Cálculo integral

Índice

1.	. Series Numéricas e Integrales Impropias	1
	1.1. Series numéricas	1
	1.2. Series de números positivos	3
	1.3. Series absolutamente convergentes y condicionalmente convergentes	8

1. Series Numéricas e Integrales Impropias

1.1. Series numéricas

Definición 1.1.1

Una serie de números reales es una pareja de sucesiones de números reales $(a_n)_{n\geq 0}$, $(s_n)_{n\geq 0}$, relacionadas por

$$s_n = \sum_{i=0}^n a_n$$

Denominaremmos término n-ésimo de la serie al elemento a_n y llamaremos suma parcial n-ésima de la serie a s_n

Observación Las sumas parciales definen los términos

$$a_0 = s_0$$
 $a_n = s_n - s_{n-1}$ $(n \ge 1)$

Definición 1.1.2

Llamaremos suma de una serie a

$$s = \lim s_n = \lim_{n \to \infty} \sum_{k=0}^n a_n$$

suponiendo que existe

Observación Denotaremos $s = \sum_{n \geq 0} a_n = \sum_{n \geq 0}^{\infty} a_n$. Esta misma notación nor servirá para representar la serie.

Definición 1.1.3

Diremos que una serie $\sum a_n$ es convergente o divergente si lo es la sucesión de sumas parciales

• convergente $\lim s_n \in \mathbb{R}$

• divergente $\lim s_n = \pm \infty$

• oscilante $\sharp \lim s_n$

Observación 1.1.4 Una serie no tiene por qué comenzar por el índice 0, y por tanto, podemos considerar series con términos a_n donde $n \ge n_0$. En tal caso, las sumas parciales son $s_n = \sum_{k=n_0}^n a_n$, y la suma (si existe) $\sum_{k=n_0}^{\infty} a_n = \lim_{n\to\infty} \sum_{k=n_0}^n a_n$.

Definición 1.1.5

Sea $r \in \mathbb{R}$. Llamaremos serie geométrica de razón r a la serie

$$\sum_{n\geq 0} r^n$$

Proposición

La serie geométrica es convergente si y solo si |r| < 1, en tal caso la suma es

$$\sum_{n>0} r^n = \frac{1}{1-r}$$

Demostración

Primero, calculamos el término n-ésimo

$$s_n = 1 + r + \dots + r^n = \begin{cases} n+1 & \text{si } r = 1\\ \frac{r^{n+1}-1}{r-1} & \text{si } r \neq 1 \end{cases}$$

• Si r = 1, $\lim s_n = \lim_{n \to \infty} n + 1 = \infty$

• Si |r| > 1, lím $s_n = \lim_{n \to \infty} \frac{r^{n+1}-1}{r-1} = \infty$

• Si |r| < 1, lím $s_n = \lim_{n \to \infty} \frac{r^{n+1} - 1}{r - 1} = \frac{-1}{r - 1}$

 \bullet Si $r=-1,\,s_n=0$ si n par y $s_n=1$ si n impar. Por lo tanto la serie es oscilante

Proposición 1.1.6

Si $\sum a_n$ es convergente, entonces lím $a_n = 0$

Demostración

Sabemos que $a_n = s_n - s_{n-1}$, por lo tanto lím $a_n = \text{lím}(s_n - s_{n-1})$, como lím s_n existe (y por lo tanto también lím s_{n-1})

$$\lim a_n = \lim (s_n - s_{n-1}) = \lim s_n - \lim s_{n-1} = 0$$

Proposición 1.1.7 (Criterio de Cauchy para series)

La serie $\sum a_n$ es convergente si $\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}$ tal que

$$m, n \ge n_0 \implies |s_m - s_n| = |a_m + a_{m-1} \cdots + a_n| < \varepsilon$$

Proposición 1.1.8 (linealidad)

Sean $\alpha, \beta \in \mathbb{R}$ y sean $\sum a_n$ y $\sum b_n$ series convergentes. Entonces $\sum (\alpha a_n + \beta b_n)$ también lo es y $\sum (\alpha a_n + \beta b_n) = \alpha \sum a_n + \beta \sum b_n$.

Proposición 1.1.9

Sean dos sucesiones $(a_n)y$ (b_n) , son iguales salvo en número finito de términos, entonces las series $\sum a_n$ y $\sum b_n$ tienen la misma convergencia.

