EECS 391 Intro to Al

Evaluation Functions, Stochastic Games, Other Approaches

L7 Thu Sep 21, 2017

Imagine how great universities could be without all those human teachers

- Quartz series on "The Vanishing University", a four-part series exploring the techdriven future of higher education in America.
- Jill Watson is the best damn teaching assistant you could ever want.
- "I got comments like 'Mind blown' and 'I want to nominate Jill for outstanding TA award'," says Ashok Goel, a computer-science professor at Georgia Tech.
- Ashok Goel is also Jill Watson's creator.
- Jill Watson is a chat bot.

- Idea: Chose move to position (or state) with highest minimax value.
 Best achievable payoff against optimal player
- minimax-val(n) =
 - Utility(n) if terminal state
 - $\max s \in result(n)$ if n is $\max node$
 - $min s \in result(n)$ if n is min node

arg max returns the best action

function MINIMAX-DECISION(state) returns an action return $\arg\max_{a} \in \text{ACTIONS}(s)$ MIN-VALUE(RESULT(state, a))

transition model: state resulting from move a in state state

function Max-Value(state) **returns** a utility value **if** Terminal-Test(state) **then return** Utility(state)

 $v \leftarrow -\infty$

for each a in ACTIONS(state) do $v \leftarrow \text{MAX}(v, \text{MIN-VALUE}(\text{RESULT}(s, a)))$ return v

Available actions from state s

Utility function: numerical value of state (defined only for terminal states)

function Min-Value(state) returns a utility value

if TERMINAL-TEST(state) then return UTILITY(state)

MIN

 $v \leftarrow \infty$ **for each** a **in** Actions(state) **do** $v \leftarrow \text{Min}(v, \text{Max-Value}(\text{Result}(s, a)))$ **return** v Is the game over?


```
function MINIMAX-DECISION(state) returns an action return \arg\max_{a \in ACTIONS(s)} MIN-VALUE(RESULT (A, a<sub>I</sub>))
```

```
function Max-Value(state) returns a utility value if Terminal-Test(state) then return Utility(state) v \leftarrow -\infty for each a in Actions(state) do v \leftarrow \text{Max}(v, \text{Min-Value}(\text{Result}(s, a))) return v
```

function MIN-VALUE(state) **returns** a utility value **if** TERMINAL-TEST(state) **then return** UTILITY(state)


```
function MINIMAX-DECISION(state) returns an action return \arg\max_{a\in ACTIONS(s)} MIN-VALUE(RESULT (A, a<sub>1</sub>))

function MAX-VALUE(state) returns a utility value if TERMINAL-TEST(state) then return UTILITY(state) v\leftarrow -\infty for each a in ACTIONS(state) do v\leftarrow Max(v, Min-Value(Result(s, a))) return v
```

function Min-Value | B |) returns a utility value **if** TERMINAL-TEST(state) **then return** UTILITY(state) $v \leftarrow \infty$ **MAX** for each a in ACTIONS(state) do $v \leftarrow \text{MIN}(v, \text{MAX-VALUE}(\text{RESULT}(s, a)))$ a_1 a_3 a_2 return v**MIN** d_3 d_2 b_2 c_2 14 6

```
function MINIMAX-DECISION(state) returns an action
  return \arg\max_{a \in ACTIONS(s)} MIN-VALUE(RESULT(A, a_I))
function MAX-VALUE(state) returns a utility value
  if TERMINAL-TEST(state) then return UTILITY(state)
  v \leftarrow -\infty
  for each a in ACTIONS(state) do
     v \leftarrow \text{MAX}(v, \text{MIN-VALUE}(\text{RESULT}(s, a)))
  return v
function Min-Value ( B ) returns a utility value
  if TERMINAL-TEST(state) then return UTILITY(state)
  v \leftarrow \infty
                                                               MAX
  for each a in ACTIONS(state) do
     v \leftarrow \text{MIN}(v, \text{MAX-VALUE}(\text{RESULT}(\textbf{B}, \textbf{b}_{\textbf{I}}))
                                                                                         a_3
                                                            a_1
                                                                         a_2
  return v
                                       MIN
                                                         b_3
                                                                                                         d_3
                                                                                                  d_2
                                                                          c_2
```

