

8 BIT ADDRESSABLE LATCH

- HIGH SPEED
 - $t_{PD} = 15 \text{ ns} (TYP.) \text{ at } V_{CC} = 5 \text{ V}$
- LOW POWER DISSIPATION $I_{CC} = 4 \mu A \text{ (MAX.)}$ at $T_A = 25 \text{ °C}$
- HIGH NOISE IMMUNITY

 VNIH = VNIL = 28 % VCC (MIN.)
- OUTPUT DRIVE CAPABILITY 10 LSTTL LOADS
- SYMMETRICAL PROPAGATION DELAYS |IOH| = I_{OL} = 4 mA (MIN.)
- BALANCED PRORAGATION DELAYS tplh = tphl
- WIDE OPERATING VOLTAGE RANGE Vcc (OPR) = 2 V to 6 V
- PIN AND FUNCTION COMPATIBLE WITH 54/74LS259

DESCRIPTION

The M54/74HC259 is a high speed CMOS 8 BIT ADDRESSABLE LATCH fabricated in silicon gate C²MOS technology. It has the same high speed performance of LSTTL combined with true CMOS low power consumption.

The M54HC259/M74HC259 has single data input (D) 8 latch outputs (Q0-Q7), 3 address inputs (A, B, and C), common enable input (E), and a common CLEAR input. To operate this device as an addressable latch, data is held on the D input, and the address of the latch into which the data is to be entered is held on the A, B, and C inputs. When ENABLE is taken low the data flows through to the addresses output. The data is stored on the positive-going edge of the ENABLE pulse. All unaddressed latches will remain unaffected. With ENABLE in the high state the device is deselected and all latches remain in their previous state, unaffected by changes on the data or address inputs. To eliminate the possibility of entering erroneous data into the latches, the EN-ABLE should be held high (inactive) while the address lines are changing. If ENABLE is held high and CLEAR is taken low all eight latches are cleared to the low state. If ENABLE is low all latches except the addressed latch will be cleared. The addressed latch will instead follow the D input, effectively implementing a 3-to 8 line decoder.

All inputs are equipped with protection circuits against static discharge and transient excess voltage.

October 1992 1/12

TRUTH TABLE

INP	UTS	OUTPUTS OF	EACH OTHER	FUNCTION
CLEAR	ENABLE	ADDRESSED LATCH	OUTPUT	TONCTION
Н	L	D	Qi0	ADDRESSABLE LATCH
Н	Н	Qi0	Qi0	MEMORY
L	L	D	L	8 LINE DEMULTIPLEXER
L	Н	L	L	CLEAR ALL BITS TO 'L'

D: The level at the data input

Qi0: The level before the indicated steady state input conditions were established, (i = 0, 1,, 7).

	SELECT INPUTS						
С	В	A	LATCH ADDRESSED				
L	L	L	Q0				
L	L	Н	Q1				
L	Н	L	Q2				
L	Н	Н	Q3				
Н	L	L	Q4				
Н	L	Н	Q5				
Н	Н	L	Q6				
Н	Н	Н	Q7				

LOGIC DIAGRAM

INPUT AND OUTPUT EQUIVALENT CIRCUIT

PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION
1, 2, 3	A, B, C	Address Inputs
4, 5, 6, 7, 9, 10, 11, 12	Q0 to Q7	Latch Outputs
13	D	Data Input
14	ENABLE	Latch Enable Input (Active LOW)
15	CLEAR	Conditional Reset Input (Active LOW)
8	GND	Ground (0V)
16	Vcc	Positive Supply Voltage

IEC LOGIC SYMBOL

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vcc	Supply Voltage	-0.5 to +7	V
VI	DC Input Voltage	-0.5 to V _{CC} + 0.5	V
Vo	DC Output Voltage	-0.5 to V _{CC} + 0.5	V
I _{IK}	DC Input Diode Current	± 20	mA
I _{OK}	DC Output Diode Current	± 20	mA
Io	DC Output Source Sink Current Per Output Pin	± 25	mA
I _{CC} or I _{GND}	DC V _{CC} or Ground Current	± 50	mA
P_{D}	Power Dissipation	500 (*)	mW
T _{stg}	Storage Temperature	-65 to +150	°C
TL	Lead Temperature (10 sec)	300	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied. (*) 500 mW: \equiv 65 °C derate to 300 mW by 10mW/°C: 65 °C to 85 °C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Value	Unit
Vcc	Supply Voltage		2 to 6	V
VI	Input Voltage		0 to V _{CC}	V
Vo	Output Voltage		0 to V _{CC}	V
Тор	Operating Temperature: M54HC Series M74HC Series		-55 to +125 -40 to +85	o° o°
t _r , t _f	Input Rise and Fall Time	V _{CC} = 2 V	0 to 1000	ns
		$V_{CC} = 4.5 \text{ V}$	0 to 500	
		$V_{CC} = 6 V$	0 to 400	

