

Sequence motifs

Jaime A Castro-Mondragon Center of Molecular Medicine Norway (NCMM)

What is a motif?

GCTCTTG GCTTTAA GTTATAA GTTGTAA

In genomics, is a pattern found in a set of biological sequences.

G[CT]T[ACTG]T[AT][AG]

- String matching
- Regular expressions
- Consensus sequences
- Position frequency matrices
- Logos
- Complex representations:
 - HMM, deep learning, matrix factorization

GYTNTWR

String matching

- The simplest way to search for a string in a text.
- In DNA, we have to search in both strands, or the RC of the string pattern.
- ✓ Fastest option to search simple (exact) patterns
- X Does not consider background neither nucleotide frequencies in the string.

Pattern: GTATATA

Pattern: TATATAC (Reverse complement)

Consensus IUPAC - Part 1

- A simple yet informative motif representation considering ambiguity.
- Regular expression for biological sequences.
- ✓ Represents variability/ambiguity in the string
- ✓ Multiple sequences can be represented in a single expression
- X Does not consider background probabilities

Symbol	Meaning	Mnemonic
R	A, G	puRine
Y	C, T	pYrimidine
W	A, T	Weak (weaker basepairs, fewer hydrogen bonds)
S	G, C	Strong (stronger basepairs, more hydrogen bonds
K	G or T	Keto (both have a keto group)
M	A or C	aMine (both have an amine group)
В	C, G, T	not A (B comes after A)
D	A, G, T	not C (D comes after C)
A	A, C, T	not G (H comes after G)
V	A, C, G	not T or U (V comes after T and U)
N	A, C, G, T	aNy base

Table 2.1: IUPAC codes for nucleotides. In this table, everywhere that T applies, U applies as well.

Consensus IUPAC - Part 2

FOXA1

- TGTTTACWYWGS
- SCWRWGTAAACA

TGTTTAC[AT][CT][AT]G[CG]
[CG]C[AT][AG][AT]GTAAACA

ESR1

- RGGTCASMSTGACCY
- RGGTCASKSTGACCY

[AG]GGTCA[CG][AC][CG]TGACC[CT]
[AG]GGTCA[CG][GT][CG]TGACC[CT]

Sequence complexity

- Low complexity sequences
 - Short repetitive elements
 - Many of them with biological function
 - Sequencing artifacts (contamination)
- Complexity is related to the possible number of sequences of a given string
- Confound sequence analysis
- Problematic for genome assembly

C	1 log	(N!)
$C_{WF} =$	$\overline{N}^{\operatorname{log}}D$	$\left(rac{N!}{n_A!n_C!n_G!n_T!} ight)$

Wootton-Federhen complexity score

Motif #	Motif Logo	P-value	% of Targets	% of Background	Description
1	<u>AAAAAAAAAA</u>	1e-621	12.61%	1.15%	Low-complexity (poly-A)
2	GGGGGGGGGG	1.0E-61	4.34%	1.47%	Low-complexity (poly-G/A)
3	GAGAGAGAGA	1.0E-44	0.59%	0.02%	Low-complexity (GA-rich)
4	CCAATICC	1.0E-35	15.01%	10.30%	Similar to CCAATT-box
5	TATATATA	1.0E-24	6.62%	4.02%	Low-complexity (AT-rich)

Many TFs (Kruppel-like) bind low-complexity sequences.

Sequence complexity

Name	Sequence	WF
Poly-A	AAAAAAA	0.0000000
KLF4	CCCCACCC	0.1875000
GA-rich	GAGAGAGA	0.3988640
FOXA1	TGTTTACTTT	0.4745927
ESR1	AGGTCACCCTGACCT	0.7667800
CTCF	TGGCCACCAGGGGGCGCTA	0.7468272

Motif #	Motif Logo	P-value	% of Targets	% of Background	Description
1	<u>AAAAAAAAAA</u>	1e-621	12.61%	1.15%	Low-complexity (poly-A)
2	GGGGGGGGG AAAAAAAAAAA	1.0E-61	4.34%	1.47%	Low-complexity (poly-G/A)
3	<u>GAGAGAGAGAG</u>	1.0E-44	0.59%	0.02%	Low-complexity (GA-rich)
4	CCAATICC	1.0E-35	15.01%	10.30%	Similar to CCAATT-box
5	TATATATA	1.0E-24	6.62%	4.02%	Low-complexity (AT-rich)

$$C_{WF} = rac{1}{N} \mathrm{log}_D \Big(rac{N!}{n_A! n_C! n_G! n_T!} \Big)$$

- The most used model for biological sequences.
- Probabilistic representation of sequences.
- A simple matrix representing the nucleotide/aminoacid frequencies along a sequence.
- Represent TF binding motifs, TSSs, Core-promoter elements, Splice sites, Amino-acid domains, etc.
- ✓ Intuitive and simple representation
- ✓ Allow to integrate background frequencies
- × Assumes independency among nucleotides/aminoacids.

