(Principles and Processes of Isolation of Elements)

Inside the Chapter..

- 6.1 प्रस्तावना
- 6.2 प्रकृति में धातुओं की उपलब्धता
- 6.3 धातुओं का निष्कर्षण-धातुकर्म
 - 6.3.1 चूर्णीकरण या संक्षोदन
 - 6.3.2 अयस्कों का सान्द्रण
 - 6.3.3 सान्द्रित अयस्कों से अशुद्ध धातुओं का निष्कर्षण
 - 6.3.4 धातु ऑक्साइड को अशुद्ध धातु में अपचयन
- 6.4 थातुकर्म का ऊष्मागतिकी सिद्धान्त
 - 6.4.1 एलिंघम आरेख
 - 6.4.2 एलिंघम आरेख के सामान्य निष्कर्षण

- 6.4.3 एलिंघम आरेख की सीमाये
- 6.5 धातु ऑक्साइड से धातु निष्कर्षण के अनुप्रयोग
 - 6.5.1 Fe का ऑक्साइड अयस्क से निष्कर्षण
 - 6.5.2 Cu के अयस्क से Cu का निष्कर्षण
 - 6.5.3 ZnO से Zn का निष्कर्षण
 - 6.5.4 Ai का निष्कर्षण
 - 6.5.5 Cu का निष्कर्षण
- 6.6 थातु का शोधन परिष्करण
- 6.7 Al, Cu, Zn Fe के अनुप्रयोग
- 6.8 पाठ्यपुस्तक के प्रश्न-उत्तर
- 6.9 कुछ प्रमुख प्रश्न-उत्तर

6.1

- भूपर्पटी (Earth crust) तत्त्रों का प्रमुख स्रोत है।
- भूपर्पटी में Al (ऐलुमिनियम) धातु सर्वाधिक मात्रा में पाया जाता है।
- भूपर्पटी में अधातु के रूप में ऑक्सीजन (oxygen) अधिक मात्रा में उपस्थित होता है।
- समुद्री जल में भी, धातुओं के कुछ विलेयशील लवण पाये जाते हैं।
- पृथ्वी पर पाया जाने वाला प्रत्येक पदार्थ तत्वों से मिलकर बना है।

सारणी 6.1- मुख्य तत्वों की प्रतिशत मात्रा

	क्र.सं.	तत्व प्रतिशतता (भार से)	-
	1. ऐलुमिनियम	8.3	
	2. लोहा	5.1	
L	3. कैल्शियम	3.6	

तत्वों के तीन भागों में विभाजित किया गया है-

(B) MITCHEN

- ये प्राय: टोस, आघातवर्धनीय, तन्य एवं विद्युत व ऊष्मा के सुचालक होती हैं एवं इनकी सतह चमकदार होती है।
- ज्ञात तत्त्वों में से लगभग 80% तत्त्व धातुएँ हैं।
- कुछ धातुएँ हमारे दैनिक जीवन में काम आती है, जैसे-Fe (लोहा), Cu (कॉपर), Ag (चाँदी), Au (सोना), Hg (मर्करी), Pb (सीसा) आदि।

(ii) Surrel (Nea Metala)

- ये चमकहीन, भंगुर एवं विद्युत व ऊष्मा की दुर्बल चालक होती है।
- कुछ अधातुएँ हमारे दैनिक जीवन में काम आती हैं। जैसे—H (हाइड्रोजन),
 C (कार्बन), N (नाइट्रोजन), S (सल्फर), P (फास्फोरस) आदि।

वे तत्त्व, जिनमें दोनों (धातु व अधातु) के गुण पाये जाते हों उन्हें उपधातुएँ कर्ता हैं। जैसे---- B (बोरॉन), Si (सिलिकॉन), As (आर्सेनिक), Te (टेल्यूरियम: At (ऐस्टैटीन) आदि हैं।

6.2

प्रकृति में धातुएँ प्रमुख रूप से दो अवस्थाओं में पाई जाती हैं— (i) मुक्त अवस्था में, (ii) संयुक्त अवस्था में।

(1) मुक्त अवस्था में (In free state)

- वे धातुएँ जो बहुत ही कम क्रियाशील होती हैं, मुक्त अवस्था (Native State)
 में पाई जाती है।
- जैसे-सोना, चांदी, प्लेटिनम आदि धातुएँ मुक्त अवस्था में पाई जाती है।

(2) संयुक्त अवस्था में---

- वे धातुएँ जो नमी, ऑक्सीजन एवं CO₂ से क्रिया कर लेती है। संयुक्त अवस्था में यौगिकों के रूप में पाई जाती है।
- धातु व इसके यौगिक पृथ्वी में जिस रूप में पाये जाते हैं, उन्हें खिनिः (Minerals) कहते हैं।
- वे खिनज, जिनमें धातुएँ सुविधापूर्वक व कम लागत से प्राप्त की जा सकें, कि खिनजों को अयस्क (Ores) कहते हैं।
- सभी खनिज अयस्क नहीं होते, लेकिन सभी अयस्क खनिज होते हैं।
- लोहा पृथ्वी में ऑक्साइड, कार्बोनेट्स एवं सल्फाइड्स-खनिज के रूप में पाया जाता है। लेकिन लोहे के निष्कर्षण में, इसके ऑक्साइड खनिज प्रयोग करते हैं। अत: लोहे का ऑक्साइड अयस्क है।
- ऐलुमिनियम दो खनिजों के रूप में पाया जाता है। जिन्हें बॉक्साः
 (Al₂O₃.2H₂O) एवं क्ले (Al₂O₃2SiO₂.2H₂O) कहते हैं। लेकिन Al ः

निष्कर्षण, बॉक्साइट से करते हैं। इसलिए **बॉक्साइट खनिज** व **अयस्क** है।

बहुत से रत्न, Al₂O₃ के अशुद्ध रूप है-

 $m Al_2O_3$ में अशुद्धि m Cr की हो, तो m (रुबी) कहते हैं। $m Al_2O_3$ में अशुद्धि m Co की हो, तो m (नीलम) कहते हैं।

सारणी 6.2 कुछ महत्वपूर्ण घातुओं के मुख्य अयस्क

		· · · · · · · · · · · · · · · · · · ·	त्वपूर्ण घातुओं के मुख्य अयस्क
क्र. सं	3	अयस्क	रासायनिक संघटन
1.	ऐलुमिनियम	बॉक्साइट	Al₂O₃.2H₂O [या AlOx(OH)₃.₂x] जहाँ O< x <1
		फेल्सपार	K AlSi ₃ O ₈
		क्रायोलाइट	Na ₃ Al F ₆ [या 3NaF.AlF ₃]
		केयोलिनाइट	Al ₂ O ₃ ,2SiO ₂ ,2H ₂ O
		(क्ले)	[या Al ₂ (OH) ₄ .Si ₂ O ₅]
	·	डायस्पोर	$Al_2O_3.H_2O$
ļ		अभ्रक	K ₂ O.3Al ₂ O ₃ .6SiO ₂ .2H ₂ O
		कोरण्डम	Al_2O_3
2.	आयरन (लोहा)	हेमेटाइट (लाल)	Fe ₂ O ₃
	`	लिमोनाइट	2Fe ₂ O ₃ ,3H ₂ O (चुम्बकीय)
		(भूरा हेमेटाइट)	
		मैग्नेटाइट	$\mathrm{Fe_3O_4}$ (चुम्बकीय)
]	सिडेराइट	FeCO ₃
		आयरन पाइराइट	FeS ₂
3.	कॉपर (ताबा)	कॉपर पाइराइट	CuFeS ₂ [या Cu ₂ S.Fe ₂ S ₃]
		कॉपर ग्लांस	Cu ₂ S
	•	क्यूप्राइट (रूबी कॉपर)	Cu ₂ O
		मैलाकाइट	CuCO ₃ Cu(OH) ₂
		ऐजुराइट	2CuCO ₃ .Cu(OH) ₂
4.	जिंक (जस्ता)	जिंक ब्लेण्ड (स्फेलेराइट)	ZnS
		जिंकाइट	ZnO
		कैलामाइन	ZnCO ₃
	• .	विलेमाइट	ZnCO ₃
		फ्रेंकलिनाइट	ZnFe ₃ O ₄

 प्रकृति में प्राप्ति के तरीके के आधार पर धातुओं के प्रमुख अयस्क निम्नानुसार हैं—

1. ऑक्साइड अयस्क (Oxides ores)

- लोहा, ऐलुमिनियम, यैंग्नीज, जस्ता और ताँबा आदि अधातुओं में ऑक्सीजन के प्रति विशेष स्वेह होता है। अत: ये धातुएँ ऑक्साइड अयस्कों के रूप में पाई जानी है।
- ऑक्साइड अवस्क निम्न हैं—
 - (i) मैसल्डिट $\mathrm{Fe}_2\mathrm{O}_3$
- (ii) बॉक्साइट $Al_2O_3.2H_2O$
- (iii) पायसेतुसाइट MnO₂
- (iv) जिकाइट ZnO
- (v) मेरनेटाइट Fe₃O₄
- (vi) क्यूप्राइट Cu₂O
- (vii) कीश्यहम ALO, (ix) केसीटेसइट SnO₂
- (viii) डायस्पोर ${
 m Al_2O_3.H_2O}$ (x) स्पाइनल ${
 m MgAl_2O_4}$

2. सल्फाइड अयस्क (Sulphides ores)

- कुछ धातुएँ Fe, Cu, Hg, Pb, Zn आदि, पृथ्वीतल में सल्फाइड अयस्कों के रूप में प्राप्त होती हैं।
- सल्फाइड अयस्क निम्न हैं—
 - (i) कॉपर पाइराइटीज CuFeS₂
- (ii) आयरन पाइराइटीज FeS,
- (iii) गैलेना PbS
- (iv) जिंक ब्लैण्ड ZnS
- (v) सिनेबार HgS
- (vi) कॉपर ग्लान्स या चेल्कोसाइट Cu₂S

3. कार्बोनेट अयस्क (Carbonate ores)

- प्रकृति में उपस्थित धातुओं के ऑक्साइङ्स और हाइड्रोक्साइङ वायु की CO₂
 से क्रिया करके कार्बोनेट अयस्क बनाते हैं।
- कुछ धातुएँ-Mg, Ca, Fe, Cu एवं Zn प्राय: कार्बोनेट अयस्क के रूप में पाई

जाती है।

कार्बोनेट अयस्क निम्न हैं—

- (i) डोलोमाइट ${
 m MgCO_3.CaCO_3}$ (ii) सिडेराइट ${
 m FeCO_3}$
- (iii) मैलेकाइट ${
 m CuCO_3.Cu(OH)_2}$ (iv) केलामिन ${
 m ZnCO_3}$
- (v) लाइम स्टोन CaCO₃

4. सल्फेट अयस्क (Sulphate ores)

- प्रकृति में उपस्थित धातुओं के सल्फाइड, वायुमण्डलीय ऑक्सीजन से क्रिया करके सल्फेट बनाते हैं।
- कुछ धातुएँ-Mg, Ca, Sr, Pb आदि सल्फेट अयस्क के रूप में पाई जाती है।
- सल्फेट अयस्क निम्न हैं—
 - (i) एप्सम लवण MgSO $_4.7\mathrm{H}_2\mathrm{O}$ (ii) जिप्सम CaSO $_4.2\mathrm{H}_2\mathrm{O}$
 - (iii) सेलेस्टाइट SrSO₄
- (iv) ऐंग्लीसाइट PbSO4 .
- (v) केसीराइट MgSO₄.H₂O
- (vi) बैराइटीज BaSO₄

5. हैलाइड अयस्क (Halide Ores)

- बहुत ही कम धातुएँ हैलाइड अयस्क के रूप में मिलती है।
- Na, K. Mg, Ca व Ag हैलाइड के रूप में पाई जाती है।
- हैलाइड अयस्क निम्न हैं—
 - (i) हार्न सिल्वर AgCI
 - (ii) क्रायोलाइट $A1F_3.3NaF$ या Na_3A1F_6
 - (iii) फ्लोरस्यार CaF₂
 - (iv) खनिज लवण NaCl
 - (v) कार्नेलाइट KCl, MgCl₂.6H₂O

6. सिलिकेट अयस्क (Silicate Ores)

- कुछ धातुएँ Li, Be, Mg, Al सिलिकेट अयस्कों के रूप में पाई जाती हैं।
- सिलिकेट अयस्क निम्न हैं—
 - (i) स्पोडुमीन LiAl(SiO₃)₂
 - (ii) बेस्लि 3BeO.Al₂O₃.6SiO₂
 - (iii) टैल्क 3MgO.4SiO₂.2H₂O
 - (iv) चीनी मिट्टी Al₂O₃.2SiO₂.2H₂O
 - (v) पोटाश माइका KH₂Al₃(SiO₄)₃
 - (vi) एस्बेस्टॉस CaMg₃(SiO₃)₄

7. नाइट्रेट अयस्क (Nitrate Ores)

(i) शोरा KNO₃

(ii) चिलीसाल्ट पीटर NaNO3

8. फास्केट अवस्क (Phosphate Ores)

् (i) रॉक फास्फेट ${
m Ca_3(PO_4)_2}$ (ii) टरकॉटज AlPO $_4$, Al(OH) $_3$, H $_2$ O

अभ्यास-6.1

- प्र.1. खनिज किसे कहते हैं?
- प्र.2. अयस्क किसे कहते हैं?
- प्र.3. लोहे के दो खनिजों के नाम दीजिये एवं लोहे के प्रमुख अयस्क का नाम दीजिये।
- प्र.4. ऐलुमिनियम के दो खनिज के नाम दीजिये एवं Al के प्रमुख अयस्क का

नाम दीजिये।

- प्र.5. कॉपर के दो खनिज के नाम दीजिये एवं Cu के प्रमुख अयस्क का नाम दीजिये।
- प्र.6. कोई तीन धातुओं के नाम दीजिये जो मुक्त अवस्था में पाई जाती हैं।
- प्र.7. प्रकृति में ज्ञात तत्वों का कितना भौग धातुओं का है?
- प्र.8. उपधातुओं के संकेत दीजिये।
- प्र.9. दो प्रमुख ऑक्साइड अयस्कों के नाम एवं सूत्र दीजिये।
- प्र.10. दो प्रमुख सल्फाइट अयस्क के नाम एवं सूत्र दीजिये।
- प्र.11. दो प्रमुख सल्फेट अयस्क के नाम एवं सूत्र दीजिये।
- प्र.12. दो प्रमुख कार्बोनेट अयस्क के नाम एवं सूत्र दीजिये।
- प्र.13. दो प्रमुख हैलाइड अयस्क के नाम एवं सूत्र दीजिये।
- प्र.14. दो प्रमुख सिलिकेट अयस्क के नाम एवं सूत्र दीजिये।

उत्तरमाला

- वे यौगिक जो पृथ्वी के भूगर्भ में पाये जाते हैं, उन्हें ख़िनज कहते हैं।
- वे खनिज जिनमें धातुर्ये सुविधापूर्वक कम लागत से प्राप्त की जा सके, उन खनिज को अयस्क कहते हैं।
- 3. हैमाटाइट (Fc_2O_3) कॉपर पाइराइटीज ($Cu.FeS_2$), प्रमुख अयस्क हैमाटाइट है।
- 4. बॉक्साइट एवं केओलिन, प्रमुख अयस्क बॉक्साइट।
- कॉपर ग्लास एवं कॉपर पाइराइटीज, प्रमुख अयस्क कॉपर पाइराइटीज.
- सोना, चांदी एवं प्लेटिनियम।
- 7. 2/3 भाग या लगभग 80%
- 8. B, Si, As, Te, At
- 9. हैमाटाइट (Fe_2O_3) पायरोलुसाइट MnO_2
- 10. गैलेना (PbS), सिनेवार (HgS)
- 11. एप्सम लवण ${
 m MgSO_4.7H_2O}$ एग्लीसाइट ${
 m PbSO_4}$
- 12. डोलोमाइट MgCO₃ CaCO₃ कैलामिन ZnCO₃
- 13. खनिज लवण NaCl. हार्न सिल्वर AgCl
- 14. स्पोडुमीन LiAl (SiO₃)₂. चीनी मिट्टी Al₂O₃. 2SiO₂. 2H₂O

6.3 धातुओं का निष्कर्षण—धातुकर्म (Extraction of Metals - Metallurgy)

- अयस्क से शुद्ध अवस्था में धातु प्राप्त करने की प्रक्रिया को धातु निष्कर्पण या धातु कर्म (Metallurgy) कहते हैं।
- िकसी अयस्क से शुद्ध अवस्था में धातु प्राप्त करने के लिये निम्न प्रमुख पदों का प्रयोग करते हैं।
 - (i) चूर्णीकरण या संक्षोदन (Pulverization)
 - (ii) अयस्क का सान्द्रण (Concentration of Ore)
 - (iii) सान्द्रित अयस्क का धातु ऑक्साइड में परिवर्तन
 - (iv) धातु ऑक्साइड का धातु में परिवर्तन
 - (v) धातुओं का शुद्धिकरण।

6.3.1 चूर्णीकरण या संश्लोदन [Pulverisation]

 खानों से निकाले गये अयस्क के बड़े-बड़े टुकडों को चूर्णित करने की विधि को संक्षोदन कहते हैं।

- संक्षोदन क्रिया को दिलत्र (Crusher) द्वारा करते हैं। इसमें दो पाट होते हैं जो अयस्क को छोटे-छोटे टुकड़ों में बदल देता है।
- दिलत्र से प्राप्त अयस्क के छोटे टुकड़ों को स्टैम्प मिल द्वारा कुट-पीस कर, चूर्ण में बदला जाता है।

6.3.2 अप्रस्कृतिकाः सम्बर्धाः (Sales elektronia) (Bec

- खान से निकाले गये अयस्क में सामान्यत: अनेक प्रकार की अनुपयोगी वस्तुयें जैसे-कंकड़, मिट्टी, रेत, क्लें आदि पायी जाती हैं। इन अशुद्धियों को आधात्री या गैंग या मैद्रिक्स कहते हैं।
- अयस्क के प्रकार के आधार पर, अयस्क का सान्द्रण निम्नलिखित विधियों में से किसी एक विधि द्वारा किया जाता है—
- (1) गुरुत्वीय पृथक्करण विधि (Gravity Separation Method)
- (2) चुम्बकीय सान्द्रण या पृथक्करण विधि (Magnetic Separation Method)
- (3) झाग प्लबन (या फेन प्लबन) विधि (Froth Flotation Method)
- (4) निक्षालन या रासायनिक पृथकरण विधि (Leaching or Chemical separation Method)

1) गुरुत्वीय पृथक्करण विधि (Gravity Separation Method)

- अयस्क के सान्द्रण की यह विधि अयस्क तथा अपद्रव्यों के विशिष्ट गुरुत्व (specific gravity) के अन्तर पर निर्भर करती है।
- अयस्क के कणों का घनत्व अधिक और गैंग के कणों का घनत्व कम होने पर, यह विधि प्रयोग में लेते हैं।
- चूर्णित अयस्क एक ढ्लवाँ प्लेटफार्म पर रख देते हैं तथा उस पर जल की प्रबल धारा प्रवाहित करते हुये धोते हैं।
- विशिष्ट गुरुत्व की अशुद्धि (गैंग के हल्के कण), जल की धारा के साथ बह जाती है, जबकि भारी अयस्क कण नीचे बैठ (settle down) जाते हैं।
- इस विधि द्वारा भारी अयस्कों जैसे-टिन स्टोन (SnO₂) तथा लोह स्टोन (Fe₃O₄)
 का सान्द्रण किया जाता है।

