PCT

世界知的所有権機関 国際事務局 特許に基づいて公開された国際山願

(51) 国際特許分類7

C07D 211/86, 221/20, 401/10, 405/10, 413/10, 417/10, A01N 43/40, 43/42, 43/50, 43/56, 43/653, 43/713, 43/76, 43/78, 43/80, 43/824, 43/836, 43/84

(11) 国際公開番号

WO00/50397

(43) 国際公開日

2000年8月31日(31.08.00)

(21) 国際出願番号

PCT/JP00/01062

A1

(22) 国際出願日

2000年2月24日(24.02.00)

(30) 優先権データ

特願平11/49415

1999年2月26日(26.02.99) JP

日本曹達株式会社内 Tokyo, (JP) (74) 代理人 東海裕作, 外(TOKAI, Yusaku et al.)

阿達弘之(ADACHI, Hiroyuki)[JP/JP] 〒100-8165 東京都千代田区大手町2-2-1

〒100-8165 東京都千代田区大手町2丁目2番1号

(71) 出願人 (米国を除くすべての指定国について)日本曹達株式会社(NIPPON SODA CO., LTD.)[JP/JP]〒100-8165 東京都千代田区大手町2丁目2番1号 Tokyo, (JP)

(72) 発明者;および

(75) 発明者/出願人(米国についてのみ)

山田靖雄(YAMADA, Yasuo)[JP/JP]

加藤雅彦(KATO, Masahiko)[JP/JP]

高橋明裕(TAKAHASHI, Akihiro)[JP/JP]

古口正巳(KOGUCHI, Masami)[JP/JP]

山田茂雄(YAMADA, Shigeo)[JP/JP]

田中克典(TANAKA, Katsunori)[JP/JP]

梶田 理(KAJITA, Satoshi)[JP/JP]

〒250-0280 神奈川県小田原市高田345

日本曹達株式会社 小田原研究所内 Kanagawa, (JP)

日本曹達株式会社内 Tokyo, (JP)

(81) 指定国 AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, 欧州特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG), ARIPO特許 (GH, GM, KE, LS, MW, SD, SL, SZ, TZ,

UG, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ,

添付公開書類

TM)

国際調査報告書

(54) Title: SUBSTITUTED PIPERIDINEDIONE DERIVATIVES AND HERBICIDE

(54)発明の名称 置換ピペリジンジオン誘導体および除草剤

(57) Abstract

Piperidinedione derivatives represented by general formula (1) (wherein R^1 and R^2 each represents halogeno, C_{1-6} alkyl, C_{1-6} alkylsulfonyl, etc.; R^3 represents halogeno, C_{1-6} alkyl, etc.; R^4 and R^5 each represents hydrogen, C_{1-6} alkyl, etc.; R^6 and R^7 each represents C_{1-6} alkyl or may be bonded to each other to form an alkylene chain; R^8 represents hydrogen, C_{1-6} alkyl, etc.; and Z represents optionally substituted amino, phenyl, heterocycle, etc. or salts thereof; and a herbicide containing one or more of these.

一般式(1)

(式中、 R^1 , R^2 は、nロゲン原子, C_{1-6} アルキル基, C_{1-6} アルキルスルホニル基などを表し、 R^8 は、nロゲン原子, C_{1-6} アルキル基などを表し、nは、0, 1, 2である。 R^4 , R^5 は、水素原子, C_{1-6} アルキル基などを表し、 R^8 , R^7 は、 C_{1-6} アルキル基,両者が一緒になって、アルキレン鎖を形成してもよい。 R^8 は、水素原子, C_{1-6} アルキル基などを表す。Zは、置換基を有してもよいアミノ基,フェニル基,複素環基などを表す。)で表されるピペリジンジオン誘導体またはその塩、およびこれらの1種または2種以上を含有する除草剤である。

PCTに基づいて公開される国際出願のパンフレット第一頁に掲載されたPCT加盟国を同定するために使用されるコード(参考情報)

置換ピペリジンジオン誘導体および除草剤

技術分野:

本発明は、ピペリジンの3位にベンゾイル基が置換した置換ピペリジン誘導体 および除草剤に関する。

背景技術:

本発明化合物に類似のピペリジンジオン化合物が除草活性を有することは、W O 9 8 / 2 9 4 1 2 号公報に記載されている。

しかしながら、上記式においてnが1以上である化合物およびR⁶, R⁷が共に水素原子ではない化合物は具体的には記載されていない。

また、ベンゼン環の3位が、5員複素環基以外の置換基を有する化合物は、記載されていない。

発明の開示:

本発明は、(a)一般式(1)

[式中、 R^1 , R^2 は、それぞれ独立して、ニトロ基、シアノ基、ハロゲン原子 , C_{1-6} アルキル基, C_{1-6} アルコキシ基, C_{1-6} ハロアルキル基, C_{1-6} アルキルスルフィニル基または C_{1-6} アルキルスルホニル基 を表す。

 R^3 は、ニトロ基、シアノ基、ハロゲン原子、 C_{1-6} アルキル基、 C_{1-6} アルキル基、 C_{1-6} アルキルスルフィニル基または C_{1-6} アルキルスルホニル基を表す。

nは、0,1,2を表す。

 R^4 , R^5 は、それぞれ独立して、水素原子,ハロゲン原子, C_{1-6} アルキル基, C_{1-6} アルキル基, C_{1-6} アルコキシ C_{1-6} アルキル基, C_{1-6} アルキル基, C_{1-6} アルキル基,とドロキシ C_{1-6} アルキル基を表し、また、 R^4 , R^5 は、一緒になって炭素数 $2\sim 5$ のアルキレン鎖を形成してもよい。

 R^6 は、水素原子、 C_{1-6} アルキル基,ヒドロキシ C_{1-6} アルキル基, C_{1-6} ハロアルキル基を表す。但し、 R^6 が水素原子のとき、n は 0 ではない。

 R^7 は、 C_{1-6} アルキル基,ヒドロキシ C_{1-6} アルキル基, C_{1-6} ハロアルキル基を表し、また、 R^6 , R^7 は一緒になって炭素数 $2\sim 5$ のアルキレン鎖を形成してもよく、さらに R^7 は R^5 と一緒になって、結合または炭素数 $1\sim 4$ のアルキレン鎖を形成してもよい。

 R^8 は、水素原子, C_{1-6} アルキル基, C_{2-6} アルケニル基, C_{2-6} アルキニル基, C_{1-6} ハロアルキル基, C_{2-6} ハロアルケニル基, C_{2-6} ハロアルキニル基, C_{1-6} アルコキシ基, C_{2-6} アルケニルオキシ基, C_{2-6} アルケニルオキシ基, C_{2-6} アルケニルオキシ基, C_{2-6} ハロアルコキシ基, C_{2-6} ハロアルカニルオキシ基を表す。

Zは、ホルミル基、モルホリノ基、 C_{1-6} アルコキシ基、 C_{1-6} アルコキシ C_{1-6} アルコキシ基、 C_{2-6} アルケニル基、 C_{1-6} アルコキシカルボニル基、ジ C_{1-6} アルコキシメチル基、ジ C_{1-6} アルキルチオメチル基、置換されてもよいアミノ基、置換されてもよいフェニル基、置換されてもよい複素環基または式 -C $(R^8) = NR^{10}$ (ここで、 R^8 は、水素原子または C_{1-6} アルキル基を、 R^{10} は、ヒドロキシ基、 C_{1-6} アルキル基、 C_{1-6} アルキル基、 C_{2-6} アルケニル基、 C_{2-6} ハロアルケニル基、 C_{2-6} ハロアルキニル基、 C_{2-6} ハロアルキル基、 C_{1-6} アルコキシ区 C_{1-6} アルコキシ基、 C_{1-6} アルコキシ基、 C_{1-6} アルコキシ基、 C_{2-6} アルカー・ル基、 C_{1-6} アルコキシ基、 C_{1-6} アルコキシ基、 C_{2-6} アルカー・ル基、 C_{1-6} アルカー・ルス・ C_{2-6} アルカー・ C_{2-6} アルカー・ルス・ C_{2-6} アルカー・ルス・ C_{2-6} アルカー・ルス・ C_{2-6} アルカー・ C_{2

ケニルオキシ基、C₂-6 ハロアルケニルオキシ基、C₂-6 アルキニルオキシ基、C₂-6 ハロアルキニルオキシ基、置換されてもよいアミノ基、置換されてもよいフェニルオキシ基または置換されてもよいベンジルオキシ基を表す。)で表される基を表す。〕で表される置換ピペリジンジオン誘導体またはその塩、および

(b)前記 一般式(1)で表される置換ピペリジンジオン誘導体もしくはその 塩の1種または2種以上を有効成分として含有することを特徴とする除草剤であ る。

更に本発明は、前記一般式(1)におけるZの定義において、置換されてもよい複素環基が、下記の各基

(式中、R¹¹およびR¹²は、それぞれ独立して、水素原子、ハロゲン原子、C₁₋。アルキル基またはC₁₋₆。アルコキシ基を表す。)

で表ざれる群から選ばれた一種であることを特徴とする(a)記載の誘導体またはその塩およびそれらを有効成分として含有する除草剤である。

発明の実施の形態:

一般式(1)において、 R^1 , R^2 は、それぞれ独立して、ニトロ基;シアノ基;フッ素、塩素、臭素などのハロゲン原子;メチル、エチル、プロピル、イソプロピル、ブチル、t-ブチルなどの C_{1-6} アルキル基;メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、t- ブトキシなどの C_{1-6} アルコキシ

基;トリフルオロメチル、トリクロロメチル、フルオロメチル、クロロメチル、ジフルオロメチル、ジクロロメチル、トリフルオロエチル、ペンタフルオロエチルなどの C_{1-6} ハロアルキル基;メチルチオ、エチルチオ、プロピルチオ、イソプロピルチオ、ブチルチオなどの C_{1-6} アルキルチオ基;メチルスルフィニル、エチルスルフィニル、プロピルスルフィニル、イソプロピルスルフィニルなどの C_{1-6} アルキルスルフィニル、エチルスルホニル、プロピルスルホニル、イソプロピルスルホニル、エチルスルホニルを表す。

 R^3 は、ニトロ基;シアノ基;フッ素、塩素、臭素などのハロゲン原子;メチル、エチル、プロピル、イソプロピル、ブチル、t ーブチルなどの C_{1-6} アルキル基;メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、t ーブトキシなどの C_{1-6} アルコキシ基;トリフルオロメチル、トリクロロメチル、フルオロメチル、クロロメチル、ジフルオロメチル、ジクロロメチル、トリフルオロエチル、ペンタフルオロエチルなどの C_{1-6} ハロアルキル基;メチルチオ、エチルチオ、プロピルチオ、イソプロピルチオなどの C_{1-6} アルキルチオ基;メチルスルフィニル、エチルスルフィニル、イソプロピルスルフィニル、イソプロピルスルフィニル、エチルスルホニル、エチルスルホニル、ガロピルスルホニル、イソプロピルスルホニルはどの C_{1-6} アルキルスルホニル、プロピルスルホニル、イソプロピルスルホニルなどの C_{1-6} アルキルスルホニル

 R^4 , R^5 は、それぞれ独立して、水素原子;フッ素、塩素、臭素などのハロゲン原子;メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、 t ープチルなどの C_{1-6} アルキル基;トリフルオロメチル、トリクロロメチル、フルオロメチル、クロロメチル、ジクロロメチル、ジフルオロメチル、トリフルオロエチル、ペンタフルオロエチルなどの C_{1-6} ハロアルキル基;メトキシメチル、メトキシエチル、エトキシメチル、エトキシエチルなどの C_{1-6} アルコキシ C_{1-6} アルキル基;アセチルオキシメチル、エチルカルボニルオキシメチル、アセチルオキシエチルなどの C_{1-6} アルキル基;ヒドロキシメチル、ヒドロキシエチル、ヒドロキシプロピルなどのヒドロキシ C_{1-6} アルキル基を表す。 R^4 と R^5 は、一緒になって、エチレン、トリメチレン、

テトラメチレン、ペンタメチレンなどの炭素数 2 ~ 5 のアルキレン鎖を形成して もよい。

 R^6 は、水素原子;メチル,エチル,プロピル,イソプロピル,ブチル,イソプチル, t ーブチルなどの C_{1-6} アルキル基;ヒドロキシメチル,ヒドロキシエチルなどのヒドロキシ C_{1-6} アルキル基;トリフルオロメチル,トリクロロメチル,フルオロメチル,クロロメチル,ヨードメチル,ジクロロメチル,ジフルオロメチル,トリフルオロエチル,ペンタフルオロエチルなどの C_{1-6} ハロアルキル基を表す。

R¹ は、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、 t ーブチルなどの C₁₋₆ アルキル基;ヒドロキシメチル、ヒドロキシエチルなどのヒドロキシ C₁₋₆ アルキル基;トリフルオロメチル、トリクロロメチル、フルオロメチル、クロロメチル、ヨードメチル、ジクロロメチル、ジフルオロメチル、トリフルオロエチル、ペンタフルオロエチルなどの C₁₋₆ ハロアルキル基を表す。 R⁶ と R⁷ は、一緒になって、エチレン、トリメチレン、テトラメチレン、ペンタメチレンなどの炭素数 2~5のアルキレン鎖を形成してもよい。さらに、R⁷ と R⁵ は、一緒になって、結合または、メチレン、エチレン、トリメチレン、テトラメチレンなどの炭素数 1~4のアルキレン鎖を形成してもよい。

乙は、ホルミル基;モルホリノ基;メトキシ,エトキシ,プロポキシ,イソプ 口ポキシなどのС1-6 アルコキシ基;メトキシメトキシ,メトキシエトキシ,エ トキシメトキシなどのC₁₋₆ アルコキシC₁₋₆ アルコキシ基;ビニル, アリル, 2-ブテニルなどのС2-6 アルケニル基;メトキシカルボニル, エトキシカルボ ニルなどのC1-6 アルコキシカルボニル基;ジメトキシメチル,ジエトキシメチ ルなどのジC1-8 アルコキシメチル基;ジメチルチオメチル, ジエチルチオメチ ルなどのジC1-6 アルキルチオメチル基;メチル,エチルなどのC1-6 アルキル 基,アセチル,プロピオニル,ブチリルなどのС1-6アルキルカルボニル基,メ チルスルホニル,エチルスルホニルなどのCュ-。 アルキルスルホニル基,メチル アミノカルボニル,エチルアミノカルボニル,ジメチルアミノカルボニル,ジエ チルアミノカルボニルなどのCュー。 アルキルアミノカルボニル基,ベンジル基な どでモノまたはジ置換されてもよいアミノ基;任意の位置に、シアノ、ニトロ、 フッ素、塩素、臭素などのハロゲン原子、メチル、エチルなどのCュー。 アルキル 基、メトキシ,エトキシなどのCュ-。 アルコキシ基、トリフルオロメチルなどの C_{1-6} ハロアルキル基、メトキシカルボニル、エトキシカルボニルなどの C_{1-6} アルコキシカルボニル基などの置換基を有していてもよいフェニル基を表す。

ーイル、イソチアゾールー3ーイル、イソチアゾールー4ーイル、イソチアゾールー5ーイル、1、2、4ーチアジアゾールー3ーイル、1、2、4ーチアジアゾールー5ーイル、1, 2、4ーチアジアゾールー2ーイル、イミダゾールー4ーイル、2ーチエニル、3ーチエニル、ピラゾールー3ーイル、ピラゾールー4ーイル、1, 2, 4ートリアゾールー3ーイル、テトラゾールー5ーイル、4, 5ージヒドロイソオキサゾールー3ーイル、4, 5ージヒドロイソオキサゾールー5ーイル、2ーピリジル、3ーピリジル、4ーピリジルなどを挙げることができる。なお、複素環基は任意の位置に、フッ素、塩素、臭素などのハロゲン原子、メチル、エチルなどの C_{1-6} アルキル基、メトキシ、エトキシなどの C_{1-6} アルキャ基などの置換基 R^{11} 、 R^{12} を有していてもよい。

好ましい複素環基として、以下に示す各基を挙げることができる。

(式中、 R^{11} および R^{12} は、それぞれ独立して、水素原子、ハロゲン原子、 C_{1-} 。アルキル基または C_{1-} 。アルコキシ基を表す。)

さらに、Zは、式-C(R[®])=N R¹⁰で表される基を表す。R[®] は、水素原子またはメチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、t - ブチルなどのC₁₋₆ アルキル基を、R¹⁰は、ヒドロキシ基;メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、t - ブチルなどのC₁₋₆ アルキル基;トリフルオロメチル、トリクロロメチル、フルオロメチル、クロロメチル、

ジフルオロメチル, ジクロロメチル、トリフルオロエチル、ペンタフルオロエチ ルなど C1-6 ハロアルキル基; ビニル, 1-プロペニル, アリル, クロチル, ブ タジエニルなどのCュ-。 アルケニル基;2-クロロビニル,2,2-ジフルオロ ビニル、3-クロロアリル、3、3-ジクロロアリル、2-クロロアリルなどの C_{2-6} ハロアルケニル基;エチニル、1-プロピニル、2-プロピニルなどのC2-6 アルキニル基; 2-クロロエチニル、3-クロロ-2-プロピニル、3-フ ロロー2-プロピニルなどのС2-6 ハロアルキニル基;シクロプロピル,シクロ ペンチル,シクロヘキシルなどのC3-8 シクロアルキル基;メトキシ,エトキシ , プロポキシ, イソプロポキシ, ブトキシ, t - ブトキシなどの C 1-6 アルコキ シ基;メトキシメチル、メトキシエチル、エトキシメチル、エトキシエチルなど の C_{1-6} アルコキシ C_{1-4} アルキル基;トリフルオロメトキシ, 1, 1, 2, 2 ーテトラフルオロエトキシ, トリクロロメトキシ, ジフルオロメトキシなどの C 1-6 ハロアルコキシ基;シクロプロピルオキシ,シクロペンチルオキシ,シクロ ヘキシルオキシなどのC₃-ぉ シクロアルキルオキシ甚;ビニルオキシ, 1-プロ ペニルオキシ,アリルオキシ,クロチルオキシ,ブタジェニルオキシなどのC。-。アルケニルオキシ基;1-クロロビニルオキシ、2-クロロビニルオキシ、3 - クロロアリルオキシ、2 - クロロクロチルオキシなどの C 2-6 ハロアルケニル オキシ基;エチニルオキシ、1-プロピニルオキシ、2-プロピニルオキシなど のС2-6 アルキニルオキシ基;トリフルオロメチルオキシ, 2-クロロエチニル オキシ, 2-ブロモエチニルオキシ, 3-クロロ-2-プロピニルオキシ, 3, 3, 3-トリフルオロー1-プロピニルオキシなどの C_{2-6} ハロアルキニルオキ シ基;メチルアミノ、エチルアミノ、ジメチルアミノ、ジエチルアミノなどの置 換されてもよいアミノ基;置換されてもよいフェニル基;置換されてもよいベン ジル基;置換されてもよいフェニルオキシ基または置換されてもよいベンジルオ キシ基を表す。ここで、フェニル、ベンジル、フェニルオキシ、ベンジルオキシ の置換基としては、フッ素、塩素、臭素などのハロゲン原子;メチル、エチルな どのС1-6 アルキル基、メトキシ、エトキシなどのС1-6 アルコキシ基;トリフ ルオロメチルなどの C₁₋₆ ハロアルキル基、トリフルオロメトキシなどの C₁₋₆ ハロアルコキシ基などを挙げることができる。

