1.5 Variabile aleatoare

În practică, atunci când se efectuează un anumit experiment, în mod frecvent suntem în principal interesați de o anumită funcție ce depinde rezultatul experimentului, și nu de rezultatul în sine al experimentului.

Spre exemplu, la aruncarea a două zaruri, deseori suntem interesați de suma valorilor obținute, și nu neapărat de valorile individuale ale zarurilor (spre exemplu, suntem interesați dacă suma celor două zaruri este 7, fără a conta dacă valorile celor două zaruri sunt (1,6), (2,5), (3,4), (4,3), (5,2) sau (6,1)), iar la aruncarea repetată a unei monede, suntem interesați de numărul total de steme obținute, și nu neapărat de valorile stemă/ban obținute.

Aceste cantități de interes, mai pecis aceste funcții reale ce depind de rezultatul unui anumit experiment, se numesc *variabile aleatoare*.

Pentru o definiție mai precisă, reamintim ca am notat prin $\mathcal{B} = \mathcal{B}(\mathbb{R}) = \sigma(\mathcal{S})$ σ -algebra mulțimilor boreliene pe \mathbb{R} , adică cea mai mică σ -algebră ce conține toate mulțimile de forma

$$S = \{(a, b) : a < b, \ a, b \in \mathbb{R}\}.$$

Observația 1.5.1 se poate arăta că putem înlocui mulțimea S de mai sus prin oricare din mulțimile:

$$\begin{aligned} & \{(-\infty,b):b\in\mathbb{R}\}\\ & \{(a,+\infty):a\in\mathbb{R}\}\\ & \{(a,b]:a,b,\ a,b\in\mathbb{R}\}\\ & \{O:O\ -\ multime\ deschis\Breve{a}\ din\ \mathbb{R}\}\,. \end{aligned}$$

Definiția 1.5.2 Numim variabilă aleatoare (reală) pe spațiul de probabilitate (Ω, \mathcal{F}, P) o funcție $f: \Omega \to \mathbb{R}$ cu proprietatea că

$$X^{-1}(B) = \{\omega \in \Omega : X(\omega) \in B\} \in \mathcal{F},$$

pentru orice mulțime boreliană $B \in \mathcal{B}$.

Exemplul 1.5.3 La aruncarea a două monede, $X(\omega) = numărul$ de steme obținut este o variabilă aleatoare pe spațiul (Ω, \mathcal{F}, P) , unde

$$-\Omega = \{(S, S), (S, B), (B, S), (B, B)\}\$$

$$-\mathcal{F} = \mathcal{P}(\Omega)$$

$$-P(\{(S, S)\}) = \dots = P(\{(B, B)\}) = \frac{1}{4},$$
denotes:

$$X^{-1}(B) = \begin{cases} \emptyset, & 0, 1, 2 \notin B \\ \{(B, B)\}, & 0 \in B \text{ $gi1, 2 \notin B$} \\ \{(S, B), (B, S)\}, & 1 \in B \text{ $gi 0, 2 \notin B$} \\ \{(B, B)\}, & 2 \in B \text{ $gi 0, 1 \notin B$} \\ \dots & \dots \end{cases}$$

oricare ar fi mulțimea boreliană $B \in \mathcal{B}$.

Are loc următoarea propoziție de caracterizare a variabilelor aleatoare:

Propoziția 1.5.4 $X: \Omega \to \mathbb{R}$ este o variabilă aleatoare pe spațiul de probabilitate (Ω, \mathcal{F}, P) dacă și numai dacă are loc una din următoarele relații echivalente:

- a) $X^{-1}((-\infty, a)) = \{\omega \in \Omega : X(\omega) < a\} \in \mathcal{F}, \text{ oricare ar fi } a \in \mathbb{R};$
- b) $X^{-1}((-\infty, a]) = \{\omega \in \Omega : X(\omega) \le a\} \in \mathcal{F}, \text{ oricare ar fi } a \in \mathbb{R}; c) X^{-1}((a, +\infty)) = \{\omega \in \Omega : X(\omega) > a\} \in \mathcal{F}, \text{ oricare ar fi } a \in \mathbb{R}; d) X^{-1}([a, +\infty)) = \{\omega \in \Omega : X(\omega) \ge a\} \in \mathcal{F}, \text{ oricare ar fi } a \in \mathbb{R}.$

Demonstrație. Evident, dacă X este o variabilă aleatoare, cum $(-\infty, a) \in$ \mathcal{F} pentru orice $a \in \mathbb{R}$, din Definiția 1.5.2 rezultă a).

