Logică și structuri discrete Functii

Casandra Holotescu casandra@cs.upt.ro

https://tinyurl.com/lecturesLSD

Ce învățăm la acest curs?

Discret vs. continuu

Nu studiem domeniul *continuu* numere reale, infinitezimale, limite, ecuații diferențiale vezi: analiză matematică

Studiem noțiuni/obiecte care iau *valori distincte, discrete* (întregi, valori logice, liste, relații, arbori, grafuri, etc.)

Logică și structuri discrete, sau ...

Matematici discrete cu aplicații folosind programare funcțională

Bazele informaticii noțiunile de bază din știința calculatoarelor unde și cum se *aplică* ⇒ cum să *programăm mai bine*

Programare funcțională în ML

Vom lucra cu un limbaj în care noțiunea fundamentală e *funcția* ilustrează concepte de matematici discrete (liste, mulțimi, etc.) concis (în câteva linii de cod se pot face multe) fundamentat riguros \Rightarrow ajută să evităm erori

Programare funcțională în ML

Vom lucra cu un limbaj în care noțiunea fundamentală e *funcția* ilustrează concepte de matematici discrete (liste, mulțimi, etc.) *concis* (în câteva linii de cod se pot face multe) *fundamentat riguros* ⇒ ajută să evităm erori

Programarea funcțională complementară programării imperative (în C) vom discuta ce e comun, și ce e diferit (și de ce)

Caml: un dialect de ML, cu interpretorul și compilatorul OCaml http://ocaml.org

E relevantă programarea funcțională?

"A language that doesn't affect the way you think about programming is not worth knowing."

Alan Perlis

Conceptele din programarea funcțională au influențat alte limbaje: JavaScript, Python, Scala; F# (.NET) e foarte similar cu ML

E relevantă programarea funcțională?

"A language that doesn't affect the way you think about programming is not worth knowing."

Alan Perlis

Conceptele din programarea funcțională au influențat alte limbaje: JavaScript, Python, Scala; F# (.NET) e foarte similar cu ML

Exemplu: adoptarea funcțiilor anonime (lambda-expresii)

1930 λ -calcul (Alonzo Church) – pur teoretic

1958: LISP (John McCarthy)

1973: ML (Robin Milner)

2007: C# v3.0 2011: C++11 2014: Java 8

OK, să-i dăm drumul!

Cum demonstrăm o afirmație?

Contrapozitiva unei afirmații:

negăm premisa și concluzia, și le inversăm.

afirmația
$$P\Rightarrow Q$$
 are contrapozitiva $\neg Q\Rightarrow \neg P$

În logică, o afirmație e echivalentă cu contrapozitiva ei.

$$P \Rightarrow Q \Leftrightarrow \neg Q \Rightarrow \neg P$$

Contrapozitiva unei afirmații:

negăm premisa și concluzia, și le inversăm.

afirmația
$$P\Rightarrow Q$$
 are contrapozitiva $\neg Q\Rightarrow \neg P$

În logică, o afirmație e echivalentă cu contrapozitiva ei.

$$P \Rightarrow Q \Leftrightarrow \neg Q \Rightarrow \neg P$$

Demonstrația prin reducere la absurd

presupunem concluzia falsă

Contrapozitiva unei afirmații:

negăm premisa și concluzia, și le inversăm.

afirmația
$$P\Rightarrow Q$$
 are contrapozitiva $\neg Q\Rightarrow \neg P$

În logică, o afirmație e echivalentă cu contrapozitiva ei.

$$P \Rightarrow Q \Leftrightarrow \neg Q \Rightarrow \neg P$$

Demonstrația prin reducere la absurd

- presupunem concluzia falsă
- arătăm că atunci premisa e falsă \Rightarrow absurd (e adevărată)

Contrapozitiva unei afirmații:

negăm premisa și concluzia, și le inversăm.

afirmația
$$P\Rightarrow Q$$
 are contrapozitiva $\neg Q\Rightarrow \neg P$

În logică, o afirmație e echivalentă cu contrapozitiva ei.

$$P \Rightarrow Q \Leftrightarrow \neg Q \Rightarrow \neg P$$

Demonstrația prin reducere la absurd

- presupunem concluzia falsă
- arătăm că atunci premisa e falsă ⇒ absurd (e adevărată)
- deci concluzia nu poate fi falsă ⇒ e adevărată

Demonstrația prin inducție matematică

Dacă o propoziție P(n) depinde de un număr natural n

Demonstrația prin inducție matematică

Dacă o propoziție P(n) depinde de un număr natural n, și

- 1) cazul de bază : P(0) e adevărată
- 2) pasul inductiv: pentru orice $n \ge 0$

$$P(n) \Rightarrow P(n+1)$$

Demonstrația prin inducție matematică

Dacă o propoziție P(n) depinde de un număr natural n, și

- 1) cazul de bază : P(0) e adevărată
- 2) pasul inductiv : pentru orice $n \ge 0$

$$P(n) \Rightarrow P(n+1)$$

atunci P(n) e adevărată pentru orice n.

Cum arătăm că o afirmație (universală) e falsă?

