

## Recap Linear Regression

#### Linear Regression - Notation

linear relationship between a dependent variable  $y_i$  (at location i) and a set of explanatory variables  $x_{ih}$ , for h = 1, ..., k subject to random error

$$y_i = \sum_h x_{ih} \beta_h + e_i$$

 $e_i$  is a random error term, with  $E[e_i] = 0$ , i.e., no systematic error

### Linear Regression - Notation (continued)

in matrix notation, a  $n \times 1$  column vector y and a  $n \times k$  vector X, with a  $k \times 1$  coefficient vector  $\beta$  and a  $n \times 1$  random error vector e

$$y = X\beta + e$$

$$E[e] = 0$$

#### **Marginal Effect**

the effect of a change in X on y

in a linear regression the marginal effect equals the regression coefficient (this is not the case in a non linear regression)

$$E[y|\Delta X] = \Delta X \beta$$

#### **Selected Regularity Conditions**

**X non-stochastic** (or if stochastic, with bounds on second moment) - the only randomness follows from the dependent variable y, any randomness in X is inconsequential

error term independent identically distributed (i.i.d), i.e.,  $Var[e_i] = \sigma^2$  or  $E[ee'] = \sigma^2$ I = spherical error term

xi and ei uncorrelated for all i, i.e., signal (X) and noise (e) are not related

## Ordinary Least Squares (OLS) Regression

under set of regularity conditions, yields the best (smallest variance) unbiased estimator = Gauss-Markov theorem

b = 
$$(X'X)^{-1} X'y$$
  
E[b] = E[ $(X'X)^{-1}X'(X\beta)$ ]+E[ $(X'X)^{-1}X'e$ ]= $\beta$   
(since E[ $X'e$ ] = O)

#### **Predicted Value**

value of yi given xi using the estimates b

$$y_{ip} = \sum_{h} x_{ih} b_{h}$$

#### Residual

difference between observed and predicted

$$u_i = y_i - y_{ip}$$

for regression with constant term  $avg[u_i] = 0$  residual is NOT the same as the error term (e<sub>i</sub>)

# Visual Diagnostics

#### **Predicted Value Map**

shows spatial distribution of model prediction

a form of smoothing, i.e., what the model suggests y should be, given the X at each location



Predicted Value map 1990 county homicide rates (standard deviational map)

#### Residual Map

high values (red) = model under-predicts ( $y > y_p$ )

low values (blue) = model over-predicts ( $y < y_p$ )

note extremes = poor fit of model

note spatial patterns, but visual inspection can be misleading

need for formal diagnostics



Residual map - 1990 county homicide rates (standard deviational map)

### Diagnostic Plots

use scatter plot function

plot residuals (y-axis) vs predicted values (x-axis) as a visual diagnostic for heteroskedasticity

pattern should be more or less within the same range

"fan" or "flares" suggest heteroskedasticity, i.e., non-constant error variance



Residual Plot - Heteroskedasticity

#### Caution

visual inspection of plots and maps can be misleading

use plots and maps to suggest additional variables for model

no substitute for formal specification diagnostics

# Specification Tests

|                                                                          | ONDITION NUM       | BER 30.863223     |                   |
|--------------------------------------------------------------------------|--------------------|-------------------|-------------------|
| TEST ON NORMALITY O                                                      |                    | TER T LITE        | DDOD              |
| TEST                                                                     | DF                 | VALUE             | PROB              |
| Jarque-Bera                                                              | 2                  | 2833.409          | 0.0000000         |
| DIAGNOSTICS FOR HET                                                      | EROSKEDASTIC       | ITY               |                   |
| DIAGNOSTICS FOR HET<br>RANDOM COEFFICIENTS<br>TEST                       | EROSKEDASTIC<br>DF | ITY<br>VALUE      | PROB              |
| RANDOM COEFFICIENTS                                                      |                    |                   | PROB<br>0.0000000 |
| RANDOM COEFFICIENTS<br>TEST                                              | DF<br>5            | VALUE             |                   |
| RANDOM COEFFICIENTS<br>TEST<br>Breusch-Pagan test<br>Koenker-Bassett tes | DF<br>5<br>t 5     | VALUE<br>515.0796 | 0.0000000         |
| RANDOM COEFFICIENTS<br>TEST<br>Breusch-Pagan test<br>Koenker-Bassett tes | DF<br>5<br>t 5     | VALUE<br>515.0796 | 0.0000000         |

