Math 156 HW1

Osman Akar 004-649-066

October 10, 2017

Task 1

Let's define $t = (t_1, t_2, ..., t_N)^T$ and let **Z** be $N \times (M+1)$ matrix such that i^{th} row is \mathbf{z}_i . We have

$$\frac{\partial}{\partial w_i} J(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^N \frac{\partial}{\partial w_i} (y(x_n, \mathbf{w}) - t_n)^2$$

$$= \frac{1}{2} \sum_{n=1}^N 2(y(x_n, \mathbf{w}) - t_n) \frac{\partial}{\partial w_i} (y(x_n, \mathbf{w}) - t_n)$$

$$= \sum_{n=1}^N (y(x_n, \mathbf{w}) - t_n) x_n^i$$

$$= \sum_{n=1}^N (\mathbf{z}_n \cdot \mathbf{w} - t_n) x_n^i$$

$$= (\mathbf{Z} \mathbf{w}^T - t)^T \cdot (x_1^i, x_2^i, ..., x_N^i)^T$$

Thus we can conclude that

$$\nabla J(\mathbf{w}) = ((\mathbf{Z}\mathbf{w}^T - t)^T \mathbf{Z})^T = \mathbf{Z}^T (\mathbf{Z}\mathbf{w}^T - t)$$

so that the equation $J(\mathbf{w}) = 0$ can be written as $\mathbf{Z}^T \mathbf{Z} \mathbf{w}^T = \mathbf{Z}^T t$. Here we choose $A = \mathbf{Z}^T \mathbf{Z}$ and $b = \mathbf{Z}^T t$

Task 2

We will consider two cases.

Case 1
$$M + 1 \le N$$

Let Z_0 be the upper $(M+1)\mathbf{x}(M+1)$ part of \mathbf{Z} , so that the rows of Z_0 are $\mathbf{z}_1, \mathbf{z}_2, ..., \mathbf{z}_{M+1}$. Z_0 is Vardenmonde matrix, thus it is invertible as $x_1, x_2, ..., x_{M+1}$ are pairwise different. Therefore $rank(\mathbf{Z}) \geq rank(Z_0) = M+1$. As an linear algebra result ¹, we have $rank(A) = rank(\mathbf{Z}^T\mathbf{Z}) = rank(\mathbf{Z}) \geq M+1$. Moreover, we know that A is $(M+1)\mathbf{x}(M+1)$ matrix, which concludes A is an invertible matrix, so the equation $A\mathbf{w}^T = b$ has a unique solution.

 $^{^{1}} see\ https://math.stackexchange.com/questions/349738/prove-rank-ata-rank-a-for-any-a-m-times-number of the prove-rank and the prove-rank ata-rank ata$

Figure 1: M=1 orange, M=2 and M=3 green, original function red

Case 2 M + 1 > N

Let Z_1 be the leftmost $N \times N$ part of \mathbf{Z} , so that the rows of Z_1 are $\hat{z}_1, \hat{z}_2, ..., \hat{z}_N$, where $\hat{z}_i = (1, x_i, x_i^2, ..., x_i^{N-1})$. Again Z_1 is an invertible Varden monde matrix. Thus \mathbf{Z} is full column rank, thus t must be in the column space of \mathbf{Z} , which means the equation $\mathbf{Z}\mathbf{w}^T = t$ has at least one solution. By multiplying the previous equation with \mathbf{Z}^T from left, we see that \mathbf{w} is also a solution of the equation $A\mathbf{w}^T = b$. As M+1 > N, there are more columns in \mathbf{Z} then its rank, so the solution is not unique.

Notes on Task 4, 6 and 8

Note that the **w** are the same for N=2k and N=2k+1, so their graphics coincide. It appears that for the data set D_1 , the higher values of M gives better approximation to function. On the other hand, for the data set D_2 , the values M=7,8 and 9 seems to give better approximation to the function. As M gets closer to N, the approximate function passes thorough the data points, but is not the best fit for the original function.

Figure 2: M=4,5 is green, M=6,7 is black, original function is red

Figure 3: M=8.9 is green, M=10.11 is black, original function is red

Figure 4: Task 7: New Data Set D_2

Figure 5: M=1 is yellow, M=2 is green, M=3 is black, original function is red

Figure 6: M=4 is yellow, M=5 is green, M=6 is black, original function is red

Figure 7: M=7 is yellow, M=8 is green, M=9 is black, original function is red

Figure 8: M=10 is green, M=11 is black, original function is red