Proyecto Final

Integrantes:

- Oscar Javier Ángel Balcázar
- Rafael Camilo Tejon Rojas
- Juan Sebastian Alvarez Eraso

Contexto

Basados en información histórica de hurtos en la ciudad de Medellín planteamos un modelo de machine learning para clasificar la peligrosidad de un barrio/comuna. Lo anterior con el fin de brindar una herramienta a la policía para facilitar la toma de decisiones.

Se plantearon y evaluaron varios modelos supervisados y no supervisados que se describen a continuación.

Fase No 1

Opción	Modelo	Objetivo	Conclusiones
1	Regresión lineal	Predecir la cantidad de hurtos	 Es muy complejo utilizar los datos que tenemos Datos insuficientes.
2	Árboles de decisión	Predecir categorías de barrios como peligrosos o no peligrosos	Es muy complejo.Tiene muchos features.
3	Random forest + Árboles de decisión	Predecir categorías de barrios como peligrosos o no peligrosos	 Se utilizaron menos features. Se evaluaron muchas más combinaciones de hiperparámetros. Simple de evolucionar.
4	KMEANS	Encontrar información en los datos, categorizar los barrios	- Se sale del conocimiento del curso.

Fase No 2

GridSearch + Árboles de decisión + Random forest

Features: tipo_mod_hurtos_no_peligrosos, tipo_mod_hurtos_peligrosos, OneHotEncoding del mes y

del día de la semana.

Modelo	Hiper Parámetro	Valores	
Decision Trees	max_depth	Enteros del 3 al 15	
Decision Trees	criterion	gini o entropy	
Random Forest	max_depth	Enteros del 10 al 15	
Random Forest	criterion	gini o entropy	
Random Forest	n_estimators	Enteros múltiplos de 10 entre 50 y 150	

Modelo	Recall	Precisión	F-Score	Matriz de Confusión	
Árboles de Decisión {'criterion': 'entropy', 'max_depth': 6}	0.5765	0.5765	0.5765	1 - 5181 1393 0 \[\begin{array}{c} \be	
Random Forest {'criterion': 'entropy', 'max_depth': 10, 'n_estimators': 90}	0.5792	0.5792	0.5792	1 - 5363 1221 0 0 2003 0 0 2003 0 0 2 2 2 2 2 2 2 2 2	

Fase No 3

Modelo seleccionado - KMEANS

Objetivo: Hacer una clasificación de los barrios de Medellín según la cantidad de hurtos que ocurran.

Preparación de datos: Para esta sección se agregaron unas nuevas categorías en las que se buscaba calcular la cantidad de hurtos de diferentes clases por barrio, estas son:

- Hurtos según modalidad
- Hurtos según género
- Hurtos según transporte
- Hurtos según edad
- Hurtos Generales

Modelos: Se probaron modelos K MEANS con 1 hasta 10 clusters

Evaluación del Modelo

Despliegue de la solución

Plataforma

Conclusiones

- 1. La evaluación y experimentación con varios modelos de clasificación nos hizo caer en cuenta que estábamos haciendo una clasificación previa de los barrios como peligrosos, no tan peligrosos y menos peligrosos. A su vez esperábamos que el modelo hiciera lo mismo, esto es como si a nuestro modelo lo estuviéramos sesgando a dar una respuesta.
- 2. Utilizando el método del codo se encontró que el mejor número de clusters para nuestro modelo estaba entre 2 y 3. Un buen modelo es uno con baja inercia y un bajo número de conglomerados (K). Sin embargo desde la visualización de los datos clasificados en el mapa los modelos con más de 3 cluster también son de gran utilidad porque brindan información detallada de la peligrosidad de los barrios.
- 3. Los features más importantes para nuestro modelo son los hurtos en el transporte público y los hurtos a las personas adultas.
- 4. Con el modelo de KMEANS se obtuvo una segmentación de los diferentes barrios de la ciudad y por medio de una escala de color se muestran los barrios más peligrosos y menos peligrosos.
- 5. El modelo de KMEANS puede ser iterado agregando features para obtener otro nivel de detalle y sea de mayor valor para los stakeholders.