# 19Z601- Machine Learning

**Presented by** 

Ms.Anisha.C.D
Assistant Professor
CSE

## Algorithm Vs Model

| ALGORITHM                                                                                                                      | MODEL                                                                                                                                  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Algorithm is set of rules or procedure to follow, Mathematical technique or equation which is not definite (no actual values.) | Model are build using algorithm, which are definite or concrete with equation having actual values based on the formulation from data. |  |  |
| Equation: Logistic function: $Y=(1/1+e^{-x})$ Suppose: X1 and X2 variables, then $Y=(1/1+e^{-(b0+b1*X1+b2*X2)})$               | Y= 1/1+e(-( <b>0.1</b> + <b>0.2</b> *X1+ <b>0.3</b> *X2))                                                                              |  |  |

#### Machine Learning System Design



Model

**Testing and** 

**Evaluation** 

#### **Concept Learning**

- Concept Learning is a learning strategy of acquiring abstract knowledge or inferring a general concept.
- It is a process of abstraction and generalization from the data.

#### Find S Algorithm

- Input: Positive Instances in the training dataset
- Output: Hypothesis 'h'
- 1. Initialize 'h' to the most specific hypothesis

$$h = \langle \varphi, \varphi, \varphi, \varphi, \varphi, \varphi \rangle$$

- 2. Generalize the initial hypothesis for the first positive hypothesis [Since 'h' is more specific]
- 3. For each subsequent instances:
  - 3.1 If it is a positive instance,
    - 3.1.1 Check for each attribute value in the instance with the hypothesis 'h'.

      If the attribute value is the same as the hypothesis value, then do nothing
      Else if the attribute value is different than the hypothesis value, change it
      to '?' in 'h'
  - 3.2 Else if it is a negative instance, lgnore it.

### Find S Algorithm – Example Training Dataset

Consider the training dataset of 4 instances. It contains the details of the Performance of the film and their likelihood of the film to be blockbuster or not after release. Apply the Find S-Algorithm.

| Story   | Screenplay | Retro /<br>Nostalgic<br>Music | Cast and<br>Crew | Positive<br>Response<br>from Critics | Film Blockbuster |
|---------|------------|-------------------------------|------------------|--------------------------------------|------------------|
| Good    | Good       | Present                       | Famous           | 8                                    | Blockbuster      |
| Good    | Good       | Present                       | Debut            | 8                                    | Blockbuster      |
| Not Bad | Good       | Not Present                   | Famous           | 7                                    | Not Blockbuster  |
| Good    | Not Good   | Present                       | Debut            | 8                                    | Blockbuster      |

• Step 1 : Initially 'h' to the most specific hypothesis. There are six attributes , so for each attribute, initially fill ' $\phi$ ' in the initial hypothesis 'h'

$$h = \langle \varphi \quad \varphi \quad \varphi \quad \varphi \quad \varphi \quad \varphi \rangle$$

• <u>Step 2</u>: Generalize the initial hypothesis for the first positive instance. I1 is a positive instance, so generalize the most specific hypothesis 'h' to include this positive instance. Hence

I1 = < Good Good Present Famous 8>

h = < Good Good Present Famous 8 >

• <u>Step 3</u>: Scan the next instance I2, since I2 is positive instance. Generalize 'h' to include positive instance I2. For each of the non matching attribute value in 'h' put a '?' to include this positive instance.

```
12 = < Good Good Present Debut 8 >
```

• <u>Step 4</u>: Scan the next instance I3, since I3 is negative instance. Ignore it. Hence the hypothesis remains the same without any change after scanning.

**I3 = < Not Good Not Present Debut 8 > - Negative Instance** 

• Step 4: Scan the next instance I4, since I4 is positive instance. Generalize 'h' to include positive instance I4. For each of the non matching attribute value in 'h' put a '?' to include this positive instance.

```
14 = < Good Not Good Present Debut 8 >
```

#### • Inferences:

- Story : Must be "Good"
- Screenplay: can be any value, generalized to "?"
- Retro/Nostalgic Music : Must be "Present"
- Cast and Crew: can be any value, generalized to "?"
- Positive Response: 8

#### **Activity**

• Form a group of 4, create a dataset of 4 instances that consists of features along with the likelihood of the longevity of friendship.

- Label: Longevity of Friendship: Yes/No
- Features: Minimum 4, add four instances (provides values against each feature).

#### Homework

• Consider the training dataset of 4 instances. It contains the details of the performance of students and their likelihood of getting a job offer or not in their final semester. Apply the Find-S Algorithm.

| CGPA | Interactiveness | Practical<br>Knowledge | Communication Skills | Logical<br>Thinking | Interest | Job Offer |
|------|-----------------|------------------------|----------------------|---------------------|----------|-----------|
| >=9  | Yes             | Excellent              | Good                 | Fast                | Yes      | Yes       |
| >=9  | Yes             | Good                   | Good                 | Fast                | Yes      | Yes       |
| >=8  | No              | Good                   | Good                 | Fast                | No       | No        |
| >=9  | Yes             | Good                   | Good                 | Slow                | No       | Yes       |