2. Próbkowanie i kwantyzacja

wernik.zut.edu.pl/td/probkowanie-i-kwantyzacja/

Uwaga: Studencie! – na koniec zajęć laboratoryjnych **bezwzględnie zaktualizuj** swoje repozytorium/e-dysk, zawierające prace z zajęć laboratoryjnych tego przedmiotu. Brak systematycznych aktualizacji repozytorium może zostać uznany za brak dokumentacji postępu w realizacji zadań laboratoryjnych, co może skutkować oceną niedostateczną.

Skrót z teorii:

Ton prosty:

Ton prosty reprezentowany jako dźwięk prosty o przebiegu sinusoidalnym o częstotliwości f, okresie T i pulsacji $\omega=2\pi f$, można opisać wzorem:

$$s(t) = A\sin(\omega t + \varphi) = A\sin(2\pi ft + \varphi)$$

gdzie A to amplituda, t to czas w danej chwili, $2\pi ft$ jest kątem zmiennym w czasie (zależnym od t), a φ stałym przesunięciem w fazie.

[Frac C. - "O sygnałach bez całek"]

Funkcja tonu prostego reprezentuje sygnał ciągły w dziedzinie czasu i wartości $s(t), t \in \mathbb{R}$.

$$s(t) = A \sin(2\pi f t + \varphi)$$

Kąt przesunięcia w fazie $\,arphi\,$ jest wartością kąta w chwili $\,t_0=0\,$. Poniższa animacja wizualizuje jaką wartość przyjąłby kąt przesunięcia w fazie gdyby chwila $\,t_0\,$ zaczęła się w danym momencie okresu.

[https://commons.wikimedia.org/wiki/File:Sinus-visualisation.gif]

Próbkowanie:

Próbkowanie to określenie wartości funkcji (np. s(t)) w zadanych równych odstępach co Δt jednostek czasu.

Okres próbkowania $\,T_s\,$ jest to czas pomiędzy ustaleniem wartości kolejnych próbek sygnału, $\,T_s=\Delta t\,.$

Częstość pobierania próbek określa się mianem częstotliwości próbkowania f_s , wylicza się ją ze wzoru $f_s=\frac{1}{T_s}$.

Zgodnie z prawem Shannona-Nyquista częstotliwość pobierania próbek z sygnału nie powinna być mniejsza niż dwukrotność szerokości pasma próbkowanego sygnału.

Kwantyzacja:

Kwantyzacja w dużym uproszeniu jest to dopasowanie określonej wartości funkcji do zadanej rozdzielczości bitowej. Ponieważ w komputerowych systemach byłoby uciążliwe przechowywać i przetwarzać wiele próbek sygnału jako liczby zmienno-przecinkowe o bardzo dużym zakresie, stosuje się właśnie kwantyzację.

W praktyce elektroniczne układy wykonujące próbkowanie i kwantyzację (ADC – ang. Analog to Digital Converter), zapisują odczytaną/wyznaczoną wartość sygnału analogowego jako liczbę całkowitą.

W przypadku liniowej kwantyzacji zakres amplitudy sygnału jest dzielony jest na 2^q równych przedziałów (mowa tu o rozdzielczości kwantyzacji). Odczytana/wyznaczona wartość sygnału jest mapowana na numer przedziału w którym się znajduje. Tak odczytany numer przedziału jest przechowywany jako próbka sygnału.

W systemach komputerowych bardzo często spotykaną metodą na przechowywanie sygnału analogowego w postaci spróbkowanej i skwantyzowanej liniowo jest <u>PCM (ang. Pulse-Code Modulation)</u> w wariancie LPCM.

Istnieją też sposoby kwantyzacji liniowej gdzie zakres amplitudy sygnału jest dzielony symetrycznie w sposób logarytmiczny na przedziały o nie równych zakresach, tak aby więcej małych zakresów znajdowało się w okolicy zera. Taki sposób kwantyzacji jest stosowany do sygnałów o przeważająco małej amplitudzie, aby zachować jak największą dokładność.

Ponieważ na laboratoriach wykonywana jest jedynie programowa symulacja, kwantyzacja odbywa się w sposób niejawny poprzez operowanie zakresem zmiennych i ewentualnym ich przycięciem.

Zadanie:

Wykonaj w formie programistycznej implementacji poniżej przedstawione zadania.

1) Napisz sparametryzowaną funkcję wyznaczającą sygnał tonu prostego s(t) w dziedzinie liczb rzeczywistych. Wygeneruj wykres dla $t \in \langle 0; \widehat{A} \rangle$, jako parametry inicjalizujące przyjmij: $A=1.0~[{\rm V}]$, $f=\widehat{B}~[{\rm Hz}]$, częstotliwość próbkowania f_s dopasuj tak aby wykres sygnału był czytelny. $\varphi=\widehat{C}\cdot\pi~[{\rm rad}]$

Będzie to już spróbkowany lecz jeszcze nie skwantyzowany sygnał.

- 2) Napisz funkcję kwantyzującą sygnał z zadania pierwszego do zadanej rozdzielczości kwantyzacji $q=16\to 2^q$. Wygeneruj wykres skwantyzowanego sygnału.
- 3) Wygeneruj wykres sygnału z zadania drugiego zmniejszając o połowę f_s i q.

Łącznie w wyniku działania twojego kodu powinno zostać wygenerowanych 3 wykresów z prawidłowo oznaczonymi osiami i wartościami.

Kody i wykresy spakuj w katalog i umieść na swoim repozytorium.

< Poprzedni temat

Wydrukuj instrukcję
Następny temat >