GigaDevice Semiconductor Inc.

GD32E231CxT6 ARM® Cortex®-M23 32-bit MCU

Datasheet

Table of Contents

T	able d	of Contents	1						
L	ist of	Figures	3						
L	ist of	Tables	4						
1	General description								
2 Device overview									
	2.1	Device information	7						
	2.2	Block diagram	8						
	2.3	Pinouts and pin assignment	9						
	2.4	Memory map	10						
	2.5	Clock tree	12						
	2.6	Pin definitions	13						
	2.6.								
	2.6.	2 GD32E231CxT6 pin alternate functions	16						
3	Fu	nctional description	19						
	3.1	ARM® Cortex®-M23 core	19						
	3.2	Embedded memory	19						
	3.3	Clock, reset and supply management	19						
	3.4	Boot modes	20						
	3.5	Power saving modes	20						
	3.6	Analog to digital converter (ADC)	21						
	3.7	DMA	22						
	3.8	General-purpose inputs/outputs (GPIOs)	22						
	3.9	Timers and PWM generation	22						
	3.10	Real time clock (RTC)	23						
	3.11	Inter-integrated circuit (I2C)	24						
	3.12	Serial peripheral interface (SPI)	24						
	3.13	Universal synchronous asynchronous receiver transmitter (USART)	25						
	3.14	Inter-IC sound (I2S)	25						
	3.15	Comparators (CMP)	25						
	3.16	Operational amplifier (OP-AMP)	25						

	3.17	Debug mode	26				
	3.18	Package and operation temperature	. 26				
4	Ele	ectrical characteristics	27				
	4.1	Absolute maximum ratings	. 27				
	4.2	Operating conditions characteristics	. 27				
	4.3	Power consumption	. 29				
	4.4	EMC characteristics	34				
	4.5	Power supply supervisor characteristics	35				
	4.6	Electrical sensitivity	. 36				
	4.7	External clock characteristics	. 36				
	4.8	Internal clock characteristics	. 38				
	4.9	PLL characteristics	. 39				
	4.10	Memory characteristics	. 39				
	4.11	NRST pin characteristics	40				
	4.12	GPIO characteristics	41				
	4.13	ADC characteristics	42				
	4.14	Temperature sensor characteristics	43				
	4.15	Comparators characteristics	43				
	4.16	Operational amplifier characteristics	44				
	4.17	I2C characteristics	45				
	4.18	SPI characteristics	45				
	4.19	I2S characteristics	46				
	4.20	USART characteristics	46				
	4.21	TIMER characteristics	47				
	4.22	WDGT characteristics	. 47				
	4.23	Parameter conditions	. 48				
5	Pa	ckage information	49				
	5.1	LQFP48 package outline dimensions	. 49				
6	Ord	dering information	51				
7	Re	Revision history52					

List of Figures

Figure 2-1. GD32E231CxT6 block diagram	8
Figure 2-2. GD32E231CxT6 LQFP48 pinouts	
Figure 2-3. GD32E231CxT6 clock tree	12
Figure 4-1. Recommended power supply decoupling capacitors ^{(1) (2)}	27
Figure 4-2. Typical supply current consumption in Run mode	33
Figure 4-3. Typical supply current consumption in Sleep mode	33
Figure 4-4. Recommended external NRST pin circuit	40
Figure 4-5. I/O port AC characteristics definition	42
Figure 5-1. LQFP48 package outline	49

List of Tables

Table 2-1. GD32E231CxT6 devices features and peripheral list	7
Table 2-2. GD32E231CxT6 memory map	
Table 2-3. GD32E231CxT6 LQFP48 pin definitions	13
Table 2-4. Port A alternate functions summary	16
Table 2-5. Port B alternate functions summary	17
Table 2-6. Port F alternate functions summary	18
Table 4-1. Absolute maximum ratings ^{(1) (4)}	27
Table 4-2. DC operating conditions	27
Table 4-3. Clock frequency ⁽¹⁾	28
Table 4-4. Operating conditions at Power up/ Power down ⁽¹⁾	28
Table 4-5. Start-up timings of Operating conditions ⁽¹⁾⁽²⁾⁽³⁾	28
Table 4-6. Power saving mode wakeup timings characteristics(1)(2)	28
Table 4-7. Power consumption characteristics(1)(2)(3)(4)	29
Table 4-8. Peripheral current consumption characteristics ⁽¹⁾	33
Table 4-9. EMS characteristics ⁽¹⁾	34
Table 4-10. Power supply supervisor characteristics	35
Table 4-11. ESD characteristics ⁽¹⁾	36
Table 4-12. Static latch-up characteristics	36
Table 4-13. High speed external clock (HXTAL) generated from a crystal/ceramic characteristics.	36
Table 4-14. High speed external user clock characteristics (HXTAL in bypass mode)	36
Table 4-15. Low speed external clock (LXTAL) generated from a crystal/ceramic characteristics	37
Table 4-16. Low speed external user clock characteristics (LXTAL in bypass mode)	
Table 4-17. High speed internal clock (IRC8M) characteristics ⁽¹⁾	
Table 4-18. Low speed internal clock (IRC40K) characteristics	38
Table 4-19. High speed internal clock (IRC28M) characteristics	38
Table 4-20. PLL characteristics	39
Table 4-21. Flash memory characteristics	39
Table 4-22. NRST pin characteristics	40
Table 4-23. I/O port DC characteristics	41
Table 4-24. I/O port AC characteristics ⁽¹⁾⁽²⁾	41
Table 4-25. ADC characteristics	
Table 4-26. ADC R _{AIN} max for f _{ADC} = 28 MHz ⁽¹⁾	43
Table 4-27. Temperature sensor characteristics	43
Table 4-28. CMP characteristics ⁽¹⁾	43
Table 4-29. OP-AMP characteristics	
Table 4-30. I2C characteristics ⁽¹⁾⁽²⁾⁽³⁾	
Table 4-31. Standard SPI characteristics ⁽¹⁾	
Table 4-32. I2S characteristics ⁽¹⁾	
Table 4-33. USART characteristics ⁽¹⁾	46
Table 4-34_TIMER characteristics ⁽¹⁾	47

Table 4-35. FWDGT min/max timeout period at 40 kHz (IRC40K)	. 47
Table 4-36. WWDGT min-max timeout value at 72 MHz (f _{PCLK1})	. 47
Table 5-1. LQFP48 package dimensions	. 50
Table 6-1. Part ordering code for GD32E231CxT6 devices	. 51
Table 7-1. Revision history	. 52

1 General description

The GD32E231CxT6 device belongs to the value line of GD32 MCU family. It is a new 32-bit general-purpose microcontroller based on the ARM® Cortex®-M23 core. The Cortex-M23 processor is an energy-efficient processor with a very low gate count. It is intended to be used for microcontroller and deeply embedded applications that require an area-optimized processor. The processor delivers high energy efficiency through a small but powerful instruction set and extensively optimized design, providing high-end processing hardware including a single-cycle multiplier and a 17-cycle divider.

The GD32E231CxT6 device incorporates the ARM® Cortex®-M23 32-bit processor core operating at up to 72 MHz frequency with Flash accesses 0~2 wait states to obtain maximum efficiency. It provides up to 64 KB embedded Flash memory and up to 8 KB SRAM memory. An extensive range of enhanced I/Os and peripherals connected to two APB buses. The devices offer one 12-bit ADC and one comparator, two OP-AMPs, up to five general 16-bit timers, a basic timer, a PWM advanced timer, as well as standard and advanced communication interfaces: up to two SPIs, two I2Cs, two USARTs, and an I2S.

The device operates from a 1.8 to 3.6 V power supply and available in -40 to +85 °C temperature range. Several power saving modes provide the flexibility for maximum optimization between wakeup latency and power consumption, an especially important consideration in low power applications.

The above features make the GD32E231CxT6 devices suitable for a wide range of applications, especially in areas such as industrial control, motor drives, user interface, power monitor and alarm systems, consumer and handheld equipment, gaming and GPS, E-bike and so on.

2 Device overview

2.1 Device information

Table 2-1. GD32E231CxT6 devices features and peripheral list

Dort Number			GD32E231CxT6					
P	art Number	C4T6	C6T6	C8T6				
F	LASH (KB)	16	32	64				
9)	SRAM (KB)	4	6	8				
	General	4	4	5				
	timer(16-bit)	(2,13,15,16)	(2,13,15,16)	(2,13-16)				
	Advanced	1	1	1				
ပ	Advanced timer(16-bit) SysTick Basic	(0)	(0)	(0)				
me	SysTick	1	1	1				
F	Basic	1	1	1				
	timer(16-bit)	(5)	(5)	(5)				
	Watchdog	2	2	2				
	RTC	1	1	1				
	USART	1	2	2				
/ity	USANT	(0)	(0-1)	(0-1)				
Connectivity	I2C	1	1	2				
nne		(0)	(0)	(0-1)				
ပိ	SPI/I2S	1/1	1/1	2/1				
	3F1/123	(0)/(0)	(0)/(0)	(0-1)/(0)				
	GPIO	37	37	37				
	CMP	1	1	1				
	OP-AMP	2	2	2				
	EXTI	16	16	16				
	Units	1	1	1				
	Channels	10	10	10				
ADC	(External)	10	10	10				
	Channels	2	2	2				
	(Internal)							
	Package		LQFP48					

2.2 Block diagram

Figure 2-1. GD32E231CxT6 block diagram

2.3 Pinouts and pin assignment

Figure 2-2. GD32E231CxT6 LQFP48 pinouts

2.4 Memory map

Table 2-2. GD32E231CxT6 memory map

Pre-defined _		4000500		
Regions	Bus	ADDRESS	Peripherals	
		0xE000 0000 - 0xE00F FFFF	Cortex M23 internal peripherals	
External Device		0xA000 0000 - 0xDFFF FFFF	Reserved	
External RAM		0x6000 0000 - 0x9FFF FFFF	Reserved	
	ALID4	0x5004 0000 - 0x5FFF FFFF	Reserved	
	AHB1	0x5000 0000 - 0x5003 FFFF	Reserved	
		0x4800 1800 - 0x4FFF FFFF	Reserved	
		0x4800 1400 - 0x4800 17FF	GPIOF	
		0x4800 1000 - 0x4800 13FF	Reserved	
	AHB2	0x4800 0C00 - 0x4800 0FFF	Reserved	
		0x4800 0800 - 0x4800 0BFF	GPIOC	
		0x4800 0400 - 0x4800 07FF	GPIOB	
		0x4800 0000 - 0x4800 03FF	GPIOA	
		0x4002 4400 - 0x47FF FFFF	Reserved	
		0x4002 4000 - 0x4002 43FF	Reserved	
		0x4002 3400 - 0x4002 3FFF	Reserved	
		0x4002 3000 - 0x4002 33FF	CRC	
		0x4002 2400 - 0x4002 2FFF	Reserved	
	AHB1	0x4002 2000 - 0x4002 23FF	FMC	
		0x4002 1400 - 0x4002 1FFF	Reserved	
5		0x4002 1000 - 0x4002 13FF	RCU	
Peripherals		0x4002 0400 - 0x4002 0FFF	Reserved	
		0x4002 0000 - 0x4002 03FF	DMA	
		0x4001 8000 - 0x4001 FFFF	Reserved	
		0x4001 5C00 - 0x4001 7FFF	Reserved	
		0x4001 5800 - 0x4001 5BFF	DBG	
		0x4001 4C00 - 0x4001 57FF	Reserved	
		0x4001 4800 - 0x4001 4BFF	TIMER16	
		0x4001 4400 - 0x4001 47FF	TIMER15	
		0x4001 4000 - 0x4001 43FF	TIMER14	
	APB2	0x4001 3C00 - 0x4001 3FFF	Reserved	
		0x4001 3800 - 0x4001 3BFF	USART0	
		0x4001 3400 - 0x4001 37FF	Reserved	
		0x4001 3000 - 0x4001 33FF	SPI0/I2S0	
		0x4001 2C00 - 0x4001 2FFF	TIMER0	
		0x4001 2800 - 0x4001 2BFF	Reserved	
		0x4001 2400 - 0x4001 27FF	ADC	
		0x4001 0800 - 0x4001 23FF	Reserved	

