(000001) 用列举法表示下列集合:

- (1) 十二生肖组成的集合;
- (2) 中国国旗上所有颜色组成的集合.

(000002) 用描述法表示下列集合:

- (1) 平面直角坐标系中第一象限的角平分线上的所有点组成的集合;
- (2) 3 的所有倍数组成的集合.

(000003)(1) 若 α : $x^2 - 5x + 6 = 0$, β : x = 2, 则 α 是 β 的_______ 条件; (2) 若 α : 四边形 ABCD 是正方形, β : 四边形 ABCD 的两条对角线互相垂直平分, 则 α 是 β 的_______ 条件.

(000004) 已知方程 $x^2 + px + 4 = 0$ 的所有解组成的集合为 A, 方程 $x^2 + x + q = 0$ 的所有解组成的集合为 B, 且 $A \cap B = \{4\}$. 求集合 $A \cup B$ 的所有子集.

(000005) 已知集合 $A = (-2,1), B = (-\infty, -2) \cup [1, +\infty).$ 求: $A \cup B, A \cap B$.

(000006) 已知全集 $U=(-\infty,1)\cup[2,+\infty)$, 集合 $A=(-1,1)\cup[3,+\infty)$. 求 \overline{A} .

(000007) 已知集合 $A = \{x|x^2 + px + q = 0\}$, $B = \{x|x^2 - x + r = 0\}$, 且 $A \cap B = \{-1\}$, $A \cup B = \{-1,2\}$. 求 实数 p、q、r 的值.

(000008) 设 a 是实数. 若 x = 1 是 x > a 的一个充分条件, 则 a 的取值范围为_____.

(000009) 已知陈述句 α 是 β 的充分非必要条件. 若集合 $M=\{x|x$ 满足 $\alpha\},\ N=\{x|x$ 满足 $\beta\},\ 则\ M\ 与\ N$ 的关系为 ().

A.
$$M \subset N$$

B.
$$M \supset N$$

C.
$$M = N$$

D.
$$M \cap N = \emptyset$$

(000010) 证明: 若梯形的对角线不相等, 则该梯形不是等腰梯形.

(000011) 若集合 $M = \{a | a = x + \sqrt{2}y, x, y \in \mathbf{Q}\}$, 则下列结论正确的是 ().

A.
$$M \subseteq \mathbf{Q}$$

B.
$$M = \mathbf{Q}$$

C.
$$M \supset \mathbf{Q}$$

D.
$$M \subset \mathbf{Q}$$

(000014) 已知集合 $P = \{x | -2 \le x \le 5\}$, $Q = \{x | x \ge k + 1$ 且 $x \le 2k - 1\}$, 且 $Q \subseteq P$. 求实数 k 的取值范围.

(000015) 已知全集 $U = \mathbf{R}$, 集合 $A = \{x | x \le a - 1\}$, $B = \{x | x > a + 2\}$, $C = \{x | x < 0$ 或 $x \ge 4\}$, 且 $\overline{A \cup B} \subseteq C$. 求实数 a 的取值范围.

(000016) 已知集合 $A = \{x | (a-1)x^2 + 3x - 2 = 0\}$. 是否存在这样的实数 a, 使得集合 A 有且仅有两个子集? 若存在, 求出实数 a 的值及对应的两个子集; 若不存在, 说明理由.

(000017) 证明: ³√2 是无理数.

(000018) 设 a, b 是正整数. 求证: 若 ab - 1 是 3 的倍数, 则 a 与 b 被 3 除的余数相同.

(000019) 已知非空数集 S 满足: 对任意给定的 $x, y \in S(x, y)$ 可以相同), 有 $x + y \in S$ 且 $x - y \in S$.

- (1) 哪个数一定是 S 中的元素? 说明理由;
- (2) 若 S 是有限集, 求 S;
- (3) 若 S 中最小的正数为 5, 求 S.

(000020) 设一元二次方程 $2x^2 - 6x - 3 = 0$ 的两个实根为 x_1, x_2 , 求下列各式的值:

- (1) $(x_1+1)(x_2+1)$;
- $(2) (x_1^2-1)(x_2^2-1).$

(000021) 设 a > b > 0, 比较 $\frac{b+2a}{a+2b}$ 与 $\frac{a}{b}$ 的值的大小.

(000022) 已知 x > y, 求证: $x^3 - y^3 > x^2y - xy^2$.

(000023) 若关于 x 的不等式 (a+1)x-a<0 的解集为 $(2,+\infty)$, 求实数 a 的值, 并求不等式 (a-1)x+3-a>0的解集.

(000024) 解下列一元二次不等式:

- $(1) -x^2 + 11 < -2x 4$:
- (2) $3x^2 < 13x + 10$;
- (3) $6x + 2 > 5x^2$;
- (4) $x^2 < 8(1-x)$;
- $(5) -x^2 \ge 9(9-2x);$
- (6) $3(x-3) \le x^2$.

(000025) 试写出一个二次项系数为 1 的一元二次不等式, 使它的解集分别为:

- $(1) (-\infty, \sqrt{2}) \cup (\sqrt{2}, +\infty);$
- (2) $[2-\sqrt{3},2+\sqrt{3}].$

(000026) 求不等式 $5 \le x^2 - 2x + 2 < 26$ 的所有正整数解.

(000027) 解下列分式不等式:

(1)
$$\frac{2x+1}{x+7} > -3;$$

(2) $\frac{3x}{x^2+2} \ge 1.$

$$(2) \ \frac{3x}{x^2 + 2} \ge 1.$$

(000028) 设关于 x 的不等式 $a_1x^2 + b_1x + c_1 > 0$ 与 $a_2x^2 + b_2x + c_2 > 0$ 的解集分别为 A、B, 试用集合运算 表示下列不等式组的解集:

(1)
$$\begin{cases} a_1 x^2 + b_1 x + c_1 > 0, \\ a_2 x^2 + b_2 x + c_2 > 0; \end{cases}$$

(2)
$$\begin{cases} a_1 x^2 + b_1 x + c_1 \le 0, \\ a_2 x^2 + b_2 x + c_2 > 0; \\ a_1 x^2 + b_1 x + c_1 \le 0, \\ a_2 x^2 + b_2 x + c_2 \le 0. \end{cases}$$

(000029) 解下列含绝对值的不等式:

- (1) $|2x 1| \le x$;
- (2) |2x+1| + |x-2| < 8.

(000030) 已知 a、b 是正数, 求证: $\sqrt{(1+a)(1+b)} \ge 1 + \sqrt{ab}$.

(000031) 如图, 在直角三角形 ABC 中, AD 垂直于斜边 BC, 且垂足为 D. 设 BD 及 CD 的长度分别为 a 与 b.

- (1) 求斜边上的高 AD 与中线 AE 的长;
- (2) 用不等式表示斜边上的高 AD 与中线 AE 长度的大小关系.

(000032) 如图, 已知直角梯形 ABCD 的顶点 A(a,0)、B(b,0) 位于 x 轴上, 顶点 C、D 落在函数 y=|x| 的图像上, M、N 分别为线段 AB、CD 的中点, O 为坐标原点, Q 为线段 OC 与线段 MN 的交点.

- (1) 求中点 M 的坐标, 以及线段 $MQ \times MN$ 的长度;
- (2) 用不等式表示 MQ、MN 长度的大小关系.

(000033) 已知一元二次方程 $x^2 + px + p = 0$ 的两个实根分别为 α 、 β , 且 $\alpha^2 + \beta^2 = 3$, 求实数 p 的值.

(000034) 已知一元二次方程 $2x^2 - 4x + m + 3 = 0$ 有两个同号实根, 求实数 m 的取值范围.

(000035) 设 $a, b \in \mathbb{R}$, 已知关于 x 的不等式 (a+b)x+(b-2a)<0 的解集为 $(1, +\infty)$, 求不等式 (a-b)x+3b-a>0 的解集.

(000036) 解下列不等式:

$$(1) -2 < \frac{1}{2r+1} \le 3;$$

(2)
$$2 < |x+1| \le 3$$
.

(000037) 已知集合 $A = \{x | |x-a| < 2\}, B = \{x | \frac{2x-1}{x+2} < 1\},$ 且 $A \subseteq B$. 求实数 a 的取值范围.

(000038) 证明: 若 x > -1, 则 $x + \frac{1}{x+1} \ge 1$, 并指出等号成立的条件.

(000039) 设 a、b 为正数, 且 a+b=2. 求 $\frac{1}{a}+\frac{1}{b}$ 的最小值.

(000040) 已知
$$a$$
、 b 、 c 都是正数, 求证: $\frac{b+c}{a} + \frac{c+a}{b} + \frac{a+b}{c} \ge 6$.

(000041) 设实数 $x \cdot y$ 满足 |x + y| = 1, 求 xy 的最大值.

(000042) 已知 a、b 为实数, 求证: $|a| + |b| \le |a + b| + |a - b|$, 并指出等号成立的条件.

(000043) 已知 a、b 是实数,

- (1) 求证: $a^2 + ab + b^2 \ge 0$, 并指出等号成立的条件;
- (2) 求证: 如果 a > b, 那么 $a^3 > b^3$.

(000044) 解下列不等式:

$$(1) \ \frac{3x - 11}{x^2 - 6x + 9} \le 1;$$

$$(2) |3 - 2x| \ge |x + 1|.$$

(000045) 已知集合 $A = \{x|x^2 - 2x - 3 > 0\}$, $B = \{x|x^2 + px + q \le 0\}$. 若 $A \cup B = \mathbb{R}$, 且 $A \cap B = [-2, -1)$, 求实数 p 及 q 的值.

(000046) 已知实数
$$0 < a < b$$
, 求证: $a < \frac{2ab}{a+b} < \sqrt{ab} < \frac{a+b}{2} < \sqrt{\frac{a^2+b^2}{2}} < b$.

(000047) 方程 (x-1)(x-2)(x-3)=0 的三个根 1、2、3 将数轴划分为四个区间,即 $(-\infty,1)$, (1,2), (2,3),

 $(3, +\infty)$. 试在这四个区间上分别考察 (x-1)(x-2)(x-3) 的符号, 从而得出不等式 (x-1)(x-2)(x-3) > 0 与 (x-1)(x-2)(x-3) < 0 的解集.

一般地, 对 x_1 、 x_2 、 $x_3 \in \mathbf{R}$, 且 $x_1 \le x_2 \le x_3$, 试分别求不等式 $(x-x_1)(x-x_2)(x-x_3) > 0$ 与 $(x-x_1)(x-x_2)(x-x_3) < 0$ 的解集 (提示: x_1 、 x_2 、 x_3 相互之间可能相等, 需要分情况讨论).

(000048) 填空题:

- (2) 将 $\sqrt[4]{a\sqrt[3]{a}}$ (a > 0) 化成有理数指数幂的形式为_____.
- (3) **H** $<math> \log_8 x = -\frac{2}{3}, \$ **M**<math>**M** $= _____.$
- (4) 若 $\log_a b \cdot \log_5 a = 3(a > 0$ 且 $a \neq 1$), 则 b =_____.

(000049) 选择题:

(1) 若 $\lg a$ 与 $\lg b$ 互为相反数,则有().

A. a + b = 0

B. ab = 1

C. $\frac{a}{b} = 1$

D. 以上答案均不对

(2) 设 a > 0, 下列计算中正确的是 ().

A. $a^{\frac{2}{3}} \cdot a^{\frac{3}{2}} = a$

B. $a^{\frac{2}{3}} \div a^{\frac{3}{2}} = a$

C. $a^{-4} \cdot a^4 = 0$

D. $(a^{\frac{2}{3}})^{\frac{3}{2}} = a$

(000050) 已知 $10^{\alpha} = 3$, $10^{\beta} = 4$. 求 $10^{\alpha+\beta}$ 及 $10^{\alpha-\frac{\beta}{2}}$ 的值.

(000051) 求下列各式的值:

- (1) $\frac{1}{4^x + 1} + \frac{1}{4^{-x} + 1}$; (2) $4^{\sqrt{2}+1} \times 2^{3-2\sqrt{2}} \times 8^{-\frac{2}{3}}$.

(000052) 已知
$$\lg a < 1$$
, 化简 $\sqrt{\lg^2 a - \lg \frac{a^2}{10}}$.

(000053) 已知 $m = \log_2 10$, 求 $2^m - m \lg 2 - 4$ 的值.

(000054) 填空题:

- (1) <math> $4^x = 2^{-\frac{1}{2}}, 4^y = \sqrt[3]{32},$ <math><math>2x 3y = .
- (2) 若 $\log_3(\log_4 x) = 1$, 则 x =_____.
- (3) 若 $3^a = 7^b = 63$, 则 $\frac{2}{a} + \frac{1}{b}$ 的值为_____.

(000055) 已知 $\log_{18} 9 = a$, $18^b = 5$, 则 $\log_{36} 45$ 等于 (

A. $\frac{a+b}{2+a}$

B. $\frac{a+b}{2-a}$ C. $\frac{a+b}{2a}$

D. $\frac{a+b}{a^2}$

(000056) 设 $\log_{0.2} a > 0$, $\log_{0.2} b > 0$, 且 $\log_{0.2} a \cdot \log_{0.2} b = 1$, 求 $\log_{0.2}(ab)$ 的最小值.

(000057) 化简
$$\frac{(1+2^x)(1+2^{2x})(1+2^{4x})(1+2^{8x})(1+2^{16x})}{1-2^{32x}}$$
(其中 $x \neq 0$).

(000058) 已知 a > 1, b > 0. 求证: 对任意给定的实数 k, $a^{2b+k} - a^{b+k} > a^{b+k} - a^k$.

(000059) 甲、乙两人同时解关于 x 的方程: $\log_2 x + b + c \log_x 2 = 0$. 甲写错了常数 b, 得两根 $\frac{1}{4}$ 及 $\frac{1}{8}$; 乙写错 了常数 c, 得两根 $\frac{1}{2}$ 及 64. 求这个方程的真正根.

(000060) 已知 a、b 及 c 是不为 1 的正数,且 $\lg a + \lg b + \lg c = 0$. 求证: $a^{\frac{1}{\lg b} + \frac{1}{\lg c}} \cdot b^{\frac{1}{\lg c} + \frac{1}{\lg a}} \cdot c^{\frac{1}{\lg a} + \frac{1}{\lg b}} = \frac{1}{1000}$.

(000061) 填空题:

- (1) 若点 $(2,\sqrt{2})$ 在幂函数 $y=x^a$ 的图像上,则该幂函数的表达式为______; 若点 $(2,\sqrt{2})$ 在指数函数 $y=x^a$ $a^{x}(a > 0$ 且 $a \neq 1$) 的图像上, 则该指数函数的表达式为_______; 若点 $(\sqrt{2}, 2)$ 在对数函数 $y = \log_{a} x(a > 0)$ 且 $a \neq 1$) 的图像上,则该对数函数的表达式为
- (2) 若幂函数 $y=x^k$ 在区间 $(0,+\infty)$ 上是严格减函数, 则实数 k 的取值范围为______
- (3) 已知常数 a>0 且 $a\neq 1$, 假设无论 a 为何值, 函数 $y=a^{x-2}+1$ 的图像恒经过一个定点. 则这个点的坐标 为_____

(000062) 选择题:

(1) 若指数函数 $y = a^x (a > 0$ 且 $a \neq 1$) 在 R 上是严格减函数, 则下列不等式中, 一定能成立的是 ().

A. a > 1

- B. a < 0
- C. a(a-1) < 0 D. a(a-1) > 0
- (2) 在同一平面直角坐标系中, 一次函数 y = x + a 与对数函数 $y = \log_a x (a > 0$ 且 $a \neq 1)$ 的图像关系可能是).

(000063) 求下列函数的的定义域:

(1) $y = (x-1)^{\frac{5}{2}}$;

(2) $y = 3^{\sqrt{x-1}}$;

(3)
$$y = \lg \frac{1+x}{1-x}$$
.

(000064) 比较下列各题中两个数的大小:

(1) $0.1^{0.7} \, = 0.2^{0.7}$;

(2) $0.7^{0.1} = 0.7^{0.2}$;

(3) $\log_{0.7} 0.1 = \log_{0.7} 0.2$.

(000065) 设点 $(\sqrt{2},2)$ 在幂函数 $y_1=x^a$ 的图像上,点 $(-2,\frac{1}{4})$ 在幂函数 $y_2=x^b$ 的图像上. 当 x 取何值时, $y_1 = y_2$?

(000066) 设 $a = (\frac{2}{3})^x$, $b = x^{\frac{3}{2}}$ 及 $c = \log_{\frac{2}{3}} x$, 当 x > 1 时, 试比较 a、b 及 c 之间的大小关系.

(000067) 设常数 a>0 且 $a\neq 1$, 若函数 $y=\log_a(x+1)$ 在区间 [0,1] 上的最大值为 1, 最小值为 0, 求实数 a的值.

(000068) 如果光线每通过一块玻璃其强度要减少 10%, 那么至少需要将多少块这样的玻璃重叠起来, 才能使通 过它们的光线强度低于原来的 $\frac{1}{2}$?

(000069) 填空题:

(1) 已知 $m \in \mathbb{Z}$, 设幂函数 $y = x^{m^2 - 4m}$ 的图像关于原点成中心对称, 且与 x 轴及 y 轴均无交点, 则 m 的值 为_____

(2) 设 a、b 为常数, 若 0 < a < 1, b < -1, 则函数 $y = a^x + b$ 的图像必定不经过第______ 象限.

(000070) 选择题:

(1) 若 m > n > 1, 而 0 < x < 1, 则下列不等式正确的是 ().

A. $m^x < n^x$

B. $x^m < x^n$

C. $\log_x m > \log_x n$ D. $\log_m x < \log_n x$

(2) 在同一平面直角坐标系中, 二次函数 $y = ax^2 + bx$ 与指数函数 $y = (\frac{b}{a})^x$ 的图像关系可能为 ().

(000071) 设 a 为常数且 0 < a < 1, 若 $y = (\log_a \frac{3}{5})^x$ 在 R 上是严格增函数, 求实数 a 的取值范围

(000072) 在同一平面直角坐标系中,作出函数 $y=(\frac{1}{2})^x$ 及 $y=x^{\frac{1}{2}}$ 的大致图像,并求方程 $(\frac{1}{2})^x=x^{\frac{1}{2}}$ 的解的个数.

 $(000073) \ \textbf{已知集合} \ A = \{y|y = (\frac{1}{2})^x, \ x \in [-2,0)\}, \ \textbf{用列举法表示集合} \ B = \{y|y = \log_3 x, \ x \in A \bot y \in \mathbf{Z}\}.$

(000074)log₂ 3 是有理数吗?请证明你的结论.

(000075) 仅利用对数函数的单调性和计算器上的乘方功能来确定对数 $\log_2 3$ 第二位小数的值.

$$(000076)$$
 求函数 $y = \frac{1}{2-x} + \sqrt{x^2-1}$ 的定义域.

(000077) 判断下列函数 y = f(x) 的奇偶性, 并说明理由:

(1)
$$f(x) = |\frac{1}{2}x - 3| + |\frac{1}{2}x + 3|;$$

(2)
$$f(x) = x^3 + \frac{2}{x}$$
;

(3)
$$f(x) = x^2, x \in (k, 2)$$
(其中常数 $k < 2$).

(000078) 已知 m、n 是常数, 而函数 $y = (m-1)x^2 + 3x + (2-n)$ 为奇函数. 求 m、n 的值.

(000079) 求函数 $y = x + \frac{4}{x}$ 的单调区间.

(000080) 分别作出下列函数的大致图像, 并指出它们的单调区间:

- (1) $y = |x^2 4x|$;
- (2) y = 2|x| 3.

(000081) 已知二次函数 y = f(x), 其中 $f(x) = ax^2 - 2ax + 3 - a$ (a > 0). 比较 f(-1) 和 f(2) 的大小.

(000082) 已知 k 是常数,设 α 、 β 是二次方程 $x^2 - 2kx + k + 20 = 0$ 的两个实根. 问: 当 k 为何值时, $(\alpha+1)^2 + (\beta+1)^2$ 取到最小值?

(000083) 邮局规定: 当邮件质量不超过 100g 时, 每 20g 邮费 0.8 元, 且不足 20g 时按 20g 计算; 超过 100g 时, 超过 100g 的部分按每 100g 邮费 2 元计算, 且不足 100g 按 100g 计算; 同时规定邮件总质量不得超过 2000g. 请写出邮费关于邮件质量的函数表达式, 并计算 50g 和 500g 的邮件分别收多少邮费.

(000084) 若函数 $y = (a^2 + 4a - 5)x^2 - 4(a - 1)x + 3$ 的图像都在 x 轴上方 (不含 x 轴), 求实数 a 的取值范围.

(000085) 已知 y=f(x) 是奇函数, 其定义域为 \mathbf{R} ; 而 y=g(x) 是偶函数, 其定义域为 D. 判断函数 y=f(x)g(x) 的奇偶性, 并说明理由.

(000086) 设函数 $y=x^2+10x-a+3,$ 当 $x\in [-2,+\infty)$ 时, 其函数值恒大于等于零. 求实数 a 的取值范围.

(000087) 已知函数 $y = -x^2 + 2ax + 1 - a$, $x \in [0,1]$ 的最大值为 2. 求实数 a 的值.

(000088) 设 $f(x) = x^2 + ax + 1$. 若对任意给定的实数 x, f(2+x) = f(2-x) 恒成立, 求实数 a 的值.

(000089) 已知 y = f(x) 是定义在 (-1,1) 上的奇函数, 在区间 [0,1) 上是严格减函数, 且 $f(1-a)+f(1-a^2) < 0$, 求实数 a 的取值范围.

(000090) 已知 $f(x) = 2 - x^2$ 及 g(x) = x. 定义 h(x) 如下: 当 $f(x) \ge g(x)$ 时, h(x) = g(x); 而当 f(x) < g(x)时, h(x) = f(x). 求函数 y = h(x) 的最大值.

(000091) 试讨论函数 $y = \frac{x}{1 - x^2}$ 的单调性.

(000092) 作出函数 $y = (x^2 - 1)^2 - 1$ 的大致图像, 写出它的单调区间, 并证明你的结论.

(000093) 已知函数 y = f(x) 为偶函数, y = g(x) 为奇函数, 且 $f(x) + g(x) = x^2 + 2|x - 1| + 3$. 求 y = f(x) 及 y = g(x) 的表达式.

(000094) 设函数 $y = f(x), x \in \mathbf{R}$ 的反函数是 $y = f^{-1}(x)$.

- (1) 如果 y = f(x) 是奇函数, 那么 $y = f^{-1}(x)$ 的奇偶性如何?
- (2) 如果 y = f(x) 在定义域上是严格增函数, 那么 $y = f^{-1}(x)$ 的单调性如何?

(000095) 选择题:

(1) 与 $\sin(\theta - \frac{\pi}{2})$ 一定相等的是 ().

$$(1)$$
 与 $\sin(\theta - \frac{\pi}{2})$ 一定相等的定().

3.
$$\cos(\theta - \frac{\pi}{2})$$
 C. $\cos(2\pi - \theta)$

D.
$$\sin(\theta + \frac{\pi}{2})$$

 $\begin{array}{ll} \text{A. } \sin(\frac{3\pi}{2}-\theta) & \text{B. } \cos(\theta-\frac{\pi}{2}) & \text{C. } \cos(2\pi-\theta) \\ \text{(2) } \mathfrak{g} \ 0<\alpha<\frac{\pi}{4} \ \text{时, 化简 } \sqrt{1-\sin2\alpha} \ \text{的结果是} \ (). \end{array}$

A.
$$\cos \alpha$$

B.
$$\sin \alpha - \cos \alpha$$

C.
$$\cos \alpha - \sin \alpha$$

D.
$$\sin \alpha + \cos \alpha$$

(000096) 填空题:

- (1) 若 θ 为锐角, 则 $\log_{\sin \theta} (1 + \cot^2 \theta) =$ ______;
- (2) 若 $-\frac{\pi}{2} < \alpha < 0$,则点 $(\cot \alpha, \cos \alpha)$ 必在第_____ 象限;
- (3) 若 $\sin(\pi \alpha) = \frac{2}{3}$, $\alpha \in (\frac{\pi}{2}, \pi)$, 则 $\sin 2\alpha =$ _____.

(000097) 已知圆 O 上的一段圆弧长等于该圆的内接正方形的边长, 求这段圆弧所对的圆心角的弧度.

(000098) 已知角 α 的终边经过点 $P(3a,4a)(a \neq 0)$, 求 $\sin \alpha \cdot \cos \alpha$ 和 $\tan \alpha$.

(000099) 化简:

(1)
$$\frac{\sin(\theta - 5\pi)}{\tan(3\pi - \theta)} \cdot \frac{\cot(\frac{\pi}{2} - \theta)}{\tan(\theta - \frac{3\pi}{2})} \cdot \frac{\cos(8\pi - \theta)}{\sin(-\theta - 4\pi)};$$

$$(2)\,\sin(\theta-\frac{\pi}{4})+\cos(\theta+\frac{\pi}{4}).$$

(000100) 已知
$$\tan \alpha = 3$$
, 求 $\frac{1}{\sin^2 \alpha + 2 \sin \alpha \cos \alpha}$ 的值.

(000101) 在 $\triangle ABC$ 中, 已知 a = 5, b = 4, A = 2B. 求 $\cos B$.

(000102) 已知 $\triangle ABC$ 的面积为 S, 求证:

(1)
$$S = \frac{a^2 \sin B \sin C}{2 \sin(B+C)};$$
(2)
$$S = \frac{a^2}{2(\cot B + \cot C)}$$

(2)
$$S = \frac{a^2}{2(\cot B + \cot C)}$$
.

(000103)(1) 已知 $\sin \alpha = \frac{\sqrt{5}}{5}$, $\sin \beta = \frac{\sqrt{10}}{10}$, 且 α 及 β 都是锐角. 求 $\alpha + \beta$ 的值;

(2) 在 $\triangle ABC$ 中, 已知 $\tan A$ 与 $\tan B$ 是方程 $x^2 - 6x + 7 = 0$ 的两个根, 求 $\tan C$.

(000104) 证明:
$$(\sin \alpha + \sin \beta)^2 + (\cos \alpha + \cos \beta)^2 = 4\cos^2 \frac{\alpha - \beta}{2}$$
.

(000105) 选择题:

(1) 若 $0 < x < \frac{\pi}{4}$, 且 $\lg(\sin x + \cos x) = \frac{1}{2}(3\lg 2 - \lg 5)$, 则 $\cos x - \sin x$ 的值为 (

A.
$$\frac{\sqrt{6}}{3}$$

B.
$$\frac{\sqrt{3}}{2}$$

C.
$$\frac{\sqrt{10}}{5}$$

D.
$$\frac{\sqrt{5}}{4}$$

A. $\frac{\sqrt{9}}{3}$ B. $\frac{\sqrt{3}}{2}$ (2) 下列命题中, 真命题为 ().

A. 若点 $P(a,2a)(a\neq 0)$ 为角 α 的终边上一点,则 $\sin \alpha = \frac{2\sqrt{5}}{5}$

B. 同时满足 $\sin\alpha=\frac{1}{2},\,\cos\alpha=\frac{\sqrt{3}}{2}$ 的角 α 有且只有一个 C. 如果角 α 满足 $-3\pi<\alpha<-\frac{5}{2}\pi,$ 那么角 α 是第二象限的角

D.
$$\tan x = -\sqrt{3}$$
 的解集为 $\{x | x = k\pi - \frac{\pi}{3}, k \in \mathbf{Z}\}$

(000106) 填空题:

(1) 在 $\triangle ABC$ 中, 若 $a^2 + b^2 + ab = c^2$, 则 $C = _____;$

(2) 若 $\sin \theta = a$, $\cos \theta = -2a$, 且 θ 为第四象限的角, 则实数 a = 1

(000107) 已知 $\sin \alpha = a \sin \beta$, $b \cos \alpha = a \cos \beta$, 且 α 及 β 均为锐角, 求证: $\cos \alpha = \sqrt{\frac{a^2 - 1}{h^2 - 1}}$.

(000108) 已知 $0 < \alpha < \frac{\pi}{2} < \beta < \pi$, 且 $\cos \beta = -\frac{1}{3}$, $\sin(\alpha + \beta) = \frac{7}{9}$, 求 $\sin \alpha$ 的值.

(000109) 已知 $\pi < \alpha < \frac{3\pi}{2}, \, \pi < \beta < \frac{3\pi}{2}, \,$ 且 $\sin \alpha = -\frac{\sqrt{5}}{5}, \, \cos \beta = -\frac{\sqrt{10}}{10}.$ 求 $\alpha - \beta$ 的值.

(000110) 已知 $(1 + \tan \alpha)(1 + \tan \beta) = 2$, 且 α 及 β 都是锐角. 求证: $\alpha + \beta = \frac{\pi}{4}$.

(000111) 已知 α 是第二象限的角,且 $\sin \alpha = \frac{\sqrt{15}}{4}$. 求 $\frac{\sin(\alpha + \frac{\pi}{4})}{1 + \sin 2\alpha + \cos 2\alpha}$ 的值.

(000112) 证明:

(1)
$$\frac{2(1+\sin 2\alpha)}{1+\sin 2\alpha + \cos 2\alpha} = 1+\tan \alpha;$$

(2)
$$2\sin \alpha + \sin 2\alpha = \frac{2\sin^3 \alpha}{1-\cos \alpha}.$$

(2)
$$2\sin\alpha + \sin 2\alpha = \frac{2\sin^3\alpha}{1-\cos\alpha}$$

(000113) 根据下列条件, 分别判断三角形 ABC 的形状:

$$(1)\sin C + \sin(B - A) = \sin 2A;$$

$$(2) \ \frac{\tan A}{\tan B} = \frac{a^2}{b^2}.$$

$$(000114) ~ 在 \triangle ABC ~ 中,求证: \\ \tan\frac{A}{2}\tan\frac{B}{2} + \tan\frac{B}{2}\tan\frac{C}{2} + \tan\frac{C}{2}\tan\frac{A}{2} = 1.$$

(000115)(1) 完成下表 (θ 为弧度数):

θ	1	0.5	0.1	0.01	0.001
$\sin \theta$					
$\frac{\sin \theta}{\theta}$					

- (2) 观察上表中的数据, 你能发现什么规律?
- (3) 已知 $0 < \theta < \frac{\pi}{2}$,利用图形面积公式证明 $\sin \theta < \theta < \tan \theta$,并应用该公式说明 (2) 中猜想的合理性.

(000116) 在 $\triangle ABC$ 中, 已知 $A=30^{\circ}, b=18$. 分别根据下列条件求 B:

- (1) ① a = 6, ② a = 9, ③ a = 13, ④ a = 18, ⑤ a = 22;
- (2) 根据上述计算结果, 讨论使 B 有一解、两解或无解时 a 的取值情况.

(000117)(1) 根据 $\cos 54^{\circ} = \sin 36^{\circ}$ 和三倍角公式, 求 $\sin 18^{\circ}$ 的值;

(2) 你还能使用其他方法求 sin 18° 的值吗? 若能, 请给出你的求法.

(000118) 如图, 要在 A 和 D 两地之间修建一条笔直的隧道, 现在从 B 地和 C 地测量得到: $\angle DBC = 24.2^{\circ}$, $\angle DCB = 35.4^{\circ}$, $\angle DBA = 31.6^{\circ}$, $\angle DCA = 17.5^{\circ}$. 试求 $\angle DAB$ 以确定隧道 AD 的方向 (结果精确到 0.1°).

10

(000119) 求下列函数的最小正周期:

$$(1) y = \sin\frac{x}{2};$$

(2)
$$y = 2\cos(3x - \frac{\pi}{4})$$
.

(000120) 判断下列函数的奇偶性, 并说明理由:

- (1) $y = \sin |2x|$;
- (2) $y = \tan 5x$;

$$(3) y = \frac{1}{\cos x};$$

$$(4) y = \sin(x + \frac{\pi}{6}).$$

(000121) 已知 $2\sin(2x) = \sqrt{3}, x \in (-\frac{\pi}{4}, \frac{\pi}{4}).$ 求 的值.

(000122) 求下列函数的单调区间:

 $(1) y = -\sin 2x;$

(2)
$$y = 2\sin(x + \frac{\pi}{3});$$

(3)
$$y = \cos(\frac{x}{2} - \frac{\pi}{4});$$

(4)
$$y = 2\tan(2x + \frac{\pi}{4})$$
.

(000123) 作出函数 $y = 2\sin(2x + \frac{\pi}{3})$ 的大致图像.

(000124) 已知函数 $y=A\sin(\omega x+\varphi)$ $(A>0,\ \omega>0)$ 的振幅是 3, 最小正周期是 $\frac{2\pi}{3}$, 初始相位是 $\frac{\pi}{6}$. 求这个函数的表达式.

(000125) 求下列函数的最大值和最小值, 并求出取得最大值和最小值时所有 x 的值:

(1) $y = \cos^2 x + \cos x - 2$;

(2)
$$y = \sin 2x, \ x \in \left[-\frac{2\pi}{3}, \frac{\pi}{3}\right];$$

(3)
$$y = \sin^2 2x - 2\sin 2x$$

(4)
$$y = \cos(x - \frac{\pi}{6}), \ x \in [-\frac{\pi}{6}, \frac{\pi}{4}].$$

(000126) 某实验室一天的温度 y(单位:°C) 随时间 t(单位:h) 的变化近似满足函数关系 $y=10-\sqrt{3}\cos\frac{\pi}{12}t-\sin\frac{\pi}{12}t,\ t\in[0,24).$

- (1) 求实验室一天中的最大温差;
- (2) 若要求实验室温度不高于 11°C, 则在哪段时间实验室需要降温?

$$(000127)$$
 求函数 $y = \sin(2x - \frac{\pi}{4}) - 2\sqrt{2}\sin^2 x$ 的最小正周期.

(000128) 在 $(0,2\pi)$ 内, 求使 $\sin x > \cos x$ 成立的 x 的取值范围.

(000129) 求下列函数的最大值, 并求出取得最大值时所有 x 的值:

(1)
$$y = 2\sin^2 x + \sin 2x - 1$$
;

(2)
$$y = 1 - \sin x - 2\cos^2 x$$
, $x \in \left[\frac{\pi}{3}, \frac{4\pi}{3}\right]$.

(000130) 若函数 $y=2\sin\omega x$ (其中常数 ω 是小于 1 的正数) 在区间 $[0,\frac{\pi}{3}]$ 上的最大值是 $\sqrt{2}$, 求 ω 的值.

(000131) 如图, 摩天轮上一点 P 距离地面的高度 y 关于时间 t 的函数表达式为 $y = A\sin(\omega t + \varphi) + b$, $\varphi \in [-\pi,\pi]$. 已知摩天轮的半径为 50m, 其中心点 O 距地面 60m, 摩天轮以每 30 分钟转一圈的方式做匀速转动, 而点 P 的起始位置在摩天轮的最低点处.

- (1) 根据条件具体写出 y(m) 关于 t(min) 的函数表达式;
- (2) 在摩天轮转动的一圈内, 点 P 有多长时间距离地面超过 85m?

(000132) 说明: 用上一章 6.3 节给出的记号 \arcsin 与 $\arccos(见必修第二册教材第 45 页), 可以定义函数 <math>y =$ $\arcsin x \ (x \in [0,1]) = \arccos x \ (x \in [0,1]).$

验证:

- (1) 函数 $y = \sin x \ (x \in [0, \frac{\pi}{2}])$ 与函数 $y = \arcsin x \ (x \in [0, 1])$ 互为反函数; (2) 函数 $y = \cos x \ (x \in [0, \frac{\pi}{2}])$ 与函数 $y = \arccos x \ (x \in [0, 1])$ 互为反函数.

(000133) 把上题的记号略作推广: 对实数 $x \in [-1,1]$, 若实数 $y \in [-\frac{\pi}{2},\frac{\pi}{2}]$ 使得 $\sin y = x$, 则记 $y = \arcsin x$; 类似地, 对实数 $x \in [-1,1]$, 若实数 $y \in [0,\pi]$ 使得 $\cos y = x$, 则记 $y = \arccos x$. 说明: 经过推广的记号 \arcsin 与 arccos , 定义了函数 $y = \arcsin x \ (x \in [-1, 1])$ 与 $y = \arccos x \ (x \in [-1, 1])$.

验证: (1) 函数 $y=\sin x \ (x\in[-\frac{\pi}{2},\frac{\pi}{2}])$ 与函数 $y=\arcsin x \ (x\in[-1,1])$ 互为反函数;

(2) 函数 $y = \cos x \ (x \in [0, \pi])$ 与函数 $y = \arccos x \ (x \in [-1, 1])$ 互为反函数.

(000134) 对 $y = \tan x$ 与 $y = \arctan x$ 做类似的工作.

(000135) 定义在区间 $(0,\frac{\pi}{2})$ 上的函数 $y=6\cos x$ 的图像与 $y=5\tan x$ 的图像的交点为 P, 过点 P 作垂直于 x 轴的垂线 PP_1 , 其垂足为 P_1 . 设直线 PP_1 与 $y=\sin x$ 的图像交于点 P_2 , 求线段 P_1P_2 的长.

(000136) 已知定义在 R 上的偶函数 y = f(x) 的最小正周期为 2, 当 $0 \le x \le 1$ 时, f(x) = x.

- (1) 求当 $5 \le x \le 6$ 时函数 y = f(x) 的表达式;
- (2) 若函数 y = kx, $x \in \mathbf{R}$ 与函数 y = f(x) 的图像恰有 7 个不同的交点, 求 k 的值.

(000137) 如图, 有一块边长为 3m 的正方形铁皮 ABCD, 其中阴影部分 ATN 是一个半径为 2m 的扇形. 设这 个扇形已经腐蚀不能使用, 但其余部分均完好. 工人师傅想在未被腐蚀的部分截下一块其边落在 BC 与 CD 上 的矩形铁皮 PQCR, 使点 P 在弧 TN 上. 设 $\angle TAP = \theta$, 矩形 PQCR 的面积为 Sm^2 .

- (1) 求 S 关于 θ 的函数表达式;
- (2) 求 S 的最大值及 S 取得最大值时 θ 的值.

(000138) 如图, 在边长为 1 的小正方形组成的网格上, 求:

- $(1) |\overrightarrow{AB}|;$
- (2) $|\overrightarrow{CD}|$;
- $(3) |\overrightarrow{EF}|.$

(000139) 已知 \overrightarrow{a} 、 \overrightarrow{b} 均为非零向量, 写出 $|\overrightarrow{a} + \overrightarrow{b}| = |\overrightarrow{a}| + |\overrightarrow{b}|$ 成立的充要条件.

(000140) 已知 \overrightarrow{a} 、 \overrightarrow{b} 为非零向量, 且 \overrightarrow{a} 、 \overrightarrow{b} 、 $5\overrightarrow{a}$ $-4\overrightarrow{b}$ 在同一起点上. 求证: 它们的终点在同一条直线上.

(000141) 在矩形 ABCD 中, 边 AB、AD 的长分别为 2、1, 若 M、N 分别是边 BC、CD 上的点, 且满足 $|\overrightarrow{BM}| = |\overrightarrow{CN}|$, 则 $\overrightarrow{AM} \cdot \overrightarrow{AN}$ 的取值范围是______.

(000142) 已知两个向量 $\overrightarrow{e_1}$ 、 $\overrightarrow{e_2}$ 满足 $|\overrightarrow{e_1}|=2$, $|\overrightarrow{e_2}|=1$, $\langle \overrightarrow{e_1},\overrightarrow{e_2}\rangle=60^\circ$, 且向量 $2\lambda\overrightarrow{e_1}+7\overrightarrow{e_2}$ 与向量 $\overrightarrow{e_1}+\lambda\overrightarrow{e_2}$ 的夹角为钝角. 求实数 λ 的取值范围.

(000143) 已知向量 $\overrightarrow{a} = (1,0), \overrightarrow{b} = (2,1).$

- $(1) \ \vec{x} \ |\vec{a} + 3\vec{b}|;$
- (2) 当 k 为何实数时, $k\overrightarrow{a} \overrightarrow{b}$ 与 $\overrightarrow{a} + 3\overrightarrow{b}$ 平行? 平行时它们是同向还是反向?

(000144) 已知在平面直角坐标系中, O 为原点, 点 A(4,-3), B(-5,12).

- (1) 求向量 \overrightarrow{AB} 的坐标及 $|\overrightarrow{AB}|$;
- (2) 已知向量 $\overrightarrow{OC} = 2\overrightarrow{OA} + \overrightarrow{OB}$, $\overrightarrow{OD} = \overrightarrow{OA} 3\overrightarrow{OB}$, 求 \overrightarrow{OC} 及 \overrightarrow{OD} 的坐标;

 $(000145) \ \textbf{已知向量} \ \overrightarrow{a} = (3,-2), \ \overrightarrow{b} = (-2,1), \ \overrightarrow{c} = (7,-4), \ \vec{x} \ \lambda, \mu, \ \textbf{使得} \ \overrightarrow{c} = \lambda \overrightarrow{a} + \mu \overrightarrow{b}.$

(000146) 已知点 M(3,-2)、N(-5,-1), 且 $\overrightarrow{MP} = \frac{1}{3}\overrightarrow{MN}$. 求点 P 的坐标.

(000147) 在等腰三角形 ABC 中, 已知 D 为底边 BC 的中点. 求证: $AD \perp BC$.

(000148) 如图, 在四边形 ABCD 中, G 为对角线 AC 与 BD 中点连线 MN 的中点, P 为平面上任意给定的一点. 求证: $4\overrightarrow{PG}=\overrightarrow{PA}+\overrightarrow{PB}+\overrightarrow{PC}+\overrightarrow{PD}$.

(000149) 在四边形 ABCD 中,向量 $\overrightarrow{AB} = \overrightarrow{i} + 2\overrightarrow{j}$, $\overrightarrow{BC} = -4\overrightarrow{i} - \overrightarrow{j}$, $\overrightarrow{CD} = -5\overrightarrow{i} - 3\overrightarrow{j}$.求证: ABCD 为梯形.

(000150) 已知 \overrightarrow{a} 、 \overrightarrow{b} 、 \overrightarrow{c} 均为非零向量, 其中的任意两个向量都不平行, 且 \overrightarrow{a} + \overrightarrow{b} 与 \overrightarrow{c} 是平行向量, \overrightarrow{a} + \overrightarrow{c} 与 \overrightarrow{b} 是平行向量. 求证: \overrightarrow{b} + \overrightarrow{c} 与 \overrightarrow{a} 是平行向量.

(000151) 如图, 点 A、M、B 在同一条直线上, 点 O 不在该直线上, 且 $\overrightarrow{AM} = \frac{1}{3}\overrightarrow{AB}$. 设 $\overrightarrow{OA} = \overrightarrow{a}$, $\overrightarrow{OB} = \overrightarrow{b}$, $\overrightarrow{OM} = \overrightarrow{c}$, 试用向量 \overrightarrow{a} 、 \overrightarrow{b} 表示 \overrightarrow{c} .

 $(000152) \ \textbf{设平面上有两个向量} \ \overrightarrow{a} = (\cos\alpha, \sin\alpha)(0^\circ \le \alpha < 360^\circ), \ \overrightarrow{b} = (-\frac{1}{2}, \frac{\sqrt{3}}{2}).$

- (1) 求证: 向量 $\overrightarrow{a} + \overrightarrow{b}$ 与 $\overrightarrow{a} \overrightarrow{b}$ 垂直;
- (2) 当向量 $\sqrt{3}\overrightarrow{a} + \overrightarrow{b}$ 与 $\overrightarrow{a} \sqrt{3}\overrightarrow{b}$ 的模相等时, 求 α 的大小.

(000153) 如图, 在矩形 ABCD 中, $AB=\sqrt{2}$, BC=2, E 为 BC 的中点, 点 F 在边 CD 上且 $\overrightarrow{AB} \cdot \overrightarrow{AF} = \sqrt{2}$. 求 $\overrightarrow{AE} \cdot \overrightarrow{BF}$ 的值.

 $(000154) \ \textbf{已知等边三角形} \ ABC \ \textbf{的边长为} \ 1, \overrightarrow{BC} = \overrightarrow{a}, \overrightarrow{CA} = \overrightarrow{b}, \overrightarrow{AB} = \overrightarrow{c}. \ \vec{x} \ \overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{b} \cdot \overrightarrow{c} + \overrightarrow{c} \cdot \overrightarrow{a}.$

 $(000155) \ \textbf{已知向量} \ \overrightarrow{OA} = (k,12), \ \overrightarrow{OB} = (4,5), \ \overrightarrow{OC} = (-k,10), \ \textbf{且} \ A \textbf{、} B \textbf{、} C \ \textbf{三点共线}. \ 求实数 \ k \ \textbf{的值}.$

(000156) 已知向量 $\overrightarrow{OA} = (1,7)$, $\overrightarrow{OB} = (5,1)$, $\overrightarrow{OP} = (2,1)$, K 为直线 OP 上的一个动点, 当 $\overrightarrow{KA} \cdot \overrightarrow{KB}$ 取最小值时, 求向量 \overrightarrow{OK} 的坐标.

(000157) 如图, 在正方形 ABCD 中, P 是对角线 AC 上一点, PE 垂直 AB 于点 E, PF 垂直 BC 于点 F. 求证: $PD \perp EF$.

(000158) 证明: 三角形的三条高相交于一点.

(000159) 如图,甲、乙分处河的两岸,欲拉船 M 逆流而上,需在正前方有 $3000\mathrm{N}$ 的力.已知甲所用的力 $\overrightarrow{f_1}$ 的大小为 $2000\mathrm{N}$,且与 M 的前进方向的夹角为 $\frac{\pi}{6}$,求乙所用的力 $\overrightarrow{f_2}$.

(000160) 在 $\triangle ABC$ 中, AB=AC=5, BC=6, M 是边 AC 上靠近 A 的一个三等分点. 问: 在线段 BM 上是否存在点 P, 使得 $PC\perp BM$?

(000161) 在 $\triangle ABC$ 中, 已知点 O、G、H 分别是三角形的外心、重心和垂心. 求证: O、G、H 三点共线 (此直线称为欧拉线).

(000162) 选择题:

(1) 虚数的平方一定是().

A. 正实数

- B. 负实数
- C. 虚数
- D. 虚数或负实数

(2) 如果复平面上的向量 \overrightarrow{AB} 所对应的复数是 -3 + 2i, 那么向量 \overrightarrow{BA} 所对应的复数是 ().

A. 3 - 2i

B. 3 + 2i

C. -3 + 2i

D. -3 - 2i

(000163) 填空题:

- (1) 设 z = 11 60i, 则 $\text{Re}z = _____; \text{Im}z = _____; |z| = _____; \overline{z} = ____.$
- (2) 下列三个命题中, 真命题是
- ① 在复平面上, 表示实数的点都在实轴上, 表示虚数的点都在虚轴上;
- ② 任何一个表示虚数的点一定在某一个象限内;
- ③ 复数的模表示该复数在复平面上所对应的点到原点的距离.

(000164) 已知复数 $z = (a^2 - 2a - 3) + (a^2 - 4a + 3)i$, 其中 a 是实数.

- (1) 若 $z \in \mathbf{R}$, 求 a 的值;
- (2) 若 z 在复平面上所对应的点位于第一象限, 求 a 的取值范围.

(000165) 已知复数 $z_1 = (a^2 - a - 6) + (1 - 2a)i$, $z_2 = (a - 3) + (a^2 - 2a + 2)i$, 其中 $a \in \mathbb{R}$. 若 $\overline{z_1} = z_2$, 求 a的值.

(000166) 计算:

(1) (4+i)(3+2i);

(2)
$$(\sqrt{2} + \sqrt{3}i)(\sqrt{2} - \sqrt{3}i)(-\sqrt{3} + \sqrt{2}i)(-\sqrt{3} - \sqrt{2}i);$$

(3)
$$\frac{-3+29i}{1+2i}$$
;

$$(3) \ \frac{-3+29i}{1+2i}; \\ (4) \ \frac{(1+i)^4}{1+2i} + \frac{(1-i)^4}{1-2i};$$

(5)
$$[(\sqrt{3}+1)+(\sqrt{3}-1)i]^2$$

(000167) 已知复数
$$z = \frac{(-3-\mathrm{i})^2(2-\mathrm{i})}{(1+2\mathrm{i})^3}, \, \bar{\mathbf{x}} \; |z|.$$

(000168) 在复数范围内解下列方程:

(1)
$$x^2 - 4x + 8 = 0$$
;

(2)
$$3x^2 + 2x - 3 = 0$$
.

(000169) 选择题:

(1) $\ \mathcal{U} \ z_1, \ z_2 \in \mathbb{C}, \ \mathcal{M} \ "|z_1| = |z_2|" \ \mathcal{L} \ "z_1 = z_2" \ \mathcal{M} \ ($

A. 充分非必要条件

B. 必要非充分条件

C. 充要条件

D. 既非充分也非必要条件

(2) 设复数 $z = a + bi(a, b \in \mathbf{R})$, 则 z^2 是纯虚数的充要条件是 (

A.
$$a^2 = b^2$$

B.
$$a^2 + b^2 = 0$$

C.
$$|a| = |b| \neq 0$$

D.
$$ab \neq 0$$

(000170) 若复数 z 满足 $z + \overline{z} = 2$, $(z - \overline{z})i = 2$, 求 |z|.

(000171) 若复数 z_1 和复数 z_2 满足 $z_1z_2 = 3 - 4i$, $|z_1| = 2$, 求 $|z_2|$.

(000172) 若 x_1 和 x_2 是方程 $x^2 - 5x + 8 = 0$ 的两个根, 求 $|x_1| + |x_2|$ 的值.

(000173) 若复数 z_1 和复数 z_2 满足 $|z_1| = 3$, $|z_2| = 4$, $|z_1 + z_2| = 5$, 求 $|z_1 - z_2|$.

(000174) 已知复数 z_1 和复数 z_2 满足 $z_1 + z_2 = 3 - 5i$, $\overline{z_1} - \overline{z_2} = -2 + 3i$. 求 $z_1^2 - z_2^2$.

(000175) 如图, 在长方体 $ABCD - A_1B_1C_1D_1$ 中, E 为 A_1B_1 的中点, $AB = BB_1 = 2$, $AC = 2\sqrt{5}$. 求异面直 线 BE 与 AC 所成角的大小.

(000176) 如图, 设 P 为矩形 ABCD 所在平面外的一点, 矩形对角线的交点为 O, M 为 PB 的中点. 判断下列 结论是否正确, 并说明理由:

- (1) $OM \parallel PD$;
- (2) $OM \parallel$ 平面PCD;
- (3) *OM* || 平面*PDA*;
- (4) OM || 平面PBA;
- (5) *OM* || 平面*PBC*.

(000177) 如图, 正方体的棱长是 a, 点 E、F 分别是两条棱的中点.

- (1) 求证: 四边形 BDEF(图中阴影部分) 是一个梯形;
- (2) 求四边形 BDEF 的面积.

(000178) 判断下列命题的真假, 并说明理由:

- (1) 若直线 l 与平面 M 斜交, 则 M 内不存在与 l 垂直的直线;
- (2) 若直线 $l \perp$ 平面M, 则 M 内不存在与 l 不垂直的直线;
- (3) 若直线 l 与平面 M 斜交, 则 M 内不存在与 l 平行的直线;
- (4) 若直线 $l \parallel$ 平面M, 则 M 内不存在与 l 不平行的直线.

(000179) 如果不在平面上的一条直线上有两点到这个平面的距离相等, 那么这条直线和这个平面有什么位置关系? 画示意图表示.

(000180) 如图, 直线 AA'、BB'、CC' 相交于点 O, 且 AO=A'O, BO=B'O, CO=C'O. 求证: 平面ABC | 平面A'B'C'.

(000181) 已知直线 $l \perp$ 平面 α , 直线 $m \subset$ 平面 β , 判断下列命题的真假, 并说明理由:

- (1) 若 $\alpha \parallel \beta$, 则 $l \perp m$;
- (2) 若 $\alpha \perp \beta$, 则 $l \parallel m$;
- (3) 若 $l \parallel m$, 则 $\alpha \perp \beta$;
- (4) 若 $l \perp m$, 则 $\alpha \parallel \beta$.

(000182) 如图,已知线段 AB 垂直于三角形 BCD 所在的平面,且 AB=BC=CD=1, $\angle BCD=90^\circ$. $BE\perp AD$,E 为垂足,F 为 AC 的中点. 求 EF 的长.

(000183) 设正六边形 ABCDEF 的边长为 a, 线段 PA 垂直于正六边形所在的平面, 且 PA=2a. 分别求点 P 到 CD、DE 与 BC 所在直线的距离.

(000184) 已知直线 a、b 和平面 α 、 β , 判断下列命题的真假, 并说明理由:

- (1) 若 $a \parallel \alpha, b \perp a, 则 b \perp \alpha$;
- (2) **若** $a \parallel \alpha$, $\alpha \perp \beta$, 则 $a \perp \beta$;
- (3) 若 $a \parallel b, b \subset \alpha$, 则 $a \parallel \alpha$.

(000185) 证明: 如果平面 α 和不在这个平面上的直线 α 都垂直于平面 β , 那么直线 α 必平行于平面 α .

(000186) 三个平面两两相交, 得到三条交线. 求证: 这三条交线交于一点或两两平行.

(000187) 如图, 已知 $\triangle ABC$ 是正三角形, EA、CD 都垂直于平面 ABC, 且 EA = AB = 2a, DC = a, F 是 BE 的中点.

(1) 求证: $FD \parallel$ 平面ABC;

(2) 求证: $AF \perp$ 平面EDB.

(000188) 证明: 如果一个平面的一条平行线垂直于另一个平面, 那么这两个平面互相垂直.

(000189) 如图, 以等腰直角三角形 ABC 斜边 BC 上的高 AD 为折痕, 使 $\triangle ABD$ 和 $\triangle ACD$ 折成互相垂直的两个面. 求证: $BD \perp CD$, 且 $\angle BAC = 60^\circ$.

(000190) 证明: 如果共点的三条直线两两垂直, 那么它们中每两条直线所确定的平面也两两垂直.

(000191) 如图, P 是平面 α 外一点, 直线 PA 与平面 α 斜交于点 A, 从点 P 作平面 α 上的一条直线 OA 的垂线 PO, 垂足为 O. 又设 a 是平面 α 上的一条直线, 且 $a \perp OA$, $a \perp PA$.

求证: $PO \perp$ 平面 α , 从而 OA 是 PA 在平面 α 上的投影.

(000192) 如图, 直角三角形 ABC 在平面 α 上, 且 $\angle BAC = 90^\circ$. 以 A 为垂足作 $DA \perp \alpha$, 在 DB 上取一点 E, 使 $AE \perp DB$. 求证: $CE \perp DB$.

(000193) 设平面 α 与平面 β 平行, $A \in \alpha$, $B \in \beta$, C 是 AB 的中点. 当 A、B 分别在 α 、 β 上运动时, 所有的 动点 C 是否保持在同一个平面上? 证明你的结论.

(000194) 在长方体 $ABCD - A_1B_1C_1D_1$ 中, 如果对角线 AC_1 与过点 A 的相邻三个面所成的角分别为 α 、 β 、 γ , 那么 $\cos^2\alpha + \cos^2\beta + \cos^2\gamma =$ ______.

(000195) 如图, 该几何体是由哪个平面图形旋转得到的? 画出其余平面图形旋转得到的几何体.

(000196) 判断下列命题是否正确, 并说明理由:

- (1) 以直角三角形的一直角边为轴旋转所形成的旋转体是圆锥;
- (2) 以直角梯形的一腰为轴旋转所形成的旋转体是圆台;
- (3) 圆柱、圆锥、圆台都有两个底面;
- (4) 圆锥的侧面展开图为扇形, 这个扇形所在圆的半径等于圆锥底面圆的半径.

(000197) 已知一个圆锥的侧面展开图恰是一个半圆. 用通过圆锥的轴的平面截此圆锥, 求截面三角形的顶角.

(000198) 过圆锥高的三等分点分别作平行于底面的截面, 求它们把圆锥侧面分成的三部分的面积之比.

(000199) 在棱长为 1 的正方体上, 用过同一顶点的三条棱中点的平面分别截该正方体, 截去 8 个三棱锥. 求剩下的几何体的体积.

(000200) 已知长方体一个顶点上的三条棱长分别是 3、4、5, 且它的 8 个顶点都在同一球面上. 求这个球的表面积.

(000201) 在等边圆柱 (底面直径等于高的圆柱)、球、正方体的体积相等的情况下, 讨论它们的表面积的大小关系.

(000202) 如图, 在三棱柱的侧棱 A_1A 和 B_1B 上分别取 P、Q 两点, 使 PQ 平分侧面 ABB_1A_1 的面积. 求平面 PQC 把棱柱所分成的两部分的体积之比.

(000203) 已知用通过圆锥的轴的平面去截一个圆锥,得到的截面是面积为 $9\sqrt{3} \mathrm{cm}^2$ 的正三角形. 求此圆锥内接球的半径.

(000204) 若一个长方体长、宽、高之比为 2:1:3, 表面积为 22, 求它的体积.

(000205) 如果两个球的体积之比为 8:27, 求这两个球的表面积之比.

(000206) 设点 O_1 为圆锥的高靠近顶点的三等分点, 求过 O_1 与底面平行的截面面积与底面面积之比.

(000207) 若棱锥的高为 16, 底面积为 256, 平行于底面的截面面积为 50, 求该截面与棱锥底面之间的距离.

(000208) 设圆锥的母线长为 1, 高为 $\frac{1}{2}$, 过圆锥的任意给定的两条母线作一个截面. 求截面面积的最大值.

(000209) 将若干毫升水倒入底面半径为 2cm 的圆柱形器皿中, 量得水面高度为 6cm. 若将这些水倒入底面直径等于母线的倒圆锥形器皿中, 且恰好装满, 求圆锥形器皿的高.

(000210) 已知长方体 $ABCD-A_1B_1C_1D_1$ 的三条棱长分别为 $3\mathrm{cm}$ 、 $2\mathrm{cm}$ 、 $1\mathrm{cm}$,求表面有一只蜘蛛从 A 爬行到 C_1 的最短距离.

(000211) 如图, 已知点 P 在圆柱 O_1O 的底面圆 O 的圆周上, AB 为圆 O 的直径, 圆柱的表面积为 20π , OA=2, $\angle AOP=120^\circ$.

- (1) 求三棱锥 $A_1 ABP$ 的体积;
- (2) 求异面直线 A_1B 与 AP 所成角的大小.

(000212) 如图, 在圆柱中, 底面直径 AB 等于母线 AD, 点 E 在底面的圆周上, 且 $AF \perp DE$, F 是垂足.

- (1) 求证: $AF \perp DB$;
- (2) 若圆柱与三棱锥 D-ABE 的体积的比等于 3π , 求直线 DE 与平面 ABD 所成角的大小.

(000213) 如图, 半球内有一内接正方体 (即正方体的一个面在半球的底面圆上, 其余顶点在半球面上). 若正方体的棱长为 $\sqrt{6}$, 求半球的表面积和体积.

(000214) 已知圆锥的底面半径为 r, 高为 h, 正方体 $ABCD - A_1B_1C_1D_1$ 内接于该圆锥. 求这个正方体的棱长. (000215) 如图, 一个圆锥形的空杯子上放着一个半球形的冰激凌, 如果冰激凌融化了, 会溢出来吗?

(000216) 如图, 用一块钢锭浇铸一个厚度均匀, 且表面积为 $2\mathrm{m}^2$ 的正四棱锥形有盖容器. 设容器的高为 $h\mathrm{m}$, 盖子的边长为 $a\mathrm{m}$.

- (1) 求 a 关于 h 的函数表达式;
- (2) 当 h 为何值时, 容器的容积 V 最大? 并求出 V 的最大值.

(000217) 将一块边长为 10cm 的正方形铁片裁下如图所示的阴影部分, 用余下的四个全等的等腰三角形加工成一个无盖的正四棱锥形容器罩.

- (1) 试把容器罩的表面积 S 表示为 x 的函数;
- (2) 试把容器罩的体积 V 表示为 x 的函数.

(000218) 从字母 a、b、c、d、e 中任取两个, 求取到字母 a 的概率.

(000219) 现有 5 根细木棍, 长度 (单位: cm) 分别为 1、3、5、7、9, 从中任取 3 根. 求能搭成一个三角形的概率.

(000220) 将 2 本不同的英语书和 1 本语文书在书架上随机排成一行, 求 2 本英语书相邻的概率.

(000221) 从编号分别为 1、2、3、4、5、6 的 6 个大小与质地相同的小球中随机取出 3 个, 求恰有 2 个小球编号相邻的概率.

(000222) 袋中装有大小与质地相同的 5 个球, 其中红色球 3 个, 标号分别为 1、2、3; 蓝色球 2 个, 标号分别为 1、2、从袋中任取 2 个球, 求这 2 个球颜色不同且标号之和不小于 4 的概率.

(000223) 袋中装有大小与质地相同的 5 个球, 其中白球 3 个, 黑球 2 个, 从中一次摸出 2 个球.

- (1) 写出该随机试验的一个等可能的样本空间;
- (2) 求摸出来的 2 个球都是白球的概率;
- (3) 求摸出来的 2 个球颜色不同的概率.

(000224) 对某工厂生产的产品质量进行抽查, 数据如下表所示.

抽查件数	50	100	200	300	500
合格件数	47	95	192	285	478

根据上表所提供的数据,问:合格品的概率约为多少?(结果保留两位小数)

(000225) 射击队某选手命中环数的概率如下表所示.

命中环数	10	9	8	7	
概率	0.32	0.28	0.18	0.12	

该选手射击一次, 求:

- (1) 命中 9 环或 10 环的概率;
- (2) 至少命中 8 环的概率;
- (3) 命中不足 8 环的概率.

(000226) 某学生做两道选择题,已知每道题均有 4 个选项,其中有且只有一个正确答案.该学生随意填写两个答案,求两个答案都选错的概率.

(000227) 盒子中有标号为 1、2、3 的 3 个大小与质地相同的球,随机地取 1 个球,放回后再取 1 个球,把这 2 个球对应的号码按照取的先后顺序组成一个两位数. 求个位数与十位数不相同的概率.

(000228) 一个盒子中装有 4 张卡片, 卡片上分别写有数字 1、2、3、4. 现从盒子中随机抽取卡片.

- (1) 若一次抽取 3 张卡片, 求 3 张卡片上数字之和大于 7 的概率;
- (2) 若第一次抽取 1 张卡片, 放回后再抽取 1 张卡片, 求两次抽取的卡片上数字之和大于 7 的概率.

(000229) 盒子中有散落的黑白棋子若干粒,已知从中取出 2 粒都是黑子的概率是 $\frac{1}{7}$,从中取出 2 粒都是白子的概率是 $\frac{1}{6}$. 问:从中任意取出 2 粒恰好是同一颜色的概率是多少?

(000230) 社会调查人员总希望从对人群的随机抽样调查中得到对他们所提问题的诚实回答, 但是被采访者常常不愿意如实做出应答. 1965 年, 华纳 (Stanley L. Warner) 发明了一种应用概率知识来消除这种不愿意如实回答的情绪的方法. 华纳的随机化应答方法要求人们随机地回答所提两个问题中的一个, 而不必告诉采访者究竟回答的是哪个问题, 在这两个问题中有一个是敏感的或者令人为难的, 另一个则是无关紧要的. 这样, 应答者将乐意如实地回答问题, 因为只有他自己知道回答的是哪个问题. 例如, 在调查运动员是否服用兴奋剂的时候, 设计一个从袋中摸球的试验: 袋中放有 1 黑 1 白两个大小与质地相同的小球, 运动员从中随意摸出 1 个小球. 无关紧要的问题是: 你摸出的小球是白色的吗? 而敏感的问题是: 你服用过兴奋剂吗? 然后要求被调查的运动员抛掷一枚硬币, 如果出现正面, 就回答第一个问题, 否则回答第二个问题. 假设用这个方法调查了 200 名运动员, 得到 56 个"是"的回答,请你估计这群运动员中大约有百分之几的人服用过兴奋剂.

(000231) 在一次知识竞赛中,假设 A、B、C、D 四人独立答题,且答对的概率分别为 $P(A)=\frac{1}{3},\ P(B)=\frac{1}{4},$ $P(C)=\frac{1}{5},\ P(D)=\frac{2}{3},\$ 如果将 A、B、C 组成一组与 D 比赛,且 A、B、C 三人中有一人答对即算该组答对,那么哪一方答对的概率大?

(000232) 某高校研究人员希望调查该校大学生平均每天的自习时间. 他调查了 100 名大学生, 发现他们每天的平均自习时间是 3.5h. 这里的总体是 ().

- A. 该校的所有大学生
- B. 该校所有大学生的平均每天自习时间
- C. 所调查的 100 名大学生
- D. 所调查的 100 名大学生的平均每天自习时间

(000233) 某家大型超市的日客流量 (单位: 千人次) 分别为: 3.4、3.6、5.6、1.8、3.7、4.0、2.5、2.8、4.4、3.6. 下列图形中不利于描述这些数据的是 ().

A. 散点图

B. 条形图

C. 茎叶图

D. 扇形图

(000234) 某汽车销售商销售某品牌的 A、B、C 三类轿车, 每类轿车均有舒适型和经济型两种型号, 其某月的销量 (单位: 辆) 如下表所示.

	A	В	С
舒适型/辆	35	28	15
经济型/辆	50	72	40

试设计一个抽样方案, 从该月购买轿车的客户中抽取 20 位, 调查他们的满意度.

(000235) 某校 30 名高一女生的扔手球记录如下 (单位: m):

 16.3
 13.2
 17.7
 14.3
 16.4
 19.8
 13.5
 14.5
 11.7
 14.1

 14.8
 17.2
 13.8
 15.4
 16.3
 15.7
 18.5
 16.8
 17.9
 15.9

 17.6
 15.4
 16.8
 21.4
 16.5
 18.1
 16.0
 20.3
 16.6
 19.5

- (1) 选择适当的组距, 制作一张频率分布表;
- (2) 在(1) 的基础上, 绘制一幅频率分布直方图.

(000236) 某公司对应聘人员进行能力测试, 测试成绩总分为 150 分, 下面是 50 位应聘人员的测试成绩:

试用这些数据绘制一幅茎叶图.

(000237) 某超市从一家食品有限公司购进一批茶叶,每罐茶叶的标准质量是 125g,为了解该批茶叶的质量情况,从中随机抽取 20 罐,称得各罐质量 (单位: g) 如下:

 124.9
 124.7
 126.2
 124.9
 124.2
 124.9
 123.7

 121.4
 126.4
 127.7
 121.9
 124.4
 125.2
 123.7

 122.7
 124.2
 126.2
 125.2
 122.2
 125.4

回答下列问题:

(1) 20 罐茶叶的平均质量 \bar{x} 是多少, 标准差 s 是多少? (2) 有多少罐茶叶的质量位于 $\bar{x}-s$ 与 $\bar{x}+s$ 之间, 所占的百分比是多少?

(000238) 数据 x_1 、 x_2 、...、 x_n 的方差为 s_x^2 , 数据 y_1 、 y_2 、...、 y_n 的方差为 s_y^2 , 若 $y_1 = ax_1 + b$, $y_2 = ax_2 + b$, ..., $y_n = ax_n + b$ 成立, a、b 为常数, 求证: $s_y^2 = a^2 s_x^2$.

(000239) 下表是上海市 2007 年至 2016 年的月平均气温 (单位: °C).

年份	1月	2 月	3月	4 月	5月	6月	7月	8月	9月	10 月	11月	12 月
2007	5.9	9.8	12.1	15.9	22.9	25	30.4	29.7	25.4	20.6	14.2	9.8
2008	4.5	4.2	11.6	16.1	21.8	24.2	30.4	28.6	26	21	13.3	7.9
2009	4.3	9.3	10.8	16.7	22.5	26.3	29	28.1	25.4	21.4	12.4	6.9
2010	5.7	7.7	9.6	13.3	20.9	24.1	28.8	30.9	26.2	19.3	14.2	8.1
2011	1.9	6.5	9.5	16.2	21.9	24.4	30.2	28.3	24.7	19.3	16.7	6.9
2012	5.1	4.8	9.8	17.6	21.6	24.7	29.9	29	23.9	20.1	12.6	6.6
2013	4.6	6.8	11	15.3	21.3	24.1	32	31	25	20	13.4	6.1
2014	6.6	6.1	11.5	15.7	21.7	23.3	27.4	26.3	24.2	20.2	14.8	5.7
2015	6	6.8	10.6	15.9	20.5	24.2	26.7	27.8	24.2	19.6	14	7.8
2016	4.4	6.9	11	16.7	20.6	24.2	29.9	29.5	24.9	20.8	13.6	9.1

数据来源:上海统计年鉴.

回答下列问题:

- (1) 10 年中每年最冷的月份相同吗?
- (2) 10 年中哪个月份的气温波动最大?
- (3) 10 年中哪一年的气温波动最大?
- (4) 绘制 10 年中 7 月份与 8 月份气温的折线图, 比较气温的高低.

(000240) 某高校数学专业共有850名学生,从中选取20名学生参加学生代表大会. 试写出具体抽样方案.

(000241) 某校高一年级学生进行了 4 次测验, 成绩 (单位: 分) 如下表所示. 根据 4 次测验的结果, 我们如何比较这 10 名学生的成绩? 下周有一场数学竞赛活动, 如果需要 1 名学生参赛, 那么推荐谁去最好? 如果需要 4 名学生参赛, 那么又该推荐谁去?

学生编号	第1次	第2次	第3次	第4次
1	90	82	97	100
2	103	86	101	92
3	77	83	106	87
4	94	93	99	99
5	89	97	93	90
6	101	79	87	95
7	91	92	91	93
8	82	94	100	106
9	88	78	95	78
10	83	88	104	89

(000242) 某客服部门计划根据员工每个月接通的电话数给予奖金奖励, 并且要保证 50% 的员工能拿到基本奖励, 拿到基本奖励的员工中至多 10% 的人能够拿到额外奖励. 该部门随机抽取了 30 名员工, 调查了他们上半个月与客户的通话数量, 数据如下:

请利用百分位数来为该部门设计奖励方案.

(000243) 求直线 $\sqrt{2}x - 4y + 5 = 0$ 的倾斜角 (用 \arctan 表示).

(000244) 若直线 ax + 2y + 6 = 0 和直线 $x + a(a+1)y + (a^2 - 1) = 0$ 互相垂直, 求实数 a 的值.

(000245) 直线 x-y+1=0 上一点 P 的横坐标是 3, 若该直线绕点 P 逆时针旋转 90° 得到直线 l, 求直线 l 的方程.

(000246) 设直线 x - ay - 4 = 0 与直线 y = -2x + 4 的夹角为 $\arccos \frac{2\sqrt{5}}{5}$, 求实数 a 的值.

(000247) 已知 $\alpha \in [0, \frac{\pi}{2})$, 求直线 $x \cos \alpha + \sqrt{3}y + 2 = 0$ 的倾斜角的取值范围.

(000248) 求过点 (3,-2) 且在 x 轴、y 轴上截距相等的直线的方程.

(000249) 已知点 P(1,1) 到直线 x + ay - 2 = 0 的距离为 1, 求实数 a 的值.

(000250) 已知平行四边形 ABCD 中,边 AB 所在直线的方程为 x+y-1=0,边 AD 所在直线的方程为 3x-y+4=0.

- (1) 求点 A 的坐标;
- (2) 若点 C 的坐标为 (3,3), 分别求边 BC 与 DC 所在直线的方程.

- (000251) 已知直线 $l_1: x + my + 6 = 0, l_2: (m-2)x + 3y + 2m = 0,$ 求实数 m 的取值范围, 使得:
- (1) l_1 与 l_2 相交;
- (2) $l_1 \perp l_2$;
- (3) $l_1 \parallel l_2$;
- (4) l_1 与 l_2 重合.
- (000252) 已知直线 l 与两坐标轴围成一个等腰直角三角形,且此三角形的面积为 $\frac{49}{2}$. 求直线 l 的方程.
- (000253) 在 $\triangle ABC$ 中, 边 AB、AC 上的高所在直线的方程分别为 2x 3y + 1 = 0 与 x + y = 0, 点 A 的坐标为 (1,2). 求边 BC 所在直线的方程.
- (000254) 已知直线 l 垂直于直线 3x + 4y 9 = 0, 点 A(2,3) 到直线 l 的距离为 1. 求直线 l 的方程.
- (000255) 已知三条直线 $l_1: ax + by + 4 = 0$, $l_2: (a-1)x + y + b = 0$, $l_3: x + 2y + 3 = 0$.
- (1) 若 $l_1 \perp l_2$ 且 l_1 经过点 (-1,1), 求 a、b 的值;
- (2) 若 $l_1 \parallel l_2 \parallel l_3$, 求 a、b 的值.
- (000256) 已知过点 (0,-2) 且具有斜率 k 的直线 l 与以点 A(3,1) 和 B(-2,5) 为端点的线段 AB 相交, 求实数 k 的取值范围.
- (000257) 已知两条直线 $l_1: y-x=0, l_2: y=ax,$ 其中 $a \in \mathbf{R}$. 当这两条直线的夹角在 $(0, \frac{\pi}{12})$ 内变化时, 求实数 a 的取值范围.
- (000258) 直线 l 过原点且平分平行四边形 ABCD 的面积, 若此平行四边形的两个顶点为 B(1,4)、D(5,0), 求直线 l 的方程.
- (000259) 求直线 $l_1:3x-2y-6=0$ 关于直线 $l_2:2x-3y+1=0$ 对称的直线 l_3 的方程.
- (000260) 已知动点 M(a,b) 在直线 3x + 4y 15 = 0 上, 求 $\sqrt{a^2 + b^2}$ 的最小值.
- (000261) 已知两条平行直线 l_1 与 l_2 分别过点 $P_1(1,0)$ 与点 $P_2(0,5)$, l_1 、 l_2 之间的距离为 d. 求 d 的最大值,并指出此时 l_1 、 l_2 的方程.
- (000262) 已知直线 l 经过点 C(2,1), 且与 x 轴、y 轴的正半轴分别交于点 A、点 B, O 是坐标原点.
- (1) 当 $\triangle AOB$ 的面积最小时, 求直线 l 的方程;
- (2) 当 $|CA| \cdot |CB|$ 取最小值时, 求直线 l 的方程, 并求此最小值.
- (000263) 作出方程 |x| + |y| = 1 所表示的图形, 并求该图形围成的区域的面积.
- (000264) 给定直线 $l_1: y = k_1x + b_1$ 与 $l_2: y = k_2x + b_2$, 求证: 如果直线 l_1 与 l_2 不互相垂直, 那么它们的夹角 α 满足 $\tan \alpha = |\frac{k_1 k_2}{1 + k_1 k_2}|$.
- (000265) 已知直线 $l_1: 4x + y = 4, l_2: mx + y = 0, l_3: 2x 3my = 4$. 当 m 为何值时, 它们不能围成三角形?

(000266) 点到直线的距离是该点到直线上任意一点距离的最小值。如果把一个给定点到线段上任意一点的距离的最小值定义为该点到该线段的距离,试求点 P(1,1) 到线段 l:x-y-3=0 $(3 \le x \le 5)$ 的距离.

(000267) 判断下列命题是否正确, 并说明理由:

- (1) 到两坐标轴距离相等的点的轨迹方程为 y = x;
- (2) 若 $\triangle ABC$ 的三个顶点的坐标分别为 A(1,1)、B(3,1)、C(1,3), 则边 BC 上的中线所在直线的方程为 y=x;
- (3) 与两点 A(-1,0)、B(1,0) 的连线的夹角为 90° 的动点的轨迹方程为 $x^2 + y^2 = 1$.

(000268) 讨论圆 $x^2 + y^2 + 6x - 7 = 0$ 与抛物线 $y^2 = -4x$ 准线的位置关系.

(000269) 对圆 $(x-a)^2 + (y+b)^2 = a^2 + b^2$ (a > 0, b > 0), 下列说法是否正确, 请说明理由:

- (1) 该圆的圆心为 (a,b);
- (2) 该圆过原点;
- (3) 该圆与 x 轴相交于两个不同点.

(000270) 若椭圆 $\frac{x^2}{4} + \frac{y^2}{a^2} = 1$ 与双曲线 $\frac{x^2}{a^2} - \frac{y^2}{2} = 1$ 有相同的焦点, 求实数 a 的值.

(000271) 设椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0) 的焦距为 2c. 若 $b^2 = ac$, 求该椭圆的离心率.

(000272) 已知圆 C 的半径为 3,它与双曲线 $\frac{x^2}{4}-y^2=1$ 的两条渐近线均相切,且与该双曲线的右支相交. 求 圆 C 的方程.

(000273) 已知直线 y = x + b 被曲线 $y = \frac{1}{2}x^2$ 截得的弦长为 $4\sqrt{2}$, 求实数 b 的值.

(000274) 点 P 是圆 $x^2+y^2=4$ 上的动点, 过点 P 作 x 轴的垂线, 垂足为 M. 若 $\overrightarrow{PQ}=2\overrightarrow{QM}$, 求点 Q 的轨迹方程.

(000275) 设 AB 是过抛物线 $y^2=2px$ 焦点 F 的一条弦, 过点 A 、B 分别作该抛物线准线的垂线, 垂足分别为 A_1 、 B_1 . 求证: $\angle A_1FB_1=\frac{\pi}{2}$.

(000276) 已知圆 O 的方程是 $x^2 + y^2 = 1$, 直线 l 与圆 O 相切.

- (1) 若直线 l 的斜率等于 1, 求直线 l 的方程;
- (2) 若直线 l 在 y 轴上的截距为 $\sqrt{2}$, 求直线 l 的方程.

(000277) 直线 $x - \sqrt{3}y = 0$ 绕原点按逆时针方向旋转 30° 后所得的直线 l 与圆 $(x - 2)^2 + y^2 = 3$ 的位置关系是 ().

A. 直线 l 过圆心

B. 直线 l 与圆相交, 但不过圆心

C. 直线 l 与圆相切

D. 直线 l 与圆无公共点

(000278) 已知点 $A(-\frac{1}{2},0), B$ 是圆 $C:(x-\frac{1}{2})^2+y^2=4(C$ 是圆心) 上一动点, 线段 AB 的垂直平分线交 BC于 M. 求动点 M 的轨迹方程.

(000279) 过抛物线 $y^2=4x$ 的焦点 F 作动直线交抛物线于 A、B 两点, 并从原点 O 作 AB 的垂线, 垂足为 M. 求动点 M 的轨迹方程.

(000280) 已知点 P 是双曲线 $\frac{x^2}{9} - \frac{y^2}{16} = 1$ 右支上的一点, 点 M、N 分别是圆 $(x+5)^2 + y^2 = 4$ 和 $(x-5)^2 + y^2 = 1$ 上的点. 求 |PM| - |PN| 的最大值.

(000281) 已知圆 $x^2 + y^2 + x - 6y + m = 0$ 与直线 x + 2y - 3 = 0 相交于 P、Q 两点, O 为坐标原点. 若 $OP \perp OQ$ 、求实数 m 的值.

(000282) 已知直线 y = ax - 1 与曲线 $y^2 = 2x$ 只有一个公共点, 求实数 a 的值.

(000283) 对于实数 k 的不同取值范围, 讨论方程 $kx^2 + y^2 - 2 = 0$ 所表示的曲线的形状.

(000284) 过椭圆 $b^2x^2 + a^2y^2 = a^2b^2$ (a > b > 0) 的顶点 B(0, -b) 引一条弦 BP, 求弦 BP 的最大长度.

(000285) 已知定点 A(a,0) (0 < a < 3) 到椭圆 $\frac{x^2}{9} + \frac{y^2}{4} = 1$ 上的点的距离的最小值为 1, 求 a 的值.

(000286) 据气象预报, 在气象台 A 处向东 400kmB 处的海面上有一个台风中心形成, 测得台风以 40km/h 的速度向西北方向移动, 距中心不超过 300km 的地方都会受到台风的影响. 从现在起, 多少时间后气象台受到台风影响? 气象台受到台风影响的时长大约是多少 (结果精确到 0.1h)?

(000287) 已知 $\triangle ABC$ 的两个顶点 A、B 的坐标分别是 (-6,0)、(6,0), 且边 AC、BC 所在直线的斜率之积等于 k. 讨论顶点 C 的轨迹方程.

(000288) 以 P 为圆心的动圆与圆 $C_1:(x+2)^2+y^2=1$ 和圆 $C_2:(x-2)^2+y^2=r^2$ 均相切, 请分别写出 r 的某个值, 使点 P 的轨迹为椭圆和双曲线.

(000289) 求双曲线 $y=\frac{1}{x}$ 的焦点坐标与准线方程

(000290) 请验证到点 $(1,\frac{1}{4})$ 的距离和到直线 $y=-\frac{1}{4}$ 的距离相等的动点的轨迹方程是二次函数 $y=x^2-2x+1,$ 并探究一般情况.

(000291) 求连接点 A(x,y,z) 与点 B(x',y',z') 的线段 AB 的中点 M 的坐标.

(000292) 设正四面体 ABCD 的核长为 a, E 为 BC 的中点, F 为 CD 的中点. 求 $\overrightarrow{BF} \cdot \overrightarrow{AE}$.

(000293) 给定点 A(1,0,0)、B(3,1,1)、C(2,0,1) 与点 D(5,-4,3).

- (1) 求 \overrightarrow{AD} 在 \overrightarrow{AB} 、 \overrightarrow{BC} 、 \overrightarrow{CA} 方向上的投影向量;
- (2) 求点 D 到平面 ABC 的距离.

(000294) 如图, 在正三棱柱 $ABC - A_1B_1C_1$ 中, $|AB| = \sqrt{2}|AA_1|$, D 是 A_1B_1 的中点, 点 E 在 A_1C_1 上, 且 $DE \perp AE$.

- (1) 求证: 平面 $ADE \perp$ 平面 ACC_1A_1 ;
- (2) 求直线 AD 和平面 ABC_1 所成角的大小.

(000295) 已知正四棱锥的体积为 12, 底面对角线的长为 $2\sqrt{6}$. 求侧面与底面所成二面角的大小.

(000296) 如图, 已知 $ABCD - A_1B_1C_1D_1$ 是底面边长为 1 的正四棱柱, O_1 是 A_1C_1 和 B_1D_1 的交点.

- $(1) \ \textbf{\textit{i}} \ AB_1 \ \textbf{与底面} \ A_1B_1C_1D_1 \ \textbf{所成角的大小为} \ \alpha, \ \Box \textbf{面角} \ A-B_1D_1-A_1 \ \textbf{的大小为} \ \beta. \ \textbf{求证} \colon \tan\beta = \sqrt{2}\tan\alpha;$
- (2) 若点 C 到平面 AB_1D_1 的距离为 $\frac{4}{3}$, 求此正四棱柱的高.

(000297) 如图, 在直三棱柱 $ABC - A_1B_1C_1$ 中, $\angle ACB = 90^{\circ}$, $|AC| = |BC| = |CC_1| = 2$.

- (1) 求证: $AB_1 \perp BC_1$;
- (2) 求点 B 到平面 AB_1C_1 的距离.

(000298) 如图,四棱锥 P-ABCD 的底面 ABCD 为梯形, $AD \parallel BC$, $AB \perp BC$,|AB|=1,|AD|=3, $\angle ADC=45^\circ$,且 $PA \perp$ 平面ABCD,|PA|=1.

- (1) 求异面直线 PB 与 CD 所成角的大小;
- (2) 求四棱锥 *P ABCD* 的体积.

(000299) 如图, 在直三棱柱 $ABC - A_1B_1C_1$ 中, $\angle BAC = 90^\circ$, |AB| = |AC| = a, $|AA_1| = 2a$, D 为 BC 的中点, E 为 CC_1 上的点, 且 $|CE| = \frac{1}{4}|CC_1|$.

- (1) 求证: $BE \perp$ 平面 ADB_1 ;
- (2) 求二面角 $B AB_1 D$ 的大小.

(000300) 在长方体 $ABCD-A_1B_1C_1D_1$ 中, |AB|=|BC|=2, A_1D 与 BC_1 所成的角为 $\frac{\pi}{2}$. 求 BC_1 与平面 BB_1D_1D 所成角的大小.

(000301) 如图, 在平行六面体 $ABCD - A_1B_1C_1D_1$ 中, 点 E、F 分别在 B_1B 和 D_1D 上, 且 $|BE| = \frac{1}{3}|BB_1|$, $|DF| = \frac{2}{3}|DD_1|$.

- (1) 求证: A、E、C₁、F 四点共面;
- (2) 若 $\overrightarrow{EF} = \lambda \overrightarrow{AB} + \mu \overrightarrow{AD} + \nu \overrightarrow{AA_1}$, 求 $\lambda + \mu + \nu$ 的值.

(000302) 如图, 在正方体 $ABCD - A_1B_1C_1D_1$ 中, E、F 分别是 BC、 A_1D_1 的中点.

- (1) 求证: 四边形 B₁EDF 是菱形;
- (2) 求异面直线 A_1C 与 DE 所成角的大小.

(000303) 在正方体 ABCD - A₁B₁C₁D₁ 中, E、F 分别是 BC、CC₁ 的中点.

- (1) 求证: 点 D₁ 在平面 AEF 上;
- (2) 求平面 AEFD₁ 与底面 ABCD 所成二面角的大小.

(000304) 如图, $ABCD - A_1B_1C_1D_1$ 为正方体, 动点 P 在对角线 BD_1 上, 记 $\frac{|D_1P|}{|D_1B|} = \lambda$.

- (1) 求证: $AP \perp B_1C$;
- (2) 若异面直线 AP 与 D_1B_1 所成角为 $\frac{\pi}{4}$, 求 λ 的值;
- (3) 当 $\angle APC$ 为钝角时, 求 λ 的取值范围.

(000305) 如图, 平行六面体 $ABCD-A_1B_1C_1D_1$ 的底面 ABCD 是正方形, O 为底面的中心, A_1O \bot 平面ABCD, $|AB|=|AA_1|=\sqrt{2}$.

- (1) 求证: $A_1C \perp$ 平面 BB_1D_1D ;
- (2) 求平面 OCB_1 与平面 BB_1D_1D 所成二面角的大小.

(000306) 填空题:

- (1) 已知数列 $\{a_n\}$ 是等差数列,下面的数列中必为等差数列的序号是______
- ① $\{a_{2n}\}$ ② $\{a_n + a_{n+1}\}$ ③ $\{3a_n + 1\}$ ④ $\{|a_n|\}$
- (2) 已知数列 $\{a_n\}$ 是等比数列, 下面的数列中必为等比数列的序号是______
- ① $\{a_n^2\}$ ② $\{a_n + a_{n+1}\}$ ③ $\{\frac{1}{a_n}\}$ ④ $\{2^{a_n}\}$

(000307) 选择题:

(1) 我国古代数学名著《算法统宗》中有如下问题: "远望巍巍塔七层, 红光点点倍加增, 共灯三百八十一, 请问

33

尖头几盏灯?"意思是: 一座 7 层塔共挂了 381 盏灯, 且相邻两层中的下一层灯的盏数是上一层灯的盏数的 2 倍,则塔的顶层灯的盏数是().

(2) 已知数列 $\{a_n\}$, 若 $a_1=3$, $a_2=6$, 且 $a_{n+2}=a_{n+1}-a_n(n$ 为正整数), 则数列的第 35 项为 ().

(000308) 在等差数列 $\{a_n\}$ 中,已知公差 $d=\frac{1}{2}$,且 $a_1+a_3+a_5+\cdots+a_{99}=60$.求 $a_1+a_2+a_3+\cdots+a_{99}+a_{100}$

(000309) 已知存在常数 t, 使得等差数列 $\{a_n\}$ 的前 n 项和为 $S_n = tn^2 + (t-9)n + t - \frac{3}{2}$. 求该数列 $\{a_n\}$ 的 通项公式.

(000310) 设 S_n 为等差数列 $\{a_n\}$ 的前 n 项和, 求证: 数列 $\{\frac{S_n}{n}\}$ 是等差数列.

(000311) 已知数列 $\{\log_3 a_n\}$ 是等差数列, 且 $\log_3 a_1 + \log_3 a_2 + \cdots + \log_3 a_{10} = 10$. 求 $a_5 a_6$.

(000312) 已知等差数列 $\{a_n\}$ 的前 n 项和为 S_n , 且满足 $a_1 = 29$, $S_{10} = S_{20}$. 这个数列的前多少项和最大? 并 求此最大值.

(000313) 在 2 与 9 之间插入两个数, 使前三个数成等差数列, 后三个数成等比数列, 试写出这个数列,

(000314) 已知数列 $\{a_n\}$ 是等比数列, 且 a_1, a_2, a_4 成等差数列. 求数列 $\{a_n\}$ 的公比.

(000315) 用数学归纳法证明:
$$\frac{1}{2} + \frac{2}{2^2} + \frac{3}{2^3} + \dots + \frac{n}{2^n} = 2 - \frac{n+2}{2^n} (n$$
 为正整数).

(000316)(1) 依次计算下列各式的值: $\frac{1}{1}, \frac{1}{1} + \frac{1}{1+2}, \frac{1}{1} + \frac{1}{1+2} + \frac{1}{1+2+3}, \frac{1}{1} + \frac{1}{1+2} + \frac{1}{1+2} + \frac{1}{1+2+3} + \frac{1}{1+2+3} + \frac{1}{1+2+3+4}.$ (2) 根据 (1) 中的计算结果, 猜想 $S_n = \frac{1}{1} + \frac{1}{1+2} + \frac{1}{1+2+3} + \cdots + \frac{1}{1+2+3+\cdots+n} (n$ 为正整数) 的表达

(000317) 选择题:

A. 1

式,并用数学归纳法证明相应的结论.

(1) 已知 a,x,b 和 b,y,c 均为等差数列,而 a,b,c 为等比数列,且 $xy \neq 0$,则 $\frac{a}{x} + \frac{c}{y}$ 的值等于 ().

(1) 已知
$$a,x,b$$
 相 b,y,c 均为等差数列,而 a,b,c 为等比数列,且 $xy \neq 0$,则 $-+-$ 的值等于 ().

(2) 已知两个等差数列 $\{a_n\}$ 和 $\{b_n\}$ 的前 n 项和分别为 A_n 和 B_n , 且满足 $\frac{A_n}{B_n}=\frac{7n+45}{n+3}$, 则使得 $\frac{a_n}{b_n}$ 为整数 的正整数 n 的个数为 ().

C. 3

(000318) 已知 S_n 是等比数列 $\{a_n\}$ 的前 n 项和, 且 S_3 , S_9 , S_6 成等差数列. 求证: a_2 , a_8 , a_5 成等差数列.

(000319) 已知在等差数列 $\{a_n\}$ 中, $a_{10}=0$.

- (1) 求证: $a_1 + a_2 + \cdots + a_n = a_1 + a_2 + \cdots + a_{19-n}$ 对一切小于 19 的正整数 n 都成立;
- (2) 类比上述性质, 在等比数列 $\{b_n\}$ 中, 若 $b_9 = 1$, 可以得到什么结论?

B. 2

(000320) 已知数列 $\{a_n\}$ 的各项均为正数, $a_1 = \frac{1}{3}$, 且 $a_n = \frac{a_{n-1}}{2a_{n-1}+1}$ $(n \ge 2)$.

(1) 求证: 数列 $\{\frac{1}{a_n}\}$ 是等差数列;

(2) 若数列
$$\{b_n\}$$
 满足 $b_n = \begin{cases} 2, & n = 1, \\ & \text{求数列 } \{b_n\} \text{ 中的最大项与最小项.} \\ na_n, & n \geq 2, \end{cases}$

(000321) 已知数列 $\{a_n\}$ 的前 n 项和为 S_n , 且 $S_n = \frac{n(a_1 + a_n)}{2}$. 求证: 数列 $\{a_n\}$ 为等差数列.

$$(000322) \ \textbf{用数学归纳法证明} : \ 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{1}{2n-1} - \frac{1}{2n} = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} (n \ \textbf{为正整数}).$$

(000323) 是否存在常数 a、b、c, 使等式 $1 \cdot (n^2 - 1^2) + 2 \cdot (n^2 - 2^2) + \cdots + n \cdot (n^2 - n^2) = an^4 + bn^2 + c$ 对任意正整数 n 都成立? 证明你的结论.

(000324) 如图所示, 有三根直杆和套在一根直杆上的若干金属片, 把金属片按下列规则从一根直杆上全部移到 另一根直杆上:

- ① 每次只移动 1 个金属片;
- ② 较大的金属片不能放在较小的金属片上面.

试推测: 把 n 个金属片从 1 号直杆移到 3 号直杆, 最少需要移动多少次?

(000325) 如图,将一个边长为 1 的正三角形的每条边三等分,以中间一段为边向外作正三角形,并擦去中间这一段,如此继续下去得到的曲线称为科克雪花曲线.将下面的图形依次记作 M_1 、 M_2 、 M_3 、 \cdots 、 M_n 、 \cdots .

- (1) 求 M_n 的周长;
- (2) 求 M_n 的面积;
- (3) 当 $n \to +\infty$ 时, 科克雪花曲线所围成的图形是周长无限增大而面积却有极限的图形吗?若是, 请求出其面积的极限;若不是, 请说明理由.

(000326) 若 "a > b",则 " $a^3 > b^3$ " 是______ 命题 (填: 真、假).

 $(000328)z + 2\bar{z} = 9 + 4i(i 为虚数单位), 则 |z| = _____.$

(000329) 若 $\triangle ABC$ 中, a+b=4, $\angle C=30^{\circ}$, 则 $\triangle ABC$ 面积的最大值是______.

(000330) 若函数 $f(x) = \log_2 \frac{x-a}{x+1}$ 的反函数的图像过点 (-2,3), 则 a =_____.

(000331) 若半径为 2 的球 O 表面上一点 A 作球 O 的截面, 若 OA 与该截面所成的角是 60° , 则该截面的面积 是_____.

(000332) 抛掷一枚均匀的骰子 (刻有 1、2、3、4、5、6) 三次, 得到的数字依次记作 a、b、c, 则 a+bi(i 为虚数单位) 是方程 $x^2-2x+c=0$ 的根的概率是_____.

(000333) 设常数
$$a > 0$$
, $(x + \frac{a}{\sqrt{x}})^9$ 展开式中 x^6 的系数为 4, 则 $\lim_{n \to \infty} (a + a^2 + \dots + a^n) = \underline{\qquad}$

(000334) 已知直线 l 经过点 $(-\sqrt{5},0)$ 且方向向量为 (2,-1), 则原点 O 到直线 l 的距离为______.

(000335) 若双曲线的一条渐近线为 x+2y=0, 且双曲线与抛物线 $y=x^2$ 的准线仅有一个公共点, 则此双曲线的标准方程为______.

$$(000336)\lim_{n\to\infty}\frac{2n-5}{n+1}=$$
______.

(000337) 已知抛物线 C 的顶点在平面直角坐标系原点,焦点在 x 轴上,若 C 经过点 M(1,3),则其焦点到准线的距离为______.

$$(000338)$$
 若线性方程组的增广矩阵为 $\begin{pmatrix} a & 0 & 2 \\ 0 & 1 & b \end{pmatrix}$, 解为 $\begin{cases} x=2, & & \text{则 } a+b=\underline{\qquad} \end{cases}$.

(000339) 若复数 z 满足: $\mathrm{i} \cdot z = \sqrt{3} + \mathrm{i} (\mathrm{i}$ 是虚数单位), 则 |z| =_____.

(000340) 在 $(x+\frac{2}{x^2})^6$ 的二项展开式中第四项的系数是_____(结果用数值表示).

(000341) 在长方体 $ABCD - A_1B_1C_1D_1$ 中, 若 AB = BC = 1, $AA_1 = \sqrt{2}$, 则异面直线 BD_1 与 CC_1 所成角的大小为______.

 $(000343) \text{ 如图, 在} \triangle ABC \text{ 中, 若} AB = AC = 3, \cos \angle BAC = \frac{1}{2}, \overrightarrow{DC} = 2\overrightarrow{BD}, \text{ 则} \overrightarrow{AD} \cdot \overrightarrow{BC} = \underline{\hspace{1cm}}.$

(000346) 设集合 $A = \{x | |x-2| < 1, x \in \mathbf{R}\},$ 集合 $B = \mathbf{Z},$ 则 $A \cap B = \underline{\hspace{1cm}}$.

(000347) 函数 $y=\sin(\omega x-\frac{\pi}{3})(\omega>0)$ 的最小正周期是 π ,则 $\omega=$ _____.

(000348) 设 i 为虚数单位, 在复平面上, 复数 $\frac{3}{(2-\mathrm{i})^2}$ 对应的点到原点的距离为______.

(000349) 若函数 $f(x) = \log_2(x+1) + a$ 的反函数的图像经过点 (4,1), 则实数 a =______.

(000350) 已知 $(a+3b)^n$ 的展开式中,各项系数的和与各项二项式系数的和之比为 64,则 n=______.

(000351) 甲、乙两人从 5 门不同的选修课中各选修 2 门,则甲、乙所选的课程中恰有 1 门相同的选法有________种.

(000352) 若圆锥的侧面展开图是半径为 2 cm, 圆心角为 270° 的扇形, 则这个圆锥的体积为 cm^{3} .

(000353) 若数列 $\{a_n\}$ 的所有项都是正数,且 $\sqrt{a_1} + \sqrt{a_2} + \dots + \sqrt{a_n} = n^2 + 3n(n \in \mathbb{N}^*)$,则 $\lim_{n \to \infty} \frac{1}{n^2} (\frac{a_1}{2} + \frac{a_2}{3} + \dots + \frac{a_n}{n+1}) = \underline{\hspace{1cm}}$

(000354) 如图, 在 $\triangle ABC$ 中, $\angle B=45^{\circ}$, D 是 BC 边上的一点, AD=5, AC=7, DC=3, 则 AB 的长为______.

(000355) 有以下命题:

- ① 若函数 f(x) 既是奇函数又是偶函数, 则 f(x) 的值域为 $\{0\}$;
- ② 若函数 f(x) 是偶函数, 则 f(|x|) = f(x);
- ③ 若函数 f(x) 在其定义域内不是单调函数, 则 f(x) 不存在反函数;
- ④ 若函数 f(x) 存在反函数 $f^{-1}(x)$, 且 $f^{-1}(x)$ 与 f(x) 不完全相同,则 f(x) 与 $f^{-1}(x)$ 图像的公共点必在直线 y=x 上;

其中真命题的序号是____(写出所有真命题的序号).

(000356) 若集合 $A = \{x|y^2 = x, y \in \mathbf{R}\}, B = \{y|y = \sin x, x \in \mathbf{R}\}, 则 A \cap B = _____.$

$$(000357)$$
 若 $-\frac{\pi}{2} < \alpha < \frac{\pi}{2}$, $\sin \alpha = \frac{3}{5}$, 则 $\cot 2\alpha =$ _____.

(000358) 函数 $f(x) = 1 + \log_2 x (x \ge 1)$ 的反函数 $f^{-1}(x) =$ _____.

(000359) 若 $(1+x)^5 = a_0 + a_1x + a_2x^2 + \dots + a_5x^5$, 则 $a_1 + a_2 + \dots + a_5 = \underline{\qquad}$

(000360) 设 $k \in \mathbb{R}$, $\frac{y^2}{k} - \frac{x^2}{k-2} = 1$ 表示焦点在 y 轴上的双曲线, 则半焦距的取值范围是______.

(000361) 设 $m \in \mathbb{R}$, 若 $f(x) = (m+1)x^{\frac{2}{3}} + mx + 1$ 是偶函数, 则 f(x) 的单调递增区间是______

(000362) 方程 $\log_2(9^x - 5) = 2 + \log_2(3^x - 2)$ 的解 x =_____.

(000363) 已知圆 $C: x^2 + y^2 + 2kx + 2y + k^2 = 0 (k \in \mathbf{R})$ 和定点 P(1, -1), 若过 P 可以作两条直线与圆 C 相切, 则 k 的取值范围是______.

(000364) 如图, 在直三棱柱 $ABC - A_1B_1C_1$ 中, $\angle ABC = 90^\circ$, AB = BC = 1, 若 A_1C 与平面 B_1BCC_1 所成的角为 $\frac{\pi}{6}$, 则三棱锥 $A_1 - ABC$ 的体积为______.

(000365) 设地球半径为 R, 若 A、B 两地均位于北纬 45° , 且两地所在纬度圈上的弧长为 $\frac{\sqrt{2}}{4}\pi R$, 则 A、B 之间的球面距离是______(结果用含有 R 的代数式表示).

(000366) 复数 i(2+i) 的虚部为 .

$$(000367) \ \textbf{设函数} \ f(x) = \begin{cases} \log_2 x, & x>0, \\ & \quad \text{则} \ f(f(-1)) = \underline{\hspace{1cm}}. \end{cases}$$

(000368) 已知 $M = \{x | |x-1| \le 2, x \in \mathbf{R}\}, P = \{x | \frac{1-x}{x+2} \ge 0, x \in \mathbf{R}\}, 则 M \cap P = _____.$

(000369) 抛物线 $y=x^2$ 上一点 M 到焦点的距离为 1, 则点 M 的纵坐标为_____.

(000370) 已知无穷数列 $\{a_n\}$ 满足 $a_{n+1}=\frac{1}{2}a_n(n\in \mathbf{N}^*)$,且 $a_2=1$,记 S_n 为数列 $\{a_n\}$ 的前 n 项和,则 $\lim_{n\to\infty}S_n=$ ______.

(000371) 已知 $x, y \in \mathbb{R}^+$, 且 x + 2y = 1, 则 xy 的最大值为_____.

(000372) 已知圆锥的母线 l=10, 母线与旋转轴的夹角 $\alpha=30^{\circ}$, 则圆锥的表面积为_____.

(000373) 若 $(2x^2 + \frac{1}{x})^n (n \in \mathbf{N}^*)$ 的二项展开式中的第9 项是常数项, 则 n =_____. (000374) 已知 A,B 分别是函数 $f(x)=2\sin\omega x(\omega>0)$ 在 y 轴右侧图像上的第一个最高点和第一个最低点, 且 $\angle AOB = \frac{\pi}{2}$, 则该函数的最小正周期是______. (000375) 将序号分别为 1、2、3、4、5 的 5 张参观券全部分给 4 人,每人至少一张,如果分给同一人的 2 张参 观券连号, 那么不同的分法种数是______. $(000376) \lim_{n \to \infty} \frac{2n+3}{n+1} = \underline{\hspace{1cm}}$ (000377) 设全集 $U = \mathbf{R}$, 集合 $A = \{-1, 0, 1, 2, 3\}$, $B = \{x | x \ge 2\}$, 则 $A \cap \mathbb{C}_U B = \underline{\hspace{1cm}}$ (000378) 不等式 $\frac{x+1}{x+2} < 0$ 的解集为_____. (000379) 椭圆 $\begin{cases} x = 5\cos\theta, \\ y = 4\sin\theta \end{cases}$ $(\theta$ 为参数) 的焦距为______. (000380) 若函数 $y = \begin{vmatrix} \cos x & \sin x \\ \sin x & \cos x \end{vmatrix}$ 的最小正周期为 $a\pi$, 则实数 a 的值为______. (000381) 若点 (8,4) 在函数 $f(x) = 1 + \log_a x$ 图像上, 则 f(x) 的反函数为 (000382) 已知向量 $\overrightarrow{a} = (1,2)$, $\overrightarrow{b} = (0,3)$, 则 \overrightarrow{b} 在 \overrightarrow{a} 的方向上的投影为 (000383) 已知一个底面置于水平面上的圆锥, 其左视图是边长为 6 的正三角形, 则该圆锥的侧面积为 (000384) 某班级要从 5 名男生和 2 名女生中选出 3 人参加公益活动, 则在选出的 3 人中男、女生均有的概率 为_____(结果用最简分数表示). (000385) 设常数 a > 0, 若 $(x + \frac{a}{x})^9$ 的二项展开式中 x^5 的系数为 144, 则 a =______. (000386) 设集合 $M = \{x | x^2 = x\}, N = \{x | \lg x \le 0\}, 则 M \cap N = _____.$ (000387) 已知 a、 $b \in \mathbb{R}$, i 是虚数单位, 若 a + i = 2 - bi, 则 $(a + bi)^2 =$ (000388) 已知函数 $f(x) = a^x - 1$ 的图像经过 (1,1) 点, 则 $f^{-1}(3) =$ _____. (000389) 不等式 x|x-1| > 0 的解集为 . (000390) 已知 $\overrightarrow{a} = (\sin x, \cos x)$, $\overrightarrow{b} = (\sin x, \sin x)$, 则函数 $f(x) = \overrightarrow{a} \cdot \overrightarrow{b}$ 的最小正周期为______ (000391) 里约奥运会游泳小组赛采用抽签方法决定运动员比赛的泳道, 在由 2 名中国运动员和 6 名外国运动 员组成的小组中, 2 名中国运动员恰好抽在相邻泳道的概率为___ (000392) 如图, 在棱长为 1 的正方体 $ABCD - A_1B_1C_1D_1$ 中, 点 P 在截面 A_1DB 上, 则线段 AP 的最小值 为_____

(000393) 设
$$(1+x)^n = a_0 + a_1x + a_2x^2 + a_3x^3 + \dots + a_nx^n$$
, 若 $\frac{a_2}{a_3} = \frac{1}{3}$, 则 $n =$ ______

(000394) 已知圆锥底面半径与球的半径都是 1cm, 如果圆锥的体积与球的体积恰好也相等, 那么这个圆锥的侧面积是_____cm².

(000395) 设 P(x,y) 是曲线 $C:\sqrt{\frac{x^2}{25}}+\sqrt{\frac{y^2}{9}}=1$ 上的点, $F_1(-4,0),\ F_2(4,0),\$ 则 $|PF_1|+|PF_2|$ 的最大值为______.

(000396) 已知复数 z = 2 + i(i 为虚数单位), 则 $\overline{z^2} =$ _____.

(000397) 已知集合
$$A = \{x | \frac{1}{2} \le 2^x < 16\}, B = \{x | y = \log_2(9 - x^2)\}, 则 A \cap B = \underline{\hspace{1cm}}$$

(000398) 在二项式 $(x+\frac{2}{x})^6$ 的展开式中,常数项是______.

(000399) 等轴双曲线 $x^2-y^2=a^2$ 与抛物线 $y^2=16x$ 的准线交于 A、B 两点,且 $|AB|=4\sqrt{3}$,则该双曲线的实轴长等于______.

$$(000400) \ \mbox{ 若由矩阵 } \begin{pmatrix} a & 2 \\ 2 & a \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} a+2 \\ 2a \end{pmatrix} \ \mbox{ 表示 } x \text{,} \ y \ \mbox{ 的二元一次方程组无解, 则实数 } a = \underline{\hspace{1cm}}.$$

(000401) 已知 $f(x)=\sin\frac{\pi}{3}x,\ A=\{1,2,3,4,5,6,7,8\},$ 现从集合 A 中任取两个不同元素 s、t, 则使得 f(s) · f(t)=0 发生的概率是______.

(000402) 若圆锥侧面积为 20π , 且母线与底面所成角为 $\arccos \frac{4}{5}$, 则该圆锥的体积为_____.

(000403) 已知数列 $\{a_n\}$ 的通项公式为 $a_n=n^2+bn$,若数列 $\{a_n\}$ 是单调递增数列,则实数 b 的取值范围是______.

(000404) 将边长为 10 的正三角形 ABC, 按 "斜二测" 画法在水平放置的平面上画出为 $\triangle A'B'C'$, 则 $\triangle A'B'C'$ 中最短边的边长为______(精确到 0.01).

(000405) 已知点 A 是圆 $O: x^2+y^2=4$ 上的一个定点,点 B 是圆 O 上的一个动点,若满足 $|\overrightarrow{AO}+\overrightarrow{BO}|=|\overrightarrow{AO}-\overrightarrow{BO}|$,则 $|\overrightarrow{AO}\cdot\overrightarrow{AB}=$ _____.

(000406) 方程 $\lg(3x+4) = 1$ 的解 x =_____.

(000407) 若关于 x 的不等式 $\frac{x-a}{x-b} > 0 (a,b \in \mathbf{R})$ 的解集为 $(-\infty,1) \cup (4,+\infty)$,则 a+b =______.

(000408) 已知数列 $\{a_n\}$ 的前 n 项和为 $S_n = 2^n - 1$, 则此数列的通项公式为______.

(000409) 函数 $f(x) = \sqrt{x} + 1$ 的反函数是_____.

(000411) 如图, 已知正方形 $ABCD-A_1B_1C_1D_1,\,AA_1=2,\,E$ 为核 CC_1 的中点, 则三棱锥 D_1-ADE 的体积为______.

(000412) 从单词 "shadow" 中任意选取 4 个不同的字母排成一排,则其中含有 "a" 的共有______ 种排法 (用数字作答).

(000413) 集合 $\{x|\cos(\pi\cos x)=0, x\in[0,\pi]\}=$ _____(用列举法表示).

(000414) 如图, 已知半径为 1 的扇形 AOB, $\angle AOB=60^{\circ}$, P 为弧 $\stackrel{\frown}{AB}$ 上的一个动点, 则 $\stackrel{\frown}{OP}$ · $\stackrel{\frown}{AB}$ 取值范围 是

(000415) 已知 x、y 满足曲线方程 $x^2 + \frac{1}{y^2} = 2$,则 $x^2 + y^2$ 的取值范围是______.

(000416) 已知 $U = \mathbf{R}$, 集合 $A = \{x | 4 - 2x \ge x + 1\}$, 则 $\mathcal{C}_U A = \underline{\hspace{1cm}}$.

| 3 -5 1 | 2 3 -6 | 中元素 -5 的代数余子式的值为_____. | -7 2 4 |

 $(000418)(1-\frac{x}{2})^8$ 的二项展开式中含 x^2 项的系数是______.

(000419) 已知一个球的表面积为 16π, 则它的体积为______

(000420) 一个袋子中共有 6 个球, 其中 4 个红色球, 2 个蓝色球, 这些球的质地和形状一样, 从中任意抽取 2 个球, 则所抽的球都是红色球的概率是______.

(000421) 已知直线 l: x-y+b=0 被圆 $C: x^2+y^2=25$ 所截得的弦长为 $6, \, \text{则} \, b=$

- (000422) 若复数 (1+ai)(2-i) 在复平面上所对应的点在直线 y=x 上, 则实数 a=______. (000423) 函数 $f(x) = (\sqrt{3}\sin x + \cos x)(\sqrt{3}\cos x - \sin x)$ 的最小正周期为______. (000424) 过双曲线 $C: \frac{x^2}{a^2} - \frac{y^2}{4} = 1$ 的右焦点 F 作一条垂直于 x 轴的垂线交双曲线 C 的两条渐近线于 A、B两点, O 为坐标原点, 则 $\triangle OAB$ 的面积的最小值为_____ (000425) 若关于 x 的不等式 $|2^x - m| - \frac{1}{2^x} < 0$ 在区间 [0,1] 内恒成立, 则实数 m 的范围______. (000426) 已知集合 $A = \{1, 2, 4, 6, 8\}, B = \{x | x = 2k, k \in A\}, 则 A \cap B = _____.$ (000427) 已知 $\frac{\overline{z}}{1-i} = 2+i$, 则复数 z 的虚部为_____. (000428) 设函数 $f(x) = \sin x - \cos x$, 且 f(a) = 1, 则 $\sin 2a =$ ______ (000429) 已知二元一次方程 $\begin{cases} a_1x+b_1y=c_1, &$ 的增广矩阵是 $\begin{pmatrix} 1 & -1 & 1 \\ & & \\ 1 & 1 & 3 \end{pmatrix},$ 则此方程组的解是______. (000430) 数列 $\{a_n\}$ 是首项为 1, 公差为 2 的等差数列, S_n 是它前 n 项和, 则 $\lim_{n\to\infty} \frac{S_n}{a^2} =$ _______. (000431) 已知角 A 是 $\triangle ABC$ 的内角,则 " $\cos A = \frac{1}{2}$ " 是 " $\sin A = \frac{\sqrt{3}}{2}$ " 的______ 条件(填 "充分非必 要"、"必要非充分"、"充要条件"、"既非充分又非必要"之一). (000432) 若双曲线 $x^2 - \frac{y^2}{h^2} = 1$ 的一个焦点到其渐近线距离为 $2\sqrt{2}$, 则该双曲线焦距等于______. (000433) 若正项等比数列 $\{a_n\}$ 满足: $a_3 + a_5 = 4$, 则 a_4 的最大值为______ (000434) 已知函数 $f(x)=\sin(2x+\frac{\pi}{3})$ 在区间 [0,a](其中 a>0) 上单调递增, 则实数 a 的取值范围是______ (000436)"x < 0" 是 "x < a" 的充分非必要条件,则 a 的取值范围是_____. (000437) 函数 $f(x) = 1 - 3\sin^2(x + \frac{\pi}{4})$ 的最小正周期为______.
- (000438) 若复数 z 为纯虚数, 且满足 (2-i)z = a + i(i 为虚数单位), 则实数 a 的值为______.
- (000439) 二项式 $(x^2 + \frac{1}{x})^5$ 的展开式中, x 的系数为______.
- (000440) 用半径 1 米的半圆形薄铁皮制作圆锥型无盖容器, 其容积为______ 立方米.
- (000441) 已知 α 为锐角,且 $\cos(\alpha + \frac{\pi}{4}) = \frac{3}{5}$,则 $\sin \alpha =$ _____.
- (000442) 已知正四棱柱 $ABCD A_1B_1C_1D_1$, AB = a, $AA_1 = 2a$, $E \times F$ 分别是棱 $AD \times CD$ 的中点, 则异面 直线 BC_1 与 EF 所成角是______.

(000443) 在无穷等比数列 $\{a_n\}$ 中, $\lim_{n\to\infty} (a_1+a_2+\cdots+a_n)=\frac{1}{2}$, 则 a_1 的取值范围是______.

(000445) 已知奇函数 f(x) 是定义在 R 上的增函数, 数列 $\{x_n\}$ 是一个公差为 2 的等差数列, 满足 $f(x_7)$ + $f(x_8) = 0$, 则 x_{2017} 的值为______.

(000446) 若集合 $M = \{x|x^2 - 2x < 0\}, N = \{x||x| > 1\}, 则 M \cap N = _____.$

(000447) 若复数 $\angle OFA + \angle OFB = 180^{\circ}$ 满足 $2z + \overline{z} = 3 - 2i$, 其中 i 为虚数单位, 则 $z = \underline{\hspace{1cm}}$.

(000448) 如果 $\sin \alpha = -\frac{5}{13}$, 且 α 为第四象限角, 则 $\tan \alpha$ 的值是_____.

$$(000449)$$
 函数 $f(x) = \begin{vmatrix} \cos x & \sin x \\ \sin x & \cos x \end{vmatrix}$ 的最小正周期是_____.

(000450) 函数 $f(x) = 2^x + m$ 的反函数为 $y = f^{-1}(x)$, 且 $y = f^{-1}(x)$ 的图像过点 Q(5,2), 那么 m =______.

(000451) 点 (1,0) 到双曲线 $\frac{x^2}{4} - y^2 = 1$ 的渐近线的距离是______.

$$(000452) \ \,$$
如果实数 x 、 y 满足
$$\begin{cases} 2x-y \leq 0, \\ x+y \leq 3, \\ x \geq 0, \end{cases}, \ \,$$
则 $2x+y$ 的最大值是______.

(000454) 方程 $x^2 + y^2 - 4tx - 2ty + 3t^2 - 4 = 0(t$ 为参数) 所表示的圆的圆心轨迹方程是______(结果化为普通方程).

(000455) 若 a_n 是 $(2+x)^n (n \in \mathbf{N}^*, n \ge 2, x \in \mathbf{R})$ 展开式中 x^2 项的二项式系数,则 $\lim_{n \to \infty} (\frac{1}{a_2} + \frac{1}{a_3} + \cdots + \frac{1}{a_n}) = \underline{\hspace{1cm}}$.

(000456) 设集合 $A = \{2, 3, 4, 12\}, B = \{0, 1, 2, 3\}, 则 A \cap B = _____.$

$$(000457) \lim_{n \to \infty} \frac{5^n - 7^n}{5^n + 7^n} = \underline{\hspace{1cm}}.$$

(000458) 函数 $y = 2\cos^2(3\pi x) - 1$ 的最小正周期为_____.

$$(000459)$$
 不等式 $\frac{x+2}{x+1} > 1$ 的解集为______.

(000460) 若
$$z = \frac{-2 + 3i}{i}$$
(其中 i 为虚数单位), 则 $\text{Im} z = \underline{\hspace{1cm}}$.

(000461) 若从五个数 -1,0,1,2,3 中任选一个数 m, 则使得函数 $f(x)=(m^2-1)x+1$ 在 R 上单调递增的概率为______(结果用最简分数表示).

(000462) 在 $(\frac{3}{x^2} + \sqrt{x})^n$ 的二项展开式中,所有项的二项式系数之和为 1024 ,则常数项的值等于
(000463) 半径为 4 的圆内接三角形 ABC 的面积是 $\frac{1}{16}$, 角 A,B,C 所对应的边依次为 a,b,c , 则 abc 的值为
(000464) 已知抛物线 C 的顶点为坐标原点,双曲线 $\frac{x^2}{25}-\frac{y^2}{144}=1$ 的右焦点是 C 的焦点 F . 若斜率为 -1 , 且过 F 的直线与 C 交于 A,B 两点,则 $ AB =$
(000465) 直角坐标系 xOy 内有点 $P(-2,-1),\ Q(0,-2),\ $ 将 $\triangle POQ$ 绕 x 轴旋转一周,则所得几何体的体积为
(000466) 已知集合 $A = \{1, 2, 5\}, B = \{2, a\}.$ 若 $A \cup B = \{1, 2, 3, 5\},$ 则 $a = _$
(000467) 抛物线 $y^2 = 4x$ 的焦点坐标是
(000468) 不等式 $\frac{x}{x+1} < 0$ 的解是
(000469) 若复数 z 满足 $\mathrm{i}z=1+\mathrm{i}(\mathrm{i}$ 为虚数单位), 则 $z=$
(000470) 在代数式 $(x+\frac{1}{x^2})^7$ 的展开式中,一次项的系数是
(000471) 若函数 $y = 2\sin(\omega x - \frac{\pi}{3}) + 1 \ (\omega > 0)$ 的最小正周期是 π , 则 $\omega =$
(000472) 若函数 $f(x) = x^a$ 的反函数的图像经过点 $(\frac{1}{2}, \frac{1}{4})$, 则 $a =$
(000473) 将一个正方形绕着它的一边所在的直线旋转一周,所得几何体的体积为 $27\pi { m cm}^3$,则该几何体的侧面积为 ${ m cm}^3$.
(000474) 已知函数 $y = f(x)$ 是奇函数, 当 $x < 0$ 时, $f(x) = 2^x - ax$, 且 $f(2) = 2$, 则 $a =$
(000475) 若无穷等比数列 $\{a_n\}$ 的各项和为 S_n , 首项 $a_1=1$, 公比为 $a-\frac{3}{2}$, 且 $\lim_{n\to\infty}S_n=a$, 则 $a=$
(000476) 已知全集 $U = \mathbb{N}$, 集合 $A = \{1, 2, 3, 4\}$, 集合 $B = \{3, 4, 5\}$, 则 ($\mathbb{C}_U A$) $\cap B = \underline{\hspace{1cm}}$.
(000477) 复数 $\frac{2}{1+i}$ 的虚部是
(000478) 用 1, 2, 3, 4, 5 共 5 个数排成一个没有重复数字的三位数,则这样的三位数有
(000479) 已知 $\tan \theta = -2$, 且 $\theta \in (\frac{\pi}{2}, \pi)$, 则 $\cos \theta =$
(000480) 圆锥的底面半径为 1, 母线长为 3, 则圆锥的侧面积等于
(000481) 已知向量 $\overrightarrow{a}=(1,\sqrt{3}),\ \overrightarrow{b}=(3,m).$ 若向量 \overrightarrow{b} 在 \overrightarrow{a} 方向上的投影为 $3,$ 则实数 $m=$
(000482) 已知球主视图的面积等于 9π , 则该球的体积为
$(000483)(x+rac{1}{x^2})^9$ 的二项展开式中,常数项的值为

(000484) 已知 A(2,0), B(4,0), 动点 P 满足 $|PA| = \frac{\sqrt{2}}{2}|PB|, 则 <math>P$ 到原点的距离为______. (000485) 设焦点为 F_1 、 F_2 的椭圆 $\frac{x^2}{a^2}+\frac{y^2}{3}=1\;(a>0)$ 上的一点 P 也在抛物线 $y^2=\frac{9}{4}x$ 上,抛物线焦点为 F_3 , 若 $|PF_3| = \frac{25}{16}$, 则 $\triangle PF_1F_2$ 的面积为______. (000486) 函数 $f(x) = \lg(2-x)$ 的定义域是_____ (000487) 已知 f(x) 是定义在 R 上的奇函数,则 $f(-1) + f(0) + f(1) = _____.$ (000488) 首项和公比均为 $\frac{1}{2}$ 的等比数列 $\{a_n\}$, S_n 是它的前 n 项和, 则 $\lim_{n\to\infty} S_n =$ ______. (000489) 在 $\triangle ABC$ 中, $\angle A$, $\angle B$, $\angle C$ 所对的边分别是 a,b,c, 若 a:b:c=2:3:4, 则 $\cos C=$ ______. (000490) 已知复数 $z = a + bi(a, b \in \mathbf{R})$ 满足 |z| = 1, 则 $a \cdot b$ 范围是_____. (000491) 某学生要从物理、化学、生物、政治、历史、地理这六门学科中选三门参加等级考, 要求是物理、化学、 生物这三门至少要选一门, 政治、历史、地理这三门也至少要选一门, 则该生的可能选法总数是_ (000492) 已知 M、N 是三棱锥 P-ABC 的棱 $AB,\,PC$ 的中点, 记三棱锥 P-ABC 的体积为 $V_1,\,$ 三棱锥 N-MBC 的体积为 V_2 , 则 $\frac{V_2}{V}$ 等于_____ (000493) 在平面直角坐标系中, 双曲线 $\frac{x^2}{a^2}-y^2=1$ 的一个顶点与抛物线 $y^2=12x$ 的焦点重合, 则双曲线的两 条渐近线的方程为 (000494) 已知 $y=\sin x$ 和 $y=\cos x$ 的图像的连续的三个交点 A、B、C 构成三角形 $\triangle ABC$, 则 $\triangle ABC$ 的 面积等于____ (000495) 已知函数 $f(x) = \begin{cases} 2^x, & x \leq 0, \\ f(x-2), & x > 0, \end{cases}$ 则 $f(1) + f(2) + f(3) + \dots + f(2017) = \underline{\hspace{1cm}}.$ (000496) 已知全集 $U = \mathbf{R}$, 集合 $A = \{x | |x-1| > 1\}$, $B = \{x | \frac{x-3}{x+1} < 0\}$, 则 $(C_U A) \cap B = \underline{\hspace{1cm}}$ (000497) 已知角 θ 的顶点在坐标原点,始边与 x 轴的正半轴重合,若角 θ 的终边落在第三象限内,且 $\cos(\frac{\pi}{2}+1)$ θ) = $\frac{3}{5}$, \emptyset cos 2θ =_____ (000498) 已知幂函数的图像过点 $(2, \frac{1}{4})$, 则该幂函数的单调递增区间是______. (000500) 某圆锥体的底面圆的半径长为 $\sqrt{2}$, 其侧面展开图是圆心角为 $\frac{2}{3}\pi$ 的扇形, 则该圆锥体的体积是 (000501) 过点 P(-2,1) 作圆 $x^2 + y^2 = 5$ 的切线, 则该切线的点法向式方程是_ (000502) 已知二项式展开式 $(1-2x)^7 = a_0 + a_1x + a_2x^2 + \dots + a_7x^7$, 且复数 $z = \frac{1}{2}a_1 + \frac{a_7}{128}$ i, 则复数 z 的模

|z| =____(其中 i 是虚数单位).

(000503) 某高级中学欲从本校的 7 位古诗词爱好者 (其中男生 2 人、女生 5 人) 中随机选取 3 名同学作为学校诗词朗读比赛的主持人. 若要求主持人中至少有一位是男同学,则不同选取方法的种数是______(结果用数值表示).

(000504) 已知 $\triangle ABC$ 的三个内角 A,B,C 所对边长分别为 a,b,c, 记 $\triangle ABC$ 的面积为 S, 若 $S=a^2-(b-c)^2$, 则内角 A=_____(结果用反三角函数值表示).

(000505) 已知函数 $f(x) = \left| \frac{1}{|x|-1} \right|$, 关于 x 的方程 $f^2(x) + bf(x) + c = 0$ 有 7 个不同实数根, 则实数 b, c 满足的关系式是

(000506) 若全集 $U = \mathbf{R}$, 集合 $A = \{x | x \le 0$ 或 $x \ge 2\}$, 则 $C_U A = \underline{\hspace{1cm}}$.

(000507) 不等式 $\frac{x-1}{x} < 0$ 的解为_____.

$$(000508)$$
 方程组 $\begin{cases} 3x-2y=1, &$ 的增广矩阵是_____. \\ $2x+3y=5 \end{cases}$

(000509) 若复数 z = 2 - i(i 为虚数单位), 则 $z \cdot \overline{z} + z =$ ______

(000510) 已知 F_1 、 F_2 是椭圆 $\frac{x^2}{25}+\frac{y^2}{9}=1$ 的两个焦点, P 是椭圆上的一个动点, 则 $|PF1| \times |PF2|$ 的最大值是______.

(000512) 从一副混合后的扑克牌 (52 张) 中随机抽取 1 张, 事件 A 为 "抽得红桃 K", 事件 B 为 "抽得为黑桃", 则概率 $P(A \cup B) =$ ______(结果用最简分数表示).

(000513) 已知点 A(2,3)、点 $B(-2,\sqrt{3})$, 直线 l 过点 P(-1,0), 若直线 l 与线段 AB 相交, 则直线 l 的倾斜角的取值范围是______.

(000514) 数列 $\{a_n\}$ 的通项公式是 $a_n = 2n - 1$ $(n \in \mathbb{N}^*)$, 数列 $\{b_n\}$ 的通项公式是 $b_n = 3n$ $(n \in \mathbb{N}^*)$, 令集合 $A = \{a_1, a_2, \dots, a_n, \dots\}$, $B = \{b_1, b_2, \dots, b_n, \dots\}$, $n \in \mathbb{N}^*$. 将集合 $A \cup B$ 中的所有元素按从小到大的顺序排列,构成的数列记为 $\{c_n\}$. 则数列 $\{c_n\}$ 的前 28 项的和 $S_{28} =$ _______.

(000515) 向量 \overrightarrow{i} 、 \overrightarrow{j} 是平面直角坐标系 x 轴、y 轴的基本单位向量, 且 $|\overrightarrow{a}-\overrightarrow{i}|+|\overrightarrow{a}-2\overrightarrow{j}|=\sqrt{5}$, 则 $|\overrightarrow{a}+2\overrightarrow{i}|$ 的取值范围为______.

(000516) 计算:
$$\lim_{n\to\infty} (1-\frac{n}{n+1}) =$$
_____.

$$(000517)$$
 计算行列式 $\begin{vmatrix} 1-i & 2 \\ 3i+1 & 1+i \end{vmatrix}$ 的结果是_____(其中 i 为虚数单位).

(000518) 与双曲线 $\frac{x^2}{9} - \frac{y^2}{16} = 1$ 的渐近线相同,且经过点 $A(-3, 2\sqrt{3})$ 的双曲线的方程是______.

(000519) 从 5 名志愿者中选出 3 名, 分别从事布置、迎宾、策划三项不同的工作, 每人承担一项工作, 则不同的选派方案共有___________种(结果用数值表示).

(000520) 已知函数 $f(x) = a \cdot 2^x + 3 - a \ (a \in \mathbf{R})$ 的反函数为 $y = f^{-1}(x)$,则函数 $y = f^{-1}(x)$ 的图像经过的定点的坐标为______.

(000521) 在 $(x-a)^{10}$ 的展开式中, x^7 的系数是 15, 则实数 a =_____.

(000522) 已知点 A(2,3) 到直线 ax + (a-1)y + 3 = 0 的距离不小于 3, 则实数 a 的取值范围是______.

(000523) 类似平面直角坐标系,我们把平面内两条相交但不垂直的数轴构成的坐标系(两条数轴的原点重合于 O 点且单位长度相同)称为斜坐标系.在斜坐标系 xOy 中,若 $\overrightarrow{OP} = x\overrightarrow{e_1} + y\overrightarrow{e_2}$ (其中 $\overrightarrow{e_1}$, $\overrightarrow{e_2}$ 分别为斜坐标系的 x 轴、y 轴正方向上的单位向量, $x,y \in \mathbf{R}$),则点 P 的坐标为 (x,y). 若在斜坐标系 xOy 中, $\angle xOy = 60^\circ$,点 M 的坐标为 (1,2),则点 M 到原点 O 的距离为_______.

(000524) 已知圆锥的轴截面是等腰直角三角形,该圆锥的体积为 $\frac{8}{3}\pi$,则该圆锥的侧面积等于_____.

范围为_____

(000526) 集合 $P = \{x | 0 \le x < 3, x \in \mathbf{Z}\}, M = \{x | x^2 \le 9\}, \text{ } M P \cap M = \underline{\hspace{1cm}}$

(000527) 计算
$$\lim_{n\to\infty} \frac{C_n^2}{n^2+1} =$$
_____.

(000528) 方程
$$\begin{vmatrix} 1 + \lg x & 3 - \lg x \\ 1 & 1 \end{vmatrix} = 0$$
 的根是_____.

 $(000529) \ \textbf{已知} \ \sin\alpha - \frac{3}{5} + (\cos\alpha - \frac{4}{5}) \mathbf{i} \ \textbf{是纯虚数} \ (\mathbf{i} \ \textbf{是虚数单位}), \ \textbf{则} \ sin(\alpha + \frac{\pi}{4}) = \underline{\hspace{1cm}}.$

(000530) 已知直线 l 的一个法向量是 $\overrightarrow{n} = (\sqrt{3}, -1)$, 则 l 的倾斜角的大小是_____.

(000531) 从 4 名男同学和 6 名女同学中选取 3 人参加某社团活动, 选出的 3 人中男女同学都有的不同选法种数是_____(用数字作答).

(000532) 在 $(1+2x)^5$ 的展开式中, x^2 项系数为_____(用数字作答).

(000533) 如图, 在直三棱柱 $ABC - A_1B_1C_1$ 中, $\angle ACB = 90^\circ$, AC = 4, BC = 3, $AB = BB_1$, 则异面直线 $A_1B = B_1C_1$ 所成角的大小是_______(结果用反三角函数表示).

(000534) 已知数列 $\{a_n\}$, $\{b_n\}$ 满足 $b_n=\ln a_n,\ n\in \mathbf{N}^*$, 其中 $\{b_n\}$ 是等差数列,且 $a_3\cdot a_{1007}=\mathrm{e}^4$,则 $b_1+b_2+\cdots+b_{1009}=$ ______.

(000535) 如图, 向量 \overrightarrow{OA} 与 \overrightarrow{OB} 的夹角为 120° , $|\overrightarrow{OA}| = 2$, $|\overrightarrow{OB}| = 1$, P 是以 O 为圆心、 $|\overrightarrow{OB}|$ 为半径的弧 $\overset{\frown}{BC}$ 上的动点, 若 $\overrightarrow{OP} = \lambda \overrightarrow{OA} + \mu \overrightarrow{OB}$, 则 $\lambda \mu$ 的最大值是______.

(000536) 设全集 $U = \{1, 2, 3, 4, 5\}$, 若集合 $A = \{3, 4, 5\}$, 则 $\mathbb{C}_U A = \underline{\hspace{1cm}}$.

$$(000537)$$
 若 $\sin \theta = \frac{1}{4}$, 则 $\cos(\frac{3\pi}{2} + \theta) =$ _____.

(000538) 方程 $\log_2(2-x) + \log_2(3-x) = \log_2 12$ 的解 x =_____.

 $(000539)(\sqrt{x} - \frac{1}{x})^9$ 的二项展开式中的常数项的值为______.

(000540) 不等式 $\frac{1}{|x-1|} \ge 1$ 的解集为______.

(000541) 函数 $f(x) = \sqrt{3}\sin x + 2\cos^2\frac{x}{2}$ 的值域为______.

(000542) 已知 i 是虚数单位, \overline{z} 是复数 z 的共轭复数,若 $\begin{vmatrix} z & 1+\mathrm{i} \\ 1 & 2\mathrm{i} \end{vmatrix} = 0$,则 \overline{z} 在复平面内所对应的点所在的象限为第

(000543) 若数列 $\{a_n\}$ 的前 n 项和 $S_n = -3n^2 + 2n + 1$ $(n \in \mathbb{N}^*)$, 则 $\lim_{n \to \infty} \frac{a_n}{3n} = \underline{\hspace{1cm}}$.

(000544) 若直线 l: x+y=5 与曲线 $C: x^2+y^2=16$ 交于两点 $A(x_1,y_1), B(x_2,y_2),$ 则 $x_1y_2+x_2y_1$ 的值为______.

(000545) 设 a_1,a_2,a_3,a_4 是 1,2,3,4 的一个排列,若至少有一个 i (i=1,2,3,4) 使得 $a_i=i$ 成立,则满足此条件的不同排列的个数为______.

(000546) 计算:
$$\lim_{n\to\infty} \frac{2n}{3n-1} =$$
_____.

- (000547) 已知集合 $A = \{x | 0 < x < 3\}, B = \{x | x^2 \ge 4\}, 则 A \cap B = ______.$
- (000548) 已知 $\{a_n\}$ 为等差数列, S_n 为其前 n 项和, 若 $a_1 + a_9 = 18$, $a_4 = 7$, 则 $S_{10} =$ ______.
- (000549) 已知函数 $f(x) = \log_2(x+a)$ 的反函数为 $y = f^{-1}(x)$, 且 $f^{-1}(2) = 1$, 则实数 a =______.
- (000550) 已知角 α 的终边与单位圆 $x^2+y^2=1$ 交于点 $P(\frac{1}{2},y_0),$ 则 $\cos 2\alpha =$ ______.
- $(000551) \ \mbox{ 若存在 } x \in [0, +\infty) \ \mbox{ 使} \left| \begin{vmatrix} 2^x & 2^x \\ m & x \end{vmatrix} < 1 \ \mbox{ 成立, 则实数 } m \ \mbox{ 的取值范围是} \underline{\hspace{1cm}}.$
- (000552) 函数 $y = \sin 2x$ 的图像与 $y = \cos x$ 的图像在区间 $[0, 2\pi]$ 上交点的个数是_____
- (000554) 在 $\triangle ABC$ 中, $\angle A=90^\circ$, $\triangle ABC$ 的面积为 1. 若 $\overrightarrow{BM}=\overrightarrow{MC}$, $\overrightarrow{BN}=4\overrightarrow{NC}$, 则 $\overrightarrow{AM}\cdot\overrightarrow{AN}$ 的最小值为______.
- (000555) 已知函数 f(x) = x|2x a| 1 有三个零点, 则实数 a 的取值范围为______.
- (000556) 设全集 $U = \mathbf{Z}$, 集合 $M = \{1, 2\}, P = \{-2, -1, 0, 1, 2\}, 则 P \cap \mathbb{C}_U M = \underline{\hspace{1cm}}$
- (000557) 已知复数 $z=rac{\mathrm{i}}{2+\mathrm{i}}(\mathrm{i}$ 为虚数单位),则 $z\cdot \overline{z}=$ ______.
- (000558) 不等式 $2^{x^2-4x-3} > (\frac{1}{2})^{3(x-1)}$ 的解集为______.
- (000559) 函数 $f(x) = \sqrt{3} \sin x \cos x + \cos^2 x$ 的最大值为______.
- (000560) 在平面直角坐标系 xOy 中,以直线 $y=\pm 2x$ 为渐近线,且经过椭圆 $x^2+\frac{y^2}{4}=1$ 右顶点的双曲线的方程是______.
- (000561) 将圆锥的侧面展开后得到一个半径为 2 的半圆, 则此圆锥的体积为_____
- (000562) 设等差数列 $\{a_n\}$ 的公差 d 不为 0, $a_1 = 9d$. 若 a_k 是 a_1 与 a_{2k} 的等比中项, 则 k =
- (000563) 已知 $(1+2x)^6$ 展开式的二项式系数的最大值为 a, 系数的最大值为 b, 则 $\frac{b}{a} =$ ______.
- (000564) 同时掷两枚质地均匀的骰子,则两个点数之积不小于 4 的概率为_____
- $(000565) \ \textbf{已知函数} \ f(x) = \begin{cases} \log_2(x+a), & x \leq 0, \\ & \text{有三个不同的零点, 则实数} \ a \ \textbf{的取值范围是} \\ x^2 3ax + a, & x > 0 \end{cases}.$
- (000566) 在复平面内, 复数 $\frac{5+4i}{i}(i$ 为虚数单位) 对应的点的坐标为_____.
- (000567) 函数 $f(x) = \sqrt{1 \lg x}$ 的定义域为_____.
- (000568) 二项式 $(x \frac{1}{2x})^4$ 的展开式中的常数项为______.

(000569) 若
$$\begin{vmatrix} 4^x & 2 \\ 2^x & 1 \end{vmatrix} = 0$$
, 则 $x =$ _____.

(000570) 已知圆 $O: x^2 + y^2 = 1$ 与圆 O' 关于直线 x + y = 5 对称, 则圆 O' 的方程是_____.

(000571) 在坐标平面 xOy 内, O 为坐标原点,已知点 $A(-\frac{1}{2},\frac{\sqrt{3}}{2})$,将 \overrightarrow{OA} 绕原点按顺时针方向旋转 $\frac{\pi}{2}$,得到 $\overrightarrow{OA'}$,则 $\overrightarrow{OA'}$ 的坐标为

(000574) 著名的斐波那契数列 $\{a_n\}: 1, 1, 2, 3, 5, 8, \cdots$, 满足 $a_1 = a_2 = 1, a_{n+2} = a_{n+1} + a_n \ (n \in \mathbb{N}^*)$, 那么 $1 + a_3 + a_5 + a_7 + a_9 + \cdots + a_{2017}$ 是斐波那契数列中的第______ 项.

(000575) 若不等式 $(-1)^n \cdot a < 3 + \frac{(-1)^{n+1}}{n+1}$ 对任意正整数 n 恒成立, 则实数 a 的取值范围是______.

(000576) 已知集合 $A = \{1, 2, m\}, B = \{3, 4\}.$ 若 $A \cap B = \{3\},$ 则实数 m =_____.

(000577) 已知
$$\cos \theta = -\frac{3}{5}$$
, 则 $\sin(\theta + \frac{\pi}{2}) =$ _____.

(000578) 若行列式
$$\begin{vmatrix} 2^{x-1} & 4 \\ 1 & 2 \end{vmatrix}$$
, 则 $x =$ _____.

(000579) 已知一个关于 x,y 的二元一次方程组的增广矩阵是 $\begin{pmatrix} 1 & -1 & 2 \\ 0 & 1 & 2 \end{pmatrix}$,则 x+y=______.

(000580) 在 $(x-\frac{2}{x})^6$ 的二项展开式中, 常数项的值为______.

(000581) 若将一颗质地均匀的骰子 (一种各面上分别标有 1, 2, 3, 4, 5, 6 六个点的正方体玩具), 先后抛掷 2 次,则出现向上的点数之和为 4 的概率是______.

(000582) 数列 $\{a_n\}$ 的前 n 项和为 S_n , 若点 (n,S_n) $(n\in {\bf N}^*)$ 在函数 $y=\log_2(x+1)$ 的反函数的图像上,则 $a_n=$ _______.

(000583) 在 $\triangle ABC$ 中, 若 $\sin A$, $\sin B$, $\sin C$ 成等比数列, 则角 B 的最大值为______.

(000584) 抛物线 $y^2 = -8x$ 的焦点与双曲线 $\frac{x^2}{a^2} - y^2 = 1$ 的左焦点重合,则这条双曲线的两条渐近线的夹角为______.

(000585) 已知函数 $f(x) = \cos x (\sin x + \sqrt{3}\cos x) - \frac{\sqrt{3}}{2}, x \in \mathbf{R}$. 设 $\alpha > 0$, 若函数 $g(x) = f(x + \alpha)$ 为奇函数,则 α 的值为______.

(000586) 不等式 $\frac{x}{x+1} \le 0$ 的解集为______.

(000587) 已知 $\sin \alpha = \frac{4}{5}$, 则 $\cos(\alpha + \frac{\pi}{2}) =$ _____.

$$(000588) \lim_{n \to \infty} \frac{3^n - 1}{3^{n+1} + 1} = \underline{\hspace{1cm}}.$$

(000589) 已知球的表面积为 16π , 则该球的体积为______

(000590) 已知函数 $f(x) = 1 + \log_a x$, $y = f^{-1}(x)$ 是函数 y = f(x) 的反函数, 若 $y = f^{-1}(x)$ 的图像过点 (2,4), 则 a 的值为______.

$$(000591)$$
 若数列 $\{a_n\}$ 为等比数列,且 $a_5=3$,则 $\begin{vmatrix} a_2 & -a_7 \\ a_3 & a_8 \end{vmatrix} =$ ______.

(000592) 在 $\triangle ABC$ 中, 角 $A \setminus B \setminus C$ 所对的边分别为 $a \setminus b \setminus c$, 若 (a+b+c)(a-b+c) = ac, 则 B =_______.

(000593) 若 $(2x+\frac{1}{x})^n$ 的二项展开式中的所有二项式系数之和等于 256, 则该展开式中常数项的值为______

(000594) 已知函数 f(x) 是定义在 R 上且周期为 4 的偶函数. 当 $x \in [2,4]$ 时, $f(x) = \left|\log_4(x - \frac{3}{2})\right|$, 则 $f(\frac{1}{2})$ 的值为______.

(000595) 已知数列 $\{a_n\}$ 的前 n 项和为 S_n , 且 $a_1=1,\,2S_n=a_na_{n+1}(n\in\mathbf{N}^*)$, 若 $b_n=(-1)^n\frac{2n+1}{a_na_{n+1}}$, 则数列 $\{b_n\}$ 的前 n 项和 $T_n=$ ______.

(000596) 设全集 $U = \{1, 2, 3, 4\}$, 集合 $A = \{x | x^2 - 5x + 4 < 0, x \in \mathbf{Z}\}$, 则 $\mathcal{C}_U A = \underline{\hspace{1cm}}$

$$(000597)$$
 参数方程为 $\begin{cases} x=t^2, & (t\ { extstyle { extstyle b}})$ 的曲线的焦点坐标为_____. $y=2t, & \end{cases}$

(000598) 已知复数 z 满足 |z|=1, 则 |z-2| 的取值范围是_______

(000599) 设数列 $\{a_n\}$ 的前 n 项和为 S_n , 若 $S_n = 1 - \frac{2}{3}a_n \ (n \in \mathbf{N}^*)$, 则 $\lim_{n \to \infty} S_n = \underline{\hspace{1cm}}$.

(000600) 若 $(x + \frac{1}{2x})^n$ $(n \ge 4, n \in \mathbf{N}^*)$ 的二项展开式中前三项的系数依次成等差数列, 则 n =______.

(000601) 把 1,2,3,4,5,6,7,8,9,10 分别写在 10 张形状大小一样的卡片上,随机抽取一张卡片,则抽到写着偶数或大于 6 的数的卡片的概率为_____(结果用最简分数表示).

(000603) 满足约束条件 $|x| + 2|y| \le 2$ 的目标函数 z = y - x 的最小值是______.

 $(000604) \ \textbf{已知函数} \ f(x) = \begin{cases} \log_2 x, & 0 < x < 2, \\ (\frac{2}{3})^x + \frac{5}{9}, & x \geq 2. \end{cases}$ 若函数 g(x) = f(x) - k 有两个不同的零点,则实数 k 的取值范围是

(000605) 某部门有 8 位员工, 其中 6 位员工的月工资分别为 8200, 8300, 8500, 9100, 9500, 9600(单位: 元), 另两位员工的月工资数据不清楚, 但两人的月工资和为 17000 元, 则这 8 位员工月工资的中位数可能的最大值为______ 元.

(000606) 计算:
$$\lim_{n \to \infty} (1 + \frac{1}{n})^3 = \underline{\hspace{1cm}}$$

(000607) 函数
$$y = \log_2(1 - \frac{1}{r})$$
 的定义域为_____.

(000608) 若
$$\frac{\pi}{2} < \alpha < \pi$$
, $\sin \alpha = \frac{3}{5}$, 则 $\tan \frac{\alpha}{2} =$ ______.

(000609) 若复数 $z = (1+i) \cdot i^2 (i$ 表示虚数单位), 则 $\overline{z} =$ _____.

$$(000610)$$
 曲线 C :
$$\begin{cases} x = \sec \theta, \\ y = \tan \theta, \end{cases}$$
 $(\theta$ 为参数) 的两个顶点之间的距离为_____.

(000611) 若从一副 52 张的扑克牌中随机抽取 2 张,则在放回抽取的情形下,两张牌都是 K 的概率为_____(结果用最简分数表示).

(000612) 若关于 x 的方程 $\sin x + \cos x - m = 0$ 在区间 $[0, \frac{\pi}{2}]$ 上有解, 则实数 m 的取值范围是______.

(000613) 若一个圆锥的母线与底面所成的角为 $\frac{\pi}{6}$, 体积为 125π , 则此圆锥的高为______.

(000614) 若函数 $f(x) = \log_2^2 x - \log_2 x + 1 \ (x \ge 2)$ 的反函数为 $f^{-1}(x)$, 则 $f^{-1}(3) =$ ______.

(000615) 若三棱锥 S-ABC 的所有的顶点都在球 O 的球面上, $SA\perp$ 平面 $ABC,\,SA=AB=2,\,AC=4,$ $\angle BAC=\frac{\pi}{3},\,$ 则球 O 的表面积为_____.

(000616) 方程 $\log_3(2x+1)=2$ 的解是______

(000617) 已知集合 $M = \{x | |x+1| \le 1\}, N = \{-1,0,1\}, 则 M \cap N = _____.$

(000618) 若复数 $z_1 = a + 2i$, $z_2 = 2 + i(i$ 是虚数单位), 且 $z_1 z_2$ 为纯虚数, 则实数 a =______.

(000619) 直线
$$\begin{cases} x = -2 - \sqrt{2}t, \\ y = 3 + \sqrt{2}t, \end{cases}$$
 (t 为参数) 对应的普通方程是_____.

(000620) 若 $(x+2)^n = x^n + ax^{n-1} + \cdots + bx + c \ (n \in \mathbb{N}^*, \ n \ge 3)$, 且 b = 4c, 则 a 的值为______.

(000621) 某空间几何体的三视图如图所示,则该几何体的侧面积是

(000622) 若函数 $f(x) = 2^x(x+a) - 1$ 在区间 [0,1] 上有零点, 则实数 a 的取值范围是______

(000623) 在约束条件 $|x+1| + |y-2| \le 3$ 下, 目标函数 z = x + 2y 的最大值为______.

(000624) 某学生在上学的路上要经过 2 个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是 $\frac{1}{3}$,则这名学生在上学的路上到第二个路口时第一次遇到红灯的概率是______.

(000625) 已知椭圆 $x^2+\frac{y^2}{b^2}=1\ (0< b<1),$ 其左、右焦点分别为 $F_1,$ $F_2,$ $|F_1F_2|=2c.$ 若此椭圆上存在点 P, 使 P 到直线 $x=\frac{1}{c}$ 的距离是 $|PF_1|$ 与 $|PF_2|$ 的等差中项, 则 b 的最大值为______.

(000626) 函数 $y = 1 - 2\sin^2(2x)$ 的最小正周期是______

(000627) 若全集 $U = \mathbb{R}$, 集合 $A = \{x | x \ge 1\} \cup \{x | x < 0\}$, 则 $C_U A = \underline{\hspace{1cm}}$.

(000628) 若复数 z 满足 $z+\mathrm{i}=rac{2+\mathrm{i}}{\mathrm{i}}(\mathrm{i}$ 为虚数单位), 则 |z|=______.

(000629) 设 m 为常数, 若点 F(0,5) 是双曲线 $\frac{y^2}{m} - \frac{x^2}{9} = 1$ 的一个焦点, 则 m =______.

(000630) 已知正四棱锥的底面边长是 2, 侧棱长是 $\sqrt{3}$, 则该正四棱锥的体积为_____.

 $\left\{ \begin{aligned} x-y+1 &\leq 0, \\ x+y-3 &\geq 0, \end{aligned} \right. & \text{则目标函数 } z=2x-y \text{ 的最大值为}_{___}. \\ y &\leq 4, \end{aligned}$

(000632) 若 $(\sqrt{x} - \frac{1}{x})^n$ 的二项展开式中各项的二项式系数的和是 64,则展开式中的常数项的值为______

(000633) 数列 $\{a_n\}$ 是等比数列, 前 n 项和为 S_n , 若 $a_1+a_2=2$, $a_2+a_3=-1$, 则 $\lim_{n\to\infty}S_n=$ ______.

(000634) 若函数 $f(x) = 4^x + 2^{x+1}$ 的图像与函数 y = g(x) 的图像关于直线 y = x 对称, 则 g(3) =______.

(000635) 甲与其四位朋友各有一辆私家车, 甲的车牌尾数是 0, 其四位朋友的车牌尾数分别是 0, 2, 1, 5, 为遵守当地 4 月 1 日至 5 日 5 天的限行规定(奇数日车牌尾数为奇数的车通行, 偶数日车牌尾数为偶数的车

通行), 五人商议拼车出行, 每天任选一辆符合规定的车, 但甲的车最多只能用一天, 则不同的用车方案总数为______.

(000636) 集合
$$A = \{1, 2, 3, 4\}, B = \{x | (x - 1)(x - 5) < 0\}, 则 A \cap B = _____.$$

$$(000637)$$
 复数 $z = \frac{2-i}{1+i}$ 所对应的点在复平面内位于第______ 象限.

(000638) 已知首项为 1 公差为 2 的等差数列 $\{a_n\}$, 其前 n 项和为 S_n , 则 $\lim_{n \to \infty} \frac{a_n^2}{S_n} =$ _______.

(000639) 若方程组
$$\begin{cases} ax + 2y = 3, \\ 2x + ay = 2 \end{cases}$$
 无解, 则实数 $a =$ ______.

(000640) 若 $(x+a)^7$ 的二项展开式中,含 x^6 项的系数为 7, 则实数 a=_____.

(000641) 已知双曲线 $x^2 - \frac{y^2}{a^2} = 1$ (a > 0), 它的渐近线方程是 $y = \pm 2x$, 则 a 的值为______

(000642) 在
$$\triangle ABC$$
 中,三边长分别为 $a=2,\,b=3,\,c=4,\,$ 则 $\frac{\sin 2A}{\sin B}=$ ______.

(000643) 在平面直角坐标系中,已知点 P(-2,2),对于任意不全为零的实数 a、b,直线 l: a(x-1)+b(y+2)=0,若点 P 到直线 l 的距离为 d,则 d 的取值范围是______.

$$(000644) 函数 $f(x) = \begin{cases} |x|, & x \le 1, \\ & \text{如果方程 } f(x) = b \text{ 有四个不同的实数解 } x_1 \checkmark x_2 \checkmark x_3 \checkmark x_4, \text{则 } x_1 + x_2 + x_3 + x_4 = \underline{\hspace{1cm}}. \end{cases}$$$

(000645) 三条侧棱两两垂直的正三棱锥, 其俯视图如图所示, 主视图的边界是底边长为 2 的等腰三角形, 则主视图的面积等于______.

(000646) 函数 $y = \sqrt{2x - x^2}$ 的定义域是_____

$$(000647)$$
 若关于 x,y 的方程组 $\begin{cases} ax+y-1=0, \\ 4x+ay-2=0 \end{cases}$ 有无数多组解,则实数 $a=$ _____.

(000648) 若 " $x^2 - 2x - 3 > 0$ " 是 "x < a" 的必要不充分条件,则 a 的最大值为______.

(000649) 已知复数 $z_1 = 3 + 4i$, $z_2 = t + i$ (其中 i 为虚数单位), 且 $z_1 \cdot \overline{z_2}$ 是实数, 则实数 t 等于______.

 $(000650) 若函数 \ f(x) = \begin{cases} -x + 3a, & x < 0, \\ & (a > 0, \text{ 且 } a \neq 1) \text{ } \textbf{\textit{E} R } \textbf{\textit{L}} \textbf{\textit{Di} 减函数}, \text{ 则 } a \text{ } \textbf{\textit{in}} \textbf{\textit{n}} \textbf{\textit{in}} \textbf{\textit{in}$

$$\begin{pmatrix} a^x+1, & x\geq 0 \\ \\ x+y\geq 2, \\ \\ x-y\leq 1, & \text{则目标函数 } z=-2x+y \text{ 的最小值为} \\ \\ y\leq 2, \end{pmatrix}$$

(000652) 已知圆 $C:(x-4)^2+(y-3)^2=4$ 和两点 A(-m,0), B(m,0)(m>0), 若圆 C 上至少存在一点 P, 使 得 $\angle APB = 90^{\circ}$, 则 m 的取值范围是_

 $(000653) \ \textbf{已知向量} \ \overrightarrow{a} = (\cos(\frac{\pi}{3} + \alpha), 1), \ \overrightarrow{b} = (1, 4), \ \textbf{如果} \ \overrightarrow{a} \parallel \overrightarrow{b}, \ \textbf{那么} \ \cos(\frac{\pi}{3} - 2\alpha) \ \textbf{的值为} \underline{\hspace{1cm}}.$

(000654) 若从正八边形的 8 个顶点中随机选取 3 个顶点,则以它们作为顶点的三角形是直角三角形的概率

(000655) 若将函数 $f(x)=|\sin(\omega x-\frac{\pi}{8})|$ $(\omega>0)$ 的图像向左平移 $\frac{\pi}{12}$ 个单位后,所得图像对应的函数为偶函 数,则 ω 的最小值是

(000656) 已知集合 $A = \{x | \ln x > 0\}, B = \{x | 2^x < 3\}, 则$

$$\begin{cases} x \geq 0, \\ y \leq x, \\ 2x + y - 9 \leq 0, \end{cases}$$
 (000658) 已知 $(x - \frac{a}{x})^7$ 展开式中 x^3 的系数为 84 , 则正实数 a 的值为______.

(000659) 盒中装有形状、大小完全相同的 5 个球, 其中红色球 3 个, 黄色球 2 个. 若从中随机取出 2 个球, 则 所取出的 2 个球颜色不同的概率为___

(000660) 设 f(x) 为 R 上的奇函数. 当 $x \ge 0$ 时, $f(x) = 2^x + 2x + b(b$ 为常数), 则 f(-1) 的值为

$$\left\{ \begin{aligned} &(000661) \text{ 设 } P,Q \text{ 分别为直线} \\ & \begin{cases} x=t, \\ & \\ y=6-2t, \end{aligned} \right. \end{aligned} \quad \left(t \text{ 为参数}\right) \text{ 和曲线 } C: \begin{cases} x=1+\sqrt{5}\cos\theta, \\ & \\ y=-2+\sqrt{5}\sin\theta, \end{aligned} \quad \left(\theta \text{ 为参数}\right) \text{ 的点, } \mathbf{y} \right.$$

|PQ| 的最小值为

(000662) 各项均不为零的数列 $\{a_n\}$ 的前 n 项和为 S_n . 对任意 $n\in \mathbf{N}^*,$ $\overrightarrow{m_n}=(a_{n+1}-a_n,2a_{n+1})$ 都是直线 y=kx 的法向量. 若 $\lim_{n\to\infty}S_n$ 存在, 则实数 k 的取值范围是_____

(000663) 已知正四棱锥 P-ABCD 的棱长都相等, 侧棱 PB、PD 的中点分别为 M、N, 则截面 AMN 与底 面 ABCD 所成的二面角的余弦值是_

(000664) 设 a > 0, 若对于任意的 x > 0, 都有 $\frac{1}{a} - \frac{1}{x} \le 2x$, 则 a 的取值范围是______.

(000665) 若适合不等式 $|x^2 - 4x + k| + |x - 3| \le 5$ 的 x 的最大值为 3, 则实数 k 的值为______.

(000666) 已知集合
$$A = \{x | \frac{x-2}{x+1} \ge 0\}$$
, 集合 $B = \{y | 0 \le y < 4\}$, 则 $A \cap B =$ ______.

$$(000667)$$
 若直线 l 的参数方程为 $\begin{cases} x = 4 - 4t, \\ y = -2 + 3t, \end{cases}$ $t \in \mathbf{R}$,则直线 l 在 y 轴上的截距是______.

(000668) 已知圆锥的母线长为 4, 母线与旋转轴的夹角为 30°, 则该圆锥的侧面积为_____

$$(000669)$$
 抛物线 $y = \frac{1}{4}x^2$ 的焦点到准线的距离为______.

$$(000670)$$
 已知关于 x,y 的二元一次方程组的增广矩阵为 $\begin{pmatrix} 2 & 1 & 5 \\ 1 & -2 & 0 \end{pmatrix}$,则 $3x-y=$ ______.

(000671) 若三个数 a_1, a_2, a_3 的方差为 1, 则 $3a_1 + 2, 3a_2 + 2, 3a_3 + 2$ 的方差为______

(000672) 已知射手甲击中 A 目标的概率为 0.9, 射手乙击中 A 目标的概率为 0.8, 若甲、乙两人各向 A 目标射击一次, 则射手甲或射手乙击中 A 目标的概率是______.

$$(000673)$$
 函数 $y = \sin(\frac{\pi}{6} - x), \ x \in [0, \frac{3}{2}\pi]$ 的单调递减区间是______.

$$(000674)$$
 已知等差数列 $\{a_n\}$ 的公差为 2 , 前 n 项和为 S_n , 则 $\lim_{n\to\infty}\frac{S_n}{a_na_{n+1}}=$ _______.

 $(000675) \ \textbf{已知定义在 R} \ \textbf{上的函数} \ f(x) \ 满足: ① \ f(x) + f(2-x) = 0; ② \ f(x) - f(-2-x) = 0; ③ \ \textbf{在} \ [-1,1]$ 上的表达式为 $f(x) = \begin{cases} \sqrt{1-x^2}, & x \in [-1,0], \\ 1-x, & x \in (0,1] \end{cases}, \ \textbf{则函数} \ f(x) \ \textbf{与函数} \ g(x) = \begin{cases} 2^x, & x \leq 0, \\ \log_{\frac{1}{2}}x, & x > 0 \end{cases}$ 的图像在区间 $\begin{bmatrix} -3 \ 3 \end{bmatrix} \ \textbf{上的态点的个数为}$

(000676) 函数 $y = 2\sin^2(2x) - 1$ 的最小正周期是______.

(000677) 设 i 为虚数单位, 复数
$$z = \frac{1-2i}{2+i}$$
, 则 $|z| =$ _____.

(000678) 设
$$f^{-1}(x)$$
 为 $f(x) = \frac{2x}{x+1}$ 的反函数, 则 $f^{-1}(1) =$ ______.

$$(000679) \lim_{n \to \infty} \frac{2^{n+1} + 3^{n+1}}{2^n + 3^n} = \underline{\hspace{1cm}}.$$

(000680) 若圆锥的侧面积是底面积的 2 倍,则其母线与轴所成角的大小是_____

(000681) 设等差数列
$$\{a_n\}$$
 的前 n 项和为 S_n , 若 $\frac{a_5}{a_3} = \frac{5}{3}$, 则 $\frac{S_5}{S_3} =$ ______.

(000683) 已知双曲线 C_1 与双曲线 C_2 的焦点重合, C_1 的方程为 $\frac{x^2}{3}-y^2=1$, 若 C_2 的一条渐近线的倾斜角色 C_1 的一条渐近线的倾斜角的 2 倍, 则 C_2 的方程为______.

(000684) 若 $f(x) = x^{\frac{1}{3}} - x^{-\frac{1}{2}}$, 则满足 f(x) > 0 的 x 的取值范围是______.

(000685) 某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为 $\frac{2}{3}$ 和 $\frac{3}{5}$. 现安排甲组研发新产品 A, 乙组研发新产品 B, 设甲、乙两组的研发相互独立, 则至少有一种新产品研发成功的概率为

(000686) 已知集合 $A = \{x | x > -1, x \in \mathbf{R}\},$ 集合 $B = \{x | x < 2, x \in \mathbf{R}\},$ 则 $A \cap B =$

(000687) 已知复数 z 满足 $(2-3\mathrm{i})z=3+2\mathrm{i}(i$ 为虚数单位),则 |z|=______

$$(000688)$$
 函数 $f(x) = \begin{vmatrix} \sin x & 2\cos x \\ 2\cos x & \sin x \end{vmatrix}$ 的最小正周期是______

(000690) 若圆柱的侧面展开图是边长为 4cm 的正方形, 则圆柱的体积为____cm³(结果精确到 0.1cm³).

$$(000691)$$
 已知 x,y 满足
$$\begin{cases} x-y \leq 0, \\ x+y \leq 2, & \text{则 } z=2x+y \text{ 的最大值是} \\ x+2 \geq 0, \end{cases}$$

$$(000692) \; 直线 \begin{cases} x=t-1, \\ y=2-t, \end{cases} \quad (t \; \pmb{ \mathsf{ >b} }) \; 与曲线 \begin{cases} x=3\cos\theta, \\ y=2\sin\theta, \end{cases} \quad (\theta \; \pmb{ \mathsf{ >b} }) \; \textbf{ 的交点个数是} \underline{ } .$$

(000694) 设多项式 $1+x+(1+x)^2+(1+x)^3+\cdots+(1+x)^n \ (x\neq 0,\ n\in \mathbf{N}^*)$ 的展开式中 x 项的系数为 T_n 则 $\lim_{n\to\infty}\frac{T_n}{n^2}=$ ______.

(000695) 生产零件需要经过两道工序, 在第一、第二道工序中产生废品的概率分别为 0.01 和 p, 每道工序产生 废品相互独立. 若经过两道工序后得到的零件不是废品的概率是 0.9603, 则 p =_____

(000697) 设实数 $\omega > 0$, 若函数 $f(x) = \cos(\omega x) + \sin(\omega x)$ 的最小正周期为 π , 则 $\omega =$

(000698) 已知圆锥的底面半径和高均为 1, 则该圆锥的侧面积为 .

(000699) 设向量 $\overrightarrow{a}=(2,3)$, 向量 $\overrightarrow{b}=(6,t)$. 若 \overrightarrow{a} 与 \overrightarrow{b} 的夹角为钝角, 则实数 t 的取值范围为______.

(000700) 集合 $A = \{1, 3, a^2\}$, 集合 $B = \{a+1, a+2\}$. 若 $B \cup A = A$, 则实数 a =_______

(000701) 设 z_1, z_2 是方程 $z^2 + 2z + 3 = 0$ 的两根, 则 $|z_1 - z_2| = ...$

(000702) 设 f(x) 是定义在 R 上的奇函数, 当 x > 0 时, $f(x) = 2^x - 3$. 则不等式 f(x) < -5 的解为______

$$\begin{cases} x+y \leq 12, \\ 2x-y \geq 0, & \text{则 } z=y-x \text{ 的最小值为} \\ x-2y \leq 0, \end{cases}$$

(000704) 小明和小红各自掷一颗均匀的正方体骰子, 两人相互独立地进行. 则小明掷出的点数不大于 2 或小红掷出的点数不小于 3 的概率为______.

(000705) 设 A 是椭圆 $\frac{x^2}{a^2} + \frac{y^2}{a^2 - 4} = 1$ (a > 0) 上的动点,点 F 的坐标为 (-2,0),若满足 |AF| = 10 的点 A 有且仅有两个,则实数 a 的取值范围为______.

- (000706) 设全集 $U = \mathbf{R}$, 若集合 $A = \{2\}, B = \{x | -1 < x < 2\}$, 则 $A \cap (\mathbf{C}_U B) = \underline{\hspace{1cm}}$
- (000707) 设抛物线的焦点坐标为 (1,0), 则此抛物线的标准方程为_____.

(000708) 某次体检, 8 位同学的身高 (单位: 米) 分别为. 1.68, 1.71, 1.73, 1.63, 1.81, 1.74, 1.66, 1.78, 则这组数据的中位数是_____(米).

- (000709) 函数 $f(x) = 2 \sin 4x \cos 4x$ 的最小正周期为______.
- (000710) 已知球的俯视图面积为 π, 则该球的表面积为_____

$$(000711)$$
 若线性方程组的增广矩阵为 $\begin{pmatrix} 1 & 2 & c_1 \\ 2 & 0 & c_2 \end{pmatrix}$ 、解为 $\begin{cases} x=1, \\ y=3, \end{cases}$

(000712) 在报名的 8 名男生和 5 名女生中, 选取 6 人参加志愿者活动, 要求男、女生都有, 则不同的选取方式的种数为_____(结果用数值表示).

(000713) 设无穷等比数列 $\{a_n\}$ 的公比为 q, 若 $a_2 = \lim_{n \to \infty} (a_4 + a_5 + \cdots + a_n)$, 则 $q = \underline{\hspace{1cm}}$.

$$(000714) \ \textbf{若事件} \ A \text{、} B \ 满足 \ P(A) = \frac{1}{2}, \ P(B) = \frac{4}{5}, \ P(AB) = \frac{2}{5}, \ \text{则} \ P(\overline{A}B) - P(A\overline{B}) = \underline{\hspace{1cm}}.$$

(000715) 设奇函数 f(x) 的定义域为 \mathbf{R} , 当 x>0 时, $f(x)=x+\frac{m^2}{x}-1$ (这里 m 为正常数). 若 $f(x)\leq m-2$ 对一切 $x\leq 0$ 成立, 则 m 的取值范围为______.

(000716) 已知集合 $U = \{-1, 0, 1, 2, -3\}, A = \{-1, 0, 2\}, 则 <math>C_U A = \underline{\hspace{1cm}}$.

$$(000717)$$
 已知一个关于 x,y 的二元一次方程组的增广矩阵是 $\begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 2 \end{pmatrix}$,则 $x+y=$ ______

(000718)i 是虚数单位, 若复数 (1-2i)(a+i) 是纯虚数, 则实数 a 的值为_____.

(000719) 若
$$\begin{vmatrix} \log_2 x & -1 \\ -4 & 2 \end{vmatrix} = 0$$
, 则 $x =$ _____.

(000720) 我国古代数学名著《九章算术》有"米谷粒分"题: 粮仓开仓收粮, 有人送来米 1534 石, 验得米内夹 谷, 抽样取米一把, 数得 254 粒内夹谷 28 粒, 则这批米内夹谷约为_____ 石 (精确到小数点后一位数字). (000721) 已知圆锥的母线长为 5, 侧面积为 15π , 则此圆锥的体积为_____(结果保留 π). (000723) 已知椭圆 $\frac{x^2}{a^2} + y^2 = 1 \ (a > 0)$ 的焦点 F_1 、 F_2 , 抛物线 $y^2 = 2x$ 的焦点为 F,若 $\overrightarrow{F_1F} = 3\overrightarrow{FF_2}$,则 (000724) 设 f(x) 是定义在 R 上以 2 为周期的偶函数, 当 $x \in [0,1]$ 时, $f(x) = \log_2(x+1)$, 则函数 f(x) 在 [1,2] 上的解析式是 P(x,y) 构成的区域面积为 (000727) 已知半径为 2R 和 R 的两个球,则大球和小球的体积比为____ (000728) 抛物线 $y = x^2$ 的焦点坐标是____ (000729) 已知实数 x,y 满足 $\begin{cases} x-2 \leq 0, \\ y-1 \leq 0, \end{cases}$ 则目标函数 u=x+2y 的最大值是______. $x+y \geq 2,$ (000732) 设 z 是复数,a(z) 表示满足 $z^n=1$ 时的最小正整数 n, i 是虚数单位,则 $a(\frac{1+\mathrm{i}}{1-\mathrm{i}})=$ (000733) 无穷等比数列 $\{a_n\}$ 的通项公式 $a_n=(\sin x)^n$, 前 n 项的和为 S_n , 若 $\lim_{n\to\infty}S_n=1,\ x\in(0,\pi)$, 则 (000734) 给出下列函数: ① $y = x + \frac{1}{x}$; ② $y = x^2 + x$; ③ $y = 2^{|x|}$; ④ $y = x^{\frac{2}{3}}$; ⑤ $y = \tan x$; ⑥ $y = \sin(\arccos x)$; ⑦ $y = \lg(x + \sqrt{x^2 + 4}) - \lg 2$. 从这 7 个函数中任取两个函数,则其中一个是奇函数另一个是偶函数的概率 (000735) 代数式 $(x^2+2)(\frac{1}{x^2}-1)^5$ 的展开式的常数项是_____(用数字作答).

(000736) 已知全集 $U = \mathbf{R}$, 集合 $A = \{x|x^2 - 2x - 3 > 0\}$, 则 $\mathcal{C}_U A = \underline{\hspace{1cm}}$.

$$(000737)$$
 在 $(x+\frac{1}{x})^6$ 的二项展开式中,常数项是______.

$$(000738)$$
 函数 $f(x) = \lg(3^x - 2^x)$ 的定义域为______.

(000739) 已知抛物线
$$x^2 = ay$$
 的准线方程是 $y = -\frac{1}{4}$, 则 $a =$ _____.

$$(000740)$$
 若一个球的体积为 $\frac{32\pi}{3}$, 则该球的表面积为______.

$$(000741)$$
 已知实数 x,y 满足
$$\begin{cases} x\geq 0,\\ y\geq 0, \end{cases}$$
 则目标函数 $z=x-y$ 的最小值为_____.
$$x+y\leq 1,$$

(000743) 若一圆锥的底面半径为 3, 体积是 12π , 则该圆锥的侧面积等于______

(000744) 将两颗质地均匀的骰子抛掷一次,记第一颗骰子出现的点数是 m,记第二颗骰子出现的点数是 n,向量 $\overrightarrow{a}=(m-2,2-n)$,向量 $\overrightarrow{b}=(1,1)$,则向量 $\overrightarrow{a}\perp\overrightarrow{b}$ 的概率是______.

(000745) 已知直线 $l_1: mx - y = 0$, $l_2: x + my - m - 2 = 0$. 当 m 在实数范围内变化时, l_1 与 l_2 的交点 P 恒在一个定圆上, 则定圆方程是______.

$$(000746)$$
 已知 $A = (-\infty, a], B = [1, 2],$ 且 $A \cap B \neq \emptyset$, 则实数 a 的范围是______.

$$(000747)$$
 直线 $ax + (a-1)y + 1 = 0$ 与直线 $4x + ay - 2 = 0$ 互相平行, 则实数 $a =$ ______.

(000748) 已知
$$\alpha \in (0,\pi), \cos \alpha = -\frac{3}{5},$$
 则 $\tan(\alpha + \frac{\pi}{4}) =$ _____.

(000749) 长方体的对角线与过同一个顶点的三个表面所成的角分别为 α , β , γ , 则 $\cos^2\alpha + \cos^2\beta + \cos^2\gamma =$ ______

(000750) 已知函数
$$f(x) = \begin{cases} -x^2, & x \ge 0, \\ 2^{-x} - 1, & x < 0, \end{cases}$$
则 $f^{-1}[f^{-1}(-9)] = \underline{\qquad}$.

(000751) 从集合 $\{-1,1,2,3\}$ 随机取一个为 m,从集合 $\{-2,-1,1,2\}$ 随机取一个为 n,则方程 $\frac{x^2}{m}+\frac{y^2}{n}=1$ 表示双曲线的概率为_______.

(000752) 已知数列 $\{a_n\}$ 是公比为 q 的等比数列, 且 a_2, a_4, a_3 成等差数列, 则 q =______.

$$(000753)$$
 若将函数 $f(x) = x^6$ 表示成 $f(x) = a_0 + a_1(x-1) + a_2(x-1)^2 + a_3(x-1)^3 + \cdots + a_6(x-1)^6$ 则 a_3 的值等于______.

(000754) 如图, 长方体 $ABCD - A_1B_1C_1D_1$ 的边长 $AB = AA_1 = 1$, $AD = \sqrt{2}$,它的外接球是球 O,则 A, A_1 这两点的球面距离等于_______.

(000755) 椭圆的长轴长等于 m, 短轴长等于 n, 则此椭圆的内接矩形的面积的最大值为______

(000756) 已知集合 $A = \{1, 2, 3\}B = \{1, m\}$, 若 $3 - m \in A$, 则非零实数 m 的数值是_____.

(000757) 不等式 |1-x| > 1 的解集是______.

(000758) 若函数 $f(x) = \sqrt{8 - ax - 2x^2}$ 是偶函数, 则该函数的定义域是______.

(000759) 已知 $\triangle ABC$ 的三内角 A,B,C 所对的边长分别为 a,b,c, 若 $a^2=b^2+c^2-2bc\sin A$, 则内角 A 的大小是______.

(000760) 已知向量 \overrightarrow{a} 在向量 \overrightarrow{b} 方向上的投影为 -2, 且 $|\overrightarrow{b}|=3$, 则 $\overrightarrow{a}\cdot\overrightarrow{b}=$ _____(结果用数值表示).

(000761) 方程 $\log_3(3 \cdot 2^x + 5) - \log_3(4^x + 1) = 0$ 的解 x =_____.

(000762) 已知函数 $f(x) = \begin{vmatrix} 2\sin x & -\cos 2x \\ 1 & \cos x \end{vmatrix}$, 则函数 f(x) 的单调递增区间是______.

(000763) 已知 α 是实系数一元二次方程 $x^2-(2m-1)x+m^2+1=0$ 的一个虚数根, 且 $|\alpha|\leq 2$, 则实数 m 的取值范围是______.

(000765) 将一枚质地均匀的硬币连续抛掷 5 次,则恰好有 3 次出现正面向上的概率是_____(结果用数值表示).

(000766) 函数 $y = 3\sin(2x + \frac{\pi}{3})$ 的最小正周期 T=______.

(000767) 函数 $y = \lg x$ 的反函数是______

(000768) 已知集合 $P = \{x | (x+1)(x-3) < 0\}, Q = \{x | |x| > 2\}, 则 P \cap Q = \underline{\hspace{1cm}}$

(000769) 函数 $y = x + \frac{9}{x}, x \in (0, +\infty)$ 的最小值是______.

(000770) 计算: $\lim_{n\to\infty} \left[\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + (\frac{1}{2})^n\right] = \underline{\hspace{1cm}}$.

(000771) 记球 O_1 和 O_2 的半径、体积分别为 r_1 、 V_1 和 r_2 、 V_2 ,若 $\frac{V_1}{V_2}=\frac{8}{27}$,则 $\frac{r_1}{r_2}=$ ______.

(000772) 若某线性方程组对应的增广矩阵是 $\begin{pmatrix} m & 4 & 2 \\ 1 & m & m \end{pmatrix}$,且此方程组有唯一一组解,则实数 m 的取值范围是

(000773) 若一个布袋中有大小、质地相同的三个黑球和两个白球, 从中任取两个球, 则取出的两球中恰是一个白球和一个黑球的概率是______.

 $(000774)(1+2x)^n$ 的二项展开式中, 含 x^3 项的系数等于含 x 项的系数的 8 倍, 则正整数 $n = _____$.

(000775) 平面上三条直线 x-2y+1=0, x-1=0, x+ky=0, 如果这三条直线将平面划分为六个部分,则 实数 k 的取值组成的集合 A=______.

(000776) 已知集合 $A = \{1,3,5,7,9\}, B = \{0,1,2,3,4,5\},$ 则图中阴影部分集合用列举法表示的结果是_____

(000777) 若复数 z 满足 z(1-i)=2i(i 是虚数单位), 则 |z|=_____.

(000778) 函数 $y = \sqrt{\lg(x+2)}$ 的定义域为_____.

(000779) 在从 4 个字母 asbscsd 中任意选出 2 个不同字母的试验中, 其中含有字母 d 事件的概率是______

(000781) 如图, 以长方体 $ABCD-A_1B_1C_1D_1$ 的顶点 D 为坐标原点, 过 D 的三条棱所在的直线为坐标轴, 建立空间直角坐标系, 若 $\overrightarrow{DB_1}$ 的坐标为 (4,3,2), 则 $\overrightarrow{BD_1}$ 的坐标为_____.

(000782) 方程
$$\cos 2x = -\frac{\sqrt{3}}{2}$$
 的解集为______.

(000783) 已知抛物线的顶点在坐标原点,焦点在 y 轴上,抛物线上一点 M(a,-4) (a>0) 到焦点 F 的距离为 5. 则该抛物线的标准方程为______.

(000784) 已知等比数列 $\{a_n\}$ 的前 n 项和为 $S_n(n \in \mathbf{N}*)$,且 $\frac{S_6}{S_3} = -\frac{19}{8}$, $a_4 - a_2 = -\frac{15}{8}$,则 a_3 的值为_______.

(000785) 在直角三角形 ABC 中, $\angle A=\frac{\pi}{2},\ AB=3,\ AC=4,\ E$ 为三角形 ABC 内一点,且 $AE=\frac{\sqrt{2}}{2}$.若 $\overrightarrow{AE}=\lambda\overrightarrow{AB}+\mu\overrightarrow{AC},\$ 则 $3\lambda+4\mu$ 的最大值等于______.

(000786) 双曲线 $\frac{x^2}{a^2} - \frac{y^2}{9} = 1$ (a > 0) 的渐近线方程为 $3x \pm 2y = 0$, 则 a =______.

(000788) 设 $m \in \mathbb{R}$, 若复数 (1+mi)(1+i) 在复平面内对应的点位于实轴上, 则 m =_____.

(000789) 定义在 R 上的函数 $f(x) = 2^x - 1$ 的反函数为 $y = f^{-1}(x)$, 则 $f^{-1}(3) =$ ______

$$(000790)$$
 直线 l 的参数方程为
$$\begin{cases} x=1+t, & (t\ { extstyle { extstyle b}} \),\ { extstyle { extstyle b}} \).$$

(000791) 已知数列 $\{a_n\}$, 其通项公式为 $a_n=3n+1, n\in \mathbf{N}^*, \{a_n\}$ 的前 n 项和为 S_n , 则 $\lim_{n\to\infty}\frac{S_n}{n\cdot a_n}=$ _______.

(000792) 已知向量 \overrightarrow{a} 、 \overrightarrow{b} 的夹角为 60° , $|\overrightarrow{a}|=1$, $|\overrightarrow{b}|=2$, 若 $(\overrightarrow{a}+2\overrightarrow{b})\perp(x\overrightarrow{a}-\overrightarrow{b})$, 则实数 x 的值为______.

(000793) 若球的表面积为 100π , 平面 α 与球心的距离为 3, 则平面 α 截球所得的圆面面积为______.

(000794) 若平面区域的点 (x,y) 满足不等式 $\frac{|x|}{k} + \frac{|y|}{4} \le 1$ (k>0),且 z=x+y 的最小值为 -5,则常数 k=

(000795) 若函数 $f(x) = \log_a(x^2 - ax + 1)$ $(a > 0, a \neq 1)$ 没有最小值, 则 a 的取值范围是______.

$$(000796) \lim_{n \to \infty} \frac{2n+1}{n-1} = \underline{\hspace{1cm}}.$$

(000797) 不等式 $\frac{x}{x-1} < 0$ 的解集为______.

(000799) 已知 $f^{-1}(x)$ 是函数 $f(x) = \log_2(x+1)$ 的反函数, 则 $f^{-1}(2) =$ ______. $(000800)(\sqrt{x} + \frac{1}{x})^9$ 二项展开式中的常数项为______. (000801) 椭圆 $\begin{cases} x=2\cos\theta, \\ y=\sqrt{3}\sin\theta \end{cases}$ $(\theta$ 为参数) 的右焦点为_____. $\begin{cases} x+2y\leq 4,\\ 2x+y\leq 3,\\ x\geq 0,\\ u>0 \end{cases}$ 的目标函数 f=3x+2y 的最大值为_____. (000803) 函数 $f(x) = \cos^2 x + \frac{\sqrt{3}}{2} \sin 2x, \ x \in \mathbf{R}$ 的单调递增区间为______. (000804) 已知抛物线型拱桥的顶点距水面 2 米时, 量得水面宽为 8 米. 当水面下降 1 米后, 水面的宽为_ 米. (000805) 一个四面体的顶点在空间直角坐标系 O-xyz 中的坐标分别是 (0,0,0),(1,0,1),(0,1,1),(1,1,0), 则 该四面体的体积为 (000806) 抛物线 $x^2 = 12y$ 的准线方程为______. (000807) 若函数 $f(x) = \frac{1}{x-2m+1}$ 是奇函数, 则实数 m =_____. (000808) 若函数 $f(x) = \sqrt{2x+3}$ 的反函数为 g(x), 则函数 g(x) 的零点为 (000809) 书架上有上、中、下三册的《白话史记》和上、下两册的《古诗文鉴赏辞典》, 现将这五本书从左到 右摆放在一起,则中间位置摆放中册《白话史记》的不同摆放种数为____(结果用数值表示). (000810) 在锐角三角形 ABC 中, 角 A、B、C 的对边分别为 a、b、c, 若 $(b^2+c^2-a^2)\tan A=bc$, 则角 A 的 大小为 (000811) 若 $(x^3 - \frac{1}{x^2})^n$ 的展开式中含有非零常数项,则正整数 n 的最小值为______. (000812) 某单位年初有两辆车参加某种事故保险, 对在当年内发生此种事故的每辆车, 单位均可获赔(假设每 辆车最多只获一次赔偿). 设这两辆车在一年内发生此种事故的概率分别为 $\frac{1}{20}$ 和 $\frac{1}{21}$, 且各车是否发生事故相 互独立,则一年内该单位在此种保险中获赔的概率为____(结果用最简分数表示).

(000813) 在平面直角坐标系 xOy 中,直线 l 的参数方程为 $\begin{cases} x=\frac{\sqrt{2}}{2}t-\sqrt{2}, \\ y=\frac{\sqrt{2}}{4}t, \end{cases}$ (t 为参数),椭圆 C 的参数方程 $\begin{cases} x=\cos\theta, \\ y=\frac{1}{2}\sin\theta, \end{cases}$ $(\theta$ 为参数),则直线 l 与椭圆 C 的公共点坐标为______.

(000814) 设函数 $f(x) = \log_m x (m > 0$ 且 $m \neq 1)$,若 m 是等比数列 $\{a_n\} (n \in \mathbb{N}^*)$ 的公比,且 $f(a_2 a_4 a_6 \cdots a_{2018}) = 7$,则 $f(a_1^2) + f(a_2^2) + f(a_3^2) + \cdots + f(a_{2018}^2)$ 的值为______.

 $\begin{cases} x-y\geq 0,\\ 2x+y\leq 2,\\ y\geq 0,\\ x+y\leq m, \end{cases}$ 若该条件表示的平面区域是三角形,则实数 m 的取值范围 $\begin{cases} x-y\geq 0,\\ x+y\leq m, \end{cases}$

是_____

(000816) 不等式 |x-3| < 2 的解集为_____.

(000817) 若复数 z 满足 $2\overline{z} - 3 = 1 + 5i(i$ 是虚数单位), 则 z =_____.

(000818) 若
$$\sin \alpha = \frac{1}{3}$$
, 则 $\cos(\alpha - \frac{\pi}{2}) =$ _____.

- (000819) 已知两个不同向量 $\overrightarrow{OA}=(1,m),$ $\overrightarrow{OB}=(m-1,2),$ 若 $\overrightarrow{OA}\perp\overrightarrow{AB},$ 则实数 $m=___$.

(000820) 在等比数列 $\{a_n\}$ 中, 公比 q=2, 前 n 项和为 S_n , 若 $S_5=1$, 则 $S_{10}=$ ______.

$$(000821)$$
 若 x,y 满足 $\begin{cases} x \le 2, \\ x-y+1 \ge 0, & \text{则 } z=2x-y \text{ 的最小值为}___. \\ x+y-2 \ge 0, \end{cases}$

 $(000823)(1+\frac{1}{x^2})(1+x)^6$ 展开式中 x^2 的系数为______.

(000824) 已知 f(x) 是定义在 [-2,2] 上的奇函数, 当 $x \in (0,2]$ 时, $f(x) = 2^x - 1$, 函数 $g(x) = x^2 - 2x + m$. 如果对于任意的 $x_1 \in [-2,2]$, 总存在 $x_2 \in [-2,2]$, 使得 $f(x_1) \leq g(x_2)$, 则实数 m 的取值范围是______.

(000825) 已知曲线 $C:y=-\sqrt{9-x^2},$ 直线 l:y=2, 若对于点 A(0,m), 存在 C 上的点 P 和 l 上的点 Q, 使得 $\overrightarrow{AP}+\overrightarrow{AQ}=\overrightarrow{0},$ 则 m 取值范围是______.

(000826) 函数 $y = \lg x - 1$ 的零点是______.

$$(000827)$$
 计算: $\lim_{n\to\infty} \frac{2n}{4n+1} =$ _____.

(000828) 若 $(1+3x)^n$ 的二项展开式中 x^2 项的系数是 54, 则 n =_____.

(000829) 掷一颗均匀的骰子, 出现奇数点的概率为_____.

(000831) 若复数 z 满足 |z| = 1, 则 |z - i| 的最大值是_____.

(000832) 若一个圆锥的主视图 (如图所示) 是边长为 3,3,2 的三角形, 则该圆锥的体积是_____

(000833) 若双曲线 $\frac{x^2}{3} - \frac{16y^2}{p^2} = 1 \; (p > 0)$ 的左焦点在抛物线 $y^2 = 2px$ 的准线上,则 p =______.

(000834) 若 $\sin(x-y)\cos x - \cos(x-y)\sin x = \frac{3}{5}$, 则 $\tan 2y$ 的值为_____.

(000836) 已知集合 $A = \{1,2,m\}, B = \{2,4\},$ 若 $A \cup B = \{1,2,3,4\},$ 则实数 $m = _$ _____.

 $(000837)(x+\frac{1}{x})^n$ 的展开式中的第 3 项为常数项, 则正整数 n=_____.

(000838) 已知复数 z 满足 $z^2 = 4 + 3i(i$ 为虚数单位), 则 |z| =_____.

(000839) 已知平面直角坐标系 xOy 中动点 P(x,y) 到定点 (1,0) 的距离等于 P 到定直线 x=-1 的距离,则点 P 的轨迹方程为______.

(000840) 已知数列 $\{a_n\}$ 是首项为 1, 公差为 2 的等差数列, S_n 是其前 n 项和, 则 $\lim_{n\to\infty} \frac{S_n}{a_n^2} =$ ______.

$$(000841)$$
 设变量 x,y 满足条件
$$\begin{cases} x\geq 1,\\ x+y-4\leq 0, \end{cases}$$
 则目标函数 $z=3x-y$ 的最大值为______.
$$x-3y+4\leq 0,$$

(000842) 将圆心角为 $\frac{2\pi}{3}$,面积为 3π 的扇形围成一个圆锥的侧面,则此圆锥的体积为______.

(000843) 三棱锥 P-ABC 及其三视图中的主视图和左视图如图所示, 则棱 PB 的长为_____

(000844) 某商场举行购物抽奖促销活动, 规定每位顾客从装有编号为 0、1、2、3 的四个相同小球的抽奖箱中, 每次取出一球记下编号后放回, 连续取两次, 若取出的两个小球编号相加之和等于 6, 则中一等奖, 等于 5 中二 等奖,等于4或3中三等奖.则顾客抽奖中三等奖的概率为______

(000845) 已知函数 $f(x) = \lg(\sqrt{x^2 + 1} + ax)$ 的定义域为 R, 则实数 a 的取值范围是

(000846) 已知全集 $U = \mathbf{R}$, 若集合 $A = \{x | \frac{x}{x-1} > 0\}$, 则 $C_U A = \underline{\hspace{1cm}}$.

(000847) 已知复数 z 满足 $z \cdot (1-i) = 2i$, 其中 i 为虚数单位, 则 $|z| = ______$

(000848) 双曲线 $2x^2 - y^2 = 6$ 的焦距为______.

(000849) 已知 $(ax + \frac{1}{x})^6$ 二项展开式中的第五项系数为 $\frac{15}{2}$, 则正实数 a______.

(000850) 方程 $\log_2(9^x + 7) = 2 + \log_2(3^x + 1)$ 的解为_____

(000851) 已知函数 $f(x)=rac{3x+1}{x+a}\;(a
eqrac{1}{3})$ 的图像与它的反函数的图像重合,则实数 a 的值为______.

(000852) 在 $\triangle ABC$ 中, 边 a,b,c 所对角分别为 A,B,C, 若 $\begin{vmatrix} a & \sin(\frac{\pi}{2}+B) \\ b & \cos A \end{vmatrix} = 0$, 则 $\triangle ABC$ 的形状为______.

(000853) 若某几何体的三视图 (单位:cm) 如图所示, 则此几何体的体积是

(000854) 已知四面体 ABCD 中, $AB=CD=2,\,E,\,F$ 分别为 $BC,\,AD$ 的中点, 且异面直线 AB 与 CD 所成的角为 $\frac{\pi}{3},\,$ 则 $EF=___$

(000855) 设 m,n 分别为连续两次投掷骰子得到的点数,且向量 $\overrightarrow{a}=(m,n), \overrightarrow{b}=(1,-1),$ 则 \overrightarrow{a} 与 \overrightarrow{b} 的夹角为锐角的概率是______.

(000856) 已知数列 $\{a_n\}$ 的通项公式为 $a_n = (-1)^n \cdot n + 2^n, \ n \in \mathbf{N}^*,$ 则这个数列的前 2n 项和 $S_{2n} =$ ______.

(000857) 设集合
$$A = \{x | |x| < 2, \ x \in \mathbf{R}\}, B = \{x | x^2 - 4x + 3 \ge 0, \ x \in \mathbf{R}\},$$
则 $A \cap B =$ ______.

(000858) 已知 i 为虚数单位, 复数 z 满足
$$\frac{1-z}{1+z}$$
 = i, 则 $|z|$ =_____.

(000859) 设 a > 0 且 $a \neq 1$, 若函数 $f(x) = a^{x-1} + 2$ 的反函数的图像经过定点 P, 则点 P 的坐标是______

(000860) 计算:
$$\lim_{n\to\infty} \frac{P_n^2 + C_n^2}{(n+1)^2} =$$

(000861) 在平面直角坐标系内,直线 l: 2x+y-2=0,将 l 与两条坐标轴围成的封闭图形绕 y 轴旋转一周,所得几何体的体积为______.

(000862) 已知
$$\sin 2\theta + \sin \theta = 0, \theta \in (\frac{\pi}{2}, \pi)$$
, 则 $\tan 2\theta =$ _____.

(000863) 设定义在 R 上的奇函数 y = f(x), 当 x > 0 时, $f(x) = 2^x - 4$, 则不等式 $f(x) \le 0$ 的解集是______.

(000864) 在平面直角坐标系 xOy 中,有一定点 A(1,1),若线段 OA 的垂直平分线过抛物线 $C:y^2=2px\ (p>0)$ 的焦点,则抛物线 C 的方程为______.

(000866) 记 $(2x + \frac{1}{x})^n$ $(n \in \mathbf{N}^*)$ 的展开式中第 m 项的系数为 b_m , 若 $b_3 = 2b_4$, 则 n =______.

(000867) 已知各项均为正数的数列 $\{a_n\}$ 满足 $\sqrt{a_1}+\sqrt{a_2}+\cdots+\sqrt{a_n}=n^2+3n(n\in {\bf N}^*),$ 则 $\frac{a_1}{2}+\frac{a_2}{3}+\cdots+\frac{a_n}{n+1}=$ _____.

$$(000868)$$
 函数 $f(x) = \frac{\sqrt{x+2}}{x-1}$ 的定义域为______.

$$(000869)$$
 已知线性方程组的增广矩阵为 $\begin{pmatrix} 1 & -1 & 3 \\ a & 3 & 4 \end{pmatrix}$,若该线性方程组的解为 $\begin{pmatrix} -1 \\ 2 \end{pmatrix}$,则实数 $a =$ ______.

(000870) 计算
$$\lim_{n\to\infty} \frac{1+2+3+\cdots+n}{n^2+1} = \underline{\hspace{1cm}}$$

$$(000871) \ \textbf{ 若向量} \ \overrightarrow{a} \ , \ \overrightarrow{b} \ \ \textbf{满足} \ |\overrightarrow{a}| = 1, \ |\overrightarrow{b}| = 2, \ \underline{\textbf{L}} \ \overrightarrow{a} \ \textbf{与} \ \overrightarrow{b} \ \ \textbf{的夹角为} \ \frac{\pi}{3}, \ \underline{\textbf{y}} \ |\overrightarrow{a} + \overrightarrow{b}| = \underline{\hspace{1cm}}.$$

(000872) 若复数
$$z_1 = 3 + 4i$$
, $z_2 = 1 - 2i$, 其中 i 是虚数单位, 则复数 $\frac{|z_1|}{i} + \overline{z_2}$ 的虚部为______.

 $(000873)(\frac{1}{x}-\sqrt{x})^6$ 的展开式中,常数项为______.

(000874) 已知 $\triangle ABC$ 的内角 A、B、C 所对应边的长度分别为 a、b、c, 若 $\begin{vmatrix} a & c \\ c & a \end{vmatrix} = \begin{vmatrix} -b & -a \\ b & b \end{vmatrix}$, 则角 C 的大小是

(000875) 已知等比数列 $\{a_n\}$ 的各项均为正数,且满足: $a_1a_7=4$,则数列 $\{\log_2 a_n\}$ 的前 7 项之和为_______

(000876) 已知双曲线 $x^2-\frac{y^2}{4}=1$ 的右焦点为 F,过点 F 且平行于双曲线的一条渐近线的直线与双曲线交于点 P,M 在直线 PF 上,且满足 $\overrightarrow{OM}\cdot\overrightarrow{PF}=0$,则 $\frac{|\overrightarrow{PM}|}{|\overrightarrow{PF}|}=$ ______.

(000877) 现有 5 位教师要带 3 个班级外出参加志愿者服务,要求每个班级至多两位老师带队,且教师甲、乙不能单独带队,则不同的带队方案有_____(用数字作答).

(000878) 抛物线 $y^2 = 4x$ 的焦点坐标是_____.

(000879) 若集合 $A = \{x|3x+1>0\}$, $B = \{x||x-1|<2\}$, 则 $A \cap B =$ _____.

(000881) 若复数 z 满足 $\frac{1-\mathrm{i}}{z}=-\mathrm{i}$, 其中 i 为虚数单位, 则 z=______.

(000882) 求值:
$$\begin{vmatrix} \arcsin \frac{\sqrt{3}}{2} & 2 \\ \arctan \frac{\sqrt{3}}{3} & 3 \end{vmatrix} =$$
______ 弧度.

(000883) 已知 $\overrightarrow{AB} = 3\overrightarrow{AP}$, 设 $\overrightarrow{BP} = \lambda \overrightarrow{PA}$, 则实数 $\lambda =$

(000884) 函数
$$y = \sqrt{x^2 + 2} + \frac{1}{\sqrt{x^2 + 2}}$$
 的最小值为______.

(000885) 试写出 $(x - \frac{1}{x})^7$ 展开式中系数最大的项______.

(000886) 已知三个球的表面积之比是 1:2:3, 则这三个球的体积之比为_____.

$$(000887)$$
 已知实数 x,y 满足
$$\begin{cases} x+y\geq 2, \\ x-y\leq 2, & \text{则目标函数 } z=-\frac{3}{2}x-y \text{ 的最大值为} \\ 0\leq y\leq 3, \end{cases}$$

(000888) 若不等式 $x^2 - 5x + 6 < 0$ 的解集为 (a,b), 则 $\lim_{n \to \infty} \frac{a^n - 2b^n}{3a^n - 4b^n} =$ _______

(000889) 从集合 $A=\{1,2,3,4,5,6,7,8,9,10\}$ 中任取两个数, 欲使取到的一个数大于 k, 另一个数小于 k(其中 $k\in A)$ 的概率是 $\frac{2}{5},$ 则 k=_____.

(000890) 设函数 $f(x) = a^x + a^{-x} \ (a > 0, \ a \neq 1)$, 且 f(1) = 3, 则 f(0) + f(1) + f(2) 的值是_____

(000891) 已知集合 $A = \{x | |x-2| < a\}, B = \{x | x^2 - 2x - 3 < 0\}, 若 B \subseteq A, 则实数 a 的取值范围是______.$

(000892) 如果复数 z 满足 |z|=1 且 $z^2=a+bi$, 其中 $a,b\in \mathbb{R}$, 则 a+b 的最大值是______.

(000893) 已知
$$x,y$$
 满足
$$\begin{cases} x-y+5\geq 0,\\ x+y\geq 0, \end{cases}$$
 若使得 $z=ax+y$ 取最大值的点 (x,y) 有无数个,则 a 的值等 $x\leq 3,$

于_____

(000894) 在直角坐标系 xOy 中,已知三点 A(a,1), B(2,b), C(3,4),若向量 \overrightarrow{OA} , \overrightarrow{OB} 在向量 \overrightarrow{OC} 方向上的投影相同,则 3a-4b 的值是______.

(000895) 已知 F_1, F_2 是椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \ (a > b > 0)$ 的两个焦点,P 为椭圆上一点,且 $\overrightarrow{PF_1} \perp \overrightarrow{PF_2}$,若 $\triangle PF_1F_2$ 的面积为 9,则 $b = \underline{\hspace{1cm}}$.

(000896) $\triangle ABC$ 中,a,b,c 分别是 $\angle A, \angle B, \angle C$ 的对边且 $ac+c^2=b^2-a^2$, 若 $\triangle ABC$ 最大边长是 $\sqrt{7}$ 且 $\sin C=2\sin A$, 则 $\triangle ABC$ 最小边的边长为______.

(000897) 设等差数列 $\{a_n\}$ 的公差为 d, 若 $a_1, a_2, a_3, a_4, a_5, a_6, a_7$ 的方差为 1, 则 d=______.

 $(000898) \ \ \textbf{已知函数} \ f(x) \ = \ \begin{cases} \cos\frac{\pi x}{2}, & |x| \leq 1, \\ x^2-1, & |x| > 1, \end{cases}$ 则关于 x 的方程 $f^2(x)-3f(x)+2=0$ 的实根的个数 是

(000899) 设集合 $M = \{x | x^2 = x\}, N = \{x | \log_2 x \le 0\}, 则 M \cup N = \underline{\hspace{1cm}}$

(000900) 已知虚数 1+2i 是方程 $x^2+ax+b=0$ ($ab\in\mathbf{R}$) 的一个根,则 a+b=_____.

(000901) 在报名的 5 名男生和 4 名女生中, 选取 5 人参加志愿者服务, 要求男、女生都有, 则不同的选取方式的种数为_____(结果用数值表示).

(000902) 已知复数 z 在复平面上对应的点在曲线 $y=rac{2}{x}$ 上运动, 则 |z| 的最小值等于______.

(000903) 在正项等比数列 $\{a_n\}$ 中, $a_1a_3=1$, $a_2+a_3=\frac{4}{3}$, 则 $\lim_{n\to\infty}(a_1+a_2+\cdots+a_n)=$ ______.

(000904) 已知 $f(x)=2\sin\omega x\;(\omega>0)$ 在 $[0,\frac{\pi}{3}]$ 单调递增, 则实数 ω 的最大值为______.

(000906) 若二项式 $(2x - \frac{1}{\sqrt{x}})^n$ 展开式中的第 5 项为常数项,则展开式中各项的二项式系数之和为______.

(000907) 已知 A、B 是球 O 的球面上两点, $\angle AOB=90^\circ$, C 为该球面上的动点, 若三棱锥 O-ABC 体积的最大值为 $\frac{32}{3}$, 则球 O 的表面积为______.

(000908) 如图, A、B 为椭圆 $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;(a>b>0)$ 的两个顶点, 过椭圆的右焦点 F 作 x 轴的垂线, 与其交 于点 C. 若 $AB \parallel OC(O$ 为坐标原点), 则直线 AB 的斜率为

(000909) 若经过抛物线 $y^2 = 4x$ 焦点的直线 l 与圆 $(x-4)^2 + y^2 = 4$ 相切, 则直线 l 的方程为______

(000910) 若集合 $A = \{x|y = \sqrt{x-1}, \ x \in \mathbf{R}\}, \ B = \{x||x| \le 1, \ x \in \mathbf{R}\}, \$ 则 $A \cap B =$ ______.

(000911) 若函数 $f(x) = 1 + \frac{1}{x}(x > 0)$ 的反函数为 $f^{-1}(x)$,则不等式 $f^{-1}(x) > 2$ 的解集为______.

(000912) 若 $\sin\alpha = \frac{3}{5}$ 且 α 是第二象限角,则 $\tan(\alpha - \frac{\pi}{4}) =$ _____.

(000913) 若函数 f(x) 是定义在 R 上的奇函数, 且满足 f(x+2) = -f(x), 则 f(2016) =______.

(000914) 在 $(x^3 - \frac{1}{x})^8$ 的展开式中, 其常数项的值为______.

(000915) 若函数 $f(x)=\sin 2x,$ $g(x)=f(x+\frac{\pi}{6}),$ 则函数 g(x) 的单调递增区间为______.

(000916) 设 P 是曲线 $\begin{cases} x=\frac{\sqrt{2}}{2}\sec\theta,\\y=\tan\theta \end{cases}$ $(\theta$ 为参数) 上的一动点, O 为坐标原点, M 为线段 OP 的中点, 则点 M 的轨迹的普通方程为

$$(000917)$$
 不等式组
$$\begin{cases} x \leq 3, \\ x+y \geq 0, \end{cases} \qquad \textbf{所表示的区域的面积为}_{\underline{\hspace{1cm}}}.$$

$$x-y+2 \geq 0$$

(000918) 若函数 $f(x) = \log_5 x(x > 0)$, 则方程 f(x + 1) + f(x - 3) = 1 的解 x =_____.

(000919) 如图所示, 三个边长为 2 的等边三角形有一条边在同一直线上, 边 B_3C_3 上有 10 个不同的点 P_1, P_2, \cdots, P_{10} , 记 $M_i = \overrightarrow{AB_2} \cdot \overrightarrow{AP_i} (i=1,2,\cdots,10)$, 则 $M_1 + M_2 + \cdots + M_{10} =$ ______.

(000920) 已知全集 $U = \mathbf{R}$, $A = \{x | x^2 - 2x < 0\}$, $B = \{x | x \ge 1\}$, 则 $A \cap \mathcal{C}_U B = \underline{\hspace{1cm}}$

(000921) 若函数 $y = \cos^2 \omega x (\omega > 0)$ 的最小正周期是 π , 则 $\omega =$ _____.

(000922) 圆 $C: x^2 + y^2 - 2x - 4y + 4 = 0$ 的圆心到直线 3x + 4y + 4 = 0 的距离 d =______.

(000923) 已知圆锥的母线长为 5cm,侧面积为 $15\pi cm^2$,则此圆锥的体积为_____cm^3.

(000924) 已知 $x, y \in \mathbf{R}^+$, 且满足 $\frac{x}{3} + \frac{y}{4} = 1$, 则 xy 的最大值为_____.

(000925) 已知双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (a > 0, b > 0) 的一条渐近线方程是 $y = \sqrt{3}x$, 它的一个焦点与抛物线 $y^2 = 16x$ 的焦点相同, 则双曲线的标准方程为______.

(000926) 已知函数 $f(x) = \begin{cases} 2^x + a, & x \ge 0, \\ x^2 - ax, & x < 0. \end{cases}$ 若 f(x) 的最小值是 a, 则 $a = \underline{\qquad}$.

(000927) 从 6 名男医生和 3 名女医生中选出 5 人组成一个医疗小组,若这个小组中必须男女医生都有,共有______ 种不同的组建方案 (结果用数值表示).

(000928) 若数列 $\{a_n\}$ 是首项为 1, 公比为 $a-\frac{3}{2}$ 的无穷等比数列, 且 $\{a_n\}$ 各项的和为 a, 则 a 的值是______.

(000929) 设 $a \neq 0$, n 是大于 1 的自然数, $(1+\frac{x}{a})^n$ 的展开式为 $a_0 + a_1 x + a_2 x^2 + \cdots + a_n x^n$. 若 $a_1 = 3$, $a_2 = 4$, 则 $a = \underline{\qquad}$.

(000930) 矩形 ABCD 中, AB=2, AD=1, P 为矩形内部一点, 且 AP=1. 若 $\overrightarrow{AP}=\lambda \overrightarrow{AB}+\mu \overrightarrow{AD}$ $(\lambda,\ \mu\in\mathbf{R})$, 则 $2\lambda+\sqrt{3}\mu$ 的最大值是______.

(000931) 函数 $y = \log_3(x-1)$ 的定义域是

(000932) 集合 $A = \{x|x^2 - 3x < 0\}, B = \{x||x| < 2\}, 则 A \cup B$ 等于______.

(000933) 若复数 $\frac{1+{\rm i}}{1-{\rm i}}+\frac{1}{2}b({\rm i}$ 为虚数单位) 的实部与虚部相等, 则实数 b 的值为______.

(000934) 已知函数
$$f(x) = \begin{vmatrix} \log_3 x & 1 \\ 2 & 1 \end{vmatrix}$$
, 则 $f^{-1}(0) = \underline{\qquad}$.

(000935) 若一个圆锥的母线长是底面半径的 3 倍, 则该圆锥的侧面积是底面积的_______ 倍.

(000936) 平面向量 \overrightarrow{a} 与 \overrightarrow{b} 的夹角为 60° , $|\overrightarrow{a}| = 1$, $\overrightarrow{b} = (3,0)$, 则 $|2\overrightarrow{a} + \overrightarrow{b}| = \underline{\hspace{1cm}}$.

(000937) 已知 $\triangle ABC$ 的周长为 4, 且 $\sin A + \sin B = 3 \sin C$, 则 AB 边的长为______.

(000938) 若 a_n 为 $(1+x)^n$ 的展开式中的 x^2 项的系数, 则 $\lim_{n\to\infty} \frac{2a_n}{n^2+1} =$ ______.

(000939) 若 m > 0, n > 0, m + n = 1, 且 $\frac{t}{m} + \frac{1}{n}(t > 0)$ 的最小值为 9, 则 t =_____.

(000940) 若以 x 轴正方向为始边,曲线上的点与圆心的连线为终边的角 θ 为参数,则圆 $x^2 + y^2 - 2x = 0$ 的参数方程为______.

(000941) 若 AB 是圆 $x^2 + (y-3)^2 = 1$ 的任意一条直径, O 为坐标原点, 则 $\overrightarrow{OA} \cdot \overrightarrow{OB}$ 的值为______.

(000942) 已知集合 $A = \{-1, 3, 2m - 1\}$, 集合 $B = \{3, m^2\}$. 若 $B \subseteq A$, 则实数 m =_____.

(000943) 计算:
$$\lim_{n\to\infty} \frac{3^n+1}{3^{n+1}+2^n} = \underline{\hspace{1cm}}$$

(000944) 函数 $f(x) = \sqrt[3]{x} + 1$ 的反函数 $f^{-1}(x) =$ _____.

(000945) 函数 $f(x) = (\sin x - \cos x)^2$ 的最小正周期为______.

(000946) 直线 x + 2y - 1 = 0 与直线 y = 1 的夹角大小为_____(结果用反三角函数值表示).

(000947) 已知菱形 ABCD, 若 $|\overrightarrow{AB}|=1$, $A=\frac{\pi}{3}$, 则向量 \overrightarrow{AC} 在 \overrightarrow{AB} 上的投影为______.

(000948) 已知一个凸多面体的平面展开图由两个正六边形和六个正方形构成, 如图所示, 若该凸多面体所有棱长均为 1, 则其体积 V =_____.

(000949) 已知函数 $f(x) = x^3 + \lg(\sqrt{x^2 + 1} + x)$,若 f(x) 的定义域中的 a、b 满足 f(-a) + f(-b) - 3 = f(a) + f(b) + 3,则 $f(a) + f(b) = _____$.

(000950) 数列 $\{a_n\}$ 中, 若 $a_1=3, \sqrt{a_{n+1}}=a_n(n\in \mathbf{N}^*)$, 则数列 $\{a_n\}$ 的通项公式 $a_n=$ ______.

(000951) 在代数式 $(4x^2-2x-5)(1+\frac{1}{x^2})^5$ 的展开式中, 常数等于______.

(000952) 满足约束条件 $|x| + 2|y| \le 2$ 的目标函数 z = y - x 的最大值是_____.

(000953) 若 i(bi+1) 是纯虚数, i 是虚数单位, 则实数 $b = _____$.

(000954) 函数 $y = \sqrt{2^x - 1}$ 的定义域是______(用区间表示).

 $(000955) \ \textbf{已知} \ \triangle ABC \ \textbf{中}, \ |\overrightarrow{AB}| = 2, \ |\overrightarrow{AC}| = 3, \ \overrightarrow{AB} \cdot \overrightarrow{AC} < 0, \ \textbf{L} \ \triangle ABC \ \textbf{的面积为} \ \frac{3}{2}, \ \textbf{则} \ \angle BAC = \underline{\hspace{1cm}}.$

(000956) 双曲线 $4x^2-y^2=1$ 的一条渐近线与直线 tx+y+1=0 垂直, 则 t=______.

(000957) 已知抛物线 $y^2 = 4x$ 上一点 $M(x_0, 2\sqrt{3})$, 则点 M 到抛物线焦点的距离为______

(000958) 无穷等比数列首项为 1, 公比为 q(q>0), 前 n 项和为 S_n , 若 $\lim_{n\to\infty} S_n=2$, 则 q=______.

(000959) 在一个水平放置的底面半径为 $\sqrt{3}$ 的圆柱形量杯中装有适量的水,现放入一个半径为 R 的实心铁球,球完全浸没于水中且无水溢出,若水面高度恰好上升 R,则 R=_______.

(000960) 在平面直角坐标系 xOy 中,将点 A(2,1) 绕原点 O 逆时针旋转 $\frac{\pi}{4}$ 到点 B, 若直线 OB 的倾斜角为 α , 则 $\cos\alpha$ 的值为

(000961) 已知函数 $f(x) = 2^x - a \cdot 2^{-x}$ 的反函数是 $f^{-1}(x)$, $f^{-1}(x)$ 在定义域上是奇函数, 则正实数 a =_____.

(000962) 已知 $x \ge 1$, $y \ge 0$, 集合 $A = \{(x,y)|x+y \le 4\}$, $B = \{(x,y)|x-y+t=0\}$. 如果 $A \cap B \ne \emptyset$, 则 t 的取值范围是_______.

(000963) 如图,一个空间几何体的主视图、左视图、俯视图均为全等的等腰直角三角形,如果直角三角形的直角边长都为 1,那么这个几何体的表面积为______.

(000964) 已知全集 $U = \mathbf{R}$, 集合 $A = \{x | (x-1)(x-4) \le 0\}$, 则集合 A 的补集 $\mathbf{C}_U A = \underline{\hspace{1cm}}$

(000965) 指数方程 $4^x - 6 \times 2^x - 16 = 0$ 的解是_____

(000966) 已知无穷等比数列 $\{a_n\}$ 的首项 $a_1=18$, 公比 $q=-\frac{1}{2}$, 则无穷等比数列 $\{a_n\}$ 各项的和是______.

(000967) 函数 $y = \cos 2x, x \in [0, \pi]$ 的递增区间为_____.

(000968) 抛物线 $y^2 = x$ 上一点 M 到焦点的距离为 1, 则点 M 的横坐标是

(000969) 一盒中装有 12 个同样大小的球, 其中 5 个红球, 4 个黑球, 2 个白球, 1 个绿球. 从中随机取出 1 个球, 则取出的 1 个球是红球或黑球或白球的概率为 ... (000970) 关于 θ 的函数 $f(\theta) = \cos^2 \theta - 2x \cos \theta - 1$ 的最大值记为 M(x), 则 M(x) 的解析式为______. (000971) 如图所示, 是一个由圆柱和球组成的几何体的三视图, 若 a=2, b=3, 则该几何体的体积等于 左视图 主视图 俯视图 (000972) 已知双曲线 $x^2 - \frac{y^2}{m^2} = 1 \; (m>0)$ 的渐近线与圆 $x^2 + (y+2)^2 = 1$ 没有公共点,则该双曲线的焦距 的取值范围为 (000973) 已知 $\triangle ABC$ 外接圆的半径为 2, 圆心为 O, 且 $\overrightarrow{AB} + \overrightarrow{AC} = 2\overrightarrow{AO}$, $|\overrightarrow{AB}| = |\overrightarrow{AO}|$, 则 $\overrightarrow{CA} \cdot \overrightarrow{CB} = 0$ (000974) 若不等式组 $\begin{cases} x\geq 0,\\ x+3y\geq 4, & \text{所表示的平面区域被直线 } y=kx+\frac{4}{3} \text{ 分为面积相等的两部分}, 则 k 的 \\ 3x+y\leq 4 \end{cases}$ 值是 (000975) 下列各句是否是命题? (T or F) ____(1) 1 是偶数; ____(2) 线段 AB 太长; _____(3) 所有有理数都大于零; (4) 2 > 5;__ (5) 存在实数 a 使 |a| = -a 不成立. (000976) 在下列各命题的右边写出其否定形式 (否定命题). (1) $2 \times 2 = 5$; ______. (2) $\sqrt{3-\pi}$ 有意义; ______ (3) a 不是非负数; _____

(5) x = 1 不是方程 x(x+1) = 0 的根;

(000977) 卜列各组审题是省旦为省定形式 (省定审题)? (\mathbb{T} or \mathbb{F}).
(1) 所有直角三角形都不是等边三角形; / 所有直角三角形都是等边三角形.
(2) 对一切实数 $x, x^2 + 1 \neq 0$; / 存在实数 x , 使得 $x^2 + 1 = 0$.
(3) 所有一元二次方程都没有实数根; / 有些一元二次方程没有实数根.
(4) 所有自然数都不是 0; / 所有自然数都是 0.
(5) 存在实数 x , 使得 $x^2 - 5x + 6 = 0$; / 所有实数 x , 都使得 $x^2 - 5x + 6 \neq 0$.
(6) 对于一些实数 $x, x^3 + 1 = 0$; / 对于一些实数 $x, x^3 + 1 \neq 0$.
(7) 有些三角形两边的平方和等于第三边的平方; / 所有三角形两边的平方和不等于第三边的平方
(8) 对于某些实数 $x, x = x + 1; /$ 对于任意实数 $x, x \neq x + 1.$
(9) 负实数没有平方根; / 负实数有平方根.
(000978) 在下列各命题的右边写出其否定命题.
(1) $a = 0 \text{ H. } b = 0;$
(2) $x > 0$ 或 $x \le -3$;
(3*) 平面上的点 P 在第一象限或第二象限;
(000979) 下列各组命题是否互为否定形式 (否定命题)? (T or F).
(1) a,b 都是偶数; / a,b 都不是偶数.
(2) a,b 不都是偶数; / a,b 都是偶数.
(3) a, b 中至少有一个是偶数; $/$ a, b 中至多有两个是偶数.
(4) a,b 都不是偶数; / a,b 都是奇数.
(000980) 填写下列各词的否定词. 例如"… 是 …"的否定词是"… 不是 …"
(1) "… 都不是 …";
(2) "… 中至少有一个是 …";
(3) "… 中至多有 n 个是 …";
(000981) 在下列各命题的右边写出其否定形式.
(1) 若 x 是实数, 则 $x^2 + x + 1 > 0$;x 是实数, 使得 $x^2 + x + 1$ 0.
(2) $\not = a > 0, \ y a \le a;$
(3) 若实数 x 满足 $x^2 - x = 0$, 则 $x = 1$ 或 $x = 0$;
(4) 若实数 x 满足 $x^2 - x < 0$, 则 $0 < x < 1$;
(000982) 模仿讲义中的真值表, 列出下列每组逻辑运算的真值表并回答各问题:
(1) "非 (P 且 Q)" 与 "(非 P) 或 (非 Q)" (De Morgan 律之一);

P	Q	$P \perp \!\!\! \perp Q$	非 (P 且 Q)	非 P	非 Q	(非P)或(非Q)
Т	Т					
Т	F					
F	Т					
F	F					

- (2) "P 且 (Q 且 R)" 与 "(P 且 Q) 且 R"(模仿 (1) 完成); 你的结论是什么? 如果把两个运算中的 "且" 都换成 "或", 结论 (毋需证明) 又是什么?
- (3) "P 且 (Q 或 R)" 与 "(P 且 Q) 或 (P 且 R)"(模仿 (1) 完成); 你的结论是什么? 如果把两个运算中的 "且" 都换成 "或", 同时把 "或" 都换成 "且", 结论 (毋须证明) 又是什么?

(000983) 用反证法证明如下命题:

- (1) 已知 n 是整数. 如果 3 整除 n^3 , 则 3 整除 n(提示: 讨论 <math>n = 3k, 3k + 1, 3k + 2, 其中 k 是整数);
- (2) 如果实数 x 满足 $x^{101} 4x^2 + 8x 1 = 0$, 则 x > 0;
- (3) $\sqrt[3]{3}$ 是无理数 (提示: 可借鉴讲义上 $\sqrt{6}$ 是无理数的证明方法);
- (4^*) $\sqrt{2} + \sqrt{3}$ 是无理数.

(000984) 已知 a, b 均为实数, 求证:"关于 x 的不等式 ax + b > 0 对一切实数均成立"等价于 "a = 0 且 b > 0". (绝对不允许跳步骤)

(000985) 写出下列各命题的逆命题, 否命题, 逆否命题, 并判断真假.

(1) (已知 a, b 均为实数) 若 $a^2 + b^2 = 0$, 则 $a = 0$. 原命题的真值:	;
逆命题:	; 逆命题的真值:;
否命题:	; 否命题的真值:;
逆否命题:	; 逆否命题的真值:
(2) 若 $ab = 0$, 则 $a = 0$ 或 $b = 0$. 原命题的真值:;	
逆命题:	; 逆命题的真值:;
否命题:	; 否命题的真值:;
逆否命题:	; 逆否命题的真值:
(3) (已知 a,b 均为整数) 若 a,b 都是偶数, 则 $a+b$ 是偶数. 原命题	[的真值:;
逆命题:	; 逆命题的真值:;
否命题:	; 否命题的真值:;
逆否命题:	; 逆否命题的真值:
(4) (已知 a,b 均为整数) 若 ab 是奇数, 则 a,b 中至少有一个是奇数	女. 原命题的真值:;
逆命题:	; 逆命题的真值:;
否命题:	; 否命题的真值:;
逆否命题:	; 逆否命题的真值:

(000986) 在下列横线上填写 A, B, C 或 D.

A. 充分不必要条件	B. 必要不充分条件
C. 充分必要条件	D. 既不充分又不必要条件
(1) " $b = 0$ " 是"直线 $y = kx + b$ 过原点"的;	
(2) " $x^2 - 1 = 0$ " \not " " $x - 1 = 0$ " \not " " $x - 1 = 0$ " $x - 1 = $	
(3) "加 是正整数"是"加 是有理数"的;	
(4) " $x < 5$ " \not " " $x < 3$ " \not " " $x < 3$ " $x < 3$ " $x < 3$ " $y < 3$ "	
(5) "一个自然数的末位数是 0" 是 "这个自然数可被 5	整除"的;
(6) " $x + y + z > 0$ " 是 " x, y, z 均大于零"的;	
(7) "一个自然数的末位数是 3,6 或 9" 是 "这个自然数	(可被 3 整除"的;
(8) "一个三角形中存在两个角相等"是"这个三角形是	· 等腰三角形"的;
(9) 已知 x 是实数, " $x = \sqrt{2}$ " 是 " $x^2 = 2$ " 的;	
(10) " $x + y = 0$ 且 $xy = 0$ " 是" $x = y = 0$ " 的;	
(11) 已知 a, b, c 是实数, $c \neq 0$. " $ac > bc$ " 是 " $a > b$ " 自	v j;
(12) " $x > y > 0$ " 是 " $x > 0$ 且 $y > 0$ " 的;	
(13) 已知 x, y 均为实数. " $ x = y$ " 是 " $x = \pm y$ " 的	
(000987) 已知实数 $t \neq 0$. 证明: " $x = t$ 是方程 $ax^3 + ax^3 + a$	$bx^2 + cx + d = 0$ 的根"的充分必要条件是" $x = \frac{1}{4}$ 是方
程 $dx^3 + cx^2 + bx + a = 0$ 的根".	ι
(000088) 目如《 b 。 均 5 7 数 市 证明, 诗 三 个 数 市 " 任 。	意两数之和大于第三个数"的充分必要条件是"任意两数
之差小于第三个数"。	总网数之相八丁第二十数 时尤力必安尔什定 任总网数
之左小 [为二] 数:	
(000989) 判断下列各组对象是否组成集合. (T or F)	
(1) 大于 0 的偶数全体.	
(2) 绝对值小于 0 的实数全体.	
(3) 很小的数的全体.	
(000990) 用描述法或列举法 (自行择其一种) 表示下列]集合.
(1) 大于 0 且小于 3 的实数的全体.	
(2) 方程 $x^3 - x = 0$ 的解的全体.	
(3) 一次函数 $y = 2x + 1$ 图像上所有点的全体.	
(4) 被 3 除余 2 的整数的全体.	
(000001) □ ₩₩₩ ↔ → → ₩ Å	
(000991) 用列举法表示下列集合:	
$(1) \left\{ x \left \frac{6}{3-x} \in \mathbf{Z}, x \in \mathbf{Z} \right. \right\};$	
(2) $\{(x,y) x+y=4, x,y \in \mathbb{N}\}.$	

(000992) 在直角坐标系中,	用图形表示下列集合:		
$(1) \{(x,y) 2 < x < 6, 1 < y$	$y < 4, x, y \in \mathbf{R}\};$	$(2) \{(x,y) 2 < x$	$c < 6, 1 < y < 4, x, y \in \mathbf{Z} \}.$
(000993) 集合 $\left\{a, \frac{b}{a}, 1\right\}$ 和	$\{0,a+b,a^2\}$ 表示同一个	集合, 求实数 a,b 的值.	
(000994) 已知 a 是实数, 集	合 $M = \{x ax^2 + 2x + a$	= 0} 有且仅有一个元素. 求满	足上述条件的 a 所构成的
集合.			
(000995) 已知非空集合 <i>M M</i> .	中的元素都是正整数,且淘	馬足性质 : 若 $x \in M$, 则 $4-x$	$\in M$. 求满足条件的集合
(000996) 以下各命题中, 真征	命题有:	_(可能多选).	
A. $\varnothing \in \varnothing$	B. $\emptyset \in \{\emptyset\}$	C. $\varnothing \subseteq \varnothing$	D. $\varnothing \subseteq \{\varnothing\}$
(000997) 以下各命题中, 真	命题有:	_(可能多选).	
A. $5 \in \{x x \le 10\}$	B. $\{5\} \in \{x x \le 10\}$	C. $\emptyset \in \{1, 2, 3, 4\}$	D. $\emptyset \subseteq \{1, 2, 3, 4\}$
(000998) 满足 $\{a_1, a_2\} \subseteq A$	$\subsetneq \{a_1, a_2, a_3, a_4, a_5, a_6\}$ fr	的集合 A 的个数是	·

(000999) 设 $A = \{1, 2\}, B = \{X | X \subseteq A\}.$ 则 B =

- (001000) \mathfrak{P} $A = \{n \mid n = 3k + 1, k \in \mathbf{Z}^+\}, B = \{n \mid n = 3k 2, k \in \mathbf{Z}^+\}.$
- (1) 集合 A 与集合 B 是相等的还是有真包含关系还是没有任何包含关系?
- (2) 证明你的结论.
- (001001) 证明或否定: $\{y|y \ge 0\} = \{y|y = x^2, x \in \mathbf{R}\}.$
- (001002) 设 a 是一个实数, 集合 $A = \{x | x < 2\}$, $B = \{x | x \le a\}$, 且 $A \subseteq B$.
- (1) 实数 a 的取值范围为_____;
- (2) 试证明 (1) 的结论.

(001003) 已知集合 $A = \{1, 2\}, B = \{x | x^2 - ax + a - 1 = 0, x \in \mathbb{R}\},$ 若 B 不是 A 的真子集, 求实数 a 的值.

(001004) 设集合 $A = \{1, -1\}, B = \{x \mid x^2 - 2ax + b = 0, x \in \mathbf{R}\}, 若 B \subseteq A 且 B \neq \emptyset$, 求实数 a, b 的值.

(001005) 设集合 $A = \{x | x^2 - x + a = 0, x \in \mathbf{R}\}$, 求实数 a 的取值范围, 使得 $A \subseteq \mathbf{R}^+$.

(001006) 设 $A = \{a, b, c, d\}, B = \{c, d, e, f, g\}, 则 A \cap B = _____.$

(001007) 设 $A = \{1, 2\}, A \cup B = \{1, 2, 3\}, 则 B 为______.$

(001008) 已知集合 $P \cap \{4,6\} = \{4\}, P \cap \{8,10\} = \{10\}, P \cap \{2,12\} = \{12\}, 若 P \subseteq \{2,4,6,10,12\}, 则 P = _____.$

(001009) 设 $A = \{(x,y)|3x+2y=5\}, B = \{(x,y)|x+y=2\}, 则 A \cap B = _____.$

(001010) 试用集合 A, B, C 的交, 并, 以及关于全集 U 的补运算表示下列文氏图所示的集合.

1. ______;

(001011) 设全集 $U = \{1, 2, 3, 4, 5\}$,若 $C_U A \cup C_U B = \{1, 2, 4, 5\}$, $C_U A \cap B = \{5\}$, $C_U B \cap A = \{2\}$,则 $A = \underline{\hspace{1cm}}$, $B = \underline{\hspace{1cm}}$.

(001012)50 名学生做甲, 乙两种实验, 甲做正确者 31 人, 乙做正确者 29 人, 都正确者 21 人, 则两种实验都做错的有______ 人.

(001013) 已知集合 $M=\{(x,y)|y=x+1,\ x\in {\bf R}\},\ N=\{(x,y)|y=-x^2+4x,\ x\in {\bf R}\},$ 则 $M\cap N=$

(001014) 已知集合 $M = \{y | y = x + 1, x \in \mathbf{R}\}, N = \{y | y = -x^2 + 4x, x \in \mathbf{R}\}, 则 M \cap N = \underline{\hspace{1cm}}$

(001015) 已知集合 $A = \{x | x^2 + px + q = 0\}$, $B = \{x | x^2 - x + r = 0\}$, 且 $A \cap B = \{-1\}$, $A \cup B = \{-1, 2\}$, 求实数 p, q, r 的值.

(001016) 已知集合 $A = \{1, 2\}, B = \{x | mx^2 + 2mx - 1 < 0, x \in \mathbb{R}\}.$ 已知 $A \cap B = \{1\}$, 求实数 m 的取值范围.

(001017) 设 A, B 是两个集合, 求证: " $A \cap B = A$ " 当且仅当 " $A \subseteq B$ ".(用文氏图画一下并不算证明)

(001018) 用数学归纳法证明 " $(n+1)(n+2)\cdots(n+n)=2^n\cdot 1\cdot 3\cdot 5\cdots (2n-1)$ " 时, 从 "n=k" 到 "n=k+1" 的过程中, 左边应多乘的因式是_______.

(001019) 用数学归纳法证明: 对一切正整数 n, $1^3 + 2^3 + \cdots + n^3 = \frac{n^2(n+1)^2}{4}$.

 $(001020) \ \textbf{用数学归纳法证明} : \ \textbf{对一切正整数} \ n, \ 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{1}{2n-1} - \frac{1}{2n} = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}.$

(001021) 已知数列 $\{a_n\}$ 满足 $a_1=1, a_{n+1}=2a_n+1(n\in \mathbf{N}^*)$. 求证: $a_n=2^n-1(n\in \mathbf{N}^*)$.

(001022) 用数学归纳法证明: 对一切正整数 n, $\frac{1}{n+1} + \frac{1}{n+2} + \cdots + \frac{1}{3n+1} > 1$.

(001023) 求证: 对任意的正整数 n, 64 能够整除 $3^{2n+1} + 40n - 3$.

(001024) 设 $a = x + \frac{1}{x}$. 证明: 对任意 $n \in \mathbb{Z}^+$, $x^n + \frac{1}{x^n}$ 均可以表示成 a 的整系数多项式.

(001025) 设数列 $\{a_n\}$ 满足下列条件: $a_1=2,\ a_2=3,\$ 且对任何自然数 k 有 $a_{k+2}=3a_{k+1}-2a_k,\$ 求证: $a_n=1+2^{n-1},\ (n\in\mathbf{Z}^+).$

(001026) 已知
$$a_n = \frac{1}{1 \times 4} + \frac{1}{4 \times 7} + \dots + \frac{1}{(3n-2) \times (3n+1)}$$
.

- (1) 计算 a_1, a_2, a_3, a_4 , 并猜测 a_n 的一般形式;
- (2) 用数学归纳法证明你的猜想.
- (001027) 已知 $a_1 = 1$, $a_2 = 5$. 当 $n \ge 2$ 时, $a_{n+1} = a_n + 2a_{n-1}$.
- (1) $\Re a_1, a_2, a_3, a_4, a_5, a_6;$
- (2) 猜测并用第二数学归纳法证明 a_n 的表达式.
- (001028) 是否存在常数 a,b, 使得

$$1^{2} + 3^{2} + \dots + (2n - 1)^{2} = \frac{1}{3}an(n^{2} + b)$$

对任意正整数 n 均成立? 证明你的结论.

- (001029) 设 f(x) 是 m 次多项式, g(x) 是 n 次多项式, m, n 均为正整数. 判断下列命题的真假 (T or F).
- _____(1) 多项式 -2f(x) 的次数为 m;
- _____(2) 多项式 f(x) + g(x) 的次数为 $\max\{m, n\}$ (\max 表示集合中较大的那个数);
- _____(3) 多项式 $f(x) \times g(x)$ 的次数为 m+n;
- _____(4) 多项式 $[f(x)]^2 + f(x) + 1$ 的次数为 2m;
- (001030) 写出 $x^5 4x^3 8$ 除以 $x^2 1$ 所得的商式和余式 (不需要过程).
- (001031) 将 $\frac{x^5 + 2x^3 + 1}{x^2 + 1}$ 写为 $q(x) + \frac{ax + b}{x^2 + 1}$ 的形式, 其中 q(x) 为多项式, a, b 为实数 (不需要过程).
- (001032) 设多项式 f(x) 满足 $f(x+1) = 3x^2 + x 9$, 求 f(x).
- (001033) 将多项式 $f(x) = x^3 + 2x^2 x + 1$ 写为 $a(x-1)^3 + b(x-1)^2 + c(x-1) + d(a,b,c,d)$ 为实数) 的形式.
- (001034) 计算: $(x^3 + y^3 + z^3 3xyz) \div (x + y + z)$ (需要过程, 记住这个结论. 提示: 先将 x 作为主元).
- (001035) 当 a, b 为何值时, 多项式 $x^4 3x^3 + 6x^2 + ax + b$ 能被 $x^2 1$ 整除?
- (001036) 利用余数定理求下列以 x 为未知数的多项式的余数 $(n \in \mathbb{N}^*)$.
- (1) $(4x^3 + 2x^2b 8xb^2 12b^3) \div (2x + 3b)$, 余数为

- $(4) (x^n a^n) \div (x + a),$ 余数为______
- (001037) 求 x+2 整除 $x^3-4ax^2-10bx+16$ 的充分必要条件.
- (001038) 求正整数 n 的取值范围, 使得多项式 $(x+3)^{2n} (x+1)^{2n}$ 能被 x+2 整除.

- (001039) 求解方程: $3x^4 5x^2 2x + 4 = 0$.
- (001040) 解方程: $x + \sqrt{2+x} = 0$.

(001041) 解方程:
$$\frac{3}{4x^2 + 20x + 25} = \frac{5}{4x^2 + 8x - 5} - \frac{2}{4x^2 - 4x + 1}$$
.

- (001042) 设常数 $b \ge 0$, 求证: 方程 $\sqrt{f(x)} = b$ 与方程 $f(x) = b^2$ 同解.
- (001043) 解方程: $\sqrt{1+x} = \sqrt{2x-5} + 1$.
- (001044)(1) 求证: 方程 " $\sqrt{f(x)}\sqrt{g(x)} = h(x)$ " 与 " $f(x)g(x) = (h(x))^2$ 且 $h(x) \ge 0$ 且 $f(x) \ge 0$ 且 $g(x) \ge 0$ " 同解.
- (2) 试举一例并分析, 说明: 方程 " $\sqrt{f(x)}\sqrt{g(x)} = h(x)$ " 和 " $f(x)g(x) = (h(x))^2$ 且 $h(x) \ge 0$ 且 $f(x) \ge 0$ " 有时会不同解.
- (001045)(1) 求证: 方程 " $\sqrt{f(x)} + \sqrt{g(x)} = \sqrt{h(x)}$ " 与方程 " $f(x) + g(x) + 2\sqrt{f(x)}\sqrt{g(x)} = h(x)$ " 同解.
- (2) 试举一例并分析, 说明: 方程 " $\sqrt{f(x)} + \sqrt{g(x)} = \sqrt{h(x)}$ " 与方程 " $f(x) + g(x) + 2\sqrt{f(x)g(x)} = h(x)$ " 有时会不同解.
- (001046) 解方程: $111x^2 + 83x 28 = 0$.
- (001047) 解方程: $x^2 + x = \sqrt{5} + 5$.
- (001048) 求实数 a, b, 使得关于 x 的方程 $x^2 + 2(1+a)x + (3a^2 + 4ab + 4b^2 + 2) = 0$ 有实根.
- (001049) 解关于 x 的方程: ax 1 = x + ab.
- (001050) 解关于 x 的方程: $m^2(x-1) + m(x+3) = 6x + 2$.
- (001051) 已知实数 $a, b, c \neq 0$. 解关于 x 的方程: $\frac{x-b-c}{a} + \frac{x-c-a}{b} + \frac{x-a-b}{c} = 3$.
- (001052) 若关于 x 的方程 2ax = (a+1)x + 6 的解集真包含于 \mathbb{Z}^+ , 求 a.

$$(001053)[选做] ~~ \textbf{解关于} ~~ x~~ \textbf{的方程}: ~ \frac{(x-a)^2}{(x-b)(x-c)} + \frac{(x-b)^2}{(x-c)(x-a)} + \frac{(x-c)^2}{(x-a)(x-b)} = 3.$$

- (001054) 解方程: $x^4 + x^3 7x^2 x + 6 = 0$.
- (001055) 解方程: $2x^5 x^4 15x^3 + 9x^2 + 16x + 4 = 0$.
- (001056) 解方程: $(9-16x^2)^3 + (16-9x^2)^3 + (25x^2-25)^3 = 0.$
- (001057) 解方程: $2(x^2 + 6x + 1)^2 + 5(x^2 + 6x + 1)(x^2 + 1) + 2(x^2 + 1)^2 = 0$
- (001058) 解方程: (x+1)(x+3)(x+5)(x+7) = -12.
- (001059) 解方程: $6x^4 + 5x^3 38x^2 + 5x + 6 = 0$.
- (001060) 解方程: $6x^4 25x^3 + 12x^2 + 25x + 6 = 0$.

- (001061)[洗做] 解方程: $x^4 + 8x^3 + 24x^2 + 32x + 12 = 0$.
- (001063) 已知关于 x 的方程 $ax^2 + bx + 1 = 0$ 有两个实根 $\frac{1}{2}, \frac{1}{3}$, 则 $b = _____$.
- (001064) 已知关于 x 的方程 $x^2 + bx 2 = 0$ 的一个实根为 2, 则另一实根为______.
- (001065) 已知关于 x 的方程 $-x^2 3x + 3 = 0$ 的两个实根为 $x_1, x_2,$ 则 $\frac{x_1}{x_2} + \frac{x_2}{x_1} = _______.$
- (001066) 已知关于 x 的二次方程 $ax^2 + bx + c = 0$ 的两实根为 $x_1, x_2,$ 则 $|x_1 x_2| =$ ______
- (001067) 已知关于 x 的方程 $x^2 + 2mx + 6 = 0$ 的两实根的倒数之和为 1, 则实数 $m = _____$.
- (001068) 关于 y 的方程 $4y^2 + (b^2 3b 10)y + 4b = 0$ 的两个实根互为相反数, 则实数 b =______
- (001069) 若关于 x 的方程 $x^2 mx + 2m 2 = 0$ 的两实根的平方和为 1, 则实数 m =_________.

(001070) 方程组
$$\left\{ \begin{array}{ll} x+y+xy=5, \\ x^2y+xy^2=6 \end{array} \right.$$
 的解为 $(x,y)=$ _______.

(001071) 方程组
$$\left\{ \begin{array}{ll} x-y=3, & \\ xy=-2 & \end{array} \right.$$
 的解为 $(x,y)=$ _______.

