Determinacy in and out second order arithmetic An introduction to the proof theoretic strength of the determinacy scale

Thibaut Kouptchinsky

Proof Theory Conference
UCLouvain

December 20, 2022

Program

- 1 A tool of descriptive set theory
- 2 The theorem of Wolfe as a warm up
- 3 Determinacy of Π_3^0 Differences

What is determinacy?

Consider a set A and a payoff set $X \subseteq A^{\omega}$.

I:
$$a_0$$
 a_2 a_{2n} \cdots $(a_i)_{i<\omega} \stackrel{?}{\in} X$
II: a_1 a_3 a_{2n+1}

Player I wins if yes. Otherwise player II wins.

Axiom of determinacy (AD): "All these games are determined". (False in ${\sf ZF}+{\sf C.}$)

The Borel and projective hierarchy

Theorem (Mycielski-Swierczkowski; Mazur, Banach; Davis)

ZF + AD proves that every set of real numbers is Lebesgue measurable (M1), has the Baire property (M2), and has the perfect set property (M3).

Theorem (Mycielski-Swierczkowski; Mazur, Banach; Davis)

ZF + AD proves that every set of real numbers is Lebesgue measurable (M1), has the Baire property (M2), and has the perfect set property (M3).

■ Study these properties for projective Σ_n^1 sets in ω^{ω} (Blackwell, 1967).

Theorem (Mycielski-Swierczkowski; Mazur, Banach; Davis)

ZF + AD proves that every set of real numbers is Lebesgue measurable (M1), has the Baire property (M2), and has the perfect set property (M3).

- Study these properties for projective Σ_n^1 sets in ω^{ω} (Blackwell, 1967).
- Are Σ_2^1 , Σ_3^1 , etc sets Lebesgue measurable?

Theorem (Mycielski-Swierczkowski; Mazur, Banach; Davis)

ZF + AD proves that every set of real numbers is Lebesgue measurable (M1), has the Baire property (M2), and has the perfect set property (M3).

- Study these properties for projective Σ_n^1 sets in ω^{ω} (Blackwell, 1967).
- Are Σ_2^1 , Σ_3^1 , etc sets Lebesgue measurable?
- Applications in measure theory, descriptive set theory, harmonic analysis, ergodic theory, dynamical systems etc.

■ First best result (1964): $Det(\Sigma_3^0)$ by Davis.

- First best result (1964): $Det(\Sigma_3^0)$ by Davis.
- The proof can be carried out in $ZC^- + \Sigma_1$ Replacement (Martin).

- First best result (1964): $Det(\Sigma_3^0)$ by Davis.
- The proof can be carried out in $ZC^- + \Sigma_1$ Replacement (Martin).
- Friedman (1968): Borel determinacy requires existence of V_{ω_1} .

- First best result (1964): $Det(\Sigma_3^0)$ by Davis.
- The proof can be carried out in $ZC^- + \Sigma_1$ Replacement (Martin).
- Friedman (1968): Borel determinacy requires existence of V_{ω_1} .

Theorem (Martin, ZFC)

All Borel games are determined.

The theorem of Wolfe

Theorem ($ZC^- + \Sigma_1$ -REPLACEMENT)

All Σ_2^0 games are determined.

Given G(T,X), a strategy S_I is a subtree of T such that

Given G(T,X), a strategy S_I is a subtree of T such that

1 Every even-length node has one unique child,

Given G(T,X), a strategy S_I is a subtree of T such that

- 1 Every even-length node has one unique child,
- f 2 Every child of an odd-length node that lies in T lies also in the strategy,

Given G(T,X), a strategy S_I is a subtree of T such that

- 1 Every even-length node has one unique child,
- f 2 Every child of an odd-length node that lies in T lies also in the strategy,

A strategy S is said to be winning if $[S] \subseteq X$.

Given G(T,X), a strategy S_I is a subtree of T such that

- 1 Every even-length node has one unique child,
- Every child of an odd-length node that lies in T lies also in the strategy,

A strategy S is said to be winning if $[S] \subseteq X$.

In a quasistrategy the player's response has not to be unique.

