PHY101: Introduction to Physics I

Monsoon Semester 2024 Lecture 6

Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi NCR

Previous Lecture

<u>Properties of vectors</u> <u>Geometrical addition, multiplication of vectors etc.</u>

This Lecture

Dot product , cross product etc.

Properties

Scalar Multiplication (Dot Product)

= A (Projection of B on A)

=B (Projection of A on B)

 $= A B \cos\theta$

Special cases:

$$\theta = 0 \rightarrow \mathbf{A} \cdot \mathbf{B} = AB$$

$$\theta = \pi/2 \rightarrow \mathbf{A} \cdot \mathbf{B} = 0$$

$$\theta = \pi \rightarrow \mathbf{A} \cdot \mathbf{B} = -AB$$

Projection of A on & B

Physical Example:

Work done= Scalar product of Force and displacement W=F·d

Properties

Scalar Multiplication (Dot Product)

Properties of Dot Product

$$\vec{A} \cdot \vec{B} = \vec{B} \cdot \vec{A}$$

Commutative law

$$c(\vec{A}.\vec{B}) = (c\vec{A}).\vec{B} = \vec{A}.(c\vec{B})$$

Associative law

$$(\vec{A} + \vec{B}) \cdot \vec{C} = \vec{A} \cdot \vec{C} + \vec{B} \cdot \vec{C}$$

Distributive law

Properties

Scalar Multiplication (Dot Product)

Properties of Dot Product

Vector Decomposition and the Dot Product

• Dot product of the unit vector \hat{i} with itself is unity

$$\hat{\mathbf{i}} \cdot \hat{\mathbf{i}} = |\hat{\mathbf{i}}| |\hat{\mathbf{i}}| \cos(0) = 1$$

since the unit vector has magnitude $|\hat{\mathbf{i}}| = 1$ and $\cos(0) = 1$.

$$\hat{\mathbf{j}} \cdot \hat{\mathbf{j}} = \hat{\mathbf{k}} \cdot \hat{\mathbf{k}} = 1$$

• Dot product of the unit vector \hat{i} with the unit vector \hat{j} is zero because the two unit vectors are perpendicular to each other.

$$\hat{\mathbf{i}} \cdot \hat{\mathbf{j}} = |\hat{\mathbf{i}}| |\hat{\mathbf{j}}| \cos(\pi/2) = 0$$
 $\hat{\mathbf{i}} \cdot \hat{\mathbf{k}} = \hat{\mathbf{j}} \cdot \hat{\mathbf{k}} = 0$

Vector Decomposition and the Dot Product

$$\overrightarrow{\mathbf{A}} = A_x \hat{\mathbf{i}} + A_y \hat{\mathbf{j}} + A_z \hat{\mathbf{k}}$$

$$\overrightarrow{\mathbf{B}} = B_x \hat{\mathbf{i}}$$

$$\overrightarrow{\mathbf{B}} = B_{x} \hat{\mathbf{i}}$$

$$\vec{\mathbf{A}} \cdot \vec{\mathbf{B}} = (A_x \hat{\mathbf{i}} + A_y \hat{\mathbf{j}} + A_z \hat{\mathbf{k}}) \cdot B_x \hat{\mathbf{i}}$$

$$= A_x \hat{\mathbf{i}} \cdot B_x \hat{\mathbf{i}} + A_y \hat{\mathbf{j}} \cdot B_x \hat{\mathbf{i}} + A_z \hat{\mathbf{k}} \cdot B_x \hat{\mathbf{i}}$$

$$= A_x B_x (\hat{\mathbf{i}} \cdot \hat{\mathbf{i}}) + A_y B_x (\hat{\mathbf{j}} \cdot \hat{\mathbf{i}}) + A_z B_x (\hat{\mathbf{k}} \cdot \hat{\mathbf{i}})$$

$$= A_x B_x$$

Let

$$\vec{\mathbf{A}} = A_x \hat{\mathbf{i}} + A_y \hat{\mathbf{j}} + A_z \hat{\mathbf{k}}$$

$$\vec{\mathbf{A}} = A_x \hat{\mathbf{i}} + A_y \hat{\mathbf{j}} + A_z \hat{\mathbf{k}} \qquad \vec{\mathbf{B}} = B_x \hat{\mathbf{i}} + B_y \hat{\mathbf{j}} + B_z \hat{\mathbf{k}}$$

