1. गतीचे नियम

- > गती
- > विस्थापन आणि अंतर
- > त्वरण
- > न्यूटनचे गतिविषयक नियम व समीकरणे

वस्तूची गती (Motion of an Object)

खालीलपैकी कोणकोणत्या उदाहरणांमध्ये तुम्हांला गतीची जाणीव होते? गती असणे व नसणे याचे स्पष्टीकरण तुम्ही कसे कराल?

1. पक्ष्याचे उडणे.

- 2. थांबलेली रेल्वेगाडी.
- 3. हवेतून उडणारा पालापाचोळा
- 4. डोंगरावरती स्थिर असलेला दगड

दैनंदिन जीवनात आपण विविध वस्तूंची गती पाहतो. काही वेळा वस्तूंची गती आपण प्रत्यक्ष पाहू शकत नाही. जसे की वाहणारा वारा. वरील उदाहरणांप्रमाणे इतर अनेक उदाहरणे आपल्याला सांगता येतील. ती कोणती?

- 1. बसमधून तुम्ही प्रवास करीत आहात. तुमच्या शेजारी बसलेली व्यक्ती गतिमान आहे का?
- 2. एखादी वस्तू गतिमान आहे किंवा नाही हे निश्चित करण्यासाठी तुम्हांला कोणकोणत्या बाबींचा विचार करावा लागतो? गती ही सापेक्ष संकल्पना आहे हे तुम्ही मागील इयत्तेमध्ये शिकला आहात. जर एखादी वस्तू सभोवतालच्या संदर्भात तिची जागा बदलत असेल तर ती गतिमान आहे असे म्हणतात. जर ती सभोवतालच्या संदर्भात जागा बदलत नसेल तर ती स्थिर आहे असे म्हणतात.

विस्थापन आणि अंतर

(Displacement and Distance)

- दोऱ्याच्या साहाय्याने A पासून B पर्यंतचे अंतर आकृती 1.1 (अ) मध्ये दाखवल्याप्रमाणे वेगवेगळ्या प्रकारे मोजा.
- 2. आता पुन्हा A पासून B पर्यंतचे अंतर सरळ तुटक रेषेने दाखवलेल्या मार्गाने मोजा. तुमच्या मते कोणत्या मार्गाने मोजलेले अंतर योग्य आहे? का?

- शीतल शाळेत जाताना तिच्या संगीता नावाच्या मैत्रिणीच्या घरी जाऊन मग शाळेला गेली. आकृती 1.1 (आ) पहा.
- 2. प्रशांत मात्र घरातून सरळ रेषेत शाळेला गेला. दोघेही एकाच चालीने जात असतील तर शाळेत कमी वेळेत कोण पोहोचेल? का? वरील उदाहरणांमध्ये प्रत्यक्ष चालावे लागलेले अंतर आणि सरळ रेषेतील अंतर यांत फरक असेल का? कोणता?

अंतर म्हणजे दोन बिंदूंच्या दरम्यान गतिमान असताना वस्तूने प्रत्यक्ष केलेले मार्गक्रमण होय. तर विस्थापन म्हणजे गतिमानतेच्या आरंभ व अंतिम बिंद्ंतील सर्वांत कमी अंतर होय.

एखाद्या वस्तूचे विस्थापन शून्य असले तरी त्याच वस्तूने प्रत्यक्षात कापलेले अंतर शून्य नसू शकते.

चाल व वेग (Speed and Velocity)

- 1. सदिश (Vectors) व अदिश (Scalars) राशी म्हणजे काय?
- 2. अंतर (Distance), चाल (Speed), वेग (Velocity), वेळ (Time), विस्थापन (Displacement) यातील सदिश व अदिश राशी कोणत्या?

एखाद्या वस्तूने एकक कालावधीत एकाच दिशेने कापलेल्या अंतरास वेग (Velocity) म्हणतात. या ठिकाणी एकक कालावधी म्हणजे एक सेकंद, एक मिनिट, एक तास इत्यादी असू शकतो. मोठ्या एककात कालावधी मोजल्यास एक वर्ष हा देखील एकक कालावधी असतो. एकक कालावधीत होणाऱ्या विस्थापनाला वेग म्हणतात.

- 1. चाल आणि वेग यांची एकके सारखीच असतात. ती SI पद्धतीत m/s व CGS पद्धतीत cm/s आहेत.
- 2. चाल अंतराशी संबंधित आहे तर वेग विस्थापनाशी संबंधित आहे.
- 3. गती सरळ रेषेत असेल तर चाल आणि वेग यांचे मूल्य सारखेच असते. अन्यथा ते वेगवेगळे असू शकतात.

एकक वेळेत होणाऱ्या विस्थापनाला वेग म्हणतात.

मागील उदाहरण (पृष्ठ क्र.1) मध्ये शीतल व संगीता यांच्या घरांतील सरळ रेषेतील अंतर 500 मीटर आहे. संगीताचे घर व शाळा यातील सरळ रेषेतील अंतर 1200 मीटर आहे. अर्थात शीतलचे घर व शाळा यातील सरळ रेषेतील अंतर 1300 मीटर आहे. समजा शीतलला संगीताकडे जाण्यास 5 मिनिटे लागली व तेथून शाळेत जाण्यास 24 मिनिटे लागली, यावरून

शीतलची
$$A$$
 मार्गावरील चाल $=$ $\frac{3i\pi x}{8} = \frac{500 \text{ H/Z}x}{5 \text{ H/H-Z}} = 100 \text{ H/Z}x/\text{H/H-Z}$ शीतलची B मार्गावरील चाल $=$ $\frac{3i\pi x}{8} = \frac{1200 \text{ H/Z}x}{24 \text{ H/H-Z}} = 50 \text{ H/Z}x/\text{H/H-Z}$ शीतलची सरासरी चाल $=$ $\frac{v_{\phi} v_{\phi} v_{\phi}}{v_{\phi} v_{\phi}} = \frac{1700 \text{ H/Z}x}{29 \text{ H/H-Z}} = 58.6 \text{ H/Z}x/\text{H/H-Z}$

शीतलचा वेग = 44.83 मीटर/मिनिट

चाल व दिशा यांचा वेगावर होणारा परिणाम

सचिन मोटारसायकलने प्रवास करत आहे प्रवासादरम्यान खालील प्रसंगी काय घडेल ते सांगा. (आकृती 1.3 पहा)

- 1. सचिनने मोटारसायकलने प्रवास करत असताना, मोटारसायकल प्रवासाची दिशा न बदलता मोटारसायकलची चाल वाढवल्यास अथवा कमी केल्यास वेगावर कोणता परिणाम होईल?
- 2. सचिन प्रवास करत असताना रस्त्यामध्ये एखादे वळण आल्यास चाल व वेग सारखाच असेल का?

