CSCI-GA 1170 Homework 1

Question 1

Lower bound

According to ITB, $S(1000) \geq \lg(1000!)$. Stirling's approximation tells us

$$n!=(rac{n}{e})^n\sqrt{2\pi n}e^{lpha_n}$$

$$\lg(n!) = n(\lg n - \lg e) + \frac{1}{2}\lg(2\pi n) + \alpha_n\lg e pprox 8527.46$$

Therefore, we conclude that $S(1000) \geq 8528$

Upper bound

The recurrence in merge sort algorithm is T(n)=2T(n/2)+n. We can get an upper bound as follows:

$$S(1000) < S(1024) \le T(2^{10}) \le \sum_{i=0}^9 2^{10-i} imes 2^i = 10240$$

Therefore, we conclude that $S(1000) \leq 10240$

The Hasse diagrams of the leaf nodes are linear and are given by the merge results.

TAPE SORTING ALGORITHM:

```
TAPESORT(T_0, T_1, T_2):
```

- tape_changed \leftarrow True
- while tape_changed:
 - \circ tape_changed \leftarrow DISTRIBUTE(T_0, T_1, T_2)
 - \circ MERGE(T_0, T_1, T_2)

DISTRIBUTE(T_0, T_1, T_2):

- RESET(T_0),RESET(T_1),ERASE(T_1),RESET(T_2),ERASE(T_2)
- is_finished \leftarrow False
- last $\leftarrow -\infty$
- change_tape ← False
- tape_changed \leftarrow False
- if $\mathsf{EOT}(T_0)$:
 - $\circ \ \, \text{is_finished} \leftarrow \text{True}$
- else:
 - \circ READ(T_0 , x)
- while (! is_finished):
 - ∘ if x < last:
 - change_tape = ! change_tape
 - tape_changed ← True
 - if! change_tape:
 - WRITE(T_1 , x)
 - o else:
 - WRITE(T_2 , x)
 - \circ if EOT(T_0):
 - is_fininshed = True
 - o else:
 - last \leftarrow x
 - READ(T_0,x)
- return tape_changed

MERGE(T_0, T_1, T_2):

- RESET (T_0) , ERASE (T_0) , RESET (T_1) , RESET (T_2)
- $t1_{finished} \leftarrow t2_{finished} \leftarrow False$
- $t1_{last} \leftarrow t2_{last} \leftarrow -\infty$
- $t1_new \leftarrow t2_new \leftarrow False$
- if $\mathsf{EOT}(T_1)$: $\mathsf{t1_finished} \leftarrow \mathsf{True} \; \mathsf{else} : \mathsf{READ}(T_1, x_1)$
- if $\mathsf{EOT}(T_2)$: $\mathsf{t2_finished} \leftarrow \mathsf{True} \; \mathsf{else} : \mathsf{READ}(T_2, x_2)$
- while ! t1_finished and ! t2_finished:
 - \circ if $x_1 \leq x_2$:
 - WRITE (T_0, x_1)
 - if EOT(T_1):
 - t1_finished ← True
 - t1_new ← True
 - else:
 - t1_last $\leftarrow x_1$
 - READ(T_1, x_1)
 - if $x_1 < t1_{last}$:
 - t1_new ← True
 - else:
 - WRITE(T_0, x_2)
 - if $EOT(T_2)$:
 - $t2_{finished} \leftarrow True$
 - t2_new ← True
 - else:
 - t2_last $\leftarrow x_2$
 - READ(T_2, x_2)
 - if $x_2 < t2$ _last:
 - t2 new — True
 - o while t1 new:
 - WRITE(T_0, b_2)
 - $\bullet \quad \text{if EOT}(T_2)\text{:}$
 - t1_new ← False
 - $t2_{finished} \leftarrow True$
 - else:
 - t2_last $\leftarrow x_2$
 - READ(T_2, x_2)
 - if $x_2 < t2$ _last:

■
$$t1$$
_new \leftarrow False

- while t2_new:
 - lacktriangle Repeat the previous while loop for T_1
- while ! t2_finished:
 - \circ WRITE(T_0,b_2)
 - \circ if EOT(T_2):
 - $\quad \blacksquare \quad \text{t2_finished} \leftarrow \text{True}$
 - o else:
 - lacksquare READ(T_2, x_2)
- while ! t1_finished:
 - $\circ\;$ Repeat the previous while loop for T_1

By definition, if $g \in \theta(f) = o(f) \cap \omega(f)$, we have $(\forall C > 0)[Cf \geq g \geq f/C \text{ (ev.)}]$. Clearly, the definition of $\theta(\cdot)$ is not meaningful, because if $f > 0 \text{ (ev.)}, \theta(f) = \phi \text{ (empty set)}$.

