

Update to the NEMS Wind Model

Chris Namovicz
NEMS/AEO 2003 Conference
Washington, DC
March 18, 2003

cnamovicz@eia.doe.gov 202-586-7120

AEO2003 Wind Projection

Major Model Changes for Wind

- Cost/impacts of intermittency
 - Fixed limit on intermittent's share of regional generation in AEO2002
 - Flexible, cost-based approach in AEO2003
- Learning for cost and performance
 - Large capital cost reductions, fixed performance in AEO2002
 - Small capital cost reductions, performance based on experience in AEO2003

Intermittency: Background

- Increased importance of wind in "high renewables" scenarios not reflected with fixed penetration limit
- Penetration limit may not reflect gradual increase in "real-world" costs with penetration
 - Costs are assumed "all or nothing"
 - Simple representation of several complex interactions

AEO2002 Model Structures

- Penetration limit
 - 10 to 15% of Regional Generation
 - Applies to Solar and Wind, but only Wind is really affected
- Capacity Credit
 - 75% of Regional Peak-load Capacity Factor
 - Also applies to all intermittent technologies

Theoretical Basis

- No present-day analogs for large, NERC-like regional systems
- Recent studies examine ancillary services impacts
- Existing market structures vary
 - Some ISO's do not allow "intermittent" resources to compete in capacity market, others assign partial capacity credit
 - FERC does not want "arbitrary" penalties
- Early studies provide some evidence

Theoretical Basis (con't)

Penetration level (WECS capacity as percentage of peak load or system capacity)

Source: Flaim and Hock, 1984

- Early studies (1980's) simulated reliability impacts of wind penetration
 - At low penetrations,
 wind can contribute to
 system reliability
 - At higher penetrations,
 capacity credits
 decline

Figure 4-1. Wind generation ELCC as a function of penetration level

Model Needs

- No "show-stoppers" support limits on intermittent penetration
 - Many technical issues have already been addressed
 - Reliability issues will reveal themselves through increased market costs
- Goal: develop algorithm that reflects bulk of market costs

Selected Approach

- Fixed capacity credit is replaced with variable capacity credit which is a function of intermittent penetration
- Approach allows higher penetration of intermittent capacity, but requires increasing investment in "back-up" capacity
 - Higher penetration levels imply close to 1:1 back-up for each MW of wind
 - Intermittents effectively become "fuel-saver"

How it Looks

Open Issues

- Need additional analysis to develop better parameters
 - Parameters may need to vary by region
- Intermittency limit retained at 20%
 - Does not account for "surplus" production offpeak
 - At >20% of generation, wind can potentially disrupt coal and nuclear operations

Cost Decline: Background

- Although wind *capital cost* experience curve was initially steep, little apparent movement over past 5+ years.
 - Timeframe represents major growth spurt for wind
- Declines in levelized cost mostly attributable to performance improvement

AEO2002 Approach

- Wind classified as "evolutionary" technology in NEMS learning function
 - 95% progress ratio (5% cost decline for each doubling of capacity)
 - 20% minimum cost decline by 2020, growth independent
- Wind capacity factor fixed according to year
 - 42% in Class 6 (best wind resource) for most of forecast period
 - Does not vary, even in high penetration scenarios

Experience Curve Shows Overall Decline, Increases in Last 5-10 Years

Experience curve for wind turbines installed in Germany 1987-2000 Progress ratio 94%

 $r^2 = 0.88$

eid www.eia.doe.gov

Performance Shows Continued Improvement

Capacity Factor Experience Curve for Wind (1981-2000)

Revised AEO2003 Approach

- Learning function parameters for wind reclassified from "evolutionary" (95% progress ratio) to "conventional" (99% progress ratio)
 - Minimum capital cost learning effectively eliminated
- Capacity factors "learn" with experience
 - Maximum set at 45% (AEO2003 achieves 42%)
 - Class 4 & 5 winds based on Class 6 value
 - Improvement is now dynamic and improves more in higher penetration scenarios

www.eia.doe.gov

AEO2003 Achieves Capacity Factor of 42%

Open Issues

- Model could more explicitly account for factors that could improve performance
 - Rotor diameters and tower height
 - Improved resource characterization
 - Better design
- Not enough data or understanding to allow further improvement of approach

END

Developing a Theoretical Basis

- Penetration levels at which effect is beyond any present-day system
 - Denmark has high wind penetration, but is not a "stand-alone" reliability region, such as an EMM region
 - Wind is approx. 15% of Danish generation, but only 1-2% of NORDEL (the Scandinavian equivalent to a NERC region)
- Actual effects are thus not yet known

Theoretical Basis (con't)

- Recent work has focused on cost of ancillary services for wind-induced system imbalances
 - Without "penalties", marginal imbalance/ regulation costs tend toward net zero
 - With unbiased generation forecasting, output is equally likely to be "short" or "long"
 - Costs ultimately reflect the addition of "firm"
 capacity to ensure market liquidity/adequate reserve

Theoretical Basis (con't)

- 3 ISO/RTO's have actual "capacity markets"
 - PJM does not allow intermittent resources to compete in capacity market
 - NYISO and New England ISO allow intermittent resources using average annual capacity factor to de-rate capacity
- FERC prefers markets that do not impose "arbitrary" penalties on intermittents

Revised Approach: Details

$$\overline{C}_{p} = \frac{((C_{o}/D)e^{D(P-L)}) - (C_{o}/D)}{P}$$

Where:

 C_p is the average capacity credit at a penetration level of P and C_0 is the initial capacity credit at zero penetration

e is the base of the natural logarithm

P is the fraction of total intermittent generation across all generation for the region in the previous calendar year

L is an "offset" factor (not currently used)

D, the exponential decay factor, is calculated from:

$$D=-ln(2)/H$$

Where H is the "half-life" parameter for the function