10/538590

WO 2004/058300

JC20 Rec'd PCT/PTO 1 5 JUN 2005

SEQUENCE LISTING

<110>	Ebersole, Richard C. Schwartz, Linda J. Jackson, Raymond E.	
<120>	SEQUENCES DIAGNOSTIC FOR FOOT AND MOUTH DISEASE	
<130>	CL2272	
<150> <151>	60/434,974 2002-12-20	
<160>	21	
<170>	Patent In version 3.2	
<210> <211> <212> <213>		
<220> <223>	Linker for construction of synthetic FMD DNA	
<400> ggccgc	l gccc ccggccactt ttggccattc acccgagega agctagacac aaacaaaaga	60
ttgtgg	cacc ggtgaaacag cttttg	86
<210><211><211><212><213>	DNA	
<220> <223>	Linker for construction of synthetic FMD DNA	
<400> agcttt	2 gacc tgctcaagtt ggcaggggac gtcgagtcca accctgggcc tttcttcttc	60
tctgac	gtta ggtcaaattt ttcc	84
<210> <211> <212> <213>	3 87 DNA Artificial Sequence	
<220> <223>	Linker for construction of synthetic FMD DNA	
<400> aagttg	3 gttg aaaccatcaa ccagatgcag gaggacatgt caacaaaaca cggacccgac	60 ·
tttaac	coot toototctoc atttoag	87

WO 2004/058300

PCT/US2003/041808

<210>	4		
<211>	89		
<212>	DNA		
<213>	Artificial Sequence		
<220>			
<223>	Linker for construction of synthetic	FMD DNA	
<400>	4		
gaactg	oca coggagtgaa ggotatcagg accggtotog a	atgaggecaa accetggtae	60
aagctca	atca agetettgag cegeetgte		89
<210>	5		
<211>	85		
	DNA		
<213>	Artificial Sequence		
<220>			
<223>	Linker for construction of synthetic	FMD DNA	
<400>	5		
atgtato	gcc gctgtagcag cacggtcaaa ggacccagtc	cttgtggcca tcatgctggc	60
tgacaco	egge ettgagatte tggae		85
<210>	6		
<211>	78		-
<212>	DNA		
<213>	Artificial Sequence		
<220>			
<223>	Linker for construction of synthetic	FMD DNA	
<400>	6		
agtacct	ttg tcgtgaagaa gatctccgac tcgctctcca	gtctctttca cgtaccggcc	60
cccgtct	tca gtttcggg		78
<210>	7		•
<211>	55		
<212>	DNA		
<213>	Artificial Sequence		
	-		
<220>			•
<223>	Linker for construction of synthetic	FMD DNA	
	_		
<400>	7		
cttttgt	ttg tgtctagctt cgctcgggtg aatggccaaa	agtggccggg ggcgc	55
-			
<210>	8	· -	
<211>	59		
<212>	DNA		v · · ·
<213>	Artificial Sequence	•	
			

WO 2004/058300 PCT/US2003/041808

<223> Linker for construction of synthetic FMD DNA	
<400> 8 acgtcccctg ccaacttgag caggtcaaag ctcaaaagct gtttcaccgg tgccacaat 59	9
<210> 9 <211> 85 <212> DNA <213> Artificial Sequence	
<220> <223> Linker for construction of synthetic FMD DNA	
<400> 9 ctcctgcatc tggttgatgg tttcaaccaa cttggaaaaa tttgacctaa cgtcagagaa 60	0
gaagaaaggc ccagggttgg actcg 8	5
<210> 10 <211> 86 <212> DNA <213> Artificial Sequence	
<220> <223> Linker for construction of synthetic FMD DNA	
<400> 10 gtcctgatag ccttcactcc ggtggccagt tcctcaaatg cagacaccaa ccggttaaag 6	0
tcgggtccgt gttttgttga catgtc 8	6
<210> 11 <211> 83 <212> DNA <213> Artificial Sequence	
<220> <223> Linker for construction of synthetic FMD DNA	
<400> 11 accepted tacaged accepted accepted tacaged accepted accep	50
agggtttggc ctcatcgaga ccg 8	3
<210> 12 <211> 85 <212> DNA	
<213> Artificial Sequence	
<220> <223> Linker for construction of synthetic FMD DNA	

WO 2004/058300 PCT/US2003/041808 <400> 12 gagatettet teaegacaaa ggtaetgtee agaateteaa ggeeggtgte ageeageatg 60 atggccacaa ggactgggtc ctttg 85 <210> 13 <211> 54 <212> DNA <213> Artificial Sequence <220> <223> Linker for construction of synthetic FMD DNA <400> 13 aattcccgaa actgaagacg ggggccggta cgtgaaagag actggagagc gagc 54 <210> 14 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> Primer Amplicon 5' <400> 14 gcggccgcgc ccccggccac ttttggccat tc 32 <210> 15 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Primer Amplicon 3' <400> 15 33 gaatteeega aactgaagae gggggeeggt aeg <210> 16 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Primer P2-Fwd2, which binds to 3903-3929 bp of GenBank AF308157 <400> 16

<210> 17 <211> 23 <212> DNA <213> Artificial Sequence

gagtccaacc ctgggccctt cttcttc

27

WO 2004/058300 PCT/US2003/041808

<220>		
<223>	Primer P33-4, which binds to 4086-4108 bp of GenBank AF308157	
<400>	17	
	tgt accagggttt ggc	23
acgago.		
<210>	18	
<211>	29	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer P33+, which binds to 4083-4111 bp of GenBank AF308157	
<400>	18	
ttgatg	agct tgtaccaggg tttggcctc	29
<210>	19	
<211>	30	
<212>	DNA	
<213>	Artificial Sequence	
<220>	Primer LJS1, which binds to 4460-4489 bp of GenBank AF308157	
<223>	Primer LOSI, which binds to 4460-4469 bp of Genbank Arouts,	
<400>	19	
	gcga tccatgcctt aatccagtcg	30
<210>	20	
<211>	25	
<212> <213>	DNA Artificial Sequence	
\213/	Actividad bodacinos	
<220>		
<223>	Primer LJS2, which binds to 4317-4341 bp of GenBank AF308157	
<400>	20	25
ggaaga	aact cgaggcgacc ttgac	2.5
<210>	21	
<211>	516	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Synthetic FMD target	
12237	Dynenesia in surger	
<400>	21	
gcggc	egege ceceggecae ttttggecat teaceegage gaagetagae acaaacaaaa	- 60
		100
gattg	tggca ccggtgaaac agcttttgag ctttgacctg ctcaagttgg caggggacgt	120
	tggca ccggtgaaac agcttttgag ctttgacctg ctcaagttgg caggggacgt	120 180

WO 2004/058300 PCT/US2003/041808

gttggtgtct	gcatttgagg	aactggccac	cggagtgaag	gctatcagga	ccggtctcga	300
tgaggccaaa	ccctggtaca	agctcatcaa	gctcttgagc	cgcctgtcat	gtatggccgc	360
tgtagcagca	cggtcaaagg	acccagtcct	tgtggccatc	atgctggctg	acaccggcct	420
tgagattctg	gacagtacct	ttgtcgtgaa	gaagatctcc	gactcgctct	ccagtctctt	480
tcacgtaccg	gcccccgtct	tcagtttcgg	gaattc			516