

Multiple Linear Regression

Cesar Acosta Ph.D.

Department of Industrial and Systems Engineering University of Southern California

REGRESSION ANALYSIS

Regression analysis is useful to find a relationship between a response and a set of predictors

Two Regression Models

- Simple linear regression (SLR)
- Multiple linear regression (MLR)

OLS line – one predictor

2 predictors

OLS plane

Closest plane to dataset Average relation Observation y, between (X1,X2) and Y Response plane

Multiple Linear Regression

Consider predictors X₁, X₂,...,X_p

Regression plane
$$E[Y] = \beta_0 + \beta_1 X_1 + \cdots + \beta_p X_p$$

Multiple Linear Regression

Consider predictors X₁, X₂,...,X_p

Regression plane

$$E[Y] = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

Fitted plane

$$\hat{Y} = b_0 + b_1 X_1 + \cdots + b_p X_p$$

How good is the regression model?

How good is the regression model?

How well the model fits the data?

How well the model predicts the data?

How good is the regression model?

How well the model fits the data?

How well the model predicts the data?

How good is the regression model?

How well the model fits the data?

SSE R²

How well the model predicts the data?

Model adequacy

R^2 is the proportion of the variation in Y that is explained by $X_1, X_2,..., X_p$

One predictor

R-squared vs correlation (y, yhat)

If r is the correlation between y and yhat

$$R^2 = r^2$$

y vs. yhat plot

We say that *p* increases

when more predictors (features)

are added to the model

We say that *p* decreases

when some predictors (features)

are removed from the model

Given a set of *p* predictors

- What is the best predictor?
- What is the best set of predictors?`

Fact 1

If *p* increases, SSE decreases, always

Fact 1

If *p* increases, SSE decreases, always

Therefore,

$$R^2 = 1 - \frac{SSE}{SST}$$

if p increases, R^2 increases

R^2 useful to compare models with the same number p of predictors

R² useful to compare models

with the same number *p* of predictors

R² not useful to compare models

R² not useful to compare models

with different number p of predictors

How to compare models with different number of predictors?

How to compare models with different number of predictors?

- Adjusted R²
- AIC (Information Criteria)

How to compare models with different number of predictors?

- Adjusted R² (larger is better)
- AIC (smaller is better)

Fact 2

If p increases, MSE may increase or decrease

$$MSE = \frac{SSE}{n - p - 1}$$

Fact 2

If p increases, MSE may increase or decrease

$$MSE = \frac{SSE}{n-p-1}$$

Fact 2

If p increases, MSE may increase or decrease

Therefore, if p increases

adjusted-
$$R^2 = 1 - \frac{MSE}{MST}$$

adjusted-R² may increase or decrease

Fact 2

If p increases, MSE may increase or decrease

Therefore, if p increases

$$adjusted-R^2 = 1 - \frac{MSE}{MST}$$

select number of predictors s.t. adj-R² is smallest

Adj-R² useful to compare models with different number of predictors

MS formulas for Simple Linear Regression

$$SSTotal = \sum_{i=1}^{n} (y - \overline{y})^2 \qquad \qquad MSTotal = \frac{SSTotal}{n-1} \quad \text{ sample variance Y}$$

$$MSTotal = \frac{SSTotal}{n-1}$$

$$SSR = \sum_{i=1}^{n} (\hat{y} - \overline{y})^2 \qquad MSR = \frac{SSR}{1}$$

$$MSR = \frac{SSR}{1}$$

$$SSE = \sum_{i=1}^{n} (y - \hat{y})^{2} \qquad MSE = \frac{SSE}{n-2}$$

$$MSE = \frac{SSE}{n-2}$$

MS formulas for Multiple Linear Regression

$$SSTotal = \sum_{i=1}^{n} (y_i - \overline{y})^2$$
 $MSTotal = \frac{SSTotal}{n-1}$ sample variance Y

$$MSTotal = \frac{SSTotal}{n-1}$$

$$SSR = \sum_{i=1}^{n} (\hat{y}_i - \overline{y})^2 \qquad MSR = \frac{SSR}{p}$$

$$MSR = \frac{SSR}{p}$$

$$SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$
 $MSE = \frac{SSE}{n - p - 1}$

$$MSE = \frac{SSE}{n - p - 1}$$

ANOVA DECOMPOSITION, R-squared

$$SSTotal =$$

$$SSE + SSR$$

$$\frac{SSE}{SST}$$

SSE

$$+ \frac{SSR}{SST}$$

$$+ R^2$$

ANOVA DECOMPOSITION, R-squared

$$SSTotal =$$

$$SSE + SSR$$

$$\frac{SSE}{SST}$$

$$+ \frac{SSI}{SSI}$$

$$\frac{SSE}{SST}$$

ANOVA DECOMPOSITION, R-squared

$$SSTotal =$$

$$SSE + SSR$$

$$\frac{SSE}{SST}$$

$$+ \frac{SSR}{SST}$$

$$\frac{SSE}{SST}$$

$$-R^2$$

R-squared vs adj R-squared

$$R^2 = 1 - \frac{SSE}{SST}$$

$$adj R^2 = 1 - \frac{MSE}{MST}$$

R-squared vs adj R-squared - interpretation

- 100R² is the percentage of variation in Y that is explained by the model
- Adjusted R² has no interpretation

R-squared vs adj R-squared

$$R^2 = 1 - \frac{SSE}{SST}$$

$$adj R^2 = 1 - \frac{MSE}{MST}$$

$$adj R^2 = 1 - \frac{MSE}{MST}$$

$$= 1 - \frac{\frac{SSE}{n-p-1}}{\frac{SST}{n-1}}$$

$$adj R^2 = 1 - \frac{MSE}{MST}$$

$$= 1 - \frac{\frac{SSE}{n-p-1}}{\frac{SST}{n-1}}$$

$$= 1 - \frac{n-1}{n-p-1} \frac{SSE}{SST}$$

$$adj R^2 = 1 - \frac{n-1}{n-p-1} \frac{SSE}{SST}$$

$$1 \quad - \quad adj \ R^2 \qquad = \quad \quad \frac{n-1}{n-p-1} \ \frac{SSE}{SST}$$

$$adj R^2 = 1 - \frac{n-1}{n-p-1} \frac{SSE}{SST}$$

$$1 - adj R^2 = \frac{n-1}{n-p-1} \frac{SSE}{SST}$$

$$1 - adj R^2 = \frac{n-1}{n-p-1} (1-R^2)$$

$$1 - adj R^2 = \frac{n-1}{n-p-1} (1-R^2)$$

$$adj R^2 = 1 - \frac{n-1}{n-p-1} (1-R^2)$$

$$1 - adj R^2 = \frac{n-1}{n-p-1} (1-R^2)$$

$$adj R^2 = 1 - \frac{n-1}{n-p-1} (1-R^2)$$

Akaike Information Criteria

Measures the lost of information by fitting a model from a sample.

$$AIC = n \log \left(\frac{SSE}{n}\right) + 2p$$

As the number *p* of predictors increases

SSE decreases

$$AIC = n \log \left(\frac{SSE}{n}\right) + 2p$$

AIC may increase or decrease