MCMC and Statistical learning

Announcements

- A2 posted, sign up and create your teams
- Midterm exam 10/26 6:30pm-7:45pm
 - Mostly multiple choice
 - Review questions posted
 - Online using Canvas
- Final exam
 - Friday 12/16 7:40pm-9:40pm
 - Online using Canvas
- Don't forget the quiz

Markov chains

Suppose there's an 80% chance of sun on day 0.
 What is the probability of sun on day 3?

$$P(Q_{3} = \stackrel{\checkmark}{>}) = P(Q_{3} = \stackrel{\checkmark}{>})P(Q_{2} = \stackrel{\checkmark}{>}) + P(Q_{3} = \stackrel{\checkmark}{>})P(Q_{2} = \stackrel{\checkmark}{>})P(Q_{2} = \stackrel{\checkmark}{>})$$

$$= 0.6P(Q_{2} = \stackrel{\checkmark}{>}) + 0.1P(Q_{2} = \stackrel{\checkmark}{>})$$

$$= 0.6(0.6P(Q_{1} = \stackrel{\checkmark}{>}) + 0.1P(Q_{1} = \stackrel{\checkmark}{>})) + 0.1(0.4P(Q_{1} = \stackrel{\checkmark}{>}) + 0.9P(Q_{1} = \stackrel{\checkmark}{>}))$$

$$= 0.6(0.6(0.6P(Q_{0} = \stackrel{\checkmark}{>}) + 0.1P(Q_{0} = \stackrel{\checkmark}{>})) + 0.1(0.4P(Q_{0} = \stackrel{\checkmark}{>}) + 0.9P(Q_{0} = \stackrel{\checkmark}{>})))$$

$$+ 0.1(0.4(0.4P(Q_{0} = \stackrel{\checkmark}{>}) + 0.1P(Q_{0} = \stackrel{\checkmark}{>})) + 0.9(0.4P(Q_{0} = \stackrel{\checkmark}{>}) + 0.9P(Q_{0} = \stackrel{\checkmark}{>})))$$

$$= 0.6(0.6(0.6(0.8) + 0.1(0.2)) + 0.1(0.4(0.8) + 0.9(0.2)))$$

$$+ 0.1(0.4(0.6(0.8) + 0.1(0.2)) + 0.9(0.4(0.8) + 0.9(0.2)))$$

$$= 0.275$$

Markov chains

Suppose there's an 80% chance of sun on day 0.
 What is the probability of sun on day 3?

$$B=\left[egin{array}{ccc} 0.6 & 0.4 \\ 0.1 & 0.9 \end{array}
ight] \qquad w=\left[egin{array}{ccc} 0.8 \\ 0.2 \end{array}
ight] \ (B^T)^3w=\left[egin{array}{ccc} 0.275 \\ 0.725 \end{array}
ight] \ \mathrm{P(X_3=cloudy)} \ \end{array}$$

Stationary distributions

- For an ergodic chain, a stationary distribution exists
 - ergodic: all states are recurrent and aperiodic
 - stationary distribution: for large t, the probability of being in state i at time t depends only on the transition probabilities
 - the stationary distribution π is the vector satisfying

$$B^T\pi=\pi$$

Q: At any moment in time, what's the probability that the frog is on pad 1?

A: P(Pad=1) = ?

Q: At any moment in time, what's the probability that the frog is on pad 1?

A: P(Pad=1) = ?

Stationary distributions

- For an ergodic chain, a stationary distribution exists
 - ergodic: all states are recurrent and aperiodic
 - stationary distribution: for large t, the probability of being in state i at time t depends only on the transition probabilities
 - the stationary distribution π is the vector satisfying

$$B^T\pi=\pi$$

How do we compute π ?