Reciproc, dacă are loc relația din a), să notăm cu \mathcal{A} familia tuturor mulțimilor boreliene $B \in \mathcal{B}$ pentru care $X^{-1}(B) \in \mathcal{F}$, adică

$$\mathcal{A} = \left\{ B \in \mathcal{B} : X^{-1}(B) \in \mathcal{F} \right\} \subset \mathcal{B}.$$

Să observăm că \mathcal{A} este o σ -algebră, deoarece:

- $\mathcal{A} \neq \emptyset$ ($\mathbb{R} \in \mathcal{A}$, decarece $X^{-1}(\mathbb{R}) = \Omega \in \mathcal{F}$);
- Dacă $B \in \mathcal{A}$, atunci $X^{-1}\left(B^{c}\right) = \Omega \underbrace{X^{-1}\left(B\right)}_{\in \mathcal{F}} \in \mathcal{F}$, și deci $B^{c} \in \mathcal{F}$;
- Dacă $B_1, B_2, \ldots \in \mathcal{A}$, atunci $X^{-1}\left(\bigcup_{i=1}^{\infty} B_i\right) = \bigcup_{i=1}^{\infty} \underbrace{X^{-1}\left(B_i\right)}_{\in \mathcal{F}} \in \mathcal{F}$, și deci $\bigcup_{i=1}^{\infty} B_i \in \mathcal{F}.$

Cum din ipoteză familia \mathcal{A} conține toate intervalele de forma $(-\infty, a), a \in \mathbb{R}$, rezultă că $\mathcal{B} \subset \mathcal{A}$ (\mathcal{B} este cea mai mică σ -algebră ce conține toate intervalele de forma $(-\infty, a)$), și deci avem

$$X^{-1}(B) \in \mathcal{F}$$
, oricare ar fi $B \in \mathcal{B}$,

adică X este o variabilă aleatoare.

Demonstrație similară în cazurile b), c) și d). ■

Rezultatul următor ne arată ca infimumul/supremumul unui șir de variabile aleatoare este de asemenea o variabila aleatoare:

Teorema 1.5.5 Dacă $(X_n)_{n\geq 1}$ este un şir de variabile aleatoare, atunci

$$X(\omega) = \inf_{n \ge 1} X_n(\omega),$$

$$Y(\omega) = \sup_{n \ge 1} X_n(\omega),$$

$$\lim \inf X_n(\omega) = \sup_{n \ge 1} \inf_{k \ge n} X_k(\omega),$$

$$\lim \sup X_n(\omega) = \inf_{n \ge 1} \sup_{k \ge 1} X_k(\omega),$$

sunt de asemenea variabile aleatoare.

Demonstrație. a) Avem

$$X^{-1}\left((-\infty, a]\right) = \left\{\omega \in \Omega : X\left(\omega\right) = \inf_{n \ge 1} X_n\left(\omega\right) \le a\right\}$$
$$= \bigcup_{n=1}^{\infty} \underbrace{\left\{X_n\left(\omega\right) \le a\right\}}_{\in \mathcal{F}} \in \mathcal{F},$$

și deci conform propoziției anterioare $X = \inf_{n \ge 1} X_n$ este o variabilă aleatoare.

b) În mod similar, avem:

$$Y^{-1}([a, +\infty) = \left\{ \omega \in \Omega : Y(\omega) = \sup_{n \ge 1} X_n(\omega) \ge a \right\}$$
$$= \bigcup_{n=1}^{\infty} \underbrace{\{X_n(\omega) \ge a\}}_{\in \mathcal{F}} \in \mathcal{F},$$

și deci conform aceleiași propoziții $X = \sup_{n \geq 1} X_n$ este o variabilă aleatoare.

c), d) Rezultă folosind a) și b).
În particular, obținem următoarea

Consecința 1.5.6 $Dacă(X_n)_{n\geq 1}$ este un şir de variabile aleatoare pentru care există limita $X(\omega) = \lim_{n\to\infty} \overline{X}_n(\omega)$, oricare ar fi $\omega \in \Omega$, atunci X este o variabilă aleatoare.

