>#####################################
>
> #TASK-1: DATA PREPARATION AND WRANGLING#
>
>
> rm(list=ls())
> install.packages('tidyverse')
Error in install.packages : Updating loaded packages
> install.packages("dplyr")
Error in install.packages : Updating loaded packages
> test <- require(tidyverse)
>
> library(modelr)
> library(broom)
Attaching package: 'broom'
The following object is masked from 'package:modelr':
bootstrap
> library(tidypredict)
Error in library(tidypredict) : there is no package called 'tidypredict'
> library(dplyr)
> library(tidyverse)
Restarting R session
> install.packages("tidyverse")

WARNING: Rtools is required to build R packages but is not currently installed. Please download and install the appropriate version of Rtools before proceeding:

```
https://cran.rstudio.com/bin/windows/Rtools/
Installing package into 'C:/Users/User/Documents/R/win-library/4.1'
(as 'lib' is unspecified)
trying URL 'https://cran.rstudio.com/bin/windows/contrib/4.1/tidyverse_1.3.1.zip'
Content type 'application/zip' length 430176 bytes (420 KB)
downloaded 420 KB
package 'tidyverse' successfully unpacked and MD5 sums checked
The downloaded binary packages are in
      C:\Users\User\AppData\Local\Temp\RtmpGkblVD\downloaded packages
> library(tidyverse)
-- Attaching packages ----- tidyverse 1.3.1 --
v ggplot2 3.3.5 v purrr 0.3.4
v tibble 3.1.4 v dplyr 1.0.7
v tidyr 1.1.3 v stringr 1.4.0
v readr 2.0.1 v forcats 0.5.1
-- Conflicts ----- tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()
> # Task 1: Data Preparation and Wrangling: (20 marks)
```

> # 1. Load and read the data from the CSV files and store them into dataframes

named

> # appropriately.

>

> countries <- read_csv("data/Countries.csv")

Rows: 208 Columns: 5

```
-- Column specification ------
Delimiter: ","
chr (2): countryCode, Country
dbl (3): popData2018, GDP, GDP/capita
i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show col types = FALSE` to quiet this message.
> covid19 <- read csv("data/Covid19.csv")</pre>
Rows: 15029 Columns: 6
-- Column specification ------
Delimiter: ","
chr (3): iso_code, location, continent
dbl (2): new_cases, new_deaths
date (1): date
i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.
>
> recovered <- read csv("data/Recovered.csv")</pre>
Rows: 185 Columns: 106
-- Column specification ------
Delimiter: ","
chr (1): Country.Region
dbl (105): 2020.01.22, 2020.01.23, 2020.01.24, 2020.01.25, 2020.01.26,
2020.01.27, 2020.01...
i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.
>
```

```
> tests <- read csv("data/Tests.csv")
Rows: 7859 Columns: 3
-- Column specification ------
Delimiter: ","
chr (1): Country Code
dbl (1): New Tests
date (1): Date
i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.
> # 3. Change the column names in the dataframes were loaded from the following
files
> # accordingly.
> # File Name
> # Ordered New Column Names
> # Covid19.csv Code, Country, Continent, Date, NewCases,
> # NewDeaths
> # Tests.csv Code, Date, NewTests
> # Countries.csv Code, Country, Population, GDP, GDPCapita
> # Recovered.csv Country, Date, Recovered
> names(covid19) <- c('Code', 'Country', 'Continent', 'Date', 'NewCases',
'NewDeaths')
> names(tests) <- c('Code', 'Date', 'NewTests')</pre>
>
> names(countries) <- c('Code', 'Country', 'Population', 'GDP', 'GDPCapita')
> names(recovered) <- c('Country', 'Date', 'Recovered')</pre>
```

```
> # 4. Ensure that all dates variables are of date data type and with the same
format across the
> # dataframes.
> # 5. Considering the master dataframe is the one loaded from file "Covid19.csv",
add new 5
> # variables to it from other files (Recovered.csv, Tests.csv, Countries.csv). The 5
> # added variables should be named ("Recovered", "NewTests", "Population",
"GDP",
> #
                        "GDPCapita") accordingly.
> # [Hint: you can use the merge function to facilitate the alignment of the data in
the different
> # dataframes.]
>
> covid19 <- covid19 %>%
+ arrange(Code)
>
> covid19 <- merge(x=covid19, y=tests, by=c("Code","Date"), all.x = TRUE)
>
>
> str(recovered)
tibble [19,425 \times 3] (S3: tbl df/tbl/data.frame)
$ Country: chr [1:19425] "Afghanistan" "Afghanistan" "Afghanistan" "Afghanistan"
         : chr [1:19425] "2020.01.22" "2020.01.23" "2020.01.24" "2020.01.25" ...
$ Date
$ Recovered: num [1:19425] 0 0 0 0 0 0 0 0 0 ...
>
> recovered$Date <- as.Date(recovered$Date, "%Y.%m.%d")
>
> str(recovered$Date)
Date[1:19425], format: "2020-01-22" "2020-01-23" "2020-01-24" "2020-01-25"
```

"2020-01-26" "2020-01-27" ...

```
> covid19 <- merge(x=covid19, y=recovered, by=c("Country", "Date"),
all.x=TRUE)
>
>
>
> covid19 <- merge(x=covid19, y=countries, by=c("Code", "Country"), all.x =
TRUE)
>
>
> # 6. Check for Nas in all dataframes and change them to Zero.
>
> is.na(covid19)
     Code Country Date Continent NewCases NewDeaths NewTests Recovered
Population GDP
  [1,] FALSE FALSE FALSE FALSE
                                       FALSE
                                               TRUE
                                                      TRUE
                                                              FALSE
FALSE
  [2,] FALSE FALSE
                         FALSE FALSE
                                       FALSE
                                               TRUE
                                                      TRUE
                                                              FALSE
FALSE
  [3,] FALSE FALSE FALSE
                         FALSE FALSE
                                       FALSE
                                               TRUE
                                                      TRUE
                                                              FALSE
FALSE
  [4,] FALSE FALSE FALSE
                         FALSE FALSE
                                       FALSE
                                               TRUE
                                                      TRUE
                                                              FALSE
FALSE
  [5,] FALSE FALSE FALSE
                         FALSE FALSE
                                       FALSE
                                               TRUE
                                                      TRUE
                                                              FALSE
FALSE
  [6,] FALSE FALSE
                         FALSE FALSE
                                       FALSE
                                               TRUE
                                                      TRUE
                                                              FALSE
FALSE
  [7,] FALSE FALSE FALSE
                         FALSE FALSE
                                       FALSE
                                               TRUE
                                                      TRUE
                                                              FALSE
FALSE
  [8,] FALSE FALSE
                         FALSE FALSE
                                       FALSE
                                               TRUE
                                                      TRUE
                                                              FALSE
FALSE
  [9,] FALSE FALSE
                        FALSE FALSE
                                       FALSE
                                               TRUE
                                                      TRUE
                                                              FALSE
FALSE
```

