Алгебраическая геометрия.

Лектор — Иван Александрович Панин Создатель конспекта — Глеб Минаев *

TODOs

До	описать	2
До	описать	3
$R\epsilon$	ef	4
Д	описать?	8
06	бозначить это по-нормальному	9
1	одержание Коммутативноалгебраическое введение 1.1 Алгебраические и чисто трансцендентные расширения полей	1 5
2	Аффинная геометрия Литература:	9

- Хартсхорн, "Алгебраическая геометрия".
- Атья, Макдональд, "Введение в коммутативную алгебру".

Замечание 1. Все кольца ассоциативны, коммутативны и с единицей.

1 Коммутативноалгебраическое введение

Определение 1. Пусть I — частично упорядоченное по порядку \leq множество, т.е.

$$a \leqslant b \leqslant c \implies a \leqslant c.$$

OBУ: всякая последовательности элементов $i_1 \leqslant i_2 \leqslant \dots$ стабилизируется с некоторого момента (т.е. последовательность имеет константный хвост).

Hаличие минимального элемента. Для всякого $J \subseteq I$ существует $j_{max} \in J$, что для всякого $j \in J$ имеет место следствие $j_{max} \leqslant j \Rightarrow j = j_{max}$.

Лемма 1. I удовлетворяет OBY тогда и только тогда, когда I удовлетворяет наличию минимального элемента.

^{*}Оригинал конспекта расположен на GitHub. Также на GitHub доступен репозиторий с другими конспектами.

Доказательство.

- ⇒) Предположим, что максимального элемента, т.е. для всякого элемента есть строго больший. Тогда мы можем построить строго возрастающую последовательность, что противоречит ОВУ.
- \Leftarrow) Пусть дана нестрого возрастающая последовательность $(i_m)_{m=1}^{\infty}$. Тогда применяя свойство наличия максимального элемента для $J:=\{i_m\}_{m=1}^{\infty}$, получаем, что есть $j_M\in J$ (для некоторого M), для которого нет строго большего в J. Значит после j_M все элементы с ним совпадают.

Определение 2. Пусть A — кольцо, а M — A-модуль. Тогда $\operatorname{mod}(A)$ — множество всех подмодулей в M, упорядоченных по включению $((0), M \in \operatorname{mod}(M))$.

M нётеров, если mod(A) удовлетворяет ОВУ (или наличию максимального элемента).

Лемма 2.

- 1. Если M нётеров, то любой подмодуль $N \subseteq M$ конечнопорождён (как A-модуль).
- $2. \; Eсли любой подмодуль M конечнопорождён, то M нётеров.$

Доказательство.

- $1\Rightarrow 2)$ Пусть M нётеров, $N\subseteq M$ подмодуль. Пусть I все конечнопорождённые модули в N. I непуст, так как $(0)\in I$. Следовательно, в I есть максимальный элемент, пусть N_{max} . Если $N_{max}=N$, то N конечнопорождён. Если $N_{max}\neq N$, то существует $x\in N\setminus N_{max}$, что $N_{max}\nsubseteq N_{max}+x\cdot A\subseteq N$ противоречие.
- $2 \Rightarrow 1$) Пусть имеется последовательность $M_1 \subseteq M_2 \subseteq \dots$ подмодулей M. Определим

$$M_{\infty} := \bigcup_{m=1}^{\infty} M_m.$$

 M_{∞} тоже подмодуль M. Значит M_{∞} конечнопорождён. $x_1, \ldots, x_n \in M_{\infty}$, значит есть n_0 , что $x_1, \ldots, x_n \in M_{n_0}$. Следовательно,

$$M_{n_0} = M_{n_0+1} = M_{n_0+2} = \dots$$

Пемма 3. M'- подмодуль M u есть сюръективный гомоморфизм $\pi: M \to M/M' = M''$. Тогда M нётеров тогда u только тогда, когда M' u M'' нётеровы.

Доказательство. Пусть M — нётерово. Покажем, что M' нётерово. Пусть есть цепочка $M_1' \subseteq M_2' \subseteq \ldots$ подмодулей M. M нётерово, значит цепочка стабилизируется, значит M' нётерова.

Покажем, что M'' нётерово. Пусть есть цепочка подмодулей $M_1'' \subseteq M_2'' \subseteq \dots$ Следовательно $[\pi(\pi^{-1}(M_1'') \subseteq \pi^{-1}(M_2'') \subseteq \dots)] \subseteq M$. Значит цепочка стабилизируется. Значит стабилизируется изначальная цепочка, значит M'' нётерово.

Теперь предположим, что M' и M'' нётеровы.

Дописать.

Определение 3. Кольцо А нётерово, если как модуль над собой нётерово.

