2SJ48,2SJ49,2SJ50⁻¹

7-39-23

SILICON P-CHANNEL MOS FET

HITACHI/(OPTOELECTRONICS)

LOW FREQUENCY POWER AMPLIFIER

Complementary Pair with 2SK133, 2SK134, 2SK135

■ FEATURES

- High Power Gain.
- Excellent Frequency Response.
- High Speed Switching.
- Wide Area of Safe Operation.
- Enhancement-Mode.
- Good Complementary Characteristics.
- Equipped with Gate Protection Diodes.

1. Gate 2. Drain 3. Source (Case)

(JEDEC TO-3)

(Dimensions in mm)

■ ABSOLUTE MAXIMUM RATINGS (T_e=25 °C)

•.	Symbol	Rating			T I !4
ltem		2SJ48	2SJ49	2SJ50	Unit
Drain-Source Voltage	Vosx	-120	-140	-160	V
Gate-Source Voltage	V_{GSS}	±14			v
Drain Current	I _D	-7		A	
Body-Drain Diode Reverse Drain Current	IDR	-7		A	
Channel Dissipation	P _{ch} *	100		W	
Channel Temperature	T _{ch}	150		۰C	
Storage Temperature	Tug	-55~+150		۰c	

^{*}Value at Tc=25 °C

POWER VS. TEMPERATURE DERATING

■ ELECTRICAL CHARACTERISTICS (T_e=25 °C)

Item		Symbol	Test Condition	min.	typ.	max.	Unit
Drain-Source Breakdown	2SJ48	V _{(ampsx}		-120		_	V
	2SJ49		$I_D=-10$ mA, $V_{GS}=10$ V	-140	_	_	v
Voltage	2SJ50	1		-160	-	_	V
Gate-Source Breakdown Voltage		V _{(BR)GSS}	$I_G = \pm 100 \mu A, V_{DS} = 0$	±14	_	_	V
Gate-Source Cutoff Voltage		V _{GS(eff)}	$I_p = -100 \text{mA}, V_{DS} = -10 \text{V}$	-0.15	_	-1.45	V
Drain-Source Saturation Voltage		V _{DS(see)}	$I_D=-7A$, $V_{GD}=0^{\bullet}$		_	-12	V
Forward Transfer Admittance	lys	$I_D = -3A$, $V_{DS} = -10V^*$	0.7	1.0	1.4	S	
Input Capacitance		Cus		_	900	_	pF
Output Capacitance		Cass	V_{GS} =5V, V_{DS} =-10V, f =1MHz	_	400	_	pF
Reverse Transfer Capacitance		Cns	1		40	_	pF
Turn-on Time		lan	17 0017 1 44	_	230	_	ns
Turn-off Time		toff	$V_{DD}=-20$ V, $I_D=-4$ A	-	110	_	ns

^{*}Pulse Test

HITACHI/(OPTOELECTRONICS)

MAXIMUM SAFE OPERATION AREA

TYPICAL OUTPUT CHARACTERISTICS

TYPICAL TRANSFER CHARACTERISTICS

DRAIN TO SOURCE SATURATION VOLTAGE VS. DRAIN CURRENT

DRAIN TO SOURCE VOLTAGE VS. GATE TO SOURCE VOLTAGE

INPUT CAPACITANCE VS. GATE TO SOURCE VOLTAGE

FORWARD TRANSFER ADMITTANCE VS. FREQUENCY

SWITCHING TIME VS. DRAIN CURRENT

SWITCHING TIME TEST CIRCUIT

