DATA 1010 In-class exercises Samuel S. Watson 19 October 2018

Problem 1

The **geometric distribution** with parameter $p \in (0,1]$ is the distribution of the index of the first success in a sequence of independent Bernoulli trials.

Find the probability mass function of the geometric distribution.

Problem 2

Use Monte Carlo to find the mean and variance of the geometric distribution with parameter p = 1/3.

Problem 3

- (i) Find the expected value of *S*, where *S* is a sum of 1000 independent Bernoulli random variables with success probability $p = \frac{3}{1000}$.
- (ii) Find the probability mass function of S. Hint: find an expression representing the probability mass at each k from 0 to 1000, and then use Julia to evaluate it. You will need to define n = big(1000) and p = big(3)/1000 because arbitrary precision arithmetic is required to avoid overflow issues.
- (iii) Compare your results to the probability mass function $m(k) = \frac{3^k}{k!}e^{-3}$ defined on $\{0,1,2,\ldots\}$.

Problem 4

Suppose $\lambda > 0$, and find the mean and variance of a sum of n independent Bernoulli random variables with parameter $p = \lambda/n$ (where $n > \lambda$). Use your results to posit values for the expectation and variance of a Poisson random variable with parameter λ .

Problem 5

Suppose that the number of typos on a page is a Poisson random variable with mean $\lambda = \frac{1}{3}$.

- (i) Provide an explanation for why the Poisson distribution might be a good approximation for the distribution of typos on a page.
- (ii) Find the probability that a particular page is typo-free.

Problem 6

Imagine placing a light bulbs activated by independent Bernoulli(λ/n) random variables at every multiple of 1/n on the positive real number line. Consider the position X_n of the **leftmost lit bulb**.

- (i) For each t > 0, find the limit as $n \to \infty$ of $\mathbb{P}(X_n > t)$.
- (ii) Find the PDF associated with the measure that you found in part (a).

00000000000000000000000000000000000000					
-	,		-	1	
0	1	2	3	4	5