FCC Part 15E **Measurement and Test Report**

For

GL Technologies (Hong Kong) Limited

Unit 210D, 2/F, Enterprise Place Hong Kong Science Park, Shatin, N.T.

HongKong

FCC ID: 2AFIW-B1300

FCC Rule(s): FCC Part 15E

Product Description: GL.iNet 1300M Home AC Router

Tested Model: GL-B1300

Report No.: HCT17JR291E-2

Sample Receipt Date: September 28, 2017

November 12~ November 30, 2017 **Tested Date:**

Issued Date: <u>December 1, 2017</u>

Tested By: Jason Su/ Engineer

Jason Su Silin chen Jumbres Silin Chen / EMC Manager **Reviewed By:**

Approved & Authorized By: Jandy So / PSQ Manager

Prepared By:

Shenzhen SEM Test Technology Co., Ltd

1/F, Building A, Hongwei Industrial Park, Liuxian 2nd Road, Bao'an District, Shenzhen, P.R.C. 518101, China

Tel.: +86-755-33663308 Fax.: +86-755-33663309 Website: www.semtest.com.cn

Note: This test report is limited to the above client company and the product model only. It may not be duplicated without prior permitted by Shenzhen SEM Test Technology Co., Ltd.

TABLE OF CONTENTS

1. GENERAL INFORMATION	
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
1.2 Test Standards	5
1.3 TEST METHODOLOGY	5
1.4 Table for parameters of Test Software setting	6
1.5 EUT OPERATING DURING TEST	
1.6 TEST FACILITY	
1.8 MEASUREMENT UNCERTAINTY	
1.9 TEST EQUIPMENT LIST AND DETAILS	8
2. SUMMARY OF TEST RESULTS	9
3. RF EXPOSURE	
3.1 STANDARD APPLICABLE	
4. ANTENNA REQUIREMENT	
· ·	
4.1 Standard Applicable	
5. CONDUCTED EMISSIONS	
5.1 TEST PROCEDURE	
5.3 BASIC TEST SETUP BLOCK DIAGRAM	
5.5 TEST RECEIVER SETUP	
5.6 SUMMARY OF TEST RESULTS/PLOTS	
5.7 CONDUCTED EMISSIONS TEST DATA	
6. POWER SPECTRAL DENSITY	16
6.1 Standard Applicable	
6.2 Test Procedure	
6.3 Environmental Conditions	
6.4 SUMMARY OF TEST RESULTS/PLOTS	
7. EMISSION BANDWIDTH AND OCCUPIED BANDWIDTH	37
7.1 STANDARD APPLICABLE	37
7.2 Test Procedure	
7.3 Environmental Conditions	
7.4 SUMMARY OF TEST RESULTS/PLOTS	39
8. MAXIMUM CONDUCTED OUTPUT POWER	
8.1 Standard Applicable	
8.2 TEST PROCEDURE	
8.3 ENVIRONMENTAL CONDITIONS	
8.4 SUMMARY OF TEST RESULTS/PLOTS	
9. CONDUCTED UNDESIRABLE EMISSIONS AND BAND EDGE	
9.1 STANDARD APPLICABLE	
9.2 Test Procedure	
9.3 Environmental Conditions	
10. RADIATED SPURIOUS EMISSIONS	
10.1 STANDARD APPLICABLE	
10.2 TEST PROCEDURE	
10.4 CORRECTED AMPLITUDE & MARGIN CALCULATION	
10.4 CORRECTED AMPLITUDE & MARGIN CALCULATION	
10.6 Summary of Test Results/Plots	
11. FREQUENCY STABILITY	
11.1 STANDARD APPLICABLE	
11.1 STANDARD APPLICABLE	99

11.2 Test Procedure	99
11.3 Environmental Conditions	
11.4 SUMMARY OF TEST RESULTS/PLOTS	

1. GENERAL INFORMATION

1.1 Product Description for Equipment Under Test (EUT)

Client Information	
Applicant:	GL Technologies (Hong Kong) Limited
Address of applicant:	Unit 210D, 2/F, Enterprise Place Hong Kong Science Park,
	Shatin, N.T. Hong Kong
Manufacturer:	GL Technologies (Hong Kong) Limited
Address of manufacturer:	Unit 210D, 2/F, Enterprise Place Hong Kong Science Park,
	Shatin, N.T. Hong Kong

General Description of EUT	
Product Name:	GL.iNet 1300M Home AC Router
Trade Name:	GL·îNet
Model No.:	GL-B1300
Adding Model(s):	/
Hardware Version:	GL-B1300-V1.3
Software Version:	V2.264
Rated Voltage:	Input: AC 100-240V, 50/60Hz; Output: DC 12V 1.5A
Power Adapter Model:	/
Note: The test data is gathered from a	a production sample provided by the manufacturer.

Technical Characteristics of EUT					
	IEEE 802.11a: 5180MHz~5240MHz,				
	5745MHz~5825MHz				
	IEEE 802.11 n/ac HT20: 5180MHz~5240MHz,				
Eraguanay Dangay	5745MHz~5825MHz				
Frequency Range:	IEEE 802.11 n/ac HT40: 5190MHz~5230MHz,				
	5755MHz~5795MHz				
	IEEE 802.11ac HT80: 5210MHz,				
	5775MHz				
RF Output Power:	20.44 dBm (Conducted)				
Data Rate:	maximum of 867Mbps				
	IEEE 802.11a: OFDM(64QAM, 16QAM, QPSK, BPSK)				
	IEEE 802.11n HT20: OFDM (64QAM, 16QAM,				
Modulation:	QPSK,BPSK)				
	IEEE 802.11n HT40: OFDM (64QAM, 16QAM,				
	QPSK,BPSK)				
	IEEE 802.11ac HT80: OFDM (64QAM, 16QAM,				

Report No.: HCT17JR291E-2 Page 4 of 101 FCC Part 15E

	QPSK,BPSK, 256QAM)
Quantity of Channels:	15
Type of Antenna:	PCB Antenna
Antonno Coin:	Antenna1: 8.4dBi
Antenna Gain:	Antenna1: 8.4dBi
Channel List:	As below table

5G Band 5150~5250 MHz (U-NII-1)									
Frequency Band Channel No. Frequency Channel No. Frequency									
	36	5180 MHz	44	5220 MHz					
5150~5250 MHz	38	5190 MHz	46	5230 MHz					
Band 1	40	5200 MHz	48	5240 MHz					
	42	5210 MHz							

Remark: For 20 MHz Bandwidth, use channel 36, 40, 44, 48.

For 40 MHz Bandwidth, use channel 38, 46.

For 80 MHz Bandwidth, use channel 38.

5G Band 5725~5850 MHz									
Frequency Band Channel No. Frequency Channel No. Frequency									
	149	5745 MHz	157	5785 MHz					
5725~5850 MHz	151	5755 MHz	159	5795 MHz					
Band 4	153	5765 MHz	161	5805 MHz					
	155	5775 MHz	165	5825 MHz					

Remark: For 20 MHz Bandwidth, use channel 149, 153, 157, 161, 165.

For 40 MHz Bandwidth, use channel 151, 159.

For 80 MHz Bandwidth, use channel 155.

1.2 Test Standards

The following report is prepared on behalf of the **GL TECHNOLOGIES (HONG KONG) LIMITED** in accordance with FCC Part 15, Subpart C&E, and section 15.203, 15.205, 15.207, 15.209 and 15.407 of the Federal Communication Commission rules.

The objective is to determine compliance with FCC Part 15, Subpart C&E, and section 15.203, 15.205, 15.207, 15.209 and 15.407 of the Federal Communication Commission rules.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product, which result in lowering the emission, should be checked to ensure compliance has been maintained.

1.3 Test Methodology

All measurements contained in this report were conducted with ANSI C63.4-2014, American National Standard

Report No.: HCT17JR291E-2 Page 5 of 101 FCC Part 15E

for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz. The measurement guide KDB 789033 D02 v01r04 for Unlicensed National Information Infrastructure (U-NII) Devices and KDB 662911 D01 Multiple Transmitter Output v02r01 shall be performed also.

