Исследование методов принятия решений в условиях стохастической неопределенности

1. Цель работы: изучить и исследовать методы принятия решений при наличии информации о стохастической связи между экспериментами и их исходами, между принимаемыми решениями и их результатами.

2. Теоретические сведения

Методы статической теории принятия решений позволяют обосновывать выбор между действиями (выбор действий, решений, управлений) при неполной информации о состоянии природы, когда последствия действия зависят от истинного состояния природы. При этом выбор действия должен быть согласован с мнением ЛПР о:

- 1) предпочтительности последствий после реализации действия (если последствия являются более предпочтительными, то их стоимость (вес) должен быть большим по значению);
- 2) истинном состоянии природы.

Исходными данными для решаемой задачи выбора альтернатив в условиях статистической неопределенности являются:

- 1) пространство действий $A = \{a_i / i = \overline{I,I}\}$ (соответственно множество решений);
- 2) пространство состояний системы $\Theta = \{\theta_j \mid j = \overline{I,J}\}$, т.е. последствия выбранного действия a_i зависят от состояния природы (системы), которое не может быть предсказано, тогда каждому возможному состоянию природы (системы) соответствует элемент $\theta_i \in \Theta$;
- 3) пространство экспериментов $E = \{e_l / l = \overline{I,L}\}$, для получения информации о возможности (предпочтительности) каждого состояния $\theta_j \in \Theta$ может быть выполнен эксперимент $e_l \in E$;
- 4) пространство исходов экспериментов $Z = \{z_h/h = \overline{I,H}\}$, каждому из допустимых экспериментов $e_l \in E$ может быть поставлен в соответствие некоторый исход $z_h \in Z$ (т.е. эксперименту e_l ставится в соответствие исход $z_h \in Z$); таким образом, исходу эксперимента $e_l \in E$ поставлен в соответствие элемент $z_h \in Z$, тогда $z_h \in Z$ исход эксперимента $e_l \in E$;
- 5) оценки полезности $U(e,z,a,\theta)$; значение полезности $U(e,z,a,\theta)$ определено на декартовом произведении $E \times Z \times A \times \Theta$; таким образом, каждое состояние системы характеризуется значениями (e,z,a,θ), это состояние определено на $E \times Z \times A \times \Theta$, каждому текущему состоянию системы, характеризуемому (e,z,a,θ) поставлено в соответствие значение полезности $U(e,z,a,\theta)$ ($U(\cdot)$); таким образом, выполняется эксперимент e (для анализа состояния природы), фиксируется его исход z, на основе исхода выбирается действие a и фиксируется последующее состояние системы θ , в оценку U входит стоимость эксперимента и стоимость последствия выбранного действия;
- 6) оценка вероятности $P_{\theta,z\!/\!e}$; в результате эксперимента e_l может быть зафиксирован его (эксперимента) исход z_h , позволяющий определить некоторое состояние природы (системы) $\theta_i \in \Theta$.

Таким образом, на основе z_h может быть зафиксировано как некоторое состояние природы $\theta_j \in \Theta$, так и состояние θ_j , отличное от θ_j . В результате должно быть определено декартовое произведение $\Theta \times Z$ исходов экспериментов и фиксируемых с их использованием состояний природы θ_j . Произведение $\Theta \times Z$ называется пространством возможностей. Тогда $P_{\theta,z/e}$ - это совместная вероятностная мера того, что при выполнении некоторого эксперимента e_l будет зафиксирован один из исходов z_h , а по этому исходу z_h будет сделан вывод о состоянии среды θ_j .

Понятно, что одному и тому же эксперименту e_l могут быть (с определенной вероятностью) поставлены в соответствие различные исходы z_h , а по этим исходам (также с определенной вероятностью) может быть сделан вывод о состоянии системы (природы, среды) θ_i .

Из совместной вероятностной меры $P_{\theta,z\!/\!e}$ вытекает возможность определения четырех различных вероятностных мер:

- 1) P_{θ}' на пространстве состояний Θ (предполагается, что P_{θ}' не зависит от эксперимента e, определение состояния θ не является результатом эксперимента e);
- 2) условная вероятностная мера $P_{z/e,\theta}$ на пространстве значений Z при заданных e и Θ ; т.е. при зафиксированном состоянии среды (системы, природы) θ_j выполняется эксперимент e_l , в результате которого может быть зафиксирован некоторый исход $z_h \in Z$ (вероятность фиксации этого исхода $P_{z/e,\theta}$);

- 3) вероятностная мера $P_{z|e}$, т.е. вероятность фиксации исхода z_h при проведении эксперимента e. Таким образом, вероятностная мера $P_{z|e}$ определяется на пространстве исходов z при заданном e;
- 4) условная вероятностная мера $P_{\Theta|z}^{"}$ (условие по e опускается, т.к. используемая при этом информация о e войдет в описание события появления z), т.о. $P_{\Theta|z}^{"}$ вероятность определения состояния θ_{j} при фиксации результата эксперимента z_{h} (т.е. при фиксации одного исхода z_{h} эксперимента e_{l} могут быть определены различные состояния природы θ_{j} с вероятностью $P_{\Theta|z}^{"}$).

Математические ожидания случайных величин

Если являются заданными множество состояний $\Theta = \{\theta_j \mid j = \overline{I,J}\}$ и множество исходов $Z = \{z_h \mid h = \overline{I,H}\}$, то состояниям и исходам должны быть поставлены в соответствие значения вероятностных мер и, как следствие, распределения вероятностей. Тогда могут быть определены математические ожидания случайных величин, соответствующих множествам Θ и Z.