本発明化合物は、次の方法によって製造することができる。

製造法(i)

(式中、 R^1 , R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^8 , nおよびZは前記と同じ意味を表し、Qは、ハロゲン原子、アルキルカルボニルオキシ基、アルコキシカルボニルオキシ基またはベンゾイルオキシ基を表す。)

上記工程において、化合物(3 a)および(3 b)は、化合物(2)とArCOQ(Ar,Qは、前記と同じ意味を表す。)とを各々1モルずつあるいは一方を過剰に用い、1モルまたは過剰の塩基の存在下に反応させることによって得られる。

反応に用いられる塩基としては、KOH, NaOHなどのアルカリ金属水酸化物、炭酸ナトリウム、炭酸カリウムなどのアルカリ金属炭酸塩、水酸化カルシウム、水酸化マグネシウムなどのアルカリ土類金属水酸化物、炭酸カルシウムなどのアルカリ土類金属炭酸塩、トリエチルアミン、ジイソプロピルエチルアミン等のトリ(C₁₋₆ アルキル)アミン、ピリジンなどの有機塩基、燐酸ナトリウムなどを例示することができる。

また、溶媒としては、水、塩化メチレン、クロロホルム、トルエン、酢酸エチ

ル,ジメチルホルムアミド(DMF),テトラヒドロフラン(THF),ジメトキシエタン(DME),アセトニトリルなどが用いられる。

反応混合物は反応が完了するまで 0 ℃~ 5 0 ℃で攪拌される。また、四級アン モニウム塩などの相間移動触媒を用いて、二相系で反応させることもできる。

さらに、化合物(3 a)および(3 b)は、化合物(2)と化合物A r C O O H(A r は、前記と同じ意味を表す。)とをジシクロヘキシルカルボジイミド(D C C)などの脱水縮合剤の存在下に反応させることによっても得られる。D C C などとの反応において用いられる溶媒としては、塩化メチレン、クロロホルム、トルエン、酢酸エチル、DMF、THF、DME、アセトニトリルなどが用いられる。反応混合物は反応が完了するまで-10 \sim 50 \sim 6 \sim 7 復拌される。反応混合物は常法によって処理される。

化合物(3 a)および(3 b)は混合物として、次の転位反応に使用される。転位反応は、シアン化合物および穏和な塩基の存在下で行われる。すなわち、化合物(3 a)および(3 b)の1モルを、1~4モルの塩基、好ましくは1~2モルの塩基および0.01モルから1.0モル、好ましくは0.05モルから0.2モルのシアン化合物と反応させることにより、化合物(1 a)を得るものである。ここで用いられる塩基は前記の塩基がいずれも用いられ得る。また、シアン化合物としては、シアン化カリウム、シアン化ナトリウム、アセトンシアンヒドリン、シアン化水素、シアン化カリウムを保持したポリマーなどが用いられる。なお、少量のクラウンエーテルなどの相間移動触媒を加えることにより、反応がより短い時間で完結する。反応温度は80℃より低い温度、好ましくは20℃から40℃で行われる。用いられる溶媒は、1、2~ジクロロエタン、トルエン、アセトニトリル、塩化メチレン、酢酸エチル、DMF、メチルイソブチルケトン、THF、DMEなどである。

また、化合物(1 a)は、以下の方法に従って化合物(2)とArCOCN(Arは、前記と同じ意味を表す。)とを塩基および必要ならばルイス酸の存在下で反応させることによっても得られる。

用いられる塩基は、KOH, NaOHなどのアルカリ金属水酸化物、水酸化マグネシウム, 水酸化カルシウムなどのアルカリ土類金属の水酸化物、トリエチル

アミン,ジイソプロピルエチルアミンなどのトリ(C₁₋₆ アルキル)アミン、ピリジンなどの有機塩基、炭酸ナトリウム、燐酸ナトリウムなどである。適当なルイス酸としては、塩化亜鉛、三塩化アルミニウムなどであり、好ましくは塩化亜鉛である。

反応は、アセトニトリル、塩化メチレンなどの有機溶媒中において、-20℃ ~溶媒の沸点までの適当な温度で行われる。

製造法(ii)

化合物(1 c)は、化合物(1 b)(式中、R¹³は、低級の分岐していてもよいアルコキシ、アラアルキルオキシ、またはアセトキシを意味する。)を、塩素、臭化水素酸などのハロゲン化水素酸、トリフルオロ酢酸、三臭化ホウ素などとの反応、水素化分解あるいはアルカリ加水分解などにより、また必要に応じて、次いで加水分解を行うことによって製造することができる。

また、化合物(1 c)は、通常の方法により、ハロゲン化、アルキルスルホナート化あるいはアリールスルホナート化することにより化合物(1 d)(L は、脱離基であり、ハロゲン、アルキルスルホナートまたはアリールスルホナートなどを意味する。)に導くことができる。

さらに、化合物(1e)は、化合物(1d)を、溶媒中、等モル以上の塩基の

存在下、-20℃から用いる溶媒の沸点まで、好ましくは室温から100℃で、 30分から数10時間反応させることにより製造することができる。

用いられる塩基は、KOH, NaOHなどのアルカリ金属水酸化物、水酸化マグネシウム, 水酸化カルシウムなどのアルカリ土類金属の水酸化物、トリエチルアミン、ジイソプロピルエチルアミンなどのトリ(C₁₋₆ アルキル)アミン、ピリジン、1, 8-ジアザビシクロ[5.4.0]ウンデセン-7(DBU)、t-BuOK、トリトンB、炭酸ナトリウム、燐酸ナトリウムなどである。

用いられる溶媒としては、単独あるいは混合して、水, アルコール, 塩化メチレン, ベンゼン, トルエン, 酢酸エチル, DMF, THF, DME, アセトニトリルなどである。

上記のArCOQ(ArおよびQは、前記と同じ意味を表す。)およびArCOOH(Arは前記と同じ意味を表す。)は、公知の方法に従って製造することができる。

一般式(2)で表される環状ジオン体は、以下に示す経路に従って製造することができる

(式中、 R^5 , R^6 , R^7 および R^8 は、前記と同じ意味を表し、 R^4 は、図中に示された基を表す。 R^{14} , R^{15} は低級アルキル基を表し、Yはハロゲン原子を

表す。)

化合物(6)は、化合物(4)と R^8 NH2(ここで、 R^8 は前記と同じ意味を表す。)とから公知の方法によって得られる化合物(5)と、等モルまたは、過剰の酸クロリド $R^{15}O_2$ CCH2 COCl(ここで、 R^{15} は、前記と同じを表す。)とを、溶媒、等モルまたは、過剰の塩基の存在下に反応させることによって得られる。

用いられる塩基は、KOH、NaOHなどのアルカリ金属水酸化物、炭酸ナトリウム、炭酸カリウムなどのアルカリ金属炭酸塩、水酸化カルシウム、水酸化マグネシウムなどのアルカリ土類金属水酸化物、炭酸カルシウムなどのアルカリ土類金属炭酸塩、トリエチルアミン、ジイソプロピルエチルアミンなどのトリ(C1-6 アルキル)アミン、ピリジンなどの有機塩基、燐酸ナトリウムなどである。用いられる溶媒としては、塩化メチレン、クロロホルム、トルエン、酢酸エチル、DMF、THF、DME、アセトニトリルなどである。

反応は-10℃から用いた溶媒の沸点までの間で行われる。

次いで、得られた化合物(6)を、等モル~3倍のナトリウムエチラートなどのアルカリ金属アルコラートあるいは、水素化ナトリウムなどの金属ヒドリドの塩基存在下、有機溶媒中、0℃~溶媒の沸点までの間で反応させ、次に、塩酸などの無機酸で中和することによって化合物(7)が得られる。

ここで、反応に用いられる溶媒としては、エタノール、メタノールなどのアルコール類、THF、DMEなどのエーテル類、トルエン、キシレンなどの炭化水素類およびDMFなどが挙げられる。

得られた化合物(7)を、水の存在下溶媒中で加熱することによって化合物(2a)が得られる。

用いられる溶媒としては、塩化メチレン、クロロホルム、トルエン、酢酸エチル、DMF、THF、ジオキサン、DME、アセトニトリルなどである。

さらに、化合物(2b)は、化合物(2a)を溶媒中、塩基の存在下、親電子試剤 R^4Y (ここで、 R^4 は、図中に示された基を表し、Yは、ハロゲン原子を表す。)と、-78 \mathbb{C} から用いる溶媒の沸点までの間で反応させることによって得られる。

用いられる溶媒としては、エーテル、THF、ベンゼン、トルエン、ヘキサンなどである。また、用いられる塩基としては、アルキルリチウム、リチウムジイソプロピルアミドなどである。

原料として用いている化合物(4)のアクリル酸誘導体、安息香酸エステルアルデヒド体およびそれからの中間体、安息香酸エステルカルボン酸体およびそれからの中間体、複素環を有する中間体などは、WO98/29412号、WO98/56766号、特開平10-338675号公報などに記載の公知の方法によって製造できる。

化合物(1)が上記の方法で、遊離のヒドロキシル基を含有している場合には、該化合物から、その塩、特に農園芸的に許容され得る塩、エナミンまたはその類似物、アシレート、スルホネート、カルバメート、エーテル、チオエーテル、スルホキシドまたはスルホンなどを誘導し得る。適当な農園芸的に許容され得る塩としてナトリウム、カリウム、カルシウムおよびアンモニウムなどの塩が挙げられる。

アンモニウム塩の例としては、式: N^+ RaRbRcRd(式中、Ra、Rb、RcおよびRdは各々独立して、水素および、場合によりヒドロキシ基などにより置換された C_{1-10} アルキル基である)のイオンとの塩が挙げられる。Ra、Rb、RcおよびRdは、いずれかが、場合により置換されたアルキル基である場合には、これらは $1\sim4$ 個の炭素原子を含有していることが望ましい。

適当なエナミンまたはその類似物は、OH部分がそれぞれ、式:-NReRf(式中、Reak は、それぞれ独立して、水素または、例えば炭素数が $1\sim 6$ 個の、場合により置換されたアルキル基またはアリール基、例えばフェニル基である。),ハロゲン,S(O) g R h(式中:R h は、例えば炭素数が $1\sim 6$ 個の、場合により置換されたアルキル基またはアリール基、例えばフェニル基であり、g は $0\sim 2$ を表す。)に転化されている化合物である。

適当なアシレート、エーテルまたはカルバメート誘導体は、OH部分が、それぞれ、式:-OCORi、-ORjまたは-OCONRkRl(式中、RiおよびRjは、前記のRhと同じ意味を表し、RkおよびRlは、前記のReと同じ意味を表す。)に転化されている化合物である。

これらの誘導体は、通常の合成化学的手法で製造し得る。

本発明化合物(1)および原料化合物(2)、(7)などには、光学活性体が存在する場合もあり、さらに多数の互変異性体の形、例えば、下記に示すような形で存在し得る。かかる形は、すべて本発明の範囲に含まれる。

$$R^{5} \xrightarrow{R^{4}} 0 \xrightarrow{R} 0 \xrightarrow{R^{5}} R^{4} \xrightarrow{0} 0 \xrightarrow{0} Ar$$

$$R^{5} \xrightarrow{R^{4}} 0 \xrightarrow{0} 0 \xrightarrow{R^{5}} R^{4} \xrightarrow{0} 0 \xrightarrow{R} 0$$

$$R^{5} \xrightarrow{R^{4}} 0 \xrightarrow{0} 0 \xrightarrow{R^{5}} R^{6} \xrightarrow{R^{7}} R^{8}$$

$$R^{6} \xrightarrow{R^{7}} R^{8} \xrightarrow{R^{4}} 0 \xrightarrow{0} 0 \xrightarrow{R^{5}} R^{4} \xrightarrow{0} 0 \xrightarrow{R^{5}} R^{4} \xrightarrow{0} 0 \xrightarrow{R^{5}} R^{4} \xrightarrow{0} 0 \xrightarrow{R^{5}} R^{6} \xrightarrow{R^{7}} R^{8}$$

$$R^{6} \xrightarrow{R^{7}} R^{8} \xrightarrow{R^{4}} 0 \xrightarrow{0} 0 \xrightarrow{R^{5}} R^{4} \xrightarrow{0} 0 \xrightarrow{R^{5}} R^{4} \xrightarrow{0} 0 \xrightarrow{R^{5}} R^{8} \xrightarrow{R^{5}$$

本発明化合物、反応終了後、通常の後処理を行うことにより目的物を得ることができる。

また、本発明化合物の構造は、IR, NMRおよびMSなどから決定した。

本発明化合物の代表例を第1表および第2表に示した。

これらの表の Z 欄における略記号(A~R)は、下記の意味を表し、Phはフェニル基を表す。

A: $N \longrightarrow CH_s$ $C: N \longrightarrow CH_s$ $C: N \longrightarrow CH_s$

$$M: \qquad N - N \stackrel{\text{CH}_3}{\nearrow} \qquad N: \qquad O: \qquad N = N \stackrel{\text{CH}_3}{\nearrow} \qquad O: \qquad N = N \stackrel{\text$$

$$Q: \qquad \qquad R: \qquad \bigcap_N$$

第 1 表

R 1	R²	R³n	R 4	R 5	R ⁶	R 7	R ⁸	Z
Cl	SO ₂ CH ₃	n = 0	Н	Н	СНз	CH ₃	Н	Α
C 1	SO ₂ CH ₃	n = 0	Н	Н	СН₃	СНз	СНз	Α
CH ₃	SO ₂ CH ₃	n = 0	Н	Н	СНз	CH ₃	Н	A
СНз	SO ₂ CH ₃	n=0	Н	Н	СНз	CH3	CH ₃	A
Cl	C 1	n = 0	H	Н	СНз	CH ₃	Н	A
C1	SO ₂ CH ₃	n = 0	Н	Н	CH ₃	CH3	Н	В
C 1	SO ₂ CH ₃	n = 0	Н	Н	CH ₃	СНз	CH3	В
CH ₃	SO₂CH₃	n = 0	Н	Н	СНз	СН₃	Н	В
СНз	SO₂CH₃	n = 0	Н	Н	CH3	CH ₃	СНз	В
Cl	C I	n = 0	Н	Н	CH ₃	CH3	СН₃	В
C 1	SO₂CH₃	n = 0	Н	Н	СН₃	CH3	Н	С
CI	SO ₂ CH ₃	n=0	Н	Н	СН₃	C ₂ H ₅	Н	С
CI	SO ₂ CH ₃	n = 0	Н	Н	C 2 H 5	C ₂ H ₅	Н	С
Cl	SO ₂ CH ₃	n=0	Н	Н	CH ₃	CH3	СНз	С
C1	SO ₂ CH ₃	n = 0	Н	Н	СНз	C 2 H 5	CH3	С
Cl	SO ₂ CH ₃	n = 0	Н	Н	C 2 H 5	C ₂ H ₅	CH ₃	С
CH3	SO ₂ CH ₃	n = 0	Н	Н	СНз	CH ₃	Н	С
CH ₃	SO ₂ CH ₃	n=0	Н	н	СНз	C 2 H 5	Н	С
CH3	SO ₂ CH ₃	n=0	Н	Н	C ₂ H ₅	C ₂ H ₅	Н	С
CH ₃	SO ₂ CH ₃	n=0	Н	Н	CH ₃	СН₃	СНз	С
СНз	SO ₂ CH ₃	n=0	H.	Н	СНз	C ₂ H ₅	CH ₃	С

第 1 表(つづき)

R 1	R ²	R³n	R 4	R ⁵	R ⁶	R 7	R ⁸	Z
CH ₃	SO ₂ CH ₃	n = 0	Н	Н	C ₂ H ₅	C ₂ H ₅	СНз	С
C1	C1	n=0	Н	Н	СН₃	CH₃	Н	С
Cl	C1	n=0	Н	Н	СНз	C ₂ H ₅	Н	С
Cl	C1	n=0	Н	Н	C ₂ H ₅	C ₂ H ₅	Н	С
C1	C 1	n=0	Н	Н	CH ₃	CH₃	CH₃	С
CI	C 1	n=0	Н	Н	СНз	C ₂ H ₅	СНз	С
C1	Cl	n=0	Н	Н	C ₂ H ₅	C ₂ H ₅	CH ₃	С
C1	SO ₂ CH ₃	5-CH3	Н	Н	СНз	CH3	Н	С
C1	SO ₂ CH ₃	5-CH3	Н	Н	СНз	C ₂ H ₅	Н	С
C1	SO ₂ CH ₃	5-CH3	Н	Н	C ₂ H ₅	C ₂ H ₅	Н	С
C1	SO ₂ CH ₃	5-CH3	Н	Н	CH3	CH3	СНз	С
Cl	SO ₂ CH ₃	5-CH3	Н	Н	СНз	C ₂ H ₅	CH ₃	С
C1	SO ₂ CH ₃	5-CH3	Н	н	C ₂ H ₅	C ₂ H ₅	CH ₃	С
CH3	SO ₂ CH ₃	5-CH3	Н	Н	СНз	CH3	Н	С
СНз	SO ₂ CH ₃	5-CH₃	Н	Н	CH₃	C 2 H 5	Н	С
CH3	SO ₂ CH ₃	5-CH3	Н	Н	C 2 H 5	C ₂ H ₅	Н	С
СНз	SO ₂ CH ₃	5-CH3	Н	Н	CH3	CH₃	CH ₃	С
СНз	SO ₂ CH ₃	5-CH3	Н	Н	CH₃	C 2 H 5	CH3	С
СНз	SO ₂ CH ₃	5-CH3	Н	Н	C ₂ H ₅	C 2 H 5	CH₃	С
C1	C 1	5-CH3	н	Н	СНз	CH ₃	Н	С
CI	C 1	5-CH3	Н	Н	CH3	C ₂ H ₅	Н	С
C 1	C1	5-CH3	Н	Н	C ₂ H ₅	C ₂ H ₅	Н	С
C1	C1	5-CH₃	Н	Н	СНз	СН₃	CH ₃	С
CI	C1	5-CH3	Н	Н	СНз	C ₂ H ₅	СНз	С
CI	C 1	5-CH ₃	Н	Н	C 2 H 5	C ₂ H ₅	CH3	С

