Numeration systems

Numeration systems are used to represent and manipulate numeric values.

We have to distinguish between a numeric value and a numeric representation:

- a value (abstract concept) is a measure of an attribute of a collection of objects;
- a representation is the means by which we display a value and manipulate it.

A value has different representations.

Ex: The numeric value "5" has more representations:

```
5 (decimal system) V (Roman system) 101( binary system) cinci (Romanian language) five(English language) cinq(French language)
```

- At the mental level people work with values, but for displaying and manipulating them different numeration systems are used (now the decimal system).
- Computers work with number representations using the binary system.

Numeration system - a set of rules for the representation and manipulation (operations) of numeric values using symbols called **digits**. The total number of digits is called **numeration base** (radix).

!! In the following "value" means the decimal numeric value.

Classification of numeration systems:

- positional systems and non-positional systems
- **1. Non-positional systems: ex**: the Roman system

- **digits**: I, V, X, L, C, D, M values: 1 5 10 50 100 500 1000

- each symbol (digit) represents a value
- -!! the value 0 cannot be represented
- it is an additive system: the value of a number representation is obtained as the sum (difference) of the values of its digits according to the following rules.
- rules:
 - a) the value of two or more identical consecutive digits is the sum of the values of these digits.

ex: numeric representations: III , CCC, MM numeric values: 3 , 300, 2000

b) the value of a pair of different digits, with the biggest one in front of the other is the sum of these two digits values:

ex: numeric representations: VI , CL , MD numeric values: 5+1=6 , 100+50=150, 1000+500=1500

c) the value of a pair of different digits, with the smallest one in front of the other is the difference of these two digits values:

ex: numeric representations: XC, IX, CM numeric values: 100-10=90, 10-1=9, 1000-100=900

d) for big numbers a horizontal line over the digit is used, meaning the multiplication of the digit's value with 1000:

ex: the numeric value of \overline{V} is 5000

!! There are different representations of the same value

Ex: both representations CDXC and XD have the same value 490

Example: MCDLIX has the decimal value 1000+500-100+50+10-1= 1459

2. Positional systems: Hindu-Arabic numeration systems

- the position of a digit in a representation implies an association with a "positional value"
- the numeric value is the sum of the positional values of all the digits from the representation
- binary system: base = 2, digits: 0,1, ex: $11001_{(2)}$
- octal system: base = 8, digits: 0,1,2,3,4,5,6,7, **ex: 2047**₍₈₎
- decimal system: base = 10, digits: 0,1,2,3,4,5,6,7,8,9, ex: 2343
- hexadecimal system: base =16, digits: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F where: $A_{(16)} = 10$, $B_{(16)} = 11$, $C_{(16)} = 12$, $D_{(16)} = 13$, $E_{(16)} = 14$, $F_{(16)} = 15$ **ex:** $2AF_{(16)}$

The calculation of the decimal values of numbers given in different numeration bases represents a conversion method from an arbitrary base into base 10 - a particular case of the *substitution method*.

Let us consider a real number in base b represented as:

$$(a_m a_{m-1} ... a_1 a_0, a_{-1} ... a_{-n})_{(b)}.$$

The decimal numeric value of this representation is calculated as follows:

N=
$$a'_0*b^0 + a'_1*b^1 + ... + a'_m*b^m + a'_{-1}*b^{-1} + ... + a'_{-n}*b^{-n}$$
, where:
 $a'_0 = (a_0)_{(b)}, ..., a'_m = (a_m)_{(b)}, a'_{-1} = (a_{-1})_{(b)}, ..., a'_{-n} = (a_{-n})_{(b)}$

- the digits from the representation in base **b** are converted in decimal and then the operations *,+,/ are performed in base 10.
- if b < 10 the digits of the base b are the same in base 10.
- $a_i^* b^i$ is the positional value of the digit of rank (position) i in the representation
- the decimal numeric value of a number in a base is the sum of the positional values of all the digits from the representation in that base.

