《整体微分几何初步》习题答案

§0.1 E³ 中的曲线

- 1. 求下列曲线的弧长, 并写出弧长为参数的方程:
 - (1) 双曲螺线 $\mathbf{x} = (a \cosh t, a \sinh t, bt)$;

 - (2) 悬链面 $\mathbf{x} = (t, a \cosh \frac{t}{a}, 0);$ (3) 曳物线 $\mathbf{x} = (a \cos t, a \ln(\sec t + \tan t) a \sin t, 0).$

解: (1) $s(t) = \int_0^t \sqrt{a^2 \cosh 2t + b^2} dt$; (2) $s(t) = a \sinh \frac{t}{a}$;

- (3) $s(t) = a \ln \sec t$.
- 2. 证明一般参数下曲线 $\mathbf{x}(t)$ 的曲率和挠率的计算公式是:

$$k(t) = \frac{|\mathbf{x}' \times \mathbf{x}''|}{|\mathbf{x}'|^3}; \quad \tau(t) = \frac{(\mathbf{x}', \mathbf{x}'', \mathbf{x}''')}{|\mathbf{x}' \times \mathbf{x}''|^2}.$$

证明: 直接计算得 $\mathbf{x}' = \mathbf{T} \cdot \frac{ds}{dt}, \mathbf{x}'' = k\mathbf{N} \cdot (\frac{ds}{dt})^2 + \mathbf{T} \cdot \frac{d^2s}{dt^2}$. 所以 $\mathbf{x}' \times \mathbf{x}'' = k\mathbf{B} \cdot (\frac{ds}{dt})^3$, k(t) 即得. 而 $\mathbf{x}''' \cdot \mathbf{B} = k \cdot \tau \cdot (\frac{ds}{dt})^3$, 所以 $(\mathbf{x}', \mathbf{x}'', \mathbf{x}''') = \tau \cdot |\mathbf{x}' \times \mathbf{x}''|^2$.

3. 证明: 圆柱螺线的主法线与它的中心轴正交, 它的从法线与它的中心轴作 成定角,它的曲率中心轨迹仍然是圆柱螺线.

证明: 设圆柱螺线为 $\mathbf{x}(s) = (r\cos\sigma s, r\sin\sigma s, a\sigma s)$, 其中 $r, a, \sigma = \frac{1}{\sqrt{r^2 + a^2}}$ 为 常数. 直接计算 $\mathbf{N}(s) = (-\cos \sigma s, -\sin \sigma s, 0), \mathbf{B}(s) = \sigma(a \sin \sigma s, -a \cos \sigma s, r),$ 中心轴为 (0,0,1). 所以 $\mathbf{N}(s) \cdot (0,0,1) = 0, \mathbf{B}(s) \cdot (0,0,1) = \sigma r.$ 曲率中心为 $\mathbf{x}(s) + \frac{1}{k(s)}\mathbf{N}(s) = ((r - \frac{1}{\sigma^2 r})\cos \sigma s, (r - \frac{1}{\sigma^2 r})\sin \sigma s, a\sigma s),$ 也是一个圆柱螺线.

4. 设 $\mathbf{x}(s)$ 是单位球面上以弧长为参数的曲线, 证明: 存在向量 $\mathbf{e}(s)$, $\mathbf{f}(s)$, $\mathbf{g}(s)$ 和

函数
$$\lambda(s)$$
, 使得
$$\begin{cases} \dot{\mathbf{e}} = \mathbf{f} \\ \dot{\mathbf{f}} = -\mathbf{e} \\ \dot{\mathbf{g}} = -\lambda(s)\mathbf{f} \end{cases} + \lambda(s)\mathbf{g}$$

证明: \Leftrightarrow e = x, f = \dot{x} , g = x $\times \dot{x}$.

5. 设 $\mathbf{x}(s) = (x^1(s), x^2(s))$ 是平面上以弧长为参数的曲线, { $\mathbf{T}(s)$, $\mathbf{N}(s)$ } 是它的 Frenet 标架, 证明:

$$\mathbf{N}(s) = (-\dot{x}^2(s), \dot{x}^1(s)), \quad \ddot{\mathbf{x}}(s) = k_r(s)(-\dot{x}^2(s), \dot{x}^1(s)).$$

证明: $\mathbf{T}(s) = \dot{\mathbf{x}}(s) = (\cos \alpha(s), \sin \alpha(s)),$ 其中 $\cos \alpha(s) = \dot{\mathbf{x}}^1(s), \sin \alpha(s) = \dot{\mathbf{x}}^2(s).$ 所以 $\mathbf{N}(s) = (\cos(\alpha(s) + \frac{\pi}{2}), \sin(\alpha(s) + \frac{\pi}{2})) = (-\sin \alpha(s), \cos \alpha(s)) = (-\dot{x}^2(s), \dot{x}^1(s)).$ $\ddot{\mathbf{x}}(s) = \dot{\mathbf{T}} = k_r \mathbf{N}(s) = k_r (-\dot{x}^2(s), \dot{x}^1(s)).$

6. 证明:

- (1) 除直线外, 一条曲线的所有切线不可能同时是另一条曲线的切线.
- (2) 曲率和挠率都是(非零)常数的正则曲线必是圆柱螺线.

证明: (1) 设曲线 $C: \mathbf{x} = \mathbf{x}(s)$ 的切线同时为曲线 $C^*: \mathbf{x}^* = \mathbf{x}^*(s^*)$ 的切线, 其中 s 和 s^* 分别为它们的弧长参数. 则

$$\mathbf{x}^*(s^*) - \mathbf{x}(s) = \lambda(s)\mathbf{T}(s), \tag{1.1}$$

其中 T(s) 为切线方向. 两边对 s 求导, 得到

$$\left(\frac{ds^*}{ds} - 1 - \frac{d\lambda}{ds}\right)\mathbf{T}(s) - \lambda(s)k(s)\mathbf{N}(s) = 0,$$
(1.2)

所以 $\lambda(s)k(s) = 0$. 如果 $\lambda = 0$, 则 C 和 C^* 为同一条曲线. 如果 k = 0, 则 C 为直线.

- (2) 已知圆柱螺线的曲率和挠率为常数. 则根据曲线论基本定理可知, 除一运动外, k 与 τ 唯一地决定了曲线.
- 7. 设两曲线可建立 1-1 对应, 使它们在对应点有相同的主法线, 则称它们为 **Bertrand 曲线**, 其中一条称为另一条的**侣线**. 证明: 它们在对应点的距离为常数, 切线作成定角.

证明: 设曲线 $C: \mathbf{x} = \mathbf{x}(s)$ 和 $C^*: \mathbf{x}^* = \mathbf{x}^*(s^*)$ 的弧长参数分别为 s 和 s^* . 由题 意可设

$$\mathbf{x}^*(s^*) - \mathbf{x}(s) = \lambda(s)\mathbf{N}(s), \tag{1.3}$$

且 $N = N^*$. 两边对 s 求导可得

$$\mathbf{T}^* \frac{ds^*}{ds} = (1 - k\lambda)\mathbf{T} + \frac{d\lambda}{ds}\mathbf{N} + \lambda\tau\mathbf{B}.$$
 (1.4)

因为 $\mathbf{T}^* \perp \mathbf{N}$, 所以 $\frac{d\lambda}{ds} = 0$, $\lambda = const.$. 此时 (1.4) 化为

$$\mathbf{T}^* \frac{ds^*}{ds} = (1 - k\lambda)\mathbf{T} + \lambda\tau\mathbf{B}.$$
 (1.5)

记 $\mathbf{T}^* = \cos \theta \mathbf{T} + \sin \theta \mathbf{B}$, 两边对 s 求导, 再分别与 \mathbf{T} 和 \mathbf{B} 作内积, 得到 $\sin \theta \cdot \theta' = \cos \theta \cdot \theta' = 0$, 所以 $\theta = const.$.

8. 证明:

- (1) 任何平面曲线都是 Bertrand 曲线.
- (2) 若 $k\tau \neq 0$, 则空间曲线为 Bertrand 曲线的充要条件是存在常数 $\lambda(\neq 0)$ 和 μ , 使得 $\lambda k + \mu \tau = 1$.

证明: (1) 设 $C: \mathbf{x} = \mathbf{x}(s)$ 是平面曲线, 只要证明 $\mathbf{x}^*(s) = \mathbf{x}(s) + \lambda \mathbf{N}(s)$ 的主法向量也是 \mathbf{N} 即可, 其中 $\lambda = const.$.

(2) 如果曲线 $C: \mathbf{x} = \mathbf{x}(s)$ 和 $C^*: \mathbf{x}^* = \mathbf{x}^*(s^*)$ 是 Bertrand 曲线, 它们的弧长 参数分别为 s 和 s^* . 则由第 7 题可知, $\cos\theta = (1 - \lambda k) \frac{ds}{ds^*}$, $\sin\theta = \lambda \tau \frac{ds}{ds^*}$, 其中 $\theta = const.$, λ 为非零常数. 令 $\mu = \lambda \cot\theta$, 则 $\lambda k + \mu \tau = 1$.

