チェバの定理

$$\frac{BA'}{A'C} \frac{CB'}{B'A} \frac{AC'}{C'B} = 1.$$

メネラウスの定理

$$\frac{BA'}{AC} \frac{CB'}{B'A} \frac{AC'}{C'B} = -1$$
, 作 符号の意味は 次ページで説明する.

ベクトルABとベクトルCDが平行なとき、ABCDを以下のように定める、

ベクトルABとCDの向きが同い方向ならは、モニー、反対方的ならは、モニー」とかく、

$$\frac{AB}{CD} = \epsilon \frac{\overrightarrow{AB} \circ \xi^{*}}{\overrightarrow{CD} \circ \xi^{*}} と定める。$$

$$\frac{AB}{CD} = \frac{d}{\beta}$$
 ($\overrightarrow{AB} \ge \overrightarrow{CD} B$)

$$A \xrightarrow{\beta} B$$

$$D \xrightarrow{\beta} C$$

$$\frac{AB}{CD} = -\frac{d}{\beta} \left(\overrightarrow{AB} \times \overrightarrow{CD} \mathcal{U} \right)$$

A,B,Cは平面上の一般の位置にある3点であるとし, A,B,C1はそれぞれ直線BC,CA,AB上のA,B,Cとは異なる点であるとする。

到 射影幾何的に

平行な直線達は無限遠で1点できわると考える

「3直線 AA, BB, CC/かり点で支わる

3点 A, B, c/か同一直線上にある

Cevaの定理の31ペターン

$$\frac{BA'}{A'C} \frac{CB'}{B'A} \frac{AC'}{C'B} = 1.$$

$$\frac{BA'}{A'C} \frac{CB'}{B'A} \frac{AC'}{C'B} = 1.$$

$$\frac{BA'}{A'C} \frac{CB'}{B'A} \frac{AC'}{C'B} = 1.$$
>0 <0 <0

Menelausの定理の2パターン

$$\frac{BA'}{A'C} \frac{CB'}{B'A} \frac{AC'}{C'B} = -1.$$

$$\frac{BA'}{A'C} \frac{CB'}{B'A} \frac{AC'}{C'B} = -1.$$

BA'

B'

C

A'

B

C

問題 次ページ以降を見る前に Cevaの定理と Menelawの定理 (前々ページの 2つの定理の 今の向き) を複数通りの方法で証明せよ。

ビリン・前やージより符号はたれて長さの比を考えれば十分である。

- ・補助線を引き相似な三角形達を任る方法だけで複数ある
- ・三角形の面積比を使うなみもある。
- ・他にも多数ある。

担似を使う方法と面積比を使う方法

Ceva 1

三角形逢の相似より

$$BA': A'C = XA: AY,$$

$$Ac': c'B = AY: BC$$

$$\frac{A'C}{A'C} \frac{CB'}{B'A} \frac{AC'}{C'B} = \frac{XA}{AY} \frac{BC}{XA} \frac{AY}{BC} = 1.$$

$$\begin{cases} \triangle OBC = 5 \\ \triangle OCA = T \\ \triangle OAB = T \end{cases}$$

虚辺を共有する三角形の面積の此は高さの比に等しいので

$$BA':A'C = U:T$$

$$Ac':c'B=T:S.$$

$$\frac{BA'}{A'C}\frac{CB'}{B'A}\frac{AC'}{C'B} = \frac{U}{T}\frac{S}{U}\frac{T}{S} = 1.$$

Ceva 2

三角形建の担似より、

$$BA':A'C = XA:AY$$
,

$$CB': B'A = BC: XA$$

$$AC': C'B = AY: BC$$

$$\frac{BA'}{A'C}\frac{CB'}{B'A}\frac{AC'}{C'B} = \frac{XA}{AY}\frac{BC}{XA}\frac{AY}{BC} = 1.$$

虚辺を共有する三角形の面積の比は高さの比に等しいので

$$BA':A'C = U:T$$

$$AC':C'B=T:S.$$

$$\frac{BA'}{A'C}\frac{CB'}{B'A}\frac{AC'}{C'B} = \frac{U}{T}\frac{S}{U}\frac{T}{S} = 1,$$

 $\begin{cases} \triangle OBC = 5 \\ \triangle OCA = T \\ \triangle OAB = 15 \end{cases}$

A S:U

= △CBOの高さ: △ABOの高さ

$$= CB'; B'A$$

$$BA':A'C = XA:AY$$
,

$$CB': B'A = BC: XA$$
,

$$AC': C'B = AY: BC$$

$$\frac{BA'}{A'C} \frac{CB'}{B'A} \frac{AC'}{C'B} = \frac{XA}{AY} \frac{BC}{XA} \frac{AY}{BC} = 1.$$

$$\begin{cases} \triangle OBC = 5 \\ \triangle OCA = T \\ \triangle OAB = T \end{cases}$$

