Travaux dirigés N°4 : Commande de la MCC par des convertisseurs continu - continu

Exercice N°1: MCC ALIMENTEE PAR UN HACHEUR REVERSIBLE EN COURANT

Soit le montage de la figure 1. U_R est une tension continue constante : $U_R = 200 \text{ V}$.

Figure 1

- L'inductance L représente l'inductance de l'induit de la machine et de la bobine de lissage sans pertes
 : L = 11,8 mH.
- La f.é.m. E représente la f.é.m. développée par l'induit : $0 < E < U_R$
- T₁ et T₂ sont deux transistors de puissance jouant le rôle d'interrupteurs unidirectionnels commandés à la fermeture et à l'ouverture par leur tension base-émetteur, v_{be}.

pour $v_{be} > 0$ le transistor considéré est saturé,

pour $v_{be} \le 0$ le transistor est bloqué.

- Les temps de commutation sont négligés et la chute de tension aux bornes d'un interrupteur passant est nulle.
- 1- On commande périodiquement T_1 (figure 2). T_2 est maintenu bloqué (v_{be2} <0). La conduction est continue, le courant est ininterrompu dans le moteur (i > 0).

- a. Montrer que seuls T_1 et D_2 participent au fonctionnement en régime établi et faire les schémas utiles pour cette étude, respectivement pour $0 \le t \le \alpha T$ et pour $\alpha T \le t \le T$.
- b. Écrire les équations différentielles vérifiées par le courant i(t) durant chaque séquence.
- c. En déduire l'expression i(t) pendant chaque séquence, en appelant I_m et I_M les valeurs extrêmes de i(t). On pourra poser $t' = t \alpha T$.

- d. Montrer que $\Delta I = I_M I_m = \alpha \cdot \frac{U_R E}{L \cdot f}$ et $E = \alpha U_R$; f: fréquence du signal V_{bel} .
- e. Application numérique : En régime établi, le hacheur fonctionne à ondulation de courant constante et à fréquence et rapport cyclique variables (commande par fourchette de courant), $\Lambda I = 1$ A
 - ✓ Calculer, pour n = 1200 tr/min, les valeurs de α et f.
 - ✓ Représenter i (t) si sa valeur moyenne I_{moy} vaut 15 A puis déterminer la fréquence maximale de fonctionnement f_M (on précisera la valeur correspondante de α).
- 2- On commande périodiquement T_2 (document réponse $n^{\circ}1$). T_1 est bloqué. La conduction est continue (i < 0).
 - a. En régime établi seuls T_2 et D_1 interviennent. En déduire les schémas pour : $0 \le t \le \beta T$ et $\beta T \le t \le T$
 - b. Représenter l'allure de la tension v(t) sur le document réponse n°1.
 - c. Écrire la relation liant v(t), i(t) et E.
 - d. En déduire que l'on a : $U_R = \frac{E}{1-\beta}$.
 - e. En écrivant les équations différentielles vérifiées par le courant i, donner l'allure de i(t). En déduire que : $\Delta I = U_R \cdot \beta \cdot \frac{(1-\beta)}{L \cdot f}$. On notera I_0 et I_1 les valeurs de i à t=0 et $t=\beta T$.
 - f. Pour n = 1200 tr/min, $\left|I_{moy}\right|$ = 30 A et f = 4 kHz, calculer β , ΔI , I_0 et I_1 . Calculer la puissance mise en jeu au niveau du réseau (U_R , i_R) en précisant le sens du transfert. Quel est le type de réversibilité de ce montage ?
- 3- Les transistors T_1 et T_2 sont commandés de manière complémentaire. La charge peut être active. Pour trois valeurs de couple, on a relevé les oscillogrammes de courant (document réponse $n^{\circ}2$).
 - a. Déterminer, pour chaque cas, la séquence de conduction des quatre interrupteurs. Que peuton dire de la vitesse de rotation du groupe si α a la même valeur dans les 3 cas ?
 - b. En considérant le $cas\ b$, quel est l'avantage d'une commande complémentaire de T_1 , T_2 par rapport aux fonctionnements envisagés aux paragraphes 1. et 2. ?

Exercice N°2: COMMANDE D'UNE MCC PAR UN HACHEUR 4 QUADRANTS :

Une machine à courant continu est commandée par un hacheur 4 quadrants à transistors (figure cidessous).

La machine idéalisée vérifie les lois :

$$U_a = k \Omega \text{ et } T_e = k i_{amoy}$$

La tension V_S est continue : $V_S = 300$ volts.

