Ensembles - un exercice supplémentaire

Exercice 1 On se propose d'étudier une nouvelle opération sur les parties d'un ensemble E. On introduit la différence symétrique de deux parties A et B de E, comme étant

$$A\Delta B = (A \cup B) \backslash (A \cap B).$$

- 1) Réaliser un schéma représentant E, A, B et $A\Delta B$ en toute généralité.
- **2)** Montrer que $\forall A \in \mathscr{P}(E), \ \forall B \in \mathscr{P}(E), \ A\Delta B = (A \backslash B) \cup (B \backslash A).$
- 3) Soit A et B deux parties de E. Donner la table de vérité du connecteur logique \otimes vérifiant $\forall x \in E, \ x \in A\Delta B \Leftrightarrow (x \in A) \otimes (x \in B)$. Comment l'appelle-t-on usuellement ?
- 4) Soit A une partie de E, donner $A\Delta\varnothing$.
- 5) Montrer que $\forall (A, B, C) \in \mathscr{P}(E)^3$, $(A\Delta B)\Delta C = A\Delta(B\Delta C)$.
- **6)** Montrer que $(\mathscr{P}(E), \Delta)$ est un groupe abélien (on dit aussi commutatif).
- 7) Soit A, B et C trois parties de E. Que vaut $A \cap (B\Delta C)$? Quelle est la structure de $(\mathscr{P}(E), \Delta, \cap)$?
- 8) Soit A_1, \ldots, A_n n parties de E. Montrer que x est un élément de $A_1 \Delta \ldots \Delta A_n$ si et seulement si x est un élément d'un nombre impair de parties A_i .