Regression Report - Diagnostics

## Spatial Autoregressive Process

### **Spatial Autoregressive Process (SAR)**

analog to time series setup

example, first order autoregressive process  $y_t = \rho y_{t-1} + u_t$ 

by consecutive substitution, this becomes a moving average process in the error terms

$$y_t = \rho(\rho y_{t-2} + u_{t-1}) + u_t = \rho^2 y_{t-2} + \rho u_{t-1} + u_t.$$

$$y_t = u_t + \rho u_{t-1} + \rho^2 u_{t-2} + \dots$$

#### Fundamental Difference = Feedback

substitution approach breaks down

y<sub>i</sub> is present on the right hand side

$$y_i = \rho[\rho(y_{i-2} + y_i) + u_{i-1}] + \rho[\rho(y_i + y_{i+2}) + u_{i+1}] + u_i$$
  
=  $\rho^2(2y_i + y_{i-2} + y_{i+2}) + \rho u_{i-1} + \rho u_{i+1} + u_i$ 

alternative: write full system of simultaneous equations using a spatial weights matrix

$$\mathbf{y} = \rho \mathbf{W} \mathbf{y} + \mathbf{u},$$

## Spatially Lagged Variables

### **Specifying Spatial Dependence**

In time series analysis, the concept of a shift  $y_{t-k}$  is observation shifted by k periods

For regular lattices, shift north, south, east, west:  $y_{i-1,j}$ ,  $y_{i+1,j}$ ,  $y_{i,j-1}$ ,  $y_{i,j+1}$  spatial shift of  $y_{i,j}$ 

No analog for irregular spatial layouts

Instead, the notion of a spatially lagged variable (Anselin 1988)

### **Spatial Lag**

Weighted average of neighboring values

Neighbors defined by spatial weights (wij)

$$y_{iL} = w_{i1}.y_1 + w_{i2}.y_2 + ... + w_{iN}.y = \sum_{j} w_{ij}.y_{j}$$

In practice: very few neighbors (weights are sparse)

### **Spatial Lag in Matrix Notation**

Spatial weights matrix times the vector of observations

$$y_L = Wy$$

Wy as such is often used as symbol for a spatially lagged dependent variable

#### Spatial Lag vs Window Average

Similar to a window average, the spatial lag is a smoother

Lag Wy has smaller variance than original variable y

spatial lag is NOT a window average since  $\mathbf{w_{ii}} = \mathbf{0}$  observation at "center" of window is not included

### Spatially Lagged Variables in a Regression

spatially lagged dependent variable

Wy spatial (autoregressive) lag model

spatially lagged explanatory variables

WX spatial cross-regressive model or SLX model

spatially lagged error terms

We spatial (autoregressive) error model

# Spatial Lag Model

#### Motivation

Explicit model for spatial interaction = substantive spatial dependence

Substantive autocorrelation is when values of Y are systematically related to values of Y in adjacent areas, generating model bias. This can be corrected by including an explicit spatial lag term as an explanatory variable in the model

Peer-effects, etc.

Equilibrium outcome of spatial interaction process, a spatial reaction function (Brueckner 2003)

Non-behavioral motivation = data issue (scale)

### Types of Social Interaction

Interaction effects among individual agents = endogenous effects

Exogenous group characteristics = **contextual effects** 

Observed or unobserved characteristics that agents have in common = **correlated effects** 

## Mixed Regressive-Spatial Autoregressive

$$y = \rho Wy + X\beta + u$$

Wy = spatial autoregressive (spatial lag)

**X** = regressive

p = spatial autoregressive coefficient

### **Spatial Filter**

Remove effect of spatial autocorrelation

$$y-\rho Wy = X\beta + u$$
  
 $(I-\rho W)y = X\beta + u$   
 $(I-\rho W)$  is **spatial filter**

## **Effect of Spatial Filter**

Similar to detrending

Deals with scale problems, i.e., nonbehavioral motivation for including spatial lag term

