

Aufgaben und Lösungsvorschlag

Für jede der Subfragen von 1. können keine bis alle Antwortmöglichkeiten richtig sein.

1. Multiple choice

[8 Punkte]

- 1.1. [2 Punkte] Seien A, B zwei Ereignisse mit $\mathbb{P}[A] = 0.7$, $\mathbb{P}[B] = 0.4$. Welche der folgenden Aussagen sind immer wahr?
 - (A) $\mathbb{P}[A \cup B] < \mathbb{P}[A] + \mathbb{P}[B]$.

(C) A und B sind disjunkt.

(B) A und B sind unabhängig.

(D) $\mathbb{P}[A \cap B^c] \leq 0.6$.

Lösung:

- (A) ist wahr, da $\mathbb{P}[A \cup B] \leq 1 < 1.1 = \mathbb{P}[A] + \mathbb{P}[B]$.
- (B) ist nicht nachweislich wahr, da wir zu wenig Informationen haben um nachzuweisen, dass die Ereignisse A und B unabhängig sind.
- (C) ist nicht wahr, denn wären A und B disjunkt, dann müsste gelten, dass $\mathbb{P}[A \cup B] = \mathbb{P}[A] + \mathbb{P}[B] > 1$, was nicht möglich ist, da \mathbb{P} ein Wahrscheinlichkeitsmass ist.
- (D) ist wahr, da $\mathbb{P}[B^c] = 0.6$ und $A \cap B^c \subset B^c$.
- 1.2. [2 Punkte] Zwei faire Münzen werden unabhängig voneinander geworfen. Sei X die Zufallsvariable, die den Wert 1 oder 0 annimmt, falls der erste Münzwurf in "Kopf" oder "Zahl" resultiert. Sei Y die Zufallsvariable, die den Wert 1 oder 0 annimmt, falls der zweite Münzwurf in "Kopf" oder "Zahl" resultiert. Welche der folgenden Aussagen sind wahr?
 - (A) $\mathbb{P}[X + Y = 0] \ge \frac{1}{3}$.
 - (B) $\mathbb{P}[X Y = 0] \ge \frac{1}{3}$.
 - (C) Die Ereignisse $\{X Y = 0\}$ und $\{X = 0\}$ sind unabhängig.
 - (D) $\mathbb{P}[X = 1, Y = 1 | X = 1 \text{ oder } Y = 1] \ge \frac{1}{3}$.

Lösung:

- (A) ist nicht wahr. $\mathbb{P}[X + Y = 0] = \mathbb{P}[X = 0 \text{ und } Y = 0] = \mathbb{P}[X = 0] \mathbb{P}[Y = 0] = \frac{1}{4} < \frac{1}{3}$.
- (B) ist wahr.

$$\mathbb{P}\left[X - Y = 0\right] = \mathbb{P}\left[X = Y\right] = \mathbb{P}\left[X = 0, Y = 0\right] + \mathbb{P}\left[X = 1, Y = 1\right] = \frac{1}{4} + \frac{1}{4} = \frac{1}{2} \ge \frac{1}{3}.$$

(C) ist wahr. $\mathbb{P}[X=0] = \frac{1}{2}$, $\mathbb{P}[X-Y=0] = \frac{1}{2}$, daher ist $\mathbb{P}[X=0] \mathbb{P}[X-Y=0] = \frac{1}{4}$ und $\mathbb{P}[X-Y=0,X=0] = \mathbb{P}[X=0,Y=0] = \frac{1}{4}$.