Example: A binary game

Strategy and quasistrategy

A technical lemma

Lemma

Let $B \subseteq A \subseteq [T]$ with B being closed. If player I has no winning strategy in the game G(T,A), then there is a strategy τ for II such that every $x \in [\tau]$ has a finite initial segment p verifying

 $[T_p]\cap B=\emptyset$ and I has still no winning strategy in $G(T_p,A)$

$$A = \bigcup_{i < \omega} A_i, \qquad A_i \text{ closed in } [T];$$

$$A = \bigcup_{i < \omega} A_i, \qquad A_i \text{ closed in } [T];$$

■ Suppose G(T, A) is not a win for I;

$$A = \bigcup_{i < \omega} A_i, \qquad A_i \text{ closed in } [T];$$

- Suppose G(T, A) is not a win for I;
- Apply the lemma for $B = A_0$ to get $\tau_0 \subset T$ and p_0 ;

$$A = \bigcup_{i < \omega} A_i, \qquad A_i \text{ closed in } [T];$$

- Suppose G(T, A) is not a win for I;
- Apply the lemma for $B = A_0$ to get $\tau_0 \subset T$ and p_0 ;
- Apply the lemma for $B = A_{n+1}$ to get $\tau_{n+1} \subset T_{p_n}$ and p_{n+1} ;

$$A = \bigcup_{i < \omega} A_i, \qquad A_i \text{ closed in } [T];$$

- Suppose G(T, A) is not a win for I;
- Apply the lemma for $B = A_0$ to get $\tau_0 \subset T$ and p_0 ;
- \blacksquare Apply the lemma for $B=A_{n+1}$ to get $\tau_{n+1}\subset T_{p_n}$ and p_{n+1} ;
- **.** . . .

$$A = \bigcup_{i < \omega} A_i, \qquad A_i \text{ closed in } [T];$$

- Suppose G(T, A) is not a win for I;
- Apply the lemma for $B = A_0$ to get $\tau_0 \subset T$ and p_0 ;
- \blacksquare Apply the lemma for $B=A_{n+1}$ to get $\tau_{n+1}\subset T_{p_n}$ and p_{n+1} ;
- **.** . . .
- \blacksquare Our τ avoid all the A_i and hence is winning for II.

$$\forall n \in \omega \text{, } \Pi^1_{n+2}\text{-}\mathrm{CA}_0 \vdash \mathrm{Det}(n\text{-}\Pi^0_3)$$

$$\forall n \in \omega \text{, } \Pi^1_{n+2}\text{-}\mathsf{CA}_0 \vdash \mathsf{Det}(n\text{-}\Pi^0_3)$$

However, Π^1_{n+2} -CA $_0$ is not the right set of axioms for $\mathrm{Det}(n\text{-}\Pi^0_3).$

$$\forall n \in \omega \text{, } \Pi^1_{n+2}\text{-}\mathrm{CA}_0 \vdash \mathrm{Det}(n\text{-}\Pi^0_3)$$

However, Π^1_{n+2} -CA $_0$ is not the right set of axioms for $\mathrm{Det}(n\text{-}\Pi^0_3).$

Theorem (MedSalem and Tanaka)

Borel determinacy does not imply Δ_2^1 -CA₀.

$$\forall n \in \omega, \ \Pi^1_{n+2}\text{-CA}_0 \vdash \mathsf{Det}(n\text{-}\Pi^0_3)$$

However, Π^1_{n+2} -CA $_0$ is not the right set of axioms for $\mathrm{Det}(n\text{-}\Pi^0_3)$.

Theorem (MedSalem and Tanaka)

Borel determinacy does not imply Δ_2^1 -CA $_0$.

 $\operatorname{Det}(n\text{-}\Pi^0_3)$ is the Π^1_3 sentence

$$\forall X \; \exists Y \; \forall Z \; (X \in n\text{-}\Pi_3^0) \to \begin{cases} Y \in S_I \land Z \in S_{II} \to Y \bigoplus Z \in X; \\ Y \in S_{II} \land Z \in S_I \to Z \bigoplus Y \in X. \end{cases}$$

Consider
$$\emptyset = A_m \subseteq \cdots \subseteq A_1 \subseteq A_0$$
, Π_0^3 sets.

$$A_i = \bigcap_{k < \omega} A_{i,k}$$
 and $A_{i,k} = \bigcup_{j < \omega} A_{i,k,j}$.

