Самостійна робота з функціонального аналізу Варіант 4

КА-02 Козак Назар

Задача 1. Знайти норму заданого елемента в лінійному просторі $E:E=\mathcal{C}\left(\left[0,+\infty\right);\mathbb{C}\right),x(t)=\frac{1}{1+it}.$

Оскільки нам заданий простір неперервних функцій, то нормою на цьому просторі є супремум-норма, знайдемо її для заданої функції:

$$||x(t)||_{\infty} = \sup_{t \in [0, +\infty)} |x(t)| = \sup_{t \in [0, +\infty)} \left| \frac{1}{1+it} \right| = \sup_{t \in [0, +\infty)} \left| \frac{1 \cdot (1-it)}{(1+it) \cdot (1-it)} \right| = \sup_{t \in [0, +\infty)} \left| \frac{1-it}{1-(-t^2)} \right| = \sup_{t \in [0, +\infty)} \left| \frac{1-it}{1-t^2} \right| = \sup_{t \in [0, +\infty)} \left| \frac{1-it}{1-t^2} \right| = \sup_{t \in [0, +\infty)} \sqrt{\left(\frac{1}{1+t^2}\right)^2 + \left(\frac{t}{1+t^2}\right)^2} = \sup_{t \in [0, +\infty)} \sqrt{\frac{1+t^2}{(1+t^2)^2}} = \sup_{t \in [0, +\infty)} \sqrt{\frac{1}{1+t^2}} = 1$$

Відповідь. 1

Задача 2. З'ясувати чи буде $(F,\|\cdot\|)$ лінійним нормованим простором, де $F=\{\mathbf{x}\in E:\|\mathbf{x}\|<\infty\}$ $E=\mathbb{R}^\infty,\|\mathbf{x}\|=\sum\limits_{k=1}^\infty|x_{2k}-x_{2k-1}|$.

Спочатку доведемо, що F це лінійний простір. Оскільки $F \subset E$, а $E = \mathbb{R}^{\infty}$ є лінійним простором, то доведемо, що F це лінійний підпростір простору E. Це можливо тоді і тільки тоді виконуються наступні дві умови:

- 1. $\forall \mathbf{x}, \mathbf{y} \in F$: $\mathbf{x} + \mathbf{y} \in F$
- 2. $\forall \lambda \in \mathbb{R} \quad \forall \mathbf{x} \in F : \quad \lambda \cdot \mathbf{x} \in F$

Перевіримо їх:

1. Нехай $\mathbf{x}, \mathbf{y} \in F$, тобто $\|\mathbf{x}\| < \infty, \|\mathbf{y}\| < \infty$, тоді:

$$\|\mathbf{x} + \mathbf{y}\| = \sum_{k=1}^{\infty} |x_{2k} + y_{2k} - x_{2k-1} - y_{2k-1}| = \sum_{k=1}^{\infty} |(x_{2k} - x_{2k-1}) + (y_{2k} - y_{2k-1})|$$

Оскільки для будь-яких $a,b\in\mathbb{R}$ виконується: $|a+b|\leqslant |a|+|b|,$ то маємо:

$$\sum_{k=1}^{\infty} |(x_{2k} - x_{2k-1}) + (y_{2k} - y_{2k-1})| \leq \sum_{k=1}^{\infty} (|x_{2k} - x_{2k-1}| + |y_{2k} - y_{2k-1}|) = \sum_{k=1}^{2k} |x_{2k} - x_{2k-1}| + \sum_{k=1}^{\infty} |y_{2k} - y_{2k-1}| = ||\mathbf{x}|| + ||\mathbf{y}|| < \infty \quad \Rightarrow \quad \mathbf{x} + \mathbf{y} \in F$$

2. Нехай $\lambda \in \mathbb{R}, \mathbf{x} \in F$, тоді $\lambda \mathbf{x} = (\lambda x_1, \lambda x_2, \dots)$:

$$\|\lambda \mathbf{x}\| = \sum_{k=1}^{\infty} |\lambda x_{2k} - \lambda x_{2k-1}| = \sum_{k=1}^{\infty} |\lambda (x_{2k} - x_{2k-1})| = \sum_{k=1}^{\infty} |\lambda| |x_{2k} - x_{2k-1}| = |\lambda| \sum_{k=1}^{\infty} |x_{2k} - x_{2k-1}| = |\lambda| \|\mathbf{x}\| < \infty \quad \Rightarrow \quad \lambda \mathbf{x} \in F$$

Отримали те, що F це лінійний підпростір простору E. А, отже, F - лінійний простір.

