Exercise 02 - Functions & Relations

Create a text file named 'exercises02.txt' that contains the solutions to each problem below.

- 1. Given $\mathbf{A} = \{1, 2, 3, 4, 5\}$, $\mathbf{B} = \{6, 7, 8, 9, 10\}$, $\mathbf{C} = \{11, 12, 13, 14, 15, 16\}$, and $\mathbf{D} = \{17, 18, 19\}$, construct the following functions as a list with the specified constraint if possible; otherwise, state why the construction is impossible.
 - a) $f: \mathbf{A} \longrightarrow \mathbf{D}$ that is a surjection.
 - b) $g: \mathbf{B} \longrightarrow \mathbf{C}$ that is an injection.
 - c) $h: \mathbf{C} \longrightarrow \mathbf{D}$ that is not a surjection.
 - d) $i: \mathbf{A} \longrightarrow \mathbf{B}$ that is a bijection.
 - e) $j: \mathbf{C} \longrightarrow \mathbf{B}$ that is a bijection.
- 2. Given the sets $\mathbf{A} = \{2, 3, 5, 7\}$ and $\mathbf{B} = \{0, 1, 2, 3\}$, and the functions $f : \mathbf{A} \longrightarrow \mathbf{B}$ and $g : \mathbf{A} \times \mathbf{B} \longrightarrow \mathbf{B}$ defined as

$$f(x) = (3x + 1) \setminus 4$$

 $g(x,y) = (x^2 + y^2 - xy) \setminus 4$

where \ outputs the integer remainder of division, find

- a) the domain of **F** and **G** (write as a list).
- b) the codomain of **F** and **G** (write as a list).
- c) the range of \mathbf{F} and \mathbf{G} (write as a list).
- d) f(x) for $x \in \mathbf{A}$.
- e) g(x, y) for $x \in \{5, 7\}$ and $y \in \{2, 3\}$
- 3. Given $\mathbf{A} = \{1, 2, 3, 4\}$, write the partition of the set of permutations on \mathbf{A} into the sets

$$\{f: f = f^{-1}\}\$$
(permutation f is its own inverse)
 $\{f: f \neq f^{-1}\}\$ (permutation f is not its own inverse)

- 4. Given $\mathbf{A} = \{x : x \in \mathbb{N} \land 1 \le x \le 10\}$, give a relation with at least three elements that satisfies the condition.
 - a) reflexive and symmetric but not transitive
 - b) reflexive and transitive but not symmetric
 - c) symmetric and transitive but not reflexive
 - d) an equivalence relation
 - e) a partial ordering
- 5. Given the relation $R = \{(a, a), (a, b), (b, d), (d, c)\}$ on the set $\mathbf{A} = \{a, b, c, d\}$, modify R so that it satisfies the condition.
 - a) reflexive
 - b) symmetric
 - c) transitive