

Diseño Digital Avanzado

Unidad 4 - Bloques en FPG

Dr. Ariel L. Pola apola@fundacionfulgor.org.ar October 11, 2021

## Tabla de Contenidos

- 1. Contenidos Temáticos
- 2. Proc. Emb. y Unid. aritméticas en FPGAs
- 3. Instanciación de bloques embebidos
- 4. Sumadores
- 5. División con Barrel Shifter
- 6. Sumadores Carry Save y Compresores
- 7. Multiplicadores Paralelos
- 8. Mult. Signado en Completo a Dos
- 9. Reducción del Árbol de Suma
- 10. Trasformaciones de Algoritmos para CSA
- 11. Multiplicación por Constantes
- 12. Arquitecturas Dedicadas de Filtros FIR
- 13. Aritmética Distribuida





## Presentación del Curso

Contenidos Temáticos

## Unidad 4 Bloques Básicos de Diseño en FPGA y VLSI

- Procesadores embebidos y unidades aritméticas en FPGAs.
- Instanciación de los mismos.
- Mapeo óptimo para una tecnología dada.
- Bloques básicos de diseño en ASICs: Sumadores básicos. Half y Full adder. Ripple carry adder.
- Sumadores rápidos: Carry Look-ahead Adder, Hybrid Ripple Carry and Carry Look-ahead Adder, Binary Carry Lookahead Adder, Carry Skip Adder, Conditional Sum Adder, Carry Select Adder, Hybrid Adders.

- División con Barrel Shifters.
- Sumadores Carry Save (CSA) y Compresores.
- Multiplicadores paralelos.
- Generación de productos parciales.
- Reducción de productos parciales.
- Multiplicadores seccionados.
- Optimización de Compresores.
- Contadores de uno o múltiples columnas.
- Multiplicadores signados en complemento a dos.
- Eliminación de extensión de signo.



## Presentación del Curso

Contenidos Temáticos

## Unidad 4 Bloques Básicos de Diseño en FPGA y VLSI

- Propiedad de cadena.
- Multiplicador modificado de Booth.
- Arboles de compresión para sumas multi-operando.
- Algoritmos para transformar CSA.
- Multiplicación por constantes.

- Representación canónica de dígito signado.
- Arquitecturas dedicadas de filtros FIR en forma directa, transpuesta e híbrida.
- Aritmética distribuida.





#### Introducción

- Las FPGAs han surgido como dispositivos que permiten desarrollar aplicaciones de procesamiento de señales de alto rendimiento.
- En este campo de aplicación, los FPGA han superado a la tradicional tecnología de procesadores de señal DSP. Sin importar cuantos MACs pueda colocar el proveedor de DSP en un chip, esto no compite contra los cientos de estas unidades que pueden ser colocadas en un dispositivo FPGA de alto rendimiento.
- En la actualidad, los FPGA cuentan con procesadores incorporados, interfaces estándar y bloques de procesamiento de señales constituidos por multiplicadores, sumadores, registros y multiplexores. Diferentes dispositivos de una misma familia poseen un gran número de estas unidades embebidas, y con el tiempo se espera que el número de las mismas en un mismo dispositivo siga creciendo.



### Herramientas para el diseño en FPGA

- La mayoría de las herramientas de síntesis disponibles instancian bloques embebidos a partir del código HDL (lenguaje de descripción de hardware) que contiene operadores matemáticos y lógicos relacionados a estos bloques.
- El usuario puede configurar distintas opciones de síntesis para el diseño. Las herramientas cuentan con bloques básicos de construcción. En casos en donde se tienen operaciones de orden superior, la herramienta hará múltiples copias y combinaciones de estos bloques básicos para lograr la funcionalidad deseada.
- Por ejemplo si se diseña un multiplicador de 32 bits por 32 bits, la herramienta colocará cuatro multiplicadores de 18 bits por 18 bits para lograr satisfacer el diseño deseado.







Bloques DSP en FPGAs Xilinx.



Bloques DSP en FPGAs Altera.



### Herramientas para el diseño en FPGA

- El usuario también podrá instanciar estos bloques básicos de forma explícita si el diseño así lo requiriera.
- El fabricante provee en la herramienta de diseño plantillas que contienen estos bloques para que puedan se utilizados por el diseñador.
- Estos bloques básicos son bloques embebidos en el dispositivo.
- En caso que el FPGA se quedara sin recursos embebidos construirá los bloques utilizando componentes de lógica genérica contenidos en el dispositivo FPGA.
- Estos bloques generados funcionan con menos eficiencia que los bloques embebidos.
- Estos recursos embebidos han generado un gran salto en el rendimiento de las implementaciones.





Implementación Filtro IIR

### Ejemplo: Filtro IIR de segundo orden

- Para demostrar la efectividad de los bloques embebidos en el diseño, se muestra la realización de un filtro de segundo orden con respuesta infinita al impulso (Filtro IIR).
- La ecuación en diferencia del filtro es

$$w[n] = a_1 w[n-1] + a_2 w[n-2] + x[n]$$
 (1)

$$y[n] = b_0 w[n] + b_1 w[n-1] + b_2 w[n-2]$$
 (2)



Filtro IIR



Diagrama en bloque realizado en forma directa



Comparación entre dos tecnologías

#### Spartan 3

- Para demostrar la utilidad del uso de bloques embebidos en FPGA, el código se sintetizó para una FPGA Spartan 3 y para una Virtex 4.
- Los dispositivos Spartan 3 vienen con bloques multiplicadores embebidos de 18 bits por 18 bits. En las opciones de síntesis se ha seleccionado utilizar los bloques multiplicadores embebidos. En el reporte correspondiente a esta síntesis se puede ver que la herramienta ha utilizado los bloques multiplicadores.
- Como el dispositivo Spartan 3 no posee bloques sumadores incorporados, la herramienta crea un sumador de 32 bits utilizando la lógica de acarreo rápido provista en la LUT.



# Instanciación de bloques

Comparación entre dos tecnologías



Esquemático RTL - Spartan3.



Comparación entre dos tecnologías

#### Virtex 4

- El diseño fue sintetizado nuevamente para poder observar la eficacia de los bloques DSP48 de la FPGA Virtex 4.
- Como la herramienta esta configurada para utilizar éstos bloques, en el reporte de síntesis se puede observar que se utilizan 5 bloques DSP48 para el diseño.
- La tecnología utilizada por el dispositivo Virtex 4 es claramente superior y provee un mejor timing para un mismo diseño.
- Debe considerarse que el timing de síntesis dado en los reportes anteriores corresponde a un análisis post-síntesis y a pesar de que es una buena estimación, el verdadero timing del diseño proviene de el análisis post place&root.
- Un diseño digital y su implementación RTL-Verilog deberían ser independientes de la tecnología utilizada. Sin embargo en muchos casos es importante conocer la tecnología que se está utilizando, para poder hacer uso de los bloques embebidos con los que cada dispositivo cuenta y de esta manera optimizar la implementación. Podemos notar esto analizando los resultados arrojados por las síntesis usando FPGAs de diferente tecnología.



## Instanciación de bloques

Comparación entre dos tecnologías



Esquemático RTL - Virtex4.



# Instanciación de bloques

### Comparación entre dos tecnologías

Calcated davisas 2a400ma200 5

Number of slice flip-flops:

Number of 4-input LUTs:

| uency: 91.597 MHz)             |                                                                                                           |
|--------------------------------|-----------------------------------------------------------------------------------------------------------|
| 58 out of 3584                 | 1%                                                                                                        |
| 32 out of 7168                 | 0%                                                                                                        |
| 109 out of 7168                | 1%                                                                                                        |
| 50                             |                                                                                                           |
| 50 out of 141                  | 35%                                                                                                       |
| 5 out of 16                    | 31%                                                                                                       |
| 1 out of 8                     | 12%                                                                                                       |
| Reporte de Síntesis - Spartan3 |                                                                                                           |
|                                |                                                                                                           |
| ency: 130.484 MHz)             |                                                                                                           |
| 17 out of 6144                 | 0%                                                                                                        |
|                                | 32 out of 7168<br>109 out of 7168<br>50<br>50 out of 141<br>5 out of 16<br>1 out of 8<br>resis - Spartan3 |

Number of IOs: 50 Number of bonded IOBs: 50

Number of bonded IOBs: 50 out of 240 20% Number of GCLKs: 1 out of 32 3% Number of DSP48s: 5 out of 32 15%



32 out of 12288

16 out of 12288

0%

0%

# Introducción a los bloques básicos de diseño

### Bloques Básicos de Diseño

- Luego de haber analizado el uso de multiplicadores dedicados y bloques MAC (bloques DSP48) es importante hacer incapié en los bloques básicos de diseño.
- El objetivo es que el diseñador conozca las diferentes opciones de diseño para algunas de las operaciones matemáticas básicas y pueda comparar y evaluar las ventajas y desventajas de cada una de ellas.
- No importa que tan simple sea el diseño, es muy importante que el diseñador siempre considere varias alternativas y utilice los bloques dedicados.
- Se pueden encontrar muchas opciones de arquitectura para la implementación de operaciones como adición, multiplicación y desplazamiento.





### Ripple-carry Adder (RCA)

- Los sumadores se utilizan en adición, substracción, multiplicación y división.
- La velocidad de cualquier diseño digital de un sistema de procesamiento de señales o de comunicaciones depende en gran parte de estas unidades funcionales.
- Los sumadores ripple-carry (RCA) son los mas lentos en la familia de los sumadores, implementan el modo tradicional de suma entre dos números.
- En los RCA se suman dos bits los cuales generan un acarreo, este acarreo se sumará a los bits de la siguiente posición (propagación del acarreo) los últimos dos bits que se suman generaran un acarreo de salida.
- Si bien el proceso es más lento, su simplicidad permite el uso del menor número de compuertas.



## **Sumadores**

Introducción

### Sumador con acarreo hacia adelante (look-ahead adder)

- Como la propagación del acarreo es lenta, se diseñan sumadores rápidos para poder lograr que el proceso de propagación del acarreo sea más rápida y eficiente.
- Por ejemplo en un sumador con acarreo hacia adelante (look-ahead adder)los acarreos de entrada para todas las posiciones de bits son generados simultáneamente por una lógica generadora de acarreo hacia adelante.
- Esto permite al realizar una suma, calcular el acarreo en paralelo sin tener que esperar la propagación del mismo.
- Este tipo de sumador nos permite tener un tiempo de suma constante independientemente de la longitud del sumador.
- Al aumentar la longitud de palabra con que el sumador trabaja, la lógica generadora de acarreo aumenta su complejidad.
- Esto lleva a que los sumadores de grandes longitudes se implementen como varias etapas de sumadores con acarreo hacia adelante de menor complejidad.



### **Carry Select Adder (CSA)**

- Otro dispositivo rápido es el sumador con selección de acarreo (CSA).
- Éste particiona la suma en K grupos, para ganar velocidad la lógica es replicada y para cada grupo la suma asume acarreo de entrada (el cual puede ser 0 o 1).
- La suma y acarreo de salida correctos para cada grupo son seleccionados por el acarreo de salida del grupo previo. El acarreo de salida seleccionado, a su vez, es utilizado para seleccionar la suma y acarreo de salida correctos del siguiente grupo adyacente.
- Para sumar número grandes se utilizan CSA jerárquicos, los cuales dividen la suma en múltiples niveles.



#### Sumador de suma condicional

- Un sumador de suma condicional puede ser considerado como un CSA con el máximo número posible de niveles.
- La operación de selección de acarreo en el primer nivel es realizada por grupos de 1 bit. En el siguiente nivel dos grupos adyacentes se fusionan para dar el resultado de una operación de selección de acarreo de 2 bits. Está fusión de dos grupos es repetida hasta que los últimos dos grupos se fusionan para generar la suma final y el acarreo de salida.
- Este sumador es el más rápido de la familia.



#### Resumen

- Es importante destacar que el mapeo de sumadores en FPGA puede no producir los resultados esperados de optimización ya que los dispositivos FPGA poseen bloques embebidos que favorecen el uso de algunos diseños sobre otros.
- Por ejemplo en muchas familias de FPGA una cadena de acarreo rápido ayuda a un RCA, con lo cual en estas FPGA el uso de un RCA será el mejor diseño en cuanto a optimización de área y tiempos.



#### **Half Adders**

■ Un half adder (HA) es un circuito combinacional usado para sumar dos bits,  $a_i$  y  $b_i$ , sin un acarreo de entrada. La suma  $s_i$  y el acarreo de salida  $c_i$  están dados por:

$$s_i = a_i \oplus b_i \tag{3}$$

$$c_i = a_i b_i (4)$$

■ El path crítico posee una latencia de 1, y corresponde a la longitud de cualquiera de los dos paths (de cualquiera de las dos operaciones).

#### **Full Adders**

- Un full adder (FA) suma 3 bits.
- Un sumador de 3 bits es también llamado compresor 3 : 2.
- Una de las formas de implementar un full adder es usando las siguientes ecuaciones:

$$s_i = a_i \oplus b_i \oplus c_i \tag{5}$$

$$c_{i+1} = (a_i \oplus b_i)c_i + a_ib_i \tag{6}$$

Existen varios diseños a nivel de compuerta para implementar un full adder.

#### **Full Adders**

- Estas opciones para implementar simplemente una suma de 3 bits remarca la idea de que el diseñador debe evitar el modelado a nivel de compuerta o el modelado utilizando operadores bit a bit.
- No es posible que el diseñador conozca cual es el diseño más óptimo si no conoce las librerías de la tecnología que está utilizando.
- En muchos casos es preferible que el diseño sea hecho a nivel RTL independientemente de la tecnología.
- En el caso que el diseñador conozca las librerías de la tecnología que utiliza, el mismo podrá utilizar componentes optimizados por la misma para lograr diseños más eficientes.







