Europäisches Patentamt
European Patent Office

Office européen des brevets

(11) EP 0 810 221 A1

(12)

EUROPEAN PATENT APPLICATION

published in accordance with Art. 158(3) EPC

(43) Date of publication: 03.12.1997 Bulletin 1997/49

(21) Application number: 96901977.7

(22) Date of filing: 09.02.1996

(51) Int. CI.⁶: **C07D 305/08**, C07D 307/22, C07D 309/14, C07H 5/06, C07H 15/18, A61K 31/335, A61K 31/34, A61K 31/35, A61K 31/70

(86) International application number: PCT/JP96/00286

(87) International publication number:WO 96/25408 (22.08.1996 Gazette 1996/38)

(84) Designated Contracting States: **DE ES FR GB IT**

(30) Priority: 14.02.1995 JP 25398/95 14.02.1995 JP 25402/95 12.09.1995 JP 234236/95 20.10.1995 JP 272432/95

(71) Applicant:

MITSUBISHI CHEMICAL CORPORATION
Chiyoda-ku, Tokyo 100 (JP)

(72) Inventors:

ANDO, Ryoichi
 Mitsubishi Chemical Corporation
 Aoba-ku, Yokohama-shi Kanagawa 227 (JP)

SAKAKI, Toshiro
 Mitsubishi Chemical Corporation
 2-chome Chiyoda-ku Tokyo 100 (JP)

MASUDA, Hirokazu
 Mitsubishi Chemical Corporation
 Aoba-ku, Yokohama-shi Kanagawa 227 (JP)

INAKOSHI, Naoto
 Mitsubishi Chemical Corporation
 Aoba-ku, Yokohama-shi Kanagawa 227 (JP)

JIKIHARA, Tetsuo
 Mitsubishi Chemical Corporation
 Aoba-ku, Yokohama-shi Kanagawa 227 (JP)

FUJIMURA, Yoshiyuki
 Mitsubishi Chemical Corporation
 Aoba-ku, Yokohama-shi Kanagawa 227 (JP)

NIWA, Takuro
 Mitsubishi Chemical Corporation
 Aoba-ku, Yokohama-shi Kanagawa 227 (JP)

 YOSHII, Narihiko Mitsubishi Chemical Corporation Aoba-ku, Yokohama-shi Kanagawa 227 (JP)

TABATA, Reiko
 Mitsubishi Chemical Corporation
 Aoba-ku, Yokohama-shi Kanagawa 227 (JP)

SAITO, Ken-Ichi
 Mitsubishi Chemical Corporation
 Aoba-ku, Yokohama-shi Kanagawa 227 (JP)
 ARITOMO, Keiichi

Mitsubishi Chemical Corporation

Aoba-ku, Yokohama-shi Kanagawa 227 (JP)

(74) Representative: Godemeyer, Thomas, Dr.

Hauptstrasse 58 51491 Overath (DE)

(54) OXYGEN-CONTAINING HETEROCYCLIC DERIVATIVES

(57) An oxygen-containing heterocyclic derivative represented by the following formula (I) and its salt, and a solvate and a hydrate thereof:

EP 0 810 221 A1

wherein:

hydrogen atom, R^8 -CO-, R^8 -O-CO- or other wherein R^8 represents C_1 - C_{20} alkyl, aryl or other,

 R^1 : R^2 , R^4 and, R^6 : a hydrogen atom, C_1 - C_5 alkyl or other, a hydrogen atom, C_1 - C_{20} alkyl or other, a hydrogen atom, R^9 -CO- or other wherein R^9 represents C_1 - C_{10} alkyl group or other, R³ and R⁵:

R⁷:

C₁-C₃ alkylene group A:

0 or 1. n:

The oxygen-containing heterocyclic derivatives of the present invention have potent inhibitory activity against cysteine proteases and are excellent in oral absorbability, tissue distribution, and cellular membrane permeability. Therefore, they are useful as therapeutic medicament for diseases such as cerebral apoplexy, Alzheimer's disease and the like.

Description

5

10

20

35

Technical Field

This invention relates to novel oxygen-containing heterocyclic derivatives.

Background Art

Functions of cysteine proteases such as papain, cathepsin B, cathepsin H, cathepsin L, calpain, and interleukin-1 β converting enzyme in living bodies have been elucidated, and as the progress, it becomes revealed that abnormal accentuation of these substances is a cause of various types of diseases. There also are increasing numbers of literatures reporting that a cysteine protease inhibitor was found to be effective when applied to an animal model of such disease.

Cysteine proteases such as calpain or cathepsin B are considered to be involved in an early stage of elimination of Z-filaments or other with degradation of muscle fiber proteins in a process of skeletal muscular decay which can be observed in myopathy such as muscular dystrophy and amyotrophia (Metabolism, Vol. 25, Extra Edition, "Highlights of Metabolic Disease," p. 183, 1988). In addition, E-64-d, a cysteine protease inhibitor, was reported to have life prolongation effect on muscular dystrophy hamsters (Journal of Pharmacobio Dynamics, Vol. 10, p. 678, 1987). Accordingly, cysteine protease inhibitors are considered as potential therapeutic medicaments for muscular dystrophy, amyotrophia and the like.

In ischemic diseases such as myocardial infarct and cerebral apoplexy, a major cause of cellular dysfunction after ischemia is active oxygen produced by xanthine oxidase. Some articles suggested that calpain, being activated by an increased concentration of Ca²⁺ during ischemia, partially degrades xanthine dehydrogenase as a precursor of xanthine oxidase to convert it into the oxidase (New England Journal of Medicine, Vol. 312, p. 159, 1985). It is also suggested that the activation of calpain may directly trigger myocardial cellular death and cerebral nerve cellular death (Latest Medicine, Vol. 43, p. 783, 1988). NCO-700, an inhibitor of calpain, was reported to be effective in an animal model of myocardial infarct (Arzneimittel Forschung/Drug Research Vol. 36, p. 190, p. 671, 1986) and E-64-c suppressed the degradation of microtubule-binding proteins after cerebral ischemia (Brain Research, Vol. 526, p. 177, 1990). Therefore, calpain inhibitors are considered as potential therapeutic medicament for ischemic diseases such as myocardial infarct and cerebral apoplexy.

A protein called amyloid deposits in senile plaques that can be uniquely observed in brains of patients suffered from Alzheimer's disease. It is known that the amyloid is synthesized by the degradation of amyloid protein precursor (APP). Some articles suggest that amyloid is produced by abnormal metabolism due to an abnormally accentuated protease to form senile plaques, whilst amyloid is not produced in a normal metabolic process of APP (Scientific American, November, 1991, p. 40). Accordingly, protease inhibitors are expected to be used as therapeutic medicament for Alzheimer's disease

There is reported that calpain is activated in a head injury model using a rabbit (Neurochemical Research, Vol. 16, p. 483, 1991). A protective effect on axon was observed by the administration of leupeptin as a calpain inhibitor to a head injury model using a rat (Journal of Neurosurgery, Vol. 65, p. 92, 1986). Therefore, inhibitors of calpain are considered to have an improving effect on disturbance of consciousness and movement disorder caused by a head injury.

Myelin binding proteins that exist in dendrites of nerve cells were found to be degraded by calpain (Journal of Neurochemistry, Vol. 47, p. 1007, 1986). Therefore, inhibitors of calpain are considered as effective on diseases caused by demyelination of nerve cells such as multiple sclerosis and neuropathy of peripheral nerve.

In most cases of cataract, it is suggested that crystallin, a water-soluble protein in crystalline lens, is hydrolyzed by the action of a protease, which results in the cloudiness of crystalline lens. In experimental models of cataract and certain types of human cataract, calcium concentrations in crystalline lens are increased (Investigative Ophthalmology & Visual Science, Vol. 28, p. 1702, 1987; Experimental Eye Research, Vol. 34, p. 413, 1982), and calpain exists in major abundance among proteases contained in crystalline lens (Lens and Eye Toxicity Research, Vol. 6, p. 725, 1989). Therefore, abnormal accentuation of calpain is considered to be one of causes of cataract. There is also reported that an inhibitor of calpain, i.e., E-64, was effective in an experimental model of cataract (Investigative Ophthalmology & Visual Science, Vol. 32, p. 533, 1991. Accordingly, inhibitors of calpain are considered as potential therapeutic medicament for cataract.

It is known that neutrophils, which are intimately involved in inflammation, respond to stimulations with chemotactic factors or phorbol esters by causing degranulation or producing superoxide, and this process is considered to be mediated by protein kinase C (PKC). There is reported that calpain has a function to activate PKC, thereby exhibits promoting activity on the degranulation and suppressing activity against the production of superoxide (Journal of Biological Chemistry, Vol. 263, p. 1915, 1988). It has also been reported that concentration of cathepsin B in rat macrophages is 30 to 40-fold higher than that of leucocytes or neutrophils, and moreover, the enzyme concentration of inflammatory macrophages is 6-fold higher than that of ordinary macrophages (Journal of Biochemistry, Vol. 98, p. 87, 1985). Fur-

thermore, it has recently been revealed that the enzyme that catalyzes the conversion of pre-interleukin-1 β into interleukin-1 β (interleukin-1 β converting enzyme) is a cysteine protease (Nature, Vol. 356, p. 768, 1992), which clarifies that the activation process of cysteine protease plays an important role in the formation of inflammation. From these findings, it is considered that inhibitors of cysteine protease can be used as anti-inflammatory agents.

I-type allergic reaction progresses with the mediation of immunoglobulin E (IgE) that is produced by immunization of a living body with an antigen. It has been reported that Estatin A, a cysteine protease inhibitor, specifically suppresses the production of IgE, whereas it does not affect on the production of IgG (The Journal of Antibiotics, Vol. 42, p. 1362, 1989). Accordingly, cysteine protease inhibitors are considered to be usable as anti-allergic agents.

When necrosis of hepatocytes occurs, it is suggested that Ca²⁺ permeability of cell membranes increases due to disturbance of cellular membranes and then intracellular Ca²⁺ concentration is elevated to activate calpain, which leads to degradation of structural proteins or other as substrates of calpain and results in cellular death. Therefore, inhibitors of calpain can be used as therapeutic medicaments for fulminant hepatitis.

Cathepsins such as cathepsin B and cathepsin L participate in degradation of bone collagen in osteoclasts. There is reported that serum calcium concentration and hydroxyproline concentration were lowered when B-64 or Estatin A being an inhibitor of cathepsins was administered to rats whose osteoclasia was accentuated by administering parathormone (Biochemical and Biophysical Research Communication Vol. 125, p. 441, 1984; the Japanese Patent Unexamined Publication (KOKAI) No. (Hei) 2-218610/1990). Therefore, inhibitors of cathepsins are considered as potential therapeutic medicaments for osteoporosis, hypercalcemia and the like.

Substrates of calpain include a class of sexual hormone receptors such as estrogen receptor and androgen receptor. Calpain is known to activate these receptors, and it is suggested that abnormal accentuation of calpain causes diseases that are positively caused by abnormal activation of sexual hormone receptors such as, for example, breast cancer, prostatic cancer, and prostatic hypertrophy. Accordingly, inhibitors of calpain are considered to be useful as therapeutic medicaments for the aforementioned diseases.

It is suggested that receptors of epidermal growth factor (EGF) are activated as cellular tumorigenic transformation proceeds, and it is known that calpain activates the EGF receptors as its substrates. There is also reported that calpain was activated in cells infected with human adult T-cell leukemia virus (ATLV/HTLV-1) (Biochemistry, Vol. 57, p. 1202, 1985). On the other hand, it is suggested that cathepsin B is intimately involved in processes of cancerous metastasis, because cathepsin B promotes collagen degradation, which is an important step of cancerous metastasis, or directly degrades collagen, and it also has close relationship with plasma membranes of neoplastic cells (Tumor Progression and Markers, p. 47, 1982; Journal of Biological Chemistry, Vol. 256, p. 8536, 1984). From these teachings, inhibitors of cysteine protease are considered to be effective in inhibition of cancerous growth and prevention of cancerous metastasis

Activation of blood platelets triggers agglomeration, which may lead to thrombus formation. There is reported that E-64-d as being an inhibitor of calpain suppressed platelet aggregation caused by thrombin (Thrombosis Research, Vol. 57, p. 847, 1990). Accordingly, inhibitors of calpain can be used as platelet aggregation inhibitors.

As explained above, abnormal accentuation of cysteine protease may become the causes of various kinds of diseases, and some cysteine protease inhibitors are reported to have efficacy in animal models or the like.

However, almost all of known inhibitors are irreversible inhibitors, for example, E-64 (Agricaltural and Biological Chemistry, Vol. 42, p. 529, 1978), E-64-d (Journal of BiochemIstry, Vol. 93, p. 1305, 1983), NCO-700 (the Japanese Patent Unexamined Publication (KOKAI) No. (Sho) 58-126879/1983), epoxysuccinic acid derivatives such as Estatins A and B (The Journal of Antibiotics, Vol. 42, p. 1362, 1989), and α -substituted ketones of peptides whose typical examples include chloromethyl ketones of peptides (Journal of BiochemIstry, Vol. 99, p. 173, 1986) and acyloxymethyl ketones (Biochemistry, Vol. 30, p. 4678, 1991). Irreversible inhibitors are generally considered to have strong toxicity because they are likely to non-specifically react with biogenic components including the target enzymes, and therefore, only a few compounds have been used clinically. As reversible inhibitors, peptidyl aldehydes such as leupeptin (The Journal of Antibiotics, Vol. 22, p. 283, 1969) and calpeptin (Journal of Enzyme Inhibition, Vol. 3, p. 195, 1990) are known. However, they are considered to have problems relating to chemical stability, stability in a living body, cell membrane permeability and the like.

Disclosure of the Invention

5

From these reasons, the present inventors conducted researches to obtain cysteine protease inhibitors having excellent oral absorbability, tissue distribution, cell membrane permeability and other. As a result, they achieved the present invention.

The gist of the present invention is oxygen-containing heterocyclic derivatives represented by the following formula (I) and their pharmaceutically acceptable salts, and hydrates and solvates thereof:

wherein R^1 represents a hydrogen atom, R^8 -CO-, R^8 -O-CO-, R^8 -NH-CO-, or R^8 -SO₂- (R^8 represents a C_1 - C_{20} alkyl group which may optionally be substituted with one or more substituents selected from the group consisting of a C_3 - C_8 cycloalkyl group, a C_3 - C_8 cycloalkyloxy group, fluorenyl group, a C_1 - C_6 alkoxy group, a C_6 - C_{14} aryl group which may optionally be substituted, a C_6 - C_{14} arylsulfonyl group which may optionally be substituted, and a residue of a heterocyclic compound which may optionally be substituted; a C_3 - C_8 cycloalkyl group; a C_6 - C_{14} aryl group which may optionally be substituted; a C_2 - C_5 alkenyl group which may optionally be substituted with an optionally substituted C_6 - C_{14} aryl group; or a residue of a heterocyclic compound which may optionally be substituted); R^2 , R^4 , and R^6 independently represent a hydrogen atom, a C_1 - C_5 alkyl group, or a C_2 - C_6 alkanoyl group; R^3 and R^5 independently represent a hydrogen atom, a C_1 - C_2 0 alkyl group which may optionally be substituted with one or more substituents selected from the group consisting of a C_6 - C_{14} aryl group which may optionally be substituted, hydroxyl group, a C_1 - C_5 alkoxy group, a C_1 - C_5 alkylthio group, and a C_7 - C_{12} aralkyloxy group, or they independently represents a C_6 - C_{14} aryl group which may optionally be substituted; R^7 represents a hydrogen atom, a C_1 - C_5 alkyl group, or C_1 - C_5 alkylene group which may optionally be substituted with a C_1 - C_3 alkylene group which may optionally be substituted with a C_1 - C_3 alkylene group which may optionally be substituted with a C_1 - C_3 alkylene group which may optionally be substituted with a C_1 - C_3 alkylene group which may optionally be substituted with a C_1 - C_3 alkylene group which may optionally be substituted with a C_1 - C_3 alkylene group and symbol "n" represents 0 or 1.

The present invention will be detailed below.

5

10

15

25

In the aforementioned general formula (I), examples of the C₁-C₂₀ alkyl group defined by R⁸ include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, isopentyl group, neopentyl group, tert-pentyl group, hexyl group, isohexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, and octadecyl group. These alkyl groups may have one or more substituents selected from the group consisting of a C₃-C₈ cycloalkyl group such as cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cyclohexyl group, and cyclooctyl group; a C₃-C₈ cycloalkyloxy group such as cyclopropyloxy group, cyclobutyloxy group, cyclopentyloxy group, cyclohexyloxy group, cycloheptyloxy group, and cyclooctyloxy group; fluorenyl group; a C₁-C₅ alkoxy group such as methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, isobutoxy group, tert-butoxy group, pentyloxy group, and isopentyloxy group; a C₆-C₁₄ aryl group such as phenyl group, naphthyl group, and anthryl group; a C₆-C₁₄ aryloxy group such as phenoxy group and naphthoxy group; a C6-C14 arylthio group such as phenylthio group and naphthylthio group; a C_6 - C_{14} arylsulfonyl group such as phenylsulfonyl group and naphthylsulfonyl group; and a residue of a heterocyclic compound which contains from 1 to 4 heteroatoms selected from oxygen atom, sulfur atom, or nitrogen atom and has 5 to 10 ring-constituting atoms, and whose examples include furan ring, dihydrofuran ring, tetrahydrofuran ring, pyran ring, dihydropyran ring, tetrahydropyran ring, benzofuran ring, isobenzofuran ring, chromene ring, chroman ring, isochroman ring, thiophene ring, benzothiophene ring, pyrrole ring, pyrroline ring, pyrrolidine ring, imidazole ring, imidazoline ring, imidazolidine ring, pyrazole ring, pyrazoline ring, pyrazolidine ring, triazole ring, tetrazole ring, pyridine ring, pyridine oxide ring, piperidine ring, pyrazine ring, piperazine ring, pyrimidine ring, pyridazine ring, indolizine ring, indole ring, indoline ring, isoindole ring, isoindoline ring, indazole ring, benzimidazole ring, purine ring, quinolizine ring, quinoline ring, phthalazine ring, naphtylidine ring, quinoxaline ring, quinazoline ring, cinnoline ring, pteridine ring, oxazole ring, oxazolidine ring, isoxazole ring, isoxazolidine ring, thiazole ring, thiazole ring, isothiazole ring, isothiazolidine ring, dioxane ring, dithian ring, morpholine ring, and thiomorpholine ring. Examples of the C3-C8 cycloalkyl group and C₆-C₁₄ aryl group defined by R⁸ include the same groups as those mentioned as the substituents of the aforementioned C₁-C₂₀ alkyl group. Examples of the C₂-C₅ alkenyl group include vinyl group, 1-propenyl group, 2-propenyl group, 1-butenyl group, or 1-pentenyl group. The alkenyl groups may be substituted with a C_6 - C_{14} aryl group such as those explained above as the substituents of the aforementioned C₁-C₂₀ alkyl group. Examples of the residue of a heterocyclic compound include the same groups as those explained as the substituent of the C₁-C₂₀ alkyl group.

The C_1 - C_5 alkyl group defined by R^2 , R^4 and R^6 may independently be, for example, methyl group, ethyl group, proposition pyl group, isopropyl group, butyl group, isobutyl group, pentyl group, isopentyl group or the like. Examples of the C_2 - C_6 alkanoyl group include acetyl group, propionyl group, butyryl group, valeryl group or the like.

Examples of the C_1 - C_{20} alkyl group defined by R^3 and R^5 include independently the same groups as those defined as to R^8 . These alkyl groups may have one or more substituents selected from the group consisting of a C_6 - C_{14} aryl group such as those explained as to R^8 ; hydroxyl group; a C_1 - C_5 alkoxy group such as those explained above as to R^8 ;

a C_1 - C_5 alkylthio group such as methylthio group, ethylthio group, propylthio group, isopropylthio group, butylthio group, isobutylthio group, tert-butylthio group, pentylthio group, and isopentylthio group; and a C_7 - C_{12} aralkyloxy group such as benzyloxy group, phenylmethoxy group, and naphthylmethoxy group. Examples of the C_6 - C_{14} aryl group include the same groups as those mentioned above.

Examples of the C_1 - C_5 alkyl group defined by R^7 include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, isopentyl group, neopentyl group, tert-pentyl group or the like.

5

15

50

55

Examples of the C_1 - C_{10} alkyl group defined by R^9 include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, isopentyl group, neopentyl group, tert-pentyl group, hexyl group, isohexyl group, heptyl group, octyl group, nonyl group, decyl group or the like. Examples of the C_6 - C_{12} aryl group include phenyl group, naphthyl group or the like.

Examples of the C_1 - C_3 alkylene group defined by the symbol "A" include methylene group, ethylene group, propylene group or the like, and these alkylene groups may have one or two C_1 - C_3 alkyl groups such as methyl group, ethyl group and propyl group.

In the aforementioned definition, the aryl group and the heterocyclic residue may further have one or more substituents when they are attached at the end of each functional group, and examples of said substituents include a halogen atom such as fluorine atom, chlorine atom, and bromine atom; a C₁-C₅ alkyl group such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, isopentyl group, neopentyl group, and tert-pentyl group; trifluoromethyl group; a C₁-C₅ alkoxy group such as methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, isobutoxy group, tert-butoxy group, pentyloxy group, and isopentyloxy group; a C₁-C₅ alkylenedioxy group such as methylenedioxy group, ethylenedioxy group, and propylenedioxy group; hydroxyl group; nitro group; a C2-C6 alkylcarbonyloxy group such as acetoxy group, propionyloxy group, butyryloxy group, and valeryloxy group; carboxyl group; a C_2 - C_6 alkoxycarbonyl group such as methoxycarbonyl group, ethoxycarbonyl group, propoxycarbonyl group, isopropoxycarbonyl group, butoxycarbonyl group, isobutoxycarbonyl group, tert-butoxycarbonyl group, and pentyloxycarbonyl group; oxo group; a C2-C6 alkylcarbonyl group such as acetyl group, propionyl group, butyryl group, and valeryl group; amino group; a C_1 - C_5 monoalkylamino group such as methylamino group, ethylamino group, propylamino group, isopropylamino group, butylamino group, isobutylamino group, tertbutylamino group, pentylamino group, and isopentylamino group; a C2-C10 dialkylamino group such as dimethylamino group, ethylmethylamino group, diethylamino group, methylpropylamino group, and diisopropylamino group; a C2-C6 alkylcarbonylamino group such as acetylamino group, propionylamino group, isopropionylamino group, butyrylamino group, and valerylamino group; carbamoyl group; a C_2 - C_6 alkylcarbamoyl group such as methylcarbamoyl group, ethylcarbamoyl group, propylcarbamoyl group, butylcarbamoyl group, tert-butylcarbamoyl group, and pentylcarbamoyl group; and a C₆-C₁₂ aryl group such as phenyl group and naphthyl group.

Among the compounds of the present invention, preferred compounds include those wherein R1 represents a hydrogen atom, R8-CO-, R8-O-CO-, R8-NH-CO-, or R8-SO2- (R8 represents a C1-C20 alkyl group which may optionally be substituted with one or more substituents selected from the group consisting of a C₃-C₈ cycloalkyl group, fluorenyl group, a C₆-C₁₄ aryl group which may optionally be substituted, a C₆-C₁₄ aryloxy group which may optionally be substituted, a C₆-C₁₄ arylthio group which may optionally be substituted, a C₆-C₁₄ arylsulfonyl group which may optionally be substituted, and a residue of a heterocyclic compound which may optionally be substituted; a C3-C8 cycloalkyl group; a C₆-C₁₄ aryl group which may optionally be substituted; a C₂-C₅ alkenyl group which may optionally be substituted with an optionally substituted C_6 - C_{14} aryl group; or a residue of a heterocyclic compound which may optionally be substituted); R², R⁴, and R⁶ independently represent a hydrogen atom, a C₁-C₅ alkyl group, or a C₂-C₆ alkanoyl group; R^3 and R^5 independently represent a hydrogen atom, a C_1 - C_{20} alkyl group which may optionally be substituted with one or more substituents selected from the group consisting of a C₆-C₁₄ aryl group which may optionally be substituted and a C₁-C₅ alkoxy group; R⁷ represents a hydrogen atom, a C₁-C₅ alkyl group, or R⁹-CO- (R⁹ represents a C₁-C₁₀ alkyl group or a C_6 - C_{12} aryl group which may optionally be substituted); symbol "A" represents a C_1 - C_3 alkylene group which may optionally be substituted with a C₁-C₃ alkyl group; and symbol "n" represents 0 or 1. Among these compounds, those wherein R^2 , R^4 , and R^6 independently represent a hydrogen atom or a C_1 - C_5 alkyl group are more preferred, and those wherein symbol "n" represents 0 are further preferred. Particularly preferred compounds include:

(1) compounds wherein R^1 represents R^8 -CO- (R^8 represents a C_1 - C_{20} alkyl group which may optionally be substituted with one or more substituents selected from the group consisting of a C_6 - C_{14} aryl group which may optionally be substituted, a C_6 - C_{14} arylchio group which may optionally be substituted, and a C_6 - C_{14} arylchiologroup which may optionally be substituted; a C_6 - C_{14} arylchiologroup which may optionally be substituted; a C_6 - C_{14} arylchiologroup which may optionally be substituted with an optionally substituted C_6 - C_{14} arylchiologroup; or a residue of a heterocyclic compound which may optionally be substituted); R^2 , R^4 , and R^6 represent hydrogen atoms; R^3 and R^5 independently represent a C_1 - C_2 0 alkylchiologroup; R^7 represents a hydrogen atom or R^9 -CO- (R^9 represents a C_1 - C_{10} alkylchiologroup); symbol "A" represents a C_1 - C_3 alkylchiologroup; and symbol "n" represents 0;

(2) compounds wherein R^1 represents R^8 -O-CO- (R^8 represents a C_1 - C_{20} alkyl group which may optionally be substituted with one or more substituents selected from the group consisting of a C_3 - C_8 cycloalkyl group, fluorenyl group, a C_6 - C_{14} aryl group which may optionally be substituted, and a residue of a heterocyclic compound which may optionally be substituted; a C_3 - C_8 cycloalkyl group; or a C_6 - C_{14} aryl group which may optionally be substituted); R^2 , R^4 , and R^6 represent hydrogen atoms; R^3 and R^5 independently represent a hydrogen atom, or a C_1 - C_{20} alkyl group which may optionally be substituted with one or more substituents selected from the group consisting of a C_6 - C_{14} aryl group which may optionally be substituted and a C_1 - C_5 alkoxy group; R^7 represents a hydrogen atom or R^9 -CO- (R^9 represents a C_1 - C_{10} alkyl group); symbol "A" represents a C_1 - C_3 alkylene group; and symbol "n" represents 0;

(3) compounds wherein R^1 represents R^8 -NH-CO- (R^8 represents a C_6 - C_{14} aryl group which may optionally be substituted); R^2 , R^4 , and R^6 represent hydrogen atoms; R^3 and R^5 independently represent a C_1 - C_{20} alkyl group; R^7 represents a hydrogen atom or R^9 -CO- (R^9 represents a C_1 - C_1 0 alkyl group or a C_6 - C_{12} aryl group which may optionally be substituted); symbol "A" represents a C_1 - C_3 alkylene group; and symbol "n" represents 0; and (4) compounds wherein R^1 represents R^8 -SO $_2$ - (R^8 represents a C_6 - C_{14} aryl group which may optionally be substituted or a residue of a heterocyclic compound which may optionally be substituted); R^2 , R^4 , and R^6 represent hydrogen atoms; R^3 and R^5 independently represent a C_1 - C_2 0 alkyl group; R^7 represents a hydrogen atom, a C_1 - C_5 alkyl group, or R^9 -CO- (R^9 represents a C_1 - C_1 0 alkyl group or a C_6 - C_1 2 aryl group which may optionally be substituted); symbol "A" represents a C_1 - C_3 0 alkylene group which may optionally be substituted with a C_1 - C_3 0 alkylene

group; and symbol "n" represents 0.

5

10

15

20

50

Among the compounds of the above definition (1), compounds wherein R¹ represents R⁸-CO- (R⁸ represents a C_1 - C_{20} alkyl group which may optionally be substituted with an optionally substituted C_6 - C_{14} aryl group or a C_6 - C_{14} aryl group which may optionally be substituted); R², R⁴, and R⁶ represent hydrogen atoms; R³ and R⁵ independently represent a C_1 - C_{20} alkyl group; R⁷ represents R⁹-CO- (R⁹ represents a C_1 - C_{10} alkyl group); symbol "A" represents a C_1 - C_3 alkylene group; and symbol "n" represents 0 are more preferred.

Among the compounds of the above definition (2), compounds wherein R^1 represents R^8 -O-CO- (R^8 represents a C_1 - C_{20} alkyl group which may optionally be substituted with one or more substituents selected from the group consisting of fluorenyl group and a C_6 - C_{14} aryl group which may optionally be substituted; or a C_3 - C_8 cycloalkyl group); R^2 , R^4 , and R^6 represent hydrogen atoms; R^3 and R^5 independently represent a C_1 - C_{20} alkyl group; R^7 represents R^9 -CO-(R^9 represents a C_1 - C_{10} alkyl group); symbol "A" represents a C_1 - C_3 alkylene group; and symbol "n" represents 0 are more preferred.

Among the compounds of the above definition (3), compounds wherein R⁷ represents a hydrogen atom are more preferred.

Among the compounds of the above definition (4), compounds wherein R^1 represents R^8 -SO₂- (R^8 represents a C_6 - C_{14} aryl group which may optionally be substituted); and R^7 represents a C_1 - C_5 alkyl group, or compounds wherein R^1 represents R^8 -SO₂- (R^8 represents a C_6 - C_{14} aryl group which may optionally be substituted); and R^7 represents R^9 -CO- (R^9 represents a C_6 - C_{12} aryl group which may optionally be substituted) are more preferred.

The oxygen-containing heterocyclic derivatives of the present invention represented by the above formula (I) may form pharmaceutically acceptable salts. As specific examples of these salts, where acidic functional groups are attached, examples include metal salts such as lithium salt, sodium salt, potassium salt, magnesium salt, or calcium salt, and ammonium salts such as ammonium salt, methylammonium salt, dimethylammonium salt, trimethylammonium salt, or dicyclohexylammonium salt. Where basic functional groups are attached, examples include inorganic acid salts such as hydrochloride, hydrobromide, sulfate, nitrate, or phosphate, and organic acid salts such as methanesulfonate, benzenesulfonate, p-toluenesulfonate, acetate, propionate, tartrate, fumarate, maleate, malate, oxalate, succinate, citrate, benzoate, mandelate, cinnamate, or lactate. The oxygen-containing heterocyclic derivatives of the present invention represented by the above formula (I) may exist in the form of hydrates or solvates.

Referring to the stereochemistry of asymmetric carbon atoms exist in the oxygen-containing heterocyclic derivatives of the present invention represented by the above formula (I), they may independently be in (R)-, (S)-, or (RS)-configuration.

A compound represented by the following formula (II), which corresponds to the oxygen-containing heterocyclic derivatives of the present invention represented by the above formula (I) wherein R^7 is a hydrogen atom (R^1 , R^2 , R^3 , R^4 , R^5 , R^6 , A, and n have the same meanings as those defined above), may present under equilibrium between a hydroxyaldehyde derivative represented by the following formula (III) (R^1 , R^2 , R^3 , R^4 , R^5 , R^6 , A, and n have the same meanings as those defined above), especially in the state of a solution. This equilibrium can be demonstrated by the experimental results as explained below. The results of NMR measurements support the chemical structure of the formula (II), whilst differences in content ratio of the stereoisomers derived from the compound of the formula (II) were observed depending on types of solvents, which is attributable to the differences in content ratio of carbon atoms with different configurations that is bound with the hydroxyl group on the lactol ring. The differences in the content ratio of the stereoisomers can be explained by the presence of the equilibrium shown below.

Specific examples of the oxygen-containing heterocyclic derivative of the present invention represented by the above formula (I) include those shown in Table 1 below wherein n is 0 and R⁷ is a hydrogen atom; those shown in Table 2 below wherein n is 0 and R⁷ is other than a hydrogen atom; those shown in Table 3 wherein n is 1 and R⁷ is a hydrogen atom; and those shown in Table 4 wherein n is 1 and R⁷ is other than a hydrogen atom.

Table 1 (where n = 0)

5	
10	
15	
20	
25	
30	
35	
40	
45	

Compound No.	R 1	R 4	R5	R 6	√A 0 OH
1		-Н	-Н	-н	OH OH
2		-н	-СН ₃	-Н	OH OH
3		-Н	-CH ₂ CH ₂ CH ₃	-Н	OH OH
4		-н	-сн(сн ₃) ₂	-Н	OH OH
5		-н	-сн ₂ сн ₂ сн ₂ сн ₃	-н	OH
6	Н-	-н	-СН ₂ СН(СН ₃) ₂	-н	OH OH
7	H ₃ C 0 H ₃ C 0	-Н	-сн ₂ сн(сн ₃) ₂	-н	OH OH

55

(Continued) Table 1

5	Compound No.	R 1	R 4	K 2	R 6	A O OH
10	8		-Н	-сн ₂ сн(сн ₃) ₂	-Н	OH OH
15	9		-н	-СН ₂ СН(СН ₃) ₂	-н	OH OH
25	10		-Н	-СН ₂ СН(СН ₃) ₂	-н	OH OH
30	11		-н	-СН ₂ СН(СН ₃) ₂	-н	OH OH
35	12	0 - - - - -	-Н	-CH ₂ CH(CH ₃) ₂	-Н	OH
40	13		-н	-CH ₂ -	-н	ОН
45 50	14		-н	-сн ₂ сн ₂ scн ₃	-н	ОН

10

Table 1 (Continued)

5	Compound No.	R ¹	R 4	R 5	R ⁶	OH OH
10	15		-н	-СН ₂ ОН	-Н	ОН
15	16		-Н	-	-Н	OH
20	17		-Н	-н	-Н	OH OH
30	18		-Н	-CH ₃	-н	OH OH
35	19		-Н	-CH ₂ CH ₃	-Н	OH OH
40	20		-Н	-сн ₂ сн ₂ сн ₃	-Н	OH OH
4 5	21		-н	-CH(CH ₃) ₂	-Н	OH OH

Table 1	(Continued)
Table 1	(Colliminga)

				<u>`</u>		
5	Compound No.	R I	R 4	R 5	R 6	A O OH
10	22		-H	-сн ₂ сн ₂ сн ₂ сн ₃	-н	OH OH
15	23		-Н	-сн<сн ₃	-Н	OH OH
25	24	Н-	-Н	-СН ₂ СН(СН ₃) ₂	-Н	OH OH
30	25	H3C 0 1	-н	-сн ₂ сн(сн ₃) ₂	-н	√OH OH
35	26	H ₃ C \ 0	-н	-сн ₂ сн(сн ₃) ₂	-н	OH
40	27	H ₃ C	-н	-СН ₂ СН(СН ₃) ₂	-н	OH
4 5	28	H ₃ C 0 0	-н	-СН ₂ СН(СН ₃) ₂	-н	OH OH
					-	

Table 1 (Continued)

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	Compound No.	R ¹	R 4	R 5	R 6	OH OH
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	29		-Н	-СН ₂ СН(СН ₃) ₂	-н	OH OH
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		30		-Н	-СН ₂ СН(СН ₃) ₂	-Н	OH OH
33 OH -H -CH ₂ CH(CH ₃) ₂ -CH ₃		31		-н	-СН ₂ СН(СН ₃) ₂	-Н	
, , , , , , , , , , , , , , , , , , ,	30	32		-СН ₃	-СН ₂ СН(СН ₃) ₂	-н	OH OH
	35	33		-н	-CH ₂ CH(CH ₃) ₂	-CH ₃	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	40	34		-СН3	-СН ₂ СН(СН ₃) ₂	-CH ₃	OH OH
35 $-H$ $-CH_2CH(CH_3)_2$ $-H$ OH		35	$\downarrow 0$	-Н	-CH ₂ CH(CH ₃) ₂	-Н	OH OH

(Continued) Table 1

5	Compound No.	R 1	R 4	R 5	R 6	OH OH
10	36	F 0 0 0	-н	-сн ₂ сн(сн ₃) ₂	-н	OH
15	37	F 0 0	-Н	-СН ₂ СН(СН ₃) ₂	-Н	OH
25	38		-н	-сн ₂ сн(сн ₃) ₂	-н	OH
30	39		-н	-сн ₂ сн(сн ₃) ₂	-Н	OH
35	40	CI	-н	-СН ₂ СН(СН ₃) ₂	-Н	OH OH
40	41	0	-Н	-СН ₂ СН(СН ₃) ₂	-н	OH OH
4 5	42	Br 0	-Н	-СН ₂ СН(СН ₃) ₂	-н	OH

Table 1 (Continued)

5	Compound No.	R 1	R 4	R5	R ⁶	OH OH
10	43	Br O O	-н	-CH ₂ CH(CH ₃) ₂	-н	OH OH
15	44	CH ₃ 0	-н	-CH ₂ CH(CH ₃) ₂	-Н	OH OH
25	45	H3C 0 0	-н	-CH ₂ CH(CH ₃) ₂	-н	OH
30	46	H ₃ C 0	-н	-СН ₂ СН(СН ₃) ₂	-Н	OH
35	47	OCH ₃ O	-н	-сн ₂ сн(сн ₃) ₂	-н	OH OH
40	48	CH30 0	-н	-СН ₂ СН(СН ₃) ₂	-Н	OH
4 5	49	CH30 0	-н	-СН ₂ СН(СН ₃) ₂	-н	OH OH

15

Table 1 (Continued)

5	Compound No.	K t	R 4	R ⁵	R 6	√A O OH
10	50		-Н	-СН ₂ СН(СН ₃) ₂	-н	OH OH
15	51		-Н	-СН ₂ СН(СН ₃) ₂	-Н	OH OH
25	52		-Н	-CH ₂ CH(CH ₃) ₂	-н	OH OH
30	53		-н	-CH ₂ CH(CH ₃) ₂	-Н	OH OH
35	54		-н	-CH ₂ CH(CH ₃) ₂	-н	OH OH
40	55		-Н	-сн ₂ сн(сн ₃) ₂	-н	OH OH
4 5	56		-н	-СН ₂ СН(СН ₃) ₂	-Н	OH OH
= '						

Table 1 (Continued)

5	Compound No.	RI	R 4	R ⁵	R 6	OH OH
10	57		-н	-CH ₂ CH(CH ₃) ₂	-н	OH OH
15	58		-Н	-CH ₂ CH(CH ₃) ₂	-н	OH OH
25	59	0 = 0	-Н	-CH ₂ CH(CH ₃) ₂	-Н	OH OH
30	60		-Н	-CH ₂ CH(CH ₃) ₂	-Н	OH OH
35	61		-н	-сн ₂ сн(сн ₃) ₂	-Н	OH
40	62	O H H	-н	-СН ₂ СН(СН ₃) ₂	-н	OH OH
45	63	H N O	-н	-СН ₂ СН(СН ₃) ₂	-н	OH OH
50			l			

Table 1 (Continued)

5	Compound No.	R I	R 4	R5	R е	OH OH
10	64	H ₃ C	~Н	-СН ₂ СН(СН ₃) ₂	-н	OH OH
15	65	н ₃ с П	-Н	-сн ₂ сн(сн ₃) ₂	-Н	OH OH
20 25	66	H ₃ C \	-н	-сн ₂ сн(сн ₃) ₂	-Н	OH OH
30	67	H ₃ C	-н	-сн ₂ сн(сн ₃) ₂	-н	OH
35	68	H ₃ C 0	-н	-СН ₂ СН(СН ₃) ₂	-Н	OH
40	69	H ₃ C 0	-н	-СН ₂ СН(СН ₃) ₂	-н	OH
4 5	70	H ₃ C H ₃ C H ₃ C	-н	-СН ₂ СН(СН ₃) ₂	-н	OH OH

18

Table 1 (Continued)

5	Compound No.	R ¹	R 4	R ⁵	R 6	OH OH
10	71	H ₃ C \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-н	-СН ₂ СН(СН ₃) ₂	-н	OH OH
15	72	H ₃ C	-н	-СН ₂ СН(СН ₃) ₂	-н	OH OH
25	73	H ₃ C H ₃ C O	-Н	-СН ₂ СН(СН ₃) ₂	-Н	OH
30	74	CH3(CH5)2	-Н	-СН ₂ СН(СН ₃) ₂	-Н	OH
35	75	CH ₃ (CH ₂) ₆	-н	-CH ₂ CH(CH ₃) ₂	-н	OH OH
40	76	CH ₃ (CH ₂) ₈	-н	-CH ₂ CH(CH ₃) ₂	-н	OH
4 5	77	CH3(CH2)10	-Н	-СН ₂ СН(СН ₃) ₂	-н	OH

Table 1 (Continued)

5	Compound No.	R 1	R 4	R ⁵	R ⁶	OH OH
10	78	CH3(CH2)12	-Н	-CH ₂ CH(CH ₃) ₂	-Н	OH OH
15	79	CH ₃ (CH ₂) ₁₄	-Н	-CH ₂ CH(CH ₃) ₂	-Н	OH OH
20	80		-Н	-CH ₂ CH(CH ₃) ₂	-н	OH OH
30	81		-Н	-CH ₂ CH(CH ₃) ₂	-Н	OH OH
35	82		-Н	-СН ₂ СН(СН ₃) ₂	-Н	OH OH
40	83		-н	-CH ₂ CH(CH ₃) ₂	-н	OH
45	84		-н	-CH ₂ CH(CH ₃) ₂	-H	OH
50	<u> </u>	i	· · · · · · ·	L		<u> </u>

Table 1 (Continued)

5	Compound No.	R 1	R 4	R5	R 6	OH OH
10	85		-Н	-сн ₂ сн(сн ₃) ₂	~Н	OH OH
15	86		-Н	-сн ₂ сн(сн ₃) ₂	-Н	OH
20 25	87	H ₃ C _0	-н	-сн ₂ сн(сн ₃) ₂	-Н	OH
30	88	H ₃ C H ₃ C 0 0	-н	-СН ₂ СН(СН ₃) ₂	-н	OH OH
35	89		-н	-СН ₂ СН(СН ₃) ₂	-н	OH
40	90		-н	-СН ₂ СН(СН ₃) ₂	-н	OH
4 5	91	F	-н	-CH ₂ CH(CH ₃) ₂	-н	OH

Table 1 (Continued)

92 F O -H -CH ₂ CH(CH ₃) ₂ -H	0
	I DH
	OH OH
94 -H -CH ₂ CH(CH ₃) ₂ -H	OH
95 C1 -H -CH ₂ CH(CH ₃) ₂ -H	OH OH
96 C1 ———————————————————————————————————	OH
97	OH O
98 CH ₂ O -H -CH ₂ CH(CH ₃) ₂ -H	OH OH

Table 1 (Continued)

						(A)
5	Compound No.	R 1	R 4	R 5	R 6	OH OH
10	99	CH30 0	-н	-CH ₂ CH(CH ₃) ₂	-Н	OH
15	100	CH ₃ O OCH ₃ O	-н	-CH ₂ CH(CH ₃) ₂	-н	OH
20	101	CH ₃	-н	-СН ₂ СН(СН ₃) ₂	-н	OH
30	102	H3C 0 0	-н	-СН ₂ СН(СН ₃) ₂	-н	OH
35	103	H ₃ C 0 0	-Н	-CH ₂ CH(CH ₃) ₂	-н	OH
40	104	CF ₃	-н	-CH ₂ CH(CH ₃) ₂	-Н	OH
45	105	F ₃ C 0 0	-Н	-CH ₂ CH(CH ₃) ₂	-н	OH OH
50		L	L	<u></u>	L	L

23

Table 1 (Continued)

5	Compound No.	R 1	R 4	R5	R6	OH OH
10	106	F ₃ C 0 0	-Н	-сн ₂ сн(сн ₃) ₂	-н	OH OH
15	107		-н	-CH ₂ CH(CH ₃) ₂	-Н	OH
25	108		-н	-сн ₂ сн(сн ₃) ₂	-н	OH
30	109		-н	-сн ₂ сн(сн ₃) ₂	-Н	OH OH
35	110		-н	-сн ₂ сн(сн ₃) ₂	-Н	OH
40	111		-Н	-сн ₂ сн(сн ₃) ₂	-н	OH
45	112		-Н	-СН ₂ СН(СН ₃) ₂	-н	OH OH

Table 1 (Continued)

5	Compound No.	R ¹	R 4	R 5	R 6	OH OH
10	113		-Н	-СН ₂ СН(СН ₃) ₂	-н	OH OH
15	114	F 0	-Н	-СН ₂ СН(СН ₃) ₂	-Н	OH OH
25	115	F	-н	-сн ₂ сн(сн ₃) ₂	-Н	OH OH
30	116	F	-н	-СН ₂ СН(СН ₃) ₂	-н	OH
35	117	F	-н	-СН ₂ СН(СН ₃) ₂	-Н	OH OH
40	118	$F \longrightarrow F $ $F \longrightarrow F$	-н	-СН ₂ СН(СН ₃) ₂	-н	OH OH
45	119	C1 0	-Н	-СН ₂ СН(СН ₃) ₂	-Н	OH OH
- 1						

Table 1 (Continued)

5	Compound No.	R 1	R 4	R 5	R 6	OH OH
10	120	CI	-Н	-СН ₂ СН(СН ₃) ₂	-н	OH OH
15	121	CI	-Н	-СН ₂ СН(СН ₃) ₂	-Н	OH OH
25	122	Br O	-Н	-сн ₂ сн(сн ₃) ₂	-Н	OH OH
30	123	Br	-н	-сн ₂ сн(сн ₃) ₂	-Н	OH OH
35	124	Br 0	-н	-СН ₂ СН(СН ₃) ₂	-н	OH OH
40	125	CH ₃ O	-н	-СН ₂ СН(СН ₃) ₂	-н	OH OH
45	126	H ₃ C 0	-Н	-CH ₂ CH(CH ₃) ₂	-н	OH OH

Table 1 (Continued)

5	Compound No.	R 1	R 4	_R 5	R 6	OH OH
10	127	H ₃ C	-Н	-CH ₂ CH(CH ₃) ₂	-н	OH OH
15	128	H ₃ C CH ₃ O	-н	-CH ₂ CH(CH ₃) ₂	-Н	OH
25	129	CH ₃ O	-н	-CH ₂ CH(CH ₃) ₂	-Н	OH OH
30	130	H ₃ C O	-н	-СН ₂ СН(СН ₃) ₂	-Н	OH OH
35	131	H ₃ C CH ₃ CH ₃	-н	-СН ₂ СН(СН ₃) ₂	-Н	OH OH
40	132	H ₃ C 0	-н	-СН ₂ СН(СН ₃) ₂	-Н	OH OH
4 5	133	H ₃ C 0	-н	-СН ₂ СН(СН ₃) ₂	-Н	OH

Table 1 (Continued)

5	Compound No.	R 1	R 4	R ⁵	R e	OH OH
10	134	H ₃ C	-Н	-СН ₂ СН(СН ₃) ₂	-н	OH OH
15	135	CF ₃ 0	-Н	-СН ₂ СН(СН ₃) ₂	-Н	OH OH
25	136	F_3C 0	-н	-СН ₂ СН(СН ₃) ₂	-Н	OH OH
30	137	F ₃ C 0	-н	-СН ₂ СН(СН ₃) ₂	-н	OH OH
35	138	CH ₃ O O	-н	-сн ₂ сн(сн ₃) ₂	-н	OH OH
40	139	CH30 0	-н	-СН ₂ СН(СН ₃) ₂	-Н	OH OH
45	140	CH30 0	-н	-СН ₂ СН(СН ₃) ₂	-н	OH OH

