

INFORME 10: LABORATORIO DE MAQUINAS

Ensayo Cavitación.

Tomás Fierro Sánchez Profesores: Cristóbal Galleguillos Ketterer Tomás Herrera Muñoz Fecha: 11 de diciembre de 2020.

Introducción:

En este informe se ensayará una bomba centrifuga con el objetivo de determinar la curva neta de succión positiva requerida, para esto se harán distintas mediciones estrangulando la válvula de aspiración para así variar la presión de aspiración y el caudal, y asi obtener los parámetros de operación para calcular este valor.

Objetivo:

Determinar la curva de columna neta de succión positiva requerida, CNSPR, de una bomba centrífuga.

Ecuaciones:

$$Q = Qx \left(\frac{n}{nx}\right) \quad \left[\frac{m^3}{h}\right]$$

$$pax = 0.1 pax\% - 10 - \frac{cpax}{1000} [m_{ca}]$$

$$pdx = 0.4 pdx\% + \frac{cpdx}{1000} \quad \left[m_{ca} \right]$$

$$Hx = -pax + pdx$$
 $[m_{ca}]$

$$H = Hx \left(\frac{n}{nx}\right)^2 \quad \left[m_{ca}\right]$$

$$Nex = 0.0007355 Fxnx$$
 [kW]

$$Ne = Nex \left(\frac{n}{nx}\right)^3 \quad [kW]$$

$$Nh = \gamma \frac{QH}{3600}$$
 [kW]

$$\eta_{gl} = \frac{Nh}{Ne} 100 \quad [\%]$$

$$U_2 = \frac{\pi}{60} n D_2 \left[\frac{m}{s} \right]$$

$$cm_{2} = \frac{Q}{3600\pi D_{2}B_{2}} \quad \left[\frac{m}{s}\right]$$

$$\phi = \frac{cm_{2}}{U_{2}} \quad [-]$$

$$\psi = \frac{2gH}{U_{2}^{2}} \quad [-]$$

$$V = \frac{4 Q}{3600 \pi D_A^2} \qquad \left[\frac{m}{s} \right]$$

$$D_A = 0,1023 \text{ [m]}$$

$$CNSPD = pax + \frac{13,54Patm}{1000} + \frac{V^{2}}{2g} - Pv \quad [m_{ca}]$$

$$CNSPR = CNSPD_{CRITICA}$$

Valores medidos:

Tabla 1

	VALORES MEDIDOS 2900 (curva H vs Q)														
	n	срах	cpdx	nx	рах	pdx	∆hx	Fx	Т	P _{atm}					
	[rpm]	[m]	[m]	[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]	[mm _{Hg}]					
1	2900	0.115	0.165	2899	91.8	5.6	140	1.19	18	757.1					
2	2900	0.115	0.165	2899	93.8	10.2	128	1.27	18	757.1					
3	2900	0.115	0.165	2898	96.3	14.6	115	1.34	18	757.1					
4	2900	0.115	0.165	2899	98.6	19.4	101	1.42	18	757.1					
5	2900	0.115	0.165	2898	100.8	24	87	1.48	18	757.1					
6	2900	0.115	0.165	2897	103.2	28.5	74	1.53	18	757.1					
7	2900	0.115	0.165	2899	104.8	32.2	63	1.53	18	757.1					
8	2900	0.115	0.165	2896	107.3	37.7	50	1.57	18	757.1					
9	2900	0.115	0.165	2897	109.7	42.2	36	1.53	18	757.1					
10	2900	0.115	0.165	2898	112.2	46.5	22	1.45	18	757.1					
11	2900	0.115	0.165	2899	115.2	50.3	9	1.21	19	757.1					
12	2900	0.115	0.165	2900	121.1	54.3	0	0.82	19	757.1					

Tabla 2

	PUNTO 1														
	n	срах	cpdx	nx	pax	pdx	∆hx	Fx	Т	Patm					
	[rpm]	[m]	[m]	[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]	[mm _{Hg}]					
1	2900	0.115	0.165	2908	97.4	17.6	105	1.4	16	757.1					
2	2900	0.115	0.165	2912	79.5	12.8	105	1.4	16	757.1					
3	2900	0.115	0.165	2912	63	8.6	105	1.4	16	757.1					
4	2900	0.115	0.165	2913	53.5	5.2	105	1.38	16	757.1					
5	2900	0.115	0.165	2916	50.4	5	98	1.35	16	757.1					
6	2900	0.115	0.165	2917	39.4	4.9	89	1.4	16.5	757.1					
7	2900	0.115	0.165	2916	36.2	4.7	79	1.4	17	757.1					

