SybilFuse: Combining Local Attributes with Global Structure to Perform Robust Sybil Detection

Peng Gao¹, Binghui Wang², Neil Zhenqiang Gong², Sanjeev R. Kulkarni¹, Prateek Mittal¹

¹Princeton University ²Iowa State University

Motivation

Fig.1: Sybil attack scenario

- Sybil attacks are poisonous and wide spread in online social networks such as Facebook and Twitter.
- The attacker can leverage Sybil accounts to:
 - Disrupt democratic election
 - Influence financial market
 - Propagate social malware
 - Disseminate scams
 - Carry out phishing attacks
 - Compromise user privacy

State-of-the-art

- Research proposes to mitigate Sybil attacks using social networkbased trust relationships, i.e., structure-based approaches:
 - SybilGuard
 - SybilLimit
 - SybilInfer
 - SybilRank
 - Criminal Account Inference
 - SybilBelief
 - SybilSCAR
 - Integro
- Limitations:
 - Strong-trust assumptions are not necessarily satisfied.
 - Fail to leverage rich local information.

Contribution

- We propose SybilFuse, a framework that combines local attributes with global structure to perform Sybil detection.
- SybilFuse relaxes the assumptions in existing approaches.

Framework Overview

Fig.2: The SybilFuse framework

- Local trust score computation
 - Node trust score: quantifies the probability of a node to be a benign node $S_v \in [0,1]$
 - Edge trust score: quantifies the probability of an edge to be a non-attack edge $S_{u,v} \in [0,1]$
- Weighted trust score propagation
 - Weighted random walk

$$S^{(i)}(v) = \sum_{(u,v)\in E} S^{(i-1)}(u) \frac{S_{u,v}}{\sum_{(u,w)\in E} S_{u,w}}$$

Weighted loopy belief propagation

$$\psi_v(X_v) = \begin{cases} S_v & \text{if } X_v = 1\\ 1 - S_v & \text{if } X_v = -1 \end{cases} \quad \psi_{u,v}(X_u, X_v) = \begin{cases} S_{u,v} & \text{if } X_u X_v = 1\\ 1 - S_{u,v} & \text{if } X_u X_v = -1 \end{cases}$$

Labeled Twitter Evaluation

Fig.3: Fraction of Sybils among top K ranked nodes. The dataset contains 8167 nodes and 54146 edges, with verified 809 Sybil nodes. The number of attack edges is 40001, namely, 49 attack edges on average per Sybil)

- Training local SVM classifiers:
 - Incoming requests accepted ratio

$$Req_{in}(v) = \frac{|In(v) \cap Out(v)|}{|In(v)|}$$

Outgoing requests accepted ratio

$$Req_{out}(v) = \frac{|In(v) \cap Out(v)|}{|Out(v)|}$$

Local clustering coefficients

$$CC(v) = \frac{|\{(i,j) : i, j \in Nei(v), (i,j) \in E\}|}{|Nei(v)| (|Nei(v)| - 1)}$$

- Evaluation results:
 - SF(RW) achieves the best performance among all random walk-based approaches.
 - SF(LBP) achieves the best performance among all evaluated approaches (>98% Sybil ranking up to top 400 nodes).