Heterogeneous Innovation and Intertemporal Productivity Choice

Julio B. Roll

February 5, 2018

Since the rebirth of endogenous growth in mid-2000s, literature became richer:

- Classics: Romer (1990), Grossman and Helpman (1991), Aghion and Howitt (1992);
- Micro-data renewal: Klette and Kortum (2004), Lentz and Mortensen (2008);
- Current state of the art: Acemoglu et al. (2013), Akcigit and Kerr (2016).
- \Rightarrow We now account for creative destruction/turnover, R&D spillover, imitation, incumbents' innovation, firm heterogeneity...but...

TFP Distribution Test Results (Non-parametric Wilcoxon Test)

Median	p-value
3.205	2.241e-10
3.149	4.129e-11
3.485	1.366e-11
3.145	1.116e-06
3.126	1.337e-04
	3.205 3.149 3.485 3.145

Questions:

- What's the impact of intertemporal TFP choice on aggregate TFP?
- What are the implications to the innovation strategy of firms?
- How long does it take to "get TFP back"?

Why is it interesting?

- Having Bluetooth in your car ≠ Tesla, or innovation heterogeneity sparks different firm behavior;
- Less TFP now for more TFP latter could impact aggregate measurement;
- Finance has a role in "footing the bill" and reallocation;
- Normative: how to spur abrupt innovation?

Starting point: Klette and Kortum (2004) + Aghion and Howitt (1992) + Grossman and Helpman (1991) (+ Akcigit and Kerr (2016)):

- Sectors: Consumers Intermediate firms Final good (used in R&D, price normalized to 1);
- Consumers have Cobb-Douglas preferences ⇒ They spend the same share in each sector;
- Firms have a portfolio of n_p products;
- Labor (inelastic): can work in production or R&D (scientists), wage
 w;
- Innovation: internal (incremental or abrupt), external, and entrants (the last two only abrupt).

- Incremental R&D cost: $\psi_{inc}(\lambda_{inc}, A_t) = \xi_j A_t \lambda_{inc}^{\eta}$
- Catching-up: laggards pay $\psi_{inc}(\lambda_{inc}, A_t)$ and get an arrival $\lambda_{inc} + h$;
- Abrupt R&D cost (for $n_p > 0$): $\psi_{abr}(\lambda_{ext,abr}, \bar{A}_t) = \xi_j \bar{A}_t \lambda_{ext,abr}^{\eta}$, \bar{A}_t sector average;
- ullet Cournot competition: profits π_t scale with $\frac{A_{j,i,m}}{\sum_j A_{j,i,m}}$ within an industry.

Outside entrepreneur:

Value function:

$$rV_0 - \dot{V}_0 = \max_{\lambda_{\text{ext,abr}}} \left[\lambda_{\text{ext,abr}} \left[E_j \left[V(A_{t,m+1}) \right] - V_0 \right] - v \bar{A}_t \lambda_{\text{ext,abr}} \right]$$

- Cost: $C_E(\lambda_{ext,abr}, \bar{A}_t) = v\bar{A}_t\lambda_{ext,abr}$, v a constant;
- Free entry condition: $E_i[V(A_{t,m+1})] = v\bar{A}_t$
- \Rightarrow Each firm faces an aggregate endogenous creative destruction (CE) of rate τ_{CE} and internal competition rate τ_{I} .

Incumbents:

• Value function: $rV(A_t) - \dot{V}(A_t) =$

$$\max_{\substack{\lambda_{inc}, \, \lambda_{int,abr} \\ \lambda_{ext,abr}}} \begin{bmatrix} \pi_t n_{j,p} - \{\xi_j \lambda_{inc}^{\eta} A_{t,m}; \xi_j \bar{A}_t \lambda_{int,abr}^{\eta} \} \\ + \{\lambda_{inc} \left[V(A_{t,m}^{k-} \cup A_{t+\Delta t,m}^{k}) - V(A_{t,m}) \right]; \\ \lambda_{int,abr} \left[E_j \left[V(A_{t,m}^{k-} \cup A_{t+\Delta t,m+1}^{k}) - V(A_{t,m}) \right] \right] \\ - \tau_I \left[V(A_{t,m} \setminus \bar{A}_{t+\Delta t,m}^{k}) - V(A_{t,m}) \right] \\ - \tau_{CE} \left[V(A_{t,m} \setminus \bar{A}_{t+\Delta t,m+1}^{k}) - V(A_{t,m}) \right] \\ + \lambda_{ext,abr} \left[E_j \left[V(A_{t,m}^{k} \cup A_{t+\Delta t,m+1}^{k'}) - V(A_{t,m}) \right] \\ - \xi_j \bar{A}_t \lambda_{int,abr}^{\eta} - \Phi \bar{A}_t \end{bmatrix} \right]$$

- 1st: instant returns costs;
- 2nd, 3rd: return from int. R&D;
- 4th: internal competition;

- 5th: external CE;
- 6th: return from abr. R&D;
- 7th: Abr. R&D and fixed costs;

Empirical Work

How to discipline $\{\gamma_{inc,abr}, \gamma_{ext,abr}, \lambda_{inc}, \lambda_{int,abr}, \lambda_{ext,abr}, \xi_j, \eta, h, v, \Phi\}$ (for now, focusing on Partial Equilibrium)?

- Compustat's firm-level data (e.g. financials, firm turnover, R&D expenditure);
- BLS industry series (to estimate labor costs);
- USPTO patent data (e.g. # patents, # patent citations, if it's self-citation or external...).

Conclusion

- Model (simple, KK case): can be solved analytically for predictions;
- Data: discipline the parameters (2x SMM) and test predictions;
- Answer some intriguing questions!
- Possibilities:
 - Solve the General Equilibrium (with elastic labor);
 - Add finance (e.g. HH finance new entrepreneurs);
 - Patent blocking competition.

References

- [1] AGHION, P., AND HOWITT, P. A Model of Growth through Creative Destruction. *Econometrica* 60, 2 (1992), 323–351.
- [2] AKCIGIT, U., AND KERR, W. R. Growth through heterogeneous innovations. forthcoming, 2016.
- [3] GROSSMAN, G. M., AND HELPMAN, E. Quality ladders in the theory of growth. *Review of Economic Studies 58*, 1 (1991), 43–61.
- [4] KLETTE, T. J., AND KORTUM, S. Innovating firms and aggregate innovation. *Journal of Political Economy 112*, 5 (2004), 986–1018.
- [5] PHILIPPE AGHION, C. H. P. H., AND VICKERS, J. Competition, imitation and growth with step-by-step innovation. *Review of Economic Studies 68*, 3 (2001), 467–492.
- [6] ROMER, P. Endogenous technological change. *Journal of Political Economy 98*, 5 (1990), S71–102.