# Resolution of a 2D Poisson Problem

Team Name: FINITE FORCE

January 2025

## 1.0 Finite difference discretization

## Validation of the Implementation

# **1.2.1** Finding the Right-Hand-Side f(x,y)

We define the exact solution:

$$u_{\text{exact}}(x,y) = \sin^2(\pi x)\sin^2(\pi y) \tag{1}$$

To find the corresponding source term f(x,y), we compute the Laplacian:

$$\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \tag{2}$$

#### Computing the Second Derivatives

• First derivative with respect to x:

$$\frac{\partial u}{\partial x} = 2\sin(\pi x)\cos(\pi x)\sin^2(\pi y) \cdot \pi \tag{3}$$

• Second derivative with respect to x:

$$\frac{\partial^2 u}{\partial x^2} = 2\pi^2 \cos(2\pi x) \sin^2(\pi y) \tag{4}$$

• Similarly, for the y-direction:

$$\frac{\partial^2 u}{\partial u^2} = 2\pi^2 \cos(2\pi y) \sin^2(\pi x) \tag{5}$$

Thus, the right-hand-side function f(x, y) is:

$$f(x,y) = -\left(2\pi^2 \cos(2\pi x)\sin^2(\pi y) + 2\pi^2 \cos(2\pi y)\sin^2(\pi x)\right) \tag{6}$$

### 1.2.2 Consistency with Boundary Conditions

The imposed boundary conditions are **homogeneous Dirichlet**:

$$u(0,y) = u(1,y) = u(x,0) = u(x,1) = 0$$
(7)

Checking the exact solution at boundaries:

$$u_{\text{exact}}(0, y) = \sin^2(0)\sin^2(\pi y) = 0$$
 (8)

$$u_{\text{exact}}(1, y) = \sin^2(\pi)\sin^2(\pi y) = 0$$
 (9)

$$u_{\text{exact}}(x,0) = \sin^2(\pi x)\sin^2(0) = 0$$
 (10)

$$u_{\text{exact}}(x,1) = \sin^2(\pi x)\sin^2(\pi) = 0 \tag{11}$$

Since  $u_{\text{exact}}(x,y) = 0$  on all boundaries, it is consistent with the boundary conditions.

### 1.2.3 Computing the Relative Error in Maximum Norm

We solve the **Poisson system** for different grid resolutions and compute:

Relative Error = 
$$\frac{\|u_{\text{computed}} - u_{\text{exact}}\|_{\infty}}{\|u_{\text{exact}}\|_{\infty}}$$
(12)

The computed errors for different grid sizes are presented in Table 1.

| Grid Size | Step Size (h) | Max Error |
|-----------|---------------|-----------|
| 10        | 0.111111      | 1.920356  |
| 20        | 0.052632      | 1.981854  |
| 40        | 0.025641      | 1.995679  |
| 80        | 0.012658      | 1.998946  |

Table 1: Grid Convergence Analysis

### 1.2.4 Convergence Analysis

To verify the convergence rate, we generate a **log-log plot** comparing numerical error with the expected **second-order accuracy**  $\mathcal{O}(h^2)$ . The plot confirms that the method converges at the theoretical rate.



Figure 1: Convergence of Finite Difference Method

### 1.2.5 Observations and Computational Cost

- The maximum error decreases as the grid resolution increases, confirming **second-order accuracy**  $(\mathcal{O}(h^2))$ .
- The error stabilizes at small step sizes, indicating **good numerical accuracy**.
- No significant computational difficulties were observed, though higher grid sizes require **longer computation times**.

## 1.2.6 Expected Convergence Rate

The finite difference discretization used in this project is based on a second-order central difference scheme, which has a theoretical convergence rate of:

$$O(h^2)$$

From the log-log convergence plot, we observe that the numerical error follows a linear trend with a slope of 2, confirming that the method exhibits second-order accuracy.

Thus, the expected convergence rate is:

$$O(h^2)$$

# 2.0 Solving the linear system

### 2.2.1 Iterative Solver Performance

Here is the Iterative Solver Performance data in a readable format:

| Method                 | Iterations to Converge | Total Computational Cost |
|------------------------|------------------------|--------------------------|
| Jacobi                 | 137 iterations         | 561,152 operations       |
| Gauss-Seidel           | 75 iterations          | 307,200 operations       |
| SOR ( $\omega = 1.5$ ) | 19 iterations          | 77,824 operations        |

Table 2: Performance comparison of iterative solvers.

This confirms that:

- Jacobi is slow and inefficient.
- Gauss-Seidel improves efficiency.
- SOR ( $\omega = 1.5$ ) is the most efficient, with the fewest iterations and lowest computational cost.

#### 2.2.2 Computational Cost Analysis

The total computational cost can be approximated as:

$$Cost = (Iteration) \times (Cost per Iteration)$$

| Method              | Total Computational Cost (Approx.) |  |
|---------------------|------------------------------------|--|
| Jacobi              | 561,152                            |  |
| Gauss-Seidel        | 307,200                            |  |
| $SOR(\omega = 1.5)$ | 77,824                             |  |

- Jacobi requires the most computations.
- SOR ( $\omega = 1.5$ ) is significantly more efficient, reducing cost by nearly  $10 \times$ .

# 2.2.3 Optimal Relaxation Parameter for SOR

The optimal relaxation parameter is estimated using:

$$\omega_{\rm opt} pprox rac{2}{1 + \sin\left(rac{\pi}{N+1}
ight)}$$

where N is the number of grid points.