Для того, щоб функція $\|\mathbf{x}\| = \sum_{k=1}^{\infty} |x_{2k} - x_{2k-1}|$ була нормою на F потрібно щоб виконувалось 4 умови, а саме:

- 1. $\|\mathbf{x}\| \geqslant 0$, $\forall \mathbf{x} \in F$
- 2. $\|\lambda \mathbf{x}\| = |\lambda| \|\mathbf{x}\|, \quad \forall \mathbf{x} \in F, \lambda \in \mathbb{R}$

- 3. $\|\mathbf{x} + \mathbf{y}\| \leq \|\mathbf{x}\| + \|\mathbf{y}\|, \quad \forall \mathbf{x}, \mathbf{y} \in F$
- 4. $\|\mathbf{x}\| = 0$, тоді і тільки тоді, коли $\mathbf{x} = \mathbf{0}$

Перевіримо кожну з цих умов окремо:

- 1. Перша умова виконується, це випливає з того, що модуль числа завжди $\geqslant 0$.
- 2. Спочатку нагадаємо, що якщо $\mathbf{x} = (x_1, x_2, ...)$, то $\lambda \mathbf{x} = (\lambda x_1, \lambda x_2, ...)$, тоді:

$$\|\lambda\mathbf{x}\| = \sum_{k=1}^{\infty} |\lambda x_{2k} - \lambda x_{2k-1}| = \sum_{k=1}^{\infty} |\lambda (x_{2k} - x_{2k-1})| = \sum_{k=1}^{\infty} |\lambda| |x_{2k} - x_{2k-1}| = |\lambda| \sum_{k=1}^{\infty} |x_{2k} - x_{2k-1}| = |\lambda| \|\mathbf{x}\|$$

Як бачимо друга умова також виконується.

3. Якщо $\mathbf{x}=(x_1,x_2,\dots), \mathbf{y}=(y_1,y_2,\dots),$ то $\mathbf{x}+\mathbf{y}=(x_1+y_1,x_2+y_2,\dots),$ тоді:

$$\|\mathbf{x} + \mathbf{y}\| = \sum_{k=1}^{\infty} |x_{2k} + y_{2k} - x_{2k-1} - y_{2k-1}| = \sum_{k=1}^{\infty} |(x_{2k} - x_{2k-1}) + (y_{2k} - y_{2k-1})|$$

Оскільки для будь-яких $a,b\in\mathbb{R}$ виконується: $|a+b|\leqslant |a|+|b|$, то маємо:

$$\sum_{k=1}^{\infty} |(x_{2k} - x_{2k-1}) + (y_{2k} - y_{2k-1})| \leqslant \sum_{k=1}^{\infty} (|x_{2k} - x_{2k-1}| + |y_{2k} - y_{2k-1}|) = \sum_{k=1}^{2k} |x_{2k} - x_{2k-1}| + \sum_{k=1}^{\infty} |y_{2k} - y_{2k-1}| = ||\mathbf{x}|| + ||\mathbf{y}||$$

Тоді $\|\mathbf{x} + \mathbf{y}\| \leqslant \|\mathbf{x}\| + \|\mathbf{y}\|$, а отже третя умова - виконується.

4. Четверта умова не виконується, наведемо контрприклад: нехай $\mathbf{x}^1 = (1, 1, \dots) \in F$, знайдемо його норму:

$$\|\mathbf{x}^1\| = \sum_{k=1}^{\infty} |x_{2k} - x_{2k-1}| = |1 - 1| + |1 - 1| + \dots = 0 + 0 + \dots = 0$$

Бачимо, що $\|\mathbf{x}^1\| = 0$, при цьому $\mathbf{x}^1 \neq \mathbf{0}$, тому четверта умова не виконується. Тому $\|\cdot\|$ не є нормою на F. А, отже, $(F, \|\cdot\|)$ не є лінійним нормованим простором.

