Enchères

ECN 6013, automne 2019

William McCausland

2019-09-20

Préliminaires mathématiques

Fonction de répartition pour le maximum de variables aléatoires indépendantes :

- Soit X et Y deux variables aléatoires indépendantes.
- ▶ Soit $Z = \max(X, Y)$.
- ▶ Soit F_x , F_y et F_z les fonctions de répartitions.
- ▶ Soit f_x , f_y et f_z les densités.
- Alors

$$F_z(z) = \Pr[Z \le z]$$

$$= \Pr[X \le z \text{ et } Y \le z]$$

$$= \Pr[X \le z] \Pr[Y \le z]$$

$$= F_x(z)F_y(z).$$

et

$$f_z(z) = f_x(z)F_y(z) + F_x(z)f_y(z).$$

Exemples

- ▶ Soit $U_i \sim \operatorname{iid} \mathrm{U}(0,1), i = 1,\ldots,n$.
- ▶ Soit $X_2 = \max(U_1, U_2)$, $X_n = \max(U_1, ..., U_n)$.
- ▶ La fonction de répartition pour U_i est

$$F(u_i) = \begin{cases} 0 & u_i < 0, \\ u_i & 0 \le u_i \le 1, \\ 1 & u_i > 1. \end{cases}$$

► Celle pour *X*² est

$$F(x_2) = \begin{cases} 0 & x_2 < 0, \\ x_2^2 & 0 \le x_2 \le 1, \\ 1 & x_2 > 1. \end{cases}$$

▶ La densité pour X_2 est $f(x_2) = 2x_2$ pour $0 \le x_2 \le 1$.

Exemples (cont.)

La fonction de répartition pour X_n est

$$F(x_n) = \begin{cases} 0 & x_n < 0, \\ x_n^n & 0 \le x_n \le 1, \\ 1 & x_n > 1. \end{cases}$$

▶ La densité pour X_n est $f(x_n) = nx_n^{n-1}$ pour $0 \le x_n \le 1$.

Enchères: l'environnement

- Un nombre n d'enchérisseurs ou joueurs.
- Un seul objet indivisible à vendre
- ▶ Joueur i à une valeur de réservation v_i , le montant maximal que il paierait pour l'objet.
- ▶ Le résultat d'une vente aux enchères est le transfert (ou non) à un joueur (le gagnant) de l'objet et des paiements, souvent un seul paiement du gagnant au vendeur.
- L'action est souvent une enchère ou une séquence d'enchères.
- Le résultat est efficace si et seulement si l'objet est vendu au joueur avec la valeur maximale, peut importe le paiement.
- On verra cinq jeux (ou enchères) différents.

L'enchère anglaise (ou ascendante)

- Participation asynchrone.
- Les joueurs peuvent à tout moment déclarer publiquement une surenchère, une enchère plus grande que la plus récente.
- Le gagnant est le joueur avec la dernière enchère.
- ▶ Il paie un montant égale à sa dernière enchère.
- S'il n'y a pas d'enchère, l'objet revient au vendeur.
- Des fois, il y a un prix minimum.
- Associée avec les maisons de vente aux enchères Sotheby's et Christie's de Londres.

La vente aux enchères hollandaise (ou descendante)

- Il y a un cadran avec des valeurs de zéro jusqu'à une valeur très élevée.
- La valeur affichée sur le cadran décroit jusqu'à ce qu'un joueur arrête le cadran.
- Ce joueur est le gagnant, il est obligé à payer le montant au cadran.
- ▶ Si le prix minimum est atteint, l'objet revient au vendeur.
- Associée avec la vente des tulipes en hollande.

Enchère sous pli cacheté au premier prix

- ▶ Une seule offre simultanée de tous les joueurs: b_i , i = 1, ..., n.
- Le joueur i avec l'enchère b_i la plus grande est le gagnant.
- ► Il paie b_i pour l'objet.
- Après l'enchère, les offres sont révélées ou non.
- L'assistance des joueurs n'est pas nécessaire.

Enchère sous pli cacheté au second prix

- ▶ Une seule offre simultanée de tous les joueurs: b_i , i = 1, ..., n.
- ▶ Soit *b_i* l'offre la plus élevée et *b_i* la seconde.
- Le joueur i avec l'enchère b_i est le gagnant.
- ▶ Il paie b_i pour l'objet.
- L'assistance des joueurs n'est pas nécessaire.
- Nommé aussi l'enchère de Vickrey.

