Discrete Mathematics Final

2017-05-04

• Graphs:

- Undirected graph and edges
- Directed graph (digraph) and arcs
- **Multigraph** : *E* is a multiset of edges.
- **Simple graph**: no *loops* and no more than one edge connecting the same pair of vertices.
- \circ Complete graph: each pair of distinct vertices is connected by an edge. Denoted as $\emph{K}_{|\emph{V}|}$
- \circ **Bipartite graph**: there exist X and Y such that $V=X\cup Y(X\cap Y=\emptyset)$ and $E=\{(i,j)|i\in X,j\in Y\}.$
- Complete bipartite graph: each vertex of X is connected to each vertex of Y. Denoted as $K_{|X|,|Y|}$.
- Regular graph: every vertex has the same degree.
- Subgraph: if G' = (V', E') is a subgraph of G = (V, E), then $V' \subseteq V$ and $E' \subseteq E$.
- **Spanning subgraph**: a subgraph that contains all the vertices of the original graph.
- Induced subgraph: a subset of the vertices of the graph together with any edges connecting pairs of vertices in that subset.
- **Underlying graph**: the undirected graph that replaces all arcs in a digraph with edges.

2017-05-11

- Isomorphism: $G_1=(V_1,E_1)$ and $G_2=(V_2,E_2)$ are isomorphic iff there exists a one-to-one and onto mapping $f:V1\to V2$ such that $(i,j)\in E_1 \Leftrightarrow (f(i),f(j))\in E_2$.
- Walk: an arbitrary sequence of vertices and edges
 - Trail: all edges are distinct.
 - Path: all vertices are distinct.
 - Circuit: a trail which starts and ends at the same vertex.
 - **Cycle**: a path which starts and ends at the same vertex.
- Connected components:
 - **Connected**: each pair of vertices forms the endpoints of a path.
 - **Component**: a maximal connected subgraph.

- Connected graph: a graph consists of one single connected component.
- Strongly connected digraph: each pair of vertices has a directed path to each other.
- Weakly connected digraph: whose underlying graph is connected.

• Theorems:

- If G = (V, E) is a connected graph with |V| > 1, then G contains either a vertex of degree 1 or a cycle (or both).
- If G = (V, E) is a connected graph, and $(i, j) \in E$ be an edge that is contained in one cycle of G. Then, G (i, j) remains connected.
- Every n-vertex connected undirected graph contains at least n-1 edges.
- Every *n*-vertex strongly connected digraph contains at least *n* arcs.

• Tree:

- Tree: a tree of n vertices is an n-vertex connected undirected graph that contains exactly n-1 edges.
- **Spanning tree**: a tree which is also a spanning subgraph of an undirected graph.
- Minimum spanning tree (MST): Kruskal's algorithm, Prim's algorithm, Sollin's
 algorithm.
- The number of spanning tress: $S(G) = S(G e) + S(G \cdot e)$
 - S(G e): the number of spanning trees that do not contain edge e.
 - $S(G \cdot e)$: the number of spanning trees that contains edge e.
- Algorithms for searching MSTs: Kruskal's algorithm, Prim's algorithm, and Sollin's algorithm.
- **G** has a unique MST if its edge costs are all distinct.

2017-05-18

• Connectivity:

- Let G=(V,E) be a connected undirected graph. A subset S of V is called a **vertex cut** of G iff $G-S=(V-S,E-\{(i,j)|i\in S\lor j\in S,(i,j)\in E\})$ is disconnected.
- A **k**-vertex cut is a vertex cut of **k** vertices.
- The **connectivity** of *G* is the minimum *k* such that *G* has a *k*-vertex cut.
- The connectivity of K_n , which has no vertex cut, is defined to be n-1.
- G is k-connected, if its connectivity $\geq k$.
- v is an **articulation point** of G iff $\{v\}$ is a vertex cut of G.
- A connected graph G is **biconnected** (or 2-connected) iff G has no articulation point.
- Finding articulation points:
 - **DFN**(*i*): the visiting sequence of vertices by DFS.