28

Table 1 (Continued)

5	Compound No.	R I	R 4	R ⁵	R ⁶	OH OH
10	141	CH ₃ 0 0	-Н	-CH ₂ CH(CH ₃) ₂	-н	OH OH
15	142	CH ₃ O O	-Н	-CH ₂ CH(CH ₃) ₂	-Н	OH
25	143	CH30 0	-н	-сн ₂ сн(сн ₃) ₂	-Н	OH
30	144	CH30 OCH3	-н	-CH ₂ CH(CH ₃) ₂	-Н	OH
35	145	CH ₃ 0 OCH ₃	-н	-СН ₂ СН(СН ₃) ₂	-Н	OH
40	146	H ₃ C 0 0	-н	-СН ₂ СН(СН ₃) ₂	-н	OH
45	147	H ₃ C \ 0	-н	-СН ₂ СН(СН ₃) ₂	-н	OH OH

29

Table 1 (Continued)

5	Compound No.	R ¹	R 4	R ⁵	R 6	A O OH
10	148	H ₃ C 0	-Н	-сн ₂ сн(сн ₃) ₂	-Н	OH OH
15	149	H ₃ C H ₃ C O	-Н	-сн ₂ сн(сн ₃) ₂	-Н	OH OH
25	150	E O O O O O O O O O O O O O O O O O O O	-Н	-СН ₂ СН(СН ₃) ₂	-Н	OH OH
30	151		-н	-СН ₂ СН(СН ₃) ₂	-Н	OH OH
35	152		-Н	-сн ₂ сн(сн ₃) ₂	-Н	OH OH
40	153	H0 0 0	-Н	-сн ₂ сн(сн ₃) ₂	-Н	OH OH
45	154	HO 0 0	-н	-CH ₂ CH(CH ₃) ₂	-Н	OH OH
50	L	L		<u> </u>		

30

Table 1 (Continued)

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	Compound No.	R ¹	R 4	<u>R</u> 5	R 6	A O
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	155	HO	-Н	-сн ₂ сн(сн ₃) ₂	-н	OH OH
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		156		-н	-СН ₂ СН(СН ₃) ₂	-Н	
30		157		-Н	-сн ₂ сн(сн ₃) ₂	-Н	OH
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	30	158		-н	-СН ₂ СН(СН ₃) ₂	-Н	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	35	159	~ 1	-н	-СН ₂ СН(СН ₃) ₂	-Н	OH
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	40	160		-н	-CH ₂ CH(CH ₃) ₂	-Н	OH
50	;	161		-Н	-CH ₂ CH(CH ₃) ₂	-Н	OH OH

31

Table 1 (Continued)

5	Compound No.	R I	R 4	R ⁵	R 6	OH OH
10	162		-Н	-СН ₂ СН(СН ₃) ₂	-Н	OH OH
15	163	S	-Н	-СН ₂ СН(СН ₃) ₂	-Н	OH OH
25	164	o=	-Н	-СН ₂ СН(СН ₃) ₂	-Н	OH OH
30	165	N O	-н	-сн ₂ сн(сн ₃) ₂	-Н	OH OH
35	166	O H	-н	-СН ₂ СН(СН ₃) ₂	-Н	OH OH
40	167	CH ₃	-н	-СН ₂ СН(СН ₃) ₂	-н	HO
45	168	CH ₃	-н	-CH ₂ CH(CH ₃) ₂	-н	OH OH
50		0				

Table 1 (Continued)

5	Compound No.	R 1	R 4	R5	R 6	OH OH
10	169	N N O	-н	-CH ₂ CH(CH ₃) ₂	-н	OH OH
15	170	H ₃ C N N O CH ₃	-Н	-CH ₂ CH(CH ₃) ₂	-Н	OH OH
25	171	H O	-Н	-CH ₂ CH(CH ₃) ₂	-Н	OH OH
30	172	CH ³	-Н	-CH ₂ CH(CH ₃) ₂	-н	OH
35	173	N O	-н	-CH ₂ CH(CH ₃) ₂	-н	OH
40	174	N S O	-н	-СН ₂ СН(СН ₃) ₂	-Н	OH
45	175		-н	-СН ₂ СН(СН ₃) ₂	-Н	OH OH
50			l			

33

Table 1 (Continued)

5	Compound No.	R 1	R 4	_R 5	R €	A OOH
10	176		-Н	-сн ₂ сн(сн ₃) ₂	-Н	OH OH
15	177		-Н	-CH ₂ CH(CH ₃) ₂	-Н	OH OH
25	178		-н	-CH ₂ CH(CH ₃) ₂	-н	OH OH
30	179		-н	-CH ₂ CH(CH ₃) ₂	-Н	OH OH
35	180	H O	-н	-CH ₂ CH(CH ₃) ₂	-н	OH
40	181	H ₃ C 0	-Н	-СН ₂ СН(СН ₃) ₂	-Н	HO CO
45	182		-н	-СН ₂ СН(СН ₃) ₂	-н	OH OH

Table 1 (Continued)

5	Compound No.	R¹	R 4	R ⁵	R 6	A O OH
10	183	F	-Н	-СН ₂ СН(СН ₃) ₂	-н	OH OH
15	184	CI	-Н	-сн ₂ сн(сн ₃) ₂	-Н	OH OH
25	185	H ₃ C	-н	-сн ₂ сн(сн ₃) ₂	-Н	OH OH
30	186	F ₃ C	-н	-СН ₂ СН(СН ₃) ₂	-Н	OH
35	187	CH30	-Н	-СН ₂ СН(СН ₃) ₂	-н	OH OH
40	188	CH ₃ O OCH ₃ O	-н	-СН ₂ СН(СН ₃) ₂	-Н	OH OH
45	189	CH30	-H	-CH ₂ CH(CH ₃) ₂	-Н	OH

35

Table 1 (Continued)

	,				
Compound No.	R 1	R 4	R S	R e	OH OH
190	CH ₃ O OCH ₃	-н	-СН ₂ СН(СН ₃) ₂	-н	OH
191	0 	-Н	-CH ₂ CH(CH ₃) ₂	-Н	OH OH
192	H ₃ C 0	-Н	-CH ₂ CH(CH ₃) ₂	-Н	OH OH
193	H ₃ C 0 H ₃ C 0	-н	-сн ₂ сн(сн ₃) ₂	-н	OH OH
194		-н	-сн ₂ сн(сн ₃) ₂	-н	OH
195	0 	-Н	-сн ₂ сн(сн ₃) ₂	-н	OH
196		-Н	-сн ₂ сн(сн ₃) ₂	-Н	OH

Table 1 (Continued)

5	Compound	R 1	R 4	R5	R 6	OH OH
10	197	0 = - S = 0	-CH ₃	-сн ₂ сн(сн ₃) ₂	-Н	OH OH
15	198	0=0=0	-Н	-CH ₂ CH(CH ₃) ₂	-CH3	OH OH
25	199	0=0=0	-CH ₃	-CH ₂ CH(CH ₃) ₂	-CH ₃	OH OH
30	200	0 - - - - -	-Н	-сн ₂ сн(сн ₃) ₂	-Н	OH OH
35	201		-Н	-СН ₂ СН(СН ₃) ₂	-н	OH
40	202	F — S — 0 1 1 1 1 1 1 1 1 1	-н	-СН ₂ СН(СН ₃) ₂	-н	OH
4 5	203	0 - - - - - - - -	-Н	-СН ₂ СН(СН ₃) ₂	-н	OH

(Continued) Table 1

5	Compound No.	R I	R 4	R 5	R 6	(A)
10	204	0 	-Н	-CH ₂ CH(CH ₃) ₂	-Н	OH OH
15	205	C1 - S - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-Н	-CH ₂ CH(CH ₃) ₂	-Н	OH OH
25	206	0 = - Br 0	-н	-CH ₂ CH(CH ₃) ₂	-Н	OH
30	207	0 	-н	-СН ₂ СН(СН ₃) ₂	-Н	OH
35	208	Br -	-н	-СН ₂ СН(СН ₃) ₂	-Н	OH
40	209	0 	-Н	-CH ₂ CH(CH ₃) ₂	-Н	OH OH
4 5	210	0 	-н	-CH ₂ CH(CH ₃) ₂	-н	OH OH
50	<u> </u>	-				

55

(Continued) Table 1

5	Compound No.	R 1	R 4	_R 5	R ⁶	OH OH
10	211	H ₃ C - S - 0	-Н	-сн ₂ сн(сн ₃) ₂	-н	OH OH
15	212	H ₃ C - S - H CH ₃ O	-Н	-CH ₂ CH(CH ₃) ₂	-Н	OH OH
25	213	CH ₃ 0 	-н	-сн ₂ сн(сн ₃) ₂	-Н	OH OH
30	214	H ₃ C 0 -	-Н	-СН ₂ СН(СН ₃) ₂	-Н	OH
35	215	$H_3C \xrightarrow{CH_3} \begin{matrix} 0 \\ & \parallel \\ & \parallel \\ & \parallel \\ & CH_3 \end{matrix} = 0$	-Н	-СН ₂ СН(СН ₃) ₂	-н	OH OH
40	216	H ₃ C - S - 0	-н	-СН ₂ СН(СН ₃) ₂	-н	OH OH
45	217	H ₃ C S - 0	-Н	-CH ₂ CH(CH ₃) ₂	-н	OH

Table 1 (Continued)

5	Compound No.	R 1	R 4	R ⁵	R 6	OH OH
10	218	$\begin{array}{c c} H_3C & 0 \\ H_3C & -S \\ H_3C & 0 \end{array}$	-н	-сн ₂ сн(сн ₃) ₂	-н	OH OH
15	219	0 	-H	-сн ₂ сн(сн ₃) ₂	-Н	OH OH
25	220	CH30 0	-Н	-сн ₂ сн(сн ₃) ₂	-н	OH OH
30	221	CH ₃ O - S - 0 0 0 0 0 0 0 0 0 0	-н	-СН ₂ СН(СН ₃) ₂	-Н	OH
35	222	$H_3C \longrightarrow 0$	-н	-CH ₂ CH(CH ₃) ₂	-H	OH OH
40	223	H_3C \longrightarrow 0 \longrightarrow 0 \parallel 0 \parallel 0	-н	-СН ₂ СН(СН ₃) ₂	-Н	HO CO
4 5	224	H_3C O	-н	-СН ₂ СН(СН ₃) ₂	-н	HO

Table 1 (Continued)

5	Compound No.	R I	R 4	R5	R6	A O OH
10	225	НО — В — В — В — В — В — В — В — В — В —	-н	-СН ₂ СН(СН ₃) ₂	-н	OH OH
15	226	0 	-н	-СН ₂ СН(СН ₃) ₂	-Н	OH OH
20 25	227	0	-Н	-сн ₂ сн(сн ₃) ₂	-Н	OH
30	228	$0_2N \longrightarrow \begin{array}{c} 0 \\ \parallel \\ S - \\ \parallel \\ 0 \end{array}$	-Н	-сн ₂ сн(сн ₃) ₂	-Н	OH
35	229	0=0=0	-Н	-сн ₂ сн(сн ₃) ₂	-н	OH OH
40	230	0 S- 0	-Н	-сн ₂ сн (сн ₃) ₂	-н	OH OH
4 5	231	0 	-Н	-СН ₂ СН (СН ₃) ₂	-Н	OH
1						

Table 1 (Continued)

232 $N = -H - CH_2CH(CH_3)_2 - H$ 233 $N = -H - CH_2CH(CH_3)_2 - H$	O DH
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0
233 N S - H - CH ₂ CH(CH ₃) ₂ -H	OH
	OH OH
234	OH OH
235 S - H -CH ₂ CH(CH ₃) ₂ -H	OH
236	OH OH
237 N -H -CH ₂ CH(CH ₃) ₂ -H -CH ₂ CH(CH ₃) ₂ -H -CH ₂ CH(CH ₃) ₃ -H -CH ₂ CH(OH
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	

Table 1 (Continued)

5	
10	
15	
20	
25	
30	
35	
40	
45	

Compound No.	K '	R 4	R ⁵	R 6	A O OH
239	N 0 - 5 = 0	-н	-сн ₂ сн(сн ₃) ₂	-н	OH OH
240	N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-н	-СН ₂ СН(СН ₃) ₂	-Н	OH OH
241	Н-	-Н	-CH ₂ -	-Н	OH OH
242	H3C 0	-Н	-CH ₂ -	-Н	OH
243	H ₃ C	-н	-CH ₂ -	-н	OH
244	H ₃ C 0 0	-н	-CH ₂ -	-н	OH
245		-н	-CH ₂ -	-н	OH

55

Table 1 (Continued)

5	Compound No.	R ¹	R 4	R ⁵	R 6	OH OH
10	246		-Н	-CH ₂ -	-н	OH
15	247	F	-н	-CH ₂ -	-Н	OH OH
25	248	F O O	-н	-CH ₂ -	-н	OH OH
30	249		-н	-CH ₂ -	-Н	HOOO
35	250	CI	-н	-CH ₂ -	-Н	OH OH
40	251	CH ₃ 0	-н	-CH ₂ -	-Н	OH
4 5	252	H ₃ C O	-н	-CH ₂ -	-н	0
50		0				OH

Table 1 (Continued)

				(00110011400)		
5	Compound No.	R ¹	R 4	R 5	R 6	OH OH
10	253	OCH ³ O	-Н	-CH ₂ -	-н	OH OH
15	254	CH ₃ 0 0	-Н	-CH ₂ -	-Н	OH OH
25	255	H N O	-Н	-CH ₂ -	-Н	OH
30	256	H ₃ C 0	-н	-CH ₂ -	-Н	OH
35	257		-н	-CH ₂ -	-н	OH OH
40	258		-Н	-CH ₂ -	-н	OH
45	259	C1 0	-Н	-CH ₂ -	-Н	OH

Table 1 (Continued)

5	Compound No.	R I	R 4	R 5	R e	OH OH
10	260	CI	-Н	-CH ₂ -	-Н	OH OH
15	261	CH ₃ 0	-Н	-CH ₂ -	-н	OH OH
25	262	H ₃ C 0	-Н	-CH ₂ -	-Н	OH
30	263	OCH ₃	-н	-CH ₂ -	-Н	OH OH
35	264	CH30	-н	-CH ₂ -	-н	OH OH
40	265		-н	-CH ₂ -	~Н	OH OH
4 5	266	F	-н	-CH ₂ -	-Н	OH OH
·						

Table 1 (Continued)

5	Compound No.	R 1	R 4	R 5	R 6	A O OH
10	267	F	-H	-CH ₂ -	-Н	OH
15	268	F O	-н	-CH ₂ -	-Н	OH OH
20	269	C1 0	-н	-CH ₂ -	-Н	OH
30	270	CI	-н	-CH ₂ -	-Н	OH
35	271	CI	-н	-CH ₂ -	-н	OH
40	272	CH ₃ O	-н	-CH ₂ -	-н	OH
4 5	273	H ₃ C 0	-Н	-CH ₂ -	-Н	OH

Table 1 (Continued)

			·			
5	Compound No.	R 1	R 4	R 5	R е	OH OH
10	274	H ₃ C 0	-н	-CH ₂ -	-н	OH OH
15	275	CH ₃ O O	-Н	-CH ₂ -	-н	OH OH
25	276	CH30 0	-н	-CH ₂ -	-Н	OH OH
30	277	CH30	-Н	-CH ₂ -	-Н	OH
35	278		-н	-CH ₂ -	-н	OH
40	279	N O	-н	-CH ₂ -	-н	OH OH
4 5	280	N O	-н	-CH ₂ -	-н	OH OH

Table 1 (Continued)

		Tai	JIC I	(continued)		
5	Compound No.	R 1	R 4	R 5	R6	OH OH
10	281	0 	-Н	-CH ₂ -	-н	OH OH
15	282	0 H ₃ C H ₃ C O	-Н	-CH ₂ -	-Н	OH OH
25	283	0=0=0	-Н	-CH ₂ -	-Н	OH
30	284		-Н	-CH ₂ -	-Н	OH
35	285	F — S = 0	-Н	-CH ₂ -	-Н	OH
40	286	C1 - S - 0	-Н	-CH ₂ -	-н	OH OH
4 5	287	Br — 0 	-Н	-CH ₂ -	-Н	OH

49

Table 1 (Continued)

						
5	Compound No.	R I	R 4	_R 5	Re	√A o OH
. 10	288	H ₃ C - S - 0 0 0 0	-Н	-CH ₂ -	-Н	OH OH
15	289	CH ₃ O - S - 0	-Н	-CH ₂ -	-H	OH OH
25	290	$0 \\ S - S \\ 0 \\ 0$	-н	-CH ₂ -	-н	OH OH
30	291		-Н	-CH ₂ -	-H	OH OH
35	292		-н	-CH ₂ -	-Н	OH OH
40	293		-н	-CH ₂ -	-Н	OH
45	294	0 	-Н	-CH ₂ -	-Н	OH OH
50			!			

50

Table 1 (Continued)

5	
10	
15	
20	
25	
30	
35	
40	
45	

Compound No.	R ¹	R 4	R 5	R 6	OH OH
295		-Н	-сн ₂ сн ₂ sсн ₃	-Н	OH OH
296	0 S - 0	-н	-сн ₂ сн ₂ sсн ₃	-н	OH OH
297		-н	-СН ₂ ОС(СН ₃) ₃	-Н	OH OH
298		-Н	-СН ₂ ОС(СН ₃) ₃	-Н	OH OH
299		-Н	-CH ₂ OCH ₂ -	-Н	OH OH
300	0 - - - - -	-н	-сн ₂ осн ₂ -	-Н	OH OH
301		-Н	-СН ₂ ОН	-Н	OH OH

55

Table 1 (Continued)

5	Compound No.	R I	R 4	R S	R 6	OH OH
10	302	0 - - - - - -	-н	-СН ₂ ОН	-н	OH OH
15	303		-Н	-н	-н	CH ₃ O⁻ OH
25	304	0 = - = 0	-Н	-н	-Н	CH3
30	305		-Н	-CH ₃	-Н	CH ₃
35	306	0 	-Н	-CH₃	-Н	CH3 OH
40	307		-н	-сн ₂ сн ₂ сн ₃	-Н	CH ₃
45	308	0 = s = 0	-н	-сн ₂ сн ₂ сн ₃	-н	CH ₃ O OH
<i>50</i>						i

Table 1 (Continued)

5	
10	
15	
20	
25	
30	
35	
40	
45	

Compound No.	R I	R 4	R 5	R 6	OH OH
309		-н	-СН(СН ₃) ₂	-н	CH ₃
310	0 S - 0	-Н	-сн(сн ₃) ₂	-Н	CH ₃
311		-Н	-СН ₂ СН ₂ СН ₂ СН ₃	-Н	OH OH
312	0 = - = 0	-Н	-сн ₂ сн ₂ сн ₂ сн ₃	-Н	CH ₃
313	н-	-н	-сн ₂ сн(сн ₃) ₂	-Н	CH ₃
314	H ₃ C H ₃ C O	-Н	-сн ₂ сн(сн ₃) ₂	-н	CH ₃
315		-н	-СН ₂ СН(СН ₃) ₂	-н	CH ₃ OH

55

Table 1 (Continued)

			<u>, </u>	<u> </u>	Γ	
5	Compound No.	R ¹	R 4	R 5	R 6	OH O O
10	316		-Н	-СН ₂ СН(СН ₃) ₂	-н	CH ₃
15	317		-Н	-CH ₂ CH(CH ₃) ₂	-Н	CH3 OH
25	318		-н	-CH ₂ CH(CH ₃) ₂	-Н	OH OH
30	319		-н	-CH ₂ CH(CH ₃) ₂	-Н	CH ₃
35	320	0 - 	-н	-CH ₂ CH(CH ₃) ₂	-н	OH CH3
40	321		-н	-CH ₂ -	-н	CH3 OH
45	322	0 - - 0	-н	-CH ₂ -	-н	CH ₃

Table 1 (Continued)

5	
10	
15	
20	
25	
30	
35	
40	
45	

50

55

Compound No.	R 1	R 4	R5	R 6	A O
323		-н	-сн ₂ сн ₂ ѕсн ₃	-н	OH OH
324	0 - - - - - -	-Н	-сн ₂ сн ₂ sсн ₃	-н	CH ₃
325		-н	-CH ₂ OC(CH ₃) ₃	-н	CH3 OH
326	0=0=0	-Н	-СН ₂ ОС(СН ₃) ₃	-Н	CH ₃
327		-Н	-СН ₂ ОН	-Н	CH ₃ OH
328	0 - - - - -	-Н	-СН ₂ ОН	-Н	CH ₃
329		-Н	-	-Н	CH ₃

Table 1 (Continued)

Compound R R R R R R R R R							
330	5		R ¹	R 4	R5	R 6	1 / /
331 331 331 332 332 333 334 335 336 336 336 337 338 338 338 339 330 330 331 330 331 331 331	10	330		-Н	-	-н	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		331		-Н	-Н	-н	H ₃ C 0
333		332		-н	-Н	-н	H ₃ C 0
334 $-H - H - CH_3 - H - H_3C - O O O O O O O O O O O O O O O O O O $	30	333		-Н	-сн _з	-Н	H ₃ C 0
335 $-H$ $-CH_2CH_2CH_3$ $-H$ H_3C 0 $0H$ $-CH_2CH_2CH_3$ $-H$ H_3C $-H$ $0H$ $0H$ $0H$	35	334	⟨ ⟩-s-	-н	-CH₃	-н	Н3С0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	40	335		-н	-СН ₂ СН ₂ СН ₃	-Н	н ₃ с0
		336	\$- 	-н	-сн ₂ сн ₂ сн ₃	-н	H ³ C 0

Table 1 (Continued)

5	
10	
15	
20	
25	
30	
35	
4 0	
45	

Compound No.	R 1	R 4	R 5	R 6	OH OH
337		-н	-CH(CH ₃) ₂	-н	H ₃ C CH ₃ OH
338	0===0	-Н	-сн(сн _з) ₂	-Н	H ₃ C CH ₃ OH
339		-Н	-CH ₂ CH ₂ CH ₂ CH ₃	-н	H3C CH3
340	0=0=0	-н	-CH ₂ CH ₂ CH ₂ CH ₃	-Н	H ₃ C CH ₃ OH
341	Н-	- H	-CH ₂ CH(CH ₃) ₂	-Н	H ₃ C CH ₃ OH
342	H ₃ C 0 1	-Н	-CH ₂ CH(CH ₃) ₂	-н	H ₃ C CH ₃ OH
343		-Н	-СН ₂ СН(СН ₃) ₂	-Н	H3C CH3 OH

55

Table 1 (Continued)

				(0011111100)		
5	Compound No.	R I	R 4	R 5	R 6	OH OH
10	344	FOO	-Н	-СН ₂ СН(СН ₃) ₂	-н	H ₃ C CH ₃ OH
<i>15</i>	345	CI	-Н	-СН ₂ СН(СН ₃) ₂	-Н	H ₃ C CH ₃ OH
25	346	Br O O	-Н	-CH ₂ CH(CH ₃) ₂	-Н	H ₃ C CH ₃ OH
30	347	H ₃ C O	-н	-сн ₂ сн(сн ₃) ₂	-Н	H ₃ C CH ₃ OH
35	348	CH30	-Н	-СН ₂ СН(СН ₃) ₂	-Н	H ₃ C CH ₃ O
40	349	H ₃ C \	-Н	-сн ₂ сн(сн ₃) ₂	-Н	H ₃ C CH ₃ O
45	350	H ₃ C 0	-Н	-сн ₂ сн(сн ₃) ₂	-Н	H ₃ C CH ₃ OH
50	l (·			0.1

Table 1 (Continued)

•		

Compound No.	R 1	R4	R5	R 6	OH OH
351		-н	-CH ₂ CH(CH ₃) ₂	-Н	H ₃ C CH ₃ OH
352		-н	-CH ₂ CH(CH ₃) ₂	-Н	H ₃ C CH ₃ OH
353		-Н	-CH ₂ CH(CH ₃) ₂	-н	H ₃ C CH ₃ OH
354	F O O	-н	-CH ₂ CH(CH ₃) ₂	-н	H3C CH3
355		-Н	-сн ₂ сн(сн ₃) ₂	-н	H3C CH3
356	H ₃ C 0 0	-н	-сн ₂ сн(сн ₃) ₂	-н	H ₃ C CH ₃ OH
357	CH30 0	-н	-CH ₂ CH(CH ₃) ₂	-н	H ₃ C CH ₃ OH

Table 1 (Continued)

5	Compound No.	R t	R 4	_R 5	R 6	OH OH
10	358	CH ₃ O OCH ₃ O	-Н	-CH ₂ CH(CH ₃) ₂	-н	H ₃ C CH ₃ OH
<i>15</i>	359		-Н	-СН ₂ СН(СН ₃) ₂	-Н	H3C CH3
25	360	F = 0	-Н	-сн ₂ сн(сн ₃) ₂	-Н	H ₃ C CH ₃ OH
30	361	F	-Н	-сн ₂ сн(сн ₃) ₂	-Н	H ₃ C CH ₃ OH
35	362	F O	-н	-CH ₂ CH(CH ₃) ₂	-Н	H ₃ C CH ₃ OH
40	363	CIO	-Н	-СН ₂ СН(СН ₃) ₂	-Н	$H_3C \xrightarrow{CH_3} O$
45	364	CI	-н	-СН ₂ СН(СН ₃) ₂	-н	H ₃ C CH ₃ O
	<u> </u>					

Table	1 ((Continued)
IAINE	T ,	COmmunication

5	Compound No.	R 1	R 4	R 5	Re	A O OH
10	365	CH ₃ O	-Н	-сн ₂ сн(сн ₃) ₂	-н	H ₃ C CH ₃ OH
15	366	H ₃ C	-н	-СН ₂ СН(СН ₃) ₂	-Н	H3C CH3
25	367	CF ₃ 0	-н	-сн ₂ сн(сн ₃) ₂	-Н	H ₃ C CH ₃ OH
30	368	F ₃ C 0	-н	-сн ₂ сн(сн ₃) ₂	-Н	H3C CH3 OH
35	369	CH30	-н	-сн ₂ сн(сн ₃) ₂	-н	H ₃ C CH ₃ OH
40	370	CH ₃ 0 0	-Н	-СН ₂ СН(СН ₃) ₂	-н	H ₃ C CH ₃ OH
45	371		-Н	-СН ₂ СН(СН ₃) ₂	-Н	H3C CH3 OH

Table 1 (Continued)

5	Compound No.	R 1	R ⁴	R ⁵	R 6	A O OH
10	372	N O	-н	-СН ₂ СН(СН ₃) ₂	-н	H ₃ C CH ₃ OH
20	373	0	-н	-сн ₂ сн(сн ₃) ₂	-н	H ₃ C CH ₃ OH
25	374		-н	-СН ₂ СН(СН ₃) ₂	-Н	H3C CH3
30	375		-Н	-СН ₂ СН(СН ₃) ₂	-Н	H ₃ C CH ₃ OH
35	376	0 	-н	-СН ₂ СН(СН ₃) ₂	-Н	H ³ C CH ³
40	377	H ₃ C	-н	-СН ₂ СН(СН ₃) ₂	-Н	H ₃ C CH ₃ OH
4 5	378	0 - - - 0	-Н	-СН ₂ СН(СН ₃) ₂	-Н	H ₃ C CH ₃ OH

62

Table 1 (Continued)

				·		
5	Compound No.	R I	R 4	R ⁵	R 6	OH OH
10	379	F — S — II	-Н	-СН ₂ СН(СН ₃) ₂	-н	H ₃ C CH ₃ OH
15	380	c1 — S — B — B — B — B — B — B — B — B — B	-н	-сн ₂ сн(сн ₃) ₂	-Н	H ₃ C CH ₃ OH
20 25	381	Br — S — 0 — 0 — 0 — 0 — 0 — 0 — 0 — 0 — 0	-Н	-сн ₂ сн(сн ₃) ₂	-Н	H ₃ C CH ₃ OH
30	382	H ₃ C - S - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-Н	-сн ₂ сн(сн ₃) ₂	-Н	H ₃ C CH ₃ OH
35	383	$H_3C \overset{CH_3}{\longleftrightarrow} \overset{O}{\overset{\parallel}{\parallel}} - \\ CH_3 \overset{O}{\overset{\parallel}{\cup}}$	-Н	-сн ₂ сн(сн ₃) ₂	-н	H ₃ C CH ₃ OH
40	384	$\begin{array}{c} H_3C \\ H_3C \\ \\ H_3C \\ \end{array}$	-Н	-сн ₂ сн(сн ₃) ₂	-н	H ₃ C CH ₃ OH
4 5	385	СН ₃ О — В — В — В — В — В — В — В — В — В —	-Н	-СН ₂ СН(СН ₃) ₂	-Н	H ₃ C CH ₃ OH

63

Table 1 (Continued)

5	Compound No.	R ¹	R 4	R ⁵	R 6	OH OH
10	386	$0 \\ \parallel \\ 0_2 \\ 0$	-Н	-CH ₂ CH(CH ₃) ₂	-н	H ₃ C CH ₃ OH
15 20	387	0 	-н	-CH ₂ CH(CH ₃) ₂	-Н	H ₃ C CH ₃ OH
25	388	0 	-н	-CH ₂ CH(CH ₃) ₂	-Н	H ₃ C CH ₃ OH
30	389	N 0 - S - 0	-н	-CH ₂ CH(CH ₃) ₂	-Н	H ₃ C CH ₃ OH
35	390		-Н	-CH ₂ CH(CH ₃) ₂	~H	H_3C CH_3 OH
40	391	Н-	-н	-CH ₂ -	-Н	$H_3C \xrightarrow{CH_3} 0$
45	392	H ₃ C 0 1	-н	-CH ₂ -	-н	H ₃ C CH ₃ OH

Table 1 (Continued)

5	Compound No.	R ¹	R 4	R ⁵	R e	OH OH
10	393		-Н	-CH ₂ -	-н	H3C CH3 OH
15	394	e 0 = 0	-н	-CH ₂ -	-Н	H ₃ C CH ₃ OH
25	395	CI	-н	-CH ₂ -	-Н	H3C CH3 OH
30	396	H ₃ C 0 0	-Н	-CH ₂ -	-Н	H ₃ C CH ₃ OH
35	397	CH30 0	-Н	-CH ₂ -	-Н	H ₃ C CH ₃ OH
40	398		-н	-CH ₂ -	-н	H ₃ C CH ₃ OH
45	399		-н	-CH ₂ -	-н	H ₃ C CH ₃ OH

Table 1 (Continued)

5	Compound No.	R ¹	R 4	R 5	R 6	OH OH
10	400	CH30 0	-Н	-CH ₂ -	-Н	H ₃ C CH ₃ OH
15	401	CH ₃ O OCH ₃ O	-Н	-CH ₂ -	-Н	H ₃ C CH ₃ OH
25	402		-Н	-CH ₂ -	-Н	H ₃ C CH ₃ OH
30	403	4 0	-н	-CH ₂ -	-Н	H ₃ C CH ₃ OH
35	404	F O	-Н	-CH ₂ -	-Н	H3C CH3
40	405	F = 0	-Н	-CH ₂ -	-Н	H ₃ C CH ₃ OH
45	406	F ₃ C F O	-Н	-CH ₂ -	-Н	H ₃ C CH ₃ OH
		<u> </u>				

66

Table 1 (Continued)

5	Compound No.	K 1	R 4	_R 5	R 6	OH OH
10	407	H ₃ C-S- 	-н	-CH ₂ -	-Н	H ₃ C CH ₃ OH
15	408	0=0=0	-Н	-CH ₂ -	-н	H3C CH3
25	409	F — S — 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-н	-CH ₂ -	-H	H3C CH3 OH
30	410	CH30 - S-	-Н	-CH ₂ -	-Н	H3C CH3 OH
35	411		-н	-CH ₂ -	-Н	$H_3C \xrightarrow{CH_3} 0$
40	412	0 - - 0	-Н	-CH ₂ -	-Н	H3C CH3 OH
45	413		-н	-сн ₂ сн ₂ scн ₃	-Н	H3C CH3 OH

Table 1 (Continued)

Compound No. R1 R4 R5 R6 $\frac{A}{OH}$ 10 $\frac{A}{OH}$ 11 $\frac{A}{OH}$ 12 $\frac{A}{OH}$ 13 $\frac{A}{OH}$ 14 $\frac{A}{OH}$ 15 $\frac{A}{OH}$ 16 $\frac{A}{OH}$ 17 $\frac{A}{OH}$ 18 $\frac{A}{OH}$ 19 $\frac{A}{OH}$ 19 $\frac{A}{OH}$ 19 $\frac{A}{OH}$ 10 $\frac{A}{OH}$ 10 $\frac{A}{OH}$ 11 $\frac{A}{OH}$ 12 $\frac{A}{OH}$ 12 $\frac{A}{OH}$ 13 $\frac{A}{OH}$ 14 $\frac{A}{OH}$ 15 $\frac{A}{OH}$ 16 $\frac{A}{OH}$ 17 $\frac{A}{OH}$ 18 $\frac{A}{OH}$ 19 $\frac{A}{OH}$ 19 $\frac{A}{OH}$ 10 $\frac{A}{OH}$ 10 $\frac{A}{OH}$ 10 $\frac{A}{OH}$ 11 $\frac{A}{OH}$ 12 $\frac{A}{OH}$ 13 $\frac{A}{OH}$ 14 $\frac{A}{OH}$ 15 $\frac{A}{OH}$ 16 $\frac{A}{OH}$ 17 $\frac{A}{OH}$ 18 $\frac{A}{OH}$ 19 $\frac{A}{OH}$ 19 $\frac{A}{OH}$ 10 $\frac{A}{OH}$ 10 $\frac{A}{OH}$ 10 $\frac{A}{OH}$ 10 $\frac{A}{OH}$ 10 $\frac{A}{OH}$ 11 $\frac{A}{OH}$ 12 $\frac{A}{OH}$ 13 $\frac{A}{OH}$ 14 $\frac{A}{OH}$ 15 $\frac{A}{OH}$ 16 $\frac{A}{OH}$ 17 $\frac{A}{OH}$ 18 $\frac{A}{OH}$ 19 $\frac{A}{OH}$ 19 $\frac{A}{OH}$ 10 $\frac{A}{OH}$ 10 $\frac{A}{OH}$ 10 $\frac{A}{OH}$ 10 $\frac{A}{OH}$ 11 $\frac{A}{OH}$ 12 $\frac{A}{OH}$ 13 $\frac{A}{OH}$ 14 $\frac{A}{OH}$ 15 $\frac{A}{OH}$ 16 $\frac{A}{OH}$ 17 $\frac{A}{OH}$ 18 $\frac{A}{OH}$ 19 $\frac{A}{OH}$ 19 $\frac{A}{OH}$ 10 $\frac{A}{OH}$ 10 $\frac{A}{OH}$ 10 $\frac{A}{OH}$ 10 $\frac{A}{OH}$ 10 $\frac{A}{OH}$ 10 $\frac{A}{OH}$ 11 $\frac{A}{OH}$ 12 $\frac{A}{OH}$ 13 $\frac{A}{OH}$ 14 $\frac{A}{OH}$ 15 $\frac{A}{OH}$ 16 $\frac{A}{OH}$ 17 $\frac{A}{OH}$ 18 $\frac{A}{OH}$ 19 $\frac{A}{OH}$ 19 $\frac{A}{OH}$ 10 $\frac{A}{OH}$ 10 $\frac{A}{OH}$ 10 $\frac{A}{OH}$ 10 $\frac{A}{OH}$ 10 $\frac{A}{OH}$ 11 $\frac{A}{OH}$ 11 $\frac{A}{OH}$ 12 $\frac{A}{OH}$ 13 $\frac{A}{OH}$ 14 $\frac{A}{OH}$ 15 $\frac{A}{OH}$ 16 $\frac{A}{OH}$ 17 $\frac{A}{OH}$ 18 $\frac{A}{OH}$ 19 $\frac{A}{OH}$ 19 $\frac{A}{OH}$ 10 $\frac{A}{OH}$ 10 $\frac{A}{OH}$ 10 $\frac{A}{OH}$ 10 $\frac{A}{OH}$ 11 $\frac{A}{OH}$ 11 $\frac{A}{OH}$ 12 $\frac{A}{OH}$ 13 $\frac{A}{OH}$ 14 $\frac{A}{OH}$ 15 $\frac{A}{OH}$ 16 $\frac{A}{OH}$ 17 $\frac{A}{OH}$ 18 $\frac{A}{OH}$ 19 $\frac{A}{OH}$ 19 $\frac{A}{OH}$ 19 $\frac{A}{OH}$ 19 $\frac{A}{OH}$ 10 $\frac{A}{OH}$ 10 $\frac{A}{OH}$ 10 $\frac{A}{OH}$ 10 $\frac{A}{OH}$ 10 $\frac{A}{OH}$ 11 $\frac{A}{OH}$ 11 $\frac{A}{OH}$ 12 $\frac{A}{OH}$ 13 $\frac{A}{OH}$ 14 $\frac{A}{OH}$ 15 $\frac{A}{OH}$ 16 $\frac{A}{OH}$ 17 $\frac{A}{OH}$ 18 $\frac{A}{OH}$ 19 $\frac{A}{OH}$ 19 $\frac{A}{OH}$ 19 $\frac{A}{OH}$ 19 $\frac{A}{OH}$							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	1	R 1	R 4	_R 5	R 6	
20 $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	10	414	\$-\$-	-Н	-сн ₂ сн ₂ scн ₃	-н	OH
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		415		-Н	-СН ₂ ОС(СН ₃) ₃	-Н	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		416		-н	-CH ₂ OC(CH ₃) ₃	-Н	H ₃ C 0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	30	417		-н	-СН ₂ ОН	-Н	H3C 0
419 $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	35	418	\[\sum_{\subset \subset}^{\preceq} - \subset \subset \]	-Н	-СН ₂ ОН	-Н	H ₃ C 0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	40	419		-H	-	-н	H ₃ C0
		4 20	S-	-н	~	-н	H ₃ C 0

Table 1 (Continued)

5	Compound No.	R ¹	R 4	R 5	R 6	OH OH
10	421		-н	-Н	-н	OH OH
15	422		-н	-н	-Н	OH OH
25	423		-Н	-СН _З -	-н	OH OH
30	424	0 	-Н	-СН _З	-Н	OH OH
35	425		-н	-сн ₂ сн ₂ сн ₃	-н	OH OH
40	426	0 - - - -	-н	-сн ₂ сн ₂ сн ₃	-н	OH
4 5	427		-н	-СН(СН ₃) ₂	-н	OH OH

69

Table 1 (Continued)

5	Compound No.	R I	R 4	_R 5	R 6	OH OH
10	428	0 - - - - - -	-н	-СН(СН ₃) ₂	-н	OH OH
15	429		-н	-CH ₂ CH ₂ CH ₂ CH ₃	-н	OH OH
25	430	0=0=0	-Н	-CH ₂ CH ₂ CH ₂ CH ₃	-Н	○
30	431	-Н	-Н	-сн ₂ сн(сн ₃) ₂	-Н	OH OH
35	432	H_3C H_3C H_3C O	-н	-сн ₂ сн(сн ₃) ₂	-Н	OH OH
40	433		-Н	-СН ₂ СН(СН ₃) ₂	-Н	OH OH
45	434	FOO	-н	-сн ₂ сн(сн ₃) ₂	-Н	OH OH
	L					

Table 1 (Continued)

5	
10	
15	
20	
25	
30	
35	
40	
45	

Compound No.	R 1	R 4	R ⁵	R 6	OH OH
435	CI O	-н	-CH ₂ CH(CH ₃) ₂	-н	OH OH
436	Br 0 0	-Н	-CH ₂ CH(CH ₃) ₂	-Н	OH OH
437	H ₃ C 0	-Н	-CH ₂ CH(CH ₃) ₂	-Н	Э
438	CH30	-н	-сн ₂ сн(сн ₃) ₂	-Н	HO C
439	H ₃ C 0	-Н	-сн ₂ сн(сн ₃) ₂	-Н	OH OH
440	H ₃ C	-н	-сн ₂ сн(сн ₃) ₂	-Н	OH OH
441		-н	-СН ₂ СН(СН ₃) ₂	-н	OH OH

55

Table 1 (Continued)

5	Compound No.	R 1	R 4	R 5	R 6	OH OH
10	442		-н	-CH ₂ CH(CH ₃) ₂	-н	ОН
15	443		-н	-CH ₂ CH(CH ₃) ₂	-Н	OH OH
25	444	F	-Н	-СН ₂ СН(СН ₃) ₂	-Н	OH OH
30	445	CI	-н	-сн ₂ сн(сн ₃) ₂	-Н	OH OH
35	446	H ₃ C 0 0	-Н	-СН ₂ СН(СН ₃) ₂	-н	OH OH
40	447	CH30 0	-н	-CH ₂ CH(CH ₃) ₂	-н	OH OH
45	448	H	-н	-СН ₂ СН(СН ₃) ₂	-н	OH OH
50	L					<u>. </u>

72

Table 1 (Continued)

5	
10	
15	
20	
25	
30	
35	
40	
45	

Compound No.	R 1	R 4	R 5	R e	OH OH
449		-H	-СН ₂ СН(СН ₃) ₂	-н	OH OH
450	F 0	-н	-СН ₂ СН(СН ₃) ₂	-Н	OH OH
451	F	-Н	-СН ₂ СН(СН ₃) ₂	-Н	OH OH
452	F	-Н	-сн ₂ сн(сн ₃) ₂	-Н	OH OH
453	C1 O	-н	-сн ₂ сн(сн ₃) ₂	-Н	OH OH
454	CI	-Н	-сн ₂ сн(сн ₃) ₂	-н	OH OH
455	CH ₃ O	-Н	-сн ₂ сн(сн ₃) ₂	-н	OH OH

55

Table 1	(Continued)
Table L	(Conunuea)

5	Compound No.	R 1	R 4	_R 5	R e	OH OH
10	456	H ₃ C	-Н	-сн ₂ сн(сн ₃) ₂	-н	OH OH
15	457	CF_3 0	-Н	-сн ₂ сн(сн ₃) ₂	-н	OH OH
25	458	F ₃ C 0	-н	-сн ₂ сн(сн ₃) ₂	-Н	OH OH
30	459	CH30	-Н	-сн ₂ сн(сн ₃) ₂	-Н	OH OH
35	460	CH ₃ 0 0	-Н	-CH ₂ CH(CH ₃) ₂	-н	OH OH
40	461		-н	-СН ₂ СН(СН ₃) ₂	-н	OH OH
45	462	$N \longrightarrow 0$	-н	-CH ₂ CH(CH ₃) ₂	-н	OH OH

Ø 11 →	(Continue	• • •
Table 1	((Onfinia	ו אנ
Table I	COmmuna	ju,

5	Compound No.	R I	R 4	R 5	R 6	A O OH
10	463	N O	-Н	-СН ₂ СН(СН ₃) ₂	-н	OH OH
15	464		-Н	-CH ₂ CH(CH ₃) ₂	-н	OH OH
25	465	o o	-н	-сн ₂ сн(сн ₃) ₂	-Н	OH OH
30	466	0 H ₃ C-S- II 0	-Н	-СН ₂ СН(СН ₃) ₂	-н	OH OH
<i>35</i>	467	$\begin{array}{c} H_3C \\ H_3C \\ \\ H_3C \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	-н	-СН ₂ СН(СН ₃) ₂	-н	OH OH
40	468	0 	-н	-CH ₂ CH(CH ₃) ₂	-н	OH OH
45	469	F — \$- 0	-н	-CH ₂ CH(CH ₃) ₂	-н	OH OH

5	Compound No.	R 1	R 4	R 5	R 6	OH OH
10	470	C1 - S - 0 0 0	-Н	-сн ₂ сн(сн ₃) ₂	-Н	OH OH
15	471	Br — S — 0 1 0 0 0 0 0	-н	-сн ₂ сн(сн ₃) ₂	-Н	OH OH
20 25	472	H ₃ C - S-	-н	-сн ₂ сн(сн ₃) ₂	-н	OH OH
30	473	H ₃ C CH ₃ 0 CH ₃ 0 CH ₃ 0	-н	-СН ₂ СН(СН ₃) ₂	-н	OH OH
35	474	$\begin{array}{c} H_3C \\ H_3C \\ \end{array} \begin{array}{c} 0 \\ \parallel \\ \parallel \\ 0 \end{array}$	-н	-CH ₂ CH(CH ₃) ₂	-н	OH OH
40	475	СН ₃ О — 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-н	-СН ₂ СН(СН ₃) ₂	-н	OH OH
4 5	476	$0 \\ \parallel \\ 0_2 \\ N \\ 0$	-н	-СН ₂ СН(СН ₃) ₂	-Н	OH

Table 1 (Continued)

5	Compound No.	R l	R 4	R ⁵	R 6	OH OH
10	477	0 	-Н	-сн ₂ сн(сн ₃) ₂	-Н	○
15	478	0 	-Н	-СН ₂ СН(СН ₃) ₂	-Н	О О О
25	479	N = 0 0 = 0 0 = 0	-н	-СН ₂ СН(СН ₃) ₂	-н	OH OH
30	480		-Н	-СН ₂ СН(СН ₃) ₂	-Н	OH OH
35	481	Н-	-Н	-CH ₂ -	-Н	OH OH
40	482	H ₃ C	-Н	-CH ₂ -	-н	OH OH
45	483		-Н	-CH ₂ -	-Н	OH OH

Table 1 (Continued)

5	Campound No.	R 1	R 4	_R 5	R 6	OH OH
10	484	F 0 0	-Н	-CH ₂ -	-н	OH OH
15 20	485	CI	-Н	-CH ₂ -	-Н	OH OH
25	486	H ₃ C 0	-Н	-CH ₂ -	-Н	OH OH
30	487	CH30	-Н	-CH ₂ -	-Н	OH OH
35	488		-н	-CH ₂ -	-н	OH OH
40	489		-н	-CH ₂ -	-н	OH OH
4 5	490	CH30	-Н	-CH ₂ -	-Н	OH OH

Table 1 (Continued)

5	Compound No.	R 1	R 4	R ⁵	R 6	A OH
10	491	CH ₃ O OCH ₃ O	-н	-CH ₂ -	-Н	OH OH
15	492		-Н	-CH ₂ -	-Н	OH OH
25	493	F O	-Н	-CH ₂ -	-Н	OH OH
30	494	F O	-Н	-CH ₂ -	-Н	OH OH
35	495	F = 0	-н	-CH ₂ -	-Н	OH
40	496	F ₃ C 0	-н	-CH ₂ -	-н	OH OH
45	497	0 	-Н	-CH ₂ -	-н	OH OH

Table 1 (Continued)

		<u>, </u>				
5	Compound No.	R 1	R 4	R ⁵	Re	OH OH
10	498	0 - 0	-Н	-CH ₂ -	-н	OH
15	499	F — S — II — 0	-Н	-CH ₂ -	-н	OH OH
25	500	CH ₃ O - S - 0 0 0	-н	-сн ₂ -	-н	OH OH
30	501		-Н	-CH ₂ -	-Н	OH OH
35	502	0 - s- 0	-н	-CH ₂	-Н	OH OH
40	503		-н	-СН ₂ СН ₂ SCН ₃	-н	OH OH
4 5	504	0 - - - -	-Н	-СН ₂ СН ₂ SCН ₃	-Н	OH OH
					لـــــــــــــــــــــــــــــــــــــ	

Table 1 (Continued)

