

Predicting ADHD from fMRI Connectomes & Socio-Demographics

Project Outline

Background

ADHD classification enables earlier intervention

Data & Methods

Multi-modal data with PCA for connectomes

Goals

Identify best model and key correlating factors

CATEGORICAL Dataset 1: Overview

Participant Identification

Unique ID, enrollment year, study site

Demographics

Ethnicity, race, MRI scan location

Parental Background

Education and occupation data

Key Variables in ADHD Prediction Study

Participant Identification

Unique ID, enrollment year, study site

participant_id,
Basic_Demos_Enroll_Year,
Basic_Demos_Study_Site,

Demographics

Ethnicity, race

PreInt_Demos_Fam_Child_Et hnicity,

PreInt_Demos_Fam_Child_C hild_Race

Parental Background

Education, occupation

Barratt_Barratt_P1_Edu,

Barratt_Barratt_P1_Occ,

""P2_Edu, ""P2_Occ.

MRI Scan Location

Location of MRI scan

MRI_Track_Scan_Location

QUANTITATIVE Dataset 2: Overview

Emotional Health

EHQ total score and ColorVision test

Strengths & Difficulties

Behavioral profiles with composite scores

Alabama Parenting

Measures parenting style across multiple dimensions

Age at Scan

Controls for developmental stage

Key Variables in ADHD Prediction Study

Participant ID
Unique identifier for each participant

EHQ Total Score
Total score on the Emotional
Health Questionnaire.(for 100)
EHQ_EHQ_Total,

Age at Scan
Participant's age at the time of the MRI scan.

MRI_Track_Age_at_Scan

Color Vision Score

Score achieved on a color vision test. (for 14)

ColorVision_CV_Score

SDQ Scores

Strengths and Difficulties Questionnaire. Respective Students Score

SDQ_SDQ_Conduct Problems, "_Difficulties_Total, "_Emotional_Problems, "Externalizing, "Generating_Impact,

"Hyperactivity, "Internalizing, "PeerProblems, "Prosocial

APQ Child Problems

Alabama Parental Questionnaire. Parent-reported Child Problems subscale score.

APQ_P_APQ_P_CP, "_ID,

"_INV, "_OPD, "PM, "PP,

Basic EDA for responses:

Sex & ADHD Distribution

Males more prone to ADHD.

Imbalanced data distribution for female so, the aim of this is to explain about the "ADHD in Female". For the purpose of this presentation ADHD_Outcome as sole target variable.

Data Cleaning & Imputation

Identifying Missing Values

Checked variables for missing entries in demographic fields and fMRI metadata.

Median Imputation

Imputed missing numeric values using the median of the feature to handle outliers.

Dummy Encoding

Created dummy variables for categorical data to allow algorithms to handle them.

Data Integrity Checks

Verified no new missing values were introduced and participant data aligned correctly.

This process ensures a consistent and complete dataset, ready for dimensionality reduction and modeling.

PCA Dimensionality Reduction:

Raw fMRI connectomes contained ~19,900 edges per participant. Principal Component Analysis (PCA) reduced dimensionality to 60 components, informed by scree plot and cumulative variance.

- 1. Rationale: PCA reduces overfitting and improves efficiency by extracting components capturing maximum variance.
- 2. Implementation: Retained 60 principal components, explaining >90% cumulative variance.
- 3. Outcome: Reduced feature set to 60 PCA-based features, merged with cleaned demographic and questionnaire data.

This dimensionality reduction step was crucial for managing fMRI data complexity.

Model Construction

Classification Methods

K-Nearest Neighbors

5-fold CV determined k=17

Logistic Regression

Linear approach with interpretable coefficients

Random Forest

Ensemble method robust to interactions

Results: Accuracy, F1, AUC

Model	Accuracy	F1	AUC
Logistic Regression	0.7741	0.8386	0.8269
Random Forest	0.7879	0.8571	0.8165
K-Nearest Neighbors	0.7741	0.8493	0.8093

RF leads on Accuracy & F1

Logistic best on AUC → More interpretable

KNN competitive on F1

Confusion Matrices & Inference

If missing ADHD cases is worse, Random Forest or KNN might be better (fewer FN). However, they both have more FP compared to Logistic. As false alarms are more problematic, then Logistic is preferable—though it does miss more ADHD cases.

ROC Curves & Model Preference

Reviewing ROC curves:

- Logistic Regression: Highest AUC (0.827), best at ranking positives vs. negatives.
- Random Forest: AUC ~0.816, close behind Logistic. KNN: AUC ~0.809.

Final Preference:

- Maximize sensitivity (catch more true ADHD cases): Favor Random Forest or KNN (minimize false negatives).
- Value fewer false positives, prefer interpretability: Choose Logistic Regression (higher AUC, lower FP).

The best model depends on whether minimizing false negatives or false positives is more critical. Random Forest balances performance; Logistic offers interpretability.

Conclusions & Next Steps

Key Observations

- PCA effectively handled the high-dimensional fMRI data.
- 2. Random Forest stands out with strong accuracy and low FN, while Logistic has the highest AUC and fewer FP.
- 3. KNN performs moderately well, matching Random Forest's low FN but having even more FP. Future improvements might include hyperparameter tuning, class imbalance techniques, or reintroducing Sex_F into a multi-output classification model.

Future Work

- Model tuning for imbalance
- Deeper interpretability
- Sex as predictor variable