西南财经大学

Southwestern University of Finance and Economics

商务大数据分析与决策

课程报告

学年学期: 2021-2022 学年第二学期

课程名称: 商务大数据分析与决策

学生学号: ____ 41951020 _____

学生姓名: ____ 曾诚

学院:____工商管理学院

年级专业: 2019级市场营销 (金融服务与营销)

基于机器学习技术的酒店客户预订取消数据分析与预测

摘要:本项目使用了来自 Kaggle 网站上的 Hotel booking demand 项目数据集,该数据集包含了一家城市酒店和一家度假酒店的预订信息。本项目使用 Python 语言,通过机器学习等数据分析技术,首先对数据进行了描述性的统计,完成了对数据的预处理;其次利用数据集对酒店运营状况、市场情况、客户画像进行了可视化分析;最后根据数据集建立客户是否会取消预订的预测模型。

关键词: 酒店管理 预订取消预测 机器学习

一、引言

大数据时代下,酒店旅游市场的快速发展使得行业内的竞争愈发激烈,客户对产品与服务信息获取渠道越来越多,酒店企业面临着产品同质化严重、同行竞争加剧,从而导致新增客户获取困难、成本增加等行业问题。同时,酒店市场客源较不稳定,客户流失量较高。因此维护好留存客户,保持客户忠诚度,降低客户流失率是当前面临的主要问题。

数据挖掘在这个实际课题中发挥了很大的作用,数据挖掘就是从大量杂乱无章的原始数据中得出一些有用的信息。在通信行业、银行等一些机构存在大量的数据。数据处理人员从大量的数据中进行分类、整理、归纳、总结,对客户进行分析、整理,和现在计算机、数据库、数据仓库普遍应用相比,过去那种分析、整理、归纳的方法都是和那个时代相匹配的,都是很简单的归纳,只能得到很少的信息,并且都是以数学理论为起点,然后向实际推广。随着计算机的大规模应用,人们可以在大量的数据中,运用数据挖掘技术寻找数据中蕴藏的规律,并对未来。

酒店行业的从业者为了更好地规划酒店的经营,他们有极强的意愿来了解消费者的行为特点,例如在消费者的视角里,什么时候是一年中预定酒店房间的最佳时间,为了获得最好的房价折扣而选择的最佳入住时间,酒店是否可能会收到不成比例的高数量的特殊请求。客户流失预测可以帮助酒店预测流失趋势,构建适合酒店行业数据特性的影响因素指标体系,有针对性地提出挽留措施,提高商家利润,因此,酒店业的客户流失预测是酒店管理领域的一个重要研究方向。

本研究使用的数据来自 Nuno Antonio 等人的数据文章 Hotel booking demand datasets., 该文章描述了两个包含酒店需求数据的数据集。其中一家酒店(H1)是度假酒店,另一家是城市酒店(H2)。两个数据集共享相同的结构,通过 31 个特征,形成了描述 H1 的 40060 次观测数据和 H2 的 79330 次观测数据,每一条观测数据都代表一次酒店预订。这两个数据集包含了 2015 年 7 月 1 日至 2017 年 8 月 31 日之间的预订,包括有效到达的预订和被取消的预订。

二、数据预处理与描述型分析

2.1 数据预处理

缺失值处理。发现一共有 4 个特征出现了缺失值,由于 children 和 country 缺失值的数量占总体比例非常小,且这两列是类别型变量,我们直接用对应列的众数进行填充; agent

列的缺失值数量较多, 故将缺失值单独作为新类别, 标记为 0; company 列几乎全为缺失值, 包含了极少量的有效值, 因此删除此列。

异常值处理。通过在 Kaggle 网站上的数据集说明,仔细观察数据可以发现,存在入住总人数为 0 和入住总天数为 0 的数据,即异常数据,我们需要对这些数据做筛选和清理。此外,数据集说明里,我们还可以发现 meal 列的 Undefined/SC 均表示未预定餐食,我们需要把其合并为同一类。

2.2 可视化分析

图 1 房间类型变更对取消预订的影响

如图 1 所示,房型变更过的客户取消预定的概率远远小于未变更过的客户。对此,可能有以下原因:客户到达酒店后临时更改房型,多数客户会选择不取消预定,直接入住;客户自行更改房型,相对取消预定而言,这类客户更愿意更改房间类型而保证正常入住。