Enchère all-pay

- ▶ Une seule offre simultanée de tous les joueurs: b_i , i = 1, ..., n.
- ► Soit *b_i* l'offre la plus élevée.
- Le joueur i avec l'enchère b_i est le gagnant.
- ▶ Chaque joueur j paie b_i , gagnant ou non.
- Élections, recherche et développment, sports, lobbying.
- ▶ Variation : guerre d'attrition, deux joueurs, le gagnant et le perdant paie l'offre la moins élevée.

L'équivalence (en terme de résultat) des enchères

- ▶ Deux enchères sont équivalentes si le résultat (gagnant et prix) en équilibre n'est pas différente.
- ▶ Dans un sens, l'enchère anglaise est équivalente à l'enchère au second prix:
 - ▶ *b_i* est l'enchère la plus élevée qu'on est prêt à faire.
 - Cette analyse fonction bien pour les valeurs privées, moins bien pour les valeurs communes.
- Dans un sens, l'enchère hollandaise est équivalente à l'enchère au premier prix.
 - b_i est la valeur pour laquelle on arrêterait le cadran au cas où personne ne l'a déjà fait.
 - Cette analyse fonction bien pour les valeurs privées et les valeurs communes.

Équilibre de l'enchère à deuxième prix

- ightharpoonup n joueurs, joueur i a une valeur privée de v_i .
- Pas besoin de spécifier la distribution des valeurs.
- ▶ Déclarer une valeur $b_i = v_i$ est une stratégie dominante!
 - Stratégie facile à comprendre, calculer.
 - ▶ Pas besoin des informations sur les autres joueurs.
- ► Celui qui valorise l'objet le plus gagne.
- ▶ Faire réveler les valeurs coûte au vendeur.
- $b_i > v_i$: courrir le risque de gagner et payer plus cher que sa valeur.
- ▶ $b_i < v_i$: courrir le risque de perdre, sans avantage.

Une enchère inversée : réduction de la pollution

- ▶ Il y a plusieurs pollueurs qui émettent du *SO*₂.
- ▶ Le gouvernement veut réduire la pollution à coût minimal.
- ▶ Pollueur i réalise la réduction à un coût de c_i .
- Mécanisme naif : demander aux producteurs leur coût et obliger le pollueur à coût signalé minimal de réduire ses émissions.
- Mécanisme de Vickrey : même chose, mais récompenser le pollueur à coût signalé minimal un montant égal au coût en deuxième place.
- ► Le résultat :
 - ► Tous les pollueurs ont l'incitation de signaler leur vrai coût.
 - La réduction des émissions se produit au coût minimal.
 - Le gouvernement paie plus que le coût minimal.

Équilibre de l'enchère à premier prix - définition

- On commence avec un cas simple:
 - ▶ Deux joueurs, i = 1, 2.
 - $v_i \sim iid U(0,1)$ (valeurs certaines et privées).
- ▶ Un équilibre est une fonction $b_1(v_1)$ et une fonction $b_2(v_2)$ telles que pour chaque $v_1 \in [0,1]$, $b_1(v_1)$ maximise

$$\Pr[b_1 > b_2(v_2)](v_1 - b_1)$$

et pour chaque $v_2 \in [0,1]$, $b_2(v_2)$ maximise

$$\Pr[b_2 > b_1(v_1)](v_2 - b_2).$$

- Si on change la distribution des v_i , la définition ne change pas (mais la probabilité, oui).
- ▶ En cas de plusieurs joueurs, $b_2(v_2)$ et $b_1(v_1)$ sont remplacés par l'enchère maximale des autres joueurs.

