

Introduction to River Architect

Sebastian Schwindt

sschwindt@ucdavis.edu | https://sebastian-schwindt.org

Kenneth Larrieu

kglarrieu@ucdavis.edu | https://kglarrieu.github.io

Prof. Gregory B. Pasternack lab - http://pasternack.ucdavis.edu

Department of Land, Air, and Water Resources 239 Veihmeyer Hall, University of California, Davis Davis, CA 95616-8628

Ecohydraulics

Ecohydraulic Assessments with River Architect

Definitions https://riverarchitect.github.io/RA_wiki/SHArC

Physical Habitat = Preferred depth & velocity (+ cover) of target fish species & lifestages

SHArC = Seasonal Habitat Area Calculator

SHArea = Seasonal Habitat Area

Physical Habitat Evaluation

Physical Habitat Evaluation

Create Hydraulic Conditions (DHSI & VHSI Rasters)

Flow frequencies are associated here as defined in 01_Conditions/CONDITION/flow_definitions.xlsx (Get Started!)

Creates SHArC/SHArea/CONDITION_sharea_chju.xlsx with name convention: CHinook JUvenile → chju (FILI)

20

Ecohydraulics Activity

- 1) Select Physical Habitat > Chinook Salomon Juvenile
- 2) Make HSI Rasters (...) > HYDRAU-LIC Flow depth & velocity HSI
- 3) I. II. Repeat for remod

IV.

Combine Hydraulic Conditions (DHSI & VHSI \rightarrow cHSI Rasters)

Calculate SHArea

- → Repeat operation for multiple discharges (apply flow duration curve)
- \rightarrow Calculate usable habitat area (e.g., cHSI > $\vartheta = \ge$ 1)
- → Sum of usable areas for one discharge = Usable Area
- → Sum of multiple season-specific discharges = Seasonal Habitat Area (SHArea)

0.00

1.00

0.75

Flow velocity (fps)

3.00

Calculate SHArea

Calculate Seasonal Habitat Area (SHArea) – https://riverarchitect.github.io/RA_wiki/SHArC#herunSHArea

$$SHArea = \sum\nolimits_{p_{Qi}}^{p_{Qn}} \left[\sum px(cHSI > \vartheta) \cdot A_{px} \right] \cdot p_{Qk} = 0.1 \cdot 221 + 0.4 \cdot 179 + 0.2 \cdot 100 + 0.3 \cdot 36 = 124.5 \, m^2$$

Calculate SHArea

Defines Condition Repeat 1) & 2) for both conditions (click Confirm selection)

1) Set ϑ (default: $\vartheta = 0.5$)

2) Calculate SHArea

Creates: SHArC/SHArea/CONDMON/no_cover/csi_chjuQQQ.tif Completes: SHArC/SHArea/CONDMON_sharea_chju.xlsx

Ecohydraulics Activity

Compare SHArea of initial & remod Conditions → Project Maker

Detailed documentation & reading for this chapter https://riverarchitect.github.io/RA_wiki/SHArC

Connectivity Analysis

Calculate Stranding Risks: https://riverarchitect.github.io/RA_wiki/Connectivity#Methodology

Ecohydraulics Definitions

Calculate Stranding Risks

1) Select Physical Habitat (Chinook juvenile)

2) Select Condition

3) Input flow reduction scenario: 2000 cfs → 1004 cfs over 2 hrs

4) Run

5) Repeat 2-4 for remod condition

