本节内容

最短路径

Floyd算法

王道考研/CSKAOYAN.COM

Robert W. Floyd

罗伯特·弗洛伊德 (1936-2001) Robert W. Floyd

4 1978年图灵奖得主

- Floyd算法(Floyd-Warshall算法)
- 堆排序算法

Floyd算法

Floyd算法: 求出每一对顶点之间的最短路径

使用动态规划思想,将问题的求解分为多个阶段

对于n个顶点的图G,求任意一对顶点 Vi -> Vj 之间的最短路径可分为如下几个阶段:

#初始:不允许在其他顶点中转,最短路径是?

#0: 若允许在 V₀ 中转,最短路径是? #1: 若允许在 V₀、V₁ 中转,最短路径是? #2: 若允许在 V₀、V₁、V₂ 中转,最短路径是?

#n-1: 若允许在 V₀、V₁、V_{2} V_{n-1} 中转, 最短路径是?

若 $A^{(k-1)}[i][j] > A^{(k-1)}[i][k] + A^{(k-1)}[k][j]$ 则 $A^{(k)}[i][j] = A^{(k-1)}[i][k] + A^{(k-1)}[k][j];$ path(k)[i][j] = k

否则 *A*^(k)和 *path*^(k)保持原值

		V0	V1	V2	
Λ_	V0	0	6	13	
A =	V1	10	0	4	
	V2	5	∞	0	

若 $A^{(k-1)}[i][j] > A^{(k-1)}[i][k] + A^{(k-1)}[k][j]$ 则 $A^{(k)}[i][j] = A^{(k-1)}[i][k] + A^{(k-1)}[k][j];$ $path^{(k)}[i][j] = k$

否则 *A*^(k)和 *path*^(k)保持原值

		W	ш	W4	ve	М
	V0	0	∞	1	∞	10
A (-1) =	V1	∞	0	∞	1	5
A(-1) =	V2	∞	1	0	∞	7
	V3	∞	∞	∞	0	1
	V 4	∞	∞	∞	∞	0

V0 V1 V2 V2 V4

#0: 若允许在 Vo 中转,最短路径是? --求 A(O) 和 path(O)

		V0	V1	V2	V3	V 4
	VO	-1	-1	-1	-1	-1
noth(0) -	V1	-1	-1	-1	-1	-1
path ⁽⁰⁾ =	V2	-1	-1	-1	-1	-1
	V3	-1	-1	-1	-1	-1
	V4	-1	-1	-1	-1	-1

王道考研/CSKAOYAN.COM

Floyd算法实例

若 $A^{(k-1)}[i][j] > A^{(k-1)}[i][k] + A^{(k-1)}[k][j]$ 则 $A^{(k)}[i][j] = A^{(k-1)}[i][k] + A^{(k-1)}[k][j];$

path^(k)[i][j] = k否则 $A^{(k)}$ 和 $path^{(k)}$ 保持原值

 $path^{(0)} = \begin{bmatrix} v_0 & -1 & -1 & -1 & -1 & -1 \\ v_1 & -1 & -1 & -1 & -1 & -1 \\ v_2 & -1 & -1 & -1 & -1 & -1 \\ v_3 & -1 & -1 & -1 & -1 & -1 \\ v_4 & -1 & -1 & -1 & -1 & -1 & -1 \end{bmatrix}$

#1: 若允许在 V_{0、}V₁中转,最短路径是? ——求 A⁽¹⁾ 和 path⁽¹⁾

若 $A^{(k-1)}[i][j] > A^{(k-1)}[i][k] + A^{(k-1)}[k][j]$

则 $A^{(k)}[i][j] = A^{(k-1)}[i][k] + A^{(k-1)}[k][j];$ $path^{(k)}[i][j] = k$

否则 A(k) 和 path(k) 保持原值

		VO	V1	V2	V3	V4
	V0	0	∞	1	∞	10
A (0) =	V1	∞	0	∞	1	5
A (*) =	V2	∞	1	0	∞	7
	V3	∞	∞	∞	0	1
	V 4	∞	∞	∞	∞	0

#1: 若允许在 Vo、 V1中转,最短路径是? ——求 A(1) 和 path(1)