Ejemplos de implementación de Full Adders
Diseño Digital Avanzado

### **Ripple Carry Adders**

- Un Ripple Carry Adder (RCA) es considerado como el sumador más lento.
- Esto puede NO ser así en el caso que el diseño sea mapeado en un FPGA con lógica de cadena de acarreo embebida.
- Un RCA presenta un área mínima y una estructura regular.
- A los RCA se les puede agregar pipes para mejorar la velocidad de los mismos.
- Un RCA que suma dos operandos de *N*-bits necesita *N* full adders.
- La velocidad varía linealmente con la longitud de los operandos.
- Se implementa la forma tradicional de sumar dos números. Los operandos son sumados bit a bit desde los bits menos significativos hasta los bits más significativos, sumando en cada etapa el acarreo proveniente de la etapa anterior. De esta forma, el acarreo de salida de el full adder de la etapa *i* entra en el full adder de la etapa (*i*+1), y de esta forma el acarreo se propaga desde los bits menos significativos hacia los bits más significativos (de aquí el nombre).





RCA de 6 bits



### **Ripple Carry Adders**

- La condición de overflow es fácilmente calculada a través de una operación XOR entre los acarreos de salida de los últimos dos full adders, esta condición es mostrada también en la figura.
- El path crítico de retardo de un RCA puede ser calculado con la siguiente ecuación:

$$T_{RCA} = (N-1)T_{FA} + T_m \tag{7}$$

- Donde T<sub>RCA</sub> es el retardo del RCA, T<sub>FA</sub> es el retardo del FA y T<sub>m</sub> es la lógica de generación del acarreo.
- De la anterior ecuación se puede ver que el desempeño de un RCA depende de la propagación del acarreo desde el primer full adder hasta el último.

### **Ripple Carry Adders**

- Para mejorar la velocidad muchas FPGAs están cuentan con propagación de acarreo rápida y lógicas de generación de suma.
- Las lógicas de propagación de acarreo permiten caminos rápidos para que el acarreo se propague de un bloque a otro.
- El usuario puede implementar sumadores RCA en paralelo, pero su mapeo en FPGA puede no poseer la velocidad esperada en comparación con el desempeño de un sólo RCA.
- Sin embargo en muchos diseños el usuario encuentra al RCA como el sumador más rápido comparado con otros sumadores en paralelo.



## **Sumadores**

Sumadores Básicos

## Implementación en Verilog de un RCA de 16 bits

```
module rca
     #(parameter W=16)
      (input
                           clk.
       input [W-1:0]
                           a, b,
       input
                           cin.
       output reg [W-1:0] s_r,
       output req
                      cout r);
      wire [W-1:0]
                          s:
      wire
                          cout;
      reg [W-1:0]
                           ar, br;
      rea
                           cin r:
      assign {cout,s} = a r + b r + cin r;
      always@(posedge clk)
        begin
           a r
                  <= a;
           b r
                  <= b:
           cin r <= cin:
20
           s r
                  <= S;
21
           cout r <= cout;
22
        end
   endmodule
```



## **Ripple Carry Adders**

- Si el código es sintetizado en una FPGA que posee lógica de cadena de acarreo rápido (como una Virtex II pro), la herramienta de síntesis inferirá esta lógica para una propagación rápida del acarreo con un sumador RCA.
- Esta FPGA consiste en un número de bloques de lógica configurable (*CLBs*), cada uno de éstos posee cuatro 'slices'. Cada uno de estos slices posee dos tablas (*LUTs*) y lógica dedicada para calcular funciones de generación (*g*) y propagación (*p*) del acarreo).
- Estas funciones son utilizadas por la herramienta de síntesis para inferir la lógica de acarreo e implementar un RCA rápido.
- Las ecuaciones de  $g_i$  y  $p_i$  y la lógica utilizada para generar rápidamente el acarreo de salida  $c_{i+1}$  es la siguiente:

$$c_{i+1} = g_i + p_i c_i (8)$$

$$p_i = a_i \oplus b_i \tag{9}$$

$$g_i = a_i b_i (10)$$





Bloques lógicos de acarreo rápido





Lógica de acarreo rápido en un slice de la FPGA





CLBs para implementar un sumador de 16 bits





RCA de 64 bits usando acarreo rápido



#### Introducción

- Si un RCA no se mapea en una FPGA con lógica de cadena de acarreo rápida, el mismo suele ser el sumador más lento ya que cada Full Adder requiere para su ejecución el resultado del Full Adder anterior.
- Es por esto que se han desarrollado varias arquitecturas alternativas, las cuales aceleran la generación del acarreo para cada etapa.
- Esta aceleración requiere lógica adicional por lo que el diseñador deberá seleccionar cuidadosamente la arquitectura a utilizar, ya que no todas pueden significar una optimización al ser implementadas en una FPGA.



### **Carry Look-Ahead Adder**

- Haciendo un análisis más profundo de la generación de acarreo se puede llegar a que la misma no tiene que depender de los acarreos anteriores.
- En un carry look-ahead adder (CLA) el acarreo de los bits de todas las posiciones del sumador es generado en forma simultánea. Esto significa, que el cálculo del acarreo se realiza en paralelo al cálculo de la suma.
- Esto genera que el tiempo que demora la suma en ejecutarse sea independiente de la longitud del sumador.
- No obstante, a medida que el tamaño de palabra aumenta la distribución del hardware para realizar la adición se hace más compleja.
- Esto nos lleva a que para los sumadores de un gran tamaño sea necesario utilizar dos o tres niveles de bloques CLA.



### **Carry Look-Ahead Adder**

- Una simple consideración de la lógica del full adder muestra que el acarreo  $c_{i+1}$  es generado si  $a_i = b_i = 1$ , y se propaga si  $a_i$  o  $b_i$  es 1.
- Esto puede observarse en las siguientes ecuaciones:

$$g_i = a_i b_i$$
  
 $p_i = a_i \oplus b_i$   
 $c_{i+1} = g_i + p_i c_i$   
 $s_i = c_i \oplus p_i$ 

■ Con esto, una determinada etapa genera acarreo si  $g_i$  es verdadero y propaga un acarreo de entrada hacia la siguiente etapa si  $p_i$  es verdadero. Con estas ecuaciones el acarreo se puede calcular en paralelo de la siguiente forma:

```
c_1 = g_0 + p_0 c_0
c_2 = g_1 + p_1 c_1
c_2 = g_1 + p_1 (g_0 + p_0 c_0)
c_2 = g_1 + p_1 g_0 + p_0 p_1 c_0
c_3 = g_2 + p_2 g_1 + p_2 p_1 g_0 + p_2 p_1 p_0 c_0
```

### Ejemplo de lógica generadora de acarreo





En la figura se puede observar que todos los acarreos pueden calcularse con una latencia de 2 para diferentes arquitecturas del CLA



### Carry Look-Ahead Adder

- Podemos generalizar las ecuaciones del acarreo antes vistas de la siguiente forma:  $c_i = g_{i-1} + \sum_{j=0}^{i-2} \left(\prod_{k=j+1}^{i-1} p_j\right) g_j + \prod_{j=1}^{k=0} p_j c_0$
- Esto requiere de i + 1 compuertas con un fan-in de i + 1. Por lo tanto si se incrementa la cantidad de bits se incrementará en gran medida el fan-in de las compuertas.
- Una práctica industrial es usar bloques de 4 bits. Esto limita a que se calcule el acarreo hasta  $c_3$  y  $c_4$  no es calculado. Los 4 primeros términos en  $c_4$  son agrupados como  $G_0$  y el producto  $p_3p_2p_1p_0$  en el último término son llamados  $P_0$ .
- Se puede ver la ecuación de  $c_4$  completa y con los términos agrupados a continuación:  $c_4 = g_3 + p_3 g_2 + p_3 p_2 g_1 + p_3 p_2 p_1 g_0 + p_3 p_2 p_1 p_0 c_0$   $c_4 = G_0 + P_0 c_0$
- De manera similar, se agrupan los bits 4 al 7 y se generan  $c_5$ ,  $c_6$  y  $c_7$  en el primer nivel del CLA usando  $c_4$  del segundo nivel de la lógica del CLA. A su vez el primer nivel del CLA para éstos bits generará  $G_1$  y  $P_1$ .



### Ejemplo de Carry Look-Ahead Adder



Sumador de 16 bits con 2 niveles de lógica CLA



### **Sumadores** Ejemplo de Carry Look-Ahead Adder







### Hybrid Ripple Carry y Carry Look-Ahead Adder

- En lugar de construir un gran sumador CLA usando múltiples niveles jerárquicos de lógica CLA, el acarreo puede simplemente propagarse entre los bloques.
- Este tipo de sumador será más rápido que un RCA y ocupará menos área que un sumador jerárquico CLA.
- Esto es debido a que tenemos un sólo nivel de lógica CLA.



### **Sumadores** Hybrid Riple Carry y Carry Look-Ahead Adder



Diagrama en bloque del sumador Híbrido



### **Binary Carry Look-Ahead Adder**

- Un BCLA trabaja con un grupo de dos bits adyacentes, desde el LSB hasta el MSB combinando los bits en grupos de a dos para formar un nuevo grupo de bits y su correspondiente acarreo.
- La lógica de generación de acarreo en un sumador de N bits es:

$$g_i = a_i b_i p_i = a_i \oplus b_i (G_i, P_i) = (g_i, p_i).(g_{i-1}, p_{i-1})....(g_1, p_1).(g_0, p_0)$$

El Problema puede ser resuelto en forma recursiva de la siguiente manera:

$$(G_0, P_0) = (g_0, p_0)$$
  
Para  $i = 1$  hasta N - 1  
 $(G_i, P_i) = (g_i, p_i).(G_{i-1}, P_{i-1})$   
 $c_i = G_i + P_i c_0$ 



#### **Binary Carry Look-Ahead Adder**

- El operador "." es interpretado como:  $(G_i, P_i) = (g_i, p_i).(G_{i-1}, P_{i-1}) = (g_i + p_iG_{i-1}, p_iP_{i-1})$
- Hay muchos caminos para implementar estas ecuaciones. El objetivo es realizar esta implementación para cada posición de bit moviéndose desde los LSB a los MSB, esto requerirá una sucesiva aplicación del operador \* en las posiciones de dos bits adyacentes.
- Para un sumador de N bits serán necesarios N-1 etapas de implementación de los operadores.

Binary Carry Look-Ahead Adder de 16 Bits

### Implementación en Verilog

```
module bola
                                                             always@(*) begin
     \# (parameter N = 16)
                                                                // Linearly apply dot operators
      (input
                  [N-1:0] a,b,
                                                                P[0] = p[0]:
       input
                           c in. clk.
                                                                G[0] = a[0]:
       output reg [N-1:0] sum r.
                                                                for (i=1: i<N: i=i+1) begin
       output req
                          c out r);
                                                                   P[i] = p[i] & P[i-1];
      reg [N-1:0]
                   ar,br;
                                                                   G[i] = q[i] \mid (p[i] \& G[i-1]);
      rea
                           c in r:
                                                                end
      reg [N-1:0]
                           p. q. P. G:
                                                             end
      req [N:0]
                                                             always@(*) begin
                           c;
                                                                // Generate all carries and sum
      rea [N-1:0]
                           sum:
12
      rea
                           c out:
                                                                c[0]=c in r:
      integer
                                                                for(i=0;i<N;i=i+1)
14
      always@(posedge clk) begin
                                                                  begin
         c in r <= c in:
                                                                     c[i+1] = G[i] | (P[i] & c[0]);
16
                                                                     sum[i] = p[i] ^ c[i];
         ar <= a;
         b r
                <= b:
                                                                  end
18
         c out_r <= c_out;
                                                                c out = c[N]:
19
         sum r
               <= sum:
                                                             end
20
                                                          endmodule
      end
21
      always@(*) begin
22
         for (i=0;i<N;i=i+1) begin
23
             // Generate all ps and qs
24
            p[i]= a_r[i] ^ b_r[i];
25
            g[i]= a_r[i] & b_r[i];
26
         end
27
      end
```



Implementación Serie





Sumador de Brent-Kung





Sumador de prefijo paralelo de Ladner-Fischer





Sumador de prefijo paralelo de Kogge-Stone





Sumador de prefijo paralelo de Han-Carlson





Layout de un sumador de Brent-Kung



### Carry Skip Adder

- En un carry skip adder de N bits, estos bits son divididos en grupos de k bits.
- El sumador propaga todos los acarreos en forma simultánea a través de estos grupos.
- Cada grupo i calcula el grupo P<sub>i</sub> usando la siguiente relación: P<sub>i</sub> = p<sub>i</sub>p<sub>i+1</sub>p<sub>i+2</sub>...p<sub>i+k-1</sub>
- P<sub>i</sub> es calculada para cada posición de bit de la siguiente manera:  $p_i = a_i \oplus b_i$
- Si cada grupo genera acarreo, lo pasa al siguiente grupo.
- En caso que el grupo no genere acarreo debido a la distribución de los bits en el bloque, entonces simplemente transfiere el acarreo del grupo anterior al grupo siguiente (bypass del acarreo).
- Este bypass del acarreo es manejado por P<sub>i</sub>.
- El carry skip adder puede ser también diseñado con grupos de distinto número de bits.



#### **Carry Skip Adder**

- Supongamos un sumador de 16 bits dividido en grupos de 4 bits.
- Y tomemos el caso cuando el primer grupo genera acarreo de salida y los dos grupos subsecuentes no lo hacen, simplemente se transfiere el acarreo del primer grupo al último grupo.
- El último grupo toma este acarreo y genera luego su propio acarreo de salida.
- Este es el caso que presenta el mayor delay en la generación del acarreo para este ejemplo, este delay es menor al correspondiente en un RCA.



## Sumadores Carry Skip Adder



Sumador de 16 bits dividido en grupos iguales



#### **Conditional Sum Adder**

- Este sumador es implementado en múltiples niveles.
- En el primer nivel los bits de la suma y el acarreo, para bits de acarreo de entrada 1 y 0, son calculados de la siguiente manera:

```
s0_i = a_i \oplus b_i

s1_i = \sim (a_i \oplus b_i)

c0_i = a_ib_i

c1_i = a_i + b_i
```

- En las ecuaciones anteriores  $a_i$  y  $b_i$  corresponden a los bits de la posición i de los operandos a y b,  $s0_i$  y  $c0_i$  son la suma y el acarreo de salida calculados asumiendo un acarreo de entrada igual a 0.  $s1_i$  y  $c1_i$  corresponden a los resultados asumiendo un acarreo de entrada de 1.
- Estas ecuaciones son implementadas por una celda lógica llamada *conditional cell (CC)*.

