This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problems Mailbox.

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

WO 94/23423 (51) International Patent Classification 5: (11) International Publication Number: A1 G10L 5/04 (43) International Publication Date: 13 October 1994 (13.10.94) (81) Designated States: CA, IP, US, European patent (AT, BE, CH, PCT/GB94/00430 (21) International Application Number: DE, DK, BS, FR, GB, GR. IE, IT, LU, MC, NL, PT, SE). 7 March 1994 (07.03.94) (22) International Filing Date: **Poblished** With international search report. (30) Priority Data: 26 March 1993 (26.03.93) 93302383.0 (34) Countries for which the regional or international application was filed: AT et al. (71) Applicant (for all designated States except US): BRITISH
TELECOMMUNICATIONS PUBLIC LIMITED COM-PANY [GB/GB]: 81 Newgate Street, London ECIA 7AJ (GB). (72) Inventors; and (75) Inventors/Applicants (for US only): GAVED, Margaret [GB/GB]; 47 Nelson Road, Ipswich, Suffolk IP4 4DU (GB). HAWKEY, James [GB/GB]; University of York. Heslington, Yorkshire YOI 5DD (GB).

(54) TRILL TEXT-TO-WAVEFORM CONVERSION

WCLE 6BA (GB).

(74) Agent: LENG, Francia, Edward; BT Group Legal Services, Intellectual Property Dept., 151 Gower Street, London

(57) Abstract

This invention relates to the generation of synthetic speech from conventional texts and in particular to the step in which a text in graphemes is converted into a text in phonemes. The grapheme text is analysed into times and onsets and each word is analysed from the end so that earlier occurring segments are at least partially defined by the identification of later occurring segments. It is a particular feature that an internal string of consequents preceded and followed by a vowel, it split into two portions, namely a second portion which is contained in a database of onsets and an earlier portion which, together with the proceeding vowel or vowels, is contained in a database of times.

Ü

3

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AY	Austia ,	GB.	United Kingdom	MR	Marritania
AU	Australia	GE	Georgia	MW	Malani
BB	Burbedos	GN	Octors	NE	Niger
BE	Belghan	GR	Greece	nl	Netherlands
BF	Burkina Paro	HU	Rangary	NO	Norway
BG	Butgeta	IR.	Irricad	NZ	New Zealand
BJ	Bealn	T T	Rely	PL	Poland
BR	Brazil	æ	Japan	Pf	Postupol
BY	Belgra	KE	Kenya	RO	Records
CA	Canada	KG	Kyranico	RU	Roadan Federation
CT	Central African Republic	EP	Democratic People's Republic	5 D	Sudan
Œ	Coago		of Ecca	518	Sweden
CE	Switzerland	KR.	Republic of Korea	5 X	Slovenia
Œ	Côte d'Ivoire	K2	Karakharn	50K	Slovakia
CM	Camembe	ш	Linchtomerin	SN	Schopul
CN CN	Chies	LE	Sri Lustra	TD	Chad
CS	Crechoslovakia	Ш	Luxenbourg	TG	Togo
CZ	Czech Republic	LV	Latvia	77	Tejlánus
DE	Germany	MC	Monaco	TT.	Trimbind and Tobaso
DK	December	MID)	Republic of Moldova	UA.	Ukraine
ES	Spate	MG	Madagueur	US	United States of America
FT	Pintend	ML	Mail	ÜZ	Urbekinun
TR.	Prance	MON	Mongolla	VN	Viet Num
GA	Clahen			***	

WO 94/23423

5

10

15

20

25

30

35

- 1 -

TEXT-TO-WAVEFORM CONVERSION

This invention relates t a method and apparatus for c nv rting text to a waveform. More sp cifically, it relates to the production of an output in form of an acoustic wave, namely synthetic speech, from an input in the form of signals representing a conventional text.

This overall conversion is very complicated and it is some imes carried out in several modules wherein the output of one module constitutes the input for the The first module receives signals representing a conventional text and the final module produces This synthetic speech synthetic speech as its output. may be a digital representation of the waveform followed by conventional digital-to-analogue conversion in order to produce the audible output. In many cases it is desired to provide the audible output over a telephone system. In this case it may be convenient to carry out the digital-to-analogue conversion after transmission so that transmission takes place in digital form.

