CIÊNCIA DE DADOS (BIG DATA)

ANÁLISE ESTATÍSTICA

Professor curador: Mário Olímpio de Menezes

TRILHA 2 PARTE B – INTRODUÇÃO À PROBABILIDADE E INFERÊNCIA ESTATÍSTICA

PARTE B – INTRODUÇÃO À PROBABILIDADE E INFERÊNCIA ESTATÍSTICA

VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE

VARIÁVEIS ALEATÓRIAS

- Uma variável numérica cujo valor depende do resultado de um experimento aleatório.
- Uma variável aleatória associa um valor numérico com cada resultado de um experimento aleatório.
- Pode ser discreta ou contínua.

DISTRIBUIÇÕES DE PROBABILIDADES

- A distribuição de probabilidade de uma variável aleatória
 discreta x dá a probabilidade associada com cada possível valor x.
- Distribuições mais conhecidas para Variáveis Aleatórias Discretas são:
 - Distribuição Binomial
 - Distribuição de Poisson

DISTRIBUIÇÃO BINOMIAL

Exemplo: número de caras (heads –
 H) em quatro lançamentos de uma moeda.

 $P(X) = n(X)/n(\Omega)$ $\Omega = 16$ resultados possíveis

		НТТ	Cada um dos 16 resultados possíveis tem a mesma probabilidade: 1/16		
	нттт	THTH		нннт	
	THTT	ннтт		ннтн	
	TTHT	THHT		нтнн	
TTTT	TTTH	TTH	Н	ТННН	нннн
X = 0	X = 1	X =	2	X = 3	X = 4

DISTRIBUIÇÕES CONTÍNUAS

- Alguns dados vêm de medidas em escalas essencialmente contínuas, tais como: temperatura, concentrações, distâncias etc.
- Para variáveis aleatórias contínuas, utilizamos o conceito de densidade de probabilidade.

INFERÊNCIA ESTATÍSTICA

- Inferência estatística tem como objetivo fazer afirmações sobre uma característica de uma população a partir do conhecimento de dados de uma parte desta população – uma amostra.
- A população é **representada** por uma distribuição de probabilidade com **parâmetros** de valores desconhecidos.

FAZENDO INFERÊNCIA ESTATÍSTICA

Quando abordamos um problema de estatística, algumas etapas possíveis para sua solução são:

- Estimação Pontual do parâmetro da população.
- Teste de Hipóteses.
- Estimação Intervalar.

ESTIMAÇÃO PONTUAL

- O objetivo é apresentar um valor para um parâmetro da população.
- Dentre os parâmetros que desejamos inferir para a população (com distribuição Normal), estão:
 - o Média.
 - Desvio padrão.

ESTIMAÇÃO PONTUAL

DISTRIBUIÇÃO NORMAL

$$X \sim N(\mu, \sigma^2)$$

temos que $E(X) = \mu$ e $Var(X) = \sigma^2$

Um estimador para $\mu: \bar{X}$

Um estimador para $\sigma^2: s^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$

ESTIMAÇÃO INTERVALAR (CONJUNTO DE VALORES)

- Objetivo é apresentar um intervalo de possíveis valores para o parâmetro da população, chamado de intervalo de confiança.
- Os limites do intervalo são funções da amostra (X1...Xn).
- A probabilidade de que o intervalo contenha o parâmetro deve ser alta.
- A amplitude do intervalo deve ser tão pequena quanto possível.

TESTE DE HIPÓTESES

- Uma hipótese estatística (H) é uma afirmação sobre o valor do parâmetro da população que estamos estimando.
- Pode ser verdadeira ou falsa.
- Utiliza-se duas hipóteses:
 - Hipótese Nula (H_0)
 - Hipótese Alternativa (H_1)

TIPOS DE ERROS

Quando fazemos um teste de hipótese, estamos sujeitos a dois tipos de erros:

- Erro tipo I: rejeitar H_0 quando H_0 é verdadeira.
- Erro tipo II: não rejeitar (aceitar) H_0 quando H_0 é falsa.

TESTE DE HIPÓTESES

- Para efetuarmos um teste de hipóteses, definimos um limite superior para a probabilidade máxima de Erro Tipo I que deve ser tolerada.
- Este limite é o *nível de significância* do teste, α .

- $\alpha = 0.05$
- \circ $\alpha = 0.01$

Valores típicos de níveis de significância

REGIÃO CRÍTICA E REGIÃO DE ACEITAÇÃO

No Teste de Hipóteses, chamamos de Região Crítica (R_c)
ou região de rejeição o conjunto de valores assumidos
pela estatística de teste para os quais a hipótese nula é
rejeitada.

Seu complementar é a região de aceitação (R_a)