- (001072) 关于 x 的方程 $x^2 + px + q = 0$ 的两个实根之比为 1:2, 判别式的值为 1, 求实数 p,q.
- (001073) 已知 α, β 是关于 x 的二次方程 $x^2 + (p-2)x + 1 = 0$ 的两根. 试求 $(1 + p\alpha + \alpha^2)(1 + p\beta + \beta^2)$ 的值.
- (001074) 设 α, β 是方程 $2x^2+x-7=0$ 的两根, 试以 $\frac{1}{\alpha^2-1}, \frac{1}{\beta^2-1}$ 为根作一个新的二次方程.
- (001075) 设常数 $k \in \mathbb{N}$, 若关于 x 的方程 $x^2 = 2(k+1)x (k^2 + 4k 3)$ 的两个实根符号相反, 求 k 的值, 并解此方程.

$$(001076)$$
 设常数 $a>0, m>0,$ 若方程组
$$\begin{cases} y^2=4a(x+a), \\ x+y+m=0 \end{cases}$$
 有两组不同的解 $(x_1,y_1),(x_2,y_2),$

- (1) 求 a, m 所满足的条件;
- (2) 用 a, m 表示 $\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$

$$(001077)[选做] 解方程组: \left\{ \begin{array}{l} x+y+z=15, \\ x^2+y^2+z^2=83, \\ x^3+y^3+z^3=495. \end{array} \right.$$

(001078) 解方程:
$$1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{\alpha}}}} = 2.$$

$$(001079) \ \textbf{解方程} \colon \frac{x^4 - (x-1)^2}{(x^2+1)^2 - x^2} + \frac{x^2 - (x^2-1)^2}{x^2(x+1)^2 - 1} + \frac{x^2(x-1)^2 - 1}{x^4 - (x+1)^2} = x^2.$$

(001081) 解方程: $\sqrt[3]{3-\sqrt{x+1}}+\sqrt[3]{2}=0$.

(001082) 解方程: $\sqrt{3x+4}+2=3\sqrt[4]{3x+4}$.

(001083) 已知 a > b, $a, b \in \mathbf{R}$. 解关于 y 的方程: $\sqrt{a-y} + \sqrt{y-b} = \sqrt{a-b}$.

(001084)[选做] 解方程: $\sqrt[4]{97-x} + \sqrt[4]{x} = 5$.

(001085) 判断题: (如果正确请在题目前面的横线上写 "T", 错误请在题目前面的横线上写 "F")

____(1) 若 a > b, c = d, 则 ac > bd;

____(2) 若 $\frac{a}{c^2} < \frac{b}{c^2}$, 则 a < b;

____(3) 若 ac < bc, 则 a < b;

____(4) $\stackrel{\text{def}}{=} a > b$, $\stackrel{\text{def}}{=} ac^2 > bc^2$:

____(5) 若 a > b, c < d, 则 ac > bd;

____(6) 若 a > b > 0, c > d > 0, 则 $\frac{a}{c} > \frac{b}{d}$

____(7) 若 a > b, $c \ge d$, 则 a + c > b + d;

_____(8) 若 a > b, $c \ge d$, 则 $a + c \ge b + d$;

____(9) 若 $\sqrt[3]{a} > \sqrt[3]{b}$, 则 a > b.

____(10) 若 $ab^2 \ge 0$, 则 $a \ge 0$.

(001086) 设 $\{a, b, m, n\} \subseteq \mathbf{R}^+$ 且 a > b, 将 $\frac{a}{b}, \frac{b}{a}, \frac{a+m}{b+m}, \frac{b+n}{a+n}$ 按由大到小的次序排列:

____>___>

(001087) 证明: 若 a > b, $c \in \mathbb{R}$, d < 0, 则 (a - c)d < (b - c)d.

(001088) 证明: 若 $a_1 > b_1 > 0$, $a_2 > b_2 > 0$, $a_3 > b_3 > 0$, 则 $a_1 a_2 a_3 > b_1 b_2 b_3$.

(001089) 证明: 若 a > b > 0, c > d > 0, 则 $\frac{1}{ac} < \frac{1}{bd}$.

(001090) 设常数 $a, b \in \mathbf{R}$, 比较以下各组两数的大小:

 $(1) -(a+1)^2 = -2a^2 - 3a - 4$:

(2) $a^2 + ab + b^2 = 0$.

(001091) 证明:

(1) 若 a > b, 则 $a^3 > b^3$;

(2)(选做) 若 a > b, 则 $a^5 > b^5$.

(001092) 设 $a, b \in \mathbf{R}$ 且 -1 < a < 1, 1 < b < 3,求证:

(1) -4 < a - b < 0;

(2)(选做) 任取 $x \in (-4,0)$, 总存在满足条件的 a,b, 使得 a-b=x(两小题的结论放在一起, 也就是所谓的 "a-b 的取值范围为 (-4,0)", 前者表示不会超出这个范围, 后者表示该范围内的每个值都能取到).

(001093) 判断题: (如果同解请在题目前面的横线上写 "T", 否则写 "F")

$$(1)$$
 $x^2 + 5x > 4$, $x^2 + 5x + 3x > 4 + 3x$;

$$(2) x^2 - 2x < 3, \frac{x^2 - 2x}{x - 1} < \frac{3}{x - 1};$$

$$(3) (x-3)(x-5)^2 > (2x+1)(x-5)^2, x-3 > 2x+1;$$

$$(4) x \ge 1, x(x-5)^2 \ge (x-5)^2;$$

$$(6) x < 5, x + \frac{1}{x^2 - 3x + 2} < 5 + \frac{1}{x^2 - 3x + 2};$$

$$(7) x + \frac{1}{x-3} > 1 + \frac{1}{x-3}, x > 1;$$

$$(8) \frac{(x+3)(x+1)}{x+1} > 0, x+3 > 0$$

$$(10) |x| < 3, -3 < x < 3$$

(001094)(1) 证明或否定: "|f(x)| > g(x)"和 "f(x) > g(x) 且 -f(x) > g(x)"等价;

(2) 证明或否定: "|f(x)| < g(x)" 和 "f(x) < g(x) 且 -f(x) < g(x)" 等价.

$$(001095) 证明或否定: " $\sqrt{f(x)} > g(x)$ " 和 "
$$\begin{cases} f(x) > g^2(x), & \mathbf{g} \end{cases} \begin{cases} f(x) \geq 0, & \mathbf{g} \end{cases}$$
 可解.$$

(001096) 利用绝对值的三角不等式 $|a+b| \le |a| + |b|$, 证明:

- (1) 对任意 $x, y \in \mathbf{R}, |x y| \ge |x| |y|;$
- (2) 对任意 $x, y \in \mathbf{R}, |x y| \ge ||x| |y||$.

$$(001097)$$
 已知 $|x-a| \leq \frac{\varepsilon}{2}, |y-b| < \frac{\varepsilon}{2}$. 求证:

(1)
$$|(x+y) - (a+b)| < \varepsilon$$
;

$$(2) |(x-y) - (a-b)| < \varepsilon.$$

(001098) 已知
$$|x|<rac{arepsilon}{3},\,|y|<rac{arepsilon}{6},\,|z|<rac{arepsilon}{9}.$$
 求证: $|x-2y+3z|$

$$(001099)$$
 已知常数 $\varepsilon>0$,证明存在实常数 N ,使得当正整数 $n>N$ 时, $\left|\frac{n}{2n+3}-\frac{1}{2}\right|<\varepsilon$.

(001100) 解下列关于 x 的不等式.

- (1) $ax \le b$;
- (2) $ax + b^2 > bx + a^2$;
- (3) m(mx-1) < 2(2x-1).

(001101) 求不等式
$$3x-1>2-\frac{x+1}{3}\geq 1-\frac{2x-3}{2}$$
 的解集.

(001102) 关于 x 的不等式 6a - 3x > ax - 28 与 x - 4 > 0 同解, 求 a 的值.

$$(001103)$$
 关于 x 的不等式 $6a - 3x < ax + 3$ 与 $2ax < a + \frac{1}{2}$ 同解. 求 a 的值.

(001104) 用选择合适的方法解下列不等式.

(1)
$$x^2 + 2x - 15 > 0$$
;

(2)
$$x^2 + 4x - 45 \ge 0$$
;

(3)
$$3x^2 - 2x + 4 < 0$$
;

(4)
$$x^2 + x - 1 > 0$$
.

(001105) 关于 x 的不等式 $ax^2 + bx + c > 0$ 的解集为 $(-\infty, 1) \cup (3, +\infty)$, 求 a:b:c. 在你求出的这个比值下, 不等式的解集一定如题中所说吗? 为什么?

(001106) 解不等式组: $x^2 - 2x - 3 < 0 < x^2 - 3x + 2$.

(001107) 设 a 是一个实常数, 解关于 x 的不等式:

- (1) $x^2 ax + 1 < 0$;
- (2) $ax^2 2(a+1)x + 4 > 0$.

(001108) 对一切实数 x, $(5-m)x^2-6x+5+m>0$ 恒成立. 求实数 m 的取值范围.

(001109) 解下列不等式.

(1)
$$(x+2)(x^2-1)^2 > 0$$
;

(2)
$$(2x+1)(3x-1)(2-x) \le 0$$
;

(3)
$$(x+1)^2(x-5)(x^2+3x)(x-2)^3(2x+1)^2 \le 0$$
;

(001110) 解下列不等式.

(1)
$$3x - 2 + \frac{1}{5 - x} > 2x + 1 - \frac{1}{x - 5}$$
;

(2)
$$\frac{x(x-3)}{x^2-3x+2} \le 0$$

(2)
$$\frac{x(x-3)}{x^2 - 3x + 2} \le 0;$$
(3)
$$\frac{x+1}{(x-2)^2(x+1)} \le 1;$$
(4)
$$x + \frac{1}{x} > -\frac{5}{2}.$$

$$(4) x + \frac{1}{x} > -\frac{5}{2}.$$

(001111) 解关于 x 的不等式: $x + \frac{1}{x} > a$.

(001112) 解下列不等式.

(1)
$$4x - 3 + \sqrt{10 - x} > 3x + 2 + \sqrt{10 - x}$$
;

(2)
$$\sqrt{x-2} < x-2$$
;

(3)
$$\sqrt{3-x} > x-4$$
;

(4)
$$\sqrt{2x^2 - 6x + 4} < x + 2$$
;

(5)
$$\sqrt{x^2 - 5x + 6} > x - 1$$
:

(6)
$$\sqrt{3x-15}-\sqrt{x-4}>0$$
;

(001113) 设 a 是常数, 且 a > 0, 解关于 x 的不等式 $x + \sqrt{a^2 - x^2} > 0$.

(001114) 设 a 是常数, 且 a > 0, 解关于 x 的不等式 $\sqrt{1 - ax} < x - 1$.

(001115) 设 a,m 是实常数, 且关于 x 的不等式 $\sqrt{x} > ax + \frac{3}{2}$ 的解集为 (4,m), 求 a,m 的值.

(001116) 解下列不等式.

(1)
$$|x^2 + 2x - 1| < 2$$
;

(2)
$$\sqrt{x^2 + 2x + 1} - 2|2 - x| > 5 - x$$
;

(3)
$$|2x - 1| \le x + 2$$
;

$$(4) \left| \frac{1}{x} \right| \ge \frac{1}{3};$$

(5)
$$1 < \left| \frac{1}{1+x} \right| \le 2$$
.

(001117) 已知关于 x 的不等式 $|ax+1| \le b$ 的解集为 [2,3], 求实常数 a,b 的值.

(001118) 若关于 x 的不等式 |x-1|-|x-2| < a 的解集为 \mathbf{R} , 求实数 a 的取值范围.

(001119) 设 a 是一个实常数, 解关于 x 的不等式 |x-1| < x + a.

(001120) 判断以下各不等式是否成立. 如果成立在前面的横线上写 "T", 如果不成立在前面的横线上写 "F".

____(1)
$$\stackrel{\text{def}}{=} x < 0$$
 $\stackrel{\text{iff}}{=} x + \frac{1}{x} \le -2;$

____(2)
$$\leq x > 0$$
 $\forall x > 0$ $\forall x > 0$ $\forall x > 0$

____(3)
$$\stackrel{\text{def}}{=} x > 0$$
 $\stackrel{\text{iff}}{=} x > 2\sqrt{x}$;

____(4) 当
$$a, b \ge 0$$
 时, $a + b \ge 2ab$;

(5) 当
$$a, b \ge 0$$
 时, $2ab \ge a + b$;

(6)
$$\leq x, y, z \in \mathbf{R}$$
 $\forall x, y, z \in \mathbf{R}$ $\forall x, y, z \in \mathbf{R}$ $\forall x, y, z \in \mathbf{R}$ $\forall x, y, z \in \mathbf{R}$

____(7)
$$\stackrel{\text{def}}{=} a, b \in \mathbf{R}$$
 $\stackrel{\text{def}}{=} b^2 + 4 \ge ab + 2a + 2b;$

____(8) 当
$$a, b \in \mathbf{R}$$
 时, $a^3 + b^3 \ge 2a^2b$;

____(10) 当
$$a, b \in \mathbb{R}^+$$
 时, $a^3 + b^3 \ge a^2b + ab^2$;

____(11) 当
$$x, y > 0$$
 时, $x^2 + y^2 \ge (x + y)^2$;

(001121) 设 $x,y \in \mathbf{R}$, 求证: $\frac{x^2 + y^2}{2} \ge (\frac{x + y}{2})^2 \ge xy$, 并分别指出两个不等式中等号成立的条件.

(001122) 在解不等式时,有时我们可以用不等式的性质来求解.例如解不等式 $x^2+x+1\geq 0$,我们可以利用不等式的基本性质,得到 $x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\geq \frac{3}{4}>0$ 恒成立,因此解集为 R.请你用基本不等式的观点解以下两个不等式:

(1)
$$x + \frac{1}{x} > 1$$
;

(001123) 试确定实常数 k 使得 $a^2 + b^2 + c^2 \ge k(a+b+c)^2 \ge ab + bc + ca$ 对任意的 $a,b,c \in \mathbf{R}$ 成立, 并证明该不等式.

(001124) 设 a, b, c, d > 0.

 $(1) \ \textbf{利用三元的基本不等式} \ "x,y,z>0 \ \textbf{时}, \ x^3+y^3+z^3 \geq 3xyz", \ \textbf{证明} \colon \ a^3+b^3+c^3+d^3 \geq abc+bcd+cda+dab;$

- (2) 该不等式能否加强为 $a^3 + b^3 + c^3 + d^3 \ge k(abc + bcd + cda + dab)$, 其中 k = 1.0001? 为什么?
- (3) 利用三元的基本不等式 "x, y, z > 0 时, $x^3 + y^3 + z^3 \ge 3xyz$ ", 证明: $a^3 + b^3 + c^3 + d^3 \ge \frac{3\sqrt[3]{2}}{2}(abc + bcd)$.
- (001125) 已知正实数 x, y 满足 x + 2y = 1
- (1) 求 xy 的最大值;
- (2) 求 $\frac{1}{x} + \frac{1}{y}$ 的最小值.
- (001126) 已知 $a, b \in \mathbf{R}^-, a + b = -4$, 求 $\frac{1}{a} + \frac{1}{b}$ 的最大值.
- (001127) 已知正实数 x, y 满足 $x + \frac{4}{y} = 1$, 求 $\frac{1}{x} + y$ 的最小值.
- (001128) 已知 x > 2, 求代数式 $\frac{x^2 3x + 3}{x 2}$ 的最小值.
- (001129) 求 $x(2-x)^3$ 的最大值.
- (001130) 已知直角三角形的面积为 8, 求斜边长的最小值.
- (001131) 已知直角三角形的斜边长为 2, 求周长的最大值。
- (001132) 用长为 4L 的篱笆在一堵墙边上圈起一块矩形的地来 (只需要围三面),问能圈到的地最大面积为多少? 如何圈?
- (001133) 求体积为定值 V 的长方体的最小表面积.
- (001134) 已知 $x, y \in \mathbf{R}$, 用比较法证明: $x^2 + y^2 \ge 4(x + y) 8$.
- (001135) 已知 $f(x) = x + \frac{1}{x}$, 利用比较法证明:
- (1) 若 $a > b \ge 1$, 证明: f(a) > f(b);
- (2) 若 $0 < a < b \le 1$, 证明: f(a) > f(b).
- (001136) 已知 a < b < 0,用分析法证明: $\frac{a^2 + b^2}{a^2 b^2} < \frac{a + b}{a b}$.
- (001137) 已知 $a, b, c \in \mathbb{R}^+$, 证明: $a^2(b+c) + b^2(c+a) + c^2(a+b) \ge 6abc$.
- (001138) 已知 a, b, c 是不全相等的正数. 证明: $\frac{a+b}{c} + \frac{b+c}{a} + \frac{c+a}{b} > 6$.
- (001139) 已知 $x,y\in\mathbf{R}^+$ 且 x+y>2,用反证法证明: $\frac{1+y}{x}$ 与 $\frac{1+x}{y}$ 中至少有一个小于 2.
- (001140) 已知 a > b > 0, 求证:
- (1) $\sqrt{a^2 b^2} + b > a$.
- (2) $\sqrt{a^2 b^2} + \sqrt{2ab b^2} > a$.
- (001141) 已知 $x, y \in \mathbf{R}$, 证明: $x^2 + 5y^2 + 4xy + 5 \ge 2x + 8y$.
- (001142) 已知 $q(x) = x^3 3x$.
- (1) 若 $a > b \ge 1$, 证明: g(a) > g(b);
- (2) 若 $-1 \le a < b \le 1$, 证明: g(a) > g(b).

(001143) 已知 a,b,c 是不全相等的正数, 求证: $(ab+a+b+1)(ab+bc+ca+c^2) > 16abc$.

$$(001144)$$
 来证: $\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2} \ge \sqrt{2}(a+b+c)$.

(001145) 已知
$$a>b>0$$
, 求证: $a^2+\frac{1}{(a-b)b}\geq 4$.

$$(001146)$$
 求证: $\sqrt{1\times2} + \sqrt{2\times3} + \cdots + \sqrt{9\times10} < 54$.

(001147) 已知 $n \in \mathbb{Z}$, $n \geq 3$. 证明: $3^n + 4^n + 5^n \leq 6^n$, 并求出等号成立的条件.

(001148) 已知 $a, b, c \in \mathbb{R}^+, a+b+c=3$. 证明:

- (1) $a^2 + b^2 + c^2 \ge 3$;
- (2) $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \ge 3;$
- (3) $a^4 + b^4 + c^4 > 3$;
- (4) (选做) 对一切 $n \in \mathbb{N}$, $a^{2^n} + b^{2^n} + c^{2^n} \ge 3$.

(001149) 甲乙两人同时从 A 地出发去往 B 地,假设甲在前半程的速度为 v_1 ,后半程的速度为 v_2 ;乙在前一半时间的速度为 v_1 ,后一半时间的速度为 v_2 ,这里 $v_1 \neq v_2$. 问两人谁先到达 B 地?

(001150)(1) 没 a+b+c=6, 且 $a,b,c\in(0,3)$, 证明: $(3-a)(3-b)(3-c)\leq 1$;

(2) 已知三角形的面积可以用 Heron 公式 $S=\sqrt{p(p-a)(p-b)(p-c)}$ 来计算, 其中 p 是半周长, 即 $p=\frac{a+b+c}{2}$. 据此求周长为 6 的三角形的面积的最大值.

(001151)(1) 已知 $f(x) = Ax^2 + Bx$, 并且 $f(1) \in [0,1]$, $f(2) \in [0,1]$, 求 f(5) 的最大值与最小值.

(2) 已知 $f(x) = Ax^2 + Bx$, 并且 $f(1) \in [0,1]$, $f(2) \in [0,1]$, $f(3) \in (-\infty,0]$, 求 f(-1) 的最大值与最小值.

(001152) 设 $f: A \rightarrow B$ 是集合 A 到集合 B 的映射, 则以下正确的是

A. A 中每一元素在 B 中必有像

- B. B 中每一元素在 A 中必有原像
- C. B 中每一元素在 A 中的原像是唯一的
- D. A 中的不同元素的像必不同

(001153) 集合 $A = \{1, 2, 3\}$, 集合 $B = \{1, 4\}$, 则可建立从 A 到 B 的不同映射共_____ 种, 从 B 到 A 的不同映射共_____ 种.

(001154) 设映射 $f: \mathbb{N} \to \mathbb{N}; \ n \mapsto 2n^2 + 1$, 则在该映射下, 3 的原像为______, 3 的像为______.

(001155) 已知 a, b 是实数, 映射 $f: \mathbf{R} \to \mathbf{R}; \ x \mapsto ax + b$ 满足 $f(1) = 3, \ f(3) = 10, \ m$ 么在该映射下, 10 的像为______.

(001156) 判断下列各映射是否单射, 是否满射 ("A"表示单且满, "B"表示单但不满, "C"表示满但不单, "D"表示既不单又不满).

映射	类型
$(1) f: \{1, 2\} \to \{1, 2\}; \ x \mapsto 3 - x$	
(2) $f: \{1, 3, 5, \dots, 99\} \to \{2, 4, 6, \dots, 100\}; \ x \mapsto \sqrt{(x+1)^2}$	
(3) $f:[1,2] \to [1,4]; \ x \mapsto 2x$	
(4) $f: [-1,1] \to [0,1]; \ x \mapsto x^{2010}$	
(5) $f: [-2,1] \to [-8,1]; \ x \mapsto x^3$	
(6) $f:(0,+\infty)\to(0,+\infty);\ x\mapsto(x+1)^2$	
$(7) f: \{(x,y) x,y \in \mathbf{R}\} \to \mathbf{R}; (x,y) \mapsto x$	
(8) $f: \mathbf{R} \to \{(x,y) x,y \in \mathbf{R}\}; x \mapsto (x,x)$	
$(9) f: \{(x,y) x,y \in \mathbf{R}\} \to \{(x,y) x,y \in \mathbf{R}\}; (x,y) \mapsto (x+y,x-y)$	

(001157) 设 $A = \mathbf{Z}$, $B = \{n | n = 2k + 1, k \in \mathbf{Z}\}$, $C = \mathbf{R}$. $f: A \to B$; $x \mapsto 2x - 1$, $g: B \to C$; $x \mapsto \frac{1}{2x + 1}$. 经过两次映射,

- (1) 求 A 中元素 1 在 C 中的对应元素;
- (2) C 中元素 1 在 A 中有没有对应元素?
- (3) 如果把这两次映射"合成"成为一个 A 到 C 的映射 h, 试写出 h 的对应法则.

(001158)(1) 试证明: 映射

$$f: [0,2] \to \mathbf{R}$$
$$x \mapsto x^2$$

的像集为 [0,4];

(2) 试证明: 映射

$$f: [-1,2] \to \mathbf{R}$$

$$x \mapsto x^2$$

的像集为 [0,4].

(001159) 设集合 $A = \{-1, 0, 1\}, B = \{2, 3, 4, 5, 6\}$, 映射 $f: A \to B$, 对任意 $x \in A$, 都有 x + f(x) + xf(x) 是奇数. 求满足条件的映射个数.

(001160) 已知函数 f(x) = 3x + 5, $x \in \mathbb{R}$, 求 f(-1), f(10), f(a), $f(a^2 + 1)$. 并写出函数 y = f(f(x)) 的定义域, 对应法则以及值域.

(001161) 下列两个函数是同一个函数的有_____.

(1)
$$y = \frac{x^2 - 1}{x_3 - 1} = y = x + 1;$$

(2)
$$y = \frac{x^3}{x} + y = x^2;$$

(3)
$$y = \sqrt[3]{x^2} - 1 = \sqrt[3]{x^3} - 1;$$

(4)
$$f(x) = x^2 - 2x - 1 = g(t) = t^2 - 2t - 1;$$

$$(5) \ f(x) = 2^x, \ x \in \{0,1,2,3\} \ \mbox{$\stackrel{L}{\Rightarrow}$} \ g(x) = \frac{1}{6} x^3 + \frac{5}{6} x + 1, \ x \in \{0,1,2,3\}.$$

(5)
$$f(x) = 2^x$$
, $x \in \{0, 1, 2, 3\}$ 与 $g(x) = \frac{1}{6}x^3 + \frac{1}{6}x + 1$, $x \in \{0, 1, 2, 3\}$.
$$(001162) 已知 $f(x) = \begin{cases} 2x + 1, & x > 0, \\ 2, & x = 0, \\ 0, & x < 0. \end{cases}$$$

(001163) 已知
$$f(x) = \begin{cases} x-2, & x>8, \\ f(x+3), & x \leq 8. \end{cases}$$
,则 $f(9) = ______, f(0) = _____.$

(001164) 写出下列函数的定义域 (写在对应关系的右边):

(1)
$$f(x) = \frac{6}{x^2 - 3x + 2}$$
;

$$(1) f(x) = \frac{6}{x^2 - 3x + 2};$$

$$(2) f(x) = \frac{3x - 1}{2x^3 + 4x^2 + x - 7};$$

$$(3) f(x) = \frac{\sqrt[3]{4x + 8}}{\sqrt{3x - 2}};$$

$$(4) f(x) = \sqrt{2x - 1} + \sqrt{1 - 2x} + 4;$$

(3)
$$f(x) = \frac{\sqrt[3]{4x+8}}{\sqrt{3x-2}}$$

(4)
$$f(x) = \sqrt{2x-1} + \sqrt{1-2x} + 4$$
;

(5)
$$f(x) = \sqrt{x^2 - 4}$$
;

(6)
$$f(x) = \frac{\sqrt{2x+1}}{x-3}$$
.

(2) 函数 f(x) = -x, $x \in [-1,0)$ 的值域为

(3) 函数
$$f(x) = \begin{cases} x^2, & 0 \le x \le 1, \\ -x, & -1 \le x < 0. \end{cases}$$
 的值域为______.

(001166) 函数 $f(x) = \sqrt{kx^2 + 4kx + 3}$ 的定义域为 R, 求实数 k 的取值范围.

(001167) 求函数 $y = x^3 + 1$ 的值域 (要详细过程).

(001168) 建造一个容积为 8000 立方米, 深为 6 米的长方体蓄水池, 池壁每平方米的造价为 a 元, 池底每平方米 的造价为 2a 元, 试将总价 y 表示为底的一边长度 x(单位: 米) 的函数.

(001169) 灌溉渠的横断面是上宽下窄的等腰梯形, 底宽 2 米, 边坡的倾斜角为 45°, 渠的高度为 1 米. 假设渠中 水深为 h 米, 试将横断面中有水面积 A(单位: 平方米) 表示成 h 的函数.

(001170) 用长为l 的铁丝弯成下部为矩形(-端不封口),上部为半圆形(直径不封口)的框架,若矩形底边长为 x, 将此框架围成的面积 y 表示成 x 的函数.

(001171) 矩形 ABCD 中, AB = 4 厘米, BC = 6 厘米, E 为 BC 的中点, 动点 P 的速率为每秒 2 厘米, P 从 A 出发, 沿 $\triangle AED$ 的边按 $A \to E \to D$ 运动. 设 P 点从 A 出发经过 x 秒后 $\triangle APD$ 的面积为 y 平方厘米, 试将 y 表示成 x 的函数.

(001172) 某物流公司在上海, 杭州各有库存的某种机器 12 台和 6 台, 现销售给 A 市 10 台, B 市 8 台. 已知调 运一台机器的运费(单位: 万元)如下表.

	上海	杭州
A 市	4	3
В市	8	5

设从上海往 A 市调运 x 台, 写出总运费 W(单位: 万元) 关于 x 的函数, 并求出怎样调运最节省运费.

(001173) 在以下坐标系中分别作出下列函数的图像 (用铅笔, 要求清晰, 交代关键信息):

$$(1) \ y = \sqrt{|x|};$$

(2)
$$y = |x - 1| - |x + 1|$$
;

(3)
$$y = x - [x];$$

(4)
$$y = x + \frac{1}{x}$$
;

(5)
$$y = x - \frac{1}{x}$$
;

(6)
$$y = \frac{6x}{1+x^2}$$
.

(001174) 某种茶杯每个 0.5 元, 买 x 个茶杯的钱数为 y 元. 画出 y 关于 x 的函数的图像.

(001175) 证明: 函数 $y=\frac{1}{x}$ 的图像关于原点对称 (一个图形关于原点对称是指任取该图形上的一点,它关于原点对称所得的点也在该图形上).

(001176) 求证: 函数 $y = x^3$ 的图像不是一条直线 (本题不能使用斜率的概念).

(001177) 试求出函数 $y=x^2$ 的图像分别进行如下变换后, 所得的各个图像对应的函数.

- (1) 向右平移 2 个单位;
- (2) 向上平移 1 个单位;
- (3) 先向右平移 2 个单位, 再向上平移 1 个单位;
- (4) 先向上平移 1 个单位, 再向右平移 2 个单位

- (001178) 试求出函数 $y = \sqrt{x}$ 的图像分别进行如下变换后所得的各个图像对应的函数.
- (1) 图像上的每一点的横坐标变为原来的 2 倍;
- (2) 图像上的每一点的纵坐标变为原来的 $\frac{1}{2}$;
- (3) 图像上的每一点的横坐标变为原来的 2 倍, 然后向上平移 3 个单位, 所得图像上每一点的纵坐标变为原来的 3 倍, 再向左平移 2 个单位;
- (4) 向左平移 3 个单位,然后将所得图像上的每一点的横坐标变为原来的 $\frac{1}{2}$,最后向下平移 2 个单位
- (001179) 欲将函数 y=3x 的图像通过一次平移变为函数 y=3x-5 的图像,可向______ 平移_______ 个单位; 也可向_______ 平移_________ 个单位.
- (001180) 欲将函数 $y=x^2$ 的图像通过平移和放缩变为函数 $y=2x^2-4x-1$ 的图像, 所需的步骤依次为: (同时写出每步变换后所得图像对应的函数)
- (001181) 证明: 在平面直角坐标系中, 将函数 $y = f(x), x \in \mathbf{R}$ 的图像绕原点旋转 180°, 得到的是函数 $y = -f(-x), x \in \mathbf{R}$ 的图像.
- (001182) 在平面直角坐标系中,将函数 $y=f(x), x\in \mathbf{R}$ 的图像沿直线 x=1 翻折,将会得到哪个函数的图像? 试写出这个函数,并证明.
- (001183) 设函数 $f(x) = 2 \sqrt{x}$, $g(x) = 3 + \sqrt{x}$, 求 f(x) + g(x).
- (001184) 已知函数 $f(x) = \frac{x}{\sqrt{x+3}}, g(x) = \frac{1}{\sqrt[6]{x+3}},$ 求 f(x)g(x).
- (001185) 已知 $f(x) = x^2$, $g(x) = \frac{1}{x}$.
- (1) $\Re f(x) + g(x), f(x)g(x) \Re \frac{\tilde{f}(x)}{g(x)};$
- (2) 求 $f \circ g$ 和 $g \circ f$;
- (3) 求 $f \circ g g \circ f$,判断它是否在其定义域上恒等于零.
- (001186) 已知 $f(x) = x^2$, $g(x) = \frac{1}{x+1}$.
- (1) $\Re f(x) + g(x), f(x)g(x) \Re \frac{f(x)}{g(x)};$
- (2) 求 $f \circ g$ 和 $g \circ f$;
- (3) 求 $f \circ g g \circ f$,判断它是否在其定义域上恒等于零.
- (001187) 求以下各函数的复合.
- (1) f(x) = 2x, $g(x) = \frac{x}{2}$, $\Re f \circ g$, $g \circ f$;
- (2) $f(x) = \sqrt{x}$, g(x) = 2x + 1, $\Re f \circ g$, $g \circ f$;
- (3) $f(x) = x^3 + 1$, $g(x) = \sqrt[3]{x-1}$, $\Re f \circ f$, $f \circ g$, $g \circ f$;
- (4) f(x) = x + 1, $x \in [1, +\infty)$, g(x) = x 1, $x \in (-\infty, 3]$, $\Re f \circ g$, $g \circ f$.
- (001188) 试找出三个函数 f, g, h, 使得 h 是 f 与 g 的和, 但是 g 不是 h 与 f 的差.
- (001189) 试找出两个定义在 R 上的函数 f 和 g, 使得对一切 $x \in \mathbb{R}$, 均成立 f(g(x)) g(f(x)) = 1.

(001190) 下列各映射中, 是单射的有	,是满射的有	,存在逆映射的有	<u></u> .
① $f: \{1,2,3\} \to \{1,4,9\}; \ x \mapsto x^2;$			
$\textcircled{2} f: \mathbf{R}^+ \to \mathbf{R}^+; \ x \mapsto x^2;$			
$3 f: \mathbf{R} \to [0, +\infty); \ x \mapsto x^2;$			
(4) $f: \mathbf{R}^+ \to \mathbf{R}^+; x \mapsto \frac{1}{x};$			

- $(5) f: \mathbf{R}^+ \cup \mathbf{R}^- \to \mathbf{R}^+ \cup \mathbf{R}^-; \ x \mapsto \frac{1}{x};$
- $\textcircled{f}: \mathbf{R}^+ \to \mathbf{R}; \ x \mapsto x + \frac{1}{x};$
- \otimes $f: \mathbf{R} \to \mathbf{Z}; x \mapsto [x];$
- (9) $f: \{(x,y)|x,y \in \mathbf{R}\} \to \{(x,y)|x,y \in \mathbf{R}\}; (x,y) \mapsto (x+y,x-y);$
- (001191) 已知一次函数 y = f(x) 满足 f(1) = 3, $f^{-1}(5) = 2$. 则 $f(10) = _____; f^{-1}(6) = _____$

(001192) 写出下列函数的反函数 (注意定义域).

- (1) $y = -\frac{1}{x} + 3;$
- (2) $y = \sqrt{2x 1}$; (3) $y = \frac{2x + 1}{x + 2}$;
- (4) $y = x^2 + 2, x \in [2, +\infty)$;
- (5) $y = 2^x$, $x \in \{1, 2, 3, 4\}$ (本小题不能使用对数);
- (6) $y = \sqrt{9 x^2}, x \in [-3, 0];$
- (7) $y = x^2 4x, x \in [3, 7].$
- (001193) 已知函数 y = f(x) 的图像经过 (1,2), 它有反函数 $y = f^{-1}(x)$. 那么函数 $y = f^{-1}(x+3)$ 的图像一定 经过点

(001194) 已知函数 y = f(x) 有反函数, 且 $y = f^{-1}(3x+1)$ 的图像经过点 (0,-1). 试确定函数 y = 5f(x+2)+3的图像一定经过的点, 并说明理由.

(001195)[选做] 函数 $f(x) = x^3 - x + 1$ 有反函数吗? 为什么? 你能找到一个实数 a, 使得函数 $g(x) = x^3 - x + 1$ $1, x \in [a, +\infty)$ 有反函数吗?

(001196) 已知函数 y=f(x) 的图像经过第一,第二象限,且它有反函数 $y=f^{-1}(x)$. 那么 $y=f^{-1}(x)$ 的图像 一定经过

(001197) 已知函数 f(x) = 3x - 1, 那么 $f^{-1}(x+1) =$

(001198) 在同一坐标系中通过平移和放缩作出以下函数的图像, 并写出变换的方法. y = |x|; y = |x - 1|; $y = \frac{|x-1|}{2}$; $y = \frac{|x-1|}{2} - 3$; $y = \frac{|2x-1|}{2} - 3$.

(001199)(1) 欲将函数 $y=x^2$ 的图像通过先平移后放缩的方式变为函数 $y=\frac{1}{2}x^2+x$ 的图像,所需的步骤依次为: (同时写出每步变换后所得图像对应的函数)

(2) 欲将函数 $y = x^2$ 的图像通过先放缩后平移的方式变为函数 $y = \frac{1}{2}x^2 + x$ 的图像,所需的步骤依次为: (同时写出每步变换后所得图像对应的函数)

(001200)(1) 欲将函数 $y=\sqrt{x}$ 的图像通过先平移后放缩的方式变为函数 $y=\sqrt{2x-4}$ 的图像,所需的步骤依次为: (同时写出每步变换后所得图像对应的函数)

(2) 欲将函数 $y = \sqrt{x}$ 的图像通过先放缩后平移的方式变为函数 $y = \sqrt{2x-4}$ 的图像,所需的步骤依次为: (同时写出每步变换后所得图像对应的函数)

(001201) 将函数 $y = \sqrt{x}$ 的图像上的每一点的横坐标变为原来的 3 倍, 然后向右平移 3 个单位, 再沿直线 y = x 翻折, 则所得图像对应的函数为______.

(001202)[选做] 欲将函数 y = |x-1| + |x+1| 的图像通过平移和放缩变为函数 y = |x-2| + |x-6| 的图像,所需的步骤依次为:(同时写出每步变换后所得图像对应的函数,提示: 先把两个函数的图像画在一张草稿纸上找一下感觉)

(001203)[选做] 欲将函数 $y=x+rac{1}{x}$ 的图像通过放缩变为函数 $y=x+rac{4}{x}$ 的图像,所需的步骤依次为:(同时写出每步变换后所得图像对应的函数,提示: 先把两个函数的图像画在一张草稿纸上找一下感觉)

(001204) 奇函数的图像是否都过原点? 偶函数的图像是否一定和 y 轴相交? 为什么?

(001205) 判断下列函数的奇偶性 (既奇又偶, 奇非偶, 偶非奇, 非奇非偶), 并说明理由.

- (1) $f(x) = \frac{3}{4} \frac{4}{3}x^2$;
- (2) $f(x) = x^{\frac{2}{3}}$;
- (3) $f(x) = x^{\frac{3}{2}}$;

(4) $f(x) = x^3 + 2|x|$

(5)
$$f(x) = \begin{cases} -x + x^2, & x > 0, \\ x^2 + x, & x \le 0. \end{cases}$$

(001206) 已知 f(x) 是定义在 R 上的偶函数, 当 $x \in [0, +\infty)$ 时 $f(x) = x(1+x^4)$.

- (1) 求 f(-2);
- (2) 当 x < 0 时, 求 f(x).

(001207) 已知 y = f(x), y = g(x) 的定义域均关于原点对称且交集非空, 且 f 与 g 一奇一偶, 证明: y =f(x)g(x) 是奇函数.

(001208) 已知 $f(x) = x^2 + bx + c$ 是偶函数, 求 b, c 应满足的条件, 并说明理由.

(001209) 已知 a > 0 且 $a \neq 1$, $f_a(x) = \frac{1}{2} + \frac{1}{a^x - 1}$, $x \in \mathbf{Z}^+ \cup \mathbf{Z}^-$. 对于每一个 a 分析 $f_a(x)$ 的奇偶性.

(001210) 下列函数中, 在 $[1,+\infty)$ 上为增函数的有___

A.
$$y = -(x-1)^2$$
 B. $y = |x-1|$

B.
$$y = |x - 1|$$

C.
$$y = \frac{1}{x+1}$$

C.
$$y = \frac{1}{x+1}$$
 D. $y = -(x+1)^2$

(001211) 求下列各函数的单调区间, 并证明.

- (1) f(x) = 2x + 3;
- (2) $f(x) = \frac{1}{x}$;
- (3) $f(x) = x^2 + 2x$;
- (4) $f(x) = x \frac{1}{x}$; (5) $f(x) = ax + \frac{b}{x}$, 其中 a > 0, b > 0;

(001212)(1) 设函数 y = f(x) 在区间 I 上单调递增, $x_1, x_2 \in I$. 证明 $f(x_1) < f(x_2)$ 当且仅当 $x_1 < x_2$.

- (2) 已知函数 y = f(x) 是定义在 [-1,1] 上的增函数, 解不等式: f(x) < f(0);
- (3) 已知函数 y = f(x) 是定义在 [-1,1] 上的增函数, 解不等式: $f(x-1) < f(x^2-1)$.

(001213) 已知函数 y = f(x) 与 y = q(x) 的定义域均为 R.

- (1) 如果 y = f(x) 是奇函数, 那么 y = |f(x)| 是偶函数;
- (2) 如果 y = f(x) 是奇函数, 那么 $y = \sqrt[3]{f(x)}$ 是奇函数;
- __(3) 如果 y = f(x) 是奇函数, 那么 y = f(|x|) 是奇函数;
- (4) 如果 y = f(x) 是奇函数, 那么 y = f(|x|) 是偶函数;
- ____(5) 如果 y = f(x) 是奇函数, y = g(x) 是偶函数, 那么 y = f(x)g(x) 是奇函数;
- ____(6) 如果 y = f(x) 是奇函数, y = g(x) 不是偶函数, 那么 y = f(x) + 2g(x) 既非奇函数又非偶函数;
- __(7) 如果 y = f(x) 不是奇函数, y = g(x) 也不是奇函数, 那么 y = f(x) g(x) 也不是奇函数;
- _____(8) 如果 y = f(x) 是奇函数, y = g(x) 不是偶函数, 那么 y = f(x) + g(x) 不是偶函数;
- ____(9) 如果 y = f(x) g(x) 是奇函数, y = g(x) 是奇函数, 那么 y = f(x) 也是奇函数;
- ___(10) 如果 $y = (f(x))^2$ 是偶函数, 那么 y = f(x) 是偶函数或者是奇函数;

(11) 如果 $y = (f(x))^2$ 是奇函数, 那么 $y = f(x)$ 恒等于零, 因此是奇函数也是偶函数;
(12) 如果 $y = (f(x))^3$ 是奇函数, 那么 $y = f(x)$ 是奇函数.
(001214) 已知函数 $y = f(x), x \in D_f$ 与 $y = g(x), x \in D_g$ 的定义域交集非空.
(1) 如果 $y = f(x)$ 是奇函数, $y = g(x)$ 是奇函数, 那么 $y = f(x) + x^2 g(x)$ 是奇函数;
(2) 如果 $y=f(x)$ 是奇函数, $y=g(x)$ 是偶函数, 而且它们都不恒等于零, 那么 $y=f(x)+g(x)$ 既不是
奇函数又不是偶函数;
(3) 如果 $y=f(x)$ 是奇函数, $y=g(x)$ 是偶函数, 而且它们在 $D_f\cap D_g$ 上都不恒等于零, 那么 $y=$
f(x) + g(x) 既不是奇函数又不是偶函数;
(4) 如果 $y=f(x)$ 不是奇函数, $y=g(x)$ 也不是奇函数, 那么 $y=f(x)-g(x)$ 也不是奇函数;
(5) 如果 $y = f(x) $ 是奇函数, 那么 $f(x)$ 恒等于零;
(6) 如果 $y = f(x)$ 不是奇函数, 那么 $y = f(x) $ 不是偶函数;
(7) 如果 $y=f(x)$ 是偶函数, 且 $y=f(x)+g(x)$ 也是偶函数, 那么 $y=g(x)$ 也是偶函数.
(001215) 已知 $y = f(x), x \in D$ 是偶函数.
(1) $y = (f(x))^3 + f(x)$ 是偶函数;
(2) $y = f(2x)$ 是偶函数;
(3) $y = f(x-1)$ 的图像关于直线 $x = -1$ 对称;
(4) $y = f(x-1)$ 的图像关于直线 $x = 1$ 对称;
(5) $y = f(3x+1)$ 的图像关于直线 $x = -\frac{1}{3}$ 对称;
(6) $y = f(3x+1)$ 的图像关于直线 $x = -1$ 对称;
(7) $y = f(x^3 + 1)$ 是偶函数;
(8) $y = f(x^3 + x)$ 是偶函数.
(001216) 已知 $y = f(x)$ 是奇函数.
(1) $y = f(3x)$ 是奇函数;
(2) $y = f(x-1) + 2$ 的图像关于点 $(1,2)$ 对称;
(3) $y = 3f(2x - 1) + 6$ 的图像关于点 $(1, 6)$ 对称;
(4) $y = 3f(2x - 1) + 6$ 的图像关于点 $(\frac{1}{2}, 6)$ 对称;
(5) $y = 3f(2x-1) + 6$ 的图像关于点 $(\frac{1}{2}, 2)$ 对称;
(6) $y = f(x^2)$ 是偶函数;
(7) $y = f^{-1}(x)$ 一定存在;
(8) $y = f^{-1}(x)$ 如果存在,则必定是奇函数.
(001217) 已知 $y = f(x)$ 在 R 上是增函数.
(1) 如果 $y = g(x)$ 在区间 I 上递增, 则 $y = f(x) + g(x)$ 在区间 I 上递增;
(2) 如果 $y=g(x)$ 在区间 I 上递增, 则 $y=f(x)g(x)$ 在区间 I 上递增;
(3) 如果 $y=g(x)$ 在区间 I 上递增, 则 $y=f(g(x))$ 在区间 I 上递增;

(4) 如果 $y=g(x)$ 在区间 I 上递增, 则 $y=g(f(x))$ 在 R 上递增;
(5) 如果 $y = g(x)$ 满足 $y = f(x) - g(x)$ 在 R 上递增, 那么 $y = g(x)$ 在 R 上递减;
(6) 如果 $y = g(x)$ 满足 $y = f(x) - g(x)$ 在 R 上递减, 那么 $y = g(x)$ 在 R 上递减;
(7) 如果定义在 R 上的函数 $y=g(x)$ 满足 $y=g(f(x))$ 在 R 上递增, 则 $y=g(x)$ 在 R 上递增;
(8) 如果定义在 R 上的函数 $y=g(x)$ 满足 $y=g(f(x))$ 在 R 上递减, 则 $y=g(x)$ 在 R 上递减.
(001218) 判断下列各函数的单调性, 并证明.
$(1) \ f(x) = \sqrt{1+x};$
(2) $f(x) = x + x^5, x \in [0, +\infty);$
(3) $f(x) = (\sqrt{x} + 1)(x^2 + 1);$
(001219) 设 a,b 是实常数, 已知函数 $f(x) = ax^4 + bx^3 + 1, x \in [a,a+2]$ 是偶函数, 求 a,b 的值.
(001220) 将 $f(x) = x+1 $ 表示为一个奇函数与一个偶函数的和的形式.
(001221) 判断下列函数的奇偶性, 并说明理由.
$(1) \ f(x) = 1+x + 1-x ;$
(2) $f(x) = (1-x)\sqrt{\frac{1+x}{1-x}};$
(3) $f(x) = \frac{\sqrt{x^2 + 1} + x - 1}{\sqrt{x^2 + 1} + x + 1};$
(001222) 是非题, 在每个命题之前的横线上写上 "T" 或 "F" 即可, 不用写任何原因.
已知 $y = f(x)$ 是定义在区间 $[-1,1]$ 上的函数.
(1) 如果 $f(x)$ 是奇函数, 则 $f(x)$ 要么是增函数, 要么是减函数;
(2) 如果 $f(x)$ 是偶函数, 则 $f(x)$ 既不是增函数, 又不是减函数;
(3) 如果 $f(x)$ 是奇函数, 且在 $[0,1]$ 上递增, 那么 $f(x)$ 在 $[-1,0]$ 上也递增;
(4) 如果 $f(x)$ 是奇函数, 且在 $[0,1]$ 上递增, 那么 $f(x)$ 在 $[-1,1]$ 上也递增;
(5) 如果 $f(x)$ 在 $[-1,0), [-\frac{1}{2},\frac{1}{2}], (0,1]$ 上都是递增的, 那么 $f(x)$ 在 $[-1,1]$ 上也递增.
(001223) 是非题, 在每个命题之前的横线上写上"T"或"F"即可, 不用写任何原因.
已知 $y = f(x)$ 是定义在 $[-1,1]$ 上的偶函数, 在 $[0,1]$ 上递增.
$(1) f(\frac{1}{2}) > f(-\frac{1}{3});$
(2) $f(a) > f(b)$ 当且仅当 $a > b$;
(3) $f(a) > f(b) $ 当 且仅当 $ a > b $;
(4) $f(a) > f(b) $ 当且仅当 $1 \ge a > b $.
(001224) 已知函数 $f(x) = kx^2 - 4x + 5$ 在 $[1,3]$ 上单调递减, 则实数 k 的取值范围为
(001225) [选做] 写出函数 $f(x) = 2x + \frac{1}{x^2}$ 的单调区间, 并证明.
$(001226)(1)$ 函数 $y=1-x^2, \ x \in [-1,1]$ 的最大值为
最小值点为;

- (2) 函数 $y = 2x^2 8x$, $x \in [-1, 4]$ 的最大值为______, 最小值为_____, 最大值点为______, 最 小值点为 ; (3) 函数 $y = 6x - x^2$, $x \in [-3, 0]$ 的最大值为_______, 最小值为_______, 最大值点为_______, 最小 值点为_____; (4) 函数 $y=2x^2-4x+5,\;x\in[2,4]$ 的最大值为________,最小值为_______,最大值点为______,最 小值点为_____. (2) 函数 $y = x - \frac{4}{x}$, $x \in [1,5]$ 的最大值为______, 最小值为______, 最大值点为______, 最小值 (3) 函数 $y = \frac{x-5}{3x+2}$, $x \in [0,3]$ 的最大值为_______, 最小值为_______, 最大值点为_______, 最小值 (4) 函数 $y = x^2 + \frac{16}{x}$, $x \in [1,4]$ 的最大值为______, 最小值为_____, 最大值点为______, 最小 值点为 (001228) 函数 $y = \max\{|x-4|, |2x-3|\}$ 的最小值为______. (001229) 某植物园要建形状为直角梯形的苗圃, 其中的两邻边用夹角为 135°的两面墙, 另两边总长为 30 米. 以其与两底垂直的腰长 x(单位: 米) 为自变量建立面积 S(单位: 平方米) 与 x 的函数关系, 并求苗圃面积的最 大值. (001230) 设 x, y 是关于 m 的方程 $m^2 - 2am + a + 6 = 0$ 的两个实根, 求点 (x, y) 到点 (1, 1) 的距离的最小值. (001231) 已知函数 $y = \frac{1}{2}x^2 - x + \frac{3}{2}$ 的定义域为 [1,b], 最大值为 b, 最小值为 1. 求 b. (001232) 已知函数 $f(x) = \frac{x^2 + 2x + a}{x}, \ x \in [1, +\infty).$ (1) 当 a=4 时, 求函数的最小值; (2) 如果对一切定义域中的 x, f(x) 均为正数, 求实数 a 的取值范围. (001233) 求下列函数零点的集合, 并说明理由. (1) 函数 $f(x) = x^3 + 3x + 1, x \in \mathbf{Z}$; (2) 函数 $f(x) = x^3 - 3x + 1, x \in \mathbf{Z}$. (001234) 求函数 $y = x^3 + x + 1$ 的所有零点 (精确到 0.01, 需要给出理由, 包括为什么零点取该 (这些) 近似值 以及为什么没有其他零点).
- (001236) 函数 $f(x) = 2x^3 3x^2 18x + 28$ 在区间 (1,2) 内的零点为______.(精确到 0.1) 试给出理由,包括为什么零点取该 (这些) 近似值以及为什么没有其他零点.

(这些) 近似值以及为什么没有其他零点).

(001235) 求函数 y = 4(x-1)(x-2)(x-3) + 1 的所有零点 (精确到 0.01, 需要给出理由, 包括为什么零点取该

- (001237) 证明: 函数 $y = x^3 + x, x \in [1, 2]$ 的值域为 [2, 10]
- (001238) 函数 $y = x^2 3x + 1$, $x \in [1, 4]$ 的值域为______.
- (001239) 函数 $y = \frac{2x+3}{x-1}$ 的值域为______.
- (001240) 函数 $y = \frac{6x}{x^2 + 1}$ 的值域为______.
- (001241) 函数 $y = x^5 + 3x + 1$, $x \in [1,3]$ 的值域为______
- (001242) 函数 $y = \sqrt{1+x} + 2x$ 的值域为 .
- (001243) 函数 y = |x 3| |x 10| 的值域为_____.
- (001245) 函数 y = ||x 3| + x| 的值域为
- (001246) 求函数 $y = \frac{x^2 4x + 5}{x^2 x 1}$ 的值域.
- (001247) 已知函数 $y=\sqrt{x}+\sqrt{x+a}$ 的值域为 $[\frac{\sqrt{3}}{2},+\infty),$ 求实数 a.
- (001248) 求函数 $y = |x-1| + |x-2| + |x-3| + \cdots + |x-20|$ 的值域。
- (001249) 求函数 $y = |x-1| + |x-2| + |x-3| + \cdots + |x-50| + |100x 400|$ 的值域 (提示, 某种程度上来说这题目反而比上一题简单).

(001251) 函数
$$y = \frac{1}{1 + \frac{1}{x}}$$
 的值域为______.

$$(001252)$$
 函数 $y = \frac{1}{x^2 + x + 1}$ 的值域为______.

$$(001253)$$
 函数 $y = \frac{x^2}{x^2 + x + 1}$ 的值域为______.

$$(001254)$$
 函数 $y = 4 - \sqrt{4 - x^2}$ 的值域为_____.

(001255) 函数
$$y = \frac{\sqrt{x}}{1+x}$$
 的值域为______.

$$(001256)$$
 函数 $y = \sqrt{6-x} + \sqrt{x-3}$ 的值域为_____.

$$(001257)$$
 函数 $y = \frac{6x}{x^2 + 1}, x \in [-\frac{1}{2}, 5]$ 的值域为______.

$$(001258)$$
 求函数 $y = \frac{2x^2 + 3x + 1}{x - 1} (x \in (1, +\infty))$ 的值域.

(001259) 求函数
$$y = \frac{2x^2 + 2x + 3}{x^2 + x + 1} (x \in (-1, +\infty))$$
 的值域.

$$(001260)$$
 求函数 $y = \frac{2x^2 + 3x + 3}{x^2 + x + 1} (x \in (-1, +\infty))$ 的值域.

(001261) 设 a 为实常数, 求函数 y = |x - |x + |x + 1| + 2| + a| + |10x - 10| 的值域. (提示: 不觉得 10x 的系数 有点突兀吗?)

(001262) 已知函数 y = f(2x-1) 的定义域为 [0,3], 则函数 y = f(3x+1) 的定义域为______.

$$(001264)$$
 已知函数 $f(x) = \frac{a-x}{x-a-1}$ 的反函数 $f^{-1}(x)$ 的图像关于点 $(-1,3)$ 对称,则 $a =$ ______.

(001265) 已知函数
$$y = f(x)$$
 满足对一切 $x \in \mathbf{R}$,均成立 $f(2x+1) = 6x+5$,则 $f^{-1}(11) = _______$; $f^{-1}(2x+1) = ______$:

(001266) 写出下列函数的值域.

(1)
$$y = 3x + 1, x \in [-2, 5];$$

(2)
$$y = |2x + 1|, x \in [-1, 3];$$

(3)
$$y = \frac{x-1}{2x+3}$$
;

(4)
$$y = \frac{|x|+1}{|x|-1}$$
; _____

(6)
$$y = \frac{2x+1}{|x+1|-|x|}$$
;

$$(001267)(1)$$
 求函数 $f(x) = \frac{2x-1}{x+1}$ 的值域

$$(001267)(1)$$
 求函数 $f(x)=rac{2x-1}{x+1}$ 的值域;
 (2) 已知 a 是实数, 求函数 $f(x)=rac{2x-a}{x+1}$ 的值域.

(001268) 已知函数 $y=rac{ax+1}{x+2}$ 在 $(-2,+\infty)$ 上单调递增, 求 a 的取值范围.

$$(001269)(1)$$
 求函数 $f(x) = \frac{3+2x}{3-2x}, \ x \in [-1,1]$ 的最大值和最小值;

(2) 已知
$$a > b > 0$$
, 求函数 $f(x) = \frac{a + bx}{a - bx}$, $x \in [-1, 1]$ 的最大值和最小值.

(001270) 写出下列函数的单调减区间:

(1)
$$y = x^2$$
; _____

(2)
$$y = x^2 + 2x + 3$$
; _____

(3)
$$y = -x^2 + 2x + 3;$$

$$(4) \ y = \sqrt{-x^2 + 2x + 3}.$$

(001271) 写出下列函数的值域:

(1)
$$y = x^2 + 2x + 2;$$

(2)
$$y = -x^2 + 3x + 4$$
; _____

(3)
$$y = 4x^2 + x + 1, x \in [-3, 0];$$

(4) 已知
$$a > 0$$
, $y = ax^2 + ax + 2a$, $x \in [-1, 1)$;

(5)
$$y = \frac{1}{x^2 + 2x + 2}$$
;

- (001272) 函数 $y = x^4 8x^2$ 的单调增区间为______
- (001273) 已知 $y = x^2 + 2(a-2)x + 5$ 在 $[4, +\infty)$ 上递增, 则实数 a 的取值范围为
- (001274) 已知 k 是实数, 函数 $y = \sqrt{kx^2 + 2(k+2)x + 3(4k-1)}$ 的定义域为 **R**, 则 k 的取值范围为 .
- (001275) 已知 k 是实数, 函数 $y = \sqrt{kx^2 + 2(k+2)x + 3(4k-1)}$ 的值域为 $[0,+\infty)$, 则 k 的取值范围为_____
- (001276) 已知 a 是实数, 函数 $y = -x^2 + 2ax + 1 a$, $x \in [0,1]$ 的最大值为 2. 求 a.
- (001277) 已知 a, b 是实数, 函数 $y = ax^2 2ax + 2 + b$ 在 [2, 3] 上的最大值和最小值分别为 5 和 2, 求 a, b.
- (001278) 试分析函数 $y = x + \sqrt{4 x^2}$ 的单调性. (提示, 分 $x \le 0$ 和 $x \ge 0$ 讨论, 有一部分比较容易)
- (001279) 已知 m 是实数, 试就关于 x 的方程 $x^2 mx + 2m 2 = 0$ 的两个实数根 (重根算两个根) 的不同分 布情况, 确定 m 的范围 (只要写答案).
- (1) 两根分别在 $(-\infty,0)$ 和 $(0,+\infty)$ 中;
- (3) 两根分别在 $(-\infty, \frac{3}{2})$ 和 $(\frac{3}{2}, +\infty)$ 中;
- (5) 两根在 $(0,\frac{3}{2})$ 中;
- (7) 在 $(0,\frac{3}{2})$ 内有且仅有一个根; (9) 在 $[0,\frac{3}{2}]$ 内有两个根;
- (11) 在 $[0,\frac{3}{2}]$ 内有根;
- (2) 两根均在 $(0, +\infty)$ 中;

- $(4) 两根均在 <math>(-\infty,\frac{3}{2})$ 中; $(6) 在 (0,\frac{3}{2}) 内有且仅有一个根, 且 <math>0,\frac{3}{2}$ 均不是根; $(8) 在 (0,\frac{3}{2}) 内有根;$
- (10) 在 $[0,\frac{2}{9}]$ 内有且仅有一个根;
- (12) 两根分别在 $(-\infty,0)$ 和 $(\frac{3}{2},+\infty)$ 中.

- (001280) 写出练习 1-(11) 的详细过程.
- (001281) 已知 a 是实数, 就关于 x 的方程 $x^2+(a-5)x+(a-2)=0$ 的两个根 (重根算两个根) 的不同分布 情况, 利用函数 $y = \frac{-x^2 + 5x + 2}{x + 1}$ 的图像与性质确定 a 的范围.
- (1) 两个根分别在 $(-\infty, 2)$ 和 $(2, +\infty)$ 中;
 - (4) 有两个不同的根, 有且仅有一根在 $[0,+\infty)$ 中.

- (3) 有根在 [0,2) 内;
- (2) 两个根都在 $(-\infty, -2)$ 中;
- (001282) 若函数 f(x) = 3ax 2a + 1 在 [-1,1] 上存在一个零点, 则实数 a 的取值范围为_____
- (001283) 求函数 $y = 2x + \sqrt{1-x^2}$ 的值域.

- (001284) 已知实数 a 满足 $a + a^{-1} = 3$, 则 $a^2 + a^{-2} =$ _______, $a^4 + a^{-4} =$ ______.
- (001285) 已知实数 a 满足 $a + a^{-1} = 3$, 则 $a^{1/2} + a^{-1/2} =$ _____.

$$(001286) rac{\sqrt{3\sqrt{3\sqrt{3}\sqrt{rac{1}{3}}}}}{\sqrt{27\sqrt{rac{1}{3}}}}$$
 用 3 的有理数指数幂表示为______.

(001287) 已知 m, n 是有理数,则以下各说法中,正确的有_____

- (1) 对一切 m, n 均成立 $2^m 2^n = 2^{m+n}$
- (2) 存在 m, n 使得 $2^m 2^n = 2^{mn}$
- (3) 存在 m, n 使得 $2^m + 2^n = 2^{m+n}$
- (4) 存在 m, n 使得 $(2^m)^n = 2^{m^n}$

(001288) 是否存在有理数 q 使得 $(-8)^q = 2$? 是否存在有理数 q 使得 $(-4)^q = 2$? 是否存在有理数 q 使得 $3^q = 2$? 分别是为什么?

- (001289) 证明: $a \in \mathbf{R}$ 时, $a^{1/3}a^{1/5} = a^{8/15}$.
- (001290) 比较以下各组中两个值的大小, 并说明理由.
- $(1) \ 3^{0.8} = 3^{0.7};$
- (2) $0.75^{0.1} = 0.75^{-0.1}$;

(001291) 比较以下各组中两个值的大小, 并说明理由.

- (1) $(2/3)^{-\pi} = (3/2)^{-\sqrt{2}}$;
- $(2) (2/3)^{-\sqrt{5}} = (4/9)^{-3/2}$.

(001292) 已知 a, b 是实数, 函数 $f(x) = a \cdot b^x$, 且 f(4) = 648, f(5) = 1944, 求 f(9/2).

- (001293)(1) 求证: 当 a > 0 时, $f(x) = \frac{a^x a^{-x}}{2}$ 是奇函数;
- (2) 求证: 当 a > 0 时, $f(x) = x \cdot \frac{a^x 1}{a^x + 1}$ 是偶函数.
- (001294) 设 $a^{2x}=2$, 且 a>0, $a\neq 1$, 求 $\frac{a^{3x}+a^{-3x}}{a^x+a^{-x}}$ 的值.

(001295) 在课堂上我们介绍了等式 $\left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = 2$,它的特点是左边是一些无理数指数幂,而且左边只出现了一个实数,而且这个实数是无理数;右边是一个正整数. 你能再写出一个有这样特点的等式吗?

- $(001296) 求値: \log_2 0.5 = _____, \log_9 27 = _____, 3^{1+\log_3 5} = ____.$
- (001297) 如果 $\log_x \sqrt{5} = -1$, 那么 x =______.
- (001299) 如果 $\log_2(\log_3(\log_4 x)) = 0$, 那么 x =

(001300) 用不含对数的式子表示:

(1) 若
$$\log_7 2 = a$$
, 则 $\log_7 14 =$ ______, $\log_7 \sqrt{3.5} =$ ______

(2) 若
$$\log_3 2 = a$$
, 则 $\log_3 4 =$ ______, $\log_3 \frac{2}{3} =$ ______.

(3) 若
$$\lg 2 = a$$
, 则 $\lg 25 =$ ______.

(001301) 如果 N = 923, 那么 N 的常用对数的首数为______.

(001302) 如果 N 的常用对数的首数为 1, 那么 N 的取值范围为______

(001305) 计算下列各式 (要有必要的过程):

$$(1) \ \frac{1}{2} \log_{20} 45 - \log_{20} 30;$$

(2)
$$\frac{\lg 3 + \frac{2}{5}\lg 9 + \frac{3}{5}\lg\sqrt{27} - \lg\sqrt{3}}{\lg 81 - \lg 27};$$

(3)
$$\lg^2 2 + \lg^2 5 + 2 \lg 2 \lg 5$$
;

(4)
$$\lg^3 2 + \lg^3 5 + 3 \lg 2 \lg 5$$
;

(5)
$$\lg 4 + 2\sqrt{\lg^2 6 - \lg 6^2 + 1} + \lg 9$$
.

(001306) 如果方程 $\lg^2 x + (\lg 2 + \lg 3) \lg x + \lg 2 \cdot \lg 3 = 0$ 的两个根是 x_1, x_2, \vec{x} x_1x_2 的值.

$$(001307)$$
 已知 $a = \log_3 36$, $b = \log_4 36$. 求 $\frac{2}{a} + \frac{1}{b}$.(提示: 你学过实数指数幂的运算律的)

(001308)[证明对数的换底公式] 若 $a, b, N > 0, a \neq 1, b \neq 1, 则$

$$\log_a N = \frac{\log_b N}{\log_b a}.$$

(001309)(1) 若 $\lg 3 = a$, $\lg 2 = b$, 则 $\log_6 12 =$ _____.

(2) 若 $\log_{\sqrt{3}} 2 = a$, 则 $\log_{12} 3 =$ _____.

(001310)21000 的首位数字为_____.

(001311) 已知 $M=(\frac{1}{4})^{2138}\times(\frac{1}{5})^{41032},$ 则 M 的小数点后紧跟了______ 个连续的零.

(001312) 计算下列各式 (要有必要的过程):

(1)
$$\log_3 5 \cdot \log_5 7 \cdot \log_7 9$$
;

(2)
$$(\log_4 3 + \log_8 3)(\log_3 2 + \log_9 2)$$
;

(3)
$$2\log_{100} 5 - \sqrt{1 - 2\lg 2 + \lg^2 2};$$

$$(4) \frac{\log_5 \sqrt{2} \cdot \log_7 9}{\log_5 \frac{1}{3} \cdot \log_7 \sqrt[3]{4}};$$

$$(5)2^{\log_4(\sqrt{3}-2)^2} + 3^{\log_9(\sqrt{3}+2)^2}; (6)\frac{\log_{36} 4}{\log_{18} 6} + \log_6^2 3.$$

(001313) 已知关于 x 的方程 $x^2 - (\log_2 a + \log_2 b)x + \log_a b = 0$ 的两根分别为 -1 和 2, 求 a, b.

(001314) 若
$$2^a = 5^b = 100$$
, 求 $\frac{a+b}{ab}$ 的值.

(001315) 某地区目前的人口增长率平均为每年 1%,不考虑其他因素,按这个增长率,大约经过多少年人口就增加到原来的 2 倍.(精确到 1 年)

- (001316) 若 $\log_2 3 = a$, $\log_3 7 = b$, 试用 a, b 表示 $\log_{42} 56$.
- (001317) 不相等的两个正数 a, b 与另一个正数 x 满足 $a^{\lg(ax)} = b^{\lg(bx)}$, 求 abx 的值.
- (001318) 函数 $y = \sqrt{3^{2x-1} 27}$ 的定义域为 .

(001319) 已知函数 $f(x) = (a^2 - 1)^x$ 在 R 上是减函数, 则实数 a 的取值范围为______.

(001321) 已知放射性物质的衰变满足以下规律, 经过时间 t 后, 残留的放射性物质的量与初始时刻含有放射性物质的量之比是一个关于 t 的指数函数.

假设某元素的半衰期为 T(即经过时间 T, 所残留的放射性物质的量刚好是初始时刻的一半). 则 1 克该物质经 t 时间后, 求残留的放射性物质还有多少克.

(001322) 写出下列函数的单调区间和值域 (不用证明).

(1)
$$y = \left(\frac{1}{2}\right)^{x^2 + 2x + 3}$$
;

(2) $y = \frac{1}{3^x - 1}$;

(3) $y = 4^x - 2^{x+1}$.

(001323) 已知 $f(x) = -9^x - 6a \cdot 3^x + (2a - a^2)$ 在 [1, 2] 上的最大值为 -3, 求实数 a.

(001324) 函数 $y = \log_{x^2+x-1} 2$ 的定义域是______.

(001325) 函数 $y = \log_2(x^2 + x - 1)$ 的递增区间是_______

(001326) 函数 $y = \log_2(x^2 + x - 1)$ 的定义域是 , 值域是

(001327) 函数 $y = \sqrt{\log_{\frac{1}{2}} \left(\left(\frac{1}{3} \right)^x - 27 \right)}$ 的定义域为______.

(001328) 不等式 $\log_{\frac{1}{2}}(x^2+x+1) < \log_{\frac{1}{2}}(4x-1)$ 的解集为______.

(001329) 已知函数 $f(x) = \lg(kx^2 - 6x + k + 3)$ 的定义域为 R, 则 k 的取值范围为______

(001330) 已知函数 $f(x) = \lg(kx^2 - 6x + k + 3)$ 的值域为 R, 则 k 的取值范围为 .

(001331) 函数 $y = \log_{x^2+x-1} 2$ 的递增区间是______.

(001332) 已知函数 y = f(x) 单调增, 求证:

- (1) 函数 y = f(x) 有反函数 $y = f^{-1}(x)$;
- (2) 函数 $y = f^{-1}(x)$ 单调增;
- (001333) 一个函数和它的反函数的图像的公共点是否一定在直线 y = x 上?为什么?
- (001334) 求证: 若递增函数与其反函数的图像有公共点, 则公共点一定在直线 y = x 上.
- (001335) 已知幂函数的图像过点 $(9, \frac{\sqrt{3}}{3})$, 则该幂函数为 $y = _____$.
- (001336)(1) 写出函数 $y = x^{-\frac{4}{3}}$ 的定义域, 奇偶性, 单调区间;
- (2) 写出函数 $y = x^{-\frac{3}{4}}$ 的定义域, 奇偶性, 单调区间.
- (001337) 作出下列函数的大致图像 (只要能够表明定义域和单调性, 凹凸性方面的信息):
- (1) $y = x^{\frac{2}{3}}$;
- (2) $y = x^{-\frac{3}{2}}$;

(3)
$$y = \frac{|x|+1}{|x+1|}$$
; (4) $y = \frac{1}{(x-2)^2} - 1$.

- (001338) 解不等式: $(x+4)^{-\frac{1}{2}} < (3-2x)^{-\frac{1}{2}}$.
- (001339) 解不等式: $(x+4)^{-\frac{2}{3}} < (3-2x)^{-\frac{2}{3}}$.

(001341) 方程
$$2^{x^2+3} = \left(\frac{1}{4}\right)^{-\frac{7}{2}}$$
 的解集为______.

- (001342) 方程 $9^{-x} 2 \cdot 3^{1-x} = 27$ 的解集为_______
- (001343) 方程 $9^x + 4^x = \frac{5}{2} \cdot 6^x$ 的解集为______.

- (001344) 方程 $4^x + 4^{-x} 6(2^x + 2^{-x}) + 10 = 0$ 的解集为______.
- (001345) 解方程: $3^x + 4^x = 5^x$.
- (001346) 解方程: $7^{2x-1} 3^{3x-1} = 7^{2x+1} 3^{3x+2}$.
- (001347) 已知实常数 a 使得关于 x 的方程 $3^x = a\left(x + \frac{1}{2}\right)$ 有且仅有一个实数解, 请你写出一个这样的 a, 解出你构造的方程, 并证明你的结论.
- (001349) 不等式 $\log_{0.5}(x^2+x+1) < \log_{0.5}(4x-1)$ 的解集为_____
- (001350) 方程 $\log_5(x+1) \log_{\frac{1}{2}}(x-3) = 1$ 的解集为______
- (001351) 若函数 $f(x) = \log_a x$ 在区间 [a, 2a] 上的最大值与最小值之差为 $\frac{1}{2}$, 则 a =______.
- (001352) 解方程: $\log_x(x^2 x) \le \log_x 2$.
- (001353) 解方程: $x^{\log_2 x} = 32x^4$.
- (001354) 已知实数 a,b 满足:
- (1) $a + 2^a = 3$, $b + \log_2 b = 3$;
- (2) $a + 2^a = 4$, $b + \log_2 b = 4$,
- 分别猜测 a+b 的值, 并证明.
- (001355) 已知关于 x 的方程 $(a-2)x^2 + (2a+1)x + a = 0$ 存在两个相异实数根, 求实数 a 的取值范围.
- (001356) 求实数 p 的值, 使得关于 x 的方程 $x^2 px 3 = 0$ 与 $x^2 4x (p-1) = 0$ 有且仅有一个公共实根.
- (001357) 设关于 x 的整系数一元二次方程 $x^2 + mx + n = 0$ 有一根为 $2 + \sqrt{3}$, 求其另一根.
- (001358)[选做] 已知正整数 n 使得关于 x 的方程 $2x^2 8nx + 10x n^2 + 35n 76 = 0$ 的两根为素数. 试求 n 以及该方程的两根.
- (001359) 解方程: |x-2|+2x=1.
- (001360) 解方程: |x+4|-2|x|+4|x-1|-9=0.
- (001361) 解方程: $x^2 6x + 3 = 5|x 3|$.
- (001362) 解方程: $|x^2 2x 15| = 4x^2 1$.
- (001363) 已知 u 为实数. 解关于 x 的方程: |x-u|+|x-2u|=3.
- (001364) 利用正弦定理, 回答下列各问题 (其中 R 表示三角形外接圆半径).
- (1) 在三角形 ABC 中, R = 5, $A = 45^{\circ}$, 则 $a = ______;$
- (2) 在三角形 ABC 中, a = 5, $A = 60^{\circ}$, 则 $R = ______$;

- (3) 在三角形 ABC 中, R = 5, a = 5, 则 $\sin A = ______$, $A = ______$;
- (4) 在三角形 ABC 中, $A = 30^{\circ}$, $B = 120^{\circ}$, a = 1, 则 C = 0 , b = 0 , c = 0 .

- (2) 在三角形 ABC 中, a = 4, b = 1, $C = 30^{\circ}$, 则 $c = _____$.
- (001366) 判断下列命题的真假, 在横线上用 "T"或 "F"表示.
- _____(1) 已知 A, B 均大于 0° 而小于 180° . 如果 A > B, 那么 $\sin A > \sin B$;
- _____(2) 已知 A, B 均大于 0° 而小于 180° . 如果 $\sin A > \sin B$, 那么 A > B;
- _____(3) 已知 A, B 是同一个三角形的两个内角. 如果 A > B, 那么 $\sin A > \sin B$;
- _____(4) 已知 A, B 是同一个三角形的两个内角. 如果 $\sin A > \sin B$, 那么 A > B.

(001367) 已知 a, b, c 是 $\triangle ABC$ 的三边. 证明:

- (1) 若 $\triangle ABC$ 是锐角三角形,则 $(a^2+b^2-c^2)(b^2+c^2-a^2)(c^2+a^2-b^2)>0$;
- (2) 若 $(a^2 + b^2 c^2)(b^2 + c^2 a^2)(c^2 + a^2 b^2) > 0$, 则 $\triangle ABC$ 是锐角三角形.
- (001368) 利用余弦定理证明: 平行四边形四条边的平方和等于两对角线的平方和.
- (001369)[Stewart 定理] 在三角形 ABC 中, 在 BC 边上取一点 D. 记 AC = b, AB = c, BD = u, DC = v, AD = t. 利用 $\angle ADB$ 和 $\angle ADC$ 互补以及余弦定理, 证明:

$$t^2 = \frac{b^2u + c^2v}{u + v} - uv.$$

(001370)[Heron 公式, 选做] 在三角形 ABC 中, 记 $p=\frac{a+b+c}{2}$, S 表示三角形的面积. 利用 $\sin^2 A + \cos^2 A = 1$, 证明:

$$S = \sqrt{p(p-a)(p-b)(p-c)}.$$

(001371) 在三角形 ABC 中, 如果 $B=45^{\circ}, C=15^{\circ}, b=2$, 那么该三角形的最长边长等于____

(001372) 在三角形 ABC 中, 如果 $a^2 = b^2 + bc + c^2$, 那么 A =_____.

(001373) 在三角形 ABC 中, 如果 (a+b+c)(b+c-a)=3bc, 那么 A=

(001375)(1) 在三角形 ABC 中, b=8, $A=45^{\circ}$, 分别写出正实数 a 的范围使得该三角形有且仅有一解, 有且仅有两解, 无解;

(2) 在三角形 ABC 中, b=8, $A=135^{\circ}$, 分别写出正实数 a 的范围使得该三角形有且仅有一解, 无解.

(001376)(1) 在三角形 ABC 中, a=8, $A=45^{\circ}$, 分别写出正实数 b 的范围使得该三角形有且仅有一解, 有且仅有两解, 无解;

- (2) 在三角形 ABC 中, a=8, $A=135^{\circ}$, 分别写出正实数 b 的范围使得该三角形有且仅有一解, 无解.
- (001377) 在三角形 ABC 中, 已知 a = 7, b = 8, $A = 60^{\circ}$, 求另一边 c, 面积 S 以及外接圆半径的精确值.

(001378)[选做] 在三角形 ABC 中, 已知三条边上的高 h_a, h_b, h_c 分别为 1/3, 1/4, 1/5, 解这个三角形.

(001379) 若三角形 ABC 的三边长分别为 a,b,c, 则边 BC 上中线的长为______

(001380) 已知 x 是正实数, 三角形的三边分别为 2x+3, x^2+3x+3 , x^2+2x , 则该三角形的最大内角为

(001381)(1) 如果在三角形 ABC 中, $a:b=\tan A: \tan B$, 那么三角形 ABC 为______

(2) 如果在三角形 ABC 中, $a^2: b^2 = \tan A: \tan B$, 那么三角形 ABC 为_____

(001382) 山脚点 A 望山顶点 P 的仰角为 α , 沿倾斜角为 β 的坡面斜向上行进 a 米至点 B, 又测得点 P 的仰角为 γ , 求山高 PC.

(001383) 在三角形 ABC 中.

- (1) 已知 a = 8, b = 16, 求证 $0^{\circ} < A \le 30^{\circ}$;
- (2) 承 (1), 证明上述范围内的 A 都可能取到 (即使得三角形有解);
- (3, 选做) 已知 a = 16, b = 8, 求角 A 的取值范围.

(001384) 如图, 为了测定对岸 A,B 两点之间的距离, 在河的一岸定一条基线 CD, 测得 CD=100 米, $\angle ACD=80^{\circ}$, $\angle BCD=45^{\circ}$, $\angle BDC=70^{\circ}$, $\angle ADC=33^{\circ}$, 求 A,B 间的距离.

(001385) 将下列角度制下角的大小用弧度制表示:

(1) $90^{\circ} =$ 弧度;

(2)	$67^{\circ}30'$	=	弧度;
(- /	0.00		JIMIX

(3)
$$235^{\circ} =$$
 弧度;

(4)
$$315^{\circ} =$$
 弧度.

(001386) 将下列弧度度制下角的大小用角度制表示, 要求精确到 0.01 度:

(2)
$$\pi$$
 弧度 = \approx ;

(3)
$$1.57$$
 弧度 = \approx ;

(4) 0 弧度 =_____.

(001387)(1) 半径为 5, 圆心角为 30° 的扇形的弧长为______. 半径为 5, 圆心角为 2 的扇形的弧长为______; 这个扇形的圆心角是_____ 角 (填入 "锐"或 "钝").

- (2) 三点十五分时, 时针和分针的夹角的弧度数为_____.
- (3) 设三角形的三个内角之比为 1:2:3, 则这个三角形的最大内角为______ 弧度.

(001388) 如图, 已知扇形 OAB, OA = 16, 弧 AB 的长度为 24, 求:

- (1) ∠AOB 的弧度数和度数;
- (2) 扇形 OAB 的面积;
- (3) 弓形 AMB 的面积.

(001389) 已知一扇形的周长为 20, 当扇形的中心角为多大时, 它有最大的面积?

(001390) 计算器上除了表示角度制的 Deg, 弧度制的 Rad 外, 还有一个符号 Gra. 这个其实是百分度制, 它把一个周角分成 400 等份, 每一等份称为 1 百分度.

- (1) 填空: 1 弧度 = _____ 百分度; 1 百分度 = ____ 弧度.
- (2) 已知扇形的半径为 r, 圆心角为 x 百分度, 求扇形的弧长与面积.

(001391) [选做] 已知 θ 是三角形 ABC 中第二大的内角, 证明: θ 的取值范围为 $\left(0,\frac{\pi}{2}\right)$ (提示: 要证明两个方面的内容. 其一: 角必须在该范围内; 其二: 该范围内的任一角均可作为某个三角形第二大的内角).
(001392) 分别用角度制和弧度制写出始边在 x 轴的正半轴上, 终边在下列位置的角的集合. 例如: x 轴的正半轴: 角度制 $\underline{360^{\circ}\cdot k,\ k\in \mathbf{Z}};$ 弧度制 $\underline{2k\pi,\ k\in \mathbf{Z}}.$
(1) x 轴的负半轴: 角度制
(2) y 轴的正半轴: 角度制; 弧度制;
(3) y 轴的负半轴: 角度制; 弧度制;
(4) x 轴: 角度制; 弧度制;
(5) y 轴: 角度制; 弧度制;
(6) 坐标轴: 角度制; 弧度制;
(7) 坐标轴的角平分线: 角度制; 弧度制;
(8) 直线 $y = \sqrt{3}x$: 角度制
(001393)
(1) 终边和 $\frac{\pi}{3}$ 的终边重合的角的集合为
(2) 1 弧度角的终边逆时针旋转 2 弧度, 再顺时针旋转 3 弧度, 再逆时针旋转 4 弧度, 再逆时针旋转 5 弧度后, 所得角的大小为; 与其终边相同的角的集合为
(3) 终边和 $\frac{\pi}{3}$ 的终边关于 y 轴对称的角的集合为,其中在 $[-\pi,\pi)$ 内的角有;
(4) 终边和 $\frac{\pi}{3}$ 的终边关于 x 轴对称的角的集合为,其中在 $[-\pi,\pi)$ 内的角有;
(5) 终边和 $\frac{\pi}{3}$ 的终边关于直线 $y=x$ 对称的角的集合为

(6) 终边和 $\frac{\pi}{3}$ 的终边关于直线 $y=-x$ 对称的角的集合为
(7) 终边和 $\frac{\pi}{3}$ 的终边关于直线 $y=\frac{\sqrt{3}}{3}x$ 对称的角的集合为,其中在 $[-\pi,\pi)$ 内的角有
(8) 若角 α 与角 β 的终边关于角 $\frac{\pi}{5}$ 的终边所在直线对称, 则角 α 与角 β 满足的关系式为
(001394) 如果 α 是第三象限角,将 α 的范围用集合表示出来.将 $\frac{\alpha}{2}$ 的范围用集合表示出来,并且在直角坐标系中用阴影表示 $\frac{\alpha}{2}$ 的范围(注意边界若取得到用实线,若取不到用虚线表示).
(001395) 如果 α 是第二象限角,将 α 的范围用集合表示出来.将 3α 和 $\frac{\alpha}{3}$ 的范围用集合表示出来,并且在直角坐标系中分别用阴影表示 α , 3α 和 $\frac{\alpha}{3}$ 的范围(注意边界若取得到用实线,若取不到用虚线表示).
$(001396)(1)$ 已知角 α 的终边经过点 $P(5,-12)$, 则 $\sin \alpha =$, $\cos \alpha =$;
$\tan \alpha = \underline{\hspace{1cm}}, \cot \alpha = \underline{\hspace{1cm}}, \sec \alpha = \underline{\hspace{1cm}}, \csc \alpha = \underline{\hspace{1cm}}.$
(2) 已知角 α 的终边经过点 $P(\sqrt{3}a,a), \ (a>0), 则 \sin\alpha =;$
$\tan \alpha = \underline{\hspace{1cm}}, \cot \alpha = \underline{\hspace{1cm}}, \sec \alpha = \underline{\hspace{1cm}}, \csc \alpha = \underline{\hspace{1cm}}.$
(3) 已知角 α 的终边经过点 $P(-a,0), (a>0), 则 \sin \alpha = ___, \cos \alpha = ___;$
$\tan \alpha = \underline{\hspace{1cm}}, \cot \alpha = \underline{\hspace{1cm}}, \sec \alpha = \underline{\hspace{1cm}}, \csc \alpha = \underline{\hspace{1cm}}.$ (若某个三角比不存在,在空格处填入"不存在")
$(001397)(1)$ 已知角 α 的终边上有一点 $P(3a, -4a), \ (a \neq 0), 则 2\sin \alpha + \cos \alpha =$
(2) 设 $M(x,-5)$ 是角 α 终边上的一点,若 $\sin \alpha = -\frac{5}{13}$,则 x 的值为
(3) 若角 α 的终边上有一点 $P(3m,-4m), (m<0), 则 \sin\alpha \cdot \tan\alpha 的值为$
(4) 已知 $\cos \alpha = -\frac{3}{5}$, 且角 α 的终边经过点 $P(x,-4)$, 则角 α 是第_ 象限角, 点 P 的横坐标 $x=$,
$\sin \alpha = \underline{\hspace{1cm}}, \tan \alpha = \underline{\hspace{1cm}}.$
(001398) 利用三角比的定义,写出 $\frac{4\pi}{3}$, $-\frac{\pi}{3}$ 的正弦,余弦,正切与余切: $\sin\frac{4\pi}{3} = \underline{\hspace{1cm}}$, $\cos\frac{4\pi}{3} = \underline{\hspace{1cm}}$, $\tan\frac{4\pi}{3} = \underline{\hspace{1cm}}$, $\cot\frac{4\pi}{3} = \underline{\hspace{1cm}}$;
$\sin\left(-\frac{\pi}{3}\right) = \underline{\qquad}, \cos\left(-\frac{\pi}{3}\right) = \underline{\qquad}, \tan\left(-\frac{\pi}{3}\right) = \underline{\qquad}, \cot\left(-\frac{\pi}{3}\right) = \underline{\qquad}.$
(001399) 确定下列各式的符号 (在横线处填入"+"或"-")
(1) $\sin 460^{\circ} \cdot \cos 460^{\circ}$;
(2) $\tan 580^{\circ} \cdot \cos(-125^{\circ})$;
$(3) \sin(-3) \cdot \cos 3; \underline{\hspace{1cm}}$
(001400) 根据下列条件,确定 θ 是第几象限的角 (在横线处填入 "1","2","3" 或 "4" 中的一个或几个)
(1) $\sin \theta < 0$ H. $\cos \theta > 0$;
(2) $\cos \theta \cdot \cot \theta < 0$;
(3) $\tan \theta > 0$ H $\sec \theta < 0$;
(4) cos θ 与 csc θ 异号;

(001401) 求下列各式的值:

$$(1)\cos(-90^\circ) + \sin 0^\circ - \tan 540^\circ + \cos 180^\circ =$$
;

(2)
$$\sin 510^{\circ} + \cos 480^{\circ} = ____;$$

$$(3) \sin\left(-\frac{11\pi}{3}\right) \cdot \cos\left(-\frac{17\pi}{6}\right) = \underline{\qquad};$$

(4)
$$\tan 495^{\circ} - \cot(-315^{\circ}) = \underline{\hspace{1cm}};$$

(5)
$$\tan 15\pi \cdot \cos\left(\frac{1}{3}\right) =$$
_____.

(001402) 已知 θ 是第二象限角, 确定 $\sin(\cos\theta)$ 和 $\cos(\sin\theta)$ 的符号.

$$(001403)(1) 若 \sin \alpha = -\frac{12}{13}, 且 \pi < \alpha < \frac{3\pi}{2}, 那么 \cos \alpha = \underline{\hspace{1cm}}, \tan \alpha = \underline{\hspace{1cm}}, \cot \alpha = \underline{\hspace{1cm}}, \sec \alpha = \underline{\hspace{1cm}},$$

(2) 若
$$\tan \alpha = 2$$
, α 是第三象限角, 那么 $\sec \alpha =$ ______, $\cos \alpha =$ _____, $\sin \alpha =$ _____.

$$(001404)(1)$$
 已知 $\sin \alpha = m$, α 是第三象限角, 则 $\tan \alpha =$

(2) 已知
$$\tan \alpha = m$$
, α 是第二象限角, 则 $\csc \alpha =$ _____.

$$(001405)(1)$$
 设 α 是第三象限的角, 则 $-\cos\alpha\cdot\sqrt{1-\sin^2\alpha}-\sin\alpha\cdot\sqrt{1-\cos^2\alpha}$ 的值等于______.

(2) 使
$$\sqrt{1-\cos^2 x} = -\sin x$$
 成立的 x 的范围为______

(001406) 已知
$$a\cos\alpha + b\sin\alpha = c$$
, $a\sin\alpha - b\cos\alpha = d$, 求 $(a^2 + b^2) - (c^2 + d^2)$.

(001407) 是否存在实数 k, 使得等式 $3\sin^4\alpha + 3\cos^4\alpha - 1 = k(\sin^6\alpha + \cos^6\alpha)$ 对一切 $\alpha \in \mathbb{R}$ 均成立? 若存在, 请求出 k 的值; 若不存在, 说明理由.

(001408) 写出下列各式化简后的结果 (暂时不用考虑 α, β 的取值范围问题).

$$(1) \frac{1 - \sin^2 \alpha}{1 - \cos^2 \alpha} + \sin \alpha \csc \alpha = \underline{\hspace{1cm}}.$$

$$(1) \frac{1-\sin^2\alpha}{1-\cos^2\alpha} + \sin\alpha\csc\alpha = \underline{\hspace{1cm}}.$$

$$(2) \frac{\cos^2\alpha - \sin^2\beta}{\sin^2\alpha\sin^2\beta} - \cot^2\alpha\cot^2\beta = \underline{\hspace{1cm}}.$$

(3)
$$\cos^4 \alpha + 3 \sin^2 \alpha \cos^2 \alpha - \cos^2 \alpha + 2 \sin^4 \alpha =$$
_______.
(4) $\frac{2 \sin \alpha \cos \alpha - \cos \alpha}{1 - \sin \alpha + \sin^2 \alpha - \cos^2 \alpha} =$ ______.
(5) $\tan^2 \alpha (\tan^2 \alpha - 2 \sec^2 \alpha) + \sec^4 \alpha =$ ______.

$$(4) \frac{2\sin\alpha\cos\alpha - \cos\alpha}{1 - \sin\alpha + \sin^2\alpha - \cos^2\alpha} = \underline{\hspace{1cm}}.$$

$$(5) \tan^2 \alpha (\tan^2 \alpha - 2 \sec^2 \alpha) + \sec^4 \alpha = \underline{\hspace{1cm}}$$

(001409) 已知 0 < a < 1, x 是三角形的一个内角, 且 $\tan x = \frac{2a}{a^2 - 1}$, 用 a 表示 $\cos x$.

$$(001410)[选做] 已知 \frac{\sin^4\alpha}{\sin^2\beta} + \frac{\cos^4\alpha}{\cos^2\beta} = 1, 求证: \frac{\sin^4\beta}{\sin^2\alpha} + \frac{\cos^4\beta}{\cos^2\alpha} = 1.$$

$$(001411)(1) \sin 240^{\circ} + \cos(-330^{\circ}) + \tan(-210^{\circ}) = \underline{\hspace{1cm}}.$$

(2)
$$4\sin^2\left(-\frac{19\pi}{6}\right) + 2\cos^2\left(-\frac{7\pi}{4}\right) + \tan\left(-\frac{13\pi}{4}\right) = \underline{\qquad}$$

$$(3) \sin\left(-\frac{5\pi}{3}\right) \cos\frac{65\pi}{6} = \underline{\qquad}.$$

$$(4) \sin\left(-\frac{31\pi}{4}\right) \cos\left(-\frac{11\pi}{3}\right) + \cot\left(-\frac{4\pi}{3}\right) \tan\left(-\frac{11\pi}{6}\right) = \underline{\qquad}.$$

(001412) 已知 θ 是象限角, 化简下列各式。

(1)
$$\cos(\theta - 2\pi) + \cos(\theta - 3\pi) + \tan(5\pi + \theta) + \tan(3\pi - \theta) =$$
_____.

$$(2) \frac{\cos(-\theta)\sin(\pi-\theta)}{\cos(\theta+3\pi)} + \frac{\sin(-2\pi-\theta)\sin(\theta-\pi)}{\sin(4\pi-\theta)} = \underline{\hspace{1cm}}.$$

$$(2) \frac{\cos(-\theta)\sin(\pi-\theta)}{\cos(\theta+3\pi)} + \frac{\sin(-2\pi-\theta)\sin(\theta-\pi)}{\sin(4\pi-\theta)} = \underline{\qquad}.$$

$$(3) \sin\left(\frac{\pi}{2}-\theta\right) + \sin\left(\frac{5\pi}{2}+\theta\right) + \sin\left(\frac{5\pi}{2}-\theta\right) + \sin\left(\frac{3\pi}{2}+\theta\right) = \underline{\qquad}.$$

$$(001413)$$
 已知 $\cot(\alpha - 3\pi) = \sqrt{5}$,则 $\sin^2 \alpha (1 - \tan^2 \alpha) - \cos^2 \alpha (1 - \cot^2 \alpha) =$ ______.

$$(001414) \ \ \textbf{己知集合} \ \ M \ = \ \left\{ x \left| x = \cos\frac{k\pi}{3}, \ k \in \mathbf{Z} \right. \right\}, \ \ N \ = \ \left\{ y \left| y = \sin\frac{2n+1}{6}\pi, \ n \in \mathbf{Z} \right. \right\}, \ \ \textbf{则} \ \ M \underline{\hspace{1cm}} N(填入 "읓", "=", "읓" 之一).$$

$$(001415)$$
 关于 n 的函数 $f(n) = \sin\left(\frac{n\pi}{2} + (-1)^n \frac{\pi}{3}\right), n \in \mathbf{Z}$ 的值域为______.

(001416) 设 A, B, C 为一个三角形的三个内角, 在以下各等式中, 一定成立的有____

$$(1) \sin(A+B) = \cos C;$$

$$(2)\cos(A+B) = -\cos C;$$

$$(3) \sin \frac{A+B}{2} = \cos \frac{C}{2};$$

(3)
$$\sin \frac{A+B}{2} = \cos \frac{C}{2};$$

(4) $\sin \frac{A+2B}{2} = \cos \frac{B-C}{2};$
(5) $\sin \frac{3A}{2} = \cos \frac{3B+3C}{2};$

(5)
$$\sin \frac{3A}{2} = \cos \frac{3B + 3\bar{C}}{2}$$

(6)
$$\sin\left(\frac{A}{2} - \frac{\pi}{4}\right) = \cos\left(\frac{\pi}{4} - \frac{B+C}{2}\right).$$

(001417) 在三角形 ABC 中, 不管其形状如何变化, 表达式

(1)
$$\sin(A+B) + \sin C$$
;

$$(2) \cos(A+B) + \cos C;$$

(3)
$$\tan \frac{A+B}{2} \tan \frac{C}{2}$$
;

(3)
$$\tan \frac{A+B}{2} \tan \frac{C}{2}$$
;
(4) $\sin \frac{A+B}{2} \csc \left(\frac{\pi}{2} - \frac{C}{2}\right)$

中,始终表示常数的有

$$(001418)$$
 已知 $\cos(2\pi - \alpha) = \frac{4}{5}, \frac{3\pi}{2} < \alpha < 2\pi, 求 \tan(\alpha - 3\pi)$ 和 $\csc\left(\frac{3\pi}{2} + \alpha\right)$.

(001419) 已知
$$\sin(\pi + \alpha) = -\frac{\sqrt{10}}{10}$$
, 且 $|\tan(\pi - \alpha)| = -\tan \alpha$, 求 $\cos(\alpha - \pi)$.

$$(001420)$$
 设 $k \in \mathbb{Z}$, 求证: $\sin(\alpha + k\pi) = (-1)^k \sin \alpha$.

(001421) 求下列各式的值:

(3)
$$\cos 21^{\circ} \cos 24^{\circ} + \sin 159^{\circ} \sin 204^{\circ} = ____;$$

(4)
$$\cos 17^{\circ} \cos 28^{\circ} - \cos 73^{\circ} \cos 62^{\circ} =$$
______;

$$(5) \cos \frac{\pi}{4} \sin(\alpha + \frac{\pi}{4}) - \sin(\frac{\pi}{4} - \alpha) \sin \frac{\pi}{4} = \underline{\hspace{1cm}}.$$

- (001422)(1) 若 $\sin \alpha + \sin \beta = m$, $\cos \alpha + \cos \beta = n$, 则 $\cos(\alpha \beta) =$ ______;
- (2) 若 $\sin \alpha + \cos \beta = m$, $\cos \alpha + \sin \beta = n$, 则 $\sin(\alpha + \beta) =$ _____.
- (001423) 已知 $\sin \alpha = \frac{1}{2}$,求 $\cos(\alpha + \frac{\pi}{4})$ 的值.
- (001424) 已知 α, β 均为锐角, $\cos(\alpha+\beta)=-\frac{11}{14},\,\cos\alpha=\frac{1}{7},\,$ 求 $\cos\beta$ 的值.
- (001425) 已知 $\sin \alpha = -\frac{1}{3}$, $\cos \beta = -\frac{2}{5}$, 且 $\frac{3\pi}{2} < \alpha < 2\pi$, $\pi < \beta < \frac{3\pi}{2}$. 求 $\cos(\alpha \beta)$.
- (001426) 求下列各式的值: $(1) \sin 12^{\circ} \cos 18^{\circ} + \sin 78^{\circ} \cos 72^{\circ} = _____;$
- (2) $\sin 25^{\circ} \cos 70^{\circ} + \cos 25^{\circ} \cos 160^{\circ} =$

$$(001427) \ \textbf{已知} \cos\left(\frac{\pi}{7} + \alpha\right) \cos\frac{\pi}{7} + \sin\left(\frac{\pi}{7} + \alpha\right) \sin\frac{\pi}{7} = -\frac{3}{5}, \ \textbf{L} \ \frac{5\pi}{2} < \alpha < 3\pi, \ \textbf{则} \cos\left(\frac{3\pi}{2} - \alpha\right) = \underline{\hspace{1cm}}.$$

- (001428) 若 α 是锐角,且 $\sin\left(\alpha \frac{\pi}{6}\right) = \frac{1}{6}$,则 $\sin\alpha =$ _____.
- (001429)(1) 证明: $\sin(x+y)\sin(x-y) = \cos^2 y \cos^2 x$;
- (2) 已知 $\cos(\alpha + \beta)\cos(\alpha \beta) = \frac{1}{4}$, 求 $\cos^2 \alpha + \cos^2 \beta$.
- (2) 已知 $\frac{\sin \alpha}{\sin(\alpha+\beta)} = \frac{2}{3}$,求 $\tan \frac{\beta}{2} \cot \left(\alpha + \frac{\beta}{2}\right) = \underline{\qquad}$
- (2) 点 A(3,4) 绕原点按顺时针方向旋转 $\frac{5\pi}{2}$ 所得点 A'' 的坐标为_______; (3) 点 A(3,4) 绕原点按逆时针方向旋转 $\frac{\pi}{3}$ 所得点 \tilde{A} 的坐标为______.
- (001432) 在三角形 ABC 中,
- (1) 已知 $\cos A = \frac{4}{5}$, $\cos B = \frac{5}{13}$, 则 $\cos C =$ ______; (2) 已知 $\cos A = \frac{4}{5}$, $\sin B = \frac{7}{25}$, 则 $\cos C =$ _____; (3) 已知 $\cos A = \frac{4}{5}$, $\sin B = \frac{3}{5}$, 则 $\cos C =$ _____; (4) 已知 $\cos A = \frac{4}{5}$, $\sin B = \frac{12}{13}$, 则 $\cos C =$ _____; (5) 已知 $\sin A = \frac{3}{5}$, $\sin B = \frac{12}{13}$, 则 $\cos C =$ _____;

- (6) 写出 (4) 的详细解答过程:
- (001433) 已知在 △ABC 中, 有以下三个命题:
- $P: \triangle ABC$ 是钝角三角形;
- Q: $\tan A \tan B < 1$;
- R: $\sin A \sin B < \cos A \cos B$.
- (1) P 是 Q 的______ 条件; Q 是 R 的______ 条件; R 是 P 的______ 条件. (填 "充分必要", "充 分非必要","必要非充分","既非充分又非必要"中的一个.)
- (2) 对 P 与 Q 的关系作详细证明.

$$(001434)$$
 求值: $\frac{1-\tan 195^{\circ}}{1+\tan 195^{\circ}} =$ _____.

(001435) 如果
$$\alpha + \beta = \frac{3\pi}{4}$$
, 且 α, β 是象限角, 则 $(1 - \tan \alpha)(1 - \tan \beta) =$ _____.

(001436) 求值:
$$(1 + \tan 1^{\circ})(1 + \tan 2^{\circ}) \cdots (1 + \tan 45^{\circ}) =$$
_____.

(001438) 求值: $\tan 36^{\circ} + \sqrt{3} \tan 24^{\circ} \tan 36^{\circ} + \tan 24^{\circ}$.

(001439) 已知 $\alpha, \beta, \alpha \pm \beta$ 均为象限角, 化简:

$$(1) \frac{\cos(\alpha+\beta)+\cos(\alpha-\beta)}{\sin(\alpha+\beta)+\sin(\alpha-\beta)}; (2) \frac{\tan(\alpha+\beta)-\tan\alpha-\tan\beta}{\tan\alpha\tan\beta\tan(\alpha+\beta)}.$$

$$(001440)$$
 已知 $\tan(\alpha + \beta) = \frac{3}{4}, \tan(\beta + \frac{\pi}{4}) = \frac{1}{3},$ 求 $\tan(\alpha - \frac{\pi}{4})$ 的值.

(001441) 已知 $\tan \alpha, \tan \beta$ 是方程 $x^2 + 3\sqrt{3}x + 4 = 0$ 的两根,

- (1) 求 $tan(\alpha + \beta)$ 的值;
- (2) 求 $\sin^2(\alpha+\beta)-3\cos^2(\alpha+\beta)$ 的值;

(3) 若
$$\alpha, \beta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$
, 求 $\alpha + \beta$ 的值.

(001442) 已知 $\cot \alpha, \cot \beta, \cot (\alpha + \beta)$ 均有意义, 试用 $\cot \alpha, \cot \beta$ 表示 $\cot (\alpha + \beta)$ (注意当 $\cot x = 0$ 时不能用 $\cot x = \frac{1}{\tan x}$).

(001443) 已知 $\sin \alpha + \cos \alpha = \frac{\sqrt{2}}{3}$, 且 $\frac{\pi}{2} < \alpha < \pi$, 则 $\sin \alpha \cos \alpha = \underline{\hspace{1cm}}$, $\sin^3 \alpha + \cos^3 \alpha = \underline{\hspace{1cm}}$, $\tan \alpha + \cot \alpha = \underline{\hspace{1cm}}$, $\sin \alpha - \cos \alpha = \underline{\hspace{1cm}}$.

$$(001444)$$
 已知 $\sin \alpha = -\frac{1}{3}$, $\cos \beta = -\frac{2}{5}$, 且 $\frac{3\pi}{2} < \alpha < 2\pi$, $\pi < \beta < \frac{3\pi}{2}$, 则 $\cos(\alpha - \beta) =$ _______.

$$(001445)$$
 已知 $\cos(\alpha - \beta)\cos\beta - \sin(\alpha - \beta)\sin\beta = -\frac{1}{5}$,则 $\cos(2\pi - \alpha) - \sin\left(\frac{3\pi}{2} - \alpha\right) = \underline{\qquad}$

$$(001446) 若 \tan \left(\alpha - \frac{\pi}{4}\right) = 3, 则 \frac{1 - \tan \alpha}{1 + \tan \alpha} = \underline{\hspace{1cm}}.$$

$$(001448)$$
 已知 $\alpha, \beta \in \left(0, \frac{\pi}{2}\right)$, $\tan \alpha = \frac{1}{7}$, $\tan \beta = \frac{4}{3}$, 求 $\alpha - \beta$.

(001449) 已知
$$\alpha, \beta, \gamma$$
 均为锐角, $\tan \alpha = \frac{1}{2}$, $\tan \beta = \frac{1}{5}$, $\tan \gamma = \frac{1}{8}$. 求 $\alpha + \beta + \gamma$.

(001450) 已知
$$\alpha, \beta \in \left(\frac{\pi}{2}, \pi\right), \sin \alpha = \frac{\sqrt{2}}{10}, \sin \beta = \frac{\sqrt{10}}{10},$$
求 $2\alpha + 4\beta$.

(001451) 求值:
$$\frac{1}{2}\sin 15^{\circ} - \frac{\sqrt{3}}{2}\sin 75^{\circ} =$$
_____.

(001452) 将下列各式写成 $A\sin(lpha+arphi)$ 的 \Re	形式, 其中 $A > 0, \varphi \in [0, 2\pi)$.	
$(1) \sin \alpha + \sqrt{3} \cos \alpha = \underline{\hspace{1cm}}$;	
$(2) \sin \alpha - \sqrt{3} \cos \alpha = \underline{\hspace{1cm}}$;	
$(3) - \sin \alpha + \sqrt{3} \cos \alpha = \underline{\hspace{1cm}}$;	
$(4) - \sin \alpha - \sqrt{3} \cos \alpha = \underline{\hspace{1cm}}$;	
$(5) \sqrt{3}\sin\alpha + \cos\alpha = \underline{\hspace{1cm}}$		
$(6) \sin \alpha - \frac{\sqrt{3}}{3} \cos \alpha = \underline{\hspace{1cm}}$;	
$(7) - \sin \alpha + \cos \alpha = \underline{\hspace{1cm}}$		
$(8) -\sqrt{3}\sin\alpha - \cos\alpha = \underline{\hspace{1cm}}$;	
$(9) 3\sin\alpha - 4\cos\alpha = \underline{\hspace{1cm}}$	$_{-}$, 其中 $arphi$ 满足 $_{$;
$(10) -5\cos\alpha + 12\sin\alpha = \underline{\hspace{1cm}}$	$_{___}$,其中 $arphi$ 满足 $_{__}$	
(001453) 将下列各式写成 $A\cos(lpha+arphi)$ 的 δ	形式. 其中 $A>0$. $\omega\in[-\pi,\pi)$.	
$(1) \cos \alpha + \sin \alpha = \underline{\hspace{1cm}};$		
$(2) \sqrt{3}\sin\alpha - \cos\alpha = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$;	
$(3) \cos \alpha - \sqrt{3} \sin \alpha = \underline{\hspace{1cm}}$		
$(4) 3\sin\alpha + 4\cos\alpha = \underline{\hspace{1cm}}$;
$(5) 12\sin\alpha - 5\cos\alpha = \underline{\hspace{1cm}}$, 其中 φ 满足	_·
$(001454) 已知 m = \sin \alpha + \cos \alpha.$		
(1) 若 $\alpha \in \mathbb{R}$, 求 m 的取值范围;		
(2) 若 $\alpha \in [0, \frac{\pi}{2})$, 求 m 的取值范围;		
(3) 若 $m > 0$, 求 α 的取值范围.		
	$\sin x$	
(001455) 利用辅助角公式, 求函数 $y = \frac{2-1}{2-1}$	$\frac{\cos x}{\cos x}$ 的值域.	
(001456) [选做] 求函数 $y = \frac{2 - \sin x}{2 - \cos x}, x \in$	$\left[-rac{\pi}{2},rac{\pi}{2} ight]$ 的值域.	
(001457) 使用二倍角公式求值:		
(1) $\sin 67.5^{\circ} \cos 67.5^{\circ} =;$		
$(2) \cos^4 \frac{\pi}{8} - \sin^4 \frac{\pi}{8} = _;$		
(3) $2 - 4\cos^2\frac{\pi}{12} =;$		
$(4) \frac{2\tan\frac{9\pi}{8}}{1-\tan^2\frac{9\pi}{8}} = \underline{\hspace{1cm}};$		
(5) $16\sin\frac{\pi}{32}\cos\frac{\pi}{32}\cos\frac{\pi}{16}\cos\frac{\pi}{8} = $;	
(001458) 已知 $\sin \alpha = -\frac{3}{5}, \alpha \in \left(\pi, \frac{3\pi}{2}\right), \mathbb{R}$		$=$; $\tan 2\alpha =$
(001459) 已知 $\cos(\alpha - \beta)\cos\beta - \sin(\alpha - \beta)$	$\beta \sin \beta = \frac{1}{3}$,且 $\frac{3\pi}{2} < \alpha < 2\pi$,则 $\tan 2\alpha$	$\alpha = \underline{\hspace{1cm}}$.

(001460) 已知
$$\sin \theta = -\frac{1}{3}, \ \theta \in \left(\pi, \frac{3\pi}{2}\right), \ \ \ \ \ \sqrt{1-\sin 2\theta} = _____.$$

$$(001461) 已知 \cos 2\theta = \frac{\sqrt{3}}{3}, 则 \cos^4 \theta - \sin^4 \theta = ____; \cos^4 \theta + \sin^4 \theta = ___.$$

(001462) 在等腰三角形中,已知底角的余弦为 $\frac{3}{5}$,则顶角的正切为_____,正弦为_____.

(001463) 已知
$$\alpha$$
, β 均为锐角, $\tan \alpha = \frac{1}{7}$, $\sin \beta = \frac{\sqrt{10}}{10}$, 求 $\alpha + 2\beta$.

$$(001464)$$
 证明: $\frac{\sin 2\alpha}{\sin \alpha} - \frac{\cos 2\alpha}{\cos \alpha} = \frac{1}{\cos \alpha}$.

(001465) 已知 $\sin \theta + \cos \theta = 2 \sin \alpha$, $\sin^2 \beta = \sin \theta \cos \theta$, 证明: $2 \cos 2\alpha = \cos 2\beta$.

(001466) 利用除按计算器外的任一方式求 sin 18°.

(001467)[选做] 用 $\cos \alpha$ 的多项式表示 $\cos 2\alpha$ 和 $\cos 4\alpha$, 并用数学归纳法证明: 当 $n \in \mathbb{N}^*$ 时, $\cos(2^n\alpha)$ 可以表 示成 $\cos \alpha$ 的一个 2^n 次多项式。

(001468)(1) 如果 θ 是第三象限的角,且 $\sin \frac{\theta}{2} < 0$,则 $\frac{\theta}{2}$ 是第___

(2) 已知
$$\cos \theta = \frac{3}{5}$$
, θ 是第四象限的角, 则 $\sin \frac{\theta}{2} =$ ______.

(2) 已知
$$\cos \theta = \frac{3}{5}$$
, θ 是第四象限的角, 则 $\sin \frac{\theta}{2} = ______$.
(3) 如果 $\sin \frac{\theta}{2} = -\frac{4}{5}$, $\cos \frac{\theta}{2} = \frac{3}{5}$, 则 θ 角的终边在第______ 象限.

(2)
$$\stackrel{\omega}{=} \frac{3\pi}{2} < \alpha < 2\pi$$
 Ff, $\sqrt{\frac{1}{2} + \frac{1}{2}\sqrt{\frac{1}{2} + \frac{1}{2}\cos 2\alpha}} = \underline{\hspace{1cm}}$.

$$(3) \left(\cos\frac{\pi}{8} + \sin\frac{\pi}{8}\right) \left(\cos^3\frac{\pi}{8} - \sin^3\frac{\pi}{8}\right) = \underline{\qquad}.$$

(001470) 已知等腰三角形顶角的正弦等于 $\frac{7}{25}$, 则该三角形底角的正弦为______

(001471) 若
$$2\sin\theta = 1 - \cos\theta$$
, 则 $\tan\frac{\theta}{2} =$ ______.

(001472) 若
$$\sin \frac{\theta}{2} = \sqrt{1 + \sin \theta} - \sqrt{1 - \sin \theta}$$
,则 $\tan \theta =$ ______.

$$(001474) \ \textbf{已知} \ \tan\theta = \frac{12}{5}, \ \textbf{且} \ \theta \ \textbf{为第三象限角}, \ \vec{\mathbf{x}} \ \sin\frac{\theta}{2}, \cos\frac{\theta}{2}, \tan\frac{\theta}{2}.$$

(001475) 已知
$$\tan \frac{\alpha}{2} = \frac{2}{5}$$
, 求 $\frac{2 \sin \alpha + 3 \cos \alpha}{3 \cos \alpha - 4 \sin \alpha}$ 的值.

(001476) 已知
$$\tan A = \frac{\sqrt{6}}{12}$$
, $\tan B = \frac{1}{3}$, 求 $\cos^2 A - \sin 4B$.

$$(001477)$$
 已知 $2\tan\alpha=3\tan\beta,$ 求证: $\tan(\alpha-\beta)=rac{\sin2\beta}{5-\cos2\beta}$

(001478) 求证:

(1)
$$\cos \theta - \cos 2\theta = 6 \sin^2 \frac{\theta}{2} - 8 \sin^4 \frac{\theta}{2}$$
.

(2)
$$(\cos \alpha - \cos \beta)^2 + (\sin \alpha - \sin \beta)^2 = 4\sin^2 \frac{\alpha - \beta}{2}$$
.

(3)
$$\tan 7.5^{\circ} = \sqrt{6} - \sqrt{3} + \sqrt{2} - 2.5^{\circ}$$

(001479) 在 $\triangle ABC$ 中, 若 $c^2 = a^2 + b^2 + ab$, 则 C =_____. (001480) 在 $\triangle ABC$ 中,若 $\frac{a}{\cos A} = \frac{b}{\cos B} = \frac{c}{\cos C}$,则 $\triangle ABC$ 的形状是______ (001481) 在 $\triangle ABC$ 中,若 $\frac{a}{\cos A} = \frac{b}{\cos B} = \frac{c}{\sin C}$,则 $\triangle ABC$ 的形状是_______. (001482) 在 $\triangle ABC$ 中, 若 $a\sin A = b\sin B$, 则该三角形的形状是___ (001483) 在 $\triangle ABC$ 中, 若 $a\cos A = b\cos B$, 则该三角形的形状是 (001484) 在 $\triangle ABC$ 中,若 $\frac{a^2 + b^2}{c^2} = \frac{\sin^2 A + \sin^2 B}{\sin^2 C}$,则 $\tan C =$ ______. (001485) 在 $\triangle ABC$ 中, 若 $a^4 + b^4 + c^4 - 2a^2c^2 - 2b^2c^2 + a^2b^2 = 0$, 则 C =(001486) 在 $\triangle ABC$ 中, 若面积 $S = a^2 - (b - c)^2$, 则 $\tan A =$ (001487) 在 $\triangle ABC$ 中, 若面积 $S = \frac{a^2 + b^2 - c^2}{4}$, 则 $C = _____$. (001488) 在 $\triangle ABC$ 中, 若 $(\sin A + \sin B + \sin C)(\sin A + \sin B - \sin C) = 3\sin A\sin B$, 则 C =______ (001489) 在 $\triangle ABC$ 中,已知 $\frac{\tan A - \tan B}{\tan A + \tan B} = \frac{c - b}{c}$,求 $\cos \frac{B + C}{2}$ 的值. (001490) 在 $\triangle ABC$ 中, 化简 $\sin^2 A + \sin^2 B + \sin^2 C - 2\cos A\cos B\cos C$. (001491) 判断下列命题的真假, 真命题用 "T"表示, 假命题用 "F"表示. (1) 设函数 y = f(x) 的定义域为 R, 若 1 是它的一个周期, 则 2 也是它的一个周期; (2) 设函数 y = f(x) 的定义域为 D, 若 1 是它的一个周期, 则 2 也是它的一个周期; __(3) 设函数 y = f(x) 的定义域为 R, 若 1 是它的一个周期, 则 -1 也是它的一个周期; (4) 设函数 y = f(x) 的定义域为 D, 若 1 是它的一个周期, 则 -1 也是它的一个周期; (5) 设函数 f(x) 的定义域为 \mathbf{R} , 若 1 是它的一个周期, 则 $\sqrt{2}$ 一定不是它的周期; $\mathbf{L}(6)$ 设函数 f(x) 的定义域为 \mathbf{R} , 且 f(x) 不是常数函数, 若 1 是它的一个周期, 则 $\sqrt{2}$ 一定不是它的周期; (7) 定义在 R 上的常数函数是周期函数;

(8)	奇函数一定是周期函数;
(9)	奇函数一定不是周期函数;
(10)	偶函数一定是周期函数;
(11)	偶函数一定不是周期函数;
(12)	单调函数一定不是周期函数;
(13)	一定不存在正实数 M , 使得周期函数 $y=f(x)$ 的定义域包含于区间 $[-M,M]$;
(14)	如果 1 是函数 $y=f(x),\ y=g(x)$ 的周期,且 $f(x)$ 与 $g(x)$ 定义域的交集非空,那么 1 也是 $y=f(x)+g(x)$ 的周期;
(15)	设 $f(x), g(x)$ 的定义域均为 R, 若 1 是函数 $y = f(x)$ 的周期, 则 1 是函数 $y = f(g(x))$ 的周期;
(16)	设 $f(x), g(x)$ 的定义域均为 R, 若 1 是函数 $y = g(x)$ 的周期, 则 1 是函数 $y = f(g(x))$ 的周期;
(17)	$y = \sin x, \ x \in (-\infty, 0) \cup (0, +\infty)$ 是周期函数;
(18)	$y = \sin x, \ x \in (0, +\infty)$ 是周期函数;
(19)	周期函数一定有最大值和最小值;
(20)	定义域为 R 的周期函数一定有最大值和最小值.
(001492) \bar{a}	在横线上写出下列函数的一个周期 (若周期不存在则写 "不存在").
	$s\left(\frac{x}{\pi}+1\right);$
	$n(\omega x) \ \omega > 0;$
(3) y = x	;
(4) y = [x]	;(这里 [x] 表示 x 的整数部分)
(5) $y = r$	-[r].

- (6) $y = \sin \frac{x}{3} + \sin \frac{x}{5}$;_____ (7) $y = [\sqrt{x}];$ _____ (8) $y = \sqrt{|x|}$. (001493) 设 $y = f(x), x \in \mathbf{R}$ 是周期为 2 的函数, 若 $x \in [0,2)$ 时, f(x) = x, 求 $x \in [98,100)$ 时 f(x) 的解析 式. (001494) 已知函数 $y = f(x), x \in \mathbf{R}$ 满足 f(x+2) = -f(x). (1) 求证: $y = f(x), x \in \mathbf{R}$ 是周期函数; (2) 若 $x \in [0,2)$ 时, f(x) = x, 求 $x \in [98,100)$ 时 f(x) 的解析式. (001495) 下列假命题经常被误以为是正确的, 请对每个命题举出一个反例 (不需要论证): (1) 若 f(x) 与 g(x) 的最小正周期均为 T, 则 f(x)g(x) 的最小正周期为 T; (2) 若 f(x) 与 g(x) 的最小正周期均为 T, 则 f(x) + g(x) 的最小正周期为 T. (001496) 写出下列函数的最小正周期: $(1) f(x) = \sin x + \cos x;$ $(2) f(x) = \sin x \cos x;$ (3) $f(x) = \sin^2 x$;_____ (4) $f(x) = |\sin x|$;_____ (5) $f(x) = \sin^6 x + \cos^6 x$;_____ (6) $f(x) = |2\sin x + 1|$;_____ $(7) f(x) = \sin x + \sin 2x; \underline{\hspace{1cm}}$ (8) f(x) = x - [x]._____ (001497) 求函数 $f(x) = \cos x$ 的最小正周期, 并证明你的结论. (001498) 求函数 $f(x) = |\cos 2x|$ 的最小正周期, 并证明你的结论. (001500) 函数 $y = \frac{1}{\ln(1 - 2\sin x)}$ 的定义域是______.
- (001501) 函数 $y = \sqrt{25 x^2} + \ln \cos x$ 的定义域是______.
- (001502) 函数 $y = 5 2\sin\left(x + \frac{\pi}{3}\right)$ 的最小值为______.
- (001503) 使函数 $y = 3 \cos 2x$ 取到最小值的所有 x 的集合是______.
- (001504) 函数 $y = 1 \sin x, \ x \in [0, \pi]$ 的值域是______.
- (001505) 函数 $f(x) = \cos \frac{\pi x}{3}, x \in \mathbf{Z}$ 的值域为______.
- (001506) 函数 $f(x) = \log_{\frac{1}{2}}(2\sin x)$ 的最小值是______.

- (001507) 函数 $y = \frac{2\sin x 1}{\sin x + 3}$ 的值域为______.
- (001508) 设 $\cos^2 x + 4\sin x + a = 0$, 则 a 的取值范围为______
- (001509) 函数与 $y = \sqrt{2} \sin 2x \cos 2x$ 的最小正周期是______
- (001510) 已知函数 $y = 2\cos x, x \in [0, 2\pi]$ 和 y = 2 围成一个封闭的平面图形, 其面积为
- (001511) 写出下列函数的奇偶性 (奇非偶, 偶非奇, 非奇非偶, 既奇又偶)
- (1) $y = \sin x + \cos x$ 是______ 函数;
- (2) $y = \ln(1 \sin x) \ln(1 + \sin x)$ 是_______ 函数.
- (001512) 根据函数奇偶性的定义证明: $y = \frac{\sin x}{\cos x + \cos 2x + \cos 7x}$ 是奇函数.
- (001513) 已知 2 是函数 $y = f(x), x \in \mathbf{R}$ 的周期, 且当 $x \in (-1, 1]$ 时, $f(x) = 1 x^2$.
- (1) 写出该函数的值域以及所有单调增区间;
- (2) 写出方程 $f(x) = \frac{1}{2}$ 的解集;
- (3) 当 $x \in (99, 101]$ 时, 求 f(x) 的解析式.
- (001514)[选做] 求函数 $y = \sin^2 x \cos x$ 在 $\left[0, \frac{\pi}{2}\right]$ 上的最大值.
- (001515) 函数 $y = k \sin x + b$ 的最小值为 -4, 最大值为 2, 则 k + b 的值为______
- (001516) 函数 $y = -\sin^2 x + 2\sin x + \cos^2 x$ 的值域为______.
- (001517) 函数 $y = \cos(\sin x)$ 的值域为______
- (001518) 函数 $y = 2\cos\left(x + \frac{\pi}{4}\right)\cos\left(x \frac{\pi}{4}\right) + \sqrt{3}\sin 2x$ 的值域为______
- (001519) 函数 $y = \sin \frac{x}{2} + \cos \frac{x}{2}$ 的递增区间为______.
- (001520) 函数 $y = \cos^2\left(x \frac{\pi}{4}\right)$ 的递减区间为______.
- (001521) 函数 $y = \left| \sin \left(x + \frac{\pi}{6} \right) \right|$ 的最小正周期是______.
- (001522) 函数 $y = 2\sin\left(-\frac{x}{2} + \frac{\pi}{4}\right)$ 的递增区间为______.
- (001523) 函数 $y = \sqrt{\sin\left(-\frac{x}{2} + \frac{\pi}{4}\right)}$ 的递增区间为______.
- (001524) 函数 $y = \sin x + \cos x + \sin x \cos x$ 的值域为______.
- (001525)[选做] 函数 $f(x) = 3\sin(2x + 5\theta)$ 的图像关于 y 轴对称当且仅当 $\theta = ______.$
- (001526) 求函数 $y = \sqrt{3}\sin x + \cos x$, $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ 的值域.
- (001527) 关于 x 的不等式 $\sin^2 x 2k \cos x 5 < 0$ 恒成立, 求实数 k 的取值范围.
- (001528) 函数 $y = \frac{1}{1 + \tan x}$ 的定义域为_____.

(001530) 函数 $y = \sec^2 x + 2\tan x + 1, x \in [-\frac{\pi}{3}, \frac{\pi}{4}]$ 的值域为______ (001531) 函数 $y = \frac{\tan^2 x + 1 - \tan x}{\tan^2 x + 1 + \tan x}$ 的值域为_____. (001533) 直线 y = a 与函数 $y = \tan nx (n > 0)$ 的图像交点中, 相邻两交点的距离为 (001534) 函数 $y = \tan x - \cot x$ 的最小正周期为______. (001535) 函数 $y = \frac{2 \tan x}{1 - \tan^2 x}$ 的最小正周期为______. (001536) 写出函数 $y = |\tan x|$ 的最小正周期, 单调区间. (001537) 写出函数 $y = \tan(\frac{\pi}{3} - \frac{x}{2})$ 的单调区间. (001538) 写出函数 $y = \tan x + \cot x$ 的定义域, 值域, 最小正周期, 单调区间. (001539) 判断函数 $y=rac{1+\sin x-\cos x}{1+\sin x+\cos x}$ 的奇偶性,写出其最小正周期,单调区间。(最小正周期与单调性不需 要论证, 提示: 可先化简, 但必须注意定义域.) (001540)[选做] 已知定义在 [-1,1] 上的函数 y = f(x) 使得 $f(\sin x) = \sin 15x$ 对一切 x 均成立, 求 $f(-\cos x)$. (001541) 函数 $y=3\sin(2x+\frac{\pi}{3})$ 的最小正周期为_______,振幅为______,初相为______,频率 (001542) 函数 $y=3\sin(2x+\frac{\pi}{3})$ 在一个周期内的大致图像为: (001543) 已知函数 $y=A\sin(\omega x+\varphi)$ 的振幅是 3, 最小正周期为 $\frac{2\pi}{7}$, 初相为 $\frac{\pi}{6}$, 则使这个函数取到最大值的 x 的集合为 (001544) 在公园中, 有一个作匀速旋转运动的摩天轮, 已知小明从摩天轮的最低点进入吊篮, 他离地高度 h(X)与乘坐摩天轮的时间 $t(\mathcal{G})$ 之间的关系为 $h=8-5\cos\frac{\pi}{4}t$,则小明重新回到摩天轮最低点所花的时间最少 (001545) 有如下几个函数: $(1)y = \sin x + \cos x$; $(2)y = \sin x \cos x$; $(3)y = \sin x + 2\cos x$; $(4)y = \frac{\cos(2-2x)}{2}$; $(5)y = \sin 2x$. 其中图像的形状大小相同的函数序号为_____ (001546) 将函数 $y=\sin x$ 的图像向右平移 $\frac{\pi}{3}$ 个单位, 所有点的横坐标变为原来的 2 倍, 则得到函数 ______ 的图像. (001547) 将函数 $y=\sin x$ 的图像所有点的横坐标变为原来的 2 倍, 再将所得图像向右平移 $\frac{\pi}{3}$ 个单位, 则得到 函数 ______ 的图像.

(001529) 函数 $y = \sqrt{\tan 2x - 1}$ 的定义域为

(001548) 将函数 $y = \sin x$ 的图像所有点的纵坐标变为原来的 2 倍, 再将所得图像向上平移 1 个单位, 则得到 函数 ______ 的图像.

(001549) 将函数 $y = \sin x$ 的图像向上平移 1 个单位, 再将所得图像上所有点的纵坐标变为原来的 2 倍, 则得 到函数 ______ 的图像.

(001550) 函数 y=f(x) 的图像中每一点的横坐标伸长为原来的 2 倍, 再将所得图像向左平移 $\frac{\pi}{2}$ 个单位, 所得 的曲线是 $y = \frac{1}{2} \sin x$ 的图像, 则 y = f(x) 的解析式为_____

(001551) 函数 $y = b + a \sin x$ 的最小值为_____.

$$(001552)$$
 函数 $y = \cos(\frac{\pi}{3} - 2x)$ 的递减区间为_____.

$$(001553)$$
 若函数 $y=2\sin\omega x(\omega>0)$ 在 $[-\frac{\pi}{3},\frac{\pi}{4}]$ 上单调递增,则 ω 的取值范围为______.

(001554) 已知函数 $y=rac{1}{2}\cos^2x+rac{\sqrt{3}}{2}\sin x\cos x+1,\,x\in\mathbf{R}$. 该函数的图像可由 $y=\sin x$ 的图像经过怎样的变 换得到?

(001555) 讨论关于 x 的方程 $\sin(2x+\frac{\pi}{6})=t(x\in[0,\frac{\pi}{2}])$ 的根的个数情况.(只需写出结论)

(001556) 如图为函数 $f(x) = A\sin(\omega x + \varphi), \ (A > 0, \omega > 0, \varphi \in [0, 2\pi))$ 图像的一段, 求其解析式。

(001557) 函数 $y = A\sin(\omega x + \varphi)(A \neq 0)$ 的图像相邻最高点与最低点的坐标分别为 $\left(\frac{5\pi}{12}, 3\right), \left(\frac{11\pi}{12}, -3\right)$.

- (1) 若 $A > 0, \omega > 0, \varphi \in [0, 2\pi)$, 求 A, ω, φ 的值;
- (2) 若 $A > 0, \omega > 0$, 求 φ 的值;
- (3) 若 $A > 0, \varphi \in [0, 2\pi)$, 求 ω, φ 的值;
- (4) 若 $\omega > 0, \varphi \in [0, 2\pi)$, 求 A, ω, φ 的值.

(001558) 填空:

(1)
$$\arcsin(\underline{}) = \frac{\pi}{6}$$
.

(1)
$$\arcsin(\underline{}) = \frac{\pi}{6}.$$

(2) $\arcsin(\underline{}) = -\frac{\pi}{3}.$

(3)
$$\arcsin\left(-\frac{1}{2}\right) = \underline{\qquad}$$

(4)
$$\arcsin\left(\sin\frac{2\pi}{3}\right) =$$

(4)
$$\arcsin\left(\sin\frac{2\pi}{3}\right) =$$
_____.
(5) $\arcsin\left(\sin\frac{3\pi}{2}\right) =$ _____.

(001559) 用反正弦的形式表示下列各式中的角:

(1) 若
$$\sin x = \frac{1}{3}, x \in [\frac{\pi}{2}, \pi]$$
, 则 $x =$ _____.

(2)
$$\ddot{x} \sin x = -0.127, x \in [-\frac{\pi}{2}, \frac{\pi}{2}], \ \mathbf{M} \ x = \underline{\qquad}.$$

(001560) 下列各式中, 正确的是 .

A. $\arcsin(\sin 2) = 2$

B.
$$\arcsin(\sin 1) = \frac{\pi}{2}$$

C. $\arcsin(\sin 2) = \pi - 2$

D. $\arcsin(\sin 1) = 0$

(001561) 使等式 $\sin\left(\arcsin\frac{1}{a+1}\right) = \frac{1}{a+1}$ 成立的 a 值的范围为_____.

(001562) 计算:

$$(1) \sin \left(\arcsin \frac{1}{3} + \frac{\pi}{4} \right) = \underline{\qquad}.$$

(2)
$$\cos\left(\arcsin\left(-\frac{1}{4}\right)\right) = \underline{\qquad}$$

(3)
$$\tan \left(\arcsin \left(-\frac{1}{4} \right) \right) = \underline{\hspace{1cm}}$$

(4)
$$\arcsin\left(\cos\frac{3\pi}{7}\right) = \underline{\qquad}$$

(5)
$$\arcsin\left(\sin\left(-\frac{3\pi}{4}\right)\right) = \underline{\qquad}$$

(6)
$$\arcsin(\sin 13) =$$
_____.

(7)
$$\arcsin\left(\cos\frac{7\pi}{5}\right) = \underline{\qquad}$$

(8)
$$\arcsin 0.252 + \arcsin(-0.252) = \underline{\hspace{1cm}}$$

(001563) 将下列各数从小到大排列, 并用 < 连接: $\arcsin 1$, $\sin 1$, $\arcsin \frac{12}{13}$, 0.

(001564) 写出下列函数的定义域和值域:

$$(001565)$$
 函数 $y=3\arcsin(x^2-x)$ 的单调增区间为______.

$$(001566)$$
 不等式 $\arcsin x \le \arcsin x^2$ 的解集为______.

$$(001567)$$
 函数 $y = \sin x$ 与函数 $y = \arcsin x$ 都是______.

A. 增函数

B. 周期函数

C. 奇函数

D. 单调函数

(001568)(1) 求函数 $y=\sin 2x, x\in \left[-\frac{\pi}{4},\frac{\pi}{4}\right]$ 的反函数;

(2) 求函数
$$y = \sin 2x, x \in \left[\frac{\pi}{4}, \frac{3\pi}{4}\right]$$
 的反函数.

(001569) 求证:
$$\arcsin \frac{4}{5} + \arcsin \frac{5}{13} = \arcsin \frac{63}{65}$$
;

(001570) 填空:

(1)
$$\arccos \frac{\sqrt{3}}{2} = \underline{\hspace{1cm}}$$
.

(2) arccos	$\left(-\frac{1}{2}\right)$) =	
` '	\ 2/	1	

(3)
$$\arccos(-1) + \arccos 0 = \underline{\hspace{1cm}}$$

(4)
$$\arctan 1 =$$
_____.

(5)
$$\arctan(\underline{}) = \frac{\pi}{6};$$

(6)
$$\arctan(\underline{}) = -\frac{\pi}{3}$$
.

$$(7) \pi = \frac{\pi}{3} + \arccos(\underline{})$$

$$(8) -\frac{3\pi}{4} = -\frac{\pi}{2} - \arccos(\underline{\hspace{1cm}})$$

(7)
$$\pi = \frac{\pi}{3} + \arccos(\underline{}).$$

(8) $-\frac{3\pi}{4} = -\frac{\pi}{2} - \arccos(\underline{}).$
(9) $\arctan\left(\tan\frac{2\pi}{3}\right) = \underline{}.$

(10)
$$\arctan\left(\cot\left(-\frac{7\pi}{6}\right)\right) = \underline{\qquad}$$

(11)
$$\cot\left(\arcsin\frac{3}{7}\right) = \underline{\hspace{1cm}}$$

(12)
$$\cos(\arcsin x) =$$
______. $(-1 \le x \le 1)$

(13)
$$\sin(2\arcsin x) =$$
_____. $(-1 \le x \le 1)$

(13)
$$\sin(2\arcsin x) = \underline{\qquad} \cdot (-1 \le x \le 1)$$

(14) $\tan\left(\arctan\frac{3}{4} + \arctan\frac{2}{5}\right) = \underline{\qquad} \cdot$

$$(15) \cos\left(\frac{1}{2}\arctan 2\right) = \underline{\qquad}.$$

(001571) 函数 $y = \arccos(2x - 3)$ 取到最小值时, x 的值是

B.
$$\frac{\pi}{2}$$

C.
$$\frac{\pi}{4} + \frac{3}{2}$$

D.
$$2\pi - 3$$

(001572) 函数 $y = \cos(\arccos x) - x$ 的定义域为____

A.
$$\{x|-1 < x < 1\}$$
 B. $\{x|-1 \le x \le 1\}$ C. $\{x|x \in \mathbf{R}\}$

$$|R| \{r | -1 < r < 1\}$$

C.
$$\{x|x\in\mathbf{R}\}$$

D. \emptyset

(001573) 下列各式中, 正确的是_____.

A.
$$\arctan \frac{5\pi}{4} = -1$$

B.
$$\tan\left(\arctan\frac{5\pi}{4}\right) = \frac{5\pi}{4}$$

C.
$$\arctan\left(\tan\frac{5\pi}{4}\right) = -\frac{\pi}{4}$$

B.
$$\tan\left(\arctan\frac{5\pi}{4}\right) = \frac{5\pi}{4}$$

D. $\arctan\left(\tan\frac{5\pi}{4}\right) = \frac{5\pi}{4}$

(001574)tan 1 与 arctan 1 之间的大小关系是

A.
$$\tan 1 = \arctan 1$$

B.
$$\tan 1 > \arctan 1$$

C.
$$\tan 1 < \arctan 1$$

D. 不能确定

(001575) 写出下列函数的定义域和值域:

 $(001576)\arccos x$ 大于 $\arccos(-x)$ 的充分必要条件是

A. $x \in [0,1]$ B. $x \in [-1,0)$ C. x = 0

D. $x \in [-1, 1]$

(001577) 函数 $y = 2\arccos(x-2)$ 的反函数是

(001578) 解方程: $2\arctan\frac{1}{2} - \arctan x = \frac{\pi}{4}$.

(001579) 解不等式: $\arctan x \leq \arctan x^2$.

(001580)[选做] 证明: 对一切 $x \in [-1, 1]$, $\arccos x + \arcsin x$ 是一个定值.

(001583) 方程 $2 \tan x + 3 = 0$ 的解集为_____

(001584) 方程 $\cos 3x = \cos 2x$ 的解集为______

(001585) 方程 $\sin 5x = \cos x$ 的解集为______.

(001586) 方程 $3\sin x - 4\cos x = 0$ 的解集为_____

(001587) 方程 $3\sin x - 4\cos x = 2$ 的解集为______

(001588) 方程 $\sin^2 x - 3\sin x \cos x + 1 = 0$ 的解集为

(001589) 方程 $\tan 3x = \sin 6x$ 的解集为______.

(001590) 已知 a 是实数, 解关于 x 的三角方程: $2\cos^2 x + (2-a)\sin x + (a-2) = 0$.

(001591) 小明在解方程 $1 + \sin 2x + \cos 2x = 0$ 时使用了万能置换公式, 即原方程化为 $1 + \frac{2t}{1+t^2} + \frac{1-t^2}{1+t^2} = 0$, 进而等价于 $\frac{2+2t}{1+t^2}=0$, 其中 $t=\tan x$. 解得 $\tan x=-1$, 即 $x=k\pi-\frac{\pi}{4},\ k\in\mathbf{Z}$. 请你找出他的解法中错误的地方, 并加以纠正.

(001592) 用集合的语言表述下列语句, 并用铅笔作出示意图 (画直线需用尺).

(1) 点 A 在平面 α 上: ______;

(2) 点 *B* 不在平面 β 上: ______;

(3) 平面 α 经过直线 AC: _____;

(4) 直线 BC 与平面 α 相交于点 C: ______.

(001593) 已知 a,b,c 是空间三条直线, 且 $a \parallel b,c$ 与 a,b 都相交. 求证: 直线 a,b,c 在同一平面内 (每一步均需 说明根据). (001594) 已知 A, B, C, D 是空间四点, 且 A, B, C 同在直线 l 上. 求证: 直线 AD, BD, CD 在同一平面上 (每 一步均需说明根据). (001595) 判断下列命题的真假, 在横线上用 "T"或"F"表示. ____(1) 空间任意三点确定一个平面; ____(2) 空间任意两条直线确定一个平面; ___(3) 空间两条平行直线确定一个平面; ____(4) 空间一条直线和不在该直线上的一个点确定一个平面; ____(5) 空间一个点和不通过该点的一条直线确定一个平面; ____(6) 空间两条没有交点的直线必平行; ____(7) 若空间四边形 ABCD 若满足 AB = BC = CD = DA, 则它一定是菱形; ____(8) 若空间的一条直线如果和一对平行直线之一相交, 则一定与另一条也相交; ____(9) 若空间三点 A, B, C 若满足 $AB^2 + BC^2 = CA^2$, 则 $\triangle ABC$ 是以 B 为直角顶点的直角三角形; _(10) 若空间三条直线两两相交, 则通过它们中至少两条的平面有且仅有 1 个; (11) 若空间三条直线两两相交,则通过它们中至少两条的平面有且仅有 3 个. (001596) 已知不共线的三点 A, B, C 均在平面 α 上. 证明以下命题 (每一步均需说明根据): (1) 直线 AB 上的每一点都在平面 α 上; (2) 三角形 ABC 的重心 G 在平面 α 上.

(001597) 指出图中正方体各线段所在直线的位置关系 (相交, 平行或异面):

(1) AB和 CC';
(2) A'C 和 BD';
(3) AA'和 CB';
(4) A'C' 和 CB';
(5) A'B'和 DC;
(6) BD'和DC.
(001598) 判断下列命题的真假, 在横线上用 "T" 或 "F" 表示.
(1) 已知 α , β 是两个平面, l,m 是两条直线, 若 $l \subsetneq \alpha$, $m \subsetneq \beta$, 则 l,m 异面;
(2) 已知平面 α, β 相交于直线 l . 若直线 $m \subsetneq \alpha, l \parallel m$, 直线 $n \subsetneq \beta, l$ 与 n 相交, 则 m 与 n 异面
(3) 已知 l, m 是异面直线, 若直线 $n \parallel l, $ 则 m, n 异面;
(4) 已知 l, m 是异面直线, 若直线 n 和 l 异面, 则 m, n 异面;
(5) 已知 l, m 是异面直线, 若直线 n 和 l 异面, 则 m, n 共面;
(6) 公别和西昌面古纶郏州太的西古纶一宁县昌面古纶。

- _____(7) 分别和两异面直线相交的两直线不可能是平行直线;
- _____(8) 正方体的任意两条对角线 (指相对顶点, 不同时出现在六个表面的任何一个上的顶点的连线) 相交.

(001599) 在正方体 ABCD - A'B'C'D' 中, 证明: 四边形 ABC'D' 是平行四边形.

(001600) 已知 m,n 是异面直线, 直线 s 分别与 m,n 相交于点 A,B, 直线 t 分别与 m,n 相交于点 C,D, A,B,C,D 两两不同. 求证: s,t 也是异面直线.

(001601) 过一点 O 的三条直线 OA,OB,OC 不共面,且 D,E 在 OA 上,F 在 OB 上,G 在 OC 上,D,E,F,G 两两不同,且均不与点 O 重合.求证:DF 与 EG 是异面直线.

(001602) 如图, 在长方体 $ABCD - A_1B_1C_1D_1$ 中, P, Q 分别为 CC_1 , AA_1 的中点, 求证: $BP \parallel D_1Q$.

(001603) 如图, 在正方体 $ABCD - A_1B_1C_1D_1$ 中, E, F 分别是棱 A_1B_1 和棱 B_1C_1 的中点.

- (1) 求异面直线 A_1D 和 BC_1 所成角的大小;
- (2) 求异面直线 BE 和 CF 所成角的余弦值.

(001604) 如图, 在正方体 $ABCD - A_1B_1C_1D_1$ 中, P, Q 分别为 B_1C , BD 上的点, 且 $B_1P = BQ = \frac{2}{3}B_1C$, 求: 直线 PQ 与 CD 所成角的正切值.

(001605) 判断下列命题的真假, 在横线上用 "T" 或 "F" 表示.

(1) 直线 a 和 b 分别在两个平面内,则它们可能_

(1) 平行四边形一定在一个平面上;	
(2) 若直线 a,b,c 满足 a ⊥ b, a ⊥ c, 则 b,c 重合或平行;	
(3) 存在一个空间四边形 ABCD, 它的任意两条邻边的夹角均等于 60°;	
(4) 和两条异面直线都平行的直线不存在;	
(5) 过空间一点, 与已知直线垂直的直线有且只有一条;	
(6) 若 a, b 是异面直线, b, c 是异面直线, 则 a, c 也是异面直线;	
(7) 若 a, b 是相交直线, b, c 是相交直线, 则 a, c 也是相交直线;	
(8) 有三个角是直角的四边形是矩形;	
(9) 异面直线 a,b 和另一直线 c 分别所成的角的大小一定不相等.	
(001606) 已知直线 a,b,c 两两不重合, 在以下横线上填入 "相交", "平行", "异面" 中的一个或 (001606)	多个.

(2) 已知直线 a , 异面直线 b , c , $a \perp b$, 则 a , c 可能
(3) 已知直线 a, 异面直线 b, c, a b, 则 a, c 可能;
(4) 若直线 a, b, c 满足 a ⊥ b, b ⊥ c, 则 a, c 可能;
(5) 若直线 a,b 与直线 c 都成 60° 角,则 a,b 可能
(6) 若直线 a,b 与直线 c 分别成 60° 与 30° 角, 则 a,b 可能
(001607)(1) 正方体的一个确定的面上的一条确定的对角线与正方体的棱可以组成
$(001608)(1)$ 长方体 $ABCD - A_1B_1C_1D_1$ 中, $AB = 2BC = 4CC_1$, 异面直线 A_1D 与 B_1D_1 所成角的余弦值
为;
(2) 长方体 $ABCD - A_1B_1C_1D_1$ 中, $AB = 2BC = 4CC_1$, 异面直线 A_1B 与 B_1D_1 所成角的余弦值为
(3) 长方体 $ABCD - A_1B_1C_1D_1$ 中, 若 $\angle BAB_1 = \angle B_1A_1C_1 = 30^\circ$, 则异面直线 AB_1 与 A_1C_1 所成角的余弦值为;
TEL/3
(001609)(1) 空间四边形 $ABCD$ 中, M, N 分别是对角线 AC, BD 的中点, $AB = CD = 4$, $MN = 3$, 则异面直
线 AB,CD 所成角的余弦值为;
(2) 在空间四边形 $ABCD$ 中, $AB = CD$, $AB = CD$ 所在直线所成的角等于 90° , M, N 分别为边 BC, AD 的中点,则异面直线 $MN = CD$ 所成角的余弦值为;
$ABCD$ 中, $AB = CD$, $AB = CD$ 所在直线所成的角等于 60° , M, N 分别为边 BC, AD 的
中点,则异面直线 MN 与 CD 所成角的余弦值为
(001610) 判断下列命题的真假, 并用 "T" 或 "F" 表示:
(1) 如果两条直线和同一平面平行, 那么这两直线平行;
(2) 如果两直线和同一平面平行, 那么这两直线平行或相交;
(3) 同时和两异面直线平行的平面有无数个;
(4) 若直线 $a \subsetneq$ 平面 α , 直线 b 不在平面 α 内, $a \cap b = \emptyset$, 则 $b \parallel \alpha$;
(5) 直线 $a \parallel$ 直线 b , 直线 $b \parallel$ 平面 α . 若直线 a 不在 α 内, 则 $a \parallel \alpha$;

- _____(6) 直线 $a \parallel$ 平面 α , 直线 $a \subsetneq$ 平面 β . 若 $\alpha \cap \beta = b$, 则 $a \parallel b$;
- (7) 过异面直线 a,b 外一点有且仅有一个平面和 a,b 平行;

(001611) 在正方体 $ABCD - A_1B_1C_1D_1$ 中, 如果 M 是 DD_1 的中点, 作图并证明: 直线 BD_1 || 平面 MAC.

(001612) 证明: 若两相交平面都平行于一直线, 则它们的交线也平行于该直线.

(001613) 已知 P 是空间四边形 ABCD 的对角线 BD 上的任意一点, E,F 分别在 AD,CD 上, 且 AE:ED=CF:FD. 又 BE 与 AP 相交于点 Q, BF 与 CP 相交于点 R. 求证: $RQ \parallel EF$ (知道 Menelaus 定理的同学请勿使用它).

(001614) 如果两平行线中的一条直线垂直于一个平面, 那么另一条直线也垂直于该平面.

(001615) 利用"过一点作已知平面的垂线能且仅能作一条"这一性质, 证明: 如果两条直线垂直于同一个平面, 那么这两条直线平行.

(001616) 已知直线 a,b,l 均经过点 O,相交直线 a,b 同在平面 α 内. 利用 Stewart 定理 (作业 2101 练习 6) 及 勾股定理证明: 除 a,b 外的平面 α 内通过 O 的任一直线均与 l 垂直.

(001617)AB 和 CD 都垂直于平面 α , B,D 分别是垂足, 若 AB=4, CD=8, BD=3, 则 AC 的长为_______.

(001618) 正方体 ABCD - A'B'C'D' 中, E 是棱 AA' 上的点, 且 A'E : EA = 1 : 2, F 是棱 AB 上的点, 且 $\angle C'EF = 90^{\circ}$, 则 $AF : FB = _______$.

(001619) 若 PA L 正方形 ABCD 所在平面, 且 PC = 5, PB = PD = 4, 则 PA =______.

(001620) 正方体 ABCD - A'B'C'D' 中, 求证:

- (1) $D'B \perp AC$;
- (2) $D'B \perp$ 平面 AB'C.

(001621) 已知: $\triangle ABC$ 所在平面外一点 P , 直线 $PO \perp$ 平面 ABC 于 O 点. 求证

- (1) 如果点 P 到 $\triangle ABC$ 的三个顶点的距离相等, 那么点 O 一定是 $\triangle ABC$ 的外心;
- (2) 如果点 P 到 $\triangle ABC$ 的三边所在直线的距离相等, 且 O 在 $\triangle ABC$ 内, 那么点 O 一定是 $\triangle ABC$ 的内心;
- (3) 如果 AP, BP, CP 两两垂直, 那么点 O 一定是 $\triangle ABC$ 的垂心;
- (4) 以上三个命题各自的逆命题是否成立 (毋须证明)?

(001622) 判断下列命题的真假, 并	÷用 "T"	或 "F"	表示.
-----------------------	--------	-------	-----

(1) 不在平面内的直线上有三个不同点到该平面的距离都相等,则此直线平行于该平面.
(2) 与不共线三点距离都相等的点有无数个.
(3) 过固定的平面 α 外一固定点 P 引与 α 相交的直线, 使 P 到交点 O 的距离为 1 , 这样的直线不可能有且只有一条.
(4) 过固定的平面 α 外一固定点 P 引与 α 相交的直线, 使 P 到交点 O 的距离为 1 , 这样的直线不可能有且只有两条.
(5) 一平面上有无数个点到另一平面的距离相等,则这两个平面无公共点.
(6) 过异面直线 m, n 中的 m 且垂直于 n 的平面有且只有一个.
(7) 如果平面 α 和不在平面 α 内的直线 a 都垂直于直线 b , 那么平面 α 和直线 a 平行.
(001623) 长方体 $ABCD - A'B'C'D'$ 中, $AA' = 2$, $AB = 4$, 则 $B'C'$ 到平面 $A'BCD'$ 的距离为
(001624) 在边长为 4 的菱形 $ABCD$ 中, $\angle BAD=60^\circ,$ 线段 $PA\perp$ 平面 $ABCD,$ P 到直线 BD 的距离为 $4,$ 则点 P 到直线 BC 的距离为
(001625) $\triangle ABC$ 中, $AB=6$, $AC=8$, $BC=10$, P 为平面 ABC 外一点, 且 $PA=PB=PC=7$, 则 P 到平面 ABC 的距离为
(001626) 直角三角形 ABC 所在平面外一点 P 到直角顶点 C 的距离为 5 , 到两直角边的距离均为 4 , 则点 P 到平面 ABC 的距离为
(001627)[选做] 在三角形 ABC 所在平面外一点 P 满足 AP,BP,CP 两两垂直,且 $AP=3,BP=4,CP=5$,则点 P 到平面 ABC 的距离为

(001628) 已知如图, 四面体 ABCD 中, AB = AC = DB = DC = 2, AD = BC = 1.

- (1) 求证: $AD \perp BC$;
- (2) 求点 A 到面 BCD 的距离.

(001629) 判断下列命题的真假, 并用 "T" 或 "F" 表示.

(1)	在正方体 $ABCD - A'B'C'D'$ 中, BC' 与对角面 $BB'D'D$ 所成的角是 $\angle C'BB'$.
(2)	两条异面直线在同一个平面上的射影不可能是两个点.
(3)	已知 P 是三角形 ABC 所在平面外一点,且 $PA=PB$,则 P 点在平面 ABC 上的射影一定在 AB 的中垂线 (在平面 ABC 内) 上.
(4)	已知 P 是三角形 ABC 所在平面外一点,且 $PA=PB=PC$,则 P 点在平面 ABC 上的射影一定 在三角形 ABC 内部.
(5)	已知 P 是三角形 ABC 所在平面外一点,且 $PA=PB=PC$,则 P 点在平面 ABC 上的射影一定 不与 A 重合.
(6)	若两直线分别与一平面所成角相等,则两直线平行.
(7)	平面 α 的斜线 a 在平面 α 内的射影是直线 b , 如果直线 $c \perp b$, 那么 $c \perp a$.
(8)	若平面 α 外两直线 a,b 在 α 上的射影是两相交直线, 则 a 与 b 相交.
(9)	两条异面直线在同一平面上的射影是两条相交或平行直线.

____(10) 已知平面 lpha 有一条斜线 l, 过平面上一点 A, 在平面 lpha 内有且只有一条直线与斜线 l 垂直.

(001630) 若 $PA \perp$ 正方形 $ABCD$ 所在平面,且 $PC = 5$, $PB = PD = 4$,则 PC 和平面 $ABCD$ 所成的角的正弦为
(001631) 直角 $\triangle ABC$ 所在平面外一点 P 到直角顶点 C 的距离为 5 , 到两直角边的距离均为 4 , 则 PC 与平面 ABC 所成的角的正弦为
$(001632)P$ 为 $\triangle ABC$ 所在平面 α 外一点,且 $PA=PB=PC=10$, $AB=6$, $BC=8$, $CA=10$,则 P 到 平面 ABC 的距离为
(001633) 已知 $PA \perp$ 正六边形 $ABCDEF$ 所在平面,且 $PA = 1$,边长 $AB = 2$,则 PB 与平面 $ABCDEF$ 所成角的正切为; PC 与平面 $ABCDEF$ 所成角的正切为; PD 与平面 $ABCDEF$ 所成角的正切为
(001634) 若线段 AB 所在直线和平面 α 成 30° 角, A,B 与平面 α 的距离分别是 6 和 10 , 那么 AB 的长是
(001635) 在正方体 $ABCD - A'B'C'D'$ 中,已知 E 是 $B'C'$ 的中点,作图,并求直线 $A'E$ 与平面 $CDD'C'$ 所成角的正切.
(001636) 已知 PA 是 $\triangle ABC$ 所在平面 α 的斜线, 且 $PA \perp BC$, $\angle ACB = 90^\circ$. 求证: 点 P 在平面 α 上的射影在直线 AC 上.
(001637) 边长为 4 的菱形 <i>ABCD</i> 中, ∠ <i>BAD</i> = 60°, <i>PA</i> ⊥ 平面 <i>ABCD</i> , <i>PA</i> = 4, 则直线 <i>PB</i> 与平面 <i>PAC</i> 所成角的正切为
(001638) 已知 AD 是平面 α 的斜线, D 为斜足, BD 是 AD 在 α 上的射影, DC 在 α 内, 且 $\angle BDC = \angle ADB = 45^\circ$, 则锐角 ADC 的大小为
(001639)[选做] 由 S 出发引三条射线 SA,SB,SC, 若 ∠ASB = 60°, ∠BSC = 90°, ∠CSA = 45°, 则直线 SA 与平面 SBC 所成角的正切为
(001640) 已知矩形 $ABCD$ 的边长 $AB=6$, $BC=4$, 在 CD 上截取 $CE=4$, 以 BE 为棱将矩形折起, 使 $\triangle BC'E$ 的高 $C'F$ 与平面 $ABED$ 垂直. 求 AB 与平面 BEC' 所成角的大小.

- (001641) 已知 $PA \perp$ 三角形 ABC 所在平面, 且 AB = AC = 13, BC = 10, PA = 12, D 是 BC 中点.
- (1) 求直线 PD 与平面 ABC 所成角的大小;
- (2) 求直线 PC 与平面 PAD 所成角的正切;
- (3) 求直线 PC 与平面 PAB 所成角的正切.
- (001642) 判断下列命题的真假, 并用 "T" 或 "F" 表示.

(1) 过平面 α 外一点, 有且仅有一个平面与平面	面 α 平行.
(2) 已知直线 l 平行于平面 α , 过 l 有且仅有一	・个平面与平面 α 平行.
(3) 已知直线 l 不在平面 α 内, 过 l 有且仅有-	一个平面与平面 α 平行.
(4) 平面 α 平行于平面 $\beta, l \subsetneq \alpha, m \subsetneq \beta, 则 l,$	m 平行.
(5) 已知 l,m 是两异面直线, 存在平面 $\alpha,\beta,$ 满	記足 $l \subsetneq \alpha, m \subsetneq \beta$, 并且 $\alpha \parallel \beta$.
(6) 已知 l,m 是两平行直线, $l \subsetneq \alpha, m \subsetneq \beta$. 若	$l\parallel eta, m\parallel lpha,$ 则 $\alpha\parallel eta.$
(7) 平面 α 与平面 β 平行, 当且仅当在 α 内有	无穷多条直线与 eta 平行.
(001643) 在正方体 <i>ABCD - A'B'C'D'</i> 中, 已知 <i>P</i> . 是	Q 分别是棱 AA' , CC' 的中点, 则过点 B , P , Q 的截面
A. 邻边不等的平行四边形	B. 菱形但不是正方形
C. 邻边不等的矩形	D. 正方形
(001644) 在正方体 <i>ABCD - A'B'C'D'</i> 中, 已知 <i>E</i> 是	f,F 分别是棱 $BB',\ B'C'$ 的中点, 则过 A,E,F 的截面
A. 五边形	B. 平行四边形
C. 梯形	D. 六边形
(001645) 在正方体 $ABCD - A'B'C'D'$ 中, E, F, G 如面 FGA .	分别为 B'C', A'D', A'B' 的中点. 求证: 平面 EBD∥平
(001646) 证明: 如果两条异面直线都和两个平面平行,	那么这两个平面互相平行.
 (001647) 已知平面 α β, O 为 α, β 外一点, 三条! A, B, C(如图). (1) 求证: △ABC 与 △A'B'C' 相似; 	射线 OA,OB,OC 分别交 $lpha$ 于点 $A',B',C',$ 交 eta 于点

(001648) 有下列四个命题: (1) 分别在两个平行平面内的两条直线平行; (2) 若两个平面平行,则其中一个平面内的直线必平行于另一个平面; (3) 如果一个平面内的两条直线平行于另一个平面,则这两个平面平行; (4) 如

(2) 若 OA = a, AA' = b, B'C' = c, 求 BC 的长.

果一个平面内的任何其中正确命题的个数	可一条直线都平行士另一个平 数是	面, 则这两个平面平行.	
A. 1	B. 2	C. 3	D. 4
(001649) 下列命题	中不正确的是		
B. 垂直于同一个 ³ C. 若一个平面内 ⁴ D. 若两个平行平百 (001650) 有下列四 ⁴ α 所成的角相等, 则 直线 α 平行, 则 α	川 a b; (3) 若 α β, 则直线 α	它们的交线互相平行 $b,$ 则 a 和 b 与平面 α 所成 b	行 的角相等; (2) 若直线 a 和 b 与平面 角相等; (4) 若平面 α, 平面 β 都与
其中正确的命题是_ A. (1)(3)	B. (1)(3)(4)	C. (1)(2)(3)	D. (1)(2)(3)(4)
	(2) eta 内所有直线与 l 的距离 离都等于 d .		个命题: $\left(1 ight)eta$ 内有且只有一条直线条直线与 l 的距离等于 d ; $\left(4 ight)eta$ 内
A. (1)	B. (2)	C. (1)(4)	D. (3)(4)
角等于,直约成的图形是	ξ AB 与 β 所成的角等于 产面 β , 点 $A,B\in\alpha$, 点 $C,D\in$; 若 A 为 α 内的定点, B (写出确切的图形 B	的长为 4 . 则直线 AB 与 α 所成的 B 为 β 内的动点, 则 B 点运动所形。, 标明各重要参数) B , 且 BD 在 β 上的射影长为 B 12, 则 B
	长为 12 , 则 BD 在 β 上的射 α 与平面 β 平行, α 与直线 l		垂直.
	是异面直线 a,b 的公垂线段, b,可将求两异面直线的距离转		证: AB 即为平面 $lpha$ 与平面 eta 间的

(001655)[选做] 已知: AB 与 CD 为异面线段, CD \subsetneq 平面 α , $AB \parallel \alpha$, M,N 分别是线段 AC 和 BD 的中点 (如图). 求证: $MN \parallel \alpha$.

(001656) 已知二面角 $\alpha-l-\beta=\theta,\,\theta\in\left(\frac{\pi}{2},\pi\right)$, 线段 AB 在 α 内, 线段 CD 在 β 内, 且 $AB\perp l,\,CD\perp l$, 若直线 AB 与直线 CD 所成的角为 φ , 则______.

A.
$$\varphi = \theta$$
 B. $\varphi = \theta - \frac{\pi}{2}$ C. $\varphi = \theta + \frac{\pi}{2}$ D. $\varphi = \pi - \theta$

(001657) 自二面角内一点分别向它的两个半平面引垂(射)线(要求均与半平面相交),则这两条射线所夹的角和二面角的平面角之间的关系是

A. 相等 B. 互补 C. 互余 D. 和等于 2π

(001658) 两个等腰三角形 ABC 与 DBC 的公共底边 BC = 16, AB = 17, $DB \perp DC$, 且二面角 A - BC - D 为 60° , 则 A, D 间的距离为_______.

(001659) 已知 $\triangle ABC$ 为等边三角形, $PA \perp$ 平面 ABC, 且 $PA = \frac{1}{2}AC$, 则二面角 P-BC-A 为______.

(001660) 已知 P 为二面角内一点,且 P 到其两个半平面的距离都等于 P 到棱的距离的一半,则这个二面角的大小为 ______.

(001661) 已知二面角 $\alpha-l-\beta$ 为 60° , α 内一点 A 到棱 l 的距离为 $2\sqrt{3}$, 求 A 到 β 的距离.

(001662) 已知 P 是二面角 $\alpha - AB - \beta$ 内一点, $PC \perp \alpha$, 垂足为 C, $PD \perp \beta$, 垂足为 D(C, D) 分别在半平面 α, β 内), 且 PC = 3, PD = 4, $\angle CPD = 60^{\circ}$.

- (1) 求二面角 $\alpha AB \beta$ 的大小;
- (2) 求 CD 的长.

(001663)[选做] 已知 P 是角度为 θ 的锐二面角 $\alpha-l-\beta$ 内一点 (如图), 若 P 到 α,β 的距离分别为 a,b, 则 P 到核 l 的距离为______.

(001664) 如图, 正方体 ABCD - A'B'C'D'中,

- (1) 求二面角 D' AB C 的大小;
- (2) 求二面角 C BC' A 的大小.

(001665) 如图, 过 60° 的二面角 $\alpha-l-\beta$ 的棱上一点 A, 分别在 α,β 内 A 的同侧引两条射线, 使得它们与 l 都成 45° 角, 则这两条射线夹角的余弦值为______.

(001666) 如图, 若正方形 ABCD 所在半平面与正方形 ABEF 所在半平面所成的二面角 C - AB - E 的大小为 60° , 则异面直线 AD 与 BF 所成角的余弦值为_______.

(001667) 已知等边三角形 ABC 的边长为 1, 沿 BC 边上的高将它折成直二面角后, 点 A 到 BC 的距离为_______.

(001668) 已知 P 为锐二面角 $\alpha-l-\beta$ 内一点,且 P 到面 α,β 及棱 l 的距离之比为 $1:\sqrt{2}:2$,则此二面角的大小为______.

(001669) 已知 E, F 分别是正方体 $ABCD - A'B'C'$. 分 $AECD$ 所成二面角 $F - AE - C$ 的正弦值等于		t面 AEFD' 与底面的一部
(001670) 过正方形 $ABCD$ 的顶点 A 作线段 $AP \perp$ 二面角的大小是	平面 $ABCD$,且 $AP=AB$,则	面 ABP 与面 CDP 所成
(001671) 已知直角三角形 ABC 在平面 α 内, 斜边 $ABC=12$, 则 C 点到平面 β 的距离为	.B 在 30° 二面角 α – AB – β i	的棱上 (如图), 若 $AC = 5$,
(001672) 如图,设二面角 $\alpha-l-\beta$ 大小为 φ , O		α, β 上,设 $\angle AOC = \theta_1$,
 (001673) 已知平面 α 与平面 β 互相垂直, α ∩ β = l, (1) 过 P 和 l 垂直的直线在 α 内; (2) 过 P 和 β 垂直的直线在 α 内; (3) 过 P 和 l 垂直的直线也和 β 垂直; 	点 $P \in l$, 给出以下四个结论:	
(4) 过 P 和 β 垂直的平面也和 l 垂直. 其中真命题的个数是		
A. 1 B. 2	C. 3	D. 4
(001674) 下列命题中正确的是		
A. 过平面外一点作与这个平面垂直的平面仅有一个		
B. 过直线外一点作这条直线的垂线仅有一条		
C. 过平面的一条斜线作与这个平面垂直的平面仅有	一个	
D. 过直线外一点作与这条直线平行的平面仅有一个		
(001675) 已知矩形 ADEF 所在平面垂直于矩形 BC	CEF 所在平面, 记 ∠DBE = c	α , $\angle DCE = \beta$, $\angle BDC =$
heta(如图), 则下列各式中成立的是		
A. $\sin \alpha = \sin \beta \cos \theta$	B. $\sin \beta = \sin \alpha \cos \theta$	
C. $\cos \alpha = \cos \beta \cos \theta$	D. $\cos \beta = \cos \alpha \cos \theta$	
$(001676)a,b$ 为两条互不垂直的异面直线, 过 a,b 分别 $\alpha \parallel \beta,$ (4) $\alpha \perp \beta.$ 其中绝对不可能出现的结论个数是		È: (1) $b \parallel \alpha$, (2) $b \perp \alpha$, (3)
A. 1 B. 2	C. 3	D. 4
(001677) 沿对角线 AC 将正方形 ABCD 折成直二面	i角后, AB 与 CD 所在直线所I	成的角等于
(001678) 在直二面角 $\alpha-l-\beta$ 的棱 l 上取一点 A , 这	t A 分别在半平面 $lpha$, eta 内作与	l 成 45° 角的射线, 则这两
条射线所夹的角等于(注意多种可能性)		

(001679) 已知 $ABCD$ 为矩形, E 为半圆 CED 上一点, 且平面 $ABCD$ \bot 平面 CDE (如图). (1) 求证: DE 是 AD 与 BE 的公垂线; (2) 若 $AD = DE = \frac{1}{2}AB$, 求 AD 和 BE 所成角的大小.
(001680) 已知 P 是 $\triangle ABC$ 所在平面外一点, $PA=PB=PC,$ $\angle BAC=90^{\circ}.$ 证明或否定: 平面 PBC \bot 平面 $ABC.$
(001681) 在边长为 1 的正方体 $ABCD - A'B'C'D'$ 中. (1) 求异面直线 $B'D'$ 和 $C'A$ 的距离; (2) 求异面直线 $A'D'$ 和 $C'A$ 的距离.
(001682) 判断下列命题的真假, 真命题用 "T"表示, 假命题用 "F"表示.
(1) 有两个面互相平行, 其余的面都是四边形的多面体是棱柱.
(2) 有两个面互相平行, 其余的面都是平行四边形的多面体 (未必是凸多面体) 是棱柱.
(3) 有两个侧面是矩形的棱柱是直棱柱.
(4) 棱柱被平行于侧棱的平面所截, 截面 (若存在的话) 是平行四边形.
(5) 直平行六面体是长方体.
(6) 正四棱柱是正方体.
(7) 棱柱成为直棱柱的一个必要不充分的条件是棱柱有一个侧面与底面的一条边垂直.
(8) 若直平行六面体的底面既有内切圆又有外接圆,则它必是正四棱柱。

(001684) 设四棱柱的集合为 A, 平行六面体的集合为 B, 长方体的集合为 C, 正方体的集合为 D, 直平行六面体的集合为 E, 正四棱柱的集合为 F, 直四棱柱的集合为 G, 用文氏图表示这些集合之间的关系.

(001685)[选做] 在底面为凸多边形的斜棱柱的所有侧面中矩形最多有多少个?证明你的猜测.(注: 凸多边形是指延长该多边形的任一边后, 多边形都在该直线的同一侧的多边形)

(001687) 用斜二测画法 (要求 x 方向的单位长度为 1 厘米) 画正三棱柱 $ABC - A'B'C'$, 其中正三棱柱的底面 边长为 4 厘米, 高为 3 厘米, 并要求 A 点位于坐标原点.
(1) 要求三角形 ABC 放置在 xOy 平面中, B 点在 x 轴正半轴上, C 点在 xOy 平面的第一象限内;
(2) 要求矩形 $ABB'A'$ 放置在 xoy 平面中, B 点在 x 轴正半轴上, B' 点在 xOy 平面的第一象限内;
(3) 要求矩形 $ABB'A'$ 放置在 xoy 平面中, B 点在 y 轴正半轴上, B' 点在 xOy 平面的第一象限内.
(001688) 正三棱柱 $ABC - A'B'C'$ 的底面边长为 4 , 点 D 侧棱 AA' 上, 二面角 $D - BC - A$ 的大小为 30° , 则 AD 的长等于
(001689) 有两个相同的直三棱柱, 高为 $\frac{2}{a}$, 底面三角形的三边长分别为 $3a, 4a, 5a$. 用他们拼成一个三棱柱或者
四棱柱, 在所有可能的情形中, 表面积最小的唯一一个棱柱是四棱柱, 则实数 a 的取值范围为
(001690) 若长方体的表面积为 11, 所有棱长之和为 24, 则这个长方体的一条对角线长为
(001691) 直平行六面体的两条对角线长分别为 9 和 $\sqrt{33}$, 高为 4 , 底面周长为 18 , 则它的全面积为
(001692) 正三棱柱 $ABC - A_1B_1C_1$ 的每条棱长都是 $2, D$ 为 CC_1 的中点, 过 A, B_1, D 作一个平面, 设此平面
与底面 $A_1B_1C_1$ 的交线为 l , 则二面角 $A-l-A_1$ 的大小为
(001693) 已知直四棱柱 $ABCD-A'B'C'D'$ 中, $AA'=2$, 底面 $ABCD$ 是直角梯形, $\angle DAB$ 为直角, $AB\parallel CD$,
AB=4,AD=2,DC=1. 求异面直线 BC' 与 DC 所成角的余弦值.
(001694) 斜三棱柱 $ABC-A_1B_1C_1$ 的每条棱长都为 a ,侧棱与底面所成的角等于 60° ,求棱柱体积.
(001695) 判断下列命题的真假, 真命题用 "T", 假命题用 "F" 表示.
(1) 有一个面是多边形,其余各面都是三角形的多面体是棱锥.
(2) 侧面都是全等等腰三角形的棱锥是正棱锥.
(3) 相邻两条侧棱间的夹角都相等的棱锥是正棱锥.
(4) 各条侧棱与底面的所成角都相等的棱锥是正棱锥.
(5) 各侧棱在底面内的射影都相等的棱锥是正棱锥.
(6) 各侧棱都相等且底面多边形的各边也都相等的棱锥是正棱锥.

(001686) 证明: 对角线都相等的平行六面体是长方体.

(7)
(8) 一个三棱锥的底面是直角三角形,则它的三个侧面至多有两个直角三角形。
(001696) 在三棱锥 $P-ABC$ 中, $PA=PB=PC$, P 在底面 ABC 所在平面内的射影为 M , 若 $AB=1$ $BC=1,$ $CA=\sqrt{3},$ 则 MA 的长为
(001697) 高为 2, 底面边长为 3 的正三棱锥底面中心到侧面的距离为
(001698) 一个棱锥被平行于底面的平面所截, 如果截面面积和底面面积之比为 3:4, 则侧棱被分成的上下两段长度之比为
(001699) 在核长为 1 的正四面体 $ABCD$ 中, E 是 $\triangle ABC$ 的重心, F 在线段 DC 上, DF : FC = 1 : 2. 则 EF =
(001700) 在底面边长为 1 的正三棱锥 $P-ABC$ 中,二面角 $P-AB-C$ 为 $\frac{\pi}{3}$, G 是侧面 PAB 的重心, H 是 AC 的中点,则 GH 的长为
(001701) 在四棱锥 $P-ABCD$ 中, $PA\perp$ 底面 $ABCD$, 底面 $ABCD$ 为正方形, 且 $PA=AB=a$, 则 AC 与 PB 所成的角为
(001702) 正三棱锥 $S-ABC$ 中, 二面角 $S-AB-C$ 的大小为 60° ,求棱锥的侧棱与底面所成角的正切值.
(001703) 在底面边长为 2 的正三棱锥 $S-ABC$ 中, E 是 BC 的中点, 若 $\triangle SAE$ 的面积是 $\frac{1}{4}$, 求侧棱 SA 气底面所成角的余弦值.
(001704) 已知正四棱锥 $S-ABCD$,求证: 二面角 $A-SB-C$ 的平面角一定为钝角.
(001705) 棱长为 1 的正四面体的体积为
(001706) 若正四棱锥底面边长为 4, 侧棱长为 3, 则其体积为
(001707) 若正四棱锥 $S-ABC$ 的底面边长为 $2\sqrt{3}$, 体积为 4 , 则二面角 $S-AB-C$ 的大小是
(001708) 边长为 2 的正方形 $ABCD$ 中, E 是 AB 的中点, 将 EC, ED 折起, 使 EA, EB 重合, 组成一个四面体,则这个四面体的体积为
(001709) 正四棱锥的底面积为 S ,用平行于底面的截面截棱锥,把它分成体积相等的两个部分,则截面面形为
(001710) 在三棱锥 $P-ABC$ 中, 底面 ABC 是正三角形, 侧棱 $PA\perp$ 平面 ABC , 二面角 $P-BC-A$ 为 60° 且其体积为 $8\sqrt{3}$. 则 $\triangle ABC$ 的边长为

(001711) 直三棱柱 $ABC-A_1B_1C_1$ 的体积为 V ,又 P,Q 分别是侧棱 AA_1,CC_1 上的点,且 $AP=C_1Q$,则四棱锥 $B-APQC$ 的体积为
(001712) 棱台的上, 下底面的面积分别为 16 和 49, 则其中截面 (过每条侧棱的中点, 平行于底面的截面) 的面积为
(001713) 正四棱台的下底是一个边长为 2 的正方形, 此外每条棱的棱长均为 1, 那么它的体积为
(001714) 已知平行六面体 $ABCD-A'B'C'D'$,同一顶点 A 出发的三条棱 AB,AD,AA' 长度均为 a ,它们两两之间的夹角 $\angle BAD, \angle DAA', \angle A'AB$ 均为锐角 θ . 那么该平行六面体的体积为
(001715) 若四面体的所有棱长只能在 1 和 2 中取, 且不能全是 1, 也不能全是 2. 画出所有这样的四面体的示意图并注明棱长, 写出其体积.
(001716) 已知圆锥的母线长为 1, 母线与底面成 60° 角, 那么此圆锥的表面积为
(001717) 用一圆心角为 288° ,面积为 $20\pi^2$ 的扇形铁皮做一个圆锥,该圆锥的体积是
(001718) 三边长为 $3,4,5$ 的直角三角形分别绕三条边旋转得到 3 个旋转体,体积分别为 V_3,V_4,V_5 . 那么 $V_3:V_4:V_5=$
(001719) 在底面半径与高相等的圆柱 OO' 中, AA' , BB' , CC' , DD' 是四条母线, 且 A,B,C,D 恰好将圆 O 的圆周四等分. 异面直线 AB' 与 BC' 所成角的大小为
(001720) 如果一个球的体积扩大了 8 倍, 那么它的表面积扩大为原来的
(001721) 一个球的表面积为 1, 则其体积为
(001722) 一个半球 (包括平面部分) 的表面积为 1, 则其体积为
(001723) 圆锥的母线长为 1, 那么其底面周长的取值范围为
(001724) 函数 $y= x-1 $ 和函数 $y=\frac{1}{2}x+1$ 的图像所围成的图形绕 x 轴旋转一周所得几何体的体积为
(001725) 已知性质:"若一个固定半径的球被两个平行平面所截,则球面夹在这两个平面之间部分的表面积 (不包括截面上的平面部分) 只与这两个平面的距离有关,而与它们的具体位置无关."现有一个半径为 5 的球被两个距离为 3 的平面所截, 球面夹在这两个平面之间的部分的表面积 (不包括截面上的平面部分) 为
(001726) [选做] 圆台上底面的面积为 4π , 下底面的面积为 16π , 其体积为 28π . 该圆台的母线和下底面所成角的大小为
(001727) 由半径为 R 的圆形薄板截取一个以圆心为顶点的扇形, 卷成无底圆锥 (不计焊接处). 求容积的最大值.

(001728) 已知一个圆锥的全面积为 π , 求其体积的最大值.

(001729) 用与球心距离为 1 的平面去截球 $,$ 所得的截面面积为 $\pi,$ 则球的体积为
(001730) 半径为 1 的球的球面上两点之间的距离为 $\sqrt{2}$, 则这两点之间的球面距离为
(001731) 长方体 $ABCD-A'B'C'D'$ 的八个顶点在同一球面上,且 $AB=2, AD=\sqrt{3}, AA'=1,$ 则顶点 A,B 间的球面距离为
(001732) 连接球面上两点的线段称为球的弦,半径为 4 的球的两条弦 AB,CD 的长度分别等于 $2\sqrt{7},4\sqrt{3},$ 则两弦中点之间距离的取值范围为
(001733) 已知地球的半径为 1 , 在东经 120° 线上, 南纬 30° 的点记为 A , 北纬 15° 的点记为 B . 则 A,B 两地的球面距离为
(001734) 已知地球的半径为 1 , 在南纬 45° 线上, 东经 90° 的点记为 A , 东经 60° 的点记为 B . 则 A,B 两地的球面距离为
(001735) 已知地球的半径为 $1,A$ 点在东经 $120^\circ,$ 北纬 30° 的位置上, B 点在西经 $60^\circ,$ 南纬 30° 的位置上, 则 A,B 两地的球面距离为
(001736) [选做] 已知地球的半径为 $1,A$ 点在东经 $120^\circ,$ 北纬 30° 的位置上, B 点在东经 $90^\circ,$ 北纬 60° 的位置上, 则 A,B 两地的球面距离为(精确到 $0.1)$
(001737) 已知地球的半径约为 6371 千米, 大连的位置约为东经 121°, 北纬 39°, 里斯本的位置约为西经 10°, 北纬 39°. 计算大连到里斯本的球面距离 (精确到 1 千米);
(001738)(1) 在如下的正方体直观图中, 观察通过以三个 "×" 为标记的点的截面的效果图, 思考作图中各直线 的先后顺序及原因;

(2) 在如下的各正方体中作出通过三个 "×" 为标记的点的截面.

(001740) 根据已知条件, 写出			
(1) $a_n = \frac{n+1}{n+2}$,		;	
(1) $a_n = \frac{n+1}{n+2}$, (2) $a_n = \frac{1+(-1)^{n+1}}{2}$,		;	
$(3) a_n = n \cos n\pi, \underline{\hspace{1cm}}$			
(4) $a_n = \frac{8}{9}(10^n - 1), \underline{\qquad}$;	
(5) $a_1 = 1$, $a_n = a_{n-1} + 4$, n	$\in \mathbf{N}^*, \ n > 1, \underline{\hspace{1cm}}$;	
(6) $a_6 = 16, a_n = -2a_{n-1}, n$	$\in \mathbf{N}^*, \ n > 1, \underline{\hspace{1cm}}$,	
(001741) 根据下列数列的前几	L项, 写出它的一个通项	页公式:	
$(1) 1, 8, 15, 22, 29, \cdots, _$;	
$(2) 5, 4, 3, 2, 1, \cdots, \underline{\hspace{1cm}}$			
$(3) \ \frac{1}{2}, \frac{3}{4}, \frac{5}{6}, \frac{7}{8}, \cdots, \underline{\hspace{1cm}}$;	
$(4) 2, 0, 2, 0, 2, \cdots, __$;	
(5) 1, 1.1, 1.01, 1.001, 1.0001, \cdot	,	;	
(6) $\frac{2^2-1}{3}$, $-\frac{3^2-1}{5}$, $\frac{4^2-1}{7}$,	$-\frac{3^{2}-1}{9}, \cdots, $;	
(7) 1, 2, 3, 4, 5, 8, 7, 16, 9, 32, 11			
	已知 $a_1 = 2, a_n = 2a_n$	$a_{n-1}+n, (n \ge 2, n \in \mathbf{N}), 则 a_5 =$	<u> </u>
$(001742)(1)$ 在数列 $\{a_n\}$ 中,			
	$= 1, b_2 = 5, b_{n+2} = b_{n-1}$	$b_{1} - b_n, n \in \mathbf{N}^*$,则 $b_{2014} = $	·
(2) 在数列 $\{b_n\}$ 中, 已知 b_1 =			
(2) 在数列 $\{b_n\}$ 中, 已知 b_1 =	项的值两两不同, 且对	け任意正整数 n 均成立 $a_{n+4}=a_n$	
(2) 在数列 $\{b_n\}$ 中,已知 b_1 = (001743) 若数列 $\{a_n\}$ 的前 4 可取遍数列 $\{a_n\}$ 的前 4 项值	项的值两两不同, 且对	け任意正整数 n 均成立 $a_{n+4}=a_n$	
(2) 在数列 {b _n } 中,已知 b ₁ = (001743) 若数列 {a _n } 的前 4 可取遍数列 {a _n } 的前 4 项值 (1) {a _{2n} }	项的值两两不同, 且对的有	†任意正整数 n 均成立 a _{n+4} = a _r 	。则下列该数列的子列中,
(2) 在数列 {b _n } 中,已知 b ₁ = (001743) 若数列 {a _n } 的前 4 可取遍数列 {a _n } 的前 4 项值 (1) {a _{2n} } (001744) 已知数列 {a _n } 的通	项的值两两不同,且对的有 $_{}$ (2) $\{a_{3n+2}\}$	け任意正整数 n 均成立 $a_{n+4} = a_n$ (3) $\{a_{5n+3}\}$	则下列该数列的子列中, (4) {a _{6n+3} }
(2) 在数列 {b _n } 中,已知 b ₁ = (001743) 若数列 {a _n } 的前 4 可取遍数列 {a _n } 的前 4 项值 (1) {a _{2n} } (001744) 已知数列 {a _n } 的通 (1) 取出数列 {a _n } 的第 1,4,7	项的值两两不同,且对的有 $(2) \{a_{3n+2}\}$ 项 $a_n = \sin n$.	†任意正整数 n 均成立 a _{n+4} = a _r 	a. 则下列该数列的子列中, (4) {a _{6n+3} } ;
(2) 在数列 {b _n } 中,已知 b ₁ = (001743) 若数列 {a _n } 的前 4 可取遍数列 {a _n } 的前 4 项值 (1) {a _{2n} } (001744) 已知数列 {a _n } 的通 (1) 取出数列 {a _n } 的第 1,4,7 (2) 去除数列 {a _n } 的第 1,4,7	项的值两两不同,且对 \mathbf{C} 的有	才任意正整数 n 均成立 $a_{n+4}=a_n$ $(3) \{a_{5n+3}\}$ 导到的新数列 $\{b_n\}$,则通项 $b_n=1$	a. 则下列该数列的子列中, (4) {a _{6n+3} } ;
(2) 在数列 {b _n } 中,已知 b ₁ = (001743) 若数列 {a _n } 的前 4 可取遍数列 {a _n } 的前 4 项值 (1) {a _{2n} } (001744) 已知数列 {a _n } 的通 (1) 取出数列 {a _n } 的第 1,4,7 (2) 去除数列 {a _n } 的第 1,4,7 (001745) 已知数列 {a _n } 的前	项的值两两不同,且对 \mathfrak{T} 的有	才任意正整数 n 均成立 $a_{n+4}=a_n$ $(3) \{a_{5n+3}\}$ 导到的新数列 $\{b_n\}$,则通项 $b_n=1$ 导到的新数列 $\{c_n\}$,则通项 $c_n=1$	a. 则下列该数列的子列中, (4) {a _{6n+3} } ;
(2) 在数列 {b _n } 中,已知 b ₁ = (001743) 若数列 {a _n } 的前 4 可取遍数列 {a _n } 的前 4 项值 (1) {a _{2n} } (001744) 已知数列 {a _n } 的通 (1) 取出数列 {a _n } 的第 1,4,7 (2) 去除数列 {a _n } 的第 1,4,7	项的值两两不同,且对 \mathfrak{T} 的有	才任意正整数 n 均成立 $a_{n+4}=a_n$ $(3) \{a_{5n+3}\}$ 导到的新数列 $\{b_n\}$,则通项 $b_n=1$ 导到的新数列 $\{c_n\}$,则通项 $c_n=1$	a. 则下列该数列的子列中, (4) {a _{6n+3} } ;
(2) 在数列 {b _n } 中,已知 b ₁ = (001743) 若数列 {a _n } 的前 4 可取遍数列 {a _n } 的前 4 项值 (1) {a _{2n} } (001744) 已知数列 {a _n } 的通 (1) 取出数列 {a _n } 的第 1,4,7 (2) 去除数列 {a _n } 的第 1,4,7 (001745) 已知数列 {a _n } 的前 (001746) 设 a _n b 是常数,已知 (001747)(1) 数 lg 2 与 lg 8 的等	项的值两两不同,且为 $(2) \{a_{3n+2}\}$ $(2) \{a_{3n+2}\}$ $(3) \{a_{3n+2}\}$ $(4) \{a_{3n+2}\}$ $(5) \{a_{3n+2}\}$ $(7) \{a_{n}\}$ $(7) \{a$	才任意正整数 n 均成立 $a_{n+4}=a_n$	a. 则下列该数列的子列中, (4) {a _{6n+3} } ;
(2) 在数列 {b _n } 中,已知 b ₁ = (001743) 若数列 {a _n } 的前 4 可取遍数列 {a _n } 的前 4 项值 (1) {a _{2n} } (001744) 已知数列 {a _n } 的通 (1) 取出数列 {a _n } 的第 1,4,7 (2) 去除数列 {a _n } 的第 1,4,7 (001745) 已知数列 {a _n } 的前 (001746) 设 a,b 是常数,已知	项的值两两不同,且不 $(2) \{a_{3n+2}\}$ $(2) \{a_{3n+2}\}$ $(3) \{a_{n+2}\}$ $(4) \{a_{n+2}\}$ $(5) \{a_{n+2}\}$ $(7) \{a$	才任意正整数 n 均成立 $a_{n+4} = a_n$ ————————————————————————————————————	a. 则下列该数列的子列中, (4) {a _{6n+3} } ;
(2) 在数列 $\{b_n\}$ 中,已知 b_1 = (001743) 若数列 $\{a_n\}$ 的前 4 可取遍数列 $\{a_n\}$ 的前 4 项值 (1) $\{a_{2n}\}$ (001744) 已知数列 $\{a_n\}$ 的第 1,4,7 (2) 去除数列 $\{a_n\}$ 的第 1,4,7 (001745) 已知数列 $\{a_n\}$ 的前 (001746) 设 a,b 是常数,已知 (001747)(1) 数 $\log 2$ 与 $\log 8$ 的第 (2) 数 $\frac{8-\sqrt{2}}{2}$ 与 $\frac{8+\sqrt{2}}{2}$ 的第	项的值两两不同,且太 $(2) \{a_{3n+2}\}$	才任意正整数 n 均成立 $a_{n+4} = a_n$ ————————————————————————————————————	a. 则下列该数列的子列中, (4) {a _{6n+3} } ;

(001750) 在等差数列 $\{a_n\}$ 中, 若 $a_3+a_4+a_5+a_6+a_7=450$, 则 $a_5=$ ______.

(001751) 已知数列 $\{a_n\}$, $\{b_n\}$ 都是等差数列, 且 a_1 =	$=10, b_1=20, a_2+b_2=40, \text{M} a_5+b_5=$	=
(001752) 等差数列 81,78,75,… 首次出现负值是在	第 项, 这个数列的前	项的和最大.
(001753) 若关于 x 的方程 $x^2 - x + a = 0$ 和 $x^2 - x$ 则 $a + b =$	$a+b=0\;(a eq b)$ 的四个根可以组成首项	页为 $rac{1}{4}$ 的等差数列
(001754) 下列条件中, 能确定数列 $\{a_n\}$ 是等差数列	的条件为	
$(1) 2a_n = a_{n+1} + a_{n-1} (n \ge 2)$	$(2) \{a_{2n-1}\}$ 与 $\{a_{2n}\}$ 都是等差数列	I
$(3) a_n = pn + q, p, q 是常数$	$(4) \{2a_n + 1\}$ 是等差数列	
(001755) 等差数列的首项为 $\frac{1}{5}$, 若从第 10 项起各项:	均大于 1 , 则此数列的公差 d 的取值范	围为
A. $\frac{4}{45} \le d < \frac{1}{10}$ B. $\frac{4}{45} \le d \le \frac{1}{10}$	C. $\frac{4}{45} < d < \frac{1}{10}$ D. $\frac{4}{4}$	$\frac{4}{5} < d \le \frac{1}{10}$
(001756) 已知等差数列 $\{a_n\}$ 满足 $a_1 + a_6 = 12, a_4 = 12$	= 7, 求这个数列的通项公式.	
(001757) 已知数列 $\{a_n\}$ 是等差数列, 求证: 数列 $\{a_n\}$	$_{2n}$ } 是等差数列.	
(001758) 已知数列 $\{a_n\}$ 的各项均不为零,且 $a_{n+1}=(1)$ 求证:数列 $\{b_n\}$ 是等差数列; (2) 若 $a_1=1$,求数列 $\{a_n\}$ 的通项.	$= \frac{3a_n}{a_n + 3}, b_n = \frac{1}{a_n}.$	
(001759) 已知等差数列 $\{a_n\}$ 分别满足下列条件,求约 $\{a_n\}$ 分别满足下列条件,求约 $\{a_n\}$ 分别满足下列条件,求约 $\{a_n\}$ 分别满足下列条件,求约 $\{a_n\}$ $\{a_n\}$ 分别 $\{a_n\}$ $\{a_n\}$ 分别 $\{a_n\}$	解相应问题.	
(001760)100 以内能被 7 整除的所有正整数的和为_		
(001761) 已知等差数列 $\{a_n\}$ 满足 $a_2 + a_3 + a_6 + a_7$	$_{7}=22$, 则其前 8 项之和 $S_{8}=$	<u>_</u> :
(001762) 在 a,b 中插入 n 个实数,使 a,x_1,x_2,\cdots $x_n =$	$\cdot\;,x_n,b\;$ 这 $n+2\;$ 个数成等差数列,原	
(001763) 数列 $\{a_n\}$ 前 n 项之和为 $n^2 + n + 1$, 则通	項 $a_n = $	
(001764) 等差数列前 10 项之和为 30, 前 20 项之和	为 40, 则前 30 项之和为	
(001765) 等差数列前 10 项之和为 30, 前 30 项之和	为 10, 则前 40 项之和为	
(001766) 已知 $\{a_n\}$ 为等差数列. (1) 若 $a_5=8$,则对于某个正整数 n , S_n 的值确定,该 (2) 若 $S_{17}=68$,则对于某个正整数 n , a_n 的值确定,		
(001767) 若某等差数列的前四项和为 26, 后四项和为	为 110, 所有项的和为 187, 则该数列共_	项.

- (001768) 设等差数列 $\{a_n\}$ 的前 n 项和为 S_n , 已知 $a_3 = 11, S_{15} > 0, S_{16} < 0$.
- (1) 求公差 d 的取值范围;
- (2) n 为何值时, S_n 最大? 为什么?
- (001769) 已知数列 $\{a_n\}$ 的前 n 项和为 $S_n = an^2 + bn + c$, 其中 a, b, c 为常数. 判断数列 $\{a_n\}$ 是否是等差数列, 并说明理由.
- (001771) 在等比数列 $\{a_n\}$ 中, 若 $a_8 = \frac{1}{16}$, $q = \frac{1}{2}$, 则前 8 项的和为______.
- (001772) 在等比数列 $\{a_n\}$ 中, 若前 3 项的和为 14, $a_1 = 2$, 则公比为______.
- (001773) 方程 $3x^2 15x + 1 = 0$ 的两根的等比中项为______.
- (001774) 已知等比数列 $\{a_n\}$ 满足 $a_1+a_2+a_3+\cdots+a_{10}=1,\ a_1+a_2+a_3+\cdots+a_{20}=3,\ 则\ a_1+a_2+\cdots+a_{30}=$ ______.
- (001775) 求值: $1-2+4-8+\cdots+(-1)^{n-1}\cdot 2^{n-1}=$
- (001776) 已知等比数列 $\{a_n\}$ 的前 n 项和为 $S_n = 2^n 1$, 则数列 $\{a_n^2 + 1\}$ 的前 n 项和等于______
- (001777) 已知 a,b,c 成等比数列, 如果 a,x,b 和 b,y,c 都成等差数列, 则 $\frac{a}{x}+\frac{c}{y}=$ ______.
- (001778) 已知数列 $\{a_n\}$ 的前 n 项和为 $S_n = 3^n + k$, 则_____.
- A. 无论 k 取何值, $\{a_n\}$ 都不是等比数列
- B. 有且仅有一个实数 k, 使得 $\{a_n\}$ 是等比数列
- C. 有多于一个 (有限个) 实数 k, 使得 $\{a_n\}$ 是等比 D. 无论 k 取何值, $\{a_n\}$ 都是等比数列数列
- (001779) 对于数列 $\{a_n\}$, 已知存在 $s \neq t$, 使得 $a_s = a_t$.
- (1) 若 $\{a_n\}$ 是等差数列, 证明 $\{a_n\}$ 是常数列;
- (2) 若 $\{a_n\}$ 是等比数列, 证明或否定: $\{a_n\}$ 是常数列.
- (001780) 设 $\{a_n\}$ 是由正数组成的等比数列, 且公比 $q \neq 1$, 比较 $a_1 + a_8$ 和 $a_4 + a_5$ 的大小关系.
- (001781) $\Re a > 0$, $\Re a + a^3 + a^5 + \cdots + a^{2n-1}$.
- (001782) 已知数列 $\{a_n\}$ 是一个以正数 q 为公比, 以正数 a 为首项的等比数列, 求 $\lg a_1 + \lg a_2 + \cdots + \lg a_n$.
- (001783) 数列 $\{a_n\}$ 与 $\{b_n\}$ 的通项公式分别为 $a_n = 2^n$, $b_n = 3n + 2$, 它们的公共项由小到大排成的数列记为 $\{c_n\}$.
- (1) 写出 $\{c_n\}$ 的前 5 项;
- (2) 证明: $\{c_n\}$ 是等比数列.
- (001784) 已知非零实数 a,b,c 不全相等. 如果 a,b,c 成等差数列, 那么, $\frac{1}{a},\frac{1}{b},\frac{1}{c}$ 是否可能成等差数列? 为什么?

- (001785) 已知 a,b,c 中任意两数之和不为零, a^2,b^2,c^2 成等差数列, 求证: $\frac{1}{b+c},\frac{1}{c+a},\frac{1}{a+b}$ 成等差数列
- (001786) 已知数列 $\{a_n\}$ 是等差数列, 数列 $\{b_n\}$ 的通项 $b_n=a_n^2-a_{n+1}^2$, 求证: 数列 $\{b_n\}$ 是等差数列.
- (001787)[选做] 已知等差数列 $\{a_n\}$ 与 $\{b_n\}$ 的前 n 项和分别为 S_n, T_n , 且 $\frac{S_n}{T_n} = \frac{2n+1}{3n+2}$ 对一切 $n \in \mathbb{N}^*$ 成立. 求 $\frac{a_4}{b_3}$.
- (001788) 已知数列 $\{a_n\}$, $\{b_n\}$ 是公比不相等的两个等比数列, $c_n = a_n + b_n$, 证明: 数列 $\{c_n\}$ 不是等比数列.
- (001789) 求和: $\sin^2 1^\circ + \sin^2 2^\circ + \dots + \sin^2 90^\circ = \dots$
- (001790) 求和: $1 \cdot 1! + 2 \cdot 2! + 3 \cdot 3! + \cdots + n \cdot n! =$
- (001791) 分别写出下列数列的前 n 项和 S_n :

- (1) $a_n = \frac{1}{(2n-1)(2n+1)};$ (2) $a_n = \frac{1}{n(n+3)};$ (3) $a_n = \frac{1}{(2n-1)(2n+1)(2n+3)};$
- (4) $a_n = (2n-1)(2n+1)(2n+3)$.
- (001793) 已知数列 $a_n = 14 3n$, 求数列 $\{|a_n|\}$ 的前 n 项和 T_n .
- (001795)[选做] 已知 $a_n = \tan n \cdot \tan(n-1)$, 求 $\{a_n\}$ 的前 n 项之和 S_n .
- (001796) 已知数列 $\{a_n\}$ 的通项 $a_n = 1 + 2 + \cdots + n$, 则其前 n 项 $S_n =$ _______
- (001798) 已知数列 $\{a_n\}$ 的通项 $a_n = 1 + 2 + 3 + \cdots + 2^{n-1}$, 则其前 n 项 $S_n = \underline{\hspace{1cm}}$.
- (001799) 已知数列 $\{a_n\}$ 的前 n 项之和为 $S_n = 10n n^2$.
- (1) 求 a_n ;
- (2) 设 $b_n = |a_n|$, 求 b_n 的前 n 项之和.
- (001800) 已知数列 $a_n = 33 2^n$, 求数列 $\{|a_n|\}$ 的前 n 项和 T_n .
- $(001801) 已知数列 <math>a_n = \begin{cases} n, & n = 3k 2; \\ 2n, & n = 3k 1 \end{cases} \quad k \in \mathbf{N}^*$ 求该数列的前 n 项和 S_n .

$$(001802) \ \textbf{定义在 R} \ \textbf{上的函数} \ f(x) = \frac{4^x}{4^x + 2}, \ A_n = f\left(\frac{1}{n}\right) + f\left(\frac{2}{n}\right) + \dots + f\left(\frac{n-1}{n}\right), \ n = 2, 3, \dots.$$

(1) 求 A_n ;

(2) (选做) 是否存在常数
$$M>0$$
, 使得对一切整数 $n\geq 2$, 成立 $\frac{1}{A_2}+\frac{1}{A_3}+\cdots+\frac{1}{A_n}\leq M$.

(001803) 在数列
$$\{a_n\}$$
 中, 已知 $a_1=1, a_{n+1}=\frac{n}{n+2}a_n \ (n\geq 1)$. 则数列的通项 $a_n=$ ______.

$$(001804)$$
 在数列 $\{a_n\}$ 中, 已知 $a_1 = 1$, $a_{n+1} = a_n + 2n - 1$ $(n \ge 1)$. 求数列的通项. (限定逐差法)

$$(001805)$$
 在数列 $\{a_n\}$ 中,已知 $a_1=1,\,a_{n+1}=2a_n-3\cdot 2^n\;(n\ge 1)$. 求数列的通项. (限定变形的逐差法)

$$(001806)$$
 在数列 $\{a_n\}$ 中, 已知 $a_1 = 1$, $a_{n+1} = \pi a_n + 1$ $(n \ge 1)$. 求数列的通项.

$$(001807)$$
 在数列 $\{a_n\}$ 中, 已知 $a_1 = -1$, $a_{n+1} = 3a_n + 2n - 1$ $(n \ge 1)$. 求数列的通项.

(001808) 在数列
$$\{a_n\}$$
 中,已知 $a_1=3$, $a_na_{n+1}=\frac{1}{2^n}$ $(n\geq 1)$. 求数列的通项.

(001809)[选做] 五只猴子得到了一堆桃子,它们发现那堆桃子不能被均分成 5 份,于是猴子们决定先去睡觉,明天再讨论如何分配. 夜里猴子甲偷偷起来,吃掉了一个桃子后,它发现余下的桃子正好可以平均分成 5 份,于是它拿走了一份;接着猴子乙也起来先偷吃了一个,结果它也发现余下的桃子恰好可以被平均分成 5 份,于是它也拿走了一份;后面的猴子丙,丁,戊如法炮制,先偷吃一个,然后将余下的桃子平均分成 5 份并拿出了自己的一份,问:这一堆桃子至少有几个?

$$(001811)$$
 在数列 $\{a_n\}$ 中,已知 $a_1=2, a_{n+1}=3a_n+n \ (n\geq 1)$. 则数列的通项 $a_n=$ ______.

(001812) 数列
$$\{a_n\}$$
 满足 $a_1 = \frac{3}{5}$, $a_n = 2 - \frac{1}{a_{n-1}}$ $(n \ge 2)$, 数列 $\{b_n\}$ 满足 $b_n = \frac{1}{a_{n-1}}$.

- (1) 求证: 数列 $\{b_n\}$ 是等差数列;
- (2) 求数列 $\{a_n\}$ 的通项.

$$(001813)(1)$$
 在数列 $\{a_n\}$ 中,已知 $a_1=0$,且 $a_{n+1}=a_n+n^2\ (n\geq 1)$,求数列的通项 a_n ;

(2) 利用上一小题的结论, 求 $1^2 + 2^2 + 3^2 + \cdots + n^2$.

(001814)(1) 在数列 $\{a_n\}$ 中,已知 $a_1=1, a_{n+1}=2a_n+3^n \ (n\geq 1)$. 求数列的通项 a_n ;

(2) 在数列 $\{a_n\}$ 中, 已知 $a_1 = 0$, $a_{n+1} = 2a_n + 3^n + 1$ $(n \ge 1)$. 求数列的通项 a_n .

(001815) 在数列 $\{a_n\}$ 中, 已知 $a_1=1, a_{n+1}=2a_n+2^n \ (n\geq 1)$. 求数列的通项 a_n .

(001816)[选做] 在数列 $\{a_n\}$ 中,已知 $a_1=1,\ a_{n+1}=2a_n+3\cdot 5^{n-1}-3^n+1\ (n\geq 1),$ 求数列的通项 $a_n.$

(001817) 在数列
$$\{a_n\}$$
 中, 已知 $a_1 = \frac{4}{3}$, $a_{n+1} = \frac{2}{3-a_n}$ $(n \ge 1)$, 求数列的通项 a_n .

(001818) 在数列
$$\{a_n\}$$
 中,已知 $a_1=1, a_{n+1}=2a_n+\frac{n+2}{n(n+1)}$ $(n\geq 1)$,求数列的通项 a_n .

(001819) 在数列 $\{a_n\}$ 中, 已知 $a_1=1, a_2=2,$ 且 $a_{n+2}=4a_{n+1}-4a_n \ (n\geq 1),$ 求数列的通项 a_n .

(001820)(1) 在数列 $\{a_n\}$ 中, 若 $a_1=1$, $a_2=2$, 且 $a_{n+2}=-3a_{n+1}+4a_n$ $(n\geq 1)$, 求数列的通项 a_n ;

(2) 在数列 $\{a_n\}$ 中,已知 $a_1=10,\ a_2=100,\$ 且 $a_{n+2}=\frac{a_n^4}{a_{n+1}^3}\ (n\geq 1),$ 求数列的通项 $a_n;$

(3)(选做) 在数列 $\{a_n\}$ 中, 若 $a_1=1, a_2=2,$ 且 $a_{n+2}=-3a_{n+1}+4a_n+1 \ (n\geq 1),$ 求数列的通项 a_n .

(001821) 已知无穷数列 $\{a_n\}$ 满足 $(a_{n+1}+a_n)(a_{n+1}-a_n-1)=0 \ (n\geq 1), \ a_1=0.$ 这样的数列的前 10 项之 和的所有可能值为

(001822) 若数列 $\{a_n\}$ 的前 n 项之和为 S_n , $S_n = 2a_n - 2n$, $n \ge 1$, 求 $\{a_n\}$ 的通项公式.

(001823) 已知 $\{a_n\}$ 的前 n 项和为 S_n , $a_1 = 1$, $a_{n+1} = 2S_n$, 求 $\{a_n\}$ 的通项公式.

(001824) 设数列 $\{a_n\}$ 的前 n 项和为 S_n , 且 $S_n + a_n = \frac{n^2 + 3n - 2}{2}$, 求 $\{a_n\}$ 的通项公式.

(001825) 整数数列
$$\{a_n\}$$
 满足 $a_1a_2 + a_2a_3 + \cdots + a_{n-1}a_n = \frac{(n-1)n(n+1)}{3}, \ n=2,3,\cdots,$

- (1) 若 $a_1 = 1$, 求通项 a_n .
- (2)(选做)求所有满足条件的数列.

(001826) 判断下列数列是否有极限。若有, 在横线上写出极限值; 若没有, 在横线上写 "没有极限".

(1)
$$a_n = (-\frac{1}{2})^n$$
, _____;

(2)
$$a_n = \frac{n+2}{2n+1},$$
____;

(3)
$$a_n = \begin{cases} \frac{2}{n}, & n \not\in \\ \frac{1}{n}, & n \not\in \\ \frac{1}{n}, & n \not\in \\ \end{cases}$$
 _____;

$$(4) \ a_n = \begin{cases} 1, & n \not\in \\ \frac{1}{n}, & n \not\in \\ \frac{1}{n}, & n \not\in \\ \end{cases};$$

(1)
$$a_n = (-\frac{1}{2})^n$$
, ______;
(2) $a_n = \frac{n+2}{2n+1}$, _____;
(3) $a_n = \begin{cases} \frac{2}{n}, & n$ 是奇数;
 $\frac{1}{n}, & n$ 是偶数, _____;
(4) $a_n = \begin{cases} 1, & n$ 是奇数;
 $\frac{1}{n}, & n$ 是偶数, _____;
(5) $a_n = \begin{cases} n, & n \le 100;\\ \frac{1}{n}, & n > 100, & _____. \end{cases}$

(001827)[选做] 参考讲义上极限的定义, 证明: 数列 $a_n = \frac{(-1)^n}{n}$ 的极限为 0.

(001828)[选做] 参考讲义上极限的定义, 证明: 数列 $a_n = 2^n$ 没有极限.

(001829)[选做, 难] 证明: 若数列 $\{a_n\}$ 的极限为 A, 则任意交换 $\{a_n\}$ 中元素的顺序之后, 所得的新数列的极限 也为 A.

(注: 这里的交换可以是无限次, 如变成 $a_2, a_1, a_4, a_3, a_6, a_5, \cdots$ 这样一个新数列等等)

(001830) 求下列极限:

(1)
$$\lim_{n \to \infty} \frac{2n+1}{3n+2} =$$
_____;

$$(2) \lim_{n \to \infty} (-1)^{n+1} \frac{2n^2 + 1}{2n^3 + 3n^2 - n + 5} = \underline{\hspace{1cm}}$$

(3)
$$\lim_{n\to\infty} \left(\frac{1}{n^2+1} + \frac{4}{n^2+1} + \dots + \frac{3n-2}{n^2+1} \right) = \underline{\hspace{1cm}};$$

x < 0 是函数值是 -1, x = 0 时函数值是 0

(5) 已知
$$a_n = (1+2+3+\cdots+n)\left[\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\cdots\left(1-\frac{1}{n}\right)\right]^2$$
,则 $\lim_{n\to\infty}a_n =$ _______;

(6)
$$\lim_{n \to \infty} \left(\sqrt{5} + \left(\frac{\sqrt{3}}{2} \right)^n \right) = \underline{\qquad};$$

(6)
$$\lim_{n \to \infty} \left(\sqrt{5} + \left(\frac{\sqrt{3}}{2} \right)^n \right) = \underline{\qquad};$$

(7) $\lim_{n \to \infty} \frac{1 + \frac{1}{3} + \frac{1}{9} + \dots + \frac{1}{3^n}}{1 - \frac{1}{4} + \frac{1}{16} - \dots + \left(-\frac{1}{4} \right)^n} = \underline{\qquad};$

(8)
$$\lim_{n \to \infty} (\sqrt{n+2} - \sqrt{n-1}) = \underline{\hspace{1cm}};$$

$$(9) \lim_{n \to \infty} \frac{\sqrt{n^2 + n}}{n+1} = \underline{\qquad}$$

(10)
$$\lim_{n \to \infty} \frac{\sqrt{n+1} - \sqrt{n}}{\sqrt{n+2} - \sqrt{n}} = \underline{\hspace{1cm}}$$

$$(9) \lim_{n \to \infty} \frac{\sqrt{n^2 + n}}{n + 1} = \underline{\hspace{1cm}}.$$

$$(10) \lim_{n \to \infty} \frac{\sqrt{n + 1} - \sqrt{n}}{\sqrt{n + 2} - \sqrt{n}} = \underline{\hspace{1cm}};$$

$$(11) \lim_{n \to \infty} \left(\frac{n^3 - 1}{3n^2 + n} - \frac{n^2 + 1}{3n + 4} \right) = \underline{\hspace{1cm}};$$

$$(12) \lim_{n \to \infty} \frac{2^n + 3^n}{n^2 + n^2} = \underline{\hspace{1cm}}.$$

$$(12) \lim_{n \to \infty} \frac{2^n + 3^n}{2^n - 3^n} = \underline{\qquad}.$$

(001831) 已知
$$\lim_{n\to\infty} [(2n-1)a_n] = 1$$
, 则 $\lim_{n\to\infty} (na_n) =$ ______

(001832) 判断下列命题的真假, 其中假命题用 "F"表示, 真命题用 "T"表示.

- ___(1) 递增数列都有极限;
- (2) 如果数列 $\{a_n\}$ 有极限, 那么数列 $\{|a_n|\}$ 也有极限;
- (3) 如果数列 $\{|a_n|\}$ 有极限, 那么数列 $\{a_n\}$ 也有极限;
- ____(4) 如果数列 $\lim_{n\to\infty} a_n = A$, 那么 $\lim_{n\to\infty} na_n = nA$;
- ____(5) 如果数列 $\{a_n\}$ 有极限, 那么 $\lim_{n\to\infty} a_n = \lim_{n\to\infty} a_{n+1}$;
- __(6) 如果数列 $\{a_n\}$ 有极限, 且其前 n 项和为 S_n ,那么 $\lim_{n\to\infty}S_n=\lim_{n\to\infty}a_1+\lim_{n\to\infty}a_2+\cdots+\lim_{n\to\infty}a_n;$
- _(7) 如果 2011 个数列的极限均为零, 那么这 2011 个数列之和的极限也为零;
- (8) 如果数列 $\{a_n\}$ 和 $\{b_n\}$ 使得数列 $\{a_n \cdot b_n\}$ 的极限存在, 那么 $\{a_n\}$ 和 $\{b_n\}$ 的极限都存在;
- (9) 如果数列 $\{a_n\}$ 的极限存在, 数列 $\{b_n\}$ 使得数列 $\{a_n \cdot b_n\}$ 的极限存在, 那么 $\{b_n\}$ 的极限存在;

____(10) 如果数列 $\{a_n\}$ 和 $\{b_n\}$ 使得数列 $\{a_n \cdot b_n\}$ 的极限为 0, 那么 $\lim_{n \to \infty} a_n = 0$ 或 $\lim_{n \to \infty} b_n = 0$; ____(11) 如果数列 $\{a_n\}$ 的极限是 0, 那么对任意数列 $\{b_n\}$, 均成立 $\lim_{n\to\infty} a_n \cdot b_n = 0$; ___(12) 如果数列 $\{a_n\}$ 和 $\{b_n\}$ 有极限, 且 $a_n > b_n$, 那么 $\lim_{n \to \infty} a_n \geq \lim_{n \to \infty} b_n$. (001833) 设 a 是常数,数列 $\{a_n\}$ 的通项公式为 $a_n=(a^2+2a)^n$,若 $\lim_{n\to\infty}a_n$ 不存在,则 a 的取值范围 (001834) 设 a 是常数, 若极限 $\lim_{n\to\infty} \left(\frac{n^2}{n+1} - an\right)$ 存在, 则 a 的取值范围为______. (001835) 已知实数 $a, b \in \mathbf{R}^+$, 求 $\lim_{n \to \infty} \frac{a^{n+1}}{a^n + b^n}$. (001836) 已知 $a \in \mathbf{R}$, 求 $\lim_{n \to \infty} \frac{2a}{a + (1-a)n}$. (001837) 已知对于数列 $\{a_n\}$, 极限 $\lim_{n\to\infty} \frac{a_n-3}{a_n+2} = \frac{4}{9}$, 求 $\lim_{n\to\infty} a_n$. (001838) 判断下列命题的真假, 其中假命题用 "F"表示, 真命题用 "T"表示. ____(1) 所有无限循环小数都可以表示成分数. $\underline{\hspace{1cm}}$ (2) 如果数列 $\{a_n\}$ 有极限, 那么其前 n 项和 S_n 也有极限; $\underline{\hspace{1cm}}$ (3) 如果数列 $\{a_n\}$ 的前 n 项和 S_n 有极限, 那么 $\{a_n\}$ 的极限为 0; $\underline{\hspace{1cm}}$ (4) 如果正数数列 $\{a_n\}$ 的极限为零, 那么其前 n 项和 S_n 必定有极限. (001839) 用最简分数表示下列循环小数: (1) $0.\dot{2}\dot{6} =$; (2) $3.14\dot{1}\dot{5}\dot{9}\dot{2} =$ ____. (001840) 若 $a_n = \frac{1}{5} + \frac{2}{5^2} + \frac{1}{5^3} + \frac{2}{5^4} + \dots + \frac{1}{5^{2n-1}} + \frac{2}{5^{2n}}$, 则 $\lim_{n \to +\infty} a_n =$ _____. (001841) 若某无穷等比数列 $\{a_n\}$ 各项和是 4, 各项的平方和是 6, 则 $\{a_n\}$ 的公比 q =______ (001842) 若 $\{a_n\}$ 为无穷等比数列, $\{a_n\}$ 中每一项都是它后面所有项之和的 4 倍, 则公比 q 的值为_

(001843) 已知无穷等比数列 $\{a_n\}$ 的各项和为 1, 求其首项的取值范围.

(001844)已知无穷等比数列 $\{a_n\}$ 的首项为 a, 公比为正数 q. 记 $\{a_n\}$ 的前 n 项和为 $S_n,$ $\{a_n^2\}$ 的前 n 项和为 $G_n,$ 求 $\lim_{n\to +\infty}\frac{S_n}{G_n}.$

(001845) 对于数列 $\frac{1}{2},\frac{1}{4},\cdots,\frac{1}{2^n},\cdots,$ 试从其中找出无限项构成一个新的等比数列,使新数列的各项和为 $\frac{1}{7}.$

- (1) 写出一个满足条件的新数列的首项与公比;
- (2)(选做)证明满足条件的新数列是唯一的

A. 充分必要条件

B. 充分非必要条件

C. 必要非充分条件

D. 既非充分又非必要条件

(001847)" $|\overrightarrow{a}| = |\overrightarrow{b}|$ " \not \not \not $\vec{a} = \overrightarrow{b}$ \not $\vec{a} = -\overrightarrow{b}$ " \not \vec{b} _____.

A. 充分必要条件

B. 充分非必要条件

C. 必要非充分条件

D. 既非充分又非必要条件

(001848)" $|\overrightarrow{a}| = 0$ " 是 " $\overrightarrow{a} = \overrightarrow{0}$ " 的_____.

A. 充分必要条件

B. 充分非必要条件

C. 必要非充分条件

D. 既非充分又非必要条件

(001849) 已知非零向量 \overrightarrow{a} 和 \overrightarrow{b} 所在的直线互相垂直, 则下列各式中正确的是_____

A. $|\overrightarrow{a}| + |\overrightarrow{b}| = |\overrightarrow{a} - \overrightarrow{b}|$

B. $|\overrightarrow{a}| + |\overrightarrow{b}| = |\overrightarrow{a} + \overrightarrow{b}|$

C. $|\overrightarrow{a}| - |\overrightarrow{b}| = |\overrightarrow{a} - \overrightarrow{b}|$

D. $|\overrightarrow{a} + \overrightarrow{b}| = |\overrightarrow{a} - \overrightarrow{b}|$

(001850) 若 A, B, C, D 是平面上任意四点, 则下列命题中正确的有_____.

A. $\overrightarrow{AB} + \overrightarrow{CD} = \overrightarrow{BC} + \overrightarrow{DA}$;

B. $\overrightarrow{AC} + \overrightarrow{BD} = \overrightarrow{BC} + \overrightarrow{AD}$;

C. $\overrightarrow{AC} - \overrightarrow{BD} = \overrightarrow{DC} + \overrightarrow{AB}$;

D. $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{CD} + \overrightarrow{DA}$.

(001851) 判断下列命题的真假, 如果是假命题则在命题前的横线上写上 "F", 如果是真命题则写上 "T".

- ____(1) 向量的模一定是一个正实数.
- ____(2) 零向量与任何非零向量平行.
- ____(3) 长度相等的向量都相等.
- $\underline{\hspace{1cm}}$ (4) $-(-\overrightarrow{a}) = \overrightarrow{a}$.
- $(5) \ \overrightarrow{a} + (-\overrightarrow{a}) = 0.$

- ____(6) 若 $\overrightarrow{a} = \overrightarrow{b}, \overrightarrow{b} = \overrightarrow{c}, \text{则} \overrightarrow{a} = \overrightarrow{c}.$
- _____(7) 若四边形 ABCD 是平行四边形, 则 $\overrightarrow{AB} = \overrightarrow{CD}$.
- (8) 若 $\overrightarrow{AB} = \overrightarrow{DC}$, 则 $|\overrightarrow{AB}| = |\overrightarrow{CD}|$ 且直线 $AB \parallel CD$.
- (001852) 化简: $\overrightarrow{AB} + \overrightarrow{MB} + \overrightarrow{BO} \overrightarrow{CB} + \overrightarrow{OM} =$
- (001853) 已知 $|\overrightarrow{OA}| = 12, |\overrightarrow{OB}| = 4, \angle AOB = 60^{\circ},$ 则 $|\overrightarrow{OA} + \overrightarrow{OB}| =$

(001854) 如图, 在 2×4 的矩形中, 起点和终点都在小方格顶点且模与 $|\overrightarrow{AB}|$ 相等的向量共有______ 个 (包括 *AB* 本身).

(1) 设
$$\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = \overrightarrow{0}$$
, 证明 $\frac{|\overrightarrow{OA}|}{\sin \angle BOC} = \frac{|\overrightarrow{OB}|}{\sin \angle COA} = \frac{|\overrightarrow{OC}|}{\sin \angle AOB}$

$$\begin{array}{c} (001855)[选做] \ \textbf{已知三个互不平行的向量} \ \overrightarrow{OA}, \overrightarrow{OB}, \overrightarrow{OC}. \\ (1) \ \textbf{设} \ \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = \overrightarrow{0}, \ \text{证明} \ \frac{|\overrightarrow{OA}|}{\sin \angle BOC} = \frac{|\overrightarrow{OB}|}{\sin \angle COA} = \frac{|\overrightarrow{OC}|}{\sin \angle AOB}; \\ (2) \ \textbf{设} \ \frac{|\overrightarrow{OA}|}{\sin \angle BOC} = \frac{|\overrightarrow{OB}|}{\sin \angle COA} = \frac{|\overrightarrow{OC}|}{\sin \angle AOB}, \ \textbf{证明或否定} \ \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = \overrightarrow{0}. \end{array}$$

(001856) 判断下列命题的真假, 如果是假命题则在命题前的横线上写上 "F", 如果是真命题则写上 "T".

- _____(1) 与非零向量 \overrightarrow{a} 平行的单位向量一定是 $\dfrac{1}{|\overrightarrow{a}|}\overrightarrow{a}$.
- (2) 若两个非零向量互相平行,则这两个向量所在的直线平行或重合.
- (3) 若非零向量 \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} 满足 \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = $\overrightarrow{0}$, 则 \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} 可以依次首尾相接构成三角形.
- ____(4) 若 \overrightarrow{a} 与 \overrightarrow{b} 平行, 则存在实数 λ , 使得 $\overrightarrow{b} = \lambda \overrightarrow{a}$.
- ____(5) 若存在实数 λ , 使得 $\overrightarrow{b} = \lambda \overrightarrow{a}$, 则 \overrightarrow{a} 与 \overrightarrow{b} 平行.
- _____(6) 若 \overrightarrow{a} 与 \overrightarrow{b} 平行, 则存在实数 λ, μ , 使得 $\lambda \overrightarrow{a} + \mu \overrightarrow{b} = \overrightarrow{0}$.

(7) 若 7 与	\overrightarrow{b} 平行,则存在不全为零的实数	λ, μ , 使得 $\lambda \overrightarrow{a} + \mu$	$\overrightarrow{b} = \overrightarrow{0}$.
(8) 若存在不	K 全为零的实数 $\lambda,\mu,$ 使得 $\lambda\overrightarrow{a}+\mu$	$u\overrightarrow{b} = \overrightarrow{0}$,则 \overrightarrow{a} 与	\overrightarrow{b} 平行.
(001857) 在四边形是	$ABCD \ \ \ \ \ \ \ \overrightarrow{AB} = \overrightarrow{a} + 2\overrightarrow{b}, \ \overrightarrow{BC}$	$=-4\overrightarrow{a}-\overrightarrow{b},\overrightarrow{CD}$	$=-5\overrightarrow{a}-3\overrightarrow{b}$,则四边形 $ABCD$ 一定
A. 矩形	B. 平行四边形	C. 菱形	D. 梯形
(001858) 已知 \overrightarrow{AB} =	$=-rac{3}{4}\overrightarrow{BC}$,则 $\overrightarrow{AC}=$ \overrightarrow{BA} .(\circ	尝试不用画图的代数	女方法)
(001859) 已知三点 $\overrightarrow{OM} =$	9	O 是任意一点, 若	用 \overrightarrow{OA} , \overrightarrow{OB} 表示 \overrightarrow{OM} , 则在此表示下
(001860) 已知	$= 3\overrightarrow{a} - 5\overrightarrow{b}, \overrightarrow{n} = 2\overrightarrow{b} - \overrightarrow{a},$	试用 前, 前 表示	\overrightarrow{a} 与 \overrightarrow{b} 为 \overrightarrow{a} =
(001861) 已知 x,y	是实数, 向量 \overrightarrow{a} , \overrightarrow{b} 不平行, 若 x	$\overrightarrow{a} + y \overrightarrow{b} = \overrightarrow{0}, $ \$\text{iii}	x = y = 0.
(001862) 已知三角形	ド ABC 中, 三条中线 AD,BE,€	CF 交于点 G, 求证:	$\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0}.$
	$ec{F}$ \overrightarrow{ABC} 中, 若点 G 使得 \overrightarrow{GA} + \overrightarrow{C} \overrightarrow{GP} = $\overrightarrow{0}$ 来证明 G 是重心)	$\overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0}$,求证	E: G 为三角形 ABC 的重心.(提示: 设
(001864) 已知平行[四边形 $ABCD$ 的对角线交于 E $_{ m S}$	点, 设 O 是任意一点	,求证: $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} = 4\overrightarrow{OE}$.
(001865)[选做] 已知		是否一定存在平面上	一点 P , 使得 $\overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC} + \overrightarrow{PD} =$
(001866) 已知向量 下, 之 的坐标为		$+3\overrightarrow{b}, \overrightarrow{y} = 4\overrightarrow{a} + 2\overrightarrow{b}$	\overrightarrow{b} , $\overrightarrow{z} = -3\overrightarrow{a} + 12\overrightarrow{b}$. \overrightarrow{a} \overrightarrow{x} , \overrightarrow{y} 这组基
(001867) 已知 △AB 则 $m =$		$\overrightarrow{MC} = \overrightarrow{0}$. 若存在实	K数 m 使得 $\overrightarrow{CA} + \overrightarrow{CB} = m\overrightarrow{CM}$ 成立,
	上四点 O, A, B, C 满足 $OA = OB$, \overrightarrow{OB} 表示向量 \overrightarrow{OC} 为 $\overrightarrow{OC} =$		$\angle AOC = 25^{\circ}, \angle BOC = 95^{\circ}, \angle AOB =$
(001869) 己知 △AB	BC , 点 D 满足 $\overrightarrow{AD} = \frac{1}{4}\overrightarrow{AB} + \frac{3}{4}\overrightarrow{AB}$	\overrightarrow{AC} . 则 $S_{ riangle ADB}: S_{ riangle}$	$\Delta ADC = \underline{\hspace{1cm}}$
(001870) 在 $\triangle ABC$ $\overrightarrow{a}, \overrightarrow{b}$ 这组基下, \overrightarrow{CI}		$\angle ACB$, $\rightleftarrows \overrightarrow{CB} = \overline{}$	\overrightarrow{a} , $\overrightarrow{CA} = \overrightarrow{b}$, $ \overrightarrow{a} = 2$, $ \overrightarrow{b} = 4$, 则在
(001871) 已知 \overrightarrow{a} \overrightarrow{b}	, , , 不平行, 设 x 是一个 实 数, 若向量	$\{(2\overrightarrow{a}-\overrightarrow{b}) \parallel (x\overrightarrow{a}+\overrightarrow{b})\}$	$(3\overset{\longrightarrow}{h})$ 剛空数 x 的值为

(001872) 在 $\triangle ABC$ 的重心为 G,O 是其所在平面内任意一点, 试用 $\overrightarrow{OA},\overrightarrow{OB},\overrightarrow{OC}$ 表示 \overrightarrow{OG} .

(001873) 已知 $\triangle OAB$ 为一个给定的三角形. 设 $t \in \mathbf{R}$, 向量 $\overrightarrow{OP} = t\overrightarrow{OA} + (\frac{1}{2} - t)\overrightarrow{OB}$, 当 t 取遍一切实数时, 点 P 的轨迹是什么? 说明理由.

(001874)[选做] 已知 \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} 是三个非零向量, 其中任意两个向量均不平行, 若 \overrightarrow{a} + \overrightarrow{b} 与 \overrightarrow{c} 平行, \overrightarrow{b} + \overrightarrow{c} 与 \overrightarrow{a} 平行, 证明: \overrightarrow{c} + \overrightarrow{a} 与 \overrightarrow{b} 平行.

(001875)[选做] 已知 P 是平面上一点, \overrightarrow{PA} , \overrightarrow{PB} , \overrightarrow{PC} 两两不平行,且 $\overrightarrow{PA}+2\overrightarrow{PB}=3\overrightarrow{PC}$. 求 $S_{\triangle APB}:S_{\triangle BPC}:S_{\triangle CPA}$.

(001876)[选做] 已知 $\triangle ABC$ 的三边长分别为 $a,b,c,\overrightarrow{OA}=\overrightarrow{x},\overrightarrow{OB}=\overrightarrow{y},\overrightarrow{OC}=\overrightarrow{z}.$ I 是 $\triangle ABC$ 的内心, 试用 $a,b,c,\overrightarrow{x},\overrightarrow{y},\overrightarrow{z}$ 表示 $\overrightarrow{OI}.$ (尽管可以用 $\overrightarrow{x},\overrightarrow{y},\overrightarrow{z}$ 来表示 a,b,c, 但加入 a,b,c 后答案更漂亮.)

(001877) 已知 \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} 是三个平面向量, 那么 $\overrightarrow{a} = \overrightarrow{b}$ 是 $\overrightarrow{a} \cdot \overrightarrow{c} = \overrightarrow{b} \cdot \overrightarrow{c}$ 的______ 条件.

A. 充分非必要

B. 必要非充分

C. 充分必要

D. 既不充分又不必要

- $(2) \ \textbf{已知} \ |\overrightarrow{b}| = 3, \ \overrightarrow{a} \ \textbf{在} \ \overrightarrow{b} \ \textbf{方向上的投影为} \ \frac{3}{2}, \ \textbf{则} \ \overrightarrow{a} \cdot \overrightarrow{b} = \underline{\hspace{1cm}}.$
- $(001879) \ \textbf{已知等边三角形} \ ABC \ \textbf{中}, \ \overrightarrow{BC} = \overrightarrow{a}, \ \overrightarrow{CA} = \overrightarrow{b}, \ \overrightarrow{AB} = \overrightarrow{c}. \ \textbf{则} \ \overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{b} \cdot \overrightarrow{c} + \overrightarrow{c} \cdot \overrightarrow{a} = \underline{\qquad}.$

(001880) 对于两个夹角为 θ 的非零向量 \overrightarrow{a} , \overrightarrow{b} , 我们把数 $|\overrightarrow{a}|$ $|\overrightarrow{b}|$ $\sin \theta$ 叫做向量 \overrightarrow{a} 与 \overrightarrow{b} 的正弦积, 记作 $\overrightarrow{a} \diamond \overrightarrow{b}$. 规定零向量和任一向量的正弦积为 0. 下列运算律

- $(1) \overrightarrow{a} \diamond \overrightarrow{b} = \overrightarrow{b} \diamond \overrightarrow{a};$
- $(2)\ (\lambda \overrightarrow{a}) \diamond \overrightarrow{b} = \lambda (\overrightarrow{a} \diamond \overrightarrow{b}) = \overrightarrow{a} \diamond (\lambda \overrightarrow{b});$
- $(3) \ (\overrightarrow{a} + \overrightarrow{b}) \diamond \overrightarrow{c} = \overrightarrow{a} \diamond \overrightarrow{c} + \overrightarrow{b} \diamond \overrightarrow{c}.$
- 中, 成立的有_____.

(001881) 在 $\triangle ABC$ 中, 设 $\overrightarrow{AB} = \overrightarrow{a}$, $\overrightarrow{AC} = \overrightarrow{b}$, 求证: 此三角形的面积

$$S = \frac{1}{2} \sqrt{(|\overrightarrow{a}||\overrightarrow{b}|)^2 - (\overrightarrow{a} \cdot \overrightarrow{b})^2}.$$

 $(001882) \ \textbf{已知} \ \overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c} \ \textbf{是三个平面向量}, 证明: \ (\overrightarrow{a} \cdot \overrightarrow{b}) \overrightarrow{c} - (\overrightarrow{b} \cdot \overrightarrow{c}) \overrightarrow{a} \ \textbf{与} \ \overrightarrow{b} \ \underline{\textbf{45}} \ \underline{\textbf{45}}.$

 $(001883) \ \textbf{已知} \ |\overrightarrow{a}| = 1, \ |\overrightarrow{b}| = \sqrt{2}, \ (\overrightarrow{a} - \overrightarrow{b}) \perp \overrightarrow{a}, \ \vec{x} \ \overrightarrow{a} \ \vec{n} \ \overrightarrow{b} \ \textbf{的夹角}.$

- (001884) 己知 $|\overrightarrow{a}| = 4$, $|\overrightarrow{b}| = 5$, $|\overrightarrow{a} + \overrightarrow{b}| = 6$.
- (1) 求 \overrightarrow{a} 和 \overrightarrow{b} 的夹角;
- (2) 求 $|2\overrightarrow{a}-3\overrightarrow{b}|$ 的值.

- (001885) 已知 $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}, |\overrightarrow{a}| = 4, |\overrightarrow{b}| = 3, |\overrightarrow{c}| = 5.$ (1) \overrightarrow{x} $\overrightarrow{a} \cdot \overrightarrow{c}$; (2) $\cancel{R} \overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{b} \cdot \overrightarrow{c} + \overrightarrow{c} \cdot \overrightarrow{a}$. (001886) 已知 $\overrightarrow{OA} = (-1,2), \overrightarrow{OB} = (3,m).$ 若 $\overrightarrow{OA} \perp \overrightarrow{AB},$ 则 m =(001888) 向量 (-3,4) 的单位向量为_____ (001889) 与向量 (-3,4) 垂直的单位向量为 . (001890) 已知 $\overrightarrow{a} = (-1,1)$, $\overrightarrow{b} = (m,\sqrt{2})$, 若 \overrightarrow{a} 与 \overrightarrow{b} 的夹角为 120° , 则 m =______. (001891) 设 \overrightarrow{i} , \overrightarrow{j} 是相互垂直的单位向量, $\overrightarrow{a} = (m+1)\overrightarrow{i} - 3\overrightarrow{j}$, $\overrightarrow{b} = \overrightarrow{i} + (m-1)\overrightarrow{j}$, $(\overrightarrow{a} + \overrightarrow{b}) \perp (\overrightarrow{a} - \overrightarrow{b})$, (001892) 已知 $\overrightarrow{a}=(2,-1),$ $\overrightarrow{b}=(m,m-1),$ 若 \overrightarrow{a} 与 \overrightarrow{b} 的夹角是锐角, 则实数 m 的取值范围为__ $(001893) 已知 \overrightarrow{a} = (1,-5), \overrightarrow{c} = (2,-2), \overrightarrow{a} \cdot \overrightarrow{b} = 4, |\overrightarrow{b}| = 4. \text{ 则 } \overrightarrow{b} \text{ 与 } \overrightarrow{c} \text{ 的夹角为}$ (001894) 设 A(4,a), B(6,8), C(a,b). 若 OABC 为平行四边形 (O 为坐标原点), 则 a-b=______ (001895) 已知 M(3,4), N(12,7), Q 在直线 MN 上, 且 QM:MN=1:3. 则点 Q 的坐标为 (001896) 若向量 $\overrightarrow{a} = (-1,1)$, 且 \overrightarrow{a} 与 $\overrightarrow{a} + 2\overrightarrow{b}$ 的方向相同, 则 $\overrightarrow{a} \cdot \overrightarrow{b}$ 的范围是 (001897) 若平面向量 \overrightarrow{a} , \overrightarrow{b} 满足 $|\overrightarrow{a}| = 2$, $(2\overrightarrow{a} + \overrightarrow{b}) \cdot \overrightarrow{b} = 12$, 则 $|\overrightarrow{b}|$ 的取值范围为 (001898) 设向量 $\overrightarrow{OA} = (3,1)$, $\overrightarrow{OB} = (-1,2)$, $\overrightarrow{OC} \perp \overrightarrow{OB}$, $\overrightarrow{BC} \parallel \overrightarrow{OA}$. 又 $\overrightarrow{OD} + \overrightarrow{OA} = \overrightarrow{OC}$. 求 \overrightarrow{OD} 的坐标. (001900)(1) 是否存在三个平面向量 \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} , 使得 \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = $\overrightarrow{0}$, 且 \overrightarrow{a} · \overrightarrow{b} = -1, \overrightarrow{b} · \overrightarrow{c} = -1, \overrightarrow{c} · \overrightarrow{a} = -1? (2) 是否存在三个平面向量 \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} , 使得 \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = $\overrightarrow{0}$, 且 \overrightarrow{a} · \overrightarrow{b} = 1, \overrightarrow{b} · \overrightarrow{c} = 1, \overrightarrow{c} · \overrightarrow{a} = 1? (3)(选做) 是否存在三个平面向量 \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} , 使得 \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = $\overrightarrow{0}$, 且 \overrightarrow{a} · \overrightarrow{b} = -1, \overrightarrow{b} · \overrightarrow{c} = -2, \overrightarrow{c} · \overrightarrow{a} = -3? (001901) 在直角三角形中, $\angle C = 90^{\circ}$, AC = 4, 则 $\overrightarrow{AB} \cdot \overrightarrow{AC} =$ (001902) 在 $\triangle OAB$ 中, $\overrightarrow{OA} = (2\cos\alpha, 2\sin\alpha)$, $\overrightarrow{OB} = (5\cos\beta, 5\sin\beta)$. 若这两个向量的数量积 $\overrightarrow{OA} \cdot \overrightarrow{OB} = 5$, 则 $S_{\triangle OAB} =$ ___ (001903) 设点 M 是线段 BC 的中点, 点 A 在直线 BC 之外, $|\overrightarrow{BC}|^2 = 16$, $|\overrightarrow{AB} + \overrightarrow{AC}| = |\overrightarrow{AB} - \overrightarrow{AC}|$, 则 $|\overrightarrow{AM}| =$.
- (001904) 已知三角形 ABC 中, E 是边 AC 上的点且 AE=3EC, F 是边 AB 上的点且 AF=2FB, 直线 BE 与 CF 相交于点 P. 设 $\overrightarrow{AB}=\overrightarrow{b}$, $\overrightarrow{AC}=\overrightarrow{c}$, 试用 \overrightarrow{b} , \overrightarrow{c} 表示 \overrightarrow{AP} . (不可使用平面几何的方法)

(001905) 在平行四边形 ABCD 中, $AC^2 \cdot BD^2 = AB^4 + AD^4$, 求 $\angle DAB$.

(001906) 已知四边形 ABCD 中, AB = 3, BC = 4, CD = 5, DA = 6, 求 $\overrightarrow{AC} \cdot \overrightarrow{BD}$.

(001907) 一条直线经过三角形 OAB 的重心 G, 分别交边 OA, OB 于点 P, Q, 设 $\overrightarrow{OP}=x\overrightarrow{OA}$, $\overrightarrow{OQ}=y\overrightarrow{OB}(x,y\neq 0)$, 求证: $\frac{1}{x}+\frac{1}{y}=3$.

(001908) 在直角三角形 ABC 中,已知斜边 BC=a,若长为 2a 的线段 PQ 以点 A 为中点,问: \overrightarrow{PQ} 与 \overrightarrow{BC} 的 夹角 θ 为何值时, $\overrightarrow{BP}\cdot\overrightarrow{CQ}$ 的值取到最大,并求出这个最大值.

(001909)[选做] 已知 O 在三角形 ABC 内部, 且 $\overrightarrow{OA} + 2\overrightarrow{OB} + 3\overrightarrow{OC} = \overrightarrow{0}$. 求 $S_{\triangle ABC}: S_{\triangle AOC}$.

(001910) 已知 $\overrightarrow{a}=(1,-2), \overrightarrow{b}=(2,3), \overrightarrow{c}=(1,1),$ 将 \overrightarrow{a} 表示为 $\overrightarrow{b_1}+\overrightarrow{c_1}$ 的形式, 其中 $\overrightarrow{b_1}\parallel\overrightarrow{b},\overrightarrow{c_1}\parallel\overrightarrow{c},$ 结果为 $\overrightarrow{a}=___+__$.(在横线上填入 $\overrightarrow{b_1},\overrightarrow{c_1}$ 的坐标.)

(001911) 已知 △ABC 的三个顶点分别为 A(2,-1), B(3,2), C(-3,-1). 则三角形 ABC 的面积为______

(001912) 向量 $\overrightarrow{b} = (11, 12)$ 在 $\overrightarrow{a} = (3, 4)$ 方向上的投影为_____.

(001913) 已知 \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} 是单位向量, 且 $\overrightarrow{a} \cdot \overrightarrow{b} = 0$, 则 $(\overrightarrow{a} - \overrightarrow{c}) \cdot (\overrightarrow{b} - \overrightarrow{c})$ 的最小值为______.

(001914) 已知圆 O 的半径为 1, PA, PB 为该圆的两条切线, A, B 为两切点. $\overrightarrow{PA} \cdot \overrightarrow{PB}$ 的最小值为_____

(001915) 已知 $\triangle ABC$ 中的两边 AB,AC 的中点分别为 M,N, 在 BN 的延长线上取点 P, 使 NP=BN, 在 CM 的延长线上取点 Q, 使 MQ=CM. 利用向量法证明: P,A,Q 三点共线.

(001916) 已知 $\overrightarrow{OA} = (3, -4), \overrightarrow{OB} = (6, -3), \overrightarrow{OC} = (5 - m, -3 - m).$

- (1) 若 A, B, C 共线, 求实数 m 的值;
- (2) 若 $\triangle ABC$ 是直角三角形, 求实数 m 的值.