[10,] FALSE FALSE	FALSE FALSE	FALSE	FALSE	FALSE	TRUE	TRUE	FALSE
[11,] FALSE FALSE	FALSE FALSE	FALSE	FALSE	FALSE	TRUE	TRUE	FALSE
[12,] FALSE FALSE	FALSE FALSE	FALSE	FALSE	FALSE	TRUE	TRUE	FALSE
[13,] FALSE FALSE	FALSE FALSE	FALSE	FALSE	FALSE	TRUE	TRUE	FALSE
[14,] FALSE FALSE	FALSE FALSE	FALSE	FALSE	FALSE	TRUE	TRUE	FALSE
[15,] FALSE FALSE	FALSE FALSE	FALSE	FALSE	FALSE	TRUE	TRUE	FALSE
[16,] FALSE FALSE	FALSE FALSE	FALSE	FALSE	FALSE	TRUE	TRUE	FALSE
[17,] FALSE FALSE	FALSE FALSE	FALSE	FALSE	FALSE	TRUE	TRUE	FALSE
[18,] FALSE FALSE	FALSE FALSE	FALSE	FALSE	FALSE	TRUE	TRUE	FALSE
[19,] FALSE FALSE	FALSE FALSE	FALSE	FALSE	FALSE	TRUE	TRUE	FALSE
[20,] FALSE FALSE	FALSE FALSE	FALSE	FALSE	FALSE	TRUE	TRUE	FALSE
[21,] FALSE FALSE	FALSE FALSE	FALSE	FALSE	FALSE	TRUE	TRUE	FALSE
[22,] FALSE FALSE	FALSE FALSE	FALSE	FALSE	FALSE	TRUE	TRUE	FALSE
[23,] FALSE FALSE	FALSE FALSE	FALSE	FALSE	FALSE	TRUE	TRUE	FALSE
[24,] FALSE FALSE	FALSE FALSE	FALSE	FALSE	FALSE	TRUE	TRUE	FALSE
[25,] FALSE FALSE	FALSE FALSE	FALSE	FALSE	FALSE	TRUE	TRUE	FALSE
[26,] FALSE FALSE	FALSE FALSE	FALSE	FALSE	FALSE	TRUE	TRUE	FALSE
[27,] FALSE FALSE	FALSE FALSE	FALSE	FALSE	FALSE	TRUE	TRUE	FALSE

[28,] FALSE FALSE	FALSE FALSE	FALSE	FALSE	FALSE	TRUE	TRUE	FALSE
[29,] FALSE FALSE	FALSE FALSE	FALSE	FALSE	FALSE	TRUE	TRUE	FALSE
[30,] FALSE FALSE	FALSE FALSE	FALSE	FALSE	FALSE	TRUE	TRUE	FALSE
[31,] FALSE FALSE	FALSE FALSE	FALSE	FALSE	FALSE	TRUE	TRUE	FALSE
[32,] FALSE FALSE	FALSE FALSE	FALSE	FALSE	FALSE	TRUE	TRUE	FALSE
[33,] FALSE FALSE	FALSE FALSE	FALSE	FALSE	FALSE	TRUE	TRUE	FALSE
[34,] FALSE FALSE	FALSE FALSE	FALSE	FALSE	FALSE	TRUE	TRUE	FALSE
[35,] FALSE FALSE	FALSE FALSE	FALSE	FALSE	FALSE	TRUE	TRUE	FALSE
[36,] FALSE FALSE	FALSE FALSE	FALSE	FALSE	FALSE	TRUE	TRUE	FALSE
[37,] FALSE FALSE	FALSE FALSE	FALSE	FALSE	FALSE	TRUE	TRUE	FALSE
[38,] FALSE FALSE	FALSE FALSE	FALSE	FALSE	FALSE	TRUE	TRUE	FALSE
[39,] FALSE FALSE	FALSE FALSE	FALSE	FALSE	FALSE	TRUE	TRUE	FALSE
[40,] FALSE FALSE	FALSE FALSE	FALSE	FALSE	FALSE	TRUE	TRUE	FALSE
[41,] FALSE FALSE	FALSE FALSE	FALSE	FALSE	FALSE	TRUE	TRUE	FALSE
[42,] FALSE FALSE	FALSE FALSE	FALSE	FALSE	FALSE	TRUE	TRUE	FALSE
[43,] FALSE FALSE	FALSE FALSE	FALSE	FALSE	FALSE	TRUE	TRUE	FALSE
[44,] FALSE FALSE	FALSE FALSE	FALSE	FALSE	FALSE	TRUE	TRUE	FALSE
[45,] FALSE FALSE	FALSE FALSE	FALSE	FALSE	FALSE	TRUE	TRUE	FALSE

