Test d'ajustement d'une copule

Lorsque les copules rencontrent les données

Présenté par Achille Rostan Fossouo Tadjuidje, Olivier Côté et Benjamin Côté

ACT-7102 18 avril 2022

Table des matières

- 1 Contexte
- 2 Tests statistiques
- 3 Comparaison des tests
- 4 Coefficients de dépendance
- 5 Portée de l'article

Contexte

- 1 Contexte
- 2 Tests statistiques
- 3 Comparaison des tests
- 4 Coefficients de dépendance
- 5 Portée de l'article

Utilisation des copules

Bien que les copules soient dans la littérature scientifique depuis Sklar (1959), leurs applications pratiques ne sont étendues que depuis le début des années 2000.

Avec l'avénement du *Big Data*, les copules sont de plus en plus utilisées puisqu'il est désormais possible d'avoir assez de données pour modéliser de la dépendance entre des phénomènes. Ces applications se font dans une variété de disciplines scientifiques

Économique Médecine Recherche climatique Hydrologie Géophysique Ingénierie Biologie Aéronautique ... et actuariat!

Tests statistiques sur les copules

Qui dit modélisation, dit tester la validité du modèle. Il faut donc développer des tests statistiques pour tester si les copules employées dans la pratique sont adéquates.

Tests statistiques sur les copules

On définit l'hypothèse :

$$H_0: C \in C_0$$
 $C_0 = C_\theta: \theta \in \mathcal{O}$

Il y a donc deux types de tests statistiques pouvant être effectués sur la copule.

- \blacksquare Estimer θ et valider si c'est adéquat.
 - → Très étudié dans la littérature!
- \blacksquare Remettre en question H_0 et tester l'adéquation du choix de copule.
 - → Moins étudié dans la littérature.

Ajustement

Les tests d'ajustements dans la littérature sont divisés en trois catégories par Genest et collab. (2009)

- Tests pouvant n'être appliqués que pour une famille de copules spécifique.
- Tests nécessitant une manipulation abusive des données.
- Tests universels (« blanket tests »).

La Tests statistiques

8/53

Tests statistiques

- 1 Contexte
- 2 Tests statistiques
 - Méthodologie
 - Tests basés sur la copule empirique
- 3 Comparaison des tests
- 4 Coefficients de dépendance
- 5 Portée de l'article

Méthodologie

Tests statistiques — Méthodologie

Figure - Procédure d'estimation d'une copule à partir de données

Introduction aux hypothèses I

└─ Tests statistiques — Tests basés sur la copule empirique

Pour les tests, on suppose que les données X ont été générées par

- une copule *C*
- \blacksquare et des marginales $\underline{F} = (F_1, \dots F_d)$.

Notre objectif est de tester s'il est plausible que nos données aient été générée par une famille de copule \mathcal{E}_0 prédéfinie.

Introduction aux hypothèses II

Pour tester s'il est plausible qu'une famille de copule \mathcal{C}_0 ait généré X, on procède de manière formelle avec un test d'hypothèse.

Premièrement, on définit \mathcal{C}_0 (Genest et collab., 2009) :

$$\mathcal{C}_0 = \{C_\theta : \theta \in \mathcal{O}\}\$$

où \mathcal{O} est un ouvert sur \mathbb{R}^p , p étant le nombre de paramètres à estimer.

L'hypothèse nulle de nos tests s'énonce comme suit :

$$H_0$$
: $C \in \mathcal{C}_0$

Introduction aux hypothèses III

└─ Tests statistiques — Tests basés sur la copule empirique

Figure - Procédure d'estimation d'une copule à partir de données

Introduction aux hypothèses IV

Puisque nous n'avons pas directement de réalisations u de la copule génératrice C, comment estimer nos u à partir des observations X sachant ques les marges sont inconnues?

Il y a deux approches possibles:

- **T** Faire des hypothèses paramétriques additionnelles sur les distributions des marges.
- Estimer les marges de manière non paramétrique.

Approche paramétrique pour les marges

Comme mentionné, aborder une approche paramétrique pour les marges signifie faire des hypothèses additionnelles :

$$H'_0: F_1 \in \mathcal{F}_1, \dots, F_d \in \mathcal{F}_d$$

Par contre, si on fait l'hypothèse H'_0 en plus de l'hypothèse H_0 , nous tenterons maintenant de rejetter $H_0 \cap H'_0$, qui est plus précis que seulement H_0 . Les marges sont alors des « paramètres de nuisance infinis ». (Genest et collab., 2009)

Si je rejette l'hypothèse $H_0 \cap H'_0$, est-ce que c'est vraiment parce que la copule est indapatée pour les données?

