

General Description:

CS12N60F A9R, the silicon N-channel Enhanced VDMOSFETs, is obtained by the self-aligned planar Technology which reduce the conduction loss, improve switching performance and enhance the avalanche energy. The transistor can be used in various power switching circuit for system miniaturization and higher efficiency. The package form is TO-220F, which accords with the RoHS standard.

Fee	atıı	res	
геа	1 L U	11 62	:

- I Fast Switching
- I Low ON Resistance(Rdson≤0. 75Ω)
- I Low Gate Charge (Typical Data:40nC)
- I Low Reverse transfer capacitances(Typical:10pF)
- I 100% Single Pulse avalanche energy Test

Applications:

Power switch circuit of adaptor and charger.

Absolute (Tc= 25° C unless otherwise specified):

V_{DSS}	600	V
I_D	12	A
$P_D(T_C=25^{\circ}C)$	42	W
$R_{DS(ON)Typ}$	0.57	Ω

Symbol	Parameter	Rating	Units
V _{DSS}	Drain-to-Source Voltage	600	V
т	Continuous Drain Current	12	A
I_D	Continuous Drain Current T _C = 100 °C	7.5	A
I _{DM} ^{a1}	Pulsed Drain Current	48	A
V_{GS}	Gate-to-Source Voltage	±30	V
E _{AS} a2	Single Pulse Avalanche Energy	670	mJ
dv/dt ^{a3}	Peak Diode Recovery dv/dt	5.0	V/ns
D	Power Dissipation	42	W
P_{D}	Derating Factor above 25°C	0.34	W/℃
T _J , T _{stg}	Operating Junction and Storage Temperature Range	150, -55 to 150	$^{\circ}$ C
T_L	Maximum Temperature for Soldering	300	$^{\circ}$ C

Electrical Characteristics (Tc= 25 °C unless otherwise specified):

OFF Characteristics						
Carrala a I	D	Test Conditions		Rating		
Symbol	Parameter	Test Collditions	Min.	Тур.	Max.	s
V_{DSS}	Drain to Source Breakdown Voltage	V_{GS} =0V, I_D =250 μ A	600			V
Δ BV _{DSS} / Δ T _J	Bvdss Temperature Coefficient	ID=250uA,Reference25℃		0.67		V/℃
T	Division I I C	V_{DS} =600V, V_{GS} = 0V, T_a = 25 °C			1	μА
I_{DSS}	Drain to Source Leakage Current	V_{DS} =480V, V_{GS} = 0V, T_a = 125 °C			100	μА
$I_{GSS(F)}$	Gate to Source Forward Leakage	$V_{GS} = +30V$			100	nA
$I_{GSS(R)}$	Gate to Source Reverse Leakage	V _{GS} =-30V			-100	nA

ON Characteristics							
Symbol Parameter Test Conditions Rating						T.T *4	
Symbol	Farameter	Test Conditions	Min.	Тур.	Max.	Units	
R _{DS(ON)}	Drain-to-Source On-Resistance	V _{GS} =10V,I _D =6A		0.57	0.75	Ω	
$V_{GS(TH)}$ Gate Threshold Voltage $V_{DS} = V_{GS}, I_D = 250 \mu A$ 2.0 4.0 V							
Pulse width tp \leq 300 μ s, $\delta \leq$ 2%							

Dynamic Characteristics							
Cumbal	Parameter	Test Conditions		Rating			
Symbol	ranameter	Test Conditions	Min.	Тур.	Max.	Units	
g_{fs}	Forward Transconductance	$V_{DS} = 15V, I_D = 6A$		12		S	
C_{iss}	Input Capacitance			1980			
C_{oss}	Output Capacitance	$V_{GS} = 0V V_{DS} = 25V$ f = 1.0MHz		170		pF	
C_{rss}	Reverse Transfer Capacitance			10			

Resistive Switching Characteristics							
G 1 1	Parameter	Test Conditions		Rating			
Symbol	Farameter	Test Conditions	Min.	Тур.	Max.	Units	
t _{d(ON)}	Turn-on Delay Time			27			
tr	Rise Time	$I_D = 12A$ $V_{DD} = 300V$		25		ne	
$t_{d(OFF)}$	Turn-Off Delay Time	$R_G = 10\Omega$		63		ns	
$t_{\rm f}$	Fall Time			39			
Qg	Total Gate Charge			40			
Q_{gs}	Gate to Source Charge	$I_D = 12A$ $V_{DD} = 480V$ $V_{GS} = 10V$		9.8		nC	
Q_{gd}	Gate to Drain ("Miller")Charge			14.5			

