BSM206 Mantiksal Devre Tasarımı

11. Hafta – Kaydediciler (Registers) ve Sayıcılar (Counters)

Dr. Öğr. Üyesi Onur ÇAKIRGÖZ onurcakirgoz@bartin.edu.tr

ANAHAT

- Giriş
- Basit Kaydedici (Register)
- Paralel Yüklemeli Kaydedici (Register)
- Kaydırma Register'ı (Shift Register)
- Seri Transfer
- Sayıcılar (Counters)
- Ripple (Asenkron) Sayıcı
- Senkron Sayıcı

Giriş

- Bir saat-girişli ardışıl devre, bir grup flip-flop'tan ve kombinezonal kapılardan oluşur.
- Bununla birlikte, flip-floplu bir devre, kombinezonal kapılar içermese bile, ardışıl bir devre olarak kabul edilir.
- Flip-flop içeren devreler temel olarak 2 gruba ayrılır: Kaydediciler (Registers) ve Sayıcılar (Counters)
- Kaydedicilere bazı kaynaklarda yazmaç da denmektedir.
- Bir kaydedici, her biri ortak bir saati paylaşan ve bir bit bilgi depolayabilen flip-flop'ların grubudur.
- Bir n-bitlik kaydedici, n bitlik ikili bilgiyi depolayabilen n tane flip-flop'tan oluşur.

Giriş

- Flip-flop'lara ek olarak, bir kaydedici, belirli veri işleme görevlerini yerine getiren kombinezonal kapılara sahip olabilir. Kapılar, verilerin kaydedicilere nasıl aktarılacağını belirler.
- Sayıcılar ise aslında özel bir tip kaydedicidir. Sayıcı, önceden belirlenmiş binary durumları (değerleri) sırasıyla işletir/takip eder.
- Sayıcıdaki kapılar, öngörülen durum dizisini üretecek şekilde bağlanır.

Basit Kaydedici (Register)

- En basit kaydedici, herhangi bir kapısı olmayan sadece flip-flop'lardan oluşan bir kaydedicidir.
- Dört bitlik bir veri depolama kaydedicisi oluşturmak için dört D-tipi flip-flop ile oluşturulmuş böyle bir kaydedici yandadır.
- Ortak saat girişi, her sinyal darbesinin pozitif kenarında tüm flip-flop'ları tetikler ve dört girişte mevcut olan ikili veriler kaydediciye aktarılır.
- Clear_b girişi, dört flip-flop'un tümünün R (sıfırlama) girişine gider. Bu giriş 0'a gittiğinde, tüm flip-flop'lar sıfırlanır.
- Normal çalışma sırasında R girişleri lojik 1'de tutulmalıdır.

Basit Kaydedici (Register)

- Basit kaydedicide, kaydedicinin içeriği değişmeden kalacaksa, bunu 2 şekilde yapabiliriz:
- Ya girişler sabit tutulmalı: Bu durumda, kaydediciyi süren veri yolu diğer trafik için kullanılamaz.
- Yada saat sinyali devreden engellenmelidir: Saat giriş sinyalini bir etkinleştirme kapısı ile kontrol ederek saatin register'a ulaşması engellenebilir. Yalnız, bu problematik bir çözümdür.
- Kaydedicinin çalışmasını, flip-flopların C girişlerindeki saatle kontrol etmek yerine, D girişleriyle kontrol etmeliyiz.

Paralel Yüklemeli Kaydedici (Register)

- Paralel Yüklemeli Kaydediciler, dijital sistemlerde temel bir yapı taşıdır.
- Senkron dijital sistemlerde, her saat darbesinde hangi kaydedici işleminin yürütüleceğine karar vermek için ayrı bir kontrol sinyali kullanılmalıdır.
- Ek kapılar, (veri yolu veya register'ın çıkışı ile) register'ın girişini süren iki-kanallı bir multiplexer oluşturur.

Paralel Yüklemeli Kaydedici (Register)

- Load girişi, her saat darbesiyle gerçekleştirilecek işlemi belirler.
- Load=1 olduğunda, harici girişteki veriler, saatin bir sonraki pozitif kenarıyla register'a aktarılır.
- Load=0 olduğunda, register'ın çıkışları ilgili girişlerine bağlanmış olur. Her saat kenarı ile D girişi register'ın bir sonraki durumunu belirler. Çıkışın değişmeden kalması için D girişi çıkışın mevcut değerine eşit olmalıdır.
- D flip-flobunda "no-change" koşulu olmadığından, çıkıştan girişe geri besleme bağlantısı gereklidir.