14

- Idea: prune branches that can't influence final decision
- alpha-beta pruning keeps track of the range of possible values:

 α = max's best choice (highest val.) so far at any point along path β = min's best choice (lowest val.) so far at any point along path

- minimax(n) =
 - Utility(n) if terminal state
 - $\max s \in \text{result}(n)$ if n is $\max node$
 - $min s \in result(n)$ if n is min node
- minimax(A) = max(min(3, 12, 8), min(2, 4, 6), min(14, 5, 2))

Utilities are computed recursively from terminal states.

- minimax(n) =
 - Utility(n) if terminal state
 - $\max s \in \text{result}(n)$ if n is $\max node$
 - $min s \in result(n)$ if n is min node
- minimax(A) = max(min(3, 12, 8), min(2, x, y), min(14, 5, 2))

- minimax(n) =
 - Utility(n) if terminal state
 - $\max s \in result(n)$ if n is $\max node$
 - $min s \in result(n)$ if n is min node
- minimax(A) = max(min(3,12,8), min(2,-5,-9), min(14,5,2))

but $max(3, -9, 2) = 3 \Rightarrow a1$

- minimax(n) =
 - Utility(n) if terminal state
 - $\max s \in result(n)$ if n is $\max node$
 - $min s \in result(n)$ if n is min node
- minimax(A) = max(min(3, 12, 8), min(2, -5, -9), min(14, 5, 2))

but $max(3, -9, 2) = 3 \Rightarrow a1$

Alpha-Beta Search Algorithm

function Alpha-Beta-Search(state) **returns** an action $v \leftarrow \text{Max-Value}(state, -\infty, +\infty)$ **return** the action in Actions(state) with value v

return v

Alpha-beta pruning is a modification of the standard mini-max algorithm.

```
function MAX-VALUE(state, \alpha, \beta) returns a utility value
   if TERMINAL-TEST(state) then return UTILITY(state)
   v \leftarrow -\infty
   for each a in ACTIONS(state) do
      v \leftarrow \text{MAX}(v, \text{MIN-VALUE}(\text{RESULT}(s, a), \alpha, \beta))
      if v \geq \beta then return v-
      \alpha \leftarrow \text{MAX}(\alpha, v)
   return v
                                                                                 It cuts off the search, when
                                                                                   the result can't change.
function MIN-VALUE(state, \alpha, \beta) returns a utility value
   if TERMINAL-TEST(state) then return UTILITY(state)
   v \leftarrow +\infty
   for each a in ACTIONS(state) do
      v \leftarrow \text{MIN}(v, \text{MAX-VALUE}(\text{RESULT}(s, a), \alpha, \beta))
      if v \leq \alpha then return v_
      \beta \leftarrow \text{MIN}(\beta, v)
```

Alpha-Beta Search Algorithm

function Alpha-Beta-Search(state) **returns** an action $v \leftarrow \text{Max-Value}(state, -\infty, +\infty)$ **return** the action in Actions(state) with value v

return v

Alpha-beta pruning is a modification of the standard mini-max algorithm.

```
function MAX-VALUE(state, \alpha, \beta) returns a utility value
   if TERMINAL-TEST(state) then return UTILITY(state)
   v \leftarrow -\infty
   for each a in ACTIONS(state) do
      v \leftarrow \text{MAX}(v, \text{MIN-VALUE}(\text{RESULT}(s, a), \alpha, \beta))
      if v \geq \beta then return v
      \alpha \leftarrow \text{MAX}(\alpha, v)
   return v
function MIN-VALUE(state, \alpha, \beta) returns a utility value
   if TERMINAL-TEST(state) then return UTILITY(state)
   v \leftarrow +\infty
   for each a in ACTIONS(state) do
      v \leftarrow \text{MIN}(v, \text{MAX-VALUE}(\text{RESULT}(s, a), \alpha, \beta))
      if v \leq \alpha then return v
      \beta \leftarrow \text{MIN}(\beta, v)
```

Otherwise, it updates the best value found so far.

