Design and Analysis of Algorithms Part II: Dynamic Programming Lecture 16: Chain Matrix Multiplication

童咏昕

北京航空航天大学 计算机学院

动态规划篇概述

- 在算法课程第二部分"动态规划"主题中,我们将主要聚焦于如下 经典问题:
 - 0-1 Knapsack (0-1背包问题)
 - Maximum Contiguous Subarray II (最大连续子数组 II)
 - Longest Common Subsequences (最长公共子序列)
 - Longest Common Substrings (最长公共子串)
 - Minimum Edit Distance (最小编辑距离)
 - Rod-Cutting (钢条切割)
 - Chain Matrix Multiplication (矩阵链乘法)

动态规划篇概述

- 在算法课程第二部分"动态规划"主题中,我们将主要聚焦于如下 经典问题:
 - 0-1 Knapsack (0-1背包问题)
 - Maximum Contiguous Subarray II (最大连续子数组 II)
 - Longest Common Subsequences (最长公共子序列)
 - Longest Common Substrings (最长公共子串)
 - Minimum Edit Distance (最小编辑距离)
 - Rod-Cutting (钢条切割)
 - Chain Matrix Multiplication (矩阵链乘法)

- 矩阵
 - $p \times q$ 的矩阵 $U_{p,q}$
 - 例
 - $\mathbf{4} \times \mathbf{3}$ 的矩阵 $U_{4,3}$

$$U = \begin{bmatrix} 2 & 1 & 3 \\ 9 & 5 & 6 \\ 0 & 8 & 1 \\ 5 & 2 & 7 \end{bmatrix}$$

○ 3×2的矩阵V_{3,2}

$$V = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$$

- 矩阵
 - p imes q的矩阵 $U_{p,q}$
 - 例
 - \bullet 4×3的矩阵 $U_{4,3}$

○ 3×2的矩阵V_{3,2}

$$U = \begin{bmatrix} 2 & 1 & 3 \\ 9 & 5 & 6 \\ 0 & 8 & 1 \\ 5 & 2 & 7 \end{bmatrix} \quad p = 4$$

$$q = 3$$

$$V = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix} \quad q = 3$$

$$r = 2$$

- 矩阵
 - p imes q的矩阵 $U_{p,q}$
 - 例
 - \bullet 4×3的矩阵 $U_{4,3}$

○ 3×2的矩阵V_{3,2}

$$U = \begin{bmatrix} 2 & 1 & 3 \\ 9 & 5 & 6 \\ 0 & 8 & 1 \\ 5 & 2 & 7 \end{bmatrix} \quad p = 4$$

$$q = 3$$

问题: 如何计算 $U \cdot V$?

•
$$U = \begin{bmatrix} 2 & 1 & 3 \\ 9 & 5 & 6 \\ 0 & 8 & 1 \\ 5 & 2 & 7 \end{bmatrix}$$
, $p = 4$ $V = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$, $q = 3$ $Z = UV = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$

•
$$U = \begin{bmatrix} 2 & 1 & 3 \\ 9 & 5 & 6 \\ 0 & 8 & 1 \\ 5 & 2 & 7 \end{bmatrix}$$
, $p = 4$ $V = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$, $q = 3$ $Z = UV = \begin{bmatrix} 13 \\ 13 \\ 14 \\ 15 \\ 2 & 7 \end{bmatrix}$

•
$$2 \times 1 + 1 \times 2 + 3 \times 3 = 13$$

•
$$U = \begin{bmatrix} 2 & 1 & 3 \\ 9 & 5 & 6 \\ 0 & 8 & 1 \\ 5 & 2 & 7 \end{bmatrix}$$
 $p = 4$ $V = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$ $q = 3$ $Z = UV = \begin{bmatrix} 13 & 31 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$

•
$$2 \times 4 + 1 \times 5 + 3 \times 6 = 31$$

•
$$U = \begin{bmatrix} 2 & 1 & 3 \\ 9 & 5 & 6 \\ 0 & 8 & 1 \\ 5 & 2 & 7 \end{bmatrix}$$
 $p = 4$ $V = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$ $q = 3$ $Z = UV = \begin{bmatrix} 13 & 31 \\ 37 \end{bmatrix}$ $q = 3$

•
$$9 \times 1 + 5 \times 2 + 6 \times 3 = 37$$

•
$$U = \begin{bmatrix} 2 & 1 & 3 \\ 9 & 5 & 6 \\ 0 & 8 & 1 \\ 5 & 2 & 7 \end{bmatrix}$$
 $p = 4$ $V = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$ $q = 3$ $Z = UV = \begin{bmatrix} 13 & 31 \\ 37 & 97 \\ 19 & 46 \\ 30 & 72 \end{bmatrix}$