1.4 Table for parameters of Test Software setting

The test utility software used during testing was "RPTA1-71W.M4300.01.GD.2015Sep1". During testing, Channel and Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

		Test Frequency (MHz)												
Mode			NCB: 20MHz											
	5180	5200	5240	5260	5300	5320	5500	5580	5700	5720	574	15	5785	5825
802.11a	19	19	19								15		15	15
6Mbps	19	19	19								13)	13	13
802.11n-HT20	19	19	19								15		15	15
MCS0	19	19	19								13)	13	13
Mode	NCB: 40MHz													
Mode	5190	523	30	5270	5310	551	.0	5550	5670	57	10	57	755	5795
802.11n-HT40	19	19	,									1	15	15
MCS0	19	13	9										13	13
Mode	NCB: 80MHz													
Mode	5210 5290 5530 5610 5690 5775					75								
802.11ac-HT80		19											15	-
MCS0/Nss2		19											1.3	,

1.5 EUT operating during test

EUT was programmed to be in continuously transmitting mode. During the test, EUT operation to normal function and programs under WIN XP were executed.

1.6 Test Facility

FCC - Registration No.: 125990

Shenzhen SEM Test Technology Co., Ltd. Laboratory has been recognized to perform compliance testing on equipment subject to the Commissions Declaration Of Conformity (DOC). The Designation Number is CN5010, and Test Firm Registration Number is 125990.

Industry Canada (IC) Registration No.: 11464A

The 3m Semi-anechoic chamber of Shenzhen SEM. Test Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 11464A.

Report No.: HCT17JR291E-2 Page 6 of 101 FCC Part 15E

1.7 EUT Setup and Test Mode

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements. All testing shall be performed under maximum output power condition, and to measure its highest possible emissions level, more detailed description as follows:

Test Mode List							
Test Mode	Description	Remark					
TM1	802.11a	5180MHz,5200MHz,5240MHz, 5745MHz, 5785MHz,5825MHz					
TM2	802.11n-HT20	5180MHz,5200MHz,5240MHz, 5745MHz, 5785MHz,5825MHz					
TM3	802.11n-HT40	5190MHz,5230MHz, 5755MHz,5795MHz					
TM4	802.11ac-HT80	5210MHz, 5775MHz					

Note: All test modes (different data rate and different modulation) are performed, but only the worst case is recorded in this report.

EUT Cable List and Details			
Cable Description	Length (m)	Shielded/Unshielded	With / Without Core
Adapter Cable	1.45	Non-Shielded	Without Core

Special Cable List and Details								
Cable Description	Length (m)	Shielded/Unshielded	With / Without Ferrite					
Cable	0.80	Non-Shielded	Without Ferrite					
USB cable	0.80	Non-Shielded	Without Ferrite					

Auxiliary Equipment List and Details								
Description	Manufacturer	Model	Serial Number					
Notebook PC	Lenovo Beijing co.	Lenovo	Lenovo G50-45					
Notebook PC	LTD							
/	/	/	/					
/	/	/	/					
/	/	/	/					
/	/	/	/					

Report No.: HCT17JR291E-2 Page 7 of 101 FCC Part 15E

1.8 Measurement Uncertainty

Measurement uncertainty							
Parameter	Conditions	Uncertainty					
RF Output Power	Conducted	±0.42dB					
Occupied Bandwidth	Conducted	±1.5%					
Power Spectral Density	Conducted	±1.8dB					
Conducted Spurious Emission	Conducted	±2.17dB					
Conducted Emissions	Conducted	$\pm 2.88 ext{dB}$					
Transmitter Spurious Emissions	Radiated	±5.1dB					

1.9 Test Equipment List and Details

No.	Description	Manufacturer	Model	Serial No.	Cal Date	Due Date
SEMT-1072	Spectrum Analyzer	Agilent	E4407B	MY41440400	2017-06-12	2018-06-11
SEMT-1031	Spectrum Analyzer	Rohde & Schwarz	FSP30	836079/035	2017-06-12	2018-06-11
SEMT-1007	EMI Test Receiver	Rohde & Schwarz	ESVB	825471/005	2017-06-12	2018-06-11
SEMT-1008	Amplifier	Agilent	8447F	3113A06717	2017-06-12	2018-06-11
SEMT-1043	Amplifier	C&D	PAP-1G18	2002	2017-06-12	2018-06-11
SEMT-1011	Broadband Antenna	Schwarz beck	VULB9163	9163-333	2017-06-08	2018-06-07
SEMT-1042	Horn Antenna	ETS	3117	00086197	2017-06-08	2018-06-07
SEMT-1121	Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170582	2017-06-08	2018-06-07
SEMT-1069	Loop Antenna	Schwarz beck	FMZB 1516	9773	2017-06-08	2018-06-07
SEMT-1001	EMI Test Receiver	Rohde & Schwarz	ESPI	101611	2017-06-12	2018-06-11
SEMT-1003	L.I.S.N	Schwarz beck	NSLK8126	8126-224	2017-06-12	2018-06-11
SEMT-1002	Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100911	2017-06-12	2018-06-11
SEMT-1168	Pre-amplifier	Direction Systems Inc.	PAP-0126	14141-12838	2017-08-15	2018-08-14
SEMT-1169	Pre-amplifier	Direction Systems Inc.	PAP-2640	14145-14153	2017-08-15	2018-08-14
SEMT-1163	Spectrum Analyzer	Rohde & Schwarz	FSP40	100612	2017-06-12	2018-06-11
SEMT-1170	DRG Horn Antenna	A.H. SYSTEMS	SAS-574	571	2017-03-09	2018-03-08

Report No.: HCT17JR291E-2 Page 8 of 101 FCC Part 15E

2. SUMMARY OF TEST RESULTS

FCC Rules	Description of Test Item	Result
§ 15.203; § 15.405	Antenna Requirement	Compliant
§ 15.207; § 15.407(b)(6)	Conducted Emission	Compliant
§ 15.407(a)(1),(2)	Power Spectral Density	Compliant
§ 15.407(e)	Emission Bandwidth and Occupied Bandwidth	Compliant
§ 15.407(a)(1),(2)	Maximum Conducted Output Power	Compliant
§ 15.407(b)(1),(2),(3)	Conducted Spurious Emission	Compliant
§ 15.205; § 15.407(b)(1),(2),(3)	Radiated Emission	Compliant
§ 15.407(g)	Frequency Stability	Compliant
§ 15.407(h)	Dynamic Frequency Selection (DFS)	N/A

N/A: not applicable

3. RF Exposure

3.1 Standard Applicable

According to § 1.1307 and § 2.1093, the portable transmitter must comply the RF exposure requirements.

3.2 Test Result

This product complied with the requirement of the RF exposure, please see the MPE Report.

Report No.: HCT17JR291E-2 Page 10 of 101 FCC Part 15E

4. Antenna Requirement

4.1 Standard Applicable

According to FCC Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

4.2 Evaluation Information

This product has two PCB Antenna, fulfill the requirement of this section.

Report No.: HCT17JR291E-2 Page 11 of 101 FCC Part 15E

5. Conducted Emissions

5.1 Test Procedure

The setup of EUT is according with per ANSI C63.4-2014 measurement procedure. The specification used was with the FCC Part 15.207 Limit.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle. The spacing between the peripherals was 10 cm.

5.3 Basic Test Setup Block Diagram

5.4 Environmental Conditions

Temperature:	25 °C
Relative Humidity:	52%
ATM Pressure:	1012 mbar

5.5 Test Receiver Setup

During the conducted emission test, the test receiver was set with the following configurations:

Start Frequency	150 kHz
Stop Frequency	30 MHz
Sweep Speed	Auto
IF Bandwidth	10 kHz
Quasi-Peak Adapter Bandwidth	9 kHz
Quasi-Peak Adapter Mode	Normal

5.6 Summary of Test Results/Plots

According to the data in section 3.8, the EUT <u>complied with the FCC Part 15.207</u> Conducted margin for a Class B device, with the *worst* margin reading of:

5.7 Conducted Emissions Test Data

Report No.: HCT17JR291E-2 Page 13 of 101 FCC Part 15E

Plot of Conducted Emissions Test Data

EUT: GL.iNet 1300M Home AC Router

Tested Model: GL-B1300 Operating Condition: Transmitting

Comment: AC 120V/60Hz; Adapter DC12V/1.5A

Test Specification: Neutral

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	dB	(dBuV)	(dBuV)	(dB)	
1	0.1740	40.29	11.04	51.33	64.77	-13.44	QP
2	0.1740	35.10	11.04	46.14	54.77	-8.63	AVG
3	0.1980	30.91	11.88	42.79	53.69	-10.90	AVG
4	0.2180	34.99	11.95	46.94	62.89	-15.95	QP

