

Machine Learning

Professor: Elton Sarmanho¹ E-mail: eltonss@ufpa.br

 $\Omega \square$

@**(1)**

¹Faculdade de Sistemas de Informação - UFPA/CUNTINS

31 de janeiro de 2025

Planejamento

Fundamentação

Conceitos Fundamentais

Supervised Learning Conceitos Fundamentais

Orientações para um Projeto de ML

Reflita sobre o problema e observe o quadro geral

Obtenha os dados

Explore os dados para obter insights

Prepare os dados

Explore muitos modelos e selecione os melhores

Ajuste seus modelos e combine-os

Apresente sua solução

Coloque seu projeto em produção

Model Selection e Optimization

Matrix de Confusão

Fundamentos de Regressão

Multi Layer Perceptron

Tipos de Modelos de Regressão Métricas de Avaliação Suposições da Regressão Linear

Redes Neurais

Funções de Ativação Propriedades das Redes Neurais Artificiais Arquitetura da Rede Neural Perceptron RNA

Unsupervised learning

Conceitos Fundamentais

K-Means

PCA

Referências Bibliográficas

Licença

Este trabalho está licenciado sob a licença Creative Commons:

Nesta aula:

- Vamos explorar os conceitos fundamentais de aprendizagem de máquina.
- Ter panorama sobre conceito.
- Códigos do livro estão: https://github.com/aimacode
- Códigos do Professor estão no github

 $\mathsf{L}\mathsf{Fundamentação}$

Conceitos Fundamentais

Conceitos Fundamentais

-Conceitos Fundamentais

O que é Machine Learning?

- Machine Learning (ML) é um campo da Inteligência Artificial que se concentra no desenvolvimento de algoritmos que permitem aos computadores aprenderem e fazerem previsões ou decisões baseadas em dados.
- O aprendizado ocorre a partir de padrões e inferências extraídas de conjuntos de dados, sem serem explicitamente programados.
- É amplamente utilizado em aplicações como reconhecimento de fala, visão computacional, diagnósticos médicos e sistemas de recomendação.

- Fundamentação

-Conceitos Fundamentais

Machine Learning e IA

INTELIGÊNCIA ARTIFICIAL

Qualquer técnica que permite o computador a imitar a inteligência humana, usando a lógica, regras matemáticas, árvores de decisão e machine learning(incluindo deep learning)

MACHINE LEARNING

Subconjunto da IA que inclui técnicas estatísticas que permitem maquinas de melhorar tarefas através da experiência. Está incluso o deep learning

DEEP LEARNING

Subconjunto de machine learning composto por algoritmos que permitem o software treinar a si mesmo para desempenhar tarefas, como reconhecimento de imagem e voz, por meio de múltiplas camadas de redes neurais artificiais -Conceitos Fundamentais

História e Motivação

- ▶ O conceito de Machine Learning tem raízes nos campos de estatística, ciência da computação e neurociência.
- Nos últimos anos, avanços em poder computacional e volume de dados aceleraram o desenvolvimento de técnicas de ML.
- Motivação principal: permitir que máquinas processem grandes volumes de dados e aprendam automaticamente padrões úteis.

∟ Fundamentação

Conceitos Fundamentais

Principais Aplicações

- Detecção de fraudes financeiras.
- Reconhecimento de imagem e fala.
- Sistemas de recomendação (ex.: Netflix, Amazon).
- Diagnóstico e previsão em saúde.
- Carros autônomos.

Conceitos Fundamentais

Formas de Aprendizado

- Aprendizado Supervisionado:
 - O algoritmo é treinado com dados rotulados.
 - Exemplo: Classificação de imagens em categorias como "gato" ou "cachorro".
- Aprendizado Não Supervisionado:
 - Não há rótulos; o algoritmo identifica padrões nos dados.
 - Exemplo: Agrupamento de clientes em segmentos de mercado.
- Aprendizado por Reforço:
 - O agente aprende interagindo com o ambiente e recebendo recompensas ou penalidades.
 - Exemplo: Treinar um robô para jogar xadrez.

Conceitos Fundamentais

Formas de Aprendizado

-Conceitos Fundamentais

Detalhes sobre Formas de Aprendizado

- Supervisionado:
 - ► Tarefas comuns: regressão e classificação.
 - Requer um conjunto grande de dados rotulados.
- Não Supervisionado:
 - ► Focado em identificar estrutura ou padrões ocultos.
 - Métodos: clustering, redução de dimensionalidade.
- Reforço:
 - Baseado na ideia de explorar e explorar (explore vs. exploit).
 - Utilizado em controle robótico e jogos.

Conceitos Fundamentais

Supervised Learning

Conceitos Fundamentais

Aprendizado Supervisionado

- ▶ Definição: Um tipo de aprendizado de máquina onde o modelo é treinado utilizando dados rotulados.
- Objetivo: Aprender um mapeamento de entradas (características) para saídas (rótulos).
- Aplicações:
 - Classificação de imagens
 - Detecção de spam
 - Análises preditivas

Conceitos Fundamentais

Componentes Chave

- ► Conjunto de Dados:
 - Características de entrada (X)
 - ► Rótulos ou valores-alvo (y)
- Modelo:
 - Função que mapeia X para y
- ▶ Treinamento:
 - Processo de ajuste dos parâmetros do modelo para minimizar o erro.
- Avaliação:
 - Avaliar o desempenho do modelo usando métricas como acurácia, precisão, etc.

Conceitos Fundamentais

Fluxo de Trabalho

- 1. Coletar e pré-processar dados rotulados.
- 2. Dividir os dados em conjuntos de treinamento e teste.
- 3. Treinar o modelo no conjunto de treinamento.
- 4. Avaliar o modelo no conjunto de teste.
- 5. Ajustar o modelo conforme necessário.

Conceitos Fundamentais

Conceitos Fundamentais

Tipos de Aprendizado Supervisionado

- ► Classificação:
 - As saídas são rótulos discretos (ex.: spam ou não spam).
- Regressão:
 - As saídas são valores contínuos (ex.: preços de imóveis).

Conceitos Fundamentais

Underfitting e Overfitting

Underfitting:

- O modelo é muito simples para capturar a complexidade dos dados.
- Características principais:
 - Alta taxa de erro tanto nos dados de treinamento quanto nos de teste.
 - ► Modelo insuficiente para aprender os padrões subjacentes.
- Exemplo: Ajustar uma linha reta em um conjunto de dados não linear.

Conceitos Fundamentais

Underfitting e Overfitting

Overfitting:

- O modelo é excessivamente complexo e captura ruído dos dados de treinamento.
- Características principais:
 - Baixa taxa de erro nos dados de treinamento, mas alta nos dados de teste.
 - Modelo foca em detalhes irrelevantes, reduzindo a generalização.
- Exemplo: Ajustar um polinômio de alta ordem em um conjunto pequeno de dados.