•
$$U = \begin{bmatrix} 2 & 1 & 3 \\ 9 & 5 & 6 \\ 0 & 8 & 1 \\ 5 & 2 & 7 \end{bmatrix}$$
 $p = 4$ $V = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$ $q = 3$ $Z = UV = \begin{bmatrix} 13 & 31 \\ 37 & 97 \\ 19 & 46 \\ 30 & 72 \end{bmatrix}$ $p = 4$

•
$$U = \begin{bmatrix} 2 & 1 & 3 \\ 9 & 5 & 6 \\ 0 & 8 & 1 \\ 5 & 2 & 7 \end{bmatrix}$$
 $p = 4$ $V = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$ $q = 3$ $Z = UV = \begin{bmatrix} 13 & 31 \\ 37 & 97 \\ 19 & 46 \\ 30 & 72 \end{bmatrix}$ $p = 4$ $r = 2$

- 矩阵乘法的时间复杂度
 - 计算1个数字: q次标量乘法

• 2个矩阵相乘

$$U = \begin{bmatrix} 2 & 1 & 3 \\ 9 & 5 & 6 \\ 0 & 8 & 1 \\ 5 & 2 & 7 \end{bmatrix}, p = 4 \quad V = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}, q = 3 \quad Z = UV = \begin{bmatrix} 13 & 31 \\ 37 & 97 \\ 19 & 46 \\ 30 & 72 \end{bmatrix}, p = 4$$

• 矩阵乘法的时间复杂度

• 计算1个数字: q次标量乘法

共p×r个数: Θ(pqr)

• 2个矩阵相乘

•
$$U = \begin{bmatrix} 2 & 1 & 3 \\ 9 & 5 & 6 \\ 0 & 8 & 1 \\ 5 & 2 & 7 \end{bmatrix}$$
 $p = 4$ $V = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$ $q = 3$ $Z = UV = \begin{bmatrix} 13 & 31 \\ 37 & 97 \\ 19 & 46 \\ 30 & 72 \end{bmatrix}$ $p = 4$ $r = 2$

• 矩阵乘法的时间复杂度

- 计算1个数字: q次标量乘法
- 共p×r个数: Θ(pqr)
- 上例中,标量乘法次数为: $p \times q \times r = 4 \times 3 \times 2 = 24$

• 3个矩阵相乘

• 矩阵乘法结合率: (UV)W = U(VW)

• 新问题: 矩阵乘法结合的顺序

• 3个矩阵相乘

• 矩阵乘法结合率: (UV)W = U(VW)

• 新问题: 矩阵乘法结合的顺序

问题:顺序不同,效率是否明显不同?

• 3个矩阵相乘

• 矩阵乘法结合率: (UV)W = U(VW)

• 新问题: 矩阵乘法结合的顺序

问题: 顺序不同,效率是否明显不同?

• 3个矩阵相乘

• 矩阵乘法结合率: (UV)W = U(VW)

• 新问题: 矩阵乘法结合的顺序

问题: 顺序不同,效率是否明显不同?

• 例如: 矩阵维度数为p=40, q=8, r=30, s=5

■ 按(UV)W计算,标量乘法次数:

• 3个矩阵相乘

• 矩阵乘法结合率: (UV)W = U(VW)

• 新问题: 矩阵乘法结合的顺序

问题: 顺序不同,效率是否明显不同?

• 例如: 矩阵维度数为p=40, q=8, r=30, s=5

• 按(UV)W计算,标量乘法次数: pqr

• 3个矩阵相乘

• 矩阵乘法结合率: (UV)W = U(VW)

• 新问题: 矩阵乘法结合的顺序

问题:顺序不同,效率是否明显不同?

• 例如: 矩阵维度数为p=40, q=8, r=30, s=5

• 按(UV)W计算,标量乘法次数: pqr + prs

• 3个矩阵相乘

• 矩阵乘法结合率: (UV)W = U(VW)

• 新问题: 矩阵乘法结合的顺序

问题: 顺序不同,效率是否明显不同?

• 例如:矩阵维度数为p=40, q=8, $r=_{r}30$, $s=5_{s}$

• 按(UV)W计算,标量乘法次数: pqr + prs = 15600

• 3个矩阵相乘

• 矩阵乘法结合率: (UV)W = U(VW)

• 新问题: 矩阵乘法结合的顺序

问题: 顺序不同,效率是否明显不同?

- 按(UV)W计算,标量乘法次数: pqr + prs = 15600
- 按U(VW)计算,标量乘法次数:

• 3个矩阵相乘

• 矩阵乘法结合率: (UV)W = U(VW)

• 新问题: 矩阵乘法结合的顺序

问题: 顺序不同,效率是否明显不同?

- 按(UV)W计算,标量乘法次数: pqr + prs = 15600
- 按U(VW) 计算,标量乘法次数: qrs

• 3个矩阵相乘

• 矩阵乘法结合率: (UV)W = U(VW)

• 新问题: 矩阵乘法结合的顺序

问题: 顺序不同,效率是否明显不同?

