



# Apprentissage sur données confidentielles



### Programme

INTRODUCTION

**MEMBRES DU PROJET** 

PRÉSENTATION DU PROJET

**PLANIFICATION** 

BUDGET

**ANALYSE DES RISQUES** 



### Aperçu du projet



Création d'un programme de machine learning à partir de données chiffrées

#### RÉALISATION CONCRÈTE

Notre objectif à long terme consiste à différencier de manière précise, grâce à notre modèle d'apprentissage, une image chiffrée d'un animal parmi d'autres images chiffrées d'animaux.

#### **OBJECTIFS**

- Réalisation d'un état de l'art scientifique
- Développer un modèle d'apprentissage automatique
- Atteindre un niveau de précision défini pour les prédictions du modèle
- Ajuster le modèle pour améliorer ses performances et réduire l'erreur de prédiction
- Créer une démonstration web simple pour illustrer le modèle d'apprentissage automatique



source: OpenMined Blog

## L'équipe

#### CHRISTOPHE ROSENBERGER TUTEUR



#### **TANGUY GERNOT TUTEUR**



**NOURA OUTLIOUA** CHEFFE DE PROJET



PAUL NGUYEN RELEASE MANAGER



CECILE LU - DÉVELOPPEUSE ZEYD BOUMAHDI - DÉVELOPPEUR ANIS AHMED ZAID - DÉVELOPPEUR







### Périmètre du projet

Quoi

• Prendre connaissance des méthodes

machine sur des données chiffrées

données protégées

• Réaliser des tâches de prédiction et

d'apprentissage machine sur des

de chiffrement et d'apprentissage

### **Qui**

Les membres de l'équipe, en collaboration avec les professeurs encadrants

Où

**A L'ENSICAEN** 

#### Comment

- Réalisation d'un état de l'art scientifique
- Implémenter et/ou utiliser un algorithme de chiffrement homomorphique, entraîner un modèle sur une base de données chiffrées
- Créer une base de donnée avec des photos d'animaux chiffrées
- Produire un site web de démo.

### Pourquoi

- Permettre aux entreprises ou aux services publiques de bénéficier d'un modèle de prédiction sans que celles-ci n'aient à partager des données sensibles ou confidentielles (par exemple un hôpital)
- Détecter des données sensibles sans v accéder directement

### Diagramme pieuvre



**FP1**: L'utilisateur doit pouvoir fournir des données chiffrées (sécurisées, voire confidentielles) et le modèle doit fournir une prédiction elle-même chiffrée que l'utilisateur peut déchiffrer.

**FC1**: Le modèle doit s'entrainer à reconnaitre et prédire sur des données chiffrées (chiffrement homomorphique).

**FC2**: L'utilisation doit être simple et intuitive, éventuellement fournir à l'utilisateur un moyen de chiffrer les données avec une clé privée, qu'il pourra utiliser par la suite pour déchiffrer le résultat fournit par le modèle.

**FC3**: Présence d'un site web de démonstration, qui montrera les performances de notre modèle en illustrant le plus possible le processus (chiffrement, prédiction, entrée/sortie, déchiffrement, etc.).

**FC4**: Le modèle ne doit pas avoir accès à la clé de déchiffrement, il traite et renvoie uniquement des données chiffrées.

**FC5** : Le modèle sera testé sur une base de donnée différente de celle sur laquelle il apprend pour réduire l'erreur de prédiction.

### Livrables du projet



### Tâches du projet

Apprentissage sur données confidentielles

Revue de la littérature

#### Méthodologie

Mise en place de bases de données

> Modèles de prédiction

Évaluation des performances

Sécurité et confidentialité

.....

.....

.....

.....

- Synthèse des travaux de recherche antérieurs sur l'apprentissage sur des données confidentielles
- Analyse des approches existantes pour la protection de la vie privée dans le contexte de l'apprentissage statistique
- Identification des principales méthodes utilisées pour réaliser des tâches de prédiction à partir de données protégées
- Réalisation d'un état de l'art scientifique
- Recherche détaillée des méthodes et des techniques utilisées pour assurer la confidentialité des données
- Réflexion sur les protocoles de formation des modèles d'apprentissage à mettre en place

Description de deux bases de données, une base de donnée d'entrainement et une qui permettra de valider le modèle en mettant l'accent sur leur nature sensible et la manière dont ils ont été traités pour préserver la confidentialité

- Présentation des modèles de prédiction utilisés dans le cadre du projet
- Développement et/ou test sur l'architecture des modèles et les algorithmes d'apprentissage utilisés
- Résultats des expérimentations sur la prédiction à partir de données protégées
- Analyse de l'impact sur la performance, incluant la précision des prédictions et le temps de calcul