Nous n'opteront pas pour cette approche aujourd'hui.

Approche non paramétriques pour les marges I

Si on ne veut pas assumer H_0' , on peut estimer les marges de manière non paramétrique :

$$\hat{F}_j(x) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}_{\{X_{ij} \le x\}}$$

et maximiser la pseudo log vraisemblance :

$$\ell(\theta) = \sum_{i=1}^{n} \ln \left[c_{\theta}(\hat{F}_1(X_{i1}), \dots, \hat{F}_d(X_{id})) \right]$$

Approche non paramétriques pour les marges II

Ça nous mène naturellement vers le concept de pseudo observations (Genest et collab., 2009) :

$$\hat{u}_{ij} = \frac{R_{ij}}{n+1}$$

où R_{ij} est le rang de X_ij parmi X_i .

On peut obtenir ces informations directement en insérant nos $X_i j$ dans la fonction pobs () du paquetage VineCopula.

Comment est-ce que les rangs estimés \hat{u} se compare avec les vrais rangs u pour un exemple de simulation donné?

Exemple des rangs

Exemple 1 : Copule normale

Soit X_1 et X_2 tel que :

$$X_1 \sim \text{MixErl}(\zeta, \beta = 0.1)$$

►
$$P(N = k) = \zeta_{k+1}$$
, où $N \sim \text{BinNeg}(r = 4, \mu = 5)$

$$\blacksquare X_2 \sim \text{ParetoGen}(\alpha = 3, \tau = 5, \theta = 50)^a$$

$$F_{X_1,X_2}(x_1,x_2) = C(F_{X_1}(x_1),F_{X_2}(x_2))$$

•
$$C(u_1, u_2)$$
 est la copule normale avec $\rho = 0.7$.

Comparez les rangs u aux pseudos observations \hat{u} baties à partir des réalisations des X_i .

a. Paramétrisation de la documentation du paquetage actuar

Exemple 1 : code R

```
## Simulations d'une copule Normale
library(Copula)
cop1 <- normalCopula(param = 0.7, dim = 2)
u simulated <- rCopula(100, cop1)
## sim x1
VaR_MixErl <- function(kap){optimize(function(x){</pre>
log(abs(kap - p dist oli(x)))},
                   interval = c(0, 350))$minimum}
sim x1 <- sapply(u simulated[, 1], function(u) VaR MixErl(u))</pre>
sim x2 <- qgenpareto(u simulated[, 2], shape1 = 3, shape2 = 5,
       scale = 50)
sims <- data.frame(u simulated, u1 hat = pobs(sim x1),
        u2 hat = pobs(sim x2))
```

Exemple 1 : Graphique

À remarquer :

- $\mathbf{u} \neq \hat{u}$
- $\hat{u}_i \le u_i \text{ lorsque}$ $u_i > 0.5 \ \forall i \in \{1, 2\}$

Figure - Comparaison entre les rangs

Considérations

Les pseudos observations $\underline{\hat{u}}$ peuvent être interprétés comme des échantillons de la copule sous-jacente C_{θ} . Par contre, les pseudos observations $\underline{\hat{u}}$ ne sont pas

indépendantes et leurs composantes sont seulement *approximativement* uniforme [0,1].

Les tests qui ne prendront pas ces spécificités en compte manqueront de puissance. (Genest et collab., 2009)

Idée I

L'idée sera de trouver la meilleure copule sous H_0 et de la comparer à nos données.

On denotera maintenant nos pseudos observations U_1, \ldots, U_n puisque nous n'aurons jamais accès aux vrais rangs.

On a

$$H_0: C \in \mathcal{E}_0$$

et $C_n(\underline{u})$ la copule emprique.

Idée II

Comme discuté dans Genest et collab. (2009), plusieurs auteurs énoncent diverses conditions pour montrer que C_n est un bon estimateur de la vraie copule C, que H_0 soit vrai ou pas.

Ensuite, C_{θ_n} est la copule de la famille C_0 qui représente le mieux nos données, où θ_n est l'estimateur du paramètre de notre copule C_{θ_n} qui permet de le mieux se moduler aux données.

Puisque C_n est le meilleur représentant des données et C_{θ_n} est le meilleur représentant des données sous H_0 , on test naturel serait d'évaluer la distance entre C_n et C_{θ_n} .

