

BLE Smart Tags and Sales in Physical Clothing Retail Markets

Yu-Hsuan Yeh

Background & Motivation

- Online shopping rise
 - Clear item information
 - Low cost -> Low price
- Physical clothing store
 - Touch
 - Try-on

RFID?

- V auto inventory
- X special, expensive reader
- X benefit only retailers

BLE Beacon?

- V active advertising
- V received by cellphone
- X fix data format
- X need a server/database
- X benefit only customer

Goal

- Use BLE advertising and passive scanning mode
- Decentralized architecture
 - Clothing data is scattered on each tag
- Integrated system for both customers and retailers
- Active information advertisement
 - New data format for clothing
- Inventory automation

- Peripheral = Advertiser = Transmitter
- Central = Scanner = Receiver

- Advertise encoded clothing information
- Specify which controller to receive

- Integrate received clothing info, stored in catalog
- Advertise catalog sequentially to user

Address Format

Encoded in Clothing ADV Address

Bit					
Address					
Content					
	Г				

Bit	4	2	2	2	2	4	4	4	2		6		8	8	8
Address	С	1	ı	,	7	6	3	0	٤	3	F	0	В	0	3
Content	cannot modify	receiver	sender	group	season	category	size	color	promo	pri	ice(x3+5)	item ID		instance ID	
Example	-	ctrl 0	item	female	winter	coat	М	red	XMAS		50	item No.11		the third coat in stock	

Encoded in Controller ADV Name

Bit Address

Content

Example

	4	2 2	2 2	4	4	4	2	6	8	8	
3	С	0	7	6	3	0	8	F	0 B	0 A	
t	cannot modify	receiver sender	group season	category	size	color	promo	price(x3+5)	item ID	# instance in stock	
Э	-	user ctrl 0	female winter	coat	М	red	XMAS	50	item No.11	total 10 coats in stock	

- Can be customer or retailer
- Receive same catalog, utilize differently with corresponding App

Environment

- Feather nRF52840 Express
- Arduino IDE + Adafruit Bluefruit library
 - CircuitPython?

Modify Adv Pkt Content in Runtime

Goal:

Add sequence num and address, adv 1pkt /sec

- Stop Adv
- Clear Data
- Attach to Name slot as constant string

```
// In Bluefruit lib: BLEAdvertising.cpp
ble_gap_adv_params_t adv_para = {
    .max\_adv\_evts = 1,
    .channel_mask = \{0, 0, 0, 0, 0, 0\} // \{7-0, 15-8, 23-16, 31-24, 39-32\}
};
if (evt -> evt.gap_evt.params.adv_set_terminated.reason ==
BLE_GAP_EVT_ADV_SET_TERMINATED_REASON_LIMIT_REACHED) {
    if (_stop_cb) ada_callback(NULL, 0, _stop_cb); // invoke stop callback
// In main function
void adv_stop_callback(void) {
    Bluefruit.Advertising.clearData();
    // attach seg num in name string
    sprintf(newName, "BFItem%7d", ++seq_num); // string length must be fixed
    Bluefruit.setName((char const *) newName);
    Bluefruit.Advertising.addName();
    delay(1000); // millisec
    Bluefruit.Advertising.start();
```

Simulate High Device Density Problem

Simulate High Device Density Problem

Influence Factors

- Number of channels
 - 37, 38, 39
 - 37
- Receiver position
 - End
 - Side
- TX power
 - -40 dBm
 - 8 dBm
- Number of interference devices
 - [0, 2, 4, 6, 8]

Metrics

- Average Data Rate
 - Send 1 pkt / sec
 - # pkts received in 1 min
 - Min = 0, Max = 60
- Average RSSI

Number of Channels

All receive at end

 Higher tx power is more robust to interferences

• Data rate is proportional to # channels

Number of Channels

All receive at side

• Same result

Receiver Position

- All transmit in ch37-39
- Closer to receiver, higher data rate and RSSI

Receiver Position

• All transmit in ch37

- Data rate is low, influence is not obvious
- Closer to receiver, higher RSSI

Two Same Orange T-shirts

F1:50:21:CF:01:03

```
RECEIVER maskRECEIVER = CTRL_TSHIRT;
SENDER maskSENDER = ITEM;
GROUP maskGROUP = FEMALE;
SEASON maskSEASON = SUMMER;
CATA maskCATA = TSHIRT;
SIZE maskSIZE = S;
PROMO maskPROMO = BOGO;
uint8_t price = 50;
COLOR maskCOLOR = ORANGE;
uint8_t itemID = 1;
uint8_t instanceID = 3;
```

E1:50:21:CF:01:05

```
RECEIVER maskRECEIVER = CTRL_TSHIRT;
SENDER maskSENDER = ITEM;
GROUP maskGROUP = FEMALE;
SEASON maskSEASON = SUMMER;
CATA maskCATA = TSHIRT;
SIZE maskSIZE = S;
PROMO maskPROMO = BOGO;
uint8_t price = 50;
COLOR maskCOLOR = ORANGE;
uint8_t itemID = 1;
uint8_t instanceID = 5;
```

White & Gray T-shirts

F1:90:13:8F:02:01

```
RECEIVER maskRECEIVER = CTRL_TSHIRT;
SENDER maskSENDER = ITEM;
GROUP maskGROUP = YOUTH;
SEASON maskSEASON = SUMMER;
CATA maskCATA = TSHIRT;
SIZE maskSIZE = XS;
PROMO maskPROMO = XMAS;
uint8_t price = 50;
COLOR maskCOLOR = WHITE;
uint8_t itemID = 2;
uint8_t instanceID = 1;
```

E1:D0:42:8F:06:01

```
RECEIVER maskRECEIVER = CTRL_TSHIRT;
SENDER maskSENDER = ITEM;
GROUP maskGROUP = KID;
SEASON maskSEASON = SUMMER;
CATA maskCATA = TSHIRT;
SIZE maskSIZE = L;
PROMO maskPROMO = XMAS;
uint8_t price = 50;
COLOR maskCOLOR = GRAY;
uint8_t itemID = 6;
uint8_t instanceID = 1;
```

Black & Blue Shorts

C5:51:34:CF:01:01

```
RECEIVER maskRECEIVER = CTRL_SHORTS;
SENDER maskSENDER = ITEM;
GROUP maskGROUP = FEMALE;
SEASON maskSEASON = SUMMER;
CATA maskCATA = SHORTS;
SIZE maskSIZE = M;
PROMO maskPROMO = BOGO;
uint8_t price = 50;
COLOR maskCOLOR = BLACK;
uint8_t itemID = 1;
uint8_t instanceID = 1;
```

E5:51:37:4F:07:01

```
RECEIVER maskRECEIVER = CTRL SHORTS;
SENDER maskSENDER = ITEM;
GROUP maskGROUP = FEMALE;
SEASON maskSEASON = SUMMER;
CATA maskCATA = SHORTS;
SIZE maskSIZE = M;
PROMO maskPROMO = NEWMEMBER;
uint8_t price = 50;
COLOR maskCOLOR = BLUE;
uint8_t itemID = 7;
uint8_t instanceID = 1;
```


Challenge & Future

- If clothes are moved frequently...
- Checkout automation
- App on phone

- Active scanning
- Work as a scanner, extract price from address
- Combine with ML prediction