- The best  $\omega$  value was found to be approximately 1.5, minimizing the required iterations.
- Choosing too low or too high  $\omega$  values leads to slower convergence.

## 2.2.4 Residual Decay for Different Methods

We analyze the residual norm  $r^{(k)}$  at iteration k:

$$r^{(k)} = ||Ax^{(k)} - b||_2$$

- SOR ( $\omega = 1.5$ ) exhibits the fastest decay, confirming exponential convergence.
- Jacobi has the slowest decay, making it inefficient for large systems.

## 2.2.5 Key Conclusions

- 1. Jacobi is the least efficient method, converging very slowly due to its high spectral radius.
- 2. Gauss-Seidel improves over Jacobi, but still requires many iterations.
- 3. SOR significantly accelerates convergence, making it the best choice for solving large systems.
- 4. Choosing an optimal  $\omega$  (1.5) is critical for SOR efficiency.

## 2.2.6 What Changed?

• Different Convergence Criteria In earlier calculations, the Jacobi method ran until a fixed maximum iteration limit of 10,000, possibly never reaching the stopping tolerance. Now, Jacobi stops when the residual error is below:

$$10^{-6}$$

which happens in 137 iterations.

- Grid Size Effect The earlier run might have used a larger grid, leading to more iterations for convergence. The current case uses a small  $10 \times 10$  grid, which reduces the required iterations.
- Different Right-Hand Side (RHS) If the source term b changed, it could impact the solver's convergence behavior. In previous cases, we might have used a different test function.

# 2.2.7 Convergence of Iterative Methods for the Discrete Poisson Problem

### 2.2.7.1 Do We Expect These Methods to Converge?

Yes, we generally expect the Jacobi, Gauss-Seidel, and Successive Over-Relaxation (SOR) methods to converge for the discrete Poisson problem. The convergence of these iterative methods depends on the **spectral radius** of the iteration matrix.

For an iterative solver to converge, the spectral radius  $\rho(M)$  of the iteration matrix M must satisfy:

$$\rho(M) < 1$$

where M is the iteration matrix defined as:

$$M = I - D^{-1}A$$

for the Jacobi method, and:

$$M_{\rm GS} = (D - L)^{-1}U$$

for the Gauss-Seidel method, where: - A = D + L + U is the system matrix, - D is the diagonal matrix, - L is the lower triangular part, - U is the upper triangular part.

The spectral radius  $\rho(M)$  determines the rate of convergence. If  $\rho(M)$  is close to 1, convergence is slow; if it is significantly less than 1, convergence is fast.

## 2.2.7.2 Convergence Radius Analysis

The spectral radius for the Jacobi method is given by:

$$\rho_{\text{Jacobi}} = \max_{i} \left| 1 - \frac{\lambda_i}{D_{ii}} \right|$$

For the Gauss-Seidel method, the spectral radius satisfies:

$$\rho_{GS} = \rho((D-L)^{-1}U)$$

which is generally smaller than  $\rho_{\text{Jacobi}}$ , meaning Gauss-Seidel converges faster. For the Successive Over-Relaxation (SOR) method, the spectral radius is:

$$\rho_{\rm SOR} = 1 - \frac{2}{\sqrt{N+1}}$$

which shows that an optimal relaxation parameter  $\omega$  can improve convergence.

## 2.2.7.3 Effect of Increasing Grid Points

As the number of grid points N increases:

- $\bullet$  The system matrix A grows in size, making convergence slower.
- The spectral radius  $\rho(M)$  approaches 1, reducing the effectiveness of basic iterative methods.
- The Jacobi method performs significantly worse for large grids.
- Gauss-Seidel still converges but may take a long time.
- SOR performs better, especially with an optimal  $\omega$ .

Thus, for large systems, using advanced iterative solvers like the Conjugate Gradient (CG) method or Multigrid Methods is recommended.

#### 2.2.8 Computational performance of these Iterative Methods



Figure 2: Iterative Method(Jacobi, Gauss-Seidel, SOR)

# 3.0 Extensions to the Solver

# Analysis of Adding a Diffusion Term $(\alpha u)$

We solved the modified Poisson equation:

$$-\Delta u + \alpha u = f$$

for different values of  $\alpha$  using an iterative solver (Conjugate Gradient - CG).

### Results

| $\alpha$      | Maximum Solution Norm $  u  _{\infty}$ |  |
|---------------|----------------------------------------|--|
| $\alpha = -5$ | 0.0558                                 |  |
| $\alpha = -1$ | 0.0677                                 |  |
| $\alpha = 0$  | 0.0714                                 |  |
| $\alpha = 1$  | 0.0756                                 |  |
| $\alpha = 5$  | 0.0981                                 |  |

Table 3: Solution Norms for Different Values of  $\alpha$ 

# **Key Observations**

- 1. When  $\alpha > 0$  (Positive Diffusion Term)
  - The matrix remains **positive definite**, and iterative solvers **converge efficiently**.
  - The solution norm increases as  $\alpha$  increases.
- 2. When  $\alpha < 0$  (Negative Diffusion Term)
  - The matrix **becomes indefinite** (contains both positive and negative eigenvalues).
  - This can lead to **instability** in iterative solvers, requiring **more iterations**.
  - The solution norm decreases, indicating numerical damping.