See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/259696838

ChemInform Abstract: Topochemical Synthesis of Alkali-Metal Hydroxide Layers within Doubleand Triple-Layered Perovskites.

ARTICLE in INORGANIC CHEMISTRY · JANUARY 2014

Impact Factor: 4.76 · DOI: 10.1021/ic402957c · Source: PubMed

CITATIONS

2

READS

36

6 AUTHORS, INCLUDING:

Dariush Montasserasadi

Alfred University

13 PUBLICATIONS 4 CITATIONS

SEE PROFILE

Ashfia Huq

Oak Ridge National Laboratory

113 PUBLICATIONS 1,323 CITATIONS

SEE PROFILE

Edward Andrew Payzant

Oak Ridge National Laboratory

236 PUBLICATIONS 3,447 CITATIONS

SEE PROFILE

Supporting Information

Topochemical Synthesis of Alkali-Metal Hydroxide Layers within Double- and Triple-Layered Perovskites

Dariush Montasserasadi,[†] Debasish Mohanty,[‡] Ashfia Huq,[‡] Luke Heroux,[‡] Edward Andrew Payzant,[‡] and John B. Wiley*,[†]

1. Experimental setup for formation of hydroxide and deuteroxide compoundsp	page S2
2. XRD patterns of KLaNb ₂ O ₇ , K ₂ LaNb ₂ O ₇ , and (K ₂ OH)LaNb ₂ O ₇	S 3
3. XRD patterns of RbCa ₂ Nb ₃ O ₁₀ and (Rb ₂ OH)Ca ₂ Nb ₃ O ₁₀	S4
4. Rietveld refinement of X-ray data for (Rb ₂ OH)LaNb ₂ O ₇	S5
5. Crystallographic Data for (Rb ₂ OH)LaNb ₂ O ₇ from X-ray refinement	S6
6. Rietveld refinement of neutron data for (Rb ₂ OH)LaNb ₂ O ₇	S7
7. Crystallographic Data for (Rb ₂ OH)LaNb ₂ O ₇ from neutron refinement	S8

Experimental setup for formation of hydroxide and deuteroxide compounds.

Figure S1. Sealed Pyrex tube for carrying out oxidative intercalation of $A_2LaNb_2O_7$ and $Rb_2Ca_2Nb_3O_{10}$ with water where on heating, $CaC_2O_4\cdot H_2O$ decomposes to release a stoichiometric amount of water.

X-ray diffraction data on double-layered potassium compounds $KLaNb_2O_7$, $K_2LaNb_2O_7$, and $(K_2OH)LaNb_2O_7$.

Figure S2. X-ray powder diffraction patterns of for a) $KLaNb_2O_7$, b) $K_2LaNb_2O_7$, and c) $(K_2OH)LaNb_2O_7$.

X-ray diffraction data on triple-layered compounds $RbCa_2Nb_3O_{10}$ and $(Rb_2OH)Ca_2Nb_3O_{10}.$

Figure S3. X-ray powder diffraction patterns for a) $RbCa_2Nb_3O_{10}$ and b) $(Rb_2OH)Ca_2Nb_3O_{10}$. Asterisk (*) indicates polypropylene film peaks. Selected indices are highlighted for $(Rb_2OH)Ca_2Nb_3O_{10}$.

Rietveld refinement of (Rb₂OH)LaNb₂O₇ X-ray diffraction data

Figure S4. Observed and calculated data for the Rietveld refinement of (Rb₂OH)LaNb₂O₇ X-ray diffraction data. Observed data are indicated by crosses, calculated pattern by a red solid line, the bottom blue curve is the difference plot and the green is the background.

 $Tabulation \ of \ Crystallographic \ Data \ for \ (Rb_2OH) LaNb_2O_7 \ from \ Rietveld \ refinement \ of \ X-ray \ data.$

Table S1.Crystallographic Data for (Rb₂OH)LaNb₂O₇ from X-ray data.

Atom	Site	X	у	Z	U_{iso} (Å ²)	g
Rb	2g	0	0	0.3313(5)	0.02(1)	1
O ₄	1d	0.5	0.5	0.5	0.02(2)	1
La	1a	0	0	0	0.0001(5)	1
Nb	2h	0.5	0.5	0.1465(4)	0.001(2)	1
O ₁	2h	0.5	0.5	0.278(2)	0.001(2)	1
O_2	1c	0.5	0.5	0	0.003(5)	1
O_3	4i	0	0.5	0.129(2)	0.001(4)	1

P4/mmm; Z = 1, a = 3.9303(1) Å, c = 14.9624(9) Å, Volume = 231.13(2) Å³

 $R_p=15.0\%$, $R_{wp}=19.4\%$, $\chi^2=1.68$, and g=occupation factor

Rietveld refinement of (Rb₂OH)LaNb₂O₇ Neutron diffraction data

Figure S6. Observed and calculated data for the Rietveld refinement of $(Rb_2OH)LaNb_2O_7$ neutron diffraction data. Observed data are indicated by crosses, calculated pattern by a red solid line, the bottom blue curve is the difference plot, and the green curve is the background. Reflection at ~ 2.2 Å is attributed to the vanadium sample holder.

Tabulation of crystallographic data from neutron diffraction for (Rb₂OH)LaNb₂O₇

Table S2.Crystallographic Data for (Rb₂OH)LaNb₂O₇ from neutron data.

Atom	Site	X	у	Z	$U_{iso}(A^2)$	g
Rb	2g	0	0	0.3531(7)	0.021(1)	1
La	1a	0	0	0	0.006(2)	1
Nb	2h	0.5	0.5	0.1502(5)	0.007(2)	1
O ₁	2h	0.5	0.5	0.2651(6)	0.032(2)	1
O_2	1c	0.5	0.5	0	0.028(4)	1
O ₃	4i	0	0.5	0.1283(4)	0.014(1)	1
O_4	1d	0.5	0.5	0.5	0.066(7)	1
Н	40	0.25	0.5	0.5	0.026(2)	0.25

P4/mmm; Z = 1,a = 3.9132(1) Å, c = 14.757(1) Å, Volume = 225.97(1) Å³

 $R_p = 5.15\%,\, R_{wp} = 3.52\%,\, \chi^2 = 4.29,$ and g = occupation factor