Supplemental Materials

Proposition 1. The distribution of the counts is given as follows:

$$P(\mathbf{n}_{1:H}; \pi_{\theta}) = \mathbb{I}(\mathbf{n}_{1:H} \in \Omega_{1:H}) P(\langle \mathbf{n}_{1}^{\text{txn}}(z_{d}, z_{\text{src}}, \tau) \forall \tau \rangle)$$

$$\prod_{t=1}^{H-1} P(\tilde{\mathbf{n}}_{t} \mid \mathbf{n}_{t}^{\text{nxt}}; \boldsymbol{\beta}_{t} = \pi_{t}(\mathbf{n}_{t})) \times P(\mathbf{n}_{t}^{\text{nxt}} \mid \mathbf{n}_{t}^{\text{arr}})$$
(1)

in which the next zone count distribution is:

$$P(\mathbf{n}_t^{\text{nxt}} \mid \mathbf{n}_t^{\text{arr}}) = \prod_z \text{Mul}(\mathbf{n}_t^{\text{arr}}(z), \ \alpha(z'|z) \forall z' \forall z')$$

The travel-time count distribution given output of traffic control π *is:*

$$P(\tilde{\mathbf{n}}_t \mid \mathbf{n}_t^{\text{nxt}}; \boldsymbol{\beta}_t = \pi_t(\mathbf{n}_t)) = \prod_{z,z'} \text{Mul}(\mathbf{n}_t^{\text{nxt}}(z,z'), p^{\text{nav}}(\tau \mid z,z'; \beta_{t+1}^{zz'}) \forall \tau)$$

And $\Omega_{1:H}$ is the set of consistent count tables satisfying count consistency constraints:

$$n_{t+1}^{\text{arr}}(z) = \sum_{z' \in Z} \left[n_t^{\text{txn}}(z', z, \tau = t + 1) + \tilde{n}_t(z', z, \tau = t + 1) \right], \forall z$$

$$n_{t+1}^{\text{txn}}(z, z', \tau) = n_t^{\text{txn}}(z, z', \tau) + \tilde{n}_t(z, z', \tau), \forall z, z', \tau > t + 1$$
(3)
(4)

Proof. We can compute the count distribution by summing up the distributions of all joint trajecto-

ries $s_{1:H}, a_{1:H} \sim \mathbf{n}_{1:H}$ satisfying a given counts:

$$P(\mathbf{n}_{1:H}; \pi_{\theta}) = \sum_{\mathbf{s}_{1:H}, \mathbf{a}_{1:H} \sim \mathbf{n}_{1:H}} P(\mathbf{s}_{1:H}, \mathbf{a}_{1:H})$$

$$= \mathbb{I}(\mathbf{n}_{1:H} \in \Omega_{1:H}) \prod_{t=1}^{H} \sum_{\mathbf{s}_{t}, \mathbf{a}_{t} \sim \mathbf{n}_{t}} \prod_{m=1}^{M} \left(\prod_{z,z'} \alpha(z'|z)^{\mathbb{I}(s_{t}^{m} = \langle z, \phi, \phi \rangle, a_{t}^{m} = z')} \right)$$

$$\times \prod_{z,z',\tau} p^{\text{nav}}(\tau|z, z', \boldsymbol{\beta}_{t} = \pi_{t}(\mathbf{n}_{t}))^{\mathbb{I}(s_{t}^{m} = \langle z, \phi, \phi \rangle, a_{t}^{m} = z', s_{t+1}^{m} = \langle z, z', \tau \rangle}$$

$$= \mathbb{I}(\mathbf{n}_{1:H} \in \Omega_{1:H}) \prod_{t=1}^{H} \left(\sum_{\mathbf{s}_{t}, \mathbf{a}_{t} \sim \mathbf{n}^{\text{nxt}}} \prod_{m=1}^{M} \prod_{z,z'} \alpha(z'|z)^{\mathbb{I}(s_{t}^{m} = \langle z, \phi, \phi \rangle, a_{t}^{m} = z')} \right)$$

