

Evaluation of a Multiple Instruction/ Multiple Data (MIMD) Parallel Computer for CFD Applications

Stephen J. Schraml

ARL-TR-589

October 1994

pring only and and Author 2

APPROVED FOR PUBLIC RELEASE; DISTRIBUTIO' IS UNLIMITED.

NOTICES

Destroy this report when it is no longer needed. DO NOT return it to the originator.

Additional copies of this report may be obtained from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161.

The findings of this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute indorsement of any commercial product.

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0198

the reporting burden for this collection of information is estimated to average I hour pay response, including the time for reviewing instructions, searching data sources.

caderteen of information, including supposition David Nightney, Surtio 1284, Artingson, VA 222	M ler (0.	friend the Briden to Markengton re and to the Office of Markengement are	Requesters Services, Direct Budget, "sperviors Reduc	orpes for information tron Project (0704-01	n Courstions and Remorts, 1215 Jefferson 88), Washington, DC 20103
1. AGENCY USE COLY (Leave bid	nk)	2. REPORT DAYE	3. REPORT TYP		
A. TITLE AND SUBTITLE		October 1994	Final, Ap		November 1992
4. THE AND SUBTICE Evaluation of a Multiple Instruction/Multiple Data (MIMD) Parallel Computer for CFD Applications				MD)	G592-421-U2-U042
& AUTHOR(S) Stephen J. Schraml					
7. PERCEMBER CHARLESTON & U.S. Army Research L ATTH: AMERL-WI-NC				E PEN REPO	OMMING ORGANIZATION HT HUMBER
Aberdeen Proving Gro					
9. SPONSONNE/MOINTONNE AG U.S. Army Research L ATTN: AMSRL-OP-AP-L	abot)		NSOAMG/MONTOWNS NCV REPORT NUMBER
Aberdeen Proving Gro		ND 21005-5066		4	ARL-TR-589
11. SUPPLEMENTARY NOTES					
12a. DISTRIBUTION / AVAILABILITY	STAT	EMENT		126. DIS	TRIBUTION CODE
Approved for public	rele	ase; distribution	is unlimited		
In an attempt to evaluate the merits of massively parallel processing computers for the numerical simulation of blast phenomena, the U.S. Army Research Laboratory (ARL) has adapted one of its blast modeling tools to several unique parallel architectures. This report describes the adaptation of the BRL-QID code, a quasi-one-dimensional, finite difference Euler solver, to the Intel iPSC/860 parallel supercomputer. The code was reconfigured for the iPSC/860 using FORTRAN 77 and the Intel iPSC/860 message-passing library. The performance of the code was measured on the iPSC/860 for a variety of problem sizes and processor configurations. The performance was found to be highly dependent on the size of the problem. This problem size dependency was most noticeable when fewer processors were employed. Results of scalability tests indicate that the code performance scales in a roughly linear fashion about extrapolated lines of ideal performance.					
14. SUBJECT TERMS RUCLEAR explosion simulation, shock tubes, computer progr			ogramming	15. NUMBER OF PAGES 26 16. PRICE CODS	
17. SECURITY CLASSIFICATION OF REPORT		ECURITY CLASSIFICATION 17 YMS PAGE	19. SECURITY CLA		20. LIMITATION OF ABSTRACT
UNCLASSIFIED		CLASSIFIED	UNCLASSIFI		บน

NSN 7540-01-280-5560

Standard Form 298 (Rev 2-89) Prescribed by ANSI Stal 239-18 298-102

Intentionally Left Blank

Acknowledgments

The BRL-Q1D code adaptation and performance trials were conducted with the resources provided by the U.S. Army Research Laboratory (ARL), the State University of New York at Stony Brook and the California Institute of Technology. The author acknowledges the assistance provided by the support staffs of these organizations.

The author also acknowledges Mr. Monte W. Coleman, ARL, for assistance provided in executing the calculations described in this report, and Mr. Thomas M. Kendall, also of ARL, for reviewing this report.

Intentionally Left Blank

Table of Contents

		Page
	Acknowledgments	. iii
	List of Figures	. vii
1.	Background	. 1
2.	The iPSC/860	. 1
3 .	Blast Modeling Application	. 3
4.	Results	. 7
5 .	Conclusions	. 9
	References	. 13
	Distribution List	. 15

Intentionally Left Blank

List of Figures

Figure		Page
1	Measured Performance of BRL-Q1D Code	. 10
2	Scalability Using 512 Grid Points / Node	. 10
3	Scalability Using 1024 Grid Points / Node	. 11
4	Scalability Using 2048 Grid Points / Node	. 11
5	Scalability Using 4096 Grid Points / Node	. 12
6	Scalability Using 8192 Grid Points / Node	. 12

Intentionally Left Blank

1. Background

Due to the rising costs of large-scale experimentation and the uncertainty of scaling effects in experiments, the U.S. Army is becoming increasingly dependent on computer simulations to assess the vulnerability of military systems to nuclear blast. Present vector supercomputer technology can provide detailed fluid dynamic simulations in two dimensions in a production environment (less than 10 CPU hours). Three-dimensional simulations employing limited spatial resolution, which are only sufficient for modeling relatively simple geometries, still require 100 or more CPU hours on a vector supercomputer.

Obviously, these low resolution simulations with simple geometries do not provide sufficient information about the vulnerability of specific military systems to the overturning or crushing effects of blast produced by tactical nuclear weapons. To provide accurate assessments of system vulnerability, highly detailed three-dimensional simulations with coupled fluid-structure interaction are required. To make this type of numerical simulation possible, increases in supercomputer performance of two or more orders of magnitude must be realized.

The rapidly maturing field of massively parallel processing (MPP) has the potential to offer the compute performance required for detailed three-dimensional fluid dynamic simulations. There are many different types MPP machines available on the computer market today. However, generally speaking, most current MPP computers have the following two basic characteristics:

- 1. They combine the resources of a large number of processors to simultaneously solve different parts of a large problem.
- 2. Each processor has its own bank of local memory.