5	Compound No.	Rı	R 4	R ⁵	R 6	OH OH
10	505		-Н	-CH ₂ OC(CH ₃) ₃	-н	OH OH
15	506	0 = - = 0	-Н	-CH ₂ OC(CH ₃) ₃	-Н	OH OH
25	507		-Н	-сн ₂ он	-н	OH OH
30	508	0 = - - s = 0	-Н	-СН ₂ ОН	-Н	9
35	509		-Н	-	-Н	OH OH
40	510		-Н	-	-н	₩
45	511		-н	-CH ₂ CH(CH ₃) ₂	-сн ₃ со	OH OH

Table 1 (Continued)

5	Compound No.	R i	R 4	R 5	R 6	A OH
10	512		СН ₃ СО-	-сн ₂ сн(сн ₃) ₂	-н	OH OH
15	513	0 S- 0	СН ₃ СО-	-СН ₂ СН(СН ₃) ₂	-Н	OH OH
25	514	F — S — II — 0	СН ₃ СО-	-сн ₂ сн(сн ₃) ₂	-Н	OH OH
30	515	H ₃ C - S - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	СН ₃ СО-	-сн ₂ сн(сн ₃) ₂	-н	OH OH
35	516	CH ₃ 0 -	СН ₃ СО-	-СН ₂ СН(СН ₃) ₂	-н	OH OH
40	517		СН ₃ СО-	-CH ₂ -	-н	OH OH
4 5	518	0 - - - -	СН ₃ СО-	-CH ₂ -	-н	OH OH

Table 1 (Continued)

Compound No.	R I	R4	R5	R ⁶	OH OH
519		СН ₃ СО-	-сн ₂ сн(сн ₃) ₂	-н	₩
520	0 	сн ₃ со-	-СН ₂ СН(СН ₃) ₂	-Н	OH OH

_
-5
_

	W -0	0-6	0-0	\$\docume{\circ} \docume{\circ}	
	R.7	CH ₃	CH ₃	CH ₃	CH ₃
=0)	R6	Ŧ	Ŧ	7	Ŧ
Table 2 (where $n=0$)	R5	H-	-CH ₃	-CH ₂ CH ₂ CH ₃	-сн(сн ₃) ₂
- :	R 4	H-	H-	H-	Ŧ
	R 1				
	Compound No.	521	522	523	524

					· · · · · · · · · · · · · · · · · · ·
5	A -0	0-0	0-0	0-6	
10					
15	R.7	CH ₃	EH 0	CH ₃	CH ₃
	a) R6	=	=	#-	Ŧ
25	(Containted)	-S	.23	. 2	2
30 36 E	22	-CH ₂ CH ₂ CH ₃	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-сн ₂ сн (сн ₃) ₂
35	R 4	H-	Н-	Н-	Ħ
4 0	R 1		н~	H_3C H_3C 0 H_3C 0	
50	Compound No.	525	526	527	528

5	
10	
15	
20	
25	
30	
35	
40	
45	

	W -0	\$\docume{\chi}\$	0 -6	0 -0	0-0
	R7	CH ₃	CH ₃	CH ₃	CH ₃
(pənu	R6	H-	Н-	Ŧ	푸
Table 2 (Continued)	R5	-CH ₂ CH (CH ₃) ₂	-сн ₂ сн (сн ₃) ₂	-СН ₂ СН (СН ₃) ₂	-СН ₂ СН (СН ₃) ₂
	R 4	7	#	Н-	#
	R 1				0=8=0
	Compound No.	529	530	531	532

5	W -0	\$\displaystyle \displaystyle \displa			\$\displaystyle{\circ}\$\displaystyle{\circ}\$
10		CH ₃	CH ₃	, сн ₃	, сн ₃
<i>15</i>	R7	>=0	>=0	-0	> =0
	(Continued)	н-	н-	H-	#-
	1		-ch ₂ ch ₂ sch ₃	90Н	
30 E	Table 2	-CH ₂ ≺	-CH ₂ CI	-CH20H	
35	A A	#	Н-	77	Ŧ
40	R 1				
45	-				
50	Compound No.	533	534	535	536

5	
10	
15	
20	
25	
30	
35	
40	
45	

	0 0 -0	0-0	~-o	0	0-0
	R7	CH ₃	CH ₃	CH ₃	CH ₃
nued)	R6	H-	Ŧ	푸	= .
Table 2 (Continued)	R5	H-	-CH ₃	-CH ₃	-CH ₂ CH ₂ CH ₃
	R 4	#-	Н-	Н-	
	R 1				
	Compound No.	537	538	539	540

5	(A)	0-0	0 -0	0 -0	0 -0
15	R7	СН3	CH3	СН3	CH ₃
20	~~~) = 0)= 0)=0	
05	(Continued)	#-	Ψ-	#-	
	Table 2 (Cong	-сн(сн ₃) ₂	-cH ₂ cH ₂ cH ₃ cH ₃	-CH CH3	-CH ₂ CH(CH ₃) ₂
35	R 4	H-	Н-	H-	푸
4 0	R.1				±
50	Compound No.	541	542	543	544

5		V		0-0	0-0	
10			.CH3	, CH ₃	, CH ₃	.CH ₃
20		R7) - 0)=0	5
20	(pənu	R6	平	Ŧ	Ŧ	푸
<i>25</i>	Table 2 (Continued)	R 5	-CH ₂ CH(CH ₃) ₂	-сн ₂ сн(сн ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂
35		R4	#	Ŧ	"	
4 0 4 5		R 1	H ₃ C 0	H ₃ C ∕ O ∕ O ∕ O	H_3C H_3C 0 H_3C 0	H ₃ C 0 K
50		Compound No.	545	546	547	548

10	A -0	0-0			0 0
15	R7	CH ₃	CH ₃	CH ₃	CH ₃
20			<i></i>	—)=0
Continued)	8 8 0	\F	Ŧ		#
Table 2 (Cont	1 _	-CH ₂ CH(CH ₃) ₂	-сн ₂ сн (сн ₃) ₂	-СН ₂ СН (СН ₃) ₂	-CH ₂ CH(CH ₃) ₂
35	R4	== 1	#	Н-	-CH ₃
40	R 1				
50	Compound No.	549	550	551	552

5	
10	
15	
20	
25	
30	
35	
40	
45	

				·	
	W -0	0	0-0	0	0-0
	R7	CH ₃	CH ₃	CH ₃	CH ₃
nued)	۶.6	-CH ₃	-CH ₃	=	#
Table 2 (Continued)	R5	-CH ₂ CH(CH ₃) ₂	-СН ₂ СН (СН ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂
	R 4	¥-	-CH3	¥-	7
	R 1			\bigvee_{F}^{0}	F O O
	Compound No.	553	554	555	556

5		0 -0	0-0	0-0	0-0	
10			3	8	8	8
15		R7	CH ₃	CH ₃	CH ₃	CH ₃
20	nued)	R G	₹.	7	푸	Н-
	Table 2 (Continued)	R 5	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-СН ₂ СН (СН 3)2	-CH ₂ CH(CH ₃) ₂
35		R 4	#	7-	-	7
40 45		R 1				
50		Compound No.	557	558	559	260

푸

Ŧ

5	W -0			
10		CH3	.CH ₃	
15 20	R7	>=0)=o	
_	R G	#	Ξ'	
30 (bounting) 6 olds/P	R5	-CH ₂ CH (CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	
אלענר. אלענר		37	HD-	
35	R 4	H-	+	
40 45	R 1		$\bigvee_{0}^{\operatorname{Br}}$	Br
50	Compound No.	561	262	

10		V −0	0-0	0	0 -0	
15		R7	CH ₃	CH ₃	CH ₃	CH ₃
20	(R 6	/ 干	/ #	/ *	/ #
25	(Continued)		<u> </u>			
30	Table 2	R5	-CH ₂ CH(CH ₃) ₂	-СН ₂ СН (СН ₃) ₂	-СН ₂ СН (СН 3) ₂	-CH ₂ CH(CH ₃) ₂
35		R 4	# = 0	# O	# >= 0	¥ >=0
45		R I	H ₃ C	H ₃ C	OCH ₃	CH ₃ O
50		Compound No.	565 H ₃	H ₃	267	268

5		A -0		0-0	0 -0	0 0
15		R7	CH ₃	CH ₃	CH ₃	CH ₃
20	(pənu	R6	7	-	Ŧ	H
25	Table 2 (Continued)	R5	-CH ₂ CH (CH ₃) ₂	-сн ₂ сн(сн ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂
35		R 4	H-	# -	H-	#
40 45		R 1	CH ₃ 0			
50	·	Compound No.	569	570	571	572

		,			
5	₩ ⁻ 0	0		-6	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
10		-			<u> </u>
<i>15</i>	R.7	CH ₃	CH ₃	\	CH ₃
⊋	RG	=	<u>+</u>	=	-
onu	~		¥ ·	=	*
Gontinued)					
°s Table 2 (C	RS	-CH ₂ CH(CH ₃) ₂	-сн ₂ сн (сн ₃) ₂	-сн ₂ сн (сн ₃) ₂	-CH ₂ CH(CH ₃) ₂
35	R 4	7	₩-	H-	Ŧ
		,	,	•	· ·
40 45	R 1		\bigvee_{0}^{0}		
				-2	<i>~</i>
50	Compound No.	573	574	575	576

5		(A)	0 -0		0-0	0-0
15		7	∕ CH3	CH ₃	CH ₃	CH ₃
20		R7) =0)=0)=0	<i></i>
	(Continued)	₩ 6	H-	# -	7	H-
	Table 2 (Cont	RS	-СН ₂ СН (СН 3)2	-сн ₂ сн (сн 3) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂
35		R 4	H-	#-	.	H-
40 45		R 1				
50	}	Compound No.	577	578 0	579	280

				T		
5		₩\-\-		0	0-0	0
10			13	£ 1	13	_e,
<i>15</i>		R7	CH ₃	CH ₃	CH ₃	CH ₃
20	(pənu	R6	#	#	#	-
<i>25</i>	Table 2 (Continued)	R5	-CH ₂ CH(CH ₃) ₂	-сн ₂ сн(сн ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂
35	Tal	R 4	#	#	F	. #
4 0		ж 1		# Z	EZ.	H ₃ C 0
50		Compound No.	581	582	583	584

5		₩ -0	0	0	0	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
10			8	e e	8	e
15		R7	CH ₃	CH ₃	CH ₃	CH ₃
20	(Continued)	R6	Ŧ	Ŧ	¥	₹
25	Table 2 (Conti	R5	-CH ₂ CH(CH ₃) ₂			
30	Tabl		H)-	Ho-	-CH	ਲ [ੇ]
35		R 4	H-	#-	#	
4 0		R1	Н ₃ С 0	H ₃ C ∕ ∫ 0	H ₃ C	H ₃ C 0
50		Zampound No.	585	586	587	288

5		₩ -0	0-0	0-0	0-0	
10			∕ CH₃	H ₃	.CH ₃	.CH ₃
15		R7) -0	CH ₃)=0	5 0
20	(Continued)	R 6	Ψ.	H-	H-	7
25	Table 2 (Cont	R 5	-ch ₂ ch(ch ₃) ₂			
30	Tabl		-CH ₂	-CH ₂	-CH ₂	-CH ₂
35		R 4	H-	#-	# 	# -
40		R 1	H ₃ C 0	H ₃ C H ₃ C		#3°C
45		pu	H ₃ C	# # # ·	H ₃ C ~	1 2 H ³ C
50		Compound No.	589	290	591	592

5	
10	
15	
20	
25	
30	
35	
40	
45	

	₩ -0	Ç-6	0-0	~ ·	0
	R7	CH ₃	CH ₃	CH ₃	CH ₃
(Communea)	R G	"	Ŧ	.	7
nunco 7 anna 1	R 5	-CH ₂ CH (CH ₃) ₂	-СН ₂ СН (СН ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH (CH ₃) ₂
	R 4	н-	н-	Ŧ-	Ŧ
	R 1	H ₃ C	CH ₃ (CH ₂) ₅	сн ₃ (сн ₂) ₆	CH ₃ (CH ₂) ₉
	Compound No.	593	594	595	296

5		A -0				
15		R7	CH ₃	CH ₃	CH ₃	CH ₃
20	(Continued)	RG	Н-	Ŧ	н-	Ŧ
25	Table 2 (Conti	R5	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH (CH ₃) ₂
35		R 4	4-	Н-	#-	Ŧ
4 0		R 1	СН ₃ (СН ₂) ₁₀	СН ₃ (СН ₂) 12 10 0	СН ₃ (СН ₂) ₁₄ / 0	
50	ļ	Compound No.	597	598	299	009

5		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0	0-6	0	0
10						
15		R7	CH ₃	CH ₃	CH ₃	CH ₃
20	led)	R 6	*		Ŧ	=
25	(Continued)		3)2	3)2	3)2	3)2
30	Table 2	. A	-CH ₂ CH(CH ₃) ₂			
35		R 4	Ŧ	푸	Н-	#-
40 45		54				
50		Zompound No.	601	602	603	604

5	W -0	0	0-6	0-0	0-0
10					
15	R7	CH ₃	CH ₃	CH ₃	CH ₃
20 (per il	R 6	干	¥	*	*
Table 2 (Continued)		-CH ₂ CH(CH ₃) ₂	-CH2CH(CH3)2	-CH2CH(CH3)2	-CH ₂ CH (CH ₃) ₂
35	R 4	#-	Н-	#-	Н-
40 45	R 1			H ₃ C \ 0 \ 0	H ₃ C H ₃ C H ₃ C 0
50	Compound No.	605	909	607	809

5	
10	
15	
20	
25	
30	
35	
40	

	A 0-0	0	0-0	0	0-0
	R7	CH ₃	CH ₃	CH ₃	CH ₃
nued)	RG	7	#	#	푸
Table 2 (Continued)	R5	-СН ₂ СН (СН ₃)2	-CH ₂ CH (CH ₃) ₂	-СИ ₂ СН (СН ₃)2	-CH ₂ CH (CH ₃) ₂
	R 4	#	#	#	7
	. A			F 0	F 0 0
	Compound No.	609	610	611	612

5		W -0			0-6	0
10						
15		R.7	CH ₃	CH ₃	CH ₃	CH ₃
20	(pənu	R G	#-	Ŧ	#	干
<i>25</i>	Table 2 (Continued)	R5	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH (CH ₃) ₂	-CH ₂ CH (CH ₃) ₂	-CH ₂ CH(CH ₃) ₂
35	Tal	R4	Э- H-	0- H-	0- #-	0- H-
4 0 4 5		R 1				
50		Compound No.	613	614	615 C	616

5	

	₩ -0				
	R7	CH ₃	CH ₃	CH ₃	CH ₃
(penu	R 6	Η-	H-	#	7
Table 2 (Continued)	R5	-CH ₂ CH(CH ₃) ₂			
	R 4		7-	H-	¥
	R 1	OCH3	CH_30 0	CH ₃ 0 Ch	CH ₃ 0 CH ₃ 0 CH ₃
	Compound No.	617	618	619	620

		· · · · · · · · · · · · · · · · · · ·			
5	W -i		0-6		0-6
10					
15	R7	CH ₃	CH ₃	CH ₃	CH ₃
20	R.6	#	=	=	# 1
Continued)				·	
s S S S S S S S S S S S S S S S S S S S		-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH2CH(CH3)2
35	R 4	=	Ŧ	#	푸
40 45	R 1	CH ₃	H ₃ C	H ₃ C	CF3
50	Compound No.	621	622	623	624

5		A	0-0	0-0	0-0	
10			CH ₃	.CH ₃	CH ₃	, CH ₃
15 20	:	R7	-0	>=0	>=0	>=0
	(Continued)	R 6	Ŧ	#	F-	=
25		R5	-CH ₂ CH(CH ₃) ₂	-сн ₂ сн(сн ₃) ₂	-сн ₂ сн(сн ₃) ₂	-CH ₂ CH(CH ₃) ₂
30	Table 2		H)-	-CH ₂	-CH ₂	5-
35		R 4	# "	# "	H-	# "
40 45		R.1	F_3c	F ₃ C		
50		Sompound No.	625	929	627	829

5	W -0	0 -0	0-0	0-0	0-0
10		CH ₃	∠CH ₃	снз	, сн ₃
15	R7	>=0) =0) =0	>=0
20	(Continued)	Ŧ	Ŧ	F	Ħ
		-CH ₂ CH(CH ₃) ₂			
30	Table 2	-CH ₂ C	-CH ₂ C	-СН ₂ С	-CH ₂ C
35	R 4	Ŧ	Ŧ	+	H-
40	R 1				
50	Compound No.	629	630	631	632

5	
10	
15	
20	
25	
30	
35	
40	
45	

		· · · · · · · · · · · · · · · · · · ·		r	r —-
	A -0	0-0	0-0	0-0	
	R.7	CH ₃	CH ₃	CH ₃	CH ₃
(pənu	R6	7-	H-	7	· #
Table 2 (Continued)	H		-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂
	R 4	Н-	"	Н-	Н-
	R 1			F 0	, i.e.
	Compound No.	633	634	635	929

5		(A)	0-0	0-0	0-0	0
10	,		13	13	13	<u>8</u>
15		R7	CH ₃	CH ₃	CH ₃	CH ₃
20	(pənu	R 6	Н-	7-	-	#
<i>25</i>	Table 2 (Continued)	R5	-CH ₂ CH(CH ₃) ₂	-СН ₂ СН (СН ₃)2	-CH ₂ CH (CH ₃) ₂	-CH ₂ CH(CH ₃) ₂
30	Tabl		-Сн	-С	-CH	ਲ-
35		R 4	7	Н-	Н-	# -
40 45		R 1	F 0	F F 0	0 0	
		Compound No.	637	638	639	640
50		_ 3 ¯				

5	
10	
15	
20	
25	
30	
35	
40	
45	

		1	T		
	₩ -0		0		
	R 7	CH ₃	CH ₃	CH ₃	CH ₃
ned)	R6	#-	Ŧ.	Ŧ	
Table 2 (Continued)	R 5	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-СН ₂ СН (СН ₃)2
	R 4	#	Ŧ	7	7
	R 1		E C	Br. O	Br O
	Compound No.	641	642	643	644

Ŧ

 $-\mathrm{CH_2CH}(\mathrm{CH}_3)_2$

H-

648

5		(A) (j-	00	0-0	0 -0
10		R 7	CH ₃	CH ₃	CH ₃
20			/ -	/	/
	(Continued)	R6	¥-	#-	+
	Table 2 (Con	R5	-CH ₂ CH(CH ₃) ₂	-CH2CH(CH3)2	-CH ₂ CH(CH ₃) ₂
	Tab		٥-) ₋)-
35		R 4	H-	н-	Ŧ
40		R 1	CH ₃		
45				H ₃ C,	H ₃ C

Compound

No.

645

55

50

646

Ŧ

5		W -1		0-6	
15		R7	CH ₃	CH ₃	CH ₃
20	(Continued)	R.6	7	Ŧ	Ŧ
25	Table 2 (Conti	RS	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂
30 35	Tab	R 4	-H	-н	H-
40		R 1	CH ₃		GH3 GH3
45		ਾ ਰ		H ₃ C H ₃ C	H ₃ C_
50		Compound No.	649	650	651

5		(A) 0-0	0-0	0	0-0	
10	:		.cH ₃	, CH ₃	, CH ₃	.CH ₃
15		R 7	CI)=0	10	5
	(Continued)	R 6	Ψ-	Ŧ	H-	Ŧ
<i>25 30</i>	Table 2 (Cont	R5	-Сн ₂ Сн (Сн ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂
35		R 4	H-	Н-	H-	#
40 45		R I	H ₃ C	H ₃ C	CF ₃ 0	F ₃ C 0
50		Sompound No.	653	654	655	929

5	
10	
15	
20	
25	

	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\		0-0	0-0	0-0
	R.7	CH ₃	CH ₃	CH ₃	CH ₃
(pənu	R6	# -	Н-	H-	H-
Table 2 (Continued)	R5	-CH ₂ CH(CH ₃) ₂	- CH ₂ CH (CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH (CH 3)2
	R 4	Ŧ	Ŧ	Ψ.	Ŧ
	R 1	F ₃ C	CH ₃ 0	CH ₃ 0	CH ₃ O
	Compound No.	657	658	629	099

			·			
5		₩ - 0		0-0		
10			.CH ₃	, CH ₃	.CH3	.CH ₃
15		R7	>=0	> -0	>=0	>
20	(pen)	R 6	¥	7	Ŧ	푸
25	(Continued)	R 5	-CH ₂ CH(CH ₃) ₂	-сн ₂ сн (сн ₃) ₂	-СН ₂ СН (СН ₃) ₂	-CH ₂ CH(CH ₃) ₂
30	Table 2		10 ² H2-	-CH ₂ Cl	CH ₂ Cl	D ² HJ-
35		R 4	Н-	푸	Ŧ	¥-
40		R 1	CH ₃ 0 CH ₃ 0 0	CH ₃ 0 0CH ₃	CH ₃ 0 CH ₃ 0	CH ₃ 0
50		Compound No.	661	299	663	664

						
5		A -0	0-6		0-0	0
10			8	3	8	83
15		R.7	CH ₃	CH ₃	CH ₃	CH ₃
20	(pənu	R G		Ŧ	Ŧ	Ŧ
25	2 (Continued)	R5	-CH ₂ CH(CH ₃) ₂			
30	Table 2		-CH ₂	-CH ₂	-CH ₂	-CH ₂
35		R 4	#-	#	7	
40 45		м 1	CH ₃ 0 CH ₃	H ₃ C 0 0	H ₃ C _0	
50		Compound No.	(999	667 Н3	~ ₂ °H 899
	1	O I	I			

5		A	0			0-0
10						
15		R7	CH ₃	CH ₃	CH ₃	CH ₃
20	(pənu	R6	F T	푸	F-	干
25	Table 2 (Continued)	R5	-сн ₂ сн (сн ₃) ₂	-сн ₂ сн (сн ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH (CH ₃) ₂
35		R 4	#	Ŧ	#-	₩.
40 45		R 1	H_3^{C} H_3^{C} H_3^{C} 0	HO		
50		Compound No.	699	670	671	672

5	(A) 0-0	0-0	0-0		
15	R7	CH ₃	CH ₃	CH ₃	CH ₃
20	nued)	Ŧ	Н-	Н-	н-
	Table 2 (Continued)	-CH ₂ CH(CH ₃) ₂	-сн ₂ сн (сн ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂
35	R4	H-	H-	Н-	Ψ,
40	R 1	HO 000	HO O O	НО 0	
50	Compound No.	673	674	675	979

5		$\begin{pmatrix} A \\ 0 \end{pmatrix}$	0-0	0 -0	0-0	0-0
10		7	∕ CH3	сн з	у сн з	∕ CH ₃
20		R 7) = 0)=0)=0	- 0
	nued)	₩ 6	*	, н-	H-	₹
	Table 2 (Continued)	RS	-CH ₂ CH (CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂
35		R 4	Ψ.	H-	#	干
40 45		. R 1		N		
50		Compound No.	677	879	679	089

5	
10	
15	
20	
25	
30	
35	
40	
45	

	₩ -i	0-0	0-6	0-0	0-0
Table 2 (Continued)	R.7	CH ₃	CH ₃	CH ₃	CH ₃
	R6	F	Н-	H-	Н-
	R5	-CH ₂ CH(CH ₃) ₂			
	R 4	H-	# -	#	Ŧ
	R 1			S	S
	Compound No.	681	289	683	684

5 10	₩ -0	0-0	0-6	0-6	0-0
15	R7	CH ₃	CH ₃	CH ₃	CH ₃
20	R6	干	干	Ŧ	Ŧ
Table 2 (Continued)	10	-CH ₂ CH(CH ₃) ₂			
ger Qer	R4)- H-)- H-)- #-)- H-
40	ا م	N H	H N O	CH ₃	CH ₃
45	Compound No.	989	989	687	889

5	
10	
15	
20	
25	
30	
35	
40	
45	

	(A)			0-0	0 -0
	R7	CH ₃	CH ₃	CH ₃	CH ₃
nued)	R6	# -	¥	. H-	#
Table 2 (Continued)	R 5	-CH ₂ CH(CH ₃) ₂	-CII ₂ CH(CII ₃) ₂	-CH ₂ CII (CH ₃) ₂	-СН ₂ СН (СН 3)2
	R 4	H-	Н-	¥-	Ŧ.
	R 1	N H 0	H ₃ C N N N N N N N N N N N N N N N N N N N	$\begin{pmatrix} N \\ N \\ H \end{pmatrix}$	CH ₃
	Compound No.	689	069	691	269

					T
5	W -0	0-6	0-0	0	
10		8	န	E .	_es
15	R.7	CH ₃	CH ₃	CH ₃	CH3 0
20 Fe	R 6	푸	干		=
(Solutifue) C eller	1	-CH ₂ CH(CH ₃) ₂			
35	R4	H-	H-	¥	ب ۳
40 45	R 1	0	S		
50	Compound No.	693	694	9692	969

5	₩ 0-0	0	0-0	0	
15	R7	CH ₃	CH ₃	CH ₃	CH ₃
Continued)	R G	Ŧ	F	- -	# #
Table 2 (Conti	R5	-CH2CH(CH3)2	-CH2CH(CH3)2	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂
35	R 4	#-	Н-	#-	Ŧ
40 45	R.1			S	N. H
50	Compound No.	697	869	669	700

5		(A) 0-0	0-0	0-0	0-0	0-0
10						
15		R7	CH ₃	CH ₃	CH ₃	CH ₃
20	nued)	RG	Ŧ	Ŧ	ж-	Ŧ
25	Table 2 (Continued)	R5	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-СН ₂ СН (СН 3)2	-CH ₂ CH(CH ₃) ₂
35	Ţ	R 4	H-	#-	-	# -
40		R 1	Н ₃ с			
45		pu			Ct.	2
50		Compound No.	701	702	703	704

		mpound N o.	1 1	902	707	802
40 45		R 1	H ₃ C	F ₃ C	CH ₃ 0	CH ₃ 0 CH ₃
<i>35</i>		R 4	H-	# -	Н-	Н-
30	Table 2 (C	R.5	-CH ₂ CH(CH ₃) ₂	-CH2CH(CH3)2	-CH2CH(CH3)2	-CH ₂ CH(CH ₃) ₂
25	(Continued)		2	83	2	2
20	ed)	R G	H-	Н-	#-	7
		-	/_	/ -	/ -	/
15		R.7	CH ₃	CH 3	CH ₃	CH ₃
10				\	\	\
5		∀ }-0		0-6	0	

5		₩ - O	~ ·	0-0	0	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
10			13	္မ		့်
15		R7	CH ₃	CH ₃	CH ₃	CH ₃
	(Continued)	R 6	Ψ.	푸	Ŧ	#
25		ጽ 2	-CH ₂ CH (CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-сн ₂ сн (сн ₃) ₂	-CH ₂ CH(CH ₃) ₂
30	Table 2	L	-CH ₂ CF	-CH ₂ CF	-CH ₂ CF	-CH ₂ CF
35		R 4	#	7	#	Ŧ
40 45		R 1	CH ₃ 0	CH ₃ 0 OCH ₃ OCH ₃ OCH ₃	H ₃ C-S-	H ₃ C 0=0
50		Compound No.	709	710	711	712

5		A -0	0-0			
10			снз	.cH ₃	снз	.CH ₃
15		R7)=0	> ■0	2	٥
20	(pənu	R 6	₹ .	=	#-	H-
25	Table 2 (Continued)	R5	-СН ₂ СН (СН ₃) ₂	-сн ₂ сн (сн ₃) ₂	-СН ₂ СН (СН ₃)2	-CH ₂ CH(CH ₃) ₂
35	ļ	R 4	7-	#-	7	Ŧ
40 45		R 1	H ₃ C	0=\$=0	0=\$=0	0=0=0
50		Compound No.	713	714	715	716

EP 0 810 221 A1

5	₩ -0	~ ·	~-	0-6	0
10		.CH ₃	.CH ₃	.CH ₃	_CH₃
<i>15</i>	R7	>-0	>=0	>=0	>=0
	(Continued)	=	-CH ₃	-CH ₃	#
	Table 2 (Cont	-сн ₂ сн (сн ₃) ₂	-CH ₂ CH(CH ₃) ₂	-СН ₂ СН (СН ₃) 2	-CH ₂ CH(CH ₃) ₂
35	R 4	-cH ₃	푸-	-CH ₃	Н-
40 45	R.1	-s=0			
50	Compound No.	717	718	719	720

5	
10	
15	
20	
25	
30	
35	
40	
45	

	₩ -0	0	°-6	0	00
	R7	CH ₃	CH ₃	CH ₃	CH ₃
(Continued)	R G	#-	H-	#	Ŧ
Table 2 (Conti	R5	-CH ₂ CH(CH ₃) ₂	-сн ₂ сн (сн ₃) ₂	-СН ₂ СН (СН ₃) ₂	-CH ₂ CH(CH ₃) ₂
	R 4	Ψ.	Ŧ	¥ '	7
	R 1	0=0		0 = s = 0	
	Compound No.	721	722	723	724

EP 0 810 221 A1

5	(A) 0-0	0 -0	0-0	0-0	0
			.CH ₃	3 CH ₃	
15 20	R.7	CH ₃ CH ₃ CH ₃	0	CH3	
	RG	#-	н-	Н-	7
(Continued)		Н3)2	H ₃) ₂	.Н.3)2	.H3)2
°s Table 2	R5	-CH2CH(CH3)2	-CH2CH(CH3)2	-CH ₂ CH (CH ₃) ₂	-CH2CH(CH3)2
35	R 4	Н-	Н-	Н-	Н-
40 45	R 1	0 = - = 0			
	nd				
50	Compound No.	725	726	727	728

5		₩,		0	0-0	0
15		R7	°-	50	-13	O = C
20	(Continued)	R6	Ŧ	7	Ŧ	#
25	Table 2 (Con	R5	-сн ₂ сн (сн ₃) ₂	-сн ₂ сн(сн ₃) ₂	-сн ₂ сн (сн ₃) ₂	-СН ₂ СН(СН ₃) ₂
35		R 4	Ŧ	#	#	Ŧ-
4 0		R 1				
50		Compound No.	729	730	731	732

5		$\begin{pmatrix} A \\ 0 \\ 0 \end{pmatrix}$	\bigvee_{0^-}	0-0	0-0	0-0
15		R 7	CH ₃	CF3	0CH ₃	CH ₃
	(Continued)	RG	# -	H-	7	Ŧ
25	Table 2 (Conti	R5	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-СН ₂ СН (СН ₃) ₂	-CH ₂ CH(CH ₃) ₂
35		R4	푸	#-	푸	#
4 0 4 5		R	0=\$=0	0===0	0==0	
50		Compound No.	733	734	735	736

						
5		₩ -0	0-0			
15		R7	O CH ₃	CH3 CH3		
20	(pənu	R6	Ŧ	Η.	#	Ŧ
<i>25</i>	Table 2 (Continued)	R5	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH (CH ₃) ₂	-CH ₂ CH(CH ₃) ₂
35		R 4	# -	н	H-	Ŧ
4 0 4 5		R 1				
50		Sompound No.	737	738	739	740

			·			
5		W -0	0-0		0-6	0-0
10		_	8	£.	2 ^{CH} 3	3)2
20		R7	-CH ₃	-CH2CH3	-CII ₂ CH ₂ CH ₃	-CH(CH ₃) ₂
	(penu	R6	Н-	H-	₽-	7
25	Table 2 (Continued)	R5	-сн ₂ сн (сн ₃) ₂	-CH ₂ CH(CH ₃) ₂	-сн ₂ сн (сн ₃) ₂	-CH ₂ CH(CH ₃) ₂
	Tab)-)-)-	7
35		R 4	Ŧ	Ŧ	¥-	#
40 45		R 1	0===0			0===0
50		Compound No.	741	742	743	744

5	
10	
15	
20	
25	
30	
35	
40	
45	

	₩ -0	0 -0	0-0	0-0	0-0
	R.7	-CH ₂ CH ₂ CH ₃	-сн ₂ сн(сн ₃) ₂	-C(Cll ₃) ₃	-CH ₂ CH ₂ CH(CH ₃) ₂
(pənu	R6	н-	Ψ-	н-	#-
Table 2 (Continued)	R 5	-СН ₂ СН (СН ₃) ₂	-CH ₂ CH (CH ₃) ₂	-сн ₂ сн (сн ₃) ₂	-СН ₂ СН (СН ₃) ₂
	R 4	Ŧ	# -	#-	7
	R 1	0=8=0	0===0	0 = - = 0 0	0=\$=0
	Compound No.	745	746	747	748

EP 0 810 221 A1

5	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0-0	0-0	0-0	0-0
10		снз	CH3	снз	СН3
15	R7	>=0	> =0	> =0	>-0
25	R 6	H-	#		н-
		-CH ₂ CH(CH ₃) ₂	-сн ₂ сн (сн ₃) ₂	-СН ₂ СН (СН 3)2	-CH ₂ CH(CH ₃) ₂
30 E	14016	-CH ₂ C	-CH ₂ C	-CH ₂ C	-CH ₂ (
35	R 4	H-	H-	H-	#
40	R 1	0=8=0	P 0 = - 0 0	0===0	0==010
45	puno.			E	61
50	Compound No.	749	750	751	752

5	
10	
15	
20	
25	
30	
35	
40	
45	

	0 -0	0 -0	0-0	0-0	0-0
	R7	CH ₃	CH ₃	CH ₃ CH ₃	CH ₃
(penu	R6	#	Н-	#	Н-
Table 2 (Continued)	R5	-CH ₂ CH (CH ₃) ₂	-СН ₂ СН (СН ₃) ₂	-СН ₂ СН (СН ₃) ₂	-CH ₂ CH(CH ₃) ₂
	R 4	Ψ-	H-	Н-	-
	R 1		$c_1 \leftarrow \begin{bmatrix} 0 \\ \parallel \\ \parallel \\ 0 \end{bmatrix}$	$c_1 \xrightarrow{0} \begin{array}{c} 0 \\ \parallel \\ \parallel \\ 0 \end{array}$	0
	Compound No.	753	754	755	756

EP 0 810 221 A1

5		(A)		0-0	0-0	
15		R.7	CH ₃	CH ₃	CH ₃	CH ₃
20	(Continued)	RG	H	# .	H-	#
25	Table 2 (Con	R 5	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-СН ₂ СН (СН 3)2	-CH ₂ CH(CH ₃) ₂
35		R 4	Ψ-	Н-	٣	#
4 0		R 1	H_3C \longrightarrow 0 0 0 0 0 0 0 0 0 0	H_3C CH_3 0 CH_3	CH ₃ 0 CH ₃ 0	H ₃ C 0 H ₃ C H ₃ C
50		Compound No.	761	762	763	764

ed)	
(Continued	
2	
Table	

A -0	0-0	0 -0	0-0	0-0
R.7	CH ₃	CH ₃		CH ₃
R 6	푸	Ŧ	¥-	Н-
R S	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂
R 4	平平		#-	#-
ا ه	$\begin{array}{c} CH_{3} & C \\ H_{3}C & CH_{3} & C \\ CH_{4} & C \\ CH_{4} & C \\ CH_{5} & C \\ CH$		H_3^{C} H_3^{C} H_3^{C} H_3^{C}	H_3c H_3c H_3c H_3c
Compound No.	765	766	191	768

_	
0	

	V	>6	\\ \bar{\} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	\\ \rightarrow \(\rightarrow \)	
	R7	CH ₃	CH ₃	CH ₃	CH ₃
nued)	R 6	=	Ŧ	Н-	푸
Table 2 (Continued)	R 5	-CH ₂ CH(CH ₃) ₂	-CH2CH(CH3)2	-CH ₂ CH (CH ₃) ₂	-CH ₂ CH(CH ₃) ₂
	R 4	H-	Н-	#-	#
	R 1	0 	CH_30	$CH_3O \longrightarrow \begin{bmatrix} 0 \\ \\ \\ 0 \end{bmatrix}$	H ₃ C 0 - S - S - S - S - S - S - S - S - S -
	Compound No.	769	770	771	772

			·			
5		W-0	00	0-0	0-0	0-6
10						
15		R7	CH ₃	CH ₃	CH	CH ₃
20	(pənı	S G	干	=	# "	7
25	Table 2 (Continued)	R5	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂
35	Ë	R 4	; ;	#-	Ŧ	#-
4 0		R I	$^{\mathrm{H_3C}}$ $\stackrel{\circ}{\sim}$ $^{\mathrm{C}}$ $^{\mathrm{C}}$	H_3c H_3c O	HO - S - 0	NO ₂ 0
50		Compound No.	773	774	775	776

5	
10	
15	
20	
25	
30	

	(A)	0	0-0		
	R 7	СН3	CH ₃	CH ₃	CH ₃
inued)	R G	#	H-	Н-	#-
Table 2 (Continued)	R5	-сн ₂ сн(сн ₃) ₂	-сн ₂ сн (сн ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂
	R 4	#	Ŧ	7	Ŧ
	R 1	0_{2^N}	$0 \\ 0 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $		
	Compound No.	777	778	779	780

10		(A)	0-0	0 -0	0-0	0-0
15		R7	CH ₃	CH ₃	CH ₃	CH ₃
20	ned)	RG	Ŧ	# #	ቸ	Н-
25	(Continued)	ي	² (сн ₃) ₂	(сн ₃) ₂	(CH ₃) ₂	(СН ₃) ₂
30	Table 2	R5	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH2CH(CH3)2
35		R4	Ψ.	#-	Ŧ	#
40		R 1	0=S=0	0 = -8 - N	0	
45				\> 2	z	

Š.

5	
10	
15	
20	
25	
30	
35	
40	
45	

	W -0	0-0	0	0-0	0
	R7	CH ₃	CH ₃	CH ₃	CH ₃
nuea)	RG	9 H H		=	푸
lable 2 (Continued)	R5 -CH2CH(CH3)2		-CH ₂ CH(CH ₃) ₂	-СН ₂ СН (СН ₃) ₂	-СН ₂ СН (СН ₃) ₂
	R 4	4 H H H		H-	Ŧ.
	R1 S 0 0 0 0 0 0		0 N H 0	CH ₃	
	Compound No.	785	786	787	788

5		₩ - I	0-0	0-0	0-0	0
10						
15	·	R7	CH ₃	CH ₃	CH ₃	CH ₃
20	(pənı	RG	Н-	Н-	#-	#
25	Table 2 (Continued)	R5	-сн ₂ сн (сн 3) ₂	-CH ₂ CH(CH ₃) ₂	-сн ₂ -	-cH ₂ -
35	Ta	R 4	- -	- -	- -	₹
40		R 1	-S=0 N	0=8=0	- ⊁	H ₃ C_0
45		pu		Z		-
50		Compound No.	789	790	791	792

5		₩\-	0-0		-6	0-0
10			, CH ₃	, CH ₃	CH ₃	CH ₃
15		R.7	>=0	>=0	>=0	>
20	(Continued)	R6	Ŧ	7	Ŧ	Ŧ
25		R 5				
30	Table 2		-CH ₂ -	-CH ₂ →	-CH ₂ ≺	-CH ₂ -
35		R4	-	# -	# -	H-
4 0 4 5		R 1	H ₃ C 0 H ₃ C 0	H ₃ C 0 H		
50		Compound No.	793	794	795	796

EP 0 810 221 A1

5	W0				
10 15	R7	CH ₃	CH ₃	CH ₃	CH ₃
20	R 6	Ŧ	· Ŧ	Ŧ	H-
	Table 2 (Continued)	-CH ₂ -	-CH ₂ -	-cH ₂ -	-CH ₂ -
35	R4	Э- H-	Э- H-	Э- H-	J- H-
40 45	R 1	F 0			
50	Compound No.	797	798	799	800

5		(A)	0-0		0-0	0
10			, CH ₃	, сн з	, сн ₃	, CH ₃
20		R7) =0	> =0) =0	>=0
	(panu	R6	Н-	Н-	Н-	H-
<i>25</i>	2 (Continued)	R5	-cH ₂		2	-CH ₂
30	Table 2		-CH	-CH ₂ -	-CH ₂ ≺	5
35		R 4		#-	H-	#
40		R I	$\bigcup_{\text{CH}_3} 0$	H ₃ C	OCH ₃	CH ₃ 0 CH
50		Compound No.	801	802	803	804

5		-0 -0	0-0	0-0	0 -0	0-0
10		R.7	CH ₃	CH ₃	CH ₃	CH ₃
20	(Continued)	RG	Н-	#-	Н-	· #-
<i>25 30</i>	Table 2 (Cont	R5	-CH ₂	-CH ₂	-CH ₂ -	-cH ₂ -
35		R 4	#	# -	H-	77
40 45		7X 1	HN.	H ₃ C		
50		Compound No.	805	Н 908	807	808

5		¥ -0			0-0	~-
10			, CH ₃	, CH ₃	.CH ₃	CH ₃
15 20		R7	>=0	>=0	>=0	>=0
	(Continued)	R6	Ŧ	푸		=
<i>25</i>	Table 2 (Con	R5	-CH ₂	-CH ₂	-CH ₂	-CH ₂
35		R 4	H-	Ħ.	H-	Ψ-
40 45		R 1			CH ₃	H ₃ C
50		mpound No.	809	810	811	812

10		W -0	6	0	\\ \bar{\} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	
15		R7	CH ₃	CH ₃	CH3	CH ₃
20	ued)	RG	#	H-		#
25	Table 2 (Continued)	R5	-CH ₂	-cH ₂	-CH ₂	-cH ₂ -
35	T	R 4	Ŧ	#	H-	H-
4 0 4 5		R I	OCH ₃	CH ₃ 0 CH ₃ 0 CH ₃ 0		F. 0
50	-	Sampound No.	813	814	815	816

5	W -0		0-0	0-0	
10	R7	CH3	CH3	CH ₃	CH ₃
20	~) =0)=0)=0)=0
25	R 6	Ŧ,	Ŧ	H-	#
25 Fr. 25		-cH ₂ -	-cH ₂	-cH2-	-CH ₂
35	R 4	Ŧ	#	*	7
40 45	R.1	F 0	F O	0 13	130
50	Compound No.	817	818	819	820

5		₩ -0	0-0	000	0-0	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
10			, CH ₃	, CH ₃	.CH3	£
15		R.7	<u> </u>			CH ₃
20	(panu	RG	平	=	=	=
25	2 (Continued)	S				
30	Table 2		-CH ₂ -	-CH ₂ -	-CH ₂	-CH2
35		R 4	Ŧ	#	F	#-
40		R 1		## o	H ₃ C 0	H ₃ C
50		Compound No.	821	822	823	824 B24

5	
10	
15	
20	
25	
30	
35	
40	
45	

	(A) 0-0	0 -0	0-0	0-0	
	R7	CH ₃	CH ₃	CH ₃	CH ₃
nued)	R G	Н-	#-	Ŧ	7
Table 2 (Continued)	R5	-CH ₂ -	-CH ₂	-CH ₂ -	-CH ₂ -
	R 4	¥-	Ŧ	Н-	푸
	R 1	CH ₃ 0 0	CH ₃ 0	CH ₃ 0 CH ₃ 0	Z 0
	Compound No.	825	826	827	828

5		(A)	0-0	0-0	0-0	0-6
10		R.7	CH ₃	CH ₃	CH ₃	CH ₃
20	ed)	R6	, H-	#- -	, H-	, =
25	. 2 (Continued)	RS				
30 35	Table 2	R 4	-H -CH ₂ -<	-н -сн ₂	-H -CH ₂ →	-H -CH ₂ -
40 45		R1			H ₃ C-S-	H ₃ C H ₃ C H
50		Sompound No.	829	830	831	832

5	A -0			0-0	
15	R.7	CH ₃	CH ₃	CH ₃	CH ₃
20					
25	(Continued)	#-	#	#	#
30	Table 2	-CH ₂	-CH ₂ -	-CH ₂	CH ₂ -
35	R 4	-	Ŧ	Ŧ	#
40	٦ ا	0=0=0	0=\$=0	0==0	
45	pun			GE.	
50	Compound No.	833	834	835	836

5	₩ -0	0-0	0-0	0-0	°
15	R 7	CH ₃	CH ₃	СН3	СН3
20 (penu	9 %	٣	Ŧ	Н-	Щ.
Table 2 (Continued)	R 5	-CH ₂ -	-CH ₂ -	-CH ₂ -	-CH ₂ -
35	R 4	7		 *	Н-
4 0	R 1	Br - S - S - 0	H_3c \downarrow	$CH_30 \longrightarrow \begin{bmatrix} 0 \\ \parallel \\ \parallel \\ 0 \end{bmatrix}$	0_{N_2O}
50	Compound No.	837	838	839	840

5		W -0	0-0	0-6	0	
15		R7	CH ₃	CH ₃	CH ₃	CH ₃
20	nued)	R6	. F	Ŧ	Ŧ	푸
<i>25</i>	Table 2 (Continued)	R5	-cH ₂	-cH ₂	-CH ₂ -CH ₂	-CH ₂ -CH ₂ -
35	!	R 4	H-	Ψ-	#-	H-
40 45		. R 1				
50	:	Compound No.	841	842	843	844

5		€°}-6	0-0	\(\bigc\)	0-0	\[\bigc\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdo
10				~	~	
15		R.7	CH ₃	CH ₃	CH ₃	CH ₃
20	led)	R6	干	Ŧ		Ŧ
	2 (Continued)	R5	-CH ₂ CH ₂ SCH ₃	-CH ₂ CH ₂ SCH ₃	-СН ₂ ОС(СН ₃)3	-сн ₂ ос (сн ₃) ₃
30	Table 2		-CH,	-CH,	- CH ₂	Но-
35		R 4	=	#	Ŧ	Ŧ
40		R 1				
50		Compound No.	845	846	847	848

5		₩ - 0	0-0		0-0	~ ·
10			e e	8	8	<u> </u>
15		R7	CH ₃	CH ₃	CH ₃	CH3
20	(peni	R 6	H-	Н-	H-	· ¥
25	Table 2 (Continued)	R5	-сн ₂ осн ₂	-сн ₂ осн ₂	-СН ₂ ОН	-сн ₂ он
35	_	R 4	#-	F-	Ŧ.	Ť
4 0 4 5		R 1				
50		Compound No.	849	850	851	852

EP 0 810 221 A1

5		(A)	0-0-	#	0-0-0-	G G G
			СН3	∕ CH₃	∕ CH₃	, CH ₃
<i>15</i>	!	R7) =0	>=0	>-0	> =0
20	(pen	R G	F	₩-	Ŧ	# .
25	(Continued)	20			-13 -13	13
30	Table 2	R5	Ŧ	н-	-CH3	-CH ₃
35		R 4	Ŧ	Ŧ	#-	Ή-
4 0		R 1				
50		Compound No.	853	854	855	856

5	

	0-0	CH ₃	CH ₃	CH ₃	# C
	R7	CH ₃	CH ₃	CH ₃	CH ₃
(pen	R6	Ŧ	Н-	H-	#
Table 2 (Continued)	R5	-CH ₂ CH ₂ CH ₃	-CH ₂ CH ₂ CH ₃	-СН (СН ₃) ₂	-CH(CH ₃) ₂
	R 4	#-	H-	н-	Ŧ
	R 1				
	Compound No.	857	858	859	860

_	
9	

0 0-0	CH ₃	CH3 00	CH ₃	CH3 0-
R7	CH ₃	CH ₃	CH ₃	CH ₃
R G	Н-	Н-	H-	H-
R5	-CH2CH2CH3	-CH2CH2CH2CH3	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂
R 4	H-	Н-	н-	#
R.1			Н-	$H_3^{C} \longrightarrow 0$ $H_3^{C} \longrightarrow 0$
Compound No.	861	862	863	864
	R1 R4 R5 R6 R7	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

5		(A)	CH3	CH ₃	CH ₃	CH ₃
10 15		R.7	CH ₃	CH ₃	CH ₃	CH ₃
20	ned)	RG	#	Н-	Ŧ	н-
25	Table 2 (Continued)	R5	-CH ₂ CH(CH ₃) ₂			
35	T	R4	Н-	Н-	Н-	H-
40 45		R 1				
50		Compound No.	865	866	867	898

EP 0 810 221 A1

869 870 871 872 873 874 875 875 876 877 877 877 877 877 877 877 877 877	Table 2 (Continuing R5 -CH ₂ CH(CH ₃) ₂ -CH ₂ CH(CH ₃) ₂ -CH ₂ CH(CH_3) ₂	-H -H -H	CH3 CH3 O CH3 O CH3	
			(CH ₃) ₂ (CH ₃) ₂	(Continued) (CH ₃) ₂ -H (CH ₃) ₃ -H (CH ₃) ₂ -H (CH ₃) ₃ -H (CH ₃) ₃ -H (CH ₃) ₄ -H (CH ₃) ₄ -H (CH ₃) ₄ -H (CH ₃) ₅ -H (CH

5	
·	

	(A) 0-0	CH ₃	CH ₃	CH ₃	CH3
Table 2 (Continued)	R7	CH ₃	CH ₃	CH ₃	CH ₃
	RG	Н-	Ψ-	H-	H-
	R5	-CH ₂ CH ₂ SCH ₃	-CH ₂ CH ₂ SCH ₃	-сн ₂ ос (сн ₃) ₃	-CH ₂ OC(CH ₃) ₃
	R 4	Н-	н-	н-	Ŧ
	R 1				-s-0
	Compound No.	873	874	875	876

5	(A)	CH3 0-0	CH3	CH3	E 0-0
10		`		`	
15	R7	CH ₃	CH ₃	CH ₃	CH ₃
20	R G	H-	#	н-	<u></u> 푸
25 :I					
30 older	20	-CH ₂ OH	-сн ₂ он		
<i>35</i>	R 4	푸	∓	Н-	Ŧ
4 0	1 %		0=\$=0		-s-0
50	Compound No.	877	878	879	880

5 10 15		R7 (A)	CH ₃ H ₃ C CH ₃	CH ₃ H ₃ C CH ₃	CH ₃ H ₃ C CH ₃	CH ₃ H ₃ C O- O-
	nued)	R6	#-	III.	Ŧ	-
25	(Continued)	2			_£	3
30	Table 2	R5	Н-	Н-	-CH ₃	-CH ₃
35		R 4	7	H-	¥-	н-
40 45		R I				0===0
50		Compound No.	881	882	883	884

Ŧ

Ŧ

888

5		(A)	H_3C CH_3 O	H_3C CH_3 O	H_3 C CH_3 O
10					
15		R.7	CH ₃	CH ₃	CH ₃
20			<u> </u>		
	nued)	R 6	Н-	# -	H-
	(Continued)	R5	-CH ₂ CH ₂ CH ₃	-сн ₂ сн ₂ сн ₃	-сн(сн ₃₎₂
30	Table 2		-CH ₂	-CH2	-сн(
35		R 4	н-	н-	Ŧ
40		R 1		- s - 0	>
4 5					

Compound No.