सचिनने मोटारसायकलची चाल स्थिर ठेवून दिशा बदलल्यास वेगावरती कोणता परिणाम होईल?

3. वळण रस्त्यावर मोटारसायकल चालवत असताना सचिनने मोटारसायकलची चाल व दिशा दोन्ही बदलल्यास वेगावर कोणता परिणाम होईल?

वरील प्रसंगावरून असे लक्षात येते की, वेग हा चाल व दिशा या दोघांशी संबंधित आहे व वेग पुढील प्रकारे बदलतो.

- 1. चाल बदलून आणि दिशा तीच ठेवून
- 2. दिशा बदलून आणि चाल तीच ठेवून
- 3. चाल व गतीची दिशा दोन्हीही बदलून

1.3 वेगावरील परिणाम

ፓ हे नेहमी लक्षात ठेवा.

चालीचे मापन अंतर/काल याप्रमाणे सर्वप्रथम गॅलिलिओने केले होते. हवेतील ध्वनीची चाल $343.2~\rm m/s$ तसेच प्रकाशाची चाल $3~\rm x~10^8~m/s$ इतकी आहे. पृथ्वीची सूर्याभोवती भ्रमण करण्याची चाल $29770~\rm m/s$ आहे.

एकरेषीय एकसमान व नैकसमान गती (Uniform and Nonuniform Motion along a straight line)

अमर, अकबर आणि ॲन्थनी त्यांच्या स्वत:च्या गाडीने वेगवेगळ्या वेगाने प्रवास करत आहेत. त्यांनी वेगवेगळ्या कालावधीत कापलेली अंतरे खालील सारणीत दिली आहेत.

घड्याळी वेळ	अमरने कापलेले अंतर किमी मध्ये	अकबरने कापलेले अंतर किमी मध्ये	ॲन्थनीने कापलेले अंतर किमी मध्ये
5.00	0	0	0
5.30	20	18	14
6.00	40	36	28
6.30	60	42	42
7.00	80	70	56
7.30	100	95	70
8.00	120	120	84

जरा डोके चालवा.

- 1. अमर, अकबर आणि ॲन्थनी यांनी प्रवास करत असताना नोंदवलेल्या अंतरातील कालावधी किती आहे?
- 2. ठरावीक कालावधीत सारखेच अंतर कोणी पार केले आहे?
- 3. अकबरने ठरावीक कालावधीमध्ये कापलेले अंतर सारखेच आहे का?
- 4. अमर, अकबर आणि ॲन्थनी यांनी ठरावीक कालावधीत कापलेल्या अंतराचा विचार करता त्यांच्या चाली कशा आहेत?

जर वस्तू समान कालावधीत समान अंतर कापत असेल तर तिच्या गतीला एकसमान गती म्हणतात. जर वस्तू समान कालावधीत असमान अंतर कापत असेल तर तिच्या गतीला नैकसमान गती म्हणतात. उदा,. गर्दीच्या रस्त्यावरून वाहनांची वा सायकल चालवतानाची गती.

त्वरण (Acceleration)

1.4 वेगातील बदल

- 1. 1 मीटर लांबीचे एक पन्हाळे व छोटा चेंडू घ्या.
- 2. आकृती 1.4 प्रमाणे पन्हाळ्याचे एक टोक जिमनीवर टेकवून दुसरे टोक जिमनीपासून काही उंचीवर हाताने धरा.
- 3. चेंडू पन्हाळ्याच्या उंच भागाकडून सोडून द्या.
- 4. चेंडू खाली येत असताना त्याच्या वेगाचे निरीक्षण करा.
- 5. चेंडू वरून खाली येत असतानाचा वेग सर्व ठिकाणी सारखाच होता का?
- 6. सुरूवातीस, मध्ये, व जिमनीपाशी येताना वेग कसा बदलतो याचे निरीक्षण करा.

लहानपणी तुम्ही सर्वजण घसरगुंडी खेळला असाल. घसरगुंडीवरून घसरत असताना सुरुवातीस वेग कमी असतो, मध्ये तो वाढतो व शेवटी तो कमी होऊन शून्य होतो हे आपणास माहीत आहे. या वेगबदलातील दरालाच आपण त्वरण म्हणतो.

जर $\mathbf u$ हा सुरुवातीचा वेग, $\mathbf t$ या कालावधीनंतर बदलून अंतिम वेग $\mathbf v$ होत असेल तर ...

त्वरण =
$$a = \frac{3i$$
तिम वेग - सुरुवातीचा वेग $a = \frac{3i}{t}$ $a = \frac{(v-u)}{t}$

- 1. जेव्हा गतीच्या सुरुवातीला वस्तू विराम अवस्थेत असते त्यावेळी वस्तूचा सुरुवातीचा वेग किती असतो?
- 2. ज्यावेळी गतीच्या अखेरीस वस्तू विराम अवस्थेत येते त्यावेळी अंतिम वेग किती असेल?

जर एखादी गतिमान वस्तू ठरावीक कालावधी दरम्यान वेग बदलत असेल तर त्या वस्तूच्या गतीला त्वरणीत गती असे म्हणतात. गतिमान वस्तूमध्ये दोन प्रकारचे त्वरण असू शकते.

- 1. जर समान कालावधीत वेगामध्ये समान बदल होत असतील तर एकसमान त्वरण होते.
- 2. जर समान कालावधीत वेगामध्ये असमान बदल होत असतील तर नैकसमान त्वरण होते.

धन , ऋण व शून्य त्वरण

एखाद्या वस्तूचे त्वरण धन किंवा ऋण असू शकते. जेव्हा एखाद्या वस्तूचा वेग वाढतो तेव्हा त्वरण धन असते. येथे त्वरण वेगाच्या दिशेने असते. जेव्हा एखाद्या वस्तूचा वेग कमी होतो तेव्हा त्वरण ऋण असते. ऋण त्वरणालाच 'अवत्वरण' किंवा 'मंदन' (Deceleration) असे म्हणतात. ते वेगाच्या दिशेच्या विरुद्ध दिशेने असते. वेग स्थिर असल्यास त्वरण शून्य असते.

एकसमान गतीसाठी अंतर - काल आलेख

खालील सारणीत एका गाडीने ठरावीक वेळेमध्ये कापलेली अंतरे दिलेली आहेत. त्यानुसार काल X अक्षावर व अंतर Y अक्षावर घेऊन आकृती 1.5 मध्ये आलेख काढा. अंतर व काल यांमधील समानुपाती संबंध आलेखाच्या साहाय्याने

एकसमान गतीमध्ये वस्तू समान कालावधीत समान अंतर कापते. हे अंतर – काल आलेखामधील सरळ रेषा दर्शवते.

जरा डोके चालवा.

वरील अंतर – काल आलेखामधील सरळ रेषेचा चढ (Slope) काढल्यास तो काय दर्शवतो?