3амечание 2. 1 — образующая A как A-модуля. Всякий идеал I является подмодулем A, но может не иметь одного образующего.

Определение 4. II кольца A — непустое подмножество A, что для всяких $a,b \in I$ $a+b \in I$ и для всяких $a \in I$, $k \in A$ $ak \in I$.

Лемма 4. Пусть дано кольцо А. TFAE

- 1. А нётерово.
- 2. Любая цепочка идеалов $I_1 \subseteq I_2 \subseteq \dots$ стабилизируется.
- 3. Всякий идеал I конечнопорождён.

Доказательство.

- $1 \Leftrightarrow 2$) По определению.
- $1 \Leftrightarrow 3$) По лемме 2.

Лемма 5. Пусть дано нётерово кольцо A. Тогда для всякого $n \geqslant 0$ A^n — нётеров модуль.

Доказательство. (0) — нётеров. $A^1 = A$ — нётеров. Далее легко провести по индукции, что A^{n-1} нётерово и $A^n/A^{n-1} = A$ нётерово, а тогда A^n нётерово.

Следствие 5.1. Если A — нётерово кольцо, то всякий конечнопорождённый A-модуль M нётеров.

Доказательство. Пусть $m_1, \ldots, m_r \in M$ — система порождающих модуля M. Тогда имеем сюръективный гомоморфизм $A^r \to M$, порождённый $e_i \mapsto m_i$. Следовательно, по лемме 3 из нётеровости A^r следует нётеровость M.

Следствие 5.2. Если M — конечнопорождённый модуль u N — подмодуль M, то N конечнопорождён. B частности всякий подмодуль $N \subseteq A^r$ конечнопорождён.

Доказательство.

Дописать.

Теорема 6 (Гильберта). Если кольцо A нётерово, то A[t] нётерово.

Доказательство. Пусть фиксирован некоторый идеал I в A[t]. Как только мы покажем, что I конечнопорождён, то применяя лемму 4, получим нётеровость A[t].

Пусть $\mathcal{A} \subseteq A$ — множество старших членов многочленов из I.

Пемма 6.1. A - udean. H, следовательно, конечнопорождено.

Доказательство. Действительно, для всяких $a,b \in \mathcal{A}$ есть многочлены $f_a, f_b \in I$ со старшими коэффициентами a и b соответственно. Следовательно $f_a t^{\deg(f_b)} + f_b t^{\deg(f_a)}$ лежит в I и имеет старший коэффициент a+b (если только $a+b \neq 0$; иначе очевидно). Также если $a \in \mathcal{A}$, а $k \in A$, то есть многочлен $f_a \in I$ с данным старшим коэффициентом. Но тогда kf_a (если $ak \neq 0$; иначе очевидно) лежит в I и имеет старший член ak.

Рассмотрим a_1, \ldots, a_r — система порождающих \mathcal{A} , а f_1, \ldots, f_r — многочлены из I с данными старшими коэффициентами.

Тогда всякий $f \in I$ порождается тогда и только тогда, когда порождается соответствующий ему $g \in I$ степени меньше $n := \max_k \deg(f_k)$, так как иначе с помощью старших членов f_i можно породить старший член f, вычесть его из f и тем самым понизить степень. Значит вопрос свёлся к порождаемости многочленов из I степени не выше n.

Заметим, что описанные многочлены образуют модуль $I \cap (A \oplus At \oplus \cdots \oplus At^{n-1})$ — подмодуль A^n . Значит $I \cap (A \oplus At \oplus \cdots \oplus At^{n-1})$ конечнопорождён, а отсюда I конечнопорождён.

Лемма 7. Если B — нётерово кольцо, C — кольцо, а $\varphi: B \to C$ — гомоморфизм колец, то $\varphi(B)$ — нётерово.

Доказательство. Пусть дана последовательность идеалов $I_1 \subseteq I_2 \subseteq \dots$ в $\varphi(B)$. Тогда $\varphi^{-1}(I_i)$ — идеалы и

$$\varphi^{-1}(I_1) \subseteq \varphi^{-1}(I_2) \subseteq \dots$$

Значит с какого-то момента эта цепочка стабилизируется, а значит стабилизируется образ этой цепочки по φ , т.е. изначальная цепочка.

Лемма 8. Если $\psi:A\to C$ — гомоморфизм колец, такой что C — конечная A-алгебра, порождённая элементами x_1,\ldots,x_n . Тогда C нётеров.

Доказательство. Мы можем рассмотреть нативное вложение A в $A[t_1, \ldots, t_n]$ и гомоморфизм A-алгебр $\varphi: A[t_1, \ldots, t_n] \to C$, порождённый ψ и соотношениями $\varphi(t_i) = x_i$.