17. August 2023

(D) ist wahr.

$$\begin{split} \mathbb{P}\left[\{X=1,Y=1\} | \{X=1 \text{ oder } Y=1\}\right] = & \frac{\mathbb{P}\left[\{X=1,Y=1\} \cap \{X=1 \text{ oder } Y=1\}\right]}{\mathbb{P}\left[\{X=1 \text{ oder } Y=1\}\right]} \\ = & \frac{\mathbb{P}\left[\{X=1,Y=1\}\right]}{\mathbb{P}\left[\{X=1 \text{ oder } Y=1\}\right]} \\ = & \frac{\frac{1}{4}}{\frac{3}{4}} = \frac{1}{3}. \end{split}$$

1.3. [2 Punkte] Sei X eine Zufallsvariable mit Mittelwert μ_X und Standardabweichung σ_X . Für positive reelle Zahlen a>0, b>0 sei Y=aX+b eine weitere Zufallsvariable mit Erwartungswert μ_Y und Standardabweichung σ_Y . Weiters bezeichnen wir mit σ_{X+Y}^2 die Varianz der Zufallsvariable X+Y. Welche der folgenden Aussagen sind wahr?

(A)
$$\sigma_Y = a\sigma_X + b$$

(C)
$$\mathbb{E}[Y^2] - \mathbb{E}[Y]^2 = a^2 \sigma_X^2$$

(B)
$$\mu_Y = a\mu_X + b$$

(D)
$$\sigma_{X+Y}^2 = \sigma_X^2 + a^2 \sigma_X^2$$

Lösung:

- (A) ist nicht wahr, da $\sigma_Y^2 = a^2 \sigma_X^2$, also $\sigma_Y = a \sigma_X$.
- (B) ist wahr, wegen Linearität des Erwartungswerts.
- (C) ist wahr, da $\mathbb{E}[Y^2] \mathbb{E}[Y]^2 = \sigma_Y^2 = a^2 \sigma_X^2.$
- (D) ist nicht wahr, da X und Y nicht unabhängig sind.

1.4. [1 Punkt] Sei X eine normalverteilte Zufallsvariable mit Erwartungswert 1 und Varianz 4. Sei Y eine weitere normalverteilte Zufallsvariable mit Erwartungswert -1 und unbekannter Varianz σ^2 . Weiters gilt, dass $\mathbb{P}[X \leq -1] = \mathbb{P}[Y \geq 2]$. Wie gross ist die Standardabweichung σ der Zufallsvariable Y?

(A)
$$\sigma = 3$$

(B)
$$\sigma = 1$$

(C)
$$\sigma = 2$$

(D)
$$\sigma = \sqrt{2}$$

Lösung:

(A): Wegen

$$\mathbb{P}[X \le -1] = \Phi(\frac{-2}{2}) = 1 - \Phi(1),$$

$$\mathbb{P}[Y \ge 2] = 1 - \mathbb{P}[Y \le 2] = 1 - \Phi(\frac{3}{\sigma}),$$

gilt, dass

$$1 - \Phi(1) = 1 - \Phi(\frac{3}{\sigma}) \iff \sigma = 3.$$

1.5. [1 Punkt] Wir werfen einen unausgeglichenen Würfel. Dieser Würfel hat sechs Seiten, die von 1 bis 6 durchnummeriert sind. Sei X die Zufallsvariable mit Werten in $\{1, \ldots, 6\}$, die die geworfene Augenzahl beschreibt. Es gilt, dass

- $\frac{9}{10}\mathbb{P}[\{X\text{gerade}\}] = \mathbb{P}[\{X\text{ungerade}\}],$
- $\mathbb{P}[\{X=2\}] = \mathbb{P}[\{X=4\}] = \mathbb{P}[\{X=6\}], \text{ und}$
- $\mathbb{P}[\{X \text{gerade}\} \mid \{X > 3\}] = \frac{3}{4}.$

Was ist $\mathbb{P}\left[\left\{X > 3\right\}\right]$?

