Ekonometria Finansowa

Jednowymiarowe modele szeregów czasowych

mgr Paweł Jamer¹

16 listopada 2015

¹pawel.jamer@gmail.com

Biały szum

Biały szum

Białym szumem nazwiemy szereg czasowy ϵ_t niezależnych zmiennych losowych o tym samym rozkładzie taki, że

$$\mathbb{E}(\epsilon_t) = 0,$$

$$Var(\epsilon_t) = \sigma^2.$$

Biały szum oznaczać będziemy symbolem WN $(0, \sigma^2)$.

Uwaga Bardziej złożone modele szeregów czasowych wykorzystują biały szum do opisu niepewności pomiaru opisywanych przez nie wielkości.

Błądzenie losowe

Błądzenie losowe (bez dryftu)

Szereg czasowy p_t nazwiemy błądzeniem losowym bez dryftu, jeżeli spełnia on równanie

$$p_t = p_{t-1} + \epsilon_t,$$

gdzie

• ϵ_t — biały szum.

Uwaga. Uzupełniając powyższy wzór o niezerową stałą lpha

$$p_t = \alpha + p_{t-1} + \epsilon_t$$

uzyskujemy proces błądzenia losowego z dryftem.

Ceny instrumentów finansowych

Hipoteza

Cena instrumentu finansowego p_t jest błądzeniem losowym.

Rozważmy model

$$p_t = \alpha + \rho p_{t-1} + \epsilon_t.$$

Prawdziwość powyższej hipotezy jest równoznaczna z tym, że:

- $oldsymbol{\hat{
 ho}}$ statystycznie nie różni się od jedności,
- ullet ϵ_t jest białym szumem.

Ponadto, jeżeli na zadanym poziomie istotności zachodzi:

- $\hat{\alpha} = 0$, to p_t jest błądzeniem losowym bez dryfu,
- $\hat{\alpha} \neq 0$, to p_t jest błądzeniem losowym z dryfem.

Uwaga. Z powodu możliwej niestacjonarności p_t estymacja powyższego równania jest problematyczna.

Właściwości błądzenia losowego

Błądzenie losowe bez dryftu Błądzenie losowe z dryftem

$$p_t = p_{t-1} + \epsilon_t,$$
 $p_t = \alpha + p_{t-1} + \epsilon_t,$ $p_t = p_0 + \sum_{h=0}^t \epsilon_{t-h},$ $p_t = p_0 + t\alpha + \sum_{h=0}^t \epsilon_{t-h},$ $\mathbb{E}(p_t) = p_0,$ $\mathbb{E}(p_t) = p_0 + t\alpha,$ $\mathbb{Var}(p_t) = t\sigma_{\epsilon_t}^2.$ $\mathbb{Var}(p_t) = t\sigma_{\epsilon_t}^2.$

Stopy zwrotu instrumentów finansowych

Rozważmy model błądzenia losowego bez dryftu dla logarytmu cen pewnego instrumentu finansowego

$$\log(p_t) = \log(p_{t-1}) + \epsilon_t.$$

Model ten przekształcić możemy do postaci

$$r_t = \log\left(\frac{p_t}{p_{t-1}}\right) = \epsilon_t.$$

Uwaga. Badanie czy logarytm cen p_t instrumentu finansowego jest błądzeniem losowym sprowadza się do ustalenia, czy logarytmiczne stopy zwrotu r_t tego instrumentu są białym szumem.

Krytyka

Optymalna prognoza ceny instrumentu finansowego na okres przyszły, to przyjęcie ceny tego instrumentu z okresu bieżącego.

Nie uwzględnia się rentowności zależnej od ryzyka.

Proces AR

Zdefiniujmy operator

$$\varphi(B) = I - \varphi_1 B - \ldots - \varphi_p B^p,$$

gdzie $p \in \mathbb{Z}_+$.

Proces AR

Słabo stacjonarny szereg czasowy X_t nazwiemy procesem AR (autoregresyjnym) rzędu p, jeżeli spełnia on równanie

$$\varphi(B)X_t=\epsilon_t,$$

gdzie $\epsilon_t \sim \text{WN}(0, \sigma^2)$.

