Geometry of surfaces - Solutions

- 1. For each question we give a counterexample or a proof.
 - (a) False. For example, for $\gamma(t) = (2t, 2t)$ we have $\dot{\gamma}(t) = (2, 2)$ and $||\dot{\gamma}|| = 2\sqrt{2} \neq 1$.
 - (b) True. If γ is a unit speed curve, then $\|\dot{\gamma}\| = 1$ and hence $\|\dot{\gamma}\| \neq 0$, which means that γ is regular.
 - (c) False. Take $\gamma_1(t) = \frac{1}{\sqrt{2}}(t,t)$ and $\gamma_2(t) = \frac{1}{\sqrt{2}}(t+1,t+1)$. These are two different unit speed parametrizations of the same curve $\{(x,y) \in \mathbb{R}^2 \mid x=y\}$.
 - (d) False. $\gamma(t) = (\cos(t^2), \sin(t^2))$ is not regular at t = 0.
- **2.** Length(γ) = $\int_a^b ||\dot{\gamma}(t)|| dt = \int_a^b 1 = b a$.
- **3.** Let $\tilde{\gamma}$ be a reparametrization of γ with reparametrization map $\phi:(\alpha,\beta)\to\mathbb{R}$. Using integration by substitution with $u=\phi(t)$ we obtain

$$\begin{aligned} \operatorname{Length}(\gamma) &= \int_a^b \|\dot{\gamma}(t)\| \, dt = \int_a^b \left\| \frac{d}{dt} (\tilde{\gamma} \circ \phi)(t) \right\| \, dt = \int_a^b \left\| \dot{\tilde{\gamma}}(\phi(t)) \right\| |\phi'(t)| dt \\ &= \int_{\phi(a)}^{\phi(b)} \|\dot{\tilde{\gamma}}(u)\| \, du = \operatorname{Length}(\tilde{\gamma}). \end{aligned}$$

4. Using the fundamental theorem of calculus, we have

$$\|\gamma(c) - \gamma(d)\| = \left\| \int_{c}^{d} \frac{d\gamma}{dt} dt \right\| \leq \int_{c}^{d} \left\| \frac{d\gamma}{dt} \right\| dt = \int_{c}^{d} \|\dot{\gamma}(t)\| dt = \operatorname{Length}(\gamma : (c, d) \to \mathbb{R}^{n}).$$

5. We have $\dot{\gamma}(t) = (\sin(t) + t\cos(t), \cos(t) - t\sin(t), \frac{\sqrt{8}}{2}t^{\frac{1}{2}})$ and thus $\|\dot{\gamma}(t)\| = \sqrt{(t+1)^2} = t+1$. Thus

Length(
$$\gamma$$
) = $\int_0^1 (t+1)dt = \frac{3}{2}$ and $s(t) = \int_0^t (u+1)du = \frac{1}{2}t^2 + t$.

Solving for t we get $t = -1 + \sqrt{1+2s}$ (recall that t > 0) and $\tilde{\gamma}(s) = \gamma(-1 + \sqrt{1+2s})$ with $s \in (0, \frac{3}{2})$ is a unit speed reparametrization of γ .

- **6.** Let v be a vector perpendicular to ℓ and $p_0 \in \ell$. Without loss of generality, we can assume that $\frac{v \cdot (\gamma(t_0) p_0)}{\|v\|}$ is positive, otherwise take -v as the perpendicular vector. By hypothesis, the function $\frac{v \cdot (\gamma(t) p_0)}{\|v\|}$ obtains a minimum at t_0 giving that t_0 is a critical point and so $0 = \frac{d}{dt} \frac{v \cdot (\gamma(t) p_0)}{\|v\|} (t_0) = \frac{v \cdot \dot{\gamma}(t_0)}{\|v\|}$. This means that $\dot{\gamma}(t_0)$ is perpendicular to v and therefore parallel to ℓ .
- 7. We have $\dot{\gamma}(t) = (-\sin(t), \cos(t), 2)$ and $\dot{\gamma}$ lies in the plane z = 2. Furthermore, $\|\dot{\gamma}(t) (0, 0, 2)\| = 1$, hence $\dot{\gamma}$ traces out a circle with radius 1 in the plane z = 2 centred at the point (0, 0, 2). Next, $\|\dot{\gamma}\| = \sqrt{5}$ and $s = \int_0^t \sqrt{5} = \sqrt{5}t$. Thus, $t = \frac{s}{\sqrt{5}}$ and a unit-speed reparametrization is $\left(\cos\left(\frac{s}{\sqrt{5}}\right), \sin\left(\frac{s}{\sqrt{5}}\right), \frac{2s}{\sqrt{5}}\right)$.
- **8.** By assumption, the function $\|\gamma(t)\|^2 = \gamma(t) \cdot \gamma(t)$ has a critical point, namely a minimum, at t_0 . Thus $0 = \frac{d}{dt}(\gamma \cdot \gamma)(t_0) = 2\dot{\gamma}(t_0) \cdot \gamma(t_0)$.