

Estadística aplicada en R *T-test*

-Marzo 2022-

Carlota Solano carlota.solano.udina@upm.es

1. ¿Qué es?

T-test es una prueba estadística que permite determinar si existe una diferencia estadísticamente significativa entre la media de dos grupos.

$$t = \frac{(\hat{\beta} - \beta_0)}{s. e. (\hat{\beta})}$$

$$t = \frac{observado - esperado}{precisión de la media calculada respecto a la media real (s. e.)}$$

2. ¿Cuándo se puede utilizar?

Cuando quieres comparar una variable continua entre dos niveles.

E.g.: Comparar la evapotranspiración de eucalipto en ladera de solana y umbría. Comparar la cantidad de sal que echan griegos e italianos en la comida.

3. ¿Qué tipo de datos se necesitan?

Variable respuesta (dep.; y)→ Numérica continua

Variable explicativa (indep.; x) \rightarrow Categórica con dos niveles

4. ¿Qué asunciones tiene?
 Independencia de las observaciones → Muestreo aleatorio
 Distribución normal de la variable respuesta
 Igualdad de varianza en los grupos a comparar (Homocedasticidad)

5. Matemáticamente, ¿cuál es la hipótesis? H0: La media de dos grupos no difiere $\rightarrow \mu 1 = \mu 2$

Ha: La media de dos grupos difiere $\rightarrow \mu 1 \neq \mu 2$

```
6. ¿Cómo se corre en R?
```

>t.test(datos\$respuesta ~ datos\$explicativa)

7. ¿Cómo se interpreta el resultado de R?

E.g.:

¿Cómo afecta la vitamina C en el crecimiento de dientes de cobayas?

Cobayas son tratadas con un suplemento (supp) de zumo de naranja (OJ) o con pastillas de vitamina C (VC), y se mide la longitud de sus dientes (len).

>t.test(ToothGrowht\$len~ToothGrowth\$supp)

Welch Two Sample t-test

data: ToothGrowth\$len by ToothGrowth\$supp t = 1.9153, df = 55.309, p-value = 0.06063 alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: -0.1710156 7.5710156 sample estimates:

mean in group OJ mean in group VC 20.66333 16.96333

Factor: Suplemento (supp) → Variable explicativa

Nivel 1: Zumo de Naranja (OJ)

Nivel 2: Vitamina C (VC)

Longitud de dientes (len) → Variable respuesta

6. ¿Cómo se corre en R?

R >t.test(datos\$respuesta ~ datos\$explicativa)

7. ¿Cómo se interpreta el resultado de R?

E.g.:

¿Cómo afecta la vitamina C en el crecimiento de dientes de cobayas?

Cobayas son tratadas con un suplemento (supp) de zumo de naranja (OJ) o con pastillas de vitamina C (VC), y se mide la longitud de sus dientes (len).

>t.test(ToothGrowht\$len~ToothGrowth\$supp)

t: diferencia entre grupos representado en unidades de error estándar (s.e.).