नैकसमान गतीसाठी अंतर – काल आलेख

खालील सारणीत एका बसने ठरावीक वेळेमध्ये कापलेले अंतर दिलेले आहे. त्यानुसार काल X अक्षावर व अंतर Y अक्षावर घेऊन आकृती 1.6 मध्ये आलेख काढा. अंतर व काल यांमधील समानुपाती संबंध आलेखाच्या साहाय्याने स्पष्ट

होतो का?

वेळ	अंतर	
(सेकंद)	(मीटर)	
0	0	
5	7	
10	12	
15	20	
20	30	
25	41	
30	50	
35	58	

1.6 अंतर - काल आलेख

येथे कालानुसार अंतरात नैकसमान बदल होतो. म्हणजेच इथे गती नैकसमान आहे.

जरा डोव

जरा डोके चालवा.

एकसमान गती व नैकसमान गतीसाठीच्या अंतर-काल आलेखात तुम्हांला काय फरक दिसून येतो?

एकसमान गतीकरिता वेग – काल आलेख

एक रेल्वे गाडी एकसमान वेगाने प्रती तास 60 किमी या प्रमाणे 5 तास सातत्याने गतिमान आहे. या एकसमान गतीकरिता वेग आणि काल यांच्यातील बदल वेग — काल आलेखाने आकृती 1.7 मध्ये दर्शवला आहे.

- 1. रेल्वेने 2 ते 4 तासांच्या दरम्यान कापलेले अंतर कसे काढता येईल?
- 2. 2 ते 4 तासांच्या दरम्यान रेल्वेगाडीने कापलेल्या अंतराचा व आकृतीतील एका चौकोनाच्या क्षेत्रफळाचा संबंध आहे का ? इथे गाडीचे त्वरण किती आहे ?

1.7 वेग - काल आलेख

एकसमान त्वरणीत गतीकरिता वेग – काल आलेख

वेग

ठरावीक कालावधीनुसार एका कारच्या वेगात होणारे बदल सारणीत दिले आहेत.

वेग	
(मी/से)	
0	
8	
16	
24	
32	
40	
48	
56	

1.8 वेग - काळ आलेख

आकृती 1.8 मधील आलेख दर्शवतो की,

- 1. ठरावीक कालावधीत वेगामध्ये समान बदल होतो. हा वेग त्वरणीत असून त्वरण एकसमान आहे. प्रत्येक 5 मिनिटात वेगात किती बदल होतो?
- 2. सर्व एकसमान त्वरणीत गतीसाठी वेग-काल आलेख हा सरळ रेषा असतो.
- 3. नैकसमान त्वरणीत गतीसाठी वेग काल आलेख वेळेनुसार त्वरणात होणाऱ्या बदलानुसार कोणत्याही आकाराचा असू शकतो.

आकृती 1.8 मधील आलेखाच्या साहाय्याने कारने 10 सेकंद ते 20 सेकंद या कालावधी दरम्यान कापलेले अंतर आपण मागील रेल्वेगाडीच्या उदाहरणाप्रमाणेच काढू शकतो, मात्र या ठिकाणी कारचा वेग हा स्थिर नसून एकसमान त्वरणामुळे सतत बदलतो आहे. अशा वेळी आपण दिलेल्या कालावधी दरम्यान कारचा सरासरी वेग वापरून कारने कापलेले अंतर काढू शकतो.

आलेखावरून दिसते की कारचा सरासरी वेग $\frac{32 + 16}{2} = 24$ मीटर/सेकंद आहे.

याला दिलेल्या कालावधीने म्हणजेच 10 सेकंदानी गुणल्यास कारने पार केलेले अंतर मिळेल.

अंतर = 24 मीटर/सेकंद \times 10 सेकंद = 240 मीटर

मागील उदाहरणाप्रमाणे कारने कापलेले अंतर चौकोन ABCD च्या क्षेत्रफळाएवढे असेल याची पडताळणी करून पहा.

$$A (\Box ABCD) = A (\Box AECD) + A (\triangle ABE)$$

आलेख पद्धतीने गतीविषयक समीकरणे (Equations of Motion using graphical method)

न्यूटनने वस्तूच्या गतीचा अभ्यास केला आणि नंतर गतीविषयक तीन समीकरणांचा संच मांडला. एका रेषेत गतिमान वस्तूचे विस्थापन, वेग, त्वरण व काल यातील संबंध या समीकरणांत मांडला आहे.

एक वस्तू सुरुवातीला 'u' वेगाने सरळ रेषेत गतिमान आहे. 't' वेळेत 'a' त्वरणामुळे ती अंतिम वेग 'v' गाठते व तिचे विस्थापन 's' असते. तर तीन समीकरणांचा संच असा देता येईल की,

 $v = u + at \hat{e}$ वेग – काल संबंध दर्शवते.

 $s = ut + \frac{1}{2}at^2$ हे विस्थापन काल संबंध दर्शवते.

 $v^2 = u^2 + 2as$ हे विस्थापन आणि वेग यातील संबंध दर्शवते.

ही समीकरणे आलेख पद्धतीने कशी मिळवता येतील ते आपण पाहू या.

वेग - काल संबंधाचे समीकरण

एकसमान त्वरणीत वेगाने गतिमान असलेल्या वस्तूच्या वेगातील कालानुसार होणारा बदल आकृती 1.9 मध्ये आलेखाच्या साहाय्याने दर्शवला आहे. वस्तू आलेखातील D या बिंदूपासून गतिमान होते. वेळेनुसार वस्तूचा वेग वाढत जातो व t या कालावधीनंतर वस्तू आलेखातील B ह्या बिंदूपर्यंत पोहोचते.

वस्तूचा सुरुवातीचा वेग = u = OD

वस्तूचा अंतिम वेग = v = OC

कालावधी = t = OE

त्वरण (a) =
$$\frac{\dot{a}_{111} \dot{a}_{111} \dot{a}_{111} \dot{a}_{111}}{\dot{a}_{111} \dot{a}_{111} \dot{a}_{111}}$$
 = $\frac{\dot{a}_{111} \dot{a}_{111} \dot{a}_{111} \dot{a}_{111}}{\dot{a}_{111} \dot{a}_{111} \dot{a}_{111}}$ = $\frac{\dot{a}_{111} \dot{a}_{111} \dot{a}_{111} \dot{a}_{111}}{\dot{a}_{111} \dot{a}_{111} \dot{a}_{111}}$

$$\therefore$$
 CD = at \dots (i) (OC - OD = CD)

B या बिंदुतून Y अक्षास समांतर रेषा काढा. ती X अक्षास E बिंदूत छेदते. D या बिंदुतून X अक्षास समांतर रेषा काढा. ती BE ह्या रेषेस A बिंदूत छेदते.

आलेखावरून.... BE = BA + AE

$$\therefore$$
 v = CD + OD

$$\therefore$$
 v = u + at

हे गतीविषयक पहिले समीकरण आहे.