There are advantages in the modular structure, e.g. each module is separately designed and any one of the modules can be replaced or altered in order to provide flexibility, improvements or to cope with changing circumstances.

Some procedures utilise a sequence of three modules, namely

- (A) pre-editing,
- (B) conversion of graphemes to phonemes, and
- (C) conversion of phonemes to (digital) waveform.
- A brief description of these modules will now be given.

Module (A) receives signals representing a conventional text, e.g. the text of this specification, and it modifies selected features. Thus module (A) may specify how numbers are processed. For example, it will decid if

5

10

15

20

25

30

35

PCT/GB94/00430

becomes

One three four five Thirteen forty-five r

One thousand three hundred and forty-five,

It will be apparent that it is relatively easy to provide different forms of module (A), each of which is compatible with the subsequent modules so that different forms of output result.

Module (B) converts graphemes to phonemes. "Grapheme" denotes data representations corresponding to the symbols of the conventional alaphbet used in the conventional manner. The text of this specification is a good example of "graphemes". It is a problem of synthetic speech that the graphemes may have little relationship to the way in which the words pronounced, especially in languages such as English. in order to produce waveforms, appropriate to convert the graphemes into a different alphabet, called "phonemes" in this specification, which has a very close correlation with the sound of the In other words it is the purpose of module (B) to deal with the problem that the conventional alphabet is not phonetic.

Module (C) converts the phonemes into a digital waveform which, as mentioned above, can be converted into an analogue format and thence into audible waveform.

This invention relates to a method and apparatus for use in module (B) and this module will now be describe in more detail.

Module (B) utilises linked databases which are formed of a large number of independent entries. Each entry include access data which is in the form of representations, eg bytes, of a sequence of graphemes and an output string which contains representations, eg bytes f the phoneme equivalent to the graph m s contained in the access section. A major problem of

5

10

15

20

25

30 ·

35

- 3 -

PCT/GB94/00430

grapheme/ph neme c nversion resides in the size f database necessary to cope with a language. One simple, and theoretically ideal, solution would be to provide a database so large that it has an individual entry for every possible word in the language, including all possible inflections of every possible word in the language. Clearly, given a complete database, every word in the input text would be individually recognised and an excellent phoneme equivalent would be output. It should be apparent that it is not possible to provide such a complete database. In the first place, it is not possible to list every word in a language and even if such a list were available it would be too large for computational purposes.

Although the complete database is not possible, it is possible to provide a database of useable dimension which contains, for example, common words and words whose pronunciation is not simply related to the spelling. Such a database will give excellent grapheme/phoneme conversion for the words included therein but it will fail, i.e. give no output at all, for the missing words. In any practical implementation this would mean an unacceptably high proportion of failure.

Another possibility uses a database in which the access data corresponds to short strings of graphemes each of which is linked to its equivalent string of This alternative utilises a phonemes. manageable size of database but it depends upon analysis of the input text to match strings contained therein with the access data in the database. Systems of this nature can provide a high proportion of excellent pronunciations with occurrences of slight and severe mispronunciation. There will also be a proportion of failures wherein no output at all is produ ed either the analysis falls or a ne ded string of becaus

5

10

15

. 20

25

30

35

- 4 -

PCT/GB94/00430

graphemes is missing fr m the access section of the database.

A final possibility is conveniently known as a "default" proceedure because it is only used when preferred techniques fail. A "default" proceedure conveniently takes the form of "pronouncing" the symbols of the input text. Since the range of input symbols is not only known but limited (usually less than 100 and in many cases less than 50) it is not only possible to produce the database but its size is very small in relation to the capacity of modern data storage systems. This default proceedure therefore guarantees an output even though that output may not be the most appropriate Examples of this include names in which solution. initials are used, degrees and honours; abbreviations for units. It will be appreciated that, in these circumstances, it is usual to "pronounce" out the letters and on these occasions the proceedure provides the best results.

different strategies for converting Three graphemes to phonemes have just been identified and it is important to realise that these alternatives are not mutually exclusive. In fact it is desirable to use all three alternatives according to a strict order of precedence. Thus the "whole word" database is used first and, if it gives an output, that output will be When it fails "the analysis" technique is excellent. used which may involve a small but acceptable number of mis-pronunciations. Finally if the "analysis" fails the default option of pronouncing the "letters" is utilised and this can be guaranteed to give an output. Although this may not be completely satisfactory, it will, in a proportion of cases as explained above, give the most appropriate result.

