A simple, fast sampler for simulating spatial data and other Markovian data structures + intRo

Andee Kaplan

ajkaplan@iastate.edu

November 29, 2016

A simple, fast sampler for simulating spatial data and other Markovian data structures

Goal

- Markov random field models are possible for spatial or network data
- Rather than specifying a joint distribution directly, a model is specified through a set of full conditional distributions for each spatial location
- Assume the spatial data are on a regular lattice (wrapped on a torus)

Goal: A new, provably fast approach for simulating spatial/network data.

Spatial Markov random field (MRF) models

Notation

- Variables $\{Y(s_i): i=1,\ldots,n\}$ at locations $\{s_i: i=1,\ldots,n\}$
- Neighborhoods: N_i specified according to some configuration
- Neighboring Values: $\mathbf{y}(N_i) = \{y(\mathbf{s}_j) : \mathbf{s}_j \in N_i\}$
- Full Conditionals: $\{f_i(y(\mathbf{s}_i)|\mathbf{y}(N_i), \theta) : i = 1, ..., n\}$
 - $f_i(y(s_i)|y(N_i), \theta)$ is conditional pmf/pdf of $Y(s_i)$ given values for its neighbors $y(N_i)$
 - Often assume a common conditional cdf $F_i = F$ form $(f_i = f)$ for all i

Exponential family examples

Conditional Gaussian (3 parameters):

$$f_i(y(\mathbf{s}_i)|\mathbf{y}(N_i), \alpha, \eta, \tau) = \frac{1}{\sqrt{2\pi}\tau} \exp\left(-\frac{[y(\mathbf{s}_i) - \mu(\mathbf{s}_i)]^2}{2\tau^2}\right)$$

 $Y(s_i)$ given neighbors $y(N_i)$ is normal with variance τ^2 and mean

$$\mu(\mathbf{s}_i) = \alpha + \eta \sum_{\mathbf{s}_i \in N_i} [y(\mathbf{s}_i) - \alpha]$$

② Conditional Binary (2 parameters): $Y(s_i)$ given neighbors $y(N_i)$ is Bernoulli $p(s_i, \kappa, \eta)$ where

$$\operatorname{logit}[p(\mathbf{s}_i, \kappa, \eta)] = \operatorname{logit}(\kappa) + \eta \sum_{\mathbf{s}_j \in N_i} [y(\mathbf{s}_j) - \kappa]$$

In both examples, η represents a dependence parameter.

Concliques

Cliques – Hammersley and Clifford [1971]

Singletons and sets of locations such that each location in the set is a neighbor of all other locations in the set

Example: Four nearest neighbors gives cliques of sizes 1 and 2

The Converse of Cliques – Concliques

Sets of locations such that no location in the set is a neighbor of any other location in the set

4 Nearest Neighbors			4 1	Concliques 4 Nearest Neighbors			8 Nearest Neighbors	Concliques 8 Nearest Neighbors
	*		ive	gno	Ors		* * *	
*	s	*	1	2	1	2	* s *	1 2 1 2
	*		2	1	2	1	* * *	3 4 3 4
			1	2	1	2		1 2 1 2
			2	1	2	1		3 4 3 4

Generalized spatial residuals

Definition

- $F(y|\mathbf{y}(N_i), \theta)$ is the conditional cdf of $Y(\mathbf{s}_i)$ under the model
- Substitute random variables, $Y(s_i)$ and neighbors $\{Y(s_j) : s_j \in N_i\}$, into (continuous) conditional cdf to define residuals:

$$R(\mathbf{s}_i) = F(Y(\mathbf{s}_i)|\{Y(\mathbf{s}_j): \mathbf{s}_j \in N_i\}, \boldsymbol{\theta}).$$

Key Property

Let $\{C_j: j=1,\ldots,q\}$ be a collection of concliques that partition the integer grid. Under the conditional model, **spatial residuals** within a **conclique are iid Uniform**(0,1)-**distributed**:

(Kaiser et al. [2012])

Conclique-based Gibbs sampler

Using the conditional independence of random variables at locations within a conclique along with the probability integral transform we propose a conclique-based Gibbs sampling algorithm for sampling from a MRF.

