# Fundamentals of Computer Graphics

Recap of linear algebra II

Emanuele Rodolà rodola@di.uniroma1.it



#### Recap: Bases

A basis of V is a collection of vectors in V that is linearly independent and spans V

- $\operatorname{span}(v_1, \dots, v_n) = \{a_1v_1 + \dots + a_nv_n : a_1, \dots, a_n \in \mathbb{R}\}$
- $v_1, \ldots, v_n \in V$  are linearly independent if and only if each  $v \in \operatorname{span}(v_1, \ldots, v_n)$  has only one representation as a linear combination of  $v_1, \ldots, v_n$

So every vector  $v \in V$  can be expressed uniquely as a linear combination

$$v = \sum_{i=1}^{n} \alpha_i v_i$$

You can think of a basis as the minimal set of vectors that generates the entire space

#### Recap: Matrices

Consider a linear map  $T:V\to W$ , a basis  $v_1,\ldots,v_n\in V$  and a basis  $w_1,\ldots,w_m\in W$ .

The matrix of T in these bases is the  $m \times n$  array of values in  $\mathbb R$ 

$$\mathbf{T} = \begin{pmatrix} T_{1,1} & \cdots & T_{1,n} \\ \vdots & & \vdots \\ T_{m,1} & \cdots & T_{m,n} \end{pmatrix}$$

whose entries  $T_{i,j}$  are defined by

$$Tv_j = T_{1,j}w_1 + \dots + T_{m,j}w_m$$

In other words, the matrix encodes how basis vectors are mapped, and this is enough to map all other vectors in their span, since:

$$Tv = T(\sum_{j} \alpha_{j} v_{j}) = \sum_{j} T(\alpha_{j} v_{j}) = \sum_{j} \alpha_{j} Tv_{j}$$

#### Recap: Matrix of a vector

Suppose  $v \in V$  is an arbitrary vector, while  $v_1, \dots, v_n$  is a basis of V. The matrix of v wrt this basis is the  $n \times 1$  matrix:

$$\mathbf{v} = \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix}$$

so that

$$v = c_1 v_1 + \dots + c_n v_n$$

Once again, we see that the matrix depends on the choice of basis for  ${\cal V}$ 

Recap: Product of "map matrix" and "vector matrix"

$$\underbrace{\begin{pmatrix} T_{1,1} & \cdots & T_{1,n} \\ \vdots & & \vdots \\ T_{m,1} & \cdots & T_{m,n} \end{pmatrix}}_{\mathbf{T}} \underbrace{\begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix}}_{\mathbf{c}} = \sum_{j=1}^n c_j \underbrace{\begin{pmatrix} T_{1,j} \\ \vdots \\ T_{m,j} \end{pmatrix}}_{\mathrm{Tv_j}} \underbrace{\mathbf{rr}}_{(\mathbf{w}_1,\dots,\mathbf{w}_m)}$$

Because recall that, for bases  $v_1, \ldots, v_n \in V$  and  $w_1, \ldots, w_m \in W$ :

$$Tv_j = T_{1,j}w_1 + \dots + T_{m,j}w_m$$

We see then that vector  $c=\sum_j c_j v_j$  is mapped to  $Tc=\sum_j c_j Tv_j$ In other words, matrix product is behaving as expected

The rank of a matrix  $\mathbf{A} \in \mathbb{R}^{m \times n}$  is the dimension of the span of its columns

#### Example:

$$\mathbf{A} = \begin{pmatrix} 4 & 7 & 1 & 8 \\ 3 & 5 & 2 & 9 \end{pmatrix}$$

The rank of a matrix  $\mathbf{A} \in \mathbb{R}^{m \times n}$  is the dimension of the span of its columns

#### Example:

$$\mathbf{A} = \begin{pmatrix} 4 & 7 & 1 & 8 \\ 3 & 5 & 2 & 9 \end{pmatrix}$$

The rank is the dimension of

$$\operatorname{span}\left(\begin{pmatrix} 4\\3 \end{pmatrix}, \begin{pmatrix} 7\\5 \end{pmatrix}, \begin{pmatrix} 1\\2 \end{pmatrix}, \begin{pmatrix} 8\\9 \end{pmatrix}\right) \in \mathbb{R}^2$$

The rank of a matrix  $\mathbf{A} \in \mathbb{R}^{m \times n}$  is the dimension of the span of its columns

#### Example:

$$\mathbf{A} = \begin{pmatrix} 4 & 7 & 1 & 8 \\ 3 & 5 & 2 & 9 \end{pmatrix}$$

The rank is the dimension of

$$\operatorname{span}\left(\begin{pmatrix} 4\\3 \end{pmatrix}, \begin{pmatrix} 7\\5 \end{pmatrix}, \begin{pmatrix} 1\\2 \end{pmatrix}, \begin{pmatrix} 8\\9 \end{pmatrix}\right) \in \mathbb{R}^2$$

This span can not have dimension larger than 2, because  $\dim(\mathbb{R}^2)=2$ .

