Listing of the Claims

Claims

1. (Currently Amended) A compound of the formula (I):

$$(R^1)_m \qquad (R^2)_n \qquad (R^4)_p \qquad (R^3)_m \qquad (R^4)_p \qquad (R^4$$

wherein:

Ring A is piperidinyl, wherein nitrogen within the piperdinyl ring can be optionally substituted by K a heterocyclyl, wherein if said heterocyclyl contains an NH moiety that nitrogen may be optionally substituted by a group selected from K;

 R^1 is a substituent on carbon and is selected from halo, nitro, cyano, hydroxy, trifluoromethyl, trifluoromethoxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, $C_{1\text{-}6}$ alkyl, $C_{2\text{-}6}$ alkenyl, $C_{2\text{-}6}$ alkynyl, $C_{1\text{-}6}$ alkoxy, $C_{1\text{-}6}$ alkanoyl, $C_{1\text{-}6}$ alkanoyloxy, $N\text{-}(C_{1\text{-}6}$ alkyl)amino, $N\text{-}(N\text{-}(C_{1\text{-}6}$ alkyl)2amino, $C_{1\text{-}6}$ alkanoylamino, $N\text{-}(C_{1\text{-}6}$ alkyl)2amino, $N\text{-}(C_{1\text{-}6}$ alkyl)2arbamoyl, $N\text{-}(C_{1\text{-}6}$ alkyl)2carbamoyl, $C_{1\text{-}6}$ alkylS(O)a wherein a is 0 to 2, $C_{1\text{-}6}$ alkoxycarbonyl, $N\text{-}(C_{1\text{-}6}$ alkyl)2sulphamoyl, $N\text{-}(C_{1\text{-}6}$ alkyl)2sulphamoyl, aryl, aryloxy, arylC_{1\text{-}6}alkyl, heterocyclic group, (heterocyclic group)C_{1\text{-}6}alkyl, or a group (B-E-); wherein R^1 , including group (B-E-), may be optionally substituted on carbon by one or more W; and wherein if said heterocyclic group contains an -NH-moiety that nitrogen may be optionally substituted by J;

W is halo, nitro, cyano, hydroxy, trifluoromethyl, trifluoromethoxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, C_{1.6}alkyl, C_{2.6}alkenyl, C_{2.6}alkynyl, C_{1.6}alkoxy, C_{1.6}alkanoyl, C_{1.6}alkanoyloxy, N-(C_{1.6}alkyl)amino, N,N-(C_{1.6}alkyl)2amino, C_{1.6}alkanoylamino, N-(C_{1.6}alkyl)2carbamoyl, C_{1.6}alkyl)2carbamoyl, C_{1.6}alkyl)2carbamoyl

 C_{1-6} alkoxycarbonyl, N- $(C_{1-6}$ alkyl)sulphamoyl, N,N- $(C_{1-6}$ alkyl)sulphamoyl, or a group (B'-E'-); wherein W. including group (B'-E'-), may be optionally substituted on carbon by one or more Y:

Y and Z are independently selected from halo, nitro, cyano, hydroxy, trifluoromethyl, trifluoromethoxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{1-6} alkoxy, C_{1-6} alkanoyl, C_{1-6} alkanoyloxy, $N-(C_{1-6}$ alkyl)amino, $N-(C_{1-6}$ alkyl)2amino, C_{1-6} alkanoylamino, $N-(C_{1-6}$ alkyl)2amino, C_{1-6} alkyl)2amino, C_{1-6} alkyl)3colya wherein a is 0 to 2, C_{1-6} alkoxycarbonyl, $N-(C_{1-6}$ alkyl)3sulphamoyl or $N-(C_{1-6}$ alkyl)2sulphamoyl;

G, J and K are independently selected from $C_{1.8}$ alkyl, $C_{2.8}$ alkenyl, $C_{1.8}$ alkanoyl, $C_{1.8}$ alkylsulphonyl, $C_{1.8}$ alkoxycarbonyl, carbamoyl, N- $(C_{1.8}$ alkyl)carbamoyl, benzyloxycarbonyl, benzoyl, phenylsulphonyl, aryl, aryl $C_{1.6}$ alkyl or (heterocyclic group) $C_{1.6}$ alkyl; wherein G, J and K may be optionally substituted on carbon by one or more Q; and wherein if said heterocyclic group contains an -NH- moiety that nitrogen may be optionally substituted by hydrogen or $C_{1.6}$ alkyl;