Demonstrație. Dacă există limita $\lim_{n\to\infty} X_n$, atunci

$$X(\omega) = \lim_{n \to \infty} X_n(\omega) = \liminf X_n(\omega) = \limsup X_n(\omega),$$

și conform teoremei anterioare rezultă că X este o variabilă aleatoare. \blacksquare Are loc următoarea:

Teorema 1.5.7 Dacă X şi Y sunt variabile aleatoare, atunci mulțimile următoare sunt măsurabile:

$$\begin{aligned} \left\{ X < Y \right\} &=& \left\{ \omega \in \Omega : X \left(\omega \right) < Y \left(\omega \right) \right\} \in \mathcal{F}, \\ \left\{ X \leq Y \right\} &=& \left\{ \omega \in \Omega : X \left(\omega \right) \leq Y \left(\omega \right) \right\} \in \mathcal{F}. \end{aligned}$$

Demonstraţie. Avem

$$\left\{ X < Y \right\} \quad = \quad \left\{ \omega \in \Omega : X\left(\omega\right) < Y\left(\omega\right) \right\}$$

$$= \quad \cup_{r \in \mathbb{Q}} \left(\underbrace{\left\{ \omega \in \Omega : X\left(\omega\right) < r \right\}}_{\in \mathcal{F}} \cap \underbrace{\left\{ \omega \in \Omega : Y\left(\omega\right) > r \right\}}_{\in \mathcal{F}} \right) \in \mathcal{F},$$

şi

$${X \ge Y} = \left(\underbrace{{X < Y}}_{\in \mathcal{F}}\right)^c \in \mathcal{F}.$$

Definiția 1.5.8 O funcție $\varphi : \mathbb{R} \to \mathbb{R}$ se numește măsurabilă dacă

$$\varphi^{-1}(B) \in \mathcal{B},$$

oricare ar fi $B \in \mathcal{B}$ o multime boreliană.

Observația 1.5.9 Se poate arăta că dacă o funcție este continuă pe \mathbb{R} atunci ea este măsurabilă (demonstrația este similară propoziției de mai sus: se consideră familia

$$\mathcal{A} = \left\{ B \in \mathcal{B} : X^{-1}(B) \in \mathcal{B} \right\}$$

şi se arată că este o σ-algebră ce conține toate mulțimile deschise din \mathbb{R} , şi deci $\mathcal{A} = \mathcal{B}$).

Reciproca acestei afirmații nu este însă in general valabilă, după cum se poate observa considerând funcția $\varphi: \mathbb{R} \to \mathbb{R}$ definită de

$$\varphi\left(x\right) = \left\{ \begin{array}{ll} 1, & x \in (0,1) \\ 0, & \text{in rest.} \end{array} \right.,$$

care este măsurabilă dar nu este continuă pe \mathbb{R} (are discontinuități în punctele x=0 și x=1).

Rezultatul următor ne arată cum putem construi noi variabile aleatoare:

Teorema 1.5.10 Dacă $\varphi : \mathbb{R} \to \mathbb{R}$ este o funcție măsurabilă și X este o variabilă aleatoare, atunci $Y = \varphi \circ X$ este o variabilă aleatoare.

Demonstrație. Avem

$$Y^{-1}(B) = (\varphi \circ X)^{-1}(B)$$
$$= X^{-1}(\underbrace{\varphi^{-1}(B)}) \in \mathcal{F},$$

și deci $Y = \varphi \circ X$ este o variabilă aleatoare.

Consecința 1.5.11 Dacă X este o variabilă aleatoare, atunci $|X|^p$ (p > 0) și aX + b $(a, b \in \mathbb{R})$ sunt de asemenea variabile aleatoare.

Demonstrație. Se aplică teorema anterioară funcției continue (deci măsurabile) $\varphi(x) = |x|^p$, respectiv $\varphi(x) = ax + b$.

Rezultatul de mai sus se poate generaliza astfel:

Definiția 1.5.12 O funcție $\varphi: \mathbb{R}^n \to \mathbb{R}$ se numește măsurabilă dacă

$$\varphi^{-1}(B) \in \mathcal{B},$$

oricare ar fi $B \in \mathcal{B}(\mathbb{R}^n)$, unde $\mathcal{B}(\mathbb{R}^n)$ este σ -algebra mulțimilor boreliene din \mathbb{R}^n , adică cea mai mică σ -algebră pe \mathbb{R}^n ce conține toate mulțimile deschise din \mathbb{R}^n , sau, echivalent, toate mulțimile de forma

$$(-\infty, a_1) \times \ldots \times (-\infty, a_n), \quad a_1, \ldots, a_n \in \mathbb{R}.$$

Are loc următoarea:

Teorema 1.5.13 Dacă $\varphi : \mathbb{R}^n \to \mathbb{R}$ este o funcție măsurabilă și $X_1, \ldots, X_n : \Omega \to \mathbb{R}$ sunt variabile aleatoare, atunci $Y(\omega) = \varphi(X_1(\omega), \ldots, X_n(\omega))$ este o variabilă aleatoare.