(A)
$$\frac{40}{171}$$

(B)
$$\frac{80}{171}$$

(C)
$$\frac{40}{81}$$

(D)
$$\frac{80}{81}$$

Lösung:

(B): Wir setzen
$$p = \mathbb{P}[\{X = 2\}] = \mathbb{P}[\{X = 4\}] = \mathbb{P}[\{X = 6\}]$$
. Dann gilt, dass
$$\mathbb{P}[\{X \text{gerade}\}] = \mathbb{P}[\{X = 2\}] + \mathbb{P}[\{X = 4\}] + \mathbb{P}[\{X = 6\}] = 3p,$$

$$\mathbb{P}[\{X \text{ungerade}\}] = 1 - \mathbb{P}[\{X \text{gerade}\}] = 1 - 3p.$$

Daher bekommen wir, dass

$$\frac{9}{10}\mathbb{P}\left[\left\{X\text{gerade}\right\}\right] = \mathbb{P}\left[\left\{X\text{ungerade}\right\}\right] \iff \frac{9}{10} \cdot 3p = 1 - 3p \iff \frac{19}{10}3p = 1 \iff p = \frac{10}{57}.$$

Ausserdem wissen wir, dass

$$\begin{split} \mathbb{P}\left[\{X \text{gerade}\} | \{X > 3\}\right] &= \frac{3}{4} \iff \frac{\mathbb{P}\left[\{X \text{gerade}\} \cap \{X > 3\}\right]}{\mathbb{P}\left[\{X > 3\}\right]} = \frac{3}{4} \\ \iff \mathbb{P}\left[\{X > 3\}\right] &= \frac{4}{3} \mathbb{P}\left[\{X \text{gerade}\} \cap \{X > 3\}\right] \\ \iff \mathbb{P}\left[\{X > 3\}\right] &= \frac{4}{3} \mathbb{P}\left[\{X = 4\} \cup \{X = 6\}\right] = \frac{4}{3} 2p = \frac{80}{171}. \end{split}$$

Für jede der Subfragen von 2. ist genau eine Antwortmöglichkeit richtig.

2. Multiple-Choice [6 Punkte] Seien X und Y zwei Zufallsvariablen. Für einen Faktor c > 0 ist die gemeinsame Dichtefunktion von X und Y gegeben als

$$f_{X,Y}(x,y) = \begin{cases} \frac{c}{x^2y^2}, & x \ge 2, y \ge 1\\ 0, & \text{sonst.} \end{cases}$$

Weiters sei eine Zufallsvariable Z gegeben mit der Verteilungsfunktion

$$F_Z(z) = \begin{cases} 0, & \text{falls } z < 0, \\ 0.1, & \text{falls } 0 \le z < 1, \\ 0.5, & \text{falls } 1 \le z < 3, \\ 0.8, & \text{falls } 3 \le z < 5, \\ 1, & \text{falls } z \ge 5. \end{cases}$$

2.1. [0.5 Punkte] Welchen Wert muss c annehmen, damit $f_{X,Y}$ eine Dichtefunktion ist?

(A)
$$c = 2$$

(B)
$$c = 1$$

(C)
$$c = \frac{1}{2}$$

2.2. [1 Punkt] Sind X und Y unabhängig?

2.3. [0.5 Punkte] Sei $E_1 = \{X \leq 2\}$. Was ist die Wahrscheinlichkeit von E_1 ?

$$(A) \mathbb{P}[E_1] = 0$$

(B)
$$\mathbb{P}[E_1] = \frac{c}{4}$$

(C)
$$\mathbb{P}[E_1] = \frac{c}{6}$$

2.4. [1 Punkt] Sei $E_2 = \{X > Y\}$. Was ist die Wahrscheinlichkeit von E_2 ?

$$(A) \mathbb{P}[E_2] = \frac{c}{8}$$

(B)
$$\mathbb{P}[E_2] = \frac{3c}{8}$$

(C)
$$\mathbb{P}[E_2] = \frac{c}{4}$$

2.5. **[0.5 Punkte]** Ist $\mathbb{E}[Z] \ge 3$?

(A) Ja

(B) Nein

2.6. **[0.5 Punkte]** Ist $\mathbb{P}[Z \leq 3] = \mathbb{P}[Z \geq 3]$?

