Linear Algebra

ZE DIAN XIAO

September 25, 2019

Ze Dian Xiao (September 25,	20191)
-----------------------------	-------	---

Linear Algebra

Contents

1	Review	Field	S				3

2 Tutorial 2

An important part of linear algebra is the study of vector spaces and the "homomorphisms" between them.

 \mathcal{Z}, \mathcal{Y}

§1 Review Fields

Definition 1.1. A ring R is a non-empty set with two binary operations $R \times R \to R$, + addition and · multiplication satisfying

- 1. (a+b)+c=a+(b+c) Associativity of addition
- 2. a + b = b + a Commutativity of addition
- 3. \exists an element $0_R \in R$ such that $a \cdot 0_R = a \forall a \in R$ 0_R is the neutral element of addition
- 4. $\forall a \in R$, there exists $b \in R$ such that $a + b = 0_R$, b is called the additive inverse of a and we write b = (-a)
- 5. $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ Associativity of multiplication
- 6. There exists an element $1_R \in R$ such that $a \cdot 1_R = 1_R \cdot a = a, \forall a \in R \ 1_R$ is the identity of multiplication.

7.
$$a \cdot (b+c) = a \cdot b + a \cdot c$$

 $(b+c) \cdot a = b \cdot a + b \cdot c$
 $\forall a, b, c \text{ in } R$

Definition 1.2. A ring R is said to be commutative if $a \cdot b = b \cdot a \forall a, b \in R$

Definition 1.3. A commutative R is said to be an integral domain if $\forall a, b \in R, a \cdot b = 0_R \implies a = 0_R$ or $b = 0_R$ (eg. \mathbb{Z} is an integral domain)

Definition 1.4. A field is a commutative ring R if $\forall a \in R, a \neq 0_R$, there exists $b \in R$ such that $a \cdot b = b \cdot a = 1_R$.

Definition 1.5. A field F is an integral domain.

Let $a, b \in F$ such that $a \cdot b = 0_F$ If $b \neq 0$, there exists $y \in F$ such that $b \cdot y = 1_F$ $a \cdot b = 0_F \implies$

$$a \cdot b \cdot y = 0_F$$
$$a \cdot (b \cdot y) = 0_F$$
$$a \cdot 1_F = 0_F$$
$$a = 0_F$$

Example 1.6 (Example of Fields)

 $\mathbb{Z}_5, \mathbb{R}, \mathbb{Q}, \mathbb{C}$

Example 1.7 (Finite FIelds)

 \mathbb{Z}_n is the ring of integers modulo n with addition and multiplication modulo n. \mathbb{Z}_4 is the ring of integer mod4

$$\mathbb{Z}_4 = \{0, 1_4, 2_4, 3_4\}$$

Proposition 1.8 (When is \mathbb{Z}_n a field)

 \mathbb{Z}_n is a field $\iff n$ is prime.

Proof. Assume that n is prime. Write n = p Let $a \in \mathbb{Z}_p$ such that $a \neq 0_P$, Let $X \in \mathbb{Z}$ such that $[x]_p = a$ So $x \not\equiv 0 mod p$, so p does not divide x. Since p is prime and p does not divide x, then gcd(p, x) = 1. Then there exists $u, v \in \mathbb{Z}$ such that

$$xu + pv = 1$$

$$xu \equiv 1 \pmod{p}$$

$$[xu]_p = 1_p$$

$$[x]_p[u]_p = 1_p$$

$$a \cdot [u]_p = 1_p$$

We prove that if n is not prime, then \mathbb{Z}_n is not a field, hence \mathbb{Z}_4 is not an integral domain(since $2_4 \cdot 2_4 = 0_4$) hence not a field. \mathbb{Z}_6 is not an integral domain(since $2_6 \cdot 3_6 = 0_6$) hence not a field. If n is not prime, there exists $x, y \in \mathbb{Z}$ such that

$$1 \le x, y \le n, n = xy$$

 $xy \equiv 0 \mod n$, so $[x]_n[y]_n = [0]_n$, $[x]_n \neq 0_n$, $[y]_n \neq 0_n$