1.9 वंग - काल आलेख

विस्थापन – काल संबंधाचे समीकरण

समजा, एखाद्या वस्तूने एकसमान त्वरण 'a' नुसार 't' कालावधीत 's' अंतर कापले आहे. आकृती 1.9 मधील आलेखावरून, वस्तूने कापलेले अंतर चौकोन DOEB च्या क्षेत्रफळाने काढता येईल.

= आयत DOEA चे क्षेत्रफळ + त्रिकोण DAB चे क्षेत्रफळ

$$\therefore s = (AE \times OE) + (\frac{1}{2} \times [AB \times DA])$$

परंतु
$$AE = u$$
, $OE = t$ आणि $(OE = DA = t)$

$$\therefore s = u \times t + \frac{1}{2} \times at \times t$$

... गतीविषयक दुसरे समीकरण
$$s = ut + \frac{1}{2} at^2$$
 हे आहे.

विस्थापन - वेग संबंधाचे समीकरण

आकृती 1.9 मधील आलेखावरून, वस्तूने कापलेले अंतर चौकोन DOEB च्या क्षेत्रफळाने काढता येते हे आपण पाहिले आहे. परंतु चौकोन DOEB हा समलंब चौकोन आहे. म्हणून समलंब चौकोनाच्या सूत्राचा वापर करून वस्तूने कापलेले अंतर काढू.

∴ s = समलंब चौकोन DOEB चे क्षेत्रफळ

$$\therefore$$
 s = $\frac{1}{2}$ × समांतर बाजूंच्या लांबीची बेरीज × समांतर बाजूंमधील लंब अंतर

$$\therefore$$
 s = $\frac{1}{2}$ × (OD + BE) × OE परंतु , OD = u, BE = v आणि OE = t

$$\therefore s = \frac{1}{2} \times (u + v) \times t \qquad ----- (ii)$$

परंतु,
$$a = \frac{(v-u)}{t}$$

$$\therefore t = \frac{(v-u)}{a} \qquad -----(iii)$$

$$\therefore s = \frac{1}{2} \times (u + v) \times \frac{(v-u)}{a}$$

$$\therefore s = \frac{(v+u)(v-u)}{2a}$$

$$\therefore$$
 2 as = (v+u) (v-u) = v²-u²

:.
$$v^2 = u^2 + 2as$$

हे गतीविषयक तिसरे समीकरण आहे.

हे नेहमी लक्षात ठेवा

ज्या वेळी वस्तू त्वरणीत होते त्या वेळी तिचा वेग बदलतो. वेगामध्ये होणारा बदल वेगाचे परिमाण किंवा दिशा किंवा दोन्हीही बदलल्याने होतो.

एकसमान वर्तुळाकार गती (Uniform Circular Motion)

घड्याळाच्या सेकंदकाट्याच्या टोकाचे निरीक्षण करा. त्याच्या चाली व वेगाविषयी य सांगता येईल?

घड्याळाच्या काट्याच्या टोकाची चाल सतत स्थिर असते. परंतु त्याची विस्थापनाची दिशा सतत बदलत असल्याने त्याचा वेगही सतत बदलत असतो. सेकंदकाट्याचे टोक वर्तुळाकार मार्गाने फिरत असल्याने या गतीला एकसमान वर्तुळाकार गती असे म्हणतात. अशा प्रकारच्या गतीची आणखी कोणती उदाहरणे तुम्हाला देता येतील?

करून पहा व विचार करा

- 1. आकृती 1.10 मध्ये दाखवल्याप्रमाणे एक चौरसाकृती मार्ग काढा.
- 2. त्या चौरसाकृती मार्गावर एका बाजूच्या मध्यभागी एका बिंदूवर पेन्सिल ठेवून एक फेरी पूर्ण करा.
- 3. एक फेरी पूर्ण करताना तुम्हांला किती वेळा दिशा बदलावी लागली याची नोंद घ्या.
- 4. आता हीच कृती पंचकोनी, षटकोनी, अष्टकोनी मार्गावर करा व तुम्हांला किती वेळा दिशा बदलावी लागते याची नोंद घ्या.
- 5. जर बाजूंची संख्या वाढवत नेऊन ती असंख्य केल्यास किती वेळा दिशा बदलावी लागेल? व मार्गाचा आकार कोणता असेल? म्हणजेच बाजूंची संख्या वाढवत नेली तर वारंवार दिशा बदलावी लागते व बाजूंची संख्या वाढवत नेऊन ती असंख्य केल्यास मार्ग वर्तुळाकार होतो.

1.10 दिशेतील बदल

जेव्हा वस्तू स्थिर चालीने वर्तुळाकार मार्गाने गतिमान होते तेव्हा वेगामध्ये होणारा बदल फक्त गतीची दिशा बदलल्याने होतो. त्यामुळे तो त्वरणीत वेग असतो. जेव्हा एखादी वस्तू एकसमान चालीसह वर्तुळाकार मार्गाने जाते तेव्हा त्या गतीला एकसमान वर्तुळाकार गती म्हणतात. उदाहरणार्थ, एकसमान चालीने फिरणाऱ्या गोफणीतील दगडाची गती, सायकलच्या चाकावरील कुठल्याही बिंदुची गती.

वर्तुळाकार गतीमध्ये गतिमान असलेली वस्तू t कालावधीत आपल्या मूळ स्थानी परत येत असेल तर वस्तूची चाल खालील सूत्राच्या साहाय्याने काढता येईल.

$$v = \frac{2 \pi r}{t}$$
 $r = a \sqrt{g}$ वर्जुळाची त्रिज्या

दैनंदिन जीवनातील वर्तुळाकार गतीची विविध उदाहरणे शोधा.

एकसमान वर्त्ळाकार वेगाची दिशा काढणे

एक गोल फिरणारी चकती घ्या. तिच्या कडेला एक पाच रुपयाचे नाणे ठेवा.

आकृती 1.11 मध्ये दाखवल्याप्रमाणे चकती गोल फिरवा. चकती जास्त वेगाने फिरवल्यास नाणे कोणत्या दिशेने फेकले जाते याचे निरीक्षण करा. चकतीवर नाणे वेगवेगळ्या ठिकाणी ठेवून ही कृती पुन्हा पुन्हा करा आणि प्रत्येक वेळी नाणे कोणत्या दिशेने फेकले जाते याचे निरीक्षण करा.

1.11 चकतीवरील नाणे

नाणे वर्तुळाकार चकतीच्या त्रिज्येला लंब असणाऱ्या स्पर्शिकेच्या दिशेने जाईल. नाणे फेकले जाण्याच्या क्षणी ज्या स्थितीत असेल त्यानुसार ते विशिष्ट दिशेला फेकले जाईल. म्हणजेच नाणे वर्तुळाकार दिशेने फिरत असताना गतीची दिशा प्रत्येक बिंदुपाशी बदलते.

