ICS Homework 13 Solution

Floating Point

Consider a 16-bit floating point representation based on the IEEE floating-point format, with 1 sign bit, 6 exp bits, 9 frac bits, called **Float16**.

(1) Fill in the table below. Please represent M in the form x or x/y where x is an integer and y is an integral power of 2.

Description	Hex	M	Е
-21/2	0xC4A0	21/16	3
5/8	0x3C80	5/4	-1
-85/64	0xBEA8	85/64	0
-3*2 ⁻³⁴	0x8060	3/16	-30
32	0x4800	1	5
-0	0x8000	0	-30
Largest negative normalized value	0x8200	1	-30
+∞	0x7E00		
Largest denormalized value	0x01FF	511/512	-30

Suppose the Float16 is formatted with 1 sign bit, 5 exp bits, 10 frac bits.

(2) Assume we use IEEE round-to-even mode to do the approximation. Now a, b are both Float 16, with a = 0x4663 and b = 0x394c represented in hex. Compute a+b and represent the answer in hex.

0x470c

(3) Using Float16, what's the difference between $2^{15} + 0.5 - 2^{15}$ and $2^{15} - 2^{15} + 0.5$? Calculate them to explain why.

```
2^15: 0|111 10|00 0000 0000
0.5: 0|011 10|00 0000 0000
2^15+0.5:
```

1.0000 0000 00

- $+\ 0.0000\ 0000\ 0000\ 0001\ 0000\ 0000\ 00$
- $= 1.0000\ 0000\ 0000\ 0001\ 0000\ 0000\ 00$

 $M=(1.0000\ 0000\ 00|00\ 0001\ 0000\ 0000\ 00)2=1.0000\ 0000\ 00$

E = 30

 $2^{15}+0.5 = 0|111 \ 10|00 \ 0000 \ 0000 = 2^{15}$ So $2^{15}+0.5-2^{15} = 0$

But 2^15-2^15=0 2^15-2^15+0.5=0.5

0.5 is rounded during the calculation of $2^15 + 0.5$.