 $\text{Assume } 0 \leq k < \omega.$

Assume $0 \le k < \omega$.

1
$$\Sigma_k^1$$
-DC₀:

$$\forall n \ \forall X \ \exists Y \ \eta(n, X, Y) \to \exists Z \ \forall n \ \eta(n, (Z)^n, (Z)_n).$$

Assume $0 \le k \le \omega$.

1 Σ_k^1 -DC₀:

$$\forall n \ \forall X \ \exists Y \ \eta(n, X, Y) \to \exists Z \ \forall n \ \eta(n, (Z)^n, (Z)_n).$$

2 Strong Σ_k^1 -DC₀:

$$\exists Z \ \forall n \ \forall Y \ (\eta(n,(Z)^n,Y) \to \eta(n,(Z)^n,(Z)_n)).$$

Assume $0 \le k < \omega$.

 Σ_k^1 -DC₀:

$$\forall n \ \forall X \ \exists Y \ \eta(n, X, Y) \to \exists Z \ \forall n \ \eta(n, (Z)^n, (Z)_n).$$

2 Strong Σ_k^1 -DC₀:

$$\exists Z \ \forall n \ \forall Y \ (\eta(n,(Z)^n,Y) \to \eta(n,(Z)^n,(Z)_n)).$$

Strong Σ^1_{m+2} -DC $_0$ is Π^1_4 conservative over Π^1_{m+2} -CA $_0$.

We define $\Sigma^1_{|s|+2}$ relations $P^s(S)$ by induction on $|s| \leq m$:

We define $\Sigma^1_{|s|+2}$ relations $P^s(S)$ by induction on $|s| \leq m$:

 $\blacksquare \text{ When } |s| = 0, P^{\emptyset}(S) \text{ iff}$

G(A,S) is a win for I if l := m - |s| is even .

We define $\Sigma^1_{|s|+2}$ relations $P^s(S)$ by induction on $|s| \leq m$:

■ When |s| = 0, $P^{\emptyset}(S)$ iff

$$G(A,S)$$
 is a win for I if $l := m - |s|$ is even .

■ For |s| = n + 1 and l is even, $P^s(S)$ iff there is a quasistrategy U for l in S such that

$$[U] \subseteq A \cup A_{l,s(n)}$$
 and $P^{s[n]}(U)$ fails.

We define $\Sigma^1_{|s|+2}$ relations $P^s(S)$ by induction on $|s| \leq m$:

 \blacksquare When |s|=0, $P^{\emptyset}(S)$ iff

$$G(A,S)$$
 is a win for I if $l := m - |s|$ is even .

■ For |s| = n + 1 and l is even, $P^s(S)$ iff there is a quasistrategy U for l in S such that

$$[U] \subseteq A \cup A_{l,s(n)}$$
 and $P^{s[n]}(U)$ fails.

A quasistrategy U witnesses $P^s(S)$ if U is as required in the appropriate clause, the latter being a $\Pi^1_{|s|+1}$ sentence.

A quasistrategy U for I locally witnesses $P^s(S)$ if |s|=n+1 and l is even if: $\exists D\subseteq S\ \forall d\in D$, there is a quasistrategy R^d for II in S_d such that:

A quasistrategy U for I locally witnesses $P^s(S)$ if |s|=n+1 and l is even if: $\exists D\subseteq S\ \forall d\in D$, there is a quasistrategy R^d for II in S_d such that:

 $\forall d \in D \cap U$, $U_d \cap R^d$ witnesses $P^s(R^d)$.