Équilibre pour l'enchère au premier prix - solution

- ► Trouver une solution est difficile; vérifier, plus facile.
- ▶ Proposons $b_2(v_2) = \lambda v_2$, pour un $\lambda \in [0,1]$.
- Si $b_2(v_2) = \lambda v_2$ est la stratégie de joueur deux, joueur un n'offre jamais plus que $b_1 = \lambda$.
- ightharpoonup Sa meilleur réponse, comme fonction de v_1 , est

$$b_1(v_1) = \arg\max_{b_1} \Pr[b_1 > \lambda v_2](v_1 - b_1)$$

▶ Si $b_1 \leq \lambda$,

$$\Pr[b_1 > \lambda v_2] = \Pr[v_2 < b_1/\lambda] = b_1/\lambda.$$

▶ Pourvu que $b_1 \le \lambda$, $b_1(v_1)$ maximise

$$\frac{b_1}{\lambda}(v_1-b_1),$$

- et la solution est $b_1 = v_1/2$, qui est de la forme $b_1 = \lambda v_1$.
- ▶ $b_i = v_i/2$, i = 1, 2 est un équilibre $b_i(v_i)$ n'est jamais plus grand que $\lambda = 1/2$.

Revenu au vendeur - enchère au premier prix

- Soit π le revenu moyen au vendeur dans le cas $v_i \sim U(0,1)$, i=1,2.
- ▶ Pour l'enchère à premier prix, $\pi = E[\max(v_1/2, v_2/2)]$:

$$\pi = \int_0^1 \int_0^1 \max(v_1/2, v_2/2) \, dv_2 \, dv_1$$

$$= \int_0^1 \left[\int_0^{v_1} \frac{v_1}{2} \, dv_2 + \int_{v_1}^1 \frac{v_2}{2} \, dv_2 \right] \, dv_1$$

$$= \int_0^1 \frac{v_1}{2} [v_2]_0^{v_1} + \left[\frac{1}{4} v_2^2 \right]_{v_1}^1 \, dv_1$$

$$= \int_0^1 \left(\frac{1}{4} v_1^2 + \frac{1}{4} \right) \, dv_1$$

$$= \left[\frac{1}{12} v_1^3 + \frac{1}{4} v_1 \right]_0^1 = \frac{1}{12} + \frac{1}{4} = \frac{1}{3}.$$

Revenu au vendeur - enchère du deuxième prix

▶ Pour l'enchère à deuxième prix, $\pi = E[\min(v_1, v_2)]$:

$$\begin{split} \pi &= \int_0^1 \int_0^1 \min(v_1, v_2) \, dv_2 \, dv_1 \\ &= \int_0^1 \left[\int_0^{v_1} v_2 \, dv_2 + \int_{v_1}^1 v_1 \, dv_2 \right] \, dv_1 \\ &= \int_0^1 \left[\frac{1}{2} v_1^2 + v_1 (1 - v_1) \right] \, dv_1 \\ &= \left[\frac{1}{2} v_1^2 - \frac{1}{6} v_1^3 \right]_0^1 = \frac{1}{3} \end{split}$$

Même valeur en moyen, mais remarquez que les revenus diffèrent de cas en cas: si $v_1 = 0.2$ et $v_2 = 0.7$, les revenus sont $v_1 = 0.2$ et $v_2/2 = 0.35$.

Équivalence en termes de revenu

- Le résultat sur l'égalité de revenu espéré se généralise.
- Voici quelques hypothèses sur le jeu et les joueurs:
 - ▶ Les joueurs sont neutres pour le risque.
 - ▶ Les valeurs (ou signales) v_i sont iid, avec $v_i \in [\underline{v}, \overline{v}]$.
 - F(v) continue, strictement croissante dans $[\underline{v}, \overline{v}]$
 - Si $v_i = \underline{v}$, joueur i a un gain espéré de zéro.
 - En équilibre du jeux (pas spécifié) celui à la valeur maximale gagne l'enchère.

Notez:

- Il y a très peu de structure sur les actions des joueurs: plusieurs étapes sont possibles.
- Il peut y avoir des paiements pour les perdants.
- ▶ Il peut y avoir plusieurs objets (avec modifications).
- ▶ Plus de flexibilité que le cas $v_i \sim U(0,1)$.
- Les deux dernières hypothèses tiennent pour les cinq enchères mentionnées et d'autres.

Quelques définitions

Pour chaque v, s:

- ▶ $S_i(v)$ est le gain espéré de joueur i en équilibre, quand sa valeur est de v.
- ▶ $P_i(v)$ est la probabilité que joueur i gagne, en équilibre, comme fonction de v.
- ▶ $E_i(v)$ est le paiement espéré, en équilibre, de joueur i, comme fonction de v.
- S_i(v|s) est l'utilité espérée de joueur i, s'il dévie en faisant semblant être un joueur à valeur s, quand les autres joueurs agissent comme dans l'équilibre.