(001917) 在 $\triangle ABC$ 中, O 为中线 AM 上的一个动点, 若 AM=2, 求 $\overrightarrow{OA}\cdot(\overrightarrow{OB}+\overrightarrow{OC})$ 的最小值, 以及取最小值时 O 的位置.

(001918)[选做] 设 A,B,C 三点坐标依次为 $A(x_1,y_1),\,B(x_2,y_2),\,C(x_3,y_3),\,$ 证明: A,B,C 三点共线的充要条件为

$$\begin{vmatrix} 1 & x_1 & y_1 \\ 1 & x_2 & y_2 \\ 1 & x_3 & y_3 \end{vmatrix} = 0$$

(001919) 对于三阶行列式

其元素 2 的代数余子式的值为______, 元素 4 的余子式的值为_

$$(001920)$$
 行列式 $\begin{vmatrix} a & b \\ -b & a \end{vmatrix}$ 的值为_______; 行列式 $\begin{vmatrix} 1 & 4 & 9 \\ 1 & 5 & 25 \\ 1 & 7 & 49 \end{vmatrix}$ 的值为______

$$(001921)$$
 行列式 $\begin{vmatrix} x & 0 & 0 \\ a & y & 0 \\ b & c & z \end{vmatrix}$ 的值为_____.

$$(001921)$$
 行列式 $\begin{vmatrix} x & 0 & 0 \\ a & y & 0 \\ b & c & z \end{vmatrix}$ 的值为_____.

 (001922) 行列式 $\begin{vmatrix} 0 & n & m \\ -n & 0 & l \\ -m & -l & 0 \end{vmatrix}$ 的值为_____.

 (001923) 行列式 $\begin{vmatrix} b+c & a-c & a-b \\ b-c & c+a & b-a \\ c-b & c-a & a+b \end{vmatrix}$ 的值为_____.

$$(001923)$$
 行列式 $\begin{vmatrix} b+c & a-c & a-b \\ b-c & c+a & b-a \\ c-b & c-a & a+b \end{vmatrix}$ 的值为______

$$(001924)$$
 解关于 x 的方程: $\begin{vmatrix} a & a & x \\ 1 & 1 & 1 \\ b & x & b \end{vmatrix} = 0.$

- (1) 若三个数列均为等差数列, 证明: D=0;
- (2) 若三个数列均为等比数列, 且公比各不相同, 证明: $D \neq 0$.

(001926)[选做] 不用展开的方式证明:

$$\begin{vmatrix} \alpha a_2 + a_3 & \beta a_3 + a_1 & \gamma a_1 + a_2 \\ \alpha b_2 + b_3 & \beta b_3 + b_1 & \gamma b_1 + b_2 \\ \alpha c_2 + c_3 & \beta c_3 + c_1 & \gamma c_1 + c_2 \end{vmatrix} = (\alpha \beta \gamma + 1) \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}.$$

(001927) 用行列式解方程组 (写出系数行列式 D, D_x, D_y 等等的值, 并给出方程的解):

(1)
$$\begin{cases} 3x - 6y - 1 = 0, \\ -4y + 2x = 2. \end{cases}$$

$$D = _____, D_x = _____, D_y = _____,$$
 解为 $(x, y) = _____.$

$$(2) \begin{cases} 3x - 2y + z = 0, \\ x + y + 2z = 5, \\ 5x - 7y + 8z = -1. \end{cases}$$

$$D = _____, D_x = _____, D_y = _____, D_z = _____,$$
 解为 $(x, y, z) = _____.$

$$D = \underbrace{\hspace{1cm}}, D_x = \underbrace{\hspace{1cm}}, D_y = \underbrace{\hspace{1cm}}, D_z = \underbrace{\hspace{1cm}},$$
 解为 $(x, y, z) = \underbrace{\hspace{1cm}}$ (001928) 已知 a 是实数,用行列式解方程组:
$$\begin{cases} ax + 3y = a + 3, \\ x + (a - 2)y = 2, \end{cases}$$
 并叙述解的个数的不同情况.

(001929) 已知 m 是实数, 对方程组

$$\begin{cases} (m-1)x + (m-1)y = 1, \\ (2m-2)x + (1-m)y = 2, \end{cases}$$

- (1) 计算 D, D_x, D_y ;
- (2) 试就 m 的不同取值写出方程组的解, 并叙述解的个数 (不需要推理的过程, 直接写出答案即可);
- (3) 该结论与讲义上的性质是否有矛盾? 为什么?

(001931)(1) 已知
$$a, b, c$$
 是三个互不相同的实数, 求证:
$$\begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix} \neq 0;$$
(2) 利用 (1) 的结论, 证明: 对平面上的任意三点 $(x_1, y_1), (x_2, y_2), (x_3, y_3), (x_4, y_5)$

- (2) 利用 (1) 的结论, 证明: 对平面上的任意三点 $(x_1, y_1), (x_2, y_2), (x_3, y_3)$, 只要 x_1, x_2, x_3 互不相同, 就一定存 在唯一的一组实数 a, b, c, 使函数 $f(x) = ax^2 + bx + c$ 的其图像通过这给定的三点;
- (3) 该函数的图像一定是抛物线吗? 为什么?
- (001932) 写出以下矩阵计算的结果:

$$(1) \left(\begin{array}{rrr} 1 & 3 & 5 \\ 2 & 4 & 6 \end{array} \right) - 3 \left(\begin{array}{rrr} 4 & 2 & -1 \\ -3 & 2 & 0 \end{array} \right) = \underline{\hspace{2cm}}.$$

$$(2) \left(\begin{array}{ccc} 7 & 1 & 5 \end{array}\right) \left(\begin{array}{ccc} 3 & 1 \\ 6 & 4 \\ 2 & 5 \end{array}\right) = \underline{\hspace{1ccc}}.$$

$$(4) \left(\begin{array}{ccc} 2 & 1 & 0 \\ 3 & 2 & 1 \end{array} \right) \left(\begin{array}{ccc} 2 & 1 \\ 3 & 0 \\ 4 & 1 \end{array} \right) = \underline{ \qquad } .$$

$$\begin{pmatrix}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{pmatrix}
\begin{pmatrix}
a & b \\
c & d \\
e & f
\end{pmatrix} = ...$$

$$\begin{pmatrix}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c
\end{pmatrix}
\begin{pmatrix}
d & 0 & 0 \\
0 & e & 0 \\
0 & 0 & f
\end{pmatrix} = ...$$

(001933) 填入适当的矩阵,使得二元一次方程组 $\left\{ egin{array}{ll} a_1x+b_1y=c_1, \\ a_2x+b_2y=c_2 \end{array}
ight.$ 表示为矩阵的乘积:

$$\left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{c} c_1 \\ c_2 \end{array}\right)$$

(001934) 判断下列命题的真假,用 "T" 或 "F" 分别表示真命题与假命题 (其中 $\det(A)$ 表示方阵 A 的行列式).

- _____1. 对任意两个同阶方阵, $\det(A+B) = \det A + \det B$.
- _____2. 对于任意的方阵 A 和实数 k, det(kA) = k det <math>A.
- _____3. 已知 B 是一个 3 阶方阵, 最多存在一个 3 阶方阵 A, 使得 $A^2 = B$.
- _____4. 对任意同阶方阵 A, B, 一定有且仅有一个矩阵 C, 使得 AC = B.
- _____5. 对任意两个同阶方阵, $A \cdot A + 2A \cdot B + B \cdot B = (A + B)^2$.
- _____6. 已知 B 是一个 3 阶方阵, 一定存在 3 阶方阵 A, 使得 $A^2 = B$. (注: $A^2 = A \cdot A$)

(001935) 已知
$$A = \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$. 写出一个 2 行 2 列的矩阵 C , 使得 $AC = B$.

(001936)(1) 已知 A 是一个 1 行 3 列的矩阵, B 是一个 3 行 1 列的矩阵, 问 $\det(AB)$ 是否一定为零? 并说明理由.

- (2) 已知 A 是一个 1 行 3 列的矩阵, B 是一个 3 行 1 列的矩阵, 问 det(BA) 是否一定为零? 并说明理由.
- (3) 已知 A 是一个 2 行 3 列的矩阵, B 是一个 3 行 2 列的矩阵, 问 det(AB) 是否一定为零? 并说明理由.
- (4) (选做) 已知 A 是一个 2 行 3 列的矩阵, B 是一个 3 行 2 列的矩阵, 问 $\det(BA)$ 是否一定为零? 并说明理由.

(001937)[选做] 我们知道二阶单位矩阵 $I_2=\begin{pmatrix}1&0\\0&1\end{pmatrix}$ 和所有二阶方阵的乘法都可以交换,即任取一个二阶方阵 $A,\,AI_2=I_2A(=A)$. 试找出所有这样的二阶方阵 $\begin{pmatrix}a&b\\c&d\end{pmatrix}$,使得它们和任何一个二阶方阵的乘法都可 以交换(提示: 在证明必要性时可以用一些矩阵来作乘法试试看)

(001938) 写出下列方程组的系数矩阵, 并用行初等变换的方法解方程组 (要有过程):

(1)
$$\begin{cases} 2x + y = 5, \\ 3x - 2y = 4. \end{cases}$$
(2)
$$\begin{cases} x + y + z = 6, \\ 3x + y - z = 2, \\ 5x - 2y + 3z = 10. \end{cases}$$

(001939)[代入消元法的等价性] 设关于 x,y 的方程组 $\left\{\begin{array}{ll}y=f(x),\\F(x,y)=0.\end{array}\right.$ 求证: 它与方程组 $\left\{\begin{array}{ll}y=f(x),\\F(x,f(x))=0\end{array}\right.$ 等价.

(001940)[代入消元法的等价性的实例] 已知关于 <math>x,y 的方程组 $\left\{ \begin{array}{ll} y=x-2, \\ x=y^2. \end{array} \right.$ 由上题结论,它与方程组 $\left\{ \begin{array}{ll} y=x-2, \\ x=(x-2)^2 \end{array} \right.$

(001941) 已知 A,B 是两个 n 阶方阵, 考察方阵 AB 的主对角线上的元素之和方阵 BA 的主对角线上的元素 之和的关系.

- (1) 当 n=2 时, 对这个关系提出一个猜测, 并作出证明;
- (2)(选做) 对这个关系提出一个猜测, 并作出证明.

(001942)[选做, 可另附纸] 已知关于 x, y, z 的三元一次方程组

$$\begin{cases} a_1x + b_1y + c_1z = 0, \\ a_2x + b_2y + c_2z = 0, \\ a_3x + b_3y + c_3z = 0, \end{cases}$$

求证: 该方程组有非零解 (即 x, y, z 不全等于零的解) 当且仅当方程组系数矩阵的行列式的值为零.

(001943) 有三个命题 (1) $\overrightarrow{a} \cdot \overrightarrow{a} = |\overrightarrow{a}|^2$; (2) $|\overrightarrow{a} \cdot \overrightarrow{b}| = |\overrightarrow{a}| |\overrightarrow{b}|$; (3) 若 \overrightarrow{a} 和 \overrightarrow{b} 所在直线的夹角为 θ , 则 \overrightarrow{a} 和 \overrightarrow{b} 的夹角也为 θ . 其中正确的有______.

(001944) 已知斜三棱柱 $ABC-A_1B_1C_1$ 中, AC 的中点为 M, $\overrightarrow{A_1B_1}=\overrightarrow{a}$, $\overrightarrow{B_1C_1}=\overrightarrow{b}$, $\overrightarrow{A_1A}=\overrightarrow{c}$. 用 \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} 表示 $\overrightarrow{B_1M} =$

(001945) 以 O 为坐标原点, $\overrightarrow{OA} = \overrightarrow{a}$, $\overrightarrow{OB} = \overrightarrow{b}$, 点 A_1, A_2, \cdots, A_{99} 把线段 AB 分成 100 等分, 用 \overrightarrow{a} , \overrightarrow{b} 表示 的 $\overrightarrow{OA} + \overrightarrow{OA_1} + \overrightarrow{OA_2} + \cdots + \overrightarrow{OA_{99}} + \overrightarrow{OB}$ 为

- (001946) 已知 $\overrightarrow{OA} = \overrightarrow{i} + \overrightarrow{j}$, $\overrightarrow{OB} = -2\overrightarrow{j} + \overrightarrow{k}$, \overrightarrow{i} , \overrightarrow{j} , \overrightarrow{k} 是两两垂直的单位向量,则 $\triangle OAB$ 的面积为________.
- (001947) 在正方体 $ABCD A_1B_1C_1D_1$ 中,棱长为 a, M 分 AC_1 为 1:2, N 为 BB_1 的中点,则 |MN| 为______.
- (001948) 在长方体 $ABCD A_1B_1C_1D_1$ 中, AB = 5, AD = 2, $AA_1 = 4$, 则异面直线 A_1C 与 BC_1 所成角的大小为_____(尽量用向量法).
- (001949) 平行六面体 $ABCD A_1B_1C_1D_1$ 中, AB = 1, AD = 2, $AA_1 = 3$, 且 $\angle BAD = \angle DAA_1 = \angle BAA_1 = 60^\circ$.
- (1) 求 AC_1 ;
- (2) 求 $\angle CAC_1$.
- (001950) 已知空间四边形 ABCD 中, AB = AC, $\angle DAB = \angle DAC$. 求证: $DA \perp BC$.
- (001951) 在一组基 \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} 下,已知向量 $\overrightarrow{v_1}$ 的坐标为 (2,1,3),又向量 $\overrightarrow{v_2}$ 与 $\overrightarrow{v_1}$ 平行,其坐标为 (x,y,z),则 x,y,z 应满足的关系为______.(只需写一个)
- (001952) 设空间向量 \overrightarrow{u} , \overrightarrow{v} , \overrightarrow{w} 在一组基 \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} 下的坐标分别为 (1,2,3),(2,3,5),(3,5,7). 那么在基 \overrightarrow{u} , \overrightarrow{v} , \overrightarrow{w} 下,向量 \overrightarrow{a} + \overrightarrow{b} + $2\overrightarrow{c}$ 的坐标为

- (001956) 若 A,B,C,D 是四面体的四个顶点, G 是底面 BCD 的重心, 若 $\overrightarrow{AB} = \overrightarrow{b}$, $\overrightarrow{AC} = \overrightarrow{c}$, $\overrightarrow{AD} = \overrightarrow{d}$. F 是 CD 中点.
- (1) 用 \overrightarrow{b} , \overrightarrow{c} , \overrightarrow{d} 表示 \overrightarrow{AG} ;
- (2) 若 E 是 AB 中点, M 使得 $\overrightarrow{AM} = \frac{3}{4}\overrightarrow{AG}$. 求证: E, F, M 共线.
- (001957)O 是空间任一点,若 $\overrightarrow{OG} = \frac{1}{4}(\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD})$,则称 G 是四面体 ABCD 的重心,已知 G 是四面体 ABCD 的重心,AG 与平面 BCD 交于点 P,求 AG:GP.
- (001958) 用向量法证明: 若空间四点 A,B,C,D 满足 $\angle ABC = \angle BCD = \angle CDA = \angle DAB = 90^\circ$, 则 ABCD 是一个矩形.

(001959)[选做] 设 O, A, B 是不共线的三个点, 我们已证明过, 点 P 在直线 AB 上当且仅当存在和为 1 的两数 x,y 使得 $\overrightarrow{OP}=x\overrightarrow{OA}+y\overrightarrow{OB}$. 在空间中, 已知不共面的四点 O,A,B,C. 类比上述命题, 提出一个结论, 并证明 它.

你的结论为:

证明:

(001960) 已知空间四点 A(1,-2,1), B(2,-1,2), C(3,2,-1), D(1,1,-1) 依次在第 , , , 卦限.

(001961) 已知空间直角坐标系中点 P(a,b,c), 在后面的横线上依次写出下列点的坐标: P 在 xOy 平面上的射 影, 在 yOz 平面上的射影, 在 zOx 平面上的射影, 在 x 轴上的射影, 在 y 轴上的射影, 在 z 轴上的射影.

(001962) 已知空间直角坐标系中点 P(a,b,c), 在后面的横线上依次写出下列点的坐标: P 关于 xOy 的对称点, 关于 yOz 平面的对称点, 关于 zOx 平面的对称点, 关于 x 轴的对称点, 关于 y 轴的对称点, 关于 z 轴的对称 点, 关于原点的对称点.

$$(1) |\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}| = |\overrightarrow{a} - \overrightarrow{b} - \overrightarrow{c}|; (2) (\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c})^2 = \overrightarrow{a}^2 + \overrightarrow{b}^2 + \overrightarrow{c}^2$$

$$(3)\ (\overrightarrow{a}\cdot\overrightarrow{b})\overrightarrow{c}=(\overrightarrow{b}\cdot\overrightarrow{c})\overrightarrow{a};\ (4)\ (\overrightarrow{a}+\overrightarrow{b})\cdot\overrightarrow{c}=\overrightarrow{a}\cdot(\overrightarrow{b}-\overrightarrow{c})$$

中, 真命题有

(001964) 已知空间三点 A(1,2,3), B(2,-1,5), C(3,2,-4), 若四边形 ABCD 为平行四边形,则 D 的坐标 为_____

(001965) 空间向量 (3,4,12) 的单位向量为

(001966) 若向量 (-2,3,m) 与 (n,-9,2) 平行,则 m-n=

(001967) 空间三点 A(1,1,1), B(1,2,3), C(2,5,6) 构成的三角形的重心坐标为______, 三角形 ABC 的面 积为_____

(001968) 已知空间四点 A(1,-2,1), B(2,-1,2), C(3,2,-1), D(1,1,-1), 有一点 E, 使 $\overrightarrow{DE} \perp \overrightarrow{AB}$, $\overrightarrow{DE} \perp \overrightarrow{AC}$, 且 $|\overrightarrow{DE}| = \sqrt{14}$ 同时成立. 则 E 点的坐标为

(001969) 已知向量 $\vec{d} = (1, -3, 2), \vec{b} = (2, 0, -8),$ 求单位向量 \vec{c} 使得 \vec{c} 与 \vec{d} , \vec{b} 都垂直.

(001970)[选做] 试判断下面命题的真假, 说明你的理由.

如果三角形 OAB 的顶点 A,B 的坐标分别为 $(x_1,y_1,z_1),(x_2,y_2,z_2),$ 那么三角形 OAB 的面积为 $\dfrac{1}{2}$ $\begin{vmatrix} z_1 & z_1 \\ z_1 & y_1 & z_1 \\ \vdots & \vdots & \ddots & z_n \end{vmatrix}$

的绝对值.

(001971) 平行于 y 轴的直线的一个方向向量为___

(001972)zOx 平面的一个法向量为
(001973) 已知直线 l 的一个方向向量为 $\overrightarrow{d}=(4,-8,6),$ 平面 α 的一个法向量为 $\overrightarrow{n}=(m,n,6),$ 若 $l\perp\alpha,$ 则 $(m,n)=$
(001974) 已知平面内有两个向量 $(-4,6,-1)$ 和 $(4,3,2)$, 那么平面的单位法向量为
(001975) 已知点 $A(5,1,3),B(1,6,2),C(5,0,4),D(4,0,6),$ 则过 AD 且垂直于平面 ABC 的平面的一个法向量为
(001976) 在平面 α 上有三个点 $(0,0,0), (1,0,0)$ 和 $(5,0,2),$ 在平面 β 上有三个点 $(4,1,5), (2,2,3)$ 和 $(1,-2,0).$ 已知平面 α 和平面 β 的交线为 l , 那么 l 的一个方向向量为
(001977) 已知直三棱柱 $ABC-A_1B_1C_1$ 中, $\angle ACB=90^\circ$, L 是 A_1C_1 的中点, M 是 A_1B_1 的中点, N 是 BC 的中点, 求证: $LN\parallel MB$. (限定坐标法, 要求说明建系方法, 并作草图)
(001978) 已知直三棱柱 $ABC-A_1B_1C_1$ 中, M 是 A_1B 的中点, N 是 CC_1 的中点, 求证: MN 平行于平面 ABC . (限定坐标法, 要求说明建系方法, 并作草图)
(001979) 在长方体 $ABCD-A_1B_1C_1D_1$ 中, E,F,G,H 分别是 DC,BC,A_1D_1,A_1B_1 的中点, $AB=2,AD=AA_1=1$. (1) 求证: 平面 $BDGH$ 平行于平面 EFB_1D_1 ; (2) 过 C_1 点作平面 $BDGH$ 的平行平面,分别交直线 BC 与 CD 于 P,Q , 求线段 PQ 的长. (限定坐标法)
(001980) 已知向量 $\overrightarrow{a}=(3,5,2), \ \overrightarrow{b}=(m-1,m+1,m-2),$ 若向量 $\overrightarrow{a}, \ \overrightarrow{b}$ 所成角为锐角,则 m 的取值范围为
(001982) 若长方体 $ABCD-A_1B_1C_1D_1$ 中, M,N 分别是 BB_1 与 BC 的中点, $AB=4$, $AD=2$, B_1D 与平面 $ABCD$ 所成角的大小为 60° , 则异面直线 B_1D 与 MN 所成角的大小为
(001983) 若在直三棱柱 $ABC-A_1B_1C_1$ 中, $\angle ACB=90^\circ$, $AC=1$, $CB=\sqrt{2}$, 侧棱 $AA_1=1$, 侧面 AA_1B_1B 的两条对角线交点为 D , B_1C_1 的中点为 M , 则 CD 与平面 BDM 所成角的大小为
(001984) 若正方体 $ABCD-A_1B_1C_1D_1$ 的核长为 $2,\ P,Q$ 分别在核 BC,CD 上运动,且 $ PQ =\sqrt{2}$,若 $B_1Q\perp D_1P$,则二面角 C_1-PQ-A 的大小为
(001985) 在正四面体 $ABCD$ 中, G 是三角形 ABC 的中心, H 在线段 CD 上, $CH:HD=1:2,I$ 在线段 BD 上, $BI:ID=2:1.$ 求 $\angle IGH.$ (要求作草图, 给出建系过程, 用坐标法)
(001986) 在边长为 2 的正方体 $ABCD - A'B'C'D'$ 中, E, F, G 分别为 $B'C'$, $A'D'$, $A'B'$ 的中点.

(1) 求证: 平面 $EBD \parallel$ 平面 FGA;

(2) 求平面 EBD 与平面 FGA 之间的距离.

, , , , , , , , , , , , , , , , , , , ,	正方体 <i>ABCD – A'B'C'D'</i> A' 和 A'B' 的中点, 求异面		$BC \perp$, $AE : ED = CF : FB =$	
(001988) 设地球的半径	为 R, 那么地球表面任意两/	个不同地点的球面距离的取	值范围为	
(001989) 设地球半径为 确到 10km)	6400km, 地球上的两点 A(30	0°N,60°E) 与 $B(50$ °N,110°	'E) 之间的球面距离约为	(精
(001990) 设地球半径为	6400km, 地球上的两点			
A(3	9°54′23.54″N, 116°23′28.16″	'E), $B(39^{\circ}59'28.66''N, 116'')$	°23′24.84″E)	
之间的球面距离约为	(精确到 0.1km)			
按下列指定步骤求异面 (1) 用 \overrightarrow{b} , \overrightarrow{c} , \overrightarrow{d} 表示向	直线 AH,CG 的距离.(希望的量 $\overrightarrow{AH},\overrightarrow{CG};$ H,CG 公垂线的一个方向向	能借此题体会出坐标法与基	段 $\overrightarrow{AB} = \overrightarrow{b}$, $\overrightarrow{AC} = \overrightarrow{c}$, $\overrightarrow{AD} = \overrightarrow{d}$. 作向量法之间的异同点)	
(001992) 用集合的关系 为	•	实数集 R, 有理数集 Q, 🕸	整数集 Z 和自然数集 N 的关系	
$(001993)b \neq 0$ 是复数 a	$+bi(a,b \in \mathbf{R})$ 为虚数的	条件.		
A. 充分非必要	B. 必要非充分	C. 充分必要	D. 既不充分又不必要	
(001994) 复数 $a + bi(a,$	$b \in \mathbf{R}$) 是纯虚数的一个充分	必要条件是		
A. $a = 0$	B. $b \neq 0$	C. $ab = 0$	$D. \frac{a}{b} = 0$	
(001995) 已知 θ 使得复	数 $z = (2\sin^2\theta - \sin\theta) + (3\sin^2\theta - \sin\theta)$	$3 \tan^2 \theta - 1$)i 是纯虚数, 则	$\theta = \underline{\hspace{1cm}}$.	
(001996) 已知实数 α 与	正实数 r , 若复数 $z_1 = 1 - 1$	$r\sin\alpha i = z_2 = r\cos\alpha - \sqrt{c}$	③i 相等, 则 z ₁ =	
(001997) 能使 $(n+i)^4$	成为整数的整数 n 是			
(001998) 若关于 x 的实	·系数二次方程 x ² + ax + b =	= 0 的一个根是 2 + i, 则 a	$+bi = \underline{\hspace{1cm}}$	
(001999)[选做] 若复数	z 满足 $z^{10} + z^5 + 1 = 0$, 则	$z^{30} + z^{40} + z^{50} = \underline{\hspace{1cm}}$	·	
(002000) 判断是否存在 出 m 的值; 若不存在, 5 (1) z 是实数. (2) z 是虚数. (3) z 是纯虚数.		$+2m - 15 + \frac{m^2 - 5m + 6}{m^2 - 25}$	i 分别满足下列条件. 若存在, 写	
(4) z 是零.				

(002001) 计算: $\frac{1+i}{3-i} + 7i$ 与 $\frac{1-i}{3+i} - 7i$.

(002002) 当复数 z 分别取以下各值时, 计算 z^2, z^3, z^4 的值, 并直接写出当 $n \in \mathbb{N}^*$ 时 z^n 的值.

- (1) z = i.
- (2) z = -i.
- (3) z = 1 + i.

(4)
$$z = -\frac{1}{2} + \frac{\sqrt{3}}{2}$$
i.

(5)
$$z = -\frac{1}{2} - \frac{\sqrt{3}}{2}i$$
.

$$(002003)\frac{(2+2i)^5}{(-1+\sqrt{3}i)^4} = \underline{\hspace{1cm}}.$$

(002004)"两个复数的和是虚数"的一个必要非充分条件是_____

A. 两个数都是虚数

B. 两个数中一个是虚数, 一个是实数

C. 两个数中至少有一个是虚数

D. 两个数都是纯虚数

(002005) 计算: (1) $\frac{1+2i}{2-i}$;

$$(2) \ \frac{\mathrm{i} - 4}{-\sqrt{8} - \mathrm{i}}.$$

(002006) 计算: $(1+i) + 2(1+i)^2 + 3(1+i)^3 + \cdots + 100(1+i)^{100}$.

(002007) 设 k 是实数, 若 $\frac{3+i}{2+ki}$ 是纯虚数, 求 k 的值.

(002008) 已知 z 为虚数, $z + \frac{1}{z}$ 是实数.

- (1) 求 z 的实部的取值范围;
- (2) 求证: $\frac{1-z}{1+z}$ 为纯虚数.

(002009) 证明或否定: 若 $z_1^2 + z_2^2 = 0$, 则 $z_1 = z_2 = 0$.

(002010) 已知平行四边形的三个顶点分别对应于复数 2i, 4-4i, 2+6i, 则第四个顶点所对应的复数为_____

(002011) 若复数 z = (x-1) + (2x-1)i 的模小于 $\sqrt{10}$, 则实数 x 的取值范围是

(002012) 已知 α, β 是锐角三角形的两个内角,则复数 $z=(\cos \beta - \sin \alpha) + \mathrm{i}(\sin \beta - \cos \alpha)$ 在复平面内对应的点位于第______ 象限.

(002013) 当 $0 < x < \frac{1}{2}$ 时,复数 $z_1 = 1 + \cos 2(1+x) + i \sin 2(1+x)$ 与 $z_2 = 1 - \cos 2(1-x) + i \sin 2(1-x)$ 的模的大小关系是______.

- A. $|z_1| < |z_2|$
- B. $|z_1| = |z_2|$
- C. $|z_1| > |z_2|$
- D. 不能确定

(002014) 当 m 在实数范围内变动时, 复数 $z = (m^2 - 8m + 15)(1 - i)$ 所对应的点的轨迹是______

A. 直线

B. 射线

- C. 线段
- D. 圆

(002015) 复平面内,	若 $ z-1+i + z-1-i =2$,	则复数 z 的对应的点的转	轨迹是·
A. 圆	B. 两条射线	C. 射线	D. 线段
(002016) 已知集合 1	$P = \{z z - i = z + i , z \in \mathbf{C}\}$	$Q = \{z z+1 = 1, z \in \mathbb{R} \}$	\mathbb{C} }, 则 $P \cap Q =$
(002017) 如果 $ z+1 $	z - i = 1, $ m z - 3 + 4i $ 的最	大值与最小值之积为	
(002018) 已知 z-2	$ z = z - 2$,则 $ z - 3 + 4\mathrm{i} $ 的旨		
(002019) 已知 $ z_1 =$	$ z_3 z_2 = 5, z_1 + z_2 = 6, $ 则	$ z_1 - z_2 = $	
	点 A,B 对应的复数分别为 z_1 $z_2 =3:2,$ 则 $z=$	$= -2 + i, z_2 = 3 + 4i,$ 复数	$oldsymbol{z}$ 对应的点 C 在线段 AB 上, 且
(002021) 如果复数 z	$ z $ 満足 $ z+3-4{ m i} =6$, 求 $ z $ 自	的最大值与最小值.	
(002022) 已知 $z + \frac{1}{z}$	是实数, 满足条件的复数 z 的	集合在复平面上是什么图	形?请画出草图并说明理由.
(002023) " z_1 与 z_2 是	上共轭复数"是"z ₁ + z ₂ ∈ R 且	$z_1z_2 \in \mathbf{R}$ "的	条件.
A. 充分非必要	B. 必要非充分	C. 充分必要	D. 既不充分又不必要
(002024) 若 z ₁ 与 z ₂ 点的轨迹是		$ z_1 ^2 - z_2 - z_1 ^2 = z - z_1 ^2$	$ z_2 ^2$ 的复数 z 在复平面内所对应的
A. 一条垂直于实轴	的直线	B. 一条垂直于虚轴的	的直线
C. 线段		D. 圆	
(002025) 以下各命题	Î:		
(1) $a, b, c, d \in \mathbf{C}$, 若 a	$a + b\mathbf{i} = c + d\mathbf{i}$,则 $a = c$ 且 $b = c$	=d.	
(2) 3 + i > 1 + i.			
(3) 若 $z \in \mathbb{C}$,则 $z +$			
$(4) 若 z \in \mathbf{C}, 则 z -$			
	z = 1, z = -1, z = i 或 $z = -i$.		
中, 是真命题的有			
(002026) 以下各命题	[:		
$(1) \sqrt{z^2} = z .$			
(2) $ z = \bar{z} $. (3) $ z ^2 = z^2$.			
(3) $ z ^2 = \bar{z}^2$. (4) $\overline{z_1 + 2\bar{z_2}} = \bar{z_1} + \bar{z_2}$)~		
(4) $z_1 + 2z_2 = z_1 + z_2$ (5) $\overline{z_1 + i\bar{z_2}} = \bar{z_1} + i\bar{z_2}$	_		
中, 是真命题的有	_		
(002027) 复数 $\frac{(1+i)}{(3+i)}$			

- (002028) 已知 $z_1 = \sin 2\theta + i\cos \theta$, $z_2 = \cos \theta + \sqrt{3}i\sin \theta$, 若 $z_1 = \bar{z}_2$, 则 $\theta =$ ______
- (002029) 已知 $f(\bar{z}+i)=z+2\bar{z}-2i$, 则 f(1+2i)=______
- (002030) 已知 $|z|=1, \lambda \in \mathbb{C}$, 且 $\lambda z \neq 1$, 证明: $\left|\frac{\bar{z}-\lambda}{\lambda z-1}\right|=1$.
- (002031) 解方程: $z^2 = \bar{z}$.
- (002032) 已知非零复数 z_1, z_2 满足 $|z_1 + z_2| = |z_1 z_2|$, 求证: $\left(\frac{z_1}{z_2}\right)^2$ 是负实数.
- (002033)[选做] 设 $|z| \le 1$, $|w| \le 1$.
- (1) 证明或否定: $|z+w| < |1+\bar{z}w|$.
- (2) 证明或否定: $|z+w| \le |1+zw|$.
- (002034) 复数 $z = -\sqrt{3} + i$ 的三角形式是
- (002035) 复数 $z = \cos 110^{\circ} i \sin 110^{\circ}$ 的辐角主值为______.
- (002036) 已知 $\frac{3\pi}{2} < \theta < 2\pi$,则 $-\sin\theta + i\cos\theta$ 的辐角主值为______.
- (002037) 复数 $1 + \sin \theta + i \cos \theta (0 < \theta < \frac{\pi}{2})$ 的三角形式是_____.
- (002038) 若 $\frac{\cos A + i \sin A}{(\cos B + i \sin B)(\cos C + i \sin C)}$ 是纯虚数,则 $\triangle ABC$ 中 $\angle A =$ _____.
- (002039) 若将复数 $1-\mathrm{i}$ 所对应的向量绕原点逆时针旋转 $\frac{3\pi}{4}$ 得一新向量,则这个新向量所对应的复数为_
- (002040) 已知复数 z 满足 $|z + 3i| \le 2$, 则 $\arg z$ 的最大值为______.
- $(002041)\arg(\sqrt{3}-3i)^{25}$ 的值为 .
- (002042) 已知复数 $z = \frac{1}{2} + \frac{\sqrt{3}}{2}$ i, $z^n = -1$, |n| < 10, 则整数 n 的值为_____(写出所有).
- (002043) 已知复数 $z = a + bi(a, b \in \mathbf{R})$ 所对应的点在第四象限, 则 $\arg z =$ ______

A.
$$\arcsin \frac{b}{\sqrt{a^2 + b^2}}$$
 B. $\arcsin \frac{a}{\sqrt{a^2 + b^2}}$ C. $\arctan \frac{b}{a}$ D. $2\pi + \arctan \frac{b}{a}$

B.
$$\arcsin \frac{a}{\sqrt{a^2+b^2}}$$

C.
$$\arctan \frac{b}{a}$$

D.
$$2\pi + \arctan \frac{b}{a}$$

(002044) 已知复数
$$z$$
 满足 $\left| \frac{z}{z-1} \right| = 2$, $\arg \left(\frac{z-1}{z} \right) = \frac{\pi}{3}$, 则 $z = \underline{\hspace{1cm}}$.

- (002045) 若复数 -2-i, -3-i 的辐角主值分别为 $\alpha, \beta, 则 \alpha + \beta =$ ______
- (002046) 设 $n \in \mathbb{N}^*$, 分别求 $(1+i)^n$ 的三角形式与代数形式.

$$(002047) \ \ {\bf 若} \left(\frac{\sqrt{3}}{2}+\frac{1}{2}\mathrm{i}\right)^n+\mathrm{i}^n=0 (n\in \mathbf{N}), \ \ {\bf 求} \left(\frac{1}{2}-\frac{\sqrt{3}}{2}\mathrm{i}\right)^n.$$

- (002048)[选做] 已知 $z = \cos \frac{2\pi}{5} + i \sin \frac{2\pi}{5}$, 求 $(1+z)(1+z^2)(1+z^4)(1+z^8)$.
- (002049) 复数 5 + 12i 的三角形式为____
- (002050) 已知复数 $(a+i)^2$ 的辐角主值是 $\frac{3\pi}{2}$, 则实数 a=_____.

(002052) 已知复数 z 满足 $|z-2-2{\rm i}| < \sqrt{2}$, 则 $\arg z$ 的取值范围为______. (002053) 以下命题中: (1) 两个互为共轭的非零复数的辐角主值之和为 2π. (2) 虚数的平方根还是虚数. (3) 非零共轭复数的 n 次幂仍为共轭复数 $(n \in \mathbf{Z})$. 真命题有 (002054) 已知 n 是正整数, 且 $\left(\frac{6}{3+\sqrt{3}i}\right)^n$ 是实数, 则 n 的最小值是______. (002055) 负实数 a 的平方根为_______,-i 的平方根为______,-i 的立方根为_____ (002056) 若 α 是 1 的一个 n 次方根, 则 $1 + \alpha + \alpha^2 + \cdots + \alpha^{n-1} =$ (002057) 求 3+4i 的平方根. (002058) 己知 $w = -\frac{1}{2} + \frac{\sqrt{3}}{2}$ i, $n \in \mathbb{Z}^+$, 求 $w^n + \frac{1}{w^n}$. (002059) 在复数集中解方程 $(z+1)^4 = (-1+\sqrt{3}i)^4$. (002060)[选做] 解方程 $z^4 = \bar{z}$. $(002061)[选做] 记 A = \cos\frac{\pi}{11} + \cos\frac{3\pi}{11} + \cos\frac{5\pi}{11} + \cos\frac{7\pi}{11} + \cos\frac{9\pi}{11}, B = \sin\frac{\pi}{11} + \sin\frac{3\pi}{11} + \sin\frac{5\pi}{11} + \sin\frac{7\pi}{11} + \sin\frac{9\pi}{11}$ 证明: $A = \frac{1}{2}$, $B = \frac{1}{2} \cot \frac{\pi}{22}$. (002062) 将点 (1,-1) 绕原点逆时针旋转 $\frac{2\pi}{3}$ 后所得到的点的坐标为______. (002063) 设点 A,B 分别对应于复数 a,b, 线段 AB 绕点 A 按逆时针方向旋转 90° 到 AC 位置, 则 C 点对应 的复数是 (002064) 已知等腰直角三角形 ABC 的斜边 AB 的两个端点的坐标分别为 A(-1,2) 和 B(2,3), 则顶点 C 的 (002065) 复平面内, 正三角形的一个顶点在原点, 中心 P 所对应的复数是 1+i, 则其他两个顶点所对应的复数 是_____ (002066) 在复平面内, 点 P 所对应的复数满足 |z|=1, 点 Q 所对应的复数为 $z_0=2$, 将向量 \overrightarrow{QP} 绕 Q 点顺时 针旋转 $\frac{\pi}{2}$, 得到新向量 \overrightarrow{QR} , 则点 R 与原点 O 之间的距离 |OR| 的最大值为______. (002067) 已知复数 z+1, z-1 的辐角主值分别为 $\frac{\pi}{6}$ 和 $\frac{2\pi}{3}$, 则 z=______.

(002069) 已知非零复数	z 满足 $0 < \arg z < 2\pi$, 则下	列各式中, 辐角主值一定构	目等的两个复数是
A. z 和 \bar{z}	B. $2z$ 和 z^2	C. $-z$ 和 z^{-1}	D. \bar{z} 和 $1/z$
(002070) 设 $z = \cos 40^{\circ}$	$+ i \sin 40^{\circ}$,则 $ z + z^2 + z^3 $	$-\cdots + z^{10} = \underline{\hspace{1cm}}$	·
(002071) 已知 $z_1 = 1$ —	$2i, z_2 = 1 + i, z_3 = -1 + 3i,$	则 $\arg z_1 + \arg z_2 + \arg z_3$	3 的值为
(002072) 已知等边三角	形的两个顶点 A,B 的坐标分	·别为 (2,1) 和 (3,2), 求第	写一个顶点 C 的坐标.
(002073)[选做] 已知数列		(\mathbf{Z}) , 求 $\{a_n\}$ 的前 n 项和	S_n .
	ド重合的 A, B, C 分别是复数 $z_1^2 + z_2^2 + z_3^2 = z_1 z_2 + z_2 z_3 + z_3 z_1 + z_2 z_3 + z_3 z_3 + z_3 z_3 + z_4 z_3 z_3 + z_5 z_3 z_3 + z_5 z_3 z_3 + z_5 z_3 z_3 + z_5 z_3 z_3 z_3 z_3 z_3 z_3 z_3 z_3 z_3 z_3$		寸应的点, 试证明 $ riangle ABC$ 是正 \equiv
	$P(2) \geq 2$ 的定圆 $P(3)$ 的内接正 $P(2)$		$(2,\cdots,n),P$ 为该圆周上任意 $-$
(002076) 有以下说法:			
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	数方程 $ax^2 + bx + c = 0$ ($a \neq ax^2 + bx + c = 0$)	,	
	+px+q=0 的一个根,则这		i;
其中正确说法的序号为_	=0 有两个共轭虚根, 则 p,q	业月头致.	
(002077) 已知关于 x 的	一元二次方程 $ax^2 + bx + c$:	= 0 在复数集中的两个根法	为 $lpha,eta,$ 有以下说法:
(1) 若 $b^2 - 4ac \ge 0$, 则	α, β 不共轭;		
(2) $\alpha + \beta - \frac{b}{a}, \alpha\beta = \frac{c}{a};$			
$(3) \alpha - \beta = \sqrt{(\alpha + \beta)^2}$	$\overline{^2-4lphaeta}$.		
其中正确说法的序号为_	·		
(002078) 在复数集中, 写	5出下列一元二次方程的解:		
(1) $4x^2 + 9 = 0$ 的解为_			
(2) $x^2 - x + 1 = 0$ 的解			
$(3) x^2 + 4x + 12 = 0 \text{ fs}$	解为		
(002079) 在复数集中因			
$(1) x^2 + 5y^2 =$			
$(2) x^2 + 4xy + 12y^2 = _$			
	<u> </u>		
(002080) 若实系数一元	二次方程的一个根是 $rac{1}{3}$ $ rac{4\sqrt{3}}{3}$	$\frac{75}{8}$ i, 则这个方程可以是	
(002081) 若实系数一元	二次方程 $2x^2 + bx + c = 0$ 自	的一个虚根是 $\sqrt{2}-\sqrt{3}\mathrm{i}$, 则	∅ <i>c</i> =

(002082) 已知 $x \in \mathbf{C}$, $x + \frac{1}{x} = -1$, 则 $x^{2013} + x^{-2013} =$ ______.

(002083) 若 α, β 是关于 x 的实系数二次方程 $ax^2 + bx + c = 0$ 的两个虚根, 且 $\frac{\alpha^2}{\beta}$ 为实数, 求 $\frac{\alpha}{\beta}$.

(002084) 已知关于 x 的实系数方程 $x^4 - 4x^3 + 9x^2 - ax + b = 0$ 的一个根是 1 + i, 求 a, b 的值并解此方程.

(002085) 求证: 对任意的实数 a, 总存在复数 z 使得 $z + \frac{1}{z} = a$.

(002086) 已知关于 x 的方程 $x^2 + x + p = 0$ 的两个复数根 α, β 满足 $|\alpha - \beta| = 3$, 求实数 p 的值.

(002087) 以复数 i 与 1 - i 为根的一个一元二次方程为______.

(002088) 若非零复数
$$x, y$$
 满足 $x^2 + xy + y^2 = 0$, 则 $\left(\frac{x}{x+y}\right)^{2012} + \left(\frac{y}{x+y}\right)^{2012} = \underline{\qquad}$

(002089) 将 $z^6=1$ 的六个解写成代数形式 $a+b\mathrm{i}(a,b\in\mathbf{R}),$ 则使 a>0 的所有解的乘积为______

(002090) 若关于 x 的方程 $(1-i)x^2 + 2mix - (1+i) = 0$ 有实根, 则实数 m 的值为______.

(002091) 若关于 x 的方程 $x^2 + (k+2i)x + 2 + ki = 0$ 没有实根, 则实数 k 的取值范围为_______.

(002092) 在复数范围内解下列方程:

- (1) ix + 1 + i = 0;
- (2) $2x^2 ix + 1 = 0$;
- (3) $x^2 (3-2i)x + 5 5i = 0$.

(002093) 已知 $z \in \mathbb{C}$, 且 $|z| = 3\sqrt{2}$, 若关于 x 的方程 $x^2 - zx + 4 + 3i = 0$ 有实数解, 求复数 z.

(002094) 若关于 x 的实系数方程 $2x^2 + 3ax + a^2 - a = 0$ 至少有一个模为 1 的根, 求实数 a 的值.

(002095) 有以下各组曲线,

- (1) 曲线 y = x 与曲线 $\frac{x}{y} = 1$;
- (2) 曲线 xy = 1 与曲线 $y = \frac{1}{x}$;
- (3) 曲线 $y = \sqrt{x}$ 与曲线 $y^2 = x$;
- (4) 曲线 |y| = |x| 与曲线 $y^2 = x^2$;
- (5) 曲线 |y| = |x| 与曲线 $\sqrt{y} = \sqrt{x}$;
- (6) 曲线 $x^2 = 0$ 与曲线 x = 0;
- (7) 曲线 $\sqrt{x} = 0$ 与曲线 x = 0;
- (8) 曲线 |y| = x 1 与曲线 |y| = |x| 1,

其中为同一曲线的有

(002096) 我们知道, 如果曲线 C 与方程 F(x,y)=0 之间有以下两个关系: (1) 曲线 C 上的点的坐标都是方程 F(x,y)=0 的解; (2) 以方程 F(x,y)=0 的解为坐标的点都在曲线 C 上, 那么方程 F(x,y)=0 叫做曲线 C 的方程.

(002113) 已知线段 AB 的长为 4, 它的两个端点 A, B 分别在两坐标轴上移动, 求线段 AB 的中点 P 的轨迹方程.

(002114) 已知定点 A(4,0) 和曲线 $x^2 + y^2 = 1$ 上的动点 B, 若点 P 满足 $\overrightarrow{BP} = 2\overrightarrow{PA}$, 求点 P 的轨迹方程.

(002115) 若三角形的两个顶点是 B(0,0) 与 C(6,0), AB 边上的中线长为 8, 求另一顶点 A 的轨迹方程.

$$(002116)$$
 曲线 $x^2 + y^2 - 4x + 3 = 0$ 与曲线 $y^2 + 2x - 2 = 0$ 的公共点坐标为

(002117) 若两曲线 x + y = 3a, x - y = a 的交点在曲线 $x^2 + y^2 = 9$ 上, 则 a =______.

(002118) 已知圆 O 以原点为圆心, 5 为半径, 设 A(3,4), B(0,-5), 则

- (1) 劣弧 *AB* 的方程为 ;
- (2) 优弧 *AB* 的方程为______.

(002119) 在坐标系中分别画出下列曲线的大致图像. (1) $x = -\sqrt{y^2}$; (2) $x^2 + 2xy - 3y^2 = 0$; (3) $x^2 + |y| = 4$.

(002120) 设 $k \in \mathbb{R}$, 讨论曲线 y = x + k 与曲线 $4x^2 + 9y^2 = 36$ 的交点的个数.

(002121) 已知曲线 y = ax - 1 与曲线 $y^2 = 2x$ 只有一个公共点, 求实数 a 的值.

(002122) 已知曲线 y = x + a 与曲线 $2y = x^2$ 有且仅有两个公共点 A, B, 若 $|AB| = 4\sqrt{2}$, 求实数 a 的值.

(002123) 已知命题"曲线 C: f(x,y) = 0 与曲线 D: g(x,y) = 0 的并集的方程为 f(x,y)g(x,y) = 0". 判断该命题的真假并说明理由.

(002124) 已知曲线 y = x + k 与曲线 $4x^2 + 9y^2 = 36$ 有且仅有两个公共点 A, B, 求线段 AB 中点 M 的轨迹方程.

(002125) 若直线经过点 (2,-3), 且平行于向量 $\overrightarrow{d}=(3,4)$. 则直线 l 的点方向式方程为______.

(002127) 将直线 2x - 3y + 4 = 0 写成点方向式方程, 你的结果是_______.

(002128) 直线 2x - 3y - 1 = 0 的一个方向向量为______

(002129) 直线 3x + 2 = 0 的一个方向向量为 , 直线 4 - 3y = 0所有的 方向向量为 .

(002130) 将直线 $2x - 3y + 4 = 0$ 写成点方向式方程, 你的结果是
(002131) 若直线 l 与两坐标轴围成一个等腰直角三角形,则直线 l 的一个方向向量为
(002132) 已知直线 l 过点 $(1,2)$,且 $M(2,3)$ 与 $N(4,-5)$ 两点到直线 l 的距离相等. 则直线 l 的点方向式方程为
(002133) 已知平行四边形 $ABCD$ 的三个顶点的坐标分别为 $A(1,2), B(3,4), C(2,6),$ 分别求 AB 边与 AD 边所在直线的点方向式方程.
(002134) 已知梯形 $ABCD$ 的三个顶点的坐标分别为 $A(2,3), B(-2,1), C(4,5),$ 求此梯形中位线所在直线的方程.
 (002135) 已知三点 A(x1, y1), B(x2, y2), C(x3, y3). (1) 在坐标平面上求点 P, 使得 AP² + BP² + CP² 的值最小; (2) 以 (1) 的结论为启发, 你能猜想什么更一般的结论? (3) (选做) 证明你刚才猜想的结论.
(002136) 若直线经过点 $(2,-3)$,且垂直于向量 $(3,4)$.则直线 l 的点法向式方程为
(002137) 若直线经过点 $(2,-3)$,且垂直于向量 $(3,4)$.则直线 l 的点方向式方程为
(002138) 将直线 $2x - 3y + 4 = 0$ 写成点法向式方程, 你的结果是
(002139) 直线 $2x - 3y - 1 = 0$ 的一个法向量为
(002140) 直线 $3x + 2 = 0$ 的一个法向量为
(002141) 若直线 $2(x+1)+9(y-1)=0$ 的一个法向量为 $(a-1,a^2)$, 则实数 a 的值为
(002142) 已知原点 O 在直线 l 上的射影为 $H(2,3)$,则直线 l 的方程为
(002143) 已知正方形 $ABCD$ 的顶点 $A(-1,1)$,正方形中心坐标为 $(0,3)$,则对角线 BD 所在直线的方程为
(002144) 过点 $A(-1,1)$, 且与点 $B(2,5)$ 距离最大的直线的方程为
(002145) 已知 $\triangle ABC$ 三边所在的直线分别为 $4x-y=3, \ x+y=7, \ 3x-2y=1.$ $\triangle ABC$ 的垂心 H 的坐标为
(002146) 已知 $\triangle ABC$ 两个顶点的坐标分别为 $A(-2,1), B(4,-3), \triangle ABC$ 的垂心坐标为 $H(0,2).$ 求 BC 边所在直线的方程.
(002147) 三角形 ABC 中,已知 $A(1,0), B(1,1), C(5,3),$ 求角 A 的内角平分线所在直线的方程.
(002148) 直线 l 过点 $(2,3)$, 它的法向量是直线 $x-2y=0$ 的方向向量, 则直线 l 的方程为

(002149) 若三点 $A(3,1), B(-2,b), C(8,11)$ 同在一条直线上,则实数 b 等于
(002150) 在 x,y 轴上截距分别是 $3,4$ 的直线的方程是
(002151) 已知直线 l 过点 $(3,-1)$, 且与两坐标轴为成一个等腰三角形, 则直线 l 的方程为
(002152) 若直线 $(m+2)x + (m^2 - 2m - 3)y = 2m$ 在 x 轴上的截距是 3 , 则实数 m 的值为
(002153) 已知 $A(1,1),B(5,3),C(4,5)$ 是 $\triangle ABC$ 的三个顶点,直线 $l\parallel AB$ 且平分 $\triangle ABC$ 的面积,则 l 的方程为
(002154) 已知直线 l 的法向量为 $(4,3)$,且 l 与两坐标轴所围成的直角三角形的周长为 20 . 则 l 的方程为
(002155) 过点 (2,3), 且在两条坐标轴上的截距相等的直线方程为
 (002156) 已知 △ABC 的两个顶点坐标 A(0,0), B(21,0). (1) 若三角形重心 G 的坐标为 (10,3), 求 AC 边所在直线的方程; (2) 若三角形垂心 H 的坐标为 (15,6), 求点 C 的坐标; (3) 若点 C 的坐标为 (16,12), 求三角形内心 I 的坐标.
(002157) 在 $\triangle ABC$ 中,已知点 $A(5,-2)$, $B(7,3)$,且边 AC 的中点 M 在 y 轴上,边 BC 的中点 N 在 x 轴上 求: (1) 顶点 C 的坐标; (2) 直线 MN 的方程.
(002158)(利用截距式方程求解 $)$ 已知直线 l 过点 $P(3,2)$, 且与 x 正半轴, y 正半轴分别交于点 A,B . (1) 求 $\triangle AOB$ 面积的最小值及此时 l 的方程 $(O$ 为坐标原点); (2) 求直线 l 在两轴上截距之和的最小值.
(002159) 已知直线斜率 $k=-2$,则其倾斜角为,一个方向向量为. 已知直线的一个方向向量为 $(1,-3)$,则其倾斜角为,斜率为. 已知直线的倾斜角为 $\frac{\pi}{6}$,则其斜率为,一个方向向量为.
(002160) 若下列直线的斜率不存在, 则填"不存在"; 若存在, 则写出斜率值. (1) 直线 2y - 1 = 0 的斜率为; (2) 直线 2x - 1 = 0 的斜率为; (3) 设 a,b 为正数, 直线 ax + by - 1 = 0 的斜率为
(002161) 若 $-\frac{\pi}{2} < \theta < 0$,则直线 $y = x \cot \theta$ 的倾斜角为
(002162) 已知直线 l 的斜率不大于 $\sqrt{3}$,则它的倾斜角的取值范围为
(002163) 若 $\theta \in \mathbb{R}$,则直线 $y = x \sin \theta + 1$ 的倾斜角的取值范围为

(002164) 过点 $P(2,3)$ 与 $Q(1,5)$ 的直线 PQ	的倾斜角为,点斜式方程为
(002165) 已知直线 l 的倾斜角的正弦值为 $\frac{3}{5}$,	且过 (1,1), 则该直线的斜截式方程为
(002166) 已知直线 l 的倾斜角为直线 $y=\sqrt{3}$	x+1 的倾斜角的一半, 则直线 l 的斜率为
(002167) 设点 $A(2,-3)$, $B(-3,-2)$, 直线 b 为	l 过点 $P(1,1)$ 且与线段 AB 相交,则 l 的斜率 k 的取值范围
(002168) 过原点引直线 l , 使 l 与连接 $A(1$ 为	(1) 和 $B(1,-1)$ 两点的线段相交 $($ 则直线 l 倾斜角的取值范围
(002169) 设 m 为实常数, 已知两点 $M(2m+$	(3,m),N(m-2,1), 求直线 MN 的倾斜角.
(002170) 若直线 l 的倾斜角是连接 (3, -5), ((0,-9) 两点的直线的倾斜角的两倍, 求 l 的斜率.
$(002171)[$ 利用点斜式方程求解 $]$ 已知直线 l 过 (1) 求 $\triangle AOB$ 面积的最小值及此时 l 的方程 (2) 求直线 l 在两轴上截距之和的最小值.	点 $P(3,2)$, 且与 x 正半轴, y 正半轴分别交于点 A,B . (O 为坐标原点);
(002172) 如果 $pr < 0$, $qr < 0$, 那么直线 $px + 1$	$qy + r = 0$ 一定不通过第 $_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$
(002173) 直线 $x - ay + 1 = 0$ $(a < 0)$ 的斜率	为,倾斜角为
(002174) 直线 $x - ay + 1 = 0$ $(a \ge 0)$ 的倾斜	.角为
(002175) 设 a,b 是常数, 过 (a,b) 且平行于直	线 $2x - y + 1 = 0$ 的直线方程为
(002176) 设 a,b 是常数, 过 (a,b) 且垂直于直	线 $2x - y + 1 = 0$ 的直线方程为
(002177) 已知矩形 OABC 的顶点 A 的坐标:	为 (4,3), 则直线 <i>AB</i> 的方程为
(002178) 若直线与两坐标轴相交, 且被两轴截	得的线段中点为 (1,2), 则此直线的方程为
(002179) 已知 $A(-1,0)$, $B(7,2)$, $C(3,8)$ 是 Z 的方程为	ΔABC 的三个顶点, 直线 l 过顶点 C 且平分 ΔABC 的面积, 则 l
(002180) 直线 l 与直线 $y=ax+b(a\neq 0)$ 夹角	的平分线是直线 $y=x$, 则直线 l 的方程是
(002181) 由方程 $ x-1 + y-1 =1$ 确定的	曲线所围成的图形的面积为
(002182)[不定项选择] 已知直线 $l:f(x,y)=$ 能为	0 与直线 l 外一点 $P(x_0,y_0)$, 那么曲线 $f(x,y)-f(x_0,y_0)=0$ 可
A. 过 P 且与 l 平行的直线	B. 两条直线
C. 直线 <i>l</i>	D. 与 l 相交的直线
(002183) 已知占 $A(x_1, y_1)$ $B(x_2, y_2)$ 分别在	直线 $x+y-7=0$ 和直线 $x+y-5=0$ 上, 求 AB 的中点 M 到

原点距离的最小值.

(002184)[利用点斜式方程求解] 已知 l 经过点 P(1,2), 且与两坐标轴围成的三角形面积为 S.

- (1) 当 S=3 时,满足条件的直线有几条?
- (2) 当 S=4 时, 满足条件的直线有几条?
- (3) 当 S=5 时, 满足条件的直线有几条?
- (4) 设常数 a > 0, 当 S = a 时, 满足条件的直线有几条? (只需写出结果)

注:观察第(4)小问在几何图形上的直观意义,再观察第(2)小问与练习7的联系,以后你可以仅通过心算就可猜出(4)的结果吗?

(002185) 设 t 是常数, 讨论直线 $l_1:6x+(t-1)y=8$ 与直线 $l_2:(t+4)x+(t+6)y=16$ 的位置关系.

(002186) 经过两直线 x-2y+4=0, x+y-2=0 的交点, 且与直线 3x-4y+5=0 垂直的直线的方程为______.

(002187) 若直线 x-2y+4=0 经过直线 x+y-2=0 和 x+ay+8=0 的交点, 则实数 a=______.

(002188) 若直线 y = kx + k + 2 与直线 y = -2x + 4 有交点,且交点在第一象限内,则实数 k 的取值范围为______.

(002189) 若直线 $(2m^2 + m - 3)x + (m^2 - m)y = 4m - 1$ 与直线 2x - 3y = 5 互相平行,则实数 m 的值为_______.

(002190) 若直线 mx - 2y = 1 与直线 6x - 4y + n = 0 重合, 则实数 m, n 的值分别为______.

(002191) 已知无论实数 m 取何值,直线 (2m-1)x + (m+3)y - (m-11) = 0 都通过一个定点,该定点的坐标为______.

(002192) 方程 (2x+y)(x+y-3)=0 与方程 (4x+2y+1)(2x-y+1)=0 所表示的两曲线有______ 个公共点.

(002193) 方程 $4x^2 - y^2 + 4x + 2y = 0$ 表示的曲线是______.

A. 一个点

B. 两条互相平行的直线

C. 两条互相垂直的直线

D. 两条相交但不垂直的直线

$$(002194)$$
 求证: 若三条两两相交的直线 $l_i: a_ix + b_iy + c_i = 0 (i=1,2,3)$ 交于同一点,则 $\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = 0.$

$$(002195)$$
 求证: 若三条两两相交的直线 $l_i: a_ix + b_iy + c_i = 0 (i=1,2,3)$ 满足 $\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = 0$,则它们交于

同一点.

(002196)[选做, 注意逻辑] 对于某直线 l 上的任意点 (x,y), 点 (x+3y,8x-y) 也在该直线上, 求直线 l 的方程.

(002197) 直线 $x + y = 1$ 与直线 $2x + y = 0$ 的夹角为,直线 $x = 1$ 与直线 $2x + y = 0$ 的夹角为
(002198) 若直线 $l_1: ax + (1-a)y = 3$ 与直线 $l_2: (a-1)x + (2a+3)y = 2$ 互相垂直,则实数 a 的值为
(002199) 若直线 l_1 和 l_2 的斜率是方程 $6x^2+x-1=0$ 的两根, 则 l_1 与 l_2 的夹角为
(002200) 若直线 l 过原点,且与直线 $y = \sqrt{3}x + 1$ 夹角为 30° ,则直线 l 的方程为
(002201) 若等腰直角三角形 ABC 的斜边所在直线的方程是 $3x-y+2=0$,直角顶点是 $C(3,-2)$,则直角边 AC 的方程为
(002202) 已知 $A(2,3),B(6,6)$ 是正方形 $ABCD$ 相邻两点 $(A,B,C,D$ 按顺时针排列) 的坐标, 则点 D 的坐标为
(002203) 已知方程 $y=a x $ 和 $y=x+a$ 所确定的两曲线有两个交点, 则实数 a 的取值范围为
(002204) 若直线 l 沿 x 轴的负方向平移 3 个单位,再沿 y 轴正方向平移 1 个单位后,又回到原来的位置,则直线 l 的斜率为
(002205) 已知直线 l_1 过点 M , 将直线 l_1 绕点 M 沿顺时针方向旋转 $\alpha \in (0,\frac{\pi}{2})$ 角, 得到的直线 l_2 的方程为 $x+y-2=0$, 将直线 l_2 再绕点 M 顺时针方向旋转 $\frac{\pi}{2}-\alpha$ 角, 得到的直线 l_3 的方程为 $2x-y-1=0$, 则直线 l_1 的方程为
(002206) 已知 $M(-1,-5),N(3,-2),$ 若直线 l 的倾斜角是直线 MN 的倾斜角的一半,则直线 l 的斜率为
(002207) 已知等腰三角形的底边过点 $P(2,1)$, 两腰所在直线为 $x+y-2=0$ 与 $7x-y+4=0$, 求其底边所在直线的方程.
(002208) 等腰三角形的一条腰所在直线为 $l_1: x-2y-2=0$,底边所在直线为 $l_2: x+y-1=0$, $(-2,0)$ 在另一腰上,求这条腰所在直线 l_3 的方程.
(002209) 与直线 $x - y + \sqrt{3} = 0$ 关于原点成中心对称的直线方程是
(002210) 直线 $2x + 5y - 7 = 0$ 关于点 $A(1,2)$ 对称的直线的方程为
(002211) 曲线 $F(x,y) = 0$ 关于点 $A(1,2)$ 对称的曲线的方程为
(002212) 点 (a,b) 关于直线 $x+y=0$ 的对称点是
(002213) 点 $(2,0)$ 关于直线 $2x - y + 1 = 0$ 的对称点的坐标是
(002213) 点 $(2,0)$ 关于直线 $2x-y+1=0$ 的对称点的坐标是 $ (002214)$ 点 (a,b) 关于直线 $2x-y+1=0$ 的对称点的坐标是

(002216) 曲线 $F(x,y) = 0$ 关于直线 $2x - y + 1 = 0$ 对称的曲线的方程是
(002217) 若直线 $ax - y + 2 = 0$ 与直线 $3x - y - b = 0$ 关于直线 $y = x$ 对称,则数对 $(a, b) =$
(002218) 若点 $A(a+2,b+2)$ 关于直线 $4x+3y+11=0$ 的对称点是 $B(b-4,a-b),$ 则 $(a,b)=$
(002219) 光线通过点 $A(2,0)$, 经直线 $2x-y+1=0$ 反射. 若反射线通过点 $B(0,-2)$, 则反射光线所在直线的方程为
(002220) 已知定点 $M(-4,1),N(-3,2),$ 动点 P 在射线 $y=0(x\leq 0)$ 上, 动点 Q 在射线 $y=-x(x\leq 0)$ 上, 试问当 P,Q 分别在什么位置时, 折线 $MPQN$ 的长度最短?
 (002221) 已知点 A(2,0) 和 B(4,2), 直线 l: x = 0 上有一动点 P. (1) 求 PA + PB 的最小值与相应的 P 点的坐标; (2) PA - PB 是否存在最小值? 若存在, 求出最小值与相应的 P 点的坐标, 若不存在, 说明理由;
(3) $ PA - PB $ 是否存在最大值? 若存在, 求出最大值与相应的 P 点的坐标, 若不存在, 说明理由; (4)(选做) $ PB - PA $ 是否存在最大值? 若存在, 求出最大值与相应的 P 点的坐标, 若不存在, 说明理由.
(002222) 直线 $x + y - 4 = 0$ 上的点与坐标原点的距离的最小值为
(002223) 若点 $P(a,b)$ 在直线 $x+y+1=0$ 上,则 $\sqrt{a^2+b^2-2a-2b+2}$ 的最小值为
(002224) 设 p 是实数, 则若点 $(1,1)$ 与点 $(p,3)$ 在直线 $2x-3y-1=0$ 的异侧, 则 p 的取值范围为
(002225) 已知直线 $3x + 2y - 3 = 0$ 与 $6x + my + 1 = 0$ 平行, 则它们之间的距离等于
(002226) 已知直线 l 平行于直线 $x+y+2=0,$ 且这两条直线之间的距离为 $3\sqrt{2},$ 则直线 l 的方程为
(002227) 已知两平行直线 $l_1:3x+4y-10=0$ 与 $l_2:3x+4y-25=0$. 又直线 l 和 l_1 之间的距离与 l 和 l_2 之间的距离之比为 $2:3$,那么直线 l 的方程为
(002228)已知正方形 $ABCD$ 的中心为点 $(1,1),AB$ 边所在直线方程为 $x+3y+1=0,$ 则 AD 边所在直线的方程是
(002229) 到原点和直线 $x + 3y = 2$ 距离相等且又在直线 $x + 3y = 0$ 上的点 P 的坐标是
(002230) 到直线 $2x - y + 1 = 0$ 与直线 $x - 2y = 2$ 距离相等的点的轨迹方程为
(002231) 已知 $P_1(1,0)$ 与 $P_2(7,-8)$ 两点分别在直线 l 的两侧,且这两点到直线 l 的距离均为 4 ,求直线 l 的方程.
(002232) 不求直线 AB 的方程, 仅用定比分点公式解决如下问题: "已知点 $A(x_1,y_1),B(x_2,y_2),$ 不平行于 AB 的直线 $ax+by+c=0$ 交直线 AB 于 P 点, $\overrightarrow{AP}=\lambda\overrightarrow{PB},$ 求分比 λ ."
(002233) 已知直线 $l_1: 2x + y + 1 = 0$ 与直线 $l_2: x - y = 0$ 的交点为 P . (1) 若直线 l_3 平行于 l_1 且过 $(9,9)$, 则 l_3 的方程为

(002234) 动直线 $l:(k+2)x-2k+(2k+1)y-1=0$ 为	过定点,定点 $P(1,3)$ 到 l 的距离的取值范围
	: ax + by - 5 = 0 是否过定点? 若过定点, 求出这个定点
(002236) 已知两直线 $a_1x + b_1y + 1 = 0$ 和 $a_2x + b_2y$ 的直线的方程.	$+1=0$ 的交点是 $P(1,2)$, 求过两点 $Q(a_1,b_1)$, $R(a_2,b_2)$
(002237) 已知曲线 $y = x^2 - 10$ 和曲线 $y = -x^2 + 4x$	+5 交于两点 A, B, 不求解方程组, 求直线 AB 的方程.
 (002238) 设函数 f(x) = (1+a)x⁴ + x³ - (3a+2)x² (1) 存在 x₀, 使得对任意的实数 a 都有 f(x₀) = 0; (2) (选做) 存在 x₀, 使得对任意的实数 a 都有 f(x₀) = 	
 (002239) 已知圆 (x - a)² + (y - b)² = r²(r > 0), 写出 (1) 圆过原点;	4在下列情况下, a,b,r 分别应满足的条件.
(002240) 以 $A(-1,2)$, $B(5,-6)$ 为直径两端点的圆的	一般方程为
(002241) 过点 $M(5,2), N(3,2),$ 且圆心在直线 $y=2x$	○-3 上的圆的标准方程为
(002242) 过点 $P(-8,-1),Q(5,12),R(17,4)$ 的圆的图	引心坐标为
(002243) 已知 $D^2 + E^2 > 4F$, 圆 $x^2 + y^2 + Dx + Ey + F$	$\mathcal{F}=0$ 关于直线 $y=x$ 对称的充分必要条件是
(002244) 圆 $x^2 + y^2 - 4y = 0$ 关于直线 $x - y + 1 = 0$) 对称所得的圆的一般方程是
是,最短的弦所在的直线方程是	
(002246) 方程组 $\begin{cases} x^2 - y^2 = 0 \\ x^2 + y^2 + 2ax + a^2 - 1 = 0 \end{cases}$ 有限	\mathbf{q} 个不同解的充分必要条件是 $a \in \underline{\hspace{1cm}}$.
(002247) " $A = C \neq 0, B = 0$ " 是 " $Ax^2 + Bxy + Cy^2 + C$	
A. 充要条件	B. 充分非必要条件
C. 必要非充分条件	D. 既非充分又非必要条件
(002248) 方程 $x^4 - y^4 - 4x^2 + 4y^2 = 0$ 所表示的曲线	是
A. 两条相交直线	B. 两条相交直线和两条平行直线
C. 两条平行直线和一个圆	D. 两条相交直线和一个圆

(002249) 方程 x -	$1 = \sqrt{1 - (y - 1)^2}$ 所表示的由	由线是	
A. 一个圆	B. 两个圆	C. 半个圆	D. 两个半圆
(002250) 若方程 a^2x	$x^2 + (2a+3)y^2 + 2ax + a + 1$	=0 表示圆, 则实数 a 的值	为·
(002251) 已知方程 2	$x^2 + y^2 + 2kx + 4y + 3k + 8 =$	0 表示一个圆, 则实数 k 的	取值范围为
(002252) 设平面上有	「两定点 $A,B,$ 动点 P 满足 $\dfrac{ F }{ F }$	$\frac{PA }{PB } = k$, 其中 k 为不等于 1	的正常数. 求证: P 的轨迹是圆.
(002253)[选做] 求证	: 曲线 $x^2 + y^2 + xy = 1$ 不是	J.	
(002254) 已知圆 x^2	$+y^2 + mx + ny + p = 0 - x$	轴相切于原点,则 m,n,p 区	7满足
A. $mn \neq 0$ Д. $p =$	0	B. $m \neq 0$ H. $n^2 + p^2 =$	= 0
C. $n \neq 0$ L. $m^2 + p$	$p^2 = 0$	D. $p \neq 0$ 且 $m^2 + n^2 =$	= 0
(002255) 若圆 $x^2 + x^2$	$y^2 + 4x + 2by + b^2 = 0$ 与两坐	标轴都相切, 那么 b 的值所	组成的集合是
(002256) 圆心在直线	$\mathbf{\hat{k}}\ 2x-y=3$ 上, 且与两坐标轴	由都相切的圆的一般方程为_	<u> </u> .
(002257) 过点 P(3,4	4), 且与圆 $x^2 + y^2 = 25$ 相切的	的切线方程为	·
(002258) 和直线 $3x$	$-2y + 4 = 0$ 垂直,且和圆 x^2	$-2x+y^2-3=0$ 相切的证	直线方程为
(002259) 直线 2x -	$y-1=0$ 被圆 x^2+y^2-2y-	- 1 = 0 所載得的弦的长度为	J
(002260) 直线 l 过点	$\mathfrak{f}(P(0,2),$ 且被圆 $x^2 + y^2 = 4$	截得的弦长为 2, 则 l 的方和	星为
(002261) 圆 $x^2 + y^2$	-4x-5=0 的弦 AB 以点 B	P(3,1) 为中点, 则直线 AB	的方程是
(002262) 圆 $(x-3)^2$	$x^2 + (y-3)^2 = 9$ 上到直线 $3x - 2$	+ 4y - 11 = 0 的距离等于 1	的点有 个.
(002263) 使圆 (x - 2	$(2)^2 + (y+3)^2 = 2$ 上点与点(0	0,-5) 距离最大的点的坐标	是
(002264) 圆心在直线	4x+y=0 上, 且与直线 $x+y-1$	-1 = 0 切于点 $P(3, -2)$ 的圆]的一般方程为
(002265) 和直线 x-6	6y-10=0 相切于点 $Q(4,-1)$,	且经过点 M(9,6) 的圆的一	般方程为
(002266) 过点 (2,-1), 圆心在直线 2x+y = 0 上, 且	与直线 $x-y-1 = 0$ 相切的	圆的方程为
		6 相交于 A,B 两点, 求 l 的	J方程, 使得 △AOB 的面积最大,
并求此最大值 (0 为	坐称原点).		
(002268) 过点 $M(3,$ 并求此最大值 (O 为		6 相交于 A,B 两点, 求 l 的]方程, 使得 △AOB 的面积最大,
(002269) 已知点 P((x_0, y_0) 在圆 $x^2 + y^2 = r^2$ 外,	则直线 $x_0x + y_0y = r^2$ 与该	圆的位置关系为
A. 相切	B. 相离	C. 相交	D. 不确定

(002270) 直线 $ax = 6$	by 与圆 $x^2 + y^2 - ax + by =$	= 0 的位置关系为	
A. 相切	B. 相离	C. 相交	D. 不确定
(002271) 已知两圆: 是		$0 = x^2 + y^2 + 4x - 1 =$	0 关于直线 l 对称,则 l 的方程
(002272) 与圆 $x^2 + y$	$g^2 = 25$ 外切于点 $P(4, -3)$,	且半径为 1 的圆的方程为_	
(002273) 自点 $M(2, 3)$	3) 向圆 $x^2 + y^2 = 1$ 引切线	,则切线长等于	
(002274) 已知圆心在 一般方程为		与 y 轴相切,且在直线 $y =$	x 上載得的弦长为 $2\sqrt{7}$, 则该圆的
	,3) 发出的光线 <i>l</i> 经 <i>x</i> 轴反 生直线的方程为	射, 其反射线所在直线恰好-	与圆 $x^2 + y^2 - 4x - 4y + 7 = 0$ 相
(002276) 已知直线 <i>l n</i> 的取值范围为		k 取何值, l 总与圆 $(x+3)^2$	$(y-3)^2 = 6$ 有公共点, 则常数
(002277) 求过 $M(3, 4)$	4) 且与圆 $x^2 + y^2 = 9$ 相切	的直线的方程.	
(002278) 设 m 是常	数, 讨论圆 $(x-m)^2 + y^2 =$	1 与圆 $x^2 + (y - m)^2 = 4$ 自	的位置关系.
		4x - 5 = 0 分成两个弓形. 的方程为	;
(002280) 两圆 x^2+y^2 公共弦长为		x+2y-40=0 的公共弦所在	E的直线方程为
(002281) 过圆 x^2 + 是	$y^2 + 2x - 4y - 5 = 0$ 和直	5线 $2x + y + 4 = 0$ 的两个	交点, 且面积最小的圆的一般方程
(002282) 两圆 $x^2 + y$ 是	$y^2 + 2ax + 2ay + 2a^2 - 1 =$	$0 = x^2 + y^2 + 2bx + 2by + $	$-2b^2 - 2 = 0$ 的公共弦长的最大值
	$\frac{x^2 + y^2 + 4x - 4y - 1}{2} = 0$	$\vec{y} \ x^2 + y^2 + 2x + 2y - 2 = 0$	0 相交于 P,Q 两点, 则公共弦 PQ
(002284) 过两圆 x^2 - 一般方程是	$+ y^2 + 4x - 3 = 0 = x^2 + y^2$	$x^2 - 4y - 3 = 0$ 的交点, 且圆	心在直线 $2x - y - 4 = 0$ 上的圆的
	, -3) 作圆 $C: (x-4)^2 + (y$ 4, B 这三点的圆的方程;	- 2) ² = 9 的两条切线, 切点	点分别为 A,B, 求:

(2) 直线 AB 的方程; (3) 线段 AB 的长.			
(002286) 已知两圆的方程为	$x^2 + y^2 = 1 - (x - 3)^2 + $	$(y-6)^2 = 4.$	
(1) 求出两条外公切线的交点 (2) 求四条公切线的方程.	京 A 及两条内公切线的交点	B 的坐标;	
(002287)[选做] 设外切两圆的证: 内公切线的方程为 D_1x			$-D_2x + E_2y + F_2 = 0. \ $
(002288) [选做] 已知三圆 C_1,C_2,C_3 两两相交,它们两两之间的公共弦所在的直线分别记为 $l_{12},l_{23},l_{31},$ 若 l_{12},l_{23} 均经过点 $P,$ 证明: l_{13} 也经过点 $P.$			
(002289) 已知实数 a,b,c 满 是	段 $3(a^2+b^2) = 4c^2(c \neq 0)$),则直线 $ax + by + c = 0$ -	与圆 $x^2 + y^2 = 1$ 的关系
A. 相交	B. 相切	C. 相离	D. 不确定
$(002290) 圆 x^2 + y^2 - 2x =$	3 与直线 $y = ax + 1$ 的交点	《个数是	
A. 0	B. 1	C. 2	D. 随 a 的不同而改变
(002291) 已知圆 $x^2 + y^2 = 4$	上有一点 P , 它到直线 $4x+$	3y=2 的距离取到最大值, 则	リ <i>P</i> 的坐标为
(002292) 若实数 x, y 满足 $x^2 + y^2 - 2x + 4y = 0$, 则 $x - 2y$ 的最大值为			
(002293) 已知直线 $y = x + x$	m 与曲线 $y = \sqrt{1-x^2}$ 有两	个不同的交点, 则实数 m 的	取值范围为
(002294) 设 m 是常数, 若美为	关于 x 的方程 $\sqrt{1-x^2}+x$	x + m = 0 有两个不同的解	F, 则实数 m 的取值范围
(002295) 已知定圆 $x^2 + y^2 =$	— 8 和宝占 P(4 O) 计 P 占	6作直线 / 芜泛冬直线 / 与F	1.知周相苏 刚直线 / 的熵
斜角的取值范围为		THE OF TEMPORE OF THE	5.相图4f天,对正次。 时间
(002296) 若实数 x,y 满足 x	$y^2 + y^2 = 1(x \neq 1), \text{ M} \frac{y-2}{x-1}$	的最小值为	
(002297) 函数 $y = \frac{\sin x - 2}{\cos x}$	$x \in (0, \frac{\pi}{3})$ 的值域为		

(002298) 已知实数 x, y 满足 $(x+3)^2 + (y-3)^2 = 6(y>3)$, 求 y-x 与 $\frac{y}{x}$ 的取值范围.

(002299) 求函数 $y = x - 2\sqrt{1 + x^2}$ 的值域.

(002300) 若两圆 $(x-a)^2+y^2=1$ 与 $x^2+(y-b)^2=1$ 外切, 则点 P(a,b) 的轨迹方程是_______.

(002301) 已知 A(-1,1), B(-2,0) 是 $\triangle ABC$ 的两个顶点, 且 $|AC| = \sqrt{2}|BC|$, 则顶点 C 的轨迹方程为____

(002303) 自 $A(4,0)$ 引圆 $O: x^2 + y^2 = 4$ 的割线 ABC, B, C 是该割线和圆的两个交点, 则弦 BC 中点 P 的轨迹方程为
(002304) 一动圆被两直线 $3x+y=0$, $3x-y=0$ 所載, 截得的弦长分别为 8 和 4 (所谓分别, 就是前者对前者, 后者对后者的意思, 英语里叫 "respectively"), 则动圆圆心 P 的轨迹方程为
(002305) 已知点 $A(-1,0)$ 与点 $B(1,0)$, C 是圆 $x^2+y^2=1$ 上的动点 (不能和 A,B 重合), 连接 BC 并延长到 D , 使 $ CD = BC $, 求直线 AC 与直线 OD 的交点 P 的轨迹方程.
(002306) 写出分别满足下列条件的椭圆的标准方程. (1) 焦点坐标 (6,0), (-6,0), 且椭圆过 (0,8)
(2) 焦距为 12, 且椭圆过 (0,8)
(002307) 椭圆 $\frac{x^2}{25} + \frac{y^2}{16} = 1$ 的焦点坐标为
(002308) 椭圆 $\frac{x^2}{16} + \frac{y^2}{25} = 1$ 的焦点坐标为
(002309) 已知 F_1, F_2 是椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ $(a > b > 0)$ 的两个焦点, AB 是过 F_1 的弦,则 $\triangle ABF_2$ 的周长为
(002310) 若方程 $\frac{x^2}{25-m} + \frac{y^2}{16+m} = 1$ 表示焦点在 y 轴上的椭圆, 则实数 m 的取值范围为
(002311) 求过点 $(-\frac{3}{2},\frac{5}{2})$ 与 $(\sqrt{3},\sqrt{5})$ 的椭圆的标准方程.
(002312) 设 a 是正的常数, 动点 M 到 $(1,0)$ 与 $(-1,0)$ 的距离之和为 $2a\ (a\geq 1)$, 求 M 的轨迹及其方程.
(002313)[选做] 平面上有一定直线 l 和 l 外一定点 F . 求证: 当一个动点 P 到 F 的距离和它到 l 的距离之比是一个小于 1 的常数时, 点 P 的轨迹是椭圆.
(002314) 若方程 $\frac{x^2}{k-5} + \frac{y^2}{3-k} = -1$ 表示椭圆, 则实数 k 的取值范围为
(002315) 已知椭圆 $mx^2 + y^2 = 9$ 与椭圆 $9x^2 + 25y^2 = 100$ 的焦距相等, 则实数 $m =$.
(002316) 已知 $b < a < 0$,则椭圆 $ax^2 + by^2 + ab = 0$ 的焦点坐标为
(002317) 已知椭圆的焦距为 4 ,且过 $P(\frac{2\sqrt{6}}{3}, -\frac{2\sqrt{6}}{3})$,则椭圆的标准方程为
(002318) 焦点在 x 轴上的椭圆上有一点 $P(3,y)$,若 P 点到两焦点的距离分别为 6.5 和 3.5 ,则此椭圆的标准方程为
(002319) 已知 P 点在椭圆 $\frac{x^2}{25} + \frac{y^2}{16} = 1$,且 P 到椭圆左右两焦点的距离之比为 $1:4$,则 P 到两准线的距离之差的绝对值为
(002320) 三角形 ABC 的两个顶点 A,B 的坐标分别是 $(-6,0),(6,0),AC,BC$ 边所在直线的斜率之积等于 $\frac{4}{9}$,则而点 C 的轨迹方程为

(002321) 若点 P 是椭圆 $\frac{x^2}{36} + \frac{y^2}{20} = 1$ 上的一个动点, F_1 是椭圆的左焦点,则 $|PF_1|$ 的取值范围为______. (002322)P(x,y) 是椭圆 $\frac{x^2}{36} + \frac{y^2}{20} = 1 (a > b > 0)$ 上的任一点, F_1, F_2 是它的左, 右焦点, 则 $|PF_1| \times |PF_2|$ 的取 值范围为_____ (002323) 已知 F_1 是椭圆 $5x^2 + 9y^2 = 45$ 的左焦点, P 是此椭圆上的动点, A(1,1) 是一定点, 则 $|PA| + |PF_1|$ 的最大值为_____. (002324) 已知点 P 在椭圆 $\frac{x^2}{100} + \frac{y^2}{36} = 1$ 上,它到椭圆左焦点 F_1 的距离是它到椭圆右焦点 F_2 的距离的 3 倍. (1) 求 $|PF_1|, |PF_2|$; (2) 求点 P 的坐标. (002325) 已知椭圆 $\frac{x^2}{2} + y^2 = 1$, 直线 l 交椭圆于 A, B 两点, 若线段 AB 的中点坐标为 $M(\frac{1}{2}, \frac{1}{2})$, 求直线 l 的 方程. (002326) 已知椭圆 $C: \frac{x^2}{9} + y^2 = 1, \ P$ 是曲线上的动点, 定点 A 的坐标为 (m,0), 其中 m 是实常数. 求 |PA|的最小值. (002327) 一个焦点把长轴分成长度为 7 和 1 两段的椭圆的标准方程为 (002328) 已知长轴长与短轴长之比为 2:1, 一条准线方程为 x+4=0 的椭圆的标准方程为_____ (002329) 以直线 3x+4y-12=0 和两轴的交点之一作为顶点, 另一交点作为焦点的椭圆的标准方程为____ (002330) 过点 P(3,0), 且长轴长是短轴长的三倍的椭圆的标准方程为______ (002331) 已知 M 为椭圆上一点, F_1, F_2 是两个焦点,且 $\angle MF_1F_2 = 2\alpha$, $\angle MF_2F_1 = \alpha$,则椭圆的离心率 $(002332) \ \textbf{已知} \ P \ \textbf{ 是椭圆} \ \frac{x^2}{9} + \frac{y^2}{4} = 1 \ \textbf{上的点}, \ \textbf{且} \ \angle F_1 P F_2 = 90^\circ (F_1, F_2 \ \textbf{是该椭圆的两个焦点}), \ \textbf{则} \ \triangle F_1 P F_2 \ \textbf{的}$ 面积为_____, P 的坐标为____ (002333) 已知 F 是椭圆 $b^2x^2 + a^2y^2 = a^2b^2$ (a > b > 0) 的一个焦点, PQ 是过其中心的一条弦, 则 $\triangle PQF$ 面 积的最大值是 (002334) 已知直线 l:y=kx+1,若不论 k 取何值,l 总与椭圆 $\frac{x^2}{5}+\frac{y^2}{m}=1$ 总有公共点,则常数 m 的取值范 围为_____ (002335) 以椭圆的两个焦点为直径端点的圆交椭圆于四个点, 若顺次连接这四个点及两个焦点恰好组成一个正

(002336) 动圆过定点 F(0,4), 并和定圆 $x^2 + (y+4)^2 = 100$ 相内切, 求动圆圆心 P 的轨迹方程.

六边形,则椭圆的离心率为_____.

(002337) 已知椭圆 $x^2+2y^2=12$ 及 x 轴正向上一定点 A, 过 A 作斜率为 1 的直线, 此直线被椭圆截得的弦长 为 $\frac{4\sqrt{14}}{3}$, 求 A 的坐标.

(002338) 已知 P 是椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b > 0)$ 上的点,且 $\angle F_1 P F_2 = \theta(F_1, F_2)$ 是该椭圆的两个焦点),试用 a, b, θ 表示 $\triangle F_1 P F_2$ 的面积。

(002339) 已知椭圆 $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$ 与直线 x+2y-2=0 交于 A,B 两点,|AB|=5,且 AB 中点的 坐标为 $(m,\frac{1}{2})$,求此椭圆的方程.(提示:算法合适的话,此题不用联立椭圆与直线方程.)

(002340) 已知 B(-8,0), C(8,0) 是 $\triangle ABC$ 的两个顶点, AB,AC 边上的中线长之和为 30, 此三角形重心 G 的轨迹方程为

(002341) 已知 B(-8,0), C(8,0) 是 $\triangle ABC$ 的两个顶点, AB,AC 边上的中线长之和为 30, 此三角形的另一个顶点 A 的轨迹方程为______.

(002342) 以椭圆的右焦点 F_2 为圆心作圆, 使这个圆通过椭圆的中心, 且交椭圆于 M 点, 若直线 $MF_1(F_1)$ 为左焦点) 是圆 F_2 的切线, 则椭圆的离心率为______.

(002343) 已知圆柱底面的直径为 2R, 一个与底面成 30° 角的平面截这个圆柱, 截得的曲线是椭圆. 这个椭圆的离心率为______.

(002344) 已知椭圆的中心在原点,长轴在 x 轴上,直线 x+y=1 被椭圆截得的弦 AB 长为 $2\sqrt{2}$,且 AB 的中点与椭圆中心连线的斜率为 $\frac{\sqrt{2}}{2}$,则这个椭圆的方程为______.

(002345) 已知点 P 在圆 $x^2+(y-4)^2=1$ 上移动,点 Q 在椭圆 $\frac{x^2}{4}+y^2=1$ 上移动,则 |PQ| 的最大值为______.

(002346) 已知 $\triangle ABC$ 的三个顶点均在椭圆 $4x^2+5y^2=80$ 上, 且点 A 是椭圆短轴的下端点, $\triangle ABC$ 的重心 是椭圆的右焦点, 求直线 BC 的方程.

(002347) 已知椭圆 $\frac{x^2}{2} + y^2 = 1$.

- (1) 求斜率为 2 的平行弦的中点轨迹方程;
- (2) 过 A(2,1) 引椭圆的割线, 若截得的弦的中点落在一条二次曲线上, 求这个二次曲线的方程, 并回答 (只需给出答案) 中点是否能取遍该二次曲线的每一点?

$$(002349)$$
 双曲线 $y^2 - \frac{x^2}{5} = 1$ 的两个焦点的坐标为______.

(002350) 已知双曲线的焦点为 (6,0) 和 (-6,0), 且过 (-5,2), 则此双曲线方程为

(002351) 若方程 $x^2 \sin \theta + y^2 \cos \theta = 1$ 表示双曲线, 则 θ 的取值范围为

(002352) 已知双曲线 $\frac{x^2}{64} - \frac{y^2}{36} = 1$ 上的点 P 到右焦点的距离为 14, 则 P 到左准线的距离为______.

(002353) 已知双曲线 $kx^2 - 2ky^2 + 1 = 0$ 的一个焦点为 (-4,0), 则实数 k =_____.

(002354) 已知双曲线的半焦距为 c, 两准线间的距离为 d, 且 c = d, 则双曲线的离心率等于______.

(002355) 和定点 A(5,0) 及定直线	$l: x = \frac{16}{5}$ 距离之比	是 5 : 4 的点的轨迹方程是		
(002356) 已知 P,Q 分别是椭圆 $9x^2+4y^2=36$ 的两个焦点, M 在双曲线 $9x^2-25y^2=225$ 上, 则 $\triangle PQM$ 重心的轨迹方程为				
(002357) 已知 $B(-6,0), C(6,0)$ 是的轨迹方程为	_: △ABC 的两个顶 点	ī, 内角 A,B,C 满足 sinB – si	$\sin C = \frac{1}{2} \sin A$,则顶点 A	
(002358) 若动圆过定点 A(-3,0), E	L和定圆 $(x-3)^2+y^2$	=4 外切, 则动圆圆心 P 的轨迹	医方程为	
(002359) 已知坐标平面内两定点 F 出点 M 的轨迹, 不需要过程.	$F_1(3,0), F_2(-3,0)$,常	数 $a \in (0,3]$, 若动点 M 满足	$ MF_1 - MF_2 = 2a$, 写	
(002360)[选做] 已知坐标平面内的发 焦点的双曲线过点 P.	定点 $P(a,b)$. 根据点	P 的不同位置, 讨论是否存在	以 $F_1(3,0), F_2(-3,0)$ 为	
(002361) 双曲线 $kx^2 - 2ky^2 = 4$ 的	\mathbf{j} 一条准线是 $y=1$,	则实数 k 的值等于		
(002362) 若方程 $\frac{x^2}{2-m} + \frac{y^2}{ m -3}$	= 1 表示双曲线, 则	实数 m 的取值范围为		
(002363) 与两圆 $x^2 + y^2 = 1$ 和 x^2	$+y^2 - 8x + 7 = 0$	都相切的圆的圆心轨迹是	·	
A. 两个椭圆		B. 两条双曲线		
C. 一条双曲线和一条直线		D. 一个椭圆和一条双曲线		
(002364) 已知 <i>E</i> , <i>F</i> 分别是离心率。 <i>M</i> (0, b), 则 ∠ <i>EMF</i> 等于	2	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \ (a > 0, b > 0)$	的左顶点与右焦点, 再记	
(002365) 已知 P 为双曲线 $3x^2-5$ 的大小.	$5y^2 = 15$ 上的一点,	F_1, F_2 为其两个焦点,且 $S_{ riangle F_1}$	$_{PF_2} = 3\sqrt{3}, \; \mathcal{R} \; \angle F_1 P F_2$	
(002366) 已知双曲线 $\frac{x^2}{16} - \frac{y^2}{20} = 1$ (1) 若 $ PF_1 = 9$, 求 $ PF_2 $;	的左右焦点分别为	F_1,F_2 , 设双曲线上有一动点 P		
(2) $\neq PF_1 = 19, $				
(3) 设 a 是实常数, 若 P 到定点 A	(a,0) 的距离最小值为	为 10, 求 a 的值.		
(002367) 已知椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a 曲线的一个交点.	> b > 0) 和双曲线	$\frac{x^2}{m^2} - \frac{y^2}{n^2} = 1 \ (m, n > 0)$ 有公	共的焦点 F ₁ , F ₂ , P 是两	
(1) 证明: $\angle F_1 P F_2 = 2 \arctan \frac{n}{h}$;				
(2) 证明: $\triangle F_1 P F_2$ 的面积为 bn .				
(002368) 双曲线与其共轭双曲线有	共同的			
A. 焦点 B. 准	线	C. 离心 率	D. 渐近线	
(002369) 中心在原点, 一个焦点为	(3,0) 的等轴双曲线	的方程为		

- (002370) 中心在原点,一个焦点为 (3,0),一条渐近线方程为 2x-3y=0 的双曲线的方程为______ (002372) 已知双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ 的离心率 $e = \frac{5}{4}$, 半虚轴长为 2, 则该双曲线的方程为______. (002373) 若双曲线的离心率为 2, 则它的共轭双曲线的离心率为_____. (002374) 双曲线 $\frac{x^2}{9} - \frac{y^2}{16} = 1$ 的两条渐近线夹角的大小为_____. (002375)[选做] 已知函数 $y = x + \frac{1}{x}$ 的图像是双曲线, 则该双曲线的离心率为_____. (002376) 求过点 (2,-2), 且与双曲线 $x^2-2y^2=2$ 有公共渐近线的双曲线的方程为_____. (002378) 双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (a > 0, b > 0) 的一条准线 l 与一条渐近线交于 P 点, F 是与 l 相应的焦点. (1) 求证: 直线 PF 与这条渐近线垂直; (2) 求 |PF|. (002379) 已知双曲线 $\frac{x^2}{9} - \frac{y^2}{16} = 1$ 的焦点分别为 F_1, F_2, P 为双曲线上一点, 满足 $|PF_1| \cdot |PF_2| = 32$. 求证: $PF_1 \perp PF_2$. (002380) 与椭圆 $x^2 + 4y^2 = 64$ 有共同焦点,且一条渐近线的方程为 $x + \sqrt{3}y = 0$ 的双曲线的标准方程 (002381) 已知双曲线的中心在原点,且一条渐近线方程为 12x-5y=0,一条准线方程为 $y=\frac{144}{13}$,则该双曲线 的标准方程为_____ (002382) 已知双曲线以两条坐标轴为对称轴,点 $M(\frac{16}{5},\frac{12}{5})$ 是其准线和渐近线的交点,则此双曲线的方程
- (002383) 若曲线 $x^2 y^2 = a^2$ 与曲线 $(x-1)^2 + y^2 = 1$ 恰好有三个不同的公共点, 则实数 a 的取值 (范围)
- (002384) 过双曲线 $\frac{x^2}{2}-y^2=1$ 的左焦点 F_1 作倾斜角为 $\frac{\pi}{3}$ 的弦 AB, 求三角形 F_2AB 的周长及面积.
- (002385) 设 a 是实常数, 已知直线 y = ax + 1 与双曲线 $3x^2 y^2 = 1$.
- (1) 若直线与双曲线只有一个公共点, 求 a 的值;
- (2) 若直线和双曲线的右支有两个公共点, 求 a 的取值范围;
- (3) 在 (2) 的条件下, 设公共点为 A,B, 是否存在实数 a 使得以线段 AB 为直径的圆经过坐标原点? 若存在, 求 a 的值; 若不存在, 说明理由.
- (002386) 已知双曲线 $2x^2-y^2=2$, 试问过点 N(1,1) 能否作一直线与双曲线交于 C,D 两点, 且使 N 为 CD的中点, 这样的直线如果存在, 求出它的方程, 如果不存在, 说明理由.

(002387)[选做] 已知	双曲线 $2x^2 - y^2 = 2$, 若过点 N	(m,n) 能作一直线与双曲:	线交于 C,D 两点, 且使 N 为 CD
的中点,求 (m,n) 所	满足的条件.		
(002388) 已知 P,Q	分别在射线 $y = x (x > 0)$ 和 y	$y = -x \ (x > 0)$ 上,且 $\triangle P$	${\it POQ}$ 的面积为 $1(O$ 为原点), 则线
段 PQ 中点 M 的轨	迹方程为		
(002389) 已知椭圆	$\frac{x^2}{25} + \frac{y^2}{9} = 1$ 上三点 $A(x_1, y_1)$,	$B(4,y_2), C(x_3,y_3)$ 和焦点	$ \mathbf{F}(4,0) $ 的距离依次成等差数列.
(1) $\Re x_1 + x_3;$			
(2) 证明: 线段 AC 自	的垂直平分线过定点, 并求出此	定点的坐标.	
		点 F_1 的任意一条弦, 以 A	AB 为直径的圆被左准线截得圆弧
CD, 求证: CD 所对	的圆心角的度数为定值.		
(002391) 已知双曲线	$\frac{1}{6} 2x^2 - y^2 = 2.$		
(1) 求斜率为 2 的平	行弦的中点轨迹方程;		
(2) 过 A(2,1) 的直线	戈与双曲线交于 P,Q 两点,线 ${f i}$	\mathfrak{P}^{Q} 中点 M 落在一条	二次曲线上,求这个二次曲线的方
程,并回答(不需要理	里由) 中点是否能取到该二次曲	线上的每一点.	
(002392) 已知直线 <i>l</i>	和双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 (a > 0)$	(b>0) 有两个交点 A,B .	与该双曲线的渐近线也有两个交
点 C, D. 证明: AC	= BD .		
(002393) 若 A 是直线	线 l 外的一定点, 则过 A 且与 l	相切的圆的圆心轨迹是_	
A. 圆	B. 双曲线一支	C. 抛物线	D. 以上都不是
(002394) 若 A 是直经	线 l 上的一定点, 则过 A 且与 l	相切的圆的圆心轨迹是_	·
A. 圆	B. 双曲线一支	C. 抛物线	D. 以上都不是
(002395) 抛物线 y^2	= 10x 的焦点到准线的距离是_	·	
(002396) 若点 P 到	点 $F(4,0)$ 的距离比它到定直线	x+5=0 的距离小 1, 则	│ <i>P</i> 点的轨迹方程是
(002397) 在抛物线 3	$p^2 = 8x$ 上有一点 P , 它到焦点	的距离为 20, 则 <i>P</i> 点的坐	标为
(002398) 抛物线 y ²	= 2x 的焦点弦 (过焦点的弦	\mathbf{x}) 的端点为 $A(x_1,y_1)$ 与	$B(x_2, y_2)$,且 $x_1 + x_2 = 3$,则
AR —			

(002400) 过抛物线 $y^2=2px$ 的对称轴上一点 C(p,0) 作一条直线与抛物线交于 A,B 两点, 若 A 点的纵坐标为 $-\frac{p}{2},$ 则 B 点的纵坐标为_____.

(002399) 若 $y^2 = 4x$ 的焦点弦长为 5,则焦点弦所在直线的方程为______.

(002401) 若正三角形的一个顶点在原点,另两个顶点在抛物线 $y^2=2px\;(p>0)$ 上,则这个三角形的面积为______.

(002402) 已知 F 是抛物线 $y^2=4x$ 的焦点, $A(3,2)$ 是一个定点, P 是抛物线上的动点, 当 $ PA + PF $ 取到最小值时, 点 P 的坐标为
(002403) 过抛物线 $y^2=2px(p>0)$ 的焦点的一条直线与抛物线相交于两个不同的点,若两个交点的纵坐标分别为 $y_1,y_2,$ 则 y_1y_2 的值为
(002404) 设过抛物线 $y^2=2px(p>0)$ 的焦点的直线交抛物线于 A,B 两点,若直线 AB 的倾斜角为 $\theta,$ 求 $ AB .$
(002405) 抛物线 $x^2 = -32y$ 的焦点坐标为
(002406) 抛物线 $y = ax^2 \ (a \neq 0)$ 的准线方程为
(002407) 抛物线 $y^2=16x$ 上的一点 P 到 x 轴的距离为 12 , 则 P 与焦点 F 间的距离 $ PF =$
(002408) 已知抛物线顶点在原点,焦点在 y 轴上,又抛物线上一点 $(m,-3)$ 到焦点的距离为 5 ,则此抛物线的方程为
(002409) 已知抛物线的顶点在原点, 对称轴与坐标轴重合, 且过点 (-2,3), 则抛物线的标准方程为
(002410) 抛物线的顶点在原点,焦点在 x 轴上,其通径 (过焦点,且与轴垂直的弦) 的两端点与顶点连成的三角 形面积为 4 ,则此抛物线方程为
(002411) 若顶点在原点,焦点在 x 轴上的抛物线截直线 $y=2x+1$ 所得的弦长为 $\sqrt{15}$,则此抛物线的方程为
(002412) 若直线 $y = kx - 2$ 交抛物线 $y^2 = 8x$ 于 A, B 两点, 且 AB 中点的横坐标是 2 , 则 $ AB =$.
(002413) 已知 AB 是抛物线 $y^2=4x$ 的焦点弦, 其坐标 $A(x_1,y_1), B(x_2,y_2)$, 满足 $x_1+x_2=6$, 则直线 AB 的 斜率是
(002414) 当 $0 < k < \frac{1}{3}$ 时, 关于 x 的方程 $\sqrt{ 2-x } = kx$ 的实根为
(002415) 过点 $(0,-4)$ 且与直线 $y=4$ 相切的圆的圆心的轨迹方程是
(002416) 与 y 轴相切, 且与圆 $x^2 + y^2 - 4x = 0$ 相外切的圆的圆心轨迹方程是
(002417) 抛物线 $y^2 = -8x$ 被点 $(-1,1)$ 平分的弦所在直线的方程为
(002418) 抛物线 $y = 2x^2$ 的一组斜率为 2 的平行弦的中点的轨迹方程是
(002419) 已知抛物线 $y^2 = 2x$ 的弦 AB 过定点 $(-2,0)$, 则 AB 中点的轨迹方程是
(002420) 过抛物线焦点 F 的直线交此抛物线于 A,B 两点, 弦 AB 的垂直平分线交此曲线的对称轴于 R . 证明: $ FR =rac{1}{2} AB $.
(002421) 已知过抛物线焦点 F 的直线与抛物线相交于 A,B 两点,点 A,B 在此抛物线准线上的射影分别为 A_1,B_1 . 证明: $\angle A_1FB_1=90^\circ$.

- (002422) 已知长度固定的线段 AB 的端点 A, B 在抛物线 $y = x^2$ 上移动.
- (1) 若 |AB| = 2, 求 AB 的中点 M 到 x 轴的距离的最小值;
- (2) (选做) 若 |AB| = l(l > 0), 求 AB 的中点 M 到 x 轴的距离的最小值.

(002423) 抛物线 $y^2 = 2px$ (p > 0) 的弦 PQ 的中点为 (x_0, y_0) , 则弦 PQ 所在直线的一个法向量为______

(002424) 设抛物线 $y = ax^2 \ (a > 0)$ 与直线 y = kx + b 相交于两点,它们的横坐标为 x_1, x_2 ,而 x_3 是直线与 x 轴交点的横坐标,那么 x_1, x_2, x_3 的关系是

A.
$$x_3 = x_1 + x_2$$

B.
$$x_3 = \frac{1}{x_1} + \frac{1}{x_2}$$

C.
$$x_1x_2 = x_2x_3 + x_3x_1$$

D.
$$x_3 = \sqrt{x_1 x_2}$$

(002425) 抛物线 $y^2 = x$ 上的点到直线 x - 2y + 4 = 0 的距离最小的点是_____.

(002426) 若点 P 在抛物线 $y^2 = x$ 上, 点 Q 在圆 $(x-3)^2 + y^2 = 1$ 上, 则 |PQ| 的最小值等于

(002427) 设 A,B 是抛物线 $y^2=2px$ 上的点,且满足 $\angle AOB=90^\circ(O$ 是坐标原点)。证明,直线 AB 过定点,并求此定点的坐标。(注: 此题可改编成 "证明在抛物线的轴上存在一点 P,使得过 P 的弦的两端点 AB 总是满足 $\angle AOB=90^\circ$,其中 O 是抛物线的顶点")

- (002428) 已知抛物线 $y^2 = 4x$ 与椭圆 $\frac{x^2}{9} + \frac{y^2}{m} = 1$ 有共同的焦点 F_2 .
- (1) 求 m 的值;
- (2) 若 P 是两曲线的一个公共点, F_1 是椭圆的另一个焦点, 且 $\angle PF_1F_2 = \alpha$, $\angle PF_2F_1 = \beta$, 求 $\cos \alpha \cos \beta$.
- (3) 求 $\triangle PF_1F_2$ 的面积.
- (002429) 已知正方形的一条边 AB 在直线 y = x + 4 上, 顶点 C, D 在抛物线 $y^2 = x$ 上, 求此正方形的边长.

(002430)[选做] 已知 PQ 是圆 $x^2 + y^2 = 1$ 中的一条垂直于 x 轴的, 不同于直径的定弦. 求证: 所有被 PQ 平分的弦所在的直线都与同一条抛物线有且仅有一个公共点.

(002431) 抛物线 $y^2 = -4x$ 关于直线 x + y - 2 = 0 对称所得曲线的方程是______

(002432) 抛物线 $y^2 = -4x$ 关于直线 x + 2y - 2 = 0 对称所得曲线的方程是______

(002433) 已知双曲线 $x^2 - \frac{y^2}{3} = 1$.

- (1) 若双曲线上存在两点关于直线 $y = -\frac{1}{3}x + b$ 对称, 求实数 b 的取值范围;
- (2) (选做) 若双曲线上存在两点关于直线 y = kx + 4 对称, 求实数 k 的取值范围.

(002434) 已知抛物线 $x^2 = 3y$.

- (1) 求该抛物线过点 A(3,3) 的切线的方程;
- (2) 求该抛物线过点 B(1,-1) 的切线的方程.

(002435) 已知双曲线 $\frac{y^2}{4} - x^2 = 1$.

- (1) 求该双曲线过点 $A(\sqrt{3},4)$ 的切线的方程;
- (2) 求该双曲线过点 B(1,1) 的切线的方程.

- (002436) 关于过圆锥曲线上一点的切线.
- (1) 求过双曲线 $\frac{y^2}{a^2} \frac{x^2}{b^2} = 1$ 上一点 $P(x_0, y_0)$ 的切线方程;
- (2) 求过抛物线 $x^2 = 2py(p > 0)$ 上一点 $P(x_0, y_0)$ 的切线方程.

(002437) 关于"切点弦".

- (1) 过点 $P(x_0, y_0)$ 引双曲线 $\frac{y^2}{a^2} \frac{x^2}{b^2} = 1$ 的切线, 若有两条切线, 设切点分别为 A, B, 求直线 AB 的方程;
- (2) 过点 $P(x_0,y_0)$ 引抛物线 $x^2=2py(p>0)$ 的切线, 若有两条切线, 设切点分别为 A,B, 求直线 AB 的方程.

(002438) 关于光学性质

- (1) 已知双曲线 $\frac{y^2}{a^2} \frac{x^2}{b^2} = 1$ 的上下焦点分别为 F_1, F_2 , 设 $P(x_0, y_0)$ 在双曲线上, 直线 l 为过点 P 的双曲线的 切线. 求证: $\angle F_1 P F_2$ 被直线 l 平分;
- (2) 已知抛物线 $x^2 = 2py(p > 0)$ 的焦点为 F, 设 $P(x_0, y_0)$ 在抛物线上, 直线 l 为过点 P 的抛物线的切线. 求证: 射线 FP 经过直线 l 反射后, 反射光线与 x 轴垂直.
- (002439) 焦点为 (-3,5), 准线为 y=7 的抛物线的方程是_____.
- (002440) 抛物线 $(x+2)^2 = -4(y-1)$ 的准线方程是
- (002441) 已知抛物线 $y^2 = a(x+1)$ 的准线方程是 x = -3, 则其焦点坐标为______
- (002442) 双曲线 $9y^2 x^2 2x 10 = 0$ 的渐近线方程是
- (002443) 以 $F_1(0,-1), F_2(0,3)$ 为两个焦点, 又过点 A(2,1) 的椭圆的方程为_____.
- (002444) 平移曲线 y = f(x), 使曲线上的点 (1,1) 变为 (2,3), 则此曲线方程变为______.
- (002445) 将直线 x-2y+b=0 左移一个单位,再下移两个单位后,它与抛物线 $y^2=4x$ 有且仅有一个公共点,则实数 b=
- (002446) 若曲线 C 的方程是 F(x,y)=0,则曲线 C 关于 y=x 对称后,再向上平移两个单位之后所得的曲线方程是
- (002447) 椭圆 $\frac{(x-1)^2}{16} + \frac{(y-2)^2}{9} = 1$ 关于点 M(2,-1) 对称的椭圆的方程为______.
- (002448) 已知 M(0,6) 是圆 $x^2+y^2=100$ 内的一个定点,则经过 M 且与已知圆内切的动圆圆心 P 的轨迹方程为______.
- (002449) 设 F(x,y) 是一个关于 x,y 的式子.
- (1) 求证: 曲线 F(x,y) = 0 关于直线 y = x 对称的曲线的方程为 F(y,x) = 0;
- (2) 若对任意的使 F(a,b) 有意义的实数 a,b, 都有 F(b,a) 有意义且 F(a,b) = F(b,a), 求证: 曲线 F(x,y) = 0 关于直线 y = x 对称;
- (3) 若曲线 F(x,y)=0 关于直线 y=x 对称, 那么对任意的使 F(a,b) 与 F(b,a) 均有意义的实数 a,b, 是否一定有 F(a,b)=F(b,a)? 请说明你的理由.

(002450) 顶点在 (1,2), 对称轴平行于坐标轴, 且过点 (4,5) 的抛物线的方程为_

(002451) 双曲线 $x^2 - y^2 + 8x + 2y + 24 = 0$ 的焦点坐标是_____

(002452)[选做] 求证:

- (1) 曲线 $y = \frac{1}{x}$ 是双曲线;
- (2) (选做) 曲线 $y = 2x + \frac{1}{x}$ 是双曲线

(002453) 设实数 $x, y \ge 0$, 若 $x^2 - xy + y^2 = x + y$, 则 x + y 的取值范围为______.

(002454) 曲线 $x^2 - xy + y^2 = x + y$ 是椭圆, 双曲线, 抛物线, 还是别的什么曲线? 作出判断并说明理由.

(002455) 与普通方程 xy = 1 表示相同曲线的参数方程 (t) 为参数) 是

A.
$$\begin{cases} x = t^2, \\ y = t^{-2}, \end{cases}$$

B.
$$\begin{cases} x = \sin t, \\ y = \csc t, \end{cases}$$

A.
$$\begin{cases} x = t^2, \\ y = t^{-2}, \end{cases}$$
 B.
$$\begin{cases} x = \sin t, \\ y = \csc t, \end{cases}$$
 C.
$$\begin{cases} x = \sec t, \\ y = \cos t, \end{cases}$$
 D.
$$\begin{cases} x = \tan t, \\ y = \cot t, \end{cases}$$

D.
$$\begin{cases} x = \tan t, \\ y = \cot t, \end{cases}$$

(002456) 若曲线的参数方程为 $\left\{ egin{array}{ll} x=1+\cos2\theta, \\ y=\sin^2\theta, \end{array} \right.$ $\left(heta$ 为参数),则该曲线是______.

A. 直线
$$x + 2y - 2 = 0$$

B. 以 (2,0) 为端点的一条射线

C.
$$\square (x-1)^2 + y^2 = 1$$

D. 以 (2,0) 和 (0,1) 为端点的线段

$$(002457)$$
 参数方程
$$\begin{cases} x = \sin \theta - \cos \theta, \\ y = \cos \theta \sin \theta, \end{cases}$$
 表示的曲线的普通方程是______.

$$(002458)$$
 参数方程
$$\left\{ egin{array}{ll} x=\cos^2\theta, \\ y=\sin\theta, \end{array}
ight.$$
表示的曲线的普通方程是_______.

$$(002461)$$
 参数方程 $\left\{ egin{array}{ll} x=t-rac{1}{t}, \\ y=t^2+rac{1}{t^2}, \end{array}
ight.$ 表示的曲线的普通方程为_______

$$(002463)$$
 曲线 $\left\{ egin{array}{ll} x=t^{100}+2t+1, \\ y=t^3-t, \end{array}
ight.$ 与 x 轴交点的坐标为______.

$$(002465)$$
[选做] 已知曲线
$$\left\{ \begin{array}{l} x=t-\sin t, \\ y=1-\cos t. \end{array} \right.$$

- (2) 已知这是一个函数的图像, 求证: 这是一个周期函数的图像;
- (3) 求证: 该曲线是一个函数的图像.

$$(002466)$$
 参数方程 $\left\{ egin{array}{ll} x = \sin t, \\ y = 1 + \cos 2t, \end{array}
ight.$ 表示的曲线的普通方程是______.

(002468) 直线
$$\begin{cases} x = 3 + at, \\ y = -1 + bt, \end{cases}$$
 (t 为参数) 过定点_____.

$$(002469)$$
 椭圆
$$\begin{cases} x = 4 + 2\cos\theta, \\ y = 1 + 5\sin\theta, \end{cases}$$
 的焦点坐标为_____

$$(002470)$$
 双曲线
$$\left\{ \begin{array}{ll} x=1+\sqrt{3}\tan\theta, \\ y=1+3\sec\theta, \end{array} \right.$$
 的两条渐近线的方程为______.

$$(002471)$$
 过点 $P(4,-1)$ 且与直线 $l: \left\{ egin{array}{ll} x=3+4t, \\ y=-2+3t, \end{array}
ight.$ 平行的直线在 y 轴上的截距为______.

$$(002473)$$
 已知点 P 在曲线
$$\left\{ egin{array}{ll} x=\cos\theta, \\ y=\sin\theta, \end{array} \right. \quad (\theta\in[0,\pi]) \text{ 上运动, 点 }Q \text{ 在曲线 } \left\{ egin{array}{ll} x=t+2, \\ y=2t+1, \end{array} \right. \quad (t\in[0,1]) \text{ 上运动,} \\ \text{则直线 }PQ$$
 斜率的取值范围为

$$(002474)$$
 已知曲线 $C: \left\{egin{array}{ll} x=4+at, \\ y=bt, \end{array}
ight.$ (t 为参数) 与曲线 $x^2+y^2-4x+1=0$ 有且仅有一个公共点, 则曲线 C 的整通方程为

(002475) 对于参数方程 $\left\{ egin{array}{ll} x=f(t), \\ y=g(t), \end{array}
ight.$ 表示的曲线 C, 如果对任意 $a\in\mathbf{R},$ C 在 $t\in[a,a+1]$ 部分的曲线段的长 度都恰好为 1. 则称 t 是该曲线的-

- (1) 写出直线 y = 2x 的一个参数方程, 使得参数 t 是一个弧长参数.(可以不证明)
- (2) 写出圆 $x^2 + y^2 = 3$ 的一个参数方程, 使得参数 t 是一个弧长参数.(可以不证明)

(002476) 化下列参数方程为普通方程:

(1)
$$\begin{cases} x = \frac{t+1}{t-1}, \\ y = \frac{t-2}{t-1}; \end{cases}$$
(2)
$$\begin{cases} x = 1 - t^2, \\ y = \sqrt{9 - t^2}. \end{cases}$$

(002477) 已知实数 x, y 满足 $3x^2 + 2y^2 = 6x$, 求:

- (1) x + y 的最大值;
- (2) $x^2 + y^2$ 的取值范围.

(002478) 已知 A, B 分别是椭圆 $x^2 + 4y^2 = 4$ 的右顶点与上顶点, C 是椭圆在第一象限弧上的任意一点, 求四 边形 OACB 面积的最大值.

(002479) 动线段 CD的一个端点 C在椭圆 $\frac{x^2}{9}+\frac{y^2}{25}=1$ 上运动, 另一端点在 x 轴上移动. 已知 |CD|=5, 求 CD 的中点 M 的轨迹方程.

 $(002480) \ \textbf{已知直线} \ l \ \textbf{过点} \ P(0,3), \ \textbf{倾斜角为} \ \alpha, \ \textbf{且与椭圆} \ \frac{x^2}{9} + \frac{y^2}{4} = 1 \ \textbf{交于} \ A, B \ \textbf{两点} \ (\textbf{可重合}), \ \textbf{求} \ |PA| \cdot |PB|$ 的最大值.

(002481) 如图, AB,CD 是椭圆 $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$ 的两条相交弦, 交点为 P. 两弦与椭圆长轴的夹角均 为 α . 求证: A, B, C, D 四点共圆

(002482)[选做] 已知 P(1,1) 是椭圆 $\frac{x^2}{16} + \frac{y^2}{4} = 1$ 的弦 AB 的一个三等分点, 求弦 AB 所在直线的方程.

(002483) 极坐标系中, 若等边三角形 ABC 的顶点 A, B, C 按顺时针排列, 且 A, B 的极坐标分别为 $A(2, \pi/4)$, $B(2,5\pi/4)$, 则顶点 C 的极坐标可能是_____

A.
$$(4, 3\pi/4)$$

B.
$$(2\sqrt{3}, 3\pi/4)$$

C.
$$(2\sqrt{3}, \pi)$$

D.
$$(3, \pi)$$

(002484) 直角坐标为 (-3,4) 的点的极坐标可能是____

A.
$$(5, \arctan(-4/3))$$

B.
$$(5, \arcsin(4/5))$$

A.
$$(5, \arctan(-4/3))$$
 B. $(5, \arcsin(4/5))$ C. $(-5, -\arccos(3/5))$ D. $(-5, \arccos(-3/5))$

D.
$$(-5,\arccos(-3/5))$$

(002485) 圆的半径是 1, 圆心的极坐标是 (1,0), 则这个圆的极坐标方程是

(002486) 极坐标系中, 已知两点 $P(\rho_1, \theta_1)$ 与 $Q(\rho_2, \theta_2)$ 满足 $\rho_1 + \rho_2 = \theta_1 + \theta_2 = 0$, 则 P, Q 两点_____

A. 重合

B. 关于极点对称

C. 关于极轴对称

D. 关于直线 $\theta = \pi/2 (\rho \in \mathbf{R})$ 对称

(002487) 曲线 $\theta = 0(\rho > 0), \ \theta = \pi/3(\rho > 0), \ \rho = 4$ 所[的面积为
(002488) 在极坐标系中,若 $A(3,\pi/3),B(-4,7\pi/6),$ 则	△ <i>AOB</i> 的面积为	(O 是极点)
(002489) 极坐标为 $P(2,3\pi/7)$ 的点 P 的另一个满足 $ ho$	$>0,-2\pi< heta\leq0$ 的极坐机	示为 .
(002490) 极坐标为 $P(3,2\pi/7)$ 的点 P 的另一个满足 $ ho$	$<0,\pi< heta\leq 3\pi$ 的极坐标	为
(002491) 极坐标系下方程为 $\rho^2 - 5\rho - 6 = 0 (\rho \in \mathbf{R})$ 的曲:	线的另一个极坐标方程可以	人为(要
求写成 $A\rho^2 + B\rho + C = 0$ 的形式, 且 $B: C \neq 5:6$)		
(002492) 已知曲线 C 与曲线 $\rho = 5\sqrt{3}\cos\theta - 5\sin\theta$ 关	:于极轴对称, 则曲线 C 的	方程是
A. $\rho = -10\cos(\theta - \pi/6)$	B. $\rho = 10\cos(\theta - \pi/6)$	
C. $\rho = -10\cos(\theta + \pi/6)$	D. $\rho = 10\cos(\theta + \pi/6)$	
(002493) 已知直线 $\rho \sin \theta = 3$ 和圆 $\rho = 3 \sin \theta$, 则圆心:	到直线的距离等于	
(002494) 过极坐标中的点 $A(3,\pi/3)$ 和 $B(3,\pi/6)$ 的直	线的极坐标方程为	
(002495) 曲线 $\rho=rac{4}{2\cos heta+3\sin heta}$ 关于极点,极轴,直:的方程分别为		
(002496) 极坐标方程 $\rho = 2\cos\theta + \sin\theta$ 化为直角坐标		
(002497) 极坐标下方程为 $\rho^2 \sin \theta - \rho = 0$ 的曲线在直角	角坐标系中的方程为	
(002498) 极坐标下方程为 $\sin \theta = \frac{\sqrt{2}}{2}(\rho > 0)$ 的曲线在	直角坐标系中的方程为	
(002499) 极坐标系下方程为 $\rho+6 an heta\csc heta=0$ 的曲约范围).	线在直角坐标系中的方程为	(注意
(002500) 极坐标系下方程为 $\rho^2 - 5\rho - 6 = 0 (\rho \in \mathbf{R})$ 的	曲线在直角坐标系中的方程	星为
(002501) 极坐标系下方程为 $\rho^2-5\rho-6=0$ $(\rho\in\mathbf{R})$ 的曲:	线的另一个极坐标方程可以	人为(要
求写成 $A\rho^2 + B\rho + C = 0$ 的形式, 且 $B: C \neq 5:6$)		
(002502) 已知直线 $\rho = \frac{1}{a\cos\theta + b\sin\theta}$ 与圆 $\rho = 2c\cos\theta$	$s\theta(c>0)$ 相切,则 b^2c^2+2	<i>Pac</i> =
(002503) 已知抛物线 $\rho=rac{8\cos\theta}{\sin^2\theta}(\rho>0,-\pi\leq\theta<\pi)$ 标为	上的点 M 的极径等于 M	到准线的距离, 则 M 的极坐
(002504) 已知两圆的极坐标方程为 $\rho=2\cos\theta$ 和 $\rho^2-2\cos\theta$	$\sqrt{3}\rho\sin\theta+2=0$, 则这两圆	公共点的极坐标为
(002505) 设椭圆的极坐标方程是 $ ho = \frac{4}{2 - \lambda \cos \theta}$, 那么	正实数 λ 的取值范围为	<u>.</u>
(002506) 已知圆锥曲线的极坐标方程为 $ ho = rac{5}{3-2\cos heta}$,那么它的焦点到与之不对	应的准线的距离为
(002507) 极坐标平面内, 曲线 $\rho = \frac{1}{1 - 2\cos\theta}$ 的中心极	坐标为(要求 /	> 0, 极角在 [0, 2π) 内)

(002508) 过曲线 $\rho = \frac{2}{1-3\cos\theta}$ 的右焦点作一倾角为	$\pi/3$ 的直线 l , 则 l 被曲线截得的弦长为
(002509) 极坐标平面内, 过曲线 $\rho = \frac{3}{2-\cos\theta}$ 的中心	
(002510) 极坐标平面内,椭圆 $\rho = \frac{ep}{1 - e\cos\theta}$ 的长轴的	
$1 - e \cos \theta$ (002511) 双曲线 $\rho = \frac{2}{1 - 2\cos \theta} (\rho \in \mathbf{R})$ 的两渐近线所	
(002512) 双曲线 $\rho = \frac{1}{3 - 4\cos\theta} (\rho \in \mathbf{R})$ 的顶点的极坐	
(002312) 双曲线 $\rho = \frac{1}{3 - 4\cos\theta}$ ($\rho \in \mathbf{R}$) 的现在的效率	· /4ħ /3
	$\sqrt{2}$, 过椭圆焦点 F_1 作一直线, 交椭圆于 M,N 两点, 设
$\angle F_2 F_1 M = \alpha (0 \le \alpha < \pi),$ 则当 $\alpha =$	AN 等于椭圆短轴的长.
(002514) 过双曲线 $\frac{x^2}{9} - \frac{y^2}{16} = 1$ 的右焦点 F 作倾角为为	为 45° 的弦 AB , 则弦 AB 的中点 C 到右焦点 F 的距离
^ -	
(002515) 过双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ 的焦点 F 作一条垂〕 线于 P_3 . 则 $\frac{ P_1P_2 }{ P_2F } =$	直于实轴的弦 P_1P_2 , 过 F 作一条渐近线的平行线交双曲
31	
(002516) 椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 上有两点 A, E	B , 满足 $OA \perp OB(O$ 是原点).
(1) $\Re \frac{1}{ OA ^2} + \frac{1}{ OB ^2}$ 的值;	
(2) 证明: 原点到直线 AB 的距离为定值.	
$(002517)(1)$ 抛物线 $y^2 = 2px(p > 0)$ 的一条焦点弦被数	焦点分成长为 a,b 的两段, 求 $\frac{1}{a} + \frac{1}{b}$.
(2) 双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ 的一条端点位于同一支上的复	
(002518) [选做] 过椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 的中心 O 依次作	n 条线段 OA_1, OA_2, \cdots, OA_n , 使得 $A_i (i=1,2,\cdots,n)$
都在该椭圆上,且相邻两线段的夹角恰为 $\frac{2\pi}{n}$,这里 n	$\geq 3. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
(002519) 某外语组有 9 人, 每人至少会英语和日语中的	的一门, 其中 7 人会英语, 3 人会日语, 从中选出会英语与
日语的各一人,有种不同的选法.	
(002520) 三位同学分别从"物理拓展"和"化学拓展"员	这两门课程中选修一门或两门课程; 不同的选法有
种.	
(002521) 若自然数 x,y 满足 x+y ≤ 6, 则有序自然数	な (x u) 北方 な
(002522) 由 1, 2, 3, 4, 5 这五个数字可以组成	个四位数 (各位上的数字允许重复).
(002523) 由 0,1,2,3,4 这五个数字可以组成	个四位数 (各位的数字允许重复).
(002524) 有 3 个应届毕业生报名参加五个单位应聘, 每	辱人报且仅报一个单位,有 种不同报名
方法.	
(002525)4 封信要投到 3 个信箱, 共有	种不同投法.(允许将信全部或部分投入某一个信箱)

(002526) 把 10 个苹果分成三堆 (不记顺序), 要求每堆至少 1 个, 至多 5 个, 则不同的分法有 种.
(002527) 将四名教师分配到三个班级去参加活动, 要求每班至少一名的分配方法共有 种.
(002528) 已知 $a \in \{-2, -1, 0, 1, 2, 3, 4\}, b \in \{-3, -2, -1, 0, 1, 2, 3, 4, 5\},$ 则方程 $\frac{x^2}{a} + \frac{y^2}{b} = 1$ 表示的不同双曲 线共有条.
$(002529)(a_1 + a_2 + a_3)(b_1 + b_2 + b_3 + b_4)(c_1 + c_2)$ 展开后,共有 项.
(002530) 用 $1,2,3,4,\cdots,9$ 这九个数字组成数字不重复的三位数的个数是
(002531) 同时抛掷大小不同的两颗骰子, 有 种不同的结果?
(002532) 用 0, 2, 4, 6, 9 这五个数字可以组成数字不重复的五位偶数共
(002533) 在由数字 $1,2,3,4,5$ 组成的数字不重复的五位数中,小于 50000 的奇数有
(002534) 从 8 个学生 (含学生甲) 中选 5 个排成一列, 其中不包含学生甲的排法共有 种.
(002535) 从 8 个学生 (含学生乙) 中选 5 个排成一列, 其中包含学生乙的排法共有 种.
(002536) 从 $1,2,3,4,5$ 五个数字中每次取出三个数字组成没有重复数字的三位数,所有这样的三位数的各位数字之和为
(002537) 七人并坐, 甲不坐在最左边, 乙不坐在最右边, 共有 种不同的坐法.
(002538) 在 0, 1, 2, 3, 4, 5 这六个数字组成的数字不重复的六位数中, 个位数字小于十位数字的有
(002539) 若复数 $a+bi$ 中的 a,b 均可分别取 $0,1,2,\cdots,9$ 这 10 个数字中的任一个,那么可以组成不同虚数的个数为
(002540) 已知集合 $M=\{a_1,a_2,a_3\},\ P=\{b_1,b_2,b_3,b_4,b_5,b_6\},$ 若 M 中的不同元素对应到 P 中的像不同,则这样的映射的个数共有
(002541) 有红, 黄, 绿三种颜色的信号弹各一粒, 按不同的顺序向天空连发三枪表示不同的信号. 则一共可以发出
(002542) 有红, 黄, 绿三种颜色的信号弹各许多粒, 按不同的顺序向天空连发三枪表示不同的信号. 则一共可以发出
(002543) 将 9 人排成 3 排, 每排 3 人, 要求甲在第二排, 乙与丙在第三排, 则所有的不同排法数为
(002544) 记 $S = 1! + 2! + \cdots + 99!$,则 S 的末两位数字为
(002545) 已知 $P_{56}^{x+6}: P_{54}^{x+3} = 30800: 1, $

(002546) 已知 $P_{2x+1}^4 = 140P_x^3$, 则正整数 x =______. (002548) 不等式 $2 < \frac{(x+1)!}{(x-1)!} \le 42$ 的解集为______. (002549) 已知 $P_x^5 = 12P_x^3$, 则正整数 x =______ (002550) 已知 $P_n^n + P_{n-1}^{n-1} = \frac{1}{5} P_{n+1}^{n+1}$, 则 n =_____. (002551) 某班共有学生 30 人, 每两人之间互通一次电话, 则共打电话_________次. (002552) 某班共有学生 30 人, 每两人之间互通一份信, 则共写信 封. (002553)10 个人分乘 3 辆汽车, 要求甲车坐 5 人, 乙车坐 3 人, 丙车坐 2 人, 不同的乘车方法共有 种. (002554)4 本不同的书分给两个人, 每人两本, 不同的分法共有_______种. (002555) 高三年级共有8个班,分派4个数学教师任教,每个教师都教两个班,则不同的分派方式共有 种. (002556) 从 1,3,5,7,9 这五个数字中任取 3 个, 从 2,4,6,8 这四个数字中任取 2 个, 能组成数字不重复的五位 数共_____ 个. (002557) 从 5 位男同学和 4 位女同学中选出 4 位参加一个座谈会, 要求座谈会的成员中既有男同学, 又有女同 学,有_____种不同的选法. (002558) 从不同的 4 盆仙人球和 5 盆芦荟中任意取出三盆送人, 要求至少有一盆仙人球, 也至少有一盆芦荟, 则不同的选法共有______种. (002559)6 张同排连号的电影票, 分给 3 名教师和 3 名学生, 如果要求师生之间相间而坐, 则不同的分法共 (002560) 一组 6 条平行线与另一组 3 条平行线互相垂直, 则由它们中的四条围成的矩形的个数为_ (002561) 在 ∠AOB 的两边上分别有异于点 O 的 5 个和 6 个点, 以这 12 个点 (包括 O 点) 为顶点, 共可作 出______个不同的三角形. (002562) 数 1007, 1334, 1531, 1929 都是以 1 开头的四位数, 且每个数恰好有两个数字相等, 这样的四位数共 有______个. (002563) 化筒: $\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \dots + \frac{n}{(n+1)!} =$ ______ $(002564)[选做] 化简: \frac{3}{1!+2!+3!} + \frac{4}{2!+3!+4!} + \dots + \frac{(n+2)}{n!+(n+1)!+(n+2)!} = \underline{\hspace{1cm}}$ (002565) 已知 x 是不小于 3 的正整数, $C_x^3:C_x^2=44:3$, 则 x=_____.

(002566) 已知 x 是不小于 12 的正整数, $C_x^{12} = C_x^8$, 则 $x =$.
(002567) 已知 $2x, 16 - x$ 是不大于 18 的非负整数, $C_{18}^{2x} = C_{18}^{16-x}$, 则 $x = $
(002568) 计算: $C_m^5 - C_{m+1}^5 + C_m^4 = \underline{}$.
(002569) 不等式 $C_{21}^{x-4} < C_{21}^{x-2} < C_{21}^{x-1}$ 的解集为
(002570) 计算: $C_2^2 + C_3^2 + C_4^2 + \cdot + C_{100}^2 = $
(002571) 计算: $C_{97}^{94} + C_{97}^{95} + C_{98}^{96} + C_{99}^{97} =$
(002572) 有 6 本不同的书,分给甲,乙,丙三人,其中甲得 1 本,乙得 2 本,丙得 3 本,共有 种不同的分法.
(002573) 有 6 本不同的书, 分给甲, 乙, 丙三人, 其中一个人得 1 本, 另一个人得 2 本, 第三个人得 3 本, 共有
(002574) 有 6 本不同的书,分给甲,乙,丙三人,其中甲得 1 本,乙得 1 本,丙得 4 本,共有 种不同的分法.
(002575) 有 6 本不同的书,分给甲,乙,丙三人,其中两人得 1 本,第三个人得 4 本,共有 种不同的分法.
(002576) 有 6 本不同的书, 分给甲, 乙, 丙三人, 其中甲得 2 本, 乙得 2 本, 丙得 2 本, 共有 种不同的分法.
(002577) 有 6 本不同的书, 分给甲, 乙, 丙三人, 每人得 2 本, 共有 种不同的分法.
(002578) 已知平面上的九个点 $\{(x,y) x \leq 1, y \leq 1,x,y\in {\bf Z}\}$,以这些点中的三个作为顶点,能构成
(002579) 平面内共有 17 个点, 其中有且仅有 5 个点共线, 以这些点中的三个点为顶点的三角形共有
(002580) 平面内有 7 条不同的直线, 其中有且仅有两条直线平行, 则这七条直线最多 (想想为什么要最多) 能围成三角形
(002581)M 和 N 是两个不重合的平面,在平面 M 内取 5 个点, N 内取 4 个点,则以这些点为顶点的四面体共有
(002582) 已知 x 是不大于 7 的非负整数, $C_7^x = C_7^2$, 则 $x =$.
(002583) 在小于 100000 的正整数中, 含有数字 3 的共有 个.
(002584) 从 1,2,3,…,100 中取两数 (不计次序) 相乘, 其乘积能被 3 整除的取法有 种.

(002585) 在 1 到 10 的十个自然数中, 任取两个 (不计次序) 相加所得和为奇数的不同情形共有 种.
(002586) 由数字 1,2,3,4,5 可以组成没有重复数字的五位数 120 个, 若把这些数从小到大排成一列, 第一个数是 12345, 那么第 93 个数是, 43251 是第 个数.
(002587) 在由 $1,2,3,\cdots,9$ 这九个数字组成的数字不重复的五位数中,奇数位上一定是奇数的共有
(002588) 在由 $1,2,3,\cdots,9$ 这九个数字组成的数字不重复的五位数中,奇数数字一定在奇数位上的共有
(002589) 用 1,2,6,9 四个数字组成的所有各位数字不同的四位数之和为
(002590) 在所有的四位数中, 千位, 百位, 十位, 个位依次减小的有
(002591) 不定方程 $x_1 + x_2 + x_3 + x_4 + x_5 = 10$ 的正整数解有组,非负整数解有组.
(002592) 三张卡片的正反面分别写有数字 1 和 2 , 3 和 4 , 5 和 7 , 若将三张卡片并列, 可得到 个不同的三位数.
(002593)8 个同学排成一排的排列数为 $m,8$ 个同学排成前后两排 (前排 3 个,后排 5 个)的排列数为 $n,$ 则 m,n 的大小关系为
(002594) 联欢会上要演出 4 个歌唱节目和 3 个舞蹈节目, 如果舞蹈节目不能连排, 有 种排节目单的方法.
(002595) 五本不同的小说和 3 本不同的漫画并排放在书架上, 要求 3 本漫画排在一起, 共有 中排放的方法.
(002596) 要排一张有 5 个独唱节目和 3 个合唱节目的演出节目表, 如果合唱节目不排在节目表的第一个位置上, 并且任何两个合唱节目不相邻, 则不同的排法总数是种.
(002597) 在连续的 6 次射击中, 恰好命中 4 次, 且其中恰好有 3 次是连续命中的情形共有 种.
(002598) 圆周上有 8 个等分点, 以这 8 个点为顶点作直角三角形, 一共可以作 个.
(002599) 将 6 件不同的产品分别装入两个相同的口袋里, 要求每袋至少有一件, 则不同的装法共有 种.
(002600) 楼梯一共有 10 级, 上楼可以一步上一级, 也可以一步上两级, 若要求恰好 8 步走完这个楼梯, 则不同的走法一共有 种.
(002601) 楼梯一共有 10 级, 上楼可以一步上一级, 也可以一步上两级, <u>还可以一步上三级</u> , 走完这个楼梯的不同的走法一共有 种.

(002602)5 名运动员参加 100 米决赛, 满足每个人所花时间都不相同, 且甲比乙先到终点的最终排名共有 种.
(002603) 一天要排入语文, 数学, 英语, 物理, 化学, 体育六节课 (上午四节, 下午两节), 要求上午第一节课不排体育, 语文课排在上午, 数学课排在下午, 有 种不同的排课方法.
(002604) 取 $1,2,3,4,5$ 这五个数字中的两个分别作为一个对数的底数和真数, 则所得的不同值共有
(002605) 用 $0,1,2,3,4,5$ 这六个数字,可以组成 个无重复数字且能被 25 整除的四位数. (被 25 整除的整数后两位为 $00,25,50,75$.)
(002606) 从 5 个高中学生和 4 个初中学生中选 4 个代表, 要求至少有两位高中生和一位初中生, 若这 4 个代表 分别到 4 个不同的公司去调查, 则不同的分配方案共有 种.
(002607) 由数字 0,1,2,3,4,5 可组成无重复数字的三位奇数共
(002608) 有翻译 8 人, 其中 3 人只会英语, 2 人只会日语, 其余 3 人既会英语又会日语, 现从中选 6 人, 安排 3 人翻译英语, 另 3 人翻译日语, 则不同的安排方法 (不单指选人方法) 有 种.
(002609) 以正方体的顶点为顶点的四面体共有 个.
(002610) 从 5 个男羽毛球运动员和 4 个女羽毛球运动员中选出四个进行混合双打 (男女对男女), 则不同的分组方法 (不猜先不挑边) 有
$(002611)(x-2y)^{10}$ 的展开式中,第 4 项的二项式系数为,第 4 项的系数为
$(002612) \left(\frac{1}{\sqrt{x}} - \sqrt[3]{x} \right)^{20}$ 的展开式中, 不含 x 的项是
$(002613)(x+2x^{-2})^n$ 的展开式中,第三项为常数,则中间项为
(002614) 若 $\left(\sqrt[3]{x} - \frac{2}{x}\right)^n$ 的展开式中,第 8 项含 $x^{\frac{1}{3}}$,则含 x^{-1} 的是第 项.
(002615) 在 $\left(\sqrt{2} + \sqrt[3]{3}\right)^{100}$ 的展开式中,有 项是有理项.
$(002616)(x+x^{-1}-1)^5$ 中的常数项为
(002617) 在 $(ax+1)^7$ 的展开式中,已知 x^3 的系数是 x^2 的系数与 x^4 的系数的等差中项,且实数 $a>1$,则 $a=__$
$(002618)(1+x)+(1+x)^2+(1+x)^3+\cdots+(1+x)^{2n}\ (n\in {\bf Z}^+)\ {\bf 的展开式中}\ x^n\ {\bf 项的系数为}\underline{\hspace{1.5cm}}.$ (用单个组合数表示).
(002619) 利用 $(1+t)^5$ 的展开式化简: $(2x+1)^5 - 5(2x+1)^4 + 10(2x+1)^3 - 10(2x+1)^2 + 5(2x+1) - 1 =$
$(002620)(x+2y+z)^9$ 的展开式中含 $x^2y^3z^4$ 项的系数为

(002621) [选做] 设 n 是正整数,将 $(1+x+x^2)^n$ 的展开式中, x^k 的系数记作 D_n^k ,称为三项式系数. 参照二项式系数杨辉三角形中的规律,探究三项式系数的规律. 要求写出相应的三角数阵,证明并描述所得数阵的规律.	
$(002622)(1+i)^{10}$ 的展开式中,第八项为	
(002623) 在 $(1+x)^n$ 的展开式中,若第三项和第六项的系数相等,则 $n=$	
(002624) 二项式 $(x-y)^{99}$ 中, 系数最小的项是第 项, 系数最大的项是第 项.	
$(002625)(2-3x)^n$ 展开式中各项系数之和为,各项二项式系数之和为, x 的奇次幂的项的系数之和为	
$(002626)(2x-1)^5$ 的展开式中,各项系数的绝对值之和为	
(002627) 当 n 是正整数时, $1 - 2C_n^1 + 4C_n^2 - 8C_n^3 + \dots + (-2)^n C_n^n = \underline{\hspace{1cm}}$.	
(002628)	
(002629) 求 $(2x+3y)^{11}$ 的展开式中系数最大的项.	
(002630) 在 $(1+x)^n$ 的展开式中,有连续三项的二项式系数之比为 $3:8:14$, 试在展开式的所有项中,求系数最大的项.	
最大的项. $(002631)(1) 求证: kC_n^k = nC_{n-1}^{k-1}.$	
最大的项. $(002631)(1) $	_•
最大的项. $ (002631)(1) \ 求证: \ k\mathrm{C}_n^k = n\mathrm{C}_{n-1}^{k-1}. $ $ (2) \ (选做) \ 已知 n 是正整数, 求 \mathrm{C}_n^0 + \frac{1}{2}\mathrm{C}_n^1 + \frac{1}{3}\mathrm{C}_n^2 + \cdots + \frac{1}{n+1}\mathrm{C}_n^n. $ $ (002632) \ 在 (x+1)(x+2)(x+3)\cdots(x+20) \ \mathbf{的展开式中}, x^{19} \ \mathbf{的系数为} , (选做) x^{18} \ \mathbf{的系数为} . $	_••
最大的项. $ (002631)(1) \ \text{求证:} \ k\mathbb{C}_n^k = n\mathbb{C}_{n-1}^{k-1}. $ $ (2) \ (选做) \ \mathbb{E} \ n \ \mathbb{E} \ \mathbb$	
最大的项. $ (002631)(1) \ \text{求证:} \ k\mathbb{C}_n^k = n\mathbb{C}_{n-1}^{k-1}. $ $ (2) \ (选做) \ \mathbf{已} \ n \ \mathbf{E} \mathbf{E} \mathbf{x} \mathbf{x} \ \mathbf{x} \ \mathbf{C}_n^0 + \frac{1}{2}\mathbb{C}_n^1 + \frac{1}{3}\mathbb{C}_n^2 + \cdots + \frac{1}{n+1}\mathbb{C}_n^n. $ $ (002632) \ \mathbf{E} \ (x+1)(x+2)(x+3) \cdots (x+20) \ \mathbf{n} \mathbf{E} \mathbf{H} \mathbf{T} \mathbf{T} \mathbf{r}, x^{19} \ \mathbf{n} \mathbf{S} \mathbf{x} \mathbf{h} \mathbf{h} \mathbf{h} \mathbf{h} \mathbf{h} \mathbf{h} \mathbf{h} h$	_••
最大的项. $ (002631)(1) \ 求证: \ k\mathrm{C}_n^k = n\mathrm{C}_{n-1}^{k-1}. $ $ (2) \ (造做) \ \mathrm{已} \mathrm{m} \ n \ \mathrm{E} \mathrm{E} \mathrm{e} \mathrm{w} \mathrm{m} , \ \mathrm{r} \mathrm{C}_n^0 + \frac{1}{2}\mathrm{C}_n^1 + \frac{1}{3}\mathrm{C}_n^2 + \cdots + \frac{1}{n+1}\mathrm{C}_n^n. $ $ (002632) \ \mathrm{e} \ (x+1)(x+2)(x+3) \cdots (x+20) \ \mathrm{o} \mathrm{m} \mathrm{m} \mathrm{m} \mathrm{m} \mathrm{m} \mathrm{m} \mathrm{m} m$	_•
最大的项. $ (002631)(1) \ \text{求证:} \ kC_n^k = nC_{n-1}^{k-1}. $ $ (2) \ (选做) \ \text{已知} n \text{是正整数}, \text{求} C_n^0 + \frac{1}{2}C_n^1 + \frac{1}{3}C_n^2 + \dots + \frac{1}{n+1}C_n^n. $ $ (002632) \ \text{在} (x+1)(x+2)(x+3) \cdots (x+20) \text{的展开式中}, x^{19} \text{的系数为} , \text{ (选做)} x^{18} \text{的系数为} $ $ (002633)(a+b+c)^5 \text{合并同类项后共有} \text{项, 其中} a^3bc \text{的系数为} . $ $ (002634)(1+2x+x^2)^{10}(1-x)^5 \text{的展开式中, 各项系数的和为} , \text{常数项为} , x \text{的奇次项系数的和为} . $ $ (002635)77^{77} - 15 \text{除以} 19 \text{的余数为} . $ $ (002636)(1+\sqrt{2})^{50} \text{的展开式中最大的项为} . $	

选 n 个男生, 0 个女生;					
故选法总数也可以表示成 $\mathrm{C}_n^0\mathrm{C}_n^n+\mathrm{C}_n^1\mathrm{C}_n^{n-1}+\cdots+\mathrm{C}_n^n\mathrm{C}_n^0$. 因此原式成立."					
解决问题: 已知 r, m, n 均为正整数, $r \leq \min(m, n)$, 则 $\mathbf{C}_m^0 \mathbf{C}_n^r + \mathbf{C}_m^1 \mathbf{C}_n^{r-1} + \cdots + \mathbf{C}_m^r \mathbf{C}_n^0$ 的值为					
$(002639)[选做] 利用复数的三角形式的有关性质及二项式定理证明:$ $(1) 1 + C_n^1 \cos \alpha + C_n^2 \cos 2\alpha + C_n^3 \cos 3\alpha + \dots + C_n^n \cos n\alpha = 2^n \cos^n \frac{\alpha}{2} \cos \frac{n\alpha}{2};$ $(2) C_n^1 \sin \alpha + C_n^2 \sin 2\alpha + C_n^3 \sin 3\alpha + \dots + C_n^n \sin n\alpha = 2^n \cos^n \frac{\alpha}{2} \sin \frac{n\alpha}{2}.$					
(002640) 袋中有 10 个球, 记有号码 0, 1, 2, 3, 4, · · · , 9, 任意取出 2 个球, 号码正好为 1 和 2 的概率为					
(002641) 袋中有 10 个球, 记有号码 $0,1,2,3,4,\cdots,9$, 任意取出 3 个球, 没有号码 3 的概率为					
(002642) 已知 10 个产品中有 3 个次品,从中任取 5 个,则至少有一个次品的概率为					
(002643) 某种密码由 8 个数字组成,且每个数字可以是 $0,1,2,\cdots,9$ 中的任意一个数,则这种密码由完全不同的数字组成的概率为					
(002644) 一工厂生产的 10 个产品中有 9 个一等品, 1 个二等品, 现从这批产品中抽取 4 个, 则其中恰好有一个二等品的概率为					
(002645) 掷三颗骰子, 点数之和不小于 5 的概率为					
(002646) 某城镇共有 10000 辆自行车, 牌照编号从 00001 到 10000 . 则在此城镇中偶然遇到一辆自行车, 其牌照号码中有数字 8 的概率为					
(002647) 某人有 5 把钥匙, 但只有一把能打开门, 他每次取一把钥匙尝试开门, 则试到第 3 把钥匙时才打开门的概率为					
(002648) 某次测验有 10 道备用试题,甲同学在这 10 道题中能够答对 6 题. 现在备用试题中随机抽考 5 题,规定答对 4 题或 5 题为优秀,则甲同学获优秀的概率为					
(002649) 从 $0,1,2,3,\cdots,9$ 这 10 个数字中,不重复地任取三个数,则这 3 个数中最小的一个数不大于 5 的概率为					
(002650) 掷两颗骰子, 点数之和等于 的概率最小.					
(002651) 掷两颗骰子, 点数之和等于 的概率最大.					
(002652) 已知某班有 38 名学生, 小李, 小王, 小张是该班的 3 名学生, 某次班会决定随机地挑选 3 名学生在会上发言. 则小李, 小王, 小张按此次序被选中的概率为					
(002653) 已知某班有 38 名学生, 小李, 小王, 小张是该班的 3 名学生, 某次班会决定随机地挑选 3 名学生在会上发言. 则小李, 小王, 小张按任意次序被选中的概率为					
(002654) 一部 4 卷的文集, 按任意次序放到书架上, 则各卷自左向右或自右向左的卷号恰好为 1,2,3,4 的概率 为					

- (1) 画出这两个电路图.
- (2) 如果 p = 1/2, 那么哪个电路接通的概率较大?
- (3) 如果 $p \in (0,1)$, 哪个电路接通的概率较大? 为什么?

(002666) 从 1,2,3,4 中随机选取两个数, ξ 表示这两个数之和, 求 ξ 可能取得的值以及取这些值的概率.

(002667) 已知随机变量 ξ 只取两个值: 掷一颗骰子出现的点数大于 4, 则 $\xi=1$; 否则 $\xi=0$. 求随机变量 ξ 的分布律.

(002668) 设随机变量 ξ 表示掷两颗骰子出现的点数之和. 求 ξ 的分布律.

(002669) 设随机变量 ξ 的分布律如下表所示:

x		1	2	3
$P(\xi = x)$	1/8	1/8	1/2	

完成该表并求 $\eta = \xi^2 - 2\xi$ 的分布律.

(002670) 已知随机变量 ξ 满足 $E\xi = 4$, $D\xi = 2$. 随机变量 $\eta = 2\xi + 2$, 求 $E\eta$ 和 $D\eta$.

(002671)[选做] 我们知道下飞行棋时,开局需要掷出尽量多的 6 点,但是天不遂人愿,并不是每次都能很快掷出 6 点的. 连续掷一颗均匀的骰子,用 ξ 表示首次掷出 6 点所经历的抛掷次数 (例如: 抛掷结果为 "123454321234543216" 的话, $\xi=17$). 求 $E\xi$.

(002672)[选做] 连续掷一颗均匀的骰子,我们知道六个点数都掷到过至少需要掷六次.假设以随机变量 ξ 表示连续掷一颗均匀的骰子,首次"集齐"六种点数的抛掷次数(例如:抛掷结果是"12333321145512341236"的话, $\xi=20$)。求 $E\xi$.

(002673) 从 500 名学生中 (其中有且仅有一个学生叫小明) 采用简单随机抽样的方式抽取 25 名学生, 那么小明被选中的概率为______.

(002674) 在下列场合下, 各采用怎样的抽样方式较为合适?

- (1) 从 20 台笔记本电脑中抽取 4 台进行质量检查, 适合采用______ 的抽样方式;
- (2) 某大剧院共有 80 排座位,每排共有 120 个座位,座位号为 1 至 120,有一次音乐会坐满了观众,音乐会结束后为听取观众意见需留下 80 名观众进行座谈,适合采用 的抽样方式;

(002676)8 名学生参加英语口试, 他们得分如下: 82,93,78,82,72,79,75,82, 则英语口试学生得分的中位数减去得分的平均数得

(002677) 设点 $P(x_1, y_1), P(x_2, y_2), \cdots, P(x_{100}, y_{100})$ 都在直线 y = 2x + 1 上, 若数据 $x_1, x_2, \cdots, x_{100}$ 的标准 差为 σ , 那么数据 $y_1, y_2, \cdots, y_{100}$ 的方差为_______.

(002678) 设两组数据 x_1, x_2, \dots, x_n 与 y_1, y_2, \dots, y_{2n} 的均值分别为 \bar{x} 和 \bar{y} , 则新的一组数据 $x_1 + y_1 + y_2$, $x_2 + y_3 + y_4, \dots, x_k + y_{2k-1} + y_{2k}, \dots, x_n + y_{2n-1} + y_{2n}$ 的均值为______.

(002679) 某校教师进行体格检查, 测得他们的收缩压 (血压, 单位: 毫米汞柱) 的值如下表所示:

收缩压范围	89.5 - 104.5	104.5 - 119.5	119.5 - 134.5	134.5 - 149.5	149.5 - 164.5	164.5 - 179.5
人数	24	62	72	26	12	4

求该校教师收缩压的平均数与中位数 (用各收缩压范围的中点的值代表该范围的取值, 结果精确到 0.1).

(002680) 某计算机操作培训班各学院的考试成绩如下表所示:

得分	100	90	80	70	67	65	63	55
人数	2	3	10	25	13	3	2	2

求学院考试成绩的平均数,中位数和得分的方差.

(002681) 从某中学 200 名新生中随机抽取 10 名进行身高测量, 得数据为:

168, 159, 166, 163, 170, 161, 167, 155, 162, 169(单位: 厘米).

试估计该中学 200 名新生的平均身高和高于 165 厘米的概率估计值.

(002682) 对飞机的飞行速度进行 15 次观测, 测得飞机的最大飞行速度 (米每秒) 如下:

413.2, 418.7, 425.6, 420.3, 428.2, 438.3, 434.0411.3, 425.8, 423.1, 431.5, 417.2, 413.5, 441.3, 423.0.

求飞机的最大飞行速度的样本均值和样本方差, 并作出 2σ 的区间估计.

(002683) 设椭圆 E 的方程为 $\frac{x^2}{^4} + \frac{y^2}{^2} = 1$, F(-1,0) 是椭圆的左焦点, P 是椭圆 E 上的一个动点, A(1,1) 是 椭圆内一点.

- (1) 求 |PA| + 2|PF| 的最小值;
- (2) 求 |PA| + |PF| 的最小值及最大值.

(002684) 已知方程 xy=1 表示双曲线, 求它的任意一组焦点和准线.

(002685) 已知方程 $x^2 - 2xy + y^2 - 8x - 8y = 0$ 表示一条抛物线, 求它的焦点和准线.

(002686) 已知方程 $7x^2 - 2xy + 7y^2 = 48$ 表示一个椭圆, 求它的任意一组焦点和准线.

(002687) 在双曲线 $x^2 - 3y^2 = 1$ 上有两个不同的点 A = B.

- (1) 若 A, B 同在右支上, 求直线 AB 倾斜角的范围;
- (2) 若 A, B 分别在两支上, 求直线 AB 倾斜角的范围.

(002688) 设椭圆 E 的方程为 $x^2 + \frac{y^2}{4} = 1$. AB 是椭圆 E 的一条动弦, 其中点记为 M.

- (1) 若 |AB|=2,求 M 的纵坐标的最小值; $-\frac{2\sqrt{3}}{3}$ (2) 若 $|AB|=\frac{1}{2}$,求 M 的纵坐标的最小值. $-\frac{\sqrt{15}}{2}$

(002689) 设 AB 是抛物线的一条过焦点 F 的弦, A' 及 B' 分别是 A 和 B 在准线上的射影. 证明: $\angle A'FB' =$ 90° .

(002690) 设 AB 是抛物线的一条过焦点的弦.

- (1) 证明: 以 AB 为直径的圆与该抛物线的准线相切;
- (2) 证明: 从(1) 中的圆和准线的切点 T 出发作已知抛物线的两切线, 切点恰为 A 和 B.

(002691) 函数 y = f(x) 是定义在 R 上, 周期为 2 的函数, 当 $-1 \le x \le 1$ 时, $f(x) = \sqrt{1-x^2}$.

- (1) 若直线 y = kx 与函数 y = f(x) 的图像有 10 个公共点, 求 k;
- (2) 若直线 y = kx 与函数 y = f(x) 的图像有 9 个公共点, 求 k 的范围.

(002692) 用适当符号 $(\in, \notin, =, \subsetneq)$ 填空: π _**Q**; $\{x|x=2k+1, k \in \mathbf{Z}\}$ _ $\{x|x=2k-1, k \in \mathbf{Z}\}$; $\{3.14\}$ _**Q**; $\{y|y=x^2\}$ _ $\{x|y=x^2\}$.

(002693) 已知 $P = \{y = x^2 + 1\}, \ Q = \{y|y = x^2 + 1, \ x \in \mathbf{R}\}, \ E = \{x|y = x^2 + 1, \ x \in \mathbf{R}\}, \ F = \{(x,y)|y = x^2 + 1, \ x \in \mathbf{R}\}, \ G = \{x|x \ge 1\}, \ H = \{x|x^2 + 1 = 0, \ x \in \mathbf{R}\}, \ \texttt{则各集合间关系正确的有}______.$ (答案可能不唯一)

- (A) P = F (B) Q = E (C) E = F (D) $Q \subseteq G$ (E) $H \subsetneq P$
- (002694) 设全集是实数集 $\mathbf{R}, M = \{x | -2 \le x \le 2\}, N = \{x | x < 1\}, 则 <math>\mathbb{C}_U M \cap N = \underline{\hspace{1cm}}$.
- $(002695) \ \textbf{设} \ A = \{x | -4 < x < 4, \ x \in \mathbf{R}\}, \ B = (-\infty, 1] \cup [3, +\infty), \ \textbf{则} \ \{x | x \in A, \ x \notin A \cap B\} = \underline{\hspace{1cm}}.$
- (002696) 设 $A = \{x | x = \sqrt{k}, k \in \mathbb{N}\}, B = \{x | x \le 3, x \in \mathbb{Q}\}, \ \text{则 } A \cap B = \underline{\hspace{1cm}}.$
- (002697) 设全集 $U = \{2, 3, a^2 + 2a 3\}$, 集合 $A = \{|2a 1|, 2\}, C_U A = \{5\}, 则实数 <math>a = \underline{\hspace{1cm}}$.
- (002698)(1) 设 $M = \{y | y = x^2, x \in \mathbf{R}\}, N = \{x | x = t, t \in \mathbf{R}\}, 例 M \cap N =$
- (2) $\mathfrak{P} M = \{(x,y)|y=x^2, x \in \mathbf{R}\}, N = \{(t,x)|x=t, t \in \mathbf{R}\}, M \cap N = \underline{\hspace{1cm}}$
- (002699) 设全集 $U=\{1,2,3,4\}$, $\mathbb{C}_UA\cap B=\{3\}$, $A\cap \mathbb{C}_UB=\{2\}$, $\mathbb{C}_UA\cup \mathbb{C}_UB=\{2,3,4\}$, 则 $\mathbb{C}_UA\cap \mathbb{C}_UB=\{1,2,3,4\}$, 则 $\mathbb{C}_UA\cap \mathbb{C}_UB=\{1,2,3,4\}$, 则 $\mathbb{C}_UA\cap \mathbb{C}_UB=\{1,2,3,4\}$.
- (002700) 集合 $C = \{x | x = \frac{k}{2} \pm \frac{1}{4}, \ k \in \mathbf{Z}\}, D = \{x | x = \frac{k}{4}, \ k \in \mathbf{Z}\},$ 试判断 C 与 D 的关系, 并证明.
- (002701) 集合 $A = \{x|x^2 + 4x = 0\}, B = \{x|x^2 + 2(a+1)x + a^2 1 = 0, x \in \mathbf{R}\}.$
- (1) 若 $A \cap B = A$, 求实数 a 的取值范围;
- (2) 若 $A \cup B = A$, 求实数 a 的取值范围.
- (002702) 若集合 A = [2,3], 集合 B = [a, 2a + 1].
- (1) 若 $A \subsetneq B$, 求实数 a 的取值范围;
- (2) 若 $A \cap B \neq \emptyset$, 求实数 a 的取值范围.
- (002703) 设全集 $U={\bf R}$, 集合 $A=\{x|f(x)=0\},\ B=\{x|g(x)=0\},\ C=\{x|h(x)=0,\ x\in{\bf R}\},$ 则方程 $\frac{f^2(x)+g^2(x)}{h(x)}=0$ 的解集是_____(用 U,A,B,C 表示).
- (002704)(1) 已知集合 $A = \{y|y=x^2, x \in \mathbf{R}\}, B = \{y|y=4-x^2, x \in \mathbf{R}\}, 则 A \cap B = _____.$
- (2) 已知集合 $A = \{(x,y)|y=x^2, x \in \mathbb{R}\}, B = \{(x,y)|y=4-x^2, x \in \mathbb{R}\}, \text{ } \emptyset \text{ } A \cap B = \underline{\hspace{1cm}}$
- (002705) 设 $m \in \mathbb{R}$, 已知 $A = \{x | x^2 3x + 2 = 0\}$, $B = \{x | mx + 1 = 0\}$, 且 $B \subsetneq A$, 则 $m = \underline{\hspace{1cm}}$.
- (002707) 已知 $A = \{x|x^2 3x + 2 = 0\}, B = \{x|x^2 ax + a = 0, x \in \mathbf{R}\},$ 若 $B \subsetneq A$, 求满足题意的实数 a.

(002708) 设集合 $A = \{x|x^2 + px + 1 = 0, x \in \mathbb{R}\}$, 若 $A \cap \mathbb{R}^+ = \emptyset$. 求实数 p 的取值范围.

(002709) 设函数 $f(x)=\lg(rac{2}{x+1}-1)$ 的定义域为集合 A, 函数 $g(x)=\sqrt{1-|x+a|}$ 的定义域为集合 B.

- (1) 当 a = 1 时, 求集合 B.
- (2) 问: $a \ge 2$ 是 $A \cap B = \emptyset$ 的什么条件 (在"充分非必要条件、必要非充分条件、充要条件、既非充分也非必 要条件"中选一)? 并证明你的结论.
- (002710) 如图, U 为全集, M, P, S 是 U 的三个子集, 则阴影部分所表示的集合是 (
- A. $(M \cap P) \cap S$
- B. $(M \cap P) \cup S$
- C. $(M \cap P) \cap \mathcal{C}_U S$ D. $(M \cap P) \cup \mathcal{C}_U S$

- (002711) 设集合 $A = \{5, \log_2(a+3)\}, B = \{a, b\}, 若 A \cap B = \{2\}, 则 A \cup B = _____.$
- (002712) 设集合 $A \cap \{-2,0,1\} = \{0,1\}, A \cup \{-2,0,2\} = \{-2,0,1,2\},$ 则满足上述条件的集合 A 的个数 为______个.
- (002713) 若集合 $A = \{x | x \leq 2\}, B = \{x | x \geq a\},$ 满足 $A \cap B = \{2\},$ 则实数 a =______.
- (002714) 若集合 $M = [a-1,a+1], N = (-\infty,-1) \cup [2,+\infty),$ 且 $M \cap N = \emptyset$, 则实数 a 的取值范围
- (002716) 已知集合 $M=\{x|x=3m+1,\ m\in \mathbf{Z}\},\ N=\{y|y=3m+2,\ m\in \mathbf{Z}\},\$ 若 $x_0\in M,\ y_0\in N,\ 则\ x_0y_0\in M,\ y_0\in N,\ y_0\in N,$ 与集合 M, N 的关系是 ().
- A. $x_0y_0 \in M$ 但 $x_0y_0 \notin N$

B. $x_0y_0 \in N$ 但 $x_0y_0 \notin M$

C. $x_0y_0 \notin M$ H. $x_0y_0 \notin N$

- D. $x_0 y_0 \in M \perp x_0 y_0 \in N$
- (002717) 若 $A = \{x | x = 2n, \ n \in \mathbf{Z}\}, B = \{x | x = 4m, \ m \in \mathbf{Z}\},$ 求证: $B \subsetneq A$.
- (002718) 设常数 $a \in \mathbf{R}$, 集合 $A = \{x | \frac{3-2x}{x-1} + 1 \ge 0, \ x \in \mathbf{R}\}, \ B = \{x | 2ax < a+x, \ x \in \mathbf{R}\}.$ 若 $A \cup B = B$, 求 a 的取值范围.
- (002719) 设常数 $m \in \mathbf{R}$, $A = \{(x,y)|x^2 + mx y + 2 = 0, x \in \mathbf{R}\}$, $B = \{(x,y)|x y + 1 = 0, x \in M\}$, 且 $A \cap B \neq \emptyset$.
- (1) 若 $M = \mathbf{R}$, 求实数 m 的取值范围;
- (2) 若 $M = (\frac{1}{3}, 2]$, 求实数 m 的取值范围.

(002720) 设常数 $k \in \mathbf{R}$, 关于 x 的不等式组 $\begin{cases} x^2 - 2x^2 & \text{otherwise} \end{cases}$	-x - 2 > 0, $+ (2k + 5)x + 5k < 0$	整数解的集合为 $\{-2\}$, 求实数 k 的
取值范围.		
(002721) 设 $A = \{(x,y) y = -4x + 6, x \in \mathbf{R}\}, B \in \mathbf{R}$	$= \{(x,y) y = 5x - 3, \ x$	$\in \mathbf{R}$ },则 $A \cap B =$
(002722) 已知 $M = \{a \frac{6}{5-a} \in \mathbb{N}, \ a \in \mathbb{Z}\}, $ 则用列	J举法表示 M =	
(002723) 定义集合运算: $A \odot B = \{z z = xy(x + A \odot B)$ 的所有元素之和为	$y), x \in A, y \in B$ }, 设	集合 $A = \{0,1\}, B = \{2,3\},$ 则集合
(002724) 已知全集 $U = \mathbf{R}$, $A = \{-1\}$, $B = \{x \lg x\}$	$(x^2 - 2) = \lg x$, \mathbb{M} ()
A. $A \subseteq B$ B. $A \cup B = \emptyset$	C. $A \supseteq B$	D. $(C_U A) \cap B = \{2\}$
(002725) 集合 $A = \{(x,y) y= x +1\}, B = \{(x,y) y= x +1\}$	$ y = \frac{1}{2}x + a\}$, 若 $A \cap B$	$S=\varnothing$, 则 a 的取值范围是
(002726) 调查某班 50 名学生, 音乐爱好者有 40 人, 人, 最多人.	体育爱好者有 24 人, 则]两方面都爱好的人数最少
(002727) 已知集合 $A = \{x ax^2 - 3x + 2 = 0\}$ 至刻元素,则 a 的取值范围是	多有一个元素 $, 则 a$ 的 $\mathfrak a$	文值范围是; 若至少有一个
(002728) 设含有三个实数的集合既可以表示为 {a.	$(rac{b}{a},1\},$ 又可以表示为 $\{a$	$a^2, a+b, 0$ }, 那么 $a+b=$
(002729) 设 $f(x) = x^2 - 12x + 36$, $A = \{a 1 \le a$ 求集合 C .	$\leq 10, \ a \in \mathbf{N}\}, \ B = \{b$	$ b=f(a),\ a\in A\},$ 又设 $C=A\cap B.$
(002730) 设常数 $m \in \mathbf{R}$, $A = \{(x, y) y = -x^2 + m \}$ 子集有两个.	$(x-1, x \in \mathbf{R}), B = \{(x \in \mathbf{R}), B \in \mathbf{R}\}$	$(x,y) x+y=3, \ x\in M\}, 且 A\cap B$ 的
(1) 若 $M = \mathbf{R}$, 求实数 m 的值;		
(2) 若 $M = [0,3]$, 求实数 m 的取值范围.		
(002731) 填写下列命题的否定形式:		
(1) $m \le 0$ g $n > 0$:		
(2) 空间三条直线 <i>l</i> , <i>m</i> , <i>n</i> 两两相交:		
(3) 复数 z ₁ , z ₂ , z ₃ 中至多一个为纯虚数:		<u></u> .
(002732) 已知 a,b 是整数,写出命题 "若 ab 为偶数写命题的真假.	数, 则 a+b 为偶数"的i	並命题、否命题、逆否命题, 并判断所
逆命题:	, 真假: ;	
否命题:		
逆否命题:	,真假:	

(002733) 设甲是乙的3	充分非必要条件, 乙是丙的	的充要条件, 丁是丙的必要非充分条件	,则丁是甲的 ().	
A. 充分非必要条件		B. 必要非充分条件		
C. 充要条件		D. 既非充分又非必要条件		
(002734) 若 A 是 B 的	的必要非充分条件, 则 \overline{A} ,	是 $^{\overline{B}}$ 的 $_{}$ 条件.		
(002735) 下列各组命是	题中互为等价命题的是 ().		
A. $A \subseteq B = A \cup B = B$		B. $x \in A$ 且 $x \in B$ 与 $x \in A$	B. $x \in A$ 且 $x \in B$ 与 $x \in A \cup B$	
C. $a \in A \cap B$ 与 $a \in A$ 或 $a \in B$		D. $m \in A \cap B \ni m \in A \cup B$	D. $m \in A \cap B + m \in A \cup B$	
(002736) 填空 (在"充	分不必要"、"必要不充分	"、"充要"、"既不充分也不必要"中	选一种作答):	
(1) " $\alpha \neq \beta$ " 是 $\cos \alpha$ 表	≠ cos β" 的 条	件;		
(2) 在 $\triangle ABC$ 中, " A	$=B$ " 是 " $\sin A = \sin B$ "	的条件.		
(002737)" $a > 0b > 0$ "	的一个必要非充分条件是	<u>l</u> ().		
A. $a > 0$	B. $b > 0$	C. $a > 0b > 0$	D. $a, b \in \mathbf{R}$	
(002738)"函数 $f(x)$ (2	$x \in \mathbf{R}$) 存在反函数"是"	函数 $f(x)$ 在 R 上为增函数"的 ().	
A. 充分而不必要条件	‡	B. 必要而不充分条件		
C. 充分必要条件		D. 既不充分也不必要条件		
(002739) 填空: (填"方	艺分不必要"、"必要不充分	分"、"充要"、"既不充分也不必要")		
(1) 对于实数 x, y, p: :	xy > 1 且 $x + y > 2$ 是 q	x > 1 且 y > 1 的 条件;		
(2) 对于实数 x,y,p: :	$x+y\neq 8$ 是 q : $x\neq 2$ 或	$y \neq 6$ 的 条件;		
(3) 已知 $x, y \in \mathbf{R}, p$: ($(x-1)^2 + (y-2)^2 = 0$ 長	$extbf{q}: (x-1)(y-2) = 0 extbf{ff}$	条件;	
*(4) 设 $x, y \in \mathbf{R}$, 则 "	$x^2 + y^2 < 2$ " 是 " $ x + y $	$\leq \sqrt{2}$ "的条件; 又是" x	x + y < 2"的	
条件; 又是 " $ x < \sqrt{2}$	且 $ y < \sqrt{2}$ "的	条件.		
		$a_1x^2 + b_1x + c_1 = 0$ 和方程 $a_2x^2 + b_2x$	$c + c_2 = 0$ 的实数解集分别	
为 M 和 N , 则 " $\frac{a_1}{a_2}$ =	$= \frac{b_1}{b_2} = \frac{c_1}{c_2}$ " \(\mathbb{E} \) " M = N"	的条件.		
(002740)(1) 是否存在	实数 m, 使得 2x + m < 0) 是 $x^2 - 2x - 3 > 0$ 的充分条件? 说	明理由.	
(2) 是否存在实数 <i>m</i> ,	使得 $2x + m < 0$ 是 x^2 —	2x - 3 > 0 的必要条件? 说明理由.		
(002741) 已知关于 x	的实系数二次方程 ax^2 +	$bx + c = 0 \ (a > 0), $ 分别求下列命题	的一个充要条件:	
(1) 方程有一正根, 一根	根是零;			
(2) 两根都比 2 小.				
(002742) 设 $a, b \in \mathbf{R}$,	写出命题 "若 a + b > 0 」	且 $ab > 0$, 则 $a > 0$ 且 $b > 0$ " 的逆否	命题.	
(002743) 填空 (填"充	分不必要"、"必要不充分	"、"充要"、"既不充分也不必要"):		
(1) 若 $x, y \in \mathbf{R}$, 则 x^2	$+y^{2} \neq 0$ 是 " x, y 不全为	零"的条件;		
(2) 若 $x, y \in \mathbf{R}$, 则 " xy	y > 0, x + y > 0"是" $x > 0$ "	0, y > 0"的条件;		

- (3) 设 $a,b \in \mathbb{R}$, 则 "|a| + |b| = |a+b|" 是 "ab = 0" 的_____ 条件;
- (4) 若 a, b, c 是常数, 则 "a > 0 且 $b^2 4ac < 0$ " 是 "对任意 $x \in \mathbb{R}$, 有 $ax^2 + bx + c > 0$ " 的
- (5) 设 $a, b \in \mathbf{R}$, 则 $b = \tan a$ 是 $a = \arctan b$ 的_____ 条件.

(002745) 使不等式 $2x^2 - 5x - 3 \ge 0$ 成立的一个充分不必要条件是 ().

A.
$$x < 0$$
 B. $x \ge 0$ C. $x \in \{-1, 3, 5\}$ D. $x \le \frac{1}{2}$ **x** $x \ge 3$

(002746) 已知 α : " $x \ge a$ ", β : " $|x-1| \le 1$ ", 若 α 是 β 的必要非充分条件, 则实数 a 的取值范围是______

(002747) 命题甲: 关于 x 的方程 $x^2 + x + m = 0$ 有两个相异的负根; 命题乙: 关于 x 的方程 $4x^2 + x + m = 0$ 无实根, 若这两个命题有且只有一个是真命题, 求实数 m 的取值范围. *

(002748) 已知 $P = \{x|x^2 - 8x - 20 \le 0\}$, $S = \{x||x - a| \le m\}$, 求实数 a, m 的值, 使得 " $x \in P$ " 是 " $x \in S$ " 的充要条件. *

(002749) 设 $f(x) = ax^2 + x + a$, 写出一个 a 的值,

- (1) 使 f(x) > 0 ($x \in \mathbf{R}$) 恒成立;
- (2) 使 f(x) > 0 ($x \in \mathbf{R}$) 恒不成立;
- (3) 使 f(x) > 0 ($x \in \mathbf{R}$) 不恒成立.

$$(002750) 命題 (1) a > b \Rightarrow ac^2 > bc^2; (2) ac^2 > bc^2 \Rightarrow a > b; (3) a > b \Rightarrow \frac{1}{a} < \frac{1}{b}; (4) a < b < 0, c < d < 0 \Rightarrow ac > bd; (5) \sqrt[n]{a} > \sqrt[n]{b} \Rightarrow a > b \ (n \in \mathbf{N}^*); (6) a + c < b + d \Leftrightarrow \begin{cases} a < b, \\ c < d; \end{cases}$$
 (7) $a < b < 0 \Rightarrow a^2 > ab > b^2.$ 其中

真命题的序号是_____.

(002751) 已知 $a, b \in \mathbb{R}$, 则 ab(a - b) < 0 成立的一个充要条件是 ().

(002753) 下列函数中, 最小值为 2 的函数有_____.

$$(1) \ y = x + \frac{1}{x}, \ x \in (0, +\infty); \ (2) \ y = x + \frac{1}{x}, \ x \in (1, +\infty); \ (3) \ y = \frac{x^2 + 3}{\sqrt{x^2 + 2}}; \ (4)y = \log_3 x + \log_x 3.$$

$$(002754)z = (x+y)(\frac{1}{x} + \frac{1}{4y}), \ (x,y>0)$$
 的最小值是______.

(002755) 若正实数 a, b 满足 a + b = 1, 则 ().

A.
$$\frac{1}{a}+\frac{1}{b}$$
 的最大值是 4 B. ab 的最小值是 $\frac{1}{4}$ C. $\sqrt{a}+\sqrt{b}$ 有最大值 $\sqrt{2}$ D. a^2+b^2 有最小值 $\frac{\sqrt{2}}{2}$

(002756) 如果 0 < a < b, t > 0, 设 $M = \frac{a}{b}, N = \frac{a+t}{b+t}$, 那么 (

A.
$$M > N$$

B. M < N

C.
$$M = N$$

D. M 与 N 的大小随 t 的变化而变化

(002757) 将一根铁丝切割成三段做一个面积为 2 平方米、形状为直角三角形的框架, 则至少需要______ 米 的铁丝 (不计损失, 精确到 0.1 米).

(002758)(1) 比较 $1+a^2$ 与 $\frac{1}{1-a}$ 的大小;

(2) 设 a > 0, $a \neq 1$, t > 0, 比较 $\frac{1}{2} \log_a t$ 和 $\log_a \frac{t+1}{2}$ 的大小, 证明你的结论.

(002759) 已知 $x,y \in \mathbf{R}^+$ 且 x+y=4,求 $\frac{1}{x}+\frac{2}{y}$ 的最小值. 某学生给出如下解法: 由 x+y=4 得, $4 \geq 2\sqrt{xy}$ ①, 即 $\frac{1}{\sqrt{xy}} \ge \frac{1}{2}$ ②, 又因为 $\frac{1}{x} + \frac{2}{y} \ge 2\sqrt{\frac{2}{xy}}$ ③, 由②③得 $\frac{1}{x} + \frac{2}{y} \ge \sqrt{2}$ ④, 即所求最小值为 $\sqrt{2}$ ⑤. 请指出这位同学 错误的步骤,并给出正确的解法.

(002760) 已知 $x, y \in \mathbb{R}^+, xy = x + y + 1, 求 x + y$ 的取值范围 (试用两种方法求解).

(002761) 设 $a, b \in \mathbb{R}$, 若 a - |b| > 0, 则下列不等式中正确的是 (

A.
$$b - a > 0$$

B.
$$a^3 + b^3 < 0$$

C.
$$b + a > 0$$

D.
$$a^2 - b^2 < 0$$

(002762) 已知 0 < x < y < a < 1, 则 ().

A.
$$\log_a(xy) < 0$$

A.
$$\log_a(xy) < 0$$
 B. $0 < \log_a(xy) < 1$ C. $1 < \log_a(xy) < 2$ D. $\log_a(xy) > 2$

C.
$$1 < \log_{\alpha}(xy) < 1$$

D.
$$\log_a(xy) > 2$$

(002763) 设 a > 1 > b > -1, 则下列不等式中恒成立的是 ().

A.
$$\frac{1}{a} < \frac{1}{b}$$

A.
$$\frac{1}{a} < \frac{1}{b}$$
 B. $\frac{1}{a} > \frac{1}{b}$

C.
$$a > b^2$$

D.
$$a^2 > 2b$$

(002765) 已知 $x, y \in \mathbb{R}^+$, 且 x + 4y = 1, 则 $x \cdot y$ 的最大值为

(002766) 函数 $y = \log_a(x+3) - 1$ $(a>0,\ a \neq 1)$ 的图像恒过定点 A, 若点 A 在直线 mx+ny+1=0 上, 其 中 mn > 0, 则 $\frac{1}{m} + \frac{2}{n}$ 的最小值为_____.

 $(002767)^*$ 如果正数 a, b, c, d 满足 a + b = cd = 4, 那么 ().

A. $ab \le c + d$ 且等号成立时, abcd 的取值唯一

B. $ab \ge c + d$ 且等号成立时, abcd 的取值唯一

 $C. ab \le c + d$ 且等号成立时, abcd 的取值不唯一

D. $ab \ge c + d$ 且等号成立时, abcd 的取值不唯一

(2) 设 $0 < x < \sqrt{2}$, 则 $x\sqrt{4-2x^2}$ 的最大值是______, 此时 x =_____

(002769) 在等差数列 $\{a_n\}$ 和等比数列 $\{b_n\}$ 中, $a_1=b_1>0$, $a_3=b_3>0$, $a_1\neq a_3$, 试比较 a_5 与 b_5 的大小.

(002770) 下列不等式中解集为 R 的是 ().

A.
$$x^2 - 6x + 9 > 0$$

A.
$$x^2 - 6x + 9 > 0$$
 B. $4x^2 + 12x + 9 < 0$ C. $3x^2 - x + 2 > 0$ D. $3x^2 - x + 2 < 0$

C.
$$3x^2 - x + 2 > 0$$

D.
$$3x^2 - x + 2 < 0$$

(002771) 不等式 $(x-1)^2(2-x) \le 0$ 的解集是______; $(x-1)^2(2-x) > 0$ 的解集是______

(002772) 已知关于 x 的不等式 $x^2 + ax + b < 0$ 的解集为 (-1, 2), 则 a + b =_____.

(002773) 不等式 $-1 < x^2 + 2x - 1 < 2$ 的解集是

(002774) 用一根长为 100 米的绳子能否围成一个面积大于 600 平方米的矩形? (用"能"或"不能" 填空).

 $(002775) \ \textbf{已知关于} \ x \ \textbf{的不等式} \ ax^2 - bx + c > 0 \ \textbf{的解集是} \ (-\frac{1}{2},2), \ \textbf{对于} \ a,b,c \ \textbf{有以下结论} : ① \ a > 0; ② \ b > 0;$ ③ c > 0; ④ a + b + c > 0; ⑤ a - b + c > 0. 其中正确的序号有___

(002776) 若关于 x 的不等式 $(a-2)x^2+2(a-2)x-4<0$ 对一切 $x \in \mathbf{R}$ 成立, 则实数 a 的取值范围是___

(002777) 已知关于 x 的不等式 (2a-b)x+a-5b>0 的解集是 $(-\infty,\frac{10}{7})$, 则关于 x 的不等式 ax>b 的解集

(002778) 已知关于 x 的不等式 $ax^2 + bx + c > 0$ 的解集为 $\{x | 2 < x < 4\}$, 求关于 x 的不等式 $cx^2 + bx + a < 0$ 的解集.

(002779) 解关于 x 的不等式: $(ax + 4)(x - 1) > 0(a \in \mathbf{R})$.

- (002780) 已知 $f(x) = x^2 + 2(a-2)x + 4$.
- (1) 如果对一切 $x \in \mathbf{R}$, f(x) > 0 恒成立, 求实数 a 的取值范围;
- (2) 如果对 $x \in [-3,1]$, f(x) > 0 恒成立, 求实数 a 的取值范围.
- (002781) 不等式 $-6x^2 x + 2 < 0$ 的解集是
- (002782) 解关于 x 的不等式 $x^2 3(a+1)x + 2(3a+1) < 0(a \in \mathbf{R})$.
- (002783) 解关于 x 的不等式组: $\begin{cases} ax > -1, & (a \in \mathbf{R}). \\ x + a > 0 \end{cases}$

(002784) 若关于 x 的不等式 $ax^2 + bx + c > 0$ 的解集为 (-1,2), 求关于 x 的不等式 $a(x^2 + 1) + b(x - 1) + c > 2ax$ 的解集.

(002785) 若关于 x 的不等式 $(a^2-4)x^2+(a+2)x-1\geq 0$ 的解集为 \emptyset , 求实数 α 的取值范围.

(002786) 若关于 x 的不等式 $(a^2-4)x^2+(a+2)x+1\geq 0$ 对一切 $x\in \mathbb{R}$ 均成立, 求实数 a 的取值范围.

 $(002787)^*$ 设 f(x) 是定义在 R 上的偶函数, 在区间 $(-\infty,0)$ 上单调递增, 且满足 $f(-a^2+2a-5) < f(2a^2+a+1)$, 求实数 a 的取值范围.

(002788)* 已知 $A = \{x|x^2 - 3x + 2 \le 0\}, B = \{x|x^2 - (a+1)x + a \le 0\}.$

- (1) 若 $A \subseteq B$, 求 a 的取值范围;
- (2) 若 $B \subseteq A$, 求 a 的取值范围.

(002789) 下列不等式中, 与 $x^2 > 2$ 同解的不等式的序号为

$$(1) \ x^2 + \frac{1}{x-3} > 2 + \frac{1}{x-3}; \ (2) \ x^2 + \sqrt{x-4} > 2 + \sqrt{x-4}; \ (3) \ x^2 - (x-1) > 2 - (x-1); \ (4) \ x^2(x-2) > 2(x-2).$$

$$(002790)$$
 不等式 $\frac{3x+4}{5-x} \ge 6$ 的解集是_____.

$$(002791)$$
 若不等式 $\frac{2x+a}{x+b} \le 1$ 的解集为 $\{x|1 < x \le 3\}$, 则 $a+b$ 的值是______.

$$(002792)$$
 不等式 $(x-1)^2(2-x)(x+1) \le 0$ 的解集是______

$$(002793)$$
 不等式 $2 < |x+1| < 3$ 的解集是_____.

$$(002794)$$
 不等式 $|x-2| > 9x$ 的解集是______.

$$(002795)$$
 不等式 $4^{x-\frac{5}{x}+1} \le 2$ 的解集是_____.

$$(002796)$$
 不等式 $\log_{\frac{1}{4}} 4x^2 > \log_{\frac{1}{4}} (3-x)$ 的解集是_____

(002797) 解下列不等式:

$$(1) |x-5| - |2x+3| < 1;$$

(2)
$$\frac{2x^2 + x - 3}{x^2 + x + 1} \ge 1;$$

(3) $4^{2x} - 2^{2x+2} + 3 < 0;$

(3)
$$4^{2x} - 2^{2x+2} + 3 < 0$$
:

(4)
$$\log_2(x-1) < \log_4(2-x) + 1$$
.

(002798)(1) 关于 x 的不等式 $|x-1|-|x-2| < a^2+a-1$ 的解集是 \mathbf{R} , 求实数 a 取值范围;

(2) 关于 x 的不等式 $|x-1| - |x-2| < a^2 + a - 1$ 有实数解, 求实数 a 的取值范围.

 $(002799)^*$ 设全集 $U = \mathbf{R}$, 已知关于 x 的不等式 $|x-1| + a - 1 > 0 (a \in \mathbf{R})$ 的解集为 A, 若 $\mathcal{C}_U A \cap \mathbf{Z}$ 恰有 3 个 元素, 求 a 的取值范围.

$$(002801)$$
 不等式 $\frac{2x}{1-x} \le 1$ 的解集是______.

$$(002802)$$
 不等式 $\frac{1+|x|}{|x|-1} \ge 3$ 的解集是______.

$$(002804)$$
 已知 $a>0$ 且 $a\neq 1$,关于 x 的不等式 $a^x>\frac{1}{2}$ 的解集是 $(-\infty,1)$,则 $a=$ ______.

(002805) 关于
$$x$$
 的不等式 $\log_{\frac{1}{2}}(x-\frac{1}{x}) > 0$ 的解集是______

(002806) 若不等式 |3x-b| < 4 的解集中的整数有且仅有 1, 2, 3, 则 b 的取值范围为______.

(002807) 已知关于 x 的不等式 $\frac{ax-5}{x^2-a} < 0$ 的解集为 M.

- (1) 当 a = 5 时, 求集合 M;
- (2) 若 $2 \in M$ 且 $5 \notin M$, 求实数 a 的取值范围.
- (002808)(1) 对任意实数 x, |x-1|-|x+3|>a 恒成立, 求实数 a 的取值范围;
- (2) * 对任意实数 x, |x-1|-|x+3|>a 恒不成立, 求实数 a 的取值范围.
- (002809)(1) 若关于 x 的不等式 $x^2 kx + 1 > 0$ 的解集为 \mathbf{R} , 求实数 k 的取值范围;
- (2) * 若关于 x 的不等式 $x^2 kx + 1 > 0$ 在 [1,2] 上有解, 求实数 k 的取值范围.

(002810) 已知
$$a, b \in \mathbf{R}^+$$
, 求证: $\frac{a}{\sqrt{b}} + \frac{b}{\sqrt{a}} \ge \sqrt{a} + \sqrt{b}$.

- (002811) 已知 $x, y \in \mathbf{R}$, 求证: $x^2 + y^2 + 1 \ge x + y + xy$.
- (002812) 已知 $a, b \in \mathbb{R}^+$ 且 $a \neq b$,求证: $|a^3 + b^3 2ab\sqrt{ab}| > |a^2b + ab^2 2ab\sqrt{ab}|$.
- (002813) 已知 0 < a < 1 $, 0 < b < 1, \ 0 < c < 1,$ 求证: (1-a)b, (1-b)c, (1-c)a 中至少有一个小于等于 $\frac{1}{4}$.
- (002814)a、b、c 是互不相等的正数,则下列不等式中不正确的序号是

$$(1) |a-b| \leq |a-c| + |c-b|; (2) a^2 + \frac{1}{a^2} \geq a + \frac{1}{a}; (3) |a-b| + \frac{1}{a-b} \geq 2; (4) \sqrt{a+3} - \sqrt{a+1} \leq \sqrt{a+2} - \sqrt{a}.$$

- (002815) 已知 a > b > c > 0, 试比较 $\frac{a-c}{b}$ 与 $\frac{b-c}{a}$ 的大小.
- (002816) 已知 a > 0, 试比较 $a 与 \frac{1}{a}$ 的大小.
- (002817) 若 x, y, m, n 均为正数, 求证: $\sqrt{(m+n)(x+y)} \ge \sqrt{mx} + \sqrt{ny}$.
- (002818) 已知 $a,b,c \in \mathbf{R}^+$, 求证: $a^2b^2 + b^2c^2 + c^2a^2 \ge a^2bc + ab^2c + abc^2$.
- (002819) 设 $f(x) = \sqrt{1+x}$ (x>0). 若 $x_1 \neq x_2$, 求证: $|f(x_1) f(x_2)| < |x_1 x_2|$.
- (002820) 若实数 x、y、m 满足 |x-m| > |y-m|, 则称 x 比 y 远离 m.
- (1) 若 $x^2 1$ 比 1 远离 0, 求 x 的取值范围;
- (2) 定义: 在 R 上的函数 f(x) 等于 x^2 和 x+2 中远离 0 的那个值. 求证: $f(x) \ge 1$ 在 R 上恒成立.

- (002822) 若函数 y = f(x) 的定义域是 [-2, 4], 则函数 g(x) = f(x) + f(-x) 的定义域是______
- (002823) 下列各组中, 两个函数是同一个函数的组的序号是______.

(3)
$$f(x) = x^2 - 2x - 1$$
, $g(t) = t^2 - 2t - 1$; (4) $y = \sqrt{x^2 - 1}$, $y = \sqrt[3]{x^3 - 1}$.

(002824) 已知函数
$$f(x) = 6 + 5x - x^2$$
, 函数 $g(x) = \frac{1}{\sqrt{x^2 - 5x - 6}}$, 则 $f(x) \cdot g(x) = \underline{\qquad}$.

(002825) 函数 y=f(x) 满足对于任意 x>0,恒有 $f(x+1)=\lg x$,则 y=f(x) 在 x>1 时的解析式为______.

(002826) 函数 y = f(x) 满足对于任意 $x \neq 0$, 恒有 $f(x - \frac{1}{x}) = x^3 - \frac{1}{x^3}$. 若存在 x_0 使得 $f(x_0) = 0$, 则 $x_0 =$ ______.

(002827) 已知 y = f(x) 为偶函数, 且 y = f(x) 的图像在 $x \in [0,1]$ 时的部分是半径为 1 的圆弧, 在 $x \in [1, +\infty)$ 时的部分是过点 (2,1) 的射线, 如图.

- (2) 写出 f(f(-2)) 的值:_____;
- (3) 写出方程 $f(x) = \frac{\sqrt{3}}{2}$ 的解集:______.

(002828) 某工厂生产一种仪器的元件,由于受生产能力和技术水平等因素的限制,会产生较多次品,根据经验知道,次品数 p(万件) 与日产量 x(万件) 之间满足关系: $p=\begin{cases} \frac{x^2}{6}, & 1\leq x<4, \\ x+\frac{3}{x}-\frac{25}{12}, & x\geq 4. \end{cases}$ 已知每生产 1 万件合格的元件可以盈利 20 万元,但每产生 1 万件次品将亏损 10 万元.(实际利润 10 万元.(实际利润 10 6 合格产品的盈利 10 6 生产次品的亏损),试将该工厂每天生产这种元件所获得的实际利润 10 7 元)表示为日产量 10 7 的函数.

(002829) 设常数 a、b 满足 1 < a < b, 函数 $f(x) = \lg(a^x - b^x)$, 求函数 y = f(x) 的定义域.

(002830) 如图,用长为 l 的铁丝弯成下部为矩形,上部为半圆形的空心框架,若矩形底边长为 2x,试用解析式将此框架围成的面积 y 表示 x 的函数.

(002831) 已知函数 $f(x) = \sqrt{ax^2 + x + 1}$.

- (1) 若函数 y = f(x) 的定义域为 $(-\infty, +\infty)$, 求实数 a 的取值范围;
- (2) 若函数 y = f(x) 的值域为 $[0, +\infty)$, 求实数 a 的取值范围.

(002832) 已知函数 $f(x) = \sqrt{x}$, 函数 $g(x) = \sqrt{1-x} - \sqrt{x}$, 则函数 y = f(x) + g(x) 的定义域为______

(002835) 已知
$$f(x) = \begin{cases} x-2, & x>8, \\ f(x+3), & x \leq 8, \end{cases}$$
则 $f(2) = \underline{\qquad}$.

$$(002836)$$
 设常数 $a \in \mathbf{R}, f(x) = \begin{cases} x+a, & x < a, \\ \frac{1}{x}+a, & x \geq a. \end{cases}$ 若 $f(2) = 2, \, \text{则} \, a = \underline{\qquad}.$

 $(002838)^*$ 设 D 是含数 1 的有限实数集, f(x) 是定义在 D 上的函数, 若 f(x) 的图像绕原点逆时针旋转 $\frac{\pi}{\epsilon}$ 后 与原图像重合,则在以下各项中,f(1)的可能取值只能是(

A.
$$\sqrt{3}$$

B.
$$\frac{\sqrt{3}}{2}$$

C.
$$\frac{\sqrt{3}}{3}$$

D. 0

(002839) 设常数 $p \in \mathbf{R}$,设函数 $f(x) = \log_2 \frac{x+1}{x-1} + \log_2 (x-1) + \log_2 (p-x)$.

- (1) 求 p 的取值范围以及函数 y = f(x) 的定义域
- (2) 若 y = f(x) 存在最大值, 求 p 的取值范围, 并求出最大值.

(002840) 已知 xy < 0, 且 $4x^2 - 9y^2 = 36$. 问: 能否由此条件将 y 表示成 x 的函数? 若能, 求出该函数的解析 式; 若不能, 说明理由.

(002841) 已知常数 $a \in \mathbf{R}$,函数 $g(x) = \frac{x}{x+2}$,函数 $h(x) = \frac{1}{x+a}$.设函数 $F(x) = g(x) \cdot h(x)$, D_F 是其定义 域; f(x) = g(x) - h(x), D_f 是其定义域

- (1) 设 a = 2, 求函数 F(x) 的值域;
- (2) 对于给定的常数 a, 是否存在实数 t, 使得 f(t) = 0 成立?若存在, 求出这样的所有 t 的值; 若不存在, 说明 理由;
- (3) * 是否存在常数 a 的值, 使得对于任意 $x \in D_f \cap \mathbf{R}^+$, 有 $f(x) \ge 0$ 恒成立? 若存在, 求出所有这样的 a 的 值; 若不存在, 说明理由.

(002842) 给定六个函数: ① $y=\frac{1}{x}$; ② $y=x^2+1$; ③ $y=x^{-\frac{1}{3}}$; ④ $y=2^x$; ⑤ $y=\log_2 x$; ⑥ $y=\sqrt{x^2-1}+\sqrt{1-x^2}$.

在这六个函数中,是奇函数但不是偶函数的是______,是偶函数但不是奇函数的是_____,既不是奇函数也不是偶函数的是_____.

(002843) 设常数 a、 $b \in \mathbf{R}$. 若定义在 [a-2,2a] 上的 $f(x)=ax^2+bx$ 是偶函数,则 a=_______,b=______.

(002844) 设常数 a、 $b \in \mathbf{R}$. 若定义在 [a-1,a+1] 上的 $f(x) = ax^2 + x + b$ 是奇函数,则 $a = ______$, $b = ______$.

(002845) 若函数 $f(x) = \frac{(x+1)(x+a)}{x}$ 为奇函数, 则实数 f(x)______.

(002847) 设 y = f(x) 是定义在 R 上的函数, 当 $x \ge 0$ 时, $f(x) = x^2 - 2x$.

- (1) 当 y = f(x) 为奇函数时, 则当 x < 0 时, $f(x) = _______;$
- (2) 当 y = f(x) 为偶函数时, 则当 x < 0 时, f(x) =______

(002848) 设奇函数 y=f(x) 的定义域为 [-5,5]. 若当 $x\in[0,5]$ 时, y=f(x) 的图像如图, 则不等式 xf(x)<0 的解是______.

(002849) 若定义在 R 上的两个函数 y = f(x)、y = g(x) 均为奇函数. 设 F(x) = af(x) + bg(x) + 1.

- (1) F(-2) = 10, $M F(2) = ____;$
- (2) 若函数 y = F(x) 在 $(0, +\infty)$ 上存在最大值 4, 则 y = F(x) 在 $(-\infty, 0)$ 上的最小值为______

(002850) 判断下列函数 y = f(x) 的奇偶性:

(1)
$$f(x) = (x-1) \cdot \sqrt{\frac{1+x}{1-x}};$$

$$(2)f(x) = \begin{cases} x(1-x), & x < 0, \\ x(1+x), & x > 0. \end{cases}$$

- (002851) 已知函数 $f(x) = x^2 2a|x-1|, x \in \mathbf{R}$, 常数 $a \in \mathbf{R}$.
- (1) 求证: 函数 y = f(x) 不是奇函数;
- (2) 若函数 y = f(x) 是偶函数, 求实数 $f(x) = \log_3 |2x + a|$ 的值.

(002852) 判断下列函数 y = f(x) 的奇偶性:

(1)
$$f(x) = \frac{1}{a^x - 1} + \frac{1}{2}$$
(常数 $a > 0$ 且 $a \neq 1$);

(2)
$$f(x) = \frac{a \overline{x}}{x^2 - a}$$
 (常数 $a \in \mathbf{R}$).

(002853) 设 y = f(x) 是定义在 R 上的函数,则下列叙述正确的是 ().

A. y = f(x)f(-x) 是奇函数

B. y = f(x)|f(-x)| 是奇函数

C. y = f(x) - f(-x) 是偶函数

D. y = f(x) + f(-x) 是偶函数

(002854) 设函数 y = f(x) 为定义在 R 上的函数, 则 " $f(0) \neq 0$ " 是 "函数 y = f(x) 不是奇函数"的().

A. 充分非必要条件

B. 必要非充分条件

C. 充要条件

D. 既不是充分条件, 也不是必要条件

(002855) 设 y = f(x) 是定义在 R 上的奇函数, 当 x < 0 时, $f(x) = \lg(2-x)$, 则 $x \in \mathbf{R}$ 时, $f(x) = \underline{\hspace{1cm}}$

(002856) 判断下列函数 y = f(x) 的奇偶性, 并说明理由:

- (1) $f(x) = x^3 \frac{1}{x}$; (2) $f(x) = \frac{|x+3| 3}{\sqrt{4 x^2}}$.

(002857) 根据常数 a 的不同取值, 讨论下列函数 y = f(x) 的奇偶性, 并说明理由:

- (1) f(a) > f(0);
- (2) f(x) = x|x a|.

(002858) 设函数 y = f(x) 是定义在 R 上的奇函数. 若 x > 0 时, $f(x) = \lg x$.

- (1) 求方程 f(x) = 0 的解集;
- (2) 求不等式 f(x) > -1 的解集.

(002859) 是否存在实数 b, 使得函数 $g(x) = \frac{2^x}{4^x - b}$ 是奇函数? 若存在, 求 b 的值; 若不存在, 说明理由.

(002860) 常数 $a \in \mathbb{R}$. 若函数 $f(x) = \lg(10^x + 1) + ax$ 是偶函数, 则 $a = \underline{\hspace{1cm}}$

(002861) 已知 y=f(x) 为定义在 R 上的奇函数, y=g(x) 为定义在 R 上的偶函数, 且任意 $x\in\mathbf{R}$, 都有 $f(x) = g(x) + \frac{1}{x^2 + x + 1}$, M f(1) + g(1) =

(002862) 设常数 $a \neq 0$. 若函数 $f(x) = \lg \frac{x+1-2a}{x+1+3a}$. 是否存在实数 a, 使函数 y = f(x) 为奇函数或偶函数? 若存在, 求出 a 的值, 并判断相应的 y = f(x) 的奇偶性; 若不存在, 说明理由.

(002863) 函数 $y = \frac{1}{x^2 - 4x + 5}$ 的图像关于 (

- A. y 轴对称
- B. 原点对称
- C. 直线 x = 2 对称 D. 点 (2,1) 对称

(002864) 函数 $y = x + \frac{1}{x-1}$ 的图像关于 (). B. 点 (-1,1) 对称 C. 点 (1,-1) 对称 D. 点 (-1,-1) 对称 A. 点 (1,1) 对称 (002865) 若函数 y = f(x) 的定义域为 R, 且 f(x-1) = -f(3-x), 则 y = f(x) 的图像关于 (). B. 点 (1,0) 中心对称 C. 点 (2,0) 中心对称 D. 点 (4,0) 中心对称 A. 原点中心对称 (002866) 设常数 $a,b \in \mathbb{R}$. 若函数 $y = x^2 + ax$ 在区间 [a,b] 上的图像关于直线 x = 1 对称, 则 b =______. (002867) 已知函数 y = f(x) 满足: 对于任意 $x \in \mathbb{R}$, 都有 f(x+1) = -f(x). 若 f(1) = 1, 则 f(4) =; f(2015) = . (002868) 已知函数 y = f(x) 图像关于 (1,0) 对称. 若 $x \le 1$ 时, $f(x) = x^2 - 1$, 则 f(x) =(002869) 已知函数 y = f(x) 满足: 对于任意 $x \in \mathbb{R}$, 都有 f(x+3) = f(x). 若 $x \in [0,3)$ 时, f(x) = x-1, 则 $x \in [6,9)$ 时, f(x) =_____. (002870) 设常数 $a \in \mathbb{R}$. 已知函数 y = f(x) 满足: 对于任意 $x \in \mathbb{R}$, 都有 f(x-1) = f(1-x). 若函数 y = f(x)图像总是关于直线 x = a 对称,则 $a = _____$. (002871) 设常数 $a \in \mathbb{R}$. 若直线 x = 2 是函数 $f(x) = \log_3 |2x + a|$ 的图像的一条对称轴, 则 a =______. (002872) 设函数 y = f(x) 为 R 上的奇函数, 且对于任意 $x \in \mathbf{R}$ 都有 f(x+2) = -f(x). (1) 求证: 函数 y = f(x) 为周期函数; (2) 对于任意 $x \in \mathbf{R}$, 求证: f(1+x) = f(1-x); (3) 设 $0 \le x \le 1$ 时, $f(x) = \frac{1}{2}x$. 求函数 $y = f(x) + \frac{1}{2}$ 在 $-4 \le x \le 4$ 时的所有零点; (4) 设 $-1 \le x \le 1$ 时, $f(x) = \sin x$. ① 写出 $1 \le x \le 5$ 时, y = f(x) 的解析式; ② 求 y = f(x) 在 R 上的解析式. (002873) 常数 a、 $b \in \mathbf{R}$. 函数 $f(x) = \frac{x}{\sqrt{3}} + \frac{1}{x+a} + b$ 的图像关于点 (1,2) 对称. (1) 求 y = f(x) 的解析式; (2)* 若 y = f(x) 的图像关于某一条直线对称, 写出这样的一条对称轴直线的方程 (无需证明). (002874) 函数 $y = \log_2 \frac{2-x}{2+x}$ 的图像关于 (). B. y 轴对称 C. 直线 y = x 对称 D. 直线 y = -x 对称 A. 原点对称 (002875) 函数 $y = \log_2(2 - 2^x)$ 的图像关于 (). C. 直线 y = x 对称 D. 直线 y = -x 对称 A. 原点对称 B. y 轴对称

(002876) 设常数 a、 $b \in \mathbf{R}$. 若二次函数 $f(x) = ax^2 + bx + 1$ 满足: 对任意 $t \in \mathbf{R}$, f(2+t) = f(2-t), 则

(002877) 设定义在时, $f(x) =$		像关于直线 $x=1$ 对称. 若 x	$x \ge 1$ 时, $f(x) = 1 - 3^{x-1}$, 则 $x < 1$	
	$= \log_2(x+3)$ 的图像与函数则 $f(a) =$ (结果		x = 1 对称. ① $f(1) =;$	
(1) 若 $f(0) = 1$, $f(0) = 1$	$f(x) = 2$,求 $f(15) + 2f(20)$ 的 $f(x) = x^3$. $f(x) = f(x)$ 的解析式;		x = 1 对称.	
(002880) 已知 $f(x)f(3) + \cdots + f(50) =$		奇函数, 满足 $f(1-x) = f(1-x)$	+x). 若 $f(1) = 2$, 则 $f(1) + f(2) +$	
A50	B. 0	C. 2	D. 50	
(002881) 已知函数 $y=f(x)$ 对一切 $u,v\in\mathbf{R},$ 都有 $f(u+v)=f(u)+f(v).$ (1) 求证: $y=f(x)$ 是奇函数; (2) 若 $f(-3)=a$, 用 a 表示 $f(6)$ 以及 $f(300).$ (002882) 已知定义在 \mathbf{R} 上的函数 $y=f(x)$ 是奇函数, 且 $y=f(x)$ 也是以 4 为周期的一个周期函数. (1) 若 $f(1)=1$, 则 $f(-1)+f(0)=$; $f(10)+f(11)=$; (2) * 若 $f(1)=0$, 则在区间 $[-3,3]$ 上的零点的个数的最小值为				
f(-x-1) = -f(x)	-1). 则下面命题中, 正确的 -1 是偶函数; ② 2 是 $y=f(x)$ 的	的命题的序号是	恒有 $f(-x+1) = -f(x+1)$ 且 象关于 $(1,0)$ 对称; ④ 函数 $y = f(x)$	
	中, 在其定义域上是单调函数 $= x - \frac{1}{x}$; ③ $y = 3^{x-1}$; ④ $y = 3^{x-1}$			
(002885) 函数 y =	x-1 递减区间的是			
(002886) 函数 y = :	$x + \frac{2}{x}(x > 0)$ 的递减区间是	<u>.</u>		
(002887) 函数 y =	$(rac{1}{2})^{x^2}$ 的递减区间是	<u>.</u>		
(002888) 函数 y =	$rac{1}{\sqrt{x^2+2x-3}}$ 的递增区间	是		

- (002889) 设常数 $a \in \mathbf{R}$. 若 $y = \frac{ax}{x+1}$ 在区间 $(-1, +\infty)$ 上递增, 则 a 的取值范围是______.
- (002890) 设常数 $a \in \mathbf{R}$. 若函数 $y = x^2 + ax + 1$ 在 $(-\infty, 2]$ 上递减, 则 a 的取值范围是______.
- (002891) 若函数 y = f(x), y = g(x) 均为 R 上增函数,则下列命题中,正确的命题的序号是
- ① y = f(x) + g(x) 为增函数; ② $y = f(x) \cdot g(x)$ 为增函数; ③ y = f(g(x)) 为增函数.
- (002892) 若 y=f(x) 为 R 上的奇函数,且在 $(-\infty,0)$ 上是减函数,又 f(-2)=0,则 $f(x)\leq 0$ 的解集为______.
- (002893) 设常数 $a \in \mathbf{R}$. 若函数 $f(x) = \begin{cases} x+a, & x < 1, \\ & x \in \mathbf{R} \text{ 上递增, 则 } a \text{ 的取值范围为}___. \end{cases}$
- (002894) 设函数 $f(x) = e^x + \frac{1}{e^x}$.
- (1) 求证: y = f(x) 在 R 上不是增函数;
- (2) 求证: y = f(x) 在 $[0, +\infty)$ 上是增函数.
- (002895) 设常数 $a \in \mathbf{R}$. 若 $y = \log_{\frac{1}{3}}(x^2 ax + 2)$ 在 $[-1, +\infty)$ 上是减函数, 求 a 的取值范围.
- (002896) 已知定义在区间 (-1,1) 上的函数 y=f(x) 是奇函数, 也是减函数. 若 $f(1-a)+f(1-a^2)<0$, 求实数 a 的取值范围.
- (002897) 下列函数中, 在区间 $(0, +\infty)$ 上递增的函数的序号为______.
- ① y = |x+1|; ② $y = x \frac{1}{x}$; ③ $y = x^{\frac{1}{2}}$; ④ $y = \sqrt{1 \frac{1}{x}}$; ⑤ $y = \lg x$.
- (002898) 函数 $y = \log_{0.7}(x^2 3x + 2)$ 的单调减区间为_____.
- (002899) 已知 y = f(x) 是偶函数, 且在区间 [0,4] 上递减. 记 a = f(2), b = f(-3), c = f(-4), 则将 a,b,c 按从小到大的顺序排列是 ______.
- (002900) 设常数 $a \in \mathbb{R}$. "a = 1" 是 "f(x) = |x a| 在区间 $[1, +\infty)$ 上为增函数"的______ 条件 (填: "充分不必要"、"必要不充分"、"充要"、"既不充分也不必要"之一).
- (002901)(1) 设常数 $a\in\mathbf{R}$. 若函数 $y=\frac{1}{x-a}$ 在区间 $(0,+\infty)$ 上单调, 则 a 的取值范围为______.
- (2) 设常数 $k \in \mathbb{R}$. 若函数 $f(x) = kx^2 4x + 8$ 在区间 [5, 20] 上单调递减, 则 k 的取值范围是______.
- $(002902)^*$ 设 f(x)、g(x)、h(x) 是定义域为 R 的三个函数, 对于下列命题:
- ① 若 f(x) + g(x)、f(x) + h(x)、g(x) + h(x) 均为增函数, 则 f(x)、g(x)、h(x) 中至少有一个是增函数;
- ② 若 f(x) + g(x)、f(x) + h(x)、g(x) + h(x) 均是以 T 为周期的函数, 则 f(x)、g(x)、h(x) 均是以 T 为周期的函数, 下列判断正确的是 ().
 - A. ①和②均为真命题

B. ①和②均为假命题

C. ①为真命题, ②为假命题

D. ①为假命题, ②为真命题

(002903) 设常数 $a,b \in \mathbf{R}$. 已知 $f(x) = \frac{ax^2 + 1}{x + b}$ 是奇函数, f(1) = 5.

(1) 求 a,b 的值;

(2) 求证: y = f(x) 在区间 $(0, \frac{1}{2}]$ 上是减函数.

(002904) 求证: 函数 $f(x) = \frac{1}{x} - \lg \frac{1+x}{1-x}$ 是奇函数, 且在区间 (0,1) 上递减.

(002905) 设常数 $a \in \mathbb{R}$. 若函数 $f(x) = \log_a(2 - ax)$ 在 [0,1] 上是减函数, 求 a 的取值范围.

(002906) 已知定义 R 上的函数 y = f(x) 满足下面两个条件:

- (I) 对于任意 $x_1, x_2 \in \mathbb{R}$, 都有 $f(x_1 + x_2) = f(x_1) + f(x_2)$; (II) 当 x > 0 时, f(x) > 0, 且 f(1) = 1.
- (1) 求证: y = f(x) 是奇函数;
- (2) 求证: y = f(x) 在 R 上是增函数;
- (3) * 解不等式 $f(x^2-1) < 2$.

(002907) 函数 $y = x^{-\frac{3}{2}}$ 的定义域为 .

(002908) 下列命题中, 正确的命题的序号是_

- ① 当 $\alpha = 0$ 时, 函数 $y = x^{\alpha}$ 的图像是一条直线;
- ② 幂函数的图像都经过 (0,0) 和 (1,1) 点;
- ③ 当 $\alpha < 0$ 且 $y = x^{\alpha}$ 是奇函数时, 它也是减函数;
- ④ 第四象限不可能有幂函数的图像.

(002909) 图中曲线是幂函数 $y=x^n$ 在第一象限的图像,已知 n 取 ± 2 , $\pm \frac{1}{2}$ 四个值,则相应于曲线 c_1,c_2,c_3,c_4 的 n 依次为 ().

A.
$$-2, -\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$$

B.
$$2, \frac{1}{2}, -\frac{1}{2}, -2$$

A.
$$-2, -\frac{1}{2}, \frac{1}{2}, 2$$
 B. $2, \frac{1}{2}, -\frac{1}{2}, -2$ C. $-\frac{1}{2}, -2, 2, \frac{1}{2}$ D. $2, \frac{1}{2}, -2, -\frac{1}{2}$

D.
$$2, \frac{1}{2}, -2, -\frac{1}{2}$$

(002910) 下列函数的图像为 (A)、(B)、(C)、(D) 之一, 试将正确的字母标号填在相应函数后面的横线上.

(1)
$$y = x^{\frac{3}{2}}$$
; (2) $y = x^{\frac{4}{3}}$; (3) $y = x^{\frac{5}{3}}$; (4) $y = x^{-\frac{2}{3}}$.

(002911) 已知 $\alpha \in \{-2, -1, -\frac{1}{2}, \frac{1}{2}, 1, 2, 3\}$,若幂函数 $f(x) = x^{\alpha}$ 为奇函数,且在 $(0, +\infty)$ 上递减,则 $\alpha =$ ______.

(002912) 函数 y = f(x) 满足两个条件: ① y = f(x) 是两个幂函数的和函数; ② y = f(x) 的最小值为 2, 则 y = f(x) 的解析式可以是______.

(002913) 若集合 $A = \{y|y = x^{\frac{1}{3}}, \ -1 \le x \le 1\}, B = \{y|y = x^{-\frac{1}{2}}\}, 则 \ A \cap B$ 等于 ().

A.
$$(0,1]$$

B.
$$[-1,1]$$

D.
$$\{0, 1\}$$

(002914) 设常数 $m \in \mathbf{R}$. 若幂函数 $y = (m^2 - m - 1)x^{m^2 - 2m - 1}$ 在 $(0, +\infty)$ 上是增函数, 则 m 的值为______.

(002915) 设常数 $n \in \mathbb{Z}$. 若函数 $y = x^{n^2 - 2n - 3}$ 的图像与两条坐标轴都无公共点, 且图像关于 y 轴对称, 则 n 的值为______.

(002917) 在 $f(x) = (2m^2 - 7m - 9)x^{m^2 - 9m + 19}$ 中, 当实数 m 为何值时,

- (1) y = f(x) 是正比例函数, 且它的图像的倾斜角为钝角?
- (2) y = f(x) 是反比例函数, 且它的图像在第一, 三象限?

(002918) 设常数 $t \in \mathbf{Z}$. 已知幂函数 $y = (t^3 - t + 1)x^{\frac{1}{3}(1 + 2t - t^2)}$ 是偶函数, 且在区间 $(0, +\infty)$ 上是增函数, 求整数 t 的值, 并作出相应的幂函数的大致图像.

(002919) 设 $a \in \mathbf{R}$.

- (1) 若 $(a+2)^{\frac{2}{3}} > (1-2a)^{\frac{2}{3}}$, 求 a 的取值范围;
- (2) 若 $(a+2)^{-\frac{1}{3}} > (1-2a)^{-\frac{1}{3}}$, 求 a 的取值范围.

(002920) 已知函数: ① $y=\frac{1}{x}$; ② $y=x^{\frac{1}{2}}$; ③ $y=x^{-\frac{1}{2}}$; ④ $y=x^{\frac{3}{3}}$; ⑤ $y=x^{-\frac{2}{3}}$, 填写分别具有下列性质的函数序号:

- (1) 图像与 x 轴有公共点的: ;
- (2) 图像关于原点对称的:_____;
- (3) 定义域内递减的:_____;
- (4) 在定义域内有反函数的:_____.

(002921) 函数 $y = -(x+1)^{-3}$ 的图像可以先将幂函数 $y = x^{-3}$ 的图像向______ 平移 1 个单位,再 以 轴为对称轴作对称变换

 $(002922) \ \textbf{设} \ \alpha \in \{-3, -\frac{2}{3}, -\frac{1}{2}, -\frac{1}{3}, \frac{1}{3}, 1, \frac{3}{2}, 2\}. \ \textbf{已知幂函数} \ y = x^{\alpha} \ \textbf{是奇函数}, \ \textbf{且在区间} \ (0, +\infty) \ \textbf{上是减函数},$

(002923) 下列关于幂函数图像及性质的叙述中, 正确的叙述的序号是

- ① 对于一个确定的幂函数, 第二、三象限不可能同时有该幂函数的图像上的点;
- ② 若某个幂函数图像过 (-1,-1), 则该幂函数是奇函数;
- ③ 若某个幂函数在定义域上递增,则该幂函数图像必经过原点;
- ④ 幂函数图像不会经过点 $(-\frac{1}{2}, 8)$ 以及 (-8, -4).

(002924) 设 y = f(x) 与 y = g(x) 是两个不同的幂函数, 集合 $M = \{x | f(x) = g(x)\}$, 则集合 M 中的元素是

- A. 1 或 2
- B. 1 或 3
- C. 1 或 2 或 3 D. 1 或 2 或 3 或 4

(002925) 已知幂函数 $y = x^{\frac{q}{p}} (p \in \mathbb{N}^*, q \in \mathbb{N}^*, p, q$ 互质) 的图像如图所示, 则 ().

A. p, q 均为奇数

B. p 是奇数, q 是偶数, 且 $0 < \frac{q}{p} < 1$ D. p 是奇数, q 是偶数, 且 $\frac{q}{p} > 1$

C. p 是偶数, q 是奇数

(002926) 若 $(x+1)^{-\frac{1}{3}} < (3-2x)^{-\frac{1}{3}}$, 求实数 x 的取值范围.

(002927) 设常数 a, b 满足 a > b > 0. 已知函数 $f(x) = \frac{x+a}{x+b}$. (1) 写出函数 y = f(x) 的单调性;

(2) 写出函数 y = f(x) 图像的一个对称中心的坐标.

(002928) 已知函数 $f(x) = \frac{x^{\frac{1}{3}} - x^{-\frac{1}{3}}}{5}, g(x) = \frac{x^{\frac{1}{3}} + x^{-\frac{1}{3}}}{5}.$

- (1) 分别计算 f(4) 5f(2)g(2) 和 f(9) 5f(3)g(3) 的值;
- (2) 由 (1) 概括出涉及函数 y = f(x) 和 y = g(x) 的, 对所有不等于零的实数 x 都成立的一个等式, 并加以证 明.

 $(002929)^*$ 设常数 a, b 满足 a > b > 0. 已知函数 $f(x) = \frac{x+a}{x+b}$. 证明: 该函数图像的对称中心是唯一的.

(002930) 函数 $y = \log_2 \frac{1}{r-1}$ 的反函数是_____.

(002931) 函数 $y = x^2 (x \le 0)$ 的反函数是

(002932) 函数 $y = \frac{2^x}{2^x - 1}(x > 0)$ 的反函数是_

(002933) 已知函数 y = f(x) 的反函数是 $f^{-1}(x) = \frac{4x+3}{2x-1}$, 则 $f(x) = \underline{\hspace{1cm}}$

(002935) 若命题 "函数 $y=x+rac{a}{r}$ 在区间 [1,2] 上存在反函数" 为真命题, 则在下列值中, 能作为实数 a 的值的 序号是

(1) a = -1; (2) a = 1; (3) $a = \sqrt{2}$; (4) $a = \sqrt{5}$.

(002936) 若函数 $f(x) = 1 - \sqrt{1 - x^2}$ $(-1 \le x \le 0)$, 请画出函数 $y = f^{-1}(x)$ 的大致图像.

(002937) 已知定义在 R 上的函数 y = f(x) 是奇函数, 且有反函数 $y = f^{-1}(x)$. 若 a, b 是两个实数, 则下列点 中, 必在 $y = f^{-1}(x)$ 的图像上的点的序号是_

① (-f(a), a); ② (-f(a), -a);③ (-b, -f(b)); ④ $(b, -f^{-1}(-b))$.

(002938) 已知定义在 R 上的函数 y=f(x) 的反函数为 $y=f^{-1}(x)$. 若 y=f(x+1) 的图像过点 $(-\frac{1}{2},1)$, 则 $y = f^{-1}(x+1)$ 的图像必过 (

A.
$$(1, -\frac{1}{2})$$

B.
$$(1, \frac{1}{2})$$

C.
$$(0, -\frac{1}{2})$$
 D. $(0, \frac{1}{2})$

D.
$$(0, \frac{1}{2})$$

(002939) 设常数 $a \neq 0$. 若函数 $f(x) = \frac{1-ax}{1+ax}$ 的图像关于直线 y = x 对称, 求实数 a 的值以及 y = f(x) 的 反函数 $y = f^{-1}(x)$.

(002940) 记 $y = f^{-1}(x)$ 是 y = f(x) 的反函数.

解析式.

(2) 函数 $y = \frac{e^x - 1}{e^x + 1}$ 的反函数为______;

(3) 函数 y = x|x| 的反函数为_____

(002942) 已知函数 y=f(x) 是奇函数, 且 y=g(x) 是 y=f(x) 的反函数. 若 $x\geq 0$ 时, $f(x)=3^x-1$, 则 g(-8)=______.

(002943) 设常数 $a \in \mathbf{R}$. 若函数 $y = x + \frac{a}{x}$ 在区间 [1,2] 上存在反函数, 求 a 的取值范围.

$$(002944) 求函数 y = \begin{cases} x^2 - 2x + 2, & x \leq 1, \\ (\frac{1}{2})^x, & x > 1 \end{cases}$$
的反函数.

(002945) 设常数 a > 0 且 $a \neq 1$. 求函数 $f(x) = \log_a(x + \sqrt{x^2 - 1})$ 的反函数.

(002946) 已知函数 y = f(x) 的图像经过点 (0,-1). 若函数 y = f(x+4) 存在反函数 y = g(x), 则 y = g(x) 的图像总经过的定点的坐标为_______.

(002947) 设 $y=f^{-1}(x),\ y=g^{-1}(x)$ 分别是定义在 R 上的函数 $y=f(x),\ y=g(x)$ 的反函数. 若函数 y=f(x-1) 和 $y=g^{-1}(x-3)$ 的图像关于直线 y=x 对称, 且 $g(5)=2018,\$ 则 f(4) 的值为______.

$$(002948)$$
 设 $a > 0$, 函数 $f(x) = \frac{1}{1 + a \cdot 2^x}$.

- (1) 若 a = 1, 求 f(x) 的反函数 $f^{-1}(x)$
- (2) 求函数 $y = f(x) \cdot f(-x)$ 的最大值 (用 a 表示);
- (3) * 设 q(x) = f(x) f(x-1). 若对任意 $x \in (-\infty, 0], q(x) > q(0)$ 恒成立, 求 a 的取值范围.

(002949) 已知函数 $y = f^{-1}(x)$ 是 y = f(x) 的反函数. 定义: 若对给定的实数 $a(a \neq 0)$, 函数 y = f(x + a) 与 $y = f^{-1}(x + a)$ 互为反函数, 则称 y = f(x) 满足 "a 和性质".

- (1) 判断函数 $g(x) = x^2 + 1(x > 0)$ 是否满足 "1 和性质", 并说明理由;
- (2)*求所有满足"2和性质"的一次函数.

(002950) 若 $\log_3 5 = a$, $\log_5 7 = b$, 用 a, b 表示 $\log_{75} 63 =$ ______.

$$(002951)$$
 若 $3^a = 4^b = 6^c$, 且 a, b, c 都是正数, 则 $\frac{-2ab + 2bc + ac}{abc}$ 的值为______.

(002952) 若不等式 $(a-1)^x < 1$ 的解集为 $(-\infty,0)$, 则实数 a 的取值范围是_____.

$$(002953)$$
 函数 $f(x) = \frac{\sqrt{4-x^2}}{\lg|x-1|}$ 的定义域为______.

(002954) 为了得到函数 $y = \lg \frac{x+3}{10}$ 的图像,只需把函数 $y = \lg x$ 的图像上所有的点 ().

- A. 向左平移 3 个单位长度, 再向上平移 1 个单位长度
- B. 向右平移 3 个单位长度, 再向上平移 1 个单位长度
- C. 向左平移 3 个单位长度, 再向下平移 1 个单位长度
- D. 向右平移 3 个单位长度, 再向下平移 1 个单位长度

(002955) 设常数 a > 0, $a \neq 1$. 函数 $f(x) = a^x$ 在 [0,1] 上的最大值和最小值之和为 a^2 , 则 a =______.

(002956) 若集合
$$A = \{y|y = 2 \cdot (\frac{1}{3})^{|x|}\}, B = \{a|\log_a(3a-1) > 0\}, 则 A \cap B = _____.$$

 $(002957)^*$ 已知函数 $f(x) = |3^x - 1|, c < b < a,$ 且 f(b) < f(a) < f(c), 在下列关系式中,一定成立的关系式的 序号是 . ① $3^a + 3^b > 2$; ② $3^a + 3^b < 2$; ③ $3^c < 1$; ④ $3^a + 3^c < 2$.

(002958) 已知函数 $f(x) = \frac{3^x - 3^{-x}}{3^x + 3^{-x}}$.

- (1) 证明 f(x) 在 $(-\infty, +\infty)$ 上是增函数;
- (2) 求 f(x) 的值域.
- (002959) 已知函数 $y = (\log_2 \frac{x}{2^a})(\log_2 \frac{x}{4}), x \in [\sqrt{2}, 4],$ 试求该函数的最大值 g(a).
- (002960) 已知函数 $f(x) = a \cdot 2^x + b \cdot 3^x$, 其中常数 a, b 满足 $ab \neq 0$.
- (1) 若 ab > 0, 判断函数 y = f(x) 的单调性;
- (2) 若 ab < 0, 求 f(x+1) > f(x) 时 x 的取值范围.
- (002961) 不等式 $\log_{\frac{1}{6}}(x-1) \ge 1$ 的解集为_____.
- (002962) 设常数 $a \in \mathbf{R}$. 若函数 $f(x) = \frac{1}{2^x 1} + a$ 为奇函数, 则 a =______.
- (002963) 若 $\log_2 3 = a$, $3^b = 7$, 用 a, b 表示 $\log_{3\sqrt{7}} 2$, 则 $\log_{3\sqrt{7}} 2 =$ ______.
- (002964) 对于函数 y = f(x) 的定义域中的任意的 $x_1, x_2(x_1 \neq x_2)$, 有如下结论:
- ① $f(x_1 + x_2) = f(x_1) \cdot f(x_2)$; ② $f(x_1 \cdot x_2) = f(x_1) + f(x_2)$;
- 当 $y = \ln x$ 时, 上述结论中, 正确结论的序号是
- (002965)(1) * 函数 $y = \log_a |x b|$ 在 $(0, +\infty)$ 上递增, 则 a、 b 满足 ().

- A. a > 1 H. b > 0 B. a > 1 H. b < 0 C. 0 < a < 1 H. b > 0 D. 0 < a < 1 H. b < 0
- (2) 函数 $f(x) = \log_a |ax^2 x|$ $(a > 0, a \neq 1)$ 在区间 [3,4] 上是增函数, 则实数 a 的范围是______.

 $(002966)^*$ 已知常数 a>1,函数 $y=|\log_a x|$ 的定义域为区间 [m,n],值域为区间 [0,1].若 n-m 的最小值为 $\frac{5}{6}$,则 a=_____.

 $(002967)^*$ 设常数 a>0 $a\neq 1$. 已知函数 $f(x)=\log_a x$. 若对于任意 $x\in [3,+\infty)$ 都有 $|f(x)|\geq 1$ 成立, 则 a的取值范围为_____

- $(002968)^*$ 已知函数 $f(x) = 2 + \log_3 x$ $(3 \le x \le 27)$.
- (1) 求函数 $y = f(x^2)$ 的定义域;
- (2) 求函数 $g(x) = [f(x)]^2 + f(x^2)$ 的值域.
- (002969) 已知定义域为 R 的函数 y = f(x) 为奇函数, 且满足 f(x+2) = -f(x). 当 $x \in [0,1]$ 时, $f(x) = 2^x 1$.
- (1) 求 y = f(x) 在区间 [-1,0) 上的解析式;
- (2) 求 $f(\log_{\frac{1}{2}} 24)$ 的值.

- (002970)* 已知函数 $f(x) = 1 + a \cdot (\frac{1}{2})^x + (\frac{1}{4})^x$.
- (1) 当 a = 1 时, 求函数 y = f(x) 在 $(-\infty, 0)$ 上的值域;
- (2) 对于定义在集合 D 上的函数 y=f(x), 如果存在常数 M>0, 满足: 对任意 $x\in D$, 都有 $|f(x)|\leq M$ 成立,则称 f(x) 是 D 上的有界函数, 其中 M 称为函数 f(x) 的一个上界. 若函数 y=f(x) 在 $[0,+\infty)$ 上是以 3 为一个上界的有界函数, 求实数 a 的取值范围.
- (002971) 二次函数图像的顶点是 (-1,2), 且图像经过点 (1,6), 则此二次函数的解析式为
- (002972) 二次函数 y = f(x) 满足 f(2-x) = f(2+x), 且 y = f(x) 的图像在 y 轴的截距为 3, 被 x 轴截得的 线段长为 2, 则 y = f(x) 的解析式为
- (002973) 设常数 $a \in \mathbb{R}$. 若二次函数 $f(x) = a(x a^2)(x + a)$ 为偶函数, 则 a =_____.
- (002974) 设常数 $b \in \mathbf{R}$. 若函数 $y = x + \frac{2^b}{x}$ (x > 0) 在 (0,4] 上是减函数,在 $[4,+\infty)$ 上是增函数,则 b =
- (002975) 设常数 $a \in \mathbb{R}$. 若函数 $y = -x^2 + 2ax(0 \le x \le 1)$ 的最小值用 g(a) 表示, 则 g(a) =_____.
- (002976) 设常数 m>0. 若二次函数 $f(x)=x^2-2x$ 在区间 [0,m] 上的最大值为 0、最小值为 -1,则 m 的取值范围为______.
- (002977) 若函数 $f(x)=x+rac{4}{x}(1\leq x\leq 5)$,则函数 y=f(x) 的递减区间是______,递增区间是_____,最小值是______,
- (002978) 已知 $g(x) = -x^2 3$, y = f(x) 是二次函数, 且 y = f(x) + g(x) 为正比例函数.
- (1) 若 $0 \le x \le 1$ 时, y = f(x) 的最大值为 6, 则 y = f(x) 的表达式是______;
- (2) 若 $0 \le x \le 1$ 时, y = f(x) 的最小值为 $2\sqrt{2}$, 则 y = f(x) 的表达式是_____.
- (002979) 已知 a > 0,函数 $f(x) = x \frac{a}{x}$,求函数 y = f(x) 的递增区间.
- (002980) 已知函数 $y=x+\frac{a}{x}$ 有如下性质: 如果常数 a>0, 那么该函数在 $(0,\sqrt{a}]$ 上是减函数, 在 $[\sqrt{a},+\infty)$ 上是增函数.
- (1) 设常数 $c\in[1,+\infty),$ 求函数 $f(x)=x+\frac{c}{x}$ $(1\leq x\leq 2)$ 的最大值和最小值;
- (2)* 设常数 c>0. 当 n 是正整数时, 研究函数 $g(x)=x^n+\frac{c}{x^n}$ 的单调性, 并说明理由.
- (002981) 已知函数 $f(x) = |x \frac{1}{x}|, \ x > 0.$
- (1) 画出函数 y = f(x) 的草图;
- (2) 当 0 < a < b, 且 f(a) = f(b) 时, 求证: ab = 1.
- (002982) 函数 $y = 2x + \frac{1}{r}(x < 0)$ 的递增区间是______.
- (002983) 设 x < 1, 则 $\frac{2x^2 2x + 1}{x 1}$ 的最大值为______.
- (002984) 函数 y = (x-3)(x-1)(x+1)(x+3) 的最小值为______.

(002985) 函数 $f(x) = \frac{1}{2}x^2 - x + \frac{3}{2}$ 的定义域、值域都是区间 [1,b],则实数 b=______.

(002986) 设常数 $m \in \mathbf{R}$. 若函数 $f(x) = x^2 - (m-2)x + m - 4$ 的图像与 x 轴交于 A, B 两点,且 |AB| = 2,则函数 y = f(x) 的最小值为______.

(002987) 函数 $f(x) = ax^2 + bx + c$ 与函数 $g(x) = cx^2 + bx + a(ac \neq 0, a \neq c)$ 的值域分别为 M、N, 则下列结论正确的是______.

A. M = N

B. $M \subseteq N$

C. $M \supseteq N$

D. $M \cap N \neq \emptyset$

(002988) 函数 $f(x) = x^2 - 2a|x - a| - 2ax + 1$ 的图像与 x 轴有且只有三个不同的公共点,则 a =_____.

(002989) 设常数 $a \in \mathbb{R}$. 已知函数 $f(x) = x^2 - 2ax + 1(1 \le x \le 3)$ 存在反函数. 若函数 y = f(x) 的最大值为 4, 求实数 a 的值.

(002990) 设常数 $a, m \in \mathbf{R}$. 已知函数 $f(x) = \frac{x^2 + 2x + a}{x} \ (x \ge m)$.

- (1) 设 $a=\frac{1}{2}$, 求函数 y=f(x) 的值域;
- (2) 设 m = 1, 求函数 y = f(x) 的值域.

(002991) 设常数 $a \in \mathbb{R}$, 并将函数 $f(x) = 1 - 2a - 2a\cos x - 2\sin^2 x$ 的最小值记为 g(a).

- (1) 写出 g(a) 的表达式;
- (2) 是否存在 a 的值, 使得 $g(a) = \frac{1}{2}$? 若存在, 求出 a 的值以及此时函数 y = f(x) 的最大值; 若不存在, 说明理由.

$$(002992)$$
 函数 $y = \frac{1}{x^2 - 2x + 3}$ 的最大值是______.

$$(002993)$$
 函数 $y = \frac{3^x - 1}{3^x - 2}$ 的值域是______.

(002994) 函数
$$y = \log_{\frac{1}{2}}(-x^2 + 2x + 3)$$
 的值域是_____.

$$(002995)$$
 函数 $y = |x-1| + |x-3|$ 的值域是_____.

- (2) 函数 $y = \frac{3x}{x^2 + 4}$ 的值域是______;
- (3) 函数 $y = x + \frac{4m}{x+3}$, $x \in [0, +\infty)$ 的最小值为______;
- (4) 设常数 $m \in \mathbf{R}$. 若函数 $y = \frac{mx}{x^2 + 1}$ 的最大值为 1, 则 m 的值为______.

(002997)(1) 函数 $y = x - \sqrt{1 - 2x}$ 的最大值为______, 此时 x =______;

(2) 函数 $y = 2x + \sqrt{1 - 2x}$ 的值域是______.

$$(002998)$$
 函数 $y = \frac{2x-3}{x^2-2x+3}$ 的值域是______.

(002999) 设 $x, y \in \mathbf{R}$. 若 $x^2 + y^2 = 1$, 则 $3x^2 - 4y^2$ 的取值范围是

- (003000) 已知函数 $f(x) = \log_a(x + \sqrt{x^2 + 1}), \ a > 1.$
- (1) 求 f(x) 的定义域和值域;
- (2) $\Re f^{-1}(x)$;
- (3) 判断 $f^{-1}(x)$ 的奇偶性、单调性;
- (4) 若实数 m 满足 $f^{-1}(1-m) + f^{-1}(1-m^2) < 0$, 求 m 的范围.

$$(003001)^*$$
 设常数 $m, n \in \mathbf{R}$. 若函数 $y = \frac{mx^2 + 4x + n}{x^2 + 1}$ 的值域为 $[1, 6]$, 求 m, n 的值.

(003002) 设常数
$$a \in \mathbf{R}$$
, 区间 $E \subseteq (0, +\infty)$. 已知函数 $f(x) = \frac{1}{a} - \frac{1}{x}, x \in E$.

- (1) 求证: y = f(x) 在区间 E 上递增;
- (2) 是否存在 a, 使得对于这样的 a, 总是存在 E = [m, n](m < n), 使得 y = f(x) 在区间 E 上的值域也是 E? 若存在, 求出 a 的取值范围; 若不存在, 说明理由.

$$(003003)$$
 函数 $y = 2x + \frac{4}{x}(\frac{1}{2} < x \le 2)$ 的值域是______.

$$(003004)$$
 函数 $y = |x-3| - |x+2|$ 的值域是_____.

(003005) 函数
$$y = (\frac{1}{2})^{x^2 - x}$$
 的值域是______.

$$(003006)$$
 函数 $y = \frac{\sqrt{x}}{x+1}$ 的值域是______

$$(003007)$$
 设 $x, y \in \mathbf{R}$, 且 $2x + 3y = 1$. 若 $x^2 + y^2 \ge t$ 恒成立, 则实数 t 的最大值是______

$$(003008)$$
 设 $x, y \in [0, +\infty)$, $2x + y = 6$, 求 $z = 5x^2 - y^2 - 2x + 13y + 35$ 的最值.

$$(003009)$$
 求函数 $y = \frac{2x^2 - 4x - 1}{x^2 - 2x - 1}$ 的值域.

$$(003010)$$
 求函数 $y = \frac{x^2 + 4x - 1}{x^2 - 2x + 1} (2 \le x \le 3)$ 的值域.

(003011) 记 $\max\{a_1, a_2, \dots, a_n\}$ 为 a_1, \dots, a_n 中的最大值. 已知 $f(x) = \max\{x, x^2\}(-1 \le x \le 3)$.

- (1) 求函数 y = f(x) 的值域;
- (2) 设 PAB 三点的坐标分别为 (x, f(x)), (0, -1), (2, 0), 且 PAB 三点可以构成三角形, 求 $\triangle PAB$ 的面积的取值范围.

(003012) 是否存在实数 m, n(m < n),使得函数 $f(x) = -x^2 + 2$ 的定义域、值域分别是区间 [m, n]、[2m, 2n]. 若存在, 求出 m, n 的值; 若不存在, 说明理由.

$$(003013)$$
 函数 $f(x) = 3ax - 2a + 1$ 在 $[-1,1]$ 上存在一个零点, 则实数 a 的取值范围是_______.

(003014) 用二分法, 可以计算得方程 $6-x=\lg x$ 的解是_____(结果精确到 0.01).

$$(003015)$$
 方程 $6-x = \log_2 x$ 的解集是_____

$$(003016)$$
 方程 $3^{x+1} = 5^{x^2+x}$ 的解集是.......

(003017) 若方程
$$2^x = (\frac{1}{2})^{-\frac{1}{x}+1}$$
 的两个实数解为 $x_1, x_2, \, \text{则} \, x_1 + x_2 = \underline{\hspace{1cm}}$.

