Algebraic topology 1

Luka Horjak (luka1.horjak@gmail.com)

October 28, 2023

Contents Luka Horjak

Contents

Introduction			3
1	1.1 1.2	ic homotopy theory Definition	5
2	2.1	damental group Definition	
Index			12

Introduction Luka Horjak

Introduction

These are my lecture notes on the course Algebraic topology 1 in the year 2023/24. The lecturer that year was prof. dr. Petar Pavešić.

The notes are not perfect. I did not write down most of the examples that help with understanding the course material. I also did not formally prove every theorem and may have labeled some as trivial or only wrote down the main ideas.

I have most likely made some mistakes when writing these notes – feel free to correct them.

1 Basic homotopy theory

1.1 Definition

Definition 1.1.1. Continuous maps $f, g: X \to Y$ of topological spaces are *homotopic*, if there is a continuous map $H: X \times I \to Y$, such that H(x,0) = f(x) and H(x,1) = g(x). Such H is called a *homotopy*. We write $H: f \simeq g$.

Remark 1.1.1.1. If X is a locally compact and Hausdorff space, homotopies coincide with paths in the space C(X,Y).

Proposition 1.1.2. Homotopy is an equivalence relation on C(X,Y).

Proof. The proof is obvious and need not be mentioned.

Definition 1.1.3. We denote the set of equivalence classes of the homotopy relation on C(X,Y) by [X,Y].

Remark 1.1.3.1. If X is a locally compact and Hausdorff space, [X, Y] is the set of path components of $\mathcal{C}(X, Y)$.

Definition 1.1.4. With $f:(X,A) \to (Y,B)$ we denote maps $f:X \to Y$ such that $f(A) \subseteq f(B)$. Similarly, we define $\mathcal{C}((X,A),(Y,B))$ and [(X,A),(Y,B)].

Definition 1.1.5. Let $A \subseteq X$ and $f, g: X \to Y$ be maps satisfying $f|_A = g|_A$. The map $G: X \times I \to Y$ is a homotopy relative to A if $H: f \simeq g$ and $H_t|_A = f|_A$ for all $t \in I$. We write $H: f \simeq g$ (rel A).

Definition 1.1.6. A map $f: X \to Y$ is *null-homotopic* if it is homotopic to a constant.

Definition 1.1.7. Let X be a topological space. The *cone* on X is the space

$$CX = X \times I / X \times \{1\}$$
.

Proposition 1.1.8. A map $f: X \to Y$ is null-homotopic if and only if it extends to the cone CX.

Proof. In the following diagram, H exists if and only if F exists.

$$X \xrightarrow{f} Y$$

$$i_0 \downarrow H \qquad \uparrow F$$

$$X \times I \xrightarrow{q} CX$$

1.2 Homotopy equivalence

Proposition 1.2.1. Let $f, f': X \to Y$ and $g, g': Y \to Z$ be maps. If $f \simeq g$ and $f' \simeq g'$, we also have $g \circ f \simeq g' \circ f'$.

Proof. Let $H\colon X\times I\to Y$ and $K\colon Y\times I\to Z$ be the two homotopies. It is trivial to check that

$$L(x,t) = K(H(x,t),t)$$

is a homotopy of the compositions.

Definition 1.2.2. The *homotopy category* <u>HoTop</u> is the category with topological spaces as objects and homotopies as morphisms. Operations are induced by the compositions of maps.

Definition 1.2.3. The category $\underline{\text{Top}}^2$ has pairs of spaces (X, A) with $A \subseteq X$ as spaces, maps of pairs as morphisms and composition as the operation. Analogously as above, this category induces the category HoTop^2 .

Definition 1.2.4. The category $\underline{\text{Top}}_{\bullet}$ has pairs (X, x_0) with $x_0 \in X$ as spaces, maps of pairs as morphisms and composition as the operation. Analogously as above, this category induces the category $\underline{\text{HoTop}}_{\bullet}$.

Definition 1.2.5. Homotopy equivalence is an isomorphism in the category <u>HoTop</u>. If spaces X and Y are homotopy equivalent, we write $X \simeq Y$.

Remark 1.2.5.1. A map $f: X \to Y$ is a homotopy equivalence if there exists a map $g: Y \to X$ such that both $g \circ f \simeq \mathrm{id}_X$ and $f \circ g \simeq \mathrm{id}_Y$ hold. The map g is a homotopy inverse of f.