R 1	R²	R ³ n	R 4	R 5	R ⁶	R 7	R ⁸	Z
C 1	SO ₂ CH ₃	n = 0	Н	Н	CH ₃	CH ₃	CH ₃ O	С
CH ₃	SO ₂ CH ₃	n = 0	Н	Н	CH ₃	СНз	CH₃O	С
Cl	C1	n = 0	Н	Н	CH3	CH ₃	CH₃O	С
C 1	SO ₂ CH ₃	5-C1	Н	Н	CH3	CH3	Н	С
СНз	SO ₂ CH ₃	5-C1	Н	H	CH₃	CH3	СН₃	С
C 1	Cl	5-C1	Н	Н	СН₃	CH3	Н	С
C 1	SO ₂ CH ₃	n = 0	· CH 3	Н	СНз	CH₃	Н	С
CH3	SO ₂ CH ₃	n = 0	СНз	н	CH ₃	СН₃	CH ₃	С
Cl	C1	n = 0	CH3	Н	CH₃	CH3	CH ₃	С
C 1	SO ₂ CH ₃	n = 0	Br	Н	CH₃	CH₃	Н	С
СН₃	SO ₂ CH ₃	n = 0	Br	Н	СНз	СН₃	СН₃	С
C 1	CI	n = 0	Br	Н	CH3	CH ₃	Н	С
C1	SO ₂ CH ₃	n=0	Н	Н	- (CI	l ₂) ₂ -	Н	С
CH₃	SO ₂ CH ₃	n = 0	Н	Н	- (CI	12)2-	CH ₃	С
C 1	C1	n = 0	Н	Н	- (CI	i ₂) ₂ -	Н	С
Cl	SO ₂ CH ₃	n = 0	Н	Н	-(CI	12)4-	CH ₃	С
CH ₃	SO ₂ CH ₃	n = 0	Н	Н	- (CI	{ ₂) ₄ -	Н	С
C 1	C1	n=0	Н	Н	- (CI	12)4-	Н	С
CH 3	SO ₂ CH ₃	n = 0	Н	Н	- (CI	12)5-	СН₃	С
C 1	SO ₂ CH ₃	n = 0	Н	Н	-(CI	 	Н	С
C1	SO ₂ CH ₃	n = 0	Н	Н	I CH ₂	CH ₃	СНз	С
C 1	SO ₂ CH ₃	n=0	Н	Н	CH 2 01	H CH3	СНз	С
Cl	SO ₂ CH ₃	n = 0	Н	Н	CH ₃	CH ₃	H.	D
C1	SO ₂ CH ₃	n = 0	Н	Н	CH ₃	CH ₃	CH ₃	D
CH ₃	SO ₂ CH ₃	n = 0	Н	Н	CH3	СНз	Н	D
CH ₃	SO ₂ CH ₃	n = 0	H -	Н	CH3	CH ₃	СНз	D

第 1 表(つづき)

R¹	R²	R³n	R 4	R ⁵	R 6	R 7	R ⁸	Z
C 1	C 1	n = 0	Н	Н	СНз	СНз	Н	D
Cl	SO ₂ CH ₃	n=0	Н	Н	СНз	СН₃	Н	E
C1	SO ₂ CH ₃	n = 0	Н	Н	CH3	СН₃	CH ₃	E
CH ₃	SO ₂ CH ₃	n = 0	Н	Н	СНз	CH3	Н	E
СНз	SO ₂ CH ₃	n = 0	Н	Н	СНз	CH ₃	CH ₃	E
C 1	C 1	n = 0	Н	Н	СН₃	СНз	СНз	E
C1	SO ₂ CH ₃	n = 0	Н	Н	СНз	CH ₃	H	F
C1	SO2CH3	n = 0	Н	Н	СН₃	CH ₃	СНз	F
СНз	SO₂CH₃	n=0	Н	Н	CH _s	CH3	Н	F
CH3	SO₂CH₃	n = 0	Н	Н	CH₃	CH3	CH ₃	F
C 1	C 1	n = 0	Н	Н	СН₃	СНз	Н	F
C1	SO ₂ CH ₃	n=0	Н	Н	CH3	СНз	Н	G
C 1	SO ₂ CH ₃	n = 0	Н	Н	СНз	CH ₃	CH3	G
CH3	SO ₂ CH ₃	n = 0	Н	Н	СНз	CH3	Н	G
СНз	SO ₂ CH ₃	5-CH ₃	Н	Н	СНз	СН₃	Н	G
СНз	SO ₂ CH ₃	n = 0	H	н	СНз	СНз	CH3	G
C 1	C 1	n = 0	Н	Н	СНз	CH3	СНз	G
C 1	SO ₂ CH ₃	n = 0	Н	Н	СНз	CH3	Н	н
C 1	SO ₂ CH ₃	n = 0	Н	Н	CH3	СНз	СН₃	Н
CH ₃	SO₂CH₃	n = 0	Н	Н	CH3	СНз	Н	Н
CH ₃	SO ₂ CH ₃	n=0	Н	Н	CH ₃	CH ₃	СН₃	Н
C 1	C1	n=0	Н	Н	СНз	СНз	н	Н
CH ₃ SO		n=0	Н	Н	СНз	CH3	СНз	Н
C 1	SO ₂ CH ₃	n=0	Н	Н	СНз	CH3	Н	I
Cl	SO ₂ CH ₃	n=0	Н	Н	СНз	CH3	СНз	I

R 1	R ²	R³n	R 4	R 5	R ⁶	R 7	R ⁸	Z
CH ₃	SO ₂ CH ₃	n=0	Н	Н	СНз	CH ₃	Н	I
CH ₃	SO ₂ CH ₃	n=0	Н	H	СН₃	CH ₃	СН₃	I
C 1	Cl	n=0	Н	Н	CH ₃	CH ₃	СН₃	I
C 1	SO ₂ CH ₃	n=0	Н	Н	CH3	CH3	Н	J
Cl	SO ₂ CH ₃	n = 0	Н	Н	CH ₃	СН₃	CH₃	J
СНз	SO ₂ CH ₃	n = 0	H	Н	CH3	СНз	Н	J
CH3	SO₂CH₃	n = 0	H	Н	CH ₃	CH ₃	CH₃	J
C1	C 1	n = 0	Н	Н	СНз	СНз	CH₃	J
Cl	SO₂CH₃	n=0	Н	Н	CH3	СН₃	Н	K
C1	SO ₂ CH ₃	n = 0	Н	Н	CH3	CH ₃	СН₃	K
СНз	SO ₂ CH ₃	n=0	Н	Н	CH3	СН₃	Н	K
CH3	SO ₂ CH ₃	n = 0	Н	н	CH ₃	CH ₃	CH ₃	K
C 1	C 1	n = 0	. Н	Н	CH3	CH3	Н	K
C 1	SO ₂ CH ₃	n = 0	Н	Н	CH ₃	СН₃	Н	L
C1	SO ₂ CH ₃	n = 0	Н	Н	CH ₃	CH ₃	CH ₃	L
CH₃	SO₂CH3	n = 0	Н	Н	СНз	СН₃	н	L
CH3	SO ₂ CH ₃	n = 0	Н	Н	CH ₃	СНз	CH3	L
C1	C 1	n = 0	Н	Н	CH3	СНз	CH3	L
C1	SO ₂ CH ₃	n=0	Н	н	CH ₃	CH3	Н	М
C 1	SO ₂ CH ₃	n=0	Н	Н	CH3	CH ₃	CH ₃	М
CH3	SO ₂ CH ₃	n=0	Н	Н	CH ₃	CH ₉	Н	M
CH3	SO ₂ CH ₃	n=0	Н	Н	СНз	CH3	CH₃	M
C1.	CI	n=0	Н	Н	CH ₃	CH ₃	Н	М
C 1	SO ₂ CH ₃	n=0	Н	Н	CH ₃	CH3	н	N
C 1	SO ₂ CH ₃	n=0	Н	Н	CH ₃	CH₃	CH₃	N

R ¹	R ²	R³n	R⁴	R ⁵	R ⁶	R 7	R 8	Z
CH ₃	SO ₂ CH ₃	n = 0	Н	Н	CH ₃	CH ₃	Н	N
СНз	SO ₂ CH ₃	n = 0	H	Н	CH3	CH ₃	CH3	N
C1	C 1	n = 0	Н	H	CH3	CH3	СНз	N
C 1	SO ₂ CH ₃	n = 0	Н	Н	CH3	CH ₃	Н	0
C1	SO ₂ CH ₃	n=0	Н	Н	CH3	C 2 H 5	Н	0
C1	SO ₂ CH ₃	n = 0	Н	Н	C ₂ H ₅	C ₂ H ₅	Н	0
Cl	SO ₂ CH ₃	n = 0	Н	Н	CH ₃	CH3	СН₃	0
C1	SO ₂ CH ₃	n = 0	Н	Н	CH3	C ₂ H ₅	СНз	0
C 1	SO ₂ CH ₃	n = 0	Н	Н	C 2 H 5	C ₂ H ₅	СНз	0
CH3	SO ₂ CH ₃	n = 0	Н	Н	CH ₃	CH3	Н	0
СНз	SO ₂ CH ₃	n = 0	Н	Н	СНз	C ₂ H ₅	Н	0
CH3	SO ₂ CH ₃	n = 0	Н	Н	C ₂ H ₅	C ₂ H ₅	Н	0
CH3	SO ₂ CH ₃	n = 0	Н	Н	CH3	CH3	СН₃	0
CH3	SO ₂ CH ₃	n = 0	Н	Н	CH3	C ₂ H ₅	СНз	0
СНз	SO ₂ CH ₃	n = 0	Н	Н	C ₂ H ₅	C ₂ H ₅	СНз	0
CI	C 1	n = 0	Н	Н	CH₃	CH3	Н	0
C1	C 1	n = 0	Н	Н	CH ₃	C ₂ H ₅	Н	0
C1	C 1	n = 0	Н	Н	C ₂ H ₅	C ₂ H ₅	Н	0
Cl	Cl	n = 0	Н	Н	СН₃	CH ₃	CH3	0
C1	C 1	n = 0	Н	Н	CH₃	C ₂ H ₅	CH ₃	0
CI	C 1	n = 0	Н	Н	C 2 H 5	C ₂ H ₅	CH ₃	0
CI	SO ₂ CH ₃	n = 0	Н	Н	- (CH	2)2-	Н	0
СНз	SO ₂ CH ₃	n=0	Н	Н	- (CH	2)2-	CH3	0
C 1	Cl	n = 0	Н	Н	-(CH	2)2-	Н	0
C1	SO ₂ CH ₃	n = 0	Н	н	-(CH	2)4-	СНз	0
CH ₃	SO ₂ CH ₃	n = 0	Н	Н	-(CH	2)4-	Н	0

R 1	R ²	R³n	R 4	R ⁵	R e	R 7	R ⁸	Z
Cl	Cl	n = 0	Н	Н	- (CH	2)4-	Н	0
CI	SO ₂ CH ₃	n = 0	Н.	Н	CH ₃	СН₃	Н	Р
Cl	SO ₂ CH ₃	n=0	Н	Н	CH ₃	C ₂ H ₅	Н	Р
C1	SO ₂ CH ₃	n = 0	Н -	Н	C ₂ H ₅	C 2 H 5	Н	Р
C1	SO ₂ CH ₃	n = 0	Н	Н	CH3	CH3	СНз	Р
C1	SO ₂ CH ₃	n = 0	Н	Н	СНз	C ₂ H ₅	CH ₃	Р
C1	SO ₂ CH ₃	n = 0	Н	Н	C 2 H 5	C 2 H 5	CH3	Р
СНз	SO ₂ CH ₃	n=0	Н	Н	CH ₃	CH3	Н	Р
СНз	SO ₂ CH ₃	n=0	Н	Н -	СН₃	C ₂ H ₅	Н	Р
СНз	SO₂CH₃	n = 0	Н	Н	C 2 H 5	C 2 H 5	Н	Р
CH3	SO ₂ CH ₃	n = 0	Н	н	СН₃	CH3	СН₃	Р
CH ₃	SO ₂ CH ₃	n=0	Н	Н	СНз	C ₂ H ₅	CH3	P
CH ₃	SO₂CH₃	n = 0	Н	Н	C ₂ H ₅	C 2 H 5	CH3	P
C1	C 1	n = 0	Н	Н	CH3	CH₃	Н	Р
CI	C 1	n = 0	Н	Н	CH ₃	C 2 H 5	Н	Р
C 1	C 1	n = 0	Н	Н	C ₂ H ₅	C 2 H 5	Н	Р
C 1	· C1	n=0	Н	Н	СНз	CH3	СНз	Р
C 1	C 1	n = 0	Н	Н	CH ₃	C ₂ H ₅	СНз	Р
C I	C1	n = 0	Н	Н	C ₂ H ₅	C ₂ H ₅	СНз	Р
C 1	SO₂CH3	n=0	Н	Н	- (CH	12)2-	н	P
CH3	SO ₂ CH ₃	n=0	Н	Н	- (CI	[₂) ₂ -	CH3	P
C 1	Cl	n=0	Н	Н	- (CH	[₂) ₂ -	Н	P
CI	SO ₂ CH ₃	n=0	Н	Н	- (CI	{ ₂) ₄ -	СНз	P
СНз	SO ₂ CH ₃	n=0	Н	Н	- (CI	[₂) ₄ -	Н	P
C 1	C1	n=0	Н	Н	- (CI	12)4-	Н	P

R 1	R²	R³n	R 4	R ⁵	R ⁶	R 7	R ⁸	Z
C 1	SO ₂ CH ₃	n = 0	Н	Н	CH ₃	СНз	Н	Q
C 1	SO ₂ CH ₃	n = 0	Н	Н	CH3	СН₃	СН₃	Q
СНз	SO ₂ CH ₃	n = 0	Н	Н	СН₃	СН₃	Н	Q
CH ₃	SO ₂ CH ₃	n = 0	Н	Н	CH ₃	СН₃	СН₃	Q
Cl	C 1	n = 0	Н	Н	СНз	СНз	CH ₃	Q
C I	SO ₂ CH ₃	n = 0	Н	Н	СНз	СН₃	Н	R
Cl	SO₂CH₃	n = 0	Н	Н	CH3	СНз	СНз	R
CH3	SO ₂ CH ₃	n = 0	Н	Н	CH3	СН₃	H	R
CH3	SO ₂ CH ₃	n = 0	Н	Н	СНз	CH3	СНз	R
CI	C 1	n = 0	Н	Н	CH3	СНз	Н	R
CI	SO ₂ CH ₃	n = 0	Н	Н	-(СН	2)2-	Н	R
CH ₃	SO ₂ CH ₃	n = 0	Н	Н	-(СН	2)2-	СН₃	R
C1	C 1	n = 0	Н	Н	-(СН	(2)2-	Н	R
C 1	SO ₂ CH ₃	n = 0	Н	Н	-(СН	(₂) ₄ -	СНз	R
СНз	SO ₂ CH ₃	n = 0	Н	Н	-(CH	[₂) ₄ -	Н	R
C1	C 1	n = 0	Н	Н	-(CH	(₂) ₄ -	Н	R
C1	SO ₂ CH ₃	n = 0	Н	Н	СНз	CH ₃	Н	сно
CI	SO ₂ CH ₃	n = 0	Н	Н	СНз	СНз	CH ₃	СНО
CH ₃	SO ₂ CH₃	n = 0	Н	Н	CH3	СНз	Н	сно
CH ₃	SO ₂ CH ₃	n = 0	Н	Н	CH3	СНз	CH ₃	сно
CI	C 1	n = 0	Н	Н	CH3	СНз	CH3	сно
C1	SO ₂ CH ₃	n = 0	Н	Н	CH3	CH ₃	Н	morpholino
C1	SO ₂ CH ₃	n=0	Н	Н	CH ₃	CH3	СНз	morpholino
CH3	SO ₂ CH ₃	n = 0	Н	Н	СНз	CH3	Н	morpholino
CH3	SO ₂ CH ₃	n=0	Н	Н	CH3	CH3	СН₃	morpholino
C 1	C 1	n=0	Н	Н	CH ₃	CH ₃	Н	morpholino

R 1	R ²	R³n	R 4	R 5	R e	R 7	R ⁸	Z
Cl	SO ₂ CH ₃	n=0	Н	Н	СНз	СНз	Н	OCH ₃
C1	SO ₂ CH ₃	n=0	Н	Н	CH₃	СН₃	CH3	OCH3
CH ₃	SO ₂ CH ₃	n = 0	Н	Н	CH ₃	CH ₃	Н	ОСНз
CH ₃	SO ₂ CH ₃	n = 0	Н	Н	СН₃	CH₃	CH3	OCH3
C1	Cl	n = 0	Н	Н	СНз	CH ₃	СН₃	OCH ₃
Cl	SO ₂ CH ₃	$\mathbf{n} = 0$	Н	Н	СНз	CH3	Н	OC2H4OCH3
C 1	SO ₂ CH ₃	n=0	Н	Н	СНз	СН₃	CH ₃	OC2H4OCH3
CH ₃	SO ₂ CH ₃	n=0	Н	Н	CH3	СН₃	Н	OC2H4OCH3
CH ₃	SO ₂ CH ₃	n = 0	Н	Н	СНэ	CH3	СНз	OC2H4OCH3
C1	C 1	n=0	Н	Н	СН₃	СНз	Н	OC2H4OCH3
Cl	SO ₂ CH ₃	n=0	Н	Н	CH₃	СНз	Н	CH=CH ₂
Cl	SO ₂ CH ₃	n = 0	Н	Н	CH ₃	CH3	CH3	CH=CH ₂
CH3	SO ₂ CH ₃	n = 0	Н	Н	CH₃	CH ₃	Н	CH=CH ₂
CH ₃	SO ₂ CH ₃	n=0	Н	Н	СН₃	CH3	СНз	CH=CH ₂
C1	C 1	n=0	Н	Н	CH3	CH ₃	CH ₃	CH=CH ₂
C 1	SO ₂ CH ₃	n=0	Н	Н	CH₃	CH3	Н	COOCH 3
CI	SO ₂ CH ₃	n=0	Н	Н	CH₃	CH3	СНз	COOCH ₃
CH ₃	SO ₂ CH ₃	n=0	Н	Н	CH₃	СН₃	Н	COOCH 3
CH3	SO ₂ CH ₃	n=0	Н	Н	CH3	CH ₃	СН₃	COOCH3
C1	C 1	n=0	Н	н	CH ₃	CH ₃	Н	COOCH 3
Cl	SO ₂ CH ₃	n=0	Н	Н	CH ₃	CH3	Н	COOC ₂ H ₅
CI	SO ₂ CH ₃	n=0	Н	Н	CH ₃	CH ₃	СНз	COOC ₂ H ₅
СН₃	SO ₂ CH ₃	n=0	Н	Н	CH ₃	CH ₃	н	COOC ₂ H ₅
CH ₃	SO ₂ CH ₃	n=0	Н	Н	СНз	СНз	CH₃	COOC ₂ H ₅
C1	Cl	n=0	Н	Н	СНз	CH3	СН₃	COOC 2 H 5
CI	SO ₂ CH ₃	n = 0	Н	Н	CH ₃	СНз	Н	CH(OCH ₃) ₂