反之, 由曲线 $C: \mathbf{x} = \mathbf{x}(s)$ 作曲线 $C^*: \mathbf{x}^* = \mathbf{x} + \lambda \mathbf{N}$, 弧长参数为 s^* . 两边对 s 求导, 并运用 $\lambda k + \mu \tau = 1$, 得到

$$\mathbf{T}^* \frac{ds^*}{ds} = (1 - k\lambda)\mathbf{T} + \lambda\tau\mathbf{B} = \mu\tau\mathbf{T} + \lambda\tau\mathbf{B}.$$
 (1.6)

上式两边取模长, 得到 $(\frac{ds^*}{ds})^2 = (\mu^2 + \lambda^2)\tau^2$, 所以

$$\mathbf{T}^* = \pm \frac{1}{\sqrt{\mu^2 + \lambda^2}} (\mu \mathbf{T} + \tau \mathbf{B}). \tag{1.7}$$

两边再对 s 求导, 即得 $N^* \parallel N$.

9. 求满足条件 $\tau = ck (c)$ 为非零常数, k > 0 的曲线 $\mathbf{x}(s)$.

解: 当 c = 0 时, $\tau = 0$, 此时曲线为平面曲线. $c \neq 0$ 时, 由 Frenet 公式可知

$$\begin{cases} \mathbf{T}' = k\mathbf{N} \\ \mathbf{N}' = -k\mathbf{T} + ck\mathbf{B} \\ \mathbf{B}' = -ck\mathbf{N} \end{cases}$$

引入参数 $t(s) = \int_0^s k(\sigma) d\sigma$ 后, 上述方程组化为

$$\begin{cases} \frac{d\mathbf{T}}{dt} = \mathbf{N} \\ \frac{d\mathbf{N}}{dt} = -\mathbf{T} + c\mathbf{B} \\ \frac{d\mathbf{B}}{dt} = -c\mathbf{N} \end{cases}$$
(1.8)

于是有
$$\frac{d^2\mathbf{N}}{dt^2} = -\mathbf{N} - c^2\mathbf{N} = -\omega^2\mathbf{N}$$
, 其中 $\omega = \sqrt{1 + c^2}$. 于是有
$$\mathbf{N} = \cos \omega t \mathbf{a} + \sin \omega t \mathbf{b}, \tag{1.9}$$

其中 a, b 为常向量. 把 (1.9) 代入 (1.8) 第 1 式, 得到

$$\mathbf{T} = \frac{1}{\omega} (\sin \omega t \mathbf{a} - \cos \omega t \mathbf{b} + c \mathbf{f}), \tag{1.10}$$

其中 f 为常向量, c 为常数. 把 (1.9), (1.10) 代入 (1.8) 第 2 式, 得到

$$\mathbf{B} = -\frac{c}{\omega}(\sin \omega t \mathbf{a} - \cos \omega t \mathbf{b}) + \frac{1}{\omega}\mathbf{f}.$$
 (1.11)

则 (1.9), (1.10), (1.11) 为方程组 (1.8) 的通解. 为了保证在初始点 s=0 时 $\{\mathbf{T}(0), \mathbf{N}(0), \mathbf{B}(0)\}$ 为单位正交右旋标架, 要对常向量 $\mathbf{a}, \mathbf{b}, \mathbf{f}$ 加以一定的限制. 因为

$$\begin{cases} \mathbf{T}(0) = & -\frac{1}{\omega}\mathbf{b} + \frac{c}{\omega}\mathbf{f} \\ \mathbf{N}(0) = & \mathbf{a} \\ \mathbf{B}(0) = & \frac{c}{\omega}\mathbf{b} + \frac{1}{\omega}\mathbf{f} \end{cases}$$

因为标架 { $\mathbf{T}(0)$, $\mathbf{N}(0)$, $\mathbf{B}(0)$ } 与标架 { \mathbf{a} , \mathbf{b} , \mathbf{f} } 之间的变换矩阵是行列式等于 1 的正交阵, 因此只须选取常向量标架 { \mathbf{a} , \mathbf{b} , \mathbf{f} } 为单位正交右旋标架即可.

最后, 对 $\frac{d\mathbf{X}}{ds} = \mathbf{T}$ 积分即得曲线方程为

$$\mathbf{x}(s) = \frac{1}{\omega} \left(\int_0^s \sin \omega t(\sigma) d\sigma \cdot \mathbf{a} - \int_0^s \cos \omega t(\sigma) d\sigma \cdot \mathbf{b} + cs\mathbf{f} \right) + \mathbf{g},$$

其中 g 是常向量.

10. 设曲线 $\mathbf{x}_2(t)$ 在曲线 $\mathbf{x}_1(t)$ 的切线上, 并且在对应点它们的切向量相互正交, 则 $\mathbf{x}_2(t)$ 称为 $\mathbf{x}_1(t)$ 的**渐伸线**, 而 $\mathbf{x}_1(t)$ 称为 $\mathbf{x}_2(t)$ 的**渐缩线**. 现设 $\mathbf{x}(s)$ 是弧长参数曲线, $\mathbf{x}_1(s)$ 和 $\mathbf{x}_2(s)$ 是 $\mathbf{x}(s)$ 的两条不同的渐伸线. 证明 $\mathbf{x}_1(s)$ 和 $\mathbf{x}_2(s)$ 为 Bertrand 曲线对的充要条件是 $\mathbf{x}(s)$ 为平面曲线.

证明: 由题意可设

$$\mathbf{x}_{i}(s) = \mathbf{x}(s) + \lambda_{i}(s)\mathbf{T}(s), \tag{1.12}$$

$$\mathbf{T} \cdot \mathbf{T}_i = 0, \quad i = 1, 2, \tag{1.13}$$

其中 s_i 为 \mathbf{x}_i 的弧长参数. (1.8) 两边对 s 求导可得

$$\mathbf{T}_{i} \cdot \frac{ds_{i}}{ds} = \mathbf{T} + \lambda_{i}'\mathbf{T} + \lambda_{i}k\mathbf{N}, \tag{1.14}$$

结合 (1.9) 可得 $\mathbf{T}_i \parallel \mathbf{N}, \lambda_i = -s + C_i$, 其中 C_i 为常数. 所以

$$\mathbf{x}_i(s) = \mathbf{x}(s) + (-s + C_i)\mathbf{T}(s), \tag{1.15}$$

如果 $\mathbf{x}_1(s)$ 和 $\mathbf{x}_2(s)$ 为 Bertrand 曲线对, 则 $\mathbf{x}_2 - \mathbf{x}_1 = C\mathbf{N}_1$, $\mathbf{N}_1 \parallel \mathbf{N}_2$. 结 合 (1.11) 得到 ($C_2 - C_1$)**T** = C**N**₁, i.e. **T** || **N**₁. **T**₂ = ±**N** 两边对 s 求导, 得到

$$k_2 \mathbf{N}_2 \frac{ds_2}{ds} = \pm (-k\mathbf{T} + \tau \mathbf{B}). \tag{1.16}$$

因此 $\tau = 0$.

反之, 如果 $\tau = 0$, 由 (1.12) 可知 **T** || **N**₂. 所以 **x**₂ - **x**₁ = ($C_2 - C_1$)**N**₂.

11. 设 $C: \mathbf{x}(s)$ 是弧长参数曲线, 它的 Frenet 标架为 { $\mathbf{T}(s), \mathbf{N}(s), \mathbf{B}(s)$ }. 以下曲

$$C_1 : \mathbf{x} = \mathbf{T}(s), \quad C_2 : \mathbf{x} = \mathbf{N}(s), \quad C_3 : \mathbf{x} = \mathbf{B}(s)$$

分别称为 C 的切线, 主法线和从法线的**球面标线**. 若 s_i 为 $C_i(i = 1, 2, 3)$ 的弧 长,证明:

$$\left| \frac{ds_1}{ds} \right| = k(s), \quad \left| \frac{ds_2}{ds} \right| = \sqrt{k^2 + \tau^2}, \quad \left| \frac{ds_3}{ds} \right| = |\tau(s)|.$$

证明:

$$\mathbf{T}_{1} \frac{ds_{1}}{ds} = k(s)\mathbf{N},$$

$$\mathbf{T}_{2} \frac{ds_{2}}{ds} = -k(s)\mathbf{T} + \tau(s)\mathbf{B},$$

$$\mathbf{T}_{3} \frac{ds_{3}}{ds} = -\tau(s)\mathbf{N}.$$

两边分别求模长即可得证.