- 按(UV)W计算,标量乘法次数: pqr + prs = 15600
- 按U(VW)计算,标量乘法次数: qrs + pqs

• 3个矩阵相乘

• 矩阵乘法结合率: (UV)W = U(VW)

• 新问题: 矩阵乘法结合的顺序

问题: 顺序不同,效率是否明显不同?

- 按(UV)W计算,标量乘法次数: pqr + prs = 15600
- 按U(VW) 计算,标量乘法次数: qrs + pqs = 2800

• 3个矩阵相乘

• 矩阵乘法结合率: (UV)W = U(VW)

• 新问题: 矩阵乘法结合的顺序

问题: 顺序不同,效率是否明显不同?

• 例如: 矩阵维度数为p=40, q=8, r=30, s=5

- 按(UV)W计算,标量乘法次数: pqr + prs = 15600
- 按U(VW)计算,标量乘法次数: qrs + pqs = 2800

差异显著

- n个矩阵相乘
 - 有一系列矩阵按顺序排列

- n个矩阵相乘
 - 有一系列矩阵按顺序排列
 - 每个矩阵的行数=前一个矩阵的列数

- n个矩阵相乘
 - 有一系列矩阵按顺序排列
 - 每个矩阵的行数=前一个矩阵的列数

- n个矩阵相乘
 - 有一系列矩阵按顺序排列
 - 每个矩阵的行数=前一个矩阵的列数

• n个矩阵相乘也称为矩阵链乘法

- n个矩阵相乘
 - 有一系列矩阵按顺序排列
 - 每个矩阵的行数=前一个矩阵的列数

• n个矩阵相乘也称为矩阵链乘法

问题: 如何确定相乘顺序(给矩阵链加括号),提高计算效率?

矩阵链乘法问题

Matrix-chain Multiplication Problem

输入

- n个矩阵组成的矩阵链 $U_{1,n} = \langle U_1, U_2, ..., U_n \rangle$
- 矩阵链 $U_{1..n}$ 对应的维度数分别为 $p_0, p_1, ..., p_n$, U_i 的维度为 $p_{i-1} \times p_i$

输出

• 找到一种加括号的方式,以确定矩阵链乘法的计算顺序,使得

最小化矩阵链标量乘法的次数

问题示例

- 给定矩阵链: $U_{1..4} = U_1, U_2, U_3, U_4$
- 有如下加括号方式

问题示例

- 给定矩阵链: $U_{1..4} = U_1, U_2, U_3, U_4$
- 有如下加括号方式

问题示例

- 给定矩阵链: $U_{1..4} = U_1, U_2, U_3, U_4$
- 有如下加括号方式

找到使标量乘法次数最小的加括号方式

问题结构分析

- 给出问题表示
 - D[i,j]: 计算矩阵链 $U_{i,j}$ 所需标量乘法的最小次数

- 明确原始问题
 - D[1,n]: 计算矩阵链 $U_{1..n}$ 所需标量乘法的最小次数

问题结构分析

递推关系建立

自底向上计算

• 对矩阵链 $U_{i...j}$,求解D[i,j] $U_i ... U_k U_{k+1} ... U_j$

问题结构分析 递推关系建立 自底向上计算

• 对矩阵链 $U_{i..j}$,求解D[i,j]

问题结构分析

递推关系建立

自底向上计算

• 对矩阵链 $U_{i..j}$,求解D[i,j]

问题: 如何保证不遗漏最优分割位置?

问题结构分析

递推关系建立

自底向上计算

• 对矩阵链 $U_{i..j}$,求解D[i,j]

问题: 如何保证不遗漏最优分割位置?

答案: 枚举所有可能位置i...j-1,共j-i种

问题结构分析

递推关系建立

自底向上计算

• 对矩阵链 $U_{i..j}$,求解D[i,j]

• 乘法次数: $D[i,k] + D[k+1,j] + p_{i-1}p_kp_j$

问题结构分析

递推关系建立

自底向上计算

递推关系建立:构造递推公式

- 对每个位置 $k(i \le k < j)$
 - 乘法次数: $D[i,k] + D[k+1,j] + p_{i-1}p_kp_j$
- 枚举所有k,得到递推式
 - $D[i,j] = \min_{i \le k < j} (D[i,k] + D[k+1,j] + p_{i-1}p_kp_j)$

问题结构分析

递推关系建立

自底向上计算

递推关系建立: 构造递推公式

- 对每个位置 $k(i \le k < j)$
 - 乘法次数: $D[i,k] + D[k+1,j] + p_{i-1}p_kp_j$
- 枚举所有k,得到递推式

问题结构分析

递推关系建立

自底向上计算

- 初始化
 - i = j时,矩阵链只有一个矩阵,乘法次数为0

问题结构分析

递推关系建立

自底向上计算

• 递推公式

•
$$D[i,j] = \min_{i \le k < j} (D[i,k] + D[k+1,j] + p_{i-1}p_kp_j)$$

D[i,j]	j = 1	2	3	•••	•••	n-1	n
i = 1	0						
2		0					
3			0				
•••				0			
•••					0		
n-1						0	
n	i <	i < j 只用上三角					

