AXIOM Beta Main Board and AXIOM Remote

Ashok Singh Priya Pandya Swaraj Hota Outline

AXIOM Beta Main Board

Introduction

Components at Bottom Side

Components at Top Side

Connections

AXIOM Remote

Introduction

General Concepts

Operation

Hardware

Electronics

GUI

AXIOM Beta Main Board

Introduction

- ▶ Equivalent to a PC's motherboard for the camera
- ► A central hub, where all the data from sensors and other interfaces are routed as per need
- ► Hosts two medium-speed shield connectors and two high-speed plugin module slot connectors
- ▶ Bottom side interfaces with the power board, followed by MicroZed board
- ▶ Top side interfaces with the interface board, and shields

- ▶ A Centre Solder-On (CSO) area used to interface chips like orientation sensors, acceleration etc. (as directly behind the image sensor)
- ▶ 2x board connectors (JX1 & JX2) at North and South of board, connect directly to the Zynq SoC GPIOs (on the MicroZed board) through the power board
- ➤ 2x PCIE connectors (North and South), used to interface plugins (USB, HDMI etc.)

- ➤ 2x board connectors (PB-NW & PB-SE), interface with the power board for power and I2C buses (coming from Zynq)
- ▶ 4x Power headers (PWR-XX), to receive various power rails from power board
- ▶ 2x PIC16s (West and East), to interface with the routing fabrics through various interfaces like JTAG, I2C, SPI etc.

- ► A Centre Solder-On (CSO) area
- ▶ 2x board interface connectors (X-WEST & X-EAST) that interface with the interface board
- ➤ 2x pin header connectors each on the West (HDR-XW) and East (HDR-XE) side, to interface with the West shield and East shield respectively
- ▶ 2x Lattice MachXO2 FPGAs (RFW & RFE) used as routing fabrics, to route connections from the shields, plugins and centre area to the Zynq SoC (on MicroZed board)

CSO 8

- ▶ 2x 4 GPIOs, to RFW and RFE
- ▶ 2x power rails, to PWR-XX
- ▶ 2x power rails, to JX1 & JX2

JX1 & JX2

- ▶ Comes from power board, which in turn is from MicroZed
- ▶ 2x 24 LVDS pairs (High speed) as GPIOs
- ▶ 7x BANK-13 LVDS pairs as GPIOs
- ▶ 1x BANK-13 pin as power rail, to RFW and its PIC16
- ➤ 2x JXX pairs as power rails, another pin to RFE and its PIC16
- ▶ Various other control/debug pins and power rails to CSO, PCIEs, Shields etc.

- ▶ Pin count 36 (each)
- ▶ Power rails from JXX
- ▶ 6x Zynq LVDS pairs (High speed) each, to JXX
- ▶ 8x GPIOs each, to RFW and RFE
- ▶ 1x I2C bus each, muxed and connected to RFW and its PIC16
- ► I2C bus power supply from JX2

- ▶ Pin count 20 (each)
- ▶ 1x I2C bus each, to each PIC16 (Zynq to PIC16 communication)
- ▶ Various power rails, to X-WEST and X-EAST

- ▶ Pin count 28 (each)
- ▶ VDD from PWR-NW and PWR-SE
- ► ICSP clock and data through I2C bus, from PB-NW & PB-SE
- ▶ VPP from PB-NW & PB-SE (supply for programming)
- ▶ JTAG, I2C & SPI interface pins (through IO ports), to RFW & RFE
- ► Various control signal pins for the FPGAs

- ▶ Pin count 110 (each)
- ▶ JTAG, I2C & SPI interface pins, to RFW & RFE
- ▶ 18x LVDS pairs (High speed) each, to JX1 & JX2
- ► Various power rails from PB-NW & PB-SE

- ▶ Pin count 16 (each HDR-XX)
- ► HDR-NW & HDR-SW for West shield, HDR-NE & HDR-SE for East shield
- ▶ 20x GPIOs (10 North, 10 South) each, to RFW & RFE
- ► For West shield, 4x LVDS pairs (2 North, 2 South) each, to RFW
- ► For East shield, 4x LVDS pairs (2 North, 2 South) each (High Speed), to JX1 & JX2
- ▶ Power rails from PWR-NW & PWR-SE

RFW 15

- ► 100-pin TQFP
- ► Supply for IOs and VCC from PWR-NW
- ▶ GPIOs from PCIE-NORTH & PCIE-SOUTH
- Shield GPIOs from HDR-XW
- LVDS pairs from HDR-XW
- ► GPIOs from Centre area (West)

- ► SPI & JTAG interfaces to X-WEST
- ▶ 2x I2C buses to X-WEST
- ▶ 1x BANK13 LVDS pair, to JX1
- ► SPI & JTAG interfaces to PIC16 (West)
- A common I2C bus to PIC16 (West) as well as the PCIE connectors (muxed)
- ► MachXO2 FPGA controls (DONE, INITN, PROGRAMN, etc.), to PIC16 (West)

RFE 17

- ► 100-pin TQFP
- ► Supply for IOs and VCC from PWR-SE
- ▶ Shield GPIOs from HDR-XE
- ▶ GPIOs from Centre area (East)
- ▶ 2x SPI buses to X-EAST

RFE (Cont.)

- ► 2x I2C buses to X-EAST
- ▶ 2x Zynq LVDS pairs, to JX1 & JX2 respectively
- ► I2C, SPI & JTAG interfaces to PIC16 (East)
- ► MachXO2 FPGA controls, to PIC16 (East)
- ► Various unused GPIOs

AXIOM Remote

Introduction

- ► A remote control with buttons, dials and an LCD for menu/settings
- ► Hardware prototype based on a PIC32 CPU and 320x240 pixel LCD
- ► The software runs "bare metal"
- ► There is no graphics acceleration

Figure: AXIOM Remote Button Positions

Operation

Figure: AXIOM Remote

- ► Six buttons to select the options
- ► Currently in the new design only "home" and "back" buttons are present
- In the older version there are left/right buttons to change the pages, a page number button to goto a particular page and for the menu items which are not self-explanatory there is a "?" (help) button

Hardware 24

- ▶ PCB Version 2 Prototype
 - ► The second knob is removed
 - ► Remove left side rocker switches
 - ► Remove top side pushbuttons
 - ► Having one white LED per pushbutton
 - ▶ 4 more holes to PCB
 - ► Replace slide switches for ON/OFF and LOCK with pushbuttons

Figure: PCB

Electronics 26

▶ PIC32MZ was chosen as core processor, two PIC16 are used for handling push button, rotary encoder and LED IO

- ▶ 2.8" 320x240 TFT from Adafruit as a display
- ► USB-C Connector
- Currently powered externally via 5V DC supply
- ► The firmware is programmed with a PICkit2 directly into the flash memory

GUI

Figure: Color Scheme