Обозначения для математических ожиданий: $M_{\Theta}^{'}$ – вычисляется по вероятностной мере $P_{\theta}^{'}$, представляет собой среднее значение меры возможности пребывания в состояниях θ (не зависящих от z, e); из результатов эксперимента определяется среднее значение меры возможности пребывания в состояниях θ , связанных с исходом z. По аналогии определяются математические ожидания $M_{z|e,\theta}$ (вычисляется по мере $P_{z|e,\theta}$) и $M_{z|\theta}$ (вычисляется по мере $P_{z|\theta}$). В дальнейшем обозначения МО $M_{\Theta|z}^{''}$, $M_{z|\theta}$ используются для идентификации операторных выражений (оператор как способ вычисления), посредством которых идентифицируется эффективные стратегии управления и проведения эксперимента. Таким образом, $M_{\Theta|z}^{''}$, $M_{z|e}$ – это оператор (способ) вычисления значений оценок эффективностей стратегий эксперимента и управления с учетом вероятностей $P_{\Theta|z}^{''}$, $P_{z|e}$.

Пример интерпретации задачи принятия решений в условиях стохастической неопределенности. Множество $A = \{a_1, a_2\}$, где a_1 - «принять партию изделий из 1000 штук», a_2 - «забраковать партию изделий из 1000 штук». Множество $\Theta = \{\theta_1, \theta_2, ..., \theta_{1000}\}$, где θ_l - состояние системы (природы), при котором l изделий дефектны. Множество $E = \{e_0, e_1, ..., e_{1000}\}$, где e_i - эксперимент, в котором из партии извлекаются i изделий и проверяются. Множество $Z = \{(j,i); 0 \le j \le i \le 1000\}$, где (j,i) - исход i-го эксперимента, в котором обнаружено j дефектных изделий. Если выбран эксперимент e_5 , то возможные исходы принадлежат множеству $\{(0,5),(1,5),(2,5),...,(5,5)\}$. Полезность $U(\cdot)$ имеет вид $U(e_i(j,i),a_k,\theta_l)$ - это выигрыш, который ЛПР связывает с извлечением выборки i изделий, содержащий j дефектных изделий, и выбором последующего действия $a_k(a_1 \Rightarrow$ «принять», $a_2 \Rightarrow$ «заблокировать»). Тогда вероятностная мера $P_{z|e_i,\theta_i}$ задает условную вероятность для различных возможных исходов (j,i) при условии, что во всей партии имеется l дефектных изделий и исследовано i штук (изделий) из 1000. Вероятностная мера P_{θ}' задает распределение вероятностей для числа l дефектных изделий в партии до того, как будет выполнен эксперимент.

Постановка задачи принятия решений в условиях стохастической неопределенности

Для решения задачи принятия решений в условиях стохастической неопределенности должны быть заданы множества E,Z,A,Θ и вероятности $P_{\theta,z/e}$. Тогда постановка задачи принятия решений предполагает определение: каким образом должен быть выполнен выбор e, а затем после определения исхода z каким образом должен быть выполнен выбор a, чтобы максимизировать ожидаемую полезность U. Данная задача может быть решена в виде многошаговой игры ЛПР с природой. Процесс принятия решений представлен в виде дерева многошаговой игры z0.1.

Рисунок 2.1 – Вид дерева игры с природой при принятии решений в условиях стохастичесткой неопределенности.

- точка выбора (принятия) решения, - реализация стратегии природы.

Шаги (этапы игры): 1) выбор ЛПР из E эксперимента e_l ; 2) в результате проведения эксперимента природой выбирается исход z_h ; 3) выбор ЛПР решения a_i из A (управляющего воздействия a_i); 4) в результате реализации решения $a_i \in A$ система переходит в состояние $\theta_j \in \Theta$. После выполнения 4-х шагов игра будет завершена, ЛПР получает полезность реализации решена a_i в виде: $U(e_l, z_h, a_i, \theta_j)$. Таким образом, шаги 1 и 3 реализует ЛПР, исход z_h эксперимента e_l (достигнутое после реализации решения a_i) для определения состояния системы θ_j являются случайными. В случае, если дерево решений сформировано, характеристики вероятностных мер известны, тогда выбор вариантов управлений (решений) и проведения экспериментов может быть выполнен одним из двух способов: анализ в экстенсивной форме; анализ в нормальной форме.

Анализ решений с использованием дерева в экстенсивной форме

Описание способа идентификации эффективных решений на основе дерева решений реализуем с использованием конкретной (практической) постановки задачи.

Описание множеств A, Θ, E, Z

Пространство	Элементы	Интерпретация
A	a_1	Не регулировать
	a_2	Регулировать
Θ	θ_{I}	Элемент не нуждаются в регулировке
	$ heta_2$	Элемент нуждается в регулировке
E	e_0	Не применять тест
	e_1	Применять тест
Z	z_0	Значение исхода z_0 –фиктивное
	z_1	Значение исхода z_1 благоприятствующее θ_I
	z_2	Значение исхода z_2 благоприятствующее θ_2

Вероятностные меры $P_{\theta}^{'}$ (т.е. определение требовалась ли элементу регулировка или нет, выполнилось без проведения тестирования (эксперимента)), $P_{z|e}^{'}$ и $P_{\theta|z}^{''}$ сведены в следующие таблицы.