$$\times \sum_{\mathbf{s}_{t}, \mathbf{a}_{t} \sim \mathbf{n}^{\text{txn}}} \prod_{m=1}^{M} \prod_{z,z',\tau} p^{\text{nav}}(\tau|z, z', \boldsymbol{\beta}_{t} = \pi_{t}(\mathbf{n}_{t}))^{\mathbb{I}(s_{t}^{m} = \langle z, \phi, \phi \rangle, a_{t}^{m} = z', s_{t+1}^{m} = \langle z, z', \tau \rangle)}$$

$$(5)$$

We can simplify the summation over joint trajectory by multinomial distribution as follows:

$$\sum_{\boldsymbol{s}_{t},\boldsymbol{a}_{t} \sim \mathbf{n}^{\text{nxt}}} \prod_{m=1}^{M} \prod_{z,z'} \alpha(z'|z)^{\mathbb{I}(s_{t}^{m} = \langle z, \phi, \phi \rangle, a_{t}^{m} = z')} = \prod_{z} \text{Mul}(\mathbf{n}_{t}^{\text{arr}}(z), \ \alpha(z'|z) \forall z' \forall z')$$
(6)

and

$$\sum_{\boldsymbol{s}_{t},\boldsymbol{a}_{t} \sim n^{\text{txn}}} \prod_{m=1}^{M} \prod_{z,z',\tau} p^{\text{nav}}(\tau|z,z',\boldsymbol{\beta}_{t} = \pi_{t}(\mathbf{n}_{t}))^{\mathbb{I}(s_{t}^{m} = \langle z,\phi,\phi\rangle,a_{t}^{m} = z',s_{t+1}^{m} = \langle z,z',\tau\rangle)}$$

$$= \prod_{z,z'} \text{Mul}(n_{t}^{\text{nxt}}(z,z'), p^{\text{nav}}(\tau|z,z';\beta_{t+1}^{zz'}) \forall \tau) \tag{7}$$

By replacing (6) and (7) into (5), we have (1).

Theorem 2. The traffic control objective in (5) in main paper can be computed by expectation over counts

$$V(\pi_{\theta}) = \sum_{t=1}^{H} \mathbb{E}_{\boldsymbol{s}_{1:t}, \boldsymbol{a}_{1:t}}[r(\mathbf{n}_{t})|\boldsymbol{a}_{t}, \boldsymbol{s}_{t}; \pi_{\theta}] = \sum_{t=1}^{H} \mathbb{E}_{\mathbf{n}_{1:t} \in \Omega_{1:t}}[r(\mathbf{n}_{t}|\pi_{\theta})]$$

Proof. Let s_t and a_t represent the joint-state and joint-action of all the agents at time step t

$$V(\pi_{\theta}) = \sum_{t=1}^{H} \mathbb{E}_{\boldsymbol{s}_{1:t}, \boldsymbol{a}_{1:t}}[r(\mathbf{n}_{t})|\boldsymbol{a}_{t}, \boldsymbol{s}_{t}; \pi_{\theta}]$$
(8)

$$\mathbb{E}_{\boldsymbol{s}_{1:t},\boldsymbol{a}_{1:t}}[r(\mathbf{n}_t)|\boldsymbol{a}_t,\boldsymbol{s}_t;\pi_{\theta}] \tag{9}$$

$$= \sum_{(\boldsymbol{s}_{1:t}, \boldsymbol{a}_{1:t})} P(\boldsymbol{s}_{1:t}, \boldsymbol{a}_{1:t}; \boldsymbol{\pi}_{\theta}) \cdot [r(\mathbf{n}_{t}) | \boldsymbol{a}_{t}, \boldsymbol{s}_{t}; \boldsymbol{\pi}_{\theta}]$$
(10)

$$= \sum_{(\boldsymbol{s}_{1:t}, \boldsymbol{a}_{1:t})} f(\mathbf{n}_{1:t}; \pi_{\theta}) \cdot [r(\mathbf{n}_{t}) | \boldsymbol{a}_{t}, \boldsymbol{s}_{t}; \pi_{\theta}]$$
(11)

where $f(\mathbf{n}_{1:t}; \pi_{\theta}) = \prod_t \left(\prod_{z,z',\tau} \left[\alpha(z'|z) p^{\mathrm{nav}}(\tau|z,z',\boldsymbol{\beta}_t = \pi_t(\mathbf{n}_t)) \right]^{\tilde{\mathbf{n}}_t(z,z',\tau)} \right)$ is a function only depending on the counts.

