Privacy-preserving Efficient Subset of Features Selection for Regression Models

N. Gama, M. Georgieva

GWAS (find the best additional feature)

Question: Is the new future important?

Naive method: compute $stat_i$ for each i...

 \dots that means compute more than $10000 \log \log$

Description of Idash 2018 Task 2

Goal:

Develop a secure parallel outsourcing solution to compute Genome Wide Association Studies (GWAS) based on linear/logistic regression using **homomorphically encrypted** data.

Challenge (informally)

- Currently: a logreg model, 250 patients, with 3 or 4 physical features.
- Which new feature, among 10000 possible genes (SNP), would improve the model?
- Semi-parallel approach
 - Don't do 10000 logregs.

Description of Idash 2018 Task 2

Goal:

Develop a secure parallel outsourcing solution to compute Genome Wide Association Studies (GWAS) based on linear/logistic regression using **homomorphically encrypted** data.

Challenge (informally):

- Currently: a logreg model, 250 patients, with 3 or 4 physical features.
- Which new feature, among 10000 possible genes (SNP), would improve the model?

Semi-parallel approach

Don't do 10000 logregs...

Logreg, IRLS, relevance of a feature

- Single Logistic regression:
 - Find θ s.t $Y = sign(X\theta)$
- IRLS:
 - $\bullet \ \ {\rm Compute} \ grad = X^t(Y-p) \mbox{, with } p = \sigma(X\theta) \label{eq:compute}$
 - $\bullet \ \, \mathsf{Compute} \,\, Hessian = X^t diag(p(1-p))X$

Logreg, IRLS, relevance of a feature

Importance of the i^{th} feature:

- ullet the i^{th} coeff is big: $heta_i$ (numerator)
- the i^{th} error term is small: $(Hess^{-1})_{i,i}$ (denominator)

- Single Logistic regression:
 - Find θ s.t $Y = sign(X\theta)$
- IRLS:
 - $\bullet \ \ \mathsf{Compute} \ grad = X^t(Y-p) \text{, with } p = \sigma(X\theta) \\$
 - $\bullet \ \, \mathsf{Compute} \,\, Hessian = X^t diag(p(1-p))X$

Semi-parallel GWAS (high level idea)

Semi-parallel GWAS (optimized)

- lacksquare Do logreg(X,y) without S
- $oldsymbol{0}$ Once model is converged, add s_i
- Gradient:

They can be batch-computed: (Y-p)^t S

Hessian:

MPC versus FHE

FHE

- Long term storage
- Unique Cloud
- Slower and consumes more memory

MPC

- Faster than FHE
- More accuracy
- All data owner must participate

Fixed points versus Floating point

Floating point:

- \bullet $x=m.2^{ au}$, with $m\in 2^{ho}.\mathbb{Z}$ and $\frac{1}{2}\leq |m|<1$
- $\tau = \lceil log_2(x) \rceil$ data dependent and not public (not FHE-friendly)
- The exponent is always in sync with the data ex: $(1.23 \cdot 10^{-4}) * (7.24 \cdot 10^{-4}) = (8.90 \cdot 10^{-8})$

Fixed point:

- $x = m.2^{\tau}$, with $m \in 2^{-\rho}.\mathbb{Z}$ and $0 \le |m| < 1$,
- ullet au is public, thus FHE-friendly
- Risk of overflow (τ too small)
- Risk of underflow (τ too large) ex: $(0.000123 \cdot 10^0) * (0.000724 \cdot 10^0) = (0.000000 \cdot 10^0)$

Plaintext parameters:

- $\rho \in \mathbb{N}$: bits of precision of the plaintext (≈ 15 bits)
 - ullet $au\in\mathbb{Z}$: slot exponent (order of magnitude of the complex values in each slot)

Choice of slot exponent

The slot exponent au that defines the plaintext interval must be carefully estimated.

variable	avg	stdev	min	max	dist	
	0.440816	0.0975715	0.176397	0.853487		
	0.236977	0.0201871	0.125047	0.25		
z_i^*	-3.33092	7.36068	-30.9426	31.2008		
G	0.0577846	0.0953495	-0.011997	0.236977		
A	0.0621965	0.301255	-0.317312	2.236		
$(s_i^*)^2$	2.44243	4.11085	0.111961	14.5044		
$\log(stat_i)$	0.200039	1.84459	-13.7207	4.36158		
	0.310218	0.24083	0 4	-0.999163=	> = =	4