Note:

- 1. Result Level = Reading Level +Correct Factor (LISN Factor + Pulse Limiter Factor + Cable loss).
- 2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.
- $3.\ Test\ setup:\ RBW:\ 200\ Hz\ (9\ kHz-150\ kHz),\ 9\ kHz\ (150\ kHz-30\ MHz),\ Step\ size:\ 4\ kHz,\ Scan\ time:\ auto.$

EUT: GL.iNet 1300M Home AC Router

Tested Model: GL-B1300 Operating Condition: Transmitting

Comment: AC 120V/60Hz; Adapter DC12V/1.5A

Test Specification: Line

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	dB	(dBuV)	(dBuV)	(dB)	
1	0.1500	41.57	12.22	53.79	66.00	-12.21	QP
2	0.1500	36.06	12.22	48.28	56.00	-7.72	AVG
3	0.1860	38.49	13.43	51.92	64.21	-12.29	QP
4	0.1860	33.76	13.43	47.19	54.21	-7.02	AVG

Note:

- 1. Result Level = Reading Level +Correct Factor (LISN Factor + Pulse Limiter Factor + Cable loss).
- 2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 200 Hz (9 kHz—150 kHz), 9 kHz (150 kHz—30 MHz), Step size: 4 kHz, Scan time: auto.

6. Power Spectral Density

6.1 Standard Applicable

Section 15.407(a) Power limits:

- (1) For the band 5.15-5.25 GHz.
- (iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (2) For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (3) For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

6.2 Test Procedure

According to 789033 D02 General UNII Test Procedures New Rules v01r04, the following is the measurement procedure.

For devices operating in the bands 5.15-5.25 GHz, 5.25-5.35 GHz, and 5.47-5.725 GHz, the above procedures make use of 1 MHz RBW to satisfy directly the 1 MHz reference bandwidth specified in § 15.407(a)(5). For devices operating in the band 5.725-5.85 GHz, the rules specify a measurement bandwidth of 500 kHz. Many spectrum analyzers do not have 500 kHz RBW, thus a narrower RBW may need to be used. The rules permit the use of a RBWs less than 1 MHz, or 500 kHz, "provided that the measured power is integrated over the full reference bandwidth" to show the total power over the specified measurement bandwidth (i.e., 1 MHz, or 500 kHz). If measurements are performed using a reduced resolution bandwidth (< 1 MHz, or < 500 kHz) and integrated over 1 MHz, or 500 KHz bandwidth, the following adjustments to the procedures apply:

Report No.: HCT17JR291E-2 Page 16 of 101 FCC Part 15E

- a) Set RBW $\geq 1/T$, where T is defined in section II.B.l.a).
- b) Set VBW \geq 3 RBW.
- c) If measurement bandwidth of Maximum PSD is specified in 500 kHz, add 10log(500kHz/RBW) to the measured result, whereas RBW (< 500 KHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement.
- d) If measurement bandwidth of Maximum PSD is specified in 1 MHz, add 10log(1MHz/RBW) to the measured result, whereas RBW (< 1 MHz) is the reduced resolution bandwidth of spectrum analyzer set during measurement.
- e) Care must be taken to ensure that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.

Note: As a practical matter, it is recommended to use reduced RBW of 100 KHz for the sections 5.c) and 5.d) above, since RBW=100 KHZ is available on nearly all spectrum analyzers.

6.3 Environmental Conditions

Temperature:	20° C
Relative Humidity:	54%
ATM Pressure:	1011 mbar

6.4 Summary of Test Results/Plots

5150-5250MHz

Operating mode	Test Channel	Powe	er Spectral De dBm/MHz	Limit	
		Chain 1	Chain 2	Total	(dBm/MHz)
	5180	4.612	4.015	7.33	11
802.11a	5200	4.618	4.257	7.45	11
	5240	4.672	4.747	7.72	11
	5180	4.568	4.046	7.33	11
802.11n-HT20	5200	4.727	3.958	7.37	11
	5240	4.800	4.278	7.56	11
802.11n-HT40	5190	1.293	0.322	3.84	11
802.11n-H140	5230	1.305	0.732	4.04	11
802.11ac-HT80	5210	-1.684	-2.688	0.85	11

Report No.: HCT17JR291E-2 Page 17 of 101 FCC Part 15E

5725-5850MHz

Operating mode	Test Channel	RBW = 1MHz Measurement Power Spectral Density (dBm / MHz)		Correction Factor 10log(500K Hz / RBW)	Power Spectral Density (dBm / 500kHz)	Limit (dBm/500kH z)	
		Chain 1	Chain 2	Total	Total	Total	
	5745	5.012	4.422	7.74	-3.01	4.73	30
802.11a	5785	4.876	4.548	7.73	-3.01	4.72	30
582	5825	4.931	4.611	7.78	-3.01	4.77	30
	5745	4.901	4.586	7.76	-3.01	4.75	30
802.11n-H T20	5785	4.832	4.564	7.71	-3.01	4.70	30
	5825	4.942	4.495	7.73	-3.01	4.72	30
802.11n-H	5755	1.129	0.510	3.84	-3.01	0.83	30
T40	5795	0.985	0.875	3.94	-3.01	0.93	30
802.11ac- HT80	5775	-1.564	-2.153	1.16	-3.01	-1.85	30

Remark: Power Spectral Density (dBm / 500kHz) = Measurement Power Spectral Density (dBm / MHz) + Correction Factor,

Where, Correction Factor = $10\log$ (500KHz / RBW) = -3.01 dB.

Report No.: HCT17JR291E-2 Page 18 of 101 FCC Part 15E

Test Plots

Antenna 1

(Plot 4.6.1 A: Channel 36: 5180MHz @ 802.11a)

(Plot 4.6.1 B: Channel 40: 5200MHz @ 802.11a)

(Plot 4.6.1 C: Channel 48: 5240MHz @ 802.11a)

(Plot 4.6.2 B: Channel 40: 5200MHz @ 802.11n HT20)

(Plot 4.6.3 A: Channel 38: 5190MHz @ 802.11n HT40)

(Plot 4.6.4 A: Channel 42: 5210MHz @ 802.11ac HT80)

(Plot 4.6.5 B: Channel 157: 5785MHz @ 802.11a)

(Plot 4.6.6 A: Channel 149: 5745MHz @ 802.11n HT20)

(Plot 4.6.6 C: Channel 165: 5825MHz @ 802.11n HT20)

(Plot 4.6.7 B: Channel 159: 5795MHz @ 802.11n HT40)

Antenna 2

(Plot 4.6.1 B: Channel 40: 5200MHz @ 802.11a)

(Plot 4.6.1 C: Channel 48: 5240MHz @ 802.11a)

(Plot 4.6.2 B: Channel 40: 5200MHz @ 802.11n HT20)

(Plot 4.6.3 A: Channel 38: 5190MHz @ 802.11n HT40)

(Plot 4.6.4 A: Channel 42: 5210MHz @ 802.11ac HT80)

(Plot 4.6.5 B: Channel 157: 5785MHz @ 802.11a)

(Plot 4.6.6 A: Channel 149: 5745MHz @ 802.11n HT20)

(Plot 4.6.6 C: Channel 165: 5825MHz @ 802.11n HT20)

(Plot 4.6.7 B: Channel 159: 5785MHz @ 802.11n HT40)

7. Emission Bandwidth and Occupied Bandwidth

7.1 Standard Applicable

According to 15.303(c)

for purposes of this subpart the emission bandwidth shall be determined by measuring the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, that are 26 dB down relative to the maximum level of the modulated carrier. Compliance with the emissions limits is based on the use of measurement instrumentation employing a peak detector function with an instrument resolutions bandwidth approximately equal to 1.0 percent of the emission bandwidth of the device under measurement.

According to 15.407 (a) and (e)

- (1) For the band 5.15-5.25 GHz.
- (iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (2) For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (3) For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
- (e) Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

7.2 Test Procedure

According to 789033 D02 v01r04 section C&D, the following is the measurement procedure.

