

Machine Learning

Rudolf Mayer mayer@ifs.tuwien.ac.at

October 11th, 2017

Outline

- Machine Learning: Intro
- Perceptron
- k-NN
- Performance evaluation (intro)
- Types of data & data preparation

Outline

- Machine Learning: Intro
- Perceptron
- k-NN
- Performance evaluation (intro)
- Types of data & data preparation

Defining the area

- Some related terms
 - Data Mining
 - Predictive analytics
 - Knowledge discovery
 - Data Science
 - Statistics
 - Cluster Analysis
 - Artificial Intelligence
 - Reasoning / deduction
 - Regression
 - Classification
 - Supervised/ unsupervised learning

Artificial intelligence

Deals with intelligence of machines

 System that perceives its environment & takes actions that maximise its chances of success

Areas/problems of Al

- Deduction, reasoning, problem solving
 - · Often rule-based; manually created
- Knowledge representation (reasoning)
 - Reasoning: generation of new knowledge (inference rules)
- Machine learning
- Planning / scheduling
- Natural language processing

– ...

Rule-based systems

- System that uses rules to make deductions or choices
 - E.g. domain-specific expert system

- Two components
 - Knowledge base: facts & rules (if → then style)
 - Knowledge representation (language)
 - Example rule: IF (hot & smoke) THEN fire
 - Inference engine: applies rules to deduce new facts
 - Forward chaining: assert new facts
 - Backward chaining: start with goal → determine which facts need to asserted
- Rules often manually specified (by expert)
 - Expensive, incomplete

Machine learning

 Studies computer algorithms that can *learn* from data and make *predictions* on data

- Automatic methods no human assistance in learning (i.e. no specification of rules!)
 - Human assistance generally required for
 - Defining problem
 - Gathering and assessing data
- Types of Machine Learning
 - Supervised
 - Unsupervised
 - Reinforcement

Machine learning – why?

Defining the area

Statistics

- Collection, interpretation and presentation of data
- Descriptive: summarise data (mean, standard deviation, probability density, correlation analysis)
- Predictive modelling: e.g. regression

Data Mining

- Discovering patterns in large datasets
 - Cluster analysis, outlier detection, association rule mining

Unsupervised Learning

- Unsupervised learning
 - Data not labelled
 - No information on which and how many classes or other structures, ...
 - Goal:
 - Find structures (e.g. clustering)
 - Association rules learning
 - Find outliers (anomalies)

- Most often associated with *Data Mining*
- Covered in other lectures
 - Business Intelligence, Selbstorganisierende Systeme,

. .

Cluster analysis

- Explorative method
- Find groups of similar objects
- Applications: e.g. market segmentation
- Several popular algorithms
 - K-means clustering (centroid based)
 - DBSCAN (density-based)

- Linkage (hierarchical)
 - single, complete, average, Ward, ..

Cluster analysis

Animal data set

- Describes animal by some characteristics
- Instances: cow, duck, cat, bee, sparrow, ...

Characteristics

- Size (tiny, small, medium, big)
- Number of legs (2, 4, 6, 8)
- Feathers (yes/no)
- Eggs (yes/no)

	size	legs	feathers	eggs
duck	small	2	yes	yes
dog	medium	4	no	no
spider	tiny	8	no	yes
ladybird	tiny	6	no	yes
cow	large	4	no	no
bee	tiny	6	no	no
sparrow	small	2	yes	yes

Cluster analysis

- Animal data set
 - Describes animal by some characteristics

	size	legs	feathers	eggs
duck	small	2	yes	yes
dog	medium	4	no	no
spider	tiny	8	no	yes
ladybird	tiny	6	no	yes
cow	large	4	no	no
bee	tiny	6	no	no
sparrow	small	2	yes	yes

- Goal: find groups of related animals:
 - Mammals: cat, cow
 - Birds: duck, sparrow
 - Insects: bee, ladybird
 - Invertebrate: spider

