National University of Singapore School of Computing CS1010S: Programming Methodology Semester I, 2018/2019

Recitation 2 Recursion, Iteration & Orders of Growth

Definitions

Theta (Θ) notation:

$$f(n) = \Theta(g(n)) \Leftrightarrow \exists k_1, k_2, n_0 . k_1 \cdot g(n) \leq f(n) \leq k_2 \cdot g(n), \text{ for } n > n_0$$

Big-O notation:

$$f(n) = O(g(n)) \Leftrightarrow \exists k, n_0 . f(n) \leq k \cdot g(n), \text{ for } n > n_0$$

Adversarial approach: For you to show that $f(n) = \Theta(g(n))$, you pick k_1 , k_2 , and n_0 , then I (the adversary) try to pick an n which doesn't satisfy $k_1 \cdot g(n) \leq f(n) \leq k_2 \cdot g(n)$.

Implications

Ignore constants. Ignore lower order terms. For a sum, take the larger term. For a product, multiply the two terms. Orders of growth are concerned with how the effort scales up as the size of the problem increases, rather than an exact measure of the cost.

Typical Orders of Growth

- \bullet $\Theta(1)$ Constant growth. A fixed number of simple, non-decomposable operations have constant growth.
- $\Theta(\log n)$ Logarithmic growth. At each iteration, the problem size is scaled down by a constant amount.
- ullet $\Theta(n)$ Linear growth. At each iteration, the problem size is decremented by a constant amount.
- $\Theta(n \log n)$ Nifty growth. Nice recursive solution to normally $\Theta(n^2)$ problem.
- $\Theta(n^2)$ Quadratic growth. Computing correspondence between a set of n things, or doing something of cost n to all n things both result in quadratic growth.
- $\Theta(2^n)$ Exponential growth. Really bad. Searching all possibilities usually results in exponential growth.

What's n?

Order of growth is *always* in terms of the size of the problem. Without stating what the problem is, and what is considered primitive (what is being counted as a "unit of work" or "unit of space"), the order of growth doesn't have any meaning.

Problems

1. Remember our point-of-sale and order-tracking system from last week? Recall that the joint only sells 4 options for combos: Classic Single Combo (hamburger with one patty), Classic Double With Cheese Combo (2 patties), and Classic Triple with Cheese Combo (3 patties), Avant-Garde Quadruple with Guacamole Combo (4 patties). We shall encode these combos as 1, 2, 3, and 4 respectively. Each meal can be *biggie-sized* to acquire a larger box of fries and drink. A *biggie-sized* combo is represented by 5, 6, 7, and 8 respectively, for combos 1, 2, 3, and 4 respectively.

In addition, an order is a collection of combos. We'll encode an order as each digit representing a combo. For example, the order 237 represents a Double, Triple, and *biggie-sized* Triple.

Assume that you have the following functions available:

- biggie_size which when given a regular combo returns a biggie-sized version.
- unbiggie_size which when given a *biggie-sized* combo returns a non-*biggie-sized* version.
- is_biggie_size which when given a combo, returns True if the combo has been *biggie-sized* and False otherwise.
- combo_price which takes a combo and returns the price of the combo.
- empty_order which takes no arguments and returns an empty order which is represented by 0.
- add_to_order which takes an order and a combo and returns a new order which contains the contents of the old order and the new combo. For example, add_to_order(1,2) -> 12.
- (a) Write a recursive function called order_size which takes an order and returns the number of combos in the order. For example, order_size(237) -> 3.

(b) Write an iterative version of order_size.

(c) Write a recursive function called order_cost which takes an order and returns the total cost of all the combos.

(d) Write an iterative version of order_cost.

- (e) **Homework:** Write a function called add_orders which takes two orders and returns a new order that is the combination of the two. For example, add_orders (123,234) -> 123234. Note that the order of the combos in the new order is not important as long as the new order contains the correct combos. add_orders(123,234) -> 122334 would also be acceptable.
- 2. Give order notation for the following:

```
(a) 5n^2 + n
```

(b)
$$\sqrt{n} + n$$

(c) $3^n n^2$

```
3. def fact(n):
    if n == 0:
        return 1
    else:
        return n * fact(n - 1)
```

Running time? O(n) Space? O(n)

4. Write an iterative version of fact.

```
5. def \ find_e(n):

if n == 0:

return 1

else:

return 1/fact(n) + find_e(n - 1)

Running time? O(n^2) Space? O(n) (Assume iterative fact)
```

6. Assume you have a function $is_divisible(n, x)$ which returns True if n is divisible by x. It runs in O(n) time and O(1) space. Write a function is_prime which takes a number and returns True if it's prime and False otherwise. def $is_prime(x)$:

Running time?

Space?

7. **Homework:** Write an iterative version of find_e.