R 1	R ²	R³n	R ⁴	R 5	R 6	R 7	R ⁸	Z
C 1	SO ₂ CH ₃	n = 0	Н	Н	CH ₃	CH ₃	CH ₃	CH(OCH ₃) ₂
СНз	SO ₂ CH ₃	n=0	Н .	Н	CH3	CH ₃	Н	CH(OCH ₃) ₂
СНз	SO ₂ CH ₃	n = 0	Н	Н	CH3	CH ₃	CH3	CH(OCH ₃) ₂
C 1	C 1	n = 0	Н	Н	СНз	CH3	Н	CH(OCH ₃) ₂
C 1	SO ₂ CH ₃	n = 0	н	Н	CH3	CH3	Н	NH ₂
C 1	SO ₂ CH ₃	n = 0	Н	Н	СНз	CH3	CH3	NH ₂
CH3	SO ₂ CH ₃	n = 0	Н	Н	СНз	CH3	Н	NH ₂
СНз	SO ₂ CH ₃	n=0	Н	Н	CH ₃	CH3	CH ₃	NH ₂
C1	C1	n = 0	Н	Н	СНз	СНз	СНз	NH ₂
C1	SO ₂ CH ₃	n = 0	Н	Н	СНз	СНз	Н	NHCH3
C1	SO ₂ CH ₃	n = 0	Н	Н	СН₃	СНз	CH3	NHCH ₃
СНз	SO₂CH₃	n = 0	Н	Н	CH3	СНз	Н	NHCH3
СНз	SO ₂ CH ₃	n = 0	Н	Н	CH3	СНз	CH3	NHCH3
Cl	CI	n = 0	Н	Н	CH3	СНз	Н	NHCH3
CI	SO ₂ CH ₃	n = 0	Н	H	СНз	CH3	Н	N(CH ₃) ₂
CI	SO ₂ CH ₃	n = 0	Н	Н	СН₃	CH3	СНз	N(CH ₃) ₂
CH ₃	SO ₂ CH ₃	n = 0	Н	Н	СНз	CH3	Н	N(CH ₃) ₂
CH ₃	SO ₂ CH ₃	n = 0	Н	Н	СНз	CH3	CH ₃	N(CH ₃) ₂
C 1	C 1	n = 0	Н	Н	СНз	CH ₃	CH ₃	N(CH ₃) ₂
Cl	SO ₂ CH ₃	n = 0	Н	Н	СНз	СНз	Н	NHCOCH₃
C 1	SO ₂ CH ₃	n=0	Н	Н	CH3	CH3	СНз	NHCOCH3
CH3	SO ₂ CH ₃	n = 0	Н	Н	СНз	CH ₃	Н	NHCOCH3
CH3	SO2CH3	n = 0	Н	Н	СНз	CH3	СН₃	NHCOCH₃
CI	C 1	n = 0	Н	Н	СН₃	СНз	Н	NHCOCH₃
C1	SO ₂ CH ₃	n=0	Н	Н	СНз	CH3	Н	NHCOOCH₃

第 1 表(つづき)

R 1	R ²	R³n	R 4	R 5	R ⁶	R 7	R ⁸	2
C 1	SO ₂ CH ₃	n = 0	Н	Н	CH ₃	CH ₃	СНз	NHCOOCH3
CH3	SO ₂ CH ₃	n = 0	Н	H	CH₃	CH3	Н	NHCOOCH3
CH3	SO ₂ CH ₃	n = 0	н	Н	CH3	CH3	СН₃	NHCOOCH 3
C 1	C 1	n = 0	Н	Н	CH3	СНз	CH ₃	NHCOOCH3
C 1	SO ₂ CH ₃	n = 0	н	Н	CH ₃	СН₃	Н	N(CH3)COOCH3
C1	SO ₂ CH ₃	n = 0	Н	Н	CH ₃	CH ₃	CH ₃	N(CH ₃)COOCH ₃
CH ₃	SO ₂ CH ₃	n = 0	Н	Н	CH3	CH3	Н	N(CH ₃)COOCH ₃
CH ₃	SO ₂ CH ₃	n = 0	Н	Н	CH ₃	CH3	CH3	N(CH ₃)COOCH ₃
C1	C 1	n = 0	Н	Н	CH3	СН₃	н	N(CH ₃)COOCH ₃
C 1	SO ₂ CH ₃	n = 0	Н	Н	CH ₃	СНз	Н	NHSO ₂ CH ₃
CI	SO ₂ CH ₃	n = 0	Н	Н	СНз	CH3	СН₃	NHSO ₂ CH ₃
CH ₃	SO ₂ CH ₃	n=0	Н	Н	CH3	CH₃	н	NHSO ₂ CH ₃
CH ₃	SO ₂ CH ₃	n=0	. Н	Н	CH ₃	CH3	CH3	NHSO ₂ CH ₃
C 1	C 1	n=0	Н	Н	CH ₃	CH3	CH ₃	NHSO ₂ CH ₃
CI	SO ₂ CH ₃	n = 0	Н	Н	CH3	CH3	Н	NHCON(C ₂ H ₅) ₂
Cl	SO ₂ CH ₃	n = 0	Н	Н	CH3	CH3	CH ₃	NHCON(C ₂ H ₅) ₂
CH₃	SO ₂ CH ₃	n = 0	Н	Н	CH ₃	CH ₃	Н	NHCON(C ₂ H ₅) ₂
CH3	SO ₂ CH ₃	n = 0	Н	Н	СНз	СНз	CH3	NHCON(C ₂ H ₅) ₂
C 1	Cl	n = 0	Н	Н	СНз	СНз	Н	NHCON(C ₂ H ₅) ₂
C 1	SO ₂ CH ₃	n = 0	Н	Н	CH ₃	CH ₃	Н	NHCH ₂ Ph
C1	SO ₂ CH ₃	n=0	Н	Н	СНз	СНз	CH ₃	NHCH 2 Ph
CH3	SO ₂ CH ₃	n = 0	Н	Н	CH ₃	CH ₃	Н	NHCH₂Ph
CH3	SO ₂ CH ₃	n=0	Н	Н	СНз	CH ₃	СНз	NHCH₂Ph
C1	C 1	n = 0	Н	Н	СНз	CH ₃	СН₃	NHCH₂Ph
C1	SO ₂ CH ₃	n=0	Н	Н	CH3	CH ₃	Н	Ph .

R ¹	R²	R³n	R 4	R 5	R ⁶	R 7	R ⁸	Z
C 1	SO ₂ CH ₃	n = 0	Н	Н	CH ₃	C 2 H 5	Н	Ph
C 1	SO ₂ CH ₃	n = 0	Н	Н	C ₂ H ₅	C ₂ H ₅	Н	Ph
C1	SO ₂ CH ₃	n = 0	Н	Н	CH3	CH3	CH ₃	Ph
Cl	SO ₂ CH ₃	n = 0	Н	Н	CH3	C ₂ H ₅	CH₃	Ph
C 1	SO ₂ CH ₃	n = 0	Н	Н	C ₂ H ₅	C ₂ H ₅	CH ₃	Ph
СНз	SO ₂ CH ₃	n = 0	Н	Н	СН₃	CH3	Н	Ph
CH ₃	SO ₂ CH ₃	n = 0	Н	Н	CH3	C 2 H 5	Н	Ph
СНз	SO ₂ CH ₃	n=0	Н	Н	C ₂ H ₅	C ₂ H ₅	Н	Ph
СНз	SO ₂ CH ₃	n = 0	Н	Н	CH3	СН₃	CH ₃	Ph.
СНз	SO ₂ CH ₃	n=0	Н	Н	CH3	C ₂ H ₅	CH3	Ph
СНз	SO₂CH₃	n=0	Н	Н	C 2 H 5	C ₂ H ₅	CH3	Ph
C 1	C 1	n = 0	Н	Н	CH ₃	СНз	Н	Ph
C 1	C1	n = 0	Н	Н	CH3	C ₂ H ₅	Н	Ph
C 1	C1	n = 0	Н	Н	C 2 H 5	C ₂ H ₅	Н	Ph
Cl	C 1	n=0	Н	Н	CH3	CH3	CH₃	Ph
C 1	C 1	n = 0	Н	Н	CH ₃	C 2 H 5	CH3	Ph
CI	C 1	n=0	Н	Н	C ₂ H ₅	C 2 H 5	CH3	Ph
C 1	SO ₂ CH ₃	n = 0	Н	Н	-(СН	 ₂) ₂ -	Н	Ph
СНз	SO ₂ CH ₃	n = 0	Н	Н	-(СН	 ₂) ₂ -	CH₃	Ph
C 1	C1	n=0	Н	Н	-(CH	(₂) ₂ -	Н	Ph
Cl	SO ₂ CH ₃	n = 0	Н	Н	- (CH	(₂) ₄ -	CH3	Ph
СНз	SO ₂ CH ₃	n = 0	Н	Н	-(СН	(₂) ₄ -	Н	Ph
C1	C 1	n = 0	Н	Н	-(СН	(₂) ₄ -	Н	Ph
CH ₃ O	SO ₂ CH ₃	n = 0	Н	Н	СНз	СН₃	Н	Ph
CH ₃ O	SO ₂ CH ₃	n=0	Н	Н	CH ₃	СН₃	CH ₃	Ph
C1	SO ₂ CH ₃	n=0	Н	Н	СН₃	CH3	Н	Ph-3-C1

第 1 表(つづき)

R¹	R²	R³n	R 4	R 5	R ⁶	R 7	R ⁸	Z
Cl	SO ₂ CH ₃	n = 0	Н	Н	CH ₃	СНз	СН₃	Ph-3-C1
CH3	SO ₂ CH ₃	n=0	н	Н	CH₃	CH ₃	Н	Ph-3-01
CH3	SO ₂ CH ₃	n = 0	Н	Н	CH₃	СНз	CH3	Ph-3-01
C1	C 1	n = 0	Н	Н	СНз	СНз	CH3	Ph-3-01
CI	SO ₂ CH ₃	n=0	Н	Н	CH ₃	СНз	Н	Ph-4-C1
C1	SO ₂ CH ₃	n=0	Н	H	СН₃	C ₂ H ₅	Н	Ph-4-Cl
C1	SO ₂ CH ₃	n = 0	Н	Н	C ₂ H ₅	C 2 H 5	Н	Ph-4-C1
C1	SO ₂ CH ₃	n = 0	Н	H	СНз	CH3	CH ₃	Ph-4-C1
Cl	SO ₂ CH ₃	n=0	Н	Н	CH ₃	C 2 H 5	CH3	Ph-4-C1
Cl	SO ₂ CH ₃	n=0	Н	Н	C 2 H 5	C ₂ H ₅	СН₃	Ph-4-C1
CH ₃	SO ₂ CH ₃	n = 0	Н	Н	CH₃	СНз	Н	Ph-4-C1
CH ₃	SO₂CH3	n = 0	Н	Н	CH3	C ₂ H ₅	Н	Ph-4-C1
СНз	SO ₂ CH ₃	n=0	. Н	Н	C ₂ H ₅	C ₂ H ₅	Н	Ph-4-C1
CH ₃	SO ₂ CH ₃	n=0	Н	Н	CH3	СНз	СН₃	Ph-4-C1
CH3	SO ₂ CH ₃	n = 0	н	н	CH ₃	C 2 H 5	CH ₃	Ph-4-C1
CH ₃	SO ₂ CH ₃	n=0	н	Н	C ₂ H ₅	C ₂ H ₅	СНз	Ph-4-C1
C 1	Cl	n=0	Н	Н	CH ₃	СНз	Н	Ph-4-C1
CI	C 1	n = 0	Н	Н	CH ₃	C ₂ H ₅	Н	Ph-4-C1
CI	Cl	n=0	Н	Н	C ₂ H ₅	C 2 H 5	Н	Ph-4-C1
CI	Cl	n=0	Н	Н	СНэ	СНз	СНз	Ph-4-C1
C 1	C1	n=0	Н	Н	CH₃	C ₂ H ₅	СНз	Ph-4-Cl
Cl	Cl	n=0	Н	Н	C 2 H 5	C ₂ H ₅	CH ₃	Ph-4-C1
C1 ·	SO ₂ CH ₃	n=0	Н	Н	- (CI	{2)2-	Н	Ph-4-C1
CH ₃	SO ₂ CH ₃	n=0	Н	Н	- (C)	i ₂) ₂ -	CH ₃	Ph-4-C1
C1	CI	n=0	Н	Н	- (CI	12)2-	Н	Ph-4-C1

PCT/JP00/01062

第 1 表(つづき)

R 1	R²	R³n	R ⁴	R 5	R 6	R 7	R ⁸	Z
C 1	SO ₂ CH ₃	n = 0	Н	Н	-(CH	2)4-	CH ₃	Ph-4-C1
СНз	SO ₂ CH ₃	n=0	Н	Н	-(СН	2)4-	Н	Ph-4-C1
C 1	C 1	n = 0	Н	H	-(CH	2)4-	Н	Ph-4-C1
CH ₃ O	SO₂CH3	n = 0	Н	Н	СН₃	СН₃	Н	Ph-4-C1
CH ₃ O	SO ₂ CH ₃	n = 0	Н	Н	СН₃	СНз	CH3	Ph-4-C1
C 1	SO ₂ CH ₃	n = 0	Н	H	СН₃	СНз	Н	Ph-2-CH ₃
C1	SO ₂ CH ₃	n = 0	Н .	Н	СНз	СНз	CH ₃	Ph-2-CH ₃
CH₃	SO ₂ CH ₃	n=0	Н	Н	CH ₃	СНз	Н	Ph-2-CH ₃
CH ₃	SO ₂ CH ₃	n = 0	Н	H	CH3	СН₃	СНз	Ph-2-CH3
C 1	Cl	n = 0	Н	Н	CH3	CH ₃	CH ₃	Ph-2-CH ₃
Cl	SO ₂ CH ₃	n = 0	Н	Н	СНз	СН₃	Н	Ph-4-CH ₃
C1	SO ₂ CH ₃	n = 0	Н	Н	СН₃	СНз	СНз	Ph-4-CH ₃
СН₃	SO ₂ CH ₃	n=0	н	Н	CH3	CH₃	Н	Ph-4-CH ₃
СНз	SO ₂ CH ₃	n=0	Н	Н	CH3	CH3	CH3	Ph-4-CH3
C1	C 1	n = 0	Н	Н	CH₃	СН₃	Н	Ph-4-CH ₃
C1	SO ₂ CH ₃	n=0	Н	Н	CH ₃	СН₃	Н	Ph-4-CN
C1	SO ₂ CH ₃	n=0	Н	Н	CH₃	СН₃	CH3	Ph-4-CN
СН₃	SO ₂ CH ₃	n=0	Н	Н	CH3	СН₃	H	Ph-4-CN
CH ₃	SO ₂ CH ₃	n=0	Н	Н	CH ₃	CH₃	CH3	Ph-4-CN
Cl	C1	n=0	Н	Н	CH ₃	СН₃	CH3	Ph-4-CN
Cı	SO ₂ CH ₃	n=0	Н	Н	CH ₃	CH₃	Н	Ph-4-NO ₂
CI	SO ₂ CH ₃	n=0	Н	Н	СН₃	СН₃	CH3	Ph-4-NO ₂
CH3	SO ₂ CH ₃	n=0	Н	Н	CH ₃	CH ₃	Н	Ph-4-NO ₂
CH ₃	SO ₂ CH₃	n=0	Н	Н	CH ₃	СНз	CH3	Ph-4-NO ₂
C 1	C1	n=0	Н	Н	CH ₃	CH3	Н	Ph-4-NO ₂

第 1 表(つづき)