Stationary distribution of Markov chain

What is the stationary distribution of this chain?

```
>> % e.g. in Matlab:
>> [v d]=eigs([0.6 0.4; 0.1 0.9]',1)
  -0.24253562503633
  -0.97014250014533
                                                        \pi = \begin{bmatrix} 0.2 \\ 0.8 \end{bmatrix}
>> v/sum(v)
ans =
   0.20000000000000
   0.80000000000000
```

Back to Markov Chain Monte Carlo (MCMC)

- Recall we want to estimate some distribution P(X)
 - But inference is too hard to compute it directly
- Basic idea: Construct a Markov Chain whose stationary distribution is exactly P(X)
 - Then take random walks on the Markov Chain
 - If we walk long enough, sampling from the Markov Chain is exactly equivalent to sampling from P(X)

MCMC in practice

- Might take a long time for samples to be close to the stationary distribution – to "mix"
 - The "burn-in" or "warm-up" time
- The burn-in time depends on the structure of the chain and the transition probabilities
 - When might the burn-in time be particularly long?
- It's possible to compute bounds on the burn-in time,
 by spectral analysis of the transition matrix
 - I.e. computing eigenvalues and eigenvectors of the Markov Chains' transition matrix
 - But this is completely unhelpful in practice why?

Practical solutions

- Construct a small number of identical Markov chains
 - Take random walks on each of the chains for a large number of time steps, starting from different initial states
 - Run the chains until the samples seem to be coming from the same distribution across all (or most) of the chains
 - Now use each of the chains to generate (estimated) samples from the posterior distribution

Statistical learning

Hidden Markov Models (HMMs)

- More formally, an HMM consists of:
 - Transition probabilities

$$p_{ij} = P(Q_{t+1} = j | Q_t = i)$$

Initial state distribution

$$w_i = P(Q_0 = i)$$

Emission probabilities

$$e_i(a) = P(O_t = a | Q_t = i)$$

Learning in General

- Agent has made observations (data)
- Now must make sense of it (model hypotheses)
- Why?
 - Hypotheses alone may be important (e.g., in basic science)
 - For inference (e.g., forecasting)
 - To take sensible actions (decision making)
- A basic component of economics, social and physical sciences, engineering, ...

• Suppose we want to learn how to calculate the circumference of a circle from its radius.

• Which is the best model?!

Machine Learning vs. Statistics

- Machine Learning ≈ automated statistics
- Today
 - Statistical learning (aka Bayesian learning)
 - Maximum likelihood (ML) learning
 - Maximum a posteriori (MAP) learning
 - Learning Bayes Nets (R&N 20.1-3)
- Future lectures try to do more with even less data
 - Neural nets
 - Support vector machines

– ...

Candy Example

- Candy comes in 2 flavors, cherry and lime
- Manufacturer makes 5 types of bags:

- h1 and h5 are equally common. h2 is twice as common as h1, h4 is twice as common as h5, and h3 is twice as common as h2.
- Suppose we draw
 O

Candy Example

- Candy comes in 2 flavors, cherry and lime
- Manufacturer makes 5 types of bags:

- h1 and h5 are equally common. h2 is twice as common as h1, h4 is twice as common as h5, and h3 is twice as common as h2.
- Suppose we draw
 O

```
P(h1) = p(h5)

P(h2) = 2p(h1)

P(h4) = 2p(h5)

P(h3) = 2p(h2)

P(h1) + 2p(h1) + 4p(h1) + 2p(h1) + p(h1) = 1 => p(h1) = 0.1, p(h2) = 0.2...
```

Bayesian Learning

- Main idea: Compute the probability of each hypothesis, given the data
- Data **d**:
- Hypotheses: h₁,...,h₅

Bayesian Learning

Main idea: Compute the probability of each

hypothesis, given the data

Data d:

Hypotheses: h₁,...,h₅

 $P(h_i|d)$

We want this...

 $P(d|h_i)$

But all we have is this!

Using Bayes' Rule

- $P(h_i|d) = \alpha P(d|h_i) P(h_i)$ is the **posterior**
 - (Recall, $1/\alpha = P(\mathbf{d}) = \sum_i P(\mathbf{d} | h_i) P(h_i)$)
- P(d|h_i) is the likelihood
- P(h_i) is the hypothesis prior

