Lecture 4: Probability and Bayesian Classifier

Andreas Wichert

Department of Computer Science and Engineering

Técnico Lisboa

- A key concept in the field in machine learning is that of uncertainty
 - Through noise on measurements
 - Through the finite size of data sets
- Probability theory provides a consistent framework for the quantification and manipulation of uncertainty
- Forms one of the central foundations for pattern recognition.

Kolmogorov's Axioms of Probability (1933)

 To each sentence a, a numerical degree of belief between 0 and 1 is assigned

$$0 \le p(a) \le 1$$

 $p(true)=1, p(false)=0$

• The probability of disjunction is given by

$$p(a \lor b) = p(a) + p(b) - p(a \land b)$$

Where do these numerical degrees of belief come from?

- Humans can *believe* in a subjective viewpoint from *experience*. This approach is called **Bayesian**
- For a finite sample we can estimate the true fraction. We count the *frequency* of an event in a *sample*. We do not know the true value because we cannot access the whole population of events. This approach is called **frequentist**
- From the true nature of the universe, for example, for a fair coin, the probability of heads is 0.5. This approach is related to the **Platonic** world of ideas. However, we can never verify whether a fair coin exists

- From the frequentist approach, one can determine the probability of an event a by counting
- If Ω is the set of all possible events, $p(\Omega) = 1$, then $\alpha \in \Omega$.
- $card(\Omega)$ is the number of elements of the set Ω , card(a) is the number of elements of the set a and

$$p(a) = \frac{card(a)}{card(\Omega)}$$

$$p(a \wedge b) = \frac{card(a \wedge b)}{card(\Omega)}$$

 Now we can define the posterior probability, the probability of a after the evidence b is obtained

$$p(a|b) = \frac{card(a \land b)}{card(b)}$$

using

$$p(a \wedge b) = \frac{card(a \wedge b)}{card(\Omega)}$$

• we get

$$p(a|b) = \frac{p(a \land b)}{p(b)}$$
 $p(b|a) = \frac{p(a \land b)}{p(a)}$

Bayes' Rule

$$p(a|b) = \frac{p(a \land b)}{p(b)} \qquad p(b|a) = \frac{p(a \land b)}{p(a)}$$

The Bayes' rule follows from both equations

$$p(b|a) = \frac{p(a|b) \cdot p(b)}{p(a)}$$

Law of Total Probability

• For mutually exclusive events $b_1, ..., b_n$ with

$$\sum_{i=1}^{n} p(b_i) = 1$$

• the law of total probability is represented by

$$p(a) = \sum_{i=1}^{n} p(a) \wedge p(b_i) = \sum_{i=1}^{n} p(a, b_i)$$

$$p(a) = \sum_{i=1}^{n} p(a|b_i) \cdot p(b_i)$$

The Rules of Probability

Sum Rule

$$p(X) = \sum_{Y} p(X, Y)$$

Product Rule

$$p(X,Y) = p(Y|X)p(X)$$

Bayes' Rule

$$p(a|b) = \frac{p(a \land b)}{p(b)} \qquad p(b|a) = \frac{p(a \land b)}{p(a)}$$

The Bayes' rule follows from both equations

$$p(b|a) = \frac{p(a|b) \cdot p(b)}{p(a)}$$

Reverent Thomas Bayes (1702-1761)

- He set down his findings on probability in "Essay Towards Solving a Problem in the Doctrine of Chances" (1763), published posthumously in the Philosophical Transactions of the Royal Society of London.
 - The drawing after a portrait of Bayes used in a 1936 book, it is not known if the portrait is actually representing him.

Bayes' Rule

$$p(h_k|D) = \frac{p(D|h_k) \cdot p(h_k)}{p(D)} = \frac{p(D, h_k)}{p(D)}$$

- $p(h_k)$ is called the **prior** (before)
 - For example, what is the probability of some illness in Portugal
- $p(D|h_k)$ is called **likelihood** and can can be easily estimated
 - For example, what is the probability that some illness generates some symptoms?
 - $p(D,h_k)$ is called **joint distribution**
- $p(h_k|D)$ is called **posterior probability**

Bayes' Rule

$$p(h_k|D) = \frac{p(D|h_k) \cdot p(h_k)}{p(D)} = \frac{p(D, h_k)}{p(D)}$$

- Bayes rule can be used to determine the total posterior probability $p(h_k|D)$ of hypothesis h_k given data D
 - For example, what is the probability that some illness is present?
- The most probable hypothesis h_k out of a set of possible hypothesis h_1 , h_2 , \cdots given some present data is according to the Bayes rule

