Lab 11: MOSFET Amplifier Configurations

Name: Wan-Yu Liao

ECEN 325 Section 514

TA: Mandela

Lab Date: November 15, 2019

Lab Report Due Date: November 19, 2019

Calculation

Common - Source

Common-Drain

$$V_{DD} = 5V$$
 $R_{G1} = 16035\Omega$
 $R_{G2} = 35032\Omega$
 $R_{S} = 559\Omega$
 $V_{DV} = 0.12V$

$$g_{m} = \frac{R_{s}}{L} V_{ov} = 0.0895 \cdot 0.2 = 0.0179 \text{ A/V}$$

$$A_{v} = \frac{R_{s}}{\frac{1}{g_{m}} + R_{s}} = \frac{559}{\frac{1}{0.0179} + 559} = 0.909$$

$$R_{i} = R_{al} || R_{al} = \frac{11 \text{ K}\Omega}{10.0179} = 50.79\Omega$$

$$R_{o} = R_{s} || \frac{1}{g_{m}} = \frac{559 \cdot \frac{1}{0.0179}}{559 + \frac{1}{0.0179}} = 50.79\Omega$$

Simulation

Common-Source Amplifier

Figure 1: DC Solution for common-source amplifier ▲

$$V_{RG2}=3.43\,V$$

$$V_{RS}=0.996V$$

$$V_{RD} = 5\text{-}2.5 = 2.5V$$

$$V_{\text{o,dc}} = 2.5 V\,$$

$$I_{\text{D}}=1.78mA$$

Figure 2.1: AC Simulation of A_V for common-source amplifier ▲

 $A_V = 24.9948$

Figure 2.2: AC Simulation of R₁ for common-source amplifier **△**

 $R_{\rm i}=11.0740k\Omega$

Figure 3: Time-domain waveform of $V_i = 40 \text{mV}$ for common-source amplifier \blacktriangle

$$A_V = \frac{3.4434 - 1.4659}{0.039 - (-0.039)} = 25.35 \approx 25$$

Figure 4: Total harmonic distortion (THD) for common-source amplifier ▲

THD =
$$4.9432\% \le 5\%$$

Figure 5: Clipping voltage for common-source amplifier ▲

Clipping voltage = 70mV

Common-Drain Amplifier

Figure 6: DC Solution for common-drain amplifier ▲

 $V_{RG2}=3.43\,V$

 $V_{RS}=0.996V\\$

 $I_{\text{D}}=1.78mA$

Figure 7.1: AC Simulation of A_V for common-drain amplifier \blacktriangle

 $A_V = 0.909$

Figure 7.2: AC Simulation of R₁ for common-drain amplifier ▲

 $R_{\rm i}=10.9998k\Omega$

Figure 7.3: AC Simulation of R₀ for common-drain amplifier **△**

 $R_o=50.8675\Omega\,$

Figure 8: Time-domain waveform of $V_i = 0.8V$ for common-drain amplifier \blacktriangle

$$A_V = \frac{1.7324 - 0.2881}{0.7999 - (-0.7999)} = 0.903$$

Figure 9: Total harmonic distortion (THD) for common-drain amplifier \blacktriangle THD = 0.983%

Measurement

Common-Source Amplifier:

DC Solutions:

 $V_{RG2} = 3.276 V, \ V_{RS} = 1.082 V, \ V_{RD} = 5 - 2.31 = 2.69 V, \ V_{o,dc} = 2.31 V, \ I_D = 2.69 / 1.4 k = 1.92 mA$

Figure 10.1: AC Simulation of A_V for common-source amplifier \blacktriangle

 $A_V = 25.52dB = 18.88$

Figure 10.2: AC Simulation of R_i for common-source amplifier \blacktriangle

 $R_{i}/\left(\;R_{i}+R_{test}\right)=\text{-}20.0133dB=0.0998 \Longrightarrow R_{test}=10k\Omega,\;R_{i}=1108\Omega$

Figure 11: Waveform simulation for common-source amplifier ▲

 $A_V = 0.81/0.038 = 21.32$

Figure 12: THD for common-source amplifier ▲

THD = 40.73%

Figure 13.1: V_i of clipping voltage for common-source amplifier \blacktriangle

 V_i clipping = 90mVope 1 ▶ ⊗ Wavegen 1 ⊚ ⊗ Supplies ⊚ ⊗ Network 1 ▶ ⊗ Spectrum 1 ▶

Figure 13.2: Waveform of clipping voltage for common-source amplifier ▲

Common-Drain Amplifier:

Figure 14.1: AC Simulation of A_V for common-drain amplifier ▲

$$A_V = -1.032 dB = 0.888$$

Figure 14.2: AC Simulation of R_i for common-drain amplifier ▲

$$R_i/$$
 ($R_i+R_{test})$ = -8.2dB = 0.389 => R_{test} = $10k\Omega,\,R_i$ = 6366Ω

Figure 14.3: AC Simulation of R_0 for common-drain amplifier \blacktriangle

$$R_o/\left(~R_o+R_{test}\right)=0.0937dB=1.01 => R_{test}=1k\Omega,~R_o=-10.1k\Omega~(Impossible)$$

Figure 15: Waveform for common-drain amplifier ▲

 $A_V = 0.67760/0.78492 = 0.863$

Figure 16: THD for common-drain amplifier ▲

THD = 2.924%

<u>Table</u>

Common-Source Amplifier

	Calculation	Simulation	Measurement
$ m V_{RG2}$	3.43V	3.43V	3.27V
$ m V_{RS}$	1V	0.996V	1.082V
$ m V_{RD}$	2.5V	2.5V	2.69V
$\mathbf{V}_{\mathrm{o,dc}}$	2.5V	2.5V	2.31V
I_{D}	1.79mA	1.78mA	1.92mA
Av	25	24.9948	21.32
Ri	11kΩ	11.0740kΩ	1108Ω
THD		4.9432%	40.73%

Common-Drain Amplifier

	Calculation	Simulation	Measurement
$ m V_{RG2}$	3.43V	3.43V	3.19V
$ m V_{RS}$	1V	0.996V	1.07V
I_D	1.79mA	1.78mA	1.91mA
Av	0.909	0.909	0.863
\mathbf{R}_{i}	11kΩ	10.9998 k Ω	6366Ω
Ro	50.97Ω	50.8675Ω	-10.1kΩ (impossible)
THD		0.983%	2.924%

Comment

Overall, calculation values and simulation values are very similar. For measurement, I used different β and V_T values for 2N7000 transistor to calculate resistor values since I got different β and V_T values for measurement part from Lab 10. However, for common-source amplifier, it only gave me a gain of 21.32 which is not close to 25. This might because the real-world components do not act as ideal cases and the power consumption limit of Analog Discovery 2. Also, the output resistor for common-drain amplifier is negative which is impossible.