Trace of B[(Intercept) (C1), X3.Hexen.1.ol (S1)] 0.0 9.0 20 100 40 60 80

Density of B[(Intercept) (C1), X3.Hexen.1.ol (S1)]

Iterations

Iterations

9.0 0.0 -1.0 20 80 100 -0.5 0.0 40 60 **Iterations** N = 100 Bandwidth = 0.07808

Trace of B[(Intercept) (C1), X3.Hexen.1.ol.benzoate (Density of B[(Intercept) (C1), X3.Hexen.1.ol.benzoate

0.0 9.0 0.0 -1.0 20 100 -0.5 0.0 40 60 80

Trace of B[(Intercept) (C1), X3.Hexenyl.acetate (S3) Density of B[(Intercept) (C1), X3.Hexenyl.acetate (S3)

Iterations

N = 100 Bandwidth = 0.08878

0.5

4.0-0.0

Trace of B[Sample.typeLeaf (C3), X3.Hexenyl.acetate (ensity of B[Sample.typeLeaf (C3), X3.Hexenyl.acetate

Iterations

60

20

40

80

100

0.0

N = 100 Bandwidth = 0.09192

0.5

1.0

-0.5

0.0

ace of B[(Intercept) (C1), X3.Phenyl.1.propanol.acetathsity of B[(Intercept) (C1), X3.Phenyl.1.propanol.aceta

of B[Sample.typeFlower (C2), X3.Phenyl.1.propanol.ac of B[Sample.typeFlower (C2), X3.Phenyl.1.propanol.a

-0.2 1.5

0.0

-0.2

Trace of B[(Intercept) (C1), X4.Methoxybenzaldehyde (ensity of B[(Intercept) (C1), X4.Methoxybenzaldehyde

-0.50-0.70

Iterations

Trace of B[(Intercept) (C1), X4.Oxoisophorone (S6) Density of B[(Intercept) (C1), X4.Oxoisophorone (S6)

0.05 -0.15

Trace of B[SpeciesOLE (C4), X4.Oxoisophorone (St Density

Density of B[(Intercept) (C1), A.Caryophyllene (S7)

N = 100 Bandwidth = 0.09025

Trace of B[(Intercept) (C1), A.Caryophyllene (S7)]

Iterations

20 40 60 80 100 -1.0 -0.5 0.0

Iterations N = 100 Bandwidth = 0.05862

Trace of B[Sample.typeFlower (C2), A.Caryophyllene (ensity of B[Sample.typeFlower (C2), A.Caryophyllene

Trace of B[Sample.typeLeaf (C3), A.Caryophyllene (Sensity of B[Sample.

Trace of B[SpeciesOLE (C4), A.Caryophyllene (S7) Density of B[SpeciesOLE (C4), A.Caryophyllene

Trace of B[(Intercept) (C1), A.Farnesene (S8)] 4.0-20 100 40 60 80 **Iterations**

Density of B[(Intercept) (C1), A.Farnesene (S8)]

Trace of B[Sample.typeFlower (C2), A.Farnesene (S Density of B[Sample.typeFlower (C2), A.Farnesene (S

Trace of B[SpeciesOLE (C4), A.Farnesene (S8)] 0.8 0.2

40

20

0.2

Trace of B[Sample.typeFlower (C2), A.Farnesene.Z.E (ensity of B[Sample.typeFlower (C2), A.Farnesene.Z.E

0.0 0.8

Trace of B[Sample.typeLeaf (C3), A.Farnesene.Z.E (Spensity of B[Sample.typeLeaf (C3), A.Farnesene.Z.E (

Trace of B[SpeciesOLE (C4), A.Farnesene.Z.E (S9) Density of B[SpeciesOLE (C4), A.Farnesene.Z.E (S9) 4.0

80

100

60

Iterations

20

40

Trace of B[(Intercept) (C1), A.Farnesene.Z.E (S9)]

Density of B[(Intercept) (C1), A.Farnesene.Z.E (S9)

S = 1 Am MAMAMAM (S) = S

Trace of B[(Intercept) (C1), A.Phellandrene (S10)]

Density of B[(Intercept) (C1), A.Phellandrene (S10)

Iterations N = 100 Bandwidth = 0.07702

Trace of B[Sample.typeFlower (C2), A.Phellandrene (Sensity of B[Sample.typeFlower (C2), A.Phelland

Trace of B[Sample.typeLeaf (C3), A.Phellandrene (Stensity of B[Sample.