(i) [Counter example]

$$f(x) = (1 + \sin(\frac{\pi}{2}x))x$$

Note that when $x=4k+1, k\in\mathbb{N}$, we have f(x)=2x. Therefore, f(x) is unbounded. However, when $x=4k+3, k\in\mathbb{N}$, we have f(x)=0. Thus, " $f\succ \succ 1$ " does not hold.

(ii) [Proof]

By definition,

$$(\forall C > 0)[f > C \cdot g \text{ (i.o.)}] \equiv (\forall C > 0)(\forall x_0)(\exists x)[x > x_0 \land f(x) > C \cdot g(x)]$$

$$\neg (f \leq g) \equiv \neg ((\exists C > 0)[f \leq C \cdot g \text{ (ev.)}])$$

$$\equiv \neg ((\exists C > 0)(\exists x_0)(\forall x)[x > x_0 \to f(x) \leq C \cdot g(x)])$$

$$\equiv \neg ((\exists C > 0)(\exists x_0)(\forall x)[x \leq x_0 \lor f(x) \leq C \cdot g(x)])$$

$$\equiv (\forall C > 0)(\forall x_0)(\exists x)[x > x_0 \lor f(x) > C \cdot g(x)]$$

$$\equiv (\forall C > 0)[f > C \cdot g \text{ (i.o.)}]$$

(A)

(A-i)
$$f > 0$$
 (ev.)

(A-ii)
$$f\succeq 0\equiv f\geq 0$$
 (ev.)

(A-iii)
$$f\succ 0\equiv f\geq 0$$
 (ev.) $\wedge f>0$ (i.o.)

(A-iv)
$$f \succ \succ 0 \equiv f \geq 0$$
 (ev.)

In conclusion, $(A-i) \Rightarrow (A-iii) \Rightarrow (A-ii) \Leftrightarrow (A-iv)$

(B)

(B-i)
$$f > 1$$
 (ev.)

(B-ii)
$$f\succeq 1$$

(B-iii)
$$f \succeq 1 \land (\forall C > 0) (f \geq C \text{ (i.o.)})$$

(B-iv)
$$f \succ \succ 1$$

In conclusion, $(B-iv) \Rightarrow (B-iii) \Rightarrow (B-ii)$; $(B-iv) \Rightarrow (B-i) \Rightarrow (B-ii)$

- (a) counter-example $f(x)=x, g(x)=x^2 (x\in \mathbb{R})$
- ullet (b) counter-example $f(x)=e^x(x\leq 0), g(x)=x+1(x\in \mathbb{R})$
- (c) counter-example $f(x)=100, g(x)=1+rac{1}{x}$
- (d) True
- (e) counter-example f(x)=2x, g(x)=x
- (f) True
- (g) counter-example $f(x)=x^{-1}$
- ullet (h) counter-example $f(x)=e^x(x\in R)$

[Expansion]

$$T(n) = 3T(n/2) + n$$

= $9T(n/4) + (\frac{3}{2}n + n)$
= $27T(n/8) + (\frac{9}{4}n + \frac{5}{2}n + n)$

[Guessing]

$$G_i = T(n) = 3^i T(n/2^i) + \sum_{j=0}^{i-1} (rac{3}{2})^j \cdot n^j$$

[Verification]

[RB]

Note that T(n) is true for i=1.