θ	$P_{ heta}^{'}$
$\theta_{\scriptscriptstyle 1}$	0,7
θ_2	0,3
	1,0

z e	$P_{z e}$		
	e_0	e_1	
z_0	1,0	0	
z_1	0	0,55	
z_2	0	0,45	
	1,0	1,0	

θ z	$P_{\theta z}^{"}$						
	z_0 z_1 z_2						
θ_1	0,7	0,891	0,466				
θ_2	0,3	0,109	0,534				
	1,0	1,0	1,0				

Вид дерева решений в многошаговой игре с природой представлен на Рис .2.2.

Рисунок 2.2— Дерево решений в многошаговой игре по принятию решению с целью определения стратегий проведения эксперимента и регулирования

Анализ дерева решений

Анализ дерева решений выполняется путем последовательного вычисления оценок:

- 1) $U*(e_l,z_h,a_i)=\sum_j U(e_l,z_h,a_i,\theta_j)\cdot P_{\theta_j\mid z_h}$ где $U*(e_l,z_h,a_i)$ оценка результата принятия соответствующего решения a_i перед реализацией выбора природы по определению состояния θ_i ;
- 2) $U*(e_l,z_h)=\max(U*(e_l,z_h,a_i),U*(e_l,z_h,a_i'))$, где $U*(e_l,z_h)$ оценка после выбора природой соответствующего исхода эксперимента z_h (исход принятия решения a_i и a_i');
- 3) $U^*(e_l) = \sum_h U^*(e_l, z_h) \cdot P_{z_h|e_l}$, где $U^*(e_l)$ оценка перед реализацией выбора природой

соответствующего исхода Z_h , являющегося следствием эксперимента e_l ;

4)
$$U^* = max(U^*(e_l), U^*(e_l'))$$
.

В качестве примера выполним вычисления:

1 шаг.

$$\begin{split} &U(e_1,z_1,a_1) = P_{\theta_1/z_1} \cdot U(e_1,z_1,a_1,\theta_1) + P_{\theta_2/z_1} \cdot U(e_1,z_1,a_1,\theta_2) = \\ &= 94*0.891 + 7*0.109 = 85; \\ &U(e_1,z_1,a_2) = 68; \end{split}$$

2 шаг.

$$U(e_1, z_1) = max(U(e_1, z_1, a_1), U(e_1, z_1, a_2)) = max(85,68) = 85;$$

3 шаг.

$$U(e_1) = P_{z_1/e_1} \cdot U(e_1, z_1) + P_{z_2/e_1} \cdot U(e_1, z_2) = 0.55 * 85 + 0.45 * 65 = 76$$

 $U(e_0) = 82;$

4 шаг.

$$U = max(U*(e_0),U*(e_1)) = max(82,76) = 82$$
.

Следовательно, эффективная стратегия принятия решений предполагает использование a_2 и e_0 , т.е. прибор (элемент) необходимо регулировать, однако перед этим не применять тест.

Анализ дерева решений в нормальной форме

Конечный результат анализа дерева решений в экстенсивной форме (аналог обхода дерева в глубину) – это описание оптимальной стратегии, состоящее из двух частей:

- 1) указание эксперимента e, который следует выбрать;
- 2) решающее правило, предписывающееся оптимальное итоговое действие a некоторому возможному исходу z выбранного эксперимента e.

Анализ в нормальной форме предполагает предварительное задание стратегий проведения экспериментов и принятия решений (стратегий проведения экспериментов и применения решений) и последующий выбор эффективной среди предложенных стратегий. Алгоритм определения эффективных стратегий проведения экспериментов и выбора решения по управлению выполни с использованием примера дерева решений, приведенного в предыдущем разделе.

Для задания стратегии совместного проведения эксперимента и выборки (реализации) решения в рассмотрение введено правило выборки решения a_i для определенного (некоторого) исхода z_h реализуемого эксперимента e_l . Обозначим правило выборки решения a_i для некоторого исхода z_h (в общем виде решения a для исхода z) через d(z). Т. о. d(z) - это решающее правило или способ определения a для каждого $z \in Z$.

Тогда стратегия управления (проведения эксперимента и выбора решения) будет определяться в виде (e,d). Т.к. d - это способ идентификации a для некоторого z, являющегося результатом e, тогда d(z)=a (т.е. правило d определяет решение a, соответствующее исходу z эксперимента e). В этом случае решение a может быть заменено на правило выбора решения при определенном исходе z. Тогда полезность, полученная в результате проведения эксперимента и выборки решения a с использованием правила d(z) может быть обозначена в виде: $u(e,z,d(z),\theta)$. Таким образом, стратегия управления (принятия решений) может быть представлена в виде (e,d) и определяется для некоторого фиксированного z (исхода z), являющегося результатом эксперимента e, указанного в стратегии (e,d).