0.0

-1.0

-0.5

0.0

0.5

Trace of B[(Intercept) (C1), B.Cubebene (S11)]

Iterations

Density of B[(Intercept) (C1), B.Cubebene (S11)]

Trace of B[Sample.typeFlower (C2), B.Cubebene (S1Density of B[Sample.typeFlower (C2), B.Cubebene (S

Trace of B[Sample.typeLeaf (C3), B.Cubebene (S11 Density of B[Sample.typeLeaf (C3), B.Cubebene (S1

Trace of B[SpeciesOLE (C4), B.Cubebene (S11)]

Trace of B[(Intercept) (C1), B.Elemene (S12)] -0.6 0.0 80 100 20 40 60

1.5 0.0 0.0 0.2 -0.8-0.6-0.20.6 N = 100 Bandwidth = 0.07176

Density of B[(Intercept) (C1), B.Elemene (S12)]

Iterations

Trace of B[SpeciesOLE (C4), B.Elemene (S12)]

0.0

0.5

0.0

Density of B[SpeciesOLE (C4), B.Elemene (S12)]

N = 100 Bandwidth = 0.09471

1.0

Trace of B[(Intercept) (C1), B.Farnesene (S13)] 0.2 -0.6 40 80 100 20 60

Iterations

0.1 -1.0 0.0 0.5 -0.5 N = 100 Bandwidth = 0.09557

Density of B[(Intercept) (C1), B.Farnesene (S13)]

Trace of B[Sample.typeFlower (C2), B.Farnesene (S1Density of B[Sample.

Trace of B[(Intercept) (C1), B.Phellandrene (S14)]

Density of B[(Intercept) (C1), B.Phellandrene (S14)

-0.8

-0.6

-0.4

-0.2

N = 100 Bandwidth = 0.07445

N = 100 Bandwidth = 0.05816

0.0

0.2

0.0 20 60 100 40 80 **Iterations**

Trace of B[(Intercept) (C1), B.Selinene (S15)] 0.2

60

80

100

5. 0.0 -0.2 0.0 -0.6-0.40.2 0.4 N = 100 Bandwidth = 0.06848

Density of B[(Intercept) (C1), B.Selinene (S15)]

Iterations

40

20

Trace of B[SpeciesOLE (C4), B.Selinene (S15)]

1.0 0.0

Density of B[SpeciesOLE (C4), B.Selinene (S15)]

1.0 0.5 N = 100 Bandwidth = 0.08055

Trace of B[(Intercept) (C1), Benzaldehyde (S16)]

-1.0 40 60 80 100 20 **Iterations**

Density of B[(Intercept) (C1), Benzaldehyde (S16)]

Trace of B[Sample.typeFlower (C2), Benzaldehyde (S)ensity of B[Sample.

Trace of B[Sample.typeLeaf (C3), Benzaldehyde (S1 Density of B[Sample.typeLeaf (C3), Benzaldehyde (S 0.0

0.0 0.4

60

Iterations

80

100

20

 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \end{array} \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{$

Trace of B[(Intercept) (C1), Benzenepropanol (S17) Density of B[(Intercept) (C1), Benzenepropanol (S17)

-0.6

-0.4

20

40

60

80

100

-0.2

0.0

0.2

Trace of B[(Intercept) (C1), Benzophenone (S18)] 0.0

0.1 0.0 -1.0 -0.5 0.0 0.5

-0.8 40 80 100 20 60 **Iterations**

N = 100 Bandwidth = 0.09695

Density of B[(Intercept) (C1), Benzophenone (S18)

0.5 -0.5 20 40 60 80 100

Iterations

1.0

Trace of B[(Intercept) (C1), Benzyl.alcohol (S19)]

0.0 20 80 100 -1.5 -0.5 0.0 40 60 -1.00.5 N = 100 Bandwidth = 0.1097 **Iterations**

Density of B[(Intercept) (C1), Benzyl.alcohol (S19)

Trace of B[Sample.typeFlower (C2), Benzyl.alcohol (Sensity of B[Sample.typeFlower (C2), Benzyl.alcohol (

Trace of B[Sample.typeLeaf (C3), Benzyl.alcohol (S1Density of B[Sample.typeLeaf (C3), Benzyl.alcohol (S 0.5

Trace of B[SpeciesOLE (C4), Benzyl.alcohol (S19) Density of B[SpeciesOLE (C4), Benzyl.alcohol (S19 9.0

-0.5 0.0 20 40 60 80 100 0.5 1.0 1.5 -1.0-0.52.0 **Iterations** N = 100 Bandwidth = 0.1716

Trace of B[(Intercept) (C1), Benzyl.benzoate (S20)] Density of B[(Intercept) (C1), Benzyl.benzoate (S20)

race of B[Sample.typeFlower (C2), Benzyl.benzoate (ansity of B[Sample.typeFlower (C2), Benzyl.benzoate

