Sistem Digital

- Ada beberapa sistem bilangan yang digunakan dalam sistem digital. Yang paling umum adalah sistem bilangan desimal, biner, oktal dan heksadesimal
- Sistem bilangan desimal merupakan sistem bilangan yang paling familier dengan kita karena berbagai kemudahannya yang kita pergunakan sehari – hari.

 Secara matematis sistem bilangan bisa ditulis seperti contoh di bawah ini:

Bilangan:
$$D_r = d_{n-1}, d_{n-2}, \dots, d_1, d_0, d_{-1}, \dots, d_{-n}$$

Nilai : $D_r = \sum_{i=-n}^{n-1} d_i \times r^i$

Nilai :
$$D_r = \sum_{i=-n}^{n-1} d_i \times r^i$$

Contoh:

Bilangan desimal:

```
5185.68_{10} = 5 \times 10^{3} + 1 \times 10^{2} + 8 \times 10^{1} + 5 \times 10^{0} + 6 \times 10^{-1} + 8 \times 10^{-2}
= 5 \times 1000 + 1 \times 100 + 8 \times 10 + 5 \times 1 + 6 \times 0.1 + 8 \times 0.01
```

```
Bilangan biner (radiks=2, digit=\{0, 1\})

10011<sub>2</sub> = 1 × 16 + 0 × 8 + 0 × 4 + 1 × 2 + 1 × 1 = 19<sub>10</sub>

WSB LSB

101.001<sub>2</sub> = 1x4 + 0x2 + 1x1 + 0x.5 + 0x.25 + 1x.125 = 5.125<sub>10</sub>
```

Macam-Macam Sistem Bilangan

Sistem	Radiks	Himpunan/elemen Digit	Contoh
Desimal	r=10	{0,1,2,3,4,5,6,7,8,9}	255 ₁₀
Biner	r=2	{0,1}	11111111 ₂
Oktal	r= 8	{0,1,2,3,4,5,6,7}	377 ₈
Heksadesimal	r=16	{0,1,2,3,4,5,6,7,8,9,A, B, C, D, E, F}	FF ₁₆

Desimal	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Heksa	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
Biner	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111

Konversi Radiks-r ke desimal

Rumus konversi radiks-r ke desimal:

$$D_r = \sum_{i=-n}^{n-1} d_i \times r^i$$

Contoh:

$$1101_2 = 1 \times 2^3 + 1 \times 2^{2^+} \times 2^{1} + 1 \times 2^{0}$$
$$= 8 + 4 + 1 = 13_{10}$$

$$572_8 = 5 \times 8^2 + 7 \times 8^1 + 2 \times 8^0$$
$$= 320 + 56 + 2 = 378_{10}$$

$$2A_{16} = 2 \times 16^{1} + 10 \times 16^{0}$$

$$= 32 + 10 = 42_{10}$$

Konversi Bilangan Desimal ke Biner

- Konversi bilangan desimal bulat ke bilangan Biner: Gunakan pembagian dgn 2 secara suksesif sampai sisanya = o.
- Sisa-sisa pembagian membentuk jawaban, yaitu sisa yang pertama akan menjadi least significant bit (LSB) dan sisa yang terakhir menjadi most significant bit (MSB).

Konversi Bilangan Desimal ke Biner

```
Contoh: Konersi 179<sub>10</sub> ke biner:
 179/2 = 89 \text{ sisa 1 (LSB)}
       /2 = 44 \text{ sisa 1}
          / 2 = 22 sisa o
             / 2 = 11 sisa o
              /2 = 5 sisa 1
                 /2 = 2 sisa 1
                   /2 = 1 sisa o
                     /2 = o sisa 1 (MSB)
   \Rightarrow 179<sub>10</sub> = 10110011<sub>2</sub>
                      MSB
```