50

55

885

175

886

5	

2 (Continued)	R5 R6 R7 A0-	-сн ₂ сн ₂ сн ₂ сн ₃ -н Н ₃ с Сн ₃	-си ₂ си ₂ си ₂ си ₃ -н н ₃ с Си 3	$-CH_2CH(CH_3)_2 -H $	-си ₂ си(си ₃) ₂ -н Н ₃ с Сн ₃
Table 2	R4	-н -ск ² с	-н -сн ₂ с	-н -сн ₂	-н -сн ₂
	R.1			Н-	H ₃ C 0 18 H ₃ C 0
	ompound No.	889	890	891	892

5		V -0	H ₃ C CH ₃	H ₃ C CH ₃	H ₃ C CH ₃	H ₃ C CH ₃
10						
15		R.7	CH ₃	SH3 0	CH ₃	CH ₃
20						
	(panu	R 6	#	=		
30	Table 2 (Continued)	R5	-CH2CH(CH3)2	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂
35		R4	Ψ.	Н-	Н-	#
4 0		R 1				
		nd	<u> </u>	ET.	15	<u> </u>
50		Compound No.	893	894	895	968

5

	₩ -0	H ₃ C CH ₃			
	R7	CH ₃	CH ₃	CH ₃	CH ₃
(Continued)	R G	Ŧ	н-	H-	# "
Table 2 (Conti	R5	-CH ₂ CH(CH ₃) ₂			
	R 4	#	Н-		Ŧ
	R 1	$H_3^{\mathcal{C}}$	CH ₃ 0 CH ₃ 0 0 0	H ₃ C ✓ 0	H ₃ C H ₃ C
	Compound No.	897	868	899	006

5	₩ - 0	H ₃ C CH ₃			
10					
15	R.7	CH ₃	CH ₃	CH 3	CH ₃
20					
ued)	R 6	=	푸	7	7
Continued)	-	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-СН ₂ СК(СН ₃) ₂	-сн ₂ сн (сн ₃) ₂
Table 2	2	-CH ₂ CH	HD ^Z HD-	-сн²сн	-cH ₂ CH
35	R 4	7	н-	7	Ŧ
40	R 1				
45					C#-
50	Compound No.	901	902	903	904

5	

	*	517 13°E	51 7 E	H30, H	H ₃ C CE
	R7	CH ₃	CH ₃	CH ₃	CH ₃
(pən	Re		# "	Ħ.	Н-
Table 2 (Continued)	R5	-CH ₂ CH(CH ₃) ₂			
!	R4	H-	Н-	푸	#
	R 1	L0 (1)	H ₃ C	CH ₃ 0 Ch 0	CH ₃ 0 CH ₃ 0
į	Compound No.	902	906	907	806

		,		<u></u>	T	
5		₩ - 0	H ₃ C CH ₃			
10						
<i>15</i>		R.7	CH ₃	CH ₃	CH ₃	CH3
	ਉ	R6	Ŧ	=	==	=
	ıπe	24	T	1	H-	Ŧ
25	(Continued)		3)2	3)2	3)2	3)2
	2	R 5	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	жэж	-CH ₂ CH(CH ₃) ₂
30	Table 2		-CH ² (-CH2	-CH ₂ CH(CH ₃) ₂	-CH ₂ (
05		4	==	5 2	Н	=======================================
35	į	R 4	H-	F	=	푸
40		R 1		—	-0	> -0
45				- C-		
50		Compound No.	606	910	911	912

5	
10	
15	
20	
25	
30	
35	
40	

	A 0 -0	H_3C CH_3 O	H_3C CH_3 O	H ₃ C CH ₃	H_3C CH_3 O
	R.7	CH ₃	CH ₃	CH ₃	CH ₃
(peni	R G	=	Ŧ.	7-	H-
Table 2 (Continued)	R5	-CH ₂ CH(CH ₃) ₂			
	R4	#-	H-	Н-	#-
	R.1	0 13		CH ₃	H ₃ C
	Compound No.	913	914	915	916

20	(Continued)	R6	, T	, H		#
30	Table 2 (Cor	R 5	-CH ₂ CH(CH ₃) ₂	-CII ₂ CH(CH ₃) ₂	-CH2CH(CH3)2	-CH ₂ CH(CH ₃) ₂
35		R 4	"	Н-	Н-	Н-
40		R1	CF ₃	$\bigvee_{0}^{R_3C}$	CH ₃ 0	CH ₃ O
50		Sampound No.	917	918	919	920

5	
10	
15	
20	
25	
30	
35	
40	
45	

	\\ \rightarrow \(\frac{A}{0} \)	H ₃ C CH ₃	H_3C CH_3 O	H ₃ C CH ₃	H_3C CH_3 O
	R.7	CH ₃	CH ₃	CH ₃	CH ₃
ned)	R6	#	H-	7	# -
Table 2 (Continued)	R5	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-СН ₂ СН (СН ₃) ₂	- CH ₂ CH (CH ₃) ₂
	R4	H-	н-	-	H-
	R 1	N			
	Compound No.	921	922	923	924

5	
10	
15	
20	
25	
30	
35	

	(A) 0-0	H ₃ C CH ₃	H_3C CH_3 O	H_3C CH_3 O	H ₃ C CH ₃
	R7	CH ₃	CH ₃	СН3	CH ₃
(penu	R6	H.	Ψ-	#-	#
Table 2 (Continued)	R5	-CH ₂ CH(CH ₃) ₂	-СН ₂ СН (СН ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂
	R4	н-	H-	Н-	Ŧ
	R.1	s	0 	H ₃ C H ₃ C H ₃ C	0=0=0
	Compound No.	925	926	927	928

_	
9	

		H ₃ C CH ₃	H ₃ C CH ₃	H ₃ C CH ₃	H ₃ C CH ₃
	R.7	CH ₃	CH ₃	CH ₃	GH ₃
(pen	R6	Ŧ	Ŧ	Ŧ	F
Table 2 (Continued)	R 5	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂
	R4	Н-	Н-	н-	H-
	R 1	F = 0	C1 - S - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\operatorname{Br} \stackrel{0}{ \longrightarrow} \operatorname{-}_{\operatorname{S}}^{0} - \operatorname{-}_{\operatorname{S}}^{0}$	H_3c \downarrow
	Compound No.	929	930	931	932

5		(A)	H ₃ C CH ₃	H ₃ C CH ₃	H_3C CH_3 O	H_3C CH_3 O_{-}
10			, сн з	, CH ₃	сснз	, сн з
15 20		R7	> =0	>=0	> =0	> 0
	(Continued)	R6	#	*	Ŧ	Н-
<i>25</i>	Table 2 (Cont	R5	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂
35	E :	R 4	K-	#-	¥-	푸
40 45		R 1	H ₃ C CH ₃ 0 S - CH ₃ 0 CH ₃ 0	$\begin{array}{c} H_3C \\ H_3C \\ \end{array}$	$CH_3O \longrightarrow \begin{bmatrix} 0 \\ \\ \\ \\ 0 \end{bmatrix}$	$0_{2^N} \longrightarrow 0$
50		Compound No.	933	934	935	936

	$\begin{pmatrix} A \\ 0 \end{pmatrix}$	H ₃ C CH ₃			
	R7	CH ₃	CH ₃	CH ₃	CH ₃
(panu	R6	Н-	H-	꾸	Н-
Table 2 (Continued)	R5	-CH ₂ CH(CH ₃) ₂			
	R4	Ŧ	н-	н-	Η-
	R 1		$ \begin{pmatrix} 0 \\ N \\ N \end{pmatrix} $		
	Compound No.	937	938	939	940

5	A -0	H ₃ C CH ₃	H ₃ C CH ₃	H ₃ C CH ₃	H ₃ C CH ₃
10					
15	R.7	CH ₃	CH ₃	CH ₃	CH ₃
20 Pall	R 6	Ξ-	=	# -	푸
25 Continuit no C					
30 ei		-CH ₂	-CH ₂ -	-CH ₂ -≺	-CH ₂
35	R 4	Ŧ	¥	Ŧ	7
4 0	R1	-Н	H ₃ C 0 KH		
50	Compound No.	941	942	943	944

5	
10	
15	
20	
25	
30	
35	

	(A)	H ₃ C CH ₃	H ₃ C CH ₃	H ₃ C CH ₃	H ₃ C CH ₃
	R7	CH ₃	CH ₃	CH ₃	CH ₃
(pen)	R6	Ŧ	H-	Н-	*
Table 2 (Continued)	R5	-СН ₂ -	-СН2	-CH ₂ -	-CH ₂
	R 4	Н-	H-	푸	Ŧ
	R 1		H_3c	сн ₃ 0 Д 0 Д 0 Д 0 Д 0 Д 0 Д 0 Д 0 Д 0 Д 0 Д	
	Compound No.	945	946	947	948

5	. 4.		H ₃ C CH ₃	H ₃ C CH ₃	H ₃ C CH ₃	H ₃ C CH ₃
10			снз	CH ₃	CH ₃	, CH ₃
15		R7		5)=0)=0
20	(Continued)	R 6	¥	Ŧ	Ŧ	₹
	Table 2 (Conti	R S	-CH ₂	-CH ₂ -	-CH ₂ -	-cH ₂
35		R 4	Ŧ	Н-	Ŧ	Ŧ
40 45		R I		CH ₃ 0 CH ₃ 0	CH ₃ 0 CH ₃	
50		Compound No.	949	950	951	952

5	W -0	H ₃ C CH ₃ 0-0-	H ₃ C CH ₃	H ₃ C CH ₃	H ₃ C CH ₃
15	R7	CH ₃	CH ₃	CH ₃	CH ₃
20 (Pend	» g	푸	Ŧ	T.	· "
Table 2 (Continued)		-CH ₂	-CH ₂	-CH ₂	-CH ₂
35	R 4	H-	#-	7	H-
40 45	R 1	- G-	F 0	F 0	F ₃ C
50	Compound No.	953	954	955	926

EP 0 810 221 A1

5	(A)	H_3C CH_3 O	H_3C CH_3 O	H_3C CH_3 O	H_3 C CH_3 O
15	_	, сн ₃	, CH ₃	, сн ₃	, CH ₃
20	R7	> =0	> =0)=0	>=0
(pənu	RG	#-	7	H-	
2 (Continued)	R5				
Table 2		-CH ₂	-CH ₂ -(-CH ₂ →	-CH ₂
35	R 4	푸	#	.	# "
40 45	R1	H ₃ C-S-	0=\$=0	P = 0	CH ₃ 0
50	Compound No.	957	958	959	096

5	

	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	H ₃ C CH ₃	H ₃ C CH ₃	H ₃ C CH ₃	H ₃ C CH ₃
	R.7	CH ₃	CH ₃	CH ₃	CH ₃
(pənı	R 6	H-	Ŧ	н-	푸
Table 2 (Continued)	R 5	-CH ₂	-cH ₂ -	-CH ₂ CH ₂ SCH ₃	-CH ₂ CH ₂ SCH ₃
	R 4	Ŧ	Н-	¥-	н-
	R 1				
	Compound No.	961	296	6963	964

EP 0 810 221 A1

5		(A)	H ₃ C CH ₃	H ₃ C CH ₃ 0-	H_3C CH_3 O	H ₃ C CH ₃
15	:	R7	CH ₃	CH ₃	CH ₃	CH ₃
20	ned)	R·6	Н-	#-	7	"
25	Table 2 (Continued)	R 5	-сн ₂ ос (сн ₃) ₃	-сн ₂ ос (сн ₃) ₃	-сн ₂ он	-CH ₂ OH
35	T	R 4	Н-	Н-	Н-	F
40		R 1		0==0		
50		Compound No.	996	996	196	896

5		(A)	H ₃ C CH ₃	H ₃ C CH ₃	~ ·	~
10		7	∕ сн₃	∕ CH3	∕ CH 3	∕ CH3
15		R7	> -0	>= 0		>= 0
20	(Continued)	R6	F	7	Ŧ	F
30	Table 2 (Cor	R S			¥-	Н-
35		R 4	#-	#-	#	7-
4 0		۳. ا				
		ompound No.	696	970	971	972

5	₩ -0	0-0		~- d	
10		CH ₃	СН3	, CH ₃	CH ₃
<i>15</i>	R7	>=0	>=0	>=0	>=0
	RG	H-	Ŧ.	7	#-
Table 2 (Continued)	<u> </u>	-CH3	-CH ₃	-СН ₂ СН ₂ СН ₃	-CH ₂ CH ₂ CH ₃
35	R 4	#-	Н-	Н-	#-
40 45	R I				0=%=0
50	Compound No.	973	974	975	976

5		¥ -0		~-	~-	<u> </u>
10		R.7	CH ₃	CH ₃	CH ₃	CH ₃
20	nued)	RG	H-	H-	#-	Ŧ
<i>25</i>	Table 2 (Continued)	R5	-СН (СН ₃) ₂	-СН (СН ₃) ₂	-CH2CH2CH3	-CH2CH2CH3
35		R 4	#-	Н-		#
40 45		R.1				0=%=0
50		Compound No.	977	978	979	086

EP 0 810 221 A1

5		~ .	/-e .	/-e	/-Q .	/-Q
10		₩ 0	├ -	\	←	<u></u> -6
15		7	СН3	CH ₃	\ CH₃	CH ₃
		R 7	>= 0	>=0	>=0	> -0
20	(pen	R6	. ∓	#	Ŧ	干
25	(Continued)		сн ₃) ₂	CH ₃) ₂	CH ₃) ₂	Ж3) 2
30	Table 2	R5	-CH ₂ CH(CH ₃) ₂	-СН ₂ СН (СН ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂
35		R4	#-	Ŧ	#	Ţ
40		R 1	±	H ₃ C 0 18		
50		Compound No.	981	985	983	984

5	
10	
15	
20	
25	
30	
35	
40	
45	

	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	~	~-b	0-0	~ ·
	R.7	CH ₃	CH ₃	CH ₃	CH ₃
(pənı	9W	Ŧ	Н-	Ŧ	н-
Table 2 (Continued)	R5	-сн ₂ сн (сн ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂
	R 4	H-	# -	н-	Ŧ-
	R 1		$\bigvee_{0}^{\operatorname{Br}}$	H ₃ C	CH ₃ 0 CH ₃ 0
	Compound No.	985	986	987	886

10		-0 -0	~-i	~- ·	~ ·	~- d
15		R.7	CH ₃	CH ₃	CH ₃	CH ₃
20	ned)	R 6	Ŧ	#	H-	Ħ.
	(Continued)	R5	-CH ₂ CH(CH ₃) ₂	-сн ₂ сн (сн ₃) ₂	-CH ₂ CH(CH ₃) ₂	-ch ₂ ch(ch ₃) ₂
30	Table 2		-CH ₂ CF	-CH ₂ CF	-CH ₂ C	-CH2CF
35		R 4	#	7	#	H-
4 0		R 1	H³c ✓ 0	H ₃ C 0 H ₃ C 0		

o N

5	
10	
15	
20	
25	
30	

(Continued)

Table 2

(A) 0-0	~	0-0	~	~- d
R7	CH₃	CH ₃	CH ₃	CH ₃
R6	7-	Н-	#	Ŧ
R5	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH (CH ₃) ₂	-CH ₂ CH(CH ₃) ₂
R 4	¥.	7	H-	Ħ.
R 1		F C		H_3C
Compound No.	993	994	995	966

5	

	V -i				
	R7	CH ₃	CH ₃	CH ₃	CH ₃
(panu	R6	H-	Н-	Н-	#-
Table 2 (Continued)	R5	-CH ₂ CH(CH ₃) ₂	-ch ₂ ch(ch ₃) ₂	-сн ₂ сн(сн ₃) ₂	-CH ₂ CH(CH ₃) ₂
	R 4	#-	Н-	Ŧ.	#
	R 1	CH ₃ 0 CH ₃ 0 OCH ₃	H N 0		G. G.
	Compound No.	997	866	666	1000

5		Q >0		\	\	\(\frac{1}{2} \)-6
10		<u> </u>				
15		R7	CH ₃	CH ₃	CH ₃	CH ₃
20						
	(pənu	R 6	н-	#-	н-	H-
25 30	Table 2 (Continued)	R 5	-CH ₂ CH(CH ₃) ₂			
35		72 4 72 4	#	Ψ-	7	#-
40 45		R.1	P 0	F. 0	—————————————————————————————————————	
50		ompound No.	1001	1002	1003	1004

	40	35	30	25	20	15		10	5
			Table 2 (Co	(Continued)	a	!			
mpound No.	1 SX	R 4	R 5		R 6	R.7			∀ }-0
1005	#5 - #5 - 0	7	-CH ₂ CH(CH ₃) ₂		#	>=0	, CH₃		\(\rangle \)6
1006	H ₃ C	Ψ-	-CH ₂ CH(CH ₃) ₂		н-	>-0	CH ₃		~ ·
1007	CF ₃	#-	-СН ₂ СН (СН ₃) ₂		н-	>=0	∨ cH ₃		~ }-ċ
1008	F ₃ C 0	Ŧ	-CH ₂ CH(CH ₃) ₂		H-	> -0	∨ CH3	-6	/-Q

5		(A)	0-0	0-0	0 -0	0-0
10 15		R7	CH ₃	CH ₃	CH ₃	CH ₃
20	(pai	R 6	H-	H-	#	*
25	Table 2 (Continued)	R5	-СН ₂ СН (СН ₃) ₂	-СН ₂ СН (СН ₃) ₂	-сн ₂ сн (сн ₃) ₂	-CH ₂ CH(CH ₃) ₂
<i>30</i>	Tab	R 4	J- H-)- H-)- H-)- H-
40		R 1	CH ₃ 0	CH ₃ 0 0		
50		Compound No.	1009	1010	1011	1012

5	

0 0-0	0	0		
R.7	СН3	СН3	СН3	CH ₃
RG	Ŧ	H-	=	н-
R5	-сн ₂ сн (сн ₃) ₂	-CH ₂ CH(CH ₃) ₂	-СН ₂ СН (СН ₃) ₂	-CH ₂ CH(CH ₃) ₂
R 4	# -	Ŧ	¥-	-
R 1			S	H ₃ C - S -
Compound No.	1013	1014	1015	1016
	R1 R4 R5 R6 R7	R1 R4 R5 R6 R7 CH ₃ CH CH ₃ CH CH ₃ CH ₃ -H	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

					· · · · · · · · · · · · · · · · · · ·	
5		(A) 0-0	~- ·	~ ·	~ ·	~
15		R7	CH ₃	CH ₃	CH ₃	CH ₃
20	(pər	R 6	Н-	#-	Ŧ	Ŧ
25	2 (Continued)	78 5	-CH ₂ CH(CH ₃) ₂	-СН ₂ СН (СН ₃) ₂	-СН ₂ СН(СН ₃) ₂	-CH ₂ CH(CH ₃) ₂
<i>35</i>	Table 2	R 4	н-	-н	-н	Н)- Н-
40		R1	H ₃ C	0 = s = 0		
45		smpound No.	1017	1018	1019 F	1020 C1

5		¥ -0	~-d	~ ·	~-o	
15		R7	CH ₃	CH ₃	CH ₃	CH ₃
20	(par	R 6	#		Ŧ	=
	Table 2 (Continued)	۶ ۷	-СН ₂ СН (СН ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂
35		R 4	Ŧ	Ψ.	#-	Н-
40		. 전 1.	Br 0 = 0	H ₃ C	$H_3C \xrightarrow{CH_3} 0 \\ H_3C \xrightarrow{\parallel} S - \\ CH_3 0$	$\begin{array}{c} H_3C \\ \\ H_3C \\ \\ \end{array} \begin{array}{c} 0 \\ \\ \\ \\ \\ \end{array}$
50	!	Compound No.	1021	1022	1023	1024 H ₂

5	
10	
15	
20	
25	
30	
35	
40	
45	

	A 0 -0 -	0-0	~	0-0	~-b
	R7	CH ₃	CH ₃	CH ₃	CH ₃
(pan	R6	· Ŧ	Ŧ	Ψ-	Ŧ
Table 2 (Continued)	R5	-СН ₂ СН (СН ₃) ₂	-CH ₂ CH(CH ₃) ₂	-СН ₂ СН (СН ₃) ₂	-сн ₂ сн (сн ₃) ₂
:	R 4	¥-	H-	7	#
	R 1	$CH_3O \longrightarrow \begin{bmatrix} 0 \\ \\ \\ 0 \end{bmatrix}$	$\bigcup_{0_2 N} \bigcup_{0} \bigcup_{0}$		
	Compound No.	1025	1026	1027	1028

EP 0 810 221 A1

<i>5</i>		(A)		- o		
15		R7	CH ₃	CH ₃	CH ₃	CH ₃
20	ned)	R6	#-	Ŧ.	# -	H -
25	Table 2 (Continued)	R 5	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂	-CH ₂ -
35		R4	#	=	#-	Ŧ
40 45		9.4 1.	0=0		₩	$H_3^{\text{C}} \longrightarrow 0$ $H_3^{\text{C}} \longrightarrow 0$
		mpound No.	1029	1030	1031	1032

5	
10	
15	
20	
25	
30	
35	
40	
45	

	₩ -0		~	~ ·	0-0
	R7	CH ₃	CH ₃	CH ₃	CH ₃
(pən	R6	Ψ-	平	Ŧ	
Table 2 (Continued)	R 5	-CH ₂	-CH ₂	-CH ₂	-CH ₂
	R4	н-	Ŧ	Ψ-	Ŧ
	R 1				H ₃ C
	Compound No.	1033	1034	1035	1036

5		₩\-\-	<u></u>	~	~-b	~-
15		R7	CH ₃	CH ₃	CH ₃	CH ₃
20	(par	R6	Н-	Н-	H-	*
<i>25 30</i>	Table 2 (Continued)	R5	-CH ₂	-CH ₂	-CH ₂	-CH ₂
35		R 4	H-	H-	H-	#-
40 45		R.J	CH ₃ 0 CH			CH ₃ 0 CH ₃ 0
		mpound No.	1037	1038	1039	1040

5		$\begin{pmatrix} A \\ 0 \\ -0 \end{pmatrix}$	0-0	0-0		
10			3		3	3
15		R.7	CH ₃	CH ₃	CH ₃	CH ₃
20	nued)	R6	H-	Ŧ.	7	¥-
<i>25</i>	Table 2 (Continued)	R5	-CH ₂ -	-CH ₂	-cll ₂ -	-CH ₂
35	Tal	R 4	H-	- H-	- H-	"
4 0		R 1	CH ₃ 0 CH ₃ 0 CCH ₃		~ a.	
50		Compound No.	1041	1042	1043	1044

EP 0 810 221 A1

5		(A)	~-o			~ ÷
10		R 7	CH ₃	CH ₃	CH ₃	CH ₃
20	(pən	R 6	۳	Н-	. H-	Ψ.
25	Table 2 (Continued)	R5	-CH ₂ -	-CH ₂ -	-CH ₂	-CH ₂ -
35	T	R 4	Н-	Н-	7-	Н-
40 45		R1	a. 0	F ₃ C	0 H ₃ C-S- 0	0=\$=0
50		Compound No.	1045	F 1046	1047	1048

5 10 15 20 25	Pable 2 (Continued)	R5 R6 R7 (A)	-CH ₂ ————————————————————————————————————	-CH ₂ ————————————————————————————————————	-H	-H CH3
	tinued)	RG	Ŧ	Ŧ	7	Ŧ
	Table 2 (Con	R5	-CH ₂	-CH ₂ -	-CH ₂	-CH ₂
35		R 4	Ŧ	H-	#-	H-
4 0		R1	$P \longrightarrow \begin{bmatrix} 0 \\ \parallel \\ \parallel \\ 0 \end{bmatrix}$	$CH_3O \longrightarrow \begin{bmatrix} 0 \\ \\ \\ 0 \end{bmatrix}$		0==s=0
		mpound No.	1049	1050	1051	1052

5	
_	

A -0	0 -0	00	-0	
R7	CH ₃	CH ₃	CH ₃	CH ₃
R6	H-	. H-	H-	Ŧ
R 5	-CH2CH2SCH3	-CH2CH2SCH3	-сн ₂ ос (сн ₃) ₃	-сн ₂ ос (сн ₃) ₃
R 4	Н-	Н-	Н-	#
R.1				
Compound No.	1053	1054	1055	1056
	R1 R5 R6 R7	R ¹ R ⁴ R ⁵ R ⁶ R ⁷ CH ₃ CH ₂ CH ₂ SCH ₃ -H	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

5		(V)		~÷		~
10			ЭН3	CH ₃	CH ₃	CH ₃
15		R7	CH ₃	CH ₃	>=0	> =0
20	nued)	RG	=	Ψ,	- -	Ŧ
	Table 2 (Continued)	જ	-СН ₂ ОН	-сн ₂ он		
35		R 4	Ψ.	Ŧ	7-	Ŧ
40 45		R 1				
50		Compound No.	1057	1058	1059	1060

5		(A)	0 -0	0-0	0-0	0 -0
10			снз	CH ₃	, CH ₃	, CH 3
20		R.7	> =0	>=0	>= 0	>=0
	nued)	R6	-03° Hጋ	₩.	-H	-н
<i>25 30</i>	Table 2 (Continued)	RS	-CH ₂ CH(CH ₃) ₂	-СН ₂ СН(СН ₃)2	-СН ₂ СН (СН ₃) ₂	-СН ₂ СН(СН ₃) ₂
35	Tab	R 4	-H	- CH3CO-	- СН3СО-	- CH ³ CO-
40 45		R 1				0=\$=0
50		Compound No.	1061	1062	1063	1064 F

5	(A)	0-0	0	0 -0	\\ \rightarrow \cdot \cd
10		_E	_eo	_e	
15	R7	CH ₃	CH CH	CH CH	CH ₃
20	nued)	-H	-Н	-Н	-H
	Table 2 (Continued)	-сн ₂ сн(сн ₃) ₂	-cH ₂ CH(CH ₃) ₂	-CH ₂	-cH ₂ -
35	R4	CH ³ CO-	- CD ⁸ HO	- СН3СО-	00° к
40 45	R I	H_3C \downarrow	$CH_3O \longrightarrow \begin{bmatrix} 0 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$		
50	Compound No.	1065	1066 CI	1067	1068

EP 0 810 221 A1

	40	35	30	25		20	15	10	5
			Table 2 (C	(Continued)	(pai				
mpound No.	R 1	R 4	R S		R 6		R.7		€}-6
1069		сн ³ со-	-CH ₂ CH(CH ₃) ₂	2	H-		CH ₃		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
1070	0=0=0	-00°н2	-CH ₂ CH(CH ₃) ₂	2	#		CH ₃		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
1389		#	-сн ₂ сн(сн ₃) ₂	2	-Ж) =0	_ CH₃	\prec	
1390		#-	-CH ₂ CH(CH ₃) ₂	2			CH ₃ CH ₃		\ \(\) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\

5	
10	
15	
20	
25	
30	
35	
40	
45	

Table 2 (Continued)

		;				
Compound No.	R 1	R 4	R5	R6	R7	W -0
1391		Н-	-CH ₂ CH(CH ₃) ₂	# -	CH ₃ CH ₃	
1392	H_3^{C}	Н-	-CH ₂ CH(CH ₃) ₂	Ŧ	CH ₃ CH ₃	0 -0
1393		Н-	-ch ₂ ch(ch ₃) ₂	. Ŧ	CH ₃ CH ₃	0-0
1394	H ₃ C	H-	-CH ₂ CH(CH ₃) ₂	#	CH ₃ CH ₃	0-0

55

5	
10	
15	
20	
25	
30	
35	
40	

·				,
₩ -0	0-0	~-d		0-0
R7	CH ₃ CH ₃	CH ₃	CH ₃ CH ₃	
RG	н-	7	Ŧ.	
R5	-сн ₂ сн (сн ₃) ₂	-СН ₂ СН (СН ₃) ₂	-СН ₂ СН (СН ₃) ₂	-CH ₂ CH (CH ₃) ₂
R 4	Ψ.	#	Н-	Ψ-
R 1	H ₃ C CH ₃	$\begin{array}{c} H_3C \\ H_3C \\ \end{array}$	$ \begin{array}{c} H_3C \\ H_3C \end{array} $	$\begin{array}{c} H_3C \\ H_3C \\ \end{array}$
Compound No.	1395	1396	1397	1398
	R1 R4 R5 R6 R7	H ₃ C CH ₃ H ₃ C O	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

5	A HO	° ₹	© ±	0 ₩	° €
10					
	R 6	干	#	=	7
15	85	=	-CII ₃	-CH ₂ CH ₂ CH ₃	н3)2
20		'	3-	-сн ⁵ с	-сн(сн ₃) ₂
25	R4	平	H-	-	푸
25 2 goding	£	- СН ₂ СН (СН ₃) ₂	-CH ₂ CH(CH ₃) ₂	-СН ₂ СН(СН ₃) ₂	-CH ₂ CH(CH ₃) ₂
35	R2	=		7	푸
40	R 1				
45					
50	Compound No.	1.071	1072	1073	1074

$\overline{}$
ם
ã
Ĭ
⊂
-
7
5
ťΣ
$\boldsymbol{\varepsilon}$
(1)

	₩ HO	○ #5	© #5	○ ■	○ -5
	R G	Н-	7	#	H-
	RS	-CH2CH2CH3	-CH2CH(CH3)2	-СН ₂ СН (СН ₃) ₂	-CH ₂ CH(CH ₃) ₂
(configured)	R4	4	н-	#-	H-
Table o (Coll	R 3	-CH ₂ CH(CH ₃) ₂	-ch ₂ ch(ch ₃) ₂	-сн ₂ сн (сн ₃) ₂	-CH ₂ CH(CH ₃) ₂
	R2	#-	H-	Н-	Ŧ
	R 1				0=0=0
	Compound No.	1075	1076	1077	1078

EP 0 810 221 A1

			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
5		V SE	° ₹	° ₹	© —≅	○ -5
10		R6	푸	#-	Ŧ	Ŧ
15		R.5	-CH ₂	-ch ₂ ch ₂ sch ₃	-CH ₂ OH	
	(Continued)	R4	Ŧ	7-	H-	Ŧ
30	Table 3 (Conti	R3	-сн ₂ сн(сн ₃) ₂	-CH ₂ CH(CH ₃) ₂	-СН ₂ СН (СН ₃) ₂	-CH ₂ CH(CH ₃) ₂
35		R2	#-	Ψ.	#	Ŧ.
40 45		1 84 1				
50		Compound No.	1079	1080	1081	1082

					
5	A HO	0 5		-5	-5
10	R 6	==	=	7	Ŧ
20	R 5	H-	-CH ₃	-CH ₂ CH ₃	-CH2CH2CH3
(Continued)	R4	Ŧ	н-		Ŧ
S S Table 3 (Con	R.3	-сн ₂ сн(сн ₃) ₂	-cH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂
35	R2	Н-	Н-	Н-	#
40 45	R.1				
50	Compound No.	1083	1084	1085	1086

	1			
5		A OH	- H	Ç
10		R 6	7	=
15		R5	-СН (СН ₃) ₂	-CH, CH, CH, CH,
	(pənu	R4	H-	#
<i>25</i> <i>30</i>	Table 3 (Continued)	R3	-СН ₂ СН(СН ₃) ₂	-CH,CH(CH,),
35		R2	H-	#-
40 45		R.1		
		ound	37	88

				(Committeed)			
ompound No.	R.1	R2	R3	R4	R S	R 6	HO HO
1087		#-	-CH ₂ CH(CH ₃) ₂	н-	-СН(СН ₃) ₂	#	OH OH
1088		Н-	-CH ₂ CH(CH ₃) ₂	¥-	-CH2CH2CH3	Ŧ	OH
1089		Н-	-сн ₂ сн(сн ₃) ₂	H-	-CH CH3	# -	OH
1090		-Н	H -	7	-CH ₂ CH(CH ₃) ₂	=	OH

			<u> </u>			
5		OH OH	- F	- #5	- F	
10						
		R6	#-	H-	H-	н.
15		R 5	-CH ₂ CH (CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-СН ₂ СН (СН ₃) ₂
20	3)		-CH ₂ Cl	-CH ₂ Cl	-ch ₂ cl	-CH ₂ Cl
	(Continued)	R4	∓ -	#	H-	7
30	Table 3 (Con	R3	-CH ₃	-CH2CH2CH3	-СН(СН ₃) ₂	-CH2CH2CH2CH3
35		R2	7-	Ŧ	Ŧ	=
40		- 84 - 1		>- ·		
50		Compound No.	1091	1092	1093	1094

_	
5	

₩ S				_=
R G	н-		¥-	
R 5	-CH ₂ CH(CH ₃) ₂	-CH2CH(CH3)2	-CH2CH(CH3)2	-CH ₂ CH(CH ₃) ₂
R4	Н-	7	#	#-
R3	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂
R2	Н-	н-	Н-	-CH3
R.1	-Н	H_3^{C} 0 H_3^{C} 0 H_3^{C}		
Compound No.	1095	1096	1097	1098
	R1 R2 R4 R5 R6	R1 R2 R3 R4 R5 R6 C6 C6 CH2CH(CH3)2 -H -CH2CH(CH3)2 -H	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

5	

\sim
inued
13
<u>ප</u> ි
က
e Se
æ
Tabl

	OH OH	OH	OH OH	OH OH	0 HO
	R G	Н-	-CH ₃	7	#
	R5	-CH ₂ CH (CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂
	R4	-CH3	н-	#-	Н-
	R3	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	- CH ₂ CH (CH ₃) ₂	-CH ₂ CH(CH ₃) ₂
	R2	н-	=	H-	Н-
	R 1				
	Compound No.	1099	1100	1101	1102

5	

	V HS		~ E		0 U
(R6	7	=	H-	Н-
	R5	-CH ₂ CH(CH ₃) ₂		-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂
(Continued)	R4	Н-	Н-	H-	Н-
Table 3 (Con	R3	-CH ₂ CH(CH ₃) ₂	-CH2CH(CH3)2	-СН ₂ СН (СН ₃)2	-CH ₂ CH(CH ₃) ₂
	R2	Н-	н-	#-	Ŧ
	R 1	H_3^{C}	CH_30 CH_30 CH_30		
	Compound No.	1103	1104	1105	1106

EP 0 810 221 A1

10	OH OH	-Ho		-Ho	
10	۳. 6	=	Ξ.	=	Ŧ
<i>15</i>	R 5	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-сн ₂ сн (сн ₃) ₂	-CH ₂ CH(CH ₃) ₂
Continued)	R4	Ŧ	#	н-	#
25 QO		· · · · · · · · · · · · · · · · · · ·	<u> </u>		,
Table 3	R 3	-сн ₂ сн(сн ₃) ₂	-CH2CH(CH3)2	-СН ₂ СН (СН 3)2	-CH ₂ CH(CH ₃) ₂
35	R2	Н-	-H	H-	#-
40 45	R 1	H ₃ C	СН ₃ (СН ₂) 12		
50	Compound No.	1107	1108	1109	1110

5	
_	

Continued)	
<u>ප</u> ස	
Table	

5	

(Continued)
က
Table

	A OH	0 HO	~= \\ _=		- HO
	R6	Н-	Ŧ	Ŧ	#
	R5	-CH ₂ CH (CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-СН <mark>2</mark> СН (СН ₃) ₂	-CH ₂ CH(CH ₃) ₂
(Communea)	R4	н-	Н-	Н-	
Table o (OII	R3	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-сн ₂ сн (сн ₃) ₂	-CH ₂ CH(CH ₃) ₂
	R2	7	Н-	#-	¥-
	R1		24	0 10	H ₃ C \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	Compound No.	1115	1116	1117	1118

5	

	(A) OH	HO	HO	HO	→₹
	R 6	Н-	H-	H-	=
	R 5	-СН ₂ СН (СН 3)2	-CH ₂ CH(CH ₃) ₂	-СИ ₂ СН (СН 3)2	-CH ₂ CH(CH ₃) ₂
(Continued)	R4	н-	Ŧ-	H-	Ŧ
Table 3 (Cor	R3	-CH ₂ CH(CH ₃) ₂	-CH2CH(CH3)2	-СИ ₂ СН (СН ₃)2	-CH ₂ CH(CH ₃) ₂
	R2	Н-	Н-	¥-	Ŧ
	R 1	CH ₃ 0 0	CH ₃ 0 0	$H_3C \rightarrow 0$ $H_3C \rightarrow 0$ $H_3C \rightarrow 0$	
	Compound No.	1119	1120	1121	1122

					
<i>5</i>	₩ OH		O H	-E	
	R6	Ŧ	Ŧ	== 1	F
15	RS	-CH ₂ CH(CH ₃) ₂	-cH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-сн ₂ сн (сн ₃) ₂
20		-CH ₂	-CH ₂	-CH ₂	-CH ₂
(Continued)	R4	н-	٣	Н-	#-
E Table 3 (Co	R3	-СН ₂ СН (СН ₃) ₂	-Сн ₂ Сн (Сн ₃) ₂	-СН ₂ СН (СН ₃) ₂	-CH ₂ CH(CH ₃) ₂
35	R2	#-	Ŧ	Н-	Ŧ
40	R.1			0 	0=\$=0
45					_

_	
0	

	OHO HO	OH	HO		
	R6	н-	H-	Н-	H-
	R5	-СН ₂ СН (СН ₃)2	-сн ₂ сн (сн _{3) 2}	-сн ₂ сн (сн ₃) ₂	-CH ₂ CH(CH ₃) ₂
(Continued)	R4	H-	#-	н-	#
Table 3 (Cont	R3	-СН ₂ СН (СН ₃) ₂	-CH2CH(CH3)2	-СН ₂ СН (СН 3)2	-CH ₂ CH(CH ₃) ₂
!	R2	Н-	н-	Н-	Н-
	R 1	P - S - II - O O O O O O O O O O O O O O O O	$C1 \leftarrow \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$	$H_3C \longrightarrow \begin{bmatrix} 0 \\ \parallel \\ \parallel \\ 0 \end{bmatrix}$	H_3C CH_3 CH_3 CH_3 CH_3
;	Compound No.	1127	1128	1129	1130

5	
_	

Continued)	
<u>്</u> ന	
Table	

₩ H	- F	-E	-5-E	_==
9%	푸	Ŧ	Ŧ	H-
RS	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH (CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH (CH ₃) ₂
R4	Ŧ	Ŧ	#	Н-
R3	-CH ₂ CH(CH ₃) ₂	-сн ₂ сн (сн ₃) ₂	² (сн (сн ³) ²	-CH ₂ CH(CH ₃) ₂
R2	#-	Н-	H-	Н-
R 1	$CH_30 \longrightarrow \begin{bmatrix} 0 \\ \\ \\ 0 \end{bmatrix}$	$0 \\ N_2 \\ 0$	-\$-\$-	-ss
Compound No.	1131	1132	1133	1134

5	
10	
15	
20	
25	
30	
35	
40	
45	

	₩ 5		-E	- E	-5
	R 6		=	Ŧ	Ŧ
	R 5	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂
(Continued)	R4	н-	н-	H-	н-
Table 3 (Conf	R3	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂	-cH ₂ CH ₂ SCH ₃
	R2	#-	H-	7	7
	R ¹	$ \begin{array}{c} 0 \\ \parallel \\ - \\ \parallel \\ 0 \end{array} $	$ \begin{array}{c} 0 \\ -\frac{1}{8} \\ 0 \end{array} $		
	Compound No.	1135	1136	1137	1138

				1	T	<u> </u>
5		₩ H			-5	
10		R 6	H-	"		Ŧ
15		ĸ	(СН3)2	(сн ₃) ₂	(CH ₃) ₂	
20		R5	-CH ₂ CH (CH ₃) ₂	-CH ₂ CH (CH ₃) ₂	-CH ₂ CH (CH ₃) ₂	-CH ₂ -
25	(Continued)	R4	#-	Ξ-	Ŧ	н-
30	Table 3 (Cor	R3	-сн ₂ ос (сн ₃) ₃	-CH ₂ OH		Ŧ
35		R2	H-	#-	7	7
40 45		R 1				
	}					

5	
10	
15	
20	
25	
30	
35	

	V OH	0 H	O HO	O HO	O HO
	R6	. #	#	*	¥
	R5	-CH ₂	-CH ₂ -	-CH ₂	-CH ₂
(Continued)	R4	7	н-	Н-	#-
Table 3 (Conti	R3	-CH ₃	-CH2CH2CH3	-сн (сн ₃) ₂	-CH2CH2CH3
	R2	H-	н-	Н-	н-
	R 1				
	Compound No.	1143	1144	1145	1146

5	

	₹ 5	S	- Ho	-E	-E
	R G	7	н-	Н-	Н-
	R5	-CH ₂ -	€сиз-	-CH ₂	-cH ₂ -
inued)	R4	Н-	#-	H-	H-
Table 3 (Continued)	R3	-CH CH3	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂
	R2	Н-	7	н-	н-
	R.1				
	Compound No.	1147	1148	1149	1150

5	
10	
15	
20	
25	
30	
35	
40	
45	

				<u> </u>	T
	₩ H	- H5	-E	- H	_ #5
	R6	Ŧ	Ŧ	7	Н-
	R5	-CH ₂	-CH ₂	-CH ₂	-CH ₂ -
(Continued)	R4	H-	#	#-	Н-
Table 3 (Con	R3	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH ₂ SCH ₃	-CH ₂ OH	
	R2	н-	# 1	н-	푸
	R 1				
	Compound No.	1151	1152	1153	1154

;	A HO		₩		_==
	R6	Н-	#-	-Н	#
	R 5	-cH ₂ cH ₂ scH ₃	-ch ₂ ch ₂ sch ₃	-сн ₂ он	-CH ₂ OH
(Continued)	R4	Н-	Н-	#	Ŧ
Table 3 (Con	R3	-CH ₂ CH(CH ₃) ₂	-CH2CH(CH3)2	-СН ₂ СН (СН ₃) ₂	-CH ₂ CH(CH ₃) ₂
	R2	н-	н-	н-	н-
	R 1				-S-0
	Compound No.	1155	1156	1157	1158

5

	₩ E	_₹		E S	# \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
		H	Ŧ	Ŧ	Ŧ
(F	R5			Н-	-cH3
(Continued)	R4	H-	Ŧ	Н-	#-
Table 3 (Cor	R3	-CH ₂ CH(CH ₃) ₂			
	R2	Н-	н-	H-	#
	R.1				
	Compound No.	1159	1160	1161	1162

g
ntinue
<u> වී</u>
က
Table

(A) OH	HO OH OH	CH ₃	CH ₃	CH ₃
R6	H-	H-	H-	Н-
R5	-CH ₂ CH ₂ CH ₃	-сн(сн ₃) ₂	-CH2CH2CH3	-CH ₂ CH(CH ₃) ₂
R4	н-	н-	푸	H-
R3	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂
R2	н-	#-	7	Н-
R.1				
Compound No.	1163	1164	1165	1166
	R1 R2 R3 R4 R5 R6	R1 R2 R3 R4 R5 R6 CH CH CH3 CH -CH2CH2CH3 -H -CH2CH2CH3 -H	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

5	
-	

			T	T
HIO OH	H ₃ C CH ₃	H ₃ C CH ₃ OH	H ₃ C CH ₃ OH	H ₃ C CH ₃
R6	7	=	7	=
R5	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂	-CH ₂ CH ₂ SCH ₃
R4	Н-	Н-	н-	Н-
R3	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂
R2	Н-	-H	н-	Ŧ
R.1				
Compound No.	1167	1168	1169	1170
	R1 R2 R3 R4 R5 R6	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

5	

(Continued)
က
Table

\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	H ₃ C CH ₃	H ₃ C CH ₃ OH		
R 6	7	Ŧ	#	7
25	-CH ₂ OH		н-	-CH3
R4	7	#	H-	#
R3	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-сн ₂ сн (сн ₃) ₂	-CH ₂ CH(CH ₃) ₂
R2	#-	н-	Ŧ	7
R.1				
Compound	1711	1172	1173	1174

5

	R6	H-	#-	#-	H-
0	R5	-CH ₂ CH ₃	-CH2CH2CH3	-сн(сн ₃) ₂	-CH2CH2CH3
(Continued)	R4	H-	Н-	н-	#-
Table 3 (Cor	R3	-сн ₂ сн (сн ₃) ₂	-CH ₂ CH(CH ₃) ₂	-СН ₂ СН (СН ₃) ₂	-CH ₂ CH(CH ₃) ₂
	R2	Ŧ	#	Н-	#-
	R 1				
	mpound No.	1175	1176	1177	1178

5	

ntinued)	
3 8	
Table	

OH OH	OFF BO		HO	~~=
R 6	Н-	∓	H-	H -
R5	-CH ₂ CH(CH ₃) ₂			
R4	H-	н-	#	=
R3	-н	-CH ₃	-CH ₂ CH ₃	-CH2CH2CH3
R.2	Н-	н-	H-	=
R.1				
Compound No.	1179	1180	1181	1182

