Assignment 8 - Data Visualization 1

Kaustubh Shrikant Kabra

ERP Number: - 38

TE Comp 1

- Use the inbuild dataset 'titanic'. The dataset contains 891 rows and contains information about the passengers who boarded the unfortunate Titanic Ship. Use the Seaborn Library to see if we can find any patterns in the data.
- Write a code to check how the price of the ticket for each passenger is distributed by plotting a histogram.

```
In [2]:
         import numpy as np
         import matplotlib.pyplot as plt
         import seaborn as sns
         import pandas as pd
In [3]:
         data=pd.read csv('titanic.csv')
In [4]:
         data.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 891 entries, 0 to 890
        Data columns (total 12 columns):
         #
             Column
                          Non-Null Count
                                           Dtype
                           _____
                                           ----
         0
             PassengerId 891 non-null
                                           int64
         1
             Survived
                          891 non-null
                                           int64
         2
             Pclass
                          891 non-null
                                           int64
         3
                           891 non-null
                                           object
             Name
         4
             Sex
                          891 non-null
                                           object
         5
                                           float64
             Age
                          714 non-null
         6
             SibSp
                          891 non-null
                                           int64
         7
                          891 non-null
                                           int64
             Parch
         8
                          891 non-null
                                           object
             Ticket
         9
                                           float64
             Fare
                          891 non-null
         10 Cabin
                           204 non-null
                                           object
         11 Embarked
                          889 non-null
                                           object
        dtypes: float64(2), int64(5), object(5)
        memory usage: 83.7+ KB
In [5]:
         data.shape
         (891, 12)
Out[5]:
In [6]:
         data.describe()
```

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

In [7]:

data

Out[7]:		Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin I
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN
	•••											
	886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.0000	NaN
	887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.0000	B42

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	I
888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.4500	NaN	
889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.0000	C148	
890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.7500	NaN	

891 rows × 12 columns

```
In [8]: ###Now Let us look at the ages of the passengers
    data['Age'].hist(bins=70)
```

Out[8]: <AxesSubplot:>


```
fig = plt.figure(figsize=(12, 8))
gs = fig.add_gridspec(3,1)
gs.update(hspace= -0.55)

axes = list()
colors = ["#022133", "#5c693b", "#51371c"]

for idx, cls, c in zip(range(3), sorted(data['Pclass'].unique()), colors):
    axes.append(fig.add_subplot(gs[idx, 0]))

# you can also draw density plot with matplotlib + scipy.
sns.kdeplot(x='Age', data=data[data['Pclass']==cls],
    fill=True, ax=axes[idx], cut=0, bw_method=0.25,
    lw=1.4, edgecolor='lightgray', hue='Survived',
    multiple="stack", palette='PuBu', alpha=0.7
)
```

```
axes[idx].set_ylim(0, 0.04)
axes[idx].set_xlim(0, 85)

axes[idx].set_yticks([])
if idx != 2 : axes[idx].set_xticks([])
axes[idx].set_ylabel('')
axes[idx].set_xlabel('')

spines = ["top","right","left","bottom"]
for s in spines:
    axes[idx].spines[s].set_visible(False)

axes[idx].patch.set_alpha(0)
axes[idx].text(-0.2,0,f'Pclass {cls}',fontweight="light", fontfamily='serif', fonts
if idx != 1 : axes[idx].get_legend().remove()

fig.text(0.13,0.81,"Age distribution by Pclass in Titanic", fontweight="bold", fontfamily plt.show()
```

Age distribution by Pclass in Titanic

From above graph, we can infer that there are less numbers of survivers form class 2 & 3 and their age group is between 10-30 years

```
In [10]: plt.figure(figsize=(16,10))
    sns.histplot(data=data['Fare'])
    plt.show()
```



```
plt.figure(figsize=(8,10))
    sns.boxplot(y=data['Age'], x=data['Sex'], hue=data['Survived'])
    plt.plot()

Out[11]:
```

file:///C:/Users/asus/Downloads/Assignment8.html

- 1) Number of females survived is more than female casualties.
- 2) Number of males survived is less than the male casualties.
- 3) Hence, first priority was to save females then males.

```
In [12]:
    sns.lmplot('Age', 'Fare', data=data, fit_reg=False, hue="Pclass", col="Embarked", scatt
    plt.subplots_adjust(top=0.9)
    plt.title('Scatterplot of passengers w.r.t Fare and Age for diff. ports', fontsize=16)
```

c:\users\orionoriginal\appdata\local\programs\python\python39\lib\site-packages\seaborn
_decorators.py:36: FutureWarning: Pass the following variables as keyword args: x, y. F
rom version 0.12, the only valid positional argument will be `data`, and passing other a
rguments without an explicit keyword will result in an error or misinterpretation.
warnings.warn(

Out[12]: Text(0.5, 1.0, 'Scatterplot of passengers w.r.t Fare and Age for diff. ports')

From above plot we get that more number of passengers Embarked at port S & C