Association rule mining

- Discover relations between variables
 - E.g. market basket analysis: which items are frequently bought together
 - Useful for marketing
 - Identify rules that are
 - Frequent ("support")
 - Reliable ("confidence")
 - Anecdotal example: beer & diapers

 Related: collaborative filtering / recommender systems

Supervised Learning

- Supervised learning
 - Data labelled with actual output variable
 - Goal: correctly label *unknown* data

- Sometimes equivalently used with "machine learning"
 - In some definitions, machine learning means both unsupervised and supervised learning
 - In other definitions, unsupervised learning mostly equals/is a subset of data mining; and rather seen as part of statistics
- Types of supervised learning?
 - Regression & Classification

Regression tries to predict a continuous variable

– Examples?

- Regression tries to predict a continuous variable
 - Income of a house hold (depending on education, ...)
 - Temperature (depending on wind, humidity...)
 - Housing price (depending on e.g. size, age..)
 - Methods: e.g. linear regression
 - Mostly associated with statistics
 - Many classification methods can also be used for regression

Regression example

- Data set about prices of houses (apartments)
- Input data e.g.
 - Size
 - Number of rooms
 - Size of garden/balcony/terrace
 - Year built / age of building
 - Location
- Goal: predict the expected price of the house in

- Solution: multivariate regression
 - If only one input: univariate regression

Regression example

Linear regression – find a "line" that describes the data

Regression example

Polynomial regression – find a "curve" that describes the data

 If the output variable can take one of a predefined set of values: classification (also: categorisation)

– Examples?

 If the output variable can take one of a predefined set of values: classification (also: categorisation)

Winter is here. Go to the store and buy some snow shovels.

FACULTY OF **!NFORMATICS**

 If the output variable can take one of a predefined set of values: classification (also: categorisation)

Information: SPAM filtering

- Image: classification of hand-written letters for OCR;
 automatic labelling of images
- Music: classification of music into genres

Medicine: classification of whether a person has an illness, based e.g. on x-ray images, or other measurements

Reinforcement Learning

- Agent (e.g. computer program) takes actions in specified environment
 - Not explicitly presenting input/output pair
 - Reward (penalise) agent for actions
 - → Maximise cumulative reward

Popular applications?

observation

Rule-based systems

- Rules often manually specified (by expert)
- Alternative: learning rules
 - Association rule mining unsupervised
 - Learning classifier systems
 - Can be supervised learning
 - Includes steps to discover new rules, selection of best rules,
 ...

- Related/similar approaches:
 - Ontologies (OWL: Web Ontology Language) & reasoning
 - Bayesian Networks

Scoping the lecture

learning rate α inverse temperature β discount rate γ

FASSELATATION !NFORMATICS

- Example: data set describing characteristics of patients
 - Gender
 - Age
 - Smoker yes/no
 - Eye colour
- Want to predict whether a person has lung cancer
 - Available: some data with a label / annotation (cancer yes(no)

Unlabelled samples

gender	age	smoker	eye colour
male	19	yes	green
female	44	yes	grey
male	49	yes	blue
male	12	no	brown
female	37	no	brown
female	60	no	brown
male	44	no	blue
female	27	yes	brown
female	51	yes	green
female	81	yes	grey
male	22	yes	brown
male	29	no	blue

lung cancer
No
yes
yes
no
no
yes
no
no
yes
no
no
no

male	77	yes	grey
male	19	yes	green
female	44	no	grey

?
?
?

gender	age	smoker	eye colour
male	19	yes	green
female	44	yes	grey
male	49	yes	blue
male	12	no	brown
female	37	no	brown
female	60	no	brown
male	44	no	blue
female	27	yes	brown
female	51	yes	green
female	81	yes	grey
male	22	yes	brown
male	29	no	blue

yes

yes

no

grey

green

grey

lung cancer
No
yes
yes
no
no
yes
no
no
yes
no
no
no

male

male

female

77

19

44

Regression: Setting

size	age	location	rooms
70	19	good	3
60	44	good	2
120	49	good	5
90	12	bad	3
80	37	bad	3
45	60	bad	2
52	44	bad	2
85	27	good	4
50	51	good	1
35	81	good	1
75	22	good	3
95	29	bad	4