## Sumadores Conditional Sum Adder



Conditional cell (CC)



#### **Conditional Sum Adder**

- En el nivel dos, los resultados del nivel uno se fusionan. Esa fusión se realiza a través del emparejamiento de las columnas consecutivas del nivel 1. Para un sumador de N bits, las columnas son emparejadas de la forma (i, i+1) para i que va desde 0 hasta N-2.
- Los bits menos significativos del acarreo (LSC) en una determinada posición i (por ejemplo c0;yc1;) de cada par seleccionan los bits de suma y de acarreo de la posición i+1 para el siguiente nivel de procesamiento.
- Si el least significant carry LSC está en 0 los bits calculados para el acarreo de entrada 0 serán seleccionados, en caso contrario se seleccionarán los bits correspondientes al acarreo de entrada 1.
- De esta manera dos bits serán sumados asumiendo un determinado valor para el acarreo de entrada.



# Sumadores Conditional Sum Adder



Suma de números de 3 bits utilizando un conditional sum adder



#### **Conditional Sum Adder**

- En el ejemplo anterior podemos ver el sumador CSA sumando números de 3 bits.
- En el primer nivel cada grupo consiste de un bit. El nivel añade los bits de la posición i suponiendo el acarreo de entrada en 0 y en 1.
- En el siguiente nivel las tres columnas se dividen en dos grupos (como muestra la línea punteada). La columna en la posición del bit 0 forma el primer grupo y las otras dos columnas el segundo grupo. La selección apropiada en cada grupo por parte del LSC se muestra con la línea diagonal.
- El LSC de cada grupo determina cual de los dos bits de la siguiente columna se reducirá al siguiente nivel de tratamiento.
- Si el LSC es 0 se seleccionan los bits superiores de la siguiente columna, de lo contrario se seleccionan los dos bits inferiores de la siguiente columna.
- Para el segundo grupo el bit de suma de la primer columna también baja al segundo nivel. Los LSC en el primer nivel esta resaltados en el gráfico en negrita.
- Finalmente en el siguiente nivel los dos grupos formados en el nivel anterior se combinan y el LSC selecciona uno de los dos grupos de 3 bits para pasar al siguiente nivel. Como el LSC es 1, selecciona el grupo inferior.



## Sumadores Conditional Sum Adder

|       |                   |                               |    |    |    | _  | _  | _ | _ |   |   |   |   |   |   |   |   |                 |
|-------|-------------------|-------------------------------|----|----|----|----|----|---|---|---|---|---|---|---|---|---|---|-----------------|
|       | ai                | 1                             | 0  | 0  | 1  | 1  | 0  | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | ai              |
|       | bi                | 0                             | 0  | 1  | 1  | 0  | 1  | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | bi              |
| Group | Group<br>carry-in | Group sum and block carry out |    |    |    |    |    |   |   |   |   |   |   |   |   |   |   |                 |
|       |                   | 15                            | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | i               |
| 1     | 0                 | 1                             | 0  | 1  | 0  | 1  | 1  | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | s0 <sub>i</sub> |
|       |                   | 0                             | 0  | 0  | 1  | 0  | 0  | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | c0 <sub>i</sub> |
|       | 1                 | 0                             | 1  | 0  | 1  | 0  | 0  | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 |   | s1 <sub>i</sub> |
|       |                   | 1                             | 0  | 1  | 1  | 1  | 1  | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 |   | c1,             |
| 2     | 0                 | 1                             | 0  | 0  | 0  | 1  | 1  | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 |                 |
|       |                   | 0                             |    | 1  |    | 0  |    | 0 |   | 1 |   | 0 |   | 1 |   | 0 |   |                 |
|       | 1                 | 1                             | 1  | 0  | 1  | 0  | 0  | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 |   |   |                 |
|       |                   | 0                             |    | 1  |    | 1  |    | 1 |   | 1 |   | 0 |   | 1 |   |   |   |                 |
| 4     | 0                 | 1                             | 1  | 0  | 0  | 1  | 1  | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 |                 |
| •     |                   | 0                             |    |    |    | 0  |    |   |   | 1 |   |   |   | 1 |   |   |   |                 |
|       | 1                 | 1                             | 1  | 0  | 1  | 0  | 0  | 0 | 0 | 1 | 0 | 1 | 0 |   |   |   |   |                 |
|       |                   | 0                             |    |    |    | 1  |    |   |   | 1 |   |   |   |   |   |   |   |                 |
| 8     | 0                 | 1                             | 1  | 0  | 0  | 1  | 1  | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 |                 |
|       |                   | 0                             |    |    |    |    |    |   |   | 1 |   |   |   |   |   |   |   |                 |
|       | 1                 | 1                             | 1  | 0  | 1  | 0  | 0  | 0 | 0 |   |   |   |   |   |   |   |   |                 |
|       |                   | 0                             |    |    |    |    |    |   |   |   |   |   |   |   |   |   |   |                 |
| 16    | 0                 | 1                             | 1  | 0  | 1  | 0  | 0  | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 |                 |
| 10    |                   | 0                             |    |    |    |    |    |   |   |   |   |   |   |   |   |   |   |                 |
|       | 1                 |                               |    |    |    |    |    |   |   |   |   |   |   |   |   |   |   |                 |
|       |                   |                               |    |    |    |    |    |   |   |   |   |   |   |   |   |   |   |                 |



### Conditional Sum Adder





#### Conditional Sum Adder

### Implementación en Verilog (8-bits)

```
module conditional sum adder
                                                           always@(posedge clk) begin
     \#(parameter W = 8)
                                                              sum r <= sum:
      (input [W-1:0]
                                                              cout r <= cout;
                          a, b,
       input
                         cin. clk.
                                                              a r
                                                                     <= a:
       output reg [W-1:0] sum_r,
                                                              br <= b:
                                                              cin r <= cin;
       output reg
                         cout r);
      wire s1_0, c2_0, s2_0, c3_0, s3_0, c4_0, s4_0, 7
                                                           end
         c5 0, s5 0, c6 0, s6 0,c7 0, s7 0, c8 0;
                                                           // Level 0
      wire s1 1, c2 1, s2 1, c3 1, s3 1, c4 1, s4 1, 9
                                                           always @* \{fcout, sum[0]\} = a r[0] + b r[0] +
         c5 1, s5 1, c6 1, s6 1, c7 1, s7 1, c8 1;
                                                              cin r:
9
      rea fcout:
                                                           // Conditional cells instantiation
      reg s3 level 1 0, s3 level 1 1, s5 level 1 0, 11
                                                           conditional cell c1( a r[1], b r[1], s1 0, s1 1
         s5 level 1 1. s7 level 1 0. s7 level 1 1:
                                                              . c2 0. c2 1):
                                                           conditional_cell c2( a_r[2], b_r[2], s2_0, s2_1
      reg c4 level 1 0, c4 level 1 1, c6 level 1 0, 12
         c6 level 1 1, c8 level 1 0, c8 level 1 1;
                                                              , c3 0, c3 1);
      req c2 level 1;
                                                           conditional cell c3( a r[3], b r[3], s3 0, s3 1
      reg c4 level 2:
                                                              . c4 0. c4 1):
14
      reg s6_level_2_0, s6_level_2_1, s7_level_2_0, 14
                                                           conditional cell c4( a r[4], b r[4], s4 0, s4 1
         s7 level 2 1, c8 level 2 0, c8 level 2 1;
                                                              , c5 0, c5 1);
      reg [W-1:0] a r.b r:
                                                           conditional_cell c5( a_r[5], b_r[5], s5_0, s5_1
16
                  cin r:
                                                              . c6 0. c6 1):
      rea
      req [W-1:0] sum;
                                                           conditional cell c6( a r[6], b r[6], s6 0, s6 1
18
                                                              . c7 0. c7 1):
      rea
                  cout:
                                                           conditional_cell c7( a_r[7], b_r[7], s7_0, s7_1
                                                              , c8 0, c8 1);
```

Conditional Sum Adder

### Implementación en Verilog (8-bits)

```
// Level 1 muxes
                                                             always @* // For 5th mux
                                                               case(c5 1)
      always @(*)
                                                                 1'b0: {c6 level_1_1, s5_level_1_1} = {c6_0,
        case(fcout) // For first mux
          1'b0: {c2 level_1, sum[1]} = {c2_0, s1_0};
                                                                s5 0 }:
          1'b1: {c2 level 1, sum[1]} = {c2 1, s1 1}; 4
                                                                1'b1: {c6 level 1 1, s5 level 1 1} = {c6 1,
        endcase
                                                                 s5 1};
      always @(*) // For 2nd mux
                                                               endcase
                                                             always @* // For 6th mux
        case(c3 0)
          1'b0: {c4 level 1 0, s3 level 1 0} = {c4 0,7
                                                               case(c7 0)
          s3 0}:
                                                                1'b0: {c8 level 1 0. s7 level 1 0} = {c8 0.
          1'b1: {c4 level_1_0, s3_level_1_0} = {c4_1,
                                                                s7 0 }:
          s3 1};
                                                                 1'b1: {c8 level 1 0, s7 level 1 0} = {c8 1,
        endcase
                                                                 s7 1}:
      always @* // For 3rd mux
                                                               endcase
                                                             always @* // For 7th mux
        case(c3 1)
          1'b0: {c4 level 1 1, s3 level 1 1} = {c4 0.12
14
                                                               case(c7 1)
          s3 0 }:
                                                                1'b0: {c8 level 1 1. s7 level 1 1} = {c8 0.
          1'b1: {c4 level 1 1, s3 level 1 1} = {c4 1
                                                                 s7 0 };
                                                                 1'b1: {c8 level 1 1, s7 level 1 1} = {c8 1,
          s3 1};
        endcase
                                                                 s7_1 };
      always @* // For 4th mux
                                                               endcase
18
                                                             // Level 2 muxes
        case(c5 0)
19
          1'b0: \{c6 | evel | 1 | 0. s5 | evel | 1 | 0\} = \{c6 | 0.17 |
                                                             always @* // First mux of level2
          s5 0}:
                                                               case(c2 level 1)
          1'b1: {c6 level 1 0, s5 level 1 0} = {c6 1,9
                                                                1'b0: {c4 level 2, sum[3], sum[2]} = {
20
                                                                c4 level_1_0,s3_level_1_0,s2_0};
          s5 1}:
        endcase
                                                                1'b1: {c4_level_2, sum[3], sum[2]} = {
                                                                c4 level 1 1,s3 level 1 1,s2 1};
                                                               endcase
                                                                                                            70
```

# Sumadores Conditional Sum Adder

### Implementación en Verilog (8-bits)

```
always @* // 2nd mux of level2
                                                            // Level 3 mux
        case(c6 level 1 0)
                                                            always @*
          1'b0: {c8 level 2 0. s7 level 2 0.
                                                              case(c4 level 2)
         s6 level 2 0}
                                                                1'b0: {cout.sum[7:4]} = {c8 level 2 0.
            = {c8 level 1 0, s7 level 1 0, s6 0};
                                                               s7 level 2 0,
         1'b1: {c8 level 2 0. s7 level 2 0.
                                                                                          s6 level 2 0.
         s6 level 2 0}
                                                               s5_level_1_0, s4_0};
            ={c8 level 1 1, s7 level 1 1, s6 1};
                                                               1'b1: {cout,sum[7:4]} = {c8 level 2 1,
                                                               s7 level 2 1,
        endcase
8
                                                                                          s6 level_2_1,
      always @* // 3rd mux of level2
        case(c6 level 1 1)
                                                               s5_level_1_1, s4_1 };
          1'b0: {c8 level 2 1, s7 level 2 1,
                                                              endcase
         s6 level 2 1}
                                                         endmodule
            ={c8_level_1_0, s7_level_1_0, s6_0};
                                                     10 // Module for conditional cell
          1'b1: {c8 level 2 1, s7 level 2 1,
                                                         module conditional cell(a, b, s 0, s 1, c 0, c 1);
         s6 level 2 1}
                                                            input a.b:
            ={c8 level_1_1, s7_level_1_1, s6_1};
                                                            output s 0. c 0. s 1. c 1:
14
                                                            assign s 0 = a^b;
        endcase
                                                            assign c = 0 = a&b:
                                                      16
                                                            assign s_1 = -s_0;
                                                            assign c 1 = a \mid b;
                                                         endmodule
```



### **Carry Select Adder**

- El Carry Select Adder (CSA) no es los suficientemente rápido como el carry look-ahead adder y requiere considerablemente mas hardware si se utiliza con diseños personalizados, pero posee un diseño favorable para el uso en FPGA's con lógica de cadena de acarreo rápida.
- El CSA particiona un sumador de N-Bits en K grupos, en donde se tiene:

$$k = 0, 1, 2, ..., K - 1$$
  
 $n_0 + n_1 + ... + n_{k-1} = N$   
 $n_0 <= n_1 <= ... <= n_{k-1}$ 

- Donde n<sub>k</sub> representa el número de bits en el grupo K. La idea básica es colocar dos sumadores de n<sub>k</sub> bits en cada etapa K.
- Un conjunto de sumadores calcula la suma suponiendo un acarreo de entrada igual a 1 y el otro un acarreo de entrada igual a 0.
- La suma real y el acarreo se seleccionan usando un MUX 2 a 1 basado en el acarreo del grupo anterior.



### Sumadores Sumadores Rápidos

#### **Carry Select Adder**

- En la figura que se mostrará a continuación se puede observar un CSA de 16 bits. El mismo, se divide en cuatro grupos de 4 bits cada uno.
- Como cada bloque posee el mismo ancho, sus salidas estarán listas al mismo tiempo.
- En un CSA con bloques de diferente ancho el tamaño del bloque en cualquier etapa del sumador se fijará mayor que el tamaño del bloque en su etapa menos significativa.
- Esto ayuda a reducir el retraso ya que las transferencias en etapas menos significativas están listas para seleccionar la suma y llevarla a las respectivas etapas siguientes.