A collection of known sites, aligned and with the same length.

Experimentally validated or predicted.

Consensus sequence

c Position frequency matrix (PFM)

	1	2	3	4	5	6	7	8	9	10	11	12	13	14
A	0	4	4	0	3	7	4	3	5	4	2	0	0	4
C	3	0	4	8	0	0	0	3	0	0	0	0	2	4
G	2	3	0	0	0	0	0	0	1	0	6	8	5	0
т	3	1	0	0	5	1	4	2	2	4	0	0	1	0

Consensus sequence

c Position frequency matrix (PFM)

	1	2	3	4	5	6	7	8	9	10	11	12	13	14
A	0	4	4	0	3	7	4	3	5	4	2	0	0	4
C	3	0	4	8	0	0	0	3	0	0	0	0	2	4
C G	2	3	0	0	0	0	0			0	6	8	5	0
	3	1	0	0	5	1	4	2	2	4	0	0	1	0

PFM databases (for TF binding motifs)

c Position frequency matrix (PFM)

	1	2	3	4	5	6	7	8	9	10	11	12	13	14
A	0	4	4	0	3	7	4	3	5	4	2	0	0	4
C G	3	0	4	8	0		0	3	0	0	0	0	2	4
G	2	3	0	0	0	0	0	0	1	0	6	8	5	0
т	3	1	0	0	5	1	4	2	2	4	0	0	1	0

d Position weight matrix (PWM)

A	-1.93	0.79	0.79	-1.93	0.45	1.50	0.79	0.45	1.07	0.79	0.00	-1.93	-1.93	0.79
C	0.45	-1.93	0.79	1.68	-1.93	-1.93	-1.93	0.45	-1.93	-1.93	-1.93	-1.93	0.00	0.79
G	0.00	0.45	-1.93	-1.93	-1.93	-1.93	-1.93	-1.93	0.66	-1.93	1.30	1.68	1.07	-1.93
T	0.15	0.66	-1.93	-1.93	1.07	0.66	0.79	0.00	0.00	0.79	-1.93	-1.93	-0.66	-1.93

The transition from Frequencies to Weights requires a background.

Background Models

- The expected frequencies of nucleotides/aminoacids.
- Indicates what are the sequences with higher probability to appear by chance.
- The values vary according the sequence context: promoters, exons, CpG islands.
- Can be modeled using markov chains of higher order (di-, tri- , k-nucleotides)

Human genome (single nucleotide):

o A: 0.204

o C: 0.295

o G: 0.296

o T: 0.205

Transition frequencies

Background Models

Probability of ATACGT

```
Single: (0.204 ^ 2) * (0.205 ^ 2) * 0.295 * 0.296 = 1.527e-04
```

```
    Dinucleotide: 0.204 * 0.195 * 0.171 * 0.205 * 0.081 * 0.211 = 2.383e-05
    A (AT) (TA) (AC) (CG) (GT)
```

Human genome (single nucleotide):

o A: 0.204

o C: 0.295

o G: 0.296

o T: 0.205

Transition frequencies

Consensus sequence

c Position frequency matrix (PFM)

	1	2	3	4	5	6	7	8	9	10	11	12	13	14
A	0	4	4	0				3			2			
C	3	0	4	8	0		0	3		0	0	0	2	4
C	2	3	0	0	0	0	0	0	1	0	6	8	5	0
т	3	1	0	0	5	1	4	2	2	4	0	0	1	0

$$W_{i,j} = \ln \left(\frac{f'_{i,j}}{p_i} \right)$$

d Position weight matrix (PWM)

A	-1.93	0.79	0.79	-1.93	0.45	1.50	0.79	0.45	1.07	0.79	0.00	-1.93	-1.93	0.79
C	0.45	-1.93	0.79	1.68	-1.93	-1.93	-1.93	0.45	-1.93	-1.93	-1.93	-1.93	0.00	0.79
G	0.00	0.45	-1.93	-1.93	-1.93	-1.93	-1.93	-1.93	0.66	-1.93	1.30	1.68	1.07	-1.93
T	0.15	0.66	-1.93	-1.93	1.07	0.66	0.79	0.00	0.00	0.79	-1.93	-1.93	-0.66	-1.93

f : probabilities of each nucleotide in the PFM p : background frequencies

Source binding sites

Consensus sequence

c Position frequency matrix (PFM)