E suficient să găsim un contraexemplu.

Exemplu:

dacă o propoziție Q(n) depinde de un număr natural n și pentru $n=3,\ Q(3)$ e falsă $\Rightarrow Q(n)$ e falsă

Mulțimi – scurt intro

Ce sunt multimile?

Definiție informală:

O mulțime e o colecție de obiecte numite elementele mulțimii.

Ce sunt mulțimile?

Definiție informală:

O mulțime e o colecție de obiecte numite elementele mulțimii.

Două noțiuni distincte: element și mulțime

 $x \in S$: elementul x aparține mulțimii S

 $x \notin S$: elementul x nu aparține mulțimii S

Ce sunt multimile?

Definiție informală:

O mulțime e o colecție de obiecte numite elementele mulțimii.

Două noțiuni distincte: element și mulțime

 $x \in S$: elementul x aparține mulțimii S

 $x \notin S$: elementul x *nu aparține* mulțimii S

Ordinea elementelor nu contează $\{1,2,3\} = \{1,3,2\}$ Un element nu apare de mai multe ori $\{1,2,3,2\}$

Submulțimi

A e o submulțime a lui B: $A \subseteq B$ dacă fiecare element al lui A e și un element al lui B.

A e o submulțime proprie a lui B: $A \subset B$ dacă $A \subseteq B$ și există (măcar) un element $x \in B$ astfel ca $x \notin A$.

Submulțimi

A e o submulțime a lui B: $A \subseteq B$ dacă fiecare element al lui A e și un element al lui B.

A e o submulțime proprie a lui B: $A \subset B$ dacă $A \subseteq B$ și există (măcar) un element $x \in B$ astfel ca $x \notin A$.

Obs. Ca să demonstrăm $A \not\subseteq B$ e suficient să găsim un element $x \in A$ pentru care $x \notin B$.

Dacă $A \subseteq B$ și $B \subseteq A$, atunci A = B (mulțimile sunt egale)

Cardinalul unei mulțimi

Cardinalul (cardinalitatea) unei mulțimi A e numărul de elemente al multimii.

Cardinalul unei mulțimi A se notează |A|.

Cardinalul unei mulțimi

Cardinalul (cardinalitatea) unei mulțimi A e numărul de elemente al multimii.

Cardinalul unei mulțimi A se notează |A|.

Putem avea mulțimi *finite*: $|\{1,2,3,4,5\}| = 5$ sau *infinite*: \mathbb{N} , \mathbb{R} , etc.

Care e cardinalul unei mulțimi infinite? $|\mathbb{N}| = |\mathbb{R}| = \infty$?

Cardinalul unei mulțimi

Cardinalul (cardinalitatea) unei mulțimi A e numărul de elemente al multimii.

Cardinalul unei mulțimi A se notează |A|.

Putem avea mulțimi *finite*: $|\{1,2,3,4,5\}| = 5$ sau *infinite*: \mathbb{N} , \mathbb{R} , etc.

Care e cardinalul unei mulțimi infinite? $|\mathbb{N}|=|\mathbb{R}|=\infty$?

Nu:

$$|\mathbb{N}|=\aleph_0$$
 \aleph_0 — cel mai mic cardinal infinit $|\mathbb{R}|=2^{\aleph_0}$

Tupluri

Un *n*-tuplu e un șir de *n* elemente $(x_1, x_2, ..., x_n)$

Proprietăți:

elementele nu sunt neapărat distincte ordinea elementelor în tuplu contează

Cazuri particulare:

```
pereche (a, b),
triplet (x, y, z), etc.
```

Produs cartezian

Produsul cartezian a două mulțimi e mulțimea perechilor $A \times B = \{(a, b) \mid a \in A, b \in B\}$

Produsul cartezian a
$$n$$
 mulțimi e mulțimea $n-$ tuplelor $A_1 \times A_2 \times \ldots \times A_n = \{(x_1, x_2, \ldots, x_n) \mid x_i \in A_i, 1 \leq i \leq n\}$

Dacă mulțimile sunt finite, atunci

$$|A_1 \times A_2 \times \ldots \times A_n| = |A_1| \cdot |A_2| \cdot \ldots \cdot |A_n|$$

Funcții – aspect matematic

Funcții

Fiind date mulțimile A și B, o funcție $f:A\to B$ e o asociere prin care fiecărui element din A îi corespunde un singur element din B.

Imagine: http://en.wikipedia.org/wiki/File:Total_function.svg

O funcție e definită prin trei componente

1. domeniul de definiție

- 2. domeniul de valori (codomeniul)
- asocierea/corespondența propriu-zisă (legea, regula de asociere)

$$f: \mathbb{Z} \to \mathbb{Z}, \ f(x) = x + 1$$
 si
 $f: \mathbb{R} \to \mathbb{R}, \ f(x) = x + 1$

sunt funcții distincte!