Oznaczenie. Proces AR rzędu p oznacza się symbolem AR (p).

Proces MA

Zdefiniujmy operator

$$\theta(B) = I + \theta_1 B + \ldots + \theta_q B^q,$$

gdzie $q \in \mathbb{Z}_+$.

Proces MA

Słabo stacjonarny szereg czasowy X_t nazwiemy procesem MA (średniej ruchomej) rzędu q, jeżeli spełnia on równanie

$$X_{t}=\theta\left(B\right) \epsilon_{t},$$

gdzie $\epsilon_t \sim \text{WN}(0, \sigma^2)$.

Oznaczenie. Proces MA rzędu q oznacza się symbolem MA (q).

Proces ARMA Definicja

Proces ARMA

Słabo stacjonarny szereg czasowy X_t nazwiemy procesem ARMA (p,q), jeżeli spełnia on równanie

$$\varphi(B)X_{t}=\theta(B)\epsilon_{t},$$

gdzie $\epsilon_t \sim \text{WN}\left(0, \sigma^2\right)$.

Proces ARMA

Estymowanie funkcji autokorelacji (ACF)

Estymator funkcji autokorelacji

Jako estymator funkcji autokorelacji procesu X_t możemy przyjąć

$$\hat{\rho}_h = \frac{\sum_{t=h}^{T} \left(X_t - \overline{X} \right) \left(X_{t-h} - \overline{X} \right)}{\sum_{t=1}^{T} \left(X_t - \overline{X} \right)^2}$$

Proces ARMA

Estymowanie funkcji autokorelacji częściowej (PACF)

Estymator funkcji autokorelacji częściowej

Jako estymator funkcji autokorelacji częściowej procesu X_t możemy przyjąć

$$\alpha_{0} = 1,$$

$$\alpha_{1} = \phi_{1,1} = \hat{\rho}_{1},$$

$$\alpha_{h} = \phi_{h,h} = \frac{\hat{\rho}_{h} - \sum_{j=1}^{h-1} \phi_{h-1,j} \hat{\rho}_{h-j}}{1 - \sum_{j=1}^{h-1} \phi_{h-1,j} \hat{\rho}_{j}}, h = 2, 3, \dots,$$

gdzie $\phi_{i,j}$ to rozwiązania układu Yule'a-Walkera.

Intuicja. Współczynnik autokorelacji częściowej mierzy korelację między zmiennymi X_t oraz X_{t-h} po eliminacji wpływu zmiennych pośrednich.

Proces ARMA Identyfikacja na podstawie ACF oraz PACF

- Jeżeli proces jest typu AR(p), to funkcja autokorelacji powoli maleje, natomiast funkcja autokorelacji częściowej staje się statystycznie równa zero od wartości p+1.
- Jeżeli proces jest typu MA(q), to funkcja autokorelacji staje się statystycznie równa zero od wartości q+1, natomiast funkcja autokorelacji częściowej powoli maleje.
- Jeżeli proces jest typu ARMA (p, q), to funkcja autokorelacji oraz funkcja autokorelacji częściowej łagodnie zanikają.

Proces ARMA Identyfikacja na podstawie kryteriów informacyjnych

Idea

Należy oszacować modele ARMA (p,q) dla wszystkich możliwych kombinacji parametrów $p=1,2,\ldots,P$ oraz $q=1,2,\ldots,Q$, a następnie obliczyć dla nich wartości wybranego kryterium informacyjnego. Minimalna wartość kryterium wyznacza optymalną parę parametrów p i q.

Proces ARMA Kryteria informacyjne

Niech $L_{p,q}$ oznacza wiarogoność modelu ARMA (p,q).

Kryterium informacyjne Akaike (AIC)

$$AIC_{p,q} = -2 \ln L_{p,q} + 2 (p+q+1)$$

Bayesowskie kryterium informacyjne (BIC)

$$BIC_{p,q} = -2 \ln L_{p,q} + (p+q+1) \ln T$$

Proces ARMA Podział metod estymacji

Metody estymacji:

- Metody estymacji parametrów modelu AR(p):
 - równania Yule'a-Walkera,
 - metoda najmniejszych kwadratów,
 - metoda największej wiarogodności.
- Metody estymacji parametrów modelu ARMA (p, q):
 - metoda największej wiarogodności.

