COVID19 EDA - Trends and Outbreak Prediction of Spread in USA

Project Title: COVID19 EDA - Trends and Outbreak Prediction of Spread in USA

Name: Ragunath Gunasekaran

Professor Name: Dr. Shankar Parajulee

Course Name: DSC530-T302 Data Exploration and Analysis

Project Goal: Develop COVID19 Data Tracker Tool with Key Performance Indicators (KPI), Trends, Geographic and Various visualizations, Prediction of CoronaVirus in the USA by using COVID19 Datasets and Python Programming Language.

Project Purpose: By using the COVID19 Data Tracker, end users can see the current spread and future forecast details across the country along with various entities like Ethnicity, Geographic, Income Etc. Also COVID19 Data Tracker, will alert the end users with trends on Daily and Monthly Changes.

Research Questions:

- 1. Daily Confirmed, new Confirmed and Death cases Analysis by Country, State, County
- 2. Predict the Corona Cases and Death
- 3. State Level Counts of Corona virus, Comparison between States
- 4. Calculate Recovery and Death Rates, Deaths per 100k
- 5. Number of Corona Cases comparison: Positive vs Negative
- 6. Testing Count Details by Country, State, County
- 7. Count of patients: Infected by Virus and Deaths

Introduction:

As of today, Corona cases in USA as below.

- 1. Number of Cases 11.8 M
- 2. Number of Deaths 252K

The Analyses of current and future Spread is very important step in facing this pandemic situation. This Analysis will help Government/Local bodies plan for the next steps.

Project Approaches:

I am going to follow the below 4 steps in the Project. (Shown in below diagram below References)

- 1. Data Exploration
- 2. Data Cleaning and Preparation
- 3. Exploratory Data Analysis

```
Confirmed vs Deaths Count Analysis - Scatter Plot
US Death vs Death Rate Percentage
PMF (Probability Mass function) - Death Rate Analysis by using Hist
ogram
CDF (Cumulative distribution function) - Confirmed Cases, Death Ana
lysis
Normal Probability - Mean, Standard Deviation Analysis
PDF (probability density function) - Death Analysis with P-Values
Correlation Verification - Confirmed Cases Vs Death Counts
Confirmed vs Death cases with the Fitted line - Slope
Hypothesis Test
Linear Regression - Death vs Cases ( ordinary least squares )
Logistic Regression Analysis of Death Rate with Confirmed, Death Ca
ses
Forecast using ARIMA Model
Prediction of Confirmed Cases - ARIMA Model - Time Series Forecasti
ng
```

- 4. Conclusion
- 5. References

Datasets from NY Times and CDC Goverment website

https://aws.amazon.com/marketplace/pp/prodview-jmb464qw2yg74 (https://aws.amazon.com/marketplace/pp/prodview-jmb464qw2yg74)

https://www.cdc.gov/nchs/covid19/covid-19-mortality-data-files.htm (https://www.cdc.gov/nchs/covid19/covid-19-mortality-data-files.htm)

Exploratory Data Analysis

1. Importing Python Packages and Libraries

```
In [559]:
          # All Required Python Packages and Libraries - Import
              import pandas as pd
              import numpy as np
              import seaborn as sns
              from scipy.integrate import odeint
              import scipy.stats as sp
              import matplotlib.pyplot as plt
              %matplotlib inline
              import math
              import bokeh
              from urllib.request import urlopen
              import json
              from dateutil import parser
              from bokeh.layouts import gridplot
              from bokeh.plotting import figure, show, output file
              from bokeh.layouts import row, column
              from bokeh.resources import INLINE
              from bokeh.io import output notebook
              from bokeh.models import Span
              import warnings
              warnings.filterwarnings("ignore")
              output notebook(resources=INLINE)
              from __future__ import print_function, division
              %matplotlib inline
              import thinkstats2
              import thinkplot
              import statsmodels.formula.api as smf
              #pip install pmdarima
              # Import the library
              from pmdarima import auto_arima
              import datetime
              from statsmodels.tsa.seasonal import seasonal_decompose
              # Load specific evaluation tools
              from sklearn.metrics import mean_squared_error
              from statsmodels.tools.eval_measures import rmse
```

(http://dichelo.2r.d) 1 successfully loaded.