Demostración

Sea $d_n = b_n - a_n$, que vale 0 salvo en número finito de términos

Si
$$\sum a_n$$
 converge $\sum b_n = \sum a_n + \sum d_n \implies \sum b_n$ converge

• Si
$$\sum a_n$$
 diverge $\sum b_n = \sum a_n + \sum d_n \implies \sum b_n$ diverge

• Si
$$\sum a_n$$
 oscila $\sum b_n = \sum a_n + \sum d_n \implies \sum b_n$ oscila

Proposición 1.1.10 (Asociatividad)

Sea $\sum a_n$ una serie y $(n_k)_{k\geq 0}$ una sucesión estrictamente creciente de números naturales. Definimos

$$b_0 = a_0 + \dots + a_{n_0}$$
 $b_k = a_{(n_{k-1}+1)} + \dots + a_{n_k}$

Si existe la suma de $\sum a_n$, entonces también existe la suma de $\sum b_k$ y son iguales.

Demostración

Sea $A_n = \sum_{i=0}^n a_i$ y $B_k = \sum_{i=0}^k b_i$, por la definición anterior se tiene que $B_k = A_{n_k}$ y por lo tanto (B_k) es una sucesión parcial de (A_n) , lo cual implica que si (A_n) converge, (B_k) también y lo hace al mismo número.

1.2. Series de números positivos

Proposición 1.2.1

Si una serie $\sum a_n$ es de *términos positivos* $(a_n \geq 0)$ entonces la sucesión (s_n) de sumas parciales es *creciente*, y por tanto, siempre tiene límite:

$$\sum a_n = \lim s_n = \sup_{n \in \mathbb{N}} s_n$$

Este puede ser finito (si la sucesión de sumas parciales es acotada) o infinito (en caso contrario).

Proposición 1.2.2 (Criterio de comparación directa)

Sean $\sum a_n$ y $\sum b_n$ series de términos positivos. Si $\exists n_0$ tal que $a_n \leq b_n$ $(\forall n \geq n_0)$. Entonces

$$\sum_{n=n_0}^{\infty} a_n \le \sum_{n=n_0}^{\infty} b_n$$

Por tanto, la convergencia de $\sum b_n$ implica la de $\sum a_n$ y la divergencia de $\sum a_n$ implica la de $\sum b_n$.

Demostración

Por el enunciado

$$\sum_{i=n_0}^n a_i \le \sum_{k=n_0}^n b_k \implies \sum_{i=n_0}^\infty a_i \le \sum_{k=n_0}^\infty b_k$$

Los términos a_0, \dots, a_{n_0} se pueden añadir al sumatorio y no alteran la convergencia.

Definición

Llamamos serie harmónica a la serie

$$\sum_{n>1} \frac{1}{n}$$

Definición 1.2.3 (Serie de Riemman)

Sea $p \in \mathbb{R}$. Llamaremos serie harmónica generalizada o serie de Riemman de parámetro p a la serie

$$\sum_{n>1} \frac{1}{n^p}$$

Proposición

La serie de Riemman es convergente si y solo si p > 1.

Demostración

Distinguiremos entre varios casos

• Si p = 1. Suponemos que la serie es convergente con suma s

$$s = \left(1 + \frac{1}{2}\right) + \left(\frac{1}{3} + \frac{1}{4}\right) + \dots > \left(\frac{1}{2} + \frac{1}{2}\right) + \left(\frac{1}{4} + \frac{1}{4}\right) + \dots = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots = s$$

absurdo ya que s > s.

• Si p < 1.

$$n^p \le n \implies \frac{1}{n^p} \ge \frac{1}{n}$$

y por comparación directa con la serie harmónica, diverge.

• Si p > 1.

$$\sum_{n\geq 1} \frac{1}{n^p} = 1 + \left(\frac{1}{2^p} + \frac{1}{3^p}\right) + \left(\frac{1}{4^p} + \frac{1}{5^p} + \frac{1}{6^p} + \frac{1}{7^p}\right) + \dots \leq$$

$$\leq 1 + \left(\frac{1}{2^p} + \frac{1}{2^p}\right) + \left(\frac{1}{4^p} + \frac{1}{4^p} + \frac{1}{4^p} + \frac{1}{4^p}\right) = 1 + \frac{1}{2^{p-1}} + \frac{1}{2^{2(p-1)}} + \dots$$

que es una serie geométrica de razón $\frac{1}{2p-1} < 1$ y por lo tanto convergente.

Proposición 1.2.4 (Criterio de comparación en el límite)

Sean $\sum a_n$ y $\sum b_n$ series de términos estrictamente positivos. Suponemos que existe el límite

$$\lim \frac{\sum a_n}{\sum b_n} = l \in [0, +\infty]$$

4

- Si $l < +\infty$. $\sum b_n$ converge $\implies \sum a_n$ converge y $\sum a_n$ diverge $\implies \sum b_n$ diverge.
- Si l > 0. $\sum a_n$ converge $\implies \sum b_n$ converge y si $\sum b_n$ diverge $\implies \sum a_n$ diverge.
- Si $0 < l < +\infty$. Entonces las dos series tienen el mismo caracter.

