Resumen cálculo mecánico de conductores

MakerGarage Marzo 2021

${\rm \acute{I}ndice}$

L.		os a seguir
	1.1.	Calcular los pesos en diferentes hipótesis
	1.2.	Calcular la tabla de vanos añadiendo la longitud real
	1.3.	Calcular el vano de regulación
	1.4.	Calcular la tensión horizontal con el peso más pesado
		1.4.1. Truxa
	1.5.	Calcular el resto de hipótesis
		1.5.1. EDS
		1.5.2. CHS
		1.5.3. Flecha Máxima
		1.5.4. Flecha Mínima
		155 Desviación de cadena de aisladores

1. Pasos a seguir

En caso de ser **categoría especial** tenemos que realizar la hipotesis de viento excepcional a la velocidad de 140km/h.

Una línea se considera categoría especial en el caso de que su tensión sea igual o superior a 220 kV o que pertenezca a la red de transporte.

1.1. Calcular los pesos en diferentes hipótesis

Nos quedamos con el peso mas pesado para nuestra primera iteración de tensiones horizontales.

$$Peso\,del\,viento = \sqrt{P_p^2 + P_v^2}$$

$$P_v = 60 \circ 50 \cdot \left(\frac{V_v}{120}\right)^2 \cdot d \cdot 10^{-3}$$

$$Peso del hielo = P_p + P_h$$

$$P_h = 0'18 \, \acute{o} \, 0'36 \cdot \sqrt{d}$$

$$Peso del viento mitad = \sqrt{P_p^2 + P_v^2}$$
 (1)

$$P_v = \frac{60 \circ 50}{2} \cdot \left(\frac{V_v}{120}\right)^2 \cdot d \cdot 10^{-3}$$

(1) Este se calcula en caso de tener que calcular desviación de cadena de aisladores

1.2. Calcular la tabla de vanos añadiendo la longitud real

1.3. Calcular el vano de regulación

$$a_r = \Gamma \cdot \sqrt{\frac{\sum a_i^3}{\sum \frac{b_i^2}{a_i^2}}}$$

$$\Gamma = \frac{\sum \frac{b_i^3}{a_i^2}}{\sum \frac{b_i^2}{a_i}}$$

1.4. Calcular la tensión horizontal con el peso más pesado

$$T_b = \frac{\sigma_{rotura}}{3}$$

Calculo tantas Tm_i como vanos tengo.

$$T_{mi} = \frac{1}{4} \cdot \left[(2 \cdot T_B - p \cdot h) + \left(\sqrt{(p \cdot h - 2 \cdot T_B)^2 - 2 \cdot b^2 \cdot p^2} \right) \right]$$

Calculo los valores de T_i correspondientes a cada Tm_i y cogemos el valor mas pequeño.

$$T_i = \frac{a_i}{b_i} \cdot T_m$$

Definimos t_{m1} o τ_1 en función de si estamos trabajando con vano único o vano de regulación respectivamente.

$$t_{m1} = \frac{T_{m1}}{S}$$

$$\tau_1 = \frac{\Gamma \cdot T_i}{S}$$

Definimos nuestras condiciones iniciales con el peso mas pesado y ahora mediante truxa comprobaremos con el resto de hipótesis de tracción máxima admisible si efectivamente es la mas desfavorable.

Condiciones iniciales	Condiciones finales
θ_1	θ_2
m_1	m_2
$ au_1$	$ au_2$

$$m = \frac{Peso \, de \, la \, hip \acute{o}tesis}{P_p}$$

$$w = \frac{P_j}{S}$$

1.4.1. Truxa

En función de si trabajamos con un vano único o con un vano de regulación compuesto por varios vanos, debemos calcular las condiciones iniciales.

■ Vano único

$$t_{m2}^{2} \cdot (t_{m2} + A) = B$$

$$K = \frac{a^{2} \cdot E \cdot w^{2} \cdot m_{1}^{2}}{24 \cdot t_{m1}^{2}} - t_{m1}$$

$$A = \alpha \cdot E \cdot (\theta_{2} - \theta_{1}) + K$$

$$B = \frac{a^{2} \cdot E \cdot w^{2} \cdot m_{2}^{2}}{24}$$

■ Vano regulación

$$\tau_2^2 \cdot (\tau_2 + A) = B$$

$$K = \frac{a_r^2 \cdot E \cdot w^2 \cdot m_1^2}{24 \cdot \tau_1^2} - \tau_1$$

$$A = \alpha \cdot E \cdot (\theta_2 - \theta_1) + K$$

$$B = \frac{a_r^2 \cdot E \cdot w^2 \cdot m_2^2}{24}$$

El esfuerzo en punta se puede calcular como:

$$T_B = T_m + p \cdot \left(f \cdot \frac{h}{2} \right)$$
$$T_m = \frac{b_i}{a_i} \cdot T_2$$

Las flechas se pueden calcular como:

$$f = \frac{p \cdot a \cdot b}{8 \cdot T}$$

$$f = \frac{p \cdot b^2}{8 \cdot T_m}$$

1.5. Calcular el resto de hipótesis

1.5.1. EDS

Pg 89. $m_2=1~\theta_2=15C$

$$\frac{T_B}{\sigma_{rotura}} \cdot 100 \le 15 \%$$

- \blacksquare Calculamos T_2 con Truxa
- \bullet Calculamos tantas Tm_i como vanos tengamos $T_m = \frac{b}{a} \cdot T_2$
- Calculamos tantas T_{Bi} como vanos tengamos $T_{Bi} = T_m + p \cdot \left(\frac{b_i^2 \cdot p}{8 \cdot T m_i} + \frac{h_i}{2}\right)$

Nos quedamos con la T_{Bi} mas grande y comprobamos que cumple la hipótesis.

1.5.2. CHS

Pg - No viene. $m_2=1$ $\theta_2=-5C$ Procedimiento igual que la EDS solo que nos dan otro porcentaje.

1.5.3. Flecha Máxima

Pg 89-90. Debemos calcularlas para 3 hipótesis.

La flecha se calcula como $f = \frac{p \cdot a \cdot b}{8 \cdot T}$

- Flecha máxima de viento
- Flecha máxima de hielo
- Flecha máxima de temperatura

1.5.4. Flecha Mínima

Pg 108 $m_2 = 1$. El proceso es igual que el de flecha máxima.

1.5.5. Desviación de cadena de aisladores

Pg 106. Debemos calcular el peso del conductor con la hipótesis de viento mitad, por tanto la sobrecarga m_2 tenemos que calcularla.