Pre-defined	Pre-defined DDSZLZ31CX10			
Regions	Bus	ADDRESS	Peripherals	
		0x4001 0400 - 0x4001 07FF	EXTI	
		0x4001 0000 - 0x4001 03FF	SYSCFG + CMP	
		0x4000 CC00 - 0x4000 FFFF	Reserved	
		0x4000 C800 - 0x4000 CBFF	Reserved	
		0x4000 C400 - 0x4000 C7FF	Reserved	
		0x4000 C000 - 0x4000 C3FF	Reserved	
		0x4000 8000 - 0x4000 BFFF	Reserved	
		0x4000 7C00 - 0x4000 7FFF	Reserved	
		0x4000 7800 - 0x4000 7BFF	Reserved	
		0x4000 7400 - 0x4000 77FF	Reserved	
		0x4000 7000 - 0x4000 73FF	PMU	
		0x4000 6400 - 0x4000 6FFF	Reserved	
		0x4000 6000 - 0x4000 63FF	Reserved	
		0x4000 5C00 - 0x4000 5FFF	Reserved	
		0x4000 5800 - 0x4000 5BFF	I2C1	
		0x4000 5400 - 0x4000 57FF	I2C0	
	4004	0x4000 4800 - 0x4000 53FF	Reserved	
	APB1	0x4000 4400 - 0x4000 47FF	USART1	
		0x4000 4000 - 0x4000 43FF	Reserved	
		0x4000 3C00 - 0x4000 3FFF	Reserved	
		0x4000 3800 - 0x4000 3BFF	SPI1	
		0x4000 3400 - 0x4000 37FF	Reserved	
		0x4000 3000 - 0x4000 33FF	FWDGT	
		0x4000 2C00 - 0x4000 2FFF	WWDGT	
		0x4000 2800 - 0x4000 2BFF	RTC	
		0x4000 2400 - 0x4000 27FF	Reserved	
		0x4000 2000 - 0x4000 23FF	TIMER13	
		0x4000 1400 - 0x4000 1FFF	Reserved	
		0x4000 1000 - 0x4000 13FF	TIMER5	
		0x4000 0800 - 0x4000 0FFF	Reserved	
		0x4000 0400 - 0x4000 07FF	TIMER2	
		0x4000 0000 - 0x4000 03FF	Reserved	
CD A NA		0x2000 2000 - 0x3FFF FFFF	Reserved	
SRAM		0x2000 0000 - 0x2000 1FFF	SRAM	
		0x1FFF F810 - 0x1FFF FFFF	Reserved	
		0x1FFF F800 - 0x1FFF F80F	Option bytes	
Code		0x1FFF EC00 - 0x1FFF F7FF	System memory	
Code		0x0801 0000 - 0x1FFF EBFF	Reserved	
		0x0800 0000 - 0x0800 FFFF	Main Flash memory	
		0x0001 0000 - 0x07FF FFFF	Reserved	

Pre-defined Regions	Bus	ADDRESS	Peripherals
		0x00000000 - 0x0000FFFF	Aliased to Flash or
		000000000 - 0000001111	system memory

2.5 Clock tree

Figure 2-3. GD32E231CxT6 clock tree

Note:

If the APB prescaler is 1, the timer clock frequencies are set to AHB frequency divide by 1. Otherwise, they are set to the AHB frequency divide by half of APB prescaler.

Legend:

HXTAL: High speed crystal oscillator LXTAL: Low speed crystal oscillator IRC8M: Internal 8M RC oscillator IRC40K: Internal 40K RC oscillator IRC28M: Internal 28M RC oscillator

2.6 Pin definitions

2.6.1 GD32E231CxT6 LQFP48 pin definitions

Table 2-3. GD32E231CxT6 LQFP48 pin definitions

. abic 2-5. G			•	in definitions
Pin Name	Pins	Pin Type ⁽¹⁾	I/O Level ⁽²⁾	Functions description
PC14-		.) 0		Default: PC14
OSC32IN	1	I/O		Additional: OSC32IN
PC15-				Default: PC15
OSC32OUT	2	I/O		Additional: OSC32OUT
00002001				Default: PF0
PF0-OSCIN	3	I/O	5VT	Alternate: I2C0 SDA
	Ü	., 0		Additional: OSCIN
				Default: PF1
PF1-	4	I/O	5VT	Alternate: I2C0_SCL
OSCOUT				Additional: OSCOUT
NRST	5	I/O		Default: NRST
INPB	6	I		Default: V _{IN+B}
INNB	7	I		Default: V _{IN-B}
Vssa	8	Р		Default: V _{SSA}
V _{DDA}	9	Р		Default: V _{DDA}
				Default: PA0
DAO WIZUD	10	I/O		Alternate: USART0_CTS ⁽³⁾ , USART1_CTS ⁽⁴⁾ ,
PA0-WKUP				CMP_OUT, I2C1_SCL ⁽⁵⁾
				Additional: ADC_IN0, CMP_IM6, RTC_TAMP1, WKUP0
				Default: PA1
PA1	11	11 I/O		Alternate: USART0_RTS ⁽³⁾ , USART1_RTS ⁽⁴⁾ ,
170				I2C1_SDA ⁽⁵⁾ , EVENTOUT, TIMER14_CH0_ON ⁽⁵⁾
				Additional: ADC_IN1, CMP_IP
				Default: PA2
PA2	12	12 I/O		Alternate: USART0_TX ⁽³⁾ , USART1_TX ⁽⁴⁾ ,
				TIMER14_CH0 ⁽⁵⁾
				Additional: ADC_IN2, CMP_IM7 Default: PA3
				Alternate: USART0_RX ⁽³⁾ , USART1_RX ⁽⁴⁾ ,
PA3	13	I/O		TIMER14_CH1 ⁽⁵⁾
				Additional: ADC_IN3
				Default: PA4
				Alternate: SPI0_NSS, I2S0_WS, USART0_CK ⁽³⁾ ,
PA4	14	I/O		USART1_CK ⁽⁴⁾ , TIMER13_CH0, SPI1_NSS ⁽⁵⁾
				Additional: ADC_IN4, CMP_IM4
				Default: PA5
PA5	15	15 I/O		Alternate: SPI0_SCK, I2S0_CK

				ODSZEZSTCXTO Datasneet
Pin Name	Pins	Pin	1/0	Functions description
		Type ⁽¹⁾	Level ⁽²⁾	·
				Default: PA6
D 4 0 4 (O) ITD	4.0			Alternate: SPI0_MISO, I2S0_MCK, TIMER2_CH0,
PA6/VOUTB	16	I/O		TIMER0_BRKIN, TIMER15_CH0, EVENTOUT,
				CMP_OUT
				Additional: ADC_IN6, Voutb
				Default: PA7
				Alternate: SPI0_MOSI, I2S0_SD, TIMER2_CH1,
PA7	17	I/O		TIMER13_CH0, TIMER0_CH0_ON, TIMER16_CH0,
				EVENTOUT
				Additional: ADC_IN7
				Default: PB0
PB0	18	I/O		Alternate: TIMER2_CH2, TIMER0_CH1_ON,
				USART1_RX ⁽⁴⁾ , EVENTOUT
				Additional: ADC_IN8
				Default: PB1
PB1/VOUTA	19	I/O		Alternate: TIMER2_CH3, TIMER13_CH0,
				TIMER0_CH2_ON, SPI1_SCK ⁽⁵⁾
				Additional: ADC_IN9, V _{OUTA}
PB2	20	I/O	5VT	Default: PB2
				Alternate: TIMER2_ETI
	21	I/O	5VT	Default: PB10
PB10				Alternate: I2C0_SCL ⁽³⁾ , I2C1_SCL ⁽⁵⁾ , SPI1_IO2 ⁽⁵⁾ ,
				SPI1_SCK ⁽⁵⁾
	22	22 I/O	5VT	Default: PB11
PB11				Alternate: I2C0_SDA ⁽³⁾ , I2C1_SDA ⁽⁵⁾ , EVENTOUT,
				SPI1_IO3 ⁽⁵⁾
Vss	23	Р		Default: Vss
V_{DD}	24	Р		Default: V _{DD}
			5VT	Default: PB12
PB12	25	5 I/O		Alternate: SPI0_NSS ⁽³⁾ , SPI1_NSS ⁽⁵⁾ , TIMER0_BRKIN,
				I2C1_SMBA ⁽⁵⁾ , EVENTOUT
				Default: PB13
PB13	26	I/O	5VT	Alternate: SPI0_SCK ⁽³⁾ , SPI1_SCK ⁽⁵⁾ ,
				TIMER0_CH0_ON, I2C1_TXFRAME(5), I2C1_SCL(5)
				Default: PB14
PB14	27	I/O	5VT	Alternate: SPI0_MISO ⁽³⁾ , SPI1_MISO ⁽⁵⁾ ,
				TIMER0_CH1_ON, TIMER14_CH0 ⁽⁵⁾ , I2C1_SDA ⁽⁵⁾
				Default: PB15
				Alternate: SPI0_MOSI ⁽³⁾ , SPI1_MOSI ⁽⁵⁾ ,
PB15	28	I/O	5\/T	TIMER0_CH2_ON, TIMER14_CH0_ON ⁽⁵⁾ ,
1010		"0		TIMER14_CH1 ⁽⁵⁾
				Additional: RTC_REFIN, WKUP6
D.4.0	00		F. /-	Default: PA8
PA8	29	I/O	5VT	Alternate: USARTO_CK, TIMERO_CH0, CK_OUT,
				USART1_TX ⁽⁴⁾ , EVENTOUT

	OD32L23TOXTO Datasilet			
Pin Name	Pins	Pin	I/O	Functions description
1 III Italiic	1 1113	Type ⁽¹⁾	Level ⁽²⁾	Turiotiono accomption
				Default: PA9
PA9	30	I/O	5VT	Alternate: USART0_TX, TIMER0_CH1,
				TIMER14_BRKIN ⁽⁵⁾ , I2C0_SCL, CK_OUT
				Default: PA10
PA10	31	I/O	5VT	Alternate: USART0_RX, TIMER0_CH2,
				TIMER16_BRKIN, I2C0_SDA
				Default: PA11
PA11	32	I/O	5VT	Alternate: USART0_CTS, TIMER0_CH3, CMP_OUT,
.,	02	., 0		EVENTOUT, SPI1_IO2 ⁽⁵⁾ , I2C0_SMBA, I2C1_SCL ⁽⁵⁾
				Default: PA12
PA12	33	I/O	5VT	Alternate: USART0_RTS, TIMER0_ETI, EVENTOUT,
17(12	00	.,,	011	SPI1_IO3 ⁽⁵⁾ , I2C0_TXFRAME, I2C1_SDA ⁽⁵⁾
				Default: PA13
PA13/INNA	34	I/O	5VT	Alternate: SWDIO, IFRP_OUT, SPI1_MISO ⁽⁵⁾
I A 13/IIVIA	J -1	1/0	341	Additional: V _{IN-A}
_				Default: PF6
PF6	35	I/O	5VT	Alternate: I2C0_SCL ⁽³⁾ , I2C1_SCL ⁽⁵⁾
_				Default: PF7
PF7	36	I/O	5VT	Alternate: I2C0_SDA ⁽³⁾ , I2C1_SDA ⁽⁵⁾
				Default: PA14
	37	I/O	5VT	Alternate: USART0_TX ⁽³⁾ , USART1_TX ⁽⁴⁾ , SWCLK,
PA14/INPA				SPI1_MOSI ⁽⁵⁾
				Additional: V _{IN+A}
				Default: PA15
PA15	38	38 I/O	O 5VT	Alternate: SPI0_NSS, I2S0_WS, USART0_RX ⁽³⁾ ,
PAIS	30	1/0		USART1_RX ⁽⁴⁾ , SPI1_NSS ⁽⁵⁾ , EVENTOUT
				Default: PB3
PB3	39	39 I/O	5VT	Alternate: SPI0_SCK, I2S0_CK, EVENTOUT
				Default: PB4
PB4	40	I/O	5VT	Alternate: SPI0_MISO, I2S0_MCK, TIMER2_CH0,
FD4		1/0		EVENTOUT, I2C0_TXFRAME, TIMER16_BRKIN
				Alternate: SPI0_MOSI,I2S0_SD, I2C0_SMBA,
PB5	41	I/O	5VT	TIMER15_BRKIN, TIMER2_CH1
				Additional: WKUP5
				Default: PB6
PB6	42	I/O	5VT	
				Alternate: I2C0_SCL, USART0_TX, TIMER15_CH0_ON Default: PB7
PB7	43	I/O	5VT	
DOOTO	4.4			Alternate:I2C0_SDA, USART0_RX,TIMER16_CH0_ON
BOOT0	44	I		Default: BOOT0
PB8	45	I/O	5VT	Default: PB8
		_		Alternate: I2C0_SCL, TIMER15_CH0
ENAB	46	I		Default: ENAB
Vss	47	Р		Default: V _{SS}
V_{DD}	48	Р		Default: V _{DD}
	L	<u> </u>	L	

Notes:

- (1) Type: I = input, O = output, P = power.
- (2) I/O Level: 5VT = 5 V tolerant.
- (3) Functions are available on GD32E231C4T6 devices only.
- (4) Functions are available on GD32E231C8/6T6 devices.
- (5) Functions are available on GD32E231C8T6 devices only.

