

NT219- Cryptography

Week 3: Modern Symmetric Ciphers

PhD. Ngoc-Tu Nguyen

tunn@uit.edu.vn

What is cryptograph?

Cryptology= Cryptography + Cryptanalysis

Goals

- Confidentiality
- Privacy
- Integrity
- Authentication

Non-repudiation (Accountability)

What?

Cipher systems

- Sysmmetric (AES)
- Asymmetric (RSA, ECC,

CRYSTALS-KYBER)

Message authentication code (MAC) Digital signature (digital certificate)

Availability

Textbooks and References

Text books

[1] Chapter 4,6

[2] Chapter 5

Classical cipher algorithms

- Substitution Technique
 - Monoalphabetic cipher
 - Replace one character by another character
 - Replace one character by other characters
 - Polyalphabetic cipher
 - Replace some characters by other characters
 - o 2 by 2:
 - 3 by 3 or n by n
- Transposition Technique
 - > Keep the same source characters bat change their positions

Polyalphabetic Cipher

- Polyalphabetic Cipher: Replace some characters by other characters
 - ➤ Playfair Cipher: replace 2 characters by 2 characters
 - ➤ Hill Cipher: replace 3 characters by 3 characters, ...
 - Vigenère Cipher

Playfair encryption

Key matrix

Plaintext: "Hide the gold in the tree stump"

Plaintext diagram:

(HI)DE TH (EG)OL DI NT HE (TR)EX ES TU MP

Ciphertext diagram:

https://en.wikipedia.org/wiki/Playfair_cipher

Polyalphabetic Cipher

Cryptoanalys Playfair cipher

- Digram
 - > Two-letter combination
 - > Most common is th
- Trigram
 - > Three-letter combination
 - Most frequent is the

Cryptanalysis Playfair

Guess the Key?

- UnigramScorer: Single letter frequences;
 https://en.wikipedia.org/wiki/Frequency_analysis
- **DigramScorer**: Bigram frequences https://en.wikipedia.org/wiki/Bigram
- QuadgramScorer: Trigram frequences https://en.wikipedia.org/wiki/Trigram

Polyalphabetic Cipher

(4) 	Hill	C	qiÇ	he	er																			
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
	Α	В	С	D	Ε	F	G	Н	I	J	K	L	M	N	0	P	Q	R	S	Т	U	٧	W	X	Υ	Z

- Developed by the mathematician Lester Hill in 1929
- Strength is that it completely hides single-letter frequencies
 - > The use of a larger matrix hides more frequency information
 - > A 3 x 3 Hill cipher hides not only single-letter but also two-letter frequency information
- Strong against a ciphertext-only attack but easily broken with a known plaintext attack

ttack
$$C = K.P \mod 26 \qquad \begin{pmatrix} k_{1,1} & k_{1,2} & k_{1,3} \\ k_{2,1} & k_{2,2} & k_{2,3} \\ k_{3,1} & k_{3,2} & k_{3,3} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} \mod 26$$

Polyalphabetic Cipher

(5) Vigenère Cipher

- Best known and one of the simplest polyalphabetic substitution ciphers
- In this scheme the set of related monoalphabetic substitution rules consists of the 26 Caesar ciphers with shifts of 0 through 25
- Each cipher is denoted by a key letter which is the ciphertext letter that substitutes for the plaintext letter a