This invention relates to the middle option in the sequence outlined above. That is t say this invention is c no rned with the analysis of the data

5

10

15

20

25

30

35

- 5 -

.PCT/GB94/00430

representations corresponding to input text graphemes in rder to produc an output set of dat repr sentations being the phonemes corresponding to the input text. It is emphasised that the working environment of this invention is the complete text-to-waveform conversion as described in greater detail above. That is to say this invention relates to a particular component of the whole system.

According to this invention an input seguence of bytes, eg. data representations representing a string of characters selected from a first character set such as graphemes, is dissected into sub-strings for conversion into output sequence of bytes, an representations representing a string of characters selected from a second character set such as phonemes. wherein said method includes retrograde analysis wherein later occurring bytes are selected before earlier bytes whereby the selection of the earlier occurring bytes is at least partially determined by the previous selection of later occurring bytes.

The method of the invention is particularly suitable for the processing of an input string divided into blocks, e.g. blocks corresponding to words, wherein a block is analyzed into segments beginning from the end and working to the beginning wherein the choice of segment is taken from the end of the remaining unprocessed string.

The invention, which is defined in the claims, includes the methods and apparatus for carrying out the methods.

The data representations, eg bytes, utilised in the method according to this invention take any signal form which is suitable for use in computing circuitry. Thus the data representations may be signals in the form of electric current (amps), electric potential (volts), magn tic fi lds, electric fields, or electro-magnetic radiation. In addition, the data representations may

5

10

15

20

25

30

35

- 6 -

· PCT/GB94/00430

be st red, including transient storage as part f processing, in a suitable storage medium, e.g. as the degree of and/or the orientation of magnetisation in a magnetic medium.

The theoretical basis and some preferred embodiments of the invention will now be described. In the preferred embodiments the input signals are divided into blocks which correspond to the individual words of the text and the invention works on each block separately; thus the process can be considered as "word-by-word" processing.

It is now convenient to restate the requirement that it is not necessary to produce an output for every one of the blocks because, as described above, the whole system includes further modules to deal with such failures.

As a preliminary, it is convenient to illustrate the theoretical basis of the invention by considering the structure of words in the English language and by commenting on the structures of a few specific words. This analysis uses the distinction usually identified as "vowels" and "consonants". For mechanical processing it is necessary to store two lists of characters. these lists contains the characters specified as "vowels" and the other list contains those characters designated as "consonants". All characters are, preferably, included in one or other of the lists but, in the preferred embodiment, the data representations corresponding to "Y" are included in both lists. is because conventional English spelling sometimes utilises the letter "Y" as a vowel and sometimes as a consonant. Thus the first list (of vowels) contains a, e, i, o, u and y, whereas the second list of consonants contains b, c, d, f, g, h, j, k, l, m, n, p, q, r,s, t, V, W, X, Y, Z. Th fact that "Y" appears in b th lists means that the condition "not vowel" is different from the c mdition "consonant".

5

10

15

20

25

30

- 7 -

PCT/GB94/00430

The primary purpose of the analysis is to split a bl ck of data representations, ie. a word, into "rimes" and "onsets". It is important to realise that the analysis uses linked databases which contain the grapheme equivalents of rimes and onsets linked to their phoneme equivalents. The purpose of the analysis is not merely to split the data into arbitrary sequences representing rimes and onsets but into sequences which are contained in the database.

A rime denotes a string of one or more characters each of which is contained in the list of vowels or such a string followed by a second string of characters not contained in the list of vowels. An alternative statement of this requirement is that a rime consists of a first string followed by a second string wherein all the characters contained in the first string are contained in the list of vowels and the first string must not be empty and the second string consists entirely of characters not found in the list of vowels which the proviso that the second string may be empty.

An onset is a string of characters all of which are contained in the list of consonants.