Т. к. стратегия (e,d) формируется для некоторого z, тогда должны быть заданы вероятности $P_{z|e,\theta}$. Вероятность $P_{z|e,\theta}$ — это вероятность того, что при некотором состоянии системы Θ_j и выполнении эксперимента e_l будет зафиксирован исход z_h . Для рассматриваемой задачи (при $A = \{a_1, a_2\}$, $E = \{e_1, e_2\}$, $\Theta = \{\theta_1, \theta_2\}$, $Z = \{z_0, z_1, z_2\}$) таблица распределения вероятностей $P_{z|e,\theta}$ может иметь следующий вид:

	E				
z_h	e_0		$oldsymbol{e}_1$		
	$ heta_{\scriptscriptstyle 1}$	$ heta_2$	$ heta_{\scriptscriptstyle 1}$	$ heta_2$	
z_0	1,0	1,0	0,0	0,0	
Z_1	0,0	0,0	0,7	0,2	
Z_2	0,0	0,0	0,3	0,8	
	1,0	1,0	1,0	1,0	

Т.о. если система находится в состоянии θ_I , то при реализации стратегии проведения эксперимента e_0 («не применять тест») с вероятностью 1,0 будет получен фиктивный исход z_0 (т.е. при «не применении теста» в состоянии θ_I получен фиктивный исход z_0). По аналогии, если система находится в θ_2 , то при реализации эксперимента e_0 («не проводить тестирование») с вероятностью 1,0 все равно будет получен исход z_0 .

Если система находится в состоянии θ_I , то при проведении эксперимента e_1 («применить тест») исход z_I может быть получен с вероятностью 0,7, а исход z_2 может быть получен с вероятностью 0,3. Т.о. $P_{z_I|e_I,\theta_I}=0.7$, $P_{z_2|e_I,\theta_I}=0.3$. Аналогичным образом: $P_{z_I|e_I,\theta_2}=0.2$, $P_{z_2|e_I,\theta_2}=0.8$.

Т.к. d(z) – решающее правило, определяющее решение ($d(z_h) = a_i$), тогда при задании стратегии управления (e,d) и некотором состоянии системы θ_j (θ_1 либо θ_2 в рассматриваемом примере) может быть определена вероятность того, что правило d приведет к реализации соответствующего решения a_i , т.е. может быть определена вероятность $P_a(a_i|e,d),\theta$. Эта вероятность может быть также обозначена как $P_{a|(e,d),\theta}$. Понятно, что в разных состояниях θ вероятности выбора одного и того же решения будут различными.

В итоге имеем, что при известных $P_{z|e,\theta}$ могут быть определены вероятности применения решений (управлений) a_i в виде $P_{a|e,d,\theta}$. Говорят, что вероятностная мера $P_{z|e,\theta}$ индуцирует вероятностную меру $P_{a|e,d,\theta}$.

В том случае, если $A = \{a_1, a_2\}$, $\Theta = \{\theta_1, \theta_2\}$, то должны быть определены вероятности применения управлений (решений) a_1 и a_2 для состояний θ_1 и θ_2 в соответствии со стратегиями (e,d), обозначенные в виде: $P_a(a_1|e,d,\theta_1)$, $P_a(a_1|e,d,\theta_2)$, $P_a(a_2|e,d,\theta_1)$, $P_a(a_2|e,d,\theta_2)$; в общем виде: $P_a(a_1|e,d,\cdot)$ либо $P_a(a_1|e,d,\theta)$ и $P_a(a_2|e,d,\cdot)$ либо $P_a(a_1|e,d,\theta)$ и $P_a(a_2|e,d,\cdot)$ либо $P_a(a_1|e,d,\theta)$. Тогда $P_a(a_1|e,d,\cdot)$ (либо $P_a(a_1|e,d,\theta)$), являющиеся функциями θ , могут быть названы рабочими характеристиками d на e (решающих правил d на проводимых экспериментах e). Т.о. для определения рабочей характеристики d на e необходимо знать e0, e1, e2, e3, e3, e4, e6, e7, e8, e9, e9,

В рассматриваемой задаче заданы следующие стратегии:

- 1) стратегия 1 (e_0,d_{01}) , где $d_{01}(z_0)=a_1$, т.е. стратегия (e_0,d_{01}) предполагает не провидение теста (эксперимент e_0) и т.к. результатом e_0 является z_0 , то $d_{01}(z_0)=a_1$, т.е. не проводится регулирование прибора;
- 2) стратегия 2 (e_0, d_{02}) , где $d_{02}(z_0) = a_2$, т.е. не проводить тест, но выполнять регулирование прибора, получив фиктивный исход z_0 ;
- 3) стратегия 3 (e_1,d_{11}) , где $d_{11}(z_1)=a_1$ и $d_{11}(z_2)=a_2$ (т.е. если в случае реализации эксперимента e_1 будет получен исход z_1 , то не выполнять регулирование прибора, если получен исход 2, то реализовать регулирование прибора решение a_2). Т.к. только решение a_2 связано с выполнением конкретного действия с прибором, то непосредственно решение по выполнению действия (в соответствии с правилом $d_{11}(z_2)=a_2$) определяется только в состоянии z_2 регулировать только тогда, когда исход эксперимента z_2 ;
- 4) стратегия 4 (e_1,d_{12}) , где $d_{12}(z_1)=a_2$ и $d_{12}(z_2)=a_1$ (т.е. регулировать только тогда, когда исход e_1 равен z_1).

Т.к. действия по регулированию прибора связаны с решением a_2 , тогда с каждой из 4-х стратегий должны быть определены вероятности $P_a(a_2|e,d,\cdot)$ и в соответствии с ними определены значения полезности каждой из стратегий. Таким образом, в основу процедуры определения оценок полезности каждой из стратегий положены значения вероятностей $P_a(a_2|e,d,\cdot)$, которые формируются на основе значений $P_{z|e,0}$.

