Finner du matematiske feil, skrivefeil, eller andre typer feil? Dette dokumentet er open-source, alle kan bidra på https://github.com/matematikk/vgs_eksamener.

Del 1 - uten hjelpemidler

Oppgave 1

- a) Vi skal derivere $f(x) = x^4 x + 2$. Vi bruker regelen $f(x) = x^n \Rightarrow f'(x) = nx^{n-1}$. Vi får da at $f'(x) = 4x^3 1$.
- b) Her ser vi at funksjonen g(x) er sammensatt av to faktorer $u(x) = x^3$ og $v(x) = \ln(x)$ som er multiplisert sammen. Vi bruker derfor produktregelen $f(x) = uv \Rightarrow f'(x) = u'v + uv'$, og får da at

$$g'(x) = 3x^2 \cdot \ln(x) + x^3 \cdot \frac{1}{x}$$
$$= 3x^2 \cdot \ln(x) + x^2$$
$$= \underline{x^2(3\ln(x) + 1)}$$

c) Her får vi bruk for kjerneregelen, der vi velger at kjernen vår er $u=2x^2+x$. Utregningen blir

$$h(x) = e^{u(x)} \Rightarrow h'(x) = (e^{u(x)})' \cdot u'(x)$$
$$= e^{u(x)} \cdot (4x+1)$$
$$= (4x+1)e^{2x^2+x}$$

Oppgave 2

a) Vi skal se på uttrykket

$$\frac{1}{2x-2} + \frac{2}{x-3} - \frac{x-2}{x^2-4x+3}.$$

Først faktoriserer vi nevnerne for å finne fellesnevneren. Nevneren i det første leddet faktoriseres som 2x-2=2(x-1). Nevneren i det andre leddet kan ikke faktoriseres, mens nevneren i det tredje leddet kan vi faktorisere for eksempel ved bruk av abc-formelen. Etter faktoriseringen ser uttrykket ut slik:

$$\frac{1}{2(x-1)} + \frac{2}{x-3} - \frac{x-2}{(x-1)(x-3)}$$

Vi ser dermed at fellesnevneren er 2(x-1)(x-3). Vi ganger første ledd med (x-3) i både teller og nevner, andre ledd med 2(x-1) og tredje ledd med 2.

$$\frac{1(x-3)}{2(x-1)(x-3)} + \frac{2 \cdot 2(x-1)}{2(x-1)(x-3)} - \frac{2(x-2)}{2(x-1)(x-3)}$$

$$= \frac{x-3+4x-4-2x+4}{2(x-1)(x-3)}$$

$$= \frac{3x-3}{2(x-1)(x-3)}$$

$$= \frac{3}{2(x-3)}$$

b) Her må vi ta i bruk logaritmesetningene. Disse er: $\ln(ab) = \ln(a) + \ln(b)$, $\ln\left(\frac{a}{b}\right) = \ln(a) - \ln(b)$ og $\ln(a^x) = x \cdot \ln(a)$. Vi regner ut på følgende måte:

$$2\ln(x \cdot y^3) - \frac{1}{2}\ln\left(\frac{x^4}{y^2}\right)$$

$$= 2(\ln(x) + \ln(y^3) - \frac{1}{2}(\ln(x^4) - \ln(y^2))$$

$$= 2(\ln(x) + 3\ln(y)) - \frac{1}{2}(4\ln(x) - 2\ln(y))$$

$$= 2\ln(x) + 6\ln(y) - 2\ln(x) + \ln(y)$$

$$= \frac{7\ln(y)}{2}$$

Oppgave 3

a) Vektoren mellom to punkter (x_1, y_1) og (x_2, y_2) er gitt ved $[x_2 - x_1, y_2 - y_1]$. Vi får da:

$$\vec{AB} = [-1 - (-2), -3 - (-1)] = \underline{[1, -2]}$$

 $\vec{BC} = [3 - (-1), -1 - (-3)] = \underline{[4, 2]}$

b) Vi har at de to vektorene står vinkelrett på hverandre dersom $\vec{AB} \cdot \vec{BC} = 0$. I denne oppgaven har vi

$$\vec{AB} \cdot \vec{BC} = [1, -2] \cdot [4, 2] = 1 \cdot 4 + (-2) \cdot 2 = 4 + (-4) = \underline{0},$$

så vi ser at vektorene står vinkelrett på hverandre.