Notice that in (11), the expected immediate reward at time step t only depends on the count $\tilde{\mathbf{n}}_t(\cdot,\cdot,\cdot)$ that arises from the joint state and action (s_t, a_t) . So instead of summing over all the joint stateaction trajectories $(s_{1:t}, a_{1:t})$, we can sum over the space of all possible counts

$$\mathbb{E}_{\boldsymbol{s}_{1:t},\boldsymbol{a}_{1:t}}[r(\mathbf{n}_t)|\boldsymbol{a}_t,\boldsymbol{s}_t;\pi_{\theta}] = \sum_{\mathbf{n}_{1:t}\in\Omega_{1:t}} P(\mathbf{n}_{1:t}) \cdot [r(\mathbf{n}_t)|\pi_{\theta}] \text{(from Proposition 1)}$$
(12)

$$= \mathbb{E}_{\mathbf{n}_{1:t} \in \Omega_{1:t}}[r(\mathbf{n}_t)|\pi_{\theta}] \tag{13}$$

Using the above expression, the value function can be computed as:

$$V(\pi_{\theta}) = \sum_{t=1}^{H} \mathbb{E}_{\boldsymbol{s}_{1:t}, \boldsymbol{a}_{1:t}}[r(\mathbf{n}_{t})|\boldsymbol{a}_{t}, \boldsymbol{s}_{t}; \pi_{\theta}] = \sum_{t=1}^{H} \mathbb{E}_{\mathbf{n}_{1:t} \in \Omega_{1:t}}[r(\mathbf{n}_{t}|\pi_{\theta})]$$
(14)

Theorem 3. The vehicle-based value function can be computed by collective expectation over the counts as follows:

$$V_t^{zz'}(\pi_{\theta}^{zz'}) = \mathbb{E}_{\mathbf{n}_{1:H}} \left[\sum_{\tau > t} \tilde{\mathbf{n}}_t(z, z', \tau) V_t^{\mathbf{n}}(z, z', \tau) \middle| \pi_{\theta} \right]$$
(15)

in which $V_t^{\mathbf{n}}(z, z', \tau)$ is the average accumulated reward of newly arrived vessels at z at time t going to z' computed based on the realized counts $\mathbf{n}_{1:H}$ as follows:

$$R_t^{\mathbf{n}}(z, z', \tau) = \sum_{\tau''=t}^{\tau} -C(z, \mathbf{n}_{\tau''}^{\text{tot}}), \forall \tau \in [t + t_{\min}^{zz'}, \ t + t_{\max}^{zz'}]$$
(16)

$$V_t^{\mathbf{n}}(z, z', \tau) = R_t(z, z', \tau) + \gamma \cdot V_\tau^{\mathbf{n}}(z')$$
(17)

$$V_t^{\mathbf{n}}(z, z') = \frac{\sum_{\tau=t+t_{\min}^{zz'}}^{t+t_{\max}^{zz'}} V_t^{\mathbf{n}}(z, z', \tau) \cdot \tilde{n}_t(z, z', \tau)}{\sum_{\tau=t+t_{\min}^{zz'}}^{t+t_{\min}^{zz'}} \tilde{n}_t(z, z', \tau)}$$

$$(18)$$

$$V_t^{\mathbf{n}}(z) = \frac{\sum_{z'} n_t^{\text{nxt}}(z, z') \cdot V_t^{\mathbf{n}}(z, z')}{\sum_{z'} n_t^{\text{nxt}}(z, z')},$$
(19)

where $R_{\mathbf{t}}^{\mathbf{n}}(z,z',\tau)$ is the reward accumulated by a vessel when it is still in zone z between time t and τ ; $V_{\tau}^{\mathbf{n}}(z,z')$ is the average accumulated reward of a vessel which started crossing z to z' from time t. $V_{\tau}^{\mathbf{n}}(z')$ is the average accumulative reward of a vessel newly arrived at z' at time τ .