Report No.: HCT17JR291E-2 Page 37 of 101 FCC Part 15E

- 1. Emission Bandwidth (EBW)
- a) Set RBW = approximately 1% of the emission bandwidth.
- b) Set the VBW > RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Measure the maximum width of the emission that is 26 dB down from the maximum of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.
- 2. Minimum Emission Bandwidth for the band 5.725-5.85 GHz

Section 15.407(e) specifies the minimum 6 dB emission bandwidth of at least 500 KHz for the band 5.715-5.85 GHz. The following procedure shall be used for measuring this bandwidth:

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) $\geq 3 \times RBW$.
- c) Detector = Peak.
- d) Trace mode = \max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Note: The automatic bandwidth measurement capability of a spectrum analyzer or EMI receiver may be employed if it implements the functionality described above.

D. 99 Percent Occupied Bandwidth

The 99-percent occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5 % of the total mean power of the given emission. Measurement of the 99-percent occupied bandwidth is required only as a condition for using the optional band-edge measurement techniques described in section II.G.3.d). Measurements of 99-percent occupied bandwidth may also optionally be used in lieu of the EBW to 789033 D02 General UNII Test Procedures New Rules v01r04 define the minimum frequency range over which the spectrum is integrated when measuring maximum conducted output power as described in section II.E. However, the EBW must be measured to determine bandwidth dependent limits on maximum conducted output power in accordance with 15.407(a).

The following procedure shall be used for measuring (99 %) power bandwidth:

- 1. Set center frequency to the nominal EUT channel center frequency.
- 2. Set span = 1.5 times to 5.0 times the OBW.
- 3. Set RBW = 1% to 5% of the OBW
- 4. Set VBW ≥ 3 RBW
- 5. Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
- 6. Use the 99 % power bandwidth function of the instrument (if available).
- 7. If the instrument does not have a 99 % power bandwidth function, the trace data points are recovered and directly summed in power units. The recovered amplitude data points, beginning at the lowest frequency, are

Report No.: HCT17JR291E-2 Page 38 of 101 FCC Part 15E

placed in a running sum until 0.5 % of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5 % of the total is reached; that frequency is recorded as the upper frequency. The 99% occupied bandwidth is the difference between these two frequencies.

7.3 Environmental Conditions

Temperature:	24° C
Relative Humidity:	53%
ATM Pressure:	1018 mbar

7.4 Summary of Test Results/Plots

Antenna 1

5150-5250MHz

Test Mode	Test Channel 26 dB Bandwidth 99% Bandwidth		99% Bandwidth	Limit	
Test Mode	MHz	MHz	MHz	MHz	
	5180	25.0230	16.5687	Pass	
802.11a	5200	20.6670	16.4229	Pass	
	5240	19.8590	16.4412	Pass	
	5180	21.4240	17.6519	Pass	
802.11n-HT20	5200	21.2820	17.6512	Pass	
	5240	21.1160	17.6812	Pass	
002 11 HT40	5190	45.7180	37.0376	Pass	
802.11n-HT40	5230	45.6750	37.0921	Pass	
802.11ac-HT80	5210	89.4350	76.5101	Pass	

5725-5850MHz

Test Mode	Test Channel	nel 6 dB Bandwidth 99% Bandwidth		Limit
Test Wlode	MHz	MHz	MHz	KHz
	5745	16.4750	16.4263	≥500
802.11a	5785	16.4760	16.4297	≥500
	5825	16.4930	16.4413	≥500
	5745	17.7160	17.6529	≥500
802.11n-HT20	5785	17.8180	17.6824	≥500
	5825	17.6120	17.6488	≥500
802.11n-HT40	5755	36.3020	36.0735	≥500
602.11П-П140	5795	36.0660	36.1168	≥500
802.11ac-HT80	5775	76.3850	75.6231	≥500

Report No.: HCT17JR291E-2 Page 39 of 101 FCC Part 15E

Antenna 2 *5150-5250MHz*

Test Mode	Test Channel	26 dB Bandwidth	99% Bandwidth	Limit
Test Wiode	MHz	MHz	MHz	MHz
	5180	24.9920	16.5668	Pass
802.11a	5200	25.6090	16.6474	Pass
	5240	19.7680	16.4259	Pass
	5180	21.0420	17.6639	Pass
802.11n-HT20	5200	21.0900	17.6660	Pass
	5240	21.9520	17.6840	Pass
902 11 _m HT40	5190	40.2250	36.1552	Pass
802.11n-HT40	5230	39.7940	36.1213	Pass
802.11ac-HT80	5210	81.4510	75.8570	Pass

5725-5850MHz

Test Mode	Test Channel	st Channel 6 dB Bandwidth 99% Bandwidth		Limit	
Test Wiode	MHz	MHz	MHz	KHz	
	5745	16.4110	16.4279	≥500	
802.11a	5785	16.3600	16.4287	≥500	
	5825	16.4250	16.4107	≥500	
	5745	17.6360	17.6623	≥500	
802.11n-HT20	5785	17.6560	17.6709	≥500	
	5825	17.7250	17.6703	≥500	
002 11 HT40	5755	36.3970	36.1042	≥500	
802.11n-HT40	5795	36.3190	36.1268	≥500	
802.11ac-HT80	5775	76.0680	75.5655	≥500	

Antenna 1

Test Plots:5150-5250MHz

(Plot 4.7.1 A: Channel 36: 5180MHz @ 802.11a)

(Plot 4.7.1 B: Channel 40: 5200MHz @ 802.11a)

Agilent 13:52:52 Nov 21, 2017 R Freq/Channel Ch Freq 5.24 GHz Free Trig Center Freq Occupied Bandwidth 5.24000000 GHz Start Freq 5.22500000 GHz Ref 20 dBm Atten 30 dB #Peak Stop Freq 5.25500000 GHz Log 10 dB/ CF Step 3.00000000 MHz Man Auto Freq Offset Span 30 MHz Center 5.24 GHz 0.00000000 Hz #Res BW 100 kHz **#VBW 300 kHz** Sweep 4 ms (401 pts) Signal Track Occupied Bandwidth 99.00 % Occ BW % Pwr -26.00 dB x dB 16.4412 MHz Scale Type Transmit Freq Error -81.538 kHz Log <u>Lin</u> x dB Bandwidth 19.859 MHz

(Plot 4.7.1 C: Channel 48: 5240MHz @ 802.11a)

(Plot 4.7.2 B: Channel 40: 5200MHz @ 802.11n HT20)

(Plot 4.7.3 A: Channel 38: 5190MHz @ 802.11n HT40)

(Plot 4.7.4 A: Channel 42: 5210MHz @ 802.11ac HT80)

Test Plots: 5725-5850MHz

(Plot 4.7.5 A: Channel 149: 5745MHz @ 802.11a)

Agilent 11:34:45 Nov 23, 2017 R Freq/Channel Ch Freq 5.785 GHz Free Trig Center Freq Occupied Bandwidth 5.78500000 GHz Start Freq 5.77000000 GHz Ref 20 dBm Atten 30 dB #Peak Stop Freq 5.80000000 GHz Log 10 dB/ CF Step 3.00000000 MHz Man Auto Freq Offset Span 30 MHz Center 5.785 GHz 0.00000000 Hz #Res BW 100 kHz **#VBW 300 kHz** Sweep 4 ms (401 pts) Signal Track Occupied Bandwidth 99.00 % Occ BW % Pwr -6.00 dB x dB 16.4297 MHz Scale Type Transmit Freq Error -70.311 kHz Log <u>Lin</u> x dB Bandwidth 16.476 MHz

(Plot 4.7.5 B: Channel 157: 5785MHz @ 802.11a)

Agilent 11:42:56 Nov 23, 2017 R Freq/Channel Ch Freq 5.745 GHz Trig Center Freq Occupied Bandwidth 5.74500000 GHz Start Freq 5.73000000 GHz Ref 20 dBm Atten 30 dB #Peak Stop Freq 5.76000000 GHz Log 10 dB/ CF Step 3.00000000 MHz Man Auto Freq Offset Span 30 MHz Center 5.745 GHz 0.00000000 Hz #Res BW 100 kHz **#VBW 300 kHz** Sweep 4 ms (401 pts) Signal Track Occupied Bandwidth 99.00 % Occ BW % Pwr -6.00 dB x dB 17.6529 MHz Scale Type Transmit Freq Error -81.592 kHz Log <u>Lin</u> x dB Bandwidth 17.716 MHz

(Plot 4.7.6 A: Channel 149: 5745MHz @ 802.11n HT20)