	1	2	3	4	5	6	7	8	9	10	11	12	13	14
	0	4	4	0	3	7	4	3	5	4	2	0	0	4
C G	3	0	4	8	0	0	0	3	0	0	0	0	2	4
G	2	3	0	0	0		0	0	1	0	6	8	5	0
т	3	1	0	0	5	1	4	2	2	4	0	0	1	0

d Position weight matrix (PWM)

		_												
A	-1.93	0.79	0.79	-1.93	0.45	1.50	0.79	0.45	1.07	0.79	0.00	-1.93	-1.93	0.79
C	0.45	-1.93	0.79	1.68	-1.93	-1.93	-1.93	0.45	-1.93	-1.93	-1.93	-1.93	0.00	0.79
G	0.00	0.45	-1.93	-1.93	-1.93	-1.93	-1.93	-1.93	0.66	-1.93	1.30	1.68	1.07	-1.93
T	0.15	0.66	-1.93	-1.93	1.07	0.66	0.79	0.00	0.00	0.79	-1.93	-1.93	-0.66	-1.93

c Position frequency matrix (PFM)

	1	2	3	4	5	6	7	8	9	10	11	12	13	14
A	0	4	4	0	3	7	4	3	5	4	2	0	0	4
C G	3	0	4	8	0	0	0	3	0	0	0	0	2	4
	2	3	0	0	0	0	0	0	1	0	6	8	5	0
т	3	1	0	0	5	1	4	2	2	4	0	0	1	0

d Position weight matrix (PWM)

1		_												
A	-1.93	0.79	0.79	-1.93	0.45	1.50	0.79	0.45	1.07	0.79	0.00	-1.93	-1.93	0.79
C	0.45	-1.93	0.79	1.68	-1.93	-1.93	-1.93	0.45	-1.93	-1.93	-1.93	-1.93	0.00	0.79
G	0.00	0.45	-1.93	-1.93	-1.93	-1.93	-1.93	-1.93	0.66	-1.93	1.30	1.68	1.07	-1.93
T	0.15	0.66	-1.93	-1.93	1.07	0.66	0.79	0.00	0.00	0.79	-1.93	-1.93	-0.66	-1.93

e Site scoring

0.45	-0.66	0.79	1.68	0.45	-0.66	0.79	0.45	-0.66	0.79	0.00	1.68	-0.66	0.79
T	T	A	C	A	T	A	A	G	T	A	G	T	C

 $\Sigma = 5.23$, 78% of maximum

Probability given the Frequency matrix

$$S(x_j) = \log igg(rac{P(x|M)}{P(x|R)}igg) = \sum_{i=1}^K \log igg(rac{f_{ix_j[i]}}{p_{x_j[i]}}igg)$$

Probability given the Background model

Source binding sites

B R M C W A W H R W G G B M

Consensus sequence

Position frequency matrix (PFM)

	1	2	3	4	5	6	7	8	9	10	11	12	13	14
	0	4	4	0	3	7	4	3	5	4	2	0	0	4
C G	3	0	4	8	0	0	0	3	0	0	0	0	2	4
G	2	3	0	0	0		0	0	1	0	6	8	5	0
т	3	1	0	0	5	1	4	2	2	4	0	0	1	0

d Position weight matrix (PWM)

Sites with W > 0 could be potential binding sites

Max score: 14.22

Information Content (IC)

• Shannon entropy is a measure of the uncertainty of a model

 $H_g = -\sum_{i=1}^A p_i \log_2(p_i)$

- Special cases of uncertainty (for a 4 letter alphabet):
 - min(H) = 0
 No uncertainty at all: the nucleotide is completely specified (e.g. p={1, 0, 0, 0})
 - H=1
 Uncertainty between two letters (e.g. p= {0.5, 0, 0, 0.5})
 - max(H) = 2
 Complete uncertainty (e.g. p= {0.25, 0.25, 0.25, 0.25})

$$H_{max} = -\left(\frac{1}{4}\log_2\left(\frac{1}{4}\right) + \frac{1}{4}\log_2\left(\frac{1}{4}\right) + \frac{1}{4}\log_2\left(\frac{1}{4}\right) + \frac{1}{4}\log_2\left(\frac{1}{4}\right)\right)$$