Conceitos Fundamentais

Underfitting e Overfitting

-Conceitos Fundamentais

Importância de Evitar

- O objetivo do aprendizado supervisionado é construir um modelo que generalize bem para novos dados.
- Estratégias para evitar underfitting e overfitting:
 - Escolher a complexidade adequada do modelo.
 - Utilizar validação cruzada para avaliar o desempenho do modelo.
 - Aplicar regularização para reduzir a complexidade do modelo.
 - Obter mais dados de treinamento de qualidade.

Orientações para um Projeto de ML

Reflita sobre o problema e observe o quadro geral

1. Reflita sobre o problema e observe o quadro geral

- Defina o objetivo do ponto de vista do negócio.
- Como sua solução será usada?
- Quais são as soluções alternativas atuais?
- Como enquadrar o problema (supervisionado/não supervisionado, online/offline)?
- Como o desempenho deve ser medido?
- A medida de desempenho está alinhada com o objetivo do negócio?
- Qual seria o desempenho mínimo necessário?
- O que são problemas comparáveis? Reutilize experiências ou ferramentas.
- A experiência humana está disponível?
- Como você resolveria o problema manualmente?
- Liste e verifique as suposições feitas.

└Orientações para um Projeto de ML

Obtenha os dados

2. Obtenha os dados

- Liste os dados necessários e a quantidade.
- Encontre e documente onde obter os dados.
- Verifique o espaço necessário para armazenamento.
- Verifique as obrigações legais e obtenha autorizações.
- Crie um espaço de trabalho com armazenamento suficiente.
- Certifique-se de que informações confidenciais sejam protegidas.
- Verifique o tamanho e o tipo dos dados (série temporal, geográfico, etc.).
- Separe um conjunto de teste e não o utilize durante a exploração.

- └Orientações para um Projeto de ML
 - Explore os dados para obter insights

3. Explore os dados para obter insights

- Crie uma cópia dos dados para exploração.
- Use um Notebook Jupyter para documentar a exploração.
- Estude cada atributo:
 - Nome, tipo, % de valores ausentes, ruído, utilidade, distribuição.
- ► Para tarefas supervisionadas, identifique o(s) atributo(s) alvo.
- Visualize os dados.
- Estude correlações entre atributos.
- Identifique transformações promissoras.
- ► Documente o que foi aprendido.

- Orientações para um Projeto de ML
 - Prepare os dados

4. Prepare os dados

- Trabalhe em cópias dos dados (mantenha o original intacto).
- ► Grave funções para todas as transformações de dados.
- Limpeza de dados:
 - Corrija ou remova outliers.
 - Preencha valores ausentes (zero, média, mediana) ou descarte linhas/colunas.
- Seleção de atributos:
 - Descarte atributos que não fornecem informações úteis.
- Engenharia de atributos:
 - Decomponha atributos (categóricos, data/hora).
 - Adicione transformações promissoras (log, sqrt, etc.).
 - Agregue atributos em novos atributos promissores.
- Escalonamento de atributos:
 - Padronize ou normalize atributos.

- └Orientações para um Projeto de ML
 - -Explore muitos modelos e selecione os melhores

5. Explore muitos modelos e selecione os melhores

- ► Treine modelos de diferentes categorias (linear, SVM, Random Forest, Redes Neurais, etc.).
- Avalie e compare o desempenho usando validação cruzada.
- ► Analise as variáveis mais significativas para cada algoritmo.
- Analise os tipos de erros cometidos pelos modelos.
- Execute uma rodada rápida de seleção e engenharia de atributos.
- Liste os três a cinco modelos mais promissores.

- └Orientações para um Projeto de ML
 - LAjuste seus modelos e combine-os

6. Ajuste seus modelos e combine-os

- Ajuste os hiperparâmetros usando validação cruzada.
- Trate as transformações de dados como hiperparâmetros.
- Prefira busca aleatória em vez de busca em grade.
- Experimente métodos de ensemble (combinação de modelos).
- Atenção: Não ajuste o modelo após medir o erro de generalização.

└Orientações para um Projeto de ML

LApresente sua solução

7. Apresente sua solução

- Documente o que foi feito.
- Crie uma boa apresentação, destacando o quadro geral.
- Explique por que a solução atinge o objetivo de negócios.
- ► Apresente pontos interessantes observados durante o projeto.
- Liste suposições e limitações do sistema.
- Use visualizações para comunicar descobertas importantes.

- └Orientações para um Projeto de ML
 - Coloque seu projeto em produção

8. Coloque seu projeto em produção

- Prepare a solução para produção (conecte-a às entradas de dados, escreva testes).
- Escreva código de monitoramento para verificar o desempenho ao vivo.
- Monitore a qualidade das entradas (sensores defeituosos, dados obsoletos).
- Treine modelos regularmente com dados atualizados (automatize o máximo possível).

- └Orientações para um Projeto de ML
 - Coloque seu projeto em produção

Como funciona na prática

- ▶ github.com/eltonsarmanho/InteligenciaArtificial
 - Dataset
 - k-Nearest Neighbors
 - Decision Tree
 - Random Forest
 - NAIVE BAYES
 - ENSEMBLE LEARNER
 - SVM
- Grid Search
- Cross-Validation
- Curva de Aprendizado

Model Selection Optimization

Seleção de Modelos (Model Selection)

Objetivo: Escolher o melhor modelo ou espaço de hipóteses para um problema de aprendizado de máquina.

- ► **Model Selection:** Escolha de um espaço de hipóteses (e.g., árvores de decisão, redes neurais, etc.).
- Otimização: Encontrar a melhor hipótese dentro do espaço escolhido.

Desafio: Equilibrar underfitting e overfitting.

Model Selection

Objetivo da seleção de modelos:

Identificar o modelo que melhor generaliza para dados não vistos.

Etapas principais:

- 1. Divisão dos dados:
 - Training set: para ajustar os parâmetros do modelo.
 - Validation set: para ajustar hiperparâmetros.
 - Test set: para avaliar a performance final.
- 2. Validação cruzada (Cross-validation):
 - Técnica para maximizar o uso dos dados disponíveis e reduzir viés.
- 3. Escolha de métricas:
 - Exemplo: Acurácia, precisão, recall, F1-score para classificação

Cross-validation

Definição:

- Divide os dados em k subconjuntos (folds).
- Treina e avalia o modelo k vezes, cada vez utilizando um fold diferente como validação.

Vantagens:

- Usa os dados de forma eficiente.
- Reduz a variação associada à divisão específica de dados.

Cross-validation

Curva de Aprendizado

- Definição: Representação gráfica que mostra como o desempenho de um modelo muda com o aumento de dados de treinamento.
- Componentes:
 - **Erro de treinamento:** Diminui à medida que o modelo aprende melhor os padrões dos dados.
 - Erro de validação: Inicialmente diminui, mas pode aumentar devido ao overfitting.
- ▶ Objetivo: Utilizar a curva para identificar problemas como underfitting (alta taxa de erro) ou overfitting (grande diferença entre erros de treinamento e validação).

Exemplo de Curva de Aprendizado

Curva de Aprendizado: Mostra o erro no conjunto de treinamento e validação em função do tamanho do conjunto de treinamento.

