NLP Applications

Week 5: Document Clustering

- Introduction
- Word clustering
- Sentence clustering
- Document clustering
- Evaluation

NLP Applications – Document Clustering

- Introduction:
 - Words that are close in meaning will occur in similar contexts
 - More clearly: Words with similar distributions of nearest terms
 have similar meanings.

- Purposes:
 - Study the internal structure of words
 - Cluster words into groups
- Advantages:
 - Reduce word sparsity
 - Reduce training data size

Word Clustering

- Given that:
 - \square \mathcal{V} is the set of terms in the corpus $w_1, w_2, ..., w_T$
 - \Box \mathcal{C} : \mathcal{V} -> {1, 2, ..., k} is categorizing vocabulary of terms into k clusters
- Model:

$$p(w_1, w_2, \dots w_n) = \prod_{i=1}^n e(w_i | C(w_i)) q(C(w_i) | C(w_{i-1}))$$

<u>Note</u>: $C(w_0)$ is a special state

Example:

$$p(w_1, w_2, \dots w_n) = \prod_{i=1}^n e(w_i | C(w_i)) q(C(w_i) | C(w_{i-1}))$$

$$C(\mathsf{the}) = 1, \quad C(\mathsf{dog}) = C(\mathsf{cat}) = 2, \quad C(\mathsf{saw}) = 3$$

$$e(\mathsf{the}|1) = 1, \quad e(\mathsf{cat}|2) = e(\mathsf{dog}|2) = 0.5, \quad e(\mathsf{saw}|3) = 1$$

$$q(1|0) = 0.2, \quad q(2|1) = 0.4, \quad q(3|2) = 0.3, \quad q(1|3) = 0.6$$

p(the dog saw the cat) =

q(1|0)*q(2|1)*q(3|2)*q(1|3)*q(2|1)*e(the|1)*e(dog|2)*e(saw|3)*e(the|1)*e(cat|2)

Brown clustering: each word has a binary code.

Brown clustering: each word has a binary code.

•	11111111	0110000	slapped
			THE RESERVE AND ADDRESS OF THE PERSON NAMED IN

- 1111111110110000 shattered
- 1111111110110000 commissioned
- 1111111110110000 drafted
- 1111111110110000 authorized
- 1111111110110000 authorised
- 11111111110110000 imposed
- 1111111110110000 established
- 111111110110000 developed

- <u>1111111111100110</u> officer
- 111111111100110 acquaintance
- 111111111100110 policymaker
- 1111111111100110 instructor
- 1111111111100110 investigator
- 111111111100110 advisor
- 1111111111100110 aide
- 1111111111100110 expert
- 1111111111100110 adviser

- Brown clustering (Brown, 1992):
 - \square \mathcal{V} is the set of terms in the corpus $w_1, w_2, ..., w_T$
 - \square $\mathcal{C}: \mathcal{V} \rightarrow \{1, 2, ..., k\}$ is categorizing vocabulary of terms into k clusters
 - □ Parameter e(v|c) for each $v \in V$, $c \in \{1, 2, ..., k\}$
 - □ Parameter q(c'|c) for each c', $c \in \{1, 2, ..., k\}$

one of the fitchemus

Word Clustering

Evaluate the quality of C:

$$\begin{aligned} \text{Quality}(C) &= \sum_{i=1}^{n} \log e(w_{i}|C(w_{i})) q(C(w_{i})|C(w_{i-1})) \\ &= \sum_{c=1}^{k} \sum_{c'=1}^{k} p(c,c') \log \frac{p(c,c')}{p(c)p(c')} + G \\ p(c,c') &= \frac{n(c,c')}{\sum_{c,c'} n(c,c')} \quad p(c) = \frac{n(c)}{\sum_{c} n(c)} \end{aligned}$$

G: constant, n(c): number of times cluster c appears in the corpus, $\mathbf{n}(\mathbf{c},\mathbf{c}')$: number of times cluster c and cluster c' appear in the same \mathcal{C}

- □ Algorithm (1):
 - \Box Start from $|\mathcal{V}|$ clusters: each term corresponds to a cluster
 - Goal: find the output k clusters
 - \square Run $|\mathcal{V}|$ k steps:
 - ☐ For each step, group c_i and c_i into a cluster
 - ☐ Choose the grouped cluster so that its Quality(C) is the highest
- □ Time complexity:
 - \Box Simple: $O(|\mathcal{V}|^5)$
 - \square Improved: $O(|\mathcal{V}|^3)$

- □ Algorithm (2):
 - \Box A parameter m (For example: m = 1000)
 - \Box Pick m most frequent terms, categorize them into c_1 , c_2 , ..., c_m
 - □ For each $i = (m+1) ... |\mathcal{V}|$
 - \Box Create a new cluster c_{m+1} to store the term at ith-position frequency (m+1 cluster)
 - ☐ Group 2 clusters from c₁...c_{m+1}: choose the grouped cluster so that its Quality(C) is the highest (m clusters)
- □ Time complexity:
 - \Box O(\Box /m² + n) (n is the length of corpus)

fit@hcmus Word Clustering

- □ Tools:
 - □ mkcls (Franz Och): https://github.com/clab/mkcls
 - □ brown cluster (Brown): https://github.com/percyliang/brown-cluster

fit@hcmus Word Clustering

- Is it possible to use clustering algorithm such as K-means?
 - □ word => vector