Computing the Posterior

- Assume draws are independent
- Let $P(h_1),...,P(h_5) = (0.1, 0.2, 0.4, 0.2, 0.1)$
- d = {• d = {

$$\begin{array}{lll} P(d \,|\, h_1) = 0 & P(\textbf{d} \,|\, h_1) P(h_1) \approx 0 & P(h_1 \,|\, \textbf{d}) = 0 \\ P(d \,|\, h_2) = 0.25^5 & P(\textbf{d} \,|\, h_2) P(h_2) \approx 1.9 \text{e-4} & P(h_2 \,|\, \textbf{d}) \approx 1.2 \text{e-3} \\ P(d \,|\, h_3) = 0.5^5 & P(\textbf{d} \,|\, h_3) P(h_3) \approx 1.2 \text{e-2} & P(h_3 \,|\, \textbf{d}) \approx 0.078 \\ P(d \,|\, h_4) = 0.75^5 & P(\textbf{d} \,|\, h_4) P(h_4) \approx 4.7 \text{e-2} & P(h_4 \,|\, \textbf{d}) \approx 0.29 \\ P(\textbf{d} \,|\, h_5) P(h_5) \approx 0.1 & P(h_5 \,|\, \textbf{d}) \approx 0.62 \\ & P(\textbf{d}) \approx 0.16 \end{array}$$

Posterior Hypotheses

Let $P(h_1),...,P(h_5) = (0.1, 0.2, 0.4, 0.2, 0.1)$

Candy Example

- Candy comes in 2 flavors, cherry and lime
- Manufacturer makes 5 types of bags:

- h1 and h5 are equally common. h2 is twice as common as h1, h4 is twice as common as h5, and h3 is twice as common as h2.
- Suppose we draw
 O
- Which bag are we holding? Which flavor will we draw next?

Predicting the Next Draw

•
$$P(X|\mathbf{d}) = \sum_{i} P(X|h_{i},\mathbf{d})P(h_{i}|\mathbf{d})$$

= $\sum_{i} P(X|h_{i})P(h_{i}|\mathbf{d})$

Probability that next candy drawn is a lime

$$\begin{array}{ll} P(h_1|\textbf{d}) = 0 & P(X|h_1) = 0 \\ P(h_2|\textbf{d}) \approx 1.2e-3 & P(X|h_2) = 0.25 \\ P(h_3|\textbf{d}) \approx 0.078 & P(X|h_3) = 0.5 \\ P(h_4|\textbf{d}) \approx 0.29 & P(X|h_4) = 0.75 \\ P(h_5|\textbf{d}) \approx 0.62 & P(X|h_5) = 1 \end{array} \qquad P(X|\textbf{d}) \approx 0.890$$

P(Next Candy is Lime | d)

Let $P(h_1),...,P(h_5) = (0.1, 0.2, 0.4, 0.2, 0.1)$

Data: All our samples are limes.

Properties of Bayesian Learning

- If exactly one hypothesis is correct, then the posterior probability of the correct hypothesis will tend toward 1 as more data is observed
- The effect of the prior distribution decreases as more data is observed

Hypothesis Spaces often Intractable

- But: a hypothesis is a joint probability table over state variables
- What if we don't have a reasonable prior?
- In practice, we'll need to use additional information about the <u>structure</u> of the model
 - E.g. conditional independent assumptions
 - Some parametric form for the hypotheses

Learning the bias of a coin

- We have a coin with unknown P(H)
- Let P(H) be θ (hypothesis)
- Flips are i.i.d. independent, identically distributed
- We flip N times to get a sequence of outcomes D. Of these, c flips are heads (data).
- Consider P(D | θ), the *likelihood of the data given the model*.

We flip coin N times, c of these are heads. Coin has unknown Θ =P(H).

We flip coin N times, c of these are heads. Coin has unknown Θ =P(H).

Maximum Likelihood Estimation (MLE)

- Say we have a set of training samples $D=(x_1,...,x_N)$
- We've decided on a parametric model for the distribution, having parameters $\boldsymbol{\theta}$
- We define a likelihood function measuring the probability of the data for a given model θ ,

$$P(D|\theta) = \prod_{i}^{N} P(D_i|\theta)$$

• In MLE, we want to find a model that maximizes the probability of the observed data given the model,

$$\theta^* = \arg\max_{\theta} P(D|\theta)$$

Other Closed-Form MLE results

- Multi-valued variables: take fraction of counts for each value
- Continuous Gaussian distributions: take average value as mean, standard deviation of data as standard deviation

Maximum Likelihood Properties

- As the number of data points approaches infinity, the MLE approaches the true estimate
- With little data, MLEs can vary wildly

MLE in candy example

Let $P(h_1),...,P(h_5) = (0.1, 0.2, 0.4, 0.2, 0.1)$

Data: All our samples are limes.