Choice of slot exponent

The slot exponent au that defines the plaintext interval must be carefully estimated.

 the slot exponent 7 that defines the planteext interval must be carefully estimate					
variable	avg	stdev	min	max	dist
p	0.440816	0.0975715	0.176397	0.853487	
w	0.236977	0.0201871	0.125047	0.25	
z_i^*	-3.33092	7.36068	-30.9426	31.2008	
G	0.0577846	0.0953495	-0.011997	0.236977	
A	0.0621965	0.301255	-0.317312	2.236	
$(s_i^*)^2$	2.44243	4.11085	0.111961	14.5044	
$\log(stat_i)$	0.200039	1.84459	-13.7207	4.36158	
p-value	0.310218	0.24083	0	□0.999163≡	- E

Numerical stability

Not stable

Increase the precision of the algorithm, but that implies bigger parameters.

Stable

Use stable computation with negative feedback (e.g. gradient descent)

Smaller parameters

FHE Solution

FHE parameters:

- $L \in \mathbb{N}$: level exponent of the ciphertext ($\alpha = 2^{-(L+\rho)}$: noise rate)
- ullet $N=f(\lambda, lpha)$: key size, with λ the security parameter

The lwe-estimator script was used to assert the security (conform to HE security standardization white paper)

FHE Solution

FHE parameters:

- $L \in \mathbb{N}$: level exponent of the ciphertext ($\alpha = 2^{-(L+\rho)}$: noise rate)
- ullet $N=f(\lambda, lpha)$: key size, with λ the security parameter

The lwe-estimator script was used to assert the security. (conform to HE security standardization white paper)

Plaintext algorithm in FHE solution

Input:

- $X \in \mathcal{M}_{n,k+1}(\mathbb{R})$ input matrix
- $y \in \mathbb{B}^n$ binary vector
- ullet $S\in\mathcal{M}_{n,m}(\mathbb{R})$ assumed binary

Output:

•
$$stat \in \mathbb{R}^m$$
 with $stat_i = \frac{\mathbf{z}^*_i}{\sqrt{\mathbf{s}^{*}_i^2}}$

Key points of our solution:

- Make plaintext algorithm FHE friendly
- Use hybrid homomorphic encryption

Plaintext algorithm in FHE solution

Input:

- $X \in \mathcal{M}_{n,k+1}(\mathbb{R})$ input matrix
- $y \in \mathbb{B}^n$ binary vector
- $S \in \mathcal{M}_{n,m}(\mathbb{R})$ assumed binary

Output:

•
$$stat \in \mathbb{R}^m$$
 with $stat_i = \frac{\mathbf{z}^*_i}{\sqrt{\mathbf{s}^{*}_i^2}}$

Key points of our solution:

- Make plaintext algorithm FHE friendly
- Use hybrid homomorphic encryption

Optimization of plaintext algorithm

Make the plaintext algorithm FHE friendly

- Find simple geometric equivalents of the formula
- Find approximation with lower multiplicative depth
- ullet Replace feature scaling of X with orthogonalization

▷ logreg

numerator

▶ log of stat

Algorithm 2 Plaintext algorithm

- 1: $\beta^{(0)} = (0, \dots, 0)$
- 2. for t=1 to iters do
- $\beta^{(t)} \leftarrow \beta^{(t-1)} + \text{step} \cdot X^T \cdot (\mathbf{y} \sigma(X\beta^{(t-1)}))$
- 4: end for
- 5: $\mathbf{p} \leftarrow \overline{\sigma(X\beta^{(\text{iters})})}$
- 6: $\mathbf{z}^* \leftarrow (\mathbf{v} \mathbf{p})^T . S$
- 7: $W \leftarrow \operatorname{diag}(p * (1-p))$
- 8: $G \leftarrow X^T.W.X \approx \frac{1}{4} * Id$ (assumed that X orthogonal)
- $a \in A \leftarrow X^T W S$
- 10: $\mathbf{s}^{*2} = \operatorname{colsums}(W \cdot (S \odot S)) \operatorname{colsums}(A \odot G^{-1}A)$
- 11: $(\approx A[0] * \sqrt{n} 4 * \operatorname{colsums}(A \odot A))$ 12: $\mathbf{r}_i = [2 \cdot \log(|\mathbf{z}^*_i|) \log(|\mathbf{s}^{*2}_i|)]$ for each $i \in [1, m]$
- $stat_i = \frac{\mathbf{z}^*_i}{\sqrt{\mathbf{s}^*_i^2}} = \frac{1}{2} \exp(\mathbf{r}_i)$
- p-value_i = p-Norm($stat_i$)