c) Vektorene \vec{CD} og \vec{AB} er parallelle dersom $\vec{CD} = k \cdot \vec{AB}$, der k er et tall. Vi finner først \vec{CD} på samme måte som vi fant vektorene i oppgave a).

$$\vec{CD} = [t - 3, t^2 + 2 - (-1)] = [t - 3, t^2 + 3]$$

$$\vec{CD} = k \cdot \vec{AB}$$

$$[t - 3, t^2 + 3] = k \cdot [1, -2] = [k, -2k]$$

For at to vektorer skal være like må x-koordinatene være like hverandre og y-koordinatene være like hverandre i de to vektorene. Vi får altså to likninger med to ukjente:

$$t - 3 = k \quad \lor \quad t^2 + 3 = -2k$$

Likning 1 gir oss et uttrykk for k. Dette setter vi inn for k i likning 1 og løser for t:

$$t^{2} + 3 = -2(t - 3)$$
$$t^{2} + 3 = -2t + 6$$
$$t^{2} + 2t - 3 = 0$$

Vi bruker så abc-formelen, og får t = 1 eller t = -3. Vi ser da at \vec{CD} og \vec{AB} er parallelle hvis t = 1 eller hvis t = -3.

Oppgave 4

a) Dersom P(x) er et polynom, går en divisjon P(x):(x-a) opp dersom P(a)=0. Vi må sjekke hvilke verdier av k som oppfyller likningen f(1)=0.

$$f(1) = 1^{3} + k \cdot 1 + 12 = 0$$
$$1 + k + 12 = 0$$
$$k + 13 = 0$$
$$k = -13$$

b) Vi har nå at $f(x) = x^3 - 13x + 12$. Vi vet at f(x) er delelig med (x - 1), derfor gjør vi en polynomdivisjon med dette for å faktorisere f(x). Vi vil få et andregradspolynom etter polynomdivisjonen som vi kan faktorisere videre ved hjelp av abc-formelen.

Ved hjelp av abc-formelen får vi at (x^2+x-12) kan faktoriseres til (x+4)(x-3). Når vi nå setter sammen alle de lineære faktorene vi har funnet, har vi at f(x) kan faktoriseres som $f(x) = x^3 - 13x + 12 = (x-1)(x+4)(x-3)$.

e)
$$\frac{x^2 + x - 12}{x - 1}$$

Fra forrige oppgave vet vi at telleren kan faktoriseres til (x + 4)(x - 3), som vil si at vi kan skrive brøken som

$$\frac{(x+4)(x-3)}{x-1}$$

Vi lager fortegnsskjema.

Vi ser dermed at

$$\frac{(x+4)(x-3)}{x-1} \ge 0$$

 $\text{når } \underline{-4 \le x < 1 \text{ og når } x \ge 3.}$

Oppgave 5

a) Vi bruker produktsetningen i denne oppgaven. Vi skal finne sannsynligheten for at laderen kommer fra leverandør A og at den er defekt, altså sannsynligheten $P(\text{fra leverandør A} \cap \text{defekt})$.

$$P(\text{fra leverand} \text{ or } A \cap \text{defekt}) = P(\text{fra leverand} \text{ or } A) \cdot P(\text{defekt} \mid \text{fra leverand} \text{ or } A)$$

$$= 0.4 \cdot 0.03$$

$$= 0.012$$

Sannsynligheten for at laderen er fra leverandør A og er defekt er 1.2 %.

b) For å bestemme sannsynligheten for at en lader som er defekt kommer fra leverandør A, kan vi bruke Bayes' setning og setningen om total sannsynlighet.

Bayes' setning i dette tilfellet blir

$$P(\text{fra leverand} \text{ or } \mathbf{A} \mid \text{defekt}) = \frac{P(\text{fra leverand} \text{ or } \mathbf{A}) \cdot P(\text{defekt} \mid \text{fra leverand} \text{ or } \mathbf{A})}{P(\text{defekt})}$$

Men for å kunne bruke denne formelen er vi nødt til å finne ut hva P(defekt) er. Det gjør vi ved hjelp av setningen om total sannsynlighet.

$$\begin{split} P(\text{defekt}) &= P(\text{fra leverand} \text{ør A}) \cdot P(\text{defekt} \mid \text{fra leverand} \text{ør A}) \\ &+ P(\text{fra leverand} \text{ør B}) \cdot P(\text{defekt} \mid \text{fra leverand} \text{ør B}) \\ &= 0.4 \cdot 0.03 + 0.6 \cdot 0.02 \\ &= 0.024 \end{split}$$

Deretter setter vi dette inn i nevneren i Bayes' setning og får:

$$\begin{split} P(\text{fra leverand} \text{ør A} \mid \text{defekt}) &= \frac{P(\text{fra leverand} \text{ør A}) \cdot P(\text{defekt} \mid \text{fra leverand} \text{ør A})}{P(\text{defekt})} \\ &= \frac{0.04 \cdot 0.03}{0.024} \\ &= \frac{0.012}{0.024} \\ &= \frac{1}{2} \end{split}$$

Sannsynligheten for at en defekt lader er fra leverandør A er 50 %.

