Distância, Ortogonalidade, Projeção Ortogonal, Mínimos Quadrados

Álgebra Linear e Geometria Analítica - A

Folha Prática 4

Produto interno, externo, ângulo

- 1. Considere os vetores de \mathbb{R}^3 , u = (1, -2, 1) e v = (-1, 1, 0).
 - (a) Calcule $u + v \in 3u 2v$.
 - (b) Indique, justificando, se u e v são vetores perpendiculares. E colineares?
 - (c) Determine o ângulo entre os vetores:
 - i. u e v;
- ii. $u \in -v$;
- iii. $u + v \in u v$.
- (d) Apresente um vetor unitário com a direção do vetor u.
- (e) Encontre todos os vetores com a direção de u e comprimento 2. De entre estes, indique os que têm:
 - i. o sentido de u;
- ii. o sentido oposto a u.

(f) Escreva o vetor u como soma de um vetor com a direção de v e um vetor ortogonal a v.

- (g) Determine todos os vetores perpendiculares a u e a v.
- (h) Encontre todos os vetores perpendiculares a u.
- 2. Mostre que o triângulo de vértices nos pontos (2,3,-4), (3,1,2) e (-3,0,4) é isósceles.
- 3. Encontre todos os vetores que fazem um ângulo de $\pi/3$ com (1,0,0).
- 4. Sendo X e Y vetores de \mathbb{R}^n , mostre que
 - (a) $||X + Y||^2 + ||X Y||^2 = 2(||X||^2 + ||Y||^2);$
 - (b) se X e Y são ortogonais, então $\|X + Y\|^2 = \|X\|^2 + \|Y\|^2$ (Teorema de Pitágoras).
- 5. Sejam X = (2, -1, 1) e Y = (0, 2, -1) dois vetores em \mathbb{R}^3 .
 - (a) Calcule o produto externo (ou produto vetorial) $X \times Y$.
 - (b) Verifique que o vetor $X \times Y$ é ortogonal quer a X quer a Y.
- 6. Considere o paralelogramo (e o triângulo) com lados correspondentes aos vetores X e Y como na figura.

- (a) Verifique que
 - i. a altura do paralelogramo é igual a $||Y||\sin(\theta)$, sendo a base do paralelogramo o lado correspondente ao vetor X e $\theta = \angle(X,Y)$;
 - ii. a área do paralelogramo é $A_{\square} = ||X \times Y||$;
 - iii. a área do triângulo é $A_{\triangle} = \frac{1}{2} ||X \times Y||$.
- (b) Determine a área
 - i. do paralelogramo de lados dados pelos vetores (3, -1, -1) e (1, 2, 1);
 - ii. do triângulo de vértices (1,0,1), (0,1,1), (1,1,2);
 - iii. dos vários paralelogramos com vértices em (1,0,1), (0,1,1) e (1,2,1).
- 7. Sejam X = (1, 2, 0) e Y = (1, -1, 1) dois vetores em \mathbb{R}^3 .
 - (a) Determine todos os vetores ortogonais a $X \in Y$.
 - (b) Calcule a área do paralelogramo de vértice na origem e lados correspondentes aos vetores X e Y.
- 8. Mostre que, sendo X e Y vetores não nulos de \mathbb{R}^3 ,
 - (a) X e Y são colineares se e só se $X \times Y = 0$;
 - (b) $||X \times Y||^2 + (X \cdot Y)^2 = ||X||^2 ||Y||^2$.

Distâncias, bases ortonormadas, projeção ortogonal

9. Determine uma equação vetorial da reta $\mathcal R$ definida pelo sistema de equações cartesianas

$$\begin{cases} x+y-z=2\\ x-y+z=0 \end{cases},$$

assim como uma equação vetorial e uma equação cartesiana do plano \mathcal{P} que passa pelo ponto P=(2,2,1) e que contém a reta \mathcal{R} .

- 10. Determine os pontos de \mathbb{R}^3 equidistantes dos pontos A = (-1,0,2) e B = (1,-1,1).
- 11. Considere o ponto $A=(3,\frac{1}{2},-\frac{7}{2})$ e o plano $\mathcal P$ de equação cartesiana y+z=-1.
 - (a) Escreva uma equação vetorial da reta ortogonal ao plano \mathcal{P} e que passa pelo ponto A.
 - (b) Calcule a distância do ponto A ao plano \mathcal{P} , por dois processos distintos.
- 12. Seja \mathcal{P} plano que contém os pontos A = (1, 2, 1), B = (0, 0, 3), C = (1, -1, 1).
 - (a) Determine uma equação cartesiana do plano \mathcal{P} .
 - (b) Calcule a distância do ponto Q = (1, 2, 3) ao plano \mathcal{P} .
- 13. Considere o ponto P = (-1, 1, 2) e a reta \mathcal{F} que passa pelos pontos A = (1, 0, 0) e B = (0, 0, 1).
 - (a) Escreva uma equação cartesiana do plano que contém o ponto P e é perpendicular à reta \mathcal{F} .
 - (b) Calcule a distância do ponto P à reta \mathcal{F} , por dois processos distintos.
- 14. Verifique se os conjuntos de vetores seguintes são ortogonais:
 - (a) $\{(1,2,1),(0,-1,2),(0,2,1)\};$
 - (b) $\{(1,2,-1,1),(0,-1,-2,0),(1,0,0,-1)\}.$
- 15. Indique para que valores de a e b o conjunto $\left\{(\frac{\sqrt{2}}{2},0,\frac{\sqrt{2}}{2}),(a,\frac{\sqrt{2}}{2},-b)\right\}$ é ortonormado.
- 16. Sejam $X_1 = (4/5, 0, 3/5), X_2 = (0, 1, 0), X_3 = (-3/5, 0, 4/5)$ vetores de \mathbb{R}^3 .
 - (a) Verifique que $\mathcal{B} = (X_1, X_2, X_3)$ é uma base ortonormada de \mathbb{R}^3 .
 - (b) Calcule o vetor $[X]_{\mathcal{B}}$ para X = (1, 1, 1), usando o facto de \mathcal{B} ser uma base ortonormada.
 - (c) Calcule a matriz de mudança da base $\tilde{\mathcal{B}} = ((0,0,1),(0,1,1),(1,1,1))$ para a base \mathcal{B} .
 - (d) Calcule $[Y]_{\mathcal{B}}$, sabendo que

