VaR Back Testing

- VaR at p
 - o Binomial distribution with mean $n \times p$, variance $n \times p \times (1 p)$

- Hypothesis Test at p_t (two sided)
 - o $p = 95\% \rightarrow z = 1.96$

分析

- 单个:一个异常被接受的概率(Z-score)
 - 假定:给定一个异常次数 x. 改变实验次数n. 求接受概率。
 - 结论:n 增加, Z-score 减小,向左边拒绝域移动,<mark>越容易</mark>被拒绝
 - 核心:一个异常次数在拒绝域中的相对位置
- 总体:所有能被接受的异常的区间(就是置信区间的相对大小)
 - 问题:给定实验次数n, 寻找能被接受或者拒绝的区间。
 - 结论:n增加, 置信区间减小, 拒绝域大增加, 越容易拒绝。
 - 核心:拒绝域本身的相对大小
 - 求解:
 - 置信区间临界值 $\mathbf{u} \pm \mathbf{z} \times \mathbf{s} = \mathbf{n} \times \mathbf{p} \pm \mathbf{z} \times \sqrt{n \times p \times (1-p)}$
 - 置信区间范围 (上限-下限)

•
$$2 \times z \times s = 2 \times z \times \sqrt{n \times p \times (1-p)}$$

- 总体区间是n (上限是n, 下限是0)
- 相对置信区间(置信区间/总体区间)

•
$$2 \times z \times \frac{\sqrt{n \times p \times (1-p)}}{n} = 2 \times z \times \frac{\sqrt{p \times (1-p)}}{\sqrt{n}}$$