Algorith	for loops	
1: \(\beta\)	(better with fast bootstrapping)	
	= 1 to iters do	
3: $\beta^{(i)}$	$(t) \leftarrow \beta^{(t-1)} + \text{step} \cdot X^T \cdot (\mathbf{y} - \sigma(X\beta))$	((t-1))
4: en	continuous non-polynomial functions	▶ logreg
	(Approx numbers, or Lookup tables)	
6: z *	(J P) ···	▷ numerator
7: W ←	$\frac{(\mathbf{J} - \mathbf{P}) \cdot \mathcal{E}}{\operatorname{diag}(p * (1 - p))}$	
8: $G \leftarrow 1$	$X^T.W.Xpprox rac{1}{4}*Id$ (assumed that X	orthogonal)
9: $A \leftrightarrow \lambda$	1	
	$\operatorname{colsums}(W \cdot (S \odot S)) - \operatorname{colsums}(A \odot S)$	$\odot G^{-1}A)$
11: $(\approx A[$	$0 \times \sqrt{n} - 4 * \operatorname{colsums}(A \odot A)$	
12: $\mathbf{r}_i = [$	$2 \cdot \log(\mathbf{z^*}_i) - \log(\mathbf{s^{*2}}_i)]$ for each i	$\in [1,m]$ $\triangleright \log \text{ of stat}$

$$stat_i = \frac{\mathbf{z^*}_i}{\sqrt{\mathbf{s^*}_i^2}} = \frac{1}{2} \exp(\mathbf{r}_i)$$

p-value_i = p-Norm(stat_i)

Algorith	for loops	
1: \(\beta^{6}\)	(better with fast bootstrapping)	
	1 to iters do	
3: $\beta^{(t)}$	$\boldsymbol{\phi}^{(t)} \leftarrow \boldsymbol{\beta}^{(t-1)} + \operatorname{step} \cdot X^T \cdot \left(\mathbf{y} - \sigma(X\boldsymbol{\beta}^{(t-1)}) \right)$	
4: en	continuous non-polynomial functions	individual non-linear operations in small dimension (lookup tables)
5: p	(Approx numbers, or Lookup tables)	(county county)
6: Z *	(J P)	▷ numerator
7: W ←	multiplication with fresh ciphertexts	
8: $G \leftarrow 2$	(better with TFHE's external product)	nal)
9: $A \leftrightarrow \lambda$		
	$\operatorname{colsums}(W \cdot (S \odot S)) - \operatorname{colsums}(A \odot G^{-})$	$^{1}A)$
11: $(\approx A[0])$	$0 \times \sqrt{n} - 4 * \operatorname{colsums}(A \odot A))$	
12: $\mathbf{r}_i = [2]$	$2\cdot \log(\mathbf{z^*}_i) - \log(\mathbf{s^{*2}}_i)]$ for each $i \in [1, i]$	$[n]$ $\triangleright \log \text{ of stat}$

$$stat_i = \frac{\mathbf{z^*}_i}{\sqrt{\mathbf{s^*}_i^2}} = \frac{1}{2} \exp(\mathbf{r}_i)$$
 p-value_i = p-Norm(stat_i)

p-value_i = p-Norm($stat_i$)