Але варто зазначити, що окільки виконується перші 3 умови, то $\|\cdot\|$ є півнормою на F.

Відповідь. $(F, \|\cdot\|)$ не є лінійним нормованим простором.

Задача 3. З'ясувати чи є послідовність $(\mathbf{x}^n)_{n\in\mathbb{N}}$ збіжна в лінійному нормованому просторі $E\colon E=\ell_1,\,\mathbf{x}^n=\left(1,-\frac{1}{2},\ldots,(-1)^{n-1}\frac{1}{n},0,0,\ldots\right)$

Маємо:

$$\mathbf{x}^1 = (1, 0, 0, 0, \dots)$$

$$\mathbf{x}^2 = (1, -\frac{1}{2}, 0, \dots)$$

$$\mathbf{x}^3 = (1, -\frac{1}{2}, \frac{1}{3}, 0, \dots)$$

:

$$\mathbf{x}^k = \left(1, -\frac{1}{2}, \dots, (-1)^{k-1} \frac{1}{k}, 0, 0, \dots\right)$$

:

Нехай послідовність $(\mathbf{x}^n)_{n=1}^{\infty}$ - збігається, та нехай \mathbf{x}^* - границя цієї послідовності, де $\mathbf{x}^* = (x_1^*, x_2^*, \dots)$. Тоді $x_k^* = \lim_{n \to \infty} x_k^n = (-1)^{k-1} \frac{1}{k}$. Отже ми отримали, що, якщо існує границя послідовності $(\mathbf{x}^n)_{n=1}^{\infty}$, то вона дорівнює вектору \mathbf{x}^* , який має вигляд:

$$\mathbf{x}^* = \left(1, -\frac{1}{2}, \dots, (-1)^{k-1} \frac{1}{k}, (-1)^k \frac{1}{k+1}, \dots\right)$$

Границею послідовності $(\mathbf{x}^n)_{n=1}^{\infty}$ в просторі ℓ_1 є вектор \mathbf{x}^* тоді і тільки тоді, коли виконується наступна умова:

$$\|\mathbf{x}^n - \mathbf{x}^*\|_1 \to 0, \quad n \to \infty$$

Перевіримо її:

$$\begin{aligned} \|\mathbf{x}^{n} - \mathbf{x}^{*}\|_{1} &= \left\| (1, -\frac{1}{2}, \dots, (-1)^{n-1} \frac{1}{n}, 0, \dots) - (1, -\frac{1}{2}, \dots, (-1)^{k-1} \frac{1}{k}, \dots) \right\|_{1} = \\ &= \left\| (0, 0, \dots, 0, -(-1)^{n} \frac{1}{n+1}, -(-1)^{n+1} \frac{1}{n+2}, \dots) \right\|_{1} = |0| + \dots + |0| + \left| -(-1)^{n} \frac{1}{n+1} \right| + \\ &+ \left| -(-1)^{n+1} \frac{1}{n+2} \right| + \dots = \frac{1}{n+1} + \frac{1}{n+2} + \frac{1}{n+3} + \dots \end{aligned}$$

Тоді:

$$\|\mathbf{x}^n - \mathbf{x}^*\|_1 = \sum_{k=n+1}^{\infty} \frac{1}{k}$$

Отримали те, що члени послідовністі $\|\mathbf{x}^n - \mathbf{x}^*\|_1$ це залишки гармонічного ряду. З курсу математичного аналізу відомо, що він розбіжний, тому всі його залишки також розбіжні. Отримуємо те, що $\|\mathbf{x}^n - \mathbf{x}^*\|_1 \to \infty, n \to \infty$, тому послідовність $(\mathbf{x}^n)_{n=1}^{\infty}$ не збігається до вектора x^* в просторі ℓ_1 , а, отже, послідовність $(\mathbf{x}^n)_{n=1}^{\infty}$ не збіжна в просторі ℓ_1

Відповідь. ні.