[RI]

$$egin{align} T(n) &= 3^i T(n/2^i) + \sum_{j=0}^{i-1} (rac{3}{2})^j \cdot n \ &= 3^i (3T(n/2^{i+1}) + rac{n}{2^i}) + \sum_{j=0}^{i-1} (rac{3}{2})^j \cdot n \ &= 3^{i+1} T(n/2^{i+1}) + (rac{3}{2})^i n + \sum_{j=0}^{i-1} (rac{3}{2})^j \cdot n \ &= 3^{i+1} T(n/2^{i+1}) + \sum_{j=0}^{i} (rac{3}{2})^j \cdot n \ &= 3^{i+1} T(n/2^{i+1}) + \sum_{j=0}^{i} (rac{3}{2})^j \cdot n \ &= 3^{i+1} T(n/2^{i+1}) + \sum_{j=0}^{i} (rac{3}{2})^j \cdot n \ &= 3^{i+1} T(n/2^{i+1}) + \sum_{j=0}^{i} (rac{3}{2})^j \cdot n \ &= 3^{i+1} T(n/2^{i+1}) + \sum_{j=0}^{i} (rac{3}{2})^j \cdot n \ &= 3^{i+1} T(n/2^{i+1}) + \sum_{j=0}^{i} (rac{3}{2})^j \cdot n \ &= 3^{i+1} T(n/2^{i+1}) + \sum_{j=0}^{i} (rac{3}{2})^j \cdot n \ &= 3^{i+1} T(n/2^{i+1}) + \sum_{j=0}^{i} (rac{3}{2})^j \cdot n \ &= 3^{i+1} T(n/2^{i+1}) + \sum_{j=0}^{i} (rac{3}{2})^j \cdot n \ &= 3^{i+1} T(n/2^{i+1}) + \sum_{j=0}^{i} (rac{3}{2})^j \cdot n \ &= 3^{i+1} T(n/2^{i+1}) + \sum_{j=0}^{i} (rac{3}{2})^j \cdot n \ &= 3^{i+1} T(n/2^{i+1}) + \sum_{j=0}^{i} (rac{3}{2})^j \cdot n \ &= 3^{i+1} T(n/2^{i+1}) + \sum_{j=0}^{i} (rac{3}{2})^j \cdot n \ &= 3^{i+1} T(n/2^{i+1}) + \sum_{j=0}^{i} (rac{3}{2})^j \cdot n \ &= 3^{i+1} T(n/2^{i+1}) + \sum_{j=0}^{i} (rac{3}{2})^j \cdot n \ &= 3^{i+1} T(n/2^{i+1}) + \sum_{j=0}^{i} (rac{3}{2})^j \cdot n \ &= 3^{i+1} T(n/2^{i+1}) + \sum_{j=0}^{i} (rac{3}{2})^j \cdot n \ &= 3^{i+1} T(n/2^{i+1}) + \sum_{j=0}^{i} (rac{3}{2})^j \cdot n \ &= 3^{i+1} T(n/2^{i+1}) + \sum_{j=0}^{i} (rac{3}{2})^j \cdot n \ &= 3^{i+1} T(n/2^{i+1}) + \sum_{j=0}^{i} (rac{3}{2})^j \cdot n \ &= 3^{i+1} T(n/2^{i+1}) + \sum_{j=0}^{i} (rac{3}{2})^j \cdot n \ &= 3^{i+1} T(n/2^{i+1}) + \sum_{j=0}^{i} (rac{3}{2})^j \cdot n \ &= 3^{i+1} T(n/2^{i+1}) + \sum_{j=0}^{i} (rac{3}{2})^j \cdot n \ &= 3^{i+1} T(n/2^{i+1}) + \sum_{j=0}^{i} (rac{3}{2})^j \cdot n \ &= 3^{i+1} T(n/2^{i+1}) + \sum_{j=0}^{i} (rac{3}{2})^j \cdot n \ &= 3^{i+1} T(n/2^{i+1}) + \sum_{j=0}^{i} (rac{3}{2})^j \cdot n \ &= 3^{i+1} T(n/2^{i+1}) + \sum_{j=0}^{i} (rac{3}{2})^j \cdot n \ &= 3^{i+1} T(n/2^{i+1}) + \sum_{j=0}^{i} (rac{3}{2})^j \cdot n \ &= 3^{i+1} T(n/2^{i+1}) + \sum_{j=0}^{i} (rac{3}{2})^j \cdot n \ &= 3^{i+1} T(n/2^{i+1}) + \sum_{j=0}^{i} (rac{3}{2})^j \cdot n \ &= 3^{i+1} T(n/2^{i+1}) + \sum_{j=0}^{i} (rac{3}{2$$