(A) Ja

(B) Nein

2.7. **[0.5 Punkte]** Ist $\mathbb{P}[3.5 \le Z \le 5.5] = 0.2$?

(A) Ja

(B) Nein

2.8. [1 Punkt] Was ist $\mathbb{E}[Z^2]$?

(A)
$$\mathbb{E}[Z^2] = 9.1$$

(B)
$$\mathbb{E}[Z^2] = 8.1$$

(C)
$$\mathbb{E}[Z^2] = 9$$

2.9. **[0.5 Punkte]** Ist $\mathbb{P}[X=0] = \mathbb{P}[Z=0] = 0$?

(A) Ja

(B) Nein

Lösung:

2.1. (A) c = 2. Da

$$\int_{1}^{\infty} \int_{2}^{\infty} \frac{c}{x^{2}y^{2}} dx dy = \int_{1}^{\infty} \frac{c}{y^{2}} \left(-\frac{1}{x} \bigg|_{2}^{\infty} \right) dy = c \int_{1}^{\infty} \frac{1}{y^{2}} \left(\frac{1}{2} \right) dy = \frac{c}{2} \int_{1}^{\infty} \frac{1}{y^{2}} dy = \frac{c}{2} = 1$$

genau dann gilt, wenn c=2.

2.2. (A) Ja. Die Randdichten f_X und f_Y von X und Y bekommen wir via (wir setzen c=2)

$$f_X(x) = \int_1^\infty \frac{2}{x^2 y^2} \mathbb{1}_{x \ge 2} \, dy = \frac{2}{x^2} \mathbb{1}_{x \ge 2} \left(-\frac{1}{y} \Big|_1^\infty \right) = \frac{2}{x^2} \mathbb{1}_{x \ge 2},$$

$$f_Y(y) = \int_2^\infty \frac{2}{x^2 y^2} \mathbb{1}_{y \ge 1} \, dx = \frac{2}{y^2} \mathbb{1}_{y \ge 1} \left(-\frac{1}{x} \Big|_2^\infty \right) = \frac{2}{2y^2} \mathbb{1}_{y \ge 1} = \frac{1}{y^2} \mathbb{1}_{y \ge 1}.$$

Daraus sehen wir, dass $f_{X,Y}$ genau das Produkt der Randdichten f_X und f_Y ist. Daher sind X und Y unabhängig.

2.3. (A) $\mathbb{P}[E_1] = 0$. X ist stetig verteilt mit Dichte $f_X(x) = \frac{2}{x^2} \mathbb{1}_{x \geq 2}$. Daher ist

$$\mathbb{P}[E_1] = \int_{-\infty}^2 f_X(x) \, dx = \int_{-\infty}^2 0 \, dx = 0.$$

2.4. (B) $\mathbb{P}[E_2] = \frac{3c}{8}$.

$$\begin{split} \mathbb{P}\left[X > Y\right] &= \int_{1}^{\infty} \int_{2}^{\infty} \mathbb{1}_{x > y} \frac{c}{x^{2} y^{2}} \, dx dy \\ &= \int_{1}^{\infty} \int_{\max\{2, y\}}^{\infty} \frac{c}{x^{2} y^{2}} \, dx dy \\ &= c \left(\int_{1}^{2} \int_{2}^{\infty} \frac{1}{x^{2} y^{2}} \, dx dy + \int_{2}^{\infty} \int_{y}^{\infty} \frac{1}{x^{2} y^{2}} \, dx dy \right) \\ &= c \left(\int_{1}^{2} \frac{1}{y^{2}} \left(\frac{-1}{x} \Big|_{2}^{\infty} \right) dy + \int_{2}^{\infty} \frac{1}{y^{2}} \left(\frac{-1}{x} \Big|_{y}^{\infty} \right) dy \right) \\ &= c \left(\int_{1}^{2} \frac{1}{2y^{2}} \, dy + \int_{2}^{\infty} \frac{1}{y^{3}} \, dy \right) \\ &= c \left(\frac{-1}{2y} \Big|_{1}^{2} + \frac{-1}{2y^{2}} \Big|_{2}^{\infty} \right) = c \left(\frac{1}{4} + \frac{1}{8} \right) = c \frac{3}{8}. \end{split}$$

