0 – 39,9	Obesidade Grau II (severa)
≥ 40,0	Obesidade Grau III (mórbida)

- Faça um programa que leia três coordenadas num espaço
 2D e indique se formam um triângulo, juntamente com o seu tipo (equilátero, isósceles e escaleno)
 - Equilátero: todos os lados iguais
 - Isósceles: dois lados iguais
 - Escaleno: todos os lados diferentes

- Faça um programa que leia um número inteiro de 5 dígitos e indique se ele é palíndromo
 - Um número palíndromo é aquele que se lido da esquerda para a direita ou da direita para a esquerda possui o mesmo valor (ex.: 15451)

Faça um programa que leia um número inteiro entre 0 e
 9999 e escreva o seu valor por extenso

Vocês já podem ler

Capítulo I do livro Use a Cabeça: Programação, até a página 25

Referências

Slides baseados no curso de Leonardo Murta

Operadores e Estruturas de Decisão

Vanessa Braganholo vanessa@ic.uff.br