Source-Drain Diode Characteristics								
Cromb ol	Parameter	Test Conditions		T.T:4.				
Symbol	ymbol Parameter 1		Min.	Тур.	Max.	Units		
I_S	Continuous Source Current (Body Diode)				12	A		
I_{SM}	Maximum Pulsed Current (Body Diode)				48	A		
V _{SD}	Diode Forward Voltage	ode Forward Voltage I _S =12A,V _{GS} =0V			1.5	V		
trr Reverse Recovery Time		$I_{S}=12A, T_{i}=25^{\circ}\text{C}$		581		ns		
Qrr	Reverse Recovery Charge	$dI_F/dt=100A/us$,		4009		nC		
I_{RRM}	Reverse Recovery Current	$V_{GS}=0V$		13.8		Α		
Pulse width	Pulse width $tp \le 300 \mu s$, $\delta \le 2\%$							

Symbol	Parameter	Тур.	Units
R _f JC	Junction-to-Case	2.98	°C/W
R в ЈА	Junction-to-Ambient	62.5	°C/W

 $^{^{}a1}\colon$ Repetitive rating; pulse width limited by maximum junction temperature $^{a2}\colon$ L=10mH, $I_D=11.6A,$ Start $T_J=25\,^{\circ}\!\mathrm{C}$ $^{a3}\colon$ $I_{SD}=12A,di/dt$ $\leqslant 100A/us,V_{DD}\!\leqslant\!BV_{DS},$ Start $T_J=25\,^{\circ}\!\mathrm{C}$

250us Pluse Test Tc = 25°C

 $V_{GS}=7V$

25

Characteristics Curve:

Figure 1 Maximum Forward Bias Safe Operating Area

0

 $Figure \quad 2 \quad Maximum \ Power \ Dissipation \ vs \ Case \ Temperature$

V_{GS}=10V

Figure 3 Maximum Continuous Drain Current vs Case Temperature

Figure 5 Maximum Effective Thermal Impendance, Junction to Case

Figure 6 Typical Transfer Characteristics

Figure 7 Typical Body Diode Transfer Characteristics

Figure 8 Typical Drain to Source ON Resistance vs Drain Current

Figure 9 Typical Drian to Source on Resistance vs Junction Temperature

Figure 10 Typical Theshold Voltage vs Junction Temperature

Figure 11 Typical Breakdown Voltage vs Junction Temperature

Figure 13 Typical Gate Charge vs Gate to Source Voltage

Test Circuit and Waveform

Figure 17. Gate Charge Test Circuit

Figure 18. Gate Charge Waveform

Figure 19. Resistive Switching Test Circuit

Figure 20. Resistive Switching Waveforms

Figure 21. Diode Reverse Recovery Test Circuit

Figure 22. Diode Reverse Recovery Waveform

Figure 23. Unclamped Inductive Switching Test Circuit

Figure 24. Unclamped Inductive Switching Waveforms

Package Information

Items	Values(n	nm)
Tuenis	MIN	MAX
A	9.60	10.40
В	15.40	16.20
B1	8.90	9.50
С	4.30	4.90
C1	2.10	3.00
D	2.40	3.00
Е	0.60	1.00
F	0.30	0.60
G	1.12	1.42
Н	3.40	3.80
11	2.00	2.40
L	12.00	14.00
L	6.30	7.70
N	2.34	2.74
Q	3.15	3.55
фР	3.00	3.30

TO-220F Package

The name and content of poisonous and harmful material in products

Part's Name		Н	azardous	Substance			
1 art 5 Ivanic	Pb	Hg	Cd	Cr(VI)	PBB	PBDE	
Limit	≤0.1%	≤0.1%	≤0.01%	≤0.1%	≤0.1%	≤0.1%	
Lead Frame	0	0	0	0	0	0	
Molding Compound	0	0	0	0	0	0	
Chip	0	0	0	0	0	0	
Wire Bonding	0	0	0	0	0	0	
Solder	×	0	0	0	0	0	
	O: means th	ne hazardous m	naterial is unde	r the criterion o	f SJ/T11363-2	2006.	
NI	×: means the hazardous material exceeds the criterion of SJ/T11363-2006.						
Note	The plumbum element of solder exist in products presently, but within the allowed						
	range of Eurogroup's RoHS.						

Warnings

- 1. Exceeding the maximum ratings of the device in performance may cause damage to the device, even the permanent failure, which may affect the dependability of the machine. It is suggested to be used under 80 percent of the maximum ratings of the device.
- **2.** When installing the heatsink, please pay attention to the torsional moment and the smoothness of the heatsink.
- **3.** VDMOSFETs is the device which is sensitive to the static electricity, it is necessary to protect the device from being damaged by the static electricity when using it.
- **4.** This publication is made by Huajing Microelectronics and subject to regular change without notice.

WUXI CHINA RESOURCES HUAJING MICROELECTRONICS CO., LTD.

Add: No.14 Liangxi RD. Wuxi, Jiangsu, China Mail:214061 http://www.crhj.com.cn
Tel: +86 0510-85807228 Fax: +86- 0510-85800864

Marketing Part: Post: 214061 Tel: +86 0510-81805277/81805336

Fax: +86 0510-85800360/85803016

E-mail: sales@hj.crmicro.com

Application and Service: Post: 214061 Tel/Fax: +86-0510-81805243/81805110