Statistiques

On définit une distance entre nos distributions

$$\mathbb{C}_n = \sqrt{n}(C_n - C_{\theta_n})$$

On a maintenant les statistiques suivantes :

$$S_n = \int_{[0,1]^d} \mathbb{C}_n(\underline{u})^2 dC_n(\underline{u})$$

et

$$T_n = \sup_{\underline{u} \in [0,1]^d} |\mathbb{C}_n(\underline{u})|$$

Pour obtenir un seuil à partir de ces statistiques, il faut procéder par simulations. L'implémentation informatique sera abordée plus tard.

Idée

Ici, l'idée est de simplifier le test pour que l'implémentation informatique se fasse mieux.

Ce test est basé que la transformation de Kendall.

└─ Tests statistiques — Tests basés sur la copule empirique Définitions importantes I

On introduit les quantités (V_1, \ldots, V_n)

$$V_i = C_n(U_i)$$

On a ainsi la fonction de répartition empirique des V

$$K_n(v) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}_{\{V_i \le v\}}, \quad v \in [0,1]$$

 V_i correspond à la probabilité qu'une observation soit plus petite ou égale (pour chacune de ses d dimensions) à la pseudo observation U_i . On vient donc de ramener la dimension de la distance à calculer de d vers 1.

Pour le test d'hypothèse, on a la nouvelle hypothèse nulle H_0''

$$H_0^{''}: K \in \mathcal{K}_0 = \{K_\theta : \theta \in \mathcal{O}\}\$$

On remarque qu'en diminuant la dimension du problème à un problème à 1 dimension au lieu de d dimension, on est moins spécifique. On aura alors que $H_0 \subset H_0^{''}$. Ainsi, lors des tests d'hypothèses, le rejet $H_0^{''}$ implique le rejet de H_0 , mais le non-rejet de $H_0^{''}$ n'implique pas nécessairement le non-rejet de H_0 .

Statistiques

On définit une distance entre nos distributions

$$\mathbb{K}_n = \sqrt{n}(K_n - K_{\theta_n})$$

On a maintenant les statistiques suivantes :

$$S_n^{(K)} = \int_{[0,1]^1} \mathbb{K}_n(v)^2 dK_{\theta_n}(v)$$

et

$$T_n^{(K)} = \sup_{v \in [0,1]^1} |\mathbb{K}_n(v)|$$

Pour obtenir un seuil à partir de ces statistiques, il faut procéder par simulations. L'implémentation informatique sera abordée plus tard.

Tests basés sur la transformation de Rosenblatt

L'idée est de retrouver une distribution du khi-carré pour pouvoir appliquer des tests statistiques usuels.

Ce test est basé que la transformation de Rosenblatt.

Transformation de Rosenblatt

Transformation de Rosenblatt

On note $\mathfrak R$ la transformation de Rosenblatt, effectuée pour chaque observation.

$$\mathfrak{R}_{\theta_n}(u_i) = C_n(u_i|u_1 \dots u_{i-1})$$

On remarque la propriété intéressante de Rosenblatt :

si
$$U \sim C$$
 alors $\mathfrak{R}_{\theta_n}(U) \sim C_\perp$

Transformation de Rosenblatt

└─ Tests statistiques — Tests basés sur la copule empirique

Puisqu'on a

$$C_{\perp}(u_1,...,u_n) = \Re_{\theta_n}(u_1) \times \cdots \times \Re_{\theta_n}(u_n)$$

il est possible de conclure que $\mathfrak{R}_{\theta_n}(U)$ suit également une loi uniforme, par définiton de la copule d'indépendance.

Ainsi, on peut prendre la transformation

$$\chi_i = \sum_{j=1}^m \left(\Phi^{-1}(\mathfrak{R}_{\theta_n}(u_{n,j}))\right)^2$$

Test d'Anderson-Darling

Il est donc possible de construire une test d'ajustement d'Anderson-Darling comme on le fait usuellement pour une loi du khi-carré.

$$A_n = -n - \frac{1}{n} \sum_{i=1}^{n} (2i - 1) \left(\ln(G(\chi_{[i]})) - \ln(G(\chi_{[n+1-i]})) \right)$$

Toutefois, Genest et collab. (2009) critique cette approche à cause des présomptions qui sont faites sur la distribution empirique de la transformation de Rosenblatt.