问题结构分析

递推关系建立

自底向上计算

• 递推公式

•
$$D[i,j] = \min_{i \le k < j} (D[i,k] + D[k+1,j] + p_{i-1}p_kp_j)$$

j = 1	2	3	•••	•••	n-1	n	D[i,j]
0							<i>i</i> = 1
	0						2
		0					3
			0				
				0			
					0		n-1
						0	n

问题结构分析

递推关系建立

自底向上计算

• 递推公式

•
$$D[i,j] = \min_{i \le k < j} \{D[i,k] + D[k+1,j] + p_{i-1}p_kp_j\}$$

<i>j</i> = 1	2	3	•••	•••	n-1	n	D[i,j]
0							i = 1
	0						2
		0	D[i,k]		D[i,j]		3
			0		D[L 1 f]		•••
				0	D[k+1,j]		•••
					0		n-1
						0	n

问题结构分析

递推关系建立

自底向上计算

• 递推公式

•
$$D[i,j] = \min_{i \le k < j} (D[i,k] + D[k+1,j] + p_{i-1}p_kp_j)$$

• 观察枚举过程

问题结构分析

递推关系建立

自底向上计算

• 递推公式

长链

•
$$D[i,j] = \min_{i \le k < j} (D[i,k] + D[k+1,j] + p_{i-1}p_kp_j)$$

• 观察枚举过程

 $U_{i..j}$ $V_{i..j}$ $V_{i..k}$ $V_{k+1..j}$ 短链

问题结构分析

递推关系建立

自底向上计算

• 递推公式

长链

•
$$D[i,j] = \min_{i \le k < j} (D[i,k] + D[k+1,j] + p_{i-1}p_kp_j)$$

• 观察枚举过程

 $U_{i..j}$ 枚举所有 $k(i \le k < j)$ $U_{k+1..j}$ $U_{i..k}$ 短链

计算顺序: 链长从小到大

短链

问题结构分析

递推关系建立

自底向上计算

• 递推公式

•
$$D[i,j] = \min_{i \le k < j} (D[i,k] + D[k+1,j] + p_{i-1}p_kp_j)$$

问题结构分析

递推关系建立

自底向上计算

• 递推公式

•
$$D[i,j] = \min_{i \le k < j} (D[i,k] + D[k+1,j] + p_{i-1}p_kp_j)$$

问题结构分析

递推关系建立

自底向上计算

• 递推公式

•
$$D[i,j] = \min_{i \le k < j} (D[i,k] + D[k+1,j] + p_{i-1}p_kp_j)$$

问题结构分析

递推关系建立

自底向上计算

• 递推公式

•
$$D[i,j] = \min_{i \le k < j} (D[i,k] + D[k+1,j] + p_{i-1}p_kp_j)$$

问题结构分析

递推关系建立

自底向上计算

- 递推公式
 - $D[i,j] = \min_{i \le k < j} (D[i,k] + D[k+1,j] + p_{i-1}p_kp_j)$

问题结构分析

递推关系建立

n

自底向上计算

最优方案追踪:记录决策过程

构造追踪数组Rec[1..n, 1..n]

• 根据追踪数组,递归输出方案

Rec	<i>j</i> = 1	2	•••	k	 n-1	n
i = 1						k
2						
•••						
k+1						
•••						
n-1						
n						

问题结构分析

递推关系建立

自底向上计算

• 根据追踪数组,递归输出方案

Rec	<i>j</i> = 1	2	•••	k	 n-1	\boldsymbol{n}
i = 1						k
2						
•••						
k+1						
•••						
n-1						
n						

问题结构分析

递推关系建立

自底向上计算

• 根据追踪数组,递归输出方案

$$(U_1 \dots U_s U_{s+1} \dots U_k)(U_{k+1} \dots U_t U_{t+1} \dots U_{n-1} U_n)$$

Rec	j = 1	2	 k	 n-1	n
i=1			s ←		– k
2					
•••					
k+1					
•••					
n-1					
n					

问题结构分析

递推关系建立

自底向上计算

• 根据追踪数组,递归输出方案

$$(U_1 \dots U_s U_{s+1} \dots U_k)(U_{k+1} \dots U_t U_{t+1} \dots U_{n-1} U_n)$$

Rec	j = 1	2	•••	k	•••	n-1	n
i = 1				<i>s</i> ←			– k
2							
•••							
$\left\{k+1\right\}$							t
•••							
n-1							
n							