$$[Y]_{\tilde{\mathcal{B}}} = \begin{bmatrix} 1\\2\\3 \end{bmatrix}.$$

- 17. Sejam X, Y_1, \ldots, Y_n vetores em \mathbb{R}^n . Mostre que se X é ortogonal a Y_1, \ldots, Y_n , então X é também ortogonal a qualquer vetor do subespaço gerado por Y_1, \ldots, Y_n .
- 18. Considere o plano \mathcal{P} de \mathbb{R}^3 gerado pelos vetores $X_1 = (1,1,0)$ e $X_2 = (0,0,1)$.
 - (a) Determine uma base ortonormada de \mathcal{P} .
 - (b) Determine a projeção ortogonal do vetor X=(2,-2,1) sobre o plano \mathcal{P} .
 - (c) Determine a distância do ponto (2,1,1) ao plano \mathcal{P} .
- 19. Calcule as projeções ortogonais de X=(4,0,-9) e Y=(2,7,-1) sobre o subespaço \mathcal{W} de \mathbb{R}^3 gerado pelos vetores $(0,1,0),(1/2,0,\sqrt{3}/2)$.
- 20. Diga se a seguinte afirmações são verdadeiras ou falsas, justificando convenientemente.
 - (a) Todo o conjunto ortonormado de 5 vetores em \mathbb{R}^5 é uma base em \mathbb{R}^5 .
 - (b) Seja $S = \{u_1, u_2, u_3\}$ um conjunto com a propriedade de que $u_i \cdot u_j = 0$ para $i \neq j$ então S é um conjunto ortonormado.

- (c) Seja $S = \{v_1, v_2\}$ um conjunto ortogonal de vetores e α_1, α_2 escalares. Então $\{\alpha_1 v_1, \alpha_2 v_2\}$ é também um conjunto ortogonal de vetores.
- 21. Utilizando o método de ortogonalização de Gram-Schmidt, determine uma base ortonormada de:
 - (a) <(1,1,0),(0,1,1)>;
 - (b) < (0,0,1,0), (1,1,1,1), (1,4,-1,0) >.

Método dos Mínimos Quadrados

- 22. Seja $A = \begin{bmatrix} 4 & 0 \\ 0 & 2 \\ 1 & 1 \end{bmatrix}$ e $b = \begin{bmatrix} 2 & 0 & 11 \end{bmatrix}^T$. Sabendo que a solução dos mínimos quadrados do sistema inconsistente Ax = b é $\hat{x} = \begin{bmatrix} 1 & 2 \end{bmatrix}^T$, encontre o erro dos mínimos quadrados na solução dos mínimos quadrados.
- 23. Seja $A = \begin{bmatrix} 1 & -3 & -3 \\ 1 & 5 & 1 \\ 1 & 7 & 2 \end{bmatrix}$ e $b = \begin{bmatrix} 5 & -3 & -5 \end{bmatrix}^T$.
 - (a) Encontre a solução dos mínimos quadrados e calcule o erro dos mínimos quadrados associado.
 - (b) O que se pode dizer àcerca da solução dos mínimos quadrados de Ax = b quando b é ortogonal às colunas de A.
- 24. Encontre uma solução dos mínimos quadrados de Ax = b:
 - (a) construindo as equações normais para \hat{x} .
 - (b) Resolvendo para \hat{x} .

1.
$$A = \begin{bmatrix} -1 & 2 \\ 2 & -3 \\ -1 & 3 \end{bmatrix}$$
 e $b = \begin{bmatrix} 4 & 1 & 2 \end{bmatrix}^T$.

2.
$$A = \begin{bmatrix} 2 & 1 \\ -2 & 0 \\ 2 & 3 \end{bmatrix}$$
 e $b = \begin{bmatrix} -5 & 8 & 1 \end{bmatrix}^T$.

3.
$$A = \begin{bmatrix} 1 & -2 \\ -1 & 2 \\ 0 & 3 \\ 2 & 5 \end{bmatrix}$$
 e $b = \begin{bmatrix} 3 & 1 & -4 & 2 \end{bmatrix}^T$.

4.
$$A = \begin{bmatrix} 1 & 3 \\ 1 & -1 \\ 1 & 1 \end{bmatrix}$$
 e $b = \begin{bmatrix} 5 & 1 & 0 \end{bmatrix}^T$.