Maximum a Posteriori (MAP) Hypothesis

• $p(h_k|D)$ and $p(D,h_k)$ are related in a linear manner $p(h_k|D) \propto p(D|h_k) \cdot p(h_k)$ posterior \propto likelihood \times prior

 \bullet to determine the $maximum\ posteriori\ hypothesis\ h_{MAP}$ we maximize

$$h_{MAP} = \arg\max_{h_k} \frac{p(D|h_k) \cdot p(h_k)}{p(D)}$$

• we can see, the maximization is independent of p(D), it follows

$$h_{MAP} = \arg\max_{h_k} p(D|h_k) \cdot p(h_k)$$

Maximum Likelihood (ML) hypothesis

- If we assume $p(h_k) = p(h_v)$ for all h_k and h_v , then we can further
- simplify, and choose the maximum likelihood (ML) hypothesis

$$h_{ML} = \arg\max_{h_k} p(D|h_k)$$

Bayesian Interpretation

- In the Bayesian (or epistemological) interpretation, probability measures a "degree of belief" and Bayes' rule links the degree of belief in a proposition before and after accounting for evidence
- with prior probability $p(h_k)$
- $p(D|h_k)$ represents the likelihood of the data D if we assume h_k to be true
 - if we, in fact, observe D, we can update our belief about h_k through the rule

$$p(h_k|D) = \frac{p(D|h_k) \cdot p(h_k)}{p(D)}$$

Bayesian Interpretation and bias

Objective likelihood is biased by the prior belief

posterior \propto likelihood \times prior= likelihood \times bias

- Bias is a disproportionate weight in favor of or against an idea or thing, usually in a way that is closed-minded, prejudicial, or unfair.
- Biases can be innate or learned. People may develop biases for or against an individual, a group, or a belief.

Cancer screening

- Cancer screening aims to detect cancer before symptoms appear
- This may involve for example a blood test.
- Suppose that a patient tests positive...
- The test is secure because in **99** percent of the cases the test returns a correct positive result (= positive) in which a rare form of cancer is actually present.
- Should the doctor tell the patient, that he has cancer?

- The test has correct negative result (= negative) in 99 percent of the cases where the rare form of cancer is not present
- It is also known that 0.001 of the entire population have the rare form of cancer (h = cancer)
- p(cancer) = 0.001, $p(\neg cancer) = 0.999$
- p(positive | cancer) = 0.99, $p(positive | \neg cancer) = 0.01$,
- p(negative | cancer) = 0.01, $p(negative | \neg cancer) = 0.99$

• We determine h_{map} according to the linear relation

posterior ∝ likelihood × prior

 $p(cancer|positive) \propto p(positive|cancer) \cdot p(cancer) = 0.99 \cdot 0.001$ $p(\neg cancer|positive) \propto \cdot p(positive|\neg cancer) \cdot p(\neg cancer) = 0.01 \cdot 0.999$

It follows

$$h_{map} = \neg cancer$$

 $p(cancer|positive) \propto p(positive|cancer) \cdot p(cancer) = 0.99 \cdot 0.001$ $p(\neg cancer|positive) \propto \cdot p(positive|\neg cancer) \cdot p(\neg cancer) = 0.01 \cdot 0.999$

It follows

$$h_{map} = \neg cancer$$

- So, despite the positive result, we are still more confident that the patient is healthy than otherwise.
- The right thing to do would be to another test to try to accumulate more evidence in favor of the hypothesis that patient has the disease.

 $p(positive, cancer) = p(positive | cancer) \cdot p(cancer) = 0.99 \cdot 0.001$ $p(positive, \neg cancer) = p(positive | \neg cancer) \cdot p(\neg cancer) = 0.01 \cdot 0.999$

$$p(positive | cancer) = \frac{p(positive, cancer)}{p(positive, cancer) + p(positive, \neg cancer)}$$

law of total probability: $p(positive) = p(positive, cancer) + p(positive, \neg cancer)$

$$p(positive | cancer) = \frac{p(positive | cancer) \cdot p(cancer)}{p(positive)}$$

Estimating p(h)

