Exercice 1.5. Soit n un entier strictement positif et soit $k \in \{1, \ldots, n\}$. On note X_k l'application k-ème composante de \mathbb{R}^n dans \mathbb{R} définie par

$$X_k:(x_1,\ldots,x_n)\mapsto x_k.$$

- 1. Dans cette question uniquement on suppose que n=2.
 - (a) Décrire les lignes de niveau de X_1 et X_2 .
 - (b) Donner une description géométrique des graphes de X_1 et X_2 .
- 2. Soit a_1, \ldots, a_n des nombres réels; on pose $A = (a_1, \ldots, a_n)$.
 - (a) Décrire en des termes simples la fonction partielle $X_k(a_1,\ldots,a_{i-1},\bullet,a_{i+1},\ldots,a_n)$ (on distinguera les cas $i \neq k$ et i = k).
 - (b) Calculer les dérivées partielles $\frac{\partial X_k}{\partial X_i}(A)$ pour $i \in \{1, \dots, n\}$. (c) Que vaut le gradient $\operatorname{grad}_A(X_k)$?

 - (d) Décrire l'application $dX_{k,A}$.