 $\mathbf{A}^{(0)}[2][3] > \mathbf{A}^{(0)}[2][\mathbf{1}] + \mathbf{A}^{(0)}[\mathbf{1}][3] = 2$

 $A^{(I)}[2][3] = 2$ path $A^{(I)}[2][3] = 1$;

 $A^{(0)}[2][4] > A^{(0)}[2][1] + A^{(0)}[1][4] = 6$

 $A^{(I)}[2][4] = 6$ path $A^{(I)}[2][4] = 1$;

王道考研/CSKAOYAN.COM

Floyd算法实例

若 $A^{(k-1)}[i][j] > A^{(k-1)}[i][k] + A^{(k-1)}[k][j]$

则 $A^{(k)}[i][j] = A^{(k-1)}[i][k] + A^{(k-1)}[k][j];$

path^(k)[i][j] = k否则 $A^{(k)}$ 和 $path^{(k)}$ 保持原值

	VO	0	∞	1	∞	10
A (0) =	V1	∞	0	∞	1	5
A(*) =	V2	∞	1	0	∞	7
	VЗ	∞	∞	∞	0	1
	V 4	∞	∞	∞	∞	0

V0 V1 V2 V3 V4

$$path^{(0)} = \begin{bmatrix} v_0 & -1 & -1 & -1 & -1 & -1 \\ v_1 & -1 & -1 & -1 & -1 & -1 \\ v_2 & -1 & -1 & -1 & -1 & -1 \\ v_3 & -1 & -1 & -1 & -1 & -1 \\ v_4 & -1 & -1 & -1 & -1 & -1 & -1 \end{bmatrix}$$

V0 V1 V2 V3 V4

#1: 若允许在 Vo、V1中转,最短路径是? ——求 A(1)和 path(1)

		V0	V1	V2	V3	V4
	V0	0	∞	1	∞	10
A (1) =	V1	∞	0	∞	1	5
	V2	∞	1	0	2	6
	VЗ	∞	∞	∞	0	1
	V 4	∞	∞	∞	∞	0

		V0	V1	V2	V3	V 4
path ⁽¹⁾ =	V0	-1	-1	-1	-1	-1
	V1					
	V2	-1	-1	-1	1	1
	V3	-1	-1	-1	-1	-1
	۷4	-1	-1	-1	-1	-1

若 $A^{(k-1)}[i][j] > A^{(k-1)}[i][k] + A^{(k-1)}[k][j]$

则 $A^{(k)}[i][j] = A^{(k-1)}[i][k] + A^{(k-1)}[k][j];$ path(k)[i][j] = k

否则 A(k) 和 path(k) 保持原值

V0 V1 V2 V3 V4

#2: 若允许在 V₀、V₁、V₂中转,最短路径是? ——求 **A**⁽²⁾和 path⁽²⁾

王道考研/CSKAOYAN.COM

V0 V1 V2 V3 V4

Floyd算法实例

若 $A^{(k-1)}[i][j] > A^{(k-1)}[i][k] + A^{(k-1)}[k][j]$

则 $A^{(k)}[i][j] = A^{(k-1)}[i][k] + A^{(k-1)}[k][j];$ $path^{(k)}[i][j] = k$

否则 A(k) 和 path(k) 保持原值

		V0	V1	V2	V3	V 4
A ⁽¹⁾ =	V0	0	∞	1	∞	10
	V1	∞	0	∞	1	5
	V2	∞	1	0	2	6
	V3	∞	∞	∞	0	1
	V 4	∞	∞	∞	∞	0

#2: 若允许在 V₀、V₁、V₂中转,最短路径是? ——求 A⁽²⁾和 path⁽²⁾

 $A^{(1)}[0][1] > A^{(1)}[0][2] + A^{(1)}[2][1] = 2$ $A^{(2)}[0][1] = 2$; path⁽²⁾[0][1] = 2;