् 2) चुम्बकीय सान्द्रण या पृथक्करण विधि (Magnetic Separation Method)

- इस विधि का उपयोग उन अयस्कों के सान्द्रण के लिये किया जाता है, जिनमें अयस्क चुम्बकीय तथा अशुद्धियाँ अनुचुम्बकीय हो। या इसके विपरीत हो अर्थात् अयस्क अनुचुम्बकीय हो व अशुद्धियाँ चुम्बकीय हो।
- जैसे_
- (i) टिन अयस्क (केसीटेराइट SnO₂) में अयस्क स्वयं अचुम्बकीय प्रकृति का है, जबिक इसमें उपस्थित अशुद्धियों (आधात्री) Fe, Mn व W की है जो चुम्बकीय है।
- (ii) लोहे का अयस्क मेग्नेटाइट Fe₃O₄ स्वयं चुम्बकीय है जबिक इसमें उपस्थित अशुद्धियाँ (आधात्री) अचुम्बकीय है। अत: इस विधि में चूर्णित अयस्क को विद्युत चुम्बकीय रोलर के ऊपर घूमते पट्टे पर गिराया जाता है, चुम्बकीय अयस्क या अशुद्धियाँ पट्टे से गिरकर,

नेट पर गिराना जाता है, चुम्बकाय अयस्क या अशुद्धियाँ पट्टे से गिरकर, आकर्षण के कारण चुम्बकीय रोलर के पास ढ़ेरी बन जाती है जबकि अचुम्बकीय सान्द्रित अयस्क या आधात्री कणों का ढ़ेर अपकेन्द्रिय बल के प्रभाव के कारण चुम्बक से कुछ दूरी पर अलग ढ़ेरी के रूप में पृथक हो जाती है।

चित्रः चुम्बकीय पृथ्वकरण

(3) झाग प्लवन (या फेन प्लवन) विधि (Froth Flotation Method)

- यह विधि मुख्यतया: सल्फाइड अयस्कों के सान्द्रण के लिये प्रयुक्त की जाती है।
- जब सल्फाइड अयस्कों को तेल तथा जल के मिश्रण में डालते हैं तो सल्फाइड अयस्कों में उपस्थित अशुद्धियाँ सल्फाइड अयस्कों की तुलना में जल द्वारा शीघ्र भीगती है।

झाग प्लवन विधि में निम्न पदार्थों की उपयोगिता का सक्षिप्त विवरण इस प्रकार है-

- (i) झाग कारक (Frothing Agents)— ये पदार्थ वायु के बुलबुलों के साथ स्थायी झाग बनाने में सहायता करते है। मुख्य रूप से वसा अम्ल (Fatty acid), चीड़ तेल (Pine oil) और नीलगिरी तेल (Eucalyptus oil) अच्छे झागकारक (या फेन कारक) है।
- (ii) प्लवन कारक (Flotation Agents)— ये पदार्थ सल्फाइड कणों को जल प्रतिकर्षी बनाते है जिससे ये कण जल पर तैर सके। प्लवन कारक में सोडियम एथिल जैन्थेट प्रमुख है।

R = एथिल या ऐल्किल समूह इनको संग्राही (Collectors) भी कहते है।

- (iii) फेनस्थायी कारक (Stabilisers)— ये झाग या फेन को स्थायित्व प्रदान करते हैं। जैसे— क्रीसॉल, ऐनीलिन।
- (iv) सक्रियकारक (Activator)— कॉपर सल्फेट (CuSO₄) द्वारा प्लवन क्षमता में वृद्धि।
- (v) अवनमक या डिप्रेशर (Depressant)— ये झाग या फेन को कम करने के लिए प्रयुक्त किये जाते हैं। जैसे सोडियम सायनाइड (NaCN), क्षार (Na₂CO₃) आदि।

विधि का वर्णन— एक बड़े आयताकार वर्तन में जल लेकर इसमें चूर्णित अयस्क को मिलाकर निलम्बन (या लुगदी) बनाते हैं। इसमें झाग कारक के रूप में वसा अम्ल या चीड़ का तेल मिलाया जाता है। अल्प मात्रा में प्लवनकारक एवं फेन स्थायीकारक पदार्थ मिलाये जाते है। इसमें वायु की प्रबल धारा प्रवाहित करायी जाती है जिसके कारण हल्के सल्फाइड अयस्क के कण झाग के साथ ऊपर तैरने लगते है जिसे वहाँ से पृथक कर लिया जाता है। गैग या आधात्री के कण जल से भीगकर पात्र के पैंदे में एकत्र हो जाते है।

चित्र 6.3 : झाग (फेन) प्लवन विधि

कभी-कभी विशेष परिस्थितियों में दो सल्फाइड अयस्कों को पृथक करने में भी यह विधि उपयोगी है। इसके लिए झाग को कम करने वाले पदार्थों अर्थात् अवनमकों (Depressant) का उपयोग किया जाता है। इन अवनमक द्वारा तेल तथा जल के अनुपात का संयोजन कराया जाता है। जिससे सल्फाइड अयस्कों का पृथक्करण समब हो जाता है।

उदाहरणार्थ— जिंक ब्लेण्ड (ZnS) तथा गेलेना (PbS) को पृथक करने के लिए अवनमक के रूप में सोडियम सायनाइड (NaCN) का प्रयोग किया जाता है। यह ZnS को फेन में आने से रोकता है किन्तु PbS को नहीं रोकता है जिससे दोनों का सरलता से पृथक्करण हो जाता है।

झाग प्लवन विधि के आविष्कार के कारण वे कॉपर अयस्क जिनमें कॉपर की मात्रा कम होती है अर्थात् निम्न श्रेणी के कॉपर अयस्कों से कॉपर का निष्कर्षण आसान व लामदायक हो गया। इसके परिणाम स्वरूप कॉपर का उत्पादन बढ़ने से कीमत कम हो जाती है।

(4) निश्चालन या रासायनिक पृथक्करण विधि (Leaching or Chemical separation Method)

जब अयस्क किसी उपयुक्त विलायक में विलेय हो तो प्राय: निक्षालन विधि का प्रयोग किया जाता है।

इसमें आद्यात्री कण अविलेय होने के कारण पृथक हो जाते हैं। निक्षालन को सान्द्रण की रासायनिक विधि भी कहते हैं।

(क) बीक्साइट से ऐसुनिया का विकासन

(1) बेयर की विधि— किसी अयस्क के विशिष्ट रासायिनक गुणों को उसके सान्द्रण एवं शुद्धिकरण में प्रयुक्त किया जा सकता है। बॉक्साइट अयस्क $(Al_2O_3, 2H_2O)$ की उभयधर्मी प्रकृति होती है। जब बॉक्साइट में Fe_2O_3 एवं SiO_2 की अम्लीय अशुद्धियां समान मात्रा में हो तथा TiO_2 की अशुद्धि भी अल्प मात्रा में उपस्थित हो तो निक्षालन में बेयर विधि काम में ली जाती है।

बॉक्साइट के चूर्णित अयस्क को 473-523 K ताप तथा लगभग 35 वायुमण्डलीय दाब पर सान्द्र NaOH विलयन के साथ गर्म कराया जाता है, जिससे विलयशील 'सोडियम-मेटा- ऐलुमिनेट' बनता है। आधात्री को अविलेय होने के कारण छानकर पृथक कर लेते है।

$$Al_2O_3.2H_2O+2NaOH\longrightarrow 2NaAlO_2 +3H_2O$$
 सोडियम मेटा एलुमिनेट (विलेय)

छनित्र विलयन को जल द्वारा तनु करके, इसमें अल्प मात्रा में ताजा बना $Al(OH)_3$ मिलाकर हिलाते हैं जिससे ऐलुमिनियम हाइड्रोक्साइड का श्वेत अवक्षेप प्राप्त होता है। इसे छानकर सुखाकर गर्म करने पर शुद्ध ऐलुमिना प्राप्त होता है।

NaAlO₂ + 2H₂O — ताजा Al(OH)₃ → Al(OH)₃ ↓ +NaOH

$$2Al(OH)_3 \xrightarrow{\text{ निस्तापन}} Al_2O_3 + 3H_2O$$

एलुमिना

वैकल्पिक विधि— इसमें सोडियम मेटा एलुमिनेट के छनित्र विलयन में CO_2 गैस प्रवाहित कराते है जिससे जलयोजित Al_2O_3 अवक्षेपित हो जाता है। अवक्षेपण शीघता से कराने के लिए इसमें ताजा जलयोजित Al_2O_3 का बीजारोपण (Seeding) कराया जाता है।

$$2\text{NaAlO}_2 + 2\text{H}_2\text{O} + 2\text{CO}_2 \rightarrow$$

 $Al_2O_3.H_2O + 2NaHCO_3$ जलयोजित ऐलुमिना

जलयोजित ऐलुमिना को छानकर, सुखाकर गर्म कराने (निस्तापन) पर शुद्ध निर्जल ($\mathbf{Al_2O_3}$) प्राप्त होता है।

$$Al_2O_3.H_2O(s) \xrightarrow{1470 \text{ K}} Al_2O_3(s) + H_2O(g)$$

(2) **हॉल की विधि**— जब बॉक्साइट अयस्क में Fe₂O₃ की अशुद्धि मुख्य (अधिक मात्रा में) हो तो निक्षालन के लिए हॉल की विधि काम में ली जाती है।

इसमें बॉक्साइट को Na_2CO_3 के साथ संगलित कराया जाता है जिससे सोडियम मेटा ऐलुमिनेट प्राप्त होता है जिससे शुद्ध ऐलुमिना प्राप्त हो जाता है।

$$Al_2O_3.2H_2O + Na_2CO_3 \xrightarrow{\text{संगालिस}}$$
 $2NaAlO_2 + 2H_2O + CO_2 \uparrow$
 $2NaAlO_2 + 3H_2O + CO_2 \xrightarrow{325K} \rightarrow$
 $2Al(OH)_3 \downarrow + Na_2CO_3$

$$2Al(OH)_3$$
 $\xrightarrow{\text{निस्तापन}/\Delta}$ Al_2O_3 $+3H_2O$ शुद्ध निर्जल एलुमिना

(3) सरपेक विधि— जब बॉक्साइट अयस्क में SiO_2 की अशुद्धि मुख्य (अधिक मात्रा में) हो तो यह विधि उपयोगी होती है। इसमें बॉक्साइट अयस्क को कोक एवं N_2 के साथ गर्म करने पर ऐलुमिनियम नाइट्राइड प्राप्त होता है जिसके जल अपघटन से ऐलुमिनियम हाइड्रोक्साइड बनता है। इसके गर्म करने से निर्जल Al_2O_3 प्राप्त होता है। कोक द्वारा सिलिका का Si में अपचयन हो जाता है जो कि वाष्पशील होने के कारण पृथक हो जाता है।

AlO₃.2H₂O+ 3C + N₂
$$\xrightarrow{1273K}$$
 $\xrightarrow{}$ 2AlN + 3CO₂ + 2H₂O

$$SiO_2 + 2C \longrightarrow 2CO + Si \uparrow (वाष्पशील)$$
 $AlN + 3H_2O \xrightarrow{\text{जल अपघटन}} Al(OH)_3 + NH_3$
 $2Al(OH)_3 \xrightarrow{\text{निस्तापन}} Al_2O_3 + 3H_2O$

(ख) चांदी व सोने के अधरक का निक्षालन

चांदी के अयस्क अर्जेन्टाइट या सिल्वर ग्लास (Ag_2S) तथा हॉर्न सिल्वर (AgCI) का NaCN या KCN के तनु विलयन द्वारा निक्षालन कराया जाता है।

 $AgCl + 2NaCN(aq.) \longrightarrow Na[Ag(CN)_2] + NaCl$ अर्जेन्टाइट अयस्क होने पर NaCN एवं वायु की ऑक्सीजन द्वारा

निक्षालन होता है। $Ag_2S + 4NaCN + 2O_2 \longrightarrow 2Na[Ag(CN)_2] + Na_2SO_4$ (बाय) सोडियुम् डाइसायनी

(वायु) सोडियम डाइसायनो अर्जेन्टेट संकुल

 उपर्युक्त संकुल में Zn घातु मिलाकर प्रतिस्थापन कराया जाता है जिससे Ag घातु प्राप्त हो जाती है।

 $2Na[Ag(CN)_2]+Zn$ → $Na_2(Zn(CN)_4]+2Ag$ ↓ आयिनिक अभिक्रिया इस प्रकार है...

$$4Ag + 8CN^{-} + 2H_{2}O + O_{2} \longrightarrow 4[Ag(CN)_{2}]^{-} + 40\overline{H}$$

$$4[Ag(CN)_2]^- + 2Zn \longrightarrow 2[Zn(CN)_4]^{2-} + 2Ag \downarrow$$

अवक्षेपण की इस प्रक्रिया को 'सीमेन्टेशन' कहते है।

 इसी प्रकार सोने के निक्षालन की अभिक्रियाएं निम्न पदों में सम्पन्न होती है।

$$4Au + 8NaCN + 2H_2O + O_2 \longrightarrow$$

$$4Na[Au(CN)_2] + 4NaOH$$

 $2Na[Au(CN)_2]+Zn \longrightarrow Na_2[Zn(CN)_4]+2Au ↓$ आयिनिक अभिक्रिया इस प्रकार है—

$$4\text{Au} + 8\overline{\text{C}} \overset{\Theta}{\text{N}} + 2\overline{\text{H}}_2\text{O} + \overline{\text{O}}_2 \longrightarrow 4[\text{Au}(\overline{\text{CN}})_2]^- + 4\overline{\text{OH}}$$

$$2[Au(CN)_2]^- + Zn \longrightarrow [Zn(CN)_4]^{2-} + 2Au \downarrow$$

Ag व Au धातुओं के निक्षालन के इस प्रक्रम में NaCN द्वारा धातु का पहले ऑक्सीकरण होता है जिसका प्रबल अपचायक जिंक धातु द्वारा पुनः विस्थापन क़रायां जाता है, यह संपूर्ण प्रक्रिया ऑक्सीकरण—अपचयन सिद्धान्त के अनुरूप सम्पन्न होती है! चूंकि इसमें धातु संकुल के जलीय विलयन से धातु का अक्क्षेपण होता है अतः इस विधि को जल धातुकर्म (Hydrometa-llurgy) मी कहते हैं। साथ ही इसके प्रारम्भिक पद में सायनाइंड संकुल का निर्माण होता है, अतः इसको सायनाइंड प्रक्रम (Cyanide Process) भी कहा जाता है।

तत्वों के निष्कर्षण के सिद्धान्त एवं प्रक्रम

प्र. 6.1 जब बॉक्साइट में SiO_2 की अशुद्धि मुख्य हो तो कौनसी विधि निक्षालन में प्रयुक्त की जाती है?

उत्तर-सरपेक विधि, इसमें बॉक्साइट को कोक एवं N_2 के साथ गर्म किया जाता है, जिससे कोक द्वारा सिलिका का वाष्पशील Si में अपचयन हो जाता है, जो आसानी से पृथक हो जाता है।

$$SiO_2 + 2C \longrightarrow 2CO + Si \uparrow (वाष्पशील)$$

प्र. 6.2 सायनाइड प्रक्रम के दौरान बनने वाले रजत संकुल का सूत्र लिखिए। उत्तर- $[Ag(CN),]^-$

प्र. 6.3 हॉल की विधि से बॉक्साइट के सान्द्रण (निश्चालन) की अभिक्रिया के पद लिखिए।

उत्तर-जब बॉक्साइट में ${
m Fe}_2{
m O}_3$ की अशुद्धि मुख्य हो, तो हॉल की विधि से सान्द्रण कराया जाता है, इसमें ${
m Na}_2{
m CO}_3$ के साथ संगलन कराया जाता है।

$$Al_2O_3.2H_2O + Na_2CO_3 \xrightarrow{\text{drifted}}$$

 $2NaAlO_3 + 2H_3O + CO_5 \uparrow$

$$NaAlO_2 + 3H_2O + CO_3 \xrightarrow{325K} \rightarrow$$

$$2Al(OH)_3$$
 — निस्तापन: Δ Al_2O_3 + $3H_2O$

अभ्यास-6.2

प्र.1. आघात्री किसे कहते हैं?

प्र.2. अयस्क का सान्द्रण कैसे करते हैं।

प्र.3. झाग प्लवन विधि के बारे में बताइये।

प्र.4. झाग प्लवन विधि में झागकारक कौनसा रासायनिक पदार्थ है।

प्र.5. झाग प्लवन विधि में प्लवन कारक कौनसा रासायनिक पदार्थ है?