Examples:

Theorem of numeration systems:

Given $b \in N^*$, b > 1 and the natural number N, N $\neq 0$, there exist n and the natural numbers $a_0, a_1, ..., a_{m-1}, a_m$, with $0 < a_m < b, 0 < a_i < b$ for i = 0, ..., m-1, unique determined, such that $N = a_0 * b^0 + a_1 * b^1 + ... + a_m * b^m$.

Remark: The decomposition of N in a sum of powers (with coefficients) of b provides a representation of N in base $b: N = (a_m a_{m-1} \dots a_1 a_0)_{(b)}$

This theorem suggests a **conversion method** of a decimal number into an arbitrary base *b* applying **successive divisions** (performed in base 10) of N by the destination base *b*:

- N is divided by b obtaining a quotient and a remainder.
- the quotient is divided by b obtaining a new quotient an a new remainder....

- the process of successive divisions ends when 0 is obtained as quotient.
- the remainders, in the reverse order they are obtained, are the digits of the representation of N in base b.

Examples (F.Boian):

$$24 = 11000_{(2)}$$

$$256 = 400_{(8)}$$

256	8		
256	32	8	
0	32	4	8
*	O	0	0
		. 4	

$2653 = A5D_{(16)}$							
2653	16						
16	165	16					
105	160	10	16				
96	5	0	0				
93		10					
80							
13							
D							
	\ 5						
	1	\ A					

For converting a rational number represented in an arbitrary base with integer part and fractional part we use for the integer part the method of **successive divisions** and for the fractional part we use a complementary method, applying **successive multiplications**:

- the fractional part is multiplied by **b** obtaining a number with an integer part and a fractional one;
- we continue with the multiplication of this new fractional part,...
- the process of the successive multiplications continues until one of the following conditions is satisfied:
 - a) the fractional part becomes 0;
 - b) an established number of digits of the fractional part were calculated;
 - c) periodicity is obtained.
- the integer parts, in the order they are obtained during the multiplications process, are the digits of the fractional part in the destination representation.

Example: $543,17 = ?_{(5)}$, with 3 digits on the fractional part

• conversion of the integer part: successive divisions by 5 are applied.

543: 5 = 108 remainder **3**

108: 5 = 21 remainder **3**

21: 5 = 4 remainder **1**

4:5=0 remainder **4**

543= 4133₍₅₎

• conversion of the fractional part: successive multiplications by 5 are applied.

$$0,17*5 = 0,85$$

0.85*5 = 4.25

0,25*5=1,25

0,25*5 = 1,25 !!! periodicity.

 $0,\!17=0,\!04(1)_{(5)}$

543,17=4133,04(1)₍₅₎

base 10	base 2=2 ¹	base 4=2 ²	base 8=2 ³	base 16=2 ⁴
0	0	0	0	0
1	1	1	1	1
2	10	2	2	2
3	11	3	3	3
4	100	10	4	4
5	101	11	5	5
6	110	12	6	6
7	111	13	7	7
8	1000	20	10	8
9	1001	21	11	9
10	1010	22	12	A
11	1011	23	13	В
12	1100	30	14	С
13	1101	31	15	D
14	1110	32	16	Е
15	1111	33	17	F

Rapid conversions: conversions between bases which are powers of 2.

1. Conversion from the source base $p=2^k$, $p \in \{4=2^2,8=2^3,16=2^4\}$ into the destination base 2 Rule:

Each digit from the source number in base $p=2^k$, the integer part and the fractional one, will be replaced by the corresponding group of k binary digits (adding if it is necessary insignificant zeros on the left) according to the above table.

Example:

```
3201_{(4)} =  11 10 00 01<sub>(2)</sub>

7205,346_{(8)} =  111 010 000 101,011 100 110<sub>(2)</sub>

60FA,B28_{(16)} =  0110 0000 1111 1010,1011 0010 1000<sub>(2)</sub>
```

2. Conversion from the source base 2 into the destination base $q=2^k$, $q \in \{4=2^2,8=2^3,16=2^4\}$ Rules:

- for the **integer part**: from right to left (relative to the decimal point) make groups of k binary digits (eventually we add on the left insignificant zeros to have a complete group); the groups will be replaced by the corresponding digits in base $q=2^k$ according to the above table.
- for the **fractional part**: from left to right (relative to the decimal point) make groups of k binary digits (eventually we add on the right insignificant zeros to have a complete group); the groups will be replaced by the corresponding digits in base $q=2^k$ according to the above table.