12. 证明: 曲线 C 的切线的球面标线为(部分)大圆的充要条件是 C 为平面曲 线; 曲线的主法线的球面标线永远不为常值曲线.

证明:设 $C: \mathbf{x}(s)$ 是弧长参数曲线, **T** 是其切线. 如果 C 是平面曲线, 则 ($\mathbf{x}(s)$) $\mathbf{x}(0)$) · $\mathbf{n}_0 = 0$. 两边对 s 求导得到 $\mathbf{T} \cdot \mathbf{n}_0 = 0$, 也就是说 \mathbf{T} 是平面曲线.

反之, 如果 $C^* : \mathbf{T}(s)$ 为大圆, 则对应的曲率和挠率分别为 $k^* = 1, \tau^* = 0$. 运用第 2 题结论计算 k^* , 得到 $\tau(s) = 0$. 如果 $\frac{d\mathbf{N}}{ds} = 0$, 则 $-k\mathbf{T} + \tau\mathbf{B} = 0$, $k = \tau = 0$, 矛盾.

2 §0.2 E³ 中的曲面

1. 设在 E^3 中已给出曲面 $f(x^1, x^2, x^3) = 0$, 其中 f 是光滑函数, 求该曲面的单位法向量和第一基本形式. 证明: 曲面 $x^1x^2x^3 = c^3$ (c 为常数) 在任何点的切平面与三个坐标平面所围成的四面体的体积是常数.

解: 设存在隐函数使得 $x^1 = g(x^2, x^3)$, 则该曲面可表示为

$$\mathbf{x}(x^2, x^3) = (g(x^2, x^3), x^2, x^3).$$

由 $f(x^1, x^2, x^3) = 0$ 可知 $\frac{\partial g}{\partial x^2} = -\frac{f_2}{f_1}$, $\frac{\partial g}{\partial x^3} = -\frac{f_3}{f_1}$, 其中 $f_i = \frac{\partial f}{\partial x^i}$, i = 1, 2, 3. 直接计算即得得

$$\mathbf{n} = \frac{(f_1, f_2, f_3)}{(f_1^2 + f_2^2 + f_3^2)^{\frac{1}{2}}},$$

$$I = (1 + \frac{f_2^2}{f_1^2})(dx^2)^2 + 2\frac{f_2 f_3}{f_1^2} dx^2 dx^3 + (1 + \frac{f_3^2}{f_1^2})(dx^3)^2.$$

证明: 过任意曲面上一点 (a_1, a_2, a_3) 的切平面方程为

$$(x^1 - a_1)a_2a_3 + (x^2 - a_2)a_1a_3 + (x^3 - a_3)a_1a_2 = 0,$$

与坐标轴分别交于点 $(3a_1,0,0)$, $(0,3a_2,0)$, $(0,0,3a_3)$. 所以体积为 $\frac{9}{3}|c|^3$.

2. 计算下列 Möbius 曲面的单位法向量:

 $\mathbf{x}(u,v) = (\cos u, \sin u, 0) + v(\sin \frac{u}{2} \cos u, \sin \frac{u}{2} \sin u, \cos \frac{u}{2}) \quad (-\pi < u < \pi, \quad -\phi < v < \phi).$

解:直接计算得

 $\mathbf{x}_1 \times \mathbf{x}_2 = (\cos \frac{u}{2} \cos u, \cos \frac{u}{2} \sin u, -\sin \frac{u}{2}) + \frac{v}{2} (\sin u (1 + \cos u), \sin^2 u - \cos u, -2 \sin^2 \frac{u}{2}),$

$$|\mathbf{x}_1 \times \mathbf{x}_2|^2 = 1 + \frac{3}{4}v^2 + 2v\sin\frac{u}{2}.$$

3. 下列方程中, 设 a > b > c 为常数:

$$\frac{(x^1)^2}{a-\lambda} + \frac{(x^2)^2}{b-\lambda} + \frac{(x^3)^2}{c-\lambda} = 1.$$

当 λ 分别在以下三个区间: $(-\infty,c)$ 、(c,b)、(b,a) 取值时, 我们分别可得一族 椭球面、一族单叶双曲面和一族双叶双曲面. 证明: 过空间不在坐标平面上

的每一点,都有这三族曲面的一张通过,并且它们在该点相互正交(**三重正交系**).

证明: 设空间中任意一点 (x^1, x^2, x^3) $(x^i \neq 0)$ 经过曲面 $\frac{(x^1)^2}{a-\lambda} + \frac{(x^2)^2}{b-\lambda} + \frac{(x^3)^2}{c-\lambda} = 1$, 即

$$f(\lambda) = (b-\lambda)(c-\lambda)(x^1)^2 + (a-\lambda)(c-\lambda)(x^2)^2 + (a-\lambda)(b-\lambda)(x^3)^2 - (a-\lambda)(b-\lambda)(c-\lambda) = 0.$$

由于 $f(-\infty) < 0$, f(c) > 0, f(b) < 0, f(a) > 0, 所以 $f(\lambda) = 0$ 在 $(-\infty, c)$ 、(c, b)、(b, a) 上 各有一根 $\lambda_1, \lambda_2, \lambda_3$.

由习题 1 可知, 三张曲面的法向量分别平行于 $\mathbf{n}_i = \left(\frac{x^1}{a-\lambda_i}, \frac{x^2}{b-\lambda_i}, \frac{x^3}{c-\lambda_i}\right)$. 所以对于 $i \neq j$,

$$\mathbf{n}_{i} \cdot \mathbf{n}_{j} \\
= \frac{(x^{1})^{2}}{(a - \lambda_{i})(a - \lambda_{j})} + \frac{(x^{2})^{2}}{(b - \lambda_{i})(b - \lambda_{j})} + \frac{(x^{3})^{2}}{(c - \lambda_{i})(c - \lambda_{j})} \\
= \frac{1}{\lambda_{j} - \lambda_{i}} \left\{ \left(\frac{(x^{1})^{2}}{(a - \lambda_{i})} - \frac{(x^{1})^{2}}{(a - \lambda_{j})} \right) + \left(\frac{(x^{2})^{2}}{(b - \lambda_{i})} - \frac{(x^{2})^{2}}{(b - \lambda_{j})} \right) + \left(\frac{(x^{3})^{2}}{(c - \lambda_{i})} - \frac{(x^{3})^{2}}{(c - \lambda_{j})} \right) \right\} \\
= 0.$$

4. 证明: 圆柱螺线 $\mathbf{x}(t) = (\cos t, \sin t, t)$ 的切线曲面是可展曲面, 但它的主法线曲面 (正螺面) 和从法线曲面都不是可展曲面.

证明: 切线曲面,主法线曲面和从法线曲面分别为

$$\mathbf{x}(t, s) = (\cos t, \sin t, t) + \frac{s}{\sqrt{2}}(-\sin t, \cos t, 1),$$

$$\mathbf{x}(t, s) = (\cos t, \sin t, t) + s(-\cos t, -\sin t, 0),$$

$$\mathbf{x}(t, s) = (\cos t, \sin t, t) + \frac{s}{\sqrt{2}}(\sin t, -\cos t, 1).$$

运用命题 2.1直接验证即得.

5. 若曲面上的参数曲线所构成的四边形对边长相等,则称为 Chebyshev 网. 证明: 在 Chebyshev 网下,曲面的第一基本形式可化为

$$I = (du^{1})^{2} + 2\cos\theta du^{1}du^{2} + (du^{2})^{2},$$

其中 θ 是参数曲线之间的交角. 例如, 平移曲面 $\mathbf{x}(u,v) = \mathbf{a}(u) + \mathbf{b}(v)$ 的参数网 就构成 Chebyshev 网.

证明: 在 (u,v) 参数曲线网下, 沿 u-参数曲线从点 (u,v_1) 到点 (u,v_2) 的距离 为 $\int_b^a \sqrt{g_{22}(u,v) \frac{dv}{dt} \frac{dv}{dt}} dt$. 因为参数曲线所构成的四边形对边长相等, 所以这个距离与 u 的选取无关, 也就是说 $g_{22}=g_{22}(v)$. 同理 $g_{11}=g_{11}(u)$. 此时第一基本 形式表示为

$$I = g_{11}(u)du^{2} + 2g_{12}(u, v)dudv + g_{22}(v)dv^{2}.$$

作坐标变换 $u^* = \int \sqrt{g_{11}(u)} du, v^* = \int \sqrt{g_{22}(v)} dv,$ 则

$$I = (du^*)^2 + 2 \frac{g_{12}}{\sqrt{g_{11}g_{22}}} du^* dv^* + (dv^*)^2,$$

而 $\cos \theta = \frac{g_{12}}{\sqrt{g_{11}g_{22}}}$. 对于平移曲线, $g_{11} = |\mathbf{a}'|^2(u)$, $g_{22} = |\mathbf{b}'|^2(v)$.