Konversi Bilangan Desimal ke Biner

```
Contoh: Konersi 0,179<sub>10</sub> ke biner:
  179 / 2 = 89 \text{ sisa } 1 \text{ (LSB)}
           / 2 = 44 \text{ sisa } 1
               / 2 = 22 sisa 0
                   / 2 = 11 sisa 0
                      / 2 = 5 sisa 1
                         / 2 = 2 sisa 1
                             / 2 = 1 sisa 0
                                / 2 = 0 \text{ sisa } 1 \text{ (MSB)}
    \Rightarrow 179<sub>10</sub> = 10110011<sub>2</sub>
```

Konversi Bilangan Desimal ke Oktal

- Konversi bilangan desimal bulat ke bilangan oktal: Gunakan pembagian dgn 8 secara suksesif sampai sisanya = o.
- Sisa-sisa pembagian membentuk jawaban, yaitu sisa yang pertama akan menjadi least significant bit (LSB) dan sisa yang terakhir menjadi most significant bit (MSB).

Konversi Bilangan Desimal ke Oktal

Contoh:

```
Konversi 179<sub>10</sub> ke oktal:
   179/8 = 22 \text{ sisa } 3 \text{ (LSB)}
              /8 = 2 sisa 6
                    /8 = o sisa 2 (MSB)
   \Rightarrow 179<sub>10</sub> = 263<sub>8</sub>
                   MSB LSB
```

Konversi Bilangan Desimal ke Hexadesimal

- Konversi bilangan desimal bulat ke bilangan hexadesimal: Gunakan pembagian dgn 16 secara suksesif sampai sisanya = o.
- Sisa-sisa pembagian membentuk jawaban, yaitu sisa yang pertama akan menjadi least significant bit (LSB) dan sisa yang terakhir menjadi most significant bit (MSB).

Konversi Bilangan Desimal ke Hexadesimal

Contoh:

Konversi 179₁₀ ke hexadesimal:

/ 16 = o sisa 11 (dalam bilangan

hexadesimal berarti B)MSB

$$\Rightarrow$$
 179₁₀ = B3₁₆

$$\uparrow$$
MSB LSB

Materi selanjutnya Konversi Bilangan:

- -Biner ke Oktal
- -Oktal ke Biner
- Biner ke Heksadesimal
- Heksadesimal ke Biner

Konversi Bilangan Biner ke Oktal

Untuk mengkonversi bilangan biner ke bilangan oktal, lakukan pengelompokan 3 digit bilangan biner dari posisi LSB sampai ke MSB

Biner → Oktal

000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

Biner → Oktal

Contoh:

Konversikan 101100112 ke bilangan oktal

Jadi 10110011₂ = 263₈

Konversi Bilangan Oktal ke Biner

Sebaliknya untuk mengkonversi Bilangan Oktal ke Biner yang harus dilakukan adalah terjemahkan setiap digit bilangan oktal ke 3 digit bilangan biner

Oktal → Biner

Contoh:
Konversikan 263₈ ke bilangan biner.
Jawab: 2 6 3

Jadi 263₈ = 010110011₂ Karena o didepan tidak ada artinya kita bisa menuliskan 10110011₂

Konversi Bilangan Biner ke Hexadesimal

Untuk mengkonversi bilangan biner ke bilangan hexadesimal, lakukan pengelompokan 4 digit bilangan biner dari posisi LSB sampai ke MSB

Biner → Heksa

0000	0	1000	8
0001	1	1001	0
0010	2	1010	А
0011	3	1011	В
0100	4	1100	С
0101	5	1101	D
0110	6	1110	Е
0111	7	1111	F

Biner -> Heksa

Contoh:

konversikan 101100112 ke bilangan heksadesimal

Jawab: 1011 0011

Jadi 10110011₂ = B3₁₆

Konversi Bilangan Hexadesimal ke Biner

Sebaliknya untuk mengkonversi Bilangan Hexadesimal ke Biner yang harus dilakukan adalah terjemahkan setiap digit bilangan Hexadesimal ke 4 digit bilangan biner

Heksa → Biner

Contoh:

Konversikan B₃₁₆ ke bilangan biner.