- A field F is called finite if $|F| \leq +\inf$
- We will show that if F is a finite field then $|F| = p^n$ for some prime p and $n \in \mathbb{N}$ (No field with 6 elements, no field with 10 elements)
- Conversely, for every prime p and $n \in \mathbb{N}$, there exists a finite field with p^n elements (Not easy to show)

$$f(x) = x + y$$

Definition 1.9 (Complex Numbers). A complex number is an element of the form a+ib where $a, b \in \mathbb{Z}$ and $i^2 = -1$

The set of complex numbers is denoted by \mathbb{C}

Example 1.10

Operation on complex numbers:

$$(a+ib) + (c+id) = (a+c) + i(b+d)$$

 $(a+ib) \cdot (c+id) = (ac+bd) + i(ad+bc)$

IMPORTANT

$$f(x) = \frac{f(x) + f(-x)}{2} + \frac{f(x) - f(-x)}{2}$$

Observe that the function

$$f_e: x \to \frac{f(x) + f(-x)}{2}$$

is even and

$$f_o: x \to \frac{f(x) - f(-x)}{2}$$

is odd

Suppose that

Theorem 1.11

Show that

$$det(C) = det(A)det(B)$$

Proof.

$$det(C) = \sum_{\sigma \in S_{n+m}} c_{1,\sigma(1)} \cdots c_{n+m,\sigma(n+m)}$$

Definition 1.12 (Characteristic Polynomial). Let $A \in M_n(\mathbb{F})$ The characteristic polynomial $\Delta_A(x)$ is defined by $\Delta_A(x) = det(xI_n - A)$

 Δ_A has degree n

$$\Delta_A(0) = det(-A) = (-1)^n det(A)$$
 (constant term)
 $\Delta_A(0) \neq 0 \iff det(A) \neq 0 \iff$ A is invertible

Example 1.13

Let A be an invertible nxn matrix, Show that for all $t \neq 0$,

$$\Delta_A^{-1}(t) = \frac{t^n}{\Delta_A(0)} \Delta_A(\frac{1}{t})$$

Solution.

$$\begin{split} \Delta_A^{-1}(t) &= \det(tI_{nxn} - A^{-1}) \\ &= \det(A^{-1}(tA - I_{nxn}) \\ &= \det(tA^{-1}(A - \frac{1}{t}I_{nxn}) \\ &= \det(-tA^{-1}(\frac{1}{t}I_{nxn} - A)) \\ &= \det(-tA^{-1})\det(\frac{1}{t}I_{nxn} - A) \\ &= t^n \det(-A^{-1})\det(\frac{1}{t}I_{nxn} - A) \\ &= \frac{t^n}{\Delta_A(0)}\Delta_A(\frac{1}{t}) \end{split}$$

Theorem 1.14 (Cailey-Hamilton Theorem)

Let $A \in M_n(\mathbb{F})$ and Δ_A be the characteristic polynomial. Then the Cailey-Hamilton states that

$$\Delta_A(A) = 0_{nxn}$$

in the n=2 case,

$$\Delta_A(A) = A^2 - (tr(A)A) + det(A)I_{nxn}$$

Example 1.15

Let A be and nxn invertible matrix. Show that $A^{-1} = f(A)$ for some polynomial f of degree n-1 at most.

Solution. Let

$$\Delta_A(x) = x^n + a_{n-1}x^{n-1} + \dots + a_1x + a_0$$

Given A is invertible, $a_0 = \Delta_A(0) \neq 0$

By Cailey-Hamilton, $\Delta_A(A) = 0_{nxn}$

$$A^{n} + a_{n-1}A^{n-1} + \dots + a_{1}A + a_{0}I_{nxn} = 0$$

$$A^{n} + a_{n-1}A^{n-1} + \dots + a_{1}A = -a_{0}I_{nxn}$$

$$A(A^{n-1} + a_{n-1}A^{n-2} + \dots + a_{1}) = -a_{0}I_{nxn}$$

$$A\left\{\frac{-1}{a_{0}}(A^{n-1} + a_{n-1}A^{n-2} + \dots + a_{1}I_{nxn})\right\} = I_{nxn}$$

$$A^{-1} = -\frac{1}{a_{0}}(A^{n-1} + a_{n-1}A^{n-2} + \dots + a_{1}I_{nxn}) = f(A)$$

where $f(x) = -\frac{1}{a_0}(x^{n-1} + a_{n-1}x^{n-2} + \dots + a_1)$

Example 1.16

Let A be an nxn matrix and B be an mxm matrix.