虚辺を共有する三角形の面積の比は高さの比に等しいので

$$BA':A'C = U:T$$

$$Ac':c'B=T:S.$$

$$\therefore \frac{BA'}{A'C} \frac{CB'}{B'A} \frac{AC'}{C'B} = \frac{U}{T} \frac{S}{U} \frac{T}{S} = 1.$$

S:U

= △CBOの高さ: △ABOの高さ

= CB'; B'A

(Menelaus

$$CB'; B'A = A'C; AX,$$

 $AC'; C'B = XA; BA',$

$$\frac{BA'}{A'C}\frac{CB'}{B'A}\frac{AC'}{C'B} = \frac{BA'}{A'C}\frac{A'C}{AX}\frac{XA}{BA'} = -1$$

$$\begin{cases} \triangle B'BA' = S \\ \triangle B'A'A = T \\ \triangle B'AB = U \end{cases}$$

底辺を共有する三角形の面積の比は高さの比に等しいので, 長さの比が以下のようになるこ

$$BA':A'C = (U+T):T,$$

$$CB': B'A = S: (U+T),$$

$$AC': C'B = T: S.$$

ゆえに符まも考慮に入れると,

$$\frac{BA'}{A'C}\frac{CB'}{B'A}\frac{AC'}{C'B} = -\frac{U+T}{T}\frac{S}{U+T}\frac{T}{S} = -1.$$

Menelaus 1 37 角子

(三角形の担似を使う別の方法達)

$$\frac{BA'}{A'C} = \frac{C'B}{CX},$$

$$\frac{CB'}{B'A} = \frac{CX}{C'A}.$$

$$\frac{BA'}{A'C} \frac{CB'}{B'A} \frac{AC'}{C'B}$$

$$= \frac{C'B}{CX} \frac{CX}{C'A} \frac{AC'}{C'B} = -1$$

$$\frac{BA'}{A'C} = \frac{B'X}{CB'},$$

$$\frac{AC'}{C'B} = \frac{AB'}{B'X},$$

$$\frac{BA'}{A'C} \frac{CB'}{B'A} \frac{AC'}{C'B}$$

$$= \frac{B'X}{CB'} \frac{CB'}{B'A} \frac{AB'}{C'B} = -1.$$

$$\frac{CB'}{B'A} = \frac{cA'}{A'X},$$

$$\frac{AC'}{C'B} = \frac{A'X}{BA'},$$

$$\frac{BA'}{A'C} \frac{CB'}{B'A} \frac{AC'}{C'B}$$

$$= \frac{BA'}{A'C} \frac{CA'}{A'X} \frac{A'X}{BA'} = -1,$$

$$CB'; B'A = A'C; AX,$$

 $AC'; C'B = XA; BA',$

$$\frac{BA'}{A'C}\frac{CB'}{B'A}\frac{AC'}{C'B} = \frac{BA'}{A'C}\frac{A'C}{AX}\frac{XA}{BA'} = -1$$

$$\begin{cases} \triangle B'BA' = S \\ \triangle B'A'A = T \\ \triangle B'AB = U \end{cases}$$

底辺を共有する三角形の面積の比は高さの比に等しいので, 長さの比が以下のようになるこ

$$BA':A'C = (U+T):T,$$

$$CB': B'A = S: (U+T),$$

$$AC': C'B = T: S.$$

ゆえに 符号も考慮に入れると,

$$\frac{BA'}{A'C}\frac{CB'}{B'A}\frac{AC'}{C'B} = -\frac{U+T}{T}\frac{S}{U+T}\frac{T}{S} = -1.$$

座標を使うる法 点Cを原点とし、エCA+yCBで平面上に座標(メ、y)を入れる

$$\frac{BA'}{A'C} = \frac{a-1}{-a}, \quad \frac{CB'}{B'A} = \frac{b^{-1}}{1-b^{-1}} = \frac{1}{b-1}, \quad \frac{AC'}{C'B} = \frac{t-1}{-t} = \frac{1-t}{t}.$$

[Ceva] 直線 AA':
$$y=-a(x-1)$$

直線 BB': $y=-bx+1$
直線 CC': $y=\frac{1-t}{t}x$
AA'とBB'の友点 は $\left(\frac{a-1}{a-b}, -a\frac{b-1}{a-b}\right)$ なので、
AA', BB', CC'か1点で表わる \iff $-a\frac{b-1}{a-b}=\frac{1-t}{t}$ $\frac{a-1}{a-b}$
 \iff $\frac{a-1}{-a}$ $\frac{1}{b-1}$ $\frac{1-t}{t}=1$ \iff $\frac{BA'}{A'C}$ $\frac{CB'}{B'A}$ $\frac{AC'}{C'B}=1$.