Agilent 11:41:14 Nov 23, 2017 R Freq/Channel Ch Freq 5.825 GHz Trig Center Freq Occupied Bandwidth 5.82500000 GHz Start Freq 5.81000000 GHz Ref 20 dBm Atten 30 dB #Peak Stop Freq 5.84000000 GHz Log 10 dB/ CF Step 3.00000000 MHz Man Auto Freq Offset Span 30 MHz Center 5.825 GHz 0.00000000 Hz #Res BW 100 kHz **#VBW 300 kHz** Sweep 4 ms (401 pts) Signal Track Occupied Bandwidth 99.00 % Occ BW % Pwr On -6.00 dB x dB 17.6488 MHz Scale Type Transmit Freq Error -89.598 kHz Log <u>Lin</u> x dB Bandwidth 17.612 MHz

(Plot 4.7.6 C: Channel 165: 5825MHz @ 802.11n HT20)

(Plot 4.7.7 B: Channel 159: 5795MHz @ 802.11n HT40)

Antenna 2

Test Plots:5150-5250MHz

(Plot 4.7.1 A: Channel 36: 5180MHz @ 802.11a)

(Plot 4.7.1 B: Channel 40: 5200MHz @ 802.11a)

(Plot 4.7.1 C: Channel 48: 5240MHz @ 802.11a)

(Plot 4.7.2 B: Channel 40: 5200MHz @ 802.11n HT20)

(Plot 4.7.3 A: Channel 38: 5190MHz @ 802.11n HT40)

(Plot 4.7.4 A: Channel 42: 5210MHz @ 802.11ac HT80)

Test Plots: 5725-5850MHz.

(Plot 4.7.5 A: Channel 149: 5745MHz @ 802.11a)

(Plot 4.7.5 B: Channel 157: 5785MHz @ 802.11a)

(Plot 4.7.6 A: Channel 149: 5745MHz @ 802.11n HT20)

(Plot 4.7.6 C: Channel 165: 5825MHz @ 802.11n HT20)

(Plot 4.7.7 B: Channel 159: 5795MHz @ 802.11n HT40)

8. Maximum Conducted Output Power

8.1 Standard Applicable

Section 15.407(a) Power limits:

- (1) For the band 5.15-5.25 GHz.
- (iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (2) For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (3) For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

8.2 Test Procedure

According to KDB789033 D02 v01r04 section E, the following is the measurement procedure.

- (i) Set span to encompass the entire emission bandwidth (EBW) (or, alternatively, the entire 99% occupied bandwidth) of the signal.
- (ii) Set RBW = 1 MHz.
- (iii) Set $VBW \ge 3 \text{ MHz}$.
- (iv) Number of points in sweep \geq 2 Span / RBW. (This ensures that bin-to-bin spacing is \leq RBW/2, so that narrowband signals are not lost between frequency bins.)
- (v) Sweep time = auto.

- (vi) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.
- (vii) If transmit duty cycle < 98 percent, use a video trigger with the trigger level set to enable triggering only on full power pulses. Transmitter must operate at maximum power control level for the entire duration of every sweep. If the EUT transmits continuously (i.e., with no off intervals) or at duty cycle \geq 98 percent, and if each transmission is entirely at the maximum power control level, then the trigger shall be set to "free run".
- (viii) Trace average at least 100 traces in power averaging (i.e., RMS) mode.
- (ix) Compute power by integrating the spectrum across the EBW (or, alternatively, the entire 99% occupied bandwidth) of the signal using the instrument's band power measurement function with band limits set equal to the EBW (or occupied bandwidth) band edges. If the instrument does not have a band power function, sum the spectrum levels (in power units) at 1 MHz intervals extending across the EBW (or, alternatively, the entire 99% occupied bandwidth) of the spectrum.

8.3 Environmental Conditions

Temperature:	26° C
Relative Humidity:	65%
ATM Pressure:	1011 mbar

8.4 Summary of Test Results/Plots

For the frequency band 5.15-5.25GHz, 5725-5850GHz

To at mo do	Frequency	Output Power 1	Output Power 2	Total Power	Output Power	Limit
Test mode	MHz	(dBm)	(dBm)	(dBm)	mW	mW
	5180	10.60	10.81	13.72	23.60	250
	5200	10.51	10.73	13.63	23.10	250
802.11a	5240	10.78	10.77	13.79	23.90	250
002.11a	5745	10.20	10.05	13.14	20.60	1000
	5785	10.42	10.13	13.29	21.30	1000
	5825	10.74	10.44	13.60	22.90	1000
	5180	10.60	10.55	13.59	22.90	250
	5200	10.45	10.72	13.60	22.90	250
802.11n-HT20	5240	10.73	10.59	13.67	23.30	250
802.11n-H120	5745	10.01	10.02	13.03	20.10	1000
	5785	10.32	10.13	13.24	21.10	1000
	5825	10.45	10.43	13.45	22.10	1000
	5190	7.53	7.27	10.41	11.00	250
902 11 HT40	5230	7.33	7.59	10.47	11.10	250
802.11n-HT40	5755	6.79	6.47	9.64	9.20	1000
	5795	7.33	6.82	10.09	10.20	1000
802.11ac-HT8	5210	4.03	4.14	7.10	5.10	250
0	5775	4.02	3.74	6.89	4.90	1000

Report No.: HCT17JR291E-2 Page 60 of 101 FCC Part 15E

9. Conducted Undesirable Emissions and Band Edge

9.1 Standard Applicable

According to §15.407 (b) Undesirable emission limits. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

- (1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (4) For transmitters operating in the 5.725-5.85 GHz band:
- (i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

9.2 Test Procedure

- 1. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer via a RF combiner.
- 2. Set the spectrum analyzer as RBW = 100kHz/1MHz, VBW=300kHz/3MHz, Sweep = auto
- 3. Set the Lowest, Middle and Highest Transmitting Channel, observed the outside band of 30MHz to 40GHz, then mark the higher-level emission for comparing with the FCC rules.

9.3 Environmental Conditions

Temperature:	21° C
Relative Humidity:	54%
ATM Pressure:	1011 mbar

9.4 Summary of Test Results/Plots

Report No.: HCT17JR291E-2 Page 61 of 101 FCC Part 15E

Antenna 1

Test Plots: Conducted Undesirable Emissions and Band Edge for 5.15-5.25GHz

(Plot 4.9.1 A1: Channel 36: 5180MHz @ 802.11a)

(Plot 4.9.1 B1: Channel 48: 5240MHz @ 802.11a)

(Plot 4.9.2 A1: Channel 36: 5180MHz @ 802.11n HT20)

(Plot 4.9.3 A1: Channel 38: 5190MHz @ 802.11n HT40)

(Plot 4.9.4 A1: Channel 42: 5210MHz @ 802.11ac HT80)

Test Plots: Conducted Undesirable Emissions and Band Edge for 5725-5850GHz

(Plot 4.9.5 A1: Channel 149: 5745MHz @ 802.11a)

(Plot 4.9.5 B1: Channel 165: 5825MHz @ 802.11a)

(Plot 4.9.6 A1: Channel 149: 5745MHz @ 802.11n HT20)

(Plot 4.9.7 A1: Channel 151: 5755MHz @ 802.11n HT40)

(Plot 4.9.8 A1: Channel 155: 5775MHz @ 802.11ac HT80)

Antenna 2

Test Plots: Conducted Undesirable Emissions and Band Edge for 5.15-5.25GHz

(Plot 4.9.1 B1: Channel 48: 5240MHz @ 802.11a)

(Plot 4.9.2 A1: Channel 36: 5180MHz @ 802.11n HT20)

(Plot 4.9.3 A1: Channel 38: 5190MHz @ 802.11n HT40)

(Plot 4.9.4 A1: Channel 42: 5210MHz @ 802.11ac HT80)

Test Plots: Conducted Undesirable Emissions and Band Edge for 5725-5850GHz

(Plot 4.9.5 A1: Channel 149: 5745MHz @ 802.11a)

(Plot 4.9.5 B1: Channel 165: 5825MHz @ 802.11a)

(Plot 4.9.6 A1: Channel 149: 5745MHz @ 802.11n HT20)

(Plot 4.9.7 A1: Channel 151: 5755MHz @ 802.11n HT40)

(Plot 4.9.8 A1: Channel 155: 5775MHz @ 802.11ac HT80)

10. Radiated Spurious Emissions

10.1 Standard Applicable

According to §15.407(b)(6), Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in Section 15.209.

