Goddard Rocket 1D Optimal Control

Paul Hawkins

July 2024

Overview

Objective: numerically solve the Goddard Rocket optimal control problem

- "Puzzle pieces"
 - Framework for creating an optimal control problem phase
 - Implementation of Goddard Rocket dynamics
 - Implementation of solver using CasADi

CasADi Nonlinear Optimization Framework

- Provides framework for implementation of differential algebraic systems
- Allows for symbolic definition of variables for optimization problem
- Offers different solvers, including IPOPT

minimize:
$$f(x,p)$$
 x $x_{
m lb} \leq x \leq x_{
m ub}$ subject to: $g_{
m lb} \leq g(x,p) \leq g_{
m ub}$

Creating OCP solver framework

- Hermite-Simpson collocation to discretize the phases in time
- Approximate states and controls as polynomials on each interval
- Use defect to constrain dynamics
- Implementation
 - OCP phase as abstract base class
 - OCP class containing OCP phases
 - Used to link phases
 - Goddard Rocket class—child class of OCP Phase; contains rocket dynamics

Basic Goddard Problem

- Classic optimal control problem simulating 1D rocket dynamics
- Optimal control for this set of initial values is of form bang-singular-bang
 - Max thrust
 - Singular arc: optimal speed where $F_{drag} = F_{gravity}$
 - Zero thrust glide to apex

$$\dot{h} = v,$$

$$\dot{v} = \frac{1}{m} [T(t) - D_0 v^2 \exp(h/h_{ref}),$$

$$\dot{m} = T(t)/c$$

Where

$$T_{max} = 200lb, g = 32.174 \, m/s^2$$

 $D_0 = 5.4915 \times 10^{-5}, h_{ref} = 23800 \, ft,$
 $h_0 = 0, v_0 = 0, m_0 = 3, m_{min} = 1$

Betts, John, Practical Methods for Optimal Control and Estimation Using Nonlinear Programming, Second Edition

Single Phase Solution

- Optimizer selects bang-singular-bang control
- Similar to ICLOCS2 example
 - Finer mesh yields better results

ICLOCS2: A MATLAB Toolbox for Optimization Based Control -

Example: Goddard Rocket (Single Phase)

Three phase formulation

- Optimizer free to vary length of phases and control in phase 2
 - Phase 1: max control input
 - Phase 2: free control input
 - Phase 3: zero control input
- State variables are linked across phases
 - control is not (to match ICLOCS2 examples)
- Similar noisy control input

Adding a path constraint

- Singular arc: control should maintain velocity at which drag force = gravity losses
- Often not well formulated for numerical optimal control
- Applying path constraint on the control in second phase removes freedom with optimizer and fixes the problem

$$0 = T(t) - D_0 v^2 \exp\left(-\frac{h}{h_{ref}}\right) - mg$$
$$-\frac{mg}{1 + 4\left(\frac{c}{v}\right) + 2\left(\frac{c^2}{v^2}\right)} \left[\frac{c^2}{h_{ref}g}\left(1 + \frac{v}{c}\right) - 1 - \frac{2c}{v}\right]$$

Betts, John, Practical Methods for Optimal Control and Estimation Using Nonlinear Programming, Second Edition

Path constraint improves control

Prescribed control with path constraint match example from literature

ICLOCS2: A MATLAB Toolbox for Optimization Based Control -

Example: Goddard Rocket (Multi-Phase)

Velocity and altitude smooth with new control

Takeaways

- Singular control can lead to numerical difficulties
 - These manifest differently with different solvers and initial conditions
 - This problem can be alleviated with additional constraints
- Creating optimal control framework simplifies the process of implementing optimal control problem

Potential future paths of exploration

- Adding more complexity to rocket dynamics
 - 3dof rocket model
 - Engine gimbal as additional control
 - Gravity as a vector → gravity turn
 - Effects of ambient pressure on rocket performance
- Explore two-stage rocket to orbit
- Orbital transfers