Examples:

Conversions between numeration bases for real numbers:

- the substitution method
- the method of successive divisions/multiplications
- the method which uses an intermediate base

1. Substitution method: calculation performed in the destination base

Let $N_{(b)} = (a_m a_{m-1} \dots a_1 a_0, a_{-1} \dots a_{-n})_{(b)}$ be a real number in the source base b.

We want to convert the number into the destination base h.

Steps:

- all the digits from the source representation are converted into the destination base: $(a_i)_{(b)} = (a'_i)_{(h)}, i = -n, ..., -1, 0, ..., m-1$
- the base b is converted into base h: $b = (b')_{(h)}$
- we calculate in base h the following sum:

$$(N')_{(h)} = (a'_0)_{(h)} * (b')_{(h)}^0 + (a'_1)_{(h)} * (b')_{(h)}^1 + \dots + (a'_m)_{(h)} * (b')_{(h)}^m + (a'_{-1})_{(h)} * (b')_{(h)}^{-1} + \dots + (a'_{-n})_{(h)} * (b')_{(h)}^{-n}$$

Note: The method is recommended for b < h, because:

 $(a_i)_{(b)} = (a'_i)_{(h)}, i = -n, ..., -1, 0, ..., m-1$, $b = b_{(h)}$, and we have to perform only multiplications/divisions by one digit.

Example 1:
$$354_{(6)} = ?_{(8)}$$

 $354_{(6)} = 4*6^0 + 5*6^1 + 3*6^2$
 $3_{(6)} = 3_{(8)}, 5_{(6)} = 5_{(8)}, 4_{(6)} = 4_{(8)}$
 $6 = 6_{(8)}$

Calculation in base 8:

$$4_{(8)}*6_{(8)}^{0} + 5_{(8)}*6_{(8)}^{1} + 3_{(8)}*6_{(8)}^{2} = 4_{(8)} + 36_{(8)} + 3_{(8)}*44_{(8)} = 42_{(8)} + 154_{(8)} = 216_{(8)}$$

$$354_{(6)} = 216_{(8)}$$

Example 2:
$$167_{(8)} = ?_{(5)}$$

 $167_{(8)} = 1*8^2 + 6*8^1 + 6*8^0$
 $1_{(8)} = 1_{(5)}, 6_{(8)} = 11_{(5)}, 7_{(8)} = 12_{(5)}$
 $8 = 13_{(5)}$

Calculation in base 5:

$$1_{(5)}*13_{(5)}^2 + 11_{(5)}*13_{(5)}^1 + 12_{(5)}*13_{(5)}^0 = 224_{(5)}+143_{(5)}+12_{(5)}= 434_{(5)}$$

167₍₈₎ = **434**₍₅₎

Example 3:
$$11011,11_{(2)} = ?_{(4)}$$

11011,11₍₂₎= $2^4+2^3+2^1+2^0+2^{-1}+2^{-2} = 2_{(4)}^4+2_{(4)}^3+2_{(4)}^{-1}+2_{(4)}^0+2_{(4)}^{-1}+2_{(4)}^{-2}=$
 $= 10_{(4)}^2+10_{(4)}*2_{(4)}+2_{(4)}+1_{(4)}+0,2_{(4)}+0,2_{(4)}+0,2_{(4)}/2_{(4)}=$
 $= 100_{(4)}+20_{(4)}+2_{(4)}+1_{(4)}+0,2_{(4)}+0,1_{(4)}=$ 123,3₍₄₎

2 The method of successive divisions/multiplications: calculation in the source base

b –source base and h- destination base.

- it is the generalization of the method of successive divisions/multiplications presented before for h=10.
- in the general case calculation is in an arbitrary source base b.

Note: The method is recommended for h < b, because we need to apply only divisions/multiplications by one digit.