In this example,  $rank(\mathbf{A}) = 2$ 

The rank of a matrix  $\mathbf{A} \in \mathbb{R}^{m \times n}$  is the dimension of the span of its columns

#### Example:

$$\mathbf{A} = \begin{pmatrix} 4 & 7 & 1 & 8 \\ 3 & 5 & 2 & 9 \end{pmatrix}$$

The rank is the dimension of

$$\operatorname{span}\left(\begin{pmatrix} 4\\3 \end{pmatrix}, \begin{pmatrix} 7\\5 \end{pmatrix}, \begin{pmatrix} 1\\2 \end{pmatrix}, \begin{pmatrix} 8\\9 \end{pmatrix}\right) \in \mathbb{R}^2$$

This span can not have dimension larger than 2, because  $\dim(\mathbb{R}^2)=2$ .

In this example,  $rank(\mathbf{A}) = 2$ 

Note that this result does not depend on a choice of basis, i.e., change of basis preserves the rank

## Example: Reduced bases

Consider the  $\mathbb{R}^{n \times k}$  matrix

$$\mathbf{V} = egin{pmatrix} \mid & \cdots & \cdots & \mid \\ \mathbf{v}_1 & \cdots & \cdots & \mathbf{v}_k \\ \mid & \cdots & \cdots & \mid \end{pmatrix}$$

containing Voronoi basis vectors as its columns, and the  $\mathbb{R}^{n imes k'}$  matrix

$$\mathbf{V}' = \begin{pmatrix} | & \cdots & | \\ \mathbf{v}_1 & \cdots & \mathbf{v}_{k'} \\ | & \cdots & | \end{pmatrix}$$

obtained by truncating V to the first k' < k columns

## Example: Reduced bases

Consider the  $\mathbb{R}^{n \times k}$  matrix

$$\mathbf{V} = egin{pmatrix} | & \cdots & \cdots & | \\ \mathbf{v}_1 & \cdots & \cdots & \mathbf{v}_k \\ | & \cdots & \cdots & | \end{pmatrix}$$

containing Voronoi basis vectors as its columns, and the  $\mathbb{R}^{n imes k'}$  matrix

$$\mathbf{V}' = \begin{pmatrix} | & \cdots & | \\ \mathbf{v}_1 & \cdots & \mathbf{v}_{k'} \\ | & \cdots & | \end{pmatrix}$$

obtained by truncating V to the first k' < k columns

Then, 
$$k = \operatorname{rank}(\mathbf{V}) > \operatorname{rank}(\mathbf{V}') = k'$$

The rank reflects the expressive power of the full (V) and reduced (V') bases

# Example: Reduced bases



full basis  $rank(\mathbf{V}) = k$ 



 $\operatorname{reduced basis} \operatorname{rank}(\mathbf{V}') = k' < k$ 

In the standard basis, a one-to-one correspondence is written as a permutation matrix in  $\mathbb{R}^{n\times n}$ 

$$\mathbf{P} = \begin{pmatrix} 0 & 1 & \cdots & 0 \\ 1 & 0 & \cdots & 0 \\ \vdots & & & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$

In the standard basis, a one-to-one correspondence is written as a permutation matrix in  $\mathbb{R}^{n\times n}$ 

$$\mathbf{P} = \begin{pmatrix} 0 & 1 & \cdots & 0 \\ 1 & 0 & \cdots & 0 \\ \vdots & & & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$

Each column is a basis vector, so  $rank(\mathbf{P}) = n$ , and this is independent of the choice of a basis

In the k-dimensional Voronoi basis, a one-to-one correspondence is written as a generic matrix in  $\mathbb{R}^{k\times k}$ 

$$\tilde{\mathbf{P}} = \begin{pmatrix} p_{11} & p_{12} & \cdots & p_{1k} \\ p_{21} & p_{22} & \cdots & p_{2k} \\ \vdots & & & \vdots \\ p_{k1} & p_{k2} & \cdots & p_{kk} \end{pmatrix}$$

In the k-dimensional Voronoi basis, a one-to-one correspondence is written as a generic matrix in  $\mathbb{R}^{k\times k}$ 

$$\tilde{\mathbf{P}} = \begin{pmatrix} p_{11} & p_{12} & \cdots & p_{1k} \\ p_{21} & p_{22} & \cdots & p_{2k} \\ \vdots & & & \vdots \\ p_{k1} & p_{k2} & \cdots & p_{kk} \end{pmatrix}$$