R 1	R ²	R³n	R ⁴	R ⁵	R ⁶	R 7	R ⁸	Z
C 1	SO ₂ CH ₃	n = 0	Н	Н	СНз	CH ₃	Н	Ph-3-CF ₃
C1	SO ₂ CH ₃	n = 0	н -	Н	CH ₃	СНз	CH ₃	Ph-3-CF₃
СН₃	SO ₂ CH ₃	n=0	н	Н	CH ₃	СНз	Н	Ph-3-CF ₃
CH ₃	SO ₂ CH ₃	n=0	н	Н	CH ₃	CH3	CH ₃	Ph-3-CF ₃
C 1	C 1	n=0	Н	Н	СНз	CH3	CHs	Ph-3-CF3
C 1	SO ₂ CH ₃	n = 0	Н	Н	СНз	CH3	Н	Ph-3-0CH₃
C 1	SO₂CH₃	n=0	Н	Н	CH3	СНз	СНз	Ph-3-0CH₃
CH3	SO ₂ CH ₃	n = 0	Н	Н	CH3	CH3	Н	Ph-3-0CH₃
CH ₃	SO ₂ CH ₃	n = 0	Н	Н	CH ₃	СНз	СНз	Ph-3-0CH3
C1	C 1	n = 0	Н	Н	CH3	CH ₃	Н	Ph-3-0CH ₃
C 1	SO ₂ CH ₃	n = 0	Н	Н	СНз	CH3	Н	Ph-4-COOCH3
CH3	SO ₂ CH ₃	n = 0	Н	H	CH3	CH ₃	СНз	Ph-4-COOCH3
C 1	Cl	n = 0	Н	Н	CH ₃	СНз	CH ₃	Ph-4-COOCH3
C 1	SO ₂ CH ₃	n = 0	Н	Н	CH ₃	СНз	Н	Ph-2, 4-Cl ₂
C 1	SO ₂ CH ₃	n=0	Н	Н	CH3	CH3	CH3	Ph-2, 4-Cl ₂
CH3	SO ₂ CH ₃	n = 0	Н	Н	CH ₃	СНз	Н	Ph-2.4-Cl ₂
CH3	SO ₂ CH ₃	n = 0	Н	Н	СНз	СНз	СНз	Ph-2, 4-Cl ₂
C 1	C1	n = 0	Н	Н	СНз	CH ₃	Н	Ph-2, 4-Cl ₂
CI	SO ₂ CH ₃	n=0	Н	Н .	СНз	CH ₃	Н	Ph-2, 5-Cl ₂
C1	SO ₂ CH ₃	n = 0	Н	Н	СНз	CH ₃	CH ₃	Ph-2, 5-Cl ₂
CH3	SO ₂ CH ₃	n=0	Н	Н	CH3	CH ₃	Н	Ph-2, 5-Cl ₂
CH ₃	SO ₂ CH ₃	n = 0	Н	Н	CH3	CH ₃	CH ₃	Ph-2, 5-C1 ₂
C 1	C 1	n = 0	Н	Н	CH ₃	CH ₃	CH3	Ph-2, 5-Cl ₂
C1	SO ₂ CH ₃	n = 0	Н	Н	CH3	CH ₃	Н	Ph-2.6-Cl ₂
C 1	SO ₂ CH ₃	n=0	Н	Н	CH ₃	CH ₃	CH3	Ph-2, 6-Cl ₂
CH ₃	SO ₂ CH ₃	n = 0	Н.	Н	CH3	CH ₃	Н	Ph-2,6-Cl ₂

WO 00/50397

R 1	R²	R³n	R 4	R ⁵	R ⁶	R 7	R ⁸	Z
CH ₃	SO ₂ CH ₃	n=0	Н	Н	СНз	СНз	CH ₃	Ph-2, 6-Cl ₂
C 1	C 1	n = 0	Н	Н	СН₃	СНз	Н	Ph-2, 6-Cl ₂
Cl	SO ₂ CH ₃	n=0	Н	Н	CH3	СНз	Н	Ph-3, 4-Cl ₂
C1	SO₂CH₃	n=0	Н	Н	СНз	CH3	СН₃	Ph-3, 4-Cl ₂
CH3	SO₂CH₃	n = 0	Н	Н	CH ₃	CH3	Н	Ph-3, 4-Cl ₂
CH ₃	SO₂CH₃	n=0	Н	Н	CH3	CH3	CH ₃	Ph-3, 4-Cl ₂
C1	C 1	n=0	Н	Н	СНз	СНз	CH ₃	Ph-3, 4-Cl ₂
CI	SO₂CH₃	n = 0	Н	Н	СНз	CH ₃	Н	Ph-3, 5-Cl ₂
CI	SO₂CH₃	n = 0	Н	Н	СНз	СНз	CH ₃	Ph-3, 5-Cl ₂
СНз	SO₂CH₃	n = 0	Н	Н	СНз	CH3	Н	Ph-3, 5-Cl ₂
CH3	SO₂CH₃	n = 0	Н	Н	CH ₃	СНз	CH₃	Ph-3, 5-Cl ₂
Cl	C 1	n = 0	Н	Н	СНз	CH3	Н	Ph-3, 5-C1 ₂
C1	SO2CH3	n = 0	Н	H	CH3	СНз	Н	Ph-2, 3, 4-Cl ₃
C1	SO₂CH3	n=0	Н	Н	СНз	CH3	CH3	Ph-2, 3, 4-Cl ₃
СНз	SO ₂ CH ₃	n=0	Н	Н	CH3	CH3	Н	Ph-2, 3, 4-Cl ₃
CH3	SO₂CH₃	n = 0	Н	Н	СНз	СН₃	СНз	Ph-2, 3, 4-Cl ₃
Cl	SO₂CH₃	n = 0	Н	Н	СНз	CH₃	CH3	Ph-4-C00CH ₃
CH3	SO ₂ CH ₃	n = 0	Н	Н	СНз	СНз	Н	Ph-4-C00CH3
C 1	Ci	n = 0	Н	Н	СНз	СНз	СН₃	Ph-2, 3, 4-Cl ₃
C1	SO2CH3	n = 0	Н	Н	CH3	CH₃	Н	Ph-2, 4, 6-Cl ₃
C1	SO₂CH₃	n = 0	Н	Н	CH3	CH₃	CH₃	Ph-2, 4, 6-Cl ₃
CH₃	SO2CH3	n = 0	Н	Н	CH3	СНз	Н	Ph-2, 4, 6-Cl ₃
СНз	SO₂CH₃	n = 0	Н	Н	CH3	СН₃	СН₃	Ph-2, 4, 6-Cl ₃
C 1	C 1	n = 0	Н	Н	CH ₃	СН₃	Н	Ph-2, 4, 6-Cl ₃
C 1	SO₂CH₃	n = 0	Н	Н	CH3	СН₃	Н	CH=NCH ₃
C 1	SO ₂ CH ₃	n=0	Н	Н	СНз	СНз	СНз	CH=NCH ₃

第] 表(つづき)

	77 1 25 () 2 ()									
R 1	R²	R³n	R⁴	R 5	. R ⁶	R 7	R ⁸	Z		
CH ₃	SO ₂ CH ₃	n=0	Н	Н	СНз	CH3	Н	CH=NCH ₃		
CH ₃	SO ₂ CH ₃	n = 0	Н	Н.	СН₃	СНз	СНз	CH=NCH ₃		
C 1	Cl	n = 0	Н	Н	СНз	СНз	СНз	CH=NCH ₃		
Cl	SO ₂ CH ₃	n = 0	Н	Н	CH 3	СНз	Н	CH=NOCH ₃		
Cl	SO ₂ CH ₃	n=0	Н	Н	CH ₃	CH ₃	СНз	CH=NOCH ₃		
CH3	SO ₂ CH ₃	n = 0	Н	Н	CH ₃	CH3	Н	CH=NOCH ₃		
CH3	SO ₂ CH ₃	n = 0	Н	Н	CH₃	CH ₃	СНз	CH=NOCH ₃		
C 1	Cl	n=0	Н	Н	СН₃	СНз	Н	CH=NOCH ₃		
Cl	SO ₂ CH ₃	n = 0	Н	Н	CH ₃	CH3	Н	CH=NOC ₂ H ₅		
C1	SO ₂ CH ₃	n=0	Н	Н	CH3	СНз	СНз	CH=NOC ₂ H ₅		
CH ₃	SO ₂ CH ₃	n = 0	Н	Н	СН₃	CH3	Н	CH=NOC ₂ H ₅		
CH ₃	SO ₂ CH ₃	n=0	Н	Н	CH₃	CH3	СНз	CH=NOC ₂ H ₅		
CI	C 1	n = 0	Н	Н	СНз	CH3	СНз	CH=NOC ₂ H ₅		
CI	SO ₂ CH ₃	n=0	Н	Н	CH₃	CH3	Н	CH=NOCH2CH=CHC1		
C1	SO ₂ CH ₃	n=0	Н	Н	CH ₃	СНз	СНз	CH=NOCH2CH=CHC1		
CH ₃	SO ₂ CH ₃	n=0	Н	Н	CH ₃	CH ₃	Н	CH=NOCH2CH=CHC1		
CH3	SO ₂ CH ₃	n=0	Н	Н	CH ₃	CH ₃	CH3	CH=NOCH2CH=CHC1		
C1	C 1	n=0	Н	Н	CH ₃	CH ₃	Н	CH=NOCH ₂ CH=CHC1		
C 1	SO ₂ CH ₃	n=0	Н	Н	СНз	CH ₃	Н	CH=NCH ₂ C≡CH ₅		
C1	SO ₂ CH ₃	n=0	Н	Н	CH ₃	CH ₃	CH3	CH=NCH ₂ C≡CH ₅		
CH3	SO ₂ CH ₃	n=0	Н	Н	CH ₃	CH ₃	Н	$CH = NCH_2C \equiv CH_5$		
СНз	SO ₂ CH ₃	n=0	Н	Н	CH ₃	CH ₃	CH ₃	CH=NCH ₂ C≡CH ₅		
C I	C1	n=0	Н	Н	CH ₃	CH ₃	CH ₃	CH=NCH ₂ C≡CH ₅		
C 1	SO ₂ CH ₃	n=0	Н	Н	CH ₃	СНз	н	C(CH ₃)=NOC ₂ H ₅		
C 1	SO ₂ CH ₃	n = 0	Н	Н	CH ₃	CH ₃	CH ₃	C(CH ₃)=NOC ₂ H ₅		
СНз	SO ₂ CH ₃	n = 0	Н	Н	CH ₃	CH ₃	Н	C(CH ₃)=NOC ₂ H ₅		

R 1	R ²	R³n	R 4	R 5	R ⁶	R 7	R 8	Z
CH ₃	SO ₂ CH ₃	n=0	Н	Н	СНз	СНз	CH ₃	C(CH ₃)=NOC ₂ H ₅
C 1	C 1	n = 0	Н	Н	CH3	СНз	Н	C(CH ₃)=NOC ₂ H ₅
CI	SO ₂ CH ₃	n=0	Н	Н	CH3	СНз	СНз	CH=NNHCH3
CI	SO ₂ CH ₃	n = 0	Н	Н	СНз	СНз	Н	CH=NNHCH3
CH ₃	SO ₂ CH ₃	n = 0	Н	Н	CH3	СНз	Н	CH=NNHCH3
CH ₃	SO ₂ CH ₃	n = 0	Н	Н	CH3	СНз	СНз	CH=NNHCH3
C 1	C 1	n = 0	Н	Н	CH ₃	СНз	СНз	CH=NNHCH3
C1	SO ₂ CH ₃	n = 0	Н	Н	CH3	СНз	Н	CH=N-Ph-4-C1
C 1	SO ₂ CH ₃	n = 0	Н	Н	CH ₃	CH3	СНз	CH=N-Ph-4-C1
CH3	SO ₂ CH ₃	n = 0	Н	Н	СНз	CH3	Н	CH=N-Ph-4-C1
CH3	SO ₂ CH ₃	n = 0	Н	Н	CH3	СНз	CH₃	CH=N-Ph-4-C1
C1	C 1	n = 0	Н	Н	СНз	CH3	Н	CH=N-Ph-4-C1
C 1	SO ₂ CH ₃	5-CH3	Н	Н	Н	CH3	Н	С
CH3	SO ₂ CH ₃	5-CH3	Н	Н	Н	CH3	Н	С
Cl	SCH₃	5-C1	Н	Н	СН₃	CH3	Н	С
СН₃	SCH₃	5-C1	Н	Н	CH3	СНз	Н	С
СНз	C 1	5-01	Н	Н	СНз	СНз	Н	С
СНз	SO ₂ CH ₃	n = 0	Н	Н	СНз	CH3	Н	М

第 2 表

R 1	R²	R³n	R 4	R 7	R 8	Z
C 1	SO ₂ CH ₃	n = 0	Н	CH3	Н	Α
C 1	SO ₂ CH ₃	n = 0	Н	СН₃	CH3	Α
СНз	SO ₂ CH ₃	n = 0	H	СНз	Н	A
CH3	SO ₂ CH ₃	n = 0	Н	CH3	CH ₃	A
C 1	C1	n=0	Н	CH₃	СНз	A
C 1	SO ₂ CH ₃	n=0	н	СНз	Н	В
C 1	SO ₂ CH ₃	n=0	Н	CH3	СН₃	В
CH3	SO ₂ CH ₃	n=0	Н	СНз	Н	В
CH₃	SO ₂ CH ₃	n = 0	Н	СНз	СНз	В
C1	C1	n=0	Н	CH ₃	Н	B.
CI	SO ₂ CH ₃	n = 0	Н	CH3	Н	С
C 1	SO ₂ CH ₃	n = 0	Н	CH3	СНз	С
СН₃	SO ₂ CH ₃	n = 0	Н	СНз	Н	С
СНз	SO ₂ CH ₃	n = 0	Н	CH ₃	CH ₃	С
C1	C 1	n = 0	Н	СНз	Н	С
C 1	C 1	n=0	Н	CH ₃	CH ₃	С
C 1	SO ₂ CH ₃	n = 0	CH ₃	CH ₃	Н	С
C1	SO ₂ CH ₃	n = 0	CH ₃	CH ₃	CH ₃	С
СНз	SO ₂ CH ₃	n = 0	CH ₃	СНз	Н	С
CH3	SO ₂ CH ₃	n = 0	CH ₃	CH ₃	СНз	С
C 1	C 1	n = 0	CH ₃	CH3	Н	С

第 2 表(つづき)

R 1	R²	R³n	R ⁴	R 7	R 8	2
C1	C 1	n = 0	СНз	СНз	СНз	С
C 1	SO₂CH3	5-CH3	Н	СНз	Н	С
C1	SO ₂ CH ₃	5-C1	Н	СНз	СНз	С
СНз	SO ₂ CH ₃	5-C1	Н	СНз	Н	С
СНз	SO ₂ CH ₃	5-CH3	Н	СН₃	СНз	С
C1	C 1	5-CH3	Н	СН₃	Н	С
C 1	C1	5-C1	Н	СНз	СНз	С
CH ₃ O	SO ₂ CH ₃	n = 0	Н	СНз	Н	С
CH ₃ O	SO ₂ CH ₃	n = 0	Н	СНз	СНз	С
Cl	SO ₂ CH ₃	n = 0	Н	СНз	Н	D
CI	SO ₂ CH ₃	n = 0	Н	СН₃	СНз	D
СНз	SO ₂ CH ₃	n = 0	Н	СНз	Н	D
CH ₃	SO₂CH3	n = 0	Н	CH ₃	СН₃	D
C 1	C 1	n = 0	Н	CH3	СНз	D
C 1	SO ₂ CH ₃	n = 0	Н	СНз	Н	E
C 1	SO ₂ CH ₃	n = 0	Н	СН₃	СНз	E
СНз	SO ₂ CH ₃	n = 0	Н	СНз	Н	E
СНз	SO ₂ CH ₃	n = 0	Н	СНз	СНз	E
C 1	C 1	n = 0	Н	СНз	Н	E
C 1	SO ₂ CH ₃	n = 0	Н	СНз	Н	F
C 1	SO ₂ CH ₃	n=0	Н	CH3	CH3	F
СНз	SO ₂ CH ₃	n = 0	Н	CH ₃	Н	F
СНз	SO ₂ CH ₃	n = 0	Н	СНз	СН₃	F
C 1	C 1	n=0	Н	СНз	CH3	F
C 1	SO ₂ CH ₃	n=0	Н	СН₃	Н	G

第 2 表(つづき)

R 1	R²	R³n	R 4	R 7	R ⁸	Z
C1	SO ₂ CH ₃	n=0	Н	СНз	СНз	G
CH3	SO ₂ CH ₃	n = 0	Н	CH3	Н	G
CH3	SO ₂ CH ₃	n = 0	Н	CH ₃	CH ₃	G
Cl	C 1	n = 0	Н	СНз	Н	G
Cl	SO₂ÇH₃	n = 0	Н	СНз	Н	Н
Cl	SO ₂ CH ₃	n = 0	Н	CH3	CH3	Н
CH ₃	SO ₂ CH ₃	n=0	Н	СНз	Н	Н
CH3	SO ₂ CH ₃	n = 0	Н	CH3	CH3	н
C1	C 1	n=0	Н	CH3	СНз	Н
C1	SO2CH3	n = 0	Н	СНз	Н	I
Cı	SO ₂ CH ₃	n=0	Н	СН₃	CH3	1
CH ₃	SO ₂ CH ₃	n=0	Н	СН₃	Н	I
CH3	SO ₂ CH ₃	n=0	Н	CH3	CH3	I
C1	C 1	n=0	н	CH3	Н	I
C 1	SO ₂ CH ₃	n=0	Н	СНз	Н	J
C 1	SO ₂ CH ₃	n=0	Н	СНз	CH ₃	J
CH ₃	SO2CH3	n=0	Н	CH3	Н	J
СНз	SO₂CH3	n=0	Н	CH ₃	CH ₃	J
CI	C 1	n=0	Н	CH ₃	CH ₃	J
CI	SO ₂ CH ₃	n=0	Н	СНз	Н	K
CI	SO ₂ CH ₃	n=0	Н	CH ₃	CH ₃	K
CH ₃	SO ₂ CH ₃	n=0	Н	CH ₃	Н	K
CH ₃	SO ₂ CH ₃	n=0	Н	CH ₃	CH₃	K
C1	Cl	n=0	Н	СНз	Н	K
C1	SO ₂ CH ₃	n=0	Н	СНз	Н	L
C1	SO ₂ CH ₃	n = 0	Н	CH3	СНз	L

R 1	R ²	R³n	R 4	R 7	R 8	2
СНз	SO ₂ CH ₃	n=0	Н	СНз	Н	L
СН₃	SO ₂ CH ₃	n=0	Н	СНз	CH ₃	L
Cl	C 1	n = 0	Н	СНз	CH3	L
C 1	SO ₂ CH ₃	n = 0	Н	CH3	Н	М
C 1	SO ₂ CH ₃	n=0	Н	CH3	СНз	М
СНз	SO ₂ CH ₃	n = 0	Н	CH ₃	Н	М
СНз	SO₂CH₃	n = 0	Н	СНз	CH ₃	М
C 1	C 1	n = 0	Н	СНз	Н	М
C I	SO₂CH₃	n = 0	Н	СНз	Н	N
C1	SO ₂ CH ₃	n=0	Н	СНз	СНз	N
СНз	SO ₂ CH ₃	n = 0	Н	СНз	H	N
СНз	SO ₂ CH ₃	n=0	Н	СН₃	СНз	N
Cl	C 1	n=0	Н	CH3	СНз	N
C1	SO₂CH₃	n=0	Н	CH3	Н	0
C1	SO₂CH₃	n=0	Н	CH3	CH3	0
CH _s	SO ₂ CH ₃	n = 0	Н	СНз	Н	0
СНз	SO ₂ CH ₃	n=0	Н	СН₃	CH3	0
C1	C 1	n=0	Н	CH₃	Н	0
C 1	C 1	n = 0	Н	СН₃	CH3	0
C 1	SO ₂ CH ₃	n=0	СНз	СН₃	Н	0
C 1	SO ₂ CH ₃	n=0	CH₃	СНз	CH3	0
СНз	SO ₂ CH ₃	n=0	СН₃	СН₃	Н	0
СНз	SO ₂ CH ₃	n = 0	СН₃	СНз	CH3	0
C 1	C1	n = 0	СН₃	СН₃	Н	0
C 1	C 1	n=0	CH3	СН₃	CH3	0
C 1	SO ₂ CH ₃	n=0	Н	СНз	н	Р