### Sumadores Carry Select Adder



Sumador de 16 Bits



### Sumadores Carry Select Adder



Sumador CSA de dos etapas



### Sumadores Sumadores Rápidos

#### **Carry Select Adder**

- El CSA como muestra la figura anterior puede dividirse en más de una etapa.
- En el caso anterior el sumador de N-Bits se divide en dos grupos de N/2 bits. A su vez cada etapa se divide en dos subgrupos de N/4 bits.
- En una primera etapa cada subgrupo calcula sumas y acarreos de salida para acarreos de entrada iguales a 1 y 0, dentro de un mismo grupo dos subgrupos se combinan.
- Luego en una segunda etapa se combinan los dos grupos generando la suma y el acarreo final de salida.
- Si se dividieran los grupos hasta llegar a subgrupos de 1 bit cada uno, la arquitectura del sumador sería la misma del conditional sum adder por lo que consideramos a este un caso particular de CSA.



# Sumadores Carry Select Adder

### Implementación en Verilog (16-bits)

```
module hierarchicalcsa(a, b, cin, sum r, c out r, clk):
      input [15:0] a,b;
      input cin.clk:
      output rea c out r: output rea [15:0] sum r:
      wire
             c4,c8,c8 0,c8 1,c12 0,c12 1,c16 0, c16 1, c16L2 0, c16L2 1;
      wire [15:4] sumL1 0, sumL1 1; wire [15:12] sumL2 0, sumL2 1;
      reg [15:0] a_r,b_r; reg cin_r; wire c_out; wire [15:0] sum;
      always@(posedge clk)begin
         a r <= a; b r <= b; cin r <= cin; sum r <= sum; c out r <= c out; end
10
      // Level one of hierarchical CSA
      assign \{c4.sum[3:0]\} = a r[3:0] + b r[3:0] + cin r:
      assign {c8 0, sumL1 0[7:4]}= a r[7:4] + b r[7:4] + 1'b0;
13
      assign \{c8_1, sumL1_1[7:4]\}=a_r[7:4]+b_r[7:4]+1'b1;
14
      assign {c12_0,sumL1_0[11:8]}= a_r[11:8] + b_r[11:8] + 1'b0;
15
      assign {c12 1,sumL1 1[11:8]}= a r[11:8] + b r[11:8] + 1'b1;
16
      assign {c16 0. sumL1 0[15:12]}= a r[15:12] + b r[15:12] + 1'b0:
17
      assign {c16_1, sumL1_1[15:12]}= a_r[15:12] + b_r[15:12] + 1'b1;
18
      // Level two of hierarchical CSA
19
      assign c8 = c4 ? c8 1 : c8 0;
20
      assign sum[7:4] = c4 ? sumL1_1[7:4]: sumL1_0[7:4];
21
      // Selecting sum and carry within a group
22
      assign c16L2 0 = c12 0 ? c16 1 : c16 0;
23
      assign sumL2 0 [15:12] = c12 0? sumL1 1[15:12] : sumL1 0[15:12]:
24
      assign c16L2 1 = c12 1 ? c16 1 : c16 0:
25
      assign sumL2 1 [15:12] = c12 1? sumL1 1[15:12]: sumL1 0[15:12];
      // Level three selecting the final outputs
26
27
      assign c out = c8 ? c16L2 1 : c16L2 0:
28
      assign sum[15:8]=c8?{sumL2 1[15:12],sumL1 1[11:8]}:{sumL2 0[15:12],sumL1 0[11:8]};
   endmodule
```

### Sumadores Sumadores Rápidos

#### **Utilizando Sumadores Híbridos**

- Un diseñador digital debe siempre buscar la mejor opción para optimizar área, potencia y tiempo.
- El diseñador puede encontrar apropiado dividir el sumador en múltiples grupos y utilizar diferentes arquitecturas para cada uno.
- Esta práctica puede ayudarle al diseñador a encontrar una arquitectura óptima para el diseño.





#### Introducción

- Un desplazador lógico de N bits implementa la operación x >> s, donde s es un número entero signado.
- Se implementa a través del conexionado de todos los desplazamientos posibles como entrada de un multiplexor y luego se selecciona la salida apropiada usando el número s.
- Por ejemplo si s = -2 implica un desplazamiento de 2 hacia la izquierda.



#### Ejemplos de diseño de desplazadores

- En la imagen de la izquierda se puede observar el diseño del desplazador, donde x es el operador de entrada y todos los posibles desplazamientos son realizados previamente e ingresados en el multiplexor en el cual el número s es usado como selector.
- Para un número s negativo el desplazador tomará el valor positivo y realizará el desplazamiento hacia la izquierda.
- El diseño puede ser fácilmente extendido para encargarse de desplazamientos aritméticos y lógicos, esto lo podemos observar en la imagen derecha.
- Para esto primero se debe seleccionar ya sea el bit de signo o 0 para anexar apropiadamente a la izquierda del operador para lograr una operación de desplazamiento a la derecha.
- Para una operación de desplazamiento a la izquierda el diseño para ambas, desplazamiento aritmético y lógico es el mismo.
- Cuando no hay suficientes bits de signo redundantes, el desplazamiento hacia la izquierda provocará overflow.



### Ejemplo de diseño de desplazadores







#### Barrel Shifter jerárquico

- En lugar de usar un multiplexor con múltiples entradas, un barrel shifter puede también ser construido en forma jerárquica.
- Se pueden implementar fácilmente pipelines en este diseño. La técnica puede funcionar tanto para el desplazamiento hacia la derecha como hacia la izquierda.
- Para x >> s, la técnica trabaja considerando s como un número de complemento a dos con signo donde el bit de signo tiene peso negativo y el resto de los bits poseen peso positivo.
- Pasando de los bits más significativos a los menos significativos, cada etapa del barrel shifter solo abastece un bit y realiza el desplazamiento requerido igual al peso de el bit.



#### Ejemplo Desplazador de 16 bits

- En imagen de la siguiente diapositiva se presenta un barrel shifter capaz de desplazar un número x de 16 bits por un número s de 5 bits signado. Con lo cual el desplazador puede realizar corrimientos del 0 al 15 hacia la derecha y del 1 al 16 hacia la izquierda en 5 etapas o niveles.
- Primero el desplazador chequea si es requerido un desplazamiento lógico o aritmético y selecciona apropiadamente 0 o el bit de signo del operando para luego agregarlo para la operación de desplazamiento hacia la derecha.
- Luego el desplazador chequea el bit más significativo de s, ya que este bit posee peso negativo. Si s[4] = 1, se realiza un desplazamiento a la izquierda de 16 y mantiene el resultado como un número de 31 bits.
- En el caso que s[4] = 0, el número es apropiadamente extendido a un número de 31 bits para el siguiente nivel para lograr desplazamientos apropiados.
- Para el resto de los bits la lógica realiza un desplazamiento a la derecha igual al peso de el bit bajo consideración, y el diseño sigue reduciendo el número de bits al ancho requerido a la salida de cada etapa.



#### Ejemplo de desplazador de 16 bits



Diagrama en Bloque.



#### Ejemplo de desplazador de 16 bits-Pipelined



Diagrama en Bloque incluyendo pipeling.



Ejemplo de desplazador de 16 bits

### Verilog con y sin Pipeline

```
module barrelShifter
                                                         module barrelShifterPipelined
                                                           (input
                                                                                clk.
      input [15:0]
                                                            input [15:0]
      input signed [4:0]
                                                            input signed [4:0] s.
      input
                                                            input
                                                                                AL.
                          AL.
      output reg [15:0] v);
                                                            output reg [15:0] v);
                                                            reg [30:0]y0,y0 r; reg [22:0]y1,y1 r;
      reg [30:0] y0; reg [22:0] y1;
                                                            reg [18:0]y2,y2_r; reg [16:0]y3,y3_r;
      reg [18:0] y2; reg [16:0] y3;
                                                            reg [14:0] sgn;
                                                                               reg [3:0] s_r;
      req [14:0] sqn;
                                                            req [2:0] sp r;
                                                                               req [1:0] spp r;
      always @(*) begin
                                                            rea
                                                                       sppp r:
         sgn = (A_L) ? \{15\{x[15]\}\} : 15'b0;
                                                            always @(*) begin
         v0 = (s[4]) ? \{x[14:0], 16'b0\} :
                                                             sqn=(A L)?{15{x[15]}}:15'b0;
                                              {sqn
         [14:0], x[15:0]};
                                                             v0=(s[4])?{x[14:0],16'b0}:{sqn[14:0],x[15:0]};
14
         y1 = (s[3]) ? y0[30:8] : y0[22:0];
                                                             y1=(s_r[3])?y0_r[30:8]:y0_r[22:0];
         v2 = (s[2]) ? v1[22:4] : v1[18:0];
                                                             v2=(sp r[2])?v1 r[22:4]:v1 r[18:0];
16
         v3 = (s[1]) ? v2[18:2] : v2[16:0];
                                                             v3=(spp r[1])?v2 r[18:2]:v2 r[16:0];
           = (s[0]) ? v3[16:1] : v3[15:0]:
                                                             v =(sppp r)?v3 r[16:11:v3 r[15:01:
18
                                                            end
      end
   endmodule
                                                            always @ (posedge clk) begin
                                                               v0 r <= v0:
                                                                                v1 r <= v1:
                                                               y2_r \le y2;
                                                                               y3_r <= y3;
                                                               s r <= s[3:0]; sp r <= s r[2:0];
                                                     24
                                                               spp r <= sp r[1:0];
                                                               sppp r \le spp r[0]:
                                                     26
                                                            end
                                                         endmodule
```

#### **Barrel Shifter como multiplicador**

- Un barrel shifter puede también usarse como un multiplicador dedicado en las FPGAs.
- Un desplazamiento por s hacia la izquierda significa una multiplicación por 2<sup>s</sup>.
- Un desplazamiento a la derecha por s equivale a una multiplicación por  $2^{-s}$ .
- Para realizar esta operación el número por el que se desea multiplicar debe ser potencia de 2.





## **CSA y Compresores**

Carry Save adders

#### **CSA**

- Se han presentado sumadores que suman dos operandos mientras propagan el acarreo de una posición de bit a la siguiente para calcular luego el resultado final. Estos son en conjunto llamados sumadores propagadores de acarreo (CPA).
- Aunque se pueden sumar 3 números en un ciclo usando un CPA, una mejor opción es usar un CSA que primero reduce los tres números a dos y luego se usa un CPA para calcular la suma final.
- En cuanto a timing y área, el CSA es uno de los sumadores más eficientes y utilizados para acelerar los diseños digitales de sistemas de procesamiento de señales que se ocupan de múltiples operandos para la adición y la multiplicación.
- Cuando un CSA reduce tres operandos a dos, no propaga el acarreo. Más bien guarda el acarreo en la siguiente posición de bit significativo. Esto significa que la adición reducirá tres operandos a dos sin tener un retardo por propagación de acarreo.
- A este sumador, por su forma de operar, también se lo denomina compresor 3:2.



## **Sumador Carry-Save**



Diagrama en bloques Compresor 3:2



## **CSA y Compresores**

Compresores

### Árboles de Compresión

- Hay muchas técnicas que utilizan CSA para sumar más de tres operandos. Estas técnicas son muy utilizadas para reducir los productos parciales en el diseño de multiplicadores.
- A lo largo del curso se verá la aplicación de estas técnicas en arquitecturas de multiplicadores y en la optimización de otras arquitecturas y aplicaciones de procesamiento de señales.



## **CSA y Compresores**

Compresores

#### Notación de Puntos

- La notación de puntos se utiliza para explicar diferentes técnicas de reducción.
- En esta notación cada bit en la suma de dos operandos está representado por un punto.
- Cuatro puntos representan cuatro bits de productos parciales de un multiplicador 4\*4. Los puntos que aparecen en una columna se deben agregar al otro operando para calcular el producto final.
- Una técnica de reducción 3:2 reduce tres capas de productos parciales a dos.



## Compresores



Puntos usados para representar cada bit de un producto parcial



## **CSA y Compresores**

Compresores

#### Notación de Puntos

- Esta técnica considera el número de puntos en cada columna, en caso que aparezca un punto aislado en una columna simplemente se reduce al siguiente nivel de lógica.
- Cuando se tienen dos puntos en una sola columna se agregan usando un half adder, el punto para la suma se deja caer en la misma columna y el punto para el acarreo se coloca en la siguiente columna significativa. El uso de un half adder para esta operación también se conoce como reducción 2:2.
- Los tres puntos en una columna se reducen a dos utilizando un full adder. En este caso, el punto para la suma se coloca en la misma ubicación de bit y el punto para el acarreo se coloca en la siguiente posición de bit significativo.



## Compresores



Reduciendo los números de puntos en una columna





#### Introducción

- La mayoría de los algoritmos de procesamiento de señales utilizan multiplicadores.
- Es por esto que es muy importante entender las técnicas que se utilizan para optimizar la implementación de los multiplicadores.
- Debido a su importancia, los fabricantes de FPGA están implementando multiplicadores dedicados en sus dispositivos.
- Si bien se pueden diseñar multiplicadores secuenciales que demoran varios ciclos para calcular el resultado, los diseñadores de sistemas de alto rendimiento se interesan por desarrollar multiplicadores que calculen el producto en un sólo ciclo.
- Para lograr esto se diseñan arquitecturas de multiplicadores paralelos.
- Un CSA es un bloque fundamental en estas arquitecturas.



#### Introducción

- Los productos parciales se reducen primero a dos números utilizando un árbol CSA.
- Estos dos números son luego sumados para obtener el producto final.
- En la actualidad las FPGAs poseen un gran número de sumadores dedicados. Estos sumadores pueden sumar tres operandos. Los árboles reductores pueden reducir el número de productos parciales a tres en lugar de dos para hacer uso completo de estos bloques.
- Cualquier arquitectura multiplicadora paralela consta de tres operaciones básicas: generación de producto parcial, reducción del producto parcial y cálculo de la suma final usando un CPA (Carry Propagation Adder).