Oppgave 6

a) Vi finner nullpunktene til en funksjon ved å sette funksjonsuttrykket f(x) lik 0, og løser deretter likningen.

$$e^{2x} - 4e^x + 3 = 0$$
 vi setter $e^x = u$
 $u^2 - 4u + 3 = 0$

Vi bruker abc-formelen for å løse denne andregradslikningen, og får at u=3 og u=1. Dette gir oss to likninger som vi nå kan løse for x.

$$u = 3$$
 $u = 1$
 $e^x = 3$ $e^x = 1$
 $\ln e^x = \ln 1$ $\ln e^x = \ln 3$
 $x = 0$ $x = \ln 3 \approx 1.10$

Nullpunktene til f(x) er altså $\underline{x=0}$ og $\underline{x=\ln 3}\approx 1.10$.

b) For å bestemme eventuelle topp- og bunnpunkter til funksjonen, deriverer vi funksjonen og ser når den deriverte er lik 0. Det er blant løsningene vi får til f'(x) = 0, vi vil finne de eventuelle topp- og bunnpunktene.

$$f'(x) = 2e^{2x} - 4e^x$$

= $2e^x(e^x - 2)$

Så løser vi likningen f'(x) = 0

$$f'(x) = 0$$

$$2e^{x}(e^{x} - 2) = 0$$

$$e^{x} - 2 = 0$$

$$e^{x} = 2$$

$$\ln e^{x} = \ln 2$$

$$x = \ln 2$$

Vi lager fortegnslinje for å sjekke om dette punktet er et topp- eller bunnpunkt, eller ingen av delene. Vi ser av fortegnslinjen at vi har et bunnpunkt i $x = \ln 2$.

Funksjonsverdien for denne x-verdien er

$$f(\ln 2) = e^{2 \ln 2} - 4e^{\ln 2} + 3$$
$$= e^{\ln 2^2} - 4e^{\ln 2} + 3$$
$$= 4 - 8 + 3 = -1$$

Bunnpunktet er altså $(\ln 2, -1)$.

c) Når vi skal bestemme eventuelle vendepunkt, kan vi undersøke hvor den dobbeltderiverte av funksjonen endrer fortegn. Vi deriverer derfor den deriverte vi fant i forrige deloppgave.

$$f''(x) = 4e^{2x} - 4e^x$$
$$= 4e^x(e^x - 1)$$

Deretter setter vi den dobbeltderiverte lik 0, og lager igjen fortegnslinje som i oppgaven over.

$$f''(x) = 0$$

$$4e^{x}(e^{x} - 1) = 0$$

$$4e^{x} > 0 \text{ alltid, så vi får}$$

$$e^{x} - 1 = 0$$

$$x = 0$$

Fortegnslinjen vil se slik ut: Vi ser altså at den dobbeltderiverte skifter fortegn

når x = 0. Den tilhørende funksjonsverdien er:

$$f(0) = e^{2 \cdot 0} - 4e^{0} + 3$$
$$= 1 - 4 + 3$$
$$= 0$$

Vendepunktet for funksjonen er altså i punktet (0,0).

d) Når vi lager en skisse av grafen til funksjonen, er det veldig lurt å tegne inn de punktene vi har funnet i oppgavene over. Disse punktene gir oss god informasjon om hvordan grafen omtrent kan se ut.