问题结构分析

递推关系建立

自底向上计算

• 根据追踪数组,递归输出方案

问题结构分析

递推关系建立

自底向上计算

• 根据追踪数组,递归输出方案

- 根据追踪数组,递归输出方案
 - 递归出口: 矩阵链长为1

问题结构分析

递推关系建立

自底向上计算

给定矩阵链: U₁U₂U₃U₄U₅U₆

• 对应行列数

p_0	p_1	p_2	p_3	p_4	p_5	p_6
2	3	7	9	5	2	4

• $D[1,2] = \min_{1 \le k < 2} (D[1,k] + D[k+1,2] + p_0 p_k p_2)$

• $D[1,2] = \min_{1 \le k < 2} (D[1,k] + D[k+1,2] + p_0 p_k p_2)$

• $D[1,2] = \min_{1 \le k < 2} (D[1,1] + D[1+1,2] + p_0 p_1 p_2)$

• $D[1,2] = \min_{1 \le k < 2} (D[1,1] + D[1+1,2] + p_0 p_1 p_2)$

• $D[1,2] = \min_{1 \le k < 2} (0 + D[1+1,2] + p_0 p_1 p_2)$

• $D[1,2] = \min_{1 \le k < 2} (0 + D[1 + 1,2] + p_0 p_1 p_2)$

• $D[1,2] = \min_{1 \le k < 2} (0 + 0 + p_0 p_1 p_2)$

• $D[1,2] = \min_{1 \le k < 2} (0 + 0 + 2 \times 3 \times 7)$

•
$$D[1,2] = \min_{1 \le k < 2} (0 + 0 + 2 \times 3 \times 7) = 42$$

• $D[2,3] = \min_{2 \le k < 3} (D[2,k] + D[k+1,3] + p_1 p_k p_3) = 189$

• $D[3,4] = \min_{3 \le k < 4} (D[3,k] + D[k+1,4] + p_2 p_k p_4) = 315$

• $D[4,5] = \min_{4 \le k < 5} (D[4,k] + D[k+1,5] + p_3 p_k p_5) = 90$

• $D[5,6] = \min_{5 \le k < 6} (D[5,k] + D[k+1,6] + p_4 p_k p_6) = 40$

•
$$D[1,3] = \min_{1 \le k < 3} (D[1,k] + D[k+1,3] + p_0 p_k p_3)$$

= $\min \begin{cases} D[1,1] + D[2,3] + p_0 p_1 p_3 = 243 \\ D[1,2] + D[3,3] + p_0 p_2 p_3 = 243 \end{cases}$

•
$$D[1,3] = \min_{1 \le k < 3} (D[1,k] + D[k+1,3] + p_0 p_k p_3)$$

= $\min \begin{cases} D[1,1] + D[2,3] + p_0 p_1 p_3 = 243 \\ D[1,2] + D[3,3] + p_0 p_2 p_3 = 168 \end{cases}$

•
$$D[2,4] = \min_{2 \le k < 4} (D[2,k] + D[k+1,4] + p_1 p_k p_4)$$

= $\min \begin{cases} D[2,2] + D[3,4] + p_1 p_2 p_4 = 420 \\ D[2,3] + D[4,4] + p_1 p_3 p_4 = 420 \end{cases}$

•
$$D[2,4] = \min_{2 \le k < 4} (D[2,k] + D[k+1,4] + p_1 p_k p_4)$$

= $\min \begin{cases} D[2,2] + D[3,4] + p_1 p_2 p_4 = 420 \\ D[2,3] + D[4,4] + p_1 p_3 p_4 = 324 \end{cases}$

•
$$D[3,5] = \min_{3 \le k < 5} (D[3,k] + D[k+1,5] + p_2 p_k p_5)$$

= $\min \begin{cases} D[3,3] + D[4,5] + p_2 p_3 p_5 = 216 \\ D[3,4] + D[5,5] + p_2 p_4 p_5 = 216 \end{cases}$

•
$$D[3,5] = \min_{3 \le k < 5} (D[3,k] + D[k+1,5] + p_2 p_k p_5)$$

= $\min \begin{cases} D[3,3] + D[4,5] + p_2 p_3 p_5 = 216 \\ D[3,4] + D[5,5] + p_2 p_4 p_5 = 385 \end{cases}$

•
$$D[4,6] = \min_{4 \le k < 6} (D[4,k] + D[k+1,6] + p_3 p_k p_6)$$

= $\min \begin{cases} D[4,4] + D[5,6] + p_3 p_4 p_6 = 220 \\ D[4,5] + D[6,6] + p_3 p_5 p_6 = 0 \end{cases}$