Tres componentes de un Multiplicador



#### Generación de Productos Parciales

- Mientras se multiplican dos números de N bits a y b, se generan los productos parciales. Los mismos se pueden generar ya sea utilizando el método de ANDing o implementando un algoritmo de recodificación de Booth.
- El primer método genera un producto parcial PP<sub>i</sub> a través de una operación AND de cada bit a<sub>i</sub> del multiplicador con todos los bits del multiplicando b.
- En la imagen de la siguiente diapositiva se puede observar la generación de productos parciales para un multiplicador de 6 bits por 6 bits.
- Cada PP<sub>i</sub> es desplazado a la izquierda i posiciones antes de que los productos parciales sean sumados por columnas para producir el resultado final.



Multiplicador de 6\*6 bits



Generación de productos Parciales

#### Generación de Productos Parciales

- La implementación solo destaca la generación del producto parcial y no utiliza ninguna técnica de reducción del mismo.
- Estos productos parciales son correctamente desplazados utilizando el operador de concatenación en Verilog y luego son sumados para completar la función del modulo multiplicador.



Multiplicador de 6\*6 bits

### Implementación en Verilog

```
module multiplier
      input [5:0]
                    a.b.
      output [11:0] prod);
      integer
      reg [5:0]
                    pp [0:5]; //6 partial products
      always@(*)
        begin
           for(i=0; i<6; i=i+1)
             begin
                pp[i] = b & {6{a[i]}};
             end
        end
14
      assign prod = pp[0]+\{pp[1],1'b0\}+\{pp[2],2'b0\}+
15
                     {pp[3],3'b0}+{pp[4],4'b0}+{pp[5],5'b0};
   endmodule
```



#### Reducción de Productos Parciales

- Cuando multiplicamos un número "a" de  $N_1$  bits por otro "b" de  $N_2$  bits,  $N_1$  productos parciales son producidos al aplicar el operador ANDing entre cada bit  $a_i$  con todos los bits de b y desplazando el producto parcial  $PP_i$  a la izquierda i posiciones.
- Usando la notación de puntos, todos los productos parciales forman un arreglo de puntos en paralelogramo. Los puntos de cada columna se añadirán para calcular el resultado final.
- En general, para un multiplicador de N<sub>1</sub> bits por N<sub>2</sub> bits, se utilizan las siguientes cuatro técnicas para reducir N<sub>1</sub> capas de productos parciales a dos capas para su adición final usando cualquier CPA:
  - Carry Save Reducción.
  - Dual Carry Save Reducción.
  - Wallace Tree Reduction.
  - Dadda Tree Reduction.
- Las técnicas se describen para compresores 3:2 pero pueden extenderse fácilmente a otros compresores.



Reducción de Productos Parciales

### **Carry Save Reduction**

- Se reducen las tres primeras capas de los productos parciales usando CSA.
- En las tres capas seleccionadas, los bits aislados en una columna simplemente caen a la misma columna, las columnas con dos bits se reducen a dos bits usando half adders y las columnas con tres bits se reducen a dos bits usando full adders.
- Cuando se suma utilizando las HA y FA, el punto que representa el bit de suma se deja caer en la misma columna mientras que el punto del acarreo se coloca en la siguiente columna de bit más significativo.
- Una vez que los primeros tres productos parciales se reducen a dos capas, el cuarto producto parcial de la composición original se agrupa con las dos capas anteriores para formar un nuevo grupo de tres capas. Estas tres capas se reducen de nuevo a dos utilizando la técnica CSA.
- Este proceso se repite hasta que todo el conjunto se reduce a dos capas de números.
- Como resultado se obtiene unos bits de producto menos significativos, denominados bits de producto libre, y el resto de los bits aparecen en dos capas las cuales se agregan utilizando cualquier CPA.



Multiplicador de 12\*12 bits



Esquema de Carry Save Reduction



Multiplicador de 6\*6 bits



Esquema Layout de Carry Save Reduction



Reducción de Productos Parciales

### **Dual Carry Save Reduction**

- Los productos parciales son divididos en dos grupos de igual tamaño.
- El esquema de Carry Save Reduction es aplicado en ambos sub grupos simultáneamente.
- Como resultado se obtienen dos conjuntos de capas de productos parciales en cada sub grupo.
- La técnica finalmente resulta en cuatro capas de productos parciales.
- Estas capaz son reducidas luego a un grupo de tres y finalmente a un grupo de dos capas.



Reducción de Productos Parciales

#### **Wallace Tree Reduction**

- Los productos parciales son divididos en grupos de tres productos parciales cada uno.
- A diferencia de la reducción de tiempos de los dos métodos anteriores, estos grupos de productos parciales son reducidos simultáneamente usando CSAs.
- Cada capa de CSA comprime tres capas a dos capas. Estas dos capas de cada grupo se reagrupan en conjuntos de tres capas.
- En el siguiente nivel nuevamente se reducen tres capas a dos capas, este proceso continuará hasta que queden solo dos filas.
- Por último cualquier CPA puede utilizarse para calcular el producto final.



Wallace Tree Reduction



Reducción aplicada a 12 productos parciales



Reducción de Productos Parciales

#### **Wallace Tree Reduction**

- Esta reducción es uno de los esquemas más usados en arquitecturas de multiplicadores.
- La reducción se realiza en paralelo en grupos de tres.
- A medida que el número de productos parciales aumenta, tendremos un incremento logarítmico en el número de niveles del sumador.
- El número de niveles del sumador representa el retardo de la trayectoria crítica.
- Cada nivel de sumador posee un retardo de FA en su ruta.



Wallace Tree Reduction

| Number of PPs     | Number of full-adder delays |
|-------------------|-----------------------------|
| 3                 | 1                           |
| 4                 | 2                           |
| $5 \le n \le 6$   | 3                           |
| $7 \le n \le 9$   | 4                           |
| $10 \le n \le 13$ | 5                           |
| $14 \le n \le 19$ | 6                           |
| $20 \le n \le 28$ | 7                           |
| $29 \le n \le 42$ | 8                           |
| $43 \le n \le 63$ | 9                           |

Incremento logarítmico en los niveles del sumador



Wallace Tree Reduction



Layout para un arreglo de productos parciales de 6\*6



Reducción de Productos Parciales

#### **Dadda Tree Reduction**

- Los árboles Dadda requieren el mismo número de niveles de sumador que los árboles
   Wallace, con lo que el path crítico de timing es el mismo.
- La técnica es muy usada porque minimiza el número de HA y FA en cada nivel de lógica.
- Si se observa la tabla anterior de la reducción de Wallace, los límites superiores de la columna de números de productos parciales son los siguientes: 2,3,4,6,9,13,19,28,...
- Cada número representa el número máximo de productos parciales en cada nivel que a su vez requiere un número fijo de niveles de sumador.
- La secuencia también muestra que se pueden obtener dos productos parciales a partir de como máximo tres, tres se pueden obtener de cuatro, cuatro de seis y así sucesivamente.



Reducción de Productos Parciales

#### **Dadda Tree Reduction**

- Dadda Tree Reduction considera cada columna por separado y reduce el número de niveles lógicos de una columna al máximo número de capas en el siguiente nivel.
- Por ejemplo para reducir un multiplicador de 12\*12 bits, la reducción de Wallace reduce de 12 productos a 8 mientras que el esquema Dadda primero los reduce al rango máximo en el siguiente grupo y esto es nueve. Esta acción requerirá el mismo número de niveles de lógica pero resultará en menos hardware.
- En ésta reducción si el número de puntos en una columna es menor que el número máximo de productos parciales que se quiere reducir en el nivel actual, ellos simplemente se pasan al siguiente nivel sin ningún procesamiento.
- Las columnas que tienen más puntos que los puntos requeridos para el siguiente nivel se reducen para tomar las capas máximas en el siguiente nivel.



**Dadda Tree Reduction** 



Reducción de 8 productos parciales a 2



Multiplicadores Seccionados

#### Descripción y ecuaciones

- Una multiplicación puede ser seccionada en un número de multiplicaciones más pequeñas.
- Por ejemplo, la multiplicación de 16 bits se puede realizar considerando los dos operando a y b como cuatro operandos de 8 bits, tomando los bits más significativos por un lado y los menos por otro obtendríamos a<sub>H</sub>, a<sub>L</sub>, b<sub>H</sub> y b<sub>L</sub>.
- La descomposición matemática de la operación se da de la siguiente manera:

```
a_L = a_7 a_6 a_5 a_4 a_3 a_2 a_1 a_0

a_H = a_{15} a_{14} a_{13} a_{12} a_{11} a_{10} a_9 a_8

b_L = b_7 b_6 b_5 b_4 b_3 b_2 b_1 b_0

b = b_{15} b_{14} b_{13} b_{12} b_{11} b_{10} b_9 b_8

(a_L + 2^8 a_H) x (b_L + 2^8 b_H) = a_L x b_L + a_L x b_H 2^8 + a_H x b_L 2^8 + a_H x b_H 2^{16}
```

Se pueden realizar estas cuatro multiplicaciones de 8\*8 bits en paralelo para luego obtener el resultado final del multiplicador de 16\*16 bits.

#### Multiplicadores Seccionados





Esquema de multiplicador de 16\*16 bits



Optimización de Compresores

#### Descripción

- Basándose en el concepto de CSA, pueden desarrollarse otros bloques de compresores.
- Por ejemplo un compresor 4:2 toma cuatro operandos y un bit para el acarreo de entrada y los reduce a dos bits.
- Comprimiendo múltiples operandos el compresor trabaja en cascada.
- Si se implementan estos compresores utilizando la lógica de cadena de acarreo se pueden obtener mejores resultados de timing y de área que utilizando CSA.



Optimización de Compresores



Diferentes tipos de compresores



Contadores de una o múltiples columnas

#### Descripción

- Las sumas multi operando en ASIC (circuito integrado de aplicación específica) son generalmente implementados usando CSA basados en arboles de reducción Wallace y Dadda.
- Con LUTs y cadenas de acarreo en la FPGA, la implementación de un contador ofrece una mejor alternativa a la suma de múltiples operandos basados en CSA.
- Estos contadores añaden todos los bits en una o varias columnas para utilizar mejor los recursos de FPGA.
- Un contador N: n de una columna suma todos los Nbits en una columna y devuelve un número de n bits, donde  $n = log_2(N+1)$
- Las primeras arquitecturas de FPGA eran diseños basados en LUT de 4 entradas. Los LUTs de 6 entradas con lógica de cadena de transporte rápida han aparecido en las familias Vertix - 4 y Virtex - 5.
- Un diseño que efectivamente utiliza estas características es más eficiente que los demás.



Contadores de una o múltiples columnas



Contador de una sola columna (a) Un contador 6: 3 que reduce seis capas de múltiples operandos a tres. (B) Un contador 6: 3 se mapea en tres LUTs de 6 entradas para generar la suma, llevar 0 y llevar 1 salida.



Contadores de una o múltiples columnas

#### Descripción

- Cada LUT calcula la suma respectiva, bits de carry0 y carry1 del compresor.
- También se pueden construir contadores de diferentes dimensiones, y una mezcla de éstos se puede utilizar para reducir varios operandos a dos.
- En la siguiente figura se pueden ver contadores 15:4, 4:3 y 3:2 que trabajan en cascada para comprimir una matriz 15 x 15.



Contadores de una o múltiples columnas



Contador de compresión de una matriz 15 x 15.



Contadores de una o múltiples columnas

#### Descripción

- En una operación de suma de varios operandos, un contador paralelo generalizado (GPC) añade número de bits en varias columnas adyacentes.
- Un GPC de columna K suma  $N_0, N_1, ..., N_{K-1}$  bits, en el menos significativo 0 a la columna más significativa K-1, respectivamente, y produce un número de n bits, donde:

$$N = \sum_{i=0}^{K-1} (N_i * 2^i)$$

$$n = \lceil log_2(N+1) \rceil$$



Contadores de una o múltiples columnas



Síntesis de árboles compresores mediante compresión de 2 columnas de 5 bits cada una en GPC de 4 bits (5,5:4).

Contadores de una o múltiples columnas

#### Descripción

- GPC ofrece flexibilidad una vez asignada a una FPGA.
- El problema de configurar dimensiones de GPC para mapear en FPGA para la suma de múltiples operandos, es un problema completo - NP.
- El problema se resuelve con la "programación entera", y se informa que el método supera a la aplicación basada en árboles sumadores desde el área y las perspectivas de tiempo.
- Las FPGAs son las más adecuadas para los contadores y los árboles de compresión basados en GPC.
- Para utilizar completamente las FPGAs basadas en 6- LUT, es mejor que cada contador o GPC tenga 6 bits de entrada y 3 (o 4 mejor) bits de salida, como se ve en las siguientes imágenes.
- Los cuatro bits de salida son favorecidos como los LUTs en muchos FPGAs vienen en grupos de dos con entrada de 6 bits compartida, y un 6: 3 GPC desperdiciaría un LUT en cada compresor, como se muestra en la en la segunda imagen.



Contadores de una o múltiples columnas



Mapeo de árboles compresores por (a) contadores 3: 2, y (b) a (3,3; 4) GPC.

Contadores de una o múltiples columnas



(a) El módulo de lógica adaptativa (ALM) de Altera FPGA contiene dos 6-LUTs con entradas compartidas; 6-input 3-output GPC tiene 3/4 utilización lógica (b) Un 6-input 4-output GPC tiene plena utilización lógica.





#### Conceptos

- En esta sección vamos a ver las arquitecturas que implementan las multiplicaciones de números con signos.
- Un número "x" con signo en N bits se expresa como:  $x = -x_{n-1}2^{N-1} + \sum_{i=0}^{N-2} (x_i 2^i)$ Dónde  $x_{n-1}$  es el MSB, que lleva el signo negativo.
- Cuando multiplicamos un número *a* de *N*<sub>1</sub>-bit con un número *b* con *N*<sub>2</sub>-bit, obtenemos *N*<sub>1</sub> productos parciales.
- Para los primeros  $N_1 1$  productos parciales, el PP[i] se obtiene haciendo una ANDing del bit  $a_i$  de a con b y desplazando el resultado i posiciones a la izquierda, esto implementa la multiplicación de b con  $a_i 2^j$ :

$$PP[i] = (a_i 2^i) (-b_{n-1} 2^{N_2 - 1} + \sum_{i=0}^{N_2 - 2} (b_i 2^i))$$
  
para  $i = 0, 1, ..., N_1 - 2$ 

■ El PP[i] en la expresión anterior es sólo el multiplicador signado que se desplaza por i a la izquierda, por lo que el MSBs de todos los productos parciales tiene peso negativos.



