Note : Ce corrigé n'a pas de valeur officielle et n'est donné qu'à titre informatif sous la responsabilité de son auteur par Acuité.

Correction du sujet de Mathématiques BTS Opticien Lunetier Session 2008 Proposé par Olivier Bonneton

Exercice 1:

Partie A

1. On a à résoudre une équation différentielle linéaire du premier ordre avec second membre. Nous allons dans un premier temps résoudre sans le second membre. Cela va nous permettre de trouver la solution Y_{SSM} (Sans Second Membre). Ensuite, nous chercherons une solution particulière dépendant du second membre : Y_{SP} (Solution Particulière). La solution générale sera la somme des deux solutions précédentes : $Y_{SG} = Y_{SSM} + Y_{SP}$. Enfin, afin de déterminer la constante, nous utiliserons une condition donnée dans l'énoncé.

a Y' + b Y = 0 ici a = 1; b = -1 La solution Y_{SSM} s'écrit C $e^{-F(t)}$ où F(t) est la primitive de b/a . On a donc :

 $Y_{SSM} = C e^t$ avec C appartenant à R.

2. Soit h(t) = a t + b. On commence par dériver h(t) puis on remplace dans l'équation (E).

$$h'(t) = a$$

(E):
$$h' - h = a - (at + b) = -t$$

 $a - at - b = -t$
 $-at + a - b = -t$

On procède à une identification de polynôme. -a = -1 d'où a = 1

$$a - b = 0$$
 d'où $a = b = 1$

La solution particulière est donc $Y_{SP}(t) = h(t) = t + 1$

- **3.** Comme indiqué précédemment, l'ensemble des solutions est la somme des deux solutions précédentes : $Y_{SG}(t) = C e^t + t + 1$ avec C appartenant à R.
- **4.** Nous allons déterminer la constante C à l'aide de l'indication suivante : la courbe passe par le point de coordonnées (0 ; 2).

On remplace t par 0 : $C e^{0} + 0 + 1 = 2$.

Or
$$e^0 = 1$$
, d'où C + 1 = 2. Ainsi, C = 1

La solution de (E) vérifiant la condition est : $y(t) = e^{t} + t + 1$. (fonction g de la partie B)

Partie B

- **1.** Pour étudier les variations de g sur [-2 ;2], il nous faut le signe de la dérivée. On calcule :
- $g'(t) = 1 + e^t$. Or e^t est une fonction strictement positive sur R, donc sur [-2;2]. Lui ajouter 1 ne modifie pas son signe. Par conséquent, la dérivée de g est strictement positive, ce qui entraı̂ne que g est une fonction strictement croissante sur l'intervalle d'étude.
- **2.** Pour répondre à cette question, nous allons utiliser le théorème de la bijection. Sur [-2 ;2], la fonction g est continue et strictement croissante.

$$g(-2) = e^{-2}-1$$
 (soit environ -0.86); $g(2) = e^{2}+3$ (environ 10.39)

Par conséquent, g réalise une bijection de [-2 ;2] vers [e⁻²-1 ; e²+3]. Or 0 appartient à cet intervalle. Donc il existe une unique solution α appartenant à [-2 ;2] telle que g(α) = 0.

On utilise soit la calculatrice soit la méthode de la dichotomie pour déterminer cette valeur. On arrive à l'encadrement à 10^{-2} près suivant : $-1.28 \le \infty \le -1.27$

(valeur approchée à 10⁻⁵ : α &-1.27846)

- 3. D'après ce qui précède, nous pouvons conclure que :
 - Sur [-2 ; α] , la fonction g est négative (ou nulle en t = α)
 - Sur [α ; 2], la fonction g est positive (ou nulle en t = α)

Partie C

1. Il nous faut calculer la dérivée de f(t). La forme générale de la fonction f est $\frac{1}{v}$ mais calculons d'abord la dérivée du numérateur. (t e^t)' = e^t + t e^t (forme (uv)' = u'v +uv')

Nous pouvons maintenant écrire à partir de la dérivée de $\frac{u}{v} = \frac{u^{'}v - uv^{'}}{v^{2}}$:

$$\begin{split} \mathrm{f}'(\mathsf{t}) & = \frac{\left(e^t + te^t\right)\left(e^t + 1\right) - \left(te^t\right)\left(e^t\right)}{(e^t + 1)^2} = \frac{e^t e^t + e^t + te^t e^t + te^t - te^t e^t}{(e^t + 1)^2} = \frac{e^t e^t + e^t + te^t}{(e^t + 1)^2} \\ & = \frac{e^t \left(e^t + t + 1\right)}{(e^t + 1)^2} = \frac{e^t g(t)}{(e^t + 1)^2} \end{split}$$

2. Le signe de f'(t) est simple à déterminer puisque nous avons étudié précédemment le signe de g(t). Or e^{ϵ} est toujours positive ainsi que l'expression $(e^{\epsilon} + 1)^2$ qui est un carré.

Ainsi, le signe de f'(t) est le même que celui de g(t)

Par conséquent, d'après la partie B question 3., nous avons :

- Sur [-2; α], la fonction f' est négative (ou nulle en t = α)
- Sur $[\alpha; 2]$, la fonction f' est positive (ou nulle en $t = \alpha$)

Le sens de variation de f découle du signe de f'.