Biały szum Błądzenie Iosowe **Modele ARMA** Modele GARCH Model ECM

Proces ARMA

Równania Yule'a-Walkera

Równania Yule'a-Walkera to liniowy układ równań pozwalający na wyrażenie parametrów autoregresji za pomocą współczynników autokorelacji. Oszacowania parametrów modelu AR(p) otrzymujemy zastępując we wspomnianym układzie współczynniki autokorelacji ich estymatorami, a następnie rozwiązując układ.

Metoda najmniejszych kwadratów

Wykorzystanie klasycznej MNK do stacjonarnego szeregu czasowego typu AR(p). Uzysane w ten sposób estymatory będą zgodne z estymatorami metody największej wiarogodności.

Metoda największej wiarogodności

Metoda polegająca na maksymalizacji funkcji największej wiarogodności procesu ARMA (p, q).

Proces ARMA Prognoza

Interesuje nas prognoza na h okresów w przód:

$$X_{t+h} = \sum_{k=1}^{p} \rho_k X_{t+h-k} + \sum_{k=0}^{q} \theta_k \epsilon_{t-k},$$

gdzie $\theta_0 = 1$.

Możemy wyrazić ją jako warunkową wartość oczekiwaną:

$$\hat{X}_{t}(h) = \mathbb{E}(X_{t+h} \mid X_{t}, X_{t-1}, \dots),$$

$$\mathbb{E}(X_{t+j} \mid X_{t}, X_{t-1}, \dots) = \begin{cases} X_{t+j}, & j \leq 0, \\ \hat{X}_{t}(j), & j > 0, \end{cases}$$

$$\mathbb{E}(\epsilon_{t+j} \mid \epsilon_{t}, \epsilon_{t-1}, \dots) = \begin{cases} \epsilon_{t+j}, & j \leq 0, \\ 0, & j > 0. \end{cases}$$

Proces ARIMA

Proces ARIMA

Szereg czasowy X_t nazwiemy procesem ARIMA (p, d, q), jeżeli szereg czasowy $\Delta^d X_t$ jest procesem ARMA (p, q).

Z powyższej definicji wynika, że proces ARIMA (p, d, q) jest opisywany przez następujące równanie:

$$\varphi(B)\left(\Delta^{d}X_{t}\right)=\theta(B)\epsilon_{t}.$$

Multiplikatywny proces ARMA Intuicja

Niech proces X_t charakteryzuje równanie

$$\varphi_X(B)X_t = \theta_X(B)\epsilon_t,$$

natomiast proces ϵ_t równanie

$$\varphi_{\epsilon}(B) \epsilon_{t} = \theta_{\epsilon}(B) \eta_{t},$$

gdzie $\eta_t \sim \mathsf{WN}\left(0,\sigma^2\right)$. Składając powyższe równania uzyskujemy

$$\varphi_{\epsilon}(B)\varphi_{X}(B)X_{t}=\theta_{X}(B)\theta_{\epsilon}(B)\eta_{t}.$$

Uwaga. Powyższe złożenie dwóch procesów ARMA pozostaje nadal procesem ARMA.

Multiplikatywny proces ARMA Definicja

Multiplikatywny proces ARMA

Szereg czasowy X_t nazwiemy multiplikatywnym procesem ARMA $(p,q) \times (P,Q)_s$, jeżeli spełnia on równanie

$$\Phi(B^s)X_t = \Theta(B^s)\epsilon_t,$$

gdzie

- Φ operator analogiczny do φ rzędu P,
- Θ operator analogiczny do θ rzędu Q,
- ϵ_t proces ARMA (p, q).

Multiplikatywny proces ARMA Właściwości

Reprezentacja. Proces ARMA $(p,q) \times (P,Q)_s$ jest specyficznym przypadkiem procesu ARMA (p+sP,q+sQ).

Estymacja. Estymacja parametrów multiplikatywnych procesów ARMA odbywa się przez osobną estymację parametrów każdego z procesów ARMA wchodzących w jego skład.