More properties of alpha-beta pruning

- applies to tree of any depth
- can prune entire sub-trees, not just leaves
- Idea:
 - If node n has greater value than node m, then
 - node n would never be reached
 - because our Opponent (the min player) would have to choose node m to be optimal
- That means the entire branch can be pruned once we find such a node.

- Idea: prune branches that can't influence final decision
- alpha-beta pruning keeps track of the range of possible values:

 α = max's best choice (highest val.) so far at any point along path β = min's best choice (lowest val.) so far at any point along path

alpha-beta doesn't search: it "prunes" branches that don't affect current estimates

 $\beta \leftarrow \text{MIN}(\beta, v)$

- Idea: prune branches that can't influence final decision
- alpha-beta pruning keeps track of the range of possible values:

 α = max's best choice (highest val.) so far at any point along path β = min's best choice (lowest val.) so far at any point along path

alpha-beta doesn't search: it "prunes" branches that don't affect current estimates

 $v \leftarrow \text{MIN}(v, \text{MAX-VALUE}(\text{RESULT}(s, a), \alpha, \beta))$

if $v < \alpha$ then return v

 $\beta \leftarrow \text{MIN}(\beta, v)$

- Idea: prune branches that can't influence final decision
- alpha-beta pruning keeps track of the range of possible values:

 α = max's best choice (highest val.) so far at any point along path β = min's best choice (lowest val.) so far at any point along path

alpha-beta doesn't search: it "prunes" branches that don't affect current estimates

if $v < \alpha$ then return v

 $\beta \leftarrow \text{MIN}(\beta, v)$

- Idea: prune branches that can't influence final decision
- alpha-beta pruning keeps track of the range of possible values:

 α = max's best choice (highest val.) so far at any point along path β = min's best choice (lowest val.) so far at any point along path

alpha-beta doesn't search: it "prunes" branches that don't affect current estimates

for each a **in** ACTIONS(state) **do**

if $v < \alpha$ then return v

 $\beta \leftarrow \text{MIN}(\beta, v)$

return v

 $v \leftarrow \text{MIN}(v, \text{MAX-VALUE}(\text{RESULT}(s, a), \alpha, \beta))$

- Idea: prune branches that can't influence final decision
- alpha-beta pruning keeps track of the range of possible values:

 α = max's best choice (highest val.) so far at any point along path β = min's best choice (lowest val.) so far at any point along path

alpha-beta doesn't search: it "prunes" branches that don't affect current estimates


```
function ALPHA-BETA-SEARCH(state) returns an action
  v \leftarrow \text{MAX-VALUE}(state, -\infty, +\infty)
  return the action in ACTIONS(state) with value v
function MAX-VALUE(state, \alpha, \beta) returns a utility value
  if TERMINAL-TEST(state) then return UTILITY(state)
  for each a in ACTIONS(state) do
     v \leftarrow \text{MAX}(v, \text{MIN-VALUE}(\text{RESULT}(s, a), \alpha, \beta))
function MIN-VALUE(state, \alpha, \beta) returns a utility value
  if TERMINAL-TEST(state) then return UTILITY(state)
  for each a in ACTIONS(state) do
     v \leftarrow \text{MIN}(v, \text{MAX-VALUE}(\text{RESULT}(s, a), \alpha, \beta))
```

if $v < \alpha$ then return v

 $\beta \leftarrow \text{MIN}(\beta, v)$

- Idea: prune branches that can't influence final decision
- alpha-beta pruning keeps track of the range of possible values:

 α = max's best choice (highest val.) so far at any point along path β = min's best choice (lowest val.) so far at any point along path

alpha-beta doesn't search: it "prunes" branches that don't affect current estimates

for each a **in** ACTIONS(state) **do**

if $v < \alpha$ then return v

 $\beta \leftarrow \text{MIN}(\beta, v)$

return v

 $v \leftarrow \text{MIN}(v, \text{MAX-VALUE}(\text{RESULT}(s, a), \alpha, \beta))$

- Idea: prune branches that can't influence final decision
- alpha-beta pruning keeps track of the range of possible values:

 α = max's best choice (highest val.) so far at any point along path β = min's best choice (lowest val.) so far at any point along path

alpha-beta doesn't search: it "prunes" branches that don't affect current estimates

 $v \leftarrow \text{MIN}(v, \text{MAX-VALUE}(\text{RESULT}(s, a), \alpha, \beta))$

if $v < \alpha$ then return v

 $\beta \leftarrow \text{MIN}(\beta, v)$

- Idea: prune branches that can't influence final decision
- alpha-beta pruning keeps track of the range of possible values:

 α = max's best choice (highest val.) so far at any point along path β = min's best choice (lowest val.) so far at any point along path

alpha-beta doesn't search: it "prunes" branches that don't affect current estimates

 $\beta \leftarrow \text{MIN}(\beta, v)$

- Idea: prune branches that can't influence final decision
- alpha-beta pruning keeps track of the range of possible values:

 α = max's best choice (highest val.) so far at any point along path β = min's best choice (lowest val.) so far at any point along path

alpha-beta doesn't search: it "prunes" branches that don't affect current estimates

- Idea: prune branches that can't influence final decision
- alpha-beta pruning keeps track of the range of possible values:

 α = max's best choice (highest val.) so far at any point along path β = min's best choice (lowest val.) so far at any point along path

- Idea: prune branches that can't influence final decision
- alpha-beta pruning keeps track of the range of possible values:

 α = max's best choice (highest val.) so far at any point along path β = min's best choice (lowest val.) so far at any point along path

alpha-beta doesn't search: it "prunes" branches that don't affect current estimates

 $\beta \leftarrow \text{MIN}(\beta, v)$

- Idea: prune branches that can't influence final decision
- alpha-beta pruning keeps track of the range of possible values:

 α = max's best choice (highest val.) so far at any point along path β = min's best choice (lowest val.) so far at any point along path

- Idea: prune branches that can't influence final decision
- alpha-beta pruning keeps track of the range of possible values:

 α = max's best choice (highest val.) so far at any point along path β = min's best choice (lowest val.) so far at any point along path

alpha-beta doesn't search: it "prunes" branches that don't affect current estimates

- Idea: prune branches that can't influence final decision
- alpha-beta pruning keeps track of the range of possible values:

 α = max's best choice (highest val.) so far at any point along path β = min's best choice (lowest val.) so far at any point along path

alpha-beta doesn't search: it "prunes" branches that don't affect current estimates

- Idea: prune branches that can't influence final decision
- alpha-beta pruning keeps track of the range of possible values:

 α = max's best choice (highest val.) so far at any point along path β = min's best choice (lowest val.) so far at any point along path

- Idea: prune branches that can't influence final decision
- alpha-beta pruning keeps track of the range of possible values:

 α = max's best choice (highest val.) so far at any point along path β = min's best choice (lowest val.) so far at any point along path

- Idea: prune branches that can't influence final decision
- alpha-beta pruning keeps track of the range of possible values:

 α = max's best choice (highest val.) so far at any point along path β = min's best choice (lowest val.) so far at any point along path

- Idea: prune branches that can't influence final decision
- alpha-beta pruning keeps track of the range of possible values:

 $\alpha = \max$'s best choice (highest val.) so far at any point along path

 β = min's best choice (lowest val.) so far at any point along path

- Idea: prune branches that can't influence final decision
- alpha-beta pruning keeps track of the range of possible values:

 α = max's best choice (highest val.) so far at any point along path

 β = min's best choice (lowest val.) so far at any point along path

alpha-beta doesn't search: it "prunes" branches that don't affect current estimates

- Idea: prune branches that can't influence final decision
- alpha-beta pruning keeps track of the range of possible values:

 α = max's best choice (highest val.) so far at any point along path

 β = min's best choice (lowest val.) so far at any point along path

- Idea: prune branches that can't influence final decision
- alpha-beta pruning keeps track of the range of possible values:

 α = max's best choice (highest val.) so far at any point along path

 β = min's best choice (lowest val.) so far at any point along path

alpha-beta doesn't search: it "prunes" branches that don't affect current estimates