35	77	good	4
25	19	good	1
85	44	bad	2

	price
	370000
	165000
	575000
	225000
	268000
	159000
	185000
	472000
	164000
	155000
	391000
L	478000

gender	age	smoker	eye colour
male	19	yes	green
female	44	yes	grey
male	49	yes	blue
male	12	no	brown
female	37	no	brown
female	60	no	brown
male	44	no	blue
female	27	yes	brown
female	51	yes	green
female	81	yes	grey
male	22	yes	brown
male	29	no	blue

lung cancer
No
yes
yes
no
no
yes
no
no
yes
no
no
no

Where do we get the data from?

male	77	yes	grey
male	19	yes	green
female	44	no	grey

?	
?	
?	

lung cancer

No

yes

yes

no

no

yes

no

no

yes no

no

no

gender	age	smoker	eye colour
male	19	yes	green
female	44	yes	grey
male	49	yes	blue
male	12	no	brown
female	37	no	brown
female	60	no	brown
male	44	no	blue
female	27	yes	brown
female	51	yes	green
female	81	yes	grey
male	22	yes	brown
male	29	no	blue

male	77	yes	grey
male	19	yes	green
female	44	no	grey

•	
	?
	?
	?

Features:

- Observation / measurement
- Extraction from media
- (Transformation)

Labels (groundtruth):

- Human experts
- (Observation / measurement)

Observation / Measurements

Annotations (human experts)

Measurement/observation

Feature Extraction

Human experts

- Feature Extraction: description of complex content by derived values
 - Text: Bag of Words counting term occurrences
 - Music: counting activity on various frequencies
 - Image: colour histograms, edge detection, "bag of visual words",

- Important aspect of many data mining applications
 - Overview/intro in this course
 - More details e.g. Information retrieval (188.412), ...

Machine Learning: Setting

	Word 1	Word 2	Word 3	Word 4	Word 5	 Word n	Σ
Doc 1	1	0	0	2	3	0	6
Doc 2	2	0	0	0	2	2	6
Doc 3	1	3	0	0	1	5	10
Doc 4	2	0	0	2	0	2	6
Doc 5	5	4	0	0	1	0	10
						0	
Doc m	1	2	1	3	0	0	7

Text Feature Extraction

FACULTY OF !NFORMATICS

Machine Learning: steps

(one out of

n classes)

Unseen Data

(one or more

out of n classes)

(regression)

(one out of

two classes)

Machine Learning: Setting

- Feature Extraction: description of complex content by derived values
 - Text: Bag of Words counting term occurrences
 - Music: counting activity on various frequencies
 - Image: colour histograms, edge detection,

- Important aspect of many ML applications
 - "Previews" in this lecture
 - More detailed, e.g. 188.412 "Information Retrieval"

Active Learning

- Algorithm can query the user to obtain labels for (unlabelled) specific samples (data points)
 - Often "difficult" samples, where the algorithm "is not sure" on the output variable

Motivation?

- Labelling data is expensive...
- Goal: obtain a good model with less effort for labelling data
- E.g. by selecting those samples that are difficult to decide for the algorithm (least certainty)
- Semi-Supervised learning

Independent of exact learning (data mining) method:

- 1. Identify problem / question
- 2. Identify & capture the available data

3. Prepare your data: clean & transform

- 5. Create report with results, visualisation, insights
- Embed results into business / decision making

7. Plan for better data capturing in the future

1. Identify problem / question

- What is the problem
- Why does it need to be solved
- How can it be solved (as machine learning problem!)

- Select your data
- Capture / extract your data

- Deal with missing values
- Transform data: scale/normalise, attribute selection, ...