2. Loading the data from Source file to Dataframe - Meta Data Verification

```
In [518]:
           ##### Converts dates to a specific format
            # Removing the data with NA data
           USCountry DF.cases.dropna()
           USStates DF.deaths.dropna()
           # Removing the data with NA data
           USStates DF.state.dropna()
           USStates DF.date.dropna()
           USStates DF.cases.dropna()
           USStates DF.deaths.dropna()
           USCountry DF.info()
           print("Size/Shape of the Country Level dataset: ",USCountry_DF.shape)
           print("Size/Shape of the State Level dataset: ",USStates DF.shape)
           print("Size/Shape of the Counties Level dataset: ",USCounties DF.shape)
           print("Checking for null values:\n",USCountry_DF.isnull().sum())
           print("Checking Data-type of each column: Country Level \n", USCountry_DF.dtyp
           print("Checking Data-type of each column: State Level \n",USStates_DF.dtypes)
           USStates DF.info()
           #Dropping column as SNo is of no use, and "Country" contains too many missing
           #USCountry_DF.drop(["SNo"],1,inplace=True)
            print(" ********
           USCounties DF.info()
            **************************
            ***********
            <class 'pandas.core.frame.DataFrame'>
            Index: 303 entries, 2020-11-18 to 2020-01-21
            Data columns (total 4 columns):
            #
                Column
                         Non-Null Count Dtype
                ----
                         303 non-null
                                       int64
            a
                cases
            1
                deaths
                         303 non-null
                                       int64
                fips
                         303 non-null
                                       int64
                DeathRate 303 non-null
                                       float64
            dtypes: float64(1), int64(3)
            memory usage: 21.8+ KB
            Size/Shape of the Country Level dataset: (303, 4)
            Size/Shape of the State Level dataset: (14369, 5)
            Size/Shape of the Counties Level dataset: (745255, 6)
            ***********************
            ******
            Checking for null values:
            cases
                       a
                      0
            deaths
            fips
                      0
            DeathRate
            dtype: int64
            Checking Data-type of each column: Country Level
            cases
                         int64
            deaths
                        int64
            fips
                        int64
```

```
DeathRate
           float64
dtype: object
 **************************
******
Checking Data-type of each column: State Level
date
         object
state
        object
fips
         int64
cases
         int64
         int64
deaths
dtype: object
 **********************************
******
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 14369 entries, 0 to 14368
Data columns (total 5 columns):
#
    Column Non-Null Count Dtype
          -----
0
    date
           14369 non-null object
1
           14369 non-null object
    state
 2
    fips
           14369 non-null int64
           14369 non-null int64
 3
    cases
    deaths 14369 non-null int64
dtypes: int64(3), object(2)
memory usage: 561.4+ KB
 ***************************
******
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 745255 entries, 0 to 745254
Data columns (total 6 columns):
    Column Non-Null Count
                         Dtype
           -----
0
    date
           745255 non-null
                         object
                         object
 1
    county
          745255 non-null
 2
           745255 non-null
                         object
    state
 3
    fips
           738157 non-null
                         float64
           745255 non-null
                         int64
 4
    cases
    deaths 745255 non-null int64
dtypes: float64(1), int64(2), object(3)
memory usage: 34.1+ MB
```

In [519]: ► USStates_DF.head(20)

Out[519]:

	date	state	fips	cases	deaths
0	2020-01-21	Washington	53	1	0
1	2020-01-22	Washington	53	1	0
2	2020-01-23	Washington	53	1	0
3	2020-01-24	Illinois	17	1	0
4	2020-01-24	Washington	53	1	0
5	2020-01-25	California	6	1	0
6	2020-01-25	Illinois	17	1	0
7	2020-01-25	Washington	53	1	0
8	2020-01-26	Arizona	4	1	0
9	2020-01-26	California	6	2	0
10	2020-01-26	Illinois	17	1	0
11	2020-01-26	Washington	53	1	0
12	2020-01-27	Arizona	4	1	0
13	2020-01-27	California	6	2	0
14	2020-01-27	Illinois	17	1	0
15	2020-01-27	Washington	53	1	0
16	2020-01-28	Arizona	4	1	0
17	2020-01-28	California	6	2	0
18	2020-01-28	Illinois	17	1	0
19	2020-01-28	Washington	53	1	0

3. Summary Report - Confirmed Cases, Death Count at Date Level

Created new column called Death Rate by considering death / Case

s

deaths fips DeathRate

cases

Out[505]:

	cases	ucatiis	прэ	Deatimate
date				
2020-11-18	11613875	250409	1762	0.020000
2020-11-17	11441484	248486	1762	0.020000
2020-11-16	11279747	246879	1762	0.020000
2020-11-15	11113482	246083	1762	0.020000
2020-11-14	10978295	245460	1762	0.020000
2020-11-13	10819174	244250	1762	0.020000
2020-11-12	10637603	242861	1762	0.020000
2020-11-11	10474163	241689	1762	0.020000
2020-11-10	10331303	240258	1762	0.020000
2020-11-09	10191549	238793	1762	0.020000
2020-11-08	10061162	238048	1762	0.020000
2020-11-07	9957746	237584	1762	0.020000
2020-11-06	9831814	236577	1762	0.020000
2020-11-05	9698960	235331	1762	0.020000
2020-11-04	9577421	234223	1762	0.020000
2020-11-03	9469493	232607	1762	0.020000
2020-11-02	9376874	231477	1762	0.020000
2020-11-01	9283188	230937	1762	0.020000
2020-10-31	9208952	230510	1762	0.030000
2020-10-30	9124654	229672	1762	0.030000
2020-10-29	9024852	228701	1762	0.030000
2020-10-28	8934082	227697	1762	0.030000
2020-10-27	8852180	226681	1762	0.030000
2020-10-26	8777727	225698	1762	0.030000
2020-10-25	8703284	225160	1762	0.030000
2020-10-24	8643572	224821	1762	0.030000