Tests additionnels

Genest et collab. (2009) utilise cette incertitude à leur avantage et propose donc plutôt d'effectuer des tests statistiques de Cramér-von Mises pour tester à quel point Rosenblatt donne une transformation près de la copule d'indépendance.

tests
$$S_n^{(B)}$$
 et $S_n^{(C)}$

Comparaison des tests

- 1 Contexte
- 2 Tests statistiques
- 3 Comparaison des tests
- 4 Coefficients de dépendance
- 5 Portée de l'article

Cas Pratique - Slide I

Comparaison des tests

Nous nous attarderons uniquement sur les tests basés sur :

- la copule empirique : S_n et T_n ,
- la transformation de kendall : $S_n^{(K)}$ et $T_n^{(K)}$

Mise en situation

Considérons X_1 et X_2 tel que :

- $X_1 \sim \text{MixErl}(\zeta, \beta = 0.1)$
 - $P(N=k) = \zeta_{k+1}$, où $N \sim \text{BinNeg}(r=4, \mu=5)$
- $X_2 \sim \text{ParetoGen}(\alpha = 3, \tau = 5, \theta = 50)$
- $F_{X_1,X_2}(x_1,x_2) = C(F_{X_1}(x_1),F_{X_2}(x_2))$
 - ► $C(u_1, u_2)$ peut être une copule normale, une copule de Frank, une copule de Gumbel ou une copule AMH avec $\alpha \in \{0.2, 0.5, 0.75\}$.

Cas Pratique - Slide II

Comparaison des tests

La procédure suivante permet d'approximer la p-value pour les différents tests à l'aide d'un boostrap

- **Boostrap paramétrique pour** S_n et T_n :
 - Calculer C_n avec la formule (fonction C.n dans R avec le package copula):

$$C_n(u) = \frac{1}{n} \sum_{i=1}^n 1_{(U_{i1} \le u_1, U_{i2} \le u_2)}$$
 avec $u = (u_1, u_2) \in [0, 1]^2$

Trouver $\hat{\alpha}$ en maximisant la pseudo log-vraisemblance suivante (fitCopula):

$$\ell(\alpha) = \sum_{i=1}^{n} \ln \left[c_{\alpha}(\hat{F}_{1}(X_{i1}), \hat{F}_{2}(X_{i2})) \right]$$

Cas Pratique - Slide III

Comparaison des tests

- Si l'expression analytique de C_{α} existe, alors on calcule S_n et T_n . Sinon (simulation de Monte Carlo) :
 - a On génère un échantillon U_1^*, \dots, U_m^* de taille $m \ge n$ issu de la distribution de $C_{\hat{\alpha}}$ (rCopula)
 - b Et on approxime $C_{\hat{\alpha}}$ par :

$$C^*_{\hat{\alpha}}(u) = \frac{1}{m} \sum_{i=1}^m 1_{\left(U^*_{i1} \le u_1, U^*_{i2} \le u_2\right)}$$
 avec $u = (u_1, u_2) \in [0, 1]^2$

c Approximer S_n et T_n par :

$$S_{n} = \sum_{i=1}^{n} (C_{n}(U_{i}^{*}) - C_{\hat{\alpha}}^{*}(U_{i}^{*}))^{2} \quad \text{et} \quad T_{n} = sup_{u \in \{U_{1}^{*}, \dots, U_{m}^{*}\}} |C_{n}(u) - C_{\hat{\alpha}}^{*}(u)|$$

Cas Pratique - Slide IV

Comparaison des tests

Ensuite on répète les étapes précédentes N fois afin d'obtenir les valeurs $\left(S_n^{(1)},T_n^{(1)}\right),\ldots,\left(S_n^{(N)},T_n^{(N)}\right)$ et on calcule les p-values par les formules :

$$p-value_{S_n} = rac{1}{N} \sum_{k=1}^{N} 1_{S_n^{(k)} > S_n} \quad ext{et} \quad p-value_{T_n} = rac{1}{N} \sum_{k=1}^{N} 1_{T_n^{(k)} > T_n}$$

- Boostrap paramétrique pour $S_n^{(K)}$ et $T_n^{(K)}$:
 - \blacksquare Calculer K_n avec la formule :

$$K_n(v) = \frac{1}{n} \sum_{i=1}^{n} 1_{(V_i \le v)}$$
 avec $v \in [0, 1]$

Si l'expression analytique de K_{α} est connue, calculer directement $S_n^{(K)}$ et $T_n^{(K)}$. Sinon, à l'aide de l'échantillon U_1^*, \dots, U_m^* ,