[46,] FALSE FALSE	FALSE FALSE	FALSE	FALSE	FALSE	TRUE	TRUE	FALSE
[47,] FALSE FALSE	FALSE FALSE	FALSE	FALSE	FALSE	TRUE	TRUE	FALSE
[48,] FALSE FALSE	FALSE FALSE	FALSE	FALSE	FALSE	TRUE	TRUE	FALSE
[49,] FALSE FALSE	FALSE FALSE	FALSE	FALSE	FALSE	TRUE	TRUE	FALSE
[50,] FALSE FALSE	FALSE FALSE	FALSE	FALSE	FALSE	TRUE	TRUE	FALSE
[51,] FALSE FALSE	FALSE FALSE	FALSE	FALSE	FALSE	TRUE	TRUE	FALSE
[52,] FALSE FALSE	FALSE FALSE	FALSE	FALSE	FALSE	TRUE	TRUE	FALSE
[53,] FALSE FALSE	FALSE FALSE	FALSE	FALSE	FALSE	TRUE	TRUE	FALSE
[54,] FALSE FALSE	FALSE FALSE	FALSE	FALSE	FALSE	TRUE	TRUE	FALSE
[55,] FALSE FALSE	FALSE FALSE	FALSE	FALSE	FALSE	TRUE	TRUE	FALSE
[56,] FALSE FALSE	FALSE FALSE	FALSE	FALSE	FALSE	TRUE	TRUE	FALSE
[57,] FALSE FALSE	FALSE FALSE	FALSE	FALSE	FALSE	TRUE	TRUE	FALSE
[58,] FALSE FALSE	FALSE FALSE	FALSE	FALSE	FALSE	TRUE	TRUE	FALSE
[59,] FALSE FALSE	FALSE FALSE	FALSE	FALSE	FALSE	TRUE	TRUE	FALSE
[60,] FALSE FALSE	FALSE FALSE	FALSE	FALSE	FALSE	TRUE	TRUE	FALSE
[61,] FALSE FALSE	FALSE FALSE	FALSE	FALSE	FALSE	TRUE	TRUE	FALSE
[62,] FALSE FALSE	FALSE FALSE	FALSE	FALSE	FALSE	TRUE	TRUE	FALSE
[63,] FALSE FALSE	FALSE FALSE	FALSE	FALSE	FALSE	TRUE	TRUE	FALSE

[64,] FALSE FALSE	FALSE FALSE	FALSE	FALSE	FALSE	TRUE	TRUE	FALSE
[65,] FALSE FALSE	FALSE FALSE	FALSE	FALSE	FALSE	TRUE	TRUE	FALSE
[66,] FALSE FALSE	FALSE FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE
[67,] FALSE FALSE	FALSE FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE
[68,] FALSE FALSE	FALSE FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE
[69,] FALSE FALSE	FALSE FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE
[70,] FALSE FALSE	FALSE FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE
[71,] FALSE FALSE	FALSE FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE
[72,] FALSE FALSE	FALSE FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE
[73,] FALSE FALSE	FALSE FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE
[74,] FALSE FALSE	FALSE FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE
[75,] FALSE FALSE	FALSE FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE
[76,] FALSE FALSE	FALSE FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE
[77,] FALSE FALSE	FALSE FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE
[78,] FALSE FALSE	FALSE FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE
[79,] FALSE FALSE	FALSE FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE
[80,] FALSE FALSE	FALSE FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE
[81,] FALSE FALSE	FALSE FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE

FALSE FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE
FALSE FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE
FALSE FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE
FALSE FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE
FALSE FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE
FALSE FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE
FALSE FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE
FALSE FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE
FALSE FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE
	FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE	FALSE	FALSE	FALSE	FALSE TRUE FALSE FALSE FALSE FALSE TRUE	FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE F

GDPCapita

- [1,] FALSE
- [2,] FALSE
- [3,] FALSE
- [4,] FALSE
- [5,] FALSE
- [6,] FALSE
- [7,] FALSE
- [8,] FALSE
- [9,] FALSE
- [10,] FALSE
- [11,] FALSE
- [12,] FALSE
- [13,] FALSE
- [14,] FALSE

- [15,] FALSE
- [16,] FALSE
- [17,] FALSE
- [18,] FALSE
- [19,] FALSE
- [20,] FALSE
- [21,] FALSE
- [22,] FALSE
- [23,] FALSE
- [24,] FALSE
- [25,] FALSE
- [26,] FALSE
- [27,] FALSE
- [28,] FALSE
- [29,] FALSE
- [30,] FALSE
- [31,] FALSE
- [32,] FALSE
- [33,] FALSE
- [34,] FALSE
- [35,] FALSE
- [36,] FALSE
- [37,] FALSE
- [38,] FALSE
- [39,] FALSE
- [40,] FALSE
- [41,] FALSE
- [42,] FALSE
- [43,] FALSE
- [44,] FALSE

- [45,] FALSE
- [46,] FALSE
- [47,] FALSE
- [48,] FALSE
- [49,] FALSE
- [50,] FALSE
- [51,] FALSE
- [52,] FALSE
- [53,] FALSE
- [54,] FALSE
- [55,] FALSE
- [56,] FALSE
- [57,] FALSE
- [58,] FALSE
- [59,] FALSE
- [60,] FALSE
- [61,] FALSE
- [62,] FALSE
- [63,] FALSE
- [64,] FALSE
- [65,] FALSE
- [66,] FALSE
- [67,] FALSE
- [68,] FALSE
- [69,] FALSE
- [70,] FALSE
- [71,] FALSE
- [72,] FALSE
- [73,] FALSE
- [74,] FALSE

```
[75,]
        FALSE
 [76,]
         FALSE
 [77,]
         FALSE
         FALSE
 [78,]
 [79,]
         FALSE
 [80,]
        FALSE
 [81,]
        FALSE
 [82,]
        FALSE
 [83,]
        FALSE
 [84,]
        FALSE
 [85,]
        FALSE
 [86,]
        FALSE
 [87,]
        FALSE
 [88,]
        FALSE
 [89,]
        FALSE
 [90,]
        FALSE
[ reached getOption("max.print") -- omitted 14939 rows ]
>
> covid19$NewTests[is.na(covid19$NewTests)]<-0
>
> covid19$Recovered[is.na(covid19$Recovered)]<-0
> # 7. Using existing "Date" variable; add month and week variables to the master
dataframe.
> # [Hint: you may use functions from lubridate package]
> # [Hint: To ensure that this task has been finished correctly, when you run
head(covid19_data), you
> # should get results such as in the below image]
>
> library(lubridate)
```

