```
In [1]: import pandas as pd import ipywidgets as widgets from ipywidgets import interact import utils print('All packages imported successfully!')

All packages imported successfully!
```

metadata = utils.get_dataframe_from_file_structure()

Display the first five rows of the dataset
metadata.head()

	subset	label	lat	lon	path	filename
0	train	visible_damage	29.771164000000002	-95.638338	train/visible_damage/-95.638338_29.77116400000	-95.638338_29.771164000000002.jpeg
1	train	visible_damage	29.824802000000002	-95.089349	$train/visible_damage/-95.089349_29.82480200000$	-95.089349_29.824802000000002.jpeg
2	train	visible_damage	29.981403000000004	-95.119694	$train/visible_damage/-95.119694_29.98140300000$	-95.119694_29.981403000000004.jpeg
3	train	visible_damage	29.757379999999998	-95.59024000000001	$train/visible_damage/-95.5902400000001_29.757$	-95.5902400000001_29.757379999999998.jpeg
4	train	visible_damage	28.579998	-96.994213	train/visible_damage/-96.994213_28.579998.jpeg	-96.994213_28.579998.jpeg

```
# Create dataframe that summarizes image classification in each subset
df = pd.pivot_table(metadata, index='subset', columns='label', values='filename', aggfunc='count')

# Add new column with total number of images in each subset
df['total'] = df['visible_damage'] + df['no_damage']

# Show dataframe
df
```

label	no_damage	visible_damage	total
subset			
test	1000	1000	2000
train	5000	5000	10000
alidation	1000	4000	2000

Image Num ————

1255


```
import os
import logging
import tensorflow as tf

# Configure Python to ignore Tensorflow warnings
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'  # Ignore tf warning messages
logging.getlogger("tensorflow").setLevel(logging.ERROR)
tf.autograph.set_verbosity(0)

from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.optimizers import Adam

import matplotlib.pyplot as plt|
import utils

print('All packages imported successfully!')
IMAGE_SIZE = (150, 150)
```

All packages imported successfully!

utils.data_aug_flip(image) plt.show()

Random Flip O horizontal

vertical

horizontal_and_vertical

utils.data_aug_zoom(image)
plt.show()

Zoom: ______ 1.2

utils.data_aug_brightness(image)
plt.show()

Brightness factor: -

mod	el.	. St	ımm	ary	()
_	_	_	_	_	_

Model: "sequential_4"

Layer (type)	Output Shape	Param #
conv2d_16 (Conv2D)	(None, 148, 148, 32)	896
max_pooling2d_16 (MaxPoolin g2D)	(None, 74, 74, 32)	0
batch_normalization_4 (Batc hNormalization)	(None, 74, 74, 32)	128
conv2d_17 (Conv2D)	(None, 72, 72, 64)	18496
max_pooling2d_17 (MaxPoolin g2D)	(None, 36, 36, 64)	0
conv2d_18 (Conv2D)	(None, 34, 34, 128)	73856

utils.plot_training_history('./models/cnn_history')

0 9 + 0 5 2 4 5

Training metrics

8/8 [===========] - 48s 6s/step - loss: 0.1823 - accuracy: 0.9780

Epoch 3/3

