

Importante! Lembre-se

O aprendizado de algoritmos/programação não se consegue a não ser através de muitos exercícios.

Algoritmos não se aprende:

- * Copiando Algoritmos
- * Estudando Algoritmos

Algoritmos só se aprendem:

- * Construindo Algoritmos
- * Testando Algoritmos

Características de um algoritmo

- ▶ Ter inicio e fim:
- ▶ Não dar margem a dupla interpretação;
- ▶ Deve gerar informações de saída para o mundo externo ao do ambiente do algoritmo;
- ▶ Ser efetivo (ou seja, todas as etapas especificadas no algoritmo devem ser alcançáveis em um tempo finito)

5

Vantagens do uso de algoritmos

- ▶ Um algoritmo pode ser implementado em qualquer linguagem de programação.
- Se representarmos algoritmicamente a solução de um problema, e depois o traduzirmos para uma linguagem de programação, teremos como resultado um programa de computador.

Algoritmo + Ling. Programação = Programa

Formas de representação de algoritmos

- I. Descrição Narrativa;
- 2. Fluxograma Convencional;
- 3. Pseudocódigo, Linguagem Estruturada ou Portugol.

7

Formas de representação de algoritmos

I. Descrição Narrativa ou Linguagem Natural (LN)

- ▶ Uso do idioma/LN (Pt):
 - + bastante conhecido;
 - Impreciso;
 - Más interpretações;
 - Ambíguo;
 - Extenso;

"Querido, vá ao mercado para mim e traga 2 ovos, se tiver leite, traga 6."

Formas de representação de algoritmos

2. Fluxogramas

- ▶ É uma representação gráfica de algoritmos;
- Formas geométricas diferentes implicam ações (instruções, comandos) distintos.
- ▶ É considerada uma forma de representação intermediária
- + Ferramenta conhecida mundialmente;
- Não se preocupa com detalhes de implementação do programa (p.ex.: tipos de dados).

9

Formas de representação de algoritmos 2. Fluxograma Inicio Leia A e B Some A e B Soma > 5 Escreva "Maior que 5" Escreva "Menor ou igual a 5"

Formas de representação de algoritmos

3. Pseudocódigo

- Linguagem intermediária entre linguagem natural e linguagens de programação para descrição de algoritmos.
- Utiliza a estrutura de linguagens de programação porém visa a interpretação por humanos e não por computadores.

ALGORITMO SOMA
Entradas: A, B
Saídas: Soma
Declarar A, B: Inteiros
LEIA A
LEIA B
Soma ← N1 + N2
SE (Soma > 5)
ESCREVA "Maior que 5"
SENÃO
ESCREVA "Menor ou igual a 5"
FIM ALGORITMO

Estrutura de algoritmos Teorema do Programa Estruturado: Três estruturas são suficientes para representar qualquer função computável. (Fonte: Bohm, Jacoplini – Fluxogranas e Máquinas de Turing e linguagens ... http://dl.acm.org/citation.cfm?id=365646) Instrução Condição Condição s I Instrução Instrução Instrução Instrução Instrução Seleção Repetição **S**equencial

Tipos de Dados TIPO NUMERICO INTEIRO: Toda e qualquer informação numérica que pertença ao conjunto dos números inteiros relativos; Ex.: a idade de uma pessoa, o número de degraus de uma escada, etc.;

Tipos de Dados

- ▶ REAL: Toda e qualquer informação numérica que pertença ao conjunto dos números inteiros reais;
 - Ex.: a altura de uma pessoa (em metros), o valor (em reais) do salário de um funcionário, etc.;
- LITERAL: Toda e qualquer informação composta por um conjunto de caracteres alfanuméricos;

 STRING
 - Ex.: nome de uma pessoa, placa de um veículo, etc..

Tipos de Dados

▶ TIPO NUMÉRICO

- **▶ INTEIRO**
- ▶ REAL

LITERAL

- STRING
- **LÓGICO**
 - ▶ Estes dados são chamados de **booleanos**, devido a significativa contribuição do BOOLE à área da lógica matemática;
 - O tipo **lógico** é usado para representar dois únicos valores lógicos possíveis: **verdadeiro** ou **falso**.

17

Variáveis e Constantes

- ▶ Variáveis: elementos da computação que possuem nome, tipo, valor e endereço de memória. Seu valor pode ser alterado durante a execução de um programa.
- ▶ **Constantes**: semelhantes às variáveis, estas não permitem que seu valor seja alterado durante a execução de um programa.

▶ 18

Nomes das Variáveis

- Devem começar com uma letra ou um sublinhado "_", mas não com um dígito numérico.
- Pode conter letras, dígitos e "_"
- Não são permitidos espaços
- Diferença entre maiúsculo e maiúsculo
- Não pode ser um nome reservado (veremos isso depois): int, float, double, main...

19

Nomes das Variáveis

Dicas:

- Manter uma padronização na nomenclatura das variáveis
 - > caixa baixa: idade, volume
- ▶ Usar letras maiúsculas para separar múltipalavras:
 - ▶ volumeAgua, idadeMedia
- Seja consistente: manter um padrão claro de nomenclatura de modo que outros entendam
- Usar substantivos que digam o que a variável representa
- Usar terminologia do domínio da aplicação

	Como verificar s	e o algoritmo	está correto?	
23				

Teste de Mesa

- ▶ O teste de mesa simula a execução de um algoritmo manualmente. Para isso, você deve orientar-se por meio dos passos descritos a seguir:
 - I. Crie uma tabela, onde cada coluna representa uma das variáveis do seu algoritmo;
 - 2. Execute manualmente/mentalmente seu algoritmo e preencha as linhas da tabela com os valores que as variáveis devem assumir.
 - 3. No final da execução do algoritmo a variável deve possuir o valor esperado.

Exemplo

▶ Elabore uma sequência de passos para obter 4L de água a partir de um galão de 5L e outro galão de 3L.

25

Teste de mesa

I. Inicie com os galões vazios.	G5L = ?	G3L = ?
2. Encha o galão de 5L.	G5L = ?	G3L = ?
3. Transfira o conteúdo do galão de 5L para o de 3L.	G5L = ?	G3L = ?
4. Descarte a água do galão de 3L.	G5L = ?	G3L = ?
5. Transfira o conteúdo do galão de 5L para o de 3L.	G5L = ?	G3L = ?
6. Encha o galão de 5L.	G5L = ?	G3L = ?
7. Transfira o conteúdo do galão de 5L para o de 3L.	G5L = ?	G3L = ?

≥ 26