The analysis requires that the end of a word shall be a rime. It is permitted that the word contains adjacent rimes, but it is not permitted that it contains adjacent onsets. It has been specified that the end of the word must be a rime but it should be noted that the beginning of the word can be either a rime or a consonant; for instance "orange" begins with a rime whereas "pear" begins with an onset.

In order to illustrate the underlying theory of the invention four specimen words, arbitrarily selected from the English language, will be displayed and analysed into their rimes and onsets. 5

PCT/GB94/00430

· WO 94/23423

- 8 -

FIRST SPECIMEN

CATS

rime "ats"

onset "c"

It is to be expected that "ats" will be listed as a rime and "c" will be listed as an onset. Therefore replacing each by its phoneme equivalent will convert "cats" into phonemes.

It should be noted that the rime "ats" has a first string consisting of the single vowel "a" and a second string which consists of two non-vowels namely "t" and "s".

SECOND SPECIMEN

STREET

15 rime "est"

onset "str".

In this case the first string of the rime contains two letters namely "ee" and the second string is a single non-vowel "t". The onset consists of a string of three consonants.

The onset "str" and the rime "eet" should both be contained in the database so that phoneme equivalents are provided.

THIRD SPECIMEN

25 HIGH

20

30

rime "igh"

onset "h"

In this example the rime "igh" is one of the arbitrary of sounds of the English language but the database can give a correct conversion to phonemes.

FOURTH SPECIMEN

HI GHSTREET

second rime "eet"

second onset *str"

35 first rime "igh"

first onset "h".

5

10

15

20

25

30

35

WO 94/23423 PCT/GR94/00430

Clearly the word "highstr t" is a compound of the previous two examples and its analysis is v ry similar to these two examples. However, there is an important extra requirement in that it is necessary to recognise that there is a break between the fourth and fifth letters in order to split the word into "high" and This split is recognised by virtue of the pstreet*. contents of the database. Thus the consonant string oghstr is not an onset in the English language and, therefore, it will not be in the database so that it Furthermore the string "hstr" cannot be recognised. will not be in the database. However, "str" is a common onset in English and it should be in the database. Therefore "str" can be recognised as an onset and "str" is the later part of the string "ghstr". Once the end of the string has been recognised as an onset the earlier part is identified as part of the preceding rime

earlier part is identified as part of the preceding rime and the word "high" can be split as described above. It is the purpose of this example to illustrate that the splitting of an internal string of consonants is sometimes important and that the split is achieved by the use of the database.

We have now given a description of the theory which underlies the techniques of the invention and it is now appropriate to indicate how this is carried into effect using automatic computing equipment, which is illustrated in the accompanying diagrammatic drawing.

The computing equipment operates on strings of signals, eg. electrical pulses. The smallest unit of computation is a string of signals corresponding to a single grapheme of the original text. For convenience such a string of signal will be designated as a "byte" no matter how many bits it contains in the "byte". Originally the term "byte" indicated a sequence of 8 bits. Since 8 bits provides count of 255 this is sufficient t accommodate most alphabets. However, the "byte" do s not necessarily contain 8 bits.

5

10

15

20

25

30

35

PCT/GB94/00430

- 10 -

output block.

The processing described below is carried out bl ck-by-block wherein ach block is a string of ne or more bytes. Each block corresponds to an individual word (or potential word, since it is possible that the data will contain blocks which are not translatable so that the conversion must fail). The purpose of the method is to convert an input block whose bytes represent graphemes into an output block whose bytes represent phonemes. The method works by dividing the input block into sub-strings, converting each sub-string in a look-up table and then concatenating to produce the

The operational mode of the computing equipment has two operation procedures. Thus it has a first procedure which includes two phases and the first procedure is utilised for identifying byte strings corresponding to rimes. The second procedure has only one phase and it is used for identifying byte strings corresponding to onsets.

As indicated in the drawing, the computing equipment comprises an input buffer 10 which holds blocks from previous processing until they are ready to be processed. The input buffer 10 is connected to a data store 11 and it provides individual blocks to the data store 11 on demand.

An important part of the computing equipment is storage means 12. This contains programming instructions and also the databases and lists which are needed to carry out the processing. As will be described in greater detail below, storage means 12 is divided into various functional areas.