Trace of B[Sample.typeLeaf (C3), Benzyl.benzoate (S)ensity of B[Sample.typeLeaf (C3), Benzyl.benzoate (3.0 0.2 1.5 -0.4 0.0

-0.6

-0.4

-0.2

N = 100

0.0

0.2

Bandwidth = 0.04976

0.4

0.6

9.0-20 40 80 100 60

Trace of B[(Intercept) (C1), Benzyl.tiglate (S21)] -0.2 -0.8 20 40 80 100 60 **Iterations**

Density of B[(Intercept) (C1), Benzyl.tiglate (S21)]

Trace of B[Sample.typeFlower (C2), Benzyl.tiglate (SDensity of B[Sample.typeFlower (C2), Benzyl.tiglat

Trace of B[SpeciesOLE (C4), Benzyl.tiglate (S21)] -0.8 20 60 100 40 80

Trace of B[(Intercept) (C1), Caryophyllene (S22)]

Density of B[(Intercept) (C1), Caryophyllene (S22)

Trace of B[Sample.typeLeaf (C3), Caryophyllene (S2 Density of B[Sample.typeLeaf (C3), Caryophyllene (S

Trace of B[SpeciesOLE (C4), Caryophyllene (S22)] Density of B[SpeciesOLE (C4), Caryophyllene (S22

0.0 0.2 0.0 0.4 0.6 0.8 1.0 1.2 N = 100Bandwidth = 0.08044

0.2 0.0

0.2

N = 100 Bandwidth = 0.09771

0.4

0.6

Trace of B[(Intercept) (C1), Caryophyllene.oxide (S2 Density of B[

-0.2 1.5

Trace of B[(Intercept) (C1), Cinnamaldehyde (S24) Density of B[(Intercept) (C1), Cinnamaldehyde (S24)

Iterations

-0.4

60

Iterations

80

100

40

0.0

0.2

0.0

0.5

-0.5

0.4

Trace of B[(Intercept) (C1), Cinnamyl.acetate (S25) Density of B[(Intercept) (C1), Cinnamyl.acetate (S25)

N = 100 Bandwidth = 0.06706 race of B[Sample.typeFlower (C2), Cinnamyl.acetate (insity of B[Sample.typeFlower (C2), Cinnamyl.acetate

Trace of B[Sample.typeLeaf (C3), Cinnamyl.acetate (Sensity of B[Sample.typeLeaf (C3), Cinnamyl.acetate (-0.8 0.0 1.5 0.0

-1.0

20

60

40

80

Trace of B[(Intercept) (C1), Cinnamyl.alcohol (S26) Density of B[(Intercept) (C1), Cinnamyl.alcohol (S26) -0.2

0.0 -0.4 -0.2 -1.0-0.6 0.0 N = 100 Bandwidth = 0.04694

20 80 100 40 60 **Iterations**

Iterations

0.2 4.0-

40

60

Iterations

80

100

-1.0 0.0 100 -1.0 20 40 80 -0.5 0.0 60 **Iterations** N = 100 Bandwidth = 0.0771

of B[Sample.typeFlower (C2), Cis.3.Hexenyl.isovaler:y of B[Sample.typeFlower (C2), Cis.3.Hexenyl.isovale

Frace of B[(Intercept) (C1), Cis.3.Hexenyl.isovalerate (ensity of B[(Intercept) (C1), Cis.3.Hexenyl.isovalerate

2.0 0.1

0.0

-1.0

-0.5

N = 100

80

100

Iterations

60

40

0.5

-0.5

20

0.0

0.5

Bandwidth = 0.1132

Trace of B[(Intercept) (C1), Cis.Beta.Ocimene (S28) Density of B[(Intercept) (C1), Cis.Beta.Ocimene (S28)

race of B[Sample.typeFlower (C2), Cis.Beta.Ocimene insity of B[Sample.typeFlower (C2), Cis.Beta.Ocimene

Trace of B[Sample.typeLeaf (C3), Cis.Beta.Ocimene (Sensity of B[Sample.typeLeaf (C3), Cis.Beta.Ocimene 0.0 0.0 -1.0 -0.5 20 60 80 100 0.0 40

Iterations

Iterations

N = 100 Bandwidth = 0.1056

Trace of B[(Intercept) (C1), Cis.jasmone (S29)]

0.0 -1.0 -0.5 0.0 N = 100 Bandwidth = 0.08965

Density of B[(Intercept) (C1), Cis.jasmone (S29)]

0.0 9.0 20 80 100 40 60 **Iterations**

Trace of B[Sample.typeFlower (C2), Cis.jasmone (S2Density of B[Sample.