Q is halo, nitro, cyano, hydroxy, trifluoromethyl, trifluoromethoxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₁₋₆alkoxy, C₁₋₆alkanoyl, C₁₋₆alkanoyloxy, N-(C₁₋₆alkyl)amino, N,N-(C₁₋₆alkyl)₂amino, C₁₋₆alkanoylamino, N-(C₁₋₆alkyl)₂carbamoyl, C₁₋₆alkylS(O)₈ wherein a is 0 to 2, C₁₋₆alkoxycarbonyl, C₁₋₆alkoxycarbonyl, C₁₋₆alkoxycarbonyl, C₁₋₆alkyl)₂sulphamoyl, N,N-(C₁₋₆alkyl)₂sulphamoyl, aryl, aryloxy, aryl C₁₋₆alkyl, arylC₁₋₆alkoxy, heterocyclic group, (heterocyclic group)C₁₋₆alkyl, (heterocyclic group)C₁₋₆alkoxy, or a group (B"-E"-); wherein Q, including group (B"-E"-), may be optionally substituted on carbon by one or more Z;

B, B' and B" are independently selected from C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₃₋₈cycloalkylC₁₋₆alkyl, aryl, arylC₁₋₆alkyl, heterocyclic group, (heterocyclic group)C₁₋₆alkyl, phenyl or phenylC₁₋₆alkyl; wherein B, B' and B" may be optionally substituted on carbon by one or more D; and wherein if said heterocyclic group contains an -NH- moiety that nitrogen may be optionally substituted by a group selected from G:

E, E' and E" are independently selected from $-N(R^a)$ -, -O-, -C(O)O-, -C(O)-, -C(O)-, $-N(R^a)C(O)$ -, $-N(R^a)C(O)N(R^b)$ -, $-N(R^a)C(O)O$ -, $-OC(O)N(R^a)$ -, $-C(O)N(R^a)$ -, -S(O)-, $-SO_2N(R^a)$ -, $-N(R^a)SO_2$ -; wherein R^a and R^b are independently selected from hydrogen or C_{1-6} alkyl optionally substituted by one or more F and r is 0-2;

D and F are independently selected from halo, nitro, cyano, hydroxy, trifluoromethyl, trifluoromethoxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{1-6} alkoxy, C_{1-6} alkanoyl, C_{1-6} alkanoyloxy, $N-(C_{1-6}$ alkyl)amino, $N-(C_{1-6}$ alkyl)2amino, C_{1-6} alkynyl, C_{1-6} alkyl)2amino, C_{1-6} alkyl)2amino, C_{1-6} alkyl)2amino, C_{1-6} alkyl)2amino, C_{1-6} alkyl)2amino, C_{1-6} alkyl)2amino, C_{1-6} alkyl)3cuphamoyl or C_{1-6} alkyl)3cuphamoyl;

m is 0, 1, 2, 3 or 4; wherein the values of R^1 may be the same or different; R^2 is halo:

n is 0, 1 or 2; wherein the values of R² may be the same or different;

R3 is amino or hydroxy:

 R^4 is halo, nitro, cyano, hydroxy, trifluoromethyl, trifluoromethoxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, $C_{1:3}$ alkyl, $C_{2:3}$ alkynl, $C_{2:3}$ alkynyl, $C_{1:3}$ alkoxy, $C_{1:3}$ alkanoyloxy, N-($C_{1:3}$ alkyl)amino, N-($C_{1:3}$ alkyl)2amino, $C_{1:3}$ alkanoylamino, N-($C_{1:3}$ alkyl)2carbamoyl, $C_{1:3}$ alkyl)2carbamoyl, $C_{1:3}$ alkyl)2sulphamoyl, $C_{1:3}$ alkyl)2sulphamoyl, $C_{1:3}$ alkyl)2sulphamoyl;

p is 0, 1 or 2; wherein the values of R^4 may be the same or different; or a pharmaceutically acceptable salt or *in vivo* hydrolysable ester or amide thereof; with the proviso that said compound is not

N (2 amino 6 hydroxyphenyl) 4 (1 methylhomopiperazin 4 yl)benzamide; N (2 amino 6 methylphenyl) 4 (1 methylhomopiperazin 4 yl)benzamide; N (2 aminophenyl) 4 (1 r.butoxycarbonylhomopiperazin 4 yl)benzamide; or N (2 aminophenyl) 4 (1 methylhomopiperazin 4 yl)benzamide.