Definition 1.2.6. A space X is *contractible* if it is homotopy equivalent to a point.

Remark 1.2.6.1. Every cone is contractible.

Proposition 1.2.7. Let X be a topological space. The following statements are equivalent:

- i) The space X is contractible.
- ii) The map id_X is homotopy equivalent to a constant map.
- iii) The space X is a retract of CX.

Proof. The proof is obvious and need not be mentioned.

Theorem 1.2.8. Let X and Y be closed surfaces. If $X \simeq Y$, then $X \approx Y$.

Definition 1.2.9. A subspace $A \subseteq X$ is a deformation retract of X if it is a retract and the retraction is a homotopy inverse of the inclusion.

Definition 1.2.10. A subspace $A \subseteq X$ is a *strong deformation retract* if it is a retract and the retraction is a homotopy inverse of the inclusion relative to A.

Definition 1.3.1. A closed subspace $A \subseteq X$ has the homotopy extension property if for every space Y, map $f: X \to Y$ and homotopy $H: A \times I \to Y$ with $H_0 = f|_A$ there exists a homotopy $\overline{H}: X \times I \to Y$ such that $\overline{H}_0 = f$ and $\overline{H}|_A = H$.

Proposition 1.3.2. A closed subspace $A \subseteq X$ has the homotopy extension property if an only if the space

$$L = A \times I \cup X \times \{0\}$$

is a retract of $X \times I$.

Proof. Suppose that L is a retract of X. It is easy to see that $\overline{H} = (H \cup f) \circ r$ is the required homotopy extension, where $r: X \times I \to L$ is a retraction.

Now suppose that A has the homotopy extension property. Define $i_0: X \hookrightarrow L$ and $H: A \times I \hookrightarrow L$ as the inclusions. By the homotopy extension property, there exists a homotopy $\overline{H}: X \times I \to L$, which is of course a retraction.

Proposition 1.3.3. Let $A \subseteq X$ be a contractible subspace. If A has the homotopy extension property, then $q: X \to X/A$ is a homotopy equivalence.

Proof. Let $K: A \times I \to A$ be a homotopy equivalence between id_A and the constant map. Then $K \cup \mathrm{id}_X: A \times I \cup X \to X$ is a well defined map. Let $H: X \times I \to X$ be its extension.

$$\begin{array}{c|c} X \times I & \xrightarrow{H} & X \\ q \times \operatorname{id}_I & & \downarrow q \\ X/A \times I & \xrightarrow{\overline{H}} & X/A \end{array}$$

The map $q \times \operatorname{id}_I$ is a quotient map because I is locally compact. The induced map \overline{H} is therefore well defined. But now H_1 induces a map $h \colon X/A \to X$. Note that, by definition, $h \circ q = H_1 \simeq H_0 = \operatorname{id}_X$, and $q \circ h = \overline{H}_1 \simeq \overline{H}_0 = \operatorname{id}_{X/A}$.

Proposition 1.3.4. Suppose the map $A \hookrightarrow X$ has the homotopy extension property and $f, g: A \to Y$ are homotopic. Then we have $X \cup_f Y \simeq X \cup_g Y$.

Proposition 1.3.5. Suppose the map $A \hookrightarrow X$ has the homotopy extension property. If $A \hookrightarrow X$ is a homotopy equivalence, then A is a strong deformation retract of X.

Definition 1.3.6. Let $f: X \to Y$ be a map. The mapping cylinder of f is the space

$$M_f = X \times I \sqcup Y / (x, 0) \sim f(x)$$
.

Remark 1.3.6.1. The subspace $X \approx X \times \{1\} \subseteq M_f$ has the homotopy extension property.

Proposition 1.3.7. Suppose that $f: X \to Y$ is a homotopy equivalence. Then both X and Y are strong deformation retracts of M_f .

Proof. Note that the map H((x,s),t)=[(x,s(1-t)]] is a homotopy between id and a retraction $r\colon M_f\to Y$, therefore Y is a strong deformation retract of M_f . In particular, r is a homotopy equivalence. Denote by $i\colon X\hookrightarrow M_f$ the inclusion of $X\simeq X\times\{1\}$ in M_f . Note that $f=r\circ i$, therefore i is also a homotopy equivalence. It follows that X is also a strong deformation retract of M_f .