(003018) 设常数 $a \in \mathbf{R}$. 若关于 x 的方程 $\lg^2 x - \lg x^2 + a - 2 = 0$ 有两个不同的实数解 x_1, x_2 , 则 (1) $x_1 \cdot x_2 = \underline{\hspace{1cm}}$;
(2) a 的取值范围是
$(003019)(1)$ 设常数 $a \in \mathbf{R}$. 若关于 x 的方程 $9^x - (a+2) \cdot 3^x + 4 = 0$ 有实数解, 则 a 的取值范围是
(003020) 设常数 $a \in \mathbb{R}$. 若方程 $ax^2 + 2x + 1 = 0$ 至少有一个负实根,则 a 的取值范围是
(003021) 设常数 $k \in \mathbf{R}$, 试根据 k 的值, 分别讨论下列关于 x 的方程的根的个数. $(1)\ x^2 - k x + 1 = 0;$ $(2)\ x^2 - x + k = 0.$
(003022) 设常数 $m,n\in\mathbf{R}$. 已知 $f(x)=(x-m)(x-n)-2$, 且 α,β 是方程 $f(x)=0$ 的两个根, 则实数 m,n , α,β 的大小关系可能是 ().
A. $\alpha < m < n < \beta$
(003023) 设常数 $m \in \mathbf{R}$. 已知函数 $f(x) = x^2 + mx + 2$. (1) 若函数 $y = f(x)$ 在区间 $(0,2)$ 上有且仅有一个零点,求 m 的取值范围; (2) 在区间 $[0,2]$ 上,函数 $y = f(x)$ 是否存在两个不同的零点?若存在,求出 m 的取值范围,若不存在,说明理由.
(003024) 方程 $4^{x+1} - 13 \cdot 2^x + 3 = 0$ 的解集是
(003025) 方程 $\log_2(x-1) = \log_4(2-x)$ 的解集是
(003026) 方程 $2\log_2(x-1) = 2 + \log_2 x$ 的解集是
(003027) 方程 $\log_3(3^{x-1}-3^{-1})\cdot\log_3(3^{x-2}-3^{-2})=2$ 的解集是
(003028) 方程 $3^{x+1} + 2^{x+1} = 7 \cdot 5^{x-1}$ 的解集是
(003029) 方程 $2(4^x + 4^{-x}) - 3(2^x - 2^{-x}) - 4 = 0$ 的解集是
(003030) 设常数 $a \in \mathbb{R}$. 若关于 x 的方程 $ax - \sqrt{x} + 1 = 0$ 有实数解, 则 m 的取值范围是
(003031) 设常数 $m \in \mathbb{R}$. 若关于 x 的方程 $\sqrt{2x} = x + m$ 有两个不同的实数解, 则 m 的取值范围是
 (003032) 设常数 a ∈ R. 已知函数 f(x) = 4^x - a · 2^x + a + 3. (1) 若函数 y = f(x) 有且仅有一个零点, 求 a 的取值范围; (2) 若函数 y = f(x) 有零点, 求 a 的取值范围. (003033) 设定数 m ∈ R. 已知 f(x) - x² + (m - 1)x - m² + 1.
$(1013133) \text{ 13f } \mathbf{E} \mathbf{E} \mathbf{W} \ m \in \mathbf{K} \ \text{ E.41} \ t(r) = r^2 + (m-1)r - m^2 + 1$

(1) 若函数 y=f(x) 在区间 $(0,+\infty)$ 内有两个不同的零点, 求 m 的取值范围;

- (2) 若函数 y = f(x) 在区间 $(0, +\infty)$ 内有零点, 求 m 的取值范围;
- (3) 若函数 y = f(x) 在区间 (0,3) 内有零点, 求 m 的取值范围.

(003034)(1) 设常数 $a \in \mathbb{R}$. 已知函数 f(x) = ax. 若对于任意 $x \in [-3, -1]$, 不等式 $f(x) \ge 5$ 恒成立, 则 a 的取 值范围为______;

- (2) 设常数 $a \in \mathbb{R}$. 已知函数 f(x) = ax, 若存在 $x_0 \in [-3, 1]$, 使得不等式 f(x) + 5 < 0 成立, 则 a 的取值范围为______;
- (3) 设常数 $a \in \mathbf{R}$. 已知函数 f(x) = ax. 若对于任意 $x \in (-3,1)$, 不等式 $f(x) + 5 \ge 0$ 恒成立, 则 a 的取值范围为______.

(003035) 设常数 $a \in \mathbf{R}$. 已知函数 f(x) = x + a. 若存在 $x_0 \in (-1,2)$, 使得 $f(x_0) > 1$ 成立, 则 a 的取值范围为______.

(003036) 设常数 $a \in \mathbf{R}$. 已知函数 $f(x) = x^2 - x - a$. 若不等式 f(x) > 0 恒成立, 则 a 的取值范围为______

(003037) 设常数 $a \in \mathbf{R}$. 已知函数 $f(x) = x^2 - x - a$, -2 < x < -1. 若不等式 f(x) > 0 恒成立, 则 a 的取值范围为

(003038) 已知函数 $f(x) = x^2$. 若常数 a 满足: 存在 $x \in (-2, a)$, 使得 f(x) > 5, 则 a 的取值范围为______

(003039) 设常数 $a \in \mathbb{R}$. 已知函数 $f(x) = (a-1)x^2 + (a-1)x - 1$. 若关于 x 的不等式 $f(x) \ge 0$ 解集为 \varnothing , 则 a 的取值范围为______.

(003040) 设常数 $a \in \mathbb{R}$. 若关于 x 的不等式 a|x| > x + 2 有实数解, 则 a 的取值范围为______.

(003041) 已知实数 ab 满足等式 $(\frac{1}{2})^a = (\frac{1}{3})^b$,下列五个关系式:

① 0 < b < a; ② a < b < 0; ③ 0 < a < b; ④ b < a < 0; ⑤ a = b = 0. 其中不可能成立的关系式的序号为______.

(003042) 设常数 $k \in \mathbf{R}$. 已知函数 $f(x) = kx^2 + kx + k + 1$.

- (1) 对于任意的 $x \in [-1,1]$, 不等式 $f(x) \ge 0$ 恒成立, 求 k 的取值范围;
- (2) 存在 $x_0 \in [-1,1]$, 使得不等式 $f(x_0) < 0$ 成立, 求 k 的取值范围.

(003043) 设常数 $k \in \mathbb{R}$. 已知关于 x 的不等式 $k \cdot 4^x - 2^{x+1} + 6k < 0$.

- (1) 若不等式的解集为开区间 $(1, \log_2 3)$, 求 k 的取值范围;
- (2) 若不等式对一切 $x \in (1, \log_2 3)$ 都成立, 求 k 的取值范围;
- (3)* 若不等式的解集为开区间 $(1, \log_2 3)$ 的子集, 求 k 的取值范围;
- (4) * 若不等式在开区间 $(1, \log_2 3)$ 内存在解, 求 k 的取值范围.

(003044) 设常数 $a \in \mathbb{R}$. 已知不等式 $2a-1 > (a^2-1)x$ 对于满足 $-1 \le x \le 1$ 的任意 x 恒成立, 则 a 的取值范围为______.

(003045) 设常数 $a \in \mathbb{R}$. 已知函数 $f(x) = ax^2 - ax + 1$. 若不等式 f(x) > 0 恒成立, 则 a 的取值范围 为_____ (003046) 设常数 $a \in \mathbb{R}$. 已知不等式 $x^2 - mx + 3 \ge 0$ 对于满足 $1 \le x \le 2$ 的任意 x 恒成立, 则 a 的取值范围 为_____. (003047) 设常数 $a \in \mathbb{R}$. 已知函数 $f(x) = |x - a|, 0 \le x \le 1$. 若 $f(x) \le 2$ 恒成立, 则 a 的取值范围 (003048) 设常数 $a \in \mathbb{R}$. 已知函数 f(x) = |x - a|. 若存在 $x_0 \in (0,1)$, 使得 $f(x_0) > 2$ 成立, 则 a 的取值范围 (003049) 设常数 $a \in \mathbb{R}$. 关于 x 的不等式 $a|x| > x^2 - 2$ 的解集为 E. 若区间 $(1,2) \subseteq E$, 则 a 的取值范围 (003050) 设常数 $m \in \mathbb{R}$, $m \le -2$, 函数 $f(x) = x^2 + mx + 4$. 问: 是否存在这样的 m, 使对于任意 $x \in [-1, 1]$, 使得 $f(x) + m \ge 0$ 都成立? 若存在, 求出所有这样的 m; 若不存在, 说明理由. (003051) 设常数 $a \in \mathbb{R}$. 若对于任意实数 $x \in [-2, 2]$, 不等式 $x^2 + ax + 3 \ge a$ 恒成立, 求 a 的取值范围. (003052) 设常数 $a \in \mathbb{R}$. 若对于任意实数 $x \in (-\infty, -1]$, 不等式 $1 + 2^x + (a - a^2) \cdot 4^x > 0$ 恒成立, 求 a 的取值 范围. (003053) 已知常数 $m, n \in \mathbb{R}, m < -2$, 函数 $f(x) = x^2 + mx + n$. 问: 是否存在 $x_0 \in [-1, 1]$, 使得 $|f(x_0)| > |m|$ 成立? (003054) 若 $\alpha = 2022^{\circ}$, 则与 α 具有相同终边的最小正角 $\beta =$ (003055) 下列用弧度制表示的各角中, 是第二象限角的是(). B. $-\frac{12\pi}{5}$ A. $\frac{12\pi}{5}$ D. -2(003056) 若角 α 的终边与角 $\frac{\pi}{3}$ 的终边垂直, 则 $\alpha =$ _____. (003057) 若角 α 与角 β 的正弦值相等, 则 β 可用 α 表示为_____. (003058) 若点 P(-2,y) 在角 α 的终边上, $\sin \alpha = -\frac{2}{3}$, 则 $\cos \alpha =$ ______ (003059) 若 $0 < \alpha < 2\pi$, 且 $|\cos \alpha| < |\sin \alpha|$, 则 α 的取值范围是_____.

(003060) 一动点 P 从 (1,0) 出发,沿单位圆 $x^2+y^2=1$ 接逆时针方向运动,到达点 $Q(-\frac{1}{2},\frac{\sqrt{3}}{2})$,则圆 $x^2+y^2=1$

(003061) 函数 $f(x) = \frac{\sin x}{|\sin x|} + \frac{|\cos x|}{\cos x} + \frac{\tan x}{|\tan x|} + \frac{|\cot x|}{\cot x}$ 的值域是

上的劣弧 PQ 的长为__

(003062) 求周长为 c 的扇形面积的最大值, 并求面积取到最大值时扇形圆心角 α 的弧度数.

(003063) 若 α 是第二象限的角,试分别确定 $2\alpha, \frac{\alpha}{2}, \frac{\alpha}{3}$ 的终边与象限、坐标轴的位置关系.

(003064) 在单位圆中分别画出适合下列条件的角 α 的终边的范围, 并写出角 α 的集合.

- $(1)\,\sin\alpha \ge \frac{\sqrt{3}}{2};$
- $(2) \cos \alpha \le -\frac{1}{2};$
- (3) $\tan \alpha < -1$.

(003065) 与 -45° 角终边相同的角的集合是_

(003066) 设角 α 的终边与角 $\frac{7\pi}{5}$ 的终边关于 y 轴对称, 且 $\alpha \in (0,2\pi),$ 则 $\alpha = ___$

(003067) 如图, 已知扇形 OAB 的圆心角为 $rac{5\pi}{6}$, 面积为 $rac{5\pi}{3}$, 则扇形内以 AB 为弦的弓形面积为______

(003068) 若 $\sin \alpha \cdot \cos \alpha > 0$, 则 α 的值的集合是

(003069) 若角 α 的终边不在坐标轴上, $\sin\frac{\alpha}{2}>0$, $\cos\frac{\alpha}{2}<0$, 则关于角 α , 以下命题正确的有_____(填序

① 不在第一象限; ② 不在第二象限; ③ 不在第三象限; ④ 不在第四象限.

(003070) 若角 α 终边上一点 P 为 $(2\sin 3, -2\cos 3)$, 则 $\sin \alpha = ($

A. $\sin 3$

B. $\cos 3$

- $C. \sin 3$
- $D. \cos 3$

- $(003071) \ \textbf{设} \ \frac{\theta}{\theta} \ \textbf{为第三象限角}.$ $(1) \ \textbf{判断} \ \frac{\sin\frac{\theta}{2}}{\cos\frac{\theta}{2}} \ \textbf{的符号}, \ \textbf{并说明理由};$
- (2) 判断 $\frac{\sin\frac{\overline{\theta}}{2}}{\cos\frac{\theta}{2}} + 1$ 的符号, 并说明理由.

(003072) 设常数 $a \neq 0$, 角 α 终边上的点 P 与点 A(a,2a) 关于 x 轴对称, 角 β 终边上的点 Q 与 A 关于直线 y = x 对称, 求 $\sin \alpha \cdot \cos \alpha + \sin \beta \cdot \cos \beta + \tan \alpha \cdot \tan \beta$ 的值.

$$(003073)$$
 若 $\sin(\pi + \alpha) = \frac{3}{5}$, α 是第四象限角,则 $\cos(\alpha - 2\pi) =$ _____.

$$(003074)$$
 若 $\cos(\pi + \alpha) = -\frac{1}{3}$, α 是第四象限角, 则 $\sin(2\pi - \alpha) =$ _____.

(003075) 如果
$$\cot(\pi - \alpha) = \frac{2}{3}$$
, $\alpha \in (0, \pi)$, 则 $\tan \alpha$ 的值为_____.

$$(003076)$$
 若 $\cos(\frac{\pi}{6} - \alpha) = \frac{\sqrt{3}}{3}$,则 $\cos(\frac{5\pi}{6} + \alpha) =$ _____.

$$(003077)$$
 已知 $-\frac{\cos\alpha}{\sqrt{1+\tan^2\alpha}}+\frac{\sin\alpha}{\sqrt{1+\cot^2\alpha}}=-1$,则 α 的终边在第______象限.

(003078) 若
$$\tan \alpha = -\frac{3}{5}$$
,则 $\frac{2\sin \alpha - 3\cos \alpha}{3\sin \alpha + 4\cos \alpha} =$ _____.

(003079) 设常数 m 满足 $m^2 \neq 1$, 若 $\sin \theta + \cos \theta = m$, 则 $\sec \theta \cdot \csc \theta =$

(003080) 已知 $\sin \theta + \cos \theta = \frac{\sqrt{2}}{3}, \, \pi < \theta < 2\pi, \,$ 求下列各式的值:

- (1) $\tan \theta + \cot \theta$;
- (2) $\sin \theta \cos \theta$;
- (3) $\sin^3 \theta \cos^3 \theta$.

(003081) 设 k 为整数, 化简: $\frac{\sin(k\pi - \alpha)\cos[(k-1)\pi - \alpha]}{\sin[(k+1)\pi + \alpha]\cos(k\pi + \alpha)}$.

(003082) 已知 $\sin(3\pi - \alpha) = \sqrt{2}\cos(\frac{3\pi}{2} + \beta), \sqrt{3}\cos(-\alpha) = -\sqrt{2}\cos(\pi + \beta),$ 且 $0 < \alpha < \pi, 0 < \beta < \pi,$ 求 α, β 的值.

(003083) 化简:
$$\frac{\cot(\frac{\pi}{2} + \alpha)\sin(\frac{3\pi}{2} + \alpha)}{\sin(\pi - \alpha)} = \underline{\hspace{1cm}}.$$

(003084)设 $k\in {\bf Z},$ 若 $\sin(k\pi-\alpha)=-\sin\alpha,$ 则 $\cos(k\pi-\alpha)=($

A. $\sin \alpha$ B. $\cos \alpha$ D. $-\cos\alpha$

$$(003085)$$
 若角 α 在第三象限, 化简:
$$\frac{2\tan\alpha}{\sqrt{\sec^2\alpha-1}} + \frac{1}{\sin\alpha\cdot\sqrt{1+\tan^2\alpha}} = \underline{\hspace{1cm}}.$$

(003086) 若
$$\sin \alpha \cdot \cos \alpha = \frac{1}{8}$$
, $\alpha \in (\frac{\pi}{4}, \frac{\pi}{2})$, 则 $\cos \alpha - \sin \alpha =$ ______.

(003087) 已知 $\tan \alpha = -3$, 求值:

(1)
$$4\sin^2 \alpha - 3\sin \alpha \cdot \cos \alpha$$
;
(2) $\frac{5\sin^3 \alpha + \cos \alpha}{2\cos^3 \alpha + \sin^2 \alpha \cdot \cos \alpha}$.

(003088) 已知 $m \in (0,1)$. 若 $\cos \alpha = m$, 求 $\csc \alpha$, $\cot \alpha$ 的值.

(003089) 设常数 $k \in \mathbf{R}$. 若 $\tan \alpha, \cot \alpha$ 是方程 $2x^2 - 2kx + k^2 - 3 = 0$ 的两个实根, 且 $\pi < \alpha < \frac{5\pi}{4}$

- (1) 求 k 的值;
- (2) 求 $\cos \alpha \sin \alpha$ 的值.

 $(003090) \ \textbf{设常数} \ a \in (0,1). \ \ \textbf{若} \ \tan \theta = \sqrt{\frac{1-a}{a}}, \ \textbf{求证} : \ \textbf{无论} \ a \ \textbf{为何值}, \ \frac{\sin^2 \theta}{a + \cos \theta} + \frac{\sin^2 \theta}{a - \cos \theta} \ \ \textbf{总是与} \ a \ \textbf{无关的}$ 常数,并求出该常数.

(003091) 已知
$$\sin \alpha = \frac{4}{5}, \ \alpha \in (\frac{\pi}{2}, \frac{3\pi}{2}), \ \text{则 } \sin 2\alpha = _____.$$

$$(003092) 求値: \cos(31^{\circ} - \alpha)\cos(29^{\circ} + \alpha) - \sin(31^{\circ} - \alpha)\sin(29^{\circ} + \alpha) = \underline{\hspace{1cm}}.$$

(003093) 将 $\sin \alpha - \sqrt{3} \cos \alpha$ 化为 $A \sin(\alpha + \varphi)$ 的形式 $(A > 0, \varphi \in [0, 2\pi))$: $\sin \alpha - \sqrt{3} \cos \alpha =$ ______.

$$(003094)$$
 若 $\sin \alpha = \frac{7}{8}$, $\cos \beta = -\frac{1}{4}$, α, β 在同一象限, 则 $\cos(\alpha - \beta) =$ _____.

$$(003095)$$
 已知 $\cos \theta = -\frac{3}{5}, \, \theta \in (\frac{\pi}{2}, \pi), \, \text{则 } \sin(\theta + \frac{\pi}{4}) =$ ______.

$$(003096)$$
 若 α 为锐角,且 $\sin(\alpha-\frac{\pi}{6})=\frac{1}{6}$,则 $\sin\alpha=$ _____.

(003097) 已知 $\tan(\alpha + \beta) = \frac{2}{3}$, $\tan(\beta - \frac{\pi}{4}) = \frac{1}{4}$, 则 $\tan(\alpha + \frac{\pi}{4}) = \underline{\hspace{1cm}}$

(003098) 若 an lpha 与 an eta 是方程 $3x^2+5x-2=0$ 的两个根,且 $0<lpha<\frac{\pi}{2},\,\frac{\pi}{2}<eta<\pi,\,$ 则 lpha+eta 的值

(003099) 设 $\alpha, \alpha + \beta$ 均为象限角. 若 $2\sin\beta = \sin(2\alpha + \beta)$, 求 $\frac{\tan(\alpha + \beta)}{\tan\alpha}$ 的值.

 $(003100)^*$ 已知 $\tan \alpha = -\frac{1}{7}$, $\tan \beta = -\frac{1}{3}$, 且 α, β 均为钝角, 求 $\alpha + 2\beta$ 的值.

 $(003101)^*$ 是否存在锐角 α, β, θ , 使得 $\sin \theta = \sin \beta - \sin \alpha$, $\cos \theta = \cos \alpha - \cos \beta$? 若存在, 求出 $\alpha - \beta$ 的所有 可能值; 若不存在, 说明理由.

$$(003102)$$
 若 $\sin \alpha - \sin \beta = -\frac{1}{3}$, $\cos \alpha - \cos \beta = \frac{1}{2}$, 则 $\cos(\alpha - \beta) =$ ______.

$$(003104) 若 \sin(\alpha + \beta) = \frac{1}{2}, \sin(\alpha - \beta) = \frac{1}{3}, 则 \frac{\tan \alpha}{\tan \beta} = \underline{\qquad}.$$

(003105) 若
$$\sin A = \frac{\sqrt{5}}{5}$$
, $\sin B = \frac{\sqrt{10}}{10}$, 且 A, B 均为钝角,则 $A + B =$ ______.

f(1) 的值能否确定? f(2) 呢?

(003107) 设常数 $m \neq 0$, 若关于 x 的方程 $mx^2 + (2m-3)x + m - 2 = 0$ 的两实数根为 $\tan \alpha, \tan \beta, \bar{x} \tan(\alpha + \beta)$ 的取值范围.

(003108) 是否存在锐角 α, β , 使得 $\alpha + 2\beta = \frac{2\pi}{3}$, 且 $\tan \beta = (2 - \sqrt{3}) \cot \frac{\alpha}{2}$? 若存在, 求出所有的 α, β 的值; 若 不存在,说明理由.

$$(003109)\sqrt{\frac{1+\cos 4}{2}} = ().$$

A. $\sin 2$

$$B. - \sin 2$$

$$C.\cos 2$$

$$D. - \cos 2$$

(003110) 设 α 是第二象限角, 且 $\sin \alpha = \frac{\sqrt{3}}{2}$, 则 $\cos \frac{\alpha}{2}$ ().

A. 一定等于
$$\frac{\sqrt{3}}{2}$$
 B. 一定等于 $\frac{1}{2}$ C. 可能等于 $-\frac{\sqrt{3}}{2}$

C. 可能等于
$$-\frac{\sqrt{3}}{2}$$

D. 可能等于
$$-\frac{1}{2}$$

(003111) 若
$$\cos \alpha = \frac{3}{5}$$
, $\alpha \in (0, \frac{\pi}{2})$, 则 $\tan \frac{\alpha}{2} =$ _____.

(003112) 若 $\tan \theta = 2$, 则 $3\cos 2\theta + 4\sin 2\theta =$ ______.

$$(003113) \ \hbox{ \hbox{\not a}} \cos(\alpha+\frac{\pi}{4}) = \frac{3}{5}, \, \frac{\pi}{2} < \alpha < \frac{3\pi}{2}, \, \text{ y } \cos 2\alpha = \underline{\hspace{1cm}}.$$

$$(003114)$$
 化简:
$$\frac{\tan(45^{\circ} - \alpha)}{1 - \tan^{2}(45^{\circ} - \alpha)} \cdot \frac{\sin \alpha \cos \alpha}{\cos^{2} \alpha - \sin^{2} \alpha} = \underline{\hspace{1cm}}.$$

(003115) 若
$$\tan \frac{\alpha}{2} + \cot \frac{\alpha}{2} = \frac{5}{2}$$
, 则 $\sin \alpha =$ _____.

(003117) 化筒:
$$\frac{2\tan(\frac{\pi}{4} - \theta)\sin^2(\frac{\pi}{4} + \theta)}{\frac{1}{2} - \cos^2 \theta}.$$

$$(003118) \ \ \boldsymbol{\mathcal{U}} \ \ \frac{3\pi}{2} < \alpha < 2\pi, \ \beta \in \mathbf{R}, \ \ \mathbf{E} \ \ \mathbf{m} \ \cos(\alpha + \beta) \cos\beta + \sin(\alpha + \beta) \sin\beta = \frac{1}{3}, \ \ \mathbf{x} \ \cot(\frac{\pi}{4} - \frac{\alpha}{2}) \ \ \mathbf{的} \ \mathbf{\mathring{u}}.$$

(003119) 若存在 $\theta \in [0, \frac{\pi}{2})$, 使得 $\cos \theta + t \sin \theta = t$, 求实数 t 的取值范围.

$$(003120) 若 \tan \theta = \frac{1}{3}, 则 \frac{\sin \theta}{1 - \cos \theta} = \underline{\hspace{1cm}}.$$

$$(003121)$$
 当 $\alpha \in (0, \frac{\pi}{2})$ 时,化简: $2\sqrt{1-\sin\alpha} - \sqrt{2+2\cos\alpha} =$ ______.

$$(003122)$$
 已知 $\sin(\alpha - \beta) = \frac{36}{85}$, $\cos \beta = \frac{4}{5}$, α, β 都是锐角. 则 $\tan(\frac{\alpha}{2} + \frac{\pi}{4}) =$ _____.

$$(003123)^* 若 \pi < \alpha < \frac{3\pi}{2}, 化简 \frac{1+\sin\alpha}{\sqrt{1+\cos\alpha}-\sqrt{1-\cos\alpha}} + \frac{1-\sin\alpha}{\sqrt{1+\cos\alpha}+\sqrt{1-\cos\alpha}} = \underline{\hspace{1cm}}.$$

$$(003124)^* \ \ {\bf \overline{7}} \ \frac{1-\cos\alpha}{1+\cos\alpha} = 6, \ {\bf L} \ (\frac{1}{4})^{\sin\alpha} > 1, \ {\bf M} \ \tan\frac{\alpha}{2} = \underline{\hspace{1cm}}.$$

(003126) 化筒:
$$\sin^2 \alpha \sin^2 \beta + \cos^2 \alpha \cos^2 \beta - \frac{1}{2} \cos 2\alpha \cos 2\beta$$
.

$$(003127) 已知 0 < \alpha < \frac{\pi}{4}, 且 \frac{2\sin^2\alpha + \sin 2\alpha}{1 + \tan \alpha} = k, 分别用 k 表示 \sin\alpha \cdot \cos\alpha 及 \sin\alpha - \cos\alpha.$$

(003128) 在三角形 ABC 中, (1) 用三个角 A, B, C 及外接圆半径 R 表示三角形的面积 S, 得 S =_______;

- (3) 用内切圆半径 r, 周长 2p 表示三角形面积 S, 得 S =______.

(003129) 在以 A 为顶角的等腰三角形 ABC

(003130) 在三角形
$$ABC$$
 中,若 $a^2+c^2-b^2=\frac{1}{2}ac$,则角 $B=$ ______.

(003131) 在三角形 ABC 中,

(1)
$$\text{ } \#\cos B = \frac{4}{5}, \sin C = \frac{5}{13}, \text{ } \#\sin A = \underline{\hspace{1cm}} ;$$

(1) 若
$$\cos B = \frac{4}{5}$$
, $\sin C = \frac{5}{13}$, 则 $\sin A = _____;$
(2) 若 $\cos B = \frac{4}{5}$, $\sin C = \frac{12}{13}$, 则 $\sin A = _____.$

(003132) 在三角形
$$ABC$$
 中, $a = 3$, $b = 2$, $\sin B = \frac{1}{3}$.

- (1) 若 A 是钝角, 则角 A =_____;
- (2) 若三角形 ABC 是钝角三角形, 则角 A =_____.

(003133) 在三角形 ABC 中, $\tan A \tan B > 1$, 则以下命题正确的是 (填序号).

① 三角形 ABC 一定是锐角三角形; ② 三角形 ABC 可能是钝角三角形; ③ 三角形 ABC 可能是直角三角形.

(003134) 在三角形 ABC 中, 若 $\sin A = \sqrt{3} \sin C$, $B = \frac{\pi}{6}$, b = 2, 则三角形 ABC 的面积为______.

(003136) 解下列三角形 (S 表示面积, R 表示外接圆半径):

- (2) S = 15, ab = 60, $\sin A = \cos B$, $\Re A$, B, c;
- (3) a = 30, S = 105, R = 17, $\Re b$, c.

(003137) 判断下列三角形的形状:

- $(1) 2\sin A\sin B = 1 + \cos C;$
- (2) $a \sin A = b \cos C + c \cos B$.

(003138) 如图, 某居民小区的平面图呈扇形 AOC. 小区的两个出入口设置在点 A 及点 C 处. 小区里有两条笔直的小路 AD,DC, 且 $\angle ADC$ 的大小为 120° . 已知某人从 C 沿 CD 走到 D 用了 10 分钟, 从 D 沿 DA 走到 A 用了 6 分钟. 若此人步行的速度为每分钟 50 米, 求该扇形的半径 OA 的长 (精确到 1 米).

(003139) 在三角形 ABC 中, $A = 120^{\circ}$, c = 5, a = 7, 则 b =_____.

(003140) 在三角形
$$ABC$$
 中, $A=60^{\circ},~a=1,$ 则 $\frac{a+b+c}{\sin A+\sin B+\sin C}=$ ______

(003141) 在三角形
$$ABC$$
 中, $(a+b)^2-c^2=4$, $C=\frac{\pi}{3}$, 则面积 $S=$ ______.

(003142) 在三角形 ABC 中, $\sin^2 A = \sin(B+C)\sin(B-C)$, 则 ().

A.
$$A = 90^{\circ}$$

B.
$$B = 90^{\circ}$$

C.
$$C = 90^{\circ}$$

D.
$$A = B = C$$

(003143) 在三角形 ABC 中, $a = \sqrt{3}$, $b = \sqrt{5}$, $c = \sqrt{7}$, 则 $bc\cos A + ca\cos B + ab\cos C = ______.$

(003144) 在三角形 ABC 中, $\sin A \sin C = \sin^2 B$, 求角 B 的取值范围.

(003145) 已知 D,C,B 三点在地面同一直线上, DC=a, 从 C,D 两点测得 A 点的仰角分别为 $\alpha,\beta(\alpha>\beta)$, 则 点 A 离地面的高 AB=______.

(003146) 在一个特定时段内, 以点 E 为中心的 7 海里以内海域被设为警戒水域. 点 E 正北 55 海里处有一个雷达观测站 A. 某时刻测得一艘匀速直线行驶的船只位于点 A 北偏东 45° 且与点 A 相距 $40\sqrt{2}$ 海里的位置 B, 经过 40 分钟又测得该船已行驶到点 A 北偏东 45° + $\arcsin\frac{\sqrt{26}}{26}$ 且与点 A 相距 $10\sqrt{13}$ 海里的位置 C. (1) 求该船的行驶速度 (单位: 海里 / 小时); (2) 若该船不改变航行方向继续行驶, 判断它是否会进入警戒水域, 并说明理由.

(003147) 函数 $y = \lg \sin x$ 的值域为______

(003148) 函数 $y = \sqrt{-\cos x}$ 的定义域为______

(003149) 函数
$$y = \sin x + \sqrt{3}\cos x \ (-\frac{\pi}{2} \le x \le \frac{\pi}{2})$$
 的值域为______.

(003150) 函数 $y = 2\cos^2 x + 5\sin x - 2$ 的值域为______.

(003151) 下列函数中, 在区间 $[-\frac{\pi}{2},\frac{\pi}{2}]$ 上是减函数的是 ().

A. $y = \sin x$

B. $y = \cos x$

C. $y = -\sin x$

D. $y = -\cos x$

(003152) 已知函数 $f(x) = a \sin 2x + b \tan x + 1$. 若实数 t 满足 f(t) = 7, 则 $f(\pi - t) =$ ______.

(003153) 若函数 $f(x) = \frac{\cos^2 x}{1 + \sin x}$, 则函数 f(x)().

A. 有最大值, 也有最小值

B. 有最大值, 但无最小值

C. 无最大值, 但有最小值

D. 无最大值, 也无最小值

(003154) 已知 T > 0. 下列命题中, 能成为命题 "函数 f(x) 的一个周期为 T" 的必要不充分条件的是 ().

A. 函数 f(x) 的一个周期是 -T

B. 函数 f(x) 的一个周期是 2T

C. 函数 f(x) 的一个周期是 $\frac{T}{2}$

D. 函数 f(x) 存在最小正周期

(003155) 求下列函数的定义域:

(1)
$$y = \log_{\sin x} (1 + 2\cos x);$$

(2)
$$y = \sqrt{\sin x} + \frac{1}{\sqrt{16 - x^2}}$$
.

(003156) 求下列函数的最大值与最小值:

 $(1) y = 2\sin x(\sin x + \cos x);$

(2)
$$y = \sin(\frac{\pi}{4} + \frac{x}{2})\sin(\frac{\pi}{4} - \frac{x}{2}), \frac{\pi}{4} \le x \le \frac{5\pi}{4};$$

(3)
$$y = 1 + \sin x + \cos x + \sin x \cos x, x \in [-\pi, 0].$$

(003157) 实数 x, y 满足 $x^2 + y^2 = 1$, 用三角代换求下列表达式的取值范围:

- (1) $x^2 + y$;
- (2) 2x + y.

(003158) 函数
$$y = 2\cos x$$
, $\frac{\pi}{3} \le x \le \frac{4\pi}{3}$ 的值域为_____.

$$(003159)$$
 函数 $y = 2\cos 2x$, $0 < x < \pi$ 的增区间为______

(003160) 设常数 $a \in \mathbb{R}$, 关于 x 的方程 $\cos^2 x + 4 \sin x - a = 0$ 有实数解, 则 a 的取值范围为______

(003161) 实数 x, y 满足 $x^2 - 2y + y^2 = 0$, 用三角代换求下列表达式的取值范围:

- (1) $x^2 + y$;
- (2) 2x + y.

$$(003162)$$
 求函数 $f(x) = \frac{\cos^2 x}{\cos x \sin x - \sin^2 x}, \ 0 < x < \frac{\pi}{4}$ 的值域

$$(003163)$$
 求函数 $y = \frac{\cos^2 x - 2}{1 - \sin x}$, $0 \le x < \frac{\pi}{2}$ 的最大值.

$$(003164)^*$$
 设函数 $f(x) = \frac{2\sin x \cos x + \frac{5}{2}}{\sin x + \cos x}, 0 \le x \le \frac{\pi}{2},$ 求 $f(x)$ 的最大值与最小值.

 $(003165)^*$ 如图, 在直角三角形 ABC 中, $\angle C = 90^\circ$, $\angle CBA = \theta$, BC = 1, 正方形 DEFG 的顶点 D,G 在斜边 BA 上, 顶点 E,F 分别在边 BC,CA 上.

- (1) 试用 θ 表示三角形 ABC 的面积 S_1 , 与正方形 DEFG 的面积 S_2 ;
- (2) 设 $f(\theta) = \frac{S_2}{S_1}$, 求 $f(\theta)$ 的最大值, 并判断取到最大值时三角形 ABC 的形状.

(003166) 函数 $y=2\sin(3x-\frac{\pi}{4})$ 的图像的相邻两对称中心的距离是_____

(003167) 设 $A>0,\,\omega>0,\,0\leq\varphi<2\pi.$ 如图为定义在 R 上的函数 $f(x)=A\sin(\omega x+\varphi)$ 的图像的一部分, 则 f(x) 的解析式为_____

(003168) 要得到 $y = \sin(\frac{x}{2} + \frac{\pi}{4})$ 的图像, 可以将 $y = \sin\frac{x}{2}$ 的图像 ().

A. 向左平移 $\frac{\pi}{2}$ 个单位 B. 向右平移 $\frac{\pi}{2}$ 个单位 C. 向左平移 $\frac{\pi}{4}$ 个单位 D. 向右平移 $\frac{\pi}{4}$ 个单位

(003169) 把函数 $y=\sin x$ 的图像上所有点向左平移 $\frac{\pi}{3}$ 个单位长度,再把所得图像上所有点的横坐标变为原来 的 $\frac{1}{2}$ (纵坐标不变), 得到的图像是函数_______ 的图像.

(003170) 若直线 x=a 与 $f(x)=2\sin x$ 和 $g(x)=3\cos x$ 的图像分别交于 M,N 两点,则 |MN| 的最大值 是_____.

(003171) 设常数 $\theta \in \mathbb{R}$. 函数 $f(x) = \cos(x + \theta)$ 是偶函数, 当且仅当 $\theta = \underline{\hspace{1cm}}$.

(003172) 若函数 $y = \tan \omega x$ 在 $(-\frac{\pi}{2}, \frac{\pi}{2})$ 上是减函数, 则实数 ω 的取值范围是______

 $(003173)^*$ 设常数 $t\in\mathbf{R}^+$. 若函数 $y=-\sin(\frac{\pi}{3}x)$ 在区间 [0,t] 上恰好取得两次最大值,则 t 的取值范围

(003174) 设 $f(x)=A\sin(\omega x+\varphi)$ $(A>0,\;\omega>0,\;-\pi<\varphi<\pi),\;D(2,\sqrt{2})$ 是图像的一个最高点,一动点从 D=0出发, 沿函数图像运动至相邻的最低点. 若 P 经过点 E(6,0), 求 f(x) 的解析式.

(003175) 已知函数 $f(x) = (2\sin(x + \frac{\pi}{3}) + \sin x)\cos x - \sqrt{3}\sin^2 x$.

- (1) 求函数 f(x) 的值域与周期;
- (2) 若 $x \in [0, \frac{\pi}{2}]$, 求 f(x) 的单调递减区间;
- (3)* 设常数 a>0, 若函数 y=f(x) 的图像关于直线 x=a 对称, 求 a 的最小值;
- (4) 设常数 $m \in \mathbb{R}$, 若存在 $x_0 \in [0, \frac{5\pi}{12}]$, 使得 $mf(x_0) 2 = 0$ 成立, 求 m 的取值范围.

(003176) 设 $A \neq 0$, $\omega > 0$, $-\frac{\pi}{2} < \varphi < \frac{\pi}{2}$, 函数 $f(x) = A\sin(\omega x + \varphi)$ 的部分图像如右图所示, 则 f(x) 的解析 式为

(003177) 函数 $f(x) = \tan 2x$ 的图像的对称中心是_

(003178) 函数 $y=\sin(2x+\frac{\pi}{4})$ 图像的对称轴可以是 (). ${\rm A.}\ x=-\frac{3\pi}{4} \qquad \qquad {\rm B.}\ x=-\frac{3\pi}{8} \qquad \qquad {\rm C.}\ x=\frac{3\pi}{8}$

A.
$$x = -\frac{3\pi}{4}$$

B.
$$x = -\frac{3\pi}{8}$$

C.
$$x = \frac{3\pi}{8}$$

D.
$$x = \frac{3\pi}{4}$$

(003179) 与函数 $y = \tan(2x + \frac{\pi}{4})$ 没有公共点的直线可以是 ().

A.
$$x = -\frac{\pi}{2}$$

A.
$$x = -\frac{\pi}{2}$$
 B. $x = -\frac{\pi}{4}$ C. $x = \frac{\pi}{8}$

C.
$$x = \frac{\pi}{8}$$

D.
$$x = \frac{\pi}{4}$$

 $(003180)^*$ 设 $\omega>0,\,0<\varphi<\pi,$ 若函数 $f(x)=\cos(\omega x+\varphi)$ 为奇函数, 且图像与直线 $y=\frac{1}{2}$ 的所有交点中, 距 离最近的两个交点的距离为 π , 则 ω =_____, φ =_____

 $(003181)^*$ 设常数 $a \in \mathbb{R}$. 若函数 $y = \sin 2x + a \cos 2x$ 的图像关于直线 $x = -\frac{\pi}{6}$ 对称, 则 $a = \underline{\hspace{1cm}}$

 $(003182)^*$ 设常数 $a \in \mathbb{R}$. 若关于 x 的方程 $3\sin x + 4\cos x = a$ 在区间 $(0, 2\pi)$ 内恰有两个相异实根 α, β, \vec{x} a的取值范围及 $\alpha + \beta$ 的值.

(003183) 求函数 $y = \sin^4 x + 2\sqrt{3}\sin x\cos x - \cos^4 x$ 的最小正周期和值域, 写出该函数在 $[0,\pi]$ 上的递增区间.

(003184) 求值:
$$\arcsin\frac{1}{2} =$$
______; $\arccos(-\frac{\sqrt{2}}{2}) =$ ______; $\arctan(-\sqrt{3}) =$ ______.

(003185) 用含反三角函数的表达式表示下列各式中的角 x:

(1)
$$\sin x = -\frac{1}{3}, \ x \in [-\frac{\pi}{2}, \frac{\pi}{2}], \ x = \underline{\hspace{1cm}};$$

(2)
$$\sin x = \frac{1}{4}, x \in [0, \pi], x = \underline{\hspace{1cm}};$$

(2)
$$\sin x = \frac{1}{4}, \ x \in [0, \pi], \ x = ____;$$

(3) $\cos x = -\frac{1}{4}, \ x \in [0, \pi], \ x = ____;$

(4)
$$\cos x = \frac{1}{5}, \ x \in [-\pi, 0], \ x = ___;$$

(5) 三角形
$$ABC$$
 中, $\sin A = \frac{1}{4}$, $\tan B = -2$, 则 $A = ______$, $B = ______$.

(003186) 设 $|a| \le 1$, 则 $\arccos a + \arccos(-a) =$ _____.

(003187) 化简下列各式: $\sin(\arcsin\frac{1}{a^2+1}) = _$ _____; $\cos(\arcsin(-\sqrt{1-a^4})) = _$ _____; $\cot(\arctan\frac{1}{a}) = _$ _____;

(003188) 函数 $y = \sin x, \ x \in [-\frac{\pi}{2}, \frac{\pi}{4}]$ 的反函数是_____.

(003189) 满足不等式 $\arccos(1-x) \ge \arccos x$ 的 x 的取值范围是______.

(003190) 函数 $y = (\arctan x)^2 + \arctan x - 1$ 的最小值是______.

(003191) 方程 $2\sin x = 1$, $x \in [-2\pi, 2\pi]$ 的解集是______.

(003192) 研究函数 $y = \arccos(x - x^2)$ 的定义域, 值域, 单调性, 并给出单调性的严格证明.

(003193) 解下列三角方程:

- $(1) \sin 2x = \sin 5x;$
- (2) $\sin 2x \sqrt{3}\cos 2x = 1$, $x \in [-\pi, \pi]$;
- (3) $\frac{\sin 2x}{\cos x + \sin x} = 4$
- $(4) \tan 2x = \tan 6x;$
- (5) $\sin^2 x 4\sin x \cos x + 2\cos^2 x = -\frac{1}{2}$.

(003194) 下列等式成立的是____(填序号)

①
$$\arccos 0 = 1$$
; ② $\cos(\arccos\frac{\pi}{2}) = \frac{\pi}{2}$; ③ $\sin(\arcsin\frac{\pi}{4}) = \frac{\pi}{4}$; ④ $\arctan\frac{\pi}{3} = \sqrt{3}$; ⑤ $\tan(\arctan\frac{\pi}{2}) = \frac{\pi}{2}$.

(003195) 若
$$\cos \alpha = -\frac{3}{4}$$
, $\alpha \in (\pi, \frac{3\pi}{2})$, 则 $\alpha =$ _____.

(003196) 设
$$x = \sin \alpha, \, \alpha \in (-\frac{\pi}{6}, \frac{5\pi}{6}], \, \text{则 } \arccos x$$
的取值范围为______.

$$(003197)$$
 方程 $2\sin^2 x + 5\sin x + 2 = 0$ 在 $(-2\pi, 0)$ 上的解集为_____.

$$(003198)$$
 方程 $2\sin^2 x - 3\sin x \cos x - 2\cos^2 x = 0$ 的解集为______.

(003199) 若
$$\tan x = a, x \in (\frac{\pi}{2}, \pi), 则 x =$$
_____.

(003200) 若
$$-\pi < x < -\frac{\pi}{2}$$
, 则 $\arcsin(\sin x) =$ ______.

(003201) 设常数 $m \in \mathbb{R}$, 关于 x 的方程 $2 - \sin 2x = m(2 + \sin 2x)$, $x \in [0, \pi)$ 的解集为 A.

- (1) 若 $A \neq \emptyset$, 求 m 的取值范围;
- (2) 若 $A \subseteq (0,\pi)$, 且 A 中至少有两个元素, 求 m 的取值范围.

(003202) 写出下列数列的一个通项公式:

(1)
$$-3, 1, 5, 9, 13, \dots$$
: $a_n =$ _____; (2) $\frac{2}{7}, \frac{4}{11}, \frac{1}{2}, \frac{4}{5}, 2$: $a_n =$ _____.

$$(003204)(1)$$
 数列 $\{a_n\}$ 满足: $a_1 + a_2 + a_3 + \cdots + a_n = 8$, 则 $a_n =$ _______;

(003205) 已知
$$a_1 = 1$$
, $a_2 = 3$, $a_{n+2} = a_{n+1} - a_n$, 则 $a_{2030} =$ ______.

(003207) 已知数列 $\{a_n\}$ 和 $\{b_n\}$, 其中 $a_n=n^2,\,n\in\mathbf{N}^*,\,\{b_n\}$ 的项是互不相等的正整数, 若对于任意 $n\in\mathbf{N}^*,\,\{b_n\}$ 的第 a_n 项等于 $\{a_n\}$ 的第 b_n 项,则 $\frac{\lg(b_1b_4b_9b_{16})}{\lg(b_1b_2b_3b_4)}=$ _______.

(1) 把该数列的前 10 项去掉,得到新数列 $\{b_n\}$,则通项 $b_n =$
(2) 将该数列的奇数项按原来的先后顺序排列,得到新数列 $\{c_n\}$,则通项 $c_n =$
(003209) 已知数列 $\{a_n\}$ 的前 n 项和是 $S_n = 2 \cdot 3^n + 3$, 求数列 $\{a_n\}$ 的通项 a_n .
(003210) 已知数列 $\{a_n\}$ 的通项 $a_n=(n+1)(rac{10}{11})^n$,试问该数列有没有最大项?若有,求出最大项;若没有,说
明理由.
(003211) 已知 $\{a_n\}$ 是递增数列,且 $a_n=n^2+\lambda n$,求实数 λ 的取值范围.
(003212) 已知数列 $\{a_n\}$ 的通项 $a_n=2^n$. 对任意的 $k\in \mathbf{N}^*$, 在 a_{2k} 与 a_{2k+1} 中间插入一项 k , 构成新数列
$\{b_n\}: 2,4,1,8,16,2,32,64,3,128,\cdots$. 求数列 $\{b_n\}$ 的通项公式.
(003213) 已知数列 $\{a_n\}$ 满足 $a_{n+2}=a_n, a_1=1, a_2=2,$ 则通项 $a_n=$
(003214) 已知数列 $\{a_n\}$ 满足 $a_{n+1}=a_n^2-k,\ a_1=1,\ a_3=-1,\ 则常数 k=$
(003215) 已知数列 $\{a_n\}$ 满足: $a_n = \frac{1}{n-5.5}$,则此数列中最大项的值为,最小项的值为.
(003216) 已知数列 $\{a_n\}$ 满足: $a_n=2^n$, 删去数列中第 $1,4,\cdots,3n-2,\cdots$ 项, 得到新数列的通项 $b_n=$
(003217) 无穷数列 $\{a_n\}$ 由 k 个不同的数组成, S_n 为 $\{a_n\}$ 的前 n 项和, 若对任意 $n\in \mathbb{N}*$, $S_n\in \{2,3\}$, , 则 k
的最大值为
(003218) 设 λ 是实常数, 数列 $\{a_n\}$ 的通项 $a_n=n+rac{\lambda}{n}$.
(1) 若数列 $\{a_n\}$ 递增, 求 λ 的取值范围;
(2) 若数列 $\{a_n\}$ 中, 唯一最小项为 a_4 , 求 λ 的取值范围.
(003219) 已知正项数列 $\{a_n\}$ 满足 $a_n - \frac{1}{a_n} = -2n$,求证: 数列 $\{a_n\}$ 是递减数列.
(003220) 等差数列 $\{a_n\}$ 中,已知 $a_1=3, d=2,$ 则通项 $a_n=$,前 n 项和 $S_n=$
(003221) 等差数列 $\{a_n\}$ 中,已知 $a_1=3, a_2+a_5=-4, a_n=-11,$ 则 $n=$
(003222) 记等差数列 $\{a_n\}$ 的前 n 项和为 S_n , 若 $a_3=0$, $a_7+a_8=0$, 则 $S_7=$
(003223) 等差数列 $\{a_n\}$ 中,已知 $a_1=1, a_1+a_2+a_5=13$,则前 n 项和 $S_n=$
(003224) 已知等差数列 $\{a_n\}$ 的前 n 项之和为 S_n ,若 S_{15} 为一确定常数,则下列各式也为确定常数的是 $($).
A. $a_2 + a_{13}$ B. $a_2 \cdot a_{13}$ C. $a_1 + a_8 + a_{15}$ D. $a_1 \cdot a_8 \cdot a_{15}$
(003225) 在 a 和 $b(a < b)$ 之间插入 n 个数,使这 $n+2$ 个数组成递增的等差数列,则该数列的公差为
(003226) 已知数列 $\{a_n\}$ 的通项为 $a_n = \sqrt{99} - n$, 前 n 项和为 S_n , 则
$(1) \{a_n\}$ 中最后一个为正数的项是第
(2) 数列 $\{S_n\}$ 中, 第 项最大.

(003208) 已知数列 $\{a_n\}$ 的通项 $a_n=n+\mathrm{e}^n.$

- (003227) 设数列 $\{a_n\}$ 中, a,b 为常数. 在下列三个条件中: ① $a_{n+1}-a_n=a;$ ② $2a_{n+1}=a_n+a_{n+2};$ ③ $a_n=a_n+b,$ 可推出 $\{a_n\}$ 是等差数列的条件为______(填入序号).
- (003228) 已知数列 $\{a_n\}$ 为等差数列, 公差为 d. 求证: 数列 $\{2a_{2n}\}$ 也是等差数列.
- (003229) 已知数列 $\{a_n\}$ 的前 n 项和是 $S_n = an^2 + bn + c$, 其中 a, b, c 为常数, 若数列 $\{a_n\}$ 为等差数列, 求实数 a, b, c 应满足的条件.
- (003230) 设等差数列 $\{a_n\}$ 的前 n 项和为 S_n , 已知 $a_2 = 6$, $S_6 > 0$, $S_7 < 0$.
- (1) 求公差 d 的取值范围;
- (2) 数列 $\{S_n\}$ 是否有最大项? 若有, 求出该项为第几项; 若无, 说明理由.
- (003231) 等差数列 $\{a_n\}$ 中, $a_1 + a_4 + a_7 = 9$, $a_2 + a_5 + a_8 = 3$, 则 $a_3 + a_6 + a_9 =$ ________.
- (003232) 设 S_n 为等差数列 $\{a_n\}$ 的前 n 项和, 若 $S_5 = 10$, $S_{10} = -5$, 则 $S_{15} =$ ______.
- (003234) 已知等差数列 $\{a_n\}$, $\{b_n\}$ 的前 n 项和分别为 S_n, T_n , 若 $\frac{S_n}{T_n} = \frac{n-1}{n+1}$, 则 $\frac{a_8}{b_8} =$ ______.
- (003235) 等差数列 $\{a_n\}$ 中, S_n 为前 n 项和, 且 $S_6 < S_7, S_7 > S_8$, 给出下列命题:
- (1) 数列 $\{a_n\}$ 中前 7 项是递增的, 从第 8 项开始递减; (2) S_9 一定小于 S_6 ; (3) a_1 是 $\{a_n\}$ 各项中的最大的;
- (4) S_7 不一定是 $\{S_n\}$ 中最大项. 其中正确的序号是_____.
- (003236) 设等比数列 $\{b_n\}$ 各项为正, 数列 $\{a_n\}$ 满足: $a_n = \frac{\lg b_1 + \lg b_2 + \dots + \lg b_n}{n}$, 证明: 数列 $\{a_n\}$ 为等差数列.
- (003237) 设数列 $\{a_n\}$ 的通项公式为 $a_n = pn + q(n \in \mathbf{N}^*, p > 0)$. 数列 $\{b_n\}$ 定义如下: 对于正整数 m, b_m 是使得不等式 $a_n > m$ 成立的所有 n 中的最小值.
- (2) 若 p = 2, q = -1, 求数列 $\{b_n\}$ 的前 2m 项和公式.
- (003238) 实数组成的等比数列 $\{a_n\}$ 中, 已知 $a_1 = 2, a_4 = 54, 则通项 <math>a_n =$ ______.
- (003239) 等比数列 $\{a_n\}$ 中, $a_1=4$, $a_2=2$, 则 $a_1a_2+a_2a_3+\cdots+a_na_{n+1}=$ ______.
- (003240) 已知数列 $\{a_n\}$ 是等比数列, 且 $a_n > 0$, 若 $b_n = \log_2 a_n$, 则 (
- A. $\{b_n\}$ 一定是递增的等差数列

B. $\{b_n\}$ 不可能是等比数列

 $C. \{b_n+1\}$ 一定是等差数列

- D. $\{3_n^b\}$ 不是等比数列
- (003241) 等比数列 $\{a_n\}$ 满足 $a_1 = 1, a_3 = 81, 则 <math>a_2 = \underline{\hspace{1cm}}$.
- (003242) 若实数 a、b、c、d、e 依次构成等比数列, 且 a = -1, e = -81, 则 $c = _____$.
- (003243) 若等比数列 $\{a_n\}$ 的前 n 项和为 $S_n = 3^n + a$, 则实数 a =______.

(003245) 几位大学生响应国家的创业号召, 开发了一款应用软件. 为激发大家学习数学的兴趣, 他们推出了"解数学题获取软件激活码"的活动. 这款软件的激活码为下面数学问题的答案: 已知数列 $1,1,2,1,2,4,1,2,4,8,12,4,8,16,\cdots$ 其中第一项是 2^0 , 接下来的两项是 2^0 , 2^1 , 再接下来的三项是 2^0 , 2^1 , 2^2 , 依此类推. 求满足如下条件的最小整数 N(N>100), 且该数列的前 N 项和为 2 的整数幂. 那么该款软件的激活码是 ().

A. 440 B. 330 C. 220 D. 110

(003246) 已知由实数组成的数列 $\{a_n\}$, 前 n 项和记为 S_n , 若数列 $\{a_n\}$ 为等比数列, $S_{100}=100S_{50}$, 求 $\frac{a_{100}}{a_{50}}$ 的值.

(003247) 已知数列 $\{c_n\}$, 其中 $c_n = 2^n + 3^n$, 是否存在实数 p 使得数列 $\{c_{n+1} - pc_n\}$ 为等比数列, 若存在, 求出 p; 若不存在, 说明理由.

(003248) 已知等比数列 $\{a_n\}$ 中每一项均为实数, 设数列 $\{a_n\}$ 的前 n 项和为 S_n .

- (1) 证明: $(S_{2n} S_n)^2 = S_n(S_{3n} S_{2n})$;
- (2) 试给出一个例子使得 $S_n, S_{2n} S_n, S_{3n} S_{2n}$ 依次不构成等比数列;
- (3) 若 $S_{10} = 2$, $S_{30} = 14$, 求 S_{20} .
- (003249) 等比数列 $\{a_n\}$ 满足 $a_1=2, a_2=1, 则通项 <math>a_n=$ _____.
- (003250) 若等比数列 $\{a_n\}$ 的公比为 3, 则等比数列 $\{a_n \cdot a_{n+3}\}$ 的公比为_____.
- (003251) 若实数 a 使得 a, a^2, a 依次构成等比数列, 则 a =_____.

(003252) 若数列 $\{a_n\}$ 为等差数列,则 $a_9=4a_3-3a_1$. 类比以上结论有: 若数列 $\{b_n\}$ 为等比数列,则 $b_9=$ _____.

(003253) 设 $\{a_n\}$ 是各项为正数的无穷数列, A_i 是边长为 a_i 、 a_{i+1} 的矩形的面积 $(i=1,2,\cdots)$, 则 $\{a_n\}$ 为等比数列的充要条件是 ().

- A. $\{a_n\}$ 是等比数列
- B. $a_1, a_3, \dots, a_{2n-1}, \dots$ 或 $a_2, a_4, \dots, a_{2n}, \dots$ 是等比数列
- $C. a_1, a_3, \cdots, a_{2n-1}, \cdots$ 和 $a_2, a_4, \cdots, a_{2n}, \cdots$ 均是等比数列
- D. $a_1, a_3, \dots, a_{2n-1}, \dots$ 和 $a_2, a_4, \dots, a_{2n}, \dots$ 均是等比数列, 且公比相同

(003254) 设 $p \in \mathbf{R}$, 已知数列 $\{a_n\}$ 满足 $a_1 = 1$, $a_{n+1} = a_n^2 - p$, 是否存在 p 使得 $\{a_n\}$ 是等比数列? 若存在, 求出 p 的值; 若不存在, 说明理由.

- (003255) 设数列 $\{a_n\}$ 的前 n 项和为 S_n , 已知 $a_1 = 1$, $S_{n+1} = 4a_n + 2$.
- (1) 设 $b_n = a_{n+1} 2a_n$, 证明数列 $\{b_n\}$ 是等比数列;
- (2) 求数列 $\{a_n\}$ 的通项公式.

- (003256) 求和: $\sin^2 1^\circ + \sin^2 2^\circ + \sin^2 3^\circ + \dots + \sin^2 88^\circ + \sin^2 89^\circ = \underline{\hspace{1cm}}$.
- (003257) 设 $f(x) = \frac{1}{3^x + \sqrt{3}}$,利用课本中推导等差数列前 n 项和的公式的方法,可求得 $f(-5) + f(-4) + \cdots + f(0) + \cdots + f(5) + f(6)$ 的值为______.
- (003258) 已知数列 $\{a_n\}$ 的通项 $a_n = 1 + 2 + 2^2 + \cdots + 2^n$, 则其前 n 项和 $S_n =$ ______.
- (003259) 已知数列 $\{a_n\}$ 的通项 $a_n = \frac{1}{(2n-1)(2n+1)}$, 则其前 n 项和 $S_n =$ ______.
- (003260) 已知数列 $\{a_n\}$ 的通项 $a_n = \frac{3}{n(n+3)}$, 则其前 n 项和 $S_n = ______$.
- (003261) 等比数列 $\{a_n\}$ 中前 n 项和为 S_n , $n \in \mathbb{N}^*$, 若 $S_n = 48$, $S_{2n} = 60$, 则 $S_{4n} =$ ______.
- (003262) 在等差数列 $\{a_n\}$ 中, 满足 $3a_4=7a_7$, 且 $a_1>0$, S_n 是数列 $\{a_n\}$ 前 n 项的和, 若 S_n 取得最大值, 则 n=
- (003263) 已知数列 $\{a_n\}$ 的通项 $a_n = n \cdot 2^n$, 求其前 n 项和 S_n .
- (003264) 已知数列 $\{a_n\}$ 的前 n 项和为 $S_n = n^2 20n$, 求数列 $\{|a_n|\}$ 的前 n 项和 T_n .
- (003265) 求数列 $\{\frac{(n+1)^2+1}{(n+1)^2-1}\}$ 的前 n 项和 S_n .
- (003266)(1) 设 n 为正整数, 求和: $1-3+5-7+9+\cdots+(-1)^{n-1}\cdot(2n-1)$;
- (2) 已知数列 $\{a_n\}$ 的通项 $a_n = \begin{cases} 3n+1, & n$ 为奇数, 求其前 n 项和 S_n . $2^{\frac{n}{2}}, & n$ 为偶数,
- (003267) 数列 $\{a_n\}$ 的通项 $a_n = 2^n \cdot 3^n$, 则其前 n 项和 $S_n =$ ______.
- (003268) 已知数列 $\{a_n\}$ 的通项 $a_n = \frac{2}{\sqrt{n+2} + \sqrt{n}}$,则其前 n 项和 $S_n =$ ______.
- (003269) 等差数列 $\{a_n\}$ 的前 n 项和为 S_n , $a_3 = 3$, $S_4 = 10$, 则数列 $\{S_n\}$ 的前 n 项和为______
- (003270) 求数列 $\{\frac{n}{2^n}\}$ 的前 n 项和 S_n .
- (003272) 如果有穷数列 $a_1, a_2, a_3, \dots, a_m (m$ 为正整数) 满足条件 $a_1 = a_m, a_2 = a_{m-1}, \dots, a_m = a_1$,即 $a_i = a_{m-i+1} (i = 1, 2, \dots, m)$,我们称其为 "对称数列". 例如数列 1, 2, 5, 2, 1 与数列 8, 4, 2, 2, 4, 8 都是 "对称数列".
- (1) 设 $\{c_n\}$ 是 49 项的 "对称数列", 其中 $c_{25}, c_{26}, \cdots, c_{49}$ 是首项为 1, 公比为 2 的等比数列, 求 $\{c_n\}$ 各项的和 S:
- (2) 设 $\{d_n\}$ 是 100 项的 "对称数列", 其中 $d_{51}, d_{52} \cdots, d_{100}$ 是首项为 2, 公差为 3 的等差数列. 求 $\{d_n\}$ 前 n 项的和 $S_n(n=1,2,\cdots,100)$.

- (003273) 设数列 $\{a_n\}$ 满足 $a_1 = 0$ 且 $\frac{1}{1 a_{n+1}} \frac{1}{1 a_n} = 1$.
- (1) 求 $\{a_n\}$ 的通项公式;
- (2) 设 $b_n = \frac{1 \sqrt{a_{n+1}}}{\sqrt{n}}$, 记 $S_n = b_1 + b_2 + \dots + b_n$, 求 $\{S_n\}$ 的通项公式.

(003274) 数学归纳法证明 $1+a+a^2+\cdots+a^{n+1}=\frac{1-a^{n+2}}{1-a}\;(a\neq 1),$ 在验证 n=1 时, 左边计算所得项为

(003275) 用数学归纳法证明"对于任意正偶数 $n, a^n - b^n$ 能被 a + b 整除"时, 其第二步论证应该是 ().

- A. 假设 $n = k, k \in \mathbb{N}^*$ 时命题成立, 证明 n = k + 1 时, 命题也成立
- B. 假设 $n=2k, k \in \mathbb{N}^*$ 时命题成立, 证明 n=2k+1 时, 命题也成立
- C. 假设 $n = k, k \in \mathbb{N}^*$ 时命题成立, 证明 n = k + 2 时, 命题也成立
- D. 假设 $n=2k, k \in \mathbb{N}^*$ 时命题成立, 证明 n=2k+2 时, 命题也成立

(003276) 用数学归纳法证明: $1^2-2^2+3^2-4^2+\cdots+(2n-1)^2-(2n)^2=-n(2n+1)$, n 从 k 到 k+1 时,等 式左边增加的项为______.

(003277) 根据 $1=1,1-4=-(1+2),1-4+9=1+2+3,1-4+9-16=-(1+2+3+4),\cdots$,请写一个能体现其一般规律的数学表达式:

(003278) 设 f(x) 是定义在正整数集上的函数,且 f(x) 满足: "当 $f(k) \ge k^2$ 成立时,总可推出 $f(k+1) \ge (k+1)^2$ 成立". 那么,下列说法中正确的是 ().

- A. 若 f(3) > 9 成立, 则当 k > 1 时, 均有 $f(k) > k^2$ 成立
- B. 若 $f(5) \ge 25$ 成立, 则当 $k \le 5$ 时, 均有 $f(k) \ge k^2$ 成立
- C. 若 f(7) < 49 成立, 则当 $k \ge 8$ 时, 均有 $f(k) < k^2$ 成立
- D. 若 f(4) = 25 成立, 则当 $k \ge 4$ 时, 均有 $f(k) \ge k^2$ 成立

(003279) 已知数列 $\{a_n\}$ 满足 $a_1=2, a_{n+1}=\frac{1-a_n}{1+a_n}, 则 <math>\{a_n\}$ 的通项 $a_n=$ ______.

(003280) 已知数列 $\{a_n\}$ 满足 $a_1=1,\,a_{n+1}=n+rac{2}{a_n-n+2},\,$ 猜测 $\{a_n\}$ 的通项, 并用数学归纳法证明.

(003281) 是否存在实数 a, 使得等式 $\frac{1}{1^2} + \frac{1}{2^2} + \dots + \frac{1}{n^2} = \frac{an}{3n-1}$ 对一切正整数 n 成立? 请说明理由.

(003282) 用数学归纳法证明: 对一切正整数 $n, 5^n + 12n - 1$ 是 16 的倍数.

- (003283) 正数数列 $\{a_n\}$ 前 n 项和为 S_n , 若 $S_n = \frac{1}{2}(a_n + \frac{1}{a_n})$.
- (1) 求 a_1, a_2, a_3 的值;
- (2) 猜测通项 a_n , 并用数学归纳法加以证明.

(003285) 若 $S_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$,用数学归纳法证明: $S_{2^n} > 1 + \frac{n}{2}$ $(n \ge 2)$,n 从 k 到 k + 1 时,不等式 左边增加的项为_______.

(003286) 根据 $1=1,\ 2+3+4=9,\ 3+4+5+6+7=25,\ \cdots,$ 请写一个能体现其一般规律的数学表达式:______.

(003287)(1) 已知数列 $\{a_n\}$ 满足 $a_1=3,\ a_{n+1}=a_n^2-2\ (n\in {\bf N}^*)$. 求证: 当 $n\in {\bf N}^*$ 时, $a_n\geq 3$;

(2) * 已知数列 $\{a_n\}$ 满足 $a_n \geq 0$, $a_1 = 0$, $a_{n+1}^2 + a_{n+1} - 1 = a_n^2$ $(n \in \mathbf{N}^*)$. 求证: 当 $n \in \mathbf{N}^*$ 时, $a_n < a_{n+1}$.

(003288) 在数列 $\{a_n\}$, $\{b_n\}$ 中, $a_1=2$, $b_1=4$, 且 a_n , b_n , a_{n+1} 成等差数列, b_n , a_{n+1} , 成等比数列 $(n \in \mathbf{N}^*)$. 写出 a_2 , a_3 , a_4 及 b_2 , b_3 , b_4 的值, 由此猜测 $\{a_n\}$, $\{b_n\}$ 的通项公式, 并证明你的结论.

(003289)(1) 用数学归纳法证明: 对一切正整数 $n, 2^{n+2} \cdot 3^n + 5n + 21$ 能被 25 整除;

(2) * 是否存在大于 1 的正整数 m, 使得对于任意正整数 n, $f(n) = (2n+7) \cdot 3^n + 9$ 都能被 m 整除? 若存在, 求出 m 的最大值, 并证明你的结论; 若不存在, 说明理由.

$$(003290)$$
 数列 $\{a_n\}$ 中, $a_n = \begin{cases} \frac{1}{n^2}, & 1 \le n \le 10^{10}, \\ \frac{2020n^2}{2020n^2 - 2022n}, & n \ge 10^{10}, \end{cases}$ 则数列 $\{a_n\}$ 的极限值 ().

A. 等于 0

- B. 等于 1
- C. 等于 0 或 1
- D. 不存在

$$(003291)(1) \lim_{n \to \infty} (\frac{n^2 + 1}{n} - \frac{n^2}{n + 1}) = \underline{\hspace{1cm}};$$

$$(2) \ \ \mathcal{U} \ m \in \mathbf{N}^*, \ \ \mathbb{M} \ \lim_{n \to \infty} (\frac{m}{n} - \frac{1}{n + 1} - \frac{1}{n + 2} - \frac{1}{n + 3} - \dots - \frac{1}{n + m}) = \underline{\hspace{1cm}}.$$

(003292) 设等比数列 $\{a_n\}$ 的通项公式为 $a_n=q^{n+1}(n\in \mathbf{N}^*)$,前 n 项和为 S_n . 若 $\lim_{n\to\infty}\frac{S_n}{a_{n+1}}=\frac{1}{2}$,则 q=_______

(003293) 设 a 是实常数, 则:

(1)
$$\lim_{n \to \infty} \frac{2an^2 + n + 1}{an^2 - n + 1} = ____;$$

(2) $\lim_{n \to \infty} \frac{1 - 2a^n}{1 + a^n} = ____(a \neq -1).$

(003294) 无穷等比数列 $\{a_n\}$ 的前 n 项和为 S_n , 则数列 $\{a_n\}$ 有极限是数列 $\{S_n\}$ 有极限的 () 条件.

A. 充分不必要

- B. 必要不充分
- C. 充要
- D. 既不充分又不必要

(003295) 化简: 0.İĠ =______; 0.İĠ=______; 0.İĠ + 0.0IĠ + 0.00IĠ + 0.00IĠ + ···=____(用最简分数表示).

(003296) 如图, 正方形 ABCD 边长为 1, 联结该正方形各边的中点得到一个新的正方形 $A_1B_1C_1D_1$, 再在正方形 $A_1B_1C_1D_1$ 中用同样的方法得到又一个新的正方形 $A_2B_2C_2D_2$, 这样无限地继续下去, 则所有这些得到的新正方形面积之和为

(003297) 已知公比为 q(0 < q < 1) 的无穷等比数列 $\{a_n\}$ 各项的和为 9, 无穷等比数列 $\{a_n^2\}$ 各项的和为 $\frac{81}{5}$ 则数列 $\{a_n\}$ 的首项 $a_1 =$ _______, 公比 q =_______

(003298) 已知
$$a_n = \begin{cases} \frac{1}{2^n}, & n$$
为奇数, 求 $\lim_{n \to \infty} (a_1 + a_2 + \dots + a_{2n}). \\ \frac{1}{3^n}, & n$ 为偶数,

$$(003299) \ \textbf{已知} \ a,b,c \ \textbf{是实数}, \ \lim_{n\to\infty}\frac{an+1}{bn+3}=\frac{1}{3}, \ \lim_{n\to\infty}\frac{bn^2-4}{cn^2+2}=-2. \ \ \ \ \ \ \lim_{n\to\infty}\frac{an^3+2n+5}{cn^3+4n+3}=\frac{1}{3}$$

(003300) 设 $\{a_n\}$ 是首项为 a, 公比为 q(q>0) 的等比数列, 前 n 项和为 S_n , 若 $G_n=a_1^2+a_2^2+\cdots+a_n^2$, 求 $\lim_{n\to\infty}\frac{S_n}{G_n}.$

(003301) 设无穷等比数列 $\{a_n\}$ 满足 $\lim_{n\to\infty}(a_1+a_3+a_5+\cdots+a_{2n-1})=rac{8}{3}$,则首项 a_1 的取值范围为_______

$$(003302)(1) \lim_{n \to \infty} \frac{(-2)^n + 1}{(-2)^{n+1} + 1} = \underline{\hspace{1cm}}$$

$$(003302)(1) \lim_{n \to \infty} \frac{(-2)^n + 1}{(-2)^{n+1} + 1} = _{\underline{\hspace{1cm}}};$$

$$(2) \lim_{n \to \infty} \frac{6 - 2 + 4 - 8 + \dots + (-2)^{n+1}}{4 + 3 + 9 + 27 + \dots + 3^n} = _{\underline{\hspace{1cm}}}.$$

$$(003303)(1) \ \, \hbox{$\stackrel{\scriptstyle z=0}{=}$} \lim_{n\to\infty} (\frac{n^3-1}{2n^2+n}-an-b)=0, \, \hbox{$\stackrel{\scriptstyle y=0}{=}$} \, \hbox{$\stackrel{\scriptstyle z=0}{=}$}, \, b=\underline{\hspace{1cm}};$$
 (2)
$$\ \, \hbox{$\stackrel{\scriptstyle z=0}{=}$} \lim_{n\to\infty} \frac{5^n}{5^{n+1}+(a+1)^n}=\frac{1}{5}, \, \hbox{$\stackrel{\scriptstyle y=0}{=}$} \, \hbox{$\stackrel{\scriptstyle z=0}{=}$} \, \hbox{$\stackrel{\scriptstyle z=0}{=}$} \, \hbox{$\stackrel{\scriptstyle z=0}{=}$}.$$

(2) 若
$$\lim_{n\to\infty} \frac{5^n}{5^{n+1} + (a+1)^n} = \frac{1}{5}$$
, 则实数 a 的取值范围是______.

(003304) 设 $\{a_n\}$ 为无穷等比数列, 若 $\{a_n\}$ 的任意一项都是它后面所有项和的 4 倍, 则公比为_

(003305) 已知无穷等比数列 $\{a_n\}$ 的公比为 q, 前 n 项和为 S_n , 且 $\lim_{n\to\infty} S_n = S$, 下列条件中, 使得 $2S_n$ $S(n \in \mathbf{N}*)$ 恒成立的是 (

A.
$$a_1 > 0$$
, $0.6 < q < 0.7$

B.
$$a_1 < 0$$
, $-0.7 < q < -0.6$

C.
$$a_1 > 0$$
, $0.7 < q < 0.8$

D.
$$a_1 < 0, -0.8 < q < -0.7$$

(003306) 设等差数列 $\{a_n\}$ 的公差为 d, 若 a_n 恒不为零, 求 $\lim_{n\to\infty}\frac{S_n}{na}$.

(003307) 已知等差数列 $\{a_n\}$ 的首项为 1, 公差为 d, 前 n 项的和为 A_n ; 等比数列的首项为 1, 公比为 q, |q| < 1, 前 n 项的和为 B_n , 记 $S_n = B_1 + B_2 + \cdots + B_n$, 若 $\lim_{n \to \infty} (\frac{a_n}{n} - S_n) = 1$, 求 d、 q.

(003308) 已知数列 $\{a_n\}$ 是公差不为 0 的等差数列, $a_1=\frac{1}{2}$, 数列 $\{b_n\}$ 是等比数列, 且 $b_1=a_1,\ b_2=a_3,$ $b_3 = a_4$. 数列 $\{b_n\}$ 的前 n 项和为 S_n , 记点 $Q_n(b_n, S_n), n \in \mathbb{N}*$.

- (1) 求数列 $\{b_n\}$ 的通项公式;
- (2) 证明点 $Q_1, Q_2, \dots, Q_n, \dots$ 在同一条直线 l 上, 并求出直线 l 的方程;
- (3) 若记 $\triangle OQ_nQ_{n+1} (n\in \mathbf{N}*)$ 的面积为 a_n , 且 T_n 为数列 $\{a_n\}$ 的前 n 项和, 求 $\lim_{n\to\infty}a_n$ 、 $\lim_{n\to\infty}T_n$.
- (003309) 数列 $\{a_n\}$ 满足: $a_1 = 1$, $a_{n+1} = a_n + 2^n$, 则 $a_n = \underline{\hspace{1cm}}$.
- (003310) 数列 $\{a_n\}$ 满足: $a_1 = 1$, $a_{n+1} = 2^n a_n$, 则 $a_n =$ ______.
- (003311) 数列 $\{a_n\}$ 满足: $a_1 = 2$, $a_{n+1} = \sqrt{a_n}$, 则 $a_n = \underline{\hspace{1cm}}$.
- (003312) 数列 $\{a_n\}$ 满足: $a_1 = 3$, $a_{n+1} = 4a_n + 6$, 则 $a_n =$ ______.
- (003313) 数列 $\{a_n\}$ 及前 n 项和 S_n 满足: $S_n = 2a_n + n 4$, 则 $a_n =$ ______.
- (003314) 数列 $\{a_n\}$ 及前 n 项和 S_n 满足: $a_1 = 3$, $S_{n-1} = a_n + n$, $n \ge 2$, 则 $a_n =$ ______.
- (003315) 数列 $\{a_n\}$ 满足: $a_1 = 1$, $a_{n+1} = \frac{2a_n}{a_n + 4}$, 则 $a_n = \underline{}$.
- (003316) 已知数列 $\{a_n\}$ 满足 $a_1=3, a_n\times a_{n+1}=(\frac{1}{2})^n,$ 求此数列的通项 a_n .
- (003317) 数列 $\{a_n\}$ 满足 $a_1=\frac{3}{5},\ a_n=2-\frac{1}{a_{n-1}},$ 数列 $\{b_n\}$ 满足 $b_n=\frac{1}{a_n-1}.$
- (1) 求证: 数列 $\{b_n\}$ 是等差数列;
- (2) 求数列 $\{a_n\}$ 的通项.
- (003318) 数列 $\{a_n\}$ 的首项为 $\frac{1}{2}$, 且前 n 项和 S_n 和 a_n 满足: 当 $n \geq 2$ 时, $S_n^2 = a_n(S_n 1)$, 求 a_n 、 S_n .
- (003319) 已知数列 $\{a_n\}$ 满足 $a_1 = 1$, $a_{n+1} + a_n = 8$, 则通项 $a_n =$ ______.

$$(003321)$$
 已知数列 $\{a_n\}$ 满足 $a_n=\begin{cases} 5, & n=1,\\ a_1+a_2+...+a_{n-1}, & n\geq 2. \end{cases}$ 则通项 $a_n=$ _____.

- (003322) 已知数列 $\{a_n\}$ 满足: $a_1=3, a_{n+1}=-2a_n+6, 求 a_n$.
- (003323) 数列 $\{a_n\}$ 中, $a_1 = 1$, $a_2 = 2$, 且 $a_{n+1} = (1+q)a_n qa_{n-1} (n \ge 2, q \ne 0)$.
- (1) 设 $b_n = a_{n+1} a_n (n \in \mathbf{N}^*)$, 证明 $\{b_n\}$ 是等比数列;
- (2) 求数列 $\{a_n\}$ 的通项公式.
- (003324) 设数列 $\{a_n\}$ 的前 n 项和为 S_n , 满足 $6S_n = (a_n + 1)(a_n + 2)$.
- (1) 若 $a_n > 0$, 求通项 a_n ; (2) (不需要理由) 试写出所有可能的数列 $\{a_n\}$ 的前三项.
- (003325) 已知数列 $\{a_n\}$ 和 $\{b_n\}$ 满足: $a_1 = \lambda$, $a_{n+1} = \frac{2}{3}a_n + n 4$, $b_n = (-1)^n(a_n 3n + 21)$, 其中 λ 为实数.
- (1) 对任意实数 λ , 证明数列 $\{a_n\}$ 不是等比数列;
- (2) * 若数列 $\{b_n\}$ 是等比数列, 求 λ 的取值范围;
- (3)* 若 $a_n < 3n$ 对一切 $n \in \mathbb{N}^*$ 成立, 求 λ 的取值范围.

(003326) 若 OEF 是不共线的任意三点, 则以下各式中成立的是 (). B $\overrightarrow{EF} = \overrightarrow{OF} - \overrightarrow{OF}$ A. $\overrightarrow{EF} = \overrightarrow{OF} + \overrightarrow{OE}$ C. $\overrightarrow{EF} = -\overrightarrow{OF} + \overrightarrow{OE}$ D. $\overrightarrow{EF} = -\overrightarrow{OF} - \overrightarrow{OF}$ (003327) 已知 \overrightarrow{a} 、 \overrightarrow{b} 、 \overrightarrow{c} 为非零向量,下列命题中假命题是 $(1) \overrightarrow{a} + (-\overrightarrow{a}) = 0;$ (2) 若 $|\overrightarrow{a}| = |\overrightarrow{b}|$, 则 $\overrightarrow{a} = \overrightarrow{b}$ 或 $\overrightarrow{a} = -\overrightarrow{b}$; (3) \overrightarrow{a} $\parallel \overrightarrow{b}$ 是 $|\overrightarrow{a} + \overrightarrow{b}| = |\overrightarrow{a}| + |\overrightarrow{b}|$ 成立的充分非必要条件; (4) \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = $\overrightarrow{0}$ 是 \overrightarrow{a} 、 \overrightarrow{b} 、 \overrightarrow{c} 可以首尾相接构成三角形的必要非充分条件. (003328) 设 \overrightarrow{m} 、 \overrightarrow{n} 为非零向量,则"存在负数 λ ,使得 $\overrightarrow{m} = \lambda \overrightarrow{n}$ "是" $\overrightarrow{m} \cdot \overrightarrow{n} < 0$ "的(). A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件 D. 既不充分也不必要条件 (003329) 若 $\overrightarrow{P_1O} = -3\overrightarrow{OP_2}$, 则 $\overrightarrow{P_1P_2} = \overrightarrow{P_2O}$. (003330) 已知 $\triangle ABC$ 中, AB=2, AC=3, $\angle A=120^\circ$, 设 $\overrightarrow{a}=\overrightarrow{AB}$, $\overrightarrow{b}=\overrightarrow{AC}$, 用 \overrightarrow{a} , \overrightarrow{b} 表示 \overrightarrow{BC} 的单位向 量为_____; $|\overrightarrow{a} + \overrightarrow{b}| =$ _____ (003331) 若 $|\overrightarrow{AB}| = 8$, $|\overrightarrow{AC}| = 9$, 则 $|\overrightarrow{BC}|$ 的取值范围是 (003332) 已知向量 \overrightarrow{a} 、 \overrightarrow{b} 是单位向量, \overrightarrow{a} · \overrightarrow{b} = 0, 且向量 \overrightarrow{c} 满足 $|\overrightarrow{c}$ - \overrightarrow{a} - \overrightarrow{b} | = 1, 则 $|\overrightarrow{c}|$ 的取值范围是 (). A. $[\sqrt{2} - 1, \sqrt{2} + 1]$ B. $[\sqrt{2} - 1, \sqrt{2}]$ C. $[\sqrt{2}, \sqrt{2} + 1]$ D. $[2 - \sqrt{2}, 2 + \sqrt{2}]$ $(003333) \ \ \hbox{若平面上三点} \ A,B,C \ \hbox{共线}, O \ \hbox{是直线} \ AB \ \\ \hbox{外一点}, \ \hbox{且} \ \overrightarrow{OC} = \lambda \overrightarrow{OA} + \mu \overrightarrow{OB}(\lambda,\mu \in \mathbf{R}), \ \ \hbox{求} \ \lambda + \mu \ \ \text{的值}.$ (003334) 已知 $|\overrightarrow{a} + \overrightarrow{b}| = 2|\overrightarrow{a} - \overrightarrow{b}|, |\overrightarrow{a}| = 1, |\overrightarrow{b}| = 2.$ 求: $(1) |3\overrightarrow{a} - 2\overrightarrow{b}|;$ (2) \overrightarrow{a} 与 \overrightarrow{a} + \overrightarrow{b} 的夹角; (3) \overrightarrow{a} 在 \overrightarrow{a} + \overrightarrow{b} 方向上的投影.

(003335) 已知 $|\overrightarrow{a}| = \sqrt{2}$, $|\overrightarrow{b}| = 3$, \overrightarrow{a} 和 \overrightarrow{b} 的夹角为 45° , 求当向量 $\overrightarrow{a} + \lambda \overrightarrow{b}$ 与 $\lambda \overrightarrow{a} + \overrightarrow{b}$ 夹角为锐角时, 求 λ 的取值范围.

 $(003336) ~ 若点 ~O~ 是 ~\triangle ABC ~ \textbf{內一点}, \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = \overrightarrow{0}, ~ \textbf{则点} ~O~ \textbf{是} ~\triangle ABC ~ \textbf{的} \underline{\hspace{1cm}} \boldsymbol{\square}.$

(003337) 在平行四边形 ABCD 中, AC 与 BD 交于点 O, E 是线段 OD 的中点, AE 的延长线与 CD 交于点 F. 若 $\overrightarrow{AC} = \overrightarrow{a}$, $\overrightarrow{BD} = \overrightarrow{b}$, 则 $\overrightarrow{AF} =$ _____.

 $(003338) \ \mathbf{平面上点} \ ABC \ 满足 \ |\overrightarrow{AB}| = 3, \ |\overrightarrow{BC}| = 4, \ |\overrightarrow{CA}| = 5, \ \mathbf{y} \ \overrightarrow{AB} \cdot \overrightarrow{BC} + \overrightarrow{BC} \cdot \overrightarrow{CA} + \overrightarrow{CA} \cdot \overrightarrow{AB} = \underline{\hspace{1cm}}.$

(003339) 在 $\triangle ABC$ 中, $\angle A=60^\circ$, AB=3, AC=2. 若 $\overrightarrow{BD}=2\overrightarrow{DC}$, $\overrightarrow{AE}=\lambda\overrightarrow{AC}-\overrightarrow{AB}$, 且 $\overrightarrow{AD}\cdot\overrightarrow{AE}=-4$, 则 λ 的值为______.

(003340) \overrightarrow{a} 、 \overrightarrow{b} 是非零向量且满足 $(\overrightarrow{a}-2\overrightarrow{b})$ \perp \overrightarrow{a} , $(\overrightarrow{b}-2\overrightarrow{a})$ \perp \overrightarrow{b} , 则 \overrightarrow{a} 与 \overrightarrow{b} 的夹角是_______.

(003341)(1) 已知 \overrightarrow{a} 与 \overrightarrow{b} 都是非零向量, 且 $|\overrightarrow{a}| = |\overrightarrow{b}| = |\overrightarrow{a} - \overrightarrow{b}|$, 求 \overrightarrow{a} 与 \overrightarrow{a} + \overrightarrow{b} 的夹角;

(2) 已知向量 \overrightarrow{a} 与 \overrightarrow{b} 的夹角为 120° , $|\overrightarrow{a}| = 3$, $|\overrightarrow{a} + \overrightarrow{b}| = \sqrt{13}$, 求 $|\overrightarrow{b}|$ 的值.

 $(003342)^*$ 已知向量 \overrightarrow{a} 、 \overrightarrow{b} 满足 $|\overrightarrow{a}| = 1$, $|\overrightarrow{b}| = 2$, 求 $|\overrightarrow{a} + \overrightarrow{b}| + |\overrightarrow{a} - \overrightarrow{b}|$ 的最小值、最大值.

(003343) 若 $\overrightarrow{AB} = (2,4)$, $\overrightarrow{AC} = (1,3)$, 则 \overrightarrow{BC} 方向相反的单位向量是______.

(003344) 已知点 $P_1(2,-1)$ 、 $P_2(0,5)$,若点 P 在直线 P_1P_2 上,且满足 $|\overrightarrow{P_1P_2}|=2|\overrightarrow{PP_2}|$,则点 P 的坐标为______.

(003345) 若三点 A(2,2)、B(a,0)、C(0,4) 共线,则 a 的值等于_____.

(003346) 已知 $\overrightarrow{e_1}$, $\overrightarrow{e_2}$ 是不平行的向量, 设 $\overrightarrow{a} = \overrightarrow{e_1} + k\overrightarrow{e_2}$, $\overrightarrow{b} = k\overrightarrow{e_1} + \overrightarrow{e_2}$, 则 \overrightarrow{a} 与 \overrightarrow{b} 平行的充要条件是实数 k 等于______.

(003347) 已知向量 $\overrightarrow{a}=(1,2),\ \overrightarrow{b}=(0,3),\$ 则与 \overrightarrow{a} 垂直的单位向量的坐标为________; \overrightarrow{b} 在 \overrightarrow{a} 的方向上的投影为

(003348) 已知 $\triangle ABC$ 的三个顶点分别是 $A(1,\frac{3}{2}),\ B(4,-2),\ C(1,y),$ 其重心坐标为 $G(x,-1),\$ 则 x,y 的值分别是 ______.

 $(003349) \ \ \overrightarrow{a} \ \overrightarrow{a} = (x,1), \ \overrightarrow{b} = (2,3x), \ \textbf{那么} \ \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{a}|^2} + |\overrightarrow{b}|^2 \ \textbf{的取值范围为}\underline{\hspace{1cm}}.$

(003350) 设向量 $\overrightarrow{OA} = (1,-2), \overrightarrow{OB} = (a,-1), \overrightarrow{OC} = (-b,0),$ 其中点 O 为坐标原点, a>0, b>0, 若 A、B、C 三点共线, 则 $\frac{1}{a} + \frac{2}{b}$ 的最小值为______.

(003351) 已知直线 l 上两个点 A(0,3)、C(3,0), O 为坐标原点.

- (1) 若 $\overrightarrow{OD} = -\frac{1}{3}\overrightarrow{OA} + \frac{4}{3}\overrightarrow{OC}$, 试确定点 D 与直线 l 的位置关系;
- (2) 已知点 B(1,2) 是直线 l 上的一点, 求证: 若存在实数 m,n 使向量 $\overrightarrow{OB} = m \cdot \overrightarrow{OA} + n \cdot \overrightarrow{OC}$, 则 m+n=1;
- (3) 若存在实数 m, n 使向量 $\overrightarrow{OB} = m\overrightarrow{OA} + n\overrightarrow{OC}$, 且 m + n = 2, 写出满足条件的所有点 B 的轨迹.

(003352) 已知 $\overrightarrow{m}=(2\sqrt{3},1),\ \overrightarrow{n}=(\cos^2\frac{A}{2},\sin A),\ A$ 、 B、 C 是 $\triangle ABC$ 的内角. (1) 当 $A=\frac{\pi}{2}$ 时, 求 $|\overrightarrow{n}|$ 的值; (2) 若 $C=\frac{2\pi}{3},\ |AB|=3,\$ 当 $\overrightarrow{m}\cdot\overrightarrow{n}$ 取最大值时, 求 A 的大小及边 BC 的长. (003353) 已知 $\triangle ABC$ 的顶点坐标分别为 $A(1,0),\ B(5,8),\ C(7,-4),\$ 在边 AB 上有一点 P,其横坐标为 4,在

(003354) 给出下列命题:

- ① 非零向量 \overrightarrow{a} 、 \overrightarrow{b} 满足 $|\overrightarrow{a}| = |\overrightarrow{b}| = |\overrightarrow{a} \overrightarrow{b}|$, 则 \overrightarrow{a} 与 \overrightarrow{a} + \overrightarrow{b} 的夹角为 30°;
- (2) $\overrightarrow{b} \cdot \overrightarrow{b} > 0$, 是 \overrightarrow{a} 、 \overrightarrow{b} 的夹角为锐角的充要条件;
- ③ 将函数 y = |x-1| 的图像按向量 $\overrightarrow{a} = (-1,0)$ 平移, 得到的图像对应的函数表达式为 y = |x|;
- ④ 在 $\triangle ABC$ 中, 若 $(\overrightarrow{AB} + \overrightarrow{AC}) \cdot (\overrightarrow{AB} \overrightarrow{AC}) = 0$, 则 $\triangle ABC$ 为等腰三角形.
- 以上命题正确的是_____(注: 把你认为正确的命题的序号都填上).

边 AC 上求一点 Q, 使线段 PQ 把 $\triangle ABC$ 分成面积相等的两个部分.

(003355) 若 \overrightarrow{a} 和 \overrightarrow{b} 夹角为 120° , 且 $|\overrightarrow{a}| = |\overrightarrow{b}| = 1$, $|\overrightarrow{c}| = 2$, \overrightarrow{c} 与 \overrightarrow{a} 、 \overrightarrow{b} 夹角均为 60° , 用 \overrightarrow{a} 和 \overrightarrow{b} 表示 \overrightarrow{c} 为______.

(003356) 在平面直角坐标系中,已知 A(1,0)、B(0,-1),P 是曲线 $y=\sqrt{1-x^2}$ 上一个动点,则 $\overrightarrow{BP}\cdot\overrightarrow{BA}$ 的取值范围是______.

(003357) 设 $\overrightarrow{PA} = (k, 12), \overrightarrow{PB} = (4, 5), \overrightarrow{PC} = (10, k), 则 k = _______ 时, 点 A、B、C 共线.$

(003358) 已知直角梯形 ABCD , $AD\parallel BC$, $\angle BAD=90^{\circ}$. $AD=2,\ BC=1,\ P$ 是腰 AB 上的动点,则 $|\overrightarrow{PC}+\overrightarrow{PD}|$ 的最小值为_____.

(003359) 已知三角形 ABC, $\overrightarrow{AB}=(k-1,2)$, $\overrightarrow{AC}=(-1,2)$.

(1) 若 k=4, 求 $S_{\triangle ABC}$; (2) 若三角形为直角三角形, 求 $S_{\triangle ABC}$.

(003360) 已知平面内三点 P(-2,0), Q(-1,1) 和 R(-3,0), 设 $\overrightarrow{m} = \overrightarrow{PQ}$, $\overrightarrow{n} = \overrightarrow{PR}$, 当实数 k 为何值时, 向量 $k\overrightarrow{m} + \overrightarrow{n}$ 与向量 $k\overrightarrow{m} - 2\overrightarrow{n}$ 互相垂直、平行?

(003361) 在矩形 ABCD 中, AB=1, AD=2, 动点 P 在以点 C 为圆心且与 BD 相切的圆上. 若 $\overrightarrow{AP}=\lambda\overrightarrow{AB}+\mu\overrightarrow{AD}$, 求 $\lambda+\mu$ 的最大值.

(003362) 直线 bx + ay = ab(a < 0, b < 0) 的倾斜角为______.

(003363) 过原点、且倾斜角为直线 $y = \frac{1}{2}x - 3$ 的倾斜角两倍的直线方程为_____.

 $(003364)f(x) = a \sin x - b \cos x (ab \neq 0)$ 的一条对称轴方程是 $x = \frac{\pi}{4}$,则直线 ax - by + c = 0 的倾斜角为______.

$(003366)(1)$ 已知直线 $l_1:(a+3)x+(2a+5)y-3=0$ 和 $l_2:(1-2a)x+(a-3)y+4=0$,若 l_1 的方向向量是 l_2 的法向量,则 a 的值为
(003367) 已知直线 $l:5x+2y+3=0$. (1) 直线 $l_1:3x+7y-13=0$ 与 l 所成的角的大小为
(003368) 过点 $P(1,2)$ 作直线 l , 使它到两点 $A(2,3)$ 、 $B(4,-5)$ 的距离相等, 则直线 l 的方程为
(003369)(1) 点 $P(-2,-1)$ 关于直线 $l: x+2y-2=0$ 的对称点 Q 的坐标为
(003370) 直线 l 过点 $M(-1,2)$ 且与以 $A(-2,-3)$ 、 $B(3,0)$ 为端点的线段 (含端点) 有公共点. (1) 求直线 l 的倾斜角 α 的取值范围; (2) 若直线 l 的斜率存在, 求其斜率 k 的取值范围.
(003371) 已知点 $A(4,1)$ 、 $B(6,-3)$, 在 x 轴上求一点 M , 使 (1) $ MA ^2 + MB ^2$ 最小; (2) $ MA + MB $ 最小; (3) $ MA - MB $ 最小; (4) $ MB - MA $ 最大.
(003372)(1) 求过点 $P(1,2)$ 且在两坐标轴上截距相等的直线方程; (2) 求过点 $P(1,2)$ 并且在两坐标轴上的截距的绝对值相等的直线方程; (3) 直线过点 $P(1,2)$ 分别与 x 轴和 y 轴的正半轴交于 A 、 B 两点, 求使 $\triangle OAB$ 面积最小的直线方程.
(003373) 直线 $x - y \cos \theta + 1 = 0$ 的倾斜角 α 的范围是
(003374) 写出满足下列条件的直线方程: $(1) ~ 过点 \ (1,-1), ~ 且倾斜角为 \ \alpha = \pi - \arctan \frac{1}{2}:;$ $(2) ~ 过点 \ (2,3) ~ 与 \ (-1,-2):;$ $(3) ~ 过点 \ (2,3)、方向向量为 ~ \overrightarrow{d} = (4,7) ~ 的直线方程是;$ $(4) ~ 过点 \ (2,3)、法向量 ~ \overrightarrow{n} = (8,9) ~ 的直线方程是;$ $(5) ~ 已知直线 \ l ~ 过直线 \ l_1: 3x-5y-10=0 ~ 和 \ l_2: x+y+1=0 ~ 的交点, 且平行于 \ l_3: x+2y-5=0, 则直线 \ l ~ 的方程为$
(003375) 已知两直线 $l_1: x+m^2y+6=0$ 与 $l_2: (m-2)x+3my+2m=0$. 若 l_1 、 l_2 相交,则 m 的取值范围
为; 若 l_1 、 l_2 平行, 则 m 的值为; 若 l_1 、 l_2 重合, 则 m 的值为
(003376)(1) 点 P(-1,-1) 到直线 $l: 2x-3y-11=0$ 的距离 d 的值是

- (2) 直线 l: x + 2y 11 = 0 关于点 (-1,1) 对称的直线方程是
- (3) 直线 m: 3x-2y-6=0 关于直线 l: 2x-3y+1=0 对称的直线方程是______

(003378) 将直线 $l_1: nx + y - n = 0$ 、 $l_2: x + ny - n = 0 (n \in \mathbb{N}^*)$ 、 x 轴、 y 轴围成的封闭区域的面积记为 S_n ,则 $\lim_{n \to \infty} S_n =$ _____.

(003379) 已知实数
$$x_1, x_2, y_1, y_2$$
 满足: $x_1^2 + y_1^2 = 1, x_2^2 + y_2^2 = 1, x_1 x_2 + y_1 y_2 = \frac{1}{2},$ 则 $\frac{|x_1 + y_1 - 1|}{\sqrt{2}} + \frac{|x_2 + y_2 - 1|}{\sqrt{2}}$ 的最大值为______.

(003380) 如图, 用 35 个单位正方形拼成一个矩形, 点 P_1 、 P_2 、 P_3 、 P_4 以及四个标记为 "▲" 的点在正方形的顶点处, 设集合 $\Omega = \{P_1, P_2, P_3, P_4\}$, 点 $P \in \Omega$, 过 P 作直线 l_P ,使得不在 l_P 上的 "▲" 的点分布在 l_P 的两侧. 用 $D_1(l_P)$ 和 $D_2(l_P)$ 分别表示 l_P 一侧和另一侧的 "▲" 的点到 l_P 的距离之和. 若过 P 的直线 l_P 中有且只有一条满足 $D_1(l_P) = D_2(l_P)$,则 Ω 中所有这样的 P 为______.

(003381) 已知三点 A(2,-3)、B(-2,-5), 求分别满足下列条件的圆方程:

- (1) 以 A、B 两点为直径的圆为_____;
- (2) 过 $A \times B$ 两点, 且圆心在直线 x 2y 3 = 0 上的圆为______.

(003382) 若方程 $x^2 + y^2 + ax + 2ay + 2a^2 + a - 1 = 0$ 表示圆, 则 a 的取值范围是______.

(2) 过点 (2,4) 作圆 $x^2 + y^2 - 2x = 0$ 的切线 m, 则 m 的方程为_____.

(003384) 若点 P 在圆 $x^2 + y^2 + 4x - 6y + 12 = 0$ 上运动, 点 Q 在直线 4x + 3y = 21 上运动, 则 |PQ| 的最小值是

(003385) 已知圆 $x^2 + y^2 = 8$ 内一点 P(-1,2), 过点 P 作直线 l 交圆于 A、B, 若弦 AB 恰被点 P 平分, 则直线 l 的方程为______.

(003386) 若直线 ax + by = 1 与圆 $C: x^2 + y^2 = 1$ 相交, 则点 P(a,b) 与圆 C 的位置关系是 ().

A. 点在圆内

B. 点在圆上

C. 点在圆外

D. 随 a,b 取值的变化而变化

(003387) 若关于 x 的方程 $x + \sqrt{4 - x^2} = m$ 有且仅有一个实数解, 则实数 m	的取值范围是
(003388) 设 $f(x,y) = ax + by + c$, 其中 a,b 不全为零. 给定直线 $l:f(x,y)$ $m:f(x,y)-f(x_0,y_0)=0$, 则 ($= 0$ 及其外一点 $P(x_0, y_0)$, 直线
A. 点 P 在直线 m 上, 直线 m 与 l 平行 B. 点 P 在直线 m 上 C. 点 P 在直线 m 外, 直线 m 与 l 平行 D. 点 P 在直线 m 外	
(003389) 已知圆 $C: x^2 + y^2 - 4x - 14y + 45 = 0$ 及点 $Q(-2,3)$.	
(1) 若 $P(m, m+1)$ 在圆 C 上, 求线段 PQ 的长及直线 PQ 的斜率;	
(2) 若 P 为圆 C 上任意一点, 求线段 PQ 的长的最大值和最小值; (3) 若点 $M(a,b)$ 在圆 C 上, 求 $u=\frac{b-3}{a+2}$ 的最大值和最小值.	
(003390) 过原点的直线与圆 $x^2 + y^2 - 6x + 5 = 0$ 相交于 A 、 B 两点, 求弦 A	AB 的中点 M 的轨迹方程.
(003391) 已知圆 $C:x^2+y^2=25,$ 过定点 $P(-4,0)$ 的直线 l 交圆 C 于 A	B 两点.
(1) 若直线 <i>l</i> 的斜率为 1, 求弦长 <i>AB</i> ;	
(2) 求弦长 AB 的取值范围;	
(3) 求 △AOB 面积的取值范围.	
(003392) 圆 $x^2 + y^2 - 2x - 4y - 1 = 0$ 关于直线 $x - y + 3 = 0$ 的对称的曲组	总的方程为
(003393) 若直线 $mx + ny - 3 = 0$ 与圆 $x^2 + y^2 = 3$ 没有公共点, 则 $m^2 + n^2$	的取值范围为
(003394) 方程 $ x -1=\sqrt{1-y^2}$ 表示的曲线是 $($ $).$	
A. 一条直线 B. 两条射线	
C. 一个圆 D. 两个半圆 (即两段)	圆弧)
(003395) 求满足下列条件的圆的方程:	
(1) 经过点 $(2,-1)$ 且和直线 $x-y=1$ 相切, 同时圆心在直线 $y=-2x$ 上的	
(2) 经过点 $A(-2, -4)$, 且与直线 $l: x + 3y - 26 = 0$ 相切于点 $B(8, 6)$ 的圆的	方程为
(003396) 已知方程 $x^2 + y^2 + Dx + Ey + F = 0$ 表示一个圆. " $D^2 = 4F$ " 是"	该圆与 x 轴相切"的()条件.
A. 充分非必要 B. 必要非充分 C. 充要	D. 既非充分又非必要
(003397) 圆 $x^2+y^2=4$ 与 x 轴相交于 A 、 B 两点,圆内的动点 P 使 $ PA , P$ 的取值范围.	$O , PB $ 成等比数列, 求 $\overrightarrow{PA} \cdot \overrightarrow{PB}$
(003398) 已知 $m \in \mathbf{R}$, 直线 $l: mx - (m^2 + 1)y = 4m$ 和圆 $C: x^2 + y^2 - 8x$ (1) 求直线 l 的斜率 k 的取值范围;	+4y + 16 = 0.
	+4y + 16 = 0.
(1) 求直线 l 的斜率 k 的取值范围;	

(003401)(1) 焦距是 $2\sqrt{5}$, 长轴长是 8 的椭圆的标准方程是______;

- (2) 长轴长是短轴长的 2 倍, 且经过点 (2,1) 的椭圆的标准方程是_____;
- (3) 经过点 $A(\sqrt{3}, -2)$ 、 $B(\sqrt{5}, \frac{\sqrt{30}}{3})$ 的椭圆的方程是______.

(003402) 已知点 P 是椭圆 $\frac{x^2}{25}+\frac{y^2}{9}=1$ 上一点, F_1F_2 是焦点, 若 $\angle F_1PF_2=60^\circ$, 则三角形 F_1PF_2 的面积为

- (003403) 已知椭圆 $\frac{x^2}{36} + \frac{y^2}{16} = 1$ 的弦过点 P(3,2) 且被 P 平分,则此弦所在的直线方程为______.
- (003404) 椭圆 $\frac{x^2}{45} + \frac{y^2}{20} = 1$ 的焦点为 F_1 、 F_2 ,过原点 O 作直线交椭圆于 A、B 两点,若 $\triangle ABF_2$ 的面积为 20,则点 A 的纵坐标为______.
- (003405) 若曲线 $\frac{x^2}{2} + y^2 = 1 \ (y \ge 0)$ 与 y = x + m 有两个公共点, 则实数 m 的取值范围为_______.

(003406) 已知椭圆 $\frac{x^2}{m}+\frac{y^2}{6}=1,\,F_1,F_2$ 是它的两个焦点,若椭圆上存在两个不同的点 P, 使 $\angle F_1PF_2=90^\circ,$ 则 m=

(003407) 已知椭圆 $\frac{y^2}{9}+x^2=1,$ 一条不与坐标轴平行的直线 l 与该椭圆交于不同的两点 M 、 N ,且线段 MN 的中点的横坐标为 $-\frac{1}{2}$.

- (1) 求直线 l 的斜率的取值范围;
- (2) 求直线 l 的倾斜角的取值范围.

(003408) 已知椭圆 $\frac{x^2}{2} + y^2 = 1$.

- (1) * 过椭圆的左焦点 F 引椭圆的割线, 求截得的弦的中点 P 的轨迹方程;
- (2) 求斜率为 2 的平行弦中点 Q 的轨迹方程;
- (3) 求过点 $M(\frac{1}{2},\frac{1}{2})$ 且被 M 平分的弦所在直线方程.

(003409) 设椭圆 $C: \frac{x^2}{2} + y^2 = 1$ 的右焦点为 F, 过 F 的直线 l 与 C 交于 AB 两点, 点 M 的坐标为 (2,0).

- (1) 当 l 与 x 轴垂直时, 求直线 AM 的方程;
- (2) 设 O 为坐标原点, 证明: $\angle OMA = \angle OMB$.

(003410) 若椭圆的中心为原点,焦点在坐标轴上,焦点到长轴端点的距离分别为 $\sqrt{2}-1$ 与 $\sqrt{2}+1$,则椭圆的方程为______.

(003411) 与椭圆 $\frac{x^2}{9} + \frac{y^2}{4} = 1$ 有相同的焦点,且经过点 (3, -2) 的椭圆为_____.

(003412) 已知圆 $A:(x-4)^2+y^2=100$, 圆 $B:(x+4)^2+y^2=1$, 动圆 P 与圆 A 内切且与圆 B 外切, 则点 P 的轨迹方程是______.

(003413) 椭圆 $x^2 + \frac{y^2}{4} = 1$ 上的点 P(x,y) 到定直线 x + y - 6 = 0 的最远距离是______.

(003414) 记椭圆 $\frac{x^2}{4} + \frac{ny^2}{4n+1} = 1$ 围成的区域 (含边界) 为 $\Omega_n \ (n=1,2,\cdots)$, 当点 (x,y) 分别在 Ω_1,Ω_2,\cdots 上时, x+y 的最大值分别是 M_1,M_2,\cdots , 则 $\lim_{n\to\infty} M_n =$ ______.

(003415) 椭圆 $\frac{x^2}{9} + \frac{y^2}{4} = 1$ 上的动点 P(x,y) 与定点 M(m,0)(0 < m < 3) 的距离的最小值为 1,求 m 的值.

(003416) 在平面直角坐标系 xOy 中,经过点 $(0,\sqrt{2})$ 且斜率为 k 的直线 l 与椭圆 $\frac{x^2}{2}+y^2=1$ 有两个不同的 交点 P、Q.

- (1) 求 k 的取值范围;
- (2) 设椭圆与 x 轴正半轴、y 轴正半轴的交点分别为 A、B. 问是否存在常数 k, 使得向量 $\overrightarrow{OP} + \overrightarrow{OQ}$ 与 \overrightarrow{AB} 共线? 如果存在, 求出 k 的值; 如果不存在, 说明理由.

 $(003417)^*$ 在平面直角坐标系 xOy 中,已知椭圆 Γ : $\frac{x^2}{4}+y^2=1,$ A 为 Γ 的上顶点,P 为 Γ 上异于上、下顶点的动点,M 为正半轴上的动点.

- (1) 若 P 在第一象限, 且 $|OP| = \sqrt{2}$, 求 P 的坐标;
- (2) 设 $P(\frac{8}{5},\frac{3}{5})$, 若以 A、P、M 为顶点的三角形是直角三角形, 求 M 的横坐标 m;
- (3) 若 |MA|=|MP|, 直线 AQ 与 Γ 交于另一点 C, 且 $\overrightarrow{AQ}=2\overrightarrow{AC}$, $\overrightarrow{PQ}=4\overrightarrow{PM}$, 求直线 AQ 的方程.

(003418) 已知双曲线的中心在原点, 焦点在坐标轴上. 分别求满足下列条件的双曲线的标准方程:

- (2) 点 $P(\sqrt{2},1)$ 在双曲线上, 且它到双曲线的右焦点的距离是 1, 该双曲线方程为_____.
- (003419) 双曲线顶点间距离为 6,渐近线方程为 $y = \pm \frac{3}{2}x$,该双曲线方程为______.
- (003420) 双曲线 $4x^2 + ky^2 4k = 0$ 的虚轴长为______
- (003421) 双曲线 $\frac{x^2}{4} \frac{y^2}{8} = 1$ 的两条渐近线所夹的锐角的大小为______.
- (003422) 已知 F_1 、 F_2 是双曲线 $\frac{x^2}{16} \frac{y^2}{20} = 1$ 的焦点,点 P 在双曲线上. 若 $|PF_1| = 9$,则 $|PF_2| = _____$.
- (003423) 直线 y = kx + 2 与双曲线 $x^2 y^2 = 6$ 的右支交于不同的两点, 则 k 的取值范围为______.

(003424) 已知动圆 M 与圆 $C_1:(x+4)^2+y^2=2$,与圆 $C_2:(x-4)^2+y^2=2$ 相内切,则动圆圆心 M 的轨迹方程为______.

(003425) 已知两点 M(-5,0), N(5,0). 在下列直线上,存在点 P 满足 |MP|-|NP|=6 的所有直线方程是_____(填写序号).

①
$$y = \frac{5}{3}(x+2)$$
; ② $y = \frac{5}{3}(x-5)$; ③ $y = x-2$; ④ $y = 4(x+2)$.

(003426) 已知双曲线 C 的一个顶点 $A(0,\sqrt{2})$, 其渐近线经过原点且与圆 $M:(x-\sqrt{2})^2+y^2=1$ 相切.

- (1) 求双曲线 C 的方程;
- (2) 已知直线 $l: y = x \sqrt{2}$, 在双曲线的上支求点 P, 使点 P 与直线 l 的距离等于 $\sqrt{2}$.

(003427) 在双曲线 $\frac{y^2}{12} - \frac{x^2}{13} = 1$ 上支上有不同三点 $A(x_1, y_1)$ 、 $B(\sqrt{26}, 6)$ 、 $C(x_2, y_2)$ 到焦点 F(0, 5) 的距离成等差数列.

- (1) 求 $y_1 + y_2$ 的值;
- (2) 证明: 线段 AC 的垂直平分线经过一个定点 T 并且求出这个点 T 的坐标.

$\begin{array}{l} (003428) \ \hbox{ \hbox{\not $ Z$}} \ \hbox{ $\not $ Z$} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
(2) 求证: $\triangle PF_1F_2$ 的面积 $S=nb$.
(003429) 若双曲线 $8mx^2 - my^2 = 8$ 的一个焦点是 $(0,3)$, 则 $m =;$
(003430) 和双曲线 $\frac{x^2}{9} - \frac{y^2}{16} = 1$ 有共同的渐近线,并且实轴长为 12 的双曲线方程是;
(003431) 过 $P(1,0)$ 作直线 l 与双曲线 $x^2 - \frac{y^2}{4} = 1$ 只有一个公共点,则这样的直线共有条.
(003432) 已知双曲线 $\frac{x^2}{12} - \frac{y^2}{4} = 1$ 的右焦点为 F ,若过点 F 的直线 l 与双曲线的右支有且只有一个公共点,则直线 l 的斜率的取值范围为
(003433) 若关于 x 的方程 $\sqrt{x^2-1} = x + m$ 没有实数解, 则实数 m 的取值范围是
(003434) 求渐近线为 $3x \pm 4y = 0$,焦点为椭圆 $\frac{x^2}{10} + \frac{y^2}{5} = 1$ 的一对顶点的双曲线方程.
(003435) 已知 F_1F_2 是双曲线 $x^2 - \frac{y^2}{b^2} = 1(b > 0)$ 的左、右焦点,直线 l 过 F_2 且与双曲线交于 AB 两点. (1) 若 l 的倾斜角为 $\frac{\pi}{2}$, $\triangle F_1AB$ 是等边三角形,求双曲线的渐近线方程; (2) 设 $b = \sqrt{3}$,若 l 的斜率存在,且 $(\overrightarrow{F_1A} + \overrightarrow{F_1B}) \cdot \overrightarrow{AB} = 0$,求 l 的斜率.
(003436) 设双曲线 $x^2-\frac{y^2}{4}=1$ 的右顶点为 A , 定点 B 的坐标为 $(\frac{1}{2},1)$.
(2) 过点 B 的动直线 l 交双曲线于 P,Q 两点, M 为线段 PQ 的中点, 求直线 AM 的斜率的取值范围.
(003437) 已知抛物线的顶点在原点, 焦点在坐标轴上. 分别求适合下列条件的抛物线的标准方程: (1) 过点 (-2,3) 的抛物线为; (2) 准线过点 (2,3) 的抛物线为; (3) 焦点在直线 3x - 4y - 12 = 0 上的抛物线为; (4) 焦点在 y 轴上, 抛物线上一点 $M(m, -3)$ 到焦点的距离等于 5 的抛物线为
(003438) 过点 $(2,1)$ 与抛物线 $y=x^2$ 恰有一个公共点的直线有 条.
(003439) 抛物线 $y=x^2$ 上到直线 $2x-y=4$ 距离最短的点的坐标为
(003440) 已知点 $A(3,4)$, F 是抛物线 $y^2 = 8x$ 的焦点, M 是抛物线上的动点. 当 $ MA + MF $ 最小时, M 的坐标是
(003441) 若 AB 是抛物线 $y=x^2$ 的一条过焦点的弦, 且 $ AB =4$, 则 AB 的中点到直线 $y+1=0$ 的距离 是

(003442) 一动点到定点 A(0,2) 的距离比定直线 y = -3 的距离小 1, 则动点的轨迹方程是

(003443) 已知 F 是抛物线 $C:y^2=4x$ 的焦点, AB 是抛物线 C 上的两个点, 线段 AB 的中点为 M(2,2), 则 $\triangle ABF$ 的面积等于

(003444) 已知 A,B 是抛物线 $y^2=2px(p>0)$ 上的两个点, O 为坐标原点, 若 |OA|=|OB|, 且抛物线的焦点恰为 $\triangle AOB$ 的垂心, 则直线 AB 的方程是______.

(003445) 已知点 M 到点 F(1,0) 和直线 x=3 的距离之和等于 4, 设点 M 的轨迹为曲线 Γ .

- (1) 求曲线 Γ 的方程;
- (2) 过点 F 作倾斜角为 $\frac{\pi}{4}$ 的直线交曲线 Γ 于 A、B 两点, 求 |AB| 的值.

(003446) 如图, M 是抛物线上 $y^2=x$ 上的一点 (异于原点), 动弦 ME、MF 分别交 x 轴于 AB 两点, 且 MA=MB.

- (1) 若 M 为定点, 证明: 直线 EF 的斜率为定值;
- (2) 若 M 为动点, 且 $\angle EMF = 90^{\circ}$, 求 $\triangle EMF$ 的重心 G 的轨迹.

(003447) 求证: 抛物线的准线上任意一点引抛物线的两切线互相垂直并且切点弦过定点.

(003448) 抛物线 $y = -4x^2$ 的焦点坐标是

(003450) 设直线 a 与抛物线 $\Omega: y^2 = 4x$ 相交于不同的两点 AB, O 为坐标原点.

- (1) 求抛物线 Ω 的焦点到准线的距离;
- (2) 若 $\overrightarrow{OA} \cdot \overrightarrow{OB} = 0$, 点 Q 在线段 $AB \perp$, 满足 $OQ \perp AB$, 求点 Q 的轨迹.

(003451) 如图,已知点 P 是 y 轴左侧 (不含 y 轴) 一点, 抛物线 $C:y^2=4x$ 上存在不同的两点 A \wedge B 满足 PA \wedge PB 的中点均在 C 上.

- (1) 设 AB 中点为 M, 证明: $PM \perp y$ 轴;
- (2) 若 P 是半椭圆 $x^2 + \frac{y^2}{4} = 1x < 0$ 上的动点, 求 $\triangle PAB$ 面积的取值范围.

(003452) 下列命题中, 假命题有 (填入序号).

(1) 平行于同一平面的两直线平行; (2) 平行于同一直线的两平面平行; (3) 平行于同一直线的两直线平行; (4) 平行于同一平面的两平面平行.

(003453) 给定空间中的直线 l 及平面 α . "直线 l 与平面 α 内无数条直线都垂直" 是"直线 l 与平面 α 垂直"的______ 条件.

(003454) 对于空间三条直线 a, b, c, 若 $a \perp b, b \perp c, 则 a 与 <math>c($).

A. 一定相交

B. 一定平行

C. 一定异面

D. 平行、相交、异面都有可能

(003455) 如图是一个正方体的展开图. 在原正方体中, 直线 AB 与 CD 所成的角的大小为_____

(003456) 直线 PA 垂直于矩形 ABCD 所在的平面. 设 AP = AD = 1, DC = 2, 则点 P 到直线 BD 的距离为______.

(003457) 空间四边形 ABCD 中,点 E,F,G 分别是边 AB,BC,CD 的中点. 若异面直线 AC 与 BD 所成的角的大小为 60° ,则 $\angle EFG$ 的大小为______.

(003458) 已知 P 是二面角 $\alpha-l-\beta$ 内一点, 过 P 作 $PA\perp\alpha$, $PB\perp\beta$, A,B 为垂足, 若直线 PA 与 PB 所成角的大小是 80° , 则二面角 $\alpha-l-\beta$ 的大小是_____.

(003459) 由一点 P 出发引三条射线 PA, PB, PC, 若 $\angle APB=45^\circ$, $\angle APC=60^\circ$, $\angle BPC=90^\circ$, 则 PA 与平面 BPC 所成角的大小是______.

(003460) 如图, 在长方体 $ABCD-A_1B_1C_1D_1$ 中, 点 E,F 分别在棱 BB_1,DD_1 上, 且 $AE\perp A_1B,AF\perp A_1D.$ 求证: $A_1C\perp$ 平面 AEF.

(003461) 如图, 在棱长为 2 的正方体 $ABCD - A_1B_1C_1D_1$ 中, $E \neq BC_1$ 的中点.

(1) 求直线 DE 与平面 ABCD 所成的角的大小;

- (2) 在图中作出过点 D_1, D, E 三点的正方体 $ABCD A_1B_1C_1D_1$ 的截面, 并求出该截面的面积;
- (3) P,Q,R 分别是 AB,AD,B_1C_1 的中点,作出过 P,Q,R 的截面.

(003462) 如图, P 为三角形 ABC 所在平面外一点, PA \bot 平面 ABC, $\angle ABC$ = 90°, AE \bot PB 于 E, AF \bot PC 于 F.

- (1) 求证: $BC \perp$ 平面 PAB, $AE \perp$ 平面 PBC, $PC \perp$ 平面 AEF;
- (2) 若 AP = AC = 2, $\angle BPC = \theta$, 当 θ 为何值时, 三角形 AEF 的面积 S 取到最大值? 最大值是多少?

(003463) 空间中有四个点,"这四个点中恰好有三点在同一直线上"是"这四个点在同一个平面上"的___________条件;

(003464) 两条直线 a、b 满足 $a \parallel b, b \subsetneq \alpha$, 则 a 与平面 α 的关系是_____.

(003465) 对于平面 $M \times N$. "M 内有不共线的三点到 N 的距离相等"是" $M \parallel N$ "成立的______ 条件;

(003466) 对于分别与两条异面直线都相交的两条直线, 下列结论中, 真命题有_____(填入序号).

(1) 一定是异面直线; (2) 不可能是平行直线; (3) 不可能是相交直线.

(003467) 已知 A,B 两点到平面 α 的距离分别是 1 和 3, 那么线段 AB 的中点到平面 α 的距离是______

(003468) 如图, 点 P 为三棱柱 $ABC-A_1B_1C_1$ 的侧棱 BB_1 上一点, $PM\perp BB_1$ 交 AA_1 于点 $M,PN\perp BB_1$ 交 CC_1 于点 N. 求证: $CC_1\perp MN$.

(003469) 如图, 在长方体 ABCD - A'B'C'D' 中, AB = 2, AD = 1, AA' = 1. 证明:

- (1) 直线 BC' 与直线 AC 异面;
- (2) 直线 $BC' \parallel$ 平面ACD', 并求 BC' 到平面 ACD' 的距离.

(003470) 下列命题中, 假命题有(填入序号).
(1) 底面是正多边形的棱锥是正棱锥; (2) 侧棱都相等的棱锥是正棱锥; (3) 有两个侧面是矩形的棱柱是直棱柱.
(003471) 正四棱锥底面边长为 4, 侧棱长为 3, 则其侧面积为, 其体积为
(003472) 棱锥的高是 1, 一个平行于底面的平面把棱锥分成体积相等的两个部分, 则顶点到这个平行于底面的平面的距离为
(003473) 棱长为 1 的正四面体的高为,体积为,对棱中点的距离为
(003474) 若两个长方体的长, 宽, 高分别为 5, 4, 3, 把它们两个全等的面重合在一起组成大长方体, 则大长方体
的对角线最长为
(003475) 若一个圆柱的侧面展开图是一个正方形, 则这个圆柱的表面积与侧面积的比是
(003476) 若圆锥的侧面展开图恰好是一个半圆, 则该圆锥的母线与底面所成的角的大小是
(003477) 过半径为 2 的球 O 表面上一点 A 作球 O 的截面, 若 OA 与该截面所成的角的大小为 60° , 则该截面
的面积是

(003478) 如图, 圆锥的轴截面为等边三角形 SAB, Q 为底面圆周上一点.

- (1) 设 C 为线段 BQ 的中点, M 是 SC 上一点, 且 $OM \perp SC$, 证明: $OM \perp$ 平面SBQ;
- (2) 若 $\angle AOQ = 60^{\circ}$, $QB = 2\sqrt{3}$, 求圆锥的体积.

(003479) 取地球的半径为 6370 千米, 在北纬 45° 线上, 求相隔 30° 的两条经线之间的球面距离 (精确到 0.1 千米).

(003480) 直三棱柱 $ABC-A_1B_1C_1$ 中, 底面 ABC 为等腰直角三角形, 且 $AB\perp AC$, AB=AC=2, $AA_1=4$, M 是侧棱 CC_1 上一点, 设 MC=h.

- (1) 若 $BM \perp A_1C$, 求 h 的值;
- (2) 若直线 AM 与平面 ABC 所成的角为 $\frac{\pi}{4}$, 求多面体 $ABM A_1B_1C_1$ 的体积.

(003481) 过棱锥的高的三等分点作两个平行于底面的截面, 它们将棱锥的侧面分成三部分的面积的比(自顶点开始向底面排序)为______.

(003482) 已知一个凸多面体共有 9 个面, 所有棱长都为 1, 其平面展开图如图所示, 则该凸多面体的体积为___

(003483) 若圆锥的侧面积为 20π , 且母线与底面所成的角的大小为 $\arccos \frac{4}{5}$, 则该圆锥的体积为______

(003484) 下列命题中, 假命题有 (填入序号).

- (1) 经过球上任意两点, 能且仅能作一个大圆;
- (2) 与球的一条直径垂直的大圆有且只有一个;
- (3) 球的表面积是它大圆面积的 4 倍;
- (4) 如果过球面上两点可以作小圆, 那么"小圆的劣弧长"大于"过这两点的大圆的劣弧长".

(003485) 圆柱形容器内部盛有高度为 8cm 的水, 若放入三个相同的球 (球的半径与圆柱的底面半径相同) 后, 水恰好淹没最上面的球 (如图所示), 则球的半径是______.

(003486) 在四棱锥 A-BCDE 中,已知 $AD\perp$ 底面BCDE, $AC\perp BC$, $AE\perp BE$,若 $\angle CBE=90^\circ$, $CE=\sqrt{3}$,AD=1,求 B, D 两点在棱锥 A-BCDE 外接球表面的球面距离.

(003487) 已知 SA、SB 是圆锥 SO 的两条母线,O 是底面圆的圆心,底面圆的半径为 10,C 是 SB 中点, $\angle AOB=60^\circ$,AC 与底面所成角为 45° ,求此圆锥的侧面积和体积.

(003488) 已知长方体 $ABCD - A_1B_1C_1D_1$ 中, AB = BC = 4, $CC_1 = 2$, 则直线 BC_1 和平面 DBB_1D_1 所成角的大小为______.

(003489) 设 ABCD 是一个正方形, $PA \perp$ 平面 ABCD, PA = AB, 则:

- (1) 直线 AB 与 PC 所成的角的大小为______;
- (2) 直线 PC 与平面 ABCD 所成的角的大小为_____;
- (3) 二面角 P BC A 的大小为_____.

(003490) 棱长为 1 的正四面体 ABCD 中, E, F, G 分别是棱 AB, AC, AD 的中点.

- (1) 点 A 和平面 BCD 的距离为______;
- (2) 直线 EF 和平面 BCD 的距离为______;
- (3) 平面 *EFG* 和平面 *BCD* 的距离为______;
- (4) 异面直线 AD 和 BC 的距离为_____.

(003491) 在正四棱锥 P-ABCD 中,若侧面与底面所成二面角的大小为 60° ,则异面直线 PA 与 BC 所成角的大小为______.

(003492) 如图, 有一种多面体的饰品, 其表面由 6 个正方形和 8 个正三角形组成, 直线 AB 与 CD 所成角的大小是______.

(003493) 山坡与平面成 30° 角, 坡面上有一条与坡脚水平线成 30° 的直线小路. 某人沿小路上坡走了一段路程后升高了 100 米, 则此人行走的路程为______ 米.

(003494) 已知正三棱锥 P-ABC 的体积为 $72\sqrt{3}$, 侧面与底面所成的二面角的大小为 60° .

- (1) 证明: $PA \perp BC$;
- (2) 求底面中心 O 到侧面的距离;
- (3) 求正三棱锥 P-ABC 的表面积.

(003495) 如图, 在直三棱柱 $ABC - A_1B_1C_1$ 中, $AA_1 = BC = AB = 2$, $AB \perp BC$.

- (1) 求直线 A_1C 和直线 B_1C_1 所成的角的大小;
- (2) 求二面角 $C A_1B_1 C_1$ 的大小;
- (3) 求点 A 到平面 A_1BC 的距离.

(003496) 已知 $ABCD - A_1B_1C_1D_1$ 是底面边长为 1 的正四棱柱.

- (1) 设 AB_1 与面 $A_1B_1C_1D_1$ 所成的角的大小为 α , 二面角 $A-B_1D_1-A_1$ 的大小为 β , 试求 α 与 β 的一个 (非平凡的) 等式关系;
- (2) 若点 C 到平面 AB_1D_1 的距离为 $\frac{4}{3}$, 求该正四棱柱的高;
- (3) 若正四棱柱的高为 2, 求四面体 A_1C_1BD 的体积.

(003497) 在底面边长为 2 的正三棱锥 V-ABC 中, E 是 BC 的中点, 若三角形 VAE 的面积为 $\frac{1}{4}$, 则侧棱 VA 与底面所成的角的大小为______.

(003498) 在棱长为 2 的正方体 ABCD - A₁B₁C₁D₁ 中, O 为 BD 的中点.

- (1) 直线 AB_1 与直线 C_1O 所成的角的大小为______;
- (3) 二面角 $C_1 BD A$ 的大小为______.

(003499) 在棱长为 2 的正方体 ABCD - A₁B₁C₁D₁ 中, O 为 BD 的中点.

- (1) 点 B 到平面 AB_1D_1 的距离为______;
- (2) 直线 C₁O 和平面 AB₁D₁ 的距离为______;
- (3) 平面 AB_1D_1 和平面 C_1BD 的距离为______;
- (4) 异面直线 BD 与 CC₁ 的距离为______

(003500) 在四棱锥 P-ABCD 中, 底面是边长为 2 的菱形. $\angle DAB=60^\circ$, 对角线 AC 与 BD 相交于点 O, PO ⊥ 平面 ABCD, PB 与平面 ABCD 所成的角的大小为 60° .

- (1) 求四棱锥 P ABCD 的体积;
- (2) 若 E 是 PB 的中点, 求异面直线 DE 与 PA 所成的角的大小.

- (003501) 用 "⊆"连接集合 Z、Q、R、C:_____.
 (003502) 设复数 z = 1 2i, 则复数 z z + 1 = ____.
 (003503) 已知 a 是实常数, 则 a+i / 1+i 的虚部 Im a+i / 1+i = ____.
- (003504) 若复数 z 满足 z = i(2 z), 则 $z = _____$.
- (003505) 已知 2z + |z| = 1 2i, 则复数 z =_____.
- (003506) 若纯虚数 z 的模为 2, 则 $z^2 =$ _____.

(003507) 求值:
$$\left| \frac{(1-i)^{10000}(3-4i)^2}{(-\sqrt{3}+i)^{5000}} \right|$$
.

(003508) 判断下列命题的真假, 对于假命题请至少举一个反例.

命题	填 "真" 或 "假"	反例
(1) 复数 z 是实数的充要条件是 $z - \overline{z} = 0$.		
(2) 复数 z 是纯虚数的充要条件是 $z + \overline{z} = 0$.		
(3) z + z 和 z · z 都是实数.		
(4) 已知 $ z =2$, 那么 $z=\pm 2$ 或 ± 2 i.		

(003509) 求当 a 为何实数时,复数 $z = \frac{a^2 + a - 30}{a + 2} + (a^2 - 3a - 10)$ i 分别是:

- (1) 实数;
- (2) 虚数;
- (3) 纯虚数;
- (4) 零.

(003510) 已知复数
$$w$$
 满足 $w-4=(3-2w){\rm i},\,z=\frac{5}{w}+|w-2|,$ 求 $|z|$.

(003511) 已知 z 是虚数, $w = z + \frac{1}{z}$ 是实数, 且 -1 < w < 2.

- (1) 求 |z| 的值及 z 的实部取值范围;
- (2) 设 $u = \frac{1-z}{1+z}$, 求证: u 为纯虚数;
- (3) 求 $w u^2$ 的最小值

(003512) 复数 2 - 3i 的虚部为 ().

(003513) 若复数 z 满足 $z + 2\overline{z} = 3 - i$, 则 z =_____.

(003514) 设 b 是实数, 若 $\frac{1+i}{2+bi} + \frac{1}{2}$ 的实部与虚部相等, 则 b =______.

(003515) 设
$$a$$
 是实数, 若 $|\frac{(1+\mathrm{i})^3(a-\mathrm{i})^2}{\sqrt{2}(a-3\mathrm{i})^2}| = \frac{3}{2}$, 则 $a =$ _____.

(003516) 下列命题中正确的有:______.

- (1) 设 z_1, z_2 为复数, 若 $z_1^2 + z_2^2 = 0$, 则 $z_1 + z_2 = 0$;
- (2) 设 z_1, z_2 为复数, $z_1 \cdot z_2 = 0$ 的充要条件为 $z_1 = 0$ 或 $z_2 = 0$;
- (3) 若 $z_1 + z_2 > 0$, 那么 $z_1 > -z_2$;
- (4) $\neq |z| \le 1$, $\neq 0$ $\neq 1$ \neq
- (5) 若 $z \in \mathbb{C}$, 那么 $|z^2| = |z|^2$;
- (6) 若 $z \in \mathbb{C}$, 那么 $|z| = \sqrt{z^2}$.

(003517) 已知虚数 z 使得 $m = z + \frac{4}{z}$ 是实数.

- (1) 求 |z| 的值;
- (2) 求 m 的取值范围;
- (3) 若 (z+2)(1+i) 是纯虚数, 求 z 的值.

(003518) 已知 $|z_1| = 2$, $|z_2| = 3$, $|z_1 + z_2| = 4$, 求 $|z_1 - 2z_2|$.

(003519) 复数 z 与 \overline{z} 在复平面内对应的点 ().

- A. 关于原点对称

(003520) 若复数 z_1 、 z_2 满足 $z_1 + z_2 = 0$,则 z_1 、 z_2 在复平面上对应的点 Z_1 、 Z_2 ().

- A. 关于原点对称

(003521) 满足 $\left\{ egin{array}{ll} |z-\mathrm{i}| \leq 1, \\ \mathrm{Re}z \geq 0 \end{array}
ight.$ 的复数、在复平面内对应点所构成图形的面积为_____

(003522) 平行四边形 ABCD 的三个顶点 A, B, C 依次对应复数 $z_1 = 0, z_2 = 1 + i, z_3 = -1 + 2i,$ 则点 D 对 应的复数为 .

(003523) 设 $z = a + bi(a, b \in \mathbf{R})$, 则 $i \cdot \overline{z}$ 所表示的点、关于直线 y = x 对称的点的复数表示为______.

(003524) 满足下列条件的复数 z 所对应点的轨迹是什么? 在空格内填入轨迹类型和直角坐标系下方程.

例子: (0) |z| = 1: 圆 $x^2 + y^2 = 1$;

- (1) |z i| = |z + i|:_____;
- (2) |z+1|=1:____;
- (3) |z-5| + |z+5| = 12:_____;
- (4) |z-1| + |z+1| = 2:_____;
- (5) |z 2i| |z + 2i| = 2:

(003525) 已知 $|z_1| = 1$, $|z_2| = \sqrt{3}$, $|z_1 - z_2| = 2$, 则 $|z_1 + z_2| =$ _____.

(003526) 已知 |z| = |z - 1| = 1, 则 z =______

- (003527)(1) 已知 |z|=1, 求 |z-2| 的取值范围;
- (2) 已知 |z i| = 3, 求 |z + 1| 的取值范围.
- (003528) 设复数 z 满足 |z+1-2i|=3, 复数 w=4z-i+1, 求复数 w 对应点的轨迹.
- (003529) 由方程: $|z|^2 8|z| + 15 = 0$ 所确定的复平面内对应的点所组成的图形是(

A. 四个点

- B. 四条直线
- C. 一个圆
- D. 两个圆
- (003530) 已知 |z-2| = |z-1+i|, 则复数 z 在复平面上所对应的点 Z 的轨迹是_____.
- (003531) 满足方程 $z\overline{z} z \overline{z} = 8$ 的复数 z 在复平面上所对应的点的轨迹是_____
- (003532) 设复数 z 满足 |z+1|+|z-1|=2, 则 |z-4-i| 的最小值为_____.
- (003533) 若集合 $A = \{z | |z + 5i| |z 5i| = 8\}, B = \{z | |z| = 4\}, 则 A \cap B = _______$
- (003534) 已知复数 z 满足 |z-3+4i|=2,
- (1) 求 |z+1| 的取值范围;
- (2) 求出使 |z+1| 取最大值的 z 的值.
- (003535) 已知复数 z 满足 |z|=2, 求复数 $w=\frac{1+z}{z}$ 在复平面内的对应点的轨迹.
- (003536) 负实数 a 的平方根为 ...
- (003537)8 的立方根为 ...
- (003538) 计算: $1 + i + i^2 + \dots + i^{100} =$ _____.
- (003539) 设 $\omega = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$, 则 $1 + \omega + \omega^2 + \omega^3 + \dots + \omega^{2000} = \underline{\qquad}$
- (003540) 计算: $(1+i)^{10000} =$.
- $(003541)(1) 2x^2 + 4x + 1 = 0$ 的解为______;
- (2) 复数集中分解因式: $2x^2 + 4x + 1 =$ _____.
- (003542) 已知关于 x 的实系数一元二次方程 $ax^2+bx+c=0$ $(a\neq 0)$ 在复数集中的两个根为 $\alpha,\beta,$ 下列命题 中正确的有 .
- ① α 和 β 互为共轭复数;
- ② $\alpha + \beta = -\frac{b}{a}, \ \alpha\beta = \frac{c}{a};$
- ③ α 和 β 分别为 $\frac{a}{-b \pm \sqrt{b^2 4ac}}$;
- $(4) |\alpha \beta|^2 = (\alpha \beta)^2;$
- (5) $ax^2 + bx + c = a(x \alpha)(x \beta)$.
- (003543) 求 $-\frac{13}{4} + 2\sqrt{3}$ i 的平方根.
- (003544) 设 $p,q \in \mathbb{R}$, 若关于 x 的方程 $2x^2 + px + q = 0$ 的一个根为 -3 + 2i, 求 p,q 的值.

- (003545) 设 m 是实数, 关于 x 的方程 $x^2 mx + 1 = 0$ 的两个复数根为 α, β . 若 $|\alpha \beta| = 1$, 求 m 的值.
- (003546) 设 m 是实数. 若关于 x 的方程 $2x^2 + 3mx + m^2 m = 0$ 至少有一个模为 1 的根. 求 m 的值.
- (003547) 实数 -2 的平方根为_____.
- (003548) 实数 -1 的立方根为_____.
- $q = \underline{\hspace{1cm}}$
- (003550) 计算: $i \cdot i^2 \cdot i^3 \cdot \cdots \cdot i^{100} =$
- (003551) 设 m 是实数, 关于 x 的方程 $x^2 2\sqrt{2}x + m = 0$ 的两个复数根为 α, β .
- (1) 若 $|\alpha \beta| = 3$, 求实数 m 的值;
- (2) 若 $|\alpha| + |\beta| = 3$, 求实数 m 的值.
- (003552) 设 m 是实数, 若 α 是实系数一元二次方程 $mx^2 + x + 1 = 0$ 的根, 且满足 $|\alpha + 1| = 1$, 求 m 的取值 范围.
- (003553) 已知关于 x 的方程 $x^2 + (4+i)x + 3 + pi = 0 (p \in \mathbf{R})$ 有实数根, 求 p 的值, 并解这个方程.
- (003554) 若矩阵 $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ 为 n 阶单位阵,则 a-b-c+d+n=_____. (003555) 方程组 $\begin{cases} 2x+y=7, \\ x-y=2 \end{cases}$ 的系数行列式的值为______, 系数矩阵的行向量为_
- $(003556) 行列式 \begin{vmatrix} 1 & 2 & 0 \\ 1 & 5 & 1 \\ 1 & 8 & 0 \end{vmatrix} = ____.$
- (003557) 在三阶行列式 | 1 2 3 | 中, 元素 6 的余子式为______, 元素 8 的代数余子式的值为_____.

 7 8 -9
- (003558) 关于 x、y 的方程组 $\begin{cases} mx+2y=m+4, \\ 2x+my=m \end{cases}$ 无解,则实数 m=______. (003559) 设 m 是实数,解关于 x,y 的方程组 $\begin{cases} mx+2y=m, \\ x+(m-1)y=-m. \end{cases}$

(003560) 已知关于
$$x,y,z$$
 的方程组
$$\begin{cases} x+y+z=1, \\ x+y+az=1, \\ x+ay+a^2z=2, \end{cases}$$
 其中 $a \in \mathbf{R}$

$$\begin{cases} x+y+z=1, \\ x+y+az=1, & \hbox{其中 } a \in \mathbf{R}. \\ x+ay+a^2z=2, \end{cases}$$
 (1) 若关于 x 、 y 的方程组
$$\begin{cases} a_1x+b_1y=c_1, \\ a_2x+b_2y=c_2 \end{cases}$$
 可以用矩阵记号
$$\begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}$$
 来表示,请试给出上

述三元一次方程组的矩阵

- (2) 用行列式的方法解此方程组.
- (003561) 已知平面直角坐标系内点 A(0,3), 点 B(2,0), 点 $C(5,\lambda)$.
- (1) 若三角形 ABC 面积为 10, 求 λ 的值;
- (2) 若 A, B, C 三点共线, 求 λ 的值.

$$(003563) 将 a \begin{vmatrix} 1 & 2 \\ 0 & 4 \end{vmatrix} + b \begin{vmatrix} -1 & 3 \\ 0 & 4 \end{vmatrix} + c \begin{vmatrix} -1 & 3 \\ 1 & 2 \end{vmatrix}$$
 化为一个三阶行列式:
$$\begin{vmatrix} a & -1 & 3 \\ - & - & - \\ - & - & - \end{vmatrix}.$$

$$(003564)$$
 若关于 x 、 y 的方程组
$$\begin{cases} mx + y = -1, \\ x + my = 1 \end{cases}$$
 有解,则实数 m 的取值范围为______.

$$(003564)$$
 若关于 x 、 y 的方程组
$$\begin{cases} mx+y=-1, \\ x+my=1 \end{cases}$$
 有解,则实数 m 的取值范围为______.
$$(003565)$$
 关于 x,y,z 的方程组
$$\begin{cases} x+y+az=1, \\ x+ay+z=a, \\ x-y+z=3 \end{cases}$$
 的增广矩阵是______; 若此方程组有唯一解,则实数 a

的取值范围为___

$$(003566)$$
 设 m 是实数,用行列式的方法解关于 x 、 y 的方程组
$$\begin{cases} (m+1)x - (2m-1)y = 3m, \\ (3m+1)x - (4m-1)y = 5m+4. \end{cases}$$

(003568)540 的不同的正约数共有_______ 个, 这些正约数中是 3 的倍数的有______ 个.

(003569)3000 和 8000 之间有______ 个能被 5 整除的且在数位上无重复数字的数.

(003570) 平面上有 10 个点, 其中除有 4 个点在同一条直线上外, 不再有其它三点共线的情形, 经过这些点可以 确定______ 条直线.

(003571) 从 5 男 3 女共 8 名学生中选出队	长 1 人, 副队长 1 人, 普通队员 2 人组成 4 人志愿者服务队, 要	求
服务队中至少有 1 名女生, 共有	种不同的选法 (用数字作答).	

(003573) 化简: (1) $1 + 2C_n^1 + 4C_n^2 + \dots + 2^nC_n^n =$ ______;

(2)
$$C_3^3 + C_4^3 + C_5^3 + \dots + C_n^3 = \underline{\hspace{1cm}}$$

(003575) 从一副 52 张扑克牌中随机抽取 4 张牌.

(1) 在放回抽取的情形下, 4 张牌都是 A 的概率为______; (2) 在不放回抽取的情形下, 4 张牌都是 A 的概率为______.

 $(003576)^*$ 已知总体的各个体的值由小到大依次为 2,3,3,7,a,b,12,13.7,18.3,20, 且总体的中位数为 10.5. 若要使该总体的方差最大,则 a=_________.

(003577) 有 3 名男生, 4 名女生, 全体排成一行, 在下列不同的要求下, 分别求不同排列的方法数:

- (1) 男生必须排在一起;
- (2) 任意两个男生都不相邻;
- (3) 甲不在最左边, 乙不在最右边;
- (4) 甲必须站在乙的左方 (不一定相邻);
- (5) 其中甲、乙、丙三人从左至右的顺序不变 (都不一定相邻).

(003578) 求二项式 $(2+x^2)^{32}$ 展开式中,

- (1) 二项式系数最大的项;
- (2) 系数最大的项;
- (3) 所有项的系数之和.

(003579) 某中学共有学生 2000 名, 各年级男、女生人数如下表.

	一年级	二年级	三年级
女生	373	x	y
男生	377	370	z

已知在全校学生中随机抽取 1 名, 抽到二年级女生的概率是 0.19.

- (1) 求 x 的值;
- (2) 现用分层抽样的方法在全校抽取 48 名学生, 问应在三年级抽取多少名?
- (3) 已知 $y \ge 245$, $z \ge 245$, 求三年级中女生比男生多的概率.

$$(003580)$$
 已知 $C_{18}^{2x} = C_{18}^{x+3}$, 则 $x=$

(003581) 用 0、1、2、3、4、5 组成的无重复数字的数中比 240135 大的数有______ 个.

(003582) 甲、乙、丙三人值周一至周六的班, 每人值两天班, 若甲不值周一、乙不值周六, 则可排出不同的值班表数为______.

(003585) 已知 $a,b \in \{-3,-2,-1,1,2,3\}$ 且 $a \neq b$, 则复数 z = a + bi 对应点在第二象限的概率为______(用最简分数表示).

(003586) 盒子中装着标有 1,2,3,4 的卡片各两张, 从盒中任取 3 张, 每张卡片被抽到的概率相等, 则抽出的 3 张卡片上的数字互不相同的概率为______.

(003587) 某区有 200 名学生参加数学竞赛, 随机抽取 10 名学生成绩如下:

成绩	40	50	60	70	80	90
人数	2	1	2	2	1	2

则总体标准差的点估计值是 .(精确到 0.01)

(003588) 某学校组织学生参加英语测试,成绩的频率分布直方图如图所示,数据的分组依 [20,40), [40,60), [60,80), [80,100), 若低于 60 分的人数是 15 人,则该班的学生人数是______.

(003589) 已知 $z_1 = 1 + i$, $z_2 = 2 + 3i(i$ 是虚数单位), 则 $z_1 + z_2 =$ _____.

(003590) 已知 $A = \{x | 2x \le 1\}, B = \{-1, 0, 1\}, 则 A \cap B = _____.$

(003591) 已知圆 $x^2 + y^2 - 2x - 4y = 0$,则该圆的圆心坐标为

(003592) 如图, 正方形 ABCD 的边长为 3, 则 $\overrightarrow{AB} \cdot \overrightarrow{AC} =$.

(003593) 已知
$$f(x) = \frac{3}{x} + 2$$
, 则 $f^{-1}(1) =$ _____.

(003594) 已知二项式 $(x+a)^5$ 展开式中, x^2 项的系数为 80, 则 a =_____.

(003595) 已知实数 x,y 满足 $\begin{cases} x \leq 3, \\ 2x-y-2 \geq 0, & \text{则 } z=x-y \text{ 的最大值为} \\ 3x+y-8 \geq 0, \end{cases}$

(003596) 已知无穷等比数列 $\{a_n\}$ 和 $\{b_n\}$, 满足 $a_1=3,\ b_n=a_{2n},\ a_n$ 的各项和为 9, 则数列 $\{b_n\}$ 的各项和为______.

(003597) 已知圆柱的底面半径为 1,高为 2,AB 为上底面圆的一条直径,C 为下底面圆周上的一个动点,则 $\triangle ABC$ 的面积的取值范围为______.

(003598) 已知花博会有四个不同的场馆 A、B、C、D, 甲、乙两人每人选 2 个去参观, 则他们的选择中, 恰有一个场馆相同的概率为______.

(003599) 已知抛物线: $y^2 = 2px \ (p > 0)$,若第一象限的 A, B 两点在抛物线上,焦点为 $F, \ |AF| = 2, \ |BF| = 4,$ |AB| = 3,则直线 AB 的斜率为______.

(003600) 已知 $a_i \in \mathbf{N}^*$ $(i=1,2,\cdots,9)$, 若对任意的 $k \in \mathbf{N}^*$ $(2 \le k \le 8)$, $a_k = a_{k-1} + 1$ 或 $a_k = a_{k+1} - 1$ 中有且仅有一个成立,且 $a_1 = 6$, $a_9 = 9$, 则 $a_1 + a_2 + \cdots + a_9$ 的最小值为______.

(003601) 下列函数中, 既是奇函数又是减函数的是 ().

A.
$$y = -3x$$

$$Bu-r^2$$

C.
$$y = \log_3^x$$

$$D_{ij}u = 3$$

(003603) 已知 $f(x) = 3\sin x + 2$, 对任意的 $x_1 \in [0, \frac{\pi}{2}]$, 都存在 $x_2 \in [0, \frac{\pi}{2}]$, 使得 $f(x_1) + 2f(x_2 + \theta) = 3$ 成立,则在下列选项中 θ 可能的值为 ().

A.
$$\frac{3\pi}{5}$$

Α.

B.
$$\frac{4\pi}{5}$$

C.
$$\frac{6\pi}{5}$$

D.
$$\frac{7\pi}{5}$$

(003604) 已知两两不等的实数 $x_1, y_1, x_2, y_2, x_3, y_3$ 同时满足: ① $x_1 < y_1, x_2 < y_2, x_3 < y_3$; ② $x_1 + y_1 =$ $x_2 + y_2 = x_3 + y_3$; ③ $x_1y_1 + x_3y_3 = 2x_2y_2 > 0$, 则下列选项中恒成立的是 ().

A.
$$2x_2 < x_1 + x_3$$

B.
$$2x_2 > x_1 + x_3$$
 C. $x_2^2 < x_1 x_3$ D. $x_2^2 > x_1 x_3$

C.
$$x_2^2 < x_1 x_3^2$$

D.
$$x_2^2 > x_1 x_3$$

(003605) 如图, 在长方体 $ABCD - A_1B_1C_1D_1$ 中, 已知 AB = BC = 2, $AA_1 = 3$.

- (1) 若点 P 是棱 A_1D_1 上的动点, 求三棱锥 C-PAD 的体积;
- (2) 求直线 AB₁ 与平面 ACC₁A₁ 的夹角大小.

(003606) 已知在 $\triangle ABC$ 中,A,B,C 所对边分别为 a,b,c, 且 $a=3,\,b=2c$.

- (1) 若 $A = \frac{2\pi}{3}$, 求 $\triangle ABC$ 的面积;
- (2) 若 $2\sin B \sin C = 1$, 求 $\triangle ABC$ 的周长.

(003607) 已知某企业今年 (2021 年) 第一季度的营业额为 1.1 亿元, 以后每个季度的营业额比上个季度增加 0.05 亿元, 该企业第一季度的利润为 0.16 亿元, 以后每季度比前一季度增长 4%.

- (1) 求 2021 年起前 20 季度营业额的总和;
- (2) 请问哪一季度的利润首次超过该季度营业额的 18%?

(003608) 已知椭圆 $\Gamma: \frac{x^2}{2} + y^2 = 1, F_1, F_2$ 是其左右焦点, 直线 l 过点 P(m,0) $(m < -\sqrt{2})$, 交椭圆 Γ 于 A, B两点, 且 A, B 都在 x 轴上方, 点 A 在线段 BP 上

- (1) 若 B 是上顶点, $|\overrightarrow{BF_1}| = |\overrightarrow{PF_1}|$, 求 m 的值;
- (2) 若 $\overrightarrow{F_1A} \cdot \overrightarrow{F_2A} = \frac{1}{3}$, 且原点 O 到直线 l 的距离为 $\frac{4\sqrt{15}}{15}$, 求直线 l 的方程;
- (3) 对于任意点 P, 是否存在唯一直线 l, 使得 $\overrightarrow{F_1A} \parallel \overrightarrow{F_2B}$ 成立? 若存在, 求出直线 l 的斜率; 若不存在, 请说明 理由.

(003609) 已知 f(x) 是定义在 R 上的函数, 若对任意的 $x_1, x_2 \in \mathbb{R}, x_1 - x_2 \in S$, 均有 $f(x_1) - f(x_2) \in S$, 则称 f(x) 是 "S— 关联"的.

- (1) 判断和证明 f(x) = 2x + 1 是否是 " $[0, +\infty)$ " 关联"的? 是否是 "[0, 1]" 关联"的?
- (2) 若 f(x) 是 "{3}- 关联"的, 且当 $x \in [0,3)$ 时, $f(x) = x^2 2x$, 解不等式 $2 \le f(x) \le 3$;
- (3) 证明: "f(x) 是 ' $\{1\}$ 一 关联' 的, 且是 ' $\{0,+\infty\}$ 一 关联' 的" 当且仅当 " $\{f(x)\}$ 是 ' $\{1,2\}$ 一 关联' 的".

(003610) 已知集合 $A = \{1, 2, 4\}, B = \{2, 4, 5\}, 则 A \cap B = ____.$

(003611) 计算:
$$\lim_{n\to\infty} \frac{n+1}{3n-1} =$$
______.

(003612) 已知复数 z = 1 - 2i(i 为虚数单位), 则 |z| =

(003613) 已知函数 $f(x) = x^3$, 则其反函数为

$$(003614)$$
 已知 x,y 满足
$$\begin{cases} x+y-2\geq 0, \\ x+2y-3\leq 0, & \text{则 } z=y-2x \text{ 的最大值为}___. \\ y\geq 0, \end{cases}$$

(003616) 已知等差数列 $\{a_n\}$ 的首项 $a_1 \neq 0$, 且满足 $a_1 + a_{10} = a_9$, 则 $\frac{a_1 + a_2 + \cdots + a_9}{a_{10}} = \underline{\phantom{a_1 + a_2 + \cdots + a_9 + a_{10}}}$

(003617) 已知有四个数 1,2,a,b, 这四个数的中位数为 3, 平均数为 4, 则 ab=___

(003618) 从 6 个人选 4 个人去值班, 每人值班一天, 第一天安排 1 个人, 第二天安排 1 个人, 第三天安排 2 个 人,则共有______ 种安排情况.

(003619) 已知椭圆 C : $\frac{x^2}{4}+\frac{y^2}{3}=1,$ 直线 l 经过椭圆右焦点 F, 交椭圆 C 于 P,Q 两点 (点 P 在第二象限), 若 Q 关于 x 轴对称的点为 Q', 且满足 $PQ \perp FQ'$, 则直线 l 的方程为

(003620) 已知 $a \in \mathbf{R}$, 若存在定义域为 \mathbf{R} 的函数 f(x) 同时满足下列两个条件, ① 对任意 $x_0 \in \mathbf{R}$, $f(x_0)$ 的值 为 x_0 或 x_0^2 ; ② 关于 x 的方程 f(x) = a 无实数解; 则 a 的取值范围为______.

(003621) 已知 $\overrightarrow{a_1}, \overrightarrow{a_2}, \overrightarrow{b_1}, \overrightarrow{b_2}, \cdots, \overrightarrow{b_k}$ $(k \in \mathbf{N}^*)$ 是平面内两两互不相等的向量, 满足 $|\overrightarrow{a_1} - \overrightarrow{a_2}| = 1$, 且 $|\overrightarrow{a_i} - \overrightarrow{b_j}| \in$ $\{1,2\}$ (其中 $i=1,2, j=1,2,\cdots,k$), 则 k 的最大值为____

(003622) 下列不等式恒成立的是().

A.
$$a^2 + b^2 \le 2ab$$
 B. $a^2 + b^2 \ge -2ab$ C. $a + b \ge 2\sqrt{|ab|}$ D. $a + b \ge -2\sqrt{|ab|}$

B
$$a^2 + b^2 > -2ab$$

$$C \quad a+b > 2\sqrt{|ab|}$$

D
$$a+b \ge -2\sqrt{|ab|}$$

(003623) 已知直线方程 3x + 4y + 1 = 0 的一个参数方程可以是 (

A.
$$\begin{cases} x = 1 + 3t, \\ y = -1 + 4t \end{cases}$$
 B.
$$\begin{cases} x = 1 - 4t, \\ y = -1 - 3t \end{cases}$$
 C.
$$\begin{cases} x = 1 - 3t, \\ y = -1 + 4t \end{cases}$$
 D.
$$\begin{cases} x = 1 + 4t, \\ y = -1 - 3t \end{cases}$$

(003624) 在棱长为 10 的正方体 $ABCD - A_1B_1C_1D_1$ 中,P 为左侧面 ADD_1A_1 上一点, 已知点 P 到 A_1D_1 的 距离为 3, P 到 AA_1 的距离为 2, 则过点 P 且与 A_1C 平行的直线相交的正方体的面是 (

A. ABCD

B. BB_1C_1C

C. CC_1D_1D

D. AA_1B_1B

(003625) 命题 p: 存在 $a \in \mathbb{R}$ 且 $a \neq 0$, 对任意的 $x \in \mathbb{R}$, 均有 f(x+a) < f(x) + f(a) 恒成立. 已知命题 q_1 : f(x) 单调递减, 且 f(x) > 0 恒成立; 命题 q_2 : f(x) 单调递增, 且存在 $x_0 < 0$ 使得 $f(x_0) = 0$. 则下列说法正确 的是(

A. q_1 、 q_2 都是 p 的充分条件

B. 只有 q_1 是 p 的充分条件

C. 只有 q_2 是 p 的充分条件

D. q_1 、 q_2 都不是 p 的充分条件

(003626) 已知边长为 1 的正方形 ABCD, 正方形 ABCD 绕 BC 旋转形成一个圆柱.

- (1) 求圆柱的表面积;
- (2) 正方形 ABCD 绕 BC 逆时针旋转 $\frac{\pi}{2}$ 到 A_1BCD_1 , 求 AD_1 与平面 ABCD 所成的角.

(003627) 已知 $f(x) = \sin \omega x (\omega > 0)$.

- (1) f(x) 的周期是 4π , 求 ω , 并求此时 $f(x)=\frac{1}{2}$ 的解集; (2) 已知 $\omega=1,\ g(x)=f^2(x)+\sqrt{3}f(-x)f(\frac{\pi}{2}-x),\ x\in[0,\frac{\pi}{4}],$ 求 g(x) 的值域.

(003628) 在研究某市交通情况时, 道路密度是指该路段上一定时间内通过的车辆数除以时间, 车辆密度是该 路段一定时间内通过的车辆数除以该路段的长度, 现定义交通流量为 $v=rac{q}{x}, x$ 为道路密度, q 为车辆密度,

$$v = f(x) = \begin{cases} 100 - 135(\frac{1}{3})^{\frac{80}{x}}, & 0 < x < 40, \\ -k(x - 40) + 85, & 40 \le x \le 80, \end{cases} k > 0.$$

- (1) 若交通流量 v > 95, 求道路密度 x 的取值范围:
- (2) 若道路密度 x=80 时, 测得交通流量 v=50, 求车辆密度 q 的最大值.

(003629) 双曲线 $C_1: \frac{x^2}{4} - \frac{y^2}{b^2} = 1$ 与圆 $C_2: x^2 + y^2 = 4 + b^2 \; (b>0)$ 交于点 $A(x_A,y_A)$ (第一象限), 曲线 Γ 由 所有在 C_1 或 C_2 上, 且满足 $|x|>x_A$ 的点组成, C_2 与 x 轴的左、右交点分别记作 F_1,F_2 .

(1) 若 $x_A = \sqrt{6}$, 求 b 的值;

- (2) 若 $b = \sqrt{5}$, 点 P 在曲线 Γ 上, 且在第一象限, $|PF_1| = 8$, 求 $\angle F_1 PF_2$;
- (3) 点 $D(0,\frac{b^2}{2}+2)$, 过该点的直线斜率为 $-\frac{b}{2}$ 的 l 和 Γ 有且只有两个交点, 记作 M,N, 用 b 表示 $\overrightarrow{OM}\cdot\overrightarrow{ON}$, 并求 $\overrightarrow{OM}\cdot\overrightarrow{ON}$ 的取值范围.

(003630) 已知有限数列 $\{a_n\}$, 若满足 $|a_1-a_2| \leq |a_1-a_3| \leq \cdots \leq |a_1-a_m|$, m 是项数, 则称 $\{a_n\}$ 满足性质 P.

- (1) 判断数列 3, 2, 5, 1 和 4, 3, 2, 5, 1 是否具有性质 P, 请说明理由;
- (2) 若首项 $a_1 = 1$, 公比为 q 的等比数列, 项数为 10, 具有性质 P, 求 q 的取值范围;
- (3) 若 $\{a_n\}$ 是 $1, 2, \dots, m$ 的一个排列 $(m \ge 4), \{b_n\}$ 符合 $b_k = a_{k+1}(k = 1, 2, \dots, m-1), \{a_n\}, \{b_n\}$ 都具有性质 P, 求所有满足条件的 $\{a_n\}$.
- (003631) 已知集合 $A = (-\infty, 3), B = (2, +\infty), 则 <math>A \cap B =$ _____.
- (003632) 已知 $z \in \mathbb{C}$. 若 $\frac{1}{z-5} = i(i 为虚数单位)$, 则 $z = ______$.
- (003633) 已知向量 $\overrightarrow{a} = (1,0,2), \overrightarrow{b} = (2,1,0), 则 <math>\overrightarrow{a}$ 与 \overrightarrow{b} 的夹角为_______.
- (003634) 在二项式 $(2x+1)^5$ 的展开式中, x^2 的系数是_____.

$$(003635)$$
 已知 x,y 满足 $\begin{cases} x \geq 0, \\ y \geq 0, \end{cases}$ 则 $2x - 3y$ 的最小值为______.
$$x + y \leq 2,$$

- (003636) 已知函数 f(x) 的周期为 1, 当 $0 < x \le 1$ 时, $f(x) = \log_2 x$, 则 $f\left(\frac{3}{2}\right)$ 的值为______
- (003637) 已知 $x,y \in \mathbf{R}^*$, 且满足 $\frac{1}{x} + 2y = 3$, 则 $\frac{y}{x}$ 的最大值为______.
- (003638) 已知数列 $\{a_n\}$ 的前 n 项和为 S_n , 且满足 $S_n + a_n = 2$, 则 $S_5 =$ ______.
- (003639) 过曲线 $y^2=4x$ 的焦点 F 并垂直于 x 轴的直线分别与曲线 $y^2=4x$ 交于 A、B, A 在 B 的上方, M 为抛物线上一点, $\overrightarrow{OM}=\lambda\overrightarrow{OA}+(\lambda-2)\overrightarrow{OB}$, 则 $\lambda=$
- (003640) 某三位数密码,每位数字可在 $0 \le 9$ 这 10 个数字中任选一个,则该三位数密码中,恰有两位数字相同的概率是______.
- (003641) 已知数列 $\{a_n\}$ 满足 $a_n < a_{n+1} \ (n \in \mathbb{N}^*)$,若 $P_n(n,a_n) \ (n \geq 3)$ 均在双曲线 $\frac{x^2}{2} \frac{y^2}{6} = 1$ 上,则 $\lim_{n \to \infty} |P_n P_{n+1}| = \underline{\hspace{1cm}}$.
- (003642) 已知 $f(x) = \left| \frac{2}{x-1} a \right| \ (x > 1, \ a > 0), \ f(x)$ 的图像与 x 轴的交点为 A, 若对于 f(x) 的图像上任意一点 P, 在其图像上总存在另一点 $Q(P \setminus Q)$ 异于 A), 满足 $AP \perp AQ$, 且 |AP| = |AQ|, 则 a =______.
- (003643) 已知直线 l 的方程为 2x-y+c=0, 则 l 的一个方向向量 \overrightarrow{d} 可以是 ().
- A. (2,-1) B. (2,1) C. (-1,2)

(003644) 一个直角三角形的两直角边长分别为 1 和 2, 将该三角形分别绕其两直角边所在直线旋转, 得到的两个圆锥的体积之比为 ().

(003645) 已知 $\omega \in \mathbb{R}$, 函数 $f(x) = (x-6)^2 \cdot \sin(\omega x)$. 若存在常数 $a \in \mathbb{R}$, 使得 f(x+a) 为偶函数, 则 ω 的值可能为 ().

A.
$$\frac{\pi}{2}$$

B.
$$\frac{\pi}{3}$$

C.
$$\frac{\pi}{4}$$

D.
$$\frac{\pi}{5}$$

(003646) 已知 $\tan \alpha \tan \beta = \tan(\alpha + \beta)$, 有下列两个结论: ① 存在 α 在第一象限, β 在第三象限; ② 存在 α 在第二象限, β 在第四象限; 则 ().

A. (1)(2)均正确

B. ①②均错误

C. ①对②错

D. ①错②对

(003647) 如图, 在长方体 $ABCD - A_1B_1C_1D_1$ 中, M 为 BB_1 上一点, 已知 BM = 2, CD = 3, AD = 4, $AA_1 = 5$.

- (1) 求直线 A_1C 与平面 ABCD 的夹角;
- (2) 求点 A 到平面 A_1MC 的距离.

(003648) 已知 $f(x) = ax + \frac{1}{x+1}, \ a \in \mathbf{R}.$

- (1) 已知 a = 1 时, 求不等式 f(x) + 1 < f(x+1) 的解集;
- (2) 若 f(x) 在 $x \in [1, 2]$ 时有零点, 求 a 的取值范围.

(003649) 如图, A-B-C 为海岸线, AB 为线段, $\stackrel{\frown}{BC}$ 为四分之一圆弧. BD=39.2km, $\angle BDC=22^\circ$, $\angle CBD=68^\circ$, $\angle BDA=58^\circ$.

- (1) 求 BC 的长度;
- (2) 若 AB = 40km, 求 D 到海岸线 A B C 的最短距离 (精确到 0.001km).

(003650) 已知椭圆 $\frac{x^2}{8} + \frac{y^2}{4} = 1$, F_1 、 F_2 为左、右焦点, 直线 l 过 F_2 , 交椭圆于 A、B 两点.

- (1) 若直线 l 垂直于 x 轴, 求 |AB|;
- (2) 当 $\angle F_1AB = 90^\circ$, A 在 x 轴上方时, 求 A、B 的坐标;
- (3) 若直线 AF_1 交 y 轴于 M, 直线 BF_1 交 y 轴于 N, 是否存在直线 l, 使得 $S_{\triangle F_1AB} = S_{\triangle F_1MN}$? 若存在, 求出直线 l 的方程: 若不存在, 说明理由.

(003651) 数列 $\{a_n\}$ $(n=1,2,3,\cdots,100)$ 有 100 项, $a_1=a$, 且对任意 $n=2,3,\cdots,100$, 存在 $a_n=a_i+d$, $i=1,2,\cdots,n-1$. 若 a_k 与前 k-1 项中某一项相等, 则称 a_k 具有性质 P.

- (1) 若 $a_1 = 1$, d = 2, 求 a_4 的所有可能的值;
- (2) 若 $\{a_n\}$ 不是等差数列, 求证: 数列 $\{a_n\}$ 中存在某些项具有性质 P;
- (3) 若 $\{a_n\}$ 中恰有三项具有性质 P, 这三项之和为 c, 请用 a,d,c 表示 $a_1 + a_2 + \cdots + a_{100}$.

$$(003652)$$
 行列式 $\begin{vmatrix} 4 & 1 \\ 2 & 5 \end{vmatrix}$ 的值为_____.

(003653) 双曲线 $\frac{x^2}{4} - y^2 = 1$ 的渐近线方程为______.

(003654) 在 $(1+x)^7$ 的二项展开式中, x^2 项的系数为_____(结果用数值表示).

(003655) 设常数 $a \in \mathbb{R}$, 函数 $f(x) = \log_2(x+a)$. 若 f(x) 的反函数的图像经过点 (3,1), 则 a =_____.

(003656) 已知复数 z 满足 (1+i)z = 1 - 7i(i 是虚数单位), 则 |z| =_____.

(003657) 记等差数列 $\{a_n\}$ 的前 n 项和为 S_n . 若 $a_3 = 0$, $a_6 + a_7 = 14$, 则 $S_7 =$ ______.

(003659) 在平面直角坐标系中,已知点 A(-1,0)、B(2,0), E、F 是 y 轴上的两个动点,且 |EF|=2,则 $\overrightarrow{AE} \cdot \overrightarrow{BF}$ 的最小值为______.

(003660) 有编号互不相同的五个砝码, 其中 5 克、3 克、1 克砝码各一个, 2 克砝码两个. 从中随机选取三个,则这三个砝码的总质量为 9 克的概率是 (结果用最简分数表示).

(003661) 设等比数列 $\{a_n\}$ 的通项公式为 $a_n=q^{n-1}\ (n\in \mathbf{N}^*)$,前 n 项和为 S_n . 若 $\lim_{n\to\infty}\frac{S_n}{a_{n+1}}=\frac{1}{2}$,则 $q=\underline{\qquad}$

(003662) 已知常数 a>0,函数 $f(x)=\frac{2^x}{2^x+ax}$ 的图像经过点 $P\left(p,\frac{6}{5}\right)$, $Q\left(q,-\frac{1}{5}\right)$. 若 $2^{p+q}=36pq$,则 $a=___$

(003663) 已知实数 x_1 、 x_2 、 y_1 、 y_2 满足: $x_1^2 + y_1^2 = 1$, $x_2^2 + y_2^2 = 1$, $x_1x_2 + y_1y_2 = \frac{1}{2}$, 则 $\frac{|x_1 + y_1 - 1|}{\sqrt{2}} + \frac{|x_2 + y_2 - 1|}{\sqrt{2}}$ 的最大值为______.

(003664) 设 P 是椭圆 $\frac{x^2}{5}+\frac{y^2}{3}=1$ 上的动点,则 P 到该椭圆的两个焦点的距离之和为 $(\hspace{1em}).$

A. $2\sqrt{2}$

B. $2\sqrt{3}$

C. $2\sqrt{5}$

D. $4\sqrt{2}$

 $(003665) \ \mathbf{已知} \ a \in \mathbf{R}, \ \mathbf{M} \ "a > 1" \ \mathbf{\mathcal{E}} \ "\frac{1}{a} < 1" \ \mathbf{n} \ (\hspace{0.5cm}).$

A. 充分非必要条件

B. 必要非充分条件

C. 充要条件

D. 既非充分又非必要条件

(003666) 《九章算术》中, 称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马. 设 AA_1 是正六棱柱的一条侧棱, 如图. 若阳马以该正六棱柱的顶点为顶点、以 AA_1 为底面矩形的一边, 则这样的阳马的个数是 ().

A. 4

B. 8

C. 12

D. 16

(003667) 设 D 是含数 1 的有限实数集, f(x) 是定义在 D 上的函数. 若 f(x) 的图像绕原点逆时针旋转 $\frac{\pi}{6}$ 后与原图像重合, 则在以下各项中, f(1) 的可能取值只能是 ().

A. $\sqrt{3}$

B. $\frac{\sqrt{3}}{2}$

C. $\frac{\sqrt{3}}{3}$

D. 0

(003668) 已知圆锥的顶点为 P, 底面圆心为 O, 半径为 2.

- (1) 设圆锥的母线长为 4, 求圆锥的体积;
- (2) 设 PO=4, OA、OB 是底面半径, 且 $\angle AOB=90^\circ$, M 为线段 AB 的中点, 如图, 求异面直线 PM 与 OB 所成的角的大小.

(003669) 设常数 $a \in \mathbf{R}$, 函数 $f(x) = a \sin 2x + 2 \cos^2 x$.

- (1) 若 f(x) 为偶函数, 求 a 的值;
- (2) 若 $f\left(\frac{\pi}{4}\right) = \sqrt{3} + 1$, 求方程 $f(x) = 1 \sqrt{2}$ 在区间 $[-\pi, \pi]$ 上的解.

(003670) 某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时. 某地上班族 S 中的成员仅以自驾或公交方式通勤. 分析显示: 当 S 中 x% (0 < x < 100) 的成员自驾时,自驾群体的人均通勤时间为

$$f(x) = \begin{cases} 30, & 0 < x \le 30, \\ 2x + \frac{1800}{x} - 90, & 30 < x < 100 \end{cases}$$
 (单位: 分钟),

而公交群体的人均通勤时间不受 x 影响, 恒为 40 分钟. 试根据上述分析结果回答下列问题:

- (1) 当 x 在什么范围内时, 公交群体的人均通勤时间少于自驾群体的人均通勤时间;
- (2) 求该地上班族 S 的人均通勤时间 g(x) 的表达式; 讨论 g(x) 的单调性, 并说明其实际意义.

(003671) 设常数 t > 2. 在平面直角坐标系 xOy 中, 已知点 F(2,0), 直线 l: x = t, 曲线 $\Gamma: y^2 = 8x$ ($0 \le x \le t$, $y \ge 0$). l = x 轴交于点 A、与 Γ 交于点 B. P、Q 分别是曲线 Γ 与线段 AB 上的动点.

- (1) 用 t 表示点 B 到点 F 的距离;
- (2) 设 t=3, |FQ|=2, 线段 OQ 的中点在直线 FP 上, 求 $\triangle AQP$ 的面积;
- (3) 设 t=8, 是否存在以 $FP \times FQ$ 为邻边的矩形 FPEQ, 使得点 E 在 Γ 上? 若存在, 求点 P 的坐标; 若不存在, 说明理由.

(003672) 给定无穷数列 $\{a_n\}$, 若无穷数列 $\{b_n\}$ 满足: 对任意 $n \in \mathbb{N}^*$, 都有 $|b_n - a_n| \le 1$, 则称 $\{b_n\}$ 与 $\{a_n\}$ "接近".

- (1) 设 $\{a_n\}$ 是首项为 1, 公比为 $\frac{1}{2}$ 的等比数列, $b_n=a_{n+1}+1,\ n\in \mathbf{N}^*$. 判断数列 $\{b_n\}$ 是否与 $\{a_n\}$ 接近, 并说明理由;
- (2) 设数列 $\{a_n\}$ 的前四项为: $a_1=1,\ a_2=2,\ a_3=4,\ a_4=8,\ \{b_n\}$ 是一个与 $\{a_n\}$ 接近的数列,记集合 $M=\{x|x=b_i,\ i=1,2,3,4\},$ 求 M 中元素的个数 m;
- (3) 已知 $\{a_n\}$ 是公差为 d 的等差数列. 若存在数列 $\{b_n\}$ 满足: $\{b_n\}$ 与 $\{a_n\}$ 接近, 且在 $b_2-b_1, b_3-b_2, \cdots, b_{201}-b_{200}$ 中至少有 100 个为正数, 求 d 的取值范围.

(003673) 已知集合 $A = \{1, 2, 3, 4\}, B = \{3, 4, 5\}, 则 A \cap B = _____.$

(003674) 若排列数 $P_6^m = 6 \times 5 \times 4$, 则 $m = _____$.

(003675) 不等式 $\frac{x-1}{x} > 1$ 的解集为______.

(003676) 已知球的体积为 36π , 则该球主视图的面积等于______

(003677) 已知复数 z 满足 $z + \frac{3}{z} = 0$, 则 $|z| = _____.$

(003678) 设双曲线 $\frac{x^2}{9}-\frac{y^2}{b^2}=1$ (b>0) 的焦点为 F_1 、 F_2 , P 为该双曲线上的一点,若 $|PF_1|=5$,则 $|PF_2|=$ ______.

(003679) 如图, 以长方体 $ABCD - A_1B_1C_1D_1$ 的顶点 D 为坐标原点, 过 D 的三条棱所在的直线为坐标轴, 建立空间直角坐标系. 若 $\overrightarrow{DB_1}$ 的坐标为 (4,3,2), 则 $\overrightarrow{AC_1}$ 的坐标是

(003680) 定义在 $(0,+\infty)$ 上的函数 y=f(x) 的反函数为 $y=f^{-1}(x)$. 若 $g(x)=\begin{cases} 3^x-1, & x\leq 0,\\ f(x), & x>0 \end{cases}$ 为奇函数,

则 $f^{-1}(x) = 2$ 的解为_____.

(003681) 已知四个函数: ① y=-x, ② $y=-\frac{1}{x}$, ③ $y=x^3$, ④ $y=x^{\frac{1}{2}}$. 从中任选 2 个,则事件"所选 2 个函 数的图像有且仅有一个公共点"的概率为_

(003682) 已知数列 $\{a_n\}$ 和 $\{b_n\}$, 其中 $a_n=n^2,\ n\in {\bf N}^*,\ \{b_n\}$ 的项是互不相等的正整数. 若对于任意 $n\in {\bf N}^*,$ $\{b_n\}$ 的第 a_n 项等于 $\{a_n\}$ 的第 b_n 项, 则 $\frac{\lg(b_1b_4b_9b_{16})}{\lg(b_1b_2b_3b_4)} =$ ______.

(003684) 如图, 用 35 个单位正方形拼成一个矩形, 点 P₁, P₂, P₃, P₄ 以及四个标记为 "▲" 的点在正方形的顶点 处, 设集合 $\Omega = \{P_1, P_2, P_3, P_4\}$, 点 $P \in \Omega$. 过 P 作直线 l_P , 使得不在 l_P 上的 " \blacktriangle " 的点分布在 l_P 的两侧. 用 $D_1(l_P)$ 和 $D_2(l_P)$ 分别表示 l_P 一侧和另一侧的 " \blacktriangle " 的点到 l_P 的距离之和. 若过 P 的直线 l_P 中有且只有一 条满足 $D_1(l_P) = D_2(l_P)$, 则 Ω 中所有这样的 P 为___

(003685) 关于 x、y 的二元一次方程组 $\begin{cases} x + 5y = 0, \\ 2x + 3y = 4 \end{cases}$ 的系数行列式 D 为 ().

A.
$$\begin{vmatrix} 0 & 5 \\ 4 & 3 \end{vmatrix}$$

B.
$$\begin{vmatrix} 1 & 0 \\ 2 & 4 \end{vmatrix}$$
 C. $\begin{vmatrix} 1 & 5 \\ 2 & 3 \end{vmatrix}$ D. $\begin{vmatrix} 6 & 0 \\ 5 & 4 \end{vmatrix}$

C.
$$\begin{vmatrix} 1 & 5 \\ 2 & 3 \end{vmatrix}$$

D.
$$\begin{vmatrix} 6 & 0 \\ 5 & 4 \end{vmatrix}$$

(003686) 在数列 $\{a_n\}$ 中, $a_n = \left(-\frac{1}{2}\right)^n$, $n \in \mathbb{N}^*$, 则 $\lim_{n \to \infty} a_n$ (). A. 等于 $-\frac{1}{2}$ B. 等于 0 C. 等于 $\frac{1}{2}$

A. 等于
$$-\frac{1}{2}$$

C. 等于
$$\frac{1}{2}$$

(003687) 已知 a,b,c 为实常数,数列 $\{x_n\}$ 的通项 $x_n = an^2 + bn + c, n \in \mathbb{N}^*, 则 "存在 <math>k \in \mathbb{N}^*,$ 使得 $x_{100+k}, x_{200+k}, x_{300+k}$ 成等差数列"的一个必要条件是().

A.
$$a \ge 0$$

B.
$$b \le 0$$

C.
$$c = 0$$

D.
$$a - 2b + c = 0$$

(003688) 在平面直角坐标系 xOy 中,已知椭圆 $C_1: \frac{x^2}{36} + \frac{y^2}{4} = 1$ 和 $C_2: x^2 + \frac{y^2}{9} = 1$. P 为 C_1 上的动点,Q 为 C_2 上的动点,w 是 $\overrightarrow{OP} \cdot \overrightarrow{OQ}$ 的最大值. 记 $\Omega = \{(P,Q)|P \oplus C_1 \bot$, $Q \oplus C_2 \bot$, 且 $\overrightarrow{OP} \cdot \overrightarrow{OQ} = w\}$,则 Ω 中的 元素有().

(003689) 如图, 直三棱柱 $ABC - A_1B_1C_1$ 的底面为直角三角形, 两直角边 AB 和 AC 的长分别为 4 和 2, 侧 棱 AA1 的长为 5.

- (1) 求三棱柱 $ABC A_1B_1C_1$ 的体积;
- (2) 设 M 是 BC 中点, 求直线 A_1M 与平面 ABC 所成角的大小.

(003690) 已知函数 $f(x) = \cos^2 x - \sin^2 x + \frac{1}{2}, \ x \in (0, \pi).$

- (1) 求 f(x) 的单调递增区间;
- (2) 设 $\triangle ABC$ 为锐角三角形, 角 A 所对的边 $a = \sqrt{19}$, 角 B 所对的边 b = 5, 若 f(A) = 0, 求 $\triangle ABC$ 的面积.

(003691) 根据预测, 某地第 n $(n \in \mathbb{N}^*)$ 个月共享单车的投放量和损失量分别为 a_n 和 b_n (单位: 辆), 其中 $a_n = \begin{cases} 5n^4 + 15, & 1 \le n \le 3, \\ b_n = n + 5, \ \text{\hat{g} n 个月底的共享单车的保有量是前 n 个月的累计投放量与累 } -10n + 470, & n \ge 4, \end{cases}$

计损失量的差.

- (1) 求该地区第 4 个月底的共享单车的保有量;
- (2) 已知该地共享单车停放点第 n 个月底的单车容纳量 $S_n = -4(n-46)^2 + 8800$ (单位: 辆). 设在某月底, 共 享单车保有量达到最大, 问该保有量是否超出了此时停放点的单车容纳量?

(003692) 在平面直角坐标系 xOy 中,已知椭圆 Γ : $\frac{x^2}{4}+y^2=1,$ A 为 Γ 的上顶点,P 为 Γ 上异于上、下顶点的动点. M 为 x 正半轴上的动点.

- (1) 若 P 在第一象限, 且 $|OP| = \sqrt{2}$, 求 P 的坐标;
- (2) 设 $P\left(\frac{8}{5},\frac{3}{5}\right)$. 若以 A,P,M 为顶点的三角形是直角三角形, 求 M 的横坐标;
- (3) 若 |MA|=|MP|, 直线 AQ 与 Γ 交于另一点 C, 且 $\overrightarrow{AQ}=2\overrightarrow{AC}$, $\overrightarrow{PQ}=4\overrightarrow{PM}$, 求直线 AQ 的方程.

(003693) 设定义在 R 上的函数 f(x) 满足: 对于任意的 $x_1, x_2 \in \mathbb{R}$, 当 $x_1 < x_2$ 时, 都有 $f(x_1) \leq f(x_2)$.

- (1) 若 $f(x) = ax^3 + 1$, 求 a 的取值范围;
- (2) 若 f(x) 是周期函数, 证明: f(x) 是常值函数;
- (3) 设 f(x) 恒大于零. g(x) 是定义在 R 上的、恒大于零的周期函数, M 是 g(x) 的最大值. 函数 h(x) = f(x)g(x). 证明: "h(x) 是周期函数"的充要条件是"f(x) 是常值函数".

(003695) 设实数 a, b, c 满足: $ac \neq 0$ 且 $a \neq c$, 集合 $A = \{y|y = ax^2 + bx + c, x \in \mathbf{R}\}, B = \{y|y = cx^2 + bx + a\},$ 以下结论一定正确的是 ().

A.
$$A \subseteq B$$

B.
$$B \subseteq A$$

C.
$$A \cup B = \mathbf{R}$$

D.
$$A \cap B \neq \emptyset$$

(003696) 对于无穷数列 $\{a_n\}$, 定义数列 $b_n = |a_{n+1} - a_n|$, 记 $\{b_n\}$ 的前 n 项和为 S_n , 若 $\lim_{n \to \infty} S_n$ 存在, 则称数列 $\{a_n\}$ 为 "好数列".

- (1) 若 $a_n = \frac{1}{n}$, 判断数列 $\{a_n\}$ 是否为 "好数列"? 并说明理由;
- (2) 若数列 $\{a_n\}$ 满足 $a_1 = 1$, $a_{n+1} = qa_n \ (q \neq 0)$, 且 $\{a_n\}$ 是 "好数列", 求 q 的取值范围;
- (3) 若递增数列 $\{a_n\}$ 的前 n 项和为 $\{T_n\}$,则 " $\{a_n\}$ 为 '好数列" 是 " $\{T_n\}$ 为 '好数列" 的什么条件? 判断并说明理由.

(003697) 函数 $f(x) = \sin x$, 对于 $x_1 < x_2 < x_3 < \dots < x_n$ 且 $x_1, x_2, \dots, x_n \in [0, 8\pi]$ $(n \ge 10, n \in \mathbb{N})$, 记 $M = |f(x_1) - f(x_2)| + |f(x_2) - f(x_3)| + |f(x_3) - f(x_4)| + \dots + |f(x_{n-1}) - f(x_n)|$, 则 M 的最大值等于_______.

$$(003698)$$
 设 $\alpha_1, \alpha_2 \in \mathbf{R}$, 且 $\frac{1}{2 + \sin \alpha_1} + \frac{1}{2 + \sin(2\alpha_2)} = 2$, 则 $|10\pi - \alpha_1 - \alpha_2|$ 的最小值等于______.

(003699) 正四棱锥 V-ABCD 的表面积为 12, AB=2, N 为棱 CD 的中点, 直线 AB 在平面 α 内. 将该正四棱锥绕直线 AB 任意旋转, 旋转过程中, 设 V 在 α 内的射影为 O, 则线段 ON 长的最大值为______.

(003700) 已知 a,b 为空间两条互相垂直的直线, 等腰 $Rt\triangle ABC$ 的直角边 AC 所在直线与 a,b 都垂直, 斜边 AB 以直线 AC 为旋转轴旋转. 有下列结论: ① 当直线 AB 与 a 所成的角为 60° 时, AB 与 b 所成的角为 30° ; ② 直线 AB 与 a 所成角的最小值为 45° ; ③ 直线 AB 与 a 所成角的最大值为 60° . 其中所有真命题的序号为______.

(003701) 已知数列 $\{a_n\}$ 满足: ① $a_1=0$; ② 对任意的 $n\in \mathbf{N}^*$,都有 $a_{n+1}>a_n$ 成立. 函数 $f_n(x)=|\sin\frac{1}{n}(x-a_n)|,\ x\in[a_n,a_{n+1}]$ 满足: 对于任意的实数 $m\in[0,1),\ f_n(x)=m$ 总是有且仅有两个不同的根,求 $\{a_n\}$ 的通项公式.

 $(003702) \ \textbf{设} \ \overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c} \ \textbf{ 是平面上的向量}, |\overrightarrow{a}| = 1, |\overrightarrow{b}| = 3, |\overrightarrow{c}| = 4, \ \textbf{且} \ \overrightarrow{b} \cdot \overrightarrow{c} = 0, \ \textbf{实数} \ \lambda \ \textbf{满足} \ 0 \leq \lambda \leq 1. \ \textbf{若}$ $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c} \ \textbf{\textit{Q}} \ \lambda, \ \textbf{使得} \ s = |\overrightarrow{a} - \lambda \overrightarrow{b} - (1 - \lambda) \overrightarrow{c}| \ \textbf{\textit{E}EE82}, \ \textbf{\textit{M}} \ s \ \textbf{\textit{o}} \ \textbf{\textit{e}} \ \textbf{\textit{o}} \ \textbf{\textit{e}} \ \textbf{\textit{e}} \ \textbf{\textit{e}}.$

(003703) 如图, 在平面内, l_1, l_2 是两条平行直线, 它们之间的距离为 2, 点 P 位于 l_1, l_2 的下方, 它到 l_1 的距离为 1, 动点 N, M 分别在 l_1, l_2 上, 满足 $|\overrightarrow{PM} + \overrightarrow{PN}| = 6$, 则 $\overrightarrow{PM} \cdot \overrightarrow{PN}$ 的最大值为 ().

(003704) 已知过原点 O 的直线与椭圆 $C: \frac{x^2}{4} + y^2 = 1$ 交于 A, B 两点, 点 A 到 y 轴的距离 d 满足 $d \in [1, 2)$, 点 D 在椭圆 C 上, 且 $AD \perp AB$, 直线 BD 与 x 轴、y 轴分别交于 M, N 两点.

- (1) 设直线 BD, AM 的斜率分别为 $k_1, k_2,$ 求 $k_1 \cdot k_2$ 的取值范围;
- (2) 求 △OMN 面积的最大值.

(003705) 已知点 $A(0,\frac{2}{n})$, $B(0,-\frac{2}{n})$, $C(4+\frac{2}{n},0)$, 其中 n 为正整数, 设 S_n 表示 $\triangle ABC$ 外接圆的面积, 则 $\lim_{n\to\infty}S_n=$ _____.

(003706) 如图所示: 矩形 $A_nB_nP_nQ_n$ 的一边 A_nB_n 在 x 轴上, 另两个顶点 P_n,Q_n 在函数 $f(x)=\frac{2x}{1+x^2}$ 的图像上 (其中点 B_n 的坐标为 (n,0) $(n\geq 2,\ n\in {\bf N}^*)$), 矩形 $A_nB_nP_nQ_n$ 的面积记为 S_n , 则 $\lim_{n\to\infty}S_n=$ _____.

(003707) 若全集 $U = \{x|x^2 - 7x + 12 \le 0\}$,集合 $M = \{x|3 < x < 4\}$, $N = \left\{x\left|\frac{x-3}{4-x} \ge 0\right.\right\}$,则 $\mathbb{C}_U M \cap \mathbb{C}_U N = \underline{\hspace{1cm}}$.

(003708) 设 $\alpha:2\leq x\leq 4,\ \beta:m+1\leq x\leq 2m+4,\ m\in{\bf R},$ 如果 α 是 β 的充分非必要条件, 则 m 的范围是______.

(003709) 若函数 $y=a^x+b(a>0$ 且 $a\neq 1)$ 的图像经过点 (1,7),其反函数的图像经过点 (4,0),则 a-b= .

(003710) 已知
$$\sin \theta = \frac{1}{4}$$
,则 $\sin \left[2 \left(\theta - \frac{\pi}{4} \right) \right] = \underline{\hspace{1cm}}$

(003711) 已知圆锥的母线长为 a, 轴截面 (过轴的截面) 为直角三角形, 则圆锥的全面积为_____

$$(003712)$$
 函数 $f(x) = 2 + \sin x - \tan 2x$, 如果 $f(a) = 1$, 则 $f(-a) =$ ______.

$$(003713)$$
 设 S_n 是等差数列 $\{a_n\}$ 的前 n 项和. 若 $\frac{S_3}{S_7} = \frac{1}{3}$, 则 $\frac{S_6}{S_7} = \underline{\hspace{1cm}}$

(003714) 若关于 x 的不等式 |x-3|-|x+2|>a 恒成立, 则实数 a 的范围是_____.

(003715) 若
$$S_n = \frac{1}{5} + \frac{2}{5^2} + \frac{1}{5^3} + \frac{2}{5^4} + \dots + \frac{1}{5^{2n-1}} + \frac{2}{5^{2n}}$$
, 则 $\lim_{n \to \infty} S_n = \underline{\qquad}$.

(003717) 设地球半径为 R, 甲地位于北纬 45° 东经 105° , 乙地位于南纬 30° 东经 105° , 则甲乙两地间的球面距离是_____.

A.
$$\frac{5\pi}{12}R$$

B.
$$\frac{7\pi}{12} F$$

C.
$$\frac{\sqrt{2}}{2}R$$

D.
$$\frac{\sqrt{3}}{2}R$$

$$(003718)$$
 已知函数 $f(x) = \begin{cases} \log_2(x+4), & x \geq 0, \\ f(x+1) - f(x+2), & x < 0, \end{cases}$ 则 $f(-3)$ 的值为_____.

D.
$$-2$$

(003719) 若集合 $A = \{x|x^2 - 2x < 0\}, B = \{x||x| < 1\}, 则 A \cup B$ 等于______.

$$(003720)$$
 函数 $y = \sqrt{2016^{1-x}}$ 的定义域是______.

(003721) 已知函数
$$f(x) = \begin{vmatrix} 1 & 1 \\ 1 & \log_2 x \end{vmatrix}$$
, 则 $f^{-1}(1) = \underline{\qquad}$.

(003722) 若复数 $\frac{1+{\rm i}}{1-{\rm i}}+\frac{1}{2}b\;(b\in{\bf R})$ 的实部的绝对值与虚部相等,则 b 的值为______

$$(003723) 已知 p 为常数, $a_n = \begin{cases} \frac{2n-1}{n+1}, & 1 \leq n \leq 2016, \\ \left(1+\frac{1}{n}\right)^p, & n > 2016, \end{cases}$ 则 $\lim_{n \to \infty} a_n = \underline{\qquad}$.$$

(003724) 若一个圆锥的母线与	轴的夹角为 $\arcsin rac{1}{3}$,则 i	该圆锥的侧面积是底面积的_	倍.
(003725) 设 $x \in \mathbb{R}$, 向量 $\overrightarrow{a} =$	$(x,1), \overrightarrow{b} = (1,2), \stackrel{\square}{\coprod} \overrightarrow{a}$	$\perp \overrightarrow{b}$,则 $ \overrightarrow{a} + \overrightarrow{b} =$	·
(003726) 若函数 $f(x) = \frac{k-1}{1+k}$	$\frac{2^x}{\cdot 2^x}$, $(k \neq 1, k \in \mathbf{R})$ 在2	定义域内为奇函数, 则 $k=$	·
(003727) 从集合 {0,1,2,3} 的的概率为	所有非空子集中, 等可能	地取出一个. 则取出的非空子	子集中所有元素之和恰为 5
(003728)(理科) 若对于任意的 为	实数 $x \in \mathbf{R}$,不等式 $2x$	$x^2 - a\sqrt{1+x^2} + 3 \ge 0$ 恒成	立, 则实数 a 的取值范围
(003729)" $(2x+1)x=0$ " 是 " x	c = 0" 哟 .		
A. 充分不必要条件		B. 必要不充分条件	
C. 充分必要条件		D. 既不充分也不必要条件	
(003730) 下列函数中, 与函数 ($y = x^{2n+1} \ (n \in \mathbf{N}^*)$ 的值	[域相同的函数为	
$A. y = \left(\frac{1}{2}\right)^{x+1} $ I	$3. y = \ln(x+1)$	C. $y = \frac{x+1}{x}$	D. $y = x + \frac{1}{x}$
(003731) 函数 $f(x) = x \cos 2x$	在区间 $[0,2\pi]$ 上的零点	的个数为	
A. 2	3. 3	C. 4	D. 5
(003732) 函数 $f(x) = \sqrt{27-3}$	^[2x+1] 的定义域是	(用区间表示)	
(003733) 已知椭圆中心在原点 是	${f i},$ 一个焦点为 $F(-2\sqrt{3})$,0), 且长轴长是短轴长的 2	倍,则该椭圆的标准方程
(003734) 实践中常采用"捉-放 将这 100 条鱼分别作一记号后 从而可以估计出鱼塘中的鱼约	有条.	鱼塘中随机捕捞出 108 条鱼	,其中有记号的鱼有 9 条
(003735) 若二项式 $\left(ax - \frac{\sqrt{3}}{6}\right)$	/		
(003736) 在 △ABC 中, 角 A, I		1	
(003737) 已知数列 $\{a_n\}$ 满足	$a_1 = a_2 = 1, \frac{a_{n+2}}{a_{n+1}} - \frac{a_{n-2}}{a_n}$	$\frac{+1}{n} = 1$,则 $a_6 - a_5$ 的值为	·
(003738) 直线 $x = 0, y = 0$ 于	与曲线 $y = \sqrt{4-x^2}$	所围成的图形绕 x 轴旋转一	周而成的旋转体的体积等
(003739) 点 P 在双曲线 $\frac{x^2}{a^2}$ — $\triangle F_1 P F_2$ 的三条边长成等差数	O .		卜焦点 , ∠F ₁ PF ₂ = 90°, 且

$(003740)($ 理科 $)$ 直角坐标系 xOy 中,以原点为极点, x 轴的正半轴为极轴建立极坐标系,已知曲线 $C_1:$ $\begin{cases} x=2+2\cos\theta, \\ y=2\sin\theta, \end{cases}$
为参数) 曲线 $C_2: \rho\cos\left(\theta+\frac{\pi}{3}\right)=t$, 若两曲线有公共点, 则实数 t 的取值范围是
(003741) 已知 $a>b$, 二次三项式 $ax^2+2x+b\geq 0$ 对于一切实数 x 恒成立. 又存在 $x_0\in \mathbf{R}$, 使得 $ax_0^2+2x_0+b=0$ 成立, 则 $\frac{a^2+b^2}{a-b}$ 的最小值为
(003742) 若 $a,b,c \in \mathbb{R}$, 且 $a > b$, 则下列不等式一定成立的是
A. $a + c \ge b - c$ B. $ac > bc$ C. $\frac{c^2}{a - b} > 0$ D. $(a - b)c^2 \ge 0$
(003743) 设数列 $\{a_n\}$, 下列正确的是
A. 若 $a_n^2=4^n,\;n\in\mathbf{N},$ 则 $\{a_n\}$ 为等比数列
B. 若 $a_n \cdot a_{n+2} = a_{n+1}^2, \ n \in \mathbf{N}^*, \ \mathbb{M} \ \{a_n\}$ 为等比数列
C. 若 $a_m \cdot a_n = 2^{m+n}, m, n \in \mathbb{N}, $ 则 $\{a_n\}$ 为等比数列
D. 若 $a_n \cdot a_{n+3} = a_{n+1} \cdot a_{n+2}, n \in \mathbb{N}, $ 则 $\{a_n\}$ 为等比数列
(003744) 我们规定 "渐近线" 的概念: 已知曲线 C , 如果存在有一条直线, 当曲线 C 上任一点 M 沿曲线运动时
M 可无限趋近于该直线但永远达不到,那么这条直线称为这条曲线的 "渐近线". 下列函数 ① $f(x)=x^2+2x-3$,
② $g(x) = 2^x + 1$, ③ $h(x) = \log_2(x - 1)$, ④ $t(x) = \frac{2x + 1}{x - 1}$, ⑤ $u(x) = \frac{x^2 + 2}{x}$, 其中有"渐近线"的个数为
A. 2 B. 3 C. 4 D. 5
(003745) 已知集合 $A = \{y y = \sin x, \ x \in \mathbf{R}\}, B = \{x x(2-x) > 0\}, 则 \ A \cup B =$
(a) (a) (a) (a) (a) (a) (a) (a) (b) (b) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c
(003746) 幂函数 $f(x)$ 的图像经过点 $(2,\sqrt{2})$, 且 $f^{-1}(x)$ 为 $f(x)$ 的反函数, 则 $f^{-1}(4) =$
(003746) 幂函数 $f(x)$ 的图像经过点 $(2,\sqrt{2}),$ 且 $f^{-1}(x)$ 为 $f(x)$ 的反函数, 则 $f^{-1}(4) =$
$(003746) 幂函数 \ f(x) \ \textbf{的图像经过点} \ (2,\sqrt{2}), \ \textbf{且} \ f^{-1}(x) \ \textbf{为} \ f(x) \ \textbf{的反函数}, \ \textbf{则} \ f^{-1}(4) = \$ $(003747) \ \ddot{\textbf{Z}} \ \log_a \frac{2}{3} < 1 \ (a>0, \ a\neq 1), \ \textbf{则实数} \ a \ \textbf{的取值范围为}\$
(003746) 幂函数 $f(x)$ 的图像经过点 $(2,\sqrt{2})$, 且 $f^{-1}(x)$ 为 $f(x)$ 的反函数, 则 $f^{-1}(4)=$ $ (003747) \ \ {\rm Hog}_a \ \frac{2}{3} < 1 \ (a>0, \ a\neq 1), \ {\rm Myc}$ 如 的取值范围为 $ (003748) ($ 理科) 设曲线 C 定义为到点 $(-1,-1)$ 和 $(1,1)$ 距离之和为 4 的动点的轨迹. 若将曲线 C 绕坐标原
(003746) 幂函数 $f(x)$ 的图像经过点 $(2,\sqrt{2})$, 且 $f^{-1}(x)$ 为 $f(x)$ 的反函数, 则 $f^{-1}(4)=$ $ (003747) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
(003746) 幂函数 $f(x)$ 的图像经过点 $(2,\sqrt{2})$, 且 $f^{-1}(x)$ 为 $f(x)$ 的反函数,则 $f^{-1}(4)=$ $ (003747) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
(003746) 幂函数 $f(x)$ 的图像经过点 $(2,\sqrt{2})$, 且 $f^{-1}(x)$ 为 $f(x)$ 的反函数,则 $f^{-1}(4)=$ (003747) 若 $\log_a \frac{2}{3} < 1$ $(a>0,\ a\neq 1)$,则实数 a 的取值范围为 (003748) (理科)设曲线 C 定义为到点 $(-1,-1)$ 和 $(1,1)$ 距离之和为 4 的动点的轨迹. 若将曲线 C 绕坐标原点逆时针旋转 45° ,则此时曲线 C 的方程为 $($ 文科)椭圆 $2x^2+3y^2=6$ 的焦距为 $($ 003749)已知无穷等比数列 $\{a_n\}$ 的各项和为 4 ,则首项 a_1 的取值范围为 $($ 003750)已知 $\left(\sqrt{x}+\frac{3}{\sqrt[3]{x}}\right)^n$ 展开式中,各项系数的和与各项二项式系数的和之差为 56 ,则 $n=$ $($ 003751)(理科)设口袋中有黑球、白球共 7 个,从中任取 2 个球,已知取到的白球的个数的数学期望为 $\frac{6}{7}$,则
(003746) 幂函数 $f(x)$ 的图像经过点 $(2,\sqrt{2})$, 且 $f^{-1}(x)$ 为 $f(x)$ 的反函数,则 $f^{-1}(4)=$ (003747) 若 $\log_a\frac{2}{3}<1$ $(a>0,\ a\ne 1)$,则实数 a 的取值范围为 (003748) (理科) 设曲线 C 定义为到点 $(-1,-1)$ 和 $(1,1)$ 距离之和为 4 的动点的轨迹. 若将曲线 C 绕坐标原点逆时针旋转 45° ,则此时曲线 C 的方程为 $($ 文科) 椭圆 $2x^2+3y^2=6$ 的焦距为 $($ 003749 $)$ 已知无穷等比数列 $\{a_n\}$ 的各项和为 4 ,则首项 a_1 的取值范围为 $($ 003750 $)$ 已知 $\left(\sqrt{x}+\frac{3}{\sqrt[3]{x}}\right)^n$ 展开式中,各项系数的和与各项二项式系数的和之差为 56 ,则 $n=$ $($ 003751 $)$ (理科) 设口袋中有黑球、白球共 7 个,从中任取 2 个球,已知取到的白球的个数的数学期望为 $\frac{6}{7}$,则口袋中白球的个数为
(003746) 幂函数 $f(x)$ 的图像经过点 $(2,\sqrt{2})$, 且 $f^{-1}(x)$ 为 $f(x)$ 的反函数,则 $f^{-1}(4)=$ (003747) 若 $\log_a \frac{2}{3} < 1$ $(a>0,\ a\neq 1)$,则实数 a 的取值范围为 (003748) (理科)设曲线 C 定义为到点 $(-1,-1)$ 和 $(1,1)$ 距离之和为 4 的动点的轨迹. 若将曲线 C 绕坐标原点逆时针旋转 45° ,则此时曲线 C 的方程为 $($ 文科)椭圆 $2x^2+3y^2=6$ 的焦距为 $($ 003749)已知无穷等比数列 $\{a_n\}$ 的各项和为 4 ,则首项 a_1 的取值范围为 $($ 003750)已知 $\left(\sqrt{x}+\frac{3}{\sqrt[3]{x}}\right)^n$ 展开式中,各项系数的和与各项二项式系数的和之差为 56 ,则 $n=$ $($ 003751)(理科)设口袋中有黑球、白球共 7 个,从中任取 2 个球,已知取到的白球的个数的数学期望为 $\frac{6}{7}$,则

 $(\theta$

(003753) 将边长为 1 米的正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记 $S = \frac{(梯形的周长)^2}{44形的面积}$ 则 S 的最小值是

(003754) 定义区间 (c,d),(c,d],[c,d),[c,d] 的长度均为 d-c (d>c). 若 $a\neq 0$, 关于 x 的不等式 x^2-c $\left(2a+rac{1}{a}
ight)x-1<0$ 的非空解集 (用区间表示) 记为 I(a), 则当区间 I(a) 的长度取得最小值时, 实数 a 的值

(003755) 过点 (1,0) 且与直线 x-2y-2=0 的法向量垂直的直线方程是__

A.
$$x - 2y + 1 = 0$$

B.
$$2x + y - 2 = 0$$

C.
$$x + 2y - 1 = 0$$

D.
$$x - 2y - 1 = 0$$

A.
$$\left(-2, -\frac{\pi}{3}\right)$$

B.
$$(2, -\frac{\pi}{3})$$

C.
$$\left(2, -\frac{2\pi}{3}\right)$$

D.
$$\left(-2, \frac{4\pi}{3}\right)$$

(文科) 如果实数 x,y 满足条件 $\begin{cases} x-y+1\geq 0,\\ y+1\geq 0, \end{cases}$ 那么 2x-y 的最大值为_____. $x+y+1\leq 0,$

$$C_{\cdot}$$
 -2

D.
$$-3$$

 $(003757) \ \textbf{设函数} \ f(x) = x^3 + \frac{2^x - 1}{2^x + 1}, \ \textbf{已知} \ a \in (-1,1), \ b \in (-1,1). \ \textit{则} \ a + b \geq 0 \ \textbf{是} \ f(a) + f(b) \geq 0 \ \textbf{的} \underline{\hspace{1cm}}.$

A. 充分不必要条件

B. 必要不充分条件

C. 充分必要条件

D. 既不充分也不必要条件

(003758) 已知 $a \in \mathbb{R}$, 命题 P: "实系数一元二次方程 $x^2 + ax + 2 = 0$ 的两根都是虚数"; 命题 Q: "存在复数 z同时满足 |z|=2 且 |z+a|=1". 是判断命题 P 和命题 Q 之间是否存在推出关系? 说明你的理由.

(003759) 已知公差不为 0 的等差数列 $\{a_n\}$ 的首项 a_1 为 a $(a \in \mathbf{R})$, 设数列的前 n 项和为 S_n , 且 $\frac{1}{a_1}, \frac{1}{a_2}, \frac{1}{a_4}$ 成等比数列.

(1) 求数列 $\{a_n\}$ 的通项公式及 S_n ;

(2) 记
$$A_n = \frac{1}{S_1} + \frac{1}{S_2} + \frac{1}{S_3} + \dots + \frac{1}{S_n}$$
, $B_n = \frac{1}{a_1} + \frac{1}{a_2} + \frac{1}{a_{2^2}} + \dots + \frac{1}{a_{2^{n-1}}}$, 当 $n \ge 2$ 时, 试比较 A_n 和 B_n 的大小.

(003760) 已知集合 $A = \{1, 3, \sqrt{m}\}, B = \{1, m\}, A \cup B = A, 则 m = _____.$

(003761) 若
$$\begin{vmatrix} x^2 & y^2 \\ -1 & 1 \end{vmatrix} = \begin{vmatrix} x & x \\ y & -y \end{vmatrix}$$
, 则 $x + y =$ ______.

(003762) 若 $\frac{3+b\mathrm{i}}{a+b\mathrm{i}}=1-\mathrm{i}(a,b$ 为实数, i 为虚数单位), 则 a+b=_____.

(003763) 已知递增的等差数列 $\{a_n\}$ 满足 $a_1 = 1, a_3 = a_2^2 - 4, 则 <math>a_n =$.

(003764) 设常数 $a \in \mathbf{R}$,若 $\left(x^2 + \frac{a}{x}\right)^5$ 的二项展开式中 x^7 的系数为 -10,则 a =______.

(003765) 已知双曲线 $C_1: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \ (a > 0, \ b > 0)$ 与双曲线 $C_2: \frac{x^2}{4} - \frac{y^2}{16} = 1$ 有相同的渐近线, 且 C_1 的 右焦点为 $F(\sqrt{5},0)$, 则 a = 0 , b = 0 .

(003766)(理科) 如图,在极坐标系中,过点 M(2,0) 的直线 l 与极轴的夹角 $\alpha=\frac{\pi}{6}$,若将 l 的极坐标方程写成 $\rho=f(\theta)$ 的形式,则 $f(\theta)=$ ______.

(003767) 某学校组织学生参加英语测试, 成绩的频率分布直方图如图, 数据的分组依次为 [20,40), [40,60), [60,80), [80,100). 若低于 60 分的人数是 15 人, 则该班的学生人数是______.

(003768)(理科) 已知正四棱柱 $ABCD-A_1B_1C_1D_1$ 中, $AA_1=2AB$, 则 CD 与平面 BDC_1 所成角的正弦值等于______.

(003769)f(x) 是定义在 R 上且周期为 2 的函数,在区间 [-1,1] 上, $f(x) = \begin{cases} ax+1, & -1 \leq x < 0, \\ \frac{bx+2}{x+1}, & 0 \leq x \leq 1, \end{cases}$ 其中

 $a,b \in \mathbf{R}$. 若 $f\left(\frac{1}{2}\right) = f\left(\frac{3}{2}\right)$, 则 a + 3b 的值为______.

(003770) 函数 $f(x) = 2^x + x^3 - 2$ 在区间 (0,1) 内的零点的个数是_____.

(003771) 设 \overrightarrow{a} , \overrightarrow{b} 都是非零向量,下列四个条件中,使 $\frac{\overrightarrow{a}}{|\overrightarrow{a}|} = \frac{\overrightarrow{b}}{|\overrightarrow{b}|}$ 成立的充分条件是_____.

(003772) 定义在 $(-\infty,0) \cup (0,+\infty)$ 上的函数 f(x), 如果对于任意给定的等比数列 $\{a_n\}$, $\{f(a_n)\}$ 仍是等比数列,则称 f(x) 为 "保等比数列函数". 现有定义在 $(-\infty,0) \cup (0,+\infty)$ 上的如下函数: ① $f(x)=x^2$; ② $f(x)=2^x$; ③ $f(x)=\sqrt{|x|}$; ④ $f(x)=\ln |x|$. 则其中是 "保等比数列函数" 的 f(x) 的序号为______.

(003773) 在锐角 $\triangle ABC$ 中, a, b, c 分别为内角 A, B, C 所对的边, 且满足 $\sqrt{3}a - 2b \sin A = 0$.

- (1) 求角 B 的大小;
- (2) 若 a + c = 5, 且 a > c, $b = \sqrt{7}$, 求 $\triangle ABC$ 的面积.

(003774) 已知集合 $A = \left\{ x \left| rac{2x+1}{x+2} < 1, \ x \in \mathbf{R}
ight.
ight\}$,函数 $f(x) = |mx+1| \ (m \in \mathbf{R})$.函数 $g(x) = x^2 + ax + b \ (a,b \in \mathbf{R})$ 的值域为 $[0,+\infty)$.

- (1) 若不等式 f(x) < 3 的解集为 A, 求 m 的值;
- (2) 在 (1) 的条件下, 若 $\left| f(x) 2f\left(\frac{x}{2}\right) \right| \le k$ 恒成立, 求 k 的取值范围;
- (3) 若关于 x 的不等式 g(x) < c 的解集为 (m, m+6), 求实数 c 的值.

(003775) 已知
$$U = \left\{ y \middle| y = \log_{\frac{1}{2}} x, \ x \ge \frac{1}{8} \right\}, A = \left\{ x \middle| y = \frac{1}{\sqrt{2-x}} \right\}, 则 C_U A = \underline{\qquad}$$

(003777) 若存在实数 a, 使得关于 x 的不等式 ax + b > x + 1 的解集为 $\{x|x < 1\}$, 则实数 b 的取值范围为______.

(003778) 已知函数 $f(x) = 4^x - k \cdot 2^{x+1} + 4$ 在 [0,2] 上存在零点,则实数 $k \in$ _____.

(003779) 若在 $\triangle ABC$ 中, $2\sin^2 A - 3\cos A = 0$, 则角 A 的大小为_____.

(003780)(理科) 在极坐标系中, 若过点 (3,0) 且与极轴垂直的直线交曲线 $\rho = 4\cos\theta$ 于 A,B 两点, 则 |AB| =_______

(003781) 已知直线 $l_1: 4x - 3y + 6 = 0$ 和直线 $l_2: x + 1 = 0$, 抛物线 $y^2 = 4x$ 上的动点 P 到直线 l_1 和 l_2 的 距离之和的最小值为______.

(003783)(理科) 已知 f(x) 是 R 上的奇函数, g(x) 是 R 上的偶函数, 若函数 f(x)+g(x) 的值域为 [1,3), 则 f(x)-g(x) 的值域为______.

(文科) 已知 f(x) 是 R 上的奇函数, g(x) 是 R 上的偶函数, 若函数 f(x)+g(x) 的值域为 [1,3), 则 f(-x)+g(x) 的值域为______.

(003784) 给定两个长度为 1 的平面向量 \overrightarrow{OA} 和 \overrightarrow{OB} , 它们的夹角为 120° . 如图所示, 点 C 在以 O 为圆心的圆弧 AB 上变动. 若 $\overrightarrow{OC}=x\overrightarrow{OA}+y\overrightarrow{OB}$, 其中 $x,y\in\mathbf{R}$, 则 x+y 的最大值是______.

(003785) 已知函数 $f(x) = 2\sin\left(\frac{x}{2} + \frac{\pi}{3}\right)$, 若对任意的 $x \in \mathbf{R}$ 都有 $f(x_1) \le f(x) \le f(x_2)$, 则 $|x_1 - x_2|$ 的最小值为_____.

A.
$$\frac{\pi}{3}$$

B.
$$\frac{2\pi}{3}$$

C.
$$2\pi$$

D.
$$4\pi$$

(003786) 若数列 $\{b_n\}$ 为等比数列, 其前 n 项的和为 S_n , 若对任意 $n \in \mathbb{N}^*$, 点 (n, S_n) 均在函数 $y = bx + r(b > 0, b \neq 1, b, r$ 为常数) 的图像上, 则 r =

(003787)"顺数"是指在一个整数中,每一位数字比其左边的一位数字大 (除首位数字外),如 24567 就是一个五位"顺数".任取一个两位"顺数",该数大于 56 的概率为_____.

A.
$$\frac{1}{3}$$
 B. $\frac{1}{4}$ C. $\frac{7}{12}$ D. $\frac{5}{16}$

(003788) 如图: 直三棱柱 ABC - A'B'C' 内接于高为 $\sqrt{2}$ 的圆柱中, 已知 $\angle ACB = 90^{\circ}$, $AA' = \sqrt{2}$, BC = AC = 1, O 为 AB 的中点.

- (1) 求圆柱的全面积;
- (2) (文科) 求异面直线 AB' 与 CO 所成的角的大小.

(理科) 求二面角 A' - BC - A 的大小.

(003789) 设函数 $f(x) = \log_{\frac{1}{2}} x$, $g(x) = f^{-1}(|x|)$.

- (1) 求函数 g(x) 的解析式, 并画出大致图像;
- (2) 若不等式 $g(x) + g(2x) \le k$ 对任意 $x \in \mathbf{R}$ 恒成立, 求实数 k 的取值范围.

$$(003790)$$
 已知 $f(x) = 1 - x^2$ $(x < -1)$, 则 $f^{-1}(-3) =$ _____.

(003791) 已知
$$\alpha \in \left(\frac{\pi}{2}, \pi\right)$$
, $\sin \alpha = \frac{3}{5}$, 则 $\tan \left(\alpha + \frac{\pi}{4}\right) =$ _____.

(003793) 已知某圆锥的体积是 $12\pi \text{cm}^2$, 底面半径等于 3cm, 则该圆锥的高为______

(003794) 若复数
$$z = \left(\frac{1}{2} - \frac{\sqrt{3}}{2}i\right)^2$$
 是实系数方程 $ax^2 + bx + 1 = 0$ 的根, 则 $a \cdot b =$ ______.

(003795) 某抛物线形拱桥的跨度为 20 米, 拱高是 4 米, 在建桥时, 每隔 4 米需用一根支柱支撑, 其中最高支柱的高度是______ 米.(答案保留两位小数)

$$(003796)($$
理科 $)$ 化极坐标方程 $(
ho-2)\left(heta-\frac{\pi}{3}
ight)=0$ 为直角坐标方程: _________.

$$(003797)$$
 设 x,y 均为正实数, 且 $\frac{1}{2+x} + \frac{1}{2+y} = \frac{1}{4}$, 则 xy 的最小值为______.

(003798) 三角形的三内角 A,B,C 所对边的长分别为 a,b,c, 设向量 $\overrightarrow{m}=(a-b,a-c),$ $\overrightarrow{n}=(c,a+b)$. 若 $\overrightarrow{m}\parallel\overrightarrow{n}$, 则角 B 的大小为

(003799) 已知 $f(x) = 4 - \frac{1}{x}$,若存在区间 $[a,b] \subseteq \left(\frac{1}{3}, +\infty\right)$,使得 $\{y|y=f(x),\ x\in [a,b]\} = [ma,mb]$,则实数 m 的取值范围是

(003800) 下列命题中正确的是 .

A. 若
$$ac > bc$$
, 则 $a > b$

B. 若
$$a^2 > b^2$$
, 则 $a > b$

C. 若
$$\frac{1}{a} > \frac{1}{b}$$
, 则 $a < b$

D. 若
$$\sqrt{a} < \sqrt{b}$$
, 则 $a < b$

(003801) 下列函数中, 既是偶函数, 又是在区间 $(0, +\infty)$ 上单调递减的函数为_____.

A.
$$y = \lg \frac{1}{|x|}$$

B.
$$y = x^3$$

C.
$$y = 3^{|x|}$$

D.
$$y = x$$

(003802) 已知数列 $\{a_n\}$ 是等差数列,则 " $a_1 + a_9 < a_4 + a_7$ " 是 " $\{a_n\}$ 为递增数列"的_____.

A. 充分非必要条件

B. 必要非充分条件

C. 充要条件

D. 既非充分又非必要条件

(003803) 某校高一年级开设研究性学习课程,一班和二班报名参加的人数分别是 18 和 27. 现用分层抽样的方法,从中抽取若干名学生组成研究性学习小组,已知从二班抽取了 3 名同学.

- (1) 求研究性学习小组的人数;
- (2) 规划在研究性学习的中、后期各安排 1 次交流活动,每次随机抽取小组中 1 名同学发言. 求 2 次发言的学生恰好来自不同班级的概率.

(003804) 已知点 $A(-1,0), B(1,0), C\left(-\frac{5\sqrt{7}}{12},0\right), D\left(\frac{5\sqrt{7}}{12},0\right),$ 动点 P(x,y) 满足 $\overrightarrow{AP} \cdot \overrightarrow{BP} = 0$, 动点 Q(x,y) 满足 $|\overrightarrow{QC}| + |\overrightarrow{QD}| = \frac{10}{3}$.

- (1) 求动点 P 的轨迹方程 C_0 和动点 Q 的轨迹方程 C_1 ;
- (2) 是否存在与曲线 C_0 外切且与曲线 C_1 内接的平行四边形? 若存在, 请求出一个这样的四边形; 若不存在, 说明理由;
- (3) 固定曲线 C_0 , 在 (2) 的基础上提出一个一般性的问题, 使 (2) 成为 (3) 的特例, 探究能得出相应结论 (或加强结论) 需满足的条件, 并说明理由.

(003805) 已知命题 p :"若 $\overrightarrow{a}=\overrightarrow{b}$,则 $|\overrightarrow{a}|=|\overrightarrow{b}|$ ",则命题 p 及其逆命题,否命题,逆否命题中,正确命题的个数是______.

(003806) 在一次教师联欢会上,到会的女教师比男教师多 12 人,从到会教师中随机挑选一人表演节目. 如果每位教师被选中的概率相等,而且选中男教师的概率为 $\frac{9}{20}$,那么参加这次联欢会的教师共有_______ 人.

(003807) 在 $\triangle ABC$ 中, $C=60^\circ$, $AB=\sqrt{3}$, $BC=\sqrt{2}$, 那么 A=_____.

(003808) 设 A,B,C 是圆 $x^2+y^2=1$ 上不同的三个点,O 为圆心,且 $\overrightarrow{OA}\cdot\overrightarrow{OB}=0$,存在实数 λ,μ 使得 $\overrightarrow{OC}=\lambda\overrightarrow{OA}+\mu\overrightarrow{OB}$,则实数 λ 和 μ 的关系为______.

(003809) 如下图所示的程序框图中, 循环体执行的次数是

(003810) 设常数 a>0,若对任意正实数 x,y,不等式 $(x+y)\cdot\left(\frac{1}{x}+\frac{a}{y}\right)\geq 9$ 恒成立,则 a 的最小值为_______

$$(003811) 若 (1-2x)^{2014} = a_0 + a_1 x + a_2 x^2 + \dots + a_{2014} x^{2014} (x \in \mathbf{R}), 则 \frac{a_1}{2} + \frac{a_2}{2^2} + \dots + \frac{a_{2014}}{2^{2014}}$$
的值为______.

(003812) 若三个人踢毽, 互相传递, 每人每次只能踢以下, 由甲开始踢, 经过 5 次传递后, 毽又被踢回给甲, 则不同的传递方式共有________种.

(003814)(理科) 在极坐标系中, 圆 $\rho = 2\cos\theta$ 的圆心到直线 $\rho\cos\theta = 2$ 的距离是______.

(003815) 在同一坐标系中画出函数 $y = \log_a x$, $y = a^x$, y = x + a 的图像, 可能正确的是_____

(003816)(理科) 如图, 四棱锥 S-ABCD 的底面为正方形, $SD \perp$ 底面 ABCD, 则下列结论中不正确的是_

A. $AC \perp SB$

B. *AB* || 平面 *SCD*

C. AB 与 SC 所成的角等于 DC 与 SA 所成的角

D. SA 与平面 SBD 所成的角等于 SC 与平面 SBD 所成的角

(文科) 如图, 在四面体 A - BCD 中, 截面 PQMN 是正方形, $PQ \parallel AC$, $QM \parallel BD$, 则下列命题中, 正确的有_____. ① $AC \perp BD$; ② $AC \parallel$ 截面 PQMN; ③ AC = BD; ④ 异面直线 PM 与 BD 所成的角为 45° .

A. ①②③

В. ①3④

C. ①②④

D. 234

 $(003817) 观察下列等式: ① \cos 2\alpha = 2\cos^2\alpha - 1; ② \cos 4\alpha = 8\cos^4\alpha - 8\cos^2\alpha + 1; ③ \cos 6\alpha = 32\cos^6\alpha - 48\cos^4\alpha + 18\cos^2\alpha - 1; ④ \cos 8\alpha = 128\cos^8\alpha - 256\cos^6\alpha + 160\cos^4\alpha - 32\cos^2\alpha + 1 ⑤ \cos 10\alpha = m\cos^{10}\alpha - 1280\cos^8\alpha + 1120\cos^6\alpha + n\cos^4\alpha + p\cos^2\alpha - 1.$ 由此可以推测 m - n + p =_____.

A. 962 B. 963 C. 964 D. 965

(003818) 已知 $P = \{x | x^2 - 8x - 20 \le 0\}, S = \{x | 1 - m \le x \le 1 + m\}.$

- (1) 是否存在实数 m, 使 $x \in P$ 是 $x \in S$ 的充要条件, 若存在, 求出 m 的范围;
- (2) 是否存在实数 m, 使 $x \in P$ 是 $x \in S$ 的必要条件, 若存在, 求出 m 的范围.

(003819) 已知圆
$$C_1: \left(x+\frac{\sqrt{6}}{2}\right)^2+y^2=\frac{25}{8}$$
, 圆 $C_2: \left(x-\frac{\sqrt{6}}{2}\right)^2+y^2=\frac{1}{8}$. 动圆 P 与已知两圆都外切.

- (1) 求动圆的圆心 P 的轨迹 E 的方程
- (2) 直线 l: y = kx + 1 与点 P 的轨迹 E 交于不同的两点 A, B, AB 的中垂线与 y 轴交于点 N, 求点 N 的纵 坐标的取值范围.

$$(003820)$$
 已知向量 $\overrightarrow{a}=(1,k), \overrightarrow{b}=(2,2),$ 若 $\overrightarrow{a}+\overrightarrow{b}$ 与 \overrightarrow{a} 共线, 计算 $\overrightarrow{a}\cdot\overrightarrow{b}=$

$$(003821)$$
 复数 $\frac{m+i}{1+i} - \frac{1}{2}$ 的实部与虚部相等, 则实数 m 的值为______.

$$(003823)$$
 已知关于 x,y 的二元一次方程组的增广矩阵为 $\begin{pmatrix} 2 & 3 & 1 \\ 1 & 1 & 2 \end{pmatrix}$,则 $D_x =$ ______.

(003824) 若 θ 是某三角形的内角且 $\cos 2\theta + 3\cos \theta + 1 = 0$, 则 $\theta =$ ______.

(003825)(理科) 有 3 位射击手独立瞄准一个相同目标, 他们命中的概率都是 0.8, 则目标恰好被两名射手命中的概率是______.

(文科) 袋子中有大小形状相同的 4 个红球, 3 个白球, 某人随机抽出两个球, 则恰好是一红一白的概率是____

(003826) 已知 F_1, F_2 为椭圆 $\frac{x^2}{25} + \frac{y^2}{16} = 1$ 的左、右焦点, P 为椭圆上一点, M 是 F_1P 的中点, |OM| = 3, 则点 M 到椭圆左焦点的距离为______.

(003827)(理科) 正三棱锥 P-ABC 中,点 P,A,B,C 都在半径为 $\sqrt{3}$ 的球面上,若 PA,PB,PC 两两互相垂直,则球心到截面 ABC 的距离为______.

(003828) 已知正数 x, y 满足 $\ln x + \ln y = \ln(x + y)$, 则 2x + y 的最小值是______.

(003829) 二维空间中圆的一维测度 (周长) $l=2\pi r$, 二维测度 (面积) $S=\pi r^2$; 三维空间中球的二维测度 (表面积) $S=4\pi r^2$, 三维测度 (体积) $V=\frac{4}{3}\pi r^3$; 类比观察, 则四维空间中"超球"的三维测度 $V=8\pi r^3$, 猜想其四维测度 $W=__$.

(003830) 设 l, m, n 是直线, 其中 m, n 在平面 α 内, 则 " $l \perp \alpha$ " 是 " $l \perp m, l \perp n$ " 的_____.

A. 充分不必要条件

B. 必要不充分条件

C. 充要条件

D. 既不充分也不必要条件

(003831) 方程 $(2x+3y-1)(\sqrt{x-3}-1)=0$ 表示的曲线是_____.

A. 两条直线

B. 两条射线

C. 两条线段

D. 一条直线和一条射线

(003832) 已知等比数列 $\{a_n\}$ 的公比 q < 0, 其前 n 项和为 S_n , 则 a_9S_8 与 a_8S_9 的大小关系是_____.

A. $a_9S_8 > a_8S_9$

B. $a_9S_8 < a_8S_9$

 $C. a_9S_8 \ge a_8S_9$ 且可能取到等号

D. $a_9S_8 \leq a_8S_9$ 且可能取到等号

(003833) 已知正数 a,b,c,d 满足 $ac \neq bd$. 求证: $\frac{a+d}{b+c}$ 在 $\frac{a}{b}$ 与 $\frac{d}{c}$ 之间.

(003834) 已知 $\{a_n\}$ 为无穷等比数列,数列 $\{b_n\}$ 满足 $b_1+b_2+\cdots+b_n=\frac{n}{n+1}$ $(n\in \mathbf{N}^*)$,且 $a_1+3b_2=2$, $a_1+a_2+a_3+\cdots+a_n)=\frac{5}{6}$.

- (1) 求数列 $\{a_n\}$ 和 $\{b_n\}$ 的通项公式;
- (2) 是否存在 $m \in \mathbb{N}^*$, 使得当正整数 $n \ge m$ 时, 总有 $a_n < b_n$? 若有, 求出 m 的最小值; 若没有, 请说明理由.

(003835) 若集合 $A = \{x | |x-2| \le 2\}, B = \{y | y = -x^2, -1 \le x \le 2\}, 则 A \cap B = _$ ______.

(003836) 若 z_1, z_2 是方程 $z^4 = 4$ 的两个虚根, 则 $z_1 \cdot z_2 =$ _____.

(003837) 若抛物线 $y^2 = 2mx$ 的焦点与双曲线 $\frac{x^2}{2} - \frac{y^2}{2} = 1$ 的右焦点重合,则 m =______.

(003838) 已知函数 $f(x)=\begin{cases} \frac{3}{x}, & x\geq 3,\\ \log_3 x, & 0< x< 3, \end{cases}$ 若关于 x 的方程 f(x)=k 有两个不同的实根, 则实数 k 的取

值范围是 .

(003839) 方程 $\frac{\sin x}{1 + \cos x} = \frac{1 - \cos x}{\sin x}$ 的解集为______.

(003841) 如图, M 是平行四边形 ABCD 的边 AB 的中点, 直线 l 过点 M 分别交 AD,AC 于点 E,F. 若 $\overrightarrow{AD}=3\overrightarrow{AE},$ 则 AF:FC=_____.

(003842)(理科) 某学生在参加政、史、地三门课程的学业水平考试中, 取得 A 等级的概率分别为 $\frac{4}{5},\frac{3}{5},\frac{2}{5},$ 且三门课程的成绩是否取得 A 等级相互独立. 记 ε 为该生取得 A 等级的课程数, 则数学期望 $E\varepsilon$ 的值为

(003843) 已知公比为 q(q>0) 的等比数列 $\{a_n\}$ 中, $a_1=256$, 记 $\prod_n=a_1\times a_2\times \cdots \times a_n$ (即 \prod_n 表示数列 $\{a_n\}$ 的前 n 项之积),若 $\{\prod_n\}$ 中最大项有且只有 \prod_9 ,则 q 的取值范围是______.

(003844)(理科) 一质点从所有棱长都为 1 的正五棱柱 $ABCDE - A_1B_1C_1D_1E_1$ 的顶点 E 出发, 沿正五棱柱的 棱运动, 每过一条棱称为一次运动. 运动方向是 $E o A o B o B_1 o \cdots$, 从开始在 EA 上称为第 1 棱运动, AB 上称为第 2 棱运动, BB_1 上称为第 3 棱运动, \cdots , 且第 n+2 棱运动所在棱与第 n 棱运动所在棱是异面直 线. 经过 2014 次运动后, 质点到达顶点位置时_____

(文科) 质点从正方体 $ABCD - A_1B_1C_1D_1$ 的顶点 A 出发, 沿正方体的棱运动. 每经过一条棱称为一次运动. 第一次从 $A ext{ } ext$ 那么质点经 2014 次运动后到达顶点位置为__

(003845) 为了从甲乙两人中选一人参加数学竞赛, 老师将两人最近的 6 次数学测试的分数进行统计, 甲乙两人 的得分情况如下表所示,

甲	72	78	79	85	86	92
乙	78	86	88	88	91	93

若甲乙两人的平均成绩分别是 \bar{x}_{H} , \bar{x}_{Z} , 则下列说法正确的是_____

 $A. \bar{x}_{\mathbb{P}} > \bar{x}_{\mathbb{Z}}$, 乙比甲成绩稳定, 应该选乙参加比赛 $B. \bar{x}_{\mathbb{P}} > \bar{x}_{\mathbb{Z}}$, 甲比乙成绩稳定, 应该选甲参加比赛

 $C. \bar{x}_{\mathbb{H}} < \bar{x}_{\mathbb{Z}}$, 甲比乙成绩稳定, 应该选甲参加比赛 D. $\bar{x}_{\mathbb{H}} < \bar{x}_{\mathbb{Z}}$, 乙比甲成绩稳定, 应该选乙参加比赛

(003846) 已知 m,n 是两条不同直线, α,β,γ 是三个不同平面, 下列命题中正确的是_____.

A. $m \parallel \alpha$, $n \parallel \alpha$, 则 $m \parallel n$

B. 若 $m \parallel \alpha$, $m \parallel \beta$, 则 $\alpha \parallel \beta$

C. 若 $\alpha \perp \gamma$, $\beta \perp \gamma$, 则 $\alpha \parallel \beta$

D. 若 $m \perp \alpha$, $n \perp \alpha$, 则 $m \parallel n$

(003847) 平面四边形 \overrightarrow{ABCD} 中, $\overrightarrow{AB} + \overrightarrow{CD} = \overrightarrow{0}$, $(\overrightarrow{AB} - \overrightarrow{AD}) \cdot \overrightarrow{AC} = 0$, 则四边形 \overrightarrow{ABCD} 是

A. 矩形

B. 菱形

C. 等腰梯形

D. 直角梯形

(003848) 已知函数 $f(x)=x\begin{vmatrix} \mathrm{e}^{2x} & 1 \\ -\mathrm{e}^x & a \end{vmatrix}$,其中 e 是自然对数的底数, $a\in\mathbf{R}$.

- (1) 当 -1 < a < 0 时,解不等式 f(x) < 0;
- (2) 当 a = 0 时, 求整数 t 的所有值, 使方程 f(x) = x + 2 在 [t, t + 1] 上有解.

(003849) 如图是一个算法的流程图.

- (1) 写出数列 $\{a_n\}$ 的前 6 项;
- (2) 试求输出 S 的值.

$$(003850)$$
 设
$$\frac{\sqrt{3} - \tan\left(\frac{\pi}{3} - \theta\right)}{1 + \sqrt{3}\tan\left(\frac{\pi}{3} - \theta\right)} = 3,$$
 则 $\cos 2\theta$ 等于______.

(003851) 在 $(1+x)^n$ 的展开式中, 第十项是使得二项式系数最大的唯一的项, 则 n 的值是

(003853) 若 $|\overrightarrow{a}| = 10$, $\overrightarrow{b} = (3, -4)$, 且 \overrightarrow{a} 与 \overrightarrow{b} 的方向相同, 则 $\overrightarrow{a} = \underline{}$.

(003854) 不等式 $\lg(-x) < x + 1$ 的解集为______

(003855) 某科技小组有 6 名同学, 现从中选出 3 人去参观展览, 至少有 1 名女生入选时的不同选法有 16 中, 则小组中的女生人数为______.

(003856) 若用边长为4的正方形纸片制作一个母线长为4的无底圆锥,则这样制作出的圆锥的最大体积为

$$(003857) 已知 f(x) = \begin{cases} 1, & x \ge 0, \\ & \text{则不等式 } x + (x+2)f(x+2) \le 5 \text{ 的解集是} \\ -1, & x < 0, \end{cases}.$$

(003859) 设数列 $\{a_n\}$ 为 $\frac{1}{2}$, $\frac{1}{3}$ + $\frac{2}{3}$, $\frac{1}{4}$ + $\frac{2}{4}$ + $\frac{3}{4}$, \cdots , 若 $b_n = \frac{1}{a_n a_{n+1}}$, 记 $\{b_n\}$ 的前 n 项和为 S_n , 则 S_{11} 的值为

(003860) 若集合 $M = \{y|y = x^2 - 1, x \in \mathbf{R}\}$, 集合 $N = \{x|y = \sqrt{3-x}, x \in \mathbf{R}\}$, 则 $M \cap N =$ _____.

A.
$$\{(-\sqrt{2}, 1), (\sqrt{2}, 1)\}$$
 B. $\{t | 0 \le t \le \sqrt{3}\}$ C. $\{t | -1 \le t \le 3\}$ D. $\{t | -\infty < t \le \sqrt{3}\}$

(003861) 设 A(-1,0), B(1,0), 条件甲: A,B,C 是以 C 为直角顶点的三角形的三个顶点; 条件乙: C 的坐标是方程 $x^2+y^2=1$ 的解, 则甲是乙的

A. 充分非必要条件

- B. 必要非充分条件
- C. 充要条件
- D. 既不充分又不必要条

件

(003862) 如图, 直角梯形 OABC 中, $AB \parallel OC$, AB = 1, OC = BC = 2, 直线 l: x = t 截此梯形所得位于 l 左 方图形面积为 S,

则函数 S = f(t) 的图像大致为_____

(003863) 求证: (1) 在所有周长相同的长方形中, 只有正方形的面积最大;

(2) 在所有面积相同的长方形中, 只有正方形的面积最小.

(003864) 平面上定点 F 到定直线 l 的距离 |FM|=2, P 为该平面上的动点, 过 P 作直线 l 的垂线, 垂足为 Q, 且 $(\overrightarrow{PF}+\overrightarrow{PQ})\cdot(\overrightarrow{PF}-\overrightarrow{PQ})=0.$

- (1) 试建立适当的平面直角坐标系, 求动点 P 的轨迹 C 的方程;
- (2) 过点 F 的直线交轨迹 C 于 A,B 两点,交直线 l 于点 N, 已知 $\overrightarrow{NA} = \lambda_1 \overrightarrow{AF}$, $\overrightarrow{NB} = \lambda_2 \overrightarrow{BF}$, 求证: $\lambda_1 + \lambda_2$ 为定值.

(003865) 集合 $\{y|y=2^{-x}\} \cap \{y|y=\lg x,\ 0 < x < 100\} =$ ______.

(003866) 若 (1+i)z = a+i, z 对应点在第二象限, 实数 a 的取值范围为________.

(003867) 如果 $\left(\frac{1}{\sqrt{x}} - \frac{\sqrt{2}}{2}\right)^n$ 展开式第三项的二项式系数为 66, 那么展开式第六项为______.

(003868) 已知 $\sin x = \cos 2x, \ x \in \left(\frac{\pi}{2}, \pi\right)$, 则 $\tan x =$ _____.

(003869) 函数 $f(x) = a^x + b \ (a > 1, \ b < -1), 则 <math>y = f^{-1}(x)$ 的图像一定不经过第_____ 象限.

 $(003870) \ \mathbf{函数} \ f(x) = 3\sin(\omega x), \ omega>0 \ \mathbf{在区间} \left[-\frac{\pi}{3},\frac{\pi}{4}\right] \ \mathbf{\mathring{e}}$ 调递增,则 ω 的取值范围为______.

 $(003871)\triangle OAB$ 中 OA=3, OB=4, C 是 AB 中点, 则 $\overrightarrow{OC} \cdot \overrightarrow{AB} =$ _____.

(003872) 若 $\{a,b\} \subseteq \{0,1,2,$	$3,4,5,6$ }, 从复数 $a+b$ i ($a = 7$	≠ b) 中任取一个, 模小于等于	5 的概率为
(003873)(理科) 一个不透明的 袋中随机摸出 2 球, 且摸出的 则随机变量 ξ 的数学期望 E ξ (文科) 一个不透明的袋中装在 机摸出 3 球, 则摸出的 3 球中	的 2 球中至少有一个是白球的 =	的概率为 $\frac{5}{6}$, 现用 ξ 表示摸出 、球除颜色外其余完全相同),	的 2 个球中红球的个数,
(003874) 已知数列 $\{a_n\}$ 的 $\lim_{n\to\infty}(a_1b_1+a_2b_2+\cdots+a_nb_n)$		$\{a_n\}$ 满足 $b_1=-1,\ b_2=2,$	$b_{n+2} = b_n, n \in \mathbf{N}^*, $ 则
(003875) 在长方体 ABCD –	$A_1B_1C_1D_1$ 中, B_1C 和 C_1D)与底面所成的角分别为 60°	和 45°, 则异面直线 B ₁ C
和 C_1D 所成的角的余弦值为	·		
A. $\frac{\sqrt{3}}{6}$	B. $\frac{\sqrt{2}}{6}$	C. $\frac{\sqrt{6}}{3}$	D. $\frac{\sqrt{6}}{4}$
(003876)(理科) 甲、乙、丙、	丁与小强一起比赛象棋, 每	两人都要比赛一盘, 到现在为	止, 甲已经赛了 4 盘, 乙
赛了3盘,丙赛了2盘,丁赛	了 1 盘, 则小强已经赛了	·	
A. 4 盘	B. 3 盘	C. 2 盘	D. 1 盘
(文科)"-2 ≤ a ≤ 2" 是"实系	${\bf x}$ 数一元二次方程 $x^2 + ax + ax$	1=0 有虚根"的	
A. 充要条件	B. 必要不充分条件	C. 充分不必要条件	D. 既不充分也不必要条件
(003877) 已知点 $P(x,y)$ 是直	I线 $kx + y + 4 = 0 \ (k > 0)$	上一动点, <i>PA</i> , <i>PB</i> 是圆 <i>C</i> :	$x^2 + y^2 - 2y = 0$ 的两条
切线, A, B 是切点, 若四边形	PACB(C 为圆心) 面积的点	最小值为 2 , 则 k 的值为	·
A. 2	B. $\frac{\sqrt{21}}{2}$	C. $2\sqrt{2}$	D. 3
(003878) 已知 △ABC 的面积	只为 3 , 且满足 $0 \le \overrightarrow{AB} \cdot \overrightarrow{AC}$	≤ 6 , 设 \overrightarrow{AB} 和 \overrightarrow{AC} 的夹角为	θ .
(1) 求 θ 的取值范围;			
$(2) 求函数 f(\theta) = 2\sin^2\left(\frac{\pi}{4}\right)$	$+\theta$) $-\sqrt{3}\cos 2\theta$ 的最大值与	万最小值 .	
(003879)(理科) 在底面是直角 SA = AB = BC = 1, AD =			BC , $SA \perp$ 平面 $ABCD$,
(文科) 如图, 在体积为 $\frac{1}{3}$ 的			PA = 2AC = 2BC 占
M, N 分别是 PB, PC 的中点		т да 1120, 21102 оо ,	111 2110 2B0. M
(1) 求异面直线 AN 与 CM			
(2) 求 A 到平面 PBC 的距离			

(003880) 若 $z = \sin \theta - \frac{3}{5} + \left(\cos \theta - \frac{4}{5}\right)$ i 是纯虚数, 则 $\tan \left(\theta - \frac{\pi}{4}\right) =$ ______.