सोडवलेली उदाहरणे

उदाहरण 1 : एक खेळाडू वर्तुळाकार मार्गावरून धावताना 25 सेकंदांत 400 मीटर अंतर धावून पुन्हा सुरुवातीच्या ठिकाणी परततो. त्याची सरासरी चाल व सरासरी वेग किती असेल?

दिलेले: पार केलेले एकूण अंतर = 400 मी.

एकूण विस्थापन = 0 मीटर (तो पुन्हा सुरुवातीच्या ठिकाणी येत असल्याने)

एकूण लागलेला वेळ = 25 सेकंद

सरासरी चाल = ?, सरासरी वेग = ?

सरासरी चाल =
$$\frac{\text{पार केलेले एकूण अंतर}}{\text{लागलेला एकूण काल}} = \frac{400}{25} = 16 \text{ मीटर/सेकंद}$$

सरासरी वेग =
$$\frac{\text{एकूण विस्थापन}}{\text{लागलेला एकूण काल}} = \frac{0}{25} = 0 \text{ मीटर/सेकंद}$$

उदाहरण 2: एक विमान 3.2 m/s^2 या त्वरणाने 30 सेकंद धावपट्टीवर धावल्यानंतर हवेत झेपावते तर विमानाने हवेत झेपावण्यापूर्वी किती अंतर पार केले?

दिलेल : $a = 3.2 \text{ m/s}^2$, t = 30 सेकंद, u = 0, s = ?

s = ut
$$+\frac{1}{2}$$
 at² = 0 × 30 $+\frac{1}{2}$ × 3.2 × 30² = 1440 m.

उदाहरण 3: एका कांगारूची क्षितिजलंब दिशेत 2.5 m उंच उडी मारण्याची क्षमता असल्यास त्या कांगारूची हवेत उडी मारतानाची चाल किती असेल?

दिलेले:

 $a = 9.8 \text{ m/s}^2$

s = 2.5 m

v = 0

u = ?

 $v^2 = u^2 + 2as$

 $(0)^2 = u^2 + 2 \times (-9.8)$ (2.5) त्वरण वेगाच्या विरुद्ध दिशेने असल्याने ऋण चिन्ह वापरले आहे.

 $0 = u^2 - 49$

 $u^2 = 49$

u = 7 m/s

उदाहरण 4: एक बोट विराम अवस्थेपासून निघून एकसमान त्वरणाने जाते. जर ती 5 सेकंदांत 15 मीटर/सेकंद वेग गाठत असेल, तर निर्माण झालेले त्वरण आणि दिलेल्या वेळात पार केलेले अंतर किती असेल?

दिलेले:

सुरुवातीचा वेग (u) = 0 मीटर/सेकंद, अंतिम वेग (v)

= 15 मीटर/सेकंद, लागलेला वेळ (t) = 5 सेकंद

त्वरण = ?

गतीविषयक पहिल्या समीकरणानुसार,

त्वरण =
$$\frac{V-u}{t} = \frac{15-0}{5} = 3$$
 मीटर/ सेकंद²

गतीविषयक दुसऱ्या समीकरणानुसार, पार केलेले अंतर

s = ut +
$$\frac{1}{2}$$
 at²
s = 0 × 5 + $\frac{1}{2}$ 3 × 5²
= 0 + $\frac{75}{2}$ = 37.5 मीटर

न्यूटनचे गतीविषयक नियम (Newton's Laws of Motion)

असे का होत असेल?

- 1. स्थिर अवस्थेत असलेली वस्तू बल लावल्याशिवाय जागची हलत नाही.
- 2. टेबलावर ठेवलेले पुस्तक उचलण्यासाठी पुरेसे असलेल्या बलाने टेबल उचलता येत नाही.
- 3. फांदी हलवल्यानंतर झाडावरून फळ खाली पडते.
- 4. विजेचा फिरणारा पंखा बंद केल्यानंतरही पूर्ण थांबण्यापूर्वी तो काही वेळ फिरत राहतो.

वरील घटनांच्या कारणांचा शोध घेतल्यास वस्तूमध्ये जडत्व असते हे आपल्या लक्षात येते. वस्तूचे जडत्व हे वस्तूच्या वस्तुमानाशी निगडीत आहे हे तुम्ही शिकला आहात. न्यूटनच्या गतीविषयक पहिल्या नियमात पदार्थाच्या याच गुणधर्माचे वर्णन केले आहे म्हणून त्याला 'जडत्वाचा नियम' असेही म्हणतात.

न्यूटनचा गतीविषयक पहिला नियम (Newton's first Law of Motion)

एका ग्लासमध्ये वाळू भरून घ्या. त्या ग्लासवर एक पुठ्ठा ठेवा. पुठ्ठ्यावर एक पाच करून पाहूया. रुपयांचे नाणे ठेवा. आता पुठ्ठ्याला बोटाने जोरात टिचकी मारा.

काय घडते याचे निरीक्षण करा.

संतुलित बल व असंतुलित बल (Balanced and Unbalanced Force)

रस्सीखेच हा खेळ तुम्ही खेळला असाल. जोपर्यंत दोन्ही बाजूंनी प्रयुक्त बल सारखे असते तोपर्यंत रस्सीचा मध्य स्थिर असतो. इथे दोन्ही बाजूंना लावलेले बल समान असल्याने अर्थात बले 'संतुलित' असल्याने बल प्रयुक्त केलेले असूनही रस्सीचा मध्य स्थिर असतो. परंतु ज्यावेळी एका बाजूने प्रयुक्त केलेले बल वाढते, त्या वेळी प्रयुक्त बले 'असंतुलित' होतात व परिणामी बल अधिक बलाच्या बाजूला प्रयुक्त होते व रस्सीचा मध्य त्या दिशेला सरकतो.

'जर एखाद्या वस्तूवर कोणतेही बाह्य असंतुलित बल कार्यरत नसेल तर तिच्या विराम अवस्थेत किंवा सरळ रेषेतील एकसमान गतीमध्ये सातत्य राहते.'

एखादी वस्तू विराम अवस्थेत किंवा सरळ रेषेतील एकसमान गतीमध्ये असते तेव्हा तिच्यावर कोणतेही बल कार्य करत नसते असे नाही. प्रत्यक्षात त्या वस्तूवर विविध बाह्य बले कार्य करतात; परंतु ती परस्परांना निष्प्रभ करीत असल्याने एकंदर परिणामी बल शून्य होते. न्यूटनच्या पहिल्या नियमाने जडत्वाचे म्हणजेच वस्तूच्या गतीविषयक अवस्था स्वत:हून न बदलण्याचे स्पष्टीकरण दिले जाते. त्याचप्रमाणे वस्तूच्या विराम अवस्थेत किंवा वस्तूच्या सरळ रेषेतील एकसमान गतीत बदल घडवून आणणाऱ्या किंवा बदलास प्रवृत्त करणाऱ्या असंतुलित बलाचे स्पष्टीकरण दिले जाते. जडत्वाची सर्व उदाहरणे न्यूटनच्या गतीविषयक पहिल्या नियमाची उदाहरणे आहेत.