	cases		_ `	DeathRate
date				
2020-10-23	8564816	223948	1762	0.030000
2020-10-22	8479704	223023	1762	0.030000
2020-10-21	8404616	222195	1762	0.030000
2020-10-20	8340387	220987	1762	0.030000
2020-10-19	8279780	220058	1762	0.030000
2020-10-18	8214349	219541	1762	0.030000
2020-10-17	8166467	219154	1762	0.030000
2020-10-16	8113706	218476	1762	0.030000
2020-10-15	8043229	217585	1762	0.030000
2020-10-14	7977889	216792	1762	0.030000
2020-10-13	7917996	215783	1762	0.030000
2020-10-12	7863637	214957	1762	0.030000
2020-10-11	7815621	214606	1762	0.030000
2020-10-10	7770838	214187	1762	0.030000
2020-10-09	7719190	213595	1762	0.030000
2020-10-08	7660231	212680	1762	0.030000
2020-10-07	7603856	211752	1762	0.030000
2020-10-06	7550841	210756	1762	0.030000
2020-10-05	7507956	210035	1762	0.030000
2020-10-04	7445574	209606	1762	0.030000
2020-10-03	7410511	209273	1762	0.030000
2020-10-02	7362732	208564	1762	0.030000
2020-10-01	7309152	207699	1762	0.030000
2020-09-30	7262734	206852	1762	0.030000
2020-09-29	7220676	205878	1762	0.030000
2020-09-28	7176979	204952	1762	0.030000
2020-09-27	7139619	204602		0.030000
2020-09-26	7102321	204335	1762	0.030000
2020-09-25	7059624	203566	1762	0.030000
2020-09-24	7005043	202713	1762	0.030000
2020-09-23	6959841	201828	1762	0.030000
2020-09-22	6918290	200738	1762	0.030000
2020-09-21	6880899	199797	1762	0.030000
2020-09-20	6825949			0.030000
2020-09-19	6789593	199154	1762	0.030000

	cases		_ `	DeathRate
date				
2020-09-18	6747782	198484	1762	0.030000
2020-09-17	6698895	197535	1762	0.030000
2020-09-16	6653585	196686	1762	0.030000
2020-09-15	6614317	195689	1762	0.030000
2020-09-14	6575100	194408	1762	0.030000
2020-09-13	6538213	193958	1762	0.030000
2020-09-12	6504870	193559	1762	0.030000
2020-09-11	6465766	192858	1762	0.030000
2020-09-10	6418198	191631	1762	0.030000
2020-09-09	6380138	190716	1762	0.030000
2020-09-08	6346806	189541	1762	0.030000
2020-09-07	6317865	189083	1762	0.030000
2020-09-06	6292699	188820	1762	0.030000
2020-09-05	6262700	188409	1762	0.030000
2020-09-04	6220446	187697	1762	0.030000
2020-09-03	6168342	186717	1762	0.030000
2020-09-02	6121948	185639	1762	0.030000
2020-09-01	6089504	184563	1762	0.030000
2020-08-31	6045455	183472	1762	0.030000
2020-08-30	6008970	182984	1762	0.030000
2020-08-29	5975540	182610	1762	0.030000
2020-08-28	5930930	181739	1762	0.030000
2020-08-27	5884366	180729	1762	0.030000
2020-08-26	5838756	179603	1762	0.030000
2020-08-25	5793437	178410	1762	0.030000
2020-08-24	5754254	177197	1762	0.030000
2020-08-23	5713850	176693	1762	0.030000
2020-08-22	5681517	176247	1762	0.030000
2020-08-21	5636491	175297	1762	0.030000
2020-08-20	5587462			0.030000
2020-08-19	5541433			0.030000
2020-08-18	5498420			0.030000
2020-08-17	5455187			0.030000
2020-08-16	5417664			0.030000
2020-08-15	5375527	169400	1762	0.030000

	cases	deaths	fips	DeathRate
date				
2020-08-14	5324784	168341	1762	0.030000
2020-08-13	5265307	167165	1762	0.030000
2020-08-12	5211246	165952	1762	0.030000
2020-08-11	5156968	164474	1762	0.030000
2020-08-10	5103611	163023	1762	0.030000
2020-08-09	5056438	162486	1762	0.030000
2020-08-08	5007958	161947	1762	0.030000
2020-08-07	4952718	160981	1762	0.030000
2020-08-06	4891561	159625	1762	0.030000
2020-08-05	4834047	158554	1762	0.030000
2020-08-04	4780324	157301	1762	0.030000
2020-08-03	4726775	155945	1762	0.030000
2020-08-02	4679291	155337	1762	0.030000
2020-08-01	4628497	154917	1762	0.030000
2020-07-31	4571669	153862	1762	0.030000
2020-07-30	4502581	152433	1762	0.030000
2020-07-29	4433467	151172	1762	0.030000
2020-07-28	4366851	149776	1762	0.030000
2020-07-27	4303735	148449	1762	0.030000
2020-07-26	4244554	146753	1762	0.030000
2020-07-25	4190337	146313	1762	0.030000
2020-07-24	4123561	145429	1762	0.040000
2020-07-23	4050036	144283	1762	0.040000
2020-07-22	3980030	143167	1762	0.040000
2020-07-21	3910291	142031	1762	0.040000
2020-07-20	3845014	140904	1762	0.040000
2020-07-19	3785126	140373	1762	0.040000
2020-07-18	3722851	139961	1762	0.040000
2020-07-17	3660400	139186	1762	0.040000
2020-07-16	3589477	138285	1762	0.040000
2020-07-15	3513790	137327	1762	0.040000
2020-07-14	3445448	136356	1762	0.040000
2020-07-13	3379846	135402	1762	0.040000
2020-07-12	3318279	134977	1762	0.040000
2020-07-11	3260474	134582	1762	0.040000

