Auf diesem Übungsblatt sollen Sie die folgenden Begriffe bzw. Sätze wiederholen:

- Satz von Fermat
- eulersche phi-Funktion
- (abelsche) Gruppe,
- Ordnung von Gruppe/ Elementen,
- Untergruppe

Sie sollen üben

- den Wert der eulerschen Phi-Funktion berechnen;
- zu überprüfen, ob es sich bei einem gegebenen Beispiel um eine Gruppe handelt;
- Untergruppen einer Gruppe zu bestimmen sowie die Ordnung von Gruppen bzw. Elementen zu berechnen.

Präsenzaufgaben

Verständnisfragen

- 1. Erklären Sie, wie Sie von $\phi(n)$ für $n \in \mathbb{P}$ (Primzahl) bzw. $n \in \mathbb{N}$ berechnen.
- 2. Berechnen Sie $\phi(5)$, $\phi(6)$, $\phi(7)$ und $\phi(97)$.
- 3. Die Primfaktorzerlegung von 8800 ist $2^5 \cdot 5^2 \cdot 11$. Berechnen Sie $\phi(8800)$.
- 4. Warum kann es kein $n \in \mathbb{N}$ geben, so dass $\phi(n) = 14$?
- 5. Was müssen Sie berechnen, um die letzten 2 Ziffern von 89⁴³ zu bestimmen? Geben Sie nur die Rechenschritte an, ohne zu rechnen. Denken Sie an den Satz von Euler.
- 6. Welche der folgenden Strukturen besitzen ein neutrales Element? Bestimmen Sie es:
 - (a) $(\mathbb{N},+)$
 - (b) (\mathbb{N},\cdot)
 - (c) $(\mathbb{N}, *)$ mit a * b := 2a + b für $a, b \in \mathbb{N}$
 - (d) $(\mathbb{Z}, *)$ mit a * b := |a + b| für $a, b \in \mathbb{Z}$.
- 7. Zeigt die folgende Verknüpfungstabelle auf der Menge $\{e, a, b, c, d\}$ eine Gruppe?

0	e	a	b	c	d
e	e	a	b	c	d
a	a	e	d	b	c
b	b	c	a	d	e
c	c	d	e	a	b
d	d	b	c	e	a

Standardaufgaben

1. Berechnen Sie

- (a) $\phi(101)$
- (b) $\phi(142)$
- (c) $\phi(169)$
- (d) $\phi(1024)$

2. Für welche n gilt $n = 2\phi(n)$?

3. Berechnen Sie die letzten beiden Ziffern von 89⁴³. Verwenden Sie den Satz von Euler.

4. Welche der folgenden Strukturen sind Gruppen? Falls ein Beispiel keine Gruppe ist, geben Sie kurz an, welches Gruppengesetz verletzt wird.

 \square ($\mathbb{Z},+$)

 \square (N, +)

 \square $(2\mathbb{Z},+)$

 $\square (\mathbb{Z} \setminus \{0\}, +)$

 \square (\mathbb{Z},\cdot)

 $\square (\mathbb{Q} \setminus \{0\}, \cdot)$

 \square ($\mathbb{Z}_8,+$)

 \square (\mathbb{Z}_8,\cdot)

 $\square \ (\mathbb{Z}_8 \setminus \{0\}, \cdot)$

 \square (\mathbb{Z}_8^*,\cdot)

5. Bestimmen Sie die inversen Elemente von 3 in den folgenden Gruppen:

- (a) $(\mathbb{Z}_5, +)$
- (b) (\mathbb{Z}_5^*,\cdot)
- (c) (\mathbb{Z}_8^*,\cdot)

6. Zeigen Sie, dass es in jeder Gruppe ein Element der Ordnung 1 gibt.

7. Zeigen Sie, dass es in jeder Gruppe genau ein Element der Ordnung 1 gibt.

8. Stellen Sie die Additions- und Multiplikationstabelle für \mathbb{Z}_6 auf. Zeigen Sie, dass $\mathbb{Z}_6 \setminus \{0\}$ keine Gruppe bezüglich der Multiplikation ist.

- 9. Bestimmen Sie die Ordnung aller Elemente in
 - (a) $(S_3, \circ),$
 - (b) $(\mathbb{Z}_6, +)$,
 - (c) $(\mathbb{Z}_{6}^{*}, \cdot),$
- 10. Welche Kardinalität können die Untergruppen folgender Gruppen haben:
 - (a) $(\mathbb{Z}_7, +)$
 - (b) $(\mathbb{Z}_6, +)$
 - (c) $(\mathbb{Z}_8, +)$
 - (d) $(\mathbb{Z}_n, +), n \in \mathbb{Z}$

Übungsaufgaben: Abgabe

1. Zeigen Sie die folgende Aussage:

 $\forall n \in \mathbb{N}, n \text{ ungerade} : \phi(2n) = \phi(n)$

(10 Punkte)

2. Bestimmen Sie den Rest von 11^{1213} bei Division durch 26, indem Sie die Eulersche $\phi\textsc{-Funktion}$ und den Satz von Euler verwenden.

(10 Punkte)

3. Stellen Sie die Multiplikationstabelle für \mathbb{Z}_7 und \mathbb{Z}_8 auf. Überprüfen Sie, ob es sich bei (\mathbb{Z}_7,\cdot) bzw. (\mathbb{Z}_8,\cdot) um eine Gruppe handelt.

(15 Punkte)

4. Bestimmen Sie die Ordnung aller Elemente in S_4 (der Gruppe aller bijektiven Abbildungen $\{1, 2, 3, 4\} \rightarrow \{1, 2, 3, 4\}$). Bitte geben Sie die jeweilige Rechnung an. (15 Punkte)

Abgabe möglich bis zu Beginn der Vorlesung am 11.05.2020.