प्र.6. गुरुत्व पृथक्करण विधि में कौनसे अयस्क का सान्द्रण किया जाता है।

प्र.7. चुम्बकीय पृथक्करण विधि में उस अयस्कं का नाम बताइये जो चुम्बकीय प्रकृति प्रदर्शित करता है।

प्र.8. चुम्बकीय पृथक्करण विधि में उस अयस्क का नाम बताइये जो अचुम्बकीय [अनुचुम्बकीय] प्रकृति प्रदर्शित करता है।

प्र.9. सोडियम मेटा ऐलुमिनेट का रासायनिक सूत्र है।

उत्तरमाला

- अयस्क में पाये जाने वाली अशुद्धियाँ (कंकड़, रेत, मिट्टी आदि) को आधात्री कहते हैं।
- पेज नं. 6.4 देखें। (बिन्दु 6.3.2)
- 3. पेज नं. 6.4 पर बिन्दु 6.3.3 देखें।
- चीड़ का तेल या यूकेलिप्टस का तेल।
- पोटेशियम एथिल जैन्थेट।
- 6. टिनस्टोन ($\mathrm{SnO_2}$) एवं लोह स्टोन ($\mathrm{Fe_3O_4}$)
- 7. मेग्नेटाइट ($Fe_3\tilde{O}_4$)
- 8. केसीटेराइट अयस्क SnO_2
- 9. सोडियम मेटा ऐलुमिनेट काँ सूत्र NaAlO, है।

6.3.3 सान्द्रित अयस्कों से अशुद्ध धातुओं का निष्कर्षण-

- सान्द्रित अयस्कों से मुक्त अवस्था में अशोधित धातु प्राप्त करने की विधि को निष्कर्षण कहते हैं।
- जब सान्द्रित अयस्क कार्बोनेट या सल्फाइड के रूप में होते हैं, तो उन्हें सरलता पूर्वक धातु में अपचियत नहीं किया जा सकता है। अतः निष्कर्षण की प्रक्रिया में इन्हें पहले ऑक्साइड में बदला जाता है। (ऑक्साइड का अपचयन सरलतापूर्वक हो जाने के कारण)
- सान्द्रित अयस्क का धातु ऑक्साइड में परिवर्तन निम्न में से किसी एक उपयुक्त विधि द्वारा किया जाता है।

(i) निस्तापन (Calcination)

- यह ऑक्साइड, हाइड्रॉक्साइड अथवा कार्बोनेट अयस्कों को दिया जाने वाला ऊष्मा उपचार (heat treatment) होता है।
- सान्द्रित अयस्क को परावर्तनी भट्टी (reverberatory furnace) में बाह्य पदार्थ तथा वायु की अनुपस्थिति में उसके गलनांक से नीचे ताप तक गर्म किया जाता है।

निस्तापन के लाभ (Advantages of calcination)

- अयस्क की नमी दूर हो जाती है।
- कार्बनिक पदार्थों की अशुद्धि नष्ट हो जाती है।
- हाइड्रॉक्साइड या कार्बोनेट अयस्क ऑक्साइडों में बदल जाते हैं।
- पदार्थ छिद्रयुक्त (porous) हो जाता है तथा उसमें आगे की प्रक्रियायें सरल हो जाती है—

उदाहरणार्थ---

$$CaCO_3 \rightarrow CaO + CO_2$$

$$Al_2O_3.2H_2O \xrightarrow{\Delta} Al_2O_3 + 2H_2O \uparrow$$

बॉक्साइट

$$ZnCO_3(s) \xrightarrow{\Delta} ZnO(s) + CO_2 \uparrow$$

$${
m CuCO_3.Cu(OH)_2} \xrightarrow{\Delta} {
m 2CuO} + {
m H_2O} + {
m CO_2} \uparrow$$

मेलेकाइट

$$2\mathrm{Fe_2O_3}.3\mathrm{H_2O} \xrightarrow{\Delta} 2\mathrm{Fe_2O_3} + 3\mathrm{H_2O}$$

लिमोनाइट

चित्र 6.4: परावर्तनी भट्टी (निस्तापन/मर्जन)

(ii) भर्जन (Roasting)

- वायु की अधिकता में सल्फाइड अयस्क को गर्म करके सल्फर के आधिक्य को हटाना भर्जन कहलाता है।
- सान्द्रित सल्फाइड अयस्क को उसके गलनांक से कम ताप पर वायु के आधिक्य की उपस्थिति में परावर्तनी भट्टी में गर्म किया जाता है।
- इस प्रक्रम में अयस्क के साथ कोई बाह्य पदार्थ (external substance) मिला भी सकते हैं और नहीं भी।
- इस प्रक्रम में अयस्क में रासायनिक परिवर्तन नहीं होता है। अतः भर्जन के पश्चात् अयस्क सरन्ध्रमय नहीं होता है।

भर्जन के लाभ (Advantages of Roasting)

- आधिक्य सल्फर SO₂ के रूप में निकल जाती है।
- आर्सेनिक व ऐन्टीमनी की अशुद्धियाँ उनके वाष्पशील ऑक्साइडों के रूप में निकल जाती है।

$$As_4 + 3O_2 \xrightarrow{\Delta} 2As_2O_3$$

वायु

$$Sb_4 + 3O_2 \xrightarrow{\Delta} 2Sb_2O_3$$

 धातु सल्फाइड का धातु ऑक्साइड में ऑक्सीकरण हो जाता है। उदाहरणार्थ-गैलेना, जिंक बलैण्ड का भर्जन-

$$2 {\rm PbS} + 3 {\rm O}_2 \xrightarrow{~{\rm visit}} 2 {\rm PbO} + 2 {\rm SO}_2 \, {\uparrow}$$
 गैलेना (बायु से)

$$2 \mathrm{ZnS} + 3 \mathrm{O}_2 \xrightarrow{$$
 भर्जन $} 2 \mathrm{ZnO} + 2 \mathrm{SO}_2 \uparrow$ (वायु से)

$$2Cu_2S + 3O_2$$
 \longrightarrow $2Cu_2O + 2SO_2$

कॉपर पाइराइट होने पर इसमें कुछ मात्रा में सिलिका (SiO₂) मिलाते हैं,
 जिससे आयरन सिलीकेट धातुमल के रूप में पृथक हो जाता है तथा शेष
 मिश्रण कॉपर मेट (Cu₂S एवं Cu₂O) कहलाता है।

$$2\text{CuFeS}_2 + \text{O}_2 \longrightarrow \text{Cu}_2\text{S} + 2\text{FeS} + \text{SO}_2$$

$$2FeS + 3O_2 \longrightarrow 2FeO + 2SO_2$$

$$2Cu_2S + 3O_2 \longrightarrow 2Cu_2O + 2SO_2$$

$$Cu_2O + FeS \longrightarrow Cu_2S + FeO$$

कभी-कभी धातु सल्फाइड उसके सल्फेट में परिवर्तित होता है।

$$PbS + 2O_2 \longrightarrow PbSO_4$$

$$ZnS + 2O_2 \longrightarrow ZnSO_A$$

कुछ धातु सल्फाइडों का उनके क्लोराइडों में परिवर्तन होता है।

$$Ag_2S + 2NaC1 \longrightarrow 2AgCl + Na_2S$$

धातु क्लोराइड की पारे के साथ क्रिया से अमलगम बन जाता है।

$$AgCl + 2Hg \longrightarrow Ag - Hg + HgCl$$

सारणी 6.2 निस्तायन तथा भर्जन की परस्पर तलना

क्रिक्र के किया निर्मा की परस्पर तुलना		
- निस्तापन	भर्जन	
1. इस प्रक्रिया में अयस्क को वायु	इसमें अयस्क को वायु के आधिक्य	
की अनुपस्थिति में गर्म किया	में गर्म किया जाता है।	
्रजाता है।		
2. सामान्यतया कार्बोनेट, जलयोजित	प्राय: सल्फाइड अयस्कों को उनके	
ऑक्साइड और हाइड्रॉक्साइडों	ऑक्साइडों में परिवर्तन के लिये	
का उनके ऑक्साइड में परिवर्तन	इस प्रक्रिया का उपयोग किया जाता	
के लिए इस प्रक्रिया का उपयोग	· 意	
किया जाता है।		
 इसमें अयस्क निर्जलीकृत हो 	इसमें अयस्क ऑक्सीकृत हो जाता	
जाता है। कार्बोनेट अयस्क	है।	
अपधटित हो जाते हैं।		
$2\text{Fe}_2\text{O}_3$. $3\text{H}_2\text{O} \rightarrow$	$2ZnS + 3O_2 \rightarrow 2ZnO + 2SO_2$	
$2Fe_2O_3 + 3H_2O$	$2HgS + 3O_2 \rightarrow 2HgO + 2SO_2$	
$ZnCO_3 \rightarrow ZnO + CO_2$	2	

निस्तापन अथवा भर्जन के पश्चात् सम्पूर्ण अयस्क सरन्ध्रमय हो जाता है। निस्तापन / भर्जन परावर्तनी भट्टी (चित्र 6.4) में किया जाता है। इसमें घान (सान्द्रित अयस्क) को भट्टी के तल पर रखा जाता है। भट्टी की छत मेहराबदार होती है। ईंधन के जलने से निकलने वाली तह ज्वालाओं (गर्म हवा) के अवतल छत से टकराने से ये ज्वालाऐं विवर्तित होकर अयस्क को गर्म कर देती है। वायु प्रवाह को परावर्तनी भट्टी में बने छिद्रों द्वारा नियंत्रित किया जाता है। निस्तापन के दौरान छिद्रों को बंद रखा जाता है, जबिक भर्जन में इन छिद्रों को खुला रखा जाता है।

6.3.4 मानु ऑक्साइड को अशुन्द बातु में अपन्ययन (Roduction of the Oxides of Metal to the Metallic form)

निस्तापन / भर्जन से प्राप्त धातु ऑक्साइड अयस्क का विभिन्न अपचायक तकनीकों द्वारा धातु में अपचयन कराया जाता है। कुछ प्रमुख विधियाँ इस प्रकार है-

- (a) कार्बन (कोक) द्वारा अपचयन (प्रगलन)
- (b) ऐलुमिनियम द्वारा अपयन (ऐलुमिनोन धर्माइट प्रक्रम)
- (c) स्वत: अपचयन (वायु में गर्म करने से अपचयन)
- (d) वैद्युत अपघटनी अपचयन (इलेक्ट्रोमेटलर्जी)

(a) कार्बेन (कोक) द्वारा अपस्थन (प्रगतन)

• कम विद्युतधनी धातुएँ जैसे Pb, Zn, Sn, Fe, Cu आदि के ऑक्साइड कोक (कोयले) के साथ उच्च ताप पर गर्म करने से अपचयित हो जाते हैं।

$$M_xO_y + yC \xrightarrow{\Delta} xM + yCO$$

$$ZnO + C \xrightarrow{\Delta} Zn + CO$$

$$PbO + C \xrightarrow{\Delta} Pb + CO$$

- निस्तापित या भर्जित अयस्क में अपचायक पदार्थ एन्थ्रेसाइट कोक और उचित गालक (flux) मिलाकर उच्च ताप पर गलाने की प्रक्रिया को प्रगलन कहते हैं।
- इस अभिक्रिया में अयस्क का गलित धातु में अपचयन होता है।
- इस अभिक्रिया में गालक, अयस्क में उपस्थित आधात्री से क्रिया करके गिलत

तत्वों के निष्कर्षण के सिद्धान्त एवं प्रक्रम

- धातुमल बनाता है, जो हल्का होने के कारण गलित धातु के ऊपर तैरता है।

 गालक उस पदार्थ को कहते हैं, जो अयस्क में उपस्थित अगलनीय आधात्री
 से, उच्च ताप पर क्रिया करके गलनीय धातुमल बनाता है।
- गलित धातुमल का घनत्व, गलित धातु से कम होता है। अत: यह गलित धातु पर तैरता है।
- गालक अम्लीय या भास्मिक दो प्रकार के होते हैं। यदि गेंग अम्लीय प्रकृति (SiO₂) का होगा तो भास्मिक प्रकृति (जैसे-CaO या CaCO₃, MgCO₃) का गालक मिलाया जाता है। यदि आधात्री भास्मिक प्रकृति (जैसे FeO) का होगा, तो इसे दूर करने के लिये अम्लीय गालक जैसे (SiO₂) प्रयुक्त किया जायेगा।
- धातुमल प्राय: सिलिकेट होते हैं।

$$SiO_2 + CaO \rightarrow CaSiO_3$$

आधात्री गालक धातुमल (कैल्शियम सिलिकेट)
 $FeO + SiO_2 \rightarrow FeSiO_3$
आधात्री गालक धातुमल

 इस विधि से हैमाटाइट अवस्क (Fe₂O₃) से लोह धातु, प्रगलन से प्राप्त करते हैं।

$$Fe_2O_3 + 3C \xrightarrow{\Delta} 2Fe + 3CO$$

$$Fe_2O_3 + 3CO \xrightarrow{\Delta} 2Fe + 3CO_2$$

धातु ऑक्साइड के अपचायक के साथ उच्च ताप पर तीव्रता से गर्म करके
 धातु में परिवर्तन करने की प्रक्रिया को उत्ताय धातुकर्म या पाइरोधातुकर्म
 (Pyrometallurgy) कहते हैं।

(b) ऐर्लुमिनियम द्वारा अपयन (ऐर्लुमिनीन धर्माहट प्रकार)

- इसमें Cr₂O₃, Mn₃O₄ आदि ऑक्साइडों का उच्च विद्युत धनी धातु ऐलुमिनियम द्वारा अपचयन कराया जाता है, क्योंकि कार्बन या CO द्वारा इनका अपचयन सरलता से नहीं हो पाता है।
- ऐसे धातु ऑक्साइडस जैसे-Cr₂O₃, TiO₂,Mn₂O₃ जिनका कार्बन अपचयन विधि द्वारा अपचयन नहीं हो पाता, अत: ऐसे ऑक्साइड से धातु का निष्कर्षण इस विधि से करते हैं।
- इस विधि में धातु के ऑक्साइड और ऐल्युमिनियम चूर्ण को एक क्रुसीबल में रखकर मैंग्नीशियम के एक फीते, जिसके सिरे पर Mg चूर्ण + BaO₂ के मिश्रण की पोटली बन्धी होती है, के द्वारा प्रज्वलित किया जाता है।
- Al चूर्ण को श्रमाइट कहते हैं।
- उपरोक्त अभिक्रिया तीव्र ऊष्माक्षेपी होने के कारण मिश्रण का तापक्रम लगभग 3000K तक बढ़ जाता है।

$$Cr_2O_3 + 2Al \rightarrow Al_2O_3 + 2Cr$$

 अपचयन के फलस्वरूप प्राप्त Cr धातु पिघलकर क्रुसीबल के तली में एकत्रित हो जाती है जबिक ऐलुमिना Al₂O₃ उसके ऊपर परत बना लेता है, जिसे पृथक् कर लेते हैं।

ऐलुमिनो तापी विधि

(c) स्वतः अपचयन (वायु में गर्म करने से अपचयन)

- कम सक्रिय धातुओं Cu, Pb, Hg आदि के ऑक्साइडों की उच्च ताप पर अस्थायी प्रकृति होती है, अत: इनके अपचयन के लिये किसी अन्य अपचायक की आवश्यकता नहीं होती है।
- ताँबे का खनिज कॉपर पाइराइटीज भर्जन की क्रिया में क्यूप्रस सल्फाइड व फैरस सल्फाइड बनाता है जिनका कुछ अंश वायु से अभिक्रिया कर ऑक्साइड में परिवर्तित होता है।

 $\begin{array}{c} 2\text{CuFeS}_2 + \text{O}_2 \rightarrow \text{Cu}_2\text{S} + 2\text{FeS} + \text{SO}_2 \\ 2\text{Cu}_2\text{S} + 3\text{O}_2 \rightarrow 2\text{Cu}_2\text{O} + 2\text{SO}_2 \\ 2\text{FeS} + 3\text{O}_2 \rightarrow 2\text{FeO} + 2\text{SO}_2 \end{array}$

 प्रगलन की क्रिया में अर्जित अयस्क में कॉपर मैट प्राप्त होता है, जिसमें क्यूप्रस सल्फाइड के साथ अल्प मात्रा में FeS भी रहता है, क्यूप्रस सल्फाइड बेसेमरीकरण की क्रिया में वायु की Oxygen से ऑक्सीकृत होकर, क्यूप्रस ऑक्साइड बनाती है। जो शेप बच्चे क्यूप्रस सल्फाइड से स्वत: अपचयन क्रिया द्वारा ताँबा धातु बना लेता है।

 $2Cu_2S + 3O_2 \rightarrow 2Cu_2O + 2SO_2$ $Cu_2S + 2Cu_2O \rightarrow 6Cu + SO_2$ (स्वत: अपचयन)

(d) वैद्युत अपघटनी अयचयन (इलेक्ट्रोमेटलर्जी)

- उच्च विद्युतधनी प्रकृति वाली धातुऐं जैसे Na, K, Mg, Al, Ca आदि के ऑक्साइडों, हाइड्रॉक्साइडों या क्लोराइडों के संगलित अवस्था में वैद्युत अपघटन से कथोड़ पर शुद्ध धातु प्राप्त होती है। इसे वैद्युत अपघटनी अपचयन कहते हैं।
- यह विधि वैद्युत रासायनिक सिद्धांत पर आधारित है।
- समीकरण $\Delta G^o = -nFE^o$ के अनुसार किसी निकाय के रेडॉक्स युग्म के इलेक्ट्रॉड विभव का अंतर धनात्मक होने पर परिणामी ΔG^o का मान ऋणात्मक हो जाता है, जिससे अधिक क्रियाशील धातु विलयन में मुक्त हो जाती है।
- उदाहरणार्थ-

कैथोड़ पर Na +e --→ Na

एनोड़ पर $C1 \longrightarrow \frac{1}{2}CI_2 + e^{-\frac{1}{2}}$

अभ्यास-6.3

- **प्र.**1. निस्तापन किसे कहते हैं?
- प्र.2. भर्जन किसे कहते हैं?
- प्र.3. निस्तापन एवं भर्जन में अन्तर बताइये।
- प्र.4. कौनसें अयस्कों को उनके ऑक्साइड में बदलने के लिये निस्तापन विधि का प्रयोग करते हैं।
- प्र.5. काँनसे अयस्कों को उनके ऑक्साइड में बदलने के लिये भर्जन विधि का प्रयोग करते हैं।
- प्र.6. वायु की उपस्थिति में धातु ऑक्साइड को गर्म करके अपचयन करना किस ऑक्साइड के लिये उपयुक्त है।
- प्र.7. कार्बन के अपचयन से कौनसे धातुओं के ऑक्साइड्स को धातु में

बदला जाता है।

- प्र.8. गालक किसे कहते हैं? उदाहरण सहित समझाइये।
- प्र.9. धातुमल किसे कहते हैं?
- प्र.10. प्रगलन किसे कहते हैं ? समझाइये। प्रगलन क्रिया में गालक का क्या महत्व है?
- प्र.11. प्रगलन में प्राय: किस अयस्क का प्रयोग करते हैं।
- प्र.12. थर्माइट किसे कहते हैं?
- प्र.13. ऐलुमिनियम चूर्ण द्वारा अपचयन में कौनसा अयस्क लेते हैं।
- प्र.14. थर्माइट विधि में तापक्रम कितना हो जाता है?
- प्र.15. मैंग्नीशियम के फीते में लटकी पोटली में क्या-क्या होता है।
- प्र.16. विद्युत अपघटनी विधि में धातु का निष्कर्षण में कौनसे अयस्क होते हैं?
- प्र.17. अवक्षेपण विधि में कौनसी धातुओं का निष्कर्षण करते हैं?
- प्र.18. सोडियम अरजेन्टोसायनाइड का सृत्र दीजिथे।
- प्र.19. धातुकर्म से आप क्या समझते हैं?
- प्र.20. क्या होता है जब लाइम को सिलिका के साथ गर्म करते हैं।

उत्तरमाला

- पेज नं. 6.7 पर बिन्दु 6.3.3 देखें।
- पेज नं. 6.7 पर बिन्दु 6.3.3 देखें।
- पेज नं. 6.8 पर सारणी 6.2 देखें।
- कार्बोनेट एवं हाइड्रोऑक्साइड
- सल्फाइड अयस्क
- 6. HgO
- 7. ZnO. PbO. CuO. SnO₂ आदि।
- 8. वे पदार्थ जो अयस्क मं उपस्थित अगलनीय आघात्री से उच्च ताप पर क्रिया कर गलनीय धातुमल बनाते हैं, गालक कहलाते हैं। ये क्षारीय व अम्लीय दो प्रकार के होते हैं। SiO₂ (अम्लीय गालक), CaO. FeO. CaCO₃ क्षारीय गालक है।
- सिलेकेट को धातुमल कहते हैं। इनका घनत्य गलनीय धातु से कम होता है। CaSiO₃ धातुमल है।
- पेज नं. 6.8 देखें, बिन्दु 6.3.4 गालक आधात्री से संयोग कर धातुमल बनाकर अलग कर देता है।
- 11. हेमाटाइट अयस्क (Fe_2O_3)
- 12. Al चूर्ण को थर्माइट कहते हैं।
- 13. Cr_2O_3 , TiO_2 , Mn_2O_3 आदि
- 14. 3000K ताप हो जाता है।
- 15. Mg चूर्णव BaO₂
- 16. Na. K. Mg. Ca. Al के हैलाइड्स
- 17. Au व Ag धातुओं का
- 18. Na[Ag(CN),]
- अयस्क से शुद्धे धातु प्राप्त करने की विधि को धातुकर्म कहते हैं।
- 20. धातुमल बनता है जिसे कैल्शियम सिलिकेट कहते हैं।
 - $CaO + SiO_2 \rightarrow CaSiO_3$