Spatial filter still requires estimate of p

### **Spatial Multiplier**

Derived from reduced form

What is the change in y as a result of the change in X

$$E[y|\Delta X] = (I-\rho W)^{-1}(\Delta X)\beta = [I+\rho W+\rho^2 W^2 + ...](\Delta X)\beta$$

effect is more than  $(\Delta X) \beta$  multiplier

#### **Direct and Indirect Effects**

Total effect of a change in the exogenous variable

$$(I - \rho W)^{-1} (\Delta X) \beta$$

#### direct effect

$$(\Delta X)\beta$$

#### indirect effect

[(I - 
$$\rho W$$
)<sup>-1</sup> - I] ( $\Delta X$ ) $\beta$   
[ $\rho W$  +  $\rho^2 W^2$  + ...] ( $\Delta X$ ) $\beta$ 

### **Applications of Spatial Multiplier**

Policy analysis

Effect of a change in a policy variable x at i extends beyond i to its neighbors, neighbors of neighbors, etc.

Simulate the spatial imprint of a policy change by solving the reduced form for a change in X

## Effects of Ignoring a Spatial Lag

= ignoring substantive spatial interaction

omitted variable problem

#### **OLS** biased and inconsistent

Potentially: wrong estimate, wrong sign, wrong standard error, wrong significance, wrong fit



effect of ignoring spatial lag on OLS estimate

#### **OLS vs. SAR**

Consider the following linear regression of Obama's margin of victory (y) on county-level socio-economic attributes (X):

$$y = X\beta + s$$
.

|                          | OLS                           |
|--------------------------|-------------------------------|
| (Intercept)              | -35.58                        |
|                          | (6.23)***                     |
| Percent non-white        | 1.09                          |
|                          | (0.06)***                     |
| Percent college-educated | 1.65                          |
|                          | (0.15)***                     |
| Veterans                 | -2.6e-4<br>(1.2e-4)*<br>-7e-4 |
|                          | (1.2e-4)*                     |
| Median income            | -7e-4                         |
|                          | (1.6e-4)***                   |
| AIC                      | 729.2                         |
| N                        | 100                           |
| Moran's / Residuals      | 0.25***                       |

\* $p \le .05$ , \*\* $p \le .01$ , \*\*\* $p \le .001$ 

The Moran's I statistic shows a significant amount of spatial autocorrelation in the residuals.

#### **OLS Residuals**

Below is a map of <u>residuals</u> from a linear regression of Obama's margin of victory on county-level socio-economic attributes.



#### **OLS vs. SAR**

And the same model estimated by SAR:  $y = \rho Wy + X\beta + u$ .

|                                                   | OLS         | SAR         |
|---------------------------------------------------|-------------|-------------|
| (Intercept)                                       | -35.58      | -28.40      |
|                                                   | (6.23)***   | (7.05)***   |
| Percent non-white                                 | 1.09        | 0.98        |
|                                                   | (0.06)***   | (0.08)***   |
| Percent college-educated                          | 1.65        | 1.62        |
|                                                   | (0.15)***   | (0.14)***   |
| Veterans                                          | -2.6e-4     | -1.8e-4     |
|                                                   | (1.2e-4)*   | (1e-4)      |
| Median income                                     | -7e-4       | -7.8e-4     |
|                                                   | (1.6e-4)*** | (1.6e-4)*** |
| Lagged Obama margin (p)                           |             | 0.16        |
|                                                   |             | (0.08)*     |
| AIC                                               | 729.2       | 727.09      |
| N                                                 | 100         | 100         |
| Moran's / Residuals                               | 0.25***     | 0.15**      |
| * $p \le .05$ , ** $p \le .01$ , *** $p \le .001$ |             |             |

The p coefficient is positive and significant, indicating spatial autocorrelation in the dependent variable. But Moran's I indicates that residuals remain clustered.

#### **SAR Residuals**

Below is a map of <u>residuals</u> from the SAR model.



#### **SAR Equilibrium Effects**

Counterfactual: A 50% decline in Durham's college-educated population.