(003881) 要使 $y = x^2 + 4x \ (x \ge a)$ 有反函数, 则 a 的最小值为_____.

(003882) 三个实数成等差数列, 首项是 9. 若将第二项加 2, 第三项加 20 可使得这三个数依次构成等比数列 $\{a_n\}$, 则 a_3 的所有取值中的最小值是_______.

(003883) 二项式 $\left(x+\frac{1}{2x}\right)^8$ 展开式中的二项式系数最大的项的系数为______.

(003884) 已知函数 y=f(x) 的定义域为 $\{x|-3 \le x \le 8, \ x \ne 5\}$, 值域为 $\{y|-1 \le y \le 2, \ y \ne 0\}$. 下列关于函数 y=f(x) 的说法: ① 当 x=-3 时, y=-1; ② 将 y=f(x) 的图像补上 (5,0), 得到的图像必定是一条连续的曲线; ③ y=f(x) 是 [-3,5) 上的单调函数; ④ y=f(x) 的图像与坐标轴只有一个交点. 其中正确的命题是_______.

(003885) 点 P 是双曲线 $\frac{x^2}{4}-y^2=1$ 的右支上一点, M,N 分别是圆 $(x+\sqrt{5})^2+y^2=1$ 和圆 $(x-\sqrt{5})^2+y^2=1$ 上的点, 则 |PM|-|PN| 的最大值是______.

(003886) 设 $\triangle ABC$ 的内角 A,B,C 所对的边分别为 a,b,c, 若三边的长为连续的三个正整数, 且 A>B>C, A=2C, 则 $\sin A:\sin B:\sin C$ 为______.

 (003889) 已知函数 $f(x) = \begin{cases} ax^2 - 2x - 1, & x \geq 0, \\ x^2 + bx + c, & x < 0 \end{cases}$ 是偶函数, 直线 y = t 与函数 y = f(x) 的图像自左向右依次交于四个不同点 A, B, C, D. 若 AB = BC, 则实数 t 的值为______. A. (2,3)D. (3,2)(003891) 已知平面 α, β 和直线 m, 给出条件: ① $m \parallel \alpha$; ② $m \perp \alpha$; ③ $m \subseteq \alpha$; ④ $\alpha \perp \beta$; ⑤ $\alpha \parallel \beta$. 由给出的 两个条件能推导出 $m \parallel \beta$ 的是_____. B. (1)(5) A. (1)(4) (003892) 已知函数 <math>f(x) 是定义在 $(-\infty,0)\cup(0,+\infty)$ 上的偶函数, 当 x>0 时, $f(x)=\begin{cases} 2^{|x-1|}-1, & 0< x\leq 2, \\ \frac{1}{2}f(x-2), & x>2, \end{cases}$ 则函数 g(x) = 4f(x) - 1 的零点的个数为_____. A. 4 C. 8 D. 10 (003893) 已知圆方程为 $x^2 + y^2 - 2ax - 4ay + 4a^2 + t = 0$ ($a \neq 0$). (1) 若 $t=\frac{1}{2}a^2$, 确定无论 a 为何值均与圆相切的直线的方程; (2) 若 $t = a^2 - 4$, 确定无论 a 为何值被圆截得的弦长为 1 的直线的方程. (003894) 对于函数 $f(x) = ax^2 + (b+1)x + b - 2$ $(a \neq 0)$, 若存在实数 x_0 , 使 $f(x_0) = x_0$ 成立, 则称 x_0 为 f(x)的不动点. (1) 若对于任何实数 b, 函数 f(x) 恒有两个相异的不动点, 求实数 a 的取值范围; (2) 在 (1) 的条件下,若函数 y=f(x) 的图像上 A,B 两点的横坐标是函数 f(x) 的不动点,且直线 y=f(x) $kx + \frac{1}{2a^2 + 1}$ 是线段 AB 的垂直平分线, 求实数 b 的取值范围. (003895) 已知椭圆 $\frac{x^2}{t^2} + \frac{y^2}{5t} = 1$ 的焦距为 $2\sqrt{6}$, 则实数 t =_____. (003896) 函数 $y = x^2 + 4x$ (x < -3) 的反函数为_____ (003897) 已知 a 是实数, 若 $A = \{x | ax^2 + 6x + 9 = 0, x \in \mathbf{R}\}$ 中至多有一个元素, 则 a 的取值范围为 (003898) 已知球 O 的半径为 4, A, B 是球面上两点, $\angle AOB = 45^{\circ}$, 则 A, B 两点的球面距离为_ (003899) 设 A_n 为 $(1+x)^{n+1}$ 的展开式中含 x^{n-1} 项的系数, B_n 为 $(1+x)^{n-1}$ 的展开式中二项式系数的和 $(n \in \mathbf{N}^*)$, 则能使 $A_n \geq B_n$ 成立的 n 的最大值是_____

(003900) 已知不等式 $a \leq \frac{x^2+2}{|x|}$ 对 x 取一切非零实数恒成立, 则 a 的取值范围是______.

(003901) 已知数列 $\{a_n\}$ 是等差数列, 前 n 项和为 S_n , 若 $\overrightarrow{OP} = a_{1006}\overrightarrow{OA} + a_{1009}\overrightarrow{OB}$, 且 P,A,B 三点共线 (OP)不在该直线上), 则 $S_{2014} =$ _

(003902) 已知函数 $f(x) = \sin x + \tan \frac{x}{2} + x^3, \ x \in (-1,1),$ 则满足不等式 f(a-1) + f(2a-1) < 0 的实数 a = -1的取值范围是

(003903) 有两个相同的直三棱柱,高为 $\frac{2}{a}$,底面三角形的三边长分别是 $3a, 4a, 5a \ (a>0)$. 用它们拼成一个 三棱柱或四棱柱, 在所有可能的情形中, 表面积最小的棱柱只有一种, 是一个三棱柱. 则实数 a 的取值范围 是

 $(003904) \ \textbf{设} \ f(x) = a\sin 2x + b\cos 2x, \ \textbf{其中} \ a,b \in \textbf{R}, \ ab \neq 0. \ \textbf{若} \ f(x) \leq \left|f\left(\frac{\pi}{6}\right)\right| \ \textbf{对一切} \ x \in \textbf{R} \ \texttt{恒成立}, \ \textbf{则} \ \textbf{①}$ $f\left(\frac{11\pi}{12}\right) = 0; \ 2 \left| f\left(\frac{7\pi}{12}\right) \right| < \left| f\left(\frac{\pi}{5}\right) \right|; \ 3 \ f(x) \ \mathbf{K不是奇函数也不是偶函数}; \ 4 \left[k\pi + \frac{\pi}{6}, k\pi + \frac{2\pi}{3} \right] \ (k \in \mathbf{Z})$ 出所有正确结论的编号).

(003905) 已知条件 p:|x+1|>2, 条件 q:x>a, 且 \bar{p} 是 \bar{q} 的充分不必要条件, 则 a 的取值范围可以是_

A.
$$a \geq 1$$

B.
$$a < 1$$

C.
$$a \ge -1$$

D.
$$a \leq -3$$

(003906) 已知 $\{a_n\}$ 是以 $a\ (a>0)$ 为首项以 $q\ (-1 < q < 0)$ 为公比的等比数列, 设 $A = \lim_{n \to \infty} (a_1 + a_2 + \dots + a_n)$, $B = \lim_{n \to \infty} (a_1 + a_2 + a_3 \dots + a_{2n}), C = \lim_{n \to \infty} (a_1 + a_3 + a_5 + \dots + a_{2n-1}), D = \lim_{n \to \infty} (a_2 + a_4 + a_6 + \dots + a_{2n}).$ 则 A, B, C, D 的大小关系是

A.
$$D < A < B < C$$
 B. $D < A = B < C$ C. $C < D < B < A$ D. $A = B = C = D$

$$B D < A = B < C$$

C.
$$C < D < B < A$$

D.
$$A = B = C = D$$

(003907) 设 f(x) 是定义在 R 上的函数, 且对任意实数 x, 恒有 f(x+2) = -3f(x). 当 $x \in [0,2]$ 时, f(x) = -3f(x) $2x - x^2$, $\bigvee f(0) + f(-1) + f(-2) + \cdots + f(-2014) = \underline{\hspace{1cm}}$.

A.
$$-\frac{3}{4}(1-3^{1007})$$

B.
$$-\frac{3}{4}(1+3^{1007})$$

C.
$$-\frac{1}{4}\left(1-\frac{1}{3^{1007}}\right)$$

A.
$$-\frac{3}{4}(1-3^{1007})$$
 B. $-\frac{3}{4}(1+3^{1007})$ C. $-\frac{1}{4}\left(1-\frac{1}{3^{1007}}\right)$ D. $-\frac{1}{4}\left(1+\frac{1}{3^{1007}}\right)$

(003908) 已知复数 $z_1 = \sqrt{3} + i$, $|z_2| = 2$, $z_1 \cdot z_2^2$ 是虚部为正数的纯虚数.

- (1) 求 $z_1 \cdot z_2^2$ 的模;
- (2) 求复数 z_2 .

(003909) 已知椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \; (a > b > 0)$ 的一个焦点坐标为 (1,0), 且长轴长是短轴长的 $\sqrt{2}$ 倍.

- (1) 求椭圆 C 的方程;
- (2) 设 O 为坐标原点, 椭圆 C 与直线 y = kx + 1 相交于两个不同的点 A, B, 线段 AB 的中点为 P, 若直线 OP的斜率为 -1, 求 $\triangle AOB$ 的面积.

(003910) 已知
$$\sin \alpha = \frac{5}{13}$$
, $\alpha \in \left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$, 则 $\tan \left(\frac{\pi}{4} + \alpha\right)$ 的值是_____.

$$(003911)$$
 已知函数 $f(x) = \begin{cases} 2^x - 1, & x \ge 0, \\ -x^2 - 2x, & x < 0, \end{cases}$ 若 $f(a) = 1$, 则实数 a 的值是______.

(003912) 已知 $x, y \in \mathbb{R}$, 且 x + 2y = 1, 则 $2^x + 4^y$ 的最小值是______.

(003913) 设点 $P(x_0, y_0)$ 是函数 $y = \tan x$ 与 y = -x (x > 0) 的图像的一个交点,则 $(x_0^2 + 1)(\cos 2x_0 + 1) =$ _____.

(003914) 投掷一枚质地均匀的骰子两次, 若第一次面向上的点数小于第二次面向上的点数, 我们称其为正实验; 若第二次面上上的点数小于第一次面向上的点数, 我们称其为负实验; 若两次面向上的点数相等, 我们称其为无效实验. 那么一个人投掷该骰子两次后出现无效实验的概率是______.

 $(003915) \ \textbf{向量} \ \overrightarrow{a} = (3, -4), \ \textbf{向量} \ \left| \overrightarrow{b} \right| = 2, \ \textbf{若} \ \overrightarrow{a} \cdot \overrightarrow{b} = -5, \ \textbf{那么向量} \ \overrightarrow{a}, \ \overrightarrow{b} \ \textbf{的夹角是} \underline{\hspace{1cm}}.$

(003916) 下图所示为一个判断直线 Ax + By + C = 0 与圆 $(x - a)^2 + (y - b)^2 = r^2$ 的位置关系的程序框图的一部分, 在 "?" 处应填上______.

(003917) 已知曲线 C_1, C_2 的极坐标方程分别为 $\rho = 4\cos\theta \ \left(\rho \ge 0, \ 0 \le \theta < \frac{\pi}{2}\right), \ \rho\cos\theta = 3$, 则曲线 C_1 与 C_2 交点的极坐标为______.

(003918) 椭圆两焦点为 $F_1(-4,0)$, $F_2(4,0)$, P 在椭圆上, 若 $\triangle PF_1F_2$ 的面积的最大值为 12, 则该椭圆的标准 方程为______.

(003919) 将正整数按下表的规律排列,把行与列交叉处的一个数称为某行某列的数,记作 $a_{i,j}$ $(i,j \in \mathbb{N}^*)$,如第 2 行第 4 列的数是 15,记作 $a_{2,4} = 15$,则 $a_{12,14} =$ ______.

1 4 5 16 17 $36 \cdots$ 2 3 6 15 18 359 8 7 14 19 3411 12 13 20 33 10 25 $24 \quad 23 \quad 22$ 21 3226 27 28 2930 31...

(003920) 设矩形的长为 a, 宽为 b, 其比满足 b : $a=\frac{\sqrt{5}-1}{2}\approx 0.618$, 这种矩形给人以美感, 称为黄金矩形. 黄金矩形常应用于工艺品设计中. 下面是某工艺品厂随机抽取两个批次的初加工矩形宽度与长度的比值样本:

甲批次: 0.598 0.625 0.628 0.595 0.639

乙批次: 0.618 0.613 0.592 0.622 0.620

跟据上述两个样本来估计两个批次的总体平均数, 与标准值 0.618 作比较, 正确结论是_____

- A. 甲批次的总体平均数与标准值更接近
- C. 两个批次总体平均数与标准值接近程度相同
- B. 甲批次的总体平均数与标准值更接近
- D. 两个批次总体平均数与标准值接近程度不能确 定

(003921) 已知函数 $f(x) = \frac{x}{1+|x|}$ $(x \in \mathbf{R})$ 时,则下列结论不正确的是______

- A. 任意 $x \in \mathbb{R}$, 等式 f(-x) + f(x) = 0 恒成立
- B. 存在 $m \in (0,1)$, 使得方程 |f(x)| = m 有两个不等实数根
- C. 对任意 $x_1, x_2 \in \mathbf{R}$, 若 $x_1 \neq x_2$, 则一定有 $f(x_1) \neq f(x_2)$
- D. 存在 $k \in (1, +\infty)$, 使得函数 g(x) = f(x) kx 在 R 上三个零点

(003922) 给出下列类比推理命题 $(\mathbf{R}$ 为实数集, \mathbf{C} 为复数集, M 为平面向量集), 其中类比结论正确的是

- A. 由"若 $a \in \mathbb{R}$,则 $a^2 = |a|^2$ " 类比推出"若 $a \in \mathbb{C}$.则 $a^2 = |a|^2$ "
- B. 由"若 $a,b \in \mathbf{R}$, 且 a-b=0, 则 a=b" 类比推出"若 \overrightarrow{a} , $\overrightarrow{b} \in \mathbf{M}$, 且 $\overrightarrow{a}-\overrightarrow{b}=\overrightarrow{0}$, 则 $\overrightarrow{a}=\overrightarrow{b}$ "
- C. 由"若 $a, b \in \mathbb{R}$, 且 $a^2 + b^2 = 0$, 则 a = 0 或 b = 0" 类比推出"若 $a, b \in \mathbb{C}$, 且 $a^2 + b^2 = 0$, 则 a = 0 或 b = 0"
- D. 由"若 $a,b \in \mathbf{R}$, 且 $a \cdot b = 0$, 则 a = 0 或 b = 0" 类比推出"若 $\overrightarrow{a}, \overrightarrow{b} \in \mathbf{M}$, 且 $\overrightarrow{a} \cdot \overrightarrow{b} = 0$. 则 $\overrightarrow{a} = \overrightarrow{0} \not \overrightarrow{a} \overrightarrow{b} = \overrightarrow{0}$

 $(003923)(1) \ \textbf{设}\ x,y\ \textbf{是不全为零的实数},\ \textbf{试比较}\ 2x^2+y^2\ \textbf{与}\ x^2+xy\ \textbf{的大小};$ (2) 设 a,b,c 为正数, 且 $a^2+b^2+c^2=1$, 求证: $\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}-\frac{2(a^3+b^3+c^3)}{abc}\geq 3.$

(003924) 数列 $\{a_n\}$ 的首项为 1, 前 n 项和是 S_n , 存在常数 A, B 使 $a_n + S_n = An + B$ 对任意正整数 n 都成 V..

- (1) 设 A = 0, 求证: 数列 $\{a_n\}$ 是等比数列;
- (3) 设 $A>0,\,A\neq 1,\,$ 且 $\frac{a_n}{a_{n+1}}\leq M$ 对任意正整数 n 都成立, 求 M 的取值范围.
- (003925) 已知集合 $A = \{x | x^2 2x \le 0\}, B = \{x | -1 < x < 1\}, 则 A \cap B = ____$
- (003926) 若复数 (1+i)(a+i) 是实数 (i 是虚数单位), 则实数 a 的值__
- (003927) 已知数列 $\{a_n\}$ 是等差数列, 若 $a_4 + 2a_6 + a_8 = 12$, 则该数列前 11 项的和为____
- (003928) 阅读下图的程序框图, 若输入 n = 5, 则输出 k 的值为_

(003929) 如图所示, 已知正方体 $ABCD - A_1B_1C_1D_1$ 的棱长为 2, 长为 2 的线段 MN 的一个端点 M 在棱 DD_1 上运动, 另一端点 N 在正方形 ABCD 内运动, 则 MN 的中点的轨迹的面积为_

(003930) 以抛物线 $C:y^2=8x$ 上的一点 A 为圆心作圆, 若该圆经过抛物线 C 的顶点和焦点, 那么该圆的方程 为_____.

(003931) $\triangle ABC$ 的三个内角 A,B,C 所对边的长分别为 a,b,c, 已知 $c=3,\ C=\frac{\pi}{3},\ a=2b,\ 则\ b$ 的值 为_____.

(003932) 若函数 $y = \cos(\omega x + \varphi)$ $(\omega > 0, 0 < \varphi < \pi)$ 为奇函数, A, B 分别为相邻的两个最高点, 并且两点间 的距离为 4, 则该函数的图像的对称轴为

(003933) 若称横坐标、纵坐标都为整数的点为"整点", 过曲线 $y = \sqrt{100 - x^2}$ 上任意两个整点作直线, 则倾斜 角不小于 30° 的直线条数为_

任意的 $n \in \mathbb{N}^*$ 恒成立, 则正整数 t 的最小值为

(003935) 设函数 $f(x) = \cos^2\left(x + \frac{\pi}{4}\right) - \sin^2\left(x + \frac{\pi}{4}\right), x \in \mathbf{R}$, 则函数 f(x) 是_____.

A. 最小正周期为 π 的奇函数

B. 最小正周期为 π 的偶函数

C. 最小正周期为 $\frac{\pi}{2}$ 的奇函数

D. 最小正周期为 $\frac{\pi}{2}$ 的偶函数

(003936) 函数 $y = \ln(\cos x) \left(-\frac{\pi}{2} < x < \frac{\pi}{2}\right)$ 的大致图像是_

(003937) 在实数集 R 上定义运算 \otimes : $x\otimes y=2x^2+y^2+1-y$, 则满足 $x\otimes y=y\otimes x$ 的实数对 (x,y) 在平面 直角坐标系中对应点的轨迹为 .

A. 双曲线

B. 一条直线

C. 两条直线

D. 以上都不对

(003938) 如图, 该几何体由半圆柱体与直三棱柱构成, 半圆柱体底面直径 BC=4, AB=AC, $\angle BAC=90^{\circ}$, D 为半圆弧 B_1C_1 的中点, 若异面直线 BD 和 AB_1 所成的角的大小为 $\arccos \frac{2}{3}$, 求:

- (1) 该几何体的体积;
- (2) 直线 AC 与平面 ACC_1A_1 所成的角的大小.

(003939) 设数列 $\{a_n\}$ 的前 n 项和为 S_n , 对任意的正整数 n, 都有 $a_n = 5S_n + 1$ 成立, 记 $b_n = \frac{4 + a_n}{1 - a_n}$ $(n \in \mathbf{N}^*)$.

- (1) 求数列 $\{b_n\}$ 的通项公式;
- (2) 记 $c_n = b_{2n} b_{2n-1} \; (n \in \mathbf{N}^*)$, 设数列 $\{c_n\}$ 的前 n 项和为 T_n , 求证: 对任意正整数 n 都有 $T_n < \frac{3}{2}$

(003940) 已知集合 $A = \{x | x = a + (a^2 - 1)i\}$ ($a \in \mathbf{R}$, i 是虚数单位), 若 $A \subseteq \mathbf{R}$, 则 $a = \underline{\hspace{1cm}}$.

(003941) 在正方体 $ABCD - A_1B_1C_1D_1$ 中, M 和 N 分别为 A_1B_1 和 BB_1 的中点, 那么直线 AM 与 CN 所成角的余弦值是______.

(003942) 计算 $1 - 3C_{10}^1 + 9C_{10}^2 - 27C_{10}^3 + \dots - 3^9C_{10}^9 + 3^{10} =$ ______.

(003943) 在 $\triangle ABC$ 中,角 A,B,C 所对的边分别为 a,b,c. 若 $a=\sqrt{2},\,b=2,\,\sin B+\cos B=\sqrt{2},\,$ 则角 A 的 大小为

点坐标为

(003945) 从抛物线 $y^2=4x$ 上一点 P 引抛物线的垂线,垂足为 M,且 |PM|=5,设抛物线的焦点为 F,则 $\triangle MPF$ 的面积为______.

(003946) 在 $\triangle ABC$ 中, 点 O 是 BC 的中点, 过点 O 的直线分别交直线 AB,AC 于不同的两点 M,N, 若 $\overrightarrow{AB} = m\overrightarrow{AM}, \overrightarrow{AC} = n\overrightarrow{AN}, \ m>0, \ n>0, \$ 则 $\frac{1}{m} + \frac{4}{n}$ 的最小值为______.

(003947) 已知 3 名志愿者在 10 月 1 日至 10 月 5 日期间参加 2013 年国庆节志愿者活动工作.

(文科) 若每名志愿者在 5 天中任选一天参加社区服务工作, 且各志愿者的选择互不影响, 则 3 名志愿者恰好连续 3 天参加社区服务工作的概率为

(理科) 若每名志愿者在这 5 天中任选两天参加社区服务工作, 且各志愿者的选择互不影响, 以 ξ 表示这 3 名志愿者在 10 月 1 日参加志愿者服务工作的人数, 则随机变量 ξ 的数学期望为______.

(003948) 已知对于任意非零实数 m, 不等式 $|5m-3|+|3-4m| \ge |m|\left(x-\frac{2}{x}\right)$ 恒成立, 则实数 x 的取值范围

(003949) 已知圆的半径为 $1,\,PA,PB$ 为该圆的两条切线, A,B 为切点, 那么 $\overrightarrow{PA}\cdot\overrightarrow{PB}$ 的最小值为_

(003950) 若 m, n 为两条不同的直线, α, β 为两个不同的平面, 则以下命题正确的是___

A. 若 $m \parallel \alpha$, $n \parallel \alpha$, 则 $m \parallel n$

B. 若 $m \parallel \beta$, $\alpha \parallel \beta$, 则 $m \parallel \alpha$

C. 若 $m \parallel n, m \perp \alpha,$ 则 $n \perp \alpha$

D. 若 $\alpha \cap \beta = m, m \perp n, 则 n \perp \alpha$

(003951) 双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ 的左焦点为 F_1 , 顶点为 A_1, A_2, P 是该双曲线右支上任意一点, 则分别以线段 PF_1, A_1A_2 为直径的两圆一定__

A. 相交

B. 内切

C. 外切

D. 相离

(003952) 方程 $x^2+\sqrt{2}x-1=0$ 的解可视为函数 $y=x+\sqrt{2}$ 的图像与函数 $y=\frac{1}{x}$ 的图像交点的横坐标, 若 $x^4+ax-4=0$ 的各个实根 x_1,x_2,\cdots,x_k $(k\leq 4)$ 所对应的点 $\left(x_i,\frac{4}{x_i}\right)$ $(i=1,2,\cdots,k)$ 均在直线 y=x 的 同侧,则实数 a 的取值范围是_

- A. $(-\infty, -6)$
- B. $(6, +\infty)$
- C. [-6, 6]

(003953) 已知集合 M 是满足下列性质的函数 f(x) 的全体, 存在非零常数 T, 对任意 $x \in \mathbf{R}$, 有 f(x+T) =Tf(x) 成立.

- (1) 函数 f(x) = x 是否属于集合 M? 说明理由;
- (2) 设 $f(x) \in M$, 且 T = 2, 已知当 1 < x < 2 时, $f(x) = x + \ln x$, 求当 -3 < x < -2 时, f(x) 的解析式.

(003954) 在数列 $\{a_n\}$ 中, 对于任意 $n \in \mathbb{N}^*$, 等式 $a_1 + 2a_2 + 2^2a_3 + \cdots + 2^{n-1}a_n = (n \cdot 2^n - 2^n + 1)b$ 成立, 其 中常数 $b \neq 0$.

- (1) 求 a_1, a_2 的值;
- (2) 求证: 数列 $\{2^{a_n}\}$ 为等比数列
- (3) 关于 n 的不等式 $\frac{1}{a_2} + \frac{1}{a_4} + \frac{1}{a_8} + \dots + \frac{1}{a_{2n}} > \frac{c}{a_1} \ (c \in \mathbf{R})$ 的解集为 $\{n | n \geq 3, \ n \in \mathbf{N}^*\}$, 求 b 和 c 应满足 的条件.

(003955) 复数 $\frac{(1+i)^2}{1-\sqrt{3}i}$ 的模是_____.

$$(003955)$$
 复数 $\frac{1}{1-\sqrt{3}i}$ 的模是_____.
$$(003956)$$
 者 $\begin{vmatrix} a_1 & b_1 & c_1 \\ 1 & 2 & 3 \\ 4 & 5 & 6 \end{vmatrix} = a_1A_1 + b_1B_1 + c_1C_1$, 则 B_1 化简后的最后结果等于_____.

(003957) 已知集合 $P = \{a, -1\}, Q = \{x | x^2 - 1 < 0, x \in \mathbb{Z}\},$ 如果 $P \cap Q \neq \emptyset$, 则实数 a =______.

(003958) 若圆锥的侧面展开图是弧长为 $2\pi \text{cm}$, 半径为 $\sqrt{2}\text{cm}$ 的扇形, 则该圆锥的体积为_____cm³.

(003959) 已知角 α 的终边上一点的坐标为 $\left(\sin\frac{2\pi}{3},\cos\frac{2\pi}{3}\right)$, 则角 α 的最小正值为______.

(003960)(理科) 已知随机变量 ξ 的分布列如下表, 则随机变量 $10\xi + 1$ 的均值是

x	1	2	3	4	5
$P(\xi = x)$	0.1	a	0.4	0.1	0.2

(003961) 若函数 $f(x) = 2\cos\left(\frac{\pi}{3}x - \frac{\pi}{6}\right)$ (-1 < x < 5) 的图像与 x 轴交于点 A, 过点 A 的直线 l 与函数的图 像交于另外两点 B, C. O 是坐标原点, 则 $(\overrightarrow{OB} + \overrightarrow{OC}) \cdot \overrightarrow{OA} =$

(003962) 设 $(1+x)+(1+x)^2+\cdots+(1+x)^n=a_0+a_1x+a_2x^2+\cdots+a_nx^n,\ n\in\mathbb{N}^*$, 若 $a_1+a_2+\cdots+a_{n-1}=61-n$, 则 $n = _____$.

(003963) 若存在 $x \in [0,1]$, 使不等式 $x^2 + x \ge a^2 + a$ 成立, 则实数 a 的取值范围是__

(003964)F 为双曲线 $C: \frac{x^2}{64} - \frac{y^2}{16} = 1$ 的左焦点, 双曲线 C 上的点 P_i 与 P_{7-i} (i=1,2,3) 关于 y 轴对称, 且 P_1, P_2, P_3 在双曲线的右支上,则 $|P_1F| + |P_2F| + |P_3F| - |P_4F| - |P_5F| - |P_6F|$ 的值是______

(003965)(文科) 已知非零实数 a,b 满足 a > b. 则下列不等式中成立的是___

A.
$$a^2 > b^2$$

B.
$$\frac{1}{a} < \frac{1}{b}$$

B.
$$\frac{1}{a} < \frac{1}{b}$$
 C. $a^2b > ab^2$

D.
$$\frac{a}{h^2} > \frac{b}{a^2}$$

(理科) 对任意的实数 α, β , 下列等式恒成立的是

B.
$$2\cos\alpha\cdot\sin\beta = \sin(\alpha+\beta) + \cos(\alpha-\beta)$$

A.
$$2\sin\alpha\cdot\cos\beta = \sin(\alpha+\beta) + \sin(\alpha-\beta)$$
 B. $2\cos\alpha\cdot\sin\beta = \sin(\alpha+\beta) + \cos(\alpha-\beta)$ C. $\cos\alpha + \cos\beta = 2\sin\frac{\alpha+\beta}{2}\cdot\sin\frac{\alpha-\beta}{2}$ D. $\cos\alpha - \cos\beta = 2\cos\frac{\alpha+\beta}{2}\cdot\cos\frac{\alpha-\beta}{2}$

D.
$$\cos \alpha - \cos \beta = 2 \cos \frac{\alpha + \beta}{2} \cdot \cos \frac{\alpha - \beta}{2}$$

(003966)(理科) 已知函数 f(x) 是定义在 R 上的单调递减函数且为奇函数, 数列 $\{a_n\}$ 是等差数列, $a_{1007}>0$, 则 $f(a_1) + f(a_2) + f(a_3) + \cdots + f(a_{2012}) + f(a_{2013})$ 的值

A. 恒为正数

- B. 恒为负数
- C. 恒为 0
- D. 可正可负

(003967) 已知 A,B 为平面内两定点,过该平面内动点 M 作直线 AB 的垂线,垂足为 N. 若 $\overrightarrow{MN^2} = \lambda \overrightarrow{AN} \cdot \overrightarrow{NB}$ 、 其中 λ 为常数,则动点 M 的轨迹不可能是_____.

A. 圆

B. 椭圆

- C. 抛物线
- D. 双曲线

(003968)(文科) 如图, 在正三棱柱 $ABC-A_1B_1C_1$ 中, $AA_1=6$, 异面直线 BC_1 与 AA_1 所成角的大小为 $\frac{\pi}{6}$ 求该三棱柱的体积和表面积.

(理科) 在等腰直角三角形 ABC 中, $\angle A = 90^{\circ}$, BC = 6, D, E 分别是 AC, AB 上的点, $CD = BE = \sqrt{2}$, O 为 BC 的中点. 将 $\angle ADE$ 沿 DE 折起, 得到如图所示的四棱锥 A' - BCDE, 其中 $A'O = \sqrt{3}$.

- (1) 证明: $A'O \perp$ 平面 BCDE;
- (2) 求二面角 A'-CD-B 的平面角的余弦值.

(003969) 如图,某市拟在长为 8 千米的道路 OP 的一侧修建一条运动赛道,赛道的前一部分为曲线段 OSM,该曲线段为函数 $y=A\sin\omega x~(A>0,\omega>0),~x\in[0,4]$ 的图像,且图像的最高点为 $S(3,2\sqrt{3})$;赛道的后一部分为折线段 MNP,为保证参赛运动员的安全,限定 $\angle MNP=\frac{2\pi}{3}$.

- (1) 求 A, ω 的值和线段 MP 的长;
- (2) 设 $\angle PMN = \theta$, 问 θ 为何值时, 才能使折线段赛道 MNP 最长?

(003970) 已知平面 $\alpha \cap$ 平面 $\beta = l$, 直线 $a \subsetneq \alpha$, 直线 $b \subsetneq \beta$, 则 "a 与 b 是异面直线" 是 "a,b 均与 l 相交且交点不同"的________条件.

(003971) 函数 $y = \arcsin(1-x) + \arccos x$ 的值域是______

(003972)(理科) 在极坐标系中,方程 $\rho = 3\cos^2\frac{\theta}{2} - \sin^2\frac{\theta}{2} - 1$ 表示的曲线是______.

(文科) 某学校要把 9 台型号相同的电脑送给某地区的三所小学,每所小学至少得到 2 台,则不同的送法有______ 种.

(文科) 已知 a,b 为不垂直的	异面直线, α 是一个平面, 则	两个公共点,则 m 的取值范 $[a,b]$ 在 α 上的射影有可能是一点. 上面的结论中, 正确结论	: ① 两条平行直线; ② 两
$(003974)($ 理科 $)$ 在正三棱柱 $B-AM-B_{1}$ 的正切值为_		(均为 4, M, N 分別是棱 BC - N 的体积为	C,CC_1 的中点,则二面角
(003975) 在 $\triangle ABC$ 中, $\angle C$	$=90^{\circ}$,则 $\cos A \cos B$ 的取值	直范围是	
(003976) 设 $\left(3x^{\frac{1}{3}} + x^{\frac{1}{2}}\right)^n$ 展的系数为	是开式的各项系数之和为 t , t	丰二项式系数之和为 h , 且 t +	$-h = 272$, 则展开式中 x^2
(003977) 甲、乙、丙三个单位 乙、丙三个单位, 那么不同的		名、1 名、1 名, 现从 10 名应 中.	Z聘人员中招聘 4 人到甲、
(003978)(理科) 曲线 ρ = -2 (文科) 从一副扑克牌 (52 张)	O .		
,	中至少有 5 个号码与摇奖器	冬号码为 1,2,3,4,5,6, 参加招 谣出的号码相同 (不计顺序),	
(003980)(理科) 在极坐标系F	中, "点 <i>P</i> 是极点" 是 "点 <i>P</i>	的极坐标是 (0,0)" 成立的	
A. 充分不必要条件	B. 必要不充分条件	C. 充要条件	D. 既不充分也不必要条件
$($ 文科 $)\overrightarrow{a},\overrightarrow{b}$ 为非零向量, "函	菊数 $f(x) = (x\overrightarrow{a} + \overrightarrow{b})^2$ 为偶	函数"是" $\overrightarrow{a} \perp \overrightarrow{b}$ "的	_·
A. 充分不必要条件	B. 必要不充分条件	C. 充要条件	D. 既不充分也不必要条件
(003981)(理科) 在方程为	$x = \sin 2\theta$, 的曲线上 $y = \sin \theta + \cos \theta$	的点是	
A. $(2,\sqrt{3})$ (文科) 若函数 $y = f(x)$ 存在	B. $(1,\sqrt{3})$ E反函数, 则方程 $f(x)=c(c)$	C. $\left(-\frac{3}{4}, \frac{1}{2}\right)$ 为常数)	D. $\left(\frac{1}{2}, -\sqrt{2}\right)$
A. 有且只有一个实根	B. 至少有一个实根	C. 至多有一个实根	D. 没有实数根
(003982) 设 <i>M</i> 是球 <i>O</i> 半径 面积比值为	: OP 的中点, 分别过 M,O (作垂直于 <i>OP</i> 的平面, 截球面	「得两个圆,则这两个圆的
A. $\frac{1}{4}$	B. $\frac{1}{2}$	C. $\frac{2}{3}$	D. $\frac{3}{4}$

(003983)(理科)(1) 甲同学从学校乘车回家, 图中有 3 个交通岗, 假设在各交通岗遇到红灯的时间是相互独立的, 并且概率都是 $\frac{2}{5}$, 求甲同学回家途中遇到红灯次数的期望值;

(2) A 箱内有 1 个红球和 n+1 个白球, B 箱内有 n-1 个白球 $(n \in \mathbb{N}, n \geq 2)$, 现随机从 A 箱内取出 3 个球 放入 B 箱内, 将 B 箱中的球充分搅拌后, 再从中随机取出 3 个球放入 A 箱, 求红球由 A 箱入 B 箱再返回 A箱的概率.

(003984) 把边长为 a 的正方形减去图中的阴影部分, 沿图中所画折线折成一个正三棱锥, 求这个正三棱锥的高.

(003985)	在正方体	ABCD $-$	$A_1B_1C_1D_1$	中,	E, F, G, H	分别为	$AB_1, AB,$	BB_1	B_1C_1	的中点,	则异面直	线
EF, GH	所成角的为	c小为										

(003986) 若一个球的体积为 $4\sqrt{3}\pi$, 则它的表面积为

(003987) 一个圆锥的侧面积是其底面积的 2 被, 则圆锥的母线与点所成的角为

(003988) 已知正三棱锥的侧棱长是底面边长的 2 倍, 则侧棱与底面所成角的余弦值等于

(003989) 正三棱锥 P – ABC 的高为 2, 侧棱与底面 ABC 成 45° 角, 则点 A 到侧面 PBC 的距离为

(003990)(文科) 一个扇形的半径为 30cm, 圆心角为 120°, 用它做成一个圆锥的侧面, 那么这个圆锥的底面半径

(理科) 函数 $y = \sin\left(x + \frac{\pi}{12}\right) + \sin\left(x + \frac{5\pi}{12}\right), \ x \in [0, \pi]$ 的最大值为______.

(003991) 若 $(x-2)^5 = a_5x^5 + a_4x^4 + a_3x^3 + a_2x^2 + a_1x + a_0$, 则 $a_1 + a_2 + a_3 + a_4 + a_5 =$ ______.

(003992) 甲、乙、丙 3 位同学选修课程, 从 4 门学科中, 甲选 2 门, 乙、丙各选 3 门, 则不同的选修方案 为_____

(003993) 在正方体上任意选择两条棱,则这两条棱平行的概率是_____

(003994)(理科) 已知极坐标系中,圆心的极坐标为 $\left(1,\frac{\pi}{3}\right)$,半径为 1,则该圆的极坐标方程是_

(003995) 对于两条不相交的空间直线 a 和 b, 一定存在平面 α , 使得

A. 直线 a, b 均在平面 α 内

B. 直线 a 在平面 α 内, b 与平面 α 平行

C. 直线 a,b 都垂直于平面 α

D. 直线 a 在平面 α 内, b 与平面 α 垂直

(003996) 过球面上两点作球的大圆, 可能的个数是__

A. 有且只有一个 B. 一个或无穷多个 C. 无数个

D. 以上结论都不正确

(003997) 如果 $\left(3x^2 - \frac{2}{x^3}\right)^n$ 的展开式中含有非零常数项, 那么正整数 n 的最小值为______.
A. 10 B. 6 C. 5 D. 3

(003998) 甲、乙等 5 位奥运志愿者被分到 A,B,C,D 四个不同的岗位上,每个岗位至少有一名志愿者,不同的分配方案概率相灯.

- (1) 求甲乙两人同时参加 A 岗位服务的概率;
- (2)(文科) 求甲乙两人不在同一岗位服务的概率;

(理科) 设随机变量 ξ 表示这 ξ 名志愿者中参加 ξ 岗位服务的人数, 求随机变量 ξ 的概率分布律.

(003999) 如图, 在 Rt $\triangle ABC$ 中, $\angle C = 90^\circ$, BC = 3, AC = 6, D, E 分别是 AC, AB 上的点, 且 $DE \parallel BC$, DE = 2. 将 $\triangle ADE$ 沿 DE 折起到 $\angle A_1DE$ 的位置, 使 $A_1C \perp CD$, 如图, M 是 A_1D 的中点.

- (1) 求证: $A_1C \perp$ 平面 BCDE;
- (2) (文科) 求 CM 与平面 A₁DE 所成角的大小;

(理科) 求 CM 与平面 A_1BE 所成角的大小.

(004000) 请根据图中的函数图像, 将下列数值按从小到大的顺序排列:

- ① 曲线在点 A 处切线的斜率;
- ② 曲线在点 B 处切线的斜率;
- ③ 曲线在点 C 处切线的斜率;
- ④ 割线 AB 的斜率;
- ⑤ 数值 0;
- ⑥ 数值 1.

(004001) 已知 $f(x) = \sqrt{x}$, $g(x) = kx^x$.

- (1) 求曲线 y = f(x) 在点 (4,2) 处的切线方程;
- (2) 若曲线 y = g(x) 经过点 (4,2), 求它与 (1) 中切线的另一个交点.

(004002) 从桥上将一小球掷向空中, 小球相对于地面的高度 h(单位: m) 和时间 t(单位: s) 近似满足函数关系 $h = -5t^2 + 15t + 12$. 问:

- (1) 小球的初始高度是多少?
- (2) 小球在 t=0 到 t=1 这段时间内的平均速度是多少?
- (3) 小球在 t=1 时的瞬时速度是多少?
- (4) 小球所能达到的最大高度是多少? 何时达到?

(004003) 已知 f(x) = lnx, $g(x) = e^x$, 计算下列函数 y = h(x) 在点 x = 1 处的导数值:

- (1) h(x) = 3f(x) 5g(x);
- (2) h(x) = f(x)g(x);
- $(3) h(x) = \frac{f(x)}{g(x)};$
- (4) h(x) = f(2x+1) + g(3x-1).

(004004) 计算下列函数 y = f(x) 的导数, 其中:

- (1) $f(x) = \frac{\pi}{2} + \sin(-x);$
- (2) $f(x) = \sqrt[3]{x} \frac{1}{x^3}$;
- (3) $f(x) = (\frac{1}{2}x 5)(3 4x);$ (4) $f(x) = \frac{\cos x}{x^2}.$

(004005) 求下列函数 y = f(x) 的单调区间和极值点, 其中: (1) $f(x) = \frac{2}{3}x - 1$;

- (2) $f(x) = 2 + x x^2$;
- (3) $f(x) = x^3 + x^2 8x + 7$.

(004006) 借助求导数的结果, 求下列函数 y=f(x) 在给定区间上的最大值和最小值, 其中:

- (1) $f(x) = \frac{2}{3}x 1$, $x \in [0, 3]$;
- (2) $f(x) = 2 + x x^2$, $x \in [-1, 1]$;
- (3) $f(x) = x^3 + x^2 8x + 7$, $x \in [-3, 3]$.

(004007) 已知 y = f'(x) 的图像如图所示, 求函数 y = f(x) 在 (-2, 2) 上的单调区间和极值点.

(004008) 若直线 y = x 是曲线 $y = x^3 - 3x^2 + ax$ 的切线, 求 a 的值.

(004009) 设函数 $y = x^3 + ax^2 + bx + c$ 的图像与 y = 0 在原点相切, 若函数的极小值为 -4, 求函数的表达式与单调减区间.

(004010) 某种型号的汽车在匀速行驶中每小时的耗油量 y(单位: L) 关于行驶速度 x(单位: km/h) 满足函数关系 $y=\frac{1}{128000}x^3-\frac{3}{80}x+8$ $(0< x \le 120)$. 已知甲、乙两地相距 100km. 问: 当汽车保持怎样的速度匀速行驶时, 从甲地到乙地的耗油量最小?

(004011) 要建造一个给定容积 V 的圆柱体蓄水池,已知池底单位造价为池侧面单位造价的 2 倍.问:应如何选择蓄水池的底面半径 r 和高 h,才能使总造价最低?

(004012) 已知某厂生产一种产品的总成本 C(单位: 万元) 与产品件数 x 满足函数关系 $C=1200+\frac{2}{75}x^3$,产品单价 P(单位: 万元) 和产品件数 x 满足函数关系 $P^2=\frac{250000}{x}$. 问: 产量为多少件时, 总利润最大?

(004013) 讨论函数 $y = x^3 + ax + b$ 的单调性 (可借助信息技术工具).

(004014) 判断方程 $x^3 + ax + b = 0$ 有几个实根 (可借助信息技术工具).

(004015) 如图, 用 6 种不同的颜色将 A、B、C 三个区域涂色, 每个区域涂上一种颜色, 且有公共边的区域不能涂同一种颜色. 问: 不同的涂色方法共有多少种?

(004016)5 个工程队分别承建某项工程的 5 个不同的子项目,每个工程队各承建其中的 1 项,且甲工程队不能 承建 1 号子项目.问:不同的承建方案有多少种?

(004017) 从 0、1、2、3、4、5 六个数字中任取四个数字,可以组成多少个没有重复数字、且为奇数的四位数? (004018) 解关于正整数 x 的方程: $11C_x^3 = 24C_{x+1}^2$.

(004019) 已知 $(x^2 + \frac{1}{x})^n$ 的二项展开式的各项系数之和为 32, 求该二项展开式中 x 的系数.

$$(004020)$$
 若 $(1-2x)^4 = a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4$, 求 $|a_0| + |a_1| + |a_3|$ 的值.

(004021) 若 $(x^6 + \frac{1}{x\sqrt{x}})^n$ 的二项展开式中含有常数项, 求 n 的最小值.

(004022)7 名学生站成一排拍毕业纪念照, 其中甲必须站在正中间, 并且乙、丙 2 名学生要站在一起. 问: 有多少种不同的排法?

(004023) 将 5 个不同的小球分别放到 3 个不同的盒子中, 要求每个盒子都不空. 问: 有多少种不同的放法?

(004024) 从7名男乒乓球队员、5名女乒乓球队员中任选4名进行男女混合双打,不同的分组方法有多少种?

(004025)3 名男生、4 名女生排成一行. 在下列要求下, 分别求不同排列方法的种数:

- (1) 甲不在最左边, 乙不在最右边;
- (2) 男生必须排在一起;

- (3) 男生和女生相间排列;
- (4) 在甲、乙两人中间必须有 3 人.
- (004026) 一个口袋内有 4 个不同的红球、6 个不同的白球.
- (1) 从中任取 4 个球, 红球的个数不比白球少的取法有多少种?
- (2) 若取一个红球记 2 分, 取一个白球记 1 分. 从中任取 5 个球, 使总分不少于 7 分的取法有多少种?
- (004027) 设 $(2-\sqrt{3}x)^{100}=a_0+a_1x+a_2x^2+\cdots+a_{100}x^{100}$, 求下列各式的值:
- $(1) a_0;$
- (2) $a_1 + a_3 + a_5 + \cdots + a_{99}$;
- (3) $(a_0 + a_2 + a_4 + \dots + a_{100})^2 (a_1 + a_3 + \dots + a_{99})^2$.
- (004028) 利用二项式定理, 求 5555 被 8 除所得的余数.
- (004029) 设集合 A 是由所有满足下面条件的有序数组 $(x_1, x_2, x_3, x_4, x_5)$ 构成的: 每一个元素 x_i 等于 0、 1、 -1 中之一,其中 i=1,2,3,4,5. 那么集合 A 中满足条件 " $1 \le |x_1| + |x_2| + |x_3| + |x_4| + |x_5| \le 3$ " 的元素有多少个?
- (004030) 利用二项式定理证明: 对于任意正整数 $n, \frac{1}{\sqrt{5}}[(2+\sqrt{5})^n-(2-\sqrt{5})^n]$ 都是正整数.
- (004031) 掷黄、白两颗骰子, 当黄色骰子的点数为 4 或 6 时, 求两颗骰子的点数之积大于 20 的概率.
- (004032) 连续掷一颗骰子两次, 已知第一次掷出的是偶数点. 求第二次也掷出偶数点的概率.
- (004033) 在 5 道题中有 3 道数学题和 2 道语文题. 如果不放回地依次抽取 2 道题, 求:
- (1) 第 1 次抽到数学题的概率;
- (2) 第 1 次和第 2 次都抽到数学题的概率;
- (3) 在第 1 次抽到数学题的条件下, 第 2 次也抽到数学题的概率.

$$(004034)$$
 已知随机变量 X 的分布为 $\begin{pmatrix} -1 & 0 & 1 \\ a & b & c \end{pmatrix}$. 若 $E[X] = \frac{1}{3}, \ D[X] = \frac{5}{9}, \ 求 \ a$ 、 b 、 c 的值.

- (004035) 同时抛掷两枚相同的均匀硬币,设随机变量 X=1 表示结果中有正面朝上,X=0 表示结果中没有正面朝上。求 E[X] 及 D[X].
- (004036) 从 4 名男生和 2 名女生中任选 3 人参加演讲比赛, 设随机变量 X 表示所选 3 人中女生的人数. 求:
- (1) X 的分布;
- (2) X 的期望与方差; (3) "所选 3 人中女生人数 $X \le 1$ " 的概率.
- (004037) 一批产品的二等品率为 0.02. 从这批产品中每次随机取一件, 有放回地抽取 100 次. 用 X 表示抽到的二等品件数, 求 D[X].
- (004038) 袋中有 10 个大小与质地相同的球, 其中 7 个是红球. 从中任取 5 个球, 求取出的球中红球个数 X 的分布.

(004039) 某人提出一个问题, 甲先答, 答对的概率为 0.4. 若甲答错, 则由乙答, 乙答对的概率为 0.5. 求该问题由乙答对的概率.

(004040)100 件产品中有 5 件次品, 不放回地抽取两次, 每次抽 1 件. 已知第一次抽出的是次品, 求第二次抽出正品的概率.

(004041) 盒中有大小与质地相同的 25 个球, 其中 10 个白球、5 个黄球、10 个黑球. 从盒中任意取出 1 个球,已知它不是黑球,求它是黄球的概率.

(004042) 在 1、2、3、…、9 这 9 个自然数中, 任取 3 个数.

- (1) 求这 3 个数中恰有 1 个是偶数的概率;
- (2) 设 X 为这 3 个数中两数相邻的组数 (例如, 若取出的数为 1、2、3, 则有两组相邻的数 1、2 和 2、3, 此时 X 的值为 2), 求随机变量 X 的分布及期望.

(004043) 口袋里装有大小与质地相同的 4 个红球和 8 个白球, 甲、乙两人依下面的规则从袋中有放回地摸球, 每次摸 1 个球. 规则如下: 若一方摸出 1 个红球, 则此人继续下一次摸球; 若一方摸出 1 个白球, 则由对方接替下一次摸球. 假设每次摸球相互独立, 且由甲进行第一次摸球. 求在前三次摸球中, 甲摸得红球的次数 X 的分布及期望.

(004044) 在一个游戏中,每次输赢的概率都是 $\frac{1}{2}$. 甲的策略是:第一次押 1 元,如果赢,就结束;如果输,押 2 元再来一次,无论输赢都结束. 乙的策略是: 押 1 元,无论输赢都结束.

- (1) 求甲赢的概率与乙赢的概率;
- (2) 用 X、Y 分别表示甲、乙最终赢得的金额 (即所押金额), 求它们的分布与期望;
- (3) 比较甲与乙的策略.

(004045) 设有两个罐子, A 罐中放有 2 个白球、1 个黑球, B 罐中放有 3 个白球, 这些球的大小与质地相同. 现在从两个罐子中各摸 1 个球进行交换, 求这样交换 3 次后, 黑球还在 A 罐中的概率. 交换 n 次后呢?

(004046) 有一种骰子游戏,某人掷两颗骰子,若掷出的点数之和是 7 或 11,则赢;若掷出的点数之和是 2、3 或 12,则输;若掷出其他的点数和,则记下这个数,继续掷这两颗骰子,直到掷出的点数和是这个记下的数或者 7 为止,若是这个记下的数,则赢,若是 7,则输. 求此人赢的概率是多少.

(004047) 在研究硝酸钠的可溶性程度时,观测它在不同温度 (单位: °C)100g 的水中的溶解度 (单位: g), 得到如下观测结果:

温度 <i>x/</i> °C	10	25	40	50	55	60	65	75
溶解度 y/g	81	92	104	114	117	124	130	150

由此得到回归直线的斜率是_____.

(004048) 若对具有线性相关关系的两个变量建立的回归方程为 y = -0.960x + 3.134, 则当 x = 50 时, y 的估计值为______.

(004049) 某产品的广告费投入与销售额的统计数据如下表所示.

广告费 x/ 万元	4	2	3	5
销售额 y/ 万元	49	26	39	54

根据上表建立的回归方程 $y = \hat{a}x + \hat{b}$ 中, $\hat{a} = 9.4$. 9.4 的实际意义是什么?

(004050) 经过分层抽样得到 16 名学生高一和高二结束时的数学考试成绩 (满分: 100 分), 如下表所示.

学生编号	1	2	3	4	5	6	7	8
高一	84	85	71	74	60	58	51	82
高二	84	88	72	73	68	62	60	85
学生编号	9	10	11	12	13	14	15	16
高一	87	69	79	80	83	84	63	54
高二	88	73	84	82	83	83	66	67

- (1) 绘制这些成对数据的散点图;
- (2) 计算学生高一和高二数学成绩的相关系数. 根据此相关系数, 你能得出什么结论?

(004051) 通过随机询问 72 名大学生在购买食品时是否读营养说明, 得到如下列联表:

表头	男	女	总计
读营养说明	28	16	44
不读营养说明	8	20	28
总计	36	36	72

根据表中的数据回答: 是否有 95% 的把握判定性别与读营养说明之间有关系?

(004052) 某人对一地区近几年的年人均可支配收入 x(单位: 千元) 与年人均消费支出 y(单位: 千元) 进行统计调查,发现 y 与 x 具有线性相关关系,且得到回归方程 y=0.71x-1.814. 若该地区去年的年人均消费支出为4 万 3 千元,试估计该地区去年的年人均消费支出占人均可支配收入的百分比.

(004053) 某连锁日用品销售公司下属 5 个社区便利店某月的销售额与利润额如下表所示.

便利店编号	1	2	3	4	5
销售额 x/ 万元	30	60	45	80	89
利润额 y/ 万元	2.3	3.5	3.2	4.0	5.3

- (1) 绘制销售额和利润额的散点图;
- (2) 若销售额和利润额具有线性相关关系, 试计算利润额 y 与销售额 x 的回归方程.

(004054) 某一商品在某地区的年销售额与该地区的居民人数和平均每个家庭每年的总收入都有关系. 现有 16 个地区的统计数据, 如下表所示.

地区编号	销售	居民人	平均家庭	地区编号	销售	居民人	平均家庭
	额/(万	数/万人	总收		额/(万	数/万人	总收
	元/年)		入/(万		元/年)		入/(万
			元/年)				元/年)
1	145	20.7	6.9	9	233	33.0	8.3
2	83	19.3	5.4	10	112	11.5	8.3
3	179	27.1	5.9	11	147	16.1	8.4
4	248	38.1	7.2	12	70	4.4	8.9
5	237	38.2	7.5	13	60	2.6	8.9
6	286	40.5	7.8	14	98	12.8	9.0
7	90	7.8	7.8	15	125	15.1	9.6
8	165	21.5	8.0	16	198	20.0	10.7

- (1) 试分别计算该商品年销售额与地区居民人数和平均每个家庭每年总收入的相关系数;
- (2) 选取(1) 中相关系数较大的一对数据作回归分析.

(004055) 为了验证蔬菜植株感染红叶螨能否引起植株对枯萎病的抗性, 随机抽取 57 棵植株, 获得如下观察数据: 26 棵植株感染红叶螨, 其中 15 株无枯萎病, 11 株有枯萎病; 31 棵植株未感染红叶螨, 其中 17 株无枯萎病, 14 株有枯萎病.

- (1) 根据上述数据制作一张 2×2 列联表;
- (2) 这些数据能否说明感染红叶螨可引起植株对枯萎病的抗性这一结论?

(004056) 某公司随机调查了 45 户家庭, 研究其一种产品的家庭人均消费量 y 与家庭人均月收入 x 之间的关系, 得到的数据如下表所示.

家庭编号	家庭人均月收入 x/元	家庭人均消费量 $y/$ 元
1	5432	6.32
2	2336	3.52
3	3944	6.32
4	4656	21.60
5	9246	29.12
6	17512	76.00
7	8776	42.72
8	16624	54.80
9	14544	46.72
10	13600	41.68
11	5976	26.00

家庭编号	家庭人均月收入 $x/$ 元	家庭人均消费量 y/ 元
12	13144	25.28
13	3312	4.00
14	2832	1.36
15	10208	15.04
16	5960	6.16
17	3480	11.12
18	4320	4.48
19	6992	12.48
20	12344	42.24
21	8232	5.12
22	5680	32.00
23	6696	33.60
24	13984	39.04
25	11048	27.84
26	10040	21.04
27	14216	39.92
28	2960	4.72
29	9040	38.32
30	3704	4.08
31	6160	13.92
32	5792	32.80
33	6464	31.52
34	6320	6.68
35	6264	26.32
36	3248	3.52
37	9936	25.92
38	5264	17.12
39	13968	45.68
40	3744	5.12
41	8912	15.20
42	3304	4.08
43	14296	66.64
44	11960	40.88

家庭编号	家庭人均月收入 $x/$ 元	家庭人均消费量 y/ 元
45	12208	31.44

- (1) 绘制变量 y 与 x 的散点图;
- (2) 计算 y 与 x 的相关系数;
- (3) 试分析研究 y 与 x 之间的线性回归关系.

(004057) 下图是某地区 2000 年至 2016 年环境基础设施投资额 y(单位: 亿元) 的折线图.

为预测该地区 2018 年的环境基础设施投资额, 建立了 y 与时间变量 t 的两个线性回归模型. 其中, 根据 2000 年至 2016 年的数据 (时间变量 t 的值依次为 $1,2,\cdots,17$) 建立了模型①: y=-30.4+13.5t; 而根据 2010 年至 2016 年的数据 (时间变量 t 的值依次为 $1,2,\cdots,7$) 建立了模型②: y=99+17.5t.

- (1) 分别利用这两个模型, 求该地区 2018 年环境基础设施投资额的预测值;
- (2) 你认为用哪个模型得到的预测值更可靠?请说明理由.

(004058) 某地区市场上有 80 种品牌的饼干,它们近一段时间内的平均售价 (以下简称"价格") 和销售量的数据如下表所示.

品牌编号	价格/(元/千克)	销售量/千克	品牌编号	价格/(元/千克)	销售量/千克
1	14	1231.85	2	34.62	1465.89
3	30.86	1774.29	4	14	1892.91
5	36	2324.44	6	28.41	2480.04
7	9.09	2545.33	8	44.84	2568.11
9	31.68	2638.48	10	20	3233.99

品牌编号	价格/(元/千克)	销售量/千克	品牌编号	价格/(元/千克)	销售量/千克
11	14.67	3518.17	12	19.09	3566.58
13	26.67	4264.28	14	17.51	4672.33
15	13	4752.20	16	25.24	4865.42
17	31.1	5042.91	18	26.24	5108.73
19	25.88	5367.70	20	17.81	5465.26
21	29.56	5500.35	22	25	5655.53
23	31.41	5865.45	24	23.48	6103.94
25	23.6	6243.10	26	22.13	6509.67
27	21.48	6758.18	28	25.03	7100.93
29	19.55	7356.44	30	24.81	7439.63
31	20.92	7627.28	32	17.7	7740.45
33	20.79	7744.67	34	24.63	7989.30
35	13.59	7996.84	36	19.29	8151.09
37	20	8231.85	38	22.03	8289.18
39	20.08	8524.06	40	19.03	8689.36
41	16.67	8874.66	42	16.04	8888.74
43	14.12	9005.62	44	13.75	9046.93
45	19.87	9384.98	46	15.72	9414.11
47	25.04	9454.50	48	14	9731.32
49	11.26	9762.08	50	11.25	9809.51
51	20.92	9924.99	52	16.95	10101.74
53	15.38	10461.08	54	13.88	10561.53
55	13.04	10960.55	56	29.33	11627.43
57	4.9	11838.62	58	11.91	12303.55
59	13.9	12713.01	60	17.78	12830.94
61	17.31	13686.17	62	12.27	14181.94
63	11.89	15175.16	64	10.08	17658.74
65	6.13	18058.67	66	10.4	19937.88
67	12.7	23055.87	68	9.19	26508.14
69	8	29504.40	70	5.22	31693.07
71	9.23	32123.53	72	7.6	34732.28
73	8.33	36321.39	74	9.25	36898.25
75	9.36	38343.50	76	8.42	39033.51

品牌编号	价格/(元/千克)	销售量/千克	品牌编号	价格/(元/千克)	销售量/千克
77	6.25	43832.88	78	23.01	112827.40
79	8.7	139493.10	80	12.32	21134.65

(004059) 已知集合 $A = \{-2, 1, 2\}, B = \{\sqrt{a} + 1, a\}, 且 B \subseteq A, 则实数 a 的值是_____.$

$$(004060)$$
 若直线 l 的参数方程为
$$\begin{cases} x=4-4t, & t\in\mathbf{R},\ \mathrm{则直线}\ l\ \mathrm{ft}\ y\ \mathrm{shr} \perp \mathrm{ht} \in\mathbf{R}, \ \mathrm{ht} \leq \mathrm{ht} \end{cases}$$

(004062) 平面上有 12 个不同的点, 其中任何 3 点不在同一直线上, 如果任取 3 点作为顶点作三角形, 那么一共可作____________ 个三角形 (结果用数值表示).

$$\begin{vmatrix} 2^x & 0 & 3 \\ x & 4 & 0 \\ 1 & x-3 & -1 \end{vmatrix}$$
 中第 1 行第 3 列元素的代数余子式记为 $f(x)$,则关于 x 的不等式

f(x) < 0 的解集为_____

(004064) 焦点在 y 轴上, 焦距为 6, 且经过点 $(0,\sqrt{5})$ 的双曲线的标准方程为_____.

(004065) 已知抛物线型拱桥的顶点距水面 2 米时, 量得水面宽为 8 米, 当水面下降 1 米后, 水面的宽为_______*.

$$(004066)$$
 函数 $y = \sin(\frac{\pi}{6} - x), x \in [0, \frac{3\pi}{2}]$ 的单调递减区间是______.

(004068) 已知 6 个正整数, 它们的平均数是 5, 中位数是 4, 唯一众数是 3, 则这 6 个数方差的最大值为______(精确到小数点后一位).

(004069) 已知正方形 ABCD 边长为 8, $\overrightarrow{BE}=\overrightarrow{EC}$, $\overrightarrow{DF}=3\overrightarrow{FA}$, 若在正方形边上恰有 6 个不同的点 P, 使 $\overrightarrow{PE}\cdot\overrightarrow{PF}=\lambda$. 则 λ 的取值范围为

(004070) 已知 $f(x) = 2x^2 + 2x + b$ 是定义在 [-1,0] 上的函数, 若 $f[f(x)] \le 0$ 在定义域上恒成立, 而且存在实数 x_0 满足: $f[f(x_0)] = x_0$ 且 $f(x_0) \ne x_0$, 则实数 b 的取值范围是______.

(004071) 如图, 水平放置的正三棱柱的俯视图是().

B. -40

(004074) 如图,在直角坐标平面内有一个边长为 a,中心在原点 O 的正六边形 ABCDEF, $AB \parallel Ox$. 直线 l:y=kx+t (k 是常数)与正六边形交于 M、N 两点,记 $\triangle OMN$ 的面积为 S,则函数 S=f(t) 的奇偶性为 ().

C. 30

D. -30

A. 偶函数

A. 40

B. 奇函数

C. 不是奇函数, 也不是偶函数

D. 奇偶性与 k 有关

(004075) 如图, 在直三棱柱 $ABC - A_1B_1C_1$ 中, $AB \perp AC$, $AA_1 = AB = AC = 1$, $\angle ABC = \frac{\pi}{4}$, D、M、N 分别是 CC_1 、 A_1B_1 、BC 的中点.

- (1) 求异面直线 MN 与 AC 所成角的大小;
- (2) 求点 M 到平面 ADN 之间的距离.

(004076) 某地计划在一处海滩建造一个养殖场。

- (1) 如图, 射线 OA、OB 为海岸线, $\angle AOB = \frac{2\pi}{3}$, 现用长度为 1 千米的围网 PQ 依托海岸线围成一个 $\triangle POQ$ 的养殖场, 问如何选取点 P、Q, 才能使养殖场 $\triangle POQ$ 的面积最大, 并求其最大面积;
- (2) 如图, 直线 l 为海岸线, 现用长度为 1 千米的围网依托海岸线围成一个养殖场。

方案一: 围成三角形 OAB(点 A、B 在直线 l 上), 使三角形 OAB 面积最大, 设其为 S_1 ;

方案二: 围成弓形 CDE(点 D、E 在直线 l 上, C 是优弧所在圆的圆心且 $\angle DCE = \frac{2\pi}{3}$), 其面积为 S_2 ; 试求出 S_1 的最大值和 S_2 (均精确到 0.001 平方千米), 并指出哪一种设计方案更好 (面积较大的更好).

(004077) 已知各项均不为零的数列 $\{a_n\}$ 满足 $a_1=1$, 前 n 项的和为 S_n , 且 $\frac{S_n^2-S_{n-1}^2}{a_n}=2n^2, n\in \mathbf{N}^*, n\geq 2$, 数列 $\{b_n\}$ 满足 $b_n=a_n+a_{n+1}, n\in \mathbf{N}^*$.

- (1) 求 a_2 、 a_3 、 S_{2019} ;
- (2) 已知等式 $kC_n^k = n \cdot C_{n-1}^{k-1}$ 对 $1 \le k \le n, k, n \in \mathbf{N}^*$ 成立,请用该结论求有穷数列 $\{b_k C_n^k\}, k = 1, 2, \cdots, n$ 的前 n 项和 T_n .

(004078)(1) 设椭圆 $C_1: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 与双曲线 $C_2: 9x^2 - \frac{9y^2}{8} = 1$ 有相同的焦点 F_1 、 F_2 ,M 是椭圆 C_1 与双曲线 C_2 的公共点,且 $\triangle MF_1F_2$ 的周长为 6,求椭圆 C_1 的方程;

我们把具有公共焦点、公共对称轴的两段圆锥曲线弧合成的封闭曲线称为"盾圆".

$$(2) 如图, 已知 "盾圆 D " 的方程为 $y^2 = \begin{cases} 4x, & 0 \leq x \leq 3, \\ & \text{设 "盾圆 } D$ " 上的任意一点 M 到 $F(1,0)$ $-12(x-4), \quad 3 < x \leq 4. \end{cases}$$$

的距离为 d_1 , M 到直线 l: x=3 的距离为 d_2 , 求证: d_1+d_2 为定值;

(3) 由抛物线弧 $E_1: y^2 = 4x(0 \le x \le \frac{2}{3})$ 与第 (1) 小题椭圆弧 $E_2: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(\frac{2}{3} \le x \le a)$ 所合成的封闭曲线为 "盾圆 E". 设 "盾圆 E" 上的两点 AB 关于 x 轴对称, O 为坐标原点, 试求 $\triangle OAB$ 面积的最大值.

(004079) 已知函数 $f(x) = \log_2 x$.

- (1) 若 f(x) 的反函数是 $f^{-1}(x)$, 解方程: $f^{-1}(2x+1) = 3f^{-1}(x) 1$;
- (2) 当 $x \in (3m, 3m + 3](m \in \mathbb{N})$ 时, 定义 g(x) = f(x 3m). 设 $a_n = n \cdot g(n)$, 数列 $\{a_n\}$ 的前 n 项和为 S_n , 求 a_1 、 a_2 、 a_3 、 a_4 和 S_{3n} ;
- (3) 对于任意 a、b、 $c \in [M, +\infty)$, 且 $a \ge b \ge c$. 当 a、b、c 能作为一个三角形的三边长时, f(a)、f(b)、f(c) 也总能作为某个三角形的三边长, 试探究 M 的最小值.

$$(004080)$$
 集合 $A = \{1, 2, 3, 4\}, B = \{x | (x-1)(x-5) < 0\}, \text{ } M A \cap B = \underline{\hspace{1cm}}$

(004081) 复数 $z = \frac{2-\mathrm{i}}{1+\mathrm{i}}$ 所对应的点在复平面内位于第______ 象限.

(004082) 已知首项为 1 公差为 2 的等差数列 $\{a_n\}$, 其前 n 项和为 S_n , 则 $\lim_{n\to\infty} \frac{(a_n)^2}{S_n} =$ _______.

(004083) 已知双曲线 $\frac{x^2}{a^2} - \frac{y^2}{81} = 1 (a > 0)$ 的一条渐近线方程为 y = 3x, 则 a =______.

(004084) 若圆柱的侧面展开图是边长为 4 的正方形, 则圆柱的体积为 ...

(004085) 已知 x、y 满足 $\begin{cases} x-y \leq 0, \\ x+y \leq 2, \\ x+2 \geq 0, \end{cases}$

(004087) 生产零件需要经过两道工序,在第一、第二道工序中产生废品的概率分别为 0.01 和 p, 每道工序产生废品相互独立,若经过两道工序后得到的零件不是废品的概率是 0.9603, 则 $p = ______$.

(004088) 如图, 长方体 $ABCD-A_1B_1C_1D_1$ 的边长 $AB=AA_1=1,\ AD=\sqrt{2},\$ 它的外接球是球 $O,\$ 则 A、 A_1 这两点的球面距离等于______.

(004089)[x] 是不超过 x 的最大整数,则方程 $(2^x)^2 - \frac{7}{4} \cdot [2^x] - \frac{1}{4} = 0$ 满足 x < 1 的所有实数解是______.

(004090) 在直角 $\triangle ABC$ 中, $\angle A=\frac{\pi}{2},\ AB=1,\ AC=2,\ M$ 是 $\triangle ABC$ 内一点,且 $AM=\frac{1}{2},\$ 若 $\overrightarrow{AM}=\lambda\overrightarrow{AB}+\mu\overrightarrow{AC},\$ 则 $\lambda+2\mu$ 的最大值为______.

(004091) 已知函数 $f(x) = \cos x$, 若对任意实数 x_1 、 x_2 , 方程 $|f(x) - f(x_1)| + |f(x) - f(x_2)| = m(m \in \mathbf{R})$ 有解, 方程 $|f(x) - f(x_1)| - |f(x) - f(x_2)| = n(n \in \mathbf{R})$ 也有解, 则 m + n 的值的集合为______.

(004092) 已知 α, β 是两个不同平面, m 为 α 内的一条直线, 则 " $m \parallel \beta$ " 是 " $\alpha \parallel \beta$ " 的 ().

A. 充分不必要条件

B. 必要不充分条件

C. 充要条件

D. 既不充分也不必要条件

(004093) 如图, P 为正方体 $ABCD-A_1B_1C_1D_1$ 中 AC_1 与 BD_1 的交点, 则 $\triangle PAC$ 在该正方体各个面上的正投影可能是 ().

A. (1)(2)(3)(4)

B. (T)(3)

C. (1)(4)

D. (2)(4)

(004094) 已知 f(x) 是定义在 R 上的奇函数,对任意两个不相等的正数 x_1, x_2 都有 $\frac{x_2 f(x_1) - x_1 f(x_2)}{x_1 - x_2} < 0$,

则函数
$$g(x) = \begin{cases} \frac{f(x)}{x}, & x \neq 0, \\ 0, & x = 0 \end{cases}$$
).

A. 是偶函数, 且在 $(0,+\infty)$ 上单调递减

B. 是偶函数, 且在 $(0,+\infty)$ 上单调递增

C. 是奇函数, 且单调递减

D. 是奇函数, 且单调递增

(004095) 已知数列 $\{a_n\}$ 的首项 $a_1=a,$ 且 $0< a \leq 4,$ $a_{n+1}=$ $\begin{cases} a_n-4, & a_n>4, \\ S_n \text{ 是此数列的前 } n \text{ 项和}, \\ 6-a_n, & a_n\leq 4, \end{cases}$ 则以下结论正确的是 ().

A. 不存在 a 和 n 使得 $S_n = 2015$

B. 不存在 a 和 n 使得 $S_n = 2016$

C. 不存在 a 和 n 使得 $S_n = 2017$

D. 不存在 a 和 n 使得 $S_n = 2018$

(004096) 如图, 在多面体 $ABC - A_1B_1C_1$ 中, AA_1 、 BB_1 、 CC_1 均垂直于平面 ABC, $AA_1 = 4$, $CC_1 = 3$, $BB_1 = AB = AC = 2$, $\angle BAC = 120^{\circ}$.

(1) 求 AB_1 与 $A_1B_1C_1$ 所成角的大小;

(2) 求二面角 $A - A_1B_1 - C_1$ 的大小.

(004097) 已知函数 $f(x) = 1 - \frac{6}{a^{x+1} + a} (a > 0, \, a \neq 1)$ 是定义在 R 上的奇函数.

(1) 求实数 a 的值及函数 f(x) 的值域;

(2) 若不等式 $t \cdot f(x) > 3^x - 3$ 在 $x \in [1, 2]$ 上恒成立, 求实数 t 的取值范围.

(004098) 某城市的棚户区改造建筑用地平面示意图如图所示,经过调研、规划确定,棚改规划用地区域近似为圆面,该圆的内接四边形 ABCD 区域是原棚户区建筑用地,测量可知边界 $AB=AD=2(\mathrm{km}),BC=3(\mathrm{km}),CD=1(\mathrm{km}).$

(1) 求 AC 的长及原棚户区建筑用地 ABCD 的面积;

(2) 因地理条件限制, 边界 AD, DC 不能变更, 而边界 AB, BC 可以调整, 为了增加棚户区建筑用地的面积, 请在弧 $\stackrel{\frown}{ABC}$ 上设计一点 P, 使得棚户区改造后的新建筑用地 (四边形 APCD) 的面积最大, 并求出这个面积最大值.

(004099) 已知椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b > 0)$, 定义椭圆 C 上的点 $M(x_0, y_0)$ 的 "伴随点" 为 $N(\frac{x_0}{a}, \frac{y_0}{b})$.

(1) 求椭圆 C 上的点 M 的 "伴随点"N 的轨迹方程;

(2) 如果椭圆 C 上的点 $(1,\frac{3}{2})$ 的 "伴随点"为 $(\frac{1}{2},\frac{3}{2b})$,对于椭圆 C 上的任意点 M 及它的"伴随点"N,求 $\overrightarrow{OM}\cdot\overrightarrow{ON}$ 的取值范围;

- (3) 当 $a=2, b=\sqrt{3}$ 时, 直线 l 交椭圆 C 于 A, B 两点, 若点 A, B 的 "伴随点" 分别是 P, Q, 且以 PQ 为直 径的圆经过坐标原点 O, 求 $\triangle OAB$ 的面积.
- (004100) 已知项数为 m $(m \in N^*, m \ge 2)$ 的数列 $\{a_n\}$ 满足条件: ① $a_n \in N^* (n = 1, 2, \cdots, m)$ ② $a_1 < a_2 < \cdots < a_m$.; 若数列 $\{b_n\}$ 满足 $b_n = \frac{(a_1 + a_2 + \cdots + a_m) a_n}{m-1} \in \mathbf{N}^* (n = 1, 2, \cdots, m)$, 则称 $\{b_n\}$ 为数列 $\{a_n\}$ 的 "关联数列".
- (1) 数列 1,5,9,13,17 是否存在"关联数列"? 若存在,写出其"关联数列"; 若不存在,请说明理由;
- (2) 若数列 $\{a_n\}$ 存在 "关联数列" $\{b_n\}$, 证明: $a_{n+1}-a_n \geq m-1 (n=1,2,\cdots,m-1)$;
- (3) 已知数列 $\{a_n\}$ 存在 "关联数列" $\{b_n\}$, 且 $a_1 = 1$, $a_m = 2049$, 求数列 $\{a_n\}$ 项数 m 的最小值与最大值.
- (004101) 已知复数 z 满足 $z = 3 i(i 为虚数单位), 则 <math>z \cdot \overline{z} =$ _____.
- (004102) 已知函数 $f(x) = \sqrt{2x-1}$ 的反函数为 $f^{-1}(x)$,则 $f^{-1}(7) =$ _____.
- (004103) 在行列式 $D = egin{bmatrix} 1 & 3 & 7 \\ 2 & 5 & -2 \\ 1 & 2 & 3 \end{bmatrix}$ 中,第二行第三列的元素 3 的代数余子式的值为______.
- (004104) 在 $(x-\sqrt{2})^8$ 的二项展开式中, x^5 项的系数是_____.
- (004105) 已知 x,y 满足: $\begin{cases} x+2\geq 0,\\ y-1\leq 0,\\ x-y-4\leq 0 \end{cases}$ 则 z=x-2y 的最大值为_____.
- (004106) 方程 $\log_5(4^x 11) 1 = \log_5(2^x 3)$ 的解为 x =_____.
- (004107) 已知一组数据 a, 3, -2, 8 的中位数为 5, 则其总体方差为_____.
- (004108) 已知函数 f(x) = g(x) + |2x 1| 为奇函数, 若 g(-2) = 7, 则 g(2) = 2.
- (004109) 直线 $l:(n+2)x-y+n-1=0 (n\in \mathbf{N}^*)$ 被圆 $C:(x-1)^2+y^2=16$ 所載得的弦长为 $d_n,$ 则 $\lim_{n\to\infty}d_n=$ _____.
- (004110) 非空集合 A 中所有元素乘积记为 T. 已知集合 $M = \{1,4,5,7,8,9\}$, 从集合 M 的所有非空子集中任选一个子集 A , 则 T(A) 为偶数的概率是 (结果用最简分数表示).
- (004111) 函数 $f(x)=\sin(\omega x)+\sqrt{3}\cos(\omega x)(\omega>0)$, 若恰有两个实数 m 满足: ① $0\leq m\leq\frac{\pi}{2}$; ② x=m 是函数图像的对称轴, 则 ω 的取值范围是______.
- (004112) 如图,在棱长为 2 的正方体 $ABCD-A_1B_1C_1D_1$ 中,点 P 是平面 ACC_1A_1 上一动点,且满足 $\overrightarrow{DP}\cdot\overrightarrow{CP}=0$,则满足条件的所有点 P 所围成的平面区域的面积是______.

(004113) 若 $m, n \in \mathbb{R}$, i 是虚数单位, 则 " $m^2 = n^2$ " 是 "(m-n) + (m+n)i 为纯虚数"的 ().

A. 充分不必要条件

B. 必要不充分条件

C. 充要条件

D. 既不充分也不必要条件

(004114) 已知数列 $\{a_n\}$ 是无穷等比数列, 若 $a_1 < a_2 < 0$, 则数列 $\{a_n\}$ 的前 n 项和 S_n

A. 无最大值, 有最小值

B. 有最大值, 有最小值

C. 有最大值, 无最小值

D. 无最大值, 无最小值

(004115) 若直线 ax + by = 2(a, b 不全为零) 经过点 $M(2\cos\alpha, \sin\alpha)(\alpha \in \mathbf{R})$, 则 (

A.
$$4a^2 + b^2 \le 4$$

A.
$$4a^2 + b^2 \le 4$$
 B. $4a^2 + b^2 \ge 4$

C.
$$\frac{4}{a^2} + \frac{1}{b^2} \le 4$$

C.
$$\frac{4}{a^2} + \frac{1}{b^2} \le 4$$
 D. $\frac{4}{a^2} + \frac{1}{b^2} \ge 4$

 $(004116) \ \textbf{已知集合} \ M = \{(x,y)|y=f(x)\}, \ \textbf{若对于任意} \ (x_1,y_1) \in M, \ \textbf{存在} \ (x_2,y_2) \in M, \ \textbf{使得} \ x_1x_2 + y_1y_2 = 0 \}$ 成立, 则称集合 M 是 " Ω 集合". 给出下列 4 个集合: ① $M = \{(x,y)|y = \frac{1}{x}\};$ ② $M = \{(x,y)|y = \mathrm{e}^x - 2\};$ ③ $M=\{(x,y)|y=\cos x\};$ ④ $M=\{(x,y)|y=\ln x\}.$ 其中所有 " Ω 集合" 的序号是 (

(004117) 如图, 棱柱 $ABC - A_1B_1C_1$ 中, $AB = BC = AA_1 = 2$, $BB_1 \perp$ 底面ABC, $AB \perp BC$, D 是棱 AB的中点.

- (1) 求证: 直线 BC 与直线 DC₁ 为异面直线;
- (2) 求直线 DC_1 与平面 A_1BC 所成角的大小.

(004118) 已知 $f(x) = ax + \frac{x^2}{x^2 + 1}$, a 为实常数.

- (1) 当 a = 1 时, 求不等式 $f(x) + f(\frac{1}{x}) < x$ 的解集;
- (2) 若函数 f(x) 在 $(0,+\infty)$ 中有零点, 求 a 的取值范围.

(004119) 如图, A, B, C 三地在以 O 为圆心的圆形区域边界上, AB = 30 公里, AC = 10 公里, $\angle BAC = 60^{\circ}$, D 是圆形区域外一景点, $\angle DBC = 90^{\circ}$, $\angle DCB = 60^{\circ}$.

(1) O、A 相距多少公里 (精确到小数点后两位)? (2) 若一汽车从 A 处出发, 以每小时 50 公里的速度沿公路 AD 行驶到 D 处, 需要多少小时 (精确到小数点后两位)?

(004120) 已知椭圆 $\Omega: \frac{x^2}{4} + \frac{y^2}{3} = 1$ 的左右两焦点分别为 F_1, F_2 .

- (1) 若矩形 ABCD 的边 AB 在 y 轴上, 点 C,D 均在 Ω 上, 求该矩形绕 y 轴旋转一周所得圆柱侧面积 S 的取值范围;
- (2) 设斜率为 k 的直线 l 与 Ω 交于 P,Q 两点, 线段 PQ 的中点为 M(1,m)(m>0), 求证: $k<-\frac{1}{2}$;
- (3) 过 Ω 上一动点 $E(x_0,y_0)$ 作直线 $l: \frac{x_0x}{4} + \frac{y_0y}{3} = 1$, 其中 $y_0 \neq 0$, 过 E 作直线 l 的垂线交 x 轴于点 R. 问是否存在实数 λ , 使得 $|EF_1| \cdot |RF_2| = \lambda |EF_2| \cdot |RF_1|$ 恒成立? 若存在, 求出 λ 的值; 若不存在, 说明理由.

 $(004121) \ \textbf{已知无穷数列} \ \{a_n\} \ \textbf{与无穷数列} \ \{b_n\} \ 满足下列条件: ① \ a_n \in \{0,1,2\}, \ n \in \mathbf{N}^*; ② \ \frac{b_{n+1}}{b_n} = (-1)^n \cdot |\frac{1}{2}a_n - \frac{1}{4}a_{n+1}|, \ n \in \mathbf{N}^*. \ \textbf{记数列} \ \{b_n\} \ \textbf{的前} \ n \ 项积为 \ T_n.$

- (1) 若 $a_1 = b_1 = 1$, $a_2 = 0$, $a_3 = 2$, $a_4 = 1$, 求 T_4 ;
- (2) 是否存在 a_1, a_2, a_3, a_4 , 使得 b_1, b_2, b_3, b_4 成等差数列? 若存在, 请写出一组 a_1, a_2, a_3, a_4 ; 若不存在, 请说明理由:
- (3) 若 $b_1 = 1$, 求 T_{2021} 的最大值.

(004122) 若 $\sin \alpha = \frac{1}{4}$, 则 $\sin(\pi + \alpha) =$ _____.

(004123) 设集合 $A = \{1, 2, 3\}, B = \{y | y = \sin x, x \in \mathbf{R}\}, 则 A \cap B = _____.$

(004124) 已知圆锥的底面半径为 1, 母线长为 2, 则该圆锥的体积为_____.

(004125) 关于 x 的不等式 $\frac{1}{x} > 1$ 的解集为______.

(004126) 已知常数 $a \in \mathbb{R}$, 若复数 z = (a+i)(2+i)(i 为虚数单位) 的实部与虚部相等, 则 $|z| = _____.$

(004127) 在 $(x^2 + \frac{2}{x})^7$ 的二项展开式中, x^2 的系数为______.

(004128) 各项都不为零的等差数列 $\{a_n\}$ 满足 $a_2 - 2a_8^2 + 3a_{10} = 0$, 则 $a_8 =$ _______.

(004129) 设椭圆 $\Gamma: \frac{x^2}{a^2} + y^2 = 1 (a>1)$ 的左顶点为 A, 过点 A 的直线 l 与 Γ 相交于另一点 B, 与 y 轴相交于 点 C. 若 |OA| = |OC|, |AB| = |AC|, 则 a =

(004130) 已知常数 $b, c \in \mathbf{R}$. 若函数 $f(x) = (x^2 + x - 2)(x^2 + bx + c)$ 为偶函数, 则 b + c =___

(004131) 设 a,b,c,d,e,f 为 1,2,3,4,5,6 的任意一个排列,则使得 (a+b)(c+d)(e+f) 为偶数的排列共 有_____ 个.

(004132) 已知定点 A(1,0), 圆 $\omega: x^2+y^2=4$, M,N 为 ω 上的动点, 满足 $|MN|=2\sqrt{3}$, 则 $\overrightarrow{AM}\cdot\overrightarrow{AN}$ 的取值 范围为 .

(004133) 空间中, 给定两条异面直线 m,n 以及平面 α , 满足: $m\perp n,n$ 在平面 α 上, m 与 α 所成的角 $\theta \in [60^{\circ}, 90^{\circ}]$. 动点 P 在 α 上, 满足 P 到 m 的距离与 P 到 n 的距离相等, 记 P 的轨迹为曲线 Γ . 对于下列 命题: ① Γ 可以是椭圆; ② Γ 可以是双曲线, 且两条渐近线的夹角为 30° ; ③ Γ 可以是双曲线, 且两条渐近线的 夹角为 60°; ④ Γ 可以是抛物线, 所有真命题的序号为

$$(004134)$$
 行列式 $\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = ().$

B. -2

C. 2

D. 4

(004135) 函数 $f(x) = \sin(2x + \frac{\pi}{4})$ 的图像关于 () 对称.

A. 直线 $x = \frac{\pi}{4}$ B. 直线 $x = \frac{3\pi}{8}$ C. 点 $(\frac{\pi}{4}, 0)$ D. 点 $(\frac{3\pi}{8}, 0)$

(004136) 设 a,b,c 表示三条互不重合的直线, α 、 β 表示两个不重合的平面, 则使得 $a\parallel b$ 成立的一个充分条件 为().

A. $a \perp c$, $b \perp c$

B. $a \parallel \alpha, b \parallel \alpha$

C. $a \parallel \alpha$, $a \parallel \beta$, $\alpha \cap \beta = b$

D. $b \perp \alpha$, $c \parallel \alpha$, $a \perp c$

(004137) 在锐角 $\triangle ABC$ 中, O 为 $\triangle ABC$ 的外心, 设 O 到直线 BC, AC, AB 的距离分别为 d_1, d_2, d_2 . 若将所 有的全等三角形看作同一个三角形, 则对于命题: ① 对任意给定的 $d_1,d_2\in\mathbf{R}^+$ 以及 $\angle C\in(0,\frac{\pi}{2})$, 锐角 $\triangle ABC$ 都存在且唯一; ② 对任意给定的 $d_1, d_2, d_3 \in \mathbb{R}^+$, 锐角 $\triangle ABC$ 都存在且唯一, 下列判断正确的是 (

A. ①、②均为真命题

B. (1)、(2)均为假命题

C. ①为真命题, ②为假命题

D. ①为假命题, ②为真命题

(004138) 如图, 在长方体 ABCD - A₁B₁C₁D₁ 中, 2AB = BC = AA₁, 点 M 为棱 C₁D₁ 上的动点.

- (1) 求三棱锥 $D A_1B_1M$ 与长方体 $ABCD A_1B_1C_1D_1$ 的体积比;
- (2) 若 M 为棱 C_1D_1 的中点, 求直线 DB_1 与平面 DA_1M 所成角的大小.

(004139) 已知常数 $a \in \mathbb{R}^+$, 函数 $f(x) = 3^x + a^2 \cdot 3^{-x}$.

- (1) 若 $a = \sqrt{3}$, 解关于 x 的不等式 f(x) < 4;
- (2) 若 f(x) 在 $[3,+\infty)$ 上为增函数, 求 a 的取值范围.

(004140) 某居民小区为缓解业主停车难的问题,拟对小区内一块扇形空地 AOB 进行改建.如图所示,平行四边形 OMPN 区域为停车场,其余部分建成绿地,点 P 在围墙 $\stackrel{\frown}{AB}$ 上,点 M 和 N 分别在道路 OA 和道路 OB 上,且 OA=60m, $\angle AOB=\frac{\pi}{3}$.设 $\angle POB=\theta$.

- (1) 求停车场面积 S(单位: $m^2)$ 关于 θ 的函数关系式, 并写出 θ 的取值范围;
- (2) 求停车场面积 S 的最大值以及相应 θ 的值.

(004141) 已知常数 p > 0, 抛物线 $\Gamma : y^2 = 2px$ 的焦点为 F.

- (1) 若直线 x=2 被 Γ 截得的弦长为 4, 求 p 的值;
- (2) 设 E 为点 F 关于原点 O 的对称点, P 为 Γ 上的动点, 求 $\frac{|PE|}{|PF|}$ 的取值范围;
- (3) 设 p=2. 两条互相垂直的直线 l_1, l_2 均过点 F, l_1 与 Γ 相交于 A, B 两点, l_2 与 Γ 相交于 C, D 两点. 若 $AC \perp BC$, 求四边形 ACBD 的面积.

(004142) 记无穷数列 $\{a_n\}$ 的前 n 项和为 S_n , 集合 $M=\{x|x=a_n,\ n\in {\bf N}^*\}$. 若对任意 $n\in {\bf N}^*$, 恒有 $S_n\in M$, 则称 $\{a_n\}$ 具有性质 ${\bf P}$.

- (1) 若无穷数列 $\{a_n\}$ 的前 n 项和为 $S_n = n^2 + n + 2$, 判断 $\{a_n\}$ 是否具有性质 **P**, 并说明理由;
- (2) 若无穷数列 $\{a_n\}$ 为等差数列, 首项 $a_1 = -1$, 公差 d > 0, 且 $\{a_n\}$ 具有性质 **P**, 求 d 的值;
- (3) 若无穷数列 $\{a_n\}$ 为等比数列, 首项 $a_1 = 1$, 公比 q > 0, 问: 是否存在 q, 使得 $\{a_n\}$ 具有性质 **P**? 若存在, 求出所有 q 的值; 若不存在, 说明理由.
- (004143) 方程 $\log_3(2x+1)=2$ 的解是_____.
- (004144) 已知集合 $M = \{x | |x+1| < 1\}, N = \{-1, 0, 1\}, 则 M \cap N =$
- (004145) 若复数 $z_1 = a + 2i$, $z_2 = 2 + i(i$ 是虚数单位), 且 $z_1 z_2$ 为纯虚数, 则实数 a =______.

$$(004146)$$
 直线 $\begin{cases} x = -2 - \sqrt{2}t, \\ y = 3 + \sqrt{2}t \end{cases}$ $(t$ 为参数) 对应的普通方程是______.
$$(004147) \text{ 函数 } y = \begin{vmatrix} \sin x & 1 \\ 0 & \cos x \end{vmatrix} \text{ 的最小正周期为_____.}$$

$$(004147)$$
 函数 $y = \begin{vmatrix} \sin x & 1 \\ 0 & \cos x \end{vmatrix}$ 的最小正周期为______

- (004148) 若 $(x+2)^n = x^n + ax^{n-1} + \dots + bx + c(n \in \mathbb{N}^*, n \ge 3)$, 且 b = 4c, 则 a 的值为
- (004149) 若函数 $f(x) = 2^x(x+a) 1$ 在区间 [0,1] 上有零点, 则实数 a 的取值范围是
- (004150) 某学生在上学路上要经过 2 个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯概率都是 $\frac{1}{2}$ 则这名学生在上学路上到第二个路口时第一次遇到红灯的概率是

则这名学生在上学路上到第二个路口时第一次遇到红灯的概率是______.
$$\begin{cases} x+y-6\geq 0,\\ x-y+2\geq 0, \end{cases} \quad \hbox{表示的可行域为 Ω, 若指数函数 $y=a^x$ 的图像与 Ω 有公共点,则 a 的取值范围是_____.$$

的取值范围是

(004152) 已知椭圆 $x^2+\frac{y^2}{b^2}=1(0< b<1)$,其左、右焦点分别为 F_1 、 F_2 , $|F_1F_2|=2c$,若椭圆上存在点 P,使 P 到直线 $x=\frac{1}{c}$ 距离是 $|PF_1|$ 与 $|PF_2|$ 的等差中项,则 b 的最大值为_______.

(004153) 已知 $f(x) = 1 + ax - \sqrt{1 + ax^2}$, 若对任意 $x \in [0, \sqrt{2}]$, $f(x) \leq 0$ 恒成立, 则实数 a 的取值范围 为 .

(004154) 已知函数 $f(x) = |\sin x| + |\cos x| - 4\sin x \cos x - k$, 若函数 f(x) 在区间 $(0,\pi)$ 内恰好有奇数个零点,

(004155) 函数 $y = x^2 (x \le 0)$ 的反函数为 ().

A.
$$y = \sqrt{x}, \ x \ge 0$$
 B. $y = -\sqrt{x}, \ x \ge 0$ C. $y = \sqrt{x}, \ x \le 0$ D. $y = -\sqrt{x}, \ x \le 0$

(004156) 某高科技公司所有雇员的工资情况如下表所示.

年薪 (万元)	135	95	80	70	60	52	40	31
人数	1	1	2	1	3	4	1	12

该公司雇员年薪的标准差约为(

A. 24.5(万元)

B. 25.5(万元)

C. 26.5(万元)

D. 27.5(万元)

(004157) 已知函数 $f(x) = x + \frac{a}{x}(a > 0), \ 0 < x_1 < x_2, \$ 且 $f(x_1) = f(x_2),$ 给出以下结论:

① $\frac{x_1 + x_2}{2} > \sqrt{a}$ 恒成立; ② $f(2\sqrt{a} - x_1) < f(x_2)$ 恒成立. 则 ().

A. ①正确, ②正确

B. ①正确, ②错误 C. ①错误, ②正确

D. ①错误, ②错误

(004158) 在直角坐标平面上,到两条直线 y=0 与 y=x 的距离和为 3 的点的轨迹所围成的图形的面积是 ().

A. 18

B. $18\sqrt{2}$

C. 36

D. $36\sqrt{2}$

(004159) 如图, 在四棱锥 M-ABCD 中, 已知 $AM\perp$ 平面ABCD, $AB\perp AD$, $AB\parallel CD$, AB=2CD, 且 AB = AM = AD = 2.

- (1) 求四棱锥 M ABCD 的体积;
- (2) 求直线 MC 与平面 ADM 所成的角.

(004160) 已知 $x \in \mathbf{R}$, $\overrightarrow{m} = (2\cos x, 2\sqrt{3}\sin x)$, $\overrightarrow{n} = (\cos x, \cos x)$.

- (1) 设 $f(x) = \overrightarrow{m} \cdot \overrightarrow{n}$, 求函数 y = f(x) 的解析式及最大值;
- (2) 设 $\triangle ABC$ 的三个内角 A,B,C 的对边分别为 a,b,c, 当 x=A 时, $\overrightarrow{m}=a\overrightarrow{n}$, 且 $c=2\sqrt{3}$, 求 $\triangle ABC$ 的面 积.

(004161) 某学校对面有一块空地要围建成一个面积为 360m2 的矩形场地, 要求矩形场地的一面利用旧墙 (旧墙 需要整修), 其它三面围墙要新建, 在旧墙对面的新墙上要留一个宽度为 2m 的进出口, 如图所示. 已知旧墙的 整修费用为 45元/m, 新建墙的造价为 180元/m, 建 2m 宽的进出口需 2360 元的单独费用, 设利用的旧墙的长 度为 x(单位: m), 设修建此矩形场地围墙的总费用 (含建进出口的费用) 为 y(单位: 元).

- (1) 将 y 表示为 x 的函数;
- (2) 试确定 x, 使修建此矩形场地围墙的总费用(含建进出口的费用)最少, 并求出最少总费用.

(004162) 已知椭圆 Γ 的中心是坐标原点 O, 焦点在 x 轴上, 点 B 是椭圆 Γ 的上顶点, 椭圆 Γ 上一点 $A(1, \frac{\sqrt{2}}{2})$ 到两焦点距离之和为 $2\sqrt{2}$.

- (1) 求椭圆 Γ 的标准方程;
- (2) 若点 P,Q 是椭圆 Γ 上异于点 B 的两点, $BP \perp BQ$, 且满足 $3\overrightarrow{PC} = 2\overrightarrow{CQ}$ 的点 C 在 y 轴上, 求直线 BP 的方程;
- (3) 设 x 轴上点 T 坐标为 (2,0), 过椭圆 Γ 的右焦点 F 作直线 l(不与 x 轴重合) 与椭圆 Γ 交于 M、N 两点, 如图, 点 M 在 x 轴上方, 点 N 在 x 轴下方, 且 $\overrightarrow{FM} = 2\overrightarrow{NF}$, 求 $|\overrightarrow{TM} + \overrightarrow{TN}|$ 的值.
- (004163) 已知数列 $\{x_n\}$, 若对任意 $n \in \mathbb{N}^*$, 都有 $\frac{x_n + x_{n+2}}{2} > x_{n+1}$, 则称数列 $\{x_n\}$ 为 "差增数列".
- (1) 试判断数列 $a_n = n^2 (n \in \mathbf{N}^*)$ 是否为 "差增数列", 并说明理由;
- (2) 对于所有各项均为正整数的"差增数列" $\{a_n\}$, 其中 $a_1=a_2=1$, 若使得 $a_k=m$ 成立的序数 k 的最大值为 20, 求正整数 m 的所有可能取值的集合;
- (3) 若数列 $\{\lg x_n\}$ 为 "差增数列" $(n \in \mathbb{N}^*, n \le 2020)$ 且 $\lg x_1 + \lg x_2 + \dots + \lg x_{2020} = 0$, 证明: $x_{1010} \cdot x_{1011} < 1$.
- (004164) 集合 $A = \{x|x^2 2x < 0\}, B = \{x||x| < 1\}, M A \cup B = \underline{\hspace{1cm}}$
- (004165) 已知函数 $f(x) = \log_3(\frac{4}{x+2})$, 则方程 $f^{-1}(x) = 4$ 的解 x =______.
- (004166) 等比数列 $\{a_n\}(n \in \mathbf{N}^*)$ 中, 若 $a_2 = \frac{1}{16}$, $a_5 = \frac{1}{2}$, 则 $a_8 =$ _____.
- (004167) 若方程 $x^2 2x + 3 = 0$ 的两个根为 α 和 β , 则 $|\alpha| + |\beta| = ______.$
- $(004168) \ \textbf{函数} \ f(x) = A\sin(\omega x + \varphi)(A>0, \ \omega>0, \ |\varphi|<\frac{\pi}{2}) \ \textbf{的部分图像如图所示}, \ \textit{则} \ f(x) = \underline{\hspace{1cm}}.$

(004169) 双曲线 $\frac{x^2}{4} - \frac{y^2}{9} = 1$ 的焦点到渐近线的距离等于_____.

(004170) 在二项式 $(1+ax)^7(a\in \mathbf{R})$ 的展开式中,x 的系数为 $\frac{7}{3}$,则 $\lim_{n\to\infty}(a+a^2+a^3+\cdots+a^n)$ 的值是______.

(004171) 已知正四棱柱 $ABCD - A_1B_1C_1D_1$ 的八个顶点都在同一球面上,若 $AB = 1, AA_1 = \sqrt{2},$ 则 A 、C 两点间的球面距离是______.

$$(004172)$$
 在 $\triangle ABC$ 中,已知 $AB=1,\ BC=2,\$ 若 $y=\begin{vmatrix} \cos C & \sin C \\ \sin C & \cos C \end{vmatrix}$,则 y 的最小值是_______.

(004173) 已知双曲线 $C: \frac{x^2}{9} - \frac{y^2}{8} = 1$,左、右焦点分别为 F_1 、 F_2 ,过点 F_2 作一直线与双曲线 C 的右支交于 P、Q 两点,使得 $\angle F_1 PQ = 90^\circ$,则 $\triangle F_1 PQ$ 的内切圆的半径 r =______

$$(004174)$$
 若函数 $f(x) = (1 + \sin x)^{2021} + (1 - \sin x)^{2021}$, 其中 $\frac{\pi}{6} \le x \le \frac{2\pi}{3}$, 则 $f(x)$ 的最大值为______

(004175) 已知实数 a、b 使得不等式 $|ax^2 + bx + a| \le x$ 对任意 $x \in [1,2]$ 都成立, 在平面直角坐标系 xOy 中, 点 (a,b) 形成的区域记为 Ω , 若圆 $x^2 + y^2 = r^2$ 上的任一点都在 Ω 中, 则 r 的最大值为______

(004176) 设 z_1 、 z_2 为复数,下列命题一定成立的是 ().

- A. 如果 $z_1^2 + z_2^2 = 0$, 那么 $z_1 = z_2 = 0$
- B. 如果 $|z_1| = |z_2|$, 那么 $z_1 = \pm z_2$
- C. 如果 $|z_1| \le a$, a 是正实数, 那么 $-a \le z_1 \le a$
- D. 如果 $|z_1| = a$, a 是正实数, 那么 $z_1 \cdot \overline{z_1} = a^2$

(004177) 下列命题为真命题的是().

- A. 若直线 l 与平面 α 上的两条直线垂直, 则直线 l 与平面 α 垂直
- B. 若两条直线同时垂直于一个平面,则这两条直线平行
- C. 若两个平面同时垂直于第三个平面,则这两个平面垂直
- D. 若直线 l 上的不同两点到平面 α 的距离相等, 则直线 l 与平面 α 平行

(004178) 若数列 $\{a_n\}$ 、 $\{b_n\}$ 的通项公式分别为 $a_n = (-1)^{n+2020}a$, $b_n = 2 + \frac{(-1)^{n+2019}}{n}$, 且 $a_n < b_n$ 对任意 $n \in \mathbb{N}^*$ 恒成立, 则实数 a 的取值范围为 ().

A.
$$[-2,1)$$
 B. $[-2,\frac{3}{2})$ C. $[-1,\frac{1}{2})$ D. $[-1,1)$

(004179) 已知定义在实数集 R 上的函数 f(x) 满足 $f(x+1) = \frac{1}{2} + \sqrt{f(x) - f^2(x)}$, 则 f(0) + f(2021) 的最小值与最大值的和为 ().

A. 2 B. 3 C.
$$\frac{3}{2} + \frac{\sqrt{2}}{2}$$
 D. $\frac{5}{2} + \frac{\sqrt{2}}{2}$

(004180) 如图, 在直三棱柱 $ABC - A_1B_1C_1$ 中, $BA \perp BC$, $BA = BC = BB_1 = 2$.

- (1) 求异面直线 AB_1 与 A_1C_1 所成角的大小;
- (2) 若 M 是棱 BC 的中点. 求点 M 到平面 A_1B_1C 的距离.

(004181) 随着生活水平的不断提高, 人们更加关注健康, 重视锻炼, 通过"小步道", 走出"大健康", 健康步道成 为引领健康生活的一道亮丽风景线. 如图, A-B-C-A 为某区的一条健康步道, AB、AC 为线段, BC 是以 BC 为直径的半圆, $AB = 2\sqrt{3}$ km, AC = 4km, $\angle BAC = \frac{\pi}{6}$.

- (1) 求 $\stackrel{\frown}{BC}$ 的长度:
- (2) 为满足市民健康生活需要, 提升城市品位, 改善人居环境, 现计划新建健康步道 A-D-C(B,D) 在 AC两侧), 其中 $AD,\,CD$ 为线段. 若 $\angle ADC=\frac{\pi}{3},\,$ 求新建的健康步道 A-D-C 的路程最多可比原有健康步道 A - B - C 的路程增加多少长度 (精确到 0.01 km)?
- (004182) 已知椭圆 $\frac{x^2}{6} + \frac{y^2}{3} = 1$ 上有两点 P(-2,1) 及 Q(2,-1), 直线 l: y = kx + b 与椭圆交于 A、B 两点, 与线段 PQ 交于点 $C(异于 P \times Q)$.
- (1) 当 k=1 且 $\overrightarrow{PC}=\frac{1}{2}\overrightarrow{CQ}$ 时, 求直线 l 的方程;
- (2) 当 k=2 时, 求四边形 PAQB 面积的取值范围.
- (004183) 在数列 $\{a_n\}$ 中,已知 $a_1=2$, $a_{n+1}a_n=2a_n-a_{n+1}(n\in \mathbf{N}^*)$.
- $(1) 证明: 数列 <math>\{\frac{1}{a_n}-1\}$ 为等比数列; $(2) \ \text{ld} \ b_n=\frac{a_na_{n+1}}{2^n}, \ \text{数列 } \{b_n\} \ \text{的前 } n \ \text{项和为 } S_n. \ \text{求使得 } S_n>1.999 \ \text{的整数 } n \ \text{的最小值};$
- (3) 是否存在正整数 m、n、k, 且 m < n < k, 使得 a_m 、 a_n 、 a_k 成等差数列? 若存在, 求出 m、n、k 的值; 若 不存在, 请说明理由.
- (004184) 设 m 为给定的实常数, 若函数 y = f(x) 在其定义域内存在实数 x_0 , 使得 $f(x_0 + m) = f(x_0) + f(m)$ 成立, 则称函数 f(x) 为 "G(m) 函数".
- (1) 若函数 $f(x) = 2^x$ 为 "G(2) 函数", 求实数 x_0 的值;
- (2) 若函数 $f(x) = \lg \frac{a}{x^2 + 1}$ 为 "G(1) 函数", 求实数 a 的取值范围;

(3) 已知 $f(x) = x + b(b \in \mathbf{R})$ 为 "G(0) 函数", 设 g(x) = x|x - 4|. 若对任意的 $x_1, x_2 \in [0, t]$, 当 $x_1 \neq x_2$ 时, 都有 $\frac{g(x_1) - g(x_2)}{f(x_1) - f(x_2)} > 2$ 成立, 求实数 t 的最大值.

(004185) 己知复数 z 满足 $z(1+i^{2020})=2-4i(其中,i$ 为虚数单位),则 z=_____.

(004186) 函数 $y = \arcsin(x+1)$ 的定义域是_____.

$$(004187)$$
 计算行列式的值, $\begin{vmatrix} 0 & 1 \\ 2 & 3 \end{vmatrix} =$ ______.

(004188) 已知双曲线 $C: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 (a>0,\,b>0)$ 的实轴与虚轴长度相等,则 C 的渐近线方程是_______

(004189) 已知无穷数列
$$a_n = \frac{2}{(-3)^n}, n \in \mathbb{N}^*,$$
 则数列 $\{a_n\}$ 的各项和为______.

(004190) 一个圆锥的表面积为 π , 母线长为 $\frac{5}{6}$, 则其底面半径为______.

(004192) 已知 $(x-\frac{1}{2x})^n$ 的展开式的常数项为第 6 项, 则常数项为_____.

(004193) 某医院 ICU 从 3 名男医生和 2 名女医生中任选 2 位赴武汉抗疫, 则选出的 2 位医生中至少有 1 位女医生的概率是______.

(004194) 已知方程 $x^2 + tx + 1 = 0 (t \in \mathbf{R})$ 的两个根是 x_1, x_2 , 若 $|x_1 - x_2| = 2\sqrt{2}$, 则 t =_____.

$$(004195)$$
 已知 O 是坐标原点,点 $A(-1,1)$,若点 $M(x,y)$ 为平面区域
$$\begin{cases} x+y\geq 2,\\ x\leq 1, \end{cases}$$
 上的一个动点,则 $\overrightarrow{OA}\cdot\overrightarrow{OM}$ $y\leq 2,$

的取值范围是_____

(004196) 课本中介绍了应用祖暅原理推导棱锥体积公式的做法. 祖暅原理也可用来求旋转体的体积. 现介绍用祖暅原理求球体体积公式的做法: 可构造一个底面半径和高都与球半径相等的圆柱, 然后在圆柱内挖去一个以圆柱下底面圆心为顶点, 圆柱上底面为底面的圆锥, 用这样一个几何体与半球应用祖暅原理 (左图), 即可求得球的体积公式. 请研究和理解球的体积公式求法的基础上, 解答以下问题: 已知椭圆的标准方程为 $\frac{x^2}{4} + \frac{y^2}{25} = 1$, 将此椭圆绕 y 轴旋转一周后, 得一橄榄状的几何体 (右图), 其体积等于_______.

(004197) 抛物线 $y = 4x^2$ 的准线方程是 ().

A.
$$x = -2$$

B.
$$x = -1$$

C.
$$y = -\frac{1}{8}$$

C.
$$y = -\frac{1}{8}$$
 D. $y = -\frac{1}{16}$

(004198) 若函数 $f(x) = \sin x + a \cos x$ 的图像关于直线 $x = \frac{\pi}{4}$ 对称, 则 a 的值为 (

C.
$$\sqrt{3}$$

D.
$$-\sqrt{3}$$

(004199) 已知 \overrightarrow{a} , \overrightarrow{b} 是平面内两个互相垂直的单位向量, 若向量 \overrightarrow{c} 满足 $(\overrightarrow{c}-\overrightarrow{a})\cdot(\overrightarrow{c}-\overrightarrow{b})=0$, 则 $|\overrightarrow{c}|$ 的 最大值是().

A. 1

C.
$$\sqrt{2}$$

D.
$$\frac{\sqrt{2}}{2}$$

(004200) 已知命题: "若 a,b 为异面直线, 平面 α 过直线 a 且与直线 b 平行, 则直线 b 与平面 α 的距离等于 异面直线 a,b 之间的距离"为真命题. 根据上述命题, 若 a,b 为异面直线, 且它们之间的距离为 d, 则空间中与 a, b 均异面且距离也均为 d 的直线 c 的条数为 (

A. 0 条

B. 1条

C. 多于 1 条, 但为有限条

D. 无数多条

(004201) 如图, 在直三棱柱 $ABC - A_1B_1C_1$ 中, $\angle ACB = 90^{\circ}$, AB = 2AC = 2, D 是 AB 的中点.

- (1) 若三棱柱 $ABC A_1B_1C_1$ 的体积为 $3\sqrt{3}$, 求三棱柱 $ABC A_1B_1C_1$ 的高;
- (2) 若 $C_1C = 2$, 求二面角 $D B_1C_1 A_1$ 的大小.

(004202) 已知函数 $f(x) = \sqrt{2}\sin(\omega x + \varphi), g(x) = \sqrt{2}\cos\omega x, \omega > 0, \varphi \in [0,\pi),$ 它们的最小正周期为 π .

- (1) 若 y = f(x) 是奇函数, 求 f(x) 和 g(x) 在 $[0,\pi]$ 上的公共递减区间 D;
- (2) 若 h(x) = f(x) + g(x) 的一个零点为 $x = -\frac{\pi}{6}$, 求 h(x) 的最大值.

(004203) 已知函数 $f(x) = ax + \log_2(2^x + 1)$, 其中 $a \in \mathbb{R}$.

- (1) 根据 a 的不同取值, 讨论 f(x) 的奇偶性, 并说明理由;
- (2) 已知 a > 0, 函数 f(x) 的反函数为 $f^{-1}(x)$, 若函数 $y = f(x) + f^{-1}(x)$ 在区间 [1,2] 上的最小值为 $1 + \log_2 3$, 求函数 f(x) 在区间 [1,2] 上的最大值.

(004204) 设椭圆 Γ: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b > 0)$ 的右焦点为 F(1,0), 短轴的一个端点 B 到 F 的距离等于焦距.

- (1) 求椭圆 Γ 的标准方程;
- (2) 设 $C \times D$ 是四条直线 $x = \pm a$, $y = \pm b$ 所围成的矩形在第一、第二象限的两个顶点, P 是椭圆 Γ 上任意一

点, 若 $\overrightarrow{OP} = m\overrightarrow{OC} + n\overrightarrow{OD}$, 求证: $m^2 + n^2$ 为定值;

(3) 过点 F 的直线 l 与椭圆 Γ 交于不同的两点 M、N, 且满足 $\triangle BFM$ 与 $\triangle BFN$ 的面积的比值为 2, 求直线 l 的方程.

(004205) 定义: 设 $\{a_n\}$ 是无穷数列, 若存在正整数 k 使得对任意 $n \in \mathbb{N}^*$, 均有 $a_{n+k} > a_n(a_{n+k} < a_n)$, 则称 $\{a_n\}$ 是近似递增 (i_0) 数列, 其中 k 叫近似递增 (i_0) 数列 $\{a_n\}$ 的间隔数.

- (1) 若 $a_n = n + (-1)^n$, $\{a_n\}$ 是不是近似递增数列? 并说明理由;
- (2) 已知数列 $\{a_n\}$ 的通项公式为 $a_n = \frac{1}{(-2)^{n-1}} + a$, 其前 n 项的和为 S_n , 若 2 是近似递增数列 $\{S_n\}$ 的间隔数, 求 a 的取值范围;
- (3) 已知 $a_n = -\frac{n}{2} + \sin n$, 证明 $\{a_n\}$ 是近似递减数列, 并且 4 是它的最小间隔数.
- (004206) 在复平面内, 复数 $\frac{2}{1+i}$ 对应的点与原点的距离是______.

$$(004207)$$
 将参数方程
$$\begin{cases} x=\cos\theta,\\ y=2\sin\theta \end{cases} \quad (\theta\in[0,\pi])$$
 化为普通方程, 所得方程是______.

(004208) 已知向量 $\overrightarrow{a}=(1,4,-5), \overrightarrow{b}=(1,1,4),$ 则 \overrightarrow{a} 在 \overrightarrow{b} 方向上的投影是______.

(004209) 若函数 $y = \tan 2x \cdot (2\cos^2 x - 1)$ 的定义域是_____.

(004210) 在等差数列 $\{a_n\}$ 中,已知 $a_4 + a_8 = 16$,则该数列前 11 项和 $S_{11} =$ ______.

(004212) 在均匀分布的条件下, 某些概率问题可转化为几何图形的面积比来计算, 勒洛三角形是由德国机械工程专家勒洛首先发现, 作法为: 以等边三角形的每个顶点为圆心, 以边长为半径, 在另两个顶点间作一段弧, 三段弧围成的曲边三角形就是勒洛三角形, 在勒洛三角形中随机取一点, 此点取自正三角形的概率为______.

(004213) 平面上整点 (横、纵坐标都为整数的点) 到直线 $y = \frac{5}{3}x + \frac{4}{5}$ 的距离的最小值是_______.

(004214) 设定义域为 R 的函数 f(x)、g(x) 都有反函数, 且函数 f(x-1) 和 $g^{-1}(x-3)$ 图像关于直线 y=x 对称, 若 g(5)=2015, 则 f(4)=______.

(004215) 在 $\triangle ABC$ 中, $\frac{\sin A}{a} = \frac{\sqrt{3}\cos B}{b}$, 如果 b = 2, 则 $\triangle ABC$ 面积的最大值为______.

(004216) 数列 $\{a_n\}$ 中, $a_1=2, a_2=7, a_{n+2}$ 等于 $a_n\cdot a_{n+1}$ 的个位数,则 $a_{2019}=$ ______.

(004217) 已知函数 f(x) 满足: ① 对任意 $x \in (0, +\infty)$ 恒有 f(2x) = 2f(x) 成立; ② $x \in (1, 2]$ 时, f(x) = 2 - x; 若 f(a) = f(2020), 则满足条件的最小的正实数 a 是______.

(004218) 给出下列命题, 其中正确的命题为()。

- A. 若直线 a 和 b 共面, 直线 b 和 c 共面, 则 a 和 c 共面
- B. 直线 a 与平面 α 不垂直, 则 a 与平面 α 内的所有直线都不垂直
- C. 直线 a 与平面 α 不平行, 则 a 与平面 α 内的所有直线都不平行
- D. 异面直线 a、b 不垂直, 则过 a 的任何平面与 b 都不垂直

(004219) 已知平面向量 \overrightarrow{OA} 、 \overrightarrow{OB} 、 \overrightarrow{OC} 为三个单位向量,且 \overrightarrow{OA} · \overrightarrow{OB} = 0,若 \overrightarrow{OC} = $x\overrightarrow{OA}$ + $y\overrightarrow{OB}(x,y\in\mathbf{R})$,则 x+y 的最大值为 ().

A. 1 B. $\sqrt{2}$ C. $\sqrt{3}$

(004220) 已知函数① $f(x) = 3 \ln x$; ② $f(x) = 3 \mathrm{e}^{\cos x}$; ③ $f(x) = 3 \mathrm{e}^{x}$; ④ $f(x) = 3 \cos x$; 其中对于 f(x) 定义域内的任意一个自变量 x_1 都存在唯一一个自变量 x_2 , 使 $\sqrt{f(x_1)f(x_2)} = 3$ 成立的函数是 ().

A. ③ B. ②③ C. ①②④ D. ④

(004221) 在圆锥 PO 中,已知高 PO = 2,底面圆的直径 AB = 8,M 为母线 PB 的中点。根据圆锥曲线的定义,下列四个图中的截面边界曲线分别为圆(截面平行于底面)、椭圆(椭圆长轴为线段 AM)、双曲线的一部分(双曲线所在平面垂直于 AB)及抛物线的一部分(抛物线对称轴为 MO 所在直线),下面四个命题:

① 圆的面积为 4π ; ② 椭圆的长轴为 $\sqrt{37}$; ③ 双曲线两渐近线的夹角为 $\arcsin\frac{3}{5}$; ④ 抛物线中焦点到准线的距离为 $\frac{8\sqrt{5}}{5}$ 中,正确的个数为 ().

(004222) 已知复数 $z_1 = \sin 2x + \lambda i$, $z_2 = m + (m - \sqrt{3}\cos 2x)i(\lambda, m, x \in \mathbf{R})$, 且 $z_1 = z_2$.

(1) 若 $\lambda = 0$ 且 $0 < x < \pi$, 求 x 的值;

A. 1 个

(2) 设 $\lambda = f(x)$, 求 f(x) 的最小正周期和单调递减区间.

(004223) 如图, 在直角梯形 PBCD 中, $PB \parallel DC$, $DC \perp BC$, PB = BC = 2CD = 2, 点 A 是 PB 的中点, 现沿 AD 将平面 PAD 折起, 设 $\angle PAB = \theta$.

- (1) 当 θ 为直角时, 求异面直线 PC 与 BD 所成角的大小;
- (2) 当 θ 为多少时, 三棱锥 P-ABD 的体积为 $\frac{\sqrt{2}}{6}$.

(004224) 对于两个定义域相同的函数 f(x)、g(x), 若存在实数 m、n, 使 h(x) = mf(x) + ng(x), 则称函数 h(x) 是由 "基函数 f(x)、g(x)" 生成的.

- (1) $f(x) = x^2 + 3x$ 和 g(x) = 3x + 4 生成一个偶函数 h(x), 求 h(2) 的值;
- (2) 若 $h(x) = 2x^2 + 3x 1$ 由 $f(x) = x^2 + ax$, $g(x) = x + b(a, b \in \mathbf{R}$ 且 $ab \neq 0$) 生成, 求 a + 2b 的取值范围.

(004225) 设抛物线 $y^2 = 4px$ (p > 0) 的准线与 x 轴的交点为 M, 过 M 作直线 l 交抛物线于 $A \times B$ 两点.

- (1) 求线段 AB 中点的轨迹方程;
- (2) 若线段 AB 的垂直平分线交对称轴于 $N(x_0,0)$, 求 x_0 的取值范围;
- (3) 若直线 <math>l 的斜率依次取 $p, p^2, p^3, \cdots, p^n, \cdots$ 时, 线段 AB 的垂直平分线与对称轴的交点依次为 $N_1, N_2, N_3, \cdots, N_n, \cdots,$ 当 $0 时, 求: <math>S = \frac{1}{|N_1 N_2|} + \frac{1}{|N_2 N_3|} + \frac{1}{|N_3 N_4|} + \cdots + \frac{1}{|N_n N_{n+1}|} + \cdots$ 的值.
- (004226) 给定无穷数列 $\{a_n\}$, 若无穷数列 $\{b_n\}$ 满足: 对任意 $n \in \mathbb{N}^*$, 都有 $|b_n a_n| \le 1$, 则称 $\{a_n\}$ 与 $\{b_n\}$ "接近".
- (1) 设 $\{a_n\}$ 是首项为 1, 公比为 $\frac{1}{2}$ 的等比数列, $b_n = a_{n+1} + 1$, $n \in \mathbb{N}^*$, 判断数列 $\{b_n\}$ 是否与 $\{a_n\}$ 接近, 并说明理由:
- (2) 设数列 $\{a_n\}$ 的前四项为: $a_1 = 1$, $a_2 = 2$, $a_3 = 4$, $a_4 = 8$, $\{b_n\}$ 是一个与 $\{a_n\}$ 接近的数列, 记集合 $M = \{x | x = b_i, i = 1, 2, 3, 4\}$, 求 M 中元素的个数 m 的所有可能值;
- (3) 已知 $\{a_n\}$ 是公差为 d 的等差数列, 若存在数列 $\{b_n\}$ 满足: $\{b_n\}$ 与 $\{a_n\}$ 接近, 且在 $b_2-b_1, b_3-b_2, \cdots, b_{201}-b_{200}$ 中至少有 100 个为正数, 求 d 的取值范围.
- (004227) 已知集合 $A = \{1, 3, m\}, B = \{3, 5\},$ 且 $B \subseteq A$, 则实数 m 的值是_____.
- (004228) 函数 $f(x) = \sqrt{1 \frac{2}{x}}$ 的定义域是_____.
- (004229) 函数 $y = 2^x (x \ge 2)$ 的反函数是_____.
- (004230) 如果圆锥的底面积为 π , 母线长为 2, 那么该圆锥的高为
- (004231) 二项式 $(\sqrt[3]{x} \frac{2}{x})^8$ 的展开式中的常数项为______.
- (004232) 某班从 4 位男生和 3 位女生志愿者选出 4 人参加校运会的点名签到工作,则选出的志愿者中既有男生又有女生的概率的是_____(结果用最简分数表示).
- (004233) 在复平面内,三点 A、B、C 分别对应复数 z_A 、 z_B 、 z_C ,若 $\frac{z_B-z_A}{z_C-z_A}=1+\frac{4}{3}$ i,则 $\triangle ABC$ 的三边长 之比为______.
- (004234) 已知函数 $f(x) = \sin(\omega x + \frac{\pi}{6}), \ \omega > 0,$ 若函数 f(x) 满足 $f(x) = f(x+12), \ x \in \mathbf{R}$ 恒成立,且在"任意两个相邻奇数所形成的闭区间"内总存在至少两个零点,则 ω 的最小值为______.
- (004235) 在 $\triangle ABC$ 中,角 A、B、C 所对的边分别为 a、b、c, 如果对任意的实数 λ , $|\overrightarrow{BA}-\lambda \overrightarrow{BC}| \geq |\overrightarrow{BC}|$ 恒成立,则 $\frac{c}{b}+\frac{b}{c}$ 的最大值是______.

(004236) 在边长为 1 的正方形 ABCD 中, $P \setminus Q$ 分别为边 $BC \setminus CD$ 上的动点, 如果 $\triangle PCQ$ 的周长为定值 2, 那么 $\triangle PAQ$ 的外接圆直径的最小值为_

 $(004237) \ \textbf{已知平面直角坐标系中两点} \ A(a_1,a_2) \boldsymbol{,} \ B(b_1,b_2), \ \textbf{有} \ S_{\triangle AOB} = \frac{1}{2}|a_1b_2-a_2b_1|. \ \textbf{设} \ (x_1,y_1) \boldsymbol{,} \ (x_2,y_2) \boldsymbol{,}$ (x_3,y_3) 是平面曲线 $x^2+y^2=2x-4y$ 上任意三点,则 $T=x_1y_2-x_2y_1+x_2y_3-x_3y_2$ 的最大值为_____

(004238) 对实数 $x \in \mathbf{R}$, 函数 f(x) 满足: $f(x+1) = \sqrt{f(x) - f^2(x)} + \frac{1}{2}$, $a_n = f^2(n) - f(n)$, 数列 $\{a_n\}$ 的 前 15 项和为 $-\frac{31}{16}$, 数列 $\{c_n\}$ 满足 $c_n+c_{n+1}=[f(2019)]^n$, 若数列 $\{c_n\}$ 的前 n 项和 S_n 的极限存在, 则

(004239) 关于 x、y 的二元一次方程组 $\begin{cases} 3x + 4y = 1, &$ 的增广矩阵为 $(x - 3y = 10) \end{cases}$

A.
$$\begin{pmatrix} 3 & 4 & -1 \\ 1 & -3 & 10 \end{pmatrix}$$

A.
$$\begin{pmatrix} 3 & 4 & -1 \\ 1 & -3 & 10 \end{pmatrix}$$
 B. $\begin{pmatrix} 3 & 4 & -1 \\ 1 & -3 & -10 \end{pmatrix}$ C. $\begin{pmatrix} 3 & 4 & 1 \\ 1 & -3 & 10 \end{pmatrix}$ D. $\begin{pmatrix} 3 & 4 & 1 \\ 1 & 3 & 10 \end{pmatrix}$

C.
$$\begin{pmatrix} 3 & 4 & 1 \\ 1 & -3 & 10 \end{pmatrix}$$

D.
$$\begin{pmatrix} 3 & 4 & 1 \\ 1 & 3 & 10 \end{pmatrix}$$

(004240) 已知函数 $f(x) = \cos(3x + \varphi)$ 满足 $f(x) \le f(1)$ 恒成立,则().

A. 函数 f(x-1) 一定是奇函数

B. 函数 f(x+1) 一定是奇函数

C. 函数 f(x-1) 一定是偶函数

D. 函数 f(x+1) 一定是偶函数

(004241) 如果一个几何体绕着一条直线旋转 θ 角与原几何体重合, 其中 $0^{\circ} < \theta \le 180^{\circ}$, 称该直线为该几何体 的一条旋转轴. 正四面体的不同旋转轴有()条.

A. 3

B. 4

C. 6

(004242) 已知点 P 为椭圆 $\frac{x^2}{9}+\frac{y^2}{16}=1$ 上的任意一点, 点 F_1 、 F_2 分别为该椭圆的上下焦点, 设 $\alpha=\angle PF_1F_2$, $\beta = \angle PF_2F_1$, 则 $\sin \alpha + \sin \beta$ 的最大值为 ().

A.
$$\frac{3\sqrt{7}}{7}$$

B.
$$\frac{4\sqrt{7}}{7}$$

C.
$$\frac{8}{9}$$

D.
$$\frac{3}{2}$$

(004243) 如图, 四棱柱 $ABCD - A_1B_1C_1D_1$ 中, 侧棱 $AA_1 \perp$ 底面 ABCD, $AB \parallel CD$, $AB \perp AD$, AD =DC = 1, $AA_1 = AB = 2$, E 为棱 AA_1 的中点.

- (1) 求二面角 $B_1 CE C_1$ 的正弦值;
- (2) 设点 M 为线段 C_1E 上, 且直线 AM 与平面 ADD_1A_1 所成角正弦值为 $\frac{\sqrt{2}}{6}$, 求线段 AM 的长.

(004244) 在锐角 $\triangle ABC$ 中,已知 $\cos A=\frac{5}{13},$ $S_{\triangle ABC}=6,$ 若点 D 是线段 BC 上一点 (不含端点),过 D 作 $DE\perp AB$ 于 E, $DF\perp AC$ 于 F.

- (1) 求 BC 的取值范围;
- (2) 问点 D 在何处时, $\triangle DEF$ 的面积最大, 最大值为多少?

(004245) 已知各项都不为零的无穷数列 $\{a_n\}$ 满足: $a_{n+1}a_n + a_{n+1} - a_n = 0.n \in \mathbb{N}^*$.

- (1) 证明 $\{\frac{1}{a_n}\}$ 为等差数列, 并求 $a_1 = 1$ 时数列 $\{a_n\}$ 中的最大项;
- (2) 若 a_{2018} 为数列 $\{a_n\}$ 中的最小项, 求 a_1 的取值范围.

(004246) 已知曲线 $\Gamma: F(x,y) = 0$, 对坐标平面上任意一点 P(x,y), 定义 F[P] = F(x,y). 若两点 $P \cdot Q$, 满足 $F[P] \cdot F[Q] > 0$, 称点 $P \cdot Q$ 在曲线 Γ 同侧; 若 $F[P] \cdot F[Q] < 0$, 称点 $P \cdot Q$ 在曲线 Γ 两侧.

- (1) 直线 l: kx y = 0 过原点, 线段 AB 上所有点都在直线 l 同侧, 其中 A(-1,1)、 B(2,3), 求直线 l 的倾斜角的取值范围;
- (2) 已知曲线 $F(x,y) = (3x + 4y 5) \cdot \sqrt{4 x^2 y^2} = 0$, O 为坐标原点, 求点集 $S = \{P|F[P] \cdot F[O] > 0\}$ 的面积:
- (3) 记到点 (0,1) 与到 x 轴距离和为 5 的点的轨迹为曲线 C, 曲线 $\Gamma:F(x,y)=x^2+y^2-y-a=0$, 若曲线 C 上总存在两点 M、N 在曲线 Γ 两侧, 求曲线 C 的方程与实数 a 的取值范围.

(004247) 设函数 f(x) 在 $[1, +\infty)$ 上有定义, 实数 a 和 b 满足 $1 \le a < b$, 若 f(x) 在区间 (a, b] 上不存在最小值, 则称 f(x) 在区间 (a, b] 上具有性质 P.

- (1) 当 $f(x) = x^2 + cx$, 且 f(x) 在区间 (1,2] 上具有性质 P, 求实数 c 的取值范围;
- (2) 已知 $f(x+1) = f(x) + 1(x \ge 1)$, 且当 $1 \le x < 2$ 时, f(x) = 1 x, 判别 f(x) 在区间 (1,4] 上是否具有性质 P;
- (3) 若对于满足 $1 \le a < b$ 的任意实数 a 和 b, f(x) 在区间 (a,b] 上具有性质 P, 且对于任意 $n \in \mathbb{N}^*$, 当 $x \in (n, n+1)$ 时, 有 |f(n) f(x)| + |f(x) f(n+1)| = |f(n) f(n+1)|, 证明: 当 $x \ge 1$ 时, f(2x) > f(x).

(004248) 已知 $\tan \alpha = \frac{1}{2}$, 则 $\tan 2\alpha =$ _____.

(004249) 不等式 $\frac{1}{r-1} > 1$ 的解集为______.

(004250) 在 $(x - \frac{1}{\sqrt[3]{x}})^6$ 的二项展开式中, x^2 项的系数为_____.

(004251) 已知球的体积为 $\frac{4}{3}\pi$, 则该球的左视图所表示图形的面积为_____.

(004252) 己知圆的方程为 $x^2 + y^2 - 2x - 4y + 4 = 0$,则圆心到直线 l: 3x + 4y + 4 = 0 的距离 d = 2x + 4y + 4 = 0 . (004253) 若关于 x 的实系数一元二次方程 $x^2 - bx + c = 0$ 的一根为 1 - i(i 为虚数单位), 则 b + c =_______ (004254) 已知 $m \in \mathbb{R}$, 若直线 $l_1: mx + y + 1 = 0$ 与直线 $l_2: 9x + my + 2m + 3 = 0$ 平行, 则 m = 2 $(004255) \ \mathbf{己知实数} \ \mathbf{x}, \, \mathbf{y} \ 满足约束条件 \left\{ \begin{aligned} &x+2y \geq 3, \\ &2x+y \geq 3, \end{aligned} \right. \quad \mathbb{M} \ z = x+y \ \mathbf{0} \mathbf{b} \mathbf{b} \mathbf{h} \mathbf{d} \mathbf{E} \underline{\qquad} \\ &x>0, \ y>0, \end{aligned} \right.$ (004256) 设 f(x) 是定义在 R 上的奇函数, 当 x > 0 时, $f(x) = a^x + b(0 < a < 1, b \in \mathbf{R})$, 若 f(x) 存在反函数, 则 b 的取值范围是_____ (004257) 上海某高校哲学专业的 4 名研究生到指定的 4 所高级中学宣讲习近平新时代中国特色社会主义思想. 若他们每人都随机地从 4 所学校选择一所, 则 4 人中至少有 2 人选择到同一所学校的概率是_____(结果 用最简分数表示). (004258) 在 $\triangle ABC$ 中, 已知 AB=1, AC=2, $\angle A=120^\circ$, 若点 P 是 $\triangle ABC$ 所在平面上一点, 且满足 (004259) 已知定义在 R 上的函数 f(x) 满足 f(x+1)=2f(x)+1, 当 $x\in[0,1)$ 时, $f(x)=x^3$. 设 f(x) 在区 间 $[n, n+1)(n \in \mathbb{N}^*)$ 上的最小值为 a_n , 若存在 $n \in \mathbb{N}^*$, 使得 $\lambda(a_n+1) < 2n-7$ 成立, 则实数 λ 的取值范围 是_____ (004260) 下列以 t 为参数的参数方程中, 其表示的曲线与方程 xy = 1 表示的曲线完全一致的是 (A. $\begin{cases} x = t^{\frac{1}{2}}, \\ y = t^{-\frac{1}{2}} \end{cases}$ B. $\begin{cases} x = |t|, \\ y = \frac{1}{|t|} \end{cases}$ C. $\begin{cases} x = \cos t, \\ y = \sec t \end{cases}$ D. $\begin{cases} x = \tan t, \\ y = \cot t \end{cases}$ $(004261) \ \textbf{已知函数} \ f(x) = \sin 2x, \ x \in [a,b], \ \textbf{则} \ "b-a \geq \frac{\pi}{2} " \ \textbf{是} \ "f(x) \ \textbf{的值域为} \ [-1,1]" \ \textbf{的} \ (\hspace{1cm}) \ \textbf{条件}$ B. 必要不充分 C. 充要 A. 充分不必要 D. 既不充分也不必要 (004262) 某高校举行科普知识竞赛, 所有参赛的 500 名选手成绩的平均数为 82, 方差为 0.82, 则下列四个数据 中不可能是参赛选手成绩的是(A. 60 B. 70 C. 80 D. 100 (004263) 设数列 $\{a_n\}$, 若存在常数 t, 对任意小的正数 s, 总存在正整数 n_0 , 当 $n \ge n_0$ 时, $|a_n - t| < s$, 则数列 $\{a_n\}$ 为收敛数列. 下列关于收敛数列说法正确的是(

- A. 若等比数列 $\{a_n\}$ 是收敛数列, 则公比 $q \in (0,1)$
- B. 等差数列不可能是收敛数列
- C. 设公差不为 0 的等差数列 $\{a_n\}$ 前 n 项和为 $S_n(S_n \neq 0)$, 则数列 $\{\frac{1}{S_n}\}$ 一定是收敛数列
- D. 设数列 $\{a_n\}$ 的前 n 项和为 S_n , 满足 $a_1 = 1$, $S_{n+1} = a_n + 1$, 则数列 $\{a_n\}$ 是收敛数列

(004264) 如图, 已知 AB 为圆柱 OO_1 的底面圆 O 的一条直径, P 为圆周上的一点, OA = 2, $\angle BOP = 60^{\circ}$, 圆柱 OO_1 的表面积为 24π .

- (1) 求三棱锥 $A_1 APB$ 的体积;
- (2) 求直线 AP 与平面 A₁PB 所成的角的大小.

(004265) 已知 a 为实数, 函数 $f(x) = x|x - a| - a, x \in \mathbf{R}$.

- (1) 当 a=2 时, 求函数 f(x) 的单调递增区间;
- (2) 若对任意 $x \in (0,1)$, f(x) < 0 恒成立, 求 a 的取值范围.

(004266) 某动物园喜迎虎年的到来,拟用一块形如直角三角形 ABC 的地块建造小老虎的休息区和活动区. 如图, $\angle BAC=90^\circ$,AB=AC=20(单位: 米),E、F 为 BC 上的两点,且 $\angle EAF=45^\circ$, $\triangle AEF$ 区域为休息区, $\triangle ABE$ 和 $\triangle ACF$ 区域均为活动区. 设 $\angle EAB=\alpha(0<\alpha<45^\circ)$.

(1) 求 AE、AF 的长; (用 α 的代数式表示) (2) 为了使小老虎能健康成长,要求所建造的活动区面积尽可能大 (即休息区尽可能小). 当 α 为多少时,活动区的面积最大? 最大面积活动区为多少?

(004267) 在平面直角坐标系中,已知点 $A(0,\sqrt{2})$ 、 $B(0,-\sqrt{2})$,动点 C(x,y) 关于直线 y=x 的对称点为 D,且 $\overrightarrow{AD}\cdot\overrightarrow{BD}=\frac{1}{2}x^2$,动点 C 的轨迹为曲线 E.

- (1) 求曲线 E 的方程;
- (2) 已知动点 P 在曲线 E 上, 点 Q 在直线 $y = 2\sqrt{2}$ 上, 且 $\overrightarrow{OP} \cdot \overrightarrow{OQ} = 0$, 求线段 PQ 长的最小值;
- (3) 过点 $(-\sqrt{2},0)$ 且不垂直于 x 轴的直线交曲线 E 于 M、N 两点, 点 M 关于 x 轴的对称点为 M', 试问: 在 x 轴上是否存在一定点 T, 使得 M'、N、T 三点共线? 若存在, 求出定点 T 的坐标; 若不存在, 说明理由.

(004268) 对于数列 $\{a_n\}$, 记 $V(n) = |a_2 - a_1| + |a_3 - a_2| + \cdots + |a_n - a_{n-1}| (n > 1, n \in \mathbb{N}^*)$.

(1) 若数列 $\{a_n\}$ 通项公式为: $a_n = \frac{1 + (-1)^n}{2} (n \in \mathbf{N}^*)$, 求 V(5);

- (2) 若数列 $\{a_n\}$ 满足: $a_1=a,\ a_n=b,\$ 且 $a>b,\$ 求证: V(n)=a-b 的充分必要条件是 $a_{i+1}\leq a_i(i=1,2,\cdots,n-1);$
- (3) 已知 V(2022) = 2022,若 $y_t = \frac{1}{t}(a_1 + a_2 + \dots + a_t)$, $t = 1, 2, \dots, 2022$,求 $|y_2 y_1| + |y_3 y_2| + \dots + |y_{2022} y_{2021}|$ 的最大值.
- (004269) 函数 $f(x) = 3\cos 2x + 1$ 的最小值为_____.
- (004270) 函数 $f(x) = \sqrt{\frac{1-x}{3+x}}$ 的定义域为______.
- (004271) 若集合 $A = \{2, 4, 6, 8\}, B = \{x | x^2 4x \le 0\}, 则 A \cap B = ______.$
- (004272) 已知函数 g(x) 的图像与函数 $f(x) = \log_2(3^x 1)$ 的图像关于直线 y = x 对称,则 g(3) =______.
- (004273) 设复数 $z = \begin{vmatrix} \cos \alpha & \mathrm{i} \\ \sin \alpha & \sqrt{2} + \mathrm{i} \end{vmatrix}$ (i 为虚数单位),若 $|z| = \sqrt{2}$,则 $\tan 2\alpha =$ _____.
- (004274) 设 $\triangle ABC$ 的内角 A,B,C 的对边分别为 a,b,c, 若 $b=2\sqrt{3}, c=8, A=30^{\circ}$, 则 $\sin C=$ ______.
- (004275) 已知点 A(3,-2), 点 P 满足线性约束条件 $\begin{cases} x+2\geq 0,\\ y-1\leq 0, \end{cases}$ 设 O 为坐标原点,则 $\overrightarrow{OA}\cdot\overrightarrow{OP}$ 的最大值 $x-2y\leq 4,$

为_____.

- (004276) 若函数 $f(x) = \log_2(2^x + 1) + kx$ 是偶函数, 则 k =_____.
- (004277) 已知等边 $\triangle ABC$ 的边长为 $2\sqrt{3}$, 点 P 是其外接圆上的一个动点, 则 $\overrightarrow{PA}\cdot\overrightarrow{PB}$ 的取值范围是______
- (004278) 已知函数 $f(x) = \cos(2x \frac{\pi}{6})$,若对于任意的 $x_1 \in [-\frac{\pi}{4}, \frac{\pi}{4}]$,总存在 $x_2 \in [m, n]$,使得 $f(x_1) + f(x_2) = 0$,则 |m n| 的最小值为_______.
- (004279) 已知 AB 为单位圆 O 的一条弦, P 为单位圆 O 上的点, 若 $f(\lambda)=|\overrightarrow{AP}-\lambda\overrightarrow{AB}|(\lambda\in\mathbf{R})$ 的最小值为 m, 当点 P 在单位圆上运动时, m 的最大值为 $\frac{4}{3}$, 则线段 AB 长度为______.
- (004280) 在数列 $\{a_n\}$ 中, $a_1=3$, $a_{n+1}=1+a_1\cdot a_2\cdot a_3\cdots a_n$, 记 T_n 为数列 $\{\frac{1}{a_n}\}$ 的前 n 项和,则 $\lim_{n\to\infty}T_n=$ _____.
- (004281) 若 O 为坐标原点, P 是直线 x y + 2 = 0 上的动点, 则 |OP| 的最小值为 ().

A.
$$\frac{\sqrt{2}}{2}$$
 B. $\sqrt{2}$ C. $\sqrt{3}$

(004282) 若 $|x-a| \le 1$ 成立的一个充分不必要条件是 $1 \le x \le 2$, 则实数 a 的取值范围是 ().

(004283) 在正方体 $ABCD-A_1B_1C_1D_1$ 中, P、Q 两点分别从点 B 和点 A_1 出发, 以相同的速度在楼 BA 和 A_1D_1 上运动至点 A 和点 D_1 , 在运动过程中, 直线 PQ 与平面 ABCD 所成角 θ 的变化范围为 ().

A.
$$\left[\frac{\pi}{4}, \frac{\pi}{3}\right]$$

C. $\left[\frac{\pi}{4}, \arctan\sqrt{2}\right]$

B.
$$\left[\arctan \frac{\sqrt{2}}{2}, \arctan \sqrt{2}\right]$$

D. $\left[\arctan \frac{\sqrt{2}}{2}, \frac{\pi}{2}\right]$

(004284) 已知函数 $f(x) = m \cdot 2^x + x^2 + nx$, 记集合 $A = \{x | f(x) = 0, x \in \mathbf{R}\}$, 集合 $B = \{x | f(f(x)) = 0, x \in \mathbf{R}\}$. 若 A = B, 且 $A \setminus B$ 都不是空集, 则 m + n 的取值范围是 ().

A.
$$[0, 4)$$

B.
$$[-1, 4)$$

C.
$$[-3, 5]$$

D.
$$[0,7)$$

(004285) 已知函数 $f(x) = 2\cos^2 x + 2\sqrt{3}\sin x \cos x$.

- (1) 求 f(x) 的最大值和最小正周期 T;
- (2) 在 $\triangle ABC$ 中, 内角 A、B、C 所对的边分别为 a、B、C, 已知 $f(\frac{A}{2})=3$, 且 a=1, 求 $\triangle ABC$ 面积的最大值.

(004286) 已知函数 $f(x) = a - \frac{4}{3^x + 1}(a$ 为实常数).

- (1) 讨论函数 f(x) 的奇偶性, 并说明理由;
- (2) 当 f(x) 为奇函数时, 对任意的 $x \in [1,5]$, 不等式 $f(x) \ge \frac{u}{3^x}$ 恒成立, 求实数 u 的最大值.

(004287) 如图,某公园有三条观光大道 AB、BC、CA 围成直角三角形,其中直角边 BC=200m,斜边 AB=400m,现有甲、乙、丙三位小朋友分别在 AB、BC、AC 大道上嬉戏,所在位置分别记为点 D、E、F.

- (1) 若甲乙都以每分钟 100m 的速度从点 B 出发在各自的大道上奔走, 到大道的另一端时即停, 乙比甲迟 2 分钟出发, 当乙出发 1 分钟后, 求此时甲乙两人之间的距离;
- (2) 设 $\angle CEF = \theta$, 乙丙之间的距离是甲乙之间距离的 2 倍, 且 $\angle DEF = \frac{\pi}{3}$, 请将甲乙之间的距离 y 表示为 θ 的函数, 并求甲乙之间的最小距离.

(004288) 如图, 已知椭圆 $M: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b > 0)$ 经过圆 $N: x^2 + (y+1)^2 = 4$ 与 x 轴的两个交点和与 y 轴正半轴的交点.

- (1) 求椭圆 M 的方程;
- (2) 若点 P 为椭圆 M 上的动点, 点 Q 为圆 N 上的动点, 求线段 PQ 长的最大值;
- (3) 若不平行于坐标轴的直线 L 交椭圆 M 于 A、B 两点, 交圆 N 于 C、D 两点, 且满足 $\overrightarrow{AC} = \overrightarrow{DB}$, 求证: 线段 AB 的中点 E 在定直线上.
- (004289) 已知函数 f(x) 的定义域为 D, 若存在实常数 λ 及 $a(a \neq 0)$, 对任意 $x \in D$, 当 $x+a \in D$ 且 $x-a \in D$ 时, 都有 $f(x+a)+f(x-a)=\lambda f(x)$ 成立, 则称函数 f(x) 具有性质 $M(\lambda,a)$.
- (1) 判断函数 $f(x) = x^2$ 是否具有性质 $M(\lambda, a)$, 并说明理由;
- (2) 若函数 $g(x) = \sin 2x + \sin x$ 具有性质 $M(\lambda, a)$, 求 λ 及 a 应满足的条件;
- (3) 已知定义域为 R 的函数 y = h(x) 不存在零点,且具有性质 $M(t + \frac{1}{t}, t)$ (其中 $t > 0, t \neq 1$), 记 $a_n = h(n)$ ($n \in \mathbb{N}^*$), 求证:数列 $\{a_n\}$ 为等比数列的充要条件是 $\frac{a_2}{a_1} = t$ 或 $\frac{a_2}{a_1} = \frac{1}{t}$.
- (004290) 函数 $y = 3\sin(2x + \frac{\pi}{3})$ 的最小正周期 T =______.
- (004291) 函数 $y = \lg x$ 的反函数是
- (004292) 已知集合 $P = \{x | (x+1)(x-3) < 0\}, \ Q = \{x | |x| > 2\}, \$ 则 $P \cap Q =$ ______
- (004293) 函数 $y = x + \frac{9}{x}, x \in (0, +\infty)$ 的最小值是______.
- (004294) 计算: $\lim_{n\to\infty} [\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \ldots + (\frac{1}{2})^n] = \underline{\hspace{1cm}}$.
- (004295) 记球 O_1 和 O_2 的半径、体积分别为 r_1 、 V_1 和 r_2 、 V_2 ,若 $\frac{V_1}{V_2}=\frac{8}{27}$,则 $\frac{r_1}{r_2}=$ ______.
- (004296) 若某线性方程组对应的增广矩阵是 $egin{pmatrix} m & 4 & 2 \\ 1 & m & m \end{pmatrix}$,且此方程组有唯一的一组解,则实数 m 的取值范围是_______.

(004297) 若一个布袋中有大小、质地相同的三个黑球和两个白球, 从中任取两个球, 则取出的两球中恰是一个 白球和一个黑球的概率是

 $(004298)(1+2x)^n$ 的二项展开式中,含 x^3 项的系数等于含 x 项的系数的 8 倍,则正整数 $n = _____$.

(004299) 平面上三条直线 x-2y+1=0, x-1=0, x+ky=0, 如果这三条直线将平面划分为六个部分, 则 实数 k 的取值组成的集合 A =

(004300)已知双曲线 $C:\frac{x^2}{\alpha}-\frac{y^2}{8}=1,$ 左、右焦点分别为 F_1 、 $F_2,$ 过点 F_2 作一直线与双曲线 C 的右支交于 $P \cdot Q$ 两点, 使得 $\angle F_1 PQ = 90^\circ$, 则 $\triangle F_1 PQ$ 的内切圆的半径 r =______

(004301) 已知点 $B(4,0),\,C(2,2),\,$ 平面直角坐标系上的动点 P 满足 $\overrightarrow{OP}=\lambda\cdot\overrightarrow{OB}+\mu\cdot\overrightarrow{OC}$ (其中 O 是坐标原 点, 且 $1 < \lambda \le a$, $1 < \mu \le b$), 若动点 P 组成的区域的面积为 8, 则 a + b 的最小值是____

(004302) 若向量 $\overrightarrow{a} = (2,0), \overrightarrow{b} = (1,1), 则下列结论中正确的是 ().$

A.
$$\overrightarrow{a} \cdot \overrightarrow{b} = 1$$

B.
$$|\overrightarrow{a}| = |\overrightarrow{b}|$$

C.
$$(\overrightarrow{a} - \overrightarrow{b}) \perp \overrightarrow{b}$$

D.
$$\overrightarrow{a} \parallel \overrightarrow{b}$$

 $A. \overrightarrow{a} \cdot \overrightarrow{b} = 1 \qquad B. |\overrightarrow{a}| = |\overrightarrow{b}| \qquad C. (\overrightarrow{a} - \overrightarrow{b}) \perp \overrightarrow{b} \qquad D. \overrightarrow{a} \parallel \overrightarrow{b}$ $\left\{ \begin{aligned} x &= 5\cos\theta, \\ y &= 3\sin\theta \end{aligned} \right. \quad (\theta \text{ 为参数}), 则它的两个焦点坐标是 ().$

A.
$$(\pm 4, 0)$$

B.
$$(0, \pm 4)$$

C.
$$(\pm 5, 0)$$

D.
$$(0, \pm 3)$$

(004304) 如图几何体是由五个相同正方体叠成的, 其三视图中的左视图序号是().

(004305) 定义 $F(a,b) = \begin{cases} a, & a \leq b, \\ & ,$ 已知函数 f(x)、g(x) 定义域都是 \mathbf{R} , 给出下列命题: $b, \quad a > b,$

- (1) 若 f(x)、g(x) 都是奇函数, 则函数 F(f(x),g(x)) 为奇函数;
- (2) 若 f(x)、g(x) 都是减函数, 则函数 F(f(x),g(x)) 为减函数;
- (3) 若 $f_{\min}(x) = m$, $g_{\min}(x) = n$, 则 $F_{\min}(f(x), g(x)) = F(m, n)$;
- (4) 若 f(x)、g(x) 都是周期函数, 则函数 F(f(x),g(x)) 是周期函数.

其中正确命题的个数为(

A. 1 个

B. 2 个

C. 3 个

D. 4 个

(004306) 在四棱锥 P-ABCD 中, 底面 ABCD 是边长为 6 的正方形, $PD \perp$ 平面ABCD, PD=8.

- (1) 求 PB 与平面 ABCD 所成角的大小;
- (2) 求异面直线 PB 与 DC 所成角的大小.

 $(004307) \ {\bf 复数} \ z = (\frac{1}{2} - \frac{\sqrt{3}}{2} {\rm i})^2 \ {\bf 是} - 元二次方程 \ mx^2 + nx + 1 = 0 (m, n \in {\bf R}) \ {\bf 的} - {\bf \uparrow} {\bf R}.$

- (1) 求 m 和 n 的值;
- (2) 若 $(m+ni)\overline{u}+u=z(u\in \mathbb{C})$, 求 u.

(004308) 如图, 经过村庄 A 有两条夹角为 60° 的公路 AB、AC, 根据规划拟在两条公路之间的区域内建一工厂 P, 分别在两条公路边上建两个仓库 M、N(异于村庄 A), 要求 PM=PN=MN=2(单位: 千米). 记 $\angle MN=\theta$.

- (1) 将 AN、AM 用含 θ 的关系式表示出来;
- (2) 如何设计 (即 AN、AM 为多长时), 使得工厂产生的噪声对居民的影响最小 (即工厂与村庄的距离 AP 最大)?

(004309) 已知椭圆 $C: \frac{x^2}{2} + y^2 = 1$ 的左、右焦点分别为 F_1 、 F_2 .

- (1) 点 P 在椭圆 C 上运动 (点 P 不在 x 轴上), 设 F_2 关于 $\angle F_1PF_2$ 的外角平分线所在直线的对称点为 Q, 求 Q 的轨迹方程;
- (2) 设 M、N 分别是曲线 C 上的两个不同点,且点 M 在第一象限,点 N 在第三象限,若 $\overrightarrow{OM}+2\overrightarrow{ON}=2\overrightarrow{OF_1}$, O 为坐标原点,求直线 MN 的斜率;
- (3) 过点 $S(0,-\frac{1}{3})$ 的动直线 l 交曲线 C 于 A、B 两点, 在 y 轴上是否存在定点 T, 使以 AB 为直径的圆恒过这个点? 若存在, 求出点 T 的坐标; 若不存在, 请说明理由.

(004310) 已知无穷数列 $\{a_n\}(a_n\in \mathbf{Z})$ 的前 n 项和为	S_n , 记 S_1 、 S_2 、 \cdots 、 S_n 中奇数的个数为 b_n .
(1) 若 $a_n = n$, 请写出数列 $\{b_n\}$ 的前 5 项;	
(2) 求证: " a_1 为奇数, $a_i (i=2,3,4,\cdots)$ 均为偶数"是	"数列 $\{b_n\}$ 是单调递增数列"的充分不必要条件;
(3) 若 $a_i = b_i, i = 1, 2, 3, \dots,$ 求数列 $\{a_n\}$ 的通项公司	C .
(004311) 设 $m \in \mathbf{R}$. 已知集合 $A = \{2, 3\}, B = \{1, m\}$	$+$. 若 $4-m \in A$, 则 $m =$.
(004312) 不等式 $ 1-x > 1$ 的解集是	
(004313) 设 $a \in \mathbf{R}$. 若 a 使得函数 $f(x) = \sqrt{8 - ax - ax}$	$\overline{2x^2}$ 是偶函数, 则函数 $y = f(x)$ 的定义域是
(004314) 已知 $\triangle ABC$ 的三内角 A,B,C 所对的边长	分别为 $a,b,c,$ 若 $a^2=b^2+c^2+2bc\sin A$, 则内角 A 的大
小是	
(004315) 已知向量 \overrightarrow{a} 在向量 \overrightarrow{b} 方向上的投影为 -2	且 $ \overrightarrow{b} =3$,则 $\overrightarrow{a}\cdot\overrightarrow{b}=$ (结果用数值表示).
(004316) 方程 $\log_3 \frac{1}{2^x + 4} + \log_3(4^x - 2) = 0$ 的解 x	=,
(004317) 已知函数 $f(x) = \begin{vmatrix} \sin x \cos x \\ \cos x \cos x \end{vmatrix}$, 则函数 $y = f$	(x) 的最小正周期是
(004318) 已知某市 A 社区 35 岁至 45 岁的居民有 45	0 人, 46 岁至 55 岁的居民有 750 人, 56 岁至 65 岁的居
民有 900 人. 为了解该社区 35 岁至 65 岁居民的身体	健康状况,社区负责人采用分层抽样技术抽取若干人进行
体检调查, 若从 46 岁至 55 岁的居民中随机抽取了 50	人, 试问这次抽样调查抽取的人数是人.
(004319) 已知 α 是实系数一元二次方程 $x^2 - (2m-1)$ 取值范围是	$(x+m^2+1=0$ 的一个虚数根, 且 $ \alpha \leq 2$, 则实数 m 的
(00/320) 设 a ∈ R	> 0 时, $f(x) = a(x-1) + 1$. 若 $y = f(x)$ 是单调增函数,
则 a 取值范围为	$\mathcal{L}_{\mathcal{A}}$ $\mathcal{L}_{\mathcal{A}}$ $\mathcal{L}_{\mathcal{A}}$ $\mathcal{L}_{\mathcal{A}}$ $\mathcal{L}_{\mathcal{A}}$ $\mathcal{L}_{\mathcal{A}}$ $\mathcal{L}_{\mathcal{A}}$ $\mathcal{L}_{\mathcal{A}}$ $\mathcal{L}_{\mathcal{A}}$ $\mathcal{L}_{\mathcal{A}}$
(004321) 已知数列 $\{a_n\}$ 是共有 k 个项的有限数列,且	L满足 $a_{n+1} = a_{n-1} - \frac{n}{a_n}$ $(n = 2, \dots, k-1)$, 若 $a_1 = 24$,
$a_2 = 51, a_k = 0, \text{ M } k =$	
(004322) 设 $\varphi \in (0,\pi)$. 若存在实数 a,b 使得关于 x 的解的和为 $\frac{63}{11}\pi$, 则 $\varphi =$	内方程 $a\sin(2x+\varphi)+b=0$ 在 $[0,2\pi]$ 时恰有 5 个解, 且
11	
(004323) 设 $x \in \mathbf{R}, y \in \mathbf{R}$. 那么 " $x > 0$ " 是 " $xy > 0$ "	的 ().
A. 充分非必要条件	B. 必要非充分条件
C. 充要条件	D. 既非充分又非必要条件
(004324) 在某段时间内,甲地不下雨的概率为 $P_1(0 < 0.000000000000000000000000000000000$	$P_1 < 1$), 乙地不下雨的概率为 $P_2(0 < P_2 < 1)$. 若在这
段时间内两地下雨相互独立, 则这段时间内两地都下雨	可的概率为 ().

B. $1 - P_1 P_2$

C. $P_1(1-P_2)$ D. $(1-P_1)(1-P_2)$

A. P_1P_2

(004325) 已知梯形 ABCD, $AB \parallel CD$, 设 $\overrightarrow{AB} = \overrightarrow{e_1}$, 向量 $\overrightarrow{e_2}$ 的起点和终点分别是 A, B, C, D 中的两个点, 若对平面中任意的非零向量 \overrightarrow{a} , 都可以唯一表示为 $\overrightarrow{e_1}$ 、 $\overrightarrow{e_2}$ 的线性组合, 那么 $\overrightarrow{e_2}$ 的个数为 ().

(004326) 在 $\triangle ABC$ 中,BC=a,CA=b,AB=c,对于下面两个说法: ① 对于任意 $\triangle ABC$,以 \sqrt{a} , \sqrt{b} , \sqrt{c} 为三边的三角形存在,且总是一个锐角三角形; ② 存在一个 $\triangle ABC$,以 $\frac{1}{a}$, $\frac{1}{b}$, $\frac{1}{c}$ 为三边的三角形是一个钝角三角形. 下面判断正确的是 ().

A. ①正确, ②错误

B. ①错误, ②正确

C. ①正确, ②正确

D. ①错误, ②错误

(004327) 如图, 在棱长为 2 的正方体 ABCD - A'B'C'D' 中, E 为 AB 的中点.

- (1) 求证: 直线 AE 平行于平面 CC'D'D;
- (2) 求点 E 到平面 AB'C 的距离.

(004328) 经济订货批量模型, 是目前大多数工厂、企业等最常采用的订货方式, 即某种物资在单位时间的需求量为某常数, 经过某段时间后, 存储量消耗下降到零, 此时开始订货并随即到货, 然后开始下一个存储周期. 该模型适用于整批间隔进货、不允许缺货的存储问题. 具体如下:

年存储成本费 T(元) 关于每次订货 x(单位: 吨) 的函数关系为 $T(x) = \frac{Bx}{2} + \frac{AC}{x}$, 其中 A 为年需求量, B 为每单位物资的年存储费, C 为每次订货费.

某化工厂需用甲醇作为原料, 年需求量为 6000 吨, 每吨存储费为 120 元/年, 每次订货费为 2500 元. (1) 若该化工厂每次订购 300 吨甲醇, 求年存储成本费;

(2) 每次需订购多少吨甲醇, 可使该化工厂年存储成本费最少? 最少费用为多少?

(004329) 已知函数 $f(x) = \sin x$.

- (1) 设 $a \in \mathbf{R}$, 判断函数 $g(x) = a \cdot f(x) + f(x + \frac{\pi}{2})$ 的奇偶性, 并说明理由;
- (2) 设函数 $F(x)=2f(x)-\sqrt{3}$. 对任意 $b\in\mathbf{R},$ 求 y=F(x) 在区间 $[b,b+100\pi]$ 上零点个数的所有可能值.

(004330) 双曲线 Γ : $x^2 - \frac{y^2}{h^2} = 1(b > 0)$.

- (1) 若 Γ 的一条渐近线方程为 y = 2x, 求 Γ 的方程;
- (2) 设 F_1 、 F_2 是 Γ 的两个焦点, P 为 Γ 上一点, 且 $PF_1 \perp PF_2$, $\triangle PF_1F_2$ 的面积为 9, 求 b 的值;
- (3) 已知斜率为 2 的直线与 Γ 交于 A、B 两点, 点 M 是线段 AB 的中点, 设点 M 的横坐标的集合为 Ω . 若 $\{x|x=2n,\;n\in {\bf N}^*\}\subseteq \Omega,$ 求正数 b 的取值范围.

(1) $\mbox{$\sharp$} a_1 = -\frac{1}{3} \mbox{ ft}, \mbox{\amalg} -1 < a_n < 0, \mbox{$\Xi$$} \mbox{\amalg} a_2, a_3;$	
(1) 当 $a_1 = \frac{1}{3}$ 別,且 $1 < a_n < 0$,当出 a_2 , a_3 , (2) 若数列 $\{ a_n \}(1 \le n \le 10, n \in \mathbb{N}^*)$ 是公差为 -1 的等	学粉列 式。 如取佐 娄国。
(3) 设 $a_1 = 0$. 记 S_n 为 $\{a_n\}$ 的前 n 项和, 给定正整数 m	$1 \geq 4$, 冰 S_{m-1} 的最小值, 升证明取到最小值的效例
$\{a_n\}$ 不唯一.	
(004332) 函数 $y = \log_2(x-2)$ 的定义域为	
(004333) 设圆锥的底面半径为 1 , 体积为 $\frac{2\sqrt{2}}{3}\pi$, 则该圆锥	的侧面积为
(004334) 等差数列 $\{a_n\}$ 中, $a_3+a_{10}=25$, 则其前 12 项之	こ和 S ₁₂ 的值为
(004335) 幂函数 $y=x^k$ 的图像经过点 $(4,\frac{1}{2})$, 则它的单调	减区间为
(004336) 三角形 ABC 中, $A=45^{\circ},B=75^{\circ},AB$ 边的长	为 $2\sqrt{6}$,则 BC 边的长为
(004337) 已知 a 是实数, 方程 $x^2 + 2x + a = 0$ 的两根在复	[平面上对应的点分别为 P 和 Q. 若三角形 POQ 是
等腰直角三角形,则 $a =$.	
(004338) 设实数 x, y 满足 $ x + y \le 1$, 则 $2x + y$ 的最大的	值为
(004339) 已知偶函数 $y = f(x)$ 的定义域为 R, 且当 x	≥ 0 时, $f(x) = x - 4$, 则不等式 $xf(x) \leq 5$ 的解
为	
(004340) 等比数列 $\{a_n\}$ 的首项为 1 , 公比为 3 , 则极限 \lim_n	$ ightarrow \infty rac{a_1 a_2 + a_2 a_3 + \dots + a_n a_{n+1}}{a_1 + a_2 + \dots + a_{2n-1}}$ 的值为
(004341) 甲乙两人分别投掷两颗骰子与一颗骰子, 设甲的	两颗骰子的点数分别为 a 与 b , 乙的骰子的点数为 c .
则掷出的点数满足 $ a-b =c$ 的概率为(用最简	
(004342) 已知 a 是实数, 在 $(1+ax)^8$ 的二项展开式中, 第 k	$c+1$ 项的系数为 $c_{k+1} = C_8^k \cdot a^k \ (k=0,1,2,3,\cdots,8).$
若 $c_1 < c_2 < c_3 < \cdots < c_9$,则 a 的取值范围为	
(004343) 设 $P_1P_2P_3\cdots P_8$ 是平面直角坐标系中的一个正	八边形, 点 P_i 的坐标为 (x_i, y_i) $(i = 1, 2, \dots, 8)$. 集
合 $A = \{y $ 存在 $i \in \{1, 2, \dots, 8\}, $ 使得 $y = y_i\}, 则集合 A 的$	的元素个数可能为(写出所有可能的值).
(004344) 方程 $2\sin(2x+\frac{\pi}{3})-1=0$ 在区间 $[0,4\pi)$ 上的解	¥的个数为 ().
A. 2 B. 4	C. 6 D. 8
(004345) 已知直线 l 平行于平面 α , 平面 β 垂直于平面 α .	. 则以下关于直线 l 与平面 eta 的位置关系的表述, 正
确的是 ().	
A. $l 与 \beta$ 不平行 B.	l 与 β 不相交
C. l 不在平面 β 上 D.	l 在 β 上, 与 β 平行, 与 β 相交都有可能

(004331) 已知以 a_1 为首项的数列 $\{a_n\}$ 满足: $|a_{n+1}|=|a_n+1|(n\in \mathbf{N}^*)$.

(004346) 设三角形 ABC 是位于平面直角坐标系 xOy 的第一象限中的一个不等边三角形. 该平面上的动点 P满足: $|PA|^2 + |PB|^2 + |PC|^2 = |OA|^2 + |OB|^2 + |OC|^2$. 已知动点 P 的轨迹是一个圆, 则该圆的圆心位于三 角形 ABC 的 ().

A. 内心 B. 外心 C. 重心 D. 垂心

(004347) 已知 y = f(x) 与 y = g(x) 皆是定义域、值域均为 R 的函数. 若对任意 $x \in \mathbf{R}$, f(x) > g(x) 恒成立, 且 y = f(x) 与 y = g(x) 的反函数 $y = f^{-1}(x)$ 、 $y = g^{-1}(x)$ 均存在. 命题 P: "对任意 $x \in \mathbf{R}$, $f^{-1}(x) < g^{-1}(x)$ 恒 成立"; 命题 Q: "函数 y = f(x) + g(x) 的反函数一定存在". 以下关于这两个命题的真假判断, 正确的是 ().

A. 命题 P 真, 命题 Q 真

B. 命题 P 真, 命题 Q 假

C. 命题 P 假, 命题 Q 真

D. 命题 P 假, 命题 Q 假

(004348) 如图, 空间几何体由两部分构成, 上部是一个底面半径为 1, 高为 2 的圆锥, 下部是一个底面半径为 1, 高为 2 的圆柱,圆锥和圆柱的轴在同一直线上,圆锥的下底面与圆柱的上底面重合,点 P 是圆锥的顶点,AB是圆柱下底面的一条直径, AA_1 、 BB_1 是圆柱的两条母线. C 是弧 AB 的中点.

- (1) 求异面直线 PA_1 与 BC 所成的角的大小;
- (2) 求点 B_1 到平面 PAC 的距离.

$$\begin{array}{l} (004349) \,\, \textbf{已知} \,\, \alpha, \lambda \,\, \textbf{是实常数}, \, f(x) = \begin{vmatrix} \lambda \cos x \sin(x-\alpha) \\ \sin(x+\alpha) \cos x \end{vmatrix}. \\ \\ (1) \,\, \textbf{当} \,\, \lambda = 1, \, \alpha = \frac{\pi}{3} \,\, \textbf{时}, \,\, \textbf{求函数} \,\, y = f(x) \,\, \textbf{的最小正周期、} \,\, \textbf{单调增区间与最大值}; \end{array}$$

- (2) 是否存在 λ , 使得 f(x) 是与 α 有关的常数函数 (即 f(x) 的值与 x 的取值无关)? 若存在, 求出所有满足条 件的 λ ; 若不存在, 说明理由.

(004350) 已知 a 是实常数, a > 0, $f(x) = ax - 1 + \frac{1}{x^2}$.

- (1) 当 a=2 时, 判断函数 y=f(x) 在区间 $[1,+\infty)$ 上的单调性, 并说明理由;
- (2) 写出一个 a 的值, 使得 f(x) = 0 在区间 $(0, +\infty)$ 上有至少两个不同的解, 并严格证明你的结论.

(004351) 设抛物线 Γ 的方程为 $y^2 = 2px$, 其中常数 p > 0. F 是抛物线 Γ 的焦点.

- (1) 若直线 x=3 被抛物线 Γ 所截得的弦长为 6, 求 p 的值;
- (2) 设 A 是点 F 关于顶点 O 的对称点. P 是抛物线 Γ 上的动点, 求 $\frac{|PA|}{|PF|}$ 的最大值;

- (3) 设 p=2, l_1,l_2 是两条互相垂直, 且均经过点 F 的直线. l_1 与抛物线 Γ 交于点 A、B, l_2 与抛物线交于点 C, D, $\overrightarrow{A} = \overrightarrow{B} + \overrightarrow{A} + \overrightarrow{B} + \overrightarrow{B} + \overrightarrow{F} + \overrightarrow{D}$, $\overrightarrow{A} = \overrightarrow{B} + \overrightarrow{D} + \overrightarrow{D} = \overrightarrow{D} + \overrightarrow{D} = \overrightarrow{D$
- (004352) 设各项均为整数的无穷数列 $\{a_n\}$ 满足: $a_1 = 1$, 且对所有 $n \in \mathbb{N}^*$, 均成立 $|a_{n+1} a_n| = n$.
- (1) 写出 a_4 的所有可能值 (不需要写计算过程);
- (2) 若 $\{a_{2n-1}\}$ 是公差为 1 的等差数列, 求 $\{a_n\}$ 的通项公式;
- (3) 证明: 存在满足条件的数列 $\{a_n\}$, 使得在该数列中, 有无穷多项为 2019.
- (004353) 已知全集 $U = \{x | x < 2\}$, 集合 $A = \{x | x < 1\}$, 则 $C_U A = \underline{\hspace{1cm}}$.

(004354) 设集合
$$A = \{x | |x-2| < 1, x \in \mathbf{R}\}, B = \{x | \frac{x-3}{x-1} \ge 0\}, 则 A \cup B = \underline{\hspace{1cm}}$$

(004355) 若函数 $f(x) = 2^x - 3$, 则 $f^{-1}(1) =$ ______.

(004357) 已知
$$x \in (0, \frac{\pi}{2})$$
, 则方程 $\begin{vmatrix} 2\sin x & 1 \\ 1 & 2\cos x \end{vmatrix} = 0$ 的解集是______.

- (004358) 关于 x 的不等式 $^2 + ax + 1 > 0$ 有解, 则实数 a 的取值范围是___
- (004359) 已知 $f(x) = x^2 + 2(a-2)x + 4$, 对 $x \in [-3,1]$, f(x) > 0 恒成立, 则实数 a 的取值范围是______
- (004361) 设椭圆 $\Gamma: \frac{x^2}{a^2} + y^2 = 1 (a>1)$ 的左顶点为 A, 过点 A 的直线 l 与 Γ 相交于另一点 B, 与 y 轴相交于 点 C. 若 |OA| = |OC|, |AB| = |BC|, 则 a =
- (004362) 已知常数 $b, c \in \mathbb{R}$. 若函数 $f(x) = (x^2 + x 2)(x^2 + bx + c)$ 为偶函数, 则 b + c = 2.
- (004363) 记 a,b,c,d,e,f 为 1,2,3,4,5,6 的任意一个排列,则使得 (a+b)(c+d)(e+f) 为奇数的排列共
- (004364) 已知函数 $f(x)=|x+\frac{1}{x}+a|$,若对任意实数 a,关于 x 的不等式 $f(x)\geq m$ 在区间 $[\frac{1}{2},3]$ 上总有解, 则实数 m 的取值范围为
- (004365) 已知 $x \in \mathbb{R}$, 则"x > 0" 是"x > 1" 的 ().
- A. 充分非必要条件
 - B. 必要非充分条件 C. 充要条件
- D. 既非充分又非必要条

(004366) 已知 a, b, c 是互不相等的正数,则下列不等式中正确的是 (

A.
$$|a - b| < |a - c| + |c - b|$$

B.
$$a^2 + \frac{1}{a^2} \le a + \frac{1}{a}$$

C.
$$|a-b| + \frac{1}{a-b} \ge 2$$

D.
$$\sqrt{a+3} - \sqrt{a+1} \le \sqrt{a+2} - \sqrt{a}$$

(004367) 设 a,b,c 表示三条互不重合的直线, α,β 表示两个不重合的平面, 则使得 " $a\parallel b$ " 成立的一个充分条件为 ().

A. $a \perp c$, $b \perp c$

B. $a \parallel \alpha, b \parallel \alpha$

C. $a \parallel \alpha$, $a \parallel \beta$, $\alpha \cap \beta = b$

D. $b \perp \alpha$, $c \parallel \alpha$, $a \perp c$

(004368) 已知函数 y=f(x) 的定义域为 $(0,+\infty)$, 满足对任意 $x\in (0,+\infty)$, 恒有 $f[f(x)-\frac{1}{x}]=4$. 若函数 y=f(x)-4 的零点个数为有限的 $n(n\in \mathbf{N}^*)$ 个, 则 n 的最大值为 (

A. 1

B. 2

C. 3

D. 4

(004369) 如图, 在长方体 $ABCD - A_1B_1C_1D_1$ 中, $2AB = BC = AA_1$, 点 M 为棱 C_1D_1 上的动点.

- (1) 求三棱锥 $D A_1B_1M$ 与长方体 $ABCD A_1B_1C_1D_1$ 的体积比;
- (2) 若 M 为棱 C_1D_1 的中点, 求直线 DB_1 与平面 DA_1M 所成角的大小.

(004370) 已知常数 $a \in \mathbb{R}^+$, 函数 $f(x) = 3^x + a^2 \cdot 3^{-x}$.

- (1) 若 $a = \sqrt{3}$, 解关于 x 的不等式 f(x) < 4;
- (2) 若 f(x) 在 $[3,+\infty)$ 上为增函数, 求 a 的取值范围.

(004371) 某居民小区为缓解业主停车难的问题,拟对小区内一块扇形空地 AOB 进行改建.如图所示,平行四边形 OMPN 区域为停车场,其余部分建成绿地,点 P 在围墙 $\stackrel{\frown}{AB}$ 上,点 M 和 N 分别在道路 OA 和道路 OB 上,且 $OA=60\mathrm{m}$, $\angle AOB=\frac{\pi}{3}$.设 $\angle POB=\theta$.

- (1) 求停车场面积 $S(单位: m^2)$ 关于 θ 的函数关系式, 并写出 θ 的取值范围;
- (2) 求停车场面积 S 的最大值以及相应 θ 的值.

(004372) 在平面直角坐标系 xOy 中, 抛物线 $\Gamma:y^2=4x$, 点 C(1,0). A,B 为 Γ 上的两点, A 在第一象限, 满足 $\overrightarrow{OA}\cdot\overrightarrow{OB}=-4$.

- (1) 求证: 直线 AB 过定点, 并求定点坐标;
- (2) 设 P 为 Γ 上的动点, 求 $\frac{|OP|}{|CP|}$ 的取值范围;
- (3) 记 $\triangle AOB$ 的面积为 S_1 , $\triangle BOC$ 的面积为 S_2 , 求 $S_1 + S_2$ 的最小值.
- (004373) 已知函数 f(x) = x|x a|, 其中 a 为常数.
- (1) 当 a = 1 时,解不等式 f(x) < 2;
- (2) 已知 g(x) 是以 2 为周期的偶函数, 且当 $0 \le x \le 1$ 时, 有 g(x) = f(x). 若 a < 0, 且 $g(\frac{3}{2}) = \frac{5}{4}$, 求函数 $y = g(x)(x \in [1,2])$ 的反函数;
- (3) 若在 [0,2] 上存在 n 个不同的点 $x_i (i=1,2,\cdots,n,\ n\geq 3),\ x_1 < x_2 < \cdots < x_n,\ 使得 <math>|f(x_1) f(x_2)| + |f(x_2) f(x_3)| + \cdots + |f(x_{n-1}) f(x_n)| = 8,\ 求实数 a$ 的取值范围.
- (004374) 设集合 $A = \{1, 2, 3\}, B = \{x | x < 3\}, 则 <math>A \cap B =$ _____.
- (004375) 已知常数 $a \in \mathbb{R}$, 函数 $f(x) = x^2(-1 \le x \le a)$ 是偶函数, 则 a =_____.
- (004376) 设函数 $f(x) = \lg(x+1)$ 的反函数为 $f^{-1}(x)$, 则 $f^{-1}(1) =$ ______.
- (004377) 函数 $f(x) = \sqrt{\frac{1-x}{x}}$ 的定义域为_____
- (004378) 已知常数 $a \in \mathbb{R}$, 设 $p: 1 \le x < 2$, q: x < a. 若 $p \neq q$ 的充分条件, 则 a 的取值范围为______
- (004379) 关于 x 的方程 $\log_2 x + \log_2(x-3) = 2$ 的解为_____.
- (004380) 已知函数 f(x) 的定义域为 R, 满足对任意 $x \in \mathbb{R}$, 恒有 f(x) + f(x+2) = 4. 若 f(1) + f(2) = 1, 则 f(2021) f(2020) =_____.
- (004381) 已知常数 $a \in \mathbb{R}$, 函数 $f(x) = a \cdot 4^x + 2^x + 1$ 在 $[3, +\infty)$ 上单调递减, 则 a 的取值范围为______.
- (004382) 已知常数 $m,n \in \mathbb{Z}$, 若对任意 $x \in [0,+\infty)$, 不等式 $(mx-2)(x^2-2n) \geq 0$ 恒成立, 则 m+n 的取值集合为
- (004383) 已知常数 $a \in \mathbf{R}$, 函数 $f(x) = x^2 4x + a$, $g(x) = ax^2 8x + 4$. 若存在 $x_0 \in (0, +\infty)$, 使得 $f(x_0)$ 与 $g(x_0)$ 都不是正数,则 a 的取值范围为______.
- (004384) 对任意的非零实数 a, b, 下列不等式恒成立的是 ().

A.
$$\frac{b}{a} + \frac{a}{b} \ge 2$$
 B. $(a+b)(\frac{1}{a} + \frac{1}{b}) \ge 4$ C. $\frac{|a+b|}{2} \ge 2\sqrt{|ab|}$ D. $\frac{a^2+b^2}{2} \ge (\frac{a+b}{2})^2$

(004385) 设函数 f(x) 的定义域为 \mathbf{R} , f(x) 满足对任意 $x_1, x_2 \in \mathbf{R}$, 当 $x_1 \neq x_2$ 时,恒有 $|f(x_1) - f(x_2)| > 2|x_1 - x_2|$. 对于命题: ① f(x) 的解析式可以是 $f(x) = x^3 + 2021x$; ② f(x) 的解析式可以是 $f(x) = 2021^{-x}$, 下列判断正确的是 ().

A. ①、②均为真命题

B. ①、②均为假命题

C. ①为真命题、②为假命题

D. ①为假命题、②为真命题

(004386) 已知常数 $a \in \mathbf{R}$, 函数 $f(x) = ax^2 + \lg \frac{1+x}{1-x}$.

- (1) 若 a = 0, 判断 f(x) 的单调性并证明;
- (2) 问: 是否存在 a, 使得 f(x) 为奇函数? 若存在, 求出所有 a 的值; 若不存在, 说明理由.

(004387) 设函数 f(x) 的定义域为 $(0, +\infty)$, 若对任意 $x \in (0, +\infty)$, 恒有 f(2x) = 2f(x), 则称 f(x) 为 "2 阶缩放函数".

- (1) 已知函数 f(x) 为 "2 阶缩放函数", 当 $x \in (1,2]$ 时, $f(x) = 1 \log_2 x$, 求 $f(2\sqrt{2})$ 的值;
- (2) 已知函数 f(x) 为 "2 阶缩放函数", 当 $x \in (1,2]$ 时, $f(x) = \sqrt{2x x^2}$, 求证: 函数 y = f(x) x 在 $(1, +\infty)$ 上无零点.
- (004388) 设全集 $U = \mathbf{R}, A = (-\infty, 3),$ 则 $\mathbf{C}_U A = \underline{\hspace{1cm}}$
- (004389) 函数 $f(x) = x^{-\frac{1}{2}}$ 的定义域为______.
- (004390) 已知函数 f(x) 的反函数 $f^{-1}(x) = \log_2 x$, 则 f(-1) =______
- (004391) 已知球的半径为 2, 则它的体积为 .

$$(004392) \,\, 已知 \, \sin\alpha = -\frac{\sqrt{5}}{5}, \, \alpha \in (-\frac{\pi}{2}, \frac{\pi}{2}) \,\, , \,\, \text{則 } \sin(\alpha + \frac{3\pi}{2}) = \underline{\hspace{1cm}}.$$

(004393) 已知圆锥的底面半径为 1 cm, 侧面积为 $2\pi cm^2$, 则母线与底面所成角的大小为_____.

(004394) 已知 $(x^2 + \frac{2}{x})^n$ 的二项展开式中,所有二项式系数的和为 512,则展开式中的常数项为_____(结果用数值表示).

(004395)f(x) 是偶函数, 当 $x \ge 0$ 时, $f(x) = 2^x - 1$, 则不等式 f(x) > 1 的解集为______.

(004396) 方程 $1 + \log_2 x = \log_2(x^2 - 3)$ 的解为______.

 $(004397) \ \textbf{已知函数} \ f(x) = \begin{cases} x^2 + (4a-3)x + 3a, & x < 0, \\ & (a > 0, \ a \neq 1) \ \textbf{在 R 上单调递减}, \ \textbf{且关于} \ x \ \textbf{的方程} \\ \log_a(x+1) + 1, & x \geq 0, \end{cases}$

|f(x)|=2-x 恰好有两个不相等的实数解, 则 a 的取值范围是______.

(004398) 我国古代数学名著《九章算术》中记载了有关特殊几何体的定义: 阳马指底面为矩形, 一侧棱垂直于底面的四棱锥, 堑堵指底面是直角三角形, 且侧棱垂直于底面的三棱柱. 某堑堵 $ABC - A_1B_1C_1$, $AC \perp BC$, 若 $A_1A = AB = 2$, 当阳马 $B - AA_1C_1C$ 的体积最大时, 二面角 $C - A_1B - C_1$ 的大小为______.

(004399) 对于全集 R 的子集 A, 定义函数 $f_A(x)=\begin{cases} 1,&x\in A,\\ 0,&x\in \mathbb{C}_{\mathbf{R}}A \end{cases}$ 为 A 的特征函数,设 A,B 为全集 R 的子

集,

- ① 若 $A \subseteq B$, 则 $f_A(x) \le f_B(x)$; ② $f_{\mathsf{Gp}}(x) = 1 f_A(x)$;
- ⑤ $f_{A\cap \mathbb{C}_{\mathbf{R}}B}(x)=f_A(x)-f_B(x);$ ⑥ 对于任意 $x\in \mathbf{R}$, 若 $f_A(x)\cdot f_B(x)=0$ 恒成立, 则 $A\cap B=\varnothing$.

其中正确的命题为 (填所有正确命题的序号).

(004400) 已知实数 a, b 满足 a > b, 则下列不等式中恒成立的是 ()。

A.
$$a^2 > b^2$$

B.
$$\frac{1}{a} < \frac{1}{b}$$

C.
$$|a| > |b|$$

D.
$$2^a > 2^b$$

(004401) 下列函数中, 值域为 $(0, +\infty)$ 的是 ().

A.
$$y = x^2$$

B.
$$y = \frac{2}{x}$$

C.
$$y = 2^x$$

B.
$$y = \frac{2}{\pi}$$
 D. $y = |\log_2 x|$

(004402) 从正方体的 8 个顶点中选取 4 个作为顶点, 可得到四面体的个数为 ().

A.
$$C_8^4 - 12$$

B.
$$C_8^4 - 8$$

C.
$$C_8^4 - 6$$

B.
$$C_8^4 - 8$$
 C. $C_8^4 - 6$ D. $C_8^4 - 4$

(004403) 设集合 $A = \{y|y = a^x, x > 0\}$ (其中常数 $a > 0, a \neq 1$), $B = \{y|y = x^k, x \in A\}$ (其中常数 $k \in \mathbf{Q}$), 则 "k < 0" 是 " $A \cap B = \emptyset$ " 的 ().

A. 充分非必要条件

B. 必要非充分条件

C. 充分必要条件

D. 既非充分又非必要条件

(004404) 如图所示, 在直三棱柱 $ABC - A_1B_1C_1$ 中, 底面是等腰直角三角形, $\angle ACB = 90^{\circ}$, CA = CB = $CC_1 = 2$. 点 D, D_1 分别是棱 AC, A_1C_1 的中点.

- (1) 求四棱锥 $C AA_1B_1B$ 的体积;
- (2) 求直线 BC_1 与平面 DBB_1D_1 所成角的大小.

(004405) 设常数 $k \in \mathbb{R}$, $f(x) = k \cos^2 x + \sqrt{3} \sin x \cos x$, $x \in \mathbb{R}$.

- (1) 若 $\tan \alpha = 2$ 且 $f(\alpha) = \sqrt{3}$, 求实数 k 的值;
- (2) 设 k = 1, $\triangle ABC$ 中, 内角 A, B, C 的对边分别为 a, b, c. 若 f(A) = 1, $a = \sqrt{7}$, b = 3, 求 $\triangle ABC$ 的面积 S.

(004406) 东西向的铁路上有两个道口 AB, 铁路两侧的公路分布如图, C 位于 A 的南偏西 15° , 且位于 B 的南 偏东 15° 方向, D 位于 A 的正北方向, AC = AD = 2km, C 处一辆救护车欲通过道口前往 D 处的医院送病 人, 发现北偏东 45° 方向的 E 处 (火车头位置) 有一列火车自东向西驶来, 若火车通过每个道口都需要 1 分钟, 救护车和火车的速度均为 60km/h.

- (1) 判断救护车通过道口 A 是否会受火车影响, 并说明理由;
- (2) 为了尽快将病人送到医院, 救护车应选择 AB 中的哪个道口? 通过计算说明.

(004407) 已知函数 $f(x) = \frac{ax^2 + 1}{bx + c}$ 是奇函数, a, b, c 为常数.

- (1) 求实数 c 的值;
- (2) 若 $a, b \in \mathbb{Z}$, 且 f(1) = 2, f(2) < 3, 求 f(x) 的解析式;
- (3) 已知 b > 0, 若 $f(x) \ge f(1)$ 在 $(0, +\infty)$ 上恒成立, 且 $\{x | f[f(x)] \ge x\} \cap [1, 2] \ne \emptyset$, 求 b 的取值范围.

(004408) 记函数 f(x) 的定义域为 D. 如果存在实数 a、b 使得 f(a-x)+f(a+x)=b 对任意满足 $a-x\in D$ 且 $a+x \in D$ 的 x 恒成立, 则称 f(x) 为 Ψ 函数.

- (3) 若 h(x) 是定义在 R 上的 Ψ 函数, 且函数 h(x) 的图像关于直线 x=m(m 为常数) 对称, 试判断 h(x) 是否 为周期函数?并证明你的结论.

$$(004409)$$
 不等式 $\frac{1}{x} \le 3$ 的解集是______.

$$(004410)$$
 若函数 $y = \sin(2x + \frac{\pi}{4})$,则它的最小正周期 $T =$ _______

(004411) 若函数 $y = \log_2(x - m) + 1$ 的反函数的图像经过点 (1,3), 则实数 $m = _____$

$$(004412)$$
 函数 $f(x) = x + \frac{1}{x-2}$ 的值域是______.

(004413) 已知函数 f(x) 的周期为 2, 且当 $0 < x \le 1$ 时, $f(x) = \log_4 x$, 那么 $f(\frac{9}{2}) =$ ______

(004414) 已知集合 $M=\{y|y=3\sin x, x\in {\bf R}\},\ N=\{x||x|< a\},\ {\it H}\ M\subseteq N,\ 则实数 a 的取值范围$

(004415) 函数 $f(x) = |x^2 - 1| + |x - 2|$ 的最小值是_____.

 $(004416) \ \textbf{已知函数} \ f(x) = \begin{cases} -x^2 - 2x, & x \leq a, \\ -x + 2, & x > a, \end{cases}$ 若存在实数 x_0 ,使得对于任意的实数 x 都有 $f(x) \leq f(x_0)$ 成

立,则实数 a 的取值范围是

(004417) 函数 $f(x) = \frac{x}{x+1} + \frac{x+1}{x+2} + \frac{x+2}{x+3}$ 图像的对称中心的坐标是______.

(004418) 若 $f(x) = |x+1| + |x+2| + \cdots + |x+2020| + |x-1| + |x-2| + \cdots + |x-2020|, x \in \mathbf{R}$, 且 $f(a^2 - 3a + 2) = f(a - 1)$,则满足条件的所有整数 a 的和是_____

(004419) 王昌龄《从军行》中两句诗"黄沙百战穿金甲,不破楼兰终不还",其中后一句中"攻破楼兰"是"返回 家乡"的()条件.

A. 充分

B. 必要

- C. 充要
- D. 既不充分也不必要

(004420) 为了得到函数 $y=\sin(2x+\frac{\pi}{3})$ 的图像,可将函数 $y=\sin x$ 的图像(). A. 左移 $\frac{\pi}{3}$ 个长度 B. 右移 $\frac{\pi}{3}$ 个长度 C. 左移 $\frac{\pi}{6}$ 个长度 D. 右移 $\frac{\pi}{6}$ 个长度

(004421) 已知 M、N、 $P \subseteq \mathbf{R}$, $M = \{x | f(x) = 0\}$, $N = \{x | g(x) = 0\}$, $P = \{x | f(x)g(x) = 0\}$, 则集合 P 恒满 足的关系为().

- A. $P = M \cup N$ B. $P \neq \emptyset$ C. $P = \emptyset$ D. $P \subseteq (M \cup N)$

(004422) 已知 a_1 、 a_2 与 b_1 、 b_2 是 4 个不同的实数, 关于 x 的方程 $|x-a_1|+|x-a_2|=|x-b_1|+|x-b_2|$ 的 解集为 A, 则集合 A 中元素的个数为 ().

A. 1 个

B. 0 个或 1 个或 2 个

C. 0 个或 1 个或 2 个或无限个

D. 1 个或无限个

(004423) 设函数 f(x) 是定义在 [a,b] 上的函数, 若存在 $x_0 \in (a,b)$, 使得 f(x) 在 $[a,x_0]$ 上单调递增, 在 $[x_0,b]$ 上单调递减, 则称 f(x) 为 [a,b] 上的单峰函数, x_0 称为峰点.

- (1) 判断下列函数中, 哪些是 [0,2] 上的单峰函数? 若是, 指出峰点; 若不是, 说出原因;
- ① $f_1(x) = 3x x^2$; ② $f_2(x) = \frac{2x}{x^2 + 1}$;
- (2) 若函数 f(x) 是区间 [0,1] 上的单峰函数, 证明: 对任意的 x_1 、 $x_2 \in (0,1), x_1 < x_2, 若 <math>f(x_1) \ge f(x_2)$, 则峰 点在区间 $(0, x_2)$ 内; 若 $f(x_1) \leq f(x_2)$, 则峰点在区间 $(x_1, 1)$ 内.

(004424) 设 $\mu(x)$ 表示不小于 x 的最小整数, 例如 $\mu(0.3) = 1$, $\mu(-2.5) = 2$.

- (1) 解方程 $\mu(x-1)=3$;
- (2) 设 $f(x) = \mu(x \cdot \mu(x)), n \in \mathbb{N}^*$, 试分别求出 f(x) 在区间 (0,1]、(1,2] 以及 (2,3] 上的值域; 若 f(x) 在区间

(0,n] 上的值域为 M_n , 求集合 M_n 中的元素的个数;

- (3) 设实数 $a>0, g(x)=x+a\cdot\frac{\mu(x)}{x}-2, h(x)=\frac{\sin(\pi x)+2}{x^2-5x+7}$, 若对于任意 $x_1,x_2\in(2,4]$ 都有 $g(x_1)>h(x_2)$, 求实数 a 的取值范围.
- (004425) 函数 $y = \log_2(4 x^2)$ 的定义域是_____.

(004426) 如图所示, 弧长为 $\frac{\pi}{2}$, 半径为 1 的扇形 (及其内部) 绕 OB 所在的直线旋转一周, 所形成的几何体的表面积为

(004427) 函数 $f(x) = 1 - 3\sin^2(x + \frac{\pi}{4})$ 的最小正周期为______.

(004429) 已知函数 $f(x) = a \cdot 2^x + 3 - a(a \in \mathbf{R} \ \mathbf{L} \ a \neq 0)$ 的反函数为 $y = f^{-1}(x)$,则函数 $y = f^{-1}(x)$ 的图像 经过的定点的坐标为_____.

(004430) 在 $(x-a)^{10}$ 的展开式中, x^7 的系数是 15, 则实数 a =_____.

(004431) 已知
$$\cos(\frac{\pi}{4} + \alpha) = \frac{1}{3}$$
, 则 $\cos(\frac{\pi}{2} - 2\alpha) = \underline{\hspace{1cm}}$.

(004432) 集合 $\{x|\cos(\pi\cos x)=0,\ x\in[0,\pi]\}=$ _____(用列举法表示).

(004433) 在 $\triangle ABC$ 中,角 A, B, C 的对边分别为 a, b, c,面积为 S,且 $4S = (a+b)^2 - c^2$,则 $\cos C =$ ______.

(004434) 如图, 在三棱锥 D-AEF 中, A_1, B_1, C_1 分别是 DA, DE, DF 的中点, B, C 分别是 AE, AF 的中点, 设三棱柱 $ABC-A_1B_1C_1$ 的体积为 V_1 , 三棱锥 D-AEF 的体积为 V_2 , 则 $V_1:V_2=$ _______.

(004435) 集合 $A = \{y|y = \log_{\frac{1}{2}} x - x, 1 \le x \le 2\}, B = \{x|x^2 - 5tx + 1 \le 0\}, 若 A \cap B = A, 则实数 t 的取值范围是_____.$

(004436) 若定义在实数集 R 上的奇函数 y=f(x) 的图像关于直线 x=1 对称, 且当 $0 \le x \le 1$ 时, $f(x)=x^{\frac{1}{3}}$,则方程 $f(x)=\frac{1}{3}$ 在区间 (-4,10) 内的所有实根之和为_____.

(004437) 若空间中三条不同的直线 l_1 、 l_2 、 l_3 ,满足 $l_1 \perp l_2$, $l_2 \parallel l_3$,则下列结论一定正确的是 (

A. $l_1 \perp l_3$

B. $l_1 \parallel l_3$

 $C. l_1$ 、 l_3 既不平行也不垂直

D. l₁、l₃ 相交且垂直

(004438) 若 a > b > 0, c < d < 0, 则一定有 ().

A. ad > bc

B. ad < bc C. ac < bd

D. ac > bd

(004439) 函数 $f(x) = |x^2 - a|$ 在区间 [-1, 1] 上的最大值是 a, 那么实数 a 的取值范围是 ().

A. $[0, +\infty)$

C. $\left[\frac{1}{2}, +\infty\right)$

 $(004440) \ \mathbf{已知函数} \ f(x) = \begin{cases} \log_{\frac{1}{2}}(1-x), & -1 \leq x \leq n, \\ 2^{2-|x-1|} - 3, & n < x \leq m, \end{cases} \\ (n < m) \ \textbf{的值域是} \ [-1,1], \ \textbf{有下列结论} : ① 当 \ n = 0$

时, m 的取值范围为 (0,2]; ② 当 $n=\frac{1}{2}$ 时, m 的取值范围为 $(\frac{1}{2},2];$ ③ 当 $n\in[0,\frac{1}{2})$ 时, m 的取值范围为 [1,2];④ 当 $n \in [0, \frac{1}{2})$ 时, m 的取值范围为 (n, 2]; 其中结论正确的所有的序号是 ().

A. (1)(2)

B. (3)(4)

D. (2)(4)

(004441) 如图, 在正三棱柱 $ABC - A_1B_1C_1$ 中, $AA_1 = 4$, 异面直线 BC_1 与 AA_1 所成角的大小为 $\frac{\pi}{3}$.

- (1) 求正三棱柱 $ABC A_1B_1C_1$ 的体积;
- (2) 求直线 BC_1 与平面 AA_1C_1C 所成角的大小.

(004442) 已知函数 $f(x) = \frac{3}{2}\sin\omega x + \frac{\sqrt{3}}{2}\cos\omega x$ (其中 $\omega > 0$).

- (1) 若 $\omega = 2$, $0 < \alpha < \pi$, 且 $f(\alpha) = \frac{3}{2}$, 求 α 的值;
- (2) 若函数 f(x) 的最小正周期为 3π , 求 ω 的值, 并求函数 f(x) 在 $[0,\pi]$ 上的单调递增区间.

(004443) 如图, 有一块边长为 1 的正方形区域 ABCD, 在点 A 处有一个可转动的探照灯, 其照射角 $\angle PAQ$ 始 终为 45° (其中点 $P \setminus Q$ 分别在边 $BC \setminus CD$ 上), 设 $\angle PAB = \theta$, $\tan \theta = t$.

- (1) 当三点 C、P、Q 不共线时, 求直角 $\triangle CPQ$ 的周长;
- (2) 设探照灯照射在正方形 ABCD 内部区域 PAQC 的面积为 S, 试求 S 的最大值.

(004444) 定义区间 (m,n)、[m,n]、(m,n]、[m,n) 的长度均为 n-m, 已知不等式 $\frac{7}{6-x} \ge 1$ 的解集为 A.

- (1) 求 A 的长度;
- $(2) \text{ 函数 } f(x) = \frac{(a^2+a)x-1}{a^2x}(a \in \mathbf{R}, \ a \neq 0) \text{ 的定义域与值域都是 } [m,n](n>m), 求区间 } [m,n] \text{ 的最大长度};$
- (3) 关于 x 的不等式 $\log_2 x + \log_2 (tx + 3t) < 2$ 的解集为 B, 若 $A \cap B$ 的长度为 6, 求实数 t 的取值范围.

(004445) 对于函数 $y = f(x)(x \in D)$, 如果存在实数 a、 $b(a \neq 0)$, 且 a = 1, b = 0 不同时成立), 使得 f(x) = f(ax + b) 对 $x \in D$ 恒成立, 则称函数 f(x) 为 "(a,b) 映像函数".

- (1) 判断函数 $f(x) = x^2 2$ 是否是 "(a, b) 映像函数", 如果是, 请求出相应的 $a \cdot b$ 的值, 若不是, 请说明理由;
- (2) 已知函数 y = f(x) 是定义在 $[0, +\infty)$ 上的 "(2, 1) 映像函数", 且当 $x \in [0, 1)$ 时, $f(x) = 2^x$, 求函数 $y = f(x)(x \in [3, 7))$ 的反函数;
- (3) 在 (2) 的条件下, 试构造一个数列 $\{a_n\}$, 使得当 $x \in [a_n, a_{n+1})(n \in \mathbf{N}^*)$ 时, 2x + 1 的取值范围为 $[a_{n+1}, a_{n+2})$, 并求 $x \in [a_n, a_{n+1})(n \in \mathbf{N}^*)$ 时, 函数 y = f(x) 的解析式, 及 $y = f(x)(x \in [0, +\infty))$ 的值域.
- (004446) 函数 $y = \sqrt{2+x}$ 的定义域为_____.
- (004447) 方程 $\lg(2x+3) = 2 \lg x$ 的解为_____.

(004448) 在正方体 $ABCD - A_1B_1C_1D_1$ 中, 直线 BC_1 与平面 BB_1D_1D 所成角的大小等于______.

(004449) 已知角 α 的终边经过点 P(-1,2)(始边为 x 轴正半轴), 则 $\sin 2\alpha =$

(004450) 在 $(x+\frac{1}{x})^{10}$ 的展开式中,常数项等于______.

(004451) 若 x > 0, y > 0, 且 2x + y = 1, 则 xy 的最大值为_____.

(004452) 已知幂函数 y = f(x) 的图像经过点 P(4,2), 则它的反函数为 $f^{-1}(x) =$ _______

(004453) 从 1,2,3,4,5,6,7,8,9 中任取 5 个不同的数,中位数为 4 的取法有______ 种 (用数值表示).

(004454) 已知圆锥的侧面展开图是一个扇形,若此扇形的圆心角为 $\frac{6\pi}{5}$,面积为 15π ,则该圆锥的体积为______

(004455) 在 $\triangle ABC$ 中, 内角 A,B,C 的对边分别为 a,b,c, 若 b=2, $\frac{\sin A}{a}=\frac{\sqrt{3}\cos B}{b}$. 则 $\triangle ABC$ 的面积的最大值等于______.

(004456) 在高中阶段,我们学习过函数的概念、性质和图像,以下两个结论是正确的: ① 偶函数 f(x) 在区间 [a,b](a < b) 上的取值范围与在区间 [-b,-a] 上的取值范围是相等的. ② 周期函数 f(x) 在一个周期内的取值范围也就是 f(x) 在定义域上的值域. 由此可求函数 $g(x) = 2|\sin x| + 19|\cos x|$ 的值域为______.

(004457) 定义在实数集 R 上的偶函数 f(x) 满足 $f(x+1)=1+\sqrt{2f(x)-f^2(x)},$ 则 $f(\frac{2019}{2})=$ ________.

(004458) 已知 $x \in \mathbb{R}$, 则 " $\sin x = 1$ " 是 " $\cos x = 0$ " 的 ().

A. 充分不必要条件

B. 必要不充分条件

C. 充要条件

D. 非充分非必要条件

(004459) 某班有 20 名女生和 19 名男生, 从中选出 5 人组成一个垃圾分类宣传小组, 要求女生和男生均不少于 2 人的选法共有 ().

A.
$$C_{20}^2 \cdot C_{19}^2 \cdot C_{35}^1$$

B.
$$C_{39}^5 - C_{20}^5 - C_{19}^5$$

C.
$$C_{39}^5 - C_{20}^1 C_{19}^4 - C_{20}^4 C_{19}^1$$

D.
$$C_{20}^2 C_{19}^3 + C_{20}^3 C_{19}^2$$

(004460) 已知二面角 $\alpha-l-\beta$ 是直二面角, m 为直线, γ 为平面, 则下列命题中真命题为 ().

A. 若
$$m \subseteq \alpha$$
, 则 $m \perp \beta$

B. 若
$$m \perp \alpha$$
, 则 $m \parallel \beta$

C. 若
$$m \parallel \alpha$$
, 则 $m \perp \beta$

D. 若
$$\gamma \parallel \alpha$$
, 则 $\gamma \perp \beta$

(004461) 记有限集 M 中元素的个数为 |M|, 且 $|\varnothing| = 0$, 对于非空有限集 A, B, 下列结论: ① 若 $|A| \le |B|$, 则 $A \subseteq B$; ② 若 $|A \cup B| = |A \cap B|$, 则 A = B; ③ 若 $|A \cap B| = 0$, 则 A, B 中至少有一个是空集; ④ 若 $A \cap B = \varnothing$, 则 $|A \cup B| = |A| + |B|$. 其中正确结论的个数为 ().

D. 4

(004462) 在正三棱柱 $ABC - A_1B_1C_1$ 中, E, F 分别为棱 A_1B_1, A_1C_1 的中点, 去掉三棱锥 $A_1 - AEF$ 得到一个多面体 $ABC - B_1C_1FE$. 已知 AB = 6, $BB_1 = 4$.

- (1) 求多面体 $ABC EFC_1B_1$ 的体积;
- (2) 求意面直线 AE 与 BC 所成角的大小.

(004463) 《上海市生活垃圾管理条例》于 2019 年 7 月 1 日正式实施.某小区全面实施垃圾分类处理.已知该 小区每月垃圾分类处理量不超过 300 吨,每月垃圾分类处理成本 y(元) 与每月分类处理量 x(吨) 之间的函数关系式可近似表示为 $y = x^2 - 200x + 40000$,而分类处理一吨垃圾小区也可以获得 300 元的收益.

- (1) 该小区每月分类处理多少吨垃圾,才能使得每吨垃圾分类处理的平均成本最低?
- (2) 要保证该小区每月的垃圾分类处理不亏损,每月的垃圾分类处理量应控制在什么范围?

(004464) 已知 a 是实常数, 函数 $f(x) = a \lg(1-x) - \lg(1+x)$.

- (1) 若 a = 1, 求证: 函数 y = f(x) 是减函数;
- (2) 讨论函数 f(x) 的奇偶性, 并说明理由.

(004465) 如图是函数 $f(x)=A\sin(\omega x+\varphi)(A>0,\,\omega>0,\,0\leq\varphi\leq\pi)$ 一个周期内的图像. 将 f(x) 图像上所有点的很顾总表伸长为原来的 2 倍,纵坐标不变,再把所得图像向右平移 $\frac{\pi}{2}$ 个单位长度,得到函数 g(x) 的图像.

- (1) 求函数 f(x) 和 g(x) 的解析式;
- (2) 若 $f(x_0) = g(x_0)$, 求 $\sin(x_0 \frac{\pi}{3})$ 的所有可能的值;
- (3) 求函数 F(x) = f(x) + ag(x)(a) 为正常数) 在区间 $(0,19\pi)$ 内的所有零点之和.

- (1) 判断函数 $f(x) = \sin x + \cos x$ 是不是带状函数? 如果是, 指出带宽 (不用证明); 如果不是, 说明理由;
- (2) 求证: 函数 $g(x) = \sqrt{x^2 1} (x \ge 1)$ 是带状函数;
- (3) 求证: 函数 $h(x) = a|x x_1| + b|x x_2|(x_1 < x_2)$ 为带状函数的充要条件是 a + b = 0.

(004467) 计算 $\lim_{n\to\infty} \frac{4n+4}{5n+1} =$ _____.

(004468) 设全集 $U = \mathbf{R}$ 集合 $A = \{-2, -1, 0, 1, 2\}, B = \{x | x \ge 0\}, 则 A \cap \mathsf{C}_U B = \underline{\hspace{1cm}}$

(004469) 不等式 $\frac{1}{r-1} > 1$ 的解集为______.

(004470) 若一个球的体积为 36π, 则它的表面积为

(004471) 设复数 z 满足 $z + 2\overline{z} = 3 - i(i 为虚数单位), 则 <math>z =$ _____.

(004472) 数列 $\{a_n\}$ 的通项公式是 $a_n=(\frac{2}{3})^n,\,n\in{\bf N}^*,$ 则数列 $\{a_n\}$ 所有项的和为______.

(004473) 某班级要从 5 名男生和 3 名女生中选出 3 人参加公益活动,则在选出的 3 人中男、女生均有的概率为_____(结果用最简分数表示).

(004474) 已知 $\omega,t>0$,函数 $f(x)=egin{pmatrix} \sqrt{3} & \sin\omega x \\ 1 & \cos\omega x \end{pmatrix}$ 的最小正周期为 2π ,将 f(x) 的图像向左平移 t 个单位,所得图像对应的函数为偶函数,则 t 的最小值为_______.

 $(004475) \ \textbf{设函数} \ f(x) = \begin{cases} x^6, & x \geq 1, \\ & \text{则当} \ x \leq -1 \ \textbf{时}, \ \textbf{则} \ f[f(x)] \ \textbf{表达式的展开式中含} \ x^2 \ \textbf{项的系数} \\ -2x - 1, & x \leq -1, \end{cases}$

是

(004476) 已知数列 $\{a_n\}$ 满足 $S_n=rac{3}{2}a_n+n$ (其中 S_n 为数列 $\{a_n\}$ 前 n 项和), 则数列 $\{a_n\}$ 的通项公式是______.

(004477) 如图, 已知半圆 O 的直径 AB=4, $\triangle OAC$ 是等边三角形, 若点 P 是边 AC(包含端点 A,C) 上的动 点, 点 Q 在弧 \overrightarrow{BC} 上, 且满足 $OQ \perp OP$, 则 $\overrightarrow{OP} \cdot \overrightarrow{BQ}$ 的最小值为

(004478) 如果一个数列由有限个连续的正整数组成 (数列的项数大于 2), 且所有项之和为 N, 那么称该数列为 N 型标准数列, 例如, 数列 2,3,4,5,6 为 20 型标准数列, 则 2668 型标准数列的个数为______.

(004479) 设 $\alpha\beta$ 为两个不同平面, 已知直线 l 在平面 α 内, 则 " $\alpha \perp \beta$ " 是 " $l \perp \beta$ " 的 ().

A. 充分不必要条件

- B. 必要不充分条件
- C. 充要条件
- D. 既不充分也不必要条

召

(004480) 某中学的高一、高二、高三共有学生 1350 人, 其中高一 500 人, 高三比高二少 50 人, 为了解该校学生健康状况, 现采用分层抽样方法进行调查, 在抽取的样本中有高一学生 120 人, 则该样本中的高二学生人数为 ().

A. 80

B. 96

C. 108

D 110

(004481) 已知 \overrightarrow{a} 、 \overrightarrow{b} 均为单位向量,且 $\overrightarrow{a} \cdot \overrightarrow{b} = 0$. 若 $|\overrightarrow{c} - 4\overrightarrow{a}| + |\overrightarrow{c} - 3\overrightarrow{b}| = 5$, 则 $|\overrightarrow{c} + \overrightarrow{a}|$ 的取值范围是 ().

- A. $[3, \sqrt{10}]$
- B. [3, 5]
- C. [3, 4]
- D. $[\sqrt{10}, 5]$

(004482) 正四面体 ABCD 的体积为 1, O 为其中心, 正四面体 EFGH 与正四面体 ABCD 关于点 O 对称, 则这两个正四面体的公共部分的体积为 (

(004483)

A. $\frac{1}{3}$

B. $\frac{1}{2}$

C. $\frac{2}{3}$

D. $\frac{3}{4}$

(004484) 如图, 已知正三棱柱 $ABC-A_1B_1C_1$ 的底面积为 $\frac{9\sqrt{3}}{4}$, 侧面积为 36.

- (1) 求正三棱柱 $ABC A_1B_1C_1$ 的体积;
- (2) 求异面直线 A_1C 与 AB 所成的角的大小;

(004485) 已知 $\triangle ABC$ 的面积为 S, 且 $\overrightarrow{AB} \cdot \overrightarrow{AC} = S$.

- (1) 求 $\sin A$, $\cos A$, $\tan 2A$ 的值;
- $(2) \ \mbox{若} \ B = \frac{\pi}{4}, \ |\overrightarrow{CA} \overrightarrow{CB}| = 6, \ \mbox{求} \ \triangle ABC \ \mbox{的面积} \ S.$

(004486) 某温室大棚规定: 一天中, 从中午 12 点到第二天上午 8 点为保温时段, 其余 4 小时为工人作业时段. 从中午 12 点连续测量 20 小时, 得出此温室大棚的温度 y(单位: 度) 与时间 t(单位: 小时, $t\in[0,20])$ 近似地满足函数 $y=|t-13|+\frac{b}{t+2}$ 关系, 其中, b 为大棚内一天中保温时段的通风量.

- (1) 若一天中保温时段的通风量保持 100 个单位不变, 求大棚一天中保温时段的最低温度 (精确到 0.1°C);
- (2) 若要保持大棚一天中保温时段的最低温度不小于 17°C, 求大棚一天中保温时段通风量的最小值.

(004487) 已知直线 l: x = t(0 < t < 2) 与椭圆 $\Gamma: \frac{x^2}{4} + \frac{y^2}{2} = 1$ 相交于 A, B 两点, 其中 A 在第一象限, M 是椭圆上一点.

- (1) 记 F_1, F_2 是椭圆 Γ 的左右焦点, 若直线 AB 过 F_2 , 当 M 到 F_1 的距离与到直线 AB 的距离相等时, 求点 M 的横坐标;
- (2) 若点 M, A 关于 y 轴对称, 当 $\triangle MAB$ 的面积最大时, 求直线 MB 的方程;
- (3) 设直线 MA 和 MB 与 x 轴分别交于 PQ, 证明: $|OP| \cdot |OQ|$ 为定值.
- (004488) 已知无穷数列 $\{a_n\}$ 的各项均为正数, 其前 n 项和为 $S_n, a_1 = 4$.
- (1) 如果 $a_2 = 2$, 且对于一切正整数 n, 均有 $a_n \cdot a_{n+2} = a_{n+1}^2$, 求 S_n ;
- (2) 如果对于一切正整数 n, 均有 $a_n \cdot a_{n+1} = S_n$, 求 S_n ;
- (3) 如果对于一切正整数 n, 均有 $a_n + a_{n+1} = 3S_n$, 证明: a_{3n-1} 能被 8 整除.

(004489) 设
$$z = \frac{1-i}{1+i}$$
, 则 $|z| =$ _____.

$$(004491) \lim_{n \to \infty} \frac{3^{n+1} + 1}{2 \cdot 3^n + 2^n} = \underline{\hspace{1cm}}.$$

(004492) 角 θ 的终边经过点 P(-4,y), 且 $\sin\theta = \frac{3}{5}$, 则 $\tan\theta = \underline{\hspace{1cm}}$.

(004493) 设一个圆锥的侧面展开图是半径为 1 的半圆, 则此圆锥的体积等于______.

(004494) 从包含学生甲的 1200 名学生中随机抽取一个容量为 60 的样本, 则学生甲被抽到的概率为______

(004495) 在平面直角坐标系 xOy 中,已知抛物线 $y^2 = 4x$ 上一点 P 到焦点的距离为 3,则点 P 的横坐标是______.

(004496) 已知函数 y=f(x) 存在反函数 $y=f^{-1}(x)$,若函数 $y=f(x)+2^x$ 的图像经过点 (1,4),则函数 $y=f^{-1}(x)+\log_2 x$ 的图像必过点_____.

(004497) 在无穷等比数列 $\{a_n\}$ 中,若 $\lim_{n\to\infty}(a_1+a_2+\cdots+a_n)=\frac{1}{2}$,则 a_1 的取值范围是______.

 $(004498) \ \textbf{已知向量} \ |\overrightarrow{a}| = |\overrightarrow{b}| = |\overrightarrow{c}| = 1, \ \overrightarrow{a} \ \overrightarrow{a} \cdot \overrightarrow{b} = \frac{1}{2}, \ \underline{\textbf{L}} \ \overrightarrow{c} = x\overrightarrow{a} + y\overrightarrow{b}, \ \underline{\textbf{M}} \ x \cdot y \ \textbf{的最大值为} \underline{\hspace{1cm}}.$

(004499) 已知集合 $M = \{1, 2, 3, \dots, 10\}$, 集合 $A \subseteq M$, 定义 M(A) 为 A 中元素的最大值, 当 A 取遍 M 的所有非空子集时, 对应的 M(A) 的和记为 S_{10} , 则 $S_{10} =$ ______.

(004500) 对于定义域为 D 的函数 f(x), 若存在 $x_1, x_2 \in D$ 且 $x_1 \neq x_2$, 使得 $f(x_1^2) = f(x_2^2) = 2f(x_1 + x_2)$, 则称函数 f(x) 具有性质 M. 若函数 $g(x) = |\log_2 x - 1|$, $x \in (0, a]$ 具有性质 M, 则实数 a 的最小值为______.

(004501) 展开式为 ad – bc 的行列式是 (

- C. $\begin{vmatrix} a & d \\ b & c \end{vmatrix}$

(004502) 已知两条直线 l_1 、 l_2 的方程分别为 $l_1: ax+y-1=0$ 和 $l_2: x-y+1=0$, 则 "a=1" 是 "直线 $l_1 \perp l_2$ " **的** ().

- A. 充分不必要条件
- B. 必要不充分条件
- C. 充要条件
- D. 既不充分也不必要条

(004503) 若 1+i 是关于 x 的方程 $x^2+px+q=0$ 的一个根 (其中 i 为虚数单位, $p,q \in \mathbf{R}$), 则 p+q 的值为 ().

A. -1

B. 0

C. 1

D. 2

(004504) 已知曲线 $C_1: |y|-x=2$ 与曲线 $C_2: \lambda x^2+y^2=4$ 恰好有两个不同的公共点, 则实数 λ 的取值范围 是().

- A. $(-\infty, -1] \cup [0, 1)$ B. (-1, 1]
- C. [-1,1)
- D. $[-1,0] \cup (1,+\infty)$

(004505) 如图, 在三棱柱 $ABC - A_1B_1C_1$ 中, 已知 $AB \perp AC$, AB = AC = 1, $AA_1 = 2$, 且 $AA_1 \perp$ 平面 ABC. 过 A_1 、 C_1 、B 三点作平面截此三棱柱,截得一个三棱锥和一个四棱锥.

- (1) 求异面直线 BC_1 与 AA_1 所成角的大小 (结果用反三角函数表示);
- (2) 求四棱锥 $B-ACC_1A_1$ 的体积和表面积.

(004506) 已知函数 $f(x) = 2\sqrt{3}\sin x \cos x - 2\sin^2 x$.

- (1) 求 f(x) 的最大值;
- (2) 在 $\triangle ABC$ 中, 内角 A、B、C 所对的边分别为 a、b、c, 若 f(A) = 0, b、a、c 成等差数列, 且 $\overrightarrow{AB} \cdot \overrightarrow{AC} = 2$. 求边 a 的长.

(004507) 某科技创新公司投资 400 万元研发了一款网络产品, 产品上线第 1 个月的收入为 40 万元, 预计在今 后若干个月内, 该产品每月的收入平均比上一月增长 50%. 同时, 该产品第 1 个月的维护费支出为 100 万元, 以后每月的维护费支出平均比上一个月增加 50 万元.

(1) 分别求出第6个月该产品的收入和维护费支出,并判断第6个月该产品的收入是否足够支付第6个月的维

护费支出?

- (2) 从第几个月起,该产品的总收入首次超过总支出(总支出包括维护费支出和研发投资支出)?
- (004508) 已知曲线 Γ 上的任意一点到两定点 $F_1(-1,0)$ 、 $F_2(1,0)$ 的距离之和为 $2\sqrt{2}$, 直线 l 交曲线 Γ 于 A、B 两点, O 为坐标原点.
- (1) 求曲线 Γ 的方程;
- (2) 若 l 不过 O 点且不平行于坐标轴,记线段 AB 的中点为 M. 求证: 直线 OM 的斜率与 l 的斜率的乘积为 定值;
- (3) 若 $OA \perp OB$, 求 $\triangle AOB$ 面积的取值范围.
- (004509) 若存在常数 k(k > 0),使得对定义域 D 内的任意 x_1 、 $x_2(x_1 \neq x_2)$,都有 $|f(x_1) f(x_2)| \leq k|x_1 x_2|$ 成立,则称函数 f(x) 在其定义域 D 是 "k- 利普希兹条件函数".
- (1) 若函数 $f(x) = \sqrt{x}(1 \le x \le 4)$ 是 "k- 利普希兹条件函数", 求常数 k 的取值范围;
- (2) 判断函数 $f(x) = \log_2 x$ 是否是 "2— 利普希兹条件函数", 若是, 请证明, 若不是, 请说明理由;
- (3) 若 $y = f(x)(x \in \mathbf{R})$ 是周期为 2 的 "1- 利普希兹条件函数", 证明: 对任意的实数 x_1 、 x_2 , 都有 $|f(x_1) f(x_2)| \le 1$.
- (004510) 已知集合 $A = \{x | x > 0\}, B = \{x | x^2 \le 1\}, 则 A \cap B_{\underline{\hspace{1cm}}}$
- (004512) 复数 z 满足 $z \cdot i = 1 + i(i 为虚数单位), 则 <math>|z| =$ _____.
- $(004513) \lim_{n \to \infty} \frac{2n}{3n^2 + 1} = \underline{\hspace{1cm}}.$
- (004514) 抛物线 $x^2 = -4y$ 的准线方程为 .
- (004515) 在 $\triangle ABC$ 中, 若 AB = 2, $\angle B = \frac{5\pi}{12}$, $\angle C = \frac{\pi}{4}$, 则 $BC = \underline{\hspace{1cm}}$
- (004516) 函数 $f(x) = 1 + \log_2 x (x \ge 4)$ 的反函数的定义域为_____.
- (004517) 在 $(x+\sqrt{2})^7$ 的二项展开式中任取一项,则该项系数为有理数的概率为_____(用数字作答).
- (004518) 正方形 ABCD 的边长为 2, 点 E 和 F 分别是边 BC 和 AD 上的动点, 且 CE=AF, 则 $\overrightarrow{AE}\cdot\overrightarrow{AF}$ 的取值范围为______.
- (004520) 设函数 $f(x)=|x-a|-\frac{2}{x}+a$, 若关于 x 的方程 f(x)=1 有且仅有两个不同的实数根, 则实数 a 的取值构成的集合为
- (004521) 已知数列 $\{a_n\}$ 中, $a_1=1$, $na_{n+1}=(n+1)a_n+1$, 若对于任意的 $a\in [-2,2]$ 、 $n\in \mathbb{N}^*$, 不等式 $\frac{a_{n+1}}{n+1}<3-a\cdot 2^t$ 恒成立, 则实数 t 的取值范围为______.

(004522) 若 a、b 是实数, 则 a > b 是 $2^a > 2^b$ 的 ().

- A. 充分非必要条件 B. 必要非充分条件 C. 充要条件
- D. 既非充分又非必要条

件

(004523) 已知函数 $f^{-1}(x)$ 为函数 f(x) 的反函数, 且函数 f(x-1) 的图像经过点 (1,1), 则函数 $f^{-1}(x)$ 的图 像一定经过点(

- A. (0,1)
- B. (1,0)
- C. (1,2)
- D. (2,1)

(004524) 以抛物线 $y^2 = 4x$ 的焦点为右焦点, 且长轴为 4 的椭圆的标准方程为 ().

- A. $\frac{x^2}{16} + \frac{y^2}{15} = 1$ B. $\frac{x^2}{16} + \frac{y^2}{4} = 1$ C. $\frac{x^2}{4} + \frac{y^2}{3} = 1$ D. $\frac{x^2}{4} + y^2 = 1$

 $(004525) \ \textbf{已知函数} \ f(x) = \begin{cases} x^2, & x \textbf{为无理数}, \\ & \text{则以下 } 4 \ \textbf{个命题} \text{: } \textcircled{1} \ f(x) \ \textbf{是偶函数} \text{; } \textcircled{2} \ f(x) \ \text{在 } [0, +\infty) \ \text{上是增} \\ x, & x \textbf{为有理数}, \end{cases}$

函数; ③ f(x) 的值域为 \mathbf{R} ; ④ 对于任意的正有理数 a, g(x) = f(x) - a 存在奇数个零点. 其中正确命题的个数 为().

A. 0

(004526) 如图, 直三棱柱 $A_1B_1C_1-ABC$ 中, AB=AC=1, $\angle BAC=\frac{\pi}{2}$, $A_1A=4$, 点 M 为线段 A_1A 的中 点.

- (1) 求直三棱柱 $A_1B_1C_1 ABC$ 的体积; (2) 求异面直线 BM 与 B_1C_1 所成的角的大小. (结果用反三角表示) (004527) 已知函数 $f(x) = 2\cos^2 x + \sqrt{3}\sin 2x$.
- (1) 求函数 f(x) 的最小正周期及单调递增区间;
- (2) 在 $\triangle ABC$ 中, $\overrightarrow{BC} \cdot \overrightarrow{BA} = 6$, 若函数 f(x) 的图像经过点 (B,2), 求 $\triangle ABC$ 的面积.

(004528) 勤俭节约是中华民族的传统美德. 为避免舌尖上的浪费, 各地各部门采取了精准供应的措施. 某学校 食堂经调查分析预测, 从年初开始的前 $n(n=1,2,3,\cdots,12)$ 个月对某种食材的需求总量 $S_n(公斤)$ 近似地满

足 $S_n = \begin{cases} 635n, & 1 \leq n \leq 6, \\ -6n^2 + 774n - 618, & 7 \leq n \leq 12. \end{cases}$ 为保证全年每一个月该食材都够用,食堂前 n 个月的进货总量须

不低于前 n 个月的需求总量

- (1) 如果每月初进货 646 公斤, 那么前 7 个月每月该食材是否都够用?
- (2) 若每月初等量进货 p(公斤), 为保证全年每一个月该食材都够用, 求 p 的最小值.

(004529) 已知椭圆 $C_1: \frac{x^2}{4} + y^2 = 1, F_1, F_2$ 为 C_1 的左、右焦点.

- (1) 求椭圆 C_1 的焦距;
- (2) 点 $Q(\sqrt{2}, \frac{\sqrt{2}}{2})$ 为椭圆 C_1 的一点,与 OQ 平行的直线 l 与椭圆 C_1 交于两点 AB,若 $\triangle QAB$ 面积为 1,求 直线 l 的方程;
- (3) 已知椭圆 C_1 与双曲线 $C_2: x^2 y^2 = 1$ 在第一象限的交点为 $M(x_M, y_M)$,椭圆 C_1 和双曲线 C_2 上满足 $|x| \geq |x_M|$ 的所有点 (x,y) 组成曲线 C. 若点 N 是曲线 C 上一动点,求 $\overrightarrow{NF_1} \cdot \overrightarrow{NF_2}$ 的取值范围.

(004530) 已知函数 f(x) 的定义域是 D, 若对于任意的 $x_1, x_2 \in D$, 当 $x_1 < x_2$ 时, 都有 $f(x_1) \le f(x_2)$, 则称函数 f(x) 在 D 上为 "非减函数".

- (1) 判断 $f_1(x) = x^2 4x$, $x \in [1,4]$ 与 $f_2(x) = |x-1| + |x-2|$, $x \in [1,4]$ 是否是"非减函数"?
- (2) 已知函数 $g(x) = 2^x + \frac{a}{2x-1}$ 在 [2,4] 上为 "非减函数", 求实数 a 的取值范围;
- (3) 已知函数 h(x) 在 [0,1] 上为"非减函数",且满足条件: ① h(0)=0; ② $h(\frac{x}{3})=\frac{1}{2}h(x)$; ③ h(1-x)=1-h(x), 求 $h(\frac{1}{2020})$ 的值.
- (004531) 已知全集 $U = \{0,1,2\}, A = \{x|x-m=0\}.$ 如果 $C_U A = \{0,1\}, 则 m = ____.$
- (004532) 如果 $\lambda > \sin x + \cos x$ 对一切 $x \in \mathbf{R}$ 都成立, 则实数 λ 的取值范围是______
- (004533) 不等式 |2x-1|-|x-2|<0 的解是_____.
- (004534) 双曲线 $\frac{x^2}{4} \frac{y^2}{9} = 1$ 的两渐近线的夹角的大小为_____.
- (004535) 从长度分别为 1,2,3,4 的四条线段中任意取三条,以这三条线段为边可以构成三角形的概率是_____

(004536) 已知 $(1+ax)^6$ 的展开式中, 含有 x^3 项的系数为 160, 则实数 a=_____.

(004537) 设等比数列 $\{a_n\}$ 的公比为 q. 若对任意正整数 n, S_{n+1} , S_n , S_{n+2} 成等差数列, 则 q =______.

(004538) 已知 l_1, l_2 是分别经过点 A(2,1) 和 B(0,2) 两点的两条平行直线, 当 l_1, l_2 之间的距离最大时, 直线 l_1 的方程是______.

(004539) 如图是正四面体的平面展开图, M,N,G 分别为 DE,BE,FE 的中点,则在这个四面体中,异面直线 MN 与 CG 所成的角的大小为

(004540) 已知 y=f(x) 是定义在 R 上的奇函数,且当 $x\geq 0$ 时, $f(x)=-rac{1}{4^x}+rac{1}{2^x}$,则此函数的值域

(004541) 函数 $f(x) = 2 \sin \pi x$ 与函数 $g(x) = \sqrt[3]{x-1}$ 的图像的所有交点的横坐标之和为______

(004542) 已知 p 是实数, 函数 $f(x) = 10^x$. 若存在实数 m, n, 使得 f(m+n) = f(m) + f(n) 与 f(m+n+p) = f(m)f(m) + f(n) + f(p) 均成立, 则 p 的最大值等于_____.

(004543) 已知 $\overrightarrow{a} = (0,2), \overrightarrow{b} = (1,1), 则下列结论中正确的是($

A.
$$(\overrightarrow{a} - \overrightarrow{b}) \perp \overrightarrow{b}$$

A.
$$(\overrightarrow{a} - \overrightarrow{b}) \perp \overrightarrow{b}$$
 B. $(\overrightarrow{a} - \overrightarrow{b}) \perp (\overrightarrow{a} + \overrightarrow{b})$ C. $\overrightarrow{a} / / \overrightarrow{b}$

D.
$$|\overrightarrow{a}| = |\overrightarrow{b}|$$

(004544) 设函数 $f(x) = \begin{cases} 1, & x \in \mathbf{Q}, \\ & \text{下列结论不正确的是} \end{cases}$ 下列结论不正确的是 ().

A. f(x) 是偶函数

B. f(x) 是周期函数

C. 该函数有最大值也有最小值

D. 方程 f(f(x)) = 1 的解集为 $\{1\}$

(004545) 在三角形 $A_nB_nC_n$ 中, 记角 A_n,B_n,C_n 所对的边分别为 a_n,b_n,c_n , 且这三角形的三边长是公差为 1的等差数列, 若最小边 $a_n=n+1,$ 则 $\lim_{n\to\infty}C_n=($).

A.
$$\frac{\pi}{2}$$

B.
$$\frac{\pi}{3}$$

C.
$$\frac{\pi}{4}$$

D.
$$\frac{\pi}{6}$$

(004546) 若直线 y=kx+1 与曲线 $y=|x+\frac{1}{x}|-|x-\frac{1}{x}|$ 有且仅有四个不同的交点,则实数 k 的取值范围为

A.
$$\{-\frac{1}{8}, 0, \frac{1}{8}\}$$
 B. $\{-\frac{1}{8}, \frac{1}{8}\}$ C. $[-\frac{1}{8}, \frac{1}{8}]$ D. $(-\frac{1}{8}, \frac{1}{8})$

B.
$$\{-\frac{1}{8}, \frac{1}{8}\}$$

C.
$$\left[-\frac{1}{8}, \frac{1}{8}\right]$$

D.
$$\left(-\frac{1}{8}, \frac{1}{8}\right)$$

(004547) 一个透明的球形装饰品内放置了两个有公共底面的圆锥, 且这两个圆锥的顶点和底面圆周都在球面 上,如图. 已知圆锥底面面积是这个球面面积的 $\frac{3}{16}$,设球的半径为 R,圆锥底面半径为 r.

- (1) 分别求两圆锥的母线所在直线与轴所在直线的夹角的大小;
- (2) 设两个圆锥的体积之和为 V_1 , 球的体积为 V_2 , 求 $rac{V_1}{V_2}$

(004548) 已知 $A(\cos\alpha,\sin\alpha)$, $B(\cos\beta,\sin\beta)$, 其中 α,β 为锐角, 且 $|AB|=\frac{\sqrt{10}}{5}$.

- (1) 求 $\cos(\alpha \beta)$ 的值;
- (2) 若 $\tan \frac{\alpha}{2} = \frac{1}{2}$, 求 $\cos \alpha$ 及 $\cos \beta$ 的值.

(004549) 某省 4A 级风景区内居住着一个少数民族村,该村投资了 800 万元修复和加强民俗文化基础设施. 据调查,修复好村民俗文化基础设施后,任何一个月内(每月按 30 天计)每天的旅游人数 f(x) 与第 x 天近似地满足 $f(x) = 8 + \frac{9}{x}$ (千人),且参观民俗文化村的游客人均消费 g(x) 近似地满足 g(x) = 143 - |x - 22|(元).

- (1) 求该村第 x 天的旅游收入 p(x)(单位千元, $1 \le x \le 30, x \in \mathbb{N}^*$) 的函数关系;
- (2) 若以最低日收入的 20% 作为每一天的纯收入的计量依据, 并以纯收入的 5% 的比例收回投资成本, 试问该村在两年内能否收回全部投资成本?

(004550) 已知圆 C 过定点 A(0,1), 圆心 C 在抛物线 $x^2 = 2y$ 上, M,N 为圆 C 与 x 轴的交点.

- (1) 当圆心 C 是抛物线的顶点时, 求抛物线的准线被该圆截得的弦长;
- (2) 当圆心 C 在抛物线上运动时, |MN| 是否为一定值? 证明你的结论;
- (3) 当圆心 C 在抛物线上运动时,记 $|AM|=m,\,|AN|=n,\,$ 求 $\frac{m}{n}+\frac{n}{m}$ 的最大值,并求出此时圆 C 的方程。

(004551) 已知各项均不为零的数列 $\{a_n\}$ 的前 n 项和为 S_n , 且 $4S_n = a_n a_{n+1} + 1$, $n \in \mathbb{N}^*$, 其中 $a_1 = 1$.

- (1) $\Re a_2, a_4, a_6;$
- (2) 求证: 数列 $\{a_n\}$ 是等差数列;
- (3) 设数列 $\{b_n\}$ 满足 $2_n^b = 1 + \frac{1}{a_n}$, $n \in \mathbb{N}^*$, 且 T_n 为 $\{b_n\}$ 的前 n 项和, 求证: 对任意正整数 n, 不等式 $2T_n > \log_2 a_{n+1}$ 恒成立.

(004552) 已知集合 $A = \{1, 2, 3, 4, 5\}, B = \{3, 5, 6\}, 则 A \cap B = _____.$

(004553) 计算:
$$\lim_{n\to\infty} \frac{2n^2-3n+1}{n^2-4n+1} = \underline{\hspace{1cm}}$$
.

(004554) 不等式 |x+1| < 5 的解集为 .

(004555) 函数 $f(x) = x^2(x < 0)$ 的反函数为_____.

(004556) 设 i 为虚数单位, $3\overline{z} - i = 6 + 5i$, 则 |z| 的值为_____

$$(004557)$$
 已知二元线性方程组
$$\begin{cases} 2x+2y=-1, \\ 4x+a^2y=a \end{cases}$$
 有无穷多解,则实数 $a=$ _____.

(004558) 在 $(x + \frac{1}{\sqrt{x}})^6$ 的二项展开式中,常数项的值为______

(004559) 在
$$\triangle ABC$$
 中, $AC = 3$, $3\sin A = 2\sin B$, 且 $\cos C = \frac{1}{4}$, 则 $AB =$ ______.

(004560) 首届中国国际进出口博览会在上海举行, 某高校拟派 4 人参加连续 5 天的志愿者活动, 其中甲连续参加 2 天, 其余每人各参加 1 天. 共有______ 种不同的安排方法 (结果用数值表示).

(004561) 已知 P 为椭圆 $\frac{x^2}{4} + \frac{y^2}{2} = 1$ 上任意一点, Q 与 P 关于 x 轴对称, F_1 , F_2 为椭圆的左、右焦点, 若有 $\overrightarrow{F_1P} \cdot \overrightarrow{F_2P} \leq 1$, 则向量 $\overrightarrow{F_1P}$ 与 $\overrightarrow{F_2Q}$ 的夹角的取值范围为______.

(004562) 已知 $t \in \mathbb{R}$, 集合 $A = [t, t+1] \cup [t+4, t+9]$, 且 $0 \notin A$. 若存在正数 λ , 对任意 $a \in A$, 都有 $\frac{\lambda}{a} \in A$, 则 t 的值为 \cdot

(004563) 下列函数中, 值域为 $[0, +\infty)$ 的是 ().

A.
$$y = 2^x$$

B.
$$y = x^{\frac{1}{2}}$$

B.
$$y = x^{\frac{1}{2}}$$
 C. $y = \tan x$

D.
$$y = \cos x$$

(004564) 已知 $a, b \in \mathbb{R}$, 则 " $a^2 > b^2$ " 是 "|a| > |b|" 的 ().

A. 充分非必要条件

B. 必要非充分条件

C. 充要条件

D. 既非充分又非必要条件

(004565) 已知平面 α, β, γ 两两垂直, 直线 a, b, c 满足: $a \subseteq \alpha, b \subseteq \beta, c \subseteq \gamma$, 则直线 a, b, c 不可能是 (

A. 两两垂直

B. 两两平行

C. 两两相交

D. 两两异面

(004566) 平面直角坐标系中, 两动圆 $O_1,\,O_2$ 的圆心分别为 $(a_1,0),\,(a_2,0),\,$ 且两圆均过定点 $(1,0),\,$ 两圆与 y 轴 正半轴分别交于点 $(0,y_1)$, $(0,y_2)$. 若 $\ln y_1 + \ln y_2 = 0$, 点 $(\frac{1}{a_1},\frac{1}{a_2})$ 的轨迹为 Γ, 则 Γ 所在的曲线可能是 (

A. 直线

C. 椭圆

D. 双曲线

(004567) 如图, 正三棱锥 P - ABC 中, 侧棱长为 2, 底面边长为 $\sqrt{3}$, M, N 分别是 PB 和 BC 的中点.

- (1) 求异面直线 MN 与 AC 所成角的大小;
- (2) 求三棱锥 *P ABC* 的体积.

(004568) 已知数列 $\{a_n\}$ 中, $a_1=3$, 前 n 项和为 S_n .

- (1) 若 $\{a_n\}$ 为等差数列, 且 $a_4 = 15$, 求 S_n ;
- (2) 若 $\{a_n\}$ 为等比数列, 且 $\lim_{n\to\infty} S_n < 12$, 求公比 q 的取值范围.

(004569) 改革开放 40 年, 我国卫生事业取得巨大成就, 卫生总费用增长了数十倍. 卫生总费用包括个人现在支 出、社会支出、政府支出, 如表为 2012 年至 2015 年我国卫生费用中个人现金支出、社会支出和政府支出的费 用(单位: 亿元)和在卫生总费用中的占比.