2.(Canceled)

3. (Original) A compound of the formula (I) according to claim 1 wherein:

 R^1 is a substituent on carbon and is selected from halo, amino, C_{1-6} alkyl, C_{1-6} alkyl, N- $(C_{1-6}$ alkyl)amino, aryl, aryloxy, aryl C_{1-6} alkyl, heterocyclic group, (heterocyclic group) C_{1-6} alkyl, or a group (B-E-); wherein R^1 , including group (B-E-), may be optionally substituted on carbon by one or more W; and wherein if said heterocyclic group contains an -NH-moiety that nitrogen may be optionally substituted by J;

W is hydroxy, mercapto, C₁₋₆alkyl, C₁₋₆alkoxy, N,N-(C₁₋₆alkyl)₂amino or a group (B'-E'-); wherein W. including group (B'-E'-), may be optionally substituted on carbon by one or more Y:

Y and Z are independently selected from halo, nitro, cyano, hydroxy, $C_{1\text{-}6}$ alkoxy,

N,N-(C₁₋₆alkyl)₂amino or C₁₋₆alkanoylamino;

G, J and K are independently selected from C_{1.8}alkyl, C_{2.8}alkenyl, C_{1.8}alkanoyl, aryl, arylC_{1.6}alkyl or (heterocyclic group)C_{1.6}alkyl; wherein G, J and K may be optionally substituted on carbon by one or more Q; and wherein if said heterocyclic group contains an -NH- moiety that nitrogen may be optionally substituted by hydrogen or C_{1.6}alkyl:

Q is cyano, hydroxy, C₁₋₆alkoxy, C₁₋₆alkanoyloxy, C₁₋₆alkoxycarbonyl, C₁₋₆alkoxycarbonylamino, aryl, aryloxy or a group (B"-E"-); wherein Q, including group (B"-E"-), may be optionally substituted on carbon by one or more Z;

B, B' and B" are independently selected from C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₃₋₈cycloalkylC₁₋₆alkyl, aryl, arylC₁₋₆alkyl, heterocyclic group, (heterocyclic group)C₁₋₆alkyl, phenyl or phenylC₁₋₆alkyl; wherein B, B' and B" may be optionally substituted on carbon by one or more D; and wherein if said heterocyclic group contains an -NH- moiety that nitrogen may be optionally substituted by a group selected from G;

E, E' and E" are independently selected from $-N(R^a)$ -, -O-, -C(O)O-, -OC(O)-, -C(O)-, $-N(R^a)C(O)$ -, $-N(R^a)C(O)O$ -, $-N(R^a)C(O)O$ -, $-N(R^a)C(O)O$ -, $-OC(O)N(R^a)$ -, $-C(O)N(R^a)$ -, -S(O)-, $-SO_2N(R^a)$ -, $-N(R^a)SO_2$ -; wherein R^a and R^b are independently selected from hydrogen or $C_{1,6}$ alkyl optionally substituted by one or more F and r is 0-2:

D and F are independently selected from halo, C₁₋₆alkoxy or N₁N-(C₁₋₆alkyl)₂amino.

- 4. (Original) A compound of the formula (I) according to claim 1 wherein m is 1.
- (Original) A compound of the formula (1) according to claim 1 wherein R² is fluoro and n is 0 or 1.
- 6. (Original) A compound of the formula (1) according to claim 1 wherein R³ is amino.
- 7. (Original) A compound of the formula (1) according to claim 1 wherein p is 0.

8. (Currently Amended) A compound of formula (I) according to claim 1 wherein:

Ring A is piperidinyl, wherein nitrogen within the piperdinyl ring can be optionally substituted by K a pyridyl, quinolyl, indolyl, pyrimidinyl, morpholinyl, piperidinyl, piperazinyl, pyradazinyl, pyrazinyl, thiazolyl, thienopyrimidinyl, thienopyrimidinyl, purinyl, triazinyl, oxazolyl, pyrazolyl, or furanyl; wherein if Ring A contains an NH moiety that nitrogen may be optionally substituted by a group selected from K:

 R^1 is a substituent on carbon and is selected from halo, amino, C_{1-6} alkyl, C_{1-6} alkyl, N- $(C_{1-6}$ alkyl)amino, aryl, aryloxy, aryl C_{1-6} alkyl, heterocyclic group, (heterocyclic group) C_{1-6} alkyl, or a group (B-E-); wherein R^1 , including group (B-E-), may be optionally substituted on carbon by one or more W; and wherein if said heterocyclic group contains an -NH-moiety that nitrogen may be optionally substituted by J;

W is hydroxy, mercapto, C_{1-6} alkyl, C_{1-6} alkyxy, $N_iN_i-(C_{1-6}$ alkyl)₂amino or a group (B'-E'-); wherein W, including group (B'-E'-), may be optionally substituted on carbon by one or more Y:

Y and Z are independently selected from halo, nitro, cyano, hydroxy, C_{1-6} alkoxy, $N,N-(C_{1-6}$ alkyl)₂amino or C_{1-6} alkanoylamino;