Pour l'enchère à premier prix $E_i(v) = P_i(v)b_i(v)$, mais le résultat ne dépend pas de ce jeu.

Dérivation de l'équivalence I

Quelques résultats :

$$S_i(v) = vP_i(v) - E_i(v),$$

$$S_i(s) = sP_i(s) - E_i(s),$$

$$S_i(v|s) = vP_i(s) - E_i(s).$$

▶ La substitution de $E_i(s) = sP_i(s) - S_i(s)$ dans $S_i(v|s) = vP_i(s) - E_i(s)$ donne

$$S_i(v|s) = vP_i(s) - sP_i(s) + S_i(s).$$

► La dérivée par rapport à s donne

$$\frac{\partial S_i(v|s)}{\partial s} = S_i'(s) + (v-s)P_i'(s) - P_i(s).$$

Par optimalité, cette dérivée doit être nulle pour s = v et

$$S_i'(v) = P_i(v).$$

Dérivation de l'équivalence II

▶ On vient de dériver $S'_i(v) = P_i(v)$, qui donne l'intégral définie

$$\int_{\underline{v}}^{v} P_i(s) \ ds = S_i(v) - S_i(\underline{v}).$$

▶ On sait que $S_i(\underline{v}) = 0$, alors

$$S_i(v) = \int_{\underline{v}}^{v} P_i(s) ds.$$

- Maintenant on utilise l'hypothèse d'efficacité :
 - La fonction de probabilité $P_i(v)$ est pareille dans toutes les enchères qui vérifient les hypothèses.
 - ▶ La fonction de valeur $S_i(v)$ est pareille.
 - ▶ La fonction $E_i(v) = vP_i(v) S_i(v)$ est pareille.
 - Le revenu espéré du vendeur est $E[\sum_{i=1}^{n} E_i(v_i)]$.
- Conclusion: le revenu espéré du vendeur est pareille pour toutes les enchères qui vérifient les hypothèses.

Aversion pour le risque et collusion

Aversion pour le risque :

- ► Comment changent les enchères à 1er et à 2ième prix si les joueurs sont averses pour le risque?
- Paiements plus élevés versus plus certains.
- ▶ Si le vendeur est averse pour le risque et non les joueurs?

Collusion:

- Que ferait les enchérisseurs pour faire de la collusion dans la vente à deuxième prix?
- Premier prix?
- Quelles sont les tentations pour dévier du plan de la collusion?

Valeurs communes et valeurs privées

- Jusqu'au présent, on étudie les enchères aux valeurs privées:
 - ▶ Pour enchérisseur *i*, *v*_i est connu et fixe.
 - Savoir v_j ne change pas v_i (mais peut changer b_i).
 - Exemple plausible : enchère sur ebay d'un jouet de valeur sentimentale.
- Il y a des enchères aux valeurs communes:
 - ▶ Il y a une valeur objective de l'objet.
 - ▶ Les joueurs ne savent pas combien vaut l'objet.
 - Chacun observe un signal de valeur, une information pertinente sur la valeur.
 - ► Exemple plausible : droits miniers sur un terrain, toutes les firmes ont le même coût d'exploitation, une firme peut avoir une information que les autres n'ont pas.
 - ▶ $E_i[v] \neq E_i[v|E_j[v]]$ possible. Sa valeur espérée peut changer si on découvre la valeur espérée d'un autre joueur.
 - ▶ Il y a des cas intermédiaires entre ces cas extrêmes.

La malédiction du gagnant l

▶ Pour une valeur connue v_i, l'utilité espérée associé avec une enchère de b_i est

$$\Pr[b_i > \max_{j \neq i}(b_j)](v_i - b_i)$$

- Pour une distribution de $\max_{j\neq i}(b_j)$ donnée, on peut maximiser cette utilité pour chaque v_i .
- ▶ Maintenant, mettons que la valeur *v_i* de l'objet est incertaine.
- Une loi pertinente de probabilité :

$$E[X] = \Pr[A]E[X|A] + (1 - \Pr[A])E[X|A^c],$$

où A est une événement, A^c est son complément et X est une variable aléatoire.