Exemple care NU sunt funcții

nu asociază o valoare fiecărui element

Exemple care NU sunt funcții

nu asociază o valoare fiecărui element

asociază mai multe valori unui element

O definiție alternativă

O funcție $f:A\to B$ este o mulțime $f\subseteq A\times B$ a. î. pentru fiecare element $a\in A$ există un unic element $b\in B$ a. î. $(a,b)\in f$.

Notăm această alegere unică a lui b cu f(a).

O definiție alternativă

O funcție $f:A\to B$ este o mulțime $f\subseteq A\times B$ a. î. pentru fiecare element $a\in A$ există un unic element $b\in B$ a. î. $(a,b)\in f$.

Notăm această alegere unică a lui b cu f(a).

Consecință: putem avea o funcție $f:\emptyset\to\mathbb{N}$?

O definiție alternativă

O funcție $f:A\to B$ este o mulțime $f\subseteq A\times B$ a. î. pentru fiecare element $a\in A$ există un unic element $b\in B$ a. î. $(a,b)\in f$.

Notăm această alegere unică a lui b cu f(a).

Consecință: putem avea o funcție $f:\emptyset\to\mathbb{N}$?

 $\mathsf{Da} \colon f \subseteq \emptyset \times \mathbb{N} \Leftrightarrow f \subseteq \emptyset \Leftrightarrow f = \emptyset$

pentru orice $a \in \emptyset$ există un unic $b \in \mathbb{N}$ a. î. $(a,b) \in f$ (adevărat)

 $f = \emptyset$ este funcția vidă

Proprietăți ale funcțiilor

Funcții injective

O funcție $f: A \to B$ e *injectivă* dacă pentru orice $x_1, x_2 \in A$, $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$ (asociază valori diferite la argumente diferite)

Funcții injective

O funcție $f: A \to B$ e *injectivă* dacă pentru orice $x_1, x_2 \in A$, $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$ (asociază *valori diferite* la *argumente diferite*)

Exemple: funcție injectivă

și neinjectivă

Imagine: http://en.wikipedia.org/wiki/File:Injection.svg
 http://en.wikipedia.org/wiki/File:Surjection.svg

Funcții injective (cont.)

În locul condiției $x_1, x_2 \in A$, $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$ putem scrie echivalent:

$$f(x_1) = f(x_2) \Rightarrow x_1 = x_2$$

(dacă valorile sunt egale, atunci argumentele sunt egale)

Funcții injective (cont.)

În locul condiției $x_1, x_2 \in A$, $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$ putem scrie echivalent:

$$f(x_1) = f(x_2) \Rightarrow x_1 = x_2$$

(dacă valorile sunt egale, atunci argumentele sunt egale)

E totuna cu
$$x_1, x_2 \in A, x_1 = x_2 \Rightarrow f(x_1) = f(x_2)$$
?

Funcții injective (cont.)

În locul condiției $x_1, x_2 \in A$, $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$ putem scrie echivalent:

$$f(x_1) = f(x_2) \Rightarrow x_1 = x_2$$

(dacă valorile sunt egale, atunci argumentele sunt egale)

E totuna cu
$$x_1, x_2 \in A, x_1 = x_2 \Rightarrow f(x_1) = f(x_2)$$
?

Nu! *Orice funcție* ia aceeași valoare pentru argumente egale! (e o proprietate de bază a egalității și substituției).

Proprietăți ale funcțiilor injective

Dacă $f: A \to B$ și f e injectivă, atunci $|A| \le |B|$.

Proprietăți ale funcțiilor injective

Dacă
$$f: A \to B$$
 și f e injectivă, atunci $|A| \le |B|$.

Nu și invers!!

(Pentru orice mulțime A a.î. |A|>1 putem construi f să ducă două elemente din A în aceeași valoare din B)

Proprietăți ale funcțiilor injective

Dacă
$$f: A \to B$$
 și f e injectivă, atunci $|A| \le |B|$.

Nu și invers!!

(Pentru orice mulțime A a.î. |A|>1 putem construi f să ducă două elemente din A în aceeași valoare din B)

Demonstrația: prin reducere la absurd și inducție.

- 1. construim contrapozitiva: dacă |A| > |B|, atunci $f: A \rightarrow B$ nu e injectivă
- 2. prin *inducție* după n, unde n = |B|: $|A| > |B| = n \Rightarrow f : A \rightarrow B$ nu poate fi injectivă.

Demonstrație prin inducție

$$|A| > |B| = n \Rightarrow f : A \rightarrow B$$
 nu poate fi injectivă

Cazul de bază:
$$n = 1$$
, $B = \{b_1\}$.

$$|A| > |B| \Rightarrow |A| \ge 2$$

$$|A| \ge 2 \Rightarrow f(a_1) = f(a_2) = b_1$$
 (unica posibilitate)

deci f nu e injectivă.

fie |B| = n + 1 și $b_{n+1} \in B$.

dacă $\exists a_1, a_2 \text{ din } A, f(a_1) = f(a_2) = b_{n+1} \Rightarrow f \text{ nu e injectivă}.$

 $fie |B| = n + 1 \text{ si } b_{n+1} \in B.$

dacă $\exists a_1, a_2 \text{ din } A, f(a_1) = f(a_2) = b_{n+1} \Rightarrow f$ nu e injectivă.