October 16, 2023

2 Fundamental group

2.1 Definition

Definition 2.1.1. Let $\alpha, \beta \colon I \to X$ be two paths with $\alpha(1) = \beta(0)$. The *concatenation* product is the path

$$(\alpha \cdot \beta)(t) = \begin{cases} \alpha(2t), & t \le \frac{1}{2}, \\ \beta(2t-1), & t \ge \frac{1}{2}. \end{cases}$$

Definition 2.1.2. Let X be a topological space and $x_0 \in X$. The set of *loops* with starting point x_0 is the set

$$\Omega(X, x_0) = \mathcal{C}((I, \partial I), (X, x_0)).$$

Theorem 2.1.3. Concatenation on $\Omega(X, x_0)$ induces a group structure on

$$\Omega(X, x_0)/\simeq \operatorname{rel} \partial I$$
.

Definition 2.1.4. The above group is called the *fundamental group* and is denoted by $\pi_1(X, x_0)$.

Remark 2.1.4.1. Suppose that C_{x_0} is the path-component of X containing x_0 . Then we have $\pi_1(X, x_0) = \pi_1(C_{x_0}, x_0)$.

Definition 2.1.5. Suppose $x_0, x_1 \in X$ are connected by a path $\gamma \colon (I, 0, 1) \to (X, x_0, x_1)$. Define the map $\operatorname{tr}_{\gamma} \colon \pi_1(X, x_0) \to \pi_1(X, x_1)$ as $\operatorname{tr}_{\gamma}([\alpha]) = [\overline{\gamma} \cdot \alpha \cdot \gamma]$.

Proposition 2.1.6. Suppose x_0, x_1 are connected by a path $\gamma \colon (I, 0, 1) \to (X, x_0, x_1)$. Then the map $\operatorname{tr}_{\gamma}$ is an isomorphism with inverse $(\operatorname{tr}_{\gamma})^{-1} = \operatorname{tr}_{\overline{\gamma}}$.

Proof. The proof is obvious and need not be mentioned.

Proposition 2.1.7. For paths $\gamma, \delta \colon (I, 0, 1) \to (X, x_0, x_1)$ we have

$$\operatorname{tr}_{\delta} = \operatorname{tr}_{\overline{\gamma}\delta} \circ \operatorname{tr}_{\gamma}$$
.

Proof. The proof is obvious and need not be mentioned.

Remark 2.1.7.1. If $\pi_1(X, x_1)$ is commutative, the tr-isomorphisms are independent from the chosen paths. We write $\pi_1(X) = \pi_1(X, x_0)$.

Proposition 2.1.8. Let $f:(X,x_0)\to (Y,y_0)$ be a map. Then f induces a homomorphism $f_*:\pi_1(X,x_0)\to \pi_1(Y,y_0)$.

Proof. The proof is obvious and need not be mentioned.

Proposition 2.1.9. The fundamental group is a functor $\pi_1 : \text{HoTop}_{\bullet} \to \text{Grp}$.

Corollary 2.1.9.1. The following statements are true:

i) If $f:(X,x_0) \to (Y,y_0)$ is a homotopy equivalence relative to x_0 , the induced map $f_*: \pi_1(X,x_0) \to \pi_1(X,x_1)$ is an isomorphism.

- ii) If $f: X \to Y$ is a homotopy equivalence, then the map $f_*: \pi_1(X, x_0) \to \pi_1(Y, f(x_0))$ is an isomorphism.
- iii) If X is contractible, then $\pi(X, x_0) \cong \{1\}$.
- iv) For $x_0 \in X$ and $y_0 \in Y$ we have that

$$((p_X)_*, (p_Y)_*) : \pi_1(X \times Y, (x_0, y_0)) \to \pi_1(X, x_0) \times \pi_1(Y, y_0)$$

is an isomorphism.

v) If A is a retract of X, then $i_*: \pi_1(A, x_0) \to \pi_1(X, x_0)$ is a monomorphism for all $x_0 \in A$. If $\pi_1(X, x_0)$ is commutative, the group $\pi_1(A, x_0)$ is a direct summand.

Proof. Assume that A is a retract of X. As $\pi_1 : \underline{\text{HoTop}}_{\bullet} \to \underline{\text{Grp}}$ is a functor, we can apply it to the diagram

$$(A, x_0) \stackrel{i}{\smile} (X, x_0) \stackrel{r}{\longrightarrow} (A, x_0).$$

It follows that $i_*: \pi_1(A, x_0) \to \pi_1(X, x_0)$ is a monomorphism.

