Metodi Matematici per l'Informatica (secondo canale)

Soluzioni di: Andrea Princic. Cartella delle soluzioni

11 Gennaio 2024

Es 1.

Sia $A = \{2, \{2, 7, 5\}, 4, (1, 2, 3), 3\}$. Allora:

- A. $5 \in A$; Falso
- **B.** $\{2,5,7\} \in A$; **Vero**
- **C.** $\{2,3\} \subseteq A$; **Vero**
- **D.** $\exists x, y, z \in A \text{ tali che } \{x, y\} \subseteq z; \text{ Vero } x = y = 2, z = \{2, 7, 5\}$

Es 2.

Siano R e S due relazioni di equivalenza sullo stesso insieme A. Allora $R \cup S$, $R \cap S$ e R - S sono relazioni di equivalenza su A?

1. $R \cup S$ potrebbe non essere una relazione di equivalenza perché potrebbe non essere transitiva:

$$A = \{1, 2, 3\}$$

$$R = \{(1,1), (2,2), (3,3), (1,2), (2,1)\}$$

$$S = \{(1,1), (2,2), (3,3), (2,3), (3,2)\}$$

$$R \cup S = \{(1,1), (2,2), (3,3), (1,2), (2,1), (2,3), (3,2)\}$$

- 2. $R \cap S$ è una relazione di equivalenza:
 - (a) è riflessiva perché R e S lo sono
 - (b) per ogni $(x,y) \in R \cap S$, per simmetria, $(y,x) \in R$ e $(y,x) \in S$, quindi $(y,x) \in R \cap S$
 - (c) per ogni $(x,y),(y,z) \in R \cap S$, per transitività, $(x,z) \in R$ e $(x,z) \in S$, quindi $(x,z) \in R \cap S$
- 3. R-S non è riflessiva

Es 3.

Vero o Falso?

- **A.** Se esiste una funzione $f: X \to Y$ suriettiva, allora esiste una funzione $g: Y \to X$ iniettiva; **Vero**
- **B.** Se esiste una funzione $f: X \to Y$ iniettiva, allora esiste una funzione $g: Y \to X$ suriettiva; **Vero**
- C. Per ogni $f: X \to Y$ esiste un insieme Z tale che esistano una funzione $h: Z \to Y$ iniettiva e una funzione $g: X \to Z$ suriettiva per cui $f = h \circ g$; Falso

Es 4.

Definiamo **numerabile** un insieme in corrispondenza biunivoca con i naturali, e **S-numerabile** un insieme in corrispondenza biunivoca con un sottoinsieme dei numeri naturali. Le due definizioni coincidono?

No, perché un insieme S-numerabile può anche avere cardinalità finita

Es 5.

Dimostrare per induzione che, per ogni $n \ge 1$, se X e Y sono insiemi di n elementi, il numero di funzioni biiettive tra X e Y è n!.

Caso base n=1: Se X e Y hanno un solo elemento, allora esiste una sola funzione biiettiva tra X e Y:

$$1! = 1$$

Passo induttivo n + 1: X e Y hanno n elementi e aggiungiamo a entrambi un elemento. Tra le nuove funzioni biiettive ci sono le stesse di prima in cui però l'elemento aggiunto in X viene associato all'elemento aggiunto in Y: queste funzioni sono ancora n!.

A queste si aggiungono le nuove funzioni biiettive in cui l'elemento aggiunto in X viene associato ad un elemento vecchio di Y: le vecchie funzioni sono n! e i vecchi elementi sono n quindi queste funzioni sono $n! \cdot n$. Quindi il numero di funzioni biiettive tra X e Y è:

$$n! + n! \cdot n = n! \cdot (n+1) = (n+1)!$$

Es 6.

I seguenti enunciati sono verità logiche. Vero o Falso?

A.
$$(\exists x P(x) \to \exists x Q(x)) \to \exists x (P(x) \to Q(x));$$
 Vero

B.
$$\exists y \exists z \forall x ((F(x) \to G(y)) \land (G(z) \to F(x)));$$
 Falso

I tableau si trovano in fondo al documento.

Es 7.

Definire (se possibile) un'interpretazione che verifichi ed una che falsifichi la formula

$$\forall y(\neg \exists x A(x) \to \exists x A(y))$$

La formula è falsa in tutte le interpretazioni in cui A sia insoddisfacibile.

La formula è vera in tutte le interpretazioni in cui A sia soddisfacibile.

Es 8.

Un giocatore di strada vi propone la seguente variante del gioco delle tre carte: vi mostra tre carte coperte ciascuna con una scritta. La prima e la seconda dicono "L'asso non è qui". La terza dice: "L'asso è la carta due". Sapete che solo una delle carte è un asso e che solo una delle scritte è vera. Formalizzare in logica proposizionale e decidere quale carta è l'asso.

Utilizziamo tre variabili logiche A, B, C per rappresentare rispettivamente che l'asso si trovi sotto la prima, la seconda o la terza carta.

Per le scritte, possiamo rappresentare le prime due come $\neg A$ e $\neg B$, e la terza come B.

Sappiamo che solo una carta è un asso, quindi indichiamo questa condizione con $\oplus (A, B, C)$,

dove $\oplus(x, y, z) = \text{solo una tra } x, y, z \text{ è vera.}$

Sappiamo che solo una delle scritte è vera, quindi indichiamo questa condizione con $\oplus (\neg A, \neg B, B)$.

A questo punto possiamo rappresentare il problema con la seguente tavola di verità:

A	B	C	$\oplus (A, B, C)$	$\oplus(\neg A, \neg B, B)$	risultato
F	F	F	F	F	\mathbf{F}
F	F	V	V	F	F
F	V	F	V	F	F
F	V	V	F	F	F
V	F	F	V	V	V
V	F	V	F	V	\mathbf{F}
V	V	F	F	V	F
V	V	V	F	V	F

Quindi l'asso è la prima carta

Tableau

$$\neg \exists y \exists z \forall x ((F(x) \to G(y)) \land (G(z) \to F(x)))$$

$$\neg \exists z \forall x ((F(x) \to G(a)) \land (G(z) \to F(x)))$$

$$| \qquad \qquad | \qquad \qquad |$$

$$\neg \forall x ((F(x) \to G(a)) \land (G(a) \to F(x)))$$

$$| \qquad \qquad | \qquad \qquad |$$

$$\neg ((F(b) \to G(a)) \land (G(a) \to F(b)))$$