

SimTech

Reaktions-Diffusions-Advektionsgleichung in 2D

Etienne Ott, Moritz Schleicher, Patrick Buchfink Numerische Simulation WS16/17

10. Februar 2017

Inhalt

SimTech

- Einführung und Motivation
- Theorie: Populationsdynamik
- Theorie: Gray-Scott Modell
- Implementierung
- Ergebnisse

Einführung und Motivation

SimTech

Wiederholung: Diffusions-Advektionsgleichung

Motivation: Reaktionen

Reaktion $\frac{\partial s(t,\mathbf{x})}{\partial t} = R(s,t,\mathbf{x})$

Theorie: Populationsdynamik

Idee der Populationsdynamik

Quelle: http://www.spiegel.de/wissenschaft/natur/bild-1042982-869697.html

Theorie: Gray-Scott Modell

Idee des Gray-Scott Modells

- Zwei Substanzen A: Futter, B: Räuber
- Phänomene

- Parameter
 - ▶ Kill-Rate k
 - ▶ Feed-Rate f
 - ▶ Diffusions-Konstanten d_A , d_B

Gray-Scott Modell ohne Advektion

- Muster bekannt von
 - Blättern
 - ► Tierfellen (Rehe, Giraffen, Schmetterlinge, ...)
 - Miktose

Quelle: http://www.karlsims.com/rd.html

Implementierung

Implementierung der Substanzen und deren Reaktionsterms

Ergebnisse - Populationsdynamik

SimTech

Danke für die Aufmerksamkeit! Fragen?