MATH 221 EXAM 2

Tuesday July 22, 2014

Instructor's Nan No books are all work in detail.		e back p	Name: back page as a sketch paper. For full of				eredit show your
	Total:58	# 1	# 2	# 3	# 4	# 5	

1 (15 pts). Determine whether the series converges or diverges:

$$\bullet \text{ a.} \sum_{n=0}^{\infty} \frac{1}{\sqrt{n^3 + 2n + 1}}$$

• b.
$$\sum_{n=2}^{\infty} \frac{1}{n(\ln n)}$$

• c.
$$\sum_{n=0}^{\infty} \frac{1}{n^2 - 9}$$

2 (8 pts). Determine whether the infinite sequence with general term a_n converges or diverges. If it converges, give the limit; if it diverges, show why.

• a.
$$a_n = \ln(\frac{8n+33}{2n-1})$$

• b.
$$a_n = \frac{3^{2n}}{n!}$$

- 3 (10 pts). Determine convergence or divergence of the alternating series. If it converges, is it absolute or conditional?
 - a. $\sum_{n=2}^{\infty} \frac{(-1)^n}{n(\ln n)}$

• b. $\sum_{n=1}^{\infty} \frac{\cos n}{2^n}$

4 (15 pts).

• a. Verify the Maclauren series for $f(x) = \frac{1}{1-x}$ is $\sum_{n=0}^{\infty} x^n$ and it's interval of convergence.

• b. Using part a. find the Maclauren series for $f(x) = \frac{1}{3+4x}$ and it's interval of convergence.

• c. Using part a. find the Maclauren series for $f(x) = \ln(1 - x^2)$ and it's interval of convergence.

- 5 (10 pts). Determine whether the series converges or diverges. If it converges, to what does it converge?
 - a. $\sum_{n=2}^{\infty} \frac{1}{n(n-1)}$

• b. $\sum_{n=0}^{\infty} \frac{3(-2)^n - 5^n}{8^n}$