The data processing equipment also includes a working store 14 which is required to hold sub-sets of bytes acquired from data store 11, for processing and for comparison with byte strings held in databases contained in the storag 12. Single bytes, ie. signal strings corresponding to individual graph m s, are

W 94/23423

5

10

15

20

25

30

35

- 11 -

transferred from the input buffer 10 to the working store 14 via check st re 13 which has capacity for ne byte. The byte in check st_re 13 is check d against lists contained in data storage 12 before transfer to the working store 14.

After successful matching with items contained in the working storage 12 strings are transferred from the working store 14 to the output store 15. For use when matching fails the equipment includes means to return a byte from the working store 14 to the data store 11.

In addition to other areas, eg for program instructions, the storage means 12 has four major storage areas. These areas will now be identified.

First the storage means has areas for two different lists of bytes. These are a first storage area 12.1 which contains which contains a list of bytes corresponding to the vowels and a second storage area 12.2 which contains a list of bytes corresponding to the consonants. (The vowels and the consonants have been previously identified in this specification).

The storage means 12 also contains two areas of storage which constitute two different, and substantial, linked databases. First there is the rime database 12.3 which is further divided into regions designated 12.31, 12.32, 12.33, etc. Each region has an input section containing bytes strings corresponding to "rimes" in graphemes and, as shown in the drawing, this includes 12.31 containing "ATS", 12.32 containing "EET", 12.33 containing "IGH" and many more sections not illustrated in the drawing.

The storage means 12 also contains a second major area 12.4, which contains byte strings equivalent to the onsets. As with the rimes, the onset database 12.4 is also divided into many regions. Frexample, it comprises 12.41 containing "C", 12.42 containing "STR" and 12.43 containing "H".

5

10

15

20

35

- 12 -

PCT/GB94/00430

Each of the input section (of 12.3 and 12.4) is linked t an output section whi h contains a string f bytes corresponding t the c ntent f its input section.

It has already been stated that the operational method includes two different procedures. The first procedure utilises storage areas 12.1 and 12.3 whereas the second procedure utilises storage areas 12.2 and 12.4. It is emphasised that the areas of the database which are actually used are defined entirely by the procedure in operation. The procedures are used alternately and procedure number 1 is used first.

SPECIFIC EXAMPLE

Analysis of the word "HIGHSTREET"

It will be noted that this specific example relates to the word selected as the fourth specimen in the description given above. Therefore its rimes and onsets are already defined and the specific example explains how these are achieved by mechanical computation.

The analysis begins when the input buffer 10 transfers the byte string corresponding to the word "HIGHSTREET" into the data store 12. Thus, at the start of the process, the important stores have the contents as follows:-

25	STORE	CONTENT
	11	hi ghstreet
	13	•
	14	
	15	

30 (The symbol "--" indicates that the relevant store is empty).

The analysis begins with the first procedure because the analysis always begins with the first procedure. As mentioned above, the first procedure uses storage regions 21.1 and 12.3. The first procedure has two phases during which bytes are transferred from the data store 11 t the working st re 14 via the check

WO 94/23423

5

10

20

30

35

- 13 -

store 13. The first phas continues for so long as the bytes are not found in storage region 12.1.

The procedure is a retrograde which means that it works from the back of the word and therefore the first transfer is "T" which is not contained in region 12.1. The second transfer is "E" which is contained in the region 12.1 and therefore the second phase of the first procedure is initiated. This continues for as long as the byte in working store 14 is matched in 12.1 therefore the second "E" is transferred but the check fails when the next byte "R" is passed. At this stage the state of the various stores is as follows.

11	STORE	•	CONTENT
			HI GHST
15	13		R
	14		eet
	15		

The contents of the working store 14 are used to access storage area 12.3 and a match is found in region 12.32. Thus the match has succeeded and the content of the working store 14, namely "ERT" is transferred to a region of the output store 15 so that the state of the various stores is as follows.

	STORE.	CONVENT
2 5	11	Highst
	13 .	· R
	14	• •
	15	eet

It will be noticed that the first rime has been found mechanically.