•
$$D[4,6] = \min_{4 \le k < 6} (D[4,k] + D[k+1,6] + p_3 p_k p_6)$$

= $\min \begin{cases} D[4,4] + D[5,6] + p_3 p_4 p_6 = 220 \\ D[4,5] + D[6,6] + p_3 p_5 p_6 = 162 \end{cases}$

$$D[1, 4] = \min \begin{cases} D[1, 1] + D[2, 4] + p_0 p_1 p_4 = 354 \\ D[1, 2] + D[3, 4] + p_0 p_2 p_4 = \\ D[1, 3] + D[4, 4] + p_0 p_3 p_4 = \end{cases}$$

$$D[1, 4] = \min \begin{cases} D[1, 1] + D[2, 4] + p_0 p_1 p_4 = 354 \\ D[1, 2] + D[3, 4] + p_0 p_2 p_4 = 427 \\ D[1, 3] + D[4, 4] + p_0 p_3 p_4 = 427 \end{cases}$$

$$D[1, 4] = \min \begin{cases} D[1, 1] + D[2, 4] + p_0 p_1 p_4 = 354 \\ D[1, 2] + D[3, 4] + p_0 p_2 p_4 = 427 \\ D[1, 3] + D[4, 4] + p_0 p_3 p_4 = 258 \end{cases}$$

$$D[2,2] + D[3,5] + p_1p_2p_5 = 258$$

$$D[2,5] = \min \begin{cases} D[2,2] + D[3,5] + p_1p_2p_5 = 258 \\ D[2,3] + D[4,5] + p_1p_3p_5 = 258 \\ D[2,4] + D[5,5] + p_1p_4p_5 = 258 \\ D[2,4] + D[2,5] + D[2$$

$$D[2,2] + D[3,5] + p_1p_2p_5 = 258$$

$$D[2,5] = \min \begin{cases} D[2,3] + D[4,5] + p_1p_3p_5 = 333 \\ D[2,4] + D[5,5] + p_1p_4p_5 = 333 \end{cases}$$

$$D[2,2] + D[3,5] + p_1p_2p_5 = 258$$

$$D[2,5] = \min \begin{cases} D[2,2] + D[3,5] + p_1p_2p_5 = 258 \\ D[2,3] + D[4,5] + p_1p_3p_5 = 333 \\ D[2,4] + D[5,5] + p_1p_4p_5 = 354 \end{cases}$$

$$D[3, 6] = \min \begin{cases} D[3, 3] + D[4, 6] + p_2 p_3 p_6 = 414 \\ D[3, 4] + D[5, 6] + p_2 p_4 p_6 = \\ D[3, 5] + D[6, 6] + p_2 p_5 p_6 = 6 \end{cases}$$

$$D[3, 6] = \min \begin{cases} D[3, 3] + D[4, 6] + p_2 p_3 p_6 = 414 \\ D[3, 4] + D[5, 6] + p_2 p_4 p_6 = 495 \\ D[3, 5] + D[6, 6] + p_2 p_5 p_6 = 495 \end{cases}$$

$$D[3, 6] = \min \begin{cases} D[3, 3] + D[4, 6] + p_2 p_3 p_6 = 414 \\ D[3, 4] + D[5, 6] + p_2 p_4 p_6 = 495 \\ D[3, 5] + D[6, 6] + p_2 p_5 p_6 = 272 \end{cases}$$

•
$$D[1,5] = \min egin{cases} D[1,1] + D[2,5] + p_0p_1p_5 = 270 \ D[1,2] + D[3,5] + p_0p_2p_5 = \ D[1,3] + D[4,5] + p_0p_3p_5 = \ D[1,4] + D[5,5] + p_0p_4p_5 = \end{cases}$$

•
$$D[1,5] = \min egin{cases} D[1,1] + D[2,5] + p_0p_1p_5 = 270 \ D[1,2] + D[3,5] + p_0p_2p_5 = 286 \ D[1,3] + D[4,5] + p_0p_3p_5 = \ D[1,4] + D[5,5] + p_0p_4p_5 = \end{cases}$$

•
$$D[1,5] = \min egin{cases} D[1,1] + D[2,5] + p_0p_1p_5 = 270 \ D[1,2] + D[3,5] + p_0p_2p_5 = 286 \ D[1,3] + D[4,5] + p_0p_3p_5 = 294 \ D[1,4] + D[5,5] + p_0p_4p_5 = \end{cases}$$

•
$$D[1,5] = \min egin{cases} D[1,1] + D[2,5] + p_0p_1p_5 &= 270 \\ D[1,2] + D[3,5] + p_0p_2p_5 &= 286 \\ D[1,3] + D[4,5] + p_0p_3p_5 &= 294 \\ D[1,4] + D[5,5] + p_0p_4p_5 &= 278 \end{cases}$$

•
$$D[2,6] = \min egin{cases} D[2,2] + D[3,6] + p_1p_2p_6 = 356 \\ D[2,3] + D[4,6] + p_1p_3p_6 = \\ D[2,4] + D[5,6] + p_1p_4p_6 = \\ D[2,5] + D[6,6] + p_1p_5p_6 = \end{cases}$$

•
$$D[2,6] = \min egin{cases} D[2,2] + D[3,6] + p_1p_2p_6 = 356 \ D[2,3] + D[4,6] + p_1p_3p_6 = 459 \ D[2,4] + D[5,6] + p_1p_4p_6 = \ D[2,5] + D[6,6] + p_1p_5p_6 = \end{cases}$$