According to §15.407(b), The provisions of Section 15.205 of this part apply to intentional radiators operating under this section.

For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

For transmitters operating in the 5.725-5.85 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

As below table:

Un-restricted band emissions above 1GHz Limit							
Operating Band	Limit						
5.15 - 5.25 GHz	e.i.r.p27 dBm [68.2 dBuV/m@3m]						
5.25 - 5.35 GHz	e.i.r.p27 dBm [68.2 dBuV/m@3m]						
5.47 - 5.725 GHz	e.i.r.p27 dBm [68.2 dBuV/m@3m]						
5.725 - 5.850 GHz	All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more						
	above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above						
	or below the band edge, and from 25 MHz above or below the band edge increasing						
	linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and						
	from 5 MHz above or below the band edge increasing linearly to a level of 27						

Note 1: Measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).

Test procedure used is 789033 D02 General UNII Test Procedures New Rules v01r04

If radiated measurements are performed, field strength is then converted to EIRP as follows:

 $EIRP = ((E*d)^2) / 30$

where:

Report No.: HCT17JR291E-2 Page 78 of 101 FCC Part 15E

- E is the field strength in V/m;
- d is the measurement distance in meters;
- EIRP is the equivalent isotropically radiated power in watts.

10.2 Test Procedure

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.205 15.407(b)(6) and FCC Part 15.209 Limit..

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle. The spacing between the peripherals was 10 cm.

10.3 Test Receiver Setup

During the radiated emission test for above 1GHz, the test receiver was set with the following configurations:

For peak detector:

RBW = 1000kHz, VBW = 3000kHz, Sweep Time = Auto

For average detector:

RBW = 1000kHz, VBW = 10Hz, Sweep Time = Auto

10.4 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated adding the Antenna Factor and the Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of $-6dB\mu V$ means the emission is $6dB\mu V$ below the maximum limit for Class B. The equation for margin calculation is as follows:

10.5 Environmental Conditions

Temperature:	22° C
Relative Humidity:	52%
ATM Pressure:	1012 mbar

10.6 Summary of Test Results/Plots

According to the data below, the FCC Part 15.205, 15.209 and 15.407(b) standards, and had the worst margin of:

Report No.: HCT17JR291E-2 Page 80 of 101 FCC Part 15E

Test Plots: Radiated Undesirable Emissions and Band Edge for 5.725-5.850GHz

Channel 149: 5745MHz @ 802.11a mode

Polarization: Horizontal

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	5650.000	25.64	18.18	43.82	68.20	-24.38	QP
2	5720.400	25.69	18.32	44.01	111.71	-67.70	QP

- 1. Margin = Emission level Limit value
- 2. "---" states emission level at least lower than limit 20dB, so without recorded any values;
- 3. Result Level = Reading Level + Correct factor (Antenna Factor + Cable loss PRM Factor).
- 4. This EUT was tested in 3 orthogonal positions and the worst case position data was reported.

Channel 149: 5745MHz @ 802.11a mode

Polarization: Vertical

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	5650.000	27.88	8.77	36.65	68.20	-31.55	QP
2	5720.200	26.51	8.81	35.32	111.26	-75.94	QP

- 1. Margin = Emission level Limit value
- 2. "---" states emission level at least lower than limit 20dB, so without recorded any values;
- 3. Result Level = Reading Level + Correct factor (Antenna Factor + Cable loss PRM Factor).
- 4. This EUT was tested in 3 orthogonal positions and the worst case position data was reported.

Channel 165: 5825MHz @ 802.11a mode

Polarization: Horizontal

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remar k
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	5875.400	26.40	18.62	45.02	104.90	-59.88	QP
2	5925.000	26.96	18.70	45.66	68.20	-22.54	QP

- 1. Margin = Emission level Limit value
- 2. "---" states emission level at least lower than limit 20dB, so without recorded any values;
- 3. Result Level = Reading Level + Correct factor (Antenna Factor + Cable loss PRM Factor).
- 4. This EUT was tested in 3 orthogonal positions and the worst case position data was reported.

Channel 165: 5825MHz @ 802.11a mode

Polarization: Vertical

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	5875.000	29.90	8.89	38.79	105.20	-66.41	QP
2	5925.000	30.65	8.91	39.56	68.20	-28.64	QP

- 1. Margin = Emission level Limit value
- 2. "---" states emission level at least lower than limit 20dB, so without recorded any values;
- 3. Result Level = Reading Level + Correct factor (Antenna Factor + Cable loss PRM Factor).
- 4. This EUT was tested in 3 orthogonal positions and the worst case position data was reported.

Channel 149: 5745MHz @ 802.11n (HT20) mode

Polarization: Horizontal

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	5650.000	28.42	18.18	46.60	68.20	-21.60	QP
2	5720.400	25.89	18.32	44.21	111.71	-67.50	QP

- 1. Margin = Emission level Limit value
- 2. "---" states emission level at least lower than limit 20dB, so without recorded any values;
- 3. Result Level = Reading Level + Correct factor (Antenna Factor + Cable loss PRM Factor).
- 4. This EUT was tested in 3 orthogonal positions and the worst case position data was reported.

Channel 149: 5745MHz @ 802.11n (HT20) mode

Polarization: Vertical

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	5650.600	25.94	8.78	34.72	68.65	-33.93	QP
2	5720.200	29.60	8.81	38.41	111.26	-72.85	QP

- 1. Margin = Emission level Limit value
- 2. "---" states emission level at least lower than limit 20dB, so without recorded any values;
- 3. Result Level = Reading Level + Correct factor (Antenna Factor + Cable loss PRM Factor).
- 4. This EUT was tested in 3 orthogonal positions and the worst case position data was reported.

Channel 165: 5825MHz @ 802.11n (HT20) mode

Polarization: Horizontal

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	5875.000	25.23	18.61	43.84	105.20	-61.36	QP
2	5925.000	25.63	18.70	44.33	68.20	-23.87	QP

- 1. Margin = Emission level Limit value
- 2. "---" states emission level at least lower than limit 20dB, so without recorded any values;
- 3. Result Level = Reading Level + Correct factor (Antenna Factor + Cable loss PRM Factor).
- 4. This EUT was tested in 3 orthogonal positions and the worst case position data was reported.

Channel 165: 5825MHz @ 802.11n (HT20) mode

Polarization: Vertical

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	5875.400	28.09	8.89	36.98	104.90	-67.92	QP
2	5925.200	27.18	8.91	36.09	68.20	-32.11	QP

- 1. Margin = Emission level Limit value
- 2. "---" states emission level at least lower than limit 20dB, so without recorded any values;
- 3. Result Level = Reading Level + Correct factor (Antenna Factor + Cable loss PRM Factor).
- 4. This EUT was tested in 3 orthogonal positions and the worst case position data was reported.

Radiated Undesirable Emissions (Below 1GHz)

Note:

We test all modes, and only the worst case (802.11a mode, Low, Middle, High) data presented in the report.

Worst case of Channel 165: 5745MHz @ 802.11a mode

Polarization: Vertical

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	125.2505	24.31	13.70	38.01	43.50	-5.49	QP
2	158.2966	19.46	15.82	35.28	43.50	-8.22	QP
3	838.6573	16.56	24.36	40.92	46.00	-5.08	QP

- 1. Margin = Emission level Limit value
- 2. "---" states emission level at least lower than limit 20dB, so without recorded any values;
- 3. Result Level = Reading Level + Correct factor (Antenna Factor + Cable loss PRM Factor).
- 4. This EUT was tested in 3 orthogonal positions and the worst case position data was reported.
- 5. Testing is carried out with frequency rang 9kHz to the tenth harmonics, other than listed in the table above are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Worst case of Channel 165: 5745MHz @ 802.11a mode

Polarization: Horizontal

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	125.2505	26.69	13.70	40.39	43.50	-3.11	QP
2	206.8938	24.69	14.90	39.59	43.50	-3.91	QP
3	249.6593	25.43	14.94	40.37	46.00	-5.63	QP
4	895.0301	16.31	25.65	41.96	46.00	-4.04	QP

- 1. Margin = Emission level Limit value
- 2. "---" states emission level at least lower than limit 20dB, so without recorded any values;
- 3. Result Level = Reading Level + Correct factor (Antenna Factor + Cable loss PRM Factor).
- 4. This EUT was tested in 3 orthogonal positions and the worst case position data was reported.
- 5. Testing is carried out with frequency rang 9kHz to the tenth harmonics, other than listed in the table above are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Worst case of Channel 165: 5785MHz @ 802.11a mode