Prof. Dr. Beatrice Acciaio 17. August 2023

- 2.5. (B) Nein. $\mathbb{E}[Z] = 0.4 + 0.3 \cdot 3 + 0.2 \cdot 5 = 2.3 < 3$.
- 2.6. (B) Nein. $\mathbb{P}[Z \le 3] = 0.8 \ne \mathbb{P}[Z \ge 3] = 1 \mathbb{P}[Z < 3] = 0.5$.
- 2.7. (A) Ja. $\mathbb{P}[3.5 \le Z \le 5.5] = \mathbb{P}[Z = 5] = 0.2$.
- 2.8. (B). $\mathbb{E}[Z^2] = 0.4 + 0.3 \cdot 3^2 + 0.2 \cdot 5^2 = 0.4 + 2.7 + 5 = 8.1$.
- 2.9. (B) Nein. $\mathbb{P}\left[Z=0\right]=0.1\neq\mathbb{P}\left[X=0\right]=0.$

3. Geometrische Verteilung

[5 Punkte]

Seien X und Y zwei unabhängige, geometrisch verteilte Zufallsvariablen mit Parameter $p \in (0,1)$. Die Verteilung von X und von Y ist also definiert durch

$$\mathbb{P}[X = k] = (1 - p)^{1 - k} p = \mathbb{P}[Y = k], \quad k = 1, 2, \dots$$

Weiters sind Erwartungswert und Varianz von X und von Y gegeben als

$$\mathbb{E}\left[X\right] = \frac{1}{p} = \mathbb{E}\left[Y\right], \quad \sigma_X^2 = \frac{1-p}{p^2} = \sigma_Y^2.$$

Ausserdem definieren wir die Zufallsvariable Z = X + Y.

- 3.1. [1 Punkt] Finde $\mathbb{P}[X \ge 3|X > 1]$.
- 3.2. [2 Punkte] Finde die Verteilung von Z.
- 3.3. [1 Punkt] Finde $\mathbb{E}[XY]$ und $\mathbb{E}[Z^2]$.
- 3.4. [1 Punkt] Für welchen Wert $\lambda > 0$ wird $\mathbb{E}[(Z \lambda X)^2]$ minimal?

Lösung:

3.1.

$$\mathbb{P}\left[X \ge 3 | X > 1\right] = \frac{\mathbb{P}\left[X \ge 3, X > 1\right]}{\mathbb{P}\left[X > 1\right]} = \frac{\mathbb{P}\left[X \ge 3\right]}{\mathbb{P}\left[X > 1\right]} = \frac{1 - \mathbb{P}\left[X = 1\right] - \mathbb{P}\left[X = 2\right]}{1 - \mathbb{P}\left[X = 1\right]} = \frac{1 - p - (1 - p)p}{1 - p} = \frac{(1 - p)(1 - p)}{1 - p} = \boxed{1 - p}.$$

3.2. Wir bestimmen die Verteilung der diskreten Zufallsvariable Z, indem wir die Punktwarhscheinlichkeiten angeben. Der Wertebereich von Z sind die natürlichen Zahlen grösser oder gleich 2, sprich $E = \{2, 3, 4, \ldots\}$. Für ein beliebiges $n \in E$ bekommen wir dann die folgende Punktwarhscheinlichkeit $p_Z(n)$.