6.4 धातुकर्म का ऊष्मागतिकी सिद्धांत

- धातुक्रिमिय परिवर्तनों को समझने के लिये कष्मागतिकी की गिब्स कर्जा एक सार्थक पद हैं।
- िकसी प्रक्रम के लिये गिब्ज ऊर्जा परिवर्तन (ΔG) का मान निम्न, गिब्ज हैल्महोल्ट्ज समीकरण द्वारा ज्ञात किया जाता है।

 $\Delta G = \Delta H - T \Delta S \qquad \dots (i)$

यहाँ $\Delta G
ightarrow 1$ गब्ज ऊर्जा परिवर्तन, ΔH एन्थैल्पी परिवर्तन

ΔS एन्ट्रॉपी परिवर्तन तथा T परमताप है।

 िकसी अभिक्रिया के लिये इस परिवर्तन को निम्न समीकरण द्वारा भी समझाया जा सकता है।

$$\Delta G^{o} = -RT \ln k$$

$$\Delta G^{o} = -2.303 RT \log K \qquad(2)$$

यहाँ K. ताप T पर अभिक्रिया का साम्य स्थिरांक है।

- समीकरण (2) में ∆G° का ऋणात्मक मान K के धनात्मक मान को दर्शाता है अर्थात् अभिक्रिया अग्र दिशा में अग्रसर होती है।
 उपरोक्त समीकरणों के आधार पर निम्नितिखित निष्कर्ष निकाले जा सकते हैं—
- (i) ΔG का ऋणात्मक [-ve] मान अभिक्रिया के अग्र दिशा में होने को प्रदर्शित करता है। यदि ΔH का मान धनात्मक हो और ΔS का मान भी धनात्मक हो, तो T का मान उच्च रखने पर TΔS का मान ΔH से अधिक [ΔH < TΔS] हो जायेगा, परिणामस्वरूप ΔG का ऋणात्मक मान प्राप्त होगा।
- (ii) यदि किसी प्रक्रम में दो अभिक्रियाओं के अभिकारक और उत्पाद सिम्मिलित हो, तो दोनों के परिणामी ΔG के मान को देखा जा सकता है। यदि परिणामी ΔG का मान ऋणात्मक होतो अग्र अभिक्रिया सम्पन्न होगी।

अपचायकों के चयन हेतु एलिंघम आरेख (Ellingham Diagram for the Choice of Reducing Agents)

6.4.1 एलिंघम आरेख (Ellingam Diagaram)

- एलिंघम आरेख ऑक्साइडों के अपचयन के लिये उचित अपचायक के चयन में सहायता करता है। इसके अतिरिक्त किसी अयस्क के ऊष्मीय अपचयन की संभावना ज्ञात करने में मदद करती है।
- देखना यह है कि किसी भी प्रक्रम को अग्र दिशा होने के लिये ΔG° का मान ऋणात्मक होना चाहिये।
- एिलंघम आरेख तत्त्वों के ऑक्साइडों के विरचन के लिये ∆G° ओर T के मध्य वक्र होता है।

एक सामान्य अभिक्रिया

$$2x M(s) + O_2(g) \rightarrow 2M_y O(s)$$

ऑक्साइड MxO(s) के विरचन के लिये उपरोक्त अभिक्रिया को इस प्रकार लिखा जा सकता है।

$$xM_{(s)} + \frac{1}{2}O_2(g) \to MxO(s)$$

- उपरोक्त अभिक्रिया में बायें से दायें चलने पर O₂(g) का उपयोग होता है,
 परिणामस्वरूप गैसीय पदार्थ की मात्रा घटती है अत: एन्ट्रॉपी परिवर्तन (ΔS)
 का मान ऋणात्मक होगा। ताप बढ़ाने पर TΔS और अधिक ऋणात्मक हो
 जाता है और ΔG° का मान कम ऋणात्मक होता जाता है अत: ΔG° और T
 के मध्य ग्राप का ढ़ाल ऊपर की ओर अर्थात् कम ऋणात्मक (धनात्मक)
 होता जाता है।
- △G° और T के मध्य ग्राफ सरल रेखा है यदि कोई पदार्थ पिघल जाता है [ठोस → द्रव] अथवा वाष्पित हो जाता है [द्रव → वाष्प] तो सरल रेखा का ढाल धनात्मक दिशा में अधिक हो जाता है क्योंकि ठोस की एन्ट्रॉपी कम, द्रव की उससे अधिक ओर गैस की सबसे अधिक होती हैं।

तत्वों के निष्कर्षण के सिद्धान्त एवं प्रक्रम

चित्र : 6.5 कुछ ऑक्साइडों के विरचन में गिब्ज ऊर्जा ΔG^o तथा T के मध्य वक्र (एलिंघम आरेख)

उदाहरण के लिये— Zn, ZnO वक्र में अचानक परिवर्तन गलनांक को निर्देशित करता है।

- वक्र में एक ऐसा बिन्दु है जिसके नीचे ∆G ऋणात्मक है। इसिलये M_xO स्थायी है। इस बिन्दु के ऊपर M_xO स्वयं विघटित हो जायेगा।
- अत: एलिंघम आरेख के अनुसार सभी ऑक्साइड उस ताप पर धातु और ऑक्सीजन में विघटित हो जाते हैं जिस ताप पर ∆G का मान धनात्मक (∆G > 0) हो जाता है। निश्चित रूप में यह ताप प्राप्त किये जाने योग्य होना चाहिये। उदाहरण के लिये— Ag → Ag₂O. Au → Au₂O तथा Hg → HgO रेखायें ∆G = 0 लाइन को जिसे ताप पर लांघती हैं, (क्रॉस करती है) वह प्राप्त किये जाने योग्य है। अर्थात् इस ताप पर ये ऑक्साइड अस्थायी होंगे अत: इन तत्वों को ऊष्मीय विघटन (Thermal dissociation) द्वारा प्राप्त किया जा सकता है।
- एिलंघम आरेख में कुछ अपचायक पदार्थों जैसे कार्बन या कार्बन मोनो ऑक्साइड के वक्र भी दिये गये हैं। ऑक्सीकरण और अपचयन वक्रों के युग्मन द्वारा यह जाना जा सकता है कि अपचायक उचित है अथवा नहीं।

6.4.2 ऐलिंघम आरेख के सामान्य निष्कर्ष

- 1) समीकरण ΔG° = -RT ln K के अनुसार ΔG° का मान ऋणात्मक होने पर अभिक्रिया अग्रदिशा में सम्पन्न होगी। किसी निकाय के लिए (ठोस → द्रवं → गैस) में प्रावस्था परिवर्तन होने पर, निकाय में अस्तव्यस्तता (आण्विक यादृष्टिकता) बढ़ती है जिससे ΔS° का मान धनात्मक हो जाता है। ऐसी स्थिति में उच्चताप पर TΔS° के मानों में वृद्धि होगी अर्थात् (ΔH° < TΔS°) जिससे ΔG° का मान ऋणात्मक होगा।
- (2) यदि किसी निाक्य में दो अभिक्रियाएं साथ−साथ सम्पन्न हो रही है तो परिणामी ∆G° का मान ऋणात्मक होने पर समग्र अभिक्रिया अग्र दिशा में सम्पन्न होगी।

(3) धातु ऑक्साइडों के निर्माण में ΔG° का मान तापक्रम पर निर्मर करता है। अतः किसी अभिक्रिया के लिए वह तापक्रम निर्धारित करता है जिस पर कार्बन या कार्बन मोनो—ऑक्साइड द्वारा अपचयन स्वतः प्रवर्तित होता है।

किसी अयस्क के ऊष्मीय अपचयन की संमावना में एलिंघम आरेख की विवेचना—

- (1) यह धातु ऑक्साइडों के धातु में अपचयन हेतु उपयुक्त अपचायक के चयन में सहायक है।
- (2) प्रावस्था परिवर्तन (ठोस \rightarrow द्रव \rightarrow गैस) होने पर एन्ट्रोपी में वृद्धि होगी अर्थात् ΔS^{o} धनात्मक होगा।
- (3) प्रावस्था परिवर्तन (गैस → द्रव → ठोस) होने पर अणुओं में अस्तव्यस्तता कम होने के कारण एन्ट्रोपी में कमी होगी अर्थात् ∆S° ऋणात्मक होगा।
- (4) प्रावस्था परिवर्तन को छोड़कर अन्य सभी स्थितियों में वक्र में सीधी रेखा प्राप्त होती है।
- (5) आरेख में वह बिन्दु जिसके नीचे ΔG° का मान ऋणात्मक होता है, धात्विक ऑक्साइड (M_χO) भी स्थायी होता है। इस बिन्दु के ऊपर ΔG° धनात्मक होने के कारण धातु ऑक्साइडों का स्वतः विघटन हो जाता है। अर्थात् उच्चतर ΔG° वाले धातु ऑक्साइड की तुलना में निम्नतर ΔG° वाले धातु ऑक्साइड का स्थायित्व अधिक होता है।
- (6) वक्रों के प्रतिच्छेदन बिन्दु पर ΔG° का मान शून्य हो जाता है। इसके नीचे ΔG° ऋणात्मक तथा इसके ऊपर ΔG° धनात्मक होता है। अतः प्रतिच्छेदन बिन्दु से नीचे के तापों पर इस धातु द्वारा बिन्दु से ऊपर स्थित धातु ऑक्साइड का आसानी से अपचयन हो जाता है।
- (7) किसी रासायनिक परिवर्तन के ऊष्मागतिकी रूप से संमव होने के लिए ΔG° का चिन्ह ऋणात्मक होना चाहिए अर्थात् मुक्त ऊर्जा में कमी हो। ΔG° के धनात्मक चिन्ह होने की दशा में अभिक्रिया नहीं होती है।
- (8) धातु ऑक्साइडों के गलनांक या क्वथनांक पर बक्रों के ढाल में अचानक परिवर्तन होता है। इस ताप पर प्रावस्था परिवर्तन (गैस ightarrow दव ightarrow ठोस) के लिए ΔS° के अत्याधिक ऋणात्मक हो जाने (एन्ट्रापी में कमी) के परिणाम स्वरूप ΔG° धनात्मक हो जाता है। $\Delta G^{\circ} = \Delta H^{\circ}$ $[T(-\Delta S^{\circ})]$

 $\Delta G^{\circ} = \Delta H^{\circ} + T \Delta S^{\circ}$

 ΔG° = धनात्मक $\{$ उच्च ताप पर $\}^{\circ}$

(9) अपचयन ताप पर प्राप्त होने वाली धातु के, द्रव अवस्था में होने पर धातु ऑक्साइड (ठोस) का अपचयन आसानी से होता है क्योंकि ठोस से द्रव प्रावस्था परिवर्तन पर ΔS° धनात्मक होता है (एन्ट्रापी वृद्धि) जिसके फलस्वरूप ΔG° ऋणात्मक हो जाता है।

 $\Delta G^{o} = \Delta H^{o} - [T(+\Delta S^{o})]$

 $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$

 ΔG^{o} = ऋणात्मक

6.4.3 एलिंघम आरेख की सीमाएँ

एलिंघम आरेख की दो सीमाएँ हैं—

- (i) आरख केवल यह बताता है कि अभिक्रिया संभव है अथवा नहीं। परन्तु अभिक्रिया की बलगतिकी (kinetics) के बारे में कुछ नहीं बताता क्योंकि ये आरेख ऊष्मागतिकी की धारणा पर आधारित हैं।
- (ii) ΔG° की व्याख्या इस धारणा पर आधारित है कि अभिकारक और उत्पाद साम्यावस्था में हैं क्योंकि (ΔG° = –RT /n K) केवल साम्यावस्था में ही संभव है। परन्तु सदैव यह सत्य नहीं होता। क्योंकि अभिकारक और उत्पाद ठोस हो सकते हैं। इस आरेख द्वारा यह समझाया जा सकता है कि जब सभी स्पीशीज ठोस अवस्था में होती है तो अभिक्रिया मंद और अयस्कों पिघलने पर तीव्र हो

जाती है।

किसी अभिक्रिया के लिये ΔH और ΔS के मान ताप में परिवर्तन होने पर भी लगभग स्थिर रहते हैं अत: गिब्ज हेल्महोल्ट्ज समीकरण में केवल T ही प्रमुख चर बन जाता है। एन्ट्रॉपी में परिवर्तन (ΔS) तब ही अधिक होता है जबिक अवस्था परिवर्तन हो अर्थात् ठोस \rightarrow द्रव या द्रव \rightarrow गैस।

प्र.6.4 एलिंघम आरेख द्वारा समझाइये कि क्यों एलुमिना (Al₂O₃) का अपचयन क्रोमियम द्वारा नहीं किया जा सकता है?

उत्तर-एलियम आरेख (चित्र 6.5) के अनुसार Al_2O_3 के निर्माण में गिब्स मुक्त ऊर्जा (ΔG°) अधिक ऋणात्मक होता है, जबिक क्रोमियम के ऑक्साइड का ΔG° कम ऋणात्मक होता है।

अत: आरेख में नीचे स्थित धातु ऑक्साइड का अपचयन उसके ऊपर स्थित किसी धातु ऑक्साइड में निहित धातु के द्वारा संभव नहीं होता है।

इसके विपरीत क्रोमियम के ऑक्साइड का अपचयन Al धातु द्वारा हो जाता है।

$$Cr_2O_3 + 2Al \longrightarrow 2Cr + Al_2O_3$$

एलिंघम आरेख की सहायता से हेमेटाइट के अपचयन की व्याख्या एलिंघम आरेख के अनुसार—

- (i) ताप 1073K प्रतिछेदन बिन्दु को प्रदर्शित करता है।
- (ii) 1073K ताप से नीचे हेमेटाइट का अपचयन कार्बन मोनो ऑक्साइड द्वारा होता है। अर्थात्

$$\Delta G^{\circ}(Fe \rightarrow Fe_2O_3) > \Delta G^{\circ}(CO \rightarrow CO_2)$$

अभिक्रिया निम्न प्रकार से सम्पन्न होती है-

$$Fe_2O_3(s) + 3CO(g) \xrightarrow{\overline{c}_{11}Q} (1073K) \rightarrow 2Fe(s) + 3CO_2(g)$$

(iii) 1073K ताप से ऊपर हेमेटाइट का अपचयन कोक (या कार्बन) द्वारा होता है। अर्थात्

$$\Delta G^{\circ}(Fe \rightarrow Fe_2O_3) > \Delta G^{\circ}(C \rightarrow CO)$$

अभिक्रिया इस प्रकार है-

-800

-- 900

$$Fe_2O_3(s)+C(s)$$
 ਜੀਥ $>1073K$ $>2Fe(s)+3CO(g)$ हेमेटाइट कोक $=200$ $=300$ $=300$ $=400$ $=500$

0K 1000K 1500K तापक्रम (K) →

1073K

2000K

चित्र 6.6 : हेमेटाइट के कार्बन अथवा कार्बन मोनोऑक्साइड से अपचयन हेतु ऐलिघम आरेख

500K

कोक (कार्बन) एवं कार्बन मोनोऑक्साइड की अपचायी प्रकृति

कोक (कार्बन) को अपचायक के रूप में लेने पर निम्न प्रकार से अपचयन अभिक्रिया संभव हो सकती है—

$$C(s) + O_2(g) \longrightarrow CO_2(g)$$
(i)

सभी (i) के अनुसार आयतन अपरिवर्तित रहता है अतः एन्ट्रॉपी में कोई परिवर्तन नहीं होता है ($\Delta S^{\circ}\cong 0$) जिससे ΔG° का मान लगभग स्थित रहता है।

तापक्रम (K) → चित्र 6.7 : कोक एवं CO की अपचायक प्रकृति हेत् एतिंघम आरेख

सभी (ii) के अनुसार CO के बनने पर आयतन में वृद्धि होती है, ΔS^o धनात्मक (एन्ट्रॉपी में वृद्धि) होने से ΔG^o ऋणात्मक हो जाता है अतः कार्बन द्वारा धातु ऑक्साइड का अपचयन होती है।

$$2CO(g) + O_2(g) \longrightarrow CO_2(g) \qquad ...(iii)$$

समीकरण (iii) के अनुसार CO_1 के निर्माण से आयतन में कमी आती है अतः ΔS° में कमी (एन्ट्रॉपी में कमी) होने से ΔG° धनात्मक हो जाता है। इस प्रकार कार्बन, कार्बन मोनो ऑक्साइड में परिवर्तित होकर अपचायक का कार्य करता है।

उदाहरणार्थ-

(i)
$$Fe_2O_3 + 3C \xrightarrow{\Lambda} 2Fe + 3CO$$

 $Fe_2O_3 + 3CO \xrightarrow{\Lambda} 2Fe + 3CO_2$
 $FeO + CO \xrightarrow{\Delta} Fe + CO_2$

(ii)
$$CuO + CO \xrightarrow{\Delta} Cu + CO_2$$

(iii)
$$ZnO + C \xrightarrow{\Delta} Zn + CO$$

प्र.6.5 झाग प्लवन विधि से किस प्रकार के अयस्कों का सान्द्रण किया जाता है? उदाहरण दीजिए।

उत्तर-सल्फाइड अयस्क, उदाहरण CuFeS., PbS. ZnS

प्र.6.6 निस्तापन एवं भर्जन में मुख्य अंतर क्या है?