 φ сюръективен, а $A[t_1,\ldots,t_n]$ нётерово. Таким образом $\varphi(B)=C$ нётерово. \square

Замечание 3. Всякое поле нётерово.

Следствие 8.1. Любая конечнопорождённая F-алгебра, где F — поле, нётерова.

3амечание 4. • \mathbb{Z} — нётерово кольцо.

- Всякое кольцо является Z-кольцом.
- \bullet Если кольцо R конечнопорождённая \mathbb{Z} -алгебра, то оно нётерово.

Лемма 9. Пусть A — нётерово кольцо, а M'' — A-модуль. Тогда M конечнопорождён тогда u только тогда, когда нётеров.

Доказательство. Если M'' нётеров, то уже доказано, что M'' конечнопорождён, так как является собственным подмодулем (см. лемму).

Ref

Если M'' конечнопорождено, то есть система порождающих m_1, \ldots, m_s . Тогда есть сюръективный гомоморфизм

$$\varphi: A^s \to M'', e_i \mapsto m_i.$$

При этом A^s нётеров, значит M'' нётеров.

Лемма 10. Пусть даны кольца $A \subseteq B \subseteq C$, что A — нётерово, C — конечнопорождённый B-модуль и конечнопорождённая A-алгебра. Тогда B — конечнопорождённая A-алгебра.

Доказательство. Пусть y_1, \ldots, y_n — система порождающих C как A-алгебру, а x_1, \ldots, x_m — система порождающих C как B-модуль. Тогда есть $b_{i,j} \in B$, что

$$y_i = \sum b_{i,j} x_j,$$

и $b_{i,j,k} \in B$, что

$$x_i x_j = \sum b_{i,j,k} x_k.$$

Пусть B_0 — это A-подалгебра в B, порождённая всеми $b_{i,j}$ и $b_{i,j,k}$. Заметим, что количество перечисленных порождающих конечно, т.е. B_0 — конечнопорождённая алгебра. Следовательно, B_0 нётерова.

Поймём, что C порождается уже над B_0 элементами x_1, \ldots, x_n . Действительно, для всякого $c \in C$ есть $F \in A[t_1, \ldots, t_n]$, что $c = F(y_1, \ldots, y_n)$. При этом $y_i = \sum b_{i,j} x_j$. Значит

$$c = G(x_1, \dots, x_m) \in B_0 x_1 + \dots + B_0 x_m,$$

так как при раскрытии скобок каждый квадратный $x_i x_j$ член заменяется на линейную сумму $\sum b_{i,j,k} x_k$, т.е. можно запустить банальный алгоритм понижения степени и получить линейное по x_i выражение.

Таким образом C как B_0 -модуль конечнопорождён (а B_0 нётеров), значит всякий B_0 -подмодуль в C конечнопорождён, значит B — конечнопорождённый B_0 -модуль. Поскольку $B_0 \subseteq B$, то B — конечнопорождённая B_0 -алгебра. Следовательно, B — конечнопорождённая B_0 -алгебра, а B_0 — конечнопорождённая A-алгебра. \square

1.1 Алгебраические и чисто трансцендентные расширения полей

Определение 5. Пусть есть поле F, содержащееся в поле E. Элемент $x \in E$ называется алгебраическим над F, если есть $g \in F[t]$, что $g(x) = 0 \in E$. Иначе x называется трансцендентным над F.

Лемма 11. Если x алгебраический над F, то рассмотрим F-подалгебру F[x] в E, порождённую x, т.е. есть гомоморфизм алгебр $\varphi: F[t] \to E$, порождённый соотношением $\varphi(t) = x$, определяет алгебру $\varphi(F[t])$. Тогда существует неприводимый многочлен $f \in F[t]$, что f(x) = 0 и $F[x] = \varphi(F[t]) = F[t]/(f)$.

Доказательство. φ — гомоморфизм алгебр, а значит гомоморфизм колец, значит $\mathrm{Ker}(\varphi) \subseteq F[t]$ непуст (из-за алгебраичности x) и является идеалом. Но всякий идеал в F[t] является главным, следовательно $\mathrm{Ker}(\varphi) = (f(t))$ для некоторого $f \in F[t]$. При этом, так как E поле, $\mathrm{Ker}(\varphi)$ — простой идеал, т.е. f(t) неприводим. Отсюда получаем искомое.

Следствие 11.1. Уже F[x] является подполем в E.

Следствие 11.2. $\dim_F F[x] = \deg f(t) < \infty$.

Следствие 11.3. F[x] порождается как векторное пространство над F элементами (базисом) $1, x, \ldots, x^d$ для некоторого $d \in \mathbb{N}$.