Below are the equilibrium effects (change in Obama's county vote margin) associated with this counterfactual.



# Spatial Error Model

#### Motivation

spatial pattern in error term due to omitted random factors = nuisance spatial dependence

Nuisance involves model residuals only - if this exists it reduces model efficiency and can be corrected including a spatial error specification in the model

mismatch spatial scale process with spatial scale observations (administrative units as "markets")

no substantive interpretation problem of

efficiency of the estimates

### Non-Spherical Error Variance

Due to spatial autocorrelation, error covariances are non-zero

Off-diagonal elements are non-zero

$$E[uu'] = \Sigma \neq \sigma^2 I$$

Spatial structure in the covariance  $E[u_iu_j] \neq 0$ , for  $i \neq j$ 

## **Spatial Autoregressive Error Model**

SAR error

$$y = X\beta + u$$
 with  $u = \lambda Wu + e$ 

covariance matrix 
$$\Sigma = \sigma^2 [(I - \lambda W)'(I - \lambda W)]^{-1}$$

but inverse covariance matrix does not contain inverse terms:

$$\Sigma^{-1} = (1/\sigma^2) [ (I - \lambda W)'(I - \lambda W) ]$$

#### **Reduced Form**

$$y = X\beta + (I - \lambda W)^{-1}e$$

No substantive spatial multiplier effect

Effect of spatial autocorrelation is on error variance, used in kriging (spatial prediction)

## **SAR Errors and Heteroskedasticity**

Variance  $\Sigma = \sigma^2 \left[ (I - \lambda W)'(I - \lambda W) \right]^{-1}$  has non-constant diagonal terms - depends on number of neighbors

This induces heteroskedasticity in u, even with homoskedastic errors e

Difficult to disentangle true heteroskedasticity from induced heteroskedasticity

## Effects of Ignoring SAR Errors

Problem of efficiency

OLS remains unbiased but inefficient

Potentially: correct estimate, wrong standard error, wrong significance, wrong fit



effect of ignoring SAR errors on OLS estimate

### **Spatially Lagged Error Model**

Use of the spatial error model may be motivated by **omitted variable bias**.

Suppose that y is explained entirely by two explanatory variables x and z , where x, z  $\sim$  N(0,  $I_n$ ) and are independent.

$$y = x\beta + z\theta$$

If z is not observed, the vector  $z\theta$  is nested into the error term u.

$$y = x\beta + u$$

Examples of latent variable z : culture, social capital, neighborhood prestige.

#### **SEM Estimates**

Let's run the model:  $\mathbf{y} = \mathbf{X}\beta + \lambda \mathbf{W}\mathbf{u} + e$ .

|                                   | OLS         | SAR         | SEM         |
|-----------------------------------|-------------|-------------|-------------|
| (Intercept)                       | -35.58      | -28.40      | -38.67      |
|                                   | (6.23)***   | (7.05)***   | (7.34)***   |
| Percent non-white                 | 1.09        | 0.98        | 1.16        |
|                                   | (0.06)***   | (0.08)***   | (0.07)***   |
| Percent college-educated          | 1.65        | 1.62        | 1.44        |
|                                   | (0.15)***   | (0.14)***   | (0.13)***   |
| Veterans                          | -2.6e-4     | -1.8e-4     | -1.5e-4     |
|                                   | (1.2e-4)*   | (1e-4)      | (1e-4)      |
| Median income                     | -7e-4       | -7.8e-4     | -5.9e-4     |
|                                   | (1.6e-4)*** | (1.6e-4)*** | (1.6e-4)*** |
| Lagged Obama margin ( $\rho$ )    |             | 0.16        |             |
|                                   |             | (0.08)*     |             |
| Lagged error (λ)                  |             |             | 0.53        |
|                                   |             |             | (0.11)***   |
| AIC                               | 729.2       | 727.09      | 715.74      |
| N                                 | 100         | 100         | 100         |
| Moran's / Residuals               | 0.25***     | 0.15**      | -0.003      |
| $p \le .05, p \le .01, p \le .00$ | 01          |             |             |

The  $\lambda$  coefficient indicates strong spatial dependence in the errors.

#### **SEM Residuals**

Below is a map of <u>residuals</u> from the SEM model.



