Lecture 14: Regression

Jacob M. Montgomery

Quantitative Political Methodology

An introduction to regression

Correlation and bivariate linear regression

MY HOBBY: EXTRAPOLATING

- Scatterplots
- Correlation
- ▶ Draing the "best" line through data

Scatterplots

What are we looking for?

- ► Form/pattern
- Direction
- Strength
- Outliers

(Gelman, 2016)

(Masket 2011)

So how to we quantify this?

Correlation. But first . . .

Standardizing variables

$$\frac{x-\bar{x}}{s}$$

Example: Populations of New England states

	X	$\frac{x-\bar{x}}{s}$
CT	3.5m	0.48
ME	1.3m	-0.47
MA	6.6m	1.83
NH	1.3m	-0.47
RI	1.0m	-0.59
VT	0.6m	-0.78

$$\bar{x} = 2.40$$
 $s = 2.29$

Computation: Average of the products of the standardized values

$$r = \frac{1}{n-1} \sum \left(\frac{x_i - \bar{x}}{s_x} \right) \left(\frac{y_i - \bar{y}}{s_y} \right)$$

What does a positive correlation mean? Negative?

Visualizing correlation

Visualizing correlation

http://guessthecorrelation.com/

Facts about correlation

- ► Linear only
- ▶ **Not** causal
- ▶ Unit-free
- ▶ $-1 \le r \le 1$
- Sensitive to outliers

Regression: The big picture

What we want to do is the following:

- Assume we have two variables where the "outcome" is interval(ish)
- ▶ Is there an "association" between them?
- Is it statistically significant (next class)?
- Estimate "expected values" for an outcome variable given a set of covariates

Some preliminaries

 $\begin{array}{ll} Y = & Response \ variable/ \ Dependent \ variable/ \\ & Outcome \ variable/ Explained \ variable/ \ Left-hand \ side \end{array}$

Some preliminaries

- $\begin{array}{ll} Y = & Response \ variable/ \ Dependent \ variable/ \\ & Outcome \ variable/Explained \ variable/ \ Left-hand \ side \end{array}$
- X =Explanatory variable/ Independent variable/ Treatment Variable/ Right-hand side

How might Y and X be related?

Some preliminaries

- $Y = {\footnotesize \begin{tabular}{ll} Response variable/ Dependent variable/ \\ Outcome variable/Explained variable/ Left-hand side \\ \end{tabular} }$
- X = Explanatory variable/ Independent variable/ Treatment Variable/ Right-hand side

How might Y and X be related? A line of course!

$$Y = \alpha + \beta X$$

Here α is the Y-intercept and β is the slope of the line.