La bobine de lissage d'inductance L_2 est parfaite : $L_2 = 100$ mH.

Les transistors et les diodes sont également considérés comme parfaits.

I. ETUDE DU FONCTIONNEMENT DU MOTEUR

Les transistors sont commandés avec la période T = 1,2 ms. Pour ce fonctionnement :

- T₂ et T₄ restent bloqués.
- T₁ et T₃ sont commandés avec le rapport cyclique a.

Pendant la première période considérée, ils sont :

- passants entre 0 et aT;
- bloqués entre aT et T.

On suppose le régime établi et la conduction permanente.

Étude de la tension u_h :

a. Quels composants sont passants entre aT et T ? Que vaut alors u_h ?

En déduire pour a=2/3 la représentation graphique de u_h en fonction du temps (sur le document réponse $n^{\circ}3$).

- b. Déterminer dans le cas général l'expression de la tension moyenne u_{hmoy} en fonction de a et V_S . Dans quel cas est-elle positive ? Application numérique a=2/3.
- c. Quelle relation existe-t-il entre u_{hmoy} et U_a ? Justifier la réponse.

• Étude du courant d'intensité ia

L'intensité i_a varie entre I_M (maximum) et I_m (minimum).

- d. Pour 0 < t < aT:
 - Ecrire l'équation différentielle à laquelle satisfait i_a.
 - Déterminer l'expression de i_a(t).
 - En déduire l'expression de l'ondulation $\Delta i_a = I_M I_m$ en fonction de a, V_S , L_2 et T. Application numérique : a = 2/3.
- e. Pour aT < t < T:
 - Ecrire l'équation différentielle vérifiée par i_a.
 - Déterminer l'expression de i_a(t).
- f. Représenter graphiquement i_a en fonction du temps pour : $i_{amoy} = 4.0 \text{ A}$ et

$$a = 2/3$$
.

Calculer préalablement I_M et I_m.

II. FREINAGE:

La machine fonctionnant dans le même sens de rotation, on désire la freiner en "récupération".

a. Quels doivent être les signes de U_a et i_{amoy}?

L'onduleur de la première partie convient-il ? Pourquoi ? Si non, proposer une modification convenable.

b. Cette modification étant réalisée, indiquer quels transistors il faut commander (simultanément) en précisant les valeurs possibles du rapport cyclique a.

Corrigé

Exercice1

1.

1.1.

111

1.1.2
$$U_R = E + L \frac{di}{dt}$$
; $0 = E + L \frac{di}{dt'}$, en posant t' = t - αT

1.1.3
$$i = \frac{U_R - E}{I}t + I_m$$
; $i = -\frac{E}{I}t' + I_M$

1.1.4 On écrit qu'à
$$t = \alpha T$$
, $i = I_M \rightarrow \Delta i = \frac{U_R - E}{L} \alpha T$; On écrit qu'à $t' = (1 - \alpha)T$, $i = I_m \rightarrow \Delta i = \frac{U_R - E}{L} \alpha T$; On écrit qu'à $t' = (1 - \alpha)T$, $i = I_m \rightarrow \Delta i = \frac{U_R - E}{L} \alpha T$; On écrit qu'à $t' = (1 - \alpha)T$, $i = I_m \rightarrow \Delta i = \frac{U_R - E}{L} \alpha T$; On écrit qu'à $t' = (1 - \alpha)T$, $i = I_m \rightarrow \Delta i = \frac{U_R - E}{L} \alpha T$; On écrit qu'à $t' = (1 - \alpha)T$, $i = I_m \rightarrow \Delta i = \frac{U_R - E}{L} \alpha T$; On écrit qu'à $t' = (1 - \alpha)T$, $i = I_m \rightarrow \Delta i = \frac{U_R - E}{L} \alpha T$; On écrit qu'à $t' = (1 - \alpha)T$, $i = I_m \rightarrow \Delta i = \frac{U_R - E}{L} \alpha T$; On écrit qu'à $t' = (1 - \alpha)T$, $i = I_m \rightarrow \Delta i = \frac{U_R - E}{L} \alpha T$; On écrit qu'à $t' = (1 - \alpha)T$, $i = I_m \rightarrow \Delta i = \frac{U_R - E}{L} \alpha T$; On écrit qu'à $t' = (1 - \alpha)T$, $i = I_m \rightarrow \Delta i = \frac{U_R - E}{L} \alpha T$

 $\Delta i = \left(1 - \alpha\right) \frac{ET}{L}$. En comparant les deux expressions, on tire : $E = \alpha~U_R.$

1.1.5 $\alpha=0.383$; f=4 kHz; i(t) est périodique, de période T=0.25 ms. La courbe représentative est décrite par deux segments de droite : l'un allant de $\{0$ ms, $14.5A\}$ à $\{95.8$ μ s, $15.5A\}$, l'autre allant de $\{95.8$ μ s, $15.5A\}$ à $\{0.25$ ms, $14.5A\}$.

$$f_{\rm M} = 4.24 \text{ kHz}$$
; $\alpha_{\rm M} = 0.5$.