4. Analyse your data

- Select fitting algorithms
- Train and evaluate models, select best performing
- Improve your results parameter tuning, ...

5. Document & analyse your results

- Problem definition, solutions, approach
- Present & compare your results in graphs, tables, ...
- Discoveries made during investigation
- Methods that did / did not work
- Limitations: when does the model not work? What questions can not be answered?

- Directly adjust your operation depending on the result
- Use results for decision making
 - At various levels of the organisation
- 7. Plan for better data capturing in the future
 - Capture more data than currently available
 - Capture data in higher resolution (more detail, more frequent, ...)
 - Capture data in better quality

Scoping the lecture

Data types & feature extraction

Data preparation & transformation

Evaluation

Model selection

Significance testing

Scoping the lecture

Matching your expectations?

- Anything not interesting at all?
- Anything missing?

Outline

- Machine Learning: Intro
- Perceptron
- k-NN
- Performance evaluation (intro)
- Types of data & data preparation

Perceptron

- Proposed in 1957
- Artificial (neural) network
 - only one neuron; "single-layer perceptron"
- Input: continuous values X (x₁, x₂, ..., x_n)
- Output: activation a
 - Boolean value 0 / 1

Perceptron

- Linear combination of inputs
 - Using weights W

$$a = \sum_{i=1}^{n} w_i x_i$$

• Pass through threshold activation function with threshold $\boldsymbol{\theta}$

$$y = f(x) = \begin{cases} 1 & \text{if } a \ge \theta \\ 0 & \text{if } a < \theta \end{cases}$$
(Heaviside step function)

Perceptron

inputs

Perceptron: visual example

- Two-dimensional data set
 - Variables x₁ & x₂
 - E.g. position on a map
- Weight vector also has two components
 - $W_1 \& W_2$
- Data set can be easily visualised in Cartesian coordinate system

- Two classes: 0 and 1
 - E.g. poor and rich countries

Perceptron visualised

Perceptron: learning

- Training the model: learning the weights from labelled samples (label: t)
 - Initialise weights
 - Repeat
 - Present training sample x
 - Predict sample label: y = f(x)
 - Prediction correct? Compare t and y
 - if y ≠ t → Compute new weights w' as w'=w + α (t-y) x
 - Until prediction correct (y=t) for all samples

Perceptron: learning

- Parameter α: learning rate
 - determines the magnitude of weight updates
- If output is correct (t=y)
 - weights not changed
- If output is incorrect (t ≠ y)
 - weights changed such that the output of the for the new weights w' is closer to the input x_i

t=0: random weight

t=0: random weight

• t=1: compute y = f(x), compare to t

• t=1: not all $f(x) = t \rightarrow adapt$ weights (decision line)

• t=1: not all $f(x) = t \rightarrow adapt$ weights (decision line)

• t=2: not all $f(x) = t \rightarrow adapt$ weights (decision line)

• t=3: not all $f(x) = t \rightarrow adapt$ weights (decision line)

• t=4: not all $f(x) = t \rightarrow adapt$ weights (decision line)

• t=5: all $f(x) = t \rightarrow final state$

• t=5: all $f(x) = t \rightarrow final state$; classification in rich/poor

• t=5: all $f(x) = t \rightarrow final state$

• t=5: all $f(x) = t \rightarrow final state$

• t=5: all $f(x) = t \rightarrow final state$

Perceptron: properties

- Separates linearly
 - Converges to a stable state when data is *linear* separable

Perceptron: properties

- Separates linearly
 - Converges to a stable state when data is *linear* separable

Perceptron: properties

- Separates linearly
 - Converges to a stable state when data is *linear* separable
- Can predict binary decisions (true/false)
 - Can be extended for multi-class problems e.g. with different activation functions
 - Training rule similar to other online learning algorithms, e.g. Self-Organising Maps
- More details next lecture