Jadi B3₁₆ =
$$10110011_2$$

Format Basis Bilangan

- Suatu bilangan yang dinyatakan dalam basis k ditulis dalam bentuk jumlah dari perkalian koefisien dengan k dipangkatkan derajad koefisien tersebut
- Derajat koefisien dihitung mulai dari o naik ke kiri untuk bilangan bulat, dan dihitung mulai -1 menurun ke kanan untuk pecahan

Format Basis Bilangan

$$(a_n a_{n-1} a_{n-2} ... a_1 a_0, a_{-1} a_{-2} ... a_m)_k$$

Nilainya adalah:

$$(a_n.k^n+a_{n-1}.k^{n-1}+a_{n-2}.k^{n-2}+...+a_1.k^1+a_0.k^0+a_1.k^{n-1}+a_{n-2}.k^{n-2}+...+a_{-m}.k^{-m}$$

Contoh

$$(502,31)_8$$
 -----> $n = 2$; $m = 2$
 $5.8^2 + 0.8^1 + 2.8^0 + 3.8^{-1} + 1.8^{-2}$
 $320 + 0 + 2 + 0,375 + 0,015625$
 $322,39_{10}$

Berapa?

Berapa?

Konversi Bilangan Bulat

 Bilangan bulat : dilakukan pembagian dengan basis bilangan k secara berulang sampai hasilnya o. Sisa hasil setiap pembagian menjadi koefisien bilangan baru dengan Least Significant Bit (LSB) sebagai nilai terkecil dan Most Significant Bit sebagai nilai terbesar

Contoh

Konversi Bilangan Pecahan

- Pecahan: dilakukan perkalian dengan basis bilangan k, hasilnya dipisahkan dalam bentuk integer dan pecahan. Bagian Pecahan dikalikan berulang dengan basis bilangan k sampai bagian pecahan menjadi o,oo atau yang disepakati sebagai batas.
- Bagian integer menjadi koefisien dengan bagian pertama sebagai MSB dan yang terakhir sebagai LSB

Contoh

Mengubah 0,432₁₀ ke basis 4 dengan 4 angka dibelakang koma

$$0,432 \times 4 = 1,728 - a_{-1} = 1 \text{ (MSB)}$$

 $0,728 \times 4 = 2,912 - a_{-2} = 2$
 $0,912 \times 4 = 3,648 - a_{-3} = 3$
 $0,648 \times 4 = 2,592 - a_{-4} = 2 \text{ (LSB)}$
Jadi $0,432_{10} = 0,1232_4$

Berapa?

$$(167,28)_{10} = \dots$$

```
167/8 = 20 \text{ sisa } 7 - a_0 = 7 \text{ LSB} 0.28 \times 8 = 2.24 - a_1 = 2 \text{ MSB} 20/8 = 2 \text{ sisa } 4 - a_1 = 4 0.24 \times 8 = 1.92 - a_2 = 1 0.92 \times 8 = 7.96 - a_3 = 7 \text{ LSB}
```

247,217₈

Oktal <->Biner <-> Heksa

Untuk integer: Kelompokkan dari kanan ke kiri sebanyak 3 angka untuk oktal dan sebanyak 4 angka untuk heksa. Kelompok paling kiri boleh kurang dari 3 (oktal) / 4 (heksa)

Untuk Pecahan: Kelompokkan dari kiri ke kanan sebanyak 3 angka untuk oktal dan sebanyak 4 angka untuk heksa. Jika kelompok paling kanan kurang dari 3 (oktal)/4 (heksa) maka tambahkan nol dibelakangnya.

$$0.11_2 = ..._8$$

 $0.11_2 = 0.110$
 $= 0.6_8$

$$0.11_2 = ..._{16}$$

 $0.11_2 = 0.1100$
 $= 0.00$

Berapakah hasil

$$-$$
 AE₁₆ + D4₁₆ =

$$-3ED_{16} - 2BA_{16} =$$

$$\bullet$$
 AE₁₆ × 4₁₆ =

$$\blacksquare$$
 3ED1₁₆: 2A₁₆ =

Komplemen

- Digunakan untuk menyederhanakan operasi pengurangan dan manipulasi logika
- Dikenal 2 macam komplemen komplemen_k
 komplemen_(k-1)