DC SPECIFICATIONS

		Test Conditions					Value					
Symbol Parameter	Parameter	Vcc		$T_A = 25$ °C 54HC and 74HC			85 °C HC	-55 to 125 °C 54HC		Unit		
		(V)			Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
V_{IH}	High Level Input	2.0			1.5			1.5		1.5		
	Voltage	4.5			3.15			3.15		3.15		V
		6.0			4.2			4.2		4.2		
V_{IL}	Low Level Input	2.0					0.5		0.5		0.5	
	Voltage	4.5					1.35		1.35		1.35	V
		6.0					1.8		1.8		1.8	
V_{OH}	High Level	2.0	Vı =		1.9	2.0		1.9		1.9		
	Output Voltage	4.5	.5 V _{IH}	I _O =-20 μA	4.4	4.5		4.4		4.4		
		6.0	or		5.9	6.0		5.9		5.9		V
		4.5	VIL	I _O =-4.0 mA	4.18	4.31		4.13		4.10		
		6.0		I _O =-5.2 mA	5.68	5.8		5.63		5.60		
V_{OL}	Low Level Output	2.0	Vı =			0.0	0.1		0.1		0.1	
	Voltage	4.5	VI – VIH	I _O = 20 μA		0.0	0.1		0.1		0.1	
		6.0	or			0.0	0.1		0.1		0.1	V
		4.5	V _{IL}	I _O = 4.0 mA		0.17	0.26		0.33		0.40	
		6.0		I _O = 5.2 mA		0.18	0.26		0.33		0.40	
lı	Input Leakage Current	6.0	Vı = '	V _{CC} or GND			±0.1		±1		±1	μΑ
Icc	Quiescent Supply Current	6.0	V _I = '	√ _{CC} or GND			4		40		80	μΑ

AC ELECTRICAL CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_r = t_f = 6 \text{ ns}$)

		Test Conditions				Value				
Symbol	Parameter	Parameter V _{CC} (V)		A = 25 C		1	85 °C HC	1	125 °C HC	Unit
		(V)	Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
t_{TLH}	Output Transition	2.0		30	75		95		110	
t_{THL}	· ·	4.5		8	15		19		22	ns
		6.0		7	13		16		19	
t _{PLH}	Propagation	2.0		56	140		175		210	
t _{PHL}	Delay Time	4.5		18	28		35		42	ns
	(DATA - Q)	6.0		15	24		30		36	
tplH	Propagation	2.0		76	190		240		285	
t_{PHL}	Delay Time	4.5		24	38		48		57	ns
	(A, B, C - Q)	6.0		20	32		41		48	
t _{PLH}	Propagation	2.0		57	150		190		225	
t_{PHL}	Delay Time	4.5		19	30		38		45	ns
	(G - Q)	6.0		16	26		32		38	
tplH	Propagation	2.0		45	115		145		175	
t _{PHL}	Delay Time	4.5		15	23		29		35	ns
	(CLEAR - Q)	6.0		13	20		25		30	
t _{W(L)}	Minimum Pulse	2.0		28	75		90		115	
, ,	Width	4.5		7	15		19		23	ns
	(ENABLE)	6.0		6	13		16		20	
$t_{W(L)}$	Minimum Pulse	2.0		24	75		90		115	
, ,	Width	4.5		6	15		19		23	ns
	(CLEAR)	6.0		5	13		16		20	
t _s	Minimum Set-up	2.0		12	50		60		75	
	Time	4.5		3	10		12		15	ns
	(DATA)	6.0		3	9		11		13	
ts	Minimum Set-up	2.0			25		30		40	
	Time	4.5			5		6		8	ns
	(A, B, C)	6.0			5		5		7	
t _h	Minimum Hold	2.0			5		5		5	
	Time	4.5			5		5		5	ns
	(DATA)	6.0			5		5		5	
t _h	t _h Minimum Hold	2.0			0		0		0	
	Time	4.5			0		0		0	ns
	(A, B, C)	6.0			0		0		0	
Cin	Input Capacitance			5	10		10		10	pF
C _{PD} (*)	Power Dissipation Capacitance			66						pF

^(*) C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. $I_{CC}(opr) = C_{PD} \bullet V_{CC} \bullet f_{IN} + I_{CC}$

SWITCHING CHARACTERISTICS TEST WAVEFORM

TEST CIRCUIT ICC (Opr.)

Plastic DIP16 (0.25) MECHANICAL DATA

DIM.		mm			inch	
Dini.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
a1	0.51			0.020		
В	0.77		1.65	0.030		0.065
b		0.5			0.020	
b1		0.25			0.010	
D			20			0.787
E		8.5			0.335	
е		2.54			0.100	
e3		17.78			0.700	
F			7.1			0.280
I			5.1			0.201
L		3.3			0.130	
Z			1.27			0.050

Ceramic DIP16/1 MECHANICAL DATA

DIM.		mm			inch		
Diiii.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А			20			0.787	
В			7			0.276	
D		3.3			0.130		
Е	0.38			0.015			
e3		17.78			0.700		
F	2.29		2.79	0.090		0.110	
G	0.4		0.55	0.016		0.022	
Н	1.17		1.52	0.046		0.060	
L	0.22		0.31	0.009		0.012	
М	0.51		1.27	0.020		0.050	
N			10.3			0.406	
Р	7.8		8.05	0.307		0.317	
Q			5.08			0.200	

SO16 (Narrow) MECHANICAL DATA

DIM.		mm			inch	
DIIVI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α			1.75			0.068
a1	0.1		0.2	0.004		0.007
a2			1.65			0.064
b	0.35		0.46	0.013		0.018
b1	0.19		0.25	0.007		0.010
С		0.5			0.019	
c1			45°	(typ.)		
D	9.8		10	0.385		0.393
E	5.8		6.2	0.228		0.244
е		1.27			0.050	
e3		8.89			0.350	
F	3.8		4.0	0.149		0.157
G	4.6		5.3	0.181		0.208
L	0.5		1.27	0.019		0.050
М			0.62			0.024
S			8° (r	nax.)		

PLCC20 MECHANICAL DATA

DIM.		mm			inch		
Diiii.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А	9.78		10.03	0.385		0.395	
В	8.89		9.04	0.350		0.356	
D	4.2		4.57	0.165		0.180	
d1		2.54			0.100		
d2		0.56			0.022		
E	7.37		8.38	0.290		0.330	
е		1.27			0.050		
e3		5.08			0.200		
F		0.38			0.015		
G			0.101			0.004	
М		1.27			0.050		
M1		1.14			0.045		

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