Attaching package: 'lubridate'

The following objects are masked from 'package:base':

date, intersect, setdiff, union

>
> covid19 <- covid19 %>%
+
+ mutate(month= month(Date), week=week(Date))
>

Date

5 ABW Aruba 2020-03-26 North America

6 ABW Aruba 2020-03-27 North America

> head(covid19)

Code Country

Population GDP 1 ABW Aruba 2020-03-13 North America 2 ABW Aruba 2020-03-20 North America 3 ABW Aruba 2020-03-24 North America 4 ABW Aruba 2020-03-25 North America

Continent NewCases NewDeaths NewTests Recovered

GDPCapita month week

1 25655 3 11

2 25655 3 12

3 25655 3 12

4 25655 3 13

```
25655 3 13
5
   25655 3 13
6
> #-----TASK-2: EXPLORATORY DATA ANALYSIS-----#
> # 1. Add four new variables to the master dataframe ("CumCases",
"CumDeaths",
> # "CumRecovered", "CumTests") These variables should reflect the cumulative
relevant
> # data up to the date of the observation, i.e CumCases for country "X" at Date
"Y" should
> # reflect the total number of cases in country "X" since the beginning of
recording data till
> # the date "Y".
> # [Hint: first arrange by date and country, then for each new variable to be added
you need to
> # group by country and mutate the new column using the cumsum function]
>
> covid19 cum <- covid19
>
> covid19 cum <- covid19 cum %>%
+ arrange(Date, Country) %>%
+ group by(Country) %>%
  mutate(CumCases=cumsum(NewCases), CumDeaths=cumsum(NewDeaths),
       CumRecovered=cumsum(Recovered), CumTests=cumsum(NewTests))
+
> covid19_cum
# A tibble: 15,029 x 17
# Groups: Country [208]
                      Continent NewCases NewDeaths NewTests Recovered
 Code Country Date
Population GDP
 <chr> <chr> <date> <chr>
                                   <dbl>
                                            <dbl> <dbl>
                                                            <dbl>
<dbl> <dbl>
```

1 AFG	Afghani~ 2020-01-01 Asia	0	0	0	0 37172386 2.20e4
2 DZA	Algeria 2020-01-01 Africa	0	0	0	0 42228429 1.68e5
3 ARM 1.15e4	Armenia 2020-01-01 Europe	0	0	0	0 2951776
4 AUS 1.41e6	Austral~ 2020-01-01 Oceania	0	0	0	0 24992369
5 AUT	Austria 2020-01-01 Europe	0	0	0	0 8847037 4.17e5
6 AZE 4.07e4	Azerbai~ 2020-01-01 Europe	0	0	0	0 9942334
7 BHR	Bahrain 2020-01-01 Asia	0	0	0	0 1569439 3.53e4
8 BLR	Belarus 2020-01-01 Europe	0	0	0	0 9485386 5.44e4
9 BEL 4.95e5	Belgium 2020-01-01 Europe	0	0	0	0 11422068
10 BRA 2.06e6	Brazil 2020-01-01 South Am~	0	0	0	0 209469333

... with 15,019 more rows, and 7 more variables: GDPCapita <dbl>, month <dbl>, week <dbl>,

- # CumCases <dbl>, CumDeaths <dbl>, CumRecovered <dbl>, CumTests <dbl>
- > # 2. Add two new variables to the master dataframe ("Active", "FatalityRate"). Active
- > # variable should reflect the infected cases that has not been closed yet (by either recovery
- > # or death), and it could be calculated from (CumCases (CumDeaths + CumRecovered)).
- > # On the other hand, FatalityRate variable should reflect the percentages of death to the
- > # infected cases up to date and it could be calculated from (CumDeaths / CumCases).

>

> library("dplyr")

- > covid19_cum <- covid19_cum %>%
- + arrange(Date, Country) %>%

- + group_by(Country) %>%
- + mutate(Active=(CumCases (CumDeaths + CumRecovered)),
 FatalityRate=(CumDeaths / CumCases))

>

> covid19_cum

A tibble: 15,029 x 19

Groups: Country [208]

Code Country Date Continent NewCases NewDeaths NewTests Recovered Population GDP

<chr><dbl></dbl></chr>	> <chr> <dbl></dbl></chr>	<date></date>	<chr></chr>	<dbl></dbl>	<db< th=""><th>ol> <</th><th>dbl></th><th><dbl></dbl></th></db<>	ol> <	dbl>	<dbl></dbl>
1 AFG	Afghani	~ 2020-01-0	01 Asia	0	0	0	0	37172386 2.20e4
2 DZA	Algeria	2020-01-01	Africa	0	0	0	0 4	12228429 1.68e5
3 ARM 1.15e4	Armeni	a 2020-01-0	01 Europe	0	0	0	0	2951776
4 AUS 1.41e6	Austral	~ 2020-01-0	1 Oceania	0	0	0	0	24992369
5 AUT	Austria	2020-01-01	. Europe	0	0	0	0	8847037 4.17e5
6 AZE 4.07e4	Azerbai	~ 2020-01-0)1 Europe	0	0	0	0	9942334
7 BHR	Bahrain	2020-01-0	1 Asia	0	0	0	0	1569439 3.53e4
8 BLR	Belarus	2020-01-01	L Europe	0	0	0	0	9485386 5.44e4
9 BEL 4.95e5	Belgium	2020-01-0	1 Europe	0	0	0	0	11422068
10 BRA 2.06e6	Brazil	2020-01-01	South Am~	0	0	0	(209469333

^{# ...} with 15,019 more rows, and 9 more variables: GDPCapita <dbl>, month <dbl>, week <dbl>,

FatalityRate <dbl>

[#] CumCases <dbl>, CumDeaths <dbl>, CumRecovered <dbl>, CumTests <dbl>, Active <dbl>,