उत्तर-निस्तापन वायु की अनुपस्थिति में होता है जबिक भर्जन वायु (ऑक्सीजन) के आधिक्य में होता है।

प्र.6.7 ताप 1073 K के ऊपर हेमेटाइट का अपचयन किसके द्वारा होता है? अभिक्रिया समीकरण भी लिखिए।

उत्तर—कार्बन (कोक) द्वारा क्योंकि $\Delta G^\circ_{\rm Feake_2O_3}$ > $\Delta G^\circ_{\rm C\to CO}$ अभिक्रिया समीकरण इस प्रकार है—

$$Fe_2O_3 + 3C \xrightarrow{\overline{arg} \sim 1003K} 2Fe + 3CO$$

प्र.6.8 केयोलिनाइट (वले) का सूत्र लिखिए। उत्तर-- Al₂O₃₋₂SiO₃₋₂H₂O

प्र.6.9 रूबीकॉपर एवं मैलाकाइट अयस्क के सूत्र लिखिए। उत्तर- (i) रूबीकॉपर (या क्यूप्राइट) Cu.O

(ii) मैलाकाइट CuCO_z.Cu(OH),

प्र.6.10 आयरन के चुम्बकीय ऑक्साइड अयस्क के नाम व सूत्र दीजिए एवं इनके सान्द्रण की उपर्युक्त विधि का नाम लिखिए।

उत्तर-- (i) मैग्नेटाइट- Fe₃O₄

(ii) लिमोनाइट - 2Fe₂O₃,3H₂O इनका सान्द्रण चुम्बकीय पृथक्करण विधि से किया जाता है।

.5 धातु ऑक्साइड से धातु निष्कर्षण के अनुप्रयोग

6.5.1 आयरन का इसके ऑक्साइड अवस्क से निष्कर्षण (Extraction of Iron from its oxide ore)

अयस्क

हेमेटाइट - $Fe_{2}O_{3}$ (मुख्य) लिमोनाइट - $2Fe_{2}O_{3}.3H_{2}O$

मैंग्नेटाइट – $\operatorname{Fe}_3 ilde{\mathbf{O}}_1$

आयरन पाइराइट - FeŜ

- प्रक्रम अयस्क को बारीक पीसकर इसका चुम्बकीय पृथक्करण विधि द्वारा सान्द्रण कराया जाता है।
- सान्द्रित अयस्क का पहले निस्तापन एवं फिर वायु के आधिक्य की उपस्थिति में परावर्तनी भट्टी में भर्जन कराया जाता है।
- प्रगलन-भर्जित अयस्क का वात्या भट्टी में कार्बन द्वारा अपचयन कराया जाता है, जिसे प्रगलन कहते हैं। वात्या भट्टी स्टील से बनी बेलनाकार संरचना होती हैं, जिसकी ऊँचाई लगभग 30 मीटर एवं व्यास लगभग 6-8 मीटर तक होता है।
- भट्टी के शीर्ष पर कप-कोन व्यवस्था होती है, जिसके द्वारा धान डाला जाता है। भट्टी में नलों द्वारा गर्म वायु को प्रवाहित कराया जाता है, इन नलों को ट्वीयर (Tuyers) कहते हैं।
- भट्टी का ताप ऊपर से नीचे की ओर जाने पर बढ़ता है। भट्टी के पैंदे की ओर धातुमल एवं गुलित आयरन धातु के निष्कासन के लिये पृथक-पृथक

धान (Charge) :

निस्तापन व भर्जित अयस्क (8 भाग) + क्रोक (4 भाग)

+ चूने का पत्थर (1 भाग)

• वात्या भट्टी में होने वाली मुख्य अभिक्रियाएँ निम्न प्रकार हैं-

(i) अपचयन क्षेत्र (673K - 973 K लगभग)

$$3\text{Fe}_2\text{O}_3 + \text{CO} \longrightarrow 2\text{Fe}_3\text{O}_4 + \text{CO}_7$$

$$Fe_3O_4 + CO \longrightarrow 3FeO + CO_2 \uparrow$$

$$Fe_2O_3 + CO \longrightarrow 2FeO + CO_2 \uparrow$$

(ii) केन्द्रीय क्षेत्र (ऊष्पाशोषण क्षेत्र) (1173 K - 1473 K लगभग)

$$CaCO_3 \xrightarrow{1273K} CaO + CO_2 \uparrow$$

$$FeO+CO\longrightarrow Fe+CO$$
, \uparrow

$$CaO + SiO_2 \xrightarrow{1073 \text{ K}} CaSiO_3$$

भाषात्री \longrightarrow $CaSiO_3$

(iii) संगालित क्षेत्र (1373 K - 1573 K लगभग)

$$CO_2 + C \longrightarrow 2CO$$

(iv) दहन क्षेत्र (1773K - 2173 K लगभग)

$$C+O_2 \longrightarrow CO_2$$

$$FeO+C\longrightarrow Fe+CO$$

- धातुमल हल्का होने के कारण गिलत धातु की सतह पर तैरता है, जिसे समय-समय पर पृथक कर लिया जाता है।
- वात्या भट्टी से प्राप्त आयरन को कच्चा लोहा या पिग आयरन कहते हैं।
 इसमें लगभग 4% कार्बन के अलावा P, S, Si, Mn आदि की अशुद्धियाँ सूक्ष्म मात्रा में विद्यमान रहती है।

स्त्रमध्य लोता (Cost Iron)

गर्म पिघले कच्चे लोहे को रेत से बने सांचों में डालकर ठंडा कराया जाता है-

- (i) पिघले लोहे को तेजी से ठंडा कराने पर कार्बन, सीमेन्टाइट (Fe₃C) के रूप में विद्यमान रहता है, इसे सफेद **ढ़लवां लोहा** कहते हैं।
- (ii) यदि पिघले लोहे को धीरे-धीरे ठंडा कराया जाता है, तो कार्बन, ग्रेफाइट के रूप में विद्यमान रहता है, इसे भूरा ढ़लवां लोहा कहते हैं। ढ़लवां लोहे में कार्बन की मात्रा लगभग 3% रह जाती है। यह अति कठोर एवं भंगुर होता है। इसमें जंग नहीं लगती है।

(Vergreght Lean)

यह लोहे का शुद्धतम रूप होता है, जिसमें कार्बन की प्रतिशत मात्रा 0.2 से 0.5% तक होती है। इसमें अन्य धातुओं की अशुद्धियाँ भी बहुत कम होती है।

अशुद्धियों के कारण ढ़लवाँ लोहा 1423K – 1523 K के मध्य पिघलता है, जबकि पिटवां लोहा 1823 K पर पिघलता है।

नियोग विदे

परावर्तनी भट्टी में ढ़लवां लोहे के हेमेटाइट के साथ गर्म वायु द्वारा ऑक्सीकृत कराते हैं, जिससे कार्बन की अशुद्धि CO के रूप में पृथक हो जाती है। अन्य अशुद्धियाँ (P, S, Si आदि) उनके वाष्पशील ऑक्साइडों के रूप में पृथक हो जाती है। ये गालक के रूप में मिलाये गए चूना पत्थर से धातुमल बना लेते हैं।

*
$$3C + Fe_2O_3 \xrightarrow{\Delta} 2Fe + 3CO$$

कार्बन अशुद्धि

$$6P + 5Fe_2O_3 \longrightarrow 10Fe_2 + 3P_2O_5$$

$$P_2O_5 + Fe_2O_3 \longrightarrow 2FePO_4$$
 (शातुमल)

इस लोई जैसे लोहे के गोले बनाकर, इसे वाष्य चालित हथौड़े से पीटते हैं, जिससे धातुमल बाहर आ जाता है, इसी कारण इसे पिटवां लोहा कहते हैं। स्टील (Steel): इसमें कार्बन की मात्रा लगभग 0.15-1.5% होती है, जो दलवां लोहे (2-3%) एवं पिटवां लोहे (0.2-0.5%) के मध्य है।

प्र. 6.11 वात्या भट्टी में धान (चार्ज) में किन-किन पदार्थों को मिलाया जाता है?

प्र. 6.12 वात्या भट्टी में अपचयन क्षेत्र एवं ऊष्मोशोषण क्षेत्र में होने वाली अभिक्रियाओं के समीकरण दीजिए।

$$3\text{Fe}_2\text{O}_3 + \text{CO} \longrightarrow 2 \text{ Fe}_3\text{O}_4 + \text{CO}_2 \uparrow$$

 $\text{Fe}_3\text{O}_4 + \text{CO} \longrightarrow 2 \text{ FeO} + \text{CO}_2 \uparrow$

$$Fe_2O_3 + CO \longrightarrow 2 FeO + CO_2 \uparrow$$

 $Fe_2O_3 + CO \longrightarrow 2 FeO + CO_2 \uparrow$

(ii) ऊष्माशोषण क्षेत्र (केन्द्रीय क्षेत्र) - (473 K -1473 K लगभग)

$$CaCO_3 \xrightarrow{1273 \text{ K}} CaO + CO_2 \uparrow$$

FeO + CO \longrightarrow Fe + CO₂ \uparrow

$$CaO + SiO_2 \xrightarrow{\overline{\pi}|\Psi|>1073K} CaSiO_3$$

गालक आधा (धातुमल)

6.5.2 क(भा के अवस्त के क्रांस् (न्त्रांवा) का निक्कवण (Extragion of Copper from its ore)

(1) **अयस्क**-

कॉपर पाइराइट — CuFeS, (मुख्य)

क्यूप्राइट या रूबी कॉपर — Cu₂O

कॉपर ग्लांस — Cu_2S

मेलेकाइट —Cu(OH), CuCO,

(2) प्रक्रम-

कॉपर का मुख्य अयस्क कॉपर पाइराइट है, जो कि एक सल्फाइड अयस्क है। इसे बारीक पीसकर इसका भाग प्लवन विधि द्वारा सान्द्रण कराया जाता है।

भर्जन-

सान्द्रित अयस्क में अल्प मात्रा में सिलिका मिलाकर वायु के आधिक्य में परावर्तनी भट्टी में गर्म कराया जाता है। भट्टी में निम्न अभिक्रियाएँ होती है–

$$2CuFeS_2 + 2O_2 \longrightarrow Cu_2S + 2FeS + 2SO_2$$

$$2\text{FeS} + 3\text{O}_2 \longrightarrow 2\text{FeO} + 2\text{SO}_3$$

$$2Cu_2S + 3O_2 \longrightarrow 2Cu_2O + 2SO_2$$

$$Cu_2O + FeS \longrightarrow Cu_1S + FeO$$

 $Cu_{a}S$ एवं $Cu_{a}O$ का मिश्रण **कॉप**र मेट कहलाता है।

बेसेमरीकरण (Bessemerisation)

बेसेमर परिवर्तित नाशपाती के आकार की स्टील से बनी भट्टी होती है, जिसके अन्दर अम्लीय SiO_2 या क्षारीय MgO का अस्तर लगा होता है। यह अस्तर गालक का कार्य करता है। परिवर्तिक में Cu_2S व Cu_2O का मिश्रण कॉपर मेट भरा जाता है और शुण्डिकाओं से गर्म वायु भेजी जाती है। Cu_2S व Cu_2O के मिश्रण का स्वतः अपचयन होता है और द्रवित धातु नीचे की ओर एकत्र होती है। चित्रानुसार यह परिवर्तित एक क्षैतिज अक्ष पर लगा होता है और इसे आगे पीछे झुकाया जा सकता है।

बेसेमर परिवर्तित में निम्नलिखित रासायनिक अभिक्रियाएँ होती है-

$$2\text{FeS} + 3\text{O}_2 \longrightarrow 2\text{FeO} + 2\text{SO}_2$$

$$2Cu_2S + 3O_2 \longrightarrow 2Cu_2O + 2SO_2$$

$$Cu_2S + 2Cu_2O \longrightarrow Cu + SO_2 \uparrow \pmod{($$
 स्वत: अपचयन)

पिघले कॉपर में SO₂ गैस क्लिय होती है। इसे रेत के सांचों में उड़ेला जाता है। उंडा होने पर इसमें से SO₂ गैस बुलबुलों के रूप में बाहर निकलती है, जिससे कॉपर की सतह पर फफोले पड़ जाते हैं। इस कॉपर को **फफोलेदार** तांबा (Blistered Copper) कहते हैं।

प्र.6.13 बेसेमर परिवर्तक के अंदर किसका अस्तर लगाया जाता है? उत्तर-सिलिका (अम्लीय SiO₂)(या क्षारीय MgO)

प्र.6.14 बेसेमर परिवर्तन में होने वाली स्वतः अपचयन अभिक्रिया का समीकरण लिखिए।

उत्तर-

$$Cu_2S + 2Cu_2O \longrightarrow \underbrace{6Cu}_{\text{with equilibrium}} + SO_2(\text{स्वत: अपचयन})$$

6.5.3 जिंक ऑक्साइड से जिंक का निष्कर्षण

अयस्क-

जिंक ब्लेण्ड - ZnS (मुख्य)

तत्वों के निष्कर्षण के सिद्धाना एवं प्रक्रम

केलामाइन या जिंक स्पार - ZnCO₃ जिंकाइट - ZnO

- (i) सान्द्रण चूर्णित जिंक ब्लेण्ड अयस्क का सान्द्रण भाग प्लवन विधि से कराया जाता है, जबिक केलामाइन अयस्क का सान्द्रण गुरुत्वीय पृथक्करण विधि द्वारा कराया जाता है।
- (ii) भर्जन-सान्द्रित अयस्क को परावर्तनी भट्टी में वायु के आधिक्य में गर्म किया जाता है। निम्न रासायनिक अभिक्रियाएँ होती है-

$$2ZnS + 3O_2 \xrightarrow{\Delta} 2ZnO + 2SO_2$$

$$ZnS + 2O_2 \xrightarrow{D} ZnSO_4$$

पुन: विघटन

$$2ZnSO_4 \xrightarrow{1200K} 2ZnO + 2SO_2 + O_2$$

(iii) कोक द्वारा अपचयन- भर्जित अयस्क को कोक के साथ 1673 K ताप पर गर्म किया जाता है। ZnO का अपचयन Zn में हो जाता है।

$$ZnO + CO \xrightarrow{\text{Sign}} 1673K \rightarrow Zn + CO$$

$$ZnO + CO \xrightarrow{1073K} Zn + CO_2$$

$$CO_2 + C \longrightarrow 2CO$$

इस विधि से प्राप्त संगलि धातु में 97.8% जिंक होता है। इसे अशुद्ध 'जिंक स्पेल्टर' कहते हैं। इसका शोधन आसवन विधि द्वारा कराया जाता है।

प्र.6.15 परावर्तनी भट्टी में केलामाइन अयस्क का अपघटन किस प्रकार होता है, अभिक्रिया लिखिए।

उत्तर-
$$ZnCO_3$$
 $\xrightarrow{\Delta}$ $ZnO+CO_2$ ↑

प्र.6.16 केलामाइन अयस्क का सान्द्रण किस विधि द्वारा किया जाता है? उत्तर–गुरुत्वीय पृथक्षरण विधि

धातुकमं का वैद्युत रासायनिक सिद्धांत

- धातु आयनों के विलयन में या धातुओं की गलित अवस्था में अपचयन में समान सिद्धान्त प्रभावी होता है।
- धातु के गलित लवण का अपचयन विद्युत अपघटन द्वारा किया जाता है, ये विधियाँ वैद्युत रसायन सिद्धान्त पर निर्भर करती है जिसे निम्नलिखित समीकरण के आधार पर समझाया जा सकता है।

$$\Delta G^{\Theta} = -nE^{\Theta}F$$

यहाँ n = इलेक्ट्रॉन की संख्या, E^Θ निकाय के रेडाक्स युग्म का इलेक्ट्रोड विभव है, F = प्रवाहित आवेश की मात्रा [IF = 96500C]

- अधिक क्रियाशील धातुओं के लिये इलेक्ट्रोड विभव का मान अधिक ऋणात्मक होता है इसलिये उनका अपचयन कठिन होता है।
- उपरोक्त समीकरण में दो E[©] मानों में अन्तर धनात्मक E[©] के, एवं परिणामत:
 ऋणात्मक ∆G[©] के संगत हो तो कम क्रियाशील धातु विलयन से बाहर तथा
 अधिक क्रियाशील धातु विलयन में चली जाती है।

$$Cu_{(aq)}^{2+} + Fe_{(s)} \rightarrow Cu_{(s)} + Fe_{(aq)}^{2+}$$

 सामान्य वैद्युत अपघटन में Mⁿ⁻ आयन ऋणात्मक इलेक्ट्रोड (कैथोड़) पर विसर्जित होते हैं और वहां निक्षेपित हो जाते हैं।

- उत्पादित धातु की क्रियाशीलता को ध्यान में रखते हुये सावधानियाँ रखी जाती है एवं उपयुक्त पदार्थ का इलेक्ट्रोड का उपयोग करते हैं।
- गलित पदार्थ को अधिक सुचालक बनाने के लिये उचित गालक मिला देते हैं। प्र.6.17 पायरो धातुकर्म किसे कहते हैं? अधिक क्रियाशील धातुओं के अपचयन के लिए यह उपयोगी नहीं है, क्यों?

उत्तर— कम क्रियाशील धातुओं के ऑक्साइडों को उच्चताप पर अपचायकों द्वारा धातु में अपचयन की क्रिया को **पायरो धातुकर्म** (उताप धातुकर्म) कहते हैं। अधिक क्रियाशील धातुएँ (Na. Mg, Al आदि) स्वत: प्रबल अपचायक होने के कारण इन्हें पायरो धातुकर्म से अपचायित नहीं किया जा सकता है। ऐसी धातुओं के गलित लवण का वैद्युत अपघटन द्वारा अपचयन कराया जाता है, इसे वैद्युत धातुकर्म कहते हैं।

6.5.4 संगलित ऐलुमिना (Al,O,) के वैद्युत अपघटन से ऐलुमिनियम आतु का निष्कर्षण (हॉल-हेराल्ट प्रक्रम)-

- m Al को बॉक्साइट अयस्क $m Al_2O_3.2H_2O$ से किया जाता है।
- निक्षालन विधि से ऐलुमिना (Al₂O₃) का निर्माण कर चुके हैं।
- शुद्ध की गई एलुमिना का वैद्युत अपघटन, पर्याप्त कठिन है। क्योंकि
- (i) एलुमिना का गलनांक बहुत उच्च [2323K] होता है।
- गलित अवस्था में शुद्ध ऐलुमिना वैद्युत की कुचालक होती है।
- अतः ऐलुमिना में क्रायोलाइट $\mathrm{Na_3AlF_6}$ या $\mathrm{CaF_2}$ मिलाते हैं जो कि इसके गलनांक को लगभग 1173K तक घटा देता है तथा एलुमिना को चालक बना देता है।

- हॉल एवं हेरॉल्ट द्वारा विकसित इस विधि में कैथोड़ के रूप में कार्य करने वाले कार्बन के अस्तर से युक्त एक आयरन टैंक होता है। इसमें गलित वैद्युत अपघट्य में कार्बन की कई रॉड लटकी होती है जो ऐनोड़ का कार्य करती है-
- विद्युत प्रवाहित करने पर, निम्न परिवर्तन होते हैं---

$$Na_3 AlF_6 \rightarrow 3NaF + AlF_3$$

कैथोड् $AlF_3 \rightarrow Al^{3+} + 3F$
 $Al^{3+} + 3e^- \rightarrow Al$
ऐनोड़ $F \rightarrow F + e^-$
एनोड पर बनी फ्लोरीन Al_2O_3 को AlF_3 में बदल देती है।

 $2AI_2O_3 + 12F \rightarrow 4AIF_3 + 3O_2$

इस प्रकार Al_2O_3 . AlF_3 में परिवर्तित हो जाता है तथा सुचालक होने के कारण वैद्युत अपघटन में भाग लेता है।

एनोड पर मुक्त O_2 कार्बन के इलेक्ट्रोड से अभिक्रिया करके CO बनाती है जो तुरन्त CO, में ऑक्सीकृत हो जाती है, इससे कार्बन इलेक्ट्रोड का मंद क्षय होगा और समय-समय पर इसे नये इलेक्ट्रोड द्वारा प्रतिस्थापित करते रहते हैं।

$$2C + O_2 \rightarrow 2CO$$
$$2CO + O_2 \rightarrow 2CO_2$$

- अत: Al के प्रत्येक kilogram के उत्प्रादन में C एनोड का लगभग 0.5 किलोग्राम कार्बन जल जाता है।
- सम्पूर्ण अभिक्रिया को निम्न प्रकार से लिखते हैं।

$$2Al_2O_3 + 3C \rightarrow 4AI + 3CO_2$$

- गलित अवस्था में बना यह Al वैद्युत अपघटन मिश्रण की अपेक्षा भारी होता है अत: पेंदे में चला जाता है। जहाँ से इसे टोंटी युक्त छिद्र की सहायता से बाहर निकाल लिया जाता है।
- यह 99.5% शुद्ध होती है।