Sezonowy proces ARIMA

Sezonowy proces ARIMA

Szereg czasowy X_t nazwiemy sezonowym procesem ARIMA $(p,d,q) \times (P,D,Q)_s$, jeżeli spełnia on równanie

$$\Phi(B^s)\phi(B)\Delta_s^D\Delta^dX_t=\Theta(B^s)\theta(B)\epsilon_t,$$

gdzie

- ϵ_t biały szum,
- $\Delta_s^D \Delta^d X_t$ proces stacjonarny.

Stylizowane fakty

Stylizowane fakty dla stóp zwrotu:

- Rozkłady stóp zrotu mają grubsze ogony niż rozkład normalny.
- Wartości stóp zwrotu są nieskorelowane, ale ich kwadraty są skorelowane.
- Duże zmianny wartości stóp zwrotu następują często po wcześniejszych dużych zmianach.

Model ARCH

Model ARCH

Powiemy, że szereg czasowy r_t jest procesem ARCH (p), jeżeli

$$r_t = \sigma_t \epsilon_t,$$

$$\sigma_t^2 = \alpha_0 + \sum_{j=1}^p \alpha_j r_{t-j}^2,$$

gdzie

- ϵ_t iid WN (0,1),
- $\alpha_0 > 0$,
- $\alpha_j \ge 0$ dla j = 1, 2, ..., p.

Uwaga. Model ARCH jest często wykorzystywany do opisu reszt w modelach ARMA.

Stacjonarność

Stacjonarność

Stacjonarne szeregi czasowe typu $\mathsf{ARCH}\left(p\right)$ spełniają nierówność

$$\sum_{j=1}^{p} \alpha_j < 1.$$

Warunkowa wariancja

Niech $\mathcal{R}_{ au}$ będzie zbiorem wszystkich informacji o szeregu czasowym r_t do chwili czasu au. Wówczas:

$$\begin{aligned} & \operatorname{Var}(r_{t} \mid \mathcal{R}_{t-1}) &= \mathbb{E}\left(r_{t}^{2} \mid \mathcal{R}_{t-1}\right) - \mathbb{E}^{2}\left(r_{t} \mid \mathcal{R}_{t-1}\right), \\ & \operatorname{Var}(r_{t} \mid \mathcal{R}_{t-1}) &= \mathbb{E}\left(\sigma_{t}^{2} \epsilon_{t}^{2} \mid \mathcal{R}_{t-1}\right) - \mathbb{E}^{2}\left(\sigma_{t} \epsilon_{t} \mid \mathcal{R}_{t-1}\right), \\ & \operatorname{Var}(r_{t} \mid \mathcal{R}_{t-1}) &= \sigma_{t}^{2} \mathbb{E}\left(\epsilon_{t}^{2} \mid \mathcal{R}_{t-1}\right) - \sigma_{t}^{2} \mathbb{E}^{2}\left(\epsilon_{t} \mid \mathcal{R}_{t-1}\right), \\ & \operatorname{Var}(r_{t} \mid \mathcal{R}_{t-1}) &= \sigma_{t}^{2} \mathbb{E}\left(\epsilon_{t}^{2}\right) - \sigma_{t}^{2} \mathbb{E}^{2}\left(\epsilon_{t}\right), \\ & \operatorname{Var}(r_{t} \mid \mathcal{R}_{t-1}) &= \sigma_{t}^{2}. \end{aligned}$$

Wniosek. σ_t^2 jest warunkową wariancją procesu r_t pod warunkiem przeszłości \mathcal{R}_{t-1} .

Efekt ARCH Test Engle'a

Szacujemy parametry modelu:

$$r_t^2 = \alpha_0 + \sum_{i=1}^{p} \alpha_j r_{t-j}^2 + \eta_t, \eta_t \text{ iid WN } (0, s).$$

Testujemy hipotezę postaci:

$$H_0: \sum_{j=1}^p \alpha_j^2 = 0.$$

Statystyka testowa przyjmuje postać:

$$LM = TR^2 \rightarrow \chi_p^2$$

gdzie R^2 to współczynnik determinacji modelu wyjściowego.

