Open-Vocabulary Multi-Label Classification via Multi-modal Knowledge Transfer

1. 文章提出的背景

- 现在解决多标签zero-shot的预训练模型用的只是单模态(如语言),忽略了图像-文本对丰富的语义信息。
- 近期的open-vocabulary(OV) 在文本-图像对上取得了良好效果,但是没有被扩展到多标签zero-shot的领域中。

2. 文章主要想解决的主要问题以及相应的方法

- 在multi-label zero-shot learning(ML-ZSL) 中应用多模态,使得图像信息得到充分应用;将OV的方法拓展到ML-ZSL问题上。
 - ------ 多模态知识迁移(MKT),使用一个预训练好的vision and language pre-trained model(VLP),并且在训练的过程中,VLP的参数是不变的。
- 保证image和label的alignment,即图片与标签之间的对应关系(一致性)
 - ------在MKT框架中用知识蒸馏,保证一致性,label embedding使用prompt tuning。

3. 文章使用的框架以及框架解读

figure1:

由下到上顺序

图片经过一个Student Image Encoder(文中用的是ViT,可训练)以及一个预训练的VLP Image Encoder得出image embedding,然后在cls embedding上做知识蒸馏。

由VLP Text Encoder给出label embedding,由Student Image Encoder输出patch embedding,然后两个embedding做相似度计算。

figure2:

从左到右顺序:

1 --- 图片分别输入ViT以及VLP Image Encoder,其中输入ViT的是non-overlapping patch,以及一个关于分类结果的embedding。经过transformer的encoder层后,得到下面的输出

$$x_L = \left[o_{cls}, o_{patch}
ight]$$

2 --- 通过VLP得到的是老师模型的输出 o_{dist} ,然后用这个输出和 o_{cls} 进行距离计算(1范式),获得知识蒸馏部分的loss

$$\mathcal{L}_{dist} \triangleq \left\| \Phi_{I}^{CLIP}\left(\mathbf{x}\right) - \mathbf{o}_{cls} \right\|_{1} = \left\| \mathbf{o}_{dist} - \mathbf{o}_{cls} \right\|_{1}$$

- 3 --- x_L 中的两个元素分别通过local head和global head(其实就是两个线性映射层),将维度映射为embedding space所需的维度
- 4 --- 在VLP Text Encoder前进行一部prompt tuning,因为不同的任务目标,如果仅仅使用VLP产生的label embedding,无法达到多分类的最优效果。

prompt tuning: 将下游任务转换为pre-training的任务。先**制定**一个句子**模板**,比如说文中是"There is a [mask] in the scene",mask部分填入的是标签词,后面需要做的是**标签词映射**,即给定哪些标签词是positive的,哪些是negative的。引入模板和标签词本质可理解为一种数据增强,通过增加提示的方式引入先验知识。

- 5 -- prompt tuning后的句子通过VLP text encoder映射到embedding space,产生label embedding z
 - 6 -- similarity score的计算

$$s_i = \langle \mathbf{z}_i, \mathbf{e}_{cls} \rangle + \text{TopK}\left(\left[\langle \mathbf{z}_i, \mathbf{e}_1 \rangle, \langle \mathbf{z}_i, \mathbf{e}_2 \rangle, \dots, \langle \mathbf{z}_i, \mathbf{e}_N \rangle\right]\right)$$

7 -- 整个framework ranking loss的计算, y_i 为ground truth

$$\mathcal{L}_{\text{rank}} \triangleq \sum_{i} \sum_{p \in \mathbf{y}_{i}, n \notin \mathbf{y}_{i}} \max \left(1 + s_{i}^{n} - s_{i}^{p}, 0\right)$$

4. 实验设定

• 数据集: NUS-WIDE, Open-Images

- 任务: zero-shot learning, generalized zero-shot learning(前者测试集全为没见过的,后者测试 集既有见过的,也有没见过的)
- sota模型: LESA, GAN-MLZSL, ZS-SDL, **BiAM**, CLIP-FT, **MKT**

Method	Setting	NUS-WIDE ($\#$ seen / $\#$ unseen = $925/81$)								Open-Images (#seen / #unseen = 7186/400)							
		Task	P	K = 3 R	F1	P	K = 5 R	F1	mAP	P	K = 10 R	F1	P	K = 20 R	F1	mAP	WmAP
LESA (M=10)	ZS	ZSL GZSL	25.7 23.6	41.1 10.4	31.6 14.4	19.7 19.8	52.5 14.6	28.7 16.8	19.4 5.6	0.7	25.6 18.9	1.4 17.4	0.5 10.2	37.4 23.9	1.0 14.3	41.7 45.4	
GAN-MLZSL		ZSL GZSL	26.6 30.9	42.8 13.6	32.8 18.9	20.1 26.0	53.6 19.1	29.3 22.0	25.7 8.9	1.3 33.6	42.4 38.9	2.5 36.1	1.1 22.8	52.1 52.8	2.2 31.9	43.0 49.7	-
ZS-SDL		ZSL GZSL	24.2 27.7	41.3 13.9	30.5 18.5	18.8 23.0	53.4 19.3	27.8 21.0	25.9 12.1	6.1 35.3	47.0 40.8	10.7 37.8	4.4 23.6	68.1 54.5	8.3 32.9	62.9 75.3	-
BiAM*		ZSL GZSL	26.6 25.2	42.5 11.1	32.7 15.4	20.5 21.6	54.6 15.9	29.8 18.2	25.9 9.4	3.9 13.8	30.7 15.9	7.0 14.8	2.7 9.7	41.9 22.3	5.5 14.8	65.6 81.7	72.9 85.0
CLIP-FT	ov	ZSL GZSL	19.1 33.2	30.5 14.6	23.5 20.3	14.9 27.4	39.7 20.2	21.7 23.2	30.5 16.8	10.8 37.5	84.0 43.3	19.1 40.2	5.9 25.4	92.1 58.7	11.1 35.4	66.2 77.5	88.2 85.9
MKT		ZSL GZSL	27.7 35.9	44.3 15.8	34.1 22.0	21.4 29.9	57.0 22.0	31.1 25.4	37.6 18.3	11.1 37.8	86.8 43.6	19.7 40.5	6.1 25.4	94.7 58.5	11.4 35.4	68.1 81.4	89.2 89.8

5. Ablation Study

- 探究了distill 和 prompt tuning 各自起到的作用和组合起到的作用
- label embedding 中对比了GloVe (single modal) 以及CLIP(multi modal)
- two stream module的作用,local head在F1上表现好,global head在mAP上表现好
- 关于知识蒸馏参数k和 λ 的研究
- 不同的backbone- VGG19 & ResNet50
- 标准的多分类任务 (没有zero-shot) 比较
- 与BiAM的Attention map比较