Particular MPP computers differ primarily in the way the processors access data in their own memory and data in the memory of other processors. These data access methods typically define the programming methods which are required to extract maximum performance from all of the resources that the machine has to offer.

As a means of evaluating MPP technology, the U.S. Army Research Laboratory (ARL) continuously adapts one of its blast modeling tools to emerging MPP computer platforms. In Through continuous evaluation of MPP computers, the ARL can configure its software tools to exploit this technology, thus making detailed three-dimensional fluid dynamic simulations available in a production computing environment.

2. The iPSC/860

The Intel iPSC/860 was the parallel computer chosen for the adaptation and evaluation described in this report. The iPSC/860 is a Multiple Instruction / Multiple Data (MIMD) parallel computer. This implies that the processors of the computer can perform a number of

different operations simultaneously, if requested to do so. This is quite different from a Single Instruction / Multiple Data (SIMD) computer, in which all of the computers processors perform identical operations, simultaneously, on different sections of data.

The heart of the iPSC/860 is a set of Intel i860 microprocessors. Each of these processors has a fixed amount of local memory. Systems configured this way are often referred to as "distributed memory multiprocessors." Most current MPP machines are distributed memory architectures. The individual processors of the iPSC/860 are linked together by an interconnect network which allows high bandwidth data transfer between processors. The earlier model of the iPSC/860, known as the Gamma, employs a hypercube topology as the interconnect network.² A hypercube can be envisioned as a large number of nested cubes with each point of a cube representing a node, or processor, in the system. The later model iPSC/860, called the Delta, employs a two-dimensional mesh topology as the processor interconnect network. Each type of interconnect network is designed to have a maximum number of connections between available processors, while at the same time minimizing the distance that data must travel when moving from its originating processor to its destination processor.

Like most MPP machines, the iPSC/860 is designed to be a scalable system. As such, it should be possible to linearly increase the compute performance of an application by increasing the number of processors allocated to the application. Thus scalability is the motivation in the development of MPP computers. In a truly scalable system, a desired level of performance can be obtained by simply acquiring the necessary quantity of processors. This is potentially more cost-effective than obtaining performance gains through advances in single processor design.

Unfortunately, building a scalable architecture is only half of the solution to obtaining increased performance. To optimally employ all of the resources provided by MPP computers, the application's algorithm must be designed to be scalable as well. Optimum algorithm design for the iPSC/860, and most other MIMD machines, is accomplished through a style of programming known as message-passing. When a parallel application is run on the iPSC/860, the data is distributed among the available memory of the processors being used. If a particular processor needs access to a piece of data stored in another processor's memory to perform a calculation, then that data must be transferred from the originating processor to the processor which needs the data. To accomplish this data transmission, the application must be written to explicitly pass the data from the original processor, to the target processor.³

One potential bottleneck in distributed memory parallel computers is this transfer of data between processors. Even though the processors are connected by a high-speed network, the time required to move data between processors is typically much greater than the time spent by the receiving processor executing a floating point instruction using that data. Consequently, the ultimate goal in developing an algorithm which employs message-passing techniques is to minimize time spent transferring data, thereby maximizing the time spent in computing the solution. With this in mind, the algorithm designer must be sure to transfer only that data which is necessary for the calculations to be performed correctly.

3. Blast Modeling Application

The BRL-Q1D code was selected as the blast modeling application which is used by the ARL to evaluate the programming environment and the computational performance of massively parallel computers. BRL-Q1D is a quasi-one-dimensional, finite difference, single material, polytropic gas fluid dynamics code and is primarily used to simulate flow in shock tubes. This code was chosen for its relative simplicity and its algorithmic similarities to the two- and three-dimensional codes that are currently used for blast modeling applications. Therefore, adaptation of this code is the most cost-effective means of evaluating massively parallel computer architectures. The similarities in the solution algorithms of BRL-Q1D and more complex multidimensional codes can provide insight to the potential performance of these more complex codes on MPP computers.

The BRL-Q1D code incorporates two computational techniques, an implicit finite difference technique ⁴ and an explicit finite difference scheme.⁵ Only one of these algorithms may be used in a particular BRL-Q1D calculation. The solution scheme which is employed is determined by a set of user-defined input options. The solution algorithms are applied to the quasi-one-dimensional Euler equations in the result weak conservative form.⁶

One multidimensional fluid dynamics code used extensively at ARL for the numerical simulation of blast effects is the SHARC code. SHARC is an explicit, finite difference Euler solver which is second-order accurate in space and time. Because of its algorithmic similarities to the SHARC code, only the explicit algorithm of the BRL-Q1D code was adapted to the iPSC/860.

The MacCormack explicit scheme employed in BRL-Q1D is a second-order, non-centered, predictor-corrector technique that alternatively uses forward and backward differences for the two steps. The first step predicts the value of the state variables at a grid point based on the values of the grid point and its neighboring downstream grid point. The second step then corrects these state variables based on the values at the grid point and its neighboring upstream grid point.

Prior to its adaptation to the iPSC/860, the BRL-Q1D code existed in standard Fortran 77 form and the explicit, finite difference algorithm had been optimized for maximum performance on vector supercomputers. So that it could obtain maximum performance on the iPSC/860, the code was modified to evenly distribute the arrays among the available processors and then calls to the iPSC message-passing library were inserted where necessary for the transmission of data between processors.

The even distribution of arrays among available processors is a technique which is often referred to as "domain decomposition." In the case of the one-dimensional code, domain decomposition is nothing more than evenly dividing the number of available processors into the number of grid points being used by the calculation, then placing that number of adjacent grid points on successive processors. For example, to distribute an 800 grid point calculation among 8 processors, grid points 1 to 100 would be placed on processor 0, 101 to 200 on processor 1, etc. The BRL-Q1D code was modified in such a way that each time the code was run, it would automatically determine the number of processors that were available,

and dynamically allocate the arrays based on the grid size and this returned number of processors. Of course, domain decomposition in two or three spatial dimensions can be much more complex than this simple one-dimensional case. This is especially true when complex geometries are being modeled.

