ESC201T: Introduction to Electronics

Lecture 39: Sequential circuit design-3

B. Mazhari Dept. of EE, IIT Kanpur

Sequential Circuits: Summary

•we need to know how the system goes from one state to another in response to the inputs and how the outputs respond to these changes

Synthesis involves the following tasks:

- Number of storage elements
- State Encoding
- Choosing a flipflop type to implement states
- Synthesize next state logic
- Synthesize output logic

Counters

In state S_0 , the output ABC is 000, in S_1 001 and so on

There are 8 states so 3 FFs are at least required. Let us choose T FF.

PS	NS	
АВС	АВС	$T_A \; T_B \; T_C$
0 0 0	0 0 1	0 0 1
0 0 1	0 1 0	0 1 1
0 1 0	0 1 1	0 0 1
0 1 1	1 0 0	1 1 1
1 0 0	1 0 1	0 0 1
1 0 1	1 1 0	0 1 1
1 1 0	1 1 1	0 0 1
1 1 1	0 0 0	1 1 1

$$T_A = B.C \; ; \; T_B = C \; ; \; T_C = 1$$

$$T_A = B.C \; ; \; T_B = C \; ; \; T_C = 1$$

Counter with Enable

Counter is in Hold state.

When Enable = 1, the counter begins the count.

Counter with Asynchronous Reset

When Enable = 1, the counter begins the count.

- ABCD 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 10 0 1 1 1 1 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1 0 0 0 0
- -D toggles every clock cycle
- -B toggles only when D is 1
- -C toggles only when both C and D are 1
- -A toggles only when B C D are 1
- T FF toggles when T=1

4-bit Down Counter

ABCD

- -D toggles every clock cycle
- -C toggles only when D is 0
- -B toggles only when both C and D are 0
- -A toggles only when D C B are 0

Counters

Binary down counter

Decade counter

Modulo-10 Counter

Modulo-5 Counter

4-bit Up-Down Counter

Merging of the two structures gives an Up/down counter

BCD Counter

Binary Coded Decimal (BCD): each decimal digit is coded as a 4-bit binary number

Count Enable

BCD counter from 0 to 99

Counter with Unused States

PS	NS			
A B C	АВС	$J_A K_A$	J_B K_B	J _c K _c
0 0 0	0 0 1	0 X	0 X	1 X
0 0 1	0 1 0	0 X	1 X	X 1
0 1 0	1 0 0	1 X	X 1	0 X
1 0 0	1 0 1	X 0	0 X	1 X
1 0 1	1 1 0	X 0	1 X	X 1
1 1 0	0 0 0	X 1	X 1	0 X

There are two unused states 011 and 111. one approach to handle this situation is that, while evaluating expressions for J K, we use don't care conditions corresponding to these unused states

Counter with Unused States

PS	NS			
A B C	АВС	$J_A K_A$	J_B K_B	$J_C K_C$
0 0 0	0 0 1	0 X	0 X	1 X
0 0 1	0 1 0	0 X	1 X	X 1
0 1 0	1 0 0	1 X	X 1	0 X
1 0 0	1 0 1	X 0	0 X	1 X
1 0 1	1 1 0	X 0	1 X	X 1
1 1 0	0 0 0	X 1	X 1	0 X

$$J_A = B$$

Counter with Unused States

PS A B C	NS A B C	J _A K _A	J _B K _B	J _c K _c
0 0 0	0 0 1	0 X	0 X	1 X
0 0 1	0 1 0	0 X	1 X	X 1
0 1 0	1 0 0	1 X	X 1	0 X
1 0 0	1 0 1	X 0	0 X	1 X
1 0 1	1 1 0	X 0	1 X	X 1
1 1 0	0 0 0	X 1	X 1	0 X

$$J_A = B$$
 $K_A = B$
 $J_B = C$ $K_B = 1$
 $J_C = \overline{B}$ $K_C = 1$

After synthesizing the circuit, one needs to check that if by chance the counter goes into one of the unused states, after one or more clock cycles, it enters a used state and then remains among the used states

We can see that if by chance the counter goes into unused states 111 or 011, then after a clock cycle it enters one of the used states.

Example From a frequency of 10KHz, generate the following signal of frequency 1KHz

This will have a frequency of 1KHz but it will not have the same waveform

The idea is to generate a divide by 5 counter first and then divide it again by 2 to get the required waveform

Alternatively design a divide by 10 counter with the following states

Example From a frequency of 10KHz, generate the following signal of frequency 2KHz

A divide by 5 counter is required that has 5 states.

A will give the required waveform.

Ring Counter

Alternative Implementation

Ripple Counter

T FF toggles when T = 1; otherwise Hold state

Clock is negative edge Triggered

Ripple Counter

- 0 1 2 3 4 5 ----₁₅
- 0 1 0 1 0 1 -----1 0
- 0 0 1 1 0 0 ·----1 0

0 0 0 0 0 0 -----1 0

Ripple Down Counter

BCD Ripple Counter

BCD Ripple Counter

Cascading of BCD counters

