Paths of Graphs

Hengfeng Wei

hfwei@nju.edu.cn

June 14, 2019


```
for all v \in V do
     \operatorname{dist}[v] \leftarrow \infty
\operatorname{dist}[s] \leftarrow 0
Q \leftarrow \text{MinPQ}(V)
while Q \neq \emptyset do
     u \leftarrow \text{DeleteMin}(Q)
     for all (u, v) \in E \land v \notin Q do
           if dist[v] > dist[u] + l(u, v) then
                 \operatorname{dist}[v] \leftarrow \operatorname{dist}[u] + l(u,v)
                 DecreaseKey(Q, v)
```

$$\begin{aligned} & \textbf{for all } v \in V \textbf{ do} \\ & \text{dist}[v] \leftarrow \infty \\ & \text{dist}[s] \leftarrow 0 \\ \\ & Q \leftarrow \text{MinPQ}(V) \\ & \textbf{while } Q \neq \emptyset \textbf{ do} \\ & u \leftarrow \text{DELETEMIN}(Q) \\ & \textbf{for all } (u,v) \in E \land v \notin Q \textbf{ do} \\ & \text{if } \text{dist}[v] > \text{dist}[u] + l(u,v) \textbf{ then} \\ & \text{dist}[v] \leftarrow \text{dist}[u] + l(u,v) \\ & \text{DECREASEKEY}(Q,v) \end{aligned}$$

$$O(n + (n+m)\log n) \implies O((n+m)\log n) \implies O(m\log n)$$

$R \triangleq \{v \mid s \leadsto v \text{ is known}\}$

$$u: \min_{v \in R} \left(\mathrm{dist}(v) + l(v,u) \right)$$

$$u: \min_{v \in R} \left(\operatorname{dist}(v) + l(v, u) \right)$$

$$R \triangleq \{ v \mid s \leadsto v \text{ is known} \}$$

$$x$$

$$x$$

$$y$$

$$x$$

$$y$$

$$l \geq 0$$

$$u: \min_{v \in R} \left(\mathrm{dist}(v) + l(v,u) \right)$$

Negative Edges from s (Problem 11.9)

All negative edges are from s.

Negative Edges from s (Problem 11.9)

All negative edges are from s.


```
for all v \in V do
     \operatorname{dist}[v] \leftarrow \infty
\operatorname{dist}[s] \leftarrow 0
Q \leftarrow \text{MinPQ}(V)
while Q \neq \emptyset do
     u \leftarrow \text{DeleteMin}(Q)
     for all (u, v) \in E \land v \notin Q do
           if dist[v] > dist[u] + l(u, v) then
                 \operatorname{dist}[v] \leftarrow \operatorname{dist}[u] + l(u, v)
                 DECREASEKEY(Q, v)
```


Min-Max Path (Problem 11.12)

G = (V, E): network of highways

 l_e : road length L: tank capacity

Given G, to compute min L in $O(m \log n)$ from s to t.

Min-Max Path (Problem 11.12)

G = (V, E): network of highways

 l_e : road length L: tank capacity

Given G, to compute min L in $O(m \log n)$ from s to t.

$$Q \leftarrow \operatorname{MinPQ}(V)$$

Min-Max Path (Problem 11.12)

G = (V, E): network of highways

 l_e : road length L: tank capacity

Given G, to compute min L in $O(m \log n)$ from s to t.

$$Q \leftarrow \operatorname{MinPQ}(V)$$

for all
$$v \in V$$
 do $L[v] \leftarrow \infty$
 $L[s] \leftarrow 0$

$$\label{eq:loss_loss} \begin{split} \mathbf{if} \ L[v] > \max \Big(L[u], l(u,v) \Big) \ \mathbf{then} \\ L[v] \leftarrow \max \Big(L[u], l(u,v) \Big) \end{split}$$

Max-Min Path (Problem 13.2(1))

G = (V, E): network of oil pipelines

c(u, v): capacity of (u, v)

 $cap(s,t) : \max \min s \leadsto t$

Given s, to compute cap(s, v).

