THE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MATH4402 Analysis II

Tutorial 1 (Feb 14)

Chapter 1

- 1. Prove that the union of finitely many closed sets is closed. What about arbitrary unions?
- 2. Let $A \subseteq \mathbb{R}^n$. A subset $K \subseteq A$ is said to be *closed in* A if there exists a closed set $C \subseteq \mathbb{R}^n$ such that $K = C \cap A$.

Suppose that $A \subseteq \mathbb{R}^n$ is compact. Prove that if $K \subseteq A$ is closed in A, then K is compact.

- 3. Let $T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ be a linear transformation.
 - (a) Prove that the set $\{||T(x)|| : ||x|| \le 1\}$ is a bounded subset of \mathbb{R} (here it is understood that the same symbol $|| \cdot ||$ is being used for the standard norms in \mathbb{R}^n and \mathbb{R}^m).
 - (b) Define $||T|| = \sup \{||T(x)|| : ||x|| \le 1\}$. Prove that $||\cdot||$ is a norm on the vector space of linear transformations from \mathbb{R}^n to \mathbb{R}^m (you may use without proof the properties of supremum).
 - (c) Prove that $||T(x)|| \le ||T|| ||x||$ for any $x \in \mathbb{R}^n$ (here it is understood that the same symbol $||\cdot||$ is being used for the norm of linear transformations introduced in (b), and the standard norms in \mathbb{R}^n and \mathbb{R}^m). Hence prove that T is continuous on \mathbb{R}^n .

In-Class Questions

4. Let (X,d) be a metric space. A subset A of X is said to be *totally bounded* if for any $\epsilon > 0$, there exist finitely many points x_1, x_2, \ldots, x_k in A such that

$$A \subset \bigcup_{i=1}^k B(x_i, \epsilon).$$

- (a) Prove that if A is compact, then A is totally bounded.
- (b) Prove that if \overline{A} , the closure of A, is compact, then A is totally bounded.
- (c) Let X be the Euclidean space \mathbb{R}^n with the standard metric d. Prove that any bounded subset of (\mathbb{R}^n, d) is totally bounded.
- (d) Give an example of a metric space (X,d) and a bounded subset of it which is not totally bounded.

Chapter 2

5. Let $M\in\mathbb{R}^{n\times n}$ be a symmetric matrix and let $f:\mathbb{R}^n\longrightarrow\mathbb{R}$ be defined by

$$f(x) = \langle x, Mx \rangle = x^T M x.$$

- (a) Find a candidate for the derivative Df(x) by considering the difference f(x+h)-f(x) for any $x,h\in\mathbb{R}^n$.
- (b) Show by definition that the candidate in (a) is indeed the derivative Df(x).
- 6. Let $f: \mathbb{R}^{n \times n} \longrightarrow \mathbb{R}^{n \times n}$ be defined by $f(A) = A^T A$. Here we interpret $\mathbb{R}^{n \times n}$ as the $n \times n$ matrix space and all multiplications are matrix multiplications.
 - (a) Find a candidate for the derivative Df(A) by considering the difference f(A+H)-f(A) for any $A,H\in\mathbb{R}^{n\times n}$.
 - (b) Show by definition that the candidate in (a) is indeed the derivative Df(A).