Menelaus) 直線 A'B': y=-abx+a と 直線 AB: y=1-x の支点は $\left(\frac{a-1}{ab-1}\right)$ なので、 A', B', C'が同一直線上にある \Rightarrow $a \frac{b-1}{ab-1} = \frac{1-t}{t} \frac{a-1}{ab-1}$ $\Leftrightarrow \frac{a-1}{-a} \frac{1}{b-1} \frac{1-t}{t} = -1 \Leftrightarrow \frac{BA'}{A'C} \frac{CB'}{B'A} \frac{AC'}{C'B} = -1$

射影幾何との閏任

一 地平線

射影変換たな?

- 直線上の点 えの変換 $\chi \mapsto \frac{ax+b}{cx+d} \left(\begin{vmatrix} ab \\ cd \end{vmatrix} = ad-bc+b \right)$
- ・平面上の点 (x,y)の変換 $(x,y) \mapsto \frac{(ax + a'y + a'')}{(cx + c'y + c'')}, \frac{bx + b'y + b''}{(cx + c'y + c'')} (\begin{vmatrix} a a' a'' \\ b b' b'' \end{vmatrix} ‡ 0)$. 射影変換で、不変な性質を調べる幾何を射影幾何と呼ぶ、より正確には射影直線で射影平面を定義した方がよいが略す。

直貌の射影変換の全体は $\chi\mapsto\chi+\beta$ $\chi\mapsto\chi$ $(d \neq 0)$, $\chi\mapsto\frac{1}{2}$ で 主成される、 \leftarrow (4)

直缎上の点 a,b,c,d に対する $cr(a,b;c,d) = \frac{c-a}{b-c} \frac{d-b}{a-d}$ を $\frac{cross\ ratio}{d}$ (複比) と呼ぶ、

Cross ratio は 射影変換で不変である。← (*)から容易に出る。

平面上の同一直線上の点 A,B,C,D に対いも cross ratio か

$$cr(A,B;C,D) = \frac{AC}{CB} \frac{BD}{DA}$$

と定義され,平面の射影変換で不変である

Cevaの定理(とその逆)の射影幾何版

平面上の直線 li,li,li,m は対ごとに平行でなく、そのうるのどのろっも1点で支わらないと 仮立する、 $A=l_2 \cap l_3$, $B=l_3 \cap l_1$, $C=l_1 \cap l_2$, $P=l_1 \cap m$, $Q=l_2 \cap m$, $R=l_3 \cap m$ とかく、

直線 AA', BB', CC' は 1点で支わる ← mによらない条件, 射影変換で不変の条件 ⇔ cr(B,C; A',P) cr(C,A; B',Q) cr(A,B; C',R)=-1 ← 左辺は射影変換で不変

 $\Leftrightarrow \frac{BA'}{A'C} \frac{CP}{PB} \times \frac{CB'}{B'A} \frac{AQ}{QC} \times \frac{AC'}{C'B} \frac{BR}{RA} = -1.$

点P,Q,Rが乗っている直線Mを無限速に移動すると、 $\frac{CP}{PB}$, $\frac{AQ}{AC}$, $\frac{BR}{RA}$ はどれも-1に収まするので $\Leftrightarrow \frac{BA'}{A'C} \frac{CB'}{B'A} \frac{AC'}{C'B} = 1.$

射影変換によって易いり場合に変換して証明できる.

Cevaの場合の双対(点と直線の立場の支換)として以下が得られる。

Menelausの定理(とその逆)の射影幾何版

平面上の点 A, B, C, M は 互いた異なるとし、そのうちのどの3つも同一直線上にないと仮定する $l_1=(直線BC)$, $l_2=(直線CA)$, $l_3=(直線AB)$, $m_1=(直線AM)$, $m_2=(直線BM)$, $m_3=(直線CM)$, $P=l_1 \cap m_1$, $Q=l_2 \cap m_2$, $R=l_3 \cap m_3$ とおく、

A', B', C' は それぞれ直線 L_1, L_2, L_3 上の A, B, Cとは 豊なる点であると仮立する。このとき、 A', B', C'か同一直線上にある \longleftarrow $M \kappa L S G N 条件, 射影 変換で不変の条件$

 \Leftrightarrow cr(B,C;A',P) cr(C,A;B',Q) cr(A,B;C',R)=-1 \leftarrow 左辺は射影変換で不変

$$\iff \frac{BA'}{A'C} \frac{CP}{PB} \times \frac{CB'}{B'A} \frac{AQ}{QC} \times \frac{AC'}{C'B} \frac{BR}{RA} = -1$$

Mを無限遠に移動すると,

$$\Leftrightarrow \frac{BA'}{A'C} \frac{CB'}{B'A} \frac{AC'}{C'B} = -1.$$

- ・西山享、『射影幾何学の考え方』、数学のかんどころ19、共立出版2013
- Julio Benitez, A Unified Proof of Ceva and Menelaus' Theorems Using Projective Geometry, Journal for Geometry and Graphics Volume 11 (2007), No. 1, 39–44.

https://scholar.google.co.jp/scholar?cluster=2104876940749426999