Let us draw some principles to estimate

$$p(h_k|D) = \frac{p(D|h_k) \cdot p(h_k)}{p(D)}$$

- Let us first start with p(h)
 - given no prior knowledge that one hypothesis is more likely than another
 - p(h) can be uniformly distributed

$$\forall_{h \in H} \ p(h) = \frac{1}{|H|}$$

otherwise, estimate the prior base on the observed frequency

Estimating p(D|h)

- What choice shall we make for P(D|h)?
 - Hypothesis generates data....
 - If data is **discrete**:
 - we use the frequentist approach
 - e.g. I observe 2 out of 10 individuals with blue eyes and brown in shift A and 1 out of 8 in shift B, then
 - $p(\mathbf{x} = [blue\ eyes, brown]|A) = 0.2$ and
 - $p(\mathbf{x} = [blue\ eyes, brown]|B) = 0.125$

Bayesian optimal classifier

 What is the most probable classification of the new instance given the training data?

$$h_{MAP} = \arg\max_{h} p(h|\mathbf{x}_{new}) = \arg\max_{h} \frac{p(\mathbf{x}_{new}|h)p(h)}{p(\mathbf{x}_{new})} = \arg\max_{h} p(\mathbf{x}_{new}|h)p(h)$$

... where the hypotheses correspond to our classes

- we ignore the denominator as it does not alter decision
- The Bayesian classifier has as many parameter as:
 - the number of priors minus 1
 - we can deduce one prior from the remaining ones
 - e.g. given h_1 , h_2 and h_3 , $p(h_3) = 1 p(h_2) p(h_1)$
 - the number of parameters associated with the class-conditional distributions, $p(\mathbf{x}|h)$

Bayesian optimal classifier: example

Priors

•
$$p(c=0) = \frac{card(c=0)}{card(\Omega)} = \frac{3}{7}$$
, $p(c=1) = 1 - p(c=0) = \frac{4}{7}$

Joint Probability

•
$$p(v_1 = 0, v_2 = A, v_3 = 0, c = 0) = \frac{card(v_1 = 0, v_2 = A, v_3 = 0, c = 0)}{card(\Omega)} = \frac{1}{7}$$

	\mathbf{v}_1	\mathbf{v}_2	\mathbf{v}_3	class
x_1	1	C	1	1
x_2	1	С	1	0
χ_3	0	В	1	0
χ_4	0	Α	0	0
χ_5	1	С	1	1
<i>x</i> ₆	0	В	1	1
<i>X</i> ₇	0	Α	0	1

•
$$p(v_1 = 0, v_2 = A, v_3 = 0 | c = 0) = \frac{1}{3} = \frac{card(v_1 = 0, v_2 = A, v_3 = 0, c = 0)}{card(c = 0)} = \frac{1}{3} = \frac{p(v_1 = 0, v_2 = A, v_3 = 0, c = 0)}{p(c = 0)} = \frac{\frac{1}{7}}{\frac{3}{7}} = \frac{1}{3}$$

Data Joint

•
$$p(v_1 = 0, v_2 = A, v_3 = 0) = \frac{card(v_1 = 0, v_2 = A, v_3 = 0, c = 0)}{card(\Omega)} = \frac{2}{7}$$

• Data: law of total probability

•
$$p(v_1 = 0, v_2 = A, v_3 = 0) = p(v_1 = 0, v_2 = A, v_3 = 0, c = 0) + p(v_1 = 0, v_2 = A, v_3 = 0, c = 1) = \frac{1}{7} + \frac{1}{7}$$

Posterior

•
$$p(c = 0|v_1 = 0, v_2 = A, v_3 = 0) = \frac{p(v_1 = 0, v_2 = A, v_3 = 0|c = 0)p(c = 0)}{p(v_1 = 0, v_2 = A, v_3 = 0)} = \frac{\frac{3}{7} + \frac{1}{7}}{\frac{2}{7}} = \frac{\frac{1}{7}}{\frac{2}{7}} = \frac{1}{2}$$

Bayesian optimal classifier: example

	\mathbf{v}_1	v ₂	v 3	class
x_1	1	С	1	1
x_2	1	С	1	0
<i>X</i> ₃	0	В	1	0
χ_4	0	Α	0	0
χ_{5}	1	С	1	1
x_6	0	В	1	1
<i>x</i> ₇	0	Α	0	1

• We can "classify" new observations in the same way, e.g. $\mathbf{x}_{\text{new}} = [1, \text{C}, 1]$, what is the class, $\mathbf{c} = 0$ or $\mathbf{c} = 1$?