La malédiction du gagnant II

Si la valeur v_i est incertaine, l'utilité espérée associée avec une enchère de b_i est

$$\begin{aligned} \Pr[b_i > \max_{j \neq i}(b_j)] \cdot E[v_i - b_i | b_i > \max_{j \neq i}(b_j)] \\ + (1 - \Pr[b_i > \max_{j \neq i}(b_j)]) \cdot 0 \\ = \Pr[b_i > \max_{j \neq i}(b_j)] \cdot E[v_i - b_i | b_i > \max_{j \neq i}(b_j)]. \end{aligned}$$

▶ Si les valeurs v_j , j = 1, ..., n, sont positivement corrélées et les enchères sont monotones en valeur,

$$E[v_i - b_i | b_i > \max_{j \neq i}(b_j)] < E[v_i - b_i].$$

Un joueur sous la malédiction du gagnant ne conditionne pas et surestime la valeur au cas de gagner.

Équilibre pour l'enchère de premier prix, n joueurs

- ▶ Maintenant, if y a n joueurs, i = 1, ..., n.
- \triangleright $v_i \sim \text{iid } U(0,1).$
- ► Comme pour deux joueurs, on vérifie qu'il y a un équilibre avec $b_i = \lambda v_i$.
- ▶ Problème de joueur i: pour v_i donné, $b_i(v_i)$ maximise

$$\Pr[b_i > \max_{i \neq i} b_j](v_i - b_i).$$

▶ Si les autres jouent $b_j = \lambda v_j$ et si $b_i \leq \lambda$,

$$\Pr[b_i > \max_{i \neq j} b_j] = \prod_{j \neq i} \Pr[b_i > b_j]$$

$$= \prod_{i \neq j} \Pr[b_i > \lambda v_j] = \left(\frac{b_i}{\lambda}\right)^{n-1}.$$

Équilibre pour l'enchère de premier prix, n joueurs

▶ Si $b_i \le \lambda$ et les autres joueurs jouent $b_j = \lambda v_j$, le profit pour une enchère b_i est de

$$\left(\frac{b_i}{\lambda}\right)^{n-1}(v_i-b_i).$$

- ▶ La valeur de b_i qui maximise ce profit est $b_i = \frac{n-1}{n}v_i$.
- Ce résultat suggère un équilibre où $\lambda = \frac{n-1}{n}$ et $b_i(v_i) = \frac{n-1}{n}v_i$, $i = 1, \ldots, n$.
- ▶ Il faut confirmer que $b_i \leq \frac{n-1}{n}$ toujours.
- La valeur maximale de v_i est 1, ce qui le confirme.

Revenu espéré pour l'enchère de premier prix, n joueurs l

- ▶ Soit $R = \max_i b_i$ l'enchère maximale, qui égale au revenu.
- ► Sa fonction de répartition est

$$F(r) = \Pr[\max_{i} b_{i} \leq r]$$

$$= \prod_{i=1}^{n} \Pr[b_{i} \leq r]$$

$$= \prod_{i=1}^{n} \Pr[v_{i} \leq nr/(n-1)]$$

$$= \begin{cases} 0 & r < 0 \\ \left(\frac{n}{n-1}r\right)^{n} & 0 \leq r \leq \frac{n-1}{n} \\ 1 & r > \frac{n-1}{n-1} \end{cases}$$

Revenu espéré pour l'enchère de premier prix, n joueurs II

Sa densité est

$$f(r) = \begin{cases} 0 & r < 0 \\ \left(\frac{n}{n-1}\right)^n n r^{n-1} & 0 \le r \le \frac{n-1}{n} \\ 0 & r > \frac{n-1}{n} \end{cases}$$

► Sa valeur espérée est le revenu espéré de l'enchère:

$$E[r] = \int_0^{(n-1)/n} f(r) r dr$$

$$= \left(\frac{n}{n-1}\right)^n \int_0^{(n-1)/n} n r^n dr$$

$$= \left(\frac{n}{n-1}\right)^n \left[\frac{n}{n+1} r^{n+1}\right]_0^{(n-1)/n}$$

$$= \frac{n-1}{n+1}.$$

Enchères et discrimination par le prix au 3e degré

- Monopole, discriminant par le prix de 3e degré:
 - plusieurs segments, type observé (sexe, âge, status étudiant)
 - prix différents, même revenus marginaux (égaux au coût marginal)
 - ventes aux individus avec les revenus marginaux les plus élevés.
- Lien entre le problème de l'enchère optimal (pour le vendeur) et celui du monopole, discriminant par le prix de 3e degré.
- Avec des joueurs symétriques et les enchères standards, le gagnant est celui avec le signal ou la valeur le plus élevé.
- ▶ Si un signal plus élevé implique un revenu marginal plus élevé, le gagnant a le revenu marginal le plus élevé.
- WJM Sous les hypothèses du théorème d'équivalence du revenu, tous les enchères standards sont optimaux si le prix de réservation égalise le revenu marginal et la valeur du vendeur.

