Permit Numbers 51770 and PSDTX486M3

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities, sources, and related activities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

Air Contaminants Data

Emission Point	Source Name (2)	Air Contaminant	Emission Rates*	
No. (1)		Name (3)	lbs/hour (4)(5)	TPY (4)(6)
FPP-1N	Unit 1 Steam Electric Generator	VOC	26.30	112.66
		NO _x	1725.63	3004.36
		СО	1296.40	5678.25
		SO ₂	1800.56	1577.29
		H ₂ SO ₄	83.80	155.03
		Pb	0.10	0.33
		PM/PM ₁₀ /PM _{2.5}	274.37	1201.74
		PM (7)	2110.67	-
		PM ₁₀ (7)	554.31	-
		PM _{2.5} (7)	207.39	-
		Pb (7)	0.25	-
		HCI	262.40	99.49
		HF	24.03	32.27
FPP-2N	Unit 2 Steam Electric Generator	VOC	26.30	113.26
		NO _x	1673.89	3020.20
		СО	1716.96	7520.31
		SO ₂	1810.05	1585.61
		H ₂ SO ₄	83.80	155.84
		Pb	0.10	0.33
Project Number: 250442		PM/PM ₁₀ /PM _{2.5}	275.82	1208.08

·			
	PM (7)	2110.67	-
	PM ₁₀ (7)	554.31	-
	PM _{2.5} (7)	207.39	-
	Pb (7)	0.25	-
	HCI	263.79	100.01
	HF	24.16	32.44
Unit 3 Steam Electric Generator	VOC	36.00	101.59
	NO _x	1059.61	2708.94
	СО	920.25	4030.70
	SO ₂	1948.21	2844.39
	H ₂ SO ₄	79.78	139.78
	Pb	0.09	0.29
	PM/PM ₁₀ /PM _{2.5}	123.70	541.79
	PM (7)	1926.92	-
	PM ₁₀ (7)	512.04	-
	PM _{2.5} (7)	196.36	-
	Pb (7)	0.22	-
	HCI	236.60	89.70
	HF	21.67	29.09
Final Compliance Cap for Units 1, 2, & 3	VOC	-	276.58
	СО	3738.40	11878.17
	SO ₂	3461.38	-
	H₂SO₄	155.98	-
	HCI	624.88	-
	Final Compliance Cap for Units	PM ₁₀ (7) PM _{2.5} (7) Pb (7) HCl HF	PM ₁₀ (7) 554.31 PM ₂₅ (7) 207.39 Pb (7) 0.25 HCl 263.79 HF 24.16 Unit 3 Steam Electric Generator VOC 36.00 NO _x 1059.61 CO 920.25 SO ₂ 1948.21 H ₂ SO ₄ 79.78 Pb 0.09 PM/PM ₁₀ /PM ₂₅ 123.70 PM (7) 1926.92 PM ₁₀ (7) 512.04 PM ₂₅ (7) 196.36 Pb (7) 0.22 HCl 236.60 HF 21.67 Final Compliance Cap for Units 1, 2, & 3 CO 3738.40 SO ₂ 3461.38 H ₂ SO ₄ 155.98

Ī	1			
		HF	66.40	-
FLYASH-1	Flyash Silo-1 Baghouse	PM/PM ₁₀ /PM _{2.5}	0.020	0.036
FLYASH-2	Flyash Silo-2 Baghouse	PM/PM ₁₀ /PM _{2.5}	0.020	0.036
FLYASH-3	Unit 1 Storage Bin Baghouse	PM/PM ₁₀ /PM _{2.5}	0.020	0.036
FLYASH-4	Unit 2 Storage Bin Baghouse	PM/PM ₁₀ /PM _{2.5}	0.020	0.036
3-1A	Ash Collection Baghouse	PM/PM ₁₀ /PM _{2.5}	0.099	0.096
3-2A	Ash Transport Baghouse	PM/PM ₁₀ /PM _{2.5}	0.079	0.096
3-3A	Ash Collection Baghouse	PM/PM ₁₀ /PM _{2.5}	0.099	0.096
3-4A	Ash Transport Baghouse	PM/PM ₁₀ /PM _{2.5}	0.079	0.096
3-1L	Limestone Unloading	PM	0.063	0.013
		PM ₁₀	0.030	0.006
		PM _{2.5}	0.005	0.001
3-2L	Limestone Reclaim	PM	0.032	0.006
		PM ₁₀	0.015	0.003
		PM _{2.5}	0.002	0.001
3-3L	Limestone Stackout	PM	0.006	0.004
		PM ₁₀	0.003	0.002
		PM _{2.5}	0.0005	0.0003
3-4L	Limestone Reclaim	PM	0.006	0.004
		PM ₁₀	0.003	0.002
		PM _{2.5}	0.0005	0.0003
3-5L	Limestone Silo Transfer	PM	0.006	0.002
		PM ₁₀	0.003	0.001
		PM _{2.5}	0.001	0.0002

