Bangladesh University of Engineering and Technology **Department of Computer Science and Engineering** CSE 206 - Digital Logic Design Sessional

Total Marks: 70 Duration: 60 minutes

Student ID: Student Name:

(For Examiner's Use Only)

1	2	3	4	5	6	7	8

Instructions

- 1. There are 5 Multiple Choice Questions and 5 True/False questions and 6 short questions in the script. Make sure all the questions are printed clearly before you start writing.
- 2. You should answer the all of the questions.

[5]

True/False Questions. Write T (for True) or F (for False) beside each of the question.

1. a) The master latch of a positive edge-triggered master-slave D flip flop is active only during level 1 of the clock.

b) Once an up/down counter begins its count sequence, it cannot be reversed.

c) You cannot use Priority Encoder as a normal encoder.

d) You will need at least two 8x1 multiplexer and two 2x1 multiplexer to build a 16x1 multiplexer.

e) The product-of-sums (POS) is basically the OR-ing of AND-ed terms.

- 2. a) You have the following chips: 7404, 7408, 7432, 74138. What are the minimum chips required to solve: $\sum (8,11,13,15)$?
 - i. 1x74138, 1x7408 iii. 2x74138, 1x7408
- ii. 1x74138, 1x7432iv. 2x74138, 1x7432
- b) A MOD M and a MOD N up-counter when cascaded together results in a MOD _____ counter.
 - i. M+N
 - iii. M/N

- ii. M-N
- c) Assuming that the current state of the circuit (ABC) is 000, what will be the state of the circuit after 3 clock cycles?

d) If the number of n selected input lines is equal to 2^m then it requires _____ select lines.

n

 2^n

e) How many gates would be required to implement the following Boolean expression after simplification?

$$XY + X(X + Z) + Y(X + Z)$$
i. 1
iii. 3
iv. 4

(Por Inpater 20022)

Short Questions

3. Suppose you only have some 2 to 4 decoders and some 4 to 2 priority encoders with priority 0 < 1 < 2 < 3. Now, you need a priority encoder with priority 3 < 2 < 1 < 0. How would you implement this?

we see to get the required priority encoder 2, = T, 20 = To

4. Suppose you have two 2-bit numbers A and B and an additional input bit C. When C is [10] 0, you have to output the bitwise XOR of A and B. When C is 1, you have to output the bitwise XNOR of A and B. Design a combinatorial circuit using only half subtractors. You can assume to have access to VCC and GND.

5. Design an asynchronous MOD - 6 up/down counter using positive edge-triggered J-K [10] flip-flops. The counter should have two modes of operation: down-counting when the mode bit M is set to 1, and up-counting when M is set to 0.

M=0 - Dup rounter

reset when output is

B=110 (Hint xOR Q2Q1)

for mod -6 up/down counter, no of the = [10]26]=3

A sequential circuit has two T flip-flops A and B, and an input x. The circuit can be [10] described by the following input equations:

$$T_A = Bx$$
,
 $T_B = A'x$

Derive the next state equations $A_{(t+1)}$ and $B_{(t+1)}$. Also, draw the state diagram of this circuit.

Atti=TADOA | Because in the next strate toggling, Bt+1=TBDQB will occur if the input i.e, TA and TB = 1

if x=0; At+1 =QA; B++1ZQB toggling will not occur

else, n=1; A+1= BDQA = QBDQA

(Here A=QA; B=QB present state of the Hiptop)

8. Desing NAND, NOR, XOR and XNOR Gates using minimum numbers of 2x1 [10] multiplexers only.

Α	B	(A -B)	(A+B)	A⊕B O	A DB
0	0	1	0	1	0
O	1		0	1	0
1	٥	1	0	٥	1
1	1	O	V	•	

ax1 mux : A- selection bit