L'approche revenu marginal

- ▶ Prenez un joueur quelconque, avec valeur $v_i \in [\underline{v}, \overline{v}]$
- ▶ Mettons que la fonction de répartition de v_i est $F_i(v)$.
- ► Considérer une offre à prendre ou à laisser à *i* :
 - Le vendeur offre l'objet au prix \hat{v} à i.
 - *i* accepte si $\hat{v} < v_i$, un événement avec probabilité $1 F_i(\hat{v})$.
 - Le revenu espéré est de $\hat{v}(1 F_i(\hat{v}))$.
 - Interprétez \hat{v} comme un prix, $q(\hat{v}) = 1 F_i(\hat{v})$ comme une quantité.
 - ▶ Selon cette interprétation, $q(\hat{v})$ est une courbe de demande.
 - Revenu marginal :

$$MR_i(q(v)) = \frac{d}{dq}vq = v + q\frac{dv}{dq} = v + q/\left(\frac{dq}{dv}\right) = v - \frac{1 - F_i(v)}{f_i(v)}.$$

▶ On appèle $MR_i(v) = v - (1 - F_i(v))/f_i(v)$, comme fonction de la valeur aléatoire v, le revenu marginal du joueur i.

Une identité

Deux façons d'exprimer le revenu espéré d'un vendeur qui fait une offre à prendre ou à laisser:

$$R_i = q(\hat{v})\hat{v} = \int_0^{q(\hat{v})} MR_i(q) dq.$$

D'où vient l'identité (vrai pour n'importe quel i, \hat{v})

$$\hat{v} = \frac{1}{q(\hat{v})} \int_0^{q(\hat{v})} MR_i(q) dq$$

$$= \frac{1}{1 - F_i(\hat{v})} \int_{\hat{v}}^{\overline{v}} MR_i(q(v)) f_i(v) dv$$

$$= E[MR_i(q(v_i))|v_i > \hat{v}].$$

Deuxième équation ici : Klemperer (1999), Appendice B, note 126.

Le résultat

- Maintenant, on observe une enchère à deuxième prix et
 - ▶ *i* gagne,
 - ▶ il paie *R*.
- Alors
 - \triangleright $v_i \geq R$,
 - ▶ le revenu réalisé est de R.
 - ▶ Prenez l'espérance conditionnelle des deux côtés de

$$\hat{v} = E[MR_i(v_i)|v_i > \hat{v}],$$

sachant l'événement $R = \hat{v}$

Le résultat est

$$E[R] = E[MR_g(v_g)],$$

où g est l'indice (aléatoire) du gagnant.

- Le revenu espéré de l'enchère à 2è prix est l'espérance du revenu marginal du gagnant.
- Par équivalence de revenu, c'est le revenu espéré d'autres enchères.

Application du théorème d'équivalence du revenu

- Le paiement espéré d'un joueur de type *v* est pareil pour tous les enchères du théorème.
- ▶ Paiement espéré du joueur de type v, enchère du 2e prix :

$$E_{i}(v) = P_{i}(v)E[\max_{j \neq i} v_{j} | \max_{j \neq i} v_{j} < v]$$

$$= P_{i}(v)\frac{\int_{x=\underline{v}}^{v} x(n-1)f(x)(F(x))^{n-2}dx}{\int_{x=\underline{v}}^{v} (n-1)f(x)(F(x))^{n-2}dx}$$

$$= P_{i}(v)\left[v - \frac{\int_{x=\underline{v}}^{v} (F(x))^{n-1}dx}{(F(v))^{n-1}}\right].$$

Le paiement espéré du joueur de type v dans l'enchère du premier prix est $P_i(v)b(v)$, ce qui donne

$$b(v) = v - \frac{\int_{x=\underline{v}}^{v} (F(x))^{n-1} dx}{(F(v))^{n-1}}.$$