Oppgave 7

a) En måte å vise at trekantene er formlike på, er å sjekke at forholdet mellom samsvarende sider er det samme. Vi starter med å vise at trekant 1 og 2 er

formlike. Forholdet mellom de formlike sidene er:

$$\frac{bc}{b^2} = \frac{c}{b}$$
$$\frac{ac}{ab} = \frac{c}{b}$$
$$\frac{c^2}{cb} = \frac{c}{b}$$

Deretter sjekker vi om trekant 2 og 3 er formlike

$$\frac{b^2}{ab} = \frac{b}{a}$$
$$\frac{ab}{a^2} = \frac{b}{a}$$
$$\frac{cb}{ac} = \frac{b}{a}$$

Vi ser altså at trekant 1 er formlik med trekant 2 og at trekant 2 er formlik med trekant 3. Da må også trekant 1 og 3 være formlike.

b) For å vise at punktene E, D og C ligger på en rett linje, må vi vise at $\angle ADB + \angle ADE + \angle BDC = 180^{\circ}$. Siden de tre trekantene er formlike, vet vi at samsvarende vinkler er like store. Vi vet også at $\angle ADB = 90^{\circ}$, så det gjenstår å vise at $\angle ADE + \angle BDC = 90^{\circ}$.

Dette gjør vi ved å trekke to hjelpelinjer som vist på figuren nedenfor. Vi vet at to parallelle linjer som skjæres av samme linje danner samsvarende vinkler. I tillegg får vi toppvinkler. Derfor vet vi at $\angle BAD$ er samsvarende vinkel med $\angle ADE$, som vil si at disse to vinklene er like store. Vi får samme tilfelle for $\angle ABD$. Denne er samsvarende med vinkel $\angle BDC$, altså er disse to vinklene også like store. Siden summen av vinklene i en trekant er 180, vet vi at $\angle BAD + \angle ABD = 90^\circ$, og dermed vet vi også at $\angle ADE + \angle BDC = 90^\circ$. Vi har da at $\angle EDC = 180^\circ$, og dermed må punktene E, D og C ligge på samme linje.

c) Fra oppgaven over har vi at $\angle DAE + \angle BAD = 90^{\circ}$ og at $\angle DBA + \angle CBD = 90^{\circ}$. Da har vi at alle hjørnene i firkanten vår er 90°, altså har vi et rektangel.

I et rektangel vet vi at parallelle sider er like lange, det vil si at lengden av siden EC skal være lik lengden av siden AB. Altså: $a^2 + b^2 = c^2$, som er Pytagoras' setning.

Del 2 - med hjelpemidler

Oppgave 1

a) Først husker vi at vinkelen i en sirkel er 360°. Vi har en sentralvinkel i figuren, nemlig u. Siden vinkelen i sirkelen må være 360° vet vi derfor at resten av vinkelen i sirkelen må være 360° − u, siden da blir summen av de to vinklene lik 360°. ∠DCB spenner over buen BC, det samme gjør sentralvinkelen vi nettopp fant, 360° − u. Vi vet at periferivinkler som spenner over samme bue som en sentralvinkel vil være halvparten så stor som sentralvinkelen. Dermed har vi

$$\angle DCB = \frac{1}{2} \cdot (360^{\circ} - u) = 180^{\circ} - \frac{1}{2}u$$

Altså har vi vist at $\angle DCB = 180^{\circ} - \frac{1}{2}u$

b) Fra oppgave a) vet vi at $\angle DCB = 180^{\circ} - \frac{1}{2}u$. $\angle BAD$ er en periferivinkel som spenner over samme sirkelbue som sentralvinkelen u, derfor vet vi at $\angle BAD = \frac{1}{2}u$. Legger vi nå sammen disse to vinkelene får vi:

$$\angle BAD + \angle DCB = 180^{\circ} - \frac{1}{2}u + \frac{1}{2}u = 180^{\circ}$$

Videre er summen av vinkler i en firkant 360°, derfor vet vi at $\angle CBA + \angle ADC = 180^\circ$

Dermed har vi vist at $\angle BAD + \angle DCB = \angle CBA + \angle ADC = 180^{\circ}$.

Oppgave 2

Likningen for en sirkel kan skrives

$$x^2 + y^2 + ax + by + c = 0$$

og vi får oppgitt at A(3,8), B(9,6) og C(13,-2) ligger på sirkelperiferien.

a) For at likningen skal gjelde for en sirkel som går gjennom alle de gitte punktene, må likningen gå opp uansett hvilket punkt vi setter inn i likningen. For

å finne et likningssystem som svarer til det over, setter vi altså inn x- og ykoordinatene for hvert av punktene i hver sin likning. Likningssystemet blir
da:

$$\begin{cases} 3^2 + 8^2 + 3a + 8b + c = 0 \\ 9^2 + 6^2 + 9a + 6b + c = 0 \\ 13^2 + (-2)^2 + 13a - 2b + c = 0 \end{cases}$$

b) Vi skriver inn hver likning i CAS, markerer alle linjene og trykker på x=. Vi kan også bruke kommandoen Løs, og skrive inn hvilke linjer CAS skal løse. Dette ville vi i mitt tilfelle gjort slik: Løs({\$1,\$2,\$3}).