Welch Two Sample t-test

2.1. T-test (test	cum. prob one-tail two-tails	0.50 1.00	0.25 0.50	0.20 0.40	t.85 0.15 0.30	0.10 0.20	t.95 0.05 0.10	t.975 0.025 0.05	0.01 0.02	t.995 0.005 0.01	<i>t</i> .999 0.001 0.002	t.9995 0.0005 0.001	
6. ¿Cómo se cor R >t.te	df 1 2	0.000 0.000 0.000 0.000	1.000 0.816 0.765 0.741	1.376 1.061 0.978 0.941	1.963 1.386 1.250 1.190	3.078 1.886 1.638 1.533	6.314 2.920 2.353 2.132	12.71 4.303 3.182 2.776	31.82 6.965 4.541 3.747	63.66 9.925 5.841 4.604	318.31 22.327 10.215 7.173	636.62 31.599 12.924 8.610	$=\frac{\hat{eta}-eta_0}{\hat{\rho}}$
7. ¿Cómo se inte E.g.:	5 6 7 8 9	0.000 0.000 0.000 0.000 0.000	0.727 0.718 0.711 0.706 0.703	0.920 0.906 0.896 0.889 0.883	1.156 1.134 1.119 1.108 1.100	1.476 1.440 1.415 1.397 1.383	2.015 1.943 1.895 1.860 1.833	2.571 2.447 2.365 2.306 2.262	3.365 3.143 2.998 2.896 2.821	4.032 3.707 3.499 3.355 3.250	5.893 5.208 4.785 4.501 4.297	6.869 5.959 5.408 5.041 4.781	$\mathrm{s.e.}(\hat{\beta})$
¿Cómo afecta la Cobayas son tra	11	0.000 0.000 0.000 0.000	0.700 0.697 0.695 0.694	0.879 0.876 0.873 0.870	1.093 1.088 1.083 1.079	1.372 1.363 1.356 1.350	1.812 1.796 1.782 1.771	2.228 2.201 2.179 2.160	2.764 2.718 2.681 2.650	3.169 3.106 3.055 3.012	4.144 4.025 3.930 3.852	4.587 4.437 4.318 4.221	tamina C (VC), y se
mide la longituc	14 15 16	0.000 0.000 0.000	0.692 0.691 0.690	0.868 0.866 0.865	1.076 1.074 1.071	1.345 1.341 1.337	1.761 1.753 1.746	2.145 2.131 2.120	2.624 2.602 2.583	2.977 2.947 2.921	3.787 3.733 3.686	4.140 4.073 4.015	representado en
>t.test(Too Welch	19 20	0.000 0.000 0.000 0.000	0.689 0.688 0.688 0.687	0.863 0.862 0.861 0.860	1.069 1.067 1.066 1.064	1.333 1.330 1.328 1.325	1.740 1.734 1.729 1.725	2.110 2.101 2.093 2.086	2.567 2.552 2.539 2.528	2.898 2.878 2.861 2.845	3.646 3.610 3.579 3.552	3.883 3.850	ar (s.e.).
data: ToothG	04	0.000 0.000 0.000 0.000	0.686 0.686 0.685 0.685	0.859 0.858 0.858 0.857	1.063 1.061 1.060 1.059	1.323 1.321 1.319 1.318	1.721 1.717 1.714 1.711	2.080 2.074 2.069 2.064	2.518 2.508 2.500 2.492	2.831 2.819 2.807 2.797	3.527 3.505 3.485 3.467	3.819 3.792 3.768 3.745	
t = 1.9153, d alternative h 95 percent co	26 27	0.000 0.000 0.000 0.000	0.684 0.684 0.683	0.856 0.856 0.855 0.855	1.058 1.058 1.057 1.056	1.316 1.315 1.314 1.313	1.708 1.706 1.703 1.701	2.060 2.056 2.052 2.048	2.485 2.479 2.473 2.467	2.787 2.779 2.771 2.763	3.450 3.435 3.421 3.408	3.725 3.707 3.690 3.674	
-0.1710156 sample estima	29 30 40	0.000 0.000 0.000	0.683 0.683 0.681	0.854 0.854 0.851	1.055 1.055 1.050	1.311 1.310 1.303	1.699 1.697 1.684	2.045 2.042 2.021	2.462 2.457 2.423	2.756 2.750 2.704	3.396 3.385 3.307	3.659 3.646 3.551	
mean in group 20.66		0.000 0.000 0.000 0.000	0.679 0.678 0.677 0.675	0.848 0.846 0.845 0.842	1.045 1.043 1.042 1.037	1.296 1.292 1.290 1.282	1.671 1.664 1.660 1.646	2.000 1.990 1.984 1.962	2.390 2.374 2.364 2.330	2.660 2.639 2.626 2.581	3.232 3.195 3.174 3.098	3.460 3.416 3.390 3.300	
	Z	0.000	0.674 50%	0.842 60%	1.036 70%	1.282 80% Confid	1.645 90% dence Lo	1.960 95% evel	2.326 98%	2.576 99%	3.090 99.8%	3.291 99.9%	

6. ¿Cómo se corre en R?

>t.test(datos\$respuesta ~ datos\$explicativa)

7. ¿Cómo se interpreta el resultado de R?

E.g.:

¿Cómo afecta la vitamina C en el crecimiento de dientes de cobayas?

Cobayas son tratadas con un suplemento (supp) de zumo de naranja (OJ) o con pastillas de vitamina C (VC), y se mide la longitud de sus dientes (len).

>t.test(ToothGrowht\$len~ToothGrowth\$supp)

t: diferencia entre grupos representado en unidades de error estándar (s.e.).