A quasistrategy U for I locally witnesses $P^s(S)$ if |s|=n+1 and l is even if: $\exists D\subseteq S\ \forall d\in D$, there is a quasistrategy R^d for II in S_d such that:

- $1 \forall d \in D \cap U, \ U_d \cap R^d \text{ witnesses } P^s(R^d).$
- $[U] \setminus \bigcup_{d \in D} [R^d] \subseteq A.$

A quasistrategy U for I locally witnesses $P^s(S)$ if |s|=n+1 and l is even if: $\exists D\subseteq S\ \forall d\in D$, there is a quasistrategy R^d for II in S_d such that:

- $\ \ \, \mathbf{1} \ \, \forall d \in D \cap U, \ \ \, U_d \cap R^d \ \, \text{witnesses} \, \, P^s(R^d).$
- $[U] \setminus \bigcup_{d \in D} [R^d] \subseteq A.$
- $\exists \ \forall p \in S \ \exists^{\leq 1} d \in D, \ d \subseteq p \land p \in R^d.$

A quasistrategy U for I locally witnesses $P^s(S)$ if |s|=n+1 and l is even if: $\exists D\subseteq S\ \forall d\in D$, there is a quasistrategy R^d for II in S_d such that:

- $1 \forall d \in D \cap U, \ U_d \cap R^d \text{ witnesses } P^s(R^d).$
- $[U] \setminus \bigcup_{d \in D} [R^d] \subseteq A.$
- $\exists \ \forall p \in S \ \exists^{\leq 1} d \in D, \ d \subseteq p \land p \in R^d.$

We observe that "U locally witnesses $P^s(S)$ " is a $\Sigma^1_{|s|+2}$ sentence.

Lemma (1)

If U locally witnesses $P^s(S)$, then U witnesses $P^s(S)$.

■ First clause " $[U] \subseteq A \cup A_{l,s(n)}$ " follows from 1 and 2.

- First clause " $[U] \subseteq A \cup A_{l,s(n)}$ " follows from 1 and 2.
- $|s| = n + 1 \le m, n = 0$:

- First clause " $[U] \subseteq A \cup A_{l,s(n)}$ " follows from 1 and 2.
- $|s| = n + 1 \le m, n = 0$:
 - Suppose $P^{\emptyset}(U)$ holds, there is τ winning for II.

- First clause " $[U] \subseteq A \cup A_{l,s(n)}$ " follows from 1 and 2.
- $|s| = n + 1 \le m, n = 0$:
 - Suppose $P^{\emptyset}(U)$ holds, there is τ winning for II.
 - $2 \text{ and } 3 \text{ implies } \exists d \in D \cap \tau \ \forall x \supset d \ x \in [\tau] \to x \in [R^d].$

- First clause " $[U] \subseteq A \cup A_{l,s(n)}$ " follows from 1 and 2.
- $|s| = n + 1 \le m, n = 0$:
 - Suppose $P^{\emptyset}(U)$ holds, there is τ winning for II.
 - $\ \ \, \textbf{2} \,\, \text{and} \,\, 3 \,\, \text{implies} \,\, \exists d \in D \cap \tau \,\, \forall x \supset d \,\, x \in [\tau] \to x \in [R^d].$
 - So τ_d is winning for II in $G(U_d \cap R^d, A)$, contradiction.

- First clause " $[U] \subseteq A \cup A_{l,s(n)}$ " follows from 1 and 2.
- $|s| = n + 1 \le m, n = 0$:
 - Suppose $P^{\emptyset}(U)$ holds, there is τ winning for II.
 - $\ \ \, \textbf{2} \,\, \text{and} \,\, 3 \,\, \text{implies} \,\, \exists d \in D \cap \tau \,\, \forall x \supset d \,\, x \in [\tau] \to x \in [R^d].$
 - lacksquare So au_d is winning for II in $G(U_d\cap R^d,A)$, contradiction.
- By induction hypothesis we have to build for n>1, \hat{U} , \hat{D} and $\{\hat{R}^d:d\in\hat{D}\}$ locally witnessing $P^{s[n-1]}(\hat{S})$.