# Spatial Durbin Model

#### **Spatial Durbin Model**

Like the SEM, the Spatial Durbin Model can be motivated by concern over **omitted variables**.

Recall the DGP for the SEM:

$$y = X\beta + (I - \lambda W)^{-1}u$$

Now suppose that **X** and **u** are correlated

One way to account for this correlation would be to conceive of  $\bf u$  as a linear combination of  $\bf X$  and an error term  $\bf v$  that is independent of  $\bf X$ .

$$u = X\gamma + v$$

$$v \sim N(0, \sigma^2 I)$$

where the scalar parameter  $\gamma$  and  $\sigma^2$  govern the strength of the relationship between **X** and **z** = (I -  $\lambda$ W)<sup>-1</sup>

#### **Spatial Durbin Model**

Substituting this expression for **u**, we have the following DGP:

$$y = X\beta + (I_n - \lambda W)^{-1}(\gamma X + v)$$

$$y = X\beta + (I_n - \lambda W)^{-1}\gamma X + (I_n - \lambda W)^{-1}v$$

$$(I_n - \lambda W)y = (I_n - \lambda W)X\beta + \gamma X + v$$

$$y = \lambda Wy + X(\beta + \gamma) + WX(-\lambda \beta) + v$$

This is the **Spatial Durbin Model (SDM)**, which includes a spatial lag of the dependent variable **y**, as well as the explanatory variables **X** 

#### **SDM Estimates**

|                                                  | OLS       | SAR       | SEM                 | SDM       |
|--------------------------------------------------|-----------|-----------|---------------------|-----------|
| (Intercept)                                      | -35.58    | -28.40    | -38.67              | -26.22    |
|                                                  | (6.23)*** | (7.05)*** | (7.34)***           | (9.66)*** |
| Percent non-white                                | 1.09      | 0.98      | 1.16                | 1.23      |
|                                                  | (0.06)*** | (0.08)*** | (0.07)***           | (0.92)*** |
|                                                  |           |           |                     | •         |
| Lagged Obama margin (ρ)                          |           | 0.16      |                     | 0.42      |
| Lagged Obama margin (p)                          |           | (0.08)*   |                     | (0.12)**  |
| Lagged error (λ)                                 |           | (0.00)    | 0.53                | (0.12)    |
| <b>aggaa arrar</b> (71)                          |           |           | (0.11)***           |           |
| Lagged non-white ( $\theta_{\text{non-white}}$ ) |           |           | <b>(</b> - <b>)</b> | -0.59     |
|                                                  |           |           |                     | (0.17)*** |
|                                                  |           |           |                     |           |
|                                                  |           |           |                     | •         |
| AIC                                              | 729.2     | 727.09    | 715.74              | 714.22    |
| N                                                | 100       | 100       | 100                 | 100       |
| Moran's / Residuals                              |           | 0.15**    | -0.003              | 0.003     |
| * $p \le .05$ , ** $p \le .01$ , *** $p \le .01$ | 001       |           |                     |           |

The SDM results in a slightly better fit

#### **SDM Residuals**

Below is a map of <u>residuals</u> from the SDM model.



## SLX Model

#### **Motivation for SLX Model**

No spatially lagged dependent variable deal with endogeneity in **WX** if needed

A model for local spillovers

No effect from **X** beyond first order neighbors

No need for spatial econometric estimators

#### Extensions: Spatial Durbin Error Model (SDEM)

The SDEM model contains spatial dependence in both the explanatory variables and the errors.

$$y = \iota_{n}\alpha + X\beta + WX\gamma + (I - \rho W)^{-1}s$$
  
$$s \sim N(0, \sigma^{2}I_{n})$$

Direct impacts correspond to the  $\beta$  parameters; indirect impacts correspond to the  $\gamma$  parameters

The model can be generalized to incorporate two weights matrices without affecting interpretation of parameters:

$$y = \iota_n \alpha + X\beta + W_1 X\gamma + (I_n - \rho W_2)^{-1} s$$

#### **Nested Models**



# Specification tests

- Reject the null hypothesis against a fully specified alternative model, such as a spatial lag model or a spatial SAR error model
- Based on maximum likelihood (ML) principles
- Examples
  - Wald test (= asymptotic t-test)
  - Likelihood Ratio test (LR)
  - Lagrange Multiplier test (LM)
    - test on significance of slope (gradient) of likelihood function (score)
    - only requires estimation of null model
    - based on OLS residuals

## GWR

#### Geographically Weighted Regression (GWR)

A key assumption that we have made in the models examined thus far is that the structure of the model remains constant over the study area (no local variations in the parameter estimates).

