ПРИЛОЖЕНИЕ А

Министерство науки и образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Московский государственный технический университет имени Н.Э. Баумана

(МГТУ им. Н.Э. Баумана)»

ФАКУЛЬТЕТ	Информатика и системы управления		
КАФЕДРА	Компьютерные системы и сети		
Система мон	Заве	УТВЕРЖДАЮ едующий кафедрой (Индекс) (Индекс) 20 г.	
	Листов 13		
Студент гр. ИУ6-81		А.В. Кирьяненко	
	(Подпись, дата)	(И.О. Фамилия)	
Научный руководитель	(Подпись дата)	А.Ю. Попов (И.О. Фамилия)	

Москва, 2018

СПИСОК ОБОЗНАЧЕНИЙ И СОКРАЩЕНИЙ

МК – микроконтроллер

МКПРСПМ – МК-подсистема мониторинга парковочных мест

СМПМ – система мониторинга парковочных мест

СУБД – система управления базами данных

ОС – операционная система

1. ВВЕДЕНИЕ

Настоящее техническое задание распространяется на разработку «Системы мониторинга парковочных мест» (СМПМ), предназначенной для использования в транспортной инфраструктуре. В данном направлении сейчас активно ведутся разработки. Например, существуют сервисы:

- «Яндекс. Парковки» показывает на карте, свободные парковочные места, и помогает построить удобный маршрут до ближайшего из них.
- «Московский паркинг» приложение содержит базу парковок при торговых центрах, вокзалах и аэропортах, а также платных и бесплатных стоянок Москвы.

Отличительной особенностью разрабатываемой системы является:

- использование беспроводных датчиков облегчает и ускоряет развертывание системы;
- отсутствие необходимости прокладки кабеля позволяет системе легко масштабироваться;
- информация о количестве и расположении свободных мест доступна водителям в режиме реального времени.

2. ОСНОВАНИЯ ДЛЯ РАЗРАБОТКИ

Системы мониторинга парковочных мест разрабатывается в дипломном проекте в соответствии с Учебным планом кафедры ИУ-6 «Компьютерные системы и сети» МГТУ им. Н.Э. Баумана.

3. НАЗНАЧЕНИЕ РАЗРАБОТКИ

Основное назначение «Системы мониторинга парковочных мест» заключается в определении наличия свободных парковочных мест и отображении этих данных пользователям. Данная система позволит пользователям (водителям) в режиме реального времени получать информацию о состоянии парковочных мест.

4. ИСХОДНЫЕ ДАННЫЕ, ЦЕЛИ, ЗАДАЧИ

4.1. Исходные данные

- 4.1.1 Интернет вещей: учебное пособие [текст] / Росляков А.В., Ваняшин С.В., Гребешков А.Ю. Самара: Поволжский государственный университет телекоммуникаций и информатики, 2015 136 с.
- 4.1.2 «Умные» среды, «умные» системы, «умные» производства // серия докладов (зеленых книг) в рамках проекта «Промышленный и технологический форсайт Российской Федерации» Москва, Санкт-Петербург, 2012. 63 с.
- 4.1.3 Открытый студенческий конкурс (хакатон) по-быстрому прототипированию решений Интернета вещей.
- 4.1.4 Рекомендации МСЭ-ТҮ.2060.
- 4.1.5 ГОСТ 25123-82. Машины вычислительные и системы обработки данных. Техническое задание. Порядок построения, изложения и оформления. Переизд. 01.01.94.-М.: Издательство стандартов, 1993. 7с.
- 4.1.6 ГОСТ 19.201-78. ЕСПД. Техническое задание. Требования к содержанию и оформлению. Введ.01.08.82.-М.: Издательство стандартов, 1982. 4с.
- 4.1.7 ГОСТ 19.701-90. Схемы алгоритмов, программ данных и систем. Условные обозначения и правила выполнения. — М.: Издательство стандартов, 1991. — 26 с.

4.2. Цель работы

Создание аппаратно-программного прототипа «Системы мониторинга парковочных мест».

4.3. Решаемые задачи

- 4.3.1. Формулирование и системный анализ требований к частям дипломного проекта.
- 4.3.2. Научно-исследовательская работа в предметной области.
- 4.3.4. Анализ функционирования СМПМ
- 4.3.5. Разработка архитектуры СМПМ.

- 4.3.6. Разработка функциональной схемы МКПРСПМ.
- 4.3.7. Выбор элементной базы и синтез принципиальной электрической схемы МКПРСПМ.
- 4.3.8. Сборка макета МКПРСПМ.
- 4.3.9. Разработка программного обеспечения МКПРСПМ.
- 4.3.10. Проектирование программного обеспечения вычислительного хаба.
- 4.3.11. Разработка алгоритмов программных частей СМПМ.
- 4.3.12. Проектирование серверной стороны программного обеспечения СМПМ.
- 4.3.13. Комплексное тестирование работоспособности прототипа СМПМ.
- 4.3.14. Разработка и оформление (по соответствующим ГОСТ) графической документации на проект.
- 4.3.15. Разработка и оформление (по соответствующим ГОСТ) конструкторской и программной документации на проект.
- 4.3.16. Подготовка доклада по теме дипломного проекта.
- 4.3.17. Защита дипломного проекта.