Komplemen_r

Jika diberikan bilangan positif N dengan basis k dan bagian bulatnya terdiri dari n digit, maka:

Komplemen_r dari N

kn-N untuk N≠0
0 untuk N=0

```
Komplemen_10 dari (52520)_{10} = ...?
                 N = 52520
                 k = 10
                 n = 5
                 = 10^5 - 52520
                 =47480_{10}
```

Komplemen_10 dari
$$(0,3267)_{10} = ...?$$

 $N=0,3267$
 $k=10$
 $n=0$
 $=10^{0}-0,3267$
 $=0,6733_{10}$

Berapa..?

```
Komplemen_2 dari (0,0110)_2 = \dots? Komplemen_2 dari (101100)_2 = \dots? N= 0,0110 N= 101100 k = 2 n = 6 = 2^0 - 0,0110 = 0,1010_2 = 010100<sub>2</sub>
```


Khusus untuk bilangan biner komplemen_2 dapat ditentukan dengan mudah dengan menukar bilangan 0 dengan 1 dan sebaliknya dimulai dari LSB, dengan syarat jika LSB dan urutan berikutnya =0 sampai ditemukan angka 1 maka ditulis apa adanya, dan berikutnya ditukan 0 dengan 1 dan sebaliknya sampai MSB

Komplemen_(r-1)

Jika diberikan bilangan positif N dengan basis k dan bagian bulatnya terdiri dari n digit dan bagian pecahan terdiri dari m digit, maka :

Komplemen_(r-1) dari
$$N = k^n - k^{-m} - N$$

```
Komplemen_9 dari (52520)_{10} = ...?
                                             Komplemen_9 dari (0,3267)_{10} = ...?
      N = 52520
                                                     N = 0.3267
      k = 10
                                                     k = 10
      n = 5
                                                    n = 0
      m = 0
                                                    m = 4
      = 10^5 - 10^0 - 52520
                                                    = 10^{0} - 10^{-4} - 0.3267
      = 100000 - 1 - 52520
                                                    = 1 - 0,0001 - 0,3267
      =47479_{10}
                                                     = 0.6732_{10}
```

Berapa..?

```
Komplemen_9 dari (25,639)_{10} = ...? Kom

N= 25,639

k = 10

n = 2

m = 3

= 10^2 - 10^{-3} - 25,639

= 100 - 0,001 - 25,639

= 74.360
```

```
Komplemen_1 dari (101100)_2 = ...?

N= 101100

k = 2

n = 6

m = 0

= (2^6)_{10}-2° - 101100

= 100000 - 1 - 101100

= 010011 <sub>2</sub>
```


Khusus untuk bilangan biner komplemen_1 dapat ditentukan dengan mudah dengan menukar bilangan 0 dengan 1 dan sebaliknya pada seluruh digit

M – N dengan komplemen_k

- Samakan dahulu banyak digit kedua bilangan, jika tidak sama tambahkan o di depan bilangan yang lebih sedikit
- Tambahkan bilangan M dengan komplemen_k dari
 N
- Periksa hasilnya; <u>Jika terdapat carry</u>, buang carry dan hasil akhir adalah sisanya. <u>Jika tidak terdapat</u> <u>carry</u>, hasil akhir adalah komplemen dari langkah A dengan memberi tanda negatif

$(72532 - 3250)_{10}$

M = 72532

= 72532

N = 03250, komplemen 10 dari $03250 = 10^5 - 03250$

<u>= 96750 +</u>

169282

Mengandung carry (1). Carry dibuang.

Jadi hasilnya adalah : 69282

$(3250 - 72532)_{10}$

M = 03250 = 03250

N = 72532, komplemen 10 dari 72532 = $10^5 - 72532$ = 27468 + 30718

Tidak mengandung carry.