5	
10	
15	
20	
25	
30	
35	
40	

;	OH.		OH	OH HO	~ H
	R 6	Н-	н-	Н-	Ŧ
	R5	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-СН ₂ СН (СН ₃) ₂	-сн ₂ сн (сн ₃) ₂
(Continued)	R4	н-	н-	Н-	Ŧ
Table 3 (Con	R3	-СН (СН ₃) ₂	-CH2CH2CH2CH3	-СН ₂ СН (СН 3)2	-сн ₂ сн (сн ₃) ₂
	R2	H-	н-	Ŧ	Ŧ
	R 1			-Н	H ₃ C 0 H ₃ C 0
	Compound No.	1183	1184	1185	1186

_	
5	
_	

	R6	Ŧ	Ŧ	H-	#
Q	R5	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH (CH ₃) ₂
(Continued)	R4	K-	*	H-	Ŧ
Table 3 (Cor	R3	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂
	R2	H-	н-	Н-	#-
	R¹			CH ₃ 0 CH	
	npound	1187	1188	1189	1190

	A) OH				~=====================================
	R 6	7-	#-	н-	H-
	RS	-CH ₂ CH (CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-СН ₂ СН (СН ₃) ₂	-сн ₂ сн (сн ₃) ₂
(Continued)	R4	-К	#	Н-	#
Table 3 (Conf	R3	-СН ₂ СН (СН 3)2	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-сн ₂ сн (сн ₃) ₂
	R2	Н-	-н	#	K-
	R 1	H ₃ C \(\int\)			CH ₃ 0 CH ₃ 0 CH ₃
	Compound No.	191	1192	1193	1194

5	
_	

ned)	
(Continu	
က	
Table	

	(° 7	/-Q	/-Q	/-Q	<u> </u>
	¥ J.E		_ ₹		←
i	R6	н-	Œ,	Ŧ	#
	S S	-CH ₂ CH (CH ₃) ₂	-сн ₂ сн (сн _{3) 2}	-сн ₂ сн (сн ₃) ₂	-ch ₂ ch(ch ₃) ₂
	R4	H-	H-	*	Ŧ
	R3	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-сн ₂ си (сн 3) 2	-CH ₂ CH(CH ₃) ₂
	R2	н-	#	#-	#
	R.1		ο α.	H ₃ C	CH O
	Compound No.	1195	1196	1197	1198

_	
5	

	V He		~==		~ #5
	R6	#-	干	7	7
	R5	-CH ₂ CH(CH ₃) ₂	-си ₂ сн (сн ₃) ₂	-сн ₂ сн (сн _{3) 2}	-CH ₂ CH(CH ₃) ₂
(Continued)	R4	н-	Н-	н-	#
Table 3 (Cor	R3	-СН ₂ СН (СН ₃) ₂	-CH ₂ CH(CH ₃) ₂	- СН ₂ СН (СН 3) <mark>2</mark>	-сн ₂ сн(сн ₃) ₂
	R2	H-	=	H-	#
	R 1	H ₃ C-S-		R — S — S — 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$H_3C \xrightarrow{CH_3} 0$ $CH_3 0$ $CH_3 0$
	Compound No.	1199	1200	1201	1202

				,	
5	OH OH		~=====================================	~=====================================	~ ==
10	R 6	#	Ŧ	H-	## "
15	5 54	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH (CH ₃) ₂	-СН ₂ СН (СН ₃) ₂	-CH ₂ CH(CH ₃) ₂
20 (Ps		-Ci	D-	<u>5</u>	D-
Gontinued)	R4	Н-	н-	Н-	H-
Table 3 (Cor	R3	-CH ₂	-CH ₂ CH ₂ SCH ₃	-сн ₂ ос (сн ₃) ₃	-CH ₂ OH
35	R2	F	=	H-	H-
4 0	R 1				
50	Compound No.	1203	1204	1205	1206

5	
10	
15	
20	
25	
30	
35	
40	
45	

	A OH	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~=====================================
	R6			=	=
	R5	-сн ₂ сн(сн ₃₎₂	-CH ₂	-CH ₂ -	-CH ₂ -
(Continued)	R4	#	н-	H-	7
Table 3 (Cont	R3		-Н	-CH ₃	-CH2CH2CH3
	R2	7	#-	#	
	R 3				
	Compound No.	1207	1208	1209	1210

		_	
5		₩ OHO	
10	:	RG	
15		R5	
20			
25	Table 3 (Continued)	R 4	
30	Table 3	R 3	
35		R2	
40		R 1	
45			

∕ °. ±	√° -	_0_1	_°	/°\
₩ H	←	HO		
R 6	¥-	# -	Ŧ	H-
R5	-CH ₂	-сн²-	-СН2	-CH ₂ -
R4	H-	Н-	H-	Ŧ
R3	-CH(CH ₃) ₂	-CII2CH2CH2CH3	-CH CH3	-CH ₂ CH(CH ₃) ₂
R2	H-	#	F-	Ŧ
R 1				
Compound No.	1211	1212	1213	1214

5	
10	
15	
20	
25	
30	
35	
40	

₩	~ 5	======================================	~ H	
R 6	- -	∓ .	#	7
R5	-CH ₂	-CH ₂	-CH ₂	-CH ₂
R. 4	#-	н-	=	Ħ
R3	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-СН ₂ СН (СН 3) 2	-cH ₂ CH ₂ SCH ₃
R2	#-	H-	뿌	=
R 1				
Compound No.	1215	1216	1217	1218
	$ m R^{1}$ $ m R^{2}$ $ m R^{3}$ $ m R^{4}$ $ m R^{5}$ $ m R^{6}$ $ m \subset$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

5	
10	
15	
20	
25	
30	
35	
40	

	(A) OH	OH	OHI OHI	OHO HIO	
	R6	Ŧ	#	7	Н-
(R5	-CH ₂ -	-CH ₂ -	-CH ₂ CH ₂ SCH ₃	-CH ₂ CH ₂ SCH ₃
(Continued)	R4	Н-	H-	H-	Н-
Table 3 (Con	R3	-СН ₂ ОН		-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂
	R2	Н-	н-	н-	Ŧ
	R 1				
	Compound No.	1219	1220	1221	1222

5	
10	
15	
20	
25	
30	
35	
40	
45	

	₩ H	~~ #5	~=====================================		
	R 6	#	Ŧ	干	*
	RS	-CH ₂ OH	-CH ₂ OH		
(Continued)	R4	#-	н-	Ŧ	#-
Table 3 (Con	R3	-CH ₂ CH(CH ₃) ₂	-CH2CH(CH3)2	-СН ₂ СН (СН ₃) ₂	-CH ₂ CH(CH ₃) ₂
	R2	Н-	н-	H-	н-
	R 1				
	Compound No.	1223	1224	1225	1226

6
n
(where
4
Table

(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0-0	\$\displaystyle{\chi_0}\$	0-0	0
R7	СН3	CH ₃	CH ₃	CH ₃
R6	7	H-	#-	7
R5	-Н	-CH ₃	-CH2CH2CH3	-CH(CH ₃) ₂
R4	#-	#	=	
R3	-ch2ch(ch3)2	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂
R2	푸	*	푸	Ŧ
R I				
Compound No.	1227	1228	1229	1230
	R1 R2 R4 R5 R6 R7 C	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

5	
10	
15	
20	
25	
30	
35	

	A 0 - 0	\$\docume{\chi_0}	\$\displaystyle \displaystyle \displa	0-0	\$\displaystyle{\chi_0}\$
	R7	CH ₃	CH ₃	CH ₃	CH ₃
	R6	н-	#-	¥-	#-
(Continued)	R5	-CH2CH2CH3	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH2CH(CH3)2
(Cont	R4	н-	H-	Ŧ	Ŧ
Table 4	R3	-СН ₂ СН (СН ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂
	R2	#	# -	Ŧ	Ŧ
	R.1				
	Compound No.	1231	1232	1233	1234

EP 0 810 221 A1

5		₩ - 0		\$\dagger_6	०	Ş
10		R.7	CH ₃	CH ₃	CH ₃	CH ₃
15		R6	=	=	#-	Ŧ
20	nued)	R5	-CH ₂	-ch2ch2sch3	-СИ ₂ ОН	
25	(Continued)	R4	Н-	#-	Н-	Ŧ
30	Table 4	R3	-сн ₂ сн(сн ₃) ₂	-сн ₂ сн(сн ₃) ₂	-сн ₂ сн (сн ₃) ₂	-ch2ch(ch3)2
35		R2	H-	Н-	H-	#
40 45		R 1				
50		Compound No.	1235	1236	1237	1238

5	

	₩,				0
	R7	CH ₃	CH ₃	CH ₃	CH ₃
	R6	Н-	#-	Ŧ	#
ned)	R5	H-	-CH ₃	-CH ₂ CH ₃	-CH ₂ CH ₂ CH ₃
(Continued)	R4	Н-	H-	H-	#-
Table 4	R3	-CH ₂ CH(CH ₃) ₂			
	R2	Н-	н-	Ħ.	Ŧ
	R 1				
	Compound No.	1239	1240	1241	1242

5	

	(A)		0	0-0	0-0
	R.7	СН3	CH ₃	СН3	CH ₃
;	R6	Н-	#	Н-	н-
(pan	R5	-сн(сн ₃) ₂	-ch2ch2ch2ch3	-CH CH3	-CH ₂ CH(CH ₃) ₂
(Continued)	R4	#-	H-	-H	н-
Table 4	R3	-CH ₂ CH(CH ₃) ₂	-CH2CH(CH3)2	-CH2CH(CH3)2	٣
	R2	H-	н-	Н-	-н
	R 1				
	Compound No.	1243	1244	1245	1246

5		\cdot\
10		R7
15		R G
20	(pən	R5
25	(Contin	R4
30	Table 4 (Continued)	R3
35		R2
40 45		R 1
		ound o.

	(A)				0-0
	R.7	CH ₃	CH ₃	CH ₃	CH ₃
	RG	Ŧ	=	#-	#-
naeu/	R5	-CH ₂ CH(CH ₃₎₂	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂
(Commission)	R4	н-	.	7	7
- 2000	R3	-CH ₃	-CH2CH2CH3	-СН(СН ₃) ₂	-CH2CH2CH3
	R2	Н-	н-	≍	¥-
	R 1				
	Compound No.	1247	1248	1249	1250

5	

(Continued)	
Table 4 (C	
Ta	

	(V)	0	~ · ·	0	~-
	R7	CH ₃	CH ₃	CH ₃	CH ₃
	Re	Ŧ	==	H-	7
(man)	R5	-CH ₂ CH(CH ₃) ₂			
	R4	Н-	#	H-	#-
	R3	-CH2CH(CH3)2	-CH2CH(CH3)2	-СН ₂ СН (СН 3)2	-CH2CH(CH3)2
	R2	#-	н-	Н-	-CH3
	R 1	н-	$H_3^{\rm C}$ 0 $H_3^{\rm C}$ 0		
	Compound No.	1251	1252	1253	1254

5	

	₩ - 0	0-6	~-	~-	
	R7	CH ₃	CH ₃	CH ₃	₩ 0
	R 6	Ŧ	-CH3	Ŧ	
(pənı	R5	-CH2CH(CH3)2	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂
(Continued)	R4	-сн3	Н-	Ŧ	H-
Table 4	R3	-CH ₂ CH(CH ₃) ₂	-CH2CH(CH3)2	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂
	R2	F.	#	H-	Ŧ
	R 1				
	Compound No.	1255	1256	1257	1258

	(V)	Ç-6	0	0-6	0-0
	R7	CH ₃	CH ₃	CH ₃	CH ₃
	R6	# -	=	=	*
(penu	R5	-CH ₂ CH (CH ₃) ₂	-CH2CH(CH3)2	-СН ₂ СН (СН ₃₎₂	-CH ₂ CH(CH ₃₎₂
(Continued)	R4	H-	₹	H-	¥-
Table 4	R3	-СН ₂ СН (СН ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂
	R2	н-	H-	Ŧ	#
	R.1	H ₃ C 0 0 0	CH ₃ 0 CH		
	Compound No.	1259	1260	1261	1262

=

5	W -0			0-6
10	R.7	CH ₃	CH ₃	CH ₃
15	R 6	7	#-	# -
20 (pənu	R5	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂
Gontinued)	R4	H-	Н-	#-
Table 4	R3	-СН ₂ СН (СН ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂
35	R2	Ŧ	Ŧ	7
40 45	R 1	H ₃ C \checkmark	CH ₃ (CH ₂) ₁₂	
	pa			
50	Compound No.	1263	1264	1265

5	

_	_	
•	٠	Ť
	×	≺
	у	2
	Ξ	3
	c	3
	₽	7
-	۰	3
	c	3
	7	5
,	•	ς.
•	_	,
`	_	•
_		
٠	V	•

	€		0-0	0	0
	R7	CH ₃	CH ₃	СН3	CH ₃
	R 6	=	=	H-	Ŧ
ided)	R5	-CH ₂ CH(CH ₃) ₂	-CH2CH(CH3)2	-сн ₂ сн (сн _{3) 2}	-CH ₂ CH(CH ₃) ₂
	R4	Ŧ	7	¥-	
T DYON	R3	-CII ₂ CH(CH ₃) ₂	-CH2CH(CH3)2	-СН ₂ СН (СН ₃) ₂	-CH ₂ CH(CH ₃) ₂
	R2	Н-	×.	#-	#
ı	R 1	0 °HDO	CH ₃ 0 CH ₃ 0 OCH ₃		- Fr.
	Compound No.	1267	1268	1269	1270

5	
10	
15	-
20	
25	(Continued)
30	Table 4
35	
40	
45	

₩ -0	0	0-0	0	0-0
R.7	CH ₃	CH ₃	CH ₃	CH ₃
R G	Ŧ	#	Н-	-
R S	-CH ₂ CH(CH ₃) ₂			
R4	н-	H-	н-	н-
۳. ع	-CH ₂ CH(CH ₃) ₂			
R2	Ŧ	7	H -	Н-
R.1	F 0	(4.	C1 0	H ₃ C
Compound No.	1271	1272	1273	1274

Table 4 (Continued)

W i	\\\\-\\\-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\rightarrow \dots	\\\-\\\-\\\\-\\\\\\\\\\\\\\\\\\\\\\\\\	\\ \-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-
R7	CH ₃	CH ₃	CH ₃	CH ₃
R6	7	=		Н
R5	-CH2CH(CH3)2	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂
R4	H-	+-	Н-	H-
R3	-CH2CH(CH3)2	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂
R2	H-	H-	4-	#
R.1	CH ₃ 0 0	CH ₃ 0 0	H_3^{C} H_3^{C} 0 0	
Compound No.	1275	1276	1277	1278
	R1 R2 R3 R4 R5 R6 R7	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

5	
10	
15	
20	
25	(Continued)
30	Table A
35	
40	
45	

	∀	0-0	~-i	0	0-0
	R7	CH ₃	CH ₃	CH ₃	CH ₃
	R6	#	H-	=	#
,	R5	-CH ₂ CH (CH ₃) ₂	-сн ₂ сн (сн ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂
	R4	H-	Ŧ	#	Ŧ
	R3	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂
	R2	н-	#	Н-	H-
	R 1			0 	
	Compound No.	1279	1280	1281	1282

5	
_	

	(V -0	~-b	~-i	0	0-0	
	R 7	CH ₃	CH ₃	CH ₃ CH ₃		
	R6	H-	н-	н-	4-	
nued)	R5	-CH ₂ CH(CH ₃) ₂				
(Continued)	R4	Н-	H-	Н-	Ŧ,	
Table 4	R3	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-СН ₂ СН (СН 3)2	-СН ₂ СН (СН ₃)2	
	R2	7	Ŧ	Ŧ	Ŧ	
	R 1	0==0	0===0	0===0	0=0=0	
	Compound No.	1283	1284	1285	1286	

5	

	(A)	0	0-0	0	Ç-6
	R7	-CH ₃	-C(CH ₃) ₃	CH ₃	CH ₃
	RG	#-	H-	₩-	H-
ned)	R5	-CH2CH(CH3)2	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂
(Continued)	R4	Н-	н-	Н-	#
Table 4 (C	R3	-CH ₂ CH(CH ₃) ₂	-CH2CH(CH3)2	-сн ₂ сн(сн ₃) ₂	-CH ₂ CH(CH ₃) ₂
	R2	H-	Н-	#-	#
	R 1			F = 0	-S - 0
	Compound No.	1287	1288	1289	1290

5	
J	

inued)	
(Cont	
4	
Table	

	(V	0-0	0	0 -0	0
	R 7	СН3	CH ₃	CH ₃	CH ₃
	R6	≖-	¥-	н-	H-
iaca,	R5	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-СН ₂ СН (СН ₃) ₂	-CH ₂ CH(CH ₃) ₂
(Committee)	R4	7	Ŧ	Н-	#
, orani	R3	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂
	R2.	#-	H-	-н	#-
	R 1	H_3C \longrightarrow \vdots	H_3c CH_3	$CH_30 \longrightarrow \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$	0_{N_2}
	Compound No.	1291	1292	1293	1294

5	

	₩\ -i				
	R.7	CH ₃	CH ₃	CH ₃	CH ₃
	R 6	#-	Ŧ	=	#
(pər	R5	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂
(Continued)	R4	#-	н-	н-	#-
Table 4	R3	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂
	R2	н-	н-	н-	#-
	R 1			$ \begin{array}{c} 0 \\ $	- S - N
	Compound No.	1295	1296	1297	1298

			·			
5		₩\ -0			0	
10		R.7	CH ₃	CH ₃	CH ₃	}_0 €
15		R 6	Ŧ	Ŧ	Ŧ	7
20	(pənı	RS	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH (CH ₃) ₂	-CH ₂ CH (CH ₃) ₂
25	(Continued)	R4	7	Ŧ	Ŧ	Ŧ
30	Table 4	R3	-CH ₂	-CH ₂ CH ₂ SCH ₃	-сн ₂ ос (сн ₃) ₃	-CH ₂ OH
35		R2	H-	н-	H-	#
40		R 1				>- 0
45						
50		Compound No.	1299	1300	1301	1302

5	
10	
15	
20	
25	
30	
35	
40	
45	

ſ					
	₩ -0	0-0	0	0	0-0
	R7	CH ₃	CH ₃	CH ₃	CH ₃
	R G	н-	н-	H -	=
	R5	-CH ₂ CH(CH ₃) ₂	-CH ₂ -	-CH ₂ -	-CH ₂
	R4	-Н	н-	#-	H-
	R3		-Н	-CH ₃	-CH2CH2CH3
	R2	H-	Н-	н-	#-
	R 1				
	Compound No.	1303	1304	1305	1306

5		V − 0	0	0	0	Ç-6
10		R.7	CH ₃	CH ₃	CH ₃	CH ₃
15		R 6	н-	Ŧ	Ŧ	Ŧ
20	nued)	RS	-CH ₂	-CH ₂	-CH ₂	-CH ₂
25	(Continued)	R4	#	#-	н-	H-
30	Table 4	R.3	-сн(сн ₃) ₂	-CH2CH2CH2CH3	-CH CH3	-CH ₂ CH(CH ₃) ₂
35	:	R2	푸	Ŧ	٣	Ŧ
40		1 2 2				
45						
50	į	Compound No.	1307	1308	1309	1310

푸

Ŧ

5	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0-0	0-0
10	R.7	CH ₃	CH ₃
15	% 6	Ŧ	Ŧ
20 (panin	R5	-CH ₂	-CH ₂
25 (Conti	R4	#	7
Table 4 (Continued)	R3	-СН ₂ СН (СН ₃) ₂	-сн ₂ сн(сн ₃) ₂
35	R2	7	7
40	R 1		
50	Compound No.	1311	1312

55

284

5		₩ -0	0	0	0	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
10		R7	CH ₃	CH ₃	CH ₃	CH ₃
15		R6	7	#	#	干
20	(Continued)	R 5	-сн ₂	-сн2-	-CH2CH2SCH3	-CH ₂ CH ₂ SCH ₃
25	(Cont	R4	Н-	н-	н-	#
30	Table 4	R3	-CH ₂ OH		-CH ₂ CH (CH ₃) ₂	-CH2CH(CH3)2
35		R2	٣	H-	Ŧ-	Ŧ
40		R.I				0=\$=0
45						
50		Compound No.	1315	1316	1317	1318

5	
10	
15	
20	
25	
30	
35	
40	
45	

	A 0-0	0 -0	0-0	0-0	0-0
	R 7	СН3	CH ₃	CH ₃	CH ₃
	R 6	#	=	H-	=
(peni	R5	-СН ₂ ОН	-CH ₂ OH		
(Continued)	R4	H-	н-	H-	F.
Table 4	R3	-CH ₂ CH(CH ₃) ₂			
	R2	H-	#	H-	H-
	R 1				
	Compound No.	1319	1320	1321	1322

			,	_	·
	R 7	CH ₃	CH ₃	CH ₃	CH ₃
	R 6	7	н-	н-	H-
(pənu	R5	-Н	-CH ₃	-CH2CH2CH3	-CH(CH ₃) ₂
(Conti	R4	# -	H-	т.	H-
Table 4 (Continued)	R3	-CH ₂ CH(CH ₃) ₂	-СН ₂ СН (СН ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂
	R2	#-	н-	Ψ-	H-
	R 1				
	Compound No.	1323	1324	1325	1326

	₩\ -6	CH ₃	#5 0 -0	H ₃ C CH ₃	H ₃ C CH 3
	R7	CH ₃	CH ₃	CH ₃	CH ₃
	RG	#	7	Ξ-	#
(pənu	R5	-CH2CH2CH3	-CH2CH(CH3)2	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂
(Continued)	R4	н-	#-	н-	H-
Table 4	R3	-CH ₂ CH(CH ₃) ₂			
	R2	Н-	+-	H-	푸
	R 1				0=8=0
	Compound No.	1327	1328	1329	1330

EP 0 810 221 A1

5		$\begin{pmatrix} A \\ 0 \end{pmatrix}$	H_3 C CH_3 O	$H_3 C \xrightarrow{CH_3} 0$	H_3 C CH_3 O	H ₃ C CH 3
10		R7	CH ₃	CH ₃	CH ₃	CH ₃
15		R6	Н-	Н-	Н-	H-
20	(panu	R5	-CH ₂ -	-CH ₂ CH ₂ SCH ₃	-сн ₂ он	
25	(Continued)	R4 .	7-	н-	H-	H-
30	Table 4	R3	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-СН ₂ СН (СН ₃) ₂	-CH ₂ CH(CH ₃) ₂
35		R2	Ŧ	н-	H-	Н-
4 0		R 1				

o N

5	

₩,	-0	0	0	0
R 7	CH ₃	CH ₃	CH ₃	CH ₃
R6	H-	Н-	#	Н-
R5	H-	-CH3	-CH ₂ CH ₃	-CH2CH2CH3
R4	н-	7	H-	٣
R3	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-СН ₂ СН (СН ₃)2	-CH ₂ CH(CH ₃) ₂
R2	н-	н-	н-	н-
R 1				
Compound No.	1335	1336	1337	1338
	R1 R2 R4 R5 R6 R7	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

4	5		

ਚ
nue
ontir
<u>y</u>
₩
7

	A -0	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	(_\range 6		\\6
	R7	CH ₃	CH ₃	CH ₃	CH ₃
	R 6	-H	H-	н-	Ŧ
nuea)	. R5	-CH(CH ₃) ₂	-CH2CH2CH3	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂
(Continued)	R4	Н-	Н-	F	Ŧ
Table 4	R3	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	Н-	-CH3
	R2	H-	=	7-	#
	R 1				
	Compound No.	1339	1340	1341	1342

5	

	¥ J				
	R.7	CH ₃	СН3	СН3	CH ₃
	R6	#-	H-	H-	₩-
ned)	R5	-CH ₂ CH(CH ₃) ₂			
(Continued)	R4	Н-		н-	H-
Table 4	R 3	-CH ₂ CH ₃	-CH ₂ CH ₂ CH ₃	-сн(сн ₃) ₂	-CH2CH2CH2CH3
	R2	#-	Н-	Н-	#
	R 1				
	Compound No.	1343	1344	1345	1346

(Continued)	
e 4	

	₽ -0	~÷			~-
	R.7	CH ₃	CH ₃	CH ₃	CH ₃
	R6	H-	7-	H-	H-
(pənu	R5	-CH ₂ CH(CH ₃) ₂	-CH2CH(CH3)2	-СН ₂ СН (СН ₃) ₂	-CH ₂ CH(CH ₃) ₂
(Continued)	R4	#-	н-	Н-	#
Table 4	R3	-CH ₂ CH(CH ₃) ₂	-CII ₂ CH(CH ₃) ₂	-СН ₂ СН (СН ₃) ₂	-CH ₂ CH(CH ₃) ₂
	R2	#-		-Ж	=
	R 1	#	H ₃ C 0 H ₃ C 0		
	Compound No.	1347	1348	1349	1350

	_	
1	7	

	0 - 0	~-o	~	0-0	~-
	R7	CH ₃	CH ₃	CH ₃	CH ₃
	R6	Н-	Ŧ	Н-	Ξ,
ned)	RS	-CH ₂ CH (CH _{3) 2}	-CH ₂ CH(CH ₃) ₂	-сн ₂ сн (сн ₃) ₂	-CH ₂ CH(CH ₃) ₂
(Continued)	R4	Н-	#-	H-	Ŧ
Table 4	R3	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-СН ₂ СН (СН 3)2	-CH ₂ CH(CH ₃) ₂
!	R2	н-	н-	H-	#-
	R 1	CH ₃ 0 CH ₃ 0 V		Ų o⁵H	
	Compound No.	1351	1352	1353	1354

	(_A)	0 -0	~-o	~-o	-0
	R.7	СH ₃	CH ₃	CH ₃	CH ₃
	R G	Н-	H-	-Н	H-
nued)	R5	-CH2CH(CH3)2	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH (CH ₃) ₂	-CH ₂ CH(CH ₃) ₂
(Continued)	R4	H -	#	4	-Н
Table 4	R3	-CH2CH(CH3)2	-CH ₂ CH(CH ₃) ₂	-СН ₂ СН (СН ₃) ₂	-СН ₂ СН (СН ₃) ₂
	R2	н-	H-	H-	Н-
	R.1		CH_30 0 0 0 0		0
	Compound No.	1355	1356	1357	1358

	\ \ \ \ \		0		
	R 7	CH ₃	CH ₃	CH ₃	CH ₃
	R6	#	H-	# -	Н-
nued)	R5	-СН ₂ СН (СН ₃) ₂	-СН ₂ СН (СН ₃) ₂	-CH ₂ CH (CH ₃) ₂	-CH ₂ CH(CH ₃) ₂
(Continued)	R4	Н-	-#	н-	#-
Table 4	R3	-CH ₂ CH(CH ₃) ₂	-СН ₂ СН (СН ₃) ₂	-CH ₂ CH (CH ₃) ₂	-CH ₂ CH(CH ₃) ₂
	R2	-Н	Ŧ-	Н-	H-
	R.1	$H_3^{\mathbb{C}}$	CH ₃ 0 0	0 	-S0
·	Compound No.	1359	1360	1361	1362

5		()	~-o	0-0	0-0	~ ·
10		R7	CH ₃	CH ₃	CH ₃	CH ₃
15		R6	н-	#	н-	H-
20	nued)	R5	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂
25	(Continued)	R4	Н-	н-	Н-	H-
30	Table 4	R3	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-сн²	-cH ₂ CH ₂ SCH ₃
35		R2	H-	Н-	H-	꾸
40		R 1		CH ₃ 0 CH ₃ 0 CH ₃ 0		
45			 Es-	H³C →		
50		Compound No.	1363	1364	1365	1366

5	₩ -i	~-b		~-o	•
10	R.7	CH ₃	CH ₃	CH ₃	
15	RG	#	푸	Ή-	
20 (pani	S 84	-CH ₂ CH (CH ₃) ₂	-CH ₂ CH (CH ₃) ₂	-СН ₂ СН (СН ₃) ₂	
(Continued)	R4	#	н-	н-	
Table 4	R.3	-СН ₂ ОС (СН ₃) ₃	-CH ₂ OH		
35	R2	푸	H-	H-	
40 45	R 1				
	- 				\
50	Compound No.	1367	1368	1369	

푸

			· · · · · · · · · · · · · · · · · · ·			
5		V	~-6	~÷	~ ·	~ ·
10		R7	CH ₃	CH ₃	CH ₃	CH ₃
15		RG	7	Ŧ	#	7
20	ued)	R5	-CH ₂	-CH ₂	-CH ₂ -	-CH ₂ -
25	(Continued)	R4	н-	H-	н-	7
30	Table 4	R.3	-CH ₃	-CH2CH2CH3	-си (сн ₃) ₂	-CH2CH2CH2CH3
35		R2	7-	#	Ŧ	∓
40 45		R 1				

		0.	/- O.	/-Q	/- O.	/-Q
5		-0 (V	\\\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-	\	\\-	\\-\-
10		R 7	CH ₃	CH ₃	CH ₃	CH ₃
15		R 6	#-	#-	#-	#-
20	(pen)	R S	-СH ₂ -	-CH ₂ -	-сн2-	-CH ₂
25	(Continued)	R4	H-	Н-	н-	Ŧ
30	Table 4	R ³	-CH CH3 CH2CH3	-CH ₂ CH(CH ₃) ₂	-СН ₂ СН (СН ₃) ₂	-си ₂ сн (сн 3) ₂
35		R2	H-	#-	Ŧ	#
40		R 1				
50		Compound No.	1375	1376	1377	1378

5	(A)		~-b
10	R.7	CH ₃	CH ₃
15	R 6	H-	H-
20 ()	R 5	-CH ₂ -	-CH ₂ -
Contir	R4	H-	H-
Table 4 (Continued)	R.3	-CH2CH(CH3)2	-cH ₂ cH ₂ ScH ₃
35	R2	Ŧ,	H-
40	. R.	0===0	

	(A) 0-	0-0	-0 -0	~-i	~-i
	R 7	СН3	CH ₃	CH ₃	CH ₃
	R6	7	Н-	H-	H-
naca/	R5	-CH ₂ -	-CH ₂ -	-сн2-	-CH ₂
(Animined)	R4	н-	н-	#	=
r aront	R3	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH ₂ SCH ₃	-CH ₂ OH	
	R2	н-	н-	Н-	Ŧ
	R 1				
	Compound No.	1379	1380	1381	1382

5	

R7	CH ₃	CH ₃	CH ₃	CH ₃
R6	H-	H-	Ξ.	Н-
R5	-CH ₂ CH ₂ SCH ₃	-ch ₂ ch ₂ sch ₃	но ^z но-	-сн ₂ он
R4	-Н	Н-	H-	H-
R3	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-СН ₂ СН (СН ₃) ₂
R2	Н-	Н-	F	Ŧ
R 1				0=%=0
Compound No.	1383	1384	1385	1386
	R1 R2 R3 R4 R5 R6	R1 R2 R3 R4 R5 R6 R7 CH3 CH2CH2CH3SCH3 -H CH2CH2SCH3 -H CH2CH2SCH3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

5	W -0	
10	R.7	CH ₃
15	R G	7
20 (pən ı	R5	
Continy 52	R4	Н-
Table 4 (Continued)	R3	-CH ₂ CH(CH ₃) ₂
35	R2	F
40 45	R 1	
	ভ	

Method for preparation of the compounds of the present invention will be explained. The oxygen-containing heterocyclic derivatives represented by the above formula (I) can be prepared, for example, according to the method described below.

1387

0

Ŧ

45

50

55

In the above formulas, R¹, R², R³, R⁴, R⁵, R⁶, A, and n have the same meanings as those defined above.

An amino acid derivative represented by the formula (IV) is reacted with a condensing agent such as dicyclohexy-lcarbodiimide, diphenylphosphoryl azide, carbonyldiimidazole, oxalyl chloride, isobutyl chloroformate, or thionyl chloride optionally in the presence of a base such as triethylamine or pyridine to activate the carboxylic acid. A compound represented by the above formula (VI) can be obtained by reacting the above-obtained product with a lactone derivative represented by the above formula (V). A solvent used for this condensation reaction may be appropriately chosen so as to be suitable for a condensing agent used, and reaction conditions or other may also be applied so as to be suitable for a condensing agent used. The oxygen-containing heterocyclic derivative represented by the formula (II) can be obtained by treating the above-obtained compound of the formula (VI) with a reducing agent such as diisobutyl aluminium hydride or sodium borohydride/cerium chloride.

Preparation method 2: Preparation of the compounds wherein R⁷ is R⁹-CO-

5

10

15

25

In the above formulas, R¹, R², R³, R⁴, R⁵, R⁶, R⁹, A, and n have the same meanings as those defined above.

The oxygen-containing heterocyclic derivative represented by the above formula (VII) can be obtained by dissolving the oxygen-containing heterocyclic derivative produced by Preparation method 1 in an organic solvent such as methylene chloride, 1,2-dichloroethane, dimethylformamide, N-methylpyrrolidone, tetrahydrofuran, ethyl acetate, acetonitrile, or toluene, and then the solution is allowed to react with an acid anhydride represented by the formula of $(R^9CO)_2O$ in the presence of a base such as pyridine, triethylamine, or 4-dimethylaminopyridine. This reaction can also be carried out without a solvent.

Preparation method 3: Preparation of the compounds wherein R⁷ is a C₁-C₅ alkyl group

(IIV)

35

30

50

$$R^{1} \xrightarrow{\begin{array}{c} R^{3} \\ N \end{array} \begin{array}{c} R^{4} \\ N \end{array} \begin{array}{c} 0 \\ R^{5} \\ R^{6} \end{array} \begin{array}{c} A \\ 0 \\ 0 \\ R^{10} \end{array}$$

$$(VIII)$$

In the above formulas, R^1 , R^2 , R^3 , R^4 , R^5 , R^6 , R^9 , A, and n have the same meaning as those defined above and R^{10} represents a C_1 - C_5 alkyl group.

The compound represented by the above formula (VIII) can be obtained by dissolving the compound of the formula (VII) obtained in Preparation method 2 in an alcohol compound represented by the formula R¹⁰OH, and then adding a catalytic amount of an acid such as hydrochloric acid or sulfuric acid and stirring the mixture.

5

15

In the above-mentioned series of reaction steps, some reactions may require protection and deprotection of one or more functional groups. For that purpose, any protective group suitable for the functional group may be chosen, and any known method described in literatures may be applied as manufacturing procedures.

Among the oxygen-containing heterocyclic derivatives of the present invention obtained as described above, the compounds of the formula (II) wherein R^7 is hydrogen atom have potent inhibitory activity against a cysteine protease. The compounds of formula (VIII) having a C_1 - C_5 alkyl group as R^7 and the compounds of formula (VII) having R^9 -CO-(R^9 represents a C_1 - C_{10} alkyl group or a C_6 - C_{12} aryl group which may optionally be substituted) as R^7 can be used as pro-drugs of the oxygen-containing heterocyclic derivatives (II) that have potent inhibitory activity against a cysteine protease. More specifically, when the compound of formula (VII) or (VIII) is orally administered, the compound is absorbed from the intestinal tract or other, and then the oxygen-containing heterocyclic derivative of the formula (II) as an active form is rapidly released by the functions of enzymes and other in a living body.

When the compound of the present invention is clinically used, a ratio of the therapeutically useful ingredient based on one or more carrier components may vary in a range of 1-90% by weight. For example, the compounds of the present invention can be orally administered as formulations in the form of granules, fine granules, powders, hard capsules, soft capsules, syrups, emulsions, suspensions, liquid preparations or the like, or alternatively, administered intravenously, intramuscularly, or subcutaneously as injections. They may be used as suppositories. They may also be formulated as powders for injection and used as injections prepared before use. Organic or inorganic and solid or liquid carriers or diluents for the preparation of formulations suitable for oral, intestinal, or parenteral administration may be used for the preparation of the medicament of the present invention. For example, as excipients used for the preparation of solid formulations, lactose, sucrose, starch, talc, cellulose, dextrin, kaolin, calcium carbonate or other may be used. Liquid formulations for oral administration such as emulsions, syrups, suspensions, solutions or other may contain a conventional inert diluent such as water or vegetable oil. These pharmaceutical preparations may contain, in addition to the inert diluent, auxiliaries such as moistening agents, suspension aids, sweeteners, aromatics, colorants, or preservatives. The medicament may be formulated as a liquid preparation and filled in capsules made of an absorbable material such as gelatin. As solvents or suspension mediums used for formulations for parenteral administration, i.e., injection, suppositories and other, for example, propylene glycol, polyethylene glycol, benzyl alcohol, ethyl oleate, lecithin and the like may be used. As base materials used for suppositories, for example, cacao butter, emulsified cacao butter, lauric lipid, witepsol and the like may be used. The pharmaceutical preparations may be prepared according to

ordinary methods.

15

20

35

40

45

Clinical dose may generally be in the range of 0.01-1,000 mg per day, when orally administered, for an adult as the weight of the compound of the present invention. However, it is further preferred that the dose may appropriately be increased or decreased depending the age, conditions, and symptom of a patient. The daily dose of the medicament of the present invention may be administered once a day, or twice o or three times a day with appropriate intervals, or alternatively, administered intermittently.

When the medicament is used as an injection, it is desirable that 0.001-100 mg per day for an adult as the weight of the compound of the present invention is administered continuously or intermittently.

Brief Description of the Drawings

Figure 1 is a HPLC chart obtained after 5 minutes' incubation of the compound of Example 88 in rat serum. Figure 2 is a HPLC chart of a sample obtained by dissolving the compound of Example 1 and the compound of Example 88 in the absence of serum.

Best Mode for Carrying Out the Invention

The present invention will be further detailed by referring to reference examples and examples. However, these reference examples and examples are non-limiting so far that the scope of the present invention falls within the gist of the present invention.

Reference Example 1: Preparation of (S)-3-((S)-4-methyl-2-phenylsulfonylaminovalerylamino)-2-tetrahydrofuranone

6 ml of thionyl chloride was cooled to -5°C, and the reagent was added with 998 mg of N-phenylsulfonyl-L-leucine. The reaction mixture was stirred at -5°C for 10 minutes, then warmed up to room temperature and stirring was further continued for 3 hours. The reaction mixture was then concentrated under reduced pressure, and the resulting residue was added with 10 ml of toluene and further concentrated to obtain crude N-phenylsulfonyl-L-leucyl chloride as a residue. The resulting crude N-phenylsulfonyl-L-leucyl chloride was dissolved in 20 ml of methylene chloride, and the solution was added with 443 mg of L-homoserinelactone hydrochloride and 0.946 ml of triethylamine under ice cooling. The reaction mixture was stirred for 15 minutes under ice cooling and then stirring was further continued for 1.5 hours at room temperature. After the completion of the reaction, the reaction mixture was added with diluted hydrochloric acid and extracted with methylene chloride. The extract was washed successively with water, saturated aqueous sodium hydrogencarbonate, and saturated brain, dried over magnesium sulfate, and then filtered. The filtrate was concentrated and the resulting residue was added with 10 ml of ethyl acetate and 20 ml of hexane and stirred. Precipitated crystals were collected by filtration to obtain the desired compound (861 mg).

Yield: 76%

Melting point: 183-184°C

IR (KBr, cm⁻¹): 3331, 3256, 1772, 1649.

NMR (CDCl₃, δ): 0.67 (d, J=6.0Hz, 3H), 0.84 (d, J=6.3Hz, 3H), 1.45-1.56 (m, 3H), 2.01 (m, 1H), 2.63 (m, 1H), 4.26 (m, 1H), 4.36 (m, 1H), 4.45 (ddd, J=9.3Hz, 9.3Hz, 1.8Hz, 1H), 5.28 (d, J=8.1 Hz, 1H), 6.67 (d, J=6.0Hz, 1H), 7.52 (m, 2H), 7.60 (m, 1H), 7.88 (dd, J=7.2Hz, 1.5Hz, 2H).

Example 1: Preparation of (3S)-3-((S)-4-methyl-2-phenylsulfonylaminovalerylamino)-2-tetrahydrofuranol (Compound No. 196 in Table-1)

413 mg of (S)-3-((S)-2-phenylsulfonylamino-4-methylvalerylamino)-2-tetrahydrofuranone obtained in Reference Example 1 was dissolved in 60 ml of methylene chloride and the solution was cooled to -78 °C . 3.81 ml of a solution of diisobutylalminium hydride in toluene (1.01 mol/L) was added to the reaction solution. After three hours, the reaction mixture was added with a saturated aqueous solution of ammonium chloride and ethyl acetate, and then warmed up to room temperature and filtered through celite. The celite was washed thoroughly with ethyl acetate. The filtrate was washed with saturated brain, dried over magnesium sulfate, and then filtered. The filtrate was concentrated, and the resulting residue was purified by silica gel column chromatography (eluent: ethyl acetate containing 30% hexane) to give 191 mg of the desired compound.

55

Yield: 46%

Melting point: 162°C

IR (KBr, cm⁻¹): 3337, 3260, 1649.

NMR (CDCl₃+DMSO-d₆, δ): 0.72 (d, J=6.6Hz, 2.7H), 0.78 (d, J=6.3Hz, 0.3H), 0.84 (d, J=6.6Hz, 2.7H), 0.86 (d,

J=6.3Hz, 0.3H), 1.46 (t, J=7.2Hz, 2H), 1.63 (m, 2H), 2.09 (m, 0.9H), 2.25 (m, 0.1H), 3.68-3.81 (m, 2H), 3.99-4.12 (m, 2H), 4.95 (br s, 0.1H), 5.03 (d, J=3.6Hz, 0.1H), 5.15 (dd, J=3.9Hz, 3.9Hz, 0.9H), 5.63 (d, J=3.9Hz, 0.9H), 6.68 (d, J=9.3Hz, 0.1H), 6.81 (d, J=8.1Hz, 0.9H), 6.89 (d, J=7.8Hz, 0.9H), 7.14 (d, J=7.2Hz, 0.1H), 7.46-7.58 (m, 3H), 7.85 (m, 2H).

5

10

The ratio of the isomers in this solvent was about 9:1.

NMR (CD₃OD, δ): 0.74 (d, J=6.5Hz, 3H), 0.80 (d, J=6.5Hz, 3H), 0.86 (d, J=7.1Hz, 3H), 0.88 (d, J=6.8Hz, 3H), 1.34-1.50 (m, 3H), 1.64 (m, 1H), 2.01 (m, 0.4H), 2.17 (m, 0.6H), 3.73-3.97 (m, 4H), 4.96 (s, 0.6H), 5.11 (d, J=4Hz, 0.4H), 7.53-7.61 (m, 3H), 7.85 (m, 2H).

The ratio of the isomers in this solvent was about 6:4.

Compounds of Example 2 to Example 87 were prepared in the same manners as those of Reference Example 1 and Example 1. Physicochemical data of the compounds will be described below.

15

20

30

40

Example 2: Preparation of (3S)-3-benzyloxycarbonylaminoacethylamino-2-tetrahydrofuranol (Compound No. 17 in Table-1)

Melting point: 119-121°C

IR (KBr, cm⁻¹): 3314, 1692, 1649, 1541.

NMR (CDCl₃, δ): 1.84 (m, 1H), 2.22-2.50 (m, 1H), 2.86 (s, 0.3H), 2.97 (s, 0.7H), 3.79-4.00 (m, 3H), 4.11 (m, 1H), 4.37 (m, 1H), 5.14 (s, 2H), 5.27 (m, 1.3H), 5.39 (s, 0.7H), 6.12 (s, 0.3H), 6.42 (s, 0.7H), 7.36 (m, 5H).

Example 3: Preparation of (3S)-3-((S)-2-bezyloxycarbonylaminopropionylamino)-2-tetrahydrofuranol (Compound No. 18 in Table-1)

Melting point: 161-163°C

IR (KBr, cm⁻¹): 3312, 1688, 1647, 1561, 1530.

NMR (CDCl₃, δ): 1.36 (d, J=7.2Hz, 0.75H), 1.39 (d, 7.2Hz, 2.25H), 1.81 (m, 1H), 2.34 (m, 0.75H), 2.43 (m, 0.25H), 2.99 (s, 0.25H), 3.09 (s, 0.75H), 3.87 (ddd, J=7.8Hz, 7.8Hz, 7.8Hz, 0.75H), 4.00 (m, 0.25H), 4.11 (m, 1H), 4.22 (m, 1H), 4.37 (m, 1H), 5.11 (s, 2H), 5.29 (m, 2H), 6.28 (s, 0.25H), 6.45 (s, 0.75H), 7.35 (m, 5H).

Example 4: Preparation of (3S)-3-((S)-2-benzyloxycarbonylaminovalerylamino)-2-tetrahydrofuranol (Compound No. 20 in Table-1)

35

Melting point: 148-149°C

IR (KBr, cm⁻¹): 3299, 1694, 1645, 1539.

NMR (CDCl₃, δ): 0.92 (m, 3H), 1.38 (m, 2H), 1.62 (m, 1H), 1.78 (m, 2H), 2.31 (m, 0.7H), 2.42 (m, 0.3H), 3.27 (s, 0.3H), 3.42 (s, 0.7H), 3.86 (ddd, J=7.8Hz, 7.8Hz, 7.8Hz, 0.7H), 3.98 (m, 0.3H), 4.11 (m, 2H), 4.33 (m, 1H), 5.10 (s, 2H), 5.27 (m, 1.3H), 5.38 (d, J=7.1Hz, 0.7H), 6.30 (s, 0.3H), 6.46 (d, J=8.0Hz, 0.7H), 7.35 (m, 5H).

Example 5: Preparation of 3-((S)-2-benzyloxycarbonylamino-3-methylbutyrylamino)-2-tetrahydrofuranol (Compound No. 21 in Table-1)

45 Melting point: 122-123°C

IR (KBr, cm⁻¹): 3302, 1694, 1647, 1537.

NMR (CDCl₃, δ): 0.94 (m, 6H), 1.83 (m, 1H), 2.12 (m, 1H), 2.30 (m, 0.6H), 2.44 (m, 0.4H), 3.40 (s, 0.4H), 3.49 (s, 0.6H), 3.82-4.06 (m, 2H), 4.10 (m, 1H), 4.38 (m, 1H), 5.09 (m, 2H), 5.26 (s, 0.4H), 5.32 (s, 0.6H), 5.50 (m, 1H), 6.32 (s, 0.2H), 6.45 (s, 0.4H), 6.54 (s, 0.2H), 6.68 (s, 0.2H), 7.34 (m, 5H).

50

55

Example 6: Preparation of (3S)-3-((S)-2-benzyloxycarbonylaminohexanoylamino)-2-tetrahydrofuranol (Compound No. 22 in Table-1)

Melting point: 165-166°C

IR (KBr, cm⁻¹): 3304, 1694, 1645, 1539.

NMR (CDCl $_3$, δ): 0.87 (m, 3H), 1.32 (m, 3H), 1.64 (m, 2H), 1.78 (m, 2H), 2.29 (m, 0.8H), 2.42 (m, 0.2H), 3.22 (s, 0.2H), 3.39 (s, 0.8H), 3.86 (ddd, J=7.8Hz, 7.8Hz, 7.8Hz, 0.8H), 3.99 (m, 0.2H), 4.11 (m, 2H), 4.33 (m, 1H), 5.10 (s, 2H), 5.17-5.44 (m, 2H), 6.27 (s, 0.2H), 6.47 (d, J=7.8Hz, 0.8H), 7.34 (m, 5H).

Example 7: Preparation of (3S)-3-((2S)-2-benzyloxycarbonylamino-3-methylvalerylamino)-2-tetrahydrofuranol (Compound No. 23 in Table-1)

Melting point: 169-171°C

5

15

20

40

50

55

IR (KBr, cm⁻¹): 3299, 1694, 1649, 1539.

