

Università degli Studi di Padova

DIPARTIMENTO DI ...

Corso di Laurea ...
in Ingegneria ...

Titolo tesi

Titolo inglese

Relatore:

CH.MO PROF. NOME COGNOME

Laureando: Nome Cognome 1234567

Ringraziamenti

Inserisci gli eventuali ringraziamenti personali.

Sommario

Inserire abstract.

Introduzione

Scrivi qui la tua introduzione.

Indice

\mathbf{E}	lenco	delle figure	xi
\mathbf{E}	lenco	delle tabelle	xiii
\mathbf{E}	lenco	dei codici	XV
1	Pri	mo Capitolo	1
	1.1	Sezione 1	1
	1.2	Sezione 2	1
		1.2.1 Sottosezione	1
2	Imr	nagini e Tabelle	3
	2.1	Immagine singola	3
	2.2	Immagine multipla	3
	2.3	Tabelle	4
3	For	mule	7
4	Pse	udocodice e codice	9
	4.1	Pseudocodice	9
	4.2	Codice	10
C	onclı	ısioni	13
Bi	ibliog	grafia	15
Si	togra	nfia	17

Elenco delle figure

2.1	Didascalia	3
2.2	Esempio di figura composta da 4 figure	4

Elenco delle tabelle

2.1	Tabella 1.	 	•							•						4
2.2	Tabella 2.	 														5

Elenco dei codici

4.1	Didascalia.																10
4.2	prova.cpp																10

Primo Capitolo

La struttura utilizzata in questo template non è obbligatoria, però ritengo che sia molto comoda per evitare di scrivere file troppo lunghi e di avere un controllo migliore sulla struttura. Questa prevede di scrivere l'introduzione al capitolo in un file salvato nella cartella principale e di sviluppare le sezioni all'interno di una cartella. Esempio di richiamo ad un riferimento [1].

1.1 Sezione 1

Ad ogni sezione, in questo template [2], corrisponde un file all'interno della cartella relativa al capitolo [3].

1.2 Sezione 2

Una sezione può contenere una sottosezione. In questo caso, è stato deciso di non creare altri file... [4]

1.2.1 Sottosezione

...ma di scrivere il testo all'interno del file della sezione corrente [5].

Immagini e Tabelle

Metodi più comuni per inserire immagini e esempi di tabelle. [6]

2.1 Immagine singola

Per fare riferimento ad un immagine [7], come ad ogni altro elemento a cui viene attribuita una label è disponibile il comando ref. Riferimento a Figura 2.1.

Figura 2.1: Didascalia

2.2 Immagine multipla

Inserire più "sottofigure" in una figura.

Figura 2.2: Esempio di figura composta da 4 figure.

2.3 Tabelle

Nella seguente tabella vengono mostrati alcuni esempi di separazione delle righe. La separazione delle colonne avviene all'interno delle parentesi graffe dopo il comando tabular.

cella1	cella2	cella3
cella4	cella5	cella6
cella7	cella8	cella9
cella10	cella11	cella12

Tabella 2.1: Tabella 1

È possibile, inoltre, fissare la dimensione delle colonne [8].

2.3 Tabelle 5

cella1	cella2	cella3
		cella6
cella4	cella5	cella6
Cella4	Cenas	cella6
		cella6
cella7	cella8	cella9
cella10	cella11	cella12

Tabella 2.2: Tabella 2

Formule

Per inserire delle formule matematiche è possibile utilizzare due metodi [9]:

- in linea: inserendo la formula tra due caratteri \$.
- utilizzando l'ambiente equation.

Esempio di formula in linea $x(t) = x_0 + v_0 t + \frac{1}{2}at^2$. Esempio di utilizzo dell'ambiente equation:

$$x(t) = x_0 + v_0 t + \frac{1}{2}at^2 (3.1)$$

Possiamo usare le *label* anche per le equazioni [10]. Legge oraria nell'Equazione 3.1. Infine, un esempio di formula su più righe:

$$x(t) = x_0 + v_0 t + \frac{1}{2} a t^2$$

$$= x_0 + v_0 t + \frac{1}{2} \frac{F}{m} t^2$$
(3.2)

Pseudocodice e codice

In questo template per l'inserimento di pseudocodice è stato utilizzato il pacchetto algpseudocode. Per quanto riguarda l'inserimento del codice è possibile utilizzare il comando verb per inserire in linea oppure lstlisting per inserire blocchi di codice [11].

4.1 Pseudocodice

```
Algorithm 1 Nome algoritmo
Require: Input dell'algoritmo
Ensure: Output dell'algortimo
 1: variabile \leftarrow assegnazione valore
 2: valore_ritornato \leftarrow FunzioneProva(param1, param2)
 3: for element in list do
       res \leftarrow DoSomething(element)
 5: end for
 6: if condizione1 then
       do something
 8: else if condizione2 then
       do something else
 9:
10: else
       print "Hello World"
11:
12: end if
```

4.2 Codice

È possibile inserire codice in linea: print("Hello World") [12].