Each column is the image of a basis vector, i.e.  $Tv_j$ ; so  $\mathrm{rank}(\tilde{\mathbf{P}}) \leq k \ll n$ 

In the k-dimensional Voronoi basis, a one-to-one correspondence is written as a generic matrix in  $\mathbb{R}^{k\times k}$ 

$$\tilde{\mathbf{P}} = \begin{pmatrix} p_{11} & p_{12} & \cdots & p_{1k} \\ p_{21} & p_{22} & \cdots & p_{2k} \\ \vdots & & & \vdots \\ p_{k1} & p_{k2} & \cdots & p_{kk} \end{pmatrix}$$

Each column is the image of a basis vector, i.e.  $Tv_j$ ; so  $\operatorname{rank}(\tilde{\mathbf{P}}) \leq k \ll n$ 

Functions mapped via  $\tilde{\mathbf{P}}$  span a subspace of those mapped via  $\mathbf{P}$ ; so the rank of the matrix encodes how precisely we can map functions to functions

Consider a correspondence matrix from  $\mathcal{F}(\mathcal{X})$  to  $\mathcal{F}(\mathcal{Y})$ , where:

- ullet The standard basis is chosen for  $\mathcal{F}(\mathcal{X})$
- $\bullet$  The Voronoi basis is chosen for  $\mathcal{F}(\mathcal{Y})$

Consider a correspondence matrix from  $\mathcal{F}(\mathcal{X})$  to  $\mathcal{F}(\mathcal{Y})$ , where:

- The standard basis is chosen for  $\mathcal{F}(\mathcal{X})$
- ullet The Voronoi basis is chosen for  $\mathcal{F}(\mathcal{Y})$

$$\mathbf{C} = \begin{pmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ \vdots & & & \vdots \\ c_{k1} & c_{k2} & \cdots & c_{kn} \end{pmatrix} \in \mathbb{R}^{k \times n}$$

Consider a correspondence matrix from  $\mathcal{F}(\mathcal{X})$  to  $\mathcal{F}(\mathcal{Y})$ , where:

- The standard basis is chosen for  $\mathcal{F}(\mathcal{X})$
- The Voronoi basis is chosen for  $\mathcal{F}(\mathcal{Y})$

$$\begin{pmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ \vdots & & & \vdots \\ c_{k1} & c_{k2} & \cdots & c_{kn} \end{pmatrix} \begin{pmatrix} a_1 \\ \vdots \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_k \end{pmatrix}$$

 ${f C}$  maps functions expressed in the n-dim. standard basis to functions expressed in the k-dim. Voronoi basis

Consider a correspondence matrix from  $\mathcal{F}(\mathcal{X})$  to  $\mathcal{F}(\mathcal{Y})$ , where:

- The standard basis is chosen for  $\mathcal{F}(\mathcal{X})$
- The Voronoi basis is chosen for  $\mathcal{F}(\mathcal{Y})$

$$\begin{pmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ \vdots & & & \vdots \\ c_{k1} & c_{k2} & \cdots & c_{kn} \end{pmatrix} \begin{pmatrix} a_1 \\ \vdots \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_k \end{pmatrix}$$

 ${f C}$  maps functions expressed in the n-dim. standard basis to functions expressed in the k-dim. Voronoi basis; thus,  ${\rm rank}({f C})=k$ 



A subspace U of V is called invariant under  $T:V\to V$  if:

 $u \in U$  implies  $Tu \in U$ 

A subspace U of V is called invariant under  $T:V\to V$  if:

$$u \in U$$
 implies  $Tu \in U$ 

If  $T:V \to V$  also means  $T:U \to U$ , then U is an invariant subspace.

A subspace U of V is called invariant under  $T:V\to V$  if:

$$u \in U$$
 implies  $Tu \in U$ 

If  $T:V\to V$  also means  $T:U\to U$ , then U is an invariant subspace.

Consider the 1-dimensional subspace:

$$U = \{\alpha v : \alpha \in \mathbb{R}\} = \operatorname{span}(v)$$

A subspace U of V is called invariant under  $T:V\to V$  if:

$$u \in U$$
 implies  $Tu \in U$ 

If  $T:V\to V$  also means  $T:U\to U$ , then U is an invariant subspace.

Consider the 1-dimensional subspace:

$$U = \{\alpha v : \alpha \in \mathbb{R}\} = \operatorname{span}(v)$$

If U is invariant under T, then for some  $\lambda \in \mathbb{R}$ :

$$Tv = \lambda v$$

A subspace U of V is called invariant under  $T:V\to V$  if:

$$u \in U$$
 implies  $Tu \in U$ 

If  $T:V\to V$  also means  $T:U\to U$ , then U is an invariant subspace.