6. 证明: 单位球面 $\mathbf{x} = (\cos\theta\cos\varphi, \cos\theta\sin\varphi, \sin\theta)$ 的第一基本形式是 I =面 $\bar{I} = (dx^1)^2 + (dx^2)^2$ 共形对应 (Mercator 地图法).

证明:直接验证即可.

7. 证明: 可展曲面局部地仅是柱面、锥面或某一曲线的切线曲面.

证明: 直纹面方程为 $\mathbf{x}(t,v) = \mathbf{a}(t) + v\mathbf{l}(t)$.

当 $1 \times 1' = 0$ 时, $1 \parallel 1'$. 取 1 为单位向量, 则 $1 \cdot 1' = 0$. 所以 1' = 0. 1 为常向量, 所以这时直纹面为柱面.

当 $\mathbf{l} \times \mathbf{l}' \neq 0$ 时, $\mathbf{l}' \neq 0$. 这时, 能把直纹面的方程改写为 $\mathbf{x}(t,s) = \mathbf{b}(t) + s\mathbf{l}(t)$, 此时 $\mathbf{b}' \times \mathbf{l}' = 0$. 事实上, 令 $\mathbf{b}(t) = \mathbf{a}(t) + v(t)\mathbf{l}(t)$, 其中 v(t) 为待定函数. 因为 $0 = \mathbf{b}' \times \mathbf{l}' = \mathbf{a}' \times \mathbf{l}' + v\mathbf{l}' \times \mathbf{l}'$, 所以只要让 $v(t) = -\frac{\mathbf{a}' \times \mathbf{l}'}{\mathbf{l}' \times \mathbf{l}'}$ 即可. 再令 s = v - v(t) 即

在新参数下, 曲面为可展曲面等价与 $(\mathbf{b}', \mathbf{l}, \mathbf{l}') = 0$, 即向量 $\mathbf{b}', \mathbf{l}, \mathbf{l}'$ 共面.

当 $\mathbf{b}' \neq \mathbf{0}$ 时, 因为 \mathbf{b}' 与 \mathbf{l}' 相互垂直, 所以 $\mathbf{l} \parallel \mathbf{b}'$, 因此直纹面是由 \mathbf{b} 的切线 所组成,即为切线面.

当 $\mathbf{b}' = 0$ 时, \mathbf{b} =常向量, 这时直纹面是一个锥面.

8. 球面上与子午线交成定角的曲线称为斜驶线. 求斜驶线的方程.

解: 设单位球面为 $\mathbf{x}(\theta,\varphi) = (\cos\theta\cos\varphi,\cos\theta\sin\varphi,\sin\theta), \theta \in (-\frac{\pi}{2},\frac{\pi}{2}), \varphi \in$ $[0,2\pi]$. 子午线为

 $\mathbf{x}_1(\theta) = (\cos\theta\cos\varphi, \cos\theta\sin\varphi, \sin\theta),$

其单位切向量为

$$\mathbf{T}_1 = (-\sin\theta\cos\varphi, -\sin\theta\sin\varphi, \cos\theta).$$

设斜驶线为

$$\mathbf{x}_2(s) = (\cos \theta(s) \cos \varphi(s), \cos \theta(s) \sin \varphi(s), \sin \theta(s)),$$

则其单位切向量为

$$\mathbf{T}_2 = \frac{1}{\sqrt{\theta'^2 + \cos^2 \theta \varphi'^2}} ((-\sin \theta \cos \varphi, -\sin \theta \sin \varphi, \cos \theta)\theta' + (-\cos \theta \sin \varphi, \cos \theta \cos \varphi, 0)\varphi').$$

子午线与斜驶线交于定角 α , 也就是说

$$\cos \alpha = \mathbf{T}_1 \cdot \mathbf{T}_2$$

解得 $\varphi' = \pm \tan \alpha \frac{\theta'}{\cos \theta}$. 所以 $\varphi = \pm \tan \alpha \cdot \int \frac{d\theta}{\cos \theta} + C$, 其中 C 为常数.

3 §0.3 曲面上的曲率

1. 求双曲抛物面 $\mathbf{x} = (a(u^1 + u^2), b(u^1 - u^2), 2u^1u^2)$ 的主曲率 (a, b) 为正常数).

解:直接计算得

$$g_{11} = a^2 + b^2 + 4(u^2)^2$$
, $g_{12} = a^2 - b^2 + 4u^1u^2$, $g_{22} = a^2 + b^2 + 4(u^1)^2$,
 $h_{11} = h_{22} = 0$, $h_{12} = \frac{-2ab}{\sqrt{a^2(u^1 - u^2)^2 + b^2(u^1 + u^2)^2 + a^2b^2}}$ $(h_{12} < 0)$.

主曲率 λ 是方程

$$\lambda^{2} + \frac{2h_{12}g_{12}}{\det(g_{\alpha\beta})}\lambda - \frac{h_{12}^{2}}{\det(g_{\alpha\beta})} = 0,$$

则

$$\lambda = \frac{h_{12}}{\det(g_{\alpha\beta})}(-g_{12} \mp \sqrt{g_{11}g_{22}}).$$

2. 证明: 正则曲面上曲率线的微分方程可写为

$$\begin{vmatrix} (du^2)^2 & -du^1 du^2 & (du^1)^2 \\ g_{11} & g_{12} & g_{22} \\ h_{11} & h_{12} & h_{22} \end{vmatrix} = 0.$$

由此证明: 在无脐点的曲面上, 参数网为曲率线网的充要条件是 $g_{12} = h_{12} = 0$.

证明: 设 C 为曲率线, λ 为它的主曲率, 曲率线的切向 $d\mathbf{x} = du^i\mathbf{x}_i$ 为主方向. 由定义得到

$$\begin{cases} (h_{11} - \lambda g_{11})du^1 + (h_{12} - \lambda g_{12})du^2 = 0\\ (h_{12} - \lambda g_{12})du^1 + (h_{22} - \lambda g_{22})du^2 = 0 \end{cases}$$

等价与

$$\begin{cases} (h_{11}du^1 + h_{12}du^2) - \lambda(g_{11}du^1 + g_{12}du^2) = 0\\ (h_{12}du^1 + h_{22}du^2) - \lambda(g_{12}du^1 + g_{22}du^2) = 0 \end{cases}$$

因为 $(1,-\lambda)$ 是上述方程组的非零解,所以有

$$\begin{vmatrix} h_{11}du^1 + h_{12}du^2 & g_{11}du^1 + g_{12}du^2 \\ h_{12}du^1 + h_{22}du^2 & g_{12}du^1 + g_{22}du^2 \end{vmatrix} = 0.$$

也就是说

$$\begin{vmatrix} (du^2)^2 & -du^1 du^2 & (du^1)^2 \\ g_{11} & g_{12} & g_{22} \\ h_{11} & h_{12} & h_{22} \end{vmatrix} = 0.$$

如果参数曲线网为曲率线网,这时两个主方向 \mathbf{x}_1 , \mathbf{x}_2 正交,即 $g_{12}=0$.又因为 $W(\mathbf{x}_i)=k_i\mathbf{x}_i$,其中 k_i 为对应的主曲率,于是 $h_{12}=\mathbf{x}_1\cdot W(\mathbf{x}_2)=0$.

反之, 如果 $g_{12} = h_{12} = 0$, 由曲率线的微分方程可知

$$(g_{12}h_{22} - h_{11}g_{22})du^1du^2 = 0.$$

如果 $g_{12}h_{22} - h_{11}g_{22} = 0$, 即有 $k_1 = k_2$, 与该曲面不含脐点矛盾. 所以 $g_{12}h_{22} - h_{11}g_{22} \neq 0$. 因此 $du^1du^2 = 0$, 即 $u^1 = 常数$, 或 $u^2 = 常数都是曲率线, 也就是说两族坐标曲线均为曲率线.$

3. 计算曲面 $x^3 = f(x^1, x^2)$ 的第一和第二基本形式. 写出使平均曲率恒为零时 f 所满足的微分方程 (**极小微分方程**). 证明: $x^3 = a \arctan \frac{x^2}{x^1}$ (a 为常数) 是极小曲面

解: 记
$$f_i = \frac{\partial f}{\partial x^i}$$
, $f_{ij} = \frac{\partial^2 f}{\partial x^i \partial x^j}$, $i, j = 1, 2$. 直接计算得
$$g_{11} = 1 + f_1^2, \quad g_{12} = f_1 f_2, \quad g_{22} = 1 + f_2^2,$$

$$h_{11} = \frac{f_{11}}{\sqrt{1 + f_1^2 + f_2^2}}, \quad h_{12} = \frac{f_{12}}{\sqrt{1 + f_1^2 + f_2^2}}, \quad h_{22} = \frac{f_{22}}{\sqrt{1 + f_1^2 + f_2^2}}.$$

则 H = 0 时 f 满足微分方程

$$(1 + f_2^2)f_{11} - 2f_1f_2f_{12} + (1 + f_1^2)f_{22} = 0.$$

4. 求旋转曲面 $x = (f(t)\cos\theta, f(t)\sin\theta, t)$ 上的渐近线.