Kaydırma Register'ı (Shift Register)

- Her hücresinde tutulan ikili bilgiyi, seçilen bir yönde, komşu hücreye kaydırabilen bir register, kaydırma register'ı olarak adlandırılır.
- Bir kaydırma register'ı, bir flip-flop'un çıkışının bir sonraki flipflop'un girişine bağlı olduğu, kademeli bir flip-flop zincirinden oluşur.
- Tüm flip-flop'lar, verilerin bir kademeden diğerine geçişini etkinleştiren ortak saat darbelerini eşzamanlı alır.
- Alttaki kaydırma register'ı tek yönlüdür (soldan sağa).
- Her saat darbesi register'ın içeriğini bir bit sağa kaydırır.

Kaydırma Register'ı (Shift Register)

- Serial input, kaydırma sırasında en soldaki flip-flop'a neyin yükleneceğini belirler.
- Dikkat: Basitleştirilmiş devrelerde (Örn. aşağıdaki) reset sinyali gösterilmemiştir, ancak gerçek tasarımlarda böyle bir sinyalin gerekli olduğunu unutmayın.
- Bazen kaydırmayı kontrol etmek gerekir, böylece kaydırma sadece belirli darbelerle gerçekleşir, ancak diğerlerinde gerçekleşmez. Kaydırma işlemi saat girişine kapı bağlamakla kontrol edilebilir (tercih edilmiyor)
- Alternatif: Flip-flop'ların D girişleri aracılığıyla kaydırma kontrol edilebilir.

Seri Transfer

- Eğer bilgi bir seferde bir bit aktarılıyorsa, dijital bir sistemin veri yolunun seri modda çalıştığı söylenir.
- Bilgi, bitlerin kaynak register'dan hedef register'a kaydırılmasıyla her seferinde bir bit aktarılır.
- Bilgilerin A register'ından B register'ına <u>seri aktarımı</u> kaydırma register'larıyla yapılır.
- Kaynak register'ında saklanan bilgilerin kaybolmasını önlemek için, seri çıkışı seri girişine bağlayarak A register'ındaki bilgilerin dolaşımı sağlanır.

Seri Transfer

- Shift control girişi, register'ların ne zaman ve kaç kez kaydırılacağını belirler.
- Buradaki basit örnek diyagramda, saat darbelerinin yalnızca shift control etkinken CLK uçlarına geçmesine izin veren AND bir kapısı kullanılmıştır. (devrenin saat yolunu tehlikeye atabilir.)

Seri Transfer

- Veri transferini denetleyecek kontrol ünitesi, 4 bitin tamamını geçmek için, shift control sinyali aracılığıyla, dört saat darbesinden oluşan sabit bir süre boyunca kaydırma register'ını etkinleştirecek şekilde tasarlanmalıdır.
- Dolayısıyla, Shift control sinyali saat ile senkronize edilir ve saatin negatif kenarından hemen sonra değeri değiştirir.
- T1, T2, T3 ve T4 darbelerinin her yükselen kenarı, her iki register'da da bir kaymaya neden olur. Dördüncü darbe, shift control'u 0'a değiştirir ve kaydırma register'ları devre dışı bırakılır.

Seri Transfer (Örnek)

 Aşağıdaki örnekte, dördüncü kaydırmadan sonra, shift control 0'a gider ve A ve B register'larının her ikisi de 1011 değerine sahiptir. Yani, A'nın içeriği B'ye kopyalanmıştır, bununla birlikte A'nın içeriği değişmeden kalır, yani A'nın içeriği orijinal değerlerine geri yüklenir.

Timing Pulse	Shift Register A		Shift Register B					
Initial value	1	0	1	1	0	0	1	0
After T_1	1	1	0	1	1	0	0	1
After T_2	1	1	1	0	1	1	0	0
After T_3	0	1	1	1	0	1	1	0
After T_4	1	0	1	1	1	0	1	1

Sayıcılar (Counters)

- Sayıcılar ise aslında özel bir tip kaydedicidir. Sayıcı, önceden belirlenmiş binary durumları (değerleri) sırasıyla işletir/takip eder.
- Sayıcıdaki kapılar, öngörülen durum dizisini üretecek şekilde bağlanır.
- İkili sayı dizisini (ikili sayıları) takip eden bir sayaca ikili sayıcı (binary counter) denir.
- n bitlik bir ikili sayıcı, n adet flip-flop'tan oluşur ve 0'dan
 2ⁿ 1'e kadar ikili olarak sayabilir.
- Sayıcılar temelde iki kategoriye ayrılır:
 - ripple counters (asenkron sayıcılar)
 - synchronous counters (senkron sayıcılar)

Sayıcılar (Counters)