Proof. Based on exchangeability of vessels regard to the count, we can apply theorem 4 from [4] to have

$$P(s_{1:T}^m, a_{1:T}^m, \mathbf{n}_{1:T}) = P(\mathbf{n}_{1:T}; \pi_{\theta}) \prod_{1:T} \prod_{z,z',\tau} \left(\frac{\tilde{n}_t(z, z', \tau)}{\mathbf{n}_t^{\text{arr}}(z)} \right)^{\mathbb{I}(s_t^m = \langle z, \phi, \phi \rangle, a_t^m = z', s_{t+1}^m = \langle z, z', \tau \rangle)}$$
(20)

We denote the current zone of a vessel m at time t to be z_t^m . The individual value of a vessel crossing (z, z') from time t to τ can be computed as

$$\mathbb{E}_{s_{1:H}^{m}, a_{1:H}^{m}, \mathbf{n}_{1:H}} \left[\mathbb{I}(s_{t}^{m} = \langle z, \phi, \phi \rangle, a_{t}^{m} = z', s_{t+1}^{m} = \langle z, z', \tau \rangle) \sum_{t'=t:H} r_{t}^{m} \right]$$

$$= \mathbb{E}_{\mathbf{n}_{1:H}} \left[\sum_{s_{1:H}^{m}, a_{1:H}^{m}} \mathbb{I}(s_{t}^{m} = \langle z, \phi, \phi \rangle, a_{t}^{m} = z', s_{t+1}^{m} = \langle z, z', \tau \rangle) \right]$$

$$\prod_{1:T} \prod_{\bar{z}, \bar{z}', \bar{\tau}} \left(\frac{\tilde{n}_{t}(z, z', \bar{z})}{\mathbf{n}_{t}^{\operatorname{arr}}(z)} \right)^{\mathbb{I}(s_{t}^{m} = \langle \bar{z}, \phi, \phi \rangle, a_{t}^{m} = \bar{z}', s_{t+1}^{m} = \langle z, z', \bar{z} \rangle)} \sum_{t'=t:H} -C(z^{m}, \mathbf{n}_{t}^{\operatorname{tot}}) \right] \tag{21}$$

Similar to theorem 6 from [4], to compute the expression inside expectation in (21), we can construct an auxiliary MDP for individual vessel m with $p^{\text{nav},\mathbf{n}}(\tau,z,z') = \frac{\tilde{n}_t(z,z',\tau)}{\mathbf{n}_t^{\text{nxt}}(z,z')}$, $\alpha_t^{\mathbf{n}}(z'|z) = \frac{\mathbf{n}_t^{\text{nxt}}(z,z')}{\mathbf{n}_t^{\text{arr}}(z)}$ and $r_t^{\mathbf{n}}(z) = -C(z,n_t^{\text{tot}})$. The value function $V^{\mathbf{n}}$ for the auxiliary MDP can be obtained by using Bellman equations as per (16)- (19).

Theorem 4. The vehicle-based policy gradient for $\pi^{zz'}$ is

$$\nabla_{\theta} V_{1}^{zz'}(\pi_{\theta}^{zz'}) = \mathbb{E}_{\mathbf{n}_{1:H}} \Big[\sum_{t=1:H} \sum_{\tau=t+t_{\min}^{zz'}}^{t+t_{\max}^{zz'}} \tilde{\mathbf{n}}_{t}(z,z',\tau) \times \Big]$$

