5.5.1. Измерение коэффициента ослабления потока γ -лучей в веществе и определение их энергии

Стренадко Виктория

Цель работы: Измерить с помощью сцинтилляционного счетчика линейные коэффициенты ослабления потока γ -лучей в свинце, железе и алюминии; определить по их величине энергию γ -квантов.

Теоретическая часть

Проходя через вещество, пучок γ -квантов постепенно ослабляется. Ослабление происходит по экспоненциальному закону, который может быт записан в двух эквивалентных формах:

$$I = I_0 e^{-\mu l} \tag{1}$$

$$I = I_0 e^{-\mu' m_1} \tag{2}$$

Фотоэлектрическое поглощение. Вероятность dP_{Φ} фотоэлектрического поглощения γ -квантов пропорциональна длине пути dl и плотности электронов в среде:

$$dP_{\Phi} = \sigma_{\Phi} n_1 dl \tag{3}$$

Коэффициент поглощения для фотоэффекта $\mu_{\mathbf{d}}$:

$$\mu_{\mathbf{d}} = \sigma_{\mathbf{d}} n_1 \tag{4}$$

 W_i — энергия связи электрона на i оболочке атома. После вылета из атома электрон приобретает кинетическую энергию.

$$T_i = \hbar\omega - W_i \tag{5}$$

$$\sigma_{\Phi} \propto \frac{Z^5}{(\hbar\omega)^{3.5}}$$
 (6)

Комптоновское рассеяние. Сечение комптон-эффекта:

$$\sigma_{\Phi} = \pi r^2 \frac{mc^2}{\hbar\omega} \left(\ln \frac{2\hbar\omega}{mc^2} + \frac{1}{2} \right) \tag{7}$$

Комптоновский коэффициент линейного ослабления μ_{Φ} связан с сечением формулой, аналогичной формуле (4).

Образование пар. При энергиях γ -лучей, превышающих $2mc^2=1.02$ МэВ, становится возможен процесс поглощения γ -лучей, связанный с образованием электрон-позитронных пар.

Полный эффект ослабления потока γ **-лучей**. Полный линейный коэффициент μ ослабления пучка γ -квантов при прохождении равен сумме коэффициентов для всех трёх рассмотренных процессов.

$$\mu = \frac{1}{l} \ln \frac{N_0}{N} \tag{8}$$

Экспериментальная установка

Экспериментальная установка

Схема установки, используемой в работе, показана на рис. 3. Свинцовый коллиматор выделяет узкий почти параллельный пучок γ -квантов,

Рис. 3. Блок-схема установки, используемой для измерения коэффициентов ослабления потока γ -лучей: И — источник γ -лучей; Рb — свинцовый контейнер с коллиматорным каналом; П — набор поглотителей; С — сцинтиллятор — кристалл NaI(Tl); Φ — формирователь-выпрямитель

Рис. 4. Схема рассеяния γ -квантов в поглотителе

Ход работы

- 1. $N_0 = 110598$ число частиц попадающих в счётчик за 10 секунд.
- 2. Измерим число частиц попадающих в счетчик за 10 секунд в присутствии поглотителя.

Fe		I =1 cm						
1	2	3	4	5	6	7	8	9
62195	35182	20273	12108	6974	4083	2411	1554	1004
62174	35192	20351	11701	6898	4000	2515	1507	998
Al		I=2 cm						
1	2	3	4	5	6			
73022	47896	32305	21385	14586	9853			
73479	47599	32365	21374	12596	9849			
Дерево	I=2 cm							
1	2	3	4	5				
109570	106778	103704	102119	100447				
109822	106833	104260	102322	100416				

Свинец		0,5 см				
1	2	3	4	5	6	7
61924	36580	20488	12397	7792	4805	2935
61634	36763	20595	12123	7770	4815	2931
-1,1599884	-1,1064004	-1,1240418	-1,0942237	-1,0611218	-1,045415	-1,0369127

3. Построим графики:

4. Средняя энергия E_{γ} , эВ:

$$\begin{array}{c|ccccc} \text{Substance} & E_{\gamma} & \mu, cm^{-1} \\ \text{Pb} & 0.7 & 1.041 \\ \text{Fe} & 0.7 & 0.555 \\ \text{Al} & 0.4 & 0.206 \end{array}$$

Вывод:

С помощью сцинтилляционного счетчика мы измерили коэффициенты ослабления потока γ -лучей в свинце, алюминии, железе, и убедились в линейной зависимости коэффициентов ослабления от толщины образцов. Также нашли среднюю энергию E_{γ} для всех 3 элементов.