altfel, dacă \exists un unic $a_1 \in A$, $f(a_1) = b_{n+1}$

alttel, dacă \exists un unic $a_1 \in A$, $f(a_1) = b_{n+1}$ putem elimina a_1 din A și b_{n+1} din B

Cazul inductiv: pres. P(n) adevărat, dem. $P(n) \Rightarrow P(n+1)$ fie |B| = n + 1 și $b_{n+1} \in B$.

putem elimina a_1 din A și b_{n+1} din B

dacă $\exists a_1, a_2 \text{ din } A, f(a_1) = f(a_2) = b_{n+1} \Rightarrow f \text{ nu e injectivă}.$

altfel, dacă \exists un unic $a_1 \in A$, $f(a_1) = b_{n+1}$

fie $A' = A \setminus \{a_1\}$ și $B' = B \setminus \{b_{n+1}\}$ atunci |A'| > |B'| = n

 $\operatorname{deci} P(n) \Rightarrow P(n+1)$

dacă $\exists a_1, a_2 \text{ din } A, f(a_1) = f(a_2) = b_{n+1} \Rightarrow f \text{ nu e injectivă}.$

altfel, dacă \exists un unic $a_1 \in A$, $f(a_1) = b_{n+1}$

putem elimina a_1 din A și b_{n+1} din B

fie $A' = A \setminus \{a_1\}$ și $B' = B \setminus \{b_{n+1}\}$ atunci |A'| > |B'| = n

 $P(n): |A'| > |B'| = n \Rightarrow f: A' \rightarrow B'$ nu e injectivă $\Rightarrow \exists$ două elem. din A' cu valori egale pentru f.

fie |B| = n + 1 și $b_{n+1} \in B$.

Cazul inductiv: pres. P(n) adevărat, dem. $P(n) \Rightarrow P(n+1)$ fie |B| = n+1 și $b_{n+1} \in B$. dacă $\exists a_1, a_2 \text{ din } A, \ f(a_1) = f(a_2) = b_{n+1} \Rightarrow \text{f nu e injectivă.}$ altfel, dacă \exists un unic $a_1 \in A, \ f(a_1) = b_{n+1}$ putem elimina $a_1 \text{ din } A \text{ si } b_{n+1} \text{ din } B$

fie $A' = A \setminus \{a_1\}$ si $B' = B \setminus \{b_{n+1}\}$ atunci |A'| > |B'| = n

$$P(n)$$
: $|A'| > |B'| = n \Rightarrow f : A' \to B'$ nu e injectivă $\Rightarrow \exists$ două elem. din A' cu valori egale pentru f .

 $\mathsf{deci}\ P(n) \Rightarrow P(n+1)$

($Principiul\ lui\ Dirichlet$: dacă împărțim n+1 obiecte în n categorii există cel puțin o categorie cu mai mult de un obiect)

Funcții surjective

O funcție $f: A \to B$ e surjectivă dacă pentru fiecare $y \in B$ există un $x \in A$ cu f(x) = y.

Funcții surjective

O funcție $f: A \to B$ e surjectivă dacă pentru fiecare $y \in B$ există un $x \in A$ cu f(x) = y.

funcție surjectivă

funcție nesurjectivă

Imagine: http://en.wikipedia.org/wiki/File:Surjection.svg Imagine: http://en.wikipedia.org/wiki/File:Injection.svg

Proprietăți ale funcțiilor surjective

Dacă $f: A \to B$ și f e surjectivă, atunci $|A| \ge |B|$.

Proprietăți ale funcțiilor surjective

Dacă
$$f: A \rightarrow B$$
 și f e surjectivă, atunci $|A| \ge |B|$.

Nu și invers!!

(Putem construi f a. î. să nu ia ca valoare un element anume din B, dacă |B|>1).

Putem transforma o funcție nesurjectivă într-una surjectivă prin restrângerea domeniului de valori:

 $f_1:\mathbb{R} \to \mathbb{R}$, $f_1(x)=x^2$ nu e surjectivă, dar $f_2:\mathbb{R} \to [0,\infty)$, $f_1(x)=x^2$ (restrânsă la valori nenegative) este surjectivă.

Funcții bijective. Proprietăți

O funcție care e injectivă și surjectivă se numește bijectivă.

Funcții bijective. Proprietăți

O funcție care e injectivă și surjectivă se numește bijectivă.

O funcție bijectivă $f:A\to B$ pune în corespondență unu la unu elementele lui A cu cele ale lui B.

Pentru *orice* funcție, din definiție, la fiecare $x \in A$ corespunde un *unic* $y \in B$ cu f(x) = y

Pentru o funcție *bijectivă*, și invers: la fiecare $y \in B$ corespunde un *unic* $x \in A$ cu f(x) = y

Dacă există $f: A \rightarrow B$ și f e bijectivă, atunci |A| = |B| .

Compunerea funcțiilor

Compunerea funcțiilor

Fie functiile $f: A \rightarrow B$ și $g: B \rightarrow C$.

