Sistemas numéricos CI-0202 Principios de informática

Sivana Hamer - sivana.hamer@ucr.ac.cr
Escuela de Ciencias de la Computación e Informática, Universidad de
Costa Rica

Licencia: CC BY-NC-SA 4.0

Sistema númericos

A lo largo de la historia, se han utilizado distintos símbolos para representar números. Nosotros estamos acostumbrados al sistema **decimal**.

0123456789
・ITでEOTVA9
・ITでEOTVA9
・III III IV V VI VII VIII IX X
・S その8でもである。
・ ののではできまるは
・ 〇一二三四五六七八九

Nota

Vamos a centrarnos en sistemas posicionales.

Decimal (base 10)

Nosotros estamos acostumbrados al sistema **decimal** que utiliza 10 dígitos (0-9). Cada posición tiene un valor de 10^n (n = posición del número empezando desde 0).

Ejemplo 321₁₀

Binario (base 2)

Solo utiliza 2 dígitos (0-1). Cada posición tiene un valor de 2^n (n = posición del número empezando desde 0).

Decimal	Binario
0	0
1	1
2	10
3	11

Decimal	Binario
4	100
5	101
6	110
7	111

Nota

Las computadoras utilizan binario.

Conversión de binario a decimal

Ejemplo $1101_2 = 13_{10}$

Conversión de decimal a binario

Hexadecimal (base 16)

Utiliza **16** dígitos (0 – F). Cada posición tiene un valor de 16^n (n = posición del número empezando desde 0).

Decimal	Hexadecimal	Decimal	Hexadecimal	Decimal	Hexadecimal
0	0	6	6	12	С
1	1	7	7	13	D
2	2	8	8	14	Е
3	3	9	9	15	F
4	4	10	Α	16	10
5	5	11	В	17	11

Fun fact!

Los colores se representan con hexadecimal.

Conversión de hexadecimal a decimal

Ejemplo del número $9C0F_{16} = 39951_{10}$

Conversión de decimal a hexadecimal

Otras bases de representación numérica

Existen otras bases de representación numérica.

- Octal (base 8)
- Senario (base 6)
- Vigesimal (base 20)

Nota

Son poco comunes otras representaciones numéricas.

Codificación caracteres

Todo dentro de las computadoras se guardan en binario. Por lo que, se **asignan a** cada carácter un número binario para guardar caracteres.

$$\mathsf{A}\to \mathsf{1}$$

$$B \rightarrow 2\,$$

$$C \to \mathbf{3}$$

$$\mathsf{D}\to \mathsf{4}$$

ASCII (American Standard Code for Information Interchange)

ASCII TABLE

Nota

ASCII solo tiene caracteres de inglés.

Unicode

Representación que incluye más caracteres que ASCII de múltiples lenguas.

Fun fact!

Los emojis son caracteres Unicode.

Referencias I

Psiĥedelisto. (2017) Numeral systems of the world. [Imagen]. [Online]. Available: https://commons.wikimedia.org/wiki/File:Numeral_Systems_of_the_World.svg

ZZT32. (2007) Ascii table. [Imagen]. [Online]. Available: https://commons.wikimedia.org/wiki/File:ASCII-Table.svg

- L. Villalobos, "Variables," Material del curso CI-0202, Universidad de Costa Rica, 2019.
- C. Swaroop, A Byte of Python. Independent, 2020.
- J. Elkner, A. B. Downey, and C. Meyers, "How to think like a computer scientist: Learning with python," 2012.