G, J and K are independently selected from C_{1-8} alkyl, C_{2-8} alkenyl, C_{1-8} alkanoyl, aryl, aryl C_{1-6} alkyl or (heterocyclic group) C_{1-6} alkyl; wherein G, J and K may be optionally substituted on carbon by one or more Q; and wherein if said heterocyclic group contains an -NH- moiety that nitrogen may be optionally substituted by hydrogen or C_{1-6} alkyl;

 $Q \ is \ cyano, \ hydroxy, C_{1-6} alkoxy, C_{1-6} alkoxy, C_{1-6} alkoxycarbonyl,$ $C_{1-6} alkoxycarbonylamino, \ aryl, \ aryloxy \ or \ a \ group \ (B^*-E^*-), \ wherein \ Q, \ including \ group \ (B^*-E^*-), \ may \ be optionally substituted on carbon by one or more \ Z;$

B, B' and B" are independently selected from C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₃₋₈cycloalkylC₁₋₆alkyl, aryl, arylC₁₋₆alkyl, heterocyclic group, (heterocyclic group)C₁₋₆alkyl, phenyl or phenylC₁₋₆alkyl; wherein B, B' and B" may be optionally substituted on carbon by one or more D; and wherein if said heterocyclic group contains an -NH- moiety that nitrogen may be optionally substituted by a group selected from G:

 $E, E' \ and \ E'' \ are independently selected from -N(R^a)-, -O-, -C(O)O-, -OC(O)-, -C(O)-, -N(R^a)C(O)-, -N(R^a)C(O)N(R^a)-, -N(R^a)C(O)O-, -OC(O)N(R^a)-, -C(O)N(R^a)-, -S(O),-, -N(R^a)C(O)O-, -N(R$

 $-SO_2N(R^a)_r$, $-N(R^a)SO_2$; wherein R^a and R^b are independently selected from hydrogen or $C_{1,6}$ alkyl optionally substituted by one or more F and r is 0-2;

D and F are independently selected from halo, C₁₋₆alkoxy or N,N-(C₁₋₆alkyl)₂amino; m is 0, 1, 2, 3 or 4; wherein the values of R¹ may be the same or different;

R2 is fluoro or chloro;

n is 0, 1 or 2, wherein the values of R² may be the same or different;

R3 is amino or hydroxy;

 R^4 is halo, nitro, cyano, hydroxy, trifluoromethyl, trifluoromethoxy, amino, carboxy or carbamoyl;

p is 0, 1 or 2, wherein the values of R⁴ may be the same or different; or a pharmaceutically acceptable salt or in vivo hydrolysable ester or amide thereof.

9. (Currently Amended) A compound of formula (I) according to claim 1 wherein:

Ring A piperidinyl, wherein nitrogen within the piperdinyl ring can be optionally substituted by K is pyridin 4 yl, pyridin 3 yl, pyridin 2 yl, quinolin 8 yl, pyrimidin 6 yl, pyrimidin-5 yl, pyrimidin-5 yl, piperidin 4 yl, piperidin 4 yl, piperidin 3 yl, piperdin 2 yl, piperazin 4 yl, pyridazin 5 yl, pyrazin 6 yl, thiazol 2 yl, thien 2 yl, thieno[3,2d]pyrimidinyl, thieno[3,2d]pyrimidinyl, thieno[3,2b]pyrimidinyl, purin 6 yl or triazin 6 yl; wherein if Ring A contains an NII moiety that nitrogen may be optionally substituted by a group selected from K;

R¹ is a substituent on carbon and is selected from fluoro, chloro, amino, methyl, ethyl, propyl, methoxy, N-methylamino, N-ethylamino, N-propylamino, N-butylamino, phenyl, naphthylethyl, piperazin-1-yl, piperidin-1-yl, piperidin-4-yl, 2-(thiomethyl)-pyrimidin-4-yl, tetrahydrofuran-2-ylmethyl, tetrahydropyran-2-ylmethyl, 1,2,5-thiadiazol-3-ylethyl, piperidin-1-ylmethyl, pyridin-2-ylmethyl, or a group (B-E-); wherein R¹, including group (B-E-), may be optionally substituted on carbon by one or more W; and wherein if said heterocyclic group contains an -NH- moiety that nitrogen may be optionally substituted by J;

W is hydroxy, methyl, ethyl, ethoxy, N,N-(diethyl)amino, N,N-(dibutyl)amino, or a group (B'-E'-); wherein W, including group (B'-E'-), may be optionally substituted on carbon by one or more Y;

Y and Z are independently selected from fluoro, chloro, bromo, nitro, cyano, hydroxy, methoxy, N.N-(dimethyl)amino or methylcarbonylamino;