#### Concepto

- Debido al cambio de *i*, todos los *PPs* son números con signos de distinto ancho.
- Todos estos números son necesarios para ser alineados a la izquierda por la lógica de extensión de signo antes de que se agregan para calcular el producto final.
- Como el MSB de a tiene peso negativo, la multiplicación de este bit resulta en un PP que es el complemento de 2 del multiplicando.
- El  $pp[N_1 i]$  se calcula como:  $PP[N_1] = (-a_{N_1-1}2^{N_1-1}).(-b_{n-1}2^{N_2-1} + \sum_{i=0}^{N_2-2}(b_i2^i))$
- Se extiende el signo de los N<sub>1</sub> productos parciales y se suman para obtener el producto final.



Lo esencial

#### **Ejemplo**

- La siguiente figura muestra una multiplicación signada de 4 \* 4-bits.
- Los bits de signo de los 3 primeros PPs se extienden y muestran en negrita.
- El complemento a 2 del último PP se toma para satisfacer el peso negativo del MSB del multiplicador.
- Si el multiplicador signado se implementa como en este ejemplo, la lógica de extensión de signo tomará un área significativa del árbol de compresión.
- Se desea eliminar de alguna manera esta lógica del multiplicador.





Multiplicación signada de 4 \* 4-bits.

#### Eliminación de extensión de signo

- Una observación simple en un número extendido de signos nos lleva a una técnica eficaz para la eliminación de la lógica de extensión de signos.
- Un equivalente del número extendido de signo, se calcula invirtiendo el bit de signo y sumando un 1 en la ubicación del bit de signo, y extendiendo el número con todos los 1s.
- La siguiente imagen explica el cálculo en un número positivo.



Eliminación de extensión de signo



```
(b) extend all 1s flip the sign bit

B = 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1

B = 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1

+ 1 add 1 at the location of sign bit

1 1 1 1 1 1 1 1 1 1 0 1 0 1 1
```

Ejemplo de eliminación de extensión de signo



#### Eliminación de extensión de signo

- El bit de signo 0 es invertido a 1, se suma un 1 en la posición del bit de signo y los bits extendidos se reemplazan por todos los 1s.
- Esta técnica que trabaja de forma equivalente en números negativos, se observa en la imagen (b) anterior.
- El bit de signo 1 se invierte a 0, se suma un 1 a la posición del bit de signo y los bits extendidos son todos 1s.
- Con lo que la técnica hace que todos los bits extendidos sean 1,independientemente del signo del número.
- Para eliminar la lógica de extensión de signo, todos los 1s se suman fuera de línea para formar un vector de corrección.



#### Eliminación de extensión de signo

- En la siguiente imagen se ven los pasos necesarios en la lógica de eliminación de signo de la extensión de signo en un multiplicador signado de 11 \* 6 bit.
- Primero, el MSB de todos los PPs, excepto el último, se da vuelta, suma un 1 en la ubicación del bit de signo, y el número se extiende por todos los 1s.
- Para el último PP, el complemento a 2 se calcula invirtiendo todos los bits y sumando 1 a la posición LSB.
- El MSB del último PP se invierte y suma 1 a esta ubicación de bit para la extensión de signo.
- Todos estos 1s son sumados para obtener un vector de corrección (CV).
- Todos los 1s se quitan, el CV simplemente se suma y se encarga de la lógica de la extensión de signo.



Eliminación de extensión de signo

Eliminación de extensión de signo y formulación de CV para multiplicación signada



Eliminación de extensión de signo

#### **Ejemplo**

- En el siguiente ejemplo se encuentra el CV para un multiplicador signado de 4x4 bits y se lo usa para multiplicar 2 números: 0011 y 1101.
- En la figura "a" de la siguiente imagen, todos los 1s para la extensión de signo y los complemento a 2 se suman , y el CV = 0001 0000
- Aplicando la lógica de la eliminación de extensión de signo y sumando el CV a los PPs, la multiplicación se realiza de nuevo dando el mismo resultado, como se puede ver en la figura "b" de la siguiente imagen.
- Como el CV tiene un solo bit distinto de cero, el bit se añade con el primer PP (mostrado en gris).
- Esta técnica ahorra área y por lo tanto es muy eficaz.



Eliminación de extensión de signo





Multiplicación entre 0011 y 1101.



#### Propiedades de la cadenas

- Hasta ahora sólo se han representado números en forma de complemento a 2, donde cada bit es 0 o 1.
- También existen otras formas para representar números.
- Algunas pocos son eficaces para el diseño de sistemas de procesamiento de señales, como ser el dígito canónico con signo (CSD).
- En CSD, un dígito puede ser 1, 0 o -1.
- La representación restringe la ocurrencia de 2 dígitos distintos de ceros consecutivos en el número, generando una representación única con un número mínimo de dígitos distintos de cero.
- El CSD de un número se puede calcular utilizando la propiedad de cadena de los números.
- Esta propiedad, mientras pasa de LSB a MSB, encuentra sucesivamente cadenas de 1s y las reemplaza con un valor equivalente, usando 1, 0 o -1.



#### Propiedad de cadenas

■ Considerando el número 7, este puede escribirse como 8 — 1, o en CSD como:

$$0111 = 1000 - 1 = 100\overline{1}$$

- El bit con una barra tiene peso negativo y los demás tienen peso positivo.
- $\blacksquare$  De forma similar, el 31 puede escribirse como 32 1, o en CSD como:

$$011111 = 100000 - 1 = 10000\overline{1}$$

- Así, de forma equivalente, una cadena de 1s se reemplaza con 1 en el 1 menos significativo de la cadena, y un 1 es colocado después del 1 más significativo de la cadena, muestra que todos los demás bits se llenan de ceros.
- Se puede extender de manera trivial esta transformación a cualquier cadena de 1s en representación binaria de un número.
- La propiedad de cadena se puede aplicar recursivamente en representaciones binarias de un número.
- El número transformado tiene un número mínimo de bits distintos de cero.



#### Multiplicador Signado en Completo a Dos Propiedad de cadena



Aplicación de la propiedad de cadena.

Multiplicador Modificado de Booth

#### Introducción

- Los tres bloques básicos de un multiplicador son la generación de los productos parciales, la reducción de los productos parciales a dos capas, y la suma de estas capas usando CSA.
- Reducir el número de productos parciales es una técnica de optimización que se utiliza en muchos diseños.
- El multiplicador modificado de Booth (MBR) es una de estas técnicas.



Multiplicador Modificado de Booth

#### Descripción

- Cuando multiplicamos dos números de N bits signados a y b, la técnica genera un producto parcial por cada uno a través del emparejamiento de todos los bits de b en grupos de dos bits.
- La técnica, al pasar del LSB al MSB de b, empareja dos bits juntos para hacer un grupo que será recodificado usando el algoritmo MBR.
- Los dos bits de un grupo pueden ser 00, 01, 10, 11 (binarios).
- La multiplicación por 00, 01 y 10 simplemente resultan en 0, a y 2a = a << 1 respectivamente, donde cada producto parcial es calculado como un número.
- La cuarta posibilidad es 11 binario que es igual a 3 decimal, igual a 2 + 1, y un simple corrimiento podría no generar el producto parcial requerido. Esta multiplicación dará como resultado dos productos parciales que son *a* y 2*a*. Esto significa que en el peor caso el multiplicador tendrá *N* productos parciales.



Multiplicador Modificado de Booth

#### Descripción

- El problema del caso 11 para generar dos productos parciales es resuelto usando el algoritmo de recodificación de Booth.
- Este algoritmo trabaja con grupos de dos bits pero recodifica cada grupo para usar uno de los cinco valores equivalentes: 0, 1, 2, -1, -2. La multiplicación por todos estos dígitos resulta en un producto parcial por cada uno.
- Estos valores equivalentes son codificados indexándolos en una LUT. Esta LUT es calculada utilizando la propiedad de cadena de números vista anteriormente.
- Esta propiedad es observada en cada par de bits desde del LSB al MSB.
- Para comprobar la propiedad de cadena, es requerido también el MSB del par anterior junto con los dos bits del par bajo consideración. Para el primer par se añade un cero a la derecha.
- La Tabla siguiente muestra la propiedad de cadena trabajando con todos los números posibles de 3 bits para generar una tabla que es luego usada para recodificar.



### Multiplicador Signado en Completo a Dos Multiplicador Modificado de Booth

 $2^{1} 2^{0}$ String property implemented Numeric computations Recoded value 000 No string 001 End of string at bit location 0 010 Isolated 1 011 End of string at bit location 0 100 Start of string at bit location 1  $-2^{0}-2^{1}$ 101 End and start of string at bit locations 0 and 1, respectively 110 Start of string at bit location 0 -1111 Middle of string 0 0

Recodificador de Booth modificado usando propiedad de cadena



Multiplicador Modificado de Booth

#### **Ejemplo**

- En este ejemplo se multiplican dos números de 8 bits 10101101 y 10001101 usando la técnica antes descripta.
- La técnica primero separa los bits en el multiplicador en grupos de dos bits. Luego el MSB del grupo anterior recodifica cada grupo usando la tabla previa. Se supone un cero para el MSB del grupo menos significativo ya que no tiene grupo anterior.
- Los 8 grupos con el MSB del grupo anterior son: 100001110010
- Se observa en la tabla que los números son recodificados a -2, 1, -1 y 1 y los cuatro productos parciales son generados como se verá en la próxima imagen.
- Para un dígito 1 recodificado en el multiplicador, el multiplicando es simplemente copiado. Como cada producto parcial es generado de un par de 2 bits del multiplicador, el i producto parcial es desplazado 2i posiciones hacia la izquierda.
- Para el segundo dígito recodificado del multiplicador que es -1, el complemento a 2 del multiplicando es copiado.



Multiplicador Modificado de Booth

#### **Ejemplo**

- Los productos parciales son generados para todos los dígitos recodificados, para el ultimo dígito de -2 el complemento a 2 del producto parcial es desplazado más a la izquierda una posición de bit para realizar la multiplicación por dos.
- Se extiende el signo de los cuatro productos parciales y luego son sumados para obtener el producto final.
- La lógica de eliminación de extensión de signo podría usarse para reducir la lógica de implementación de hardware.



Multiplicador Modificado de Booth

| 10101101 (-83                      | 3) Multiplicador             |
|------------------------------------|------------------------------|
| 10001101 (-11                      | L5) <u>Binario</u>           |
| <b>11111111</b> 10101101           |                              |
| <b>111111</b> 10101101             | Productos                    |
| 1111110101101                      | Parciales                    |
| <mark>0</mark> 01010011            |                              |
| 0010010101001001                   |                              |
| 10101101 (-83<br>-2 0 1 0 -1 0 1   | Multiplicador<br>3) de Booth |
| 1111111110101101<br>00000001010011 | 100011010 (1)                |
| 111110101101                       | 100011010 (-1)               |
| 00101001101                        | 100011010 (1)                |
| 0010010101001001                   | 100011010 (-2)               |



Multiplicador Modificado de Booth



MBR de 8\*8 bits



Multiplicador 6 x 6-Bits MBR

#### Implementación en Verilog

```
module BOOTH MUI TIPLIER
     (input [5:0]
                    multiplier.
      input [5:0]
                    multiplicand,
      output [10:0] product);
      parameter WIDTH = 6;
      reg [6:0] pps [0:2];
      reg [10:0] correctionVector;
      reg [2:0] recoderOut[2:0];
      wire [6:0] a, a n;
                 2a, 2a_n;
      wire [6:01
      assign a_n = { multiplicand[WIDTH-1], ~multiplicand};
      assign a
                   = { ~multiplicand[WIDTH-1], multiplicand};
      assign 2a n = {multiplicand[WIDTH-1], ~multiplicand[WIDTH-2:0], 1'b0}:
                   = { ~multiplicand[WIDTH-1], multiplicand[WIDTH-2:0], 1'b0};
14
      assign 2a
      assign product = pps[0] + {pps[1],2'b00} + {pps[2],4'b0000} + correctionVector;
16
      always@*
        begin
18
           recoderOut[0] = RECODERfn ({ multiplier[1:0],1'b0});
19
           recoderOut[1] = RECODERfn (multiplier[3:1]);
20
           recoderOut[2] = RECODERfn (multiplier[5:3]):
21
           GENERATE_PPtk(recoderOut[0],a,_2a,a_n,_2a_n,pps[0],correctionVector[1:0]);
22
           GENERATE PPtk(recoderOut[1],a, 2a,a n, 2a n,pps[1],correctionVector[3:2]);
           GENERATE PPtk(recoderOut[2].a. 2a.a n. 2a n.pps[2].correctionVector[5:4]):
24
           correctionVector[10:6] = 5'b01011;
25
        end
```



Multiplicador 6 x 6-Bits MBR

### Implementación en Verilog

```
task GENERATE PPtk:
          input [2:0] recoderOut;
          input [WIDTH:01 a:
                                   input [WIDTH:0] _2a;
                                  input [WIDTH:01 2a n:
          input [WIDTH:01 a n:
          output [WIDTH:0] ppi;
                                   output [1:0]
                                                     correctionVector:
          reg [WIDTH-1:0] zeros;
          begin
             zeros = 0;
             case (recoderOut)
               3'b000:begin
                  ppi = {1'b1.zeros}:
                                         correctionVector = 2'b00:
               end
               3'b001:begin
                  ppi = a:
                                          correctionVector = 2'b00:
               end
16
               3'b010:begin
17
                  ppi = 2a:
                                          correctionVector = 2'b00:
18
                 end
19
               3'b110:begin
20
                  ppi = _2a n;
                                          correctionVector = 2'b10:
               end
               3'b111:begin
23
                  ppi = a n:
                                          correctionVector = 2'b01:
24
               end
25
               default:begin
26
                  ppi = 'bx;
                                         correctionVector = 2'bx:
               end
28
             endcase
29
          end
                                             Diseño Digital Avanzado
                                                                                                             154
30
       endtask
```

Multiplicador 6 x 6-Bits MBR

#### Implementación en Verilog

```
function [2:0] RECODERfn:
      input [2:0] recoderIn:
      begin
         case (recoderIn)
           3'b000: RECODERfn = 3'b000:
           3'b001: RECODERfn = 3'b001:
           3'b010: RECODERfn = 3'b001:
           3'b011: RECODERfn = 3'b010:
           3'b100: RECODERfn = 3'b110:
           3'b101: RECODERfn = 3'b111;
           3'b110: RECODERfn = 3'b111:
           3'b111: RECODERfn = 3'b000:
           default: RECODERfn = 3'bx;
         endcase
      end
   endfunction
endmodule
```





### Reducción del Árbol de Suma

#### **Árboles Compresores**

- Aunque varios dispositivos de las familias de las FPGA ofrecen multiplicadores embebidos, los árboles compresores todavía son críticos en muchas aplicaciones.
- El árbol de compresión es el primer bloque de construcción en reducir los requerimientos del número de CPAs para la suma de múltiples operadores.
- En el siguiente ejemplo, se agregan 5 operadores signados en los formatos S(6.5), S(8.3), S(11.7) y S(12.6).
- La lógica de extensión de signo que se construye primero, se elimina mediante el cálculo de un vector de corrección y se agrega como la sexta capa en representación de puntos.
- En la figura se muestra que la colocación de los puntos en una cuadrícula, requiere un árbol de compresión para reducir el número de puntos en cada columna a 2. Esto se puede demostrar utilizando cualquier técnica de reducción. Aquí emplearemos la reducción de Dadda.
- Luego, los dos operandos se introducen en un CPA para la suma final.