Примем за основу третью стратегию (e_1,d_{11}) (где $d_{11}(z_1)=a_1$ и $d_{11}(z_2)=a_2$, т.е. если исход эксперимента z_1 , то регулирование не выполнять (решение a_1), если исход z_2 , то выполнять регулирование (решение a_2)) и на ее примере определим шаги алгоритма вычисления обобщенной оценки полезности этой стратегии. Т.к. решение a_2 связано с выполнением действий по регулированию, а решение a_1 - с бездействием, то целесообразно определять именно вероятность $P_a(a_2|e,d,\theta)$.

Шаги процедуры определения оценки $U(\cdot)$ для (e_1,d_{11}) :

- 1. Для стратегии 3 применение управления (решения) a_2 связано с исходом z_2 , поэтому анализируются $P_{z_2|\theta_1}$ и $P_{z_2|\theta_2}$ (понятно, что при выполнении e_l). Т.к. $P_{z_2|\theta_1}=0.3$, то при исходе z_2 и состоянии системы θ_1 имеем $P_a(a_2|e_1,z_2,\theta_1)=0.3$; т.к. $P_{z_2|\theta_2}=0.8$, то $P_a(a_2|e_1,z_2,\theta_2)=0.8$.
- 2. Из таблицы, в которой определены элементы всех рассматриваемых множеств A, θ , Z, E следует, что состояние θ_1 соответствует решению a_1 , состояние θ_2 соответствует решению a_2 (соответственно исход z_1 и решение a_1 , исход z_2 и решение a_2). Тогда, если $P_a(a_2|e_1,z_2,\theta_1)=0.3$, но при этом применение решения a_2 в состоянии θ_1 является ошибочным, то в рассмотрение может быть введена вероятность ошибочного применения решения в состоянии, предусматривающем применение другого решения. Таким образом, если состояние θ_1 рассчитано (предполагает) на применение решения a_1 , а применение решения a_2 в этом состоянии является ошибочным, то $P_{ouu6\kappa u}(a_2|e_1,z_2,\theta_1)=P_a(a_2|e_1,z_2,\theta_1)=0.3$.

Понятно, что если применение a_2 в состоянии θ_1 является ошибочным и при этом $P_{ouuu\delta\kappa u}(a_2|e_1,z_2,\theta_1)=P_a(a_2|e_1,z_2,\theta_1)=0.3$, то правильным в состоянии θ_1 является применение решения a_1 и при этом $P_a(a_1|e_1,z_1,\theta_1)==1-P_{ouuu\delta\kappa u}(a_2|e_1,z_2,\theta_1)=0.7$ (решению в состоянии θ_1 должен соответствовать исход z_1).

По аналогии состояние θ_2 предполагает реализацию решения a_2 , тогда в состоянии θ_2 ошибочным будет являться применение решения a_1 (ошибка в состоянии θ_2 – это применение решения a_1), в этом случае $P_{ouu6\kappa u}(a_1|e_1,z_2,\theta_2)=P_a(a_1|e_1,z_1,\theta_1)=1-P_a(a_2|e_1,z_2,\theta_2)=1-0.8=0.2$.

Таким образом, решение a_1 должно применяться только при исходе z_1 в соответствии с рассматриваемой стратегией. Следовательно, вероятность применения решения a_1 в случае, если система находится в состоянии θ_2 при исходе z_2 эксперимента e_1 : $P_a(a_1|e_1,z_1,\theta_2)=0.2$ либо $P_a(a_1|e_1,d_{11},\theta_2)=0.2$. 3. Рассчитывается полезность $U(e_1\,d_{11},\theta_1)$.

Если
$$U(e_1,z_1,a_1,\theta_1)=94$$
 , $U(e_1,z_2,a_2,\theta_1)=65$, тогда:

$$U(e_{I_1}d_{1I},\theta_I) = P_a(a_I|e_I,z_I,\theta_I) * U(e_{I_1}z_I,a_I,\theta_I) + P_a(a_2|e_I,z_2,\theta_I) * U(e_{I_1}z_2,a_2,\theta_I) = 0,7*94+0,3*65=85$$
. Аналогично

$$U(e_{l,}d_{II},\theta_{2}) = P_{a}(a_{l}\big|e_{l},z_{1},\theta_{2}) * U(e_{l,}z_{1},a_{1},\theta_{2}) + P_{a}(a_{2}\big|e_{l},z_{2},\theta_{2}) * U(e_{l,}z_{2},a_{2},\theta_{2}) = = 0.2*7 + 0.8*65 = 53.$$

В принципе по таблице $P_{z_2|\theta_1}$ при учете, что $d(z_1)=a_1,\ d(z_2)=a_2$ уже может быть определено:

$$\begin{split} &P_{a}(a_{1}|e_{1},z_{1},\theta_{1}) = P_{z_{1}|e_{1},\theta_{1}} = 0.7;\\ &P_{a}(a_{2}|e_{1},z_{2},\theta_{1}) = P_{z_{2}|e_{1},\theta_{1}} = 0.3;\\ &P_{a}(a_{1}|e_{1},z_{1},\theta_{2}) = P_{z_{1}|e_{1},\theta_{2}} = 0.2\\ &P_{a}(a_{2}|e_{1},z_{2},\theta_{2}) = P_{z_{2}|e_{1},\theta_{2}} = 0.8. \end{split}$$

Однако выше приведенные рассуждения комментируют логику получения соответствующих оценок вероятностных мер.

