Práctica 2: Lógica Digital - Combinatorios

Matías

Organización del Computador I DC - UBA

Primer Cuatrimestre 2018 - Turno Mañana

Compuertas - NOT

Compuertas - AND

Compuertas - OR

Α	В	A OR B
0	0	0
0	1	1
1	0	1
1	1	1

Compuertas - XOR u OR-EXCLUSIVA

,	Д	В	A XOR B
	0	0	0
(0	1	1
	1	0	1
	1	1	0

Notación

$$A + B \equiv A \ OR \ B$$

 $AB \equiv A.B \equiv A \ AND \ B$
 $\overline{A} \equiv NOT \ A$

Propiedades

Propiedad	AND	OR
Identidad	1.A = A	0+A=A
Nulo	0.A = 0	1 + A = 1
Idempotencia	A.A = A	A + A = A
Inverso	$A.\overline{A}=0$	$A + \overline{A} = 1$
Conmutatividad	A.B = B.A	A+B=B+A
Asociatividad	(A.B).C = A.(B.C)	(A+B)+C=A+(B+C)
Distributividad	A + (B.C) = (A + B).(A + C)	A.(B+C) = A.B + A.C
Absorción	A.(A+B)=A	A + A.B = A
De Morgan	$\overline{A.B} = \overline{A} + \overline{B}$	$\overline{A+B}=\overline{A}.\overline{B}$

Tarea: ¡Demostrarlas!

Ejercicio I

Dada la siguiente tabla de verdad:

Α	В	С	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

- 1. Escribir una función booleana a la que representa.
- Implementar dicha función usando a lo sumo una compuerta binaria AND, una compuerta binaria OR y una compuerta NOT

Propiedades

Propiedad	AND	OR
Identidad	1.A = A	0+A=A
Nulo	0.A = 0	1 + A = 1
Idempotencia	A.A = A	A + A = A
Inverso	$A.\overline{A}=0$	$A + \overline{A} = 1$
Conmutatividad	A.B = B.A	A+B=B+A
Asociatividad	(A.B).C = A.(B.C)	(A+B)+C=A+(B+C)
Distributividad	A + (B.C) = (A + B).(A + C)	A.(B+C) = A.B + A.C
Absorción	A.(A+B)=A	A + A.B = A
De Morgan	$\overline{A.B} = \overline{A} + \overline{B}$	$\overline{A+B}=\overline{A}.\overline{B}$

Tarea: ¡Demostrarlas!

Ejercicio I

Solución:

Como suma de productos:

 $(\overline{A}.\overline{B}.C) + (\overline{A}.B.C) + (A.B.C)$

Ejercicio I

Solución:

$$(\overline{A}.\overline{B}.C) + (\overline{A}.B.C) + (A.B.C) \longrightarrow \text{Aplicamos la prop. distributiva} \\ ((\overline{A}.\overline{B}) + (\overline{A}.B) + (A.B)).C \longrightarrow \text{Distributiva} \\ ((\overline{A}.\overline{B}) + (\overline{A} + A).B).C \longrightarrow \text{Inverso} \\ ((\overline{A}.\overline{B}) + 1.B).C \longrightarrow \text{Identidad} \\ ((\overline{A}.\overline{B}) + B).C \longrightarrow \text{Distributiva} \\ ((\overline{A} + B).(\overline{B} + B)).C \longrightarrow \text{Inverso} \\ ((\overline{A} + B).1).C \longrightarrow \text{Identidad} \\ (\overline{A} + B).C$$

La implementación:

Ejercicio II - Shift

Armar un circuito de 3 *bits*. Este deberá mover a izquierda o a derecha los bits de entrada de acuerdo al valor de una de ellas que actúa como control. En otras palabras, un shift izq-der de k-bits es un circuito de k+1 entradas $(e_k,...,e_0)$ y k salidas $(s_{k-1},...,s_0)$ que funciona del siguiente modo:

- ▶ Si $e_k = 1$, entonces $s_i = e_{i-1}$ para todo 0 < i < k y $s_0 = 0$
- Si $e_k = 0$, entonces $s_i = e_{i+1}$ para todo $0 \le i < k-1$ y $s_{k-1} = 0$

Ejemplos:

```
\begin{array}{l} \text{shift\_lr}(1,\!011) \!\!=\! 110 \\ \text{shift\_lr}(0,\!011) \!\!=\! 001 \\ \text{shift\_lr}(1,\!100) \!\!=\! 000 \\ \text{shift\_lr}(1,\!101) \!\!=\! 010 \end{array}
```

Ejercicio II - Solución

Solución:

Ejercicio III - Sumador Simple

Armar un **sumador de 1 bit**. Tiene que tener dos entradas de un bit y dos salidas, una para el resultado y otra para indicar si hubo o no acarreo.

Solución:

Ejercicio III - Sumador Simple - Segunda parte

En un **sumador de 1 bit** se observa inicialmente que la entrada A vale 0 y la B vale 1. En el tiempo cero, ambas pasan a valer 0; a los 20 ns ambas pasan a valer 1; 20 ns más tarde vuelven ambas a cero y así sucesivamente.

Sabiendo que las compuertas AND y XOR tienen un retardo de 15 ns, realizar un diagrama de tiempos del circuito.

Ejercicio IV - Sumador Completo

Teniendo dos sumadores simples (de 1 bit) y sólo una compuerta a elección, arme un **sumador completo**. Tiene 2 entradas de 1 bit y una tercer entrada interpretada como C_{In} , tiene como salida C_{Out} y S .

Solución:

Asumiendo los mismos retardos del ejercicio anterior. ¿Cuánto demora el computo?

Ejercicio V - Sumador Completo de 3 bits

Armar un sumador completo de 3 bits. Solución:

¡Tarea!

Más circuitos combinatorios!

<u>Decodificador de n bits</u>: Tiene n entradas y 2^n salidas. Sea k el número representado en binario en la entrada del decodificador, la salida e_k tendrá un uno lógico, mientras que para todas las demás señales de salida habrá un cero lógico.

<u>Codificador de n bits:</u> Tiene n entradas y $log_2(n)$ salidas. En la salida muestra en binario el número de la entrada que está levantada. De haber más de una o ninguna, el comportamiento del circuito dependerá de la implementación del fabricante.

Multiplexor de n entradas: Tienen n entradas, una salida y $log_2(n)$ señales de control. Mediante las señales de control se indica cuál entrada es requerida en la salida.

Demultiplexor de n salidas: Tienen n salidas, una entrada y $log_2(n)$ señales de control. Igual que el multiplexor, pero elijo mediante las señales de control por cuál señal de salida muestro la entrada.

La práctica...

- ► Con lo visto hoy pueden realizar la parte A de la práctica 2.
- ▶ Pueden usar el Logisim para probar sus circuitos.
- Bibliografía recomendada: The Essentials of Computer
 Organization and Architecture Linda Null Capítulo 3

¿Y ahora?

Lo que viene: **Martes 3 de Abril** a partir de las **9hs** tendremos el primer **taller** de la materia en los laboratorios.

¡Eso es todo amigos!

¿Preguntas?

