PRESENT Cipher

Walkie Talkie

Department of EECS Indian Institute of Technology Bhilai

December 5, 2021

- Introduction
- 2 Cipher Specifications
- 3 DC
- 4 Linear Cryptanalysis
- Integral property
- 6 Brownie Point Nominations
- Conclusion

The Present Cipher

- Ultra-Lightweight block cipher.
- Developed by the Orange Labs (France), Ruhr University Bochum (Germany) and the Technical University of Denmark in 2007.
- Supports 64 bits block size and 80 or 128 bits key sizes with 31 rounds.

Substitution/ Permutation

X	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
S[x]	С	5	6	В	9	0	Α	D	3	Е	F	8	4	7	1	2

Image source: iacr.org/authors/tikz/

- 1 Introduction
- 2 Cipher Specifications
- 3 DC
- 4 Linear Cryptanalysis
- 5 Integral property
- 6 Brownie Point Nominations
- Conclusion

Cipher Design

- PRESENT-80 is an example of SP-network.
- 4-bit S-Box is applied 16 times in parallel for the 64-bit input during each round.

High level psuedo-code of PRESENT algorithm

- 1: generateRoundKeys()
- 2: **for** i = 1 **to** 31 **do**
- 3: addRoundKey(STATE, K_i)
- 4: sBoxLayer(STATE)
- 5: pLayer(STATE)
- 6: addRoundKey(STATE, K₃₂)

Cipher Design contd.

Add Round Key

- Round key $K_i = k_{63}, k_{62} \dots k_0$ for $1 \le i \le 32$.
- Current state $S = s_{63}, s_{62} \dots s_0$.

$$S \rightarrow S \oplus K_i$$

$$\implies s_t \to s_t \oplus k_t$$

for
$$0 \le t \le 63$$

Substitution Layer

PRESENT S-Box satisfies the following conditions.

• For any fixed input difference $\Delta_I \in \mathbb{F}_2^4$, $\Delta_I \neq 0$ and output difference $\Delta_O \in \mathbb{F}_2^4$, $\Delta_I \neq 0$, the following condition is satisfied

$$|\{x \in \mathbb{F}_2^4 \mid S(\Delta_I + x) + S(x) = \Delta_O\}| \le 4$$

• For any fixed input difference $\Delta_I \in \mathbb{F}_2^4$, $\Delta_I \neq 0$ and output difference $\Delta_O \in \mathbb{F}_2^4$ such that $wt(\Delta_O) = wt(\Delta_I) = 1$, the following condition is satisfied

$$\{x \in \mathbb{F}_2^4 \mid S(\Delta_I + x) + S(x) = \Delta_O\} = \Phi$$

where wt(x) is the hamming weight of x.

Cipher Design Contd.

Permutation Layer

- Bit permutation.
- Bit *i* of STATE is moved to bit position P(i).

$$P(i) = \begin{cases} 16.i \mod 63 & i \in \{0, 1, \dots 62\} \\ 63 & i = 63 \end{cases}$$

Key schedule Algorithm

We discuss the 80-bit key schedule algorithm.

- Introduction
- 2 Cipher Specifications
- 3 DC
- 4 Linear Cryptanalysis
- Integral property
- 6 Brownie Point Nominations
- Conclusion

Round Reduced Attack

Figure: Attack Model

The Difference Distribution Table

Figure: DDT of the S-box

	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
0	16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	4	0	0	0	4	0	4	0	0	0	4	0	0
2	0	0	0	2	0	4	2	0	0	0	2	0	2	2	2	0
3	0	2	0	2	2	0	4	2	0	0	2	2	0	0	0	0
4	0	0	0	0	0	4	2	2	0	2	2	0	2	0	2	0
5	0	2	0	0	2	0	0	0	0	2	2	2	4	2	0	0
6	0	0	2	0	0	0	2	0	2	0	0	4	2	0	0	4
7	0	4	2	0	0	0	2	0	2	0	0	0	2	0	0	4
8	0	0	0	2	0	0	0	2	0	2	0	4	0	2	0	4
9	0	0	2	0	4	0	2	0	2	0	0	0	2	0	4	0
Α	0	0	2	2	0	4	0	0	2	0	2	0	0	2	2	0
В	0	2	0	0	2	0	0	0	4	2	2	2	0	2	0	0
C	0	0	2	0	0	4	0	2	2	2	2	0	0	0	2	0
D	0	2	4	2	2	0	0	2	0	0	2	2	0	0	0	0
E	0	0	2	2	0	0	2	2	2	2	0	0	2	2	0	0
F	0	4	0	0	4	0	0	0	0	0	0	0	0	0	4	4

Differential Characteristics

Table: Characteristics

Rounds		Diff.	Prob.
I		$x_0 = 4$, $x_4 = 4$	
R_1	k_0	$x_0 = 4$, $x_4 = 4$	1
R_1	S	$x_0 = 5, x_3 = 5$	2^{-4}
R_1	Р	$x_0 = 9$, $x_8 = 9$	1
R_2	k_1	$x_0 = 9$, $x_8 = 9$	1

Characteristic

$$(x_0 = 4, x_3 = 4) \xrightarrow{R} (x_0 = 9, x_8 = 9)$$

Idea of filtering

- ullet Decrease Wrong pair o Idea of filtering
- Observe from the DDT that transitions from $9 \rightarrow \{2, 4, 6, 8, c, e\}$
- Thus, after the effect of permutation layer of the second round, $c_1 \oplus c_2$ must belong to the set given below : $\{\{x_4=1,x_6=1\},\{x_6=1,x_8=1\},\{x_4=1,x_6=1,x_8=1\},\{x_6=1,x_{12}=1\},\{x_6=1,x_8=1,x_{12}=1\},...\}$ We have written code for this.