Compunerea lor este funcția $g \circ f : A \to C$ $(g \circ f)(x) = g(f(x))$

Putem compune $g \circ f$ doar când codomeniul lui f = domeniul lui g !

Proprietăți ale compunerii funcțiilor

Compunerea a două funcții e asociativă:

$$(f \circ g) \circ h = f \circ (g \circ h)$$

Demonstrație: fie x oarecare din domeniul lui h. Atunci:

```
 ((f \circ g) \circ h)(x) = \qquad \qquad (f \circ (g \circ h))(x) = \\ rescriem \circ = (f \circ g)(h(x)) \qquad \qquad rescriem \circ = f((g \circ h)(x)) \\ rescriem \circ = f(g(h(x))) \qquad \qquad rescriem \circ = f(g(h(x)))
```

Compunerea a două funcții nu e neapărat comutativă

Puteți da un exemplu pentru care $f \circ g \neq g \circ f$?

Pe orice mulțime A putem defini funcția identitate $id_A:A\to A$ $id_A(x)=x$ (notată adeseori și $\mathbf{1}_A$)

O funcție $f:A\to B$ e *inversabilă* dacă există o funcție $f^{-1}:B\to A$ astfel încât $f^{-1}\circ f=id_A \text{ și}$ $f\circ f^{-1}=id_B.$

O funcție e inversabilă dacă și numai dacă e bijectivă.

O funcție e inversabilă dacă și numai dacă e *bijectivă*. Demonstrăm:

Dacă f e inversabilă: pentru $y \in B$ oarecare, fie $x = f^{-1}(y)$.

O funcție e inversabilă dacă și numai dacă e *bijectivă*. Demonstrăm:

Dacă f e inversabilă:

pentru $y \in B$ oarecare, fie $x = f^{-1}(y)$.

Atunci $f(x) = f(f^{-1}(y)) = y$, deci f e surjectivă

O funcție e inversabilă dacă și numai dacă e *bijectivă*. Demonstrăm:

Dacă f e inversabilă:

pentru $y \in B$ oarecare, fie $x = f^{-1}(y)$.

Atunci $f(x) = f(f^{-1}(y)) = y$, deci f e surjectivă dacă $f(x_1) = f(x_2)$, atunci $f^{-1}(f(x_1)) = f^{-1}(f(x_2))$, deci $x_1 = x_2$ (injectivă)

O funcție e inversabilă dacă și numai dacă e *bijectivă*. Demonstrăm:

Dacă f e inversabilă:

pentru
$$y \in B$$
 oarecare, fie $x = f^{-1}(y)$.

Atunci
$$f(x) = f(f^{-1}(y)) = y$$
, deci f e surjectivă dacă $f(x_1) = f(x_2)$, atunci $f^{-1}(f(x_1)) = f^{-1}(f(x_2))$, deci $x_1 = x_2$ (injectivă)

Reciproc, dacă f e bijectivă:

- f e surjectivă ⇒ pentru orice $y \in B$ există $x \in A$ cu f(x) = y

O funcție e inversabilă dacă și numai dacă e *bijectivă*. Demonstrăm:

Dacă f e inversabilă:

pentru
$$y \in B$$
 oarecare, fie $x = f^{-1}(y)$.

Atunci
$$f(x) = f(f^{-1}(y)) = y$$
, deci f e surjectivă dacă $f(x_1) = f(x_2)$, atunci $f^{-1}(f(x_1)) = f^{-1}(f(x_2))$, deci $x_1 = x_2$ (injectivă)

Reciproc, dacă f e bijectivă:

- f e surjectivă ⇒ pentru orice $y \in B$ există $x \in A$ cu f(x) = y
- f fiind injectivă, dacă $f(x_1) = y = f(x_2)$, atunci $x_1 = x_2$.

O funcție e inversabilă dacă și numai dacă e bijectivă. Demonstrăm:

Dacă f e inversabilă:

pentru
$$y \in B$$
 oarecare, fie $x = f^{-1}(y)$.

Atunci
$$f(x) = f(f^{-1}(y)) = y$$
, deci f e surjectivă dacă $f(x_1) = f(x_2)$, atunci $f^{-1}(f(x_1)) = f^{-1}(f(x_2))$, deci $x_1 = x_2$ (injectivă)

Reciproc, dacă f e bijectivă:

- f e surjectivă ⇒ pentru orice $y \in B$ există $x \in A$ cu f(x) = y
- f fiind injectivă, dacă $f(x_1) = y = f(x_2)$, atunci $x_1 = x_2$.

Deci
$$f^{-1}: B \to A$$
, $f^{-1}(y) = \text{acel } x$ a. î. $f(x) = y$ e o funcție bine definită, $f^{-1}(f(x)) = x$, și $f(f^{-1}(y)) = y$.

Imagine și preimagine

Fie $f: A \rightarrow B$.

Dacă $S \subseteq A$, mulțimea elementelor f(x) cu $x \in S$ se numește *imaginea* lui S prin f, notată f(S).

Imagine și preimagine

Fie $f: A \rightarrow B$.