After the domain decomposition scheme had been developed, it was then imposed on the solution algorithm, so that the computational load would be evenly distributed among the processors. In the original Fortran 77 implementation of the BRL-Q1D code, the successive prediction and correction of state variables was accomplished through the use of DO loops which proceed through the one-dimensional grid, from beginning to end, in one grid point increments. For the message-passing implementation, the range of DO loop operation on a particular processor was limited to the grid points which were allocated to that processor. If a calculation required data from a grid point which does not reside on the processor doing the calculation, that data is passed to the processor prior to the calculation. The following examples of original Fortran 77 code and message-passing code illustrate this logic.

Segment of Original Fortran 77 Code

```
do 20 j=2,jmax-1
s(j,1) = q(j,1) - dt*(f(j+1,1)-f(j,1))
20 continue
```

Segment of Equivalent Message Passing Code

```
istart=ibeg(mynode()+1)
istop =iend(mynode()+1)
if (istart.eq. 1) istart=2
if (istop .eq.jmax) istop =jmax-1
if (numnodes().ne.1) call passleft(f,1)
do 20 j=istart,istop
    s(j,1) = q(j,1) - dt*(f(j+1,1)-f(j,1))
20 continue
```

These code segments are examples of a predictor step in the explicit algorithm. In these examples, the array s is being calculated from the arrays q and f and a constant, dt for all grid points between the second and the next to the last, inclusive. The calculations for the first and last grid points are performed in a separate boundary condition subroutine. The functionality of the Fortran 77 code is obvious from the example given above. In the message-passing example, the vectors ibeg and iend represent the beginning and ending array indices assigned to each processor in the domain decomposition subroutine. In the case of the first processor, the value of ibeg is reset from a value of 1 to 2 in order to conform to the limits on the DO loop in the Fortran 77 example. In a similar fashion, the value of iend is reset from jmax to jmax-1.

In the message-passing example, when the calculation of the state variable s reaches the last iteration in the loop on a particular processor, a value from the f array which resides on a neighboring processor is required. For this calculation to be performed properly,

all processors except the first pass the first element of f on the processor to the adjacent processor on the left. This operation is initiated by the call to the subroutine passleft in the example. The first argument in the call to the passleft subroutine is the name of the array to be passed. The second argument is the number of elements to be passed between processors. If the calculation of s had used a f(j+2,1) term, then all processors except the first would pass two elements of f to the left neighboring processor. For the the corrector step in the explicit algorithm, an analogous passright subroutine is used in which all processors except the last pass data from the specified array to the neighboring processor on the right.

To further illustrate the techniques employed in message-passing programming, the passleft subroutine is listed below. This subroutine listing shows the process by which processors pass the first n sub-array elements in their memory to their respective left neighboring processor. The receiving processors then store this data as the last n sub-array elements in memory.

In studying the function of this subroutine, it is important to remember that the subroutine runs simultaneously on all of the assigned processors. When the passleft subroutine is called, data from a particular flow parameter array are stored in a dummy array a. This dummy array, is a two-dimensional array with the first dimension assigned to be the number of grid points, jmax, and the second dimension assigned as the number of variables per grid point for the array, in this case three (energy, density and momentum, for example). The passleft subroutine is designed to transfer all three of these variables for a given grid point for any particular call to the subroutine. The listing of the passleft subroutine shows the following steps which are taken to transfer the data:

- The send and receive indices for each processor are defined. These indices becomes counters in a DO loop if data from multiple grid points are to be transferred between processors.
- 2. All of the processors are synchronized in time so that the communication takes place simultaneously on the processors.
- 3. On all processors except the first, the three variables for a given grid point of the dummy array a are written into a temporary, three element array b. The particular grid point is defined by the send index.
- 4. All of the processors except the first send the contents of array b to the left neighboring processor.
- 5. All of the processors except the last receive the data sent from the right neighboring processor and store the data in the temporary, three element array b.
- 6. On all of the processors except the last, the three variables stored in the b array are written into the dummy array a for the proper grid point. The particular grid point is defined here by the receive index.
- 7. This process is repeated if data from more than one grid point is being transferred.

Listing of Passleft Subroutine

```
subroutine passleft (a,n)
C
     this subroutine passes the first n elements of sub-array
c
     a from a processor to its left neighbor processor.
C
c
     the receiving processor stores the data as the last n
c
     elements of the sub-array a.
      include 'param.h'
      include 'mimd.h'
С
     dimension a(jmax,3),b(3)
c
c
      is = send index for local node
      ir = receive index for local node
c
      is = ibeg(mynode()+1)-1
      ir = iend(mynode()+1)
c
     do 10 k=1,n
        is=is+1
        ir=ir+1
        call gsync()
        if (mynode().ne.0) then
          do 20 j=1,3
            b(j) = a(is,j)
  20
          continue
          call csend (0,b,3*4,mynode()-1,mypid())
        endif
        if (mynode().ne.numnodes()-1) then
          call crecv (0,b,3*4)
          do 30 j=1,3
            a(ir,j) = b(j)
  30
          continue
        endif
  10 continue
     return
     end
```

4. Results

When the adaptation of the BRL-Q1D code was completed, the performance of the code was tested on both Gamma and Delta models of the iPSC/860 architecture. Due to the nature of the hypercube topology of the iPSC/860 Gamma model, the number of available processors is always an exact power of two. A Gamma model with 16 processors was employed for these tests. The iPSC/860 Delta model, with its mesh topology, is not constrained to the power of two processor requirement of the Gamma. The particular Delta machine used for the tests has 532 processors. However, only 256 processors were used in the maximum Delta configuration tests. So that Delta results could be directly compared with Gamma results, all Delta trials employed power of two processor configurations and problem sizes.