- First clause " $[U] \subseteq A \cup A_{l,s(n)}$ " follows from 1 and 2.
- $|s| = n + 1 \le m, n = 0$:
 - Suppose $P^{\emptyset}(U)$ holds, there is τ winning for II.
 - $\ \ \, \textbf{2} \,\, \text{and} \,\, 3 \,\, \text{implies} \,\, \exists d \in D \cap \tau \,\, \forall x \supset d \,\, x \in [\tau] \to x \in [R^d].$
 - lacksquare So au_d is winning for II in $G(U_d\cap R^d,A)$, contradiction.
- By induction hypothesis we have to build for n > 1, \hat{U} , \hat{D} and $\{\hat{R}^d : d \in \hat{D}\}$ locally witnessing $P^{s[n-1]}(\hat{S})$.
- We want to define \hat{U} such that \hat{U} falls out of the R^d and hence ends up in A (we suppose m-n odd).

- First clause " $[U] \subseteq A \cup A_{l,s(n)}$ " follows from 1 and 2.
- $|s| = n + 1 \le m, n = 0$:
 - \blacksquare Suppose $P^{\emptyset}(U)$ holds, there is τ winning for II.
 - $\ \ \, \textbf{2} \,\, \text{and} \,\, 3 \,\, \text{implies} \,\, \exists d \in D \cap \tau \,\, \forall x \supset d \,\, x \in [\tau] \to x \in [R^d].$
 - \blacksquare So τ_d is winning for II in $G(U_d\cap R^d,A)$, contradiction.
- By induction hypothesis we have to build for n>1, \hat{U} , \hat{D} and $\{\hat{R}^d: d\in \hat{D}\}$ locally witnessing $P^{s[n-1]}(\hat{S})$.
- We want to define \hat{U} such that \hat{U} falls out of the R^d and hence ends up in A (we suppose m-n odd).
- We use $\Sigma^1_{|s|}$ -AC $_0$ to pick up witnesses for $P^{s[n-1]}(\hat{R}^d)$ which will be our $\hat{U}_d \cap \hat{R}^d$.

We say that $P^s(S)$ fails everywhere if $P^s(S_p)$ fails for every $p \in S$. This is a $\Pi^1_{|s|+2}$ sentence.

We say that $P^s(S)$ fails everywhere if $P^s(S_p)$ fails for every $p \in S$. This is a $\Pi^1_{|s|+2}$ sentence.

Lemma (2)

If $P^s(S)$ fails, then there is a quasistrategy W for I if l is odd in S such that $P^s(W)$ fails everywhere.

■ |s| = 0, then II does not have winning strategy and we take I's non-loosing quasistrategy as W (Using Π_2^1 -CA₀).

- |s| = 0, then II does not have winning strategy and we take I's non-loosing quasistrategy as W (Using Π_2^1 -CA₀).
- lacksquare |s|=n+1 (and l even), we use $\Pi^1_{|s|+2}$ -CA $_0$ to set

$$d \in D \leftrightarrow d \in S \land P^s(S_d) \land \neg P^s(S_{d[|d|-1]}).$$
 (d is minimal)

- |s| = 0, then II does not have winning strategy and we take I's non-loosing quasistrategy as W (Using Π_2^1 -CA₀).
- $\blacksquare \ |s| = n+1$ (and l even), we use $\Pi^1_{|s|+2}$ -CA $_0$ to set

$$d \in D \leftrightarrow d \in S \land P^s(S_d) \land \neg P^s(S_{d[|d|-1]}).$$
 (d is minimal)

■ We will use $\Sigma_{|s|}^1$ -AC₀ to chose a witness U^d .

- |s| = 0, then II does not have winning strategy and we take I's non-loosing quasistrategy as W (Using Π_2^1 -CA₀).
- $\blacksquare \ |s| = n+1$ (and l even), we use $\Pi^1_{|s|+2}\text{-}\mathsf{CA}_0$ to set

$$d \in D \leftrightarrow d \in S \land P^s(S_d) \land \neg P^s(S_{d[|d|-1]}).$$
 (d is minimal)

- We will use $\Sigma_{|s|}^1$ -AC₀ to chose a witness U^d .
- \blacksquare We now consider the game G(S,B) where

$$B = \{ x \in [S] \mid \exists d \in D \ d \subseteq x \}.$$

- |s| = 0, then II does not have winning strategy and we take I's non-loosing quasistrategy as W (Using Π_2^1 -CA₀).
- $\blacksquare \ |s| = n+1$ (and l even), we use $\Pi^1_{|s|+2}\text{-}\mathsf{CA}_0$ to set

$$d \in D \leftrightarrow d \in S \land P^s(S_d) \land \neg P^s(S_{d[|d|-1]}).$$
 (d is minimal)

- We will use $\Sigma_{|s|}^1$ -AC₀ to chose a witness U^d .
- \blacksquare We now consider the game G(S,B) where

$$B = \{ x \in [S] \mid \exists d \in D \ d \subseteq x \}.$$

lacksquare Using preceding lemma, G(S,B) is not a win for I.

