WSTĘP DO MATEMATYKI FINANSOWEJ LABORATORIA 3

Stanisław Pawlak

3 kwietnia 2020

1 Zadanie

Udowodnij, że $\varphi \in \Phi$ wtedy i tylko wtedy, gdy $V_t(\varphi) = V_0(\varphi) + G_t(\varphi)$ dla $t \in T$.

Rozwiązanie:

 \Leftarrow Weźmy różnicę $V(\varphi)$ podstawiając z założenia :

$$V_{t+1}(\varphi) - V_t(\varphi) = \varphi_{t+1}(S_{t+1} - S_t)$$

Z definicji $V(\varphi)$:

$$V_{t+1}(\varphi) - V_t(\varphi) = \varphi_{t+1} S_{t+1} - \varphi_t S_t$$

Porównując otrzymujemy: $\varphi_{t+1}S_t = \varphi_tS_t$. Oznacza to, że $\varphi \in \Phi$ dla $t \in T$.

 \Rightarrow

$$V_t(\varphi) = \varphi_t S_t = \varphi_0 S_0 + \sum_{u=0}^{t-1} (\varphi_{u+1} S_{u+1} - \varphi_u S_u)$$

Podstawiając $\varphi_u S_u = \varphi_{u+1} S_u$

$$V_t(\varphi) = \varphi_0 S_0 + \sum_{u=0}^{t-1} (\varphi_{u+1} (S_{u+1} - S_u)) = V_0(\varphi) + G_t(\varphi)$$

2 Zadanie

Niech C_0 oraz P_0 oznaczają ceny europejskich opcji kupna i sprzedaży z tą samą ceną wykonania K oraz tym samym terminem wykupu T. Udowodnij, że jeśli parytet kupna-sprzedaży

$$C_0 - P_0 = S_0 - \frac{K}{1+r}$$

nie jest spełniony, to na rynku istnieje arbitraż.

Rozwiązanie:

a) Przypadek pierwszy: $C_0 - P_0 > S_0 - \frac{K}{1+r}$. Wtedy:

$$K + (1+r)(C_0 - P_0 - S_0) > 0$$

Strategia arbitrażowa polega na kupnie akcji i opcji sprzedaży sprzedaniu opcji kupna.

b) Przypadek drugi: $C_0 - P_0 < S_0 - \frac{K}{1+r}$. Analogicznie. Przyjmujemy strategię przeciwną do opisanej powyżej.

3 Zadanie

Załóżmy, że na rynku istnieje strategia samofinansująca $\varphi \in \Phi$ taka, że: $V_0(\varphi) = 0$ oraz $P(V_{t_0}(\varphi) \geq 0) = 1$ oraz $P(V_{t_0}(\varphi) > 0) > 0$, gdzie $t_0 \in 0, ..., T-1$ jest ustalonym czasem. O tej strategii można myśleć jako o (lokalnej) strategii arbitrażowej w przedziale czasowym $[0, t_0]$. Udowodnij, że na rynku istnieje strategia arbitrażowa w [0, T].

Rozwiązanie:

Strategia arbitrażowa w [0,T] powstaje poprzez włożenie w chwili t_{0+1} wszystkiego do banku, aż do chwili T.

W chwili T otrzymujemy: $P(V_T(\varphi) \ge 0) = 1$ oraz $P(V_T(\varphi) > 0) > 0$ Wraz z początkowym warunkiem: $V_0(\varphi) = 0$ spełnione są wszystkie warunki na strategię arbitrażową.

4 Zadanie

Udowodnij, że gdy istnieje strategia φ spełniająca $V_0(\varphi) < 0$ oraz $P(V_T(\varphi) \ge 0) = 1$, to na rynku istnieje arbitraż.

Rozwiązanie:

Istnienie strategii arbitrażowej wydaje się oczywiste, ponieważ w chwili 0 wartość portfela jest ujemna, zaś w chwili T: $V_T(\varphi) \geq 0$ z prawdopodobieństwem 1. Oznacza to, że w sposób pewny można otrzymać zysk o wartości $-V_0(\varphi)$.

5 Zadanie

Podaj przykład rynku bez arbitrażu, gdzie nie wszystkie wypłaty są osiągalne. Opisz dokładnie przestrzeń strategii samofinansujących Φ oraz przestrzeń wypłat osiągalnych.

Rozwiązanie:

Przykładem takiego rynku może być rynek analogiczny do omawianego w pkt. (5.11) wykładu:

Rynek jednookresowy, trzystanowy ($\Omega = \{\omega_1, \omega_2, \omega_3\}$) z jedną akcją. r = 0.1 oraz $S_0^1 = 20$, $S_1^1(\omega_1) = 11$, $S_1^1(\omega_2) = 22$, $S_1^1(\omega_3) = 33$. Na rynku nie ma arbitrażu, rynek nie jest zupełny. $S_0 = (1, 20)^T$ Otrzymujemy dwa wektory niezależne: $S_1^0(\omega) = (22, 22, 22)^T$, $S_1^1(\omega) = (11, 22, 33)^T$ $\Phi = \{\varphi_0 : \varphi_0 S_0 = \varphi_1 S_0\}$. Przestrzeń Φ zawiera wszystkie kombinacje liniowe wektorów $\varphi_0 = (1, 0)$ oraz $\varphi_0 = (0, 1)$, $\varphi = (a, b)$. Przestrzeń wypłat osiągalnych określa: $a(22, 22, 22)^T + b(11, 22, 33)^T$.

6 Zadanie

Podaj przykład rynku bez arbitrażu, gdzie istnieje wiele strategii replikujacych daną wypłatę.

Rozwiązanie:

Rynek jednookresowy, dwustanowy ($\Omega = \{\omega_1, \omega_2\}$) z dwoma akcjami. r = 0 oraz:

$$S_0^1 = 10, S_1^1(\omega_1) = 15, S_1^1(\omega_2) = 5,$$

 $S_0^2 = 5, S_1^2(\omega_1) = 10, S_1^2(\omega_2) = 0,$

Strategie $\varphi=(a,b,c)$ dla $a+10b+5c=100,\,a,b,c\in\mathbb{N}\cup\{0\}$ replikują tą samą wypłatę.