Определение 6. Пусть $K\subseteq L$ — поля. Если $y_1,...,y_m\in L$ алгебраичны над K и

$$K \subseteq K[y_1] \subseteq K[y_1][y_2] \subseteq \cdots \subseteq K[y_1] \ldots [y_m] = L,$$

то L называется конечнопорожедённым алгебраически порожедённым алгебраическим расширением поля K.

Лемма 12. Если даны поля $K \subseteq L$, что L — конечнопорождённое алгебраическое расширение K, то $\dim_K L < \infty$.

Доказательство. Если m=1, то утверждение превращается в следствие 11.2.

По следствию 11.3 1, ..., $y_2^{d_2}$ порождают $K[y_1][y_2]$ как векторное пространство над $K[y_1]$. При этом $K[y_1]$ порождается 1, ..., $y_1^{d_1}$ как векторное пространство над K. Следовательно, все элементы вида $y_1^{\alpha_1}y_2^{\alpha_2}$, $\alpha_1 \in \{0; \ldots; d_1\}$, $\alpha_2 \in \{0; \ldots; d_2\}$, порождают $K[y_1][y_2]$ как векторное пространство над K. Следовательно

$$\dim_K K[y_1][y_2] = \dim_K K[y_1] \cdot \dim_{K[y_1]} K[y_1][y_2] < \infty.$$

Упражнение 1. Верно и обратное: если $\dim_K L < \infty$, то L — конечнопорождённое алгебраическое расширение поля K.

Определение 7. Пусть даны поля $F \subseteq E$ и $x \in E$, трансцендентный в F. Тогда

$$F(x) := \{ \frac{f(x)}{g(x)} \mid f, g \in F[t], g(t) \neq 0 \}.$$

Лемма 13. 1. F(x) корректно определено.

2. F(x) - none.

Доказательство.

- 1. Если g(x) = 0, то x алгебраично. Значит f(x)/g(x) определено.
- 2. Операции наследуются от поля. Несложно видеть, что F(x) относительно них замкнуто.

Лемма 14. $F(x) \cong F(t)$ как поля, где F(t) — поле рациональных функций.

Доказательство. Построим понятный гомоморфизм полей

$$\varphi: F(t) \to F(x), f/g \mapsto f(x)/g(x).$$

По построению φ сюръективен. $\mathrm{Ker}(\varphi)$ — идеал в поле, т.е. либо (0), либо всё F(t). Но φ сохраняет F, значит $\mathrm{Ker}(\varphi)=0$, т.е. φ инъективен. Итого φ — изоморфизм.

Лемма 15. Пусть x трансцендентно. Тогда $1, x, x^2, \ldots$ линейно независимы.

Доказательство. В противном случае это означает, что есть некоторое $n \in \mathbb{N}$ и $a_0, \dots, a_n \in F$, что

$$\sum_{k=0}^{n} a_k x^k = 0.$$

Тогда f(x) = 0, где

$$f(t) := \sum_{k=0}^{n} a_k t^k.$$

Это противоречит с трансцендентностью x.

Лемма 16. Пусть даны поле L и независимая переменная t. Тогда

$$L(t) := \{ \frac{f(t)}{g(t)} \mid f(t), g(t) \in L[t], g(t) \neq 0 \}$$

не является конечнопорождённой L-алгеброй.

Доказательство. Предположим противное. Пусть $L(t) = L[y_1, \dots, y_s]$ — конечнопорождённая L-алгебра, где $y_i = \frac{f_i(t)}{g_i(t)}$. Тогда есть гомоморфизм

$$\varphi: L[T_1, \ldots, T_s] \to L(t), T_i \mapsto y_i.$$

Понятно, что

$$L[y_1,\ldots,y_s]=\varphi(L[T_1,\ldots,T_s]).$$

Тогда рассмотрим h(t) — неприводимый делитель значения

$$1 - \prod_{i=1}^{s} q_i(t).$$

Поскольку $L = L[y_1, \ldots, y_s]$, то $1/h(t) \in L[y_1, \ldots, y_s]$, то есть $G(T_1, \ldots, T_s) \in L[T_1, \ldots, T_s]$, что $G(y_1, \ldots, y_s) = \frac{1}{h(t)}$. Понятно, что есть некоторое $N \in \mathbb{N}$, что

$$G(y_1,\ldots,y_s)=rac{F(t)}{(\prod q_i(t))^N}.$$

Тогда

$$\left(\prod q_i(t)\right)^N = h(t)F(t).$$

Вспомним, что

$$\prod g_i(t) - 1 = h(t) \cdot h_1(t) \implies \prod g_i(t) \equiv 1 \pmod{h(t)} \implies \left(\prod g_i(t)\right)^N \equiv 1 \pmod{h(t)},$$
$$\left(\prod g_i(t)\right)^N = h(t)F(t) \implies \left(\prod g_i(t)\right)^N \equiv 0 \pmod{h(t)},$$

T.e. $0 \equiv 1 \pmod{h(t)}$.