https://en.wikipedia.org/wiki/Vigen%C3%A8re cipher

Vigenère Cipher

Vigenère matrix

Key: deceptiv

		100	-	0.000	-	-	100	-	-	-	-		-	2120	220	200	10241	11222	-	-	1	-	-	-			
	. 30	A	В	С	D	E	F	G	H	I	J	K	L	М	N	0	P	Q	R	S	T	U	V	M	X	Y	Z
	A	Α	В	C	D	Е	F	G	Н	I	J	K	L	М	N	0	P	Q	R	S	T	U	٧	W	X	Y	Z
	В	В	С	D	E	F	G	Н	I	J	K	L	M	N	0	P	Q	R	S	T	Ų	V	W	Х	Y	Z	A
•	C	С	D	E	F	G	н	I	J	K	L	М	N	0	P	Q	R	S	T	U	٧	W	Х	Y	Z	A	В
	D	D	E	F	G	Н	I	J	K	L	М	N	0	P	Q	R	s	T	U	V	W	Х	Y	2	А	В	С
2,	4 E	E	F	G	Н	I	J	K	L	М	N	0	P	Q	R	S	T	U	V	W	X	Y	Z	Α	В	С	D
	F	F	G	н	I	J	К	L	M	N	0	P	Q	R	s	T	U	V	W	X	Y	Z	A	В	C	D	E
	G	G	Н	I	J	K	L	М	N	0	P	Q	R	\$	T	U	v	W	Х	Y	Z	А	В	С	D	E	F
	H	н	I	J	K	L	M	N	0	P	Q	R	s	T	U	٧	W	X	Y	Z	A	В	С	D	E	F	G
	71	I	J	К	L	М	N	0	P	Q	R	s	Т	U	V	W	X	Y	Z	A	В	С	D	E	F	G	н
	J	J	К	L	М	N	0	P	Q	R	s	T	U	V	W	Х	Y	Z	A	В	С	D	E	F	G	н	I
	K	K	L	М	N	0	P	Q	R	s	T	U	٧	W	х	Y	Z	A	В	С	D	E	F	G	н	I	J
	L	L	М	N	0	P	Q	R	s	T	U	V	W	Х	Y	Z	A	В	С	D	E	F	G	н	I	J	К
	М	М	N	0	P	Q	R	s	T	U	V	W	х	Y	Z	A	В	С	D	Е	F	G	Н	I	J	K	L
	N	N	0	P	Q	R	s	T	U	V	W	Х	Y	Z	A	В	С	D	Е	F	G	н	I	J	К	L	М
	0	0	P	Q	R	s	Т	U	v	W	Х	Y	Z	А	В	С	D	Е	F	G	н	I	J	К	L	М	N
	5 P	P	Q	R	s	Т	U	V	W	Х	Y	Z	A	В	С	D	Е	F	G	Н	I	J	K	L	М	N	0
	Q	Q	R	s	Т	U	V	W	Х	Y	Z	A	В	С	D	Е	F	G	н	I	J	K	L	М	N	0	P
	R	R	S	Т	U	V	W	Х	Y	Z	A	В	С	D	Е	F	G	н	I	J	К	L	М	N	0	P	Q
	S	s	Т	U	v	W	Х	Y	Z	А	В	С	D	Е	F	G	Н	I	J	K	L	М	N	0	P	Q	R
	6T	Т	U	V	W	х	Y	Z	A	В	С	D	Е	F	G	н	I	J	К	L	М	N	0	P	Q	R	s
	U	U	V	W	Х	Y	Z	А	В	С	D	Е	F	G	н	I	J	К	L	М	N	0	P	Q	R	s	Т
	8 v	v	W	х	Y	Z	А	В	С	D	E	F	G	н	I	J	K	L	М	N	0	P	Q	R	s	Т	U
	W	W	x	Y	Z	A	В	С	D	E	F	G	н	I	J	К	L	М	N	0	P	Q	R	s	Т	U	v
	X	X	Y	Z	А	В	С	D	E	F	G	н	I	J	К	L	М	N	0	P	Q	R	s	Т	Ų	v	W
	Y	Y	Z	A	В	С	D	E	F	G	н	I	J	К	L	м	N	0	P	Q	R	s	Т	U	v	W	x
	Z	z	A	В	c	D	E	F	G	н	I	J	K	L	м	N	0	P	Q	R	s	т	U	v	W	×	Y
	- 1	-				_					-	Ψ.		-			-		×		~		100 - 00	. •	,,		

Example of Vigenère Cipher

- To encrypt a message, a key is needed that is as long as the message
- Usually, the key is a repeating keyword
- For example, if the keyword is deceptive, the message "we are discovered save yourself" is encrypted as:

key: deceptivedeceptive

plaintext: wearediscoveredsaveyourself

ciphertext: ??

Vigenère Autokey System

Example:

plaintext: w e a r e d i s coveredsaveyourself

key: deceptlvewearediscoveredsav

ciphertext: ZICVTWQNGKZEIIGASXSTSLVVWLA

- Even this scheme is vulnerable to cryptanalysis
 - > Because the key and the plaintext share the same frequency distribution of letters, a statistical technique can be applied

Classical symmetric cipher cryptanalysis

Stream ciper

(6) Vernam Cipher

https://en.wikipedia.org/wiki/Gilbert_Vernam

One-Time Pad

- Improvement to Vernam cipher proposed by an Army Signal Corp officer, Joseph Mauborgne
- Use a random key that is as long as the message so that the key need not be repeated
- Key is used to encrypt and decrypt a single message and then is discarded
- Each new message requires a new key of the same length as the new message

Scheme is unbreakable

- Produces random output that bears no statistical relationship to the plaintext
- Because the ciphertext contains no information whatsoever about the plaintext, there is simply no way to break the code

Difficulties

- The one-time pad offers complete security but, in practice, has two fundamental difficulties:
 - > There is the practical problem of making large quantities of random keys
 - Any heavily used system might require millions of random characters on a regular basis
 - Mammoth key distribution problem
 - For every message to be sent, a key of equal length is needed by both sender and receiver
- Because of these difficulties, the one-time pad is of limited utility
 - Useful primarily for low-bandwidth channels requiring very high security
- The one-time pad is the only cryptosystem that exhibits perfect secrecy (see Appendix F)