Demostración

Provaremos cada caso de manera individual

• Caso $l < +\infty$. Fijado $\varepsilon > 0$, por definición de límite, existe $n_0 \in \mathbb{N}$ tal que

$$n \ge n_0 \implies \frac{a_n}{b_n} < l + \varepsilon \implies a_n < (l + \varepsilon)b_n$$

y el resultado queda provado por comparación directa.

• Caso l > 0. Se deduce del primer caso, considerando

$$\lim \frac{b_n}{a_n} = \frac{1}{l}$$

• Caso $0 < l < +\infty$. Se trata de una conjunción de los casos anteriores

Lema 1.2.5 Sea $\sum a_n$ una serie de términos positivos.

• Suponemos que hay $n_0 \in \mathbb{N}$ y r < 1 tal que

$$n \ge n_0 \implies a_n^{1/n} < r$$

entonces $\sum a_n < +\infty$

• Suponemos que existe $n_0 \in \mathbb{N}$ tal que

$$n \ge n_0 \implies a_n^{1/n} \ge 1$$

entonces $\sum a_n = +\infty$

Demostración

Provaremos cada caso por separado

- $a_n^{1/n} < r \implies a_n < r^n$ que es la serie geométrica de razón r < 1, de modo que por comparación directa el resultado queda demostrado.
- $a_n^{1/n} \ge 1 \implies a_n \ge 1$ y por lo tanto diverge.

Proposición 1.2.6 (Criterio de la raíz de Cauchy)

Sea $\sum a_n$ una serie de términos positivos. Suponemos que existe lím $a_n^{1/n} = \alpha$, entonces, si $\alpha > 1$ la serie diverge y si $\alpha < 1$ la serie converge.

Demostración

Demostraremos cada caso por separado

• Caso $\alpha < 1$. Sea $\alpha < r < 1$. Existe $n_0 \in \mathbb{N}$ tal que

$$n \ge n_0 \implies a_n^{1/n} \le r$$

Y el resultado queda provado aplicando el lema anterior.

• Caso $\alpha > 1$. Existe $n_0 \in \mathbb{N}$ tal que

$$n \ge n_0 \implies a_n^{1/n} \ge 1$$

y aplicamos el lema anterior.

Lema 1.2.7 Sea $\sum a_n$ una serie de términos estrictamente positivos.

 \bullet Suponemos que hay $n_0 \in \mathbb{N}$ y r < 1 tal que

$$n \ge n_0 \implies \frac{a_{n+1}}{a_n} \le r$$

entonces $\sum a_n < +\infty$

• Suponemos que existe $n_0 \in \mathbb{N}$ tal que

$$n \ge n_0 \implies \frac{a_{n+1}}{a_n} \ge 1$$

entonces $\sum a_n = +\infty$

Demostración

Separaremos los casos.

$$\frac{a_n+1}{a_n} \le r \implies a_{n+1} \le ra_n \implies a_n \le Cr^n \quad (n \ge n_0)$$

donde $C = \frac{a_{n_0}}{r^{n_0}}$ y por el criterio de comparación directa $\sum a_n$ converge.

 \bullet $\frac{a_{n+1}}{a_n} \ge 1 \implies a_{n+1} \ge a_n \implies a_n$ es creciente $\implies \sum a_n$ diverge

Proposición 1.2.8 (Criterio del cociente de Alembert)

Sea $\sum a_n$ una serie de términos estrictamente positivos. Suponemos que existe lím $\frac{a_{n+1}}{a_n} = \alpha$, entonces

- \bullet Si $\alpha>1$ la serie diverge
- \bullet Si $\alpha < 1$ la serie converge

Demostración

Separamos los dos casos

• Si $\alpha < 1$. Sea $\alpha < r < 1$ entonces $\exists n_0 \in \mathbb{N}$ tal que

$$n \ge n_0 \implies \frac{a_{n+1}}{a_n} \le r$$

y aplicamos el lema anterior.

• Si $\alpha > 1$. Entonces $\exists n_0 \in \mathbb{N}$ tal que

$$n \ge n_0 \implies \frac{a_{n+1}}{a_n} \ge 1$$

y aplicamos el lema anterior.

Ejemplo

Estudiar la convergencia de

- $\sum_{n\geq 0} \frac{1}{n!}$. n! crece más que n^2 $(n!>n^2)$ \Longrightarrow $\frac{1}{n!}<\frac{1}{n^2}$ que es la serie de Riemman de parámetro 2 (convergente). Por tanto, $\sum_{n>0}^{\infty} \frac{1}{n!}$ es convergente.
- \blacksquare $\sum \frac{x^n}{n!}$ para x > 0.

$$\lim_{n \to \infty} \frac{\frac{x^{n+1}}{(n+1)!}}{\frac{x^n}{n!}} = \lim_{n \to \infty} \frac{x^{n+1}n!}{x^n(n+1)n!} = \lim_{n \to \infty} \frac{x}{n+1} = 0 < 1$$