2.6.2 GD32E231CxT6 pin alternate functions

Table 2-4. Port A alternate functions summary

Pin Name	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
PA0		USART0_CTS ⁽¹⁾ /USART1_CTS ⁽²⁾			I2C1_SCL ⁽			CMP_ OUT
PA1	EVENTOUT	USARTO_RTS ⁽¹⁾ /USART1_RTS ⁽²⁾			12C1_SDA ⁽	TIMER14 _CH0_O N ⁽³⁾		
PA2	TIMER14_C H0 ⁽³⁾	USART0_TX ⁽¹⁾ / USART1_TX ⁽²⁾						
PA3	TIMER14_C H1 ⁽³⁾	USART0_RX ⁽¹⁾ / USART1_RX ⁽²⁾						
PA4	SPI0_NSS/I 2S0_WS	USART0_CK ⁽¹⁾ / USART1_CK ⁽²⁾			TIMER13_ CH0		SPI1_N SS ⁽³⁾	
PA5	SPI0_SCK/I 2S0_CK							
PA6	SPI0_MISO/ I2S0_MCK	TIMER2_CH0	TIMER0_BR KIN			TIMER15 _CH0	EVENT OUT	CMP_ OUT
PA7	SPI0_MOSI/ I2S0_SD	TIMER2_CH1	TIMER0_CH 0_ON		TIMER13_ CH0	TIMER16 _CH0	EVENT OUT	
PA8	CK_OUT	USART0_CK	TIMER0_CH 0	EVENT OUT	USART1_T X ⁽²⁾			
PA9	TIMER14_B RKIN ⁽³⁾	USART0_TX	TIMER0_CH 1		I2C0_SCL	CK_OUT		
PA10	TIMER16_B RKIN	USART0_RX	TIMER0_CH 2		I2C0_SDA			
PA11	EVENTOUT	USART0_CTS	TIMER0_CH		I2C0_SMB A	I2C1_SC L ⁽³⁾	SPI1_I O2 ⁽³⁾	CMP_ OUT
PA12	EVENTOUT	USART0_RTS	TIMER0_ETI		I2C0_TXF RAME	I2C1_SD A ⁽³⁾	SPI1_I O3 ⁽³⁾	
PA13	SWDIO	IFRP_OUT					SPI1_M ISO ⁽³⁾	
PA14	SWCLK	USART0_TX ⁽¹⁾ /					SPI1_M	

Pin Name	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
		USART1_TX(2)					OSI ⁽³⁾	
PA15	SPI0_NSS/I	USART0_RX(1)/		EVENT			SPI1_N	
FAIS	2S0_WS	USART1_RX(2)		OUT			SS ⁽³⁾	

Table 2-5. Port B alternate functions summary

Pin		internate runction						
Name	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
DDO	E)/ENTOUT	TIMEDO OLIO	TIMER0_CH		USART1_			
PB0	EVENTOUT	TIMER2_CH2	1_ON		RX ⁽²⁾			
DD4	TIMER13_CH	TIMEDO OLIO	TIMER0_CH				SPI1_S	
PB1	0	TIMER2_CH3	2_ON				CK ⁽³⁾	
PB2		TIMER2_ETI						
PB3	SPI0_SCK/I2 S0_CK	EVENTOUT						
	SPI0_MISO				I2C0_TXF		TIMER	
PB4	/I2S0_MCK	TIMER2_CH0	EVENTOUT		RAME		16_BR	
	71200_WOT				TOTIVIL		KIN	
PB5	SPI0_MOSI	TIMER2_CH1	TIMER15_BR	12C0_S				
1 50	/I2S0_SD	THINEILE OF THE	KIN	MBA				
PB6	USART0_TX	I2C0_SCL	TIMER15_C					
1 00	OOARTO_TX	1200_00L	H0_ON					
PB7	USART0_RX	I2C0_SDA	TIMER16_C					
1 07	OOAICTO_ICK	1200_30A	H0_ON					
PB8		I2C0_SCL	TIMER15_C					
1 50		1200_001	H0					
PB10		I2C0_SCL(1)/I2C					SPI1_I	SPI1_
1 510		1_SCL ⁽³⁾					O2 ⁽³⁾	SCK ⁽³⁾
PB11	EVENTOUT	I2C0_SDA ⁽¹⁾ /I2C					SPI1_I	
	EVERTOOT	1_SDA ⁽³⁾					O3 ⁽³⁾	
PB12	SPI0_NSS ⁽¹⁾	EVENTOUT	TIMER0_BR		I2C1_SMB			
1 012	/SPI1_NSS ⁽³⁾	EVENTOOT	KIN		A ⁽³⁾			
PB13	SPI0_SCK ⁽¹⁾	I2C1_TXFRAME ⁽	TIMER0_CH			I2C1_SC		
1 510	/SPI1_SCK ⁽³⁾	3)	0_ON			L ⁽³⁾		
	SPI0_MISO ⁽¹⁾		TIMER0_CH			I2C1_SD		
PB14	/SPI1_MISO ⁽³	TIMER14_CH0 ⁽³⁾	1_ON			A ⁽³⁾		
	SPI0_MOSI ⁽¹⁾		TIMEDO OU	TIMER1				
PB15	/SPI1_MOSI ⁽³	TIMER14_CH1 ⁽³⁾	TIMER0_CH	4_CH0_				
)		2_ON	ON ⁽³⁾				

Table 2-6. Port F alternate functions summary

Pin	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
Name	Al V	Al I	AI Z	A13	A1 4	Ais	A10	Αι /
PF0		I2C0_SDA						
PF1		I2C0_SCL						
	I2C0_SCL ⁽¹⁾							
PF6	/I2C1_SCL ⁽³							
)							
	I2C0_SDA ⁽¹⁾							
PF7	/I2C1_SDA ⁽³							
)							

Notes:

- (1) Functions are available on GD32E231C4T6 devices only.
- (2) Functions are available on GD32E231C8/6T6 devices.
- (3) Functions are available on GD32E231C8T6 devices only.

3 Functional description

3.1 ARM® Cortex®-M23 core

The Cortex-M23 processor is an energy-efficient processor with a very low gate count. It is intended to be used for microcontroller and deeply embedded applications that require an area-optimized processor. The processor is highly configurable enabling a wide range of implementations from those requiring memory protection and powerful trace technology to cost sensitive devices requiring minimal area, while delivering outstanding computational performance and an advanced system response to interrupts.

32-bit ARM® Cortex®-M23 processor core

- Up to 72 MHz operation frequency
- Single-cycle multiplication and hardware divider
- Ultra-low power, energy-efficient operation
- Excellent code density
- Integrated Nested Vectored Interrupt Controller (NVIC)
- 24-bit SysTick timer

The Cortex®-M23 processor is based on the ARMv8-M architecture and supports both Thumb and Thumb-2 instruction sets. Some system peripherals listed below are also provided by Cortex®-M23:

- Internal Bus Matrix connected with AHB master, Serial Wire Debug Port and Single-cycle
 IO port
- Nested Vectored Interrupt Controller (NVIC)
- Breakpoint Unit(BPU)
- Data Watchpoint and Trace (DWT)
- Serial Wire Debug Port

3.2 Embedded memory

- Up to 64 Kbytes of Flash memory
- Up to 8 Kbytes of SRAM with hardware parity checking

64 Kbytes of inner Flash and 8 Kbytes of inner SRAM at most is available for storing programs and data, both accessed (R/W) at CPU clock speed with 0~2 wait states. <u>Table 2-2.</u> <u>GD32E231CxT6 memory map</u> shows the memory map of the GD32E231CxT6 series of devices, including code, SRAM, peripheral, and other pre-defined regions.

3.3 Clock, reset and supply management

■ Internal 8 MHz factory-trimmed RC and external 4 to 32 MHz crystal oscillator

- Internal 28 MHz RC oscillator
- Internal 40 KHz RC calibrated oscillator and external 32.768 KHz crystal oscillator
- Integrated system clock PLL
- 1.8 to 3.6 V application supply and I/Os
- Supply Supervisor: POR (Power On Reset), PDR (Power Down Reset), and low voltage detector (LVD)

The Clock Control Unit (CCU) provides a range of oscillator and clock functions. These include speed internal RC oscillator and external crystal oscillator, high speed and low speed two types. Several prescalers allow the frequency configuration of the AHB and two APB domains. The maximum frequency of the AHB, APB2 and APB1 domains is 72 MHz/72 MHz/72 MHz. See *Figure 2-3. GD32E231CxT6 clock tree* for details on the clock tree.

The Reset Control Unit (RCU) controls three kinds of reset: system reset resets the processor core and peripheral IP components. Power-on reset (POR) and power-down reset (PDR) are always active, and ensures proper operation starting from 1.71 V and down to 1.67 V. The device remains in reset mode when V_{DD} is below a specified threshold. The embedded low voltage detector (LVD) monitors the power supply, compares it to the voltage threshold and generates an interrupt as a warning message for leading the MCU into security.

Power supply schemes:

- V_{DD} range: 1.8 to 3.6 V, external power supply for I/Os and the internal regulator. Provided externally through V_{DD} pins.
- V_{SSA}, V_{DDA} range: 1.8 to 3.6 V, external analog power supplies for ADC, reset blocks, RCs and PLL. V_{DDA} and V_{SSA} must be connected to V_{DD} and V_{SS}, respectively.
- V_{BAK} range: 1.8 to 3.6 V, power supply for RTC, external clock 32 KHz oscillator and backup registers (through power switch) when V_{DD} is not present.

3.4 Boot modes

At startup, boot pins are used to select one of three boot options:

- Boot from main Flash memory (default)
- Boot from system memory
- Boot from on-chip SRAM

In default condition, boot from main Flash memory is selected. The boot loader is located in the internal boot ROM memory (system memory). It is used to reprogram the Flash memory by using USART0 (PA9 and PA10) or USART1 (PA14 and PA15 or PA2 and PA3).

3.5 Power saving modes

The MCU supports three kinds of power saving modes to achieve even lower power consumption. They are sleep mode, deep-sleep mode, and standby mode. These operating modes reduce the power consumption and allow the application to achieve the best balance

between the CPU operating time, speed and power consumption.

■ Sleep mode

In sleep mode, only the clock of CPU core is off. All peripherals continue to operate and any interrupt/event can wake up the system.

■ Deep-sleep mode

In deep-sleep mode, all clocks in the 1.2V domain are off, and all of the high speed crystal oscillator (IRC8M, HXTAL) and PLL are disabled. Only the contents of SRAM and registers are retained. Any interrupt or wakeup event from EXTI lines can wake up the system from the deep-sleep mode including the 16 external lines, the RTC alarm, RTC tamper and timestamp, CMP output, LVD output and USART wakeup. When exiting the deep-sleep mode, the IRC8M is selected as the system clock.

Standby mode

In standby mode, the whole 1.2V domain is power off, the LDO is shut down, and all of IRC8M, HXTAL and PLL are disabled. The contents of SRAM and registers (except backup registers) are lost. There are four wakeup sources for the standby mode, including the external reset from NRST pin, the RTC alarm, the FWDGT reset, and the rising edge on WKUP pin.

3.6 Analog to digital converter (ADC)

- 12-bit SAR ADC's conversion rate is up to 2 MSPS
- 12-bit, 10-bit, 8-bit or 6-bit configurable resolution
- Hardware oversampling ratio adjustable from 2 to 256x improves resolution to 16-bit
- Input voltage range: V_{SSA} to V_{DDA}
- Temperature sensor

One 12-bit 2 MSPS multi-channel ADC is integrated in the device. It has a total of 12 multiplexed channels: up to 10 external channels, 1 channel for internal temperature sensor (V_{SENSE}) and 1 channel for internal reference voltage (V_{REFINT}). The input voltage range is between V_{SSA} and V_{DDA}. An on-chip hardware oversampling scheme improves performance while off-loading the related computational burden from the CPU. An analog watchdog block can be used to detect the channels, which are required to remain within a specific threshold window. A configurable channel management block can be used to perform conversions in single, continuous, scan or discontinuous mode to support more advanced use.

The ADC can be triggered from the events generated by the general level 0 timers (TIMERx) and the advanced timer (TIMER0) with internal connection. The temperature sensor can be used to generate a voltage that varies linearly with temperature. It is internally connected to the ADC_IN16 input channel which is used to convert the sensor output voltage in a digital value.

3.7 DMA

- 5 channels DMA controller
- Peripherals supported: Timers, ADC, SPIs, I2Cs, USARTs and I2S

The flexible general-purpose DMA controllers provide a hardware method of transferring data between peripherals and/or memory without intervention from the CPU, thereby freeing up bandwidth for other system functions. Three types of access method are supported: peripheral to memory, memory to peripheral, memory to memory.

Each channel is connected to fixed hardware DMA requests. The priorities of DMA channel requests are determined by software configuration and hardware channel number. Transfer size of source and destination are independent and configurable.