		个人现金卫生支出		社会卫生支出		政府卫生支出	
年份	卫生总费	绝对数 (亿	占卫生总	绝对数 (亿	占卫生总	绝对数 (亿	占卫生总
	用 (亿元)	元)	费用比重	元)	费用比重	元)	费用比重
			(%)		(%)		(%)
2012	28119.00	9656.32	34.34	10030.70	35.67	8431.98	29.99
2013	31668.95	10729.34	33.88	11393.79	35.98	9545.81	30.14
2014	35312.40	11295.41	31.99	13437.75	38.05	10579.23	29.96
2015	40974.64	11992.65	29.27	16506.71	40.29	12475.28	30.45

(数据来源于国家统计年鉴)

- (1) 指出 2012 年到 2015 年之间我国卫生总费用中个人现金支出占比和社会支出占比的变化趋势;
- (2) 设 t=1 表示 1978 年,第 t 年卫生总费用与年份 t 之间拟合函数 $f(t)=\frac{357876.6053}{1+\mathrm{e}^{6.4420-0.1136t}}$,研究函数 f(t) 的单调性,并预测我国卫生总费用首次超过 12 万亿的年份.

(004570) 已知抛物线 $y^2=4x,\,F$ 为焦点, P 为准线 l 上一动点, 线段 PF 与抛物线交于点 Q, 定义 $d(P)=\frac{|FP|}{|FQ|}.$

- (1) 若点 P 坐标为 $(-1, -\frac{8}{3})$, 求 d(P);
- (2) 求证: 存在常数 a, 使得 2d(P) = |FP| + a 恒成立;
- (3) 设 P_1, P_2, P_3 为准线 l 上的三点,且 $|P_1P_2| = |P_2P_3|$,试比较 $d(P_1) + d(P_3)$ 与 $2d(P_2)$ 的大小.

(004571) 若 $\{a_n\}$ 是等差数列, 公差 $d \in (0, \pi]$, 数列 $\{b_n\}$ 满足: $b_n = \sin(a_n)$, $n \in \mathbb{N}^*$, 记 $S = \{x | x = b_n, n \in \mathbb{N}^*\}$.

- (1) 设 $a_1 = 0$, $d = \frac{2}{3}\pi$, 求集合 S;
- (2) 设 $a_1 = \frac{\pi}{2}$, 试求 d 的值, 使得集合 S 恰有两个元素;
- (3) 若集合 S 恰有三个元素, 且 $b_{n+T}=b_n$, 其中 T 为不超过 7 的正整数, 求 T 的所有可能值.

(004572) 某地区气象台统计,该地区下雨的概率是 $\frac{4}{15}$,刮风的概率是 $\frac{2}{5}$,既刮风又下雨的概率为 $\frac{1}{10}$,设事件 A表示"该地区下雨",事件 B表示"该地区刮风",那么 P(B|A) 等于______.

(004573) 已知盒中装有 3 只螺口灯泡与 7 只卡口灯泡,这些灯泡的外形都相同且灯口向下放着,现需要安装一只卡口灯泡,电工师傅每次从盒中任取一只并且不放回,则在他第 1 次抽到的是螺口灯泡的条件下,第 2 次抽到的是卡口灯泡的概率为______.

(004574) 近年来,新能源汽车技术不断推陈出新,新产品不断涌现,在汽车市场上影响力不断增大. 动力蓄电池技术作为新能源汽车的核心技术,它的不断成熟也是推动新能源汽车发展的主要动力. 假定现在市售的某款新能源汽车上,车载动力蓄电池充放电循环次数达到 2000 次的概率为 85%,充放电循环次数达到 2500 次的概率为 35%. 若某用户的自用新能源汽车已经经过了 2000 次充电,那么他的车能够充电 2500 次的概率为______.

(004575) 将三颗骰子各掷一次,记事件 A 为 "三个点数都不相同", B 为 "至少出现一个 6 点",则条件概率 $P(A B)$ =, $P(B A)$ =
(004576) 袋中有大小完全相同的 2 个白球和 3 个黄球,逐个不放回地摸出 2 个球,设"第一次摸到白球"为事件 A ,"摸到的 2 个球同色"为事件 B ,则 $P(B A)=$
(004577) 已知 $P(A) > 0$, $P(B) > 0$, $P(B A) = P(B)$, 证明: $P(A B) = P(A)$.
(004578)* 甲、乙、丙三人互相作传球训练, 第 1 次由甲将球传出, 每次传球时, 传球者都等可能地将球传给另外两个人中的任何一个, 求 4 次传球后球在甲手中的概率.
(004579) 现在有 12 道四选一的单选题, 学生张三对其中 9 道题有思路, 3 道题完全没有思路. 有思路的题做对的概率为 0.9, 没有思路的题只好任意猜一个答案, 猜对的概率为 0.25, 张三从这 12 道题中随机选择 1 题, 则他做对该题的概率是
(004580) 两批同种规格的产品, 第一批占 40%, 次品率为 5%; 第二批占 60%, 次品率为 4%, 将这两批产品混合, 从混合的产品中任取一件. 则这件产品时合格品的概率是
(004581) 甲和乙两个箱子中各装有 10 个球, 其中甲箱中有 5 个红球、 5 个白球, 乙箱中有 8 个红球、 2 个白球, 掷一枚质地均匀的骰子, 如果点数为 1 或 2 , 从甲箱子随机摸出 1 个球; 如果点数为 $3,4,5,6$, 从乙箱子中随机摸出 1 个球, 则摸到红球的概率是
(004582) 在 A 、 B 、 C 三个地区暴发了流感,这三个地区分别有 $6%$, $5%$, $4%$ 的人患了流感,假设这三个地区的人口数的比为 $5:7:8$,现从这三个地区中任意选取一个人.则这个人患流感的概率是
(004583) 甲、乙两人独立地向同一目标各射击一次,已知甲命中目标的概率为 0.6,乙命中目标的概率为 0.5,则目标至少被命中一次时,甲命中目标的概率是
(004584) 设 $P(A)>0,$ 且 B 和 \overline{B} 是对立事件, 求证: $P(\overline{B} A)=1-P(B A).$
(004585) 一批产品共有 100 件, 其中 5 件为不合格品, 收货方从中不放回地随机抽取产品进行检验, 并按以下规则判断是否接受这批产品; 如果抽检的第 1 件产品不合格, 则拒绝整批产品; 如果抽检的第一件产品合格, 则再抽 1 件, 如果抽检的第 2 件产品合格, 则接受整批产品, 否则拒绝整批产品, 求这批产品被拒绝的概率.
(004586) 在孟德尔豌豆试验中, 子二代 (数量充分大) 的基因型为 DD, Dd, dd, 其中 D 为显性基因, d 为隐性基因, 且这三种基因型的比为 1:2:1. 如果在子二代中任意选取 2 颗豌豆作为父代进行杂交试验, 那么第三代中基因型为 dd 的概率有多大?
(004587) 长时间玩手机可能影响视力, 据调查, 某校学生大约 $40%$ 的人近视, 而该校大约有 $20%$ 的学生每天玩手机超过 $1h$, 这些人的近视率为 $50%$. 现从每天玩手机不超过 $1h$ 的学生中任意调查一名学生, 求他的近视概率.

(004588) 设随机变量 X 的概率分布列如下,则 P(|X-2|=1) =______.

$$\begin{pmatrix}
1 & 2 & 3 & 4 \\
\frac{1}{6} & \frac{1}{4} & m & \frac{1}{3}
\end{pmatrix}$$

(004589) 已知离散型随机变量 X 的分布列为

$$\begin{pmatrix} 0 & 1 & 2 \\ 0.5 & 1 - 2q & q^2 \end{pmatrix}$$

则常数 q =_____

(004590) 一盒中有 12 个乒乓球, 其中 9 个新的, 3 个旧的, 从盒子中一次性任取 3 个球来用, 用完即为旧的, 用完后装回盒中, 此时盒中旧球个数 X 是一个随机变量, 则 P(X=4) 的值为

(004591) 离散型随机变量 X 的概率分布规律为 $P(X=n)=\frac{a}{n(n+1)}(n=1,2,3,4),$ 其中 a 是常数,则 $P(\frac{1}{2} < X < \frac{5}{2})$ 的值为______.

(004592) 设离散型随机变量 X 的分布列如下表, 求 |X-1| 的分布列.

$$\begin{pmatrix} 0 & 1 & 2 & 3 & 4 \\ 0.2 & 0.1 & 0.1 & 0.3 & m \end{pmatrix}$$

(004593) 某射手有 5 发子弹, 射击一次命中目标的概率为 0.9, 如果命中就停止射击, 否则一直到子弹用尽, 求耗用子弹数 X 的分布列.

(004594) 某汽车美容公司为吸引顾客, 推出优惠活动: 对首次消费的顾客, 按 200 元/次收费, 并注册成为会员, 对会员逐次消费给予相应优惠, 标准如下:

消费次第	第1次	第2次	第3次	第4次	≥5 次
收费比率	1	0.95	0.90	0.85	0.80

该公司注册的会员中没有消费超过 5 次的, 从注册的会员中, 随机抽取了 100 位进行统计, 得到的统计数据如下:

消费次数	1	2	3	4	5
人数	60	20	10	5	5

假设汽车美容 1 次, 公司成本为 150 元, 根据所给数据, 解答下列问题:

- (1) 某会员仅消费 2 次, 求这 2 次消费中, 公司获得的平均利润;
- (2) 以事件发生的频率作为相应事件发生的概率,设该公司为 1 位会员服务的平均利润为 X 元, 求 X 的分布列.

(004595) 习近平总书记在 2020 年新年贺词中勉励大家:"让我们只争朝夕, 不负韶华, 共同迎接 2020 年的到来." 其中"只争朝夕, 不负韶华"旋即成了网络热词, 成了大家互相砥砺前行的铮铮誓言, 激励着广大青年朋友奋发 有为,积极进取,不负青春,不负时代.

"只争朝夕, 不负韶华"用英文可翻译为:"seize the day and live it to the full"

- (1) 求上述英语译文中, e, i, t, a 4 个字母出现的频率 (不计入空格, 小数点后面保留两位有效数字), 并比较 4 个频率的大小 (用 ">" 连接);
- (2) 在上面的句子中随机取一个单词, 用 X 表示取到的单词所包含的字母个数, 写出 X 的分布列;
- (3) 从上述单词中任选 2 个单词, 求其字母个数之和为 6 的概率.

(004596) 已知 X 的分布列为

$$\begin{pmatrix} -1 & 0 & 1 \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{6} \end{pmatrix}$$

两个随机变量 X, Y 满足 X + 2Y = 4, 则 $E[X] = _____, E[Y] = _____.$

(004597)"过大年, 吃水饺"是我国不少地方过春节的一大习俗. 2021 年春节前夕, A 市某质量检测部门随机抽取了 100 包某种品牌的速冻水饺, 检测其某项质量指标值, 所得频率分布直方图如图.

- (1) 求所抽取的 100 包速冻水饺该项质量指标值的样本平均数 亚(同一组中的数据用该组区间的中点值作代表);
- (2) 将频率视为概率, 若某人从该市某超市购买了 4 包这种品牌的速冻水饺, 记这 4 包速冻水饺中该项质量指标值位于 (10,30] 内的包数为 X, 求 X 的分布列和期望.

(004598) 近年来, 祖国各地依托本地自然资源, 打造旅游产业, 旅游业正蓬勃发展. 景区与游客都应树立尊重自然、顺应自然、保护自然的生态文明理念, 合力使旅游市场走上规范有序且可持续的发展轨道. 某景区有一个自愿消费的项目: 在参观某特色景点入口处会为每位游客拍一张与景点的合影, 参观后, 在景点出口处会将刚拍下的照片打印出来, 游客可自由选择是否带走照片, 若带走照片则需支付 20 元, 没有被带走的照片会收集起来统一销毁. 该项目运营一段时间后, 统计出平均只有 30% 游客会选择带走照片. 为改善运营状况, 该项目组就照片收费与游客消费意愿关系做了市场调研, 发现收费与消费意愿有较强的线性相关性, 并统计出在原有的基础上, 价格每下调 1 元, 游客选择带走照片的可能性平均增加 0.05. 假设平均每天约有 5000 人参观该特色景点, 每张照片的综合成本为 5 元, 假设每位游客是否购买照片相互独立.

- (1) 若调整为支付 10 元就可带走照片, 该项目每天的平均利润比调整前多还是少?
- (2) 要使每天的平均利润达到最大值, 应如何定价?

(004599) 某种大型医疗检查机器生产商, 对一次性购买 2 台机器的客户, 推出 2 种超过质保期后 2 年内的延保维修优惠方案.

方案一: 交纳延保金 7000 元, 在延保的 2 年内可免费维修 2 次, 超过 2 次每次收取维修费 2000 元;

方案二: 交纳延保金 10000 元, 在延保的 2 年内可免费维修 4 次, 超过 4 次每次收取维修费 1000 元.

某医院准备一次性购买 2 台这种机器. 现需决策在购买机器时应购买哪种延保方案, 为此搜集并整理了 50 台这种机器超过质保期后延保 2 年内维修的次数, 得下表:

维修次数	0	1	2	3
台数	5	10	20	15

以这 50 台机器维修次数的频率代替 1 台机器维修次数发生的概率. 记 X 表示这 2 台机器超过质保期后延保的 2 年内共需维修的次数.

- (1) 求 X 的分布列;
- (2) 以方案一与方案二所需费用 (所需延保金及维修费用之和) 的期望值为决策依据, 医院选择哪种延保方案更合算?

(004600) 已知 X 的分布列为

$$\begin{pmatrix}
-1 & 0 & 1 \\
\frac{1}{2} & \frac{1}{3} & \frac{1}{6}
\end{pmatrix}$$

两个随机变量 X, Y 满足 X + 2Y = 4, 则 $D[X] = _____, D[Y] = _____$

(004601) 五个自然数 1,2,3,4,5 按照一定的顺序排成一排.

- (1) 求 2 和 4 不相邻的概率;
- (2) 定义: 若两个数的和为 6 且相邻, 称这两个数为一组"友好数". 随机变量 X 表示上述五个自然数组成的一个排列中"友好数"的组数, 求 X 的分布列、数学期望 E[X] 和方差 D[X].

(004602) 为推广滑雪运动,某滑雪场开展滑雪促销活动。该滑雪场的收费标准是:滑雪时间不超过 1 小时免费,超过 1 小时的部分每小时收费标准为 40 元 (不足 1 小时的部分接 1 小时计算). 有甲、乙两人相互独立地来该滑雪场运动,设甲、乙不超过 1 小时离开的概率分别为 $\frac{1}{4},\frac{1}{6};$ 1 小时以上且不超过 2 小时离开的概率分别为 $\frac{1}{2},\frac{2}{3};$ 两人滑雪时间都不会超过 3 小时.

- (1) 求甲、乙两人所付滑雪费用相同的概率;
- (2) 设甲、乙两人所付的滑雪费用之和为随机变量 X(单位: 元), 求 X 的分布列与数学期望 E[X], 方差 D[X]. (004603) 甲、乙两人各射击 1 次, 击中目标的概率分别是 $\frac{2}{3}$ 和 $\frac{1}{2}$, 假设两人击中目标与否相互之间没有影响,每人各次击中目标与否相互之间也没有影响,若两人各射击 4 次, 则甲恰好有 2 次击中目标且乙恰好有 3 次击中目标的概率为______.

(004604) 在一次招聘中,主考官要求应聘者从 18 道备选题中一次性随机抽取 9 道题,并独立完成所抽取的 9 道题。甲能正确完成每道题的概率为 $\frac{2}{3}$,且每道题完成与否互不影响。记甲能答对的题数为 X,则 X 的期望为

(004606) 某地区为贯彻习近平总书记关于"绿水青山就是金山银山"的理念, 鼓励农户利用荒坡种植果树. 某农户考察三种不同的果树苗 A,B,C, 经引种试验后发现, 引种树苗 A 的自然成活率为 0.8, 引种树苗 B,C 的自然成活率均为 $p(0.7 \le p \le 0.9)$.

- (1) 任取树苗 A, B, C 各一棵, 估计自然成活的棵数为 X, 求 X 的分布列及数学期望 E[X];
- (2) 将 (1) 中的 E[X] 取得最大值时 p 的值作为 B 种树苗自然成活的概率. 该农户决定引种 n 棵 B 种树苗,引种后没有自然成活的树苗中有 75% 的树苗可经过人工栽培技术处理, 处理后成活的概率为 0.8, 其余的树苗不能成活.
- (1) 求一棵 B 种树苗最终成活的概率; (2) 若每棵树苗最终成活后可获利 300 元, 不成活的每棵亏损 50 元, 该农户为了获利不低于 20 万元, 问至少引种 B 种树苗多少棵?

(004607) 一款小游戏的规则如下:每轮游戏要进行三次,每次游戏都需要从装有大小相同的 2 个红球、3 个白球的袋中随机摸出 2 个球,若"摸出的两个球都是红球"出现 3 次获得 200 分,若"摸出的两个球都是红球"出现 1 次或 2 次获得 20 分,若"摸出的两个球都是红球"出现 0 次,则扣除 10 分 (即获得负 10 分).

- (1) 设每轮游戏中出现"摸出的两个球都是红球"的次数为 X, 求 X 的分布列;
- (2) 许多玩过这款游戏的人发现, 若干轮游戏后, 与最初的分数相比, 分数没有增加, 反而减少了, 请运用概率统计的相关知识解释上述现象.

(004608) 一年之计在于春,一日之计在于晨,春天是播种的季节,是希望的开端。某种植户对一块地的 $n(n \in \mathbb{N}^*, n > 0)$ 个坑进行播种,每个坑播 3 粒种子,每粒种子发芽的概率均为 $\frac{1}{2}$,且每粒种子是否发芽相互独立。对每一个坑而言,如果至少有 2 粒种子发芽,则不需要进行补播种,否则要补播种。

- (1) 当 n 取何值时, 有 3 个坑要补播种的概率最大? 最大概率为多少?
- (2) 当 n=4 时, 用 X 表示要补播种的坑的个数, 求 X 的分布列与数学期望.

(004609)2019 年 3 月 5 日,国务院总理李克强作的政府工作报告中,提到要"惩戒学术不端,力戒浮躁之风"。教育部 2014 年印发的《博士硕士学位论文抽检办法》通知中规定:每篇抽检的学位论文送 3 位同行专家进行评议,3 位专家中有 2 位以上(含 2 位)专家评议意见为"不合格"的学位论文,将认定为"存在问题学位论文",有且仅有 1 位专家评议意见为"不合格"的学位论文,将再送另外 2 位同行专家(不同于前 3 位专家)进行复评,2 位复评专家中有 1 位以上(含 1 位)专家评议意见为"不合格"的学位论文,将认定为"存在问题学位论文",设每篇学位论文被每位专家评议为"不合格"的概率均为 p(0 ,且各篇学位论文是否被评议为"不合格"相互独立.

- (1) 若 $p = \frac{1}{2}$, 求抽检一篇学位论文, 被认定为 "存在问题学位论文"的概率;
- (2) 现拟定每篇抽检论文不需要复评的评审费用为 900 元, 需要复评的总评审费用为 1500 元, 若某次评审抽检论文总数为 3000 篇, 求该次评审费用期望的最大值及对应 p 的值.

(004610) 某市有一家大型共享汽车公司, 在市场上分别投放了黄、蓝两种颜色的汽车, 已知黄、蓝两种颜色的汽车的投放比例为 3:1. 监管部门为了了解这两种颜色汽车的质量, 决定从投放到市场上的汽车中随机抽取 5

辆汽车进行试驾体验, 假设每辆汽车被抽取的可能性相同.

- (1) 求抽取的 5 辆汽车中恰有 2 辆是蓝色汽车的概率.
- (2) 在试驾体验过程中,发现蓝色汽车存在一定质量问题,监管部门决定从投放的汽车中随机地抽取一辆送技术部门作进一步抽样检测,并规定:若抽到的是黄色汽车,则将其放回市场,并继续随机地抽取下一辆汽车;若抽到的是蓝色汽车,则抽样结束.抽样的次数不超过 $n(n \in \mathbb{N}, n > 0)$ 次.在抽样结束时,若已抽到的黄色汽车数以 X 表示,求 X 的分布列和数学期望.
- (004611) 河南省三门峡市成功入围"十佳魅力中国城市", 吸引了大批投资商的目光, 一些投资商积极准备投入到"魅力城市"的建设之中. 某投资公司准备在 2022 年年初将 400 万元投资到三门峡下列两个项目中的一个之中.
- 项目一: 天坑院是黄土高原地域独具特色的民居形式, 是人类"穴居"发展史演变的实物见证. 现准备投资建设 20 个天坑院, 每个天坑院投资 20 万元, 假设每个天坑院是否盈利是相互独立的, 据市场调研, 到 2024 年底每个天坑院盈利的概率为 p(0 , 若盈利则盈利投资额的 <math>40%, 否则盈利额为 0.
- 项目二: 天鹅湖国家湿地公园是一处融生态、文化和人文地理于一体的自然山水景区. 据市场调研, 投资到该项目上, 到 2024 年底可能盈利投资额的 50%, 也可能亏损投资额的 30%, 且这两种情况发生的概率分别为 p 和 1-p.
- (1) 若投资项目一, 记 X_1 为盈利的天坑院的个数, 求 $E[X_1](用 p$ 表示);
- (2) 若投资项目二, 记投资项目二的盈利为 X_2 百万元, 求 $E[X_2](用 p 表示)$;
- (3) 在(1)(2) 两个条件下, 针对以上两个投资项目, 请你为投资公司选择一个项目, 并说明理由.
- (004612) 一箱 24 罐的饮料中 4 罐有奖券, 每张奖券奖励饮料一罐, 从中任意抽取 2 罐, 则这 2 罐中有奖券的概率是______.
- (004613) 学校要从 12 名候选人中选 4 名学生组成学生会, 已知有 4 名候选人来自甲班. 假设每名候选人都有相同的机会被选到, 则甲班恰有 2 名同学被选到的概率______.
- (004614) 从一副不含大小王的 52 张扑克牌中任意抽取出 5 张, 则至少有两张 A 牌的概率______(精确到 0.001).
- (004615) 有一个摸奖游戏, 在一个口袋中装有 10 个红球和 20 个白球, 这些球除了颜色外完全相同, 一次从中 摸出 5 个球.
- (1) 至少摸到 3 个红球就中奖, 求中奖的概率 (精确到 0.001);
- (2) 设摸到红球的颗数为 X, 求 X 的期望.
- (004616) 在测试中,客观题难度的计算公式为 $P_i = \frac{R_i}{N}$, 其中 P_i 为第 i 题的难度, R_i 为答对该题的人数,N 为参加测试的总人数. 现对某校高三年级 240 名学生进行一次测试,共 5 道客观题,测试前根据对学生的了解,预估了每道题的难度,如下表所示:

题号	1	2	3	4	5
考前预估难度 P _i	0.9	0.8	0.7	0.6	0.4

测试后, 随机抽取了 20 名学生的答题数据进行统计, 结果如下:

题号	1	2	3	4	5
实测答对人数	16	16	14	14	4

- (1) 根据题中数据, 估计这 240 名学生中第 5 题的实测答对人数;
- (2) 从抽样的 20 名学生中随机抽取 2 名学生, 记这 2 名学生中答对第 5 题的人数为 X, 求 X 的分布列和数学期望;
- (3) 试题的预估难度和实测难度之间会有偏差,设 P_i' 为第 i 题的实测难度,并定义统计量 $S=\frac{1}{n}[(P_1'-P_1)^2+(P_2'-P_2)^2+\cdots+(P_n'-P_n)^2]$,若 S<0.05,则本次测试的难度预估合理,否则不合理,试检验本次测试对难度的预估是否合理.

(004617) 在中华人民共和国成立 70 周年时,《我和我的祖国》《中国机长》《攀登者》三大主旋律电影在国庆期间集体上映. 据统计,《我和我的祖国》票房收入为 31.46 亿元,《中国机长》票房收入为 28.84 亿元,《攀登者》票房收入为 10.88 亿元. 已知国庆过后某城市文化局统计得知大量市民至少观看了一部国庆档电影,在已观影的市民中随机抽取了 100 人进行调查,其中观看了《我和我的祖国》的有 49 人,观看了《中国机长》的有 46 人,观看了《攀登者》的有 34 人,统计图如图所示.

- (1) 计算图中 a, b, c 的值;
- (2) 文化局从只观看了两部电影的观众中采用分层抽样的方法抽取了 7 人进行观影体验的访谈, 了解到他们均表示要观看第三部电影, 现从这 7 人中随机选出 4 人, 用 X 表示这 4 人中将要观看《我和我的祖国》的人数, 求 X 的分布列.

(004618) 某大学为了调查该校学生性别与身高 (单位: 厘米) 的关系, 对该校 1000 名学生按照 10:1 的比例进行抽样调查, 得到身高频数分布表如下:

男生身高频数分布表

		74 -11/4	1792/2/2017			
男生身高/厘米	[160, 165)	[165, 170)	[170, 175)	[175, 180)	[180, 185)	[185, 190]
频数	7	10	19	18	4	2

女生身高频数分布表

女生身高/厘米	[150, 155)	[155, 160)	[160, 165)	[165, 170)	[170, 175)	[175, 180]
频数	3	10	15	6	3	3

- (1) 估计这 1000 名学生中女生的人数;
- (2) 估计这 1000 名学生的身高在 [170,190] 的概率;
- (3) 在样本中, 从身高在 [170,180] 的女生中任取 3 名进行调查, 设 X 表示所选 3 名学生中身高在 [170,175) 的人数, 求 X 的分布列和期望.

(004619) 设 $A = \{x | x^2 - 6x + 5 \le 0\}, B = \{2, 3, 4, 5, 6, 7\}, 则 A \cap B = _____.$

(004620) 已知函数 $f(x) = \lg(x+1)$ 的反函数为 $y = f^{-1}(x)$, 则 $f^{-1}(2) =$ _____.

(004621) 设 i 是虚数单位, 若 $z + 2\overline{z} = 3 + 4i$, 则 $2z + \overline{z} =$ ______

(004622) 若 f(x) 是奇函数, 且当 $x \ge 0$ 时, $f(x) = x^2 + x$, 则当 x < 0 时, f(x) =.

(004623) 设 A, B, C 是三角形的三个内角, 若 $(\sin A + \sin B)^2 - \sin^2 C = 3 \sin A \sin B$, 则 $C = \underline{\hspace{1cm}}$

(004624) 若一组数据 2,3,a,b,7,9 的中位数为 8, 则 a+b 的最小值为

 $(004625)(2+x)^6$ 的二项展开式中, 系数最大的项的系数为______.

(004626) 设 A,B 是一条斜率为 4 的直线与抛物线 $y^2 = x$ 的两个交点, 则线段 AB 的中点的坐标可能 是____(写出一个可能的点的坐标).

(004627) 等差数列 $\{a_n\}$ 中, $a_{20}<0$, $a_{21}>0$, 且 $a_{20}+a_{21}>0$. 设 S_n 是数列 $\{a_n\}$ 的前 n 项和, 若 $S_k>0$,

(004628) 过点 P(2,3) 的直线 l 分别交 x 轴、y 轴的正半轴于 $A \times B$ 两点, 则当 $|PA| \cdot |PB|$ 取到最小值时, l的方程为 .

(004629) 已知实数 r > 0, 圆 $(x-3)^2 + (y-4)^2 = r^2$ 上有且仅有两点到直线 3x - 4y - 2 = 0 的距离为 1, 则 半径 r 的取值范围为_____

(004630) 已知集合 $A = \{x | x = 2n - 1, n \in \mathbb{N}^*\}, B = \{x | x = 2^k, k \in \mathbb{N}^*\}.$ 将 $A \cup B$ 的所有元素从小到大依 次排列构成一个数列 $\{a_n\}$. 记 S_n 为数列 $\{a_n\}$ 的前 n 项和, 则使得 $a_n \in A$ 与 $S_{n-1} > 100a_n$ 同时成立的正 整数 n 的最小值为_____.

(004631)"函数 $y = f(x), x \in \mathbf{R}$ 是增函数"是"函数 $y = 2 - f(x), x \in \mathbf{R}$ 是减函数"的 ().

- A. 充分非必要条件 B. 必要非充分条件 C. 充要条件
- D. 既非充分又非必要条

件

(004632) 银行一年定期的年利率为 r, 五年定期的年利率为 q, 银行为吸收长期资金, 鼓励储户存五年定期的存 款, 那么 q 的值应略大于(

A.
$$\sqrt[5]{(1+r)^5-1}$$

A.
$$\sqrt[5]{(1+r)^5-1}$$
 B. $\frac{1}{5}((1+r)^5-1)$ C. $(1+r)^5-1$

C.
$$(1+r)^5 - 1$$

D.
$$r$$

(004633) 设 m 是正实数, 若椭圆 $mx^2 + (m+1)y^2 = 1$ 的两焦点的距离为 3, 则 m 的值为 ().

A.
$$\frac{\sqrt{13}-3}{6}$$

B.
$$\frac{\sqrt{21}-3}{6}$$
 C. $\frac{1}{3}$

C.
$$\frac{1}{3}$$

D.
$$\frac{\sqrt{33} - 3}{6}$$

(004634) 已知 $\overline{a}, \overline{b}, \overline{e}$ 是平面向量, \overline{e} 是单位向量. 若非零向量 \overline{a} 与 \overline{e} 的夹角为 $\frac{\pi}{3}$, 向量 \overline{b} 满足 $\overline{b}^2 - 4\overline{e} \cdot \overline{b} + 3 = 0$, 则 $|\overline{a} - \overline{b}|$ 的最小值为(

A.
$$\sqrt{3} - 1$$

B.
$$\sqrt{3} + 1$$

D.
$$2 - \sqrt{3}$$

(004635) 在直三棱柱 $ABC - A_1B_1C_1$ 中, $\angle ABC = 90^{\circ}$, AB = BC = 1.

- (1) 若该直三棱柱的表面积为 $3+\sqrt{2}$, 求直线 A_1C 与平面 ABC 所成的角的大小;
- (2) 若异面直线 BC 与 AC_1 所成的角的大小为 60° , 求该直三棱柱的体积.

(004636) 已知 a 是常数, 设函数 $f(x) = (a-2)x^2 + 2(a-2)x - 4$.

- (1) 解不等式: f(x) > -4;
- (2) 求实数 a 的取值范围, 使得 f(x) < 0 对任意 $x \in [1, 3]$ 恒成立;

(004637) 设函数 $f(x) = \cos^2 x - 2\sin x \cos x + 3\sin^2 x$.

- (1) 求使 f(x) 取得最大值的 x 的集合;
- (2) $\ \mathcal{U}_{x_1, x_2} \in \mathbf{R}^+, \ \mathbf{L}_{x_1} f(x_1) + f(x_2) = 4. \ \ \mathbf{x} \ \mathbf{H} : x_1 + x_2 \ge \frac{\pi}{2}.$

(004638) 若无穷数列 $\{a_n\}$ 满足: 只要 $a_p=a_q\;(p,q\in {\bf N}^*)$, 必有 $a_{p+1}=a_{q+1}$, 则称 $\{a_n\}$ 具有性质 P.

- (1) 设数列 $\{a_n\}$ 的通项公式为 $a_n = \cos \frac{n\pi}{6}$, 判断 $\{a_n\}$ 是否具有性质 P, 并说明理由;
- (2) 若 $\{a_n\}$ 具有性质 P, 且 $a_1 = 1$, $a_2 = 2$, $a_4 = 3$, $a_5 = 2$, $a_6 + a_7 + a_8 = 12$, 求 a_3 ;
- (3) 设无穷数列 $\{b_n\}$ 的前三项依次成等比数列,无穷数列 $\{c_n\}$ 是等差数列, $b_1=c_3=1,\ b_3=c_1=9.$ 设 $a_n = b_n + c_n \ (n \in \mathbb{N}^*)$. 若 $\{a_n\}$ 具有性质 P, 求 $b_1 + b_2 + \cdots + b_{30}$.

(004639) 已知抛物线 C 的方程为 $y^2 = x$, 圆 M 的方程为 $(x-2)^2 + y^2 = 1$.

- (1) 设 P 是抛物线 C 上的动点, 证明: P 在圆 M 外;
- (2) 设斜率为 1 的直线 l 与圆 M 相切, 且与抛物线 C 交于 Q_1, Q_2 两点, 求 $|Q_1Q_2|$ 的值;
- (3) 设 A_1, A_2, A_3 是抛物线 C 上的三点, 直线 A_1A_2 , 直线 A_1A_3 均与圆 M 相切, 判断直线 A_2A_3 与圆 M 的 位置关系,说明理由.

(004640) 方程 $2^x = 3$ 的解为 $x = _____$

(004641) 设
$$z = \frac{2-\mathrm{i}}{1+\mathrm{i}}$$
, 则 $|z| =$ _____.

(004642) 若角 α 的终边过点 $P(4,-3)$, 则 $\sin(\frac{3\pi}{2}+\alpha)=$
(004643) 为了解 300 名学生的视力情况,采用系统抽样的方法从中抽取容量为 20 的样本,则分段的间隔
为
(004644) 已知线性方程组的增广矩阵为 $\begin{pmatrix} 2 & 0 & m \\ 1 & n & 2 \end{pmatrix}$,解为 $\begin{cases} x=1, \\ y=1, \end{cases}$ 则 $m+n=$
(004645) 一平面截一球得到直径是 6cm 的圆面, 球心到这个平面的距离是 4cm, 则该球的体积是cm
(004646) 已知 x,y 为实数, 行列式 $\begin{vmatrix} 1 & y & 7 \\ 1 & 5 & \frac{1}{x-1} \\ -1 & 6 & 1 \end{vmatrix}$ 中元素 y 的代数余子式的值大于 0 , 则 x 的范围是
(004647) 甲、乙、丙三位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率是
(004648) 在平面直角坐标系 xOy 中,圆 C 的方程为 $x^2+y^2-8x+15=0$,若直线 $y=kx-2$ 上至少存在一点,使得以该点为圆心, 1 为半径的圆与圆 C 有公共点,则 k 的最大值是
(004649) 已知 $f(x) = m(x-2m)(x+m+3), g(x) = 2^x - 2$, 满足对于任意的 $x \in \mathbf{R}, f(x) < 0$ 或 $g(x) < 0$, 则 m 的取值范围是
(004650) 已知常数 $k,b,t\in \mathbf{R}$ 直线 $f(x)=kx+b$ 与曲线 $g(x)=\frac{t^2}{x}$ 交于点 $M(m,-1),N(n,2),$ 则不等式 $f^{-1}(x)\geq g^{-1}(x)$ 的解集为
(004651) 已知数列 $\{a_n\}$ 的前 n 项和为 S_n , 且 $a_n + a_{n+1} = \frac{1}{2^n}$, 若数列 $\{S_n\}$ 收敛于常数 A , 则首项 a_1 取值的集合为
(004652) 设 α, β 是两个不同的平面,直线 m 在平面 α 上,则 " $m \parallel \beta$ " 是 " $\alpha \parallel \beta$ " 的 $($).
A. 充分不必要条件 B. 必要不充分条件
C. 充要条件 D. 既不充分也不必要条件
(004653) 在等差数列 $\{a_n\}$ 中, $a_{10}<0$, $a_{11}>0$ 且 $a_{11}> a_{10} $, 则在 S_n 中最大的负数为 ().
A. S_{17} B. S_{18} C. S_{19} D. S_{20}
(004654) 已知点 O 是坐标原点, 点 $A(0,2)$ 点 P 是抛物线 $y=4x^2$ 上的点, 则使得 OPA 是等腰三角形的点 P
为 ().
A. 2 B. 4 C. 6 D. 8
(004655) 已知正方体 $ABCD-A_1B_1C_1D_1$, 点 P 是棱 CC_1 的中点, 设直线 AB 为 a , 直线 A_1D_1 为 b . 对于下列两个命题: ① 过点 P 有且只有一条直线 l 与 a 、 b 都相交; ② 过点 P 有且只有一条直线 l 与 a 、 b 都成45° 角. 以下判断正确的是 ().

A. ① 为真命题, ② 为真命题

B. ① 为真命题, ② 为假命题

C. ① 为假命题, ② 为真命题

D. ① 为假命题, ② 为假命题

(004656) 如左图, 在 Rt $\triangle ABC$ 中, $\angle C = 90^\circ$, BC = 3, AC = 6, D、E 分别为 AC、AB 上的点, 且 $DE \parallel BC$, DE = 2, 将 $\triangle ADE$ 沿 DE 折起到 $\triangle A_1DE$ 的位置, 使 $A_1C \perp CD$, 如右图.

- (1) 求证: $A_1C \perp$ 平面 BCDE;
- (2) 若 M 是 A_1D 的中点, 求 CM 与平面 A_1BE 所成角的大小.

(004657) 在 $\triangle ABC$ 中, a, b, c 分别是角 A, B, C 的对边, 且 $8\sin^2\frac{B+C}{2} - 2\cos 2A = 7$.

- (1) 求角 A 的大小;
- (2) 若 $a = \sqrt{3}$, b + c = 3, 求 b 和 c 的值.

(004658) 如图, A、B、C 三地有直道相通, AB=5 千米, AC=3 千米, BC=4 千米, 现甲、乙两警员同时从 A 地出发匀速前往 B 地, 经过 t 小时, 他们之间的距离为 f(t)(单位: 千米), 甲的路线是 AB, 速度为 5 千米/小时, 乙的路线是 ACB, 速度为 8 千米/小时, 乙到 B 地后在原地等待, 设 $t=t_1$ 时乙到达 C 地.

- (1) 求 t_1 及 $f(t_1)$ 的值;
- (2) 已知警员的对讲机的有效通话距离是 3 千米, 当 $t_1 \le t \le 1$ 时, 求 f(t) 的表达式, 并判断 f(t) 在 $[t_1, 1]$ 上的最大值是否超过 3? 说明理由.

(004659) 已知双曲线 $\Gamma: \frac{x^2}{2} - \frac{y^2}{4} = 1$ 的右顶点为 A, 点 B 的坐标为 $(1,\sqrt{2}).$

- (1) 设双曲线 Γ 的两条渐近线的夹角为 θ , 求 $\cos \theta$;
- (2) 设点 D 是双曲线 Γ 上的动点, 若点 N 满足 $\overrightarrow{BN} = \overrightarrow{ND}$, 求点 N 的轨迹方程;
- (3) 过点 B 的动直线 l 交双曲线 Γ 于 PQ 两个不同的点, M 为线段 PQ 的中点, 求直线 AM 的斜率的取值范围.

(004660) 记无穷数列 $\{a_n\}$ 的前 n 项中最大值为 M_n , 最小值为 m_n , 令 $b_n = \frac{M_n + m_n}{2}$.

- (1) 若 $a_n = 2^n 3n$, 写出 b_1, b_2, b_3, b_4 的值;
- (2) 设 $a_n=2^n-\lambda n$, 若 $b_3=-3$, 求 λ 的值, 及 $n\geq 4$ 时数列 $\{b_n\}$ 的前 n 项和 S_n ;
- (3) 求证:"数列 $\{a_n\}$ 是等差数列"的充要条件是"数列 $\{b_n\}$ 是等差数列".
- (004661) 函数 $f(x) = x^{-\frac{1}{2}}$ 的定义域是_____.

(004662) 集合 $A = \{-1, 2m-1\}, B = \{m^2\},$ 若 $B \subseteq A$, 则实数 m =_____.

$$(004663)(1+2x)^5 = a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4 + a_5x^5$$
, 则 $a_3 =$ _______

(004664) 如图, 若正四棱柱 $ABCD - A_1B_1C_1D_1$ 的底面边长为 3, 高为 4, 则直线 BD_1 与平面 ABCD 所成角的正切值为______.

(004665) 方程 $\lg(x+2) = 2 \lg x$ 的解为_____.

(004666) 若 $\arccos x > \frac{\pi}{3}$, 则 x 的取值范围为______.

(004667) 若函数 $f(x) = \sqrt{2x+1}$ 的反函数为 g(x), 则函数 g(x) 的零点为______

(004668) 已知函数 $y=\sin(\omega x-\frac{\pi}{6})(\omega>0)$ 图像的一条对称轴为 $x=\frac{\pi}{6}$,则 ω 的最小值为______

(004669) 已知圆锥的底面半径为 1, 其侧面展开图为一个半圆, 则该圆锥的母线长为_____.

(004670)7 人排成一行, 甲、乙相邻且丙不排两端的排法有_____ 种 (用数字作答).

(004671) 设 f(x) 是定义在 R 上的函数,且满足 f(1)=0. 若 $y=f(x)+a\cdot 2^x$ 是奇函数, $y=f(x)+3^x$ 是偶函数,则 a 的值为______.

(004672) 在 $\triangle ABC$ 中, $b=2, c=1, \angle B-\angle C=\frac{\pi}{2},$ 则 $\triangle ABC$ 的周长为______.

(004673) 下列是 "a > b" 的充分不必要条件的是 ().

A.
$$a > b + 1$$

B.
$$\frac{a}{b} > 1$$
 C. $a^2 > b^2$

C.
$$a^2 > b^2$$

D.
$$a^3 > b^3$$

(004674) 下列函数中, 既是奇函数, 又是减函数的是().

A.
$$y = x^{-1}$$

B.
$$y = -\arcsin x$$
 C. $y = \log_2 x$

C.
$$y = \log_2 x$$

D.
$$y = 2^{x}$$

 $(004675) \ \textbf{已知} \ f(x) = \sin x, \ \textbf{对任意} \ x_1 \in [0,\frac{\pi}{2}], \ \textbf{都存在} \ x_2 \in [0\frac{\pi}{2}], \ \textbf{使得} \ f(x_1) - 2f(x_2 + \theta) = -1 \ \textbf{成立}, \ \textbf{则下}$ 列 θ 取值可能的是 ().

A.
$$\frac{3\pi}{13}$$

B.
$$\frac{5\pi}{13}$$
 C. $\frac{7\pi}{13}$ D. $\frac{9\pi}{13}$

C.
$$\frac{7\pi}{13}$$

D.
$$\frac{9\pi}{13}$$

(004676) 非空集合 $A \subseteq \mathbb{R}$, 且满足如下性质: 性质一: 若 $a,b \in A$, 则 $a+b \in A$; 性质二: 若 $a \in A$, 则 $-a \in A$, 则称集合 A 为一个"群". 以下叙述:

则 $A \cap B$ 必定是 "群"; ④ 若 A, B 都是 "群", 且 $A \cup B \neq A, A \cup B \neq B$, 则 $A \cup B$ 必定不是 "群". 中, 正确的个数为().

(004677) 如图, 在正三棱柱 $ABC - A_1B_1C_1$ 中, $AA_1 = 2$, AB = 3, 点 D 为 BC 的中点.

- (1) 求证: 直线 A₁B 与 C₁D 为异面直线;
- (2) 求三棱锥 $B AC_1D$ 的体积.

(004678) 已知代数式 $(\frac{2}{m} + \frac{m}{x})^n (m > 0, x > 0)$.

(1) 当 m=2, n=6 时, 求二项展开式中二项式系数最大的项;

(2) 若
$$(\frac{2}{m} + \frac{m}{x})^{10} = a_0 + \frac{a_1}{x} + \frac{a_2}{x^2} + \dots + \frac{a_{10}}{x^{10}}$$
, 且 $a_2 = 180$, 求 $a_i (0 \le i \le 10, i \in \mathbb{N})$ 的最大值.

(004679) 为实现"碳达峰", 减少污染, 某化工企业开发了一个废料回收项目. 经测算, 该项目日回收成本 p(元)

与日回收量 $x(吨)(x \in [0,50])$ 的函数关系可表示为 $p = \begin{cases} 20x, & 0 \le x \le 30, \\ x^2 + 16x - 780, & 30 < x \le 50, \end{cases}$ 且每回收 1 吨废料,

转化成其他产品可收入 80 元.

- (1) 设日纯收益为 y 元, 写出函数 y = f(x) 的解析式 (纯收益 = 收入 成本);
- (2) 该公司每日回收废料多少吨时, 获得纯收益最大?

- (004680) 已知函数 $f(x) = 2^x + \frac{a}{2^x}$, a 为实常数.
- (1) 若函数 f(x) 为奇函数, 求 a 的值;
- (2) 若 $x \in [0,1]$ 时 f(x) 的最小值为 2, 求 a 的值;
- (3) 若方程 f(x) = 6 有两个不等的实根 x_1, x_2 , 且 $|x_1 x_2| \le 1$, 求 a 的取值范围.
- (004681) 若实数 $x, y \in [0, 2\pi]$, 且满足 $\cos(x + y) = \cos x + \cos y$, 则称 x 与 y 是 "余弦相关"的.
- (1) 若 $x=\frac{\pi}{2}$, 求出所有与之"余弦相关"的实数 y;
- (2) 若存在实数 y, 与 x"余弦相关", 求 x 的取值范围;
- (3) 若不相等的两个实数 x 与 y 是 "余弦相关"的, 求证: 存在实数 z, 使得 x 与 z 为 "余弦相关"的, y 与 z 也 为 "余弦相关"的.
- (004682) 函数 $y = \sin(2x + \frac{\pi}{3})$ 的最小正周期 T =______.
- (004683) 已知集合 $A = \{1, 2, 3, 4\}, B = \{x | x \leq \frac{5}{2}, x \in \mathbf{R}\}, 则 A \cap B = _____.$
- (004684) 已知函数 $f(x) = \frac{x-1}{x+2}$ 的反函数为 $f^{-1}(x)$,则 $f^{-1}(0) =$ ______.
- (004685) 若双曲线 $x^2 \frac{y^2}{m} = 1$ 的渐近线方程为 $y = \pm 2x$, 则实数 m =_____.
- (004686) 在 $(1+2x)^6$ 的二项展开式中, x^2 项的系数为_____
- (004687) 已知圆锥的底面半径为 1, 母线长为 3, 则圆锥的体积为______
- (004688) 已知复数 z 满足: $i + \frac{2+i}{z} = 0$ (i 为虚数单位), 则 $|z| = _____.$
- (004689) 方程 $\log_3(x^2-1)=2+\log_3(x-1)$ 的解为 x=_____.
- (004691) 在 $\triangle ABC$ 中,三边 a、b、c 所对的三个内角分别为 A、B、C,若 $a=3,\,b=2\sqrt{6},\,B=2A$,则边长 c=
- (004692) 在平面直角坐标系中,已知点 A(-1,0)、B(0,3), EF 为圆 $x^2+y^2=4$ 上两个动点,且 $|\overrightarrow{EF}|=4$,则 $\overrightarrow{AE}\cdot\overrightarrow{BF}$ 的最大值为______.
- (004693) 无穷等差数列 $\{a_n\}$ 满足: ① $a_1<0,\,a_2>\frac{3}{2};$ ② 在区间 (11,20) 中的项恰好比区间 [41,50] 中的项少2 项, 则数列 $\{a_n\}$ 的通项公式为 $a_n=$ _____.
- (004694) 关于 x、y 的二元一次方程组 $\begin{cases} x+2y=3, & \text{的增广矩阵为} \ (&). \\ 3x+4y=-1 \end{cases}$

A.
$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
 B. $\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix}$ C. $\begin{pmatrix} 1 & 2 & -3 \\ 3 & 4 & 1 \end{pmatrix}$ D. $\begin{pmatrix} 1 & 2 & 3 \\ 3 & 4 & -1 \end{pmatrix}$

A. -1 B. 1

). 不存在

(004696) 如图, 在正方体 $ABCD - A_1B_1C_1D_1$ 中, 点 MN 分别在棱 AA_1CC_1 上, 则"直线 $MN \perp$ 直线 C_1B " 是"直线 $MN \perp$ 平面 C_1BD "的().

A. 充分非必要条件

B. 必要非充分条件

C. 充要条件

D. 既不充分又不必要条件

(004697) 已知非空集合 A,B 满足: $A\cup B=R,\,A\cap B=\varnothing,\,$ 函数 $f(x)=\begin{cases} x^2,&x\in A,\\ x\in A,&x\in A,\\ 2x-1,&x\in B. \end{cases}$

① 存在唯一的非空集合对 (A,B), 使得 f(x) 为偶函数; ② 存在无穷多非空集合对 (A,B), 使得方程 f(x)=2 无解. 下面判断正确的是 (

A. ① 正确, ② 错误

B. ① 错误, ② 正确

C. ① 、② 都正确

D. ① 、② 都错误

(004698) 如图, 直三棱柱 $ABC - A_1B_1C_1$ 的底面为直角三角形且 $\angle ACB = 90^{\circ}$, 直角边 CA、CB 的长分别为 3、4, 侧棱 AA_1 的长为 4, 点 M、N 分别为线段 A_1B_1 、 C_1B_1 的中点.

- (1) 求证: A, C, N, M 四点共面;
- (2) 求直线 AC_1 与平面 ACNM 所成角的大小.

(004699) 已知函数 $f(x) = \sin \omega x + \cos \omega x$.

- (1) 若 $\omega = 2$, 求函数 f(x) 在 $[0, \pi]$ 上的零点;
- (2) 已知 $\omega = 1$, 函数 $g(x) = (f(x))^2 + \sqrt{3}\cos 2x, \, x \in [0, \frac{\pi}{4}]$, 求函数 g(x) 的值域.

(004700) 为了防止某种新冠病毒感染,某地居民需服用一种药物预防. 规定每人每天定时服用一次,每次服用m 毫克. 已知人的肾脏每 24 小时可以从体内滤除这种药物的 80%,设第 n 次服药后 (滤除之前) 这种药物在人体内的含量是 a_n 毫克, (即 $a_1=m$).

- (1) 已知 m = 12, 求 a_2 、 a_3 ;
- (2) 该药物在人体的含量超过 25 毫克会产生毒副作用, 若人需要长期服用这种药物, 求 m 的最大值.

(004701) 如图,椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b > 0)$ 的左、右焦点分别为 F_1 、 F_2 , 过右焦点 F_2 与 x 轴垂直的直线交椭圆于 MN 两点,动点 P Q 分别在直线 MN 与椭圆 C 上. 已知 $|F_1F_2| = 2$, $\triangle MNF_1$ 的周长为 $4\sqrt{2}$.

- (1) 求椭圆 C 的方程;
- (2) 若线段 PQ 的中点在 y 轴上, 求三角形 F_1QP 的面积;
- (3) 是否存在以 F_1Q 、 F_1P 为邻边的矩形 F_1PEQ , 使得点 E 在椭圆 C 上? 若存在, 求出所有满足条件的点 Q 的横坐标; 若不存在, 说明理由.

(004702) 给定区间 I 和正常数 a, 如果定义在 R 上的两个函数 y = f(x) 与 y = g(x) 满足: 对一切 $x \in I$, 均 有 $|f(x) - g(x)| \le a$, 称函数 y = f(x) 与 y = g(x) 具有性质 P(I, a).

- (1) 已知 $I = (0, +\infty)$, 判断下列两组函数是否具有性质 P(I, 2)? ① $f_1(x) = \frac{1}{x^2 + 1}$, $g_1(x) = 2$; ② $f_2(x) = x^2 + x + 1$, $g_2(x) = x^2 x + 1$;(不需要说明理由)
- (2) 已知 f(x) = 0, y = g(x) 是周期函数, 且对任意的 a > 0, 均存在区间 $I = (M, +\infty)$, 使得函数 y = f(x) 与 y = g(x) 具有性质 P(I, a), 求证: g(x) = 0;
- (3) 已知 I = [1, m], $f(x) = x^2$, 若存在一次函数 y = g(x) 与 y = f(x) 具有性质 P(I, 1), 求实数 m 的最大值.
- (004703) 已知 $\overrightarrow{a} = (-1,1)$, 则 $|\overrightarrow{a}| =$
- (004704) 函数 $y = \log_2(x+1)$ 的反函数为
- (004705) 若直线 $l_1: 2x + my + 1 = 0$ 与 $l_2: y = 3x 1$ 垂直, 则实数 m = 1.

(004706) 已知 2 + i(i 是虚数单位) 是实系数一元二次方程 $x^2 + px + q = 0$ 的根, 则 p + q = 1.

(004708) 已知
$$A = \{x | \frac{2}{x} > 1\}, B = \{x | \log_2(x-1) < 1\},$$
 则 $A \cap B = \underline{\hspace{1cm}}$

(004709) 在某次数学测验中, 5 位学生的成绩如下: 78,85,a,82,69, 他们的平均成绩为 80, 则他们的成绩的方 差等于

$$\begin{cases} x+y \leq 4, \\ y \geq x, & \text{则 } x+2y \text{ 的最大值为}___. \\ x \geq 1, \end{cases}$$
 (004711) 若 $(x+\frac{1}{\sqrt{x}})^n$ 的二项展开式中各项系数的和等于 64 , 则其中 x^3 的系数是 $___$.

 $(004712) 三阶矩阵 \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$ 中有 9 个不同的数 $a_{ij}(i=1,2,3,\ j=1,2,3)$,从中任取三个,则至少有

(004713) 已知抛物线 $y^2=4x$, 斜率为 k 的直线 l 经过抛物线的焦点 F, 与抛物线交于 P、Q 两点, 点 Q 关于 x 轴的对称点为 Q', 点 P 关于直线 x=1 的对称点为 P', 且满足 $P'Q' \perp PQ$, 则直线 l 的方程为______.

(004714) 若函数 $f(x) = \cos mx (m > 0)$ 在区间 $(2\pi, 3\pi)$ 内既没有取到最大值 1, 也没有取到最小值 -1, 则 m的取值范围为_____.

(004715) 设 $x_1, x_2 \in \mathbb{R}$, 则 " $x_1 + x_2 > 6$ 且 $x_1 x_2 > 9$ " 是 " $x_1 > 3$ 且 $x_2 > 3$ " 的 (

A. 充分不必要条件

B. 必要不充分条件

C. 充要条件

D. 既不充分也不必要条件

(004716) 数列 $\{a_n\}$ 为等差数列, $a_1 > 0$ 且公差 d > 0, 若 $\lg a_1$, $\lg a_3$, $\lg a_6$ 也是等差数列, 则其公差为 (

A.
$$\lg d$$

C.
$$\lg \frac{2}{3}$$

D.
$$\lg \frac{3}{5}$$

A.
$$\left[\frac{1}{2}, \frac{3}{4}\right]$$

B.
$$\left[\frac{3}{8}, \frac{3}{4}\right]$$

C.
$$\left[\frac{1}{2}, 1\right]$$

D.
$$\left[\frac{3}{4}, 1\right]$$

(004718) 定义域为 [a,b] 的函数 y=f(x) 图像的两个端点为 $A(a,f(a)),\,B(b,f(b)).\,\,M(x,y)$ 是 y=f(x) 图像 上任意一点, 过点 M 作垂直于 x 轴的直线 l 交线段 AB 于点 N(点 M 与点 N 可以重合), 我们称 $|\overrightarrow{MN}|$ 的最 大值为该函数的"曲径". 下列定义域为 [1,2] 的函数中, 曲径最小的是 ().

A.
$$y = x^2$$

B.
$$y = \frac{2}{x}$$

B.
$$y = \frac{2}{x}$$
 D. $y = \sin \frac{\pi}{3}x$

D.
$$y = \sin \frac{\pi}{3}x$$

(004719) 如图, 圆锥的顶点为 P, 底面圆心为 O, 线段 AB 和线段 CD 都是底面圆的直径, 且 $AB \perp CD$, 取劣 弧 BC 上一点 E, 使 $\angle COE = \frac{\pi}{3}$, 连结 PE. 已知 |OA| = 1, |PA| = 2.

(1) 求该圆锥的体积;

(2) 求异面直线 PE、BD 所成角的大小.

(004720) 已知函数 $f(x) = x^2 + mx + 3$, 其中 $m \in \mathbb{R}$.

- (1) 若不等式 f(x) < 5 的解集是 (-1,2), 求 m 的值;
- (2) 若函数 y = f(x) 在区间 [0,3] 上有且仅有一个零点, 求 m 的取值范围.

(004721) 如图,有一块扇形草地 OMN,已知半径为 4, $\angle MON = \frac{\pi}{2}$,现要在其中圈出一块举行场地 ABCD 作为儿童乐园使用,其中点 A、B 在弧 $\stackrel{\frown}{MN}$ 上,且线段 AB 平行于线段 MN.

(1) 若点 A 为弧 $\stackrel{\frown}{MN}$ 的一个三等分点, 求矩形 ABCD 的面积 S;

(2) 当 A 在何处时, 矩形 ABCD 的面积 S 最大? 最大值为多少?

 $(004722) \ \textbf{已知椭圆} \ C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b > 0), \ \textbf{过定点} \ T(t,0) \ \textbf{的直线交椭圆于} \ P,Q \ 两点, 其中 \ t \in (0,a).$

(1) 若椭圆短轴长为 $2\sqrt{3}$ 且经过点 $(-1,\frac{3}{2})$, 求椭圆方程;

(2) 对 (1) 中的椭圆, 若 $t = \sqrt{3}$, 求 $\triangle OPQ$ 面积的最大值;

(3) 在 x 轴上是否存在点 S(s,0) 使得 $\angle PST = \angle QST$ 恒成立? 如果存在, 求出 s,t 的关系; 如果不存在, 说明理由.

 $(004723) \ \mathbf{已} \ a \ \mathbf{为实数}, \ \mathbf{数} \ \mathbf{\emptyset} \ \{a_n\} \ \ \mathbf{满E} \colon \ \textcircled{1} \ a_1 = a; \ \textcircled{2} \ a_{n+1} = \begin{cases} a_n - 3, & a_n > 3, \\ & (n \in \mathbf{N}^*). \ \ \mathbf{若存在一个非零} \\ 4 - a_n, & a_n \leq 3, \end{cases}$

常数 $T \in \mathbb{N}^*$, 对任意 $n \in \mathbb{N}^*$, $a_{n+T} = a_n$ 都成立, 则称数列 $\{a_n\}$ 为周期数列.

- (1) $\leq a = 3$ 时, \vec{x} $a_1 + a_2 + a_3 + a_4$ 的值;
- (2) 求证: 存在正整数 n, 使得 $0 \le a_n \le 3$;
- (3) 设 S_n 是数列 $\{a_n\}$ 的前 n 项和, 是否存在实数 a 满足: ① 数列 $\{a_n\}$ 为周期数列; ② 存在正奇数 k, 使得 $S_k = 2k$. 若存在, 求出所有 a 的可能值; 若不存在, 说明理由.
- (004724) 若集合 $A = (-\infty, 1), B = (0, +\infty), 则 A \cap B =$
- (004725) 复数 z = 2 i, 则 |z| =______
- (004726) 直线 l 的参数方程为 $\begin{cases} x=2+t, & (t\in\mathbf{R}), \, \mathbb{M}$ 直线 l 的斜率为______. $y=1+2t, \end{cases}$
- $(004727)(1+2x)^{10}$ 的二项展开式中, x^2 项的系数为______
- (004728) 若圆锥的母线长为 5, 底面半径为 3, 则该圆锥的体积为______.
- (004729) 函数 $f(x) = 1 + \lg x$ 的反函数是 $f^{-1}(x) =$
- (004730) 设 $a, b, c, d \in \mathbf{R}$, 若行列式 $\begin{vmatrix} a & b & 1 \\ c & d & 2 \\ 0 & 0 & 3 \end{vmatrix} = 9$, 则行列式 $\begin{vmatrix} a & b \\ c & d \end{vmatrix}$ 的值为______
- (004731) 已知集合 $A=\{-2,-1,-\frac{1}{2},\frac{1}{3},\frac{1}{2},1,2,3\}$,从集合 A 中任取一个元素 a,使函数 $y=x^a$ 是奇函数且在 $(0,+\infty)$ 上递增的概率为______.
- (004732) 等差数列 $\{a_n\}$ 的前 n 项和为 S_n , 若 $S_5 = S_7$, 且 $a_2 + a_3 = 8$, 则 $\lim_{n \to \infty} \frac{S_n}{n^2} =$ ______.
- (004733) 已知点 P 为正 $\triangle ABC$ 边上或内部的一点,且实数 x,y 满足 $\overrightarrow{AP}=x\overrightarrow{AB}+2y\overrightarrow{AC}$,则 x-y 的取值范围是
- (004734) 设点 P 是曲线 $y = \sqrt{x^2 + 1}$ 上的动点,点 $F(0, -\sqrt{2}), A(\sqrt{2}, 0)$ 满足 |PF| + |PA| = 4,则点 P 的坐标为______.
- (004735) 函数 $f(x) = \cos \omega x (\omega > 0, x \in \mathbf{Z})$ 的值域中仅有 5 个不同的值, 则 ω 的最小值为______.
- (004736)" $\alpha \in (0, \frac{\pi}{2})$ " 是 " α 为第一象限角"的 ().
- A. 充分不必要条件

B. 必要不充分条件

C. 充要条件

D. 既不充分又不必要条件

(004737) 下列不等式恒成立的是(

A.
$$|x+y| \ge |x-y|$$

B.
$$\sqrt{x^2 + 1} + x > 0$$

C.
$$x + \frac{1}{x} \ge 2$$

D.
$$|x + y| + |x - y| \le |x| + |y|$$

(004738) 上海入夏的标准为: 立夏之后, 连续五天日平均气温不低于 22°C. 立夏之后, 测得连续五天的平均气 温数据满足如下条件, 其中能断定上海入夏的是(

- A. 总体均值为 25°C, 中位数为 23°C
- B. 总体均值为 25° C, 总体方差大于 0° C 2
- C. 总体中位数为 23°C, 众数为 25°C
- D. 总体均值为 $25^{\circ}\mathrm{C}$, 总体方差为 $1^{\circ}\mathrm{C}^2$

(004739) 对于定义在集合 D 上的两个函数 $y_1 = f_1(x)$ 与 $y_2 = f_2(x)$, 若对任意的 $x \in D$, 总有 $|f_2(x)| \le |f_1(x)|$ 成立, 则称函数 $f_1(x)$ 包裹函数 $f_2(x)$. 判断如下两个命题真假:

① 函数 $f_1(x) = kx$ 包裹函数 $f_2(x) = x \cos x$ 的充要条件是 $|k| \ge 1$; ② 若对于任意 p > 0, $|f_1(x) - f_2(x)| < p$ 对任意 $x \in D$ 都成立, 则函数 $f_1(x)$ 包裹函数 $f_2(x)$;

则下列选项正确的是().

A. ① 真, ② 假

B. ① 假, ② 真 C. ①、② 全假 D. ①、② 全真

(004740) 如图所示, 正四棱柱 ABCD - A₁B₁C₁D₁ 的底面边长 1, 侧棱长 4, AA₁ 中点为 E, CC₁ 中点为 F.

- (1) 求证: 平面 $BDE \parallel$ 平面 B_1D_1F ;
- (2) 连结 B_1D , 求直线 B_1D 与平面 BDE 所成的角的大小.

(004741) 已知函数 $f(x) = t \sin x + |\cos x|$, 其中常数 $t \in \mathbb{R}$.

- (1) 讨论函数 f(x) 的奇偶性, 并说明理由;
- (2) $\triangle ABC$ 中内角 A,B,C 所对的边分别为 a,b,c, 且 $a=2,b=\sqrt{5},f(A)=2$, 求当 $t=\sqrt{3}$ 时, $\triangle ABC$ 的面 积.

(004742) 如图所示, 鸟类观测站需同时观测两处鸟类栖息地. A 地在观测站正北方向, 且距离观测站 2 公里处, B 地在观测站北偏东 $\arcsin \frac{4}{5}$ 方向,且距离观测站 5 公里. 观测站派出一辆观测车 (记为点 M) 沿着公路向正 东方向行驶进行观测, 记 ZAMB 为观测角.

- (1) 当观测车行驶至距观测站 1 公里时, 求观测角 $\angle AMB$ 的大小 (精确到 0.1°);
- (2) 为了确保观测质量, 要求观测角 ZAMB 不小于 45°, 求观测车行驶过程中满足要求的路程有多长 (精确到 0.1 公里).

(004743) 如图, 中心在原点 O 的椭圆 Γ 的右焦点为 $F(2\sqrt{3},0)$, 长轴长为 8. 椭圆 Γ 上有两点 P,Q, 连结 OP, OQ, 记它们的斜率为 k_{OP} 、 k_{OQ} , 且满足 $k_{OP} \cdot k_{OQ} = -\frac{1}{4}$.

- (1) 求椭圆 Γ 的标准方程; (2) 求证: $|OP|^2 + |OQ|^2$ 为一定值, 并求出这个定值; (3) 设直线 OQ 与椭圆 Γ 的另 一个交点为 R, 直线 RP 和 PQ 分别与直线 $x = 4\sqrt{3}$ 交于点 M, N, 若 $\triangle PQR$ 和 $\triangle PMN$ 的面积相等, 求点 P 的横坐标.
- (004744) 已知数列 $\{a_n\}$ 满足: $a_1=1,\ a_{n+1}=-a_n$ 或 $a_{n+1}=a_n+2,\$ 对一切 $n\in \mathbf{N}^*$ 都成立. 记 S_n 为数列 $\{a_n\}$ 的前 n 项和. 若存在一个非零常数 $T \in \mathbb{N}^*$, 对于任意 $n \in \mathbb{N}^*$, $a_{n+T} = a_n$ 成立, 则称数列 $\{a_n\}$ 为周期数 列, T 是一个周期.
- (1) 求 a_2 、 a_3 所有可能的值, 并写出 a_{2022} 的最小可能值 (不需要说明理由);

(004745) 已知复数 z 满足 $\frac{\sqrt{3}+i}{z}=i, i$ 为虚数单位, 则 z=______.

(004746) 若双曲线方程为 $x^2 - \frac{y^2}{16} = 1$, 则该双曲线的渐近线方程为_____.

(004747) 在 $(1+2x)^6$ 的二项展开式中, x^5 项的系数为_____

$$(004748) \lim_{n \to \infty} \frac{2^{n+1} + 3^n}{2^n + 3^{n+1}} = \underline{\qquad}.$$

(004750) 某学生在上学的路上要经过 2 个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯概率都是 $\frac{1}{3}$,则这名学生在上学路上到第二个路口时第一次遇到红灯的概率是______.

(004751) 若等差数列 $\{x_n\}$ 的公差 3, 则 $x_1, x_2, x_3, \dots, x_9$ 的方差为______

(004752) 三棱锥 P-ABC 中, 底面 ABC 是锐角三角形, PC 垂直平面 ABC, 若其三视图中主视图和左视图 如图所示, 则棱 PB 的长为

$$(004753)$$
 设变量 x 、 y 满足条件
$$\begin{cases} x \ge 1, \\ x-y+2 \le 0, & \text{则 } z=-2x+y \text{ 的取值范围为} \\ x+y-7 \le 0, \end{cases}$$

(004754) 如图所示在 $\triangle ABC$ 中, BC 边上的中垂线分别交 BC、AC 于点 D、E, 若 $\overrightarrow{AE} \cdot \overrightarrow{BC} = 6$, $|\overrightarrow{AB}| = 2$, 则 $|\overrightarrow{AC}| =$ ______.

(004755) 设 $y=f^{-1}(x)$ 是函数 $f(x)=rac{x}{2}+rac{\pi}{8}\sin x+rac{\pi}{8},\,x\in[-rac{\pi}{2},rac{\pi}{2}]$ 的反函数, 则函数 $y=f(x)+f^{-1}(x)$ 的最小值等于_______.

(004756) 函数 f(x) = x, $g(x) = x^2 - x + 2$. 若存在 $x_1, x_2, \dots, x_n \in [0, \frac{9}{2}]$, 使得 $f(x_1) + f(x_2) + \dots + f(x_{n-1}) + g(x_n) = g(x_1) + g(x_2) + \dots + g(x_{n-1}) + f(x_n)$, 则 n 的最大值为______.

(004757) 下列函数中既是奇函数, 又在区间 $(0, +\infty)$ 上单调递减的函数为 ().

A.
$$y = \sqrt{x}$$
 B. $y = \log_{\frac{1}{2}} x$ C. $y = -x^3$ D. $y = x + \frac{1}{x}$

A. 直线

D. 双曲线的一支

(004759) 将函数 $y=\sin(2x-\frac{\pi}{3})$ 图像上的点 $P(\frac{\pi}{4},t)$ 向左平移 s(s>0) 个单位长度得到点 P', 若 P' 位于函 数 $y = \sin 2x$ 的图像上,则().

A.
$$t=\frac{1}{2}, s$$
 的最小值为 $\frac{\pi}{6}$

B.
$$t = \frac{\sqrt{3}}{2}$$
, s 的最小值为 $\frac{\pi}{6}$ D. $t = \frac{\sqrt{3}}{2}$, s 的最小值为 $\frac{\pi}{3}$

C.
$$t = \frac{1}{2}$$
, s 的最小值为 $\frac{\pi}{3}$

D.
$$t = \frac{\sqrt{3}}{2}$$
, s 的最小值为 $\frac{\pi}{3}$

(004760) 已知以下三个陈述句:

p: 存在 $a \in \mathbb{R}$ 且 $a \neq 0$, 对任意的 $x \in \mathbb{R}$, 均有 $f(2^{x+a}) < f(2^x) + f(a)$ 恒成立;

 g_1 : 函数 y = f(x) 是定义域为 R 的减函数, 且对任意的 $x \in \mathbf{R}$, 都有 f(x) > 0;

 q_2 : 函数 y = f(x) 是定义域为 R 的增函数, 存在 $x_0 < 0$, 使得 $f(x_0) = 0$;

用这三个陈述句组成两个命题, 命题 S: "若 q_1 , 则 p"; 命题 T: "若 q_2 , 则 p". 关于 S, T 以下说法正确的是 ().

A. 只有命题 S 是真命题

B. 只有命题 T 是真命题

C. 两个命题 S,T 都是真命题

D. 两个命题 S,T 都不是真命题

(004761) 如图, S 是圆锥的顶点, O 是底面圆的圆心, $AB \cdot CD$ 是底面圆的两条直径, 且 $AB \perp CD$, SO = 4, OB = 2, P 为 SB 的中点.

- (1) 求圆锥的体积;
- (2) 求异面直线 SA 与 PD 所成角的大小 (结果用反三角函数值表示).

(004762) 已知函数 $f(x) = \cos x(\sin x + \cos x) - \frac{1}{2}$.

- (1) 若 $0 < \alpha < \frac{\pi}{2}$, 且 $\sin \alpha = \frac{\sqrt{2}}{2}$, 求 $f(\alpha)$ 的值;
- (2) 求函数 f(x) 的最小正周期, 及函数 f(x) 在 $[0,\frac{\pi}{2}]$ 上的递减区间.

(004763) 新冠肺炎疫情造成医用防护服紧缺,某地政府决定为防护服生产企业 A 公司扩大生产提供 $x(x \in$ [0,10])(万元) 的专项补贴, 并以每套 80 元的价格收购其生产的全部防护服. A 公司在收到政府 x(万元) 补贴 后, 防护服产量将增加到 $t = k \cdot (6 - \frac{12}{x+4})$ (万套), 其中 k 为工厂工人的复工率 $(k \in [0.5, 1])$. A 公司生产 t 万 件防护服还需投入成本 20 + 8x + 50t(万元).

- (1) 将 A 公司生产防护服的利润 y(万元) 表示为补贴 x(万元) 的函数 (利润不包含政府补贴);
- (2) 若对任意的 $x \in [0, 10]$ (万元), A 公司都不会产生亏损, 求复工率 k 的取值范围.
- (004764) 已知抛物线 $y^2 = 4x$ 的焦点为 F, 直线 l 交抛物线于不同的 A、B 两点.
- (1) 若直线 l 的方程为 y = x 1, 求线段 AB 的长;
- (2) 若直线 l 经过点 P(-1,0), 点 A 关于 x 轴的对称点为 A', 求证: A'、F、B 三点共线;
- (3) 若直线 l 经过点 M(8,-4), 抛物线上是否存在定点 N, 使得以线段 AB 为直径的圆恒过点 N? 若存在, 求出点 N 的坐标, 若不存在, 请说明理由.
- (004765) 无穷数列 $\{a_n\}(n \in \mathbf{N}^*)$,若存在正整数 t,使得该数列由 t 个互不相同的实数组成,且对于任意的正整数 n, $a_{n+1}, a_{n+2}, \cdots, a_{n+t}$ 中至少有一个等于 a_n ,则称数列 $\{a_n\}$ 具有性质 T,集合 $P = \{p | p = a_n, n \in \mathbf{N}^*\}$.
- (1) 若 $a_n = (-1)^n$, $n \in \mathbb{N}^*$, 判断数列 $\{a_n\}$ 是否具有性质 T;
- (2) 数列 $\{a_n\}$ 具有性质 T, 且 $a_1 = 1$, $a_4 = 3$, $a_8 = 2$, $P = \{1, 2, 3\}$, 求 a_{11} 与 a_{14} 的值;
- (3) 数列 $\{a_n\}$ 具有性质 T, 记集合 $B = \{m|a_m = a_1, m \in \mathbb{N}^*\}$, 将集合 B 中的所有元素按从小到大的顺序排列,得到数列 $\{i_n\}$,记 $b_n = i_{n+1} i_n$, $n \in \mathbb{N}^*$. 证明:若数列 $\{b_n\}$ 具有性质 T,则数列 $\{b_n\}$ 是常数列.
- (004766) 写出集合 {1,2} 的所有子集.
- (004767) 已知集合 $A = \{x | 1 \le x < 3, x \in \mathbb{R}\}, B = \{x | x > 2, x \in \mathbb{R}\}.$ 求 $A \cap B, A \cup B$.
- (004768) 已知集合 $U = \{x | x$ 取不大于30的质数 $\}$, A, B 是 U 的两个子集, 且满足 $A \cap \mathbb{C}_U B = \{5, 13, 23\}$, $\mathbb{C}_A \cap B = \{11, 19, 29\}$, $\mathbb{C}_U A \cap \mathbb{C}_U B = \{3, 7\}$, 求 A, B.
- (004769) 已知集合 $A = \{x|x^2 ax + a^2 19 = 0\}$, $B = \{x|x^2 5x + 6 = 0\}$, $C = \{x|x^2 + 2x 8 = 0\}$ 满足 $A \cap B \neq \emptyset$, $A \cap C = \emptyset$, 求实数 a 的值.
- (004770) 已知集合 $A = \{x|x^2 5x + 4 \le 0\}$ 与 $B = \{x|x^2 2ax + a + 2 \le 0, \ a \in \mathbf{R}\}$ 满足 $B \subseteq A$, 求 a 的取值范围.
- (004771) 已知集合 $A = \{x|x^2 + (\rho + 2)x + 1 = 0, x \in \mathbf{R}\}$, 且 $A \cap \mathbf{R}^+ = \emptyset$, 求实数 ρ 的取值范围.
- (004772) 在 "① 难解的题目,② 方程 $x^2+1=0$ 在实数集内的解,③ 直角坐标平面内第四象限的一些点,④ 很多多项式"中,能够组成集合的是 ().
- A. ② B. ①③ C. ②④ D. ①②④
- (004773) 集合 $M = \{(x,y)|xy \ge 0, x \in \mathbb{R}, y \in \mathbb{R}\}$ 是指 ().
- A. 第一象限内的点集 B. 第三象限内的点集
- C. 在第一、三象限内的点集 D. 不在第二、四象限内的点集
- (004774) 下列四个关系中, 正确的是 ().
- A. $\emptyset \in \{a\}$ B. $a \notin \{a\}$ C. $\{a\} \in \{a,b\}$ D. $a \in \{a,b\}$

(004775) 方程组 {	2x + y = 0, 的解集是($x - y + 3 = 0$).		
A. $\{-1, 2\}$	B. $(-1,2)$	C. $\{(-1,2)\}$	D. $\{(x,y) x = -1, y$	$= 2$ }
(004776) 下列各题 A. $M = \{(1, -3)\}$ B. $M = \emptyset$, $P = \{$ C. $M = \{y y = x\}$ D. $M = \{y y = x\}$ (004777) 用列举法 (1) 不大于 6 的非分 (2) 方程 $x^3 - x^2 (3)$ $\{y y = x^2 - 1$	中的 M 与 P 表示同一个集合 P 表示同一个集合 P 表示同一个集合 P 表示同一个集合 P P P P P P P P P P	的是 (). $ \{x^2 + 1, \ x \in \mathbf{R}\} $ $ \{x^2 + 1, \ y \in \mathbf{R}\} $ $ \{x^2 + 1, \ y \in \mathbf{R}\} $ $ \{x^2 + 1, \ y \in \mathbf{R}\} $		
	$5, x \in \mathbf{N}, y \in \mathbf{Z}\}:\underline{\qquad}.$			
	$I = \{0, 2, 3, 7\}, P = \{x x = ab,$			
(004781) 已知集合	$A = \{x \frac{12}{5-x} \in \mathbf{N}, \ x \in \mathbf{Z}\}, \ \mathbf{F}$]列举法表示集合 A.		
(004782) 已知集合	$M = \{a, a+d, a+2d\}, N = \{a, a+d, a+d\}$	${a, aq, aq^2}, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	=N, 求 q 的值.	
(004783) 已知集合 (1) 任何奇数都是 2 (2) 偶数 $4k - 2(k + 1)$		Z }, 求证:		
(004784) 数 0 与空	集 ∅ 之间的关系是 ()			
A. $0 \in \emptyset$ 若集合 $M = \{x x \le 0\}$	$\mathrm{B.}\ 0 \notin \varnothing$ $\leq 6\}, a = \sqrt{5},$ 则下面结论正确	C. 0 = Ø 的是 ()	D. $0 \subset \emptyset$	14.
A. {a} ⊂ M 已知集合 M = {y s	$B. \ a \subset M$ $y = x^2 - 2x - 1, x \in \mathbf{R}\}, P = \{$. , ,	$\mathrm{D.}\; a otin M$ 与 P 之间的关系是 $(\hspace{1em})$	15.

C. $M \supset P$

D. $M \not\subset P \coprod M \not\supset P$

B. $M \subset P$

A. M = P

(004785) 设集合 $M = \{(x, y) \in M : \{(x, y) \in M : \{(x, y) \in M\}\}$	$(x,y) x+y>0, xy>0\}, T=$	$\{(x,y) x>0,y>0\}, \ M$	与 T 的关系是 ()
A. $M \supset T$	B. $M = T$	C. $M \subset T$	D. $M \not\subset T$ H. $M \not\supset T$
(004786) 用适合的符号 (6	∈, ∉, =, ⊂, ⊃) 填空:		
(1) 3.14 Q; (2)	${3.14}_{\underline{}}$ Q ; (3) ${x}$	$x = 2k + 1, \ k \in \mathbf{Z} \} \underline{\hspace{1cm}}$	$[x x = 2k - 1, k \in \mathbf{Z}].$
(004787) 若集合 $A=\{x $	$-3 < x < 5$ } 与 $B = \{x x < 5\}$	$\{a\}$ 满足 $A \subset B$, 则实数 a 的	取值范围是
(004788) 若集合 $A = \{x ($	$(x+1)(2-x) < 0$, $B = \{x 4x$	$x+p<0\}$, 且 $B\subset A$, 则实数 p	的取值范围是
(004789) 若集合 $A = \{x$ 为	$ x^2 + x - 6 = 0$ $\Rightarrow B = \{x\}$	$y ay+1=0$ } 満足 $B\subset A$,	则实数 a 所能取得一切值
(004790)(1) 满足 {a,b} ⊂	$A \subset \{a,b,c\}$ 的集合 A 有_	↑ :	
	[1,2,3,4,5] 的集合 B 有		
(004791) 满足 $M \subseteq \{0, 1,$	2 } 且 $M \subseteq \{0, 2, 4\}$ 的集合	M 有 ().	
A. 1 个	B. 2 个	C. 3 个	D. 4 个
(004792) 集合 $\{1,2,3\}$ 的	子集个数是 ().		
A. 6	B. 7	C. 8	D. 9
(004793) 数集 $X = \{(2n + 1)\}$	$+1)\pi n \in \mathbf{Z}$ 与数集 $Y = \{(4, 1)\pi n \in \mathbf{Z}\}$	$4k\pm 1)\pi k\in {f Z}\}$ 之间的关系是	론 ().
A. $X \subset Y$	B. $X \supset Y$	C. $X = Y$	D. $X \neq Y$
(004794) 已知非空集合 F 个数是 ().	⁹ 满足: ① P ⊆ {1,2,3,4,5};	② 若 $a \in P$, 则 $6 - a \in P$.	符合上述要求的集合 P 的
A. 4	B. 5	C. 7	D. 31
(004795) 设集合 $A = \{0,$	1}, 集合 $B = \{x x \subseteq A\}$, 则	A 与 B 的关系是	
		$+1 \le x \le 2m-1$ } 满足 $B \subseteq \overline{2}$ 或 $x > \sqrt{2}$ }, 那么 $M \cap P$ 是	
A. $\{x -3 < x < -\sqrt{2} \mathbf{g} \}$	$\sqrt[2]{\sqrt{2}} < x < 2\}$	В. R	
C. $\{x -3 < x < -\sqrt{2}\}$		D. $\{x \sqrt{2} < x < 2\}$	
(004797) 若集合 $P = \{y y\}$	$y = x^2 + 1, \ x \in \mathbf{R}\}, \ Q = \{y x \in \mathbf{R}\}$	$y = x + 1, \ x \in \mathbf{R} \}, \ \mathbf{M} \ P \cap Q$	是 ().
A. $\{(0,1),(1,2)\}$	B. $\{0,1\}$	C. $\{1,2\}$	D. $\{y y \ge 1\}$
(004798) 若集合 $M = \{(x, y) \in \mathbb{R}^n : (0.04798) \}$	$(x,y) x+y=0\}, P=\{(x,y) $	$x-y=2$ },则 $M\cap P$ 是 ().
A. $(1,-1)$	B. $\{x=1\} \cup \{y=-1\}$	C. $\{1, -1\}$	D. $\{(1,-1)\}$

(004799) 若 $P \cap S = \emptyset$, 且 $M = \{P$ 的子集 $\}$, $N = \{S$ 的子集 $\}$, 则下列各式中一定成立的是 (). A. $M \cap N = \emptyset$ B. $M \cap N = \{\emptyset\}$ C. $M \cap N \subset P \cap S$ D. $M \cap N \supset P \cap S$ (004800) 已知 P, M 是非空集合, 且 $P \neq M$, 则必定有 (). $A. \varnothing \in P \cap M$ B. $\emptyset = P \cap M$ $C. \varnothing \subseteq P \cap M$ D. $\varnothing \subset P \cap M$ (004801) 若集合 P, S 满足 $P \cap S = P$, 则下列关系式中恒成立的是 (). A. $P \subset S$ B. $P \subseteq S$ C. P = SD. $P \supset S$ (004802) 已知集合 $A = \{ \text{平行四边形} \}, B = \{ \text{梯形} \}, C = \{ \text{对角线相等的四边形} \}, 那么 <math>B \cap C = \underline{\hspace{1cm}}$ $A \cap C = \underline{\hspace{1cm}}$. (004803) 若集合 $P = \{y|y = x^2 - 6x + 10\}, M = \{y|y = -x^2 + 2x + 8\}, 则 P \cap M = _____.$ (004804) 若集合 $S = \{x | x \le 2$ 或 $x \ge 3\}$, $T = \{x | 2 \le x \le 3\}$, 则 $S \cap T =$ (004805) 已知集合 $A = \{x \mid -2 \le x \le 4\}, B = \{x \mid x < a\},$ 且满足 $A \cap B \ne \emptyset$, 那么实数 a 的取值范围 (004806) 已知集合 $P = \{x | -1 < x < 3\}, M = \{x | a < x < 2a\}, (a > 0), 且 <math>P \cap M = \emptyset$, 则实数 a 的取值范围 (004807) 记集合 $P = {$ 等腰三角形}, $T = {$ 至少有一边为1, 至少有一内角为 36° 的三角形}, 则 $P \cap T$ 的元素有 (). B. 3 个 C. 4 个 A. 2 个 D. 5 个 (004808) 若集合 $M = \{(x,y)|x-y=0\}, P = \{(x,y)|x+y+2=0\}, 则 M \cap P = _____.$ (004809) 若集合 $A = \{(x,y)|x^2 = y^2\}, B = \{(x,y)|y^2 = x\}, 则 A \cap B =$ (004810) 若集合 $A = \{y|y = x^2\}, B = \{y|y = 1 - \sqrt{x}, x \ge 0\}, 则 A \cap B = _____.$ (004811)(1) 已知集合 $A = \{2, 3, a^2 + 1\}, B = \{a^2 + a - 4, 2a + 1, -\frac{13}{4}\},$ 且 $A \cap B = \{2\},$ 求实数 a 的值; (2) 已知集合 $P = \{m^2, m+1, -3\}, Q = \{m-3, 2m-1, m^2+1\},$ 且 $P \cap Q = \{-3\},$ 求实数 m 的值. (004812) 已知集合 $M = \{2, 3, m^2 + 4m + 2\}, P = \{0, 7, m^2 + 4m - 2, 2 - m\},$ 且 $M \cap P = \{3, 7\},$ 求实数 m的值和集合 P. (004813) 已知集合 $A = \{2, 4, a^3 - 2a^2 - a + 7\}, B = \{-4, a - 3, a^2 - 2a + 2, a^3 + a^2 + 3a + 7\}$ 满足 $A \cap B = \{2, 5\},$ 求实数 a 的值. (004814) 已知集合 $P = \{x|x^2 - ax + a^2 - 8a + 19 = 0\}, Q = \{x|x^2 - 4x + 3 = 0\}, R = \{x|x^2 - 7x + 12 = 0\},$

417

且 $P \cap Q \neq \emptyset$, $P \cap R = \emptyset$, 求实数 a 的值.

(004815) 已知集合 $P = \{x | -2 \le x \le 5\}$, $Q = \{x | k+1 \le x \le 2k-1\}$, 求使 $P \cap Q = \emptyset$ 的实数 k 的取值范围.

(004816) 若集合 $M = \{y y=$	$= x^2 + 1, \ x \in \mathbf{R}\}, \ P = \{y y \in \mathbf{R}\}$	$y = 5 - x^2, \ x \in \mathbf{R}$, $M \cup R$? 等于 ().
A. R	B. $\{y 1 \le y \le 5\}$	C. $\{x -5 \le x \le 1\}$	D. $\{(-\sqrt{2},3),(\sqrt{2},3)\}$
(004817)43. 集合 $M = \{x x\}$	$= t^2 + 3t + 2, \ t \in \mathbf{R} \} = T$	$P = \{y y = k^2 - 3k + 2, \ k \in \mathbf{R} \}$	(2) 之间的关系是 (2)).
A. $M \cap P = \emptyset$		B. $M \cap P = \{0\}$	
$C. M \cap P = \{(x, y) x \in \mathbf{R},$	$y \in \mathbf{R}$	D. $M \cap P$	
(004818) 设集合 $M = \{x a_1 \}$ $b_2 x + c_2) = 0$ 的解集是 ($x a_2x^2 + b_2x + c_2 = 0$ }, 方程	$(a_1x^2 + b_1x + c_1)(a_2x^2 +$
(004819)		$\cap P) \subset (M \cup P); \ \textcircled{4} \ \ H \subset P$	P , 则 $M \cap P = M$ 这四个
A. 1	B. 2	C. 3	D. 4
(004820) 若集合 M, P 满足	$M \cap P = P$, 则一定有 ().	
A. $M = P$	B. $M \subset P$	C. $M \cup P = M$	D. $P \subset M$
(004821) 若 M, P 是两个非	空集合 $,$ 且对于 M 中的任	何一个元素 x , 都有 $x \notin P$, 则	有 ().
A. $M \supseteq P$	B. $M \subseteq P$	C. $M \cap P = \emptyset$	D. $M \cup P = M$
(004822) 若集合 $P = \{x 1 <$	$x < 4$, $Q = \{x x > 3$ 或 x	$< 1 \}$,则 $P \cap Q =$	$P \cup Q = _$
(004823) 已知 S, T 是两个非	‡空集合,且 $S \not\subseteq T, T \not\subseteq S$,若 $X = S \cap T$,则 $S \cup X = $ _	
(004824) 满足条件 {a,b} ∪ I	$M = \{a, b, c, d\}$ 的所有集合	M 的个数是 ()	
A. 1	B. 2	C. 3	D. 4
(004825) 设集合 $A = \{x -5$	$< x < 2$, $B = \{x x = y + 1\}$	$-1, y \in A$ }, 则 $A \cap B =$	$A \cup B =$
(004826) 已知 $a < 0 < b < a $	$a $, 且集合 $A = \{x a < x \le a\}$	$b, x \in \mathbf{R}$ },则 $A \cap B =$	$A \cup B =$
(004827) 已知集合 $A = \{x x\}$	$a^2 + px + q = 0$, $B = \{x x$	$x^2 + (p-1)x - q + 5 = 0$ } 满足	$! A \cap B = \{1\}, $
(004828) 已知集合 A, B 的 $A \cap B = \{2, 5\}, 求 A \cup B.$	$I元素均为实数,且 A=\{$	$2,4,a^3+a+7$, $B = \{-5,6\}$	$a+3, a^2-2a+2$ } 满足
		$A \cup B = \{1, 3, a\}$,求实数 a 的 $B = \{1, 2, 3, m\}$,求实数 m 的 $\{a, b, a, b\}$	
(004830) 设方程 $x^2 + px - 12$ $A \cap B = \{-3\}, \ 求 \ p, q, r \ $ 的位		+qx+r=0 的解集为 B , 且	$A \neq B, A \cup B = \{-3, 4\},\$
(004831) 若集合 $A = \{x -2$ $x \le 3\}$, 求 a, b 的值.	$< x < 1$ 或 $x > 1$ }, $B = \{x$	$ a \le x \le b $ 满足 $A \cup B = \{x a\}$	$x > -2$, $A \cap B = \{x 1 < 0$

(004832) 设 M, P 是全集 U 的子集, 且 $M \subseteq P$, 则下列各式中一定成立的是 ().

- A. $C_U M \subseteq C_U P$ B. $C_U M \cup C_U P = U$ C. $M \cap C_U P = \emptyset$ D. $C_U M \cap P = \emptyset$

(004833) 设全集 U 为自然数集 N, 记 $E = \{x | x = 2n, n \in \mathbb{N}\}, F = \{x | x = 4n, n \in \mathbb{N}\},$ 那么 \mathbb{N} 可以表示为 ().

- A. $E \cap F$
- B. $C_U E \cup F$
- C. $E \cup \mathcal{C}_U F$
- D. $C_U E \cap C_U F$

(004834) 若全集 $U = \{x | x \ge -3\}$, 集合 $A = \{x | x > 1\}$, 则 A 的补集 $C_U A = \underline{\hspace{1cm}}$.

(004835) 若全集 $A = \{x | 0 \le x \le 3\}, B = \{x | 1 < x < 4\},$ 全集 $U = \mathbb{R}$, 则 $\mathcal{C}_U(A \cap B) = \underline{\hspace{1cm}}$.

(004836) 若全集 $A = \{x | x = -t^2, t \in \mathbf{R}\}, B = \{x | x = 3 + |t|, t \in \mathbf{R}\},$ 全集 $U = \mathbf{R}$, 则 $A \cap B =$ ____ ()

- A. $M \cup P$
- B. $C_U(M \cap P)$
- C. $C_UM \cup C_UP$ D. $C_U(M \cup P)$

(004837) 已知全集 $U = \{2, 4, 3-a^2\}$, 集合 $P = \{2, a^2-a+2\}$, $C_U P = \{-1\}$, 则实数 a 的取值等于

(004838) 已知集合 A, B 都是全集 $U = \{1, 2, 3, 4\}$ 的子集, 若 $\mathcal{C}_U A \cap B = \{1\}, A \cap B = \{3\}, \mathcal{C}_U A \cap \mathcal{C}_U B = \{2\},$ 则 $A = _____, B = _____$

(004839) 已知全集 $U = \{2, 3, a^2 + 2a - 3\}, A = \{b, 2\}, C_U A = \{5\}, 求实数 a 和 b.$

(004840) 已知全集 $U = \{-4, -3, -2, -1, 0, 1, 2, 3, 4\}$, 集合 $A = \{-3, a^2, a+1\}$, $B = \{a-3, 2a-1, a^2+1\}$, 其 中 $a \in \mathbb{R}$, 若 $A \cap B = \{-3\}$, 求 $\mathcal{C}_U(A \cup B)$.

(004841) 记全集 $U = \{ 三角形 \}, A = \{ 锐角三角形 \}, B = \{ 钝角三角形 \}, C = \{ 直角三角形 \}, D = \{ 斜三角形 \},$ 求 $\mathcal{C}_U(A \cup B) \cap \mathcal{C}_U(C \cup D)$.

(004842) 已知全集 $U = \{\Lambda + 1000 \}$ 人,其子集 A, B 满足 $C_U A \cap C_U B = \{1, 9\}$ 人, $A \cap B = \{2\}$ 人。 $C_U A \cap B = \{2\}$ 人。 {4,6,8}, 求集合 A 和 B.

(004843) 下列语句哪些不是命题? 哪些是命题? 如果是命题, 那么它们是真命题还是假命题? 为什么?

- (1) 你到过北京吗?
- (2) 当 x = 4 时, 2x < 0;
- (3) 若 $x \in \mathbb{R}$, 则方程 $x^2 x + 1 = 0$ 无实数根;
- (4) 1 + 2 = 5 **或** $3 \ge 3$;

(5) x < -2**或**x > 2;

(004844) 试写出下列命题的逆命题、否命题与逆否命题, 并判断其真假:

命题 A: 负数的平方是正数;

命题 B: 已知 a,b 是实数, 若 a+b 是无理数, 则 a,b 都是无理数.

- (004845) 写出下列命题的否定式:
- (1) 不论 k 取何实数, $x^2 + x + k = 0$ 必有实数根;
- (2) 三角形中至多有一个钝角;
- (3) 正 $n(n \ge 3)$ 边形的 n 个内角全相等;
- (4) 张三是科大或北大的学生;
- (5) 如果 $x^2 x 2 = 0$, 那么 $x \neq -1$ 且 $x \neq -2$.
- (004846) 判断下列命题的真假: (1) 命题 "在 $\triangle ABC$ 中, 如果 AB > AC, 那么 $\angle C > \angle B$ " 的逆命题;
- (2) 命题 "如果 ab = 0, 那么 b = 0" 的否命题;
- (3) 命题 "如果 $a \neq 0$ 且 $b \neq 0$, 那么 $ab \neq 0$ " 的逆否命题;
- (4) 命题 "如果 $a \neq 0$ 或 $b \neq 0$, 那么 $a^2 + b^2 > 0$ " 的逆否命题.
- (004847) 下列说法是否正确? 为什么?
- (1) $x^2 = y^2 \Rightarrow x = -y$;
- (2) $x^2 \neq y^2 \Rightarrow x \neq y$ **或** $x \neq -y$.
- (004848) 已知命题 α : 方程 $x^2 + mx + 1 = 0$ 有两个相异负实数根, 命题 β : $4x^2 + 4(m-2)x + 1 = 0$ 无实数根, 命题 α , β 有且只有一个为真命题, 求实数 m 的取值范围.
- (004849) 命题 "如果 a, b 都是偶数, 那么 a + b 是偶数" 的逆否命题是 ().
- A. 如果 a, b 都不是偶数, 那么 a + b 不是偶数
- B. 如果 a, b 不都是偶数, 那么 a + b 不是偶数
- C. 如果 a+b 不是偶数, 那么 a,b 都不是偶数
- D. 如果 a+b 不是偶数, 那么 a,b 不都是偶数
- (004850) 命题"如果 p 不正确, 那么 q 正确"的逆命题的等价命题是 ().
- A. 如果 q 不正确, 那么 p 不正确
- B. 如果 q 不正确, 那么 p 正确
- C. 如果 p 正确, 那么 q 不正确
- D. 如果 p 不正确, 那么 q 不正确
- (004851) 如果命题 p 的逆命题是 q. 命题 p 的逆否命题是 r, 那么 q 是 r 的 ().
- A. 逆命题
- B. 否命题
- C. 逆否命题
- D. 以上判断都不正确

(004852)(x+y)(y+z)(z+z)(z+z)(z+z)(z+z)(z+z)(z+z)(z	(z+x)=0 的含义是 ().		
A. x, y, z 中有两个零		B. x, y, z 两两互为相反数		
C. x, y, z 中至少有一个零		D. x, y, z 中至少有两个互为相反数		
(004853) 对于命题 α : "持	如果 $a < 3$, 那么 $a > 1$ "	$,$ 则命题 $lpha$ 和它的逆命题、 \overline{lpha}	至命题、逆否命题中真命题的个数	
是 ().				
A. 0	B. 1	C. 2	D. 3	
P 的元素; ② M 中有不 的个数是 ().	属于 P 的元素; ③ M ロ	中有 P 的元素; $ ext{ } ext{ }$	下列命题: ① M 中的元素都不是 元素不都是 P 的元素. 其中假命题	
A. 1	B. 2	C. 3	D. 4	
,	那么 $x^2 + 2x + q = 0$		题; ② "全等三角形的面积相等" 的不等边三角形的三个内角相等" 的	
А. ①②	В. ②③	С. ①③	D. ③④	
(004856) 命题 "末位数是	₹0 的整数, 可以被 5 整	除"的逆命题是		
(004857) 命题 "线段的垂	全直平分线上的点与这条	线段两个端点的距离相等"[的否命题是	
(004858) 命题 "到圆心的	为距离不等于圆的半径的	J直线不是圆的切线"的逆否f	命题是	
(004859) 若一个命题的召	5命题为"如果 x + y ≤	0 , 那么 $x \le 0$ 或 $y \le 0$ ", 则	相应的原命题是	
(004860) 若 $p: \frac{1}{x^2-1} >$	· 0, 则 \bar{p} 为			
(004861) 已知命题 p: 是	存在 $x \in \mathbf{R}$, 使得 x^2	$+2ax + a \le 0$,若命题 p	是假命题,则实数 a 的取值范围	
(004862) 已知命题 A: 5 否命题和逆否命题, 并判		x 的方程 $x^2 + x - m = 0$ 有	实数根. 试写出命题 A 的逆命题、	
(004863) 判断命题 "如果	$\mathop{!} xy \le 8$,那么 $x \le 2$ 且	. $y \le 4$ " 的逆命题的真假.		
(004864) 已知命题 A:女	II果 $a^2 + 2ab + b^2 + a +$	$-b-2 \neq 0$, 那么 $a+b \neq 1$, 5	求证: 命题 A 是真命题.	
(004865) 已知 α: a - 1 有且只有一个为真命题.	$ <2,eta:$ 方程 $x^2+(a-1)$	$(x+2)x+1=0$ ($x \in \mathbf{R}$) 没有正	根, 求实数 a 的取值范围, 使 α, β	
(004866) 已知关于 x 的 (1) 存在实数 k, 使得方程 (2) 存在实数 k, 使得方程	呈恰有 2 个不同的实数机		其假:	

- (3) 存在实数 k, 使得方程恰有 5 个不同的实数根;
- (4) 存在实数 k, 使得方程恰有 8 个不同的实数根.

(004867) 如果 a,b,c 都是实数, 那么 "ac < 0" 是 "关于 x 的方程 $ax^2 + bx + c = 0$ 有一个正根和一个负根" 的 ().

A. 必要不充分条件

B. 充分不必要条件

C. 充要条件

D. 既不充分也不必要条件

(004868) 已知 $p:1 \le x \le 4, q: \frac{1}{r^2-r-12} > 0$, 试问: p 是 \overline{q} 的什么条件? 请说明理由.

(004869) 设 α, β 是方程 $x^2 - ax + b = 0$ 的两个实数根, 试分析 "a > 2 且 b > 1" 是 "两根 α, β 均大于 1" 的什么条件.

(004870) 已知 $p:|x-3|\leq 2, q:(x-m+1)(x-m-1)\leq 0,$ 若 \bar{p} 是 \bar{q} 的充分不必要条件, 求实数 m 的取值范围.

(004871) 已知集合 $A = \{x | x < -3\mathbf{y}x > 5\}, B = \{x | a \le x \le 8\}.$

- (1) 求实数 a 的取值范围, 使它成为 $A \cap B = \{x | 5 < x \le 8\}$ 的充要条件;
- (2) 求实数 a 的一个值, 使它成为 $A \cap B = \{x | 5 < x \le 8\}$ 的一个充分不必要条件;
- (3) 求实数 a 的一个值, 使它成为 $A \cap B = \{x | 5 < x \le 8\}$ 的一个必要不充分条件.

(004872) 已知 $a: 0 \le x < 3$, $\beta: -1 < x \le 4$, $\gamma: 2x^2 + mx - 1 < 0$.

- (1) 若 a 是 γ 的充分条件, 求实数 m 的取值范围;
- (2) 若 β 是 γ 的充分条件, 求实数 m 的取值范围.

(004873) 已知 $\triangle ABC$ 的三边为 a,b,c 求证: 关于 x 的方程 $x^2 + 2ax + b^2 = 0$ 与 $x^2 + 2cx - b^2 = 0$ 有公共根的充要条件是 $A = 90^\circ$.

(004874)"m = 2" 是 "函数 $f(x) = x^2 + mx - 3$ 有两个零点"的().

A. 充分不必要条件

B. 必要不充分条件

C. 充要条件

D. 既不充分也不必要条件

(004875)" $a \neq 1$ 或 $b \neq 2$ " 是 " $a + b \neq 3$ " 的 ().

A. 充分不必要条件

B. 必要不充分条件

C. 充要条件

D. 既不充分也不必要条件

(004876) 如果 $x, y \in \mathbb{R}$, 那么 "x > 1 或 y > 2" 是 "x + y > 3" 的 ().

A. 充分不必要条件

B. 必要不充分条件

C. 充要条件

D. 既不充分也不必要条件

(004877)" $\frac{x^2+x+1}{3x+2} < 0$ "是"3x+2 < 0"的().

A. 充分不必要条件

B. 必要不充分条件

C. 充要条件

D. 既不充分也不必要条件

(004878)a,b,c 三个数不会	è为零的充要条件是().			
A. a, b, c 三个数都不是零		B. a, b, c 三个数中之多	B. a, b, c 三个数中之多有一个是零		
C. a, b, c 三个数中只有一个是零		D. a, b, c 三个数中至少	D. a, b, c 三个数中至少有一个不是零		
(004879) 己知 $p: x^2 + x$	-2 > 0, q: x > a. 若 o	q 是 p 的充分不必要条件, 则写	c数 a 的取值范围是 ()		
A. $a \ge 1$	B. $a \ge 1$	C. $a \ge -1$	D. $a \le -3$		
(004880) 方程 $ax^2 + 2x$ -	+ 1 = 0 至少有一个负 约	实数根的充要条件是 ().			
A. $0 < a \le 1$	B. $a > 1$	C. $a \leq 1$	D. $0 < a \le 1$ 或 $a < 0$		
(004881) 若集合 $A = \{-$	$1,1\}, B = \{x mx = 1\}$,且 $B \subseteq A$,则实数 m 的值为	().		
A. 1	В. –1	C. 1 或 −1	D. 1 或 -1 或 0		
•	S要条件; ③ "a – b < 0"	'是" $a^2 - b^2 < 0$ "的必要不充	不必要条件; ② "a – b < 0" 是 分条件; ④ "两个三角形全等" 是		
A. ①②	В. ①③	C. 23	D. ①④		
要条件是 $\operatorname{card}(A \cup B) =$	$\operatorname{card}(A) + \operatorname{card}(B); $	$A \subseteq B$ 的必要不充分条件是	出下列命题: ① $A \cap B = \emptyset$ 的充 \mathfrak{C} $\operatorname{card}(A) \leq \operatorname{card}(B)$; ③ $A \subseteq B$ = $\operatorname{card}(B)$. 其中真命题的个数是		
A. 0	B. 1	C. 2	D. 3		
(004884) 已知集合 $A = \{$	$\{-1, 3, 2m - 1\}, B = \{-1, 3,$	$\{3, m^2\}$,若 $B \subseteq A$,则实数 $m = 1$	=·		
(004885) 已知 p 是 r 的 f 件.	它分不必要条件, s 是 r	的必要条件, q 是 s 的必要条件	件, 那么 p 是 q 的 条		
(004886) 指出下列各命题 (1) $p:0 < x < 3, q: x-(2)$ $p:(x-2)(x-3)=0$	x - 1 < 2; x - 1 < 2;				
(3) $p: c = 0$, p : 抛物线 y (4) $p: A \subseteq B \subseteq U$, $q: C_U$		₹;			
(004887)" $xy > 0$ " 的一个	充分不必要条件是	·			
(004888) " $\sqrt{x} > \sqrt{y}$ " 的一	·个必要不充分条件是_	·			
(004889) " $a^2 + b^2 > 0$ "的	条件是 "a	<i>≠</i> 0".			
(004890) 若 $p: x \neq 2$ 且	$y \neq 3, q: x+y \neq 5,$ 则	是 p 是 q 成立的	条件.		

(004891) 若集合 $A = \{x|x^2+x-6=0\}, B = \{x|mx+1=0\}, 则 B 是 A$ 的真子集的一个充分不必要条件 是_____.

(004892) 已知 $p:\sqrt{x-1}>0$, q:|x|=-x, 试问: p 是 \bar{q} 的什么条件? 请说明理由.

(004893) 已知 $m > 0, p: -2 \le x \le 10, q: 1-m \le x \le -1+m,$ 若 \bar{p} 是 \bar{q} 的必要不充分条件, 求实数 m 的取 值范围.

(004894) 求证: "x + y = 5" 是 " $x^2 + y^2 - 3x + 7y = 10$ " 的充分不必要条件.

(004895) 设 $x, y \in \mathbb{R}$, 求证: |x + y| = |x| + |y| 成立的充要条件是 $xy \ge 0$.

(004896) 已知函数 $f(x) = ax - bx^2$.

- (1) 当 b > 0 时, 若对任何 $x \in \mathbf{R}$ 都有 $f(x) \le 1$, 求证: $a \le 2\sqrt{b}$;
- (2) 当 b > 1 时, 求证: "对任意 $x \in [0,1], |f(x)| \le 1$ " 的充要条件是 $b-1 \le a \le 2\sqrt{b}$.

(004897) 当 a > b > 0 时, 比较 $\frac{2a+b}{a+2b}$ 和 $\frac{a}{b}$ 的大小.

(004898) 已知 a > 0, $a \neq 1$, m > n > 0, 比较 $A = a^m + \frac{1}{a^m}$ 和 $B = a^n + \frac{1}{a^n}$ 的大小.

(004899) 若 a > b, 则下列各式中正确的是().

A. $a \lg x > b \lg x (x > 0)$ B. $ax^2 > bx^2$

C. $a^2 > b^2$

D. $2^x \cdot a > 2^x \cdot b$

item 设 ab>0, 且 $\frac{c}{a}>\frac{d}{b}$, 则下列各式中,恒成立的是 ().

A. bc < ad

B. bc > ad

C. $\frac{a}{a} > \frac{b}{d}$

D. $\frac{a}{c} < \frac{b}{d}$

(004900) 下列命题中, 不正确的一个是().

A. 若 $\sqrt[3]{a} > \sqrt[3]{b}$, 则 a > b

B. 若 a > b, c > d, 则 a - d > b - c

C. 若 a > b > 0, c > d > 0, 则 $\frac{a}{d} > \frac{b}{c}$

D. 若 a > b > 0, ac > bd, 则 c > d

(004901) 若 x < y < 0, 则有 (

A. $0 < x^2 < xy$ B. $y^2 < xy < x^2$ C. $xy < y^2 < x^2$ D. $y^2 > x^2 > 0$

(004902) 若 $a = \log_{0.2} 0.3$, $b = \log_{0.3} 0.2$, c = 1, 则 a, b, c 的大小关系是 ().

A. a > b > c

B. b > a > c

C. b > c > a

D. c > b > a

(004903) 用不等号 (">" 或 "<") 填空:

- (1) 若 $a \neq b$, 则 $a^2 + 3b^2$ _____2b(a + b);
- (3) 若 a > b, c > d, 且 a = d 都是负数, 则 $ac_{----}bd$.

(004904) 若 "a > b, $a - \frac{1}{a} > b - \frac{1}{b}$ " 同时成立, 则 ab 应满足的条件是______.

(004905) 已知 $a>0,\ b>0,\$ 且 $a\neq b,$ 比较 $\frac{a^2}{b}+\frac{b^2}{a}$ 与 a+b 的大小.

(004906) 已知 $0 < \frac{a}{b} < \frac{c}{d}$, 比较 $\frac{b}{a+b}$ 与 $\frac{d}{c+d}$ 的大小.

(004907) 若 x > y > 1, 0 < a < 1, 则下列各式中正确的一个是 ().

A.
$$x^{-a} > y^{-a}$$

B.
$$(\sin a)^x > (\sin a)^y$$
 C. $\log_{\frac{1}{a}} x < \log_{\frac{1}{a}} y$

C.
$$\log_{\frac{1}{2}} x < \log_{\frac{1}{2}} y$$

D.
$$1 + a^{x+y} > a^x + a^y$$

(004908) 已知 $a \in \mathbb{R}$, 比较 $\frac{1}{1+a}$ 与 1-a 的大小.

(004909) 设 $a>0,\, a\neq 1,\, t>0,$ 比较 $\frac{1}{2}\log_a t$ 和 $\log_a \frac{t+1}{2}$ 的大小.

(004910) 已知 x > y > 0, 比较 $\sqrt{\frac{y^2 + 1}{r^2 + 1}}$ 与 $\frac{y}{r}$ 的大小.

(004911) 已知 a, b, m, n 都是正实数, 且 m + n = 1, 比较 $\sqrt{ma + nb}$ 和 $m\sqrt{a} + n\sqrt{b}$ 的大小.

(004912) 解下列不等式:

(1)
$$6x^2 - 5x - 1 > 0$$
;

(2)
$$6x^2 - 5x - 1 < 0$$
;

(3)
$$5x^2 - 2x + 3 > 0$$
;

(4)
$$9x^2 + 6x + 1 > 0$$
;

(5)
$$3x^2 - 4x + 5 < 0$$
.

(004913) 已知关于 x 的不等式 $ax^2 + bx + c < 0$ 的解集是 $\{x | x < -2$ 或 $x > -\frac{1}{2}\}$, 求 $ax^2 - bx + c > 0$ 的解集.

(004914) 已知集合 $A = \{x|x^2 + (a-1)x - a > 0\}, B = \{x|(x+a)(x+b) > 0\}, a \neq b, M = \{x|x^2 - 2x - 3 \leq 0\}.$

- (1) 若 $\mathcal{C}_U B = M$, 求 a, b 的值;
- (3) 若 -3 < a < -1, 且 $a^2 1 \in C_U A$, 求实数 a 的取值范围.

(004915) 已知函数 $y = (k^2 + 4k - 5)x^2 + 4(1 - k)x + 3$ 的图象都在 x 轴的上方, 求实数 k 的取值范围.

(004916) 已知 a < b, 则下列各式中恒成立的是 ().

A.
$$a^2 < b^2$$

B.
$$c - a > c - b$$
 C. $|a| < |b|$

C.
$$|a| < |b|$$

D.
$$a - 1 > b - 2$$

(004917) 若 |x| > 2, 则 ().

A.
$$x > 2$$

B.
$$x > \pm 2$$

C.
$$-2 < x < 2$$

C.
$$-2 < x < 2$$
 D. $x > 2$ **g** $x < -2$

(004918) 不等式 |x|-3<0 的解集是 ().

A.
$$\{x | x < \pm 3\}$$

A.
$$\{x|x < \pm 3\}$$
 B. $\{x|-3 < x < 3\}$ C. $\{x|x > 3\}$ D. $\{x|x < -3\}$

C.
$$\{x | x > 3\}$$

D.
$$\{x | x < -3\}$$

(004919) 已知集合 $M = \{x||x| > 2\}, N = \{x|x < 3\},$ 则下列结论正确的是 ().

A.
$$M \cup N = M$$

B.
$$M \cap N = \{x | 2 < x < 3\}$$

C.
$$M \cup N = R$$

D.
$$M \cap N = \{x | x < -2\}$$

(004920) 已知集合 $M = \{x | |x+1| \le 2\}, P = \{x | x \le 2 \text{ 或 } x \ge 3\}, \text{ 则 } M, P \text{ 之间的关系是 } ($).

A. $M \supset P$

B. $M \supset P$

C. $M \subseteq P$

D. $M \subset P$

(004921) 已知 $|1-x| + \sqrt{x^2 - 4x + 4} = 1$, 则 x 的取值范围是 ().

A. 1 < x < 2

B. x < 1

C. x < 1 或 x > 2

D. $x \geq 2$

(004922) 不等式 $2x + 3 - x^2 > 0$ 的解集是 ().

A. $\{x|-\frac{3}{2} \le x < 1\}$ B. $\{x|-1 < x < 3\}$ C. $\{x|1 \le x < 3\}$ D. $\{x|-\frac{3}{2} \le x < 3\}$

(004923) 不等式 $6x^2 + 5x < 4$ 的解集是 (

A. $\{x|x<-\frac{4}{2}$ 或 $x>\frac{1}{2}\}$ B. $\{x|-\frac{4}{3}< x<\frac{1}{2}\}$. C. $\{x|-\frac{1}{2}< x<\frac{4}{3}\}$. D. $\{x|x<-\frac{1}{2}$ 或 $x>\frac{4}{3}\}$

(004924) 当 a < 0 时, 关于 x 的不等式 $x^2 - 4ax - 5a^2 > 0$ 的解集是 ().

A. $\{x|x > 5a$ 或 $x < -a\}$ B. $\{x|x < 5a$ 或 $x > -a\}$ C. $\{x|-a < x < 5a\}$ D. $\{x|5a < x < -a\}$

(004925) 若 x 为实数,则下列命题正确的是 ().

A. $x^2 > 2$ 的解集是 $\{x | x > \pm \sqrt{2}\}$

B. $(x-1)^2 < 2$ 的解集是 $\{x|1-\sqrt{2} < x < 1+\sqrt{2}\}$

C. $x^2 - 9 < 0$ 的解集是 $\{x | x < 3\}$

D. 设 x_1, x_2 为 $ax^2 + bx + c = 0$ 的两个实根, 且 $x_1 > x_2$, 则 $ax^2 + bx + c > 0$ 的解集是 $\{x | x_2 < x < x_1\}$

(004926) 在① $x^2 - 2x - 3 < 0$ 与 $\frac{x^2 - 2x}{x - 1} < \frac{3}{x - 1}$; ② $x^2 + 3x - 4 > 0$ 与 $x^2 + 3x + \sqrt{x} > 4 + \sqrt{x}$; ③ $\frac{(x+2)(x^2-1)}{x+2} > 0$ 与 $x^2-1>0$ " 三组不等式中,解集相同的组数是 ().

A. 0

B. 1

C. 2

D. 3

(004927) 若 $x^2 + x < 0$, 则 $x^2, x, -x^2, -x$ 的大小关系是 ().

A. $x^2 > x > -x^2 > -x$ B. $-x > x^2 > -x^2 > x$ C. $-x > x^2 > x > -x^2$ D. $x^2 > -x > x > -x^2$

(004928) 直接写出下列不等式的解集:

(1) $(x-1)^2 > 0$:_____;

(2) (2-x)(3x+1) > 0:_____;

(3) $1 - 3x^2 > 2x$:_____;

(4) $1 - 2x - x^2 \ge 0$:_____;

(5) $x + \sqrt{x} - 6 < 0$:_____.

(004929) 直接写出下列不等式的解集:

(1) $\frac{3x+4}{x-2} \ge 0$:_____; (2) $\frac{4-2x}{1+3x} > 0$:_____;

(3) $\frac{1}{x} > x$:_____;

- (4) $x^2 2|x| 3 > 0$: ;
- (5) $x^2 x 5 > |2x 1|$:
- (004930) 若 $\sqrt{x^2 x 6} \in \mathbf{R}$, 则 x 的取值范围为______.
- (004931) 要使代数式 $\frac{\sqrt{x-3}}{\sqrt{x^2-3x+2}}$ 有意义, 实数 x 的取值范围是_
- (004932) 若代数式 $6x^2 + x 2$ 的值恒取非负实数, 则实数 x 的取值范围是
- (004933) 不等式 $4 \le x^2 3x < 18$ 的整数解集是 . .
- (004934) 已知实数 x 满足 $4x^2 4x 15 \le 0$, 化简 $\sqrt{x^2 8x + 16} |x 3|$.
- (004935) 已知 a > b, 直接写出下列不等式的解集:
- (1) $\frac{x-a}{x-b} \ge 0$:_____; (2) $\frac{x-a}{x-b} < 0$:_____;
- (3) $x^2 (a b)x + ab > 0$:__ ;
- $(4) x^2 (a-b)x + ab < 0:$
- (004936) 若关于 x 的方程 $2kx^2 + (8k+1)x + 8k = 0$ 有两个不等实根, 则实数 k 的取值范围是
- (004937) 已知 $a \neq 0$, 若关于 x 的不等式 $ax^2 2ax + 2a + 3 > 0$ 无实数解, 则 a 的取值范围是
- (004938) 不等式 $\frac{x-1}{2x} \le 1$ 的解集是 ().

- A. $\{x|x \ge -1\}$ B. $\{x|x \le -1\}$ C. $\{x|-1 \le x < 0\}$ D. $\{x|x \le -1$ 或 $x > 0\}$
- (004939) 若关于 x 的二次不等式 $mx^2 + 8mx + 21 < 0$ 的解集是 $\{x|-1 < x < -1\}$, 则实数 m 的值等于 ().
- A. 1

B. 2

C. 3

- D. 4
- (004940) 若关于 x 的不等式 $(a^2-3)x^2+5x-2>0$ 的解集是 $\{x|\frac{1}{2}< x<2\}$, 则实数 a 的值等于 (x,y)
- A. 1

 $C. \pm 1$

- D. 0
- (004941) 若关于 x 的不等式 $ax^2 + bx + c < 0 (a \neq 0)$ 的解集是空集, 则 ().

- (004942) 若对任何实数 x, 二次函数 $y = ax^2 x + c$ 的值恒为负, 则 a, c 应满足 (
- B. $\begin{cases} a < 0, \\ ac < \frac{1}{4} \end{cases}$ C. $\begin{cases} a < 0, \\ ac > \frac{1}{2} \end{cases}$ D. $\begin{cases} a < 0, \\ ac < 0 \end{cases}$
- (004943) 若对任意实数 x, 不等式 $x^2 + 2(1+k)x + 3 + k > 0$ 恒成立, 则 k 的取值范围是 ().
- A. -1 < k < 2
- B. $-1 \le k \le 2$ C. -2 < k < 1
- D. $-2 \le k \le 1$

A. $-2 < k < 1$		B. $-2 \le k < -1$ 或 $\frac{2}{3} < k \le$	1
C. $k < -1$ 或 $k > \frac{2}{3}$		D. $-2 < k < 1$ 或 $\frac{2}{3} < k < 1$	
(004945) 已知关于 x 的方程	$(m+3)x^2 - 4mx + 2m -$	1=0 的两根异号, 且负根的组	色对值比正根大, 那么实数
m 的取值范围是 ().			
A. $-3 < m < 0$	B. $0 < m < 3$	C. $m < -3$ 或 $m > 0$	D. $m < 0$ 或 $m > 3$
(004946) 若 α, β 是关于 x 的	的方程 $x^2 - (k-2)x + k^2 +$	-3k + 5 = 0(k 为实数) 的两个	实根,则 $\alpha^2 + \beta^2$ 的最大
值等于 ().			
A. 19	B. 18	C. $\frac{50}{9}$	D6
(004947) 不等式 $(x-1)(x-1)$	(x-2)(x-3)(x-4) > 120 的	解为 ().	
A. $x > 6$	B. $x < -1$ 或 $x > 6$	C. $x < -1$	D. $-1 < x < 6$
(004948) 在三个关于 x 的方	程 $x^2 - ax + 4 = 0$, $x^2 + (a^2 + b^2)$	$(a-1)x + 16 = 0 \Re x^2 + 2ax$	+3a+10=0 中, 已知至
少有一个方程有实根,则实数	女 a 的取值范围是 ().		
A. $-4 \le a \le 4$	B. $-2 < a < 4$	C. $a \le -2$ 或 $a \ge 4$	D. $a < 0$
(004949) 若关于 x 的二次	方程 $x^2 - 2mx + 4x + 2m$	$n^2 - 4m - 2 = 0$ 有实根,!	则其两根之积的最大值等
于			
(004950) 使关于 x 的方程 x	$k^2 - kx + 2k - 3 = 0$ 的两实	云根的平方和取最小值, 实数 k	的值等于
(004951) 若关于 x 的不等	式 $x^2 - mx + n \le 0$ 的角	解集是 $\{x -5 \le x \le 1\}$,	则实数 m =
$n = \underline{\hspace{1cm}}$.			
(004952) 若关于 x 的不等式	$ax^2 + bx + 1 \ge 0$ 的解集是 {	$x -5 \le x \le 1$ }, 则实数 $a =$	b =
		解集是 $\{x -\frac{1}{2} < x < \frac{1}{3}\},$	
b =		377	
(004954) 若关于 x 的不等式	$ax^2 + bx - 6 > 0$ 的解集是	{x 2 < x < 3}, 则实数 a =	b =
(004955) 若关于 x 的不等式	(a+b)x + (2a-3b) < 0	为解集是 {x x > 3}, 则不等式	(a-3b)x+b-2a>0 的
解集是			
(004956) 若关于 x 的不等式	$ax^2 + bx + c < 0$ 的解集是 {x	$x x<-2$ 或 $x>-rac{1}{2}\}$,则关于 x	c 的不等式 $ax^2-bx+c>0$
的解集是		2	
(004957) 解不等式 $x^4 - 2x^2$	$+1 > x^2 - 1.$		

(004944) 若关于 x 的二次方程 $2(k+1)x^2+4kx+3k-2=0$ 的两根同号, 则 k 的取值范围是 ().

- (004958) 已知关于 x 的不等式 $kx^2 2x + 6k < 0 (k \neq 0)$.
- (1) 若不等式的解集是 $\{x|x < -3$ 或 $x > -2\}$, 求实数 k 的值;
- (2) 若不等式的解集是 $\{x|x\neq \frac{1}{k}\}$, 求实数 k 的值;
- (3) 若不等式的解集是实数集, 求实数 k 的值.
- (004959) 已知关于 x 的方程 m(x-1) = 3(x+2) 的解是正实数, 求实数 m 的取值范围.
- (004960) 已知关于 x 的方程 $\frac{1}{4}x^2 kx + 5k 6 = 0$ 无实数解, 求实数 k 的取值范围.
- (004961) 已知关于 x 的方程 $kx^2 (3k-1)x + k = 0$ 有两个正实数根, 求实数 k 的取值范围.
- (004962) 已知集合 $M = \{x|x^2 7x + 10 \le 0\}$, $N = \{x|x^2 (2-m)x + 5 m \le 0\}$, 且 $N \subseteq M$, 求实数 m 的取值范围.
- (004963) 已知集合 $A = \{x|x^2 + 4x + p < 0\}, B = \{x|x^2 x 2 > 0\},$ 且 $A \subseteq B$, 求实数 p 的取值范围.
- (004964) 已知集合 $A = \{x|x^2 + ax + 1 \le 0\}, B = \{x|x^2 3x + 2 \le 0\},$ 且 $A \subseteq B$, 求实数 a 的取值范围
- (004965) 已知集合 $A = \{x|x^2 2x 3 \le 0\}$, $B = \{x|x^2 + px + q < 0\}$, 且 $A \cap B = \{x|-1 \le x < 2\}$, 求实数 p,q 的关系式及其取值范围.
- (004966) 已知集合 $A = \{x|-2 < x < -1$ 或 $x > \frac{1}{2}\}$, $B = \{x|x^2 + ax + b \le 0\}$, 且 $A \cup B = \{x|x+2 > 0\}$, $A \cap B = \{x|\frac{1}{2} < x \le 3\}$, 求 a,b 的值.
- (004967) 要使代数式 $mx^2 + (m-1)x + (m-1)$ 的值恒为负值, 求实数 m 的取值范围.
- (004968) 已知关于 x 的不等式 $(a^2-4)x^2+(a+2)x-1\geq 0$ 的解集是空集, 求实数 a 的取值范围.
- (004969) 若关于 x 的不等式 $\frac{x^2 8x + 20}{mx^2 + 2(m+1)x + 9m + 4} < 0$ 的解集为 \mathbf{R} , 求实数 m 的取值范围.
- (004970) 当 $0^{\circ} < \varphi < 90^{\circ}$ 时, 要使 $\frac{x^2 6x + 8}{x^2 + 2} = \sin \varphi$ 恒成立, 求实数 x 的取值范围.
- (004971) 既要使关于 x 的不等式 $x^2+(m-\frac{1}{2})x-\frac{7}{16}\leq 0$ 有实数解, 又要使关于 x 的方程 $(2m+3)x^2+mx+\frac{m-2}{4}=0$ 有实数解, 求实数 m 的取值范围.
- (004972) 为长 80cm、宽 60cm 的工作台做一块台布, 使台布的面积是台面面积的两倍以上, 并使台子四边垂下的长度相等, 问: 垂下的长度至少是多少 (精确到 0.1cm)?
- (004973) 已知非零实数 x, y, z, 满足 x + y + z = xyz, $x^2 = yz$, 求证: $x^2 \ge 3$.
- (004974) 已知 $a+b \ge 0$, 求证: $a^3+b^3 \ge a^2b+ab^2$.
- (004975) 设 $a, b \in \mathbb{R}^+$, 且 $a \neq b$, 求证: $a^a b^b > a^b b^a$.
- (004976) 已知 $a, b, c \in \mathbb{R}$, 求证: $a^2 + b^2 + c^2 > ab + bc + ca$.

(004977) 已知 a, b, c > 0, 求证: $(1) (a+b)(\frac{1}{a} + \frac{1}{b}) \ge 4$;

(2)
$$(a+b+c)(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}) \ge 9.$$

(004978) 已知正数 a, b 满足 a + b = 1, 求证: $\sqrt{2a + 1} + \sqrt{2b + 1} \le 2\sqrt{2}$.

$$(004979) 已知 $\alpha, \beta \in (0, \frac{\pi}{2}), \ \text{且} \ \alpha \neq \beta, \$ 求证: $\tan \alpha + \tan \beta > 2 \tan \frac{\alpha + \beta}{2}.$$$

(004980) 记
$$f(x) = x^2 + ax + b$$
, 求证: $|f(1)|, |f(2)|, |f(3)|$ 中至少有一个不小于 $\frac{1}{2}$.

(004981) 已知
$$-1 \le x \le 1$$
, $n \ge 2$, $n \in \mathbb{N}$, 求证: $(1-x)^n + (1+x)^n \le 2^n$.

(004982) 已知
$$x + 2y + 3z = 12$$
, 求证: $x^2 + 2y^2 + 3z^2 \ge 24$.

(004983) 已知 $a, b, c \in \mathbb{R}^+$, 求证: $a^3 + b^3 + c^3 \ge 3abc$ (当且仅当 a = b = c 时取等号).

(004984) 已知
$$a > 0$$
, 求证: $x + \frac{1}{x} + \frac{1}{x + \frac{1}{x}} \ge \frac{5}{2}$.

(004985) 已知实数 a,b,c 满足 a+b+c=0 和 abc=2, 求证: a,b,c 中至少有一个不小于 2.

(004986) 已知
$$0 < a < 1, 0 < b < 1,$$
 求证: $\sqrt{a^2 + b^2} + \sqrt{(a-1)^2 + b^2} + \sqrt{a^2 + (b-1)^2} + \sqrt{(a-1)^2 + (b-1)^2} \ge 2\sqrt{2}$.

(004987) 已知实数
$$x, y, z$$
 不全为零,求证: $\sqrt{x^2 + xy + y^2} + \sqrt{y^2 + yz + z^2} + \sqrt{z^2 + zx + x^2} > \frac{3}{2}(x + y + z)$.

(004988) 己知
$$x \ge 0$$
, $y \ge 0$, 求证: $\frac{1}{2}(x+y)^2 + \frac{1}{4}(x+y) \ge x\sqrt{y} + y\sqrt{x}$.

(004989) 求证:
$$1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \dots + \frac{1}{n^2} < \frac{7}{4} (n \in \mathbf{N}^*).$$

(004990) 已知
$$x > 0$$
, $y > 0$, a, b 是正常数, 且满足 $\frac{a}{x} + \frac{b}{y} = 1$, 求证: $x + y \ge (\sqrt{a} + \sqrt{b})^2$.

(004991) 已知正数 a, b 满足 $a^2b = 1$, 求 a + b 的最小值.

$$(004992)$$
 求 $\sin^2 \alpha \cos^2 \alpha + \frac{1}{\sin^2 \alpha \cos^2 \alpha}$ 的最小值.

(004993) 已知直角三角形的周长为定值 1, 求它面积的最大值.

(004994) 已知圆柱的体积为定值 V, 求圆柱全面积的最小值.

(004995) 从半径为 R 的圆形铁片里剪去一个扇形, 然后把剩下部分卷成一个圆锥形漏斗, 要使漏斗有最大容量, 剪去扇形的圆心角 θ 应是多少弧度?

(004996) 在 Rt $\triangle ABC$ 中, 已知 $\angle C = 90^\circ$, $\angle A$, $\angle B$, $\angle C$ 的对边 a,b,c 满足 a+b=cx. 设 $\triangle ABC$ 绕直线 AB 旋转一周所得的旋转体的侧面积为 S_1 , $\triangle ABC$ 的内切圆面积为 S_2 . 求:

- (1) 函数 $f(x) = \frac{S_1}{S_2}$ 的解析式和定义域;
- (2) 函数 f(x) 的最小值

(004997) 用比较法证明以下各题:

(1) 已知
$$a > 0$$
, $b > 0$, 求证: $\frac{1}{a} + \frac{1}{b} \ge \frac{2}{\sqrt{ab}}$;

(2) 已知
$$a > 0$$
, $b > 0$, 求证: $\frac{b}{\sqrt{a}} + \frac{a}{\sqrt{b}} \ge \sqrt{a} + \sqrt{b}$; (3) 已知 $a > 0$, $b > 0$, 求证: $a^2 + b^2 \ge (a + b)\sqrt{ab}$;

(3) 已知
$$a > 0$$
, $b > 0$, 求证: $a^2 + b^2 \ge (a+b)\sqrt{ab}$;

(4) 已知
$$0 < x < 1$$
, 求证: $\frac{a^2}{x} + \frac{b^2}{1-x} \ge (a+b)^2$.

(004998) 已知 $a \ge 0$, $b \ge 0$, 求证: $a^3 + b^3 \ge a^2b + b^2a$.

(004999) 已知
$$x \in \mathbf{R}^+, y \in \mathbf{R}^+, n \in \mathbf{N},$$
求证: $x^{n+1} + y^{n+1} \ge x^n y + x y^n$.

$$(005000)$$
 已知 $a>0, b>0, c>0, 求证: $a(b^2+c^2)+b(c^2+a^2)+c(a^2+b^2)\geq 6abc.$$

(005001) 求证:
$$a^5 + b^5 \ge \frac{1}{2}(a^3 + b^3)(a^2 + b^2)(a > 0, b > 0)$$
.

(005002) 求证:
$$a^2 + b^2 + c^2 \ge ab + bc + ca(a, b, c$$
 是实数).

(005003) 已知
$$a > b > c$$
, 求证: $a^2b + b^2c + c^2a > ab^2 + bc^2 + ca^2$.

(005004) 在 $\triangle ABC$ 中, 记 a, b, c 分别是角 A, B, C 的对边, S 是 $\triangle ABC$ 的面积, 求证: $c^2 - a^2 - b^2 + 4ab \ge 4\sqrt{3}S$.

(005005) 设
$$a, b \in \mathbb{N}$$
, 则 $\sqrt{2}$ 在 $\frac{b}{a}$ 与 $\frac{2a+b}{a+b}$ 之间.

(005006) 已知
$$a, b, c$$
 都是正数, 求证: $a^{2a}b^{2b} \ge a^{b+c}b^{c+a}c^{a+b}$.

(005007) 下列命题中, 正确的一个是(

A. 若
$$a, b, c \in \mathbf{R}$$
, 且 $a > b$, 则 $ac^2 > bc^2$

A. 若
$$a, b, c \in \mathbf{R}$$
, 且 $a > b$, 则 $ac^2 > bc^2$ B. 若 $a, b \in \mathbf{R}$, 且 $a \cdot b \neq 0$, 则 $\frac{a}{b} + \frac{b}{a} \geq 2$ C. 若 $a, b \in \mathbf{R}$, 且 $a > |b|$, 则 $a^n > b^n (n \in \mathbf{N})$ D. 若 $a > b$, $c < d$, 则 $\frac{a}{c} > \frac{b}{d}$

$$C$$
 其 $a,b \in \mathbf{R}$ 日 $a > |b|$ 即 $a^n > b^n (n \in \mathbf{N})$

D. 若
$$a > b$$
, $c < d$, 则 $\frac{a}{c} > \frac{b}{d}$

(005008) 下列各式中, 对任何实数 x 都成立的一个是(

A.
$$\lg(x^2+1) \ge \lg 2x$$
 B. $x^2+1 > 2x$ C. $\frac{1}{x^2+1} \le 1$ D. $x+\frac{1}{x} \ge 2$

B.
$$x^2 + 1 > 2x$$

C.
$$\frac{1}{x^2 + 1} \le 1$$

D.
$$x + \frac{1}{x} \ge 2$$

(005009) 已知, $a,b \in \mathbf{R}$, 且 $a,b \neq 0$, 则在① $\frac{a^2+b^2}{2} \geq ab$; ② $\frac{b}{a}+\frac{a}{b} \geq 2$; ③ $ab \leq (\frac{a+b}{2})^2$; ④ $(\frac{a+b}{2})^2 \leq ab$ $\frac{a^2+b^2}{2}$ 这四个式子中,恒成立的个数是 ().

小值为___

(005012) 若 a>1, b>1, c>1, 则 $\log_a b + \log_b a$ 的最小值为______, $\log_a b + \log_b c + \log_c a$ 的最小值 为_____

(005013) 若 $0 < a < 1, 0 < b < 1, 则 <math>\log_a b + \log_b a$ 的最小值为_____

(005014) 若 a > 1, 0 < b < 1, 则 $\log_a b + \log_b a$ 的最大值为

(005015) 设 a, b 为正数, 且 $a + b \le 4$, 则下列各式中, 一定正确的是 (

A.
$$\frac{1}{a} + \frac{1}{b} \le \frac{1}{4}$$

A.
$$\frac{1}{a} + \frac{1}{b} \le \frac{1}{4}$$
 B. $\frac{1}{4} \le \frac{1}{a} + \frac{1}{b} \le \frac{1}{2}$ C. $\frac{1}{2} \le \frac{1}{a} + \frac{1}{b} \le 1$ D. $\frac{1}{a} + \frac{1}{b} \ge 1$

C.
$$\frac{1}{2} \le \frac{1}{a} + \frac{1}{b} \le 1$$

D.
$$\frac{1}{a} + \frac{1}{b} \ge 1$$

(005016) 若 a, b, c 均大于 1, 且 $\log_a c \cdot \log_b c = 4$, 则下列各式中, 一定正确的是 (

A.
$$ac \geq b$$

B.
$$ab > c$$

C.
$$bc \geq a$$

D.
$$ab \leq c$$

(005017) 若 a > 0, b > 0, 且 $a \neq b$, 则下列各式恒成立的是(

A.
$$\frac{2ab}{a+b} < \frac{a+b}{2} < \sqrt{ab}$$
 B. $\sqrt{ab} < \frac{2ab}{a+b} < \frac{a+b}{2}$ C. $\frac{2ab}{a+b} < \sqrt{ab} < \frac{a+b}{2}$ D. $\sqrt{ab} < \frac{a+b}{2} < \frac{2ab}{a+b}$

B.
$$\sqrt{ab} < \frac{2ab}{a+b} < \frac{a+b}{2}$$

C.
$$\frac{2ab}{a+b} < \sqrt{ab} < \frac{a+b}{2}$$

D.
$$\sqrt{ab} < \frac{a+b}{2} < \frac{2ab}{a+b}$$

(005018) 利用公式 $a^2 + b^2 \ge 2ab$ 或 $a + b \ge 2\sqrt{ab}(a, b \ge 0)$, 求证: 若 x > 0, y > 0, 则 $\sqrt{(1+x)(1+y)} \ge 2ab$ $1+\sqrt{xy}$.

 $(005019) \ \hbox{利用公式} \ a^2 + b^2 \geq 2ab \ \hbox{或} \ a + b \geq 2\sqrt{ab}(a,b \geq 0), \ \hbox{求证:} \ \hbox{若} \ a > 0, \ b > 0, \ c > 0, \ \hbox{则} \ ab(a+b) + bc(b+b)$ $c) + ca(c+a) \ge 6abc$.

(005020) 利用公式 $a^2 + b^2 \ge 2ab$ 或 $a + b \ge 2\sqrt{ab}(a, b \ge 0)$, 求证: 若 a > 0, b > 0, 则 $a + b + \frac{1}{\sqrt{ab}} \ge 2\sqrt{2}$.

(005021) 利用公式 $a^2 + b^2 \ge 2ab$ 或 $a + b \ge 2\sqrt{ab}(a, b \ge 0)$, 求证: 若 $m = x\cos^2\theta + y\sin^2\theta$, $n = x\sin^2\theta + y\cos^2\theta$, 则 $mn \ge xy$.

(005022) 利用公式 $a^2+b^2\geq 2ab$ 或 $a+b\geq 2\sqrt{ab}(a,b\geq 0)$, 求证: 若 x+3y-1=0, 则 $2^x+8^y\geq 2\sqrt{2}$.

(005023) 利用公式 $a^2+b^2 \geq 2ab$ 或 $a+b \geq 2\sqrt{ab}(a,b \geq 0)$, 求证: $\log_{0.5}(\frac{1}{4a}+\frac{1}{4b}) \leq a+b-1$.

(005024) 已知 x > 0, y > 0, x + y = 1, 求证:

$$(1) (1 + \frac{1}{x})(1 + \frac{1}{y}) \ge 9;$$

$$(2) \left(\frac{1}{x^2} - 1\right) \left(\frac{1}{y^2} - 1\right) \ge 9.$$

(005025) 已知 a > 0, b > 0, c > 0, a + b + c = 1, 求证: $(1 - a)(1 - b)(1 - c) \ge 8abc$.

$$(005026) \ \textbf{己知} \ a>0, \ b>0, \ c>0, \ a+b+c=1, \ 求证: \ (\frac{1}{a}-1)(\frac{1}{b}-1)(\frac{1}{c}-1)\geq 8.$$

(005027) 已知
$$a>0,\,b>0,\,c>0,\,a+b+c=1,$$
 求证: $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\geq 9.$

$$(005028)$$
 已知 $a > 0$, $b > 0$, $c > 0$, $a + b + c = 1$, 求证: $\frac{1}{abc} \ge 27$.

(005029) 已知
$$a>0,\ b>0,\ c>0,\ a+b+c=1,$$
 求证: $(1+\frac{1}{a})(1+\frac{1}{b})(1+\frac{1}{c})\geq 64.$

$$(005030) \ \textbf{利用公式} \ \frac{a+b+c}{3} \leq \sqrt{\frac{a^2+b^2+c^2}{3}}, \, \mathbf{求证} \colon \sqrt{a^2+b^2+\sqrt{b^2}} + c^2 + \sqrt{c^2} + a^2 \geq \sqrt{2}(a+b+c).$$

$$(005031) \ \textbf{利用公式} \ \frac{a+b}{2} \leq \sqrt{\frac{a^2+b^2}{2}}, \ \textbf{求证} \colon \ \\ \ddot{\textbf{z}} \ a+b = 1 \\ (a,b \geq 0), \ \textbf{则} \ \sqrt{2a+1} + \sqrt{2b+1} \leq 2\sqrt{2}.$$

(005033) 利用公式
$$\frac{a+b}{2} \le \sqrt{\frac{a^2+b^2}{2}}$$
, 求证: $a\cos\varphi + b\sin\varphi + c \le \sqrt{2(a^2+b^2+c^2)}$.

(005034) 利用 $a^2+b^2+c^2 \ge ab+bc+ca(a,b,c \in \mathbf{R})$, 证明: 若 $a>0,\,b>0,\,c>0$, 则 $\frac{a^2}{b^2}+b^2c^2+c^2a^2a+b+c \ge abc$.

(005035) 利用 $a^2+b^2+c^2 \geq ab+bc+ca(a,b,c\in {\bf R})$, 证明: 若半径为 1 的圆内接 $\triangle ABC$ 的而积为 $\frac{1}{4}$, 二边长分别为 a,b,c, 则

(1) abc = 1;

(2)
$$\sqrt{b} + \sqrt{c} < \frac{1}{a} + \frac{1}{b} + \frac{1}{c}$$
.

(005036) 利用 $a^2 + b^2 + c^2 \ge ab + bc + ca(a,b,c \in \mathbf{R})$, 证明: 若 a,b,c > 0, $n \in \mathbf{N}$, $f(n) = \lg \frac{a^n + b^n + c^n}{3}$, 则 $2f(n) \le f(2n)$.

(005037) 利用放缩法并结合公式 $ab \leq (\frac{a+b}{2})^2$, 证明: $\lg 9 \cdot \lg 11 < 1$.

(005038) 利用放缩法并结合公式 $ab \leq (\frac{a+b}{2})^2$, 证明: $\log_a(a-1) \cdot \log_a(a+1) < 1(a>1)$.

(005039) 利用放缩法并结合公式 $ab \leq (\frac{a+b}{2})^2$, 证明: 若 a > b > c, 则 $\frac{1}{a-b} + \frac{1}{b-c} + \frac{4}{c-a} \geq 0$.

(005040) 利用放缩法证明: $\frac{1}{n} + \frac{1}{n+1} + \frac{1}{n+2} + \frac{1}{n+3} + \frac{1}{n+4} + \dots + \frac{1}{n^2} > 1(n \in \mathbb{N}, n \ge 2).$

(005041) 利用放缩法证明: $\frac{1}{2} \le \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} < 1(n \in \mathbb{N}).$

(005042) 利用放缩法证明: 已知 $a>0,\,b>0,\,c>0,\,$ 且 $a^2+b^2=c^2,\,$ 求证: $a^n+b^n< c^n (n\geq 3,\,n\in {\bf N}).$

(005043) 利用拆项法证明: 若 x > y, xy = 1, 则 $\frac{x^2 + y^2}{x - y} \ge 2\sqrt{2}$.

(005044) 利用拆项法证明: $\frac{1}{2}(a^2+b^2)+1 \ge \sqrt{a^2+1} \cdot \sqrt{b^2+1}$.

 $(005045) \ \textbf{利用拆项法证明} \colon 若 \ a > 0, \ b > 0, \ c > 0, \ \underline{\mathsf{M}} \ 2(\frac{a+b}{2} - \sqrt{ab}) \leq 3(\frac{a+b+c}{3} - \sqrt[3]{abc}).$

(005046) 利用拆项法证明: $2(\sqrt{n+1}-1) < 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}} < 2\sqrt{n} (n \in \mathbf{N}).$

(005047) 利用逆代法证明: 若正数 x, y 满足 x + 2y = 1, 则 $\frac{1}{x} + \frac{1}{y} \ge 3 + 2\sqrt{2}$.

(005048) 利用逆代法证明: $\frac{1}{\sin^2 \alpha} + \frac{3}{\cos^2 \alpha} \ge 4 + 2\sqrt{3}$.

(005049) 利用逆代法证明: 若 x,y>0, a,b 为正常数, 且 $\frac{a}{x}+\frac{a}{y}=1$, 则 $x+y\geq (\sqrt{a}+\sqrt{b})^2$.

(005050) 利用判别式法证明: $\frac{1}{3} \le \frac{x^2 - x + 1}{x^2 + x + 1} \le 3$.

- (005051) 利用判别式法证明: 若关于 x 的不等式 $(a^2-1)x^2-(a-1)x-1<0(a\in {\bf R})$ 对仟意实数 x 恒成立, 则 $-\frac{3}{5}< a\leq 1$.
- (005052) 利用函数的单调性证明: 若 $x>0, y>0, x+y=1, 则 (x+\frac{1}{x})(y+\frac{1}{y})\geq \frac{25}{4}.$
- $(005053) \ \hbox{ 利用函数的单调性证明: } \hbox{ \hbox{$\stackrel{\cdot}{R}$}} \ 0 < a < \frac{1}{k} (k \geq 2, k \in {\bf N}), \ \underline{{\bf L}} \ a^2 < a b, \ \underline{{\bf M}} \ b < \frac{1}{k+1}.$
- (005054) 利用三角换元法证明: 若 $a^2 + b^2 = 1$, 则 $a \sin x + b \cos x \le 1$.
- (005055) 利用三角换元法证明: 若 |a| < 1, |b| < 1, 则 $|ab \pm \sqrt{(1-a^2)(1-b^2)}| \le 1$.
- (005056) 利用三角换元法证明: 若 $x^2 + y^2 \le 1$, 则 $-\sqrt{2} \le x^2 + 2xy y^2 \le \sqrt{2}$.
- (005057) 利用三角换元法证明: 若 $|x| \le 1$, 则 $(1+x)^n + (1-x)^n \le 2^n$.
- (005058) 利用三角换元法证明: 若 $a>0,\ b>0,\$ 且 $a-b=1,\$ 则 $0<\frac{1}{a}(\sqrt{a}-\frac{1}{\sqrt{a}})(\sqrt{b}+\frac{1}{\sqrt{b}})<1.$
- (005059) 利用三角换元法证明: $0 < \sqrt{1+x} \sqrt{x} \le 1$.
- (005060) 试构造几何图形证明: 若 $f(x) = \sqrt{1+x^2}$, x > b > 0, 则 |f(a) f(b)| < |a b|.
- (005061) 试构造几何图形证明: 若 x, y, z > 0, 则 $\sqrt{x^2 + y^2 + xy} + \sqrt{y^2 + z^2 + yz} > \sqrt{z^2 + x^2 + zx}$.
- (005062) 利用均值换元证明: 若 $a>0,\,b>0,$ 且 a+b=1, 则 $\frac{4}{3}\leq \frac{1}{a+1}+\frac{1}{b+1}<\frac{3}{2}.$
- (005063) 利用均值换元证明: 若 a+b+c=1, 则 $a^2+b^2+c^2\geq \frac{1}{3}$.
- (005064) 利用设差换元证明: 若 $x \ge y \ge 0$, 则 $\sqrt{2xy y^2} + \sqrt{x^2 y^2} \ge x$.
- (005065) 已知 a, b, c 都是正数, 求证: $a^a b^b c^c \ge (abc)^{\frac{a+b+c}{3}}$.
- (005066) 已知正数 a, b 满足 a + b = 1, 求证: $(ax + by)(ay + bx) \ge xy$.
- (005067) 已知正数 a, b 满足 a + b = 1, 求证: $(a + \frac{1}{a})^2 + (b + \frac{1}{b})^2 \ge \frac{25}{2}$.
- (005068) 已知正数 a, b 满足 a + b = 1, 求证: $(a + \frac{1}{a})(b + \frac{1}{b}) \ge \frac{25}{4}$.
- $(005069) \ \textbf{已知正数} \ a,b,c \ 满足 \ a+b+c=1, \ 求证: \ (a+\frac{1}{a})+(b+\frac{1}{b})+(c+\frac{1}{c})\geq 10.$
- $(005070) \ \textbf{已知正数} \ a,b,c \ 满足 \ a+b+c=1, \ 求证: \ (a+\frac{1}{a})^2+(b+\frac{1}{b})^2+(c+\frac{1}{c})^2\geq \frac{100}{3}$
- (005071) 已知正数 a,b,c 满足 a+b+c=1, 求证: $\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\geq 3\sqrt{3}$.
- (005072) 已知 $a^2+b^2+c^2=1$, 求证: $-\frac{1}{2} \leq ab+bc+ca \leq 1$.
- (005073) 已知 $a^2 + b^2 + c^2 = 1$, 求证: $|abc| \le \frac{\sqrt{3}}{9}$.
- (005074) 已知 x > 1, 求证: $\sqrt{x} \sqrt{x-1} > \sqrt{x+1} \sqrt{x}$.

(005075) 已知
$$a > 0$$
, $b > 0$, $c > 0$, 求证: $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \ge 2(\frac{1}{a+b} + \frac{1}{b+c} + \frac{1}{c+a})$.

(005076) 已知
$$a > 0, b > 0, c > 0,$$
 求证:
$$\frac{c}{a+b} + \frac{a}{b+c} + \frac{b}{c+a} \ge \frac{3}{2}.$$

$$(005077) 已知 \alpha, \beta \in (0, \frac{\pi}{2}), 求证: \frac{1}{\cos^2 \alpha} + \frac{1}{\sin^2 \alpha \sin^2 \beta \cos^2 \beta} \geq 9.$$

$$(005078) \ 已知 \ a>0, \ b>0, \ c>0, \ 求证: \ \frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\geq \frac{9}{2(a+b+c)}.$$

(005079) 己知 $\tan \alpha, \tan \beta$ 是关于 x 的方程 $mx^2 + (2m-3)x + (m-2) = 0 (m \neq 0)$ 的两根, 求证: $\tan(\alpha + \beta) \ge -\frac{3}{4}$.

(005080) 已知长方体的对角线长为定长 l, 求证: 它的体积 $V \leq \frac{\sqrt{3}l^3}{9}$.

(005081) 在
$$\triangle ABC$$
 中, 求证: $\cos A + \cos B + \cos C \le \frac{3}{2}$.

$$(005082)$$
 在 $\triangle ABC$ 中,求证: $\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2} \leq \frac{1}{8}$.

(005083) 在 $\triangle ABC$ 中, 求证: $\tan A \tan B \tan C \ge 3\sqrt{3}$, 其中三内角 A, B, C 都是锐角.

(005084) 在 $\triangle ABC$ 中, 求证: $a^2+b^2+c^2\geq 4\sqrt{3}S$, 其中三内角 A,B,C 的对边分别为 a,b,c, 三角形的面积为 S.

(005085) 已知
$$f(x) = \lg \frac{1 + 2^x + a \cdot 4^x}{3} (a \in \mathbf{R}).$$

- (1) 如果 $x \le 1$ 时 f(x) 有意义, 求 a 的取值范围;
- (2) 如果 $0 < a \le 1$, 求证: $x \ne 0$ 时, 2f(x) < f(2x).

$$(005086) 求证: 2 + \sin \theta + \cos \theta \ge \frac{2}{2 - \sin \theta - \cos \theta}$$

$$(005087)$$
 求证: $-1 < \frac{4\sin\theta + 3}{\sin^2\theta + 1} \le 4$.

$$(005088) \ 求证: \ \frac{x+b+c+abc}{1+ab+bc+ca} \leq 1, \ 其中 \ 0 \leq a \leq 1, \ 0 \leq b \leq 1, \ 0 \leq c \leq 1.$$

(005089) 求证:
$$2\sin 2\alpha \le \cot \frac{\alpha}{2}$$
, 其中 $0 < \alpha < \pi$.

(005090) 求证: 若
$$x > -1$$
,则 $(\frac{1}{3})^{x+\frac{3}{2}} < (\frac{1}{3})^{\sqrt{(x+1)(x+2)}}$.

(005091) 求证: 若
$$a > b > 0$$
, $c > d > 0$, 则 $\sqrt{ac} - \sqrt{bd} > \sqrt{(a-b)(c-d)}$.

$$(005092)$$
 求证: $ac + bd \le \sqrt{a^2 + b^2} \cdot \sqrt{c^2 + d^2}$.

(005093) 求证: 若
$$x > y > 0$$
, $\theta \in (0, \frac{\pi}{2})$, 则 $x \sec \theta - y \tan \theta \ge \sqrt{x^2 - y^2}$.

(005094) 求证: 若
$$-1 < x < 1$$
, $-1 < y < 1$, 则 $\left| \frac{x+y}{1+xy} \right| < 1$.

(005095) 求证: $16^{18} > 18^{16}$.

$$(005096)$$
 求证: $(\sqrt{2})^{\sqrt{3}} < (\sqrt{3})^{\sqrt{2}}$.

(005097) 求证: 若 a > 0, b > 0, a + b = 1, 则 $3^a + 3^b < 4$. (005098) 利用反证法证明: 若 0 < a < 1, 0 < b < 1, 0 < c < 1, 则 <math>(1-a)b, (1-b)c, (1-c)a 不能都大于 $\frac{1}{4}$. (005099) 利用反证法证明: 若 0 < a < 2, 0 < b < 2, 0 < c < 2, 则 a(2-b), b(2-c), c(2-a) 不可能都大于 1. (005100) 利用反证法证明: 若 x,y > 0, 且 x + y > 2, 则 $\frac{1+y}{x}$ 和 $\frac{1+x}{y}$ 中至少有一个小于 2. (005101) 利用反证法证明: 若 0 < a < 1, b > 0, 且 $a^b = b^a$, 则 a = b. (005102) 若 a > 0, b > 0, 且 $a^3 + b^3 = 2$, 试分别利用 $x^3 + y^3 + z^3 \ge 3xyz(x, y, z \ge 0)$ 构造方程, 并利用判别 式以及反证法证明: a+b < 2. (005103) 下列函数中, 最小值为 2 的是 (B. $\frac{x^2+2}{\sqrt{x^2+1}}$ A. $x + \frac{1}{x}$ C. $\log_a x + \log_x a(a > 0, x > 0, a \neq 1, x \neq 1)$ D. $3^x + 3^{-x}(x > 0)$ (005104) 若 $\log_{\sqrt{2}} x + \log_{\sqrt{2}} y = 4$, 则 x + y 的最小值是 (). B. $4\sqrt{2}$ A. 8 C. 4 D. 2 (005105) 若 a, b 均为大于 1 的正数, 且 ab = 100, 则 $\lg a \cdot \lg b$ 的最大值是 (D. $\frac{5}{2}$ B. 1 A. 0 C. 2 (005106) 若实数 x 与 y 满足 x + y - 4 = 0, 则 $x^2 + y^2$ 的最小值是 (). A. 4 B. 6 C. 8 D. 10 (005107) 若非负实数 a, b 满足 2a + 3b = 10, 则 $\sqrt{3b} + \sqrt{2a}$ 的最大值是 (). A. $\sqrt{10}$ B. $2\sqrt{5}$ C. 5 D. 10 (005108) 若 x > 1, 则 $\frac{x^2 - 2x + 2}{2x - 2}$ 有 (). A. 最小值 1 B. 最大值 1 C. 最小值 -1 D. 最大值 -1 (005109) 若 $x, y \in \mathbb{R}^+$, 且 $x^2 + y^2 = 1$, 则 x + y 的最大值是______. (005110) 若 $x + 2y = 2\sqrt{2}a(x > 0, y > 0, a > 1)$, 则 $\log_a x + \log_a y$ 的最大值是______. (005111) 若 x > 1, 则 $2 + 3x + \frac{4}{x-1}$ 的最小值______, 此时 x =______. (005112) 若 x > 0,则 $x + \frac{1}{x} + \frac{16x}{x^2 + 1}$ 的最小值是______,此时 x =______. (005113) 若正数 a, b 满足 $a^2 + \frac{b^2}{2} = 1$, 则 $a\sqrt{1+b^2}$ 的最大值为______, 此时 a =______, b =______ (005114) 若 x > 0, 则 $3x + \frac{12}{x^2}$ 的最小值是______, 此时 x =______.

(005115) 若 $0 < x < \frac{1}{3}$, 则 $x^2(1-3x)$ 的最大值是______, 此时 x =______.

(005116) 若 xy > 0, 且 $x^2y = 2$, 则 $xy + x^2$ 的最小值是______.

 $(005117)\sin^4\alpha\cos^2\alpha$ 的最大值是______, 此时 $\sin\alpha=$ ______, $\cos\alpha=$ _____.

(005118) 若正数 x, y, z 满足 5x + 2y + z = 100, 则 $\lg x + \lg y + \lg z$ 的最大值是______.

(005119) 若 $\frac{x^2}{4} + y^2 = x$, 则 $x^2 + y^2$ 有 (

A. 最小值 0, 最大值 16 B. 最小值 $-\frac{1}{3}$, 最大值 0 C. 最小值 0, 最大值 1 D. 最小值 1, 最大值 2

 $(005120) |\sin x| + |\cos x|$ 的最大值是 (

C. $\frac{\sqrt{2}}{2}$

D. $\frac{1}{2}$

(005121) 若 x > 0, 则 $\frac{x}{x^3 + 2}$ 的最大值是 ().

A. 5

C. 1

D. $\frac{1}{2}$

(005122) 若正数 a, b 满足 ab - (a + b) = 1, 则 a + b 的最小值是 ().

A. $2 + 2\sqrt{2}$

B. $2\sqrt{2} - 2$

C. $\sqrt{5} + 2$

D. $\sqrt{5} - 2$

(005123) 已知 a > 1 且 $a^{\lg b} = \sqrt[4]{2}$, 求 $\log_2(ab)$ 的最小值.

(005124) 求函数 $y = \frac{x^4 + 3x^2 + 3}{x^2 + 1}$ 的最小值.

(005125) 求 $f(x) = 4x^2 + \frac{16}{(x^2+1)^2}$ 的最小值.

(005126) 求 $f(x) = x^2 - 3x - 2 - \frac{3}{x} + \frac{1}{x^2}(x > 0)$ 的最小值.

(005127) 若 x, y > 0, 求 $\frac{\sqrt{x} + \sqrt{y}}{\sqrt{x + y}}$ 的最大值.

(005128) 已知正常数 a,b 和正变数 x,y 满足 $a+b=10, \frac{a}{x}+\frac{b}{y}=1, x+y$ 的最小值为 18,求 a,b 的值.

(005129) 已知 $x^2 + y^2 = 1$, 求 (1 + xy)(1 - xy) 的最大值和最小值.

(005130) 已知 $x^2 + y^2 = 3$, $a^2 + b^2 = 4$, 求 ax + by 的最大值和最小值.

(005131) 已知 $\sqrt{1-y^2} + y\sqrt{1-x^2} = 1$, 求 x + y 的最大值和最小值.

(005132) 已知函数 $f(x) = \frac{2^{x+3}}{4^x + 8}$.

(1) 求 f(x) 的最大值;

(2) 对于任意实数 a, b, 求证: $f(a) < b^2 - 4b + \frac{11}{2}$.

(005133) 若直角三角形的周长为 1, 求它的面积的最大值.

(005134) 若直角三角形的内切圆半径为 1, 求它的面积的最小值.

(005135) 若球半径为 R, 试求它的内接圆柱的最大体积. 请指出下向解法的错误, 并给出正确的解答.

解: 设圆柱底面半径为 r, 则 $4r^2=4R^2-h^2$, 而 $V_=\pi r^2h=\frac{\pi}{4}(4R^2-h^2)h=\frac{\pi}{4}(2R+h)(2R-h)=\frac{\pi}{8}(2R+h)(4R-2h)h\leq \frac{\pi}{8}(\frac{2R+h+4R-2h+h}{3})^3=\frac{\pi}{8}(2R)^3=\pi R^3$. 所以所求最大体积为 πR^3 .

(005136) 在 $\triangle ABC$ 中,已知 BC=a,CA=b,AB=c, $\angle ACB=\theta$. 现将 $\triangle ABC$ 分别以 BC, CA, AB 所在 直线为轴旋转一周,设所得三个旋转体的体积依次为 V_1,V_2,V_3 .

- (1) 设 $T = \frac{V_3}{V_1 + V_2}$, 试用 a, b, c 表示 T;
- (2) 若 θ 为定值, 并令 $\frac{a+b}{c}=x$, 将 $T=\frac{V_3}{V_1+V_2}$ 表示为 x 的函数, 写出这个函数的定义域, 并求这个函数的最大值 M;
- (3) 若 $\theta \in \left[\frac{\pi}{3}, \pi\right)$, 求 (2) 中 M 的最大值.

(005137) 已知 $A(0,\sqrt{3}a),\ B(-a,0),\ C(a,0)$ 是等边 $\triangle ABC$ 的顶点,点 M,N 分别在边 AB,BC 上,且将 $\triangle ABC$ 的面积两等分,记 N 的横坐标为 x,|MN|=y.

- (1) 写出 y = f(x) 的表达式;
- (2) 求 y = f(x) 的最小值.

(005138) 已知 $\triangle ABC$ 内接于单位圆, 且 $(1 + \tan A)(1 + \tan B) = 2$.

- (1) 求证: 内角 C 为定值;
- (2) 求 △ABC 面积的最大值.

(005139) 已知关于 x 的不等式 $ax^2 + bx + c > 0$ 的解集是 $\{x | \alpha < x < \beta\}$, 其中 $0 < \alpha < \beta$, 求 $cx^2 + bx + a < 0$ 的解集.

(005140) 解不等式 $(x+1)^2(x-1)(x-4)^3 > 0$.

(005141) 解不等式
$$\frac{3x^2 - 14x + 14}{x^2 - 6x + 8} \ge 1$$
.

- (005142) 解不等式 $\sqrt{x^2 3x + 2} > x 3$.
- (005143) 解不等式 $\sqrt{2x-1} < x-2$.
- (005144) 解不等式 $|x^2 4| \le x + 2$.
- (005145) 解不等式 $|x^2 \frac{1}{2}| > 2x$.
- (005146) 解关于 x 的不等式 $|\log_a x| < |\log_a (ax^2)| 2(0 < a < 1)$.

(005147) 若关于 x 的不等式 2x-1 > a(x-2) 的解集是 \mathbf{R} , 则实数 a 的取值范围是 ().

A.
$$a > 2$$

B.
$$a = 2$$

C.
$$a < 2$$

(005148) 若关于 x 的不等式 $ax^2 + bx - 2 > 0$ 的解集是 $(-\infty, -\frac{1}{2}) \cup (\frac{1}{3}, +\infty)$, 则 ab 等于 ().

A.
$$-24$$

D.
$$-14$$

(005149) 若关于 x 的不等式 $(a-2)x^2 + 2(a-2)x - 4 < 0$ 对一切实数 x 恒成立, 则实数 a 的取值范围是 ().

A.
$$(-\infty, 2]$$

B.
$$(-\infty, -2)$$

C.
$$(-2,2]$$

D.
$$(-2,2)$$

(005150) 若 q < 0 < p,则不等式 $q < \frac{1}{x} < p$ 的解集为 ().

A.
$$\{x | \frac{1}{q} < x < \frac{1}{p}, \ x \neq 0\}$$

B.
$$\{x | x < \frac{1}{n} \mathbf{g} x > \frac{1}{n}\}$$

C.
$$\{x \mid -\frac{1}{p} < x < -\frac{1}{q}, \ x \neq 0\}$$

B.
$$\{x|x < \frac{1}{q}$$
或 $x > \frac{1}{p}\}$
D. $\{x|\frac{1}{p} < x < -\frac{1}{q}\}$

(005151) 若关于 x 的不等式 (a+b)x+2a-3b<0 的解集是 $\{x|x<-\frac{1}{3}\}$, 则 (a-3b)x+b-2a>0 的解集

(005152) 若不等式 $\frac{2x^2 + 2kx + k}{4x^2 + 6x + 3} < 1$ 对一切 $x \in \mathbb{R}$ 恒成立, 则实数 k 的取值范围是______.

(005153) 若关于 x 的不等式 $ax^2 + bx + c > 0$ 的解集是 $\{x|3 < x < 5\}$, 则不等式 $cx^2 + bx + a < 0$ 的解集 是_____

(005154) 若关于 x 的不等式 $\frac{x-a}{x^2-3x+2} \geq 0$ 的解集是 $\{x|1 < x \leq ax > 2\}$,则实数 a 的取值范围

(005155) 不等式 $(x+2)(x+1)^2(x-1)^3(x-3) > 0$ 的解集为:_____.

$$(005156)$$
 不等式 $\frac{(x-1)^2(x+2)}{(x-3)(x-4)} \le 0$ 的解集为:_____.

$$(005157)$$
 不等式 $x+1 \le \frac{4}{x+1}$ 的解集为:______.

 $(005158) \ \ \hbox{若不等式} \ f(x) \geq 0 \ \ \hbox{的解集为} \ [1,2], \ \hbox{不等式} \ g(x) \geq 0 \ \ \hbox{的解集为} \ \varnothing, \ \hbox{则不等式} \ \frac{f(x)}{g(x)} \ \ \hbox{的解集是} \ ($).

$$A. \varnothing$$

B.
$$(-\infty, 1) \cup (2, +\infty)$$
 C. $[1, 2)$

(005159) 若关于 x 的不等式 $ax^2-bx+c<0$ 的解集为 $(-\infty,\alpha)\cup(\beta,+\infty)$, 其中 $\alpha<\beta<0$, 则不等式 $cx^{2} + bx + a > 0$ 的解集为 (

A.
$$(\frac{1}{\beta}, \frac{1}{\alpha})$$

B.
$$(\frac{1}{\alpha}, \frac{1}{\beta})$$

C.
$$(-\frac{1}{\beta}, -\frac{1}{\alpha})$$

B.
$$(\frac{1}{\alpha}, \frac{1}{\beta})$$
 D. $(-\frac{1}{\alpha}, -\frac{1}{\beta})$

(005160) 解关于 x 的不等式: $m^2x - 1 < x + m$.

(005161) 解关于 x 的不等式: $x^2 - ax - 2a^2 < 0$.

(005162) 已知关于 x 的不等式 $\sqrt{x} > ax + \frac{3}{2}$ 的解集是 $\{x|4 < x < b\}$, 求 a,b 的值

(005163) 已知 x=3 是不等式 ax>b 解集中的元素, 求实数 a,b 应满足的条件.

(005164) 已知集合 $\{x|x<-2$ 或 $x>3\}$ 是集合 $\{x|2ax^2+(2-ab)x-b>0\}$ 的子集, 求实数 a,b 的取值范围.

(005165) 已知集合 $A = \{x | \frac{2x-1}{x^2+3x+2} > 0\}, B = \{x | x^2+ax+b \le 0\}, 且 A \cap B = \{x | \frac{1}{2} < x \le 3\},$ 求实数 a,b 的取值范围.

(005166) 已知集合 $A = \{x | (x+2)(x+1)(2x-1) > 0\}, B = \{x | x^2 + ax + b \le 0\},$ 且 $A \cup B = \{x | x + 2 > 0\},$ $A \cap B = \{x | \frac{1}{2} < x \le 3\}$, 求实数 a, b 的值.

(005167) 已知关于 x 的不等式 $x^2 - ax - 6a \le 0$ 有解, 且解 x_1, x_2 满足 $|x_1 - x_2| \le 5$, 求实数 a 的取值范围.

(005168) 已知关于 x 的方程 $3x^2 + x \log_{\frac{1}{2}}^2 a + 2 \log_{\frac{1}{2}} a = 0$ 的两根 x_1, x_2 满足条件 $-1 < x_1 < 0 < x_2 < 1$,求 实数 a 的取值范围.

(005169) 已知关于 x 的方程 $x^2 + (m^2 - 1)x + m - 2 = 0$ 的一个根比 -1 小, 另一个根比 1 大, 求参数 m 的取 值范围.

(005170) 已知集合 $A = \{x|x-a>0\}, B = \{x|x^2-2ax-3a^2<0\}, 求 A\cap B$ 与 $A\cup B$.

(005171) 不等式 $\sqrt{x+3} > -1$ 的解集是 (

- A. $\{x|x > -2\}$
- B. $\{x|x \ge -3\}$ C. \varnothing

D. \mathbf{R}

(005172) 不等式 $(x-1)\sqrt{x+2} \ge 0$ 的解集是 ().

- A. $\{x | x > 1\}$
- B. $\{x|x \ge 1\}$ C. $\{x|x \ge 1$ 或 $x = -2\}$ D. $\{x|x > 1$ 或 $x = -2\}$

(005173) 与不等式 $\sqrt{(x-4)(x+3)} \le 1$ 的解完全相同的不等式是 ().

- A. $|(x-4)(x+3)| \le 1$ B. $|(x-4)(x+3)| \le 1$ C. $|\lg[(x-4)(x+3)| \le 0$ D. $0 \le (x-4)(x+3) \le 1$

(005174) 解不等式: $\sqrt{x-5} + 4x - 3 > 3x + 1 + \sqrt{x-5}$.

(005175) 解不等式: $\sqrt{x^2+1} > \sqrt{x^2-x+3}$.

(005176) 解不等式: $(x-4)\sqrt{x^2-3x-4} \ge 0$.

(005177) 解不等式: $\frac{x+1}{x+4}\sqrt{\frac{x+3}{1-x}} < 0$.

(005178) 解不等式: $\sqrt{x+2} + \sqrt{x-5} \ge \sqrt{5-x}$.

(005179) 解不等式: $\sqrt{x-6} + \sqrt{x-3} \ge \sqrt{3-x}$.

(005180) 解不等式: $\sqrt{2-x} < x$.

(005181) 解不等式: $\sqrt{4-x^2} < x+1$.

(005182) 解不等式: $\sqrt{3-2x} > x$.

(005183) 解不等式: $\sqrt{(x-1)(2-x)} > 4-3x$.

(005184) 不等式 $\sqrt{4-x^2} + \frac{|x|}{x} \ge 0$ 的解集是 ().

A. [-2, 2]

B. $[-\sqrt{3}, 0) \cup (0, 2]$ C. $[-2, 0] \cup (0, 2]$ D. $[-\sqrt{3}, 0) \cup (0, \sqrt{3}]$

(005185) 已知关于 x 的不等式 $\sqrt{2x-x^2} > kx$ 的解集是 $\{x|0 < x \le 2\}$, 则实数 k 的取值范围是 ().

- A. k < 0
- B. k > 0
- C. 0 < k < 2
- D. $-\frac{1}{2} < k < 0$

(005186) 解不等式: $\sqrt{2x-4} - \sqrt{x+5} < 1$.

- (005187) 解不等式: $\sqrt{x^2 5x 6} < |x 3|$.
- (005188) 解不等式: $|2\sqrt{x+3}-x+1| < 1$.
- (005189) 解关于 x 的不等式: $\sqrt{a(a-x)} > a 2x(a > 0)$.
- (005190) 解关于 x 的不等式: $\sqrt{4x-x^2} > ax(a < 0)$.
- (005191) 解关于 x 的不等式: $\sqrt{1-ax} < x-1(a>0)$.
- (005192) 解关于 x 的不等式: $\sqrt{a^2 x^2} > 2x a$.

(005193)lg $x^2 < 2$ 的解集是 (

- A. $\{x | -10 < x < 0$ 或 $0 < x < 10\}$
- B. $\{x | x < 10\}$

C. $\{x | 0 < x < 10\}$

D. $\{x | -10 < x < 10\}$

(005194) 若 $f(x) = \log_2 x,$ 则不等式 $[f(x)]^2 > f(x^2)$ 的解集是 (

- A. $\{x|0 < x < \frac{1}{4}\}$ B. $\{x|\frac{1}{4} < x < 1\}$ C. $\{x|0 < x < 1$ $\vec{\mathbf{x}} x > 4\}$ D. $\{x|\frac{1}{4} < x < 4\}$

(005195) 若 a, b 都是小于 1 的正数, 且 $a^{\log_b(x-5)} < 1$, 则 x 的取值范围是 ().

- A. x > 5
- B. x < 6
- C. 5 < x < 6 D. x < 5 或 x > 6

(005196) 不等式 $\log_x \frac{4}{5} < 1$ 的解集是 ().

A. $\{x | 0 < x < \frac{4}{5}\}$

B. $\{x|x>\frac{4}{5}\}$

C. $\{x | \frac{4}{5} < x < 1\}$

D. $\{x|0 < x < \frac{4}{5}\} \cup \{x|x > 1\}$

 $(005197) \ \ \hbox{若函数} \ f(x) = \log_{a^2-1}(2x+1) \ \ \hbox{在区间} \ (-\frac{1}{2},0) \ \ \hbox{内恒有} \ f(x) > 0, \ \hbox{则实数} \ a \ \ \hbox{的取值范围是} \ (\hspace{1cm}).$

A. 0 < a < 1

- B. a > 1
- C. $-\sqrt{2} < a < -1$ 或 $1 < a < \sqrt{2}$
- D. $a < -\sqrt{2}$ 或 $a > \sqrt{2}$

(005198) 若不等式 $\log_a(x^2 - 2x + 3) \le -1$ 对一切实数都成立, 则 a 的取值范围是 ().

- A. a > 2
- B. $1 < a \le 2$
- C. $\frac{1}{2} \le a < 1$ D. $0 < a \le \frac{1}{2}$

(005199) 解关于 x 的不等式: $\log_{\frac{1}{2}}(3x-2) > \log_{\frac{1}{2}}(x+1)$.

- (005200) 解关于 x 的不等式: $\log_{\frac{1}{2}}(x^2 x 2) > \log_{\frac{1}{2}}(2x^2 7x + 3)$.
- (005201) 解关于 x 的不等式: $\log_x \frac{1}{2} < 1$.
- (005202) 解关于 x 的不等式: $\lg(x \frac{1}{x}) < 0$.

- (005203) 解关于 x 的不等式: $\log_2|x-\frac{1}{2}|<-1$.
- (005204) 已知集合 $M = \{x | \log_3(x-m) > 1\}$ 与 $P = \{x | 3^{5-3x} \ge \frac{1}{3}\}$ 满足 $M \cap P \ne \emptyset$, 求实数 m 的取值范围.
- (005205) 解不等式: $\log_8(2-x) + \log_{64}(x+1) \ge \log_4 x$.
- (005206) 解不等式: $\log_{0.5}(x+13) < \log_{0.5}(x^2-2x-15)$.
- (005207) 解不等式: $\log_{\infty}(3\sqrt{x-1}-1) > 1$.
- (005208) 解不等式: $\log_{x-1}(6-x-x^2) > 2$.
- (005209) 解不等式: $\frac{1}{\log_2(x-1)} < \frac{1}{\log_2\sqrt{x+1}}$.
- (005210) 解不等式: $\frac{\log_3(1-\frac{3x}{2})}{\log_2(2x)} \ge 1$.
- (005211) 解不等式: $\log_{0.5}(2^x 1) \cdot \log_{0.5}(2^{x-1} \frac{1}{2}) \le 2$.
- (005212) 解关于 x 的不等式, 其中 a > 0, $a \neq 1$: $\log_a(x+1-a) > 1$.
- (005213) 解关于 x 的不等式, 其中 a > 0, $a \neq 1$: $\log_a(1 \frac{1}{x}) > 1$.
- (005214) 解关于 x 的不等式, 其中 a > 0, $a \neq 1$: $\log_a(2x 1) > \log_a(x 1)$.
- (005215) 解关于 x 的不等式, 其中 a > 0, $a \neq 1$: $\log_a^2 x < \log_x^2 a$.
- (005216) 解关于 x 的不等式, 其中 a > 0, $a \neq 1$: $x^{\log_a x} > \frac{x^4 \cdot \sqrt{x}}{a^2}$.
- (005217) 解关于 x 的不等式, 其中 a > 0, $a \neq 1$: $\sqrt{\log_a x 1} > 3 \log_a x$.
- (005218) 已知 x 满足不等式 $(\frac{1}{2})^{2x-4} (\frac{1}{2})^x (\frac{1}{2})^{x-2} + \frac{1}{4} \le 0$, 且 $y = \log_{\frac{1}{a}}(a^2x) \cdot \log_{\frac{1}{2^2}}(ax)$ 的最大值是 0, 最 小值是 $-\frac{1}{8}$, 求实数 a 的值.
- (005219) 已知关于 x 的方程 $x^2 5x \log_a k + 6 \log_a^2 k = 0$ 的两根中 (k > 1), 仅较小的根在区间 (1,2) 内, 试用 a 表示 k 的取值范围 (a > 0 且 $a \neq 1)$.
- (005220) 设 $x \in \mathbb{R}$, 则 (1 |x|)(1 + x) > 0 成立的充要条件是 (

A.
$$|x| < 1$$

B.
$$x < 1$$

C.
$$|x| > 1$$

D.
$$x < 1 \perp x \neq 1$$

(005221) 若函数 $f(x) = \sqrt{x^2 - 2x - 8}$ 的定义域为 $M, g(x) = \frac{1}{\sqrt{1 - |x - a|}}$ 的定义域为 $N, 则使 M \cap N = \emptyset$ 的实数 a 的取值范围为(

A.
$$-1 < a < 3$$

B.
$$-1 \le a \le 3$$
 C. $-2 < a < 4$ D. $-2 \le a \le 4$

C.
$$-2 < a < 4$$

D.
$$-2 < a < 4$$

(005222) 设 a, b 是满足 ab < 0 的实数,则下列不等式中正确的一个是 ().

A.
$$|a + b| > |a - b|$$

B.
$$|a+b| < |a-b|$$

A.
$$|a+b| > |a-b|$$
 B. $|a+b| < |a-b|$ C. $|a-b| < ||a| - |b||$ D. $|a-b| < |a| + |b|$

D.
$$|a - b| < |a| + |b|$$

(005223) 不等式 $|x| < \frac{1}{x}$ 的解集为 (

A. \emptyset

B. $\{x | x < 0\}$

C. $\{x | 0 < x < 1\}$ D. $\{x | x < 0$ 或 $x \ge 1\}$

 $(005224) \ \hbox{ } \hbox{ } \hbox{ } \hbox{ } |a+b| < -c, \, \text{则在①} \, a < -b-c; \, \textcircled{2} \, a+b > c; \, \textcircled{3} \, a+c < b; \, \textcircled{4} \, |a|+c < |b|; \, \textcircled{5} \, |a|+|b| < -c \, \textbf{这五}.$ 个式子中, 一定成立的个数是().

A. 1

C. 3

D. 4

(005225) 若实数 a, b 满足 ab > 0,则在① |a+b| > |a|; ② |a+b| < |b|; ③ |a+b| < |a-b|; ④ |a+b| > |a-b|这四个式子中, 正确的是().

A. (1)(2)

B. (T)(3)

C. (1)(4)

D. (2)(4)

(005226) 不等式 $\left|\frac{x}{1+x}\right| > \frac{x}{1+x}$ 的解集是 ().

A. $\{x | x \neq -1\}$

B. $\{x|x > -1\}$

C. $\{x | x < 0 \text{ } \exists x \neq -1\}$ D. $\{x | -1 < x < 0\}$

(005227) 解不等式: $x^2 + |x| - 6 < 0$.

(005228) 解不等式: $x^2 - 2|x| - 15 > 0$.

(005229) 解不等式: 4 < |1 - 3x| < 7.

(005230) 解不等式: |x-3| < x-1

(005231) 解不等式: $\log_2|x-\frac{1}{2}|<-1$.

(005232) 若函数 $y = \log_a x$ 在 $x \in [2, +\infty)$ 上恒有 |y| > 1, 则实数 a 的取值范围是______

(005233) 解不等式: $|x^2 - 5x + 10| > x^2 - 8$.

(005234) 解不等式: $|x^2 - 4| \le x + 2$.

(005235) 解不等式: $|x+1| < \frac{1}{x-1}$.

(005236) 解不等式: |x+2|-|x-3|<4.

(005237) 解不等式: $|x+3|-|2x-1|<\frac{x}{2}+1$.

(005238) 已知当 |x-2| < a 成立时, $|x^2-4| < 1$ 必定成立, 求正数 a 的取值范围.

(005239) 已知关于 x 的不等式 |x-4|+|x-3| < a 在实数集 R 上的解集不是空集, 求正数 a 的取值范围.

(005240) 解不等式: $\log_{\frac{1}{4}}|x| < \log_{\frac{1}{2}}|x+1|$.

(005241) 解不等式: $|\lg(1-x)| > |\lg(1+x)|$.

(005242) 解不等式: $|\log_{\frac{1}{3}} x| + |\log_{\frac{1}{3}} \frac{1}{3-x}| \ge 1$.

(005243) 求函数 $f(x) = |x - \frac{1}{2}| - |x + \frac{1}{2}|$ 的最大值.

(005244) 已知 $|\lg x - \lg y| \le 1$, 则 $\frac{x}{y} + \frac{y}{x}$ 的取值范围是______.

(005245) 解关于 x 的不等式: $|\log_{\sqrt{a}} x - 2| - |\log_a x - 2| < 2$.

(005246) 解关于 x 的不等式: $|\log_a x| < |\log_a (ax^2)| - 2$.

(005247) 解关于 x 的不等式: $|3^x - 3| + 9^x - 3 > 0$.

(005248) 解关于 x 的不等式: $|a^x - 1| + |a^{2x} - 3| > 2(a > 0)$.

 $(005249) \triangle ABC$ 三内角 A, B, C 对边长分别为 a, b, c. 求证: $a^2 + b^2 + c^2 > 2ab\cos C + 2b\cos A + 2ca\cos B$.

(005250) $\triangle ABC$ 三内角 A,B,C 对边长分别为 a,b,c. 求证: $(a+b-c)(b+c-a)(c+a-b) \leq abc$.

 $(005251) \triangle ABC 三内角 \ A, B, C \ 对边长分别为 \ a, b, c. \ 求证: \ \frac{1}{2}(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}) \leq \frac{\cos A}{a} + \frac{\cos B}{b} + \frac{\cos C}{c} < \frac{1}{a} + \frac{1}{b} + \frac{1}{c}.$

(005252) $\triangle ABC$ 三内角 A,B,C 对边长分别为 a,b,c,外接圆半径记作 R. 求证: $\frac{1}{ab} + \frac{1}{bc} + \frac{1}{ca} \geq \frac{1}{R^2}$.

(005253) 已知常数 $a \in (0,1)$, 对任意 x > 0, $f(\log_a x) = \frac{a(x^2 - 1)}{x(a^2 - 1)}$.

(1) 求 $f(x)(x \in \mathbf{R})$ 的表达式, 并判断它的单调性;

(2) 若 $n \ge 2$, $n \in \mathbb{N}$, 求证: f(n) > n.

(005254) 若正数 a,b,c 满足 a+b>c, 求证: $\frac{a}{1+a}+\frac{b}{1+b}>\frac{c}{1+c}$.

(005255) 求证: $\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdot \frac{7}{8} \cdot \dots \cdot \frac{99}{100} < \frac{1}{10}$

 $(005256) 求证: (1+\frac{1}{3})(1+\frac{1}{5})\cdots(1+\frac{1}{2n-1}) > \frac{1}{\sqrt{3}}\sqrt{2n+1}(n \in \mathbf{N}, \, n > 1).$

(005258) 若正数 a,b,c 满足 a+b+c=1, 求证: $(1+a)(1+b)(1+c) \ge 8(1-a)(1-b)(1-c)$.

 $(005259) \ \hbox{\rm {\it \#}}\ 0 \leq a \leq 1, \ 0 \leq b \leq 1, \ 0 \leq c \leq 1, \ \hbox{\rm {\it \#}}\ \hbox{\rm {\it \#}}\ : \ \frac{a}{1+b+c} + \frac{b}{1+c+a} + \frac{c}{1+a+b} + (1-a)(1-b)(1-c) \leq 1.$

(005260) 已知三棱锥的三条侧棱两两互相垂直,且六条棱之和为定值 m, 求证: 它的体积 $V \leq \frac{5\sqrt{2}-7}{162}m^3$.

(005261) 已知 a+b+c>0, ab+bc+ca>0, abc>0 求证: a>0, b>0, c>0.

(005262) 求证: 任何面积等于 1 的凸四边形的周长及两条对角线的长度之和不小于 $4 + \sqrt{8}$.

(005263) 解不等式: $2^{x+1} + x > 0$.

(005264) 解关于 x 的不等式: $\frac{a(x-1)}{x-2} > 1$.

(005265) 解关于 x 的不等式: $x^2 + (a-4)x + 4 - 2a > 0$, 其中 $-1 \le a \le 1$.

(005266) 解不等式: $\frac{x}{\sqrt{1+x^2}} + \frac{1-x^2}{1+x^2} > 0$.

(005267) 解关于 x 的不等式: $\frac{cx}{a \cdot c^2 + b} - \frac{x}{2\sqrt{ab}} > x^2$, 其中 $a, b, c \in \mathbb{R}$, 且 a > 0, b > 0.

(005268) 已知函数 $f(x) = ax^2 - c$ 满足 $-4 \le f(1) \le -1, -1 \le f(2) \le 5$, 求证: $-1 \le f(3) \le 20$.

(005269) 已知关于 x 的方程 $a\sin^2 x + \frac{1}{2}\cos x + \frac{1}{2} - a = 0$ 在 $0 \le x < 2\pi$ 内有两个相异的实根, 求实数 a 的取值范围.

(005270) 已知 |a| < 1, |b| < 1, |c| < 1, 求证: |1 - abc| > |ab - c|.

(005271) 已知 |a| < 1, |b| < 1, |c| < 1, 求证: a + b + c < abc + 2.

$$(005272)$$
 求函数 $y = \frac{3x-1}{x+1}$ 的值域.

$$(005273)$$
 求函数 $y = \frac{4x+3}{2x-1}$ 的值域.

$$(005274)$$
 求函数 $y = \frac{x^2 - 1}{x^2 + 2}$ 的值域.

$$(005275)$$
 求函数 $y = \frac{x^2 - x + 1}{2x^2 - 2x + 3}$ 的值域.

$$(005276)$$
 求函数 $y = \frac{x^2 + 4x + 3}{x^2 + x - 6}$ 的值域.

(005277) 若实数 x, y 满足 $x^2 + 4y^2 = 4x$, 求 $S = x^2 + y^2$ 的值域.

(005278) 已知函数 $y = f(x) = x^2 + ax + 3$ 在区间 $x \in [-1, 1]$ 上的最小值为 -3, 求实数 a 的值.

(005279) 求函数 $y = 3x^2 - 12x + 18\sqrt{4x - x^2} - 23$ 的值域.

(005280) 求函数 y = |x-2| - |x+1| 的值域.

(005281) 若 $f(x-1) = 2x^2 + 1$, 求 f(x).

(005282) 已知定义域为 R 的函数 f(x) 满足: ① $f(x+y) = f(x) \cdot f(y)$ 对任何实数 x, y 都成立; ② 存在实数 $x_1, x_2,$ 使 $f(x_1) \neq f(x_2)$. 求证:

- (1) f(0) = 1;
- (2) f(x) > 0.

(005283) 设映射 $f: X \to Y$, 其中 X, Y 是非空集合, 则下列语句中正确的是 ().

A. Y 中每一个元素必有原像

B. Y 中的各元素只能有一个原像

C. X 中的不同元素在 Y 中的像也不同

D. Y 中至少存在一个元素, 它有原像

(005284) 集合 $M = \{a, b, c\}$ 与 $P = \{x, y, z\}$ 之间建立起四种对应关系 (如图), 则下列结论中正确的是 ().

- A. 只有 f_2, f_3 是从 M 到 P 的映射
- B. 只有 f_2 , f_4 是从 M 到 P 的映射
- C. 只有 f_3 , f_4 是从 M 到 P 的映射
- D. f_1, f_2, f_3, f_4 都是从 M 到 P 的映射

(005285) 设 (x,y) 在映射 f 下的像是 $(\frac{x+y}{2},\frac{x-y}{2})$, 则在 f 下 (-5,2) 的原像是 ().

- A. (-10, 4)
- B. (-3, -7) C. (-6, -4)
- D. $\left(-\frac{3}{2}, -\frac{7}{2}\right)$

(005286) 在给定的映射 $f:(x,y)\mapsto (2x+y,xy)(x,y\in {\bf R})$ 下, 点 $(\frac{1}{6},-\frac{1}{6})$ 的原像是 ().

- A. $(\frac{1}{6}, -\frac{1}{26})$ B. $(\frac{1}{2}, -\frac{1}{2})$ 或 $(-\frac{1}{4}, \frac{2}{2})$ C. $(\frac{1}{26}, -\frac{1}{6})$ D. $(\frac{1}{2}, -\frac{1}{2})$ 或 $(-\frac{2}{2}, \frac{1}{4})$

(005287) 已知集合 $M = \{x | 0 \le x \le 6\}, P = \{0 \le y \le 3\},$ 则下列对应关系中, 不能作为从 M 到 P 的映射的 是().

- A. $f: x \mapsto y = \frac{1}{2}x$ B. $f: x \mapsto y = \frac{1}{3}x$ C. $f: x \mapsto y = x$ D. $f: x \mapsto y = \frac{1}{6}x$

(005288) 设 $M = \mathbf{R}$, 从 M 到 P 的映射 $f: x \mapsto y = \frac{1}{x^2 + 1}$, 则像集 P 为 ().

- A. $\{y|y \in \mathbf{R}\}$
- B. $\{y|y \in \mathbf{R}\}\$ C. $\{y|0 \le y \le 2\}$ D. $\{y|0 < y \le 1\}$

(005289) 若映射 $f:A\to B$ 的像集是 Y, 原像的集合是 X, 则 X 与 A 的关系是______, Y 和 B 的关系

(005290) 若 (x,y) 在映射 f 下的像是 (2x-y,x+2y), 则 (-1,2) 在 f 下的原像是_______.

(005291) 已知 (a,b) 在映射 f 的像是 (a-b,ab), 则 (2,3) 的原像是

(005292) 已知 $f: x \mapsto y = x^2$ 是从集合 R 到集合 $M = \{x | x \ge 0\}$ 的一个映射, 则 M 中的元素 1 在 R 中的原 像是______, M 中的元素 t(t > 0) 在 R 中的原像是______

(005293) 从集合 {a} 到 {b,c} 的不同映射有 个.

(005294) 从集合 {1,2} 到 {5,6} 的不同映射有______ 个.

(005295) 已知集合 $A = \mathbf{Z}$, $B = \{x | x = 2n + 1, n \in \mathbf{Z}\}$, $C = \mathbf{R}$, 且从 A 到 B 的映射是 $x \mapsto 2x - 1$, 从 B 到 C 的映射是 $x \mapsto \frac{1}{3x+1}$, 则从 A 到 C 的映射是______.

(005296)f 是集合 $X = \{a, b, c\}$ 到集合 $Y = \{d, e\}$ 的一个映射, 则满足映射条件的 "f" 共有 (

A. 5 个

B. 6 个

C. 7 个

D. 8 个

(005297) 若 f: y = 3x + 1 是从集合 $A = \{1, 2, 3, k\}$ 到集合 $B = \{4, 7, a^4, a^2 + 3a\}$ 的一个映射, 求自然数 a, k的值及集合 A.B.

(005298) 函数 $f(x) = \frac{\sqrt{x^2 - 5x + 6}}{x - 2}$ 的定义域是 ().

- A. $\{x|2 < x < 3\}$ B. $\{x|x < 2x > 3\}$ C. $\{x|x \le 2x \ge 3\}$ D. $\{x|x < 2\vec{n}x \ge 3\}$

(005299) 若函数 f(x) 的定义域是 [-1,1], 则函数 f(x+1) 的定义域是 ().

- A. [-1, 1]
- B. [0, 2]

- C. [-2, 0]
- D. [0, 1]

(005300) 在① y = x 与 $y = \sqrt{x^2}$; ② $y = \sqrt{x^2}$ 与 $y = (\sqrt{x})^2$; ③ y = |x| 与 $y = \frac{x^2}{x}$; ④ y = |x| 与 $y = \sqrt{x^2}$; ⑤ $y = x^0$ 与 y = 1 这五组函数中,表示同一函数的组数是().

A. 0

B 1

C. 2

D. 3

(005301) 函数 $y = -x^2 - 2x + 3(-5 \le x \le 0)$ 的值域是 ().

- A. $(-\infty, 4]$
- B. [3, 12]
- C. [-12, 4]
- D. [4, 12]

(005302) 已知镭经过 100 年后剩下原来质量的 95.76%, 若质量为 l 克的镭经过 x 年后的剩余质量为 y 克, 则 y 与 x 之间的解析式是 ().

- A. $y = (\frac{0.9576}{100})^x$
- B. $y = (0.9576)^{100x}$
- C. $y = (0.9576)^{\frac{x}{100}}$
- D. $y = 1 (1 0.9576)^{\frac{x}{100}}$

(005303) 函数 $y = x + \frac{|x|}{x}$ 的图像是 ().

ъ

 \mathbf{C}

(005304) 函数 $y = \sqrt{1-x^2} + \sqrt{x+1}$ 的定义域为_____

- (005305) 函数 $y = \frac{1}{\sqrt{2x^2 + 3}}$ 的定义域为______.
- (005306) 函数 $y = \frac{x+5}{3x^2-2x-1}$ 的定义域为_____.
- (005307) 函数 $y = \sqrt{6x x^2 9}$ 的定义域为_____.
- (005308) 函数 $y = \sqrt{4-x^2} + \frac{1}{|x|-1}$ 的定义域为______.
- (005309) 函数 $y = \frac{x^3 1}{x + |x|}$ 的定义域为______.
- (005310) 函数 $y = \frac{1}{|x| x^2}$ 的定义域为_____.
- (005311) 函数 $y = \sqrt{1 (\frac{x-1}{x+1})^2}$ 的定义域为_____.
- (005312) 函数 $y = \frac{\sqrt{x^2 2x 15}}{|x + 3| 8}$ 的定义域为_____.
- (005313) 函数 $y = 1 \frac{1}{x+2}$ 的值域为______.
- (005314) 函数 $y = \frac{3}{2x}$ 的值域为______.

```
(005315) 函数 y = \frac{x+3}{x-3} 的值域为_____.
```

$$(005316)$$
 函数 $y = \frac{5x+3}{x-3}$ 的值域为______.

$$(005317)$$
 函数 $y = 4 + \sqrt{2x+1}$ 的值域为_____.

(005318) 函数
$$y = \sqrt{x - \frac{1}{2}x^2}$$
 的值域为______.

$$(005319)$$
 函数 $y = \sqrt{-x^2 + x + 2}$ 的值域为 .

$$(005320)$$
 函数 $y = \frac{2x^2 + 2x + 3}{x^2 + x + 1}$ 的值域为_____.

(005321) 若函数
$$f(x)$$
 满足 $f(2x) = (1 - \sqrt{2}x)(1 + \sqrt{2}x)$, 则 $f(x) =$ _____.

$$(005322)$$
 若函数 $f(x)$ 满足 $f(\sqrt{x}+1)=x+2\sqrt{x}$, 则当 $x\geq 1$ 时, $f(x)=$ ______.

(005323) 若函数
$$f(x)$$
 满足 $f(\frac{1}{x}) = \frac{x}{1-x^2}$, 则当 $x \neq 0$ 时, $f(x) = \underline{\hspace{1cm}}$.

$$(005324)$$
 若函数 $f(x) = 2x + 1$, $g(x) = x^2 + 2$, 满足 $f(g(x)) = g(f(x))$, 则 $x =$ ______.

$$(005325)$$
 若函数 $f(x)$ 满足 $f(x+1) = 2x^2 + 1$, 则 $f(x-1) =$ ______

$$(005326)$$
 若一次函数 $f(x)$ 满足 $f(f(x)) = 1 + 2x$, 则 $f(x) =$ _____.

(005327) 若
$$f(x^2 - x) = x^4 - 2x^3 + x^2 + 1$$
, 则当 $x \ge -\frac{1}{4}$ 时, $f(f(x)) =$ ______

(005328) 函数
$$f(x) = \frac{x}{\sqrt{1+x^2}}$$
,则 $f(f(x)) = \underline{\hspace{1cm}}$, $f(f(f(x))) = \underline{\hspace{1cm}}$

$$(005329)$$
 若 $-b < a < 0$, 且函数 $d(x)$ 的定义域是 $[a,b]$, 则函数 $F(x) = f(x) + f(-x)$ 的定义域是 $($ $)$.

A.
$$[a,b]$$

B.
$$[-b, -a]$$

C.
$$[-b, b]$$

D.
$$[a, -a]$$

(005330) 若 f(x) 的定义域是 [0,1], 且 f(x+m)+f(x-m) 的定义域是 $\varnothing,$ 则正数 m 的取值范围是 (

A.
$$0 < m < 1$$

B.
$$0 < m \le \frac{1}{2}$$

B.
$$0 < m \le \frac{1}{2}$$
 C. $0 < m < \frac{1}{2}$ D. $m > \frac{1}{2}$

D.
$$m > \frac{1}{2}$$

(005331) 函数
$$y = \frac{x^2 - 1}{x^2 + 1}$$
 的值域是 ().

A.
$$(-1,1)$$

B.
$$[-1,1]$$

C.
$$[-1,1)$$

D.
$$(-1,1]$$

(005332) 若
$$2x^2 - 3x \le 0$$
, 则函数 $f(x) = x^2 + x + 1$ ().

A. 有最小值
$$\frac{3}{4}$$
, 但无最大值

B. 有最小值
$$\frac{3}{4}$$
, 有最大值 1

C. 有最小值 1 有最大值
$$\frac{19}{4}$$

$$(005333)$$
 函数 $f(x) = |1 - x| - |x - 3|(x \in \mathbf{R})$ 的值域是 ().

A.
$$[-2, 2]$$

B.
$$[-1, 3]$$

C.
$$[-3, 1]$$

D.
$$[0, 4]$$

(005334) 若函数 f(x) 的定义域是 [0,1], 分别求函数 f(1-2x) 和 f(x+a)(a>0) 的定义域.

$$(005335)$$
 若函数 $f(x+1)$ 的定义域是 $[-2,3)$, 求函数 $f(\frac{1}{x}+2)$ 的定义域.

$$(005336)$$
 求函数 $y = \frac{2x}{x^2 + x + 1}$ 的值域.

(005337) 求函数
$$y = \frac{x^2 + x - 1}{x^2 + x + 1}$$
 的值域.

$$(005338)$$
 求函数 $y = \frac{x^2 - 1}{x^2 - 5x + 4}$ 的值域.

(005339) 若实数 x, y 满足 $3x^2 + 2y^2 = 6x$, 分别求 x 与 $x^2 + y^2$ 的取值范围.

$$(005340)$$
 若实数 x, y 满足 $x^2 + y^2 = 2x$, 求 $x^2 - y^2$ 的取值范围.

$$(005341)$$
 求函数 $y = 3x - 2 + \sqrt{3 - 2x}$ 的值域。

$$(005342)$$
 求函数 $y = 2x + \sqrt{2x - 1}$ 的值域.

$$(005343)$$
 求函数 $y = (x-1)(x-2)(x-3)(x-4) + 15$ 的值域.

$$(005344)$$
 已知函数 $f(x) = x^2 - 2x + 3$ 在 $[0, m]$ 上有最大值 3, 最小值 2, 求正数 m 的取值范围.

$$(005345)$$
 已知函数 $y = x^2 + mx - 1$ 在区间 $[0,3]$ 上有最小值 -2 , 求实数 m 的值.

$$(005346)$$
 当 $x \ge 0$ 时, 求函数 $f(x) = x^2 + 2ax$ 的最小值.

$$(005347)$$
 已知函数 $f(x) = \frac{ax}{2x+3} (x \neq -\frac{3}{2})$ 满足 $f(f(x)) = x$, 求实数 a 的值.

$$(005348)$$
 已知 $f(x)$ 是二次函数, 且满足 $f(2x) + f(3x+1) = 13x^2 + 6x - 1$, 求 $f(x)$ 的表达式.

$$(005349)$$
 已知函数 $f(x)$ 的定义域是一切非零实数,且满足 $3f(x)+2f(\frac{1}{x})=4x$,求, $f(x)$ 的表达式.

(005350) 作出函数
$$y = 1 + \frac{|x|}{x}$$
 的图像.

$$(005351)$$
 作出函数 $y = x - |1 - x|$ 的图像.

$$(005352)$$
 作出函数 $y = |x^2 - 4x + 3|$ 的图像.

$$(005353)$$
 作出函数 $y = \frac{x^3 + x}{|x|}$ 的图像.

$$(005354)$$
 作出函数 $y = \frac{\left(x + \frac{1}{2}\right)^0}{|x| - x}$ 的图像.

(005355) 已知
$$f(x) = -x^2 + 2x + 3$$
, 画出函数 $y = \frac{1}{2}[f(x) + |f(x)|]$ 的图像.

$$(005356)$$
 已知 $f(x) = |x|, x \in [-1, 1]$, 作出函数 $y = f(x+1) + 1$ 的图像.

(005357) 将进货单价为 40 元的商品按每件 50 元出售时,每月能卖出 500 个,已知这批商品在销售单价的基础上每涨价 1 元,其月销售数就减少 10 个,为了每月赚取最大利润,销售单价应定为多少?

(005358) 飞机飞行 1 小时的耗费由两部分组成: 固定部分 4900 元, 变动部分 P 与飞机飞行速度 v(千米/时) 的函数关系是 $P=0.01v^2$. 已知甲、乙两地相距为一常数 a(千米), 试写出飞机从甲地飞到乙地的总耗费 y 与飞机速度 v 的函数关系式, 并写出耗费最小时飞机的飞行速度.

- (005359) 求证: 函数 $f(x) = x^3$ 在 $x \in \mathbf{R}$ 上是增函数.
- (005360) 已知奇函数 y = f(x) 在 x < 0 时是减函数, 求证: y = f(x) 在 x > 0 时也是减函数.
- (005361) 已知 f(x) 是奇函数, 且当 x > 0 时 f(x) = x(1-x), 求 f(x) 在 x < 0 时的表达式.
- (005362) 已知函数 y = f(x) 满足 $f(x) = f(4-x)(x \in \mathbf{R})$, 且 f(x) 在 x > 2 时为增函数, 记 $a = f(\frac{3}{5})$, $b=f(\frac{6}{5}),\,c=f(4),\,$ 则 a,b,c 之间的大小关系是 ().
- A. c > a > b
- B. c > b > a
- C. b > a > c D. a > c > d
- (005363) 画出函数 $y = x^2 2|x| 1$ 的图像.
- (005364) 求函数 $y = \frac{x-2}{2x+1}$ 的值域.
- (005365) 已知函数 $f(x) = (x-1)^2 (x \le 1)$, 又 f(x) 和 $\varphi(x)$ 的图像关于直线 y = x 对称, 求 $\varphi(x)$ 的表达式.
- (005366) 求实数 m 的范围, 使关于 x 的方程 $x^2 + 2(m-1)x + 2m + 6 = 0$:
- (1) 有两个实数根, 且一个比 2 大, 另一个比 2 小;
- (2) 有两个实数根, 且都比 1 大;
- (3) 有两个实数根 α, β , 且满足 $0 < \alpha < 1 < \beta < 4$;
- (4) 至少有一个正根.
- (005367) 就参数 m 讨论方程 $x^2 2|x| m = 0$ 的解的情况.
- (005368) 下列记数中, 符合科学记数法的是(
- A. 35.6×10^{-25}
- B. 0.356×10^{-23} C. 3.56×10^{-24}
- D. 356×10^{-26}

- (005369) 计算 $3^{-1} \times 2^{-2} \div 4^{-2}$ 的结果是 ().
- A. $\frac{1}{192}$

C. $\frac{1}{12}$

D. $-\frac{4}{2}$

- (005370) 下列各式中, 正确的是 ().

- A. $(-1)^0 = -1$ B. $(-1)^{-1} = 1$ C. $3a^{-2} = \frac{1}{3a^2}$ D. $(-x)^5 \div (-x)^3 = x^2$
- (005371) 下列各式中, 计算正确的是 ().
- A. $(-0.125) \div (-0.5)^{-3} = 1$
- B. $10^{-4}(\sqrt{5})^0 = -10000$

C. $(\frac{1}{3})^0 \div 3^{-1} = 3$

- D. $(\sqrt{3} \sqrt{2})^0 (\sqrt{3})^2 (-\sqrt{2})^2 = 1 3 + 2 = 0$
- (005372) 化简 $\frac{1}{3}x\sqrt{9x} x^2\sqrt{\frac{1}{x}}$ 的结果是 ().
- A. \sqrt{x}

- B. $x(1-x^2)\sqrt{x}$
- C. $x^2(1 x\sqrt{x})$
- D. 0

- (005373) 化简 $\frac{a^{-2}-b^{-2}}{a^2-b^2}$ 的结果是 ().
- A. -1

- B. $-\frac{1}{a^2b^2}$
- C. $a^{-1} + b^{-1}$
- D. $\frac{1}{a^2b^2}$

(005374) 已知 $x = 1 - 2^s$, $y = 1 - 2^{-s}$, 则 y 等于 ().

A.
$$\frac{x-1}{x}$$

B.
$$\frac{2-x}{1-x}$$

C.
$$\frac{x}{x-1}$$

D.
$$\frac{x-2}{x-1}$$

(005375) 计算 $\sqrt{(3-\pi)^2}$ 的结果是 ().

A.
$$3 - \pi$$

B.
$$\pi - 3$$

C.
$$\pi + 3$$

D.
$$-\pi - 3$$

(005376) 若 $(\sqrt[n]{-3})^n$ 有意义, 则 n 一定是 ().

A. 正偶数

D. 整数

(005377) 已知 $n \in \mathbb{N}$, 在① $\sqrt[4]{(-4)^{2n}}$; ② $\sqrt[4]{(-4)^{2n+1}}$; ③ $\sqrt[5]{-x^2}$; ④ $\sqrt[5]{-x^2}$ 这四个式子中, 有意义的 ().

A. 是①②③④

D. 只有④

(005378) 若 $\sqrt[4]{4a^2-4a+1} = \sqrt[3]{1-2a}$, 则实数 a 的取值范围是 ().

A.
$$a < 2$$

B.
$$a = \frac{1}{2}$$
 或 0

C.
$$a > \frac{1}{2}$$

D. R

(005379) 在① 0^{-1} ; ② $0^{-\frac{1}{2}}$; ③ 0^{0} ; ④ $0^{0.2}$ 这四个式子中, 有意义的个数是 ().

D. 3

(005380) 下列各式中正确的是().

A.
$$-4^0 = 1$$

B.
$$(5^{-\frac{1}{2}})^2 = 5$$

C.
$$(-3^{m-n})^2 = 9^{m-n}$$

B.
$$(5^{-\frac{1}{2}})^2 = 5$$
 C. $(-3^{m-n})^2 = 9^{m-n}$ D. $(-2)^{-1} = \frac{1}{2}$

(005381) 计算 $[(-3)^2]^{\frac{1}{2}} - (-10)^0$ 的值等于 ().

A.
$$-2$$

C.
$$-4$$

D. 4

(005382) 下列计算中正确的是().

A.
$$a^{\frac{8}{3}} \cdot a^{\frac{3}{8}} = a^{\frac{3}{8}}$$

B.
$$a^{\frac{8}{3}} \cdot a^{-\frac{8}{3}} = 0$$

A.
$$a^{\frac{8}{3}} \cdot a^{\frac{3}{8}} = a$$
 B. $a^{\frac{8}{3}} \cdot a^{-\frac{8}{3}} = 0$ C. $a^{\frac{8}{3}} \div a^{\frac{1}{3}} = a^{8}$

D.
$$a^{\frac{1}{2}} \div a^{\frac{1}{3}} = a^{\frac{1}{6}}$$

(005383) 下列计算中正确的是().

A
$$a^{\frac{3}{4}} \cdot a^{\frac{4}{3}} = 0$$

A.
$$a^{\frac{3}{4}} \cdot a^{\frac{4}{3}} = a$$
 B. $a^{\frac{3}{4}} \div a^{\frac{3}{4}} = a$ C. $a^{-4} \div a^{4} = 0$

$$C_{a}^{-4} \div a^{4} = 0$$

D.
$$(a^{\frac{3}{4}})^{\frac{4}{3}} = a$$

 $(005384) \ 化简 \ (a^{\frac{2}{3}}b^{\frac{1}{2}})(-3a^{\frac{1}{2}}b^{\frac{1}{3}})\div (\frac{1}{3}a^{\frac{1}{6}}b^{\frac{5}{6}}) \ \textbf{的结果是} \ ().$

A. 6a

B.
$$-a$$

$$C. -9a$$

D. 9a

(005385) 将 $\sqrt[3]{-2\sqrt{2}}$ 化成不含根号的式子是 ().

A. $-2^{\frac{1}{2}}$

B.
$$-2^{-\frac{1}{2}}$$

C.
$$-2^{\frac{1}{3}}$$

D.
$$-2^{\frac{2}{3}}$$

(005386) 将 $(a^{\frac{1}{n}} + b^{\frac{1}{n}})^{\frac{1}{3}}$ 表示成根式的形式是 ().

A.
$$\sqrt[3]{a^{\frac{1}{n}} + b^{\frac{1}{n}}}$$

B.
$$(\sqrt[n]{a} + \sqrt[n]{b})^{\frac{1}{3}}$$

A.
$$\sqrt[3]{a^{\frac{1}{n}} + b^{\frac{1}{n}}}$$
 B. $(\sqrt[n]{a} + \sqrt[n]{b})^{\frac{1}{3}}$ C. $\sqrt[3]{\sqrt[n]{a} + \sqrt[n]{b}}$

D.
$$(\sqrt[n]{a} + \sqrt[n]{b})^3$$

(005387) 计算: $\sqrt{12} - \sqrt{3} \div (2 + \sqrt{3}) =$ ______.

(005388) 计算:
$$(\sqrt{12} - \sqrt{\frac{1}{2}} - 2\sqrt{\frac{1}{3}}) - (\sqrt{\frac{1}{8}} - \sqrt{18}) = _____.$$

- (005389) 计算: $(\sqrt{3}+2)^{1997} \times (\sqrt{3}-2)^{1988} =$ _____.
- (005390) 计算: $\frac{2\sqrt{10}-5}{4-\sqrt{10}} =$ _____.

(005391) 计算:
$$4\sqrt{\frac{2}{5}} - \sqrt{1000} + 2\sqrt{10} = ____.$$

(005392) 计算:
$$\frac{1}{(2+\sqrt{3})^2} + \frac{1}{(2-\sqrt{3})^2} = \underline{\hspace{1cm}}.$$

(005393) 计算:
$$\frac{1}{1+\sqrt{2}+\sqrt{3}} + \frac{1}{1-\sqrt{2}+\sqrt{3}} = \underline{\hspace{1cm}}$$
.

(005394) 将下式改写成不含分数指数幂的根式形式 (要求分母不含有根式形式): $3x^{-\frac{3}{2}} =$ ______.

(005395) 将下式改写成不含分数指数幂的根式形式 (要求分母不含有根式形式): $a^{\frac{1}{2}} \cdot b^{-\frac{1}{2}} =$ ______.

(005396) 将下式改写成不含分数指数幂的根式形式 (要求分母不含有根式形式): $(a+b)^{\frac{1}{2}} \cdot (a-b)^{-\frac{4}{3}} =$ ______.

- (005397) 将根式改写成分数指数幂的形式: $\sqrt[4]{a^3} =$ ______.
- (005398) 将根式改写成分数指数幂的形式: $\sqrt[5]{b^8} =$ ______.
- (005399) 将根式改写成分数指数幂的形式: $\sqrt[4]{x^2 + y^2} =$ _______
- (005400) 将根式改写成分数指数幂的形式: $\frac{\sqrt{x}}{\sqrt[3]{y^4}} =$ ______.
- (005401) 将根式改写成分数指数幂的形式: $\sqrt{2\sqrt{2}} =$.
- (005402) 将根式改写成分数指数幂的形式: $-\frac{1}{\sqrt{27x}} =$ ______.
- (005403) 将根式改写成分数指数幂的形式: $\sqrt{\frac{4}{3ab^3}} =$ ______.
- (005404) 已知 m < n,将根式改写成分数指数幂的形式: $2\sqrt[6]{(m-n)^{-2}} =$ _____.
- (005405) 判断命题: $2^{\frac{3}{2}} \cdot 2^{\frac{2}{3}} = 2$ 是否正确, ______.
- (005406) 判断命题: $(\frac{1}{8})^{-\frac{1}{2}} = -2\sqrt{2}$ 是否正确, ______.
- (005407) 判断命题: 若 $a \in \mathbb{R}$, 则 $(a-1)^0 = 1$ 是否正确, ______.
- (005408) 判断命题: $a^x + a^y = a^{x+y}$ 是否正确, ______.
- (005409) 判断命题: $\sqrt[3]{-5} = \sqrt[6]{(-5)^2} = \sqrt[6]{25}$ 是否正确, ______.
- (005410) 计算: $(\frac{81}{625})^{-\frac{3}{4}} =$ ______.
- (005411) 计算: $(0.064)^{-\frac{1}{3}} =$ ______
- (005412) 计算: $(2\sqrt{2})^{-\frac{1}{3}} =$ ______.
- (005413) 计算: $[(-3)^2]^{\frac{3}{2}} =$ _____.

$$(005414)$$
 计算: $(-0.027)^{-\frac{2}{3}} =$ _____.

$$(005415)$$
 计算: $(-0.001)^{-\frac{4}{3}} =$ _____.

(005416) 计算:
$$5^{\frac{4}{5}} \times 125 \times 25^{-0.4} =$$
_____.

(005417) 计算:
$$(8+2\times15^{\frac{1}{2}})^{\frac{1}{2}} =$$
_____.

$$(005418)$$
 计算: $(4-12^{\frac{1}{2}})^{\frac{1}{2}} =$ ______.

(005419) 计算:
$$(0.25)^{-0.5} + (\frac{1}{27})^{-\frac{1}{3}} - 625^{0.25} =$$
_____.

$$(005420) 化筒: 2x^{-\frac{1}{3}}(\frac{1}{2}x^{\frac{1}{3}} - 2x^{-\frac{2}{3}}) - (-3.5)^0 = \underline{\hspace{1cm}}.$$

(005421) 化简:
$$(x^{\frac{1}{3}} + y^{\frac{1}{3}})(x^{\frac{2}{3}} - x^{\frac{1}{3}}y^{\frac{1}{3}} + y^{\frac{2}{3}}) =$$
_____.

(005422) 化简:
$$(\frac{b^3}{2a^2}) \div (-\frac{4b^3}{a^{-7}}) \times (-\frac{b^2}{a})^3 =$$
______.

(005423) 化简:
$$(2a^{\frac{1}{4}}b^{-\frac{1}{3}})(-3a^{-\frac{1}{2}}b^{\frac{2}{3}}) \div (-\frac{1}{4}a^{-\frac{1}{4}}b^{-\frac{2}{3}}) =$$

$$(005424)$$
 若 $a = 1.5^{-\frac{1}{2}}$, $b = 0.5^{-\frac{1}{2}}$, $c = 1$, 则它们的大小顺序是().

A.
$$a < c < b$$

B.
$$a < b < c$$

C.
$$c < b < a$$

D.
$$b < c < a$$

(005425) 若
$$a = \frac{1}{\sqrt{2}}$$
, $b = \frac{1}{\sqrt[3]{2}}$, 则 $[a^{-\frac{3}{2}}b(ab^{-2})^{-\frac{1}{2}}(a^{-1})^{-\frac{2}{3}}]^3 =$ _____.

$$(005426)$$
 若 $a^{\frac{1}{2}} + a^{-\frac{1}{2}} = 2$, 则:

(1)
$$a + a^{-1} = \underline{\hspace{1cm}};$$

(2)
$$a^2 + a^{-2} = ____;$$

(3)
$$a^4 + a^{-4} = \underline{\hspace{1cm}}$$

$$(005427)$$
 若 $10^{\alpha} = 2^{-\frac{1}{2}}$, $10^{\beta} = \sqrt[3]{32}$, 则 $10^{2\alpha - \frac{3}{4}\beta} =$ ______.

(005428) 计算:
$$(\frac{1}{125})^{-\frac{1}{3}} + (-2)^{-2} + (-2)^{0}$$
.

(005429) 计算:
$$(2\frac{7}{9})^{\frac{1}{2}} - (-0.027)^{-\frac{1}{3}} - (-\sqrt{3})^{-2} + \pi^{0}$$
.

(005430) 计算:
$$5-3 \times [(-3\frac{3}{8})^{-\frac{1}{3}} + 1031 \times (0.25 - 2^{-2})] \div 9^{0}$$
.

(005431) 计算:
$$(0.027)^{\frac{1}{3}} - (-\frac{1}{6})^{-2} + 256^{0.75} - |-3^{-1}| + (-5.555)^{0}$$
.

(005432) 计算:
$$(2.25)^{0.5} + (-4.3)^0 - (3\frac{3}{8})^{-\frac{2}{3}} + \frac{3^{-2} - 2^{-2}}{3^{-1} - 2^{-1}}$$
.

(005433) 计算:
$$(0.25)^{-2} + (\frac{8}{27})^{\frac{1}{3}} + (\frac{1}{8})^{-\frac{2}{3}} - (\frac{1}{16})^{-0.75}$$
.

$$(005434) \ \textbf{计算或化简} \colon \sqrt[3]{m^{\frac{9}{2}} \cdot \sqrt{m^{-3}}} \div \sqrt{\sqrt[3]{m^{-7}}} \cdot \sqrt[3]{m^{13}} (m>0).$$

$$(005435) \ \textbf{ 计算或化简} \colon (x-y) \div (x^{\frac{1}{2}} + y^{\frac{1}{2}}) - (x+y-2x^{\frac{1}{2}}y^{\frac{1}{2}}) \div (x^{\frac{1}{2}} - y^{\frac{1}{2}})(x>y>0).$$

(005436) 计算或化简: $(8y^{-\frac{1}{3}}\sqrt{x^{-\frac{1}{3}}y\sqrt{x^{\frac{4}{3}}}})^{\frac{1}{3}}$.

(005437) 计算或化简: $\frac{x+y}{\sqrt{x}+\sqrt{y}} + \frac{2xy}{x\sqrt{y}+y\sqrt{x}}$

(005438) 计算或化简: $(5+\sqrt{6}+\sqrt{10}+\sqrt{15})\div(\sqrt{2}+\sqrt{3}+\sqrt{5})$.

 $(005439) \ \textbf{计算或化简}: \ (2+3^{\frac{1}{2}})^{\frac{1}{2}} \times (2+(2+3^{\frac{1}{2}})^{\frac{1}{2}})^{\frac{1}{2}} \times (2+(2+(2+3^{\frac{1}{2}})^{\frac{1}{2}})^{\frac{1}{2}}.$

(005440) 化简: $\sqrt{x+2\sqrt{x-1}} + \sqrt{x-2\sqrt{x-1}}$.

 $(005441) 化简: (x^{\frac{a+b}{c-a}})^{\frac{1}{b-c}} \cdot (x^{\frac{x+a}{b-c}})^{\frac{1}{a-b}} \cdot (x^{\frac{b+c}{a-b}})^{\frac{1}{c-a}}.$

 $(005442) \ 化简: \frac{a^2-b^2}{a^2+b^2}(\frac{a-b}{a+b})^{\frac{p+q}{p-q}} \cdot [(\frac{a+b}{a-b})^{\frac{2p}{p-q}} + (\frac{a+b}{a-b})^{\frac{2q}{p-q}}].$

(005443) 当 a = 0.001 时, 求 $\frac{a^{\frac{4}{3}} - 8a^{\frac{1}{3}}b}{a^{\frac{2}{3}} + 2\sqrt[3]{ab} + 4b^{\frac{2}{3}}} \div (1 - 2\sqrt[3]{\frac{b}{a}})$ 的值.

 $(005444) \ 求证: \ \, \frac{1}{1+x^{a-b}+x^{a-c}} + \frac{1}{1+x^{b-c}+x^{b-a}} + \frac{1}{1+x^{c-a}+x^{c-b}} = 1.$

(005445) 已知幂函数 f(x) 的图像经过点 $(2,\frac{\sqrt{2}}{2}),$ 则 f(4) 的值等于 ().

A. 16

B. $\frac{1}{16}$

C. $\frac{1}{2}$

D. 2

(005446) 下列幂函数中, 定义域为 $\{x|x>0\}$ 的是 ().

A. $y = x^{\frac{2}{3}}$

B. $y = x^{\frac{3}{2}}$

C. $y = x^{-\frac{2}{3}}$

D. $y = x^{-\frac{3}{2}}$

(005447) 幂函数 $y = x^n (n \in \mathbf{Z})$ 的图像一定不经过 ().

A. 第一象限

B. 第二象限

C. 第三象限

D. 第四象限

(005448) 函数 $f(x) = x^{\frac{2}{3}}$ 的图像是 ().

В.

C.

Ъ

(005449) 幂函数 $y=x^m$ 和 $y=x^n$ 在第一象限内的图像 C_1 和 C_2 图像所示, 则 m,n 之间的关系是 (

A. n < m < 0

B. m < n < 0

C. n > m > 0

D. m > n > 0

(005450) 图中, C_1, C_2, C_3 为幂函数 $y = x^a$ 在第一象限的图像, 则解析式中的指数 α 依次可以取 ().

A. $\frac{4}{3}$, -2, $\frac{3}{4}$

B. $-2, \frac{3}{4}, \frac{4}{3}$

C. $-2, \frac{4}{3}, \frac{3}{4}$

D. $\frac{3}{4}, \frac{4}{3}, -2$

(005455) 函数 $y = x^{-\frac{5}{3}}$ 的定义域为_______, 值域为______.

(005459) 将下列函数图像的标号, 填在相应函数后面的横线上:

(1) $y = x^{\frac{2}{3}}$:_____; (2) $y = x^{-2}$:_____; (3) $y = x^{\frac{1}{2}}$:_____;

(4) $y = x^{-1}$:_____; (5) $y = x^{\frac{1}{3}}$:_____; (6) $y = x^{\frac{3}{2}}$:_____;

 $(7)y = x^{\frac{4}{3}}$; $(8)y = x^{-\frac{1}{2}}$; $(9)y = x^{\frac{5}{3}}$.

(005460) 若幂函数 $y=x^n$ 的图像在 0 < x < 1 时位于直线 y=x 的下方, 则 n 的取值范围是______

(005462) 函数 $f(x) = x^{k^2 - 2k - 3} (k \in \mathbf{Z})$ 的图像如图所示, 则 $k = \underline{\hspace{1cm}}$.

(005463) 幂函数 $y=x^p$ 与 $y=x^q$ 的图像都通过定点_______,它们在第一象限部分关于直线 y=x 对称,则 p,q 应满足的条件是______.

(005464) 若实数 a 满足 $2.4^a > 2.5^a$, 求 a 的取值范围.

(005465) 若实数 a 满足 $(\frac{3}{4})^{-a} > (\frac{4}{3})^{-a}$, 求 a 的取值范围.

(005466) 若实数 a 满足 $a^{-2} > 3^{-2}$, 求 a 的取值范围.

(005467) 若实数 a 满足 $0.01^{-3} > a^{-3}$, 求 a 的取值范围.

(005468) 将 $2.5^{\frac{2}{3}}$, $(-1.4)^{\frac{2}{3}}$, $(-3)^{\frac{1}{3}}$ 从小到大排列:

(005469) 将 $4.1^{\frac{2}{5}}$, $3.8^{-\frac{2}{3}}$, $(-1.9)^{\frac{3}{5}}$ 从小到大排列:______.

(005470) 将 $0.16^{-\frac{3}{4}}$, $0.5^{-\frac{3}{2}}$, $6.25^{\frac{3}{8}}$ 从小到大排列:

(005471) 已知函数 $y=x^{n^2-2n-3}(n\in {f Z})$ 的图像与两坐标轴都无公共点,且其图像关于 y 轴对称,求 n 的值, 并画出相应的函数图像.

(005472) 函数 $y = \sqrt{x^2 + 2x - 3}$ 为减函数的区间是 (

A.
$$(-\infty, -3]$$
 B. $[-1, +\infty)$ C. $(-\infty, -1]$ D. $[1, +\infty)$

B.
$$[-1, +\infty)$$

C.
$$(-\infty, -1]$$

D.
$$[1, +\infty)$$

(005473) 若函数 y = (2k+1)x + b 在 $(-\infty, +\infty)$ 上是减函数,则().

A.
$$k > \frac{1}{2}$$

B.
$$k < \frac{1}{2}$$

D.
$$k < -\frac{1}{2}$$

(005474) 若函数 $f(x)=4x^2-mx+5$ 在区间 $[-2,+\infty)$ 上是增函数, 在区间 $(-\infty,-2]$ 上是減函数, 则 f(1)等于 ().

A.
$$-7$$

(005475) 若函数 $y = x^2 + 2(a-2)x + 5$ 在区间 $(4, +\infty)$ 上是增函数, 则实数 a 的取值范围是 (

A.
$$a < -2$$

B.
$$a \geq -2$$

C.
$$a \le -6$$

D.
$$a \ge -6$$

(005476) 下列函数中, 在区间 (0,2) 上为增函数的是 ().

A.
$$y = -3x + 1$$
 B. $y = \sqrt[3]{x}$

B.
$$y = \sqrt[3]{x}$$

C.
$$y = x^2 - 4x + 3$$
 D. $y = \frac{4}{3}$

D.
$$y = \frac{4}{x}$$

(005477) 若函数 f(x) 在定义域 R 上为增函数, 且 f(x) < 0, 则下列函数在 R 上为增函数的是 ().

A.
$$y = |f(x)|$$

A.
$$y = |f(x)|$$
 B. $y = \frac{1}{f(x)}$ C. $y = [f(x)]^2$ D. $y = [f(x)]^3$

C.
$$y = [f(x)]^2$$

D.
$$y = [f(x)]^3$$

(005479) 函数 $y = \frac{1}{\sqrt{3+2x-x^2}}$ 为增函数的区间是______.

(005480) 函数 y = |3x - 5| 为减函数的区间是______.

(005481) 函数 $y = |x^2 - 2x - 3|$ 为增函数的区间是_____.

(005482) 函数 $y = \frac{1-x}{1+x}$ 为减函数的区间是_____.

(005483) 定义在 [1,3] 上的函数 f(x) 为减函数, 求满足不等式 $f(1-a)-f(3-a^2)>0$ 的解集.

(005484) 已知 $f(x) = -x^3 - x + 1(x \in \mathbf{R})$, 求证 y = f(x) 在定义域上为减函数.

(005485) 求证: 函数 $f(x) = x + \frac{1}{x}$ 在 (0,1) 上是减函数, 在 $(1,+\infty)$ 上是增函数.

(005486) 求证: $f(x) = \sqrt{x} - \frac{1}{x}$ 在定义域上是增函数.

(005487) 已知常数 m, n 满足 mn < 2, 求证: 函数 $f(x) = \frac{mx+1}{2x+n}$ 在 $(-\frac{n}{2}, +\infty)$ 上为减函数.

(005488) 已知 $f(x) = x^2 + 1$, $g(x) = x^4 + 2x^2 + 2$, 是否存在实数 λ , 使得 $F(x) = g(x) - \lambda f(x)$ 在 $(-\infty, -1)$ 上是减函数, 在 (-1,0) 上是增函数? 说明理由.

(005489) 已知函数 f(x) 在区间 $(-\infty, +\infty)$ 上是增函数, 又实数 a, b 满足 $a + b \ge 0$, 求证: $f(a) + f(b) \ge$ f(-a) + f(-b).

(005490)f(x) 是定义在 \mathbf{R}^+ 的增函数, 且 $f(\frac{x}{y}) = f(x) - f(y)$.

- (1) 求 f(1) 的值;
- (2) 若 f(6) = 1, 解不等式 $f(x+3) f(\frac{1}{x}) < 2$.

(005491) 若 $f(x) = (m-1)x^2 + 3mx + 3$ 为偶函数,则 f(x) 在区间 (-4,2) 上 (-4,2) (-4,2) 上 (-4,2) (-

A. 是增函数

B. 是减函数

C. 先是增函数后是减函数

D. 先是减函数后是增函数

A. 是奇函数, 但不是偶函数

B. 是偶函数, 但不是奇函数

C. 既是奇函数, 也是偶函数

D. 既不是奇函数, 也不是偶函数

(005493) 下列函数中既是奇函数, 又在定义域上为增函数的是().

$$A. f(x) = 3x + 1$$

B.
$$f(x) = \frac{1}{x}$$

A.
$$f(x) = 3x + 1$$
 B. $f(x) = \frac{1}{x}$ C. $f(x) = 1 - \frac{1}{x}$ D. $f(x) = x^3$

$$D. f(x) = x^3$$

(005494) 若 f(x) 为定义在区间 [-6,6] 上的偶函数, 且满足 f(3) > f(1), 则恒成立的是 ().

A.
$$f(-1) < f(3)$$
 B. $f(0) < f(6)$ C. $f(3) > f(2)$ D. $f(2) > f(0)$

B.
$$f(0) < f(6)$$

C.
$$f(3) > f(2)$$

D.
$$f(2) > f(0)$$

(005495) 函数 $f(x) = \frac{\sqrt{1-x^2}}{2-|x+2|}$ ().

A. 是奇函数, 但不是偶函数

B. 是偶函数, 但不是奇函数

C. 既是奇函数, 又是偶函数

D. 既不是奇函数, 也不是偶函数

(005496) 已知 f(x) 是奇函数, 则下列各点中在函数 y = f(x) 的图像上的点的是 ().

A.
$$(a, f(-a))$$

B.
$$(-a, -f(a))$$

$$C. \left(\frac{1}{a}, -f(\frac{1}{a})\right)$$

A.
$$(a, f(-a))$$
 B. $(-a, -f(a))$ C. $(\frac{1}{a}, -f(\frac{1}{a}))$ D. $(-\sin a, -f(-\sin a))$

(005497) 若 f(x) 是定义在 R 上的偶函数, 且当 x < 0 时, f(x) = 2x - 3, 则当 x > 0 时, f(x) = ...

(005498) 若奇函数 f(x) 的定义域是 R, 则 f(0) =_____.

(填"增"或"减"), 且最小值等于 .

(005500) 设 f(x) 为定义在 R 上的偶函数, 且 f(x) 在 $[0,+\infty)$ 上是增函数, 则 f(-4), f(-2), f(3) 由小到大 的排列顺序为_____.

(005501) 若函数 $f(x) = x^5$	$+px^3 + qx - 8$ 满足 $f(-2)$	f(2) = 10, M f(2) = ().			
A. 10	B10	C26	D18		
(005502) 设 $f(x)$ 在 R 上 $f(x) = ($).	是奇函数,且当 $x \in [0, +$	∞) 时, $f(x) = x(1 + \sqrt[3]{x})$,	那么当 $x \in (-\infty,0)$ 时,		
A. $-x(1+\sqrt[3]{x})$	B. $x(1+\sqrt[3]{x})$	C. $-x(1-\sqrt[3]{x})$	D. $x(1 - \sqrt[3]{x})$		
(005503) 若函数 $f(x) = 8 +$	$2x - x^2$, $\mathcal{H}(x) = f(2 - x^2)$	x^2), 则 $g(x)$ ().			
A. 在 (-2, 0) 上是增函数	B. 在 (0, 2) 上是增函数	C. 在 (-1, 0) 上是减函数	D. 在 (0, 1) 上是减函数		
(005504) 函数 $f(x) = x x $ -	- 2x 是 ().				
A. 偶函数, 且在 (-1, 1) 上;	是增函数	B. 奇函数, 且在 (-1, 1) 上是	咸函数		
C. 偶函数, 且在 (-1, 1) 上;	是减函数	D. 奇函数, 且在 (-1, 1) 上是与	增函数		
(005505) 若函数 $y = f(x)$ 是	是偶函数, 其图像与 x 轴有	四个交点, 则方程 $f(x) = 0$ 的)	所有实数根之和为 ().		
A. 4	B. 2	C. 1	D. 0		
(005506) 函数 $f(x) = \frac{1}{2^{1+x}}$	$\frac{x}{+2^{1-x}}().$				
A. 是奇函数, 但不是偶函数	K	B. 是偶函数, 但不是奇函数			
C. 既是奇函数, 又是偶函数	t .	D. 既不是奇函数, 也不是偶函数			
(005507) 已知奇函数 $f(x)$ 石	在 $x > 0$ 时的表达式为 $f(x)$	$(x) = 2x - \frac{1}{2}$,则当 $x \le -\frac{1}{4}$ 时,	恒有 ().		
A. $f(x) > 0$	B. $f(x) < 0$	C. $f(x) - f(-x) \le 0$	D. $f(x) - f(-x) > 0$		
(005508)f(x) + f(2-x) + 2	2 = 0 对任何实数 x 都成立	, 则 f(x) 的图像 ().			
A. 关于直线 $x=1$ 成轴对	称图形	B. 关于直线 $x=2$ 成轴对称	图形		
C. 关于点 (1,-1) 成中心系	寸称图形	D. 关于点 (-1,1) 成中心对称	尔图形		
		f(x) 为奇函数, $g(x)$ 为偶函数			
		$\underline{}; (2)f(x) \cdot g(x) : \underline{}$	$\vdots (3)f[f(x)] : \underline{\hspace{1cm}};$		
$(4)f[g(x)]: \underline{\hspace{1cm}}; (5)g$	$[f(x)]: \underline{\hspace{1cm}}; (6)g[g(x)]$	x)]:			
(005510) 判断函数 $f(x) = 5$	的奇偶性:				
(005511) 判断函数 $f(x) = 1000000000000000000000000000000000000$	$\sqrt{x^2-1} + \sqrt{1-x^2}$ 的奇偶	性:			
(005512) 判断函数 $f(x) = x$	$x^2 - 2x^2 + 3$ 的奇偶性:	·			
(005513) 判断函数 $x \in [-4,$	4) 的奇偶性:				
(005514) 判断函数 $f(x) = 3x + 2 - 3x - 2 $ 的奇偶性:					
(005515) 判断函数 $f(x) = \frac{3}{2}$	$\frac{x^2(x-1)}{x-1}$ 的奇偶性:				

(005516) 判断函数 $f(x) = \frac{1}{2}[g(x) - g(-x)]$ 的奇偶性:_____

(005517) 求证: 函数 $f(x) = \frac{x+1+\sqrt{1+x^2}}{x-1+\sqrt{1+x^2}}$ 是奇函数.

 $(005518) 求证: 函数 <math>f(x) = \begin{cases} x(1-x), & x>0, \\ x(1+x), & x<0 \end{cases}$ 是奇函数.

(005519) 已知奇函数 f(x) 在定义域 (-l,l) 上是减函数, 求满足 $f(1-m)+f(1-m^2)<0$ 的实数 m 的取值 范围.

(005520) 已知偶函数 f(x) 在 $[0,+\infty)$ 上是增函数. 求不等式 $f(2x+5) < f(x^2+2)$ 的解集.

(005521) 是否存在既是奇函数又是偶函数的函数? 说明理由

(005522) 求证: 定义域为 (-l,l) 的任何函数都能表示成一个奇函数与一个偶函数之和.

(005523) 下列函数中有反函数的是(

A.
$$y = 3 + \sqrt{x^2 + 5}$$

B.
$$y = \frac{1}{x^2 + 1}$$

C.
$$y = \sqrt[3]{2x - 1} + 2$$

A.
$$y = 3 + \sqrt{x^2 + 5}$$
 B. $y = \frac{1}{x^2 + 1}$ C. $y = \sqrt[3]{2x - 1} + 2$ D. $y = \begin{cases} x^2 - 3, & x \ge 0, \\ 3x, & x < 0 \end{cases}$

(005524) 函数 $y = \sqrt{x^2 - 2x + 3}(x \le 1)$ 的反函数的定义域是 ().

A.
$$[0, +\infty)$$

B.
$$(2, +\infty)$$

C.
$$(-\infty, 1]$$

D.
$$[\sqrt{2}, +\infty)$$

(005525) 设 $f(x) = \frac{2x+1}{4x+3}(x \in \mathbf{R}, \text{ 且 } x \neq -\frac{3}{4}), \text{ 则 } f^{-1}(2)$ 的值等于 ().

A.
$$-\frac{5}{6}$$

B.
$$-\frac{2}{5}$$

C.
$$\frac{2}{5}$$

D.
$$\frac{5}{11}$$

(005526) 函数 $y = x^2 + 2x(x < -1)$ 的反函数是 (

A.
$$y = \sqrt{x+1} - 1(x < -1)$$

B.
$$y = \sqrt{x+1} - 1(x > -1)$$

C.
$$y = -\sqrt{x+1} - 1(x < -1)$$

D.
$$y = -\sqrt{x+1} - 1(x > -1)$$

(005527) 若函数 y = g(x) 的图像与函数 $f(x) = (x-1)^2 (x \le 1)$ 的图像关于直线 y = x 对称. 则 g(x) 的表达 式是 ().

A.
$$g(x) = 1 - \sqrt{x} (x \ge 0)$$

B.
$$q(x) = 1 + \sqrt{x}(x > 0)$$

C.
$$q(x) = \sqrt{1-x}(x < 1)$$

D.
$$q(x) = \sqrt{1+x}(x > -1)$$

(005528) 函数 $y = \frac{ax+b}{cx+1}(a \neq bc)$ 的反函数是 $y = \frac{x+2}{3x+1}$, 则的 a,b,c 值依次为 (

A.
$$1, -2, -3$$

B.
$$-1, 2, 3$$

$$C. -1, 2, -3$$

D.
$$1, 2, 3$$

(005529) 若函数 $f(x) = \frac{x-2}{x+m}$ 的反函数 $f^{-1}(x) = f(x)$,则 m 的值是 ().

