Problema: S=1A,B3 C R3 e' um conjunto ortognel = A.B=0 CEL(S) = C= <1A+ <2B, <1, <2 ∈ R

11311=1

D=C+AxB e 11D11=16

 $\theta = 4(c,D) = \frac{\pi}{3}$

Pretende-re determinar 11A11.

||D||2 = D.D = (C+AxB). (C+AxB) = ||C||2+2C.AxB+||AxB||2 =

(=) $||C||^2 + 2C \cdot A \times B + ||A \times B||^2 = 6$ (1)

Verifice-re que

C. AxB = (\alpha_1 A + \alpha_2 B). AxB = \alpha_1 A \delta xB + \alpha_2 B. AxB = 0

 $\|A \times B\|^2 = \|A\|^2 \|B\|^2 - (A/B)^2 = \|A\|^2$

C.D = 11 CH 11 D11 CON II = 1/2 11 C1 =

(e) $C \cdot (C + A \times B) = \frac{\sqrt{6}}{2} \|C\| = 1 \|C\|^2 + C \cdot A \times B = \frac{\sqrt{6}}{2} \|C\| = 1$

 $e) IICU = \frac{\sqrt{6}}{2}$

Obtém-re, finelmente, a partir de epicos (1)

 $\frac{6}{4} + \|A\|^2 = 6$ (=) $\|A\|^2 = \frac{18}{4}$ (=) $\|A\| = \frac{3\sqrt{2}}{2}$

Fri Ari Barbon