R 1	R²	R³n	R 4	R 7	R ⁸	Z
C 1	SO ₂ CH ₃	n = 0	Н	CH ₃	СНз	P
CH ₃	SO ₂ CH ₃	n = 0	Н	СН₃	н	Р
CH ₃	SO ₂ CH ₃	n = 0	Н	CH ₃	СНз	Р
C 1	Cl	n = 0	Н	CH ₃	н	P
C 1	C1	n = 0	Н	СН₃	СНз	Р
C 1	SO ₂ CH ₃	n = 0	CH ₃	CH3	Н	P
C1	SO ₂ CH ₃	n = 0	CH3	CH3	СНз	Р
СНз	SO ₂ CH ₃	n = 0	CH3	CH3	Н	Р
СНз	SO ₂ CH ₃	n=0	CH₃	СН₃	CH ₃	Р
C 1	C1 .	n = 0	CH3	CH ₃	н	Р
C1	C 1	n = 0	CH3	СНз	CH ₃	Р
C1	SO ₂ CH ₃	n = 0	Н	СН₃	н	Q
C 1	SO ₂ CH ₃	n=0.	Н	CH ₃	СНз	Q
CH3	SO ₂ CH ₃	n=0	Н	СНз	Н	Q
CH₃	SO ₂ CH ₃	n = 0	Н	CH3	CH ₃	Q
C I	C 1	n=0	Н	CH ₃	Н	Q
C 1	SO ₂ CH ₃	n=0	Н	CH ₃	Н	R
C 1	SO ₂ CH ₃	n=0	Н	СНз	CH3	R
СНз	SO ₂ CH ₃	n=0	H	СНз	Н	R
СНз	SO ₂ CH ₃	n = 0	Н	CH ₃	CH3	R
C1	C 1	n = 0	Н	СНз	CH ₃	R
C1	SO ₂ CH ₃	n=0	Н	СНз	Н	сно
· C1	SO ₂ CH ₃	n = 0	н	СНз	CH₃	сно
CH3	SO ₂ CH ₃	n = 0	Н	CH3	Н	сно
СНз	SO ₂ CH ₃	n = 0	Н	СН₃	СНз	СНО
C 1	C 1	n = 0	Н	CH ₃	Н	сно

R 1	R²	R³n	R 4	R 7	R ⁸	2
C1	SO ₂ CH ₃	n = 0	Н	СН₃	Н	morpholino
CI	SO ₂ CH ₃	n = 0	Н	СНз	CH3	morpholino
CH3	SO ₂ CH ₃	n = 0	Н	CH₃	Н	morpholino
CH ₃	SO ₂ CH ₃	n = 0	Н	СН₃	CH₃	morpholino
Cl	C 1	n = 0	Н	CH₃	CH₃	morpholino
Cl	SO ₂ CH ₃	n = 0	Н	CH₃	Н	ОСНз
C1	SO ₂ CH ₃	n = 0	Н	CH₃	СНз	OCH3
CH ₃	SO ₂ CH ₃	n = 0	Н	CH ₃	Н	ОСНз
CH3	SO ₂ CH ₃	n=0	H	CH₃	CH ₃	OCH ₃
C1	C 1	n = 0	Н	CH₃	Н	OCH ₃
C1	SO ₂ CH ₃	n = 0	H	CH₃	Н	OC2H4OCH3
C1	SO ₂ CH ₃	n=0	Н	СНз	СНз	OC2H4OCH3
CH3	SO₂CH₃	n = 0	Н	СН₃	Н	OC2H4OCH3
CH ₃	SO ₂ CH ₃	n = 0	H	СН₃	CH3	OC2H4OCH3
C1	C 1	n = 0	Н	CH3	CH ₃	OC2H4OCH3
C1	SO ₂ CH ₃	n = 0	Н	СНз	Н	CH=CH ₂
C1	SO ₂ CH ₃	n = 0	Н	СНз	CH ₃	CH=CH ₂
CH3	SO ₂ CH ₃	n = 0	Н	CH3	Н	CH=CH ₂
CH ₃	SO ₂ CH ₃	n = 0	Н	СНз	CH₃	CH=CH ₂
C 1	C 1	n = 0	Н	CH ₃	Н	CH=CH ₂
CI	SO ₂ CH ₃	n=0	Н	СНз	Н	COOCH3
CI	SO ₂ CH ₃	n=0	Н	СНз	CH ₃	COOCH3
CH ₃	SO ₂ CH ₃	n=0	Н	CH ₃	Н	COOCH3
CH ₃	SO ₂ CH ₃	n=0	Н	СНз	CH₃	COOCH3
CI	CI	n = 0	Н	СНз	CH ₃	COOCH3

第 2 表(つづき)

R 1	R²	R³n	R 4	R 7	R ⁸	Z
Cl	SO ₂ CH ₃	n = 0	H	CH ₃	Н	COOC ₂ H ₅
C 1	SO ₂ CH ₃	n = 0	Н	СНз	CH ₃	COOC ₂ H ₅
СНз	SO ₂ CH ₃	n = 0	Н	СНз	Н	COOC ₂ H ₅
CH ₃	SO2CH3	n = 0	Н	CH₃	CH ₃	COOC ₂ H ₅
CI	C 1	n = 0	Н	СН₃	Н	COOC ₂ H ₅
C 1	SO ₂ CH ₃	n = 0	Н	СН₃	Н	CH(OCH ₃) ₂
C 1	SO ₂ CH ₃	n = 0	Н	СН₃	CH ₃	CH(OCH ₃) ₂
CH ₃	SO₂CH₃	n = 0	Н	CH3	Н	CH(OCH ₃) ₂
СНз	SO ₂ CH ₃	n = 0	Н	СНз	СН₃	CH(OCH ₃) ₂
CI	C 1	n = 0	Н	СНз	СНз	CH(OCH ₃) ₂
C1	SO ₂ CH ₃	n = 0	Н	СН₃	Н	NH ₂
C 1	SO ₂ CH ₃	n = 0	Н	CH ₃	CH ₃	NH ₂
CH ₃	SO ₂ CH ₃	n = 0	, Н	СНз	Н	NH ₂
СНз	SO ₂ CH ₃	n=0	Н	СНз	СН₃	NH ₂
Cl	CI	n = 0	Н	СНз	Н	NH ₂
CI	SO₂CH3	n = 0	Н	СНз	Н	NHCH 3
CI	SO ₂ CH ₃	n = 0	Н	CH3	СНз	NHCH3
CH ₃	SO ₂ CH ₃	n = 0	Н	CH ₃	Н	NHCH3
CH ₃	SO ₂ CH ₃	n = 0	Н	CH3	СНз	NHCH3
CI	CI	n = 0	Н	CH3	СН₃	NHCH3
CI	SO ₂ CH ₃	n=0	Н	CH3	Н	N(CH ₃) ₂
CI	SO ₂ CH ₃	n = 0	Н	СНз	СНз	N(CH ₃) ₂
CH ₃	SO ₂ CH ₃	n = 0	Н	СНз	Н	N(CH ₃) ₂
CH ₃	SO2CH3	n=0	Н	СН₃	CH₃	N(CH ₃) ₂
C1	C1	n = 0	Н	CH ₃	Н	N(CH ₃) ₂

R 1	. R ²	R³n	R ⁴	R 7	R 8	Z
C 1	SO ₂ CH ₃	n = 0	Н	СНз	Н	NHCOCH3
CI	SO ₂ CH ₃	n=0	Н	СН₃	СНз	NHCOCH₃
CH₃	SO ₂ CH ₃	n = 0	H	СНз	Н	NHCOCH₃
CH₃	SO ₂ CH ₃	n = 0	Н	CH3	CH3	NHCOCH₃
C I	C 1	n = 0	H	CH₃	CH ₃	NHCOCH₃
C1	SO ₂ CH ₃	n = 0	Н	CH3	Н	NHCOOCH₃
C 1	SO ₂ CH ₃	n = 0	Н	СНз	СНз	NHCOOCH₃
СНз	SO ₂ CH ₃	n = 0	Н	СНз	Н	NHCOOCH₃
CH ₃	SO ₂ CH ₃	n = 0	Н	СНз	СНз	NHCOOCH₃
Cl	C 1	n = 0	Н	СНз	Н	NHCOOCH3
CI	SO ₂ CH ₃	n = ()	Н	СНз	Н	N(CH3)COOCH3
C1	SO ₂ CH ₃	n = 0	Н	СНз	CH3	N(CH ₃)COOCH ₃
СНз	SO ₂ CH ₃	n = 0	Н	СНз	H	N(CH3)COOCH3
СНз	SO ₂ CH ₃	n = 0	Н	СНз	CH3	N(CH ₃)COOCH ₃
CI	C 1	n = 0	Н	СНз	CH ₃	N(CH ₃)COOCH ₃
C 1	SO ₂ CH ₃	n = 0	Н	СНз	Н	NHSO ₂ CH ₃
CI	SO₂CH3	n = 0	Н	CH3	СНз	NHSO ₂ CH ₃
CH₃	SO₂CH₃	n = 0	Н	СН₃	н	NHSO ₂ CH ₃
CH ₃	SO₂CH3	n = 0	Н	СНз	CH ₃	NHSO ₂ CH ₃
C1	C 1	n = 0	Н	СН₃	Н	NHSO ₂ CH ₃
C1	SO ₂ CH ₃	n = 0	Н	СН₃	Н	NHCON(C ₂ H ₅) ₂
C1	SO ₂ CH ₃	n = 0	Н	CH₃	CH₃	NHCON(C ₂ H ₅) ₂
СНз	SO ₂ CH ₃	n = 0	Н	CH₃	Н	NHCON(C ₂ H ₅) ₂
СНз	SO ₂ CH ₃	n = 0	Н	СН₃	CH ₃	NHCON(C ₂ H ₅) ₂
C 1	C 1	n = 0	Н	СНз	CH3	NHCON(C ₂ H ₅) ₂

第 2 表(つづき)

R ¹	R²	R ^a n	R 4	R 7	R ⁸	Z
Cl	SO ₂ CH ₃	n=0	Н	CH₃	Н	NHCH ₂ Ph
C1	SO ₂ CH ₃	n = 0	H	CH ₃	CH3	NHCH₂Ph
СНз	SO ₂ CH ₃	n = 0	Н	CH ₃	Н	NHCH ₂ Ph
СНз	SO ₂ CH ₃	n=0	Н	СНз	CH ₃	NHCH ₂ Ph
C 1	Cl	n = 0	Н	CH ₃	Н	NHCH₂Ph
C 1	SO ₂ CH ₃	n = 0	Н	CH3	Н	Ph
Cl	SO ₂ CH ₃	n = 0	Н	CH ₃	CH ₃	Ph
СН₃	SO ₂ CH ₃	n = 0	Н	СНз	Н	Ph
СНз	SO₂CH₃	n = 0	Н	CH₃	ÇH₃	Ph
Cl	C 1	n = 0	Н	CH3	Н	Ph
C1	C 1	n = 0	н	СНз	CH₃	Ph
C1	SO ₂ CH ₃	n = 0	CH3	CH ₃	Н	Ph
C1	SO ₂ CH ₃	n=0	CH₃	CH3	СНз	Ph
СНз	SO ₂ CH ₃	n=0	CH₃	CH₃	Н	Ph
СНз	SO ₂ CH ₃	n = 0	СН₃	СН₃	CH₃	Ph
C 1	C 1	n=0	CH3	CH₃	Н	Ph
C1	C I	n = 0	СН₃	CH3	CH3	Ph
CH ₃ O	SO ₂ CH ₃	5-CH₃	Н	СНз	Н	Ph
CH ₃ O	SO ₂ CH ₃	5-C1	Н	CH3	CH3	Ph
Cl	SO ₂ CH ₃	n = 0	Н	CH ₃	Н	Ph-3-C1
CI	SO ₂ CH ₃	n = 0	Н	CH ₃	CH3	Ph-3-C1
CH₃	SO ₂ CH ₃	n=0	Н	СНз	н	Ph-3-01
CH ₃	SO ₂ CH ₃	n=0	Н	CH ₃	CH3	Ph-3-C1
CI	Cl	n=0	Н	CH ₃	Н	Ph-3-C1
CI	SO ₂ CH ₃	n=0	Н	CH3	Н	Ph-4-C1
C1	SO ₂ CH ₃	n = 0	н	CH3	CH ₃	Ph-4-C1

第 2 表(つづき)

R 1	R ²	R³n	R ⁴	R 7	R ⁸	Z
СНз	SO ₂ CH ₃	n=0	Н	СНз	Н	Ph-4-C1
СНз	SO ₂ CH ₃	n = 0	Н	CH3	СН₃	Ph-4-C1
C1	C 1	n = 0	Н	CH3	Н	Ph-4-C1
CI	C 1	n = 0	Н	СН₃	CH3	Ph-4-C1
C1	SO ₂ CH ₃	n = 0	CH ₃	СН₃	Н	Ph-4-C1
C 1	SO ₂ CH ₃	n = 0	СНз	СНз	CH ₃	Ph-4-C1
CH₃	SO ₂ CH ₃	n = 0	СНз	СНз	Н	Ph-4-C1
СН₃	SO ₂ CH ₃	n=0	СНз	СНз	CH ₃	Ph-4-C1
C1	C 1	n = 0	СНз	СНз	Н	Ph-4-C1
CI	C 1	n = 0	СНз	СН₃	CH₃	Ph-4-C1
CH ₃ O	SO ₂ CH ₃	5-CH3	Н	СН₃	Н	Ph-4-C1
CH₃O	SO ₂ CH ₃	5-C1	Н	СН₃	CH ₃	Ph-4-C1
C 1	SO ₂ CH ₃	n = 0	Н	СНз	Н	Ph-2-CH3
C 1	SO ₂ CH ₃	n = 0	H	СНз	СН₃	Ph-2-CH ₃
СНз	SO ₂ CH ₃	n = 0	Н	СНз	Н	Ph-2-CH ₃
СНз	SO ₂ CH ₃	n = 0	Н	СНз	CH₃	Ph-2-CH₃
C 1	C 1	n=0	Н	CH3	Н	Ph-2-CH3
CI	SO ₂ CH ₃	n = 0	Н	СН₃	Н	Ph-4-CH ₃
C 1	SO ₂ CH ₃	n = 0	Н	CH₃	CH ₃	Ph-4-CH ₃
CH ₃	SO ₂ CH ₃	n = 0	Н	СНз	Н	Ph-4-CH ₃
CH3	SO ₂ CH ₃	n = 0	Н	СНз	СНз	Ph-4-CH ₃
C1	C 1	n = 0	Н	CH3	СНз	Ph-4-CH ₃
C 1	SO ₂ CH ₃	n=0	Н	СНз	Н	Ph-4-CN
C1	SO ₂ CH ₃	n = 0	Н	CH ₃	СНз	Ph-4-CN
СН 3	SO ₂ CH ₃	n=0	Н	СН₃	Н	Ph-4-CN
СН₃	SO ₂ CH ₃	n = 0	Н	СНз	СН₃	Ph-4-CN

第 2 表(つづき)

R 1	R²	R ^s n	R 4	R 7	R ⁸	Z
C 1	C 1	n = 0	Н	СНз	Н	Ph-4-CN
CI	SO ₂ CH ₃	n = 0	Н	CH ₃	Н	Ph-4-NO ₂
C 1	SO ₂ CH ₃	n = 0	Н	CH ₃	CH3	Ph-4-NO ₂
CH3	SO ₂ CH ₃	n = 0	Н	CH ₃	Н	Ph-4-NO ₂
CH3	SO ₂ CH ₃	n = 0	Н	СН₃	СНз	Ph-4-NO ₂
Cl	C1	n=0	Н	CH3	CH ₃	Ph-4-NO ₂
C 1	SO ₂ CH ₃	n = 0	H	СНз	Н	Ph-3-CF ₃
C1	SO ₂ CH ₃	n = 0	H	СНэ	СНз	Ph-3-CF ₃
СНз	SO ₂ CH ₃	n = 0	Н	СНз	Н	Ph-3-CF ₃
CH ₃	SO ₂ CH ₃	n = 0	Н	CH₃	CH3	Ph-3-CF ₃
C 1	C 1	n = 0	Н	CH₃	Н	Ph-3-CF ₃
Cl	SO ₂ CH ₃	n=0	Н	СНз	Н	Ph-3-0CH3
C1	SO ₂ CH ₃	n=0	Н	СН₃	СНз	Ph-3-0CH3
CH3	SO ₂ CH ₃	n = 0	Н	CH3	Н	Ph-3-0CH ₃
СНз	SO ₂ CH ₃	n = 0	Н	СНз	СНз	Ph-3-0CH ₃ .
C 1	C 1	n = 0	Н	CH3	CH3	Ph-3-0CH ₃
C 1	SO ₂ CH ₃	n = 0	Н	СН₃	Н	Ph-4-COOCH3
C 1	SO ₂ CH ₃	n = 0	Н	CH3	CH₃	Ph-4-C00CH ₃
CH3	SO ₂ CH ₃	n = 0	Н	СНз	Н	Ph-4-C00CH3
CH₃	SO ₂ CH ₃	n=0	Н	CH ₃	СН₃	Ph-4-COOCH ₃
CI	CI	n=0	Н	CH ₃	Н	Ph-4-C00CH ₃
C 1	SO ₂ CH ₃	n=0	Н	СНз	Н	Ph-2, 4-Cl ₂
C 1	SO ₂ CH ₃	n=0	Н	СНз	СНз	Ph-2, 4-Cl ₂
СНз	SO ₂ CH ₃	n = 0	Н	СНз	Н	Ph-2, 4-Cl ₂
СНз	SO ₂ CH ₃	n=0	Н	СН₃	СНз	Ph-2, 4-Cl ₂
C 1	Cl	n = 0	Н	СНз	СНз	Ph-2.4-Cl ₂