- Split locations into Q disjoint concliques, $\mathcal{D} = \bigcup_{i=1}^{Q} \mathcal{C}_i$.
- ② Initialize the values of $\{Y^{(0)}(s): s \in \{C_2, \dots, C_Q\}\}$.
- **3** Sample from the conditional distribution of Y(s) given $\{Y(t): t \in \mathcal{N}(s)\}$ for $s \in \mathcal{C}_1$,
 - Sample $\{U(s): s \in \mathcal{C}_1\} \stackrel{iid}{\sim} Unif(0,1)$
 - **②** For each $s \in C_1$, $Y^{(i)}(s) = F^{-1}(U(s)|Y^{(i-1)}(t), t \in \mathcal{N}(s))$
- **③** Sample from the conditional distribution of Y(s) given $\{Y(t): t \in \mathcal{N}(s)\}$ for $s \in C_j; j = 2, ..., Q$,
 - Sample $\{U(s): s \in \mathcal{C}_2\} \stackrel{iid}{\sim} Unif(0,1)$
 - ② For each $\mathbf{s} \in \mathcal{C}_j$, $Y^{(i)}(\mathbf{s}) = F^{-1}(U(\mathbf{s})|\{Y^{(i)}(\mathbf{t}), \mathbf{t} \in \mathcal{N}(\mathbf{s}) \cap \mathcal{C}_k \text{ where } k < j\}, <math>\{Y^{(i-1)}(\mathbf{t}), \mathbf{t} \in \mathcal{N}(\mathbf{s}) \cap \mathcal{C}_k \text{ where } k > j\})$

It's (provably) fast!

- In many (commonly used) four-nearest neighbor models (including Gaussian and binary), the conclique-based Gibbs sampler is provably geometrically ergodic.
- Because we are using batch updating vs. sequential updating of each location, this approach is also computationally fast.
- A flexible R package using Rcpp (called conclique, to appear on CRAN) that implements a conclique-based Gibbs sampler while allowing the user to specify an arbitrary model.

Preliminary simulations

Figure 1: Comparisons of timing for simulation of 4NN Gaussian Markov Random Field data on a lattice of size $N \times N$ for various size grids, N = 10, 20, 30, 50, 100, using sequential and conclique-based Gibbs samplers.

Ideas and connections

- Goodness-of-fit test for network data
 - The model-based method of resampling re-frames network into a collection of (Markovian) neighborhoods by using covariate information
 - Creates concliques on a graph structure
 - Use a conditionally specified network distribution (Casleton et al. [2016]) to sample network data in a blockwise conclique-based Gibbs sampler.
- Extension for multilayer networks
 - Layer-level dependence parameter
 - Utilization of single layer for neighborhood creation

Other ideas

- Implementation of existing methods in Rcpp (e.g. ebLink, SMERED)
- Block bootstrap of dynamic networks over time
 - Potential nonparametric method of determining distributional properties of dynamic network statistics
 - Combine with GOF tests
- Dual record linkage problem privacy
 - Explore effect of record linkage on differential privacy property and random differential privacy property

intRo: statistical analysis software for teaching

Do we really need another statistical software package?

Short answer: yes

- R is great, but requires students to have some knowledge/interest in programming
- JMP, Deducer, Rcmdr are powerful, but too big
 - Licenses and installation
- New tools recently released to spark an interest in R
 - Swirl and DataCamp teach R programming
 - Project MOSAIC facilitates learning, but assumes knowledge of R
- Want students to focus on data analysis rather than fight with software

What is intRo?

- A simple web-based application for performing basic data analysis and statistical routines and accompanying utility package
- Built using R and Shiny
- Extensible modular structure
- Designed for a first statistics class student
- Assists in the learning of statistics rather than acting as a stand-alone deliverer of statistics education

Easy

- Focused on aspects of the user interface (UI) and output that make it easy to pick up without training
- Minimal necessary functionality for an introductory statistics course
- Organized around specific tasks a student may perform in the process of a data analysis

Exciting

- Fun, easy to use (available on the web)
- Interactive plots using ggvis

Ulterior motive: get students excited about programming

- By navigating about the user interface of intRo, students are creating a fully-executable R script that they can download and run locally
- Viewing their script change real-time within the application

Extensible

- User interaction with intRo is split into bitesize chunks that we call modules
- Each module is a self contained set of R code that is dynamically added to the application at run time
- intRo can be easily extended by the addition of modules within the frame-work underlying the application
- Allows instructors/collaborators to tailor intRo to the needs of a particular course

Take a look http://intro-stats.com

intRo package

Installation:

```
devtools::install_github("rstudio/shinyapps")
devtools::install_github("gammarama/intRo")`
```

Functions:

- download_intRo Downloads a current revision of intRo to your machine
- run_intRo Runs an intRo session locally with the specified options
- deploy_intRo Deploys an instance of intRo to ShinyApps.io with the specified options

Future work - Module creation

Modularity is a key feature of intRo, but module creation is currently:

- Undocumented
- Entirely manual
- Unnecessarily lengthy

Idea: Include funcitonality in current R package to automate creation of intRo modules

References I

- Emily Casleton, Daniel Nordman, and Mark Kaiser. A local structure model for network analysis. *Statistics and Its Interface, Forthcoming*, 2016.
- John M Hammersley and Peter Clifford. Markov fields on finite graphs and lattices. 1971.
- Mark S Kaiser, Soumendra N Lahiri, and Daniel J Nordman. Goodness of fit tests for a class of markov random field models. *The Annals of Statistics*, pages 104–130, 2012.