- Underfitting: Erro alto em ambos os conjuntos.
- Overfitting: Erro baixo no treinamento, mas alto na validação.

Hyperparameter Tuning

Definição:

- Parâmetros que não são aprendidos diretamente pelo modelo.
- Exemplo: número de árvores em uma floresta aleatória.

Técnicas comuns:

- Grid search: Busca exaustiva por combinações de hiperparâmetros.
- Random search: Seleção aleatória de combinações.
- Bayesian optimization: Abordagem probabilística para encontrar a melhor configuração.

Matrix de Confusão

O que é uma Matriz de Confusão?

Matriz de Confusão:

- Ferramenta para avaliar o desempenho de modelos de classificação.
- Compara as previsões do modelo com os valores reais (rótulos verdadeiros).
- Útil para problemas de classificação binária ou multiclasse.

Estrutura Básica:

	Previsto Positivo	Previsto Negativo
Real Positivo	Verdadeiro Positivo (VP)	Falso Negativo (FN)
Real Negativo	Falso Positivo (FP)	Verdadeiro Negativo (VN)

Exemplo de Matriz de Confusão

Cenário: Classificação de e-mails como spam ou não spam.

	Previsto Spam	Previsto Não Spam
Real Spam	50 (VP)	10 (FN)
Real Não Spam	5 (FP)	100 (VN)

Legenda:

- VP (Verdadeiro Positivo): E-mails corretamente classificados como spam.
- ► FN (Falso Negativo): E-mails spam classificados como não spam.
- ► FP (Falso Positivo): E-mails não spam classificados como spam.
- ► VN (Verdadeiro Negativo): E-mails corretamente classificados como não spam.

Métricas Derivadas da Matriz de Confusão

1. Acurácia (Accuracy):

$$Acurácia = \frac{VP + VN}{VP + FP + FN + VN}$$

Exemplo: $\frac{50+100}{50+5+10+100} = \frac{150}{165} \approx 90.9\%$.

2. Precisão (Precision):

$$\mathsf{Precis\~ao} = \frac{\mathit{VP}}{\mathit{VP} + \mathit{FP}}$$

Exemplo: $\frac{50}{50+5} = \frac{50}{55} \approx 90.9\%$.

3. Recall (Sensibilidade):

$$Recall = \frac{VP}{VP + FN}$$

Exemplo: $\frac{50}{50+10} = \frac{50}{60} \approx 83.3\%$.

4. F1-Score:

$$F1-Score = 2 \cdot \frac{Precisão \cdot Recall}{Precisão + Recall}$$

Exemplo: $2 \cdot \frac{0.909 \cdot 0.833}{0.000 \pm 0.833} \approx 0.869$.

Interpretação da Matriz de Confusão

1. Underfitting (Subajuste):

- ► Alto erro tanto no treinamento quanto na validação.
- Modelo muito simples para capturar os padrões dos dados.

2. Overfitting (Sobreajuste):

- ▶ Baixo erro no treinamento, mas alto erro na validação.
- Modelo se ajusta demais aos dados de treinamento e não generaliza bem.

3. Bom Ajuste:

- Baixo erro tanto no treinamento quanto na validação.
- Modelo generaliza bem para novos dados.

Matriz de Confusão para Classificação Multiclasse

Exemplo: Problema com três classes (A, B, C).

	Previsto A	Previsto B	Previsto C
Real A	VP_A	FN_A→B	$FN_A \rightarrow C$
Real B	$FN_B \rightarrow A$	VP_B	$FN_B \rightarrow C$
Real C	$FN_C \rightarrow A$	$FNC \rightarrow B$	VP_C

Legenda:

- ▶ **VP_X:** Verdadeiros positivos para a classe X.
- FN_X→Y: Falsos negativos onde a classe real era X, mas foi prevista como Y.

Matriz de Confusão para Classificação Multiclasse

Matriz de Confusão para Classificação Multiclasse

Quando Usar a Matriz de Confusão?

Aplicações:

- Avaliação de modelos de classificação.
- Identificação de desbalanceamento de classes.
- Ajuste de limiares de decisão para equilibrar precisão e recall.

Regressão

Definição

Modelo estatístico para prever uma variável contínua y a partir de uma ou mais variáveis de entrada X.

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n + \varepsilon$$

Figura: Exemplo de regressão linear.

Regressão vs. Classificação

Característica	Regressão	Classificação
Saída	Contínua (\mathbb{R})	Discreta (rótulos)
Exemplo	Preço de imóveis	Diagnóstico médico (doente/saudável)
Métricas	MSE, R ²	Acurácia, F1-Score

Variáveis Independentes vs. Dependentes

Formulação Matemática

$$y = X\beta + \varepsilon$$

- **X** $\in \mathbb{R}^{n \times p}$: Matriz de features
- $oldsymbol{eta} oldsymbol{eta} \in \mathbb{R}^p$: Vetor de coeficientes
- $ightharpoonup \varepsilon \in \mathbb{R}^n$: Erro aleatório

└Tipos de Modelos de Regressão

Regressão Linear Simples

Definição

Modela a relação linear entre uma variável independente x e uma variável dependente y:

$$y = \beta_0 + \beta_1 x + \varepsilon$$

- \triangleright β₀: Intercepto (valor de *y* quando x = 0).
- \triangleright β_1 : Coeficiente angular (inclinação da reta).
- ightharpoonup arepsilon: Erro aleatório.

LTipos de Modelos de Regressão

Regressão Linear Múltipla

Definição

Estende a regressão linear para múltiplas variáveis independentes:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n + \varepsilon$$

Em forma matricial:

$$\mathbf{y} = \mathbf{X} \boldsymbol{eta} + oldsymbol{arepsilon}$$

- **X**: Matriz de features $(n \times p)$.
- \triangleright β: Vetor de coeficientes ($p \times 1$).

└Tipos de Modelos de Regressão

Regressão Polinomial

Definição

Modela relações não lineares usando polinômios:

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \dots + \beta_n x^n + \varepsilon$$

Exemplo:
$$y = \beta_0 + \beta_1 x + \beta_2 x^2$$
.

└Tipos de Modelos de Regressão

Regressão Regularizada

Objetivo

Penalizar coeficientes grandes para evitar overfitting:

► Ridge (L2):

Minimizar
$$\|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2 + \lambda \|\boldsymbol{\beta}\|^2$$

Lasso (L1):

Minimizar
$$\|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2 + \lambda \|\boldsymbol{\beta}\|_1$$

Elastic Net:

Minimizar
$$\|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2 + \lambda_1 \|\boldsymbol{\beta}\|_1 + \lambda_2 \|\boldsymbol{\beta}\|^2$$

└Tipos de Modelos de Regressão

Regressão Logística (Contexto de Regressão)

Definição

Usada para problemas de classificação binária, mas fundamentada em regressão:

$$P(y = 1 | \mathbf{x}) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x_1 + \dots + \beta_n x_n)}}$$

- $P(y=1|\mathbf{x})$: Probabilidade de y=1.
- Função logística: $\sigma(z) = \frac{1}{1+e^{-z}}$.