Задача 4. З'ясувати чи є підмножина G лінійного нормованого простору E а) відкритою; б) замкненою, якщо: $E = \mathcal{C}\left([0,1];\mathbb{R}\right), G = \{x \in E : x(0) \leq 0, x(1) > 0\}.$

Нагадаємо, нехай маємо лінійний нормований простір $(E, \|\cdot\|)$ та $\mathbf{x}^0 \in E, \varepsilon > 0$, тоді відкритою кулею в E навколо точки x^0 радіуса ε називається множина виду:

$$B(\mathbf{x}^0, \varepsilon) = \left\{ \mathbf{x} \in E : \|\mathbf{x} - \mathbf{x}^0\| < \varepsilon \right\}$$

1. G - відкрита ?

Для того, щоб G була відкритою потрібно, щоб виконувалась умова: $\forall \mathbf{x} \in G : \exists \varepsilon > 0 : B(\mathbf{x}, \varepsilon) \subset G$. Множина G не буде відкритою, наведемо контрприклад. Візьмемо функцію $\mathbf{x}(t) = t$. Вона належить множині G, оскільки $\mathbf{x}(0) = 0 \leqslant 0, x(1) = 1 > 0$, а також покладемо $\mathbf{x}^1 = t + \frac{\varepsilon}{2}, \varepsilon > 0$. Знайдемо супремум-норму для функції $\mathbf{x}^1 - \mathbf{x}$:

$$\|\mathbf{x}^1 - \mathbf{x}\|_{\infty} = \sup_{t \in [0,1]} \left| t + \frac{\varepsilon}{2} - t \right| = \sup_{t \in [0,1]} \left| \frac{\varepsilon}{2} \right| = \frac{\varepsilon}{2}$$

Як бачимо $\|\mathbf{x}^1 - \mathbf{x}\|_{\infty} = \frac{\varepsilon}{2} < \varepsilon$, тому $\mathbf{x}^1 \in B(\mathbf{x}, \varepsilon)$. З іншого боку $\mathbf{x}^1(0) = \frac{\varepsilon}{2} > 0$, тому $\mathbf{x}^1 \notin G$. З довільності вибору ε випливає те, що для функції $\mathbf{x} \in G$ не існує такого $\varepsilon > 0$, що $B(\mathbf{x}, \varepsilon) \subset G$. Тому множина G - не ε відкритою

2. G - замкнена?

Щоб множина G була замкненою, вона має містити всі свої граничні точки. Множина G не буде замкненою, наведемо контрприклад: візьмемо точку $\mathbf{x}^2 = 0$.

Також розглянемо точку $\mathbf{y}=\varepsilon t-\frac{\varepsilon}{2}, \varepsilon>0$. Знайдемо супремум-норму функції $\mathbf{y}-\mathbf{x}^2$:

$$\|\mathbf{y} - \mathbf{x}^2\|_{\infty} = \sup_{t \in [0,1]} \left| \varepsilon t - \frac{\varepsilon}{2} \right| = \left| \varepsilon - \frac{\varepsilon}{2} \right| = \frac{\varepsilon}{2}$$

Бачимо, що $\|\mathbf{y} - \mathbf{x}^2\|_{\infty} = \frac{\varepsilon}{2} < \varepsilon$, тому $\mathbf{y} \in B(\mathbf{x}^2, \varepsilon)$, навіть $\mathbf{y} \in \mathring{B}(\mathbf{x}^2, \varepsilon)$, оскільки $\mathbf{x}^2 \neq \mathbf{y}$. Також маємо, що $\mathbf{y} \in G$, оскільки $\mathbf{y}(0) = -\frac{\varepsilon}{2} \leq 0$, $\mathbf{y}(1) = \frac{\varepsilon}{2} > 0$. З довільності ε отримуємо те, що для кожного $\varepsilon > 0$ перетин відкритої виколотої кулі навколо точки $\mathbf{x}^2(\mathring{B}(\mathbf{x}^2, \varepsilon))$ та множини G містить хоча б одну точку, а отже не ε порожньою множиною. З цього, за означенням, випливає те, що \mathbf{x}^2 гранична точка множини G.

3 іншого боку маємо: $\mathbf{x}^2(1) = 0 \geqslant 0$, а, отже, $\mathbf{x}^2 \notin G$. Маємо те, що множина G не містить свою граничну точку \mathbf{x}^2 , а, отже, не є замкненою.

Відповідь. множина G не відкрита і не замкнена.