Polarization: Vertical

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	37.7756	18.09	17.31	35.40	40.00	-4.60	QP
2	150.5210	16.99	15.76	32.75	43.50	-10.75	QP
3	896.9739	16.28	25.70	41.98	46.00	-4.02	QP

- 1. Margin = Emission level Limit value
- 2. "---" states emission level at least lower than limit 20dB, so without recorded any values;
- 3. Result Level = Reading Level + Correct factor (Antenna Factor + Cable loss PRM Factor).
- 4. This EUT was tested in 3 orthogonal positions and the worst case position data was reported.
- 5. Testing is carried out with frequency rang 9kHz to the tenth harmonics, other than listed in the table above are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Worst case of Channel 165: 5785MHz @ 802.11a mode

Polarization: Horizontal

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	125.2505	25.87	13.70	39.57	43.50	-3.93	QP
2	206.8938	24.48	14.90	39.38	43.50	-4.12	QP
3	900.8617	15.27	25.77	41.04	46.00	-4.96	QP

- 1. Margin = Emission level Limit value
- 2. "---" states emission level at least lower than limit 20dB, so without recorded any values;
- 3. Result Level = Reading Level + Correct factor (Antenna Factor + Cable loss PRM Factor).
- 4. This EUT was tested in 3 orthogonal positions and the worst case position data was reported.
- 5. Testing is carried out with frequency rang 9kHz to the tenth harmonics, other than listed in the table above are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Worst case of Channel 165: 5825MHz @ 802.11a mode

Polarization: Vertical

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	45.5511	18.54	16.94	35.48	40.00	-4.52	QP
2	826.9940	16.60	24.19	40.79	46.00	-5.21	QP
3	887.2545	16.31	25.46	41.77	46.00	-4.23	QP

- 1. Margin = Emission level Limit value
- 2. "---" states emission level at least lower than limit 20dB, so without recorded any values;
- 3. Result Level = Reading Level + Correct factor (Antenna Factor + Cable loss PRM Factor).
- 4. This EUT was tested in 3 orthogonal positions and the worst case position data was reported.
- 5. Testing is carried out with frequency rang 9kHz to the tenth harmonics, other than listed in the table above are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Worst case of Channel 165: 5825MHz @ 802.11a mode

Polarization: Horizontal

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	168.0160	24.79	15.13	39.92	43.50	-3.58	QP
2	204.9499	24.90	14.82	39.72	43.50	-3.78	QP
3	883.3667	16.70	25.35	42.05	46.00	-3.95	QP

- 1. Margin = Emission level Limit value
- 2. "---" states emission level at least lower than limit 20dB, so without recorded any values;
- 3. Result Level = Reading Level + Correct factor (Antenna Factor + Cable loss PRM Factor).
- 4. This EUT was tested in 3 orthogonal positions and the worst case position data was reported.
- 5. Testing is carried out with frequency rang 9kHz to the tenth harmonics, other than listed in the table above are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Radiated Undesirable Emissions (Above 1GHz)

Worst case of Hormonics And Spurious Emissions for the frequency band 5.150-5.250GHz (802.11a)

Frequency MHz	Detector	Meter Reading dBuV	Direction Degree	Polar H / V	Antenna Loss dB	Cable loss dB	Amplifier dB	Correction Amplitude dBuV/m	Limit dBuV/m	Margin dB
	Low Channel (5180MHz)									
10360	PK	55.61	360	V	38.9	9.8	40.5	63.81	74	-10.19
10360	PK	54.93	360	Н	38.9	9.8	40.5	63.13	74	-10.87
10360	AV	38.89	360	V	38.9	9.8	40.5	47.09	54	-6.91
10360	AV	38.17	360	Н	38.9	9.8	40.5	46.37	54	-7.63
15540	PK	51.05	360	V	40.7	10.9	39.6	63.05	74	-10.95
15540	PK	49.65	360	Н	40.7	10.9	39.6	61.65	74	-12.35
15540	AV	35.85	360	V	40.7	10.9	39.6	47.85	54	-6.15
15540	AV	34.95	360	Н	40.7	10.9	39.6	46.95	54	-7.05
20720										
25900			-		-		-			
31080			-	-						
36260										
				High	Channel (5	5240MHz)				
10480	PK	54.51	360	V	38.9	9.8	40.5	62.71	74	-11.29
10480	PK	53.9	360	Н	38.9	9.8	40.5	62.1	74	-11.9
10480	AV	36.83	360	V	38.9	9.8	40.5	45.03	54	-8.97
10480	AV	35.39	360	Н	38.9	9.8	40.5	43.59	54	-10.41
15720	PK	50.45	360	V	40.7	10.9	39.6	62.45	74	-11.55
15720	PK	49.9	360	Н	40.7	10.9	39.6	61.9	74	-12.1
15720	AV	36.67	360	V	40.7	10.9	39.6	48.67	54	-5.33
15720	AV	35.43	360	Н	40.7	10.9	39.6	47.43	54	-6.57
20960										
26200										
31440										
36680										

Remark:

- 1. Margin = Emission level Limit value
- 2. "---" states emission level at least lower than limit 20dB, so without recorded any values;
- 3. Result Level = Reading Level + Correct factor (Antenna Factor + Cable loss PRM Factor).
- 4. This EUT was tested in 3 orthogonal positions and the worst case position data was reported.
- 5. Testing is carried out with frequency rang 9kHz to the tenth harmonics, other than listed in the table above are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Report No.: HCT17JR291E-2 Page 95 of 101 FCC Part 15E

Worst case of Harmonics And Spurious Emissions for the frequency band 5.725-5.850GHz (802.11a)

Frequency MHz	Detector	Meter Reading dBuV	Direction Degree	Polar H / V	Antenna Loss dB	Cable loss dB	Amplifier dB	Correction Amplitude dBuV/m	Limit dBuV/m	Margin dB
	Low Channel (5745MHz)									
11490	PK	53.83	360	V	39.1	10.1	40.2	62.83	74	-11.17
11490	PK	53.22	360	Н	39.1	10.1	40.2	62.22	74	-11.78
11490	AV	36.15	360	V	39.1	10.1	40.2	45.15	54	-8.85
11490	AV	34.71	360	Н	39.1	10.1	40.2	43.71	54	-10.29
17235	PK	49.77	360	V	41.3	11.2	39.4	62.87	74	-11.13
17235	PK	49.22	360	Н	41.3	11.2	39.4	62.32	74	-11.68
17235	AV	35.99	360	V	41.3	11.2	39.4	49.09	54	-4.91
17235	AV	34.75	360	Н	41.3	11.2	39.4	47.85	54	-6.15
22980				1	1		1			
28725		1	1	1	1		1			
34470		1		-	1		1			
40000				1						
				High	Channel (5	825MHz)				
11650	PK	53.57	360	V	39.1	10.1	40.2	62.57	74	-11.43
11650	PK	52.96	360	Н	39.1	10.1	40.2	61.96	74	-12.04
11650	AV	35.89	360	V	39.1	10.1	40.2	44.89	54	-9.11
11650	AV	34.45	360	Н	39.1	10.1	40.2	43.45	54	-10.55
17475	PK	49.51	360	V	41.3	11.2	39.4	62.61	74	-11.39
17475	PK	48.96	360	Н	41.3	11.2	39.4	62.06	74	-11.94
17475	AV	35.73	360	V	41.3	11.2	39.4	48.83	54	-5.17
17475	AV	34.49	360	Н	41.3	11.2	39.4	47.59	54	-6.41
23300										
29125										
34950										
40000										

Remark:

- 1. Margin = Emission level Limit value
- 2. "---" states emission level at least lower than limit 20dB, so without recorded any values;
- 3. Result Level = Reading Level + Correct factor (Antenna Factor + Cable loss PRM Factor).
- 4. This EUT was tested in 3 orthogonal positions and the worst case position data was reported.
- 5. Testing is carried out with frequency rang 9kHz to the tenth harmonics, other than listed in the table above are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured

Report No.: HCT17JR291E-2 Page 96 of 101 FCC Part 15E

Worst case of Hormonics And Spurious Emissions for the frequency band 5.150-5.250GHz (802.11n HT20)