B.
$$-1$$

D.
$$-2$$

(005530) 若函数 f(x) 的图像经过点 (0,-1), 则函数 f(x+4) 的反函数的图像必经过点 (B. (-4, -1)C. (-1, -4)A. (-1, 4)(005531) 已知函数 $y = -\sqrt{1-x^2}$ 的反函数是 $y = -\sqrt{1-x^2}$, 则原函数的定义域 "最大" 可以是 (005532) 已知函数 $y = \frac{1}{3}x + m$ 与 y = nx - 6 互为反函数, 则 $m = ______, n = ______$. (005533) 若点 (1,2) 既在函数 $y = \sqrt{ax+b}$ 的图像上. 又在其反函数的图像上, 则 a = 0 , b = 0(005534) 若 $y = \frac{1+x}{1-x}(x \neq 1)$,则其反函数 $f^{-1}(x) =$ _____. (005535) 若 $f(x) = x^{\frac{2}{3}}(x \le 0)$,则其反函数 $f^{-1}(x) =$ _____. (005536) 若 $f(x) = -\sqrt{1-x^2}(0 \le x \le 1)$,则其反函数 $f^{-1}(x) =$ ______. (005537) 若 $f(x) = \sqrt{x^2 - 4}(x \le -2)$, 则其反函数 $f^{-1}(x) =$ ______. $(005538) 若 f(x) = \begin{cases} x^2, & x \le 0, \\ -3x, & x > 0, \end{cases}$ 则其反函数 $f^{-1}(x) =$ ______. (005541) 已知函数 $f(x) = \frac{x+1}{x-1}$, $g(x) = f^{-1}(-x)$, 则 g(x)(). B. 在 $(-\infty, -1)$ 上是增函数 A. 在 $(-\infty, +\infty)$ 上是增函数 D. 在 $(-\infty, -1)$ 上是减函数 C. 在 $(1,+\infty)$ 上是减函数 (005542) 若函数 $y = \sqrt{x-m}$ 与其反函数的图像有公共点, 则 m 的取值范围是 (A. $m \geq \frac{1}{4}$ B. $m \leq \frac{1}{4}$ D. $m \leq 0$ (005543) 已知 y = g(x) 是函数 y = f(x) 的反函数, 又 y = h(x) 与 y = g(x) 的图像关于原点 O(0,0) 对称, 则 h(x) 的表达式是 (). A. $y = f^{-1}(x)$ B. $y = -f^{-1}(x)$ C. $y = f^{-1}(-x)$ D. $y = -f^{-1}(-x)$ (005544) 若幂函数 f(x) 是奇函数,则 $f^{-1}(1) = _____, f^{-1}(-1) = ____.$ (005545) 若 $f(x) = \frac{2x-1}{x+a}$ 存在反函数, 则实数 a 的取值范围是______. (005546) 若 $f(x) = 2x^2 - 4x + 9(x \ge 1)$,且满足 $f^{-1}(a+1) = 3$,则 f(a) =______ (005547) 已知定义域为 $(-\infty,0]$ 的函数 f(x) 满足 $f(x-1)=x^2-2x$, 则 $f^{-1}(-\frac{1}{2})=$ ______

(005548) 求函数 $f(x) = egin{cases} x+1, & x>0, \\ & &$ 的反函数, 并作出其反函数的图像. $x-1, & x<0 \end{cases}$

(005549) 已知函数 $f(x) = x^2 + 2x + 1$.

- (1) 若函数的定义域是 $(-\infty, +\infty)$, 这个函数有没有反函数?
- (2) 若函数的定义域是 $[0,+\infty)$, 求其反函数;
- (3) 若函数的定义域是 $(-\infty, -1]$, 求其反函数.

(005550) 若关于 x 的方程 $x^2 + 2(m+3)x + 2m + 14 = 0$ 有两个实数根,且一个比 4 大,另一个比 4 小,求实数 m 的取值范围.

(005551) 若关于 x 的方程 $x^2 + 2mx - (m-12) = 0$ 的两根都大于 2, 求实数 m 的取值范围.

(005552) 若关于 x 的方程 $7x^2 - (m+13)x + m^2 - m - 2 = 0$ 的两实数根 α, β 满足 $0 < \alpha < 1 < \beta < 2$, 求实数 m 的取值范围.

(005553) 若关于 x 的方程 $2x^2 - 3x + 2m = 0$ 的两根均在 [-1,1] 之间, 求实数 m 的取值范围.

(005554) 若关于 x 的方程 $x^2 + 2mx + 2m^2 - 1 = 0$ 至少有一负根, 求实数 m 的取值范围.

(005555) 若在区间 [-2,2] 内恰有一个 x 的值满足方程 $2mx^2 - x - 1 = 0$, 求实数 m 的取值范围.

(005556) 若关于 x 的方程 $x^2 + x = m + 1$ 在 0 < x < 1 内有解, 求实数 m 的取值范围.

(005557) 就实数 k 的取值讨论下列关于 x 的方程解的情况:

- (1) $x^2 + 2|x| k = 0$;
- (2) $|x^2 2x 3| = k$.

 $(005558)\ \hbox{\bf 4FPMSMM-34M} (105558)\ \hbox{\bf 4FPMS$

(005559) 求函数 $y = (\frac{1}{2})^{-x^2+2x}$ 为增函数的区间.

(005560) 求函数 $y = 9^x - m \cdot 3^x + 1$ 的最小值.

(005561) 填写下表:

x	$f(x) = x^2$	f(x) - f(x-1)	$g(x) = 2^x$	g(x) - g(x-1)
0				
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				

- (1) 比较 $f(x) = x^2$ 与 $g(x) = 2^x$ 的函数值的大小;
- (2) 比较 $f(x)=x^2$ 与 $g(x)=2^x$ 的函数值递增的快慢.

(005562) 已知函数 $f(x)=2x+1,\,g(x)=1.5^x,\,h(x)=x^{1.5},\,$ 试用数值计算比较三个函数在 $[0,+\infty)$ 上的函数值的大小、图像递增的快慢. 并说明在函数图像上的表现. 解列表并计算得:

x	f(x) = 2x + 1	f(x) - f(x-1)	$g(x) = 1.5^x$	g(x) - g(x-1)	$h(x) = x^{1.5}$	h(x) - h(x-1)
0	1		1		0	
1	3	2	1.5	0.5	1	1
2	5	2	2.25	0.75	2.82842712	1.82842712
3	7	2	3.375	1.125	5.19615242	2.3677253
4	9	2	5.0625	1.6875	8	2.80384758
5	11	2	7.59375	2.53125	11.1803399	3.18033989
6	13	2	11.390625	3.796875	14.6969385	3.51659857
7	15	2	17.085938	5.6953125	18.5202592	3.82332072
8	17	2	25.628906	8.5429688	22.627417	4.10715782
9	19	2	38.443359	12.814453	27	4.372583
10	21	2	57.665039	19.22168	31.6227766	4.6227766
11	23	2	86.497559	28.83252	36.4828727	4.86009609
12	25	2	129.74634	43.248779	41.5692194	5.08634669
13	27	2	194.61951	64.873169	46.8721666	5.3029472
14	29	2	291.92926	97.309753	52.3832034	5.51103683
15	31	2	437.89389	145.96463	58.0947502	5.71154678

x	f(x) = 2x + 1	f(x) - f(x-1)	$g(x) = 1.5^x$	g(x) - g(x-1)	$h(x) = x^{1.5}$	h(x) - h(x-1)
16	33	2	656.84084	218.94695	64	5.90524981
17	35	2	985.26125	328.42042	70.0927956	6.09279564
18	37	2	1477.8919	492.63063	76.3675324	6.27473673
19	39	2	2216.8378	738.94594	82.8190799	6.45154756
20	41	2	3325.2567	1108.4189	89.4427191	6.62363917
21	43	2	4987.8851	1662.6284	96.2340896	6.79137049
22	45	2	7481.8276	2493.9425	103.189147	6.95505712
23	47	2	11222.741	3740.9138	110.304125	7.11497832
24	49	2	16834.112	5611.3707	117.575508	7.27138262
25	51	2	25251.168	8417.0561	125	7.42449235
26	53	2	37876.752	12625.584	132.574507	7.57450735
27	55	2	56815.129	18938.376	140.296115	7.72160806
28	57	2	85222.693	28407.564	148.162073	7.86595801
29	59	2	127834.04	42611.346	156.169779	8.00770599
30	61	2	191751.06	63917.02	164.316767	8.14698784

得点 A, B, C, D 的横坐标分别约为 1.5, 4.8, 6.5, 7.4, 记作 x_A, x_B, x_C, x_D .

(1) 三个函数的函数值的大小情况如下:

① 当 $0 < x < x_A$ 时, f(x) > g(x) > h(x); ② 当 $x_A < x < x_B$ 时, f(x) > h(x) > g(x); ③ 由 $x_B < x < x_C$ 时, h(x) > f(x) > g(x); ④ 当 $x_C < x < x_D$ 时, h(x) > g(x) > f(x); ⑤ 当 $x_D < x$ 时, g(x) > h(x) > f(x); ⑥ 当 $x = x_A$ 时, f(x) > g(x) = h(x); ⑦ 当 $x = x_B$ 时, f(x) = h(x) > g(x); ⑧ 当 $x = x_C$ 时, f(x) = g(x) < h(x); ⑨ 当 $x = x_D$ 时, f(x) < g(x) = g(x).

(2) 它们在同一个平面直角坐标系下的图像如图 14 所示.

由表格及图像可看出, 三个函数的函数值变化及相应增量规律为: 随着 x 的增大, 直线型均匀上升, 增量恒定; 指数型急剧上升, 在区间 $[0,+\infty)$ 上递增增量快速增大; 幂函数型虽上升较快, 但随着 x 的不断增大上升趋势 远不如指数型, 几乎微不足道, 其增量缓慢递增.

(005563) 已知函数 $f(x) = 4 + a^{x-1}$ 的图像恒过记点 P, 则点 P 的坐标是 ().

A.
$$(1,5)$$

B.
$$(1,4)$$

D.
$$(4,0)$$

(005564) 下列函数中, 值域为 $(0,+\infty)$ 的函数是 ().

A.
$$y = (\frac{1}{8})^{2-x}$$

B.
$$y = \sqrt{1 - 3^x}$$

B.
$$y = \sqrt{1 - 3^x}$$
 C. $y = \sqrt{(\frac{1}{3})^x - 1}$ D. $y = 2^{\frac{1}{3-x}}$

D.
$$y = 2^{\frac{1}{3-x}}$$

(005565) 若 0 < a < 1, 记 $m = a^{-1}$, $n = a^{-\frac{4}{3}}$, $p = a^{-\frac{1}{3}}$, 则 m, n, p 的大小关系是 ().

A.
$$m < n < p$$
 B. $m C. $n < m < p$$

B.
$$m$$

C.
$$n < m < p$$

D.
$$p < m < n$$

(005566) 下列函数式中, 满足 f(x+1) = 2f(x) 的 f(x) 是 ().

A.
$$\frac{1}{2}(x+1)$$
 B. $x + \frac{1}{4}$

B.
$$x + \frac{1}{4}$$

D.
$$2^{-x}$$

(005567) 若 $f(x) = \frac{e^x - e^{-x}}{2}, g(x) = \frac{e^x + e^{-x}}{2}$. 则下列关系式中不正确的是 (

A.
$$[g(x)]^2 - [f(x)]^2 = 1$$

$$B. f(2x) = 2f(x) \cdot g(x)$$

C.
$$g(2x) = [f(x)]^2 + [g(x)]^2$$

D.
$$f(-x)g(x) = f(x)g(-x)$$

 $(005568) \ \hbox{$\stackrel{\cdot}{\bf a}$} \ a>b \ \hbox{$\stackrel{\cdot}{\bf L}$} \ ab\neq 0. \ \hbox{$\stackrel{\cdot}{\bf M}$} \ {\bf a}^2>b^2, \ \textcircled{\tiny 2} \ 2^a>2^b, \ \textcircled{\tiny 3} \ \frac{1}{a}<\frac{1}{b}, \ \textcircled{\tiny 4} \ a^{\frac{1}{3}}>b^{\frac{1}{3}}, \ \textcircled{\tiny 5} \ (\frac{1}{3})^a<(\frac{1}{3})^b \ {\bf 这五个关系}$ 式中, 恒成立的有().

(005569) 在同一平面直角坐标系中, 函数 f(x) = ax 与 $g(x) = a^x$ 的图像可能是 (

(005570) 下列各式中, 正确的是 ().

A.
$$(\frac{1}{2})^{\frac{2}{3}} < (\frac{1}{5})^{\frac{2}{3}} < (\frac{1}{2})^{\frac{1}{3}}$$

B.
$$(\frac{1}{2})^{\frac{1}{3}} < (\frac{1}{2})^{\frac{2}{3}} < (\frac{1}{5})^{\frac{2}{3}}$$

$$\text{A. } (\frac{1}{2})^{\frac{2}{3}} < (\frac{1}{5})^{\frac{2}{3}} < (\frac{1}{2})^{\frac{1}{3}} \qquad \text{B. } (\frac{1}{2})^{\frac{1}{3}} < (\frac{1}{2})^{\frac{2}{3}} < (\frac{1}{5})^{\frac{2}{3}} \qquad \text{C. } (\frac{1}{5})^{\frac{2}{3}} < (\frac{1}{2})^{\frac{1}{3}} < (\frac{1}{2})^{\frac{2}{3}} \qquad \text{D. } (\frac{1}{5})^{\frac{2}{3}} < (\frac{1}{2})^{\frac{2}{3}} < (\frac{1}{2})^{\frac{2$$

D.
$$(\frac{1}{5})^{\frac{2}{3}} < (\frac{1}{2})^{\frac{2}{3}} < (\frac{1}{2})^{\frac{1}{3}}$$

(005571) 若 f(x) 在 $(0,+\infty)$ 上是减函数,而 $f(a^x)$ 在 $(-\infty,+\infty)$ 上是增函数,则实数 a 的取值范围是 ().

B.
$$(0,1) \cup (1,+\infty)$$
 C. $(0,+\infty)$

C.
$$(0, +\infty)$$

D.
$$(1, +\infty)$$

(005572) 函数 $y = (\frac{1}{2})^{\sqrt{-x^2+x+x}}$ 为增函数的区间是 ().

A.
$$[-1, \frac{1}{2}]$$

B.
$$(-\infty, -1]$$
 C. $[2, +\infty)$

C.
$$[2, +\infty)$$

D.
$$[\frac{1}{2}, 2]$$

(005573) 若函数 $f(x)=(a^2-1)^x$ 在 $(-\infty,+\infty)$ 上是减函数, 则 a 的取值范围是 ().

A.
$$|a| > 1$$

B.
$$|a| < \sqrt{2}$$

C.
$$a > \sqrt{2}$$

D.
$$1 < |a| < \sqrt{2}$$

(005574) 若函数 $f(x) = a^x - (b+1)(a > 0$ 且 $a \neq 1)$ 的图像在第一、三、四象限, 则必有 ().

A.
$$0 < a < 1 \perp b > 0$$
 B. $0 < a < 1 \perp b < 0$ C. $a > 1 \perp b < 1$ D. $a > 1 \perp b > 0$

B.
$$0 < a < 1 \, \exists \, b < 0$$

C.
$$a > 1$$
 H, $b < 1$

$$D \ a > 1 \ B \ b > 0$$

(005575) 用不等号 ">" 或 "<" 填空: (1) 1.2^{0.3}______1;

$$(2) \ 0 \ 3^{5.1}$$
 1.

$$(3) \left(\frac{2}{3}\right)^{-\frac{1}{3}} \underline{\qquad} \left(\frac{3}{2}\right)^{-\frac{1}{3}};$$

$$(4) 9^{\frac{1}{3}}$$
_____3;

$$(5) \ 2^{\frac{2}{3}}$$
______3.6^{-\frac{3}{4}};

(6)
$$0.8^{-2}$$
 $(\frac{5}{3})^{-\frac{1}{2}}$.

(005576) 将下列各数从小到大排列: $(1) 0.9^{\frac{3}{4}}, 1.2^{\frac{3}{4}}, 1:$ ______;

$$(2) \ 2.5^{\frac{2}{3}}, \ (-1.4)^{\frac{2}{3}}, \ (-3)^{\frac{1}{3}}$$
:_____;

$$(3) \ 4.1^{\frac{2}{3}}, \ 3.8^{-\frac{2}{3}}, \ (-1.9)^{\frac{3}{5}}$$
:_____.

(005577) 根据条件确定实数 x 的取值范围:

(1)
$$2^x > 0.5$$
:_____;

(2)
$$2^x < 1$$
:_____;

(3)
$$0.2^{2x-1} > \frac{1}{25}$$
:_____;

$$(4) 8 < (\frac{1}{2})^{2x+1}: _{;};$$

(5)
$$(a^2 + a + 2)^x > (a^2 + a + 2)^{1-x}$$
;

(6)
$$(\frac{1}{2})^{x^2+x-2} < 1$$
:_____.

(005578) 函数 $f(x) = \sqrt{1 - 6^{x^2 + x - 2}}$ 的定义域是______.

(005579) 若函数 f(x) 的定义域是 (0,1), 则函数 $f(2^{-x})$ 的定义域是_______, $f(3 \times 9^x + 2 \times 3^x)$ 的定义域是______.

(005580) 函数 $y = 3^{x^2-3x-2}$ 为增函数的区间是_____.

(005581) 函数 $y = (0.2)^{x^2-6x+9}$ 为增函数的区间是_____.

(005582) 函数 $y = 2^{-|x|}$ 为增函数的区间是______.

(005584) 若函数 $y = (\frac{1}{2})^{(m^2-1)x}$ 在 $x \in \mathbb{R}$ 为减函数, 则实数 m 的取值范围是______.

(005585) 若 $1 \le x \le 2$,则函数 $y = (\frac{1}{2})^{x^2 - 6x + 10}$ 的最大值为______.

(005586) 函数 $f(x) = a^{2x} - 3a^x + 2(a > 0$ 且 $a \neq 1)$ 的最小值为_____.

(005587) 对于函数 $y = a^{x^2-4} (a > 0$ 且 $a \neq 1)$:

- (1) 若 0 < a < 1, 则 y 有最大值______;
- (2) 若 a > 1, 则 y 有最小值_____.

$$(005588)$$
 函数 $f(x) = \frac{1}{3^x - 1}$ 的值域是______.

$$(005589)$$
 函数 $f(x) = \frac{3^x}{3^x + 1}$ 的值域是______.

(005590) 若关于 x 的方程 $5^x = \frac{a+3}{5-a}$ 有负根, 则实数 a 的取值范围是______.

(005591) 若 0 < a < 1, x > y > 1,则 a^x, x^a, a^y, y^a 从小到大的排列顺序是______.

(005592) 若 0.9 < a < 1,则 a, a^a, a^{a^a} 从小到大的排列顺序是_____.

(005593) 已知 $f(x) = a^{2x^2 - 3x + 1}, \ g(x) = a^{x^2 + 2x - 5} (a > 0$ 且 $a \neq 1)$, 确定 x 的取值范围, 使得 f(x) > g(x).

(005594) 若 $f(x) = a + \frac{1}{4^x + 1}$ 是奇函数, 求常数 a 的值.

(005595) 若 $f(x) = x^2(\frac{1}{a^x - 1} + m)(a > 0$ 且 $a \neq 1)$ 为奇函数, 求常数 m 的值.

(005596) 已知函数 $f(x) = (\frac{1}{2^x - 1} + \frac{1}{2})x^3$.

- (1) 求函数的定义域;
- (2) 讨论 f(x) 的奇偶性;
- (3) 求证: f(x) > 0.

(005597) 已知
$$f(x) = \frac{a^x - 1}{a^x + 1}(a > 1)$$
.

- (1) 判断函数 f(x) 的奇偶性;
- (2) 求函数 f(x) 的值域;
- (3) 求证: f(x) 在区间 $(-\infty, +\infty)$ 上是增函数.

(005598) 若 $0 \le x \le 2$, 求函数 $y = 4^{x-\frac{1}{2}} - 3 \cdot 2^x + 5$ 的最大值和最小值.

(005599) 若函数 $f(x) = a^{2x} + 2a^x - 1(a > 0$ 且 $a \neq 1)$ 在 [-1,1] 上的最大值为 14, 求实数 a 的值.

(005600) 已知函数 $f(x)=rac{a}{a^2-2}(a^x-a^{-x})(a>0$ 且 $a\neq 1)$ 在 $(-\infty,+\infty)$ 上是增函数, 求实数 a 的取值范围.

(005601) 已知 $(a+1)^{-\frac{1}{3}} < (3-2a)^{-\frac{1}{3}}$, 求实数 a 的取值范围.

(005602) 已知集合 $M = \{x | (x+1)^2 \le 1\}$, $P = \{y | y = 4^x - a \cdot 2^{x+1} + 1, x \in M, \frac{3}{4} < a \le 1\}$, 且全集 $U = \mathbf{R}$, 求 $\mathcal{C}_U(M \cup P)$.

(005603) 求方程 $x^{\frac{1}{3}} + 2^x = 0$ 的实根个数.

(005604) 求关于 x 的方程 $a^x + 1 = -x^2 + 2x + 2a(a > 0$ 且 $a \neq 1)$ 的实数解的个数.

(005605) 在同一个平面直角坐标系中, 作出 t(x) = 0.5x 与 $g(x) = 0.2 \times 2^x$ 的图像, 并比较它们的增长情况.

(005606) 某地区不同身高的未成年男性的体重平均值如下表 (身高: cm; 体重: kg):

身高	60	70	80	90	100	110
体重	6.13	7.90	9.99	12.15	15.02	17.05
身高	120	130	140	150	160	170
体重	20.92	26.86	31.11	38.85	47.25	55.05

为了揭示未成年男性的身高与体重的规律,甲选择了模型 $y=ax^2+bx+c(a>0)$,乙选择了模型 $y=ba^x(a>1)$,其中 y 表示体重,x 表示身高. 你认为谁选择的模型较好?

(005607) 用计算器计算并填写下表:

x	$f(x) = x^{\frac{1}{2}}$	$g(x) = x^{0.6}$	$h(x) = 2.1^x$	$s(x) = 2.2^x$
0				
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				

从表中变化的现象可以归纳出哪些函数递增的规律?

(1) 幂函数 f(x) 与 g(x) 之间比较得出的规律; (2) 指数函数 h(x) 与 s(x) 之间比较得出的规律; (3) 幂函数 $f(x) = x^{\frac{1}{2}}$ 与指数函数 h(x) 之间比较得出的规律

(005608) 求 $\log_9 27$ 的值.

(005609) 设
$$3^a = 4^b = 36$$
, 求 $\frac{2}{a} + \frac{1}{b}$ 的值.

(005610) 已知 $x = a^{\frac{1}{1 - \log_a y}}, y = a^{\frac{1}{1 - \log_a z}}$ 求证: $z = a^{\frac{1}{1 - \log_a x}}$.

(005611) 已知 $\log_{12} 27 = a$, 求 $\log_6 16$.

(005612) 若 $a = b^2(b > 0, b \neq 1)$, 则有 ().

A. $\log_2 a = b$

B. $\log_2 b = a$

C. $\log_a b = 2$

D. $\log_b a = 2$

(005613) 若 $\log_x \sqrt[7]{y} = z$, 则 x, y, z 之间满足 ().

A. $y^7 = x^2$

B. $y = x^{7z}$

C. $y = 7x^{z}$

D. $y = z^{7x}$

(005614)2^{log₄ 3} 的值等于 ().

A. 3

B. $\sqrt{3}$

C. $\frac{\sqrt{3}}{2}$

D. $\frac{1}{3}$

 $(005615)\log_a b \cdot \log_3 a = 5$, 则 b = ().

A. a^3

B. a^{5}

 $\mathrm{C.}\ 3^5$

D. 5^{3}

(005616) 若点 $P(\lg a, \lg b)$ 关于 x 轴的对称点的坐标是 (0, -1), 则 a 和 b 的值是 (

A. a = 1, b = 10 B. $a = 1, b = \frac{1}{10}$ C. a = 10, b = 1

D. $a = \frac{1}{10}, b = 1$

 $(005617) \ \textbf{给出下列四个式子} \ (已知 \ a > 0, \ a \neq 1, \ x > y > 0): \ \textcircled{1} \ \log_a x \cdot \log_a y = \log_a (x+y); \ \textcircled{2} \ \log_a x + \log_a y = \log_a (x+y); \ \textcircled{2} \ \log_a x + \log_a y = \log_a (x+y); \ \textcircled{3} \ \log_a x + \log_a y = \log_a (x+y); \ \textcircled{4} \ \log_a x + \log_a y = \log_a (x+y); \ \textcircled{4} \ \log_a x + \log_a y = \log_a (x+y); \ \textcircled{4} \ \log_a x + \log_a y = \log_a (x+y); \ \textcircled{4} \ \log_a x + \log_a y = \log_a (x+y); \ \textcircled{4} \ \log_a x + \log_a y = \log_a (x+y); \ \textcircled{4} \ \log_a x + \log_a y = \log_a (x+y); \ \textcircled{4} \ \log_a x + \log_a y = \log_a (x+y); \ \textcircled{4} \ \log_a x + \log_a y = \log_a (x+y); \ \textcircled{4} \ \log_a x + \log_a y = \log_a (x+y); \ \textcircled{4} \ \log_a x + \log_a y = \log_a (x+y); \ \textcircled{4} \ \log_a x + \log_a y = \log_a (x+y); \ y = \log_a (x+y$ $\log_a(x+y)$; ③ $\log_a\frac{x}{y}=\log_a(x-y)$; ④ $\log_a(x-y)=\frac{\log_a x}{\log_a y}$. 其中正确的有(

A. 0 个

B. 1 个

D. 3 个

(005618) 若 m > 0, 且 $10^x = \lg(10m) + \lg \frac{1}{m}$, 则 x 的值为 ().

A. 2

C. 0

D. -1

(005619) 若 $\lg x = a$, $\lg y = b$, 则 $\lg \sqrt{x} - \lg(\frac{y}{10})^2$ 的值等于 ().

A. $\frac{1}{2}a - 2b - 2$ B. $\frac{1}{2}a - 2b + 2$ C. $\frac{1}{2}a - 2b - 1$

D. $\frac{1}{2}a - 2b + 1$

 $(005620) \ \mathbf{如果方}程 \ \lg^2 x + (\lg 2 + \lg 3) \lg x + \lg 2 \cdot \lg 3 = 0 \ \mathbf{的两个根为} \ x_1, x_2, \ \mathbf{m么} \ x_1 \cdot x_2 \ \mathbf{的值为} \ (\qquad).$

A. $\lg 2 \cdot \lg 3$

B. $\lg 2 + \lg 3$ C. $\frac{1}{6}$

D. -6

(005621) 若 $x=t^{\frac{1}{t-1}}, y=t^{\frac{t}{t-1}}(t>0, t\neq 1),$ 则 x,y 之间的关系是 ().

A. $y^x = x^{\frac{1}{y}}$ B. $y^{\frac{1}{x}} = x^y$

C. $y^x = x^y$

D. $x^x = y^y$

(005622) 若
$$\log_8 x = -\frac{2}{3}$$
, 则 $x =$ _____.

(005623) 若
$$\log_x 27 = \frac{3}{4}$$
, 则 $x =$ _____.

$$(005624)$$
 若 $\log_2(\log_5 x) = 0$, 则 $x =$ _____.

$$(005625)$$
 若 $\log_2(\lg x) = 1$, 则 $x =$

$$(005626)$$
 若 $\log_2[\log_3(\log_5 x)] = 0$, 则 $x =$ _____.

(005628) 计算:
$$2^{\log_4(2-\sqrt{3})^2} + 3^{\log_9(2+\sqrt{3})^2} =$$
_____.

$$(005629) 计算: 2^{1+\frac{1}{2}\log_2 5} = \underline{\qquad}.$$

$$(005630)$$
 计算: $9^{\log_3 2} =$ _____.

$$(005631)$$
 计算: $5^{3-2\log_{25}125} =$ _____.

(005632) 计算:
$$\log_{(2-\sqrt{3})}(7+4\sqrt{3}) =$$
_____.

(005633) 计算:
$$\log_6(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}})=$$
_____.

(005634) 计算:
$$(2+\sqrt{3})^{-1} - \log_{(2+\sqrt{3})}(7+4\sqrt{3}) =$$
_____.

(005635) 计算:
$$-2^2 \div (-\frac{27}{8})^{-\frac{1}{3}} - (0.7)^{\lg 1} + \log_3 \frac{1}{4} + \log_3 12 =$$
______.

$$(005636)$$
 若 $3^x = 12^y = 8$,则 $\frac{1}{x} - \frac{1}{y} =$ ______.

(005637) 若
$$2^x = 7^y = 196$$
, 则 $\frac{1}{x} + \frac{1}{y} = _____.$

(005638) 若 $2^{6a} = 3^{3b} = 6^{2c}$,则 a,b,c 之间的关系式是_____

(005639) 已知正数
$$a, b$$
 满足 $a^2 + b^2 = 7ab$, 求证: $\log_m \frac{a+b}{3} = \frac{1}{2} (\log_m a + \log_m b) (m > 0, m \neq 1)$.

$$(005640)$$
 已知 $\log_a(x^2+1) + \log_a(y^2+4) = \log_a 8 + \log_a x + \log_a y (a>0, a\neq 1)$, 求 $\log_8(xy)$ 的值.

(005641) 已知只有一个 x 的值满足方程 $(1 - \lg^2 a)x^2 + (1 - \lg a)x + 2 = 0$, 求实数 a 的值.

(005642) 设方程
$$x^2 - \sqrt{10}x + 2 = 0$$
 的两个根为 $\alpha, \beta,$ 求 $\log_4 \frac{\alpha^2 - \alpha\beta + \beta^2}{(\alpha - \beta)^2}$ 的值.

(005643) 已知 $\lg a$ 和 $\lg b$ 是关于 x 的方程 $x^2 - x + m = 0$ 的两个根, 且关于 x 的方程 $x^2 - (\lg a)x - (1 + \lg a) = 0$ 有两个相等的实数根, 求实数 a, b 和 m 的值.

(005644) 已知函数 $f(x) = x^2 \lg a + 2x + 4 \lg a$ 的最大值为 3, 求实数 a 的值.

(005645) 已知函数 $f(x) = x^2 + (\lg a + 2)x + \lg b$, 满足 f(-1) = -2, 且对一切实数 x 都有 $f(x) \ge 2x$, 求实数 a, b 的值.

(005646) 已知 $2 \lg \frac{x-y}{2} = \lg x + \lg y$, 求 $\frac{x}{y}$ 的值.

 $(005647) \ \textbf{设} \ A>B>0, \ A^2+B^2=6AB, \ \textbf{求证}: \ \log_a\frac{A-B}{2}=\frac{1}{2}(\log_aA+\log_aB)(a>0 \ \textbf{且} \ a\neq 1).$

(005648) 已知集合 $M = \{x, xy, \lg(xy)\}, P = \{0, |x|, y\},$ 且满足 M = P, 求实数 x, y 的值.

(005649) 已知 $12^x = 3$, $12^y = 2$, 求 $8^{\frac{1-2x}{1-x+y}}$ 的值

(005650) 已知不相等的两个正数 a, b 满足 $a^{\lg ax} = b^{\lg bx}$, 求 $(ab)^{\lg abx}$ 的值.

 $(005651) 已知 x,y,z>0, 且 lg x+lg y+lg z=0, 求 x^{\frac{1}{\lg y}+\frac{1}{\lg z}} \cdot y^{\frac{1}{\lg z}+\frac{1}{\lg x}} \cdot z^{\frac{1}{\lg x}+\frac{1}{\lg y}}$ **价**值

(005652) 求 $y^{\lg 20} \cdot (\frac{1}{2})^{\lg 0.7}$ 的值.

(005653) 化简 $\frac{\log_5 8}{\log_2 2}$ 可得 ().

A. log₅ 4

B. $3\log_5 2$

 $C. \log_3 6$

D. 3

 $(005654)\frac{\log_8 9}{\log_2 3}$ 的值是 ().

B. 1

D. 2

C. $\frac{1}{4}$

D. 4

 $(005656)\frac{1}{\log_{\frac{1}{2}}\frac{1}{3}} + \frac{1}{\log_{\frac{1}{5}}\frac{1}{3}} \text{ 的值所属区间是 ()}.$

A. (-2, -1)

D. (2,3)

(005657) 若 $\log_3 7 \cdot \log_2 9 \cdot \log_{49} m = \log_4 \frac{1}{2}$,则 m 的值等于 ().

A. $\frac{1}{4}$

B. $\frac{\sqrt{2}}{2}$

D. 4

 $(005658) \ \hbox{$\stackrel{\scriptstyle 4}{\rm z}$} \not= 1, \, \hbox{则与} \, \frac{1}{\log_3 x} + \frac{1}{\log_4 x} + \frac{1}{\log_5 x} \, \hbox{$\it II$} \ \hbox{$\it II$} \ \hbox{$\it II$} \ \hbox{$\it II$} \ \hbox{$\it II$} \ . \).$

A. $\frac{1}{\log_{a_0} x}$

B. $\frac{1}{\log_2 x \cdot \log_4 x \cdot \log_5 x}$ C. $\frac{1}{\log_2 60}$

D. $\frac{12}{\log_2 x + \log_4 x + \log_5 x}$

(005659) 若 $\log_8 3 = p$, $\log_3 5 = q$, 则 $\lg 5(用 p, q 表示)$ 等于 ().

A. $\frac{3p+q}{5}$

B. $\frac{1+3pq}{p+a}$

C. $\frac{3pq}{1+3pq}$

D. $p^2 + q^2$

(005660) 已知 x, y, z 都是大于 1 的正数, m > 0, 且 $\log_x m = 24$, $\log_y m = 40$, $\log_{xyz} m = 12$, 则 $\log_z m$ 的值 为().

A. $\frac{1}{60}$

B. 60

C. $\frac{200}{3}$

D. $\frac{3}{20}$

(005661) 计算: $\log_{64} 32 =$ _____.

- (005662) 计算: $\log_{\frac{1}{a}} b + \log_a b =$ _____.
- (005663) 计算: $\log_6 25 \cdot \log_5 3 \cdot \log_9 6 =$ ______.
- (005664) 计算: $(\log_2 5 + \log_4 0.2)(\log_5 2 + \log_{25} 0.5) =$ _____.
- (005665) 计算: $\log_2 \frac{1}{25} \cdot \log_3 \frac{1}{8} \cdot \log_5 \frac{1}{9} =$ _____.
- (005666) 计算: $a^{\frac{\log_b(\log_b a)}{\log_b a}} =$ _____.
- (005667) 计算: $a^{\frac{\log_m a \log_m b}{\log_m a}} =$.
- (005668) 已知 $n \in \mathbb{N}^*$, 计算: $(\log_2 3 + \log_4 9 + \log_8 27 + \dots + \log_{2^n} 3^n) \cdot \log_9 \sqrt[n]{32} = \underline{\hspace{1cm}}$
- (005669) 已知 $\log_a x = 2$, $\log_b x = 1$, $\log_c x = 4$, 则 $\log_{abc} x =$ _____.
- (005670) 已知 $m = \log_2 5$, 则 $2^m m \lg 2 4 =$ ______.
- (005671) 已知 $\lg(3x^3) \lg(3y^3) = 9$, 则 $\frac{x}{y} =$ _____.
- (005672) 记 $\log_8 27 = m$, 用 m 表示 $\log_6 16$.
- (005673) 已知 $\log_3 7 = a$, $\log_3 4 = b$, 求 $\log_{12} 21$.
- (005674) 已知 $\log_2 3 = a$, $\log_3 5 = b$, 求 $\log_{15} 20$.
- (005675) 已知 a > b > 1, $\log_a b + \log_b a = \frac{10}{3}$, 求 $\log_a b \log_b a$ 的值.
- (005676) 已知 $\log_{2a} a = m$, $\log_{3a} 2a = n$, 求证: $2^{1-mn} = 3^{n-mn}$.
- (005677) 已知关于 x 的方程 $x^2 (\log_2 b + \log_a 2)x + \log_a b = 0$ 的两根为-1 和 2, 求实数 a, b 的值.
- (005678) 已知 $a^2 + b^2 = c^2$, 求证 $\log_{(c+b)} a + \log_{(c-b)} a = 2\log_{(c+b)} a \cdot \log_{(c-b)} a$.
- (005679) 已知正实数 x, y, z 满足 $3^x = 4^y = 6^z$.
- (1) 求证 $\frac{1}{x} \frac{1}{x} = \frac{1}{2u}$;
- (2) 比较 3x, 4y, 6z 的大小.
- (005680) 求函数 $y = \frac{\sqrt{\log_{0.8} x 1}}{2x 1}$ 的定义域.
- (005681) 解不等式 $\log_{0.2}(x^2 + 2x 3) > \log_{0.2}(3x + 1)$.
- (005682) 将 $\log_{0.7}0.8$, $\log_{1.1}0.9$, $1.1^{0.9}$ 由小到大排列.
- (005683) 若 0 < x < 1, a > 0, $a \ne 1$, 比较 $p = |\log_a(1-x)|$ 和 $q = |\log_a(1+x)|$ 的大小.
- (005684) 求函数 $f(x) = \log_{0.2}(x-1)(x+2)$ 为增函数的区间.
- (005685) 求函数 $f(x) = \log_{\frac{1}{2}}(x^2 6x + 17)$ 的值域.

(005686) 已知关于 x 的方程 $ax^2 - 4ax + 1 = 0$ 的两个实数根 α, β 满足不等式 $|\lg \alpha - \lg \beta| \le 1$, 求实数 a 的 取值范围.

(005687) 与函数 y = x 为同一个函数的是 (

A.
$$y = \sqrt{x^2}$$

B.
$$y = \frac{x^2}{r}$$

С.
$$y = a^{\log_a x} (a > 0 \text{ Д. } a \neq 1)$$

D.
$$y = \log_a a^x (a > 0 \text{ If. } a \neq 1)$$

(005688) 若函数 y = f(x) 的反函数是 $y = \lg(x-1) + 3(x > 1)$, 则 f(x) 等于 ().

A.
$$10^{x+3} + 1$$

B.
$$10^{x-3} - 1$$

C.
$$10^{x+3} - 1$$

D.
$$10^{x-3} + 1$$

(005689) 若函数 $f(x) = \log_2 x + 3(x \ge 1)$, 则其反函数 $f^{-1}(x)$ 的定义域是 ().

B.
$$\{x | x \ge 1\}$$

C.
$$\{x | 0 < x < 1\}$$

D.
$$\{x | x \ge 3\}$$

(005690) 图中图像所对应的函数可能是().

A.
$$y = 2^x$$

B.
$$y = 2^x$$
 的反函数

C.
$$y = 2^{-x}$$

D.
$$y = 2^{-x}$$
 的反函数

(005691) 设 f(x) 是定义在 $(-\infty, +\infty)$ 上的偶函数,且它在 $[0, +\infty)$ 上是增函数,记 $a = f(-\log_{\sqrt{2}}\sqrt{3})$, $b = f(-\log_{\sqrt{3}}\sqrt{2}), c = f(-2),$ 则 a,b,c 的大小关系是 ().

A.
$$a > b > c$$

B.
$$b > c > a$$

C.
$$c > a > b$$

D.
$$c > b > a$$

(005692) 下列函数图像中, 不正确的是(

A.
$$y = \log_{\frac{1}{2}} x^2$$

B.
$$y = \log_{\frac{1}{2}}(-x)$$
 C. $y = |\log_3 x|$ D. $y = |x^{-\frac{1}{3}}|$

$$C u = \lfloor \log_2 x \rfloor$$

D.
$$y = |x^{-\frac{1}{3}}|$$

(005693) 在同一平面直角坐标系中画出函数 y = x + a 与 $y = \log_a x$ 的图像, 可能是 ().

(005694) 函数 y=f(x) 的图像如图所示, 则 $y=\log_{0.7}f(x)$ 的示意图是 ().

(005695) 由关系式 $\log_x y = 3$ 所确定的函数 y = f(x) 的图像是 (

 $(005696) \$ **若函数** $\ f(x) = \frac{1-2^x}{1+2^x}, \ \textit{则} \ f^{-1}(\frac{3}{5}) \ \textbf{等于} \ (\hspace{0.5cm}).$

A. 3

B. 2

В.

C. 1

C.

D. -2

(005697) 函数 $y = \log_{\frac{1}{3}}(x^2 - 3x + 4)$ 的定义域为______

(005698) 函数 $y = \frac{\sqrt{x^2 - 4}}{\lg(x^2 + 2x - 3)}$ 的定义域为_____.

(005699) 函数 $y = \log_{(2x-1)}(32 - 4^x)$ 的定义域为______.

(005700) 函数 $y = \log_{\frac{1}{3}}(x^2 - 4x + 7)$ 的值域为_____.

(005701) 函数 $y = \log_{\frac{1}{2}} \frac{1}{x^2 - 2x + 5}$ 的值域为______.

(005702) 函数 $y = \log_{\frac{1}{2}} \sqrt{3 - 2x - x^2}$ 的值域为______.

- (005703) 函数 $y = \log_{\frac{1}{2}}(x^2 5x + 6)$ 为减函数的区间是_____.
- (005704) 函数 $y = \lg(12 4x x^2)$ 为增函数的区间是_____.
- (005705) 函数 $y = -\log_{\frac{1}{2}}(-x)$ 为减函数的区间是_____.
- (005706) 若函数 $y = \log_a(1-x)$ 在 [0,1) 上是增函数, 则 a 的取值范围是_
- (005707) 函数 $y = \log_{\frac{1}{2}}^2 x \log_{\frac{1}{2}} x + 1$ 为增函数的区间是_____.
- (005708) 函数 $y = (0.2)^{-x} + 1$ 的反函数是___
- (005709) 函数 $y = 1 + \lg(x+2)(x \ge 8)$ 的反函数是______.

(005710) 若
$$f(x) = \frac{10^x + 1}{10^x - 1}(x > 1)$$
, 则 $f^{-1}(\frac{101}{99}) =$ _____.

(005711) 若
$$f(x) = \frac{\lg x - 1}{\lg x + 1} (x > 1 且 x \neq \frac{1}{10}), 则 f^{-1}(\frac{1}{10}) = _____.$$

- (005712) 若函数 $f(x) = a^x k$ 的图像过点 (1,3), 其反函数 $f^{-1}(x)$ 的图像过点 (2,0), 则 f(x) 的表达式
- (005713) 函数 $y = \lg \frac{1-x}{1+x}$ ().
- A. 是奇函数, 且在 (-1,1) 是增函数
- B. 是奇函数, 且在 (-1,1) 上是减函数
- C. 是偶函数, 且在 (-1,1) 是增函数
- D. 是偶函数, 且在 (-1,1) 上是减函数
- (005714) 函数 $f(x) = \ln(e^x + 1) \frac{x}{2}$ (
- A. 是奇函数, 但不是偶函数

B. 是偶函数, 但不是奇函数

C. 既是奇函数, 又是偶函数

- D. 没有奇偶性
- (005715) 求函数 $f(x) = \lg(1+x) + \lg(1-x) \left(-\frac{1}{2} < x < 0\right)$ 的反函数.
- (005716) 已知 $f(x) = \frac{a^x 1}{a^x + 1}(a > 1)$.
- (1) 求 f(x) 的值域;
- (2) 求证: f(x) 在 R 上是增函数;
- (3) 求 f(x) 的反函数.
- (005717) 已知 $f(\log_a x) = \frac{a(x^2-1)}{x(a^2-1)}(x>0, 0< a<1)$, 求证: 函数 f(x) 在 $(-\infty, +\infty)$ 上是增函数.
- (005718) 若函数 $f(x) = \log_a |x+1|$ 在 (-1,0) 上有 f(x) > 0, 则 f(x)
- A. 在 $(-\infty,0)$ 上是增函数

B. 在 $(-\infty,0)$ 是减函数

C. 在 $(-\infty, -1)$ 上是增函数

- D. 在 $(-\infty, -1)$ 是减函数
- (005719) 若 0 < b < 1, $\log_a b < 1$ 则 ().
- A. 0 < a < b
- B. 0 < b < a
- C. 0 < b < a < 1 D. 0 < a < b **ಪ** a > 1

(005720) 若函数 $f(x) = |\log_a x|$, 其中 0 < a < 1, 则下列各式中成立的是 (

A.
$$f(\frac{1}{3}) > f(2) > f(\frac{1}{4})$$

B.
$$f(\frac{1}{4}) > f(\frac{1}{3}) > f(2)$$

$$\text{A. } f(\frac{1}{3}) > f(2) > f(\frac{1}{4}) \qquad \text{B. } f(\frac{1}{4}) > f(\frac{1}{3}) > f(2) \qquad \text{C. } f(2) > f(\frac{1}{3}) > f(\frac{1}{4}) \qquad \text{D. } f(\frac{1}{4}) > f(2) > f(\frac{1}{3}) > f(2) > f(\frac{1}{4}) > f(2) > f(2) > f(\frac{1}{4}) > f(2)$$

D.
$$f(\frac{1}{4}) > f(2) > f(\frac{1}{3})$$

(005721) 若 1 < x < 2, 则下列各式正确的是 ().

A.
$$2^x > \log_{\frac{1}{2}} x > \sqrt[3]{x}$$
 B. $2^x > \sqrt[3]{x} > \log_{\frac{1}{2}} x$ C. $\sqrt[3]{x} > 2^x > \log_{\frac{1}{2}} x$ D. $\log_{\frac{1}{2}} > x\sqrt[3]{x} > 2^x$

B.
$$2^x > \sqrt[3]{x} > \log_{\frac{1}{2}} x$$

C.
$$\sqrt[3]{x} > 2^x > \log_{\frac{1}{2}} x$$

D.
$$\log_{\frac{1}{2}} > x\sqrt[3]{x} > 2^x$$

(005722) 若函数 $f(x) = \log_a x$ 在 $x \in [3, +\infty)$ 上恒有 |f(x)| > 1, 则实数 a 的取值范围是 ().

A.
$$0 < a < \frac{1}{3}$$
 或 $1 < a < 3$

B.
$$0 < a < \frac{1}{3}$$
 或 $a > 3$

C.
$$\frac{1}{3} < a < 3$$
 H. $a \neq 1$

B.
$$0 < a < \frac{1}{3}$$
 或 $a > 3$
D. $\frac{1}{3} < a < 1$ 或 $a > 3$

 $(005723) ~ \hbox{ \hbox{$\vec{a}$}} > a^2 > b > 0, ~ \hbox{$\vec{\mu}$} \hbox{\vec{u}} ~ p = \log_a b, ~ q = \log_b a, ~ r = \log_a \frac{a}{b}, ~ s = \log_b \frac{b}{a}, ~ \hbox{\vec{u}} ~ p, q, r, s ~ \hbox{\vec{u}} ~ \hbox{$\vec{u$

A.
$$r < q < p < s$$

B.
$$r$$

A.
$$r < q < p < s$$
 B. $r C. $r D. $r < q < s < p$$$

D.
$$r < q < s < p$$

(005724) 若 $\log_a \frac{1}{3} > \log_b \frac{1}{3} > 0$,则 a, b 的关系是 ().

A.
$$1 < b < a$$

B.
$$1 < a < b$$

C.
$$0 < a < b < 1$$
 D. $0 < b < a < 1$

D.
$$0 < b < a < 1$$

(005725) 将下列各数按从小到大排列: $a = |\log_{\frac{1}{3}} \frac{1}{4}|, b = |\log_{\frac{1}{2}} \frac{3}{2}|, c = |\log_2 5|$:______.

(005726) 将下列各数按从小到大排列: $\log_{0.1}0.4,\,\log_{\frac{1}{2}}0.4,\,\log_{3}0.4,\,\log_{3}0.4$; ______.

(005727) 将下列各数按从小到大排列: $\frac{3}{2}$, $\log_2 3$:______.

(005728) 将下列各数按从小到大排列: $\frac{2}{\lg 2}$, $\frac{3}{\lg 3}$, $\frac{5}{\lg 5}$:______.

(005729) 将下列各数按从小到大排列: $\lg^2 x$, $\lg x^2$, $\lg(\lg x)$, 其中 1 < x < 10:______.

(005730) 若 $\log_a \frac{4}{5} < 1(a > 0, a \neq 1)$, 则 a 的取值范围是______.

(005731) 若 0 < a < 1, 0 < b < 1, 且 $a^{\log_b(x-3)} < 1$, 则 x 的取值范围是______.

(005732) 求函数 $y = (\log_{\frac{1}{4}} x)^2 - \log_{\frac{1}{4}} x^2 + 5(2 \le x \le 4)$ 的值域.

 $(005733) \ \ \textbf{若} \ \ -3 \leq \log_{\frac{1}{2}} x \leq -\frac{1}{2}, \ \ \textbf{求} \ \ y = (\log_2 \frac{x}{2})(\log_2 \frac{x}{4}) \ \ \textbf{的最大} \ (\textbf{小}) \ \textbf{值及其相应的} \ \ x \ \textbf{值},$

(005734) 已知 a, b 是两个不相等的正数, 且 $\log_m \frac{x}{a} \cdot \log_m \frac{x}{b}$ 的最小值是 $-\frac{1}{4}(m > 0$ 且 $m \neq 1)$, 求 m 的值.

(005735) 已知实数 x, y 满足 $(\log_4 y)^2 = \log_{\frac{1}{2}} x$, 求 $u = \frac{x}{y}$ 的最大值及其相应的 x, y 的值.

(005736) 已知抛物线 $y = x^2 \log_2 a + 2x \log_a 2 + 8$ 位于 x 轴的上方, 求实数 a 的取值范围.

(005737) 已知函数 $f(x) = (\log_a b)x^2 + 2(\log_b a)x + 8$ 的图像在 x 轴的上方, 求 a, b 的取值范围.

(005738) 若只有一个 x 的值满足方程 $(1 - \lg^2 a)x^2 + (1 - \lg a)x + 2 = 0$, 求实数 a 的值.

(005739) 若关于 x 的方程 $x^2 + 2(\log_3 a + 1)x - \log_9 a = 0$ 有两个相等实根, 求实数 a 的值.

- (005740) 若二次函数 $f(x) = (\lg a)x^2 + 2x + 4\lg a$ 有最小值 -3, 求实数 a 的值.
- (005741) 已知 $f(x) = \log_a |\log_a x| (0 < a < 1)$.
- (1) 解不等式: f(x) > 0;
- (2) 判断 f(x) 在 $(1,+\infty)$ 上的单调性, 并证明之.
- (005742) 实数 a 为何值时, 函数 $f(x) = 2^x 2^{-x} \lg a$ 为奇函数?
- (005743) 已知函数 $f(x) = \sqrt{\log_a x 1} (a > 0$ 且 $a \neq 1)$.
- (1) 求 f(x) 的定义域;
- (2) 当 a > 1 时, 求证: f(x) 在 $[a, +\infty)$ 上是增函数.
- (005744) 已知函数 $f(x) = 1 + \log_x 3$, $g(x) = 2\log_x 2(x > 0$, 且 $x \neq 1$), 比较 f(x) 与 g(x) 的大小.
- (005745) 当 a > 1 时, 比较 $\log_b a$ 与 $\log_{2b} a$ 的大小.
- (005746) 已知 $\log_m a > \log_n a(a > 1)$, 讨论 m 与 n 的大小关系.
- (005747) 已知 $\log_{1+a}(1-a) < 1$, 求实数 a 的取值范围.
- (005748) 已知 $|\lg(1-a)| > |\lg(1+a)|$, 求实数 a 的取值范围.
- (005749) 已知函数 $f(x) = \log_{\frac{1}{2}}(x^2 2x)$.
- (1) 求它的单调区间;
- (2) 求 f(x) 为增函数时的反函数.
- (005750) 已知函数 $f(x) = \log_a \frac{x+b}{x-b} (a > 0, b > 0$ 且 $a \neq 1$).
- (1) 求 f(x) 的定义域;
- (2) 讨论 f(x) 的奇偶性;
- (3) 讨论 f(x) 的单调性;
- (4) 求 f(x) 的反函数 $f^{-1}(x)$.
- (005751) 已知函数 $f(x) = \lg \frac{x+1}{x-1} + \lg(x-1) + \lg(a-x)(a > 1).$
- (1) 是否存在一个实数 a 使得函数 y = f(x) 的图像关于某一条垂直于 x 轴的直线对称? 若存在, 求出这个实数 a; 若不存在, 说明理由;
- (2) 当 f(x) 的最大值为 2 时, 求实数 a 的值.
- (005752) 解方程 $9^{2x-1} = 4^x$.
- (005753) 解方程 $(\frac{1}{27})^x = 9^{1-x}$.
- (005754) 解方程 $9^x 2 \cdot 3^{x+1} 27 = 0$.
- (005755) 解方程 $9^x + 4^x = \frac{5}{2} \times 6^x$.

- (005756) **解方程** $\log_3(3^x 1) \cdot \log_3(3^{x-1} \frac{1}{3}) = 2.$
- (005757) 已知关于 x 的方程 $\lg(kx) = 2\lg(x+1)$ 有且只有一个实数解, 求实数 k 的取值范围.
- (005758) 若 $2^{2x} + 4 = 5 \times 2^x$, 则 $x^2 + 1$ 等于 ().
- A. 1

B. 5

- C. 5 或 1
- D. 3 或 2

- (005759) 方程 $2^{|x+1|} = 3$ 的解集是 ().
- A. $\{\log_{\frac{1}{2}} \frac{2}{3}\}$

- B. $\{\log_2 \frac{2}{3}\}$ C. $\{\log_2 \frac{3}{2}, \log_2 \frac{1}{6}\}$ D. $\{\log_2 \frac{1}{3}, -\log_{\frac{1}{2}} 6\}$
- (005760) 方程 $2x^2 + 2^x 3 = 0$ 的实数根有 ().
- A. 0 个

C. 2 个

D. 无数个

- (005761) 满足 $(x-2)^{5-|x|} = 1$ 的实数根存 ().
 - A. 4 个

C. 2 个

D. 无数个

- (005762) 方程 $6 \cdot 7^{|x|} 7^{-x} = 1$ 的解集是 ().
 - A. $\{\log_7 \frac{1}{2}\}$
- B. $\{\log_7 5\}$
- C. $\{\log_7 \frac{1}{2}, \log_7 5\}$
- D. \emptyset
- (005763) 若对于任意实数 p, 函数 $y=(p-1)2^x-rac{p}{2}$ 的图像恒过一定点,则这个点的坐标是 ().
- A. $(1, -\frac{1}{2})$
- C. $(-1, -\frac{1}{2})$
- D. $(-2, -\frac{1}{4})$

- (005764) 方程 $2^{2x+1} 33 \cdot 2^{x-2} + 1 = 0$ 的解是 ().
- A. $\{-2, -3\}$
- B. $\{2, -3\}$
- C. $\{2,3\}$
- D. $\{-2, 3\}$

- (005765) 方程 $3^{x^2} = (3^x)^2$ 的解为_____.
- (005766) 方程 $3^x = 2^x$ 的解为_____.
- (005767) 方程 $\frac{3^{x^2+1}}{3^{x-1}} = 81$ 的解为______.
- (005768) 方程 $5^{x-1} \cdot 10^{3x} = 8^x$ 的解为_____
- (005769) 方程 $2^{x-1} = 3^{2x}$ 的解为_____.
- (005770) 方程 $2 \cdot 4^x 7 \cdot 2^x + 3 = 0$ 的解为___
- (005771) 方程 $9^x 3^{x+2} 10 = 0$ 的解为_____
- (005772) 方程 $3^{x+1} 3^{-x} = 2$ 的解为
- (005773) 已知 a > 0 且 $a \neq 1$, 则方程 $a(a^x + 1) = a^{-x} + 1$ 的解为___
- (005774) 解方程: $3 \times 16^x + 36^x = 2 \times 81^x$.
- (005775) 解方程: $(\sqrt{5+2\sqrt{6}})^x + (\sqrt{5-2\sqrt{6}})^x = 10.$

- (005776) 解方程: $\sqrt[x]{9} \sqrt[x]{6} = \sqrt[x]{4}$.
- (005777) 解方程: $4^{x+\sqrt{x^2-2}} 5 \times 2^{x-1+\sqrt{x^2-2}} = 6$.
- (005778) 已知关于 x 的方程 $2a^{2x-2} 7a^{x-1} + 3 = 0$ 有一个根是 2, 求实数 a 的值, 并求方程其余的根.
- (005779) 解关于 x 的方程 $\frac{a^x a^{-x}}{a^x + a^{-x}} = b$ (实数 $a > 0, a \neq 1, b \in \mathbf{R}$).
- (005780) 若关于 x 的指数方程 $9^x + (a+4)3^x + 4 = 0$ 有实数解, 试求实数 a 的取值范围.
- (005781) 若关于 x 的方程 $2a \cdot 3^{-|x-1|} 3^{-2|x-1|} 2a 1 = 0$ 有实数解, 求实数 a 的取值范围.
- (005782) 方程 $\lg(x-1)^2 = 2$ 的解集是 ().
- A. {11}

- B. {-9}
- C. $\{11, -9\}$
- D. $\{-11, 9\}$
- (005783) 关于 x 的方程 $\log_a x^2 = \log_a (\sqrt{a+1} \sqrt{a}) \log_a (\sqrt{a+1} + \sqrt{a})(a > 0$ 且 $a \neq 1)$ 的解为 ().

- A. $\sqrt{a+1} + \sqrt{a}$ B. $\sqrt{a+1} \sqrt{a}$ C. $\pm(\sqrt{a+1} + \sqrt{a})$ D. $\pm(\sqrt{a+1} \sqrt{a})$
- (005784) 若 $f(x) = 1 + \lg x$, $g(x) = x^2$, 则使 2f[g(x)] = g[f(x)] 成立的 x 值等于 ().

- A. $10^{1+\sqrt{2}}$ 或 $10^{1-\sqrt{2}}$ B. $1+\sqrt{2}$ 或 $1-\sqrt{2}$ C. $10^{1+\sqrt{3}}$ 或 $10^{1-\sqrt{3}}$ D. $1+\sqrt{3}$ 或 $1-\sqrt{3}$
- (005785) 方程 $\log_5(x-8)^2 = 2 + \log_5(x-2)$ 的解是 ().
- A. 3 或 $\frac{1}{2}$

- C. 3 或 38
- D. 2

- (005786) 方程 $\sqrt{\lg x 4} = 4 \lg x$ 的解集是 ().
 - A. {100}
- B. {1000}
- C. {10000}
- D. $\left\{ \frac{1}{10000} \right\}$

- (005787) 方程 $\log_2(x-1) \log_4(x+5) = 0$ 的解为
- (005788) 方程 $\log_4(2-x) = \log_2(x-1) 1$ 的解为_____
- (005789) 方程 $\log_x(x^2 x) = \log_x 2$ 的解为 .
- (005790) 方程 $\log_{(16-3x)}(x-2) = \log_8 2\sqrt{2}$ 的解为______.
- (005791) 方程 $\lg |2x-3| \lg |3x-2| = 0$ 的解为______.
- (005792) 方程 $\lg^2 x + \lg x^3 + 2 = 0$ 的解为 .
- (005793) 方程 $\lg^2 x + \lg x^2 3 = 0$ 的解为______.
- (005794) 方程 $(\log_4 x)^2 \frac{1}{2} |\log_2 x| 2 = 0$ 的解为______.
- (005795) 已知方程 $\ln^2 x \ln x^2 2 = 0$ 的两个根为 $\alpha, \beta, \vec{x} \log_{\alpha} \beta + \log_{\beta} \alpha$ 的值.
- (005796) 已知集合 $A = \{x|x^2 ax + a^2 19 = 0\}, B = \{x|\log_2(x^2 5x + 8) = 1\}, C = \{x|x^2 + 2x 8 = 0\}$ 满足 $A \cap B \neq \emptyset$, $A \cap C \neq \emptyset$, 求实数 a 的值.

(005797) 已知 $f(x) = \log_a(a^x - 1)(a > 0, a \neq 1)$, 解方程 $f(2x) = f^{-1}(x)$.

(005798) 解方程
$$\log_{\frac{1}{2}}(9^{x-1}-5) = \log_{\frac{1}{2}}(3^{x-1}-2) - 2.$$

$$(005799)$$
 解方程 $\log_{0.5x} 2 - \log_{0.5x^3} x^2 = \log_{0.5x^3} 4$.

(005800) 解方程 $(\sqrt{x})^{\log_5 x - 1} = 5$.

(005801) 解方程 $10^{\lg^2 x} + x^{\lg x} = 20.$

(005802) 解方程 $|\log_2 x| = |\log_2(2x^2)| - 2$.

(005803) 解方程组
$$\begin{cases} \log_y x - 3\log_x y = 2, \\ (2^x)^y = (\frac{1}{2})^{-16}. \end{cases}$$

(005804) 解关于 x 的方程: $\lg(x+a) + 1 = \lg(ax-1)$.

(005805) 解关于 x 的方程: $\lg(ax-1) - \lg(x-3) = 1$.

(005806) 解关于 x 的方程: $2 \lg x - \lg(x - 1) = \lg a$.

(005807) 已知函数 $f(x) = a^{x-\frac{1}{2}}$ 满足 $f(\lg a) = \sqrt{10}$, 求实数 a 的值.

(005808) 已知函数 $f(x) = x^2 - x + k$ 满足 $\log_2 f(a) = 2$, $f(\log_2 a) = k(a > 0$ 且 $a \neq 1$), 求 $f(\log_2 x)$ 在什么 区间上是减函数, 并求出 a = k 的值.

(005809) 若关于 x 的方程 $\lg 2x \cdot \lg 3x = -a^2$ 有两个相异实根, 求实数 a 的取值范围, 并求此方程两根之积.

(005810) 若关于 x 的方程 $(\log ax)(\log ax^2) = 4$ 所有的解都大于 1, 求实数 a 的取值范围.

(005811) 若关于 x 的方程 $\lg(ax) \cdot \lg(ax^2) = 4$ 有两个小于 1 的正根 α, β , 且满足 $|\lg \alpha - \lg \beta| \le 2\sqrt{3}$, 求实数 a 的取值范围.

(005812) 已知函数 $f(x) = x^2 \lg a + 2x + 4 \lg a$ 的最大值是 3, 求实数 a 的值.

(005813) 若关于 x 的方程 $\log_2 x + 1 = 2\log_2(x - a)$ 恰有一个实数解, 求实数 a 的取值范围.

(005814) 已知函数 $f(x) = \log_a(a - ka^x)(a > 0, a \neq 1, k \in \mathbf{R})$. (1) 当 0 < a < 1, 且 $1 \le x$ 时, f(x) 都有意义, 求实数 k 的取值范围;

- (2) 当 a > 1 时, f(x) 的反函数就是它自身, 求 k 的值;
- (3) 在 (2) 的条件下, 求 $f^{-1}(x^2-2) = f(x)$ 的解.

(005815) 已知 $A = \{0,1\}, B = \{x | x \subseteq A\}, 问: A 与 B 是什么关系, 并用列举法写出 B.$

(005816) 已知 $f(x) = x^2 + ax + b(a, b$ 均为实数), 集合 $A = \{x | x = f(x), x \in \mathbf{R}\} = \{-1, 3\}, B = \{x | x = f[f(x)], x \in \mathbf{R}\},$ 用列举法求集合.

- (005817) 已知实数集 R 的子集 P 满足两个条件: ① $1 \notin P$; ② 若实数 $a \in P$, 则 $\frac{1}{1-a} \in P$. 求证:
- (1) 若 $2 \in P$, 则 P 中必含有其他两个数, 并求出这两个数;
- (2) 集合 P 不可能是单元素集.
- (005818) 已知集合 A, B, C 满足 $A \cap B = A, B \cap C = B$, 求证: $A \subseteq C$.
- (005819) 已知集合 $A = \{x | x = a^2 + 1, a \in \mathbb{N}\}, B = \{y | y = b^2 4b + 5, b \in \mathbb{N}\},$ 求证: $A \subset B$.
- (005820) 已知集合 $A = \{x | x = 12a + 8b, \ a, b \in \mathbf{Z}\}, B = \{x | x = 20c + 16d, \ c, d \in \mathbf{Z}\},$ 求证: A = B.
- (005821) 某班学生期中考试数学得优秀的有 18 人, 物理得优秀的有 14 人, 其中数学、物理两科中至少有一科得优秀的有 22 人, 求两科都得优秀的学生人数.
- (005822) 由某班学生组成的篮球队、排球队、乒乓球队分别有 14,15,13 名队员. 已知同时参加这三个队的有 3 人, 既参加篮球队又参加排球队的有 5 人, 仅参加乒乓球队的有 4 人, 仅参加排球队的有 5 人, 问: 仅参加篮球队的有几人.
- (005823) 某地区先后举行中学生数、理、化三科竞赛,参加竞赛的学生人数依次是 807 人、739 人、437 人,其中参加数学、物理两科竞赛的有 513 人,参加物理、化学竞赛的有 267 人,参加数学、化学竞赛的有 371 人,三科竞赛都参加的有 213 人,求参加竞赛的学生总人数.
- (005824) 已知集合 $A=\{(x,y)|\frac{y-3}{x-2}=a+1\},$ $B=\{(x,y)|(a^2-1)x+(a-1)y=15\}$ 满足 $A\cap B=\varnothing$, 求实数 a 的值.
- (005825) 已知集合 $A = \{x|x^2 (a+1)^2x + 2a^3 + 2a \le 0, x \in \mathbf{R}\}, B = \{x|x^2 3(a+1)x + 6a + 2 \le 0, x \in \mathbf{R}\}$ 满足 $A \subseteq B$, 求实数 a 的取值范围.
- (005826) 从集合 $A = \{1, 2, 3\}$ 到集合 $M = \{0, 1\}$ 可以建立几个不同的映射?
- (005827) 从集合 $P = \{1, 2\}$ 到集合 $Q = \{3, 4, 5\}$ 可以建立几个不同的映射?
- (005828) 若函数 f(x) 的定义域为 \mathbb{R}^+ , 且满足 f(xy) = f(x) + f(y), f(8) = 3, 求 $f(\sqrt{2})$ 的值.
- (005829) 若函数 f(x) 的定义域为 R, 且满足 $f(x) + 2f(-x) = -x^3 + 6x^2 3x + 3$, 求 f(0) 的值, 并求 f(x) 的表达式.
- (005830) 已知 f(x+y) = f(x) + f(y) 对于任何实数 x, y 都成立.
- (1) 求证: f(2x) = 2f(x);
- (2) 求 f(0) 的值;
- (3) 求证: f(x) 为奇函数.
- (005831) 已知函数 f(x) 对任何实数 x, y 满足 f(x+y) + f(x-y) = 2f(x)f(y), 且 $f(0) \neq 0$, 求证: f(x) 是偶函数.

- (005832) 已知函数 $f(x)(x \neq 0)$ 满足 f(xy) = f(x) + f(y). (1) 求证: f(1) = f(-1) = 0;
- (2) 求证: f(x) 为偶函数;
- (3) 若 f(x) 在 $(0,+\infty)$ 上是增函数, 解不等式 $f(x)+f(x-\frac{1}{2})\leq 0.$

(005833) 已知函数 f(x) 对一切实数 x, y 满足 $f(0) \neq 0$, $f(x+y) = f(x) \cdot f(y)$, 且当 x < 0 时, f(x) > 1. 求证: (1) 当 x > 0 时, 0 < f(x) < 1. (2) f(x) 在 $x \in \mathbb{R}$ 上是减函数.

(005834)(1) 求函数 $y=2x+\sqrt{1-2x}$ 的最大值. (2) 求函数 $y=2x+\sqrt{1-x^2}$ 的值域. (3) 求函数 $y=\frac{\sqrt{x+1}}{x+2}$ 的值域.

(005835) 求函数 g(t) = (t+3)(1+|t-1|) 的值域, 其中实数 t 的取值范围是使函数 $f(x) = x^2 - 4tx + 2t + 30$ 对任一 $x \in \mathbb{R}$ 都取非负值.

(005836) 已知函数 f(x) 的定义域是 [0, 1], 求函数 f(x+m) + f(x-m) 的定义域 (其中 m > 0).

(005837) 已知集合 $A = \{x|x^2 - 5x + 4 \le 0\}$, $B = \{x|x^2 - 2ax + a + 2 \le 0\}$ 满足 $A \supseteq B \ne \emptyset$, 求实数 a 的取值范围.

- (005838) 已知函数 $f(x) = x^2 2mx + m + 6$.
- (1) 若对任意实数 x 都有 f(x) > 0, 求实数 m 的取值范围;
- (2) 若实数 α, β 满足 $f(\alpha) = f(\beta) = 0$, 求 $\alpha^2 + \beta^2$ 的最小值.

(005839) 已知函数 $f(x) = x^2 - 2kx + 2$ 在 x > -1 时恒有 f(x) > k, 求实数 k 的取值范围.

(005840) 已知 $f(x) = -9x^2 - 6ax + 2a - a^2$ 在 $-\frac{1}{3} \le x \le \frac{1}{3}$ 内有最大值 -3, 求实数 a 的值.

(005841) 已知 y=f(x) 在其定义域上是增函数, 求证: y=f(x) 的反函数 $y=f^{-1}(x)$ 在其定义域上也是增函数.

- (005842) 已知函数 $f(x) = x^3 + x + 1(x \in \mathbf{R})$, 求证:
- (1) f(x) 是 R 上的增函数;
- (2) 方程 $x^3 + x + 1 = 0$ 只有一个实数解.

(005843) 已知函数 $f(x) = \frac{x}{1+x^2} (x \in \mathbf{R}).$

- (1) 求 f(x) 的值域;
- (2) 讨论 f(x) 的单调性.

(005844) 若二次函数 $f(x) = ax^2 + bx + c$ 满足 $f(x_1) = f(x_2)$, $(x_1 \neq x_2)$ 求证: 直线 $x = \frac{x_1 + x_2}{2}$ 是该二次函数图像的对称轴.

(005845) 若对于任何实数 x, 函数 y = f(x) 始终满足 f(a+x) = f(a-x), 求证: 函数 y = f(x) 的图像关于直线 x = a 对称.

(005846) 已知函数 f(x) 满足 $f(x+2) = f(2-x)(x \in \mathbf{R})$, 且 f(x) 的图像与 x 轴有 15 个不同的交点, 求方程 f(x) = 0 的所有解的和.

- (005847) 已知函数 f(2x+1) 是偶函数, 求函数 f(2x) 的图像的对称轴.
- (005848) 求函数 $y = \frac{3x-1}{x+2}(x \neq -2)$ 的图像的对称点.
- (005849) 已知函数 f(x) 满足 $f(x) + f(2-x) + 2 = 0(x \in \mathbf{R})$, 求 f(x) 的图像的对称中心.
- (005850) 已知函数 $f(x) = \log_3(x^2 4mx + 4m^2 + m + \frac{1}{m-1})$, 集合 $M = \{m|m > 1, m \in \mathbf{R}\}$.
- (1) 求证: 当 $m \in M$ 时, f(x) 的定义域为 $x \in \mathbb{R}$; 反之, 若 f(x) 对一切实数 x 都有意义, 则 $m \in M$;
- (2) 当 $m \in M$ 时, 求 f(x) 的最小值;
- (3) 求证: 对每一个 $m \in M$, f(x) 的最小值都不小于 1.
- (005851) 已知函数 $f(x) = \frac{4^x}{4^x + 2}$, 求 $f(\frac{1}{101}) + f(\frac{2}{101}) + \dots + f(\frac{100}{101})$ 的值.
- (005852) 已知函数 $f(x) = 1 + \log_x 5$, $g(x) = \log_{x^2} 9 + \log_{x^2} 8$, 比较 f(x) 与 g(x) 的大小.
- (005853) 求方程 $x^2 4|x| \log_2 x 5 = 0$ 的实数解的个数.
- (005854) 求使方程 $|x^2 2x + 1 + a| = a^2 6$ 恰有两相异实数解时 a 的取值范围.
- (005855) 已知 f(x) 在 $(-\infty, +\infty)$ 上有单调性, 且满足 f(1) = 2 和 f(x+y) = f(x) + f(y).
- (1) 求证: f(x) 为奇函数;
- (2) 若 f(x) 满足 $f(k \log_2 t) + f(\log_2 t \log_2^2 t 2) < 0$, 求实数 k 的取值范围.
- (005856) 已知函数 f(x) 在定义域 $x \in \mathbb{R}^+$ 上是增函数, 且满足 $f(x \cdot y) = f(x) + f(y)(x, y \in \mathbb{R}^+)$.
- (1) 求 f(x) 在 $(1, +\infty)$ 上的值域;
- (2) 若 f(2) = 1, f(x) 图像上三点 A, B, C 的横坐标分别为 a, a + 2, a + 4(a > 0), 且 $\triangle ABC$ 的面积小于 1, 求实数 a 的取值范围.
- (005857) 求关于 x 的方程 $9^{-|x-2|} 4 \cdot 3^{-|x-2|} a = 0$ 有实根的条件.
- (005858) 解方程 $|\log_2 x| = |\log_2 2x^2| 2$.
- (005859) 分别求实数 a 的取值范围, 使关于 x 的方程 $\log_{(x+a)} 2x = 2$ 有唯一解、两解、无解.
- (005860) 分别求实数 a 的范围,使关于 x 的方程 $1 + \frac{\log_2(2\lg a x)}{\log_2 x} = 2\log_x 2$ 有两解、一解.
- (005861) 已知 $\cos \alpha = \frac{24}{25}$, 求 $\sin \alpha$.
- (005862) 已知 $\tan \alpha = -\sqrt{5}$, 求 $\cos \alpha$.
- (005863) 已知 $\cos \alpha = m(m \neq 0, m \neq \pm 1)$, 求 α 的其他三角函数值.
- (005864) 求证: $\frac{1-\tan^2 x}{1+\tan^2 x} = \cos^2 x \sin^2 x$.
- (005865) 求证: $\frac{\tan \alpha}{\tan \alpha \tan \beta} = \frac{\cot \beta}{\cot \beta \cot \alpha}$.
- (005866) 求证: $\sin^2 1^\circ + \sin^2 2^\circ + \dots + \sin^2 89^\circ = \frac{89}{2}$.

 $(005868) \ \mbox{$\not Till} \ \frac{1+\sec\alpha+\tan\alpha}{1+\sec\alpha-\tan\alpha} = \frac{1+\sin\alpha}{\cos\alpha}.$ (005869) 已知 $\tan \theta = -3$, 求下列各式的值: (1) $3\sin\theta + \cos\theta$; $(2)\sin^2\theta - 2\sin\theta\cos\theta + 1.$ (005870) 在① 160°, ② 480°, ③ -960°, ④ -1600° 这四个角中, 属于第二象限的角有(A. (T) B. (1)(2) C. (1)(2)(3)D. (1)(2)(3)(4) (005871) 集合 $M = \{\alpha | \alpha = k \cdot 90^{\circ}, k \in \mathbb{N}\}$ 中各角的终边都在 (). A. x 轴的正半轴上 B. y 轴的正半轴上 C. x 轴或 y 轴上 D. x 轴正半轴或 y 轴的正半轴上 (005872) 若 α 是第四象限的角, 则 $\pi - \alpha$ 是 (). A. 第一象限的角 B. 第二象限的角 C. 第三象限的角 D. 第四象限的角 (005873) 若一圆弧长等于其所在圆的内接正三角形的边长,则其圆心角的弧度数为(). A. $\frac{\pi}{3}$ B. $\frac{2}{2}\pi$ C. $\sqrt{3}$ D. 2 (005874) 若 α 和 β 的终边关于 y 轴对称, 则必有 (B. $\alpha + \beta = (2k + \frac{1}{2})\pi(k \in \mathbf{Z})$ A. $\alpha + \beta = \frac{\pi}{2}$ D. $\alpha + \beta = (2k + 1)\pi(k \in \mathbf{Z})$ C. $\alpha + \beta = 2k\pi(k \in \mathbf{Z})$ (005875) 若 $-\frac{\pi}{2}<\alpha<\beta<\frac{\pi}{2},$ 则 $\alpha-\beta$ 的取值范围是 (). A. $(-\frac{\pi}{2},0)$ B. $(-\frac{\pi}{2}, \frac{\pi}{2})$ C. $(-\pi, 0)$ D. $(-\pi,\pi)$ (005876) 集合 $M = \{x | x = \frac{k\pi}{2} \pm \frac{\pi}{4}, \ k \in \mathbf{Z} \}$ 与 $P = \{x | x = \frac{k\pi}{4}, \ k \in \mathbf{Z} \}$ 之间的关系是 (). B. $M \supset P$ C. M = PA. $M \subset P$ D. $M \cap P = \emptyset$ (005877) 与 -45° 角终边相同的角的集合是_____. (005878) 若 α 是第四象限的角, 则 α 的取值范围是 (005879) 终边落在 x 轴负半轴上的角的集合为 ... (005880) 终边落在第一、三象限角平分线上的角的集合为_ (005881) 若角 α 与 β 的终边是互为反向延长线, 则 α , β 之间满足关系式是_____ (005882) 若角 α 的终边和函数 y = -|x| 的图像重合, 则 α 的集合是_____.

(005884) 若 $\alpha = -4$, 则 α 是	上第象限的角.		
(005885) 在 -720° 与 720° ;	之间, 与 60° 角终边相同的£	角是	
(005886) 设角 α 的终边与 $\frac{7}{5}$	π 的终边关于 y 轴对称, 且	$\alpha \in (-2\pi, 2\pi)$,则 $\alpha =$	
(005887) 在扇形 <i>OAB</i> 中, i	已知半径 $OA = 8$ cm, $\stackrel{\frown}{AB}$	= 12cm, 则圆心角 <i>∠AOB</i> =	= 弧度, 扇形
<i>OAB</i> 的面积为 cr	m^2 .		
(005888) 若 3 弧度的圆心角	所对的弧长为 9cm, 则此圆	心角所夹的扇形面积为	$_{\rm cm}^2$.
(005889) 若圆中的一条弦长等于其半径 r ,则此弦和劣弧所组成的弓形的面积等于			
(005890) 若 1 弧度的圆心角所对的弦长为 2, 则此圆心角所夹的扇形的面积等于			
(005891) 若集合 $A = \{x k\pi \}$	$+\frac{\pi}{3} \le x < k\pi + \frac{\pi}{2}, \ k \in \mathbf{Z} \}$	$, B = \{x 4 - x^2 \ge 0\}, $ 則 $A \cap$	$B = \underline{\hspace{1cm}}$.
(005892) 已知扇形的周长为 30cm, 当它的半径和圆心角各取什么值时, 扇形的面积最大? 最大面积是多少?			
(005893) 已知一扇形的圆心角是 120°, 求此扇形面积与其内切圆面枳之比.			
(005894) 在 1 时 15 分时, 时针和分针所成的最小正角是多少弧度?			
(005895) 若角 α 的终边落在直线 $y=2x$ 上, 则 $\sin\alpha$ 的值等于 ().			
A. $\pm \frac{1}{5}$	$B. \pm \frac{\sqrt{5}}{5}$	$C. \pm \frac{2}{5}\sqrt{5}$	D. $\pm \frac{1}{2}$
(005896) 若点 $P(3,y)$ 在角 α 的终边上,且满足 $y<0$, $\cos\alpha=\frac{3}{5}$,则 $\tan\alpha$ 的值等于 ().			
A. $-\frac{3}{4}$	B. $\frac{4}{3}$	C. $\frac{3}{4}$	D. $-\frac{4}{3}$
(005897) 若三角形的两内角 α, β 满足 $\sin \alpha \cdot \cos \beta < 0$,则此三角形的形状 ().			
A. 是锐角三角形	B. 是钝角三角形	C. 是直角三角形	D. 不能确定
(005898) 若 α 是第三象限角,则下列各式中不成立的是 $($ $)$ $)$			
A. $\sin \alpha + \cos \alpha < 0$	B. $\tan \alpha - \sin \alpha < 0$	C. $\cos \alpha - \cot \alpha < 0$	D. $\cot \alpha \cdot \csc \alpha < 0$
(005899) 下列四个命题中, 正	三确的是 ().		
A. 终边相同的角的三角函数 π			
B. $\{\alpha \alpha = k\pi + \frac{\pi}{6}, \ k \in \mathbf{Z}\}$	U	}	
C. 若 α 是第二象限角, 则 s		∠ 7 }	
D. 第四象限的角可表示为 $\{\alpha 2k\pi+\frac{3}{2}\pi<\alpha<2k\pi,\ k\in{\bf Z}\}$ (005900) 若 θ 是第三象限角. 且 $\cos\frac{\theta}{2}<0$. 则 θ 是 $($			
(005900) 若 θ 是第三象限角	. 且 $\cos \frac{1}{2} < 0$. 则 θ 是 ().	
A. 第一象限角	B. 第二象限角	C. 第二象限角	D. 第四象限角

C. 第一或第三象限角 D. 第二或第三象限角 A. 第一或第二象限角 B. 第二或第四象限角 (005902) 直角坐标平面内, 终边过点 $(1, -\sqrt{3})$ 的所有角组成的集合可表示成______. (005903) 若角 α 的终边上有一点 P(-3,a), 且 $\cos\alpha=-\frac{3}{5},$ 则 a=_____. (005904) 若点 $P(-\sqrt{3}, m)$ 是角 θ 终边上一点,且 $\sin \theta = \frac{\sqrt{13}}{12}$,则 $m = \underline{\hspace{1cm}}$ (005905) 若点 $P(-\sqrt{2}, -\sqrt{3})$ 在角 α 的终边上, 则 $\sin \alpha - \cos \alpha =$ _____. $(005906)\frac{\sin x}{|\sin x|} + \frac{|\cos x|}{\cos x} + \frac{\tan x}{|\tan x|} + \frac{|\cot x|}{\cot x}$ 的取值范围是______. (005907) 若 $\sin \alpha \cdot \cos \alpha > 0$, 则 α 的取值范围 (用区间表示) 是 (005908) 若 x 为三角形的内角,则当 $x = ______$ 时, $\frac{\sin \frac{x}{2}}{1 - \tan x}$ 无意义. (005909) 若函数 f(x) 的定义域是 [0,1], 则 $f(\sin x)$ 的定义域是 (005910) 函数 $y = \sqrt{\cos x}$ 的定义域是_____. (005911) 函数 $y = \sqrt{-\cot x} + \lg \cos x$ 的定义域是 (005912) 函数 $y = \sqrt{\sin x} + \sqrt{-\tan x}$ 的定义域是_ $(005913) ~ \pmb{ {\rm 若实数}} ~ \alpha, \beta ~ \pmb{ {\rm 满足}} ~ |\cos\alpha - \cos\beta| = |\cos\alpha| + |\cos\beta|, ~ \underline{{\rm H}} ~ \alpha \in (\frac{\pi}{2},\pi), ~ \underline{{\rm 炯化简}} ~ \sqrt{(\cos\alpha - \cos\beta)^2} ~ \mathbf{结果是}$ (). B. $|\cos \alpha| - |\cos \beta|$ C. $\cos \beta - \cos \alpha$ A. $\cos \alpha - \cos \beta$ D. $|\cos \beta| - |\cos \alpha|$ (005914) 已知角 α 终边上—点 P 的坐标是 (5a, 12a)(a < 0), 求角 α 的各三角函数值. 已知角 α 终边上一点 P 与 x 轴的距离和与轴的距离之比为 4:3, 且 $\cos \alpha < 0$. 求 $\sin \alpha$ 和 $\tan \alpha$. (005915) 求函数 $y = \sqrt{\sin(\cos x)}$ 的定义域. (005916) 求函数 $y = \sqrt{\cos(\sin x)}$ 的定义域. (005917) 下列四个命题中. 能够成立的是(B. $\sin \alpha = \frac{1}{3}$ H. $\csc \alpha = 2$ D. $\cos \alpha = \frac{1}{2}$ H. $\sec \alpha = -2$ A. $\sin \alpha = \frac{1}{2} \text{ H. } \cos \alpha = \frac{1}{2}$ C. $\sin \alpha = 0$ Д. $\cos \alpha = -1$ (005918) 已知 $\sin \alpha = \frac{4}{5}$, 且 α 是第二象限的角, 那么 $\tan \alpha$ 的值等于 (). A. $-\frac{3}{4}$ C. $\frac{3}{4}$ D. $\frac{4}{3}$ (005919) 若 $1 + \sin \theta \sqrt{1 - \cos^2 \theta} + \cos \theta \sqrt{1 - \sin^2 \theta} = 0$. 则 θ 的取值范围是 (A. 第三象限角 B. 第四象限角

D. $2k\pi + \frac{3}{2}\pi \le \theta \le 2k\pi + 2\pi(k \in \mathbf{Z})$

C. $2k\pi \le \theta \le 2k\pi + \frac{3}{2}\pi(k \in \mathbf{Z})$

(005920) 若 α 是二角形的一个内角,且 $\sin \alpha + \cos \alpha = \frac{2}{3}$,则这个三角形的形状是 ().

A. 锐角三角形

B. 钝角三角形

C. 不等腰的直角三角形

D. 等腰直角三角形

(005921) 化简 $(\frac{1}{\sin \alpha} + \frac{1}{\tan \alpha})(1 - \cos \alpha)$ 的结果是 ().

A. $\sin \alpha$

B. $\cos \alpha$

C. $1 + \sin \alpha$

D. $1 + \cos \alpha$

 $(005922) 若 \theta \neq \frac{k\pi}{2} (k \in \mathbf{Z}), 则 \frac{\sin \theta + \tan \theta}{\cos \theta + \cot \theta} ().$

A. 恒取正值

B. 恒取负值

C. 恒取非正值

D. 恒取非负值

 $(005923) \ \hbox{ \hbox{$\rlap/ B$}} \ 0 < \alpha < \frac{\pi}{2}, \ \hbox{\rlap/ B} \ \lg(1+\cos\alpha) = m, \ \lg\frac{1}{1-\cos\alpha} = n, \ \hbox{\rlap/ M} \ \lg\sin\alpha = \ \textbf{的值等于} \ (\hspace{1cm} \).$

A. $m + \frac{1}{n}$

B. m-r

C. $\frac{1}{2}(m+\frac{1}{n})$

D. $\frac{1}{2}(m-n)$

 $(005924) \ \mbox{若} \ \frac{\sin^2\theta + 4}{\cos\theta + 1} = 2, \ \mbox{侧} \ (\cos\theta + 3)(\sin\theta + 1) \ \mbox{ 的值是} \ () \ .$

A. 6

B. 4

C. 2

D. 0

(005925) 若 $\sin \theta \cdot \cos \theta < 0$, $|\cos \theta| = \cos \theta$, 则点 $P(\tan \theta, \sec \theta)$ —定在 ().

A. 第一象限

B. 第二象限

C. 第三象限

D. 第四象限

(005926) 若 $\sqrt{\frac{1-\sin x}{1+\sin x}} = \tan x - \sec x$, 则 x 的取值范围是 ().

A. $2k\pi + \frac{\pi}{2} < x < 2k\pi + \frac{3\pi}{2} (k \in \mathbf{Z})$

B. $k\pi + \frac{\pi}{2} < x < k\pi + \frac{3\pi}{2} (k \in \mathbf{Z})$

C. $2k\pi < x < 2k\pi + \pi(k \in \mathbf{Z})$

D. $2k\pi - \frac{\pi}{2} < x < 2k\pi + \frac{\pi}{2}(k \in \mathbf{Z})$

 $(005927) \ \hbox{$\vec{\mathcal{T}}$} \ \alpha \in (0,2\pi), \, \text{则适合} \ \sqrt{\frac{1+\cos\alpha}{1-\cos\alpha}} - \sqrt{\frac{1-\cos\alpha}{1+\cos\alpha}} = 2\cot\alpha \ \text{ 的角} \ \alpha \ \text{的集合是} \ ().$

A. $\{\alpha | 0 < \alpha < \pi\}$

B. $\{\alpha|0<\alpha<\frac{\pi}{2}\pi<\alpha<\frac{3\pi}{2}\}$

C. $\{\alpha|0<\alpha<\pi\alpha=\frac{3\pi}{2}\}$

D. $\{\alpha | 0 < \alpha < \frac{2}{\pi} \frac{3\pi}{2} < \alpha < 2\pi\}$

(005928) 若角 α 的终边过点 $(1, \tan \theta)$, 且 $\theta \in (\frac{\pi}{2}, \pi)$, 则 $\sin \alpha =$ _____.

 $(005929) \ 若 \sin \alpha + \cos \alpha = \frac{1}{3}, \, 则 \, \sin \alpha \cos \alpha = \underline{\hspace{1cm}}.$

(005930) 化简 $\sin^2 \alpha + \cos^2 \alpha \sin^2 \beta + \cos^2 \alpha \cos^2 \beta =$ _____.

(005931) 化简 $\sin^2 \alpha + \sin^2 \beta - \sin^2 \alpha \sin^2 \beta + \cos^2 \alpha \cos^2 \beta =$ ______.

(005932) 化简 $\sin^6 \alpha + \cos^6 \alpha + 3\sin^2 \alpha \cos^2 \alpha =$ _____.

(005933) 若 θ 是第二象限角,且 $\sin \theta = \frac{m-3}{m+5}$, $\cos \theta = \frac{1-2m}{m+5}$, 则 m =______.

(005934) 计算: $\tan \alpha (1 - \cot^2 \alpha) + \cot \alpha (1 - \tan^2 \alpha) =$ ______

(005935) 计算: $(\sec^2 \beta - 1)(1 - \csc^2 \beta) + \tan \beta \cot \beta =$ ______.

(005936) 计算: $(\sec \alpha - \cos \alpha)(\csc \alpha - \sin \alpha)(\tan \alpha + \cot \alpha) = \underline{\hspace{1cm}}$.

$$(005937) \ \textit{若}\ \alpha \in (-\frac{4}{3}\pi - \frac{5}{4}\pi), \ \textit{则}\ \frac{\sin\alpha}{|\sin\alpha|} + \frac{|\cos\alpha|}{\cos\alpha} + \tan\alpha |\cot\alpha| = \underline{\hspace{1cm}}.$$

(005938) 若 θ 是第四象限的角,则
$$\frac{1}{\cos \theta \sqrt{1 + \tan^2 \theta}} + \frac{2 \cot \theta}{\sqrt{\frac{1}{\sin^2 \theta} - 1}} = _____.$$

(005939) 若 $\cot \theta + \csc \theta = 5$, 则 $\sin \theta =$ _____.

(005940) 若
$$\sin \alpha + \cos \alpha = \frac{\sqrt{3}}{3}$$
,则 $\tan \alpha + \cot \alpha =$ _____.

$$(005941)$$
 若 $\cot \alpha + \tan \alpha = \frac{25}{12}$,则 $\tan \alpha - \cot \alpha =$ _____.

(005942) 若
$$\tan x = 2$$
,则 $\frac{1}{1-\sin x} + \frac{1}{1+\sin x} = _____; \frac{1}{(\sin x - 3\cos x)(\cos x - \sin x)} = _____; \frac{1}{4}\sin^2 x + \frac{2}{3}\cos^2 x = _____.$

(005943) 若
$$\frac{2\sin^2\alpha - 3\cos^2\alpha}{\cos^2\alpha - \sin^2\alpha} = -4$$
, 则 $\tan\alpha =$ _____.

$$(005944)$$
 若 $(\sin \alpha + \cos \alpha)^2 = \frac{8}{5}$,则 $\tan \alpha =$ _____.

(005945) 若 $\tan \alpha$ 和 $\tan \beta$ 是关于 x 的方程 $x^2 - px + q = 0$ 的两根, $\cot \alpha$ 和 $\cot \beta$ 是关于 x 的方程 $x^2 - rx + s = 0$ 的两根, 则 rs 等于 ().

 $\mathbf{A.}\ pq$

B. $\frac{1}{pq}$

C. $\frac{p}{q^2}$

D. $\frac{q}{n^2}$

(005946) 若 $\sin x = \frac{a-b}{a+b}(0 < a < b)$, 则 $\sqrt{\cot^2 x - \cos^2 x}$ 的结果是 ().

A.
$$\frac{4ab}{a^2 - b^2}$$

B.
$$-\frac{4ab}{a^2-b^2}$$

C.
$$\frac{4ab}{a^2 + b^2}$$

D. $-\frac{4ab}{a^2+b^2}$

 $(005947) ~ \hbox{$\vec{\mathcal{H}}$} ~ \alpha ~ \text{在第一象限}, ~ \underline{\mathbf{H}} ~ \frac{1+\tan\alpha}{1-\tan\alpha} = 3+2\sqrt{2}, ~ \underline{\mathbf{M}} ~ \cos\alpha ~ \textbf{的值是} ~ (\hspace{1cm}).$

A.
$$\frac{\sqrt{6}}{2}$$

B.
$$\frac{\sqrt{6}}{3}$$

C.
$$\frac{\sqrt{3}}{2}$$

D. $\frac{\sqrt{3}}{3}$

(005948) 求 $(1 + \cot \alpha - \csc \alpha)(1 + \tan \alpha + \sec \alpha)$ 的值.

$$(005949)$$
 求 $\frac{1-\sin^6\alpha-\cos^6\alpha}{\sin^2\alpha-\sin^4\alpha}$ 的值.

(005950) 求
$$\frac{1-\sin^4 \alpha - \cos^4 \alpha}{1-\sin^6 \alpha - \cos^6 \alpha}$$
 的值.

$$(005952)$$
 求证: $\frac{\sin^2 \alpha}{1 + \cot \alpha} + \frac{\cos^2 \alpha}{1 + \tan \alpha} = 1 - \sin \alpha \cos \alpha$.

(005953) 求证:
$$(\frac{\sin\theta + \tan\theta}{\csc\theta + \cot\theta})^2 = \frac{\sin^2\theta + \tan^2\theta}{\csc^2 + \cot^2\theta}$$

(005954) 利用 "1" 的代换证明:
$$\frac{1-2\cos^2\alpha}{\sin\alpha\cos\alpha} = \tan\alpha - \cot\alpha.$$

(005955) 利用 "1" 的代换证明: $\frac{\cot\alpha+\csc\alpha-1}{\cot\alpha-\csc\alpha+1}=\cot\alpha+\csc\alpha.$

(005956) 利用 "1" 的代换证明: $\tan \alpha \cdot \frac{1 - \sin \alpha}{1 + \cos \alpha} = \cot \alpha \cdot \frac{1 - \cos \alpha}{1 + \sin \alpha}$

(005957) 已知 $\sin \theta + \cos \theta = \sqrt{2}$, 求 $\sin \theta - \cos \theta$ 的值.

(005958) 已知 $\sin \theta - \cos \theta = \frac{\sqrt{2}}{3}(0 < \theta < \frac{\pi}{2}),$ 求 $\sin \theta + \cos \theta$ 的值.

(005959) 已知 $\sin \theta + m \cos \theta = n$, 求 $m \sin \theta - \cos \theta$ 的值.

(005960) 已知 $\sin \theta + \sin^2 \theta = 1$, 求 $\cos^2 \theta + \cos^4 \theta = 1$ 的值.

(005961) 已知 $\cos A = \cos \theta \cdot \sin C$, $\cos B = \sin \theta \cdot \sin C$ $(C \neq k\pi, k \in \mathbf{Z})$, 求 $\sin^2 A + \sin^2 B + \sin^2 C$ 的值.

$$(005962) \ 已知 \ \tan\theta = \sqrt{\frac{1-a}{a}}(0 < a < 1), \, 求 \, \frac{\sin^2\theta}{a + \cos\theta} + \frac{\sin^2\theta}{a - \cos\theta} \, \, 的值.$$

(005963) 已知锐角 θ 满足 $\log_{(\tan\theta+\cot\theta)}\sin\theta=-\frac{3}{4},$ 求 $\log_{\tan\theta}\cos\theta$ 的值

(005964) 若 $\sin(\pi + \alpha) = -\frac{3}{5}$, 则 ().

A.
$$\cos \alpha = \frac{4}{5}$$

B.
$$\tan \alpha = \frac{3}{4}$$

C.
$$\sec \alpha = -\frac{5}{4}$$

A.
$$\cos \alpha = \frac{4}{5}$$
 B. $\tan \alpha = \frac{3}{4}$ C. $\sec \alpha = -\frac{5}{4}$ D. $\sin(\pi - \alpha) = \frac{3}{5}$

(005965) 若 $4\pi < \alpha < 5\pi$, $\cos \alpha = -\frac{1}{3}$, 则 $\tan \alpha$ 的值为 ().

A.
$$-2\sqrt{2}$$

B.
$$\pm 2\sqrt{2}$$

C.
$$\pm \frac{\sqrt{2}}{4}$$

D.
$$-\frac{\sqrt{2}}{4}$$

(005966) 下列各式正确的是().

A.
$$\cos^3(-\alpha - \pi) = \cos^3 \alpha$$

B.
$$\sin(\alpha - 3\pi) = \sin \alpha$$

C.
$$\sec(3\pi - \alpha) = \frac{1}{\cos \alpha}$$

$$D. - \cot(5\pi - 2\alpha) = \cot 2\alpha$$

④ $\tan(\alpha + \beta) - \tan \gamma$ 这四个式子中, 其值为常数的有(

A. 1 个

B. 2 个

C. 3 个

D. 4 个

(005968) 函数 $y = \cos(\tan x)$

A. 是奇函数, 但不是偶函数

B. 是偶函数, 但不是奇函数

C. 既不是奇函数, 也不是偶函数

D. 奇偶性无法确定

(005969) 若函数 $f(x) = a \sin x + b \tan x + 1$ 满足 f(5) = 7, 则 f(-5) 的值等于 (

A. 5

B. -5

C. 6

D. -6

(005970) 化简 $\tan(\frac{k\pi}{2} + \alpha)(k \in \mathbf{Z})$ 的结果是 ().

A. $\tan \alpha$

B. $\pm \tan \alpha$

C. $\tan \alpha$ **或** $-\cot \alpha$

D. $\tan \alpha$ 或 $\cot \alpha$

(005971) 计算: $\sin^2 20^\circ + \sin^2 70^\circ - \cos^2 20^\circ \cdot \cot^2 70^\circ \cdot \csc^2 20^\circ =$ ______.

(005972) 计算: $\tan 1^{\circ} \cdot \tan 2^{\circ} \cdot \tan 3^{\circ} \cdot \dots \cdot \tan 87^{\circ} \cdot \tan 88^{\circ} \cdot \tan 89^{\circ} =$ ______.

(005973) 计算: $\sin^2(42^\circ + \alpha) + \cot(25^\circ + \beta) \cdot \cot(\beta - 65^\circ) + \sin^2(48^\circ - \alpha) = \underline{\hspace{1cm}}$

(005974) 计算:
$$\log_4 \sin \frac{3}{4}\pi + \log_9 \tan(-\frac{5\pi}{6}) =$$
______.

(005975) 计算:
$$\tan \frac{\pi}{5} + \tan \frac{2\pi}{5} + \tan \frac{3\pi}{5} + \tan \frac{4\pi}{5} =$$
_____.

(005976) 若锐角 α 终边上一点 A 的坐标为 $(2\sin 3, -2\cos 3)$, 则角 α 的弧度数为______

$$(005978)$$
 化简:
$$\frac{\sin(\theta-\pi)\cos(\theta-\frac{3}{2}\pi)\cot(-\theta-\pi)}{\tan(\theta+3\pi)\sec(-\theta-2\pi)\csc(\frac{\pi}{2}-\theta)} \underline{\hspace{1cm}}.$$

(005979) 若三角形中的两内角 α, β 满足 $\sin 2\alpha = \sin 2\beta$, 则这个三角形的形状 ().

A. 只可能是等腰三角形. 不可能是直角三角形

B. 只可能是直角三角形, 不可能是等腰三角形

C. 只可能是等腰直角三角形

D. 既可能是等腰三角形, 也可能是直角三角形

(005980) 若函数 f(x) 满足, $f(\cos x) = \frac{x}{2} (0 \le x \le \pi)$, 则 $f(-\frac{1}{2})$ 等于 ().

A.
$$\cos \frac{1}{2}$$

B.
$$\frac{\pi}{3}$$

C.
$$\frac{\pi}{4}$$

D.
$$\frac{\pi}{2}$$

(005981) 若函数 $f(x) = a \sin(\pi x + \alpha) + b \cos(\pi x + \beta)$, 其中 a, b, α, β 都是非零实数, 且满足 f(1997) = -1, 则 f(1998) 等于 ().

A. -1

B. 0

C. 1

D. 2

$$(005982)$$
 已知 $\cos(\frac{\pi}{6} - \theta) = a(|a| \le 1)$, 求 $\cos(\frac{5\pi}{6} + \theta)$ 和 $\sin(\frac{2\pi}{3} - \theta)$ 的值.

(005983) 已知 $\tan(\pi - \alpha) = a^2, \, |\cos(\pi - \alpha)| = -\cos\alpha, \, 求 \, \sec(\pi + \alpha)$ 的值.

(005984) 求满足
$$\sin(\frac{\pi}{4} - \alpha) = \frac{\sqrt{2}}{2}, \alpha \in (0, 2\pi)$$
 的角 α .

(005986) 求函数 $y = -2\sin^2 x + 2\sin x + 1$ 的值域.

(005987) 已知 $0 \le x \le \frac{\pi}{2}$, 求函数 $y = \cos^2 x - 2a \cos x$ 的最大值 M(a) 与最小值 m(a).

$$(005988)$$
 求函数 $y = \frac{2\sin x - 1}{\sin x + 3}$ 的值域.

(005989) 求函数
$$y = \frac{\sec^2 x - \tan x}{\sec^2 x + \tan x}$$
 的值域.

$$(005990)$$
 解不等式 $\sin x \le \frac{1}{2}$.

$$(005991)$$
 解不等式 $|\cos 2x| \le \frac{1}{2}$.

$$(005992)$$
 解不等式 $\tan \frac{x}{2} \ge \sqrt{3}$.

(005993) 在同一个坐标系内,为了得到 $y=3\sin(2x+\frac{\pi}{4})$ 的图像,只需将 $y=3\cos2x$ 的图像(

A. 向左平移
$$\frac{\pi}{4}$$

B. 向右平移
$$\frac{\pi}{4}$$

C. 向左平移
$$\frac{\pi}{8}$$

D. 向右平移
$$\frac{\pi}{8}$$

解答在这里令 $f(x) = 3\cos 2x$, 则

$$f(x-m) = 3\cos 2(x-m) = 3\cos(2x-2m) = 3\cos(2m-2x) = 3\sin\left[\frac{\pi}{2} - (2m-2x)\right]$$
$$= 3\sin(2x + \frac{\pi}{2} - 2m).$$

按题意应有 $3\sin(2x+\frac{\pi}{2}-2m)=3\sin(2x+\frac{\pi}{4})$. 令 $\frac{\pi}{2}-2m=\frac{\pi}{4}$, 得 $m=\frac{\pi}{8}$, 故选 D. 也可以这样解: 因为 $f(x) = 3\sin(2x + \frac{\pi}{4}) = 3\cos[(2x + \frac{\pi}{4}) - \frac{\pi}{2}] = 3\cos(2x - \frac{\pi}{4}) = 3\cos[2(x - \frac{\pi}{8})] = f(x - \frac{\pi}{8})$, 所以选 D.

(005994) 将函数 $y=\cos x$ 图像上每一点的纵坐标保持不变,横坐标缩小为原来的一半,再将所得图像沿 x 轴 向左平移 $\frac{\pi}{4}$ 个单位长度,则与所得新图像对应的函数的解析式为 (

A.
$$y = \cos(2x + \frac{\pi}{4})$$
 B. $y = \cos(2x - \frac{\pi}{4})$

B.
$$y = \cos(2x - \frac{\pi}{4})$$

C.
$$y = \sin 2x$$

$$D. y = -\sin 2x$$

解答在这里横坐标缩小为原来的一半,可理解为伸长到原来的 $\frac{1}{2}$,故先得到函数 $y=\cos\frac{x}{1}=\cos 2x$. 再向左平

移
$$\frac{\pi}{4}$$
后, 得 $y = \cos 2(x + \frac{\pi}{4})$, 即 $y = \cos(2x + \frac{\pi}{2}) = -\sin 2x$, 故选 D.

(005995) 函数 $y=3\sin x$ 的图像经过怎样的变换后,可得到 $y=3\sin(\frac{x}{2}-\frac{\pi}{4})$ 的图像?

解答在这里解法一先 "伸缩", 后 "平移". 第一步: 将函数 $y=3\sin x$ 的图像上的每一点, 纵坐标保持不变, 横坐 标伸长到原来的 2 倍. 得到函数 $y=3\sin\frac{x}{2}$ 的图像. 第二步: 将函数 $y=3\sin\frac{x}{2}$ 的图像向右平移 $\frac{\pi}{2}$ 个单位长 度, 便得到函数 $y = 3\sin\frac{1}{2}(x - \frac{\pi}{2}) = 3\sin(\frac{x}{2} - \frac{\pi}{4})$ 的图像.

解法二先 "平移", 后 "伸缩". 第一步: 将函数 $y=3\sin x$ 的图像, 向右平移 $\frac{\pi}{4}$ 个单位长度, 得到函数 $y=3\sin x$ $3\sin(x-\frac{\pi}{4})$ 的图像. 第二步: 将函数 $y=3\sin(x-\frac{\pi}{4})$ 的每一点, 纵坐标保持不变, 横坐标伸长到原来的 2 倍, 得到函数 $y = 3\sin(\frac{x}{2} - \frac{\pi}{4})$ 的图像

(005996) 函数 $y = \sin(2x + \frac{\pi}{4})$ 图像的一条对称轴是直线(

A.
$$x = \frac{3\pi}{4}$$

B.
$$x = -\frac{3\pi}{4}$$

C.
$$x = \frac{3\pi}{8}$$

D.
$$x = -\frac{3\pi}{8}$$

A. $x=\frac{3\pi}{4}$ B. $x=-\frac{3\pi}{4}$ C. $x=\frac{3\pi}{8}$ 解答在这里以 $x=-\frac{3\pi}{8}$ 代入,得 $\sin[1(-\frac{3\pi}{8})+\frac{\pi}{4}]=\sin(-\frac{\pi}{2})=-1$,故选 D.

(005997) 若 MP, OM, AT 分别是 60° 角的正弦线、余弦线和正切线, 则(

A.
$$MP < OM < AT$$
 B. $OM < MP < AT$

$$B OM < MP < \Delta T$$

C.
$$AT < OM < MP$$

D.
$$OM < AT < MP$$

(005998) 在同一坐标系内, 曲线 $y = \sin x$ 与 $y = \cos x$ 的交点坐标是 (

A.
$$(2k\pi + \frac{\pi}{2}, 1)(k \in \mathbf{Z})$$

B.
$$(k\pi + \frac{\pi}{2}, (-1)^k)(k \in \mathbf{Z})$$

C.
$$(k\pi + \frac{\pi}{4}, \frac{(-1)^k}{\sqrt{2}})(k \in \mathbf{Z})$$

D.
$$(k\pi, 0)(k \in \mathbf{Z})$$

(005999) 函数 $y = \log_{\frac{1}{2}}(\sin 2x)$ 为减函数的区间是 ().

A.
$$(k\pi, k\pi + \frac{\pi}{4}], k \in \mathbf{Z}$$

B.
$$(k\pi, k\pi + \frac{\pi}{2}], k \in \mathbf{Z}$$

C.
$$(2k\pi, 2k\pi + \frac{\pi}{4}], k \in \mathbb{R}$$

A.
$$(k\pi, k\pi + \frac{\pi}{4}], k \in \mathbf{Z}$$
 B. $(k\pi, k\pi + \frac{\pi}{2}], k \in \mathbf{Z}$ C. $(2k\pi, 2k\pi + \frac{\pi}{4}], k \in \mathbf{Z}$ D. $(2k\pi, 2k\pi + \frac{\pi}{2}], k \in \mathbf{Z}$

(006000) 函数 $y = \lg(1 - \sin x) - \lg(1 + \sin x)(.)$

A. 是奇函数, 但非偶函数

B. 是偶函数, 但非奇函数

C. 既不是奇函数, 也不是偶函数

D. 奇偶性无法确定

(006001) 若 $0 < x < \frac{1}{2}$, 则下列各式不成立的是 (

- A. $\sin(1+x) > \sin x$ B. $\cos(1+x) < \cos x$ C. $(1+x)^x > x^x$ D. $\log_x(1+x) > \log_x x$

(006002) 若函数 $y = \cos(\sin x)$, 则下列结论正确的是 ().

- A. 它的定义域是 [-1, 1] B. 它是奇函数
- C. 它的值域是 [cos 1, 1] D. 它不是周期函数

(006003) 下列四个函数中,是偶函数且在 $[0,\frac{\pi}{2}]$ 上为增函数,但不是周期函数的函数是 ().

A. $y = |\sin x| (x \in \mathbf{R})$

B. $y = |\cos x| (x \in \mathbf{R})$

C. $y = \sin|x|(x \in \mathbf{R})$

D. $y = |\sin x| + |\cos x| (x \in \mathbf{R})$

(006004) 下列函数中, 既在 $(0,\frac{\pi}{2})$ 上是增函数, 又是以 π 为最小正周期的偶函数是 ().

- A. $y = x^2 |\cos x|$
- B. $y = \cos 2x$
- C. $y = |\sin x|$
- D. $y = |\sin 2x|$

(006005) 要使 $\sqrt{(1+2\sin\theta)^2} = -(1+2\sin\theta)$, 则 θ 的取值范围是 ().

A. 第三、四象限

B. $[2k\pi - \frac{5\pi}{6}, 2k\pi - \frac{\pi}{6}](k \in \mathbf{Z})$ D. $[2k\pi - \frac{7\pi}{6}, 2k\pi - \frac{\pi}{6}](k \in \mathbf{Z})$

C. $[2k\pi - \frac{\pi}{6}, 2k\pi + \frac{7\pi}{6}](k \in \mathbf{Z})$

(006006) 设 $\cos^2 x + 4\sin x - a = 0 (a, x \in \mathbf{R})$, 则 a 的取值范围是______

(006007) 函数 $y = 1 - 2\sin x + 3\cos^2 x$ 的值域是______.

- (006008) 函数 $y = \sin^2 x + 2\cos x (-\frac{\pi}{3} \le x \le \frac{2}{3}\pi)$ 的值域是______.
- (006009) 函数 $y = \frac{3\cos x + 1}{\cos x + 2}$ 的值域是_____.
- (006010) 函数 $f(x) = \log_{\frac{1}{2}}(2\sin x)$ 的最小值是____
- (006011) 将下列各数由小到大排列: sin 46°, cos 46°, cos 36°:_____
- (006012) 将下列各数由小到大排列: sin 2, cos 2, tan 2:_____.
- (006013) 将下列各数由小到大排列: $\log_x \sin \frac{x}{2}, \log_x \cos \frac{x}{2} (0 < x < 1)$:_______.
- (006014) 将下列各数由小到大排列: cos 1°, sin 1°, cos 1, sin 1:_____.
- (006015) 在 $[0, 2\pi]$ 中, 满足 $\sin x \ge \frac{1}{2}$ 的 x 的取值范围是_____.
- (006016) 不等式 $\sin x \leq \frac{1}{2}$ 的解为______.
- (006017) 不等式 $|\cos 2x| \le \frac{1}{2}$ 的解为_____.

(006018) 若集合 $M = \{\theta | \sin \theta \ge \frac{1}{2}, 0 \le \theta \le \pi\}, P = \{\theta | \cos \theta \le \frac{1}{2}, 0 < \theta \le \pi\}, 则 M \cap P = \underline{\hspace{1cm}}$

(006019) 若 $-\pi \le x \le \pi$, 则不等式 $\log_2(1+2\cos x) < 1$ 的解为_____

(006020) 若锐角 α, β 满足 $\sin \alpha < \cos \beta$ 则 (

A.
$$\alpha > \beta$$

B.
$$\alpha < \beta$$

C.
$$\alpha + \beta < \frac{\pi}{2}$$

C.
$$\alpha + \beta < \frac{\pi}{2}$$
 D. $\alpha + \beta > \frac{\pi}{2}$

(006021) 方程 $2^x = \cos x$ 的解有 ().

 $(006022) \ \textbf{函数} \ f(x) = (\sin\alpha)^{|\log_{\sin\alpha} x|} (2k\pi < \alpha < 2k\pi + \pi \ \text{且} \ \alpha \neq 2k\pi + \frac{\pi}{2}, \ k \in \mathbf{Z}) \ \textbf{的图像是} \ ($

D.

(006023) 设 $x\in(0,\frac{\pi}{2}),$ 则下列各式中正确的是 (

A.
$$\sin(\sin x) < \cos x < \cos(\cos x)$$

B.
$$\sin(\cos x) < \cos x < \cos(\sin x)$$

C.
$$\cos(\sin x) < \cos x < \sin(\cos x)$$

D.
$$\cos(\cos x) < \cos x < \sin(\sin x)$$

(006024) 求函数 $y = \log_{\sin x} (2\cos x + 1)$ 的定义域.

(006025) 求函数 $y = \sqrt{1 - 2\cos x} + \lg(2\sin x - \sqrt{2})$ 的定义域.

$$(006026)$$
 求函数 $y = \sqrt{\sin x} + \frac{1}{\sqrt{16 - x^2}}$ 的定义域.

(006027) 作出函数 $y = |\sin x|$ 的图像.

(006028) 作出函数 $y = |\cos x| + \cos x$ 的图像.

(006029) 作出函数 $y = (\sin \alpha)^{|\log_{\sin \alpha} x|}$ 的图像, 其中 α 为锐角.

(006030) 作出函数 $y = \frac{|\sin x|}{\sin x}$ 的图像.

(006031) 作出函数 $y = f(\sin x)$ 的图像, 其中 $f(x) = \begin{cases} 2, & x \ge 0, \\ -1, & x < 0. \end{cases}$

(006032) 若 $0 < \alpha < \frac{\pi}{4}$, 且 $\lg \sin \alpha + \log \cos \alpha + \lg 9 = \lg \tan \alpha + \lg \cot \alpha + \frac{1}{2} \lg 8$, 求 $\sin \alpha - \cos \alpha$ 的值.

(006033) 设 x 是第二象限角,且满足 $\cos \frac{x}{2} + \sin \frac{x}{2} = -\frac{\sqrt{5}}{2}$,求 $\sin \frac{x}{2} - \cos \frac{x}{2}$ 的值.

(006034) 若 $0 < \theta < \frac{\pi}{2}$,比较 $M = \log_{\sin \theta} \cos \theta$ 与 $N = \log_{\cos \theta} \sin \theta$ 的大小.

(006035) 若 α, β 是关于 x 的二次方程 $x^2+2(\cos\theta+1)x+\cos^2\theta=0$ 的两实根, 且 $|\alpha-\beta|\leq 2\sqrt{2},$ 求 θ 的范 围.

(006036) 求函数 $f(x) = a \sin x - \sin^2 x$ 的最大值 g(a), 并画出 g(a) 的图像.

(006037) 若函数 $f(x) = \cos^2 x - a \sin x + b$ 的最大值为 0, 最小值为 -4, 实数 a > 0, 求 a, b 的值.

(006038) 函数 $y=3\sin(2x+\frac{\pi}{6})$ 的图像的一条对称轴是直线 ().

A.
$$x = 0$$

B.
$$x = \frac{\pi}{6}$$

B.
$$x = \frac{\pi}{6}$$
 C. $x = -\frac{\pi}{6}$

D.
$$x = \frac{\pi}{3}$$

(006039) 先将函数 $y=\sin 2x$ 的图像向右平移 $\frac{\pi}{3}$ 个单位长度,再将所得图像作关于 y 轴的对称变换,则与最 后所得图像对应的函数的解析式是().

A.
$$y = \sin(-2x + \frac{\pi}{3})$$

B.
$$y = \sin(-2x - \frac{\pi}{3})$$

A.
$$y = \sin(-2x + \frac{\pi}{3})$$
 B. $y = \sin(-2x - \frac{\pi}{3})$ C. $y = \sin(-2x + \frac{2}{3}\pi)$ D. $y = \sin(-2x - \frac{2}{3}\pi)$

D.
$$y = \sin(-2x - \frac{2}{3}\pi)$$

(006040) 将函数 $y=\sin x$ 的图像上所有点向左平移 $\frac{\pi}{3}$ 个单位长度, 再把所得图像上各点横坐标伸长到原来的 2倍,则与最后得到的图像对应的函数的解析式为(

A.
$$y = \sin(\frac{x}{2} - \frac{\pi}{3})$$

B.
$$y = \sin(\frac{x}{2} + \frac{\pi}{6})$$

A.
$$y = \sin(\frac{x}{2} - \frac{\pi}{3})$$
 B. $y = \sin(\frac{x}{2} + \frac{\pi}{6})$ C. $y = \sin(\frac{x}{2} + \frac{\pi}{3})$ D. $y = \sin(2x + \frac{\pi}{3})$

D.
$$y = \sin(2x + \frac{\pi}{3})$$

 $(006041) \ \textbf{函数} \ y = A\sin(\omega x + \varphi)(A>0, \ \omega>0, \ |\varphi|<\frac{\pi}{2}) \ \textbf{ 的图像如图所示}, \ \textbf{则} \ y \ \textbf{ 的表达式是} \ (\qquad).$

A.
$$2\sin(\frac{10}{11}x + \frac{\pi}{6})$$
 B. $2\sin(\frac{10}{11}x - \frac{\pi}{6})$ C. $2\sin(2x + \frac{\pi}{6})$ D. $2\sin(2x - \frac{\pi}{6})$

B.
$$2\sin(\frac{10}{11}x - \frac{\pi}{6})$$

C.
$$2\sin(2x + \frac{\pi}{6})$$

D.
$$2\sin(2x - \frac{\pi}{6})$$

(006042) 函数 $y = 2\sin(\frac{1}{2}x + \frac{\pi}{3})$ 在一个周期内的简图是 ().

A.

В.

C.

D.

(006043) 要得到函数 $y=\sin(rac{x}{2}-rac{\pi}{6})$ 的图像,只需将函数 $y=\sinrac{x}{2}$ 的图像 ().

A. 向右平移 $\frac{\pi}{6}$

B. 向左平移 $\frac{\pi}{6}$ C. 向右平移 $\frac{\pi}{3}$ D. 向左平移 $\frac{\pi}{3}$

 $(006044)f(x) = \log_{\frac{\pi}{4}}\cos(2x + \frac{\pi}{4})$ 为增函数的区间是_____.

(006045) 函数 $f(x) = 2\sin(3-2x)$ 为增喊数的区间是_____.

(006046) 函数 $y = \cos(2x - \frac{\pi}{5})$ 为减函数的区间是_____.

(006048) 将奇函数 $y = f(x)(x \in \mathbf{R})$ 的图像沿 x 轴正向平移 1 个单位长度后, 所得的图像为 C', 而图像 C' 与 C 关于原点对称, 那么 C 所对应的函数应为

(006049) 先将函数 $f(x)=\sin x$ 的图像向右平移 $\frac{\pi}{5}$ 个单位长度, 再改变各点的横坐标 (纵坐标不变), 得到最小 正周期为 $\frac{2\pi}{3}$ 的函数 $y = \sin(\omega x + \varphi)(\omega > 0)$ 的图像,则 $\omega = \underline{\hspace{1cm}}, \varphi = \underline{\hspace{1cm}}.$

(006050) 若函数 $f(x)=2\cos(\frac{k}{4}x+\frac{\pi}{3})-5$ 的最小正周期不大于 2, 则正整数 k 的最小值为 (

A. 10

D. 13

(006051) 若函数 $f(x) = \sin(2x + \varphi)(-\pi < \varphi < 0)$ 是偶函数, 则 $\varphi =$ _____.

(006052) 若函数 $f(x) = \cos(x + \varphi)$ 的图像关于坐标原点对称, 则 $\varphi =$ _____.

(006053) 根据周期函数的定义, 求函数 $y = 2\cos(4x - \frac{\pi}{3})$ 的最小正周期.

(006054) 若奇函数 f(x) 是最小正周期为 3 的周期函数, 且 f(1) = -1, 则 f(101) =_______

(006055) 若偶函数 y=f(x) 是最小正周期为 2 的周期函数. 且 $2 \le x \le 3$ 时, f(x)=x, 则当 $-2 \le x \le 0$ 时, f(x) 的表达式为_____.

(006056) 已知函数 $f(x)=A\sin(\omega x+\varphi)(A>0,\,\omega>0)$ 在同一周期内,当 $x=\frac{\pi}{9}$ 时取得最大值 $\frac{1}{2}$,当 $x=\frac{4\pi}{9}$ 时取得最小值 $-\frac{1}{2}$, 求此函数的解析式.

(006057) 已知函数 $f(x) = A\sin(\omega x + \varphi)(A > 0, \omega > 0)$ 的图像上一个最高点的坐标为 $(2, \sqrt{2})$, 由这个最高点 到其相邻的最低点间, 图像与 x 轴交于点 (6,0), 求此函数的解析式.

(006058) 函数 $y = \tan 3\pi x$ 的最小正周期为 (

A.
$$\frac{1}{3}$$

B.
$$\frac{2}{3}$$

C.
$$\frac{6}{\pi}$$

D.
$$\frac{3}{\pi}$$

(006059) 下列函数中, 以 π 为最小正周期的偶函数是 (

A.
$$y = \sin x \cdot \cos x$$

B.
$$y = \cot x$$

C.
$$y = \cos \frac{x}{2}$$

$$D. y = \cos^2 x$$

 $(006060) \; \hbox{$\dot{\rm H}$} \; a = \sin\frac{3}{4}, \, b = \cos\frac{3}{4}, \, c = \cot\frac{3}{4}, \, \hbox{则} \; a, b, c \; \mbox{之间的大小关系是} \; (\hspace{0.5cm}).$

A.
$$a > b > c$$

B.
$$b > c > a$$

C.
$$c > a > b$$

D.
$$c > b > a$$

(006061) 若 $\tan(2x - \frac{\pi}{3}) \le 1$, 则 x 的取值范围是 (

A.
$$\frac{k\pi}{2} - \frac{\pi}{12} \le x \le \frac{k\pi}{2} + \frac{7}{24}\pi(k \in \mathbf{Z})$$
B. $k\pi - \frac{\pi}{12} \le x < k\pi + \frac{7}{24}\pi(k \in \mathbf{Z})$
C. $\frac{k\pi}{2} - \frac{\pi}{12} < x \le \frac{k\pi}{2} + \frac{7}{24}\pi(k \in \mathbf{Z})$
D. $k\pi - \frac{\pi}{12} < x < k\pi + \frac{7}{24}\pi(k \in \mathbf{Z})$

B.
$$k\pi - \frac{\pi}{12} \le x < k\pi + \frac{7}{24}\pi(k \in \mathbf{Z})$$

C.
$$\frac{k\pi}{2} - \frac{\pi^2}{12} < x \le \frac{k\pi}{2} + \frac{7}{24}\pi(k \in \mathbf{Z})$$

D.
$$k\pi - \frac{\pi}{12} < x < k\pi + \frac{7}{24}\pi(k \in \mathbf{Z})$$

(006062) 下列函数中,同时满足条件① 在 $(0,\frac{\pi}{2})$ 为增函数,② 为奇函数,③ 以 π 为最小正周期的函数是

A.
$$y = \tan x$$

B.
$$y = \cot x$$

C.
$$y = \tan \frac{x}{2}$$

D.
$$y = |\sin x|$$

(006063) 函数 $y = \cot x(-\frac{\pi}{4} \le x \le \frac{\pi}{4})$ 的值域是 ().

B.
$$(-\infty, -1] \cup [1, +\infty)$$
 C. $(-\infty, -1]$

C.
$$(-\infty, -1]$$

D.
$$[1, +\infty)$$

(006064) 已知 x 满足 x, 则 x 的取值范围为______.

(006065) 已知 x 满足 $\tan \frac{x}{2} \ge \sqrt{3}$, 则 x 的取值范围为______.

(006066) 已知 x 满足 $\cot 2x \le -\sqrt{3}$, 则 x 的取值范围为_____.

(006067) 已知 x 满足 $|\sin x| \le |\cos x|$, 则 x 的取值范围为______.

(006068) 已知 x 满足 $\log_x \tan x > 0$, 则 x 的取值范围为______.

(006069) 已知 x 满足 $\log_{\sqrt{3}} \sin \frac{x}{2} - \log_{\sqrt{3}} \cos \frac{x}{2} > -1$,且 $-2\pi < x < 2\pi$,则 x 的取值范围为______.

(006070) 将下列各数按从小到大的顺序排列 tan 1, tan 2, tan 3:_

(006071) 将下列各数按从小到大的顺序排列 1, sin 1, cos 1, tan 1:_____

 $(006072) \ \textbf{在} \textcircled{1} \ y = |\sin 2x|, \ \textcircled{2} \ y = |\cos x|, \ \textcircled{3} \ y = |\tan 2x|, \ \textcircled{4} \ y = |\tan x| + |\cot x| \ \textbf{这四个函数中,最小正周 }$ 期为 $\frac{\pi}{2}$ 的偶函数有 (

 $(006073)\sin\frac{2\pi}{3}$, $\cos 1$, $\tan 2$, $\cot 3$ 的大小关系为(

A.
$$\sin \frac{2\pi}{3} > \cos 1 > \cot 3 > \tan 2$$

B.
$$\sin \frac{2\pi}{3} > \cos 1 > \tan 2 > \cot 3$$

C.
$$\cos 1 > \sin \frac{2\pi}{3} > \tan 2 > \cot 3$$

D.
$$\cos 1 > \sin \frac{2\pi}{3} > \cot 3 > \tan 2$$

(006074) 若 $0 < \alpha < 2\pi$, 且满足 $\sin \alpha < \cos \alpha < \cot \alpha < \tan \alpha$, 则有 ().

A.
$$0 < \alpha < \frac{\pi}{4}$$

B.
$$\frac{\pi}{4} < \alpha < \frac{\pi}{2}$$

C.
$$\pi < \alpha < \frac{5}{4}\pi$$

A.
$$0 < \alpha < \frac{\pi}{4}$$
 B. $\frac{\pi}{4} < \alpha < \frac{\pi}{2}$ C. $\pi < \alpha < \frac{5}{4}\pi$ D. $\frac{5\pi}{4} < \alpha < \frac{3\pi}{2}$

$$(006075)$$
 求函数 $y = \sqrt{\sqrt{3} - \cot \frac{x}{2}}$ 的定义域.

$$(006076)$$
 求函数 $y = \frac{\lg(\tan x - 1)}{\sqrt{1 - 2\sin x}}$ 的定义域.

$$(006077)$$
 求函数 $y = \lg(\tan x - 1) + \sqrt{\sin 2x}$ 的定义域.

$$(006078)$$
 求函数 $y = \frac{\sec^2 x + \tan x}{\sec^2 x - \tan x}$ 的值域.

$$(006079)$$
 已知 $\theta \in [-\frac{\pi}{3}, \frac{\pi}{4}]$, 求函数 $y = \sec^2 \theta + 2 \tan \theta + 1$ 的最大值与最小值.

$$(006080) \ \texttt{己知} \ \frac{\pi}{3} < \theta < \frac{\pi}{2}, \ \texttt{比较} \ \sin\theta, \cot\theta, \cos\theta \ \textbf{的大小}.$$

(006081) 已知
$$0<\alpha<\frac{\pi}{4}$$
, 比较 $\sin\alpha,\sin(\sin\alpha),\sin(\tan\alpha)$ 的大小.

$$(006082)$$
 已知 $0 < \theta < \frac{\pi}{2}$, 比较 $\cos \theta, \sin(\cos \theta), \cos(\sin \theta)$ 的大小.

 $(006083)\ \textbf{利用锐角三角函数的定义解决问题} \text{ "若 }\alpha,\beta\in(0,\frac{\pi}{2}),\ \underline{\mathbf{H}}\ 17\cos\alpha+13\cos\beta=17,\ 17\sin\alpha=13\sin\beta,$ 求 $\frac{\alpha}{2} + \beta$ ".

(006084) 利用锐角三角函数的定义解决问题"设 $x \in [\frac{\pi}{4}, \frac{\pi}{2}]$, 求证: $\csc x - \cot x \ge \sqrt{2} - 1$ ".

(006085) 已知 $a\cos\alpha + b\sin\alpha = c$, $a\cos\beta + b\sin\beta = c(0 < \alpha, \beta < \pi, \alpha \neq \beta)$, 且 $\cos\alpha + \cos\beta = \cos\alpha \cdot \cos\beta$, 求证: $c^2 - b^2 = 2ac$.

(006086) 已知函数 f(x) 满足 $af(\sin x) + bf(-\sin x) = c\sin x\cos x(-\frac{\pi}{2} \le x \le \frac{\pi}{2}, a^2 - b^2 \ne 0)$, 求 f(x) 的解 析式.

$$(006087) \ \ \ \ \ \frac{\sin\alpha}{a^2-1} = \frac{\cos\alpha}{2a\sin2\beta} = \frac{1}{1+2a\cos2\beta+a^2}, \ \ \ \ \ \ \ \ \ \ \sin\alpha = \frac{a^2-1}{a^2+1}.$$

(006088) 已知 $a \sec^2 \alpha - b \cos \alpha = 2a, b \cos^2 \alpha - a \sec \alpha = 2b,$ 求 a, b 的关系式.

(006089) 已知 $a\sin^2\theta + b\cos^2\theta = m$, $b\sin^2\varphi + a\cos^2\varphi = n$, $a\tan\theta = b\tan\varphi(a,b,m,n$ 互不相等), 求证: $\frac{1}{m} + \frac{1}{n} = \frac{1}{a} + \frac{1}{b}.$

(006090) 利用单位圆和三角函数线证明:"若 α 为锐角, 则 $\sin \alpha + \cos \alpha > 1$ ".

(006091) 利用单位圆和三角函数线证明:"若 α 为锐角, 则 $\sin \alpha < \alpha < \tan \alpha$ ".

(006092) 利用单位圆和三角函数线证明:"若 α 为锐角, 则 $\alpha \cdot \sin \alpha + \cos \alpha > 1$ ".

(006093) 利用单位圆和三角函数线证明:"若 $0<\beta<\alpha<\frac{\pi}{2}$,则 $\sin\alpha-\sin\beta<\alpha-\beta<\tan\alpha-\tan\beta$ ".

(006094) 若 α 是锐角, 求证: $\cos(\sin \alpha) > \sin(\cos \alpha)$.

(006095) 已知函数 f(x) 满足 $f(x+a) = \frac{1-f(x)}{1+f(x)}(a$ 为常数, 且 $a \neq 0$), 求证: f(x) 是一个以 2a 为周期的周期函数.

(006096) 已知 f(x) 为偶函数, 其图像关于直线 $x=a(a\neq 0)$ 对称, 求证: f(x) 是一个以 2a 为周期的周期函数.

(006097) 已知 f(x), g(x) 是定义在 R 上的两个函数, 且 g(x) 为奇函数. 并满足: ① f(0) = 1; ② 对任何 $x, y \in \mathbf{R}$ 都有 f(x - y) = f(x)f(y) + g(x)g(y). 求证:

- (1) 对任何 $x \in \mathbf{R}$ 都有 $f^2(x) + g^2(x) = 1$;
- (2) f(x) 是偶函数;
- (3) 若存在非零实数 a 满足 f(a) = 1, 则 f(x) 是周期函数.

(006098) 利用图像求方程 $\sin x = \tan \frac{x}{2}$ 在区间 $[0, 8\pi]$ 上解的个数.

- (006099) 设 $0 \le x \le \pi$, $f_1(x) = \sin(\cos x)$, $f_2(x) = \cos(\sin x)$.
- (1) 求 $f_1(x)$, $f_2(x)$ 的最大值和最小值;
- (2) 比较 $f_1(x)$ 与 $f_2(x)$ 的大小.

(006100) 已知
$$\cos(\alpha + \beta) = \frac{4}{5}$$
, $\cos(\alpha - \beta) = -\frac{4}{5}$, 其中 $\alpha + \beta \in (\frac{7\pi}{4}, 2\pi)$, $\alpha - \beta \in (\frac{3\pi}{4}, \pi)$, 求 $\cos 2\alpha$.

$$(006102)$$
 求 $\frac{2\cos 10^{\circ} - \sin 20^{\circ}}{\cos 20^{\circ}}$ 的值.

(006103) 已知
$$\sin(\frac{\pi}{4} - x) = \frac{5}{13}$$
, 且 $0 < x < \frac{\pi}{4}$. 求 $\frac{\cos 2x}{\cos(\frac{\pi}{4} + x)}$ 的值.

(006104) 求 $\tan 65^{\circ} + \tan 70^{\circ} + 1 - \tan 65^{\circ} \tan 70^{\circ}$ 的值.

(006105) 求函数 $f(x) = \sin x - \sqrt{3}\cos x$ 的值域、最小正周期以及为增函数的区间.

(006106) 求函数
$$y = \frac{\sqrt{3}\sin x}{2 + \cos x}$$
 的值域.

(006107) 化简
$$\frac{1 + \cos \theta - \sin \theta}{1 - \cos \theta - \sin \theta} + \frac{1 - \cos \theta - \sin \theta}{1 + \cos \theta - \sin \theta}.$$

(006108) 求函数 $y = 3\sin^2 \alpha - 4\sin \alpha \cdot \cos \alpha + \cos^2 \alpha$ 的值域和最小正周期.

(006109) 化简 $\sin(x+y)\sin x + \cos(x+y)\cos x$ 的结果是 ().

A.
$$\cos(2x+y)$$
 B. $\cos y$ C. $\sin(2x+y)$

A.
$$\alpha = \frac{13\pi}{12}$$
, $\beta = \frac{3\pi}{4}$ B. $\alpha = \frac{\pi}{2}$, $\beta = \frac{\pi}{3}$ C. $\alpha = \frac{\pi}{2}$, $\beta = \frac{\pi}{6}$ D. $\alpha = \frac{\pi}{3}$, $\beta = \frac{\pi}{6}$

D. $\sin y$

$$(006111) \ \hbox{\hbox{$\rlap/$7$}} \ \frac{3\pi}{2} < \alpha < 2\pi, \ \hbox{$\rlap/$1$} \ \cot(\frac{3\pi}{2} + \alpha) = \frac{3}{4}, \ \hbox{$\rlap/$1$} \ \cos(\alpha - \frac{3\pi}{2}) \ \mbox{\bf 的值等于} \ (\ \ \).$$

A.
$$\frac{\sqrt{2}}{10}$$
 B. $-\frac{\sqrt{2}}{10}$ C. $\frac{7\sqrt{2}}{10}$ D. $-\frac{7\sqrt{2}}{10}$

(006112) 若三角形的两内角 α, β 满足 $\cos \alpha \cos \beta > \sin \alpha \sin \beta$, 则这个三角形的形状 (

A. 是锐角三角形

B. 是貞角三角形

C. 是钝角三角形

D. 不能确定

(006113) 若关于 x 的方程 $x^2+x\cos\alpha\cos\beta+\cos\gamma=0$ 的两根 x_1,x_2 满足 $x_1+x_2=\frac{x_1x_2}{2}$, 则以 α,β,γ 为内 角的三角形的形状(

A. 是等腰三角形, 不可能是直角三角形

B. 是直角三角形, 不可能是等腰三角形

C. 是等腰直角三角形

D. 是等腰三角形, 也可能是直角三角形

$$(006115)$$
 若锐角 α, β 满足 $\cos \alpha = \frac{3}{5}, \cos(\alpha + \beta) = -\frac{5}{13}$ 则 $\cos \beta =$ _____.

(006117) 若
$$\cos x + \cos y = \frac{1}{2}$$
, $\sin x - \sin y = \frac{1}{3}$, 则 $\cos(x+y) =$ _____.

(006118) 若 $\sin \alpha \sin \beta = 1$, 则 $\cos(\alpha + \beta)$ 的值是 (

A. -1

B. 0

C. 1

D. ± 1

(006119) 若 α, β 为锐角,则(

A. $\cos(\alpha + \beta) > \cos \alpha + \cos \beta$

B. $\cos(\alpha + \beta) > \sin \alpha + \sin \beta$

C. $\cos(\alpha + \beta) < \cos \alpha + \cos \beta$

D. $\cos(\alpha + \beta) < \sin \alpha + \sin \beta$

(006120) 若 $\sin \alpha + \sin \beta = \frac{\sqrt{2}}{2}$,则 $\cos \alpha + \cos \beta$ 的取值范围是 ().

A. $[0, \frac{\sqrt{2}}{2}]$

B. $\left[-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right]$

C. [-2, 2]

D. $\left[-\frac{\sqrt{14}}{2}, \frac{\sqrt{14}}{2}\right]$

(006121) 若三角形的两内角 α, β 满足 $\tan \alpha \tan \beta > 1$, 则这个三角形的形状是 (

A. 等腰直角三角形

B. 不等腰的直角三角形 C. 锐角三角形

D. 钝角三角形

 $(006122) \ \textbf{若三角形的两内角} \ \alpha,\beta \ 满足 \sin\alpha = \frac{3}{5}, \, \cos\beta = \frac{5}{13}, \, \text{则此三角形的另—内角} \ \gamma \ \textbf{的余弦值等于} \ (006122) \ \textbf{有点,1006122}$

A. $\frac{16}{65}$ 或 $\frac{56}{65}$

D. $-\frac{16}{65}$ 或 $-\frac{56}{65}$

(006123) 已知锐角 α, β 满足 $\cos \alpha = \frac{4}{5}, \tan(\alpha - \beta) = -\frac{1}{3}, 求 \cos \beta.$

$$(006124) \ \textbf{已知} \ \cos(\frac{\pi}{4} - \alpha) = \frac{3}{5}, \\ \sin(\frac{3\pi}{4} + \beta) = \frac{5}{13}, \\ \ \sharp + \frac{\pi}{4} < \alpha < \frac{3\pi}{4}, \\ \ 0 < \beta < \frac{\pi}{4}, \\ \ \mathring{\mathbf{x}} \ \sin(\alpha + \beta) \ \textbf{的值}.$$

$$(006125)$$
 已知 α, β 为锐角, 满足 $\cos \alpha = \frac{1}{7}, \sin(\alpha + \beta) = \frac{5\sqrt{3}}{14},$ 求 $\cos \beta$ 的值.

(006126) 已知 $8\cos(2\alpha+\beta)+5\cos\beta=0$, 求 $\tan(\alpha+\beta)\cdot\tan\alpha$ 的值.

(006127) 解不等式: $\sin 4x + \cos 4x \cdot \cot 2x > 1$.

(006128) 已知锐角 α, β, γ 满足 $\sin \alpha + \sin \gamma = \sin \beta, \cos \alpha - \cos \gamma = \cos \beta, 求 \alpha - \beta$ 的值. (006129) 若 α, β 为锐角,且满足 $\cos \alpha = \frac{4}{5}, \cos(\alpha + \beta) = \frac{3}{5},$ 则 $\sin \beta$ 的值是 (A. $\frac{17}{25}$ D. $\frac{1}{5}$ C. $\frac{7}{25}$ B. $\frac{3}{5}$ (006130) 函数 $y = \sin(x + \frac{\pi}{3}) - \sqrt{3}\cos(x + \frac{\pi}{3})$ (). A. 是奇函数, 但不是偶函数 B. 是偶函数, 但不是奇函数 C. 既不是奇函数, 也不是偶函数 D. 奇偶性无法确定 (006131) 下列函数中, 与 $y = \sin x + \cos x$ 的振幅、最小正周期都相同的函数是 (C. $y = \sqrt{2} \sin x$ A. $y = \sin x$ B. $y = \cos x$ D. $y = \sin x \cos x$ (006132)函数 $y=\sin x+\sqrt{3}\cos x(0\leq x\leq \frac{\pi}{2})$ 的值域是(C. $\left[\frac{3}{2}, 2\right]$ A. $[1, \frac{3}{2}]$ D. [0, 2](006133) 化简 $\sin(x+27^\circ)\cos(18^\circ-x)+\cos(x+27^\circ)\sin(18^\circ-x)=$ ______. (006135) 若 α 是一个三角形的最小内角, 则函数 $y = \sin \alpha - \cos \alpha$ 的值域为 (). B. $(-1, \frac{\sqrt{3}-1}{2})$ C. $(-1, \frac{\sqrt{3}-1}{2}]$ D. $[-1, \frac{\sqrt{3}-1}{2}]$ A. $[-\sqrt{2}, \sqrt{2}]$ (006136) 若函数 $f(x) = \sin 2x + a \cos 2x$ 的图像关于直线 $x = -\frac{\pi}{8}$ 对称, 则实数 a 的值等于 (). A. $\sqrt{2}$ D. -1(006137) 若 $\sin(45^{\circ} - \alpha) = -\frac{2}{3}, \frac{\pi}{4} < \alpha < \frac{\pi}{2},$ 则 $\sin \alpha =$ ______. (006138) 计算: $\frac{\sin 7^{\circ} + \sin 8^{\circ} \cos 15^{\circ}}{\cos 7^{\circ} - \sin 8^{\circ} \sin 15^{\circ}} = \underline{\hspace{1cm}}$. (006139) 计算: $\csc 10^{\circ} - \sqrt{3} \sec 10^{\circ} =$ (006140) 函数 $y = \log_{0.2}(\sin x + \cos x)$ 为增函数的区间是___ (006141) 不等式 $\sin x < \cos x$ 的解是_____. (006142) 求函数 $y = \frac{\sqrt{5}\sin x + 1}{\cos x + 2}$ 的值域. (006143) 求函数 $y = \frac{\tan \theta + 2}{\sec \theta - 1}$ 的值域. (006144) 在 $\triangle ABC$ 中, 已知 $2\cos B\cos C = 1 - \cos A$, 且 $2\sin B\cos C = 1 + \sin(B-C)$, 判断此三角形的形 状.

(006146) 已知 $\sin(\alpha + \beta) = \frac{1}{2}$, $\sin(\alpha - \beta) = \frac{1}{3}$, 求 $\tan \alpha \cot \beta$ 的值.

(006145) 已知关于 x 的方程 $x^2 + px + q = 0$ 的两根是 $\tan \alpha$, $\tan \beta$, 求 $\frac{\sin(\alpha + \beta)}{\cos(\alpha - \beta)}$ 的值.

```
(006147) 已知 \tan(\alpha + \beta) = -2, \tan(\alpha - \beta) = \frac{1}{2}, 求 \frac{\sin 2\alpha}{\sin 2\beta} 的值.
```

(006148) 已知 $\tan \alpha = 1$, $3\sin \beta = \sin(2\alpha + \beta)$, 求 $\tan(\alpha + \beta)$ 的值.

$$(006149) \,\, 已知 \,\, \frac{\tan(\alpha-\gamma)}{\tan\alpha} + \frac{\sin^2\beta}{\sin^2\alpha} = 1, \,\, 求证: \, \tan^2\beta = \tan\alpha\tan\gamma.$$

$$(006150) 求函数 y = \frac{\sin x \cos x}{1 + \sin x + \cos x}$$
的最大值,

(006151) 求函数 $y = \sin x + \cos x + \sin x \cos x$ 的值域.

$$(006152) \ \hbox{\hbox{\not a}} \tan(\alpha+\beta) = \frac{2}{5}, \ \tan(\beta-\frac{\pi}{4}) = \frac{1}{4}, \ \hbox{\hbox{\not M}} \tan(\alpha+\frac{\pi}{4}) \ \hbox{\hbox{\not $\$$}} \hbox{\hbox{\not F}} \ (\qquad).$$

A.
$$\frac{13}{18}$$

B.
$$\frac{13}{22}$$

C.
$$\frac{3}{22}$$

D. $\frac{1}{6}$

$$(006153) \ \mbox{若} \ \frac{1-\tan A}{1+\tan A} = 4 + \sqrt{5}, \ \mbox{则} \ \cot(\frac{\pi}{4} + A) \ \mbox{ 的值等于} \ (\ \ \).$$

A.
$$-4 - \sqrt{5}$$

B.
$$4 + \sqrt{5}$$

C.
$$-\frac{1}{4+\sqrt{5}}$$

D.
$$\frac{1}{4+\sqrt{5}}$$

$$(006154) \ \textbf{已知} \ \alpha + \beta = \frac{3\pi}{4}, \ \textbf{y} \ (1 - \tan\alpha)(1 - \tan\beta) \ \textbf{的值等于} \ (\hspace{1cm}).$$

B.
$$-2$$

D. -1

(006155) 计算
$$\frac{1 + \cot 15^{\circ}}{1 - \tan 75^{\circ}} =$$
______.

$$(006156)$$
 若 $\alpha + \beta = \frac{\pi}{4}$,则 $\frac{1 - \tan \beta}{1 + \tan \beta} =$ ______

(006157) 若
$$\tan x = \frac{1}{2}$$
, $\tan(x-y) = -\frac{2}{5}$, 则 $\tan(2x-y) =$ ______.

(006158) 在 $\triangle ABC$ 中, $\tan A$, $\tan B$ 是方程 $3x^2 + 8x - 1 = 0$ 的两个根, 则 $\tan C =$ ______

$$(006159) \ \hbox{ \hbox{$\rlap/ t}$} \tan(\alpha+\frac{\pi}{4}) = -\frac{9}{40}, \ \hbox{ \rlap/ y} \ \tan\alpha = ____, \ \tan(\alpha-\frac{\pi}{4}) = ____.$$

(006160) 若 $\alpha, \beta \in (\frac{\pi}{2}, \pi)$, 且 $\tan \alpha < \cot \beta$, 则 ().

A.
$$\alpha < \beta$$

B.
$$\beta > \alpha$$

B.
$$\beta > \alpha$$
 C. $\pi < \alpha + \beta < \frac{3\pi}{2}$ D. $\alpha + \beta > \frac{3\pi}{2}$

D.
$$\alpha + \beta > \frac{3\pi}{2}$$

$$(006161)$$
 函数 $y = \frac{\cos 2x + \sin 2x}{\cos 2x - \sin 2x}$ 的最小正周期是 ().

B.
$$\frac{3\pi}{2}$$

C.
$$\pi$$

D.
$$\frac{\pi}{2}$$

A.
$$\frac{\pi}{2}$$

B.
$$-\frac{2\pi}{3}$$

C.
$$\frac{\pi}{3}$$
 或 $\frac{4\pi}{3}$

D.
$$\frac{\pi}{3}$$
 或 $-\frac{2\pi}{3}$

(006163) 若 $\tan \theta$ 和 $\tan(\frac{\pi}{4} - \theta)$ 是方程 $x^2 + px + q = 0$ 的两个根,则 p,q 满足关系式_______

(006164) 若
$$\tan \alpha = \frac{1}{7}$$
, $\tan \beta = \frac{1}{3}$, $\alpha, \beta \in (0, \frac{\pi}{2})$, 则 $\alpha + 2\beta =$ ______.

(006165) 计算:
$$1 + \tan 66^{\circ} + \tan 69^{\circ} - \tan 66^{\circ} \tan 69^{\circ} =$$
_____.

```
(006166) 计算: \tan 19^{\circ} + \tan 101^{\circ} - \sqrt{3} \tan 19^{\circ} \tan 101^{\circ} =______.
```

(006167) 若
$$\alpha + \beta = k\pi + \frac{\pi}{4}(k \in \mathbf{Z})$$
, 则 $(1 + \tan \alpha)(1 + \tan \beta) =$ _____.

$$(006168)$$
 计算 $(1 + \tan 1^\circ)(1 + \tan 2^\circ)(1 + \tan 3^\circ) \cdots (1 + \tan 43^\circ)(1 + \tan 44^\circ) = \underline{\hspace{1cm}}$

(006169) %ii: $\tan 20^{\circ} \tan 30^{\circ} + \tan 30^{\circ} \tan 40^{\circ} + \tan 40^{\circ} \tan 20^{\circ} = 1$.

(006170) 求证: 当
$$A + B + C = k\pi(k \in \mathbf{Z})$$
 时, $\tan(A - B) + \tan(B - C) + \tan(C - A) = \tan(A - B) \tan(B - C) \tan(C - A)$.

(006171) 求证:
$$\tan A + \tan B + \tan C = \tan A \tan B \tan C$$
, 其中 $A + B + C = k\pi (k \in \mathbf{Z})$.

$$(006172)$$
 已知锐角 α, β 满足 $\tan \alpha = \sqrt{3}(m+1), \tan(-\beta) = \sqrt{3}(\tan \alpha \tan \beta + m),$ 求 $\alpha + \beta$ 的值.

$$(006173)$$
 求 $\frac{\tan 20^{\circ} + \tan 40^{\circ} + \tan 120^{\circ}}{\tan 20^{\circ} \tan 40^{\circ}}$ 的值.

$$(006174) 已知 \tan \theta = \frac{\sin \alpha - \cos \alpha}{\sin \alpha + \cos \alpha} (\alpha, \theta)$$
 都是锐角), 求 $\frac{\sin \alpha - \cos \alpha}{\sin \theta}$ 的值.

(006175) 已知
$$\tan(\frac{\pi}{4} + \alpha) = -\frac{1}{2}$$
,求 $\frac{2\cos\alpha(\sin\alpha - \cos\alpha)}{1 + \tan\alpha}$ 的值.

(006176) 已知 $\tan \alpha$, $\tan \beta$ 是关于 x 的方程 $mx^2 - 2x\sqrt{7m-3} + 2m = 0$ 的两个实根, 求 $\tan(\alpha + \beta)$ 的取值范围.

$$(006177)$$
 若 $\sin \alpha + \cos \alpha = -\sqrt{2}$, 则 $\tan \alpha + \cot \alpha$ 等于 ().

A.
$$-2$$

$$(006178)$$
 若三角形的一个内角 α 满足 $\sin \alpha + \cos \alpha = \frac{3}{4}$, 则这个三角形的形状是 $($

$$(006179)$$
 函数 $f(x) = \sqrt{\cos^2 x - \cos^4 x}$ 的最小正周期为 ().

A.
$$\frac{\pi}{2}$$

C.
$$\frac{3\pi}{2}$$

D.
$$2\pi$$

$$(006180) \ \hbox{$\stackrel{\scriptstyle \cdot}{{}_{\!\!4}}$} \ \alpha \in [\frac{5\pi}{2},\frac{7}{2}\pi], \ \hbox{$\rlap/{\!\!4}$} \ \sqrt{1+\sin\alpha}+\sqrt{1-\sin\alpha} \ \ \textbf{的值为} \ (\hspace{0.5cm}).$$

A.
$$2\cos\frac{\alpha}{2}$$

B.
$$-2\cos\frac{\alpha}{2}$$

C.
$$2\sin\frac{\alpha}{2}$$

D.
$$-2\sin\frac{\alpha}{2}$$

(006181) 函数
$$y = \log_{1/2}(\sin x \cos x)$$
 为增函数的区间是 ().

A.
$$(k\pi - \frac{\pi}{4}, k\pi + \frac{\pi}{4})(k \in \mathbf{Z})$$

B.
$$(k\pi, k\pi + \frac{\pi}{4}](k \in \mathbf{Z})$$

C.
$$(k\pi + \frac{\pi}{4}, k\pi + \frac{\pi}{2})(k \in \mathbf{Z})$$

D.
$$[k\pi + \frac{\pi}{4}, k\pi + \frac{3\pi}{4})(k \in \mathbf{Z})$$

$$(006182)\cos\frac{\pi}{5}\cos\frac{2\pi}{5}$$
 的值等于 ().

B.
$$\frac{1}{4}$$

D.
$$\frac{1}{2}$$

(006183) 若
$$\cos^2(\frac{x}{2}) = \sin x$$
, 则 $\tan \frac{x}{2}$ 等于______

(006184) 计算: $\sin 105^{\circ} \cos 75^{\circ} =$ _____.

 $(006185)\cos^2 15^\circ + \cos^2 75^\circ + \cos 15^\circ \cos 75^\circ = \underline{\hspace{1cm}}$

$$(006186)\cos\frac{5\pi}{8}\cos\frac{\pi}{8} =$$
______.

(006187) 函数 $y = \cos(\frac{\pi}{2}x)\cos[\frac{\pi}{2}(x-1)]$ 的最小正周期是______.

(006188) 若 $\sin x - \cos x = \frac{1}{2}$, 则 $\sin^3 x - \cos^3 x =$ _____.

(006189) 在 $\triangle ABC$ 中, $\angle C=90^\circ$, $\tan A+\tan B=4$, 则此三角形的两个锐角分別等于______

(006190) 若 $\sin 2\alpha = \frac{4}{5}$,则 $\tan^2 \alpha + \cot^2 \alpha =$ _____.

(006191) 若 $\sin x \cos y = \frac{1}{2}$, 则 $\cos x \sin y$ 的取值范围是 ().

A.
$$\left[-\frac{1}{2}, \frac{1}{2}\right]$$

B.
$$\left[-\frac{3}{2}, \frac{1}{2}\right]$$

C.
$$\left[-\frac{1}{2}, \frac{3}{2}\right]$$

D. [-1, 1]

(006192) 求值: $\sin 18^{\circ} \sin 54^{\circ}$.

(006193) 求值: $\frac{\pi}{17}\cos\frac{2\pi}{17}\cos\frac{4\pi}{17}\cos\frac{8\pi}{17}$.

(006194) 求值: $\cos^4(\frac{\pi}{8}) + \cos^4(\frac{3\pi}{8}) + \cos^4(\frac{5\pi}{8}) + \cos^4(\frac{7\pi}{8})$.

 $(006195) \ 求値: \sin^4(\frac{\pi}{16}) + \sin^4(\frac{3\pi}{16}) + \sin^4(\frac{5\pi}{16}) + \sin^4(\frac{7\pi}{16}).$

(006196) 求值: $\csc 10^{\circ} - \sqrt{3} \sec 10^{\circ}$.

(006197) 求值: $\cos 40^{\circ} (1 + \sqrt{3} \cot 80^{\circ})$.

(006198) 求值: $\tan 70^{\circ} \cos 10^{\circ} (\sqrt{3} \tan 20^{\circ} - 1)$.

(006199) 求值: $\sec 50^{\circ} + \cot 80^{\circ}$.

(006200) 若 $x = \frac{\pi}{12}$, 则 $\cos^4 x - \sin^4 x$ 的值为 ().

A. 0

B. $\frac{1}{2}$

C. $\frac{\sqrt{2}}{2}$

D. $\frac{\sqrt{3}}{2}$

(006201) 函数 $y = \sin^2 x$ 是 ().

Α. 最小正周期为 2π 的偶函数

Β. 最小正周期为 2π 的奇函数

C. 最小正周期为 π 的偶函数

D. 最小正周期为 π 的奇函数

(006202) 若 $\sin \frac{\alpha}{2} = \frac{3}{5}$, $\cos \frac{\alpha}{2} = -\frac{4}{5}$, 则角 α 所在的象限是 ().

A. 第一象限

B. 第二象限

C. 第三象限

D. 第四象限

(006203) 函数 $y = 2\sin x \cos sx - (\cos^2 x - \sin^2 x)$ 的最大值与最小值之积等于 ().

A. 2

B. -2

C. 1

D. -1

(006204) 函数 $y = 1 - \cos^2 x + \cos^4 x$ 的最小正周期是 (

A. 2π

D. $\frac{\pi}{4}$

(006205) 化简 $\sqrt{1-\cos 4-\sin^2 2}$ 的结果是 ().

A. $\cos 2$

 $B. - \cos 2$

C. $\sqrt{3}\cos 2$

D. $-\sqrt{3}\cos 2$

(006206) 若 $\sin \theta : \sin \frac{\theta}{2} = 8 : 5$, 则 $\cos \theta =$ _____.

(006207) 计算 $\sin \frac{\pi}{8} \cos \frac{\pi}{8} \cot \frac{\pi}{8} =$ ______.

(006208) 若 $8\cos(\frac{\pi}{8} + \alpha)\cos(\frac{\pi}{4} - \alpha) = 1$, 则 $\sin^4 \alpha + \cos^4 \alpha =$ ______

(006209) 函数 $y = \sin x \cos x - 2 \sin^3 x \cos x$ 的最小正周期是______.

(006210) 若 $\tan x = \sqrt{2}$, 则 $\frac{2\cos^2\frac{x}{2} - \sin x - 1}{\sin x + \cos x} = \underline{\qquad}$.

(006211) 函数 $y = 2 \sin x (\sin x + \cos x)$ 为减函数的区间是__

(006212) 若 $270^{\circ} < \alpha < 360^{\circ}$,则化简 $\sqrt{\frac{1}{2} + \frac{1}{2}\sqrt{\frac{1}{2} + \frac{1}{2}\cos 2\alpha}}$ 的结果是 (

A. $\sin \frac{\alpha}{2}$

B. $-\sin\frac{\alpha}{2}$

D. $-\cos\frac{\alpha}{2}$

(006213) 若 $\pi < x < \frac{3\pi}{2}$,则 $\sqrt{\tan x + \sin x} + \sqrt{\tan x - \sin x}$ 可以化成 ().

A. $2\sqrt{\tan x}\sin(\frac{x}{2}-\frac{\pi}{4})$ B. $2\sqrt{\tan x}\sin(\frac{x}{2}+\frac{\pi}{4})$ C. $-2\sqrt{\tan x}\sin(\frac{x}{2}-\frac{\pi}{4})$ D. $-2\sqrt{\tan x}\sin(\frac{x}{2}+\frac{\pi}{4})$

(006214) 已知 $\sin \alpha + \sin \beta = \frac{1}{2}$, $\cos \alpha + \cos \beta = \frac{1}{3}$, 求 $\cos^2(\frac{\alpha - \beta}{2})$ 的值.

(006215) 求 $y = \sin^6 x + \cos^6 x$ 的最小正周期.

(006216) 已知 $\tan \alpha \tan \beta = \frac{1}{\sqrt{3}}$, 求 $(2 - \cos 2\alpha)(2 - \cos 2\beta)$ 的值.

(006217) 化简: $\frac{2\cos^2 \alpha - 1}{2\tan(\frac{\pi}{4} - \alpha)\sin^2(\frac{\pi}{4} + \alpha)}.$

(006218) 化简: $\frac{1+\cos\theta-\sin\theta}{1-\cos\theta-\sin\theta}+\frac{1-\cos\theta-\sin\theta}{1+\cos\theta-\sin\theta}$

(006219) 已知 $\cos(\frac{\pi}{4} + x) = \frac{4}{5}(\frac{19\pi}{12} < x < \frac{7\pi}{4})$,求 $\frac{\sin 2x - 2\sin^2 x}{1 - \tan x}$ 的值.

(006220) 求函数 $f(x) = 4\cos 2x + 12\sin x - 5\cos^2 x$ 的最大值及其相应的 x 值.

(006221) 求函数 $f(x) = \sin 2x + \sin x + \cos x$ 的最大值及其相应的 x 值.

(006222) 求函数 $f(x) = \frac{\sin x \cos x}{1 + \sin x + \cos x}$ 的最大值及其相应的 x 值.

(006223) 求函数 $y = \sin^2 x + 2\sin x \cos x + 3\cos^2 x - 2$ 的取值范围、最小正周期以及为增函数的区间.

$$(006224) \ 化简 \ \frac{\cot\frac{\alpha}{2} - \tan\frac{\alpha}{2}}{\cot\frac{\alpha}{2} + \tan\frac{\alpha}{2}} \ \textbf{的结果是} \ (\hspace{1cm}).$$

A. $\sin \alpha$

C. $\tan \alpha$

D. $\cot \alpha$

(006225) 函数 $y = \lg \frac{\tan x}{1 + \tan x}$ 为增函数的区间是 ().

A.
$$(k\pi, k\pi + \frac{\pi}{4}], k \in \mathbf{Z}$$

A. $(k\pi, k\pi + \frac{\pi}{4}], k \in \mathbf{Z}$ B. $(k\pi, 2k\pi + \frac{\pi}{4}], k \in \mathbf{Z}$ C. $(2k\pi, 2k\pi + \frac{\pi}{2}], k \in \mathbf{Z}$ D. $(2k\pi, k\pi + \frac{\pi}{2}], k \in \mathbf{Z}$

(006226) 若 $f(\tan x) = \sin 2x$, 则 f(-1) 的值是 ().

$$A. - \sin 2$$

C. $\frac{1}{2}$

D. 1

(006227) 若 $\tan \frac{A}{2} = \frac{m}{n}$, 则 $m \cos A - n \sin A$ 等于 (

D. -m

(006228) 若锐角 θ 满足 $\sin \frac{\theta}{2} = \sqrt{\frac{x-1}{2x}}$, 则 $\tan \theta$ 等于 ().

$$B. \frac{x+1}{\sqrt{x-1}}$$

C.
$$\frac{\sqrt{x^2 - 1}}{x}$$

D. $\sqrt{x^2 - 1}$

$$(006229)$$
 化简
$$\frac{\tan(45^\circ - \alpha)}{1 - \tan^2(45^\circ - \alpha)} \cdot \frac{\sin \alpha \cos \alpha}{\cos^2 \alpha - \sin^2 \alpha} = \underline{\hspace{1cm}}.$$

$$(006230) \ \hbox{\hbox{\it i}} \tan\frac{\alpha}{2}=\frac{2}{5}, \, \hbox{\hbox{\it i}} \, \frac{2\sin\alpha+3\cos\alpha}{3\cos\alpha-4\sin\alpha}=\underline{\hspace{1cm}}.$$

(006231) 若
$$\frac{2\sin\theta + \cos\theta}{\sin\theta - 3\cos\theta} = -5$$
, 则 $3\cos 2\theta + 4\sin 2\theta =$ ______.

(006232) 已知
$$\sin \alpha = \frac{3}{5}$$
, $\alpha \in (\frac{\pi}{2}, \pi)$, $\tan(\pi - \beta) = \frac{1}{2}$, 求 $\tan(\alpha - 2\beta)$ 的值.

(006233) 已知
$$\tan 2\theta = -2\sqrt{2}, \frac{\pi}{4} < \theta < \frac{\pi}{2},$$
求 $\frac{2\cos^2(\frac{\theta}{2}) - \sin \theta - 1}{\sqrt{2}\sin(\frac{\pi}{4} + \theta)}$ 的值.

(006234) 已知 $a\sin x + b\cos x = 0$, $A\sin 2x + B\cos 2x = C$, (a,b) 是不同时为零的实数), 求证: $2abA + (b^2 - b^2)$ $a^{2})B + (a^{2} + b^{2})C = 0.$

(006235) 下列函数中, 最小正周期为 π 的是 ().

$$A. y = \frac{\sin x}{1 - \cos x}$$

A.
$$y = \frac{\sin x}{1 - \cos x}$$
 B. $y = \tan \frac{x}{2} - \frac{1}{\sin x}$ C. $y = \cos^2(2x)$

C.
$$y = \cos^2(2x)$$

D. $y = \tan x - \cot x$

(006236) 若 $\cos \alpha = -\frac{3}{5}$, 且 $\pi < \alpha < \frac{3\pi}{2}$, 则 $\cos \frac{\alpha}{2}$ 的值等于 ().

A.
$$\frac{\sqrt{5}}{5}$$

B. $-\frac{\sqrt{5}}{5}$

C. $\frac{2\sqrt{5}}{\epsilon}$

D. $-\frac{2\sqrt{5}}{5}$

(006237) 若 $2\pi < \theta < 4\pi$, $\sin \theta = -\frac{3}{5}$, $\cos \theta < 0$, 则 $\tan \frac{\theta}{2}$ 的值等于 ().

D. $\frac{1}{3}$

 $(006238) \ 若 \ \alpha + \beta = \frac{\pi}{2}, \ \texttt{则} \ (\hspace{1cm}).$

A.
$$\cos \frac{\alpha}{2} = -\sqrt{\frac{1+\sin \beta}{2}}$$

 $A. \cos \frac{\alpha}{2} = -\sqrt{\frac{1+\sin\beta}{2}} \quad B. \sin \frac{\alpha}{2} = -\sqrt{\frac{1-\sin\beta}{2}} \quad C. \tan \frac{\alpha}{2} = \pm\sqrt{\frac{1-\sin\beta}{1+\sin\beta}} \quad D. \tan \frac{\alpha}{2} = \pm\sqrt{\frac{1+\sin\beta}{1-\sin\beta}}$

$$(006239)$$
 当 $3\pi < \alpha < 4\pi$ 时. 化简 $\sqrt{\frac{1+\cos\alpha}{2}} - \sqrt{\frac{1-\cos\alpha}{2}}$ 得 ().

A.
$$-\sqrt{2}\sin(\frac{\alpha}{2} + \frac{\pi}{4})$$

B.
$$\sqrt{2}\sin(\frac{\alpha}{2} + \frac{\pi}{4})$$

$$A. -\sqrt{2}\sin(\frac{\alpha}{2} + \frac{\pi}{4}) \qquad B. \sqrt{2}\sin(\frac{\alpha}{2} + \frac{\pi}{4}) \qquad C. -\sqrt{2}\sin(\frac{\alpha}{2} - \frac{\pi}{4}) \qquad D. \sqrt{2}\sin(\frac{\alpha}{2} - \frac{\pi}{4})$$

D.
$$\sqrt{2}\sin(\frac{\alpha}{2}-\frac{\pi}{4})$$

(006240) 若 $\sin 2\alpha = a,\,\cos 2\alpha = b,\,$ 则 $\tan(\alpha + \frac{\pi}{4})$ 的值是 ().

A.
$$\frac{a}{1+b}$$

B.
$$\frac{1+a}{b}$$

B.
$$\frac{1+a}{b}$$
 C. $\frac{1+a-b}{1-a+b}$

D.
$$\frac{a-b+1}{a+b+1}$$

(006241) 若
$$\sin x = \frac{2}{3}$$
, 且 $\frac{\pi}{2} < x < \pi$, 则 $\sin \frac{x}{2} =$ ______.

$$(006242) ~ \, \hbox{若} \, \alpha \, \, \hbox{是第三象限角}, \, \hbox{且} \, \sin(\alpha+\beta)\cos\beta - \sin\beta \cdot \cos(\alpha+\beta) = -\frac{5}{13}, \, \hbox{则} \, \tan\frac{\alpha}{2} = \underline{\hspace{1cm}}.$$

$$(006243)$$
 若 $3\sin\alpha = 4\cos\alpha$,且 $\sin\alpha < 0$,则 $\tan\frac{\alpha}{2} =$ ______.

(006244) 若
$$\tan 35^{\circ} = m$$
, 则 $\frac{\cos 20^{\circ}}{1 - \sin 20^{\circ}} =$ _____.

$$(006245)$$
 当 $k \in \mathbf{Z}$ 时, $(\tan \frac{5\pi}{12})^k \cdot (\tan \frac{\pi}{12})^{k+2} =$ ______.

(006246) 与 $\lg(\cos x - 1)^2$ 相等的式子是 ().

A.
$$4 \lg |\cos \frac{x}{2}| + 2 \lg 2$$

B.
$$2\lg(\cos x - 1)$$

C.
$$[\lg(\cos x - 1)]^2$$

A.
$$4 \lg |\cos \frac{x}{2}| + 2 \lg 2$$
 B. $2 \lg (\cos x - 1)$ C. $[\lg (\cos x - 1)]^2$ D. $4 \lg |\sin \frac{x}{2}| + 2 \lg 2$

$$(006247)$$
 已知 $\frac{1-\cos 2\theta}{1+\cos 2\theta}=7-4\sqrt{3}$, 且 $(\frac{1}{2})^{\sin 2\theta}>1$, 求 $\tan \theta$ 的值.

$$(006248) \,\, 已知 \, \sin(\alpha + \frac{3\pi}{4}) = \frac{5}{13}, \, \cos(\frac{\pi}{4} - \beta) = \frac{3}{5}, \, \mathbf{L} - \frac{\pi}{4} < \alpha < \frac{\pi}{4}, \, \frac{\pi}{4} < \beta < \frac{3\pi}{4}, \, 求 \, \sin\frac{\alpha - \beta}{2} \,\,$$
的值.

(006249) 已知
$$\sin \alpha - \cos \alpha = \frac{1}{2}$$
, 且 $\pi < \alpha < 2\pi$, 求 $\tan \frac{\alpha}{2}$ 的值.

$$(006250)$$
 已知 $\cos\alpha=-\frac{3}{5},$ 且 α 为第二象限角,求 $\frac{\tan\frac{\pi+\alpha}{4}}{1-\cot^2\frac{\pi-\alpha}{4}}$ 的值.

(006251) 求证:
$$\cos x + \cos 2x + \dots + \cos nx = \frac{\cos \frac{n+1}{2} x \sin \frac{n}{2} x}{\sin \frac{x}{2}}$$
.

$$(006252) \; 在 \; \triangle ABC \; \mathbf{中}, \; 求证: \; \sin^2\frac{A}{2} + \sin^2\frac{B}{2} + \sin^2\frac{C}{2} = 1 - 2\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}.$$

(006253) 已知 $\cos \alpha + \cos \beta = a$, $\sin \alpha + \sin \beta = b(ab \neq 0)$, 求 $\cos(\alpha - \beta)$, $\cos(\alpha + \beta)$ 的值.

$$(006254) 已知 a\cos\alpha + b\sin\alpha = c, \ a\cos\beta + b\sin\beta = c, \ \\ 其中 \alpha \pm \beta \neq k\pi, \ k \in \mathbf{Z}, \ 求证: \ \frac{a}{\cos\frac{\alpha+\beta}{2}} = c$$

$$\frac{b}{\sin\frac{\alpha+\beta}{2}} = \frac{c}{\cos\frac{\alpha-\beta}{2}}.$$

(006255) 已知
$$\alpha + \beta = \frac{2\pi}{3}$$
, 求 $\sin^2 \alpha + \sin^2 \beta$ 的取值范围.

$$(006256)$$
 函数 $y = \sin(3x + \frac{\pi}{12})\sin(3x - \frac{5\pi}{12})$ 的最小正周期是 ().

A.
$$\frac{\pi}{3}$$

B.
$$\frac{2\pi}{3}$$

C.
$$3\pi$$

D.
$$6\pi$$

(006257) 若 $\cos^2 \alpha - \cos^2 \beta = m$, 则 $\sin(\alpha + \beta)\sin(\alpha - \beta)$ 等于 ().

D. -m

 $(006258)\cos(\frac{\pi}{5}+1)\cos(\frac{\pi}{5}-1)$ 等于 (

A. $\cos^2(\frac{\pi}{5}) + \sin^2 1$ B. $\sin^2(\frac{\pi}{5}) - \cos^2 1$ C. $\cos^2(\frac{\pi}{5}) - \sin^2 1$ D. $\sin^2(\frac{\pi}{5}) + \cos^2 1$

(006259) 函数 $f(x) = \sin(x + \frac{5\pi}{12})\cos(x - \frac{\pi}{12})$ 是 (

Α. 最小正周期为 π 的奇函数

B. 最小正周期为 π 的偶函数

C. 最小正周期为 2π 的函数, 没有奇偶性

D. 最小正周期为 π 的函数, 没有奇偶性

(006260) 函数 $f(x) = 2\sin\frac{x}{2}\sin(\alpha - \frac{x}{2})$ 的最大值等于 ().

A. $2\sin^2(\frac{\alpha}{2})$

B. $-2\sin^2(\frac{\alpha}{2})$

C. $2\cos^2(\frac{\alpha}{2})$

D. $-2\cos^2(\frac{\alpha}{2})$

(006261) 函数 $y = \sin(\frac{3\pi}{4} - x)\sin(\frac{3\pi}{4} + x)$ 的值域是_____.

(006262) 函数 $f(x) = \sin x \cos(x + A)$ 的最小正周期是______,最大值是_

(006263) 化简: $\cos^2 \alpha - \cos(\alpha + 60^\circ) \cos(\alpha - 60^\circ) =$ _____.

(006264) 化简: $\cos(\alpha + \beta)\cos(\alpha - \beta) + \sin^2 \beta =$ _____.

(006265) 若 $\sin(\alpha + \beta) = \frac{2}{3}$, $\sin(\alpha - \beta) = \frac{1}{5}$, 则 $\tan \alpha \cot \beta =$ ______

(006266) 若 $\sin(\theta + \frac{\pi}{6})\sin(\theta - \frac{\pi}{6}) = \frac{11}{20}$, 则 $\tan \theta =$ _____.

(006267) 计算: $\sin 63^{\circ} - \cos 63^{\circ} + 2\sqrt{2} \sin 66^{\circ} \cos 84^{\circ} =$ ______.

(006268) 计算: $\frac{1}{2\sin 10^{\circ}} - 2\sin 70^{\circ} =$ _____.

(006269) 计算: $\frac{1 - 4\sin 10^{\circ} + 8\sin^{3} 10^{\circ}}{2\cos 80^{\circ}} = \underline{\hspace{1cm}}$

(006270) 计算: $\sin 80^{\circ} \cos 20^{\circ} + \sin 45^{\circ} \cos 145^{\circ} + \sin 55^{\circ} \cos 245^{\circ} =$ ______

(006271) 求证: $\tan \frac{3\alpha}{2} - \tan \frac{\alpha}{2} = \frac{2\sin \alpha}{\cos \alpha + \cos 2\alpha}$.

(006272) 已知 $\tan \frac{\alpha + \beta}{2} = \frac{\sqrt{2}}{2}$, 求 $\cos 2\alpha \cdot \cos 2\beta - \cos^2(\alpha - \beta)$ 的值.

(006273) 已知 A, B, C 是 $\triangle ABC$ 的三内角, 若 $B = 60^{\circ}$, 求 $\cos A \cos C$ 的取值范围.

(006274) 计算: $\cos 20^{\circ} + \cos 60^{\circ} + \cos 100^{\circ} + \cos 140^{\circ}$.

(006275) 计算: $\cos \frac{2\pi}{7} + \cos \frac{4\pi}{7} + \cos \frac{6\pi}{7}$.

(006276) 求证: $\sin \alpha \sin(60^\circ + \alpha) \sin(60^\circ - \alpha) = \frac{1}{4} \sin 3\alpha$.

(006277) 求证: $\cos \alpha \cos(60^{\circ} + \alpha) \cos(60^{\circ} - \alpha) = \frac{1}{4} \cos 3\alpha$.

(006278) 求证: $\tan \alpha \tan(60^\circ + \alpha) \tan(60^\circ - \alpha) = \tan 3\alpha$.

(006279) 计算: $\sin 5^{\circ} \sin 55^{\circ} \sin 65^{\circ}$.

(006280) 计算: $\sin 10^{\circ} \sin 30^{\circ} \sin 50^{\circ} \sin 70^{\circ}$.

(006281) 计算: $\cos 10^{\circ} \cos 30^{\circ} \cos 50^{\circ} \cos 70^{\circ}$.

(006282) 计算:
$$\sin x \sin(\frac{1}{3}\pi + x) \sin(\frac{2}{3}\pi + x)$$
.

(006283) 计算: $\tan 5^{\circ} \tan 55^{\circ} \tan 65^{\circ} \tan 75^{\circ}$.

$$(006284)$$
 已知 $f(x) = \cos^2(x+\theta) - 2\cos\theta\cos x\cos(x+\theta) + \cos^2\theta$.

(1) 求此函数的最小正周期;

(2) 若
$$\frac{1}{4} \le f(x) \le \frac{3}{4}$$
, $0 \le x \le 2\pi$, 求 取值范围.

(006285) 已知 $\cos(\alpha+\beta)\sin(\alpha-\beta)+\frac{1}{2}\sin\alpha\cos\alpha=0$, 且 $3\sin^2\alpha+2\sin^2\beta=1$, $\alpha,\beta\in(0,\frac{\pi}{2})$, 求 $\sin(\alpha+\beta)$ 的值.

(006286) 下列各式中, 不正确的是 (

A.
$$\sin \alpha + \sin \beta = 2 \sin \frac{\beta + \alpha}{2} \cos \frac{\beta - \alpha}{2}$$

$$\begin{array}{ll} \text{A. } \sin\alpha + \sin\beta = 2\sin\frac{\beta + \alpha}{2}\cos\frac{\beta - \alpha}{2} & \text{B. } \sin\alpha - \sin\beta = 2\cos\frac{\beta + \alpha}{2}\sin\frac{\beta - \alpha}{2} \\ \text{C. } \cos\alpha + \cos\beta = 2\cos\frac{\beta + \alpha}{2}\cos\frac{\beta - \alpha}{2} & \text{D. } \cos\alpha - \cos\beta = 2\sin\frac{\beta + \alpha}{2}\sin\frac{\beta - \alpha}{2} \end{array}$$

B.
$$\sin \alpha - \sin \beta = 2 \cos \frac{\beta + \alpha}{2} \sin \frac{\beta - \alpha}{2}$$

D.
$$\cos \alpha - \cos \beta = 2 \sin \frac{\beta + \alpha}{2} \sin \frac{\beta - \alpha}{2}$$

$$(006287)$$
 函数 $y = \cos^2(x - \frac{\pi}{12}) + \sin^2(x + \frac{\pi}{12}) - 1$ 是 ().

Α. 最小正周期为 2π 的奇函数

Β. 最小正周期为 2π 的偶函数

C. 最小正周期为 π 的奇函数

D. 最小正周期为 π 的偶函数

(006288) 将 $\cos^2 x - \sin^2 y$ 化为积的形式, 结果是 (

A.
$$-\sin(x+y)\sin(x-y)$$
 B. $\cos(x+y)\cos(x-y)$ C. $\sin(x+y)\cos(x-y)$ D. $-\cos(x+y)\sin(x-y)$

B.
$$\cos(x+y)\cos(x-y)$$

$$C \sin(x+y)\cos(x-y)$$

$$D = \cos(x+y)\sin(x-y)$$

(006289) 设 $x + y = \frac{2\pi}{3}$, 则 $\cos x - \cos y$ 的最大值是 ().

$$A = \sqrt{3}$$

B.
$$2\sqrt{3}$$

C.
$$\sqrt{3}$$

(006290) 函数 $f(x) = \frac{\cos 3x - \cos x}{\cos x}$ 的值域是 ().

A.
$$[-4, +\infty)$$

B.
$$[-4, 0]$$

C.
$$(-4,0]$$

D.
$$(-4,4]$$

(006291) 求值: $\sin 10^{\circ} + \sin 50^{\circ} - \sin 70^{\circ} =$ _____.

$$(006292)$$
 求值: $\cos 20^{\circ} - \cos 80^{\circ} - \sin 50^{\circ} =$

$$(006293)$$
 求值: $\sin 15^{\circ} - \sin 75^{\circ} + 2 \sin 15^{\circ} \sin 75^{\circ} =$ ______

$$(006294)$$
 求值: $\sin 80^{\circ} - \sin 20^{\circ} + 2 \sin 10^{\circ} \cos 50^{\circ} =$ _____.

(006295) 求值:
$$\cos \frac{5\pi}{13} + \cos \frac{3\pi}{13} + 2\cos \frac{9\pi}{13}\cos \frac{\pi}{13} = \underline{\hspace{1cm}}$$

```
(006296) 化简: \cos^2(\alpha + \beta) + \cos^2(\alpha - \beta) - \cos 2\alpha \cos 2\beta =______
```

$$(006297)$$
 化筒: $\cos \alpha + \cos(\frac{2}{3}\pi + \alpha) + \cos(\frac{2}{3}\pi - \alpha) = \underline{\hspace{1cm}}.$

(006298) 求值:
$$\sin^2 40^\circ + \sin^2 80^\circ + \frac{1}{2}\cos 220^\circ =$$
_____.

$$(006299)$$
 求值: $\cos 20^{\circ} + \sin 60^{\circ} + \cos 100^{\circ} + \cos 140^{\circ} =$ _____.

$$(006300)$$
 求值: $\sin 63^{\circ} - \sin 27^{\circ} + 2\sqrt{2}\cos 84^{\circ}\sin 66^{\circ} =$ _____.

(006301) 计算:
$$\frac{\sin 20^{\circ} - \cos 50^{\circ}}{\cos 80^{\circ}} = \underline{\qquad}.$$

(006302) 计算:
$$\frac{\sin 10^{\circ} + \sin 50^{\circ}}{\sin 35^{\circ} \sin 55^{\circ}} =$$
_____.

$$(006303)$$
 计算: $\csc 18^{\circ} - \csc 54^{\circ} =$

(006304) 若 x + y = 1, 则 $\sin x + \sin y$ 与 1 的大小关系是 (

A.
$$\sin x + \sin y > 1$$

B.
$$\sin x + \sin y = 1$$

C.
$$\sin x + \sin y < 1$$

D. 随
$$x,y$$
 的取值而定

(006305) 若 $\sqrt{3}(\sin \alpha + \sin \beta) = \cos \beta - \cos \alpha, \ \alpha, \beta \in (0, \pi), \ \text{则} \ \alpha - \beta$ 等于 (

A.
$$-\frac{2\pi}{3}$$

B.
$$-\frac{\pi}{3}$$

C.
$$\frac{\pi}{3}$$

D.
$$\frac{2\pi}{3}$$

(006306) 若 x > 0, y > 0, $0 < x + y < 2\pi$, 则 $f(x) = \sin(x + y) - \sin x - \sin y$ 的值 (

B. 恒小于零

D. 符号随 x,y 的取值而定

(006307) 函数 $y = \sin(2x - \frac{\pi}{6}) - \cos 2x$ 的图像, 可由函数 $y = \sqrt{3}\sin 2x$ 的图像 (

A. 向右平移
$$\frac{\pi}{3}$$
 个单位长度得到

B. 向左平移
$$\frac{\pi}{3}$$
 个单位长度得到

C. 向右平移
$$\frac{\pi}{6}$$
 个单位长度得到

B. 向左平移
$$\frac{\pi}{3}$$
 个单位长度得到 D. 向左平移 $\frac{\pi}{6}$ 个单位长度得到

 $(006308) 在① \cos 40^{\circ} + \sqrt{3} \sin 40^{\circ} = 2 \cos 20^{\circ}, ② 1 + 2 \cos 20^{\circ} = 4 \cos 20^{\circ} \cos 40^{\circ}, ③ \frac{\sin 40^{\circ}}{1 + \cos 40^{\circ}} = \cot 70^{\circ}, ④$ $\frac{1-\tan 40^{\circ}}{1+\tan 40^{\circ}}=\tan 20^{\circ}$ 这四个式子中, 成立的个数是 (

(006309) 已知 $\cos 36^{\circ} \cos 72^{\circ} = \frac{1}{4}$, 求 $\cos 36^{\circ} - \cos 72^{\circ}$.

(006310) 已知
$$\cos 36^{\circ} \cos 72^{\circ} = \frac{1}{4}$$
, 求 $\cos^2(\frac{\pi}{5}) + \sin^2(\frac{\pi}{10})$.

(006311) 已知
$$\cos 36^{\circ} \cos 72^{\circ} = \frac{1}{4}$$
, 求 $\cos 12^{\circ} - \cos 24^{\circ} - \cos 48^{\circ} + \cos 84^{\circ}$.

$$(006312)$$
 $\Re \cos^2 73^\circ + \sin^2 43^\circ + \cos 73^\circ \sin 43^\circ.$

$$(006313)$$
 \Re $\cos^2 10^\circ + \cos^2 110^\circ + \cos^2 130^\circ$.

(006314) $\Re \sin 10^{\circ} \sin 50^{\circ} - \sin 50^{\circ} \sin 70^{\circ} - \sin 70^{\circ} \sin 10^{\circ}$.

(006315) $\Re \tan 9^{\circ} - \tan 27^{\circ} - \tan 63^{\circ} + \tan 81^{\circ}$.

$$(006316)$$
 已知 $\cos \alpha - \cos \beta = \frac{1}{2}$, $\sin \alpha - \sin \beta = -\frac{1}{3}$, 求 $\sin(\alpha + \beta)$, $\cos(\alpha - \beta)$ 的值.

$$(006317)$$
 已知 $\cos \alpha + \cos \beta = \frac{\sqrt{2}}{4}$, $\tan(\alpha + \beta) = -\frac{4}{3}$, 求 $\sin \alpha + \sin \beta$ 的值.

 $(006318) \ \textbf{已知} \ a\cos x + b\sin x + c = 0 \\ (a \neq 0) \ \textbf{在区间} \ (\frac{\pi}{2},\pi) \ \textbf{内有两个相异的实根} \ \alpha,\beta, \ \vec{\mathbf{x}} \ \sin(\alpha+\beta) \ \textbf{的值}.$

$$(006319)$$
 已知 $\sin \alpha + \sin \beta = \frac{3}{5}$, $\cos \alpha + \cos \beta = \frac{4}{5}$, 求 $\cos \alpha \cdot \cos \beta$ 的值.

(006320) 若 $\sin A + \sin B = \cos A + \cos B$, 判断 $\triangle ABC$ 的形状.

$$(006321)$$
 若 $\sin^2 A + \sin^2 B + \sin^2 C < 2$, 判断 $\triangle ABC$ 的形状.

$$(006322)$$
 若 $\tan B = \frac{\cos(B-C)}{\sin A - \sin(B-C)}$, 判断 $\triangle ABC$ 的形状.

$$(006323)$$
 若 $\sin A = \frac{\sin B + \sin C}{\cos B + \cos C}$, 判断 $\triangle ABC$ 的形状.

(006324) 将 $\sin x + \sin y + \sin z - \sin(x + y + z)$ 化为积的形式.

$$(006325)$$
 若 $\frac{\sin(A+30^\circ)-\sin(B+30^\circ)}{\cos A-\cos B}=m\cot\frac{A+B}{2}+n$, 求 m,n 的值.

$$(006326)$$
 已知 $\sin A + \sin B - \sin C = 0$, $\cos A + \cos B - \cos C = 0$, 求证: $\sin^2 A + \sin^2 B + \sin^2 C$ 为定值.

(006327) 已知
$$0 < x < \pi$$
, 求函数 $f(x) = -\frac{1}{2} + \frac{\sin \frac{5x}{2}}{2 \sin \frac{x}{2}}$ 的最小值.

(006328) 已知三角形内角
$$\theta$$
 满足 $\frac{\sin\frac{5\theta}{2}}{2\sin\frac{\theta}{2}} - \frac{1}{2} = a\cos\theta + a$, 求实数 a 的取值范围.

$$(006329) \,\, 已知 \,\, 0 < \alpha < \pi, \,\, 0 < \beta < \pi, \,\, \underline{\mathbb{H}} \,\, \cos \alpha + \cos \beta - \cos (\alpha + \beta) = \frac{3}{2}, \,\, \mathbf{求证} \colon \, \alpha = \beta = \frac{\pi}{3}.$$

(006330) 已知 A,B 是两个锐角,且满足 $a\sin A + b\cos B - \sin B = 0$, $a\sin B + b\cos A - \sin A = 0$,又 $\tan\frac{A+B}{2} = a+1$,求证: $a^2+b=1$.

(006331) 已知
$$\frac{a^3 + b^3 - c^3}{a + b - c} = c^2$$
, 且 $\sin A \sin B = \frac{3}{4}$, 确定三角形 ABC 的形状.

(006332) 已知 $\cos A + \cos B > \sin A + \sin B$, 确定三角形 ABC 的形状.

(006333) 已知 $a\cos B + b\cos C + c\cos A = b\cos A + c\cos B + a\cos C$, 确定三角形 ABC 的形状.

(006334) 在
$$\triangle ABC$$
 中,求证: $\sin^2\frac{A}{2} + \sin^2\frac{B}{2} + \sin^2\frac{C}{2} = 1 - 2\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}$.

(006335) 在
$$\triangle ABC$$
 中, 求证: $(a-b)\cot\frac{C}{2} + (b-c)\cot\frac{A}{2} + (c-a)\cot\frac{B}{2} = 0$.

(006336) 在 $\triangle ABC$ 中. 已知 A>B>C, 且 A=2C, b=4, a+c=8, 求 a,c 的长.

(006337) 如图, 海岛 O 上有一座海拔 1000 米的山, 山顶上设有一个观察站 A, 上午 11 时测得一轮船在岛北偏东 60° 的 C 处, 俯角为 30° ; 11 时 10 分又测得该船在岛的北偏西 60° 的 B 处, 俯角为 60° .

- (1) 该船的速度为每小时多少千米?
- (2) 若此船以不变航速继续前进,则它何时到达岛的正西方向? 此时所在点 E 离开海岛多少千米?

解答在这里 (1) 在 Rt $\triangle ABC$ 与 Rt $\triangle AOC$ 中,求得 $OB = OA \tan 30^\circ = \frac{\sqrt{3}}{3}$ (千米), $OC = OA \tan 60^\circ = \sqrt{3}$ (千米). 由余弦定理,得 $BC = \sqrt{OB^2 + OC^2 - 2 \cdot OB \cdot OC \cos \angle BOC} = \sqrt{\frac{3}{9} + 3 - 2(-\frac{1}{2})} = \sqrt{\frac{13}{3}}$,于是船速 $v = \frac{BC}{\frac{1}{6}} = 2\sqrt{39}$ (千米/时).

6 (2) 在
$$\triangle OBC$$
 中,由余弦定理,得 $\cos \angle OBC = \frac{BC^2 + OB^2 - OC^2}{2 \cdot BC \cdot OB} = \frac{\frac{13}{3} + \frac{3}{9} - 3}{2\sqrt{\frac{13}{3} \cdot \frac{\sqrt{3}}{3}}} = \frac{5}{\sqrt{13}}$ 26. 于是

(006338) 在 $\triangle ABC$ 中, 若 $A = 60^{\circ}$, AC = 16, 且此三角形的面积为 $220\sqrt{3}$, 则 BC 边的长是 ().

A.
$$\sqrt{2400}$$

(006339) 在 $\triangle ABC$ 中, 若 a+b=10, c=6, $C=30^{\circ}$, 则此三角形的面积等于 ().

A.
$$8(2+\sqrt{3})$$

B.
$$8(2-\sqrt{3})$$

C.
$$16(2+\sqrt{3})$$

D.
$$16(2-\sqrt{3})$$

 $(006340) \; \hbox{$\stackrel{\wedge}{{}_{\sim}}$} \; \triangle ABC \; \hbox{\circid} \; \hbox{\circid} \; a,b,c \; \mbox{$\@addition{ABL}$} \; \frac{1}{a+b} + \frac{1}{b+c} = \frac{3}{a+b+c}, \, \text{则} \; B \; \mbox{$\@addition{ABL}$} \; \mbox{$$

(006341) 在 $\triangle ABC$ 中, 若 $A=60^{\circ}$, 且最大边长和最小边长恰好是方程 $x^2-7x+11=0$ 的两根, 则第三边的 边长为 ().

B. 3

D. 5

(006342) 若三角形的三条边氏分别是 4,5,6,则这个三角形的形状().

A. 是锐角三角形

B. 是直角三角形

C. 是钝角三角形

D. 不能确定

(006343) 若三角形的角 A 满	足 $\sin A = \frac{\sqrt{3}}{2}$, 则 A 等于	` ().			
A. 60°	B. 120°	C. 60° 或 120°	D. 30° 或 150°		
(006344) 若三角形的三内角之	之比为 1 : 2 : 3, 则它们所对	付边的边长之比为 ().			
A. 1:2:3	B. 3:4:5	C. $11:\sqrt{3}:2$	D. 5:6:7		
(006345) 在 $\triangle ABC$ 中, $a(\sin \theta)$	$aB - \sin C) + b(\sin C - \sin C)$	$(nA) + c(\sin A - \sin B)$ 的值是	().		
A. $\frac{1}{2}$	B. 0	C. 1	D. π		
(006346) 若方程 $x^2 \sin A + 2$	$x\sin B + \sin C = 0$ 有重根	$oxed{l},$ 则 $ riangle ABC$ 的三边 a,b,c 满足	足关系式 ().		
A. $b = ac$	B. $a = b = c$	C. $c = ab$	$D. b^2 = ac$		
(006347) 在 △ABC 中, 若 a	$=1,b=\sqrt{3},A=30^{\circ},$ 则	B 的值是 ().			
A. 60°	B. 60° 或 120°	C. 120°	D. 30° 或 150°		
(006348) 在 △ABC 中, 若 B	(006348) 在 $\triangle ABC$ 中, 若 $B=45^{\circ},c=2\sqrt{2},b=\frac{4\sqrt{3}}{3},$ 则 A 的值是 ().				
A. 15°	B. 75°	C. 105°	D. 15° 或 75°		
(006349) 在 △ABC 中, 若 B	$B = 45^{\circ}, \ b = 10, \ c = 5\sqrt{6},$	则 a 等于 ().			
A. $5(\sqrt{3}+1)$		B. $5(\sqrt{3}-1)$			
C. $10(\sqrt{3}+1)$ 或 $10(\sqrt{3}-3)$	1)	D. $5(\sqrt{3}+1)$ 或 $5(\sqrt{3}-1)$			
(006350) 在 △ABC 中, 若三	内角满足 $\sin^2 A = \sin^2 B$	$+\sin B\sin C + \sin^2 C$,则 A 等	等于 ().		
A. 30°	B. 60°	C. 120°	D. 150°		
(006351) 在 $\triangle ABC$ 中, 若 $b=2\sqrt{2},a=2,$ 且三角形有解, 则 A 的取值范围是 ().					
A. $0^{\circ} < A < 30^{\circ}$	B. $0^{\circ} < A \le 45^{\circ}$	C. $0^{\circ} < A < 90^{\circ}$	D. $30^{\circ} < A < 60^{\circ}$		
(006352) 在 △ABC 中, 若 a	$\cos A = b \cos B$,则 $\triangle AB$	C 的形状 ().			
A. 只可能是等边三角形		B. 只可能是等腰三角形			
C. 只可能是直角三角形		D. 既可能是等腰三角形, 也可	能是直角三角形		
(006353) 在 Rt△ <i>ABC</i> 中, 已	知 $C = 90^{\circ}, a = 2, c = $	29, 那么 tan B 的值等于 ().		
A. $\frac{2}{5}$	B. $\frac{2\sqrt{29}}{29}$	C. $\frac{5\sqrt{29}}{29}$	D. $\frac{5}{2}$		
(006354) 在 $\triangle ABC$ 巾, 若 $C=90^{\circ},\ S_{\triangle ABC}=8\sqrt{3},\ b=4,\ 则\ B$ 等于 ().					
A. 15°	B. 30°	C. 45°	D. 60°		
(006355) 在 △ABC 中, 若 C	$C = 90^\circ$,则 $a^3 \cos A + b^3 \cos A$	os B 等于 ().			
A. c^{3}	B. abc	C. $(a+b)c^2$	D. $(a+b)c^3$		

(006356) 在 Rt $\triangle ABC$ 中, 若 $B=60^{\circ}$, $C=45^{\circ}$, BC=8, $AD\perp BC$ 于点 D, 则 AD 的长为 ().

- A. $4(\sqrt{3}-1)$ B. $4(\sqrt{3}+1)$ C. $4(3-\sqrt{3})$ D. $4(3+\sqrt{3})$

(006357) 若 $Rt \triangle ABC$ 的斜边 AB=2, 则其内切圆的半径 r 的取值范围是 ().

- A. $(1, \sqrt{2}]$
- B. $[1, \sqrt{2}]$
- C. $(0, \sqrt{2} 1]$
- D. $[1, \sqrt{2} 1]$

(006358) 若 AD 是 $Rt\triangle ABC$ 斜边 BC 上的高,则下列命题不成立的是 ().

- A. $\sin B = \sqrt{\frac{CD}{BC}}$ B. $\cos B = \sqrt{\frac{BD}{BC}}$ C. $\tan B = \sqrt{\frac{BD}{CD}}$ D. $\cot B = \sqrt{\frac{BD \cdot BC}{AC}}$

(006359) 在 $\triangle ABC$ 中, 若 $\sin A = \sin B$, 则下列结论中正确的是 (

A. A = B

B. $A = 180^{\circ} - B$

C. A = B 或 $A = 180^{\circ} - B$

D. $A + B = 90^{\circ}$

(006360) 在 $\triangle ABC$ 中, 若 $\sin A : \sin B : \sin C = 3 : 5 : 7$, 则此三角形的最大内角的度数等于 (

A. 75°

B. 120°

C. 135°

D. 150°

 $(006361) \; 在 \; \triangle ABC \; \mathbf{中}, \; 若 \; A = 60^\circ, \; B = 1, \; S_{\triangle ABC} = \sqrt{3}, \; \underline{\mathsf{M}} \; \frac{a+b+c}{\sin A + \sin B + \sin C} \; \mbox{ 等于 } (\qquad).$

- A. $\frac{8\sqrt{3}}{2}$
- B. $\frac{2\sqrt{39}}{3}$ C. $\frac{26\sqrt{3}}{3}$

(006362) 若 $\triangle ABC$ 的三边 a, b, c 满足 (a+b-c)(c-a)=0, 则此三角形的形状是 ().

- A. 不等腰的锐角三角形
- B. 直角三角形
- C. 不等腰的钝角三角形
- D. 等腰三角形

(006363) 在 $\triangle ABC$ 中, 若 $\sin A \cdot \cos B < 0$, 则 $\triangle ABC$ 的形状 (

- A. 是锐角三角形
- B. 是直角三角形
- C. 是钝角三角形
- D. 不能确定

(006364) 在 $\triangle ABC$ 中, 若 $\sin A = 2\cos B \cdot \sin C$, 则此三角形的形状 ().

- A. 是等腰三角形, 但不一定是等边三角形
- B. 是等边三角形

C. 是不等腰的直角三角形

D. 是边长互不相等的三角形

(006365) 一角槽的横断面如图所示, $\angle ADE = \angle BED = 90^\circ$, 且 $\alpha = 50^\circ$, $\beta = 70^\circ$, AC = 90mm, BC = 100mm, AC = 100m 150mm, 则 DE 的长约等于 ().

- A. 210mm
- B. 200mm
- C. 198mm
- D. 171mm

 $(006366) \triangle ABC$ 的 BC 边上有一点 D, 满足 $\angle CAD = \angle DAB = 60^{\circ}$, 且 AC = 3, AB = 6, 则 AD 的长为 (). A. 2 B. 2.5 C. 3 D. 3.5 (006367) 设 a, a+1, a+2 是钝角三角形的三边, 则 a 的取值范围是 (B. 1 < a < 3A. 0 < a < 3D. 4 < a < 6(006368) 在 $\triangle ABC$ 中, 若 $a = \sqrt{3} + 1$, b = 2, $c = \sqrt{6}$, 则 $A = \underline{\hspace{1cm}}$. (006369) 在 $\triangle ABC$ 中, 若 $a:b:c=\sqrt{2}:(1+\sqrt{3}):2$, 则 A=(006370) 在 $\triangle ABC$ 中, 若三角形中三边长的比为 $3:4:\sqrt{37}$, 则这个三角形的最大内角等于______ (006371) 在 $\triangle ABC$ 中, 若 (a+b+c)(b+c-a)=3bc, 则 A=(006372) 在 $\triangle ABC$ 中, 若 $2\lg(a^2+b^2-c^2)=\lg 2+2\lg a+2\lg b$, 则 C=(006373) 在 $\triangle ABC$ 中, 若三角形面积 $S = \frac{1}{4\sqrt{3}}(b^2 + c^2 - a^2)$, 则 $A = \underline{\hspace{1cm}}$. (006374) 在 $\triangle ABC$ 中, 若 $a=6, b=6\sqrt{3}, A=30^{\circ}, 则 c=$ ______. (006375) 在 $\triangle ABC$ 中,若一内角为 30° ,它的一邻边边长为 4,对边长为 $\frac{5}{2}$,则另一邻边边长为_ (006376) 在 $\triangle ABC$ 中, 若一个内角是 45° , 这个角的一条邻边长是 $\sqrt{3}+1$, 对边长是 2, 则其另一条邻边长等 (006377) 在 $\triangle ABC$ 中, 若 $\frac{b-1}{c+2} = \frac{2}{3}$, $a = \sqrt{21}$, $A = 60^{\circ}$, 则 $c = \underline{\hspace{1cm}}$. (006378) 在 $\triangle ABC$ 中,若 AB = AC, BC - AB = 2, $\cos B = \frac{4}{5}$, 则 $AB = ______$, $BC = ______$. (006379) 在 $\triangle ABC$ 中, 若 a+b=8, c=7, $C=60^{\circ}$, 则 a=______, b=_____. (006380) 在 $\triangle ABC$ 中, 若三角形的面积为 $\sqrt{3}$, $B=60^{\circ}$, b=4, 则 a=_______, c=_______ (006381) 在 $\triangle ABC$ 中,根据条件求三角形的内角: (1) 若 $b=2c\sin B$,则 C=______. (2) 若 a=4,b=6 $\sin B = \frac{3}{4}$, 则 A =______. (3) 若 $a = 2\sqrt{2}$, $b = 2\sqrt{3}$, $A = 45^{\circ}$. 则 C =______. (006382) 在 $\triangle ABC$ 中, 若等边 $\triangle ABC$ 的外接圆半径为 $6\sqrt{3}$ cm, 则它的边长为 (006383) 在 $\triangle ABC$ 中, 若 $A = 105^{\circ}$, $B = 45^{\circ}$, $c = \sqrt{2}$, 则 b =______. (006384) 在 $\triangle ABC$ 中, 若 $A=45^{\circ}$, $B=60^{\circ}$, a=10, 则 b=______, c=______ (006385) 在 $\triangle ABC$ 中, 若 $\cos A = \frac{\sin B}{2\sin C}$, $b = 4\sqrt{3}$, $2\sin B = \sqrt{3}$, 则 $a = \underline{\hspace{1cm}}$. (006386) 在 $\triangle ABC$ 中, 若 $\sqrt{(\sin B - \frac{\sqrt{2}}{2})^2 + (\sqrt{3} - \tan C)^2} = 0$, 则 $A = \underline{\qquad}$.

- (006387) 在 $\triangle ABC$ 中, 若 AC = 5, $B = 60^{\circ}$, $AD \perp BC$ 于点 D, 且 AD = 3, 则 $BC = _______$, $AB = _______$.
- (006388) 在 $\triangle ABC$ 中, 若 $C=90^{\circ}$, $CD\perp AB$ 于点 D, BD=6, CD=2, 则 $\sin A=$ _____.
- (006389) 在 $\triangle ABC$ 中, 若 2B = A + C, 且边 AC = 2, 则外接圆半径 R =______.
- (006390) 在 $\triangle ABC$ 中,若面积 $S=\frac{1}{4}$,外接圆半径 R=1,则 abc=_____.
- (006391) 在 $\triangle ABC$ 中, 若 $\frac{a}{\sin A} = 2$, 则 $\frac{a+b+c}{\sin A + \sin B + \sin C} =$ ______.
- (006392) 在 $\triangle ABC$ 中, 若 (b+c):(c+a):(a+b)=4:5:6, 则 $\sin A:\sin B:\sin C=$ _______.
- (006393) 在 $\triangle ABC$ 中, 若 $A=105^{\circ},\,B=30^{\circ},\,BC=\frac{\sqrt{6}}{2},\,$ 则的 B 分线的长为______.
- (006394) 在 $\triangle ABC$ 中, 若 BC 边上的中线 $m=\sqrt{\frac{8-3\sqrt{3}}{2}},$ 且 $a=\sqrt{3}+1,$ $b=\sqrt{6},$ 则 B=______.
- (006395) 若 $\sin A : \sin B : \sin C = 2 : 3 : 4$, 则 $\triangle ABC$ 是_____ 三角形.
- (006396) 若关于 x 的方程 $x^2 + \cos B \cdot x \frac{a}{c} = 0$ 的两根之和等于两根之积, 则 $\triangle ABC$ 是_____ 三角形.
- (006397) 若 $b \sin B = c \sin C$, 则 $\triangle ABC$ 是_____ 三角形.
- (006398) 若 $a\cos A = b\cos B$, 则 $\triangle ABC$ 是_____ 三角形.
- (006399) 若 $\sin A = 2 \sin B \cos C$, 且 $\frac{a+b-c}{b+c-a} = \frac{3b}{c}$, 则 $\triangle ABC$ 是_____ 三角形.
- (006400) 若 $B=30^{\circ},\, c=150,\, b=50\sqrt{3},\,$ 则 $\triangle ABC$ 是_____ 三角形.
- (006401) 若 $b = a \sin C$, $c = a \sin(90^{\circ} B)$, $B < 90^{\circ}$, 则 $\triangle ABC$ 是 三角形.
- (006402) 若 $a=\sqrt{3}-1,\,b=\frac{\sqrt{6}}{2},\,C=\frac{\pi}{4},\,$ 则 $\triangle ABC$ 是_____ 三角形.
- (006403) 在 $\triangle ABC$ 中, 已知 $a=8,\,b=7,\,c=5,\,$ 求 B 及三角形的面积 S.
- (006404) 在 $\triangle ABC$ 中, 已知 a = 12, $b = 4\sqrt{3}$, $A = 120^{\circ}$, 求 C 及三角形的面积.
- (006405) 在 $\triangle ABC$ 中, 已知 a = 7, b = 3, c = 5, 求最大角与 $\sin C$ 的值.
- (006406) 在 $\triangle ABC$ 中,已知 $b = \sqrt{2}$, c = 1, $B = 45^{\circ}$, 求 a, C 的值.
- (006407) 在 $\triangle ABC$ 中, 已知 $A = 45^{\circ}$, $B = 60^{\circ}$, a = 10, 求 b, c 的值.
- (006408) 在 $\triangle ABC$ 中, 已知 a = 10, b = 6, $C = 120^{\circ}$, 求 $\sin A$ 的值.
- (006409) 在 $\triangle ABC$ 中, 已知一个内角是 60° , 其对边为 7, 且而积为 $10\sqrt{3}$, 求其他两边的长.
- (006410) 已知钝角三角形的三边长是三个连续偶数, 求三边长.
- (006411) 若 $A = 60^{\circ}$, a = 1, b + c = 2, 判断 $\triangle ABC$ 的形状.

(006412) 若 $(b-c)\cos^2 A = b\cos^2 B - c\cos^2 C$, 判断 $\triangle ABC$ 的形状.

$$(006413)$$
 若 $\tan \frac{A-B}{2} = \frac{a-b}{a+b}$, 判断 $\triangle ABC$ 的形状.

$$(006414)$$
 在 $\triangle ABC$ 中, 求证: $a(\sin B - \sin C) + b(\sin C - \sin A) + c(\sin A - \sin B) = 0$.

$$(006415)$$
 在 $\triangle ABC$ 中, 求证: $\sin^2 A + \sin^2 B + \cos^2 C + 2\sin A\sin B\cos(A+B) = 1$.

$$(006416)$$
 在 $\triangle ABC$ 中, 求证: $a^2(\cos^2 B - \cos^2 C) + b^2(\cos^2 C - \cos^2 A) + c^2(\cos^2 A - \cos^2 B) = 0$.

(006417) 在
$$\triangle ABC$$
 中, 求证: $(a^2 - b^2 - c^2) \tan A + (a^2 - b^2 + c^2) \tan B = 0$.

$$(006418)$$
 在 $\triangle ABC$ 中, 求证: $\frac{a-c\cos B}{b-c\cos A} = \frac{\sin B}{\sin A}$.

$$(006419)$$
 在 $\triangle ABC$ 中, 已知 $(a+b+c)(a+b-c)=3ab$, 求 C .

$$(006420)$$
 在 $\triangle ABC$ 中, 已知 $ab = 60$, $ab = 60$, 面积 $S = 15$, 求三内角.

$$(006421)$$
 在 $\triangle ABC$ 中, 已知三边长分别为 $k^2 + k + 1$, $k^2 - 1$, $2k + 1$, 求最大内角.

$$(006422)$$
 在 $\triangle ABC$ 中, 已知 $(b+c):(c+a):(a+b)=4:5:6$ 求最大内角.

$$(006423)$$
 在 $\triangle ABC$ 中,已知面积 $S = \sqrt{3}$, $a = 2\sqrt{3}$, $b = 2$, 求 A, B, c .

$$(006424)$$
 在 $\triangle ABC$ 中, 已知 $A = 120^{\circ}$, $AB + BC = 21$, $AC + BC = 20$, 求 BC 的长.

(006425) 在
$$\triangle ABC$$
 中,已知 $A > 90^{\circ}$, $\sin B = \frac{5\sqrt{3}}{14}$, $2^{5a-7b} = 1$, 求 $a:b:c$.

(006426) 在 $\triangle ABC$ 中, 已知两边之和为 4, 其夹角为 60° , 分別求周长的最小值和面积的最大值.

$$(006427)$$
 在 $\triangle ABC$ 中,已知 $C = 90^{\circ}$,求证: $\sin 2A \cdot \cot A = \frac{2b^2}{c^2}$.

(006428) 在
$$\triangle ABC$$
 中,已知 $A:B=1:2$,求证: $\frac{a}{b}=\frac{a+b}{a+b+c}$

$$(006429)$$
 在 $\triangle ABC$ 中, 已知 $C = 2B$, 求证: $c^2 - b^2 = ab$.

(006430) 在 $\triangle ABC$ 中, 已知 $A=100^{\circ}$, AB=AC, 角 B 的平分线交 AC 于点 D, 求证: AD+DB=BC.

(006431) 在
$$\triangle ABC$$
 中,已知 $2b=a+c$,求证: $\tan\frac{A}{2}\cdot\tan\frac{C}{2}=\frac{1}{3}$.

$$(006432)$$
 在 $\triangle ABC$ 中,已知 $2b = a + c$,求证: $\cos A + \cos C - \cos A \cdot \cos C + \frac{1}{3} \sin A \cdot \sin C$ 为定值.

(006433) 在 $\triangle ABC$ 中,已知 $\sin A + \sin C = 2 \sin B$,且最大角与最小角之差为 90° ,求证:三边之比为 $(\sqrt{7}-1)$: $\sqrt{7}$: $(\sqrt{7}+1)$.

(006434) 在 $\triangle ABC$ 中,已知 $C=90^\circ, CD$ 是斜边 AB 上的高,且 $\triangle CBD$ 的面积是 $\triangle ACD, \triangle ABC$ 面积的比例中项,求证: $\sin B=\frac{\sqrt{5}-1}{2}$.

(006435) 在 $\triangle ABC$ 中, 已知 B 的 2 倍等于其他两角的和, 最长边长与最短边长的和是 $8\mathrm{cm}$, 最长边长与最短边长的积是 $15\mathrm{cm}^2$, 求面积及 B 所对边的长.

(006436) 在 $\triangle ABC$ 中,已知 B 为锐角, $b=7{\rm cm}$,外接圆半径 $R=\frac{7\sqrt{3}}{3}{\rm cm}$,面积 $S=10\sqrt{3}{\rm cm}^2$,求其他两边的长.

(006437) 在 $\triangle ABC$ 中,已知 $A = 120^{\circ}$, $\sin B : \sin C = 3 : 2$,且面积 $S = 6\sqrt{3}$,求 a 的值.

(006438) 在 $\triangle ABC$ 中, 已知 $\sin A : \sin B : \sin C = 4 : 5 : 6$, 且最大边为 10, 求外接圆半径 R 和内切圆半径 r.

(006439) 如图, 在圆内接四边形 ABCD 中, 已知边 AB = 3, AD = 5, 对角线 BD = 7, $\angle BDC = 45^{\circ}$, 求:

(1) $\sin \angle BAD$ 的值;

75°, AB = 120 米, 求河的宽度.

(2) 边 BC 的长.

(006440) 如图, AB 是半圆 O 的直径, 延长 AB 到 C, 使 BC = AB, D 是半圆上一点, 连接 CD, 且 $\tan \angle CDB = \frac{1}{3}$, 求 $\cos \angle DAB$ 的值.

(006441) 已知 R,r 分別是直角三角形的外接圆半径与内切圆半径,求 $\frac{r}{R}$ 的最大值,并说明此时三角形的形状. (006442) 如图,为了测定河的宽度,在一岸边选定两点 A,B,望对岸标记物 C,测得 $\angle CAB=30^\circ$, $\angle CBA=100$

(006443) 如图, 在塔底 B 测得山顶 C 的仰角为 60° , 在山顶 C 测得塔顶 A 的俯角为 45° , 已知塔高 AB=20米, 求山高 DC.

(006444) 如图, 半圆 O 的直径 MN 的长为 2, A 为直径延长线上一点, 且 OA = 2, B 为半圆上任意一点, 以 AB 为边作等边 $\triangle ABC(A,B,C$ 顺时针排列), $\angle AOB$ 等于多少时, 四边形 OACB 的面积最大? 最大面积是多少?

(006445) 利用三角代换, 求函数 $y = x + \sqrt{1 - x^2} + 3$ 的值域.

(006446) 利用三角代换, 求函数 $y = \sqrt{x-4} + \sqrt{15-3x}$ 的值域.

(006447) 利用三角代换, 求函数 $y = 2\sqrt{x+3} + \sqrt{2-x}$ 的值域.

(006448) 利用三角代换, 求函数 $S = x^2 + xy + y^2$ 的值域.

(006449) 利用三角代换, 求函数 $1 \le x^2 + y^2 \le 2$ 的值域.

(006450) 利用三角代换, 求函数 $y = \sqrt{1+x} - \sqrt{x}$ 的值域.

(006451) 求函数 $f(x) = \sqrt{x-1} + \sqrt{2-x}$ 的最大值、最小值.

(006452) 已知 a,b>0, 求函数 $f(x)=a\sqrt{1-x^2}+bx$ 的最大值、最小值.

(006453) 已知 $0 \le y < x < \frac{\pi}{2}$, 且满足 $\tan x = 3 \tan y$, 求 x - y 的最大值.

 $(006454)0 < \alpha < \beta < \frac{\pi}{2}, 且 \sin \alpha, \sin \beta$ 是方程 $x^2 - (\sqrt{2}\cos 40^\circ)x + \cos^2 40^\circ - \frac{1}{2} = 0$ 的两根, 求 $\cos(2\alpha - \beta)$ 的值.

(006455) 在 $\triangle ABC$ 中, $\tan A$, $\tan B$ 是关于 x 的二次方程 $x^2+mx+m+1=0$ 的两个实根, 求实数 m 的取值范围.

(006456) 如图,已知 P 为 $\triangle ABC$ 内一点,且满足 $\angle PAB = \angle PBC = \angle PCA = \theta$,求证: $\cot \theta = \cot A + \cot B + \cot C$.

 $(006457) \ \ {\hbox{\rm 若不等式}} \ \frac{(x^2+1)\cos\theta - x(\cos\theta - 5) + 3}{x^2 - x + 1} > \sin\theta - 1 \ \ {\hbox{\rm 对任意实数}} \ x \ \ {\hbox{\rm 恒成立}}, \ {\hbox{\it 求}} \ \theta \ \ {\hbox{\rm 的取值范围}}.$

(006458) 已知函数 $f(x) = a + b \cos x + c \sin x$ 的图像过两点 $(0,1), (\frac{\pi}{2},1)$, 且当 $x \in [0,\frac{\pi}{2}]$ 时, $|f(x)| \leq 2$, 求实数 a 的取值范围.

(006459) 已知 $\odot O$ 的半径为 R, 它的内接三角形 ABC 满足关系式 $2R(\sin^2 A - \sin^2 C) = (\sqrt{2}a - b)\sin B$, 求 $\triangle ABC$ 面积的最大值.

(006460) 如图, 已知扇形 AOB 的中心角为 45° , 半径为 1, 矩形 MNPQ 内接于扇形, 使 P,Q 点在半径 OA 上, 求矩形 MNPQ 的对角线 PM 的最小值.

(006461) 如图, 已知 P 是正方形 ABCD 内一点, $PQ \perp BC$, $PR \perp CD$, (Q,R 为垂足), AB=10, AP=9, 求矩形面积的最大值、最小值.

 $(006462) ~ \hbox{若} ~ x \neq k\pi(k \in \mathbf{N}), ~ \hbox{求证:} ~ \frac{1}{\sin 2x} = \cot x - \cot 2x.$

(006464) 求证: $\tan x \tan 2x + \tan 2x \tan 3x + \dots + \tan(n-1)x \tan nx = \frac{\tan nx}{\tan x} - n(n \in \mathbb{N}).$

(006465) 求证: $(2\cos\theta - 1)(2\cos2\theta - 1)(2\cos2^2\theta - 1)\cdots(2\cos2^{n-1}\theta - 1) = \frac{2\cos2^n\theta + 1}{2\cos\theta + 1}$

(006466) 求 $\cos \frac{\pi}{17} \cos \frac{2\pi}{17} \cos \frac{3\pi}{17} \cos \frac{4\pi}{17} \cos \frac{5\pi}{17} \cos \frac{6\pi}{17} \cos \frac{7\pi}{17} \cos \frac{8\pi}{17}$ 的值.

(006467) 实数 x,y,z 满足 $\sin x = a \sin(y-z), \ \sin y = b \sin(z-x), \ \sin z = c \sin(x-y)(a,b,c \neq 1),$ 且 $\sin(x-y),\sin(y-z),\sin(z-x)$ 都不为 0, 求 a,b,c 应满足的关系式.

(006468) 已知 $\sin x = -\frac{1}{3}(\pi < x < \frac{3\pi}{2})$,用反正弦形式表示 x.

(006469) 若 $\cos x = \frac{1}{3}(-\frac{\pi}{2} < x < 0)$,用反余弦形式表示 x.

(006470) 求值: $\tan\left[\frac{1}{2}\arcsin\left(\frac{-2\sqrt{6}}{5}\right)\right]$.

(006471) 求值: $\cos[\arctan\frac{3}{4} + \arccos(-\frac{2}{3})]$.

(006472) 求值: $\arcsin(\sin 2)$.

(006473) 求值: $\arccos(\cos\frac{6}{5}\pi)$.

(006474) 求值: $\arctan(\cot\sqrt{3})$.

(006475) 求值: $\operatorname{arccot}(-\cot\frac{\pi}{7})$.

(006476) 若 $|x| \le 1$, 求证: $\arcsin x + \arccos x = \frac{\pi}{2}$.

(006477) 求证: $\arctan \frac{1}{3} + \arctan \frac{1}{5} + \arctan \frac{1}{7} + \arctan \frac{1}{8} = \frac{\pi}{4}$.

(006478) 求满足不等式 $\arcsin x < 1$ 的 x 的取值范围.

(006479) 求满足不等式 $\arccos(2x^2-1) < \arccos x$ 的 x 的取值范围.

 $(006480) ~ \hbox{\hbox{$\rlap/ 4$}$} \pi \le \alpha \le \frac{3\pi}{2}, ~ \hbox{$\rlap/ 4$} \sin \alpha = -\frac{1}{4}, ~ \hbox{则用反三角形式表示} ~ \alpha ~ \hbox{$\rlap/ 4$} (\qquad).$ (006480) 若 $\pi \le \alpha \le \frac{1}{2}$,且 $\sin \alpha = -\frac{1}{4}$,则用及二角形式表示 α 是(). A. $\pi - \arcsin \frac{1}{4}$ B. $\pi + \arcsin \frac{1}{4}$ C. $\frac{3\pi}{2} - \arcsin \frac{1}{4}$ D. $\frac{3\pi}{2} + \arcsin \frac{1}{4}$

A.
$$\pi - \arcsin \frac{1}{4}$$

B.
$$\pi + \arcsin \frac{1}{4}$$

C.
$$\frac{3\pi}{2} - \arcsin\frac{1}{4}$$

D.
$$\frac{3\pi}{2} + \arcsin \frac{1}{4}$$

(006481) 函数 $y = \arcsin(\cot x)$ 的定义域是 (

A.
$$[-1, 1]$$

B.
$$[k\pi + \frac{\pi}{4}, k\pi + \frac{3\pi}{4}](k\pi + \frac{3\pi}{4})$$

C.
$$\left[-\frac{\pi}{4}, \frac{\pi}{4} \right]$$

B.
$$[k\pi + \frac{\pi}{4}, k\pi + \frac{3\pi}{4}](k \in \mathbf{Z})$$

D. $[k\pi - \frac{\pi}{4}, k\pi + \frac{\pi}{4}](k \in \mathbf{Z})$

(006482) 函数 $y = \sin(\arcsin x)$ 的图像是 (


```
(006483) 函数 f(x) = 2\arcsin(x-1) 的反函数是 (
```

A.
$$y = \frac{1}{2}\sin(x-1)(-\frac{\pi}{2} < x < \frac{\pi}{2})$$

B.
$$y = 1 + \sin \frac{x}{2} \left(-\frac{\pi}{2} \le x \le \frac{\pi}{2} \right)$$

D. $y = \sin(\frac{x}{2} + 1)(-\pi \le x \le \pi)$

C.
$$y = 1 + \sin \frac{x}{2} (-\pi \le x \le \pi)$$

D.
$$y = \sin(\frac{x}{2} + 1)(-\pi \le x \le \pi)$$

(006484) 函数 $y = \arcsin(x^2 - x)$ 为减函数的区间是 ().

A.
$$[-1, 1]$$

B.
$$\left[\frac{1}{2}, \frac{1}{2}(1+\sqrt{5})\right]$$
 C. $\left(-\frac{\pi}{4}, +\infty\right)$ D. $\left[\frac{1}{2}(1-\sqrt{5}), \frac{1}{2}\right]$

C.
$$\left(-\frac{\pi}{4}, +\infty\right)$$

D.
$$\left[\frac{1}{2}(1-\sqrt{5}), \frac{1}{2}\right]$$

(006485) 若 0 < a < 1, 则在 $[0, 2\pi]$ 内满足 $\sin x \ge a$ 的 x 的取值范围是 ().

A.
$$[0, \arcsin a]$$

B.
$$[\arcsin a, \pi - \arcsin a]$$
 C. $[\pi \arcsin a, \pi]$

C.
$$[\pi \arcsin a, \pi]$$

D.
$$\left[\arcsin a, \frac{\pi}{2} + \arcsin a\right]$$

$$(006486) \ \mbox{若} \ \frac{\pi}{2} \leq x \leq \frac{3\pi}{2}, \ \mbox{yl } \ \mbox{arcsin}(\sin x) \ \mbox{ 的值等于} \ (\hspace{0.5cm}).$$

B.
$$\pi - x$$

C.
$$x-\pi$$

D.
$$x + \pi$$

(006487) 已知 $\arcsin x \ge 1$, 则 x 的取值范围是 ().

A.
$$[0, 1]$$

C.
$$[\sin 1, 1]$$

D.
$$[-1, 1]$$

(006488) 若函数 $y = \arcsin(\cos x)$ 的定义域是 $(-\frac{\pi}{3}, \frac{2\pi}{3})$, 则值域是 ().

A.
$$(-\frac{\pi}{6}, \frac{\pi}{3}]$$

B.
$$(-\frac{\pi}{6}, \frac{\pi}{2}]$$
 C. $(\frac{\pi}{6}, \frac{\pi}{2}]$

C.
$$(\frac{\pi}{6}, \frac{\pi}{2}]$$

D.
$$\left[\frac{\pi}{3}, \frac{\pi}{2}\right]$$

(006494) 计算: $\arcsin[\sin(-\frac{5\pi}{4})] =$ _____.

(006495) 计算: $\arcsin(\sin 3) =$ _____.

(006496) 计算: $\arcsin(\cos 2) =$ _____.

(006497) 计算: $\arcsin(\cos 5) =$ _____.

(006498) 计算: $\arcsin(\sin \pi^2) =$ ______.

(006499) 求函数 $y = (\arcsin x)^2 - 2\arcsin x - 2$ 的最大值与最小值, 并求取得最大值、最小值时的 x 值.

(006500) 已知 a,b,c 依次为直角三角形的两直角边和斜边,且满足 $\arcsin\frac{1}{a} + \arcsin\frac{1}{b} = \frac{\pi}{2}$,求证: c = ab.

(006501) 已知 $\alpha = \frac{9\pi}{8}$, 求 $\arcsin(\frac{\sin \alpha + \cos \alpha}{\sqrt{2}})$ 的值.

```
(006502) 已知 \frac{\pi}{4} < \theta < \frac{5\pi}{4}, 求证 \arcsin(\frac{\sin \theta + \cos \theta}{\sqrt{2}}) = \frac{3\pi}{4} - \theta.
```

$$(006503)$$
 求函数 $f(x) = \sin(x - \frac{\pi}{4})\cos(x + \frac{\pi}{4}), -\frac{\pi}{4} \le x \le \frac{\pi}{4}$ 的反函数.

$$(006504)$$
 求函数 $f(x) = \sin(x - \frac{\pi}{4})\cos(x + \frac{\pi}{4}), \ \frac{\pi}{4} \le x \le \frac{\pi}{2}$ 的反函数.

(006505) 下列各式正确的是(

A.
$$\arcsin(-\frac{\pi}{3}) = -\frac{\sqrt{3}}{2}$$

B.
$$\sin(\arcsin\frac{\pi}{3}) = \frac{\pi}{3}$$

C.
$$\arcsin(\sin\frac{5\pi}{4}) = \frac{\pi}{4}$$

D.
$$\sin[\arccos(-\frac{\sqrt{2}}{2})] = \frac{\sqrt{2}}{2}$$

$$(006506)$$
 在 $[-1, \frac{3}{2}]$ 上与函数 $y = x$ 相同的函数是 ().

A.
$$y = \arccos(\cos x)$$
 B. $y = \arcsin(\sin x)$

B.
$$y = \arcsin(\sin x)$$

C.
$$y = \sin(\arcsin x)$$

D.
$$y = \cos(\arccos x)$$

(006507) 若
$$f(\cos x) = \frac{x}{2}, x \in [0, \pi],$$
则 $f(-\frac{1}{2})$ 等于 ().

A.
$$\cos \frac{1}{2}$$

B.
$$\frac{\pi}{3}$$

C.
$$\frac{\pi}{4}$$

D.
$$\frac{2\pi}{3}$$

(006508) 函数 $y = \arccos(-x)$ 的图像与 $y = \arccos x$ 的图像 (

A. 关于 x 轴对称

B. 关于 y 轴对称

C. 关于原点对称

D. 关于直线 y = x 对称

(006509) 函数 $y = \arccos(x^2 - 2x)$ 为减函数的区间是 ().

A.
$$[1, +\infty]$$

B.
$$[-1, 1+\sqrt{2}]$$

C.
$$[1-\sqrt{2},1+\sqrt{2}]$$

D.
$$[1, 1 + \sqrt{2}]$$

(006513) 函数 $y = \arccos(2x^2 - x)$ 的定义域为______, 值域为______.

(006515) 已知 $\cos x = -\frac{1}{3}, \pi \le x \le 2\pi$ 则 x =_____.

(006516) 函数 $f(x) = \frac{1}{2}\arccos(x+2)$ 的反函数是_____.

 $(006517)\sin(\arccos x) = \frac{\sqrt{3}}{2}$, 则 x =______.

(006518) 已知 $\arccos(\cos x) = \frac{\pi}{6}$, 则 x =______.

(006519) 已知 $\cos[\arccos(x+1)] = x+1$, 则 x 的取值范围是_

(006520) 计算: $\arcsin(\sin\frac{3\pi}{4}) + \arccos(\cos\frac{3\pi}{4}) =$ _____.

(006521) 计算: $\arccos[\cos(-\frac{\pi}{6})] =$ _____.

- (006522) 计算: $\arcsin \frac{\pi}{7}$) =_____.
- (006523) 计算: $\arccos(\cos \pi^2) =$ _____.
- (006524) 计算: $\tan(\frac{1}{2}\arccos\frac{2\sqrt{2}}{3}) = \underline{\hspace{1cm}}$.
- (006525) 计算: $\cos\left[\frac{1}{2}\arccos(-\frac{3}{5})\right] =$ _____.
- (006526) 满足不等式 $2\arccos x \arccos(-x) > 0$ 的 x 的取值集合为____
- (006527) 满足不等式 $\arccos 3x < \arccos(2-5x)$ 的 x 的取值集合为_____
- (006528) 满足不等式 $\arccos(2x^2-1) < \arccos x$ 的 x 的取值集合为_____
- (006529) 满足不等式 $\arccos x > \arcsin x$ 的 x 的取值集合为_
- (006530) 已知 $f(x) = \arccos x + 1$, 且 f(a) = a, 求 f(-a) 的值.
- (006531) 设 f(x) 为奇函数, 且当 x > 0 时, $f(x) = \pi \arccos(\sin x)$, 则当 x < 0 时, f(x) 的解析式为 (
- A. $\arccos(\sin x)$
- B. $-\arccos(\sin x)$
- C. $\pi + \arccos(\sin x)$ D. $-\pi \arccos(\sin x)$
- (006532) 下列四个命题中正确的是 ().
- A. 若 $\sin f(x)$ 是奇函数, 则 f(x) 是奇函数
- B. 若 $\cos f(x)$ 是奇函数, 则 f(x) 是奇函数
- C. 若 $\arcsin f(x)$ 是奇函数,则 f(x) 是奇函数 D. 若 $\arccos f(x)$ 是奇函数,则 f(x) 是奇函数
- $(006533) 函数 f(x) = \frac{\arcsin x}{\frac{\pi}{2} \arccos x} ($).
- A. 是奇函数, 但不是偶函数

B. 是偶函数, 但不是奇函数

C. 即不是奇函数, 也不是偶函数

- D. 奇偶性无法确定
- (006534) 若函数 $f(x) = -\arccos x + \varphi$ 是奇函数, 则 φ 等于 (

B.
$$\frac{\pi}{2}$$

$$C = \sigma$$

D.
$$-\frac{\pi}{2}$$

- (006535) 用一个反正弦形式表示 $\frac{12}{13} + \arccos \frac{4}{5}$.
- (006536) 用一个反余弦形式表示 $\arccos \frac{15}{17} \arcsin \frac{4}{5}$.
- (006537) 求值: $\arcsin \frac{2\sqrt{2}}{3} + \arcsin \frac{1}{3}$.
- (006538) 求值: $\arccos(-\frac{11}{14}) \arccos\frac{1}{7}$.
- (006539) 已知 $\arccos \frac{x}{a} = 2\arcsin \frac{y}{a}$, 求证: $a^2 = ax + 2y^2$.
- (006540) 求值: $\sin(\arcsin\frac{3}{5} + \arcsin\frac{8}{17})$.
- (006541) 求值: $\tan[\arcsin\frac{1}{3} + \arccos(-\frac{1}{5})]$.

(006542) 求值: $\cos[\arccos(\frac{4}{5} - \arccos(-\frac{5}{13})]$.

(006543) 求值: $\arcsin(\cos 4) - \arccos(\sin 5)$.

$$(006544)$$
 已知 $-\frac{\pi}{3} < \theta < \frac{2\pi}{3},$ 求证: $\arccos\frac{\sqrt{3}\sin\theta - \cos\theta}{2} + \theta = \frac{2\pi}{3}.$

(006545) 若 $\arcsin(\sin \alpha + \sin \beta) + \arcsin(\sin \alpha - \sin \beta)$ 是 $\frac{\pi}{2}$ 的奇数倍, 求证: $\sin^2 \alpha + \sin^2 \beta = \frac{1}{2}$.

(006546) 求函数 $y = (\arccos x)^2 - 5\arccos x(|x| \le 1)$ 的值域。

(006547) 已知函数 $f(x) = \cos(2\arccos x) + 4\sin(\arcsin\frac{x}{2})$, 求它的最大值与最小值.

 $(006548) \ \ \emph{记} \ \ M = \arcsin(-\frac{1}{3}), \ P = \arctan(-\sqrt{2}), \ Q = \arccos(-\frac{2}{3}), \ \ \emph{则} \ \ M, P, Q \ \ \textbf{的大小关系是} \ (\hspace{1cm}).$

 $\label{eq:alpha} \text{A. } M < P < Q \qquad \qquad \text{B. } M < Q < P \qquad \qquad \text{C. } P < M < Q$

D. P < Q < M

(006549) 计算 $\arctan(\tan\frac{3}{5}\pi)$ 的值是 ().

A. $-\frac{3}{5}\pi$

 $C. -\frac{2}{5}\pi$

D. $\frac{3}{5}\pi$

(006550) 若 x < 0, 则 $\arctan x$ 等于 ().

A. $\operatorname{arccot} \frac{1}{x}$ B. $-\operatorname{arccot} \frac{1}{x}$ C. $\pi - \operatorname{arccot} \frac{1}{x}$ D. $\operatorname{arccot} \frac{1}{x} - \pi$

(006551) 函数 $f(x) = \frac{\pi}{2} + \arctan x$ 的反函数是 ().

A. $f^{-1}(x) = \tan(x - \frac{\pi}{2})(0 < x < \pi)$

B. $f^{-1}(x) = -\cot x(-\frac{\pi}{2} < x < \frac{\pi}{2})$ D. $f^{-1}(x) = \tan x(0 < x < \pi)$

C. $f^{-1}(x) = -\frac{1}{\tan x} (0 < x < \pi)$

(006552) 若 $\arctan(x+1) - \arctan(x-1) = \frac{\pi}{4}$,则 $\arcsin \frac{1}{x^2}$ 等于 ().

A. $\frac{\pi}{6}$

D. $\frac{4\pi}{3}$

(006553) 下列函数中, 同时满足条件① 定义域是 R, ② 是奇函数, ③ 是周期函数的函数是 (

B. $y = \cos(\arcsin x)$ C. $y = \tan(\arctan x)$

D. $y = \arctan(\tan x)$

(006554) 在① $\arcsin(\sin\frac{5}{6}\pi) = \frac{5}{6}\pi$,② $\arctan(\tan\frac{7}{6}\pi) = \frac{\pi}{6}$,③ $\cos(\arccos\pi) = \pi$,④ $\tan(\arccos0) = 0$ 这四个 式子中,正确的有(

A. 0 个

B. 1 个

D. 3 个

(006555) 计算: $\arctan \frac{1}{3} + \arctan 3 + \arcsin \frac{1}{5} - \arccos(-\frac{1}{5}) =$ _____.

(006556) 计算: $\arctan(\cot 1) =$ _____.

(006557) 计算: $\operatorname{arccot}(\cot \frac{10}{7}\pi) = \underline{\hspace{1cm}}$.

(006558) 计算: $\arctan \frac{1 - \tan 25^{\circ}}{1 + \tan 25^{\circ}} = \underline{\hspace{1cm}}$

(006559) 计算: $\arctan 7 + \operatorname{arccot} \frac{3}{4} = \underline{\hspace{1cm}}$.

(006560) 计算: $\arctan(3+2\sqrt{2}) - \arctan\frac{\sqrt{2}}{2} =$ _____.

(006561) 计算: $\arctan \frac{1}{2} + \arctan \frac{1}{5} + \arctan \frac{1}{8} = \underline{\qquad}$

(006562) 计算: $\arcsin(\sin 4) + \arccos(\cos 3) + \arctan(\tan 2) + \operatorname{arccot}(\cot 1) =$ ______

(006563) 求值: $\sin[\frac{1}{2}\arctan(-2\sqrt{2})] =$ _____.

(006564) 求值: $\sin[\frac{1}{2}\operatorname{arccot}(-\frac{3}{4})] =$ _____.

(006565) 求值: $\tan(\arctan\frac{1}{5} + \arctan 3) =$ _____.

(006566) 求值: $\sin[2\arctan(-6)] =$ ______

(006567) 求值: $\cos(2\operatorname{arccot}\frac{1}{2}) + \tan\left[\frac{1}{2}\operatorname{arccos}(-\frac{3}{5})\right] = \underline{\hspace{1cm}}$

(006568) 在下列各组函数中, 图像不相同的是(

A. $y = \sin(\arccos x) = y = \cos(\arcsin x)$

B. $y = \tan(\operatorname{arccot} x) + y = \cot(\operatorname{arctan} x)$

C. $y = \arcsin(\sin x)$ $= \arccos(\cos x), x \in [-\frac{\pi}{2}, \frac{\pi}{2}]$

D. $y = \arctan(\tan x) = y = \arctan(\cot x), x \in [0, \frac{\pi}{2}]$

(006569) 若将函数 $y = \arctan x$ 的图像沿 x 轴正方向平移 2 个单位长度所得到的图像记为 C, 又图像 C' 与 C 关于原点对称,则与 C' 对应的函数是 (

A. $y = -\arctan(x-2)$ B. $y = \arctan(x-2)$ C. $y = -\arctan(x+2)$ D. $y = \arctan(x+2)$

B.
$$y = \arctan(x-2)$$

$$C y = -\arctan(x+2)$$

D
$$y = \arctan(x+2)$$

(006570) 若 $\arctan x + \operatorname{arccot} y = \pi$, 则点 (x, y) 组成的图像是 (

D.

(006571) 函数 $y = \arctan(\sin x)$ 的定义域为_______,值域为___

(006572) 函数 $y = \frac{1}{3}\arcsin 3x + \arctan \sqrt{3}x$ 的定义域为________,值域为

(006573) 函数 $y = \operatorname{arccot}\sqrt{\cos x}$ 的定义域为________,值域为____

(006575) 已知方程 $x^2+3\sqrt{3}x+4=0$ 的两个实根为 x_1 与 x_2 , 记 $\alpha=\arctan x_1,\ \beta=\arctan x_2,\$ 求 $\alpha+\beta$ 的值.

(006576) 已知实数 a, b 满足 (a+1)(b+1) = 2, 求 $\arctan a + \arctan b$ 的值.

(006577) 已知 $|x| \le 1$, 求 $\csc^2(\arctan x) - \tan^2(\arccos x)$ 的值.

- (006578) 解方程 $2\sin^2 x + 3\sin x 2 = 0$.
- (006579) 解方程 $2\sin x \cos x = 1$.
- (006580) 解方程 $\sin^2 x 3\sin x \cos x + 1 = 0$.
- (006581) 解方程 $\tan 5x = \tan 4x$.
- (006582) 解方程 $\sin 2x 12(\sin x \cos x) + 12 = 0$.
- (006583) 解方程 $\sin^2 x + \sin^2 2x = \sin^2 3x$.
- (006584) 求实数 m 的取值范围, 使关于 x 的方程 $2\sin^2 x + 2\sin x \cos x \cos^2 x 1 m = 0$ 有解.
- (006585) 关于 x 的方程 $\sin x + \sqrt{3}\cos x + a = 0$ 在 $(0,2\pi)$ 内有两个相异的实数解 $\alpha,\beta,$ 求实数 a 的取值及 $\alpha + \beta$ 的值.
- (006586) 就实数 a 的取值范围, 讨论关于 x 的方程 $\cos 2x + 2\sin x + 2a 3 = 0$ 在 $[0, 2\pi]$ 内解的情况.
- (006587) 若关于 x 的方程 $\sin x = 2a 1$ 有解, 则 a 的取值范围是 (
- A. 0 < a < 1

- (006588) 满足 $\cos(2x + 45^\circ) = \sin(30^\circ x)$ 的最小正角是 ().
- A. 5°

B. 15°

 $C.~30^{\circ}$

- D. 37.5°
- (006589) 记方程 $\cos 2x = 1$ 的解集为 M, 方程 $\sin 4x = 0$ 的解集为 P, 则 M 与 P 的关系是 (
- A. $M \subset P$
- B. $M \supset P$
- C. M = P
- D. $M \not\subset P \coprod M \not\supset P$

I56.