•
$$D[2,6] = \min egin{cases} D[2,2] + D[3,6] + p_1p_2p_6 = 356 \\ D[2,3] + D[4,6] + p_1p_3p_6 = 459 \\ D[2,4] + D[5,6] + p_1p_4p_6 = 424 \\ D[2,5] + D[6,6] + p_1p_5p_6 = 424 \end{cases}$$

•
$$D[2,6] = \min egin{cases} D[2,2] + D[3,6] + p_1p_2p_6 = 356 \ D[2,3] + D[4,6] + p_1p_3p_6 = 459 \ D[2,4] + D[5,6] + p_1p_4p_6 = 424 \ D[2,5] + D[6,6] + p_1p_5p_6 = 282 \end{cases}$$

$$D[1,1] + D[2,6] + p_0p_1p_6 = 306$$

$$D[1,2] + D[3,6] + p_0p_2p_6 =$$

$$D[1,3] + D[4,6] + p_0p_3p_6 =$$

$$D[1,4] + D[5,6] + p_0p_4p_6 =$$

$$D[1,5] + D[6,6] + p_0p_5p_6 =$$

$$D[1,1] + D[2,6] + p_0p_1p_6 = 306$$

$$D[1,2] + D[3,6] + p_0p_2p_6 = 370$$

$$D[1,3] + D[4,6] + p_0p_3p_6 =$$

$$D[1,4] + D[5,6] + p_0p_4p_6 =$$

$$D[1,5] + D[6,6] + p_0p_5p_6 =$$

$$D[1,1] + D[2,6] + p_0p_1p_6 = 306$$

$$D[1,2] + D[3,6] + p_0p_2p_6 = 370$$

$$D[1,3] + D[4,6] + p_0p_3p_6 = 402$$

$$D[1,4] + D[5,6] + p_0p_4p_6 = D[1,5] + D[6,6] + p_0p_5p_6 = 0$$

$$D[1,1] + D[2,6] + p_0p_1p_6 = 306$$

$$D[1,2] + D[3,6] + p_0p_2p_6 = 370$$

$$D[1,3] + D[4,6] + p_0p_3p_6 = 402$$

$$D[1,4] + D[5,6] + p_0p_4p_6 = 338$$

$$D[1,5] + D[6,6] + p_0p_5p_6 =$$

$$D[1,1] + D[2,6] + p_0p_1p_6 = 306$$

$$D[1,2] + D[3,6] + p_0p_2p_6 = 370$$

$$D[1,3] + D[4,6] + p_0p_3p_6 = 402$$

$$D[1,4] + D[5,6] + p_0p_4p_6 = 338$$

$$D[1,5] + D[6,6] + p_0p_5p_6 = 286$$

- \bullet $U_1U_2U_3U_4U_5U_6$
- $\bullet \rightarrow (U_1U_2U_3U_4U_5)(U_6)$

- \bullet $U_1U_2U_3U_4U_5U_6$
- $\bullet \rightarrow (U_1U_2U_3U_4U_5)(U_6)$

- \bullet $U_1U_2U_3U_4U_5U_6$
- $\bullet \to (U_1U_2U_3U_4U_5)(U_6)$
- $\bullet \to (U_1(U_2U_3U_4U_5))(U_6)$

- $\bullet U_1U_2U_3U_4U_5U_6$
- $\bullet \to (U_1U_2U_3U_4U_5)(U_6)$
- $\bullet \to (U_1(U_2U_3U_4U_5))(U_6)$
- $\bullet \to (U_1(U_2(U_3U_4U_5)))(U_6)$