Dacă $S \subseteq A$, mulțimea elementelor f(x) cu $x \in S$ se numește *imaginea* lui S prin f, notată f(S).

Dacă $T \subseteq B$, mulțimea elementelor x cu $f(x) \in T$ se numește preimaginea lui T prin f, notată $f^{-1}(T)$.

Imagine și preimagine

Fie $f: A \rightarrow B$.

Dacă $S \subseteq A$, mulțimea elementelor f(x) cu $x \in S$ se numește *imaginea* lui S prin f, notată f(S).

Dacă $T \subseteq B$, mulțimea elementelor x cu $f(x) \in T$ se numește preimaginea lui T prin f, notată $f^{-1}(T)$.

$$f^{-1}(f(S)) \supseteq S$$

Aplicând întâi funcția și apoi inversa ei se pierde precizie. (nu orice calcul e reversibil).

Probleme de numărare

Câte funcții există de la A la B?

Dacă A și B sunt mulțimi finite există $|B|^{|A|}$ funcții de la A la B. (în fiecare element din B se poate mapa orice element din A)

Demonstrație: prin $inducție\ matematic\ a$ după |A|

Mulțimea funcțiilor $f:A\to B$ se notează uneori B^A Notația ne amintește că numărul acestor funcții e $|B|^{|A|}$.

Câte funcții injective există de la A la B?

Dacă A și B sunt mulțimi finite și $f: A \to B$ injectivă $\Rightarrow |f(A)| = |A|$ (imaginea lui f va avea |A| elemente).

Câte funcții injective există de la A la B?

Dacă A și B sunt mulțimi finite și $f:A\to B$ injectivă $\Rightarrow |f(A)|=|A|$ (imaginea lui f va avea |A| elemente).

Ordinea în care alegem elementele contează ! (ordini diferite \Rightarrow funcții diferite) ... deci avem aranjamente de |B| luate câte |A|

Câte funcții injective există de la A la B?

Dacă A și B sunt mulțimi finite și $f: A \to B$ injectivă $\Rightarrow |f(A)| = |A|$ (imaginea lui f va avea |A| elemente).

Ordinea în care alegem elementele *contează* ! (ordini diferite \Rightarrow funcții diferite) ... deci avem aranjamente de |B| luate câte |A|

$$\Rightarrow$$
 există $A_{|B|}^{|A|} = \frac{|B|!}{(|B| - |A|)!}$ funcții injective

Câte funcții bijective există de la A la B?

Dacă A și B sunt mulțimi finite și $f: A \to B$ bijectivă $\Rightarrow |f(A)| = |A| = |B|$ (imaginea lui f va avea |A| elemente).

Ordinea în care alegem elementele *contează* ! ... deci avem permutări de |A| elemente

Câte funcții bijective există de la A la B?

Dacă A și B sunt mulțimi finite și $f:A\to B$ bijectivă $\Rightarrow |f(A)|=|A|=|B|$ (imaginea lui f va avea |A| elemente).

Ordinea în care alegem elementele *contează* ! ... deci avem permutări de |A| elemente

 \Rightarrow există $P_{|A|} = |A|!$ funcții bijective

Funcții – aspect computațional

Funcții: aspectul computațional

În limbajele de programare, o funcție exprimă un *calcul*: primește o *valoare* (*argumentul*) și produce ca *rezultat* altă *valoare*

Funcții în OCaml

Cel mai simplu, definim funcții astfel:

```
let f x = x + 1
"fie funcția f de argument x, cu valoarea x + 1"
```

Putem defini și identificatori cu alte valori (de ex. numerice):

```
let y = 3 definește identificatorul y cu valoarea 3 (un întreg)
```

Funcții în OCaml

Cel mai simplu, definim funcții astfel:

```
let f x = x + 1
"fie funcția f de argument x, cu valoarea x + 1"
```

Putem defini și identificatori cu alte valori (de ex. numerice):

```
let y = 3 definește identificatorul y cu valoarea 3 (un întreg)
```

```
let nume = expresie 
leagă (asociază) identificatorul nume cu valoarea expresiei date
```

Funcțiile sunt și ele valori

În diagrame, funcțiile nu au neapărat nume:

funcția care asociază 1 lui 0, etc.

Funcțiile sunt și ele valori

În diagrame, funcțiile nu au neapărat nume:

funcția care asociază 1 lui 0, etc.

Putem scrie si în OCaml:

fun x -> x + 1 o expresie reprezentând o funcție anonimă

Ca la orice expresie, putem asocia un nume cu valoarea expresiei:

let $f = fun x \rightarrow x + 1$ e la fel ca let f x = x + 1

Funcțiile sunt și ele valori

În diagrame, funcțiile nu au neapărat nume:

funcția care asociază 1 lui 0, etc.

Putem scrie și în OCaml:

fun x -> x + 1 o expresie reprezentând o funcție anonimă

Ca la orice expresie, putem asocia un nume cu valoarea expresiei:

let $f = fun x \rightarrow x + 1$ e la fel ca let f x = x + 1

O funcție e și ea o *valoare* (ca întregii, realii, etc.) și poate fi folosită la fel ca orice valoare (dată ca parametru, returnată, etc.)