$$C = \begin{bmatrix} A & X \\ 0 & B \end{bmatrix} \text{ where } X \text{ is } nxm$$

Such that det(C) = det(A)det(B)

It follows that:

$$det(C) = \sum_{\sigma \in S_{n+m}} sgn(\sigma)c_{1,\sigma(1)} \cdots c_{n+m,\sigma(n+m)}$$

$$c_{x1} = 0$$
 for $x \ge n + 1$

$$c_{x2} = 0$$
 for $x \ge n + 1$

$$c_{xn} = 0 \text{ for } x \ge n+1$$

Pick a certain
$$x \ge n+1$$
 If $\sigma(x) \in \{1, ..., b\}, c_{x,\sigma x} = 0$

If
$$x \ge n+1$$
, $\sigma(x) \in \{n+1, ..., n+m\}$ If $1 \le c \le b$, $\sigma(x) \in \{1, ..., n\}$

$$= \sum_{\sigma_1, \sigma_2: \sigma_1 \in S_n, \sigma_2 \in S_{\{n+1,\dots,n+m\}}} sgn(\sigma_1\sigma_2)c_{1,\sigma_1(1)} \cdots c_{n,\sigma_1(n)}c_{n,\sigma_2(n+1)} \cdots c_{n+m,\sigma_2(n+m)}$$

define $\sigma = \sigma_1 \sigma_2$

$$= det(A)det(B)$$

Theorem 1.17

$$det(AB) = det(A)det(B)$$

Proof.

$$det(AB) = \sum_{\sigma \in S_n} sgn(\sigma)(AB)_{1,\sigma(1)} \cdots (AB)_{n,\sigma(n)}$$
$$= \sum_{\sigma \in S_n} sgn(\sigma)$$

Example 1.18

Extras Ex. 1 - Ex.3 Done!

Definition 1.19. Let $A \in M_n(\mathbb{F})$ λ is called an eigenvalue of A if $\exists v \neq 0$ st $Av = \lambda v$ is an eigenvector for the eigenvalue λ

Theorem 1.20

 λ is an eigenvalue of A iff $\Delta_A(\lambda) = 0$

Example 1.21 (Extras II, Final 2018)

Let P be an nxn matrix over \mathbb{F} such that $P^2 = P$

- 1. Show that if λ is an eigenvalue of P, then $\lambda \in \{0,1\}$
- 2. Show that $\mathbb{F}^n = K_1 \oplus K_2$, where $K_1 = Null(P)$ and $K_2 = Ran(P)$
- 3. Show that P is similar to a diagonal matrix with entries 1 and 0's over the diagonal (Note: the diagonal contains all zeros or all 1s)

Solution.

1. Let λ is an eigenvalue of P. Then $\exists v \neq 0$ st $Pv = \lambda v \implies PPv = P(\lambda v) \implies P^2v = \lambda Pv = \lambda^2v$

Hence, $P^2v = \lambda^2v$. $P^2 = P$ so $P^2v = Pv = \lambda v$, so $\lambda^2v = \lambda v \implies (\lambda^2 - \lambda)v = 0$ And so,

$$(\lambda^2 - \lambda) = 0 \implies \lambda^2 = \lambda \implies \lambda \in \{0, 1\}$$

2. Show that

$$\mathbb{F}^n = Ran(P) \oplus Null(P)$$

Let $v \in \mathbb{F}^n$ v = v - Pv + Pv. Where $Pv \in Ran(P)$ and $v - Pv \in Null(P)$.

