Data Visualization with Matplotlib Course

AGENDA

5 MIN	Learning Outcomes
10 MIN	What, Why and When?
15 MIN	Reading + Quiz
60 MIN	Practice Session
5 MIN	Next Steps

Learning Outcomes

- Recall and describe the fundamental types of plots, such as line plots, scatter plots, bar charts, and histograms, that can be created using Matplotlib.
- Apply Matplotlib concepts to explore and analyze datasets visually, effectively using various types of plots to identify data patterns, trends, and outliers
- Analyze complex data by creating multi-panel figures and subplots in Matplotlib, facilitating comparisons and presentations of data from different perspectives.

What is Matplotlib?

Matplotlib is a widely-used Python library for creating static, animated, and interactive visualizations. It plays a vital role in data visualization by offering:

- A flexible and extensive set of plotting functions.
- Compatibility with various data formats and libraries.
- Customization options for creating publication-quality visuals.
- Integration with data analysis workflows.

Why use Matplotlib?

- Matplotlib has been around for a long time (2003) and has a stable and well-tested codebase. It is a mature library that has been used in countless projects, ensuring reliability.
- It's widely adopted in the scientific and data analysis communities. This means there is a **wealth of documentation**, tutorials, and community support available, making it easier to learn and troubleshoot.
- It seamlessly integrates with other data science and numerical computing libraries in Python, such as NumPy, Pandas, and SciPy.

When to use Matplotlib?

- Embed plots in scientific or data analysis workflows: When we need to integrate data visualization seamlessly into your scientific or data analysis workflows, especially when working with libraries like NumPy and Pandas.
- Create static dashboards: When building static dashboards or visualizations that don't require real-time interactivity.
- Quickly visualize data: When we want to quickly visualize data for exploratory purposes within Jupyter notebooks or Python scripts.

Reading and Quiz (15 Min)

Resources

AfterWork Platform

Practice Session

Resources

AfterWork Platform

Next Steps

Complete the project and get a certification from **AfterWork**.