G, J and K are independently selected from methyl, ethyl, propyl, pentyl, 2-methylbutyl, butyl, acetyl, benzyl, 3-(pyrrol-1-yl)propyl or pyrrolidin-2-one-(5S)-methyl; wherein G, J and K may be optionally substituted on carbon by one or more Q; and wherein if said heterocyclic group contains an -NH- moiety that nitrogen may be optionally substituted by hydrogen or methyl;

Q is cyano, hydroxy, methoxy, ethoxy, methylcarbonyloxy, methoxycarbonyl, t-butoxycarbonylamino, phenyl or a group (B"-E"-); wherein Q, including group (B"-E"-), may be optionally substituted on carbon by one or more Z:

B, B' and B" are independently selected from methyl, ethyl, propyl, cyclohexyl, phenyl, benzyl, 1,2,3,4-tetrahydroquinolinyl, 3-morpholinopropyl, 2-morpholinoethyl, 2-pyrrolidin-1-ylethyl, 3-morpholinopropyl, 3-(4-methylpiperazin-1-yl)propyl, 2-piperidin-1-ylethyl, 3-piperidin-1-ylpropyl, pyridin-3-ylmethyl or imidazol-1-ylpropyl; wherein B, B' and B'' may be optionally substituted on carbon by one or more D; and wherein if said heterocyclic group contains an -NH- moiety that nitrogen may be optionally substituted by a group selected from G;

 $E, E' \ and \ E'' \ are independently selected from -N(R^a)-, -O-, -C(O)-, -NHC(O)-, -N(R^a)C(O)O-; \ wherein \ R^a \ is \ hydrogen \ or \ methyl \ optionally \ substituted by one or \ more \ F;$

D and F are independently selected from fluoro, methoxy or ethoxy;

m is 0, 1, or 2; wherein the values of R1 may be the same or different;

R2 is fluoro:

n is 0 or 1:

R3 is amino

R4 is halo:

p is 0, 1 or 2, wherein the values of R⁴ may be the same or different; or a pharmaceutically acceptable salt or *in vivo* hydrolysable ester or amide thereof.

- 10. (Currently Amended) A process for preparing a compound of formula (I) or a pharmaceutically acceptable salt or an in vivo hydrolysable ester thereof, according to claim 1, which process comprises of:
- (a) the reaction of a compound of the formula (II)

$$X \longrightarrow \begin{pmatrix} (R^2)_n \\ N \\ H \end{pmatrix} \longrightarrow \begin{pmatrix} (R^4)_p \\ R^3 \end{pmatrix}$$
 (II)

wherein X is a reactive group, with a compound of the formula (III)

$$(R^1)_m$$

$$A$$

$$B^{-L^1}$$
(III)

wherein L1 and L2 are ligands;

(b) the reaction of a compound of the formula (IV) $(R^2)_n$

$$L^{1} \xrightarrow{B} \xrightarrow{N} \underset{R^{3}}{\overset{(IV)}{\longrightarrow}}$$

wherein L¹ and L² are ligands, with a compound of the formula (V)

$$\begin{pmatrix} (R^1)_m \\ A \\ X \end{pmatrix}$$

wherein X is a reactive group; or

(c) the reaction, in the presence of 4-(4,6-dimethoxy-1,3,5-triazinyl-2-yl)-4-methylmorpholinium chloride, of a compound of the formula (VI)

$$\begin{array}{c|c} & & & \\ & & & \\ H_2N & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

with a compound of the formula (VII)

$$(R^1)_m$$
 $(R^2)_n$
 CO_2H
 (VII)

and thereafter if necessary:

- converting a compound of the formula (I) into another compound of the formula (I); and/or
 removing any protecting groups.
- 11. (Currently Amended) A pharmaceutical composition which comprises a compound of the formula (I), or a pharmaceutically acceptable salt or in vivo hydrolysable ester or amide thereof, according to any one of claims 1 to 9 in association with a pharmaceutically-acceptable diluent or carrier.

12-15 (Canceled)

16. (Currently Amended) A method of treating cancer in a warm-blooded animal in need of such treatment which comprises administering to said animal an effective amount of a compound of the formula (I), or a pharmaceutically acceptable salt or in vivo hydrolysable ester or amide thereof, according to any one of claims 1 to 9.

17.(Canceled)

Application No. 10/509,941 Response Dated 01/10/2007 Reply to Office Action of 9/10/2007

18. (New) A compound of formula (I) according to claim 1 wherein m is 0, 1 or 2; wherein the values of R^1 are the same or different, n is 0; R^3 is amino and p is 0.