4. Определение общей оценки стратегии (e_1, d_{11}) .

В силу того, что $P_{\theta_1}^{'}=0.7$, $P_{\theta_2}^{'}=0.3$ (см. таблицу выше) получим

$$U(e_1, d_{11}) = P_{\theta_1}^{'} * U(e_1, d_{11}, \theta_1) + P_{\theta_2}^{'} * U(e_1, d_{11}, \theta_2) = 0.7 * 85 + 0.3 * 53 = 76.$$

Полученное значение 76 является оценкой полезности для стратегии (e_1, d_{11}) .

Выполним аналогичные расчеты для стратегии 4 (e_1,d_{12}) где $d_{12}(z_1)=a_2$, $d_{12}(z_2)=a_1$.

1. Применение a_2 связано с реализацией исхода z_1 , поэтому

$$P_a(a_2|e_1,z_1,\theta_1) = P_{z_1|e_1,\theta_1} = 0.7; \ P_a(a_2|e_1,z_1,\theta_2) = P_{z_1|e_1,\theta_2} = 0.2;$$

$$P_a(a_1|e_1,z_2,\theta_1) = P_{z_2|e_1,\theta_1} = 0.3; \ P_a(a_1|e_1,z_2,\theta_2) = P_{z_2|e_1,\theta_2} = 0.8.$$

2. Определение значений $U(e_1d_{12},\theta_1)$ и $U(e_1d_{12},\theta_2)$:

$$U(e_{l,}d_{12},\theta_{1}) = P_{a}(a_{1}|e_{1},z_{2},\theta_{1}) * U(e_{l,}z_{2},a_{1},\theta_{1}) + P_{a}(a_{2}|e_{1},z_{1},\theta_{1}) * U(e_{l,}z_{1},a_{2},\theta_{2}) = =0.3*92+0.7*68=75.2;$$

$$U(e_{l,}d_{12},\theta_{2}) = P_{a}(a_{2}|e_{1},z_{1},\theta_{2}) * U(e_{l,}z_{1},a_{2},\theta_{2}) + P_{a}(a_{1}|e_{1},z_{2},\theta_{2}) * U(e_{l,}z_{2},a_{1},\theta_{2}) = =0.2*68+0.8*0=13.6.$$
 3.Определение $U(e_{1}d_{12})$:

 $U(e_{1,}d_{12}) = P_{\theta_{1}}^{'} * U(e_{1,}d_{12},\theta_{1}) + P_{\theta_{2}}^{'} * U(e_{1,}d_{12},\theta_{2}) = 0.7 * 75.2 + 0.3 * 13.6 = 52.64 + +4.08 = 56.72 \approx 57.$

Аналогичным образом должны быть рассчитаны значения $U(e_{0},d_{01})$, $U(e_{0},d_{02})$. Результаты расчетов сведены в таблицу 2.1.

Таблица 2.1

Стратегии	$P\{a_2 e, z, \theta$	}	X арактеристика ошибок $P_{ouu o \kappa u}(a_i/\cdot)$		Характеристика полезности $U(\cdot)$		$U(e_{,}d)$
	$ heta_{\scriptscriptstyle 1}$	$ heta_2$	$\theta_{\scriptscriptstyle 1}$	$ heta_2$	$ heta_{\scriptscriptstyle 1}$	$ heta_2$	
1	0	0	0	1,0	100	36	81
2	1,0	1,0	1,0	0	82	82	82
3	0,3	0,8	0,3	0,2	85	53	76
4	0,7	0,2	0,7	0,8	75	14	57

Столбец $U(e_{,d})$ в таблице содержит значения общих полезностей для различных стратегий. На основе значений при реализации условия максимизации полезности определено, что эффективной стратегией является стратегия (e_{0},d_{02}) .

Формализация процедуры определения эффективных стратегий в общем виде

- 1. Вероятность $P_{z_2|e_1,\theta_1}$ индуцирует вероятность $P_a(a_2|e_1,z_2,\theta_1)$, вероятность $P_{z_2|e_1,\theta_2}$ индуцирует вероятность $P_a(a_2|e_1,z_2,\theta_2)$. Здесь рассматривается решающее правило $d_{11}(z_2)=a_2$, т.к. только оно связано в реализации решения по выполнению действий. Таким образом, рассматривается $P_a(a_2/\cdot)$ в силу того, что решение a_2 применимо только в состоянии z_2 в соответствии со стратегией (e_1,d_{11}) (и, в частности, правила $d_{11}(z_2)=a_2$).
- 2. Т.к. применение a_2 связано с состоянием θ_2 (и с исходом z_2), тогда применение a_2 в состоянии системы θ_1 является ошибочным решением, следовательно:

$$P_a(a_2|e_1,z_2,\theta_1) = P_{ouu\delta\kappa u}(a_2/e_1,z_2,\theta_1).$$

Отсюда вытекает, что в состоянии θ_1 должно быть применено решение a_1 , вероятность использования которого определяется следующим образом (в соответствии с правилом $d_{1l}(z_1) = a_1$ реализация решения a_1 возможна при исходе z_1): $P_a(a_1|e_1,z_1,\theta_1) = 1 - P_{ouulokal}(a_2/e_1,z_2,\theta_1)$ (решение a_1 в состоянии θ_1 должен соответствовать исход z_1).