	cases	deaths	fips	DeathRate
date				
2020-07-10	3199753	133907	1762	0.040000
2020-07-09	3131526	133079	1762	0.040000
2020-07-08	3071637	132238	1762	0.040000
2020-07-07	3012182	131290	1762	0.040000
2020-07-06	2958098	130332	1762	0.040000
2020-07-05	2910782	129941	1762	0.040000
2020-07-04	2866015	129679	1762	0.050000
2020-07-03	2816009	129418	1762	0.050000
2020-07-02	2758855	128827	1762	0.050000
2020-07-01	2703296	128104	1762	0.050000
2020-06-30	2653321	127462	1762	0.050000
2020-06-29	2604932	126162	1762	0.050000
2020-06-28	2565436	125815	1762	0.050000
2020-06-27	2525928	125544	1762	0.050000
2020-06-26	2483629	125033	1762	0.050000
2020-06-25	2438101	124400	1762	0.050000
2020-06-24	2396928	121934	1762	0.050000
2020-06-23	2359939	121167	1762	0.050000
2020-06-22	2324879	120334	1762	0.050000
2020-06-21	2294413	119974	1762	0.050000
2020-06-20	2268034	119717	1762 0.05000	
2020-06-19	2236009	119171	1762	0.050000
2020-06-18	2205173	118473	1762	0.050000
2020-06-17	2177114	117746	1762	0.050000
2020-06-16	2151459	116985	1762	0.050000
2020-06-15	2126574	116216	1762	0.050000
2020-06-14	2106457	115768	1762	0.050000
2020-06-13	2087327	115451	1762	0.060000
2020-06-12	2061993	114759	1762	0.060000
2020-06-11	2036500	113980	1762	0.060000
2020-06-10	2013298	113103	1762	0.060000
2020-06-09	1990446	112174	1762	0.060000
2020-06-08	1971641	111144	1762	0.060000
2020-06-07	1953434	110422	1762	0.060000
2020-06-06	1934818	110032	1762	0.060000

	cases	deaths	fips	DeathRate	
date					
2020-06-05	1912302	109304	1762	0.060000	
2020-06-04	1883593	108192	1762	0.060000	
2020-06-03	1861977	107184	1762	0.060000	
2020-06-02	1841990	106195	1762	0.060000	
2020-06-01	1821199	105113	1762	0.060000	
2020-05-31	1799302	104379	1762 0.06000 1762 0.06000		
2020-05-30	1778668	103775	1762	0.060000	
2020-05-29	1755271	102812	1762	0.060000	
2020-05-28	1730723	101622	1762	0.060000	
2020-05-27	1708211	100422	1762	0.060000	
2020-05-26	1689467	98937	1762	0.060000	
2020-05-25	1670571	98190	1762	0.060000	
2020-05-24	1651471	97680	1762	0.060000	
2020-05-23	1631440	97060	1762	0.060000	
2020-05-22	1609172	96010	1762	0.060000	
2020-05-21	1585373	94722	1762	0.060000	
2020-05-20	1559640	93411	1762 0.06000		
2020-05-19	1536570	91934	1762	0.060000	
2020-05-18	1515593	90414	1762	0.060000	
2020-05-17	1493766	89568	1762 0.06000		
2020-05-16	1474752	88724	1762	0.060000	
2020-05-15	1451093	87499	1762	0.060000	
2020-05-14	1424856	85906	1762	0.060000	
2020-05-13	1397894	84168	1762	0.060000	
2020-05-12	1376749	82400	1762	0.060000	
2020-05-11	1354449	80748	1762	0.060000	
2020-05-10	1336828	79766	1762	0.060000	
2020-05-09	1316511	78834	1762	0.060000	
2020-05-08	1291643	77380	1762	0.060000	
2020-05-07	1263995	75805	1762	0.060000	
2020-05-06	1235517	73847	1762	0.060000	
2020-05-05	1211011	71139	1762	0.060000	
2020-05-04	1187302	68905	1762	0.060000	
2020-05-03	1165340	67816	1762	0.060000	
2020-05-02	1139200	66485	1762	0.060000	

	cases	deaths	fips	DeathRate	
date			-		
2020-05-01	1109726	64902	1762	0.060000	
2020-04-30	1075756	63140	1762	0.060000	
2020-04-29	1045399	60930	1762	0.060000	
2020-04-28	1018844	58416	1762	0.060000	
2020-04-27	994193	56022	1762	0.060000	
2020-04-26	970996	54580	1762	0.060000	
2020-04-25	944261	53327	1762	0.060000	
2020-04-24	909853	51360	1762	0.060000	
2020-04-23	873112	49228	1762	0.060000	
2020-04-22	839336	47059	1762	0.060000	
2020-04-21	810505	44688	1762	0.060000	
2020-04-20	784991	42016	1762	0.050000	
2020-04-19	757596	40179	1762	0.050000	
2020-04-18	732262	38659	1762	0.050000	
2020-04-17	703864	36708	1762	0.050000	
2020-04-16	672355	34419	1762	0.050000	
2020-04-15	640742	32070	1762	0.050000	
2020-04-14	610709	29318	1762	0.050000	
2020-04-13	584018	26613	1762	0.050000	
2020-04-12	558249	24849	1762	0.040000	
2020-04-11	531106	23168	1762	0.040000	
2020-04-10	499386	21084	1762	0.040000	
2020-04-09	465913	18821	1762	0.040000	
2020-04-08	431214	16701	1762	0.040000	
2020-04-07	399394	14616	1762	0.040000	
2020-04-06	369057	12382	1762	0.030000	
2020-04-05	338141	10856	1762	0.030000	
2020-04-04	312525	9488	1762	0.030000	
2020-04-03	277426	7932	1762	0.030000	
2020-04-02	245108	6541	1762	0.030000	
2020-04-01	215391	5325	1762	0.020000	
2020-03-31	188461	4304	1762	0.020000	
2020-03-30	163955	3368	1762	0.020000	
2020-03-29	142486	2718	1762	0.020000	
2020-03-28	123966	2300	1762	0.020000	