Inoltre è possibile usare l'ambiente *lstlisting* configurando il layout del blocco di codice nel file *layout.tex*. Il codice può essere importato da un file esterno che metteremo nella cartella *code* [13].

```
# Number of trees in random forest
          n_{estimators} = [int(x) for x in np.linspace(start = 100, stop = 1000, num 
           # Number of features to consider at every split
  3
          max_features = ['log2', 'sqrt']
          # Maximum number of levels in tree
  5
  6
          max_depth = [int(x) for x in np.linspace(10, 150, num = 15)]
  7
          max_depth.append(None)
          # Minimum number of samples required to split a node
  9
          min_samples_split = [2, 5, 10]
          # Minimum number of samples required at each leaf node
10
          min_samples_leaf = [1, 2, 4, 6, 8]
11
12
           # Method of selecting samples for training each tree
          bootstrap = [True, False]
13
           random_grid = {'n_estimators': n_estimators,
14
15
                                                        'max_features': max_features,
16
                                                        'max_depth': max_depth,
                                                        'min_samples_split': min_samples_split,
17
                                                        'min_samples_leaf': min_samples_leaf,
18
19
                                                        'bootstrap': bootstrap
20
21
22
           rfc = RandomForestClassifier()
23
           rfc_random = RandomizedSearchCV(estimator=rfc, param_distributions=random_grid
                       , n_iter=1000, cv=5, verbose=2,random_state=3, n_jobs=4)
24
           rfc_random.fit(df_downsampled, labels_downsampled)
```

Codice 4.1: Didascalia.

```
// comment
bool Data::DoStuff(int enum_type){
    Param* par=NULL;
    for(object=obj.begin();obj<obj.end();++obj){
        if(par->GetEnum()==enum_type){ return true; }
    }
    _error_("string here!" << strx(enum_type));</pre>
```

4.2 Codice 11

```
8 return false;
9 }
```

Codice 4.2: prova.cpp

Conclusioni

Scrivi qui le tue conclusioni.

Bibliografia

Capitolo 1

- [1] P. Vas. Sensorless Vector and Direct Torque Control. pp. 407–410. Oxford University Press, 1998 (cit. a p. 1).
- [3] S.Bolognani e M. Zigliotto. «Self-Commissioning Compensation of Inverter Non-Idealities for Sensorless AC Drives Applications». In: *Proceedings of IEE International Conference on Power Electronics, Machines and Drives (PEMD 2002)*. Bath, UK, giu. 2002, pp. 30–37 (cit. a p. 1).
- [4] Lapo Filippo Mori. Scrivere poesie con LaTeX. https://www.guitex.org/home/. 2007 (cit. a p. 1).
- [5] A. R. Munoz e T. A. Lipo. «On-Line Dead-Time Compensation Technique for Open-Loop PWM-VSI Drives». In: *IEEE Trans. Power Electron.* 14.4 (lug. 1999), pp. 683–689 (cit. a p. 1).

Capitolo 2

- [6] Umberto Eco. Come si fa una tesi di laurea. Milano: Bompiani, 1977 (cit. a p. 3).
- [7] Paul Adrien Maurice Dirac. *The Principles of Quantum Mechanics*. International series of monographs on physics. Clarendon Press, 1981. ISBN: 9780198520115 (cit. a p. 3).

Capitolo 3

[10] LaTeX su Wikipedia. https://it.wikipedia.org/wiki/LaTeX. 2017 (cit. a p. 7).

- [11] Albert Einstein. «Zur Elektrodynamik bewegter Körper. (German) [On the electrodynamics of moving bodies]». In: *Annalen der Physik* 322.10 (1905), pp. 891–921. DOI: http://dx.doi.org/10.1002/andp.19053221004 (cit. a p. 9).
- [13] Lapo Filippo Mori. «Scrivere la tesi di laurea con LaTeX». In: Ars Volume.3 (2007) (cit. a p. 10).

Sitografia

Capitolo 1

[2] Usability first Scientific visualization definition. URL: http://www.usabilityfirst.com/glossary/scientific-visualization/ (cit. a p. 1).

Capitolo 2

[8] prova link2. URL: http://www.google.com (cit. a p. 4).

Capitolo 3

[9] prova link1. URL: http://www.blank.org (cit. a p. 7).

Capitolo 4

[12] Donald Knuth. Knuth: Computers and Typesetting. URL: http://www-cs-faculty.stanford.edu/~uno/abcde.html (cit. a p. 10).