न्यूटनचा गतीविषयक दुसरा नियम (Newton's second Law of Motion)

- अ. 1. तुम्ही मित्राला समान आकाराचा प्लॅस्टिक व रबराचा चेंडू उंचीवरून खाली टाकण्यास सांगा.
 - 2. तुम्ही चेंडूचा झेल घ्या. तुम्ही कोणता चेंडू सहजपणे झेलू शकता? का?
- आ. 1. तुमच्या मित्राला एक चेंडू हळूच फेकण्यास सांगा आणि तुम्ही तो झेलण्याचा प्रयत्न करा.
 - 2. आता तोच चेंडू तुम्ही मित्राला जोरात फेकण्यास सांगा आणि तुम्ही तो झेलण्याचा प्रयत्न करा. कोणत्या वेळी तुम्ही चेंडू सहजपणे झेलू शकला? का?

एखाद्या वस्तूने दुसऱ्या वस्तूवर केलेल्या आघाताचा परिणाम हा त्या वस्तूचे वस्तुमान व तिचा वेग या दोन्हींवर अवलंबून असतो. म्हणजे बलाचा परिणाम घडवून आणण्यासाठी वस्तूचे वस्तुमान व वेग यांना एकत्र जोडणारा गुणधर्म कारणीभूत असतो. या गुणधर्मालाच न्यूटनने 'संवेग' असे संबोधले.

संवेगाला परिमाण व दिशा दोन्हीही असते. संवेगाची दिशा वेगाच्या दिशेने असते.

SI पद्धतीनुसार संवेगाचे एकक $kg\ m/s$ आणि CGS पद्धतीत $gm\ cm/s$ आहे.

जर वस्तूवर प्रयुक्त केलेले असंतुलित बल वेगामध्ये बदल घडवून आणत असेल तर तेच बल संवेगातही बदल घडवते. वस्तूच्या संवेगात बदल घडवून आणणाऱ्या आवश्यक बलावर संवेग बदलाचा दर अवलंबून असतो.

संवेग (Momentum) (P): वस्तूचा वेग व वस्तुमान यांचा गुणाकार म्हणजे संवेग.

P = mv संवेग ही सदीश राशी आहे.

'संवेग परिवर्तनाचा दर प्रयुक्त बलाशी समानुपाती असतो आणि संवेगाचे परिवर्तन बलाच्या दिशेने होते.'

समजा, m वस्तुमान असणारी एक वस्तू सुरुवातीला 'u' वेगाने जात असताना तिच्या गतीच्या दिशेने F इतके बल प्रयुक्त केल्यास t इतक्या वेळेनंतर वस्तुचा वेग v होतो.

- ∴ वस्तूचा सुरुवातीचा संवेग = mu ,
- t इतक्या कालावधीनंतर वस्तूचा अंतिम संवेग = mv
- ... संवेग परिवर्तनाचा दर = संवेगात होणारा बदल वेळ

∴ संबेग परिवर्तनाचा दर
$$=\frac{mv-mu}{t}=\frac{m(v-u)}{t}=ma$$

न्यूटनच्या गतीविषयक दुसऱ्या नियमानुसार, संवेग परिवर्तनाचा दर प्रयुक्त बलाशी समानुपाती असतो.

- ∴ ma α F
- ∴ F = k ma (k = Review suppression And k = Review suppression And k = k ma And k =

सुरुवातीस विराम अवस्थेत असणाऱ्या दोन वेगवगळ्या वस्तुमानांच्या वस्तू विचारात घ्या. दोन्हींचा सुरुवातीचा संवेग शून्य असेल. समजा दोन्ही वस्तूंवर विशिष्ट कालावधी (t) साठी ठरावीक बल (F) प्रयुक्त केले तर हलकी वस्तू जड वस्तूपेक्षा अधिक वेगाने जाऊ लागते. परंतु वरील सूत्रावरून लक्षात येते की, दोन्ही वस्तूंमध्ये होणाऱ्या संवेगातील परिवर्तनाचा दर मात्र समान महणजे F असेल व त्यातील होणारा बदलही (Ft) समान असेल. महणून वेगवेगळ्या वस्तूवर समान कालावधीत समान बल प्रयुक्त केल्यास संवेगातील बदल समान असतो.

SI पद्धतीत बलाचे एकक न्यूटन आहे.

न्यूटन (N) : 1 kg वस्तुमानात $1 \text{ m} / \text{s}^2$ त्वरण निर्माण करणाऱ्या बलास 1 न्यूटन बल म्हणतात.

 $1 N = 1 kg \times 1 m/s^2$

CGS पद्धतीत बलाचे एकक डाइन आहे.

डाइन (dyne) : 1 g वस्तुमानात $1 \text{ cm} / \text{s}^2$ त्वरण निर्माण करणाऱ्या बलास 1 sist बल म्हणतात.

1 dyne = $1 \text{ g} \times 1 \text{ cm/s}^2$

उंच उडी मारण्याच्या मैदानी खेळामध्ये खेळाडू जिमनीवरील वाळूच्या जाड थरावर पडेल अशी व्यवस्था का केलेली असते?

न्यूटनचा गतीविषयक तिसरा नियम (Newton's third law of Motion)

- 1. मागच्या बाजूला छिद्र असणारी एक प्लॅस्टिकची होडी घ्या.
- 2. एका फुग्यात हवा भरून तो होडीच्या छिद्रावर लावा व होडी पाण्यात सोडा. जसजशी फुग्यातील हवा बाहेर पडेल तसतसा बोटीवर काय परिणाम होतो व का?

न्यूटनच्या गतीविषयक पहिल्या दोन नियमांमधून बल आणि बलाचे परिणाम यांची माहिती मिळते.

'परंतु निसर्गात बल एकांगी असूच शकत नाही'. बल ही दोन वस्तूंमधील अन्योन्य क्रिया आहे. बले नेहमी जोडीनेच प्रयुक्त होत असतात. ज्यावेळी एक वस्तू दुसऱ्या वस्तूवर बल प्रयुक्त करते त्याच वेळी दुसरी वस्तूही पहिल्या वस्तूवर बल प्रयुक्त करते. दोन वस्तूमधील बले नेहमी समान व विरुद्ध असतात. ही कल्पना न्यूटनच्या गतीविषयक तिसऱ्या नियमात मांडली आहे. पहिल्या वस्तूने दुसऱ्या वस्तूवर प्रयुक्त केलेल्या बलास क्रिया बल तर दुसऱ्या वस्तूने पहिल्या वस्तूवर प्रयुक्त केलेल्या बलास प्रतिक्रिया बल महणतात.