- Bir ripple (asenkron) sayıcısında, bir flip-flop çıkışı (çıkış geçişi), diğer flip-flop'ları tetiklemek için bir kaynak görevi görür.
- Bir ikili ripple (dalgalanma asenkron) sayıcısı, her bir flip-flop'un çıkışının bir sonraki daha yüksek dereceli flipflop'un C girişine bağlı olduğu, evirici flip-flop'ların seri bağlantısından oluşur.
- Evirici (tümleyen) bir flip-flop 3 farklı şekilde elde edilebilir:
 - J ve K girişlerinin birbirine bağlı olduğu bir JK flip-flop'tan
 - bir T flip-flop'tan,
 - Q' çıkışı D girişine bağlı olan bir D flip-flop kullanarak

Ripple (Asenkron) Sayıcı

- 4-bitlik ikili asenkron sayıcılar yanda gözükmektedir.
- Bu sayıcılar, evirici (tümleyen) flip-flop'lar ile oluşturulmuştur.
- Soldaki sayıcı T tipi flipflop'lar kullanılarak, sağdaki ise D tipi flipflop'lar kullanılarak oluşturulmuştur.
- Her bir flip-flop'un çıkışı bir sonraki flip-flop'un C girişine bağlanır.
- En önemsiz biti tutan flipflop, gelen sayma darbelerini alır.

Ripple (Asenkron) Sayıcı

- 4-bitlik ikili asenkron sayıcının ilk 9 sayma işlemini gösteren tablo aşağıda yer almaktadır.
- Sayma 0 dan başlar, 15 e kadar devam eder ve sonra tekrar 0 a döner. Sayma işlemi bu şekilde aralıksız devam eder.
- En önemsiz bit olan A₀, her sayma darbe girişi ile tümlenir.
- A₀, 1'den 0'a her gittiğinde, A₁'i tümler.
- Aynı durum, A_1 ile A_2 ve A_2 ile A_3 Binary Count Sequence arasında da vardır.
- 0011'den 0100'e geçişi düşünelim. A₀, sayma darbesi ile tümlenir. A₀, 1'den 0'a gittiği için A₁'i tetikler ve onu tümler. Sonuç olarak A₁, 1'den 0'a gider ve bu da A2 'yi 0'dan 1'e değiştirerek tümler. A2, A₃ 'ü tetiklemez çünkü A₂ pozitif bir geçiş üretir

,			
A_3	A ₂	<i>A</i> ₁	A_0
0	0	0	0
0	0	0	1
0	0	1	0
0	0	1	1
0	1	0	0
0	1	0	1
0	1	1	0
0	1	1	1
1	0	0	0

Senkron Sayıcı

- Senkron sayıcılar, tüm flip-flopların girişlerine saat darbeleri uygulandığı için ripple sayıcılardan farklıdır.
- Ortak bir saat, tüm flip-flopları aynı anda tetikler.
- Bir flip-flopun tümlenip tümlenmeyeceği kararı, saat darbesi (kenarı) anında T veya J ve K gibi veri girişlerinin değerlerine göre belirlenir.
- T = 0 veya J = K = 0 ise, flip-flop durum değiştirmez.
- T = 1 veya J = K = 1 ise flip-flop tümlenir.

Senkron Sayıcı

- Bir senkron ikili sayıcıda, en az anlamlı konumdaki flip-flop her darbede tümlenir.
 Diğer herhangi bir konumdaki bir flip-flop, düşük anlamlı konumlardaki tüm bitler 1'e eşit olduğunda tümlenir.
- Senkron ikili sayıcılar evirici flip-floplar ve kapılar ile oluşturulabilir.
- Tüm flip-flopların C girişleri ortak bir saate bağlanır.
- Sayıcı "Count_enable" tarafından etkinleştirilir. "Count_enable" girişi 0 ise, tüm J ve K girişleri 0'a eşittir ve saat sayıcının durumunu değiştirmez.

Senkron Sayıcı

• İlk aşama olan A₀'ın J ve K girişleri, sayıcı etkinleştirilmişse 1'e eşittir. Diğer J ve K girişleri, önceki tüm düşük anlamlı aşamalar 1'e eşitse ve "Count_enable" etkinse 1'e eşittir.

Sayıcılar (Counters)

- Diğer sayıcı türleri ise şu şekildedir:
 - İkili geri sayan sayıcı
 - BCD ripple sayıcı
 - Senkron sayıcı türleri
 - İkili sayıcı
 - Yukarı-aşağı ikili sayıcı
 - BCD sayıcı
 - Paralel yüklemeli ikili sayıcı
 - Belirli değerleri atlayan sayıcı
 - Johnson sayıcı