$$p_{Z}(n) = \mathbb{P}\left[Z = n\right] = \sum_{k=1}^{n-1} \mathbb{P}\left[X = n - Y \mid Y = k\right] \mathbb{P}\left[Y = k\right]$$

$$= \sum_{k=1}^{n-1} \mathbb{P}\left[X = n - k\right] \mathbb{P}\left[Y = k\right]$$

$$= \sum_{k=1}^{n-1} (1 - p)^{n-k-1} p (1 - p)^{k-1} p$$

$$= (1 - p)^{n-2} p^{2} \sum_{k=1}^{n-1} 1 = \boxed{(1 - p)^{n-2} p^{2} (n - 1)}.$$

3.3. Da X und Y unabhängig sind, gilt

$$\mathbb{E}\left[XY\right] = \mathbb{E}\left[X\right]\mathbb{E}\left[Y\right] = \boxed{\frac{1}{p^2}},$$

Prof. Dr. Beatrice Acciaio 17. August 2023

Ausserdem gilt wegen $\mathbb{E}\left[X^2\right] = \sigma_X^2 + \mathbb{E}\left[X\right]^2 = \frac{2-p}{p^2} = \mathbb{E}\left[Y^2\right]$, dass

$$\begin{split} \mathbb{E}\left[Z^2\right] &= \mathbb{E}\left[X^2 + 2XY + Y^2\right] = \mathbb{E}\left[X^2\right] + 2\mathbb{E}\left[XY\right] + \mathbb{E}\left[Y^2\right] \\ &= 2\frac{2-p}{p^2} + \frac{2}{p^2} = \boxed{\frac{6-2p}{p^2}}. \end{split}$$

3.4.

$$\mathbb{E}\left[(Z - \lambda X)^2 \right] = \mathbb{E}\left[(Y + (1 - \lambda)X)^2 \right] = \mathbb{E}\left[Y^2 \right] + 2(1 - \lambda)\mathbb{E}\left[XY \right] + (1 - \lambda)^2\mathbb{E}\left[X^2 \right]$$

$$= \frac{(2 - p) + 2(1 - \lambda) + (1 - \lambda)^2(2 - p)}{p^2}$$

$$= \frac{4 - p - 2\lambda + \lambda^2(2 - p) - 2\lambda(2 - p) + (2 - p)}{p^2}$$

$$= \frac{\lambda^2(2 - p) - 2\lambda(3 - p) + 2(3 - p)}{p^2}$$

Da dieser Ausdruck in λ quadratisch ist (mit positivem Faktor vor λ^2), können wir ihn bezüglich λ ableiten, den abgeleiteten Ausdruck gleich Null setzen, und bekommen den Minimierer

$$\hat{\lambda} = \frac{\mathbb{E}\left[X^2\right] + \mathbb{E}\left[X\right]^2}{\mathbb{E}\left[X^2\right]} = \boxed{\frac{3-p}{2-p}}.$$

4. Exponential verteilung

[6 Punkte]

Wir betrachten n unabhängige, identisch verteilte (i.i.d.) Zufallsvariablen $X_1, X_2, \dots X_n$, wobei alle X_i die exponentielle Verteilung mit Parameter $\lambda > 0$ besitzen. Die Dichte f_X dieser Verteilung ist gegeben als

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0, \\ 0, & \text{sonst.} \end{cases}$$

Der Erwartungswert dieser Verteilung ist gegeben als $\mathbb{E}[X] = \frac{1}{\lambda}$.

- 4.1. [2 Punkte] Bestimme $\mathbb{E}[X^2]$ und die Varianz σ_X^2 der Exponentialverteilung mit Parmeter λ .
- 4.2. [2 Punkte] Sei (x_1, \ldots, x_n) eine Realisierung von (X_1, \ldots, X_n) . Bestimme den Maximum-Likelihood-Schätzer für λ für diese Realisierung (x_1, \ldots, x_n) .
- 4.3. [2 Punkte] Bestimme approximativ die Wahrscheinlichkeit $\mathbb{P}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}\leq3\right]$ für $\lambda=\frac{1}{3}$ und n=100.