NMR (CDCl₃, δ): 0.91 (m, 6H), 1.12 (m, 1H), 1.50 (m, 1H), 1.84 (m, 2H), 2.31 (m, 0.7H), 2.44 (m, 0.3H), 3.40 (s, 1H), 3.82-4.16 (m, 3H), 4.35 (m, 1H), 5.10 (s, 2H), 5.26 (m, 1H), 5.41 (s, 1H), 6.17 (s, 0.3H), 6.40 (s, 0.7H), 7.38 (m, 5H).

10 Example 8: Preparation of (3S)-3-((S)-2-amino-4-methylvalerylamino)-2-tetrahydrofuranol hydrochloride (Compound No. 24 in Table-1)

NMR (CD₃OD, δ): 1.00 (d, J=5.6Hz, 6H), 1.69-1.83 (m, 3H), 1.98 (m, 1H), 2.24 (m, 0.5H), 2.34 (m, 0.5H), 3.84-4.07 (m, 4H), 4.95 (s, 0.5H), 4.99 (d, J=4.0Hz, 0.5H).

Example 9: Preparation of 3-((S)-2-methoxycarbonylamino-4-methylvalerylamino)-2-tetrahydrofuranol (Compound No. 25 in Table-1)

Melting point: 139-141°C

IR (KBr, cm⁻¹): 3287, 3081, 1686, 1653, 1553.

NMR (CDCl₃, δ): 0.94 (m, 6H), 1.50-1.74 (m, 3H), 1.81 (m, 1H), 2.36 (m, 0.6H), 2.48 (m, 0.4H), 3.44 (s, 0.4H), 3.58 (s, 0.6H), 3.68 (s, 3H), 3.99 (m, 0.6H), 4.01 (m, 0.4H), 4.13 (m, 2H), 4.34 (m, 1H), 5.27 (d, J=3.0Hz, 0.6H), 5.34 (m, 1.4H), 6.49 (s, 0.4H), 6.57 (d, J=7.8Hz, 0.4H), 6.68 (s, 0.2H).

Example 10: Preparation of (3S)-3-((S)-2-tert-butoxycarbonylamino-4-methylvalerylamino)-2-tetrahydrofuranol (Compound No. 27 in Table-1)

Melting point: 65-70°C

IR (KBr, cm⁻¹): 3310, 1698, 1657.

30 NMR (CDCl₃, δ): 0.95 (m, 6H), 1.44 (s, 4.5H), 1.44 (s, 4.5H), 1.48 (m, 1H), 1.66 (m, 2H), 1.81 (m, 1H), 2.33 (m, 0.5H), 2.46 (m, 0.5H), 3.88 (ddd, J=7.5Hz, 7.5Hz, 7.5Hz, 0.5H), 4.01 (ddd, J=8.4Hz, 8.4Hz, 8.4Hz, 0.5H), 4.12 (m, 2H), 4.36 (m, 1H), 4.96 (d, J=7.8Hz, 0.5H), 5.03 (m, 0.5H), 5.26 (s, 0.5H), 5.33 (s, 0.5H), 6.47 (m, 0.5H), 6.61 (m, 0.5H).

25 Example 11: Preparation of (3S)-3-((S)-2-isobutoxycarbonylamino-4-methylvalerylamino)-2-tetrahydrofuranol (Compound No. 28 in Table-1)

Melting point: 31-33°C

IR (KBr, cm⁻¹): 3310, 1699, 1657, 1543.

NMR (CDCl₃, δ): 0.94 (m, 12H), 1.47-2.00 (m, 5H), 2.36 (m, 0.5H), 2.45 (m, 0.5H), 2.96 (s, 0.5H), 3.17 (s, 0.5H), 3.90 (m, 1.5H), 4.02 (m, 0.5H), 4.15 (m, 2H), 4.36 (m, 1H), 5.08 (m, 1H), 5.27 (s, 0.5H), 5.35 (s, 0.5H), 6.24 (s, 0.5H), 6.50 (s, 0.5H).

Example 12: Preparation of (3S)-3-((S)-2-cyclohexylmethoxycarbonylamino-4-methylvalerylamino)-2-tetrahydrofuranol (Compound No. 29 in Table-1)

Melting point: 52-54°C

IR (KBr, cm⁻¹): 3310, 1703, 1659, 1545.

NMR (CDCl₃, δ): 0.93 (m, 8H), 1.26-1.33 (m, 4H), 1.43-1.92 (m, 9H), 2.36 (m, 0.5H), 2.50 (m, 0.5H), 3.22 (s, 0.5H), 3.49 (s, 0.5H), 3.87-4.23 (m, 5H), 4.34 (m, 1H), 5.13 (m, 1H), 5.26 (d, J=2.7Hz, 0.5H), 5.32 (dd, J=3.9Hz, 3.9Hz, 0.5H), 5.34 (s, 0.5H), 6.53 (s, 0.5H).

Example 13: Preparation of (3S)-3-((S)-2-benzyloxycarbonylamino-4-methylvalerylamino)-2-tetrahydrofuranol (Compound No. 31 in Table-1)

Melting point: 40-43°C

IR (KBr, cm⁻¹): 3306, 1705, 1657.

NMR (CDCl₃, δ): 0.92 (d, J=6.1Hz, 3H), 0.94 (d, J=5.9Hz, 3H), 1.52 (m, 1H), 1.64 (m, 2H), 1.78 (m, 1H), 2.29 (m, 0.5H), 2.41 (m, 0.5H), 3.51 (s, 0.5H), 3.74 (s, 0.5H), 3.85 (ddd, J=8.0Hz, 8.0Hz, 8.0Hz, 0.5H), 3.97 (m, 0.5H), 4.10

(m, 2H), 4.32 (m, 1H), 5.09 (s, 1H), 5.10 (s, 1H), 5.24 (s, 0.5H), 5.29 (s, 0.5H), 5.35 (d, J=6.5Hz, 0.5H), 5.38 (d, J=8.2Hz, 0.5H), 6.45 (d, J=6.0Hz, 0.5H), 6.57 (d, J=6.0Hz, 0.5H), 7.33 (m, 5H).

Example 14: Preparation of (3S)-3-{(S)-2-(N-benzyloxycarbonyl-N-methyl)amino-4-methylvalerylamino}-2-tetrahydrofuranol (Compound No. 32 in Table-1)

IR (neat): 3335, 1669.

NMR (CDCl₃, δ): 0.93 (m, 6H), 1.49 (m, 1H), 1.69 (m, 3H), 2.28 (m, 0.5H), 2.39 (m, 0.5H), 2.85 (s, 1.5H), 2.86 (s, 1.5H), 3.12 (s, 0.5H), 3.30 (s, 0.5H), 3.85 (m, 1H), 4.07 (m, 1H), 4.29 (m, 1H), 4.60 (m, 0.5H), 4.70 (m, 0.5H), 5.09-5.26 (m, 3H), 6.24 (s, 0.5H), 6.53 (s, 0.5H), 7.36 (m, 5H).

Example 15: Preparation of (3S)-3-{(S)-2-(4-fluorobenzyloxycarbonylamino)-4-methylvalerylamino}-2-tetrahydrofuranol (Compound No. 37 in Table-1)

Melting point: 50-52°C

10

15

20

25

35

45

50

55

IR (KBr, cm⁻¹): 3310, 1705, 1657, 1607, 1541, 1514.

NMR (CDCl₃, δ): 0.93 (m, 6H), 1.47-1.90 (m, 4H), 2.32 (m, 0.5H), 2.44 (m, 0.5H), 3.10 (s, 0.5H), 3.35 (s, 0.5H), 3.87 (ddd, J=7.8Hz, 7.8Hz, 7.8Hz, 0.5H), 3.98 (m, 0.5H), 4.11 (m, 2H), 4.33 (m, 1H), 5.04 (s, 1H), 5.06 (s, 1H), 5.25 (m, 2H), 6.20 (bs, 0.5H), 6.46 (d, J=8.1Hz, 0.5H), 7.03 (dd, J=8.7Hz, 2H), 7.33 (m, 2H).

Example 16: Preparation of (3S)-3-{(S)-2-(2-chlorobenzyloxycarbonylamino)-4-methylvalerylamino}-2-tetrahydrofuranol (Compound No. 38 in Table-1)

Melting point: 46-49°C

IR (KBr, cm⁻¹): 3308, 1707, 1657, 1541.

NMR (CDCl₃, δ): 0.94 (m, 6H), 1.48-1.86 (m, 4H), 2.32 (m, 0.6H), 2.48 (m, 0.4H), 2.90 (s, 0.4H), 3.09 (s, 0.6H), 3.88 (ddd, J=7.8Hz, 7.8Hz, 7.8Hz, 0.6H), 4.01 (m, 0.4H), 4.11 (m, 2H), 4.34 (m, 1H), 5.23 (s, 2H), 5.25 (m, 2H), 6.18 (s, 0.4H), 6.45 (d, J=7.6Hz, 0.6H), 7.26 (m, 2H), 7.40 (m, 2H).

30 Example 17: Preparation of (3S)-3-{(S)-2-(4-chlorobenzyloxycarbonylamino)-4-methylvalerylamino}-2-tetrahydrofuranol (Compound No. 40 in Table-1)

Melting point: 47-49°C

IR (KBr, cm⁻¹): 3308, 1705, 1657, 1541.

NMR (CDCl₃, δ): 0.94 (m, 6H), 1.50-1.86 (m, 4H), 2.32 (m, 0.7H), 2.44 (m, 0.3H), 2.88 (s, 0.3H), 3.03 (s, 0.7H), 3.88 (ddd, J=7.8Hz, 7.8Hz, 7.8Hz, 0.7H), 3.95 (m, 0.3H), 4.12 (m, 2H), 4.35 (m, 1H), 5.06 (s, 0.6H), 5.07 (s, 1.4H), 5.22 (m, 1.3H), 5.30 (s, 0.7H), 6.09 (s, 0.3H), 6.39 (d, J=8.7Hz, 0.7H), 7.31 (m, 4H).

Example 18: Preparation of (3S)-3-{(S)-4-methyl-2-(2-methylbenzyloxycarbonylamino)valerylamino}-2-tetrahydrofurao nol (Compound No. 44 in Table-1)

Melting point: 120-122°C

IR (KBr, cm⁻¹): 3302, 1694, 1645, 1541.

NMR (CDCl₃, δ): 0.93 (m, 6H), 1.52 (m, 1H), 1.59 (m, 3H), 2.16-2.49 (m, 1H), 2.34 (s, 3H), 3.28 (s, 0.5H), 3.52 (s, 0.5H), 3.86 (dd, J=7.8Hz, 7.8Hz, 7.8Hz, 0.5H), 3.98 (m, 0.5H), 4.13 (m, 2H), 4.31 (m, 1H), 5.12 (s, 2H), 5.27 (m, 2H), 6.34 (s, 0.5H), 6.51 (s, 0.5H), 7.19 (m, 2H), 7.31 (m, 2H).

Example 19: Preparation of (3S)-3-{(S)-4-methyl-2-(4-methylbenzyloxycarbonylamino)valerylamino}-2-tetrahydrofuranol (Compound No. 46 in Table-1)

IR (KBr, cm⁻¹): 3310, 1703, 1657, 1539.

NMR (CDCl₃, δ): 0.93 (m, 6H), 1.52 (m, 1H), 1.58-1.86 (m, 3H), 2.29 (m, 0.5H), 2.35 (s, 3H), 2.43 (m, 0.5H), 2.91 (s, 0.5H), 3.03 (s, 0.5H), 3.87 (ddd, J=7.8Hz, 7.8Hz, 7.8Hz, 0.5H), 3.97 (m, 0.5H), 4.10 (m, 2H), 4.33 (m, 1H), 5.06 (s, 2H), 5.14 (m, 1H), 5.26 (m, 1H), 6.20 (s, 0.5H), 6.44 (s, 0.5H), 7.16 (m, 2H), 7.23 (m, 2H).

Example 20: Preparation of (3S)-3-{(S)-2-(2-methoxybenzyloxycarbonylamino)-4-methylvalerylamino)-2-tetrahydro-furanol (Compound No. 47 in Table-1)

Melting point: 36-38°C

IR (KBr, cm⁻¹): 3308, 1703, 1657, 1539.

NMR (CDCl₃, δ): 0.93 (m, 6H), 1.51 (m, 1H), 1.60-1.91 (m, 3H), 2.30 (m, 0.6H), 2.42 (m, 0.4H), 3.15 (s, 0.4H), 3.31 (d, J=3.0Hz, 0.6H), 3.83 (s, 3H), 3.87 (m, 0.6H), 3.91 (m, 0.4H), 4.13 (m, 2H), 4.32 (m, 1H), 5.16 (s, 0.8H), 5.18 (s, 1.2H), 5.23 (m, 2H), 6.65 (s, 0.4H), 6.53 (d, J=7.5Hz, 0.6H), 6.91 (m, 2H), 7.31 (m, 2H).

5

10

Example 21: Preparation of (3S)-3-{(S)-2-(4-methoxybenzyloxycarbonylamino)-4-methylvalerylamino}-2-tetrahydrofuranol (Compound No. 49 in Table-1)

Melting point: 30-33°C

IR (KBr, cm⁻¹): 3310, 1701, 1657, 1516.

NMR (CDCl₃, δ): 0.92 (m, 6H), 1.50 (m, 1H), 1.59-1.88 (m, 3H), 2.29 (m, 0.5H), 2.42 (m, 0.5H), 3.01 (s, 0.5H), 3.20 (d, J=3.0Hz, 0.5H), 3.80 (s, 3H), 3.88 (ddd, J=7.8Hz, 7.8Hz, 7.8Hz, 0.5H), 3.96 (m, 0.5H), 4.11 (m, 2H), 4.33 (m, 1H), 5.03 (s, 2H), 5.15 (m, 1H), 5.27 (s, 0.5H), 5.32 (s, 0.5H), 6.22 (s, 0.5H), 6.66 (s, 0.5H), 6.87 (m, 2H), 7.28 (m, 2H).

15

20

Example 22: Preparation of (3S)-3-{(S)-2-(9-fluorenylmethoxycarbonylamino)-4-methylvalerylamino}-2-tetrahydrofuranol (Compound No. 51 in Table-1)

Melting point: 150-153°C

IR (KBr, cm⁻¹): 3314, 1725, 1696, 1653, 1534.

NMR (CDCl₃, δ): 0.93 (m, 6H), 1.65 (m, 3H), 1.91 (m, 1H), 2.32 (m, 0.7H), 2.42 (m, 0.3H) 3.08 (s, 0.3H), 3.28 (d, J=3Hz, 0.7H), 3.86 (ddd, J=7.8Hz, 7.8Hz, 7.8Hz, 0.7H), 4.01 (m, 0.3H), 4.08-4.24 (m, 3H), 4.32-4.52 (m, 3H), 5.27 (m, 2H), 6.21 (s, 0.3H), 6.38 (s, 0.7H), 7.31 (m, 2H), 7.40 (m, 2H), 7.56 (dd, J=7.4Hz, 2H), 7.76 (d, J=7.4Hz, 2H).

Example 23: Preparation of (3S)-3-((S)-4-methyl-2-tetrahydrofurfuryloxycarbonylaminovalerylamino)-2-tetrahydrofuranol (Compound No. 52 in Table-1)

Melting point: 40-43°C

IR (KBr, cm⁻¹): 3308, 1705, 1659, 1543.

NMR (CDCl₃, δ): 0.94 (m, 6H), 1.46-2.07 (m, 8H), 2.32 (m, 0.5H), 2.46 (m, 0.5H), 3.36 (s, 0.5H), 3.39 (s, 0.5H), 3.78-4.25 (m, 8H), 4, 29-4.42 (m, 1H), 5.28 (m, 1.5H), 5.40 (s, 0.5H), 6.34 (s, 0.5H), 5.56 (s, 0.5H).

Example 24: Preparation of (3S)-3-{(S)-4-methyl-2-(2-tetrahydropyranylmethoxycarbonylamino)valerylamino}-2-tetrahydrofuranol (Compound No. 53 in Table-1)

35

40

30

IR (KBr, cm⁻¹): 3306, 1705, 1659, 1539.

NMR (CDCl₃, δ): 0.94 (m, 6H), 1.30 (m, 1H), 1.53 (m, 3H), 1.68 (m, 4H), 1.84 (m, 2H), 2.32 (m, 0.5H), 2.47 (m, 0.5H), 3.44 (m, 1H), 3.55 (m, 1H), 3.65 (s, 0.5H), 3.74 (s, 0.5H), 3.98 (ddd, J=7.8Hz, 7.8Hz, 7.8Hz, 0.5H), 4.00 (m, 3.5H), 4.12 (m, 2H), 4.35 (m, 1H), 5.28 (d, J=3.0Hz, 0.5H), 5.31 (m, 1H), 5.46 (m, 0.5H), 6.45 (s, 0.5H), 6.61 (m, 0.5H).

Example 25: Preparation of (3S)-3-{(S)-4-methyl-2-(2-pyridylmethoxycarbonylamino)valerylamino}-2-tetrahydrofuranol (Compound No. 54 in Table-1)

45

Melting point: 54-56°C

IR (KBr, cm⁻¹): 3306, 1711, 1657, 1541.

NMR (CDCl₃, δ): 0.95 (m, 6H), 1.53 (m, 2H), 1.68 (m, 3H), 2.28 (m, 0.5H), 2.47 (m, 0.5H), 3.85 (ddd, J=8.1Hz, 8.1Hz, 8.1Hz, 0.5H), 3.97 (ddd, J=8.1Hz, 8.1Hz, 8.1Hz, 0.5H), 4.08-4.44 (m, 3H), 5.10-5.36 (m, 3H), 5.75 (s, 1H), 6.67 (s, 0.5H), 6.69 (s, 0.5H), 7.19-7.40 (m, 2H), 7.69 (m, 1H), 8.50 (d, J=3.9Hz, 0.5H), 8.56 (d, J=3.9Hz, 0.5H).

50

Example 26: Preparation of 3-{(S)-4-methyl-2-(2-pyridylmethoxycarbonylamino)valerylamino)-2-tetrahydrofuranol Noxide (Compound No. 57 in Table-1)

55

NMR (CDCl₃, δ): 0.93 (m, 6H), 1.50-1.92 (m, 4H), 2.10-2.48 (m, 1H), 2.86 (s, 0.8H), 3.30 (s, 0.2H), 3.84 (m, 1H), 4.08 (m, 1H), 4.36 (m, 2H), 5.10-5.68 (m, 3H), 5.99 (s, 0.5H), 6.12 (s, 0.3H), 6.30 (m, 0.2H), 6.82-7.07 (m, 1H), 7.35 (m, 3H), 8.28 (d, J=8.6Hz, 1H).

Example 27: Preparation of (3S)-3-((S)-2-cyclohexyloxycarbonylamino-4-methylvalerylamino)-2-tetrahydrofuranol (Compound No. 60 in Table-1)

Melting point: 28-30°C

5

15

25

35

45

55

IR (KBr, cm⁻¹): 3310, 1696, 1657, 1539.

NMR (CDCl₃, δ): 0.95 (m, 6H), 1.29 (m, 2H), 1.36 (m, 4H), 1.53 (m, 2H), 1.69 (m, 4H), 1.85 (m, 2H), 2.36 (m, 0.5H), 2.48 (m, 0.5H), 2.85 (s, 0.5H), 3.06 (s, 0.5H), 3.89 (ddd, J=7.8Hz, 7.8Hz, 7.8Hz, 0.5H), 4.02 (m, 0.5H), 4.14 (m, 2H), 4.36 (m, 1H), 4.63 (m, 1H), 4.99 (m, 1H), 5.26 (m, 0.5H), 5.32 (m, 0.5H), 6.22 (s, 0.5H), 6.47 (s, 0.5H).

Examle28: Preparation of (3S)-3-((S)-4-methyl-2-phenoxycarbonylaminovalerylamino)-2-tetrahydrofuranol (Compound No. 61 in Table-1)

Melting point: 68-70°C

IR (KBr, cm⁻¹): 3308, 1723, 1659, 1539.

NMR (CDCl₃, δ): 0.98 (m, 6H) 1.52 (m, 1H), 1.58-1.86 (m, 3H), 2.30-2.52 (m, 1H), 2.98 (s, 0.6H), 3.23 (s, 0.4H), 3.89 (ddd, J=7.8Hz, 7.8Hz, 7.8Hz, 0.6H), 4.01 (ddd, J=7.8Hz, 7.8Hz, 7.8Hz, 0.4H), 4.09-4.27 (m, 2H), 4.38 (m, 1H), 5.27 (d, J=2.7Hz, 0.4H), 5.33 (dd, J=3.6Hz, 3.6Hz, 0.6H), 5.60 (s, 1H), 6.10 (s, 0.4H), 6.24 (s, 0.6H), 7.12 (m, 2H), 7.20 (m, 1H), 7.35 (m, 2H).

Example 29: Preparation of (3S)-3-((S)-4-methyl-2-phenylureidovalerylamino)-2-tetrahydrofuranol (Compound No. 63 in Table-1)

Melting point: 181-182°C

IR (KBr, cm⁻¹): 3291, 1638, 1555.

NMR (CDCl₃, δ): 0.96 (m, 6H), 1.50 (m, 2H), 1.67 (m, 1H), 1.86 (m, 1H), 2.26 (m, 0.5H), 2.41 (m, 0.5H), 2.88 (s, 0.5H), 3.40 (s, 0.5H), 3.82 (ddd, J=7.8Hz, 7.8Hz, 7.8Hz, 0.5H), 4.07 (m, 1.5H), 4.29 (m, 2H), 5.20 (s, 0.5H), 5.26 (d, J=4.5Hz, 0.5H), 5.98 (m, 1H), 7.02 (m, 1H), 7.24 (m, 5H), 7.73 (s, 0.5H), 7.91 (s, 0.5H).

Example 30: Preparation of (3S)-3-{(S)-2-(3,3-dimethylbutyrylamino)-4-methylvlerylamino}-2-tetrahydrofuranol (Compound No. 73 in Table-1)

Melting point: 152-153°C

IR (KBr, cm⁻¹): 3293, 1642, 1549.

NMR (CDCl₃, δ): 0.93 (m, 6H), 1.02 (s, 9H), 1.49-1.94 (m, 4H), 2.07 (s, 1H), 2.08 (s, 1H), 2.32 (m, 0.5H), 2.45 (m, 0.5H), 3.17 (d, J=3.0Hz, 0.5H), 3.73 (d, J=3.0Hz, 0.5H), 3.87 (ddd, J=7.8Hz, 7.8Hz, 7.8Hz, 0.5H), 4.02 (m, 0.5H), 4.10 (m, 1H), 4.23-4.54 (m, 3H), 5.28 (d, J=2.4Hz, 0.5H), 5.31 (dd, J=2.4Hz, 2.4Hz, 0.5H), 6.62 (s, 0.5H), 6.69 (s, 0.5H).

Eample31: Preparation of (3S)-3-((S)-4-methyl-2-tetradecanoylaminovalerylamino)-2-tetrahydrofuranol (Compound No. 78 in Table-1)

Melting point: 96-98°C

IR (KBr, cm⁻¹): 3292, 1636, 1543.

NMR (CDCl₃, δ): 0.88 (t, J=5.3Hz, 3H), 0.94 (m, 6H), 1.25 (m, 22H), 1.51-1.94 (m, 4H), 2.20 (m, 2H), 2.31 (m, 0.5H), 2.43 (m, 0.5H), 3.10 (d, J=2.7Hz, 0.5H), 3.65 (d, J=2.7Hz, 0.5H), 3.87 (ddd, J=7.8Hz, 7.8Hz, 7.8Hz, 0.5H), 4.00 (ddd, J=7.8Hz, 7.8Hz, 7.8Hz, 0.5H), 4.11 (m, 1H), 4.26-4.55 (m, 2H), 5.27 (d, J=2.7Hz, 0.5H), 5.31 (dd, J=4.1Hz, 4.1Hz, 0.5H), 5.97 (s, 1H), 6.52 (s, 0.5H), 6.62 (s, 0.5H).

Example 32: Preparation of (3S)-3-{(S)-4-methyl-2-(3-phenylpropionylamino)valerylamino}-2-tetrahydrofuranol (Compound No. 83 in Table-1)

Melting point: 60-62°C

IR (KBr, cm⁻¹): 3291, 1644, 1549.

NMR (CDCl₃, δ): 0.89 (m, 6H), 1.81 (m, 1H), 1.44-1.62 (m, 3H), 2.28-2.46 (m, 1H), 2.50 (m, 2H), 2.77 (s, 0.6H), 2.93 (m, 2H), 3.08 (s, 0.4H), 3.87 (ddd, J=7.8Hz, 7.8Hz, 7.8Hz, 0.6H), 4.05 (ddd, J=7.8Hz, 7.8Hz, 7.8Hz, 0.4H), 4.12 (m, 1H), 4.24-4.48 (m, 2H), 5.24 (s, 0.4H), 5.29 (m, 0.6H), 5.79 (m, 1H), 6.28 (d, J=7.5Hz, 0.4H), 6.45 (d, J=7.5Hz, 0.6H), 7.23 (m, 5H).

Example 33: Preparation of (3S)-3-{(S)-4-methyl-2-(1-naphthylacetylamino)valerylamino}-2-tetrahydrofuranol (Compound No. 85 in Table-1)

Melting point: 164-167°C IR (KBr, cm⁻¹): 3279, 1638.

NMR (CDCl₃+DMSO-d₆, δ): 0.76 (d, J=6.0Hz, 3H), 0.78 (d, J=5.8Hz, 3H), 1.35 (m, 2H), 1.48 (m, 1H), 1.72 (m, 1H), 2.19 (m, 0.7H), 2.31 (m, 0.3H), 3.78 (ddd, J=8.0Hz, 8.0Hz, 8.0Hz, 0.7H), 3.85 (ddd, J=8.0Hz, 8.0Hz, 8.0Hz, 0.3H), 3.97-4.09 (m, 3H), 4.20 (m, 1H), 4.41 (m, 1H), 5.09 (d, J=4.0Hz, 0.3H), 5.15 (d, J=3.7Hz, 0.3H), 5.22 (dd, J=4.4Hz, 4.4Hz, 0.7H), 5.38 (d, J=4.3Hz, 0.7H), 6.42 (d, J=7.8Hz, 0.7H), 6.56 (d, J=9.0Hz, 0.3H), 6.71 (d, J=7.4Hz, 0.7H), 6.97 (d, J=7.2Hz, 0.3H), 7.42-7.53 (m, 4H), 7.55-7.88 (m, 2H), 7.98 (d, J=7.4Hz, 1H).

Example 34: Preparation of (3S)-3-((S)-4-methyl-2-phenoxyacetylaminovalerylamino)-2-tetrahydrofuranol (Compound No. 90 in Table-1)

15 Melting point: 30°C

5

10

20

30

40

50

IR (KBr, cm⁻¹): 3297, 1653.

NMR (CDCl₃ δ): 0.92 (d, J=6.0Hz, 3H), 0.92 (d, J=5.7Hz, 3H), 1.55-1.70 (m, 2H), 1.84 (m, 2H), 2.32 (m, 0.6H), 2.45 (m, 0.4H), 3.87 (ddd, J=7.8Hz, 7.8Hz, 7.8Hz, 0.6H), 4.01 (ddd, J=7.8Hz, 7.8Hz, 7.8Hz, 0.4H), 4.11 (m, 1H), 4.33 (m, 1H), 4.51 (s, 0.8H), 4.52 (s, 1.2H), 4.55 (m, 1H), 5.28 (s, 0.4H), 5.33 (d, J=4.5Hz, 0.6H), 6.63 (d, J=7.5Hz, 0.4H), 6.68 (d, J=8.1Hz, 0.6H), 6.93 (m, 2H), 7.03 (m, 2H), 7.31 (m, 2H).

Example 35: Preparation of (3S)-3-{(S)-2-(2-chlorophenoxyacetylamino)-4-methylvalerylamino}-2-tetrahydrofuranol (Compound No. 94 in Table-1)

25 Melting point: 49-52°C

IR (KBr, cm⁻¹): 3302, 3074, 1655, 1537.

NMR (CDCl₃, δ): 0.94 (m, 6H), 1.60-1.91 (m, 4H), 2.31 (m, 0.7H), 2.45 (m, 0.3H), 3.27 (d, J=2.7Hz, 0.3H), 3.72 (d, J=2.7Hz, 0.7H), 3.87 (ddd, J=7.8Hz, 7.8Hz, 7.8Hz, 0.7H), 4.06 (ddd, J=7.8Hz, 7.8Hz, 7.8Hz, 0.3H), 4.11 (m, 1H), 4.40 (m, 1H), 4.52 (m, 1H), 4.52 (s, 0.6H), 4.57 (s, 1.4H), 5.29 (s, 0.3H), 5.33 (dd, J=3.6Hz, 3.6Hz, 0.7H), 6.49 (s, 0.3H), 6.64 (s, 0.7H), 6.90 (m, 1H), 7.02 (m, 1H), 7.26 (m, 2H), 7.41 (m, 1H).

Example 36: Preparation of (3S)-3-{(S)-2-(4-chlorophenoxyacetylamino)-4-methylvalerylamino}-2-tertahydrofuranol (Compound No. 96 in Table-1)

35 Melting point: 53-55°C

IR (KBr, cm⁻¹): 3301, 1653, 1541.

NMR (CDCl₃, δ): 0.94 (m, 6H), 1.69-1.88 (m, 4H), 2.32 (m, 0.5H), 2.58 (m, 0.5H), 2.91 (d, J=2.8Hz, 0.5H), 3.28 (d, J=3.0Hz, 0.5H), 3.88 (ddd, J=7.8Hz, 7.8Hz, 7.8Hz, 0.5H), 4.06 (ddd, J=7.8Hz, 7.8Hz, 7.8Hz, 0.5H), 4.12 (m, 1H), 4.34 (m, 1H), 4.47 (s, 1H), 4.49 (s, 1H), 4.53 (m, 1H), 5.28 (d, J=2.6Hz, 0.5H), 5.33 (dd, J=4.5Hz, 4.5Hz, 0.5H), 6.29 (s, 0.5H), 6.47 (s, 0.5H), 6.88 (m, 3H), 7.27 (m, 2H).

Example 37: Preparation of (3S)-3-((S)-4-methyl-2-phenylthioacetylaminovalerylamino)-2-tetrahydrofuranol (Compound No. 110 in Table-1)

45 Melting point: 45-47°C

IR (KBr, cm⁻¹): 3287, 1645, 1551.

NMR (CDCl₃, δ): 0.81 (m, 6H), 1.35 (m, 1H), 1.52 (m, 2H), 1.70 (m, 1H), 2.25 (m, 0.5H), 2.39 (m, 0.5H), 3.23 (s, 0.5H), 3.66 (m, 2.5H), 3.85 (ddd, J=7.8Hz, 7.8Hz, 7.8Hz, 0.5H), 3.96 (ddd, J=7.8Hz, 7.8Hz, 7.8Hz, 0.5H), 4.09 (m, 1H), 4.40-4.42 (m, 2H), 5.23 (d, J=2.3Hz, 0.5H), 5.28 (dd, J=3.9Hz, 3.9Hz, 0.5H), 6.39 (s, 0.5H), 6.53 (s, 0.5H), 7.10 (m, 1H), 7.21 (m, 1H), 7.29 (m, 3H), 7.30 (s, 1H).

Example 38: Preparation of (3S)-3-{(S)-4-methyl-2-(3-pheylsulfonylpropionylamino)valerylamino)-2-tetrahydorofuranol (Compound No. 111 in Table-1)

55 IR (KBr, cm⁻¹): 3301, 1649, 1547.

NMR (CDCl₃, δ): 0.93 (m, 6H), 1.48-1.74 (m, 5H), 1.80-1.92 (m, 1H), 2.30 (m, 0.5H), 2.43 (m, 0.5H), 2.72 (m, 2H), 3.41 (m, 1H), 3.52 (m, 1H), 3.86 (ddd, J=8.1Hz, 8.1Hz, 8.1Hz, 0.5H), 4.02 (m, 0.5H), 4.09 (m, 2H), 4.28-4.48 (m, 2H), 5.29 (s, 0.5H), 5.33 (dd, J=4.2Hz, 4.2Hz, 0.5H), 6.27 (s, 1H), 6.46 (s, 0.5H), 6.58 (s, 0.5H), 7.59 (m, 2H), 7.69 (m, 1H), 7.93 (dd, J=7.2Hz, 5.4Hz, 2H).

Example 39: Preparation of (3S)-3-((S)-2-benzoylamino-4-methylvalerylamino)-2-tetrahydrofuranol (Compound No. 112 in Table-1)

Melting point: 154- 156°C

5

10

15

25

35

45

50

55

IR (KBr, cm⁻¹): 3300, 1665, 1636.

NMR (CDCl₃, δ): 0.98 (d, J=5.5Hz, 6H), 1.71 (m, 3H), 1.87 (m, 1H), 2.31 (m, 0.7H), 2.42 (m, 0.3H), 3.16 (s, 0.3H), 3.60 (s, 0.7H), 3.87 (ddd, J=8.2Hz, 8.2Hz, 8.2Hz, 0.7H), 4.03 (ddd, J=7.5Hz, 7.5Hz, 7.5Hz, 0.3H), 4.12 (ddd, J=8.6Hz, 8.6Hz, 3.5Hz, 1H), 4.36 (m, 1H), 4.68 (m, 1H), 5.30 (s, 0.3H), 5.35 (d, J=4.7Hz, 0.7H), 6.67-6.75 (m, 2H), 7.43 (m, 2H), 7.52 (m, 1H), 7.79 (m, 2H).

Example 40: Preparation of (3S)-3-{(S)-2-(2-fluorobenzoylamino)-4-metylvalerylamino}-2-tetrahydrofuranol (Compound No. 113 in Table-1)

Melting point: 62-64°C

IR (KBr, cm⁻¹): 3306, 1644, 1534.

NMR (CDCl₃, δ): 0.80-1.07 (m, 6H), 1.59-2.01 (m, 4H), 2.40 (m, 1H), 3.82 (m, 1H), 3.97-4.20 (m, 1.6H), 4.24-4.45 (m, 1.4H), 4.68 (m, 1H), 5.31 (d, J=2.5Hz, 0.6H), 5.35 (dd, J=4.2Hz, 4.1Hz, 0.4H), 6.87 (m, 1H), 7.02-7.20 (m, 2H), 7.25 (m, 1H), 7.50 (m, 1H), 8.00 (m, 1H).

Example 41: Preparation of (3S)-3-{(S)-2-(3-fluorobenzoylamino)-4-methylvalerylamino}-2-tetrahydrofuranol (Compound No. 114 in Table-1)

Melting point: 159-161°C

IR (KBr, cm⁻¹): 3304, 3076, 1638, 1588, 1547.

NMR (CDCl₃, δ): 0.87-1.07 (m, 6H), 1.61-1.98 (m, 4H), 2.39 (m, 1H), 3.39 (d, J=2.6Hz, 0.5H), 3.87 (m, 1H), 3.98-4.18 (m, 1.5H), 4.35 (m, 1H), 4.67 (m, 1H), 5.31 (d, J=2.6Hz, 0.5H), 5.35 (dd, J=4.1Hz, 4.1Hz, 0.5H), 6.71 (d, J=7.6Hz, 0.5H), 6.76 (d, J=7.6Hz, 0.5H), 6.90 (d, J=8.2Hz, 0.5H), 6.99 (d, J=8.2Hz, 0.5H), 7.20 (ddd, J=8.2Hz, 8.2Hz, 2.7Hz, 1H), 7.40 (m, 1H), 7.43-7.60 (m, 2H).

30 Example 42: Preparation of (3S)-3-{(S)-2-(4-fluorobenzoylamino)-4-methylvalerylamino}-2-tetrahydrofuranol (Compound No. 115 in Table-1)

Melting point: 151-153°C

IR (KBr, cm⁻¹): 3422, 3301, 1640, 1545, 1503.

NMR (CDCl₃, δ): 0.85-1.17 (m, 6H), 1.60-1.97 (m, 4H), 2.37 (m, 1H), 3.79 (d, J=2.7Hz, 0.55H), 3.87 (m, 0.55H), 4.06 (m, 0.45H), 4.10 (m, 1H), 4.27 (ddd, J=6.8Hz, 6.8Hz, 2.1Hz, 0.45H), 4.39 (m, 1H), 5.31 (d, J=2.7Hz, 0.55H), 5.35 (d, J=4.1Hz, 4.1Hz, 0.45H), 6.28 (d, J=8.3Hz, 0.45H), 6.96 (d, J=8.3Hz, 0.55H), 7.02-7.19 (m, 3H), 7.75-7.89 (m, 2H).

Example 43: Preparation of (3S)-3-{(S)-2-(4-chlorobenzoylamino)-4-methylvalerylamino}-2-tetrahydrofuranol (Compound No. 121 in Table-1)

Melting point: 93-96°C

IR (KBr, cm⁻¹): 3295, 1636.

NMR (CDCl₃, δ): 0.95 (d, J=6.0Hz, 3H), 0.97 (d, J=5.7Hz, 3H), 1.73 (m, 3H), 1.86 (m, 1H), 2.31 (m, 0.7H), 2.42 (m, 0.3H), 3.41 (s, 0.3H), 3.86 (s, 0.7H), 3.87 (ddd, J=8.4Hz, 8.4Hz, 8.4Hz, 0.7H), 4.02 (ddd, J=7.8Hz, 7.8Hz, 7.8Hz, 0.3H), 4.12 (m, 1H), 4.35 (m, 1H), 4.68 (m, 1H), 5.30 (s, 0.3H), 5.35 (d, J=4.5Hz, 0.7H), 6.71 (d, J=8.1Hz, 0.7H), 6.76 (d, J=6.9Hz, 0.3H), 6.87 (d, J=6.4Hz, 0.7H), 6.95 (d, J=8.1Hz, 0.3H), 7.39 (dd, J=8.4Hz, 1.8Hz, 2H), 7.73 (dd, J=8.4Hz, 2.1Hz, 2H).

Example 44: Preparation of (3S)-3-{(S)-4-methyl-2-(2-methylbenzoylamino)valerylamino}-2-tetrahydrofuranol (Compound No. 125 in Table-1)

Melting point: 73-74°C

IR (KBr, cm⁻¹): 3298, 1638, 1541.

NMR (CD₃OD, δ): 0.98 (d, J=6.1Hz, 6H), 1.50-1.99 (m, 4H), 2.30 (m, 1H), 2.38 (s, 1.65H), 2.39 (s, 1.35H), 3.85 (m, 0.55H), 3.98-4.17 (m, 1.45H), 4.23 (m, 1H), 4.60 (m, 1H), 5.16 (s, 0.55H), 5.25 (d, J=4.7Hz, 0.45H), 7.18-7.29 (m, 2H), 7.30-7.42 (m, 2H).

Example 45: Preparation of (3S)-3-{(S)-4-methyl-2-(3-methylbenzoylamino)valerylamino}-2-tetrahydrofuranol (Compound No. 126 in Table-1)

Melting point: 85-87°C

5

15

20

25

30

35

40

45

IR (KBr, cm⁻¹): 3299, 1638, 1586, 1541.

NMR (CDCl₃, δ): 0.83-1.07 (m, 6H), 1.60-1.97 (m, 3H), 2.07 (m, 1H), 2.30 (m, 1H), 2.35 (s, 1.8H), 2.36 (s, 1.2H), 3.82 (m, 0.6H), 3.96-4.18 (m, 1.6H), 4.18-4.42 (m, 1.4H), 4.75 (m, 1H), 4.93 (m, 0.4H), 5.31 (d, J=2.9Hz, 0.6H), 5.35 (dd, J=4.4Hz, 4.3Hz, 0.4H), 7.01 (m, 1H), 7.14 (m, 1H), 7.32-7.40 (m, 2H), 7.57-7.67 (m, 2H).

Example 46: Preparation of (3S)-3-{(S)-4-methyl-2-(4-methylbenzoylamino)valerylamino}-2-tetrahydorofuranol (Compound No. 127 in Table-1)

Melting point: 101-102°C

IR (KBr, cm⁻¹): 3304, 1634, 1545, 1504.

NMR (CDCl₃, δ): 0.87-1.07 (m, 6H), 1.60-1.95 (m, 4H), 2.37 (m, 1H), 2.39 (s, 3H), 3.45 (d, J=2.9Hz, 0.6H), 3.90 (m, 0.4H), 3.97-4.19 (m, 2H), 4.38 (m, 1H), 4.71 (m, 1H), 5.30 (d, J=2.9Hz, 0.6H), 5.35 (dd, J=6.7Hz, 6.7Hz, 0.6H), 6.74 (d, J=8.5Hz, 0.4H), 6.80 (d, J=8.5Hz, 1H), 6.89 (d, J=6.7Hz, 0.6H), 7.22 (d, J=8.2Hz, 2H), 7.68 (d, J=8.2Hz, 2H).

Example 47: Preparation of (3S)-3-{(S)-2-(2,6-dimethylbenzoylamino)-4-methylvalerylamino)-2-tetrahydrofuranol (Compound No. 129 in Table-1)

Melting point: 89-91°C

IR (KBr, cm⁻¹): 3389, 1638, 1539.

NMR (CDCl₃, δ): 0.83-1.10 (m, 6H), 1.58-1.99 (m, 4H), 2.25 (s, 3H), 2.27 (s, 3H), 2.32 (m, 1H), 3.65-3.93 (m, 1.55H) 4.07 (m, 1H), 4.22-4.45 (m, 1.45H), 4.70 (m, 1H), 5.25 (d, J=3.1Hz, 0.55H), 5.31 (dd, J=4.3Hz, 4.2Hz, 0.45H), 6.36 (d, J=8.2Hz, 1H), 6.85-7.07 (m, 3H), 7.14 (dd, J=7.8Hz, 7.3Hz, 1H).

Example 48: Preparation of (3S)-3-{(S)-2-(3,4-dimethylbenzoylamino)-4-methylvalerylamino}-2-tetrahydrofuranol (Compound No. 130 in Table-1)

Melting point: 92-94°C

IR (KBr, cm⁻¹): 3299, 1636, 1541.

NMR (CDCl₃, δ): 0.83-1.10 (m, 6H), 1.57-1.99 (m, 4H), 2.28 (s, 3H), 2.29 (s, 3H), 2.34 (m, 1H), 3.57 (s, 0.5H), 3.86 (m, 0.5H), 3.97-4.20 (m, 1.5H), 4.21-4.45 (m, 1.5H), 4.70 (m, 1H), 5.31 (s, 0.5H), 5.35 (d, J=2.1Hz, 0.5H), 6.74 (d, J=8.3Hz, 0.5H), 6.80 (d, J=8.2Hz, 0.5H), 6.85 (d, J=8.5Hz, 0.5H), 6.93 (d, J=7.1Hz, 0.5H), 7.17 (d, J=7.8Hz, 1H), 7.43-7.60 (m, 2H).

Example 49: Preparation of (3S)-3-{(S)-4-methyl-2-(2,4,6-trimethylbenzoylamino)valerylamino}-2-tetrahydrofuranol (Compound No. 131 in Table-1)

Melting point: 150-152°C

IR (KBr, cm⁻¹): 3295, 1638, 1522.

NMR (CDCl₃, δ): 0.87-1.07 (m, 6H), 1.58-1.97 (m, 4H), 2.18-2.35 (m, 9H), 2.36 (m, 1H), 3.09 (s, 0.45H), 3.48 (s, 0.55H), 3.85 (m, 0.55H), 3.97-4.20 (m, 1.45H), 4.35 (m, 1H), 4.65 (m, 1H), 5.29 (d, J=2.5Hz, 0.45H), 5.34 (dd, J=4.1Hz, 3.8Hz, 0.55H), 6.08 (d, J=5.2Hz, 1H), 6.75 (m, 1H), 6.83 (s, 2H).

Example 50: Preparation of (3S)-3-{(S)-2-(4-ethylbenzoylamino)-4-methylvalerylamino}-2-tetrahydrofuranol (Compound No. 134 in Table-1)

50 Melting point: 98-99°C

IR (KBr, cm⁻¹): 3304, 1672, 1634, 1545, 1505.

NMR (CDCl₃, δ): 0.83-1.05 (m, 6H), 1.23 (t, J=7.6Hz, 3H), 1.60-1.99 (m, 4H), 2.38 (m, 1H), 2.68 (q, J=7.6Hz, 2H), 3.34 (s, 0.4H), 3.87 (m, 1H), 4.00-4.20 (m, 1.6H), 4.35 (m, 1H), 4.68 (m, 1H), 5.30 (s, 0.6H), 5.34 (d, J=3.7Hz, 0.4H), 6.65-6.90 (m, 2H), 7.21-7.27 (m, 2H), 7.69-7.74 (m, 2H).

Example 51: Preparation of (3S)-3-{(S)-4-methyl-2-(4-trifluoromethylbenzoylamino)valerylamino}-2-tetrahydrofuranol (Compound No. 137 in Table-1)

Melting point: 135-136°C

IR (KBr, cm⁻¹): 3310, 1640, 1548, 1508.

NMR (CDCl₃, δ): 0.87-1.07 (m, 6H), 1.61-1.97 (m, 4H), 2.37 (m, 1H), 3.43 (s, 0.4H), 3.82-4.08 (m, 1.6H), 4.17 (m, 1H), 4.29 (m, 1H), 4.70 (m, 1H), 5.31 (d, J=2.6Hz, 0.4H), 5.36 (d, J=4.2Hz, 4.2Hz, 0.6H), 6.71 (d, J=7.9Hz, 0.6H), 6.73 (d, J=7.9Hz, 0.4H), 7.03 (d, J=8.3Hz, 0.6H), 7.14 (d, J=8.3Hz, 0.4H), 7.61-7.86 (m, 2H), 7.87-7.93 (m, 2H).

Example 52: Preparation of (3S)-3-{(S)-2-(2-methoxybenzoylamino)-4-methylvalerylamino)-2-tetrahydrofuranol (Compound No. 138 in Table-1)

Melting point: 65-66°C

5

10

20

25

30

35

40

IR (KBr, cm⁻¹): 3376, 1640, 1601, 1532.

NMR (CDCl₃, δ): 0.83-1.05 (m, 6H), 1.60-1.95 (m, 4H), 2.31 (m, 1H), 3.85 (m, 0.6H), 3.98 (s, 3H), 4.00-4.20 (m, 1.6H), 4.24-4.45 (m, 1.4H), 4.69 (m, 1H), 5.00 (m, 0.4H), 5.34 (m, 1H), 6.93-7.17 (m, 2.4H), 7.22 (m, 0.6H), 7.50 (m, 1H), 8.15 (m, 1H), 8.30 (m, 1H).

15 Example 53: Preparation of (3S)-3-{(S)-2-(4-methoxybenzoylamino)-4-methylvalerylamino}-2-tetrahydrofuranol (Compound No. 140 in Table-1)

Melting point: 85-88°C

IR (KBr, cm⁻¹): 3295, 1632.

NMR (CDCl₃, δ): 0.95 (d, J=6.0Hz, 3H), 0.96 (d, J=4.8Hz, 3H), 1.72 (m, 3H), 1.86 (m, 1H), 2.29 (m, 0.5H), 2.40 (m, 0.5H), 3.84 (s, 3H), 3.86 (ddd, J=8.1Hz, 8.1Hz, 8.1Hz, 0.5H), 4.01 (ddd, J=8.1Hz, 8.1Hz, 8.1Hz, 0.5H), 4.08 (m, 1H), 4.28 (m, 0.5H), 4.35 (m, 0.5H), 4.68 (m, 1H), 5.30 (s, 0.5H), 5.34 (d, J=4.8Hz, 0.5H), 6.71 (d, J=8.4Hz, 0.5H), 6.78 (d, J=8.4Hz, 0.5H), 6.82 (d, J=8.1Hz, 0.5H), 6.91 (dd, J=9.0Hz, 2.4Hz, 2H), 6.94 (d, J=8.7Hz, 0.5H), 7.76 (m, 2H).