Métricas de Avaliação

Erro Quadrático Médio (MSE)

Definição: O Erro Quadrático Médio é uma métrica que mede a média dos erros ao quadrado entre os valores reais (y_i) e os valores preditos (\hat{y}_i) :

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$
 (1)

Interpretação: Quanto menor o MSE, melhor a performance do modelo.

$$(y_i - \hat{y}_i)^2 \downarrow^{y_i} \\ \hat{y}_i \\ \hat{y}_i \\ \hat{y}_i \\ \hat{y}_i \\ \hat{y}_i$$

Visualização:

Métricas de Avaliação

Raiz do Erro Quadrático Médio (RMSE)

Definição: A Raiz do Erro Quadrático Médio é simplesmente a raiz quadrada do MSE:

RMSE =
$$\sqrt{\text{MSE}} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$
 (2)

Interpretação: É uma métrica na mesma unidade dos dados originais, tornando sua interpretação mais intuitiva.

Métricas de Avaliação

Erro Absoluto Médio (MAE)

Definição: O Erro Absoluto Médio mede a média das diferenças absolutas entre os valores reais e preditos:

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$
 (3)

Interpretação: Valores menores indicam que o modelo está mais próximo dos valores reais em média.

Le Métricas de Avaliação

Coeficiente de Determinação (R^2) e R^2 Ajustado

Coeficiente de Determinação (R^2):

- ► Mede a proporção da variância explicada pelo modelo.
- Fórmula:

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$
(4)

▶ Intervalo: $0 \le R^2 \le 1$ (quanto mais próximo de 1, melhor).

R^2 Ajustado:

- Penaliza a adição de variáveis irrelevantes ao modelo.
- Fórmula:

$$R_{\text{ajustado}}^2 = 1 - (1 - R^2) \frac{n-1}{n-p-1}$$

Onde p é o número de variáveis explicativas.

Suposições da Regressão Linear

Linearidade

Definição: A relação entre a variável dependente (y) e a variável independente (X) deve ser linear.

Representação Matemática:

$$y = \beta_0 + \beta_1 X + \epsilon \tag{6}$$

- \triangleright β_0 é o intercepto;
- $ightharpoonup \beta_1$ é o coeficiente angular;
- ightharpoonup ϵ representa o termo de erro.

Suposições da Regressão Linear

Independência dos Resíduos

Definição: Os resíduos (ϵ_i) não devem estar correlacionados entre si.

Teste Comum: Teste de Durbin-Watson

$$DW = \frac{\sum_{i=2}^{n} (\epsilon_i - \epsilon_{i-1})^2}{\sum_{i=1}^{n} \epsilon_i^2}$$
 (7)

Valores próximos de 2 indicam independência.

Visualização:

Pontos aleatórios indicam independência

Suposições da Regressão Linear

Homocedasticidade

Definição: A variância dos resíduos deve ser constante para todos os valores de X.

Visualização:

Suposições da Regressão Linear

Homocedasticidade

Interpretacao: A ausência de padrões nos resíduos (em torno do eixo x) indica que o modelo atende à suposição de homocedasticidade.

└Suposições da Regressão Linear

Normalidade dos Resíduos

Definição: Os resíduos devem seguir uma distribuição aproximadamente normal.

Teste Comum: Teste de Shapiro-Wilk

Visualização:

Frequência

Suposições da Regressão Linear

Ausência de Multicolinearidade

Definição: As variáveis independentes não devem ser altamente correlacionadas entre si.

Teste Comum: Fator de Inflacionamento da Variância (VIF)

$$VIF_j = \frac{1}{1 - R_j^2} \tag{8}$$

Onde R_j^2 é o coeficiente de determinação da regressão da variável j contra as demais.

Interpretação: VIF > 10 indica alta multicolinearidade.

Redes Neurais

Objetivos da Apresentação

- Explorar as características fundamentais das Redes Neurais Artificiais (RNAs).
- Compreender o funcionamento básico de uma RNA.
- Analisar as principais arquiteturas de RNAs disponíveis.
- Ilustrar aplicações de RNAs em Reconhecimento de Padrões e Controle.

Motivação Biológica

Ideia Central

- Utilizar neurônios biológicos como modelos para neurônios artificiais.
- Neurônios biológicos são o elemento fundamental do sistema nervoso.
- Existem diversos tipos de neurônios biológicos.

Neurônio Biológico

- O cérebro humano é relativamente lento, mas possui alto paralelismo.
- Cerca de 10¹¹ neurônios, cada um operando a aproximadamente 1 KHz.
- ► Cada neurônio pode se conectar com até 10⁴ outros neurônios.

Figura: Representação de um neurônio biológico.

Funcionamento Simplificado de um Neurônio Biológico

- Neurônios podem estar em dois estados:
 - Ativo ou excitado: Envia sinais para outros neurônios por meio do axônio e sinapses.
 - Inativo ou inibido: Não envia sinais.
- Sinapses podem ser de dois tipos:
 - Excitatorias: Excitam o neurônio receptor.
 - Inibitórias: Inibem o neurônio receptor.

Ativação do Neurônio

- Quando o efeito cumulativo das várias sinapses que chegam a um neurônio excede um valor limite, o neurônio dispara.
- O neurônio fica ativo por um período e envia um sinal para outros neurônios.

Introdução às Redes Neurais Artificiais

- ► Redes neurais artificiais são modelos computacionais inspirados no funcionamento do cérebro humano.
- Esses modelos são amplamente utilizados em aprendizado de máquina e inteligência artificial.
- As redes neurais foram desenvolvidas a partir de contribuições de diversas áreas, como matemática aplicada, estatística e ciência da computação.

Origens das Redes Neurais Artificiais

- Os primeiros estudos formais sobre redes neurais artificiais foram realizados por McCulloch e Pitts em 1943.
- Eles propuseram um modelo matemático para um neurônio artificial.
- Esse modelo era capaz de implementar operações lógicas básicas, como "E"e "OU".

Modelo Matemático do Neurônio Artificial

- Um neurônio artificial pode ser representado por uma função $\eta: \mathbb{R}^n \to \{0,1\}.$
- A função é definida pela equação:

$$\eta(x) = \chi_{\geq 0} \left[w^T x - b \right],$$

onde:

- w é o vetor de pesos,
- x é o vetor de entradas,
- ▶ b é o limiar de ativação,
- $\chi_{\geq 0}$ é a função indicadora que retorna 1 se o argumento for maior ou igual a zero, e 0 caso contrário.

Aplicações Iniciais

- ▶ O modelo de McCulloch e Pitts demonstrou que redes neurais podem resolver problemas de lógica clássica.
- Essa descoberta foi um marco inicial para o desenvolvimento de sistemas de inteligência artificial.
- ► Hoje, as redes neurais são aplicadas em diversas áreas, como reconhecimento de padrões, processamento de linguagem natural e visão computacional.