> # 3. Add four new variables to the master dataframe ("Cases_1M_Pop", "Deaths_1M_Pop",

```
cumulative
> # relevant rate per one million of the corresponding country population, (i.e.
Cases 1M Pop
> # for country "X" at Date "Y" should reflect the total number of new cases up to
date "Y"
> # per million people of country "X" population)
> # [Hint: Cases 1M Pop = CumCases*(10^6) / Population)]
>
>
> covid19 cum <- covid19 cum %>%
+ arrange(Date, Country) %>%
  group by(Country) %>%
   mutate(Cases_1M_Pop=(CumCases*(10^6) / Population),
       Deaths 1M Pop=(CumDeaths*(10^6) / Population),
+
       Recovered 1M Pop=(CumRecovered*(10^6) / Population),
+
       Tests 1M Pop=(CumTests*(10^6) / Population))
+
> covid19 cum
# A tibble: 15.029 x 23
# Groups: Country [208]
 Code Country Date
                        Continent NewCases NewDeaths NewTests Recovered
Population GDP
 <chr> <chr>
                <date>
                          <chr>
                                    <dbl>
                                             <dbl>
                                                     <dbl>
                                                              <dbl>
<dbl> <dbl>
1 AFG Afghani~ 2020-01-01 Asia
                                      0
                                             0
                                                   0
                                                         0 37172386 2.20e4
                                                  0
2 DZA Algeria 2020-01-01 Africa
                                      0
                                            0
                                                        0 42228429 1.68e5
3 ARM Armenia 2020-01-01 Europe
                                        0
                                              0
                                                    0
                                                           0
                                                              2951776
1.15e4
4 AUS Austral~ 2020-01-01 Oceania
                                        0
                                              0
                                                    0
                                                          0 24992369
1.41e6
5 AUT Austria 2020-01-01 Europe
                                      0
                                             0
                                                   0
                                                         0 8847037 4.17e5
```

> # "Recovered 1M Pop", "Tests 1M Pop") These variables should reflect the

```
6 AZE Azerbai~ 2020-01-01 Europe
                                        0
                                              0
                                                    0
                                                          0 9942334
4.07e4
7 BHR Bahrain 2020-01-01 Asia
                                      0
                                                  0
                                            0
                                                            1569439 3.53e4
8 BLR Belarus 2020-01-01 Europe
                                       0
                                             0
                                                   0
                                                             9485386 5.44e4
                                                         0
9 BEL Belgium 2020-01-01 Europe
                                       0
                                              0
                                                    0
                                                          0 11422068
4.95e5
10 BRA Brazil 2020-01-01 South Am~
                                               0
                                                     0
                                                           0 209469333
                                         0
2.06e6
# ... with 15,019 more rows, and 13 more variables: GDPCapita <dbl>, month
<dbl>, week <dbl>,
# CumCases <dbl>, CumDeaths <dbl>, CumRecovered <dbl>, CumTests <dbl>,
Active <dbl>,
# FatalityRate <dbl>, Cases 1M Pop <dbl>, Deaths 1M Pop <dbl>,
Recovered 1M Pop <dbl>,
# Tests 1M Pop <dbl>
>
> # 4. Find the day with the highest reported death toll across the world. Print the
date and the
> # death toll of that day.
>
> covid19 Max cul Deaths toll <- covid19 cum %>%
+ group by(Date) %>%
  summarise(cul deaths toll per date=sum(CumDeaths)) %>%
   summarise(Date = Date[which.max(cul deaths toll per date)],
         max cul deaths toll=max(cul deaths toll per date))
+
> covid19 Max cul Deaths toll
# A tibble: 1 x 2
         max_cul_deaths toll
 Date
 <date>
                   <dbl>
1 2020-05-05
                    250970
>
```

```
> # This is for calculating the highest deaths record date across the world
> covid19 Max Deaths toll <- covid19 cum %>%
+ group by(Date) %>%
+ summarise(deaths toll per date=sum(NewDeaths)) %>%
  summarise(Date = Date[which.max(deaths toll per date)],
         max deaths toll per day=max(deaths toll per date))
+
> covid19 Max Deaths toll
# A tibble: 1 x 2
 Date
         max_deaths_toll_per_day
 <date>
                      <dbl>
1 2020-04-16
                       10520
> # 5. Build a graph to show how the cumulative data of (Infected Cases, Deaths,
Recovered.
> # Tests) change over the time for the whole world collectively.
> # [Hint: Use geom line, use log for Y axis for better presentation, Use different
colour to
> # distinguish between new cases, deaths, and recovered]
>
>
> max cum by country month <- covid19 cum %>%
+ group by(month, Country) %>%
+ summarise(highest cumcase=max(CumCases),
highest cumdeaths=max(CumDeaths),
         highest_cumrecovered=max(CumRecovered),
highest cumtest=max(CumTests))
`summarise()` has grouped output by 'month'. You can override using the `.groups`
argument.
```

> max_cum_by_country_month

A tibble: 747 x 6

Groups: month [5]

month Country highest_cumcase highest_cumdeaths highest_cumrecovered highest_cumtest

<	dbl> <chr></chr>	<dbl></dbl>	<dbl></dbl>	<dk< th=""><th>ol></th><th><dbl></dbl></th></dk<>	ol>	<dbl></dbl>
1	1 Afghanistan	0	0	0	0	
2	1 Algeria	0	0	0	0	
3	1 Armenia	0	0	0	0	
4	1 Australia	7	0	2	0	
5	1 Austria	0	0	0	0	
6	1 Azerbaijan	0	0	0	0	
7	1 Bahrain	0	0	0	0	
8	1 Belarus	0	0	0	0	
9	1 Belgium	0	0	0	0	
10	1 Brazil	0	0	0	0	

... with 737 more rows

>

>

>

> covid_graph <- max_cum_by_country_month %>%

+ group_by(month) %>%

+ summarise(ww_cum_cases=sum(highest_cumcase), ww_Deaths=sum(highest_cumdeaths),

+ ww_cum_Recovered=sum(highest_cumrecovered), ww_cum_Tests=sum(highest_cumtest))