Perceptron demos

http://ditam.github.io/demos/perceptron/perceptronDemo.html

 https://www.cs.utexas.edu/~teammco/misc/perce ptron/

Outline

- Machine Learning: Intro
- Perceptron
- k-NN
- Performance evaluation (intro)
- Types of data & data preparation

k-nearest neighbour

- Simple algorithm, but well known
- Classify inputs based on k closest training examples
 - k to be chosen, high influence
 - Definition of "closest" distance function

k-nn: Example

2-dimensional data, two classes (red & blue)

$$x = 1$$

 $x = 3$
 $x = 5$

- Very sensitive to local noise
 - Little abstraction / generalisation
- Larger values of k reduce the effect of noise
 - makes boundaries between classes less distinct

- How to determine *k*?
 - Good values for k vary (a lot!) with the data
- *k*=1 is called "nearest neighbour algorithm"

What is the maximum value for k?

What is the maximum value for k?

• What happens if k = n (number of samples)

• In this example: Euclidean distance

Previous example: Euclidean distance

- Any other distance measure for numeric variables can be employed
 - Manhattan/City Block/L1
 - Ln

k-NN vs. Perceptron

- Major differences between k-NN and perceptron algorithms?
- k-NN is a "Lazy learner"
 - no model built beforehand
 - → computation is done at classification step
 - Opposite is called "eager learning"

k-NN vs. Perceptron

Major differences between k-NN and perceptron algorithms?

- k-NN is a "Lazy learner"
 - no model built beforehand
 - computation is done at classification step
 - Opposite is called "eager learning"

 k-NN can learn complex (almost arbitrary) decision boundaries

Perceptron: decision boundary

Only linear separation!

k-nn: decision boundary

(Almost) Arbitrary boundary

$$< = 1$$

k-nn: decision boundary

$$k = 3$$

- Easy to understand and interpret
- Easy to implement
- No training time needed...
- Memory requirements depend on training data
- Becomes computationally expensive with many items to classify
 - Linear search: O (Nd), N = # samples, d = dimension
 - Several optimisations proposed
- More details next lecture

Outline

- Machine Learning: Intro
- Perceptron
- k-NN
- Performance evaluation (intro)
- Types of data & data preparation

Evaluation

- Need to measure performance of an algorithm
 - To select the best algorithm
 - To estimate usefulness of models

— ...

- Approach:
 - Train model on (labelled) training data
 - Test on (labelled) test data

- Measure performance
 - Several different measures ...

Evaluation

- Binary classification, classes true/false
- 4 possible outcomes prediction / groundtruth

		Actual value (groundtruth) true false		
Prediction	true	True positive (TP)	False positive (FP, Type I error)	
(test outcome)	fals e	False negative (FN, Type II error)	True negative (TN)	

Evaluation measures

	true	false	
true	True positive (TP)	False positive (FP, Type I error)	
false	False negative (FN, Type II error)	True negative (TN)	

Accuracy: # correctly predicted samples

$$\frac{TP + TN}{TP + FP + TN + FN} = \frac{TP + TN}{\# samples}$$

Precision

$$\frac{TP}{TP + FP}$$

→ How to optimise?

Recall

$$\frac{TP}{TP + FN}$$

→ How to optimise?

Evaluation measures

	true	false	
true	True positive (TP)	False positive (FP, Type I error)	
false	False negative (FN, Type II error)	True negative (TN)	

- F-Measure: trade-off between precision and recall
- F1 Measure: equal weights, harmonic mean

$$\frac{2 * (precision * recall)}{(precision + recall)}$$

• Generally: $\frac{(1+\beta^2)*(precision * recall)}{(\beta^2*precision} + recall)$

Evaluation

Where to do evaluation on?

- The samples used for training?
 - Why not?
 - Would not tell us how good the model works for unknown data
 - Which is however why we train a model in first place ...
 - Will often achieve better (or perfect) results on training data
 - · Why?