$$\Big[(\tau - t - t_{\min}^{zz'}) \cdot \nabla_{\theta} \log(\pi_{\theta}^{zz'}(\mathbf{n}_{t})) + (t_{\max}^{zz'} - (\tau - t)) \cdot \nabla_{\theta} \log(1 - \pi_{\theta}^{zz'}(\mathbf{n}_{t})) \Big] V_{t}^{\mathbf{n}}(z,z',\tau) \Big]$$

$$(22)$$

Proof. For each zone pair $\langle z, z' \rangle$ we have,

$$\nabla_{\theta} V_{1}^{zz'}(\pi_{\theta}^{zz'})$$

$$= \sum_{\mathbf{n}_{1}} \nabla_{\theta} \left[P(\mathbf{n}_{1}|\pi_{\theta}) \sum_{\mathbf{n}_{2:H}} P(\mathbf{n}_{2:H}|\mathbf{n}_{1}, \pi_{\theta}) \sum_{\tau > 1} \tilde{\mathbf{n}}_{t}(z, z', \tau) V_{1}^{\mathbf{n}}(z, z', \tau) \right]$$

$$= \sum_{\mathbf{n}_{1}} \sum_{\tau > 1} \tilde{\mathbf{n}}_{t}(z, z', \tau) V_{1}^{\mathbf{n}}(z, z', \tau) \nabla_{\theta} P(\mathbf{n}_{1}|\pi_{\theta})$$
(23)

$$+\sum_{\mathbf{n}_{1}} P(\mathbf{n}_{1}|\pi_{\theta}) \nabla_{\theta} \left[\sum_{\mathbf{n}_{2:H}} P(\mathbf{n}_{2:H}|\mathbf{n}_{1}, \pi_{\theta}) \sum_{\tau > 2} \tilde{\mathbf{n}}_{t}(z, z', \tau) V_{2}^{\mathbf{n}}(z, z', \tau) \right]$$
(24)

$$= \sum_{t=1}^{H} \sum_{\mathbf{n}_{1:t}} \sum_{\tau > t} \left[\tilde{\mathbf{n}}_{t}(z, z', \tau) V_{t}^{\mathbf{n}}(z, z', \tau) \nabla_{\theta} P(\mathbf{n}_{t} | \pi_{\theta}) \right]$$
(26)

$$= \sum_{t=1}^{H} \sum_{\mathbf{n}_{t+t}} \sum_{\tau > t} \left[\tilde{\mathbf{n}}_{t}(z, z', \tau) V_{t}^{\mathbf{n}}(z, z', \tau) P(\mathbf{n}_{t} | \pi_{\theta}) \nabla_{\theta} \log P(\mathbf{n}_{t} | \mathbf{n}_{t-1}, \pi_{\theta}) \right]$$
(28)

Notice that

$$P(\mathbf{n}_t | \mathbf{n}_{t-1}, \pi_{\theta}) = P(\tilde{\mathbf{n}}_t | \mathbf{n}_t^{\text{nxt}}; \boldsymbol{\beta}_t = \pi_t(\mathbf{n}_t)) \times P(\mathbf{n}_t^{\text{nxt}} | \mathbf{n}_t^{\text{arr}}) \mathbb{I}(\mathbf{n}_{t-1:t} \in \Omega_{t-1})$$
(29)

in which Ω_{t-1} is the count space satisfying constraints (2), (3). Using (29) into (28), we have

$$\nabla_{\theta} V_{1}^{zz'}(\pi_{\theta}^{zz'})$$

$$= \sum_{t=1}^{H} \sum_{\mathbf{n}_{1:t}} \sum_{\tau > t} \left[\tilde{\mathbf{n}}_{t}(z, z', \tau) V_{t}^{\mathbf{n}}(z, z', \tau) P(\mathbf{n}_{t} | \pi_{\theta}) \nabla_{\theta} \log P(\tilde{\mathbf{n}}_{t} | \mathbf{n}_{t}^{\text{nxt}}; \boldsymbol{\beta}_{t} = \pi_{t}(\mathbf{n}_{t})) \right]$$

$$= \mathbb{E}_{\mathbf{n}_{1:H}} \left[\sum_{t=1:H} \sum_{\tau=t+t_{\min}^{zz'}}^{t+t_{\max}^{zz'}} \tilde{\mathbf{n}}_{t}(z, z', \tau) \times \left[(\tau - t - t_{\min}^{zz'}) \cdot \nabla_{\theta} \log(\pi_{\theta}^{zz'}(\mathbf{n}_{t})) + (t_{\max}^{zz'} - (\tau - t)) \cdot \nabla_{\theta} \log(1 - \pi_{\theta}^{zz'}(\mathbf{n}_{t})) \right] V_{t}^{\mathbf{n}}(z, z', \tau) \right]$$

