Differentiation

Find the derivative of the followings with respect to x.

1. Basic type:

i)
$$2 + x + 2x + ax + x^3$$

ii)
$$\frac{1}{x} + \frac{2}{x} + \frac{1}{3x^2} + \frac{a}{2b} + x^{-3}$$

iii)
$$2 \sin 2x + a \cos bx + a \tan x$$

iv)
$$e^{2x} + 2\sin 2x + 2a^{2x} + 2^{2x}$$

v)
$$\log_a x + 2\log_2 3x + 2\ln x + \log_{10} x$$

2. Complex type:

i)
$$e^{2lnx} + a^{x^2} + a^{sinx}$$

ii)
$$\sin \ln x + \cos \ln x + \ln \cos x$$

iii)
$$\sqrt{\sin x^3} + a^{\ln \cos x}$$

iv)
$$\sin^2 \ln(x^2) + \cos^2 \ln(\sec x)$$

vi)
$$\ln \tan x + 10^{\ln \sin x}$$

vii)
$$\sin^{-1} \tan^{-1} x + \tan^{-1} 3x$$

viii)
$$\tan^{-1} \sqrt{\frac{1-\cos 2x}{1+\cos 2x}}$$

3. By applying uv formula: $\frac{d}{dx}(uv) = u\frac{d}{dx}v + v\frac{d}{dx}u$

- i) $x \sin x$
- ii) $\sin x \cos x$
- iii) $ax^3 \sin x + bx^2 \cos x$
- iv) $ax^2 \ln x + 6e^{2x} \ln a^x$
- v) $xe^x \ln x + \sin 3x \cos 3x \tan 3x$
- vi) $xe^{\cos x} \ln \sin x + xa^{\sin x} \ln a^x$

4. By applying $\frac{u}{v}$ formula: $\frac{d}{dx} \left(\frac{u}{v} \right) = \frac{v \frac{d}{dx} u - u \frac{d}{dx} v}{v^2}$

i)
$$\frac{1-\sin x}{1-\cos x}$$

$$1-\cos x$$

 $2x-\sin x$

ii)
$$\frac{2x-\sin^2 x}{x^2}$$

ii)
$$\frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}}$$

iv)
$$\frac{\sin x}{1-\cos x}$$

$$v) \qquad \frac{x \ln x}{\sin x \cos x}$$

 $\sin 2x = 2\sin x \cos x$

$$1 - \cos 2x = 2\sin^2 x$$

$$1 + \cos 2x = 2\cos^2 x$$

5. By applying u^v formula: $\frac{d}{dx}(u^v) = u^v[lnu\frac{d}{dx}v + v\frac{d}{dx}lnu]$

- i) x^x
- ii) x^{x^x}
- iii) $\sin x^{\cos x}$
- iv) $x^{\frac{1}{x}}$
- v) x^{e^x}
- vi) $\cot x^{\tan x}$

6. Miscellneous

- i) Find the derivative of $\ln \tan^{-1} x$ with respect to $\tan^{-1} x$.
- ii) Find the derivative of $\sin 4x$ with respect to 2x.

7. Implicit Function:

- i) $y = 3x^3 + x^2 5x + 6$
- ii) $x^3 + y^2 + 3y 4x = 2$
- iii) $xy + 2y + 3x^2 = 0$
- iv) $x^n + y^n = a^n$

8. Application of derivative:

- Find the equation of the tangent line of the curve $y = 1 x + 2x^2 3x^3$ at the point (1,-1).
- ii) Find the equation of the tangent line of the circle $x^2 + y^2 + 2x 5y + 1 = 0$ at the point (1, 1).
- iii) A motors passes $s = \frac{1}{2}t^3 t^2 + 2t + 5$ m at t sec. Find the velocity and acceleration at the end of 5 sec.

9. Find the maximum and minimum value.

- i) $f(x) = x^3 15x^2 + 16x + 6$
- ii) $f(x) = x^2 4x + 5$
- iii) $f(x) = 4e^x + 9e^{-x}$