If we are interested in accounting for potential **spatial heterogeneity** in parameter estimates, we can use a Geographically Weighted Regression (GWR) model (Fotheringham et al., 2002).

GWR permits the parameter estimates to vary locally, similar to a parameter drift for a time series model.

GWR has been used primarily for exploratory data analysis, rather than hypothesis testing.

#### Geographically Weighted Regression (GWR)

GWR rewrites the linear model in a slightly different form:

$$y_i = X\beta_i + S$$

where i is the location at which the local parameters are to be estimated.

Parameter estimates are solved using a weighting scheme:

$$\beta_i = (X^j W_i X)^{-1} X^j W_i y$$

where the weight  $\mathbf{w}_{ij}$  for the  $\mathbf{j}$  observation is calculated with a Gaussian function.

$$w_{ij} = e^{\left(\frac{-d_{ij}}{h}\right)^2}$$

where  $\mathbf{d}_{i,j}$  is the Euclidean distance between the location of observation  $\mathbf{i}$  and location  $\mathbf{j}$ , and  $\mathbf{h}$  is the bandwidth. Bandwidth may be user-defined or selected by minimization of root mean square prediction error.

#### **GWR Estimates**

Let's try running the same election model as before with GWR:

|                          | Geographically Weighted Regression           |        |        |        |        |
|--------------------------|----------------------------------------------|--------|--------|--------|--------|
|                          | Global                                       | Min    | Median | Max    | S.E.   |
| (Intercept)              | -35.58                                       | -55.42 | -37.65 | -24.81 | (8.64) |
| Percent non-white        | 1.09                                         | 0.99   | 1.12   | 1.25   | (0.06) |
| Percent college-educated | 1.65                                         | 1.44   | 1.63   | 1.83   | (0.11) |
| Veterans                 | -3e-4                                        | -3e-4  | 2.6e-4 | -8e-5  | (6e-5) |
| Median income            | -7e-4                                        | -1e-3  | -9e-4  | -3e-4  | (2e-4) |
| Bandwidth                | 245131.2                                     |        |        |        |        |
| N                        | 100                                          |        |        |        |        |
| Moran's / Residuals      | 0.218                                        |        |        |        |        |
| Moran's / Std. Deviate   | 3.645***                                     |        |        |        |        |
|                          | $p \le .1, p \le .05, p \le .01, p \le .001$ |        |        |        |        |

#### **GWR Local Coefficient Estimates**

Below is a map of <u>local coefficients</u>. The relationship between college education and Obama's victory margin is largest in **red** areas, and smallest in **green** areas.



#### **GWR Local Coefficient Estimates**

A more interesting example...

The relationship b/w per capita income and Bush's victory margin is negative in **red** areas, and positive in **green** areas.



Local Coefficient Estimates (per capita income)

[-0.005,-0.003) [-0.003,-0.001) [-0.001,0.001) [0.001,0.003)

[0.003,0.005]

#### **GWR Residuals**

Below is a map of <u>residuals</u> from the GWR model.



## Resources

- Spatial Regression (Spring 2017) class
  - Luc Anselin (these slides are heavily based on his material)
  - <a href="https://spatial.uchicago.edu/directory/luc-anselin-phd">https://spatial.uchicago.edu/directory/luc-anselin-phd</a>
  - <a href="https://www.youtube.com/playlist?list=PLzREt6r1Nenkk7x197-CKPFZ0BuAOCRGT">https://www.youtube.com/playlist?list=PLzREt6r1Nenkk7x197-CKPFZ0BuAOCRGT</a>



- @rschifan
- schifane@di.unito.it
- http://www.di.unito.it/~schifane