Прохождение сигнала и квазигармонического шума через частотный детектор

1. Статистические характеристики шума на выходе частотного детектора

Напряжение на выходе частотного демодулятора (ЧД) с линейной характеристикой прямо пропорционально отклонению мгновенной частоты входного колебания f(t) от переходной частоты ЧД f_0 :

$$U_{\mathbf{H}\Pi}(t) = S_{\mathbf{H}\Pi}(f(t) - f_0), \tag{1}$$

где $S_{\rm чд}$ — крутизна характеристики ЧД. Поэтому для определения статистических характеристик шумового напряжения на выходе ЧД нужно знать статистические характеристики мгновенной частоты смеси сигнала и квазигармонического шума на его входе, т.е. на выходе блока высокой частоты (БВЧ) радиоприёмника. На статистические характеристики шума на выходе приёмника влияет также вид амплитудно-частотной характеристики блока низкой частоты (БНЧ).

Рассмотрим статистические характеристики мгновенной частоты смеси немодулированного гармонического сигнала и квазигармонического шума, считая, что частота сигнала совпадает с центральной частотой спектра шума ω_0 . Плотность вероятности мгновенной частоты в общем случае имеет сложный вид. В отсутствие сигнала она равна

$$w(\omega) = \frac{-\psi_0''}{2\left[\left(\omega - \omega_0\right)^2 - \psi_0''\right]^{3/2}},$$
(2)

где $\psi_0'' = \frac{d^2 \psi(\tau)}{d\tau^2} \bigg|_{\tau=0}$, $\psi(\tau)$ – огибающая нормированной автокорреляционной

функции шума. Плотность вероятности симметрична относительно ω_0 , поэтому среднее значение мгновенной частоты равно центральной частоте спектра шума: $\overline{\omega} = \omega_0$. С увеличением отношения сигнал-шум концентрация плотности вероятности вокруг ω_0 возрастает. Графики плотности вероятности мгновенной частоты смеси сигнала и шума при различной величине отношения амплитуды сигнала к среднеквадратическому (эффективному) напряжению шума U.

$$a = \frac{U_c}{U_{...}}$$
 приведены на рис. 1.

Рис. 1. Плотность вероятности мгновенной частоты смеси сигнала и шума

Анализ выражения для дисперсии мгновенной частоты показывает, что определяющий её интеграл $\sigma_{\omega}^2 = \int\limits_0^{\infty} \left(\omega - \omega_0\right)^2 w(\omega) d\omega$ расходится при любом от-

ношении сигнал-шум. Это означает, что дисперсия мгновенной частоты не существует (бесконечно велика). Физически это связано с резкими изменениями (*«скачками»*) фазы смеси сигнала и шума, которым соответствуют так называемые *аномальные выбросы* мгновенной частоты. Поэтому интенсивность флуктуаций (случайных отклонений от среднего значения) мгновенной частоты характеризуют не среднеквадратическим σ_{ω} , а *средним абсолютным* отклонением

$$S_{\omega} = |\overline{\omega - \omega_0}| = \int_{0}^{\infty} |\omega - \omega_0| w(\omega) d\omega, \qquad (3)$$

которое имеет конечную величину.

Для определения статистических характеристик шума на выходе ЧД и БНЧ рассмотрим автокорреляционную функцию (АКФ) и энергетический спектр (спектральную плотность мощности) отклонения мгновенной частоты смеси сигнала и шума от ω_0 . Отклонение мгновенной частоты равно

$$\Delta\omega(t) = \omega(t) - \omega_0 = \frac{d\theta(t)}{dt},\tag{4}$$

где $\theta(t) = \arctan \frac{U_{\text{\tiny III}}^{\text{\tiny s}}(t)}{U_{\text{\tiny c}} + U_{\text{\tiny III}}^{\text{\tiny c}}(t)}$ — фаза смеси сигнала и шума, $U_{\text{\tiny III}}^{\text{\tiny c}}(t)$ — косинусная низ-

кочастотная составляющая шума; $U_{\rm m}^{\rm s}(t)$ – синусная низкочастотная составляющая шума, $U_{\rm c}$ – амплитуда сигнала на выходе БВЧ.

