Formulario Matricial

- 1. Matrices, Vectores y Operaciones
- 1.1. Definiciones básicas y notación
- Matriz A de dimensión m x n: Arreglo rectangular de m filas y n columnas, denotada por $A = [a_{ij}]$, donde a_{ij} es el elemento en la *i*-ésima fila y *j*-ésima columna.
- Matriz cuadrada: m = n.
- Matriz rectangular: $m \neq n$.
- Vector fila: Matriz de dimensión $1 \times n$, X = $(x_1 \ x_2 \ \cdots \ x_n).$
- Vector columna: Matriz de dimensión $m \times 1, Y =$ $(y_1 \ y_2 \ \vdots \ y_m).$
- Matriz triangular superior: Matriz cuadrada donde k(A+B) = kA + kB. (k+l)A = kA + lA. $a_{ij} = 0$ para i > j.
- Matriz triangular inferior: Matriz cuadrada donde $b_{ij} = 0$ para i < j.
- Matriz diagonal: Matriz cuadrada donde $d_{ij} = 0$ para
- Matriz escalar: Matriz diagonal donde todos los elementos de la diagonal principal son iguales a una constante k. S = kI.
- Matriz unidad o identidad (I): Matriz cuadrada con unos en la diagonal principal y ceros en el resto.
- Matriz nula (O): Matriz donde todos los elementos son cero.
- Matriz escalonada: El número de ceros antes del pri- Potencia: $A^pA^q=A^{p+q}$. mer elemento no nulo aumenta fila por fila.
- Matriz escalonada reducida: Es escalonada, el primer elemento no nulo de cada fila es 1 y es el único elemento no nulo en su columna.
- 1.2. Adición matricial y multiplicación matricial por un escalar
- Suma de matrices: Si $A = [a_{ij}]$ y $B = [b_{ij}]$ tienen la misma dimensión $m \times n$, entonces $C = A + B = [c_{ij}]$ donde $c_{ij} = a_{ij} + b_{ij}$.

- Propiedad conmutativa: A + B = B + A. Demostración: Se basa en la propiedad conmutativa de la suma de números reales: $a_{ij} + b_{ij} = b_{ij} + a_{ij}$.
- Propiedad asociativa: (A + B) + C = A + (B + C). Demostración: Se basa en la propiedad asociativa de la suma de números reales.
- Existencia de neutro: A + O = O + A = A, donde O es la matriz nula.
- Existencia del opuesto: A + (-A) = O, donde -A = O $[-a_{ij}].$
- Multiplicación por un escalar: Si $A = [a_{ij}]$ es de dimensión $m \times n$ y $k \in \mathbb{R}$ es un escalar, entonces $C = kA = [c_{ij}]$ donde $c_{ij} = ka_{ij}$.
- Propiedades:
- k(lA) = (kl)A. 1A = A. 0A = O.
- 1.3. Multiplicación matricial
- Si $A = [a_{ij}]$ es de dimensión $m \times n$ y $B = [b_{il}]$ es de dimensión $n \times p$, entonces $C = AB = [c_{il}]$ es de dimensión $m \times p$, donde $c_{il} = \sum_{i=1}^{n} a_{ij} b_{il}$. Propiedades:
- Asociativa: A(BC) = (AB)C.
- Distributiva: A(B+C) = AB + AC y (B+C)D =BD + CD.
- Asociatividad con escalar: k(AB) = (kA)B =A(kB).
- Neutro: AI = IA = A, donde I es la matriz identidad de dimensión adecuada.
- No conmutativa en general: $AB \neq BA$.
- 1.4. Matrices particionadas
- Una matriz A se puede dividir en submatrices o bloques. - Suma: Si $A = [A_{ij}]$ y $B = [B_{ij}]$ tienen la misma partición, $A + B = [A_{ij} + B_{ij}]$. Multiplicación por escalar: $kA = [kA_{ij}]$. - Transpuesta: $A^t = [A_{ii}^t]$. - Multiplicación: Si las particiones son compatibles, $(A)(B) = [\sum_{i} A_{ij} B_{jk}]$. - Determinante (caso especial): Si $A = (A_{11} \quad A_{12} \quad O \quad A_{22})$ o $A = (A_{11} \quad O \quad A_{21} \quad A_{22})$,

entonces $det(A) = det(A_{11}) det(A_{22})$. - Complemento de Schur de A_{11} en $A = \begin{pmatrix} A_{11} & A_{12} & A_{21} & A_{22} \end{pmatrix}$ (si A_{11} es no singular): $A_{11/A} = A_{22} - A_{21}A_{11}^{-1}A_{12}$. - Fórmula de Schur: $\det(A) = \det(A_{11}) \det(A_{11/A})$ si A_{11} es no singular, y $det(A) = det(A_{22}) det(A_{22/A})$ si A_{22} es no singular, donde $A_{22/A} = A_{11} - A_{12}A_{22}^{-1}A_{21}$.