>

> covid_graph

A tibble: 5 x 5

month ww_cum_cases ww_Deaths ww_cum_Recovered ww_cum_Tests

```
<dbl>
         <dbl>
                   <dbl>
                                <dbl>
                                          <dbl>
   1
          9826
                  213
                             222
                                     5199
1
2
   2
                  2915
                                       159078
         84498
                             39772
3
   3
      776582 37904
                              176549
                                        5720246
4
   4
        3131210 227328
                              1012926
                                         29230507
5
   5
        3543867 250970
                              1195347
                                         33829516
>
>
> require(dplyr)
> require(scales)
Loading required package: scales
Attaching package: 'scales'
The following object is masked from 'package:purrr':
  discard
The following object is masked from 'package:readr':
  col_factor
>
> covid graph <- covid graph %>%
+ gather(ww_cum_data, cum_value, -month)
> ggplot(covid_graph, aes(x=month, y=cum_value, group=ww_cum_data,
color=ww_cum_data)) +
+ theme_bw() +
```

```
+ geom_line() +
 geom point()+
  ggtitle("The world wide cumulative data for cases, deaths, recovered and Tests
number") +
+ scale_y_log10()
> # Another way (Group by Date)
>
> max_cum_by_country_Date <- covid19_cum %>%
  select(Date, Country, CumCases, CumDeaths, CumRecovered, CumTests) %>%
  group_by(Date) %>%
  summarise(case_date= sum(CumCases), test_date= sum(CumTests),
         recovered_date=sum(CumRecovered), death_date=sum(CumDeaths))
+
> max_cum_by_country_Date
# A tibble: 126 x 5
 Date
          case date test date recovered date death date
              <dbl>
                      <dbl>
                                  <dbl>
                                           <dbl>
 <date>
                                        0
                 27
                        5
                                  0
1 2020-01-01
2 2020-01-02
                 27
                        21
                                  0
                                         0
3 2020-01-03
                 44
                        39
                                  0
                                         0
4 2020-01-04
                 44
                        45
                                  0
                                         0
5 2020-01-05
                 59
                        59
                                  0
                                         0
6 2020-01-06
                 59
                        88
                                  0
                                         0
7 2020-01-07
                 59
                       115
                                   0
                                          0
8 2020-01-08
                 59
                       131
                                   0
                                          0
```

0

0

0

0

... with 116 more rows

59

59

176

215

9 2020-01-09

10 2020-01-10

>

```
> require(dplyr)
> require(scales)
>
> max cum by country Date <- max cum by country Date %>%
+ gather(ww cum data, cum value, -Date)
>
> ggplot(max_cum_by_country_Date, aes(x=Date, y=cum_value,
group=ww cum data, color=ww cum data)) +
+ theme_bw() +
+ geom line() +
+ ggtitle("The world wide cumulative data for cases, deaths, recovered and Tests
number (Date)") +
+ scale_y_log10()
Warning message:
Transformation introduced infinite values in continuous y-axis
> # 6. Extract the last day (05/05/2020) data and save it in a separate dataframe
called
> # "lastDay data".
> # [Hint: use filter function with Date = "2020-05-05"]
>
> Last day data <- covid19 cum %>%
+ filter(Date == "2020-05-05")
>
> Last day data
# A tibble: 207 x 23
# Groups: Country [207]
 Code Country Date
                        Continent NewCases NewDeaths NewTests Recovered
Population GDP
 <chr> <chr> <date>
                          <chr>
                                     <dbl>
                                              <dbl> <dbl>
                                                               <dbl>
<dbl> <dbl>
```

1 AFG 21992	Afghani-	~ 2020-05-05	Asia	190	5	0	24	3717238	6
2 ALB	Albania	2020-05-05 E	urope	8	0	0	0 2	2866376	13039
3 DZA 167555	•	2020-05-05 A	Africa	174	2	0	69 4	12228429	
4 AND	Andorra	2020-05-05	Europe	2	0	0	15	77006	3278
5 AGO	Angola	2020-05-05	Africa	0	0	0	0 30	809762	126505
6 AIA	Anguilla 2	2020-05-05 N	orth Am~	0	0	0	0	14731	311
7 ATG 1248	Antigua	~ 2020-05-05	North Am	~ 0	(0 0	1	9628	6
8 ARG 637486	_	~ 2020-05-05	South Am	~ 10	4	14	0	30 4449	94502
9 ARM 11536	Armenia	a 2020-05-05	Europe	121	4	0	40	29517	76
10 ABW 2664	/ Aruba	2020-05-05	North Am	~ 0	C	0	0	10584	15

... with 197 more rows, and 13 more variables: GDPCapita <dbl>, month <dbl>, week <dbl>,

CumCases <dbl>, CumDeaths <dbl>, CumRecovered <dbl>, CumTests <dbl>,
Active <dbl>,

FatalityRate <dbl>, Cases_1M_Pop <dbl>, Deaths_1M_Pop <dbl>,
Recovered_1M_Pop <dbl>,

- # Tests 1M Pop <dbl>
- > # 7. Based on the last day data, extract the whole records of the top 10 countries worldwide
- > # that have current active cases, total confirmed cases, and fatality rate in separate
- > # dataframes (i.e. top10activeW, top10casesW, top10fatalityW, top10testsMW).
- > # [Hint: you can use head(arranged_data, n=10) to get the top 10 records]

> # Current active case

- > top10activeW <- Last day data %>%
- + arrange(desc(Active)) %>%

+ head(top10activeW, n=10)

>

> top10activeW

A tibble: 10 x 23

Groups: Country [10]