'प्रत्येक क्रिया बलास समान परिमाणाचे त्याच वेळी प्रयुक्त होणारे प्रतिक्रिया बल अस्तित्वात असते व त्यांच्या दिशा परस्पर विरुद्ध असतात.'

- क्रिया व प्रतिक्रिया या बल स्पष्ट करणाऱ्या बाबी आहेत.
- 2. ही बले जोडीनेच प्रयुक्त होतात. बल स्वतंत्र पद्धतीने कधीही अस्तित्वात नसते.
- 3. क्रिया बल व प्रतिक्रिया बल एकाच वेळी कार्यरत असतात.
- 4. क्रिया व प्रतिक्रिया बले वेगवेगळ्या वस्तूंवर प्रयुक्त होतात. ती एकाच वस्तूवरती प्रयुक्त नसतात. त्यामुळे ती बले एकमेकांचा परिणाम नष्ट करू शकत नाहीत.

- 1. बॅटने चेंडू टोलावताना बॅटची गती कमी होणे
- 2. बंदुकीतून गोळी झाडली असता बंदुकीचे मागे सरकणे
- 3. अग्निबाणाचे प्रक्षेपण या उदाहरणांचे स्पष्टीकरण न्यूटनच्या तिसऱ्या नियमाच्या आधारे कसे कराल?

संवेग अक्षय्यतेचा सिद्धांत (Law of Conservation of Momentum)

समजा, A या वस्तूचे वस्तुमान m_1 असून तिचा सुरुवातीचा वेग u_1 आहे. तसेच B या वस्तूचे वस्तुमान m_2 असून तिचा सुरुवातीचा वेग u_2 आहे.

संवेगाच्या सूत्रानुसार, A वस्तूचा सुरुवातीचा संवेग = $m_1 u_1$ व B वस्तूचा सुरुवातीचा संवेग = $m_2 u_2$ ज्यावेळी या दोन्ही वस्तू एकमेकांवरती आदळतील त्या वेळी A वस्तूवर B वस्तूमुळे F_1 बल प्रयुक्त होऊन A वस्तू

त्वरणीत होते व तिचा वेग v, होतो.

∴ A वस्तूचा आघातानंतरचा संवेग = m,v,

न्यूटनच्या गतीविषयक तिसऱ्या नियमानुसार, A वस्तूदेखील B वस्तूवर समान बल विरुद्ध दिशेने प्रयुक्त करते त्या वेळी तिच्या संवेगात बदल होतो. समजा तिचा वेग \mathbf{v}_{γ} झाल्यास

B वस्तूचा आघातानंतरचा संवेग = $m_2 v_2$ जर B वस्तूवर F_2 बल प्रयुक्त होत असेल तर,

$$F_{2} = -F_{1}$$

$$m_{2} a_{2} = -m_{1} a_{1} \cdots F = ma$$

$$m_{2} \frac{(v_{2} - u_{2})}{t} = -m_{1} \times \frac{(v_{1} - u_{1})}{t} \cdots a = \frac{(v - u)}{t}$$

$$m_{2} (v_{2} - u_{2}) = -m_{1} (v_{1} - u_{1})$$

$$m_{2} v_{2} - m_{2} u_{2} = -m_{1} v_{1} + m_{1} u_{1}$$

$$m_{2} v_{2} + m_{1} v_{1} = (m_{1} u_{1} + m_{2} u_{2})$$

एकूण अंतिम संवेगाचे परिमाण = एकूण सुरुवातीच्या संवेगाचे परिमाण

म्हणून जर दोन वस्तूंवर बाह्य बल कार्य करत नसेल तर त्यांचा सुरुवातीचा एकूण संवेग व अंतिम एकूण संवेग सारखाच असतो. वस्तूंची संख्या कितीही असली तरी त्यासाठी हे विधान सत्य असते.

'दोन वस्तूंची परस्पर क्रिया होत असताना त्यांच्यावर जर काही बाह्य बल कार्यरत नसेल तर त्यांचा एकूण संवेग स्थिर राहतो. तो बदलत नाही.'

हा न्यूटनच्या गतीविषयक तिसऱ्या नियमाचा उपसिद्धांत आहे. टक्कर झाल्यानंतरही संवेग स्थिर असतो. टक्कर झालेल्या वस्तूंमध्ये संवेग पुनर्वितरित होतो. एका वस्तूचा संवेग कमी होतो तर दुसऱ्या वस्तूचा संवेग वाढलेला असतो. त्यामुळे हा सिद्धांत पुढीलप्रमाणेदेखील सांगता येतो.

जर दोन वस्तूंची टक्कर झाली तर त्यांचा आघातापूर्वीचा एकूण संवेग हा त्यांच्या आघातानंतरच्या एकूण संवेगाइतकाच असतो.

हा सिद्धांत समजण्यासाठी बंदुकीतून मारलेल्या गोळीचे उदाहरण विचारात घेऊया. जेव्हा m_1 वस्तुमानाची गोळी m_2 वस्तुमानाच्या बंदुकीतून मारली जाते, तेव्हा वेगाने पुढे जाताना तिचा संवेग $m_1 v_1$ होतो. गोळी उडवण्यापूर्वी बंदूक आणि गोळी स्थिर असल्याने सुरुवातीचा संवेग शून्य असतो व एकूण संवेग शून्य असतो. गोळी उडविल्यानंतरदेखील वरील नियमाप्रमाणे एकूण संवेग शून्य असतो. अर्थात गोळीच्या पुढे जाण्यामुळे बंदूक मागच्या दिशेने सरकते. या सरकण्याला 'प्रतिक्षेप' (Recoil) म्हणतात.

बंदूक प्रतिक्षेप वेगाने (v_2) अशा पद्धतीने सरकते, की

$$m_1 v_1 + m_2 v_2 = 0$$
 किंवा $v_2 = -\frac{m_1}{m_2} \times v_1$

बंदुकीचे वस्तुमान गोळीच्या वस्तुमानापेक्षा बरेच जास्त असल्याने बंदुकीचा वेग गोळीच्या वेगाच्या तुलनेने अगदी कमी असतो. बंदुकीचा संवेग व गोळीच्या संवेगाचे परिमाण सारखे व दिशा विरुद्ध असतात. त्यामुळे तेथे संवेग स्थिर असतो. अग्निबाण (रॉकेट) प्रक्षेपणातही संवेग स्थिर असतो.

सोडवलेली उदाहरणे

उदाहरण 1: एका तोफेचे वस्तुमान $500~\mathrm{kg}$ असून त्यातून तोफगोळा उडवल्यानंतर तोफ $0.25~\mathrm{m/s}$ वेगाने प्रतिक्षेपित होते, तर तोफेचा संवेग काढा.