1.5. La traza de matrices cuadradas

- Para una matriz cuadrada A de dimensión $n \times n$, la traza es $\operatorname{tr}(A) = \sum_{i=1}^{n} a_{ii}$. - Propiedades:
- $-\operatorname{tr}(kA) = k\operatorname{tr}(A). \operatorname{tr}(A+B) = \operatorname{tr}(A) + \operatorname{tr}(B). \operatorname{tr}(A^t) = \operatorname{tr}(A)$. - $\operatorname{tr}(I_n) = n$. - $\operatorname{tr}(AB) = \operatorname{tr}(BA)$ (no aparece explícitamente en las fuentes, pero es una propiedad importante).

1.6. Matrices especiales

- Matriz transpuesta: $A^t = [a_{ii}]$. Propiedades: $(A^t)^t =$ $A, (kA)^t = kA^t, (A \pm B)^t = A^t \pm B^t, (AB)^t = B^tA^t.$ - Matriz simétrica: $A = A^t$ (implica A es cuadrada y $a_{ij} = a_{ji}$). - Propiedades: A + B y kA son simétricas si A y B lo son. Si A es invertible, A^{-1} es simétrica. DD^t y D^tD son simétricas para cualquier matriz D. -Matriz antisimétrica: $A = -A^t$ (implica A es cuadrada y $a_{ij} = -a_{ji}$, elementos diagonales son cero). - Matriz normal: $AA^t = A^tA$ (matrices simétricas, antisimétricas y ortogonales son normales). - Matriz idempotente: $A^2 = A$. - Matriz periódica (de periodo p): $B^{p+1} = B$ (si p=1, es idempotente). - Matriz involutiva: $A^2=I$ (implica $A = A^{-1}$). - Matriz nilpotente: $A^p = O$ para algún entero positivo p. - Matriz elemental: Resultado de aplicar una operación elemental a la matriz identidad I_n . Toda matriz elemental es invertible, y su inversa también es elemental. - Matriz inversa: Si A es cuadrada de dimensión $n \times n$, B es su inversa A^{-1} si $AB = BA = I_n$. La inversa, si existe, es única. - Propiedades: $(A^{-1})^{-1} = A$, $(kA)^{-1} = \frac{1}{k}A^{-1}$ (si $k \neq 0$), $(AB)^{-1} = B^{-1}A^{-1}, (A^t)^{-1} = (A^{-1})^t, \det(A^{-1}) = \frac{1}{\det(A)}.$ - Matriz ortogonal: Matriz cuadrada A tal que $AA^t =$ $A^t A = I$, lo que implica $A^{-1} = A^t$.
- Propiedades: $|A| = \pm 1$, A^t es ortogonal, sus valores propios tienen módulo 1.

1.7. Aplicación práctica

- modelos de gran dimensión, identificación de probabilidades, matrices de transición, análisis factorial, cadenas de Markov, correlaciones, etc..
- 2. Factorización Matricial
- 2.2. Descomposición LU
- Para una matriz A, se busca A = LU, donde L es una matriz triangular inferior (generalmente con unos en la diagonal) y U es una matriz triangular superior. Se encuentra resolviendo el sistema de ecuaciones resultante del producto.
- 2.3. Descomposición LDU
- A = LDU, donde L es triangular inferior con unos en la diagonal, D es diagonal (con los pivotes de la descomposición LU), y U es triangular superior con unos en la diagonal.
- 2.4. Descomposición Cholesky
- Para una matriz simétrica A con valores propios positivos, $A = LL^t$, donde L es una matriz triangular inferior con elementos diagonales positivos. Se relaciona con la descomposición LDU donde $U = L^t$ y D tiene elementos positivos.
- 2.5. Descomposición en Valores Singulares (SVD)
- Para una matriz A de dimensión $m \times n$ y rango r. $A = USV^{t}$, donde U es una matriz ortogonal $m \times m$, S es una matriz diagonal $m \times n$ con valores singulares no negativos $\beta_1 \geq \beta_2 \geq \cdots \geq \beta_r > 0$ en la diagonal, y V es una matriz ortogonal $n \times n$. Los valores singulares son las raíces cuadradas de los valores propios de A^tA (o AA^t).
- 2.6. Descomposición Espectral y Matrices Raíces Cuadradas