- L(i): the least DFN reachable from i through a path consisting of zero or more
 (downward) tree edges followed by zero or one back edge.
- $i \in V$ is an articulation point of G iff either
 - *i* is the root and has at least two children.
 - i is not the root and has a child j with $L(j) \ge DFN(i)$.
- Theorem: Suppose G is a connected graph and T is a depth-first spanning tree of G. Then, G contains no cross edge with respect to T.
- Edge connectivity:
 - Given G = (V, E), $S \subset E$ is an edge cut of G iff G S = (V, E S) is disconnected.
 - A **k**-edge cut is an edge cut of **k** edges.
 - The **edge connectivity** of G is the minimum k such that G has a k-edge cut.
 - G is k-edge-connected, if its edge connectivity $\geq k$.
 - (i,j) is a **bridge** of G iff $\{(i,j)\}$ is an edge cut of G.
- Finding bridges:
 - **DFN**(i) and **L**(i) are defined in the same way as in articulation points.
 - $\circ \ (i,j) \in E$ is a bridge of G iff $\mathrm{L}(j) = \mathrm{DFN}(j)$ given $\mathrm{DFN}(i) < \mathrm{DFN}(j)$

2017-05-25

- **Euler trails** & **Euler circuits**: A trail (circuit) is called an Euler trail (Euler circuit) of G iff it traverses each edge of G exactly once.
- Theorem: Let G=(V,E) be a connected undirected graph, where $|V|\geq 1$. Then,
 - \circ **G** has an Euler trail, but not an Euler circuit, iff it has exactly two vertices of odd degrees.
 - *G* has an Euler circuit iff all vertices have even degrees.
- Theorem: Suppose that G=(V,E) is a directed graph, where |V|>1. Let d^{in} and d^{out} denote the indegree and outdegree of vertex i, respectively. Then, G has a u-to-v Euler trail iff the underlying graph of G is connected and either
 - $\circ u = v$ and $d^{\text{in}} = d^{\text{out}}$ for every $i \in V$.
 - $\circ \ u
 eq v$, $d^{ ext{in}} = d^{ ext{out}}$ for every $i \in V \{u,v\}$, $d^{ ext{in}}_u = d^{ ext{out}}_u 1$, and $d^{ ext{in}}_u = d^{ ext{out}}_u + 1$.
- Hamiltonian paths & Hamiltonian cycles: A path (cycle) is called a Hamiltonian path (cycle) of
 G iff it goes through each vertex (exclusive of the starting vertex and ending vertex) of *G* exactly once.
- Theorem: Suppose that G = (V, E) is a directed graph and between every two vertices u, v of G, there is one arc (either $\langle u, v \rangle$ or $\langle v, u \rangle$). Then, there exists a directed *Hamiltonian path* in G.
- ullet Theorem: Suppose that G=(V,E) is an undirected graph where |V|=n. Let d_i be the degree

of vertex v_i .

- \circ If $d_i+d_j\geq n-1$ for every $(v_i,v_j)\not\in E$ and $v_i
 eq v_j$, then G has a Hamiltonian path.
- \circ If $d_i+d_j\geq n$ for every $(v_i,v_j)\not\in E$ and $v_i
 eq v_j$, then G has a Hamiltonian cycle.
- Theorem: Suppose that G=(V,E) is an undirected graph where |V|=n. If for every $1 \le i \le \lfloor (n-1)/2 \rfloor$, G has fewer than i vertices with degrees at most i, then G has a Hamiltonian cycle. When n is odd, G has a Hamiltonian cycle, even if G has (n-1)/2 vertices of degrees (n-1)/2.
- Shortest paths: Dijkstra's algorithm.

2017-06-01

- Closure:
 - \circ Transitive closure: $A^+ = \sum_{i=1}^\infty A^i$
 - Reflexive transitive closure: $A^+ = \sum_{i=0}^\infty A^i$, where A^0 is the identity.
 - A transitive relation implies *reachability*.
- **Planar graph**: A graph is **planar** iff it can be drawn so that no two edges cross. Such a drawing is called a **planar drawing**.
- Theorems: Let G = (V, E) be a connected planar graph, and r be the number of regions.
 - |V| |E| + r = 2
 - $|E| \le 3|V| 6$ if $|E| \ge 2$
 - \circ Every planar drawing of a connected planar graph G has the same number r=2-|V|+|E| of regions.
 - Suppose G has k connected components. Then, |V| |E| + r = k + 1.
- Contractible: *H* is contractible to *G* iff *G* can be obtained from *H* by a series of elementary contractions.
- **Homeomorphic**: two graphs are said to be **homeomorphic** if they can be obtained from the same graph by adding vertices onto some of its edges, or one can be obtained from the other by the same way.
- Theorems:
 - A graph G is planar iff no subgraph of G is contractible to $K_{3,3}$ or K_5 .
 - A graph G is planar iff no subgraph of G is homeomorphic to $K_{3,3}$ or K_5 .
- Matching:
 - $M \subseteq E$ is a **matching** in G = (V, E) if no two edges in M are incident on the same vertex.
 - **Maximal matching**: M is a **maximal matching** if there exists no matching M' with