Cas Pratique - Slide V

Comparaison des tests

a calculer les quantités (V_1^*, \dots, V_m^*) par la formule :

$$V_i^* = \frac{1}{m} \sum_{i=1}^m 1_{U_j^* \le U_i^*}$$

b Et approximer $K_{\hat{\alpha}}$ par :

$$K_{\hat{\alpha}}^*(v) = \frac{1}{m} \sum_{i=1}^m 1_{(V_i^* \le v)} \text{ avec } v \in [0, 1]$$

C Approximer ensuite $S_n^{(K)}$ et $T_n^{(K)}$ par les formules :

$$S_{n}^{(K)} = \frac{n}{m} \sum_{i=1}^{m} \left(K_{n} \left(V_{i}^{*} \right) - K_{\hat{\alpha}}^{*} \left(V_{i}^{*} \right) \right)^{2} \quad \text{et} \quad T_{n}^{(K)} = sup_{v \in \{V_{1}^{*}, \dots, V_{m}^{*}\}} \sqrt{\frac{n}{m}} \left| K_{n}(v) - K_{\hat{\alpha}}^{*}(v) \right|$$

Cas Pratique - Slide VI

Comparaison des tests

Ensuite on répète les étapes précédentes N fois afin d'obtenir les valeurs $\left(S_n^{(K),1},T_n^{(K),1}\right),\ldots,\left(S_n^{(K),N},T_n^{(K),N}\right)$ et on calcule les p-values par les formules :

$$p-value_{S_{n}^{(K)}}=rac{1}{N}\sum_{i=1}^{N}1_{S_{n}^{(K),j}>S_{n}^{(K)}} \quad ext{et} \quad p-value_{T_{n}^{(K)}}=rac{1}{N}\sum_{i=1}^{N}1_{T_{n}^{(K),j}>T_{n}^{(K)}}$$

Résultats 1

Table – p-values (N=150 et $\alpha=0.2$)

Copule sous Ho	Copule test	S_n	T_n	$S_n^{(K)}$	$T_n^{(K)}$
Frank	Frank	0.89	0.61	0.68	0.07
	Gumbel	0.96	0.97	0.69	0.58
	AMH	0.11	0.26	0.15	0.22
	Normal	0.03	0.14	0.31	0.63
Normal	Normal	0.79	0.54	0.98	0.69
	Frank	0.95	0.91	0.72	0.65
	Gumbel	0.77	0.25	0.11	0.12

Résultats 2

Table - p-values (N=150 et $\alpha=0.5$)

Copule sous Ho	Copule test	S_n	T_n	$S_n^{(K)}$	$T_n^{(K)}$
Frank	Frank	0.37	0.38	0.29	0.43
	Gumbel	0.61	0.49	0.98	0.00
	AMH	0.70	0.65	0.83	0.03
	Normal	0.54	0.53	0.74	0.49
Normal	Normal	0.36	0.69	0.79	0.25
	Frank	0.79	0.42	0.45	0.87
	Gumbel	0.37	0.60	0.61	0.67

Résultats 3

Table – p-values (N=150 et $\alpha=0.75$)

Copule sous Ho	Copule test	S_n	T_n	$S_n^{(K)}$	$T_n^{(K)}$
Frank	Frank	0.32	0.49	0.14	0.25
	Gumbel	0.33	0.19	0.85	0.01
	AMH	0.90	0.80	0.74	0.53
	Normal	0.70	0.77	0.67	0.55
Normal	Normal	0.57	0.38	0.29	0.32
	Frank	0.93	0.63	0.53	0.57
	Gumbel	0.07	0.09	0.60	0.66

Coefficients de dépendance

- 1 Contexte
- 2 Tests statistiques
- 3 Comparaison des tests
- 4 Coefficients de dépendance
- 5 Portée de l'article

Coefficient de dépendance des queues I

On fait une parenthèse ici pour discuter des gueues des distributions.

Dans tous nos tests d'hypothèses, nous n'avons pas spécifiquement pris le temps de nous attarder aux queues des distributions, qui peuvent parfois être l'élément le plus important de la structure de dépendance.

On s'intéressera à une paire de variables aléatoires (X, Y).

Coefficients de dépendance

Coefficient de dépendance des queues II

On définit les coefficients de dépendance des queues inférieure et supérieure :

$$\lambda_{U} = \lim_{t \to 1^{-}} P(F_{X}(x) > t | F_{Y}(Y) > t) \qquad = \lim_{t \to 1^{-}} \frac{1 - 2t + C(t, t)}{1 - t}$$

$$\lambda_{L} = \lim_{t \to 0^{+}} P(F_{X}(x) \le t | F_{Y}(Y) \le t) \qquad = \lim_{t \to 0^{+}} \frac{C(t, t)}{t}$$

Frahm et collab. (2005) présente diverses manières d'estimer ces quantités, de sorte qu'on peut s'assurer que la copule sélectionnée a des coefficients de dépendances qui sont similaires à ceux estimés à partir de nos données.