	cases	deaths	fips	DeathRate
date				
2020-03-27	102900	1770	1693	0.020000
2020-03-26	85570	1353	1693	0.020000
2020-03-25	68572	1054	1693	0.020000
2020-03-24	53938	785	1693	0.010000
2020-03-23	43505	579	1693	0.010000
2020-03-22	33073	458	1693	0.010000
2020-03-21	24528	360	1693	0.010000
2020-03-20	18012	277	1693	0.020000
2020-03-19	12393	212	1693	0.020000
2020-03-18	8350	162	1693	0.020000
2020-03-17	5906	117	1693	0.020000
2020-03-16	4507	91	1639	0.020000
2020-03-15	3600	68	1639	0.020000
2020-03-14	2898	60	1573	0.020000
2020-03-13	2224	50	1495	0.020000
2020-03-12	1668	43	1376	0.030000
2020-03-11	1263	37	1351	0.030000
2020-03-10	1018	31	1179	0.030000
2020-03-09	748	26	1107	0.030000
2020-03-08	547	22	1046	0.040000
2020-03-07	428	19	1018	0.040000
2020-03-06	311	15	857	0.050000
2020-03-05	228	12	649	0.050000
2020-03-04	161	12	538	0.070000
2020-03-03	125	10	504	0.080000
2020-03-02	104	6	467	0.060000
2020-03-01	88	3	421	0.030000
2020-02-29	70	1	329	0.010000
2020-02-28	65	0	329	0.000000
2020-02-27	60	0	288	0.000000
2020-02-26	60	0	288	0.000000
2020-02-25	45	0	288	0.000000
2020-02-24	43	0	239	0.000000
2020-02-23	30	0	239	0.000000
2020-02-22	30	0	239	0.000000

	cases	deaths	fips	DeathRate	
date					
2020-02-21	30	0	239	0.000000	
2020-02-20	27	0	239	0.000000	
2020-02-19	25	0	239	0.000000	
2020-02-18	25	0	239	0.000000	
2020-02-17	25	0	239	0.000000	
2020-02-13	15	0	208	0.000000	
2020-02-16	15	0	208	0.000000	
2020-02-15	15	0	208	0.000000	
2020-02-14	15	0	208	0.000000	
2020-02-12	14	0	208	0.000000	
2020-02-11	13	0	160	0.000000	
2020-02-10	13	0	160	0.000000	
2020-02-09	12	0	160	0.000000	
2020-02-08	12	0	160	0.000000	
2020-02-07	12	0	160	0.000000	
2020-02-06	12	0	160	0.000000	
2020-02-05	12	0	160	0.000000	
2020-02-04	11	0	105	0.000000	
2020-02-03	11	0	105	0.000000	
2020-02-02	11	0	105	0.000000	
2020-02-01	8	0	105	0.000000	
2020-01-31	7	0	80	0.000000	
2020-01-30	6	0	80	0.000000	
2020-01-28	5	0	80	0.000000	
2020-01-27	5	0	80	0.000000	
2020-01-26	5	0	80	0.000000	
2020-01-29	5	0	80	0.000000	
2020-01-25	3	0	76	0.000000	
2020-01-24	2	0	70	0.000000	
2020-01-23	1	0	53	0.000000	
2020-01-22	1	0	53	0.000000	
2020-01-21	1	0	53	0.000000	

The above table shows the Confirmed cases and Death count at each date Level. On March 3rd,2020, we have seen the death rate is 8%. The above chart explains the Confirmed Cases, Death on each day. I have derived new variable called Death Rate which explains the percentage of death on that day when compared to Confirmed Cases. On Feb 29,2020, we have seen first death recorded, hence the rate begins from that day.

4. US COVID Active Cases Graph

The above Chart shows that each day how the Corona cases confirmed. We can see that it's gradually increasing and as of November 18, the confirmed cases reached to 11 Million positive cases.

5. Confirmed & Deaths Count Analysis - Through Animation at State and Date Level

In this Chart is automated to play the video of Confirmed & Deaths Count Analysis at Date and State level.

Confirmed & Deaths in US state

confirmed Cases, Death count as 32.67 K.

6. Confirmed vs Deaths Count Analysis - Scatter Plot

The above Chart shows that each day how the Corona cases confirmed and Deaths happened in each state.

7. US Death vs Death Rate Percentage

US Death Rate Analysis

8. PMF (Probability Mass function) - Death Rate Analysis by using Histogram

```
In [214]:  # Probability Mass Functions (PMF)
US_DeathRate=USCountry_DF["Death Rate"]

pmf = thinkstats2.Pmf(US_DeathRate, label='US Death Rate')

thinkplot.Hist(pmf)
thinkplot.Config(xlabel='Death in %', ylabel='Pmfs',title= "Death Rate analys")
```


The Above Histogram shows that how death rates hapepend over the period of time

This diagram shows that death rate is decreaing from August. The more death rate is 0.08% and the death rate was stayed 100 days on 0.03%.