Рассмотрим предельный случай большого отношения амплитуды сигнала к эффективному напряжению шума: $a=\frac{U_{\rm c}}{U_{\rm m}}>>1$. Из векторной диаграммы (рис. 2) следует, что в этом случае изменение фазы $\theta(t)$ в первую очередь опре-

$$\theta(t) = \arctan \frac{U_{\text{III}}^{\text{s}}(t)}{U_{\text{c}} + U_{\text{III}}^{\text{c}}(t)} \approx \arctan \frac{U_{\text{III}}^{\text{s}}(t)}{U_{\text{c}}} \approx \frac{U_{\text{III}}^{\text{s}}(t)}{U_{\text{c}}}.$$

Следовательно,

$$\Delta\omega(t) = \frac{d\theta(t)}{dt} \approx \frac{1}{U_c} \frac{dU_{\text{\tiny III}}^{\text{s}}(t)}{dt}.$$
 (5)

Для определения автокорреляционной функции отклонения мгновенной частоты воспользуемся тем, что АКФ производной некоторого случайного процесса $\xi(t)$ равна 2-й производной АКФ этого процесса, взятой со знаком «минус» [2]:

$$K_{\xi'}(\tau) = -K_{\xi}''(\tau).$$

При a >> 1 АКФ отклонения мгновенной частоты равна

деляется изменением синусной составляющей шума:

$$K_{\Delta\omega}(\tau) = -K_{\theta}^{"}(\tau) \approx \frac{1}{U_{c}^{2}} K_{U_{m}^{S'}}(\tau) = -\frac{1}{U_{c}^{2}} K_{U_{m}^{S}}^{"}(\tau). \tag{6}$$

Исходя из этого выражения на основании теоремы Винера-Хинчина [1]

энергетический определим спектр отклонения мгновенчастоты. По теореме Винера-Хинчина двусторон-(«математический») энергетический спектр случайного процесса равен преобразованию Фурье его АК $\Phi^{1)}$:

Рис. 2. Векторная диаграмма комплексной огибающей суммы сигнала и шума

$$G_{U_{\text{III M}}^{\text{S}}}(\Omega) = \mathcal{F}\left\{K_{U_{\text{III}}^{\text{S}}}(\tau)\right\}.$$

В соответствии со свойствами преобразования Фурье двукратному дифференцированию АКФ соответствует двукратное умножение «математического» энергетического спектра на $j\Omega$, т.е. на $-\Omega^2$:

$$\mathcal{F}\left\{K_{U_{\text{III}}^{\text{S}}}^{\text{"}}(\tau)\right\} = (j\Omega)^{2} G_{U_{\text{IIIM}}^{\text{S}}}(\Omega) = -\Omega^{2} G_{U_{\text{IIIM}}^{\text{S}}}(\Omega).$$

Следовательно, при большом отношении сигнал-шум «математический» энергетический спектр отклонения мгновенной частоты смеси сигнала и шума равен

$$G_{\Delta \omega \, \mathrm{M}}(\Omega) \approx \left(-\frac{1}{U_{\mathrm{c}}^{2}}\right) \left[-\Omega^{2} G_{U_{\mathrm{m} \, \mathrm{M}}^{\mathrm{S}}}(\Omega)\right] = \frac{\Omega^{2}}{U_{\mathrm{c}}^{2}} G_{U_{\mathrm{m} \, \mathrm{M}}^{\mathrm{S}}}(\Omega).$$

Теперь перейдём к одностороннему («физическому») энергетическому $\Delta f = \frac{\Delta \omega}{2\pi}$. Поскольку частоты спектру отклонения

$$G_{\Delta\!f\,\scriptscriptstyle{\mathrm{M}}}\!\left(\Omega\right)\!=\!rac{1}{\left(2\pi
ight)^2}G_{\Delta\!\omega\,\scriptscriptstyle{\mathrm{M}}}\!\left(\Omega\right)\!pprox\!rac{1}{\left(2\pi
ight)^2}rac{\Omega^2}{U_{\scriptscriptstyle\scriptscriptstyle\mathrm{C}}^2}G_{U_{\scriptscriptstyle\scriptscriptstyle{\mathrm{III}}\,\scriptscriptstyle{\mathrm{M}}}^\mathrm{N}}\!\left(\Omega\right)$$
, то «физический» спектр равен

$$G_{\Delta f}(F) = 2G_{\Delta f_{\mathrm{M}}}(2\pi F) \approx \frac{F^2}{U_{\mathrm{c}}^2} G_{U_{\mathrm{m}}^{\mathrm{S}}}(F), \qquad (7)$$