### Reducción del Árbol de Suma Árboles Compresores



Uso de un árbol de compresión en adición de múltiples operandos





#### Transformación de Algoritmos

- El CSA desempeña un papel importante en la implementación de aplicaciones DSP de alto rendimiento en hardware.
- Como primer paso, mientras se asigna un gráfico de flujo de datos a la arquitectura, se observa que el gráfico muestra cualquier uso potencia de CSA y, en consecuencia, el gráfico se modifica.
- Por ejemplo, considere implementar las siguientes ecuaciones:

$$d[n] = a[n] + b[n] + c[n]$$
  
 $y[n] = d[n-1] * e[n]$ 

Las ecuaciones son convertidas a DFG en la figura (a).

Esto se modifica usando CSA para comprimir
 a[n] + b[n] + c[n]
 en dos números, que luego se suman usando un CPA. Éste DFG transformado se muestra en la figura (b).





(a) FSFG con suma de múltiples operandos



(b) FSFG modificado reduciendo 3 operandos a 2.



#### Transformación de Algoritmos

- Ésta técnica de extracción de suma de múltiples operandos puede extenderse a gráficos de flujo de datos, donde se observa que los gráficos muestran cualquier uso potencial de CSA y árboles compresores.
- Los gráficos se transforman primero para utilizar óptimamente los árboles compresores y luego se mapean en hardware.
- Éstas transformaciones han demostrado mejorar significativamente el diseño de hardware de las aplicaciones de procesamiento de señales.
- Las operaciones de suma múltiple son las más fáciles de todas las transformaciones.



#### Transformación de Algoritmos

■ El árbol compresor también puede colocarse en la siguiente operación de suma comparación-selección:

```
sum1 = op1 + op2;

sum2 = op3 + op4;

if(sum1 > sum2)

.....sel = 0;

else

.....sel = 1:
```

Para transformar la lógica para el uso óptimo de un árbol compresor, el algoritmo se modifica como sigue:

```
sign(op1 + op2 - (op3 + op4)) = sign(op1 + op2 - op3 - op4)

sign(op1 + op2 + op3' + 1 + op4' + 1) = sign(op1 + op2 + op3' + op4' + 2)
```

 Esta transformación del árbol compresor en el equivalente DFG se muestra en la siguiente figura.



Equivalencia del árbol compresor en DFG



Reemplazo del árbol compresor por una operación de suma de comparación y selección



#### Transformación de Algoritmos

De forma similar a la anterior, la siguiente operación de sumar y multiplicar se puede representar con su equivalente DFG: op1 \* (op2 + op3)

- El DFG puede ser transformado para usar eficazmente un árbol compresor.
- Una implementación directa requiere un CPA para realizar op2 + op3, y luego el resultado de esta operación es multiplicado por op1.
- La arquitectura de un multiplicador comprende un árbol compresor y un CPA.
- Para implementar el cálculo, se requieren 2 CPA.
- Una transformación simple utiliza la propiedad distributiva del operador de multiplicación: op1 \* op2 + op1 \* op3
- Esta representación de la expresión ahora requiere un árbol de compresión, que luego es seguido por un CPA para calcular el valor final.
- El DFG asociado y la transformación se ven en la siguiente figura.



DFG asociado y la transformación



Transformar la operación de sumar y multiplicar para usar un CPA y un árbol de compresión.



#### Transformación de Algoritmos

prod = op1 \* op2 \* op3 \* op4

■ Ampliar la técnica de generar sumas parciales y acarreo, también puede optimizar la implementación de una cascada de multiplicaciones:

- Estos 2 PPs se multiplican independientemente con op3, generando 2 conjuntos PPs que se reducen de nuevo a 2 PPs, s2 y c2, usando un árbol de compresión: (s2, c2) = s1 \* op3 + c1 \* op3
- Estos dos PPs se multiplican con *op*4 para generar 2 conjuntos de PPs que se comprimen de nuevo para calcular 2 PPs finales, *s*3 y c3. Estos dos PPs se agregan a continuación usando un CPA para calcular el producto final:

$$(s3, c3) = s2 * op4 + c2 * op4$$
  
.....prod =  $s3 + c3$   
Esto se ilustra en la siguiente imagen.



Transformación equivalente en DFG



Transformación para usar árboles de compresión y un solo CPA para implementar una cascada de operaciones de multiplicación.



#### Transformación de Algoritmos

Siguiendo los ejemplos anteriores, se pueden usar varias transformaciones usando propiedades matemáticas básicas para acumular varios operadores para el uso efectivo de árboles de compresión para mapeo de hardware optimizado.





### Multiplicación por Constantes

#### En donde se utiliza?

- En muchos sistemas de procesamiento digitales (DSP) y algoritmos de comunicación, una gran proporción de multiplicaciones son números constantes.
- Por ejemplo:
  - Filtros de respuesta de impulso finito (FIR).
  - Filtros respuesta de impulso infinito (IIR).
  - La transformada de coseno discreta (DCT).
  - La transformada de coseno discreto inverso (IDCT).
  - La transformada rápida de Fourier (FFT).
  - La transformada rápida de Fourier inversa (IFFT).
- Para una arquitectura totalmente dedicada (FDA), donde la multiplicación por una constante se asigna a un multiplicador dedicado, no se requiere la complejidad de un multiplicador de propósito general.
- La representación binaria de una constante muestra claramente los bits distintos de cero que requieren la generación de productos parciales (PP), mientras que los bits que son cero en la representación se pueden ignorar para la operación de generación de PP.
- La representación CSD puede reducir aún más el número de productos parciales.



### Multiplicación por Constantes

Dígito Canónico con Signo (CSD)

#### Concepto

- Es un código de dígito signado radix-2.
- Codifica una constante usando dígitos signados 1, 0 y -1.
- Representación de constante de N-bits:

$$C = \sum_{i=0}^{N-1} s_i 2^i; \quad s_i \in -1, 0, 1$$
 (11)

- Propiedades
  - No hay dos bits consecutivos en la representación de CSD de un número que no sean cero.
  - La representación de CSD de un número usa un número mínimo de dígitos distintos de cero.
  - La representación de CSD de un número es única.



### Multiplicación por Constantes

Dígito Canónico con Signo (CSD)

#### Concepto

- La representación de CSD de un número se puede calcular recursivamente usando la propiedad de la cadena.
- El LSB en una cadena de 1s se cambia a T que representa -1, y todos los otros 1s en la cadena se reemplazan por ceros, y el 0 que marca el final de la cadena se cambia a 1.
- Después de reemplazar una cadena por su dígitos CSD equivalentes, el número se observa nuevamente moviéndose desde el dígito codificado al MSB para contener cualquier cadena adicional de 1s.
- El proceso se repite hasta que no se encuentre una cadena de 1 en el número.

#### Ejemplo

0011111011110111

 $00111111011111100\overline{1}$ 

 $0011111110000\overline{1}00\overline{1}$ 

0100000100001001





Forma Directa

#### Concepto

- El filtro FIR es muy común en aplicaciones de procesamiento de señal.
- Un filtro FIR se implementa como

$$y[n] = \sum_{k=0}^{L-1} h[k]x[n-k]$$
 (12)

- Una implementación del FIR requiere que todas estas multiplicaciones y adiciones se ejecuten simultáneamente, requiriendo L multiplicadores y L-1 sumadores.
- La multiplicación con coeficientes constantes puede explotar la simplicidad del multiplicador CSD.
- Cada uno de estos multiplicadores, en muchas instancias de diseño, se simplifica aún más al restringir a cuatro el número de dígitos CSD distintos de cero en cada coeficiente.
- Un dígito de CSD distinto de cero en un coeficiente contribuye aproximadamente 20 dB de atenuación de banda de corte.
- La atenuación de la banda de corte es una medida de la efectividad de un filtro.





#### FIR forma directa.



Implementación.



#### FIR con multiplicadores

```
module FIRfilter
        input signed [15:0]
                                         х,
                                         clk.
        input
        output reg signed [31:0] vn):
        rea signed [15:0]
                                         xn [0:41:
        wire signed [31:0]
                                         yn v;
        // Coefficients of the filter
        wire signed [15:0]
                                       h0 = 16'h0325:

    wire signed [15:0]
    h1 = 16'h1e00;

    wire signed [15:0]
    h2 = 16'h3DB6;

    wire signed [15:0]
    h3 = 16'h1e00;

    wire signed [15:0]
    h4 = 16'h0325;

        // Implementing filters using multiplication and addition operators
        assign yn_v = (h0*xn[0] + h1*xn[1] + h2*xn[2] + h3*xn[3] + h4*xn[4]);
        always @(posedge clk)
           begin
               // Tap delay line of the filter
19
              xn[01 <= x:
20
               xn[1] <= xn[0];
21
              xn[2] <= xn[1]:
22
              xn[3] <= xn[2];
23
               xn[4] <= xn[3];
24
               // Registering the output
25
               vn <= vn v:
26
           end
    endmodule
```



#### **FIR usando CSD**

```
module FIRfilterCSD
                                                                   pp[10] = xn[3] >>> 2;
      (input signed [15:0]
                                                                   pp[111] = -xn[31>>>6:
                                  х.
       input
                                  clk,
       output reg signed [31:0] yncsd);
                                                                   pp[12] = xn[4] >> 5;
       rea signed [31:0]
                                  vncsd v:
                                                                   pp[13] = -xn[4] >> 7:
       reg signed [31:0]
                                  xn [0:4];
                                                                   pp[14] = xn[4] >>> 10;
       reg signed [31:0]
                                  pp[0:15];
                                                                   pp[15] = xn[4] >>> 13;
       always @(posedge_clk)
                                                                   vncsd\ v = pp[0]+pp[1]+pp[2]+pp[3]+pp[4]+pp
         begin
            xn[0] <= \{x, 16'h0\};
                                                                    [5]+
            xn[1] <= xn[0];
                                                                              pp[6]+pp[7]+pp[8]+pp[9]+pp[10]+pp
12
            xn[2] <= xn[1];
                                                                    [11]+
            xn[3] <= xn[2];
                                                                              pp[12]+pp[13]+pp[14]+pp[15];
14
            xn[4] <= xn[3];
                                                                end
            vncsd <= vncsd v:
                                                             endmodule
16
         end
       always @ (*) begin
18
          pp[0] = xn[0] >> 5:
19
          pp[1] = -xn[0] >>> 7;
20
          pp[2] = xn[0] >>> 10;
21
          pp[3] = xn[0] >>> 13;
22
          pp[4] = xn[1] >>> 2;
24
          pp[5] = -xn[1] >>> 6;
25
26
          pp[6] = xn[2] >>> 1:
27
          pp[7] = -xn[2] >>> 6;
28
          pp[8] = -xn[2] >> 9:
29
          pp[9] = -xn[2] >>> 12;
                                              Diseño Digital Avanzado
                                                                                                                179
```

#### **FIR usando CV**

```
module FIRfilterCV
                                                                      pp[4] = \{2'b0, \sim xn \ 1[15],
      (input signed [15:0]
                                                                                xn 1[14:01, 14'b0}:
                                  х.
      input
                                  clk.
                                                                      pp[5] = \{6'b0, xn 1[15],
       output reg signed [31:0] yn
                                                                                ~xn 1[14:0], 10'b0};
       );
                                                                      pp[6] = \{1'b0, \sim xn_2[15],
       reg signed [31:0] yn_v;
                                                                               xn 2[14:0], 15'b0};
       reg signed [15:0] xn 0,xn 1,
                                                                      pp[7] = \{6'b0, xn 2[15],
                          xn 2.xn 3.xn 4:
                                                                               ~xn 2[14:0]. 10'b0}:
       reg signed [31:0] pp[0:15];
                                                                      pp[8] = \{9'b0, xn 2[15].
       reg signed [31:0] gcv = 32'h6F701090;
                                                                                ~xn 2[14:0], 7'b0};
       always @(posedge clk)
                                                                      pp[9] = \{12'b0, xn 2[15],
12
         beain
                                                                                ~xn_2[14:0], 4'b0};
                                                                      pp[10] = \{2'b0, \sim xn \ 3[15],
            xn 0 \le x;
14
                                                                                 xn 3[14:0], 14'b0};
            xn 1 <= xn 0;
            xn 2 <= xn 1:
                                                                      pp[11] = \{6'b0. xn 3[15].
16
            xn 3 <= xn 2:
                                                                                 ~xn_3[14:0], 10'b0};
                                                                      pp[12] = \{5'b0, \sim xn \ 4[15],
            xn 4 <= xn 3;
18
                                                                                xn 4[14:01, 11'b0}:
            vn <= vn v:
19
         end
                                                                      pp[13] = \{7'b0, xn_4[15],
20
       always @ (*) begin
                                                                                 ~xn 4[14:0], 9'b0};
21
          pp[0] = \{5'b0, \sim xn\ 0[15],
                                                         21
                                                                      pp[14] = \{10'b0, \sim xn_4[15],
22
                   xn 0[14:01, 11'b0}:
                                                         22
                                                                                 xn 4[14:01.6'b0}:
          pp[1] = \{7'b0, xn 0[15],
                                                                      pp[15] = \{13'b0, \sim xn \ 4[15],
24
                    ~xn 0[14:0], 9'b0};
                                                                                 xn 4[14:0],3'b0};
25
          pp[2] = \{10'b0. \sim xn\ 0[15].
                                                                      yn_v = pp[0]+pp[1]+pp[2]+pp[3]+
26
                    xn 0[14:01.6'b0}:
                                                         26
                                                                             pp[4]+pp[5]+pp[6]+pp[7]+
27
          pp[3] = \{13'b0, \sim xn\ 0[15],
                                                                             pp[8]+pp[9]+pp[10]+pp[11]+
28
                    xn 0[14:01.3'b0}:
                                                                             pp[12]+pp[13]+pp[14]+
                                                                             pp[15]+gcv;
```

Forma Directa Transpuesta

#### Concepto

- La estructura de filtro FIR de forma directa da como resultado una gran nube combinacional de árbol de reducción y CPA.
- El camino crítica consiste en un multiplicador y un sumador.
- Agregar pipeling para reducir el camino crítico causa latencia y una gran sobrecarga de área en la implementación de registros.
- Retiming es una técnica efectiva para mover sistemáticamente retrasos algorítmicos en un diseño para reducir el camino crítica del circuito lógico.
- La técnica retiming se aplica para transformar el filtro FIR directo en transpuesto.
- Es interesante observar que de esta forma, sin agregar registros de pipeling, los retrasos del algoritmo se mueven sistemáticamente usando la transformación de retiming desde el borde superior del DFG al borde inferior.