In all cases, the measured performance of the BRL-Q1D code was represented as the "whiz factor." This is a measure of the average CPU time required for the code to compute a solution, divided by product of the number of grid points and the number of cycles in the calculation ($\mu s/grid\ point/cycle$). This is a convenient method of measuring the code's performance because it normalizes the run time against the problem size and the number of time steps in the calculations. Thus using the whiz factor as a benchmark, results of different calculations can be compared directly. For a particular processor configuration and problem size, the reported performance is the minimum whiz factor (i.e., best performance) out of a set of several identical trials.

The first set of tests was performed to determine the influence of varying problem size on code performance. These tests were performed only on the Gamma model. The results of these tests are illustrated in Figure 1. This figure shows several curves illustrating the relationship between whiz factor and problem size for different processor configurations. This figure shows that, for small problems, the performance of the iPSC/860 is highly dependent on the size of the problem. As the problem size is increased, all of the processor configurations approach an upper limit on performance (i.e., a minimum whiz factor). All of the curves in Figure 1 have a similar shape; an initially sharp drop in whiz factor as the problem size is increased, followed by a bump in the middle of the curve, and ending with a leveling off as the maximum performance for that processor configuration is reached. The bump in the middle of each curve is a result of the increasing size of the problem filling the memory systems of each processor. The curve representing the trials with eight processors is slightly different from the other curves at the data points corresponding to problem sizes of 210 and 211. For this processor configuration, the performance increased very little from a problem size of 29 to 210. Then, from 210 to 211 the performance increased significantly. In fact, the measured performance of the code on eight processors is exactly the same as the sixteen processor result for the same problem size of 211. Several additional trials were performed here to veryify the result, and results were consistent. Thus this appears to be merely an interesting characteristic of the Gamma model, most likely resulting from a fortuitously optimum layout of the data in memory for the particular configuration of eight processors running a problem size of 2^{11} .

As previously discussed, the Delta model allows the user to access arbitrary numbers of available processors. The Delta also allows users to define the two-dimensional layout of the processors within the mesh topology. With this in mind, a series of tests was performed to determine the influence of processor layout on code performance. In this series, a problem size of 16384 was run on 16 processors of the Delta. Five tests were performed in which processor layouts of 1x16, 2x8, 4x4, 8x2 and 16x1 were employed. The results of these tests are provided in Table 1. Also included in this table is the result of the identical calculation on the Gamma. These results illustrate that the performance of the BRL-Q1D code on the Delta is independent of processor configuration. Thus it can be assumed that communication of data between processors is not heavily influenced by the proximity of any two communicating processors.

Table 1. BRL-Q1D Performance on Delta as a Function of Processor Layout

Processor Layout	Whiz Factor (\mu s/grid point/cycle)
1x16	7.75
2x8	7.79
4×4	8.42
8x2	7.75
16x1	7.81
Gamma 24	9.00

As previously discussed, true scalability of both the architecture and the algorithm are essential to successful exploitation of MPP technology. Thus to determine the scalability of the BRL-Q1D code on the iPSC/860, a final series of tests was performed in which successive tests employed increasing numbers of processors. The problem size was accordingly increased with the increase in processors, so that lines of constant problem size per processor could be determined. These tests were performed on both the Gamma and the Delta models and are illustrated in Figures 2 through 6.

The results shown in Figures 2 to 6 illustrate the scalability tests of Gamma and Delta using 512 grid points per processor. In these figures, the measured performance data points for the Gamma are represented by the solid dots, while the data for the Delta is represented by the star symbols. If the adapted BRL-Q1D algorithm were perfectly scalable on the Gamma and Delta architectures, then doubling the number of processors used would result in a factor of two decrease in the whiz factor (i.e., doubling the number of processors would double the performance). The solid line in Figures 2 to 6 represents this ideal scalability which is extrapolated from the measured whiz factor for one processor of the Gamma. Accordingly, the dashed line represents the same ideal scalability relationship for the Delta.

Due to the logarithmic formulation of the scalability relationship, the ideal scalability curves result in straight lines when plotted against log-log axes. Figures 2 to 6 show that the lines of ideal scalability for both Gamma and Delta pass through the scatter of the measured data, indicating perfect scalability. These figures also illustrate that the performance of the Delta is slightly better than that of the Gamma for all cases. This improvement can be

attributed to advances in compiler technology and system software on the Delta, the later of the two architectures.

5. Conclusions

This report has outlined the successful implementation of the explicit, finite difference BRL-Q1D algorithm on the Intel iPSC/860 parallel computer. A division of labor among processors along with a coordinated use of message-passing between processors was used to evenly distribute the algorithm across the resources of the architecture. The results presented in the figures lead us to conclude that this message-passing implementation of the BRL-Q1D code is indeed perfectly scalable on both hypercube and mesh processor topology MIMD computers.

The likelihood of a successful implementation to parallel architectures is dependent on the level of inherent parallelism in the algorithm. The explicit BRL-Q1D algorithm is inherently data parallel. Its inner DO loops typically span the entire computational mesh. As a result, distribution of the algorithm across processors is easily accomplished.

As stated earlier, the adaptation of the BRL-Q1D code to the iPSC/860 was part of an attempt to evaluate MPP technology for blast modeling applications. The success of this and other implementations of the code on MPP computers is an indication that significant performance improvements can be obtained from the adaptation of large, multidimensional fluid dynamics codes to MPP platforms.

Other types of codes, however, may not be good candidates for adaptation to parallel computers. When this is the case, it may be necessary to completely restructure the basic algorithm in order to increase the level of inherent parallelism. Once this is done, then the algorithm can be adapted to parallel computers with greater likelihood of a successful implementation.

