RESULTS

Possible 66%

Impossible 34%

Submit

Results gathered from 142 respondents.

FEEDBACK

Impossible. For the average to be 10, the remaining 20 meerkats would need to have height zero.

1

0 points possible (ungraded)

Which of the following are correct versions of Markov's Inequality for a nonnegative random variable X:

$$\square P(X \ge \alpha \mu) \le \frac{1}{\alpha} \checkmark$$

$$\square P(X \ge \alpha \mu) \le \mu \alpha$$

$$\square P(X \ge \mu) \le \frac{1}{\alpha}$$

$$P(X \ge \alpha) \le \frac{\mu}{\alpha} \checkmark$$

Submit

You have used 3 of 3 attempts

1 Answers are displayed within the problem

2 (Markov variations)

2.0/2.0 points (graded)

Upper bound $P(X \ge 3)$ when $X \ge 2$ and E[X] = 2.5.

0.5 **✓** Answer: 1/2

Explanation

Let
$$Y=X-2$$
 Then $Y\geq 0$ and $E\left(Y\right)=E\left(X\right)-2=0.5$ By Markov's inequality, $P\left(X\geq 3\right)=P\left(Y\geq 1\right)\leq rac{E(Y)}{1}=0.5$

Submit

You have used 4 of 4 attempts

1 Answers are displayed within the problem

3

4.0/4.0 points (graded)

 In a town of 30 families, the average annual family income is \$80,000. What is the largest number of families that can have income at least \$100,000 according to Markov's Inequality?

Note: The annual family income can be any **non-negative** number.

Explanation

This question can be answered using the Meerkat paradigm, or we can convert it to a probability question and use Markov's Inequality. Imagine that you pick one of the 30 families uniformly at random. The expected income is the average over all families, \$80,000. The probability that the random family has income at least \$100,000 is the number of families with such income, normalized by 30. By Markov's Inequality, this probability is at most 80000/100000 = 0.8. Hence the number of families with such income is at most $30 \cdot 0.8 = 24$

• In the same town of 30 families, the average household size is 2.5. What is the largest number of families that can have at least 4 members according to Markov's Inequality?

Note the household size can be any **postive** integer.

15 **✓ Answer:** 15

Explanation

15

Let X be the size of a family picked uniformly at random. Then $X \geq 1$ and $E\left(X\right) = 2.5$. Define Y=X-1 Then $Y\geq 0$ and $E\left(Y
ight) =E\left(X
ight) -1=1.5$ By Markov's Inequality $P(X \geq 4) = P(Y \geq 3) \leq rac{1.5}{3} = rac{1}{2}$ Hence the fraction of families with at least 4 members is at most $rac{1}{2} \cdot 30 = 15$

Submit

You have used 1 of 4 attempts

1 Answers are displayed within the problem

Discussion

Topic: Topic 10 / Markov's

Hide Discussion

Add a Post

Show all posts ▼	by recent activity ▼
 General Comments Questions and comments regarding this section. Staff	4 new_ 8
Problem 3Questions and comments regarding problem 3.Staff	3
 ▶ Problem 2 Questions and comments regarding problem 2. ≜ Staff 	3
 Problem 1 Questions and comments regarding problem 1. Staff 	1

© All Rights Reserved