दिलेले : तोफेचे वस्तुमान = 500 kg , प्रतिक्षेप वेग = 0.25 m/s संवेग = ? संवेग = $m \times v = 500 \times 0.25 = 125 \text{ kg m/s}$

उदाहरण 2: 2 चेंडूंचे वस्तुमान अनुक्रमे 50 ग्रॅम व 100 ग्रॅम असून ते एकाच रेषेवर व एकाच दिशेने 3 m/s व 1.5 m/s वेगाने जात आहेत. त्यांची टक्कर होते व टक्कर झाल्यानंतर पहिला चेंडू 2.5 m/s वेगाने गतिमान होतो. तर दुसऱ्या चेंडूचा वेग काढा.

दिलेले:

पहिल्या चेंडूचे वस्तुमान = m_1 = 50~g = 0.05~kg, दुसऱ्या चेंडूचे वस्तुमान = m_2 = 100~g = 0.1~kg पहिल्या चेंडूचा सुरुवातीचा वेग = u_1 = 3~m/s, दुसऱ्या चेंडूचा सुरुवातीचा वेग = u_2 = 1.5~m/s पहिल्या चेंडूचा अंतिम वेग = v_1 = 2.5~m/s , दुसऱ्या चेंडूचा अंतिम वेग = v_2 = ? संवेग अक्षय्यतेच्या सिद्धांतानुसार, सुरुवातीचा एकूण संवेग = अंतिम एकूण संवेग

$$m_1 u_1 + m_2 u_2 = m_1 v_1 + m_2 v_2$$

(0.05 × 3) + (0.1 × 1.5) = (0.05 × 2.5) + (0.1 × v_2)

$$(0.15)+(0.15) = 0.125 + 0.1v_2$$

$$\therefore 0.3 = 0.125 + 0.1 \text{ v}_2$$

$$\therefore 0.1v_2 = 0.3 - 0.125$$

$$v_2 = \frac{0.175}{0.1} = 1.75 \text{ m/s}$$

स्वाध्याय 💐

खालील सारणीतील पहिल्या स्तंभाशी दुसरा व तिसरा स्तंभ जोडा व नव्याने सारणी तयार करा.

अ.नं.	स्तंभ-1	स्तंभ-2	स्तंभ -3
1	ऋण त्वरण	वस्तूचा वेग स्थिर असतो	एक कार सुरूवातीला विराम अवस्थेनंतर 50 किमी/तास वेग 10 सेकंदात गाठते
2	धन त्वरण	वस्तूचा वेग कमी होतो	एक वाहन 25 मी/सेकंद या वेगाने गतिमान आहे.
3	शून्य त्वरण	वस्तूचा वेग वाढतो.	एक वाहन 10 मी/सेकंद वेगाने जाऊन 5 सेकंदात थांबते.

2. फरक स्पष्ट करा.

- अ. अंतर आणि विस्थापन
- आ. एकसमान गती आणि नैकसमान गती

3. खालील सारणी पूर्ण करा.

u (m/s)	a (m/s²)	t (sec)	v = u + at (m/s)
2	4	3	-
-	5	2	20
u (m/s)	a (m/s²)	t (sec)	$s = ut + \frac{1}{2} at^2(m)$
5	12	3	-
7	-	4	92
u (m/s)	a (m/s²)	s (m)	$v^2 = u^2 + 2as (m/s)^2$
4	3	_	8
-	5	8.4	10

- 4. रिकाम्या जागी योग्य शब्द लिहून विधाने पूर्ण करा व त्यांचे स्पष्टीकरण लिहा.
 - अ. वस्तूच्या गतीच्या सुरुवातीच्या व अंतिम बिंदूमधील कमीत कमी अंतरास वस्तूचे म्हणतात.
 - आ. अवत्वरण म्हणजे.....त्वरण होय.
 - इ. जेव्हा वस्तू एकसमान वर्तुळाकार गतीने जाते तेव्हा तिचा.....प्रत्येक बिंद्पाशी बदलतो.
 - ई. टक्कर होतानानेहमी अक्षय्य राहतो.
 - ए. अग्नीबाणाचे कार्य न्यूटनच्या नियमावर आधारित आहे.
- शास्त्रीय कारणे लिहा.
 - अ. जेव्हा एखादी वस्तू मुक्तपणे जिमनीवर पडते तेव्हा गतीचे त्वरण एकसमान असते.
 - आ. क्रिया बल व प्रतिक्रिया बल यांचे परिमाण समान व दिशा विरुद्ध असल्या तरी ते एकमेकांना निष्प्रभ करत नाहीत.
 - इ. समान वेग असणाऱ्या चेंडूंपैकी क्रिकेटचा चेंडू थांबवण्यापेक्षा टेनिसचा चेंडू थांबवणे सोपे असते.
 - ई. विराम अवस्थेतील वस्तूची गती एकसमान समजली जाते.
- 6. तुमच्या सभोवतालची 5 उदाहरणे घेऊन त्यांचे न्यूटनच्या गतीविषयक नियमांवर आधारित स्पष्टीकरण लिहा.
- 7. उदाहरणे सोडवा.
 - अ. एक वस्तू सुरुवातीच्या 3 सेकंदात 18 मीटर आणि नंतरच्या 3 सेकंदात 22 मीटर जाते व

अंतिम 3 सेकंदात 14 मीटर जाते तर सरासरी चाल काढा. $(3\pi \pi \cdot 6 \text{ m/s})$

- आ. एका वस्तूचे वस्तुमान 16 kg असून ती 3 m/s² त्वरणाने गतिमान आहे. तिच्यावर प्रयुक्त असणारे बल काढा. तेवढेच बल 24 kg वस्तुमानाच्या वस्तूवर प्रयुक्त केल्यास निर्माण होणारे त्वरण किती? (उत्तर: 48 N, 2 m/s²)
- इ. बंदुकीच्या एका गोळीचे वस्तुमान 10 g असून ती 1.5 m/s वेगाने 900 g वस्तूमानाच्या जाड लाकडी फळीमध्ये घुसते. सुरुवातीला फळी विराम अवस्थेत आहे. पण गोळी मारल्यानंतर दोन्ही विशिष्ट वेगाने गतिमान होतात. बंदुकीच्या गोळीसह लाकडी फळी ज्या वेगाने गतिमान होते तो वेग काढा. (उत्तर: 0.15 m/s)
- ई. एक व्यक्ती सुरुवातीला 40 सेकंदात 100 मीटर अंतर पोहते. नंतरच्या 40 सेकंदात ती व्यक्ती 80 मीटर अंतर पार करते व अंतिमच्या 20 सेकंदांत 45 मीटर अंतर पार करते तर सरासरी चाल काय असेल? (उत्तर : 2.25 m/s)

उपक्रम:

17

न्यूटनच्या गतीविषयक नियमांवर आधारित दैनंदिन जीवनातील विविध उपकरणे/साधनांची माहिती मिळवा.

