Al 2002 Artificial Intelligence

Agent with an Environment

Task Environments

Environment are essentially the "problems" to which rational agents are the "solutions".

Rationality

What is rational at any given time?

It depends on four things:

- The performance measure that defines the criterion of success.
- The agent's prior knowledge of the environment.
- The actions that the agent can perform.
- ▶ The agent's percept sequence to date.

Task Environments

In <u>designing an agent</u>, the first step must always be to specify the task environment (PEAS) as fully as possible.

PEAS:

- Performance measure
- Environment
- Actuators
- Sensors

Task Environments ... Examples

PEAS for an automated taxi-driving

- Performance measure: Safe, fast, legal, comfortable trip, maximize profits, etc.
- Environment: Roads, other traffic, pedestrians, customers, etc.
- Actuators: Steering wheel, accelerator, brakes, signal, horn, etc.
- Sensors: Cameras, speedometer, GPS, odometer, engine sensors, keyboard, etc.

Task Environments ... Examples

PEAS for medical diagnosis system

- Performance measure: Healthy patient, minimize costs etc.
- Environment: Patient, hospital, staff etc.
- Actuators: Screen display (questions, tests, diagnoses, treatments, referrals)
- Sensors: Keyboard (entry of symptoms, findings, patient's answers)

Task Environments ... Examples

PEAS for satellite image analysis system

- Performance measure: correct image categorization
- **Environment:** downlink from the orbiting satellite
- Actuators: display categorization of scene
- Sensors: colour pixel arrays

- Fully observable vs. partially observable
- Deterministic vs. stochastic
- Episodic vs. sequential
- Static vs. dynamic
- Discrete vs. continuous
- Single agent vs. multi-agent

Fully observable vs. partially observable

Fully observable:

- If an agent's sensors give it access to the <u>complete</u> state of the environment at each point in time.
- A task environment is effectively fully observable if the sensors detect all aspects that are relevant to the choice of action.
- Convenient, because the agent need not to maintain any internal state to keep track of the world

Partially observable:

- <u>Parts</u> of the state are simply missing from sensor data
- Noisy and inaccurate sensors
 - A vacuum agent with only a local dirt sensor cannot tell whether there is dirt in other squares
 - An automated taxi cannot see what other drivers are thinking.

Deterministic vs. stochastic

Deterministic:

- If the next state of the environment is completely determined by the current state and the action executed by the agent.
- Vacuum-cleaner world is deterministic.

Stochastic:

- If the environment is partially observable then it could be stochastic.
- Taxi driving is clearly stochastic in this sense, because one can never predict the behaviour of the traffic exactly.

Episodic vs. **Sequential**

Episodic:

- In episodic environments, the agent's experience is divided into atomic episodes.
 - Each episode consists of the agent perceiving and then performing a single action.
 - The next episode does not depend on the actions taken in previous episodes.
- Example is the classification tasks

Sequential:

- In sequential environments, the current decision could affect all future decisions.
- Examples are Chess and taxi driving

Static vs. Dynamic

Static:

- Static environments are unchanged and easy to deal with because the agent need not keep looking at the world while it is deciding on an action.
- Crossword puzzles are static.

Dynamic:

- If the environment can be changed while an agent is deliberating, then we say the environment is dynamic for that agent --- taxi driving
- If the environment itself does not change with the passage of time but the agent's performance score changes, then we say the environment is semi-dynamic --- Chess when played with a clock, is semi-dynamic

Discrete vs. Continuous

- The discrete/continuous distinction can be applied to the state of the environment, to the way time is handled, and to the percept and actions.
 - Chess has a discrete set of percept and actions.
 - Taxi driving contains a continuous state and continuous-time problem,
 - Taxi-driving actions are also continuous.

Single agent vs. multi-agent

- An agent operating by itself in an environment is a single agent.
- Examples:
 - Crossword puzzle -> a single agent
 - chess -> two-agents.

Does an agent "A" have to treat an object "B" as an agent, or can it be treated merely as a stochastically behaving object

 The key distinction is whether B's behaviour is best described as maximizing a performance measure whose value depends on agent A's behaviour.

Agent functions and Programs

Agent program

takes the current percept as an input from the sensors and returns an action to the actuators.

Agent function

takes the whole percept history and maps onto actions.