L-Portée de l'article 46/53

Portée de l'article

- 1 Contexte
- 2 Tests statistiques
- 3 Comparaison des tests
- 4 Coefficients de dépendance
- 5 Portée de l'article

47/53

Portée de Genest et collab. (2009)

En se fiant sur Größer et Okhrin (2021), il n'y a eu que quelques avancées pour les tests d'ajustement après la publication de Genest et collab. (2009).

Portée de Genest et collab. (2009)

Pourtant, Genest et collab. (2009) est cité 1489 fois!

Goodness-of-fit tests for copulas: A review and a power study

C Genest, B Rémillard, D Beaudoin - Insurance: Mathematics and ..., 2009 - Elsevier Many proposals have been made recently for goodness-of-fit testing of copula models. After reviewing them briefly, the authors concentrate on "blanket tests", ie, those whose implementation requires neither an arbitrary categorization of the data nor any strategic choice of smoothing parameter, weight function, kernel, window, etc. The authors present a critical review of these procedures and suggest new ones. They describe and interpret the results of a large Monte Carlo experiment designed to assess the effect of the sample size ...

☆ Enregistrer 59 Citer Cité 1489 fois Autres articles Les 10 versions

Figure - Genest et collab. (2009) sur Google Scholar

Portée de Genest et collab. (2009)

Quelles sont les citations?

- Applications en modélisation
 Ex: Is gold a safe haven or a hedge for the US dollar? Implications for risk management Reboredo (2013)
- Applications sur une classe spécifique de copules Ex : *Maximum likelihood estimation of mixed C-vines with application to exchange rates* Czado et collab. (2012)
- Articles de vue d'ensemble

Quelques avancées récentes intéressantes...

Größer et Okhrin (2021) présente quelques avancées et avenues de recherches récentes dans les tests statistiques en lien avec les copules.

- Beare et Seo (2020) Est-ce que la copule est symétrique ($C(u_1, u_2) = \bar{C}(u_1, u_2)$)? Est-ce que la copule est échangeable ($C(u_1, u_2) = C(u_2, u_1)$)?
- Bianchi et collab. (2020)
 Les copules peuvent être employées pour tester l'indépendance conditionnelle.

Quelques avancées récentes intéressantes...

[...]

Les copules peuvent être employées pour tester plusieurs hypothèses statistiques en même temps

- ▶ Est-ce que $H_{0,a}$ est plausible?
- ▶ Est-ce que $H_{0,h}$ est plausible?
- ▶ Est-ce que $H_{0,a}$ et $H_{0,b}$ sont plausibles en même temps?

Bibliographie I

- Beare, B. K. et J. Seo. 2020, «Randomization tests of copula symmetry», *Econometric Theory*, vol. 36, n° 6, p. 1025–1063.
- Bianchi, P., K. Elgui et F. Portier. 2020, «Conditional independence testing via weighted partial copulas and nearest neighbors», *arXiv preprint arXiv*:2006.12839.
- Czado, C., U. Schepsmeier et A. Min. 2012, «Maximum likelihood estimation of mixed c-vines with application to exchange rates», *Statistical Modelling*, vol. 12, n° 3, p. 229–255.
- Frahm, G., M. Junker et R. Schmidt. 2005, «Estimating the tail-dependence coefficient: properties and pitfalls», *Insurance: mathematics and Economics*, vol. 37, n° 1, p. 80–100.
- Genest, C., B. Rémillard et D. Beaudoin. 2009, «Goodness-of-fit tests for copulas : A review and a power study», *Insurance : Mathematics and economics*, vol. 44, n° 2, p. 199–213.

Bibliographie II

- Größer, J. et O. Okhrin. 2021, «Copulae : An overview and recent developments», Wiley Interdisciplinary Reviews : Computational Statistics, p. e1557.
- Reboredo, J. C. 2013, «Is gold a safe haven or a hedge for the us dollar? implications for risk management», *Journal of Banking & Finance*, vol. 37, nº 8, p. 2665–2676.
- Sklar, M. 1959, «Fonctions de repartition an dimensions et leurs marges», *Publ. inst. statist. univ. Paris*, vol. 8, p. 229–231.