Figure 1. Measured Performance of BRL-Q1D Code

Figure 2. Scalability Using 512 Grid Points / Node

BRL-Q1D Scalability Intel iPSC/860 with 1024 Grid Points Per Node

Figure 3. Scalability Using 1024 Grid Points / Node

Figure 4. Scalability Using 2048 Grid Points / Node

BRL-Q1D Scalability
Intel IPSC/860 with 4096 Grid Points Per Nade

Figure 5. Scalability Using 4096 Grid Points / Node

Figure 6. Scalability Using 8192 Grid Points / Node

References

- 1. Schraml, S.J. "A Data Parallel Implementation of the BRL-Q1D Code." Technical Report BRL-TR-3389. U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland. September 1992.
- 2. Intel Scientific Computers. "iPSC/860 User's Guide." Order Number 311532-001, Beaverton, Oregon. June 1990.
- 3. Intel Scientific Computers. "Parallel Programming Primer." Order Number 311914-001, Beaverton, Oregon. March 1990.
- 4. Beam, R.M., and R.F. Warming. "An Implicit Factored Scheme for the Compressible Navier-Stokes Equations." AIAA Journal, Vol. 16, No. 4. April 1978: 393-402.
- 5. MacCormack, R.W. "The Effect of Viscosity in Hypervelocity Impact Cratering." AIAA Paper, No. 69-354.
- Opalka, K.O., and A. Mark. "The BRL-Q1D Code: A Tool for the Numerical Simulation of Flows in Shock Tubes with Variable Cross-Sectional Areas." Technical Report BRL-TR-2763. U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland. October 1986.
- 7. Hikida, S., R. Bell, and C. Needham. "The SHARC Codes: Documentation and Sample Problems." SSS-R-89-9878, S-CUBED, September 1988.

Intentionally Left Blank

No. of Copies Organization

- 2 Administrator
 Defense Technical Info Center
 ATTN: DTIC-DDA
 Cameron Station
 Alexandria, VA 22304-6145
- 1 Commander
 U.S. Army Materiel Command
 ATTN: AMCAM
 5001 Eisenhower Ave.
 Alexandria, VA 22333-0001
- Director
 U.S. Army Research Laboratory
 ATTN: AMSRL-OP-SD-TA,
 Records Management
 2800 Powder Mill Rd.
 Adelphi, MD 20783-1145
- Director
 U.S. Army Research Laboratory
 ATTN: AMSRL-OP-SD-TL,
 Technical Library
 2800 Powder Mill Rd.
 Adelphi, MD 20783-1145
- 1 Director
 U.S. Army Research Laboratory
 ATTN: AMSRL-OP-SD-TP,
 Technical Publishing Branch
 2800 Powder Mill Rd.
 Adelphi, MD 20783-1145
- 2 Commander U.S. Army Armament Research, Development, and Engineering Center ATTN: SMCAR-TDC Picatinny Arsenal, NJ 07806-5000
- 1 Director
 Benet Weapons Laboratory
 U.S. Army Armament Research,
 Development, and Engineering Center
 ATTN: SMCAR-CCB-TL
 Watervliet, NY 12189-4050
- Director
 U.S. Army Advanced Systems Research
 and Analysis Office (ATCOM)
 ATTN: AMSAT-R-NR, M/S 219-1
 Ames Research Center
 Moffett Field, CA 94035-1000

No. of Copies Organization

- 1 Commander
 U.S. Army Missile Command
 ATTN: AMSMI-RD-CS-R (DOC)
 Redstone Arsenal, AL 35898-5010
- Commander
 U.S. Army Tank-Automotive Command
 ATTN: AMSTA-JSK (Armor Eng. Br.)
 Warren, MI 48397-5000
- Director
 U.S. Army TRADOC Analysis Command
 ATTN: ATRC-WSR
 White Sands Missile Range, NM 88002-5502
- 1 Commandant
 U.S. Army Infantry School
 ATTN: ATSH-WCB-O
 Fort Benning, GA 31905-5000

Aberdeen Proving Ground

- 2 Dir, USAMSAA ATTN: AMXSY-D AMXSY-MP, H, Cohen
- 1 Cdr, USATECOM ATTN: AMSTE-TC
- l Dir, USAERDEC ATTN: SCBRD-RT
- I Cdr, USACBDCOM ATTN: AMSCB-CII
- 1 Dir, USARL ATTN: AMSRL-SL-I
- 5 Dir, USARL ATTN: AMSRL-OP-AP-L

No. of	Organization	No. of	
	NORTH (OARD MRANE WAY)		
	HQDA (SARD-TR/Ms. K. Kominos) Washington, DC 20310-0103	1	Chairman DOD Explosives Safety Board Room 856-C
1	HQDA (SARD-TR/Dr. R. Chait)		Hoffman Bldg. 1
	Washington, DC 20319-0103		2461 Eisenhower Avenue Alexandria, VA 22331-0600
	Director of Defense Research & Engineering		
	ATTN: DD/TWP Washingto, 1. DC 20301	1	Director Defense Intelligence Agency ATTN: DT-2/Wpns & Sys Div
1	Assistant Secretary of Defense		Washington, DC 20301
	(Atomic Energy) ATTN: Document Control	1	Director
	Washington, DC 20301	1	National Security Agency ATTN: R15, E. F. Butala
1	Chairman		Ft. George G. Meade, MD 20755
_	Joint Chiefs of Staff		1 t. Jeorge G. Meade, MD 20733
	ATTN: J-5, R&D Division	7	Director
	Washington, DC 20301	·	Defense Nuclear Agency ATTN: CSTI, Technical Library
2	Deputy Chief of Staff for Operations and Plans	S	DDIR
	ATTN: Technical Library		DFSP
	Director of Chemical		NANS
	and Nuclear Operations		OPNA
	Department of the Army		SPSD
	Washington, DC 20310		SPTD
_			Washington, DC 20305
1	U.S. Army Research Development and	_	
	Standardization Group (UK)	3	Commander
	ATTN: Dr. R. Reichenbach		Field Command, DNA
	PSC 802, Box 15		ATTN: FCPR
	FPO AE 09499-1500		FCTMOF
	Disease		FCTTS (Ed Martinez) Kirtland AFB, NM 87115
1	Director		Kutiand AFD, NM 6/113
	Advanced Research Projects Agency ATTN: Technical Library	10	Central Intelligence Agency
	3701 North Fairfax Drive	10	DIR/DB/Standard
	Arlington, VA 22203-1714		ATTN: GE-47 HQ (10 cps)
	Attington, VA 22205-1714		Washington, DC 20505
2	Director		
	Federal Emergency Management Agency	2	Commander, USACECOM
	ATTN: Public Relations Office		ATTN: AMSEL-RD
	Technical Library		AMSEL-RO-TPPO-P
	Washington, DC 20472		Fort Monmouth, NJ 07703-5301