Neurônio Artificial

- ▶ Um neurônio artificial é uma função $\eta: \mathbb{R}^n \to \mathbb{R}$.
- A função é definida por:

$$\eta(x) = \varphi(w^T x - b),$$

onde:

- $ightharpoonup \varphi$ é a função de ativação,
- w é o vetor de pesos sinápticos,
- ▶ b é o viés.

Funções de Ativação

A função de ativação φ determina a saída do neurônio.

Função Limiar

$$\chi_{\geq 0}(t) = \begin{cases} 1, & t \geq 0, \\ 0, & t < 0. \end{cases}$$

Função Logística

$$\sigma(t) = \frac{1}{(1+e^{-t})}.$$

Função ReLU

$$\mathsf{relu}(t) = \mathsf{max}\{0, t\}.$$

Funções de Ativação

Aplicações das Funções de Ativação

- A função limiar é usada em modelos binários.
- A função logística é comum em problemas de classificação.
- A função ReLU é amplamente utilizada em redes neurais profundas.

Propriedades das Redes Neurais Artificiais

Propriedades das Redes Neurais Artificiais

- As redes neurais artificiais (RNAs) possuem características que as tornam poderosas para diversas aplicações.
- ► Entre as principais propriedades estão: aprendizado, generalização e abstração.

Propriedades das Redes Neurais Artificiais

Aprendizado

- ► As RNAs são capazes de modificar seu comportamento com base nos dados de entrada.
- Isso permite que elas produzam saídas consistentes e adaptadas ao domínio do problema.
- O aprendizado ocorre através da ajuste dos pesos sinápticos durante o treinamento.

Propriedades das Redes Neurais Artificiais

Generalização

- Após o treinamento, uma RNA pode lidar com pequenas variações nas entradas, como ruídos ou distorções.
- Essa capacidade de generalização é essencial para aplicações em cenários do mundo real.
- A generalização permite que a rede mantenha um bom desempenho mesmo com dados não vistos durante o treinamento.

Arquitetura da Rede Neural

Arquitetura de Redes Neurais

- Os neurônios artificiais são as unidades básicas de processamento em uma rede neural.
- Uma rede neural pode ser representada como um grafo direcionado.
- Nesse grafo, os vértices correspondem aos neurônios e as arestas indicam conexões entre eles.

Arquitetura da Rede Neural

Topologia da Rede Neural

- ► A estrutura do grafo é chamada de arquitetura ou topologia da rede neural.
- A topologia define como os neurônios estão organizados e conectados.
- Existem diferentes tipos de topologias, como redes neurais recorrentes e progressivas.

Arquitetura da Rede Neural

Redes Neurais Recorrentes ou Feed-backward networks

- ► Uma rede neural é dita recorrente quando o grafo associado contém ciclos.
- Isso permite que a informação flua em loops, o que é útil para modelar sequências temporais.
- Aplicações comuns incluem processamento de linguagem natural e previsão de séries temporais.

LArquitetura da Rede Neural

Redes Neurais Recorrentes ou Feed-backward networks

LArquitetura da Rede Neural

Redes Neurais Progressivas ou Feed-forward networks

- ► Uma rede neural é progressiva quando o fluxo de informação segue em uma única direção, sem ciclos.
- ► Também conhecidas como redes feedforward, são amplamente utilizadas em tarefas de classificação e regressão.
- Exemplos incluem redes neurais convolucionais (CNNs) e perceptrons multicamadas.

-Arquitetura da Rede Neural

Redes Neurais Progressivas ou Feed-forward networks

Modelo Matemático do Perceptron

▶ O Perceptron é uma função $f : \mathbb{R}^n \to \{0,1\}$ definida por:

$$f(x) = \begin{cases} 1, & \text{se } w^T x + b \ge 0, \\ 0, & \text{caso contrário}, \end{cases}$$

onde:

- $x \in \mathbb{R}^n$ é o vetor de entrada,
- \triangleright $w \in \mathbb{R}^n$ é o vetor de pesos,
- ▶ $b \in \mathbb{R}$ é o viés.

Redes Neurais
Perceptron

Estrutura do Perceptron

Estrutura do Perceptron

Vetor de entrada, de dimensão $(1,n_\chi)$

$$\mathbf{x}^{(i)} = [x_1, x_2, \cdots, x_{n_x}]$$

Vetor de pesos, de dimensão $(1, n_x)$

$$\mathbf{w} = [w_1, w_2, \cdots, w_{n_x}]$$

Estado do neurônio, escalar

$$\mathsf{Ui} = w_1 x_1 + \dots + w_{n_x} x_{n_x} + b = \sum_{i=0}^{n_x} x_j^{(i)} w_j + b = \mathbf{w}^T \mathbf{x}^{(i)} + b$$

Ativação, escalar

$$a_i = g(u_i)$$

Previsão, escalar

$$\hat{y}_i = a_i$$

Neurônio que Implementa a Porta OR

- ightharpoonup Considere um neurônio com duas entradas x_1 e x_2 .
- Os pesos sinápticos são $w_1 = 1$ e $w_2 = 1$.
- ▶ O limiar de ativação é $\theta = 0, 5$.
- ► A saída *y* é dada por:

$$y = \begin{cases} 1, & \text{se } u \ge 0, \\ 0, & \text{se } u < 0, \end{cases}$$

onde
$$u = w_1 x_1 + w_2 x_2 - \theta$$
.

Cálculo da Saída para a Porta OR

► A porta OR é definida pela seguinte tabela verdade:

x_1	<i>X</i> ₂	У
0	0	0
0	1	1
1	0	1
1	1	1

▶ Vamos calcular a saída y para cada combinação de entradas.

Exemplo de Cálculo

Para $x_1 = 0$ e $x_2 = 0$:

$$u = (1 \cdot 0) + (1 \cdot 0) - 0, 5 = -0, 5 \implies y = 0.$$

Para $x_1 = 0$ e $x_2 = 1$:

$$u = (1 \cdot 0) + (1 \cdot 1) - 0, 5 = 0, 5 \implies y = 1.$$

Para $x_1 = 1$ e $x_2 = 0$:

$$u = (1 \cdot 1) + (1 \cdot 0) - 0, 5 = 0, 5 \Rightarrow y = 1.$$

Para $x_1 = 1$ e $x_2 = 1$:

$$u = (1 \cdot 1) + (1 \cdot 1) - 0, 5 = 1, 5 \implies y = 1.$$

Regra de Treinamento do Perceptron

- A regra de treinamento do Perceptron ajusta os pesos w e o viés b para classificar corretamente os dados de treinamento.
- Para um conjunto de dados linearmente separável, o algoritmo converge em um número finito de passos.
- A atualização dos pesos é dada por:

$$w \leftarrow w + \eta(y_i - \hat{y}_i)x_i$$

onde:

- $ightharpoonup \eta$ é a taxa de aprendizado,
- ▶ y_i é a saída desejada,
- $ightharpoonup \hat{y}_i$ é a saída prevista.

