RESISTÊNCIA DOS MATERIAIS I 2º semestre de 2016

Tarefa computacional 1

Este trabalho irá abordar conhecimentos já adquiridos na disciplina de estática, utilizando-se o software *Matlab*. Para isso, será analisado um mecanismo de um grau de liberdade, usado para levantamento de carga, conforme a figura 1. Tal mecanismo é biapoiado (apoios A e B distanciados de b) e composto por dois corpos cilíndricos e homogêneos: o corpo 1 (C₁), representado pelo seguimento BD, pelo ângulo Θ e pela massa m₁, e o corpo 2, representado pelo seguimento AC, pelo ângulo α e pela massa m₂. Os corpos estão conectados por meio de uma manga em C, que permite o deslocamento deste ponto pela extensão L1, logo, o comprimento L3 varia com o ângulo Θ. Na extremidade do C₁, há uma carga modelada como uma massa pontual m e, conectado ao apoio A, existe um motor que é capaz de proporcionar um torque T. A tabela 1 a seguir fornece os valores dos parâmetros geométricos do sistema mecânica proposto.

Tabela 1 – Parâmetros geométricos

Variável	Valor
L1	2 m
L2	0,8 m
m_l	20 kg
m ₂	11 kg
m	1000 kg
g	9,81 m/s²
b	0,5 m

Figura 1 - Mecanismo para levantamento de carga

Pede-se:

- Determinar, desconsiderando o atrito, o torque T e as reações de apoio R_{Ax} , R_{Ay} , R_{Bx} , R_{By} e R_C necessárias para manter em equilíbrio o mecanismo analisado sujeito a um curso de Θ entre 0 a 2π , por meio de um programa realizado em *Matlab*. Isto é, no programa deve ser possível encontrar os valores de cada variável pedida para qualquer ângulo Θ entre 0 a 2π .
- No mesmo programa, plotar os gráficos para cada variável em questão, em função de Θ .

Itens a serem enviados:

- Programa de matlab comentado no formato: MATLAB Code (.m).
- Relatório contendo:
- Nome, RA e turma;
- Máximo de 2 páginas;
- Diagramas de corpo livre para cada corpo cilíndrico;
- As seis equações de equilíbrio $(\sum F_x, \sum F_y \in \sum M)$ e as relações trigonométricas utilizadas;
- Os seis gráficos plotados pelo Matlab;
- Indicar o módulo do máximo torque T necessário para manter o mecanismo em equilíbrio.

DATA DE ENTREGA: 02/10/2016