No. of No. of Copies Organization Copies Organization Commander, USACECOM Commander R&D Technical Library US Army Engineer Division ATTN: ASQNC-ELC-IS-L-R, Myer Center ATTN: HNDED-FD Fort Monmouth, NJ 07703-5000 P.O. Box 1500 Huntsville, AL 35807 Commander US Army Armament Research, Commander Development and Engineering Center US Army Corps of Engineers ATTN: SMCAR-FSM-W/Barber Bldg. 94 Waterways Experiment Station Picatinny Arsenal, NJ 07806-5000 ATTN: CEWES-SS-R, J. Watt CEWES-SE-R, J. Ingram CEWES-TL, Tech Lib US Army Missile and Space Intelligence P.O. Box 631 Center Vicksburg, MS 39180-0631 ATTN: AIAMS-YDL Redstone Arsenal, AL 35898-5500 Commander US Army Corps of Engineers Commander Fort Worth District National Ground Intelligence Center ATTN: CESWF-PM-J ATTN: Research & Data Branch P.O. Box 17300 220 7th Street, NE Fort Worth, Texas 76102-0300 Charlottesville, VA 22901-5396 Commander 1 Director US Army Research Office US Army TRAC - Ft. Lee ATTN: SLCRO-D ATTN: ATRC-L, Mr. Cameron P.O. Box 12211 Fort Lee, VA 23801-6140 Research Triangle Park, NC 27709-2211 Director Commander US Army Research Laboratory US Army Nuclear & Chemical Agency Materials Directorate 7150 Heller Loop, Suite 101 ATTN: AMSRL-MA-B Springfield, VA 22150-3198 Watertown, MA 02172-0001 Director Commander HQ, TRAC RPD US Army Strategic Defense Command ATTN: ATRC-RPR, Radda ATTN: CSSD-H-MPL, Tech Lib Fort Monroe, VA 23651-5143 CSSD-H-XM, Dr. Davies P.O. Box 1500 Director Huntsville, AL 35807 TRAC-WSMR ATTN: ATRC-WC, Kirby Commander White Sands Missile Range, NM 88002-5502 US Army Natick Research and Development Director TRAC-FLVN ATTN: AMDNA-D, Dr. D. Sieling

STRNC-UE, J. Calligeros

Natick, MA 01762

ATTN: ATRC

Fort Leavenworth, KS 66027-5200

No. of Copies	Organization	No. of Copies	
	Commander US Army Test & Evaluation Command ATTN: STEWS-NED (Dr. J L Meason) White Sands Missile Range, NM 88002-5158 Chief of Naval Operations	1	Officer in Charge White Oak Warfare Center Detachment ATTN: Code E232, Technical Library 10901 New Hampshire Avenue Silver Spring, MD 20903-5000
	Department of the Navy ATTN: OP-03EG OP-985F Washington, DC 20350	1	Commanding Officer White Oak Warfare Center ATTN: Code WA501, NNPO Silver Spring, MD 20902-5000
-	Commander Naval Electronic Systems Command ATTN: PME 117-21A Washington, DC 20360		Commander (Code 533) Naval Weapons Center ATTN: Technical Library China Lake, CA 93555-6001
	Commander Naval Sea Systems Command ATTN: Code SEA-62R Department of the Navy Washington, DC 20362-5101		Commander Naval Research Laboratory ATTN: Code 2027, Technical Library Washington, DC 20375
	Office of Naval Research ATTN: Dr. A. Faulstick, Code 23 (2cps) 800 N. Quincy Street Arlington, VA 22217	1	AL/LSCF ATTN: J. Levine Edwards AFB, CA 93523-5000 OLAC PL/TSTL
	Officer-in-Charge (Code L31) Civil Engineering Laboratory Naval Construction Battalion Center ATTN: Technical Library Port Hueneme, Ch. 93041	2	ATTN: D. Shiplett Edwards AFB, CA 93523-5000 Air Force Armament Laboratory ATTN: AFATL/DOIL AFATL/DLYV Eglin AFB, FL 32542-5000
	Commanding Officer (Code L51) Naval Civil Engineering Laboratory ATTN: J. Tancreto Port Hueneme, CA 93043-5003	1	RADC (EMTLD/Docu Library) Griffiss AFB, NY 13441
	Commander Dahlgreen Division Naval Surface Warfare Center ATTN: Code E23, Library Dahlgren, VA 22448-5000	3	Phillips Laboratory (AFWL) ATTN: NTE NTED NTES Kirtland AFB, NM 87117-6008
	Commander David Taylor Research Center ATTN: Code 522, Tech Info Ctr	1	AFESC/RDCS ATTN: Paul Rosengren Tyndall AFB, FL 32403

