

Heteroepitaxial Diamond Growth

Final Report 1 January 1994- 31 December 1994

Submitted to Ballistic Missile Defense Organization Innovative Science and Technology Office Office of Naval Research Program No. N00014-92-C-0081

Prepared by Research Triangle Institute

19950905 031

83U-5294 September 1995

DISTRIBUTION STATEMENT A

Approved for public release; Distribution Unlimited

gathering and maintaining the data needed, and	nformation is estimated to average 1 hour per res d completing and reviewing the collection of info	ormation. Send comments regarding this burde	n estimate or any other aspect of this
collection of information, including suggestion	is for reducing this burden to Washington Headq	uarters Services, Directorate for Information O	perations and Reports, 1215 Jefferson
1. AGENCY USE ONLY (Leave blank)	202-4302, and to the Office of Management and 2. REPORT DATE	3. REPORT TYPE AND DATES O	
The second control (Educations)	September 1995		Report
	September 1995		•
4. TITLE AND SUBTITLE		1 January 1994	- 31 December 1994
4. TITLE AND SUBTILLE			5. FUNDING NUMBERS
Heteroepitaxial Diamond Growth			N00014-92-C-0081
6. AUTHOR(S)			
R. J. Markunas, R. A. Rudo	ler, J. B. Posthill, R. E. Thor	mas, G. Hudson	
7. PERFORMING ORGANIZATION NAM	8. PERFORMING ORGANIZATION REPORT NUMBER		
Research Triangle Institute			
P. O. Box 12194			83U-5294
Research Triangle Park, NO	27709		030-3254
9. SPONSORING/MONITORING AGENC	Y NAME(S) AND ADDRESSES(ES)		10. SPONSORING/MONITORING
			AGENCY REPORT NUMBER
Office of Naval Research			
800 N. Quincy Street			
Arlington, VA 22217-5000)		
11. SUPPLEMENTARY NOTES			
12a. DISTRIBUTION/AVAILABILITY STA	ATEMENT		12h DISTRIBUTION CODE
13m DISTRIBUTION AND AND AND AND AND AND AND AND AND AN	A LEWISINE		12b. DISTRIBUTION CODE
Approved for public release; unlimited distribution			
13. ABSTRACT			
This phase of the program s optimization, (2) epitaxial journal electron affinity (NEA) of d	oining to form a tiled array,	(3) diamond single-crystal l	
14. SUBJECT TERMS			15. NUMBER OF PAGES
			16. PRICE CODE
17. SECURITY CLASSIFICATION	18. SECURITY CLASSIFICATION	19. SECURITY CLASSIFICATION	20. LIMITATION OF ABSTRACT
OF REPORT UNCLASSIFIED	OF THIS PAGE	OF ABSTRACT	
ONCLASSITIED	UNCLASSIFIED	UNCLASSIFIED	

REPORT DOCUMENT PAGE

Form Approved OMB No 0704-0188

TABLE OF CONTENTS

1.0 INTRODUCTION	1
2.0 SUMMARY OF ACCOMPLISHMENTS IN THIS PHASE	2
2.1 Homoepitaxial Diamond	2
2.2 Epitaxial Joining to Form a Tiled Array	2
2.3 Diamond Single-crystal Lift-Off	2
2.4 Negative Electron Affinity (NEA) of Diamond Surfaces	3
2.5 Conclusion	3
3.0 PUBLICATION	4

Accesion For				
NTIS DTIC Unanno Justific	TAB ounced	<u> </u>		
By				
Availability Codes				
Dist	Avail and or Special			
A-1				

Final Report

1 January 1994- 31 December 1994

1.0 INTRODUCTION

This is the 1994 Final Report on the Heteroepitaxial Diamond Growth Program Contract No. N-00041-92-C-0081.

This phase was exceptionally productive in advancing the component technologies that are required for production of a single-crystal diamond boule and diamond wafers. The technical details for each process area have already been discovered in the respective 1994 quarterly reports, and we briefly list and summarize the program highlights herein. An abstract (accepted for presentation) is included that will provide a means to disseminate our results publicly.

2.0 SUMMARY OF ACCOMPLISHMENTS IN THIS PHASE

The major achievement in this phase break out in four areas. Three of these areas are necessary components for a diamond single-crystal boule and wafer technology to be realized. Negative electron affinity (NEA) studies of diamond surfaces is the other major area of achievement. The reader is referred to the listed 1994 quarterly reports for complete technical details.