3. Т.к. $d(z_2)=a_2$ и при этом $P_a(a_2|e_1,z_2,\theta_2)$ определена, тогда применение в θ_2 решения a_1 является ошибочным (в силу правила $d_{11}(z_1)=a_1$ и таблицы для A и Z), в этом случае: $P_a(a_1|e_1,z_2,\theta_2)=P_{ouu6\kappa u}(a_1/e_1,z_2,\theta_2), \text{ тогда}$

$$P_{ouu\delta\kappa u}(a_1 | e_1, z_2, \theta_2) = 1 - P_a(a_2 | e_1, z_2, \theta_2).$$

В силу того, что $d_{11}(z_1) = a_1$, тогда требуется определение вероятности $P_a(a_1|e_1,z_1,\theta_2)$.

4. Вычисление полезности U стратегии (e,d) для каждого состояния θ_j следующим образом: $U(e,d,\theta_j) = \sum_i P_a(a_i/e_1,z_1,\theta_j) * U(e_1,z_i,a_i,\theta_j)$. Либо в более общем виде с использованием операторного выражения для МО:

$$U(e,d,\theta_i) = M_{a_i/z_h,\theta_i}(U(e_1,z_h,a_i,\theta_i)).$$

5. Определение обобщенной оценки полезности U для стратегии (e,d) следующим образом: $U(e,d) = \sum_i P'_{\theta_j} * U(e,d,\theta_j)$.

Либо в общем виде с использованием операторного выражения для МО:

$$U(e,d) = M_{\theta'}(U(e,d,\theta)).$$

6. Выбор стратегии (e,d), у которой U(e,d) будет являться максимальной, т.е.

$$(e,d)^* = \arg\max U(e,d)$$
.

3. Программа выполнения работы

Для первого и третьего вариантов порядок выполнения лабораторной работы следующий:

- 1. Разработать процедуру, выполняющую ввод распределений априорных вероятностей P'_{θ} , апостериорных вероятностей $P_{z|e}$, $P''_{\theta|z}$.
- 2. Разработать процедуру вычисления значений полезности $U^*(e_l, z_h, a_i)$ для каждого решения a_i , соответствующих экспериментов и их исходов.
- 3. Разработать процедуру вычисления значений полезности $U^*(e_l, z_h)$ для каждого исхода z_h и соответствующего ему эксперимента e_l .
- 4. Разработать процедуру вычисления полезности $U^*(e_l)$ каждого из проводимых экспериментов e_l .
- 5. Разработать процедуру выбора эффективных стратегий проведения эксперимента и принятия решений на основе вычисленных значений полезности.

Для второго варианта порядок выполнения лабораторной работы следующий:

- 1. Разработать процедуру, выполняющую ввод распределения вероятностей $P_{\tau|_{e}\theta}$.
- 2. Разработать процедуру вычисления для стратегий значений вероятностей $P_a(a_i|e_l,z_h,\theta_j)$ (или $P_a(a_i|\cdot)$), определяя при этом как вероятности надлежащего принятия решений для соответствующих состояний, так и вероятности ошибочного принятия решений для этих состояний.
- 3. Выполнить разработку процедуры вычисления значений полезности реализации стратегий в соответствующих состояниях.
- 4. Выполнить разработку процедуры вычисления общих оценок полезности соответствующих стратегий и выбора эффективной стратегии с максимальной полезностью.

4. Задания на работу

Вариант 1.

Множества A и Θ имеют следующий вид: $A = \{a_1, a_2\}, \ \Theta = \{\theta_1, \theta_2\}$.

Распределения вероятностей, соответствующие дереву принятия решений (многошаговой игры), представленному на Рис. 2.2 сведены в таблицы, приведенные ниже.

θ	$P_{ heta}^{'}$
$\theta_{\scriptscriptstyle 1}$	0,55
$\theta_{\scriptscriptstyle 2}$	0,45
	1,0

z	$P_{z e}$		
	e_0	e_1	
z_0	1,0	0	
z_1	0	0,55	
z_2	0	0,45	
	1,0	1,0	

θ z	$P_{\Theta z}^{"}$						
	z_0 z_1 z_2						
θ_1	0,7	0,75	0,2				
θ_2	0,3	0,25	0,8				
	1,0	1,0	1,0				

Значения полезности для соответствующих стратегий проведения эксперимента и принятия решений следующие: $U(e_0, z_0, a_1, \theta_1) = 75$, $U(e_0, z_0, a_1, \theta_2) = 60$, $U(e_0, z_0, a_2, \theta_1) = 80$, $U(e_0, z_0, a_2, \theta_2) = 50$, $U(e_1, z_1, a_1, \theta_1) = 50$, $U(e_1, z_1, a_1, \theta_2) = 20$, $U(e_1, z_1, a_2, \theta_1) = 65$, $U(e_1, z_1, a_2, \theta_2) = 65$, $U(e_1, z_2, a_1, \theta_1) = 80$, $U(e_1, z_2, a_1, \theta_2) = 40$, $U(e_1, z_2, a_2, \theta_1) = 40$, $U(e_1, z_2, a_2, \theta_2) = 68$.