6.5.5 रही कॉयर से कॉयर (ताँबा) धातु का निष्कर्षण (हाइड्रो धातुकर्म)

- वैद्युत धातुकर्मिकी का उपयोग कॉपर, विशेष करके लो ग्रेड कॉपर जिसमें धातु की % बहुत कम होती है, के निष्कर्षण में करते हैं।
- अयस्क को उचित अम्ल के साथ निक्षालित करते हैं जिससे Cu^{2+} आयन विलयन में चला जाता है। इसके पश्चात् इनको या तो आयरन की छलन से या हाइड्रोजन गैस प्रवाहित कराके धात्विक रूप में अपचयित करते हैं।

$$\operatorname{Cu}_{(\operatorname{aq})}^{2+} + \operatorname{Fe}_{(\operatorname{S})} \to \operatorname{Cu}_{(\operatorname{S})} + \operatorname{Fe}^{2+}(\operatorname{aq})$$

$$Cu_{(aq)}^{2+} + H_{2(s)} \rightarrow Cu_{(s)} + 2H^{+}(aq)$$

अपचयन कराने के लिये जिंक छीलन का भी प्रयोग किया जा सकता है। यह आयरन से बेहतर होता है क्योंकि यह प्रबल अपचायक है।

ऑक्सीकरणा-अध्वयन विधि से तत्वों का निष्कर्षण

- अभी तक हमने अपचयन पर आधारित धातु निष्कर्षण की चर्चा की।
- कुछ निष्कर्षण विशेषत: अधातुओं के लिये, ऑक्सीकरण पर आधारित है।
- इसका एक अत्यन्त सामान्य उदाहरण-लवण जल से Cl₂ का निष्कर्षण है Cl₂ समुद्री जल में सामान्य लवण के रूप में बहुतायत में उँपलब्ध है।
- अत: सान्द्र सोडियम क्लोराइड के जलीय विलयन [जिसे ब्राइन कहते हैं] के वैद्युत अपघटन से Cl₂ का पृथक्करण करते हैं।

NaCl
$$\rightleftharpoons$$
 Na⁺ + Cl[−]
H₂O \rightleftharpoons H⁺ + OH[−]
कैथोड एनोड

$$2\text{Cl}^-(\text{aq}) + 2\text{H}_2\text{O}(l) \rightarrow 2\text{OH}^-(\text{aq}) + \text{H}_2 + \text{Cl}_2$$

- उपरोक्त अभिक्रिया के लिये ΔG^Θ + 422kJ है जब इसे E^Θ में परिवर्तित किया गया तो इसका मान 2.2V से अधिक बाह्य विद्युत वाहक बल e.m.f. की आवश्यकता होगी लेकिन वैद्युत अपघटन में कुछ अन्य बाधक अभिक्रियाओं पर नियंत्रण के लिये अतिरिक्त विभव की आवश्यकता होती है।
- अतः $ext{Cl}_2$ वैद्युत अपघटन से प्राप्त होती है, जिसमें $ext{H}_2$ तथा जलीय NaOH सह उत्पाद की तरह प्राप्त होते हैं।
- गलित NaCl का भी वैद्युत अपघटन किया जाता है परन्तु इस स्थिति में Na धातु प्राप्त होती है NaOH नहीं।
- सोने व चाँदो के निष्कर्षण में धातुओं का निक्षालन CN- के साथ किया जाता है, यह एक ऑक्सीकारक अभिक्रिया है $[\mathrm{Ag}
 ightarrow \mathrm{Ag}^-]$ या $[\mathrm{Au}
 ightarrow \mathrm{Au}^-]$

6.16

धातु को बाद में विस्थापित विधि द्वारा पुन: प्राप्त किया जाता है।

• इस अभिक्रिया में जिंक अपचायक की तरह व्यवहार करता है। $4\mathrm{Au}_{(\mathrm{s})} + 8\mathrm{CN}^-_{(\mathrm{aq})} + 2\mathrm{H}_2\mathrm{O}_{(\mathrm{aq})} + \mathrm{O}_2(\mathrm{g}) \to 4[\mathrm{Au}(\mathrm{CN})_2]^-\mathrm{aq} + 4\mathrm{OH}^-_{(\mathrm{aq})} + 2\mathrm{I}_{(\mathrm{s})} \to 2\mathrm{Au}(\mathrm{s}) + [\mathrm{Zn}(\mathrm{CN})_4]^2^-\mathrm{aq}$

6.6

- धातु निष्कर्षण से प्राप्त धातु पूर्णतया शुद्ध नहीं होती है। इन्हें अपरिष्कृत (कच्ची) धातु कहते हैं।
- इनमें निम्न अशुद्धियाँ उपस्थित होती है-
 - 1. धातुओं के अन अपचयित ऑक्साइड
 - 2. धातुमल तथा गालक
 - 3. अन्य अनचाही धातुऐं
 - 4. अधातुऐं जैसे C, Si, P, S, As आदि।
- धातु एवं इनमें उपस्थित अशुद्धियों के आधार पर इनके शोधन की अनेक विधियाँ है-
- (क) आसवन (Distillation)
- (ख) द्रवीकरण (द्रव गलन परिष्करण) (Liquation)
- (ग) दण्ड विलोडन (Poling)
- (घ) वैद्युत अपघटनी शोधन (Electrorefining)
- (च) क्षेत्र परिशोधन (मंडल परिष्करण) (Zone Refining)
- (छ) बाष्प प्रवावस्था परिष्करण (Vapour Phase Refining) (i) मॉण्ड प्रक्रम (Mond's Process)
 - (ii) वॉन आरकैल विधि (Van Arkel Method)
- (ज) वर्ण लेखिकी विधि (Chromatography)

(क) आसवन (Distillation)

- यह विधि उन धातुओं के शोधन में प्रयुक्त करते हैं जिनके क्वथनांक कम हों।
 जैसे Zn, Bi, Hg व Cd आदि।
- जब इन अशुद्ध धातु को वाण्मीकृत करते हैं तो अधिक क्वथनांक वाली अशुद्धिया पीछे रह जाती है। वाष्प को संग्राहक में इकट्ठा कर लेते हैं और उंडा करने पर इनसे शुद्ध धातु प्राप्त होती है।

(ख) दबीकरण (दव गलन परिष्करण) (Liquation)

- इस विधि द्वारा Bi, Sn, Pb व Hg आदि ऐसी धातुओं का शोधन करते हैं जिनके गलनांक बहुत कम हो।
- अशुद्ध धातु को परावर्तनी भट्टी को ढलवाँ चूल्हे पर रखकर कार्बन मोनो ऑक्साइड के अक्रिय वातावरण में गर्म करके करते हैं।
- धातु गलकर नीचे की ओर प्रवाहित होती है जबिक अशुद्धियाँ (उच्च गलनांक)
 पीछे छूट जाती है।

(ग) दण्ड विलोडन (Poling)

कॉपर धातु में उपस्थित कॉपर ऑक्साइड की अशुद्धि को दूर करने हेतु इस

तत्वों के निष्कर्षण के सिद्धान्त एवं प्रक्रम

विधि का प्रयोग किया जाता है। इसमें पिछली अशुद्ध धातु को एक पात्र में लेकर हरी लकड़ी के लठ्ठों (दण्डों) से हिलाया जाता है। इस दैरान हरी लकड़ी के दण्डों से निकलने वाली हाइड्रोकार्बन गैसें धातु ऑक्साइड का अपचयन कर देती है। अशुद्धियाँ गैस रूप में \mathbf{SO}_3 , $\mathbf{As}_2\mathbf{O}_3$ आदि या परत (\mathbf{Scum}) के रूप में पृथक हो जाती है।

(u) dage annied that (Electrorefining)

- इस विधि में अशुद्ध धातु को ऐनोड बनाते हैं। उसी धातु की शुद्ध धातु पट्टी को कैथोड़ की तरह प्रयुक्त करते हैं।
- इन्हें एक उपयुक्त वैद्युत अपघटनी पात्र में रखते हैं जिसमें उसी धातु का लवण घुला रहता है।
- अधिक क्षारकीय धातु विलयन में रहती है तथा कम क्षारकीय धातुएँ ऐनोड पंक में चली जाती है।
- इस प्रक्रम की व्याख्या, वैद्युत विभव की धारणा, अधिविभव तथा गिब्ज ऊर्जा के द्वारा (उपयोग) भी की जाती है, जिमको आपने पहले खंडों में देखा है। ये अभिक्रियाएँ इस प्रकार हैं—

ऐनोड- $M \to M^{n+} + ne^-$ (ऑक्सीकरण) कैथोड $M^{n+} + ne^- \to M$ (अपचयन)

- ताँबे का शोधन वैद्युत अपघटनी विधि के द्वारा किया जाता है। अशुद्ध कॉपर ऐनोड के रूप में तथा शुद्ध कॉपर पत्री कैथोड के रूप में लेते हैं।
- कॉपर सल्फेट का अम्लीय विलयन वैद्युत अपघटनी होता है तथा वैद्युत अपघटन के वास्तविक परिणामस्वरूप, शुद्ध कॉपर ऐनोड से कैथोड की तरफ स्थानांतरित हो जाता है।

एनोड $Cu \rightarrow Cu^{2+} + 2e^{-}$ कैथोड $Cu^{2+} + 2e^{-} \rightarrow Cu$

- फफोलेदार कॉपर से अशुद्धियाँ ऐनोड पंक के रूप में जमा होती है जिससे एन्टीमनी, सिलीनियम, टेल्यूरियम, चाँदी, सोना तथा प्लैटिनम मुख्य होती है।
- इन बहुमूल्य धातुओं को पुन; प्राप्त करने से शोधन प्रक्रम की लागत कम की जा सकती है।

(च) क्षेत्र परिमाधन (प्रधन परिष्करण) (Zone Refining)

- यह विधि इस सिद्धान्त पर आधारित है कि अशुद्धियों की विलेयता धातु की ठोस अवस्था की अपेक्षा गलित अवस्था में अधिक होती है।
- अशुद्ध धातु की छड़ के एक किनारे पर एक वृत्ताकार गतिशील तापक लगा रहता है। (चित्र 6.7)। तापक जैसे ही आगे की ओर बढ़ता है, गलित से शुद्ध धातु क्रिस्टिलत हो जाती है तथा अशुद्धियाँ संलग्न गिलत मंडल में चली जाती हैं।
- इस क्रिया को कई बार दोहराया जाता है तथा तापक को एक ही दिशा में बार-बार चलाते हैं। अशुद्धियाँ छड़ के एक किनारे पर एकत्रित हो जाती हैं। इसे काटकर अलग कर लिया जाता है। यह विधि मुख्य रूप से अतिउच्च शुद्धता वाले अर्धचालकों तथा अन्य अतिशुद्ध धातुओं, जैसे-जर्मेनियम, सिलिकॉन, बोरॉन, गैलियम तथा इंडियम का प्राप्त करने के लिए बहुत उपयोगी है।

(छ) वाष्प प्रवावस्था परिष्करण (Vapour Phase Refining)

- इस विधि में, धातु को वाष्पशील यौगिक में परिवर्तित किया जाता है तथा दूसरी जगह एकत्र कर लेते हैं। इसके बाद इसे विघटित करके शुद्ध धातु प्राप्त कर लेते हैं। इसके लिए दो आवश्यकताएँ होती हैं—
- (i) उपलब्ध अभिकर्मक के साथ धातु वाष्पशील यौगिक बनाती हो।
- (ii) वाष्पशील पदार्थ आसानी से विघटित हो सकता हो, जिससे धातु आसानी से पुन: प्राप्त की जा सके।

(i) मॉण्ड प्रक्रम (Mond's Process)

निकल शोधन का मॉण्ड प्रक्रम— इस प्रक्रम में निकल को कार्बन मोनोक्साइड के प्रवाह में गरम करने से वाष्प्रशील निकैल टेट्राकार्बोनिल संकुल बन जाता है—

$$N_{\rm I}+4{\rm CO} \xrightarrow{330-350{
m K}} [N_{\rm I}({\rm CO})_4]$$
 ...(1) इस कार्बोनिल को और अधिक ताप पर गरम करते हैं, जिससे यह विघटित होकर शुद्ध धातु दे देता है।

$$[Ni(CO)_4] \xrightarrow{450-470K} Ni + 4CO$$
(2)

(ii) वॉन आरकैल विधि (Van Arkel Method) जर्कोनियम या टाइटेनियम शोधन के लिए वॉन-आरकैल विधि

- यह विधि Zr तथा Ti जैसी कुछ धातुओं से अशुद्धियों की तरह उपस्थित संपूर्ण ऑक्सीजन तथा नाइट्रोजन को हटाने में बहुत उपयोगी है।
- परिष्कृत धातु को निर्वातित पात्र में आयोडीन के साथ गरम करते हैं।
- धातु आयोडाइड अधिक सहसंयोजी होने के कारण वाष्पीकृत हो जाता है।

$$Zr + 2I_2 \xrightarrow{-870K} ZrI_4$$
 ...(1)

धातु आयोडाइड को विद्युतधारा द्वारा 1800K ताप पर गरम किए गए टंगस्टन

तंतु पर विघटित किया जाता है। इस प्रकार से शुद्ध धातु तंतु पर जमा हो जाती है।

$$\begin{split} ZrI_4 & \xrightarrow{-1800\text{K}} Zr + 2I_2 \\ Ti + 2I_2 & \xrightarrow{500\text{K}} TiI_4 \\ TiI_4 & \xrightarrow{-1700\text{K}} (\text{$\frac{20\text{Reg} \cdot \text{fig}}{100}$})} Ti + 2I_2 \end{split}$$

(ज) वर्ण लेखिकी विधि (Chromatography)

- यह विधि इस सिद्धान्त पर आधारित है कि अधिशोषक पर मिश्रण के विभिन्न घटको का अधिशोषण अलग-अलग होता है। मिश्रण को द्रव या गैसीय माध्यम में रखा जाता है जो कि अधिशोषक में से गुजरता है।
- स्तंभ में विभिन्न घटकं भिन्न-भिन्न स्तरों पर अधिशोषित हो जाते हैं। बाद में अधिशोषित घटक उपयुक्त विलायकों (निक्षालक) द्वारा निक्षालित कर लिये जाते हैं।
- गितिशील माध्यम की भौतिक अवस्था, अधिशोषक पदार्थ की प्रकृति एवं गितशील माध्यम के गमन के प्रक्रम पर भी निर्भर होने के कारण इसे वर्णलेखिकी नाम दिया जाता है। इस प्रकार की एक विधि में काँच की नली में Al₂O₃ का एक स्तंभ बनाया जाता है तथा गितशील माध्यम जिसमें अवयवों का विलयन उपस्थित होता है, द्रव प्रावस्था में होता है। यह स्तंभ-वर्णलेखिकी (कॉलम क्रोमैटोग्रेफी) का एक उदाहरण है।
- यह सूक्ष्म मात्रा में पाए जाने वाले तत्वों के शुद्धिकरण और शुद्ध किए जाने वाले तत्व तथा अशुद्धियों के रासायनिक गुणों में अधिक भिन्नता न होने की स्थिति में, शुद्धिकरण के लिए अत्यधिक उपयोगी होती है।
- अनेक वर्णलेखिकी तकनीक हैं, जैसे कि पेपर वर्णलेखिकी, स्तंभ वर्णलेखिकी, गैस वर्णलेखिकी आदि। स्तंभ वर्णलेखिकी में प्रयुक्त प्रक्रम को चित्र में दर्शाया गया है।

पाठ्निहित ग्रश्न-

प्र. 6.20 निम्न धातुओं के शोधन की उपयुक्त विधियों के नाम को उनके सम्मुख रिक्त स्थान में लिखिए—

उत्तर- (i) Ge - जोन (क्षेत्र) परिशोधन

- (ii) Zr वॉन-आर्केल विधि
- (iii) Ni मॉण्ड विधि

प्र.6.21 अधिशोघण वर्णलेखिक में प्रयुक्त होने वाले किन्हीं दो अधिशोषक पदार्थों के नाम लिखिए?

उत्तर— (i) ऐलुमिना जेल

(ii) सिलिका जेल

6.7 म्ल्युभिनिसय, कॉपर, जिंक एवं आयरन के अनुप्रयोग (उपयोगिता)

(A) एलुमिनियम के अनुप्रयोग (उपयोगिता)-

- (i) वैल्डिंग कार्य में अपचायक के रूप में।
- (ii) सिगरेट, चॉकलेट आदि के रेपर (पतली पन्नी) के रूप में
- (iii) बिजली के तारों, मोटर व डायनमां में कोइल निर्माण
- (iv) क्रोमियम एवं मैंग्नीज धातु के निष्कर्षण में
- (v) मिश्र धातु निर्माण में उदाहरणार्थ

क्र.सं.	मिश्र घातु का नाम	संघटन	उपयो ग
1	ऐलुमिनियम कांसा	(95% Al + 5%Cu)	कनस्तर, फ्रेम, बर्तन आदि निर्माण
2.	ड्यूरालीन	(95%Al + 4% Cu +	वायुयान के कलपुर्जे, प्रेशर कुकर, ऑटो मोबाइल क्षेत्र में
		.5%Mg + $.5%$ Mn)	3 7 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
3.	मैग्नालियम फिलिसम् वर्णा का कार्योक्त र	(95%Al + 5% Mg)	तराजू, हल्के किन्तु मजबूत यंत्र निर्माण

(vi) ऐलुमिनियम चूर्ण का उपयोग पेन्ट (प्रलेप) के रूप में— उदाहरणार्थ फोटोग्राफी में बल्ब में चमक उत्पन्न करने में।

[B] कॉपर के अनुप्रयोग-

- (i) विद्युत का सुचालक होने के कारण कॉपर प्लेट, कैलोरी मापी, विद्युत केबलों (तारों) एवं उपकरणों के निर्माण में।
- (ii) सोने एवं चांदी के आभूषणों को कठोर बनाने में।
- (iii) कवक नाशी (Fungicides) के रूप में- CuSO4
- (iv) मिश्र धातु निर्माण में।

क्र.सं.	मिश्र धातु का नाम	संघटन	उपयोग
1	पीतल (ब्रास)	(80% Cu + 20% Zn)	बर्तन, मशीन के पुर्जे, तार आदि।
2.	कांसा (ब्रान्ज)	(90%Cu + 10% Sn)	मूर्तियां, सिक्के, बर्तन आदि।
3.	गनमेटल	(88%Cu + 2% Zn + 10% Sn)	बन्दूक की नाली निर्माण
4.	जर्मन सिल्वर	(50-61.6%Cu + 19-17.2% Zn +	प्रतिरोधक तार निर्माण
		30-21.1% Ni)	
5.	मोनेल मैटल	(33%Cu + 67% Ni)	क्षरण रोधी पंप एवं मुद्रा (सिक्के) निर्माण

[C] जिंक के अनुप्रयोग-

- ा. बटारया म
- गोल्ड एवं सिल्वर धातु निष्कर्षण में (साइनाइड विधि)
- लोहे के गैल्वेनीकरण (जंग से बचाने) में
- 4. मिश्र धातु निर्माण (पीतल, जर्मन सिल्वर आदि)
- जिंक चूर्ण को अपचायक के रूप में।

[D] आयरन (लोहा) के अनुप्रयोग-

- ढलवां लोहे की उपयोगिता— रेलवे में स्लीपर कोच, गटर पाइप, खिलौने, स्टोव आदि निर्माण
- 2. पिटवा लोहे की उपयोगिता— तारों, चेनों, कीले, बोल्टो, लंगर, कृषि उपकरण, भवन आदि के निर्माण में
- इस्पात (स्टील) की उपयोगिता—

नाम	संघटनं	उपयोग
स्टेन लैस स्टील	(73% Fe + 18%Cr + 8%Ni + C)	ऑटो मोबाइल कलपुर्जे, बर्तन, साइकिल, ब्लैड,
		घड़ियों के केस निर्माण
निकल स्टील	(97% Fe + 2.5% Ni + 0.5%C)	वायुयान के पुर्जे, गियर, तारों, ड्रिलिंग मशीनरी निर्माण
इन्बार	(64%Fe + 36% Ni)	पंडूलम, मापक यत्र, मीटर स्केल निर्माण
टंगस्टन स्टील	(94% Fe + 5% W + C)	उच्चदाब पर काटने वाले औजार निर्माण
मैंगनीज स्टील		मजबूत तिजोरी, रेलवे लाइनों के निर्माण
क्रोम स्टील	(98%Fe + 2% Cr)	बेयरिंग, काटने की रेती आदि के निर्माण में
	स्टेन लैस स्टील निकल स्टील इन्बार टंगस्टन, स्टील मैंगनीज स्टील	स्टेन लैस स्टील (73% Fe + 18%Cr +8%Ni + C) निकल स्टील (97% Fe + 2.5% Ni + 0.5%C) इन्वार (64%Fe + 36% Ni) टंगस्टन स्टील (94%Fe + 5% W + C) मैंगनीज स्टील (86%Fe + 13% Mn + C)

पाठ्यपुस्तक के प्रश्न उत्तर 6.8

ऐलुमिनियम एवं आयरन के ऑक्साइड अयस्क का नाम एवं रासायनिक सूत्र लिखिए।

उत्तर- बॉक्साइट Al,O,. 2H,O हैमेटाइट Fe₂O₃

घातुमल किसे कहते हैं? एक उदाहरण से समझाइये। 2.