•
$$p(c = 1, v_1 = 1, v_2 = C, v_3 = 1) = p(v_1 = 1, v_2 = C, v_3 = 1 | c = 1)p(c = 1) = \frac{2}{7}$$

•
$$p(c = 0, v_1 = 1, v_2 = C, v_3 = 1) = p(v_1 = 1, v_2 = C, v_3 = 1 | c = 0)p(c = 0) = \frac{1}{7}$$

•
$$p(c = 1, v_1 = 1, v_2 = C, v_3 = 1) > p(c = 0, v_1 = 1, v_2 = C, v_3 = 1)$$

x_{new} is classified with class 1

•
$$p(c = 1 | v_1 = 1, v_2 = C, v_3 = 1) = \frac{p(c=1, v_1=1, v_2=C, v_3=1)}{p(v_1=1, v_2=C, v_3=1)} = \frac{\frac{2}{7}}{\frac{2}{7}} = \frac{2}{3}$$

•
$$p(c = 0 | v_1 = 1, v_2 = C, v_3 = 1) = \frac{p(c=0, v_1=1, v_2=C, v_3=1)}{p(v_1=1, v_2=C, v_3=1)} = \frac{\frac{7}{7}}{\frac{3}{7}} = \frac{1}{3}$$

•
$$p(c = 1 | v_1 = 1, v_2 = C, v_3 = 1) + p(c = 1 | v_1 = 1, v_2 = C, v_3 = 0) = 1$$

Estimating p(D|h)

- If data is **real-valued**:
- We can use Probability Density Function of the Normal distribution
- Is this correct? **No...**
 - We assume relative probability is real probability
 - However, we do it because it is simple
 - Error for many data points small

- How do we know that the data is described by Normal distribution?
- This assumption can be wrong!

Gaussian Distribution

Gaussian distribution or normal is defined by the probability

$$p(x|\mu,\sigma^2) = \mathcal{N}(x|\mu,\sigma^2) = \frac{1}{\sqrt{2 \cdot \pi} \cdot \sigma} \cdot \exp\left(-\frac{1}{2 \cdot \sigma^2} \cdot (x-\mu)^2\right)$$

Probability Density Function (PDF)

$$p(x \in (a,b)) = \int_{a}^{b} p(x) \, \mathrm{d}x$$

$$P(z) = \int_{-\infty}^{z} p(x) \, \mathrm{d}x$$

Cumulative distribution function (CDF)

$$\int_{-\infty}^{\infty} p(x) \, \mathrm{d}x = 1$$

Relative Probability

- Gaussian distribution is a type of continuous probability distribution for a real-valued random variable.
- The Gaussian distribution or normal distribution is defined as PDF (Probability Density Function) that reflects the relative probability.
- The **PDF may give a value greater than one** (small standard deviation).
- It is the area under the curve that represents the probability. However, the PDF reflects the relative probability.
 - Does a continuous probability distribution exist in the real world?

Normal Distribution in D dim

Over D dimensional space

$$p(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2 \cdot \pi)^{D/2}} \cdot \frac{1}{|\boldsymbol{\Sigma}|^{1/2}} \cdot \exp\left(-\frac{1}{2} \cdot (\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} \cdot (\mathbf{x} - \boldsymbol{\mu})\right)$$
 where

- \bullet μ is the D dimensional mean vector
- Σ is a $D \times D$ covariance matrix
- $|\Sigma|$ is the determinant of Σ

• (a) The Gaussian distribution over 2 dimensional space with μ = $(0, 0)^T$ and the covariance matrix Σ

$$\Sigma = \left(\begin{array}{cc} 2 & 0.5 \\ 0.5 & 1 \end{array}\right).$$

• (b) Three dimensional plot of the Gaussian.