As mentioned above, the non-matching of "R" in the check store 13 terminated the first performance of the first procedure. The analysis continues but the second procedure is now used because the two procedures always alternate. The second procedure utilis s the storage regi ns 12.2 and 12.4. The byt corresponding t "R" in check stor 13 now matches because region 12.2

10

20

25

30

35

- 14 -

PCT/GB94/00430

is now in use and this byte is contain d therein. Theref re "R" is transferred to the working store 14 and the second procedure continues so long as the byte in check store 13 matches. Thus the letters "T", "S", "H" and "G" are all transferred via the check store 13. At this point the byte corresponding to "I" arrives in the check store 13 and the check fails because the byte corresponding to "I" is not contained in storage region 12.2. Since the check fails this performance of the second procedure terminates. The contents of the various stores are:

ACMINENTE NA

•	BTOKE		CONTENT
	11		a Ha
	13	•	n'I n
15	14		" GHSTR"
	1 5		n SEdra

The second procedure will attempt to match the content of the working store 14 with the database contained in 12.4 but no match will be achieved. Therefore the second procedure continues with its remedial part wherein the bytes are transferred back to the data store 11 via the check store 13. At each transfer it is attempted to locate the content of the working store 14 in storage area 12.4. A match will be achieved when the letters G and H have been returned because the string equivalent to "STR" is contained in region 12.42. Having achieved a match the content of the working store is put out into a region of the output store 15. At this point the content of the various stores is as follows:-

STORE	(SO) (MANA) AND
11	" HI G"
13	a Hu
14	
15	"STR" and "EET"

Th sec nd procedure was terminat d by finding the match so the analysis now goes back t the first procedure and

5 .

15

20

25

30

35

- 15 -

· PCT/GB94/60430

m re particularly t th first phase f the first procedure. In this way the letters "H" and "G" are transferred to the working store 14 and the first phase ends. The second phase passes "I" and it terminates when "H" is transferred to the check store 13. At this stage the various stores have contents as follows:-

STORE CONTENT

11 -
13 "H"

10 14 "IGH"

15 "STR" and "EBT".

The first procedure now attempts to match the content of the working store 14 with the database in the storage area 12.3 and a match is found in region 12.33. Therefore the content of the working store 14 is transferred to a region of the output store 15.

The analysis now continues with the second procedure and the letter "H" (in the check store 13) is located in storage region 12.2 (note that this region is now in use because the analysis has now gone back to the second procedure). The analysis can now terminate because the data store 11 has no further bytes to transfer and the content of the working store, namely, "H", is found in region 12.43 of the storage means 12. Thus "H" is transferred to the output store 15, which contains the correct four strings found by mechanical analysis.

The necessary output strings having been located, it is only necessary to convert them using the fact that storage areas 12.3 and 12.4 are linked databases. Each region not only has the strings now contained in the output store, but each region has linked output regions containing strings corresponding to the appropriate phonemes. Therefore each string in the output stor is used t access its appropriate r gion and hence produce the necessary output. The final step merely utilis s a look-up table and this is

· PCT/GB94/00430

WO 94/23423

5

10

15

20

30

35

- 16 -

p saible because the important analysis has been completed.

As indicated above, the identified strings serve as access to the linked database and, in a simple system, there is one output string for each access string. However, pronunciation sometimes depends on context and improved conversion can be achieved by providing a plurality of outputs for at least some of the access strings. Selecting the appropriate output stream depends upon analysing the context of the access stream, eg. to take into account the position in the word or what follows or what proceeds. This further complication does not affect the invention, which is solely concerned with the division into appropriate sections. It merely complicates the look-up process.

As was explained above, the invention is not necessarily required to produce an output because, in the case of failure, the complete system contains a default technique, eg. providing a phoneme equivalent for each grapheme. In order to complete the description of the technique, it is considered desirable to provide a brief indication of the circumstance in which this failure occurs and use of a default technique is required.

25 Failure Mode 1.

The first failure mode will occur when the content of the data store does not contain a vowel which implies that it is not a word. As always, the analysis starts by using the first procedure and, more specifically, the first phase of the first procedure and this will continue so long as there is no match with the first list 12.1. Since the string and data store 11 contains no match, the first phase will continue until the beginning of the word and this indicates that there is a failure.