 $A^{(1)}[\theta][3] > A^{(1)}[\theta][2] + A^{(1)}[2][3] = 3$ $A^{(2)}[\theta][3] = 3$; path⁽²⁾[\theta][3] = 2;

 $A^{(1)}[0][4] > A^{(1)}[0][2] + A^{(1)}[2][4] = 7$ $A^{(2)}[0][4] = 7$; path⁽²⁾[0][4] = 2;

若 $A^{(k-1)}[i][j] > A^{(k-1)}[i][k] + A^{(k-1)}[k][j]$ 则 $A^{(k)}[i][j] = A^{(k-1)}[i][k] + A^{(k-1)}[k][j];$

 $path^{(k)}[i][j] = k$

否则 $A^{(k)}$ 和 $path^{(k)}$ 保持原值

		VO	V1	V2	V3	V 4
A (1) —	V0	0	∞	1	∞	10
	V1	∞	0	∞	1	5
	V2	∞	1	0	2	6
	V3	∞	∞	∞	0	1
	V 4	∞	∞	∞	∞	0

V0 V1 V2 V3 V4

#2: 若允许在 V_0 、 V_1 、 V_2 中转,最短路径是? ——求 $A^{(2)}$ 和 path $^{(2)}$

王道考研/CSKAOYAN.COM

Floyd算法实例

若 $A^{(k-1)}[i][j] > A^{(k-1)}[i][k] + A^{(k-1)}[k][j]$

则 $A^{(k)}[i][j] = A^{(k-1)}[i][k] + A^{(k-1)}[k][j];$ $path^{(k)}[i][j] = k$

否则 A(k) 和 path(k) 保持原值

#3: 若允许在 V_0 、 V_1 、 V_2 、 V_3 中转,最短路径是? ——求 $A^{(3)}$ 和 path $^{(3)}$

若 $A^{(k-1)}[i][j] > A^{(k-1)}[i][k] + A^{(k-1)}[k][j]$

则 $A^{(k)}[i][j] = A^{(k-1)}[i][k] + A^{(k-1)}[k][j];$ $path^{(k)}[i][j] = k$

否则 A(k) 和 path(k) 保持原值

 $\mathbf{A}^{(2)} = \begin{array}{c|ccccc} & \mathbf{V0} & \mathbf{V1} & \mathbf{V2} & \mathbf{V3} & \mathbf{V4} \\ & \mathbf{V0} & \mathbf{0} & \mathbf{2} & \mathbf{1} & \mathbf{3} & \mathbf{7} \\ & \mathbf{V1} & \infty & \mathbf{0} & \infty & \mathbf{1} & \mathbf{5} \\ & \mathbf{V2} & \infty & \mathbf{1} & \mathbf{0} & \mathbf{2} & \mathbf{6} \\ & \mathbf{V3} & \infty & \infty & \infty & \mathbf{0} & \mathbf{1} \\ & \mathbf{V4} & \infty & \infty & \infty & \infty & \mathbf{0} \end{array}$

#3: 若允许在 V₀、V₁、V₂、V₃中转,最短路径是? ——求 A⁽³⁾和 path⁽³⁾

 $\begin{aligned} &A^{(2)}[\theta][4] > A^{(2)}[\theta][3] + A^{(2)}[3][4] = 4 \\ &A^{(3)}[\theta][4] = 4; \text{ path}^{(3)}[\theta][4] = 3; \end{aligned}$

 $A^{(2)}[1][4] > A^{(2)}[1][3] + A^{(2)}[3][4] = 2$

 $A^{(3)}[1][4] = 2$; path $^{(3)}[1][4] = 3$;

 $A^{(2)}[2][4] > A^{(2)}[2][3] + A^{(2)}[3][4] = 3$

 $A^{(3)}[2][4] = 3$; path $^{(3)}[2][4] = 3$;