Welch Two Sample t-test

df: grados de libertad: cantidad de valores independientes que tenemos para calcular el modelo.

data: ToothGrowth\$len by ToothGrowth\$supp t = 1.9153, df = 55.309, p-value = 0.06063 alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval:

-0.1710156 7.5710156

sample estimates:

mean in group OJ mean in group VC

20.66333 16.96333

6. ¿Cómo se corre en R?

>t.test(respuesta ~ explicativa)

$$t_{\hat{eta}} = rac{\hat{eta} - eta_0}{ ext{s. e.}(\hat{eta})}$$

7. ¿Cómo se interpreta el resultado de R?

E.g.:

¿Cómo afecta la vitamina C en el crecimiento de dientes de cobayas?

Cobayas son tratadas con un suplemento (supp) de zumo de naranja (OJ) o con pastillas de vitamina C (VC), y se mide la longitud de sus dientes (len).

>t.test(ToothGrowht\$len~ToothGrowth\$supp)

t: diferencia entre grupos representado en unidades de error estándar (s.e.).

Welch Two Sample t-test

data: ToothGrowth\$len by ToothGrowth\$supp t = 1.9153, df = 55.309, p-value = 0.06063 \ alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval:

-0.1710156 7.5710156

sample estimates:

mean in group OJ mean in group VC 20.66333 16.96333

df: grados de libertad: cantidad de valores independientes que tenemos para calcular el modelo.

obtenido siendo H0 cierta

6. ¿Cómo se corre en R?

>t.test(respuesta ~ explicativa)

$$t_{\hat{eta}} = rac{\hat{eta} - eta_0}{ ext{s. e.}(\hat{eta})}$$

7. ¿Cómo se interpreta el resultado de R?

E.g.:

¿Cómo afecta la vitamina C en el crecimiento de dientes de cobayas?

Cobayas son tratadas con un suplemento (supp) de zumo de naranja (OJ) o con pastillas de vitamina C (VC), y se mide la longitud de sus dientes (len).

>t.test(ToothGrowht\$len~ToothGrowth\$supp)

t: diferencia entre grupos representado en unidades de error estándar (s.e.).

Welch Two Sample t-test

df: grados de libertad: cantidad de valores independientes que tenemos para calcular el modelo.

data: ToothGrowth\$len by ToothGrowth\$supp t = 1.9153, df = 55.309, p-value = 0.06063 \ alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: -0.1710156 7.5710156

✓ P-value: Probabilidad de haber obtenido el resultado obtenido siendo HO cierta

sample estimates: mean in group OJ mean in group VC 20.66333 16.96333

95%CI: el rango de valores posibles de diferencia entre las medias de los grupos. \rightarrow ¿Si contiene valor cero?

6. ¿Cómo se corre en R?

>t.test(respuesta ~ explicativa)

$$t_{\hat{eta}} = rac{\hat{eta} - eta_0}{ ext{s. e.}(\hat{eta})}$$

7. ¿Cómo se interpreta el resultado de R?

E.g.:

¿Cómo afecta la vitamina C en el crecimiento de dientes de cobayas?

Cobayas son tratadas con un suplemento (supp) de zumo de naranja (OJ) o con pastillas de vitamina C (VC), y se mide la longitud de sus dientes (len).

>t.test(ToothGrowht\$len~ToothGrowth\$supp)

t: diferencia entre grupos representado en unidades de error estándar (s.e.).

Welch Two Sample t-test

df: grados de libertad: cantidad de valores independientes que tenemos para calcular el modelo.

data: ToothGrowth\$len by ToothGrowth\$supp t = 1.9153, df = 55.309, p-value = 0.06063 alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: -0.1710156 7.5710156

✓ P-value: Probabilidad de haber obtenido el resultado obtenido siendo HO cierta

sample estimates: mean in group OJ mean in group VC

95%CI: el rango de valores posibles de diferencia entre las medias de los grupos. \rightarrow ¿Si contiene valor cero?

16.96333 20.66333

La **media** de la variable respuesta del grupo OJ y del grupo VC

8. ¿Cómo se puede representar?

>data_summary()
>ggplot(data,aes(x,y))+
geom_bar(stat="identity")+
geom_errorbar(aes(ymin,ymax))

Base de datos con medidas de arrendajo azul (Cyanocitta cristata).