Example 54: Preparation of (3S)-3-{(S)-2-(2,4-dimethoxybenzoylamino)-4-methylvalerylamino}-2-tetrahydrofuranol (Compound No. 141 in Table-1)

Melting point: 65-67°C

IR (KBr, cm⁻¹): 3382, 1638, 1604, 1534.

NMR (CDCl₃, δ): 0.83-1.05 (m, 6H), 1.59-1.98 (m, 4H), 2.40 (m, 1H), 3.83 (m, 0.6H), 3.84 (s, 1.2H), 3.86 (s, 1.8H), 3.95 (s, 1.8H), 3.97 (s, 1.2H), 4.00-4.21 (m, 2H), 4.35 (m, 1H), 4.65 (m, 1H), 4.80 (m, 0.4H), 5.32 (d, J=3.2Hz, 0.6H), 5.35 (dd, J=4.6Hz, 4.6Hz, 0.5H), 6.48 (s, 0.4H), 6.49 (s, 0.6H), 6.59 (m, 1H), 6.99 (d, J=8.1Hz, 0.6H), 7.15 (d, J=6.7Hz, 0.4H), 8.07-8.22 (m, 2H).

Example 55: Preparation of (3S)-3-{(S)-2-(2,6-dimethoxybenzoylamino)-4-methylvalerylamino}-2-tetrahydrofuranol (Compound No. 142 in Table-1)

Melting point: 166-168°C

IR (KBr, cm⁻¹): 3299, 3279, 1645, 1597, 1508.

NMR (DMSO-d₆, δ): 0.87 (d, J=6.2Hz, 6H), 1.38-1.60 (m, 2H), 1.60-1.83 (m, 2H), 2.15 (m, 1H), 3.65 (m, 1H), 3.71 (s, 2.4H), 3.72 (s, 3.6H), 3.93 (m, 1H), 4.10 (m, 1H), 4.39 (m, 1H), 5.14 (m, 1H), 6.55 (m, 1H), 6.58-6.70 (m, 2H), 7.18 (d, J=5.7Hz, 1H), 7.29 (m, 1H), 8.33 (d, J=8.4Hz, 1H).

Example 56: Preparation of (3S)-3-{(S)-2-(3,5-dimethoxybenzoylamino)-4-methylvalerylamino}-2-tetrahydrofuranol (Compound No. 144 in Table-1)

Melting point: 88-90°C

IR (KBr, cm⁻¹): 3407, 1639, 1595, 1539.

50 NMR (CDCl₃, δ): 0.83-1.05 (m, 6H), 1.60-1.98 (m, 4H), 2.40 (m, 1H), 3.41 (s, 0.6H), 3.70-3.93 (m, 0.8H), 3.79 (s, 6H), 3.95-4.08 (m, 0.6H), 4.10 (m, 1H), 4.25 (m, 1H), 4.65 (m, 1H), 5.30 (d, J=2.2Hz, 0.6H), 5.34 (m, 0.4H), 6.58 (dd, J=1.9Hz, 1.9Hz, 1H), 6.67-6.87 (m, 2H), 6.87-6.97 (m, 2H).

Example 57: Preparation of (3S)-3-{(S)-2-(4-ethoxybenzoylamino)-4-methylvalerylamino}-2-tetrahydrofuranol (Compound No. 148 in Table-1)

Melting point: 84-85°C

IR (KBr, cm⁻¹): 3299, 1634, 1609, 1547, 1504.

NMR (CDCl₃, δ): 0.83-1.07 (m, 6H), 1.43 (t, J=7.0Hz, 3H), 1.60-1.99 (m, 4H), 2.38 (m, 1H), 3.82 (m, 1H), 3.92-4.20

(m, 3.5H), 4.55 (s, 0.5H), 4.69 (m, 1H), 5.31 (d, J=2.8Hz, 0.5H), 5.35 (dd, J=4.3Hz, 4.1Hz, 0.5H), 6.80 (d, J=8.3Hz, 0.5H), 6.84-7.00 (m, 3H), 7.14 (d, J=7.0Hz, 0.5H), 7.76 (d, J=8.7Hz, 2H).

Example 58: Preparation of (3S)-3-{(S)-4-methyl-2-(3,4-methylenedioxybenzoylamino)valerylamino}-2-tetrahydrofuranol (Compound No. 152 in Table-1)

Melting point: 94-96°C

10

20

25

30

35

40

45

50

55

IR (KBr, cm⁻¹): 3410, 3111, 1753, 1659.

NMR (CDCl₃, δ): 0.95 (d, J=6.0Hz, 3H), 0.96 (d, J=5.1Hz, 3H), 1.69-1.81 (m, 3H), 1.86 (m, 1H), 2.30 (m, 0.5H), 2.41 (m, 0.5H), 3.89 (ddd, J=8.1Hz, 8.1Hz, 8.1Hz, 0.5H), 4.05 (ddd, J=7.6Hz, 7.6Hz, 7.6Hz, 0.5H), 4.11 (m, 1H), 4.30 (m, 0.5H), 4.36 (m, 0.5H), 4.64 (m, 1H), 5.30 (s, 0.5H), 5.32 (d, J=4.6Hz, 0.5Hz), 6.02 (s, 2H), 6.61-6.80 (m, 2H), 6.82 (d, J=7.8Hz, 1H), 7.28 (dd, J=2.7Hz, 2.7Hz, 1H), 7.33 (ddd, J=8.0Hz, 2.0Hz, 2.0Hz, 1H).

Example 59: Preparation of (3S)-3-{(S)-4-methyl-2-(1-naphthoylamino)valerylamino}-2-tetrahydrofuranol (Compound No. 156 in Table-1)

Melting point: 85-86°C

IR (KBr, cm⁻¹): 3293, 1638, 1535.

NMR (CDCl₃, δ): 0.83-1.05 (m, 6H), 1.59-1.99 (m, 4H), 2.38 (m, 1H), 3.47 (s, 0.45H), 3.88 (m, 1H), 3.94-4.20 (m, 1.55H), 4.38 (m, 1H), 4.80 (m, 1H), 5.29 (d, J=2.9Hz, 0.55H), 5.35 (dd, J=4.4Hz, 3.9Hz, 0.45H), 6.64 (d, J=8.2Hz, 0.55H), 6.73 (d, J=8.1Hz, 0.45H), 6.89 (m, 1H), 7.44 (m, 1H), 7.47-7.68 (m, 3H), 7.80-7.97 (m, 2H), 8.25 (m, 1H).

Example 60: Preparation of (3S)-3-{(S)-4-methyl-2-(2-naphthoylamino)valerylamino}-2-tetrahydrofuranol (Compound No. 157 in Table-1)

Melting point: 98-100°C

IR (KBr, cm⁻¹): 3293, 1640, 1539, 1512.

NMR (CDCl₃, δ): 0.83-1.13 (m, 6H), 1.60-1.99 (m, 4H), 2.36 (m, 1H), 3.53 (s, 0.3H), 3.85 (m, 0.7H), 3.99-4.21 (m, 2H), 4.40 (m, 1H), 4.80 (m, 1H), 5.34 (dd, J=4.4Hz, 4.3Hz, 0.3H), 5.38 (d, J=2.7Hz, 0.7H), 6.88 (d, J=8.5Hz, 0.7H), 6.96 (d, J=7.2Hz, 0.3H), 7.04 (d, J=8.3Hz, 0.7H), 7.12 (d, J=8.2Hz, 0.3H), 7.43-7.64 (m, 2H), 7.79-7.97 (m,4H), 8.32 (s, 1H).

Example 61: Preparation of (3S)-3-{(S)-2-(2-furoylamino)-4-methylvalerylamino}-2-tetrahydrofuranol (Compound No. 161 in Table-1)

Melting point: 92-95°C

IR (KBr, cm⁻¹): 3420, 3300, 1645, 1595, 1529.

NMR (CDCl₃, δ): 0.85-1.05 (m, 6H), 1.58-2.00 (m, 4H), 2.25-2.55 (m, 1H), 3.52 (d, J=2.7Hz, 0.55H), 3.87 (dt, J=7.8Hz, 7.8Hz, 0.55H), 3.95-4.17 (m, 1.9H), 4.27-4.45 (m, 1H), 4.45-4.73 (m, 1H), 5.31 (d, J=2.7Hz, 0.55H), 5.35 (dd, J=4.0Hz, 4.0Hz, 0.45H), 6.51 (dd, J=3.1Hz, 1.4Hz, 1H), 6.77 (d, J=7.7Hz, 1H), 6.80-6.93 (m, 1H), 7.14 (dd, J=3.1Hz, 1.9Hz, 1H), 7.46 (dd, J=1.9Hz, 1.4Hz, 1H).

Example 62: Preparation of (3S)-3-{(S)-2-(3-ethyl-1-methyl-5-pyrazole)carbonylamino-4-methylvalerylamino}-2-tetrahydrofuranol (Compound No. 170 in Table-1)

Melting point: 89-91°C

IR (KBr, cm⁻¹): 3301, 1643.

NMR (CDCl₃, δ): 0.97 (d, J=5.0Hz, 6H), 1.23 (t, J=7.7Hz, 2.1H), 1.23 (t, J=7.6Hz, 0.9H), 1.60-1.90 (m, 4H), 2.34 (m, 0.7H), 2.56 (m, 0.3H), 2.62 (q, J=7.6Hz, 2H), 3.89 (ddd, J=7.8Hz, 7.8Hz, 7.8Hz, 1H), 4.01-4.17 (m, 2H), 4.08 (s, 0.9H), 4.08 (s, 2.1H), 4.35 (m, 1H), 4.58 (m, 1H), 5.29 (s, 0.3H), 5.35 (d, J=3.9Hz, 0.7H), 6.39 (s, 1H), 6.44 (d, J=6.8Hz, 0.3H), 6.55 (d, J=8.4Hz, 0.7H), 6.60 (d, J=8.4Hz, 1H).

Example 63: Preparation of (3S)-3-{(S)-2-(2-chromancarbonylamino-4-methylvalerylamino}-2-tetrahydrofuranol (Compound No. 175 in Table-1)

Melting point: 84-85°C

IR (KBr, cm⁻¹): 3299, 1786, 1532.

NMR (CDCl₃, δ): 0.78-0.93 (m, 3H), 0.95-1.05 (m, 3H), 1.35-2.07 (m, 5H), 2.20-2.54 (m, 2H), 2.70-3.00 (m, 2H), 3.80-4.20 (m, 2H), 4.24-4.60 (m, 3H), 5.15 (m, 1H), 5.31 (m, 1H), 6.40 (m, 1H), 6.65 (m, 1H), 6.83-6.97 (m, 2H),

6.98-7.20 (m, 2H).

5

10

20

25

30

35

45

55

Example 64: Preparation of (3S)-3-((S)-2-cinnamoylamino-4-methylvalerylamino)-2-tetrahydrofuranol (Compound No. 182 in Table-1)

Melting point: 102-104°C

IR (KBr, cm⁻¹): 3293, 1651, 1624, 1543.

NMR (CDCl₃, δ): 0.96 (m, 6H), 1.63-1.92 (m, 4H), 2.32 (m, 0.5H), 2.47 (m, 0.5H), 3.35 (d, J=2.7Hz, 0.5H), 3.43 (d, J=2.7Hz, 0.5H), 3.92 (m, 1H), 4.02-4.18 (m, 2H), 4.34 (m, 1H), 4.62 (m, 1H), 5.31 (s, 0.5H), 5.35 (m, 0.5H), 6.43 (d, J=15.0Hz, 1H), 6.44 (m, 1H), 6.90 (m, 1H), 7.32 (m, 2H), 7.51 (m, 2H), 7.62 (m, 1H).

Example 65: Preparation of (3S)-3-{(S)-2-(4-methoxycinnamoylamino)-4-methylvalerylamino}-2-tetrahydrofuranol (Compound No. 187 in Table-1)

15 Melting point: 101-103°C

IR (KBr, cm⁻¹): 3283, 1651, 1602, 1543, 1512.

NMR (CDCl₃, δ): 0.85-1.05 (m, 6H), 1.60-1.99 (m, 4H), 2.30 (m, 1H), 3.77 (s, 1.5H), 3.79 (s, 1.5H), 3.82 (m, 0.5H), 4.10 (m, 1H), 4.30 (m, 0.5H), 4.41 (m, 1H), 4.72 (m, 1H), 5.35 (m, 1H), 6.38 (d, J=15.6Hz, 0.5H), 6.41 (d, J=15.6Hz, 0.5H), 6.65-6.85 (m, 2H), 6.90 (d, J=8.5Hz, 0.5H), 7.15 (d, J=8.5Hz, 0.5H), 7.20 (d, J=8.5Hz, 0.5H), 7.43 (dd, J=8.8Hz, 3.1Hz, 2H), 7.49 (d, J=8.5Hz, 0.5H), 7.58 (d, J=15.6Hz, 0.5H), 7.59 (d, J=15.6Hz, 0.5H).

Example 66: Preparation of (3S)-3-{(S)-2-(4-fluorophenylsulfonylamino)-4-methylvalerylamino}-2-tetrahydrofuranol (Compound No. 202 in Table-1)

Melting point: 156-158°C

IR (KBr, cm⁻¹): 3347, 3256, 1649, 1593, 1541.

NMR (DMSO- d_6 , δ): 0.71 (d, J=6.5Hz, 3H), 0.80 (d, J=6.6Hz, 3H), 1.28 (m, 2H), 1.45-1.68 (m, 2H), 1.86 (m, 1H), 3.60-3.95 (m, 4H), 4.98 (dd, J=4.4Hz, 4.1Hz, 1H), 6.37 (d, J=4.1Hz, 1H), 7.39 (dd, J=8.8Hz, 8.3Hz, 2H), 7.75 (d, J=7.5Hz, 1H), 7.81 (dd, J=8.8Hz, 5.3Hz, 2H), 8.00 (d, J=9.0Hz, 1H).

Example 67: Preparation of (3S)-3-{(S)-2-(2-chlorophenylsulfonylamino)-4-methylvalerylamino}-2-tetrahydrofuranol (Compound No. 203 in Table-1)

IR (KBr, cm⁻¹): 3365, 1657, 1541.

NMR (CDCl₃, δ): 0.65 (d, J=6.2Hz, 1.2H), 0.67 (d, J=6.4Hz, 1.8H), 0.82 (d, J=6.1Hz, 1.2H), 0.84 (d, J=6.4Hz, 1.8H), 1.43-1.72 (m, 4H), 2.13 (m, 0.6H), 2.36 (m, 0.4H), 3.62-4.28 (m, 5H), 5.24 (d, J=3.0Hz, 0.4H), 5.31 (dd, J=3.8Hz, 3.8Hz, 0.6H), 5.91 (d, J=8.8Hz, 0.4H), 5.94 (d, J=7.9Hz, 0.6H), 6.47 (d, J=7.5Hz, 0.4H), 6.65 (d, J=8.1Hz, 0.6H), 7.38-7.45 (m, 1H), 7.45-7.60 (m, 2H), 8.06 (dd, J=7.3Hz, 1.1Hz, 1H).

Example 68: Preparation of (3S)-3-{(S)-2-(4-chlorophenylsulfonylamino)-4-methylvalerylamino}-2-tetrahydrofuranol (Compound No. 205 in Table-1)

Melting point: 112-115°C

IR (KBr, cm⁻¹): 3335, 3264, 1649.

NMR (CDCl₃, δ): 0.76 (d, J=6.3Hz, 0.6H), 0.80 (d, J=6.3Hz, 2.4H), 0.87 (d, J=6.9Hz, 0.6H), 0.89 (d, J=6.6Hz, 2.4H), 1.48 (m, 3H), 1.68 (m, 1H), 2.11 (m, 0.8H), 2.40 (m, 0.2H), 3.67 (ddd, J=6.9Hz, 6.9Hz, 6.9Hz, 1H), 3.85 (m, 0.8H), 3.94 (m, 0.2H), 4.05-4.21 (m, 2H), 5.18 (s, 0.2H), 5.25 (d, J=4.5Hz, 0.8H), 5.31 (d, J=9.9Hz, 0.2H), 5.35 (d, J=8.4Hz, 0.8H), 5.94 (d, J=7.8Hz, 0.2H), 6.23 (d, J=7.8Hz, 0.8H), 7.48 (d, J=8.4Hz, 2H), 7.80 (d, J=8.4Hz, 2H).

Example 69: Preparation of (3S)-3-{(S)-2-(4-bromophenylsulfonylamino)-4-methylvalerylamino}-2-tetrahydrofuranol (Compound No. 208 in Table-1)

Melting point: 139-140°C

IR (KBr, cm⁻¹): 3478, 3362, 3264, 1647, 1576, 1537.

NMR (DMSO- d_6 , δ): 0.63-0.90 (m, 6H), 1.15-1.49 (m, 2H), 1.42-1.66 (m, 2H), 1.83 (m, 0.65H), 2.02 (m, 0.35H), 3.45-3.92 (m, 4H), 4.80 (d, J=4.1Hz, 0.35H), 4.96 (dd, J=4.4Hz, 0.65H), 6.10 (d, J=4.1Hz, 0.35H), 6.36 (d, J=4.4Hz, 0.65H), 7.60-7.85 (m, 4.65H), 7.95-8.15 (m, 1.35H).

Example 70: Preparation of (3S)-3-{(S)-4-methyl-2-(4-methylphenylsulfonylamino)valerylamino}-2-tetrahydrofuranol (Compound No. 211 in Table-1)

Melting point: 137-138°C

5

10

15

20

25

30

35

45

55

IR (KBr, cm⁻¹): 3343, 3264, 1649, 1541.

NMR (DMSO-d₆, δ): 0.66 (d, J=6.5Hz, 0.9H), 0.74 (d, J=6.7Hz, 3H), 0.80 (d, J=6.7Hz, 2.1H), 1.10-1.40 (m, 3H), 1.53 (m, 1H), 1.85 (m, 0.3H), 1.98 (m, 0.7H), 2.35 (s, 3H), 3.51 (m, 0.7H), 3.58-3.85 (m, 3.3H), 4.78 (d, J=4.4Hz, 0.7H), 4.96 (m, 0.3H), 6.07 (d, J=4.4Hz, 0.7H), 6.39 (d, J=3.9Hz, 0.3H), 7.31 (d, J=7.9Hz, 2H), 7.61 (d, J=7.9Hz, 2H), 7.66 (d, J=6.2Hz, 0.3H), 7.80 (m, 1H), 7.92 (d, J=6.4Hz, 0.7H).

Example 71: Preparation of (3S)-3-{(S)-4-methyl-2-(2,4,6-trimethylphenylsulfonylamino)valerylamino}-2-tetrahydrofura-nol (Compound No. 215 in Table-1)

Melting point: 75-77°C

IR (KBr, cm⁻¹): 3328, 1657, 1605, 1541.

NMR (CDCl₃, δ): 0.67 (d, J=6.3Hz, 1.35H), 0.68 (d, J=6.3Hz, 1.65H), 0.83 (d, J=6.4Hz, 1.35H), 0.84 (d, J=6.4Hz, 1.65H), 1.38-1.72 (m, 4H), 2.11 (m, 0.65H), 2.29 (s, 3H), 2.31 (m, 0.45H), 2.63 (s, 6H), 3.61 (m, 1H), 3.72 (d, J=3.0Hz, 0.45H), 3.74-3.98 (m, 1H), 3.98-4.24 (m, 2.55H), 5.23 (d, J=3.0Hz, 0.45H), 5.28 (d, J=3.9Hz, 3.9Hz, 0.55H), 5.46 (d, J=8.6Hz, 0.45H), 5.60 (d, J=8.0Hz, 0.55H), 6.38 (d, J=7.4Hz, 0.45H), 6.54 (d, J=8.0Hz, 0.55H), 6.95 (s, 2H).

Example 72: Preparation of (3S)-3-{(S)-2-(4-tert-butylphenylsulfonylamino)-4-methylvalerylamino}-2-tetrahydrofuranol (Compound No. 218 in Table-1)

Melting point: 140- 141°C

IR (KBr, cm⁻¹): 3362, 3161, 1647, 1535.

NMR (DMSO- d_6 , δ): 0.74 (d, J=6.5Hz, 3H), 0.81 (d, J=6.6Hz, 3H), 1.15-1.41 (m, 3H), 1.29 (s, 9H), 1.54 (m, 1H), 1.95 (m, 1H), 3.46 (m, 1H), 4.62-4.82 (m, 3H), 4.80 (d, J=4.3Hz, 1H), 6.06 (d, J=4.3Hz, 1H), 7.53 (d, J=8.5Hz, 2H), 7.66 (d, J=8.5Hz, 2H), 7.82 (d, J=9.4Hz, 1H), 7.95 (d, J=6.7Hz, 1H).

Example 73: Preparation of (3S)-3-{(S)-2-(4-methoxyphenylsulfonylamino)-4-methylvalerylamino}-2-tetrahydrofuranol (Compound No. 221 in Table-1)

Melting point: 153-155°C

IR (KBr, cm⁻¹): 3362, 3150, 1647, 1597, 1535, 1501.

NMR (DMSO- d_6 , δ): 0.69 (m, 0.6H), 0.76 (d, J=6.5Hz, 2.7H), 0.82 (d, J=6.7Hz, 2.7H), 1.15-1.45 (m, 3H), 1.56 (m, 1H), 2.01 (m, 1H), 3.54 (m, 1H), 3.60-3.90 (m, 3H), 3.81 (s, 3H), 4.89 (d, J=4.6Hz, 0.9H), 4.99 (m, 0.1H), 6.09 (d, J=4.6Hz, 0.9H), 6.41 (d, J=2.7Hz, 0.1H), 7.04 (d, J=8.8Hz, 2H), 7.60-7.80 (m, 3.1H), 7.94 (d, J=6.9Hz, 0.9H).

Example 74: Preparation of (3S)-3-{(S)-4-methyl-2-(3-nitrophenylsulfonylamino)valerylamino}-2-tetrahydrofuranol (Compound No. 227 in Table-1)

Melting point: 164-165°C

IR (KBr, cm⁻¹): 3358, 3264, 1649, 1537.

NMR (DMSO- d_6 , δ): 0.73-0.95 (m, 6H), 1.20-1.80 (m, 4.75H), 1.95 (m, 0.25H), 3.47-3.65 (m, 2H), 3.77 (m, 1H), 3.94 (m, 1H), 4.73 (d, J=2.7Hz, 0.25H), 4.92 (dd, J=4.1Hz, 4.1Hz, 0.75H), 6.06 (d, J=2.7Hz, 0.25H), 6.29 (d, J=4.1Hz, 0.75H), 7.80-7.95 (m, 2H), 8.05-8.21 (m, 1.25H), 8.35 (d, J=8.4Hz, 0.75H), 8.46 (d, J=7.9Hz, 1H), 8.50 (s, 1H).

50 Example 75: Preparation of (3S)-3-{(S)-4-methyl-2-(1-naphtylsulfonylamino)valerylamino}-2-tetrahydrofuranol (Compound No. 229 in Table-1)

Melting point: 89-91°C

IR (KBr, cm⁻¹): 3580, 3520, 3470, 3281, 1647, 1553.

NMR (DMSO- d_6 , δ): 0.34 (d, J=6.0Hz, 1.95H), 0.51 (d, J=6.2Hz, 1.05H), 0.62 (d, J=6.1Hz, 1.95H), 0.71 (d, J=6.4Hz, 1.05H), 1.10-1.60 (m, 4H), 1.75-1.95 (m, 1H), 3.47-3.83 (m, 4H), 4.73 (d, J=4.5Hz, 0.35H), 4.94 (dd, J=4.3Hz, 4.3Hz, 0.65H), 6.03 (d, J=4.5Hz, 0.35H), 6.34 (d, J=4.3Hz, 0.65H), 7.50-7.75 (m, 4H), 7.86 (d, J=8.2Hz, 0.35H), 7.98-8.32 (m, 3.65H), 8.66 (d, J=7.4Hz, 1H).

Example 76: Preparation of (3S)-3-{(S)-4-methyl-2-(2-naphtylsulfonylamino)valerylamino}-2-tetrahydrofuranol (Compound No. 230 in Table-1)

Melting point: 102- 104°C

5

15

20

25

35

40

45

50

IR (KBr, cm⁻¹): 3351, 1655, 1541.

NMR (DMSO- d_6 , δ): 0.65 (d, J=6.4Hz, 1.5H), 0.65-0.90 (m, 4.5H), 1.14-1.68 (m, 5H), 3.25 (m, 0.5H), 3.57-3.91 (m, 3.5H), 4.73 (s, 0.5H), 4.89 (dd, J=4.3Hz, 4.3Hz, 0.5H), 5.98 (s, 0.5H), 6.32 (d, J=4.3Hz, 0.5H), 7.60-7.80 (m, 3.5H), 7.93 (d, J=6.7Hz, 0.5H), 7.98-8.17 (m, 4H), 8.38 (d, J=8.3Hz, 1H).

10 Example 77: Preparation of (3S)-3-{(S)-4-methyl-2-(3-pyridylsulfonylamino)valerylamino}-2-tetrahydrofuranol (Compound No. 232 in Table-1)

Melting point: 127-130°C

IR (KBr, cm⁻¹): 3268, 1647.

NMR (CDCl₃, δ): 0.79 (d, J=6.3Hz, 0.6H), 0.84 (d, J=6.6Hz, 2.4H), 0.86 (d, J=6.0Hz, 0.6H), 0.90 (d, J=6.6Hz, 2.4H), 1.49-1.61 (m, 3H), 1.71 (m, 1H), 2.09 (m, 0.8H), 2.37 (m, 0.2H), 3.78-3.87 (m, 1.8H), 3.96 (q, J=6.6Hz, 0.2H), 4.05-4.15 (m, 2H), 5.17 (s, 0.2H), 5.22 (d, J=4.8Hz, 0.8Hz), 5.75 (d, J=8.7Hz, 0.8H), 5.79 (d, J=9.3Hz, 0.2H), 6.13 (d, J=6.6Hz, 0.2H), 6.36 (d, J=8.1Hz, 0.8H), 7.45 (dd, J=7.8Hz, 4.8Hz, 1H), 8.17 (ddd, J=7.8Hz, 1.8Hz, 1.8Hz, 1H), 8.80 (dd, J=4.8Hz, 1.2Hz, 1H), 9.07 (d, J=2.1Hz, 1H).

Example 78: Preparation of (3S)-3-((S)-2-benzyloxycarbonylamino-3-phenylpropionylamino)-2-tetrahydrofuranol (Compound No. 246 in Table-1)

Melting point: 144-146°C

IR (KBr, cm⁻¹): 3302, 1696, 1649, 1537.

NMR (CDCl₃, δ): 1.69 (m, 1H), 2.20-2.41 (m, 1H), 2.60 (s, 0.8H), 2.82 (s, 0.2H), 2.97 (dd, J=14.7Hz, 7.8Hz, 1H), 3.13 (m, 1H), 3.81 (ddd, J=7.8Hz, 7.8Hz, 7.8Hz, 0.8H), 4.02 (m, 1.2H), 4.26 (m, 1H), 4.37 (m, 1H), 5.09 (m, 3H), 5.40 (s, 1H), 5.70 (s, 0.2H), 6.08 (s, 0.8H), 7.33 (m, 10H).

30 Example 79: Preparation of (3S)-3-((S)-2-benzyloxycarbonylamino-3-tert-butoxypropionylamino)-2-tetrahydrofuranol (Compound No. 297 in Table-1)

IR (KBr, cm⁻¹): 3322, 1719, 1661, 1534.

NMR (CDCl₃, δ): 1.17 (s, 9H), 1.69-1.98 (m, 1H), 2.30 (m, 0.6H), 2.44 (m, 0.4H), 3.40 (m, 1H), 3.62-3.98 (m, 3H), 4.11 (m, 1H), 4.22 (m, 1H), 4.35 (m, 1H), 5.11 (s, 2H), 5.22 (s, 0.4H), 5.29 (s, 0.6H), 5.76 (s, 1H), 6.80 (s, 0.4H), 7.08 (bs, 0.6H), 7.35 (m, 5H),

Example 80: Preparation of (3S)-4-methyl-3-((S)-4-methyl-2-phenylsulfonylaminovalerylamino)-2-tetrahydrofuranol (Compound No. 320 in Table-1)

Melting point: 116-121°C

IR (KBr, cm⁻¹): 3356, 3272, 1655.

NMR (CDCl₃, δ): 0.70 (d, J=6.0Hz, 2.1H), 0.71 (d, J=6.0Hz, 0.9H), 0.86 (d, J=6.6Hz, 3H), 0.95 (d, J=6.6Hz, 2.1H), 1.04 (d, J=6.6Hz, 0.9H), 1.50 (m, 2H), 1.62 (m, 1H), 2.12 (m, 1H), 3.43 (m, 1H), 3.70 (m, 1H), 3.91 (m, 1H), 4.17 (dd, J=8.4Hz, 8.4Hz, 1H), 5.12 (d, J=4.5Hz, 0.3H), 5.25 (d, J=4.5Hz, 0.7H), 5.35 (d, J=7.2Hz, 0.7H), 5.40 (d, J=7.2Hz, 0.3H), 6.34 (d, J=8.7Hz, 0.3H), 6.37 (d, J=8.7Hz, 0.7H), 7.49-7.62 (m, 3H), 7.88 (m, 2H).

Example 81: Preparation of (3S)-3-((S)-2-benzyloxycarbonylamino-4-methylvalerylamino)-2-tetrahydropyrazole (Compound No. 433 in Table-1)

IR (KBr, cm⁻¹): 3298, 1691, 1649, 1541.

NMR (CDCl₃, δ): 0.90-0.92 (m, 6H), 1.57-1.70 (m, 7H), 3.43-3.70 (m, 2H), 3.87-3.99 (m, 2H), 4.08-4.12 (m, 1H), 5.02 (s, 0.4H), 5.08 (s, 1.6H), 5.66 (s, 1H), 6.57 (s, 0.8H), 6.88 (s, 0.2H), 7.31 (s, 5H).

55 Example 82: Preparation of (3S)-3-{(S)-2-(2-fluorobenzoylamino)-4-methylvalerylamino}-2-tetrahydropyrazole (Compound No. 450 in Table-1)

IR (KBr, cm⁻¹): 3408, 1600, 1495.

NMR (CDCl₃, δ): 0.92-0.98 (m, 6H), 1.64-1.82 (m, 7H), 3.48-3.59 (m, 2H), 3.84-4.13 (m, 2H), 4.68-4.70 (m, 1H),

5.01 (m, 0.3H), 5.05 (m, 0.7H), 6.55 (d, J=8.3Hz, 0.7H), 6.82 (d, J=8.2Hz, 0.3H), 7.07-7.28 (m, 2H), 7.41-7.52 (m, 1H), 7.99-8.05 (m, 1H).

Example 83: Preparation of (3S)-3-((S)-4-methyl-2-phenylsufonylaminovalerylamino)-2-tetrahydropyranole (Compound No. 468 in Table-1)

Melting point: 156-157°C

10

15

20

25

30

35

40

50

IR (KBr. cm⁻¹): 3335, 3261, 1649, 1545,

NMR (CDCl₃, δ): 0.67 (d, J=8.5Hz, 3H), 0.85 (d, J=6.0Hz, 3H), 1.21-2.05 (m, 7H), 3.21 (d, J=4.1Hz, 0.8H), 3.41-3.78 (m, 2H), 3.80-4.07 (m, 2H), 4.19 (m, 0.2H), 4.95 (s, 1H), 5.23 (d, J=6.8Hz, 1H), 6.26 (m, 1H), 7.42-7.68 (m, 3H), 7.87 (d, J=8.5Hz, 2H).

Example 84: Preparation of (3S)-3-{(S)-4-methyl-2-(2,4,6-trimethylphenylsulfonylamino)valerylamino}-2-tetrahydropyranol (Compound No. 473 in Table-1)

IR (KBr, cm⁻¹): 3331, 1655, 1541.

NMR (CDCl₃, δ): 0.66-0.72 (m, 3H), 0.83-0.85 (m, 3H), 1.44-1.97 (m, 7H), 2.28 (s, 3H), 2.63 (s, 6H), 3.42-3.75 (m, 2H), 3.84-3.98 (m, 2H), 4.40-4.47 (m, 1H), 4.93 (s, 1H), 5.47 (d, J=8.4Hz, 0.3H), 5.53 (d, J=7.8Hz, 0.7H), 6.34 (m, 1H), 6.94 (s, 2H).

Example 85: Preparation of (3S)-3-{(S)-2-(N-acetyl-N-4-methylphenylsulfonyl)amino-4-methylvalerylamino}-2-tetrahydorofuranol (Compound No. 515 in Table-1)

Melting point: 49-51°C

IR (KBr, cm⁻¹): 3414, 1701, 1674, 1524.

NMR (CDCl₃, δ): 0.81-1.04 (m, 6H), 1.54-2.02 (m, 4H), 2.19-2.55 (m, 1H), 2.25 (s, 1.95H), 2.29 (s, 1.05H), 2.46 (s, 3H), 2.85 (d, J=2.9Hz, 0.35H), 3.23 (d, J=3.2Hz, 0.65H), 3.80-4.20 (m, 2H), 4.27-4.44 (m, 1H), 4.86 (t, J=7.7Hz, 0.35H), 4.97 (dd, J=7.7Hz, 6.3Hz, 0.65H), 5.24 (d, J=2.9Hz, 0.35H), 5.34 (dd, J=3.2Hz, 3.2Hz, 0.65H), 6.02 (d, J=7.4Hz, 0.35H), 6.41 (d, J=7.9Hz, 0.65H), 7.37 (d, J=8.4Hz, 2H), 7.98 (d, J=8.4Hz, 0.7H), 8.05 (d, J=8.4Hz, 1.3H).

Example 86: Preparation of (3S)-3-{(S)-2-(N-acetyl-N-4-methoxyphenylsulfonyl)amino-4-methylvalerylamino}-2-tetrahydrofuranol (Compound No. 516 in Table-1)

Melting point: 48-51°C

IR (KBr, cm⁻¹): 3414, 1701, 1595, 1522, 1501.

NMR (CDCl₃, δ): 0.84-1.06 (m, 6H), 1.57-2.01 (m, 4H), 2.24 (s, 1.95H), 2.29 (s, 1.05H), 2.26-2.58 (m, 1H), 3.04 (d, J=2.6Hz, 0.35H), 3.42 (d, J=3.1Hz, 0.65H), 3.80-4.18 (m, 2H), 3.89 (s, 1.95H), 3.90 (s, 1.05H), 4.24-4.43 (m, 1H), 4.87 (dd, J=7.7Hz, 6.0Hz, 0.35H), 4.95 (t, J=6.9Hz, 0.65H), 5.24 (d, J=2.6Hz, 0.35H), 5.34 (dd, J=3.1Hz, 3.1Hz, 0.65H), 6.04 (d, J=7.1Hz, 0.35H), 6.42 (d, J=8.0Hz, 0.65H), 7.04 (d, J=9.0Hz, 2H), 8.04 (d, J=9.0Hz, 0.7H), 8.12 (d, J=9.0Hz, 1.3H).

Example 87: Preparation of (3S)-3-{(S)-2-((S)-4-methyl-2-phenylsulfonylaminovalerylamino)-4-methylvalerylamino}-2-tetrahydrofuranol (Compound No. 1126 in Table-3)

45 Melting point: 186-188°C

IR (KBr, cm⁻¹): 3285, 1644, 1549.

NMR (CDCl₃, δ): 0.40 (d, J=6.3Hz, 1.2H), 0.52 (d, J=5.6Hz, 1.8H), 0.75-1.00 (m, 9H), 1.32-2.07 (m, 7H), 2.25 (m, 0.6H), 2.40 (m, 0.4H), 3.48 (d, J=2.8Hz, 0.4H), 3.59 (m, 1H), 3.73-3.92 (m, 1.2H), 4.02-4.20 (m, 1.4H), 4.21-4.56 (m, 2H), 5.30-5.38 (m, 1H), 5.59 (d, J=4.8Hz, 0.4H), 5.68 (d, J=5.9Hz, 0.6H), 6.82 (d, J=8.3Hz, 0.6H), 6.95 (d, J=9.7Hz, 0.4H), 6.99 (d, J=8.6Hz, 0.6H), 7.08 (d, J=7.0Hz, 0.4H), 7.47-7.72 (m, 3H), 7.91 (d, J=8.5Hz, 2H).

Example 88: Preparation of (2S,3S)-2-acetoxy-3-((S)-4-methyl-2-phenylsulfonylaminovalerylamino)tetrahydrofuran (Compound No. 716 in Table-2)

244 mg of (S)-3-((S)-4-methyl-2-phenylsulfonylaminovalerylamino)-2-tetrahydrofuranone obtained in Reference Example 1 was dissolved in 35 ml of methylene chloride and the solution was cooled to -78°C. 1.91 ml of a solution of diisobutylalminium hydride in toluene (1.01 mol/L) was added to the reaction solution. After stirring for 3 hours at -78°C, the reaction mixture was added with a saturated aqueous solution of ammonium chloride and ethyl acetate. The mixture was warmed up to room temperature and then filtered through celite. The celite was thoroughly washed with ethyl ace-

tate. The filtrate was washed with saturated brine, dried over magnesium sulfate, and then filtered. The filtrate was concentrated to obtain crude (3S)-3-((S)-4-methyl-2-phenylsulfonylaminovalerylamino)-2-tetrahydrofuranol (compound of Example 1). This compound was dissolved in 1 ml of pyridine and added with 1.5 ml of acetic anhydride under ice cooling, and then, the mixture was stirred for 9 hours under ice cooling and further added with 1.5 ml of methanol and concentrated. The resulting residue was dissolved in ethyl acetate, and the solution was washed successively with diluted hydrochloric acid, water, saturated aqueous solution of sodium hydrogencarbonate, and saturated brine, and then dried over magnesium sulfate and filtered. The filtrate was concentrated, and the resulting residue was added with 2.5 ml of ethyl acetate and 2.5 ml of hexane, and then the mixture was stirred. Precipitated crystals were collected by filtration to obtain the desired compound (120 mg).

10

15

Yield: 44%

Melting point: 177-178°C

IR (KBr, cm⁻¹): 3409, 3100, 1753, 1659.

NMR (CDCl₃, δ): 0.54 (d, J=6.3Hz, 3H), 0.80 (d, J=6.3Hz, 3H), 1.37 (m, 2H), 1.59 (m, 1H), 1.81 (m, 1H), 2.16 (s, 3H), 2.24 (m, 1H), 3.61 (m, 1H), 3.95 (ddd, J=9.3Hz, 9.0Hz, 7.5Hz, 1H), 4.14 (ddd, J=9.3Hz, 9.3Hz, 3.0Hz, 1H), 4.53 (m, 1H), 4.87 (d, J=6.6Hz, 1H), 6.16 (d, J=4.5Hz, 1H), 6.56 (d, J=8.7Hz, 1H), 7.54 (m, 2H), 7.62 (m, 1H), 7.86 (dd, J=7.2Hz, 1.5Hz, 2H).

Compounds of Example 89 to Example 117 were prepared in the same manners as that of Example 88. Physicochemical data of the compounds will be described below.

Example 89: Preparation of (2S,3S)-2-acetoxy-3-((S)-2-tert-butoxycarbonylamino-4-methylvalerylamino)tetrahydrofuran (Compound No. 547 in Table-2)

Melting point: 143-145°C

IR (KBr, cm⁻¹): 3297, 1748, 1659.

NMR (CDCl₃, δ): 0.93 (d, J=6.0Hz, 3H), 0.94 (d, J=6.0Hz, 3H), 1.45 (s, 9H), 1.49 (m, 1H), 1.67 (m, 2H), 1.83 (m, 1H), 2.11 (s, 3H), 2.36 (m, 1H), 3.96 (ddd, J=9.3Hz, 9.3Hz, 9.3Hz, 1H), 4.06 (m, 1H), 4.14 (ddd, J=9.3Hz, 9.3Hz, 3.0Hz, 1H), 4.57 (m, 1H), 4.84 (s, 1H), 6.17 (s, J=4.8Hz, 1H), 6.45 (s, 1H).

30

35

45

55

25

Example 90: Preparation of (2S,3S)-2-acetoxy-3-((S)-2-benzyloxycarbonylamino-4-methylvalerylamino)tetrahydro-furan (Compound No. 551 in Table-2)

Melting point: 162-164°C

IR (KBr, cm⁻¹): 3310, 1687, 1655, 1535.

NMR (CDCl₃, δ): 0.94 (d, J=6.2Hz, 3H), 0.95 (d, J=6.2Hz, 3H), 1.83 (m, 1H), 2.07 (s, 3H), 2.11 (m, 3H), 2.36 (m, 1H), 3.93 (ddd, J=7.8Hz, 7.8Hz, 7.8Hz, 1H), 4.09 (m, 2H), 4.79 (m, 1H), 5.12 (s, 2H), 5.32 (s, 1H), 6.04 (d, J=4.2Hz, 1H), 6.17 (d, J=4.4Hz, 1H), 7.35 (m, 5H).

Example 91: Preparation of (2S,3S)-2-acetoxy-3-{(S)-2-(2-chlorobenzyloxycarbonylamino)-4-methylvalerylamino}tetrahydrofuran (Compound No. 558 in Table-2)

Melting point: 144-147°C

IR (KBr, cm⁻¹): 3314, 3076, 1699, 1655, 1535.

NMR (CDCl₃, δ): 0.92-0.95 (m, 6H), 1.51-1.84 (m, 4H), 2.08 (s, 3H), 2.34 (m, 1H), 3.95 (dd, J=8.8Hz, 7.4Hz, 1H), 4.09-4.16 (m, 2H), 4.57 (m, 1H), 5.19 (d, J=13.0Hz, 1H), 5.23 (s, 1H), 5.26 (d, J=13.0Hz, 1H), 6.16 (d, J=4.3Hz, 1H), 6.29 (s, 1H), 7.25-7.29 (m, 2H), 7.37-7.41 (m, 2H).

Example 92: Preparation of (2S,3S)-2-acetoxy-3-{(S)-4-methyl-2-(4-methylbenzyloxycarbonylamino)valerylamino}tet-50 rahydrofuran (Compound No. 566 in Table-2)

Melting point: 161-163°C

IR (KBr, cm⁻¹): 3314, 1691, 1651, 1539.

NMR (CDCl₃, δ): 0.91-0.93 (m, 6H) 1.46 (m, 4H), 2.07 (s, 3H), 2.32 (s, 3H), 2.33 (m, 1H), 3.94 (q, J=7.5Hz, 1H), 4.08-4.15 (m, 2H), 4.57 (m, 1H), 5.05 (d, J=12.0Hz, 1H), 5.06 (s, 1H), 5.09 (d, J=12.0Hz, 1H), 6.15 (d, J=4.2Hz, 1H), 6.32 (s, 1H), 7.15 (d, J=7.8Hz, 2H), 7.23 (d, J=7.8Hz, 2H).

Example 93: Preparation of (2S,3S)-2-acetoxy-3-{(S)-2-(9-fluorenylmethoxycarbonylamino)-4-methylvalerylamino}tetrahydrofuran (Compound No. 571 in Table-2)

Melting point: 158-159°C

IR (KBr, cm⁻¹): 3308, 1746, 1692, 1657, 1537.

NMR (CDCl₃, δ): 0.94 (m, 6H), 1.52-1.74 (m, 3H), 1.64 (m, 1H), 2.06 (s, 3H), 2.36 (m, 1H), 3.96 (ddd, J=7.8Hz, 7.8Hz, 7.8Hz, 1H), 4.11 (m, 2H), 4.19 (t, J=7.5Hz, 1H), 4.43 (m, 2H), 4.56 (m, 1H), 5.15 (s, 1H), 6.06 (d, J=4.2Hz, 1H), 6.22 (s, 1H), 7.31 (dd, J=7.5Hz, 2H), 7.41 (dd, J=7.5Hz, 7.5Hz, 2H), 7.58 (d, J=7.5Hz, 2H), 7.77 (d, J=7.5Hz, 2H).

10

5

Example 94: Preparation of (2S,3S)-2-acetoxy-3-((S)-2-cyclohexyloxycarbonylamino-4-methylvalerylamino)tetrahydro-furan (Compound No. 580 in Table-2)

Melting point: 135- 137°C

NMR (CDCl₃, δ): 0.92-0.95 (m, 6H), 1.26-1.88 (m, 14H), 2.10 (s, 3H), 2.35 (m, 1H), 3.97 (m, 1H), 4.10-4.16 (m, 2H), 4.51-4.64 (m, 2H), 5.03 (s, 1H), 6.16 (d, J=4.5Hz, 1H), 6.40 (s, 1H).

Example 95: Preparation of (2S,3S)-2-acetoxy-3-{(S)-4-methyl-2-(1-naphtylacetylamino)valerylamino}tetrahydrofuran (Compound No. 605 in Table-2)

20

25

35

15

Melting point: 182-184°C

IR (KBr, cm⁻¹): 3308, 1745, 1644, 1551.

NMR (CDCl₃, δ): 0.72 (d, J=6.4Hz, 3H), 0.74 (d, J=6.4Hz, 3H), 1.10-1.35 (m, 2H), 1.47 (m, 1H), 1.67 (m, 1H), 2.13 (s, 3H), 2.20 (m, 1H), 3.93 (ddd, J=8.9Hz, 8.9Hz, 8.9Hz, 1H), 3.98-4.15 (m, 3H), 4.31 (m, 1H), 4.46 (m, 1H), 5.66 (d, J=8.1Hz, 1H), 6.12 (d, J=4.6Hz, 1H), 6.53 (d, J=8.6Hz, 1H), 7.05-7.57 (m, 4H), 7.80-7.95 (m, 3H).

Example 96: Preparation of (2S,3S)-2-acetoxy-3-{(S)-2-(2-fluorobenzoylamino)-4-methylvalerylamino}tetrahydrofuran (Compound No. 633 in Table-2)

30 Melting point: 165-166°C.

IR (KBr, cm⁻¹): 3343, 3304, 1748, 1694, 1640, 1551.

NMR (CDCl $_3$, δ): 0.96 (d, J=5.7Hz, 3H), 0.98 (d, J=5.7Hz, 3H), 1.58-1.95 (m, 4H), 2.10 (s, 3H), 2.39 (m, 1H), 3.95 (ddd, J=9.0Hz, 9.0Hz, 7.4Hz, 1H), 4.14 (ddd, J=9.0Hz, 9.0Hz, 2.9Hz, 1H), 4.55-4.75 (m, 2H), 6.19 (d, J=4.8Hz, 1H), 6.61 (d, J=8.2Hz, 1H), 7.00 (d, J=7.4Hz, 0.5H), 7.09 (d, J=7.4Hz, 0.5H), 7.15 (dd, J=8.2Hz, 7.5Hz, 1H), 7.29 (ddd, J=6.8Hz, 6.8Hz, 0.9Hz, 1H), 7.55 (m, 1H), 8.06 (ddd, J=7.9Hz, 7.9Hz, 1.9Hz, 1H).

Example 97: Preparation of (2S,3S)-2-acetoxy-3-{(S)-2-(4-chlorobenzoylamino)-4-methylvalerylamino}tetrahydrofuran (Compound No. 641 in Table-2)

40 Melting point: 204-205°C

IR (KBr, cm⁻¹): 3304, 1746, 1674, 1635.