Covariance Matrix

• A position $c_{ij} = \Sigma_{ij}$ of this matrix measures the tendency of two features, x_i and x_j , to vary in the same direction, for N features indexed by k

$$c_{ij} = \frac{\sum_{k=1}^{N} (x_{k,i} - \overline{x_i}) \cdot (x_{k,j} - \overline{x_j})}{N - 1}$$

- with $\overline{x_i}$ and $\overline{x_i}$ being the arithmetic mean of the two variables of the sample
- Covariances are symmetric; $c_{ij} = c_{ji}$ and, so, the resulting covariance matrix Σ is symmetric and positive-definite

$$\Sigma = \left(egin{array}{cccc} c_{11} & c_{12} & \cdots & c_{1m} \\ c_{21} & c_{22} & \cdots & c_{2m} \\ dots & dots & \ddots & dots \\ c_{m1} & c_{m2} & \cdots & c_{mm} \end{array}
ight)$$

Multivariate Gaussian: example

Approximate a multivariate Gaussian distribution using the following points: $\{(-2,2)^T, (-1,3)^T, (0,1)^T, (-2,1)^T\}$

•
$$\mu = \frac{1}{4} \left(\begin{bmatrix} -2 \\ 2 \end{bmatrix} + \begin{bmatrix} -1 \\ 3 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} + \begin{bmatrix} -2 \\ 1 \end{bmatrix} \right) = \begin{bmatrix} -1.25 \\ 1.75 \end{bmatrix}$$

•
$$c_{12} = c_{21} = \frac{(-2+1.25)(2-1.75)+(-1+1.25)(3-1.75)+(0+1.25)(1-175)+(-2+1.25)(1-1.75)}{3} = -0.83$$

•
$$c_{11} = \frac{(-2+1.25)^2 + (-1+1.25)^2 + (0+1.25)^2 + (-2+1.25)^2}{3} = 0.92$$

•
$$c_{22} = \frac{(2-1.75)^2 + (3-1.75)^2 + (1-175)^2 + (1-1.75)^2}{3} = 0.92$$

•
$$\Sigma = \begin{pmatrix} c_{11} & c_{21} \\ c_{12} & c_{22} \end{pmatrix} = \begin{pmatrix} 0.92 & -0.083 \\ -0.083 & 0.92 \end{pmatrix}$$
.

•
$$\Sigma^{-1} = \begin{pmatrix} 1.1 & 0.1 \\ 0.1 & 1.1 \end{pmatrix}$$
. Det $(\Sigma) = |\Sigma| = 0.833$ Type equation here.

$$N(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{2/2}\sqrt{0.083}} exp\left(-\frac{1}{2} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} - \begin{bmatrix} -1.25 \\ 1.75 \end{pmatrix}^T \begin{bmatrix} 1.1 & 0.1 \\ 0.1 & 1.1 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} - \begin{bmatrix} -1.25 \\ 1.75 \end{bmatrix} \right)$$

Multivariate Gaussian: example

- What is the shape of the previous 2-dimensional Gaussian?
 - fixing μ and Σ inspection...

What is the probability of observing (0,0)?

•
$$N\left(\begin{bmatrix}0\\0\end{bmatrix} \mid \mu, \Sigma\right) = \frac{1}{2\pi\sqrt{0.083}} exp\left(-\frac{1}{2}\left(\begin{bmatrix}0\\0\end{bmatrix} - \begin{bmatrix}-1.25\\1.75\end{bmatrix}\right)^T \begin{bmatrix}1.1 & 0.1\\0.1 & 1.1\end{bmatrix}\left(\begin{bmatrix}0\\0\end{bmatrix} - \begin{bmatrix}-1.25\\1.75\end{bmatrix}\right)\right) = 0.0145$$

Bayesian optimal classifier: example

- Consider a population of 100 individuals
 - 30 individuals have phenotype A, 30 have B, and remaining ones have C
 - the expression of three genes (variables) are characterized by the following 3-dimensional Gaussians

$$N_{A}\left(\mu_{A} = \begin{bmatrix} 0.375 \\ 0.875 \\ 0.25 \end{bmatrix}, \Sigma_{A} = \begin{bmatrix} 3.41 & 1.34 & 2.6 \\ 1.34 & 2.125 & 1.18 \\ 2.6 & 1.18 & 2.8 \end{bmatrix}\right), N_{B}\left(\mu_{B} = \begin{bmatrix} 0.5 \\ 0.125 \\ 0.875 \end{bmatrix}, \Sigma_{B} = \begin{bmatrix} 0.286 & 0.07 & -0.07 \\ 0.07 & 0.125 & 0.018 \\ -0.07 & 0.018 & 0.125 \end{bmatrix}\right), N_{C}\left(\mu_{C} = \begin{bmatrix} 0 \\ -0.125 \\ 0.125 \end{bmatrix}, \Sigma_{C} = \begin{bmatrix} 1.7 & 1.14 & 1 \\ 1.14 & 1.55 & 0.73 \\ 1 & 0.73 & 0.98 \end{bmatrix}\right)$$