где $G_{U^{\rm S}_{\mathfrak{m}}}(F) = 2G(f_0 + F)$ — энергетический спектр синусной составляющей шума, который получается из спектра шума G(F) сдвигом на нулевую частоту и умножением на 2.

 $^{^{\}scriptscriptstyle (1)}$ Аргумент спектра обозначен буквой Ω для того, чтобы отличать его от мгновенной частоты колебания ω

Таким образом, при большом отношении сигнал-шум энергетический спектр отклонения мгновенной частоты имеет вид квадратичной параболы, умноженной на спектр синусной низкочастотной составляющей шума. На рис. 3 показан энергетический спектр отклонения мгновенной частоты в случае прямоугольной АЧХ БВЧ радиоприёмника с шириной полосы $\Pi_{\rm m}$. Поскольку спектр синусной составляющей шума в этом случае имеет форму прямоугольника с основанием $\Pi_{\rm m}/2$, то спектр $G_{\Delta f}(F)$ представляет собой квадратичную параболу, ограниченную частотой $\Pi_{\rm m}/2$. При уменьшении отношения сигналшум вид спектра меняется: его уровень вблизи нулевой частоты повышается, и он обогащается высокочастотными составляющими (рис. 4). Это связано с тем, что при малом отношении сигнал-шум происходят так называемые *аномальные выбросы мгновенной частоты*, обусловленные быстрыми изменениями («скачками») фазы. Эти «скачки» происходят в том случае, когда вектор комплексной огибающей смеси сигнала и шума в процессе своего хаотического движения проходит вблизи начала координат.

Рис. 3. Энергетический спектр мгновенной частоты при большом отношении сигнал-шум

Рис. 4. Энергетический спектр мгновенной частоты при различном отношении сигнал-шум

Для того чтобы пояснить это явление, рассмотрим траекторию вектора комплексной огибающей суммы сигнала и шума (её годограф) для одной и той же реализации шума сначала при большом отношении сигнал-шум (рис. 5,а), а затем — при малом (рис. 6,а). Исходя из этого годографа, построим графики изменения полной фазы колебания (рис. 5,б, рис. 6,б) и её производной (рис. 5,в, рис. 6,в), которая определяет отклонение мгновенной частоты от среднего значения. При сравнительно большом отношении сигнал-шум (a = 3) годограф комплексной огибающей проходит вдали от начала координат. При этом фаза колебания (рис. 5,б) изменяется медленно, и колебания мгновенной частоты (рис. 5,в) имеют плавный характер. При малом отношении сигнал-шум (a = 1) в некоторый момент времени t' годограф проходит вблизи начала координат (рис. 6,а). При этом вектор комплексной огибающей быстро меняет своё на-

правление на противоположное, т.е. происходит быстрое изменение («скачок») фазы колебания (рис. 6,б). А поскольку отклонение частоты колебания равно производной фазы, то каждому «скачку» фазы соответствует короткий интенсивный всплеск (аномальный выброс) мгновенной частоты (рис. 6,в).

Рис. 5. Годограф комплексной огибающей (a), полная фаза колебания (δ) и отклонение частоты (ϵ) при a=3

Рис. 6. Годограф комплексной огибающей (a), полная фаза колебания (δ) и отклонение частоты (ϵ) при a=1

Вероятность «скачков» фазы, а, следовательно, и вероятность аномальных выбросов частоты тем больше, чем меньше отношение сигнал-шум. Именно наличием аномальных выбросов и объясняется бесконечно большая величина дисперсии мгновенной частоты шума. А поскольку каждый аномальный выброс частоты имеет широкий спектр, то с увеличением вероятности их появления при малом отношении сигнал-шум повышается уровень энергетического спектра

мгновенной частоты как в области низкочастотного квадратичного участка, так и в области высоких частот (за пределами граничной частоты $\Pi_{\rm m}/2$).

