

Máquinas Térmicas

2ª Lista de Exercícios

Capítulo 3 e 4 de Fundamentos da Termodinâmica – Van Wylen

Questão 1 -

Uma panela de pressão cozinha muito mais rápido do que uma panela comum, ao manter mais altas a pressão e a temperatura internas. A panela é bem vedada, e a tampa é provida de uma válvula de segurança com uma seção transversal (A) que deixa o vapor escapar, mantendo, assim, a pressão no interior da panela com valor constante e evitando o risco de acidentes.

TABELA DE PRESSÃO ABSOLUTA DA ÁGUA SATURADA EM FUNÇÃO DA TEMPERATURA

Temp. (°C)	Pressão (kPa)	Temp.	Pressão (kPa)	Temp. (°C)	Pressão (MPa)
0,01	0,6113	50	12,350	100	0,10135
5	0,8721	55	15,758	105	0,12082
10	1,2276	60	19,941	110	0,14328
15	1,7051	65	25,033	115	0,16906
20	2,3385	70	31,188	120	0,19853
25	3,1691	75	38,578	125	0,2321
30	4,2461	80	47,390	130	0,2701
35	5,6280	85	57,834	135	0,3130
40	7,3837	90	70,139	140	0,3613
45	9,5934	95	84,554	145	0,4154

VAN WYLEN, G; SONNTAG, R.; BORGNAKKE, C. Fundamentos da Termodinâmica Clássica. 4. ed. São Paulo: Edgard Blücher, 2003. (Adaptado).

Considerando os dados fornecidos na figura e na tabela acima e uma situação em que a panela contém água saturada, a massa da válvula, em gramas, para garantir uma pressão manométrica interna constante de 100 kPa, e o correspondente valor aproximado da temperatura da água, em °C, são, respectivamente

(A) 4 e 100

(B) 4 e 120

(C) 40 e 100

(D) 40 e 120

(E) 400 e 100

Questão 2 -

A figura abaixo mostra o esboço de uma panela de pressão. A união da tampa com o corpo da panela é roscada e o controle da pressão interna é realizado pelo peso instalado na tampa. A área da seção transversal do tubo onde está apoiado o peso é igual a 5 mm². Determine a massa do peso para que a água ferva a 120°C nesta panela. Admita que a pressão atmosférica é igual a 101,3 kPa.

Questão 3 -

O gás Dióxido de Carbono é comprimido de V1=0,3 ,P1=0,1MPa até V2=0,1 ,P2=0,3MPa. A relação entre a pressão e o volume durante o processo é P=A+BV, na qual A e B são constantes. Para o Dióxido de Carbono, determine o trabalho e calcule as constantes A e B.

Questão 4 –

A lâmpada de iluminação interna de uma geladeira (25W) permanece acesa apesar da porta estar fechada e a transferência de calor do ambiente para o espaço refrigerado é igual a 50W devido a problemas existentes no isolamento da geladeira. Estas duas transferências de calor podem ser encaradas como "vazamentos" de calor para a geladeira. A área total de transferência de calor do condensador desta geladeira é 1m² e o coeficiente de transferência de calor por convecção na superfície externa do condensador é 15W/m²K. Determine a diferença entre a temperatura da superfície externa do condensador e a temperatura ambiente de modo que seja possível transferir para o ambiente o calor que está "vazando" para a geladeira. Admita que a temperatura ambiente seja igual a 20°C.

Questão 5 –

O conjunto cilindro – Pistão mostrado na Figura abaixo contém 1 kg de refrigerante R-134ª. Inicialmente (estado 1), a temperatura e a pressão são iguais a 110°C e 600 kPa. Transfere-se calor do refrigerante até que atinja o estado de vapor saturado (estado 2). Neste processo, o pistão se encontra travado com o pino. O pino é então removido e uma força constante é aplicada no pistão de modo a equilibra-lo. O resfriamento continua até que o refrigerante atinja o estado de liquido saturado (Estado 3). Construa o diagrama p-v destes processos de resfriamentos e determine o trabalho realizado do estado 1 ao 2 e do estado 2 ao 3.