- Information content (IC) of a PFM is the sum of the differences between the Max Entropy and the observed entropy on each column.
 - $\circ \quad IC = H_{max} H_{g}$

Information Content (IC)

• Shannon entropy is a measure of the uncertainty of a model

 $H_g = -\sum_{i=1}^A p_i \log_2(p_i)$

- Special cases of uncertainty (for a 20 letter alphabet, aminoacids):
 - \circ max(H) = 4.32

$$H_{\text{max}} = -(1/20 * \log_2(1/20)) * 20$$

Information Content (IC) - Examples

$$H_g = -\sum_{i=1}^A p_i \log_2(p_i)$$

•
$$IC = H_{max} - H_{q}$$

•
$$IC_3$$
: 2 + (1/500 * $log_2(1/500)$) + 0 + 0 + (499/500 * $log_2(499/500)$) = 1.97

•
$$IC_{12}$$
: 2 + (54/500 * $log_2(54/500)$) + (130/500 * $log_2(130/500)$) + (197/500 * $log_2(197/500)$) + (119/500 * $log_2(119/500)$) = 0.12

Information Content (IC) - Examples

AMDA

https://github.com/daquang/YAMDA

Motif analysis algorithms

http://autosome.ru/ChIPMunk/

http://rsat-tagc.univ-mrs.fr/rsat/

http://homer.ucsd.edu/homer/motif/

https://meme-suite.org/meme/

GimmeMotifs

https://github.com/vanheeringen-lab/gimmemotifs

HMM

Mathelier 2013

Nucleotide dependencies are modelled

Supports long k-mers

Bayesian Markov Models

Siebert 2016

Bayesian Markov Models

Siebert 2016

Supports long k-mers

Ideal to visualize dependencies in long sequences, e.g, promoters, poly-A sites

Dinucleotide PWMs

Kulakovskiy 2018

	AA	AC	AG	AT	CA	CC	CG	CT	GA	GC	GG	GT	TA	TC	TG	TT
01	38.0	11.0	44.0	0.0	51.0	15.0	10.0	3.0	86.0	15.0	43.0	3.0	70.0	22.0	53.0	3.0
02	0.0	0.0	0.0	245.0	0.0	0.0	0.0	63.0	0.0	0.0	0.0	150.0	0.0	0.0	0.0	9.0
03	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	17.0	450.0
04	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	8.0	0.0	1.0	8.0	46.0	0.0	354.0	50.0
05	0.0	54.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	353.0	1.0	0.0	0.0	58.0	0.0	0.0
06	0.0	0.0	1.0	0.0	423.0	5.0	34.0	3.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0
07	10.0	5.0	4.0	404.0	0.0	0.0	0.0	6.0	0.0	2.0	0.0	33.0	0.0	0.0	0.0	3.0
80	1.0	9.0	0.0	0.0	0.0	7.0	0.0	0.0	0.0	4.0	0.0	0.0	9.0	436.0	0.0	1.0
09	9.0	0.0	1.0	0.0	454.0	0.0	1.0	1.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0
10	7.0	59.0	186.0	212.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	1.0	1.0	0.0	0.0	0.0
11	1.0	4.0	1.0	2.0	13.0	28.0	3.0	16.0	62.0	82.0	15.0	27.0	34.0	80.0	50.0	49.0
12	26.0	37.0	16.0	31.0	26.0	85.0	8.0	75.0	13.0	28.0	11.0	17.0	6.0	37.0	16.0	35.0
13	15.0	15.0	27.0	14.0	67.0	48.0	13.0	59.0	17.0	13.0	10.0	11.0	24.0	44.0	38.0	52.0

Combining PFMs + DNAshape

Motifs derived from deep learning models

Motifs derived from deep learning or SVM or NMF models

Shrikumar 2019

Each nucleotide in the input sequences have a contribution score in the final layer of the NN.

Take-home messages

- Modelling sequences by motifs is an old but still relevant field in bioinformatics (... and it will be always relevant)
- PFMs are still the most used sequence model so far, although more complex alternatives are becoming popular.
- Complex motif representations are not as popular as PFMs, however, they improve TFBSs predictions for particular TF families.
 - No uniform model
 - Many parameters
 - Require large amount of sequences to train
- Methods assessing importance scores allow to detect motif relationship such as motif syntax.
- There is a lot of room for improvement, since many methods were designed to work with the PFMs and not with the more complex models.

Acknowledgements

- Anthony Mathelier's group
- Alejandra Medina-Rivera
- JAcques van Helden
- Morgane Thomas-Chollier
- Oriol Fornes

https://mathelierlab.com/