$$Så = -6, b = 4 \text{ og } c = -87$$

Oppgave 3

- a) For at vi i denne situasjonen skal kunne bruke en binomisk sannsynlighetsmodell må vi anta at alle delforsøkene er uavhengige. Det vil i praksis si at dersom flere reiser sammen, så vil fremdeles alle i reisefølget møte opp eller ikke uavhengig av hva de andre i gruppen gjør.
- b) Her kan vi bruke sannsynlighetskalkulatoren i GeoGebra. Siden flyet har plass til maks 116 passasjerer, må vi altså undersøke hva sannsynligheten er for at 116 passasjerer eller mindre møter opp når selskapet har solgt 122 billetter. I sannsynlighetskalkulatoren legger vi da inn $n=122,\,p=0.94$ og $P(X\leq 116)$. Resultatet blir da:

Sannsynligheten for at alle som møter får plass på flyet er 74.7%

c) Siden vi skal finne ut hvor mange billetter selskapet kan selge, er det altså n i denne oppgaven vi må bestemme. Da lar vi fremdeles $p=0.94,\ P(X\leq 116),$

og så tester vi for hvilke verdier av n som gjør at sannsynligheten vi får ut blir $\geq 95\%$. Vi vet fra oppgaven over at de ikke kan selge 122 billetter, for da blir sannsynligheten for at alle får plass for liten i forhold til hva selskapet ønsker. Derfor kan vi prøve å sette inn for eksempel n=120.

Vi ser at dette antallet også vil gi for liten prosent. Vi prøver da med for eksempel n=119.

Dette ser vi gir en bedre prosent enn ønskelig, så flyselskapet kan altså selge 119 billetter og få at sannsynligheten er minst 95 % for at alle som møter opp får plass på flyet.

Oppgave 4

a) Her må vi først finne ut hvor lange sidene s er som funksjon av x. Da kan vi først se på trekant ABE. Denne er likebeint, så vi vet at den rette linjen fra E ned til linjen AB vil danne 90° med linjen AB, og den vil dele AB i to like store deler. Vi får altså to 90° trekanter, og da kan vi bruke Pytagoras' setning.

Den ene kateten vil da være halvparten av $AB = \frac{10}{2}$, mens den andre må vi lete litt mer etter.

Vi ser at høyden i hele firkanten er 10, og at det er en lik trekant som ABE helt øverst i figuren også. Det vil si at vi kan dele denne trekanten opp på samme måte som ABE og få en høyde også her. Vi ser da av figuren at høydene i de to trekantene til sammen er 10 - x, og da vil høyden i hver av trekantene være $\frac{10-x}{2}$. Da har vi altså begge katetene og kan bruke Pytagoras' setning til

å finne s.

$$s^{2} = \left(\frac{10 - x}{2}\right)^{2} + \left(\frac{10}{2}\right)^{2}$$

$$= \sqrt{\left(\frac{10 - x}{2}\right)^{2} + \left(\frac{10}{2}\right)^{2}}$$

$$= \sqrt{\frac{(10 - x)^{2}}{4} + \frac{10^{2}}{4}}$$

$$= \frac{1}{2}\sqrt{(10 - x)^{2} + 10^{2}}$$

$$= \frac{1}{2}\sqrt{(x - 10)^{2} + 10^{2}}$$

Den totale strekningen er

$$g(x) = x + 4s$$

$$= x + 4 \cdot \frac{1}{2} \sqrt{(x - 10)^2 + 10^2}$$

$$= x + 2\sqrt{(x - 10)^2 + 10^2}$$

b) Denne oppgaven kan gjøres på forskjellige måter i CAS. Her har jeg valgt å først skrive inn funksjonsuttrykket for g, deretter derivere dette, og finne ut når den deriverte er 0 ved å bruke kommandoen nullpunkt. Deretter sjekket jeg hva den andrederiverte var i dette punktet. Siden den andrederiverte var større enn 0, vet vi at punktet vi fant er et bunnpunkt.

Den minste veilengden får vi altså når $x=\frac{-10\sqrt{3}+30}{3}\approx 4.23$ km. Da er den totale veilengden 27.32 km.