Bethesda, MD 20084-5000

No. of		No. of	
Copies	Organization	Copies	<u>Organization</u>
1	AFIT	5	Director
	ATTN: Technical Library, Bldg. 640/B		Sandia National Laboratories
	Wright-Patterson AFB, OH 45433		ATTN: Doc Control 3141
	_		C. Cameron, Div 6215
1	AFIT/ENY		A. Chabai, Div 7112
	ATTN: LTC Hasen, PhD		D. Gardner, Div 1421
	Wright-Patterson AFB, OH 45433-6583		J. McGlaun, Div 1541
			P.O. Box 5800
1	FTD/NIIS		Albuquerque, NM 87185-5800
	Wright-Patterson AFB, Ohio 45433		
		1	Director
1	Director		Sandia National Laboratories
	Idaho National Engineering Laboratory		Livermore Laboratory
	ATTN: Spec Programs, J. Patton		ATTN: Doc Control for Tech Library
	2151 North Blvd, MS 2802		P.O. Box 969
	Idaho Falls, ID 83415		Livermore, CA 94550
2	Director	ì	Director
	Idaho National Engineering Laboratory		National Aeronautics and Space
	EG&G Idaho Inc.		Administration
	ATTN: R. Guenzler, MS-3505		ATTN: Scientific & Tech Info Fac
	R. Holman, MS-3510		P.O. Box 8757, BWI Airport
	P.O. Box 1625		Baltimore, MD 21240
	Idaho Falls, ID 83415		
		1	Director
1	Director		NASA-Langley Research Center
	Lawrence Livermore National Laboratory		ATTN: Technical Library
	ATTN: Dr. Allan Kuhl		Hampton, VA 23665
	2250 E. Imperial Highway, Suite # 650		D : .
	El Segundo, CA 90245	1	Director
1	Director		NASA-Ames Research Center
1			Applied Computational Aerodynamics Branch ATTN: Dr. T. Holtz, MS 202-14
	Lawrence Livermore National Laboratory ATTN: Tech Info Dept L-3		Moffett Field, CA 94035
	P.O. Box 808		Wollett Field, CA 94055
	Livermore, CA 94550	1	ADA Technologies, Inc.
	Eliteratione, CA 94550	1	ATTN: James R. Butz
2	Director		Honeywell Center, Suite 110
-	Los Alamos National Laboratory		304 Inverness Way South
	ATTN: Th. Dowler, MS-F602		Englewood, CO 80112
	Doc Control for Reports Library		
	P.O. Box 1663	1	Alliant Techsystems, Inc.
	Los Alamos, NM 87545	-	ATTN: Roger A. Rausch (MN48-3700)
			7225 Northland Drive
			Brooklyn Park, MN 55428
			-

No. of		No. of	
Copies	<u>Organization</u>	Copies	<u>Organization</u>
2	Applied Research Associates, Inc.	2	FMC Corporation
	ATTN: J. Keefer		Advanced Systems Center
	N.H. Ethridge		ATTN: J. Drotleff
	P.O. Box 548		C. Krebs, MDP95
	Aberdeen, MD 21001		Box 58123
			2890 De La Cruz Blvd.
1	Aerospace Corporation		Santa Clara, CA 95052
	ATTN: Tech Info Services		
	P.O. Box 92957	1	Goodyear Aerospace Corporation
	Los Angeles, CA 90009		ATTN: R. M. Brown, Bldg 1
			Shelter Engineering
3	Applied Research Associates, Inc.		Litchfield Park, AZ 85340
	ATTN: R. L. Guice (3 cps)		
	7114 West Jefferson Ave., Suite 305	4	Kaman AviDyne
	Lakewood, CO 80235		ATTN: R. Ruetenik (2 cps)
			S. Criscione
1	Black & Veatch,		R. Milligan
	Engineers - Arcitects		83 Second Avenue
	ATTN: H. D. Laverentz		Northwest Industrial Park
	1500 Meadow Lake Parkway		Burlington, MA 01830
	Kansas City, MO 64114		3 ,
		3	Kaman Sciences Corporation
1	The Boeing Company		ATTN: Library
	ATTN: Aerospace Library		P. A. Ellis
	P.O. Box 3707		F. H. Shelton
	Seattle, WA 98124		P.O. Box 7463
			Colorado Springs, CO 80933-7463
1	California Research & Technology, Inc.		Total Total Service Control Control
•	ATTN: M. Rosenblatt	2	Kaman-Sciences Corporation
	20943 Devonshire Street		ATTN: DASIAC (2cps)
	Chatsworth, CA 91311		P.O. Drawer 1479
			816 State Street
1	Carpenter Research Corporation		Santa Barbara, CA 93102-1479
•	ATTN: H. Jerry Carpenter		Canta Dalouid, Cit 75102 1477
	27520 Hawthorne Blvd., Suite 263	1	Ktech Corporation
	P. O. Box 2490	•	ATTN: Dr. E. Gaffney
	Rolling Hills Estates, CA 90274		901 Pennsylvania Ave., N.E.
	Roming Hills Estates, CA 90274		Albuquerque, NM 87111
1	Dynamics Technology, Inc.		Albuqueique, 1414 07111
	ATTN: D. T. Hove	1	Lockheed Missiles & Space Co.
	G. P. Mason		ATTN: J. J. Murphy,
	21311 Hawthorne Blvd., Suite 300		Dept. 81-11, Bldg. 154
	Torrance, CA 90503		P.O. Box 504
	TOTALICE, CA 30303		P.O. BOX 304

1 FATON Corporation
Defense Valve & Actuator Div.

El Segundo, CA 90245-4896

ATTN: J. Wada 2338 Alaska Ave.