Example 1: A5B,ED₍₁₆₎= $?_{(8)}$ with 3 digits on the fractional part

- conversion of the integer part:

$$\begin{array}{c|ccccc} A5B_{(16)} & \underline{8}_{(16)} \\ \underline{/} & | 14B & \underline{8}_{(16)} \\ 25 & \underline{/} & | 29 & \underline{8}_{(16)} \\ \underline{/} & 4B & \underline{/} & | 5 & | \underline{8}_{(16)} \\ 5B & \underline{/} & \underline{1} & \underline{/} & | 0 \\ \underline{/} & \underline{3} & \underline{5} \\ A5B_{(16)} = 5133_{(8)} \end{array}$$

- conversion of the fractional part:

 $0,ED_{(16)} = 0,732_{(8)}$ - the process of the successive multiplications is a finite one.

The final result: $A5B,ED_{(16)} = 5133,732_{(8)}$

Example 2: $123,3_{(4)} = ?_{(2)}$

- conversion of the integer part:

- conversion of the fractional part:

$$0,3_{(4)}*2_{(4)} = \mathbf{1},2_{(4)}$$
$$0,2_{(4)}*2_{(4)} = \mathbf{1},\mathbf{0}_{(4)}$$

 $0,3_{(4)}=0,11_{(2)}$ - the process of successive multiplications is a finite one.

The final result: $123,3_{(4)} = 11011,11_{(2)}$

3. The method which uses an intermediate base

$$N_{(b)} = N'_{(g)} = N''_{(h)}$$

- b the source base
- g the intermediate base
- h the destination base

a) usually g = 10 – calculus in base 10

- conversion from base b into base 10 using the substitution method,
- conversion from base 10 into base h using the method of successive divisions/multiplications

Example: $365,24_{(7)} = ?_{(3)}$ with 3 digits on the fractional part

b=7, h=3 and we choose g=10

- we apply first the substitution method – calculation performed in decimal

$$\frac{365,24_{(7)}}{365,24_{(7)}} = 3*7^2 + 6*7^1 + 5*7^0 + 2*7^{-1} + 4*7^{-2} = 194 + 0,2857 + 0,0816 = 194,3673 = \frac{194,367}{194,367}$$

- we apply the method of successive divisions/multiplications –

calculation in base 10

0,367*3 = 1,100,10*3 = 0,30

0.30*3 = 0.9

$$7:3=2$$
 remainder 1

$$194,366 = 21012,100_{(3)}$$

$$365,24_{(7)} = 3194,366 = 21012,1_{(3)}$$

b) if b and h are powers of 2, then g = 2 and rapid conversions are applied

Example:
$$10FA,BC_{(16)} = ?_{(8)}$$

$$b = 16 = 2^4$$
, $h = 8 = 2^3$; we choose $g = 2$ and we apply rapid conversions

$$10FA,BC_{(16)} = {\color{red}0001 \atop 0000} {\color{red}0000 \atop 011} {\color{red}111 \atop 1010}, {\color{red}1011 \atop 1010} {\color{red}11100}_{(2)} = \\ = {\color{red}001 \atop 000} {\color{red}000 \atop 011} {\color{red}111 \atop 111} {\color{red}010, {\color{red}101 \atop 1010}} {\color{red}111}_{(2)} = {\color{red}10372, {\color{red}57}_{(8)}}$$

Example: $2301,123_{(4)} = ?_{(8)}$

 $b = 4 = 2^2$, $h = 8 = 2^3$; we choose g = 2 and we apply rapid conversions

2301,123 (4)=
$$10$$
 11 00 $01,01$ 10 11 11 (2) = 010 110 $001,011$ 011 (2) = **261,33** (8)

- c) if b = 10 and h = 2 then for efficiency we use g = 8 or g = 16
 - conversion from base 10 into base g the method of successive divisions/multiplications is applied
 - conversion from base g into base 2 rapid conversions are applied

Example: $2345 = ?_{(2)}$ b = 10, h = 2 and we choose g = 8

- conversion from decimal into base 8: the method of successive divisions is applied

- conversion from base 8 into base 2: rapid conversions are applied

$$4451_{(8)} = 100\ 100\ 101\ 001_{(2)}$$
$$2345 = 4451_{(8)} = 100\ 100101001_{(2)}$$