Algorithm 7: Edmonds-Karp algorithm

Lemma 4.33

Let G = (V, A) be a directed graph with arc capacities $u: A \to \mathbb{Z}_{\geq 0}$, and let $s, t \in V$ with $s \neq t$. Moreover, let f_1 be an s-t flow in G, and let f_2 be an s-t flow obtained by augmenting f_1 along a shortest augmenting path P in G_{f_1} . Then,

$$d_{f_1}(s,v) \leq d_{f_2}(s,v) \quad \forall v \in V , \text{ and } d_{f_1}(v,t) \leq d_{f_2}(v,t) \quad \forall v \in V ,$$

where $d_f(v, w)$ denotes, for $v, w \in V$ and an s-t flow f, the length (in terms of number of arcs) of a shortest v-w path in G_f that only uses arcs with strictly positive f-residual capacity.

Theorem 4.34

Algorithm 7 runs in $O(nm^2)$ time.

Proof

Lemma 4.33 implies that augmenting paths have non-decreasing lengths throughout algo.

We can divide Edmonds-Karp algo into phases.

phase k: all any mentations on any menting puths of length k

phases : O(n).

We finish proof by showing that each phase performs O(m) augmentations.

This proves statement because each angmentation takes G(m) time.

Consider phase k∈ [n-1].

For an s-t flow f and viveV, let

 $d_{f}(v,w) := \min \{ |P| : P \subseteq B \text{ is } v-w \text{ path with } u_{f}(b) > 0 \ \forall b \in P \}$ $G_{f} = (v,B)$

Claim

If an arc is used in an augmenting path in phase k, then its reverse arc is not used in any augmentation in phase k.

Proof of claim

Assume by sake of contradiction that 7 (v, w) EB s.f.

- (i) (v, w) is used in a phase k augmenting path P, to augment the flow fi.
- (ii) (w,v) is part of a later augmenting path P2 to augment some flow f2.

$$|P_2| = d_{f_2}(s, w) + 1 + d_{f_2}(v, t) \ge d_{f_1}(s, w) + 1 + d_{f_1}(v, t)$$

$$\ge d_{f_1}(s, w) + 1 + d_{f_2}(v, t) = d_{f_1}(s, w) + 1$$

$$= d_{\xi_{i}}(s,v) + 2 + d_{\xi_{i}}(v,+) = |P_{i}| + 2$$

& Because $|P_1| = |P_2|^{=k}$, as both anymentations happen in phase k.

Clajo

Claim implies:

In each phase, for every our ack, augmentations either never use a or never use a^R.

Hence, once an arc becomes saturated, neither the arc nor its reverse version is used in same phase.

=) # of times an arc gets saturated ≤ M.

Each augmentation saturates at least one arc, by the way we define the augmentation volume.

=> # augmentations in phase k = m.