Tabla 3

	PUNTO 2														
	n	срах	cpdx	nx	pax	pdx	∆hx	Fx	T	Patm					
	[rpm]	[m]	[m]	[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]	[mm _{Hg}]					
1	2900	0.115	0.165	2917	102.3	27.8	78	1.52	17	757.1					
2	2900	0.115	0.165	2917	74	20.5	78	1.52	17	757.1					
3	2900	0.115	0.165	2917	48.4	10.6	78	1.48	17	757.1					
4	2900	0.115	0.165	2917	37.7	4.7	78	1.41	17.5	757.1					
5	2900	0.115	0.165	2915	35.9	4.6	73	1.4	17.5	757.1					
6	2900	0.115	0.165	2917	35.8	4.7	69	1.38	18	757.1					
7	2900	0.115	0.165	2916	36.1	4.4	64	1.35	18	757.1					

Tabla 4

	PUNTO 3														
	n	срах	cpdx	nx	pax	pdx	∆hx	Fx	Т	P _{atm}					
	[rpm]	[m]	[m]	[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]	[mm _{Hg}]					
1	2900	0.115	0.165	2916	109.8	43.8	35	1.49	18	757.1					
2	2900	0.115	0.165	2917	86.1	36.8	35	1.55	18	757.1					
3	2900	0.115	0.165	2918	26.8	4	35	1.28	18	757.1					
4	2900	0.115	0.165	2918	27.8	3.7	34	1.25	18.5	757.1					
5	2900	0.115	0.165	2917	29.3	3.6	31	1.2	18.5	757.1					

Valores calculados:

Tabla 5

					Valc	res cal	culados	punto	1				
												CNSP	CNSP
	Qx	Q	pax	pdx	Hx	Н	Nex	Ne	Nh	ngl	V	D	R
	[m^3/	[m^3/		[mca	[mca	[mca						[mca	[mca
	h]	h]	[mca]]]]	[kW]	[kW]	[kW]	[%]	[m/s]]]
			-										
	96.45	96.18	0.260	7.040	7.300	7.260	2.994	2.969	1.901	0.640	0.332	9.811	5.421
1	31	77	1	2	3	2	4	7	0	1	5	1	0
			-										
	96.45	96.05	2.050	5.120	7.170	7.111	2.998	2.961	1.859		0.332	8.021	5.421
2	31	56	1	2	3	3	5	6	5	9	1	1	0
			-										
	96.45	96.05	3.700	3.440	7.140	7.081	2.998	2.961	1.851	0.625	0.332	6.371	5.421
3	31	56	1	2	3	6	5	6	7	2	1	1	0
			-										
	96.45	96.02	4.650	2.080	6.730	6.670	2.956	2.917	1.743	0.597	0.332	5.421	5.421
4	31	26	1	2	3	3	7	3	6	7	0	0	0
			-										
	93.08	92.57	4.960	2.000	6.960	6.884	2.895	2.848	1.734	0.609	0.320	5.110	5.421
5	09	01	1	2	3	1	4	0	8	1	0	7	0
			-										
	88.55	88.04	6.060	1.960	8.020	7.927	3.003	2.951	1.899	0.643	0.304	4.004	5.421
6	83	22	1	2	3	1	6	4	9	7	4	1	0
			-										
	83.25	82.79	6.380	1.880	8.260	8.169	3.002	2.953	1.841	0.623	0.286	3.677	5.421
7	04	36	1	2	3	9	6	5	3	5	2	4	0