Code Country Date Continent NewCases NewDeaths NewTests Recovered Population GDP

<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>

1 USA United ~ 2020-05-05 North Am~ 22593 1252 0 2611 327167434 1.95e7

2 GBR United ~ 2020-05-05 Europe 3985 288 69839 16 66488991 2.63e6

3 RUS Russia 2020-05-05 Europe 10581 76 157114 1770 144478050 1.53e6

4 ITA Italy 2020-05-05 Europe 1221 195 55263 2352 60431283 1.94e6

5 ESP Spain 2020-05-05 Europe 545 164 0 2143 46723749 1.31e6

6 FRA France 2020-05-05 Europe 576 306 0 1366 66987244 2.58e6

7 BRA Brazil 2020-05-05 South Am~ 6633 296 0 2406 209469333 2.06e6

8 TUR Turkey 2020-05-05 Asia 1614 64 33283 5119 82319724 8.52e5

9 NLD Netherl~ 2020-05-05 Europe 199 26 0 1 17231017 8.31e5

10 IND India 2020-05-05 Asia 3900 195 84713 1295 1352617328 2.58e6

... with 13 more variables: GDPCapita <dbl>, month <dbl>, week <dbl>, CumCases <dbl>,

CumDeaths <dbl>, CumRecovered <dbl>, CumTests <dbl>, Active <dbl>,
FatalityRate <dbl>,

Cases_1M_Pop <dbl>, Deaths_1M_Pop <dbl>, Recovered_1M_Pop <dbl>,
Tests_1M_Pop <dbl>

> # Total confirmed cases

>

> top10casesW <- Last day data %>%

+ arrange(desc(CumCases)) %>%

+ head(top10casesW, n=10)

>

> top10casesW

A tibble: 10 x 23

Groups: Country [10]

Code Country Date Continent NewCases NewDeaths NewTests Recovered Population GDP

<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>

1 USA United ~ 2020-05-05 North Am~ 22593 1252 0 2611 327167434 1.95e7

2 ESP Spain 2020-05-05 Europe 545 164 0 2143 46723749 1.31e6

3 ITA Italy 2020-05-05 Europe 1221 195 55263 2352 60431283 1.94e6

4 GBR United ~ 2020-05-05 Europe 3985 288 69839 16 66488991 2.63e6

5 DEU Germany 2020-05-05 Europe 685 139 0 2400 82927922 3.69e6

6 RUS Russia 2020-05-05 Europe 10581 76 157114 1770 144478050 1.53e6

7 FRA France 2020-05-05 Europe 576 306 0 1366 66987244 2.58e6

8 TUR Turkey 2020-05-05 Asia 1614 64 33283 5119 82319724 8.52e5

9 BRA Brazil 2020-05-05 South Am~ 6633 296 0 2406 209469333 2.06e6

10 IRN Iran 2020-05-05 Asia 1223 74 11255 1096 81800269 4.61e5

```
CumCases <dbl>.
# CumDeaths <dbl>, CumRecovered <dbl>, CumTests <dbl>, Active <dbl>,
FatalityRate <dbl>,
# Cases 1M Pop <dbl>, Deaths 1M Pop <dbl>, Recovered 1M Pop <dbl>,
Tests 1M Pop <dbl>
>
> # Fatality rate
>
> top10fatalityW <- Last day data %>%
+ arrange(desc(FatalityRate)) %>%
+ head(top10fatalityW, n=10)
> top10fatalityW
# A tibble: 10 x 23
# Groups: Country [10]
 Code Country Date
                       Continent NewCases NewDeaths NewTests Recovered
Population GDP
 <chr> <chr>
                <date>
                         <chr>
                                    <dbl>
                                            <ld>>
                                                    <dbl>
                                                             <dbl>
<dbl> <dbl>
1 NIC Nicarag~ 2020-05-05 North Am~
                                        1
                                               0
                                                    0
                                                          0
                                                             6465513
1.38e4
2 COM Comoros 2020-05-05 Africa
                                       1
                                             1
                                                  0
                                                            832322 6.48e2
3 FRA France 2020-05-05 Europe
                                     576
                                            306
                                                    0
                                                        1366 66987244
2.58e6
4 SXM
       Sint Ma~ 2020-05-05 North Am~
                                         0
                                               0
                                                     0
                                                           0
                                                               41486
1.06e3
5 YEM Yemen 2020-05-05 Asia
                                     2
                                           0
                                                 0
                                                       0 28498687 2.80e4
6 BEL Belgium 2020-05-05 Europe
                                     361
                                             80
                                                    0
                                                         63 11422068
4.95e5
7 GBR United ~ 2020-05-05 Europe
                                     3985
                                              288
                                                   69839
                                                             16 66488991
2.63e6
8 VGB British~ 2020-05-05 North Am~
                                        1
                                              0
                                                    0
                                                          0
                                                               29802
9.02e2
```

