K 11/20

ЭНЕРГИЯ СВЯЗИ ЯДЕР

1 Энергия связи атомных ядер

Э.с. — «Е», необх. для расщепл. ядра на отдельн. нуклоны, или «Е», выд-ся при образовании ядер из нуклонов

$$E=mc^2\Rightarrow \Delta E=\Delta m\cdot c^2$$

$$E$$
 выд-ся $\Rightarrow \Delta E = E_2 - E_1 < 0 \Rightarrow \Delta m = m_{\mathfrak{K}} - m_{n+p} < 0 \Rightarrow m_{n+p} > m_{\mathfrak{K}}$

$$\Delta M = Z m_p + N m_n - M_{\mathfrak{A}}$$
 – дефект массы

$$\Delta E_{ce} = \Delta M \cdot c^2$$

(н-р: $E_{npu\ oбраз.\ 4\ r\ He}\!=E_{npu\ cropaн.\ 1,5-2\ выгонов\ к/угля}$)

 $\frac{E_{cv}}{A}$ средних max \Rightarrow средние

ядра устойчивее \Rightarrow «E» у средних min (принцип min E_n) \Rightarrow при синтезе легких или расщеплении тяжелых ядер «Е» выделяется

(2) Деление ядра урана

1938г — Ган, Штрассман (нем.) 1939г — Фриш, Мейтнер (дат.) — объяснение явления

1 МэВ на 1 нуклон (
$$E_{1\, extit{i}\,U}=E_{3\,m\, extit{yrля}}$$
)

 $F_{
m ext{ iny P}} > F_{
m ext{ iny N}}.$

ЦЕПНЫЕ ЯДЕРНЫЕ РЕАКЦИИ

3 Цепные ядерные реакции

Условия ЦЯР

1. Ядерное горючее (расщепл. материалы) — U^{235} , U^{233} , PU^{239} искусств.

- 2. Коэфф. размнож. «n» = 1 (при k > 1 атомный взрыв)
- 3. Критическая маса (для урана ≈ 50 кг, при наличии замедлителя и отраж. «n» 250г)

 вода графит Ве графит

Применение ядерной энергии — ...

4 Термоядерные реакции

Нужна высокая t° для преодоления кулоновского отталкивания

$$rac{3}{1}H+rac{2}{1}H
ightarrowrac{4}{2}He+rac{1}{0}n+17,6~M$$
э B $rac{17,6}{5}=3,5~M$ э B на 1 кулон

примечание

• ------

примечание

• Это карточка последняя! Удачи в будущем!