- |M'| > |M| in **G**.
- Perfect matching: M is a perfect matching if $|V| = 2 \times |M|$.
- Complete matching: M is a complete matching iff $|M| = \min\{|S|, |R|\}$ for a bipartite graph.
- Theorem: Suppose that $G = (R \bigcup S, E)$ is a bipartite graph, where $|R| \leq |S|$ is assumed. For any $W \subseteq R$, let ADJ(W) be the set of vertices adjacent to any vertex in W. Then, G has a complete matching iff $|W| \leq |ADJ(W)|$ for every $W \subseteq R$.

2017-06-08

- Cliques, independent sets, vertex covers:
 - **Clique**: a set of vertices every two of which are adjacent.
 - **Independent set**: a set of vertices no two of which are adjacent.
 - **Vertex cover**: a set of vertices such that each edge in the graph is incident with at least one vertex in the set.
- Theorem: suppose that G = (V, E) is an undirected graph and $V' \subseteq V$. The following statements are equivalent:
 - V' is a clique of G.
 - \circ V' is an independent set of $ar{G}$.
 - $\circ V V'$ is a vertex cover of \bar{G} .
- Maximum flow and minimum cut:
 - Transport network N = (V, E) has a pair of **source** node a and **sink** node z.
 - A **flow** is a function f from E to the set of nonnegative integers, satisfying
 - Capacity constraint: $0 \le f(e) \le c(e)$ for each $e \in E$
 - Conservation constraint: $\psi^+(v) = \psi^-(v)$ for $v \notin \{a, z\}$
 - The **total flow** (or **net flow**) of **f** is defined to be $F = \psi^-(a) = \psi^+(z)$.
 - The **maximum flow problem** is to determine f such that F is maximum.
 - Cut: $E(S;S') \cup E(S';S)$ is called a cut (or a-z cut) of N, where $S \subset V, S = V S, a \in S, z \in S'$.
 - Capacity of the cut induced by $S: c(S) = \sum_{e \in E(S:S')} c(e)$
 - **Minimum cut**: $E(S; S') \cup E(S'; S)$ is a minimum cut if c(S) is minimum.
- Lemmas and theorems:
 - \circ Conservation of flow: F=f(S,S')-f(S',S) for any $S\subset V$ and $a\in S$.
 - If F = c(S) for some $S \subset V$, then F is maximum and c(S) is minimum.
 - $\circ F = c(S)$ iff (a) f(e) = c(e) for each $e \in E(S; S')$; (b) f(e) = 0 for each $e \in E(S'; S)$.

• Ford & Fulkerson's algorithm

- Augmenting path: a path in N is an augmenting path if its each forward edge is unsaturated and its each backward edge e has f(e) > 0.
- The maximal increment of flow by an augmenting a-to-z path P is equal to

 $\Delta_P = \min\{\min\{c(e) - f(e)|e \text{ is a forward edge}\}, \min\{f(e)|e \text{ is a backward edge}\}\}.$

- $\text{o The updated flow } f^+(e) = \left\{ \begin{array}{l} f(e) + \Delta_P, \text{ if e is a forward edge} \\ f(e) \Delta_P, \text{ if e is a backward edge} \\ f(e), \text{ if e is not an edge of P} \end{array} \right.$
- F is maximum iff there is no augmenting a-to-z path in N.
- The capacities must be rational numbers; otherwise, Ford & Fulkerson's algorithm may cause an infinite sequence of flow augmentations, and the flow finally converges to a value that is 1/4 of the maximum total flow.
- Ford & Fulkerson's algorithm takes exponential time in the worst case.

• Edmonds & Karp's algorithm:

- Overcomes the two flaws of Ford & Fulkerson's algorithm.
- Uses BFS to find shortest augmenting paths iteratively.

Coloring:

- A proper coloring of a graph *G* is an assignment of colors to the vertices of *G* so that no
 two adjacent vertices are assigned with the same color.
- The **chromatic number** of G, denoted by $\chi(G)$, is the smallest number of colors needed to properly color G.
- A graph is k-colorable iff it can be properly colored with k colors.

• Properties and theorems:

- $\circ \ \chi(K_n) = n$
- An undirected graph G is 2-colorable (i.e., bipartite) iff G has no cycle of odd length.