#### FIR forma directa con pipeling.





Diseño Digital Avanzado





FIR forma directa transpuesta con multiplicadores CSD y sumadores carry save.



FIR forma directa transpuesta con un nivel de pipeling.





FIR forma directa transpuesta con dos niveles de pipeling.



#### **TDF**

```
module FIRfilterTDFComp
                                                             always@(*) begin
     (input signed [15:0] x,
                                                              c00[0]=0;c10[0]=0;c20[0]=0;c200[0]=0;
      input
                            clk.
                                                              c30[0]=0; c40[0]=0;c400[0]=0;
      output signed [31:0] yn);
                                                                for (i=0; i<32; i=i+1) begin
                                                                    \{c00[i+1], s00[i]\} =
      integer
                            i;
                                                                      pp 0[i]+pp 1[i]+pp 2[i];
      rea signed [15:0]
                            xn:
      reg signed [31:0]
                            sn 0.sn 1.sn 2.
                                                                    \{c10[i+1], s10[i]\} =
                            sn 3,sn 4;
                                                                      pp 4[i]+pp 5[i]+sn 0[i];
      rea signed [32:0]
                            cn 0.cn 1.cn 2.
                                                                    \{c20[i+1],s20[i]\} =
                            cn_3,cn_4;
                                                                       pp_6[i]+pp_7[i]+pp_8[i];
      reg signed [31:0]
                            pp 0,pp 1,pp 2,
                                                                    \{c200[i+1],s200[i]\} =
        pp 3,pp 4,pp 5,pp 6,pp 7,pp 8,pp 9,
                                                                       pp 9[i]+sn 1[i]+cn 1[i];
        pp 10.pp 11.pp 12.pp 13.pp 14.pp 15:
                                                                    \{c30[i+1],s30[i]\} =
14
      reg signed [31:0] s00,s01,s10,s11,
                                                                       pp 10[i]+pp 11[i]+sn 2[i];
        s20, s200, s21, s30, s31, s40, s400, s41,
                                                                    \{c40[i+1], s40[i]\} =
16
        s02.s22.s42:
                                                                      pp_12[i]+pp_13[i]+pp_14[i];
      rea signed [32:0]
                          c00.c01.c10.c11.
                                                                    \{c400[i+1], s400[i]\} =
18
        c20,c200,c21,c30,c31,c40,c400,c41,
                                                                       pp 15[i]+sn 3[i]+cn 3[i];
19
        c02.c22.c42:
                                                                end
                                                      20
20
      reg signed [31:0] gcv = 32'h6F701090:
                                                            c01[0]=0:c11[0]=0:c21[0]=0:
21
       assign yn = cn 4+sn 4;
                                                      21
                                                            c31[0]=0;c41[0]=0;
22
      always @(posedge clk)begin
                                                          for (i=0; i<32; i=i+1)begin
23
               <= X:
                       cn 0 <= c02:
                                                      23
                                                           {c01[i+1],s01[i]}=c00[i]+s00[i]+pp_3[i];
24
          sn 0 <= s02; cn 1 <= c11;
                                                      24
                                                           {c11[i+1],s11[i]}=c10[i]+s10[i]+cn 0[i];
25
          sn 1 <= s11; cn 2 <= c22;
                                                           {c21[i+1],s21[i]}=c20[i]+s20[i]+c200[i];
26
          sn 2 <= s22: cn 3 <= c31:
                                                      26
                                                           {c31[i+1].s31[i]}=c30[i]+s30[i]+cn 2[i]:
27
          sn 3 <= s31: cn 4 <= c42:
                                                           {c41[i+1].s41[i]}=c40[i]+s40[i]+c400[i]:
28
          sn 4 <= s42;
                                                          end
29
      end
```

#### **TDF**

```
c02[0]=0; c22[0]=0; c42[0]=0;
          for (i=0; i<32; i=i+1)
             begin
                 \{c02[i+1], s02[i]\} = c01[i] + s01[i] + gcv[i];
                \{c22[i+1],s22[i]\} = c21[i]+s21[i]+s200[i];
                 {c42[i+1].s42[i]}= c41[i]+s41[i]+s400[i]:
             end
 8
       end
       always @(*) begin
          pp_0 = \{5'b0, \sim xn[15], xn[14:0], 11'b0\};
          pp 1 = \{7'b0, xn[15], \sim xn[14:0], 9'b0\};
          pp 2 = \{10'b0, \sim xn[15], xn[14:0], 6'b0\};
          pp 3 = \{13'b0, \sim xn[15], xn[14:0], 3'b0\}:
          pp_4 = \{2'b0, \sim xn[15], xn[14:0], 14'b0\};
14
          pp 5 = \{6'b0, xn[15], \sim xn[14:0], 10'b0\};
16
          pp 6 = \{1'b0, xn[15], xn[14:0], 15'b0\}:
          pp_7 = \{6'b0, xn[15], \sim xn[14:0], 10'b0\};
18
          pp 8 = \{9'b0, xn[15], \sim xn[14:0], 7'b0\};
19
          pp 9 = \{12'b0, xn[15], \sim xn[14:0], 4'b0\};
20
          pp_10 = \{2'b0, \sim xn[15], xn[14:0], 14'b0\};
21
          pp 11 = \{6'b0, xn[15], \sim xn[14:0], 10'b0\};
22
          pp 12 = \{5'b0, \sim xn[15], xn[14:0], 11'b0\};
23
          pp 13 = \{7'b0, xn[15], \sim xn[14:0], 9'b0\}:
24
          pp 14 = \{10'b0, \sim xn[15], xn[14:0], 6'b0\}:
25
          pp 15 = \{13'b0, \sim xn[15], xn[14:0], 3'b0\};
26
       end
    endmodule
```



#### Estructuras FIR hibridas



FIR forma directa.



FIR forma directa transpuesta.



#### Estructuras FIR hibridas



#### Estructura Hibrida.



Estructura directa transpuesta hibrida.





### Concepto

- La aritmética distribuida (DA) es otra forma de implementar un producto punto donde una de las matrices tiene elementos constantes.
- El DA se puede utilizar de manera efectiva para implementar algoritmos de tipo FIR, IIR y FFT.
- La lógica DA reemplaza la operación MAC de la suma de convolución en una lectura de tabla de búsqueda en serie de bits y operación de adición.
- Teniendo en cuenta la arquitectura de los FPGA, los diseños efectivos de tiempo/área pueden implementarse usando técnicas DA.
- La lógica de DA funciona expandiendo primero la matriz de números variables en el producto punto como un número binario y luego reorganizando los términos de MAC con respecto al peso de los bits.

$$y = \sum_{k=0}^{K-1} A_k x_k \tag{13}$$

■ Donde K,  $A_k$  y  $x_k$  es la longitud de ambas matrices, los elementos de una matríz de constantes y variables, respectivamente.



#### Concepto

Considerando que  $x_k$  tiene un formato de N-bits S(N,N-1), el producto punto queda definido como

$$y = \sum_{k=0}^{K-1} \left( -x_{k0} 2^0 + \sum_{b=1}^{N-1} x_{kb} 2^{-b} \right) A_k$$

$$y = -\sum_{k=0}^{K-1} x_{k0} A_k 2^0 + \sum_{b=1}^{N-1} 2^{-b} \sum_{k=0}^{K-1} x_{kb} A_k$$

 El tamaño de las palabras almacenadas en la tabla se determinan usando la siguiente expresión

$$P = \left| log_2 \sum_{k=0}^{K-1} |A_k| \right| + 1 \tag{14}$$



| $x_{2b}$ | $x_{1b}$ | $x_{0b}$ | Contents of ROM   |
|----------|----------|----------|-------------------|
| 0        | 0        | 0        | 0                 |
| 0        | 0        | 1        | $A_0$             |
| 0        | 1        | 0        | $A_1$             |
| 0        | 1        | 1        | $A_1 + A_0$       |
| 1        | 0        | 0        | $A_2$             |
| 1        | 0        | 1        | $A_2 + A_0$       |
| 1        | 1        | 0        | $A_2 + A_1$       |
| 1        | 1        | 1        | $A_2 + A_1 + A_0$ |

ROM para Aritmética Distribuida.



Ejemplo

|          | Producto  | y Suma       |      |    |       |      |
|----------|-----------|--------------|------|----|-------|------|
| 0101(A0) | 1011(A1)  | 0110         | (A2  | )  |       |      |
| 0111(x0) | 1001(x1)  | 0100         | (x2) | )  |       |      |
| 0101     | 11111011  | 0000         | )    |    |       |      |
| 0101     | 0000      | 0000         |      |    | 0010  | 0011 |
| 0101     | 0000      | 0110         |      |    | 0010  | 0011 |
| _0000    | _0101     | _0000        |      |    | 0001  | 1000 |
| 00100011 | 00100011  | 00011000     | )    | 00 | 00101 | 1110 |
| LUT      |           |              |      |    |       |      |
| 000000   | (0) Aritm | ética Distri | buid | а  |       |      |
| 000101   | (1)       |              |      |    |       |      |
| 111011   | (2)       | 1 1          | (x2  | x1 | x0)   |      |
| 000000   | (3)       | 000000       | (0   | 1  | 1)    |      |
| 000110   | (4)       | 000101       | ( 0  | 0  | 1)    |      |
| 001011   | (5)       | 001011       | (1   | 0  | 1)    |      |
| 000001   | (6)       | 00101        | ( 0  | 1  | 0)    |      |
| 000110   | (7) $00$  | 01011110     |      |    |       |      |





Implementación de producto punto.





Implementación de un filtro FIR.



#### Implementación en Verilog

```
module FIRDistributed Arithmetics
                                                              assign valid = ~ (|contr):
                                                              assign msb = contr;
     ( input xn b, clk q, rst n,
        input [3:0]
                                                              assign sum = (acc +
                                  contr.
        output rea signed [31:0] vn.
                                                                        {rom out^{17{msb}}, 16'b0} +
        output
                                  valid);
                                                                        {15'b0, msb, 16'b0}) >>> 1;
      reg signed [31:0]
                                 acc;
                                                             always@(posedge clk q or negedge rst n)
      rea [15:0]
                      xn_0, xn_1, xn_2, xn_3;
                                                                begin
      reg [16:0] rom out; reg [3:0] addr;
                                                                 if (!rst n) begin
       wire signed [31:0] sum; wire msb;
                                                                    xn 0 <= 0;
      always@(*) begin
                                                                    xn 1 <= 0:
     addr={xn 3[0].xn 2[0].xn 1[0].xn 0[0]}:
                                                                    xn 2 <= 0:
       case(addr)
                                                                    xn 3 <= 0;
        4'd0: rom out=17'b00000000000000000:
                                                                    acc <= 0:
14
        4'd1: rom out=17'b00000001000100100:
                                                                 end
        4'd2: rom out=17'b00011110111011100;
                                                                 else begin
16
        4'd3: rom out=17'b00100000000000000:
                                                                    xn 0 \le \{xn b. xn 0[15:1]\}:
        4'd4: rom out=17'b00011110111011100:
                                                                    xn_1 \leftarrow \{xn_0[0], xn_1[15:1]\};
18
        4'd5: rom out=17'b00100000000000000;
                                                                    xn 2 \le \{xn 1[0], xn 2[15:1]\};
19
                                                                    xn 3 \leftarrow \{xn 2[0], xn 3[15:1]\};
        4'd6: rom out=17'b00111101110111000;
20
        4'd7: rom out=17'b00111110111011100:
                                                                    if(&contr) begin
21
        4'd8: rom out=17'b00000001000100100;
                                                       21
                                                                        vn <= sum;
22
        4'd9: rom out=17'b00000010001001000;
                                                                        acc <= 0:
23
        4'd10: rom out=17'b0010000000000000:
                                                                     end
24
        4'd11: rom out=17'b00100001000100100:
                                                                     else
25
        4'd12: rom out=17'b00100000000000000;
                                                                       acc <= sum;
26
        4'd13: rom out=17'b00100001000100100:
                                                       26
                                                                 end
        4'd14: rom out=17'b00111110111011100:
                                                              end
28
        4'd15: rom out=17'b01000000000000000;
                                                           endmodule
29
        default: rom out= 17'bx;
                                             Diseño Digital Avanzado
                                                                                                             196
30
        endcase
31
```