- (006590) 方程 $\cos x^2 = 1$ 的解集是 ().
- A. $\{x | x = 2k\pi, k \in \mathbf{Z}\}$

B. $\{x | x = \pm \sqrt{2k\pi}, k \in \mathbf{Z}\}$

C. $\{x | x = \pm \sqrt{2k\pi}, k \in \mathbb{N}\}\$

- D. $\{x | x = \pm \sqrt{2k\pi}, k \in \mathbb{N}\} \cup \{0\}$
- (006591) 方程 $\sin^2 x = \cos^2 x$ 的解集是 (

- A. $\{x|x=2k\pi+\frac{\pi}{4}, k\in \mathbf{Z}\}$ C. $\{x|x=\frac{k\pi}{2}+\frac{\pi}{4}, k\in \mathbf{Z}\}$ 方程 $\sqrt{1-\sin^2 x}=\sin x$ 的解集是 ().
- B. $\{x|x = k\pi + \frac{\pi}{4}, k \in \mathbf{Z}\}$ D. $\{x|x = \frac{k\pi}{4} + \frac{\pi}{4}, k \in \mathbf{Z}\}$
- A. $\{x|x = k\pi + (-1)^k \frac{\pi}{4}, k \in \mathbf{Z}\}$

B. $\{x|x = k\pi + \frac{\pi}{4}, \ k \in \mathbf{Z}\}$

C. $\{x|x=k\pi\pm\frac{\pi}{4},\ k\in\mathbf{Z}\}$

- D. $\{x|x = 2k\pi \pm \frac{\pi}{4}, \ k \in \mathbf{Z}\}$
- (006592) 方程 $\tan(2x+\frac{\pi}{3})=\frac{\sqrt{3}}{3}$ 在 $[0,2\pi)$ 范围内的解的个数是 (
- A. 5

C. 3

- D. 2
- (006593) 若方程 $2\cos x = (\frac{1}{2})^a$ 无解, 则实数 a 的取值范围是______.

- (006594) 方程 $\sin x = -\cos \frac{2\pi}{5}$ 的解集是_
- (006595) 方程 $\sin 2x \cdot \cot x = 0$ 的解集是
- (006596) 若函数 $f(x) = \sin(2x + 5\theta)$ 的图像关于 y 轴对称, 则 θ 的值等于______.
- (006597) 若方程 $\sin x = a$ 在 $[\frac{2\pi}{3}, \frac{5\pi}{3}]$ 中恰有两个不同的实数解,则 a 的取值范围是______
- (006598) 若 $-6 < \log_{\frac{1}{\sqrt{2}}} x < -2$, 求方程 $\cos \pi x = 1$ 的解集.
- (006599) 求方程 $\lg x = \cos 2x$ 解的个数.

$$(006600)$$
 方程 $\frac{\cos 2x}{1+\sin 2x}=0$ 的解集是 ().

A.
$$\{x|x=2k\pi\pm\frac{\pi}{4},\ k\in \mathbb{B}.\ \{x|x=k\pi\pm\frac{\pi}{4},\ k\in \mathbf{Z}\}$$
 C. $\{x|x=k\pi+\frac{\pi}{4},\ k\in \mathbf{Z}\}$ D. $\{x|x=\frac{k\pi}{2}+\frac{\pi}{4},\ k\in \mathbf{Z}\}$ $\mathbf{Z}\}$

- (006601) 方程 $\frac{2\sin x}{\sin 2x} = 1$ 在 $-2\pi \le x \le 2\pi$ 范围内 (
- B. 有两个解
- C. 有三个解
- D. 无解
- (006602) 下列方程中, 与方程 $\sin x = \cos x$ 的解集相同的是 ().

A.
$$\sin 2x = 2\sin^2 x$$

A.
$$\sin 2x = 2 \sin^2 x$$
 B. $\cos x = \sqrt{1 - \cos^2 x}$ C. $\sin^2 x = \cos^2 x$

$$C. \sin^2 x = \cos^2 x$$

D.
$$\frac{\cos 2x}{\sin x + \cos x} = 0$$

- (006603) 方程 $\lg_2 \tan x = 1 + \log_2 \sin x$ 的解集为_____.
- (006604) 方程 $\sin x + \sqrt{3}\cos x = 2$ 的解集为_____.
- (006605) 已知 $|a| \le 2$, 方程 $\sin x \sqrt{3} \cos x = a$ 的解集为

(006606) 方程
$$\cos(x + \frac{2\pi}{3})\cos(x + \frac{\pi}{3}) = -\frac{1}{4}$$
 的解集为_____.

$$(006607) ~ \textbf{方程} ~ \cos^2(\frac{x-30^\circ}{2}) + \cos^2(\frac{x+30^\circ}{2}) = 1 ~ \textbf{的解集为} ____.$$

- (006608) 方程 $\sin x \cos x + 1 = \sin x + \cos x$ 的解集为 . .
- (006609) 方程 $\sqrt{2}\sin x = \sin 2x + \cos 2x$ 的解集为 . .
- (006610) 方程 $\sin(x \frac{\pi}{6})\sin(x + \frac{\pi}{6}) = \frac{1}{2}$ 的解集为_____.
- (006611)解方程 $\sin 3x \sin 2x + \sin x = 0.$
- (006612) 解方程 $\cos 2x \cos 3x = \cos x \cos 4x$.
- (006613) 解方程 $\sin 4x \cos 3x = \sin 6x \cos x$.
- (006614) 解方程 $\sin 5x \sin 3x = \sqrt{2}\cos 4x$.
- (006615) 解方程 $\sin x + \sin 2x + \sin 3x = 1 + \cos x + \cos 2x$.

(006616) 若方程 $\sin x + \cos x = m(m \in \mathbf{R})$ 在 $0 \le x \le \pi$ 范围内有两个不同的实数解, 则 ().

A.
$$-1 \le m \le \frac{\sqrt{2}}{2}$$
 B. $-1 < m \le 1$ 或 $m =$ C. $1 \le m < \sqrt{2}$ D. $-\sqrt{2} < m < \sqrt{2}$

(006617) 方程 $\sin^2 x + 2\sin x - a = 0$ 有解的条件为 ().

A.
$$a \in \mathbf{R}$$
 B. $a \in [-1,3]$ C. $a \in [-1,\infty)$ D. $a \in (-\infty,3]$

(006618) 若方程 $\cos^2 x - |\sin x| + 1 = 0$ 在 $-\pi < x < \pi$ 范围内的解之和是 p, 解之积是 q, 则下列结论正确的是 ().

A.
$$p = -1$$
 B. $p = 0$

C.
$$q=1$$

(006619) 设 $f(x) = \cos(x - a) + \sin(x + a)$ 是偶函数, 求 a 的值.

(006620) 解方程 $8\sin^2 x = 3\sin 2x - 1$.

(006621) 解方程 $(\sin x + \cos x)^2 = 2\cos 2x$.

(006622) 解方程
$$\frac{1+\tan x}{1-\tan x} = 1+\sin 2x$$
.

(006623) 解方程
$$\tan(\frac{\pi}{3} + x) + \tan(\frac{\pi}{6} - x) = \frac{4}{\sqrt{3}}$$
.

(006624) 解方程 $\sin x + \cos x + \sin x \cos x = 1$.

(006625) 解方程 $\sin 2x - 12(\sin x - \cos x) + 12 = 0$.

(006626) 解方程 $\sqrt{2}(\sin x + \cos x) = \tan x + \cot x$.

(006627) 解方程 $\sin x + \cos x + \tan x + \cot x + \sec x + \csc x + 2 = 0$.

(006628) 已知方程 $2x^2 - 4x \sin \theta + 3 \cos \theta = 0 (0 \le \theta \le \pi)$ 有相等的实根, 求 θ 的值, 并解此方程.

(006629) 已知方程 $x^2 - (\sin \alpha + \cos \alpha)x + \sin^2 \alpha - \sin \alpha \cos \alpha - 1 = 0$ 有两个相等的实根, 求实数 α 和相成的 x 的值.

(006630) 已知方程 $x^2 - 4x\cos 2\theta + 2 = 0$ 和方程 $2x^2 + 4x\sin 2\theta - 1 = 0$ 有一根互为倒数, 求角 θ 的值 $(0 < \theta < \pi)$.

(006631) 已知关于 x 的方程 $\sin^2 x + \cos x + a = 0$ 有解, 求实数 a 的取值范围.

(006632) 已知 $\cos^2 x - \sin x + a = 0$ 在 $0 < x \le \frac{\pi}{2}$ 范围内有解, 求实数 a 的取值范围.

(006633) 求实数 k 的取值范围, 使关于 x 的方程 $\sin^2 x - \sin x + k = 0$ 在 $[-\frac{\pi}{2}, \frac{\pi}{2}]$ 上

- (1) 无解;
- (2) 恰有一解;
- (3) 有两解.

(006634)(1) 若关于 x 的方程 $\cos 2x - \sin x + 1 + m = 0$ 有解, 求实数 m 的取值范围. I(2) 若关于 x 的方程 $\sin^2 x + 4 \sin x \cos x - 2 \cos^2 x = a$ 恒有实数解, 求实数 a 的取值范围.

$$(006635)$$
 将 $\frac{1}{2}$, $\sin \frac{1}{2}$, $\arcsin \frac{1}{2}$ 中的三个数从小到大排列.

$$(006636)$$
 将 $\frac{1}{3}$, $\cos \frac{1}{3}$, $\arccos \frac{1}{3}$ 中的三个数从小到大排列.

$$(006637)$$
 将 $\arcsin \frac{1}{4}$, $\arctan \sqrt{5}$, $\arccos(-\frac{1}{3})$ 中的三个数从小到大排列。

(006638) 已知
$$0 < x < 1$$
,求证: $2 \arctan \frac{1+x}{1-x} + \arcsin \frac{1-x^2}{1+x^2} = \pi$.

(006639) 已知 a,b,c>0, 求证: 若 $\arctan a + \arctan b + \arctan c = \pi$, 则 a+b+c=abc, 反过来也成立.

$$(006640)$$
 画出函数 $y = \arctan x + \arctan \frac{1-x}{1+x}$ 的图像.

$$(006641)$$
 在不同坐标系内分别画出 $y = \arcsin(\sin x)(-\frac{\pi}{2} \le x \le \frac{3\pi}{2})$ 和 $y = \arcsin(\sin x)(x \in \mathbf{R})$ 的图像.

(006642) 解方程 $x = \arcsin(\sin 2x)$.

(006643) 解方程 $\cos(\pi \sin x) = \sin(\pi \cos x)(0 \le \pi < 2\pi)$.

$$(006644)$$
 解方程 $x^2 + 2x\cos(xy) + 1 = 0(x, y \in \mathbf{R})$.

 $(006645) 已知 \ \alpha, \beta \ \textbf{是关于} \ x \ \textbf{的方程} \ a\cos x + b\sin x = c \ \textbf{的两个实根} \ (a^2 + b^2 \neq 0, \ a \neq 2k\pi + \beta, \ k \in \mathbf{Z}), \, 求证 \\ \cos^2 \frac{\alpha - \beta}{2} = \frac{c^2}{a^2 + b^2}.$

(006646) 已知 $\triangle ABC$ 的两内角 A, B 满足方程 $8\sin^2 x + 3\sin 2x - 4 = 0$, 且 A > B, 求此三角形三边长之比.

(006647) 解方程
$$\tan(x + \frac{\pi}{4}) + \tan(x - \frac{\pi}{4}) = 2 \cot x$$
.

(006648) 已知关于 x 的方程 $x = a \sin x + b(0 < a < 1, b \in \mathbf{R})$ 有实根, 求证: 该方程只有一个实根.

(006649) 已知方程 $\sin^2 x + 3a^2 \cos x - 2a^2 (3a - 2) - 1 = 0$ 有实数解, 求实数 a 的取值范围.

(006650) 已知关于 x 的方程 $2\cos 2x + 4(a-1)\sin x - 4a + 1 = 0$ 在 $0 \le x \le 2\pi$ 范围内有相异两个实根, 求 a 的取值范围.

(006651) 已知关于 x 的方程 $\cos 2x - 2(2a+1)\cos x + 2a^2 + 2a + 1 = 0$ 在 $[0,2\pi)$ 范围内有两个不同的解, 求实数 a 的取位范围.

(006652) 已知数列 $\{a_n\}$ 满足 $a_n = pn + q(p, q)$ 为常数, $n \in \mathbb{N}^*$), 求证: $\{a_n\}$ 是等差数列.

(006653) 已知数列前 n 项和 $S_n = An^2 + Bn + C$, 试证明此数列从第二项起, 构成一个等差数列.

$$(006654)$$
 已知数列 $\{a_n\}$ 满足 $a_1=1, S_n=\frac{(n+1)a_n}{2}(n\in \mathbf{N}^*)$, 求通项 a_n 的表达式.

(006655) 在等差数列 $\{a_n\}$ 中,已知 $a_2 + a_7 + a_8 + a_{13} = 6$,求 $a_6 + a_9$.

(006656) 在等差数列 $\{a_n\}$ 中, 已知 $S_{11}=66$, 求 a_6 .

(006657) 项数为奇数的等差数列 $\{a_n\}$ 中, 已知奇数项之和为 12, 偶数项之和为 10, 求它的项数和中间项. (006658) 在等比数列 $\{a_n\}$ 中, 已知前 10 项和为 5, 前 20 项和为 15, 求前 30 项和. (006659) 求数列 $1, 1+a, 1+a+a^2, 1+a+a^2+a^3, \dots, 1+a+a^2+\dots+a^{n-1}, \dots$ 的前 n 项和 S_n . (006660) 求和: $1 + \frac{1}{1+2} + \frac{1}{1+2+3} + \cdots + \frac{1}{1+2+\cdots+n} (n \in \mathbb{N}^*).$ (006661) 求和: $a + 2a^2 + 3a^3 + \cdots + na^n (n \in \mathbb{N}^*)$. (006662) 已知数列 6,9,14,21,30,…,其中相邻两项之差成等差数列,求它的通项. (006663) 若 $1 \times 2^2 + 2 \times 3^2 + 3 \times 4^2 + \dots + n(n+1)^2 = \frac{n(n+1)}{12}(an^2 + bn + c)$ 对 $n \in \mathbb{N}^*$ 恒成立, 求 a, b, c的值. (006664) 若数列 $\{a_n\}$ 满足 $a_1=2, a_{n+1}-a_n+1=0 (n \in \mathbb{N}^*),$ 则此数列的通项 a_n 等于 (). A. $n^2 + 1$ B. n + 1C. 1 - nD. 3 - n(006665) 若数列 $\{a_n\}$ 的通项公式是 $a_n = 2(n+1) + 3$, 则此数列 (A. 是公差为 2 的等差数列 B. 是公差为 3 的等差数列 C. 是公差为 5 的等差数列 D. 不是等差数列 (006666) 若 m, a_1, a_2, n 和 $m, b_1, b_2, n (m \neq n)$ 分别是两个等差数列,则 $\frac{a_2 - a_1}{b_2 - b_1}$ 的值为 (B. $\frac{3}{4}$ A. $\frac{2}{3}$ (006667) 若等差数列 $\{a_n\}$ 的前三项依次为 a-1, a+1, 2a+3, 则此数列的通项 a_n 等于 (A. 2n - 5B. 2n - 3C. 2n-1D. 2n + 1(006668) 在等差数列 $\{a_n\}$ 中, 若 $a_3 + a_4 + a_5 + a_6 + a_7 = 450$, 则 $a_2 + a_8$ 等于 (A. 45 B. 75 C. 180 D. 320 (006669) 在等差数列 $\{a_n\}$ 中, 已知 $a_1 + a_4 + a_7 = 39$, $a_2 + a_5 + a_8 = 33$, 则 $a_3 + a_6 + a_9$ 的值是 (A. 30 B. 27 C. 24 D. 21 (006670) 在递增的等差数列 $\{a_n\}$ 中, 已知 $a_3 + a_6 + a_9 = 12$, $a_3 a_6 a_9 = 28$, 则通项 a_n 等于 (B. 16 - nC. n-2 或 16-nA. n - 2(006671) 若等差数列 $\{a_n\}$ 的公差 d 不为零, 且 $a_1 \neq d$, 前 20 项之和 $S_{20} = 10M$, 则 M 等于 (). B. $a_2 + 2a_{10}$ C. $2a_{10} + d$ A. $a_6 + a_5$ D. $10a_2 + d$ (006672) 在等差数列 $\{a_n\}$ 中, 已知前 4 项和是 1, 前 8 项和是 4, 则 $a_{17} + a_{18} + a_{19} + a_{20}$ 的值等于 (C. 9 A. 7 B. 8 D. 10

(006673) 在等差数列 $\{a_n\}$ 中, 若前 15 项的和 $S_{15} = 90$, 则 a_8 等于 (). D. $\frac{45}{2}$ A. 6 (006674) 若数列 $\{a_n\}$ 満足 $a_{n+1} = \frac{3a_n + 2}{3}$, 且 $a_1 = 0$, 则 $a_7 = \underline{\hspace{1cm}}$. (006675) 若等差数列 $\{a_n\}$ 满足 $a_7 = p$, $a_{14} = q(p \neq q)$, 则 $a_{21} =$ ______. (006676) 首项为 -24 的等差数列从第 10 项开始为正数, 则公差 d 的取值范围是 (006677) 若等差数列 $\{a_n\}$ 的公差 $d \neq 0$, 且 a_1, a_2 为关于 x 的方程 $x^2 - a_3 x + a_4 = 0$ 的两根, 则 $\{a_n\}$ 的通 项公式 $a_n =$ (006678) 若 a, x, b, 2x 依次成等差数列,则 a:b=_____. (006680) 等差数列 $\{a_n\}$ 中, 若 $a_1 + a_3 + a_5 = -1$, 则 $a_1 + a_2 + a_3 + a_4 + a_5 =$ ______. (006681) 等差数列 $\{a_n\}$ 中,若 $a_3 + a_{11} = 10$,则 $a_2 + a_4 + a_{15} =$ ______. (006683) 等差数列 $\{a_n\}$ 中, 若 $a_1 - a_4 - a_8 - a_{12} + a_{15} = 2$, 则 $a_3 + a_{13} =$ (006684) 等差数列 $\{a_n\}$ 中, 若 $a_1+a_2+a_3+a_4+a_5=30, a_6+a_7+a_8+a_9+a_{10}=80,$ 则 $a_{11}+a_{12}+a_{13}+a_{14}+a_{15}=30,$ 是 $a_{12}+a_{13}+a_{14}+a_{15}=30,$ 是 $a_{12}+a_{13}+a_{14}+a_{15}=30,$ 是 $a_{11}+a_{12}+a_{13}+a_{14}+a_{15}=30,$ 是 $a_{11}+a_{12}+a_{13}+a_{14}+a_{15}=30,$ 是 $a_{11}+a_{12}+a_{13}+a_{14}+a_{15}=30,$ 是 $a_{11}+a_{12}+a_{13}+a_{14}+a_{15}=30,$ 是 $a_{11}+a_{12}+a_{13}+a_{14}+a_{15}=30,$ $a_{14} + a_{15} =$ _____. (006685) 等差数列 $\{a_n\}$ 中, 若 $a_2 + a_7 + a_{12} = 21$, 则前 13 项和 $S_{13} =$ ______. (006687) 等差数列 $\{a_n\}$ 中, 若 $a_{11}=20$, 则前 21 项和 $S_{21}=$ ______ (006688) 若一个等差数列的前 10 项和是前 5 项和的 4 倍, 则其首项与公差之比等于______. (006689) 等差数列 $\{a_n\}$ 中, 若前 100 项之和等于前 10 项和的 100 倍, 则 $\frac{a_{100}}{a_{10}} =$ ______. (006690) 若 100 个连续整数之和在 13400 与 13500 之间, 则此连续整数中最小的一个等于_____ (006691) 在等差数列 $\{a_n\}$ 中,已知 $a_m = p$, $a_n = q(m \neq n)$, 求 a_{m+n} . $(006692) \ \hbox{$\hbox{$\hbox{$\dot{z}$}$}$} \ \{a_n\} \ \hbox{$\hbox{$\hbox{$\rlap{ξ}}$}$} \ \hbox{$\Huge{$\xi$}$} \ \hbox{$\Huge{$\rlap{$\dot{y}}$}} \ \hbox{$\Huge{$\rlap{$\dot{y}}$}} \ \hbox{$\Large{$\dot{z}$}} \ \hbox{$\Large{\dot{z}$}} \ \hbox{$\Large{\dot{z}$}} \ \hbox{$\Large{\dot{z}$}} \ \hbox{$\Large{\dot{z}$}} \ \hbox{$\dot{z}$} \ \hbox{$\Large{\dot{z}$}$} \ \hbox{\dot{z}} \$ (006693) 已知等差数列的第 1 项和第 4 项之和为 10, 且第 2 项减去第 3 项的差为 2, 求此数列的前 n 项之和. (006694) 求所有能被 7 整除且被 11 除余 2 的三位数之和.

(006695) 首项 $a_1 \neq 0$ 的等差数列 $\{a_n\}$ 中, 已知前 9 项和与前 4 项和之比 $S_9: S_4 = 81: 16$, 求 $a_9: a_4$ 的值.

(006696) 在等差数列 $\{a_n\}$ 中	\mathbf{p} ,已知公差 $d=1$,前 98 項	页和 $S_{98} = 137$,求 $a_2 + a_4 + a_6$	$+a_8+\cdots+a_{94}+a_{96}+a_{98}$	
(006697) 若等差数列 {a _n } 剂	馬足 $a_1 + a_3 + a_5 + a_7 + a_9$	$=\frac{25}{2}, a_2+a_4+a_6+a_8+a_{10}=$	$=15$, 求前 20 项之和 S_{20}	
(006698) 若三角形三边长成	等差数列, 周长为 36, 内切	Ј圆周长为 6π, 则此三角形是 ().	
A. 正三角形		B. 等腰三角形, 但不是直角三	角形	
C. 直角三角形, 但不是等服	要三角形	D. 等腰直角三角形		
(006699) 若 a,b,c 的倒数依	次成等差数列 $,$ 且 a,b,c 互	工不相等,则 $\frac{a-b}{b-c}$ 等于 ().		
A. $\frac{c}{a}$	B. $\frac{a}{b}$	C. $\frac{a}{c}$	D. $\frac{b}{c}$	
(006700) 若等差数列 {a _n } ;	的公差 $d = \frac{1}{2}, a_1 + a_3 + a_4$	$a_5 + a_7 + a_9 + \dots + a_{95} + a_{97} + \dots$	- a ₉₉ = 60, 则前 100 项之	
和 S_{100} 等于 ().				
A. 120	B. 145	C. 150	D. 170	
(006701) 在等差数列 $\{a_n\}$ 中, $S_m = S_n = l(m \neq n)$, 则 $a_1 + a_{m+n}$ 等于 ().				
$\mathrm{A.}\ mnl$	B. $(m+n)l$	C. 0	D. $(m+n-1)l$	
(006702) 若等差数列 {a _n } }	馬足 $3a_8 = 5a_{13}$, 且 $a_1 > 0$	n 则前 n 项之和 S_n 的最大值 n	是 ().	
A. S_{10}	B. S_{11}	C. S_{20}	D. S_{21}	
(006703) 若一个等差数列共	有 $2n+1$ 项, 其中奇数项.	之和为 290, 偶数项之和为 261	, 则第 $n+1$ 项为 ().	
A. 30	B. 29	C. 28	D. 27	
(006704) 记两个等差数列 {o于().	$\{a_n\}$ 和 $\{b_n\}$ 的前 n 项和 f	分别为 S_n 和 T_n , 且 $\frac{S_n}{T_n} = \frac{7n}{4n}$	$\frac{a+1}{a+27}(n \in \mathbf{N}^*)$,则 $\frac{a_{11}}{b_{11}}$ 等	
A. $\frac{7}{4}$	B. $\frac{3}{2}$	C. $\frac{4}{3}$	D. $\frac{78}{71}$	
(006705) 在等差数列 {a _n }	中, 若前三项之和为 12, 最	b后三项之和为 75, 各项之和为	145, 则 $n =$	
a ₁ =, 公差 d =_	·			
(006706) 在等差数列 {a _n }	中, 若前四项之和为 21, 5	末四项之和为 67 , 前 n 项之和	1为 286, 则该数列的项数	
为				
(006707) 在等差数列 {a _n } ・		$a_{15} = a, \ a_{n-11} + a_{n-13} + \cdots$	$+a_n=b$,则 $\{a_n\}$ 的前 r	
项和 $S_n =$				
(006708) 在等差数列 {a _n } :	中, 若前 9 项和为 18, 前 n	. 项和为 240, 且 $a_{n-4} = 30, n$	> 9, 则 $n =$	
(006709) 若等差数列 18,15,	12, · · · 的前 n 项和最大,	则 $n=$		
(006710) 若等差数列 -21, -	-19, -17, · · · 的前 n 项和占	最小 . 则 n =		

- (006711) 在等差数列 $\{a_n\}$ 中,弱 $a_9 + a_{10} = a$, $a_{29} + a_{30} = b$, 则 $a_{99} + a_{100} =$ ______.
- (006712) 两个等差数列: 2,5,8,,197 和 2,7,12,...,197 中,
- (1) 有多少相同的项?
- (2) 求这些相同项之和.
- (006713) 求和: $100^2 99^2 + 98^2 97^2 + \cdots + 4^2 3^2 + 2^2 1^2$.
- (006714) 若 $\{a_n\}$ 是等差数列, 求证: $a_1^2 a_2^2 + a_3^2 a_4^2 + \dots + a_{2n-1}^2 a_{2n}^2 = \frac{n}{2n-1}(a_1^2 a_{2n}^2)$.
- (006715) 若四个数依次成等差数列, 且四个数的平方和为 94, 首尾两数之积比中间两数之积少 18, 求此四数.
- (006716) 已知 $\lg a, \lg b, \lg c$ 与 $\lg a \lg 2b, \lg 2b \lg 3c, \lg 3c \lg a$ 都是等差数列, 试求 a, b, c 之比.
- (006717) 已知 $\triangle ABC$ 的三边成等差数列,且最大角与最小角之差为 90° ,求证: 其三边之比为 $(\sqrt{7}+1):\sqrt{7}:(\sqrt{7}-1).$
- (006718) 在 $\triangle ABC$ 中. 已知 $\lg \tan A, \lg \tan B, \lg \tan C$ 依次成等差数列, 求 $\angle B$ 的取值范围.
- (006719) 若等差数列的第 p 项是 q, 第 q 项是 $p(p \neq q)$, 求它的第 p+q 项及前 p+q 项的和.
- (006720) 在等差数列中, 若前 p 项的和与前 q 项的和相等求前 p+q 项的和.
- (006721) 一等差数列共有奇数项, 且奇数项之和为 80, 偶数项之和为 75, 求此数列的中间项与项数.
- (006722) 已知一个等差数列的项数 n 为奇数, 求其奇数项之和与偶数项之和的比.
- (006723) 已知等差数列 $\{a_n\}$ 满足 $a_1 = -60$, $a_{17} = -12$, 记 $b_n = |a_n|$, 求数列 $\{b_n\}$ 前 30 项之和.
- (006724) 若等差数列 $\{a_n\}$ 的通项为 $a_n = 10 3n$, 求 $|a_1| + |a_2| + \cdots + |a_n|$.
- (006725) 求关于 x 的方程 $x^2 (3n+2)x + 3n^2 74 = 0 (n \in \mathbb{Z})$ 的所有实数根之和.
- (006726) 若一等差数列 $\{a_n\}$ 的前 m 项、前 n 项之和分别为 S_m 和 S_n , 且 $S_m:S_n=m^2:n^2(m\neq n)$, 求证: $a_m:a_n=(2m-1):(2n-1)$.
- (006727) 已知等差数列 $\{a_n\}$, $\{b_n\}$ 的前 2n-1 项之和分别为 S_{2n-1} 和 S'_{2n-1} . ① 求证: $a_n:b_n=S_{2n-1}:S'_{2n-1}$; ② 如果 $\{a_n\}$ 与 $\{b_n\}$ 的前 n 项之和的比为 $\frac{5n+1}{3n-1}$, 求 $a_{15}:b_{15}$.
- (006728) 已知等差数列 $\{a_n\}$ 首项是 a, 公差为 d, $a_4=84$, 且前 10 项之和 S_{10} 与前 11 项之和 S_{11} 分别满足 $S_{10}>0$, $S_{11}<0$.
- (1) 求公差 d 的取值范围;
- (2) 求使 $a_n < 0$ 的最小的 n 值;
- (3) 记 $S_1, S_2, S_3, \dots, S_n, \dots$ 中的最大值为 M, 求 M 的取值范围.
- (006729) 已知一个数列 $\{a_n\}$ 的前 n 项和 $S_n = 2n(n+1)$, 求此数列的第 100 项.

(006730) 已知数列 $\{a_n\}$ 前 n 项和 $S_n = na_n - n^2 + n$, 求 $a_{100} - a_{99}$.						
(006731) 已知数列 $\{a_n\}$ 前 n 项和 $S_n = 2n^2 - 3n - 1$, 求此数列的通项公式.						
(006732) 已知 $\{a_n\}$ 是首项为 a 的等差数列, 记 $b_n=\frac{a_1+a_2+\cdots+a_n}{n}$, 求证: 数列 $\{b_n\}$ 是等差数列.						
(006733) 已知等差数列 {a	$_{n}$ } 及关于 x 的方程 $a_{i}x^{2}+2$	$2a_{i+1}x + a_{i+2} = 0 (i = 1, 2, \dots)$	\cdot , $n, n \in \mathbf{N}^*$), 其中 a_1 及			
公差 d 均为非零实数.						
(1) 求证: 这些方程有公共						
(2) 若方程的另一根为 a_i ,	求证: $\frac{1}{a_1+1}, \frac{1}{a_2+1}, \cdots, \frac{1}{a_n}$	$\frac{1}{+1}$ 依次成等差数列.				
(006734) 已知 $a_{n+1} = \frac{2a}{a_n}$	$\frac{n}{+2}$, $a_1 = 2$.					
(1) 求证: 数列 $\{\frac{1}{a_n}\}$ 是等意						
a_n (2) $\Re a_5$;						
$(3) \not \mathbf{\pi} \{a_n\}.$						
(006735) 若一个首项为 1 的通项公式。	(006735) 若一个首项为 1 的等差数列 $\{a_n\}$ 的前 n 项和与其后的 $2n$ 项和之比是与 n 无关的定值, 试求此数列					
(006736) 若公差不为零的等差数列的第 2,3,6 项依次是一等比数列的连续三项, 则这个等比数列的公比等于						
().						
A. $\frac{3}{4}$	B. $-\frac{1}{3}$	C. $\frac{1}{3}$	D. 3			
(006737) 若自然数 $m, n, p,$	r 满足 $m+n=p+r$, 则等比	比数列 $\{a_n\}$ 必定满足 $($).			
$A. \frac{a_m}{a_p} = \frac{a_r}{a_n}$	$B. \frac{a_m}{a_n} = \frac{a_r}{a_p}$	$C. a_m + a_n = a_p + a_r$	D. $a_m - a_n = a_p - a_r$			
(006738) 在等比数列 $\{a_n\}$ 中,已知 $a_9 = -2$,则此数列前 17 项之积等于 ().						
A. 2^{16}	B. -2^{16}	C. 2^{17}	D. -2^{17}			
(006739) 已知数列 $\{a_n\}$ 是公比 $q \neq 1$ 的等比数列,则在① $\{a_na_{n+1}\}$,② $\{a_{n+1}-a_n\}$,③ $\{a_n^3\}$,④ $\{na_n\}$ 这四个数列中,成等比数列的个数是(
A. 1	B. 2	C. 3	D. 4			
(006740) 某商品欲分两次提价,提价方案有三种: 方案甲是先提价 $a\%$,再提价 $b\%$;方案乙是先提价 $b\%$,再提价 $a\%$;方案丙是两次均提价 $\frac{a+b}{2}\%(a>b>0)$,则提价最多的方案是 ().						
A. 甲	В. Z	C. 丙	D. 三种方案一样			
(006741) 在等比数列 $\{a_n\}$	中, 若公比为 q , $a_n = a_m \cdot x$,	则 $x =$				
(006742) 在等比数列 $\{a_n\}$ 中, 若 $a_5=2, a_{10}=10, 则 a_{15}=$						
(006743) 在等比数列 $\{a_n\}$ 中, 若 $a_4=5$, $a_8=6$, 则 $a_2a_{10}=$						

(006744) 在等比数列 $\{a_n\}$ 中,若 $a_1a_2\cdots a_9=512$,则 $a_5=$					
(006745) 若 $\{a_n\}$ 是等比数列,且 $a_n > 0$, $a_2 \cdot a_4 + 2a_3 \cdot a_5 + a_4 \cdot a_6 = 25$,则 $a_3 + a_5 =$					
(006746) 已知数列 $\{a_n\}$ 成等差数列, 且公差 $d \neq 0$, 又 a_1, a_3, a_9 依次成等比数列, 则 $\frac{a_1 + a_3 + a_9}{a_2 + a_4 + a_{10}} =$					
$a_2 + a_4 + a_{10}$ (006747) 在等比数列 $\{a_n\}$ 中, 若 $a_1 + a_2 + a_3 = -3$, $a_1a_2a_3 = 8$, 则 $a_4 = \underline{}$.					
(006748) 在等比数列 $\{a_n\}$ 中	,在等比数列 $\{a_n\}$ 中, 若知	生续四项之积为 16, 中间两项之	和为 5, 则公比 q =		
(006749) 在等比数列 $\{a_n\}$ 中	f , 若数列 $\{a_n\}$ 满足 $a_1=1$	$rac{a_n}{a_n+a_{n+1}}=2(n\in \mathbf{N}^*)$,则它	它的通项 $a_n =$		
		而 a, b, c+2 又依次成等比数列,			
(006751) 在 2 和 30 之间插入	两个正数,使三个数成等比	上数列,后三个数成等差数列,则	这插入的两数是		
(006752) 若 a,b,c 依次成等差	差数列 (公差不为零), c,a,	b 又依次成等比数列, 则 a : b :	$c = \underline{\hspace{1cm}}$.		
(006753) 一等比数列 $\{a_n\}$ 的	妁前三项依次为 a,2a+2,5	$3a+3$,且 $a_n=-\frac{27}{2}$,则 $n=$	·		
	(006754) 已知各项都为正数的等比数列的任何一项都等于它后面两项的和,则公比 =				
(006755) 某工厂在 1997 年底	泛制订计划要使 2010 年的	总产值在 1997 年总产值基础上	上翻三番, 则年总产值的平		
均增长率为 ().					
A. $3^{\frac{1}{12}} - 1$	B. $3^{\frac{1}{13}} - 1$	C. $8^{\frac{1}{12}} - 1$	D. $8^{\frac{1}{13}} - 1$		
(006756) 若 $\{a_n\}$ 是各项都力	r于零的等比数列, 且公比	$q \neq 1$, 则 $(a_1 + a_4)$ 与 $(a_2 + a_4)$	3) 的大小关系是 ().		
A. $a_1 + a_4 < a_2 + a_3$	B. $a_1 + a_4 > a_2 + a_3$	C. $a_1 + a_4 = a_2 + a_3$	D. 不能确定的		
(006757) 若正数 a,b,c 依次月	成公比大于 1 的等比数列,	则当 $x > 1$ 时, $\log_a x, \log_b x$, log	$\log_c x($).		
A. 依次成等差数列		B. 依次成等比数列			
C. 各项的倒数依次成等差数	数列	D. 各项的倒数依次成等比数列	îIJ		
(006758) 若 $2^a = 3$, $2^b = 6$, $2^c = 12$, 则 a, b, c 依次 ().					
A. 成等差数列, 但不成等比	数列	B. 成等比数列, 但不成等差数	列		
C. 成等差数列, 又成等比数列		D. 不成等差数列, 也不成等比数列			
(006759) 在三棱台 $EFG-E_1F_1G_1$ 中,分别过点 E,F_1,G 和点 G,E_1,F_1 作两个截面,将此棱台截成三个棱					
锥,则这三个棱锥的体积().				
A. 成等差数列, 但不成等比	数列	B. 成等比数列, 但不成等差数	列		
C. 成等差数列, 也成等比数	·列	D. 不成等差数列, 也不成等比	数列		
(006760) 某厂去年产值为 a , 计划在今后五年内每年比上年产值增长 $10%$, 则从今年起到第五年, 这个厂的总					
产值为 ().					
A. 1.1^4a	B. $1.1^5 a$	C. $11(1.1^5 - 1)a$	D. $10(1.1^6 - 1)a$		

(006761) 某人从 2006 年起, 每年 1 月 1 日到银行新存人 a 元 (一年定期), 若年利率为 r 保持不变, 且每平到 期存款均自动转为新的一年定期,到 2010 年 1 月 1 日将所有存款及利息全部取回,他可取回的钱数(单位为 元)为().

A.
$$a(1+r)^5$$

B.
$$\frac{a}{r}[(1+r)^5-(1+r)]$$
 C. $a(1+r)^6$

C.
$$a(1+r)^6$$

D.
$$\frac{a}{r}[(1+r)^6-(1+r)]$$

(006762) 若数列前 n 项的和 $S_n=2^n-1$, 则此数列奇数项的前 n 项的和是 $(\hspace{1cm})$.

A.
$$\frac{1}{3}(2^{n+1}-1)$$

B.
$$\frac{1}{3}(2^{n+1}-2)$$
 C. $\frac{1}{3}(2^{2n}-1)$ D. $\frac{1}{3}(2^{2n}-2)$

C.
$$\frac{1}{3}(2^{2n}-1)$$

D.
$$\frac{1}{3}(2^{2n}-2)$$

(006763) 若等比数列的前 n 项和 $S_n = 4^n + a$, 则 a 的值等于 ().

(006764) 在等比数列 $\{a_n\}$ 中,已知 $a_1 + a_2 + a_3 = 6$, $a_2 + a_3 + a_4 = -3$, 则 $a_3 + a_4 + a_5 + a_6 + a_7 + a_8$ 等于

A.
$$\frac{21}{16}$$

B.
$$\frac{19}{16}$$

C.
$$\frac{9}{8}$$

D.
$$\frac{3}{4}$$

(006765) 在等比数列 $\{a_n\}$ 中, 已知对任意自然数 $n, a_1+a_2+a_3+\cdots+a_n=2^n-1,$ 则 $a_1^2+a_2^2+a_3^2+\cdots+a_n^2$ 等于().

A.
$$(2^n - 1)^2$$

B.
$$\frac{1}{3}(2^n - 1)$$
 C. $4^n - 1$

C.
$$4^n - 1$$

D.
$$\frac{1}{3}(4^n - 1)$$

(006766) 在等比数列 $\{a_n\}$ 中, 若前 n 项和为 S_n , 且 $a_3 = 3S_2 + 2$, $a_4 = 3S_3 + 2$, 则公比等于______.

(006767) 在等比数列 $\{a_n\}$ 中, 若公比等于 2, 且前 4 项之和等于 1, 那么前 8 项之和等于

(006768) 在等比数列 $\{a_n\}$ 中, 若第一、二、三这三项之和为 168, 第四、五、六这三项之和为 21, 则公比 $q = _____$,首项 $a_1 = _____$

(006769) 在等比数列 $\{a_n\}$ 中, 若 $a_1 + a_2 + a_3 + a_4 + a_5 = 31$, $a_2 + a_3 + a_4 + a_5 + a_6 = 62$, 则其通项公式

(006770) 已知等比数列 $\{a_n\}$ 各项均为正数, 数列 $\{b_n\}$ 满足 $b_n = \log_2 a_n$, 且 $b_1 + b_2 + b_3 = 3$, $b_1 b_2 b_3 = -3$, 求 通项 a_n .

(006771) 已知 a,b 为两个不等的正数, 且 a,x,y,b 依次成等差数列, a,m,n,b 依次成等比数列, 试比较 x+y 与 m+n 的大小.

(006772) 若 $\sin 2x$ 与 $\sin x$ 分别是 $\sin \theta$ 与 $\cos \theta$ 的等差中项和等比中项, 求 $\cos 2x$ 的值.

(006773) 已知 a,b,c 依次成等比数列, 且 x,y 分别是 a,b 与 b,c 的等差中项, 求 $\frac{a}{x} + \frac{c}{y}$ 的值.

(006774) 某工厂产量第一年比上一年增加 a%, 第二年又增加 b%, 为使连续二年的平均增产率为 c%, 问: 第三 年比第二年应再增加百分之几?

(006775) 从盛满 a 升纯酒精的容器里倒出 b 升, 然后用水加满, 再倒出 b 升, 再用水加满, 这样连续倒了 n 次, 问: 此时容器里还有多少纯酒精?

(006776) 某市人口 1997 年底预计为 20 万, 人均住房面积 8m², 在 2001 年底达到人均住房面积 10m². 如果该市计划将每年人口平均增长率控制在 1%, 那么要实现上述计划, 这个城市平均每年至少要新增住房面积多少万平方米?(以万平方米为单位, 保留两位小数)

(006777) 有四个数, 其中前三个数成等差数列, 后三个数成等比数列, 且第一个数与第四个数的和是 16, 第二个数与第三个数的和是 12, 求这四个数.

(006778) 有四个数, 其中前三个成等比数列, 其积为 216, 后三个成等差数列, 其和为 12, 求这四个数.

(006779) 七个实数排成一排, 奇数项成等差数列, 偶数项成等比数列, 且奇数项的和减去偶数项的积, 其差为42, 首项、尾项与中间项之和为27, 求中间项.

(006780) 已知公差不为零的等差数列 $\{a_n\}$ 与递增的等比数列 $\{b_n\}$ 有如下关系: $a_1=b_1=1, a_3=b_3, a_7=b_5.$ 求:

- (1) $\{a_n\}$ 前 n 项之和 S_n ;
- (2) { b_n } 的通项公式.

(006781) 已知数列 $\{a_n\}$ 是等比数列, 其首项为 10, 又 $b_n = \lg a_n$, 且数列 $\{b_n\}$ 的前 7 项之和 S_7 最大, $S_7 \neq S_8$, 求 $\{a_n\}$ 的公比 q 的取值范围.

(006782) 已知等比数列 $\{a_n\}$ 与等差数列 $\{b_n\}$ 满足 $a_1>0, \frac{a_2}{a_1}>0, b_2-b_1>0,$ 求证: 一定存在实数 a, 使 $\log_a a_n-b_n$ 与 n 无关.

(006783) 求数列 1,1-2,1-2+4,1-2+4-8,1-2+4-8+16,... 的一个通项公式.

(006784) 求数列 $\frac{1}{2}, 2\frac{3}{4}, 4\frac{7}{8}, 6\frac{15}{16}, \cdots$ 前 n 项的和 S_n .

(006785) 求和: $4^n + 3 \times 4^{n-1} + 3^2 \times 4^{n-2} + \dots + 3^{n-1} \times 4 + 3^n (n \in \mathbb{N}^*)$.

(006786) 求和: $S = a^n + a^{n-1}b + a^{n-2}b^2 + \dots + a^{n-r}b^r + \dots + ab^{n-1} + b^n (a \neq 0, b \neq 0, n \in \mathbf{N}^*).$

(006787) 若 $\lg x + \lg x^2 + \dots + \lg x^{10} = 110$, 求 $\lg x + \lg^2 x + \dots + \lg^{10} x$ 的值.

(006788) 已知一个等比数列的前项和为 10, 前 20 项和为 30, 求其前 50 项的和.

(006789) 在等比数列 $\{a_n\}$ 中,已知 $a_1=1$,且有偶数项. 若其奇数项之和为 85,偶数项之和为 170,求公比 q 及项数.

(006790) 各项为正的等比数列 $\{a_n\}$ 中,已知其项数为偶数,且它的所有项之和等于它的偶数项之和的 4 倍,又 第二项与第四项之积等于第三项与第四项之和的 9 倍. 求:

- (1) a_1 及 q;
- (2) 使 $\{\lg a_n\}$ 的前 n 项之和最大时的 n 值.

(006791) 已知等比数列各项均为正数, 前 n 项和为 80, 其中数值最大的项为 54, 前 2n 项和为 6560, 求此数列的公比.

(006792) 已知等比数列 $\{a_n\}$ 的公比 q>1, 其第 17 项的平方等于第 24 项, 求使 $a_1+a_2+a_3+\cdots+a_n>\frac{1}{a_1}+\frac{1}{a_2}+\cdots+\frac{1}{a_n}$ 成立的自然数 n 的取值范围.

(006793) 已知数列 $\{a_n\}$ 的前 n 项和 $S_n = 4 - 4 \times 2^{-n} (n \in \mathbb{N}^*)$, 求证: $\{a_n\}$ 成等比数列.

(006794) 已知数列 $\{a_n\}$ 满足 $a_1=2, a_{n+1}=2(a_1+a_2+\cdots+a_n)(n\in \mathbb{N}^*)$, 求证: a_2,a_3,\cdots 成等比数列.

(006795) 已知数列 $\{a_n\}$ 的首项为 1, 从第二项起每项都是它前面各项之和, 求 $\{a_n\}$ 的通项公式及其前 n 项之和.

(006796) 已知数列 $\{a_n\}$ 满足 $a_1=3,\,a_na_{n+1}=(\frac{1}{2})^n(n\in {\bf N}^*),\,$ 求此数列前 2n 项之和.

(006797) 在数列 $\{a_n\}$ 中,已知 $a_1=b(b\neq 0)$,且前 n 项和 $S_1,S_2,\cdots,S_n,\cdots$ 成公比为 q 的等比数列 $(q\neq 1)$,求证: 数列 $a_2,a_3,a_4,a_5,a_6,\cdots$ 也是一个等比数列,并求其公比.

(006798) 已知数列 $\{a_n\}$ 的前 n 项之和 $S_n = p^n + q(p, q)$ 为常数且 $p \neq 0$), 求证: 当 q = -1 且 $p \neq 1$ 时, $\{a_n\}$ 成等比数列, 反之亦真.

(006799) 已知关于 x 的二次方程 $a_n x^2 - a_{n+1} x + 1 = 0 (n \in \mathbf{N}^*)$ 的两根 α, β 满足 $6\alpha - 2\alpha\beta + 6\beta = 3$, 且 $a_1 = \frac{2}{3}$.

- (1) 试 a_n 用表示 a_{n+1} ;
- (2) 求证: $\{a_n \frac{2}{3}\}$ 是等比数列;
- (3) 当 $a_1 = \frac{7}{6}$ 时, 求数列 $\{a_n\}$ 的通项公式.

(006800) 已知数列 $\{a_n\}$ 的通项公式是 $a_n = a^n + \lg b^n (a \neq 0, b > 0)$, 求此数列的前 n 项之和 S_n .

(006801) 求数列 $1, (1+2), (1+2+3), (1+2+3+4), (1+2+3+4+5), \cdots$ 的前 n 项之和.

(006802) 求数列 $1,(1+2),(1+2+2^2),\cdots,(1+2+2^2+\cdots+2^{n-1}),\cdots$ 的前 n 项之和.

(006803) 已知数列 $1, 1+a, 1+a+a^2, 1+a+a^2+a^3, \cdots$. 求: (1) 其通项 a_n ;

(2) 前 n 项之和 S_n .

(006804) 已知数列 $2.2^2 + 2^3.2^4 + 2^5 + 2^6.2^7 + 2^8 + 2^9 + 2^{10}...$ 求:

- (1) 前 n 项和 S_n ;
- (2) 通项公式 a_n .

(006805) 给出数表

已知表中所有数之和为 36100, 求 n.

(006806) 给出数表

- (1) 前 n 行共有几个数?
- (2) n 行的第一个数和最后一个数各是多少?
- (3) 求第 n 行各数之和;
- (4) 求前 n 行各数之和;
- (5) 数 100 是第几行的第几个数?

(006807) 求和:
$$\frac{1}{2^2-1} + \frac{1}{4^2-1} + \frac{1}{6^2-1} + \dots + \frac{1}{(2n)^2-1}$$
.

(006808) 已知数列 $\{a_n\}$ 的通项公式为 $a_n=\dfrac{1}{\sqrt{n}+\sqrt{n+1}},$ 它的前 n 项之和 $S_n=9,$ 求项数 n.

(006809) 已知等差数列
$$\{a_n\}$$
 的各项均为正数,求证: $\frac{1}{\sqrt{a_1}+\sqrt{a_2}}+\frac{1}{\sqrt{a_2}+\sqrt{a_3}}+\cdots+\frac{1}{\sqrt{a_{n-1}}+\sqrt{a_n}}=\frac{n-1}{\sqrt{a_1}+\sqrt{a_n}}$.

(006810) 已知等差数列
$$\{a_n\}$$
 的各项均不为零, 求证: $\frac{1}{a_1a_2} + \frac{1}{a_2a_3} + \cdots + \frac{1}{a_{n-1}a_n} = \frac{n-1}{a_1a_n}$.

$$(006811)$$
 求数列 $\frac{2^2+1}{2^2-1}, \frac{3^2+1}{3^2-1}, \frac{4^2+1}{4^2-1}, \cdots$ 的前 n 项之和.

(006812) 求和:
$$\frac{1}{1 \times 2 \times 3} + \frac{1}{2 \times 3 \times 4} + \dots + \frac{1}{n(n+1)(n+2)} (n \in \mathbf{N}^*).$$

(006813) 求和:
$$1 \times 2 + 4 \times 2^2 + 7 \times 2^3 + \dots + (3n-2) \times 2^n$$
.

$$(006814)$$
 求数列 $\frac{1}{2}, \frac{3}{4}, \frac{5}{8}, \frac{7}{16}, \frac{9}{32}, \cdots$ 的前 n 项之和 S_n .

(006815) 求证:
$$\sqrt{2} \times \sqrt[4]{4} \times \sqrt[8]{8} \cdot \dots \cdot \sqrt[2^n]{2}^n < 4(n \in \mathbf{N}^*).$$

(006816) 已知 a > 0, $a \neq 1$, 数列 $\{a_n\}$ 是首项为 a, 公比也为 a 的等比数列, 令 $b_n = a_n \lg a_n (n \in \mathbf{N}^*)$.

- (1) 求数列 $\{b_n\}$ 的前 n 项之和 S_n ;
- (2) 若数列 $\{b_n\}$ 中的每一项总小于它后面的项, 求 a 的取值范围.

(006817) 计算:
$$1 \times 2 + 2 \times 3 + 3 \times 4 + \dots + n(n+1)$$
.

(006818) 计算:
$$1 \times 2 + 3 \times 4 + 5 \times 6 + \dots + (2n-1)(2n)$$
.

$$(006819)$$
 计算: $1^2 + 3^2 + 5^2 + \cdots + (2n-1)^2$.

(006820) 计算:
$$1 \times 2 \times 3 + 2 \times 3 \times 4 + 4 \times 5 \times 6 + \dots + n(n+1)(n+2)$$
.

 $(006821) \ \hbox{$\hbox{$\rlap/$7$}$} 1 \times 2^2 + 2 \times 3^2 + 3 \times 4^2 + \dots + n(n+1)^2 = \frac{n(n+1)}{12} (an^2 + bn + c) \ \hbox{$\rlap/$7$}$ **对任何自然数**\$n\$ 恒成立,求a,b,c 的值.

(006822) 已知数列 $\{a_n\}$ 和 $\{b_n\}$ 满足 $b_n=\frac{a_1+2a_2+3a_3+\cdots+na_n}{1+2+\cdots+n}$, 求证: 若 $\{a_n\}$ 为等差数列, 则 $\{b_n\}$ 也为等差数列, 反之亦真.

(006823) 已知 $f(x) = \sqrt{x^2 - 4}(x < -2)$.

- (1) 求 f(x) 的反函数 $f^{-1}(x)$;

(2) 记
$$a_1 = 1$$
, $a_n = -f^{-1}(a_{n-1})$, 求 a_n ;
(3) 如果 $b_1 = \frac{1}{a_1 + a_2}$, $b_2 = \frac{1}{a_2 + a_3}$, $b_3 = \frac{1}{a_3 + a_4}$, \cdots , $b_n = \frac{1}{a_n + a_{n+1}}$, \cdots , 求数列 $\{b_n\}$ 前 n 项的和 S_n .

(006824) 已知数列 $\{a_n\}$ 满足 $a_1 = 1$, $a_{n+1} = S_n + (n+1)(n \in \mathbb{N}^*)$.

- (1) 用 a_n 表示 a_{n+1} ;
- (2) 求证: 数列 $\{a_n + 1\}$ 是等比数列;
- (3) 求和 S_n .

$$(006825)$$
 求 $\lim_{n\to\infty} (\frac{n^2+2n+2}{n+1}-an+b)$, 其中 a,b 为常数.

$$(006826)$$
 $\Re \lim_{n\to\infty} \left(\frac{1}{n^2+1} + \frac{2}{n^2+1} + \dots + \frac{n}{n^2+1}\right).$

$$(006827) \ \ \Re \lim_{n \to \infty} (\sqrt{n+1} - \sqrt{n-1}).$$

(006828) 若
$$a \neq -1$$
, 求 $\lim_{n \to \infty} \frac{1 - a^n}{1 + a^n}$.

(006829) 已知等比数列 $\{a_n\}$ 满足 $a_1+a_2+a_3=18, a_2+a_3+a_4=-9,$ 记 $S_n=a_1+a_2+\cdots+a_n,$ 求 $\lim_{n\to\infty}S_n$.

(006830) 用定义证明数列 $\{\frac{n^2-1}{n^2+1}\}$ 的极限为 1.

(006831) 用极限的定义证明: $\lim_{n\to\infty} q^n = 0(|q| < 1)$.

(006832) 若非常数的数列 $\{a_n\}$, 当 $n \to \infty$ 时的极限是 M, 则在区间 $(M - \varepsilon, M + \varepsilon)(\varepsilon$ 为任意小的正数) 内, 这个数列的项数为(

A. 无限多项

B. 有限项

C. 零项

D. 有限项与无限多项都有可能

(006833) 无穷数列 $\{a_n\}$ 的极限为 A, 指的是: 对任意的 $\varepsilon>0$, 总能在 $\{a_n\}$ 中找到一项 a_N , 使 ().

A. a_N 以后至少有一项满足 $|a_n-A|<arepsilon$ B. a_N 以后有有限项满足 $|a_n-A|<arepsilon$

C. a_N 以后有无限项满足 $|a_n - A| < \varepsilon$

D. a_N 以后的所有项都满足 $|a_n-A|<arepsilon$

(006834) 记 $a_1 + a_2 + \cdots + a_n = S_n$, 则数列 $\{a_n\}$ 有极限是数列 $\{S_n\}$ 有极限的 (

A. 充分不必要条件

B. 必要不充分条件

C. 充分必要条件

D. 既不充分也不必要条件

(006835) 观察下面四个数列:

①
$$1, -\frac{1}{2}, \frac{1}{3}, -\frac{1}{4}, \cdots, (-1)^{n-1}, \frac{1}{n}, \cdots;$$

①
$$1, -\frac{1}{2}, \frac{1}{3}, -\frac{1}{4}, \cdots, (-1)^{n-1}\frac{1}{n}, \cdots;$$
② $\frac{1}{a}, \frac{1}{a+d}, \frac{1}{a+2d}, \frac{1}{a+3d}, \cdots, \frac{1}{a+(n-1)d}, \cdots$ (分母均不为零);
③ $2, \frac{3}{2}, \frac{4}{3}, \frac{5}{4}, \cdots, \frac{n+1}{n}, \cdots;$
④ $-2, \frac{3}{2}, -\frac{4}{3}, \frac{5}{4}, \cdots, (-1)^n \frac{n+1}{n}, \cdots.$

$$3 2, \frac{3}{2}, \frac{4}{3}, \frac{5}{4}, \cdots, \frac{n+1}{n}, \cdots;$$

$$(4)$$
 $-2, \frac{3}{2}, -\frac{4}{3}, \frac{5}{4}, \cdots, (-1)^n \frac{n+1}{n}, \cdots$

其中存在极限的数列的个数为().

A. 4

B. 3

C. 2

D. 1

(006836) 若
$$\lim_{n\to\infty} a_n$$
 存在, $\lim_{n\to\infty} \frac{a_n-3}{a_n+2} = \frac{4}{9}$, 则 $\lim_{n\to\infty} a_n = \underline{\qquad}$.

$$(006837)$$
 若数列 $\{a_n\}$ 、 $\{b_n\}$ 均存在极限,且 $\lim_{n\to\infty}(3a_n+4b_n)=8$, $\lim_{n\to\infty}(6a_n-b_n)=1$. 则 $\lim_{n\to\infty}(3a_n+b_n)=$ _____.

(006838) 在数列
$$\{a_n\}$$
 中,若 $a_n=\frac{n+2}{2n}$,则 $|a_n-\frac{1}{2}|=$ _______; 要使 $n>N$ 时,有 $|a_n-\frac{1}{2}|<0.001$,则 N 的最小值是_______.

(006839) 若数列
$$\{a_n\}$$
 满足 $a_1 = \sqrt{6}$, $a_{n+1} = \sqrt{a_n + 6} (n \in \mathbf{N}^*)$, 且 $\lim_{n \to \infty} a_n$ 存在, 求 $\lim_{n \to \infty} a_n$.

$$(006840)$$
 用极限定义证明: 数列 $\{\frac{n}{2n+1}\}$ 的极限为 $\frac{1}{2}$.

(006841) 用极限定义证明:
$$\lim_{n\to\infty} (1-\frac{1}{2^n}) = 1.$$

(006842) 用极限定义证明:
$$\lim_{n\to\infty} (\sqrt{n+1} - \sqrt{n}) = 0.$$

$$(006843)$$
 $\lim_{n\to\infty} (\frac{n^2+1}{n^3} + \frac{n^2+2}{n^3} + \dots + \frac{n^2+n}{n^3})$ 的值为 ().

A. 0

C. 2

D. 不存在

A. 2

B. 0

C. 1

D. $\frac{1}{2}$

$$(006845)$$
 若 S_n 是无穷等差数列 $1,3,5,\cdots$ 的前 n 项之和, 则 $\lim_{n\to\infty}\frac{S_n}{S_{2n}}$ 的值等于 $($ $)$.

D. 4

(006846) 若数列
$$\{a_n\}$$
 满足 $a_n = (1 + \frac{1}{2})(1 + \frac{1}{3})(1 + \frac{1}{4})\cdots(1 + \frac{1}{n+1})$, 则 $\lim_{n \to \infty} \frac{a^n}{n}$ 的值等于 ().

A. 0

D. 不存在

$$(006847)$$
 若 $\lim_{n\to\infty} \frac{(k-2)n^2+4n}{2(n^2+7)}=2$, 则实数 k 的值等于 ().

A. 4

C. 8

D. 0

 $(006848) \ \ {\ \ \ } \lim_{n\to\infty} \frac{an^2+cn}{bn^2+c} = 2, \ \lim_{n\to\infty} \frac{bn+c}{cn+a} = 3, \ \ {\ \ \ } \\ \lim_{n\to\infty} \frac{an^2+bn+c}{cn^2+an+b} = (\qquad).$

D. 6

A. 不存在

C. 1

D. $\frac{3}{2}$

(006850) 以下各式中, 当 $n \to \infty$ 时, 极限值为 $\frac{1}{2}$ 的是 ().

A. $\frac{n-2}{2n(n+1)}$ B. $\frac{2n+1}{3n+2}$

C. $(\sqrt{n+1} - \sqrt{n})\sqrt{n}$ D. $\frac{1+4+7+\cdots+(3n-2)}{2n^2}$

 $(006851)\lim_{n\to\infty} \left(\frac{2n^2+5n-1}{3n^3-2n^2}+\frac{3+5n}{3n-1}\right) = \underline{\hspace{1cm}}.$

 $(006852) \lim_{n \to \infty} \frac{1+3+5+7+\dots+(2n-1)}{1+4+7+11+\dots+(3n-2)} = \underline{\hspace{1cm}}.$

 $(006854) \lim_{n \to \infty} \left[\frac{1}{(3n+1)(2n-1)} + \frac{5}{(3n+1)(2n-1)} + \frac{9}{(3n+1)(2n-1)} + \dots + \frac{4n-3}{(3n+1)(2n-1)} \right] = \underline{\hspace{1cm}}$

 $(006855) \lim_{n \to \infty} (1 - \frac{1}{2})(1 - \frac{1}{3})(1 - \frac{1}{4}) \cdots (1 - \frac{1}{n}) = \underline{\hspace{1cm}}$

 $(006856)\lim_{n\to\infty} (1-\frac{1}{2^2})(1-\frac{1}{2^2})(1-\frac{1}{4^2})\cdots(1-\frac{1}{n^2}) = \underline{\hspace{1cm}}$

(006857) 若 $\lim_{n\to\infty} (2n - \sqrt{4n^2 + an + 3}) = 1$, 则 a 等于 ().

A. -7

C. 0

D. 4

(006858) $\lim_{n\to\infty}\frac{1}{n}[1^2+(1+\frac{1}{n})^2+(1+\frac{2}{n})^2+(1+\frac{3}{n})^2+\cdots(1+\frac{n+1}{n})^2]$ 的值为 (

(006859) 若 $\lim_{n\to\infty} (\frac{n^2+1}{n+1}-an-b)=0$, 则 a=________, b=________.

(006860) 若 $\lim_{n \to \infty} \frac{3a^n + pb^n + c}{7a^n - 3b^n + c^2} = -5(1 < a < b, c, p)$ 为常数), 则 p______

(006861) 若 $\lim_{n \to \infty} (\sqrt{4n^2 + p} - pn) = q$, 则 $p = ______$, $q = ______$.

 $(006862) \lim_{n \to \infty} \frac{2}{\sqrt{n^2 + 2n} - \sqrt{n^2 + 1}} = \underline{\hspace{1cm}}.$

 $(006863) \lim_{n \to \infty} \frac{1}{n^2 - n\sqrt{n^2 + 1}} = \underline{\hspace{1cm}}.$

 $(006864) \lim_{n \to \infty} \left[\sqrt{1 + 2 + 3 + \dots + n} - \sqrt{1 + 2 + 3 + \dots + (n-1)} \right] = \underline{\qquad}$

 $(006865)\lim_{n\to\infty} \left(1 + \frac{1}{1+2} + \frac{1}{1+2+3} + \dots + \frac{1}{1+2+3+\dots+n}\right) = \underline{\hspace{1cm}}$

 $(006866) \lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{k^2 + 3k + 2} = \underline{\qquad}.$

(006867) 已知 y=f(x) 是一次函数, f(8)=15, 又 f(2),f(5),f(4) 依次成等比数列, 记 $S_n=f(1)+f(2)+f(3)$ $\cdots + f(n), \not \mathbb{R} \lim_{n \to \infty} \frac{S_n}{n^2}$

(006868) 已知数列 $\{a_n\}$ 前 n 项的和 $S_n = n^2$, 记 $p_n = \frac{1}{a_1 a_2} + \frac{1}{a_2 a_3} + \cdots + \frac{1}{a_m a_{m+1}}$, 求 $\lim_{n \to \infty} p_n$.

(006869) 已知二次函数 $f(x) = n(n+1)x^2 - (2n+1)x + 1$, 当 n 取所有自然数时, 求它的图象在 x 轴上截得 的所有线段长度的总和.

(006870) 若 $\lim_{n\to\infty} (1-2x)^n$ 存在, 则 x 的取值范围是 ().

A. 0 < x < 1

B. 0 < x < 1

C. $0 \le x < 1$ D. $x \ge 1$ **ي** $x \le 0$

 $(006871) \ \mathbf{已知四个无穷数列} \ \{(-1)^n\frac{1}{n}\}, \{(-1)^n(\frac{1}{2})^n\}, \{\frac{3^{n-1}}{2^n}\}, \{\frac{10^{10}}{n^2+2n}\}, \, \mathring{\mathbf{h}} \ n \to \infty \ \mathsf{时}, \, \mathbf{这四个数列中极限为}$ 零的个数是(

A. 1

B. 2

C. 3

D. 4

(006872) 已知四个数列的通项公式分别是 $a_n=1+(-1)^n,\ b_n=2+(-\frac{\sqrt{2}}{2})^n,\ c_n=(-1)^n\tan(\frac{n\pi}{2}-\frac{\pi}{4}),$ $d_n=(-1)^nrac{n+1}{n},$ 当 $n o\infty$ 时,这四个数列中极限为 -1 的是数列 ().

A. $\{a_n\}$

B. $\{b_n\}$

D. $\{d_n\}$

(006873) 首项为 1、公比为 q(|q|>1) 的等比数列前 n 项之和为 $S_n,$ 则 $\lim_{n\to\infty} \frac{S_n}{S_{n+1}}$ 的值为 ().

A. 1

D. 不存在

(006874) 若 $\lim_{n\to\infty} (\frac{1-a}{2a})^n = 0$, 则 a 的取值范围是______.

 $(006875) \ \hbox{$\ddot{R}$} \ \lim_{n\to\infty} [2-(\frac{q}{1-q})^n] = 2, \ \hbox{$\rlap/ {\it M}$} \ q \ \hbox{$\bf n$}$ 的取值范围是______.

(006876) 若 $\lim_{n\to\infty} \frac{x^{2n+1}}{1+x^{2n}} = x(x\neq 0)$,则 x 的取值范围是______.

 $(006877) \ \hbox{$\stackrel{\scriptstyle z}{{}_{n\to \infty}}$} \frac{3^n+a^n}{3^{n+1}+a^{n+1}} = \frac{1}{3}, \, \hbox{$\stackrel{\scriptstyle y}{{}_{n}}$} u \ \hbox{$\stackrel{\scriptstyle z}{{}_{n}}$} n \ \hbox{$\stackrel{\scriptstyle z}{{}_{n}}$} .$

 $(006878) \lim_{n \to \infty} \frac{2^{2n-1}+1}{4^n-3^n} = \underline{\hspace{1cm}}.$

 $(006879) \lim_{n \to \infty} \frac{5^{n+1} - 10^{n-1}}{10^{n+1} - 5^{n-1}} = \underline{\hspace{1cm}}$

 $(006880) \lim_{n \to \infty} \frac{(-2)^{n+1}}{1 - 2 + 4 - \dots + (-2)^{n-1}} = \underline{\qquad}.$

 $(006881) \lim_{n \to \infty} \frac{1 + 2 + 2^2 + \dots + 2^{n-1}}{1 - 2^{n-1}} = \underline{\qquad}.$

(006882) 若 |p| < 3,则 $\lim_{n \to \infty} \frac{p^n + 3^n}{1 + 3 + 3^2 + \dots + 3^n} = \underline{\qquad}$

(006883) 若 |a| < 1, 则 $\lim_{n \to \infty} [(1+a)(1+a^2)(1+a^4)\cdots(1+a^{2^n})] =$ ______

常数. 求:			
(1) 数列 $\{a_n\}$ 的通项公式;			
$(2) \lim_{n \to \infty} \frac{a_n + 1}{a_n - 1}$ 的值.			
(006885) 已知数列 $\{a_n\}$ 的	前 n 项之和 S_n 满足 $S_n = 1$	$+ra_n(r \neq 1).$	
(1) 求证: $\{s_n - 1\}$ 是公比为	为 $\frac{r}{r-1}$ 的等比数列;		
(2) 求适合 $\lim_{n\to\infty} S_n = 1$ 的	r 的取值范围.		
	$\{n_n\}$ 的首项为 $\{1, $ 公差为 $\{d, \}\}$		
$q(q <1)$, 前 n 项和为 B_n .	记 $S_n = B_1 + B_2 + \cdots + B_n$	\sum_{n} , 若 $\lim_{n \to \infty} \left(\frac{A_n}{n} - S_n\right) = 1$, 对	
(006887) 无穷数列 $\frac{1}{2}\sin\frac{\pi}{2}$,	$\frac{1}{2^2}\sin\frac{2\pi}{2}, \frac{1}{2^3}\sin\frac{3\pi}{2}, \cdots, \frac{1}{2^n}$	$-\sinrac{n\pi}{2},\cdots$ 的各项之和为 ().
A. $\frac{1}{3}$	B. $\frac{2}{7}$	C. $\frac{2}{5}$	D. 不存在
(006888) 将循环小数 0.36 人	化成最简分数后, 分子与分母	的和等于 ().	
A. 15	B. 45	C. 126	D. 135
(006889) 记 $b = \cos 30^{\circ}$, 又	无穷数列 $\{a_n\}$ 满足 $a_1=2,1$	$\log_b a_{n+1} = \log_b a_n + 2, $ 则 引	$\lim_{n\to\infty} (a_2 + a_3 + \dots + a_n) \ $
于().			
A. 8	B. 6	C. $\frac{8}{3}$	D. 2
(006890) 无穷等比数列 (公	比 q 满足 $ q < 1$) 中, 若任	何一项都等于该项后所有项的	的和, 则等比数列的公比是
().			
A. $\frac{1}{4}$	B. $\frac{1}{2}$	C. $-\frac{1}{2}$	D. $-\frac{1}{4}$
(006891) 一个公比的绝对值	小于 1 的无穷等比数列中, i	三知各项的和为 15, 各项的平	产方和为 45, 则此数列的首
项为 ().			
A. 6	B. 5	C. 3	D. 2
(006892) 连接三角形三边中	点得第二个三角形, 再连接领	第二个三角形三边中点得第三	三个二角形,如此不断地作
下去,则所得的一切三角形 (不包括第一个三角形) 的而积之和与第一个三角形面积之比为 ().			
A. 1	B. $\frac{1}{2}$	C. $\frac{1}{3}$	D. $\frac{1}{4}$
(006893) 设 a 是方程 $\log_2 x$ -	$+\log_2(x+\frac{3}{4})+\log_2 4=0$ 的根	,则无穷数列 a, a^2, a^3, \cdots 的	各项之和等于
$(006894) 已知 S_n = \frac{1}{5} + \frac{2}{5^2}$	$+\frac{1}{5^3} + \frac{2}{5^4} + \dots + \frac{1}{5^{2n-1}} +$	$\frac{2}{5^{2n}}$, $\mathbb{M}\lim_{n\to\infty}S_n=$	<u></u> .
(006895) 无穷数列 0.15,0.0	i5,0.00i5,··· 所有项的和等	于	
(006896) 若 θ 是一个定锐角, θ_1 是 $\frac{\theta}{2}$ 的余角, θ_2 是 $\frac{\theta_1}{2}$ 的余角, θ_3 是 $\frac{\theta_2}{2}$ 的余角, \cdots , θ_n 是 $\frac{\theta_{n-1}}{2}$ 的余角, 则			
$\lim_{n \to \infty} \theta_n = \underline{\hspace{1cm}}.$			

(006884) 在正数数列 $\{a_n\}$ 中,已知 $a_1=2,\,a_{n-1}$ 与 a_n 满足关系式 $\lg a_n=\lg a_{n-1}+\lg t,$ 其中 t 为大于零的

$$(006897)\frac{1}{3} + \frac{3}{3^2} + \frac{7}{3^3} + \dots + \frac{2^n - 1}{3^n} + \dots = \underline{\qquad}.$$

(006898) 記
$$S_n = 1 - \frac{1}{2} - \frac{1}{4} + \frac{1}{8} - \frac{1}{16} - \frac{1}{32} + \frac{1}{64} - \frac{1}{128} - \frac{1}{256} + \dots + \frac{1}{2^{3n-3}} - \frac{1}{2^{3n-2}} - \frac{1}{2^{3n-1}}$$
,则 $\lim_{n \to \infty} S_n = \underline{\qquad}$

(006899) 在等比数列 $\{a_n\}$ 中,已知 $\lim_{n\to\infty}(a_1+a_2+\cdots+a_n)=\frac{1}{2}$,求 a_1 的取值范围.

(006900) 在等比数列 $\{a_n\}$ 中,已知 $a_1+a_2+a_3=18$, $a_2+a_3+a_4=-9$,且 $S_n=a_1+2a_2+3(a_3+a_4+\cdots+a_n)$ ($n \ge 3$),求 $\lim_{n \to \infty} S_n$.

 $(006901) \ \textbf{已知} \ \{a_n\} \ \textbf{是公比为正数的等比数列}, \ \textbf{且} \ \frac{1}{a_2} + \frac{1}{a_3} + \frac{1}{a_4} = 117, \ a_1 \cdot a_2 \cdot a_3 = \frac{1}{3^6}, \ \vec{x} \ \lim_{n \to \infty} (a_1 + a_2 + \cdots + a_n).$

(006902) 已知数列 $\{a_n\}$ 的前 n 项之和 S_n 满足 $S_n = 1 - \frac{2}{3}a_n(n \in \mathbf{N}^*)$.

- (1) $\Re \lim_{n\to\infty} S_n$;
- (2) 若记数列 $\{a_nS_n\}$ 的前 n 项之和为 U_n , 求 $\lim_{n\to\infty}U_n$.

(006903) 已知数列 $\{a_n\}$ 的首项 $a_1 = b(b \neq 0)$, 它的前 n 项和 S_n 组成的数列 $\{S_n\}(n \in \mathbf{N}^*)$ 是一个公比为 $q(q \neq 0, |q| < 1)$ 的等比数列.

- (1) 求证: $a_2, a_3, a_4, \dots, a_n, \dots$ 是一个等比数列;

(006904) 在 45° 角的一边上,取距离顶点为 a 的一点,由这点向另一边作垂线,然后再由这个垂线的垂足向另一边作垂线,…,如此无限地继续下去,求所有这些垂线长的和.

(006905) 如图,在直角坐标平面上,点 P 从原点出发沿 x 轴的正方向前进 a 后向左转 90° ,前进 $\frac{a}{2}$ 后又向右转 90° ,前进 $\frac{1}{2^2}a$ 后再左转 90° ,无限地继续下去,点 P 最后到达哪一点.

(006906) 设扇形 AOB 的半径为 R, 中心角为 $\theta(0<\theta<\frac{\pi}{2})$, 由 A 向半径 OB 作垂线 AB_1 , 由垂足 B_1 引弦 AB 的平行线交 OA 于点 A_1 , 再由 A_1 向 OB 作垂线 A_1B_2 , 由垂足 B_2 引弦 AB 的平行线交 OA 于点 A_2 (如图), 这样无限地继续下去,在 OA, OB 上得到的点列 $\{A_n\}$ 、 $\{B_n\}$,设 $\triangle ABB_1$, $\triangle A_1B_1B_2$, \cdots , $\triangle A_nB_nB_{n+1}$, \cdots 的面积为 S_1, S_2, \cdots , S_{n+1}, \cdots ,求 $S=\lim_{n\to\infty}\sum_{k=1}^n S_k$.

(006907) 如图, 在 $Rt\triangle ABC$ 中排列着无限个正方形 $S_1, S_2, S_3, S_4, \cdots$, 且已知直角边 BC=a, 这无限个正方形的面积之和正好是这个直角三角形面积的一半, 求另一直角边 AC 的长.

(006908) 在半径为 r 的球内作正方体,然后在正方体内再作内切球,在内切球内再作内接正方体,然后再作它的内切球,如此无限地作下去,求所有这些球的表面积之和 (包括半径为 r 的球).

(006909) 用数学归纳法证明: $1+2+\cdots+2n=n(2n+1)(n\in \mathbf{N}^*)$.

(006910) 用数学归纳法证明:
$$\sqrt{1 \times 2} + \sqrt{2 \times 3} + \dots + \sqrt{n(n+1)} > \frac{n(n+1)}{2} (n \in \mathbf{N}^*).$$

(006911) 用数学归纳法证明:
$$1 \times n + 2(n-1) + \dots + n \times 1 = \frac{n(n+1)(n+2)}{6} (n \in \mathbf{N}^*).$$

(006912) 记
$$S_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} (n > 1, n \in \mathbf{N}^*)$$
,求证: $S_{2^n} > 1 + \frac{n}{2} (n \ge 2, n \in \mathbf{N}^*)$.

(006913) 求证: $a^{n+1} + (a+1)^{2n-1} (n \in \mathbb{N}^*)$ 能被 $a^2 + a + 1$ 整除.

(006914) 已知数列
$$\{a_n\}$$
 满足 $a_1 = a, a_{n+1} = \frac{1}{2 - a_n}$.

- (1) \mathbf{x} a_2, a_3, a_4 ;
- (2) 推测通项 a_n 的表达式, 并用数学归纳法加以证明.

(006915) 平面内有 n 个圆, 其中每两个圆都交于两点, 且无任何三个圆交于一点, 求证: 这 n 个圆将平面分成 n^2-n+2 个部分.

(006916) 利用数学归纳法证明 " $1 + a + a^2 + \dots + a^{n+1} = \frac{1 - a^{n+2}}{1 - a} (a \neq 1, n \in \mathbb{N}^*)$ " 时, 在验证 n = 1 成立时, 左边应该是 ().

A. 1 B.
$$1+a$$
 C. $1+a+a^2$ D. $1+a+a^2+a^3$

(006917) 欲用数学归纳法证明 "对于足够大的自然数 n, 总有 $2^n > n^3$ ", 则验证不等式成立所取的第一个 n 值, 最小应当是 ().

A. 1

B. 大于 1 且小于 6 的某个自然数

C. 10

D. 大于 5 且小于 10 的某个自然数

(006918) 利用数学归纳法证明 "对任意偶数 $n,\,a^n-b^n$ 能被 a+b 整除" 时, 其第二步论证, 应该是 ().

- A. 假设 n = k 时命题成立, 再证 n = k + 1 时命题也成立
- B. 假设 n=2k 时命题成立, 再证 n=2k+1 时命题也成立
- C. 假设 n=k 时命题成立, 再证 n=k+2 时命题也成立
- D. 假设 n=2k 时命题成立, 再证 n=2(k+1) 时命题也成立

(006919) 利用数学归纳法证明 " $(n+1)(n+2)(n+3)\cdots(n+n)=2^n\times 1\times 3\times \cdots \times (2n-1)(n\in \mathbb{N}^*)$ " 时, 从 "n = k" 变到 "n = k + 1" 时, 左边应增添的因式是 (

A.
$$2k + 1$$

B.
$$\frac{2k+1}{k+1}$$

C.
$$\frac{(2k+1)(2k+2)}{k+1}$$
 D. $\frac{2k+3}{k+1}$

D.
$$\frac{2k+3}{k+1}$$

(006920) 利用数学归纳法证明 " $\frac{1}{n+1} + \frac{1}{n+2} + \cdots + \frac{1}{2n} > \frac{13}{24} (n \ge 2, n \in \mathbf{N}^*)$ " 的过程中,由"n = k" 变到 "n = k + 1" 时, 不等式左边的变化是 (

A. 增加
$$\frac{1}{2(k+1)}$$

B. 增加
$$\frac{1}{2k+1}$$
 和 $\frac{1}{2k+2}$

A. 增加
$$\frac{1}{2(k+1)}$$

C. 增加 $\frac{1}{2k+2}$ 并减少 $\frac{1}{k+1}$

B. 增加
$$\frac{1}{2k+1}$$
 和 $\frac{1}{2k+2}$ D. 增加 $\frac{1}{2k+1}$ 和 $\frac{1}{2k+2}$, 并减少 $\frac{1}{k+1}$.

(006921) 利用数学归纳法证明不等式 " $\sqrt{n^2+n} < n+1$ " 时, 由"假设 n=k 时命题成立"到"当 n=k+1时",正确的步骤是(

A.
$$\sqrt{(k+1)^2 + (k+1)} = \sqrt{k^2 + 3k + 2} < \sqrt{k^2 + 4k + 4} = k + 2$$

B.
$$\sqrt{(k+1)^2 + (k+1)} = \sqrt{k^2 + 3k + 2} = \sqrt{(k+2)^2 - (k+2)} < k+2$$

C.
$$\sqrt{(k+1)^2 + (k+1)} = \sqrt{k^2 + 3k + 2} < \sqrt{(k+2)^2} = k+2$$

D.
$$\sqrt{(k+1)^2 + (k+1)} = \sqrt{k^2 + 3k + 2} = \sqrt{(k^2 + k) + 2k + 2} < \sqrt{(k+1)^2 + 2k + 2} = \sqrt{(k+2)^2 - 1} < \sqrt{(k+2)^2} = k + 2$$

(006922) 利用数学归纳证明不等式 " $1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{2^n-1}< n(n\geq 2,\,n\in \mathbf{N}^*)$ " 的过程中, 由"n=k" 变 到 "n = k + 1" 时, 左边增加了 (

A. 1 项

B. k 项

C. 2^{k-1} 項

D. 2^k 项

(006923) 利用数学归纳法证明: $1+2+3+\cdots+2n=n(2n+1)(n \in \mathbb{N}^*)$.

(006924) 利用数学归纳法证明:
$$1^2 - 2^2 + 3^2 - 4^2 + \dots + (-1)^{n-1}n^2 = (-1)^{n-1} \cdot \frac{n(n+1)}{2} (n \in \mathbf{N}^*)$$
.

$$(006925)\ \textbf{利用数学归纳法证明}\colon 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\dots+\frac{1}{2n-1}-\frac{1}{2n}=\frac{1}{n+1}+\frac{1}{n+2}+\dots+\frac{1}{2n}(n\in\mathbf{N}^*).$$

(006926) 利用数学归纳法证明:
$$1^3 + 2^3 + 3^3 + \dots + n^3 = \frac{1}{4}[n(n+1)]^2 (n \in \mathbf{N}^*)$$
.

(006927) 利用数学归纳法证明:
$$(1 \times 2^2 - 2 \times 3^2) + (3 \times 4^2 - 4 \times 5^2) + \dots + [(2n-1)(2n)^2 - 2n(2n+1)^2]$$

= $-n(n+1)(4n+3)(n \in \mathbf{N}^*)$.

(006928) 对于
$$n \in \mathbb{N}^*$$
,求证: $\frac{1}{2} \tan \frac{x}{2} + \frac{1}{2^2} \tan \frac{x}{2^2} + \dots + \frac{1}{2^n} \tan \frac{x}{2^n} = \frac{1}{2^n} \cot \frac{x}{2^n} - \cot x (x \neq k\pi, n \in \mathbf{Z})$.

(006930) 对于
$$n \in \mathbb{N}^*$$
, 求证: $(2\cos\theta - 1)(2\cos2\theta - 1)(2\cos2^2\theta - 1)\cdots(2\cos2^{n-1}\theta - 1) = \frac{2\cos2^n\theta + 1}{2\cos\theta + 1}$ (其中 $\theta \neq 2k\pi \pm \frac{2\pi}{3}, k \in \mathbf{Z}$).

(006931) 对于
$$n \in \mathbb{N}^*$$
, 求证: $\frac{1}{\sin 2x} + \frac{1}{\sin 4x} + \dots + \frac{1}{\sin 2^n x} = \cot x - \cot 2^n x (x \neq \frac{m\pi}{2^p}, m \in \mathbb{Z}, p \in \mathbb{N}^*).$

(006932) 在数列
$$\{a_n\}$$
 中,已知 $a_1=1, a_{n+1}=6(1+2+\cdots+n)+1(n\in \mathbf{N}^*)$,求证: $a_1+a_2+\cdots+a_n=n^3$.

(006933) 设 x_1, x_2 是关于 x 的方程 $2x^2 + 2nx - n = 0 (n \in \mathbb{N}^*)$ 的两个根,数列 $\{a_n\}$ 的通项 $a_n = x_1^2 + x_2^2$,试用数学归纳法证明:对任何自然数 n,都有 $\frac{1}{1+a_1} + \frac{1}{2+a_2} + \frac{1}{3+a_3} + \cdots + \frac{1}{n+a_n} = \frac{n(3n+5)}{4(n+1)(n+2)}$.

(006934) 利用数学归纳法证明:
$$\frac{1}{n+1} + \frac{1}{n+2} + \frac{1}{n+3} + \dots + \frac{1}{2n} > \frac{13}{24} (n \ge 2, n \in \mathbf{N}^*).$$

(006935) 利用数学归纳法证明:
$$\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{3n+2} > 1(n \in \mathbb{N}^*).$$

(006936) 利用数学归纳法证明:
$$\frac{1}{n} + \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n^2} > 1 (n \ge 2, n \in \mathbf{N}^*).$$

(006937) 利用数学归纳法证明:
$$1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{2^n - 1} < n(n \ge 2, n \in \mathbf{N}^*).$$

(006938) 已知 $n \in \mathbf{N}^*$, 求证: $|\sin \theta| \le n |\sin \theta|$.

(006939) 己知
$$n \in \mathbb{N}^*$$
, 求证: $\cot \frac{\theta}{2^n} - \cot \theta \ge n(0 < \theta < \pi)$.

(006940) 利用数学归纳法证明:
$$(1 + \frac{1}{n})^n < n(n \ge 3, n \in \mathbf{N}^*)$$
.

$$(006941)$$
 利用数学归纳法证明: $\frac{2^n-1}{2^n+1} > \frac{n}{n+1} (n \ge 3, n \in \mathbf{N}^*).$

(006942) 利用数学归纳法证明:
$$\frac{2^n + 4^n}{2} \ge 3^n (n \in \mathbf{N}^*).$$

$$(006943)\ \textbf{利用数学归纳法证明}: \frac{a^n+b^n}{2} \geq (\frac{a+b}{2})^n (a,b \in \mathbf{R}^+,\, n \in \mathbf{N}^*).$$

$$(006944)$$
 利用数学归纳法证明: $(2n+1)(1-x)x^n < 1-x^{2n+1}(0 < x < 1, n \in \mathbf{N}^*).$

(006945) 已知数列
$$\{a_n\}$$
 满足 $a_1=2, \, a_{n+1}=\frac{a_n}{2}+\frac{1}{a_n},$ 求证: $\sqrt{2}< a_n<\sqrt{2}+\frac{1}{n}.$

(006946) 求证: $49^n + 16n - 1$ 能被 64 整除 $(n \in \mathbb{N}^*)$.

$$(006947)$$
 求证: $6^{2n} + 3^{n+2} + 3^n$ 是 11 的倍数 $(n \in \mathbf{N}^*)$.

(006948) 求证: $7^n + 1$ 能被 8 整除, 其中 n 为正奇数.

$$(006949)$$
 求证: $(3n+1) \times 7^n - 1$ 是 9 的倍数 $(n \in \mathbb{N}^*)$.

(006950) 求证: $1+2+2^2+2^3+\cdots+2^{5n-1}$ 能被 31 整除 $(n \in \mathbb{N}^*)$.

(006951) 求证: $(x+3)^n-1$ 能被 x+2 整除 $(n \in \mathbb{N}^*)$.

(006952) 求证:
$$x^n - na^{n-1}x + (n-1)a^n$$
 能被 $(x-a)^2$ 整除 $(n \ge 2, n \in \mathbf{N}^*)$.

$$(006953)$$
 当 $n \in \mathbb{N}^*$ 时, 试用数学归纳法证明 $f(n) = n^3 + \frac{3}{2}n^2 + \frac{1}{2}n - 1$ 一定是整数.

(006954) 已知数列
$$\{a_n\}$$
 满足 $a_1 = 1$, $a_{n+1} = \frac{a_n}{1 + a_n}$.

- (1) 计算 a_2, a_3, a_4 ;
- (2) 猜测 a_n 的表达式, 并用数学归纳法加以证明.

(006955) 已知数列
$$\{a_n\}$$
 的通项公式是 $a_n = \frac{1}{(n+1)^2} (n \in \mathbf{N}^*)$, 记 $b_n = (1-a_1)(1-a_2)\cdots(1-a_n)$.

- (1) 写出数列 $\{b_n\}$ 的前三项;
- (2) 猜想数列 $\{b_n\}$ 的通项公式, 并用数学归纳法加以证明;

(3) 令
$$p_n = b_n - b_{n+1}$$
, 求 $\lim_{n \to \infty} (p_1 + p_2 + \dots + p_n)$ 的值.

(006956) 已知
$$a > 0$$
, $b > 0$, 数列 $\{a_n\}$ 满足 $a_1 = \frac{1}{2}(a + \frac{b}{a}), a_2 = \frac{1}{2}(a_1 + \frac{b}{a_1}), a_3 = \frac{1}{2}(a_2 + \frac{b}{a_2}), \cdots, a_n = \frac{1}{2}(a_{n-1} + \frac{b}{a_{n-1}}).$

(006957) 已知正数数列 $\{a_n\}$ 满足 $2\sqrt{S_n} = a_n + 1 (n \in \mathbf{N}^*)$.

- (1) \mathbf{x} a_1, a_2, a_3 ;
- (2) 猜测 a_n 的表达式, 并证明你的结论.

(006958) 已知正数数列
$$\{a_n\}$$
 的前 n 项和 S_n 满足 $S_n = \frac{1}{2}(a_n + \frac{1}{a_n})$, 求 a_n .

(006959) 已知正数数列
$$\{a_n\}$$
 的前 n 项和 $S_n = \frac{1}{2}(a_n + \frac{1}{a_n})$.

- (1) 求 S_1, S_2, S_3 ;
- (2) 写出 S_n 的表达式, 并证明你的结论;
- $(3) \Re \lim_{n \to \infty} a_n.$

(006960) 已知正数数列 $\{a_n\}$ 的前 n 项和为 S_n , 且对任何自然数 n, a_n 与 2 的等差中项等于 S_n 与 2 的正的 等比中项.

- (1) 写出数列 $\{a_n\}$ 的前三项;
- (2) 求数列 $\{a_n\}$ 的通项公式 (写出证明过程).

(006961) 已知
$$n \in \mathbb{N}^*$$
, 比较 $\frac{1}{2} \times \frac{3}{4} \times \frac{5}{6} \times \cdots \times \frac{2n-1}{2n}$ 与 $\frac{1}{2\sqrt{n}}$ 的大小.

(006962) 已知 $n \in \mathbb{N}^*$, 比较 $(n+1)^2$ 与 3^n 的大小.

(006963) 已知数列
$$\{a_n\}$$
 满足 $a_1=2, a_{n+1}=\frac{a_n^2+3}{2a_n}$, 数列 $\{b_n\}$ 满足 $b_n=3-a_n^2$. 求证:

(1) $b_n < 0$;

$$(2) |\frac{b_{n+1}}{b_n}| < \frac{1}{2};$$

(3)
$$|b_n| < (\frac{1}{2})^{n-1} (n \ge 2).$$

(006964) 已知数列 $\{a_n\}$ 满足条件 $a_1=1,\ a_2=r(r>0),\ \mathbb{E}\{a_na_{n+1}\}$ 是公比为 q(q>0) 的等比数列, 记 $b_n=a_{2n-1}+a_{2n}(n\in\mathbb{N}^*).$

(1) 求出使不等式 $a_n a_{n+1} + a_{n+1} a_{n+2} > a_{n+2} a_{n+3}$ 成立的 q 的取值范围;

(2)
$$\vec{x}$$
 b_n $\hbar \lim_{n\to\infty} \frac{1}{S_n}$, $\not = b_1 + b_2 + \dots + b_n$.

(006965) 平面上有 n 条直线, 其中任何两条都不平行, 任何三条不共点, 求证这 n 条直线:

- (1) 被分割成 n^2 段.
- (2) 把平面分成 $\frac{1}{2}(n^2+n+2)$ 个部分.

(006966) 已知一个圆内有 n 条弦,这 n 条弦中每两条都相交于圆内的一点,且任何三条不共点,求证: 这 n 条 弦将圆面分割成 $f(n)=\frac{1}{2}n^2+\frac{1}{2}n+1$ 个区域.

(006967) 数列 $2,0,4,0,6,0,\cdots$ 的一个通项公式是 (

A.
$$a_n = \frac{n[1+(-1)^n]}{2}$$

B. $a_n = \frac{(n+1)[1+(-1)^n]}{2}$
C. $a_n = \frac{n[1+(-1)^{n+1}]}{2}$
D. $a_n = \frac{(n+1)[1+(-1)^{n+1}]}{2}$

(006968) 在数列 $\{a_n\}$ 中,已知 $a_1=2, a_{n+1}=a_n+2n, 则 <math>a_{100}$ 等于 ().

A. 9900

B. 9902

C. 9904

D. 10100

(006969) 已知数列 $\{a_n\}$ 满足 $a_1 = 4$, $a_2 = 2$, $a_3 = 1$, 又数列 $\{a_{n+1} - a_n\}$ 成等差数列, 则 a_n 等于 ().

A.
$$n-3$$
 B. $\frac{1}{2}(n^3 - 8n^2 + 13n + 2)$ C. $\frac{1}{2}(2n^3 - 17n^2 + 33n - 10)$ D. $\frac{1}{2}(n^2 - 7n + 14)$

(006970) 求数列 $23, 2323, 232323, \cdots$ 的通项公式 a_n .

$$(006971)$$
 求数列 $\sqrt{11-2}, \sqrt{1111-22}, \cdots, \sqrt{\underbrace{11\cdots 11}_{2n} - \underbrace{22\cdots 22}_{n}}, \cdots$ 的前 n 项和 S_{n} .

(006972) 求证: 12,1122,111222,… 的每一项都是两个相邻整数之积.

(006973) 已知数列 $\{a_n\}$ 满足 $a_{n+1}=2a_n+3$, 且 $a_1\neq -3$.

- (1) 求证: 数列 $\{a_n + 3\}$ 成等比数列;
- (2) 若 $a_1 = 5$, 求 a_n .

(006974) 已知数列 $\{a_n\}$ 满足 $a_1 = 1$, $a_{n+1} = S_n + (n+1)$.

- (1) 用 a_n 表示 a_{n+1} ;
- (2) 求证: 数列 $\{a_n + 1\}$ 成等比数列;
- (3) 求 a_n 和 S_n .

 $(006975) 已知数列 \{a_n\} 满足 a_1 = \frac{5}{6}, 且关于 x 的二次方程 a_{k-1}x^2 - a_kx + 1 = 0 的两根 \alpha, \beta 满足 3\alpha - \alpha\beta + 3\beta = 1(k \geq 2, k \in \mathbf{N}^*), 求证: 数列 {a_n - \frac{1}{2}} 是等比数列,并求出通项 a_n.$

$$(006976) \ \, \rlap{\rlap{χ}} \ \, \rlap{π} : \ \, \frac{1}{2} + (\frac{1}{3} + \frac{2}{3}) + (\frac{1}{4} + \frac{2}{4} + \frac{3}{4}) + \dots + (\frac{1}{100} + \frac{2}{100} + \frac{3}{100} + \dots + \frac{99}{100}).$$

(006977) 将自然数按下表排列:

- (1) 第 1 列中第 m 个数是多少? 第 1 行中第 n 个数是多少?
- (2) 若 $m \ge n$, 则第 m 行 (自上而下)、第 n 列 (自左而右) 的数是多少? 若 m < n 呢?
- (3) 99 在上起第几行、左起第几列?

(006978) 已知数列 $1, \frac{1}{2}, \frac{2}{1}, \frac{1}{3}, \frac{2}{2}, \frac{3}{1}, \frac{1}{4}, \frac{2}{3}, \frac{3}{2}, \frac{4}{1}, \cdots$

- (1) 试按照规律, 将此数列分组;
- (2) 分数 $\frac{n}{m}(m,n\in\mathbf{N}^*,\,m,n$ 互质) 属于第几组第几项?
- (3) $\frac{17}{30}$ 是此数列的第几项?
- (4) 数列的第 50 项是多少?

(006979) 已知数列 $\{a_n\}$ 的前 n 项之和 S_n 与 a_n 之间满足 $2S_n^2=2a_nS_n-a_n(n\geq 2),$ 且 $a_1=2.$

- (1) 求证: 数列 $\{\frac{1}{S_{-}}\}$ 是以 2 为公差的等差数列;
- (2) 求 S_n 和 a_n .

(006980) 在数列 $\{a_n\}$ 中,已知 $a_1=1, a_n=\frac{2S_n^2}{2S_n-1}(n\geq 2).$

- (1) 求证: $\{\frac{1}{S}\}$ 成等差数列;
- (2) 求通项 a_n 的表达式.

(006981) 已知数列 $\{a_n\}$, $\{b_n\}$ 的通项公式分别是 $a_n=2^n$, $b_n=3n+2$, 将它们的公共项由小到大排成数列 $\{c_n\}$, 求数列 $\{c_n\}$ 的通项公式.

(006982) 已知数列 $\{a_n\}$ 满足 $a_{n+1}=3^na_n$, 且 $a_1=1$, 求 a_n .

(006983) 已知数列 $\{a_n\}$ 满足 $a_1=\frac{1}{2},\, S_n=n^2a_n(S_n$ 是前 n 项之和), 求 a_n .

(006984) 已知数列 $\{a_n\}$ 满足 $a_1 = 1$, $a_n + a_{n+1} = -2n$.

- (1) 求证: 数列 $\{a_{2n}\}$ 与 $\{a_{2n-1}\}$ 均是以 -2 为公差的等差数列;
- (2) 试用 n 表示和式 $M = a_1a_2 a_2a_3 + \dots + (-1)^{k+1} \cdot a_ka_{k+1} + \dots + a_{2n-1}a_{2n} a_{2n}a_{2n+1}$.

(006985) 是否可找到 2n+1 个连续自然数 $(n \in \mathbb{N}^*)$,使得前 n+1 个数的平方和等于末 n 个数的平方和? 此时中间数可取什么?

(006986) 是否存在常数 k 和等差数列 $\{a_n\}$,使得 $ka_n^2 - 1 = S_{2n} - S_{n+1}$ 对任何 $n \in \mathbb{N}^*$ 都成立 $(S_n$ 为等差数列 $\{a_n\}$ 前 n 项之和)?

(006987) 在直角 $\triangle ABC$ 中,已知 $\angle C = 90^{\circ}$,AC = b,AB = c,将斜边 AB 分成 n+1 等份,记分点为 P_1, P_2, \cdots, P_n ,连接 CP_1, CP_2, \cdots, CP_n ,求 $\lim_{n \to \infty} \frac{1}{n} [(CP_1)^2 + (CP_2)^2 + \cdots + (CP_n)^2]$.

(006988) 已知各项为正数的数列 $\{a_n\}$ 满足 $a_n^2 \le a_n - a_{n+1}$, 求证 $a_n < \frac{1}{n}$.

(006989) 已知各项为正数的数列 $\{a_n\}$ 满足 $a_1+a_2+\cdots+a_n=1$, 求证: $a_1^2+a_2^2+\cdots+a_n^2\geq \frac{1}{n}(n\geq 2)$.

(006990) 已知
$$\frac{1}{2} \leq a_k \leq 1 (k \in \mathbf{N}^*)$$
,求证: $a_1 a_2 \cdots a_n + (1 - a_1)(1 - a_2) \cdots (1 - a_n) \geq \frac{1}{2^{n-1}}$.

(006991) 已知 $\{a_n\}$, $\{b_n\}$ 是满足 $(1+\sqrt{2})^n = a_n + b_n\sqrt{2}$ 的两个无穷数列.

- (1) 推测用 a_n , b_n 表示 $(1-\sqrt{2})^n$ 的表达方式, 并加以证明;
- (2) \Re : $\lim_{n\to\infty} \frac{b_n}{a_n}$

(006992) 求 θ , 使复数 $z = \cos 2\theta + (\tan^2 \theta - \tan \theta - 2)$ i 是:

- (1) 实数;
- (2) 纯虚数;
- (3) 零.

(006993) 已知实数 a, x, y 满足 $a^2 + (2+i)a + 2xy + (x-y)i = 0$, 则点 (x, y) 的轨迹是 (

A. 直线

- B. 圆心在原点的圆
- C. 圆心不在原点的圆
- D. 椭圆

解答在这里将题设之式整理得 $a^2+2a+2xy+(a+x-y)$ i = 0. 所以 $\begin{cases} a^2+2a+2xy=0, \\ a+x-y=0. \end{cases}$ 由②,得 a=y-x,代入①,得 $(y-x)^2+2(y-x)+2xy=0$ 即 $x^2+y^2-2x+2y=0$, $(x-1)^2+(y+1)^2=2$. 故应选 (C).

(006994) 若 $x, y \in \mathbb{R}$, 则 "x = 0" 是 "x + yi 为纯虚数"的().

A. 充分不必要条件

B. 必要不充分条件

C. 充要条件

D. 既不充分也不必要条件

(006995) 复数 $a + bi(a, b \in \mathbb{R})$ 在复平面内的对应点在虚轴上的一个充要条件是 ().

A. a = 0

B. $b \neq 0$

C. ab = 0

D. $\frac{a}{b} = 0$

(006996) 下列结论中, 正确的是 ().

- A. 复平面内, 原点是实轴与虚轴的公共点
- B. 实数的共轭复数一定是实数, 虚数的共轭复数一定是虚数
- C. 复数集 C 与复平面内所有向量所组成的集合是一一对应的
- D. 若使得实数 x 对应于纯虚数 xi, 则实数集 R 与纯虚数集是一一对应的

(006998) 由方程 $ z ^2 - 8 z + 15 = 0$ 所确定的复数在复平面内对应点的轨迹是 ().			
A. 四个点	B. 四条直线	C. 一个 圆	D. 两个圆
(006999) 已知集合 $M = \{1,$	$2, (m^2 - 3m - 1) + (m^2 - 5m)$	$(n+6)$ i, $m \in \mathbf{R}$ }, $N = \{-1, 3\}$	满足 $M \cap N \neq \emptyset$, 则 m
等于 ().			
A. 0 或 3	B1 或 3	C. −1 或 6	D. 3
(007000) 若复数 $z = 2m^2 -$	$3m-2+(m^2-3m+2)$ i 是	纯虚数, 则实数 m 的值为 ().
A. 1 或 2	B. $-\frac{1}{2}$ 或 2	C. $-\frac{1}{2}$	D. 2
(007001) 复平面内, 正方形	的三个顶点对应的复数分别。	是 1 + 2i, 0, -2 + i, 则第几	四个顶点所对应的复数为
().			
A. 3 + i	B. 3 – i	C. $1 - 3i$	D. $-1 + 3i$
(007002) 判断命题的真假: a	$x_1 + y_1 i = x_2 + y_2 i$ 的充要条件	件是 $x_1 = x_2$, 且 $y_1 = y_2$	
(007003) 判断命题的真假: 化	壬意两个复数都不能比较大小	·	
(007004) 判断命题的真假: 君	皆 $x, y \in \mathbf{R}$,且 $x = y$,则 $(x -$	- y) + (x + y)i 是纯虚数	
(007005) 已知复数 $z = \frac{a^2 + a^2}{a^2}$	$\frac{-a-2}{-3} + (a^2 - 4a + 3)i(a \in$	\mathbf{R}). 若 $z \in \mathbf{R}$, 则 $a =$; 若 z 是纯虚数, 则
$a = \underline{\hspace{1cm}}$.			
(007006) 已知 $z = (2\cos\theta -$	$\sqrt{3}$)+i(2 sin θ -1). $\mathbf{\ddot{z}} z \in \mathbf{R}$,	则 θ =; 若 z 是纯	虚数, 则 θ =
(007007) 已知复数 $z = (\tan^2 z)$	$(2\theta + \tan \theta - 2) + i(\cos^2 \theta - \sin^2 \theta)$	9). 当 θ = 时, z 为	7实数; 当 θ =
时, z 为纯虚数; 当 $\theta =$ 时, $z = 0$.			
(007008) 复平面内, 若复数	$z = (m^2 - m - 2) + (m^2 - m^2)$	- 3m + 2)i 所对应的点在虚	轴上, 则实数 m 的值等
于			
(007009) 复平面内, 若复数 $(m^2-8m+15)+(m^2-5m-14)$ i 所对应的点位于第四象限, 则实数 m 的取值范			
围是			
(007010) 满足 $ \log_3 x + 4i = 5$ 的实数 x 的值是			
(007011) 复平面内,已知复数 $z = x - \frac{1}{3}$ i 所对应的点都在单位圆内,则实数 x 的取值范围是			
(007012) 不等式 $ 4 + i \log_{\frac{1}{2}} $	$ (x-1) \ge -3+4\mathrm{i} $ 的解集人	E	
(007013) 若复数 $z = (x-1)$	$+(2x-1)$ i 的模小于 $\sqrt{10}$,	则实数 x 的取值范围是	·
(007014) 若复数 $z = \cos \alpha +$	$-\operatorname{i}(1-\sinlpha),$ 则 $ z $ 的取值范		

A. (0,3) B. (-2,0) C. (3,4) D. $(-\infty,-2)$

(007015) 若复数 $z_1 = 1 - ir \sin \alpha$ 与 $z_2 = r \cos \alpha - \sqrt{3}i(r > 0)$ 相等, 则 $z_1 = \underline{\hspace{1cm}}$.

(007016) 已知 $z_1 = \sin 2\theta + i \cos \theta$, $z_2 = \cos \theta - \sqrt{3} \sin \theta$ ($0 \le \theta < \pi$). 若 $z_1 = z_2$, 则 $\theta =$ ______; 若 $z_1 = \overline{z_2}$,

(007017) 已知 $z + |\overline{z}| = 2 + i$, 求复数 z.

(007018) 已知 z-2|z|=-7+4i, 求复数 z.

(007019) 已知复数 $z = \frac{x^2 - 3x + 2}{x + 3} + (x^2 + 2x - 3)i$, 求实数 x, 使:

- (1) z 是实数;
- (2) z 是虚数;
- (3) z 是纯虚数.

(007020) 若 $\cos 2\theta + i(1 - \tan \theta)$ 是纯虚数, 则 θ 的值取 ().

A.
$$k\pi - \frac{\pi}{4}(k \in \mathbf{Z})$$

B.
$$k\pi + \frac{\pi}{4}(k \in {\bf Z})$$

C.
$$k\pi \pm \frac{\pi}{4} (k \in \mathbf{Z})$$

A.
$$k\pi - \frac{\pi}{4}(k \in \mathbf{Z})$$
 B. $k\pi + \frac{\pi}{4}(k \in \mathbf{Z})$ C. $k\pi \pm \frac{\pi}{4}(k \in \mathbf{Z})$ D. $\frac{k\pi}{2} + \frac{\pi}{4}(k \in \mathbf{Z})$

(007021) 方程 3z + |z| = 1 - 3i 的解是 ().

A. i

C.
$$\frac{3}{4}$$
 – i

D.
$$-i$$
 和 $\frac{3}{4} - i$

(007022) 若虚数 (x-2)+yi $(x,y\in\mathbf{R})$ 的模为 $\sqrt{3},$ 则 $\frac{y}{x}$ 的最大值是 ().

A.
$$\frac{\sqrt{3}}{2}$$

B.
$$\frac{\sqrt{3}}{3}$$

C.
$$\frac{1}{2}$$

D.
$$\sqrt{3}$$

(007023) 设复数 $z = \log_2(\cos \alpha + \frac{1}{2}) + i \log_2(\sin \alpha + \frac{1}{2})$, 求 α , 使:

- (1) z 为实数;
- (2) z 为纯虚数;
- (3) z 在复平面内的对应点在第二象限;
- (4) z 的实部与虚部相等.

(007024) 根据条件, 在复平面内画出复数对应点的集合所表示的图形: $1 \le |\text{Re}(z)| \le 2(\text{Re}(z))$ 表示 z 的实部).

(007025) 根据条件, 在复平面内画出复数对应点的集合所表示的图形: $1 \le |z| \le 2$ 且 Im(z) < 0(Im(z) 表示 z的虚部).

(007026) 已知两个复数集 $M = \{z|z=t+(1-t^2)\mathrm{i}, t\in\mathbf{R}\}$ 及 $N = \{z|z=2\cos\theta+(\lambda+3\sin\theta)\mathrm{i}, \lambda\in\mathbf{R}, \theta\in\mathbf{R}\}$ 的交集为非空集合, 求 λ 的取值范围.

(007027) 已知 $\frac{z}{z-1}$ 是纯虚数, 求复数 z 在复平面内对应点的轨迹的普通方程.

(007028) 若 |z+1-i|=1, 求 |z-3+4i| 的最大值和最小值.

(007029) 已知
$$|z_1| = |z_2| = 1$$
, $z_1 + z_2 = \frac{1}{2} + \frac{\sqrt{3}}{2}$ i, 求复数 z_1 , z_2 .

(007030) 求值: $(1+i)^{10} - (1-i)^{10}$.

$(007031)\frac{(2+2i)^5}{(-1+\sqrt{3}i)^4}.$			
(007032) 求复数 $z = \frac{1}{(\frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{2})}$	$\frac{(3-4i)^3}{\frac{1}{2}i) \cdot (\sqrt{3} + \sqrt{2}i)^4}$ 的模.		
(007033) 已知 $ z \le 1$, $ \omega \le$	$1, 求证: z+\omega \le 1+\overline{z}\omega .$		
(007034) 若复数 z 满足 z +	$\frac{4}{z} \in \mathbf{R}, \ \underline{\mathbf{H}} \ z-2 = 2, \ \mathbf{R} \ z.$		
(007035) 求函数 $y = \sqrt{4a^2 + 4a^2}$	$\frac{1}{x^2} + \sqrt{(x-a)^2 + a^2}(a > 0)$) 的最值.	
(007036) 若 $ z + \frac{1}{z} = 1$, 求	z 的取值范围.		
~ (007037) 两个共轭虚数的差-	一定是 ().		
A. 非零实数	B. 零	C. 纯虚数	D. 非纯虚数
(007038) 复平面内, 已知复数	文 2 – i 和 3 + 4i 分別对于点	$M,N,$ 则向量 \overrightarrow{MN} 对应的	夏数是 ().
A. $5 + 3i$	B1 - 5i	C. 1 + 5i	D. 1 – 5i
(007039) 若复数 $z = 3 + ai$ i	满足条件 $ z-2 < 2$, 则实数	a 的取值范围是 ().	
A. $(-2\sqrt{2}, 2\sqrt{2})$	B. (-2, 2)	C. (-1, 1)	D. $(-\sqrt{3}, \sqrt{3})$
(007040) 若复数 z 满足 z +	3 - 4i = 2, 则 $ z $ 的最小值	和最大值分别是 ().	
A. 1 和 9	B. 4 和 10	C. 5 和 11	D. 3 和 7
$(007041) 若 z - 25i \le 15, z$	$z \in \mathbb{C}$, 则 $ z $ 最小时的 $z = $, $ z $ 最大时的 $z=$ _	
(007042) 若复数 z 满足 z =	$z=3,$ 则 $ z-1+\sqrt{3}{ m i} $ 的最小(值是	
(007043) 若复数 z 满足 $ z-3 =5$, 则 $ z-(1+4\mathrm{i}) $ 的最大值是, 最小值是			
(007044) 若 $ z-1-2i =1$, 则 $ z-3-i $ 的取值范围是			
(007045) 复平面内,已知点 A,B,C 分别对应于复数 $z_1=1+\mathrm{i},\ z_2=5+\mathrm{i},\ z_3=3+3\mathrm{i},\ $ 以 AB,AC 为邻边作一平行四边形 $ABDC$,求点 D 对应的复数 z_4 及 AD 的长.			
(007046) 若 $f(\overline{z+i}) = 2z + \overline{z} + i$, 则 $f(i)$ 等于 ().			
A. 1	B1	C. i	D. —i
(007047) 若复数 z 满足 $ z+1 ^2- z+{\rm i} ^2=1,$ 则 z 在复平面内的对应点所表示的图形是 ().			
A. 直线	B. 圆	C. 椭圆	D. 双曲线
(007048) 若复数 z 满足 $ z-1 + z+1 =2$, 则 z 在复平面内的对应点所表示的图形是 ().			
A. 圆	B. 椭圆	C. 双曲线	D. 线段

(007049) 若 z_1, z_2 都是虚数, 则 " $z_1 = \overline{z}_2$ " 的一个必要不充分条件是 ().			
$A. z_1 - \overline{z}_2 = 0$	B. $\overline{z}_1 = z_2$	C. $z_1 = z_2$	D. $ z_1 = z_2 $
(007050) 复平面内, 曲线	z - 1 + i = 1 关于直线 $y = i$	r 的对称曲线方程为 ().	
A. $ z - 1 - i = 1$	B. $ \bar{z} - 1 - i = 1$	C. $ z + 1 + i = 1$	D. $ \bar{z} + 1 + i = 1$
(007051) 若 $ z =1$, 则 $ z $	+i + z-6 的最小值等于 ().	
A. 7	B. $\sqrt{37}$	C. 6	D. 5
(007052) 若复平面内的点	A, B 分别对应于复数 2+i 和 1	i, 则线段 AB 的中垂线方程	星的复数形式是
(007053) 设 $z \in \mathbb{C}$, 则方和	z + 2 + z - 2 = 6 对应的	曲线的普通方程是	_·
(007054) 以(±3,0) 为两公	焦点, 且长半轴长为 5 的椭圆刀	方程的复数形式是	-
(007055) 已知复数 z 满足	z - (1 + i) - z - (1 - i) =	2, 则复平面内 z 的对应点的	的轨迹是 .
(007056) 若 $ z-3 + z+$	-3 = 10, I. z - 5i - z + 5i	= 8, 则复数 <i>z</i> =	
$(007057) 若 z - 2 = \sqrt{1}$	$ \overline{7}, z-3 = 4, 则复数 z =$		
(007058) 设 $ z_1 =3, z_2 $	$= 5, z_1 + z_2 = 6, $	l.	
(007059) 若 $ z_1 = 3$, $ z_1 + z_2 = 5$, $ z_1 - z_2 = 7$, 求 $ z_2 $.			
(007060) 已知两个复数集	合 $A = \{z z - 2 \le 2\}, B = \{z z - 2 \le 2\}$	$\{z z = \frac{z_1}{2}i + b, \ z_1 \in A, \ b \in \mathbf{I}\}$	R }.
(1) 当 $b=0$ 时, 求集合 B 所对应的区域;			
(2) 当 A ∩ B = Ø 时, 求(3) 芸复数 z₁ − 1 + 2ai		$-\int z z-z_1 < \sqrt{2} \lambda B -$	$ z _2 = z_0 < 2\sqrt{2}$
(3) 若复数 $z_1 = 1 + 2ai$, $z_2 = a + i(a \in \mathbf{R})$, 集合 $A = \{z z - z_1 \le \sqrt{2}\}$, $B = \{z z - z_2 \le 2\sqrt{2}\}$ 满足 $A \cap B = \emptyset$, 求 a 的取值范围.			
(007061) 已知复数 z_1, z_2 满足 $ z_1 =1, z_2 =1,$ 且 $z_1+z_2=\frac{1}{2}+\frac{\sqrt{3}}{2}$ i, 求 z_1, z_2 .			
(007062) 复平面内三点 A,B,C 依次对应于复数 $1+z,1+2z,1+3z,$ 其中 $ z =2,O$ 为原点, 若 $S_{\triangle AOB}$ +			
$S_{\triangle BOC} = 2$,求复数 z .			
(007063) 若复数 $z = (1 +$	$(z)^2$, 则 $z \cdot \overline{z}$ 的值为 ().		
A4i	B. 4i	C. 4	D. 8
(007064) 计算 $(\frac{\sqrt{2}i}{1+i})^{100}$ 的结果是 $($).			
A. i	В. —і	C. 1	D1
(007065) 当 n 取遍正整数时, $i^n + i^{-n}$ 表示不同值的个数是 ().			
A. 1	B. 2	C. 3	D. 4

(007066) 使 $(\frac{1+i}{1-i})^n$ 为实数的最小自然数 n 是 (). A. 2 C. 6 B. 4 D. 8 (007067)" z_1 和 z_2 为共轭复数"是" $z_1 + z_2 \in \mathbf{R}$ 且 $z_1 \cdot z_2 \in \mathbf{R}$ "的(). A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件 (007068) 若 $(z-1)^2 = |z-1|^2$, 则 z 一定是 (). A. 纯虚数 B. 实数 C. 虚数 D. 零 (007069) 设 $z = 1 + ki(k \in \mathbf{R})$, 则 z^2 对应点的轨迹是 (). A. 圆 B. 椭圆 C. 抛物线 D. 双曲线 (007070) 若 z 是复数, 判断 " $|z|^2 = z^2$ 恒成立"的真假: (007071) 若 z 是复数, 判断 " $|z|^2 = z^2$ 恒不成立". 的真假: (007072) 若 z 是复数, 判断 " $|z|^2 = |z|^2$ 恒成立"的真假: (007073) 若 z 是复数, 判断 " $|z| \le 1 \Leftrightarrow -1 \le z \le 1$ " 的真假:_______. (007074) 若 z 是复数, 判断 " $\sqrt{|z|^2} = |z|$ 恒成立" 的真假: (007075) 若 z_1, z_2 都是复数, 判断 "若 $|z_1| = |z_2|$, 则 $z_1 = \pm z_2$ "的真假:_ (007076) 若 z 是复数, 判断 " $z + \overline{z}$ 一定是实数" 的真假: (007077) 若 z 是复数, 判断 " $z - \overline{z}$ 一定是纯虚数" 的真假:______. (007078) 若 z 是复数, 判断 " $z^2 \ge 0$ 恒成立"的真假:______. (007079) 若 z 是复数, 判断 "若 |z|=1, 则 $\overline{z}=\frac{1}{z}$ " 的真假:______. (007080) 若 z 是复数, 判断 " $z = \overline{z} \Leftrightarrow z \in \mathbf{R}$ 恒成立"的真假:_____ (007081) 若 z_1, z_2 都是复数, 判断 "若 $z_1^2 + z_2^2 = 0$, 则 $z_1 = z_2 = 0$ " 的真假:_______. $(007082)(i - \frac{1}{i})^6$ 的虚部是______. (007083) 计算 $(1+i)^{20} - (1-i)^{20} =$ _____. (007084) 计算 $\frac{(1+i)^5}{1-i} + \frac{(1-i)^5}{1+i} = \underline{\hspace{1cm}}$. (007085) 若 z = 1 + i, 则 $\frac{5}{1 + z^2} =$ _____.

(007086) 计算 $\frac{-2\sqrt{3}+i}{1+2\sqrt{3}i} + (\frac{\sqrt{2}}{1+i})^{3996} = \underline{\hspace{1cm}}$

(007087) 若
$$a \in \mathbf{R}$$
, 且 $\frac{a+2i}{3+i} \in \mathbf{R}$, 则 $\frac{a+2i}{3+i} =$ ______.

(007088) 已知
$$\omega = -\frac{1}{2} + \frac{\sqrt{3}}{2}$$
i,则: $\omega^2 + \frac{1}{\omega^2} = _____; \omega^3 + \frac{1}{\omega^3} = _____; \omega^{14} + \frac{1}{\omega^{14}} = _____; 1 + \omega + \omega^2 + \omega^3 + \dots + \omega^{10} = ____;$

(007089) 若
$$f(x) = 2x^4 - 11x^3 - 7x^2 - 9x + 4$$
, 则 $f(-\frac{1}{2} + \frac{\sqrt{3}}{2}i) =$ _____.

(007090) 计算:
$$(i - \frac{1}{i})^{10} =$$
_____.

(007091) 计算:
$$\frac{(1+i)^3 - (1-i)^3}{(1+i)^2 - (1-i)^2} = \underline{\hspace{1cm}}.$$

(007092) 计算:
$$i \cdot i^2 \cdot i^3 \cdot \dots \cdot i^{1997} =$$
______.

(007093) 计算:
$$i + i^2 + i^3 + \dots + i^{1997} =$$
_____.

(007094) 计算:
$$(\frac{1+\mathrm{i}}{\sqrt{2}})^{1997} + (\frac{1-\mathrm{i}}{\sqrt{2}})^{1997} =$$
______.

(007095) 已知
$$i^{3m} = i^n(m, n \in \mathbf{Z})$$
, 则 i^{m+n} 的值为 ().

$$C. -i$$

D.
$$-1$$

$$(007097)$$
 计算: $1 + 2i + 3i^2 + 4i^3 + \cdots + 10i^9$.

(007098) 计算:
$$i + 2i^2 + 3i^3 + \cdots + 359i^{359}$$
.

$$(007099)$$
 求首项为 i , 公比为 $1 + \frac{1}{i}$ 的等比数列的第七项.

(007100) 计算:
$$(\frac{-1+i}{1+\sqrt{3}i})^3$$
.

(007101) 计算:
$$\frac{(\sqrt{3}+i)^5}{-1+\sqrt{3}i}$$
.

(007102) 复数
$$(3+4i)(-\frac{1}{2}+\frac{\sqrt{3}}{2}i)$$
 的模为:_____.

$$(007103)$$
 复数 $\frac{5-12i}{-8+15i}$ 的模为:______.

$$(007104)$$
 复数 $\frac{(1+i)^3}{(1-i)^2(9+40i)}$ 的模为:_____.

(007105) 若
$$t \in \mathbf{R}$$
, 则复数 $\frac{1-t^2}{1+t^2} + \frac{2t}{1+t^2}$ i 的模为:______

(007106) 复数
$$\frac{(1-i)^{10}(3-4i)^4}{(-\sqrt{3}+i)^8}$$
 的模为:_____.

(007108) 已知
$$z = 1 + i$$
, 且 $\frac{z^2 + az + b}{z^2 - z + 1} = 1 - i$, 求实数 a, b 的值.

(007109)已知 a>0,且 $a\neq 1,$ 若 $(\log_a x+\mathrm{i})z=1+\mathrm{i}\log_a x,$ 问: x 为何值时, z 为:

- (1) 实数;
- (2) 虚数;
- (3) 纯虚数;
- (4) 模等于 1 的复数.*****

(007111) 已知复数
$$z = \frac{(1+i)^3(a-1)^2}{\sqrt{2}(a-3i)^2}$$
 满足 $|z| = \frac{2}{3}$, 求实数 a 的值.

(007112) 已知复数 z 满足 |z| = 5, 且 (3 + 4i)z 是纯虚数, 求 z.

(007113) 已知
$$z = \frac{\sqrt{3}\sin\theta + i\cos\theta}{\sin\theta - i\sqrt{3}\cos\theta}$$
, 求 z 的最大值.

(007114) 已知复数 z 满足 $|z + \frac{1}{z}| = 1$, 求 |z| 的取值范围

(007115) 已知复数
$$z$$
 满足 $z + \frac{4}{z} \in \mathbb{R}$, $|z - 2| = 2$, 求 z .

(007116) 已知复数
$$z$$
 满足 $|z-4|=|z-4\mathrm{i}|, z+\frac{14-z}{z-1}\in\mathbf{R}, 求 z.$

(007117) 已知
$$\left|\frac{z-12}{z-8i}\right| = \frac{5}{3}, \left|\frac{z-4}{z-8}\right| = 1$$
, 求复数 z .

(007118) 求满足 $z^2 + \frac{9}{z^2} \in \mathbf{R}$ 的复数 z 的对应点轨迹的普通方程.

$$(007119)$$
 求满足 $\frac{z}{z-1}$ 的复数 z 的对应点轨迹的普通方程.

(007120) 已知 $a \in \mathbf{R}$, 求满足 $z \cdot \overline{z} + az + \overline{z} = 0$ 的复数 z 的对应点轨迹的普通方程.

$$(007121)$$
 已知非零复数 z_1, z_2 满足 $|z_1 + z_2| = |z_1 - z_2|$, 求证: $(\frac{z_1}{z_2})^2$ 一定是负数.

(007122) 已知 P,Q 两点分别对应于复数 z_1 和 $2z_1 + 3 - 4i$, 若点 P 在曲线 |z| = 2 上移动, 求点 Q 的轨迹.

$$(007123)$$
 已知复数 z 满足 $|z|=2$,求复数 $w=\frac{z+1}{z}$ 在复平面内的对应点的轨迹.

(007124) 复平面内两动点 P_1, P_2 所对应的复数 z_1, z_2 满足 $z_1 = z_2 i + 3$,又点 P_2 沿着曲线 |z - 5| - |z + 5| = 6 运动, 试求点 P_1 的轨迹方程, 并指出它表示何种曲线.

(007125) 复平面内,线段 AB 上的点 P 对应的复数为 z, 其中 A, B 点分别对应于复数 $z_A=1$, $z_B=i$, 求 z^2 的对应点轨迹的普通方程,并画出图形.

(007126) 已知点 Q(u,v) 在 O(0,0), A(1,0), B(1,1) 为顶点的 $\triangle OAB$ 的边界上移动, 求 $z=(u+2vi)^2+2+3i$ 所对应的点 P 的轨迹, 并画出草图.

$$(007127)$$
 求证: 复数 z 可以表示为 $\frac{1+t\mathrm{i}}{1-t\mathrm{i}}(t\in\mathbf{R})$ 的充要条件是 $|z|=1$ 且 $z\neq-1$.

- (007128) 求证: $\frac{z-1}{z+1}$ 为纯虚数的充要条件是 |z|=1 且 $z \neq \pm 1$.
- (007129) 利用 $||z_1| |z_2|| \le |z_1 + z_2| \le |z_2| + |z_2|$, 求函数 $y = \sqrt{x^2 + 4} + \sqrt{x^2 8x + 17}$ 的最小值及相应的 x.
- (007130) 利用 $||z_1|-|z_2|| \leq |z_1+z_2| \leq |z_2|+|z_2|$, 求函数 $y=\sqrt{x^2+9}-\sqrt{x^2-2x+5}$ 的最大值及相应的 x.
- (007131) 利用 $||z_1| |z_2|| \le |z_1 + z_2| \le |z_2| + |z_2|$, 求证: $\sqrt{x^2 + y^2} + \sqrt{(x-2)^2 + y^2} + \sqrt{x^2 + (y-2)^2} + \sqrt{(x-2)^2 + (y-2)^2} \ge 4\sqrt{2}$.
- (007132) 利用 $|z|^2 = z \cdot \overline{z}$, 解决问题: "若 |z| = 1, 求证 $|\frac{a-z}{1-a\overline{z}}| = 1$ ".
- (007133) 利用 $|z|^2=z\cdot \overline{z}$, 解决问题: "若 $|1-z_1z_2|=|z_1-\overline{z}_2|$, 求证: $|z_1|$, $|z_2|$ 中至少有一个为 1".
- (007134) 利用 $|z|^2=z\cdot \overline{z}$, 解决问题: "若 $|z_1|\leq 1,\ |z_2|\leq 1,\ 求证:\ |rac{z_1-z_2}{1-\overline{z}_1z_2}|\leq 1$ ".
- (007135) 利用 $|z|^2 = z \cdot \overline{z}$, 解决问题: "若复数 z_i 满足 $|z_i| = 1 (i = 1, 2, 3)$, 求 $|\frac{z_1 z_2 + z_2 z_3 + z_3 z_1}{z_1 + z_2 + z_3}|$ 的值".
- (007136) 利用 $|z|^2 = z \cdot \overline{z}$, 解决问题: "已知复数 $A = z_1 \overline{z}_2 + z_2 \overline{z}_1$, $B = z_1 \overline{z}_1 + z_2 \overline{z}_2$, 其中 z_1, z_2 是非零复数,问: A, B 可不可以比较大小? 并证明之".
- (007137) 已知 |z| = 1, $|z_2| = \sqrt{2}$, 求证: $|\frac{2z_1 + (1+3\mathrm{i})z_2^2}{3+4\mathrm{i}}| \le \frac{12}{5}$.
- (007138) 已知 $z=rac{\sinlpha+\mathrm{i}\sqrt{2}\coslpha}{\sqrt{2}\sinlpha-\mathrm{i}\coslpha},$ 求证: $rac{\sqrt{2}}{2}\leq|z|\leq\sqrt{2}.$
- (007139) 复平面内三点 A, B, C 分别对应于复数 z_1, z_2, z_3 , 若 $\frac{z_2 z_1}{z_3 z_1} = 1 + \frac{4}{3}$ i, 试求 $\triangle ABC$ 的三边之比.
- (007140) 已知 |z|=1, 求 $|z^2-z+1|$ 的最大值和最小值.
- (007141) 已知 |z| = 1, 求 $|z^2 z + 2|$ 的最大值和最小值.
- (007142) 已知 |z| = 1, 求 $|z^3 3z 2|$ 的最大值和最小值.
- (007143) 将复数 $2(\cos \frac{\pi}{5} i \sin \frac{\pi}{5})$ 化为三角形式.
- (007144) 将复数 $2(-\cos\frac{\pi}{5} + i\sin\frac{\pi}{5})$ 化为三角形式
- (007145) 将复数 $-2(\cos{\frac{\pi}{5}} + i\sin{\frac{\pi}{5}})$ 化为三角形式.
- (007146) 将复数 $2(\sin\frac{\pi}{5} + i\cos\frac{\pi}{5})$ 化为三角形式.
- (007147) 将复数 $z = -\sqrt{3} + i$ 化成三角形式.
- (007148) 将复数 z = 5 12i 化成三角形式.
- (007149) 若复数 $z=\frac{1}{2}+\mathrm{i}\sin\alpha(\alpha\in\mathbf{R}),$ 且 $|z|\leq1,$ 求 $\arg z$ 和 α 的取值范围.
- (007150) 已知 $z + \frac{1}{z} = \cos x (x \in \mathbf{R})$, 且 $|z| \le 1$, 求 $\arg z$ 的取值范围.

- (007151) 已知非零复数 z 满足 |z-i|=1, 且 $\arg z=\theta$, 求:
- (1) θ 的取值范围;
- (2) 复数 z 的模;
- (3) 复数 $z^2 zi$ 的辐角.
- (007152) 已知等边 $\triangle ABC$ 的两个顶点坐标是 A(2,1), B(3,2), 求顶点 C 的对应坐标.
- (007153) 复平面内, 两点 A, B 分別对应于复数 $\alpha, \beta, \mathbf{L}$ $\beta + (1+i)\alpha = 0, |\alpha 2+i| = 1, 求 \triangle AOB$ 面积的最 大值和最小值.
- (007154) 已知定点 A(-2,0) 和圆 $x^2 + y^2 = 1$ 的动点 B, 点 A,B,C 接逆时针方向排列, 且 |AB|:|BC|:|CA| = 3:4:5(如图),求点 C 的轨迹方程.
- (007155) 求值: $\arctan \frac{1}{3} + \arcsin \frac{1}{\sqrt{26}} + \arccos \frac{7}{\sqrt{50}} + \arccos 8$.
- $(007156) \ \ \mathcal{L} \ A = \cos\frac{\pi}{11} + \cos\frac{3\pi}{11} + \cos\frac{5\pi}{11} + \cos\frac{7\pi}{11} + \cos\frac{9\pi}{11}, \ B = \sin\frac{\pi}{11} + \sin\frac{3\pi}{11} + \sin\frac{5\pi}{11} + \sin\frac{7\pi}{11} + \sin\frac{9\pi}{11}$ 求证: $A = \frac{1}{2}$, $B = \frac{1}{2} \cot \frac{\pi}{22}$.
- (007157) 复数 $z = -\sin 100^{\circ} + i \cos 100^{\circ}$ 的轴角主值是 ().
 - A. 80°

B. 100°

C. 190°

- D. 260°
- (007158) 复数 $z = -2(\sin 220^{\circ} i\cos 220^{\circ})$ 在复平面内的对应点所在的象限是(
- A. 第一象限
- B. 第二象限
- C. 第三角限
- D. 第四象限
- (007159) 若 $\frac{3\pi}{2} < \theta < 2\pi$,则 $-\sin\theta + i\cos\theta$ 的辐角主值等于 ().
- A. $2\pi \theta$
- B. $\theta \frac{3\pi}{2}$
- D. $\theta \frac{\pi}{2}$
- $(007160) \ \textbf{复数} \ z = 1 + \sin\theta + \mathrm{i}\cos\theta (0 < \theta < \frac{\pi}{2}) \ \textbf{的辐角主值是} \ (\hspace{1cm}).$

- C. $\frac{\pi}{2} \theta$
- D. $\frac{\pi}{4} \frac{\theta}{2}$

- A. $\arcsin \frac{b}{\sqrt{a^2 + b^2}}$ B. $\arcsin \frac{a}{\sqrt{a^2 + b^2}}$ C. $\operatorname{arccot} \frac{b}{a}$ D. $2\pi + \arctan \frac{b}{a}$

- (007162) 若复数 z 满足 $|z + 3i| \le 2$, 则 $\arg z$ 的最大值为 ().

- A. $\arcsin\frac{2}{3}$ B. $\arccos\frac{2}{3}$ C. $\pi \arcsin\frac{2}{3}$ D. $2\pi \arccos\frac{2}{3}$
- (007163) 复数 $z = 1 + \cos \theta + i \sin \theta (\pi < \theta < 2\pi)$ 的模是 ().
- A. 1

- B. $1 + \cos \theta$
- C. $2\cos\frac{\theta}{2}$
- D. $-2\cos\frac{\theta}{2}$
- (007164) 若复数 z 的辐角主值是 $\frac{5\pi}{6}$, 实部是 $-2\sqrt{3}$, 则 z 的代数形式是 ().
- A. $-2\sqrt{3} 2i$

- B. $-2\sqrt{3} + 2i$ C. $-2\sqrt{3} + 2\sqrt{3}i$ D. $-2\sqrt{3} 2\sqrt{3}i$

(007165) 若 $\arg z = \alpha (0 < \alpha < \frac{\pi}{2})$, 则 $\arg \overline{z}$ 等于 (B. $\pi - \alpha$ C. $\pi + \alpha$ D. $2\pi - \alpha$ A. $-\alpha$ (007166) 满足 $|z-2+2\mathrm{i}|=\sqrt{2}$ 的复数 z 的辐角主值的最小值是 (A. 105° B. 265° C. 285° D. 315° (007167) 复数 z = -1 - 2i 的辐角主值是 (A. arctan 2 B. $\pi + \arctan 2$ $C.\,-\arctan2$ D. $(2k+1)\pi + \arctan 2(k \in \mathbf{Z})$ (007168) 若复数 z 满足 $z = (a + i)^2$, 且 $\arg z = \frac{7}{4}\pi$, 则实数 a 的值为 (C. $-1 \pm \sqrt{2}$ D. $-1 - \sqrt{2}$ B. -1A. 1 (007169) 复数 $2(\cos \frac{\pi}{5} - i \sin \frac{\pi}{5})$ 的三角形式为_____. (007170) 复数 $2(\sin \frac{\pi}{5} + i \cos \frac{\pi}{5})$ 的三角形式为_____. (007171) 复数 $2(-\cos\frac{\pi}{5} + i\sin\frac{\pi}{5})$ 的三角形式为______. (007172) 复数 $-2(\cos{\frac{\pi}{5}} + i\sin{\frac{\pi}{5}})$ 的三角形式为______. (007173) 已知 $\frac{\pi}{2} < \theta < \pi$, 复数 $|\cos \theta| + \mathrm{i} |\sin \theta|$ 的三角形式为______. (007174) 若复数 z 满足 $\arg(z+4)=\frac{\pi}{6},$ 则 |z| 的最小值为 (). D. $3\sqrt{2}$ C. $[0, \frac{\pi}{6}] \cup [\frac{11\pi}{6}, 2\pi)$ D. $[\frac{\pi}{6}, \frac{11\pi}{6}]$ B. $\left[-\frac{\pi}{6}, \frac{\pi}{6} \right]$ A. $[0, \frac{\pi}{6}]$ (007176) 若非零复数 z 的辐角主值为 $\frac{7\pi}{4}$, 则复数 $z+\mathrm{i}$ 的辐角主值的取值范围是 (D. $[0, \frac{\pi}{2}) \cup (\frac{7\pi}{4}, 2\pi)$ B. $(\frac{7\pi}{4}, 2\pi)$ A. $(-\frac{\pi}{4}, \frac{\pi}{2})$ C. $[0, \frac{\pi}{2})$ (007177) 若 7 + 3i 的辐角主值为 θ , 则 6 - 14i 的辐角主值为 (). C. $\frac{3\pi}{2} - \theta$ D. $\frac{3\pi}{2} + \theta$ A. $\frac{\pi}{2} + \theta$ B. $\frac{\pi}{2} - \theta$ (007178) 复数 cot 20° - i 的模是______, 辐角的主值是 (007179) 若 $a, b \in \{-2, -1, 1, 2\}$, 且 $a \neq b$, 则 $\arg(a + bi)$ 的最大值是_ (007180) 若复数 $z = a + bi(a, b \in \mathbf{R})$ 的对应点在第四象限, 则 $\arg z =$ ______

(007181) 若 $z_1 = 1 + \cos \theta + \mathrm{i} \sin \theta$, $z_2 = 1 - \cos \theta + \mathrm{i} \sin \theta (\pi < \theta < 2\pi)$, 则 z_1, z_2 的辐角主值之和等于_____

(007182) 若 $\pi < \theta < \frac{3\pi}{2}$, 则 $\arg(|\cos \theta| + i|\sin \theta|) =$ _____.

(007183) 若 $|z| \le 1$, 则 $\arg(z-2)$ 的最大值为______, 最小值为_

(007184) 已知
$$|z+1| = \sqrt{10}$$
, $\arg(z-3\overline{z}) = \frac{5\pi}{4}$, 求复数 z .

(007185) 已知复数
$$z$$
 满足 $|\frac{1}{z}-1|=\frac{1}{2}$, $\arg\frac{z-1}{z}=\frac{\pi}{3}$, 求 z 的值.

(007186) 已知复数
$$z$$
 满足 $|\frac{z-i}{2z}|=2$, $\arg \frac{1+iz}{z}=\frac{\pi}{2}$, 求 z .

(007187) 已知 $\omega = z + a$ i, 其中 $a \in \mathbf{R}, \ z = \frac{(1+4\mathrm{i})(1+\mathrm{i}) + 2 + 4\mathrm{i}}{3+4\mathrm{i}}$. 且 $|\omega| \le \sqrt{2}$, 求 ω 的辐角主值 θ 的取值范 — 围.

$$(007188)$$
 已知 $f(z) = |1+z| - \overline{z}, \ f(-\overline{z}\mathrm{i}) = 10 + 3\mathrm{i}, \ 求 \ \frac{z+3}{z-2}$ 的模及辐角主值.

(007189) 已知复数
$$1 - \cos \theta + i \sin \theta (-\pi < \theta < \pi)$$
.

- (1) 求 |z| 及 $\arg z$;
- (2) 要使 $1 \le |z| \le \sqrt{2}$, 求 θ 的取值范围.

(007191) 已知复数
$$z = \sqrt{|\cos t|} + i\sqrt{|\sin t|}$$
. 求:

- (1) |z| 的取值范围;
- (2) t 的范围, 使 $0 \le \arg z \le \frac{\pi}{4}$.

$$(007192)$$
 在复平面内,作出满足
$$\begin{cases} |z| \leq 1, \\ \arg z \in [\frac{\pi}{6}, \frac{2\pi}{3}] \end{cases}$$
 的复数 z 的对应点所构成的图形.

$$(007194)$$
 在复平面内,作出满足 $\left\{egin{aligned} 0 \leq rg(z-1) \leq rac{\pi}{4}, \\ \operatorname{Re}(z) \leq 2 \end{aligned}
ight.$ 的复数 z 的对应点所构成的图形.

$$\left(\frac{\arg z \in [\frac{1}{6}, \frac{1}{3}]}{6}\right)$$
 (007193) 在复平面内,作出满足 $\arg(z+2) = \frac{\pi}{4}$ 的复数 z 的对应点所构成的图形.
$$\left(\frac{0 \leq \arg(z-1) \leq \frac{\pi}{4}}{\operatorname{Re}(z) \leq 2}\right)$$
 的复数 z 的对应点所构成的图形.
$$\left(\frac{|z| = 1}{4}\right)$$
 的复数 z 的对应点所构成的图形.
$$\left(\frac{\pi}{4} < \arg(z+i) < \frac{\pi}{2}\right)$$

(007196) 已知 $A = \{z | |z-1| \le 1, \ z \in \mathbf{C}\}, \ B = \{z | \arg z \ge \frac{\pi}{6}, \ z \in \mathbf{C}\}$ 在复平面内, 求 $A \cap B$ 所表示的图形的 面积.

(007197) 已知复数 z 满足 $|z - (1 + \sqrt{3}\mathrm{i})| \le 2$, $\arg z \le \frac{\pi}{3}$, 求 z 所对应区域的面积.

(007198) 若复数
$$z_1 = \cos \frac{2\pi}{3} + \mathrm{i} \sin \frac{2\pi}{3}, z_2 = \cos \frac{11\pi}{6} + \mathrm{i} \sin \frac{11\pi}{6},$$
则 $\frac{2z_1^2}{z_2}$ 的辐角主值是(). A. $\frac{\pi}{6}$ B. $\frac{5\pi}{6}$ C. $\frac{3\pi}{2}$ D. $-\frac{\pi}{2}$

(007199) 复平面内有 A, B, C, D, E 五点分别在单位圆内部和外部 (如图), 其中有一点对应的复数是点 A 对应 复数的倒数,则此点是().

A. 点 B

B. 点 C

C. 点 D

D. 点 E

(007200) 把复数 $a+b\mathrm{i}(a,b\in\mathbf{R})$ 在复平间内的对应向量绕原点 O 顺时针方向旋转 90° 后,所得向量对应的复数为 (

A. a - bi

B. -a + bi

C. b - ai

D. -b + ai

(007201) 复平面内, 向量 \overrightarrow{OA} , \overrightarrow{OB} 分别对应于非零复数 z_1, z_2 , 若 $\overrightarrow{OA} \perp \overrightarrow{OB}$, 则 $\frac{z_2}{z_1}$ 一定是 ().

A. 非负数

B. 纯虚数

C. 正实数

D. 非纯虚数

(007202) 复数 $z = (\sin 25^{\circ} + i \cos 25^{\circ})^{3}$ 的三角形式为 ().

A. $\sin 75^{\circ} + i \cos 75^{\circ}$

B. $\cos 15^{\circ} + i \sin 15^{\circ}$

C. $\cos 75^{\circ} + i \sin 75^{\circ}$

D. $\cos 195^{\circ} + i \sin 195^{\circ}$

 $(007203)(1-\sqrt{3}i)^2$ 的辐角主值为 ().

A. $\frac{10\pi}{2}$

B. $\frac{7\pi}{3}$

C. $\frac{4}{3}\pi$

D. $\frac{\pi}{2}$

(007204) 若 α, β, γ 是一个三角形的三个内角,则 $(\cos \alpha + i \sin \alpha)(\cos \beta + i \sin \beta)(\cos \gamma + i \sin \gamma) =$ ______

 $(007205)(\cos 1^{\circ} + i \sin 1^{\circ})(\cos 2^{\circ} + i \sin 2^{\circ})(\cos 3^{\circ} + i \sin 3^{\circ}) \cdots (\cos 359^{\circ} + i \sin 359^{\circ}) = \underline{\hspace{1cm}}.$

(007206) 若 $\frac{\sin A + \mathrm{i}\cos A}{(\sin B + \mathrm{i}\cos B)(\sin C + \mathrm{i}\cos C)}$ 是纯虚数,则 $\triangle ABC$ 是_____ 三角形.

(007207) 计算: $\frac{[2(\cos 45^\circ + i \sin 45^\circ)]^4}{(\sin 80^\circ + i \cos 80^\circ)} = \underline{\hspace{1cm}}.$

(007208) 计算: $\frac{(\sqrt{3}+i)^5}{-1+\sqrt{3}i} =$ _____.

(007209) 计算: $(1 - \cos 60^{\circ} + i \sin 60^{\circ})^{4} =$ ______

(007210) 计算: $(\cos 15^{\circ} - i \sin 15^{\circ})^{3} + (\cos 15^{\circ} - i \sin 15^{\circ})^{-3} =$ _____.

(007211) 若 $z = (\sqrt{3} - i)^5$, 则 $\arg z =$ _____.

(007212) 若复数 $z = 7(\sin 140^{\circ} - i\cos 140^{\circ})$,则 $\arg(-\frac{1}{z^2}) =$ ______.

(007213) 若 $\arg z = \theta$, 则 $\arg z^2 =$ ______.

(007214) 若 $\arg z = \theta$, $\frac{4}{3}\pi \le \theta < 2\pi$, 则 $\arg z^3 =$ ______

(007215) 复平面内, 将 $1+\sqrt{3}$ i 所对应的向量绕原点按逆时针方向旋转 θ 角, 所得向量对应的复数是 -2i, 则 θ

(007216) 复平面内, 向量 \overrightarrow{AB} 对应的复数为 $2+\mathrm{i}$, 点 A 对应的复数为 -1, 将 \overrightarrow{AB} 绕点 A 顺时针方向旋转 90° 后得到向量 \overrightarrow{AC} , 则点 C 对应的复数为______.

(007217) 若复数 $z_1 = \tan \theta - \mathrm{i}, z_2 = \tan \theta + \mathrm{i}(0 < \theta < \frac{\pi}{2}),$ 将 z_1 的对应向量顺时针旋转到 z_2 所对应的向量, 则所转过的最小正角等于_____.

(007218) 若复数 $z_1 \cdot z_2$ 满足 $|z_1| = |z_2| = 1$, $z_2 - z_1 = -1$, 则 $\arg \frac{z_1}{z_2} = \underline{\hspace{1cm}}$

(007219) 若 $\arg(zi) = \theta, \ \theta \in (\frac{\pi}{2}, \pi), \$ 则 $\arg \overline{z} =$ ______.

(007220) 若 $\arg z_1 = \alpha$, $\arg z_2 = \beta$, 且 $\alpha < \beta$, 则 $\arg \frac{z_1}{z_2}$ 等于 ().

A. $\beta - \alpha$

B. $\alpha - \beta$

C. $2\pi + \alpha - \beta$

D. $\pi + \beta - \alpha$

 $(007221) \ \hbox{${\cal H}$} \ |z|=1, \arg z=\theta(\theta\neq 0), 则 \ \frac{z+\overline{z}}{1+z^2} \ {\bf 的辐角主值为} \ (\qquad).$

A. $\frac{\theta}{2}$

C. $\pi - \theta$

D. $2\pi - \theta$

(007222) 若 $z_1 = 1 + \cos 2\theta + i \sin 2\theta$, $z_2 = 1 - \cos 2\theta + i \sin \theta$, 则下列各式中必为定值的是(

A. $z_1 \cdot z_2$

B. $\frac{z_1}{z_2}$

C. $|z_1| + |z_2|$ D. $|z_1|^2 + |z_2|^2$

(007223) 若复数 -2+i 和 3-i 的辐角主值分别为 α 和 β , 则 $\alpha+\beta$ 等于 ().

B. $\frac{5\pi}{4}$

C. $\frac{7\pi}{4}$

D. $\frac{11\pi}{4}$

(007224) 复平面内,已知点 P_1 , P_2 分别对应于复数 3-2i,7+4i,线段 P_1P_2 绕点 P_1 按逆时针方向旋转 $\frac{5}{6}\pi$ 到 P_1P_3 的位置,则点 P_3 对应的复数为().

A. $2\sqrt{3} + 3\sqrt{3}i$

B. $2\sqrt{3} - 3\sqrt{3}i$

C. $-2\sqrt{3} + 3\sqrt{3}i$

D. $-2\sqrt{3} - 3\sqrt{3}i$

(007225) 复平面内, 点 P_1 的对应复数是 $z_1 = -2\sqrt{3} + 4i$, 将向量 $\overrightarrow{OP_1}(O$ 为原点) 旋转一个锐角 θ 后得到新向 量 $\overrightarrow{OP_2}$, 且点 P_2 的对应复数是 $z_2 = \sqrt{3} + 5i$, 则 (

A. $\theta = 60^{\circ}$, 且按逆时针旋转

B. $\theta = 60^{\circ}$, 且按顺时针旋转

 $C. \theta = 30^{\circ}$, 且按逆时针旋转

D. $\theta = 30^{\circ}$, 且按顺时针旋转

(007226) 已知 $z_A=a+b\mathrm{i}(a,b\in\mathbf{R},$ 且 $ab\neq0),$ 复平面内, 把 z_A 对应的向量 \overrightarrow{OA} 绕原点分别按逆、顺时针方 向旋转 $\frac{2\pi}{3}$, 得向量 \overrightarrow{OB} , \overrightarrow{OC} , 则 \overrightarrow{OA} , \overrightarrow{OB} , \overrightarrow{OC} 所对应的复数之和等于 (

B. $-\frac{1}{2} + \frac{\sqrt{3}}{2}i$

D. 0

(007227) 若 $\arg z \in [\frac{\pi}{4}, \frac{3\pi}{4}]$, 则 $\arg(-\frac{1}{z_1})$ 的取值范围是(

A. $\left[\frac{3\pi}{4}, \frac{5\pi}{4}\right]$ B. $\left[\frac{5\pi}{4}, \frac{7\pi}{4}\right]$

C. $\left[\frac{\pi}{4}, \frac{7\pi}{4}\right]$

D. $[0, \frac{\pi}{4}] \cup [\frac{7\pi}{4}, 2\pi)$

(007228) 若数列 $\{a_n\}$ 的通项公式为 $a_n = (\cos \theta + i \sin \theta)^n (\theta \neq 2k\pi, k \in \mathbf{Z}), 则 <math>\{a_n\}$ ().

A. 成等差数列, 但不成等比数列

B. 成等比数列, 但不成等差数列

C. 成等差数列又成等比数列

D. 既不成等差数列也不成等比数列

(007229) 若 $(-\sqrt{3}+i)^n \in \mathbf{R}^+$, 则最小的自然数 n 的值是 ().

A. 6

B. 8

C. 10

D. 12

(007230) 已知非纯虚数 z 满足 $\arg z = \arg[(z+1)i]$, 则 z 在复平面内的对应点所表示的图形为 ().

 $\begin{array}{c|c}
 & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & & \\
\end{array}$ B.

(007231) 复平面内, 已知 $\triangle ABC$ 的三个顶点分别对应于复数 $z, \overline{z}, \frac{1}{z}$, 且 |z|=3, 点 A 的位置如图所示.

- (1) 试在图上画出点 B,C 的大概位置;
- (2) 求 △ABC 面积的最大值.

(007232) 已知
$$|z_1| = 3$$
, $|z_2| = 5$, $|z_1 - z_2| = 7$, 求 $\frac{z_1}{z_2}$.

- (007233) 已知复数 z 满足 |z| = 5, 且 (3 + 4i)z 为纯虚数, 求 z.
- (007234) 若 |z| = 1, 求 $|z^2 z + 1|$ 的最大值和最小值.

(007235) 己知
$$z_1, z_2 \in \mathbf{C}$$
, 且 $|z_1| = |z_2| = 1$, $z_1 + z_2 = \frac{4}{5} + \frac{3}{5}i$, 求 $\tan(\arg z_1 + \arg z_2)$.

(007236) 已知复数 z_1 和 z_2 满足 $|z_1| = |z_2| = 1$, 且 $z_1 - z_2 = \frac{1}{2} - \frac{1}{3}$ i, 设 θ 是 $z_1 \cdot z_2$ 的辐角, 求 $\sin \theta$ 的值.

(007237) 已知复数 z_1,z_2,z_3 的辐角主值依次成公差为 $\frac{2\pi}{3}$ 的等差数列,且 $|z_1|=|z_2|=|z_3|=1$,求证: $z_1+z_2+z_3=0$.

(007238) 若复数 z_1, z_2, z_3 满足 $z_1 + z_2 + z_3 = 0$, 且 $|z_1| = |z_2| = |z_3| = 1$, 求证: 复平面内以 z_1, z_2, z_3 所对应的点为顶点的三角形是内接于单位圆的正三角形.

(007239) 已知非零实数 x,y,z 满足了 x+y+z=0,复数 α,β,γ 满足 $|\alpha|=|\beta|=|\gamma|\neq 0$,且 $x\alpha+y\beta+z\gamma=0$,求证: $\alpha=\beta=\gamma$.

(007240) 计算: arg(i+2) + arg(i+3).

- (007241) 若 $arg(-2-i) = \alpha$, $arg(-3-i) = \beta$, 求 $\alpha + \beta$.
- (007242) 复平面内,两点 A,B 分别对应于非零复数 $\alpha,\beta,$ 若 $\alpha=\beta(\cos\theta+\mathrm{i}\sin\theta)(0<\theta<\pi)$,判断 $\triangle OAB$ 的形状 (O 为原点).
- (007243) 复平面内, 两点 A,B 分别对应于非零复数 $\alpha,\beta,$ 若 $\alpha=\pm\beta\mathrm{i}$, 判断 $\triangle OAB$ 的形状 (O 为原点).
- (007244) 复平面内,两点 A,B 分别对应于非零复数 $\alpha,\beta,$ 若 $\frac{\alpha}{\beta}=\pm\sqrt{3}\mathrm{i}$,判断 $\triangle OAB$ 的形状 (O 为原点).
- (007245) 复平面内, 两点 A,B 分别对应于非零复数 $\alpha,\beta,$ 若 $\frac{\alpha}{\beta}=\frac{1+\sqrt{3}\mathrm{i}}{2}$, 判断 $\triangle OAB$ 的形状 (O 为原点).
- (007246) 复平面内,两点 A,B 分别对应于非零复数 $\alpha,\beta,$ 若 $\frac{\alpha}{\beta}=1+\mathrm{i},$ 判断 $\triangle OAB$ 的形状 (O 为原点).
- (007247) 已知复数 z_1, z_2 满足 $4z_1^2 2z_1z_2 + z_2^2 = 0$, 且 $|z_2| = 4$, $z_1, z_2, 0$ 所对应的点分别为 A, B, O, 求 $\triangle AOB$ 的面积.
- (007248) 复平面内, 点 A,B 分别对应于复数 $\omega-z$ 和 $\omega+z$, 其中 $\omega=-\frac{1}{2}+\frac{\sqrt{3}}{2}$ i, 若 $\triangle AOB$ 是以原点 O 为直角顶点的等腰直角三角形. 求:
- (1) 复数 z;
- (2) $\triangle AOB$ 的面积.
- (007249) 已知等边三角形的两个顶点 A, B 对应的复数分别为 $z_A = 2 + i, z_B = 3 + 2i,$ 求第三个顶点 C 所对应的复数.
- (007250) 复平面内,等边三角形的一个顶点在原点,中心 P 所对应的复数是 $1+\mathrm{i}$,求其他两个顶点所对应的复数。 数.
- (007251) 复平而内, 矩形 OMNP 的相邻两边之比是 $|OM|:|OP|=1:\sqrt{3},$ 且点 O,M 的对应复数分别是 0, -1+2i, 求点 N 对应的复数.
- (007252) 已知等腰 $Rt\triangle ABC$ 的斜边 AB 的两个端点的坐标分别为 A(-1,2), B(2,3), 求顶点 C 的坐标.
- (007253) 若等边 $\triangle ABC$ 的一个顶点为 A(0,5), 中心 M 的坐标是 M(2,3), 求其他两个顶点 B,C 的坐标.
- (007254) 已知复数 $z_1 = 1 + (2 \sqrt{3})i$, $z_3 = (2 + \sqrt{3}) + i$, 又复数 z_1 , z_2 , z_3 , z_4 在复平面内的对应点依逆时针方向排列足一个正方形的四个顶点.
- (1) 求 z_2, z_4 ;
- (2) 求证: z_2 , z_4 , 0 的对应点是一个等边三角形的三个顶点.
- (007255) 复平面内,已知 $\triangle AOB$ 的顶点 A,B 所对应的复数 α,β 满足 $\beta+(1-\mathrm{i})\alpha=0$,且 $\triangle AOB(O$ 为原点) 面积的最大值和最小值分别是 8 和 2,求 $|\alpha|$ 与 $|\beta|$ 的取值范围.
- (007256) 已知复数 z_1, z_2, z_3 满足 $\frac{z_2-z_1}{z_3-z_1}=1+\sqrt{3}$ i, 试判断复平面内的 z_1, z_2, z_3 的对应点为顶点的三角形的形状, 并求其各内角的值.

(007257) 复平面内, 已知 A, B, C 三点对应的复数 z_1, z_2, z_3 满足 $\frac{z_2-z_1}{z_3-z_1}=1+\frac{3}{4}$ i, 试求这个三角形三边长之 比.

(007258) 一个三角形的底边 BC 的两端所表水的复数是 $z_B = a$, $z_C = -a$, 顶点 A 的位置不定, 以两边 AB, AC 为腰, 分别以 B, C 为直角的顶点, 在 $\triangle ABC$ 外作等腰直角三角形 ABD, ACE, 求证: DE 的中点 M 为 定点.

(007259) 已知 B 是半圆 $x^2 + y^2 = 1(y \ge 0)$ 上的动点, A(2,0) 是 x 轴上的一个定点, 以 A 为直角顶点作等腰 直角 $\triangle ABC$ (字母按顺时针排列), 求 |OC| 的最大值及其相应的点 B 的坐标 (O 为坐标原点).

(007260) 复平面内, 已知 $Rt \triangle ABC$ 的三个顶点 A, B, C 分别对应于复数 $z, z^2, z^3,$ 且 $|z| = 2, \angle BAC = 90^\circ$, 求复数 z.

(007261) 已知复数
$$z_1$$
 满足 $\arg z_1 = \frac{5\pi}{12}$, $|z_1 - z_0| = \sqrt{2}$, $z_0 - (1+i)z_1 = 0$.

- (1) 求 z_1 和 z_0 ;
- (2) 求证: 在满足 $|z_1 z_0| = \sqrt{2}$ 条件的所有复数 z 中, z_1 的辐角主值最小.

 $(007262) \ \textbf{ 已知复数} \ z \ = \ [\cos(\pi + \alpha) + \mathrm{i} \sin(\pi + \alpha)] \cdot [\sin(\frac{3}{2}\pi + \beta) + \mathrm{i} \cos(\frac{3}{2}\pi + \beta)], \ 0 \ < \ \beta \ < \ \alpha \ < \ \frac{\pi}{2}, \ \underline{\mathbf{L}}$ $\sin(\alpha + \beta) = 4\cos\alpha\sin\beta$, \mathbf{x} arg z 的最大值.

(007263) 已知 |z-1-i|=2, 求复数 z^2 虚部的取值范围.

(007264) 已知复数 z = x + yi 满足 $|z + \frac{1}{z}| = 1(x, y \in \mathbf{R})$. 求证:

(1)
$$(x^2 + y^2)^2 + x^2 - 3y^2 + 1 = 0;$$

(2)
$$k\pi + \frac{\pi}{3} \le \arg z \le k\pi + \frac{2\pi}{3} (k \in \mathbf{Z});$$

(3) $\frac{\sqrt{5} - 1}{2} \le |z| \le \frac{\sqrt{5} + 1}{2}.$

$$(3) \ \frac{\sqrt{5-1}}{2} \le |z| \le \frac{\sqrt{5+1}}{2}.$$

(007265) 对
$$n \in \mathbb{N}$$
,求证: $(\frac{1+\mathrm{i}}{\sqrt{2}})^n + (\frac{1-\mathrm{i}}{\sqrt{2}})^n = 2\cos\frac{n\pi}{4}$.

$$(007266) \ x \ n \in \mathbf{N}, \ x \ \text{证} \colon (1+\cos\alpha+\mathrm{i}\sin\alpha)^n = 2^n\cos^n(\frac{\alpha}{2})(\cos\frac{n\alpha}{2}+\mathrm{i}\sin\frac{n\alpha}{2}).$$

$$(007268) \; \column{3}{c} \c$$

(007269) 若 $(1+\sqrt{3}i)^n$ 是一个实数, 求自然数 n 的值.

(007270) 已知复数
$$z = \frac{(1+i)^3}{\sqrt{2}(a+i)^2}(a>0)$$
 满足 $|z| = \frac{1}{2}$. 求:

- (1) a 的值;
- (2) 使 z^n 为实数的最小自然数 n.

(007271) 已知数列 $\{a_n\}$ 的通项 $a_n = \frac{1}{(1+\sqrt{3}\mathrm{i})^n}$, 当 n 取 $1,2,3,\cdots$ 时, 依次得到的实数记为 b_1,b_2,b_3,\cdots , 求 数列 $\{b_n\}$ 的所有项之和.

- (007272) 已知复数 $z = \cos 20^{\circ} + i \sin 20^{\circ}$, 求 $|z z^2 + z^3 z^4 + z^5 z^6 + z^7 z^8 + z^9 z^{10}|$.
- (007273) \mathcal{U} $z = \cos 40^{\circ} + i \sin 40^{\circ}$, \mathcal{R} $|z + z^2 + \dots + z^{100}|$.
- (007274) 已知 $z = \cos \frac{2\pi}{5} + i \sin \frac{2\pi}{5}$, 求 $(1+z^8)(1+z^4)(1+z^2)(1+z)$.
- (007275) 已知 $z = \cos \frac{\pi}{3} + i \sin \frac{\pi}{3}$, 求 $|z + 2z^2 + 3z^3 + \dots + 12z^{12}|$.
- (007276) 已知 $z_n = (\frac{1+\mathrm{i}}{2})^n (n \in \mathbf{N})$. 记 $a_n = |z_{n+1}| |z_n| (n \in \mathbf{N})$,求数列 $\{a_n\}$ 所有项之和.
- (007277) 已知 $z_n = (\frac{1+\mathrm{i}}{2})^n (n \in \mathbf{N})$. 记 $b_n = |z_{n+2} z_n| (n \in \mathbf{N})$, 求数列 $\{b_n\}$ 所有项之和.
- (007278) 设复数 $z = \cos \theta + i \sin \theta (0 < \theta < \pi), \ \omega = \frac{1 (\overline{z})^4}{1 + z^4}, \ \mathbf{L} \ |\omega| = \frac{\sqrt{3}}{3}, \arg \omega < \frac{\pi}{2}, \ 求 \theta.$
- (007279) 已知复数 $z=\cos\theta+\mathrm{i}\sin\theta(0<\theta<2\pi),\,\omega=rac{1-z^3}{1-z}.$ 求:
- (1) 满足 $|\omega| = 1$ 的复数 z;
- (2) ω 的辐角 (用 θ 表示).
- (007280) 解方程 3z + i = 2iz + 1.
- (007281) 设 x 是模不为 1 的虚数, 记 $y = x + \frac{1}{x}$, 求满足 $y^2 + ay + 1 = 0$ 的实数 a 的取值范围.
- (007282) 已知关于 x 的实系数方程 $z^2 2pz + q = 0 (p \neq 0)$ 的两虚根 z_1, z_2 在复平面内的对应点为 F_1, F_2 , 求以 F_1, F_2 为两焦点, 且经过原点的椭圆的普通方程.
- (007283) 若非零复数 z_1, z_2 在复平面内的对应点分别为 A, B, 且满足 $|z_2| = 2, z_1^2 2z_1z_2 + 4z_2^2 = 0.$
- (1) 试判断 $\triangle AOB(O)$ 为原点) 的形状;
- (2) 求 △AOB 的面积.
- (007284) 解方程 $x^2 (3-2i)x + 5 5i = 0$.
- (007285) 解方程 $x^3 + 8 = 0$.
- (007286) 解方程 $(1+z)^n (1-z)^n = 0$.
- (007287) 解方程 $(\bar{z})^2 = z$.

A. 2

- (007288) 解方程 $z^2 4|z| + 3 = 0$.
- (007289) 若 $z \in \mathbb{C}$, 则方程 $|z|^2 |z| = 0$ 解的个数是 ().

B. 3

- (007290) 方程 $z^2 = \overline{z}$ 的解的个数是 ().
- A. 2 B. 3 C. 4 D. 5

C. 5

D. 无穷多

(007291) 二次方程 $x^2 - 2xi - 5 = 0$ 的根的情况是 $($ $).$			
A. 有两个不等的实根		B. 有一个实根和一个虚根	
C. 有一对共轭的虚根		D. 有两个不共轭的虚根	
(007292) 满足 $z + \overline{z} = 2 +$	i 的复数 z 等于 ().		
A. $-\frac{3}{4} + i$	B. $\frac{3}{4} - i$	C. $-\frac{3}{4} - i$	D. $\frac{3}{4} + i$
(007293) 若关于 x 的方程 x	$x^{2} + x + p = 0$ 的两个虚根	α , β 满足 $ \alpha - \beta = 3$, 则实数	(p 的值为 ().
A2	B. $-\frac{1}{2}$	C. $\frac{5}{2}$	D. 1
(007294) 若 $a > 1$, α , β 是为	关于 x 的方程 $x^2 + 2x + a$	$=0$ 的两根, 则 $ \alpha + \beta $ 的值	为 ().
A. 2	B. $2\sqrt{a}$	C. $2\sqrt{a-1}$	D. $2\sqrt{1-a}$
(007295) 若关于 x 的实系数	二次方程 $x^2 + ax + b = 0$	的一个根是 $2 + i$, 则 $a =$, b =
(007296) 若实系数的一元二次方程的一个根是 $\frac{1}{3} - \frac{4\sqrt{5}}{3}$ i, 则这个方程为			
(007297)1 的 5 次方根的五/	个复数的辐角主值之和是().	
A. 2π	B. 4π	C. 6π	D. 8π
(007298) 若 ω 是 $x^5 - 1 = 0$	的一个虚根,则 $\omega(1+\omega)$	$(1 + \omega^2)$ 的值是 ().	
A. 1	В. –1	C. i	D. $-\frac{1}{2} + \frac{\sqrt{3}}{2}i$
		$, \beta(O$ 是原点). 若 $\alpha^2 + \beta^2 = 0,$	则 △OMN 是
三角形; 若 $2\alpha^2 - 2\alpha\beta + \beta^2$:	= 0, 则 △ <i>OMN</i> 是	三角形.	
(007300) 在复数范围内解方	程 $z \cdot \overline{z} - 3i\overline{z} = 1 + 3i$.		
(007301) 在复数范围内解方	程 $z^2 - 5 z + 6 = 0$.		
(007302) 在复数范围内解方程 $2z + z = 2 + 6i$.			
(007303) 在复数范围内解方程 $z z + az + i = 0$.			
(007304) 在复数范围内解方程 $a \ge 0$.			
(007305) 已知 $a \in \mathbf{R}$, 在复数范围内解方程 $ z ^2 - 2z\mathbf{i} + 2a(1+\mathbf{i}) = 0$.			
(007306) 已知关于 x 的方程 $x^2 + (k+2i)x + 2 + ki = 0$ 有一个实根, 求实数 k 的值.			
(007307) 已知关于 x 的方程 $x^2 - ix - m + 4ni = 0$ 有实根, 求点 (m, n) 应满足的方程.			
(007308) 已知关于 x 的方程 $x^2-zx+4+3{\rm i}=0$ 有实根, 求复数 z 的模的最小值和此时的 z 值.			

(007309) 已知方程 $x^2 + ix + 6 = 2i + 5x$ 有一个实数解, 试在复数范围内解此方程.

- (007310) 已知关于 x 的方程 $x^2+2px+1=0$ 的两根 α , β 在复平面内的对应点和原点恰是一个等边三角形的三个顶点, 求实数 p 的值.
- (007311) 已知 $p,q \in \mathbb{R}$, 方程 $x^2 + px + q = 0$ 有两虚根 α , β , 方程 $x^2 px + q = 0$ 有两虚根 α^2 , β^2 , 求 α , β , p,q 的值.
- (007312) 已知 a, b 是实数, 关于 x 的方程 $x^2 + (2a bi)x + a bi = 0$ 的两个非零复数根的辐角分別为 $\frac{2\pi}{3}$ 及 π , 求 a, b 的值.
- (007313) 求 5 + 12i 的平方根.
- (007314) 解方程: $z^2 i = 0$.
- (007315) 解方程: $z^2 2zi 5 = 0$.
- (007316) 复平面内, 已知非零复数 z_1 , z_2 对应于点 A 和 B, 复数 $z_1 a$ 与 $z_1 + a$ 所对应的两个向量相互垂直 且模不相等, 又 $z_1^2 - 4z_1z_2 + 6z_2^2 = 0$.
- (1) 求 z_1 与 z_2 的模;
- (2) O 为复平面上的坐标原点, 求 $\triangle AOB$ 的面积.
- (007317) 非零复数 α , β 分别对应于点 A, B(O 是原点), 已知 $4\alpha^2 2\alpha\beta + \beta^2 = 0$.
- (1) **求证**: △AOB 是直角三角形;
- (2) 若 $|\alpha| = 1$, 求 $\triangle AOB$ 的面积;
- (3) 若 $|\alpha| = t > 0$, 求 $|\beta|^2 \alpha \overline{\beta} \overline{\alpha} \beta$ 的值.
- (007318) 设 α , β 是实系数一元二次方程 $ax^2+bx+c=0$ 的两根, α 为虚数, 而 $\frac{\alpha^2}{\beta}$ 为实数, 求复数 $\frac{\alpha}{\beta}$ 的值.
- (007319) 已知: $x + \frac{1}{x} = 2\cos\varphi$. 求证:
- (1) $x = \cos \varphi \pm i \sin \varphi$;
- (2) $x^n + \frac{1}{x^n} = 2\cos n\varphi (n \in \mathbf{N}).$
- (007320) 要使关于 x 的方程 $(1-i)x^2 + 2mix (1+i) = 0$ 有实根, 求实数 m 的值.
- (007321) 若关于 x 的实系数方程 $2x^2 + 3ax + a^2 a = 0$ 至少布一个模为 1 的根, 求实数 a 的值.
- (007322) 若关于 x 的方程 $x^2 + (2+i)x + 4mn + (2m-n)i = 0(m, n \in \mathbf{R})$ 有实根, 求点 (m,n) 的轨迹方程.
- (007323) 已知 α , β 是方程 $x^2 2x + 2 = 0$ 的两根, p, q 是关于 x 的方程 $x^2 + 2mx 1 = 0 (m \in \mathbf{R})$ 的两根, 且 α , β , p, q 在复平面内的对应点共圆, 求 m 的值.
- (007324) 已知关于 x 的方程 $3x^2 6(m-1)x + m^2 + 1 = 0$ 的两根 x_1, x_2 满足 $|x_1| + |x_2| = 2$, 求实数 m 的值.
- (007325) 实系数方程 $x^4 4x^3 + 9x^2 ax + b = 0$ 的一个根是 1 + i, 求 a, b 的值, 并解此方程.

- (007326) 已知关于 x 的实系数方程 $x^4 + ax^3 + bx^2 + cx + d = 0$ 有一个纯虚根, 求证: $a^2d + c^2 abc = 0$.
- (007327) 已知模为 2, 辐角为 $\frac{\pi}{6}$ 的复数是方程 $x^5+a=0$ 的一个根, 求 a.
- (007328) 已知复数 $z=\frac{1}{2}+\frac{\sqrt{3}}{2}$ i 满足 $z^n=\overline{z},$ 求整数 n 的一般形式.
- (007329) 利用复数乘法、除法的几何意义, 求证: $\arctan 1 + \arctan 2 + \arctan 3 = \pi$.

$$(007330) \ \textbf{利用复数乘法、除法的几何意义}, 求证: \arcsin\frac{\sqrt{10}}{10} + \arccos\frac{7\sqrt{2}}{10} + \arctan\frac{7}{31} + \operatorname{arccot} 10 = \frac{\pi}{4}.$$

(007331) 利用复数乘法、除法的几何意义, 求证:
$$\arctan(3+2\sqrt{2}) - \arctan\frac{\sqrt{2}}{2} = \frac{\pi}{4}$$
.

(007332) 利用复数乘法、除法的几何意义, 求证:
$$\arctan \frac{1}{7} + 2\arcsin \frac{1}{\sqrt{10}} = \frac{\pi}{4}$$
.

(007333) 复平面内, 已知动点 A,B 所对应的复数 z_1,z_2 的一个辐角为定值 θ 和 $-\theta(0<\theta<\frac{\pi}{2})$, 且 $\triangle AOB$ 的面积为定值 S(O 为坐标原点), 求 $\triangle AOB$ 的重心 M 所对应复数 z 的模的最小值.

(007334) 复数 z_1 , z_2 , z_3 的辐角主值分别为 α , β , γ , 模分别为 1, k 和 2-k, 且 $z_1+z_2+z_3=0$, 求 k, 使 $\cos(\beta-\alpha)$ 分别取到最大值和最小值,并求出大值和最小值.

- (007335) 已知复数 $z = \cos \theta + i \sin \theta$.
- (1) 当实数 k 和 θ 分别为何值时, $z^3 + k\overline{z}^3$ 是纯虚数?
- (2) 求 $|z^3 + k\bar{z}^3|$ 的最大值与最小值.
- (007336) 已知复数 z_1, z_2, z_3 满足 $|z_1| = |z_2| = |z_3| = 1$, 求证: $|z_1z_2 + z_2z_3 + z_3z_1| = |z_1 + z_2 + z_3|$.

$$(007337) \ \textbf{已知复数} \ \alpha, \ \beta, \ \gamma \ 满足 \ |\alpha| = |\beta| = |\gamma| \neq 0, \ 求证: \ \frac{(\alpha+\beta)(\beta+\gamma)(\gamma+\alpha)}{\alpha\beta\gamma} \ \textbf{是实数}.$$

(007338) 设 A, B, C 分别是复数 $z_1, z_2, z_3(z_1, z_2, z_3)$ 互不相等) 在复平面内所对应的点, 求证: $\triangle ABC$ 为等边 三角形的充要条件是 $z_1^2 + z_2^2 + z_3^2 = z_1 z_2 + z_2 z_3 + z_3 z_1$.

(007339) 利用复数知识证明: $\cos 3\alpha = 4\cos^3 \alpha - 3\cos \alpha$, $\sin 3\alpha = 3\sin \alpha - 4\sin^3 \alpha$.

$$(007340) \text{ \vec{x} iif: } \cos\frac{\pi}{2n+1} + \cos\frac{3\pi}{2n+1} + \cos\frac{5\pi}{2n+1} + \dots + \cos\frac{2n-1}{2n+1}\pi = \frac{1}{2}(n \in \mathbf{N}).$$

- (007341) 已知 $\cos \alpha + \cos \beta + \cos \gamma = 0$, $\sin \alpha + \sin \beta + \sin \gamma = 0$. 求证:
- (1) $\cos 3\alpha + \cos 3\beta + \cos 3\gamma = 3\cos(\alpha + \beta + \gamma)$, $\sin 3\alpha + \sin 3\beta + \sin 3\gamma = 3\sin(\alpha + \beta + \gamma)$;
- $(2) \cos 3k\alpha = \cos 3k\beta = \cos 3k\gamma = \cos k(\alpha + \beta + \gamma), \\ \sin 3k\alpha = \sin 3k\beta = \sin 3k\gamma = \sin k(\alpha + \beta + \gamma)(k \in \mathbf{N}).$
- (007342) 若 |z|=1, 求复数 $u=3z^2+\frac{1}{z^2}$ 在复平面内的对应点的轨迹.
- (007343) 求复数 $z=rac{1}{1-b\mathrm{i}}(b\in\mathbf{R}\ \pm\ b
 eq0)$ 在复平面内对应点的轨迹方程.
- (007344) 复平面内, 若复数 z 对应的点在连接复数 $2+\mathrm{i}$ 和 $2-\mathrm{i}$ 对应点的线段上移动, 求 z^2 对应点的轨迹方程.
- (007345) 若 |z| = 1, 求复数 $z + \frac{1}{z}$ 在复平面内的对应点轨迹的普通方程.

(007346) 若 $|z| = r(r > 0, r \neq 1)$, 求复数 $z + \frac{1}{z}$ 在复平面内的对应点轨迹的普通方程.

(007347) 若 $|z| \neq 0$, 且 $\arg z = \theta$, 求复数 $z + \frac{1}{z}$ 在复平面内的对应点轨迹的普通方程.

(007348) 在等腰 $\operatorname{Rt}\triangle ABC$ 中,已知 $\angle C=90^\circ$,|AC|=a. 若点 A 在 x 轴上移动,点 B 在抛物线上移动,且点 A, B, C 按逆时针方向排列,求顶点 C 的轨迹方程.

(007349) 设 P 是抛物线 $y=x^2$ 上任意一点,以线段 OP 为边,按逆时针方向作正方形 OPQR(如图),利用复数知识求点 R 的轨迹方程.

(007350) 一动点从原点出发, 开始沿x 轴的正半轴运动, 每运动一个长度单位, 就向左转 θ 角, 求此动点运动 n个长度单位时与原点的距离.

(007351) 复平面内,复数 α 的对应点在连接 1+i 和 1-i 的对应两点的线段上运动,复数 β 的对应点在以原 点为圆心,半径为 1 的圆周上运动,试求:

- (1) 复数 $\alpha + \beta$ 的对应点运动范围的面积;
- (2) 复数 $\alpha\beta$ 的对应点运动范围的面积.

(007352) 已知半径为 1 的定圆 O 的内接正 n 边形的顶点为 $P_k(k=1,2,\cdots n),$ P 为该圆周上任意一点,求证: $|PP_1|^2 + |PP_2|^2 + \cdots + |PP_n|^2$ 为一定值.

(007353) 由 1,2,3,4,5,6 这 6 个数字可以组成多少个数字不重复且是 6 的倍数的五位数?

(007354)3 封不同的信,有 4 个信箱可供投递,共有多少种投信的方法?

(007355) 一天要排语文、数学、英语、生物、体育、班会六节课 (上午四节、下午两节), 要求上午第一节不排体育课, 数学课排在上午, 班会课排在下午, 有多少种的排课方法?

(007356) 七人坐一排, 要求甲不坐首位, 乙不坐末位, 共有几种不同的坐法?

(007357) 从 1,3,5,7 这 4 个数字中任取 3 个,从 0,2,4 这 3 个数字中任取 2 个,可以组成多少个无重复数字的五位数?

(007358) 如图, 圆上有 9 个点, 每两点连一线段, 所有线段在圆内最多有几个交点?

(007359)5 位女生和 4 位男生彼此身高不一, 现欲选 3 位女生、2 位男生排成左低右高一行, 有几种排法? (007360) 从甲、乙、丙、丁、戊 5 位同学中选 3 位, 安排每一位到京、津、沪旅游中的一地, 有几种选派方法? (007361)4 件不同的奖品, 全部奖给 3 位同学, 并要求每人至少一件, 有几种奖励方法? (007362)5 本不同的理科书和 3 本不同的文科书并排放在书架上, 要求 3 本文科书并列, 有几种不同的放法? (007363) 联欢会上要演出 4 个歌唱节目和 3 个舞蹈节目, 如果舞蹈节目不能连排, 有几种排串节目的方法?

(007364)5 名运动员参加 100 米决赛, 如果每人到达终点的顺序各不相同, 问: 甲比乙先到达终点的可能有几

(007365) 若 $x \in \{2, 3, 7\}, y \in \{-31, -20, 4\}, 则 xy$ 可表示不同的值的个数是 ().

A. 1 + 1 = 2

B.
$$1 + 1 + 1 = 3$$

C.
$$2 \times 3 = 6$$

D.
$$3 \times 3 = 9$$

(007366) 已知复数 a+bi, 其中 $a,b \in \{0,1,2,3,4,5,6,7,8,9\}$, 则可组成的不同虚数个数为 ().

A. 100

种?

B. 90

C. 81

D. 46

(007367) 如图, 用 4 种不同的颜色涂入图中的矩形 A,B,C,D 中, 要求相邻的矩形涂色不同, 则不同的涂法共有 ().

A. 72 种

B. 48 种

C. 24 种

D. 12 种

(007368) 把 10 个苹果分成三堆, 要求每堆至少 1 个, 至多 5 个, 则不同的分法共有 ().

A. 4 种

B. 5 种

C. 6 种

D. 7 种

(007369) 沿着长方体的棱, 从一个顶点到与它相对的另一个顶点的最近路线共有().

A. 3 条

B. 4条

C. 5 条

D. 6 条

(007370) 若 $a, b \in \mathbb{N}$, 且 $a + b \le 6$, 则复数 a + bi 共有________个.

(007372) 如图是一电路图, 从 A 到 B 共有 条不同的线路可通电.

(007375) 某乒乓球队行男运动员 7 人, 女运动员 6 人, 从中选出一名担任队长, 共有______ 种不同方案; 从中派出 2 人参加男女混合双打, 共有______ 种不同方案.

(007376) 若 $m \in \{-2, -1, 0, 1, 2, 3\}, n \in \{-3, -2, -1, 0, 1, 2\},$ 且方程 $\frac{x^2}{m} + \frac{y^2}{n} = 1$ 是表示中心在原点的双曲线,则表示不同的双曲线最多有_______条.

(007377)3 张卡片的正反面分别写有数字 1 和 2, 3 和 4, 5 和 6, 若将 3 张卡片并列, 可得到_______ 个不同的三位数 (6 不能作 9 用).

(007378) 从 2,3,5,7 这 4 个数字中, 任取两个分别作为分数的分子与分母.

- (1) 能得到几个不同的分数?
- (2) 其中有几个是真分数? 几个是假分数?

(007379) 在六棱锥各棱所在的 12 条直线中, 异面直线共有 ().

- A. 12 对
- B. 24 对
- C. 36 对
- D. 48 对

(007380) 有一排 5 个信号的显示窗, 每个窗可亮红灯、绿灯或不亮灯, 则共可发出的不同信号有 ().

- A. 2⁵ 种
- B. 5² 种
- C. 3⁵ 种
- D. 5³ 种

(007381)4 位学生各写一张贺卡, 放在一起, 然后每人从中各取一张, 但不能取自己写的那一张贺卡, 则不同的取法共有 ().

A. 9 种

- B. 12 种
- C. 16 种
- D. 24 种

(007382)3 封不同的信, 投入 4 个信箱, 则并有不同的投法_______种.

(007383)4 个学生报名参加跳高, 跳远, 游泳比赛, 每人限报 1 项, 则不同的报名方法共有 种.

从集合 B 到集合 A 可建立 个不同的映射. (007385) 如图, 用 4 种不同的颜色涂入图中编兮为 1, 2, 3, 4 的正方形, 要求每个正方形只涂一种颜色, 且有公 共边的两个正方形颜色不同,则共有多少种不同的涂法? 3 4 (007386) 从 1 到 100 的自然数中, 每次取两个不同的数相加, 使它们的和不大于 100, 有几种取法? (3+6 与 4+5 算作不同的取法). (007387) 从 1 到 200 这 200 个自然数中, 各个数位上都不含有数字 8 的数有几个? (007388) 有一角硬币 3 枚, 贰元币 6 张, 百元币 4 张, 共可组成多少种不同的币值. (007389) 设 $a \in \mathbb{N}$, 且 a < 27, 则 $(27 - a)(28 - a) \cdots (34 - a)$ 等于 (). B. P_{34-a}^{27-a} C. P_{34-a}^7 A. P_{27-a}^{8} D. P_{34-a}^{8} (007390)6 人站成一排照相, 其中甲、乙、丙三人要站在一起, 且要求乙、丙分别站在甲的两边, 则不同的排法 种数为(). A. 12 B. 24 C. 48 D. 144 (007391) 记 8 个同学排成一排的排列数为 m, 8 个同学排成前后两排 (前排 3 人, 后排 5 人) 的排列数为 n, ym, n 的大小关系是 (). D. n < m < 2nA. m=nB. m > nC. m < n(007392) 用 0,1,2,3 这 4 个数字, 可以组成无重复数字的四位数的个数是 (). A. 6 B. 12 C. 18 D. 24 (007393)5 辆汽车从停车场分五班开出, 其中甲车必须在乙车之前开出, 则发车方案种数为 (C. 60 A. 24 B. 48 D. 96 (007394) 若 $P_n^3 = nP_3^3$, 则 n =______. (007395) 若 $P_n^n + P_{n-1}^{n-1} = xP_{n+1}^{n+1}$, 则 x =_____. (007396) 若 P_{56}^{n+6} : $P_{54}^{n+3} = 30800$, 则 n =_____. (007397) 在 10 只不同的抽屉中, 放入 10 种不同的产品, 每只抽屉只放一种, 共有 种不同的放法. (007398) 有黄、红、蓝、白、黑五面不同颜色的信号旗, 按不同顺序从左到右排成一排表示不同的信号, 则可表 示_____ 种不同的信号.

(007399)7 位同学站成	过一排,按下列要求各存多少	少种不同的排法:	
(1) 甲站某一固定位置	4.		
(2) 甲站中间, 乙与甲	相邻;		
(3) 甲、乙相邻;			
(4) 甲、乙两人不能相	目邻;		
(5) 甲、乙、丙三人相	目邻 ;		
(6) 甲、乙两人不站右	E排头和排尾;		
(7) 甲、乙、丙三人中			
(8) 甲、乙两人必须相	目邻,且丙不站在排头和排局	.	
(007400) 在由 0,1,2,	3,4,5 这 6 个数字组成的无	重复数字的六位数中, 个位数	字小于十位数字的个数是().
A. 210	В. 300	C. 464	D. 600
(007401) 在由数字 1,	2, 3, 4, 5 组成数字不重复	的五位数中, 小于 50000 的偶	3数有 ().
A. 60 个	B. 48 ↑	C. 36 个	D. 24 个
(007402) 由 0, 1, 2, 3	, 4, 5 这 6 个数字组成数字	本不重复且大于 345012 的 六位	泣数的个数是 ().
A. 360	B. 270	C. 269	D. 245
(007403)6 个停车位置	L, 有 3 辆汽车需要停放, 若	F要使 3 个空位连在一起, 则@	亭放方法数为 ().
A. P_4^4	B. P_6^3	C. P_{6}^{4}	D. P_3^3
(007404)6 张同排连号	号的电影票, 分给 3 名教师和	和 3 名学生, 若要求师生相间	而坐, 则不同的分法数为 ().
A. $P_3^3 P_4^3$	B. $(P_3^3)^2$	C. $2(P_3^3)^2$	D. $P_6^6 - (P_3^3)^2$
(007405) 取 $1, 2, 3, 4,$	5 这 5 个数字中的两个分别	训作为一个对数的底数和真数	,则所得的不同值有 ().
A. 12 个	B. 13 个	C. 16 个	D. 20 个
$(007406) \boxplus 0, 1, 2, 3,$	4,5 这 6 个数字组成的无重	重复数字的三位数中, 奇数个数	数与偶数个数之比为 ().
A. 1:1	B. 2:3	C. 12:13	D. 21:23
(007407) 直线 Ax + I	By = 0 的系数 A, B 可以右	至 0,1,2,3,5,7 这六个数字中.	取值, 则这些方程所表示的不同直
线有 ().			
A. 30 条	B. 23 条	C. 22 条	D. 14 条
(007408) 已知集合 M	$M = \{a_1, a_2, a_3\}, P = \{b_1, b_1, b_2, b_3, b_4, b_4, b_4, b_6, b_7, b_8, b_8, b_8, b_8, b_8, b_8, b_8, b_8$	$\{b_2,b_3,b_4,b_5,b_6\}$,若 M 中的不	「同元素对应到 P 中的不同像, 则
这样的映射个数共有	().		
A. 3	B. 20	C. 64	D. 120

数为().	○ 个目然致中, 母次取出不同	可的两个,便它们的乘积是 0	的信奴,则不问的取法总	
A. 14	B. 15	C. 16	D. 17	
(007410) 赛前将 4 对乒乓球().	双打选手介绍给观众,每对	选手要连着介绍, 则介绍这 8	3 位选手的不同顺序共有	
A. P ₈ 种	B. P ₄ 种	C. 2P ₄ 种	D. 16P ₄ 种	
(007411) 要排一张有 5 个独区 且任何两个合唱节目不相邻,		出节目表, 若合唱节目不排在).	节目表的第一位置上, 并	
A. P ₈	B. $P_5^5 P_3^3$	C. $P_5^5 P_5^3$	D. $P_3^3 P_5^3$	
(007412) 由 1,4,5,x 这四个(数字组成无重复数字的四位	数, 若所有 4 位数的各位数等	字之和为 288, 则 <i>x</i> 等于	
A. 2	B. 3	C. 6	D. 8	
(007413)6 个人排成一排, 要	求甲、乙、丙 3 人都不排在	两端, 求不同排法的种数.		
(007414)5 男 2 女站成一排,	要求女生不能排在两端,且又	7.要相邻, 求不同排法的种数.		
(007415)5 人排成一行, 要求5	甲、乙 2 人之间至少有 1 人	, 求不同排法的种数.		
(007416)6 人排成一排, 要求甲、乙 2 人之间必有 2 人, 求不同排法的种数.				
(007417) 一排 6 张椅子上坐	3 个人, 每 2 人之间有 1 张	空椅子, 求不同排法的种数.		
(007418)8 张椅子排成一排, 有 4 人就坐, 每人一个座位, 其中恰有 3 个连续空位, 求不同排法的种数.				
(007419)8 名学生站成前、后两排, 每排 4 人, 其中要求甲、乙 2 人在后排, 丙在前排, 求不同排法的种数.				
(007420)8 人站成一列纵队, 要求甲、乙、丙 3 人不在排头且要互相隔开, 求不同排法的种数.				
(007421)8 位同学, 其中有 3 位是三好学生, 他们和班主任合影, 要求班主任坐中间, 而且左、右两边都要有三好学生, 求不同排法的种数.				
(007422)6 人并排拍照, 要求甲不坐在最左边, 乙不坐在最右边, 求不同排法的种数.				
(007423) 晚会上有 5 个不同的歌唱节目和 3 个不同的舞蹈节目,分别按以下要求,各可排出几种不同的节目单: (1) 前 4 个节目中既要有歌唱节目,又要有舞蹈节目; (2) 3 个舞蹈节目排在一起; (3) 3 个舞蹈节目彼此隔开; (4) 3 个舞蹈节目先后顺序一定.				

(007424)6 人划船, 其中 2 人只能划右桨, 1 人只能划左桨, 若要求左、右边各 3 人, 则有几种不同的划法?

- (007425) 个位和百位的数字是奇数, 十位和千位的数字是偶数, 且无重复数字的四位数共有多少个?
- (007426) 星期一上午某教师要上 3 个班级的课, 每班 1 节, 若上午规定限排 4 节课, 且要求 3 节课不能连排, 则这天上午该教师的课程表有几种不同的排法?
- (007427) 某天的课程表排入政治、语文、数学、外语、劳技、体育 6 门课, 1 门课排 1 节, 若第 1 节不能排体 育, 第6 节不能排数学, 则共有几种不同排法?
- (007428) 由 0,2,5,7,9 这 5 个数字可组成多少个数字不重复且能被 3 整除的四位数?
- (007429) 由 0.1,2,3,4,5 这 6 个数字可组成多少个数字不重复且能被 4 整除的四位数? 可组成数字不重复且 能被 25 整除的四位数又有多少?
- (007430) 由 1,2,3,4,5,6 这 6 个数字可组成多少个数字不重复且是 6 的倍数的五位数?
- (007431) 由数字 1, 2, 3, 4, 5 可以组成没有重复数字的五位数 120 个, 若把这些数从小到大排成一列数: 12345, 12354, · · · , 5432 问:
- (1) 43251 是这一列数的第几个数?
- (2) 这列数中的第 93 个数是怎样的一个五位数?
- (3) 求这一列数各数之和 (不必具体算出).
- (007432) 用 1,2,3,4,5,6 这 6 个数字组成无重复数字的四位数.
- (1) 奇数数字必须在奇数位的有多少个?
- (2) 奇数位只排奇数数字的有多少个?
- (3) 奇数数字不排在奇数位的有多少个?
- (007433) 从 1,2,3,4,5 这 5 个数字中每次取出 3 个数字组成没有重复数字的三位数,求所有三位数的个位数 的和.
- (007434) 用 1, 7, 8, 9 这 4 个数字组成的四位数中, 分别求所有四位数的各位数字的和与所有四位数的和.
- (007435) 由 1,4,5,x 这 4 个不同数字组成数字不重复的四位数, 若所有四位数的数字之和是 180, 求 x.
- (007436) 用 0,1,2,3,4,5 这 6 个数字组成无重复数字的三位数, 求所有这些三位数之和.
- (007437) 从 1, 2, 3, 4, 8 这 5 个数字中, 任选两个分别作 a^b 中的底数和指数, 则得到的不同值的幂有多少个?
- (007438) 从 $1, 2, 3, \cdots, 9$ 这 9 个数字中任取两个不同的数, 分别作一个对数的真数和底数, 一共可以得到几个 不同的对数值? 其中比 1 大的有几个?
- (007439) 若 $n \neq m$, 则组合数 C_n^m 等于 ().

A.
$$\frac{\mathbf{P}_n^m}{n!}$$

B.
$$\frac{n}{m}C_{n-1}^m$$

B.
$$\frac{n}{m}C_{n-1}^m$$
 C. C_m^{n-m+1}

D.
$$\frac{n}{n-m}C_{n-1}^m$$

(007440) 计算 $C_{10}^{r+1} + C_{10}^{17-r}$,值不相同的有 ().

A. 1 个

B. 2 个

C. 3 个

D. 4 个

(007441) 一组 6 条平行线与另一组 3 条平行线互相垂直, 则由它们所围成的矩形个数是 ().				
A. 16 个	B. 45 个	C. 24 个	D. 90 个	
(007442) 从 $1,3,5,7,9$ 这 5 个数字中任取 3 个,从 $2,4,6,8$ 这 4 个数字中任取 2 个,组成数字不重复的五位数的个数是 $($				
A. $P_5^3 P_4^2$	B. $C_5^3 P_5^3 C_5^2 P_4^2$	C. $C_5^3 C_4^2 P_5^5$	D. $P_5^3 P_6^2$	
(007443) 从 4 台 A 型和 5 台	$oldsymbol{B}$ 型的电视机中, 任取 $oldsymbol{B}$	$_{0}$,要求至少有 $_{A}$ 型和 $_{B}$ 型 $_{1}$	各一台的取法数为().	
A. 70	B. 140	C. 84	D. 35	
(007444) 以正方形的 4 个顶	点, 4 边中点和中心这 9 个点	(中的 3 点为顶点的三角形的	的个数是 ().	
A. 84	B. 81	C. 76	D. 73	
(007445) 平面内有 9 个点,其中有 4 个点在一条直线上,此外无 3 点共线,经过其中的每 2 个点作直线,不同直线的条数是 $($ $).$				
A. 31	B. 30	C. 29	D. 28	
(007446) 从集合 $P = \{1, 2,$ 能确定的不同点的个数是 (集合中各取一个元素作为平面	面直角坐标系中点的坐标,	
A. 11	B. 12	C. 23	D. 24	
(007447) 计算: $C_m^5 - C_{m+1}^5$	$+ C_m^4 = \underline{\hspace{1cm}}.$			
(007448) 计算: $C_{96}^{94} + C_{97}^{95} +$	$C_{98}^{96} + C_{99}^{97} = $			
(007449) 计算: $C_2^2 + C_3^2 + C_3^2$	$C_4^2 + \dots + C_{10}^2 = \underline{\qquad}$			
(007450) 计算: $C_3^0 + C_4^1 + C_4^2$	$C_5^2 + C_6^3 + \dots + C_{20}^{17} = $	·		
(007451) 从 5 名学生中任选 3 名学生分别担任 3 种不同的职务, 共有 种小同的办法.				
(007452) 有 3 名学生分别担任 5 种不同职务中的 3 个不同职务, 共有 种不同分法.				
(007453) 在两条异面直线上分别各有 5 个点和 4 个点, 每两点确定一条直线, 一共有 条直线.				
(007454) 直线 $l_1 \parallel l_2, l_1$ 上有 4 个点, l_2 上有 6 个点, 以这些点为端点连接成线段, 则它们在 l_1 与 l_2 之间的交点最多有				
(007455)M 和 N 是两个不重定不同位置的三棱锥有		5 个点, 在平面 N 内取 4 个	点,则由这些点最多能决	
(007456) 平面内共有 17 个点, 其中有且仅有 5 个点共线, 以这些点中的 3 个点为顶点的三角形共有				

(007457) 以二校性的坝总为	贝点的四面体的个数为	·		
(007458) 平面内有 7 条不 有 个.	同的直线, 其中有且仅有两条	《直线互相平行, 则这 7 条]	直线最多能围成的三角形	
(007459) 已知一些点的坐标	(x,y) 满足 $ x < 2, y < 2$	且 $x \in \mathbf{Z}, y \in \mathbf{Z},$ 若以这些点	的其中三点为顶点作三角	
形,则这样的三角形共有().			
A. 72 个	B. 76 个	C. 80 个	D. 84 个	
(007460) 以正方体的顶点为	顶点的四而体个数是 ().			
A. 70	B. 64	C. 58	D. 24	
(007461) 有甲、乙、丙 3 项任务, 其中甲需 2 人承担, 乙、丙各需 1 人承担, 现从 10 人中选派 4 人承担这 3 项任务, 则不同的选法数共有 ().				
A. 1260 种	B. 2025 种	C. 2520 种	D. 5040 种	
(007462) 将 5 名学生分配到 分配方法共有 ().	4 个不同的科技小组参加活	动,要求每个科技小组至少有	「一名学生参加, 则不同的	
A. 60 种	B. 120 种	C. 240 种	D. 480 种	
(007463) 将 4 名教师分配到 3 个班级去参加活动, 要求每班至少 1 名的分配方法有 ().				
A. 72 种	B. 48 种	C. 36 种	D. 24 种	
(007464) 高三年级有 8 个班	E, 分派 4 个数学教师任教, 每	个教师教两个班,则不同的分	}派方法有 ().	
A. $P_8^2 P_6^2 P_4^2 P_2^2$ 种	B. $C_8^2 C_6^2 C_4^2 C_2^2$ 种	C. $C_8^2 C_6^2 C_4^2 C_2^2 C_4^4$ 种	D. $\frac{C_8^2 C_6^2 C_4^2 C_2^2}{4!}$ 种	
(007465) 现有男、女学生共有 90 种不同的选派方案, 则	8 人, 从男生中选 2 人, 从女 男、女生人数为 ().	生中选 1 人分别参加数学、	物理与化学三科竞赛, 共	
A. 男生 2 人, 女生 6 人	B. 男生 3 人, 女生 5 人	C. 男生 5 人, 女生 3 人	D. 男生 6 人, 女生 2 人	
(007466) 把字母 a, a, a, b, b, b 排成一列, 其中任何两个 b 不能相邻的排法共有 ().				
A. 4 种	B. 10 种	C. 24 种	D. 60 种	
(007467) 已知 a ∈ {-2, -1, 线条数最多是 ().	$0, 1, 2, 3, 4$, $b \in \{-3, -2, -1\}$	$,0,1,2,3,4,5\},$ 则方程 $\frac{x^2}{a}$ +	$-rac{y^2}{b}=1$ 表示的不同双曲	
A. 48	B. 26	C. 22	D. 14	
(007468) 若 m, n 是不大于 6 的非负整数, 则 $C_6^m x^2 + C_6^n y^2 = 1$ 表示不同的椭圆个数是 ().				
A. 42	B. 30	C. 12	D. 6	

(007469) 从 5 个学校中选出 8 名学生组成代表团, 要求每校至少有 1 人的选法种数是 (A. $C_5^1 + C_5^1 C_4^1 + C_5^1 C_4^1 C_3^1$ B. $C_5^3 + C_5^2 C_4^1 + C_5^1 C_4^1 C_3^1$ C. $C_5^1 + P_5^2 + C_5^3$ (007470) 空间有 n 个点, 任意 4 点均不共面, 连接其中任意两点均有一直线, 则成为异面直线的对数为 (B. $2C_n^4$ C. $3C_n^4$ D. P_n^4 A. C_n^4 (007471) 若 $C_7^x = C_7^2$, 则 x =______. (007472) 若 $C_{18}^{2x} = C_{18}^{16-x}$,则 x =_____. (007473) 若 $C_x^{12} = C_x^8$, 则 x =(007474) 若 $C_x^3 : C_x^2 = 44 : 3$, 则 x =(007475) 若 $3C_{x-3}^{x-7} = 5P_{x-4}^2$,则 x =_____. (007476) 若 $C_{17}^{2x} + C_{17}^{2x-1} = C_{18}^6$, 则 x =______. (007477) 异面直线 l_1 和 l_2 分别有 m 个和 $n(m, n \ge 3)$ 个不同的点, 若以这些点为顶点, 可构成 三角形, ______ 个四面体. (007478) 一条直线 a 上有 n 个点, 平面 α 内有 m 个点, 以这些点为顶点, 最多可确定______ 个三棱锥. (007479) 有两个同心圆, 在外圆周上有相异的 6 个点, 内圆周上有相异的 3 个点, 由这 9 个点所确定的直线最 多有______条, 最少有______条. (007480) 已知 ∠AOB 的一边 OA 上有不同的 8 个点, 在另一边 OB 上有不同的 3 个点, 现从 OA, OB 上分 别取一点作连线,则由这些直线相交的交点在 ZAOB 内的个数最多有________ 个. (007481) 解不等式: $\frac{1}{3} < \frac{C_{x+1}^3}{C_{x+1}^1} < 7$. (007482) 解不等式: $C_n^{n-5} > C_{n-2}^3 + 2C_{n-2}^2 + n - 2$. (007483) 解不等式: $C_{21}^{x-4} < C_{21}^{x-2} < C_{21}^{x-1}$. (007484) 解不等式: $C_k^0 + C_k^1 + 2C_k^2 + 3C_k^3 + \cdots + kC_k^k < 500.$ (007485) 解方程: $C_{16}^{x^2-x} = C_{16}^{5x-5}$. (007486) 解方程: $C_{x+3}^{x+1} = C_{x+1}^{x-1} + C_{x+1}^{x} + C_{x}^{x-2}$.

(007487) 计算: $C_{2n}^{17-n} + C_{13+n}^{3n}$.

(007488) 计算: $C_{3n}^{38-n} + C_{21+n}^{3n}$.

(007489) 化简: $1 \cdot 1! + 2 \cdot 2! + \cdots + 10 \cdot 10!$.

(007490) 求证: $\frac{1}{k!} - \frac{1}{(k+1)!} = \frac{k}{(k+1)!}$.

(007491) 化简:
$$\frac{1}{2!} + \frac{2}{3!} + \cdots + \frac{n}{(n+1)!}$$
.

$$(007492) \ 求证: \ \, \frac{k+2}{k!+(k+1)!+(k+2)!} = \frac{1}{(k+1)!} - \frac{1}{(k+2)!}.$$

(007493) 求和:
$$\frac{3}{1!+2!+3!} + \frac{4}{2!+3!+4!} + \cdots + \frac{n+2}{n!+(n+1)!+(n+2)!}$$
.

(007494) 求证:
$$C_n^k = C_2^0 C_{n-2}^k + C_2^1 C_{n-2}^{k-1} + C_2^2 C_{n-2}^{k-2} (k \ge 2)$$
.

(007495)
$$\text{Rif: } n! + \frac{(n+1)!}{1!} + \frac{(n+2)!}{2!} + \dots + \frac{(n+m)!}{m!} = n! C_{n+m+1}^{n+1}.$$

(007496)n 个不同的球放入 n 个不同的盒子中, 若恰好有一个盒子是空盒, 则共有几种不同的放法?

(007497) 从集合 $M = \{1, 2, 3, 4, 5\}$ 到集合 $N = \{a, b, c\}$ 的映射, 要求集合 N 中的元素在集合 M 中都有原像, 这样的映射有几种?

(007498) 如图, $A, B, C \in l_1, D, E, F, G \in l_2, H$ 不属于 $l_1 \cup l_2$, 以这 8 个点中的 3 个点为顶点, 最多可作多少个不同的三角形?

 $(007499)\angle AOB$ 的两边 OA, OB 上分别有异于顶点 O 的 5 个点和 6 个点, 这 12 个点 (连同 O 点) 可作几条 不同直线和几个不同的三角形?

(007500) 在 ABCD 中, M, N 是边 AB 的三等分点, P 是边 CD 的中点, 从 A, B, C, D, M, N, P 这 7 个点 中选 3 个作为三角形的顶点, 一共可以构成几个不同的三角形? 其中面积最小的三角形有几个?

(007501) 以四棱台的顶点为顶点, 时组成多少个四面体?

(007502) 正方体有 8 个顶点, 每 3 点确定 1 个平面, 一共可确定多少个平面?

(007503) 从集合 {51,52,53,...,99} 中任选 2 个数, 使这 2 个数的和为偶数, 有多少种不同的选法?

(007504) 从 1 到 100 的自然数中,每次取两个不同的数相加,使它们的和不大于 100,有几种不同的取法 (1+4) 与 (2+3) 算不同的取法, (2+3) 与 (3+2) 算相同的取法)?

(007505) 从 1 到 18 这 18 个自然数中任选 3 个, 使它们的和是 3 的倍数, 有几种选法?

(007506) 从 5 个男乒乓球运动员和 4 个女乒乓球运动员中选出 2 男、2 女进行乒乓球混合双打, 有多少种不同的分组方法?

(007507) 有编号为 1,2,3,4,5,6,7 的 7 个球和编号为 1,2,3,4,5,6,7 的 7 只盒子, 将这 7 个球放入这 7 只盒子中, 要求每只盒子放 1 个, 恰使其中 4 个球的编号与盒子的编号相同, 一共有多少种不同的投放方法?

- (007508)9 件相同的奖品分给 3 个学生, 每人至少分得 2 件奖品, 一共存几种不同的分法?
- (007509)7 个相同的球任意放入 4 个不同的盒子中, 每个盒子至少有 1 个球的不同放法有几种?
- (007510) 在连续的 6 次射击中, 恰好命中 4 次的情形有多少种?
- (007511) 在所有的三位数中(数字允许重复),百位数字,十位数字,个位数字依次减小的有多少个?仅是个位数字比百位数字小的有多少个?
- (007512) 圆上有 10 个点, 每两点连成一条线段, 这些线段在圆内最多有多少个交点?
- (007513) 将分别写有 a,b,c,d,e,1,2,3,4,5 的 10 张纸片排成一列, 要求 5 在最前, 1 在最后, 且数字从大到小, 字母按英文字母表的先后顺序排列, 则有多少种不同的排法?
- (007514) 从 $1, 2, \dots, 10$ 这 10 个数中任取 3 个互不相邻的自然数, 有儿种不同的取法?
- (007515) 从 6 个运动员中, 选出 4 人参加 4×100 米接力赛跑, 若其中甲、乙两人都不能跑第一棒, 共有多少种参赛方案?
- (007516) 从 7 名运动员中, 选出 4 人参加 4×100 米接力赛跑, 若要求甲、乙两人都不跑中间两棒, 共有多少种 参赛方案?
- (007517) 有 6 名运动员参加 4×100 米接力跑, 其中甲不能跑第一棒, 乙不跑第四棒, 共有多少种参赛的方法?
- (007518)3 天中, 考政治、语文、外语、数学、物理和化学 6 科.
- (1) 每天考一文一理, 有几种不同的安排方法?
- (2) 每天考一文一理, 且语文、数学不能同一天考, 有几种不同的安排方法?
- (007519) 在无重复数字的四位数中, 其中恰有 2 个奇数数字和 2 个偶数数字的四位数共有多少个?
- (007520) 从 1,3,5,7 这 4 个数字中任取 3 个,从 0,2,4 这 3 个数字中任取 2 个,共可组成多少个无重复数字的五位数?
- (007521)10 个人分乘 3 辆汽车, 要求甲车坐 5 人, 乙车坐 3 人, 丙车坐 2 人, 有多少种不同的乘车方法?
- (007522) 某市今年有 8 项重点工程需要建设, 由甲、乙、丙、丁 4 个建筑公司承包, 若要求甲承包 3 项, 乙承包 1 项, 丙、丁各承包 2 项, 则共有多少种不同的承包方案?
- (007523) 有 6 本不同的书, 分给甲、乙、丙 3 人, 按下列要求, 各有几种不同的分法:
- (1) 甲得 1 本, 乙得 2 本, 丙得 3 本;
- (2) 每人 2 本;
- (3) 1 人 1 本, 1 人 2 本, 1 人 3 本.
- (007524) 已知集合 A 和集合 B 各含有 12 个元素, $A\cap B$ 含有 4 个元素, 试求同时满足下列两个条件的集合 C 的个数:

- (1) $C \subset (A \cup B)$, 且 C 中含有 3 个元素;
- (2) $C \cap A \neq \emptyset$.

(007525) 有翻译 8 人, 其中 3 人只会英语, 2 人只会日语, 其余 3 人既会英语又会日语, 现从中选 6 人, 安排 3 人翻译英语, 3 人翻译日语, 则不同的安排方法有多少种?

(007526) 求二项式 $(2x - \frac{3}{2x^2})^7$ 展开式的第四项的二项式系数和第四项的系数.

(007527) 求 $(1+x)+(1+x)^2+(1+x)^3+\cdots+(1+x)^{2n}(n\in \mathbb{N})$ 的展开式中念 x^n 项的系数.

(007528) 在 $(\sqrt{x} + \frac{1}{\sqrt[3]{x}})^{100}$ 的展开式中,有多少项是有理项?

(007529) 求 $(x^2 + \frac{1}{x^2} - 2)^3$ 展开式中含 x^2 项的表达式.

(007530) 求 $(1+x+x^2)(1-x)^{10}$ 展开式中含 x^4 项的系数.

(007531) 求 $(ax + by + cz)^n$ 的展开式中含 $x^p y^q z^r$ 项的系数, 其中 $p + q + r = n(p, q, r, n \in \mathbb{N})$.

(007532) 求 $(x+\frac{1}{x}-1)^5$ 展开式中的常数项.

 $(007533) \text{ \rlap/\vec{x} iff: } 4^n - 4^{n-1}C_n^1 + 4^{n-2}C_n^2 - 4^{n-3}C_n^3 + \dots + 4(-1)^{n-1}C_n^{n-1} + (-1)^nC_n^n = 3^n (n \in \mathbf{N}).$

 $(007534) \text{ \rlap/\vec{x} if: } 1 - \mathrm{C}_n^2 + \mathrm{C}_n^4 - \mathrm{C}_n^6 + \mathrm{C}_n^8 - \mathrm{C}_n^{10} + \dots = (\sqrt{2})^n \cos\frac{n\pi}{4}, \ \mathrm{C}_n^1 - \mathrm{C}_n^3 + \mathrm{C}_n^5 - \mathrm{C}_n^7 + \mathrm{C}_n^9 - \mathrm{C}_n^{11} + \dots = (\sqrt{2})^n \sin\frac{n\pi}{4}.$

(007535) 求证: $C_n^1 + 2C_n^2 + 3C_n^3 + \dots + nC_n^n = n \cdot 2^{n-1} (n \in \mathbb{N}).$

(007536) 求证:
$$C_n^0 + \frac{1}{2}C_n^1 + \frac{1}{3}C_n^2 + \dots + \frac{1}{n+1}C_n^n = \frac{1}{n+1}(2^{n+1}-1)(n \in \mathbf{N}).$$

(007537) 求证
$$C_n^0 C_n^1 + C_n^1 C_n^2 + \dots + C_n^{n-1} C_n^n = \frac{(2n)!}{(n-1)!(n+1)!}$$

(007538) 求证:
$$(C_n^0)^2 + (C_n^1)^2 + (C_n^2)^2 + \dots + (C_n^n)^2 = C_{2n}^n (n \in \mathbf{N}).$$

(007539) 求 5353 除以 9 的余数.

(007540) 求证: $n^{n-1} - 1$ 能被 $(n-1)^2$ 整除 $(n \ge 3, n \in \mathbb{N})$.

(007541) 求证: $2 < (1 + \frac{1}{n})^n < 3(n \ge 2, n \in \mathbf{N}).$

(007542) 在 $(a-b)^n (n \in \mathbb{N})$ 的展开式中, 第 r 项的二项式系数为 ().

A. C_n^r B. C_n^{r-1} C. $(-1)^r C_n^r$ D. $(-1)^{r-1} C_n^{r-1}$

 $(007543)(\sqrt{3}i - x)^{10}$ 展开式的第 8 项是 ().

A. $-360\sqrt{3}x^7i$ B. $-135x^3$ C. $360\sqrt{3}x^7i$ D. $3240\sqrt{3}x^3i$

 $(007544)(\frac{1}{\sqrt{3}} - \sqrt[3]{x})^{20}$ 的展开式中, 不含 x 的项是 ().

A. 第 11 项 B. 第 12 项 C. 第 13 项 D. 第 7 项或第 13 项

(007545) 若二项式 (∛ $x - \frac{2}{x}$	。 - ;) ⁿ 展开式中第 8 项是含 ∛⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄	$ar{v}$ 的项, 则自然数 n 的值等于	· ().	
A. 27	B. 28	C. 29	D. 30	
(007546) 在 $(1+x)^n$ 的二項	页展开式中, 若第 9 项的系数	与第 13 项的系数相等, 则第	20 项的系数等于 ().	
A. 19	B. 20	C. 21	D. 22	
(007547) 若 $(1+x)^8$ 展开式	的中间三项依次成等差数列	, 则 x 的值等于 ().		
A. $\frac{1}{2}$ 或 2	B. $\frac{1}{2}$ 或 4	C. 2 或 4	D. 2 或 $\frac{1}{4}$	
(007548) 在 $(x-1)^9$ 按 x 图	奉幂排列的展开式中 , 系数最	大的项是 ().		
A. 第 4 项和第 5 项	B. 第 5 项	C. 第 5 项和第 6 项	D. 第 6 项	
(007549) 在 $(x+\frac{2}{x^2})^n$ 的展	开式中, 第 3 项为常数, 则中	可可的表达式为 ().		
A. 60	B. $160x^{-3}$	C. 672	D. $960x^{-3}$	
$(007550)(x+1)^4 - 4(x+1)$	$^{3} + 6(x+1)^{2} - 4(x+1) + 1$	等于 ().		
A. x^4	B. $-x^4$	C. 1	D1	
(007551) 在 $(x+y)^n$ 的展开	F式中, 若第 7 项的系数最大	, 则 n 等于 ().		
A. 11, 12, 13	B. 13,14	C. 11, 15	D. 12,13	
(007552) 在 $(x-\frac{1}{x})^9$ 的展	开式中, x ³ 的系数为	·		
(007553) 在 $(ax+1)^7$ 的展	开式中, 若 x^3 的系数是 x^2 的	的系数与 x ⁴ 的系数的等差中	项, 且 $a > 1$, 则 a 的值等	
于				
(007554) 在 $(x+1+i)^{10}$ 的	J展开式中, x ⁶ 的系数是			
(007555) 若 $a > 0, n \in \mathbb{N}$, 且	L $(ax+1)^{2n}$ 和 $(x+a)^{2n+1}$ 展	开式的 x^n 的系数相等, 则 a i	的収值范围是	
$(007556)(\sqrt{x}+\sqrt[3]{x^2})^{12}$ 的原	是开式的第 5 项是	•		
(007557) 若二项式 $(z-2)^6$ 展开式中的第 5 项是 -480 , 则复数 z 的值是				
(007558) 若 $(x + \frac{1}{x})^n$ 展开式中的第 3 项和第 7 项系数相等,则系数的最大项是				
(007559) 在 $(\sqrt[3]{a} - \frac{1}{\sqrt{a}})^{15}$ 自	的展开式中 $,$ 不含 a 的项是第	;		
$(007560)(\frac{\sqrt{x}}{3} + \frac{3}{\sqrt{x}})^{12}$ 展刊	式的中间一项等于	·		
$(007561)(2x^2 + \frac{1}{x})^{12}$ 展开式的常数项为				
(007562) 若 $(\frac{1}{x\sqrt[3]{x}} + x)^n$ 展	开式中第 5,6,7 项的系数成	等差数列, 则展开式中不含 x	的项为	

(007564) 在 $(1-3x)^{12}$ 的展	开式中,各项的二项式系数	之和为	
(007565) 在 $(1-x)^9$ 的展开式中, x 的奇次项系数之和等于			
(007566) 若 $(4x-1)^6 = a_6x$ 值等于 .	$x^6 + a_5 x^5 + a_4 x^4 + a_3 x^3 + a_4 x^4 + a_5 x^5 + a_4 x^4 + a_5 x^5 $	$a_2x^2 + a_1x + a_0$, \mathbf{M} $a_6 + a_5 + a_5$	$a_4 + a_3 + a_2 + a_1 + a_0$ 的
(007567)	$+ a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4$	$a_6 + a_5 x^5 + a_6 x^6$,则 $a_6 - a_5 + a_5 x^5 + a_6 x^6$,则 $a_6 - a_5 + a_5 x^5 + a_5 x^5 + a_5 x^5 + a_5 x^5 + a_5 x^6$	$a_4 - a_3 + a_2 - a_1$ 的值等
(007568) 在 $(2x-1)^5$ 的展	开式中, 各项系数的绝对值之	之和等于	
(007569) 在 $(x+2y)(2x+y)$	$(x^2)^2(x+y)^3$ 的展开式中, 各功	页系数的和是	
$(007570)1 + 7C_n^1 + 7^2C_n^2 + 7$	$7^3C_n^3 + \dots + 7^nC_n^n = \underline{\hspace{1cm}}$.	
$(007571)1 - 2C_n^1 + 4C_n^2 - \cdots$	$\cdot + (-2)^n \mathcal{C}_n^n = \underline{\hspace{1cm}}$		
$(007572)3 + 3^{n-1}C_n^1 + 3^{n-2}$	$C_n^2 + \dots + 3C_n^{n-1} + C_n^n = \underline{}}$		
$(007573)C_{21}^0 - C_{21}^2 + C_{21}^4 -$	$C_{21}^6 + \dots + C_{21}^{16} - C_{21}^{18} + C_{21}^{2}$	$^{20}_{11} = $	
(007574) 若 $(2x^2 - \frac{1}{\sqrt[3]{x}})^n$ 的	的展开式中含有非零常数项,	则正整数 n 的最小值是 ().
A. 8	B. 6	C. 5	D. 4
(007575) 在 $(\sqrt[5]{3} + \sqrt[7]{5})^{24}$ 的展开式中, 整数项是 $($ $)$.			
A. 第 12 项	B. 第 13 项	C. 第 14 项	D. 第 15 项
(007576) 在 $(\sqrt{3}x + \sqrt[3]{2})^{100}$	的展开式中, x 的系数为有	理数的项共有 ().	
A. 15 項	B. 16 項	C. 17 项	D. 18 项
(007577) 在 $(1-x)^n(1+x)^n$ 的展开式中,若含 x^4 项的系数是 10 , 则自然数 n 的值等于 ().			
A. 3	B. 4	C. 5	D. 6
(007578) 在二项式 $(1+x)^n$ 的展开式中,若相邻两项的系数之比为 $8:15,$ 则 n 的最小值是 $($).			
A. 21	B. 22	C. 23	D. 24
(007579) 若集合 $P = \{$ 所有小于 1993 的正奇数 $\}$,则 P 的非空真子集的个数是 $($).			
A. 2^{996}	B. $2^{996} - 2$	C. $2^{996} - 1$	D. 2^{995}
(007580) 在 $(2-3x)^n$ 的展	开式中, 各项系数之和是().	
A. 1		B. n 为偶数时是 2, n 为奇数	
C1		D. n 为偶数时是 1, n 为奇数	时是 -1

(007563) 在 $(\sqrt[3]{2} + \sqrt{3})^{12}$ 的展开式中,有理项是第______ 项.

(007581) 在 $(1+x)^3 + (1+x)^4 + \cdots + (1+x)^{n+2}$ 的展开式中, 含 x^2 项的系数是 ().

A. C_{n+3}^3

B. $C_{n+3}^3 - 1$

C. $C_{n+2}^3 - 1$

D. C_{n+2}^{3}

 $(007582)(a+b+c)^{10}$ 展开式的项数共有 ().

A. 11 项

B. 66 项

C. 121 項

D. 132 项

(007583) 在 $(x+1)(2x+1)(3x+1)\cdots(nx+1)$ 的展开式中, x 的一次项的系数是 ().

A. C_n^1

B. C_n^2

C. C_{n+1}^{1}

D. C_{n+1}^2

(007584) 在 $(1+x_1)(1+x_2)^2\cdots(1+x_{n-1})^{n-1}(1+x_n)^n$ 展开式中,各项系数之和是 ().

A. $2^{n(n+1)}$

B. $2^{\frac{n(n+1)}{2}}$

C. $2^{n+1} + 2$

D. $2(2^n - 1)$

(007585)5555 被 8 除所得的余数是 ().

A. 7

B. -7

C. 1

D. -1

(007586) 求 $(x^2 + \frac{4}{x^2} - 4)^5$ 展开式中含 x^4 项的系数.

(007587) 求 $(x^2 + 3x + 2)^5$ 展开式中含 x 项的系数.

(007588) 求 $(1-x)^5(1+x+x^2)^4$ 展开式中含 x^7 项的系数.

(007589) 求 $(x-2)^4(1+x)^5$ 展开式中含 x^6 项的系数.

(007590) 求 $(x^2 + x - 2)^4$ 展开式中含 x^2 项的系数.

(007591) 求 $(2\sqrt{x} - \frac{1}{\sqrt{x}})^6$ 展开式中, x 的一次幂的系数.

(007592) 求 $(x+y-3z)^8$ 的展开式中含 x^5yz^2 项的系数.

(007593) 求 $(x+2y+z)^9$ 展开式中含 $x^2y^3z^4$ 项的系数.

(007594) 求 $(1-2x)^5(2+x)$ 展开式中含 x^3 项的系数.

(007595) 求 $(1+x+x^2)(1-x)^{10}$ 展开式中含 x^4 项的系数.

(007596) 求 $(1+x)^{2n} + x(1+x)^{2n-1} + x^2(1+x)^{2n-2} + \cdots + x^n \cdot (1+x)^n$ 展开式中含 x^n 项的系数.

(007597) 求 $(x-1)-(x-1)^2+(x-1)^3-(x-1)^4+(x-1)^5$ 的展开式中含 x^2 项的系数.

(007598) 若 $(x + x^{\lg x})^5$ 的展开式的第 4 项为 10^6 , 求 x 的值.

(007599) 若 $x(1-x)^4 + x^2(1+2x)^k + x^3(1+3x)^{12}$ 的展开式中 x^4 的系数是 144, 求 k 的值.

(007600) 若 $(x^{\lg x}+1)^n$ 展开式中最后 3 项的二项式系数的和是 22, 而它的中间项是 20000, 求 x 的值.

(007601) 已知 $(x \sin \alpha + 1)^6$ 的展开式中 x^2 项的系数与 $(x - \frac{15}{2} \cos \alpha)^4$ 的展开式中 x^3 项的系数相等, 求 α 的值.

(007602) 已知 $(a+b)^n$ 展开式的末 3 项系数之和为 22, 又 $(x^{\lg x}-3)^n$ 展开式的中间项等于 -540000, 求 x 的 值. (007603) 求 $(|x| + \frac{1}{|x|} - 2)^3$ 展开式中的常数项. (007604) 求 $[(1+\log_3 x)(1+\log_x 3)]^n$ 的展开式中不含x的项. (007605) 已知 $(\sqrt{x} + \frac{2}{x^2})^n$ 展开式中的第 5 项系数与第 3 项系数之比是 56:3, 求展开式中不含 x 的项. (007606) 已知 $(\sqrt{x} + \frac{1}{2 \cdot \sqrt[4]{x}})^n$ 展开式中前 3 项的系数依次成等差数列, 求展开式中所有的有理项. (007607) 已知 $(x \cdot \sqrt{x} - \frac{1}{x})^6$ 展开式的第 5 项等于 $\frac{15}{2}$, 求 $\lim_{n \to \infty} (x^{-1} + x^{-2} + \dots + x^{-n})$. (007608) 已知多项式 $f(x) = (1+x)^m + (1+x)^n (m \in \mathbb{N}, n \in \mathbb{N})$ 的展开式中 x 项的系数为 19. (1) 求 f(x) 中含 x^2 项的系数的最小值; (2) 对于使 f(x) 的 x^2 项的系数取最小值时的 m, n, \vec{x} f(x) 中含 x^7 的项. (007609) 在 $(x+1)(x+2)(x+3)\cdots(x+10)$ 的展开式中, 7 的系数是多少? x^8 的系数又是多少? (007610) 求 $(x+1)(x+2)(x+3)\cdots(x+n)$ 展开式中含 x^{n-2} 项的系数. (007611) 求多项式 $(x^2 + x - 1)^9 (2x + 1)^4$ 展开式中 x 的奇次项系数之和. (007612) 求多项式 $(x^2 + 2x + 2)^{1993} + (x^2 - 3x - 3)^{1993}$ 展开式中 x 的偶次项系数之和. (007613) 求 $(2-5x+2x^2)^5(2-x)^7$ 展开后各项系数的和. (007614) 求 $(x^3 + 2x + 1)(5x^2 + 4)$ 展开后各项系数的和. (007615) 已知 $(1+x)^n$ 展开式中奇数项之和为 A, 偶数项之和为 B, 试证: $A^2-B^2=(1-x^2)^n$. (007616) 若 $(a+b)^n$ 展开式的所有奇数项的二项式系数之和为 1024, 则展开式中间项的系数是 (). A. 330 B. 462 C. 682 D. 792 (007617) 在 $(x-\frac{1}{x})^n$ 的展开式中, 若奇数项的系数之和为 32, 则含 x^2 项的系数是 (A. -20D. 20 $(007618) ~ 若 ~ a ~ 为常数, ~ 则 ~ \lim_{n \to \infty} \frac{a + \mathrm{C}_n^1 + \mathrm{C}_n^2 + \dots + \mathrm{C}_n^n}{2^n} ~ \textbf{的值等于} ~ (\qquad).$ C. 1 A. 0 (007619) 记 $(1+2x)^n$ 展开式中各项系数和为 a_n , 其二项式系数和为 b_n , 则 $\lim_{n\to\infty} \frac{b_n-a_n}{b_n+a_n}$ 为 (). B. 0 C. -1A. 1 D. 不存在 (007620) 设 $(1-2x)^8 = a_0 + a_1x + a_2x^2 + \dots + a_8x^8$, 则 $|a_0| + |a_1| + |a_2| + \dots + |a_8|$ 是 (). C. 2^{8} D. 3^{8} A. -1B. 1

(007621) 在 $(x-1)^{11}$ 的展开式中, x 的偶次幂项的系数和为_____. (007622) 若 $2000 < C_n^1 + C_n^2 + C_n^3 + \cdots + C_n^n < 3000$, 则 n =______. (007624) 设含有 10 个元素的集合的全部子集为 S, 其中由 3 个元素组成的子集数为 T, 则 $\frac{T}{\varsigma}$ 的值为_ (007625) 设 $(1+x)+(1+x)^2+(1+x)^3+\cdots+(1+x)^n=b_0+b_1x+b_2x^2+\cdots+b_nx^n$, 且 $b_0+b_1+\cdots+b_n=30$, 则自然数 n 的值等于 (). A. 4 B. 5 C. 6 D. 8 (007626) 在 $(x^2+x-1)^{100}+(x^2-x-1)^{100}$ 的展开式中, x 的偶次项系数之和为 (C. 6 D. 8 (007627)C $_n^0 + 2$ C $_n^1 + 2^2$ C $_n^2 + \dots + 2^n$ C $_n^n$ 的值为 (). B. 2^{n-1} A. 2^n C. 3^n D. 3^{n-1} (007628)10110-1 的末尾连续零的个数是(). B. 2 C. 3 A. 1 D. 4 则 $a_1 + a_2 + \cdots + a_n =$ ______. (007630) 已知 x 为实数, i 为虚数单位, 则 $(1+ix)^{50}$ 展开式中实系数项的系数和为_____. (007631) 设 a 是 $\sqrt{2}$ 的整数部分, b 是 $\sqrt{2}$ 的小数部分, 则 $(a-\frac{1}{b})^6$ 展开式的中间项是______. (007632) 设 $(2x+x^{\lg x})^n$ 展开式各项的二项式系数之和为 256,且二项式系数最大项的值为 1120,求 x. (007633) 已知 $(\sqrt{x} + \frac{1}{\sqrt[3]{x}})^n$ 展开式系数之和比 $(a+b)^{2n}$ 展开式的系数之和小 240, 求 $(\sqrt{x} + \frac{1}{\sqrt[3]{x}})^n$ 展开式中 系数最大的项. (007634) 求满足 $\{a,b\} \subset A \subseteq \{a,b,c,d,e,f,g\}$ 的集合 A 的个数. (007635) 设集合 $A = \{0, 2, 5, 7, 9\}$, 从集合 A 中任取两个元素相乘, 它们的积组成集合 B, 求集合 B 的子集的 个数. (007636) 求和: $C_{100}^0 + 4C_{100}^1 + 7C_{100}^2 + \cdots + (3n-2)C_{100}^{n-1} + \cdots + 298C_{100}^{99} + 301C_{100}^{100}(n \in \mathbb{N}, 1 \le n \le 101).$

(007639) 求 4713 被 5 除的余数.

(007638) 若 n 为奇数, 求 $7^n + C_n^1 \cdot 7^{n-1} + C_n^2 \cdot 7^{n-2} + C_n^3 7^{n-3} + \dots + C_n^{n-2} \cdot 7^2 + C_n^{n-1} \cdot 7$ 被 9 除所得的余数.

 $(007637) \ \textbf{\textbf{沒}}\ a_0, a_1, a_2, \cdots, a_n\ \textbf{\textbf{\textbf{L}等差数列}},\ \textbf{求证} \colon a_0 + \mathbf{C}_n^1 a_1 + \mathbf{C}_n^2 a_2 + \cdots + \mathbf{C}_n^n a_n = (a_0 + a_n) \cdot 2^{n-1}.$

- (007640) 求 9192 除以 8 所得的余数.
- (007641) 求证: $3^{2n} 8n 1(n \in \mathbb{N})$ 能被 64 整除.
- (007642) 求证: 数列 $65,65 \times 66,65 \times 66^2,65 \times 66^3,\cdots,65 \times 66^{48},65 \times 66^{49}$ 之和必能被 67 整除.
- (007643) 已知 $2^{n+2} \times 3^n + 5n a(n \in \mathbb{N})$ 能被 25 整除, 求 a 的最小正值.
- (007644) 求 $x^{10} 3$ 除以 $(x 1)^2$ 所得的余式.
- (007645) 求证: 当 n > 3, $n \in \mathbb{N}$ 时, $n^{n-1} 1$ 能被 $(n-1)^2$ 整除.
- (007646) \Re $(x-2)^8 = a_8x^8 + a_7x^7 + \dots + a_1x + a_0$, \Re $a_8 + a_6 + a_4 + a_2$.
- (007647) 求 $(1-x)+(1-x)^2+(1-x)^3+\cdots+(1-x)^n$ 展开式中所有奇次项系数的和.
- (007648) 已知 $(3-x)^n = a_0 + a_1x + a_2x^2 + a_3x^3 + \dots + a_nx^n$, 求 $a_1 + 2a_2 + 2^2a_3 + \dots + 2^{n-1}a_n$.
- (007649) 求证: $C_n^0 C_n^1 + C_n^1 C_n^2 + \dots + C_n^{n-1} C_n^n = \frac{(2n)!}{(n-1)!(n+1)!}$.
- (007650) 求证: $C_n^0 C_m^p + C_n^1 C_m^{p-1} + \cdots + C_n^p C_m^0 = C_{m-n}^p (p \le m, n)$.
- (007651) 利用 $kC_n^k = nC_{n-1}^{k-1}$, 求证: $C_n^1 + 2C_n^2 + 3C_n^3 + \cdots + nC_n^n = n \cdot 2^{n-1}$.
- (007652) 利用 $kC_n^k = nC_{n-1}^{k-1}$, 求证: $C_n^1 2C_n^2 + 3C_n^3 + \cdots + (-1)^{n-1}nC_n^n = 0 (n \ge 2, n \in \mathbb{N})$.
- (007653) 利用 $kC_n^k = nC_{n-1}^{k-1}$, 求证: $C_n^0 + 2C_n^1 + 3C_n^2 + \cdots + (n+1)C_n^n = (n+2) \cdot 2^{n-1}$.
- (007654) 已知 $n \in \mathbb{N}, n \ge 2, 求证: 2^n > 1 + 2 + \dots + n.$
- (007655) 求证: $3^n > 2^{n-1}(n+2)(n > 2, n \in \mathbb{N}).$
- (007656) 已知正数 a,b,c 满足 a+b+c=abc, 求证: $a^n+b^n+c^n>3(1+\frac{n}{2})(n\in \mathbf{N}).$
- (007657)利用数学归纳法证明: $(\frac{n}{2})^n > n! (n \in \mathbf{N} \ \bot \ n \geq 6).$
- (007658) 已知 $C_{18}^n = C_{18}^{n+2}$, $4P_m^2 = P_{m+1}^4$, 求 $(1 + \sqrt{m}i)^n$ 展开式中所有实数项的和.
- (007659) 若实数 x, y 满足 x + y = 1, 求证: $x^5 + y^5 \ge \frac{1}{16}$.
- (007660) 已知: |x| < 1, $n \in \mathbb{N}$, $n \ge 2$, 求证: $(1-x)^n + (1+x)^n < 2^n$.
- (007661) 计算: $C_{21}^0 C_{21}^2 + C_{21}^4 C_{21}^6 + C_{21}^8 C_{21}^{10} + C_{21}^{12} C_{21}^{14} + C_{21}^{16} C_{21}^{18} + C_{21}^{20}$.
- (007662) 求证: $1 + C_n^1 \cos \alpha + C_n^2 \cos 2\alpha + \dots + C_n^n \cos n\alpha = 2^n \cos^n(\frac{\alpha}{2}) \cdot \cos \frac{n\alpha}{2}, C_n^1 \sin \alpha + C_n^2 \sin 2\alpha + \dots + C_n^n \sin n\alpha = 2^n \cos^n(\frac{\alpha}{2}) \sin \frac{n\alpha}{2}.$

(007663) 没 $a_n = 1 + q + q^2 + \dots + q^{n-1} (n \in \mathbb{N}, q \neq \pm 1), A_n = a_1 C_n^1 + a_2 C_n^2 + \dots + a_n C_n^n$

(1) 用 q, n 表示 A_n ;

(2) 当
$$-3 < q < 1$$
 时, 求 $\lim_{n \to \infty} \frac{A_n}{2^n}$

(3) 设
$$b_1 + b_2 + \dots + b_n = \frac{A_n}{2^n}$$
, 求证: 数列 $\{b_n\}$ 是等比数列.

(007664) 设 $A_n = (1 + \lg x)^n$, $B_n = 1 + n \lg x + \frac{n(n-1)}{2} \lg^2 x (n \ge 3, n \in \mathbf{N})$, 且 $x > \frac{1}{10}$, 试比较 A_n 和 B_n 的大小, 并证明你的结论.

(007665)6 人按下列要求分组, 各有多少种分法.

- (1) 分成人数为 2, 4 的两组;
- (2) 分成人数相等的两组;
- (3) 平均分成两组分别去植树和扫地.

(007666) 某校以单循环制方法进行排球比赛, 其中有两个班级各比赛了 3 次后, 不再参加比赛, 这样一共进行了 84 场比赛, 问: 开始有多少班级参加比赛?

(007667) 红、黄、绿 3 种颜色的卡片分别写有 A, B, C, D, EE 字母各一张, 每次取出 5 张, 要求字母各不相同、3 种颜色齐全的取法有多少种?

(007668) 设 n 为偶数, 从 $1, 2, \dots, n$ 中选 3 数使之不构成等差数列, 问: 这样的选法有多少种?

(007669) 设集合 $P = \{a_1, a_2, \dots, a_n\}$, 在 P 中取子集 A_1, A_2, A_3 , 使 $A_1 \cap A_2 \cap A_3 = \emptyset$, 这样子集的集合 $\{A_1, A_2, A_3\}$ 共有多少个?

(007670) 如图, 有纵路 10 条, 横路 2 条, 从 A 沿道路行走到 B, 规定行走中不得重走已走过的路, 共有多少种不同的走法?

(007671) 由 1 分, 2 分, 5 分, 1 角, 2 角, 5 角, 1 元, 2 元, 5 元, 10 元人民币各一张, 可组成多少种不同的币值?

(007672) 壹分币 3 枚、贰角币 6 张、拾元币 4 张, 可以组成多少种不同的币值?

(007673) 求 21600 的正约数的个数 (1 和 21600 也是约数) 及所有约数之和.

(007674) 设自然数 $N=\{1,2,3,\cdots\}$ 的子集中含有 4 个元素的子集的个数记为 m,且这 m 个集合中所有元素 之和为 $\frac{1}{12} P^5_{100}$,求 m.

(007675) 有 11 名工人, 其中 5 名只会做钳工, 4 名只会做车工, 2 名既会做钳工, 又会做车工, 今要选 4 名车工、4 名钳工, 有多少种不同的选法?

$$(007676)$$
 设 $(1+x+x^2)^n = a_0 + a_1x + a_2x^2 + \dots + a_{2n}x^{2n}$, 求 $a_0 + a_2 + a_4 + \dots + a_{2n}$ 的值.

(007677) 求 $(\sqrt{x}+2)^{2n+1}$ 的展开式中 x 的整数次幂的各项系数之和.

(007678) 求 $(1+i)^{4k-2}(k\in \mathbf{N})$ 展开式中奇数项之和.

(007679) 求证: $(3+\sqrt{7})^n(n\in\mathbf{N},\,n\geq2)$ 的整数部分为奇数.