

Microprocessor and Assembly Language CSC-321

Sheeza Zaheer

Lecturer
COMSATS UNIVERSITY ISLAMABAD
LAHORE CAMPUS

Data Representation

OUTLINE

Data Representation

- Conversion between Number Systems
- Addition & Subtraction of Binary & Hex Numbers
- MSB & LSB
- Signed & Unsigned Numbers
- 1's and 2's complement
- Decimal Interpretation
- Character Representation

References

■ Chapter 2, Ytha Yu and Charles Marut, "Assembly Language Programming and Organization of IBM PC

Number System

- Any number system using a range of digits that represents a specific number. The most common numbering systems are decimal, binary, octal, and hexadecimal.
- Numbers are important to computers
 - represent information precisely
 - can be processed
- For example:
 - to represent yes or no: use 0 for no and 1 for yes
 - to represent 4 seasons: 0 (autumn), 1 (winter), 2(spring) and 3 (summer)

Decimal Number System

A numbering system that uses ten digits, from 0 to 9, to represent numerical values/quantities. Each digits has a weighted value of 10^0 , 10^1 , 10^2 , 10^3 and so on, ranging from right to left.

Binary Number System

A numbering system that uses two digits 0 and 1, to represent numerical values/quantities. Each digits has a weighted value of 2⁰, 2¹, 2, 2³ and so on, ranging from right to left.

Hexadecimal Number System

A numbering system that uses sixteen digits, from 0 to 9 and A to F, to represent numerical values/quantities. Each digits has a weighted value of 16^0 , 16^1 , 16^2 , 16^3 and so on, ranging from right to left.

- Converting Hexadecimal to Decimal
- Multiply each digit of the hexadecimal number from right to left with its corresponding power of 16 or weighted value.
- Convert the Hexadecimal number **82ADh** to decimal number.

STIS UNIVERSITY

OS COMPANDA

O

- Converting Binary to Decimal
- Multiply each digit of the binary number from right to left with its corresponding power of 2 or weighted value.
- Convert the Binary number **11101** to decimal number.

- Converting Decimal to Binary
- Divide the decimal number by 2.
- Take the remainder and record it on the side.
- REPEAT UNTIL the decimal number cannot be divided into anymore.

- Converting Decimal to Hexadecimal
- Divide the decimal number by 16.
- Take the remainder and record it on the side.
- REPEAT UNTIL the decimal number cannot be divided into anymore.

Converting Hexadecimal to Binary

- Given a hexadecimal number, simply convert each digit to its binary equivalent. Then, combine each 4-bit binary number and that is the resulting answer.
- Converting Binary to Hexadecimal
- Begin at the rightmost 4 bits. If there are not 4 bits, pad 0s to the left until you hit 4. Repeat the steps until all groups have been converted.

Binary Arithmetic Operations

13

- Addition
- Like decimal numbers, two numbers can be added by adding each pair of digits together with carry propagation.

11001 + 10011 101100

Binary Addition

647 +<u>537</u> <u>1184</u>

Decimal Addition

Binary Arithmetic Operations

14

Subtraction

• Two numbers can be subtracted by subtracting each pair of digits together with borrowing, where needed.

Binary Subtraction 627 - <u>537</u> <u>090</u>

Decimal Subtraction

Hexadecimal Arithmetic Operations

1:

- Addition
- Like decimal numbers, two numbers can be added by adding each pair of digits together with carry propagation.

5B39

+ 7AF4

D62D

Hexadecimal Addition

Hexadecimal Arithmetic Operations

16

- Subtraction
- Two numbers can be subtracted by subtracting each pair of digits together with borrowing, where needed.

D26F

- BA94

17DB

Hexadecimal Subtraction

MSB and LSB

- In computing, the **most significant bit** (**msb**) is the bit position in a binary number having the greatest value. The **msb** is sometimes referred to as the **left-most bit**.
- In computing, the least significant bit (lsb) is the bit position in a binary integer giving the units value, that is, determining whether the number is even or odd. The lsb is sometimes referred to as the right-most bit.

Unsigned Integers

18

 Unsigned integers are appropriate for representing quantities that can be never negative.

• The range of unsigned Integers that can be stored in a byte is 0-255; and in a 16-bit word, it is 0-65535.

Signed Integers

- A signed integer can be positive or negative.
- The most significant bit is reserved for the sign:
 - 1 means negative and 0 means positive.

One's Complement

21

• The one's complement of an integer is obtained by complementing each bit, that is, replace each 0 by a 1 and each 1 by a 0.

2's Complement

- Negative integers are stored in computer using 2's complement.
- To get a two's complement by first finding the one's complement, and then by adding 1 to it.

```
    Example
```

```
11110011 (one's complement of 12)
+ 00000001 (decimal 1)
11110100 (two's complement of 12)
```

Subtract as 2's Complement Addition

- 22
- Find the difference of 12 5 using complementation and addition.
- 00000101 (decimal 5)
- 11111011 (2's Complement of 5)

```
00001100 (decimal 12)
+ 11111011 (decimal -5)
00000111 (decimal 7)
```

Example

23

- Find the difference of 5ABCh 21FCh using complementation and addition.
- 5ABCh = 0101 1010 1011 1100
- 21FCh = 0010 0001 1111 1100
- 1101 1110 0000 0100 (2's Complement of 21FCh)

```
0101 1010 1011 1100 (Binary 5ABCh)
```

+ 1101 1110 0000 0100 (1's Complement of 21FCh)

10011 1000 1100 0000

Discard Carry

Decimal Interpretation

24

• How to interpret the contents of a byte or word as a signed and unsigned decimal integer?

