Theory of Computation Based on lectures by Dr. Arpit Sharma

Notes taken by Rwik Dutta

These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures. They are nowhere near accurate representations of what was actually lectured, and in particular, all errors are almost surely mine. 1

Contents

1 Finite Automata $\mathbf{2}$

¹This is how Dexter Chua describes his lecture notes from Cambridge. I could not have described mine in any better way.

1 Finite Automata

Definition 1 (Deterministic Finite Automaton). A collection $(Q, \Sigma, \delta, q_0, F)$ such that

- 1. Q is a finite set of states.
- 2. Σ is a finite alphabet.
- 3. $\delta: Q \times \Sigma \to Q$ is the transition function.
- 4. $q_0 \in Q$ is the start state.
- 5. $F \subseteq Q$ is the set of accepting states.

We will use automata to solve set membership problems, i.e., given a finite alphabet Σ and a finite language $L \subset \Sigma^*$, we need to find whether a given string $x \in L$.

Definition 2 (Language of Automaton). L(M) of an automaton M is the set of all strings x that are accepted by the automaton.

Definition 3 (Extended transition function). Let $M(Q, \Sigma, \delta, q_0, F)$ be a finite automaton. The extended transition function is given by

$$\begin{split} \delta^*:Q\to \Sigma^*\\ \delta^*(q,\epsilon)&=q\\ \delta^*(q,xa)&=\delta(\delta^*(q,x),a) \end{split}$$

for all $q \in Q, x \in \Sigma^*, a \in \Sigma$. $\epsilon \in \Sigma^*$ represents the empty string.

Hence, $x \in L(M)$ if $\delta^*(q_0, x) \in F$.

Definition 4 (Regular language). A language L is a regular language if \exists some finite automaton M such that L(M) = L.