3.8 General-purpose inputs/outputs (GPIOs)

- Up to 37 fast GPIOs, all mappable on 16 external interrupt lines
- Analog input/output configurable
- Alternate function input/output configurable

There are up to 37 general purpose I/O pins (GPIO) in GD32E231CxT6, named PA0 ~ PA15 and PB0 ~ PB8, PB10 ~ PB15, PC14 ~ PC15, PF0 ~ PF1, PF6 ~ PF7 to implement logic input/output functions. Each of the GPIO ports has related control and configuration registers to satisfy the requirements of specific applications. The external interrupts on the GPIO pins of the device have related control and configuration registers in the Interrupt/event controller (EXTI). The GPIO ports are pin-shared with other alternative functions (AFs) to obtain maximum flexibility on the package pins. Each of the GPIO pins can be configured by software as output (push-pull open-drain or analog), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high-current capable except for analog inputs.

3.9 Timers and PWM generation

- One 16-bit advanced timer (TIMER0), up to five 16-bit general timers (TIMER2, TIMER13
 ~ TIMER16), and one 16-bit basic timer (TIMER5)
- Up to 4 independent channels of PWM, output compare or input capture for each general timer and external trigger input
- 16-bit, motor control PWM advanced timer with programmable dead-time generation for output match
- Encoder interface controller with two inputs using quadrature decoder
- 24-bit SysTick timer down counter
- 2 watchdog timers (free watchdog timer and window watchdog timer)

The advanced timer (TIMER0) can be used as a three-phase PWM multiplexed on 6 channels.

It has complementary PWM outputs with programmable dead-time generation. It can also be used as a complete general timer. The 4 independent channels can be used for input capture, output compare, PWM generation (edge- or center- aligned counting modes) and single pulse mode output. If configured as a general 16-bit timer, it has the same functions as the TIMERx timer. It can be synchronized with external signals or to interconnect with other general timers together which have the same architecture and features.

The general timer can be used for a variety of purposes including general time, input signal pulse width measurement or output waveform generation such as a single pulse generation or PWM output, up to 4 independent channels for input capture/output compare. TIMER2 is based on a 16-bit auto-reload up/down counter and a 16-bit prescaler. TIMER13 ~ TIMER16 is based on a 16-bit auto-reload up counter and a 16-bit prescaler. The general timer also supports an encoder interface with two inputs using quadrature decoder.

The basic timer, known as TIMER5 can also be used as a simple 16-bit time base.

The GD32E231CxT6 have two watchdog peripherals, free watchdog and window watchdog. They offer a combination of high safety level, flexibility of use and timing accuracy.

The free watchdog timer includes a 12-bit down-counting counter and an 8-bit prescaler. It is clocked from an independent 40 KHz internal RC and as it operates independently of the main clock, it can operate in deep-sleep and standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management.

The window watchdog is based on a 7-bit down counter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early wakeup interrupt capability and the counter can be frozen in debug mode.

The SysTick timer is dedicated for OS, but could also be used as a standard down counter. The features are shown below:

- A 24-bit down counter
- Auto reload capability
- Maskable system interrupt generation when the counter reaches 0
- Programmable clock source

3.10 Real time clock (RTC)

- Independent binary-coded decimal (BCD) format timer/counter with five 32-bit backup registers.
- Calendar with subsecond, second, minute, hour, week day, date, year and month automatically correction
- Alarm function with wake up from deep-sleep and standby mode capability
- On-the-fly correction for synchronization with master clock. Digital calibration with 0.954 ppm resolution for compensation of quartz crystal inaccuracy.

The real time clock is an independent timer which provides a set of continuously running counters in backup registers to provide a real calendar function, and provides an alarm interrupt or an expected interrupt. It is not reset by a system or power reset, or when the device wakes up from standby mode. In the RTC unit, there are two prescalers used for implementing the calendar and other functions. One prescaler is a 7-bit asynchronous prescaler and the other is a 15-bit synchronous prescaler.

3.11 Inter-integrated circuit (I2C)

- Up to two I2C bus interfaces can support both master and slave mode with a frequency up to 1 MHz (Fast mode plus)
- Provide arbitration function, optional PEC (packet error checking) generation and checking
- Supports 7-bit and 10-bit addressing mode and general call addressing mode
- Supports SAM_V mode

The I2C interface is an internal circuit allowing communication with an external I2C interface which is an industry standard two line serial interface used for connection to external hardware. These two serial lines are known as a serial data line (SDA) and a serial clock line (SCL). The I2C module provides different data transfer rates: up to 100 KHz in standard mode, up to 400 KHz in the fast mode and up to 1 MHz in the fast mode plus. The I2C module also has an arbitration detect function to prevent the situation where more than one master attempts to transmit data to the I2C bus at the same time. A CRC-8 calculator is also provided in I2C interface to perform packet error checking for I2C data.

3.12 Serial peripheral interface (SPI)

- Up to two SPI interfaces with a frequency of up to 18 MHz
- Support both master and slave mode
- Hardware CRC calculation and transmit automatic CRC error checking
- Separate transmit and receive 32-bit FIFO with DMA capability (only in SPI1)
- Data frame size can be 4 to 16 bits (only in SPI1)
- Quad-SPI configuration available in master mode (only in SPI1)

The SPI interface uses 4 pins, among which are the serial data input and output lines (MISO & MOSI), the clock line (SCK) and the slave select line (NSS). Both SPIs can be served by the DMA controller. The SPI interface may be used for a variety of purposes, including simplex synchronous transfers on two lines with a possible bidirectional data line or reliable communication using CRC checking. Specially, SPI1 has separate transmit and receive 32-bit FIFO with DMA capability and its data frame size can be 4 to 16 bits. Quad-SPI master mode is also supported in SPI1.

3.13 Universal synchronous asynchronous receiver transmitter (USART)

- Up to two USARTs with operating frequency up to 4.5 MBits/s
- Supports both asynchronous and clocked synchronous serial communication modes
- IrDA SIR encoder and decoder support
- LIN break generation and detection
- ISO 7816-3 compliant smart card interface

The USART (USART0, USART1) are used to translate data between parallel and serial interfaces, provides a flexible full duplex data exchange using synchronous or asynchronous transfer. It is also commonly used for RS-232 standard communication. The USART includes a programmable baud rate generator which is capable of dividing the system clock to produce a dedicated clock for the USART transmitter and receiver. The USART also supports DMA function for high speed data communication.

3.14 Inter-IC sound (I2S)

- One I2S bus Interfaces with sampling frequency from 8 KHz to 192 KHz, multiplexed with SPI0
- Support either master or slave mode

The Inter-IC sound (I2S) bus provides a standard communication interface for digital audio applications by 3-wire serial lines. GD32E231CxT6 contain an I2S-bus interface that can be operated with 16/32 bit resolution in master or slave mode, pin multiplexed with SPI0. The audio sampling frequency from 8 KHz to 192 KHz is supported with less than 0.5% accuracy error.

3.15 Comparators (CMP)

- One fast rail-to-rail low-power comparators with software configurable
- Programmable reference voltage (internal or external I/O)

One Comparator (CMP) is implemented within the devices. It can wake up from deep-sleep mode to generate interrupts and breaks for the timers and also can be combined as a window comparator. The internal voltage reference is also connected to ADC_IN17 input channel of the ADC.

3.16 Operational amplifier (OP-AMP)

■ Two 6MHz, rail-to-rail I/O CMOS operational amplifiers

■ Low offset voltage: 1mV (typ)

High gain: 95dB (typ)Low I_B: 5pA (typ)

■ Low supply voltage: + 2.7 V to + 3.6V

Two operational amplifiers (OP-AMP) are low noise, low voltage and low power operational amplifiers with high gain-bandwidth product of 6MHz and slew rate of 5V/µs. The maximum input offset voltage is only 3.5mV and the input common mode range extends beyond the supply rails.

3.17 Debug mode

Serial wire debug port

Debug capabilities can be accessed by a debug tool via Serial Wire (SW - Debug Port).

3.18 Package and operation temperature

- LQFP48 (GD32E231CxT6).
- Operation temperature range: -40°C to +85°C (industrial level)

4 Electrical characteristics

4.1 Absolute maximum ratings

The maximum ratings are the limits to which the device can be subjected without permanently damaging the device. Note that the device is not guaranteed to operate properly at the maximum ratings. Exposure to the absolute maximum rating conditions for extended periods may affect device reliability.

Table 4-1. Absolute maximum ratings(1) (4)

Symbol	Parameter	Min	Max	Unit
V_{DD}	External voltage range ⁽²⁾	V _{SS} - 0.3	V _{SS} + 3.6	V
V_{DDA}	External analog supply voltage	V _{SSA} - 0.3	V _{SSA} + 3.6	V
Vin	Input voltage on 5V tolerant pin(3)	V _{SS} - 0.3	V _{DD} + 3.6	V
VIN	Input voltage on other I/O	V _{SS} - 0.3	3.6	V
$ \Delta V_{DDx} $	Variations between different V_{DD} power pins	_	50	mV
Vssx -Vss	Variations between different ground pins	_	50	mV
lio	Maximum current for GPIO pin	_	±25	mA
TA	Operating temperature range	-40	+85	°C
T _{STG}	Storage temperature range	-55	+150	°C
TJ	Maximum junction temperature	_	125	°C

^{(1).} Guaranteed by design, not tested in production.

4.2 Operating conditions characteristics

Table 4-2. DC operating conditions

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
V_{DD}	Supply voltage		1.8	3.3	3.6	V
Van	Analog supply voltage ADC not used		1.8	3.3		٧
Vdda	Analog supply voltage ADC used		2.4	3.3		V

^{(1).} Based on characterization, not tested in production.

Figure 4-1. Recommended power supply decoupling capacitors⁽¹⁾ (2)

^{(2).} All main power and ground pins should be connected to an external power source within the allowable range.

^{(3).} V_{IN} maximum value cannot exceed 6.5 V.

^{(4).} It is recommended that V_{DD} and V_{DDA} are powered by the same source. The maximum difference between V_{DD} and V_{DDA} does not exceed 300 mV during power-up and operation.

- (1). The V_{REF+} and V_{REF-} pins are only available on no less than 100-pin packages, or else the V_{REF+} and V_{REF-} pins are not available and internally connected to V_{DDA} and V_{SSA} pins.
- (2). All decoupling capacitors need to be as close as possible to the pins on the PCB board.

Table 4-3. Clock frequency(1)

Symbol	Parameter	Conditions	Min	Max	Unit
f _{HCLK1}	AHB1 clock frequency	_	0	72	MHz
f _{HCLK2}	AHB2 clock frequency	_	0	72	MHz
f _{APB1}	APB1 clock frequency	_	0	72	MHz
f _{APB2}	APB2 clock frequency	_	0	72	MHz

^{(1).} Guaranteed by design, not tested in production.

Table 4-4. Operating conditions at Power up/ Power down(1)

Symbol	Parameter	Conditions	Min	Max	Unit
4	V _{DD} rise time rate		0	8	
tvdd	V _{DD} fall time rate	_	20	8	µs/V

^{(1).} Based on characterization, not tested in production.

Table 4-5. Start-up timings of Operating conditions(1)(2)(3)

Symbol	Parameter	Conditions	Тур	Unit
4	t Start up time	Clock source from HXTAL	432	110
T _{start-up}	Start-up time	Clock source from IRC8M	76	μs

- $\begin{tabular}{ll} \end{tabular} \begin{tabular}{ll} \end{tabular} \beg$
- (2). After power-up, the start-up time is the time between the rising edge of NRST high and the main function.
- (3). PLL is off.

Table 4-6. Power saving mode wakeup timings characteristics(1)(2)

Symbol	Parameter	Тур	Unit
tsleep	Wakeup from Sleep mode	3.5	
	Wakeup from Deep-sleep mode (LDO On)	17.1	
IDeep-sleep	Wakeup from Deep-sleep mode (LDO in low power mode)	17.1	μs
tStandby	Wakeup from Standby mode	77.5	

- (1). Based on characterization, not tested in production.
- (2). The wakeup time is measured from the wakeup event to the point at which the application code reads the first

instruction under the below conditions: $V_{DD} = V_{DDA} = 3.3 \text{ V}$, IRC8M = System clock = 8 MHz.

4.3 Power consumption

The power measurements specified in the tables represent that code with data executing from on-chip Flash with the following specifications.