解:直接计算得

$$II = -\frac{f}{\sqrt{f'^2 + 1}}d\theta^2 + \frac{f''}{\sqrt{f'^2 + 1}}dt^2 = 0.$$

则该曲线的渐近线所满足的微分方程为

$$d\theta = \pm \sqrt{\frac{f^{\prime\prime}}{f}}dt.$$

5. 证明: 曲面为极小曲面的充要条件是, 曲面上存在两族正交的渐近线.

证明 1: 设渐近线方程 $h_{11}(du^1)^2 + 2h_{12}du^1du^2 + h_{22}(du^2) = 0$ 有两个解 (du^1, du^2) 和 $(d\bar{u}^1, d\bar{u}^2)$. 则

$$\frac{du^1}{du^2} + \frac{d\bar{u}^1}{d\bar{u}^2} = -2\frac{h_{12}}{h_{11}}, \quad \frac{du^1}{du^2}\frac{d\bar{u}^1}{d\bar{u}^2} = \frac{h_{22}}{h_{11}}.$$

曲面上存在两族正交的渐近线

$$\Leftrightarrow (\mathbf{x}_{1}du^{1} + \mathbf{x}_{2}du^{2}) \cdot (\mathbf{x}_{1}d\bar{u}^{1} + \mathbf{x}_{2}d\bar{u}^{2}) = 0$$

$$\Leftrightarrow g_{11}\frac{du^{1}}{du^{2}}\frac{d\bar{u}^{1}}{d\bar{u}^{2}} + g_{12}(\frac{du^{1}}{du^{2}} + \frac{d\bar{u}^{1}}{d\bar{u}^{2}}) + g_{22} = 0$$

$$\Leftrightarrow g_{22}h_{11} - 2g_{12}h_{12} + g_{11}h_{22} = 0$$

$$\Leftrightarrow H = 0.$$

证明 2: 曲面为极小曲面 $\Leftrightarrow k_1 + k_2 = 0$, 对应的主方向分别为 \mathbf{e}_1 , \mathbf{e}_2 . 则

$$< W(\mathbf{e}_1 + \mathbf{e}_2), \mathbf{e}_1 + \mathbf{e}_2 > = < W(\mathbf{e}_1 - \mathbf{e}_2), \mathbf{e}_1 - \mathbf{e}_2 > = 0,$$

所以 $\mathbf{e}_1 + \mathbf{e}_2$ 和 $\mathbf{e}_1 - \mathbf{e}_2$ 是两族正交的渐进方向.

反之, 如果有两族正交的渐进方向 ξ , η , 主方向为 \mathbf{e}_1 , \mathbf{e}_2 , 记 $\xi = \xi^i \mathbf{e}_i$, $\eta = \eta^i \mathbf{e}_i$. 则

$$0 = <\xi, \eta > = \xi^{1} \eta^{1} + \xi^{2} \eta^{2},$$

$$0 = < W\xi, \xi > = k_{1}(\xi^{1})^{2} + k_{2}(\xi^{2})^{2},$$

$$0 = < W\eta, \eta > = k_{1}(\eta^{1})^{2} + k_{2}(\eta^{2})^{2}.$$

所以

$$\frac{k_1}{k_2} = -(\frac{\xi^2}{\xi^1})^2 = -(\frac{\eta^1}{\eta^2})^2 = \frac{k_2}{k_1}.$$

则 $k_1 + k_2 = 0$, 或 $k_1 = k_2$ (舍去).

6. 证明: 若曲面与其 Gauss 映射的像成共形对应,则曲面必是球面或极小曲面.

证明: 在非脐点处曲取率线网,则 $f_{\alpha\beta} = \mathbf{n}_{\alpha}\mathbf{n}_{\beta} = k_{\alpha}k_{\beta}g_{\alpha\beta}$. 曲面与其 Gauss 映射的像成共形对应, $III = \varphi^2I$,则 $k_{\alpha}k_{\beta} = \varphi^2$. 所以 $k_1 = k_2$ 或 $k_1 + k_2 = 0$.

7. 证明: 上节习题 3 中的三重正交系的曲面交线都是所在曲面的曲率线 (**Dupin 定理**).

证明:设三族曲面分别为

$$S_1: F_1(x, y, z, u) = 0, \quad S_2: F_1(x, y, z, v) = 0, \quad S_3: F_1(x, y, z, w) = 0,$$

法向量分别为 (F_{ix}, F_{iy}, F_{iz}) , i = 1, 2, 3. 三族曲面正交 $\Leftrightarrow \frac{\partial (F_1, F_2, F_3)}{\partial (x, y, z)} = 1$. 因此可以作坐标变换 $(x, y, z) \mapsto (u, v, w)$, $\mathbf{x} = \mathbf{x}(x, y, z) = \mathbf{x}(u, v, w)$. 固定 u 表示 S_1 曲面,固定 u, v 表示 S_1 与 S_2 的交线,即 w—曲线. 依此类推.

固定 w, 在 S_3 上, $g_{12} = \mathbf{x}_u \cdot \mathbf{x}_v = 0$. 因为 $\mathbf{x}_w \perp \mathbf{x}_u$, $\mathbf{x}_w \perp \mathbf{x}_v$, 所以 $\mathbf{x}_w \perp (\mathbf{x}_u \times \mathbf{x}_v)$, 即 $\mathbf{n} \parallel \mathbf{x}_w$.

$$\mathbf{x}_{u} \cdot \mathbf{x}_{v} = \mathbf{x}_{u} \cdot \mathbf{x}_{w} = \mathbf{x}_{v} \cdot \mathbf{x}_{w} = 0$$

$$\Rightarrow \mathbf{x}_{uw} \cdot \mathbf{x}_{v} + \mathbf{x}_{u} \cdot \mathbf{x}_{vw} = \mathbf{x}_{u} \cdot \mathbf{x}_{wv} + \mathbf{x}_{uv} \cdot \mathbf{x}_{w} = \mathbf{x}_{v} \cdot \mathbf{x}_{uw} + \mathbf{x}_{uv} \cdot \mathbf{x}_{w} = 0$$

$$\Rightarrow \mathbf{x}_{u} \cdot \mathbf{x}_{vw} = \mathbf{x}_{v} \cdot \mathbf{x}_{uw} = \mathbf{x}_{w} \cdot \mathbf{x}_{uv} = 0$$

$$\Rightarrow h_{12} = \mathbf{n} \cdot \mathbf{x}_{uv} = \frac{\mathbf{x}_{w}}{|\mathbf{x}_{w}|} \cdot \mathbf{x}_{uv} = 0.$$

- 8. 证明:
 - (1) 除平面外, 直纹面为极小曲面的充要条件是它为正螺面.
 - (2) 旋转极小曲面必是悬链面.

证明: (1)正螺面 $\mathbf{x}(u,v) = (u\cos v, u\sin v, bv)$ 的第一、第二基本形式为

$$I = du^2 + (u^2 + b^2)dv^2$$
, $II = -\frac{2b}{\sqrt{b^2 + u^2}}dudv$.

直接计算得 H=0.

反之, 设直纹面方程为 $\mathbf{x}(u,v) = \mathbf{a}(u) + v\mathbf{l}(u)$, 其中 $\mathbf{l}(u) = 1$, $\mathbf{a}' \cdot \mathbf{l} = 0$, u 为 \mathbf{a} 的 弧长参数. 由极小性直接计算得

$$\begin{cases}
(\mathbf{l''}, \mathbf{l'}, \mathbf{l}) = 0 \\
(\mathbf{l''}, \mathbf{a'}, \mathbf{l}) + (\mathbf{a''}, \mathbf{l'}, \mathbf{l}) = 0 \\
(\mathbf{a''}, \mathbf{a'}, \mathbf{l}) = 0
\end{cases}$$
(3.1)

由 (3.1) 可知, l" 可由 l, l' 线性表示. 则 (l"", l", l') = 0, 即 l 为平面曲线.

由 (3.1) 可知, $k(\mathbf{N}, \mathbf{T}, \mathbf{l}) = 0$. k = 0 时, \mathbf{a} 为直线. 因为 $\mathbf{l} \perp \mathbf{T}$, 所以取 $\mathbf{l} = \mathbf{N}$, 则该直纹面为正螺面. 如果 $k \neq 0$, 则 $\mathbf{B} \cdot \mathbf{l} = 0$, 则可设 $\mathbf{l} = \mathbf{N}$. 代入 (3.2), 得到 $\tau' = 0$.