Neurônio que Implementa a Porta AND

- ightharpoonup Considere um neurônio com duas entradas x_1 e x_2 .
- ▶ Inicialmente, os pesos sinápticos são $w_1 = 0, 2$ e $w_2 = 0, 2$.
- ▶ O limiar de ativação é $\theta = 0, 5$.
- ► A saída *y* é dada por:

$$y = \begin{cases} 1, & \text{se } u \ge 0, \\ 0, & \text{se } u < 0, \end{cases}$$

onde
$$u = w_1 x_1 + w_2 x_2 - \theta$$
.

Regra de Atualização dos Pesos

► A regra de atualização dos pesos é dada por:

$$w_i \leftarrow w_i + \eta (y_{\text{esperado}} - y_{\text{calculado}}) x_i,$$

onde:

- $ightharpoonup \eta$ é a taxa de aprendizado (vamos usar $\eta = 0, 1$),
- ▶ y_{esperado} é a saída desejada,
- $ightharpoonup y_{\text{calculado}}$ é a saída calculada pelo neurônio.

Passo 1: $x_1 = 1$, $x_2 = 1$

- ► Saída esperada: $y_{\text{esperado}} = 1$.
- Cálculo de u:

$$u = (0, 2 \cdot 1) + (0, 2 \cdot 1) - 0, 5 = -0, 1 \Rightarrow y = 0.$$

- Frro: $y_{\text{esperado}} y_{\text{calculado}} = 1 0 = 1$.
- Atualização dos pesos:

$$w_1 \leftarrow 0, 2 + 0, 1 \cdot (1 - 0) \cdot 1 = 0, 3,$$

 $w_2 \leftarrow 0, 2 + 0, 1 \cdot (1 - 0) \cdot 1 = 0, 3.$

Novos pesos: $w_1 = 0, 3, w_2 = 0, 3$.

Passo 1.1: $x_1 = 1$, $x_2 = 1$

- ► Saída esperada: $y_{\text{esperado}} = 1$.
- Cálculo de *u*:

$$u = (0, 3 \cdot 1) + (0, 3 \cdot 1) - 0, 5 = 0, 1 \quad \Rightarrow \quad y = 1.$$

- ► Erro: $y_{\text{esperado}} y_{\text{calculado}} = 1 1 = 0$.
- Não há atualização dos pesos.

Passo 2: $x_1 = 1$, $x_2 = 0$

- Saída esperada: $y_{\text{esperado}} = 0$.
- Cálculo de *u*:

$$u = (0, 3 \cdot 1) + (0, 3 \cdot 0) - 0, 5 = -0, 2 \implies y = 0.$$

- ► Erro: $y_{\text{esperado}} y_{\text{calculado}} = 0 0 = 0$.
- Não há atualização dos pesos.

Passo 3: $x_1 = 0$, $x_2 = 1$

- Saída esperada: $y_{\text{esperado}} = 0$.
- Cálculo de *u*:

$$u = (0, 3 \cdot 0) + (0, 3 \cdot 1) - 0, 5 = -0, 2 \implies y = 0.$$

- ► Erro: $y_{\text{esperado}} y_{\text{calculado}} = 0 0 = 0$.
- Não há atualização dos pesos.

Passo 4: $x_1 = 0$, $x_2 = 0$

- Saída esperada: $y_{\text{esperado}} = 0$.
- Cálculo de *u*:

$$u = (0, 3 \cdot 0) + (0, 3 \cdot 0) - 0, 5 = -0, 5 \implies y = 0.$$

- ► Erro: $y_{\text{esperado}} y_{\text{calculado}} = 0 0 = 0$.
- Não há atualização dos pesos.

Função de Ativação

- A função de ativação $\varphi: \mathbb{R} \to \mathbb{R}$ é aplicada à saída de um neurônio artificial.
- ► Ela introduz não linearidade no modelo, permitindo que a rede neural aprenda padrões complexos.
- Sem a não linearidade, uma rede neural com múltiplas camadas seria equivalente a uma única transformação linear.

Importância da Não Linearidade

- Em redes neurais com várias camadas ocultas, a ausência de não linearidade resultaria em uma composição de transformações afins.
- Matematicamente, isso pode ser expresso como:

$$f(x) = W_n(W_{n-1}(\ldots W_1(x) + b_1) + b_{n-1}) + b_n,$$

onde W_i são matrizes de pesos e b_i são vetores de viés.

Sem funções de ativação não lineares, f(x) seria equivalente a uma única transformação afim:

$$f(x) = W'x + b'.$$

Exemplos de Funções de Ativação

► Função Limiar (Step):

$$arphi(t) = egin{cases} 1, & t \geq 0, \ 0, & t < 0. \end{cases}$$

► Função Logística (Sigmoide):

$$\sigma(t) = \frac{1}{1 + e^{-t}}.$$

Função ReLU (Rectified Linear Unit):

$$ReLU(t) = max(0, t).$$

Impacto na Aprendizagem

- A não linearidade introduzida pela função de ativação permite que a rede neural modele relações complexas entre entradas e saídas.
- Sem funções de ativação não lineares, a rede não seria capaz de aprender funções não lineares, limitando sua aplicabilidade.
- A escolha da função de ativação afeta a eficiência do treinamento e a capacidade de generalização do modelo.

Limitações do Perceptron

- O Perceptron só pode classificar dados linearmente separáveis.
- Ele não consegue resolver problemas não lineares, como o problema do XOR (ou-exclusivo).
- Essa limitação foi destacada por Minsky e Papert em 1969, o que levou a um declínio temporário no interesse por redes neurais.

Definição Matemática de uma RNA

- Uma Rede Neural Artificial (RNA) pode ser vista como uma função f que mapeia um conjunto de dados de entrada X para um conjunto de saídas Y.
- Formalmente, a RNA é uma função:

$$f: \mathbb{R}^{n_x} \to \mathbb{R}^{n_y},$$

onde:

- $ightharpoonup n_{x}$ é o número de features (entradas),
- $ightharpoonup n_v$ é o número de saídas.

 $\mathsf{L}\mathsf{RNA}$

Representação dos Dados

- Os dados de entrada são representados por uma matriz $X \in \mathbb{R}^{n_x \times m}$, onde:
 - $ightharpoonup n_x$ é o número de features por exemplo,
 - ▶ m é o número total de exemplos de treinamento.
- As saídas desejadas são representadas por uma matriz $Y \in \mathbb{R}^{n_y \times m}$, onde:
 - $ightharpoonup n_y$ é o número de saídas por exemplo.

Processo de Aprendizagem

- A principal característica de uma rede neural é sua capacidade de aprender e melhorar o desempenho com base em estímulos externos.
- A aprendizagem envolve a atualização da representação interna da rede, ajustando sua arquitetura e os pesos das conexões entre neurônios.
- Esse processo permite que a rede desempenhe tarefas específicas de forma mais eficiente ao longo do tempo.

