Machine Learning 2018 – Multi-class Classification and Kernel Methods

Kien C Nguyen

December 5, 2018

Contents

- Introduction
- 2 Multi-class Classification
- 3 References

Binary Classification

- Recall that in binary classification, we have to predict whether an element belongs to one of the two classes (Negative and Positive).
- Classify an email as Not Spam / Spam
- In credit scoring, classify a customer as Good / Bad
- In network intrusion detection, classify a connection as Normal / Attack
- Detect the gender (Male / Female) using profile pictures

Multi-class Classification

Learning

The training set is
$$\mathbb{T} \triangleq \left(\left(\mathbf{x}^{(1)}, y^{(1)} \right), \left(\mathbf{x}^{(2)}, y^{(2)} \right), \dots \left(\mathbf{x}^{(N)}, y^{(N)} \right) \right).$$
 where $\mathbf{x}^{(i)}$ is given by $\mathbf{x}^{(i)} = \begin{bmatrix} x_0^{(i)} \\ x_1^{(i)} \\ \dots \\ x_D^{(i)} \end{bmatrix}$
$$x_0^{(i)} = 1, \ y^{(i)} \in \{0, 1, \dots, k\}$$

Prediction
Given a point x, output a single class label y.

Multi-class Classification

- In this lecture, we look into methods to reduce a multi-class classification problem to multiple binary classification problems.
 - One-vs-All
 - All-vs-All
 - Error correcting codes

Contents

- Introduction
- 2 Multi-class Classification
- 3 References

One-Vs-All

- Assumption: Each class can be separated from all the rest using a binary classifier
- Learning:
 - Decomposed to learning k independent binary classifiers, one for each class label.
 - For each label $l \in \{0,1,\ldots,k\}$, construct a binary classification problem as follows
 - Positive examples: Elements of $\mathbb T$ with label $\mathit{l}.$
 - ullet Negative examples: All other elements of ${\mathbb T}$
 - This is a binary classification problem that we can solve.
 - We will have k binary classifiers $\mathbf{w}^{(1)}, \mathbf{w}^{(2)}, \dots, \mathbf{w}^{(k)}$.
- Decision: Winner Takes All (WTA): $I = argmax_i (\mathbf{w}^{(i)T}\mathbf{x})$

One-Vs-All

- MultiClass classifier
 - □ Function $f: R^n \rightarrow \{1,2,3,...,k\}$

Decompose into binary problems

All-Vs-All

- Assumption: There is a separation between every pair of classes using a binary classifier
- Learning: Decomposed to learning $\binom{k}{2}$ independent binary classifiers, one corresponding to each pair of class labels. For the pair (i,j):
 - Positive example: all examples with label i
 - ullet Negative examples: all examples with label j
- Decision: Each label gets k-1 votes
- Decision Options:
 - Majority: classify example \mathbf{x} to take label i if i wins on \mathbf{x} more often than j (j = 1, ..., k)
 - A tournament: start with n/2 pairs; continue with winners

All-Vs-All

Find v_{rb} , v_{rg} , v_{ry} , v_{bg} , v_{by} , $v_{gy} \in R^d$ such that

- $\nabla_{rb} \cdot x > 0$ if y = red< 0 if y = blue
- $v_{rg}.x > 0$ if y = red< 0 if y = green
- ... (for all pairs)

All-Vs-All Decision Regions

Error Correcting Codes

- Matrix of dimension $k \times n$ where $n > \lceil log_2 k \rceil$.
- Rows: An encoding of each class (k rows)
- Columns: L dichotomies (dichotomizers) of the data, each corresponds to a new classification problem
- Each training example is mapped to one example per column $(x,3) \rightarrow \{(x,P1),+;(x,P2),-;(x,P3),-;(x,P4),+\}$
- To classify a new example x:
 - Evaluate hypothesis on the 4 binary problems $\{(x, P1), (x, P2), (x, P3), (x, P4)\}$
 - Choose label that is most consistent with the results. Use Hamming distance (bit-wise distance)

Error Correcting Codes

_		Label	P1	P2	P3	P4
		1	-	+	-	+
er colu		mn ²	-	+	+	-
		3	+	-	-	+
		4	+	-	+	+
		k	-	+	-	-

Contents

- Introduction
- 2 Multi-class Classification
- References

References

- [1] Bishop, C. M. (2013). Pattern Recognition and Machine Learning.
- [2] University of Illinois at Urbana-Champaign CS446 Machine Learning