R 1	R ²	R³n	R 4	R 7	R 8	2
C 1	SO ₂ CH ₃	n = 0	Н	СНз	Н	Ph-2,5-Cl ₂
C 1	SO ₂ CH ₃	n=0	Н	СН₃	СНз	Ph-2.5-Cl ₂
СН₃	SO ₂ CH ₃	n = 0	Н	СНз	Н	Ph-2,5-Cl ₂
CH ₃	SO ₂ CH ₃	n = 0	Н	СНз	СН₃	Ph-2,5-C1 ₂
Cl	C 1	n = 0	Н	CH ₃	Н	Ph-2,5-C1 ₂
C 1	SO ₂ CH ₃	n = 0	Н	СНз	Н	Ph-2,6-C1 ₂
C 1	SO ₂ CH ₃	n = 0	Н	СН₃	СНз	Ph-2,6-Cl ₂
СНз	SO ₂ CH ₃	n = 0	Н	СНз	Н	Ph-2,6-Cl ₂
СНз	SO ₂ CH ₃	n = 0	Н	СНз	СНз	Ph-2.6-Cl ₂
C 1	Cl	n = 0	Н	СНз	СНз	Ph-2.6-Cl ₂
C 1	SO ₂ CH ₃	n = 0	Н	СНэ	Н	Ph-3, 4-Cl ₂
C 1	SO ₂ CH ₃	n=0	Н	СНз	CH ₃	Ph-3, 4-Cl ₂
CH ₃	SO ₂ CH ₃	n=0	Н	СНз	Н	Ph-3, 4-Cl ₂
CH ₃	SO₂CH₃	n = 0	Н	СНз	CH3	Ph-3, 4-Cl ₂
C 1	C 1	n = 0	Н	СНз	Н	Ph-3, 4-Cl ₂
C 1	SO ₂ CH ₃	n = 0	Н	CH3	Н	Ph-3, 5-Cl ₂
C 1	SO ₂ CH ₃	n = 0	Н	CH3	CH3	Ph-3,5-Cl ₂
CH ₃	SO ₂ CH ₃	n = 0	Н	СНз	Н	Ph-3,5-Cl ₂
CH ₃	SO ₂ CH ₃	n = 0	Н	СНз	CH3	Ph-3,5-Cl ₂
C 1	C 1	n = 0	Н	СНз	СНз	Ph-3.5-Cl ₂
C 1	SO ₂ CH ₃	n=0	Н	CH3	Н	Ph-2, 3, 4-Cl ₃
C 1	SO ₂ CH ₃	n = 0	Н	CH3	CH3	Ph-2, 3, 4-Cl ₃
СНз	SO ₂ CH ₃	n = 0	Н	CH ₃	н	Ph-2, 3, 4-Cl ₃
CH ₃	SO ₂ CH ₃	n = 0	Н	CH3	CH3	Ph-2, 3, 4-Cl ₃
CI	C1	n = 0	Н	СНз	Н	Ph-2, 3, 4-Cl ₃
CI	SO ₂ CH ₃	n=0	Н	СНз	Н	Ph-2, 4, 6-Cl ₃

第 2 表(つづき)

						
R¹	R²	R ³ n	R 4	R7	R 8	2
C 1	SO ₂ CH ₃	n=0	Н	CH ₃	СНз	Ph-2, 4, 6-Cl ₃
CH ₃	SO2CH3	n = 0	Н	СНз	Н	Ph-2,4,6-Cl ₃
CH ₃	SO ₂ CH ₃	n=0	Н	СН₃	CH ₃	Ph-2, 4, 6-Cl ₃
C1	Cl	n = 0	Н	CH ₃	СНз	Ph-2, 4, 6-Cl ₃
Cl	SO ₂ CH ₃	n=0	Н	СНз	H	CH=NCH3
C1	SO₂CH3	n = 0	Н	CH3	CH ₃	CH=NCH3
CH3	SO ₂ CH ₃	n=0	Н	СНз	Н	CH=NCH ₃
CH ₃	SO ₂ CH ₃	n = 0	Н	СНз	CH₃	CH=NCH ₃
Cl	C 1	n = 0	Н	СНз	Н	CH=NCH3
CI	SO ₂ CH ₃	n = 0	Н	CH3	Н	CH=NOCH ₃
C1	SO ₂ CH ₃	n = 0	Н	СНз	СНз	CH=NOCH ₃
CH ₃	SO ₂ CH ₃	n = 0	Н	CH3	Н	CH=NOCH ₃
CH ₃	SO ₂ CH ₃	n = 0	Н	СНз	CH3	CH=NOCH ₃
CI	C 1	n = 0	Н	CH3	СНз	CH=NOCH ₃
CI	SO ₂ CH ₃	n=0	Н	CH3	Н	CH=NOC ₂ H ₅
C1	SO ₂ CH ₃	n=0	Н	CH3	CH₃	CH=NOC ₂ H ₅
CH ₃	SO ₂ CH ₃	n = 0	Н	CH3	Н	CH=NOC ₂ H ₅
CH ₃	SO ₂ CH ₃	n=0	Н	CH ₃	CH ₃	CH=NOC ₂ H ₅
C1	CI	n=0	Н	СНз	.H	CH=NOC ₂ H ₅
C 1	SO ₂ CH ₃	n=0	Н	СНз	Н	CH=NOCH2CH=CHC1
C1	SO ₂ CH ₃	n=0	Н	СНз	СНз	CH=NOCH2CH=CHC1
CH3	SO ₂ CH ₃	n=0	Н	СНз	Н	CH=NOCH 2 CH=CHC1
СНз	SO ₂ CH ₃	n=0	н	СНз	CH3	CH=NOCH 2 CH=CHC1
CI	CI	n=0	Н	CH3	СНз	CH=NOCH 2 CH=CHC1
C1	SO ₂ CH ₃	n=0	Н	CH ₃	Н	CH=NCH ₂ C≡ CH ₅
Cl	SO ₂ CH ₃	n=0	Н	CH ₃	CH ₃	$CH = NCH_2 C \equiv CH_5$

R 1	R ²	R³n	R 4	R 7	R ⁸	Z
CH3	SO ₂ CH ₃	n = 0	Н	СН₃	Н	$CH = NCH_2C \equiv CH_5$
CH3	SO ₂ CH ₃	n = 0	Н	СН₃	СН₃	$CH = NCH_2C \equiv CH_5$
Cl	C 1	n = 0	Н	СНз	Н	$CH = NCH_2C \equiv CH_5$
C1	SO ₂ CH ₃	n = 0	Н	СНз	Н	C(CH ₃)=NOC ₂ H ₅
CI	SO ₂ CH ₃	n = 0	Н	СНз	СН₃	C(CH ₃)=NOC ₂ H ₅
СНз	SO ₂ CH ₃	n = 0	Н	СНз	Н	C(CH ₃)=NOC ₂ H ₅
CH ₃	SO₂CH₃	n = 0	Н	СНз	СНз	C(CH ₃)=NOC ₂ H ₅
C 1	C 1	n = 0	Н	СНз	CH ₃	C(CH ₃)=NOC ₂ H ₅
C 1	SO ₂ CH ₃	n = 0	Н	СНз	Н	CH=NNHCH3
C 1	SO ₂ CH ₃	n = 0	Н	СНз	СНз	CH=NNHCH3
CH3	SO ₂ CH ₃	n = 0	Н	СН₃	Н	CH=NNHCH3
СНз	SO ₂ CH ₃	n = 0	Н	СНз	CH3	CH=NNHCH3
Cl	C1	n = 0	Н	СН₃	Н	CH=NNHCH3
Cl	SO ₂ CH ₃	n = 0	Н	СНз	Н	CH=N-Ph-4-C1
CI	SO ₂ CH ₃	n=0	Н	СН₃	СНз	CH=N-Ph-4-C1
CH3	SO₂CH₃	n = 0	Н	СНз	Н	CH=N-Ph-4-C1
CH ₃	SO ₂ CH ₃	n=0	Н	СНз	СНз	CH=N-Ph-4-C1
C1	C 1	n = 0	Н	СНз	СНз	CH=N-Ph-4-C1

WO 00/50397 〔除草剤〕

本発明除草剤は、本発明化合物の1種または2種以上を有効成分として含有す る。本発明化合物を実際に施用する際には、他成分を加えず純粋な形で使用でき るし、また農薬として使用する目的で一般の農薬のとり得る形態、すなわち、水 和剤,粒剤,粉剤,乳剤,水溶剤,懸濁剤,フロアブルなどの形態で使用するこ ともできる。添加剤および担体としては固型剤を目的とする場合は、大豆粉、小 麦粉などの植物性粉末、珪藻土,燐灰石,石こう,タルク,ベントナイト,パイ ロフィライト, クレイなどの鉱物性微粉末、安息香酸ソーダ, 尿素, 芒硝などの 有機および無機化合物が使用される。液体の剤型を目的とする場合は、ケロシン . キシレンおよびソルベントナフサなどの石油留分、シクロヘキサン, シクロヘ キサノン, DMF, DMSO, アルコール, アセトン, トリクロロエチレン, メ チルイソブチルケトン、鉱物油、植物油、水などを溶剤として使用する。これら の製剤において均一かつ安定な形態をとるために、必要ならば界面活性剤を添加 することもできる。界面活性剤としては、特に限定はないが、例えば、ポリオキ シエチレンが付加したアルキルフェニルエーテル、ポリオキシエチレンが付加し たアルキルエーテル、ポリオキシエチレンが付加した高級脂肪酸エステル、ポリ オキシエチレンが付加したソルビタン高級脂肪酸エステル、ポリオキシエチレン が付加したトリスチリルフェニルエーテル等の非イオン性界面活性剤、ポリオキ シエチレンが付加したアルキルフェニルエーテルの硫酸エステル塩,アルキルベ ンゼンスルホン酸塩、高級アルコールの硫酸エステル塩、アルキル硫酸塩、アル キルナフタレンスルホン酸塩、ポリカルボン酸塩、リグニンスルホン酸塩、アル キルナフタレンスルホン酸塩のホルムアルデヒド縮合物,イソブチレン-無水マ レイン酸の共重合物などが挙げられる。

本発明除草剤における有効成分濃度は、前述した製剤の形により種々の濃度に変化するものである。例えば、水和剤に於いては、 $5\sim90$ 重量%(以下、単に%と書く。)、好ましくは $10\sim85\%$:乳剤に於いては、 $3\sim70\%$ 、好ましくは $5\sim60\%$:粒剤に於いては、 $0.01\sim50\%$ 、好ましくは、0.05% $\sim40\%$ の濃度が用いられる。

このようにして得られた水和剤、乳剤は水で所定の濃度に希釈して懸濁液ある

いは乳濁液として、粒剤はそのまま雑草の発芽前または発芽後に散布処理もしく は混和処理される。実際に本発明除草剤を適用するに当たっては1へクタール当 たり有効成分0.1g以上の適当量が施用される。

また、本発明除草剤は、公知の殺菌剤、殺虫剤、殺ダニ剤、除草剤、植物成長調整剤、肥料などと混合して使用することもできる。特に、除草剤と混合使用することにより、使用薬量を減少させることが可能である。また、省力化をもたらすのみならず、混合薬剤の相乗作用により一層高い効果も期待できる。その場合、複数の公知除草剤との組合せも可能である。

本発明除草剤と混合使用するにふさわしい薬剤としては、ジフルフェニカン, プロパニルなどのアニリド系除草剤、アラクロール、プレチラクロールなどのク ロロアセトアニリド系除草剤、2,4-D,2,4-DBなどのアリールオキシ アルカン酸系除草剤、ジクロホップーメチル、フェノキサプロップーエチルなど のアリールオキシフェノキシアルカン酸系除草剤、ジカンバ,ピリチオバックな どのアリールカルボン酸系除草剤、イマザキン,イマゼタピルなどのイミダゾリ ノン系除草剤、ジウロン、イソブロツロンなどのウレア系除草剤、クロルプロフ ァム、フェンメジファムなどのカーバメート系除草剤、チオベンカルブ、EPT Cなどのチオカーバメート系除草剤、トリフルラリン、ペンジメタリンなどのジ ニトロアニリン系除草剤、アシフルオルフェン、ホメサフェンなどのジフェニル エーテル系除草剤、ベンスルフロン-メチル,ニコスルフロンなどのスルホニル ウレア系除草剤、メトリブジン,メタミトロンなどのトリアジノン系除草剤、ア トラジン,シアナジンなどのトリアジン系除草剤、フルメツラムなどのトリアゾ ピリミジン系除草剤、ブロモキシニル,ジクロベニルなどのニトリル系除草剤、 グリホサート,グリホシネートなどのリン酸系除草剤、パラコート,ジフェンゾ コートなどの第四アンモニウム塩系除草剤、フルミクロラックーペンチル、フル チアセット-メチルなどの環状イミド系除草剤、その他として、イソキサベン、 エトフメセート、オキサジアゾン、キンクロラック、クロマゾン、スルコトリオ ン、シンメチリン、ジチオピル、ピラゾレート、ピリデート、フルポキサム、ベ ンタゾン、ベンフルセート、さらに、セトキシジム,トラルコキシジムなどのシ クロヘキサンジオン系除草剤などが挙げられる。また、これらの組み合わせたも のに植物油及び油濃縮物を添加することもできる。

発明を実施するための最良の形態:

次に、実施例を挙げて、本発明化合物を更に詳細に説明する。

実施例1

3-[2-メチル-3-(3-メチルイソオキサゾール-5-イル)-4-メチルスルホニル]ベンゾイル-6,6-ジメチルピペリジン-2,4-ジオン(化合物番号III-2)の製造

2 ーメチルー3 ー(3 ーメチルイソオキサゾールー5 ーイル)ー4 ーメチルスルホニルベンゾイルクロリド0.85gをアセトニトリル30mlに溶解した溶液を、室温で、6,6ージメチルピペリジンー2,4ージオン0.42gとトリエチルアミン0.35gとをアセトニトリル10mlに溶解した溶液に滴下した。室温で2時間反応させた後、反応液にトリエチルアミン0.75mlを加え、次いでアセトンシアンヒドリン0.25mlを加え、室温で12時間反応させた。反応液を濾過し、濾液を濃縮し、残留物を酢酸エチルに溶解し、塩酸水溶液、水、飽和食塩水で洗浄し、有機層を無水硫酸マグネシウムで乾燥した。有機層を濾過し、溶媒を濃縮後、メタノールを加え、折出した結晶を濾過し、表記化合物を0.47g

上記実施例を含めて本発明化合物を第3表に示す。

また、第3表の合成化合物のNMRデータを第4表に示す。

第 3 表

 $R^4 = R^5 = H$

化合物 番 号	R¹	R²	R³n	R ^e	R ⁷	R ⁸	2	物性値
III - 1	Cl	SO₂CH₃	n=0	СН₃	СНз	СНз	С	* NMR-1
III - 2	CH₃	SO₂CH₃	n=0	СН₃	СНз	Н	С	258°C dec.
Ш- 3	CH₃	SO₂CH₃	n=0	СНз	СНз	CH ₃	С	* NMR-2 [222-227]
Ⅲ-4	СНз	SO₂CH₃	5-CH₃	СН₃	СНз	н	С	271°C dec.
Ⅲ-5	СН₃	SO₂CH₃	5-СН₃	СНз	СН₃	СНз	С	* NMR-3
Ⅲ-6	СНз	SO₂CH₃	n=0	CH₃	СНз	CH3O	С	[184-191]
Ⅲ-7	C1	SO₂CH₃	n=0	CH₃	СНэ	СНз	0	[185-195]
111 − 8	СН₃	SO₂CH₃	n=0	CH₃	СНз	Н	0	* NMR-4
Ⅲ-9	СН₃	SO₂CH₃	n=0	СНз	СНз	СНз	ОСНз	[190-195]
Ⅲ-10	Cl	SO ₂ CH ₃	n=0	CH₃	CH₃	CH₃	OC2H4OCH3	* NMR-5
M-11	Cl	SO₂CH₃	n=0	CH₃	СН₃	СН₃	CH(OCH ₃) ₂	* NMR-6
Ⅲ-12	СН₃	SO₂CH₃	n=0	CH3	СН₃	Н	СООСН3	[261-267]
Ⅲ-13	СН₃	SO ₂ CH ₃	5-CH₃	CH ₃	СНз	Н	G	n _D ^{20.3} :
III-14	Cl	SO2CH3	n=0	CH₃	СНз	Н	CH(OCH ₃) ₂	1.5475 ★ NMR-7
III-15	CH₃	SO₂CH₃	n=0	CH ₃	СНз	Н	Q	[245-247]
Ⅲ-16	СН₃	SO ₂ CH ₃	n=0	CH ₃	СН₃	Н	Ph	* NMR-8

注:物性値欄で [] は融点 (℃) を示し、*印はNMRデータ(後記の第4表) があることを示す。 以下同じ。

第 3 表(つづき)

化合物 番 号	R¹	R²	R³n	R ⁶	R ⁷	Rε	2	物性値
III-17	СНз	SO₂CH₃	n=0	СНз	СНз	Н	Ph-4-C1 .	* NMR-9
III-18	C1	SO ₂ CH ₃	n=0	СНз	СН₃	Н	Ph	* NMR-10
Ш-19	C1	SO₂CH₃	n=0	СН₃	СН₃	н	СС	215℃ dec
Ⅲ-20	C1	SO ₂ CH ₃	n=0	СНз	СН₃	н	CH=CH ₂	204℃ dec
Ⅲ-21	C1	SO₂CH₃	n=0	СНз	СНз	н	$N(CH_3)_2$	* NMR-11
Ш-22	C1	SO ₂ CH ₃	n=0	СНз	СНз	н	P	226℃ dec
Ⅲ-23	СНз	SO₂CH₃	n=0	C ₂ H ₅	C ₂ H ₅	Н	С	* NMR-12
Ⅲ-24	СН₃	SO₂CH₃	n=0	СН₃	C ₂ H ₅	Н	С .	220℃ dec
III-25	СН₃	SO ₂ CH ₃	n=0	CH₃	СНз	Н	А	* NMR-13
III -26	C1	SO₂CH₃	5-CH3	Н	СН₃	Н	С	[300]
III -27	C1	SO2CH3	5-CH3	СНз	CH3	H	С	[219-222]
Ⅲ-28	СНз	SO₂CH₃	5-CH3	Н	CH3	Н	С	[205]
Ⅲ-29	C1	Cl	n=0	CH3	СН₃	Н	С	* NMR-14
Ш-30	СН₃	SCH₃	5-C1	СН₃	СН₃	Н	С	[266-272]
Ⅲ-31	СНз	SO ₂ CH ₃	5-C1	CH ₃	СН₃	Н	С	[281-283]
Ⅲ-32	СНз	CI	5-C1	СНз	СНз	Н	С	* NMR-15
III -33	СНз	SO ₂ CH ₃	n=0	СНз	CH3	Н	L	* NMR-16
III - 34	СНз	SO ₂ CH ₃	n=0	CH₃	СНз	Н	М	[277-279]
III -35	Cl	Cl	n=0	СН₃	СН₃	Н	Р	[102-108]
III -36	Cl	Cl	n=0	СН₃	CH ₃	СН₃	P	[164-165]
III -37	СНз	SO ₂ CH ₃	n=0	СН₃	СНз	Н	Р	[284-288]
III -38	CI	SO ₂ CH ₃	n=0	СН₃	CH3	Н	0	[221]
III -39	СН₃	SO ₂ CH ₃	n=0	CH3	СНз	Н	R	* NMR-17
III -40	Cl	SO ₂ CH ₃	n=0	CH ₃	СН₃	Н	OC2H4OCH3	[158-159]

