

What is AI??

Artificial intelligence (AI) is the simulation of human intelligence processes by machines, especially computer systems.

These processes include learning (the acquisition of information and rules for using the information), reasoning (using rules to reach approximate or definite conclusions) and self-correction.

AI: A Vision

Could an intelligent agent living on your home computer manage your email, coordinate your work and social activities, help plan your vacations..... even watch your house while you take those well planned vacations?

Main Goals of Al

Retrieve and reason about knowledge

Behave intelligently in complex environments

Develop interesting and useful applications

Interact with people, agents, and the environment

Why AI?

- Engineering: To get machines to do a wider variety of useful things
 - e.g., understand spoken natural language, recognize individual people in visual scenes, find the best travel plan for your vacation, etc.
- Cognitive Science: As a way to understand how natural minds and mental phenomena work
 - e.g., visual perception, memory, learning, language, etc.
- Philosophy: As a way to explore some basic and interesting (and important) philosophical questions
 - e.g., the mind body problem, what is consciousness, etc.

Foundations of AI

Mathem atics

Econom ics

Psychol ogy

Compute Science & Engineeri **Cogniti** ve **Science**

Philoso phy

Biolog y

Linguist ics

A (Short) History of Al

1940-1950: Early days

1943: McCulloch & Pitts: Boolean circuit model of brain 1950: Turing's "Computing Machinery and Intelligence"

1950—70: Excitement: Look, Ma, no hands!

1950s: Early AI programs, including Samuel's checkers program, Newell & Simon's Logic Theorist, Gelernter's Geometry Engine

1956: Dartmouth meeting: "Artificial Intelligence" adopted 1965: Robinson's complete algorithm for logical reasoning

1970—90: Knowledge-based approaches

1969—79: Early development of knowledge-based systems

1980—88: Expert systems industry booms

1988—93: Expert systems industry busts: "Al Winter"

1990—: Statistical approaches

Resurgence of probability, focus on uncertainty General increase in technical depth Agents and learning systems... "AI Spring"?

2000—: Where are we now?

History

- 1997: Deep Blue beats Garry Kasparov (world champion)
- 1998: Founding of Google
- 2000: Interactive robot pets
- 2004: First DARPA Grand Challenge robot race
- 2004: Commercial recommender systems (TIVO, amazon.com)
- 2007: Checkers is solved!
- 2011: An Al named Watson beats the top Jeopardy! champions
- 2010: Google self-driving cars reach their 1000th mile

What Can Al Do?

Quiz: Which of the following can be done at present?

Play a decent game of Jeopardy?

Drive safely along a curving mountain road?

Drive safely along Telegraph Avenue?

Buy a week's worth of groceries on the web?

Buy a week's worth of groceries at Berkeley Bowl?

Discover and prove a new mathematical theorem?

Converse successfully with another person for an hour?

Perform a surgical operation?

Put away the dishes and fold the laundry?

Translate spoken Chinese into spoken English in real time?

Write an intentionally funny story?

Turing Test

- Three rooms contain a person, a computer, and an interrogator.
- The interrogator can communicate with the other two by teleprinter.
- The interrogator tries to determine which is the person and which is the machine.
- The machine tries to fool the interrogator into believing that it is the person.
- If the machine succeeds, then we conclude that the machine can think.

м

The Loebner Contest

- A modern version of the Turing Test, held annually, with a \$100,000 cash prize.
- Hugh Loebner was once director of UMBC's Academic Computing Services (née UCS)
- http://www.loebner.net/Prizef/loebner-prize.html
- Restricted topic (removed in 1995) and limited time.
- Participants include a set of humans and a set of computers and a set of judges.
- Scoring
 - Rank from least human to most human.
 - Highest median rank wins \$2000.
 - If better than a human, win \$100,000. (Nobody yet...)

м

What Can Al Systems Do?

Here are some example applications

- Computer vision: face recognition from a large set
- Robotics: autonomous (mostly) automobile
- Natural language processing: simple machine translation
- Expert systems: medical diagnosis in a narrow domain
- Spoken language systems: ~1000 word continuous speech
- Planning and scheduling: Hubble Telescope experiments
- **Learning:** text categorization into ~1000 topics
- User modeling: Bayesian reasoning in Windows help (the infamous paper clip...)
- **Games:** Grand Master level in chess (world champion), perfect play in checkers, professional-level Go players

What Can't Al Systems Do Yet?

- Understand natural language robustly (e.g., read and understand articles in a newspaper)
- Surf the web
- Interpret an arbitrary visual scene
- Learn a natural language
- Construct plans in dynamic real-time domains
- Refocus attention in complex environments
- Perform life-long learning

Exhibit true autonomy and intelligence!