如果 $\tau = 0$, 则 **a** 为平面曲线, 则它的主法线曲面为平面. 如果 $\tau \neq 0$, 则由 (3.1) 得到 $k'\tau = 0$. 所以 k、 τ 为常数. 由第 1 节第 6 题可知 **a** 为圆柱螺线, 它的主法线曲面是正螺面.

(2)设旋转曲面方程为 $\mathbf{x}(u,v) = (f(v)\cos u, f(v)\sin u, v)$. 直接计算得到

$$H = 0 \Rightarrow (f')^2 + 1 = ff'',$$

即

$$\frac{f'}{f} = \frac{f'f''}{1 + (f')^2},$$

两边积分得 $f = c\sqrt{1 + (f')^2}$, 其中 c 为正的积分常数. 于是

$$f' = \pm \sqrt{(\frac{f}{c})^2 - 1},$$

即

$$dv = \pm \frac{df}{\sqrt{(\frac{f}{c})^2 - 1}},$$

两边积分后得到

$$\frac{v}{c} + b = \pm \cosh^{-1} \frac{f}{c},$$

其中 b 是另一积分常数. 于是

$$f = c \cosh(\frac{v}{c} + b),$$

这个旋转面即为悬链面.

9. 设 $x^3 = f(x^1) + g(x^2)$ 为极小曲面. 证明: 除相差一常数外, 它可写成 $ax^3 = \ln \frac{\cos ax^2}{\cos ax^1}$ (a 为常数), 称为 **Scherk 曲面**.

证明:直接计算得

$$g_{11} = 1 + f'^2$$
, $g_{12} = f'g'$, $g_{22} = 1 + f'^2$, $h_{11} = \frac{f''}{\sqrt{f'^2 + g'^2 + 1}}$, $h_{12} = 0$, $h_{22} = \frac{g''}{\sqrt{f'^2 + g'^2 + 1}}$.

则

$$H = 0$$

$$\Rightarrow (1 + g'^{2})f'' + (1 + f'^{2})g'' = 0$$

$$\Rightarrow \frac{f''}{1 + f'^{2}}(x^{1}) = -\frac{g''}{1 + g'^{2}}(x^{2}) = a = const.$$

$$\Rightarrow (\arctan f')' = \frac{f''}{1 + f'^{2}} = a, \quad (\arctan g')' = \frac{g''}{1 + g'^{2}} = -a$$

$$\Rightarrow f' = \tan(ax^{1} + C_{1}), \quad g' = \tan(-ax^{2} + C_{2})$$

$$\Rightarrow f = -\frac{1}{a}\ln(\cos ax^{1} + C_{1}) + C_{3}, \quad g = \frac{1}{a}\ln(\cos ax^{2} + C_{2}) + C_{4}$$

$$\Rightarrow f + g = \frac{1}{a}\ln\frac{\cos(ax^{2} + C_{2})}{\cos(ax^{1} + C_{1})} + C_{3} + C_{4}.$$

10. 证明: 曲面 $\mathbf{x}(u,v) = (3u(1+v^2) - u^3, 3v(1+u^2) - v^3, 3(u^2-v^2))$ 是极小曲面, 称为 **Enneper** 曲面.

证明:直接计算得

$$g_{11} = g_{22} = 9(1 + u^2 + v^2)^2, \quad g_{12} = 0,$$

 $h_{11} = -h_{22} = \frac{(12u^2, 12v^2, 6(1 - u^2 - v^2))}{1 + u^2 + v^2}, \quad h_{12} = 0.$

代入验证即可.

4 §0.4 曲面的局部理论

1. 设 $C: \mathbf{x}(u^1(s), u^2(s))$ 是曲面上以弧长为参数的可微曲线. 从 C 的一点 P 出发, 沿它的单位切向量 \mathbf{T} 存在一条测地线. 该测地线在点 P 的挠率称为 C 在

点 P 的**测地挠率**, 用 τ_g 表示. 利用 (4.6) 式证明:

$$\tau_g = \left(\frac{d\mathbf{n}}{ds}, \mathbf{T}, \mathbf{n}\right) = \frac{1}{\sqrt{det(g_{\alpha\beta})}} \begin{vmatrix} (\frac{du^2}{ds})^2 & -\frac{du^1}{ds} \frac{du^2}{ds} & (\frac{du^1}{ds})^2 \\ g_{11} & g_{12} & g_{22} \\ h_{11} & h_{12} & h_{22} \end{vmatrix}.$$

与上节的习题 2 相比较, 可得命题: 曲面上一条曲线为曲率线的充要条件是 沿该曲线的测地挠率为零.

证明: 测地线的主法向量 N || n. 所以

$$\tau_g = \frac{d\mathbf{N}}{ds} \cdot \mathbf{B} = \left(\frac{d\mathbf{N}}{ds}, \mathbf{T}, \mathbf{N}\right) = \left(\frac{d\mathbf{n}}{ds}, \mathbf{T}, \mathbf{n}\right).$$

又因为

$$(\mathbf{x}_1 \times \mathbf{x}_2) \cdot (\mathbf{x}_1 \times \mathbf{x}_2) = g_{11}g_{22} - g_{12}^2,$$

$$(\mathbf{n}_{\alpha} \times \mathbf{x}_{\beta}) \cdot (\mathbf{x}_1 \times \mathbf{x}_2) = \begin{vmatrix} \mathbf{n}_{\alpha} \times \mathbf{x}_1 & \mathbf{n}_{\alpha} \times \mathbf{x}_2 \\ \mathbf{x}_{\beta} \times \mathbf{x}_1 & \mathbf{x}_{\beta} \times \mathbf{x}_2 \end{vmatrix}.$$

代入上式即有

$$\tau_{g} = \frac{1}{ds^{2}} \left(\mathbf{n}_{\alpha} du^{\alpha}, \mathbf{x}_{\beta} du^{\beta}, \frac{\mathbf{x}_{1} \times \mathbf{x}_{2}}{|\mathbf{x}_{1} \times \mathbf{x}_{2}|} \right)
= \frac{1}{ds^{2}} \frac{1}{\sqrt{det(g_{\alpha\beta})}} \begin{vmatrix} -h_{\alpha 1} & -h_{\alpha 2} \\ g_{\beta 1} & g_{\beta 2} \end{vmatrix} du^{\alpha} du^{\beta}
= \frac{1}{\sqrt{det(g_{\alpha\beta})}} \begin{vmatrix} (\frac{du^{2}}{ds})^{2} & -\frac{du^{1}}{ds} \frac{du^{2}}{ds} & (\frac{du^{1}}{ds})^{2} \\ g_{11} & g_{12} & g_{22} \\ h_{11} & h_{12} & h_{22} \end{vmatrix}.$$

利用第 3 节习题 2 可知, 曲面上一条曲线为曲率线 \Leftrightarrow $\begin{vmatrix} (du^2)^2 & -du^1du^2 & (du^1)^2 \\ g_{11} & g_{12} & g_{22} \\ h_{11} & h_{12} & h_{22} \end{vmatrix} =$ $0 \Leftrightarrow \tau_g = 0.$

2. 利用测地极坐标系 (ρ, θ) 证明: K 为常数的曲面的第一基本形式局部地可 化为

(1)
$$K = 0$$
, $I = (d\rho)^2 + \rho^2 (d\theta)^2$;

(1)
$$K = 0$$
, $I = (d\rho)^2 + \rho^2 (d\theta)^2$;
(2) $K = a^2 > 0$, $I = (d\rho)^2 + \frac{1}{a^2} \sin^2(a\rho)(d\theta)^2$;
(3) $K = -a^2 < 0$, $I = (d\rho)^2 + \frac{1}{a^2} \sinh^2(a\rho)(d\theta)^2$.

(3)
$$K = -a^2 < 0$$
, $I = (d\rho)^2 + \frac{1}{a^2} \sinh^2(a\rho)(d\theta)^2$.