उत्तर- धातुमल सामान्यत: धातु सिलिकेट होते हैं। जब कोई गालक $[{\rm CaO/SiO_2}]$ आधात्री से संयोग करता है तो धानतुमल प्राप्त होता है।

> $SiO_2 + CaO \rightarrow CaSiO_2$ आधात्री गालक धातुमल

कॉपर के सल्फाइड व ऑक्साइड अयस्क का नाम एवं 3. रासायनिक सूत्र लिखिए।

उत्तर- कॉपर ग्लास Cu,S क्यूप्राइट/रूबी कॉपर Cu_aO

प्रकृति में मुक्त अवस्था में पायी जाने वाली किन्ही दो उत्तर- सिल्वर के लिये हम Ag(CN) अर्जेन्टोसानाइड संकुल का प्रयोग धातुओं के नाम लिखिए।

उत्तर- सोना, प्लैटीनम

भूपर्पटी में सर्वाधिक मात्रा में उपस्थित घातु का नाम लिखिए।

उत्तर- ऐलुमिनियम

जिंक के सल्फाइंड व ऑक्साइंड अयस्क का नाम एवं रासायनिक सूत्र लिखिए।

उत्तर- जिंक ब्लेण्ड ZnS जिंकाइट ZnO

खनिज एवं अयस्क में क्या अन्तर होता है? स्पष्ट कीजिए।

उत्तर- अयस्क, चयनित खनिज को कहते हैं जबकि खनिज संयुक्त अवस्था में पाये जाने वाले धातु जिनमें विभिन्न धातुओं का मिश्रण हो, खनिज कहते हैं।

ढलवां लोहा एवं पिटवां लोहा में कार्बन की प्रतिशतता कितनी होती है?

उत्तर- दलवा लोहे में C की % मात्रा 3% है। . पिटवाँ लोहे में C की % मात्रा .2 से .5% है।

जर्मन सिल्वर का संघटन बताइये।

उत्तर~ जर्भन सिल्बर में 88% Cu, 2% Zn व 10% Sn होता है।

ऐनोड पंक किसे कहते है?

उत्तर- विद्युत अपघटनी शोधन में, अधिक क्षारकीय धातु विलयन में रहती है तथा कम क्षारीय धातुऐं एनोड पर जाकर, एनोड पंक के रूप में एकत्रित कर लेता है।

फेन प्लवन विधि में संग्राही एवं फेन स्थायीकारक के. उत्तर-नाम व भूमिका दीजिए।

उत्तर- संग्राही ROC - SNa व फेन स्थायी कारक क्रीसोल है।

12. बॉक्साइट अयस्क में ज़पस्थित किन्दी दो अशुद्धियों के नाम लिखिए।

उत्तर- बॉक्साइट में $\mathrm{Fe_2O_3}$ व $\mathrm{SiO_2}$ की अम्लीय अशुद्धियाँ उपस्थित होती

निकल धातु शोधन के मॉण्ड प्रक्रम से संबंधित 13. रासायनिक अमिक्रियाएँ लिखिए।

 $3\pi \text{T}$ Ni+4CO $\xrightarrow{330-350\text{K}}$ [Ni(CO)₄] शुद्ध $Ni(CO)_4 \xrightarrow{450-470K} Ni + 4CO$

सिल्वर एवं गोल्ड का वैद्युत लेपन करने हेतु इनके कौनसे संकुल आयनों का उपयोग करते है।

करते हैं।

Au गोल्डन के लिये हम $(Au(CN)_2)^-$ डाइसायनो आरेट [I] का प्रयोग करते हैं।

झाग प्लवन विधि में अवनमक की क्या भूमिका है?

उत्तर- अवनमक झाग या फैन को कम करने के लिये प्रयुक्त किये जाते हैं। NaCN, Na、CO, अवनमक है।

नीलम एवं रूबी रत्न प्रस्तर किसके अशुद्ध रूप है?

उत्तर- नीलम में Al₂O₄ में Co की अशुद्धि है। रूबी में Al,O, में Cr की अशुद्धि है।

17. धातु के वैद्युत शोधन में ऐनोड एवं कैथोड़ किस घातु के बने होते है?

उत्तर- थातु के वैद्युत शोधन में, अशुद्ध धातु का एनोड व शुद्ध धातु का कैथोड बनाते हैं।

ऐलुमिनो धर्माइट प्रक्रम में क्रोमियम ऑक्साइड के अपचयन की रासायनिक अमिक्रिया लिखिए।

उत्तर- बिन्दु 6.3.4 (b) भाग देखें।

अम्लीय एवं क्षारीय गालक के एक-एक उदाहरण का नाम व सूत्र लिखिए।

उत्तर- SiO, सिलिका अम्लीय गालक CaO कैल्शियम ऑक्साइड, क्षारीय गालक

Al धातु के निष्कर्षण में निक्षालन (Leaching) का क्या महत्व है?

- 21. निस्तापन एवं मर्जन को उदाहरण सहित समझाइये। उत्तर- पेज 6.8 पर सारणी 6.2 देखें।
- 22. मण्डल परिष्करण प्रक्रम का नामांकित चित्र बनाइये। यह विधि मुख्य रूप से किसमें उपयोगी है?
- उत्तर- चित्र पेज 6.16 से देखे।

इस विधि से जर्मेनियम, सिलिकॉन, B, Ga व In को प्राप्त करते हैं।

23. एलुमिनियम के निष्कर्षण के लिए दैद्युत अपघटनी सेल का नामांकित चित्र बनाइए तथा इसमें होने वाली संपूर्ण अमिक्रिया लिखिए।

उत्तर- बिन्दु 6.15 देखें।

- 24. विद्युत अपघटनी विधि से तांबे का शोधन कैसे किया जाता है, आवश्यक समीकरण की सहायता से समझाइये।
- उत्तर- ताँबे का शोधन वैद्युत अपघटनी विधि के द्वारा किया जाता है। अशुद्ध Cu एनोड के रूप में तथा शुद्ध काँपर पत्री कैथोड के रूप में लेते हैं। CuSO₄ का अम्लीय विलयन वैद्युत अपघटनी होता है। वास्तविक परिणामस्वरूप शुद्ध काँपर एनोड से कैथोड की तरफ स्थानान्तरित हो जाता है।

$$Cu \rightarrow Cu^{2+} + 2e^{-}$$

$$Cu^{2+} + 2e^{-} \rightarrow Cu$$

- 25. एलिंघम आरेख की सहायता से हेमेटाइट अयस्क के अपचयन में ऊष्मा गतिकी सिद्धान्त की व्याख्या कीजिए। उत्तर-पेज 6.11 पर देखें।
- 26. झाग प्लवन विधि में प्रयुक्त निम्न पदों के उदाहरण दीजिए।
 - (i) झाग कारक
 - (ii) प्लवनकारक / संग्राही
 - (iii) फेन स्थायीकारक
 - (iii) सक्रिय कारक
 - (v) अवनमक (डिप्रेशर)
- उत्तर- (i) झाग कारक चीड़ का तैल
 - (ii) प्लवनकारक / संग्राही RO C SNa
 - (iii) **फेन स्थायीकारक**—क्रीसॉल
 - (iii) सक्रिय कारक- CuSO4
 - (v) अवनमक (डिप्रेशर)- NaCN
- 27. ऐलुमिनियम के घातुकर्म में निम्न की उपयोगिता बताइये।
 - (i) क्रायोलाइट (ii) कार्बन या कोक चूर्ण
 - (iii) ग्रेफाइट छड़

- उत्तर- (i) क्रायोलाइट- ऐलुमिना का गलनांक 2323K होता है इसमें क्रामोलाइट Na_3AIF_6 मिलाने पर ऐलुमीना का गलनांक 1173K तक घट जाता है।
 - (ii) कार्बन या कोक चूर्ण-
 - (iii) ग्रेफाइट छड़- ग्रेफाइट की छड़े ऐनोड का कार्य करती है।
- 28. हॉल हेराल्ट विधि द्वारा बॉक्साइट अयस्क से ऐलुमिना प्राप्त करने में होने वाली रासायिनक अमिक्रियाएं लिखिए। इसके वैद्युत अपघटनी सेल का नामांकित चित्र बनाइए।

उत्तर-बिन्दु 6.5.4 को देखें (पेज 6.15)

- 29. निम्न के उदाहरण देते हुए संक्षिप्त टिप्पणी कीजिए।
 - (i) उताप धातुकर्म (पाइरोमेटलर्जी)
 - (ii) वैद्युत धातुकर्म (इलेक्ट्रोमेटलर्जी)
 - (iii) जल धातुकर्म (हाइड्रोमेटलर्जी)
- उत्तर- (i) उताप धातुकर्म (पाइरोमेटलर्जी) पेज 6.17 बिन्दु 6.1.5 पर देखें।
 - (ii) वैद्युत घातुकर्म (इलेक्ट्रोमेटलर्जी) येज 6.9 पर बिन्दु 6.3.4 (d) पर देखें।
 - (iii) जल धातुकर्म (हाइड्रोमेटलर्जी)- बिन्दु 6.5.5 देखें।
- 30. कॉपर ऑक्साइड के अपचयन में बेसेमर परिवर्तक में सिलिका का अस्तर क्यों लगाया जाता है? इसमें होने वाली अमिक्रियाओं के समीकरण लिखिए। परिवर्तक का नामांकित चित्र बनाइए।

उत्तर- पेज 6.13 पर बिन्दु 6.5.2 देखें।

- 31 (a) सिल्वर के घातुकर्म में सिल्वर घातु के निक्षालन के लिए वायु की उपस्थिति में किस विलयन का उपयोग किया जाता है, इसमें होने वाली अभिक्रिया का समीकरण लिखिए।
- (b) आयरन ऑक्साइड से आयरन प्राप्त करने के लिए वात्या भट्टी में कम ताप परास (ताप <1073K) पर C एवं CO में से कौन अच्छा अपचायक होता है? क्यों?
- उत्तर- (a) सिल्वर के धातुकर्म में सिल्वर धातु के निश्चालन के लिये NaCN का तनु विलयन लेते हैं।

 $AgCl + 2NaCN (aq) \rightarrow Na(Ag(CN)_2] + NaCl$ $Ag_2S + 4NaCN + 2O_2 \rightarrow 2Na(Ag(CN)_2] + Na_2SO_4$ उपर्युक्त संकुल में Zn धातु मिलाकर Ag को प्राप्त करता है।

(b) 1073 K से कम ताप पर, हेमेटाइट (Fe_2O_3) का अपचयन Co द्वारा होता है। अर्थात्

 $\Delta G^{\circ}[Fe \rightarrow Fe_2O_3] > \Delta G^{\circ}(CO \rightarrow CO_2)$ अभिक्रिया निम्न प्रकार से होती है–

$$Fe_2O_3(s) + 3CO(g) \rightarrow 2Fe(s) + 3CO_2$$

32. कॉपर अयस्क (या रद्दी कॉपर) जिसमें कॉपर की मात्रा कम होती है, के निक्षालन से कॉपर निष्कर्षण हेतु किस अपचायक का उपयोग किया जाता है? समझाइये।

उत्तर- बिन्दु 6.5.5 को देखें।

- 33. धातुओं के शोधन में निम्न विधियों के सिद्धान्तों का संक्षिप्त वर्णन कीजिए—
 - (i) वैद्युत अपघटनी शोधन
 - (ii) वॉन आएकैल विधि
 - (iii) वर्ण लेखिकी
 - (iv) द्रवीकरण (या द्राव गलन परिष्करण)
- उत्तर- (i) वैद्युत अपघटनी शोघन बिन्दु 6.6 के (घ) को देखें।
 - (ii) वॉन आरकैल विधि बिन्दु 6.6 के (छ) के (ii) बिन्दु को देखें।
 - (iii) वर्ण लेखिकी बिन्दु 6.6 के (ज) को देखें।
 - (iv) द्वदीकरण (या द्राव गलन परिष्करण) बिन्दु 6.6 के (ख) को देखें।
- 34. लोहे के घातुकर्म में वात्या मट्टी में विभिन्न क्षेत्रों में होने वाली अभिक्रियाओं के समीकरण लिखिए। वात्या भटटी का नामांकित चित्र बनाइए।
- उत्तर- बिन्दु 6.5.1 के (i), (ii), (iii) (iv) बिन्दु देखें। चित्र के लिये पेज 6.13 देखें।
- 35. झाग प्लवन विधि से किन धातु अयस्कों का सान्द्रण किया जाता है? इस विधि का संक्षिप्त वर्णन कीजिए एवं नामांकित चित्र बनाइए।

उत्तर- बिन्दु 6.3.2 का (3) भाग देखें।

36. कॉपर अयस्क के घातुकर्म में परावर्तनी भट्टी में होने वाली अभिक्रिओं के समीकरण दीजिए। परावर्तनी भट्टी का नामांकित चित्र बनाइए।

उत्तर- बिन्दु 6.5.2 देखें।

- 37. निम्न पर टिप्पणी लिखिए-
 - (i) आधात्री (गैंग)/मेट्रिक्स
 - (ii) गालक
 - (iii) धातुमल
- उत्तर- (i) आधात्री (गैंग) / मेट्रिक्स खान से निकाले गये खनिज/अयस्क में सामान्यतः अनेक प्रकार की अनुपयोगी वस्तुएँ जैसे-कंकड, मिट्टी, रेत, क्ले पायी जाती है। इन अशुद्धियों को आधात्री कहते हैं।

(ii) गालक

- गालक वे पदार्थ होते हैं, जो अयस्क में उपस्थित अगलनीय आधात्री से, उच्च ताप पर क्रिया करके गलनीय धातुमल बनाते हैं।
- गालक अम्लीय या भास्मिक दो प्रकार के होते हैं। ${
 m SiO}_2$ अम्लीय गालक, ${
 m CaO}$, ${
 m CaCO}_3$ भास्मिक गालक है।

(iii) घातुमल

- धातुमल प्राय: सिलिकेट होते हैं।
- ये गालक व आधात्री से क्रियाकर धातुमल बनाते हैं।

$$CaO + SiO_2 \rightarrow CaSiO_3$$

आधात्री गालक
 $SiO_2 + CaO \rightarrow CaSiO_3$
आधात्री गालक

- 38. निम्नलिखित विधियों द्वारा घातु शोधन का संक्षिप्त वर्णन कीजिए।
 - (i) दण्ड विलोडन (ii) क्षेत्र (जोन) परिशोधन
- उत्तर- (i) दण्ड विलोडन- बिन्दु 6.6 का (ग) बिन्दु देखें। (ii) क्षेत्र परिशोधन-बिन्दु 6.6 का (च) बिन्दु देखें।
- 39. Cr_2O_3 निर्माण के लिए ΔG° का मान -540 kJmol $^{-1}$ है तथा Al_2O_3 निर्माण के लिए ΔG° का मान -827 kJmol $^{-1}$ है। क्या Al घातु द्वारा Cr_2O_3 का अपचयन संभव है?
- उत्तर- एलियम आरेख के अनुसार Al_2O_3 के निर्माण में गिब्स युक्त ऊर्जा ΔG° का मान $-823~{\rm kJ~mol}$ (अधिक ऋणात्मक है) है जोकि Cr_2O_3 के निर्माण के ΔG° के मान $-540~{\rm kJ~mol}$ से ऋणात्मक मान बहुत अधिक है।

अत: आरेख में नीचे स्थित धातु ऑक्साइड का अपचयन उसके ऊपर स्थित किसी धातु ऑक्साइड में निहित धातु के द्वारा संभव नहीं होता है।

अत: Cr₂O₃ का अपचयन Al धातु द्वारा हो जाता है।

- 40. निम्न अभिक्रियाओं को पूर्ण संतुलित कीजिए--
 - (i) $2Cu_2O + Cu_2S \longrightarrow \dots + \dots$
 - (ii) $Ag_2S + NaCN \longrightarrow \dots + \dots$
 - (iii) $Al_2O_3 + NaOH \longrightarrow \dots + \dots$
 - (iv) $CuFeS_2 + O_2 \longrightarrow \dots + \dots + SO_2$
 - (v) $Cu_2S + \dots \rightarrow Cu + SO_2$

उत्तर-

- (i) $2Cu_2O + Cu_2S \longrightarrow 6Cu + SO_2$
- (ii) $Ag_2S + NaCN \longrightarrow 2Na[Ag(CN)_2] + S$
- (iii) $Al_2O_3 + NaOH \longrightarrow 2NaAlO_2 + H_2O$
- (iv) $CuFeS_2 + O_2 \longrightarrow Cu_2S + 2FeS + 2SO_2$
- (v) $Cu_2S + Cu_2O \longrightarrow 6Cu + SO_2$

प्रमुख प्रस्त-उत्तर

प्र.1. कॉपर का निष्कर्षण हाइड्रोधातुकर्म द्वारा किया जाता है, परन्तु जिंक का नहीं। व्याख्या कीजिए।

उत्तर- $Zn^{2+}/Zn=-0.76V$ के E° का मान, $Cu^{2+}/Cu=+0.34V$ के E° के मान से कम होता है। इसका आशय है कि जिंक प्रबल अपचायक है और संकुल में उपस्थित Cu^{2+} आयन को आसानी से प्रतिस्थापित कर सकता है।

$$2K[Cu(CN)_2] + Zn \rightarrow K_2[Zn(CN)_4] + 2Cu$$
 (अवक्षेप)

हाइड्रोधातुकर्म द्वारा जिंक के पृथक्करण के लिए Ca. Mg. Al आदि जैसे प्रबल अपचायकों की आवश्यकता पड़ेगी। जबिक इसमें से सभी जल से अभिक्रिया करके हाइड्रोजन गैस मुक्त करते हैं, अत: इनका उपयोग इस उद्देश्य हेतु नहीं किया जा सकता है। इस प्रकार जिंक का निष्कर्षण हाइड्रोधातुकर्म द्वारा नहीं किया जा सकता है।

प्र.2. अपचयन द्वारा ऑक्साइड अयस्कों की अपेक्षा पायराइट से ताँबे का निष्कर्षण अधिक कठिन क्यों हैं?