9. CDF (Cumulative distribution function) - Confirmed Cases, Death Analysis

Cumulative Distribution Functions (CDF), we can see that 0.08% as peak and that consider as 1 or 100%,

10. Normal Probability - Mean, Standard Deviation Analysis

```
In [237]:
              mean, std = US_ConfirmedCases.mean(), US_ConfirmedCases.std()
              print(" Here are the mean and standard deviation of Variables in the State Da
              mean, std
               Here are the mean and standard deviation of Variables in the State Datas
              et
   Out[237]: (3460469.207920792, 3281429.5018072585)
In [238]:
           | xs = [-4, 4]
              fxs, fys = thinkstats2.FitLine(xs, mean, std)
              thinkplot.Plot(fxs, fys, linewidth=4, color='0.8')
              xs, ys = thinkstats2.NormalProbability(US ConfirmedCases)
              thinkplot.Plot(xs, ys, label='all live')
              thinkplot.Config(title='Confimred Cases - Normal probability plot',
                               xlabel='Standard deviations from mean',
                               ylabel='Confirmed Cases in Million')
```


The Above curve shows that not normal distribution since the pdf object shows.

Mean of Datset - US State Level: Confirmed Cases - 72971.13 and Number of deaths - 2348.70

Standard Deviation of Datset - US State Level : Confirmed Cases - 135907.74 and Number of deaths - 4823.27

Here are the mean and standard deviation of Variables in the State Dataset

```
Out[239]: (fips 31.882038 cases 72971.130211 deaths 2348.709444 dtype: float64, fips 18.624818 cases 135907.744139 deaths 4823.272479 dtype: float64)
```

11. PDF (probability density function) - Death Analyis


```
In [254]:  pdf = thinkstats2.NormalPdf(mean, std)
  pdf.Density(mean + std)
```

Out[254]: array([1.29918438e-02, 1.78040424e-06, 5.01673346e-05])

P values come as 0.0 for the dataset which shows that this dataset is statistically significant

(I will verify this by using Hypothesis testing too)

12. Correlation Verfication - Confirmed Cases Vs Death Counts

The correlation coefficient matrix on the diagonal with 1 and 0.95 as self correlation.

13. Confirmed vs Death cases with the Fitted line - Slope

```
In [285]: M from thinkstats2 import Mean, MeanVar, Var, Std, Cov

def LeastSquares(xs, ys):
    meanx, varx = MeanVar(xs)
    meany = Mean(ys)

    slope = Cov(xs, ys, meanx, meany) / varx
    inter = meany - slope * meanx

    return inter, slope

def FitLine(xs, inter, slope):
    fit_xs = np.sort(xs)
    fit_ys = inter + slope * fit_xs
    return fit_xs, fit_ys
```

```
In [286]: Inter, slope = LeastSquares(US_ConfirmedCases, US_deaths)
fit_xs, fit_ys = FitLine(US_ConfirmedCases, inter, slope)
```


The Above graph shows the scatterplot of the confirmed vs death cases with the fitted line

14. HypothesisTest

```
In [309]: N class SlopeTest(thinkstats2.HypothesisTest):

    def TestStatistic(self, data):
        ages, weights = data
        _, slope = thinkstats2.LeastSquares(ages, weights)
        return slope

    def MakeModel(self):
        _, weights = self.data
        self.ybar = weights.mean()
        self.res = weights - self.ybar

    def RunModel(self):
        ages, _ = self.data
        weights = self.ybar + np.random.permutation(self.res)
        return ages, weights
```

```
In [310]: ht = SlopeTest((US_ConfirmedCases, US_deaths))
    pvalue = ht.PValue()
    pvalue
Out[310]: 0.0
```

This is reflecting our previous analysis at State Level data too. pvalue came as 0.0. Hence there is significant relation betwen cases confirmed with Death cases. (I want to verify this eventhough we know this has significance)

15 . Linear Regression - Death vs Cases (ordinary least squares)

```
In [327]:
                 # ordinary least squares.
                 model = smf.ols('deaths ~ cases', data=USCountry DF)
                 results = model.fit()
                 results.summary()
    Out[327]:
                 OLS Regression Results
                      Dep. Variable:
                                              deaths
                                                            R-squared:
                                                                            0.916
                             Model:
                                                OLS
                                                        Adj. R-squared:
                                                                            0.915
                           Method:
                                       Least Squares
                                                            F-statistic:
                                                                            3272.
                                     Sat, 21 Nov 2020
                                                      Prob (F-statistic): 9.24e-164
                              Time:
                                             11:59:58
                                                        Log-Likelihood:
                                                                           -3488.0
                  No. Observations:
                                                 303
                                                                  AIC:
                                                                            6980.
                       Df Residuals:
                                                 301
                                                                  BIC:
                                                                            6987.
                          Df Model:
                                                   1
                   Covariance Type:
                                           nonrobust
                                  coef
                                          std err
                                                           P>|t|
                                                                    [0.025
                                                                              0.975]
                  Intercept 2.722e+04
                                        2025.927
                                                  13.436
                                                         0.000
                                                                 2.32e+04 3.12e+04
                                0.0243
                                           0.000 57.205 0.000
                                                                    0.023
                                                                               0.025
                     cases
                        Omnibus: 113.160
                                              Durbin-Watson:
                                                                  0.001
                  Prob(Omnibus):
                                            Jarque-Bera (JB):
                                     0.000
                                                                 16.715
                           Skew:
                                    -0.090
                                                   Prob(JB): 0.000235
                        Kurtosis:
                                     1.864
                                                   Cond. No. 6.93e+06
```

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 6.93e+06. This might indicate that there are strong multicollinearity or other numerical problems.

By using ordinary least squares model, R-squared Value from the model is 0.916 (91.6%) which shows that almost every confirmed Cases can be explained by movements since 91.6% coefficient of determination.