40

40

60

Iterations

80

80

100

100

20

20

Trace of B[SpeciesOLE (C4), Cis.jasmone (S29)] 0.8 0.2

60

Trace of B[(Intercept) (C1), Copaene (S30)] -0.8 40 100 20 60 80 **Iterations**

1.5 0.0 -0.8-0.6 -0.4-0.20.0 N = 100 Bandwidth = 0.05788

Density of B[(Intercept) (C1), Copaene (S30)]

-0.6 0.0 20 60 80 100 40 **Iterations**

Trace of B[SpeciesOLE (C4), Copaene (S30)] 0.0 -0.6 20 80 100 40 60

Trace of B[(Intercept) (C1), Eucalyptol (S31)] 0.2 9.0-20 80 100 40 60 **Iterations**

Density of B[(Intercept) (C1), Eucalyptol (S31)]

Trace of B[Sample.typeFlower (C2), Eucalyptol (S31 Density of B[Sample.typeFlower (C2), Eucalyptol (S3

-0.2100 20 60 80 40

Trace of B[SpeciesOLE (C4), Eucalyptol (S31)] -0.2

60

Iterations

80

100

40

20

Trace of B[(Intercept) (C1), Eugenol (S32)] -0.2 9.0 80 100 20 40 60 **Iterations**

2.0 0.0 -1.0-0.8 -0.6 -0.4-0.20.0 N = 100 Bandwidth = 0.05424

Density of B[(Intercept) (C1), Eugenol (S32)]

Iterations

Trace of B[(Intercept) (C1), G.Muurolene (S33)] 0.0 -0.8 40 80 100 20 60

Density of B[(Intercept) (C1), G.Muurolene (S33)]

Iterations

Trace of B[SpeciesOLE (C4), G.Muurolene (S33)] 4.0 20 80 100 40 60

Trace of B[(Intercept) (C1), Isoamyl.benzoate (S34) Density of B[(Intercept) (C1), Isoamyl.benzoate (S34) -0.3

2.0 0.0 -0.4 -0.2 -0.8-0.60.0 N = 100 Bandwidth = 0.04869

-0.8 20 40 80 100 60 **Iterations**

race of B[Sample.typeFlower (C2), Isoamyl.benzoate (nsity of B[Sample.typeFlower (C2), Isoamyl.benzoate

0.0 4.0-20 60 80 100 40

Iterations

60

Iterations

80

100

9.0 0.2

40

Trace of B[(Intercept) (C1), Jasmine.lactone (S35)] Density of B[(Intercept) (C1), Jasmine.lactone (S35

race of B[Sample.typeFlower (C2), Jasmine.lactone (ansity of B[Sample.typeFlower (C2), Jasmine.lactone

-0.2

0.0

N = 100 Bandwidth = 0.06392

N = 100 Bandwidth = 0.06441

0.2

0.4

-0.6

Trace of B[Sample.typeLeaf (C3), Jasmine.lactone (S)ensity of B[Sample.typeLeaf (C3), Jasmine.lactone (S) 0.2 0.0

-0.2 -0.8

Trace of B[(Intercept) (C1), Lilac.alcohol.1 (S36)]

Density of B[(Intercept) (C1), Lilac.alcohol.1 (S36)

100 20 40 60 80 **Iterations**

-0.6 0.0 20 60 80 100 40

Trace of B[(Intercept) (C1), Lilac.alcohol.2 (S37)] 80 100 20 40 60

Density of B[(Intercept) (C1), Lilac.alcohol.2 (S37)

Iterations

Trace of B[Sample.typeLeaf (C3), Lilac.alcohol.2 (S3Density of B[Sample.typeLeaf (C3), Lilac.alcohol.2 (S 0.2 0.0

100

100

60

Iterations

60

20

20

40

40

80

80

0.0

N = 100 Bandwidth = 0.0733

0.5

-0.5

Trace of B[(Intercept) (C1), Lilac.alcohol.3 (S38)]

Density of B[(Intercept) (C1), Lilac.alcohol.3 (S38)]

Iterations

N = 100 Bandwidth = 0.032

Trace of B[Sample.typeFlower (C2), Lilac.alcohol.3 (Sensity of B[Sample.typeFlower (C2), Lilac.alcohol.3 (

-0.2

-0.1

N = 100 Bandwidth = 0.02269

N = 100 Bandwidth = 0.02274

-0.3

0.0

0.1

0.2

-0.4

Trace of B[Sample.typeLeaf (C3), Lilac.alcohol.3 (S3Density of B[Sample.typeLeaf (C3), Lilac.alcohol.3 (S