$$P(v - Pv) = Pv - P^2v = 0$$

We have shown that $\mathbb{F}^n = Ran(P) + Null(P)$

To show $Ran(P) \cap Null(P) = \{0\}$, there are two approaches.

$$dim\mathbb{F}^n = dim(Null(P) + Ran(P))$$

From the dimension argument,

$$\underbrace{dimNull(P) + dimRan(P)}_{n} - dim(Ran(P) \cap Null(P)) = dim(Null(P) + Null(P))$$

from Rank-Nullity

$$dim(Ran(P) \cap Null(P)) = n - n = 0$$

$$\therefore Ran(P) \cap Null(P) = \{0\}$$

ullet Without dimension argument

Let $v \in Ran(P) \cap Null(P)$, then $v \in Ran(P)$. Hence $\exists u \in \mathbb{F}^n$ st v = Pu

$$Pv = P^{2}u = Pu$$

$$Pu = v$$

$$\therefore Pv = v$$

but also, $v \in Null(P)$, hence $Pv = 0 \implies v = 0$

3. $\mathbb{F}^n = Null(P) \oplus Ran(P)$. Let v_1, \ldots, v_k be a basis of Null(P), and v_{k+1}, \ldots, v_n be a basis of Ran(P).

Then,

$$B = \{v_1, \dots, v_k, v_{k+1}, \dots, v_n\}$$

is a basis of \mathbb{F}^n .

$$Pv_1 = 0, Pv_{k+1} = v_{k+1} = 0v_1 + \dots + 1v_{k+1} + 0v_{k+2} + \dots + 0v_n$$

$$\begin{bmatrix} 0 & 0 & \dots & 0 & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 & 0 & 0 & \dots & 1 \end{bmatrix}$$

Two same representations of a matrix are similar

Example 1.22

Find all eigenvalues and corresponding eigenspaces of the nxn matrix of $\mathbb C$

$$A_n = \begin{bmatrix} 0 & 1 & \dots & 1 \\ 1 & 0 & \dots & 0 \\ \vdots & 0 & \ddots & 0 \\ 1 & 0 & \dots & 0 \end{bmatrix}$$

Solution. Let λ be an eigenvalue of A_n . Then there exists $v \in \mathbb{C}^n$ non zero, such that $A_n v = \lambda v$.

$$\begin{bmatrix} 0 & 1 & \dots & 1 \\ 1 & 0 & \dots & 0 \\ \vdots & 0 & \ddots & 0 \\ 1 & 0 & \dots & 0 \end{bmatrix} \begin{bmatrix} v_1 \\ \vdots \\ \vdots \\ v_n \end{bmatrix} = \begin{bmatrix} \lambda v_1 \\ \vdots \\ \lambda v_n \end{bmatrix}$$

Note. Assume $A \in M_n(\mathbb{F})$ not invertible, then A is not injective, then $Ker(A) \neq \{0\}$. Then there exists $v \neq 0$, st Av = 0. Then 0 is an eigenvalue of A.

If $\lambda = 0$, then the first line becomes $v_2 + \cdots + v_n = 0$. Second to last line we have $v_1 = 0$.

Then the eigenspace attached to 0 is

$$E_0 = \{(v_1, \dots, v_n) \in \mathbb{F}^n : v_1 = 0, v_2 + \dots + v_n = 0\}$$

where $dim(E_0) = n - 2$

If $\lambda \neq 0$, then the second to the last line are such that $v_2 = \cdots = v_n = \frac{1v_1}{\lambda}$. Then plugging back into the first line we get that $v_2 + v_3 + \cdots + v_n = \lambda v_1$

$$\frac{n-1}{\lambda}v_1 = \lambda v_1$$

If $v_1 = 0$, then it follows that $v_i = 0 : i = 2, ..., n$. But this does not respect the definition of an eigenspace.

If
$$v_1 \neq 0 \implies \frac{n-1}{\lambda} = \lambda \implies \lambda^2 = n-1 \implies \lambda = \pm \sqrt{n-1}$$

Note. The field here is \mathbb{C} because in the case of another field, it could be that some eigenvalues do not exist.