16. Logistic Regression Analysis of Death Rate with Confirmed, Death Cases

```
In [352]:
            formula='DeathRate ~ cases + deaths'
            model = sm.Logit.from formula(formula, USCountry DF).fit()
            print(model.summary())
            Optimization terminated successfully.
                    Current function value: 0.043430
                    Iterations 8
                                   Logit Regression Results
            ______
                                    DeathRate
                                              No. Observations:
            Dep. Variable:
            303
            Model:
                                       Logit
                                              Df Residuals:
            300
                                         MLE
                                              Df Model:
            Method:
            2
            Date:
                              Sat, 21 Nov 2020
                                              Pseudo R-squ.:
            inf
            Time:
                                     12:17:18
                                              Log-Likelihood:
                                                                         -1
            3.159
                                              LL-Null:
            converged:
                                        True
            0.0000
            Covariance Type:
                                    nonrobust
                                              LLR p-value:
            1.000
            ______
                                                      P>|z|
                          coef std err
                                                Z
                                                               [0.025
            0.975]
                        -3.8923
                                   0.735
                                           -5.299
                                                      0.000
            Intercept
                                                               -5.332
            2.453
                     -4.392e-07
                                3.56e-07
                                           -1.233
                                                      0.218 -1.14e-06
            cases
                                                                        2.5
            9e-07
            deaths
                      1.763e-05
                                1.41e-05
                                            1.249
                                                      0.212
                                                                        4.5
                                                               -1e-05
            3e-05
In [353]:
         print(t)
            print("Accuracy:",np.diag(t).sum()/t.sum())
            [[303.
                    0.]
                    0.11
             [ 0.
            Accuracy: 1.0
```

By using Logistice Regression for death Rate, Accuracy of logistic regression for this data set is 1 which is 100%.

ETS (Error, Trend, and Seasonality) - of US Country Dataset:

16. Forecast using ARIMA Model

```
Performing stepwise search to minimize aic
ARIMA(1,2,1)(0,1,1)[12]
                                      : AIC=inf, Time=1.29 sec
ARIMA(0,2,0)(0,1,0)[12]
                                      : AIC=6139.389, Time=0.02 sec
ARIMA(1,2,0)(1,1,0)[12]
                                      : AIC=6060.433, Time=0.28 sec
ARIMA(0,2,1)(0,1,1)[12]
                                     : AIC=inf, Time=0.64 sec
ARIMA(1,2,0)(0,1,0)[12]
                                      : AIC=6140.318, Time=0.04 sec
                                     : AIC=6027.930, Time=0.70 sec
ARIMA(1,2,0)(2,1,0)[12]
                                      : AIC=5943.243, Time=3.69 sec
ARIMA(1,2,0)(2,1,1)[12]
                                      : AIC=6010.583, Time=0.37 sec
ARIMA(1,2,0)(1,1,1)[12]
                                     : AIC=inf, Time=5.94 sec
ARIMA(1,2,0)(2,1,2)[12]
                                      : AIC=6009.906, Time=1.76 sec
ARIMA(1,2,0)(1,1,2)[12]
ARIMA(0,2,0)(2,1,1)[12]
                                     : AIC=5951.583, Time=3.71 sec
                                     : AIC=5973.670, Time=1.98 sec
ARIMA(2,2,0)(2,1,1)[12]
                                     : AIC=5938.064, Time=5.62 sec
ARIMA(1,2,1)(2,1,1)[12]
ARIMA(1,2,1)(1,1,1)[12]
                                     : AIC=6008.608, Time=0.78 sec
ARIMA(1,2,1)(2,1,0)[12]
                                     : AIC=6020.481, Time=3.61 sec
                                     : AIC=6010.463, Time=4.57 sec
ARIMA(1,2,1)(2,1,2)[12]
ARIMA(1,2,1)(1,1,0)[12]
                                      : AIC=inf, Time=1.97 sec
                                     : AIC=inf, Time=11.03 sec
ARIMA(1,2,1)(1,1,2)[12]
                                     : AIC=6007.477, Time=2.76 sec
ARIMA(0,2,1)(2,1,1)[12]
ARIMA(2,2,1)(2,1,1)[12]
                                     : AIC=5975.655, Time=4.67 sec
ARIMA(1,2,2)(2,1,1)[12]
                                     : AIC=5959.684, Time=4.49 sec
                                     : AIC=5960.338, Time=3.43 sec
ARIMA(0,2,2)(2,1,1)[12]
ARIMA(2,2,2)(2,1,1)[12]
                                     : AIC=5961.048, Time=5.58 sec
                                     : AIC=6008.162, Time=2.48 sec
ARIMA(1,2,1)(2,1,1)[12] intercept
```

Best model: ARIMA(1,2,1)(2,1,1)[12] Total fit time: 71.463 seconds

Out[448]: SARIMAX Results

Dep. Variable: No. Observations: 303 **Model:** SARIMAX(1, 2, 1)x(2, 1, 1, 12) Log Likelihood -2963.032 Date: Sat, 21 Nov 2020 AIC 5938.064 Time: 13:26:31 **BIC** 5960.062 Sample: 0 HQIC 5946.878

- 303

Covariance Type:	opg
------------------	-----

	coef	std err	z	P> z	[0.025	0.975]
ar.L1	0.2669	0.143	1.861	0.063	-0.014	0.548
ma.L1	-0.5200	0.116	-4.490	0.000	-0.747	-0.293
ar.S.L12	-0.2926	0.067	-4.344	0.000	-0.425	-0.161
ar.S.L24	-0.2575	0.089	-2.898	0.004	-0.432	-0.083
ma.S.L12	-0.8583	0.045	-18.979	0.000	-0.947	-0.770
sigma2	4.465e+07	1.76e-09	2.53e+16	0.000	4.47e+07	4.47e+07

 Ljung-Box (Q):
 401.01
 Jarque-Bera (JB):
 165.63

 Prob(Q):
 0.00
 Prob(JB):
 0.00

 Heteroskedasticity (H):
 18.81
 Skew:
 0.55

 Prob(H) (two-sided):
 0.00
 Kurtosis:
 6.54

Warnings:

- [1] Covariance matrix calculated using the outer product of gradients (complex-step).
- [2] Covariance matrix is singular or near-singular, with condition number 2.64e+32. Standard errors may be unstable.

