Nome: Guilherme Montes de Luca

Curso/Turma: Ciência da Computação

Data de Entrega: 25/06/2025

1 Introdução

No cenário atual de alta competitividade no mercado, a capacidade de prever a demanda futura de produtos tornou-se um diferencial estratégico fundamental para empresas que buscam otimizar sua cadeia de suprimentos, reduzir custos e aumentar a eficiência operacional. Com o avanço da ciência de dados e a disponibilidade de dados ricos e variados, tornou-se possível construir modelos preditivos que auxiliam na tomada de decisões de forma mais precisa e fundamentada.

Este trabalho tem como tema a **previsão de demanda futura de produtos** com base em dados históricos de vendas e fatores contextuais diversos, como promoções, sazonalidade, índice econômico, variações de preço, clima e tipo de loja. O dataset analisado contém registros de vendas de produtos ao longo do tempo, incorporando variáveis que influenciam diretamente o comportamento do consumidor e o desempenho comercial.

2 Objetivo

O objetivo principal deste projeto é aplicar técnicas de ciência de dados para analisar os padrões de vendas e desenvolver um modelo preditivo capaz de estimar a demanda futura (future_demand) dos produtos. Para isso, serão realizadas etapas de limpeza e tratamento dos dados, análise exploratória, aplicação de modelos estatísticos e de aprendizado de máquina, e discussão dos resultados obtidos. A proposta visa demonstrar a importância e aplicabilidade da ciência de dados no apoio à gestão comercial e à previsão de mercado.

3 Descrição do Conjunto de Dados

O conjunto de dados utilizado neste trabalho é composto por 5.000 registros, cada um representando informações relacionadas à venda de um determinado produto em uma data específica. As variáveis presentes no dataset abrangem aspectos temporais, comerciais, econômicos, climáticos e categóricos que influenciam o comportamento de compra dos consumidores.

Variáveis de entrada:

• data: data da venda.

• **product_id**: identificador único do produto.

• sales_units: número de unidades vendidas no dia.

- holiday_season: indicador binário se o dia foi durante uma temporada de feriados.
- promotion_applied: indicador binário se havia promoção aplicada.
- competitor_price_index: índice de preços da concorrência.
- economic_index: indicador da situação econômica.
- weather_impact: impacto das condições climáticas nas vendas.
- price: preço unitário do produto.
- discount_percentage: percentual de desconto aplicado.
- sales_revenue: receita gerada pelas vendas.
- region_Europe, region_North America: variáveis booleanas indicando a região da venda.
- store_type_Retail, store_type_Wholesale: tipo de loja (varejo ou atacado).
- category_Cabinets, category_Chairs, category_Sofas, category_Tables: categorias de produtos.

Variável-alvo:

• future_demand: quantidade estimada de demanda futura para o produto em questão.

Este conjunto de dados oferece uma base sólida para explorar relações entre variáveis e construir modelos de previsão de demanda, com potencial para apoiar estratégias comerciais baseadas em dados.

4 Pré-Processamento dos Dados

4.1 Etapas de Limpeza e Tratamento dos Dados

O processo de preparação dos dados envolveu as seguintes etapas:

- Conversão da coluna date para o formato datetime, possibilitando a extração de atributos temporais como mês, dia da semana e fim de semana.
- Conversão de variáveis booleanas para inteiros (True/False para 1/0).
- Remoção de colunas não preditivas como product_id e sales_revenue no modelo preditivo.
- Normalização de variáveis contínuas (price, sales_units, discount_percentage, etc.) com *StandardScaler* para padronizar as escalas.
- Separação do conjunto de dados em treino e teste, utilizando a divisão de 80/20.

5 Análise Exploratória dos Dados

5.1 Estatísticas Descritivas

As variáveis quantitativas principais apresentaram os seguintes valores médios e desvios padrão:

• Média:

- sales_units: valor médio das unidades vendidas.
- price: média dos preços dos produtos.
- discount_percentage: média dos percentuais de desconto aplicados.
- future_demand: média da demanda futura observada.
- Desvio padrão: semelhante às variáveis acima, indicando a dispersão dos dados.

5.2 Distribuições Univariadas

Foram utilizados histogramas e curvas de densidade para analisar as distribuições:

- sales_units: distribuição assimétrica com cauda à direita, indicando produtos com alta venda esporádica.
- price: preços concentrados em uma faixa média, com poucos valores extremos.
- discount_percentage: a maioria das observações com 0%, com alguns picos em promoções mais altas.
- future_demand: distribuição semelhante à de sales_units, sugerindo similaridade na estrutura.

5.3 Análises Bivariadas e Gráficas

- Gráfico de dispersão: foi analisada a relação entre:
 - price e sales_revenue, indicando tendência de crescimento da receita com aumento do preço (até certo ponto).
 - discount_percentage e future_demand, sem correlação clara visível.

• Boxplots:

- sales_units por região (Europa e América do Norte).
- Comparação entre store type (Atacado vs Varejo).
- sales_units por categoria de produto (Cabinets, Chairs, Sofas, Tables).
- Violinplot: distribuição das vendas com e sem promoção aplicada (promotion_applied), evidenciando possíveis diferenças de dispersão.
- Mapa de Correlação (Heatmap): análise de correlação entre variáveis numéricas. As variáveis com maior correlação com future_demand foram destacadas visualmente, embora nenhuma correlação extremamente forte tenha sido identificada.

Essas análises forneceram insights fundamentais para a seleção de variáveis e entendimento da estrutura do dataset, sendo base essencial para a modelagem preditiva subsequente.