Demonstrație. Notând $X(\omega) = (X_1(\omega), \dots, X_n(\omega))$, avem $Y(\omega) = \varphi \circ X$, și deci oricre ar fi $B \in \mathcal{B}(\mathbb{R}^n)$ avem:

$$Y^{-1}(B) = (\varphi \circ X)^{-1}(B)$$

$$= X^{-1}(\underline{\varphi^{-1}(B)})$$

$$= X^{-1}(A),$$

unde $A = \varphi^{-1}(B) \in \mathcal{B}(\mathbb{R}^n)$.

Să notăm

$$\mathcal{A} = \left\{ A \in \mathcal{B} \left(\mathbb{R}^n \right) : X^{-1} \left(A \right) \in \mathcal{F} \right\},\,$$

şi să observăm că \mathcal{A} este o σ -algebră ce conține in mulțimile de forma $(-\infty, a_1) \times \ldots \times (-\infty, a_n)$, cu $a_1, \ldots, a_n \in \mathbb{R}$, deoarece

$$X^{-1}\left(\left(-\infty,a_{1}\right)\times\ldots\times\left(-\infty,a_{n}\right)\right)=\bigcap_{i=1}^{n}\underbrace{X_{i}^{-1}\left(\left(-\infty,a_{i}\right)\right)}_{\in\mathcal{F}}\in\mathcal{F}.$$

Rezultă deci că $\mathcal{A} = \mathcal{B}(\mathbb{R}^n)$, și deci $Y^{-1}(B) \in \mathcal{F}$ oricare ar fi $B \in \mathcal{B}(\mathbb{R}^n)$, adică $Y = \varphi(X_1(\omega), \dots, X_n(\omega))$ este o variabilă aleatoare, încheiând demonstrația.

Consecința 1.5.14 Dacă X_1, \ldots, X_n sunt variabile aleatoare, atunci următoarele sunt de asemenea variabile aleatoare:

$$\sum_{i=1}^{n} a_i X_i \qquad (a_1, \dots, a_n \in \mathbb{R}), \qquad \prod_{i=1}^{n} X_i,$$

$$\|(X_1, \dots, X_n)\|_p = \left(\sum_{i=1}^{n} X_i^p\right)^{1/p} \qquad (p > 0),$$

$$\min\{X_1, \dots, X_n\}, \qquad \max\{X_1, \dots, X_n\}.$$

Demonstrație. Rezultă din teorema anterioară, considerând funcțiile continue (și deci măsurabile) $\varphi(x_1,\ldots,x_n)=\sum_{i=1}^n a_ix_i,\;\prod_{i=1}^n x_i,\;(\sum_{i=1}^n x_i^p)^{1/p},$ min $\{x_1,\ldots,x_n\}$, respectiv max $\{x_1,\ldots,x_n\}$.

1.5.1 Exerciții

1. Dintr-o urnă ce conține 20 de bile, numerotate de la 1 la 20, se extrag 3 bile (fără întoarcerea bilelor extrase în urnă). Dacă X este variabila aleatoare reprezentând maximul celor 3 numere extrase, să se determine variabila aleatoare X (valorile și probabilitățile corespunzătoare).

- 2. Dintr-o urnă ce conține 3 bile albe, 3 bile roşii şi 5 bile negre, se extrag 3 bile (fără întoarcerea bilelor extrase în urnă). Dacă pentru fiecare bilă albă extrasă se câştigă 1 leu, şi pentru fiecare bilă neagră extrasă se pierde 1 leu, să se determine variabila aleatoare X reprezentând caştigul net obținut în acest joc.
- 3. Se aruncă 2 zaruri și se notează cu X produsul numerelor obținute. Să se determine variabila aleatoare X.
- 4. Se aruncă 3 zaruri și se notează cu X suma numerelor obținute. Să se determine variabila aleatoare X.
- 5. 5 bărbaţi şi 5 femei sunt ordonaţi după scorurile obţinute la un examen (presupunem că scorurile obţinute sunt distincte şi egal probabile). Să se determine variabila aleatoare X reprezentând rangul primei femei în lista de rezultate.
- 6. Să se determine variabila aleatoare X repreyentând numărul de fețe "ban" minus numărul de fețe "stemă" obținute la aruncarea de n ori a unei monede. Caz particular n=4.
- 7. Se aruncă de 2 ori un zar. Să se determine următoarele variabile aleatoare:
 - (a) Maximul celor două aruncări
 - (b) Minimul celor două aruncări
 - (c) Suma celor două aruncări
 - (d) Diferența celor două aruncări (mai precis, prima minus a doua aruncare).
- 8. La un examen cu 5 întrebări, fiecare având 3 răspunsuri posibile, care este probabilitatea de a obține cel puțin 4 răspunsuri corecte doar ghicind răspunsurile?