С использованием метода анализа в экстенсивной форме выполнить определение эффективной стратегии проведения эксперимента и принятия решений. При этом учесть, что z_0 – это фиктивный исход, z_1 – исход, благоприятствующий состоянию θ_1 , z_2 – исход, благоприятствующий состоянию θ_2 .

Вариант 2.

Множества A и Θ имеют следующий вид: $A = \{a_1, a_2\}$, $\Theta = \{\theta_1, \theta_2\}$, $Z = \{z_1, z_2\}$, где z_0 – это фиктивный исход, z_1 – исход, благоприятствующий состоянию θ_1 , z_2 – исход, благоприятствующий состоянию θ_2 . Распределения вероятностей $P_{z|e,\theta}$ представлены в следующей таблице.

	E			
Z_h	e_0 e_1			
	$egin{array}{ c c c c c c c c c c c c c c c c c c c$		$ heta_2$	

Z_0	1,0	1,0	0,0	0,0
Z_1	0,0	0,0	0,65	0,25
\mathbb{Z}_2	0,0	0,0	0,35	0,75

Для θ_j ($j = \overline{1,2}$) распределение вероятностей имеет вид: $P'_{\theta_j} = 0.55$, $P'_{\theta_2} = 0.45$.

Значения полезности для соответствующих стратегий проведения эксперимента и принятия решений следующие: $U(e_0,z_0,a_1,\theta_1)=65$, $U(e_0,z_0,a_1,\theta_2)=60$, $U(e_0,z_0,a_2,\theta_1)=80$, $U(e_0,z_0,a_2,\theta_2)=80$, $U(e_1,z_1,a_1,\theta_1)=50$, $U(e_1,z_1,a_1,\theta_2)=58$, $U(e_1,z_1,a_2,\theta_1)=65$, $U(e_1,z_1,a_2,\theta_2)=65$, $U(e_1,z_2,a_1,\theta_1)=80$, $U(e_1,z_2,a_1,\theta_2)=90$, $U(e_1,z_2,a_2,\theta_1)=40$, $U(e_1,z_2,a_2,\theta_2)=68$. В качестве стратегий реализации экспериментов и принятия решений применены следующие:

- 1) стратегия 1 (e_0, d_{01}) , где $d_{01}(z_0) = a_1$, т.е. стратегия (e_0, d_{01}) предполагает не провидение теста (эксперимент e_0) и т.к. результатом e_0 является z_0 , то $d_{01}(z_0) = a_1$, т.е. не проводится регулирование прибора;
- 2) стратегия 2 (e_0, d_{02}) , где $d_{02}(z_0) = a_2$, т.е. не проводить тест, но выполнять регулирование прибора, получив фиктивный исход z_0 ;
- 3) стратегия 3 (e_1,d_{11}) , где $d_{11}(z_1)=a_1$ и $d_{11}(z_2)=a_2$ (т.е. если в случае реализации эксперимента e_1 будет получен исход z_1 , то не выполнять регулирование прибора, если получен исход 2, то реализовать регулирование прибора решение a_2). Т.к. только решение a_2 связано с выполнением конкретного действия с прибором, то непосредственно решение по выполнению действия (в соответствии с правилом $d_{11}(z_2)=a_2$) определяется только в состоянии z_2 регулировать только тогда, когда исход эксперимента z_2 ;
- 4) стратегия 4 (e_1,d_{12}) , где $d_{12}(z_1)=a_2$ и $d_{12}(z_2)=a_1$ (т.е. регулировать только тогда, когда исход e_1 равен z_1).

С использованием метода анализа дерева решений в нормальной форме определить эффективную стратегию проведения эксперимента и принятия решения.

Вариант 3.

Для дерева принятия решений, представленного на Рис.2.3, и соответствующих этому дереву распределений вероятностей, выполнить определение эффективных стратегий проведения эксперимента и принятия решений с использованием метода анализа дерева решений в экстенсивной форме. Таблицы распределений вероятностей, состав множеств экспериментов, исходов, решений и состояний системы сформировать самостоятельно в соответствии с видом дерева.

Рисунок 2.3 – Вид дерева решений для реализации Варианта 3 задания

4. Контрольные вопросы

- 1. В чем заключается задача принятия решений в условиях стохастической неопределенности?
- 2. Определить множества характеристик (параметров) задачи принятия решений в условиях неопределенности?
- 3. Какие вероятности должны быть заданы для реализации процедуры принятия
- 4. Что из себя представляют математические ожидания соответствующих вероятностных мет, каким образом они вычисляются и для чего используются?
- 5. Что из себя представляет процесс принятия решений в условиях неопределенности, в какой форме этот процесс может быть задан?
- 6. В чем заключается процедура принятия решений при экстенсивном анализе дерева решений, каким образом может быть формализована процедура принятия решений при экстенсивном анализе?
- 7. В чем состоит принятие решений при анализе дерева игры (решений) в нормальной форме, что такое стратегия принятия решений?
- 8. В чем состоят особенности применения решающего правила d при анализе дерева решений в нормальной форме?
- 9. Каким образом реализуется определение вероятностей принятия решений для задаваемых состояниях системы и исходах экспериментов?
- 10. В чем заключается логика процедуры определения вероятностей при анализе решений в нормальной форме и каким образом эта процедура формализуется?
- 11. Каким образом выполнятся вычисление значений полезности и для стратегий (e,d) в разных состояниях θ_i системы?
- 12. Каким образом выполняется вычисление обобщенных оценок полезности для каждой стратегии?