Algorith	for loops
1: B	(better with fast bootstrapping)
	1 to iters do
3: $\beta^{(t)}$	$\leftarrow \beta^{(t-1)} + \text{step} \cdot X^T \cdot \left(\mathbf{y} - \sigma(X\beta^{(t-1)}) \right)$ individual non-linear operations in small dimension
4: en	continuous non-polynomial functions (lookup tables)
5: p	(Approx numbers, or Lookup tables)
6: Z *	, P) ···
7: $W \leftarrow d$ 8: $G \leftarrow X$	multiplication with fresh ciphertexts (better with TFHE's external product) nal)
9: $A \leftrightarrow X$	1.10
	$\operatorname{colsums}(W \cdot (S \odot S)) - \operatorname{colsums}(A \odot G^{-1}A)$ very large dimension
11: $(\approx A[0]$	* $\sqrt{n} - 4 * \operatorname{colsums}(A \odot A)$ (fully packed SIMD)
12: $\mathbf{r}_i = [2$	$\log(\mathbf{z^*}_i) - \log(\mathbf{s^{*2}}_i)]$ for each $i \in [1,m]$
$stat_i = \frac{\mathbf{z}^*}{/}$	$\frac{\epsilon_i}{\epsilon_{i+2}} = \frac{1}{2} \exp(\mathbf{r}_i)$ continuous function batched on a large vector


```
Algorith
                                                for loops
                               (better with fast bootstrapping)
  1: B
  2: for t=1 to iters do
              \beta^{(t)} \leftarrow \beta^{(t-1)} + \text{step} \cdot X^T \cdot \left( \mathbf{y} - \sigma(X\beta^{(t-1)}) \right)
                                                                                                                  individual non-linear operations in small dimension
  4: en continuous non-polynomial functions
5: p (Approx numbers, or Lookup tables)
                                                                                                                                             (lookup tables)
 6: \mathbf{Z}^*
7: W diag multiplication with fresh ciphertexts
8: G Expression (better with TFHE's external product)
                                                                                                                                                                          numerator
                                                                                                             nal)
 9: A \leftarrow X^T. N...

10: \mathbf{s}^{*2} = \operatorname{colsums}(W \cdot (S \odot S)) - \operatorname{colsums}(A \odot G^{-1}A)
                                                                                                                                           very large dimension
11: (\approx A[0] * \sqrt{n} - 4 * \operatorname{colsums}(A \odot A))

12: \mathbf{r}_i = [2 \cdot \log(|\mathbf{z}^*_i|) - \log(|\mathbf{s}^{*2}_i|)] for each i \in [1, m]
                                                                                                                                           (fully packed SIMD)
```

$$stat_i = \frac{\mathbf{z^*}_i}{\sqrt{\mathbf{s^*}_i^2}} = \frac{1}{2} \exp(\mathbf{r}_i)$$

$$\text{p-value}_i = \text{p-Norm}(stat_i)$$
continuous function batched on a large vector

Which fully homomoprhic scheme should we choose?

Each library has its own strengths

Strengths of HE libraries

- BGV/Helib: SIMD finite field arithmetic
- \bullet B/FV, Seal: SIMD vector $\mod t$
- HEAAN: SIMD fixed point arithmetic
- TFHE: single evaluation, boolean logic, comparison, threshold, complex circuits
- etc...

How to get all the benefits without the limitations?

Solution: Chimera

Idea:

- Unified plaintext space over the Torus
- Switch between ciphertext representations
- Implement bridges between TFHE, B/FV and HEAAN

For this use-case

We use the switch between TFHE and HEAAN!

Solution: Chimera

Idea:

- Unified plaintext space over the Torus
- Switch between ciphertext representations
- Implement bridges between TFHE, B/FV and HEAAN

For this use-case

We use the switch between TFHE and HEAAN!

Chimera solution

- lacksquare Initial Logreg on matrix X and vector y
 - adapt lib TFHE + logreg
- Mass Linear algebra computations
 - implement Chimera (version 2 of TFHE)
- Batch Logarithm computation
 - adapt lib HEAAN

Benchmarks (Idash Bootstrapped)

Steps	Timing (4 cores)	Timing (96 cores)	RAM
KeyGen	5.5 mins	2.0 mins	4.4 GB
Encryption	7.2 mins	1.3 mins	8.6 GB
Cloud Computation	3h06	10.2 mins	7.8 GB

• Input ciphertext: 5GB (enc X, y, S)

• Final ciphertext: 640KB (enc numerator + denominator)

Benchmarks (with new optimizations)

$$k = 3$$
, $n = 250$, $m = 10000$

Steps	Timing (4 cores)	Timing (96 cores)	RAM
KeyGen	5.5 mins	2.0 mins	4.4 GB
Encryption	7.2 mins	1.3 mins	8.6 GB
Cloud Computation	35 mins	3 mins	7.8 GB

$$k = 7$$
, $n = 250$, $m = 10000$

Steps	Timing (4 cores)	Timing (96 cores)	RAM
KeyGen	5.5 mins	2.0 mins	4.4 GB
Encryption	7.2 mins	1.3 mins	8.6 GB
Cloud Computation	41 mins	3.1 mins	7.8 GB

- initial ciphertext: 5GB (enc X, y, S)
- final ciphertext: 640KB (enc numerator + denominator)

Numerical Accuracy (FHE has noise)

Questions?