Consider the 1-dimensional subspace:

$$U = \{\alpha v : \alpha \in \mathbb{R}\} = \operatorname{span}(v)$$

If U is invariant under T, then for some  $\lambda \in \mathbb{R}$ :

$$Tv = \lambda v$$

Conversely, if  $Tv=\lambda v$  for some  $\lambda\in\mathbb{R}$ , then  $\mathrm{span}(v)$  is a 1-dimensional subspace of V invariant under T

$$Tv = \lambda v$$

Studying invariant subspaces is a key tool for studying linear maps

$$Tv = \lambda v$$

Studying invariant subspaces is a key tool for studying linear maps

We call  $\lambda$  an eigenvalue of  $T:V\to V$  if the above holds for some vector  $v\neq 0,$  called the associated eigenvector

$$Tv = \lambda v$$

Studying invariant subspaces is a key tool for studying linear maps

We call  $\lambda$  an eigenvalue of  $T:V\to V$  if the above holds for some vector  $v\neq 0$ , called the associated eigenvector

If the equation holds for m distinct eigenvalues and eigenvectors:

$$Tv_1 = \lambda_1 v_1$$

$$\vdots$$

$$Tv_m = \lambda_m v_m$$

Then it can be proven that  $v_1, \ldots, v_m$  are linearly independent

$$Tv = \lambda v$$

Studying invariant subspaces is a key tool for studying linear maps

We call  $\lambda$  an eigenvalue of  $T:V\to V$  if the above holds for some vector  $v\neq 0$ , called the associated eigenvector

If the equation holds for m distinct eigenvalues and eigenvectors:

$$Tv_1 = \lambda_1 v_1$$

$$\vdots$$

$$Tv_m = \lambda_m v_m$$

Then it can be proven that  $v_1, \ldots, v_m$  are linearly independent, and it must be:

$$m \le \dim(V)$$

$$Tv_1 = \lambda_1 v_1$$

$$\vdots$$

$$Tv_m = \lambda_m v_m$$

In a sense, eigenvectors provide a decomposition of V into subspaces

$$Tv_1 = \lambda_1 v_1$$

$$\vdots$$

$$Tv_m = \lambda_m v_m$$

In a sense, eigenvectors provide a decomposition of V into subspaces

#### Additional notes:

 $\bullet$  This decomposition only makes sense for  $T:V\to V$ 

$$Tv_1 = \lambda_1 v_1$$

$$\vdots$$

$$Tv_m = \lambda_m v_m$$

In a sense, eigenvectors provide a decomposition of V into subspaces

#### Additional notes:

- ullet This decomposition only makes sense for T:V 
  ightarrow V
- ullet If V is a function space, eigenvectors are called eigenfunctions

#### Eigenspaces

If distinct eigenvectors  $E=(v_1,\ldots,v_m)$  correspond to the same eigenvalue  $\lambda$ , then E spans an eigenspace of T

An eigenspace is a subspace of V, but has dimension greater than  ${\bf 1}$ 

#### Eigenspaces

If distinct eigenvectors  $E=(v_1,\ldots,v_m)$  correspond to the same eigenvalue  $\lambda$ , then E spans an eigenspace of T

An eigenspace is a subspace of V, but has dimension greater than  ${\bf 1}$ 

#### To summarize:

ullet Certain linear maps  $T:V \to V$  induce invariant subspaces on V

# Eigenspaces

If distinct eigenvectors  $E=(v_1,\ldots,v_m)$  correspond to the same eigenvalue  $\lambda$ , then E spans an eigenspace of T

An eigenspace is a subspace of V, but has dimension greater than  ${\bf 1}$ 

#### To summarize:

- ullet Certain linear maps T:V o V induce invariant subspaces on V
- ullet These subspaces are spanned by eigenvectors of T

# Eigenspaces

If distinct eigenvectors  $E=(v_1,\ldots,v_m)$  correspond to the same eigenvalue  $\lambda$ , then E spans an eigenspace of T

An eigenspace is a subspace of V, but has dimension greater than 1

#### To summarize:

- ullet Certain linear maps T:V o V induce invariant subspaces on V
- These subspaces are spanned by eigenvectors of T
- Subspaces might be high-dimensional and are called eigenspaces

# Eigenspaces

If distinct eigenvectors  $E=(v_1,\ldots,v_m)$  correspond to the same eigenvalue  $\lambda$ , then E spans an eigenspace of T

An eigenspace is a subspace of V, but has dimension greater than 1

#### To summarize:

- ullet Certain linear maps T:V o V induce invariant subspaces on V
- ullet These subspaces are spanned by eigenvectors of T
- Subspaces might be high-dimensional and are called eigenspaces
- ullet Eigenspaces provide a form of decomposition of V

| Inner product                                                  |
|----------------------------------------------------------------|
| We want to be able to measure lengths and angles among vectors |
|                                                                |