5. ТРЕБОВАНИЯ К ВЫПОЛНЕНИЮ РАБОТЫ

- 5.1. Требования к функциональным характеристикам
 - 5.1.1 Общие требования к составу СМПМ

СМПМ должна состоять из трех подсистем:

- МКПРСПМ, которая определяет наличие свободных парковочных мест на стоянки и отправляет данные о состоянии парковочных мест по сети LoRaWAN на вычислительный хаб.
- Вычислительный хаб для осуществления взаимодействия сервера, МКПРСПМ и других компонентов системы.
- Сервер, который осуществляет сбор данных с датчиков МКПРСПМ, управление всеми компонентами системы и вывод данных пользователям о состоянии парковочных мест.

5.1.2. Выполняемые функции

5.1.2.1. Для пользователя:

- отображение на карте местоположения стоянок и парковочных мест;
- выдача актуальных данных о парковочном месте;
- бронирование парковочного места.

5.1.2.2. Для владельцев стоянок

- добавление датчиков МКПРСПМ;
- удалённая настройка датчиков МКПРСПМ;
- регистрирование стоянок и парковочных мест с указанием местоположения на карте;
- изменение данных о стоянках и парковочных местах;
- выдача информации о состоянии парковочных мест.

5.1.3. Исходные данные

5.1.3.1. Для МКПРСПМ:

- сигналы с датчиков присутствия транспортного средства;
- пакеты данных, полученные от вычислительного хаба по сети LoRaWAN или через последовательный порт UART:
 - команда изменения настроечных параметров МКПРСПМ;
 - команда бронирования заданного парковочного места.
- данные для бронирования парковочного места, веденые пользователем через терминал оплаты.

5.1.3.2. Для вычислительного хаба:

- пакеты данных, полученные от МКПРСПМ по сети LoRaWAN или через последовательный порт UART;
- МОТТ пакеты данных, полученные от сервера.

5.1.3.3. Для сервера:

- МОТТ пакеты данных, полученные от вычислительного хаба:
 - состояние парковочного места;
 - инициализация МКПРСПМ;
 - оплата парковочного места.

5.1.4. Результаты

5.1.4.1. Для МКПРСПМ:

- сигналы состояния парковочного места;
- пакеты данных, отправляемые на вычислительный хаб по сети LoRaWAN или через последовательный порт UART:
 - состояние парковочного места;
 - инициализация МКПРСПМ;
 - оплата бронирования парковочного места.

5.1.4.2. Для вычислительного хаба:

- пакеты данных, отправляемые на МКПРСПМ по сети LoRaWAN или через последовательный порт UART:
- MQTT пакеты данных, отправляемые на сервер и на другие компоненты системы.

5.1.4.3. Для сервера:

- Отображение на карте свободные парковочные места и стоянки с указанием их местоположения;
- МОТТ пакеты данных, отправляемые на вычислительный хаб:
 - команда изменения настроечных параметров МКПРСПМ;
 - команда бронирования заданного парковочного места.

5.2. Требования к надежности

5.2.1. Предусмотреть контроль вводимой информации.

- 5.2.2. Предусмотреть защиту от некорректных действий пользователя.
- 5.2.3. Обеспечить целостность информации в базе данных.
- 5.3. Условия эксплуатации
 - 5.3.1. Условия эксплуатации в соответствие с СанПиН 2.2.1/2.1.1.1200-03.
- 5.4. Требования к составу и параметрам технических средств
 - 5.4.1. Для функционирования системы необходимо следующее оборудование:
 - датчики МКПРСПМ;
 - одноплатный компьютер на операционной системе семейства UNIX;
 - сервер
 - 5.4.1. Для реализации МКПРСПМ необходимы следующее компоненты:
 - микроконтроллер ATMEGA328;
 - радиомодуль RFM95;
 - датчики присутствия автомобиля;
 - расширители портов PCF8574;
 - часы реального времени DS3231SN.
 - 5.4.2. Минимальная конфигурация сервера:
 - тип процессора: Intel CORE I5;
 - объем ОЗУ: 8 Гб.
- 5.5. Требования к информационной и программной совместимости
 - 5.5.1. Программное обеспечение сервера должно работать под управлением операционной системы семейства Linux.
 - 5.5.2. Для функционирования сервера необходимы следующие пакеты:
 - среда виртуализации Docker версии 18.03 и выше;
 - Docker-compose версии 1.8 и выше инструмент для запуска многоконтейнерных приложений Docker;