Dacă am definit o funcție:

```
let f x = x + 3
```

o apelăm scriind numele funcției, apoi argumentul:

```
f 2
```

Putem apela direct și o funcție anonimă:

```
(fun x -> x + 3) 2
```

Dacă am definit o functie:

let
$$f x = x + 3$$

o apelăm scriind numele funcției, apoi argumentul:

Putem apela direct și o funcție anonimă:

$$(fun x -> x + 3) 2$$

Interpretorul răspunde, calculând valoarea:

$$-: int = 5$$

avem o valoare fără nume (-), care e un întreg, și are valoarea 5

```
Apel de funcție în ML: f 2
```

```
Apel de funcție în ML:

f 2

În ML, funcțiile se apelează fără paranteze!
```

```
În matematică, folosim paranteze: ca să grupăm calcule care se fac întâi: (2+3)*(7-3) ca să identificăm argumentele funcțiilor: f(2)
```

```
Apel de functie în ML:
  f 2
În ML, functiile se apelează fără paranteze!
În matematică, folosim paranteze:
  ca să grupăm calcule care se fac întâi: (2+3)*(7-3)
  ca să identificăm argumentele functiilor: f(2)
În ML, folosim paranteze doar pentru a grupa (sub)expresii:
  f (5+7)
  (fun x -> x + 3) 2
```

Diverse limbaje au reguli de scris diferite (sintaxa).

```
Dacă definim

let f x = x + 1
```

interpretorul OCaml *evaluează* definiția și răspunde:

```
val f : int -> int = \langle fun \rangle
```

```
Dacă definim
     let f x = x + 1
interpretorul OCaml evaluează definitia si răspunde:
     val f : int -> int = \langle fun \rangle
Matematic:
  f e o funcție de la întregi la întregi
În program:
  f e o funcție cu argument de tip întreg (int)
  și rezultat de tip întreg (domeniul și codomeniul devin tipuri)
```

```
val f : int -> int = \langle fun \rangle
```

În programare, un *tip* de date e *o mulțime de valori*, împreună cu niște *operații* definite pe astfel de valori.

```
int -> int
  e tipul funcțiilor de argument întreg cu valoare întreagă.
```

```
val f : int \rightarrow int = \langle fun \rangle
```

În programare, un *tip* de date e *o mulțime de valori*, împreună cu niște *operații* definite pe astfel de valori.

```
int -> int
  e tipul funcțiilor de argument întreg cu valoare întreagă.
```

În ML, tipurile pot fi deduse *automat* (*inferență de tip*): pentru că la x se aplică +, compilatorul deduce că x e întreg

Pentru reali, am scrie let f x = x + .1.

cu punct zecimal pentru reali, și în operatori: +., *. etc.

Fie
$$abs: \mathbb{Z} \to \mathbb{Z}$$
 $abs(x) = \begin{cases} x & \text{dacă } x \ge 0 \\ -x & \text{altfel } (x < 0) \end{cases}$

Valoarea funcției nu e dată de o singură expresie, ci de una din două expresii diferite (x sau -x), depinzând de o condiție ($x \ge 0$).

$$\text{Fie} \quad \textit{abs}: \mathbb{Z} \to \mathbb{Z} \qquad \textit{abs}(x) = \left\{ \begin{array}{ll} x & \text{dacă } x \geq 0 \\ -x & \text{altfel } (x < 0) \end{array} \right.$$

Valoarea funcției nu e dată de o singură expresie, ci de una din două expresii diferite (x sau -x), depinzând de o condiție ($x \ge 0$).

În ML:

```
let abs x = if x >= 0 then x else - x
```

```
let abs x = if x >= 0 then x else - x
if expr<sub>1</sub> then expr<sub>2</sub> else expr<sub>3</sub>
e o expresie conditională
```

```
let abs x = if x \ge 0 then x else -x if expr_1 then expr_2 else expr_3 e o expresie condițională
```

Dacă evaluarea lui $expr_1$ dă valoarea true (adevărat) valoarea expresiei e valoarea lui $expr_2$, altfel e valoarea lui $expr_3$.

expr₂ și expr₃ trebuie să aibe același tip (ambele întregi, reale, ...)

```
let abs x = if x >= 0 then x else - x
if expr_1 then expr_2 else expr_3
  e o expresie conditională
Dacă evaluarea lui expr<sub>1</sub> dă valoarea true (adevărat)
     valoarea expresiei e valoarea lui expr<sub>2</sub>,
     altfel e valoarea lui expr<sub>3</sub>.
expr<sub>2</sub> și expr<sub>3</sub> trebuie să aibe același tip (ambele întregi, reale, ...)
In alte limbaje (C, Java, etc.) if și ramurile lui sunt instrucțiuni.
In ML, if e o expresie. ML nu are instructiuni, ci doar expresii
(care sunt evaluate), și definiții (let) care dau nume unor valori.
```

Matematic:

$$f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$$
, $f(x, y) = 2x + y - 1$

În ML, enumerăm doar argumentele (fără paranteze, făra virgule):

```
let f x y = 2*x + y - 1
```

Matematic:

$$f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$$
, $f(x, y) = 2x + y - 1$

În ML, enumerăm doar argumentele (fără paranteze, făra virgule):

let
$$f x y = 2*x + y - 1$$

iar interpretorul răspunde

val
$$f : int \rightarrow int \rightarrow int = \langle fun \rangle$$

f e o funcție care ia un întreg și încă un întreg și returnează un întreg.