¿Difiere la masa de hembras y machos de arrendajo azul?

H0: La masa de hembras y machos no difiere

Ha: La masa de hembras y machos difiere

R <u>1º Entender la base de datos</u>

```
> str(db)
'data.frame':
                123 obs. of 9 variables:
 $ BirdID
             : Factor w/ 123 levels "0000-00000", "1142-05901", ...: 1 2 3 4 5 6 7 8 9 10 ....
 $ KnownSex : Factor w/ 2 levels "F", "M": 2 2 2 1 2 1 2 2 1 1 ...
                   8.26 8.54 8.39 7.78 8.71 7.28 8.74 8.72 8.2 7.67 ...
 $ BillWidth : num
                    9.21 8.76 8.78 9.3 9.84 9.3 9.28 9.94 9.01 9.31 ...
 $ BillLength: num
 $ Head
             : num
 $ Mass
                   73.3 75.1 70.2 65.5 74.9 ...
             : num
 $ Skull
                   30.7 31.4 31.2 30.3 31.9 ...
 $ Sex
             : int
```

Base de datos con medidas de arrendajo azul (*Cyanocitta cristata*). ¿Difiere la masa de hembras y machos de arrendajo azul?

H0: La masa de hembras y machos no difiere

Ha: La masa de hembras y machos difiere

R

2º Asunciones

- Normalidad:

>hist(db\$Mass)

>qqnorm(db\$Mass)
>qqline(db\$Mass)

>shapiro.test(db\$Mass)

Shapiro-Wilk normality test

data: db\$Mass W = 0.98599, p-value = 0.2366

H0: datos con distribución normal

Base de datos con medidas de arrendajo azul (*Cyanocitta cristata*).

¿Difiere la masa de hembras y machos de arrendajo azul?

H0: La masa de hembras y machos no difiere

Ha: La masa de hembras y machos difiere

R

2º Asunciones

- Homocedasticidad:

```
> library(car)
```

> leveneTest(db\$Mass~db\$KnownSex)

```
Levene's Test for Homogeneity of Variance (center = median)

Df F value Pr(>F)

group 1 4.4591 0.03677 *

121
```

```
Signif. codes:
0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```


Base de datos con medidas de arrendajo azul (*Cyanocitta cristata*). ¿Difiere la masa de hembras y machos de arrendajo azul?

H0: La masa de hembras y machos no difiere

Ha: La masa de hembras y machos difiere

3º Test estadístico


```
> t.test(db$Mass~db$KnownSex)
```

```
Welch Two Sample t-test
```

Base de datos con medidas de arrendajo azul (*Cyanocitta cristata*). ¿Difiere la masa de hembras y machos de arrendajo azul?

H0: La masa de hembras y machos no difiere

Ha: La masa de hembras y machos difiere

R 4º Graficar

Base de datos con medidas de arrendajo azul (*Cyanocitta cristata*). ¿Difiere la masa de hembras y machos de arrendajo azul?

H0: La masa de hembras y machos no difiere

Ha: La masa de hembras y machos difiere

R <u>5º Interpretar matemática y biológicamente</u>

> t.test(db\$Mass~db\$KnownSex)

69.80633

Welch Two Sample t-test

```
data: db$Mass by db$KnownSex
t = -4.2179, df = 111.05, p-value = 5.051e-05
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
   -5.024846 -1.812646
sample estimates:
mean in group F mean in group M
```


73.22508

Effect size (Tamaño del efecto)

Base de datos con medidas de arrendajo azul (*Cyanocitta cristata*). ¿Difiere la masa de hembras y machos de arrendajo azul?

H0: La masa de hembras y machos no difiere

Ha: La masa de hembras y machos difiere

6º Conclusión y comprobación de hipótesis

Las hembras (F) presentan una masa de 69.81 g, frente a los machos (M) que muestran una masa de 73.23g.

Estadísticamente, esta diferencia es significativa (t=-4.2179, df=111.05, p-value <0.01), por lo que podemos **rechazar la H0 y aceptar la Ha**, i.e. la masa de hembras y machos de arrendajo azul difiere significativamente, con las hembras presentando aproximadamente 3 gramos de masa menos que los machos.

2.3. T-test ejercicio

Ejercicios: 2.Ejer_Ttest