- фреймворк Ruby on Rails версии 5.2 и выше;
- CУБД PostgreSQL версии 9.5 и выше с установленным расширением PostGIS версии 6.2 и выше;
- СУБД Redis версии 4.0 и выше для реализации Action Cable;
- сервер Nginx версии 1.10.3 и выше для раздачи статики и проксирования запросов на сервер Ruby on Rails;
- сервер Mosquitto MQTT версии 1.4.8 и выше для приема и передачи MQTT сообщений;
- сервис кэширования данных Memcached версии 1.5 и выше.
- Фреймворк Bootstrap не ниже версии 4.1 это инструментарий с открытым исходным кодом для разработки с помощью HTML, CSS и JS.
- Google Maps APIs для реализации карты парковок.
- 5.5.3. Для функционирования вычислительного хаба необходимы следующие пакеты:
 - фреймворк Qt версии не ниже 5.10;
 - библиотека RadioHead для работы с радиомодулем RFM95.

5.6. Требования к маркировке и упаковке

Требования к маркировке и упаковке не предъявляются.

5.7. Требования к транспортированию и хранению

Перевозки автомобильным транспортом с любым числом перегрузок:

- по дорогам с асфальтовым или бетонным покрытием на расстояние свыше 1000 км;
- по булыжным и грунтовым дорогам на расстояние свыше 250 км со скоростью до 40 км/ч или на расстояние до 250 км с большей скоростью, которую допускает транспортное средство.

Перевозки различными видами транспорта:

- воздушным, железнодорожным транспортом и водным путем в сочетании их между собой и с автомобильным транспортом;
- водным путем совместно с перевозками;
- перевозки, включающие транспортирование морем.

Хранение под навесами или в помещениях, где колебания температуры и влажности воздуха несущественно отличаются от колебаний на открытом воздухе (например, палатки, металлические хранилища без теплоизоляции и т.п.), расположенные в макроклиматических районах с умеренным климатом.

5.8. Специальные требования

Специальных требований не предъявляется.

6. ТРЕБОВАНИЯ К ПРОГРАМНОЙ ДОКУМЕНТАЦИИ

- 6.1. Разрабатываемые программные модули должны быть самодокументированы, т.е. тексты программ должны содержать все необходимые комментарии.
- 6.2. В состав сопровождающей документации должны входить:
 - 6.2.1. Расчетно-пояснительная записка на 60 листах формата А4.
 - 6.2.2. Техническое задание (Приложение А).
 - 6.2.3. Формы интерфейсов (Приложение Б).
 - 6.2.4. Тестирование системы (Приложение В).
 - 6.2.5. Руководство пользователя (Приложение Г).
 - 6.2.5. Листинг программного кода (Приложение Д).
 - 6.2.5. Графическая документация (Приложение Е).

- 6.3. Графическая часть должна быть выполнена на 10 листах формата A1 (копии формата A3, A4 включить в качестве приложений к расчетно-пояснительной записке):
 - 6.3.1. Цели и задачи системы мониторинга парковочных мест
 - 6.3.2. Исследование ІоТ технологий в сфере транспортной инфраструктуры
 - 6.3.3. Функциональная схема системы
 - 6.3.4. Схема электрическая принципиальная конечного устройства
 - 6.3.5. Диаграммы классов
 - 6.3.6. Схема базы данных и схемы алгоритмов серверного ПО
 - 6.3.7. Тестирование системы

7. СТАДИИ И ЭТАПЫ РАЗРАБОТКИ

№	Название этапа	Срок, даты, %	Отчетность
1.	Анализ требований и уточнение спецификаций (эскизный проект)	01.09.2017- 01.12.2017 (15 %)	Спецификации программного обеспечения
2.	Разработка технического задания	01.12.2017- 31.12.2017 (20 %)	Готовое техническое задание
3.	Проектирование структуры программного обеспечения, проектирование компонентов (технический проект)	01.01.2018- 05.02.2018 (35%)	Схема структурная системы и спецификации компонентов. Проектная документация: схемы алгоритмов и диаграммы классов.
4.	Реализация компонент и автономное тестирование компонентов. Сборка и комплексное тестирование. Оценочное тестирование и (рабочий проект).	06.02.2018- 30.04.2018 (75%)	Тексты программных компонентов. Тесты, результаты тестирования.
5.	Разработка программной документации	01.05.2018- 27.05.2018 (90%)	Программная документация.
6.	Подготовка доклада и предзащита	28.05.2018- 11.06.2018 (95%)	Доклад
7.	Защита проекта	12.06.2018- 30.06.2018 (100%)	

8. ПОРЯДОК КОНТРОЛЯ И ПРИЁМКИ

8.1. Порядок контроля

Контроль выполнения осуществляется руководителем еженедельно.

8.2. Порядок защиты

Защита осуществляется перед государственной аттестационной комиссией (ГЭК).

8.3. Срок защиты

Срок защиты определяется в соответствии с планом заседаний ГЭК.

9. ПРИМЕЧАНИЕ

В процессе выполнения работы возможно уточнение отдельных требований технического задания по взаимному согласованию руководителя и исполнителя.