17. Comparision of Prediction vs Actual

Out[536]:

SARIMAX Results

133	No. Observations:	cases	Dep. Variable:
-890.329	Log Likelihood	SARIMAX(0, 1, 1)x(2, 1, 1, 12)	Model:
1790.658	AIC	Sat, 21 Nov 2020	Date:
1804.595	BIC	16:11:09	Time:
1796.318	HQIC	01-21-2020	Sample:

- 06-01-2020

Covariance Type: opg

	coef	std err	Z	P> z	[0.025	0.975]
ma.L1	0.9555	0.042	22.911	0.000	0.874	1.037
ar.S.L12	0.8213	0.070	11.762	0.000	0.684	0.958
ar.S.L24	-0.0516	0.086	-0.598	0.550	-0.221	0.117
ma.S.L12	-0.9975	0.118	-8.474	0.000	-1.228	-0.767
sigma2	1.471e+05	8.26e-07	1.78e+11	0.000	1.47e+05	1.47e+05

Ljung-Box (Q): 320.82 **Jarque-Bera (JB):** 17.62

Prob(Q): 0.00 **Prob(JB):** 0.00

Heteroskedasticity (H): 141213.01 Skew: -0.21

Prob(H) (two-sided): 0.00 **Kurtosis:** 4.83

Warnings:

- [1] Covariance matrix calculated using the outer product of gradients (complex-step).
- [2] Covariance matrix is singular or near-singular, with condition number 2.19e+26. Standard errors may be unstable.

Out[550]: <matplotlib.axes._subplots.AxesSubplot at 0x143ac388d90>

The prediction count was 220 k but the real death count was 250K. Actually I have considered my training dataset up to Jun 1,2020. Based on that, we have seen the prediction was 220K but reality was little different since we have seen more deaths in July, Aug, Sept.

18 . Prediction of Confirmed Cases - ARIMA Model - Time Series

Forecasting

Out[557]: <matplotlib.axes._subplots.AxesSubplot at 0x143b48459a0>

Out[556]: <matplotlib.axes._subplots.AxesSubplot at 0x143ab659f70>

As part of the above prediction shows that by next year January, the death count may reach to around 290 K.

Conclusion

As part of this project, I have analyzed various techniques to perform the EDA of COVID19 Trends and Outbreak Prediction of Spread in USA.

The below are the outcomes of my EDA

- 1. Calculated DeathRate Ratio From Feb 29,2020 to Nov 18,2020, overall Death Count is 250K. Initially Death Ratio was increased and it started gradually decreasing from July,2020
- 2. Number of Death: Number of deaths is increasing day by day (as of Nov 18)
- 3. Confirmed Cases: Number of positive Count is increasing day by day (as of Nov 18) 11.61 M
- 4. State Level Cases: Created Animation plot for State Level counts on daily basis. (Both Confirmed and Death count) observed NY State count had highest counts.
- 5. Based on the Data as of Nov 18,2020, The prediction of Death count on January 31,2021 is 280K (If the same situation continuous, the count may reach more than 300K in Feb 2021)

 Based on the Data as of Nov 18,2020, The prediction of Confirmed Cases count on January 31,2021 is 18 Million (If the same situation continuous, the count may reach more than 22 Million in Feb 2021)

The below are various techniques I used in this project to perform the Detailed EDA of COVID19 Trends and Outbreak Prediction of Spread in USA

As of November 21,2020, We are hearing that vaccination is going to provided to people and I hope this will help to stop the COVID Spread and deaths.

My sincere Thanks to Professor Dr.Shankar Parajulee for all his guidance and support on this semester which helped me to perfume this detailed analysis of COVID Spread in USA.

References:

1. We're Sharing Coronavirus Case Data for Every U.S. County by NY Times

```
https://www.nytimes.com/article/coronavirus-county-data-us.html
```

2. Coronavirus Disease 2019 (COVID-19)

```
https://covid.cdc.gov/covid-data-tracker/?CDC_AA_refVal=https%3A%2F% 2Fwww.cdc.gov%2Fcoronavirus%2F2019-ncov%2Fcases- update s%2Fcases-in-us.html#cases casesinlast7days
```

3. Analyze NY Times Covid-19 Dataset, Medium

```
https://towardsdatascience.com/analyze-ny-times-covid-19-dataset-86c 802164210
```

4. HOW TO USE DATA ANALYSIS FOR MACHINE LEARNING by Sharp Sight

```
https://www.sharpsightlabs.com/blog/data-analysis-machine-learning-e
xample-1/
```

5. Python | ARIMA Model for Time Series Forecasting by geeksforgeeks

```
https://www.geeksforgeeks.org/python-arima-model-for-time-series-for
ecasting/
```

6. Modeling COVID-19 epidemic with Python Medium

https://towardsdatascience.com/modeling-covid-19-epidemic-with-pytho n-bed21b8f6baf

```
In [ ]: ▶
```