3-6L	Limestone Crusher	PM	0.300	0.200
		PM ₁₀	0.142	0.095
		PM _{2.5}	0.021	0.014
3-7L	Limestone Crusher	PM	0.300	0.200
		PM ₁₀	0.142	0.095
		PM _{2.5}	0.021	0.014
3-8L	Limestone Crusher	PM	0.300	0.200
		PM ₁₀	0.142	0.095
		PM _{2.5}	0.021	0.014
COAL-1	Coal Railcar Unloading	PM/ PM ₁₀ /PM _{2.5}	0.161	0.233
COAL-2	Coal Transfer	PM/ PM ₁₀ /PM _{2.5}	0.107	0.155
COAL-3	Coal Transfer	PM/ PM ₁₀ /PM _{2.5}	0.107	0.102
COAL-4	Coal Transfer to Pile	PM	0.803	0.765
		PM ₁₀	0.380	0.362
		PM _{2.5}	0.057	0.055
COAL-5	Coal Reclaim 1 & 2	PM/PM ₁₀ /PM _{2.5}	0.054	0.083
COAL-6	Coal Crusher	PM/PM ₁₀ /PM _{2.5}	0.400	0.620
COAL-7	Coal Transfer Surge Bin	PM/ PM ₁₀ /PM _{2.5}	0.027	0.041
COAL-8	Coal Transfer Surge Bin	PM/PM ₁₀ /PM _{2.5}	0.027	0.041
COAL-9	Coal Transfer to Silo Baghouse	PM/ PM ₁₀ /PM _{2.5}	0.027	0.041
COAL-10	Coal Transfer to Silo Baghouse	PM/PM ₁₀ /PM _{2.5}	0.027	0.041
PILE 1 & 2	Coal Piles 1 & 2	PM	5.20	22.78
		PM ₁₀	2.46	10.772
		PM _{2.5}	0.372	1.631

ASH PILE	Combustion By-Product Landfill	PM	1.09	4.79
		PM ₁₀	0.517	2.266
		PM _{2.5}	0.078	0.343
PILE-3A	Unit 3 Active Coal Pile	PM	0.335	1.469
		PM ₁₀	0.159	0.695
		PM _{2.5}	0.024	0.106
PILE 3-D	Unit 3 Dead Coal Pile	PM	2.21	9.68
		PM ₁₀	1.05	4.58
		PM _{2.5}	0.16	0.69
3-2F	Coal Transfer	PM	1.26	1.32
		PM ₁₀	0.598	0.626
		PM _{2.5}	0.091	0.095
3-3F/3-12F	Transfer to Unit 3 Active/Dead Coal Piles	РМ	2.11	2.21
		PM_{10}	0.997	1.044
		PM _{2.5}	0.151	0.158
3-4F	Coal Transfer	PM	0.602	1.324
		PM ₁₀	0.285	0.626
		PM _{2.5}	0.043	0.095
3-5F	Coal Transfer	PM/PM ₁₀ /PM _{2.5}	0.040	0.088
3-6F	Coal Transfer	PM/PM ₁₀ /PM _{2.5}	3.000	6.600
3-7F	Coal Transfer	PM/PM ₁₀ /PM _{2.5}	0.040	0.088
3-8F	Coal Transfer	PM/PM ₁₀ /PM _{2.5}	0.080	0.044
3-9F	Coal Transfer	PM/PM ₁₀ /PM _{2.5}	0.080	0.044
3-13F	Coal Transfer Baghouse	PM/PM ₁₀ /PM _{2.5}	0.040	0.088

3-14F	Coal Transfer Baghouse	PM/PM ₁₀ /PM _{2.5}	0.019	0.044
3-15F	Coal Transfer	PM	0.187	0.44
		PM ₁₀	0.089	0.209
		PM _{2.5}	0.013	0.032
3-16F	Coal Transfer	PM/PM ₁₀ /PM _{2.5}	0.084	0.155
3-17F	Coal Transfer	PM	1.26	1.32
		PM ₁₀	0.598	0.626
		PM _{2.5}	0.091	0.095
3-18F	Dead Storage Reclaim	PM	0.401	0.441
		PM ₁₀	0.190	0.209
		PM _{2.5}	0.029	0.032
3-19F	Active Storage Reclaim	PM	0.602	0.662
		PM ₁₀	0.285	0.313
		PM _{2.5}	0.043	0.047
MSSFUG	Storage Tank Maintenance Emissions (ILE)	VOC	182.83	0.30
MSSFUG	Planned Sitewide MSS Activities (ILE)	NO_x	2.43	1.21
		СО	1.49	0.70
		SO ₂	0.01	0.01
		PM	6.20	3.77
		PM ₁₀	3.87	2.83
		PM _{2.5}	0.89	0.36
		VOC	0.90	0.16

⁽¹⁾ Emission point identification - either specific equipment designation or emission point number from plot plan.

⁽²⁾ Specific point source name. For fugitive sources, use area name or fugitive source name.

(3)	NO _x -	volatile organic con total oxides of nitro sulfur dioxide	•	ed in Title 30 Tex	cas Administrative C	Code § 101.1
	$\begin{array}{ccc} PM & - \\ PM_{10} & - \\ PM_{2.5} & - \\ CO & - \\ HCI & - \\ HF & - \\ H_2SO_4 & - \end{array}$	total particulate ma total particulate ma particulate matter e carbon monoxide hydrogen chloride hydrogen fluoride sulfuric acid mist lead	tter equal to or les	s than 10 micro	ns in diameter, inclu	
(4)	The pound	per hour and ton perform the facility duri				
(5)	For each MSS lb/hr		ıring each clock h	our that include		d using a CEMS, the utes of MSS activities.
(6)	Complianc	e with annual emiss	sion limits (tons pe		on a 12 month rollir	ng period, unless
(7)		ly emission limit onl from the facility duri				or this facility includes s.
*	Emission r	ates are based on a	and the facilities ar	e limited by the	following maximum	operating schedule:
	Hrs/da	yDays/week	_Weeks/year or _	<u>8,760</u> Hrs/year		
					Date:	June 9, 2016