- Idea: prune branches that can't influence final decision
- alpha-beta pruning keeps track of the range of possible values:

 α = max's best choice (highest val.) so far at any point along path β = min's best choice (lowest val.) so far at any point along path

alpha-beta doesn't search: it "prunes" branches that don't affect current estimates

return v

- Idea: prune branches that can't influence final decision
- alpha-beta pruning keeps track of the range of possible values:

 α = max's best choice (highest val.) so far at any point along path β = min's best choice (lowest val.) so far at any point along path

alpha-beta doesn't search: it "prunes" branches that don't affect current estimates

return v

- Idea: prune branches that can't influence final decision
- alpha-beta pruning keeps track of the range of possible values:

 α = max's best choice (highest val.) so far at any point along path β = min's best choice (lowest val.) so far at any point along path

alpha-beta doesn't search: it "prunes" branches that don't affect current estimates

- Idea: prune branches that can't influence final decision
- alpha-beta pruning keeps track of the range of possible values:

 α = max's best choice (highest val.) so far at any point along path β = min's best choice (lowest val.) so far at any point along path

alpha-beta doesn't search: it "prunes" branches that don't affect current estimates

- Idea: prune branches that can't influence final decision
- alpha-beta pruning keeps track of the range of possible values:

 α = max's best choice (highest val.) so far at any point along path

 β = min's best choice (lowest val.) so far at any point along path

alpha-beta doesn't search: it "prunes" branches that don't affect current estimates

More properties of alpha-beta pruning

- can prune entire sub-trees, not just leaves
- Can result in a huge savings, e.g.
 O(b^{m/2}) vs O(b^m)
- search trees twice as deep
- But chess is still O(35⁵⁰)
- Problem: game trees are far too deep.
- Idea: estimate expected utility based on game position evaluation function.

evaluation function example

Black has advantage of knight and two pawns

white to move, but black has advantage (2x1 + 3 = 5)

white to move, can capture queen, and take the advantage

For chess, typically linear weighted sum of features

$$Eval(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s)$$

pawn = I knight or bishop = 3 rook = 5 queen = 9 king = ∞

e.g., $w_1 = 9$ with

 $f_1(s) =$ (number of white queens) – (number of black queens), etc.

Minimax for heuristic evaluation functions

- Can't search very deep in complex games, need to cutoff search early
- Instead of using Utility of Terminal State, use heuristics at maximum depth.
- H-Minimax(s,d) =

```
Eval(s)if cutoff-test(s,d)
```

- max a in Actions(s) H-Minimax(Result(s,a), d+1) if Player(s) = Max
- min a in Actions(s) H-Minimax(Result(s,a), d+1) if Player(s) = Min

A brief history of computer game playing

- computer considers moves (Babbage, 1846)
- algorithm for perfect game play (Zermelo, 1912; Von Neumann, 1944)
- finite horizon, approximate evaluation (Zuse, 1945; Wiener, 1948)
- first chess program (Turning, 1951)
- machine learning to improve evaluation accuracy (Samuel, 52-57)
- pruning to allow deeper search (McCarthy, 1956)

Shannon, Turing	minimax search with scoring function	1950
Kotok/McCarthy program, & ITEP program	alpha-beta	1966
Mac Kack	transposition tables	1967
Chess 3.0 - 4.9	iterative-deepening depth-first search	1975
Belle	special purpose circuitry	1978
Cray Blitz	parallel search	1983
Hitech	parallel evaluation	1985
Deep Blue	parallel search and special-purpose circuitry	1987
many others since		

Computer Chess

Aspects of sophisticated evaluation functions

- Difference between player and opponent of:
 - # pieces
 - mobility
 - king position
 - bishop pair
 - rook pair
 - control of center (piecewise)
 - etc

Deep Blue

- Deep Blue evaluation function
 - **-** ∼6,000 different features
 - weighting depends on board configuration (downloaded int computer after each move)
- Weights are based on:
 - database of ~900 grand maste games
 - tries to adjust weights to match play of grandmasters
- Also adjusted manually by Grand, Master Joel Benjamin.