Filtering

Thus, message pair leading to the cipher text difference other than the above set, can be discarded. So, after filtering only 2^{14} plaintext pairs are left in our case.

Key Guess

Figure: Guess 8 bits of the key k_2

We are able to find 8 bits of key k_2 . In our case only 8 bit right subkey holds for all 2^{14} filtered pairs or in other word highest counter indicate the right 8 bit subkey.

Complexity Analysis

Complexity

(Data, Time, Memory) =
$$(2^{19}, 2^{25.17}, 2^{14})$$

- 1 Introduction
- 2 Cipher Specifications
- 3 DC
- 4 Linear Cryptanalysis
- 5 Integral property
- 6 Brownie Point Nominations
- Conclusion

LAT of the S-box

	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
0	8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1	-	-	-	-	-	-4	-	-4	-	-	-	-	-	-4	-	4
2	-	-	2	2	-2	-2	-	-	2	-2	-	4	-	4	-2	2
3	-	-	2	2	2	-2	-4	-	-2	2	-4	-	-	-	-2	-2
4	-	-	-2	2	-2	-2	-	4	-2	-2	-	-4	-	-	-2	2
5	-	-	-2	2	-2	2	-	-	2	2	-4	-	4	-	2	2
6	-	-	-	-4	-	-	-4	-	-	-4	-	-	4	-	-	-
7	-	-	-	4	4	-	-	-	-	-4	-	-	-	-	4	-
8	-	-	2	-2	-	-	-2	2	-2	2	-	-	-2	2	4	4
9	-	4	-2	-2	-	-	2	-2	-2	-2	-4	-	-2	2	-	-
A	-	-	4	-	2	2	2	-2	-	-	-	-4	2	2	-2	2
В	-	-4	-	-	-2	-2	2	-2	-4	-	-	-	2	2	2	-2
C	-	-	-	-	-2	-2	-2	-2	4	-	-	-4	-2	2	2	-2
D	-	4	4	-	-2	-2	2	2	-	-	-	-	2	-2	2	-2
E	-	-	2	2	-4	4	-2	-2	-2	-2	-	-	-2	-2	-	-
F	-	4	-2	2	-	-	-2	-2	-2	2	4	-	2	2	-	-

Table: Linear Approximation Table

Observations

- Maximum bias $< 2^{-2}$
- For a Single bit $\leq 2^{-3}$
- Bias Computation

$$2^{m-1}\prod_{i=1}^m \epsilon_i$$

Analysis

- Total 3 Cases to analyse the linear approximation of 4 rounds
- Results to bound the linear approximation bias for 28 rounds
- Let ϵ_{4R} be the maximal bias of a linear approximation of four rounds of present, then $\epsilon_{4R} \leq \frac{1}{27}$

Proof...

Bias Calculation for 4 S-boxes:

$$\epsilon_4^4 \le 2^{4-1} \times (2^{-2})^2 \times (2^{-3})^2 \implies \epsilon_4^4 \le 2^{-7}$$

• Bias Calculation for 5 S-boxes:

$$\epsilon_4^5 \leq 2^{5-1} \times (2^{-2})^4 \times (2^{-3}) \implies \epsilon_4^5 \leq 2^{-7}$$

Resistent to the Linear Attack

- Maximal Bias for 28-round linear approximation
- Now assume that the cryptanalyst needs to approximate only only 28 rounds
- So total 286 known plaintexts are required
- \bullet Which are greater than the available plaintexts space, that is 2^{64}
- Proved

- Introduction
- 2 Cipher Specifications
- 3 DC
- 4 Linear Cryptanalysis
- Integral property
- 6 Brownie Point Nominations
- Conclusion

5-round integral distinguishers for PRESENT

Input:

c: constant bit, a: active bit, b: balanced bit, ?: unknown bit

Note

In this experiment, we are taking 2^{12} messages and varying right most 4 bits.

- 1 Introduction
- 2 Cipher Specifications
- 3 DC
- 4 Linear Cryptanalysis
- Integral property
- 6 Brownie Point Nominations
- Conclusion

Brownie Point

- Using the idea of differential and filtering taught in the course, we have implemented a differential attack on 3 Rounds of PRESENT.
- 2 We have verified 5 Rounds integral property of PRESENT.

- 1 Introduction
- 2 Cipher Specifications
- 3 DC
- 4 Linear Cryptanalysis
- Integral property
- 6 Brownie Point Nominations
- Conclusion

Conclusion

- Understanding the design choices of PRESENT cipher.
- Properties of S-box
- Resistance against cryptographic attacks
- Implementation of 3-Rounds differential attack
- verify 5 round integral property
- Linear Cryptanalysis

Thanks

Team Members

- Ajay Tarole
- Ashish Kumar Suraj
- Rudraksh Kashyap

Implementation Info

• Github Link: https://github.com/ajay0090/PRESENT-Cipher