Frequency MHz	Detector	Meter Reading dBuV	Direction Degree	Polar H / V	Antenna Loss dB	Cable loss dB	Amplifier dB	Correction Amplitude dBuV/m	Limit dBuV/m	Margin dB
	Low Channel (5180MHz)									
10360	PK	54.16	360	V	38.9	9.8	40.5	62.36	74	-11.64
10360	PK	53.55	360	Н	38.9	9.8	40.5	61.75	74	-12.25
10360	AV	36.48	360	V	38.9	9.8	40.5	44.68	54	-9.32
10360	AV	35.04	360	Н	38.9	9.8	40.5	43.24	54	-10.76
15540	PK	50.1	360	V	40.7	10.9	39.6	62.1	74	-11.9
15540	PK	49.55	360	Н	40.7	10.9	39.6	61.55	74	-12.45
15540	AV	36.32	360	V	40.7	10.9	39.6	48.32	54	-5.68
15540	AV	35.08	360	Н	40.7	10.9	39.6	47.08	54	-6.92
20720			1	1	1		1			
25900										
31080			1	1	1		1			
36260				1						
				High	Channel (5	5240MHz)		<u>. </u>	.	
10480	PK	55.13	360	V	38.9	9.8	40.5	63.33	74	-10.67
10480	PK	54.52	360	Н	38.9	9.8	40.5	62.72	74	-11.28
10480	AV	37.45	360	V	38.9	9.8	40.5	45.65	54	-8.35
10480	AV	36.01	360	Н	38.9	9.8	40.5	44.21	54	-9.79
15720	PK	51.07	360	V	40.7	10.9	39.6	63.07	74	-10.93
15720	PK	50.52	360	Н	40.7	10.9	39.6	62.52	74	-11.48
15720	AV	37.29	360	V	40.7	10.9	39.6	49.29	54	-4.71
15720	AV	36.05	360	Н	40.7	10.9	39.6	48.05	54	-5.95
20960		-								
26200		-		-						
31440										
36680										

Remark:

- 1. Margin = Emission level Limit value
- 2. "---" states emission level at least lower than limit 20dB, so without recorded any values;
- 3. Result Level = Reading Level + Correct factor (Antenna Factor + Cable loss PRM Factor).
- 4. This EUT was tested in 3 orthogonal positions and the worst case position data was reported.
- 5. Testing is carried out with frequency rang 9kHz to the tenth harmonics, other than listed in the table above are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Report No.: HCT17JR291E-2 Page 97 of 101 FCC Part 15E

Worst case of Harmonics And Spurious Emissions for the frequency band 5.725-5.850GHz (802.11n HT20)

Frequency MHz	Detector	Meter Reading dBuV	Direction Degree	Polar H / V	Antenna Loss dB	Cable loss dB	Amplifier dB	Correction Amplitude dBuV/m	Limit dBuV/m	Margin dB
	Low Channel (5745MHz)									
11490	PK	54.41	360	V	39.1	10.1	40.2	63.41	74	-10.59
11490	PK	53.80	360	Н	39.1	10.1	40.2	62.80	74	-11.20
11490	AV	36.73	360	V	39.1	10.1	40.2	45.73	54	-8.27
11490	AV	35.29	360	Н	39.1	10.1	40.2	44.29	54	-9.71
17235	PK	50.35	360	V	41.3	11.2	39.4	63.45	74	-10.55
17235	PK	49.80	360	Н	41.3	11.2	39.4	62.90	74	-11.10
17235	AV	36.57	360	V	41.3	11.2	39.4	49.67	54	-4.33
17235	AV	35.33	360	Н	41.3	11.2	39.4	48.43	54	-5.57
22980				-	-		-			
28725										
34470										
40000										
				High	Channel (5	825MHz)				
11650	PK	54.90	360	V	39.1	10.1	40.2	63.90	74	-10.10
11650	PK	54.29	360	Н	39.1	10.1	40.2	63.29	74	-10.71
11650	AV	37.22	360	V	39.1	10.1	40.2	46.22	54	-7.78
11650	AV	35.78	360	Н	39.1	10.1	40.2	44.78	54	-9.22
17475	PK	50.84	360	V	41.3	11.2	39.4	63.94	74	-10.06
17475	PK	50.29	360	Н	41.3	11.2	39.4	63.39	74	-10.61
17475	AV	37.06	360	V	41.3	11.2	39.4	50.16	54	-3.84
17475	AV	35.82	360	Н	41.3	11.2	39.4	48.92	54	-5.08
23300										
29125				-						
34950				-						
40000										

Remark:

- 1. Margin = Emission level Limit value
- 2. "---" states emission level at least lower than limit 20dB, so without recorded any values;
- 3. Result Level = Reading Level + Correct factor (Antenna Factor + Cable loss PRM Factor).
- 4. This EUT was tested in 3 orthogonal positions and the worst case position data was reported.
- 5. Testing is carried out with frequency rang 9kHz to the tenth harmonics, other than listed in the table above are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Report No.: HCT17JR291E-2 Page 98 of 101 FCC Part 15E

11. Frequency Stability

11.1 Standard Applicable

According to §15.407(g), Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the users manual.

11.2 Test Procedure

According to §2.1055, the following test procedure was performed.

The Frequency Stability is measured directly with a Frequency Domain Analyzer. Frequency Deviation in ppm is calculated from the measured peak to peak value.

The Carrier Frequency Stability over Power Supply Voltage and over Temperature is measured with a Frequency Domain Analyzer in histogram mode

Temperature:	Supply Voltage
20°C	85-115% of declared nominal voltage
-30°C to +50°C	Normal

11.3 Environmental Conditions

Temperature:	20°C
Relative Humidity:	54%
ATM Pressure:	1011 mbar

11.4 Summary of Test Results/Plots

Report No.: HCT17JR291E-2 Page 99 of 101 FCC Part 15E

5150-5250MHz, Worst case @ 802.11a mode:

801.11a : 5200 MHz							
Voltage vs. Frequency Stability							
Voltage (V)	Measurement Frequency (MHz)						
132	5199.9938						
120	5199.9966						
118	5199.9974						
Max. Deviation (MHz)	0.0074						
Max. Deviation (ppm)	1.19						
Temperature vs. Frequency Stability							
Temperature (℃)	Measurement Frequency (MHz)						
0	5199.9938						
10	5199.9957						
20	5199.9976						
30	5199.9963						
40	5199.9988						
50	5199.9978						
Max. Deviation (MHz)	0.0072						
Max. Deviation (ppm)	1.19						

801.11a : 5200 MHz							
Voltage vs. Frequency Stability							
Voltage (V)	Measurement Frequency (MHz)						
132	5199.9925						
120	5199.9955						
118	5199.9976						
Max. Deviation (MHz)	0.0075						
Max. Deviation (ppm)	1.44						
Temperature vs. Frequency Stability							
Temperature (°C)	Measurement Frequency (MHz)						
0	5199.9923						
10	5199.9946						
20	5199.9963						
30	5199.9975						
40	5199.9972						
50	5199.9987						
Max. Deviation (MHz)	0.0072						
Max. Deviation (ppm)	1.48						

5725-5850MHz, Worst case @ 802.11n HT20 mode:

802.11n HT20 : 5745 MHz	
Voltage vs. Frequency Stability	
Voltage (V)	Measurement Frequency (MHz)
132	5745.0087
120	5745.0093
118	5745.0099
Max. Deviation (MHz)	0.0098
Max. Deviation (ppm)	1.72
Temperature vs. Frequency Stability	
Temperature (℃)	Measurement Frequency (MHz)
0	5745.0024
10	5745.0017
20	5745.0019
30	5745.0025
40	5745.0034
50	5745.0069
Max. Deviation (MHz)	0.0069
Max. Deviation (ppm)	1.20

802.11n HT20 : 5745 MHz	
Voltage vs. Frequency Stability	
Voltage (V)	Measurement Frequency (MHz)
132	5745.0086
120	5745.0092
118	5745.0098
Max. Deviation (MHz)	0.0098
Max. Deviation (ppm)	1.71
Temperature vs. Frequency Stability	
Temperature (℃)	Measurement Frequency (MHz)
0	5745.0023
10	5745.0016
20	5745.0018
30	5745.0026
40	5745.0033
50	5745.0088
Max. Deviation (MHz)	0.0068
Max. Deviation (ppm)	1.53

***** END OF REPORT *****