Лемма 17. Пусть $F \subseteq E - n$ оля, $u E = F[x_1, \dots, x_n]$ конечнопорождёно как F-алгебра. Тогда $[x_1, \dots, x_n]$ алгебраичны над F $u \dim_F E < \infty$.

Доказательство. Среди x_1, \ldots, x_n может оказаться элемент трансцендентный над F, WLOG x_1 . Получим

$$F \subseteq F(x_1) \subseteq E$$
.

Среди оставшихся может оказаться элемент, трансцендентный над $F(x_1)$, WLOG x_2 . Получим

$$F \subseteq F(x_1) \subseteq F(x_1)(x_2) \subseteq E$$
.

Будем повторять данную операцию до конца. Таким образом выделим x_1, \ldots, x_r , получим

$$F \subseteq F(x_1) \subseteq F(x_1)(x_2) \subseteq \cdots \subseteq \underbrace{F(x_1) \dots (x_r)}_{K} \subseteq E,$$

что все x_{r+1}, \ldots, x_n алгебраичны над K. Тогда E как векторное пространство над K конечномерно (лемма 12).

Тогда имеем, что

$$F \subseteq K \subseteq E$$
,

где E — конечнопорождённый K-модуль и конечнопорождённая F-алгебра. Следовательно, по лемме $10\ K$ — конечнопорождённая F-алгебра.

Пусть $r \neq 0$. Пусть $L = F(x_1) \dots (x_{r-1})$. Тогда $L(x_r) = K$, где $x_r \in K$ трансцендентен над L. Следовательно, $L(x_r) \cong L(t)$, т.е. $K = L(x_r)$ — не конечнопорожденная L-алгебра, и тем более не конечнопорождённая F-алгебра. Противоречие.

Следствие 17.1. Пусть $F \to A$ — конечнопорождённая F-алгебра, а \mathcal{M} — максимальный идеал A. Тогда $F \hookrightarrow A/\mathcal{M}$ — конечное алгебраическое расширение поля.

Доказательство.

Дописать?

Следствие 17.2. Пусть F- алгебраически замкнутое поле, а $F \to A-$ конечнопорождённая F-алгебра. Тогда $F \to A/\mathcal{M}-$ изоморфизм.

Доказательство. $A/\mathcal{M}-$ конечное алгебраическое расширение поля F, т.е. совпадает с F. \square

Упражнение 2. Пусть R — кольцо, $I \subseteq J \subseteq R$ — два иделала в R. Тогда ТҒАЕ.

- 1. I = J.
- $2. \ \overline{\varphi}: R/I \to R/J, r \bmod I \mapsto r \bmod J$ изоморфизм колец.

Доказательство. Если I = J, то очевидно что $r \mod I = r \mod J$, а R/I = R/J, а тогда $\overline{\varphi}$, являясь тождественным отображением, является изоморфизмом колец.

Пусть $\overline{\varphi}$ — изоморфизм колец. Рассмотрим вложения $\pi_I: R \to R/I, r \mapsto r \bmod I$ и $\pi_J: R \to R/J, r \mapsto r \bmod J$. Следовательно, имеем коммутативность диаграммы

Следовательно,

$$r \in I \quad \Leftrightarrow \quad r \in \operatorname{Ker}(p_I) \quad \Leftrightarrow \quad p_I(r) = 0 \quad \Leftrightarrow \quad p_J(r) = 0 \quad \Leftrightarrow \quad r \in \operatorname{Ker}(p_J) \quad \Leftrightarrow \quad r \in J,$$

T.e. $I = J$.

Упражнение 3. Пусть $\mathcal{M} \subseteq R$ — идеал. Тогда TFAE.

- 1. \mathcal{M} максимален.
- 2. R/\mathcal{M} поле.