证明:运用 §1.4 习题 6, 正交网下 Gauss 曲率为

$$K = -\frac{1}{\sqrt{g_{11}g_{22}}} \left[\left(\frac{(\sqrt{g_{11}})_2}{\sqrt{g_{22}}} \right)_2 + \left(\frac{(\sqrt{g_{22}})_1}{\sqrt{g_{11}}} \right)_1 \right].$$

则测地极坐标系下

$$K = -\frac{(\sqrt{g_{22}})_{\rho\rho}}{\sqrt{g_{22}}}.$$

K=0时, $(\sqrt{g_{22}})_{\rho\rho}=0$. 对 ρ 积分后得到 $(\sqrt{g_{22}})_{\rho}=g(\theta)$,其中 $g(\theta)$ 为 θ 的函数. 因为 $\lim_{\rho\to 0}(\sqrt{g_{22}})_{\rho}=1$,所以 $(\sqrt{g_{22}})_{\rho}=1$. 再积分后得到 $\sqrt{g_{22}}=\rho+f(\theta)$. 运用 $\lim_{\rho\to 0}\sqrt{g_{22}}=0$ 得到 $f(\theta)=0$. 所以 $\sqrt{g_{22}}=\rho$, 即 $g_{22}=\rho^2$.

$$K = a^2 > 0$$
 时,

$$(\sqrt{g_{22}})_{\rho\rho} + a^2(\sqrt{g_{22}}) = 0,$$

所以

$$(\sqrt{g_{22}}) = A(\theta)\cos(a\rho) + B(\theta)\sin(a\rho).$$

运用 $\lim_{\rho\to 0} \sqrt{g_{22}} = 0$ 和 $\lim_{\rho\to 0} (\sqrt{g_{22}})_{\rho} = 1$ 得到

$$A(\theta) = 0, \quad B(\theta) = \frac{1}{a}.$$

$$K = -a^2 < 0$$
 时, 证明类似.

3. 在测地极坐标系 (ρ, θ) 中, ρ = 常数的曲线称为**测地圆**. 证明: K 为常数的曲面上测地圆有常测地曲率.

证明: 由习题 2 可知, 测地极坐标系 (ρ, θ) 下, K 为常数的曲面的第一基本形式局部地可表示为 $I = (d\rho)^2 + g_{22}(\rho)(d\theta)^2$. 代入 Liouville 公式, 其中 $\theta = \frac{\pi}{2}$, 即有

$$k_g = \frac{\partial \ln \sqrt{g_{22}(\rho)}}{\partial \rho}.$$

因为测地圆上 ρ = const., 所以 k_g = const..

4. 设旋转曲面 $\mathbf{x} = (v\cos u, v\sin u, f(v))$ 具有常 Gauss 曲率 $K = -\frac{1}{a^2}$. 证明: 函数 $f(v) = \pm \int \frac{\sqrt{a^2-v^2}}{v} dv$. 在上式中取负号, 再令 $v = a\cos\varphi$,则有 $f = +a[\ln(\sec\varphi + \tan\varphi) - \sin\varphi] + c$. 这样的旋转曲面称为**伪球面**, 它是由曳物线生成的旋转曲面.

证明: 直接计算得

$$g_{11} = v^2$$
, $g_{12} = 0$, $g_{22} = 1 + f'^2$,

$$h_{11} = -\frac{vf'}{\sqrt{1+f'^2}}, \quad h_{12} = 0, \quad h_{22} = -\frac{f''}{\sqrt{1+f'^2}}.$$

则

$$K = \frac{f'f''}{v(1 + f'^2)^2} = -\frac{1}{a^2}$$

$$\Rightarrow \frac{1}{1 + f'^2} = \frac{v^2}{a^2} + C.$$

此时 $g_{11}g_{22}-g_{12}^2=\frac{a^2v^2}{v^2+C}$. $C\neq 0$ 时, $\lim_{v\to 0}g_{11}g_{22}-g_{12}^2=0$, 矛盾. 所以必有 C=0, 即有 $f(v)=\pm\int\frac{\sqrt{a^2-v^2}}{v}dv$.

5. 设 $C: \mathbf{x}(u^1(s), u^2(s))$ 是曲面上以弧长为参数的可微曲线, **T** 为 C 的单位切向量, **n** 是曲面的单位法向量, **Q** = **n** × **T**. 试证明:

$$\begin{cases} \dot{\mathbf{T}} = k_g \mathbf{Q} + k_n \mathbf{n}, \\ \dot{\mathbf{Q}} = -k_g \mathbf{T} + \tau_g \mathbf{n}, \\ \dot{\mathbf{n}} = -k_n \mathbf{T} - \tau_g \mathbf{Q}. \end{cases}$$

证明:由定义即有 $\mathbf{T} = k_g \mathbf{Q} + k_n \mathbf{n}$. 因为 $\mathbf{Q} = \mathbf{n} \times \mathbf{T}$, 两边对 s 求导, 得到 $\dot{\mathbf{Q}} \cdot \mathbf{T} = -k_g$, $\dot{\mathbf{Q}} \cdot \mathbf{n} = \tau_g$. 所以 $\dot{\mathbf{Q}} = -k_g \mathbf{T} + \tau_g \mathbf{n}$. 对 $\mathbf{n} = \mathbf{T} \times \mathbf{Q}$ 两边求导, 同理可以得到第三式.

6. 证明: 沿曲面上的任一曲线成立以下公式: $k_n^2 + \tau_g^2 - 2Hk_n + K = 0$.

证明: 在曲面上取曲率线网. 由 Euler 公式得到, $k_n = k_1 \cos^2 \theta + k_2 \sin^2 \theta$. 由习题 1 可知, $\tau_g = (k_2 - k_1) \sqrt{g_{11} g_{22}} \frac{du^1}{ds} \frac{du^2}{ds}$. 又因为 $\cos \theta = \frac{du^1}{ds} \sqrt{g_{11}}$, $\sin \theta = \frac{du^2}{ds} \sqrt{g_{22}}$, 所以 $\tau_g = (k_2 - k_1) \sin \theta \cos \theta$. 代入验证即得.

5 §1.4 曲线和曲面的基本定理

- 1. 利用 Liouville 公式证明:
 - (1) 平面上的测地线为直线.
 - (2) 圆柱面上的测地线为直母线和圆柱螺线.

证明: (1) 已知平面的第一基本形式为 $ds^2 = (du^1)^2 + (du^2)^2$, 则 $k_g = \frac{d\theta}{ds} = 0$, $\theta = const.$. 因此 $\frac{du^1}{du^2} = \tan \theta = C$, $u^2 = Cu^1 + C_1$, 即测地线为直线.

(2) 设圆柱面为 $(a\cos u^1, a\sin u^1, u^2)$, 其第一基本形式为 $ds^2 = a^2(du^1)^2 + (du^2)^2$, 其中 a 为常数, 则 $k_g = \frac{d\theta}{ds} = 0$, $\theta = const.$. 因此 $\frac{du^1}{du^2} = a \tan \theta$.

当 $\theta \neq \frac{\pi}{2}, \frac{3}{2}\pi$ 时, 测地线为圆柱螺线. 当 $\theta = \frac{\pi}{2}, \frac{3}{2}\pi$ 时, 测地线为直母线.

2. 求旋转曲面 $\mathbf{x}(u^1, u^2) = (f(u^1)\cos u^2, f(u^1)\sin u^2, u^1)$ 的测地线, 设 θ 为测地线与经线的交角, f 为交点到旋转轴的距离. 证明: (1) $f\sin\theta = 常数$. (2) 若 θ 为定角, 则该旋转曲面是圆柱面.

证明: (1) 直接计算得 $g_{11} = f'^2 + 1$, $g_{12} = 0$, $g_{22} = f^2$. 根据 Liouville 公式可知

$$k_g = \frac{d\theta}{ds} + \frac{f'}{f\sqrt{f'^2 + 1}}\sin\theta = 0,$$

$$\frac{du^1}{ds} = \frac{1}{\sqrt{f'^2 + 1}}\cos\theta.$$

由此得到

$$\frac{d}{ds}(f\sin\theta) = 0.$$

(2) 若 θ = const., 则根据 (1) 可得 $f(u^1)$ = const., 则该旋转曲面为圆柱面.

根据 (1) 可得 测地线的微分方程为 $\frac{du^2}{du^1} = \frac{\sqrt{f'^2+1}}{f} \tan \theta$.

3. 证明: 存在两族交成定角的测地线的曲面必是可展曲面.

证明: 将其中一组测地线取为正交参数曲线网中的 u^1 曲线, 定角为 α . 则 $\theta = 0$ 和 $\theta = \alpha$ 分别为两族测地线. 根据 Liouville 公式, $\theta = 0$ 时得到 $g_{11} = g_{11}(u^1)$; $\theta = \alpha$ 时得到 $g_{22} = g_{22}(u^2)$. 则 K = 0, 即有该曲面为可展曲面.

4. 证明: 在球面 $\mathbf{x}(u,v)=(r\cos u\cos v,r\cos u\sin v,r\sin u)$ $(-\frac{\pi}{2}\leq u\leq \frac{\pi}{2},0\leq v<2\pi)$ 上, 任何曲线的测地曲率可写成

$$k_g = \frac{d\theta}{ds} - \sin u \frac{dv}{ds}$$

其中 θ 表示曲线与经线的交角. 由此证明: 一切经线和大圆纬线是测地线.

证明: 第一基本形式为 $I = r^2 du^2 + r^2 \cos^2 u dv^2$, 代入 Liouville 公式即得. 对于经线, $\theta = 0$, v = const.; 对于大圆纬线, $\theta = \frac{\pi}{2}$, u = 0. 代入即得 $k_g = 0$.