- |s| = 0, then II does not have winning strategy and we take I's non-loosing quasistrategy as W (Using Π_2^1 -CA₀).
- $\blacksquare \ |s| = n+1$ (and l even), we use $\Pi^1_{|s|+2}$ -CA $_0$ to set

$$d \in D \leftrightarrow d \in S \land P^s(S_d) \land \neg P^s(S_{d[|d|-1]}).$$
 (d is minimal)

- We will use $\Sigma^1_{|s|}$ -AC₀ to chose a witness U^d .
- lacksquare We now consider the game G(S,B) where

$$B = \{ x \in [S] \mid \exists d \in D \ d \subseteq x \}.$$

- lacksquare Using preceding lemma, G(S,B) is not a win for I.
- Again we define W as non-losing II's quasistrategy (and use preceding lemma to show it is as required).

For |s|=n+1, W strongly witnesses $P^s(S)$ if, for all $p\in W$, W_p witnesses $P^s(S_p)$, that is, W witnesses $P^s(S)$ and $P^{s[n]}(W)$ fails everywhere. This is a $\Pi^1_{|s+1|}$ sentence.

Lemma (3)

If $P^s(S)$, then there is a W that strongly witnesses it.

Take U such that

$$[U] \subseteq A \cup A_{l,s(n)}$$
 and $P^{s[n]}(U)$ fails.

Take U such that

$$[U] \subseteq A \cup A_{l,s(n)}$$
 and $P^{s[n]}(U)$ fails.

Apply preceding lemma to get a W such $P^{s[n]}(W)$ fails everywhere.

Lemma (4)

If |s|=n+1, then at least one of $P^s(S)$ and $P^{s[n]}(S)$ holds.

 \blacksquare Reverse induction on n < m, m-n odd, suppose $P^s(S)$ fails.

- \blacksquare Reverse induction on n < m, m n odd, suppose $P^s(S)$ fails.
- Using strong Σ^1_{m+2} -DC₀, we define by induction a quasistrategy U for II in S along with $D\subseteq S$ and R^d for $d\in D$ showing that

$$U$$
 (locally) witnesses $P^{s[n]}(S)$ if $(n > 0)$ $n = 0$.

- \blacksquare Reverse induction on n < m, m n odd, suppose $P^s(S)$ fails.
- Using strong Σ^1_{m+2} -DC₀, we define by induction a quasistrategy U for II in S along with $D\subseteq S$ and R^d for $d\in D$ showing that

$$U$$
 (locally) witnesses $P^{s[n]}(S)$ if $(n > 0)$ $n = 0$.

■ The method to ensure $x \in [U] \setminus_{d \in D} R^d$ implies $x \in \bar{A}$ is as follow:

- \blacksquare Reverse induction on n < m, m n odd, suppose $P^s(S)$ fails.
- Using strong Σ^1_{m+2} -DC₀, we define by induction a quasistrategy U for II in S along with $D\subseteq S$ and R^d for $d\in D$ showing that

$$U$$
 (locally) witnesses $P^{s[n]}(S)$ if $(n > 0)$ $n = 0$.

- The method to ensure $x \in [U] \setminus_{d \in D} R^d$ implies $x \in \bar{A}$ is as follow:
 - I We define U such that $x\in \bar{A}\cup A_{m-n-2,j}$, $\forall j<\omega$ such that $x\not\in \bar{A}\cup A_{m-n-2,}$.

- \blacksquare Reverse induction on n < m, m n odd, suppose $P^s(S)$ fails.
- Using strong Σ^1_{m+2} -DC₀, we define by induction a quasistrategy U for II in S along with $D\subseteq S$ and R^d for $d\in D$ showing that

$$U$$
 (locally) witnesses $P^{s[n]}(S)$ if $(n > 0)$ $n = 0$.