Lösung:

4.1.

$$\mathbb{E}\left[X^2\right] = \int_0^\infty x^2 \lambda e^{-\lambda x} \, dx = 2 \int_0^\infty x e^{-\lambda x} \, dx = \frac{2}{\lambda} \int_0^\infty e^{-\lambda x} \, dx = -\frac{2}{\lambda^2} e^{-\lambda x} \bigg|_0^\infty = \frac{2}{\lambda^2}.$$

$$\sigma_X^2 = \mathbb{E}\left[X^2\right] - \mathbb{E}\left[X\right]^2 = \frac{1}{\lambda^2}.$$

4.2. Die Likelihood-funktion ist gegeben als

$$L_x(\lambda) = \prod_{i=1}^n f_X(x_i) = \lambda^n \prod_{i=1}^n e^{-\lambda x_i}.$$
 (1)

Jetzt müssen wir $\hat{\lambda}$ finden sodass

$$L_x(\hat{\lambda}) = \max_{\lambda} L_x(\lambda)$$

gilt. Es muss somit $L_x(\lambda)$ für feste (x_1, \ldots, x_n) bezüglich λ maximiert werden. Dafür betrachten wir die Log-Likelihood Funktion

$$log L_x(\lambda) = n \log(\lambda) - \lambda \sum_{i=1}^{n} x_i,$$
(2)

Wir finden potentielle Maximierer via

$$\frac{\partial log L_x}{\partial \lambda}(\lambda) = \frac{n}{\lambda} - \sum_{i=1}^n x_i \stackrel{!}{=} 0, \tag{3}$$

Prof. Dr. Beatrice Acciaio 17. August 2023

also ist $\hat{\lambda} = \frac{n}{\sum_{i=1}^n x_i}$ ein Kandidat für den Maximum Likelihood Schätzer and den beobachteten Daten. Da die zweite Ableitung

$$\frac{\partial^2 log L_x}{\partial^2 \lambda}(\lambda) = -\frac{n}{\lambda^2} \tag{4}$$

an jeder Stelle λ kleiner Null ist, ist $\hat{\lambda}$ tatsächlich jener Wert, der die Likelihood maximiert.

4.3. Mit dem zentralen Grenzwertsatz gilt approximativ (für grosse n), dass

$$\frac{1}{n}\sum_{i=1}^{n}X_{i} \sim \mathcal{N}\left(\frac{1}{\lambda}, \frac{1}{n\lambda^{2}}\right).$$

Daher gilt approximativ, dass

$$\frac{\frac{1}{n}\sum_{i=1}^{n}X_{i}-\frac{1}{\lambda}}{\frac{1}{\sqrt{n}\lambda}}\sim\mathcal{N}(0,1).$$

Somit können wir die gesuchte Wahrscheinlichkeit wie folgt approximieren.

$$\mathbb{P}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i} \leq 3\right] = \mathbb{P}\left[\frac{\frac{1}{n}\sum_{i=1}^{n}X_{i} - \frac{1}{\lambda}}{\frac{1}{\sqrt{n}\lambda}} \leq \frac{3 - \frac{1}{\lambda}}{\frac{1}{\sqrt{n}\lambda}}\right]$$
$$\approx \Phi\left(\frac{3 - \frac{1}{\lambda}}{\frac{1}{\sqrt{n}\lambda}}\right) = \Phi\left(\sqrt{n}(3\lambda - 1)\right).$$

Für n = 100 und $\lambda = \frac{1}{3}$ erhalten wir also, dass

$$\mathbb{P}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i} \leq 3\right] \approx \Phi\left(10\left(\frac{3}{3}-1\right)\right) = \Phi(0) = 0.5.$$

5. Drei Karten [5 Punkte]

Wir berachten ein Kartendeck von fünf, von 1 bis 5 durchnummerierten Karten. Dieses Karendeck wird gründlich gemischt, bevor drei Karten nacheinander, ohne Zurücklegen gezogen werden. Wir bezeichnen mit X, Y, Z die Zahlen auf den drei Karten mit Werten in $\{1, \ldots, 5\}$.