- Notice the difference between the agent program, which takes the current percept as input, and the agent function, which takes the entire percept history.
- The agent needs to remember the whole percept sequence, if it needs it.

Table-driven Agent

Table-driven Agent Program

A trivial agent program: keeps track of the percept sequence and then uses it to index into a table of actions to decide what to do

function TABLE-DRIVEN-AGENT(percept) returns an action

persistent: percepts, a sequence, initially empty

table, a table of actions, indexed by percept sequences, initially fully specified

append percept to the end of percepts $action \leftarrow LOOKUP(percepts, table)$ **return** action

Percept sequence	Actions
[A,Clean]	Right
[A, Dirty]	Suck
[B,Clean]	Left
[B,Dirty]	Suck
[A,Clean],[A,Clean]	Right
[A,Clean],[A,Dirty]	Suck
[A,Clean],[A.Clean],[A,Clean]	Right
[A,Clean],[A, Dirty]	Suck

18

Table-driven Agent

Why the table-driven approach for agent construction is considered as failure.

The lookup table will contain the number of entries

$$\sum_{t=1}^{T} |\mathcal{P}|^t$$

Where,

- $ightharpoonup \mathcal{P}$ is the set of percept
- T is the lifetime

Table-driven Agent

Example 1: Automated taxi:

- The visual input from a single camera comes in at the rate of roughly 27 megabytes per second with info
 - 30 frames per second,
 - 640 x 480 pixels with 24 bits of colour information
- This gives a lookup table with over $10^{250,000,000,000}$ entries for an hour's driving.

Example 2: Chess:

Even the lookup table for chess—a tiny, well-behaved real world—would have at least 10¹⁵⁰ entries.

Agent Types

Agent Types

- There are following four kinds of agent
 - Simple reflex agents
 - Model-based reflex agents
 - Goal-based agents
 - Utility-based agents

Simple Reflex Agents

- Select actions on the basis of the current percept and ignoring the rest of the percept history
- Condition-action rule

if car-in-front-is-braking **then** initiate-braking.

Vaccum Cleaner World:

function Reflex-Vacuum-Agent([location,status]) returns an action

if status = Dirty then return Suckelse if location = A then return Rightelse if location = B then return Left

Simple Reflex Agents

Simple Reflex Agents

function SIMPLE-REFLEX-AGENT(percept) returns an action persistent: rules, a set of condition—action rules

state ← Interpret-Input(percept)

rule ← Rule-Match(state, rules)

action ← rule.Action

return action

- The agent will work only if
 - the **correct** decision can be made on the basis of the current percept —that is, only if the environment is **fully observable**.

Model:

- ▶ A description that how the next state depends on the current state & action.
- It handles partial observability in a more effective way.
- It maintains some sort of internal state that depends on the percept history and thereby reflects at least some of the unobserved aspects of the current state.

- Updating this internal state information requires two kinds of knowledge:
 - First, how the world evolves independently of the agent.
 - Second, how the agent's own actions affect the world.


```
function MODEL-BASED-REFLEX-AGENT(percept) returns an action persistent: state, the agent's current conception of the world state model, a description of how the next state depends on current state and action rules, a set of condition—action rules action, the most recent action, initially none state \leftarrow \text{UPDATE-STATE}(state, action, percept, model)rule \leftarrow \text{RULE-MATCH}(state, rules)action \leftarrow rule.\text{ACTION}return\ action
```

The **Model** is the knowledge about "how the world works".

Goal-based Agents

- Information about the current state of the environment is not always enough to decide what to do (e.g. decision at a road junction).
- The agent needs some sort of goal information that describes situations that are desirable.
- The agent program can combine this with information about the results of possible actions in order to choose actions that achieve the goal.
- Usually requires some search and planning.

Goal-based Agents

Utility-based Agents

- Goals provide a binary distinction between happy and unhappy states.
- Agents so far we have discussed had a single goal.
 Agents may have to juggle conflicting goals.
- Need to optimise utility over a range of goals.
- Utility: measure of happiness (a real number), --- the quality of being useful.
- A utility function maps a state onto a real number which describes the associated degree of happiness.

Utility-based Agents

Reading Material

- Artificial Intelligence, A Modern Approach Stuart J. Russell and Peter Norvig
 - Chapter 2.