Theorem 2.1.10 (Fundamental group of S^1). The fundamental group of S^1 is isomorphic to \mathbb{Z} .

Proof. Let $\alpha \colon (I,0,1) \to (S^1,1,1)$ be a loop. We can lift the map α to a unique map $\widetilde{\alpha} \colon (I,0) \to (\mathbb{R},0)$, as \mathbb{R} is a covering space of S^1 . Observe the map $\Phi_0 \colon \Omega(S^1,1) \to \mathbb{Z}$, given by $\Phi_0(\alpha) = \alpha(1)$. As any homotopy $h \colon \alpha \simeq \beta$ (rel ∂I) can be lifted to a unique homotopy $H \colon \widetilde{\alpha} \simeq \widetilde{\beta}$ (rel ∂I), the map Φ_0 is constant on equivalence classes and therefore induces a map $\Phi \colon \pi_1(S^1,1) \to \mathbb{Z}$. Note that it is an isomorphism, therefore, $\pi_1(S^1,1) \cong \mathbb{Z}$

Corollary 2.1.10.1 (Brouwer). Every map $f: B^2 \to B^2$ has a fixed point.

Proof. If f had no fixed point, we could construct a retraction $r: B^2 \to S^1$. This is of course not possible, as \mathbb{Z} is not a subgroup of the trivial group.

Proposition 2.1.11. Let $q: I \to S^1$ be the quotient map. Then, the induced map $q^*: [(S^1, 1), (X, x_0)] \to \pi_1(X, x_0)$ is an isomorphism of groups.

Definition 2.1.12. The *degree* of α is the number deg α , where deg: $[(S^1, 1), (S^1, 1)] \to \mathbb{Z}$ is the above isomorphism.

Theorem 2.1.13 (Borsuk-Ulam). For any continuous map $f: S^1 \to \mathbb{R}$ there exists some $x \in S^1$ such that f(x) = f(-x).

Proof. Let g(x) = f(x) - f(-x). Note that g is an odd function and assume that $g(x) \neq 0$ for all x. Observe that

$$\frac{g}{|g|}: S^1 \to \{-1, 1\}$$

is a well defined, continuous odd function. This is of course impossible, as S^1 is connected.

Lemma 2.1.14. For any odd function $f: S^1 \to S^1$ we have $2 \nmid \deg(f)$.

Proof. Without loss of generality assume f(1) = 1. Let $q: I \to S^1$ be the quotient map. Note that we can lift the map $f \circ q$ to a map $F: I \to \mathbb{R}$ with F(0) = 0. Then, $\deg(f) = F(1)$. Note that

$$f \circ q\left(\frac{1}{2}\right) = f(-1) = -1,$$

so $F\left(\frac{1}{2}\right) = k + \frac{1}{2}$. As f is odd, the map

$$G(x) = \begin{cases} F(x), & x \le \frac{1}{2}, \\ F\left(\frac{1}{2}\right) + F\left(x - \frac{1}{2}\right), & x \ge \frac{1}{2} \end{cases}$$

is also a lift of $f \circ q$. By uniqueness, we have F = G and therefore F(1) = 2k + 1.

Corollary 2.1.14.1. There are no odd maps $f: S^n \to S^1$ for n > 1.

Proof. Assume that such a map f exists. Note that the inclusion $\iota \colon S^1 \hookrightarrow S^n$ is null-homotopic. But then $f \circ \iota$ should also be null-homotopic, hence have degree 0.

Theorem 2.1.15 (Borsuk-Ulam). For any map $f: S^2 \to \mathbb{R}^2$ there exists some $x \in S^2$ such that f(x) = -f(-x).

Proof. Suppose otherwise and note that $g: S^2 \to S^1$, given by

$$g(x) = \frac{f(x) - f(-x)}{\|f(x) - f(-x)\|},$$

is an odd map.

Remark 2.1.15.1. The theorem holds for all maps $f: S^n \to \mathbb{R}^n$.

Theorem 2.1.16 (Stone-Tukey). Let A, B and C be bounded measurable subsets of \mathbb{R}^3 . Then there exists a plane which bisects all of A, B and C.

Theorem 2.1.17 (Lusternik-Schnirelmann). Let A, B and C form a closed cover of S^2 . Then, at least one of them contains a pair of antipodal points.