Atualização da Representação Interna

- A aprendizagem ocorre por meio da modificação da arquitetura da rede e do ajuste dos pesos sinápticos.
- As regras de aprendizagem determinam como os pesos são atualizados em resposta aos erros ou estímulos externos.
- Essas regras são essenciais para garantir que a rede se adapte e melhore seu desempenho.

Tipos de Regras de Aprendizagem

Aprendizagem por Correção de Erro:

- Utilizada em treinamento supervisionado.
- Os pesos são ajustados com base no erro, que é a diferença entre a saída da rede e o valor esperado.
- O erro é minimizado gradualmente ao longo dos ciclos de treinamento.
- Outras regras de aprendizagem incluem:
 - Aprendizagem Hebbiana,
 - Aprendizagem Competitiva,
 - Aprendizagem por Reforço.

Aprendizagem por Correção de Erro

- ► A regra de correção de erro é uma das mais comuns em redes neurais supervisionadas.
- O erro é calculado como:

$$Erro = y_{esperado} - y_{calculado}.$$

Os pesos são atualizados usando a fórmula:

$$w_i \leftarrow w_i + \eta \cdot \mathsf{Erro} \cdot x_i$$
,

onde η é a taxa de aprendizado e x_i é a entrada.

Treinamento da RNA

- ▶ Para que a RNA aprenda a mapear X para Y, ela precisa ser treinada.
- ▶ O treinamento é um processo de otimização que minimiza uma função de perda \mathcal{L} , que mede a diferença entre as saídas previstas \hat{Y} e as saídas desejadas Y:

$$\mathcal{L}(Y, \hat{Y}) = \frac{1}{m} \sum_{i=1}^{m} ||y_i - \hat{y}_i||^2.$$

▶ Durante o treinamento, os parâmetros da RNA (pesos e vieses) são ajustados para minimizar £.

Aprendizado Supervisionado

- ▶ O treinamento de uma RNA é tipicamente supervisionado, o que requer um conjunto de dados rotulados $\{(x_i, y_i)\}_{i=1}^m$.
- A cada iteração, a RNA gera uma saída \hat{y}_i para a entrada x_i .
- A diferença entre y_i e \hat{y}_i é usada para atualizar os parâmetros da rede via retropropagação.

Redes Neurais

Multi Layer Perceptron

Introdução ao Multi-Layer Perceptron (MLP)

- ➤ As limitações do Perceptron simples levaram ao desenvolvimento de redes neurais com múltiplas camadas, como o Adaline e o MLP.
- O MLP (Multi-Layer Perceptron) foi proposto por Rumelhart e McClelland em 1986, com base em trabalhos anteriores de Widrow e Hoff (1960).
- O MLP é composto por várias camadas de neurônios artificiais, permitindo a modelagem de funções não lineares complexas.

Redes Neurais

Multi Layer Perceptron

Introdução ao MLP

- O Multi-Layer Perceptron (MLP) é uma rede neural artificial com múltiplas camadas de neurônios.
- ► Ele é composto por:
 - Uma camada de entrada,
 - Uma ou mais camadas ocultas,
 - Uma camada de saída.
- A topologia do MLP permite a modelagem de funções não lineares complexas.

Multi Layer Perceptron

Topologia do MLP

- ► A topologia de um MLP é definida pela organização das camadas e pelas conexões entre os neurônios.
- Cada camada é composta por um conjunto de neurônios que processam informações e passam os resultados para a camada seguinte.
- As conexões entre os neurônios são representadas por pesos sinápticos.

Redes Neurais

Multi Layer Perceptron

Topologia do MLP

- ■Entrada;
- Intermediária ou escondida;
- ■Saída.

Exemplo de RNA com L=3 camadas intermediárias (veja que a camada de saída entra na conta)

Multi Layer Perceptron

Definição Matemática de uma Camada

- ▶ Uma camada de m neurônios pode ser representada por uma função $L: \mathbb{R}^n \to \mathbb{R}^m$.
- A função de uma camada é dada por:

$$L(x) = \varphi(Wx - b),$$

onde:

- $V \in \mathbb{R}^{m \times n}$ é a matriz de pesos sinápticos,
- ▶ $b \in \mathbb{R}^m$ é o vetor de vieses,
- ightharpoonup arphi é a função de ativação aplicada componente a componente.

Redes Neurais

Multi Layer Perceptron

Camada Densa ou Totalmente Conectada

- ► Uma camada é chamada de densa ou totalmente conectada se a matriz W é uma matriz cheia, ou seja, todos os elementos da matriz podem ser diferentes de zero.
- Isso significa que cada neurônio na camada recebe entradas de todos os neurônios da camada anterior.
- ▶ Matematicamente, a densidade da camada é expressa pela estrutura completa da matriz W.

Exemplo de MLP com Duas Camadas

- ► Considere um MLP com duas camadas:
 - ▶ A primeira camada $L_1: \mathbb{R}^n \to \mathbb{R}^k$ com função de ativação φ_1 .
 - ▶ A segunda camada $L_2: \mathbb{R}^k \to \mathbb{R}^m$ com função de ativação φ_2 .
- A função total do MLP é dada por:

$$f(x) = L_2(L_1(x)) = \varphi_2(W_2\varphi_1(W_1x - b_1) - b_2).$$

Essa composição de camadas permite a modelagem de funções não lineares complexas.

Multi Layer Perceptron

Papel das Camadas

- ▶ As primeiras camadas (L₁, L₂,...) atuam como extratores de características, transformando a entrada em representações intermediárias.
- As últimas camadas (L_{K-1}, L_K) realizam a tarefa de aprendizado de máquina, como classificação ou regressão.
- ► A camada *L*₀ pode ser incluída como a identidade, representando a entrada original.

Redes Neurais

Multi Layer Perceptron

Redes Neurais Profundas

- ▶ Uma rede neural é considerada profunda (**deep**) quando possui três ou mais camadas ($K \ge 3$).
- Redes profundas são capazes de modelar funções altamente não lineares e capturar relações complexas nos dados.
- A profundidade da rede permite a extração de características hierárquicas, onde camadas iniciais detectam padrões simples e camadas posteriores combinam esses padrões em representações mais complexas.

Exemplo de Rede Profunda

- ▶ Considere uma rede com K = 4 camadas:
 - $L_1: \mathbb{R}^n \to \mathbb{R}^{h_1}$
 - $L_2: \mathbb{R}^{h_1} \to \mathbb{R}^{h_2}$,
 - $ightharpoonup L_3: \mathbb{R}^{h_2} o \mathbb{R}^{h_3}$,
 - $L_4: \mathbb{R}^{h_3} \to \mathbb{R}^m$.
- A função total da rede é:

$$N(x) = L_4(L_3(L_2(L_1(x)))).$$

 Cada camada aplica uma transformação não linear, permitindo que a rede aprenda representações complexas.

Treinamento de Redes Neurais

- O treinamento de uma rede neural (superficial ou profunda) envolve a minimização de uma função de perda.
- Em problemas de regressão, a função de perda comum é o Erro Quadrático Médio (MSE):

MSE =
$$\frac{1}{m} \sum_{i=1}^{m} (y_i - \hat{y}_i)^2$$
,

onde y_i é o valor esperado e \hat{y}_i é a saída da rede.