Tabla 6

					Valo	res calc	ulados	punto 2	2				
												CNSP	CNSP
	Qx	Q	pax	pdx	Hx	Н	Nex	Ne	Nh	ngl	V	D	R
	[m^3/	[m^3/									[m/s		[mca
	h]	h]	[mca]	[mca]	[mca]	[mca]	[kW]	[kW]	[kW]	[%]]	[mca]]
	82.70	82.21	0.229	11.12	10.89	10.76	3.26	3.20	2.40	0.75	0.28	10.28	7.45
1	13	94	9	02	03	37	11	44	91	18	43	74	74
			-										
	82.70	82.21	2.600	8.200	10.80	10.67	3.26	3.20	2.38	0.74	0.28	7.457	7.45
2	13	94	1	2	03	48	11	44	92	56	43	4	74
			-										
	82.70	82.21	5.160	4.240	9.400	9.291	3.17	3.12	2.07	0.66	0.28	4.897	7.45
3	13	94	1	2	3	0	53	01	95	65	43	4	74
			-										
	82.70	82.21	6.230	1.880	8.110	8.016	3.02	2.97	1.79	0.60	0.28	3.821	7.45
4	13	94	1	2	3	0	51	25	41	36	43	0	74
			-										
	79.90	79.48	6.410	1.840	8.250	8.165	3.00	2.95	1.76	0.59	0.27	3.640	7.45
5	80	97	1	2	3	6	16	55	69	79	48	7	74
		40	-						4 =0				
	77.59	77.13	6.420	1.880	8.300	8.203	2.96	2.90	1.72	0.59	0.26	3.624	7.45
6	00	78	1	2	3	8	07	93	27	21	67	0	74
			-	. =	0.450	0.004			4.60				
	74.60	74.19	6.390	1.760	8.150	8.061	2.89	2.84	1.62	0.57	0.25	3.653	7.45
7	45	51	1	2	3	1	54	80	81	17	65	7	74

Tabla 7

					Valo	res calc	ulados	punto 3	3				
												CNSP	CNSP
	Qx	Q	pax	pdx	Hx	Н	Nex	Ne	Nh	ngl	V	D	R
	[m^3/	[m^3/									[m/s		[mca
	h]	h]	[mca]	[mca]	[mca]	[mca]	[kW]	[kW]	[kW]	[%]]	[mca]]
	54.33	54.03	0.979	17.52	16.54	16.35	3.19	3.14	2.40	0.76	0.18	11.02	8.65
1	17	35	9	02	03	93	56	33	63	55	68	21	21
			-										
	54.33	54.01	1.390	14.72	16.11	15.92	3.32	3.26	2.34	0.71	0.18	8.652	8.65
2	17	50	1	02	03	30	55	76	13	65	67	1	21
			-										
	54.33	53.99	7.320	1.600	8.920	8.810	2.74	2.69	1.29	0.48	0.18	2.722	8.65
3	17	65	1	2	3	6	71	66	51	03	67	1	21
			-										
	53.50	53.17	7.220	1.480	8.700	8.593	2.68	2.63	1.24	0.47	0.18	2.815	8.65
4	56	55	1	2	3	3	27	34	39	24	38	3	21

			-										
	50.95	50.65	7.070	1.440	8.510	8.411	2.57	2.52	1.15	0.45	0.17	2.965	8.65
5	36	67	1	2	3	4	45	98	99	85	51	2	21

Desarrollo:

Con los valores del ensayo anterior, trace la curva característica de la bomba para la velocidad ensayada y sobreponga los nuevos valores de altura y caudal obtenidos.

Gráfico 1

¿Qué significan las desviaciones que se producen?

Las desviaciones significan la perdida de potencia (o altura) debido a la cavitación que ocurre en las distintas mediciones, también se puede mencionar el cambio en el caudal sufrido por el fluido que se ve en el gráfico.

Trace tantos gráficos como series de mediciones se hayan realizado. En la ordenada H, Ne en [%] respecto al valor sin cavitación y η_{gl} , y en la abscisa la CNSPD.

Gráfico 2

Gráfico 3

Gráfico 4

¿Cómo determina la CNSPD crítica y qué representa?

Se debe observar el valor de inflexión de la curva H (%) v/s CNSPD y representa el punto donde la bomba empieza a experimentar cavitación.

¿La curva obtenida tiene la forma característica?

No obtiene la curva característica si se compara con la curva entregada en clases por el profesor, pero esto puede deberse a algún error en los cálculos hechos en las tablas mostradas anteriormente o quizás a un error al graficar.

Conclusión:

Se concluye este trabajo habiéndose observado distintos valores de la bomba ensayada en condiciones de cavitación, se calculo el CNSPR y se revisaron distintas curvas de la bomba y como afectaba este fenómeno en cada una de ellas.

Referencias:

PPT visto en clase preparado por el Profesor Tomas Herrera.