Теорема 18 (Гильберта о нулях, Nullstellensatz (слабая)). Пусть K — алгебраически замкнутое поле (например, \mathbb{C}), $\mathcal{M} \subseteq K[t_1, \ldots, t_n]$ — максимальный идеал. Тогда $\mathcal{M} = (t_1 - x_1, \ldots, t_n - x_n)$, где $x_i \in F$. **Доказательство.** Зафиксируем некоторые значения $x_1, \ldots, x_n \in K$ и рассмотрим идеал $I := (t_1 - x_1, \ldots, t_n - x_n)$. Также рассмотрим следующие гомоморфизмы:

$$in: K \to K[t_1, \dots, t_n], r \mapsto r,$$

$$\pi_{\mathcal{M}}: K[t_1, \dots, t_n] \to K[t_1, \dots, t_n] / \mathcal{M}, r \mapsto r \bmod \mathcal{M}, \qquad i_{\mathcal{M}} := \pi_{\mathcal{M}} \circ in,$$

$$\pi_I: K[t_1, \dots, t_n] \to K[t_1, \dots, t_n] / I, r \mapsto r \bmod I, \qquad i_I := \pi_I \circ in.$$

Заметим, что $i_{\mathcal{M}}$ — изоморфизм колец, так как \mathcal{M} максимален. При этом для всякого многочлена $F \in K[t_1, \ldots, t_n]$ по теореме Безу $F(t_1, \ldots, t_n) \equiv F(x_1, \ldots, x_n)$ (mod I), а значит i_I инъективен, так как K поле, и сюръективен, так как $[F]_I = [F(x_1, \ldots, x_n)]_I = i_I(F(x_1, \ldots, x_n))$. Следовательно i_I тоже изоморфизм колец. Следовательно есть изоморфизм колец $\varphi = i_{\mathcal{M}}^{-1} \circ i_I$, т.е. для всякого $r \in K$

$$\varphi(r \bmod \mathcal{M}) = r \bmod I.$$

Осталось показать, что $\varphi \circ \pi_{\mathcal{M}} = \pi_I$, т.е. для всякого $F \in K[t_1, \ldots, t_n] \ \varphi : F \mod \mathcal{M} \mapsto F \mod I$. На деле для случайных x_1, \ldots, x_n это не верно. Поэтому возьмём $x_k := i_{\mathcal{M}}^{-1}(t_k \mod \mathcal{M})$, т.е. чтобы $t_k - x_k \in \mathcal{M}$. Тогда получим, что

$$\varphi(t_k \bmod \mathcal{M}) = \varphi(x_k \bmod \mathcal{M}) = x_k \bmod I = t_k \bmod I.$$

Поскольку φ — гомоморфизм колец, а всякий многочлен представляется в виду суммы произведений элементов K и t_1, \ldots, t_n , то теперь это верно для всех многочленов. Значит $\mathcal{M} = I$.

2 Аффинная геометрия

Замечание. Глава І. §1. Замкнутые подмножества A_k^n .

Обозначить это по-нормальному.

Определение 8. Пусть фиксировано поле k. Аффинное пространство над полем <math>k размерности n — есть пространство

$$\mathbb{A}^n = \mathbb{A}^n_k := \{ x = (x_1, \dots, x_n) \mid x_i \in k \} = k^n.$$

Пусть $A := k[T_1, \dots, T_n], f \in A$. Тогда f — отображение $\mathbb{A}^n \to k$. Пусть фиксировано $S \subseteq A$. Тогда множеством общих нулей многочленов из S (также "общие нули многочленов из S" или "нули S") — это множество

$$Z(S) := \{ x \in \mathbb{A}^n \mid \forall f \in S \ f(x) = 0 \}.$$

Все подмножества Z(S) называются замкнутыми подмножествами в \mathbb{A}^n или аффинными подмножествами в \mathbb{A}^n .

 Π ример 1.

- 1. $\emptyset = Z(\{a\}_{a \in k}) = Z(A)$.
- 2. $\mathbb{A}^n = Z(\emptyset) = Z(\{0\}).$
- 3. $\{(x_1,\ldots,x_n)\}=Z(\{T_1-x_1,\ldots,T_n-x_n\}).$
- 4. Замкнутые подмножества в \mathbb{A}^1 это \mathbb{A} , \emptyset и любое конечное подмножество.
- 5. Если n=2, то Z(f) называется плоской кривой.

Лемма 19.

- 1. Ecau $S \subseteq S'$, mo $Z(S') \subseteq Z(S')$.
- 2. Пусть I u dean, порождённый многочленами из S. Тогда Z(I) = Z(S).
- 3. Для всякого S есть конечное S', что Z(S) = Z(S').
- 4. Пусть есть семейство $\{S_i\}_{i\in I}$. Тогда

$$Z\left(\bigcup_{i\in I}S_i\right) = \bigcap_{i\in I}Z(S_i).$$

5. Пусть дано семейство идеалов $\{I_j\}_{j\in J}$. Тогда

$$Z\left(\sum_{j\in J}I_j\right) = \bigcap_{j\in J}Z(I_j).$$

6. Пусть дано семейство $\{S_i\}_{i=1}^n$. $S' := S_1 S_2 \dots S_n = \{f_1 \dots f_n \mid f_1 \in S_1 \wedge \dots \wedge f_n \in S_n\}$. Тогда

$$Z(S') = \bigcup_{i=1}^{n} Z(S_i).$$

7. Пусть дано семейство идеалов $\{I_j\}_{j=1}^n$. Тогда

$$Z\left(\bigcap_{j=1}^{n} I_j\right) = \bigcup_{j=1}^{n} Z(I_j).$$

Доказательство.

