

Northern Illinois University

Open-Source Controlled Environment Agriculture Including Development of Water Quality System

Overview

- Executive Summary
- Current State
- Design Objectives
- Project Details
- Acknowledgements
- References

Executive Summary

- We are developing/optimizing an automated microgreen vertical farm system.
- The design focuses on lighting controls, climate conditions, and water quality system.

Radish

Broccoli

The Vertical Farm

Outside the tent

View of farms

The Vertical Farm

Internal View

During Growth Cycle

Design Objectives

- A user-friendly lighting and watering control system
- Improvement of the automated environmental control system for growing microgreens
- Improvement of a feedback-controlled water quality and quality correction system
- Design of Experiments to characterize the light inputs to plant growth outputs to optimize plant yields

Control System Overview

Control System Overview (Sensors)

Ultrasonic Sonar Distance Sensor

DHT22 Temp/Humidity Sensor

ENVIRONMENTAL SYSTEM

Climate Control Sub-System

Maintaining the Optimum Temperature


```
TURNING HEATER ON!! INCREASING THE ROOM TEMP
Temp=27.6
TURNING HEATER ON!! INCREASING THE ROOM TEMP
Temp=27.7
TURNING HEATER ON!! INCREASING THE ROOM TEMP
Temp=27.8
TURNING HEATER ON!! INCREASING THE ROOM TEMP
Temp=27.9
 TURNING HEATER ON!! INCREASING THE ROOM TEMP
Temp=28.0
Temp=28.0
 Temp=28.1
 Temp is at Optimum Temperature
 Temp=28.2
 Temp is at Optimum Temperature
 Temp=28.2
 Temp is at Optimum Temperature
 Temp=28.3
 Temp is at Optimum Temperature
 Temp=28.3
 Temp is at Optimum Temperature
 Temp=28.3
```


LIGHTING

Light Control Sub-System

Lighting GUI

tep 1		F	arn	n 1	Lig	ghti	ng	Set	up			
tep 2		0										
tep 3	Far Red	0	25	50	75	100	125	150	175	200	225	250
step 4	Deep Blue	0										
Step 5		0		50	75	100	125	150	175	200	225	250
Step 6	True Green	0										
Step 7		0	25	50	75	100	125	150	175	200	225	250
	5K White Hyper Red True Blue	0	23	50		100	123	130	1	200		230
		0	25	50	75	100	125	150	176	200	225	250
		0	25	50	/5	100	125	150	1/5	200	223	250
			25									250
		0	25	50	75	100	125	150	175	200	225	250
			B									
		0	25	50	75	100	125	150	175	200	225	250
	Amber											
		0	25	50	75	100	125	150	175	200	225	250
	True Red	0		-	-		_			-	_	
		0	25	50	75	100	125	150	175	200	225	250
						5	Subm	nit				

Step 1	Grow Length, Start Time and Start Date
Step 2	Grow Cycle Length (Days): 0
Step 3	Enter Start Date (mm/dd/yyyy):
Step 4	Select Start Time (hh:mm):
Step 5	
Step 6	
Step 7	

Computer Vision - PlantCV

- Touchless data gathering
- Leaf Area Index

Computer Vision - PlantCV

Computer Vision - PlantCV

Input Image

Background removed

Area of interest captured

IRRIGATION SYSTEM

Germination/Irrigation Sub-System

Automatic Germination Sprayer System

Design implementation

- Tray mounts
- Misting sprayers
- Control relay
- Misting automation program

Hydroponic System – GUI

Water Control System

New Setup

Live Adjustment

Exit

Start Date: 11/10/2020
Length (days): 14
Occurrences: Twice
Mode: Germ
Water Cycle Start Time: 08:00
Duration (seconds): 60

<u>New Setup</u>										
Grow Cycle Length (Days):										
Start Date (mm/dd/yyyy):	•		•							
Occurrences:	Once	Twice								
Start Time:	•									
Mode:	Farm	Germination								
Duration(seconds):										
	Submit									

Hydroponic System

- Water quality system implement to reduce:
 - Electrical conductivity (300-400mV)
 - Dissolved oxygen (4-5 mg/L)
 - pH levels (5.5-6.5)
 - Temperature (70-80°F)

Hydroponic System - Additions

Water Quality Sensor Readings:

 DATA IS RECORDED INTO A CSV FILE

Acknowledgements

Dr. Kevin Martin

Northern Illinois University, DeKalb, IL USA

Dr. Pratool Bharthi

Northern Illinois University, DeKalb, IL USA

Bhama Krishna Pillutla

Northern Illinois University, DeKalb, IL USA

Ethan Tse

Georgia Institute of Technology Atlanta GA, USA

Funding

- Department of Engineering Technology
- NIU College of Engineering and Engineering Technology

References

- Kozai, T., Fujiwara, K., & Runkle, E. S. (2016). *LED Lighting for Urban Agriculture*. Basingstoke, England: Springer.
- Rutgers and Utah University. (2018). Horticulture lighting metrics PPFD, PPF, PAR | Fluence Bioengineering. Retrieved from https://fluence.science/science/par-ppf-ppfd-dli/
- Weber, C. (2017, March 23). Broccoli Microgreens: A Mineral-Rich Crop That Can Diversify Food Systems. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5362588/
- Assessment of Vitamin and Carotenoid Concentrations of Emerging Food Products: Edible Microgreens. Zhenlei Xiao, Gene E. Lester, Yaguang Luo, and Qin Wang, Journal of Agricultural and Food Chemistry 2012 60 (31), 7644-7651, DOI: 10.1021/jf300459b
- Grow Strong Industries. (2018, February 19). Hydroponics:The Pros and Cons of Ebb and Flow for Cannabis Growth. Retrieved from https://www.slideshare.net/MichaelVolk17/hydroponicsthe-pros-and-cons-of-ebb-and-flow-for-cannabis-growth
- Espiritu, K. (2019). Field Guide to Urban Gardening: How to Grow Plants, No Matter Where You Live: Raised Beds Vertical Gardening Indoor Edibles Balconies and Rooftops Hydroponics. Cool Springs Press.
- Morton, Stretch (2018, May). Commercial Microgreens: Production and Best Practices. Agri-Facts. Alberta, Canada.