Chapter 3 Special Section

Karnaugh Maps

3A.1 Introduction

- Simplification of Boolean functions leads to simpler and faster circuits.
- Simplifying functions using identity laws is time-consuming and error-prone.
- This section presents Karnaugh Maps
 (Kmaps), an easy, systematic method for reducing Boolean functions.

- A Kmap is a matrix consisting of rows and columns that represent the output values of a Boolean function.
- The output values placed in each cell are derived from the minterms of a function.
- A minterm is a Boolean product that contains all variables exactly once, either complemented or not complemented.

- The minterms for a function having the inputs x and y are x'y', x'y, xy', and xy.
- Consider the Boolean function, F(x,y) = xy + xy'
- Minterm table:

 Minterm table of a function with variables x, y, z:

Minterm	Х	Y	Z	
X'Y'Z'	0	0	0	
X'Y'Z	0	0	1	
X'Y Z'	0	1	0	
X'Y Z	0	1	1	
X Y'Z'	1	0	0	
X Y'Z	1	0	1	
X Y Z'	1	1	0	
XYZ	1	1	1	

3A.2 Deriving Kmaps from Truth Tables

$$F(x, y) = (x'y) + (xy') + (xy)$$

	40	1
3	sc' y'	>c'y
	- x y'	25
		(

Х	Y	F_(x,y)
0	0	0
0	1	1
1	0	1
1	1	1

3A.2 Deriving Kmaps from Truth Tables

- A Kmap has a cell for each minterm.
- This means that it has a cell for each line of the truth table of a function.
- Example:

- We can reduce the function of the Kmap to its simplest terms by finding neighbored 1s that can be collected into groups that are powers of two.
- Possible group sizes are 1, 2, 4, 8, 16, ...

- In our example, we have two such groups.
 - Can you find them?

- We see that both groups are powers of two and that the groups overlap.
- The next slide gives guidance for selecting Kmap groups.

green =
$$y=1$$

Pink = $x=1$
 $f = y + x$

The **rules** of Kmap simplification are:

- Groups can contain 1s only; no 0s.
- Groups can be formed only at right angles; diagonal groups are not allowed.
- The group sizes must be a power of 2 even if it contains a single 1.
- The groups must be made as large as possible.
- Groups can overlap and wrap around the sides of the Kmap.

х	У	z	xz'+ y
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

 Notice that the values for the yz combination is not a normal binary sequence.

$$F(X,Y,Z) = X'Y'Z + X'YZ + XY'Z + XYZ$$

– What is the largest group of 1s that is a power of 2?

- This group tells us that changes in the variables x and y have no influence on the value of the function: They are irrelevant.
- This means that the function,

F(X,Y,Z) = X'Y'Z + X'YZ + XY'Z + XYZreduces to F(z) = z.

X	Z 00	01	11	10
0	0	1	1	0
1	0	1	1	0

A more complicated Kmap:

$$F(X,Y,Z) = X'Y'Z' + X'Y'Z + X'YZ + XY'Z' + XYZ'$$

Its Kmap is shown below. There are (only) two

groupings of 1s.

- Can you find them?

X	Z 00	01	11	10
0	1	1	1	1
1	1	0	0	1

- The pink group wraps around the sides of a Kmap.
- This group tells us that the values of x and y are not relevant to the term of the function that is represented by the group.
- The reduced term of this group is z'

What about the green group in the top row?

- The green group tells us that only the value of x is relevant in that group.
- x is complemented in that row, so the reduced term of corresponding to this group is X'.
- The reduced function the sum of terms of all groups:
 F(X,Z) = X' + Z'

Recall that we had six minterms in our original function!

 General format of a Kmap of a function with 4 variables and 16 minterms:

Example (only non-zero minterms shown):

$$F(W,X,Y,Z) = W'X'Y'Z' + W'X'Y'Z + W'X'YZ' + W'XYZ' + WX'YZ' + WX'YZ' + WX'YZ' + WX'YZ'$$

- Can you identify (only) three groups in this Kmap?

Recall that groups can overlap and wrap around.

- The three groups consist of:
 - A purple group entirely within the Kmap at the right.
 - A pink group that wraps the top and bottom.
 - A green group that spans the corners.
- We have three terms in our final function:

$$F(W,X,Y,Z) = W'Y' + X'Z' + W'YZ'$$

- It is possible to have a choice as to how to pick groups within a Kmap, while keeping the groups as large as possible.
- The different functions that result from the groupings below are logically equivalent.

- Consider the function F(w,x,y,z) that returns whether the quotient wx/yz has a remainder
- Examples:
 - $01_2/10_2 = 1/2$ has a remainder, output: 1
 - $11_2/11_2 = 3/3$ has no remainder, output: 0
 - $10_2/00_2 = 2/0$ is an **invalid input**, output: undefined
- Circuits must be designed such that invalid inputs will never happen
- In a Kmap, we don't need to care whether the output corresponding to an invalid input is 0 or 1

 Consider the function F(w,x,y,z) that returns whether the quotient wx/yz has a remainder

Y X	z 00	01	11	10
00	×			
01	×		1	1
11	X			1
10	×		1	

- The cross X indicates 'don't care' cases (division by 0)
- When building groups, we are free to include or ignore the X's

 Consider the function F(w,x,y,z) that returns whether the quotient wx/yz has a remainder

Y WX	Z 00	01	11	10
00	×			
01	X		1	1
11	X			1
10	×		1	

- Simplified function F(w,x,y,z) = xz' + w'xy + wx'yz
- We included some X's in order to get larger groups

Second example:

One possible solution:

$$F(W,X,Y,Z) = W'Y' + YZ$$

Another possible solution:

$$F(W,X,Y,Z) = W'Z + YZ$$

The truth table of:

$$F(W,X,Y,Z) = W'Y' + YZ$$

differs from the truth table of:

$$F(W,X,Y,Z) = W'Z + YZ$$

 However, the values for which they differ, are the inputs for which we have don't care conditions.

WX Y	Z 00	01	11	10
00	X	1	1	X
01		×	1	
11	×		1	
10			1	

3A Summary

- Kmaps provide an easy graphical method for simplifying Boolean functions.
- A Kmap is a matrix consisting of the outputs of the minterms of a Boolean function.
- In this section, we have discussed 2- 3- and 4input Kmaps. This method can be extended to
 any number of inputs through the use of
 multiple tables.

3A Summary

Recapping the rules of Kmap simplification:

- Groupings can contain only 1s; no 0s.
- Groups can be formed only at right angles; diagonal groups are not allowed.
- The number of 1s in a group must be a power of 2 – even if it contains a single 1.
- The groups must be made as large as possible.
- Groups can overlap and wrap around the sides of the Kmap.
- Use don't care conditions when you can.

3A Exercise

- Build a Kmap corresponding to the following truth table
- Derive the simplified function via building groups

Α	В	С	D	Out
0	0	0	0	0
0	0	0	1	1
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0
1	1	1	1	1