We want to be able to measure lengths and angles among vectors

To do so, we define the inner product as a function  $\langle u, v \rangle : V \times V \to \mathbb{R}$  with the properties:

• non-negativity:  $\langle v, v \rangle \geq 0$  for all  $v \in V$ 

We want to be able to measure lengths and angles among vectors

To do so, we define the inner product as a function  $\langle u,v\rangle:V\times V\to\mathbb{R}$  with the properties:

- non-negativity:  $\langle v,v\rangle \geq 0$  for all  $v\in V$
- definiteness:  $\langle v, v \rangle = 0$  iff v = 0

We want to be able to measure lengths and angles among vectors

To do so, we define the inner product as a function  $\langle u,v\rangle:V\times V\to\mathbb{R}$  with the properties:

- non-negativity:  $\langle v,v \rangle \geq 0$  for all  $v \in V$
- definiteness:  $\langle v, v \rangle = 0$  iff v = 0
- additivity:  $\langle u+v,w\rangle=\langle u,w\rangle+\langle v,w\rangle$  for all  $u,v,w\in V$

We want to be able to measure lengths and angles among vectors

To do so, we define the inner product as a function  $\langle u,v\rangle:V\times V\to\mathbb{R}$  with the properties:

- non-negativity:  $\langle v,v \rangle \geq 0$  for all  $v \in V$
- definiteness:  $\langle v, v \rangle = 0$  iff v = 0
- additivity:  $\langle u+v,w\rangle=\langle u,w\rangle+\langle v,w\rangle$  for all  $u,v,w\in V$
- homogeneity:  $\langle \lambda u, v \rangle = \lambda \langle u, v \rangle$  for all  $\lambda \in \mathbb{R}$  and all  $u, v \in V$

We want to be able to measure lengths and angles among vectors

To do so, we define the inner product as a function  $\langle u,v\rangle:V\times V\to\mathbb{R}$  with the properties:

- non-negativity:  $\langle v,v \rangle \geq 0$  for all  $v \in V$
- definiteness:  $\langle v, v \rangle = 0$  iff v = 0
- additivity:  $\langle u+v,w\rangle=\langle u,w\rangle+\langle v,w\rangle$  for all  $u,v,w\in V$
- homogeneity:  $\langle \lambda u,v \rangle = \lambda \langle u,v \rangle$  for all  $\lambda \in \mathbb{R}$  and all  $u,v \in V$
- symmetry:  $\langle u,v \rangle = \langle v,u \rangle$  for all  $u,v \in V$

# Examples: Inner products

#### Lists:

The Euclidean inner product (or dot product) is defined by

$$\langle (u_1,\ldots,u_n),(v_1,\ldots,v_n)\rangle = u_1v_1+\cdots u_nv_n$$

This is the standard inner product for vectors in  $\mathbb{R}^n$ 

# Examples: Inner products

#### Lists:

The Euclidean inner product (or dot product) is defined by

$$\langle (u_1,\ldots,u_n),(v_1,\ldots,v_n)\rangle = u_1v_1+\cdots u_nv_n$$

This is the standard inner product for vectors in  $\mathbb{R}^n$ 

#### • Functions:

On the vector space of continuous functions  $f:[-1,1] \to \mathbb{R}$ 

$$\langle f, g \rangle = \int_{-1}^{1} f(x)g(x)dx$$

### Norm

### Each inner product determines a norm:

$$\|v\| = \sqrt{\langle v,v\rangle}$$

### Norm

Each inner product determines a norm:

$$||v|| = \sqrt{\langle v, v \rangle}$$

### **Examples:**

• For lists with the Euclidean inner product:

$$\|(v_1,\ldots,v_n)\| = \sqrt{v_1^2 + \cdots + v_n^2}$$

### Norm

Each inner product determines a norm:

$$||v|| = \sqrt{\langle v, v \rangle}$$

#### **Examples:**

• For lists with the Euclidean inner product:

$$\|(v_1,\ldots,v_n)\| = \sqrt{v_1^2 + \cdots + v_n^2}$$

• For continuous functions  $f:[-1,1] \to \mathbb{R}$ :

$$||f|| = \sqrt{\int_{-1}^{1} f(x)^2 dx}$$

# Orthogonality

Two vectors  $u,v\in V$  are orthogonal if  $\langle u,v\rangle=0$ 

# Orthogonality

Two vectors  $u,v\in V$  are orthogonal if  $\langle u,v\rangle=0$ 

For  $u, v \in \mathbb{R}^2$ , it can be shown that

$$\langle u, v \rangle = ||u|| ||v|| \cos \theta$$

where  $\theta \in \mathbb{R}$  is the angle between u,v if we think of them as arrows with initial point at the origin