1 Real Data experimental results for additional 10 days:

Day	Hour 4			Hour 5			Hour 6			Hour 7			Hour 8			Avg. Travel Time(0.6C)		
	Unsch.	Sch.	SD	Unsch.	Sch.	SD												
11	3	3.21	0.5	4	2.95	0.98	7	1.68	0.82	6	0	0	3	1.19	0.66	207.96	107.35	1.44
12	3	2.7	0.74	5	2.21	0.86	7	4.31	0.61	6	4.47	1.31	1	4.46	1.06	206.25	153.7	2.04
13	10	6.21	0.83	8	3.1	1.15	10	1.63	0.73	3	2.04	0.69	0	4.04	0.94	213.09	125.87	1.45
14	4	3.97	1.03	4	2.47	0.75	5	2.35	0.77	2	4.1	0.93	3	6.47	1.24	222.05	125.76	1.45
15	6	3.83	0.81	9	4.79	0.77	8	1.65	0.78	4	7.33	1	0	8.94	1.28	209.4	125.99	1.46
16	5	1.59	0.62	8	1.94	0.63	9	0.63	0.66	2	0.17	0.4	1	3	0.8	207.63	107.73	2.23
17	8	8.38	0.66	8	2.9	0.92	8	2.2	0.77	2	3.1	0.98	3	5.44	1.37	199.9	148.51	1.37
18	2	3.71	1	12	2.66	0.89	11	3.49	1	2	1.97	0.93	0	3.62	0.97	200.27	159.67	1.42
19	5	2.57	0.86	7	3.63	1.14	5	2.15	1.08	3	6.42	1.11	1	7.28	1.18	195.04	103.05	1.87
20	3	1.19	0.5	2	1.65	0.57	1	1.5	0.75	0	4.1	1.07	1	5.28	1.25	192.67	117.41	1.58

2 Synthetic Data Experimental Setup:

The settings of all instances are as follows. We use a graph with 23 edges, for each edge, minimum travel time is set to 2 sec and maximum travel time is uniformly sampled from [10sec, 20sec]. Each vessel's arrival time at the starting edge is uniformly sampled from [1sec, 20sec], each vessel consumes one unit of resource when traversing an edge, for all experiments delay penalty $w_d = 1$ and horizon = 200. For each setting, we generate 5 instances and average values are reported.

Figure 1: Graph of synthetic data experiments

2.1 DDPG Baseline:

As mentioned in the main document we use a DDPG algorithm [3] as one of our baselines. We learn a critic function $\tilde{V}_w^{zz'}(\mathbf{n}_t^{\text{tot}},\mathbf{n}_t^{\text{nxt}},\pi_t^{zz'})$ to estimate the vessel-based value of a waterway zz' given the counts $\mathbf{n}_t^{\text{tot}},\mathbf{n}_t^{\text{nxt}}$ and traffic control action $\beta_t^{zz'}=\pi_t^{zz'}(\mathbf{n}_t^{\text{tot}})$. For each sampled \mathbf{n}_t , the DDPG critic is updated by empirical vessel-based value as:

$$w^{new} \leftarrow w^{old} - \alpha_{lr} \sum_{z,z'} \nabla_w [\tilde{V}^{zz'}(\mathbf{n}_t^{\text{tot}}, \mathbf{n}_t^{\text{nxt}}, \pi_t^{zz'}) - \mathbf{n}_t^{\text{nxt}}(z, z') \cdot V_t^{\mathbf{n}}(z, z')]^2$$