2. Отношение сигнал-шум на выходе приёмника

Расчёт отношения сигнал-шум на выходе приёмника ЧМ сигнала производится при следующих условиях:

- БВЧ имеет прямоугольную АЧХ с центральной частотой f_0 и полосой пропускания $\Pi_{\rm m}$, коэффициент передачи равен $K_{0~{\rm БВЧ}}$;
- ЧД имеет линейную характеристику, крутизна $S_{\rm чд}$ которой не зависит от уровня сигнала;
- АЧХ БНЧ прямоугольна и ограничена частотой $F_{_{\rm B}}$, коэффициент передачи равен $K_{_{0}\ {\rm БНЧ}}=1$;
- сигнал имеет гармоническую ЧМ с девиацией Δf_m и частотой модуляции $F_{_{\rm M}}$, частота несущей равна центральной частоте БВЧ $f_{_0}$, индекс модуляции $\beta_{_{\rm ЧМ}} = \Delta f_m/F_{_{\rm M}} >> 1$;
- шум на входе БВЧ белый со спектральной плотностью G_0 ;
- отношение амплитуды сигнала к эффективному напряжению шума на входе ЧД a>>1 .

Поскольку в частотном демодуляторе, который относительно мгновенных значений напряжения является нелинейным устройством, происходит взаимодействие сигнала и шума, то для расчёта отношения сигнал-шум на выходе приёмника необходимо прежде всего определить, что в этом случае понимается под сигналом, а что — под шумом:

- сигнал это математическое ожидание (среднее по ансамблю реализаций) напряжения на выходе БНЧ при действии на входе приёмника смеси <u>ЧМ</u> сигнала и белого шума;
- шум это случайная составляющая напряжения на выходе БНЧ при действии на входе приёмника смеси <u>немодулированного сигнала</u> и белого шума.

Отношение сигнал-шум на выходе приёмника равно

$$q_{\text{вых}} = \frac{P_{\text{с. вых}}}{P_{\text{III. вых}}} = \frac{U_{\text{с. вых}}^2}{2U_{\text{III. вых}}^2},$$
 (8)

где $U_{\rm c.\, вых}$ — амплитуда сигнала, $U_{\rm \tiny III.\, выx}$ — среднеквадратическое напряжение шума.

Найдём амплитуду сигнала $U_{\rm c.\, вых}$. Поскольку a>>1, то математическое ожидание мгновенной частоты смеси сигнала и шума приблизительно равно мгновенной частоте ЧМ сигнала $^{2)}$:

$$\overline{f(t)} = f_0(t) = f_0 + \Delta f_m \cos 2\pi F_n t$$
.

 $^{^{2)}}$ В те моменты времени, когда мгновенная частота сигнала равна частоте несущей, совпадающей с центральной частотой спектра шума, это равенство является точным.

Следовательно, амплитуда сигнала на выходе БНЧ с коэффициентом передачи $K_{0 \text{ БНЧ}} = 1 \text{ равна}$

$$U_{c,\text{plix}} = S_{\text{U}\Pi} \Delta f_{m} \,. \tag{9}$$

Найдём дисперсию (квадрат среднеквадратического напряжения) шума $U_{\scriptscriptstyle
m III.\,\, Bыx}^2$. Поскольку в соответствии с принятым определением шума на выходе приёмника условно считается, что модуляция сигнала отсутствует, то при a >> 1энергетический равен

 $G_{\text{чд}}\left(F\right) = S_{\text{чд}}^2 G_{\Delta f}\left(F\right) \approx S_{\text{чд}}^2 \frac{F^2}{U_{\text{ш}}^2} G_{U_{\text{ш}}^{\text{S}}}(F)$. В случае прямоугольной АЧХ БВЧ энер-

