Proximity Detection with Single-Antenna IoT Devices

Timothy J. Pierson, Travis Peters, Ronald Peterson, and David Kotz Department of Computer Science, Dartmouth College, Hanover, NH, USA 03755

Internet of Things (IoT) devices may frequently encounter new devices

- Analysts predict billions of IoT devices will be deployed in the near future¹
- IoT devices are envisioned to share data among themselves
- Some shared data may be privacy sensitive or have security implications
- With billions of devices deployed, a device may encounter dozens of new devices every day

Proximity can be a basis for trust when devices are first encountered

- Assume an adversary is not able to gain close physical proximity to devices (e.g., adversary does not break into a home to gain physical proximity)
- Proximity can then serve as a basis for trust
- Techniques exist for multiantenna devices to detect proximity
- No proximity techniques exist for single-antenna devices

DARTMOUTH

Use repeating portions of Wi-Fi Long Training Field (LTF) for proximity

Wi-Fi Preamble

- T₁ and T₂ are identical 64-sample portions of the Long Training Field in the Wi-Fi preamble²
- Repeated LTF portions T₁ and T₂ are used for channel estimation
- T₁ and T₂ are expected to match at the receiver (plus noise)
- All Wi-Fi receivers must evaluate T₁ and T₂
- Even single-antenna devices can measure T₁ and T₂

Near-field effects can cause mismatches in the repeating LTF

- In the reactive and radiating near-field regions around a transmitter, the electric and magnetic fields are not yet aligned
- Fields form a vector that rapidly rotates in time in a plane parallel to the direction of propagation³
- Rotation causes mismatches between T₁ and T_2
- With Wi-Fi, near-field effects extend to roughly 14 cm from transmitter
- = length of transmitting antenna
- λ = wavelength
- D = length of transmitting antenna + length of receiving antenna
- R_2 = estimated range of radiating near-field region
- R_1 = estimated range of reactive near-field region

Repeating portions mismatch at close range, but not at long range

T₁ and T₂ on all Wi-Fi subcarriers

Proximity is detected if the mismatch is over a fixed threshold

- A_t is the sum of the Euclidean distance between T₁ and T₂ over all 64 subcarriers
- A_t is high at close range, low at long range
- Declare proximity if A_t is above a fixed threshold

Average A_t of 1,000 frames transmitted from each antenna type shown

National Science Foundation Award CNS-1329686

[1] Berg Insight. Wireless IoT connectivity technologies and markets. Online at http://www.berginsight.com/ReportPDF/Summary/bi-globalm2m7-sum.pdf [2] Institute of Electrical and Electronics Engineers. 802.11n standard. Online at http://standards.ieee.org [3] Constantine A. Balanis. Antenna Theory: Analysis and Design. Wiley, third edition, 2005