# Orthogonality

Two vectors  $u,v\in V$  are orthogonal if  $\langle u,v\rangle=0$ 

For  $u, v \in \mathbb{R}^2$ , it can be shown that

$$\langle u, v \rangle = ||u|| ||v|| \cos \theta$$

where  $\theta \in \mathbb{R}$  is the angle between u,v if we think of them as arrows with initial point at the origin

From this, we can think of the inner product as encoding a general notion of angle between two vectors:

$$\theta = \arccos \frac{\langle u, v \rangle}{\|u\| \|v\|}$$

For example, we can now think of "angle between two functions"

A basis  $(v_1,\ldots,v_n)$  is orthogonal if all the vectors are orthogonal to each other

A basis  $(v_1,\ldots,v_n)$  is orthogonal if all the vectors are orthogonal to each other; the basis is orthonormal if, in addition,  $\|v_i\|=1$  for all  $v_i$ 

A basis  $(v_1,\ldots,v_n)$  is orthogonal if all the vectors are orthogonal to each other; the basis is orthonormal if, in addition,  $\|v_i\|=1$  for all  $v_i$ 

Note that every collection of orthogonal vectors is linearly independent

A basis  $(v_1,\ldots,v_n)$  is orthogonal if all the vectors are orthogonal to each other; the basis is orthonormal if, in addition,  $\|v_i\|=1$  for all  $v_i$ 

Note that every collection of orthogonal vectors is linearly independent

### Examples:

A basis  $(v_1,\ldots,v_n)$  is orthogonal if all the vectors are orthogonal to each other; the basis is orthonormal if, in addition,  $\|v_i\|=1$  for all  $v_i$ 

Note that every collection of orthogonal vectors is linearly independent

### Examples:

• The standard basis in  $\mathbb{R}^n$  is orthonormal

A basis  $(v_1,\ldots,v_n)$  is orthogonal if all the vectors are orthogonal to each other; the basis is orthonormal if, in addition,  $\|v_i\|=1$  for all  $v_i$ 

Note that every collection of orthogonal vectors is linearly independent

### **Examples:**

- ullet The standard basis in  $\mathbb{R}^n$  is orthonormal
- $\bullet \ (\frac{1}{2},\frac{\sqrt{3}}{2}),(-\frac{\sqrt{3}}{2},\frac{1}{2}) \in \mathbb{R}^2$  is orthonormal

A basis  $(v_1,\ldots,v_n)$  is orthogonal if all the vectors are orthogonal to each other; the basis is orthonormal if, in addition,  $\|v_i\|=1$  for all  $v_i$ 

Note that every collection of orthogonal vectors is linearly independent

### **Examples:**

- ullet The standard basis in  $\mathbb{R}^n$  is orthonormal
- $\bullet \ (\frac{1}{2},\frac{\sqrt{3}}{2}),(-\frac{\sqrt{3}}{2},\frac{1}{2}) \in \mathbb{R}^2$  is orthonormal
- The Voronoi basis is orthogonal, but not orthonormal

A basis  $(v_1,\ldots,v_n)$  is orthogonal if all the vectors are orthogonal to each other; the basis is orthonormal if, in addition,  $\|v_i\|=1$  for all  $v_i$ 

Note that every collection of orthogonal vectors is linearly independent

### **Examples:**

- ullet The standard basis in  $\mathbb{R}^n$  is orthonormal
- $\bullet \ (\frac{1}{2},\frac{\sqrt{3}}{2}),(-\frac{\sqrt{3}}{2},\frac{1}{2}) \in \mathbb{R}^2$  is orthonormal
- The Voronoi basis is orthogonal, but not orthonormal

Given an orthonormal basis,  $v \in V$  can be written as a linear combination:

$$v = \langle v, v_1 \rangle v_1 + \dots + \langle v, v_n \rangle v_n$$

So the combination coefficients are simply given by inner products

For vectors  $u, v \in V$  in the standard basis  $\{e_i\}$ , we can write:

$$\langle u, v \rangle = \langle \sum_{i} u_{i} e_{i}, \sum_{j} v_{j} e_{j} \rangle$$

For vectors  $u,v\in V$  in the standard basis  $\{e_i\}$ , we can write:

$$\langle u, v \rangle = \langle \sum_{i} u_{i} e_{i}, \sum_{j} v_{j} e_{j} \rangle$$
  
$$= \sum_{i,j} \langle u_{i} e_{i}, v_{j} e_{j} \rangle$$

For vectors  $u, v \in V$  in the standard basis  $\{e_i\}$ , we can write:

$$\langle u, v \rangle = \langle \sum_{i} u_{i} e_{i}, \sum_{j} v_{j} e_{j} \rangle$$

$$= \sum_{i,j} \langle u_{i} e_{i}, v_{j} e_{j} \rangle$$

$$= \sum_{i,j} u_{i} v_{j} \underbrace{\langle e_{i}, e_{j} \rangle}_{=0 \text{ if } i \neq j}$$