► Em problemas de classificação, a função de perda comum é a **Entropia Cruzada**:

Entropia Cruzada =
$$-\sum_{i=1}^{m} y_i \log(\hat{y}_i)$$
.

Multi Layer Perceptron

Formulação do Problema de Otimização

- O treinamento é formulado como um problema de otimização irrestrito nos parâmetros da rede (pesos W e vieses b).
- O objetivo é encontrar os parâmetros que minimizam a função de perda:

$$\min_{W,b} \mathcal{L}(W,b),$$

onde \mathcal{L} é a função de perda.

Devido ao grande número de parâmetros, métodos baseados no gradiente são utilizados.

Métodos Baseados no Gradiente

- O gradiente da função de perda em relação aos parâmetros é calculado usando a regra da cadeia.
- O gradiente é dado por:

$$\nabla_{W,b}\mathcal{L} = \left(\frac{\partial \mathcal{L}}{\partial W}, \frac{\partial \mathcal{L}}{\partial b}\right).$$

 O cálculo do gradiente é realizado de forma eficiente usando o algoritmo de retropropagação (backpropagation).

Multi Layer Perceptron

Algoritmo de Retropropagação

- ▶ O algoritmo de retropropagação consiste em duas fases:
 - Fase Forward: Calcula a saída da rede para uma dada entrada.
 - ► Fase Backward: Propaga o erro da saída para as camadas anteriores, calculando os gradientes.
- O gradiente é usado para atualizar os pesos e vieses:

$$W \leftarrow W - \eta \frac{\partial \mathcal{L}}{\partial W}, \quad b \leftarrow b - \eta \frac{\partial \mathcal{L}}{\partial b},$$

onde η é a taxa de aprendizado.

Redes Neurais

Multi Layer Perceptron

Ilustração do Algoritmo de Retropropagação

Veja o GIF animado:

Rede MLP

Aprendizado

RNA - Aprendizado

RNA - Aprendizado

Redes Neurais

Multi Layer Perceptron

Ilustração do Algoritmo de Retropropagação

► A figura abaixo ilustra o fluxo de informações no algoritmo de retropropagação:

lavers

Redes Neurais

Multi Layer Perceptron

Conclusão

- O treinamento de redes neurais é um problema de otimização que busca minimizar uma função de perda.
- Métodos baseados no gradiente, como o algoritmo de retropropagação, são essenciais para o treinamento eficiente de redes neurais.
- A escolha da função de perda e da taxa de aprendizado é crucial para o desempenho da rede.

Redes Neurais

Multi Layer Perceptron

RNA na prática

- sklearn
- keras

Unsupervised learning

Conceitos Fundamentais

Unsupervised Learning

Unsupervised learning

-Conceitos Fundamentais

O Que é Aprendizado Não Supervisionado?

- O aprendizado não supervisionado é um tipo de aprendizado de máquina onde o modelo é treinado com dados não rotulados.
- O objetivo é encontrar padrões, estruturas ou relações nos dados sem a necessidade de rótulos pré-definidos.
- É amplamente utilizado em tarefas como:
 - Agrupamento (clustering),
 - Redução de dimensionalidade,
 - Detecção de anomalias.

Conceitos Fundamentais

Formulação Matemática

- ▶ Dado um conjunto de dados $X = \{x_1, x_2, ..., x_n\}$, onde $x_i \in \mathbb{R}^d$, o objetivo é aprender uma representação ou estrutura subjacente.
- Em problemas de agrupamento, por exemplo, busca-se particionar X em k grupos C_1, C_2, \ldots, C_k , onde:

$$\bigcup_{i=1}^k C_i = X$$
 e $C_i \cap C_j = \emptyset$ para $i \neq j$.

► A qualidade do agrupamento é medida por uma função de custo, como a soma dos quadrados intra-cluster:

$$\mathcal{J} = \sum_{i=1}^k \sum_{x \in C_i} \|x - \mu_i\|^2,$$

onde μ_i é o centróide do cluster C_i .

LK-Means

Exemplo: Algoritmo K-Means

- O K-Means é um algoritmo clássico de agrupamento não supervisionado.
- Dado um número k de clusters, o algoritmo minimiza a função de custo:

$$\mathcal{J} = \sum_{i=1}^k \sum_{x \in C_i} \|x - \mu_i\|^2.$$

- Os passos do algoritmo são:
 - 1. Inicializar os centróides $\mu_1, \mu_2, \dots, \mu_k$.
 - 2. Atribuir cada ponto x ao cluster mais próximo.
 - 3. Atualizar os centróides como a média dos pontos no cluster.
 - 4. Repetir até convergência.

└K-Means

Ilustração do K-Means

► A figura abaixo ilustra o funcionamento do algoritmo K-Means:

Figura: Passos do algoritmo K-Means: (1) Inicialização dos centróides, (2) Atribuição de pontos aos clusters, (3) Atualização dos centróides.

 O algoritmo alterna entre atribuir pontos aos clusters e atualizar os centróides até convergir.

Redução de Dimensionalidade

- Outra tarefa comum no aprendizado não supervisionado é a redução de dimensionalidade.
- ▶ O objetivo é mapear os dados de um espaço de alta dimensão \mathbb{R}^d para um espaço de menor dimensão \mathbb{R}^k , onde k < d.
- Um método popular é a Análise de Componentes Principais (PCA), que busca encontrar as direções de máxima variância nos dados.
- Matematicamente, o PCA resolve o problema de autovalores:

$$\Sigma v = \lambda v$$
,

onde Σ é a matriz de covariância dos dados e v são os autovetores.

Ilustração do PCA

► A figura abaixo ilustra a projeção dos dados em componentes principais:

Figura: os dados são projetados em duas componentes principais.

As componentes principais são as direções que maximizam a variância dos dados

Unsupervised learning

LPCA

Ilustração do PCA

Conclusão

- O aprendizado não supervisionado é essencial para explorar dados não rotulados e descobrir padrões ocultos.
- Técnicas como agrupamento e redução de dimensionalidade são fundamentais em muitas aplicações.
- A formulação matemática desses métodos permite a otimização e a interpretação dos resultados.

Referências I

- Chollet, F. (2021). Deep Learning with Python, Second Edition. Shelter Island, NY: Manning Publications.
- Géron, A. (2019). Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow. Sebastopol, CA: O'Reilly Media..
- Russell, S., & Norvig, P. (2021). Artificial Intelligence: A Modern Approach (4^a ed.). Hoboken, NJ: Pearson.
- Moroney, L. (2020). Al and Machine Learning for Coders. Sebastopol, CA: O'Reilly Media.

Machine Learning

Professor: Elton Sarmanho¹ E-mail: eltonss@ufpa.br

 $\Omega \square$

@**(1)**

¹Faculdade de Sistemas de Informação - UFPA/CUNTINS

31 de janeiro de 2025