- \bullet $U_1U_2U_3U_4U_5U_6$
- $\bullet \to (U_1U_2U_3U_4U_5)(U_6)$
- $\bullet \to (U_1(U_2U_3U_4U_5))(U_6)$
- $\rightarrow (U_1(U_2(U_3U_4U_5)))(U_6) \rightarrow (U_1(U_2((U_3)(U_4U_5))))(U_6)$


```
输入: 矩阵维度数组p, 矩阵的个数n 输出: 最小标量乘法次数,分割方式追踪数组Rec 新建二维数组D[1...n,1...n],Rec[1...n,1...n] //初始化 D\leftarrow\infty 初始化 for i\leftarrow 1 to n do D[i,i]\leftarrow 0 end
```



```
for l \leftarrow 2 to n do
                                  区间长度从小到大
    for i \leftarrow 1 to n - l + 1 do
        j \leftarrow i + l - 1
        for k \leftarrow i \ to \ j-1 \ \mathbf{do}
            q \leftarrow D[i,k] + D[k+1,j] + p[i-1] * p[k] * p[j]
            if q < D[i, j] then
             D[i,j] \leftarrow q
              Rec[i,j] \leftarrow k
            end
        end
    end
end
return D[1, n], Rec
```



```
//动态规划
for l \leftarrow 2 to n do
  for i \leftarrow 1 to n - l + 1 do
                                               依次计算子问题
   \lfloor j \leftarrow i + l - 1 \rfloor
       for k \leftarrow i \ to \ j-1 \ do
            q \leftarrow D[i, k] + D[k+1, j] + p[i-1] * p[k] * p[j]
            if q < D[i, j] then
               D[i,j] \leftarrow q
               Rec[i,j] \leftarrow k
            end
        end
    end
end
return D[1, n], Rec
```



```
//动态规划
for l \leftarrow 2 to n do
      for i \leftarrow 1 to n - l + 1 do
         \underline{j} \leftarrow \underline{i} + \underline{l} = 1
                                                                             枚举所有分割位置
          \mathbf{for} \ \underline{k} \leftarrow \underline{i} \ \underline{to} \ \underline{j} - \underline{1} \ \mathbf{do}
                 q \leftarrow D[i, k] + D[k+1, j] + p[i-1] * p[k] * p[j]
                 if q < D[i, j] then
                    D[i,j] \leftarrow q
                     Rec[i,j] \leftarrow k
                 end
           end
      end
end
return D[1, n], Rec
```



```
//动态规划
for l \leftarrow 2 to n do
    for i \leftarrow 1 to n - l + 1 do
       j \leftarrow i + l - 1
       for k \leftarrow i to j - 1 do
        q \leftarrow D[i,k] + D[k+1,j] + p[i-1] * p[k] * p[j]
                                                                 计算最少乘法次数
         if q < D[i, j] then
          D[i,j] \leftarrow q
          Rec[i,j] \leftarrow k
           end
       end
    end
end
return D[1, n], Rec
```



```
//动态规划
for l \leftarrow 2 to n do
    for i \leftarrow 1 to n - l + 1 do
        j \leftarrow i + l - 1
        for k \leftarrow i \ to \ j-1 \ do
            q \leftarrow D[i,k] + D[k+1,j] + p[i-1] * p[k] * p[j]
            if q < D[i, j] then
               D[i,j] \leftarrow q
Rec[i,j] \leftarrow k
                                               记录最优决策
             end
        end
    end
end
return D[1, n], Rec
```

最优方案追踪: 伪代码

• Print-Matrix-Chain(*U*, *Rec*, *i*, *j*)

初始调用: Print-Matrix-Chain(*U*, *Rec*, 1, *n*)

```
输入: 矩阵链U_{1..n},追踪数组Rec[1..n,1..n],位置索引i,j
输出: 矩阵链的加括号方式
if i = j then
                 链长为1直接输出
   print U_i
   return
end
print "("
Print-Matrix-Chain(U, Rec, i, Rec[i, j])
print ")("
Print-Matrix-Chain(U, Rec, Rec[i, j] + 1, j)
print ")"
return
```

最优方案追踪: 伪代码

• Print-Matrix-Chain(*U*, *Rec*, *i*, *j*)

初始调用: Print-Matrix-Chain(U, Rec, 1, n)

```
输入: 矩阵链U_{1..n},追踪数组Rec[1..n,1..n],位置索引i,j
输出: 矩阵链的加括号方式
if i = j then
    print U_i
    return
end
print "("
\operatorname{Print-Matrix-Chain}(\overline{U},\overline{Rec},\overline{i},\overline{Rec}[\overline{i},\overline{j}])^{-}
                                                  递归输出左侧加括号方式
print ")("
Print-Matrix-Chain(U, Rec, Rec[i, j] + 1, j)
print ")"
return
```

最优方案追踪: 伪代码

Print-Matrix-Chain(U, Rec, i, j)

初始调用: Print-Matrix-Chain(U, Rec, 1, n)

```
输入: 矩阵链U_{1..n},追踪数组Rec[1..n,1..n],位置索引i,j
输出: 矩阵链的加括号方式
if i = j then
   print U_i
   return
end
print "("
Print-Matrix-Chain(U, Rec, i, Rec[i, j])
<u>print ")("</u>
\operatorname{Print-Matrix-Chain}(U,Rec,Rec[i,j]+1,j) 递归输出右侧加括号方式
print ")"
return
```

时间复杂度分析


```
//动态规划
for l \leftarrow 2 to n do
    for i \leftarrow 1 to n - l + 1 do
        j \leftarrow i + l - 1
        D[i,j] \leftarrow \infty
        for k \leftarrow i \ to \ j-1 \ do
             q \leftarrow D[i, k] + D[k+1, j] + p[i-1] * p[k] * p[j]
             if q < D[i, j] then
                D[i,j] \leftarrow q
              Rec[i,j] \leftarrow k
             \mathbf{end}
         \mathbf{end}
    \mathbf{end}
\mathbf{end}
                                                   时间复杂度: O(n^3)
return D[1, n], Rec
```

总结

• 问题最优解依赖的子问题数量各不相同