图 2 入住人数对取消预订的影响

如图 2 所示,多数预定订单显示没有儿童和婴儿入住,其中单人入住和双人入住是主要的预定人数模式;有婴儿入住时预定取消率大幅下降;超过 5 人以上入住的订单基本全部取消,这部分可能是刷单等异常订单,酒店需要注意。针对不同酒店,重点分析下列几种入住人数情况的取消率:单人入住:adults=1,children,babies=0;双人入住:adults=2,children,babies=0;家庭入住:adults>2,children,babies>0。

图 3 房间类型、入住人数对取消预订的影响

对于城市酒店,取消预定概率:双人>>单人≈家庭,应注意双人入住客户的高取消率现象,改善酒店对于双人入住客户的配套服务以降低取消率。对于度假酒店,取消预订概率:家庭>双人>单人,酒店可适当针对家庭客户提供相应的优惠折扣,提高家庭客户入住率。

图 4 是否取消预订和饮食的影响

可以看到无论是否取消预订,餐食类型之间差异不大。

图 5 不同酒店类型和车位需求

多数客户不需要停车位,相比之下,度假酒店客户需要停车位的比例远大于城市酒店。

图 6 预定数前 20 的国家/地区

统计可知, 前 20 名国家/地区数据量占据全部数据的 94%, 客户主要来自葡萄牙, 英国, 法国, 西班牙等欧洲国家, 不同国家之间预定取消率的差距非常显著, 取消率较高的国家有葡萄牙、意大利、巴西、中国、俄罗斯, 以发展中国家为主。

图 7 客户预定历史

客户预定历史指客户之前预定过的订单的取消情况,可以一定程度上反映客户当前订单的取消意愿。大多数预定来自于新客,而熟客取消预定的概率远远小于新客;先前取消过预定的客户本次预定取消的概率较大,尤其是取消过预定 15 次以上的客户,基本上不会选择入住,可以计入酒店的"黑名单";先前预定并入住过的客户相对来说信用较好,高入住次数(>20 次)客户基本不会取消预订。

图 x 提前预订时长分布

从预定提前时长分布明显可以看出,客户倾向于选择与入住时间相近的时间预定,并 且随着预定提前时长的增大,取消率呈现上升趋势。

图 8 入住时间

预定量上,城市酒店 7/8 月出现大幅下滑,同期度假酒店变化较小,整体而言,度假酒店月度客流量变化较小;取消率上,两家酒店冬季取消率相对较低,城市酒店夏季取消率降

低, 度假酒店却处于高峰。

图 9 客房价格趋势变化

两种酒店客房价格趋势主要差异在于 7-8 月, 此时期城市酒店价格小幅下跌, 度假酒店价格却急速上涨, 一度超过城市酒店。结合预定量和取消量分析, 7-8 月度假酒店客流减少,取消率大幅上升, 经营者应考虑调整价格策略以增加营收。对于用户而言, 应考虑避免 8 月预定度假酒店, 此时酒店价格处于高位, 而 9 月价格便会下跌近一半, 气候/环境差异不大,是入住的好时期。

图 10 客房价格趋势变化

度假酒店客户入住时长集中在 1-10 晚,其中入住 1 晚的客户取消概率最低;城市酒店客户入住时长多在 5 晚以内,其中入住 2 晚的客户取消概率最高;整体而言,度假酒店客户平均入住天数明显高于城市酒店,可以考虑推出长租优惠方案吸引顾客。

图 11 预订渠道

预定主要来自于旅行社(TA/TO),个人直接预定(Direct)和团体预定(Group);旅行社取消预定的概率远大于其他渠道,可能是由于旅行社出于盈利考虑会取消利润较低的订单。

三、模型的构建与评价

3.1 简单的特征工程

首先进行特征的筛选,模型目标是对订单是否取消进行预测,挑选特征变量应满足:特征必须为客户预定时就能获得的数据,因此排除 booking_changes (预定更改), reservation_status (结账状态), assigned_room_type (最终分配房型)等特征。考虑一定的信息脱敏和通用性,排除 country (国籍), arrival_date_year (入住年份)等特征。完成数据列处理后,先查看一下各数据参数与取消预订之间的相关性。

图 12 相关性矩阵

与取消预订相关性较高的特征有:提前预定时长,车位需求数,特殊需求数,押金类型,酒店类型等。

3.2 简单机器学习模型

接下来,进行模型训练,引入多个简单的分类模型,均采用默认参数,简单比较模型之间的准确率,表1展示了所选用的部分简单模型的效果。

77 171 172 177 177 177 177 177 177 177 1				
模型	验证集上的准确率			
决策树	0.824			
K 近邻	0.812			
线性支持向量机	0.785			
随机梯度下降	0.766			
岭回归	0.765			
感知机	0.755			
高斯朴素贝叶斯	0.491			