2.1 Homoepitaxial Diamond

RTI is now able to grow state-of-the-art (100) homoepitaxial diamond using water/alcohol mixtures. The growth rate is ~ 0.5 μ m/hr., the surfaces are topographically smooth as observed by FEG-SEM, Raman shows no 1332 cm⁻¹ line broadening when compared with native diamond single crystals and the etch-pit density is in the mid -10⁵cm⁻² to low-10⁶cm⁻² range. More technical details can be found in First, Second and Third 1994 Quarterly Reports.

2.2 Epitaxial Joining to Form a Tiled Array

Developing a diamond epi-compatible process to bond crystallographically-oriented diamond crystals in close proximity (micron separation) was the key to a successful demonstration of epitaxial joining. Two 3 mm × 3 mm (100) face and edge oriented crystals were joined epitaxially using our homoepitaxial diamond process. We foresee no intrinsic obstacles to scaling this to larger areas and more crystals in order to create a diamond single-crystal template. The defect density is higher in the joint region, but further development that incorporates higher crystallographic tolerances may lead to reduced defect densities. More technical details can be found in Second and Third 1994 Quarterly Reports.

2.3 Diamond Single-crystal Lift-Off

One large-area single-crystal diamond template would be little value if it could not be thickened and wafers cut from it. In other words, a critical part of any single-crystal boule technology is the ability to cut wafers from it. While diamond can be cut and/or cleaned, it can be desirable to do this with minimal loss of materials (kerf loss) and on planes other than the natural cleavage plane of diamond, (111). We have combined our diamond (100) homoepitaxial process with a technology developed at NRL (M. Marchywka, et al.) to demonstrate such a so-called "lift-off" process of cutting single-

crystal C(100) wafers. More technical details on this process can be found in the Fourth 1994 Quarterly Report.

2.4 Negative Electron Affinity (NEA) of Diamond Surfaces

NEA of H-terminated diamond was "discovered" fortuitously in our laboratory while investigating the electrical properties of epitaxial Ni contacts on type IIb (naturally B doped) diamond. This has led to a series of SEM and surface spectroscopy experiments and manuscripts being produced. These results indicate that diamond has great potential to be a component part of a cold electron emitter. The technical details of this work are included in all four of the 1994 Quarterly Reports.

2.5 Conclusion

This phase has demonstrated experimentally the success of several component technologies that lead to a diamond single-crystal and wafer fabrication process. Additionally, NEA has been observed on suitably prepared diamond surface and explained scientifically. Both of these areas have potential technological utility -- depending on future DoD system requirements.

3.0 PUBLICATION

1. J. B. Posthill, D. P. Malta, T. P. Humphreys, G. C. Hudson, R. E. Thomas, R. A. Rudder, and R. J. Markunas, *Development of Epitaxial, Tiling, and Cutting Processes for a Diamond Single-crystal Wafer Technology*, accepted for presentation, 1995 Fall Materials Research Society Conference, Boston, MA.

DEVELOPMENT OF EPITAXIAL, TILING, AND CUTTING PROCESSES FOR A DIAMOND SINGLE-CRYSTAL WAFER TECHNOLOGYJ.B. Posthill, D.P. Malta, T.P. Humphreys, G.C. Hudson, R.E. Thomas, R.A. Rudder, and R.J. Markunas, Research Triangle Institute, Research Triangle Park, North Carolina 27709-2194.

Development of a diamond homoepitaxial deposition process that utilizes water and ethanol at a growth temperature of ~600°C is described. Topographies are excellent, and etch pit densities (EPD) are in the 10⁶ cm⁻² range when growth is done on type Ia C(100) substrates. This process has been used to epitaxially join diamond single-crystals that were bonded in close proximity to each other. This process of "tiling" single-crystal diamonds in close proximity in order to manufacture a large-area diamond single-crystal template is also described. Specially prepared diamonds that have had their faces and edges oriented to {100} were used. Heteroepitaxial Ni-coated diamond surfaces are pressed onto a Si wafer while their edges are pressed together while being heated in an inert gas atmosphere. The resulting bond is excellent; permitting our 600°C diamond deposition process to epitaxially join the diamonds. A diamond wafer technology also requires the ability to cut with minimal kerf loss and cost, which has been addressed using a specific sequence consisting of: ion implantation, homoepitaxial diamond growth, annealing, and contactless electrochemical etching. This "lift-off" method of cutting has thus far resulted in a 2 mm×0.5 mm×17.5µm transparent, synthetic, free-standing, singlecrystal diamond plate being fabricated. Raman and EPD show the plate to be comparable to our best homoepitaxial diamond.

Accepted for presentation, 1995 Fall Materials Research Society Conference, Boston, MA.