Dominik Wawszczak numer indeksu: 440014

numer grupy: 6

Zadanie 4

Rozpocznijmy od udowodnienia, że dany w treści zadania problem jest w klasie NP. Łatwo wskazać maszynę Turinga, która dla danej formuły φ niedeterministycznie wybiera wartościowanie v, a następnie oblicza score (φ, v) i sprawdza czy spełnione jest $3 \leqslant \text{score}(\varphi, v) \leqslant 5$. Oczywiście wszystkie opisane wyżej kroki można przeprowadzić w czasie wielomianowym.

Pozostaje pokazać, że problem ten jest NP-trudny. W tym celu wskażemy wielomianową redukcję problemu 3-CNF-SAT do problemu z treści zadania. Weźmy więc dowolną formułę ψ w postaci 3-CNF. Stwórzmy nową formułę φ w następujący sposób:

- do każdej klazuli w ψ dodajemy dwa razy literał x;
- do formuły ψ dodajemy klazulę $(x \lor x \lor x \lor x \lor x)$.

Oczywiście mając formułę ψ , formułę φ można łatwo obliczyć w czasie wielomianowym. Zakładamy przy tym, że zmienna x jest nową zmienną, niewystępującą w formule ψ .

Przykładowo, dla

$$\psi = (\neg x_1 \lor x_2) \land (x_1 \lor \neg x_2 \lor \neg x_3) \land (x_3)$$

będziemy mieli

$$\varphi = (\neg x_1 \lor x_2 \lor x \lor x) \land (x_1 \lor \neg x_2 \lor \neg x_3 \lor x \lor x) \land (x_3 \lor x \lor x) \land (x \lor x \lor x \lor x \lor x).$$

Udowodnimy teraz następującą równoważność:

formuła ψ jest spełnialna \iff istnieje wartościowanie v takie, że $3 \leqslant \text{score}(\varphi, v) \leqslant 5$.

Załóżmy, że formuła ψ jest spełniona przez wartościowanie u. Wówczas $1 \leq \operatorname{score}(\psi, u)$. Ponadto score $(\psi, u) \leq 3$, gdyż formuła ψ jest w formacie 3-CNF. Niech wartościowanie v będzie takie samo jak u z dodatkowym przypisaniem $x = \top$. Wtedy w każdej klauzuli formuły φ są co najmniej 3 literały będące prawdziwe przy wartościowaniu v – co najmniej jeden z wartościowania u i dwa razy x, a w ostatniej klauzuli 5 razy x. Zachodzi więc $3 \leq \operatorname{score}(\varphi, v)$. Dodatkowo score $(\varphi, v) \leq 5$, ponieważ w każdej klauzuli jest co najwyżej 5 literałów.

Załóżmy teraz, że dla pewnego wartościowania v spełnione jest $3 \leqslant \operatorname{score}(\varphi, v) \leqslant 5$. Łatwo zauważyć, że w wartościowaniu tym musi być $x = \top$, gdyż w przeciwnym wypadku ostatnia klauzula formuły φ byłaby fałszywa. Skoro $3 \leqslant \operatorname{score}(\varphi, v)$, to w każdej klauzuli formuły φ jest co najmniej jeden literał inny niż x będący prawdziwy przy wartościowaniu v, ponieważ każda klauzula zawiera dokładnie dwa literały x (z wyjątkiem ostatniej klauzuli). Oznacza to, że wartościowanie u powstałe poprzez usunięcie z wartościowania v przypisania $x = \top$ spełnia formułę ψ .

Powyższa redukcja implikuje, że problem opisany w treści zadania jest NP-zupełny, co kończy rozwiązanie zadania.