гетический спектр шума на выходе БВЧ с коэффициентом передачи $K_{0 \, {\rm БВЧ}}$ имеет прямоугольную форму и уровень $K_{0 \, {\rm BB}^{\rm u}}^2 G_0$ (рис. 7,a). Энергетический спектр синусной составляющей шума расположен в области низких частот, его ширина равна $\Pi_{_{\rm III}}/2$, а уровень — $2K_{_{0}\;{\rm БBЧ}}^2G_{_0}$ (рис. 7,б). Следовательно,

$$G_{\text{чд}}(F) \approx S_{\text{чд}}^2 \frac{F^2}{U_c^2} \cdot 2K_{0 \text{ БВЧ}}^2 G_0, \quad F \in [0, \Pi_{\text{III}}/2].$$
 (10)

Рис. 7. Энергетический спектр шума на выходе БВЧ (а) и его синусной составляющей (б)

Дисперсия шума на выходе БНЧ с АЧХ $K_{\text{БНЧ}}(F)$ равна

$$U_{\text{III. BMX}}^{2} = \int_{0}^{\infty} K_{\text{БНЧ}}^{2}(F) G_{\text{ЧД}}(F) dF . \qquad (11)$$

Поскольку прямоугольная АЧХ БНЧ ограничена частотой $F_{_{\rm B}}$ и коэффициент передачи БНЧ $K_{0 \text{ БНЧ}} = 1$, то

$$U_{\text{III. BMX}}^{2} = \int_{0}^{F_{\text{B}}} G_{\text{ЧД}}(F) dF . \tag{12}$$

Значение этого интеграла зависит от того, как соотносятся между собой граница полосы пропускания БНЧ $F_{_{\rm B}}$ и верхняя граничная частота спектра шума на выходе ЧД, равная $\Pi_{\text{m}}/2$. Рассмотрим это соотношение.

Граница полосы пропускания БНЧ $F_{\rm B}$ определяется частотой демодулированного низкочастотного колебания, которая равна частоте модуляции сигнала $F_{\rm M}$. Для того чтобы на выход БНЧ не проходил излишний шум, принимают $F_{\rm B}=F_{\rm M}$. Верхняя граничная частота спектра шума определяется полосой пропускания БВЧ, которая, в свою очередь, должна быть согласована с шириной спектра ЧМ сигнала. Известно [3], что форма спектра ЧМ сигнала при гармонической модуляции зависит от индекса модуляции $\beta_{\rm ЧM}$ и при $\beta_{\rm ЧM} >> 1$ ширина спектра сигнала приблизительно равна удвоенной девиации частоты $2\Delta f_{\rm m}$. Поэтому считаем, что полоса БВЧ равна $\Pi_{\rm m}=2\Delta f_{\rm m}=2\beta_{\rm ЧM}F_{\rm M}$, а поскольку $\beta_{\rm ЧM} >> 1$, то $\Pi_{\rm m}/2>>F_{\rm M}$. Следовательно, верхняя граничная частота БНЧ значительно меньше граничной частоты спектра шума на выходе ЧД, и дисперсия шума на выходе БНЧ равна (рис. 8)

$$U_{\text{III. Bbix}}^{2} = \int_{0}^{F_{\text{M}}} S_{\text{ЧД}}^{2} \frac{F^{2}}{U_{c}^{2}} \cdot 2K_{0 \text{ БВЧ}}^{2} G_{0} dF = \frac{2K_{0 \text{ БВЧ}}^{2} G_{0} S_{\text{ЧД}}^{2}}{U_{c}^{2}} \cdot \frac{F_{\text{M}}^{3}}{3}.$$
(13)

Теперь, подставляя (9) и (13) в (8), найдём отношение сигнал-шум на выходе приёмника:

$$q_{\text{вых}} = \frac{U_{\text{с. вых}}^2}{2U_{\text{ш. вых}}^2} = \frac{\left(S_{\text{чд}}\Delta f_m\right)^2}{2 \cdot \frac{2K_{0}^2 \text{ БВЧ}}^2 G_0 S_{\text{чд}}^2}{U_{\text{c}}^2} \cdot \frac{F_{\text{м}}^3}{3}}.$$
(14)

Домножая числитель и знаменатель (14) на Δf_m , сокращая $S_{\rm чд}^2$ и учитывая, что $2\Delta f_m = \Pi_{\rm m}$, а $\Delta f_m/F_{\rm m} = \beta_{\rm чм}$, приведём это выражение к следующему виду:

$$q_{\text{вых}} = 3 \frac{U_{\text{c}}^2/2}{K_{0 \text{ БВЧ}}^2 G_0 \Pi_{\text{III}}} \beta_{\text{ЧМ}}^3.$$