Berkeley I'li Who Does Al? Carnegie Mellon

- Academic researchers (perhaps the most Ph.D.-generating area of computer science in recent years)
 - Some of the top AI schools: CMU, Stanford, Berkeley, MIT, UIUC, UMd, U Alberta, UT Austin, ... (and, of course, UMBC!)
- Government and private research labs
 - NASA, NRL, NIST, IBM, AT&T, SRI, ISI, MERL, ...
- Lots of companies!
 - Google, Microsoft, Honeywell, Teknowledge, SAIC, MITRE, Fujitsu, Global InfoTek, BodyMedia, ...

Honeywell

Applications

Game Playing

Text/Sketch Recognition

User Modeling/Recommender Systems

mission to make language education free and accessible to everyone.

Robotics

Knowledge Representation

Watson

Watson is a highly intelligent question answering computer system capable of processing questions posed in natural language.

Evolutionary Art

Evolutionary art is a branch of generative art, in which the artist does not do the work of constructing the art work, but rather lets a system do the construction

Electric Sheep is a distributed computing Electric Sheep is a distributed computing project for animating and evolving fractal flames

Computer Vision

Possible Approaches

Four goals of Al

Systems to	hat think	like	humans
		17.5	

"The exciting new effort to make computers "The study of mental faculties through the think ... machine in minds, in the full and use of computational models" (Charniak and literal senses" (Haugeland, 1985)

"[The automation of] activities that we "The study of the computations that make it associate with human thinking, activities possible to perceive, reason, and act" such as decision making, problem-solving, (Winston, 1992) learning ..." (Bellman, 1978)

Systems that act like humans

performed by people" (Kurzweil)

better" (Rich and Knight, 1991)

Systems that think rationally

McDermott, 1985)

Systems that act rationally

"The art of creating machines that perform "A field of study that seeks to explain and functions that require intelligence when emulate intelligent behavior in terms of computational processes" (Schalkoff, 1990)

"The study of how to make computers do "The branch of computer science that is things at which, at the moment, people are concerned with the automation of intelligent behavior" (Luger and Stubblefield)

Measure of Success

		In terms of human intelligence	In terms of rationality		
		←			
•	A	Thinking Humanly	Thinking Rationally		
of Definition	Thought Process and	"The exciting new effort to make computers think machines with minds, in the full and literal sense" (Haugeland, 1985)	"The study of mental faculties through the use of computational models" (Charniak and McDermott, 1985)		
	Reasoning	"The automation of activities that we associate with human thinking, activities such as decision-making, problem solving, learning" (Bellman, 1978)	"The study of the computations that make it possible to perceive, reason, and act" (Winston, 1992)		
	Behavior	Acting Humanly	Acting Rationally		
		"The art of creating machines that perform functions that require intelligence when performed by people" (Kurzweil, 1990)	"A field of study that seeks to explain and emulate intelligent behavior in terms of computational processes" (Schalkoff, 1990)		
		"The study of how to make computers do things at which, at the moment, people are better" (Rich and Knight, 1991)	"The branch of computer science that is concerned with the automation of intelligent behavior" (Luger and Stubblefield, 1993)		

d

Think Well

- Develop formal models of knowledge representation, reasoning, learning, memory, and problem solving, that can be rendered in algorithms.
- There is often an emphasis on systems that are provably correct, and guarantee finding an optimal solution.

Act Well

- For a given set of inputs, generate an appropriate output that is not necessarily correct but gets the job done.
- A heuristic (heuristic rule, heuristic method) is a rule of thumb, strategy, trick, simplification, or any other kind of device which drastically limits search for solutions in large problem spaces.
- Heuristics do not guarantee optimal solutions; in fact, they do not guarantee any solution at all: all that can be said for a useful heuristic is that it offers solutions which are good enough most of the time.
 - Feigenbaum and Feldman, 1963, p. 6

Think Like Humans

- Cognitive science approach
- Focus not just on behavior and I/O also look at reasoning process.
- Computational model should reflect "how" results were obtained.
- Provide a new language for expressing cognitive theories and new mechanisms for evaluating them
- GPS (General Problem Solver): Goal not just to produce humanlike behavior (like ELIZA), but to produce a sequence of steps of the reasoning process that was similar to the steps followed by a person in solving the same task.

Act Like Humans

- Behaviorist approach.
- Not interested in how you get results, just the similarity to what human results are.
- Exemplified by the Turing Test (Alan Turing, 1950).

Strong vs. Weak Al

- Strong Al: "Artificial intelligence that matches or surpasses human intelligence."
 - Must be able to:
 - Reason
 - Plan
 - Learn
 - Communicate
 - Integrate this skills towards common goals
- Weak AI: "Use of software to study and accomplish specific problem solving or reasoning tasks not encompassing full range of human cognitive abilities."
- How it's being done: the Blue Brain Project. Tries to simulate the human brain using supercomputers.

10

Possible Questions

- 1. Purpose of Turing Test, Lubner test
- 2. Heuristic System
- 3. Act well
- 4. What AI can do/cant do yet
- 5. What are reasoning areas in which AI are used?
- 6. Strong vs Weak Al
- 7. So on

#