20 40 60 80 100

Iterations

Density of B[(Intercept) (C1), Lilac.alcohol.4 (S39) Trace of B[(Intercept) (C1), Lilac.alcohol.4 (S39)]

0.4

N = 100 Bandwidth = 0.02938

Trace of B[Sample.typeLeaf (C3), Lilac.alcohol.4 (S3Density of B[Sample.typeLeaf (C3), Lilac.alcohol.4 (S

Trace of B[SpeciesOLE (C4), Lilac.alcohol.4 (S39)] Density of B[SpeciesOLE (C4), Lilac.alcohol.4 (S39 0.2 $^{\circ}$ -0.2 -0.2 0.2 20 40 100 0.0 60 80

AMM MMM

Trace of B[Sample.typeLeaf (C3), Linalool (S40)]

Iterations

Trace of B[(Intercept) (C1), Methyl.salicylate (S41) Density of B[(Intercept) (C1), Methyl.salicylate (S41

race of B[Sample.typeFlower (C2), Methyl.salicylate (ansity of B[Sample.typeFlower (C2), Methyl.salicylate

Trace of B[Sample.typeLeaf (C3), Methyl.salicylate (S)ensity of B[Sample.typeLeaf (C3), Methyl.salicylate (-0.6 0.0 0.0 -1.0 -0.5 0.0 0.5

80 100 60 20 40 **Iterations**

9.0 -0.2

60

Iterations

80

100

40

20

N = 100 Bandwidth = 0.09085

0.0 1.5 0.0

Trace of B[(Intercept) (C1), Phenethyl.benzoate (S42 Density of B[

100 20 40 80 -0.2 60 -0.8 -0.40.0 -0.6Bandwidth = 0.05547**Iterations** N = 100ace of B[Sample.typeFlower (C2), Phenethyl.benzoatesity of B[Sample.typeFlower (C2), Phenethyl.benzoat

0.0

0.5

1.0

N = 100 Bandwidth = 0.1362

N = 100 Bandwidth = 0.05965

1.5

20

40

60

Iterations

Iterations

Iterations

80

100

Trace of B[SpeciesOLE (C4), Phenethyl.benzoate (S4Density of B[Species 5. 0.0 0.0 0.2 20 40 60 80 100 0.0 0.4 0.6 0.8 1.0

0.1 9.0-

Trace of B[(Intercept) (C1), Phenylethyl.acetate (S4: Density of B[(Intercept) (C1), P

80 100 -0.8 -0.2 20 40 60 -0.6-0.4 0.0 0.2 N = 100 Bandwidth = 0.04122 **Iterations**

0.0 α

race of B[Sample.typeLeaf (C3), Phenylethyl.acetate (:nsity of B[Sample.typeLeaf (C3), Phenylethyl.acetate

Trace of B[SpeciesOLE (C4), Phenylethyl.acetate (S4Density of B[SpeciesOLE (C4), Phen

-0.3 α -0.7 0

Trace of B[(Intercept) (C1), Phenylethyl.alcohol (S44 Density of B[(Intercept) (C1), P

100 -0.6 20 60 80 -0.8 -0.4-0.2 40 0.0 N = 100 Bandwidth = 0.04223 **Iterations**

race of B[Sample.typeLeaf (C3), Phenylethyl.alcohol (insity of B[Sample.typeLeaf (C3), Phenylethyl.alcohol

Trace of B[SpeciesOLE (C4), Phenylethyl.alcohol (S4Density of B[SpeciesOLE (C4), Phen 9.0 2.0 0.2 0.0 0.0 0.2 0.6 20 40 60 80 100 0.4 8.0 1.0

Iterations

N = 100 Bandwidth = 0.04226

Trace of B[(Intercept) (C1), Trans.Beta.Ocimene (S4! Density of B[

20 40 60 80 100 -1.0 -0.5 0.0

Iterations N = 100 Bandwidth = 0.08265

-0.5

0.0

0.5

1.5

1.0

N = 100 Bandwidth = 0.1653

N = 100 Bandwidth = 0.1162

2.0

2.5

80

60

Iterations

Iterations

20

40

0.5 -0.5

Trace of B[(Intercept) (C1), Unknown.terpenoid.1 (S4Density of B[(Intercept) (C1), Unknown.terpenoid.1

0.0 0.0

Trace of B[(Intercept) (C1), Unknown.terpenoid.2 (S4Density of B[(Intercept) (C1), Unknown.terpenoid.2

2.0