Table 4-7. Power consumption characteristics^{(1) (2) (3) (4)}

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		V _{DD} = V _{DDA} = 3.3 V, HXTAL = 8 MHz, System clock = 72 MHz, All peripherals enabled	_	8.5	_	mA
		V _{DD} = V _{DDA} = 3.3 V, HXTAL = 8 MHz, System clock = 72 MHz, All peripherals disabled	_	5.4	_	mA
		V _{DD} = V _{DDA} = 3.3 V, HXTAL = 8 MHz, System clock = 48 MHz, All peripherals enabled		6.2		mA
		V _{DD} = V _{DDA} = 3.3 V, HXTAL = 8 MHz, System clock = 48 MHz, All peripherals disabled	_	4.2	_	mA
		$V_{DD} = V_{DDA} = 3.3 \text{ V}, \text{ HXTAL} = 8 \text{ MHz},$ System clock = 36 MHz, All peripherals enabled	_	5.1	_	mA
	Supply current	V _{DD} = V _{DDA} = 3.3 V, HXTAL = 8 MHz, System clock = 36 MHz, All peripherals disabled		3.6		mA
IDD+IDDA	(Run mode)	V _{DD} = V _{DDA} = 3.3 V, HXTAL = 8 MHz, System clock = 24 MHz, All peripherals enabled	_	4.0	_	mA
		$V_{DD} = V_{DDA} = 3.3 \text{ V}, \text{ HXTAL} = 8 \text{ MHz},$ System clock = 24 MHz, All peripherals disabled	_	2.9	_	mA
		V _{DD} = V _{DDA} = 3.3 V, HXTAL = 8 MHz, System clock = 16 MHz, All peripherals enabled		3.2		mA
		$V_{DD} = V_{DDA} = 3.3 \text{ V}, \text{ HXTAL} = 8 \text{ MHz},$ System clock = 16 MHz, All peripherals disabled	_	2.5	_	mA
		V _{DD} = V _{DDA} = 3.3 V, HXTAL = 8 MHz, System clock = 8 MHz, All peripherals enabled	_	2.4	_	mA
		V _{DD} = V _{DDA} = 3.3 V, HXTAL = 8 MHz, System clock = 8 MHz, All peripherals disabled		2.1		mA

Symbol	Parameter	Conditions	Min	Tyn	Max	Unit
Symbol	Parameter		IVIIII	Тур	IVIAX	Onit
		$V_{DD} = V_{DDA} = 3.3 \text{ V}, \text{ HXTAL} = 8 \text{ MHz},$		0.0		
		System clock = 4 MHz, All peripherals	_	0.8		mA
		enabled				
		$V_{DD} = V_{DDA} = 3.3 \text{ V}, \text{ HXTAL} = 8 \text{ MHz},$		0.0		
		System clock = 4 MHz, All peripherals	_	0.6		mA
		disabled				
		$V_{DD} = V_{DDA} = 3.3 \text{ V}, \text{ HXTAL} = 8 \text{ MHz},$		0.0		
		System clock = 2 MHz, All peripherals		0.6		mA
		enabled				
		$V_{DD} = V_{DDA} = 3.3 \text{ V}, \text{ HXTAL} = 8 \text{ MHz},$		0.5		
		System clock = 2 MHz, All peripherals	_	0.5	_	mA
		disabled				
		V _{DD} = V _{DDA} = 3.3 V, HXTAL = 8 MHz, CPU		- 4		
		clock off, System clock = 72 MHz, All	_	7.4	_	mA
		peripherals enabled				
		$V_{DD} = V_{DDA} = 3.3 \text{ V}, \text{ HXTAL} = 8 \text{ MHz}, \text{CPU}$		0 =		
		clock off, System clock = 72 MHz, All	_	3.7	_	mA
		peripherals disabled				
		V _{DD} = V _{DDA} = 3.3 V, HXTAL = 8 MHz, CPU				
		clock off, System clock = 48 MHz, All		5.5		mA
		peripherals enabled				
		$V_{DD} = V_{DDA} = 3.3 \text{ V}, \text{ HXTAL} = 8 \text{ MHz}, \text{CPU}$		0.4		^
		clock off, System clock = 48 MHz, All	_	3.1		mA
		peripherals disabled				
		V _{DD} = V _{DDA} = 3.3 V, HXTAL = 8 MHz, CPU		4.5		
		clock off, System clock = 36 MHz, All	_	4.5		mA
	Supply current	peripherals enabled				
	(Sleep mode)	V _{DD} = V _{DDA} = 3.3 V, HXTAL = 8 MHz, CPU		0.7		
		clock off, System clock = 36 MHz, All		2.7		mA
		peripherals disabled				
		$V_{DD} = V_{DDA} = 3.3 \text{ V}, \text{ HXTAL} = 8 \text{ MHz}, \text{CPU}$		0.0		^
		clock off, System clock= 24 MHz, All	_	3.6		mA
		peripherals enabled				
		V _{DD} = V _{DDA} = 3.3 V, HXTAL = 8 MHz, CPU		0.4		^
		clock off, System clock = 24 MHz, All	_	2.4		mA
		peripherals disabled				
		$V_{DD} = V_{DDA} = 3.3 \text{ V}, \text{ HXTAL} = 8 \text{ MHz}, \text{CPU}$		0.0		^
		clock off, System clock = 16 MHz, All		3.0		mA
		peripherals enabled				
		V _{DD} = V _{DDA} = 3.3 V, HXTAL = 8 MHz, CPU		0.4		
		clock off, System clock = 16 MHz, All	_	2.1		mA
		peripherals disabled				

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
,		V _{DD} = V _{DDA} = 3.3 V, HXTAL = 8 MHz, CPU		- 71-		
		clock off, System clock = 8 MHz, All	_	2.3		mA
		peripherals enabled		2.0		'''' \
		V _{DD} = V _{DDA} = 3.3 V, HXTAL = 8 MHz, CPU				
		clock off, System clock = 8 MHz, All		1.9		mA
		peripherals disabled		1.9		IIIA
		$V_{DD} = V_{DDA} = 3.3 \text{ V, HXTAL} = 8 \text{ MHz, CPU}$				
		clock off, System clock = 4 MHz, All		0.7	_	mA
		peripherals enabled		0.7		''''
		V _{DD} = V _{DDA} = 3.3 V, HXTAL = 8 MHz, CPU				
		clock off, System clock = 4 MHz, All	_	0.5		mA
		peripherals disabled		0.0		''''
		V _{DD} = V _{DDA} = 3.3 V, HXTAL = 8 MHz, CPU				
		clock off, System clock = 2 MHz, All		0.5		mA
		peripherals enabled		0.0		1117
		V _{DD} = V _{DDA} = 3.3 V, HXTAL = 8 MHz, CPU				
		clock off, System clock = 2 MHz, All		0.4		mA
		peripherals disabled		0.1		''''
		V _{DD} = V _{DDA} = 3.3 V, LDO in run mode, IRC40K off, RTC off, All GPIOs analog		25.5	100	μΑ
	Supply current	mode		20.0	100	μΛ
	(Deep-sleep	$V_{DD} = V_{DDA} = 3.3 \text{ V, LDO in low power}$				
	mode)	mode, IRC40K off, RTC off, All GPIOs		12.3	60	μΑ
		analog mode		12.0		"'
		V _{DD} = V _{DDA} = 3.3 V, LXTAL off, IRC40K on,				
	Supply current (Standby mode)	RTC on	_	4.3	10	μΑ
		V _{DD} = V _{DDA} = 3.3 V, LXTAL off, IRC40K on,				
		RTC off	_	4.1	10	μΑ
		$V_{DD} = V_{DDA} = 3.3 \text{ V, LXTAL off, IRC40K off,}$				
		$RTC ext{ off, } V_{DDA} ext{ Monitor on}$	_	3.6	10	μΑ
		V _{DD} = V _{DDA} = 3.3 V, LXTAL off, IRC40K off,				
		RTC off, V _{DDA} Monitor off	_	2.1	5	μΑ
		$V_{DD} = V_{DDA} = 3.6 \text{ V, LXTAL on with external}$				
			_	1.43	_	μΑ
	LXTAL+RTC	crystal, RTC on, Higher driving			6 —	μA
ILXTAL+RTC		V _{DD} = V _{DDA} = 3.3 V, LXTAL on with external	— 1. II	1.36		
		crystal, RTC on, Higher driving				
		V _{DD} = V _{DDA} = 2.5 V, LXTAL on with external		1.23	_	μΑ
		crystal, RTC on, Higher driving				
		V _{DD} = V _{DDA} = 1.8 V, LXTAL on with external	_	1.15	_	μΑ
		crystal, RTC on, Higher driving	— 1.13			
		V _{DD} = V _{DDA} = 3.6 V, LXTAL on with external			_	μΑ
		crystal, RTC on, Medium High driving				
		V _{DD} = V _{DDA} = 3.3 V, LXTAL on with external	_	1.06	_	μΑ
	I	crystal, RTC on, Medium High driving				

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		V _{DD} = V _{DDA} = 2.5 V, LXTAL on with external crystal, RTC on, Medium High driving	_	0.95	_	μΑ
		V _{DD} = V _{DDA} = 1.8 V, LXTAL on with external crystal, RTC on, Medium High driving	_	0.86	_	μΑ
		V _{DD} = V _{DDA} = 3.6 V, LXTAL on with external crystal, RTC on, Medium Low driving		0.84	_	μА
		V _{DD} = V _{DDA} = 3.3 V, LXTAL on with external crystal, RTC on, Medium Low driving		0.76	_	μΑ
		V _{DD} = V _{DDA} = 2.5 V, LXTAL on with external crystal, RTC on, Medium Low driving	1	0.64	_	μΑ
		$V_{DD} = V_{DDA} = 1.8 \text{ V}$, LXTAL on with external crystal, RTC on, Medium Low driving		0.56		μΑ
		$V_{DD} = V_{DDA} = 3.6 \text{ V, LXTAL on with external}$ crystal, RTC on, Low driving		0.74		μΑ
		$V_{DD} = V_{DDA} = 3.3 \text{ V, LXTAL on with external}$ crystal, RTC on, Low driving		0.67		μΑ
		V _{DD} = V _{DDA} = 2.5 V, LXTAL on with external crystal, RTC on, Low driving		0.56	_	μΑ
		$V_{DD} = V_{DDA} = 1.8 \text{ V, LXTAL on with external}$ crystal, RTC on, Low driving		0.47		μΑ

- (1). Based on characterization, not tested in production.
- (2). When System Clock is less than 4 MHz, an external source is used, and the HXTAL bypass function is needed, no PLL.
- (3). When System Clock is greater than 8 MHz, a crystal 8 MHz is used, and the HXTAL bypass function is closed, using PLL.
- (4). When analog peripheral blocks such as ADCs, HXTAL, LXTAL, IRC8M, or IRC40K are ON, an additional power consumption should be considered.

Figure 4-2. Typical supply current consumption in Run mode

Figure 4-3. Typical supply current consumption in Sleep mode

Table 4-8. Peripheral current consumption characteristics⁽¹⁾

Peripherials ⁽⁴⁾		Typical consumption at $T_A = 25^{\circ}C$ (TYP)				
4 DD 4	PMU	1.44	mΛ			
APB1	I2C1	1.38	mA			

Peripherials ⁽⁴⁾		Typical consumption at $T_A = 25^{\circ}C$	Unit
I2C0 USART1		1.38	
		1.34	
	SPI1	1.37	
	WWDGT	1.32	
	TIMER13	1.36	
	TIMER5	0.17	
	TIMER2	0.23	
	DBGMCU	1.3	
	TIMER16	1.42	
	TIMER15	1.42	
	TIMER14	1.49	
APB2	USART0	1.63	
	SPI0	1.38	
	TIMER0	1.68	
	ADC ⁽²⁾	0.95	
	CFG & CMP ⁽³⁾	1.27	
	GPIOF	1.31	
	GPIOC	1.31	
AHB	GPIOB	1.34	
AHB	GPIOA	1.34	
	CRC	0.16	
	DMA	0.15	

^{(1).} Based on characterization, not tested in production.

4.4 EMC characteristics

EMS (electromagnetic susceptibility) includes ESD (Electrostatic discharge, positive and negative) and FTB (Burst of Fast Transient voltage, positive and negative) testing result is given in *Table 4-9. EMS characteristics*, based on the EMS levels and classes compliant with IEC 61000 series standard.

Table 4-9. EMS characteristics(1)

Symbol	Parameter	Conditions	Level/Class	
V _{ESD}	Voltage applied to all device pins to induce a functional disturbance	$V_{DD} = 3.3 \text{ V, } T_{A} = 25 \text{ °C,}$ $LQFP48, f_{HCLK} = 72 \text{ MHz}$ $conforms \text{ to IEC } 61000\text{-}4\text{-}2$	3A	
V _{FTB}	Fast transient voltage burst applied to induce a functional disturbance through	V _{DD} = 3.3 V, T _A = 25 °C, LQFP48, f _{HCLK} = 72 MHz	4A	

^{(2).} $f_{ADCCLK} = IRC28M$, ADCON bit is set to 1.

^{(3).} CMP enabled by setting CMPEN bit in CMP_CS, CMP mode is set to High Speed.

