Thursday, November 02, 2017 8:24 PM

## Topics:

- $\bullet \;\; \text{Inverse of AB and } A^T$
- Product of elimination matrices
- A = LU
- How Expensive is elimination operation for n x n matrix

Inverse of AB and  $A^{\text{\scriptsize T}}$ 



Inverse of AB



Inverse of  $A^T$ 

For a matrix, transposing and inversing can be done either way

A = LU (No row exchanges)

Note:

U = Upper Triangular Matrix L = Lower Triangular Matrix

Assuming that the matrix A doesn't require any row exchanges (non-zero pivots) in the initial step.





 $(E_{21})^{-1} * E_{21} * A = (E_{21})^{-1} * U = L * U => L = E_{21}^{-1}$ 

## 3 x 3 Matrix



The preferred method of obtaining L is by product of individual E matrices rather than inverse of single E matrix because: L can be obtained by just keeping a record of all the multipliers of the individual elimination matrices.



Consider a matrix A such that it needs no row exchanges and E<sub>31</sub> is identity matrix. Then,



The matrix E has elements that really do not help in obtaining L. Also, the matrix "A" can be forgotten as we get the first row of U in the first elimination step and also the multipliers and so on..

## How many operation on n x n matrix A elimination?

The operations are: Multiplication + Subtraction

A size: 100 x 100



Approximately, number of operations is roughly equal to =  $n^2 + (n-1)^2 + ... + 3^2 + 2^2 + 1^2$ 





## Note:

- 1/3 accounts for the reducing size of the elimination matrix
- Since elimination of A is more expensive than b, the RHS can be processed at a low cost separately.

Permutations: (when pivot elements are zero - row exchanges)