- Sur $[-2; \alpha]$, la fonction f est décroissante
- Sur [α ; 2], la fonction f est croissante.

Partie D

1. On nous demande ici de tracer un tableau de variations des deux fonctions f et g à l'aide des résultats précédents :

2. On cteur directeur de la tangente pour $t = \alpha$. Il faut se rappeler que ce vecteur se calcule à partir du nombre dérivé. Il faut donc calculer :

$$f'(\alpha) = \frac{e^{\alpha} g(\alpha)}{(e^{\alpha} + 1)^2} = 0 \text{ car } g(\alpha) = 0 \text{ (cf question B 2.)}$$

g' (α) = 1 + e^{α} = - α (reprendre la formule de g(t) partie B pour t = α)

Ainsi le vecteur directeur de la tangente est $\overline{V1}$ (0; - α) = - α \overline{I} (vecteur verticale)

3. On veut un vecteur directeur de la tangente pour t = 0. On procède de même :

f'(0) =
$$\frac{e^0 g(0)}{(e^0 + 1)^2}$$
 = 2/4 = $\frac{1}{2}$ g'(0) = 1 + e⁰ = 2

Ainsi le vecteur directeur de la tangente est $\vec{v2}$ (½; 2) = ½ \vec{i} + 2 \vec{j}

4. Nous allons compléter le tableau de valeurs pour f et g :

Т	-2	-1.28	0	1	2
f (t)	-0.24	-0.28	0	0.73	1.76
g (t)	-0.86	0	2	4.72	10.39

5. On trace la courbe en s'aidant des points et des tangentes trouvés précédemment.

Exercice 2:

Partie A

1.a) Les probabilités se déterminent à l'aide du tableau (arrondies au centième) :

$$P(A) = (400+600+750) / 5000 = 1750 / 5000 = 0.35$$

$$P(B) = (600+750+1000+800+650+450+350) / 5000 = (5000-400) / 5000 = 4600 / 5000 = 0.92$$

$$P(A \cap B) = (600+750) / 5000 = 0.27$$

1.b) On détermine cette probabilité conditionnelle à l'aide de la formule :

$$P(A/B) = P(A \cap B)/P(B) = 0.27/0.92 = 0.29$$

2.a) X suit une loi Binomiale car : - on prélève au hasard et avec remise (les tirages sont par conséquent indépendants) - chaque tirage présente deux issues : soit la fiche correspond à un sujet dont l'âge est supérieur ou égal à 80 ans, soit ce n'est pas le cas (Expérience de Bernoulli).

Ainsi, les conditions d'application de la loi Binomiale sont validées. Les paramètres sont :

$$n = 40 \text{ et } p = 350 / 5000 = 0.07$$

2.b) L'espérance d'une loi Binomiale est : $E(X) = n p = 40 \times 0.07 = 2.8$

L'écart type de cette même loi s'écrit :
$$\sigma(X) = \sqrt{npq} = \sqrt{40 * 0.07 * 0.93} = 1.61$$

2.c) On peut calculer la probabilité de l'événement P(X=3) à l'aide de la formule donnée dans le formulaire :

$$P(X=3) = {3 \choose 40} 0.07^3 \times 0.93^{37} = 0.23$$

- **3.a)** La loi Binomiale peut être approchée par une loi de Poisson. Dans ce cas, les deux espérances doivent être égales. Ainsi, E(X) Binomiale = n p = E(X) Poisson = λ On a donc λ = 2.8
- **3.b)** On va calculer P(Y=3). On ne peut pas utiliser la table de Poisson fournie car nous n'avons pas la colonne pour $\lambda = 2.8$. Il nous faut donc appliquer la formule de la loi de Poisson (dans le formulaire)

 $P(Y=3) = e^{-2.8} \times 2.8^3 / 3! = 0.22$ (rappel sur la factorielle: $n! = n \times (n-1) \times (n-2) \times ... \times 3 \times 2 \times 1$)

Cette probabilité est proche de celle trouvée dans la question 2.c). L'approximation est bonne.

Partie B

- **1.** La meilleure estimation ponctuelle de la fréquence inconnue p est celle déterminée par l'échantillon. Ainsi, $p = f = 15 / 60 = \frac{1}{4} = 0.25$
- 2. Nous allons calculer un intervalle de confiance de la fréquence p au seuil de confiance de 95 %.

 $\Pi(t) = 1 - \alpha / 2$ où α est le seuil de risque. Ici, on a α = 0.05. Ainsi, $\Pi(t)$ = 1 - 0.05 / 2 = 0.975

Par lecture indirecte de la table de la loi Normale Centrée Réduite, on trouve t = 1.96

On remplace donc t par 1.96 et p par 0.25 dans la formule suivante :

$$[p-t\sqrt{\frac{p(1-p)}{n}}; p+t\sqrt{\frac{p(1-p)}{n}}]=[0.14;0.36]$$

On peut dire que la fréquence devrait être entre 14 % et 36 % au seuil de confiance de 95 %

Fin du sujet