Transposition ciphers (permutation cipher)

Goals: scrambles the positions of characters

- (1) Rail fence cipher
- (2) Columnar Transposition Cipher
- **(3)**

https://en.wikipedia.org/wiki/Transposition_cipher

Transposition cipher

(1) Rail fence cipher

- Simplest transposition cipher
- Plaintext is written down as a sequence of diagonals and then read off as a sequence of rows
- To encipher the message "meet me after the toga party" with a rail fence of depth 2, we would write:

Ciphertext

Encrypted message is:

MEMATRHTGPRYETEFETEOAAT

https://en.wikipedia.org/wiki/Rail_fence_cipher

Columnar Transposition Cipher

- Is a more complex transposition
- Write the message in a rectangle, row by row, and read the message off, column by column, but permute the order of the columns
 - > The order of the columns then becomes the key to the algorithm

						1		
Key:	4	3	1	2	5	6	7	
Plaintext	a	t	t	a	С	k	р	
	O	S	t	р	0	n	е	Ciphertext
	d	u	n	t	i	I	t	Sipilor cont
	W	O	a	m	X	У	Z	
								·

Ciphertext: TTNAAPTMTSUOAODWCOIXKNLYPETZ

Classical symmetric cipher cryptanalysis

Stream Cipher (1 of 8)

Vigenère cipher

Α	В	C	D	Ε	F	G	Н	I	J	K	L	M	Ν	0	Р	Q	R	S	Т	U	V	W	X	Υ	Z	
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	

Plaintext stream

Secret key (Keystream)

Ciphertext

$$C = c_1 c_2 \cdots c_i \cdots$$
 where $c_i = m_i + k_i \mod 26$

Stream Cipher (2 of 8)

Secret key (Keystream)

$$K = k_1 k_2 \cdots k_i \cdots$$

Plaintext stream

$$M = m_1 m_2 \cdots m_i \cdots$$

 m_i : bit or byte

> Ciphertext

$$C = c_1 c_2 \cdots c_i \cdots$$

where
$$c_i = m_i \overline{\bigoplus} k_i$$

$$k1$$
 $k2$ $k3$... k_n

$$m1$$
 $m2$ $m3$... m_n

$$k1 \oplus m1$$
 $k2 \oplus m2$... $k_n \oplus m_n$

Stream Cipher (3 of 8)

- Encrypts a digital data stream one bit or one byte at a time
 - Examples:
 - Autokeyed Vigenère cipher
 - Vernam cipher
- In the ideal case, a one-time pad version of the Vernam cipher would be used, in which the keystream is as long as the plaintext bit stream
 - If the cryptographic keystream is random, then this cipher is unbreakable by any means other than acquiring the keystream
 - Keystream must be provided to both users in advance via some independent and secure channel
 - This introduces insurmountable logistical problems if the intended data traffic is very large

Stream Cipher (4 of 8)

- For practical: must be implemented as an algorithmic to generate key bit stream (both users)
 - > It must be computationally impractical to predict future portions of the bit stream based on previous portions of the bit stream
 - The two users need only share the generating key and each can produce the keystream

Stream Cipher (5 of 8)

Stream Cipher (6 of 8)

> Rivest Cipher 4

https://en.wikipedia.org/wiki/RC4

> Chaotic-based cryptosystem

https://en.wikipedia.org/wiki/List_of_chaotic_maps

V·T·E	Stream ciphers										
Widely used ciphers	A5/1 • A5/2 • 0	ChaCha · Crypto-1 · E0 · RC4									
eSTREAM Portfolio	Software	HC-256 · Rabbit · Salsa20 · SOSEMANUK									
es IREAM FOILIOID	Hardware Grain · MICKEY · Trivium										
Other ciphers		F-FCSR · FISH · ISAAC · MUGI · ORYX · Panama · Phelix · Pike · Py · QUAD · AL · SNOW · SOBER · SOBER-128 · VEST · VMPC · WAKE									
Generators	shrinking gene	erator · self-shrinking generator · alternating step generator									
Theory	block ciphers	in stream mode ⋅ shift register ⋅ LFSR ⋅ NLFSR ⋅ T-function ⋅ IV									
Attacks	correlation att	ack · correlation immunity · stream cipher attacks									

Stream Cipher (7 of 8)

Example:

Logistic map

$$x_{n+1} = rx_n \left(1 - x_n \right)$$

Input (seed):

$$x_0, r \in (3.6, 4)$$

Output:

$$x_1, x_2, x_3, \dots x_n, \dots$$

 $0 < x_i < 1$

> Chaotic-based cryptosystem

Stream Cipher (8 of 8)

> Chaotic-based crypto system

Outline (week 4,5)

- Stream Cipher
- Block cipher
 - Data Encryption Standard (DES)
 - Advanced Encryption Standard (AES)
 - Some other ciphers
 - Searchable encryption