• What is the MLE?

MLE in candy example

Let $P(h_1),...,P(h_5) = (0.1, 0.2, 0.4, 0.2, 0.1)$

Data: All our samples are limes.

• What is the MLE?

 $h_{ML} = argmax_i P(d|h_i)$

What is probability next candy is lime?

Disadvantages of ML Estimation

- Tells us nothing about the certainty of our estimates
 - Note that we get exactly the same answer whether we flip 1 head out of 3, or 1,000 out of 3,000
- If we have no observations, can't estimate anything
 - Or: if we have a large number of variables, some values will never be seen and we can conclude nothing about them
- No way to incorporate prior evidence
 - E.g. that most coins are unbiased (or not very biased)

Maximum A Posteriori Estimation

- Maximum a posteriori (MAP) estimation
- Idea: use the hypothesis prior to get a better initial estimate than ML, without full Bayesian estimation
 - "Most coins I've seen have been fair coins, so I won't let the first few tails sway my estimate much"
 - "Now that I've seen 100 tails in a row, I'm pretty sure it's not a fair coin anymore"

Maximum A Posteriori

- $P(\theta | \mathbf{d})$ is the posterior probability of the hypothesis, given the data
- $argmax_{\theta} P(\theta | d)$ is known as the **maximum a posteriori** (MAP) estimate
- Posterior of hypothesis θ given data $\mathbf{d} = \{d_1, ..., d_N\}$
 - $P(\theta | \mathbf{d}) = 1/\alpha P(\mathbf{d} | \theta) P(\theta)$
 - Max over θ doesn't affect α
 - So MAP estimate is $argmax_{\theta} P(d|\theta) P(\theta)$

Maximum a Posteriori

Let $P(h_1),...,P(h_5) = (0.1, 0.2, 0.4, 0.2, 0.1)$

Data: All our samples are limes.

$$h_{MAP} = argmax_i P(h_i | d)$$
 $h_{ML} = argmax_i P(d | h_i)$

# samples:	0	1	2	3	4	5	6	7	8	9	10
h _{MAP}	h3	h3	h4	h5							
h _{ML}		h5									

What is probability next candy is lime?

Advantages of MAP and MLE over Bayesian estimation

- Involves an optimization rather than a large summation
 - Local search techniques
- For some types of distributions, there are closedform solutions that are easily computed

Next class

Morea bout ML and MAP

MLE in Bayes Networks

 The likelihood function can be factored into a product over variables and over exemplars,

$$P(D| heta) = \prod_i^N P(D_i| heta)$$
 where $P(D| heta_j) = \prod_i^N P(d_j^i| ext{Pa}(X_j))$

where $\theta = (\theta_1, ..., \theta_M)$, θ_j is the CPD for variable X_j , $D = (d_1, d_2, ..., d_N)$, and each $d_i = (d_i^1, d_i^2, ..., d_i^M)$

- If all variables can be observed, each of these factors can be maximized individually
 - So we can estimate parameters of each variable's probability distribution individually
- Key result: ML estimate of Bayes Net parameters is given by the set of ML estimates of CPDs of each variable.

Maximum Likelihood for BN

 For any BN, the ML parameters of any CPT can be derived by the fraction of observed values in the data, conditioned on matched parent values

$$N=1000$$

Bayes Net ML Algorithm

- Input: BN with nodes $X_1,...,X_n$, dataset $D=(d_1,...,d_N)$
 - Each $d_i = (d_i^1, d_i^2, ... d_i^M)$ is a sample with values for <u>all</u> variables
- For each node X with parents Y₁,...,Y_k:
 - For all $y_1 \in Val(Y_1),..., y_k \in Val(Y_k)$
 - For all x∈Val(X)
 - Count the number of times (X=x, $Y_1=y_1,..., Y_k=y_k$) is observed in **D**. Let this be m_x
 - Count the number of times $(Y_1=y_1,...,Y_k=y_k)$ is observed in **D**. Let this be m. (note $m=\Sigma_x m_x$)
 - Set $P(x|y_1,...,y_k) = m_x / m$ for all $x \in Val(X)$