6 Aplicação da Técnica Estatística ou Preditiva

6.1 Modelagem

Nesta etapa, foi aplicada uma técnica de regressão para prever a variável future_demand, utilizando o algoritmo Random Forest Regressor, uma técnica baseada em árvores de decisão com múltiplos estimadores (floresta de árvores).

O processo de modelagem seguiu os seguintes passos:

- Exclusão das colunas não preditivas: date, product_id, sales_revenue, e a própria variável alvo future_demand.
- Conversão de variáveis booleanas em variáveis inteiras (True/False para 1/0).
- Normalização das variáveis contínuas com StandardScaler, garantindo média 0 e desvio padrão 1, aplicando especialmente às colunas:
 - sales_units, competitor_price_index, economic_index, weather_impact, price, discount_percentage.
- Divisão do conjunto de dados em treino (80%) e teste (20%).
- Treinamento do modelo com RandomForestRegressor, utilizando 100 estimadores e random_state = 42.

6.2 Avaliação do Modelo

O modelo foi avaliado com as métricas de regressão clássicas:

- RMSE (Root Mean Squared Error): 56,47 Indica que o erro médio quadrático das previsões é de aproximadamente 56 unidades de demanda.
- MAE (Mean Absolute Error): 48,64 O erro médio absoluto da previsão é de cerca de 48 unidades.
- R² (Coeficiente de Determinação): −0,0424
 O valor negativo de R² demonstra que o modelo performa pior do que uma simples média constante, evidenciando um caso de underfitting.

6.3 Importância das Variáveis

Foi também realizada uma análise de importância das variáveis com base nos critérios internos do modelo *Random Forest*, os quais avaliam a redução de impureza (Gini ou MSE) associada a cada variável.

As variáveis mais relevantes identificadas foram:

• category_Tables, category_Sofas, category_Chairs — indicando forte impacto da categoria do produto na demanda.

- region_North America sugerindo variação geográfica significativa no comportamento de compra.
- Variáveis temporais como month e day_of_week e econômicas como economic_index também apresentaram importância intermediária.

As variáveis com menor impacto incluíram:

- promotion_applied, holiday_season, weather_impact e discount_percentage.
- sales_units surpreendentemente, teve baixa importância na previsão da demanda futura, possivelmente por problemas de defasagem temporal.

A Figura 1 ilustra a importância relativa de cada variável segundo o modelo.

Figura 1: Importância das Variáveis segundo o Random Forest

7 Discussão dos Resultados

7.1 Desempenho do Modelo

Os resultados obtidos com o modelo RandomForestRegressor indicam um desempenho insatisfatório na previsão da variável $future_demand$. O valor de $R^2 = -0.0424$ aponta que o modelo teve um desempenho inferior ao de um modelo base que simplesmente prevê a média da demanda para todos os casos. Além disso, os erros de previsão, com RMSE = 56,47 e MAE = 48,64, mostram que o modelo está cometendo erros significativos em termos absolutos.

Esse cenário caracteriza um caso de **underfitting**, no qual o modelo não consegue capturar padrões relevantes nos dados, possivelmente por simplicidade excessiva do modelo ou ausência de variáveis preditoras expressivas.

7.2 Impacto de Promoções e Condições Climáticas

A análise de importância das variáveis mostrou que atributos como promotion_applied, holiday_season, weather_impact e discount_percentage tiveram contribuição limitada para a previsão. Isso pode indicar que:

- Esses fatores não têm impacto significativo na demanda futura neste conjunto de dados;
- Ou, mais provavelmente, que essas variáveis não foram bem representadas (por exemplo, o índice climático pode ser muito genérico, e feriados não foram contextualizados localmente).

7.3 Variáveis Mais Relevantes

A análise de importância das variáveis indicou que as mais relevantes foram:

- category_Tables, category_Sofas, category_Chairs: a categoria do produto foi o fator mais determinante para prever a demanda futura.
- region_North America: a região de venda teve impacto importante, possivelmente por volume ou padrões sazonais.

Variáveis com importância média (entre 0,06 e 0,08):

- store_type_Wholesale, day_of_week, month, price, economic_index, competitor_price_index. Variáveis com baixa importância (abaixo de 0,05):
 - $\bullet \ \ promotion_applied, \ holiday_season, \ weather_impact, \ discount_percentage, \ sales_units.$

7.4 Sugestões para Melhorias

1. Engenharia de Atributos:

- Criar variáveis derivadas de *date*, como: mês, dia da semana, fim de semana e feriado.
- Gerar interações como: $promotion_applied \times discount_percentage$, ou $price_relative = price / competitor_price_index$.

2. Modelos Avançados:

• Utilizar algoritmos como XGBoost, LightGBM ou CatBoost, mais eficazes para dados tabulares com ruído e relações não-lineares.

3. Transformação da Variável Alvo:

• Aplicar transformações como $\log(1 + future_demand)$ para reduzir o impacto de outliers.

4. Análise de Dados e Balanceamento:

- Avaliar a distribuição da variável alvo e remover ou tratar valores extremos.
- Agrupar produtos semelhantes por subcategoria ou faixa de preço para melhor generalização.

5. Incorporação de Dados Externos:

• Incluir dados de feriados oficiais, indicadores econômicos do setor, clima local e ações promocionais da concorrência.

8 Conclusão

O modelo inicial apresenta limitações relevantes, com baixo poder preditivo e fraca representação de variáveis influentes como promoções e clima. Em contrapartida, características como **categoria do produto** e **região de venda** foram as mais determinantes na previsão da demanda futura.

Com a adoção de técnicas avançadas de modelagem, enriquecimento de dados e melhorias na engenharia de atributos, há potencial significativo para aprimorar a acurácia das previsões e produzir insights mais úteis para o planejamento de vendas.