- 1. Действительно, для всякой точки $x \in Z(S')$ верно, что для всякого $f \in S'$ f(x) = 0, а значит то же верно для всякого $f \in S$ (так как $S \subseteq S'$), т.е. $x \in Z(S)$.
- 2. Поскольку $S \subseteq I$, то $Z(I) \subseteq Z(S)$. При этом для всякого $x \in Z(S)$ верно, что для всякого $f \in S$ f(x) = 0, а значит то же верно для всех $f \in I$ (так как I идеал, порождённый S), т.е. $x \in Z(I)$. Т.е. $Z(S) \subseteq Z(I)$. Следовательно, Z(S) = Z(I).
- 3. Если известно, что S и S' порождают одинаковые идеалы, то Z(S) = Z(S'). Но всякий идеал в $k[T_1, \ldots, T_n]$ конечнопорождён, а значит у идеала, порождённого S, есть конечное порождающее множество S' искомое S'.

- 4. Заметим, что $x \in Z(\bigcup_{i \in I} S_i)$ тогда и только тогда, когда на x зануляются все многочлены из $\bigcup_{i \in I} S_i$, что равносильно тому, что на x зануляются все многочлены из каждого S_i , что равносильно тому, что x лежит в каждом $Z(S_i)$, что равносильно тому, что $x \in \bigcap_{i \in I} Z(S_i)$. Отсюда следует требуемое.
- 5. По прошлому пункту.

$$Z\left(\bigcup_{j\in J}I_j\right)=\bigcap_{j\in J}Z(I_j).$$

Но также несложно видеть, что идеал, порождённый $\bigcup_{j\in J} I_j$, есть $\sum_{j\in J} I_j$. Отсюда сиюминутно следует искомое (по ранее доказанному пункту).

- 6. Покажем утверждение для n=2. Заметим, что если $x\in Z(S_1)$, то на x зануляются все многочлены из S_1 , а значит и из $S_1\cdot S_2$, т.е. $x\in Z(S_1S_2)$. Следовательно $Z(S_1)\subseteq Z(S_1S_2)$. Из аналогичного утверждения получаем, что $Z(S_1)\cup Z(S_2)\subseteq Z(S_1S_2)$. При этом если $x\in Z(S_1S_2)\setminus Z(S_1)$, то есть многочлен $f\in S_1$, что $f(x)\neq 0$. Но для всякого $g\in S_2$ верно $fg\in S_1S_2$, а значит f(x)g(x)=0, а тогда g(x)=0, т.е. $x\in Z(S_2)$. Итого $Z(S_1S_2)=Z(S_1)\cup Z(S_2)$. Утверждение для всякого n получается по индукции с помощью данного.
- 7. Покажем для n=2; общий случай получается по индукции. Пусть даны идеалы I и J. Имеем по прошлому пункту

$$Z(I \cdot J) = Z(I) \cup Z(J).$$

При этом $I\cdot J\subseteq I\cap J$, а $I\cap J\subseteq I$, $I\cap J\subseteq J$. Следовательно $Z(I\cdot J)\supseteq Z(I\cap J)$, $Z(I\cap J)\supseteq Z(I)$, $Z(I\cap J)\supseteq Z(J)$. Итого

$$Z(I \cdot J) \supseteq Z(I \cap J) \supseteq Z(I) \cup Z(J),$$

откуда

$$Z(I \cdot J) = Z(I \cap J) = Z(I) \cup Z(J).$$

Следствие 19.1. Мораль такова.

- 1. Замкнутые идеалы образуют топологию, где они являются замкнутыми. Т.е. их дополнения образуют топологию (являясь открытыми).
- 2. Каждое замкнутое подмножество имеет вид Z(I), где I-uдеал.
- 3. Сумма идеалов соответствует пересечению замкнутых множеств (и наоборот). Т.е. для всякого семейства идеалов $\{I_i\}_{i\in J}$ верно, что

$$\bigcap_{j \in J} Z(I_j) = Z\left(\sum_{j \in J} I_j\right).$$

4. Конечные пересечения идеалов соответствуют конечным объединениям замкнутых множеств. Т.е. для всякого семейства идеалов $\{I_i\}_{i=1}^n$ верно, что

$$\bigcup_{j=1}^{n} Z(I_j) = Z\left(\bigcap_{j=1}^{n} I_j\right).$$

Определение 9. Пусть имеется множество точек $X \subseteq A_k^n$. Определим множество

$$I(X) := \{ f \in A \mid \forall x \in X \ f(x) = 0 \}.$$

Лемма 20.