1.2.

1.2.1

1.2.2 v(t) est nulle de 0 à βT et égale U_R de βT à T; $v = E + L \frac{di}{dt} \rightarrow V_{moy} = E$ et avec la

courbe de v(t) on obtient $U_R = \frac{E}{1-\alpha}$.

1.2.3 De 0 à
$$\beta T$$
 : $i = -\frac{E}{L}t + I_0$; de βT à T : $i = \frac{U_R - E}{L}t' + I_1 \rightarrow \Delta i$

1.2.4 β = 0,617 ; Δi = 1 A ; I_1 = - 30,5 A ; I_0 = - 29,5 A ; P = - 2300 W ; La puissance transite de la machine vers le réseau ; montage réversible en courant. **1.3.**

1.3.1 cas $a: T_1$ quand i augmente puis D_2 quand i diminue cas $b: D_1$ quand i < 0 augmente, puis T_1 quand i > 0 augmente, puis D_2 quand i > 0 diminue, puis D_2 quand D_2 q

cas c: D_1 quand i augmente puis T_2 quand i diminue.

Même vitesse dans les trois cas.

1.3.2 Permet une conduction continue dans la machine.

Exercice2

1. Hacheur à transistors 4 quadrants

- 1.1. Etude du fonctionnement du moteur
 - **1.1.1.** Etude de u_h :
 - **1.1.1.1.** Entre aT et T, D_2 et D_4 sont passantes (conduction permanente) \rightarrow u_h = V_S . Alors : u_h = 300 V de 0 à aT ; u_h = 300 V de aT à T.
 - **1.1.1.2.** $U_{hmoy} = (2a 1).V_s$. Alors $U_{hmoy} > 0$ si a > 0.5. Si $a = 2/3 \rightarrow U_{hmoy} = 100$ V.

- **1.1.1.3.** On voit figure 2 que $U_h = L_2 \frac{di_a}{dt} + U_a$. En fonctionnement périodique, la valeur moyenne de $L_2 \frac{di_a}{dt}$ étant nulle on a $U_{hmoy} = U_a$.
- **1.1.2.** Etude de i_a.

1.1.2.1. Pour
$$0 \le t \le aT : L_2 \frac{di_a}{dt} = V_S - U_a$$
.

Alors
$$i_a = \frac{V_S - U_a}{L_2} \cdot t + I_m \rightarrow i_a = 2(1-a)\frac{V_S}{L_2} \cdot t + I_m \rightarrow \Delta i_a = 2(1-a)\frac{V_S}{L_2} \cdot aT \rightarrow \Delta i_a = 1.6 \text{ A}.$$

1.1.2.2. Pour $aT \le t \le T$ et en posant t' = t - aT : $L_2 \frac{di_a}{dt'} = -2aV_S$.

Alors
$$i_a = -\frac{2aV_S}{L_2} \cdot t' + I_M$$

1.1.2.3. D'où le graphe de $i_a(t)$: avec I_{amoy} = 4 A et Δi_a = 1,6 A \rightarrow I_M = 4,8 A et I_m = 3,2 A.

De $0 \le t \le 2T/3$, $i_a(t)$ évolue en rampe croissante de 3,2 à 4,8 A.

De $2T/3 \le t \le T$, $i_a(t)$ évolue en rampe décroissante entre 4,8 et 3,2 A.

1.2. Freinage

Même sens de rotation \rightarrow même signe pour $\Omega \rightarrow U_a > 0$ et $I_{amoy} < 0$. L'onduleur de la première partie ne convient pas car les thyristors imposent I_0 , donc $I_{amoy} > 0$. On doit donc utiliser un deuxième pont en antiparallèle (montage tête-bêche) sur le premier. T_1 et T_3 resteront bloqués. On commandera T_2 et T_4 . Pour que U_{hmoy} , donc $U_a > 0$ il faut que a < 0.5.