Лабораторная работа №3: Вычислительный эксперимент

Тема работы

Исследование видимых траекторий движения планет солнечной системы на примере Нептуна.

Постановка задачи

Организовать и провести вычислительный эксперимент для исследования видимых траекторий движения планет Солнечной системы средствами электронных таблиц. Исследовать видимую траекторию движения Нептуна.

Оборудование

- ПК (Использовался ноутбук с установленной ОС GNU/Linux)
- Табличный процессор (в ходе работы использовался LibreOffice Calc 7.0)

Математическая модель

Уравнения движения Нептуна относительно Земли имеют вид:

$$x = r_1 \cos(w_1 t + j) - r_2 \cos(w_2 t + j)$$
$$y = r_1 \sin(w_1 t + j) - r_2 \sin(w_2 t + j)$$

где $w = 2\pi/T$ (T – период обращения планеты вокруг Солнца).

Описание переменных и постоянных

Переменная	Суть	Значение
X	X-координата Нептуна в гелеоцентрической системе координат	$x = r_1 \cos(w_1 t + j) - r_2 \cos(w_2 t + j)$ $j)$
у	Y-координата Нептуна в гелеоцентрической системе координат	$y = r_1 \sin(w_1 t + j) - r_2 \sin(w_2 t + j)$ $j)$
r_1	Расстояние от Нептуна до солнца	4,5 млрд. км.
\mathbf{r}_2	Расстояние от Земли до солнца	149,6 млн. км.

Переменная	Суть	Значение
T_1	Период обращения Нептуна вокруг Солнца	165 земных лет
T_2	Период обращения Земли вокруг Солнца	365,25 дней
j	Угол поворота	0 радиан
W_1	$w_1 = 2\pi/T_1$	0,000104257114176
W ₂	$w_2 = 2\pi/T_2$	0,017202423838959

Ход эксперимента: таблица и график траектории

Траектория движения Нептуна вокруг Земли (ближайшие 10 тыс. дней)

Анализ результатов эксперимента

Из графика и результатов вычислений можно сделать вывод, что расстояние от Земли до Нептуна непостоянно и варьируется в пределах приблизительно от 4,4 до 4,6 млрд. км.

Вывод

Используя современные технологии, можно в сжатые сроки смоделировать и визуализировать такие явления, как движение планет в Солнечной системе и не только.