- La teoría matricial es fundamental en estadística para Para una matriz simétrica A de dimensión $n \times n$, $A = PDP^{-1} = PDP^{t}$, donde P es una matriz ortogonal cuvas columnas son los vectores propios normalizados de A. v D es una matriz diagonal cuvos elementos son los valores propios correspondientes. - Matriz raíz cuadrada: $\sqrt{A} = P\sqrt{D}P^t$, donde \sqrt{D} es una matriz diagonal cuyos elementos son las raíces cuadradas de los valores propios de A (solo si los valores propios son no negativos).
 - 2.8. Descomposición de Schur
 - Para una matriz cuadrada A de dimensión $n \times n$ con valores propios $\lambda_1, \dots, \lambda_n$, existe una matriz ortogonal Q tal que $Q^tAQ = T$, donde T es una matriz triangular superior con los valores propios de A en la diagonal. Si A es real v simétrica, entonces T es diagonal (la descomposición espectral).
 - cas
 - Dos matrices simétricas A y B son simultáneamente diagonalizables por congruencia si existe una matriz no singular P tal que P^tAP y P^tBP son ambas diagonales. - Una matriz cuadrada A es ortogonalmente diagonalizable si existe una matriz ortogonal P tal que $P^{-1}AP = PDP^{t}$ es diagonal. Las columnas de P son los vectores propios ortonormales de A, y los elementos de D son los valores propios de A.
 - 2.10. Normas matriciales
 - Norma de Frobenius: $|A|_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2} =$ $\sqrt{\operatorname{tr}(AA^H)}$ (en el caso real, $|A|_F = \sqrt{\operatorname{tr}(AA^t)}$). - Propiedades: - $|A| \ge 0$, $|A| = 0 \iff A = O$. - |kA| = |k||A|. - |A + B| < |A| + |B| (designal dad triangular). - |AB| <|A||B| (submultiplicatividad).
 - 3. Inverso Generalizado

- 3.2. Inversa generalizada
- Una matriz G es una inversa generalizada de A si AGA = A. - Pseudoinversa por la derecha (R): Si rango(A) = m, existe R tal que $AR = I_m$, y R = $A^{t}(AA^{t})^{-1}$ (si AA^{t} es invertible). - Pseudoinversa por la izquierda (L): Si rango(A) = n, existe L tal que $LA = I_n$, y $L = (A^t A)^{-1} A^t$ (si $A^t A$ es invertible). Inversa generalizada de Moore-Penrose (A^+) : Para cualquier matriz A de dimensión $m \times n$, existe una única matriz A^+ de dimensión $n \times m$ que satisface las siguientes cuatro condiciones:
- $-AA^{+}A = A A^{+}AA^{+} = A^{+} (AA^{+})^{t} = AA^{+}$ (simétrica) - $(A^+A)^t = A^+A$ (simétrica)
- 3.3. Propiedades básicas de la inversa de Moore-
- 2.9. Diagonalización simultánea de matrices simétri- Si A es invertible, $A^+ = A^{-1}$. $(A^+)^+ = A$. $(A^t)^+ = A$. $(A^+)^t$. - $(kA)^+ = k^{-1}A^+$ para $k \neq 0$.
 - 3.4. Producto matricial de inversas de Moore-Penrose
 - $-(AD)^{+} = D^{+}A^{+}$ si se cumplen ciertas condiciones (por ejemplo, si las columnas de D son linealmente independientes y las filas de A son linealmente independientes). - $(A^+A)(DD^+) = (DD^+)(A^+A)$ (no siempre cierto, la condición dada en la fuente parece incompleta o requiere más contexto sobre A y D).
 - 3.8. Otras inversas generalizadas (Pseudoinversa de Bott-Duffin)
 - Para un sistema Ax + y = b con restricciones en y (por ejemplo, $y \in L^{\perp}$), la pseudoinversa de Bott-Duffin se define como $A_{(L)}^{-1} = P_L A (A P_L + P_{L^{\perp}})^{-1}$, donde P_L y $P_{L^{\perp}}$ son proyectores sobre los subespacios L y su complemento ortogonal. Si $AP_L + P_{L^{\perp}}$ es no singular, una solución es $x = A_{(L)}^{-1}b$ y $y = (I - AA_{(L)}^{-1})b$.