• Mesures mises en place pour garantir la sécurité des modèles et des données

• Analyse des vulnérabilités potentielles et des contre-mesures adoptées

**Démonstration Web** 

Réalisation d'une démo Web du programme de machine learning réalisé

### Planification: Diagramme de Gantt

| TÂCHES                            | 11/2023 | 12/2023 | 01/2024 | 02/2024 | 03/2024 | 04/2024 |
|-----------------------------------|---------|---------|---------|---------|---------|---------|
| Revue de la littérature           |         |         |         |         |         |         |
| Méthodologie                      |         |         |         |         |         |         |
| Mise en place de bases de données |         |         |         |         |         |         |
| Modèles de prédiction             |         |         |         |         |         |         |
| Évaluation des performances       |         |         |         |         |         |         |
| Sécurité et confidentialité       |         |         |         |         |         |         |
| Démonstration <b>W</b> eb         |         |         |         |         |         |         |



### Ressources humaines

| Tâche                                      | Compétence requise                                                                                                                   | Niveau de<br>compétence | <b>Volume de Travail</b><br>(7 heures/semaine) | Période de<br>Disponibilité                    |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------------------------|------------------------------------------------|
| Effecuter un état de l'art scientifique    | <ul> <li>Compréhension d'article scientifique<br/>et choix intelligent des sources et<br/>documents utilisés</li> </ul>              | Ingénieur               | 15 homme-semaines                              | Dès le début du projet                         |
| Développement du modèle<br>d'apprentissage | <ul> <li>Compréhension des principes de l'IA et<br/>de l'apprentissage automatique,</li> <li>Compétences en programmation</li> </ul> | Ingénieur, Junior       | 32 homme-semaines                              | Lorsque l'état de l'art est<br>fini            |
| Evaluation des perfomances                 | • Tester un modèle                                                                                                                   | Ingénieur, Junior       | 9 homme-semaines                               | À la fin du développement<br>du modèle         |
| Optimisation des Performances              | <ul><li>Ajuster un modèle,</li><li>Optimiser</li></ul>                                                                               | Ingénieur, Junior       | 4 homme-semaines                               | Après les tests de précision                   |
| Démonstration Web                          | <ul><li>Développement web</li><li>Interface utilisateur</li></ul>                                                                    | Ingénieur, Junior       | 21 homme-semaines                              | À la fin de l'optimisation<br>des performances |

## Budget

| TÂCHES                               | TEMPS      |
|--------------------------------------|------------|
| Revu de la littérature               | 3 semaines |
| Méthodologie                         | 3 semaines |
| Mise en place de bases de<br>données | 2 semaines |
| Modèles de prédiction                | 2 mois     |

| TÂCHES                      | TEMPS        |  |  |
|-----------------------------|--------------|--|--|
| Evaluation des performances | 2/3 semaines |  |  |
| Sécurité et confidentialité | 2 semaines   |  |  |
| Démonstration <b>W</b> eb   | 1 mois       |  |  |
| Total                       | 5 mois       |  |  |

### Analyse des risques

| Nature du risque                                         | Impact sur le projet                                                                | Mesure de prévention ou<br>de réduction                                  | Coût                                                              |  |
|----------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------|--|
| Changement des Exigences Client                          | Risque de délais et de<br>modifications importantes                                 | Engagement du client à figer les<br>exigences à une date précise         | _                                                                 |  |
| Indisponibilité d'une Ressource Clé                      | Plan de contingence avec une<br>Risque de retards<br>liste de remplaçants possibles |                                                                          | _                                                                 |  |
| Non réalisation du modèle<br>d'apprentissage automatique | Risque de retard dans la livraison<br>du projet                                     | Contrôle régulier durant le<br>développement du modèle                   | Réunions supplémentaires avec<br>les tuteurs                      |  |
| Défaillance Matérielle ou Logicielle                     | Risque de perturbation du<br>développement                                          | Utilisation de matériel fiable,<br>sauvegardes régulières des<br>données | Coût additionnel pour le matériel<br>de secours                   |  |
| Mésentente de l'équipe                                   | Risque de perturbation dans<br>l'avancé du projet                                   | Communication régulière entre<br>tous les membres                        | Temps dédié à la bonne cohésion<br>de groupe                      |  |
| Non-Fin du Projet à Temps                                | Risque de délais grave dans la<br>livraison du produit final                        | Planification réaliste, suivi<br>régulier des jalons                     | Coût additionnel pour des heures<br>supplémentaires si nécessaire |  |





# Mercide votre attention