Oppgave 5

a) Bruker kommandoen Kurve(Uttrykk, Utrykk, Parametervariabel, start, slutt).

b) Fartsvektoren er den deriverte av posisjonsvektoren.

$$\vec{v}(t) = \vec{r}'(t) = [3t^2 - 2, 2t]$$

$$\vec{v}(-1) = [3(-1)^2, 2(-1)]$$

$$= [3 - 2, -2]$$

$$= [1, -2]$$

Videre har vi at banefarten er

$$|\vec{v}(t)| = \sqrt{1^2 + (-2)^2} = \sqrt{1+4} = \sqrt{5}$$

For å tegne inn denne vektoren i graftegneren bruker jeg kommandoen "Vektor(startpunkt, sluttpunkt)". Jeg vet at startpunktet skal være i $\vec{r}(-1)$, og vet at sluttpunktet vil være der $\vec{v}(-1)$ slutter dersom jeg starter i dette punktet, altså i $\vec{r}(-1) + \vec{r}'(-1)$.

c) Dette kan gjøres på flere måter. Her har jeg valgt å først definere formelen for banefarten. Deretter løser jeg v=2.

$$v := \sqrt{(3t^2 - 2)^2 + (2t)^2}$$

$$\Rightarrow v := \sqrt{9 t^4 - 8 t^2 + 4}$$

$$Løs(v = 2, t)$$

$$\Rightarrow \left\{ t = -2 \cdot \frac{\sqrt{2}}{3}, t = 0, t = 2 \cdot \frac{\sqrt{2}}{3} \right\}$$

$$\begin{cases} 3 & \$2 \\ \approx & \{t = -0.94, t = 0, t = 0.94\} \end{cases}$$

$$Skriv inn...$$

Banefarten er altså 2 når t = -0.94, t = 0 og når t = 0.94.

d) Denne oppgaven kan også fint løses i CAS med samme tankegang som brukes under. Først finner vi akselerasjonsvektoren. Dette er den deriverte av fartsvektoren. Deretter sjekker vi for hvilke t-verdier som gjør at skalarproduktet mellom de to vektorene er 0. Dette gjør vi fordi vi vet at hvis skalarproduktet mellom to vektorer er 0, må vinkelen mellom dem være 90° .

$$\vec{a}(t) = \vec{v}'(t) = [6t, 2]$$

$$\vec{a}(t) \cdot \vec{v}(t) = 0$$
$$[3t^2 - 2, 2t] \cdot [6t, 2] = 0$$
$$(3t^2 - 2) \cdot 6t + 2t \cdot 2 = 0$$
$$18t^3 - 12t + 4t = 0$$
$$18t^3 - 8t = 0$$
$$2t(9t^2 - 4) = 0$$

Da får vi enten t=0 eller $9t^2=0$. Vi må løse siste likning også for t.

$$9t^{2} - 4 = 0$$

$$9t^{2} = 4$$

$$t^{2} = \frac{4}{9}$$

$$t = \pm \sqrt{\frac{4}{9}}$$

$$t = \pm \frac{2}{3}$$

De to vektorene står altså vinkelrett på hverandre når t=0 og når $t=\pm\frac{2}{3}$.

Deretter sjekker vi når banefarten får sine ekstremalpunkter. Dette gjør vi ved å derivere banefarten og se når denne er lik 0.

$$\begin{aligned} |\vec{v}(t)| &= \sqrt{(3t^2 - 2)^2 + (2t)^2} \\ &= \sqrt{9t^4 - 12t + 4 + 4t^2} \\ &= \sqrt{9t^4 - 8t^2 + 4} \\ &= (9t^4 - 8t^2 + 4)^{\frac{1}{2}} \\ |\vec{v}(t)|' &= \frac{1}{2} \cdot (9t^4 - 8t^2 + 4)^{-\frac{1}{2}} \cdot (36t^3 - 16t) \\ &= \frac{18t^3 - 8t}{\sqrt{9t^4 - 8t^2 + 4}} \end{aligned}$$

Den deriverte er 0 når telleren er 0.

$$18t^3 - 8t = 0$$
$$2t(9t^2 - 4) = 0$$

Dette ser vi er akkurat samme likning som vi hadde lengre oppe. Dermed vil løsningene være de samme.

Dermed har vi vist at banefarten har sine ekstremalpunkter i de punktene der fartsvektoren står normalt på akselerasjonsvektoren.