- Word vector:
 - Store important information in fixed-dimension vectors.
 - Methods:
 - □ Singular Value Decomposition (SVD) applied to co-occurrence matrix
 - \square motel = [0.286, 0.792, -0.177, -0.107, 0.109, -0.542, 0.349, 0.271]
 - \Box m = n = size of vocabulary

fit@hcmus Word Clustering

- Word vector:
 - □ SVD:
 - \Box High time complexity: O(mn²)
 - Difficulty in adding new words
 - No word order

- Word vector:
 - □ TF-IDF: Term Frequency Inverse Document Frequency
 - A numerical statistic that is intended to reflect how important a word is to a document based on its frequency
 - □ Observe:
 - A word which occurs many times in a document (high TF) may be more important than a word which occurs few times in the same document (low TF)
 - However, a word that occurs very often in many documents may not be important or relevant (low IDF)

Word Clustering

- Word vector:
 - □ TF-IDF: Term Frequency Inverse

Document Frequency

$$tfidf(t,d,D) = tf(t,d) \times idf(d,D)$$

$$tf(t,d) = rac{f_{t,d}}{\sum_{t'} f_{t',d}}$$

 $\boldsymbol{f}_{t,d}$ is number of times term t appears in d

$$idf(t, D) = \log(\frac{N}{n_t})$$

 n_t is number of documents in the corpus D (N = |D|) that contain term t

- Word vector: TF-IDF
 - With the following corpus:
 - d1: "The sky is blue."
 - □ d2: "The sun is bright today."
 - d3: "The sun in the sky is bright."
 - □ d4: "We can see the shining sun, the bright sun."
 - Calculate tf-idf for terms of each document

fit@hcmus Word Clustering

- Word vector: TF-IDF
 - Step 1: Remove stopwords
 - □ d1: "sky blue"
 - d2: "sun bright today"
 - d3: "sun sky bright"
 - d4: "can see shining sun bright sun"

- Word vector: TF-IDF
 - □ Step 2: Calculate TF

$$f_{t,d}$$

	blue	bright	can	see	shining	sky	sun	today
1	1	0	0	0	0	1	0	0
2	0	1	0	0	0	0	1	1
3	0	1	0	0	0	1	1	0
4	0	1	1	1	1	0	2	0

	blue	bright	can	see	shining	sky	sun	today
1	1/2	0	0	0	0	1/2	0	0
2	0	1/3	0	0	0	0	1/3	1/3
3	0	1/3	0	0	0	1/3	1/3	0
4	0	1/6	1/6	1/6	1/6	0	1/3	0

- Word vector: TF-IDF
 - □ Step 3: Calculate IDF

$$f_{t,d}$$

	blue	bright	can	see	shining	sky	sun	today
1	1	0	0	0	0	1	0	0
2	0	1	0	0	0	0	1	1
3	0	1	0	0	0	1	1	0
4	0	1	1	1	1	0	2	0
n_t	1	3	1	1	1	2	3	1

$$idf(t, D) = \log_{10} \frac{N}{n_t}$$

Word Clustering

Word vector: TF-IDF

tf(t,d)

	blue	bright	can	see	shining	sky	sun	today
1	1/2	0	0	0	0	1/2	0	0
2	0	1/3	0	0	0	0	1/3	1/3
3	0	1/3	0	0	0	1/3	1/3	0
4	0	1/6	1/6	1/6	1/6	0	1/3	0

 TF-IDF: Multiply TF and IDF scores, use to rank importance of words within documents

Most important word for each document is highlighted

$$\mathsf{tfidf}(t, d, D) = \mathsf{tf}(t, d) \cdot \mathsf{idf}(t, D)$$

	blue	bright	can	see	shining	sky	sun	today
1	0.301	0	0	0	0	0.151	0	0
2	0	0.0417	0	0	0	0	0.0417	0.201
3	0	0.0417	0	0	0	0.100	0.0417	0
4	0	0.0209	0.100	0.100	0.100	0	0.0417	0

X

- Word vector:
 - □ Word2vec (Mikolov, 2013)
 - Words are represented as vectors in a low-dimensional vector space
 - Word similarity = Vector similarity
 - Prediction model: predict words based on contexts

- word2vec: uses a neural network model
 - Continuous Bag of Word (CBOW):
 guess the target word from its
 neighboring words (context words)
 - Skip-gram (SG): guess a given word's neighboring words

- Example: "The cat sat on floor"
 - \Box window = 2

TP. HO CHIMINH **Word Clustering**

□ Example:

Word Clustering

Example:

Word Clustering

Example:

Word Clustering

Example:

Word Clustering

Example:

Word Clustering

Example: Word analogy

Test for linear relationships, examined by Mikolov et al. (2014)

NLP Applications – Document Clustering

SENTENCE/DOCUMENT CLUSTERING

Sentence/Document Clustering

- Sentence/Document representation:
 - Simple method: average of word vectors
 - Neural Network: Paragraph vector (Quoc Le 2014)
 - ☐ Improved word2vec: represent each document by a vector
 - Or expand the model: document vector is added to the input

Q&A