Training & Test set

- Split data into training and test sets
 - E.g. ~80% training, 20% test, 66% 33%
 - Linear, random, ...

- Results can vary a lot according to how the split is done
 - → Cross validation (discussed later)

Evaluation: outlook

- Micro vs. macro averaging
 - Confusion matrix
 - Cost functions
- ROC curves
- Cross-validation & Bootstrapping
- Significance testing
- Evaluation measures for regression

Outline

- Machine Learning: Intro
- Perceptron
- k-NN
- Performance evaluation (intro)
- Types of data & data preparation

Data Preparation

- Vital step for machine learning (supervised and unsupervised)
- ML algorithm will always give you a model
 - Quality of that model depends highly on the quality of the input data
- "Garbage in" → "Garbage out"

- One major goal of data preparation:
 - Eliminate "wrong influence" of variables

Data Preparation

 Example data set from earlier (lung cancer)

gender	age	height	smoker	eye colour
male	19	170	yes	green
female	44	162	yes	grey
male	49	185	yes	blue
male	12	178	no	brown
female	37	165	no	brown
female	60	157	no	brown
male	44	19ß	no	blue
female	27	178	yes	brown
female	51	162	yes	green
female	81	168	yes	grey
male	22	184	yes	brown
male	29	176	no	blue

- Potential issues?
 - Missing values
 - Quantitative (continuous) data with different scales
 - Categorical data

Categorical variables

- Non-numeric variables with a finite number of levels
 - Also called **nominal data**
- E.g. eye colour with values "green", "grey", "blue", "brown"

- Some Machine Learning algorithms can only handle numeric variables!
 - Which ones?
- One solution: 1-to-N coding
 - Also called "one hot" (en)coding

1-to-N Coding (one hot encoding)

colour
brown
blue
green
grey
brown
green
blue

green	blue	brown	grey
0	0	1	0
0	1	0	0
1	0	0	0
0	0	0	1
0	0	1	0
1	0	0	0
0	1	0	0

Categorical data: animals data set

• Animal data set

- Describes animal by some characteristics
- Instances: cow, duck, bee, ...

Variables

- Size (tiny, small, medium, big)
- Number of legs (2, 4, 6, 8)
- Feathers (yes/no)
- Eggs (yes/no)

	size	legs	feathers	eggs	
duck	small	2	yes	yes	
dog	medium	4	no	no	
spider	tiny	8	no	yes	
ladybird	tiny	6	no	yes	
cow	large	4	no	no	
bee	tiny	6	no	no	
sparrow	small	2	yes	yes	

1-to-N Coding animal data set

• Replace categorical attribute "size" with four binary attributes

	size	legs
duck	small	2
dog	medium	4
spider	tiny	8
ladybird	tiny	6
cow	large	4
bee	tiny	6
sparrow	small	2

tiny	small	med	large	legs
0	1	0	0	2
0	0	1	0	0
1	0	0	0	8
1	0	0	0	6
0	0	0	1	4
1	0	0	0	6
0	1	0	0	2

- *N.b.:* could also encode to numerical value
 - E.g.: tiny=1, small=2, med=3, large=4 (if sizes are equally distant) INFORMATICS

Categorical data: another example

 Any other pre-processing needed?

- Variable "legs"
 - If considered categorical:
 defined order → ordinal data
 - Can compute similarity:2 closer to 4 than to 6

	size	legs
duck	small	2
dog	medium	4
spider	tiny	8
ladybird	tiny	6
cow	large	4
bee	tiny	6
sparrow	small	2

- Numerical value, can compute distance directly
- Does the number of legs denote similarity?