^{(4).} If there is no other description, then VDD = VDDA = 3.3 V, HXTAL = 8 MHz, system clock = f_{HCLK} = 72 MHz, $f_{APB1} = f_{HCLK}/2$, $f_{APB2} = f_{HCLK}$, $f_{ADCCLK} = f_{APB2}/2$.

Symbol	Parameter	Conditions	Level/Class
	100 pF on V _{DD} and V _{SS} pins	conforms to IEC 61000-4-4	

^{(1).} Based on characterization, not tested in production.

4.5 Power supply supervisor characteristics

Table 4-10. Power supply supervisor characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		LVDT[2:0] = 000, rising edge	_	2.11	_	V
		LVDT[2:0] = 000, falling edge	_	2.01	_	V
		LVDT[2:0] = 001, rising edge	_	2.25	_	V
		LVDT[2:0] = 001, falling edge	_	2.16	_	V
		LVDT[2:0] = 010, rising edge		2.39	_	V
	Low Voltage Detector Threshold	LVDT[2:0] = 010, falling edge	_	2.29	_	V
		LVDT[2:0] = 011, rising edge	_	2.52	_	V
$V_{LVD}^{(1)}$		LVDT[2:0] = 011, falling edge	_	2.43	_	V
V LVD(**)		LVDT[2:0] = 100, rising edge	_	2.66	_	V
		LVDT[2:0] = 100, falling edge	_	2.57	_	V
		LVDT[2:0] = 101, rising edge	_	2.80	_	٧
		LVDT[2:0] = 101, falling edge	_	2.71	_	V
		LVDT[2:0] = 110, rising edge	_	2.95	_	V
		LVDT[2:0] = 110, falling edge	_	2.84	_	V
		LVDT[2:0] = 111, rising edge	_	3.08	_	V
		LVDT[2:0] = 111, falling edge	_	2.98	_	V
V _{LVDhyst} ⁽²⁾	LVD hysteresis	_	_	100	_	mV
V _{POR} ⁽¹⁾	Power on reset threshold		_	1.71	_	V
V _{PDR} ⁽¹⁾	Power down reset threshold	_	_	1.67	_	V
V _{PDRhyst} ⁽²⁾	PDR hysteresis		_	40	_	mV
trsttempo ⁽²⁾	Reset temporization		_	2		ms

^{(1).} Based on characterization, not tested in production.

^{(2).} Guaranteed by design, not tested in production.

4.6 Electrical sensitivity

The device is strained in order to determine its performance in terms of electrical sensitivity. Electrostatic discharges (ESD) are applied directly to the pins of the sample. Static latch-up (LU) test is based on the two measurement methods.

Table 4-11. ESD characteristics(1)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V	Electrostatic discharge	T _A = 25 °C;	_		6000	V
VESD(HBM)	voltage (human body model)	JESD22-A114		_		V
V	Electrostatic discharge	T _A = 25 °C;	_	_	2000	V
voltage (charge device mo	voltage (charge device model)	JESD22-C101				V

^{(1).} Based on characterization, not tested in production.

Table 4-12. Static latch-up characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	I-test	T _A = 25 °C;		_	±200	mA
LU	V _{supply} over voltage	JESD78	_	_	5.4	V

^{(1).} Based on characterization, not tested in production.

4.7 External clock characteristics

Table 4-13. High speed external clock (HXTAL) generated from a crystal/ceramic characteristics

Symbol	Parameter Conditions		Min	Тур	Max	Unit
f _{HXTAL} ⁽¹⁾	Crystal or ceramic frequency V _{DD} = 3.3 V		4	8	32	MHz
R _F ⁽²⁾	Feedback resistor V _{DD} = 3.3 V -			400	_	kΩ
	Recommended matching		_			
C _{HXTAL} ⁽²⁾ (3)	capacitance on OSCIN and	_		20	30	pF
	OSCOUT					
Ducy _(HXTAL) ⁽²⁾	Crystal or ceramic duty cycle		30	50	70	%
IDDHXTAL ⁽¹⁾	Crystal or ceramic operating	V _{DD} = 3.3 V, T _A = 25 °C		1.2		mA
IDDHXTAL\ /	current	VDD = 3.3 V, TA = 25 C		1.2		IIIA
tsuhxtal ⁽¹⁾	Crystal or ceramic startup time V _{DD} = 3.3 V, T _A = 25 °C			1.8	_	ms

^{(1).} Based on characterization, not tested in production.

Table 4-14. High speed external user clock characteristics (HXTAL in bypass mode)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HXTAL_ext} (1)	External clock source or oscillator	$V_{DD} = 3.3 \text{ V}$	1	8	50	MHz

^{(2).} Guaranteed by design, not tested in production.

^{(3).} Chxtal1 = Chxtal2 = 2*(CLOAD - Cs), For Chxtal1 and Chxtal2, it is recommended matching capacitance on OSCIN and OSCOUT. For CLOAD, it is crystal/ceramic load capacitance, provided by the crystal or ceramic manufacturer. For Cs, it is PCB and MCU pin stray capacitance.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	frequency					
V _{HXTALH} ⁽²⁾	OSCIN input pin high level voltage	Vpp = 3.3 V	$0.7~V_{DD}$	_	V_{DD}	V
V _{HXTALL} ⁽²⁾	OSCIN input pin low level voltage	V DD = 3.3 V	Vss	_	0.3 V _{DD}	V
t _{H/L(HXTAL)} (2)	OSCIN high or low time	_	5	_	_	no
t _{R/F(HXTAL)} (2)	OSCIN rise or fall time		_	_	10	ns
C _{IN} ⁽¹⁾	OSCIN input capacitance —		_	5	_	pF
Ducy _(HXTAL) (2)	Duty cycle		30	50	70	%

^{(1).} Based on characterization, not tested in production.

Table 4-15. Low speed external clock (LXTAL) generated from a crystal/ceramic characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{LXTAL} (1)	Crystal or ceramic frequency	$V_{DD} = 3.3 \text{ V}$		32.768	-	kHz
C _{LXTAL} ⁽²⁾ (3)	Recommended matching					
	capacitance on OSC32IN	_	_	10	_	pF
	and OSC32OUT					
Ducy _(LXTAL) ⁽²⁾	Crystal or ceramic duty cycle	_	30	_	70	%
		LXTALDRI[1:0] = 00	_	0.5	_	
. (4)	Crystal or ceramic operating	LXTALDRI[1:0] = 01	_	0.6	_	
I _{DDLXTAL} (1)	current	LXTALDRI[1:0] = 10		1.0		μΑ
		LXTALDRI[1:0] = 11	1	1.2		
tsulxtal ^{(1) (4)}	Crystal or ceramic startup	V _{DD} = 3.3 V	_	1.8	_	s
	time			1.0		

^{(1).} Based on characterization, not tested in production.

Table 4-16. Low speed external user clock characteristics (LXTAL in bypass mode)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
fLXTAL_ext	External clock source or oscillator frequency	V _{DD} = 3.3 V	_	32.768	1000	kHz
VLXTALH ⁽¹⁾	OSC32IN input pin high level voltage	V _{DD} = 3.3 V	0.7 V _{DD}	_	V_{DD}	V
VLXTALL ⁽¹⁾	OSC32IN input pin low level voltage		Vss	_	0.3 V _{DD}	V
t _{H/L(LXTAL)} (1)	OSC32IN high or low time	_	450	_	_	ns
t _{R/F(LXTAL)} (1)	OSC32IN rise or fall time		_	_	50	115
C _{IN} ⁽¹⁾	OSC32IN input capacitance		_	5		pF
Ducy _(LXTAL) (1)	Duty cycle	_	30	50	70	%

^{(1).} Guaranteed by design, not tested in production.

^{(2).} Guaranteed by design, not tested in production.

^{(2).} Guaranteed by design, not tested in production.

^{(3).} $C_{LXTAL1} = C_{LXTAL2} = 2*(C_{LOAD} - C_S)$, For C_{LXTAL1} and C_{LXTAL2} , it is recommended matching capacitance on OSC32IN and OSC32OUT. For C_{LOAD} , it is crystal/ceramic load capacitance, provided by the crystal or ceramic manufacturer. For C_S , it is PCB and MCU pin stray capacitance.

^{(4).} tsulxtal is the startup time measured from the moment it is enabled (by software) to the 32.768 kHz oscillator stabilization flags is SET. This value varies significantly with the crystal manufacturer.

4.8 Internal clock characteristics

Table 4-17. High speed internal clock (IRC8M) characteristics(1)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
firc8M	High Speed Internal Oscillator (IRC8M) frequency	$V_{DD} = V_{DDA} = 3.3 \text{ V}$	_	8	_	MHz
	IRC8M oscillator	$V_{DD} = V_{DDA} = 3.3 \text{ V},$ $T_{A} = -40 \text{ °C} \sim +85 \text{ °C}$	-4.0	_	+5.0	%
	Frequency accuracy, Factory-trimmed	$V_{DD} = V_{DDA} = 3.3 \text{ V},$ $T_A = 0 \text{ °C } \sim +85 \text{ °C}$	-2.0	_	+2.0	%
ACC _{IRC8M} ⁽¹⁾		$V_{DD} = V_{DDA} = 3.3 \text{ V},$ $T_A = 25^{\circ}\text{C}$	-1.0	_	+1.0	%
	IRC8M oscillator Frequency accuracy, User trimming step	l	_	0.5	_	%
Ducyirc8m ⁽²⁾	IRC8M oscillator duty cycle	$V_{DD} = V_{DDA} = 3.3 \text{ V},$ $f_{IRC8M} = 8 \text{ MHz}$	45	50	55	%
IDDAIRC8M ⁽¹⁾	IRC8M oscillator operating current	$V_{DD} = V_{DDA} = 3.3 \text{ V},$ $f_{IRC8M} = 8 \text{ MHz}$	_	55	_	μΑ
t _{SUIRC8M} ⁽¹⁾	IRC8M oscillator startup time	$V_{DD} = V_{DDA} = 3.3 \text{ V},$ $f_{IRC8M} = 8 \text{ MHz}$	_	1.5	_	μs

^{(1).} Based on characterization, not tested in production.

Table 4-18. Low speed internal clock (IRC40K) characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
firc40K ⁽¹⁾	Low Speed Internal oscillator	$V_{DD} = V_{DDA} = 3.3 V$	30	40	60	kHz
	(IRC40K) frequency	$T_A = -40 ^{\circ}\text{C} \sim +85 ^{\circ}\text{C}$	30	40	60	KI IZ
(2)	IRC40K oscillator operating	$V_{DD} = V_{DDA} = 3.3 \text{ V},$		0.56	_	
IDDAIRC40K ⁽²⁾	current	T _A = 25 °C	_			μΑ
tsuirc40K ⁽²⁾	IRC40K oscillator startup	$V_{DD} = V_{DDA} = 3.3 \text{ V},$		22		
	time	$T_A = 25$ °C		33		μs

^{(1).} Guaranteed by design, not tested in production.

Table 4-19. High speed internal clock (IRC28M) characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{IRC28M}	High Speed Internal Oscillator (IRC28M) frequency	$V_{DD} = V_{DDA} = 3.3 \text{ V}$	l	28		MHz
400 (1)	IRC28M oscillator Frequency	$V_{DD} = V_{DDA} = 3.3 \text{ V},$ $T_A = -40 \text{ °C} \sim +85 \text{ °C}$	-4.0		+5.0	%
ACCIRC28M ⁽¹⁾	accuracy, Factory-trimmed	$V_{DD} = V_{DDA} = 3.3 \text{ V},$ $T_A = 0 \text{ °C} \sim +85 \text{ °C}$	-3.0	_	+3.0	%

^{(2).} Guaranteed by design, not tested in production.

^{(2).} Based on characterization, not tested in production.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		$V_{DD} = V_{DDA} = 3.3 \text{ V},$ $T_A = 25 \text{ °C}$	-2.0	l	+2.0	%
	IRC28M oscillator Frequency accuracy, User trimming step	_	_	0.5	_	%
D _{IRC28M} ⁽²⁾	IRC28M oscillator duty cycle	$V_{DD} = V_{DDA} = 3.3 \text{ V},$ $f_{IRC28M} = 28 \text{ MHz}$	45	50	55	%
Iddairc28m ⁽¹⁾	IRC28M oscillator operating current	$V_{DD} = V_{DDA} = 3.3 \text{ V},$ $f_{IRC28M} = 28 \text{ MHz}$		121	_	μΑ
tsuirc28M ⁽¹	IRC28M oscillator startup time	$V_{DD} = V_{DDA} = 3.3 \text{ V},$ $f_{IRC28M} = 28 \text{ MHz}$		1.5	_	μs

^{(1).} Based on characterization, not tested in production.