Then, vessel-based policy gradient for this DDPG is computed as follows

$$\theta^{new} \leftarrow \theta^{old} + \alpha_{lr} \sum_{z,z'} \nabla_{\theta} \tilde{V}^{zz'}(\mathbf{n}_t^{\text{tot}}, \mathbf{n}_t^{\text{nxt}}, \pi_t^{zz'})$$

2.2 Implementation Details :

14 **return** $\theta^{\text{Vessel-PG}}$, θ^{PG} , θ^{DDPG} , w^{DDPG}

For Vessel-PG policy network π_{θ} , we use a one big neural network with each zone as one subnetwork which are segregated from one another. Input to the big network is $\mathbf{n}_t^{\text{tot}}$, we then apply masking on the input vector so that each zone(sub-network) receives only the count information of $\mathbf{n}_t^{\text{tot}}(z)$ and neighboring zone count $\mathbf{n}_t^{\text{tot}}(z')$. For each subnetwork, we use 2 hidden layer, each layer with hidden nodes = total zones and each zone sub-network outputs a vector $\langle \beta_t^{zz'} \rangle_{\forall z'}$ and $\beta_t^{zz'} \in [0,1]$. For each hidden layer, we use tanh activation and for the output layer sigmoid activation is used on each unit so that we get the value between [0,1]. Layer-norm [1] is applied before each hidden layer and output layer. We use Adam optimizer [2] with learning rate 1e-3. All of our model are implemented on pytorch [5]. Same network architecture is also used for both DDPG policy and critic network, and PG.

Algorithm 1:

```
1 Initialize network parameters \theta^{\text{Vessel-PG}}, \theta^{PG}, \theta^{DDPG} for actor and w^{DDPG} for critic.

2 \alpha \leftarrow actor learning rate

3 \alpha' \leftarrow critic learning rate

4 repeat

5 | Sample count vectors \mathbf{n}_{1:H} \sim P(\mathbf{n}_{1:H}; \pi_{\theta})

6 | Compute empirical individual values using (16) - (19)

7 | Update critic as:

8 | w_{new}^{DDPG} \leftarrow w_{old}^{DDPG} - \alpha' \sum_{z,z'} \nabla_w [\tilde{V}^{zz'}(\mathbf{n}_t^{\text{tot}}, \mathbf{n}_t^{\text{nxt}}, \pi_t^{zz'}) - \mathbf{n}_t^{\text{nxt}}(z, z') \cdot V_t^{\mathbf{n}}(z, z')]^2

9 | Update actor as:

10 | \theta_{new}^{\text{Vessel-PG}} \leftarrow \theta_{old}^{\text{Vessel-PG}} + \alpha \sum_{z,z'} \nabla_{\theta} V^{zz'}(\mathbf{n}_t^{\text{tot}}, \mathbf{n}_t^{\text{nxt}}, \pi_t^{zz'})

11 | \theta_{new}^{DDPG} \leftarrow \theta_{old}^{DDPG} + \alpha \sum_{z,z'} \nabla_{\theta} \tilde{V}^{zz'}(\mathbf{n}_t^{\text{tot}}, \mathbf{n}_t^{\text{nxt}}, \pi_t^{zz'})

12 | \theta_{new}^{PG} \leftarrow \theta_{old}^{DG} + \alpha \nabla_{\theta} R

13 until convergence
```

3 Simulator Accuracy Plot:

4 Real Data Travel Time of high traffic zones over 4 months period :

References

- [1] Jimmy Ba, Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. *CoRR*, abs/1607.06450, 2016.
- [2] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *CoRR*, abs/1412.6980, 2014.
- [3] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. *arXiv* preprint arXiv:1509.02971, 2015.
- [4] Duc Thien Nguyen, Akshat Kumar, and Hoong Chuin Lau. Collective multiagent sequential decision making under uncertainty. In *AAAI Conference on Artificial Intelligence*, pages 3036–3043, 2017.
- [5] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in pytorch. In NIPS-W, 2017.