Unsigned decimal interpretation

Simply just do a binary to decimal conversion or first convert binary to hexadecimal and then convert hexadecimal to decimal.

Signed decimal interpretation

- If msb is zero, then number is positive and signed decimal is same as unsigned decimal.
- If msb is one then number is negative, so call it -N. To find N, just take the 2's complement and then convert to decimal.

Example

- Give unsigned and signed decimal interpretation FE0Ch.
- Unsigned decimal interpretation
 - $16^3 * 15 + 16^2 * 14 + 16^1 * 0 + 16^0 * 12 = 61440 + 3584 + 0 + 12 = 65036$
- Signed decimal interpretation
 - FE0Ch = 1111 1110 0000 1100 (msb is 1, so number is negative).
 - To find N, get its 2's complement
 0000 0001 1111 0011 (1's complement of FE0Ch)

Decimal Interpretation (Short Method)

- For 16 bit word, following relationships holds between signed and unsigned decimal interpretation
- From 0000h 7FFFh, signed decimal = unsigned decimal
- From 8000h FFFFh, signed decimal = unsigned decimal 65536.
- Example:
- Unsigned interpretation of FE0Ch is 65036.
- Signed interpretation of FE0Ch = 65036 65536 = -500.

Binary, Decimal, and Hexadecimal Equivalents.

-	•	-
	,	
\mathbf{z}	7	7

Binary	D ecimal	Hexadecimal		Binary	D eci mal	H exadecimal
0000	0	0		1000	8	8
0001	1	1		1001	9	9
0010	2	2	ı,	1010	10	Α
0011	3	3		1011	11	В
0100	4	4		1100	12	С
0101	5	5		1101	13	D
0110	6	6		1110	14	E
0111	7	7		1111	15	F

Character Representation

- All data, characters must be coded in binary to be processed by the computer.
- ASCII:
 - American Standard Code for Information Interchange
 - Most popular character encoding scheme.
 - Uses 7 bits to code each character.
 - $= 2^7 = 128$ ASCII codes.
 - Single character Code = One Byte [7 bits: char code, 8th bit set to zero]
 - 32 to 126 ASCII codes: printable
 - 0 to 31 and 127 ASCII codes: Control characters

								S UNI			
Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char
0	00	Null	32	20	Space	64	40	0	96	60	*
1	01	Start of heading	33	21	1%	65	41	A	97	61	a
2	02	Start of text	34	22	rr .	66	42	В	98	62	b
3	03	End of text	35	23	#	67	43	С	99	63	c
4	04	End of transmit	36	24	ş	68	44	D	100	64	d
5	05	Enquiry	37	25	*	69	45	E	101	65	e
6	06	Acknowledge	38	26	٤	70	46	F	102	66	f
7	07	Audible bell	39	27	1	71	47	G	103	67	g
8	08	Backspace	40	28	(72	48	Н	104	68	h
9	09	Horizontal tab	41	29)	73	49	I	105	69	i
10	OA	Line feed	42	2A	*	74	4A	J	106	6A	j
11	OB	Vertical tab	43	2B	+	75	4B	K	107	6B	k
12	OC.	Form feed	44	2C		76	4C	L	108	6C	1
13	OD	Carriage return	45	2D	t e s	77	4D	M	109	6D	m
14	OE	Shift out	46	2 E	•	78	4E	N	110	6E	n
15	OF	Shift in	47	2 F	1	79	4F	0	111	6F	0
16	10	Data link escape	48	30	0	80	50	P	112	70	p
17	11	Device control 1	49	31	1	81	51	Q	113	71	q
18	12	Device control 2	50	32	2	82	52	R	114	72	r
19	13	Device control 3	51	33	3	83	53	ສ	115	73	s
20	14	Device control 4	52	34	4	84	54	T	116	74	t
21	15	Neg. acknowledge	53	35	5	85	55	U	117	75	u
22	16	Synchronous idle	54	36	6	86	56	v	118	76	v
23	17	End trans, block	55	37	7	87	57	W	119	77	w
24	18	Cancel	56	38	8	88	58	x	120	78	×
25	19	End of medium	57	39	9	89	59	Y	121	79	У
26	1A	Substitution	58	ЗА		90	5A	Z	122	7A	z
27	1B	Escape	59	3B	;	91	5B	[123	7B	{
28	1C	File separator	60	3 C	<	92	5C	N .	124	7C	1
29	1D	Group separator	61	ЗD	=:	93	5D]	125	7D	}
30	1E	Record separator	62	3 E	>	94	5E	^	126	7E	~
31	1F	Unit separator	63	3 F	2	95	5F	220	127	7F	

How to Convert?

31

• If a byte contains the ASCII code of an uppercase letter, what hex should be added to it to convert to lower case?

■ Solution: 20 h

■ Example: A (41h) a (61 h)

• If a byte contains the ASCII code of a decimal digit, What hex should be subtracted from the byte to convert it to the numerical form of the characters?

■ Solution: 30 h

■ Example: 2 (32 h)

Character Storage

31

ASCII Representation of "123" and 123

