BHOT: Barnes-Hut for Optimal Transport

Arthur Lebeurrier¹, Titouan Vayer¹ ¹OCKHAM, Inria Lyon, LIP, ENS Lyon,

Motivation: Faster regularized Optimal Transport, efficiently scaling for Machine Learning.

Wasserstein distance

$$W_p^p(\mu, \nu) = \min_T \int_{X \times X} d(x, y)^p dT(x, y)$$

A linear optimization problem in $O(n^3 \log(n)^2)$

Find plan $T \in M_{nm}(\mathbb{R}^+)$

$$\min_{T} \sum_{ii} d(\mathbf{x_i}, \mathbf{y_j}) T_{ij}$$

Constraints

$$\mathbf{T}\mathbf{1}_{m} = \mathbf{a}$$
 $\mathbf{T}^{\mathsf{T}}\mathbf{1}_{n} = \mathbf{b}$

Entropic regularization [1]
$$\min_{T} \sum_{i:} d(\mathbf{x_i}, \mathbf{y_j}) T_{ij} - \varepsilon H(\mathbf{T})$$

Solve an approx solution in $O(n^2)$

Clustering

Sinkhorn algorithm

Barnes-Hut and N - body Methods [2]

A pipeline for any hierarchical clustering in any dimension

We introduce a new parameter θ in order to control the approximation. When θ is $+\infty$ we find the original kernel