Jadi hasilnya adalah : -(komplemen_10 dari 30718) -(10⁵ – 30718) = -69282

M – N dengan komplemen_k-1

- Samakan dahulu banyak digit kedua bilangan, jika tidak sama tambahkan o di depan bilangan yang lebih sedikit
- Tambahkan bilangan M dengan komplemen_k-1 dari N
- Periksa hasilnya; <u>Jika terdapat carry</u>, hasil akhir diperoleh dengan menjumlahkan carry ke LSB sisanya. <u>Jika tidak terdapat carry</u>, hasil akhir adalah komplemen_k-1 dari langkah B dengan memberi tanda negatif

$(72532 - 3250)_{10}$

M = 72532

= 72532

N = 03250, komplemen_9 dari $03250 = 10^5 - 1 - 03250$

<u>= 96749 +</u>

169281

Mengandung carry (1). Carry dijumlahkan dengan LSB hasil

Jadi hasilnya adalah : (69281 + 1) = 69282

$(3250 - 72532)_{10}$

M = 03250

= 03250

N = 72532, komplemen_9 dari $72532 = 10^5 -1 - 72532$

= 27467 + 30717

Tidak mengandung carry.

Jadi hasilnya adalah : -(komplemen_9 dari 30717)

 $-(10^5 - 1 - 30717) = -69282$

PR

- komplemen_10
- **(**7356 3212)₁₀
- **(**3212 7356)₁₀
- komplemen_k-1
- (8356 4212)₁₀
- **4212 8356**

Kode Bilangan

- BCD, panjang 4 bit dengan bobot tiap bilangan biner penyusun adalah 8,4,2,1
- Excess-3, panjang 4 bit dengan menambah desimal dengan 3 (o→3, 1→4)
- Kode 84-2-1, panjang 4 bit dengan bobot dari MSB ke LSB berurutan 8,4,-2,-1
- Kode 2421, panjang 4 bit dengan bobot dari MSB ke
 LSB berurutan 2,4,2,1
- Kode biquinary, panjang 7 bit dengan bobot dari
 MSB ke LSB berurutan 5,0,4,3,2,1,0

Tabel Kode Bilangan

Desimal	BCD	Excess-3	8 4 -2 -1	2421	5043210
0	0000	0011	0000	0000	0100001
1	0001	0100	0111	0001	0100010
2	0010	0101	0110	0010	0100100
3	0011	0110	0101	0011	0101000
4	0100	0111	0100	0100	0110000
5	0101	1000	1011	1011	1000001
6	0110	1001	1010	1100	1000010
7	0111	1010	1001	1101	1000100
8	1000	1011	1000	1110	1001000
9	1001	1100	1111	1111	1010000

Contoh

- 24 dalam BCD : 0010 0100
- 24 dalam Excess-3: 0101 0111
- 24 dalam 84-2-1: 0110 0100
- 24 dalam 2421 : 0010 0100
- 24 dalam biquinary: 0100100 0110000

Kode ASCII

- American Standart Code for Information Interchange
- Kode komputer untuk bilangan, simbol, dan huruf
- Terdiri dari 8 bit sehingga memiliki 256 karakter

Contoh kode ascii

Karakter	ASCII	Karakter	ASCII
0	0011 000	<	0011 0010
1	0011 0001		0011 0011
А	0100 0001	a	0110 0001

Dasar EWB

Sources

Gates

Diodes

VCC : nilai 1

and

nand

LED

Ground: nilai 0

or

nor

Pengujian Rangkaian Sederhana

AND

Р	Q	P AND Q
0	0	
0	1	
1	0	
1	1	

OR

Р	Q	P OR Q
0	0	
0	1	
1	0	
1	1	

NAND

Р	Q	P AND Q
0	0	
0	1	
1	0	
1	1	

NOR

Р	Q	P AND Q
0	0	
0	1	
1	0	
1	1	

Sekian Materi Pertama