Sunnyvale, CA 94086

No. of Copies		No. of Copies	
2	McDonnell Douglas Astronautics Corporation ATTN: Robert W. Halprin K.A. Heinly 5301 Bolsa Avenue Huntington Beach, CA 92647	2	S-CUBED A Division of Maxwell Laboratories, Inc. ATTN: C. E. Needham L. Kennedy 2501 Yale Blvd. SE Albuquerque, NM 87106
1	MDA Engineering, Inc. ATTN: Dr. Dale Anderson 500 East Border Street Suite 401 Arlington, TX 76010	3	S-CUBED A Division of Maxwell Laboratories, Inc. ATTN: Technical Library R. Duff K. Pyatt
	Orlando Technology, Inc. ATTN: D. Matuska 60 Second Street, Bldg. 5 Shalimar, FL 32579	1	PO Box 1620 La Jolla, CA 52037-1620 Sparta, Inc. Los Angeles Operations
	Physics International Corporation P.O.Box 5010 San Leandro, CA 94577-0599		ATTN: I. B. Osofsky 3440 Carson Street Torrance, CA 90503
1	R&D Associates ATTN: G.P. Ganong P.O. Box 9377 Albuquerque, NM 87119		Sunburst Recovery, Inc. ATTN: Dr. C. Young P.O. Box 2129 Steamboat Springs, CO 80477
1	Science Applications International Corporation ATTN: J. Guest 2301 Yale Blvd. SE, Suite E Albuquerque, NM 87106		Sverdrup Technology, Inc. ATTN: R. F. Starr P. O. Box 884 Tullahoma, TN 37388
	Science Applications International Corporation ATTN: N. Sinha 501 Office Center Drive, Apt. 420 Ft. Washington, PA 19034-3211		Sverdrup Technology, Inc. Sverdrup Corporation-AEDC ATTN: B. D. Heikkinen MS-900 Arnold Air Force Base, TN 37389-9998
	Science Center Rockwell International Corporation ATTN: Dr. S. Chakravarthy Dr. D. Ota 1049 Camino Dos Rios P.O. Box 1085 Thousand Oaks, CA 91358		SRI International ATTN: Dr. G. R. Abrahamson Dr. J. Gran Dr. B. Holmes 333 Ravenswood Avenue Menlo Park, CA 94025
			Texas Engineering Experiment Station ATTN: Dr. D. Anderson 301 Engineering Research Center College Station, TX 77843

No. of <u>Copies</u> <u>Organization</u>

1 Thermal Science, Inc. ATTN: R. Feldman 2200 Cassens Dr. St. Louis, MO 63026

Thinking Machines Corporation
 ATTN: G. Sabot
 R. Ferrel
 245 First Street
 Cambridge, MA 02142-1264

1 TRW
Ballistic Missile Division
ATTN: H. Korman,
Mail Station 526/614
P.O. Box 1310
San Bernadino, CA 92402

1 Battelle TWSTIAC 505 King Avenue Columbus, OH 43201-2693

1 California Institute of Technology ATTN: T. J. Ahrens 1201 E. California Blvd. Pasadena, CA 91109

2 Denver Research Institute ATTN: J. Wisotski Technical Library P.O. Box 10758 Denver, CO 80210

1 Massachusetts Institute of Technology ATTN: Technical Library Cambridge, MA 02139

2 University of Maryland Institute for Advanced Computer Studies ATTN: L. Davis G. Sobieski College Park, MD 20742

No. of Copies Organization

University of Minnesota
 Army High Performance Computing Research
 Center
 ATTN: Dr. Tayfun E. Tezduyar
 1100 Washington Ave. South
 Minneapolis, Minnesota 55415

3 Southwest Research Institute
ATTN: Dr. C. Anderson
S. Mullin
A. B. Wenzel
P.O. Drawer 28255
San Antonio, TX 78228-0255

1 Stanford University ATTN: Dr. D. Bershader Durand Laboratory Stanford, CA 94305

1 State University of New York
Mechanical & Aerospace Engineering
ATTN: Dr. Peyman Givi
Buffalo, NY 14260

Aberdeen Proving Ground

1 Cdr, USATECOM ATTN: AMSTE-TE-F, L. Teletski

1 Cdr, USATHMA ATTN: AMXTH-TE

1 Cdr, USACSTA ATTN: STECS-LI

26 Dir, USARL

ATTN: AMSRL-CI-A, H. Breaux AMSRL-CI-AC, R. Sheroke

AMSRL-CI-AD,

C. Nietubicz

C. Ellis

AMSRL-CI-C, W. Sturek

AMSRL-CI-CA,

M. Coleman

N. Patcl

AMSRL-CI-S, R. Pearson

AMSRL-CI-SA, T. Kendall

AMSRL-WT, D. Hisley

AMSRL-WT-N, J. Ingram

AMSRL-WT-NA, A. Kehs

AMSRL-WT-NB, J. Gwaltney

AMSRL-WT-NC,

R. Lottero

B. McGuire

A. Mihalcin

K. Opalka

R. Raley

M. Unekis

AMSRL-W'I-ND, J. Miletta

AMSRL-WT-NF, L. Jasper

AMSRL-WT-NG, T. Oldham

AMSRL-WT-NH, J. Corrigan

AMSRL-WT-PB,

P. Weihnacht

B. Guidos

AMSRL-WT-TC, K. Kimsey

INTENTIONALLY LEFT BLANK.

USER EVALUATION SHEET/CHANGE OF ADDRESS

	ertakes a continuing effort of the items/questions below		e reports it publishes. Your			
1. ARL Report Num	ber ARL-TR-589	Date of Report	October 1994			
2. Date Report Recei	ved					
=	•	on purpose, related project,	or other area of interest for			
4. Specifically, how	is the report being used?		n data, procedure, source of			
operating costs avoid	ed, or efficiencies achieved,	•	s man-hours or dollars saved,			
changes to organizati	on, technical content, forma		ve future reports? (Indicate			
	Organization		····			
CURRENT	Name					
ADDRESS	Street or P.O. Box No.					
	City, State, Zip Code					
_	ange of Address or Address r Incorrect address below.	Correction, please provide the	ne Current or Correct address			
	Organization					
OLD	Name	· · · · · · · · · · · · · · · · · · ·	_ 			
ADDRESS	Street or P.O. Box No.					
	City, State, Zip Code					
	(Remove this cheet fold a	s indicated tane closed and	l mail)			

(DO NOT STAPLE)