Поскольку стоящее в числителе произведение $K_{0~\rm BBY}^2G_0\Pi_{\rm m}$ равно дисперсии шума на выходе БВЧ, то выражение $\frac{U_{\rm c}^2/2}{K_{0~\rm BBY}^2G_0\Pi_{\rm m}}$ определяет отношение сигнал-шум по мощности $q_{\rm bx}=P_{\rm c.\,bx.\,ЧД}/P_{\rm m.\,bx.\,ЧД}$ на входе ЧД. Таким образом, при большом отношении сигнал-шум на входе ЧД отношение сигнал-шум по мощности на выходе приёмника равно

$$q_{\text{вых}} = 3\beta_{\text{ЧМ}}^3 q_{\text{вх}}. \tag{15}$$

Замечание. Частотная модуляция сигнала приводит к изменению энергетического спектра флуктуаций мгновенной частоты смеси сигнала и шума (рис. 9). Однако в области низких частот, которая существенна при расчёте отношения сигнал-шум на выходе БНЧ, форма спектра практически не меняется. Это и позволяет при расчёте отношения сигнал-шум понимать под шумом на выходе приёмника случайную составляющую напряжения на выходе БНЧ при действии на входе приёмника смеси немодулированного сигнала и шума.

Рис. 8. К расчёту дисперсии шума на выходе БНЧ

 $G_{\Delta f}$ 0 $\Pi_{\mathrm{m}}/2$ F

Рис. 9. Энергетический спектр мгновенной частоты смеси сигнала и шума: 1 — для немодулированного сигнала; 2 — для ЧМ сигнала с индексом модуляции 5 (ширина «ступенек» в высокочастотной области спектра равна частоте модуляции)

Формула (15) получена при условии, что $\beta_{\rm ЧM} >> 1$. Поэтому из неё следует, что отношение сигнал-шум на выходе приёмника значительно больше, чем на входе ЧД, и что тем самым обеспечивается высокое качество приёма ЧМ сигнала

при действии шума. Этот вывод, однако, справедлив только в том случае, когда энергетический спектр шума на выходе ЧД имеет параболическую форму, т.е. при достаточно большом отношении сигнал-шум на входе ЧД. Если же отношение сигнал-шум на входе ЧД будет меньше некоторой пороговой величины, то уровень спектра шума на его выходе в области низких частот увеличится (см. рис. 4) и это приведёт к резкому уменьшению отношения сигналшум на выходе приёмника и, следовательно, к ухудшению качества приёма. Это явление называется пороговым эффектом при приёме ЧМ сигнала. Физической причиной порогового эффекта являются аномальные выбросы мгновенной частоты смеси сигнала и шума, вероятность которых при уменьшении отношения сигнал-шум возрастает.

Рис. 10. Зависимости отношения сигналшум на выходе приёмника от отношения сигнал-шум на входе ЧД

На рис. 10 приведены графики зависимостей отношения сигнал-шум на выходе приёмника (в децибелах) от отношения сигнал-шум на входе ЧД (в децибелах), полученных на модели для различных значений индекса модуляции при условии, что $\Pi_{\text{III}} = 2\Delta f_m$, $F_{\text{B}} = F_{\text{M}}$. Штриховой линией показаны зависимости, рассчитанные по формуле (15). Пороговое значение отношения сигнал-шум на входе ЧД зависит от индекса модуляции и составляет $q_{\text{вх. II}} \approx 7-12\,\text{дБ}$, что соот-

ветствует значению параметра $a_{_{\Pi}} = \sqrt{2q_{_{\rm вх.\,\Pi}}} \approx 3-5$. При уменьшении индекса модуляции пороговое отношение сигнал-шум уменьшается.

Таким образом, видно, что формула (15) справедлива только при $q_{\rm вx} > q_{\rm вx...}$ т.е. в так называемой *надпороговой области* и при большом индексе модуляции. При малых значениях индекса модуляции ($\beta_{\rm чм} < 5$) эта формула даёт несколько заниженную величину отношения сигнал-шум на выходе приёмника.