What is the eigenspace attached to $\sqrt{n-1}$

$$E_{\sqrt{n-1}} = \{(v_1, \dots, v_n) \in \mathbb{C}^n : v_2 = \dots = v_n = \frac{1}{\sqrt{n-1}}v_1$$

Eigenspace attached to $-\sqrt{n-1}$

$$E_{-\sqrt{n-1}} = \{(v_1, \dots, v_n) \in \mathbb{C}^n : v_2 = \dots = v_n = \frac{1}{-\sqrt{n-1}}v_1$$

Example 1.23 (Final Exam 2018)

Let V be an inner product space over $\mathbb R$ of dimension n. Show that there exists an isomorphism $f:V\to\mathbb R^n$, such that $< v,v'>=f(v)\cdot f(v')$

Solution. Let $\{v_1, \ldots, v_n\}$ be an orthonormal basis of V.

Let $\{e_1, \ldots, e_n\}$ be the standard basis of \mathbb{R}^n .

Consider $f: V \to \mathbb{R}^n$, $f(v) = [v]_B$. From theorem, we know that f is an isomorphism.

$$\langle v, v' \rangle = [v]_b[v']_B(Assignment) = f(v) \cdot f(v')$$

From assignment, given an orthonormal basis, then the inner product of two vectors is the product of the coordinates. \Box

§2 Tutorial 2

Theorem 2.1 (Spectral Theorem for symmetric real matrices)

Let $A \in M_n(\mathbb{R})$ be a symmetric matrix. (ie $A = A^T$)

Then, A is diagonalizable over \mathbb{R}

Definition 2.2. A matrix $A \in M_n(\mathbb{F})$ is diagonalizable if $\exists P \in GL_n(\mathbb{R})$ and a diagonal matrix $D \in M_n(\mathbb{R})$ such that

$$A = PDP^{-1}$$

Example 2.3 (Diagonalizable matrix) 1. Any diagonal matrix $D \in M_n(\mathbb{R})$ is diagonalizable

- 2. Any symmetric matrix $A \in M_n(\mathbb{R})$ is diagonalizable
- 3. Any matrix $A \in M_n(\mathbb{R})$ with n distinct eigenvalues (Converse is not true)

Theorem 2.4

If $A \in M_n(\mathbb{F})$ is diagonalizable, then there exists a orthonormal basis of \mathbb{F}^n consisting of eigenvectors of A

Theorem 2.5

If $A \in M_n(\mathbb{R})$ is symmetric, then there exists a basis of \mathbb{R}^n consisting of eigenvectors of A.

Every single linear algebra exam has a question about diagonalizing a matrix.(Be comfortable with computing)

Example 2.6

Let

$$A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 3 & 0 \\ 2 & -4 & 2 \end{bmatrix}$$

Solution.

$$\Delta_A(x) = \det(xI_3 - A) = \begin{bmatrix} x - 1 & 2 & 0 \\ 0 & x - 3 & 0 \\ 2 & -4 & x - 2 \end{bmatrix} = (x - 1)(x - 2)(x - 3)$$

Since we have 3 distinct eigenvalues, A is diagonalizable over \mathbb{R} . Eigenvalues:

$$\lambda_1 = 1 \ \lambda_2 = 2 \ \lambda_3 = 3$$

Now we want to find a matrix P such that $A = PDP^{-1}$

Eigenvectors of distinct eigenvalues are linearly independent.

Eigenvector for $\lambda_1 = 1$

We find $v \in \mathbb{R}^3$ such that $(I_3 - A)v = 0_{\mathbb{R}}$

$$(I - A) \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & -2 & 0 \\ 0 & -2 & 0 \\ -2 & 4 & -1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\implies -2v_2 = 0$$

$$\implies -2v_2 = 0$$

$$\implies -2v_1 + 4v_2 - v_3 = 0$$

$$\therefore v_2 = 0$$

$$v_3 = -2v_1$$

$$E_1 = \{(v_1, 0, -2v_1) : v \in \mathbb{R}\} = span\{1, 0, -2\}$$

Eigenvector for $\lambda_2 = 2$ We find E_2