This confirms that G_{i+1} holds. Then we have

$$T(n) = 3^i T(n/2^i) + (rac{4}{3} \cdot (rac{3}{2})^i - 1) n$$

[Stop]

Choose $i=\lceil \lg n \rceil$. According to DIC, choose the initial condition to be T(n)=0 for $0< n \le 1$. This yields the exact solution for n>0.

$$T(n) = egin{cases} 0 & ext{if } n \leq 1 \ (rac{4}{3} \cdot (rac{3}{2})^{\lceil \lg n
ceil} - 1)n & ext{o.w.} \end{cases}$$

(a)

Exponential type.

Let
$$C=2$$
, then we have $2^{(x-1)^2+1}=2^{x^2}\cdot 2^{2-2x}\leq 2^{x^2}$ (ev.)

(b)

Polynomial type.

According to Lemma 8, since f(x) = x is polynomial type and $\lg x$ is non-decreasing, $\lg x$ is polynomial type. Similarly, $\lg \lg x$ is also polynomial type. Since polynomial type functions are closed raising to any positive power, therefore $(\lg \lg x)^2$ is polynomial type.

(c)

Polynomial type.

Let
$$f(x)=x/\lg x$$
 and $C=2$, then $2f(x/2)=rac{x}{\lg x-\lg 2}\geq rac{x}{\lg x}=f(x)$ (ev.)

$$T(n) = \sum_{i=0}^{\lg(n+1)-1} (i+1)^2 \cdot 2^i = \Theta(\lg^2(n+1) \cdot 2^{\lg(n+1)-1}) = \Theta(n\lg^2 n)$$

By corollary 11, $T_1(n)=6T_1(n/2)+n^3=\Theta(n^3)$, and $T_2(n)=8T_2(n/2)+n^2=\Theta(n^3)$. Thus, they are growing at the same rate.

 $T(n)=n+3T(n/2)+2T(n/3)\geq S(n)=n+5T(n/3)$. According to Master's theorem, $S(n)=\Theta(n^{\log_3 5})$. Thus, we have $T(n)=\Omega(n^{\log_3 5})$. So, Joe's claim T(n)=O(n) is wrong.

We use real induction to prove that Jane's claim $T(n)=O(n^2)$ is correct. We are going to show that given $x_0\geq 1$ and K>0, $x\geq x_0\Rightarrow T(x)\leq Kx^2$.

[Basic]

By DIC, let $T(x_1) = C$, then for all $x_0 \leq x < x_1$, T(x) < C.

Let
$$K = rac{C}{x_0^2} > 0$$
, then $x_0 \leq x < x_1 \Rightarrow T(x) < C = K x_0^2 \leq K x^2$

[Induction]

Let
$$x_1=3x_0, \delta=\frac{1}{2}x_1.$$
 For all $x\geq x_1,$ $x_0=x_1/3\leq x/3< x/2=x-x/2\leq x-x_1/2=x-\delta.$

Therefore,

$$T(x) = x + 3T(x/2) + 2T(x/3)$$

 $\leq x + 3K(\frac{x}{2})^2 + 2K(\frac{x}{3})^2$
 $= x + \frac{35}{36}Kx^2 \leq Kx^2(K \geq 36)$

This proves the real induction step.

Conclusion: Jane's claim is closest to the truth.

(i) $\omega=\log_b a=1$, $f(n)=\log^{10} n=O(n^{1-\epsilon})$. Therefore, CASE(-) is applicable, and $T(n)=\Theta(n)$

(ii)
$$\omega = \log_b a = \log_{10} 100 = 2 < 10 = k$$
. Thus, by corollary 11, $T(n) = \Theta(n^{10})$

(iii)

$$(\log n)^{\log\log n}=2^{(\log\log n)^2}=O(n^{\log_{100}10-\epsilon})=O(n^{rac{1}{2}-\epsilon}).$$
 Therefore, CASE(-) is applicable, and $T(n)=\Theta(n^{1/2})$

(iv)

$$T(n)=16T(n/4)+n^2$$
, and $\omega=\log_b a=\log_2 4=2=k$. Therefore, by corollary 11, $T(n)=\Theta(n^2\lg n)$