Mécanique quantique – L3

Pierre-François Cohadon - Tristan Villain - Qinhan Wang

TD 11 : Etats cohérents de l'oscillateur harmonique

On cherche à construire des états quantiques de l'oscillateur harmonique dont l'évolution temporelle est semblable à celle de l'oscillateur classique correspondant.

On notera m la masse et $\omega_0/2\pi$ la fréquence de résonance de l'oscillateur harmonique. Les opérateurs annihilation \hat{a} et création \hat{a}^{\dagger} associés sont définis par :

$$\hat{a} = \sqrt{\frac{m\omega_0}{2\hbar}}\hat{x} + i\frac{1}{\sqrt{2\hbar m\omega_0}}\hat{p}$$

$$\hat{a}^{\dagger} = \sqrt{\frac{m\omega_0}{2\hbar}}\hat{x} - i\frac{1}{\sqrt{2\hbar m\omega_0}}\hat{p}.$$

1 Retour sur la dynamique classique

- 1. Écrire l'équation classique du mouvement sur x et la résoudre pour les conditions initiales $(x(0) = A, \dot{x}(0) = 0)$. Quelle est l'impulsion p correspondante?
- 2. Décrire le mouvement dans l'espace des phases à l'aide de la quantité $x+ip/m\omega_0$.
- 3. Comment peut-on exciter cet oscillateur à t = 0?

2 Opérateur translation

On va s'appuyer sur l'approche classique pour créer un état excité à partir de l'analogue quantique de l'état de repos de l'oscillateur, qui est l'état fondamental $|n=0\rangle$.

Pour tout réel x_0 , on définit l'**opérateur de translation** \hat{T}_{x_0} par son action sur la base $\{|x\rangle, x \in \mathbb{R}\}$ des vecteurs propres de l'opérateur position \hat{x} :

$$\hat{T}_{x_0} |x\rangle = |x + x_0\rangle.$$

- 4. Montrer que \hat{T}_{x_0} est un opérateur unitaire, c'est-à-dire que $\hat{T}_{x_0}^{\dagger}$ $\hat{T}_{x_0} = \mathbb{I}$, où \mathbb{I} est l'identité.
- 5. Soit $|\psi\rangle$ un état de l'espace de Hilbert. Montrer que $\langle x|\hat{T}_{x_0}|\psi\rangle=\psi(x-x_0)$.
- 6. En admettant que le développement de Taylor de ψ autour de x converge en tout point de \mathbb{R} , exprimer $\psi(x-x_0)$ en fonction de $\psi(x)$ et de ses dérivées successives $\psi^{(n)}(x)$.
- 7. Rappeler l'effet de l'opérateur impulsion \hat{p} sur $|\psi\rangle$ dans la base $\{|x\rangle\}$ puis montrer :

$$\langle x | \left(\frac{i}{\hbar}\hat{p}\right)^n | \psi \rangle = \psi^{(n)}(x).$$
 (1)

8. En déduire que l'opérateur translation peut s'écrire :

$$\hat{T}_{x_0} = e^{-\frac{ix_0\hat{p}}{\hbar}}. (2)$$

On peut définir de la même façon un opérateur de translation sur les impulsions :

$$\hat{F}_{p_0} = e^{\frac{ip_0\hat{x}}{\hbar}}.$$

9. On va étudier l'effet de ces opérateurs sur l'état fondamental $|0\rangle$.

On pose:

$$\alpha = \frac{1}{\sqrt{2}} \left(x_0 \sqrt{\frac{m\omega_0}{\hbar}} + i p_0 \frac{1}{\sqrt{m\omega_0 \hbar}} \right).$$

Montrer que :

$$\hat{F}_{p_0}\hat{T}_{x_0} = e^{\alpha \hat{a}^{\dagger}} e^{-\alpha^* \hat{a}} e^{-|\alpha|^2/2} e^{(\alpha^2 - \alpha^{*2})/4}.$$
 (3)

On définit alors **l'état cohérent** $|\alpha\rangle$ pour tout $\alpha \in \mathbb{C}$ par $|\alpha\rangle = \hat{F}_{p_0}\hat{T}_{x_0}|0\rangle$.

10. Montrer alors:

$$|\alpha\rangle = e^{-|\alpha|^2/2} \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} |n\rangle.$$
 (4)

Qu'obtiendrait-on si on calculait à la place $\hat{T}_{x_0}\hat{F}_{p_0}|0\rangle$?

3 Propriétés des états cohérents

L'oscillateur est préparé initialement dans l'état $|\Psi(t=0)\rangle = |\alpha\rangle$.

- 11. Montrer que $|\alpha\rangle$ est état propre de \hat{a} pour la valeur propre α .
- 12. Calculer les valeurs moyennes de \hat{x} et de \hat{p} et les variances associées $\Delta \hat{x}^2$ et $\Delta \hat{p}^2$.
- 13. Calculer la valeur moyenne de $\hat{N}=\hat{a}^{\dagger}\hat{a}$ et la variance associée.
- 14. Montrer que l'état $|\Psi\left(t\right)\rangle$ reste un état cohérent, caractérisé par un $\alpha(t)$ que l'on précisera.
- 15. Ecrire les fonctions d'onde $\Psi_{\alpha}(x,t)$ et $\overline{\Psi}_{\alpha}(p,t)$ associées.
- 16. Représenter finalement l'évolution temporelle de l'état du système dans l'espace des phases, la comparer à la dynamique classique de l'oscillateur et conclure.

Formulaire mathématique:

L'exponentielle d'un opérateur est définie par sa série entière :

$$e^{\hat{A}} = \sum_{n=0}^{\infty} \frac{\hat{A}^n}{n!}.$$

On utilisera aussi la propriété suivante, valable pour deux opérateurs qui commutent avec leur commutateur :

$$e^{\hat{A}}e^{\hat{B}} = e^{\hat{A}+\hat{B}}e^{\frac{1}{2}[\hat{A},\hat{B}]}.$$