

planetmath.org

Math for the people, by the people.

essentially surjective

Canonical name EssentiallySurjective
Date of creation 2013-03-22 15:18:16
Last modified on 2013-03-22 15:18:16

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 13

Author CWoo (3771)
Entry type Definition
Classification msc 18A22
Synonym dense functor

Synonym isomorphism-dense in Synonym isomorphism-dense

Related topic EquivalenceOfCategories

Defines isomorphism-dense subcategory

Let \mathcal{C} and \mathcal{D} be categories. A functor $F: \mathcal{C} \to \mathcal{D}$ is essentially surjective if for any object $A \in \mathcal{OB}(\mathcal{D})$, there exists an object $X \in \mathcal{OB}(\mathcal{C})$, such that $F(X) \cong A$. That is, there are morphisms (in D) $f: F(X) \to A$ and $g: A \to F(X)$ such that $fg = 1_A$ and $gf = 1_{F(X)}$.

Remarks.

- ullet Clearly, if F is surjective, it is essentially surjective. But the reverse is not true.
- A functor is an http://planetmath.org/EquivalenceOfCategoriesequivalence iff it is http://planetmath.org/FullFunctorfull, http://planetmath.org/FaithfulFunctand essentially surjective.
- isomorphism-dense subcategory. A full subcategory \mathcal{S} of a category \mathcal{C} is said to be isomorphism-dense in \mathcal{C} , if the inclusion functor $\mathcal{S} \hookrightarrow \mathcal{C}$ is essentially surjective. Since \mathcal{S} is full, the inclusion functor is full and faithful. As a result, \mathcal{S} is isomorphism-dense if the inclusion functor is an equivalence.