Max-Min Path (Problem 13.2(1))

$$G = (V, E)$$
: network of oil pipelines

c(u, v): capacity of (u, v)

 $cap(s,t) : \max \min s \leadsto t$

Given s, to compute cap(s, v).

$$Q \leftarrow \text{MaxPQ}(V)$$

Max-Min Path (Problem 13.2(1))

$$G = (V, E)$$
: network of oil pipelines

$$c(u, v)$$
: capacity of (u, v)

$$cap(s,t) : \max \min s \leadsto t$$

Given s, to compute cap(s, v).

$$Q \leftarrow \text{MaxPQ}(V)$$

for all
$$v \in V$$
 do $cap[v] \leftarrow -\infty$ $cap[s] \leftarrow 0$

if
$$\operatorname{cap}[v] < \min\left(\operatorname{cap}[u], c(u, v)\right)$$
 then $\operatorname{cap}[v] \leftarrow \min\left(\operatorname{cap}[u], c(u, v)\right)$

Max-Min Path (Problem 13.2 (2))

G = (V, E): network of oil pipelines

c(u, v): capacity of (u, v)

 $cap(s,t) : \max \min s \leadsto t$

Compute all-pair cap(i, j).

Max-Min Path (Problem 13.2(2))

$$G = (V, E)$$
: network of oil pipelines $c(u, v)$: capacity of (u, v)

 $cap(s,t) : \max \min s \rightsquigarrow t$

Compute all-pair cap(i, j).

$$\operatorname{cap}(i,j,k) = \max\Bigl(\operatorname{cap}(i,j,k-1),\min\bigl(\operatorname{cap}(i,k,k-1),\operatorname{cap}(k,j,k-1)\bigr)\Bigr)$$

Max-Min Path (Problem 13.2(2))

$$G = (V, E)$$
: network of oil pipelines $c(u, v)$: capacity of (u, v) $cap(s, t)$: max min $s \rightsquigarrow t$

Compute all-pair cap(i, j).

$$cap(i,j,k) = \max \Big(cap(i,j,k-1), \min \big(cap(i,k,k-1), cap(k,j,k-1) \big) \Big)$$

Shortest Paths Through v_0 (Problem 13.7)

Strongly connected digraph
$$G = (V, E), \quad w(e) > 0$$

$$v_0 \in V$$

Find shortest paths $s \leadsto^{SP} t$ through v_0 .

Shortest Paths Through v_0 (Problem 13.7)

Strongly connected digraph
$$G = (V, E), \quad w(e) > 0$$

$$v_0 \in V$$

Find shortest paths $s \leadsto^{SP} t$ through v_0 .

$$s \rightsquigarrow^{SP} v_0 \rightsquigarrow^{SP} t$$

Shortest Paths Through v_0 (Problem 13.7)

Strongly connected digraph
$$G=(V,E), \quad w(e)>0$$

$$v_0 \in V$$

Find shortest paths $s \leadsto^{SP} t$ through v_0 .

$$s \sim^{\mathrm{SP}} v_0 \sim^{\mathrm{SP}} t$$

$$\forall v: v_0 \leadsto^{\mathrm{SP}} v$$

Most Critical Edge (Problem 11.3)

$$s, t \in V$$

 $e: E \setminus \{e\} \implies \operatorname{dist}(s,t)$ increases most

Most Critical Edge (Problem 11.3)

$$s,t \in V$$

 $e: E \setminus \{e\} \implies \operatorname{dist}(s,t)$ increases most

"Most Vital Links and Nodes in Weighted Networks", 1992

 $O(m \log n)$

Bitonic Shortest Path (Problem 11.7)

Bitonic Shortest Path (Problem 11.7)

Office 302

Mailbox: H016

hfwei@nju.edu.cn