Proyecto TinySQLb Algoritmos y Estructura de Datos I

Nombre: Jorge Alberto Marín Navarro

Carné: 2024174059

Curso: Algoritmos y Estructura de Datos I CE-1103

Proyecto: TinySQLb with C# 100 100 100 Profesor: Leonardo Araya

Tabla de Contenidos

1.	. Introducción al desarrollo del proyecto	
2.	Breve Descripción del Problema	3
3.	Descripción de la Solución	3
4.	Diseño General	4
	4.1 Diagrama de Clases UML	Toomalácias
	4.2 Patrones de Diseño Aplicados	de Costa Rica

2

Documentación de TinySQLb

I. INTRODUCTION

El presente documento describe el desarrollo de un sistema de base de datos denominado TinySQL, implementado para permitir la ejecución de consultas SQL básicas mediante el uso de PowerShell y C#. El proyecto está enfocado en la creación, manipulación, y administración de una base de datos sencilla que soporta operaciones SQL como CREATE, INSERT, DELETE, UPDATE y SELECT. TinySQL ha sido desarrollado para proporcionar una forma ligera y eficiente de manejar bases de datos sin la necesidad de un sistema de gestión de bases de datos convencional.

II. Breve Descripción del Problema

La gestión de datos estructurados es fundamental en cualquier aplicación moderna, sin embargo, muchas soluciones existentes requieren sistemas de gestión de bases de datos complejos que a menudo son difíciles de configurar y mantener. El objetivo de este proyecto es ofrecer una alternativa ligera para gestionar bases de datos, permitiendo la manipulación y consulta de datos de manera simple, todo a través de un entorno basado en scripts que pueda ser usado por cualquier usuario con conocimientos básicos de SQL.

III. Descripción de la Solución

El sistema TinySQL permite realizar operaciones básicas sobre una base de datos, incluyendo creación de tablas, inserción de datos, actualización de registros, y eliminación de entradas, así como la consulta de información mediante el lenguaje SQL.

II. REQUERIMIENTOS E IMPLEMENTACIÓN

- Módulo de PowerShell para la Ejecución de Consultas (Execute-MyQuery): Se creó un módulo en PowerShell para permitir la ejecución de consultas SQL desde un script. Esta función admite parámetros para indicar el archivo de script, el puerto, y la dirección IP. Los resultados se muestran en la terminal en formato de tabla.
 Durante el desarrollo se utilizó QueryFile para gestionar los scripts SQL y procesar cada sentencia.
- Creación de Bases de Datos y Tablas: Para la creación de bases de datos se utilizaron comandos SQL estándar como CREATE DATABASE y CREATE TABLE. Estos comandos permiten

- gestionar la estructura de la base de datos y sus tablas de manera sencilla, generando archivos binarios que representan cada tabla.
- Índices en Columnas de Tablas: Se implementaron índices para columnas utilizando CREATE INDEX. Esto mejoró la eficiencia de las consultas, permitiendo evitar valores duplicados en las columnas indexadas y acelerando la búsqueda de registros. Alternativas consideradas incluyeron la implementación de un sistema de hashing para índices, pero finalmente se optó por árboles B debido a su eficiencia.
- Consultas SQL Básicas: Se desarrollaron operaciones de INSERT, UPDATE, DELETE, y SELECT. Los comandos se procesan utilizando C# y el almacenamiento se realiza en archivos binarios. Problemas encontrados incluyeron dificultades con el soporte de valores NULL y los tipos de datos DATE, que fueron resueltos implementando verificaciones manuales y utilizando representaciones estándar.
- Validaciones de Índice Único: Para evitar duplicados en campos únicos (como ID), se implementaron validaciones en la operación INSERT que aseguran que no se puedan agregar registros con valores repetidos.

Alternativas Consideradas:

- Bases de Datos en Memoria vs
 Archivos Binarios: Consideramos utilizar
 una base de datos en memoria para una
 mayor velocidad, pero decidimos que la
 persistencia de datos era más importante
 para nuestro caso de uso.
- Patrones de Árboles para Índices:
 Consideramos diferentes tipos de estructuras de árbol (BTree vs AVL), optando por BTree debido a sus mejores características de balanceo automático.

III. LIMITES Y PROBLEMAS ENCONTRADOS

Manejo de Tipos de Datos Complejos:
 Una de las principales limitaciones fue la incapacidad de manejar tipos de datos complejos o relaciones entre tablas,

limitándonos a tipos básicos como INTEGER, VARCHAR y DATETIME.

• Consultas SQL Complejas: El sistema solo soporta consultas básicas. No se implementó soporte para uniones (JOIN) o funciones agregadas (SUM, AVG, etc.).

REFERENCIAS

- [1] Elmasri, R., & Navathe, S. B. (2016). Fundamentals of database systems (7^a ed.). Pearson..
- [2] Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994). Design patterns: Elements of reusable object-oriented software. Addison-Wesley..
- [3] Richards, M., & Ford, N. (2020). Fundamentals of software architecture. O'Reilly Media.
- [4] Snover, J. (2006). Monad manifesto. Microsoft. https://learn.microsoft.com/en-us/powershell/scripting/community/jeffrey-snover-the-monad-manifesto.
- [5] Microsoft. (n.d.). SQL documentation. https://learn.microsoft.com/enus/sql/?view=sql-server-ver15

Diagrama UML:

