Министерство образования и науки Российской Федерации Санкт-Петербургский политехнический университет Петра Великого Институт прикладной математики и информатики

Лабораторная работа №12 по дисциплине Численные методы

«Решение задачи Коши для ОДУ 1 порядка методами Рунге-Кутты»

Выполнил студент гр.5030102/20001

Дрекалов Н.С.

Преподаватель

Козлов К.Н.

Санкт-Петербург 2023

Оглавление

Формулировка задачи	3
Формализация	3
Решение задачи Коши с помощью метода Рунге-Кутты	3
Предварительный анализ задачи	3
Контрольные тесты	5
Численный анализ метода	6
Иллюстрация работы метода	6
Исследование точности метода	8
Вывол	10

Формулировка задачи

Необходимо численно решить задачу Коши для ОДУ 1-го порядка с помощью метода Рунге-Кутты 3-го порядка.

Формализация

- Пусть задана задача Коши: y' = f(x, y) и y(a) = 0, где функция f удовлетворяет условию Липшица по у. Также пусть $D = \{(x, y) \mid a \le x \le b, -\infty < y < \infty\}$ и функция f(x, y) непрерывна на D.
- Необходимо найти табличную функцию, являющуюся решением задачи Коши с заданной точностью с помощью метода Рунге-Кутты.

Решение задачи Коши с помощью метода Рунге-Кутты

Алгоритм метода:

Вычисление следующего y_+ из предыдущих с шагом h выполняется в 3 шага:

1.
$$k_1 = f(x, y)$$

2.
$$k_2 = f\left(x + \frac{h}{2}, y + \frac{h}{2}k_1\right)$$

3.
$$k_3 = f(x + h, y - h * k1 + 2 * h * k_2)$$

4.
$$y_+ = y_- + \frac{h}{6}(k_1 + 4k_2 + k_3)$$

ОДУ, данное для решения: $y' = 2x(x^2 + y)$

Задача Коши: y(a) = e (из известного также точного решения $y = e^{x^2} - x^2 - 1$ находится $a \approx 1.299$)

Предварительный анализ задачи

Удовлетворение условию Липшица:

• $f(x,y) = 2x(x^2 + y)$ удовлетворяет условию Липшица по у. В уравнении $|f(x,y_1) - f(x,y_2)| \le L|y_1 - y_2|$ - L можно взять равным 2x

Непрерывность:

• Функция f непрерывна на всей области определения.

Тестовый пример к методам

Mecmobour nouvep
$f(x,y) = 2x(x^2+y)$, $mp: y=e^{x^2}-x^2-1$
Genaen Heckonsko marob c nomonyoro
Hogoro: x=1,299. y=2,718 Jh=004
Waz h:
$k_0 = f(x, y) = /1/495$ $k_0 = f(x + \frac{1}{2}; y + h(\frac{k_1}{2}) = /2,363$
k3 = f(x+h, y-hkth-2k2)=13,503
y= y+ 6 * (k, + 9ko + ks) = 3,214, x = x+h=1,339 Gobruse c movesous:
Omn. overdra siente 004%
Waz h:
$k_1 = f(x, y) = 13,40.8$ $k_2 = f(x + \frac{1}{2}; y + h = 14,484$
k3=f(x+h,y-k,h+2hk2)=15,856
y+ = y+ 6(k, + 4k2 + k3) = 3,815, x4 = 1,379 ext-x2-1≈3,795, cm n. au. oxaeo 0,5%-zracum. ybeine.

Контрольные тесты

Построим графики зависимостей

- Точного и полученного значений для двух фиксированных значений шага на отрезке (h=0.15 и h=0.1).
- Ошибки на отрезке для этих значений.
- Изменения шага по отрезку (для точности 10^{-6}).
- Фактической погрешности от заданной точности

Численный анализ метода

Исследования будут проводиться на отрезке [1.299; 2.5]

Иллюстрация работы метода

Рисунок 1. График зависимости точного и полученного значений для двух фиксированных значений шага на отрезке

Рисунок 2. График зависимости относительной ошибки от х

Из рисунков 1 и 2 видно, что ошибка «накапливается» с увеличением х, что может привести к большой ошибке на правом краю при увеличении длины исследуемого отрезка.

Рисунок 3. График зависимости максимальной ошибки от заданной точности

Из графика видно, что точность достигается: график зависимости ниже отмеченной биссектрисы

Рисунок 4. График изменения шага по отрезку

Из графика видно, что шаг уменьшается при движении к правому краю отрезка, что происходит из-за того, что необходимо «компенсировать» нарастающую ошибку, которая наблюдается на Рисунке 2.

Вывод

В результате выполнения лабораторной работы удалось решить задачу Коши для заданного уравнения методом Рунге-Кутты 3-го порядка с заданным шагом и заданной точностью. Из полученный результатов следует, что данный метод с при фиксированном шаге следует использовать лишь на небольших отрезках, либо же достигать необходимой точности, используя правило Рунге в каждой точке.