What is the dot product of these two arbitrary vectors ??

$$\vec{\mathbf{A}} \cdot \vec{\mathbf{B}} = A_x B_x + A_y B_y + A_z B_z$$

Properties

Vector Multiplication (Cross Product)

Right-hand Rule for the Direction of Cross Product

$$\vec{C} = \vec{A} \times \vec{B}$$

$$|\vec{C}| = |\vec{A}| |\vec{B}| \sin \theta$$

Properties

Vector Multiplication (Cross Product)

Geometric interpretation to the magnitude of the cross product

The vectors \overrightarrow{A} and \overrightarrow{B} form a parallelogram

$$\left| \vec{\mathbf{A}} \times \vec{\mathbf{B}} \right| = A \left(B \sin \theta \right)$$

 $\underline{\mathbf{B} \ \mathbf{sin} \boldsymbol{\theta}}$ is the projection of the vector $\overrightarrow{\boldsymbol{B}}$ in the direction perpendicular to the vector $\overrightarrow{\boldsymbol{A}}$

The area of the parallelogram equals the height times the base, which is the magnitude of the cross product.

$$\left| \vec{\mathbf{A}} \times \vec{\mathbf{B}} \right| = (A \sin \theta) B$$

 $\underline{\mathbf{A} \ \mathbf{sin} \boldsymbol{\theta}}$ is the projection of the vector $\overrightarrow{\boldsymbol{A}}$ in the direction perpendicular to the vector $\overrightarrow{\boldsymbol{B}}$

Two different representations of the height and base of a parallelogram

Properties

Vector Multiplication (Cross Product)

Properties of Cross Product

$$\vec{A} \times \vec{B} = -\vec{B} \times \vec{A}$$

Anti-commutative law

$$c(\vec{A} \times \vec{B}) = (c\vec{A}) \times \vec{B} = \vec{A} \times (c\vec{B})$$

Associative law (while c is a constant)

$$(\vec{A} + \vec{B}) \times \vec{C} = \vec{A} \times \vec{C} + \vec{B} \times \vec{C}$$

Distributive law

Vector Decomposition and the Cross Product

Magnitude of the cross product of the unit vector \hat{i} with \hat{j}

$$|\hat{\mathbf{i}} \times \hat{\mathbf{j}}| = |\hat{\mathbf{i}}| |\hat{\mathbf{j}}| \sin\left(\frac{\pi}{2}\right) = 1$$

 $\hat{\imath},\hat{\jmath},\hat{k}$

since the unit vector has magnitude $|\hat{\mathbf{i}}| = |\hat{\mathbf{j}}| = 1$ and $\sin(\pi/2) = 1$

$$\hat{\mathbf{i}} \times \hat{\mathbf{j}} = \hat{\mathbf{k}}$$

$$\hat{\mathbf{j}} \times \hat{\mathbf{k}} = \hat{\mathbf{i}}, \hat{\mathbf{k}} \times \hat{\mathbf{i}} = \hat{\mathbf{j}}$$

$$\hat{\mathbf{j}} \times \hat{\mathbf{i}} = -\hat{\mathbf{k}}, \quad \hat{\mathbf{i}} \times \hat{\mathbf{k}} = -\hat{\mathbf{j}}$$

The cross product of the unit vector $\hat{\mathbf{i}}$ with itself is zero because the two unit vectors are parallel to each other, $(\sin(0) = 0)$,

$$|\hat{\mathbf{i}} \times \hat{\mathbf{i}}| = |\hat{\mathbf{i}}| |\hat{\mathbf{i}}| \sin(0) = 0$$
 $|\hat{\mathbf{j}} \times \hat{\mathbf{j}}| = 0$, $|\hat{\mathbf{k}} \times \hat{\mathbf{k}}| = 0$