उत्तर – कॉपर के पाइराइट अयस्क (Cu_2S) की कोक या हाइड्रोजन द्वारा सीधे अपचिवत नहीं किया जा सकता है, क्योंकि Cu_2S का Δ_fG° मान, अभिक्रिया में बने CS_2 एवं H_2S के Δ_fG° के मानों से अधिक होता है। अत: ये अभिक्रियाएँ सम्भाव्य नहीं होती हैं।

$$\begin{array}{c} 2 \text{Cu}_2 \text{S} + \text{C} \longrightarrow \times \rightarrow 4 \text{Cu} + \text{CS}_2 \\ \text{Cu}_2 \text{S} + \text{H}_2 \longrightarrow \times \rightarrow \text{Cu} + \text{H}_2 \text{S} \end{array}$$

जबिक $\mathrm{CO_2}$ की अपेक्षा $\mathrm{Cu_2O}$ के $\Delta_i\mathrm{G^\circ}$ का मान कम होता है। अतः पाइराइट अयस्क को सर्वप्रथम $\mathrm{Cu_2O}$ में भर्जित किया जाता है,तब वह अपचियत होता है।

$$2Cu_2O + C \xrightarrow{\text{tivined}} 4Cu + CO_2$$

प्र. 3. व्याख्या कीजिए-

1. मण्डल परिष्करण 2.

2. स्तंभ वर्णलेखिकी

उत्तर- पाठ्य भाग को देखें।

प्र.4. 673K ताप पर C तथा CO में से कौन सा अच्छा अपचायक है?

उत्तर- सावधानीपूर्वक एलिंघम आरेख का अवलोकन करने पर हम पाते हैं कि 673K पर CO से CO₂ में परिवर्तन हेतु ΔG° का मान, C से CO₂ में परिवर्तन हेतु ΔG° के मान की तुलना में कम होता है। इसका अर्थ है कि 673K पर कोक (C) की तुलना में CO बेहतर अपचायक है।

प्र.5. कॉपर के वैद्युत अपघटन शोधन में ऐनोड पंक में उपस्थित सामान्य तत्वों के नाम दीजिए। वे वहाँ कैसे उपस्थित होते हैं?

उत्तर- ऐनोड पंक में Ag. Au, Pt आदि जैसी कॉपर से कम अभिक्रियाशील धातुएँ होती हैं। वास्तव में वे ऐनोड के रूप में कार्य करने वाले इलैक्ट्रोड का घटक होते हुए भी इलेक्ट्रॉन त्यागने की स्थिति में नहीं होती हैं। ये धातुएँ अवशेष (एनोड पंक) के रूप में बच जाती हैं, जबिक उपस्थित समस्त कॉपर ऑक्सीकरण अर्ध अभिक्रिया में भाग लेता है।

$$Cu(s) \to Cu^{2+} + 2e^{-}$$

प्र.6. आयरन (लोहे) के निष्कर्षण के दौरान वात्या भट्टी के विभिन्न क्षेत्रों में होने वाली अभिक्रियाओं को लिखिए।

उत्तर- पाठ्य भाग देखें।

प्र.7. जिंक ब्लैंड से जिंक के निष्कर्षण में होने वाली रासायनिक अभिक्रियाओं को लिखिए।

उत्तर- जिंक ब्लेंड रासायनिक रूप से जिंक सल्फाइड (ZnS) होता है। निम्न अभिक्रियाएँ होती है-

$$2ZnS + 3O_2 \xrightarrow{\eta \dot{\eta}} 2ZnO + 2SO_2$$
 (भर्जन)

प्र. 8. कॉपर के धातुकर्म में सिलिका की भूमिका समझाइए।

उत्तर- कॉपर के धातुकर्म में सिलिका अम्लीय गालक के रूप में कार्य करती है और यह FeO (मुख्य अशुद्धि) से संयोग करके FeSiO3 का धातुमल बनाती है।

$$SiO_2$$
 + FeO ——— $FeSiO_3$ गालक धातुमल

प्र.9. वर्णलेखिकी पद का क्या अर्थ है?

उत्तर- पद वर्णलेखिको का अर्थ रंगीन लेखन (ग्रीक में क्रोमा का अर्थरंग से तथा ग्रैफी का अर्थ लेखन होता है। हिन्दी में भी वर्ण का अर्थ रंग एवं लेखिकी का अर्थ लेखन से होता है।) होता है। ग्रारम्भ में इसका उपयोग रंगीन संघटकों/अवयवों के पहचान एवं पृथक्करण हेतु होता था। किन्तु अब किसी भी प्रकार के घटक (इस विधि द्वारा) चाहे कितनी भी कम मात्रा में उपलब्ध हो पृथक किये जा सकते हैं।

प्र.10. वर्णलेखिकी में स्थिर प्रावस्था के चयन में क्या मापदंड अपनाये जाते हैं?

उत्तर- वर्णलेखिको, विशेष करके अधिशोषण वर्ण लेखिको में स्थिर प्रावस्था अधिशोषक होता है। बेहतर परिणाम हेतु इसे निम्न शर्तों का पालन करना चाहिए।

- इसमें उच्च किन्तु चयनात्मक अधिशोषण शक्ति हो।
- कणों की आवृत्ति गोलीय एवं आकार एक समान होना चाहिए।
- (iii) अधिशोषक को परीक्षण के अधीन मिश्रण के घटक या प्राप्ति हेतु प्रयुक्त विलेय के साथ रासायनिक अभिक्रिया नहीं करना चाहिए।
- (iv) अधिशोषक में विलेय घटक उतने कम होने चाहिए, जितना की सम्भव हो।

- (v) अधिशोषक को उत्प्रेरकीय रूप से अक्रिय होना चाहिए ओर उसकी सतह उदासीन होनी चाहिए।
- (vi) अधिशोषक आसानी से उपलब्ध होना चाहिए।
- (vii) अधिशोषक को पूर्णतया श्वेत होना चाहिए।
- प्र.11. निकल-शोधन की विधि समझाइए।

उत्तर- इसे माण्ड विधि से शोधित करते हैं।

- प्र.12. सिलिका युक्त बॉक्साइट अयस्क में से सिलिका को ऐलुमिना से कैसे अलग करते हैं? यदि कोई समीकरण हो तो दीजिए।
- उत्तर- मुख्य अशुद्धि के रूप में सिलिका वाले बॉक्साइट अयस्क का शोधन सरपेक विधि (Scrpeck's process) से करते हैं। अयस्क के चूर्ण को कोक के सा थ लगभग 2073K पर नाइट्रोजन के वातावरण में गर्म करते हैं। सिलिका (SiO₂) अपचियत होकर सिलिकान बनाती है, जो वाष्पशील होने के कारण पलायित कर जाता है। नाइट्रोजन से अभिक्रिया करके एलुमिना (Al₂O₃) ऐलुमिनियम नाइट्राइड (AIN) में परिवर्तित हो जाता है। जल के साथ गर्म करने पर यह जल अपघटित होकर Al(OH)₃ का अवक्षेप देता है। इस अवक्षेप से Al₂O₃ की प्राप्ति बेयर प्रक्रिया द्वारा की जाती है।

$$SiO_2 + 2C \xrightarrow{\text{зин}} Si(\uparrow) + 2CO\uparrow$$
 सिलिका कोक सिलिकॉन
$$Al_2O_3 + 3C + N_2 \xrightarrow{\text{зин}} 2AlN + 3CO$$
 ऐलुमिनियम नाइट्राइड (बिलेय)
$$AlN + 3H_2O \xrightarrow{\text{зин}} Al(OH)_3 + NH_3$$
 (अवक्षेप)
$$2Al(OH)_3 \xrightarrow{\text{зин}} Al_2O_3 + 3H_2O$$
 (ऐलुमिना)

प्र.13. उदाहरण देते हुए भर्जन एवं निस्तापन में अन्तर बताइए।

उत्तर- उत्तर के लिए, पेज नं. 6.6 देखें।

प्र.14. ढलवाँ लोहे कच्चे लोहे से किस प्रकार भिन्न होता है?

- उत्तर- इनमें अन्तर कार्बन घटक के सापेक्ष होता है। जहाँ ढलवाँ लोहे में कार्बन लगभग चार प्रतिशत होता है, वहीं कच्चे लोहे में कार्बन लगभग तीन प्रतिशत होता है।
- प्र.15. कॉपर मेट को सिलिका की परत चढ़े हुए परिवर्तक में क्यों रखा जाता है?
- उत्तर- कॉपर मेट में मुख्यत: CuO एवं FeO (अशुद्धि) होता है। बेसमर परिवर्तक मे अस्तर के रूप में उपस्थित सिलिका (SiO₂) गालक का कार्य करती है और FeO से संयोजित होकर धातुमल बनाती है-

$$SiO_2$$
 + $FeO \rightarrow FeSiO_3$ गालक अशुद्धि भातुमर

प्र.16. ऐलुमिनियम के धातुकर्म में क्रायोलाइट की क्या भूमिका है?

- उत्तर- ऐलुमिनियम के धातुकर्म में धातु को एलुमिना (Al₂O₃) के वैद्युत अपघटनी अपचयन द्वारा पृथक् करना होता है। ऐलुमिना का गलनांक 2323K होता है। अत: इसमें क्रायोलाइट (Na₃AlF₆) मिलाते हैं जो इसके गलनांक को 1173K तक घटा देता है। इससे भी अधिक, क्रायोलाइट ऐलुमिना की वैद्युत चालकता को भी बढ़ा देता है।
- प्र.17. निम्न कोटि के कॉपर अयस्कों के लिए निक्षालन क्रिया को कैसे किया जाता है?

उत्तर- कृपया उत्तर के लिए पाठ्यभाग को देखें।

प्र.20. CO का उपयोग करते हुए अपचयन द्वारा जिंक ऑक्साइड से जिंक का निष्कर्षण क्यों नहीं किया जाता?

उत्तर- CO द्वारा ZnQ के अपचयन में निहित अभिक्रिया है-

$$ZnO(s) + CO(g) \rightarrow Zn(s) + CO_2(g)$$

यह प्रक्रम ऊष्मागितकीय रूप से सम्भाव्य नहीं है, क्योंकि इस अभिक्रिया के फलस्वरूप शायद ही एन्ट्रॉपी में कोई परिवर्तन होता हो अर्थात् कोई परिवर्तन नहीं होता है।

प्र.21. ${\rm Cr_2O_3}$ के लिए विरचन $\Delta_{\rm f}G^\circ$ का मान $-540{\rm kJmol^{-1}}$ तथा ${\rm Al_2O_3}$ के लिए $-827~{\rm kJ~mol^{-1}}$ है। क्या ${\rm Cr_2O_3}$ का अपचयन ${\rm Al}$ से सम्भव है?

उत्तर- दोनों कष्मागतिकीय समीकरणों को निम्न तरह से लिखा जा सकता है—

$$\frac{4}{3} {\rm Cr}_{(s)} + {\rm O}_{2(g)} \to \frac{2}{3} {\rm Cr}_2 {\rm O}_{3(s)}; \ \Delta_f G^0 = 540 {\rm kJ} \qquad(i)$$

$$\frac{4}{3}{\rm Al}_{(s)} + {\rm O}_{2(g)} \to \frac{2}{3}{\rm Al}_2{\rm O}_{3(s)}, \ \Delta_f G^0 = -827 {\rm kJ} \quad(ii)$$

समीकरण (ii) -- (i)

$$\frac{2}{3} {\rm Cr_2O_{3(s)}} + \frac{4}{3} {\rm Al_{(s)}} \rightarrow \frac{2}{3} {\rm Al_2O_{3(s)}} + \frac{4}{3} {\rm Cr_{(s)}} \; ; \Delta G^0 = -287 {\rm kJ}$$

चूँकि ΔG^0 ऋणात्मक आता है, अत: यह अभिक्रिया सम्भव है।

प्र.22. C व CO में से ZnO के लिए कौन-सा अपचायक अच्छा है? उत्तर- दोनों अभिक्रियाएँ हैं-

$$ZnO(s) + C(s) \rightarrow Zn(s) + CO(g)$$

 $ZnO(s) + CO(g) \rightarrow Zn(s) + CO_2(g)$

प्रथम स्थिति में ΔS° का परिमाण बढ़ता है, जबिक द्वितीय स्थिति में यह लगभग वहीं बना रहता है। अन्य शब्दों में, पहली स्थिति में, जिसमें कार्बन अपचायक होता है, ΔG° का मान दूसरी स्थिति की तुलना में, जिसमें CO अपचायक होता है, अधिक ऋणात्मक होगा। अतः C(s) बेहतर अपचायक है।

प्र.23. किसी विशेष स्थिति में अपचायक का चयन ऊष्मागतिकी कारकों पर आधारित है। आप इस कथन से कहाँ तक सहमत है? अपने मत के समर्थन में दो उदाहरण दीजिए।

- उत्तर- किसी विशेष अभिक्रिया हेतु अपचायक के चयन में ऊष्मागतिकीय कारकों की महत्वपूर्ण भूमिका होती है। केवल वही अभिक्रियाकारक चुने जाते हैं, जो किसी निश्चित विशिष्ट ताप पर मुक्त ऊर्जा (ΔG°) को घटाते हैं।
- प्र.24. उस विधि का नाम लिखिए जिसमें क्लोरीन सहउत्पाद के रूप में प्राप्त होती है। क्या होगा यदि NaCl के जलीय विलयन का वैद्युत अपघटन किया जाए?
- उत्तर- डाउन विधि (Down's process) द्वारा सोडियम के निर्माण में क्लोरीन उपउत्पाद के रूप में प्राप्त होता है। इसमें गलित सोडियम क्लोराइड का वैद्युत अपघटन कराते हैं—

$$NaCl(I)$$
 — वैद्युत अपघटन $\rightarrow Na^+ + Cl^-$

- कैथोड़ पर Na⁻+e ---→Na; एनोड पर Cl⁻→1/2 Cl₂+e⁻ इस विधि द्वारा प्राप्त सोडियम लगभग शुद्ध होता है जबकि क्लोरीन सहउत्पाद के रूप में प्राप्त होती है।
- सोडियम क्लोराइड के जलीय विलयन के वैद्युत अपघटन से भी क्लोरीन प्राप्त की जा सकती है। यह प्रक्रिया नेल्सन के सेल (Nelson's cell) में करायी जाती है। इसमें होने वाली विभिन्न अभिक्रियाएँ निम्नवत् हैं—

$$NaCl \xrightarrow{(aq)} Na^+(aq) + Cl^-(aq)$$

$$H_2O \rightleftharpoons H^+(aq) + OH^-(aq)$$

कैशोड़ पर – Na^- एवं H^+ दोनों आयन कैशोड़ की ओर जाते हैं, किन्तु Na^- आयन की तुलना में H^+ आयन वरीय रूप से (in preference) मुक्त होते हैं क्योंकि इनके विभव कम होते हैं। Na^+ आयन विलयन में ही रहता है।

$$H^- + e^- \rightarrow H: H + H \rightarrow H_2(g)$$

एनोड पर: Cl⁻ एवं OH⁻ दोनों आयन ऐनोड की ओर जाते हैं, किन्तु कम विभव होने के कारण OH⁻ आयन की तुलना में Cl⁻आयन मुक्त होता है। OH-विलयन में ही रहता है।

$$Cl^- \rightarrow Cl + e^- + Cl + Cl \rightarrow Cl_2(g)$$

इस प्रकार जलीय NaCl विलयन के वैद्युत अपघटन में कैथोड पर H_2 गैस तथा एनोड पर क्लोरीन मुक्त होती है। विलयन में NaOH होता है और इसलिए इसकी प्रकृति क्षारीय होती है।

डाउन विधि द्वारा क्लोरीन का निर्माण सदैव बेहतर होता है।

- प्र.25. ऐलुमिनियम के वैद्युत-धातु कमें में ग्रेफाइट छड़ की क्या भूमिका है?
- उत्तर- ऑक्सीजन गैस एनोड पर उत्सर्जित होकर ग्रेफाइट (कार्बन) से क्रिया करती है और CO_2 गैस बनाती है। यदि ऐनोड इलैक्ट्रोड किसी और धातु का होगा तो ऑक्सीजन प्रक्रम में बने ऐलुमिनियम से क्रिया करके $\mathrm{Al}_2\mathrm{O}_3$ बनाएगी। इससे धातु की उत्पत्ति काफी प्रभावित होगी।
- प्र.26. निम्नलिखित विधियों द्वारा धातुओं के शोधन के सिद्धान्तों की रूपरेखा लिखिए-
 - (i) मंडल परिष्करण
- (ii) वैद्युत अपघटन परिष्करण
- (iii) वाष्प प्रावस्था परिष्करण

उत्तर-पाठ्य भाग देखें।

प्र.27. उन परिस्थितियों का अनुमान लगाइए जिनमें Al, MgO को अपचियत कर सकता है।

उत्तर- दोनों ऑक्साइड के निर्माण की अभिक्रियाएँ हैं-

$$4/3 \text{ Al(s)} + O_2(g) \rightarrow 2/3 \text{ Al}_2O_3(s)$$

 $2Mg(s) + O_2(g) \rightarrow 2MgO(s)$

यदि हम दोनों ऑक्साइडों के एलिंघम आरेख के वक्र पर दृष्टि डाले, तो हम पाते हैं, कि एक निश्चित बिन्दु पर दोनों प्रतिच्छेदित करते हैं। Al धातु द्वारा MgO के अपचयन हेतु ΔG° का संगत मान शून्य हो जाता है।

 $2MgO(s) + 4/3Al(s) \rightleftharpoons 2Mg(s) + 2/3\,Al_2O_3(s)$ इसका अर्थ है कि इस ताप के ऊपर Al धातु द्वारा MgO का अपचयन होता है।