第 4 表

化合物番号	「H-NMR δppm NMR-4 の溶媒は、δε-DMSO 、その他は、CDCl3.
III - 1 NMR-1	1. 4(d. 6H), 2. 4(s, 3H), 2. 5(s, 2H), 3. 1(s, 3H), 3. 2(s, 3H), 6. 5(s, 1H), 7. 5(d, 1H), 8. 2(d, 1H)
III - 2 NMR-2	1. 4(s. 6H), 2. 1(s, 3H), 2. 4(s, 3H), 2. 5(d, 2H), 3. 0(s, 3H), 6. 4(s, 1H), 7. 4(d, 2H), 8. 1(d, 2H)
III - 5 NMR-3	1. 35(s, 3H), 1. 4(s, 3H), 2. 0(s, 3H), 2. 4(s, 3H), 2. 5(d, 2H), 2. 7(s, 3H), 3. 0(s, 3H), 3. 1(s, 3H), 6. 2(s, 1H), 7. 2(s, 1H)
III - 8 NMR-4	1. 4(s. 6H), 2. 1(s, 3H), 2. 4(s, 2H), 3. 2(s, 3H), 3. 3(m, 2H), 4. 4(m, 2H), 7. 5(d, 1H), 7. 9(d, 1H)
III-10 NMR-5	1. 4(s, 6H), 2. 5(s, 2H), 3. 1(s, 3H), 3. 3(s, 3H), 3. 5(s, 3H), 3. 8(t, 2H), 4. 4(t, 2H), 7. 1(d, 1H), 8. 1(d, 1H)
III -11 NMR-6	1. 4(s. 6H), 2. 5(s, 2H), 3. 1(s, 3H), 3. 2(S, 3H), 3. 51(s, 3H), 3. 52(s, 3H), 6. 3(s, 1H), 7. 3(d, 1H), 8. 2(d, 1H)
III -14 NMR-7	1. 3(m, 6H), 2. 4(s, 2H), 3. 2(s, 3H), 3. 5(S, 3H), 3. 55(s, 3H), 6. 3(s, 1H), 6. 4(s, 1H), 7. 3(d, 1H), 8. 2(d, 1H)
III-16 NMR-8	1.4(m,6H), 1.9(s,3H), 2.5(d,2H), 2.6(S,3H), 6.0(s,1H), 7.2-7.5(m,6H), 8.1(d,1H)
III-17 NMR-9	1.4(m,6H), 1.9(s,3H), 2.5(d,2H), 2.7(S,3H), 5.9(s,1H), 7.2-7.5(m,5H), 8.1(d,1H)
III - 18 NMR-10	1.4(m,6H), 2.5(s,2H), 2.7(s,3H), 5.9(S,1H), 7.2-7.5(m,6H), 8.2(d,1H)
III -21 NMR-11	1. 4(m, 6H), 2. 5(s, 2H), 2. 9(m, 6H), 3. 3(S, 3H), 6. 0(s, 1H), 7. 3(d, 1H), 8. 0(d, 1H)
III -23 NMR-12	0. 9(m, 6H), 1. 6(m, 4H), 2. 1(s, 3H), 2. 4(S, 3H), 2. 5(d, 2H), 3. 0(s, 1H), 6. 0(s, 1H), 6. 4(s, 1H), 7. 4(d, 1H), 8. 1(d, 1H)
III-25 NMR-13	1. 2(s, 6H), 2. 1(s, 3H), 2. 5(d, 2H), 2. 9(s, 3H), 6. 0(s, 1H), 7. 3(s, 1H), 7. 4(d, 1H), 8. 1(s, 1H), 8. 2(d, 1H)
III -29 NMR-14	1. 4(s, 6H), 2. 4(s, 3H), 2. 5(s, 2H), 6. 0(s, 1H), 6. 3(s, 1H), 7. 3(d, 1H), 7. 5(d, 1H)
III-32 NMR-15	1. 4(s, 6H), 2. 1(s, 3H), 2. 4(s, 3H), 2. 5(s, 2H), 5. 9(s, 1H), 6. 3(s, 1H), 7. 4(s, 1H)
III -33 NMR-16	1. 4(s, 6H), 2. 0(s, 3H), 2. 5(s, 2H), 3. 25(s, 3H), 4. 5(s, 3H) 5. 9(s, 1H), 7. 5(d, 1H), 8. 1(d, 1H)
III -39 NMR-17	1.4(s, 6H), 1.95(s, 3H), 2.5(d, 2H), 2.7(s, 3H), 5.9(s, 1H) 7.4-8.7(m, 6H)

〔除草剤〕

次に、本発明除草剤に関する製剤例を若干示すが、有効成分化合物、添加物及 び添加割合は、本実施例にのみ限定されることなく、広い範囲で変更可能である 。製剤実施例中の部は重量部を示す。

実施例 2 水和剤

本発明化合物	2 0 部
ホワイトカーボン	2 0 部
ケイソウ土	5 2 部
アルキル硫酸ソーダ	26 部

以上を均一に混合、微細に粉砕して、有効成分20%の水和剤を得た。

実施例3 乳剤

本発明化合物	2	0 剖	ß
キシレン	5	5 部	ß
ジメチルホルムアミド	1	5 部	ß
ポリオキシエチレンフェニルエーテル	1	0 部	ß

以上を混合、溶解して有効成分20%の乳剤を得た。

実施例 4 粒剤

本発明化合物		5	部
タルク	4	0	部
クレー	3	8	部
ベントナイト	1	0	部
アルキル硫酸ソーダ		7	部

以上を均一に混合して微細に粉砕後、直径 0.5~1.0 mmの粒状に造粒して有効成分 5%の粒剤を得た。

本発明化合物は、畑作条件で、土壌処理、茎葉処理のいずれの方法でも高い除草活性を示し、イチビ、イヌビユ、アキノエノコログサ、野性エンバクなどの各種の畑雑草などに高い効力を示し、トウモロコシ、小麦、大麦などの麦類、大豆、ワタなどの作物に選択性を示す化合物も含まれている。

また、本発明化合物は、作物、観賞用植物、果樹等の有用植物に対し、生育抑制作用などの植物成長調節作用を示す化合物も含まれている。

また本発明化合物は、特に水田雑草のノビエ、タマガヤツリ、オモダカ、ホタルイなどの雑草に対し、優れた殺草効力を有し、イネに選択性がある。

さらに、本発明化合物は果樹園、芝生、線路端、空き地などの雑草の防除にも 適用することができる。

本発明化合物には、殺菌活性、殺虫・殺ダニ活性を有するものも含まれる。

次に本発明除草剤の効果に関する試験例を示す。

除草効果は下記の調査基準に従って調査し、殺草指数で表した。

調査基準

殺	草	率	殺	草	指	数
		0 %			0	
2 0 ~	- 2	9 %			2	
4 0 ~	~ 4	9 %			4	
6 0 ~	- 6	9 %			6	
8 0 ~	- 8	9 %			8	
]	0	0 %			1 0	

また、1、3、5、7、9の数値は、各々0と2、2と4、4と6、6と8、8と10の中間の値を示す。

(無処理区の地上部生草重 - 処理区の地上部生草重)

殺草率 (%) = ----×100

無処理区の地上部生草重

試験例1 畑作茎葉散布処理

200cm²のポットに土壌を充塡し、表層にイチビ、イヌビユ、オナモミ、アキノエノコログサ、トウモロコシの各種子を播き、軽く覆土後温室内で生育さ

せた。各植物が5~25cmの草丈に生育した時点で実施例3に示した乳剤の水 希釈液を、有効成分が所定の薬量になるように、1000リットル/ha散布量 相当量で、小型噴霧器にて茎葉部に散布した。3週間後に作物の薬害および雑草 の除草効果を、前記調査基準に従って調査し、その結果を第5表に示した。

第 5 表

化合物 番号	薬量 g/ha	イチビ	イヌビユ	オナモミ	エノコロ	トウモロコシ
III - 1	250	10	10	9	10	4
III - 2	250	10	10	10	10	2
III - 3	250	10	10	10	10	10
III - 4	250	10	10	10	10	3
III - 5	250	10	10	10	10	9
III - 6	250	10	10	10	10	8
III - 7	250	10	10	10	10	7
III - 8	250	10	10	10	10	0
III -12	250	10	10	10	10	0
III -13	250	9	10	10	10	0
Ⅲ -27	250	9	10	10	10	0

産業上の利用可能性:

本発明化合物は、工業的に有利に合成でき、トウモロコシなどの雑草防除のための除草剤に適しており、産業上有用なものである。

請求の範囲

1. 一般式(1)

[式中、 R^1 , R^2 は、それぞれ独立して、ニトロ基,シアノ基,ハロゲン原子 , C_{1-6} アルキル基, C_{1-6} アルコキシ基, C_{1-6} ハロアルキル基, C_{1-6} アルキルスルフィニル基または C_{1-6} アルキルスルホニル基を表す。

 R^3 は、ニトロ基,シアノ基,ハロゲン原子, C_{1-6} アルキル基, C_{1-6} アルコキシ基, C_{1-6} ハロアルキル基, C_{1-6} アルキルチオ基, C_{1-6} アルキルスルフィニル基または C_{1-6} アルキルスルホニル基を表す。

nは、0,1,2を表す。

 R^4 , R^5 は、それぞれ独立して、水素原子,ハロゲン原子, C_{1-6} アルキル基, C_{1-6} アルキル基, C_{1-6} アルコキシ C_{1-6} アルキル基, C_{1-6} アルキル基, C_{1-6} アルキル基,とドロキシ C_{1-6} アルキル基を表し、また、 R^4 , R^5 は、一緒になって炭素数 $2\sim 5$ のアルキレン鎖を形成してもよい

 R^6 は、水素原子、 C_{1-6} アルキル基,ヒドロキシ C_{1-6} アルキル基, C_{1-6} ハロアルキル基を表す。但し、 R^6 が水素原子のとき、n は 0 ではない。

 R^7 は、 C_{1-6} アルキル基,ヒドロキシ C_{1-6} アルキル基, C_{1-6} ハロアルキル基を表し、また、 R^6 , R^7 は一緒になって炭素数 $2\sim 5$ のアルキレン鎖を形成してもよく、さらに R^7 は R^5 と一緒になって、結合または炭素数 $1\sim 4$ のアルキレン鎖を形成してもよい。

 R^8 は、水素原子, C_{1-6} アルキル基, C_{2-6} アルケニル基, C_{2-6} アルキニル基, C_{1-8} ハロアルキル基, C_{2-6} ハロアルケニル基, C_{2-6} ハロアルキニル基, C_{1-6} アルコキシ基, C_{2-6} アルケニルオキシ

WO 00/50397 PCT/JP00/01062

基、 C_{1-6} ハロアルコキシ基、 C_{2-6} ハロアルケニルオキシ基、 C_{2-6} ハロアルキニルオキシ基を表す。

2. 請求項1におけるZの定義において、置換されてもよい複素環基が、下記の各基

(式中、R¹¹およびR¹²は、それぞれ独立して、水素原子、ハロゲン原子、C₁₋

3. 一般式(1)

(式中、R¹, R², R³, R⁴, R⁵, R⁶, R⁷, R⁸, nおよび Z は、請求項1と同じ意味を表す。)で表される置換 ピペリジンジオン誘導体もしくはその塩の1種または2種以上を有効成分として含有することを特徴とする除草剤。4. 一般式(1')

(式中、R¹, R², R³, R⁴, R⁵, R⁸, nおよび Z は、請求項 1 と同じ意味を表す。)で表される置換ピペリジンジオン誘導体もしくはその塩の 1 種または 2 種以上を有効成分として含有することを特徴とする除草剤。

5. 一般式(1")

(式中、R¹, R², R³, R⁴, R⁵, R⁸ および Z は、請求項 1 と同じ意味を表す。)で表される置換ピペリジンジオン誘導体もしくはその塩の 1 種または 2 種以上を有効成分として含有することを特徴とする除草剤。

PCT/JP00/01062

A. CLASS	IFICATION OF SUBJECT MATTER								
Int.	Int.Cl ⁷ C07D211/86, 221/20, 401/10, 405/10, 413/10, 417/10, A01N43/40, 43/42,								
	43/50, 43/56, 43/653, 43/713, 43/76, 43/78, 43/80, 43/824, 43/836,								
	43/84								
According to	ccording to International Patent Classification (IPC) or to both national classification and IPC								
	SEARCHED								
Minimum do Int.	cumentation searched (classification system followed b	by classification symbols)							
int.		401/00-14, 405/00-14,							
	413/00-14, 417/00-14,								
	A01N43/00-924								
Documentati	on searched other than minimum documentation to the	extent that such documents are included i	in the fields searched						
Electronic da	nta base consulted during the international search (name	e of data base and, where practicable, sear	ch terms used)						
	US (STN)								
REGI	STRY (STN)								
									
C. DOCUI	MENTS CONSIDERED TO BE RELEVANT		1						
Category*	Citation of document, with indication, where app	proprieto of the relevant necessary	Palassan as alaisa Na						
			Relevant to claim No.						
Х	WO, 98/29421, Al (Nippon Soda C		1-5						
	09 July, 1998 (09.07.98), Claim								
	& EP, 949261, Al & AU, 98534	100, A							
	mm								
A	EP, 641780, A1 (Nippon Soda Co.	, Ltd.),	1-5						
	08 March, 1995 (08.03.95)								
	& WO, 93/1171, A1 & AU, 92227								
	& JP, 5-222029, A & US, 55040)56, A							
	·								
30	TD 0 102701 D (Nimmon Code Co	74.3							
A	JP, 8-183701, A (Nippon Soda Co		1-5						
	16 July, 1996 (16.07.96) (Fam:	ily: none)							
A	ID 7 206962 A (Nimpon Code Co		2 6						
A	JP, 7-206863, A (Nippon Soda Co		1-5						
	08 August, 1995 (08.08.95) (Fa	amily: none)							
		İ							
Ì									
Furthe	r documents are listed in the continuation of Box C.	See patent family annex.							
Special	categories of cited documents:	"T" later document published after the inte	mational filing date or						
- Opecial	ent defining the general state of the art which is not	priority date and not in conflict with the							
conside	red to be of particular relevance	understand the principle or theory und	erlying the invention						
	document but published on or after the international filing	"X" document of particular relevance; the o							
"L" docum	ent which may throw doubts on priority claim(s) or which is	considered novel or cannot be considered step when the document is taken alone							
	establish the publication date of another citation or other	"Y" document of particular relevance; the							
special	reason (as specified)	considered to involve an inventive ster							
	document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such								
	means combination being obvious to a person skilled in the art document published prior to the international filing date but later "&" document member of the same patent family								
	"P" document published prior to the international filing date but later "&" document member of the same patent family than the priority date claimed								
	actual completion of the international search	Date of mailing of the international sear	ch report						
	23 May, 2000 (23.05.00) 06.06.00								
Name and n	nailing address of the ISA/	Authorized officer							
	Japanese Patent Office								
Facsimile N	o	Telephone No.							

国際出願番号 PCT/JP00/01062

A. 発明の属する分野の分類(国際特許分類(IPC))

Int. Cl' C07D211/86, 221/20, 401/10, 405/10, 413/10, 417/10, A01N43/40, 43/42, 43/50, 43/56, 43/653, 43/713, 43/76, 43/78, 43/80, 43/824, 43/836, 43/84

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. $C1^7 C07D211/00-98$, 221/00-28, 401/00-14, 405/00-14, 413/00-14, 417/00-14, A01N43/00-924

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース (データベースの名称、調査に使用した用語) CAPLUS (STN)

REGISTRY (STN)

C. 関連する	ると認められる文献	
引用文献の		関連する
カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	請求の範囲の番号
X	WO, 98/29421, A1 (日本曹達株式会社), 9. 7月. 1998 (09. 07. 98), 特許請求の範囲	1 – 5
	& EP, 949261, A1 & AU, 9853400, A	
A	EP, 641780, A1 (日本曹達株式会社), 8.3月.19 95 (08.03.95)	1 - 5
	& WO, 93/1171, A1 & AU, 9222743, A	
	& JP, 5-222029, A & US, 5504056, A	

区欄の続きにも文献が列挙されている。

□ パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献 (理由を付す)
- 「〇」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって て出願と矛盾するものではなく、発明の原理又は理 論の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日 23.05.00	国際調査報告の発送日 06.06.00
国際調査機関の名称及びあて先 日本国特許庁(ISA/JP) 郵便番号100-8915	特許庁審査官(権限のある職員) 4P 8217 星 野 紹 英 印
東京都千代田区霞が関三丁目4番3号	電話番号 03-3581-1101 内線 3491

様式PCT/ISA/210 (第2ページ) (1998年7月)

国際調査報告

国際出願番号 PCT/JP00/01062

C(続き).			
引用文献の カテゴリー*	関連すると認められる文献 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号	
А	JP; 8-183701, A (日本曹達株式会社), 16.7月. 1996 (16.07.96) ファミリーなし	1 - 5	
A	JP, 7-206863, A (日本曹達株式会社), 8.8月. 1995 (08.08.95) ファミリーなし	1 - 5	
	·		
	Andrew of the second se		

様式PCT/ISA/210 (第2ページの続き) (1998年7月)

THIS PAGE BLANK (USPTO)