$$p(A) = \frac{30}{100}, p(B) = \frac{30}{100}, p(C) = \frac{40}{100}, \text{ prior, called mixture parameters}$$

classify observations $\mathbf{x}_1 = [0, 1.1, -0.8]$

$$p(\mathbf{x}_{1}|N_{A})=0.019. \quad p(\mathbf{x}_{1}|N_{B})=5.4E-14. \quad p(\mathbf{x}_{1}|N_{C})=0.0088$$

$$p(\mathbf{x}_{1},N_{A})=p(A)p(\mathbf{x}_{1}|N_{A}), \quad p(x,N_{B})=p(B)p(\mathbf{x}_{1}|N_{B}), \quad p(\mathbf{x}_{1},N_{C})=p(C)p(\mathbf{x}_{1}|N_{C})$$

$$p(\mathbf{x}_{1})=p(\mathbf{x}_{1},N_{A})+p(x,N_{B})+p(\mathbf{x}_{1},N_{C})$$

•
$$p(A|\mathbf{x}_1) = \frac{p(A)p(\mathbf{x}_1|N_A)}{p(\mathbf{x}_1)} = \frac{0.0057}{0.0057 + 0 + 0.0035} = 0.619565, p(B|\mathbf{x}_1) = \frac{p(B)p(\mathbf{x}_1|N_B)}{p(\mathbf{x}_1)} = \frac{0}{0.0057 + 0 + 0.0035} = 0,$$

• $p(C|\mathbf{x}_1) = \frac{p(C)p(\mathbf{x}_1|N_C)}{p(\mathbf{x}_1)} = \frac{0.0035}{0.0057 + 0 + 0.0035} = 0.380435$

 \mathbf{x}_1 is classified with phenotype A

Example: Mixture of 3 Gaussians k

Bayes optimal classifier

Advantages

- when data distributions are well-approximated, provides highly accurate results
- priors can be easily neglected to not bias posteriors

Disadvantages

- requires a good amount of data to estimate joint distributions
 - impracticable in the presence of high-dimensional data
- can be computationally **expensive**
 - discrete data: need to compute the posterior probability for every hypothesis
 - numeric data: need to approximate distributions
 - e.g. fitting multivariate Gaussians can be expensive due covariance matrix inversion

Joint distribution

- A joint distribution for toothache, cavity, catch, *dentist's probe catches in my tooth* \otimes
 - we need to know the conditional probabilities of the conjunction of toothache and cavity
 - what can a dentist conclude if the probe catches in the aching tooth?

$$P(cavity \mid toothache \land catch) = \frac{P(toothache \land catch \mid cavity)P(cavity)}{P(toothache \land cavity)}$$

Problem?

• For n possible variables there are 2^n possible combinations

	toothache		no toothache	
	catch	no catch	catch	no catch
cavity	0.108	0.012	0.072	0.008
no cavity	0.016	0.064	0.144	0.576

Conditional independence

 Once we know that the patient has cavity we do not expect the probability of the probe catching to depend on the presence of toothache

```
• independence P(catch | cavity \land toothache) = P(catch | cavity)

P(toothache | cavity \land catch) = P(toothache | cavity)
```

 The decomposition of large probabilistic domains into weakly connected subsets via conditional independence is one of the most important developments in the recent history of AI

```
P(a \land b) = P(a)P(b)

P(toothache, catch, cavity, Weather = cloudy) = P(a \mid b) = P(a)

= P(Weather = cloudy)P(toothache, catch, cavity) P(b \mid a) = P(b)
```

Naive Bayes Classifier

 Along with decision trees, neural networks, nearest neighbor, one of the most practical learning methods

- When to use:
 - Moderate or large training set available
 - Attributes that describe instances are conditionally independent given classification
- Successful applications:
 - Diagnosis
 - Classifying text documents

