Particle spectrograph

Wave operator and propagator

${\mathfrak r}_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{12ik}{(3+4k^2)^2t_1}$	$\frac{12 i \sqrt{2} k}{(3+4 k^2)^2 t_1}$	0	$\frac{24 k^2}{(3+4 k^2)^2 t_1}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$	$\frac{12}{(3+4k^2)^2t_1}$	0	$-\frac{12i\sqrt{2}k}{(3+4k^2)^2t_1}$
$\sigma_{1}^{\#1}{}_{\alpha}$	0	0	0	$\frac{6}{(3+4 k^2)^2 t_1}$	$\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$	0	$-\frac{12ik}{(3+4k^2)^2t_1}$
$\tau_1^{\#1}_{+\alpha\beta}$	$\frac{i\sqrt{2} k(t_1-2t_2)}{3(1+k^2)t_1t_2}$	$\frac{i k (t_1 + 4 t_2)}{3 (1 + k^2)^2 t_1 t_2}$	$\frac{k^2 (t_1 + 4t_2)}{3 (1 + k^2)^2 t_1 t_2}$	0	0	0	0
$\sigma_{1}^{\#2}$	$\frac{\sqrt{2} (t_1 - 2t_2)}{3(1 + k^2)t_1t_2}$	$\frac{t_1+4t_2}{3(1+k^2)^2t_1t_2}$	$-\frac{i k (t_1 + 4 t_2)}{3 (1 + k^2)^2 t_1 t_2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$		$\frac{\sqrt{2} (t_1 - 2t_2)}{3 (1 + k^2) t_1 t_2}$	$-\frac{i\sqrt{2}k(t_1-2t_2)}{3(1+k^2)t_1t_2}$	0	0	0	0
	$\sigma_1^{\#1} + \alpha^{eta}$	$\sigma_{1}^{\#2} + \alpha^{\beta}$	$\tau_1^{\#1} + ^{\alpha \beta}$	$\sigma_{1}^{\#_{1}} +^{\alpha}$	$\sigma_1^{\#2} +^{\alpha}$	$\tau_{1}^{\#_{1}} +^{\alpha}$	$\tau_1^{\#2} + ^{\alpha}$

$f_{1}^{#2}$	0	0	0	آ <i>لا لا</i> 1 ع	$\frac{1}{3}\bar{l}\sqrt{2}kt_1$	0	2 k ² t <u>1</u> 3
$f_{1^{\bar{-}}}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{t_1}{3\sqrt{2}}$	<u>†1</u> 3	0	$-\frac{1}{3}\bar{l}kt_1\Bigg -\frac{1}{3}\bar{l}\sqrt{2}kt_1$
$\omega_{1}^{\#1}{}_{\alpha}$	0	0	0	6 6	$\frac{t_1}{3\sqrt{2}}$	0	$-\frac{1}{3}\bar{l}kt_1$
${f}_{1}^{\#1}_{+}{}_{\alpha\beta}$	$-\frac{ik(t_1-2t_2)}{3\sqrt{2}}$	$\frac{1}{3}\bar{l}k\left(t_1+t_2\right)$	$\frac{1}{3} k^2 (t_1 + t_2)$	0	0	0	0
$\omega_1^{\#_2^2}$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$\frac{t_1+t_2}{3}$	$-\frac{1}{3}ik(t_1+t_2)\left \frac{1}{3}k^2(t_1+t_2)\right $	0	0	0	0
$\omega_1^{\#1}{}_+\alpha\beta$	$\frac{1}{6}(t_1+4t_2)$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$\frac{i k (t_1 - 2 t_2)}{3 \sqrt{2}}$	0	0	0	0
	$\omega_1^{\#1} + \alpha^{\beta}$	$\omega_{1}^{\#2} + \alpha^{eta}$	$f_{1+}^{#1} + ^{\alpha \beta}$	$\omega_{1^{-}}^{\#1} +^{\alpha}$	$\omega_1^{\#2} +^{lpha}$	$f_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$f_1^{#2} + \alpha$

_	$\sigma_{0^+}^{\#1}$	$\tau_0^{\#1}$	$ au_{0}^{\#2}$	$\sigma_0^{\sharp 1}$
$\sigma_{0^{+}}^{\#1}$ †	$\frac{1}{6 k^2 r_3}$	0	0	0
$\tau_{0}^{\#1}$ †	0	0	0	0
$\tau_{0}^{\#2}$ †	0	0	0	0
$\sigma_0^{\sharp 1}$ †	0	0	0	$\frac{1}{k^2 r_2 + t_2}$

 $\tau_{1}^{\#2}{}^{\alpha} + 2ik \sigma_{1}^{\#1}{}^{\alpha} = 0$

 $\tau_{0}^{\#1} == 0$

Source constraints/gauge generators

50(3)

$\omega_{0}^{\#1}$	0	0	0	$k^2 r_2 +$	$\omega_{2^{-}}^{\#1}{}_{\alpha\beta}$	0	0
$f_{0}^{#2}$	0	0	0	0	$f_{2}^{\#1}$	$-\frac{ikt_1}{\sqrt{2}}$	$k^2 t_1$
$f_{0}^{\#1}$	0	0	0	0	$\alpha\beta$		2 <u>t1</u>
$\omega_{0}^{\#1}$	$6 k^2 r_3$	0	0	0	$\omega_2^{\#1}$	$\alpha\beta$ $\frac{t_1}{2}$	$\alpha\beta$ $\frac{ikt_1}{\sqrt{2}}$
,	$\omega_{0}^{\#1}\dagger$	$f_{0}^{\#1}$ †	$f_0^{#2} +$	$\omega_{0^{\text{-}}}^{\#1}\dagger$		$\omega_2^{\#1}$ †	$f_{2}^{#1}$ †

$\sigma_{2^{-}}^{\#1}{}_{lphaeta\chi}$	0	0	$\frac{2}{t_1}$	
$\tau_2^{\#1}\!$	$-\frac{2\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0	
$\sigma_{2}^{\#1}{}_{\alpha\beta}$	I ~	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	
	$\sigma_{2}^{\#1} + \alpha^{eta}$	$\tau_{2+}^{\#1} +^{\alpha\beta}$	$\sigma_{2}^{\#1} +^{lphaeta\chi}$	

 $\tau_2^{\#1}\alpha\beta - 2ik \ \sigma_2^{\#1}\alpha\beta == 0$

Total constraints:

 $\tau_{1}^{\#1}\alpha\beta + ik \ \sigma_{1}^{\#2}\alpha\beta == 0$

Massive	and	mass	less	spectra
				•

(No massless particles)

Unitarity conditions