王道考研/CSKAOYAN.COM

Floyd算法实例

若 $A^{(k-1)}[i][j] > A^{(k-1)}[i][k] + A^{(k-1)}[k][j]$

则 $A^{(k)}[i][j] = A^{(k-1)}[i][k] + A^{(k-1)}[k][j];$

 $path^{(k)}[i][j] = k$

否则 A(k) 和 path(k) 保持原值

		VO	V1	V 2	V 3	V4
	V0	0	2	1	3	7
A (2) =	V1	∞	0	∞	1	5
7	V2	∞	1	0	2	6
	V3	∞	∞	∞	0	1
	V4	∞	∞	∞	∞	0

#3: 若允许在 V₀、V₁、V₂、V₃中转,最短路径是? ——求 A⁽³⁾和 path⁽³⁾

		V0	V1	V2	V3	V 4
A ⁽³⁾ =	V0	0	2	1	3	4
	V1 V2	∞	0	∞	1	2
	V2	∞	1	0	2	3
	V3	∞	∞	∞	0	1
	V 4	∞	∞	∞	∞	0

 $path^{(3)} = \begin{cases} v0 & v1 & v2 & v3 & v4 \\ v0 & -1 & 2 & -1 & 2 & 3 \\ \hline v1 & -1 & -1 & -1 & -1 & 3 \\ \hline v2 & -1 & -1 & -1 & 1 & 3 \\ \hline v3 & -1 & -1 & -1 & -1 & -1 \\ \hline v4 & -1 & -1 & -1 & -1 & -1 \end{cases}$

若 $A^{(k-1)}[i][j] > A^{(k-1)}[i][k] + A^{(k-1)}[k][j]$

则 $A^{(k)}[i][j] = A^{(k-1)}[i][k] + A^{(k-1)}[k][j];$ path(k)[i][j] = k

否则 A(k) 和 path(k) 保持原值

V0 V1 V2 V3 V4

#4: 若允许在 V_0 、 V_1 、 V_2 、 V_3 、 V_4 中转,最短路径是? ——求 $A^{(4)}$ 和 path $^{(4)}$

王道考研/CSKAOYAN.COM

V0 V1 V2 V3 V4

Floyd算法实例

若 $A^{(k-1)}[i][j] > A^{(k-1)}[i][k] + A^{(k-1)}[k][j]$ 则 $A^{(k)}[i][j] = A^{(k-1)}[i][k] + A^{(k-1)}[k][j];$

path^(k)[i][j] = k否则 $A^{(k)}$ 和 $path^{(k)}$ 保持原值 #4: 若允许在 V_{0} 、 V_{1} 、 V_{2} 、 V_{3} 、 V_{4} 中转,最短路径是? ——求 $A^{(4)}$ 和 $path^{(4)}$

 $\mathbf{A}^{(4)} = \begin{bmatrix} & V0 & V1 & V2 & V3 & V4 \\ V0 & 0 & 2 & 1 & 3 & 4 \\ V1 & \infty & 0 & \infty & 1 & 2 \\ V2 & \infty & 1 & 0 & 2 & 3 \\ V3 & \infty & \infty & \infty & 0 & 1 \\ V4 & \infty & \infty & \infty & \infty & 0 \end{bmatrix}$

不能解决的问题

Floyd 算法不能解决带有"负权回路"的图(有负权值的边组成回路),这种图有可能没有最短路径

王道考研/CSKAOYAN.COM

知识点回顾与重要考点

	BFS 算法	Dijkstra 算法	Floyd 算法
无权图	✓	V	~
带权图	×	✓	✓
带负权值的图	×	×	V
带负权回路的图	×	×	×
时间复杂度	O(V ²)或O(V + E)	O(V ²)	O(V ³)
通常用于	求无权图的单源最 短路径	求带权图的单源最 短路径	求带权图中各顶点 间的最短路径

注:也可用 Dijkstra 算法求所有顶点间的最短路径,重复 |V| 次即可,总的时间复杂度也是O(|V|³)