5.1. [1 **Punkt**] Was ist $\mathbb{P}[X = 1 + Y]$?

5.2. **[2 Punkte]** Was ist $\mathbb{P}[X = 3 | Y \ge 3]$?

5.3. [2 Punkte] Was ist $\mathbb{P}[X + Y < Z]$?

Lösung:

5.1.

$$\mathbb{P}[X = 1 + Y] = \sum_{k=1}^{5} \mathbb{P}[k - 1 = Y \mid X = k] \mathbb{P}[X = k]$$
$$= \frac{1}{5} \sum_{k=1}^{5} \mathbb{P}[k - 1 = Y \mid X = k]$$
$$= \frac{1}{5} \left(0 + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4}\right) = \boxed{\frac{1}{5}}.$$

5.2.

$$\mathbb{P}[X = 3 \mid Y \ge 3] = \frac{\mathbb{P}[Y \ge 3 \mid X = 3] \,\mathbb{P}[X = 3]}{\mathbb{P}[Y \ge 3]}$$

$$= \frac{\frac{\frac{2}{4}\frac{1}{5}}{\sum_{k=1}^{5} \mathbb{P}[Y \ge 3 \mid X = k] \,\mathbb{P}[X = k]}}{\frac{\frac{2}{4}\frac{1}{5}}{\frac{1}{5}}}$$

$$= \frac{\frac{2}{4}\frac{1}{5}}{\frac{1}{5}\left(\frac{3}{4} + \frac{3}{4} + \frac{2}{4} + \frac{2}{4} + \frac{2}{4}\right)} = \frac{2}{12} = \boxed{\frac{1}{6}}.$$

Alternativ:

$$\mathbb{P}[X = 3 \mid Y \ge 3] = \frac{\mathbb{P}[Y \ge 3 \mid X = 3] \,\mathbb{P}[X = 3]}{\mathbb{P}[Y \ge 3]}$$
$$= \frac{\frac{\frac{2}{4}\frac{1}{5}}{5}}{\mathbb{P}[Y = 3, 4 \text{ or } 5]}$$
$$= \frac{\frac{\frac{2}{4}\frac{1}{5}}{\frac{3}{5}}}{\frac{2}{5}} = \frac{2}{12} = \boxed{\frac{1}{6}}.$$

Prof. Dr. Beatrice Acciaio 17. August 2023

5.3.

$$\begin{split} \mathbb{P}\left[X + Y < Z\right] &= \sum_{k=1}^{5} \mathbb{P}\left[\left\{k + Y < Z\right\} \mid \left\{X = k\right\}\right] \mathbb{P}\left[\left\{X = k\right\}\right] \\ &= \sum_{k=1}^{5} \sum_{l=1}^{5} \mathbb{P}\left[\left\{k + l < Z\right\} \mid \left\{X = k\right\} \cap \left\{Y = l\right\}\right] \mathbb{P}\left[\left\{Y = l\right\} \mid \left\{X = k\right\}\right] \mathbb{P}\left[\left\{X = k\right\}\right] \\ &= \sum_{k \neq l, k + l \leq 4} \mathbb{P}\left[\left\{k + l < Z\right\} \mid \left\{X = k\right\} \cap \left\{Y = l\right\}\right] \mathbb{P}\left[\left\{Y = l\right\} \mid \left\{X = k\right\}\right] \mathbb{P}\left[\left\{X = k\right\}\right] \\ &= \frac{1}{5} \frac{1}{4} \left(\frac{2}{3} + \frac{1}{3} + \frac{2}{3} + \frac{1}{3}\right) = \boxed{\frac{1}{10}}. \end{split}$$

Tabelle der Standardnormalverteilung

	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990

Zum Beispiel ist $P[Z \le 1.96] = 0.975$.