Efekt ARCH Test McLeoda-Li

Badamy szereg czasowy kwadratów wartości szeregu czsowego wyjściowego r_t .

Testujemy hipotezę postaci

$$H_0: \sum_{j=1}^h \rho_j^2 = 0.$$

Statystyka testowa przyjmuje postać:

$$T_{LB} = n(n+2)\sum_{i=1}^{h} \frac{\hat{\rho}_j^2}{n-j} \to \chi_h^2,$$

gdzie

$$\hat{\rho}_j = \frac{\sum_{t=h+1}^T r_t^2 r_{t-h}^2}{\sum_{t=1}^T r_t^4}.$$

Model GARCH

Model GARCH

Powiemy, że szereg czasowy r_t jest procesem GARCH (p,q), jeżeli

$$r_t = \sigma_t \epsilon_t,$$

$$\sigma_t^2 = \alpha_0 + \sum_{j=1}^q \alpha_j r_{t-j}^2 + \sum_{j=1}^p \beta_j \sigma_{t-j}^2,$$

gdzie

- ϵ_t iid WN (0,1),
- $\alpha_0 > 0$,
- $\alpha_i \ge 0$ dla j = 1, 2, ..., q,
- $\beta_i \ge 0$ dla j = 1, 2, ..., p.

Uwaga. Model GARCH jest często wykorzystywany do opisu reszt w modelach ARMA.

Właściwości

- Przy spełnieniu odpowiednich założeń model GARCH można sprowadzić do postaci modelu ARCH.
- Model GARCH (p, q) można przedstawić w postaci modelu ARMA (m, p) dla szeregu r_t^2 , gdzie $m = \max(p, q)$.

Stacjonarność

Stacjonarne szeregi czasowe typu GARCH(p,q) spełniają nierówność

$$\sum_{j=1}^{q} \alpha_j + \sum_{j=1}^{p} \beta_j < 1.$$

Estymacja

Estymacja modeli klasy GARCH odbywa się z wykorzystaniem metody największej wiarogodności. Maksymalizuje się funkcję log-wiarogodności

$$L_{T}(\boldsymbol{\theta}) = \sum_{t=1}^{T} \ell_{t}(\boldsymbol{\theta}),$$

gdzie

- θ wektor wszystkich parametrów modelu,
- $\ell_t\left(\theta\right)$ funkcja log-wiarogodności dla obserwacji z chwili czasu t.

Estymacja Przypadek reszt o rozkładzie normalnym

Niech dane będzie równanie

$$r_t = \sigma_t \epsilon_t$$

gdzie ϵ_t iid $\mathcal{N}(0,1)$.

Funkcja log-wiarogodności dla tego równania w chwili czasu t wyraża się wzorem

$$\ell_t\left(\boldsymbol{\theta}\right) = \log \frac{1}{\sqrt{2\pi}\sigma_t} e^{-\frac{r_t^2}{2\sigma_t^2}} = -\frac{r_t^2}{2\sigma_t^2} - \log \sigma_t - \log \sqrt{2\pi}.$$

Finalna postać tej funkcji zależy od sposobu zdefiniowania warunkowej wariancji σ_t^2 w danym modelu klasy GARCH.

Ocena jakości modelu

Idea

Inwestor jest bardziej zainteresowany poznaniem kierunku zmian kursu instrumentu finansowego, niż dokładną wartością tego kursu.

Ocena jakości modelu

Miary zgodności kierunku zmian stopy zwrotu

Niech:

- r_t rzeczywista wartość stopy zwrotu w chwili czasu t,
- ullet \hat{r}_t predykowana wartość stopy zwrotu w chwili czasu t.