Să fixăm primul argument, de ex. x = 2:

$$f(2, y) = 2 \cdot 2 + y - 1$$

Am obținut o funcție de un argument (y), singurul rămas nelegat.

Să fixăm primul argument, de ex. x = 2:

$$f(2, y) = 2 \cdot 2 + y - 1$$

Am obținut o funcție de un argument (y), singurul rămas nelegat.

În ML, evaluând

f 2 (fixând
$$x = 2$$
)

interpretorul răspunde:

-: int -> int =
$$\langle fun \rangle$$
.

Deci, f e de fapt o funcție cu un argument x, care returnează o funcție. Aceasta ia argumentul y și returnează rezultatul numeric.

Compunerea funcțiilor - ilustrare computațională

Rezultatul funcției f devine argument pentru funcția g

Prin compunere, construim funcții complexe din funcții mai simple.

Definim o funcție comp care compune două funcții:

```
let comp f g x = f (g x)
```

Echivalent, puteam scrie:

```
let comp f g = fun x \rightarrow f (g x)
```

comp f g

e funcția care primind argumentul x returnează f(g(x))

Definim o funcție comp care compune două funcții:

```
let comp f g x = f (g x)
```

Echivalent, puteam scrie:

```
let comp f g = fun x \rightarrow f (g x)
```

 $comp\ f\ g$

e funcția care primind argumentul x returnează f(g(x))

Interpretorul indică

```
val comp : ('a \rightarrow 'b) \rightarrow ('c \rightarrow 'a) \rightarrow 'c \rightarrow 'b = <fun>
```

```
val comp : ('a -> 'b) -> ('c -> 'a) -> 'c -> 'b = <fun> Tipurile 'a, 'b, 'c pot fi oarecare.
```

```
val comp : ('a -> 'b) -> ('c -> 'a) -> 'c -> 'b = <fun>
Tipurile 'a, 'b, 'c pot fi oarecare.

Argument cu argument:
    'c e tipul lui x
    'c -> 'a e tipul lui g: duce pe x în tipul 'a
    'a -> 'b e tipul lui f: duce tipul 'a în tipul 'b
    (codomeniul lui g e domeniul lui f)
    'b e tipul rezultatului
```

```
val comp : ('a -> 'b) -> ('c -> 'a) -> 'c -> 'b = <fun>
Tipurile 'a, 'b, 'c pot fi oarecare.

Argument cu argument:
   'c e tipul lui x
   'c -> 'a e tipul lui g: duce pe x în tipul 'a
   'a -> 'b e tipul lui f: duce tipul 'a în tipul 'b
   (codomeniul lui g e domeniul lui f)
   'b e tipul rezultatului
```

Putem apela:

```
comp (fun x -> 2*x) (fun x -> x + 1) 3 care dă 2 * (x + 1) pentru x = 3, adică 8.
```

Operatorii sunt funcții

```
Operatorii (ex. matematici, +, *, etc.) sunt tot funcții: ei calculează un rezultat din valorile operanzilor (argumentelor).
```

```
Diferența e doar de sintaxă:
scriem operatorii între operanzi (infix),
iar numele funcției înaintea argumentelor (prefix).
```

Operatorii sunt funcții

```
Operatorii (ex. matematici, +, *, etc.) sunt tot funcții: ei calculează un rezultat din valorile operanzilor (argumentelor).
```

Diferența e doar de *sintaxă*:

scriem operatorii *între* operanzi (*infix*),
iar numele funcției *înaintea* argumentelor (*prefix*).

Putem scrie în ML operatorii și prefix:

```
(+) 3 4 parantezele deosebesc de operatorul + unar let add1 = (+) 1 add1 3 la fel ca: (+) 1 3
```

add1 e funcția care adaugă 1 la argument, deci fun x -> x + 1

Rezumat

Prin *funcții* exprimăm calcule în programare. Operatorii sunt cazuri particulare de funcții.

Domeniile de definiție și valori corespund tipurilor din programare.

Când scriem/compunem funcții, tipurile trebuie să se potrivească.

În limbajele funcționale, funcțiile pot fi manipulate ca orice *valori*. Funcțiile pot fi *argumente* și *rezultate* de funcții.

Funcțiile de mai multe argumente (sau de tuple) pot fi rescrise ca funcții de un singur argument care returnează funcții.

De stiut

Să *raționăm* despre funcții injective, surjective, bijective, inversabile

Să construim funcții cu anumite proprietăți

Să *numărăm* funcțiile definite pe mulțimi finite (cu proprietăți date)

Să compunem funcții simple pentru a rezolva probleme

Să identificăm *tipul* unei funcții