NMR (CDCl₃, δ): 0.96 (d, J=6.1Hz, 3H), 0.97 (d, J=6.0Hz, 3H), 1.58-1.78 (m, 3H), 1.85 (m, 1H), 2.13 (s, 3H), 2.31 (m, 1H), 3.95 (m, 1H), 4.14 (ddd, J=8.6Hz, 8.6Hz, 2.9Hz, 1H), 4.50-4.70 (m, 2H), 6.20 (d, J=4.6Hz, 1H), 6.62 (d, J=8.3Hz, 1H), 6.81 (d, J=7.8Hz, 1H), 7.41 (d, J=6.7Hz, 2H), 7.73 (d, J=6.7Hz, 2H).

45

50

Example 98: Preparation of (2S,3S)-2-acetoxy-3-{(S)-4-methyl-2-(2-methylbenzoylamino)valerylamino}tetrahydrofuran (Compound No. 645 in Table-2)

Melting point: 185-186°C

IR (KBr, cm⁻¹): 3264, 1753, 1674, 1626.

NMR (CDCl₃, δ): 0.99 (d, J=5.6Hz, 6H), 1.55-1.98 (m, 4H), 2.11 (s, 3H), 2.30 (m, 1H), 2.49 (s, 3H), 3.98 (m, 1H), 4.15 (ddd, J=6.3Hz, 6.3Hz, 2.9Hz, 1H), 4.47-4.70 (m, 2H), 6.19 (d, J=4.6Hz, 1H), 6.28 (d, J=8.2Hz, 1H), 6.81 (d, J=8.4Hz, 1H), 7.16-7.29 (m, 2H), 7.31-7.40 (m, 2H).

55 Example 99: Preparation of (2S,3S)-2-acetoxy-3-{(S)-4-methyl-2-(4-methylbenzoylamino)valerylamino}tetrahydrofuran (Compound No. 647 in Table-2)

Melting point: 199-200°C

IR (KBr, cm⁻¹): 3318, 1746, 1663, 1630, 1534.

NMR (CDCl₃, δ): 0.96 (d, J=6.0Hz, 3H), 0.97 (d, J=6.0Hz, 3H), 1.59-1.95 (m, 4H), 2.12 (s, 3H), 2.29 (m, 1H), 2.40 (s, 3H), 3.95 (m, 1H), 4.13 (ddd, J=6.3Hz, 6.3Hz, 2.9Hz, 1H), 4.49-4.70 (m, 2H), 6.19 (d, J=4.6Hz, 1H), 6.58 (d, J=7.6Hz, 1H), 6.70 (d, J=7.6Hz, 1H), 7.24 (d, J=7.8Hz, 2H), 7.69 (d, J=7.8Hz, 2H).

5 Example 100: Preparation of (2S,3S)-2-acetoxy-3-{(S)-4-methyl-2-(2,4,6-trimethylbenzoylamino)valerylamino}tetrahydrofuran (Compound No. 651 in Table-2)

NMR (CDCl₃, δ): 0.97 (d, J=5.0Hz, 6H), 1.59-1.79 (m, 3H), 1.89 (m, 1H), 2.11 (s, 3H), 2.27 (s, 6H), 2.32 (s, 3H), 2.35 (m, 1H), 3.95 (m, 1H), 4.14 (ddd, J=9.0Hz, 9.0Hz, 2.8Hz, 1H), 4.55-4.70 (m, 2H), 5.98 (d, J=8.1Hz, 1H), 6.09 (d, J=4.6Hz, 1H), 6.84 (s, 2H), 6.86 (d, J=7.5Hz, 1H).

Example 101: Preparation of (2S,3S)-3-((S)-4-methyl-2-phenylsulfonylaminovalerylamino)-2-poropionyloxytetrahydrofuran (Compound No. 720 in Table-2)

Melting point: 154-156°C

10

15

20

25

30

40

50

55

IR (KBr, cm⁻¹): 3355, 3274, 1711, 1678.

NMR (CDCl₃, δ): 0.56 (d, J=6.3Hz, 3H), 0.80 (d, J=6.6Hz, 3H), 1.17 (t, J=7.5Hz, 3H), 1.39 (m, 2H), 1.57 (m, 1H), 1.79 (m, 1H), 2.23 (m, 1H), 2.40 (qd, J=7.5Hz, 16.8Hz, 1H), 2.49 (qd, J=7.5Hz, 16.8Hz, 1H), 3.62 (m, 1H), 3.94 (ddd, J=9.0Hz, 9.0Hz, 9.0Hz, 1H), 4.13 (ddd, J=9.3Hz, 9.0Hz, 3.0Hz, 1H), 4.92 (d, J=6.9Hz, 1H), 6.17 (d, J=4.8Hz, 1H), 6.49 (d, J=8.7Hz, 1H), 7.53 (m, 2H), 7.62 (m, 1H), 7.86 (d, J=6.0Hz, 2H).

Example 102: Preparation of (2S,3S)-3-((S)-4-methyl-2-phenylsulfonylaminovalerylamino)-2-pivaloyloxytetrahydro-furan (Compound No. 725 in Table-2)

Melting point: 165-166°C

IR (KBr, cm⁻¹): 3293, 1640.

NMR (CDCl₃, δ): 0.64 (d, J=5.9Hz, 3H), 0.81 (d, J=6.1Hz, 3H), 1.26 (s, 9H), 1.48 (m, 3H), 1.72 (m, 1H), 2.23 (m, 1H), 3.64 (m, 1H), 3.94 (ddd, J=9.1Hz, 9.1Hz, 9.1Hz, 1H), 4.10 (ddd, J=9.1Hz, 9.1Hz, 3.1Hz, 1H), 4.45 (m, 1H), 5.07 (d, J=7.7Hz, 1H), 6.10 (d, J=4.5Hz, 1H), 6.21 (d, J=8.4Hz, 1H), 7.51 (m, 2H), 7.61 (m, 1H), 7.86 (d, J=7.1Hz, 2H).

Example 103: Preparation of (2S,3S)-2-benzoyloxy-3-((S)-4-methyl-2-phenylsulfonylaminovalerylamino)tetrahydrofuran (Compound No. 728 in Table-2)

35 Melting point: 184-185°C

IR (KBr, cm⁻¹): 3353, 3260, 1698, 1678.

NMR (CDCl₃, δ): 0.55 (d, J=6.0Hz, 3H), 0.69 (d, J=6.0Hz, 3H), 1.30-1.48 (m, 3H), 1.90 (m, 1H), 2.30 (m, 1H), 3.64 (m, 1H), 4.00 (ddd, J=9.3Hz, 9.0Hz, 7.5Hz, 1H), 4.19 (ddd, J=9.3Hz, 9.3Hz, 3.0Hz, 1H), 4.51 (m, 1H), 5.13 (d, J=8.1Hz, 1H), 6.37 (d, J=6.6Hz, 1H), 6.39 (d, J=4.2Hz, 1H), 7.26-7.50 (m, 4H), 7.58 (m, 2H), 7.80 (dd, J=7.5Hz, 1.8Hz, 2H), 8.06 (dd, J=7.8Hz, 0.9Hz, 2H).

Example 104: Preparation of (2S,3S)-2-acetoxy-3-{(S)-2-(4-chlorophenylsulfonylamino)-4-methylvalerylamino)tetrahydrofuran (Compound No. 754 in Table-2)

45 Melting point: 136-137°C

IR (KBr, cm⁻¹): 3335, 3258, 1744, 1651, 1535.

NMR (CDCl₃, δ): 0.61 (d, J=6.2Hz, 3H), 0.83 (d, J=6.3Hz, 3H), 1.35-1.62 (m, 3H), 1.80 (m, 1H), 2.15 (s, 3H), 2.21 (m, 1H), 3.61 (m, 1H), 3.97 (ddd, J=9.1Hz, 9.1Hz, 9.1Hz, 1H), 4.14 (ddd, J=9.1Hz, 9.1Hz, 2.9Hz, 1H), 4.50 (m, 1H), 5.09 (d, J=7.3Hz, 1H), 6.15 (d, J=4.6Hz, 1H), 6.42 (d, J=8.8Hz, 1H), 7.51 (d, J=8.6Hz, 2H), 7.80 (d, J=8.6Hz, 2H).

Example 105: Preparation of (2S,3S)-3-{(S)-2-(4-chlorophenylsulfonylamino)-4-methylvalerylamino}-2-pivaloyloxytet-rahydrofuran (Compound No. 755 in Table-2)

Melting point: 155-156°C

IR (KBr, cm⁻¹): 3366, 3229, 1726, 1684, 1664, 1543.

NMR (CDCl₃, δ): 0.70 (d, J=6.3Hz, 3H), 0.83 (d, J=6.4Hz, 3H), 1.25 (s, 9H), 1.40-1.82 (m, 4H), 2.23 (m, 1H), 3.62 (dd, J=12.5Hz, 6.4Hz, 1H), 3.96 (ddd, J=8.9Hz, 8.9Hz, 8.9Hz, 1H), 4.11 (ddd, J=8.9Hz, 8.9Hz, 2.9Hz, 1H), 4.45 (m, 1H), 5.21 (d, J=8.2Hz, 1H), 6.04 (d, J=8.6Hz, 1H), 6.10 (d, J=4.5Hz, 1H), 7.45-7.55 (m, 2H), 7.75-7.85 (m, 2H).

Example 106: Preparation of (2S,3S)-2-acetoxy-3-{(S)-4-methyl-2-(4-methylphenylsulfonylamino)valerylamino}tetrahydrofuran (Compound No. 761 in Table-2)

Melting point: 159-160°C

5

15

25

35

40

50

IR (KBr, cm⁻¹): 3372, 1721, 1674, 1535.

NMR (CDCl₃, δ): 0.52 (d, J=6.2Hz, 3H), 0.80 (d, J=6.3Hz, 3H), 1.36 (m, 2H), 1.56 (m, 1H), 1.83 (m, 1H), 2.16 (s, 3H), 2.22 (m, 1H), 2.44 (s, 3H), 3.59 (m, 1H), 3.94 (m, 1H), 4.14 (m, 1H), 4.56 (m, 1H), 4.81 (d, J=6.6Hz, 1H), 6.15 (d, J=4.6Hz, 1H), 6.35 (d, J=7.8Hz, 1H), 7.33 (d, J=8.0Hz, 2H), 7.74 (d, J=8.0Hz, 2H).

Example 107: Preparation of (2S,3S)-2-acetoxy-3-{(S)-4-methyl-2-(2,4,6-trimethylphenylsulfonylamino)valeryl-amino}tetrahydrofuran (Compound No. 765 in Table-2)

Melting point: 158-159°C

IR (KBr, cm⁻¹): 3416, 3191, 1755, 1661, 1605, 1535.

NMR (CDCl₃, δ): 0.56 (d, J=6.3Hz, 3H), 0.79 (d, J=6.3Hz, 3H), 1.39 (m, 2H), 1.58 (m, 1H), 1.81 (m, 1H), 2.16 (s, 3H), 2.24 (m, 1H), 2.31 (s, 3H), 2.62 (s, 6H), 3.56 (m, 1H), 3.94 (m, 1H), 4.14 (m, 1H), 4.52(m, 1H), 5.00 (d, J=7.1Hz, 1H), 6.15 (d, J=4.6Hz, 1H), 6.61 (d, J=8.7Hz, 1H), 6.97(s, 2H).

Example 108: Preparation of (2S,3S)-2-acetyl-3-{(S)2-(4-tert-butylphenylsulfonylamino)-4-methylvalerylamino)tetrahy-20 drofuran (Compound No. 768 in Table-2)

NMR (CDCl₃, δ): 0.44 (d, J=6.2Hz, 3H), 0.77 (d, J=6.2Hz, 3H), 1.23-1.43 (m, 2H), 1.34 (s, 9H), 1.55 (m, 1H), 1.85 (m, 1H), 2.17 (s, 3H), 2.20 (m, 1H), 3.59 (m, 1H), 3.95 (m, 1H), 4.13 (ddd, J=9.0Hz, 9.0Hz, 2.9Hz, 1H), 4.57 (m, 1H), 4.95 (d, J=6.4Hz, 1H), 6.17 (d, J=4.6Hz, 1H), 6.77(d, J=8.7Hz, 1H), 7.53 (d, J=8.6Hz, 2H), 7.78 (d, J=8.6Hz, 2H).

Example 109: Preparation of (2S,3S)-2-acetyl-3-{(S)-2-(4-methoxyphenylsulfonylamino)-4-methylvalerylamino)tetrahydrofuran (Compound No. 771 in Table-2)

30 Melting point: 157-158°C

IR (KBr, cm⁻¹): 3329, 3273, 1746, 1659, 1597, 1544, 1501.

NMR (CDCl $_3$, δ): 0.54 (d, J=6.1Hz, 3H), 0.81 (d, J=6.3Hz, 3H), 1.38 (m, 2H), 1.56 (m, 1H), 1.84 (m, 1H), 2.16 (s, 3H), 2.22 (m, 1H), 3.56 (m, 1H), 3.88 (s, 3H), 3.95 (m, 1H), 4.15 (m, 1H), 4.56 (m, 1H), 4.81 (d, J=6.4Hz, 1H), 6.16 (d, J=4.5Hz, 1H), 6.68 (d, J=9.2Hz, 1H), 6.99 (d, J=8.6Hz, 2H), 7.79 (d, J=8.6Hz, 2H).

Example 110: Preparation of (2S,3S)-2-acetoxy-3-{(S)-4-methyl-2-(2-naphtylsulfonylamino)valerylamino}tetrahydrofuran (Compound No. 780 in Table-2)

Melting point: 158-159°C

IR (KBr, cm⁻¹): 3337, 3275, 1723, 1676, 1543.

NMR (CDCl₃, δ): 0.48 (d, J=6.1Hz, 3H), 0.76 (d, J=6.2Hz, 3H), 1.33-1.75 (m, 4H), 1.97 (m, 1H), 2.15 (s, 3H), 3.68 (m, 1H), 3.87 (m, 1H), 4.05 (m, 1H), 4.42 (m, 1H), 5.19 (d, J=7.1Hz, 1H), 6.12 (d, J=4.6Hz, 1H), 6.53 (d, J=8.7Hz, 1H), 7.58-7.71 (m, 2H), 7.82 (dd, J=8.7Hz, 1.9Hz, 1H), 7.87-8.03 (m, 3H), 8.44 (s, 1H).

Example 111: Preparation of (2S,3S)-2-acetoxy-3-{(S)-4-methyl-2-(3-pyridylsulfonylamino)valerylamino}tetrahydrofuran (Compound No. 782 in Table-2)

Melting point: 160-161°C

IR (KBr, cm⁻¹): 3410, 3075, 1753, 1657, 1535, 1342, 1172.

NMR (CDCl₃, δ): 0.68 (d, J=5.9Hz, 3H), 0.85 (d, J=5.9Hz, 3H), 1.40-1.62 (m, 3H), 1.80 (m, 1H), 2.14 (s, 3H), 2.22 (m, 1H), 3.73 (m, 1H), 3.96 (ddd, J=9.1Hz, 8.9Hz, 8.9Hz, 1H), 4.03 (ddd, J=9.1Hz, 9.1Hz, 3.0Hz, 1H), 4.45 (m, 1H), 5.46 (m, 1H), 6.13 (d, J=4.6Hz, 1H), 6.32 (d, J=8.6Hz, 1H), 7.48 (m, 1H), 8.16 (ddd, J=8.2Hz, 1.9Hz, 1.9Hz, 1H), 8.83 (dd, J=4.9Hz, 1.5Hz, 1H), 9.07 (d, J=2.3Hz, 1H).

55 Example 112: Preparation of (2S,3S)-2-acetoxy-3-{(S)-2-[N-acetyl-N-(4-methylphenylsulfonyl)amino]-4-methylvaleryl-amino}tetrahydrofuran (Compound No. 1065 in Table-2)

Melting point: 154°C

IR (KBr, cm⁻¹): 3387, 1746, 1674, 1522.

NMR (CDCl₃, δ): 0.84 (d, J=6.3Hz, 3H), 0.93 (d, J=6.3Hz, 3H), 1.58 (m, 2H), 1.84 (m, 1H), 2.09 (m, 1H), 2.12 (s, 3H), 2.33 (s, 3H), 2.38 (m, 1H), 2.47 (s, 3H), 3.96 (m, 1H), 4.14 (m, 1H), 4.55 (m, 1H), 4.78 (t, J=6.8Hz, 1H), 6.14 (d, J=4.6Hz, 1H), 6.50 (d, J=8.3Hz, 1H), 7.39 (d, J=8.1Hz, 2H), 7.91 (d, J=8.1Hz, 2H).

5 Example 113: Preparation of (2S,3S)-2-acetoxy-3-{(S)-2-[N-acetyl-N-(4-methoxyphenylsulfonyl)amino]-4-methylvaler-ylamino}tetrahydrofuran (Compound No. 1066 in Table-2)

Melting point: 64-66°C

10

20

25

30

40

55

IR (KBr, cm⁻¹): 3397, 1748, 1595, 1530.

NMR (CDCl₃, δ): 0.85 (d, J=6.2Hz, 3H), 0.94 (d, J=6.3Hz, 3H), 1.59 (m, 2H), 1.85 (m, 1H), 2.08 (m, 1H), 2.12 (s, 3H), 2.32 (s, 1H), 2.37 (m, 1H), 3.90 (s, 3H), 3.96 (m, 1H), 4.15 (m, 1H), 4.56 (m, 1H), 4.79 (t, J=6.8Hz, 1H), 6.15 (d, J=4.7Hz, 1H), 6.51 (d, J=8.4Hz, 1H), 7.04 (d, J=9.0Hz, 2H), 7.97 (d, J=9.0Hz, 2H).

Example 114: Preparation of (2S,3S)-2-acetoxy-3-((S)-2-benzyloxycarbonylamino-4-methylvalerylamino)-2-tetrahydrofuran (Compound No. 983 in Table-2)

IR (KBr, cm⁻¹): 3310, 1693, 1653, 1537.

NMR (CDCl $_3$, δ): 0.90-0.93 (m, 6H), 1.43-1.77 (m, 7H), 2.11 (s, 3H), 3.65-3.74 (m, 2H), 4.08-4.17 (m, 2H), 5.09 (s, 2H), 5.30 (d, J=8.1Hz, 1H), 5.96 (d, J=2.7Hz, 1H), 6.17 (s, 1H), 7.34 (m, 5H).

Example 115: Preparation of (2S,3S)-2-acetoxy-3-{(S)-2-(2-fluorobenzoylamino)-4-methylvalerylamino}-2-tetrahydropyran (Compound No. 1000 in Table-2)

IR (KBr, cm⁻¹): 3298, 2947, 1633, 1545.

NMR (CDCl₃, δ): 0.91-0.98 (m, 6H), 1.65-1.77 (m, 7H), 2.13 (s, 3H), 3.64-3.77 (m, 2H), 3.90 (m, 1H), 4.20 (m, 1H), 4.60 (s, 1H), 6.00 (d, J=3.3Hz, 1H), 6.42 (s, 1H), 7.13 (m, 1H), 7.26 (m, 1H), 7.48 (m, 1H), 8.02 (m, 1H).

Example 116: Preparation of (2S,3S)-2-acetoxy-3-{(S)-4-methyl-2-(2,4,6-trimethylphenylsulfonylamino)valerylamino}-2-tetrahydoropyran (Compound No. 1023 in Table-2)

IR (KBr, cm $^{-1}$): 3418, 1658, 1606, 1523. NMR (CDCl $_3$, δ): 0.57 (d, J=6.3Hz, 3H), 0.79 (d, J=6.3Hz, 3H), 1.32-1.78 (m, 7H), 2.16 (s, 3H), 2.29 (s, 3H), 2.60 (s, 6H), 3.49 (m, 1H), 3.61-3.78 (m, 2H), 4.08 (m, 1H), 5.08 (d, J=7.2Hz, 1H), 5.94 (d, J=3.0Hz, 1H), 6.33 (d, J=8.7Hz, 1H), 6.95 (s, 2H).

35 Example 117: Preparation of (2S,3S)-3-{(S)-2-(4-tert-butylphenylsulfonylamino)-4-methylvalerylamino}-2-pivaloy-loxytetrahydrofuran (Compound No. 1397 in Table-2)

Melting point: 166-167°C

IR (KBr, cm⁻¹): 3360, 1728, 1682, 1665, 1547.

NMR (CDCl $_3$, δ): 0.55 (d, J=6.0Hz, 3H), 0.78 (d, J=6.0Hz, 3H), 1.25 (s, 9H), 1.32 (s, 9H), 1.38-1.82 (m, 4H), 2.25 (m, 1H), 3.60 (m, 1H), 3.95 (m, 1H), 4.12 (ddd, J=9.0Hz, 9.0Hz, 3.0Hz, 1H), 4.46 (m, 1H), 5.05 (d, J=7.1Hz, 1H), 6.10 (d, J=4.5Hz, 1H), 6.41 (d, J=8.3Hz, 1H), 7.52 (d, J=8.6Hz, 2H), 7.78 (d, J=8.6Hz, 2H).

Example 118: Preparation of (3S)-2-methoxy-3-((S)-4-methyl-2-phenylsulfonylaminovalerylamino)tetrahydrofuran (Compound No. 741 in Table-2)

43 mg of (2S,3S)-2-acetoxy-3-((S)-4-methyl-2-phenylsulfonylaminovalerylamino)tetrahydrofuran obtained in Example 88 was dissolved in 40 ml of methanol, and the solution was added with 1 ml of ethyl acetate containing 4N hydrochloric. After stirring overnight at room temperature, 7 ml of saturated aqueous solution of sodium hydrogencarbonate was added to the reaction mixture, and then the solvent was evaporated. The resulting residue was added with a saturated aqueous solution of sodium hydrogencarbonate and the mixture was extracted with ethyl acetate. The extract was washed with saturated brine and dried over magnesium sulfate. The drying agent was removed by filtration and the filtrate was concentrated to obtain a crude product. The crude product was added with hexane and diethyl ether and then stirred. After filtration, the desired compound (29 mg) was obtained.

Yield: 65%

Melting point: 84-90°C

IR (KBr, cm⁻¹): 3268, 1647, 1618.

NMR (CDCl₃, δ): 0.71 (d, J=6.6Hz, 2.1H), 0.80 (d, J=6.6Hz, 0.9H), 0.84 (d, J=6.6Hz, 2.1H), 0.88 (d, J=6.6Hz, 0.9H),

1.42-1.49 (m, 3H), 1.61 (m, 1H), 2.08 (m, 0.3H), 2.27 (m, 0.7H), 3.30 (s, 2.1H), 3.37 (s, 0.9H), 3.63 (m, 1H), 3.69 (m, 0.3H), 3.81-4.11 (m, 1.7H), 4.13 (m, 1H), 4.66 (s, 0.7H), 4.71 (d, J=4.8Hz, 0.3H), 4.66 (d J=7.8Hz, 0.7H), 5.23 (d, J=8.4Hz, 0.3H), 5.96 (d, J=7.8Hz, 0.7H), 6.17 (d, J=8.7Hz, 0.3H), 7.47-7.62 (m, 3H), 7.86 (d, J=7.5Hz, 2H).

Test Example 1: Measurement of inhibitory activity against cysteine proteases

Inhibitory activity against cathepsin B (Sigma, C-6286) was determined according to a method described in a literature (Biochemical Journal, Vol. 201, p. 189, 1982). The results are shown in Table-5.

m-Calpain was purified from brains of rats according to a method described in a literature (Journal of Biological Chemistry, Vol. 259, p. 3210, 1984), and the inhibitory activity was determined in a manner according to a published method (Journal of Biological Chemistry, Vol. 259, p. 12489, 1984). The results are shown in Table-6.

From the results shown in Table-5 and Table-6, it is apparent that the compounds of the present invention have potent inhibitory activity against cystein proteases such as papain, cathepsin B, cahepsin L, and calpain.

15

Table-5

	14510 0			
	Inhibitory activity against cathepsin B			
20	Example No. (Com- pound No. in Table-1)	IC ₅₀ (μ M)	Example No. (Com- pound No. in Table-1)	IC ₅₀ (μ M)
	1(196)	0.42	40(113)	1.00
	4(20)	0.70	41(114)	0.87
	5(21)	0.98	42(115)	0.55
25	6(22)	1.35	43(121)	0.14
	7(23)	0.90	44(125)	1.45
	10(27)	0.37	45(126)	0.49
30	11(28)	2.15	46(127)	0.27
	12(29)	1.20	48(130)	0.086
	13(31)	0.38	50(134)	0.20
	15(37)	0.70	51(137)	0.21
35	16(38)	1.00	53(140)	0.15
	17(40)	0.64	55(142)	1.65
	18(44)	0.58	56(144)	0.90
40	19(46)	0.89	57(148)	0.24
	20(47)	1.05	58(152)	0.46
	21(49)	1.17	59(156)	0.80
	24(53)	2.90	60(157)	0.034
45	25(54)	2.90	61(161)	1.20
	27(60)	1.20	62(170)	0.50
50	28(61)	1.70	65(187)	0.19
	33(85)	0.95	75(229)	2.40
	34(90)	1.35	77(232)	0.40
	39(112)	0.20	78(246)	0.30
55	Example No. (Com- pound No. in Table-3)	IC ₅₀ (μ M)		
	87(1126)	1.30		

Table-6: Inhibitory activity against calpain

Example No.	IC ₅₀	Example No.	IC_{50}
(Compound No. in	(μ M)	(Compound No. in	(μ M)
Table-1)		Table-1)	
1(196)	0.62	27(60)	0.65
4(20)	0.90	28(61)	0.52
5(21)	2.30	33(85)	0.11
6(22)	2.30	34(90)	0.33
7(23)	2.40	39(112)	0.37
9(25)	1.55	40(113)	0.17
10(27)	0.96	41(114)	1.15
11(28)	1.10	42(115)	0.82
12(29)	0.65	43(121)	0.36
13(31)	0.66	44(125)	0.58
15(37)	0.68	45(126)	0.56
16(38)	0.34	46(127)	0.33
17(40)	0.39	47(129)	2.30
18(44)	0.44	48(130)	0.38
19(46)	0.48	49(131)	0.68
20(47)	0.56	50(134)	0.65
21(49)	0.34	51(137)	0.48
22(51)	0.41	52(138)	0.34
23(52)	1.10	53(140)	0.67
24(53)	1.30	54(141)	0.70
25(54)	1.05	55(142)	0.84
26(57)	1.40	56(144)	0.64

Table-6 (Cont.)

Table-0 (Cont.)		
Example No.	IC ₅₀	
(Compound No. in	(μ M)	
Table-1)		
57(148)	0.25	
58(152)	0.44	
59(156)	0.40	
60(157)	0.47	
61(161)	0.35	
62(170)	1.00	
63(175)	0.35	
65(187)	0.70	
66(202)	0.60	
68(205)	0.56	
69(208)	0.62	
70(211)	0.50	
71(215)	0.45	
72(218)	0.39	
73(221)	0.74	
74(227)	0.95	
75(229)	0.38	
76(230)	0.36	
77(232)	1.00	
80(320)	2.80	
81(468)	1.55	
Example No.	IC_{50}	
(Compound No. in	(μ M)	
Table-3)		
87(1126)	0.78	

Test Example 2: Release of an active compound in blood

(2S,3S)-2-acetoxy-3-((S)-4-methyl-2-phenylsulfonylaminovalerylamino)tetrahydrofuran obtained in Example 88 was dissolved in acetonitrile and the solution was added to rat serum so that its final concentration was adjusted to 100 μ M. The mixture was incubated at 37°C for 5 minutes. The mixture was then added with acetonitrile and centrifuged, and the resulting solution portion was applied to HPLC for analysis. The result is shown in Figure 1. For comparison, solutions obtained by dissolving (3S)-3-((S)-4-methyl-2-phenylsulfonylaminovalerylamino)-2-tetrahydrofuranol obtained

in Example 1 and (2S,3S)-2-acetoxy-3-((S)-4-methyl-2-phenylsulfonylaminovalerylamino)tetrahydrofuran obtained in Example 88 in acetonitrile respectively were examined by HPLC. The results are shown in Figure 2. As seen from the results shown in Figures 1 and 2, it was found that 97% of (2S,3S)-2-acetoxy-3-((S)-4-methyl-2-phenylsulfonylaminovalerylamino)tetrahydrofuran added in the serum was hydrolyzed and converted into the active form, i.e., (3S)-3-((S)-4-methyl-2-phenylsulfonylaminovalerylamino)-2-tetrahydrofuranol (compound of Example 1). The same procedures were repeated by using human serum and dog serum, and the formations of active form were also observed.

The HPLC conditions were as follows:

Column: Nucleosil 100₅ C_{18,} 4.6×250 mm (Nagel)

10 Column temperature: 50°C

Mobile phase: $CH_3CN:H_2O:PIC A Low UV (Waters) = 22:78:1$

Flow rate: 1 ml/min
Detection wavelength: UV 222 nm

From these results, it can be readily understood that the oxygen-containing heterocyclic derivative of the present invention is rapidly converted into the active form, i.e., the lactol derivative in a living body.

Test Example 3: Acute toxicity test

20 Compounds of the present invention was suspended in 0.5% aqueous solution of CMC-Na and the suspensions were orally administered to SD male and female rats. Their symptoms were observed for seven days.

All of the compounds of Examples 88, 96, and 106 were revealed to have LD_{50} values of less than 2,000 mg/kg.

Test Example 4: Pharmaceutical formulations

(1) Tablet

25

30

35

40

45

50

55

The following components were mixed in a conventional manner and compressed as tablets by using an ordinary apparatus.

Compound of Example 88	30 mg
Crystalline cellulose	60 mg
Corn starch	100 mg
Lactose	200 mg
Magnesium stearate	4 mg

(2) Soft capsule

The following components were mixed in a conventional manner and filled into soft capsules.

Compound of Example 88	30 mg
Olive oil	300 mg
Lecithin	20 mg

(3) Pharmaceutical preparation for injection

The following components were mixed in a conventional manner and 1 ml ampoules were prepared.

Compound of Example 25	3 mg
Sodium chloride	4 mg
Distilled water for injection	1 ml

Industrial Applicability

The oxygen-containing heterocyclic derivatives of the present invention have potent inhibitory activity against cysteine proteases such as papain, cathepsin B, cathepsin H, cathepsin L, calpain and interleukin 1 β converting enzyme, and they are excellent in oral absorbability, tissue distribution, and cellular membrane permeability. Therefore, the compounds can be used as therapeutic medicaments for diseases such as muscular dystrophy, amyotrophia, myocardial infarct, cerebral apoplexy, Alzheimer's disease, disturbance of consciousness and movement disorder caused by a head injury, multiple sclerosis, neuropathy of peripheral nerve, cataract, inflammation, allergy, fulminant hepatis, osteoporosis, hypercalcemia, breast cancer, prostatic cancer, prostatic hypertrophy and the like, as well as medicaments for suppression of cancerous growth, prevention of cancerous metastasis, or inhibition of platelet agglomeration.

Claims

5

10

20

25

30

1. An oxygen-containing heterocyclic derivative represented by the following formula (I) and its pharmaceutically acceptable salts, and a hydrate and a solvate thereof:

35

40

45

wherein R1 represents a hydrogen atom, R8-CO-, R8-O-CO-, R8-NH-CO-, or R8-SO2- (R8 represents a C1-C20 alkyl group which may optionally be substituted with one or more substituents selected from the group consisting of a C_3 - C_8 cycloalkyl group, a C_3 - C_8 cycloalkyloxy group, fluorenyl group, a C_1 - C_5 alkoxy group, a C_6 - C_{14} aryl group which may optionally be substituted, a C₆-C₁₄ aryloxy group which may optionally be substituted, a C₆-C₁₄ arylthio group which may optionally be substituted, a C₆-C₁₄ arylsulfonyl group which may optionally be substituted, and a residue of a heterocyclic compound which may optionally be substituted; a C₃-C₈ cycloalkyl group; a C₆-C₁₄ aryl group which may optionally be substituted; a C_2 - C_5 alkenyl group which may optionally be substituted with an optionally substituted C₆-C₁₄ aryl group; or a residue of a heterocyclic compound which may optionally be substituted); R², R⁴, and R⁶ independently represent a hydrogen atom, a C₁-C₅ alkyl group, or a C₂-C₆ alkanoyl group; R³ and R⁵ independently represent a hydrogen atom, a C₁-C₂₀ alkyl group which may optionally be substituted with one or more substituents selected from the group consisting of a C₆-C₁₄ aryl group which may optionally be substituted, hydroxyl group, a C_1 - C_5 alkoxy group, a C_1 - C_5 alkylthio group, and a C_7 - C_{12} aralkyloxy group, or they independently represents a C₆-C₁₄ aryl group which may optionally be substituted; R⁷ represents a hydrogen atom, a C₁-C₅ alkyl group, or R⁹-CO- (R⁹ represents a C₁-C₁₀ alkyl group or a C₆-C₁₂ aryl group which may optionally be substituted); symbol "A" represents a C_1 - C_3 alkylene group which may optionally be substituted with a C_1 - C_3 alkylene group which may optionally be substituted with a C_1 - C_3 alkylene group which may optionally be substituted with a C_1 - C_3 alkylene group which may optionally be substituted with a C_1 - C_3 alkylene group which may optionally be substituted with a C_1 - C_3 alkylene group which may optionally be substituted with a C_1 - C_3 alkylene group which may optionally be substituted with a C_1 - C_3 alkylene group which may optionally be substituted with a C_1 - C_3 alkylene group which may optionally be substituted with a C_1 - C_2 alkylene group which may optionally be substituted with a C_1 - C_2 alkylene group which may optionally be substituted with a C_1 - C_2 alkylene group which may optionally be substituted with a C_1 - C_2 alkylene group which may optionally be substituted with a C_1 - C_2 alkylene group which may optionally be substituted with a C_2 - C_3 alkylene group which may optionally be substituted with a C_2 - C_3 alkylene group which may optionally be substituted with a C_2 - C_3 alkylene group which may optionally be substituted with a C_2 - C_3 alkylene group which may optionally be substituted with a C_3 - C_3 - C_4 - C_5 - $C_$ group; and symbol "n" represents 0 or 1.

50

55

2. The compound according to claim 1, wherein R¹ represents a hydrogen atom, R²-CO-, R²-O-CO-, R²-NH-CO-, or R²-SO₂- (R³ represents a C₁-C₂₀ alkyl group which may optionally be substituted with one or more substituents selected from the group consisting of a C₃-C₈ cycloalkyl group, fluorenyl group, a C₆-C₁₄ aryl group which may optionally be substituted, a C₆-C₁₄ aryloxy group which may optionally be substituted, a C₆-C₁₄ arylsulfonyl group which may optionally be substituted, and a residue of a heterocyclic compound which may optionally be substituted; a C₃-C₅ alkenyl group which may optionally be substituted with an optionally

substituted C_6 - C_{14} aryl group; or a residue of a heterocyclic compound which may optionally be substituted); R^3 and R^5 independently represent a hydrogen atom, a C_1 - C_{20} alkyl group which may optionally be substituted with one or more substituents selected from the group consisting of a C_6 - C_{14} aryl group which may optionally be substituted and a C_1 - C_5 alkoxy group.

- 3. The compound according to claim 2, wherein R^2 , R^4 , and R^6 independently represent a hydrogen atom or a C_1 - C_5 alkyl group.
- The compound according to claim 3, wherein symbol "n" represents 0.

5

10

15

20

30

35

40

50

- 5. The compound according to claim 1, wherein R^1 represents R^8 -CO- (R^8 represents a C_1 - C_{20} alkyl group which may optionally be substituted with one or more substituents selected from the group consisting of a C_6 - C_{14} aryl group which may optionally be substituted, a C_6 - C_{14} aryloxy group which may optionally be substituted, and a C_6 - C_{14} arylsulfonyl group which may optionally be substituted; a C_6 - C_{14} aryl group which may optionally be substituted; a C_6 - C_{14} aryl group which may optionally be substituted with an optionally substituted C_6 - C_{14} aryl group; or a residue of a heterocyclic compound which may optionally be substituted); R^2 , R^4 , and R^6 represent hydrogen atoms; R^3 and R^5 independently represent a C_1 - C_{20} alkyl group; R^7 represents a hydrogen atom or R^9 -CO-(R^3 represents a C_1 - C_{10} alkyl group); symbol "A" represents a C_1 - C_3 alkylene group; and symbol "n" represents 0.
- **6.** The compound according to claim 5, wherein R⁷ represents a hydrogen atom.
- 7. The compound according to claim 5, wherein R⁷ represents R⁹-CO- in which R⁹ represents a C₁-C₁₀ alkyl group.
- 8. The compound according to claim 1, wherein R¹ represents R8-CO- (R8 represents a C₁-C₂₀ alkyl group which may optionally be substituted with a C₆-C₁₄ aryl group which may optionally be substituted, or a C₆-C₁₄ aryl group which may optionally be substituted); R², R⁴, and R⁶ represent hydrogen atoms; R³ and R⁵ independently represent a C₁-C₂₀ alkyl group; R⁻ represents R⁴-CO- (R⁴ represents a C₁-C₁₀ alkyl group); symbol "A" represents a C₁-C₃ alkylene group; and symbol "n" represents 0.
 - 9. The compound according to claim 1, wherein R^1 represents R^8 -O-CO- (R^8 represents a C_1 - C_{20} alkyl group which may optionally be substituted with one or more substituents selected from the group consisting of a C_3 - C_8 cycloalkyl group, fluorenyl group, a C_6 - C_{14} aryl group which may optionally be substituted, and a residue of a heterocyclic compound which may optionally be substituted; a C_3 - C_8 cycloalkyl group; or a C_6 - C_{14} aryl group which may optionally be substituted); R^2 , R^4 , and R^6 represent hydrogen atoms; R^3 and R^5 independently represent a hydrogen atom, or a C_1 - C_{20} alkyl group which may optionally be substituted with one or more substituents selected from the group consisting of a C_6 - C_{14} aryl group which may optionally be substituted and a C_1 - C_5 alkoxy group; R^7 represents a hydrogen atom or R^9 -CO- (R^9 represents a C_1 - C_{10} alkyl group); symbol R^8 represents a R^8 -CO- alkylene group; and symbol "n" represents 0.
 - **10.** The compound according to claim 9, wherein R⁷ represents a hydrogen atom.
 - 11. The compound according to claim 9, wherein R⁷ represents R⁹-CO- in which R⁹ represents a C₁-C₁₀ alkyl group.
- 45 12. The compound according to claim 1, wherein R¹ represents R⁸-O-CO- (R⁸ represents a C₁-C₂₀ alkyl group which may optionally be substituted with one or more substituents selected from the group consisting of fluorenyl group and a C₆-C₁₄ aryl group which may optionally be substituted; or a C₃-C₈ cycloalkyl group); R², R⁴, and R⁸ represent hydrogen atoms; R³ and R⁵ independently represent a C₁-C₂₀ alkyl group; R⁷ represents R⁹-CO- (R⁹ represents a C₁-C₁₀ alkyl group); symbol "A" represents a C₁-C₃ alkylene group; and symbol "n" represents 0.
 - 13. The compound according to claim 1, wherein R^1 represents R^8 -NH-CO-(R^8 represents a C_6 - C_{14} aryl group which may optionally be substituted); R^2 , R^4 , and R^6 represent hydrogen atoms; R^3 and R^5 independently represent a C_{10} - C_{20} alkyl group; R^7 represents a hydrogen atom or R^9 -CO- (R^9 represents a C_{10} - C_{10} alkyl group or a C_{10} - C_{10} aryl group which may optionally be substituted); symbol "A" represents a C_{10} - C_{10} alkylene group; and symbol "n" represents 0.
 - **14.** The compound according to claim 13, wherein R⁷ represents a hydrogen atom.
 - 15. The compound according to claim 1, wherein R1 represents R8-SO₂- (R8 represents a C₆-C₁₄ aryl group which

may optionally be substituted or a residue of a heterocyclic compound which may optionally be substituted); R^2 , R^4 , and R^6 represent hydrogen atoms; R^3 and R^5 independently represent a C_1 - C_{20} alkyl group; R^7 represents a hydrogen atom, a C_1 - C_5 alkyl group, or R^9 -CO- (R^9 represents a C_1 - C_{10} alkyl group or a C_6 - C_{12} aryl group which may optionally be substituted); symbol "A" represents a C_1 - C_3 alkylene group which may optionally be substituted with a C_1 - C_3 alkyl group; and symbol "n" represents 0.

16. The compound according to claim 15, wherein R⁷ represents a hydrogen atom.

5

10

15

20

25

30

35

40

45

- 17. The compound according to claim 15, wherein R⁷ represents a C₁-C₅ alkyl group.
- **18.** The compound according to claim 15, wherein R¹ represents R⁸-SO₂- (R⁸ represents a C₆-C₁₄ aryl group which may optionally be substituted) and R⁷ represents a C₁-C₅ alkyl group.
- 19. The compound according to claim 15, wherein R^7 represents R^9 -CO-wherein R^9 represents a C_1 - C_{10} alkyl group.
- **20.** The compound according to claim 15, wherein R⁷ represents R⁹-CO-wherein R⁹ represents a C₆-C₁₂ aryl group which may optionally be substituted.
- **21.** The compound according to claim 15, wherein R¹ represents R⁸-SO₂-wherein R⁸ represents a C₆-C₁₄ aryl group which may optionally be substituted and R⁷ represents R⁹-CO- wherein R⁹ represents a C₆-C₁₂ aryl group which may optionally be substituted.
 - 22. The compound according to claim 1, wherein R¹ represents R²-CO-, R²-O-CO- or R²-SO₂- (R² represents (1) a C₆-C₁₄ aryl group which may optionally be substituted with one or more substituents selected from the group consisting of a C₁-C₃ alkyl group, a halogen atom, and a C₁-C₃ alkoxy group; a C₃-Cଃ cycloalkyl group; or a C₁-C₆ alkyl group which may optionally be substituted with a heterocyclic residue optionally substituted with one or more substituents selected from the group consisting of C₁-C₃ alkyl groups, (2) a C₃-Cଃ cycloalkyl group, (3) a C₆-C₁₄ aryl group which may optionally be substituted with one or more substituents selected from the group consisting of a C₁-C₃ alkyl group, a halogen atom, nitro group, fluorenyl group and a C₁-C₃ alkoxy group, (4) a C₂-C₅ alkenyl group which may optionally be substituted with a C₆-C₁₄ aryl group optionally substituted with one or more substituents selected from the group consisting of a C₁-C₃ alkyl group and a halogen atom, or (5) a residue of a heterocyclic compound which may optionally be substituted with one or more substituents selected from the group consisting of a C₁-C₃ alkyl group and a halogen atom); R² represents a C₁-C₆ alkyl group which may optionally be substituted with a C₆-C₁₄ aryl group; and R² represents a hydrogen atom or R²-CO- wherein R³ represents a C₁-C₆ alkyl group.
 - 23. The compound according to claim 1, wherein R^1 represents R^8 -CO-, R^8 -O-CO-, or R^8 -SO₂- (R^8 represents (1) a C_6 - C_{14} aryl group which may optionally be substituted with one or more substituents selected from the group consisting of a C_1 - C_3 alkyl group, a halogen atom, and a C_1 - C_3 alkoxy group; a C_3 - C_8 cycloalkyl group; pyridyl group; imidazolyl group which may optionally be substituted with one or more substituents selected from the group consisting of C_1 - C_3 alkyl groups; furyl group; tetrahydrofuryl group; or a C_1 - C_6 alkyl group which may optionally be substituted with a tetrahydropyranyl group, (2) a C_3 - C_8 cycloalkyl group, (3) a C_6 - C_{14} aryl group which may optionally be substituted with one or more substituents selected from the group consisting of a C_1 - C_3 alkyl group, a halogen atom, nitro group, fluorenyl group, and a C_1 - C_3 alkoxy group, (4) a C_2 - C_5 alkenyl group which may optionally be substituted with a C_6 - C_{14} aryl group optionally substituted with a C_1 - C_3 alkyl group, (5) pyridyl group, (6) imidazolyl group which may optionally be substituted with one or more substituents selected from the group consisting of C_1 - C_3 alkyl groups, (7) chromanyl group, (8) furyl group, (9) tetrahydrofuryl group, or (10) tetrahydropyranyl group); R^2 , R^4 , and R^6 represent hydrogen atoms, R^3 represents a C_1 - C_6 alkyl group, R^5 represents a C_1 - C_6 alkyl group.
 - 24. The compound according to claim 23, wherein symbol "A" represents an ethylene group which may optionally be substituted with a C_1 - C_3 alkyl group and symbol "n" represents 0.
- 25. The compound according to claim 1, wherein R^1 represents R^8 -CO-, R^8 -O-CO-, or R^8 -SO₂- (R^8 represents a C_1 - C_3 alkyl group which may optionally be substituted with a C_6 - C_{14} aryl group optionally substituted with a C_1 - C_3 alkyl group; or a C_6 - C_{14} aryl group which may optionally be substituted with one or more substituents selected from the group consisting of C_1 - C_3 alkyl groups); R^2 , R^4 , and R^6 represent hydrogen atoms, R^3 and R^5 represent a C_1 - C_6 alkyl group; and R^7 represents a hydrogen atom or R^9 -CO- wherein R^9 represents a C_1 - C_6 alkyl group.

- 26. The compound according to claim 25, wherein symbol "n" represents 0.
- 27. The compound according to claim 1, wherein R^1 represents R^8 -CO-, R^8 -O-CO-, or R^8 -SO₂- (R^8 represents a C_1 C_3 alkyl group substituted with phenyl group optionally substituted with a C_1 - C_3 alkyl group; or phenyl group which may optionally be substituted with one or more substituents selected from C_1 - C_3 alkyl groups); R^4 and R^6 represent hydrogen atoms; R^5 represents a C_1 - C_6 alkyl group; R^7 represents hydrogen atom or R^9 -CO- wherein R^9 represents a R^9 -CO- wherein R^9 represents a R^9 -CO- which may optionally be substituted with methyl group and symbol "n" represents 0.
- 28. The compound according to claim 1, wherein R¹ represents

 R^4 and R^6 represent hydrogen atoms; R^5 represents a C_1 - C_6 alkyl group; R^7 represents a hydrogen atom or R^9 -CO- wherein R^9 represents a C_1 - C_6 alkyl group; symbol "A" represents an ethylene group which may optionally be substituted with methyl group and symbol "n" represents 0.

- 29. A pharmaceutical composition comprising a compound according to claim 1 and a pharmaceutically acceptable additive.
- **30.** A pharmaceutical composition comprising a compound according to claim 1 and a pharmaceutically acceptable additive for treatment of a disease caused by abnormal accentuation of a cysteine protease.

40

45

50

Fig. 1

Fig. 2

INTERNATIONAL SEARCH REPORT International application No. PCT/JP96/00286 CLASSIFICATION OF SUBJECT MATTER C07D305/08, 307/22, Int. Cl6 309/14, C07H5/06, 15/18, A61K31/335, 31/34, 31/35, 31/70 According to International Patent Classification (IPC) or to both national classification and IPC FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) Int. Cl⁶ C07D305/08, 307/22, 309/14, C07H5/06, 15/18, A61K31/335, 31/34, 31/35, 31/70 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) CAS ONLINE C. DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. E EP, 641800, A1 (Takeda Chemical Industies, 1 - 30Ltd.), March 8, 1995 (08. 03. 95) Claim & JP, 8-104685, A Further documents are listed in the continuation of Box C. See patent family annex. later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention Special categories of cited documents: document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art "O" document referring to an oral disclosure, use, exhibition or other document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report April 24, 1996 (24. 04. 96) May 14, 1996 (14. 05. 96) Name and mailing address of the ISA/ Authorized officer Japanese Patent Office Facsimile No. Telephone No.

Form PCT/ISA/210 (second sheet) (July 1992)