4.9 PLL characteristics

Table 4-20. PLL characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{PLLIN} ⁽¹⁾	PLL input clock frequency	_	1	_	25	MHz
f _{PLLOUT}	PLL output clock frequency	_	16	_	72	MHz
4	PLL VCO output clock	_			72	MHz
fvco	frequency		_	_	12	IVITZ
tLOCK	PLL lock time	-	_	_	300	μs
I _{DD} ⁽²⁾	Current consumption on	VCO freq = 72 MHz	-	130	_	
	V_{DD}	VCO freq = 72 MHZ				μΑ
I _{DDA} ⁽¹⁾	Current consumption on			260		
IDDA	V_{DDA}	_	_	200	_	μΑ
	Cycle to cycle Jitter					
littor- (3)	(rms)	Custom alask		50		20
Jitter _{PLL} ⁽³⁾ –	Cycle to cycle Jitter	- System clock		500		ps
	(peak to peak)			500		

^{(1).} Based on characterization, not tested in production.

4.10 Memory characteristics

Table 4-21. Flash memory characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
PEcyc ⁽¹⁾	Number of guaranteed program /erase cycles before failure(Endurance)	T _A = -40 °C ~ +85 °C	100	_	_	kcycles

^{(2).} Guaranteed by design, not tested in production.

^{(2).} Guaranteed by design, not tested in production.

^{(3).} Value given with main PLL running.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{RET} ⁽¹⁾	Data retention time	10k cycles at T _A = 85 °C	10	_	_	years
t _{PROG} (2)	Word ⁽³⁾ programming time	T _A = -40 °C ~ +85 °C	37	_	44	μs
t _{ERASE} (2)	Page erase time	T _A = -40 °C ~ +85 °C	3.2	_	4	ms
tmerase(2)	Mass erase time	T _A = -40 °C ~ +85 °C	8	_	10	ms

- (1). Based on characterization, not tested in production.
- (2). Guaranteed by design, not tested in production.
- (3). Word is 32bits or 64bits depend on PGW bit in FMC_WS register.

4.11 NRST pin characteristics

Table 4-22. NRST pin characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
VIL(NRST) (1)	NRST Input low level voltage		-0.5		0.71	.,
V _{IH(NRST)} (1)	NRST Input high level voltage	$V_{DD} = V_{DDA} = 1.8 \text{ V}$	1.08	-	V _{DD} + 0.5	V
V _{hyst}	Schmidt trigger Voltage hysteresis		_	370	_	mV
V _{IL(NRST)} (1)	NRST Input low level voltage		-0.5	_	1.05	
V _{IH(NRST)} (1)	NRST Input high level voltage	$V_{DD} = V_{DDA} = 2.5 \text{ V}$	1.42		V _{DD} + 0.5	V
V _{hyst}	Schmidt trigger Voltage hysteresis		_	370		mV
V _{IL(NRST)} (1)	NRST Input low level voltage		-0.5		1.4	
V _{IH(NRST)} (1)	NRST Input high level voltage	$V_{DD} = V_{DDA} = 3.3 \text{ V}$	1.8		V _{DD} + 0.5	V
V _{hyst}	Schmidt trigger Voltage hysteresis		_	400	_	mV
V _{IL(NRST)} (1)	NRST Input low level voltage		-0.5		1.53	
V _{IH(NRST)} (1)	NRST Input high level voltage	$V_{DD} = V_{DDA} = 3.6 \text{ V}$	1.95		V _{DD} + 0.5	V
V _{hyst}	Schmidt trigger Voltage hysteresis		_	420	_	mV
R _{pu} ⁽²⁾	Pull-up equivalent resistor	_	_	40.3	_	kΩ

- (1). Based on characterization, not tested in production.
- (2). Guaranteed by design, not tested in production.

Figure 4-4. Recommended external NRST pin circuit

4.12 **GPIO** characteristics

Table 4-23. I/O port DC characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL} ⁽¹⁾	Standard IO Low level input voltage	1.8 V ≤ V _{DD} = V _{DDA} ≤ 3.6 V	_	_	0.3 V _{DD}	٧
VIL	5V-tolerant IO Low level input voltage	1.8 V ≤ V _{DD} = V _{DDA} ≤ 3.6 V	_	_	0.3 V _{DD}	V
V _{IH} ⁽¹⁾	input voltage	$1.8 \text{ V} \le \text{V}_{DD} = \text{V}_{DDA} \le 3.6 \text{ V}$	0.7 V _{DD}		_	V
VIH	5V-tolerant IO High level input voltage	$1.8 \text{ V} \le \text{V}_{DD} = \text{V}_{DDA} \le 3.6 \text{ V}$	0.7 V _{DD}		_	V
	Low level output voltage	$V_{DD} = 1.8 \text{ V}$		_	0.20	
$V_{OL}^{(1)}$	for an IO Pin	$V_{DD} = 2.5 \text{ V}$	_	_	0.20	V
VOL	(I _{IO} = +8 mA)	$V_{DD} = 3.3 \text{ V}$	_	_	0.10	V
	(110 = +0 111A)	$V_{DD} = 3.6 \text{ V}$	_	_	0.10	
	Low level output voltage for an IO Pin	$V_{DD} = 1.8 \text{ V}$		_	_	
$V_{OL}^{(1)}$		$V_{DD} = 2.5 \text{ V}$	_	_	0.50	V
VOL		$V_{DD} = 3.3 \text{ V}$	_	_	0.40	V
	(I _{IO} = +20 mA)	$V_{DD} = 3.6 \text{ V}$	_	_	0.40	
	Lligh lovel output voltage	$V_{DD} = 1.8 \text{ V}$	1.50	_	_	
V _{OH} ⁽¹⁾	High level output voltage for an IO Pin	$V_{DD} = 2.5 \text{ V}$	2.30	_	_	V
VOH	(I _{IO} = +8 mA)	$V_{DD} = 3.3 \text{ V}$	3.10	_	_	V
	(110 = +0 111A)	$V_{DD} = 3.6 \text{ V}$	3.40	_	_	
	Lligh lovel output voltage	$V_{DD} = 1.8 \text{ V}$	_	_	_	
V _{OH} ⁽¹⁾	High level output voltage	$V_{DD} = 2.5 \text{ V}$	1.90	_	_	V
V OH'	for an IO Pin (I _{IO} = +20 mA)	$V_{DD} = 3.3 \text{ V}$	2.80	_	_	V
	(110 – +20 1117)	$V_{DD} = 3.6 \text{ V}$	3.10		_	
R _{PU} ⁽²⁾	Internal pull-up resistor	_	_	40	_	kΩ
$R_{PD}^{(2)}$	Internal pull-down resistor	_	_	40	_	kΩ

^{(1).} Based on characterization, not tested in production.

Table 4-24. I/O port AC characteristics(1)(2)

GPIOx_OSPD[1:0] bit value ⁽³⁾	Parameter	Conditions	Max	Unit
CRIOV OSPRO - OSPRVIA OL VO	Maximum	$1.8 \le V_{DD} \le 3.6 \text{ V}, C_L = 10 \text{ pF}$	10	
GPIOx_OSPD0->OSPDy[1:0] = X0 (IO_Speed = 2 MHz)	frequency ⁽⁴⁾	$1.8 \le V_{DD} \le 3.6 \text{ V}, C_L = 30 \text{ pF}$	8	MHz
(10_Speed = 2 Wil 12)	irequericy.	$1.8 \le V_{DD} \le 3.6 \text{ V}, C_L = 50 \text{ pF}$	6	
CDIOV OSDDO - OSDDVIA OL OA	Maximum	$1.8 \le V_{DD} \le 3.6 \text{ V}, C_L = 10 \text{ pF}$	30	
GPIOx_OSPD0->OSPDy[1:0] = 01 (IO_Speed = 10 MHz)	frequency ⁽⁴⁾	$1.8 \le V_{DD} \le 3.6 \text{ V}, C_L = 30 \text{ pF}$	25	MHz
(10_Speed = 10 Wi12)	irequericy.	$1.8 \le V_{DD} \le 3.6 \text{ V}, C_L = 50 \text{ pF}$	15	
GPIOx_OSPD0->OSPDy[1:0] = 11	Maximum	$1.8 \le V_{DD} \le 3.6 \text{ V}, C_L = 10 \text{ pF}$	60	MHz
(IO_Speed = 50 MHz)	frequency ⁽⁴⁾	$1.8 \le V_{DD} \le 3.6 \text{ V}, C_L = 30 \text{ pF}$	50	IVIITZ

^{(2).} Guaranteed by design, not tested in production.

GPIOx_OSPD[1:0] bit value ⁽³⁾	Parameter	Conditions	Max	Unit
		$1.8 \le V_{DD} \le 3.6 \text{ V}, C_L = 50 \text{ pF}$	40	

- (1). Based on characterization, not tested in production.
- (2). Unless otherwise specified, all test results given for T_A = 25 $\,^{\circ}$ C.
- (3). The I/O speed is configured using the GPIOx_OSPD0->OSPDy [1:0] bits. Refer to the GD32E231 user manual which is selected to set the GPIO port output speed.
- (4) The maximum frequency is defined in Figure 4-5, and maximum frequency cannot exceed 72 MHz.

Figure 4-5. I/O port AC characteristics definition

4.13 ADC characteristics

Table 4-25. ADC characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$V_{DDA}^{(1)}$	Operating voltage	1	2.4	3.3	3.6	V
V _{IN} ⁽¹⁾	ADC input voltage range	_	0	_	V_{DDA}	V
f _{ADC} ⁽¹⁾	ADC clock	_	0.1	_	28	MHz
		12-bit	0.007	_	2	
f _S ⁽¹⁾	Compling rate	10-bit	0.008	_	2.3	MSPS
IS.,	Sampling rate	8-bit	0.01	_	2.8	MSPS
		6-bit	0.011	_	3.5	
V _{AIN} ⁽¹⁾	Analog input voltage	10 external; 2 internal	0	_	V_{DDA}	V
R _{AIN} ⁽²⁾	External input impedance	See Equation 1	_	_	50.6	kΩ
R _{ADC} ⁽²⁾	Input sampling switch	_			0.5	kΩ
NADC. 7	resistance	1			0.5	K22
C _{ADC} ⁽²⁾	Input sampling	No pin/pad capacitance			4	pF
CADC	capacitance	included			4	рі
t _{CAL} ⁽²⁾	Calibration time	$f_{ADC} = 28 \text{ MHz}$	_	4.68	_	μs
t _s (2)	Sampling time	f _{ADC} = 28 MHz	0.05	_	8.55	μs
	Total conversion	12-bit	-	14	_	
t _{CONV} (2)		10-bit	<u> </u>	12	_	1/ fado
ICONV-7	time(including sampling	8-bit		10		17 TADC
	time)	6-bit	_	8		
tsu ⁽²⁾	Startup time	_	_	_	1	μs

- (1). Based on characterization, not tested in production.
- (2). Guaranteed by design, not tested in production.

$$\textit{Equation 1}: \text{R}_{\text{AIN}} \text{ max formula } R_{AIN} < \frac{T_{\text{S}}}{f_{\text{ADC}}*C_{\text{ADC}}*ln(2^{N+2})} - R_{ADC}$$

The formula above (Equation 1) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).

Table 4-26. ADC R_{AIN} max for $f_{ADC} = 28 \text{ MHz}^{(1)}$

T _s (cycles)	t _s (µs)	R _{AINmax} (kΩ)
1.5	0.05	0.88
7.5	0.27	6.4
13.5	0.48	11.9
28.5	1.02	25.7
41.5	1.48	37.7
55.5	1.98	50.6
71.5	2.55	NA
239.5	8.55	NA

^{(1).} Based on characterization, not tested in production.

4.14 Temperature sensor characteristics

Table 4-27. Temperature sensor characteristics

Symbol	Parameter	Min	Тур	Max	Unit
T _L ⁽¹⁾	VSENSE linearity with temperature		±1.5	I	$^{\circ}$
Avg_Slope ⁽¹⁾	Average slope	_	4.3	_	mV/℃
V ₂₅ ⁽¹⁾	Voltage at 25 °C	_	1.45	_	V
t _{START} (1)	Startup time	_	_	_	μs
t _{S_temp} (2)	ADC sampling time when reading the temperature	_	17.1	_	μs

^{(1).} Based on characterization, not tested in production.