- 1. $I(X) u \partial ean$.
- 2. Ecau $X \subseteq Y$, mo $I(X) \supseteq I(Y)$.
- 3. Ecau $X \subseteq Y$, mo $ZI(X) \subseteq ZI(Y)$.
- 4. $ZI(X) \supseteq X$.
- 5. $IZ(S) \supseteq S$.

Доказательство.

- 1. Если $f,g\in I(X)$, то для всякой точки $x\in X$ верно f(x)=g(x)=0, а тогда (f+g)(x)=0, т.е. $f+g\in I(X)$. Если же $f\in I(X)$, $g\in A$, то для всякой точки $x\in X$ верно f(x)=0, а значит (fg)(x)=0, т.е. $fg\in I(X)$.
- 2. Если $f \in I(Y)$, то f(Y) = 0, значит f(X) = 0, тогда $f \in I(X)$.
- 3. $X \subseteq Y \Rightarrow I(X) \supseteq I(Y) \Rightarrow ZI(X) \subseteq ZI(Y)$.
- 4. Поскольку I(X) множество всех многочленов, зануляющихся на X, то всё I(X) зануляется на X, т.е. $ZI(X)\supseteq X$.
- 5. Поскольку Z(S) множество всех точек, на которых зануляется S, то S на нём зануляется, а тогда $IZ(S)\supseteq S$.

П

Определение 10. Пусть I — некоторый идеал. Padukan из иdenana I — $\sqrt{I} := \{h \in A \mid \exists N \colon h^N \in I\}$.

Идеал I называется paduкальным тогда и только тогда, когда для всякого $g \in A$, что есть $m \geqslant 1$, что $g^m \in I$ верно, что $g \in I$.

Лемма 21.

- 1. $\sqrt{I} u\partial ean$.
- 2. $Z(\sqrt{I}) = Z(I)$.
- 3. Идеал I радикален тогда и только тогда, когда $\sqrt{I}\subseteq I$.
- 4. \sqrt{I} радикален.
- 5. I(X) радикален.

Доказательство.

1. Пусть $h \in \sqrt{I}$. Тогда есть N, что $h^N \in I$. Значит для всякого $f \in A$

$$(hf)^N = h^n f^n \in IA \subset I.$$

T.e. $hf \in \sqrt{I}$. Значит $hA \subseteq \sqrt{I}$.

Пусть $h_1,h_2\in \sqrt{I}$. Тогда есть N_1 и $N_2,$ что $h_1^{N_1},h_2^{N_2}\in I$. Тогда

$$(h_1 + h_2)^{N_1 + N_2} = \sum_{k=0}^{N_1 + N_2} h_1^k h_2^{N_1 + N_2 - k} \binom{N_1 + N_2}{N_1}.$$

При этом при $k \leqslant N_1$

$$h_2^{N_2} \in I, \qquad h_1^k h_2^{N_1-k} \binom{N_1+N_2}{N_1} \in A, \qquad \Longrightarrow \qquad h_1^k h_2^{N_1+N_2-k} \binom{N_1+N_2}{N_1} \in I;$$

аналогично для $k \geqslant N_1$.

- 2. Поскольку $I \subseteq \sqrt{I}$, то $Z(\sqrt{I}) \subseteq Z(I)$. При этом для всякого $x \in Z(I)$ верно, что для всякого $f \in S$ f(x) = 0, а значит для всякого $f \in \sqrt{I}$ есть N, что $f^N(x) = 0$, а тогда f(x) = 0, т.е. $x \in Z(\sqrt{I})$. Т.е. $Z(I) \subseteq Z(\sqrt{I})$. Следовательно, $Z(\sqrt{I}) = Z(I)$.
- 3. Определение по-другому написанное.
- 4. Несложно видеть, что $\sqrt{\sqrt{I}} = \sqrt{I}$ по определению радикала. Значит $\sqrt{\sqrt{I}} \subseteq \sqrt{I}$, т.е. \sqrt{I} радикален.
- 5. I(X) максимальный идеал, что $X\subseteq Z(I(X))$. При этом $Z(\sqrt{I(X)})=Z(I(X))$, значит $\sqrt{I}\subseteq I$. Таким образом I максимален.

Теорема 22 (Гильберта о нулях, Nullstellensatz). $IZ(S) = \sqrt{I_S}$.

Теорема 23. $ZI(X) = \overline{X}$ (где \overline{X} — замыкание в смысле рассмотренной топологии).