Naive Bayes Classifier

- Assume target function $f: X \rightarrow V$, where each instance x described by attributes $a_1, a_2 \dots a_n$
- Most probable value of f(x) is:

$$v_{MAP} = \arg \max_{v_j \in V} P(v_j | a_1, a_2 \dots a_n)$$

$$v_{MAP} = \arg \max_{v_j \in V} \frac{P(a_1, a_2 \dots a_n | v_j) P(v_j)}{P(a_1, a_2 \dots a_n)}$$

$$= \arg \max_{v_j \in V} P(a_1, a_2 \dots a_n | v_j) P(v_j)$$

 V_{NB}

• Naive Bayes assumption:

$$P(a_1, a_2 \dots a_n | v_j) = \prod_i P(a_i | v_j)$$

• which gives

Naive Bayes classifier:
$$v_{NB} = \arg \max_{v_j \in V} P(v_j) \prod_i P(a_i | v_j)$$

Naive Bayes Algorithm

- For each target value v_i
- $\hat{P}(v_j)$ estimate $P(v_j)$
- For each attribute value a_i of each attribute a
- $\hat{P}(a_i|v_j)$ **\lefthi** estimate $P(a_i|v_j)$

$$v_{NB} = \arg\max_{v_j \in V} \hat{P}(v_j) \prod_{a_i \in x} \hat{P}(a_i | v_j)$$

Training dataset

Class:

C1:buys_computer='yes' C2:buys_computer='no'

Data sample:

X =
(age<=30,
Income=medium,
Student=yes
Credit_rating=Fair)</pre>

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3040	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Naïve Bayesian Classifier: Example

• Compute P(X|C_i) for each class

```
P(age="<30" | buys_computer="yes") = 2/9=0.222
P(age="<30" | buys_computer="no") = 3/5 = 0.6
P(income="medium" | buys_computer="yes")= 4/9 = 0.444
P(income="medium" | buys_computer="no") = 2/5 = 0.4
P(student="yes" | buys_computer="yes)= 6/9 = 0.667
P(student="yes" | buys_computer="no")= 1/5=0.2
P(credit_rating="fair" | buys_computer="yes")=6/9=0.667
P(credit_rating="fair" | buys_computer="no")=2/5=0.4
```

P(buys_computer=,,yes")=9/14 P(buys_computer=,,no")=5/14

• X=(age<=30 ,income =medium, student=yes,credit_rating=fair)

 $P(X|C_1)$: $P(X|buys_computer="yes")= 0.222 \times 0.444 \times 0.667 \times 0.0.667 = 0.044$

 $P(X|C_2)$: $P(X|buys_computer="no")= 0.6 \times 0.4 \times 0.2 \times 0.4 = 0.019$

 $P(X|C_1)*P(C_1):$ $P(X|buys_computer="yes")*P(buys_computer="yes")=0.028$ $P(X|C_2)*P(C_2):$ $P(X|buys_computer="no")*P(buys_computer="no")=0.007$

X belongs to class "buys_computer=yes" $P(C_1 | X) = 0.028/(0.028+0.007)$

Estimating probabilities in small samples

- We have estimated probabilities by the times the event is observed, n_c , over total opportunities, n
 - ullet poor estimates when n_c is very small
 - **problem**: what if none of the training instances with target value v_j have attribute value a_i ? $\rightarrow n_c$ is 0!
- when n_c is very small: $\hat{P}(a_i|v_j) = \frac{n_c + mp}{n+m}$ $v_{NB} =_{v_j \in V} P(v_j) \prod_i \hat{P}(a_i|v_j)$
 - n is number of training examples for which $v = v_i$
 - n_c number of examples for which $v=v_i$ and a=ai
 - *p* is the prior estimate
 - m is the weight given to prior (i.e. number of "virtual" examples)

Naïve Bayes: comments

Advantages

- easy to implement, good results obtained in most of the cases
- The decomposition of large probabilistic domains into weakly connected subsets via conditional independence is one of the most important developments in the recent history of AI
- Conditional independence assumption is often violated
- ...but it works surprisingly well anyway

Naïve Bayes: comments

Disadvantages

- Assumption: class conditional independence, therefore loss of accuracy
- Practically, dependencies exist among variables
- E.g., hospitals: patients: Profile: age, family history etc Symptoms: fever, cough etc., Disease: lung cancer, diabetes etc
- Dependencies among these cannot be modeled by Naïve Bayesian Classifier
- How to deal with these dependencies?
 - Bayesian Belief Networks

Literature

- Machine Learning A Journey to Deep Learning, A.
 Wichert, Luis Sa-Couto, World Scientific, 2021
 - Chapter 2