A Game on \mathbb{Z}_n

Dan, Scott, and Stephanie

Modular Arithmetic - with clocks!

► 5(mod 2) = ?

▶ 10(mod 4) ≡ ?

▶ $3 \pmod{6} \equiv ?$

▶ $5 \pmod{2} \equiv 1$

▶ 10(mod 4) ≡ ?

▶ $3 \pmod{6} \equiv ?$

▶ $5 \pmod{2} \equiv 1$

▶ $10 \pmod{4} \equiv 2$

▶ $3 \pmod{6} \equiv ?$

▶ $5 \pmod{2} \equiv 1$

▶ $10 \pmod{4} \equiv 2$

▶ $3 \pmod{6} \equiv 3$

What is \mathbb{Z}_n ?

$$Z_n = \langle 1, 2, 3, \ldots, n-2, n-1 \rangle$$

$$Z_5 = \langle 1, 2, 3, 4 \rangle$$

$$Z_{12} = \langle 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 \rangle$$

► Two players per game

- ► Two players per game
- ▶ Pick a \mathbb{Z}_n to play with

- Two players per game
- ▶ Pick a \mathbb{Z}_n to play with
- ▶ Take turns choosing numbers from \mathbb{Z}_n

- ► Two players per game
- ▶ Pick a \mathbb{Z}_n to play with
- ▶ Take turns choosing numbers from \mathbb{Z}_n
- Once a number has been picked, it cannot be picked again!

- ▶ Two players per game
- ▶ Pick a \mathbb{Z}_n to play with
- ▶ Take turns choosing numbers from \mathbb{Z}_n
- Once a number has been picked, it cannot be picked again!
- Each choice is added together and reduced modulo *n*.

- Two players per game
- ▶ Pick a \mathbb{Z}_n to play with
- ▶ Take turns choosing numbers from \mathbb{Z}_n
- Once a number has been picked, it cannot be picked again!
- ► Each choice is added together and reduced modulo *n*.
- ▶ The game ends when all elements have been chosen or when the sum modulo *n* reaches 0.

$$\mathbb{Z}_5 = \langle 1, 2, 3, 4 \rangle$$

Player 1	Player 2	Result
2		$2 \pmod{5} \equiv 2$

Remaining choices: 1, 2, 3, 4

$$\mathbb{Z}_5 = \langle 1, 2, 3, 4 \rangle$$

Player 1	Player 2	Result
2		$2(mod\ 5) \equiv 2$
	4	$(2+4)(mod\ 5)\equiv 1$

Remaining choices: 1, 2, 3, 4

$$\mathbb{Z}_5 = \langle 1, 2, 3, 4 \rangle$$

Player 1	Player 2	Result
2		$2(mod\;5)\equiv 2$
	4	$(2+4)(mod\ 5)\equiv 1$
1		$(1+1)(mod\ 5) \equiv 2$

Remaining choices: $\chi, \chi, 3, \chi$

$$\mathbb{Z}_5 = \langle 1, 2, 3, 4 \rangle$$

Player 1	Player 2	Result
2		$2(mod\ 5) \equiv 2$
	4	$(2+4)(mod\ 5)\equiv 1$
1		$(1+1)(mod\ 5) \equiv 2$
	3	$(2+3)(mod\ 5) \equiv 0$

And player two loses this round!

- Two players per game
- ▶ Pick a \mathbb{Z}_n to play with
- ▶ Take turns choosing numbers from \mathbb{Z}_n
- Once a number has been picked, it cannot be picked again!
- ► Each choice is added together and reduced modulo *n*.
- ▶ The game ends when all elements have been chosen or when the sum modulo *n* reaches 0.