For vectors  $u, v \in V$  in the standard basis  $\{e_i\}$ , we can write:

$$\langle u, v \rangle = \langle \sum_{i} u_{i} e_{i}, \sum_{j} v_{j} e_{j} \rangle$$

$$= \sum_{i,j} \langle u_{i} e_{i}, v_{j} e_{j} \rangle$$

$$= \sum_{i,j} u_{i} v_{j} \underbrace{\langle e_{i}, e_{j} \rangle}_{=0 \text{ if } i \neq j}$$

$$= \sum_{i} u_{i} v_{i}$$

which corresponds to the standard Euclidean inner product

For vectors  $u, v \in V$  in the standard basis  $\{e_i\}$ , we can write:

$$\langle u, v \rangle = \langle \sum_{i} u_{i} e_{i}, \sum_{j} v_{j} e_{j} \rangle$$

$$= \sum_{i,j} \langle u_{i} e_{i}, v_{j} e_{j} \rangle$$

$$= \sum_{i,j} u_{i} v_{j} \underbrace{\langle e_{i}, e_{j} \rangle}_{=0 \text{ if } i \neq j}$$

$$= \sum_{i} u_{i} v_{i}$$

which corresponds to the standard Euclidean inner product In matrix notation, we can thus write

$$\langle u, v \rangle = \mathbf{u}^{\top} \mathbf{v}$$

For vectors  $u,v\in V$  in some other basis  $\{w_i\}$ , we can write:

$$\langle u, v \rangle = \sum_{i,j} u_i v_j \langle w_i, w_j \rangle$$

For vectors  $u, v \in V$  in some other basis  $\{w_i\}$ , we can write:

$$\langle u, v \rangle = \sum_{i,j} u_i v_j \underbrace{\langle w_i, w_j \rangle}_{\mathbf{w}_i^{\mathsf{T}} \mathbf{w}_j}$$

For vectors  $u, v \in V$  in some other basis  $\{w_i\}$ , we can write:

$$\langle u, v \rangle = \sum_{i,j} u_i v_j \underbrace{\langle w_i, w_j \rangle}_{\mathbf{w}_i^{\mathsf{T}} \mathbf{w}_j}$$
$$= \mathbf{u}^{\mathsf{T}} \mathbf{W}^{\mathsf{T}} \mathbf{W} \mathbf{v}$$

where  ${f W}$  contains the basis vectors  ${f w}_i$  as its columns

For vectors  $u, v \in V$  in some other basis  $\{w_i\}$ , we can write:

$$\langle u, v \rangle = \sum_{i,j} u_i v_j \underbrace{\langle w_i, w_j \rangle}_{\mathbf{w}_i^{\top} \mathbf{w}_j}$$
$$= \mathbf{u}^{\top} \mathbf{W}^{\top} \mathbf{W} \mathbf{v}$$

where  ${f W}$  contains the basis vectors  ${f w}_i$  as its columns

• If  $\{w_i\}$  is orthonormal, then  $\mathbf{W}^{\top}\mathbf{W} = \mathbf{I}$ 

For vectors  $u, v \in V$  in some other basis  $\{w_i\}$ , we can write:

$$\langle u, v \rangle = \sum_{i,j} u_i v_j \underbrace{\langle w_i, w_j \rangle}_{\mathbf{w}_i^{\top} \mathbf{w}_j}$$
$$= \mathbf{u}^{\top} \mathbf{W}^{\top} \mathbf{W} \mathbf{v}$$

where  ${f W}$  contains the basis vectors  ${f w}_i$  as its columns

- If  $\{w_i\}$  is orthonormal, then  $\mathbf{W}^{\top}\mathbf{W} = \mathbf{I}$
- Another way to see the derivation above is as follows:

For vectors  $u, v \in V$  in some other basis  $\{w_i\}$ , we can write:

$$\langle u, v \rangle = \sum_{i,j} u_i v_j \underbrace{\langle w_i, w_j \rangle}_{\mathbf{w}_i^{\top} \mathbf{w}_j}$$
$$= \mathbf{u}^{\top} \mathbf{W}^{\top} \mathbf{W} \mathbf{v}$$

where  ${f W}$  contains the basis vectors  ${f w}_i$  as its columns

- ullet If  $\{w_i\}$  is orthonormal, then  $\mathbf{W}^ op \mathbf{W} = \mathbf{I}$
- Another way to see the derivation above is as follows:
  - Wu gives the coefficients of u in the standard basis (and similarly for v)