1-N coding animal data set

- Does number of legs denote similarity?
 - i.e., is an animal with 2 legs more similar to one with 4, or with 6?
 - And, is one with 4 equally similar to the one with 2 and6?
 - Dog to monkey vs. dog to spider
 - One with 6 equally similar to one with 4 and 8?
 - Bee to spider vs. bee to cow

1-to-N Coding animal data set

	size	legs
duck	small	2
dog	medium	4
spider	tiny	8
ladybird	tiny	6
cow	large	4
bee	tiny	6
sparrow	small	2

2 legs	4 legs	6 legs	8 legs
1	0	0	0
0	1	0	0
0	0	0	1
0	0	1	0
0	1	0	0
0	0	1	0
1	0	0	0

- What to do with categorical data?
- a) 1-n coding then apply any distance function mentioned earlier
- b) Definition of custom distance functions that applies to categorical data

- Definition of custom distance functions
 - E.g. adapt hamming distance
 Hamming distance between two strings of equal length is the number of positions at which the corresponding symbols are different
 - count number of different nominal values

	size	legs	feathers	eggs	distance
horse	large	4	no	no	
duck	small	2	yes	yes	4
dog	medium	4	no	no	1
spider	tiny	8	no	yes	3
ladybird	tiny	6	no	yes	3
cow	large	4	no	no	
bee	tiny	6	no	no	2
sparrow	small	2	yes	yes	4

- Definition of custom distance functions
 - E.g. adapt hamming distance
 Hamming distance between two strings of equal length is the number of positions at which the corresponding symbols are different
 - → count number of different nominal values

 Define custom distance for each attribute, aggregate e.g. via sum

- Different variables may exhibit significantly different value ranges
 - E.g. a length variable measured in cm, inch, or meters
 - Different types of measurements: length, speed, temperature, ...
 - Different types of measuring devices capturing different value ranges
 - **—** ...
 - Why is this a (potential) problem?

- Some ML algorithms rely on measuring the (numeric) distance between samples
- There should be no impact by the value range
 - higher values in one attribute / variable would have unproportional effect on measure distance
 - → would dominate distance metric
 - might thus dominate learning

Remove effects of different value ranges in each attribute/variable

- Common method in statistics and machine learning
 - With many different notations
 - Scaling, Normalisation, Standardisation, ...
 - Often used interchangely, different for each field ...

Z-score standardisation / normalization

- Each variable x is converted to have a mean of 0 and a standard deviation of 1
 - subtracting the mean
 - dividing by standard deviation

$$z_i = \frac{x_i - \mu}{\sigma}$$

Z-score standardisation / normalization

$$z_{i} = \frac{x_{i} - \mu}{\sigma}$$

What's the new value range after z-score?

- Min-Max scaling
 - Scale all variables to the same (fixed) range
 - Often between 0 and 1
 - Subtract minimum value for each variable
 - Divide by value range of each variable

$$z_{i} = \frac{x_{i} - \min(X)}{\max(X) - \min(X)}$$

Multiply by new range (if different than 0..1)

Scaling

- Is scaling an issue for
 - k-nn?
 - Perceptron?

- Especially algorithms relying on distances
 - k-Nearest Neighbours

– ...

- Scaling not needed for algorithms that don't use distances, e.g.
 - Naïve Bayes
 - Decision trees

— ...

- Especially algorithms relying on distances
 - k-Nearest Neighbours

— ...

Caveat

- Many implementations already do this pre-processing implicitly (e.g. WEKA)
- Check default settings carefully

Missing values

For some samples, not all attribute values are known

- Some ML algorithms can handle missing values
- Solutions for other algorithms
 - Deletion of sample
 - bad when only few labelled samples
 - Imputation

Data Imputation

- Substitution of a missing value
- Different methods
 - Mean value of the attribute (computed from other samples)
 - Random selection of value from another sample
 - Regression using other attributes to predict
 - Clustering values of cluster centroid
 - Nearest Neighbour value of closest sample

Use in first exercise!

Data Imputation

- When is imputation useful?
- Most useful when the number of labelled samples (w/o missing values) is small
 - Relatively easy to identify

- When samples with missing values contain important information
 - Difficult to identify

Questions?

Upcoming topics:

- Decision trees
- Random Forests
- Support Vector Machines