WO 94/23423

5

10

20

25

30

35

•

- 17 -

Second Pailure Mode

This failure cours when: -

- (i) the second procedure is in use;
- (ii) the beginning of the word is reached and;
- (iii) there is no match for the content of the working store 14 in the database 12.4.

This contrasts with failure to match during the middle of the word which implies that a vowel is contained in the check store 13. Failure at this stage permits the returning of bytes for later analysis by the first procedure and there is no failure, at least not at this point in the analysis. When the beginning of the word is reached, there is no possibility of further analysis and hence the analysis has to fail.

15 Third Failure Mode

The third failure mode occurs when the first procedure is in use and it is not possible to match the contents of the working store 14 with a string contained in the database 12.3. Under these circumstances the first procedure will transfer bytes back to the check store 13 and the data store 11 and this transfer can continue until working store 14 becomes empty and the analysis also fails.

In the second failure mode, it was explained that the second procedure is allowed to return bytes to input for later analysis by the second procedure. However, the transferred bytes must be matched at some time and this means during the next performance of the first procedure. The third failure mode corresponds to the case where it is not possible to achieve the later match.

Thus the method of the invention provides analysis of a data string into segments which can be converted using look-up tables. It is not necessary that the analysis shall succ d in every cas but, giv n good databases, the m th d will work v ry frequently and nhanc the performance of a complete system which

- 18 -

PCT/GB94/00430

comprises the th r modules necessary for text to speech conversion.

WO 94/23423

5

10

15

25

30

35

- 19 -

CLAIMS

- of processing an input signal method 1. representing a string of characters selected from a first character set so as to identify sub-strings for conversion into an output signal representing a string of characters selected from a second character set, wherein said method divides said input signal into substrings by retrograde analysis, said retrograde analysis comprising the selection of later occurring portions of the input signal before earlier occurring portions thereof wherein the prior selection of a later portion at least partially defines the selection of an earlier occurring portion; said later occurring portions being contained in one of said sub-strings and said earlier occurring portion being contained in a different one of said sub-strings.
- 2. A method according to claim 1, wherein said input signal is composed of a string of bytes each of said bytes corresponding to a character of the first character set.
 - 3. A method according to either claim 1 or claim 2, wherein the method is preformed in conjunction with signal storage means which includes first, second, third and fourth storage areas wherein: ~
 - (i) the first storage area contains a plurality of bytes each of which represents a character selected from the first character set;
 - (ii) the second storage area contains a plurality of bytes each of which represents a character selected from the first character set, th total c ntent of said s cond st rage area being different

5

10

15

20

25

30

35

- 20 -

PCT/GB94/00430

- from the total content of said first storage ar a;
- (iii) the third storage area contains strings consisting of one or more bytes representing characters of the first character set wherein the or the first byte of each string is contained in the first storage area; and
- (iv) the fourth storage area contains strings of one or more bytes the or each of which is contained in the second storage area.
- 4. A method according to claim 3, wherein the input signal is divided into blocks and processing of at least some of said blocks comprises:
 - (a) identifying an internal string of consecutive bytes each of which is contained in the second storage area said string being immediately proceeded by a predecessor byte contained in the first storage area and immediately followed by a successor byte contained in the first storage area;
 - (b) identifying the longest end string of said internal string with strings contained in the fourth storage area;
 - (c) defining an initial portion of said internal string being the residue of said internal string after the separation of the end string defined in (b) and combining said initial string with the predecessor bit specified in (a) and identifying a string including said predecessor bit and said initial portion with a string stored is said s cond storage area.

WO 94/23423

5

10

15

- 21 -

signal converting an input A method of repres nting a string f characters selected fr m th equivalent signal an into first character set representing a sting of characters selected from the second character set; which method comprises identifying sub-strings by a method according to any one of the preceding claims and converting sub-strings by a linked database which has input sections each of which contains one of said sub-strings each input section being linked to an output section which contains the output equivalent of the content of the input section.

6. A method according to claim 5, wherein the input signal is divided into input blocks and wherein each block is separately converted wherein at least some of said blocks are converted as a whole without subdivision and at least some of the said blocks are converted by a method according to claim 5.