Exercise: Vector Decomposition and the Cross Product

Let
$$\vec{\mathbf{A}} = A_x \hat{\mathbf{i}} + A_y \hat{\mathbf{j}} + A_z \hat{\mathbf{k}}$$
 $\vec{\mathbf{B}} = B_x \hat{\mathbf{i}}$ $\vec{\mathbf{A}} \times \vec{\mathbf{B}} = (A_x \hat{\mathbf{i}} + A_y \hat{\mathbf{j}} + A_z \hat{\mathbf{k}}) \times B_x \hat{\mathbf{i}}$

$$\vec{\mathbf{A}} \times \vec{\mathbf{B}} = (A_x \hat{\mathbf{i}} \times B_x \hat{\mathbf{i}}) + (A_y \hat{\mathbf{j}} \times B_x \hat{\mathbf{i}}) + (A_z \hat{\mathbf{k}} \times B_x \hat{\mathbf{i}})$$

$$= A_x B_x (\hat{\mathbf{i}} \times \hat{\mathbf{i}}) + A_y B_x (\hat{\mathbf{j}} \times \hat{\mathbf{i}}) + A_z B_x (\hat{\mathbf{k}} \times \hat{\mathbf{i}})$$

$$= -A_y B_x \hat{\mathbf{k}} + A_z B_x \hat{\mathbf{j}}$$

Vector Decomposition and the Cross Product

cross product of arbitrary two vectors

Let
$$\vec{\mathbf{A}} = A_x \hat{\mathbf{i}} + A_y \hat{\mathbf{j}} + A_z \hat{\mathbf{k}}$$
 $\vec{\mathbf{B}} = B_x \hat{\mathbf{i}} + B_y \hat{\mathbf{j}} + B_z \hat{\mathbf{k}}$

What is the cross product of these two arbitrary vectors ??

$$\vec{\mathbf{A}} \times \vec{\mathbf{B}} = (A_y B_z - A_z B_y)\hat{\mathbf{i}} + (A_z B_x - A_x B_z)\hat{\mathbf{j}} + (A_x B_y - A_y B_x)\hat{\mathbf{k}}$$

$$= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}$$
 (Determinant)

Properties

Vector Multiplication (Cross Product)

Example 1:

For instance, if
$$\mathbf{A} = \hat{\mathbf{i}} + 3\hat{\mathbf{j}} - \hat{\mathbf{k}}$$
 and $\mathbf{B} = 4\hat{\mathbf{i}} + \hat{\mathbf{j}} + 3\hat{\mathbf{k}}$, then

$$\mathbf{A} \times \mathbf{B} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 1 & 3 & -1 \\ 4 & 1 & 3 \end{vmatrix} \\
 = 10\hat{\mathbf{i}} - 7\hat{\mathbf{j}} - 11\hat{\mathbf{k}}.$$

Question: When will the magnitude of the resultant of two vectors with equal magnitude added vectorially be equal to (i) $\sqrt{2}$ and (ii) $\sqrt{3}$ times the magnitude of each?

$$R^2 = P^2 + P^2 + 2P.P.\cos \theta$$

= $2P^2(1 + \cos \theta)$
= $4P^2 \cos^2 \theta/2$

Hence, $R = 2P\cos\theta/2$

Hints: Parallelogram law

$$|R| = \sqrt{(P^2 + Q^2 + 2PQ \cos \theta)}$$

$$\beta = \tan^{-1}[(Q \sin \theta)/(P + Q \cos \theta)]$$

(i)
$$\sqrt{2}P = 2P \cos\frac{\theta}{2} \rightarrow \cos\frac{\theta}{2} = \frac{1}{\sqrt{2}} \rightarrow \theta = 90^{\circ}$$

(ii)
$$\sqrt{3}P = 2P \cos\frac{\theta}{2} \rightarrow \cos\frac{\theta}{2} = \frac{\sqrt{3}}{2} \rightarrow \theta = 60^{\circ}$$

Next Lecture

Tangent vector, Finding unit vectors etc.

Properties

Scalar Multiplication (Dot Product)

Properties of Dot Product

Vector Decomposition and the Dot Product

Dot product of the two vectors

