

FPGA Performance Benchmark

Tussentijdse presentatie

Dries Kennes

2019-02-01

Introductie

- Antwerp Space
 - Opgericht in 1962 als deel van Bell Telephone
 - Sinds 2010 deel van Europese groep OHB
 - Voornamelijk satellietcommunicatie
 - Grondstations
 - On-craft modules
 - Ook wetenschappelijke instrumenten

FPGAs

- Wat is een FPGA
 - Field-Programmable Gate Array
 - Herprogrammeerbaar netwerk van logische operaties
 - Digitale logica op hardware niveau
 - Snelheid door parallellisatie
 - Zeer kort door de bocht: Zelfgemaakte chip
- Waarom een FPGA
 - Kostprijs
 - Flexibel
 - Aanpasbaar circuit
 - Chip vervangen in satelliet is onmogelijk
 - Ideaal voor (flexibele) DSP aan hoge snelheid

Ruimtevaarthardware

- Lage volumes
- Langetermijnprojecten
- ► Elke watt telt
- Straling!
 - Zeer beperkte componentenkeuze
 - bv. Xilinx: enkel Virtex-5QV en Virtex-4QV
 - Zeer hoge kostprijs
 - Virtex-5QV \$1400 op ebay

Keuze FPGA

- ► Markt is divers. (Als we even straling vergeten.)
- Grote verschillen in architectuur
 - Aantal pinnen
 - Gespecialiseerde hardwareblokken
 - Interne structuur
 - •
- Specificaties
 - Elke fabrikant/familie is anders
 - Door verschillen onvergelijkbaar
- Software!
 - De software is zeker zo belangrijk als de FGPA zelf

De vraag: Hoe kies ik welke FPGA geschikt is voor dit project? Een antwoord: Benchmarking.

Benchmarking

- Performance bepalen van een FPGA, in deze context:
 - Maximale frequentie
 - Maximale bezettingsgraad
- Stamping
 - FPGA volledig bezetten met identieke kopieën van 1 (klein) circuit
 - Als de software faalt: Maximale bezetting bereikt
 - Op dit ene punt de maximale frequentie bepalen
 - Herhalen voor enkele andere circuits
- Resultaten zijn synthetisch
 - Meet vooral software in extreem geval
 - Geen realistisch gebruik
 - Positief voor de fabrikant, beperkt bruikbaar voor de gebruiker

Reter henchmarken

Vandaar de onderzoeksvraag:

Hoe maken we een benchmark die de keuze voor een FPGA kan onderbouwen. rekening houdend met het echte gebruiksscenario?

De aanpak in deze thesis:

- Onafhankelijk van de fabrikant
 - Starten met Xilinx (Vivado)
- Brede basis aan parameters testen en elimineren
- Basisoperaties meten en potentiële pijnpunten bepalen
 - Welke operaties? Afhankelijk van het project!
- Gericht zoeken naar the best tool for the job
 - Kan enkel als er al zicht is op wat the job inhoudt

Dit is een nieuwe aanpak.

Beperkingen

Voor de implementatie bij deze thesis beperken we ons tot:

- Enkel commerciële software
- Beperkt aantal FPGAs (van verschillende fabrikanten)
- Beperkt aantal basisoperaties
 - Modulair design, uitbreidbaar door gebruiker
 - Relevantie toch bepaald door gebruiksscenario
- Beperkt aantal parameters
 - Elke extra parameter voegt een dimensie toe

Realisatie

- ► Implementatie in Vivado is klaar
 - Geautomatiseerd zoeken naar maximale frequentie met zelfgemaakt TCL script
 - Niet vanzelfsprekend, iteratief algoritme nodig
 - Geparallelliseerd met Python
- Getest met Xilinx Kintex-7 (XC7K410T)
 - Basisoperaties: $+, -, \times, \div, \%, <, >, \dots$
 - Resultaten op interactieve grafiek

Planning

No plan survives contact with the enemy. — Helmuth von Moltke, 1900 In dit geval is de vijand "tijd".

Gepland

Gerealiseerd

Originele planning

Aangepaste planning

Vragen

Bedankt voor uw aandacht.

Zijn er nog vragen?

Een voorbeeld

Het kritieke pad bij dit project zal waarschijnlijk een FIR filter worden.

- ► Bitbreedte?
 - Nog niet bepaald \rightarrow variabele N (bv. tussen 8 en 16)
- Basisoperaties
 - Vermenigvuldigen
 - Sommeren
 - Saturatie (overflow/underflow)
- Maximale frequentie belangrijk

Grafiek

Grafiek, ingezoomd

--- signed eq --- signed at