Player to move

value of knight's position in Deep Blue

Deep Blue's search

- ~200 million moves / sec
- 3.6 x 10¹⁰ movies in 3 minutes
 - 7 plies of uniform depth minimax search
 - 10-14 plies of uniform depth alpha-beta search
- software searches first
- specialized hardware searches last 5 ply

Deep Blue's hardware

- 32-node RS6000 SP multicomputer
- Each node
 - I IBM Power2 Super Chip
 - 16 chess chips
 - move generation
 - evaluation
 - some end-game heuristics and small end-game databases
- 32 GByte opening & endgame database

Role of computing power

and the size of the tree searched during a three minute move.

Deep Blue defeats Kasparov, 1997

Deep Fritz defeats Kramnik, 2006*

*but Kramnik overlooked a mate-in-one

Kasparov and Deep Blue

http://www.youtube.com/watch?v=NJarxpYyoFI

Kasparov Business Insider interview (May 24, 2017)

- Kasparov had just published Deep Thinking
 - reflections on AI over the 20 years after Deep Blue
- Is AI a result or a process?
 - result: Yes. Deep Blue is obviously intelligent because it plays chess at a grand master level
 - process: No. It's not human-like intelligence; just a fast "alarm clock."
- On making chess moves:
 - I% calculation
 - 99% understanding of the game: patterns, previous experience
 - For a machine it's the exact opposite.

Mastering the game of Go with deep neural networks and tree search

David Silver¹*, Aja Huang¹*, Chris J. Maddison¹, Arthur Guez¹, Laurent Sifre¹, George van den Driessche¹, Julian Schrittwieser¹, Ioannis Antonoglou¹, Veda Panneershelvam¹, Marc Lanctot¹, Sander Dieleman¹, Dominik Grewe¹, John Nham², Nal Kalchbrenner¹, Ilya Sutskever², Timothy Lillicrap¹, Madeleine Leach¹, Koray Kavukcuoglu¹, Thore Graepel¹ & Demis Hassabis¹

- Alpha Go: Nature 28 Jan 2016
- Combined many machine learning techniques (some of which we will cover in future lectures)
- By the end of the course, you should be able to understand the basic approach
- Beat 18-time world champion
 Lee Sedol in March 2016
- Won 4/5 games.

Alpha Go

- Key ideas:
 - learn what to do instead of using classical search-based techniques
 - use *value* (neural) networks to evaluate board positions
 - use policy networks to select moves
- No look-ahead search, but
 - played at the level of state-of-the-art Monte Carlo tree-search algorithms
 - achieved 99.8% winning rate against other Go programs

- Use supervised learning to predict moves of Human experts
- The policy network generates p(a|s):
 - probability distribution over legal moves given current board state
- Use reinforcement learning to improve SL policy network
 - generate huge numbers of games for learning using self-play
- Train a value network to predict game outcome (probability of winning)

Stochastic games

- In backgammon, object is to move all pieces off the board.
- White moves clockwise, black counter-clockwise
- Die rolls determine possible moves
- A piece can move to any position, unless occupied by multiple opponents.
- If there is only one, that piece is captured and sent back to start.
- For a roll of 6 & 5,
 White has 4 legal moves:
 (5-10,5-11)
 (5-11,19-24)
 (5-10,10-16),

(5-11,11-16)

Stochastic game tree for backgammon position

How should we modify the evaluation function to accommodate chance?

Stochastic game tree for backgammon position

$$eval(s) = \sum_{s' \in succ(s)} p(s') \min\max(s')$$

Properties of stochastic games

- die rolls: 21 possible rolls with two dies \Rightarrow much larger branching factor
- backgammon
 - ≈ 20 legal moves
 - considering opponent responses effective branching factor ≈ 400
- traditional searches are completely ineffective
- α - β pruning isn't very helpful
- Evaluation function becomes much more important
- TD-gammon (1992):
 - depth 2 search
 - learned a very good evaluation function:
 a neural network, learned with temporal different learning
 - knowledge free: achieved intermediate-level play
 - when combined with expert-designed features: world champion level
 - stopped improving after 1.5M games