Theorem 2.1.18 (Fundamental theorem of algebra). Every non-constant polynomial $p \in \mathbb{C}[x]$ has a complex root.

Proof. Let $n = \deg p$ and assume $0 \notin p(\mathbb{C})$. Define

$$H(z,t) = \sum_{i=0}^{n} a_i z^i t^{n-i}.$$

Note that $H: S^1 \times I \to \mathbb{C} \setminus \{0\}$ is a homotopy between z^n and p(z). Also, the map

$$K(z,t) = p(zt)$$

is a homotopy between a_0 and p(z). It follows that p is null-homotopic, so deg p=0.

¹ Also called the *Ham Sandwich theorem*.

2.2 Computation of the fundamental group

Definition 2.2.1. The *coproduct* of groups G and H is the group

$$G * H = \left\{ \prod_{i=1}^{n} g_i h_i \mid n \in \mathbb{N} \land g_i \in G \land h_i \in H \right\}.$$

Remark 2.2.1.1. The definition coincides with coproducts in the category Grp.

Theorem 2.2.2 (Seifert-van Kampen). Let X and Y be open subspaces in $X \cup Y$ and $x_0 \in X \cap Y$. Suppose that X, Y and $X \cap Y$ are path-connected. Denote by $i_Z \colon X \cap Y \hookrightarrow Z$ and $j_Z \colon Z \hookrightarrow X \cup Y$ the inclusions for $Z \in \{X,Y\}$. Then

$$\varphi = ((j_X)_*, (j_Y)_*) \colon \pi_1(X, x_0) * \pi_1(Y, x_0) \to \pi_1(X \cup Y, x_0)$$

is an epimorphism with

$$\ker \varphi = \left\langle \left\{ (i_X)_*(\alpha) \cdot (i_Y)_* \left(\alpha^{-1} \right) \mid \alpha \in \pi_1(X \cap Y, x_0) \right\} \right\rangle.$$

Proof. Let $\alpha \in \pi_1(X \cup Y, x_0)$ be an arbitrary loop. Note that, using the Lebesgue number, we can split α into finitely many paths in X and Y. Using the path-connectedness of $X \cap Y$, we can join the path segments into loops starting at x_0 , thus constructing an element of $\pi_1(X, x_0) * \pi_1(Y, x_0)$ that maps to α .

Let

$$N = \left\langle \left\{ (i_X)_*(\alpha) \cdot (i_Y)_* \left(\alpha^{-1} \right) \mid \alpha \in \pi_1(X \cap Y, x_0) \right\} \right\rangle.$$

Note that

$$\varphi((i_X)_*(\alpha) \cdot (i_Y)_*(\alpha^{-1})) = (j_X)_*((i_X)_*(\alpha)) \cdot (j_Y)_*((i_Y)_*(\alpha^{-1}))$$

$$= (j_Y)_*((i_Y)_*(\alpha)) \cdot (j_Y)_*((i_Y)_*(\alpha))^{-1}$$

$$= 1,$$

as $j_X \circ i_X = j_Y \circ i_Y$. It follows that $N \leq \ker \varphi$. It remains to check that $\ker \varphi \leq N$. \square

Definition 2.2.3. A path-connected topological space X is *simply connected* if any two paths $\alpha, \beta: I \to X$, such that $\alpha|_{\partial I} = \beta|_{\partial I}$, are homotopic relative to ∂I .

Remark 2.2.3.1. Equivalently, X is path-connected with $\pi_1(X) \cong \{1\}$.

Index

```
\mathbf{B}
Borsuk-Ulam theorem, 9, 10
Brouwer theorem, 9
\mathbf{C}
concatenation product, 8
cone, 4
contractible space, 5
coproduct, 11
\mathbf{D}
deformation retract, 5
degree, 9
\mathbf{F}
fundamental group, 8
Fundamental theorem of algebra, 10
Η
homotopic, 4
homotopy, 4
    category, 5
    equivalence, 5
    extension property, 6
    inverse, 5
    relative to a subspace, 4
{f L}
loops, 8
Lusternik-Schnirelmann theorem, 10
\mathbf{M}
mapping cylinder, 6
\mathbf{N}
null-homotopic, 4
\mathbf{S}
Seifert-van Kampen theorem, 11
simply connected, 11
Stone-Tukey theorem, 10
strong deformation retract, 5
```