4.15 Comparators characteristics

Table 4-28. CMP characteristics(1)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{DDA}	Operating voltage	_	1.8	3.3	3.6	V
V _{IN}	Input voltage range	_	0	_	V_{DDA}	V
V_{BG}	Scaler input voltage	_	_	1.2	_	V
V _{SC}	Scaler offset voltage	_	_	_	_	mV
		Ultra low power mode	_	0.98	_	μs
	Propagation delay for 200 mv	Low power mode	_	0.25	_	μs
t _D	step with 100 mV overdrive	Medium power mode	_	0.12	_	μs
		High speed power mode	_	33	_	μs

^{(2).} Shortest sampling time can be determined in the application by multiple iterations.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	Dropogation dolay for full	Ultra low power mode	_	_	_	μs
	Propagation delay for full	Low power mode	_	_	_	μs
	range step with 100 mV overdrive	Medium power mode	_	_	_	μs
	overdrive	High speed power mode	_	_	_	ns
	lop Current consumption	Ultra low power mode	_	2.2	_	
l las		Low power mode	_	3.2	_	
מטו	Current consumption	Medium power mode	_	8.1	_	μA
		High speed power mode	_	46.9	_	
V _{offset}	Offset error	_	_	±4	_	mV
		No Hysteresis	_	0	_	
\ \ \/.	Lluctoropia Voltago	Low Hysteresis	_	11	_	m\/
V _{hyst}	Hysteresis Voltage	Medium Hysteresis	_	22	_	mV
		High Hysteresis	_	43	_	

^{(1).} Guaranteed by design, not tested in production.

4.16 Operational amplifier characteristics

Table 4-29. OP-AMP characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{DD}	Operating voltage		2.7	I	3.6	V
V _{CM}	Common mode voltage range		0.2		V _{DD} - 0.2	V
I _{DD}	Operating current	Io = 0	_	600	_	μA
Load	Drive current	_	_	_	_	mA
Vos	Offset voltage	_	_	1	3.5	mV
Ts	Settling time	Gain = 1, input 2V step Settling to 0.1%	_	1.2	_	μs
SR	Slew rate	Gain = 1	_	5	_	V/µs
CMRR	Common mode rejection ratio		58	72	_	dB
PSRR	Power supply rejection ratio	_	65	80	_	dB
GBW	Gain bandwidth	$R_L = 10 \text{ k}\Omega$	_	6	_	MHz
A0	Open-loop gain	$R_L = 10 \text{ k}\Omega$	85	95	_	dB
Vout	Output swing from rail	R _L = 10 kΩ	_	200	_	mV
V _{noise}	Input voltage noise	F = 0.1 Hz to 10 Hz	_	8	_	μVpp
en	Input voltage noise density	F = 10 kHz	_	24		nV/√Hz

4.17 I2C characteristics

Table 4-30. I2C characteristics(1)(2)(3)

Symbol	Parameter	Parameter Conditi mode mode		Fast mode		Fast mode plus		Unit	
		Olis	Min	Max	Min	Max	Min	Max	
tscL(H)	SCL clock high time	_	4.0	_	0.6	_	0.2	_	μs
tscl(L)	SCL clock low time	_	4.7	_	1.3	_	0.5	_	μs
t _{su(SDA)}	SDA setup time	1	2	ı	0.8	١	0.1		μs
t _{h(SDA)}	SDA data hold time	_	250		250		130		ns
t _r (SDA/SCL)	SDA and SCL rise time	_	_	1000	20	300	_	120	ns
t _{f(SDA/SCL)}	SDA and SCL fall time	_	4	300	4	300	4	120	ns
t _{h(STA)}	Start condition hold time	_	4.0	_	0.6	_	0.26	_	μs

^{(1).} Guaranteed by design, not tested in production.

4.18 SPI characteristics

Table 4-31. Standard SPI characteristics(1)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{SCK}	f _{SCK} SCK clock frequency —		1	_	18	MHz
t _{SCK(H)} SCK clock high time		Master mode, f _{PCLKx} = 72 MHz, presc = 4	25	27	29	ns
tsck(L)	SCK clock low time	Master mode, $f_{PCLKx} = 72 \text{ MHz}$, $presc = 4$	25	27	29	ns
		SPI master mode				
tv(MO)	Data output valid time	_	_	7.5	_	ns
t _{H(MO)}	Data output hold time	_	_	6	_	ns
t _{SU(MI)}	Data input setup time	_	1	_	_	ns
t _{H(MI)}	Data input hold time	_	0	_	_	ns
		SPI slave mode				
t _{SU(NSS)}	NSS enable setup time	_	0	_	_	ns
t _{H(NSS)}	NSS enable hold time	_	1	_	_	ns
t _{A(SO)}	Data output access time	_	_	7	_	ns

^{(2).} To ensure the standard mode I2C frequency, f_{PCLK1} must be at least 2 MHz, To ensure the fast mode I2C frequency, f_{PCLK1} must be at least 4 MHz. To ensure the fast mode plus I2C frequency, f_{PCLK1} must be at least a multiple of 10 MHz.

^{(3).} The device should provide a data hold time of 300 ns at least in order to bridge the undefined region of the falling edge of SCL.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{DIS(SO)}	Data output disable time	_	_	8	_	ns
tv(so)	Data output valid time	_	_	10	_	ns
t _{H(SO)}	Data output hold time	_	_	10	_	ns
t _{SU(SI)}	Data input setup time	_	0	_	_	ns
t _{H(SI)}	Data input hold time	_	1	_	_	ns

^{(1).} Based on characterization, not tested in production.

4.19 I2S characteristics

Table 4-32. I2S characteristics(1)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		Master mode (data: 16 bits,		3.12		
f _{CK}	Clock frequency	Audio frequency = 96 kHz)		3.12		MHz
	Slave mode		_	10	_	
t _H	Clock high time		_	160	_	ns
t∟	Clock low time	_	_	160	_	ns
t _{V(WS)}	WS valid time	Master mode	_	3	_	ns
t _{H(WS)}	WS hold time	Master mode	_	3	_	ns
t _{SU(WS)}	WS setup time	Slave mode	0	_	_	ns
t _{H(WS)}	WS hold time	Slave mode	3	_	_	ns
D. O.	I2S slave input clock duty	01		50		0/
DuCy _(sck)	cycle	Slave mode		50	_	%
tsu(sd_mr)	Data input setup time	Master mode	0	_	_	ns
tsu(SD_SR)	Data input setup time	Slave mode	0	_	_	ns
tH(SD_MR)	Data input hold time	Master receiver	2	_	_	ns
tH(SD_SR)	Data input hold time	Slave receiver	2	_	_	ns
1 (OD OT)	Data autout valid time	Slave transmitter		40		
tv(SD_ST)	Data output valid time	(after enable edge)	_	12	_	ns
4. (00. 07)	Data autout hald time	Slave transmitter		40		
th(SD_ST)	Data output hold time	(after enable edge)		10		ns
tv(SD_MT) Data output valid time		Master transmitter		10		no
		(after enable edge)		10		ns
th/CD MT	Data output hold time	Master transmitter		7		
th(SD_MT)	Data output hold time	(after enable edge)		′	_	ns

^{(1) .}Based on characterization, not tested in production.

4.20 USART characteristics

Table 4-33. USART characteristics(1)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
fsck	SCK clock frequency	f _{PCLKx} = 72 MHz	_	_	36	MHz
tsck(H)	SCK clock high time	f _{PCLKx} = 72 MHz	13.5	_	_	ns
tsck(L)	SCK clock low time	f _{PCLKx} = 72 MHz	13.5	_	_	ns

^{(1) .}Based on characterization, not tested in production.

4.21 TIMER characteristics

Table 4-34. TIMER characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Max	Unit	
+	Timer resolution time	_	1	_	ttimerxclk	
t _{res}	Timer resolution time	ftimerxclk = 72 MHz	13.9	_	ns	
4	Timer external clock	_	0	ftimerxclk/2	MHz	
f _{EXT}	frequency	ftimerxclk = 72 MHz	0	36	MHz	
RES	Timer resolution	_	_	16	bit	
	16-bit counter clock	_	1	65536	timerxclk	
tCOUNTER	period when internal	ftimerxclk = 72 MHz	0.0400	04.0		
	clock is selected	HIMERXCLK = 72 IVIDZ	0.0139	910	μs	
t	Maximum possible count	_		65536 × 65536	ttimerxclk	
t _{MAX_} COUNT	iviaximum possible count	ftimerxclk = 72 MHz	_	59.6	S	

^{(1).} Guaranteed by design, not tested in production.

4.22 WDGT characteristics

Table 4-35. FWDGT min/max timeout period at 40 kHz (IRC40K)

Prescaler divider	PR[2:0] bits	Min timeout RLD[11:0] = 0x000	Max timeout RLD[11:0] = 0xFFF	Unit
1/4	000	0.1	409.6	
1/8	001	0.2	819.2	
1/16	010	0.4	1638.4	
1/32	011	0.8	3276.8	ms
1/64	100	1.6	6553.6	
1/128	101	3.2	13107.2	
1/256	110 or 111	6.4	26214.4	

^{(1).} Guaranteed by design, not tested in production.

Table 4-36. WWDGT min-max timeout value at 72 MHz (fpci k1)

Table 4-30. WWDGT Hill-max timeout value at 72 Hill2 (IPCLKI)								
Prescaler divider	PSC[2:0]	Min timeout value CNT[6:0] = 0x40	Unit	Max timeout value CNT[6:0] = 0x7F	Unit			
1/1	00	56.9		3.64				
1/2	01	113.8	μs	7.28	ms			
1/4	10	227.6		14.56				

Prescaler divider	PSC[2:0]	Min timeout value CNT[6:0] = 0x40	Unit	Max timeout value CNT[6:0] = 0x7F	Unit	
1/8	11	455.2		29.12		

^{(1).} Guaranteed by design, not tested in production.

4.23 Parameter conditions

Unless otherwise specified, all values given for V_{DD} = V_{DDA} = 3.3 V, T_A = 25 $\,\,^{\circ}\!\mathrm{C}$.

5 Package information

5.1 LQFP48 package outline dimensions

Figure 5-1. LQFP48 package outline

Table 5-1. LQFP48 package dimensions

Symbol	Min	Тур	Max
А	_	_	1.60
A1	0.05	_	0.15
A2	1.35	1.40	1.45
А3	0.59	0.64	0.69
b	0.18	_	0.26
b1	0.17	0.20	0.23
С	0.13	_	0.17
c1	0.12	0.13	0.14
D	8.80	9.00	9.20
D1	6.90	7.00	7.10
E	8.80	9.00	9.20
eB	8.10	_	8.25
E1	6.90	7.00	7.10
е		0.50 BSC	
L	0.45	_	0.75
L1		1.00 REF	
θ	0	_	7°

(Original dimensions are in millimeters)

6 Ordering information

Table 6-1. Part ordering code for GD32E231CxT6 devices

Ordering code	Flash (KB)	Package	Package type	Temperature operating range
GD32E231C4T6	16	LQFP48	Green	Industrial -40 °C to +85 °C
GD32E231C6T6	32	LQFP48	Green	Industrial -40 °C to +85 °C
GD32E231C8T6	64	LQFP48	Green	Industrial -40 °C to +85 °C

7 Revision history

Table 7-1. Revision history

Revision No.	Description	Date
1.0	Initial Release	Feb15, 2019
	1. Modify PA9 and PB2 alternate functions in chapter2.6.2.	
	2. Add USART1(PA2 and PA3) to reprogram the flash memory	
	in chapter3.4.	
1.1	Modify description of debug mode.	Oct.8, 2019
1.1	4. Modify block diagram.	Oct.6, 2019
	5. Modify the value of POR and PDR in chapter3.3.	
	6. Update electrical characteristics, package information,	
	ordering information and logo.	

Important Notice

This document is the property of GigaDevice Semiconductor Inc. and its subsidiaries (the "Company"). This document, including any product of the Company described in this document (the "Product"), is owned by the Company under the intellectual property laws and treaties of the People's Republic of China and other jurisdictions worldwide. The Company reserves all rights under such laws and treaties and does not grant any license under its patents, copyrights, trademarks, or other intellectual property rights. The names and brands of third party referred thereto (if any) are the property of their respective owner and referred to for identification purposes only.

The Company makes no warranty of any kind, express or implied, with regard to this document or any Product, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The Company does not assume any liability arising out of the application or use of any Product described in this document. Any information provided in this document is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Except for customized products which has been expressly identified in the applicable agreement, the Products are designed, developed, and/or manufactured for ordinary business, industrial, personal, and/or household applications only. The Products are not designed, intended, or authorized for use as components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, atomic energy control instruments, combustion control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or Product could cause personal injury, death, property or environmental damage ("Unintended Uses"). Customers shall take any and all actions to ensure using and selling the Products in accordance with the applicable laws and regulations. The Company is not liable, in whole or in part, and customers shall and hereby do release the Company as well as it's suppliers and/or distributors from any claim, damage, or other liability arising from or related to all Unintended Uses of the Products. Customers shall indemnify and hold the Company as well as it's suppliers and/or distributors harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of the Products.

Information in this document is provided solely in connection with the Products. The Company reserves the right to make changes, corrections, modifications or improvements to this document and Products and services described herein at any time, without notice.

© 2019 GigaDevice - All rights reserved