表 1 简单模型的泛化效果比较

不难发现,决策树、K 近邻方法的泛化能力和预测准确率明显高于其他简单模型。虽然如此,简单模型的预测正确率仍然不算非常高,本文考虑使用一些更复杂的模型进行处理。 3.3 较复杂的模型

本文使用了 Logistic Regression, Random Forest, XGBoost, LightGBM, CatBoost 五个

模型进行训练,鉴于篇幅原因,本文不再对模型的原理进行解释,仅展示训练结果,模型的构建请参见附录代码。

表 2 较复杂的模型泛化效果评估

模型	AUC	Accuracy	Recall	F1-Score	Precision
Logistic Regression	0.721333	0.779618	0.484670	0.623722	0.874663
Random Forest	0.843414	0.864382	0.761137	0.807028	0.858807
XGBoost	0.808278	0.787040	0.894517	0.759958	0.660588
LightGBM	0.813518	0.842733	0.694890	0.769072	0.860985
CatBoost	0.838313	0.855777	0.767400	0.800420	0.836409

基于以上指标,我们可以对不同的模型进行有效的评估,我们发现 5 个指标中,随机森林模型有四个都是最高的,因此随机森林模型可能是最适合进行本项目预测分析的模型。

3.4 应用随机森林模型进行预订取消预测的示例

```
from sklearn import metrics

#选择待预测样本
pre_x=X[1:2,]

#相应的真实值

true_y=y[2]

#预测结果
pre_y=clf.predict(pre_x)
print(true_y)
print(true_y)
print(pre_y)
```

发现随机森林模型的预测是正确的,观察随机森林模型的特征重要度,如表 3。

表 3 随机森林模型的特征重要度(前 7)

- 19 Park 11 19 - 19 19 19 19 19 19 19 19 19 19 19 19 19				
特征	重要度			
lead_time	0.15			
deposit_type	0.13			
adr_per_person	0.08			
adr	0.08			
arrival_date_day_of_month	0.07			
total_of_special_requests	0.07			
arrival_date_week_number	0.06			

四、结论与应用

本项目使用了来自 Kaggle 网站上的 Hotel booking demand 项目数据集,该数据集包含了一家城市酒店和一家度假酒店的预订信息。本项目使用 Python 语言,通过机器学习等数据分析技术,首先对数据进行了描述性的统计,完成了对数据的预处理;其次利用数据集对酒店运营状况、市场情况、客户画像进行了可视化分析;最后根据数据集建立客户是否会取消预订的预测模型。

本文基于机器学习的评价指标,发现随机森林模型能有效预测客户是否取消预订,其中lead_time,deposit_type,adr_per_person,adr,arrival_date_day_of_month,total_of_special_requests,arrival_date_week_number7 个特征的重要性较大,酒店可

以考虑从这7个特征的角度进行服务改善和预订取消预测。

参考文献:

- [1] Antonio, N., de Almeida, A., & Nunes, L. (2019). Hotel booking demand datasets. *Data in brief*, 22, 41-49.
- [2] Breiman, L. (2001). Random forests. *Machine learning*, 45(1), 5-32.
- [3] Larivière, B., & Van den Poel, D. (2005). Predicting customer retention and profitability by using random forests and regression forests techniques. *Expert systems with applications*, 29(2), 472-484.
- [4] Chen, T., & Guestrin, C. (2016, August). Xgboost: A scalable tree boosting system. In *Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining* (pp. 785-794).
- [5] Jabeur, S. B., Gharib, C., Mefteh-Wali, S., & Arfi, W. B. (2021). CatBoost model and artificial intelligence techniques for corporate failure prediction. *Technological Forecasting and Social Change*, *166*, 120658.
- [6] Noble, W. S. (2006). What is a support vector machine?. *Nature biotechnology*, 24(12), 1565-1567.
- [7] Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., ... & Liu, T. Y. (2017). Lightgbm: A highly efficient gradient boosting decision tree. *Advances in neural information processing systems*, 30.
- [8] 赖院根, & 刘砺利. (2011). 基于客户价值的信息用户流失预测研究. *情报理论与实践*, *34*(7), 67-70.
- [9] 王若佳,严承希,郭凤英, & 王继民. (2022). 基于用户画像的在线健康社区用户流失预测研究. *数据分析与知识发现*, 6(2/3), 80-92.
- [10] 钱苏丽,何建敏, & 王纯麟. (2007). 基于改进支持向量机的电信客户流失预测模型. *管理科 学*, 20(1), 54-58.
- [11] 周艳聪, & 郝园媛. (2022). 基于机器学习的运营商客户行为分析. 科学技术与工程.