Podstawowe miary zgodności kierunku zmian stopy zwrotu to:

$$Q_{1} = \frac{\#\{t : r_{t}\hat{r}_{t} > 0\}}{\#\{t : r_{t}\hat{r}_{t} \neq 0\}},$$

$$Q_{2} = \frac{\#\{t : r_{t-1}r_{t} < 0 \land r_{t}\hat{r}_{t} > 0\}}{\#\{t : r_{t-1}r_{t} < 0 \land r_{t}\hat{r}_{t} \neq 0\}}.$$

Ocena jakości modelu ^{Modyfikacje miary Q1}

Uwzględniając koszta transakcji w wysokości g możemy miarę Q_1 zmodyfikować w następujący sposób:

$$Q_1' = \frac{\#\{t : r_t > g \land r_t \hat{r}_t > 0\}}{\#\{t : r_t > g \land r_t \hat{r}_t \neq 0\}}.$$

W przypadku modeli pozwalających szacować wyłącznie zmienność stopy zwortu σ_t (np. modele GARCH bez części ARIMA) możemy zastosować następującą modyfikację miary Q_1 :

$$Q_1^{\mathsf{x}} = \frac{\# \{t : r_t \Delta \hat{\sigma}_t < 0\}}{\# \{t : r_t \Delta \hat{\sigma}_t \neq 0\}}.$$

Model GARCH-M

Model EGARCH

Model TGARCH

Kointegracja

Idea. Chcemy wiedzieć, czy bazując na pewnej grupie niestacjonarnych szeregów czasowych możemy bezpiecznie zbudować model.

Kointegracja

Powiemy, że szeregi czasowe $X_{1,t}, X_{2,t}, \ldots, X_{n,t}$ są skointegrowane w stopniu (d,b), jeżeli dla każdego $i=1,2,\ldots,n$ zachodzi

$$X_{i,t} \sim I(d)$$

oraz istnieją takie wartości $\beta_1,\beta_2,\ldots,\beta_n,$ że

$$\beta_1 X_{1,t} + \beta_2 X_{2,t} + \ldots + \beta_n X_{n,t} \sim I(d-b).$$

Intuicja. Relacje pomiędzy skointegrowanymi niestacjonarnymi szeregami czasowymi pozostają w długiej perspektywie czasowej niezmienne.

Testowanie kointegracji

Procedura Engle'a-Grangera.

- Należy zweryfikować czy wszystkie analizowane szeregi czasowe charakteryzuje ten sam stopień integracji.
- Należy zbudować model regresji liniowej wielorakiej w którym jeden z analizowanych szeregów pełni rolę zmiennej objaśnianej, pozosałe natomiast zmiennych objaśniających.
- Należy przetestować stopień integracji reszt wyznaczonego w poprzednim kroku modelu.

Model ECM

Model korekty błędem (ECM)

$$\Delta y_{t} = \mu + \alpha (y_{t-1} - \beta_{0} - \beta_{1} x_{t-1}) + \sum_{i=1}^{k-1} \theta_{i} \Delta y_{t-i} + \sum_{i=0}^{k-1} \gamma_{i} \Delta x_{t-i} + \epsilon_{t}$$

Interpretacja:

- $y_{t-1} = \beta_0 + \beta_1 x_{t-1}$ równanie równowagi długookresowej,
- $y_{t-1} \beta_0 \beta_1 x_{t-1}$ odchylenie od równowagi długookr.,
- α współczynnik opisujący szybkość dostosowywania się zmiennej objaśnianej do poziomu równowagi długookresowej (w stabilnym modelu $\alpha < 0$).
- θ_i, γ_i współczynniki opisujące dynamikę krótkookresową.

Stosowalność

Uwaga. Twierdzenie Grangera o reprezentacji gwarantuje nam możliwość zastosowania mechanizmu korekty błędem względem skointegrowanych szeregów czasowych.

Estymacja

Estymacja parametrów równania równowagi długookresowej

$$y_{t-1} = \beta_0 + \beta_1 x_{t-1}.$$

2 Skonstruowanie szeregów czasowych

$$\epsilon_t = y_t - \beta_0 - \beta_1 x_t,
\Delta x_t = x_t - x_{t-1},
\Delta y_t = y_t - y_{t-1}.$$

Stymacja parametrów równania modelu korekty błędem

$$\Delta y_t = \mu + \alpha \epsilon_{t-1} + \sum_{i=1}^{k-1} \theta_i \Delta y_{t-i} + \sum_{i=0}^{k-1} \gamma_i \Delta x_{t-i} + \epsilon_t$$

Pytania?

Dziękuję za uwagę!