20

25

30

.PCT/GB94/00430

1/1

INTERNATIONAL SEARCH REPORT

Inter. ad Application No PCT/GR 94/00430

	. •	PCT/GB 9	4/00430
A. CLASSI	FICATION OF SUDJECT MATTER G10L5/04		
The 2	· · · · · · · · · · · · · · · · · · ·		
		•	
	o International Patent Classification (IPC) or to both national class	ification and IPC	
	SEARCHED DOWNERSHOP SEARCHED (classification system followed by described)	ann symbols)	<u></u>
IPC 5	G10L		
			·
Documental	orn searched other than minimum documentation to the extent that	such documents are metaded in the field	s scarched
Planton	ata base committed staring the international search (name of data be	we and, where wreezed, search torus tim	<u> </u>
CIECUOIDE O	ting their contents of street for the transfer this section further at one of	ne and and brosser, see at white	•
	••		
	·		
C. DOCUM	IHNTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the	tejeastij bazzilies	Referent to claim No.
	•		
X	PROCEEDINGS OF THE SPRING JOINT CONFERENCE, 30 April 1968, ATLAN		1
i .	NJ, US	1120 0211,	
	pages 333 - 338	Adam Ka	
	LEE F. 'Machine to man communica speech. Part 1: Generation of se		
	phonemes from text'	-	
A	see page 337, left column, line column, line 32	24 - right	2-6
	see page 334, right column, line	: 52 - page	
	337, left column, line 23	. •	
		-/	·
	·	•	
		•	
	·		
			i
		67	1
X For	her documents are listed in the continuation of hox C.	X Patent family members are lim	O (11 SECTION.
" Special ca	tegories of ested documents :	T later document published after the	
	ent defining the general state of the art which is not ered to be of particular relevance	or granty date and and an conflict cited to understand the procaple or invention	
	document but published on or after the international	"X" document of particular retevance; if came and be considered movel or came	ne claimed invention
L' docum	ent which may throw double on priority claim(s) or is cited to exabitth the publication date of another	theolice on inscrine sub-mission of con-	document is taken alone
atetio	n or other special reason (at apeculical) ent referring to an oral disclosure, two, exhibition or	cament is compared to involve an document is compared with one of	inventive step when the
व्याच्या		ments, such combination being obting the set.	
later (han the priority date distinct	'&' document member of the same pate	
Date of the	actual completion of the international search	Date of making of the international	search report
8	June 1994	15. Ob. 94	
	nuting address of the ISA	Authorized officer	
	Ruropean Patent Office, P.H. 5818 Patentiam 2 NL - 2280 HV Rujawija	Linested (Born ad they	
	Tel. (+ 31-70) 340-2040, Tz. 31 651 epo ni. Pazz (+ 31-70) 340-3016	Lange, J	

P.27/28

INTERNATIONAL SEARCH REPORT

Intern. and Application No PCT/GB 94/00430

		PCT/GB 94	/00430	_[
C(Continue	DOCUMENTS CONSIDERED TO BE RELEVANT			1
Category *	Claims of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.	
	PROCEEDINGS OF THE SPRING JOINT COMPUTER CONFERENCE, 30 April 1968, ATLANTIC CITY, NJ. US pages 339 - 344 ALLEN J. 'Machine to man communication by speech. Part 2: Synthesis of prosodic features of speech by rule' see page 340, left column, line 8 - right column, line 32		1,5,6	
A	US,A,4 811 400 (FISHER) 7 March 1989 see claims 1,2,9,10		1-6	
A	JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, vol.72, no.4, October 1982, NEW YORK, US pages 1155 - 1170 HERTZ S. 'From text to speech with SRS' see pages 1155-1157, section I.A		1-6	
	·			Ì
				Į
-				
•				ł
	·			
				l
				ļ
		ı		
			:	
			·	
				ı

Form PCT/ISA/210 (continuation of second clust) (July 1992)

AUG-31-2001 11:50

US-A-4811400

07-03-89

PATENT PROVIDERS INC INTERNATIONAL SEARCH, KEPUKI

7034152520 Intern. al Application No.

P.28/28

Information on patent (smily members PCT/GB 94/00430

NONE

Patent family member(s) Patent document cited in search report Publication date Publication date

Form PCT/ISA/210 (patent (amily annual) (July 1992)