При передаче информации с помощью ЧМ сигнала модулирующее колебание занимает некоторую область частот. Поскольку при $q_{\scriptscriptstyle \mathrm{BX}} > q_{\scriptscriptstyle \mathrm{BX},\, \Pi}$ энергетический спектр шума на выходе ЧД имеет вид квадратичной параболы, то для различных частотных составляющих демодулированного колебания отношение сигнал-шум будет различным – большим в области низких частот и меньшим в области высоких частот. В связи с этим, для того чтобы обеспечить независимость отношения сигнал-шум от частоты модулирующего колебания, в состав модулятора передатчика включают предыскажающий фильтр, а в состав БНЧ приёмника – корректирующий фильтр [3]. Обычно для этой цели используют соответственно дифференцирующую и интегрирующую RC-цепи. В рабочей полосе частот модуляции АЧХ предыскажающего фильтра прямо пропорциональна частоте, а корректирующего фильтра – обратно пропорциональна. Поскольку энергетический спектр шума на выходе корректирующего фильтра с АЧХ $K_{\text{корр}}(F)$ равен $G_{\text{корр}}(F) = K_{\text{корр}}^2(F)G_{\text{ЧД}}(F)$, а при большом отношении сигналшум на входе ЧД $G_{\rm чд}(F) \propto F^2$, то в рабочей полосе частот, где $K_{\rm корp}(F) \propto 1/F$, его уровень будет постоянным: $G_{\text{корр}}(F) = const$. Происходящее при этом ослабление высокочастотных составляющих демодулированного колебания компенсируется с помощью предыскажающего фильтра, который повышает уровень высокочастотных составляющих модулирующего колебания.

Контрольные вопросы

- 1. Как связаны между собой мгновенная частота и фаза суммы сигнала и квазигармонического шума?
- 2. Какие случайные процессы называются низкочастотными квадратурными составляющими квазигармонического шума?
- 3. Как связана мгновенная частота смеси сигнала и квазигармонического шума с синусной составляющей шума при большом отношении сигнал-шум?
- 4. Чем обусловлено появление аномальных выбросов мгновенной частоты при малом отношении сигнал-шум?
- 5. Почему для количественной характеристики флуктуаций мгновенной частоты смеси сигнала и шума используют среднее абсолютное отклонение, а не среднеквадратическое отклонение?
- 6. Почему с увеличением отношения сигнал-шум на входе ЧД уменьшается вероятность появления аномальных выбросов напряжения на его выходе?

- 7. Как изменяется форма энергетического спектра шума на выходе ЧД при увеличении отношения сигнал-шум на входе?
- 8. Почему зависимость отношения сигнал-шум на выходе приёмника ЧМ сигнала от отношения сигнал-шум на входе ЧД имеет пороговый характер?
- 9. Как влияет вид АЧХ БНЧ на эффективное напряжение шума на выходе приёмника (в случае большого отношения сигнал-шум на входе ЧД)?
- 10. Почему при расчёте дисперсии шума на выходе приёмника в надпороговой области можно условно считать, что частотная модуляция сигнала отсутствует?
- 11. Как влияет вид АЧХ БНЧ на отношение сигнал-шум на выходе приёмника в надпороговой области?
- 12. Для чего в приёмнике ЧМ сигналов производится «выравнивание» спектральной плотности шума с помощью корректирующего низкочастотного фильтра?
 - 13. В чём физическая причина порогового эффекта при приёме ЧМ сигнала?
- 14. Как зависит пороговое отношение сигнал-шум от индекса частотной модуляции сигнала?

Библиографический список

- 1. **Карташёв В.Г.** Основы теории случайных процессов: учебное пособие для вузов / В.Г.Карташёв, Е.В.Шалимова. М.: Издательство МЭИ, 2005.
- 2. **Шахтарин Б.И.** Случайные процессы в радиотехнике. 2-е изд. Ч. 1. Линейные системы. М.: Радио и связь, 2002.
- 3. **Колосовский Е.А.** Устройства приёма и обработки сигналов: учебное пособие для вузов. М.: Горячая линия Телеком, 2007.