(1)
$$I = \frac{4((du^1)^2 + (du^2)^2)}{[1 - (u^1)^2 - (u^2)^2]^2};$$

(2)
$$I = \frac{(du^1)^2 + (du^2)^2}{(u^2)^2}$$
;

5. 用活动幺正标架法计算下列第一基本形式的 Gauss 曲率:
$$(1) \ I = \frac{4((du^1)^2 + (du^2)^2)}{[1 - (u^1)^2 - (u^2)^2]^2};$$

$$(2) \ I = \frac{(du^1)^2 + (du^2)^2}{(u^2)^2};$$

$$(3) \ I = \frac{1}{4(u^1 - (u^2)^2)}[(du^1)^2 - 4u^2du^1du^2 + 4u^1(du^2)^2].$$

解: (1) K = -1.

(2)
$$K = -1$$

(2)
$$K = -1$$
.
(3) $I = \frac{1}{4(u^1 - (u^2)^2)} \left\{ (du^1 - 2u^2 du^2)^2 + 4(u^1 - (u^2)^2) d(u^2)^2 \right\}$. 记 $\omega_1 = \frac{du^1 - 2u^2 du^2}{2\sqrt{u^1 - (u^2)^2}}$, $\omega_2 = du^2$. 计算得 $K = 0$.

6. 利用 (4.22) 证明: 正交网下 Gauss 曲率为

$$K = -\frac{1}{\sqrt{g_{11}g_{22}}} \left[\left(\frac{(\sqrt{g_{11}})_2}{\sqrt{g_{22}}} \right)_2 + \left(\frac{(\sqrt{g_{22}})_1}{\sqrt{g_{11}}} \right)_1 \right],$$

其中下标 α 表示关于 u^{α} 的偏导数.

证明:运用 Codazzi 方程可得,

$$Kg_{11} = (\Gamma_{11}^2)_2 - (\Gamma_{12}^2)_1 + \Gamma_{11}^1\Gamma_{12}^2 + \Gamma_{11}^2\Gamma_{22}^2 - \Gamma_{12}^1\Gamma_{11}^2 - (\Gamma_{12}^2)^2.$$

又有

$$\begin{split} \Gamma_{11}^2 &= -\frac{1}{2g_{22}}(g_{11})_2, \quad \Gamma_{12}^2 = \frac{1}{\sqrt{g_{22}}}(\sqrt{g_{22}})_1, \quad \Gamma_{11}^1 = \frac{1}{\sqrt{g_{11}}}(\sqrt{g_{11}})_1, \\ \Gamma_{22}^2 &= \frac{1}{\sqrt{g_{22}}}(\sqrt{g_{22}})_2, \quad \Gamma_{12}^1 = \frac{1}{\sqrt{g_{11}}}(\sqrt{g_{11}})_2, \end{split}$$

代入上式即得.

7. 证明: 在曲率线网下, Codazzi 方程化为

$$(h_{11})_2 = H(g_{11})_2, \quad (h_{22})_1 = H(g_{22})_1,$$

其中 H 为曲面的平均曲率. 由此证明: 除平面和球面外, 平均曲率为常数的曲 面的第一和第二基本形式可化为:

$$I = \rho^2[(du^1)^2 + (du^2)^2], \quad II = (1 + H\rho^2)(du^1)^2 - (1 - H\rho^2)(du^2)^2.$$

证明: 曲率线网下,由 Codazzi 方程可得

$$(h_{11})_2 + \Gamma_{11}^2 h_{22} - \Gamma_{12}^1 h_{11} = 0, (5.1)$$

$$(h_{22})_1 + \Gamma^1_{22}h_{11} - \Gamma^2_{12}h_{22} = 0. (5.2)$$

丽

$$\Gamma_{11}^2 h_{22} = -\frac{1}{2} k_2(g_{11})_2, \quad -\Gamma_{12}^1 h_{11} = -\frac{1}{2} k_1(g_{11})_2,$$

代入 (5.1) 可得

$$(h_{11})_2 = H(g_{11})_2.$$

同理可得

$$(h_{22})_1 = H(g_{22})_1.$$

如果 H 为常数,则有

$$h_{11} = Hg_{11} + \phi(u^1), \quad h_{22} = Hg_{22} + \psi(u^2).$$

所以

$$2H = k_1 + k_2 = \frac{h_{11}}{g_{11}} + \frac{h_{22}}{g_{22}} = 2H + \frac{\phi}{g_{11}} + \frac{\psi}{g_{22}},$$

即有

$$\frac{\phi}{g_{11}} = -\frac{\psi}{g_{22}}.$$

如果上式为零, 得到 $k_1=k_2=H=const.$, 题给已排除全脐的情况. 所以可设 $\frac{\phi}{g_{11}}=-\frac{\psi}{g_{22}}=\rho^2>0$, 从而有

$$h_{11} = (1 + \frac{1}{\rho^2}H)\phi, \quad h_{22} = (1 - \frac{1}{\rho^2}H)\psi.$$

做坐标变换

$$\bar{u}^1 = \int \sqrt{\phi} du^1, \quad \bar{u}^2 = \int \sqrt{-\psi} du^2$$

即可得证.

8. 已给曲面 $M: \mathbf{x} = (au^1, bu^2, \frac{a(u^1)^2 + b(u^2)^2}{2})$ 和曲面 $\bar{M}: \bar{\mathbf{x}} = (\bar{a}\bar{u}^1, \bar{b}\bar{u}^2, \frac{\bar{a}(\bar{u}^1)^2 + \bar{b}(\bar{u}^2)^2}{2})$ $(a, b, \bar{a}, \bar{b}$ 都为常数). 证明: 当 $ab = \bar{a}\bar{b}$ 时, 在点 (u^1, u^2) 与 (\bar{u}^1, \bar{u}^2) 处有相等的 Gauss 曲率, 但它们不能等距对应.

证明: 曲面的第一基本形式为 $I=a^2(1+(u^1)^2)(du^1)^2+2abu^1u^2du^1du^2+b^2(1+(u^2)^2)(du^2)^2$, Gauss 曲率为 $K=\frac{1}{ab[1+(u^1)^2+(u^2)^2]^2}$. $ab=\bar{a}\bar{b}$ 时, 对应点处

的 Gauss 曲率相同. 若对应点处的第一基本形式相同, 则 $a^2 = \bar{a}^2$, $ab = \bar{a}\bar{b}$, $b^2 = \bar{b}^2$, 此时两曲面相同.

9. 用活动幺正标架法计算下列圆环面 T^2 的平均曲率和 Gauss 曲率:

$$\mathbf{x}(u, v) = ((a + b\cos u)\cos v, (a + b\cos u)\sin v, b\sin u),$$

其中 $b < a, 0 \le u < 2\pi, 0 \le v < 2\pi, a, b$ 为常数.

解: 直接计算得

$$\mathbf{x}_{u} = (-b \sin u \cos v, -b \sin u \sin v, b \cos u),$$

$$\mathbf{x}_{v} = (-(a + b \cos u) \sin v, (a + b \cos u) \cos v, 0),$$

$$I = b^{2} du^{2} + (a + b \cos u)^{2} dv^{2}.$$

所以记

$$\omega^1 = bdu$$
, $\omega^2 = (a + b\cos u)dv$, $\omega^3 = 0$,

$$\mathbf{e}_1 = (-\sin u \cos v, -\sin u \sin v, \cos u), \quad \mathbf{e}_2 = (-\sin v, \cos v, 0),$$

$$\mathbf{e}_3 = (-\cos u \cos v, -\cos u \sin v, -\sin u).$$

根据 $d\mathbf{e}_i = \omega_i^j \mathbf{e}_i$ 得到

$$\omega_1^3 = -\omega_3^1 = -d\mathbf{e}_3 \cdot \mathbf{e}_1 = \frac{1}{b}\omega^1, \quad \omega_2^3 = -d\mathbf{e}_3 \cdot \mathbf{e}_2 = \frac{\cos u}{a + b\cos u}\omega^2,$$

因此

$$b_{11} = \frac{1}{b}$$
, $b_{12} = b_{21} = 0$, $b_{22} = \frac{\cos u}{a + b \cos u}$,

即得

$$H = \frac{a + 2b\cos u}{2b(a + b\cos u)}, \quad K = \frac{\cos u}{b(a + b\cos u)}.$$

10. 已给两个微分二次型:

$$I = [1 + (u^1)^2](du^1)^2 + (u^1)^2(du^2)^2, \quad II = \frac{(du^1)^2 + (u^1)^2(du^2)^2}{\sqrt{1 + (u^1)^2}},$$

求曲面M,使得它的第一和第二基本形式就是上述的I和II.

M:
$$\mathbf{x}(u^1, u^2) = (u^1 \cos u^2, u^1 \sin u^2, \frac{1}{2}(u^1)^2).$$