Mass Spectrometry (MS)

	from chapter(s)		in the	recommended	text
--	-----------------	--	--------	-------------	------

A. Introduction

B. Components Of Mass Spectrometers

mass-to-charge.

<u>mass</u> without fragmentation).

- create ions in the gas phase
- separate ions on the basis of m/z (ie an analyzer)
- detect the number of ions of each m/z

an ionization source / an analyzer / a detector.

ionization

for analysis.

or *analysis*.

for analysis.

or ionization.

Fourier transform (FT) analysis.

Electron Impact (EI) ionization.

Detectors in MS electron multipliers.

<u>MALDI-TOF</u> is a valid description but <u>ESI-MALDI</u> is not.

C. Primary Ions Formed In Different Ionization Techniques

MALDI ie $[M + 1]^{+}$.

ESI $[M + 1]^{+}$ **MALDI**

ESI

ΕI

$$\bigcirc$$
N $-$

ionization

an electron from molecules to give radical cations ie [M]⁺.

Resolution sensitivity.

most sensitive forms of MS.

exact mass

D. Isotopes In Mass Spectrometry

Element	Isotope	Abundance (%)	Mass number	Exact mass
hydrogen	¹ H	99.99	1	1.00783
carbon	¹² C	98.89	12	12.00000
carbon	¹³ C	1.11	13	13.00335
nitrogen	¹⁴ N	99.64	14	14.00307
oxygen	¹⁶ O	99.76	16	15.99492
fluorine	¹⁹ F	100	19	18.99840
phosphorus	³¹ P	100	31	30.97376
sulfur	³² S	95.00	32	31.97207
chlorine	35CI	75.77	35	34.96886
chlorine	³⁷ Cl	24.23	37	36.96590
bromine	⁷⁹ Br	50.69	79	78.91835
bromine	⁸¹ Br	49.31	81	80.91635
iodine	¹²⁷	100	100	126.904468
27.99492		28.03132		64.00801
exact mass		exact mass		exact mass
CH ₃ ⁷⁹ Br		CH ₃ ⁸¹ Br		C ₂ H ₅ ³⁷ Cl
93.94184		95.93984		66.00505
			_	

exact mass

can distinguish

exact mass

- 1.99704 atomic mass units (amu's) in a ratio of 3.13:1
- 1.99800 amu's in a ratio of 1.03:1.
- 3 molecular ions in a 1:2:
- 4 molecular ions in a 1:3:3:1

Illustrative Interpretation Of Isotopes In MS

the chlorine-containing compound A is number: 2 the bromine-containing compound B is number: __1_ the non-halogenated compound C is number: ____3_

1 (m/z = 170 and 172):

2 (m/z = 112 and 114):

3 (m/z = 107):

always have odd molecular ion m/z values.

E. Fragmentation

the *most* stable one that is most likely to be observed.

electron impact

ESI does not.

ESI is widely used in contemporary MS, but EI

Fragmentation is usually <u>undesirable</u> is useful when complementary methods

MS/MS

<u>tandem</u>

$$C_2H_6$$
 $\stackrel{\cdot +}{\longrightarrow}$ $\stackrel{-Me \cdot}{\longrightarrow}$ $\stackrel{+}{\longrightarrow}$ $\stackrel{-Me \cdot}{\longrightarrow}$

$\alpha\text{-Cleavage}$

OH
$$\alpha$$
-cleavage α -cleavage α -cleavage α -H $_2$ O α -H $_2$ O α -H $_2$ O

OH
$$\alpha$$
-cleavage α -cleavage

OH
$$\alpha$$
-cleavage \rightarrow OH \rightarrow \rightarrow \rightarrow of C-H

$$NH_2$$
 α -cleavage

$$\begin{array}{c} \uparrow^{+} \\ \text{NH} \\ \downarrow \end{array}$$

$$\begin{array}{c} & & \\ & & \\ \text{NH} & & \\ & & \\ \end{array}$$

NEt₃
$$\alpha$$
-cleavage

$$\begin{array}{c} O \\ Ph \\ H \end{array} \xrightarrow{\alpha\text{-cleavage}}$$

$$\begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array}$$

$$\begin{array}{c} \bullet \\ \bullet \\ \bullet \\ \end{array}$$

The McLafferty Rearrangement

$$\alpha$$
 β α β γ

$$H$$
 γ
 β
 α
 β
 β

α and β fragments

alkene

radical cation

alkene

radical cation

Molecule on the left can undergo McLafferty rearrangement since it has γ -hydrogen whereas molecule on the right does not.