For vectors  $u, v \in V$  in some other basis  $\{w_i\}$ , we can write:

$$\langle u, v \rangle = \sum_{i,j} u_i v_j \underbrace{\langle w_i, w_j \rangle}_{\mathbf{w}_i^{\top} \mathbf{w}_j}$$
$$= \mathbf{u}^{\top} \mathbf{W}^{\top} \mathbf{W} \mathbf{v}$$

where W contains the basis vectors  $w_i$  as its columns

- If  $\{w_i\}$  is orthonormal, then  $\mathbf{W}^{\top}\mathbf{W} = \mathbf{I}$
- Another way to see the derivation above is as follows:
  - Wu gives the coefficients of u in the standard basis (and similarly for v)
  - Once we are in the standard basis, we can write

$$\langle u, v \rangle = (\mathbf{W}\mathbf{u})^{\top} (\mathbf{W}\mathbf{v})$$

For vectors  $u, v \in V$  in some other basis  $\{w_i\}$ , we can write:

$$\langle u, v \rangle = \sum_{i,j} u_i v_j \underbrace{\langle w_i, w_j \rangle}_{\mathbf{w}_i^{\top} \mathbf{w}_j}$$
$$= \mathbf{u}^{\top} \mathbf{W}^{\top} \mathbf{W} \mathbf{v}$$

where W contains the basis vectors  $w_i$  as its columns

- If  $\{w_i\}$  is orthonormal, then  $\mathbf{W}^{\top}\mathbf{W} = \mathbf{I}$
- Another way to see the derivation above is as follows:
  - Wu gives the coefficients of u in the standard basis (and similarly for v)
  - · Once we are in the standard basis, we can write

$$\langle u, v \rangle = (\mathbf{W}\mathbf{u})^{\top}(\mathbf{W}\mathbf{v}) = \mathbf{u}^{\top}\mathbf{W}^{\top}\mathbf{W}\mathbf{v}$$

The Voronoi basis can be made orthonormal by rescaling each basis vector:

$$v_i \mapsto \frac{v_i}{\|v_i\|}$$

The Voronoi basis can be made orthonormal by rescaling each basis vector:

$$v_i \mapsto \frac{v_i}{\|v_i\|}$$

With this rescaling, we get  $\mathbf{V}^{ op}\mathbf{V} = \mathbf{I}$ 

The Voronoi basis can be made orthonormal by rescaling each basis vector:

$$v_i \mapsto \frac{v_i}{\|v_i\|}$$

With this rescaling, we get  $\mathbf{V}^{\top}\mathbf{V} = \mathbf{I}$ 

Now given coefficients f in the standard basis, in order to find its coefficients in the Voronoi basis we solved:

$$\mathbf{V}\mathbf{c}\approx\mathbf{f}$$

The Voronoi basis can be made orthonormal by rescaling each basis vector:

$$v_i \mapsto \frac{v_i}{\|v_i\|}$$

With this rescaling, we get  $\mathbf{V}^{\top}\mathbf{V} = \mathbf{I}$ 

Now given coefficients f in the standard basis, in order to find its coefficients in the Voronoi basis we solved:

$$\mathbf{Vc} \approx \mathbf{f}$$

But they can be simply obtained as:

$$\mathbf{c} = \mathbf{V}^{\top} \mathbf{f}$$

The Voronoi basis can be made orthonormal by rescaling each basis vector:

$$v_i \mapsto \frac{v_i}{\|v_i\|}$$

With this rescaling, we get  $\mathbf{V}^{\top}\mathbf{V} = \mathbf{I}$ 

Now given coefficients f in the standard basis, in order to find its coefficients in the Voronoi basis we solved:

$$\mathbf{Vc} \approx \mathbf{f}$$

But they can be simply obtained as:

$$\mathbf{c} = \mathbf{V}^{\top} \mathbf{f}$$

This is true for any orthonormal basis

# Exercise: Rank of a map

Implement the example of slide number 22 (download shapes tr\_reg\_010 and tr\_reg\_031 from the course website)

For these shapes, the ground-truth correspondence is the identity.

- ullet Use the standard basis U on the source
- ullet Use the Voronoi basis V on the target, based on 50 FPS
- ullet Encode the ground-truth map as a matrix  ${f C}$  wrt bases U and V
- ullet Map the x coordinate function from source to target via  ${f C}$

Visualize the function on source and target using the jet colormap; you should get a similar rendering as the one shown in slide 22.

# Suggested reading

See sections 3.F, 5.A - 6.B of:

S. Axler, "Linear algebra done right – 3rd edition". Springer, 2015