- The method to ensure $x \in [U] \setminus_{d \in D} R^d$ implies $x \in \bar{A}$ is as follow:
 - $\mbox{1} \mbox{ We define } U \mbox{ such that } x \in \bar{A} \cup A_{m-n-2,j}, \ \forall j < \omega \mbox{ such that } x \not \in \bar{A} \cup A_{m-n-2,}.$
 - 2 We make sure $x \not\in A_{m-n-1,s(n),j}$, $\forall j < \omega$ such that $x \not\in A_{m-n-1}$.

Proof of lemma 4

- \blacksquare Reverse induction on n < m, m n odd, suppose $P^s(S)$ fails.
- Using strong Σ^1_{m+2} -DC₀, we define by induction a quasistrategy U for II in S along with $D\subseteq S$ and R^d for $d\in D$ showing that

$$U$$
 (locally) witnesses $P^{s[n]}(S)$ if $(n > 0)$ $n = 0$.

- The method to ensure $x \in [U] \setminus_{d \in D} R^d$ implies $x \in \bar{A}$ is as follow:
 - **1** We define U such that $x \in \bar{A} \cup A_{m-n-2,j}$, $\forall j < \omega$ such that $x \notin \bar{A} \cup A_{m-n-2,}$.
 - 2 We make sure $x \notin A_{m-n-1,s(n),j}$, $\forall j < \omega$ such that $x \notin A_{m-n-1}$.
 - $3 \text{ We then use } \bar{A} \cup A_{m-n-2} \setminus A_{m-n-1} \subseteq \bar{A}.$

■ Suppose m is odd and G(A,T) is not a win for II; $P^{\emptyset}(T)$ fails.

- Suppose m is odd and G(A,T) is not a win for II; $P^{\emptyset}(T)$ fails.
- Take W^{\emptyset} such that $P^{\emptyset}(W^{\emptyset})$ fails everywhere.

- Suppose m is odd and G(A,T) is not a win for II; $P^{\emptyset}(T)$ fails.
- Take W^{\emptyset} such that $P^{\emptyset}(W^{\emptyset})$ fails everywhere.
- We define a quasistrategy U for I in W^\emptyset by induction on |p| for $p \in U$. In the same time, we use strong Σ^1_3 -DC $_0$ to define for |p| = j+1 a quasistrategy W^p for I such that

 W^p strongly witnesses $P^{\langle j \rangle}(W^{p[j]}_p)$.

■ Suppose then $p \in U$, |p| = j + 1 and W^p has been defined. The child q of p in U are those of p in W^p .

- Suppose then $p \in U$, |p| = j + 1 and W^p has been defined. The child q of p in U are those of p in W^p .
- $\blacksquare P^{\emptyset}(W^p)$ fails everywhere and so,

 $P^{\emptyset}(W_q^p)$ fails for each child q of p in U.

- Suppose then $p \in U$, |p| = j + 1 and W^p has been defined. The child q of p in U are those of p in W^p .
- $\blacksquare P^{\emptyset}(W^p)$ fails everywhere and so,

$$P^{\emptyset}(W_q^p)$$
 fails for each child q of p in U .

 \blacksquare By preceding lemma $P^{\langle j \rangle}(W_q^p)$ and we choose a W^q that strongly witnesses it.

 \blacksquare For all j,

 $\forall j \ x \in [W^{x[j+1]}], \text{ which witnesses } P^{\langle j \rangle}.$

 \blacksquare For all j,

$$\forall j \ x \in [W^{x[j+1]}], \text{ which witnesses } P^{\langle j \rangle}.$$

■ Then $\forall j \ x \in A \cup A_{m-1,j}$,

 \blacksquare For all j,

$$\forall j \ x \in [W^{x[j+1]}], \text{ which witnesses } P^{\langle j \rangle}.$$

- Then $\forall j \ x \in A \cup A_{m-1,j}$,
- \blacksquare But $\bigcap_{j<\omega}A_{m-1,j}=A_{m-1}\subseteq A$.

Thank you for your attention!