Por lo tanto, aplicando el criterio del cociente de Alembert, la serie coverge.

$$\lim_{n \to \infty} \alpha^{\frac{n + \sqrt{n}}{n}} = \lim_{n \to \infty} \alpha^{1 + \frac{1}{\sqrt{n}}} = \alpha$$

Por lo tanto, por el criterio de la raíz, $\begin{cases} \alpha < 1 \text{ convergente} \\ \alpha > 1 \text{ divergente} \end{cases}$. Si $\alpha = 1$, la serie es $\sum 1^{n+\sqrt{n}} = \sum 1 \text{ que es divergente}.$

Observación 1.2.9 Los criterios anteriores no deciden cuando $\alpha = 1$. Como $a_{n+1}/a_n \to \alpha$ implica que $a_n^{1/n} \to \alpha$, si el criterio del cociente no decide, entonces el de la raíz tampoco.

Proposición 1.2.10 (Criterio de Raabe)

Sea $\sum a_n$ una serie de términos estrictamente positivos tal que existe el límite

$$L = \lim_{n \to \infty} n \left(1 - \frac{a_{n+1}}{a_n} \right)$$

Si L > 1, la serie $\sum a_n$ es convergente. Si L < 1, la serie $\sum a_n$ es divergente.

Proposición (Criterio de condensación)

Sea (a_n) una sucesión de números positivos decreciente. Entonces

$$\sum_{n=0}^{\infty} a_n \text{ converge } \iff \sum_{n=0}^{\infty} 2^n a_{2^n} \text{ converge}$$

7

Proposición (Criterio logarítmico)

Sea $\sum a_n$ una serie de términos positivos tal que existe el límite

$$L = \lim_{n \to \infty} \frac{-\ln(a_n)}{\ln(n)} = \lim_{n \to \infty} \frac{\ln\left(\frac{1}{a_n}\right)}{\ln(n)}$$

Si L > 1, la serie $\sum a_n$ es convergente. Si L < 1, la serie $\sum a_n$ es divergente.

Proposición 1.2.11 (Criterio de la integral)

Sea $n_0 \in \mathbb{N}$ y $f: [n_0, +\infty) \to \mathbb{R}$ positiva, localmente integrable y decreciente. Consideramos $a_n = f(n) \ (n \ge n_0)$ entonces

- I) La serie $\sum a_n$ y la integral impropia $\int_{n_0}^{+\infty} f$ tienen el mismo carácter.
- II) Para $N \geq n_0$

$$\sum_{n \ge n_0}^{\infty} a_n = \sum_{n=n_0}^{N-1} + \int_N^{+\infty} f + \varepsilon_n$$

donde $\varepsilon_n \in [0, a_n]$

Ejemplo

- $\sum \frac{1}{n^{\alpha}}$ tiene el mismo carácter que $\int_{1}^{\infty} \frac{1}{x^{\alpha}} dx$ (convergete $\iff \alpha > 1$)
- Calcular $\sum_{n>1} \frac{1}{n^{1,01}}$ con error $< 10^{-3}$.

Necesitamos que

$$\frac{1}{N^{1,01}} < 10^{-3} \implies N > 1000^{1/1,01} \implies N \ge 934$$

Calculamos ahora

$$\sum_{n=1}^{933} \frac{1}{n^{1,01}} + \int_{934}^{+\infty} \frac{\mathrm{d}x}{x^{1,01}} \simeq 100,577 \simeq \sum_{n\geq 1} \frac{1}{n^{1,01}}$$

Proposición 1.2.12

Sea $\sum a_n$ una serie de términos positivos. Dada cualquier permutación $\sigma \colon \mathbb{N} \to \mathbb{N}$, la serie $\sum a_{\sigma(n)}$ tiene la misma suma que $\sum a_n$.

Demostración

Sea $A_n = \sum_{k=0}^n a_k$ y $B_n = \sum_{k=0}^n a_{\sigma(k)}$ y sean $A = \lim A_n$ y $B = \lim B_n$. Sea $m \in \mathbb{N}$, entonces $\exists n \in \mathbb{N}$ tal que

$$\{0, 1, \dots, m\} \le \{\sigma(0), \sigma(1), \dots, \sigma(n)\}$$

ya que σ es suprayectiva. Entonces $a_0 + a_1 + \cdots + a_m \leq a_{\sigma(0)} + a_{\sigma(1)} + \cdots + a_{\sigma(n)}$ por lo tanto, $A_m \leq B_n \implies A \leq B$. Haciendo el mismo razonamiento para σ^{-1} (biyectiva), obtenemos que $B \leq A$. Y por lo tanto, $A = \sum a_n = \sum a_{\sigma(n)} = B$.

1.3. Series absolutamente convergentes y condicionalmente convergentes