... with 13 more variables: GDPCapita <dbl>, month <dbl>, week <dbl>,

```
9 MNP Norther~ 2020-05-05 Oceania
                                    0
                                             0
                                                  0
                                                        0
                                                             56882 1.39e3
                                  1221
                                          195 55263
                                                        2352 60431283
10 ITA Italy 2020-05-05 Europe
1.94e6
# ... with 13 more variables: GDPCapita <dbl>, month <dbl>, week <dbl>,
CumCases <dbl>,
# CumDeaths <dbl>, CumRecovered <dbl>, CumTests <dbl>, Active <dbl>,
FatalityRate <dbl>,
# Cases 1M Pop <dbl>, Deaths 1M Pop <dbl>, Recovered 1M Pop <dbl>,
Tests 1M Pop <dbl>
>
> # Total tests
>
> top10testsW <- Last_day_data %>%
+ arrange(desc(CumTests)) %>%
+ head(top10testsW, n=10)
>
> top10testsW
# A tibble: 10 x 23
# Groups: Country [10]
 Code Country Date
                       Continent NewCases NewDeaths NewTests Recovered
Population GDP
 <chr> <chr>
                         <chr>
                                   <dbl>
                                           <dbl>
                                                           <dbl>
               <date>
                                                   <dbl>
<dbl> <dbl>
1 USA United ~ 2020-05-05 North Am~
                                     22593
                                              1252
                                                       0
                                                            2611
327167434 1.95e7
2 RUS Russia 2020-05-05 Europe
                                   10581
                                             76 157114
                                                           1770
144478050 1.53e6
3 DEU Germany 2020-05-05 Europe
                                             139
                                                     0
                                                         2400 82927922
                                      685
3.69e6
            2020-05-05 Europe
                                 1221
                                               55263
                                                        2352 60431283
4 ITA Italy
                                          195
1.94e6
5 ESP Spain 2020-05-05 Europe
                                   545
                                           164
                                                  0
                                                      2143 46723749
1.31e6
```

```
6 TUR Turkey 2020-05-05 Asia
                                   1614
                                                33283
                                                          5119 82319724
                                            64
8.52e5
7 IND India 2020-05-05 Asia
                                  3900
                                          195
                                                84713
                                                         1295 1352617328
2.58e6
8 GBR United ~ 2020-05-05 Europe
                                      3985
                                              288
                                                    69839
                                                              16 66488991
2.63e6
9 CAN Canada 2020-05-05 North Am~
                                                      21199
                                                               976
                                        1298
                                                172
37058856 1.65e6
                                             306
10 FRA France 2020-05-05 Europe
                                      576
                                                     0
                                                          1366 66987244
2.58e6
# ... with 13 more variables: GDPCapita <dbl>, month <dbl>, week <dbl>,
CumCases <dbl>,
# CumDeaths <dbl>, CumRecovered <dbl>, CumTests <dbl>, Active <dbl>,
FatalityRate <dbl>,
# Cases 1M Pop <dbl>, Deaths 1M Pop <dbl>, Recovered 1M Pop <dbl>,
Tests 1M Pop <dbl>
> # 8. Based on the last day data, print the up to date confirmed, death, recovered
cases as well
> # as the tests for every continent.
>
> up to date data <- Last day data %>%
+ group by(Continent) %>%
+ summarise(utd confirmed cases=sum(CumCases),
utd deaths=sum(CumDeaths),
+
        utd recovered=sum(CumRecovered), utd tests=sum(CumTests))
>
>
> up_to_date_data
# A tibble: 6 x 5
            utd confirmed cases utd deaths utd recovered utd tests
 Continent
 <chr>
                    <dbl>
                             <dbl>
                                        <dbl>
                                                <dbl>
1 Africa
                   47124
                            1845
                                      16317
                                              618154
2 Asia
                  567862
                            19991
                                      313323 6010340
```

```
1406374
                               141780
                                          537696 17013488
3 Europe
4 North America
                      1290176
                                  75981
                                             238452 8447832
5 Oceania
                      8579
                               122
                                               820684
                                         7313
                                  11251
                                             82246 919018
6 South America
                       223752
> # 9. Build a graph to show the total number of cases over the time for the top 10
countries that
> # have been obtained in question 7 (Use log for Y axis for better presentation).
> # [Hint: first you need to get the data of the top-10 countries and then plot their
lines]
>
>
> top10casesW$Country
[1] "United States of America" "Spain"
                                               "Italy"
[4] "United Kingdom"
                          "Germany"
                                               "Russia"
[7] "France"
                      "Turkev"
                                         "Brazil"
[10] "Iran"
> all_time_top10_data <- covid19_cum %>%
+ filter(Country %in% top10casesW$Country)
>
> all time top10 data
# A tibble: 1,186 x 23
# Groups: Country [10]
 Code Country Date
                        Continent NewCases NewDeaths NewTests Recovered
Population GDP
  <chr> <chr>
                                     <dbl>
                                              <dbl>
                                                               <dbl>
                <date>
                           <chr>
                                                      <dbl>
<dbl> <dbl>
1 BRA Brazil 2020-01-01 South Am~
                                                     0
                                                            0 209469333
                                         0
                                               0
2.06e6
2 FRA France 2020-01-01 Europe
                                        0
                                              0
                                                    0
                                                          0 66987244 2.58e6
3 DEU Germany 2020-01-01 Europe
                                         0
                                                0
                                                      0
                                                            0 82927922
3.69e6
```

```
4 IRN Iran
             2020-01-01 Asia
                                   0
                                         0
                                               0
                                                     0 81800269 4.61e5
                                    0
                                          0
                                                0
                                                      0 60431283 1.94e6
5 ITA Italy 2020-01-01 Europe
6 RUS Russia 2020-01-01 Europe
                                      0
                                            0
                                                  0
                                                        0 144478050
1.53e6
                                            0
                                                       0 46723749 1.31e6
7 ESP Spain 2020-01-01 Europe
                                     0
                                                 0
                                                         0 66488991
8 GBR United ~ 2020-01-01 Europe
                                       0
                                             0
                                                   0
2.63e6
9 USA United ~ 2020-01-01 North Am~
                                         0
                                               0
                                                     0
                                                           0 327167434
1.95e7
10 BRA Brazil 2020-01-02 South Am~
                                        0
                                              0
                                                    0
                                                          0 209469333
2.06e6
# ... with 1,176 more rows, and 13 more variables: GDPCapita <dbl>, month
<dbl>, week <dbl>,
# CumCases <dbl>, CumDeaths <dbl>, CumRecovered <dbl>, CumTests <dbl>,
Active <dbl>,
# FatalityRate <dbl>, Cases 1M Pop <dbl>, Deaths 1M Pop <dbl>,
Recovered 1M Pop <dbl>,
# Tests 1M Pop <dbl>
> unique(all time top10 data[c("Country")])
# A tibble: 10 x 1
# Groups: Country [10]
 Country
 <chr>
1 Brazil
2 France
3 Germany
4 Iran
5 Italy
6 Russia
7 Spain
8 United Kingdom
```

```
9 United States of America
10 Turkey
>
> all time top10 cases <- all time top10 data[ , c("Country", "Date", "NewCases",
"CumCases", "month")]
> all_time_top10_cases <- all_time_top10_cases %>%
+ group by(month, Country) %>%
+ summarise(highest_cumcases_top10=max(CumCases),
newcases top10=sum(NewCases))
`summarise()` has grouped output by 'month'. You can override using the `.groups`
argument.
> all_time_top10_cases
# A tibble: 48 x 4
# Groups: month [5]
 month Country
                          highest_cumcases_top10 newcases_top10
 <dbl> <chr>
                                    <dbl>
                                                <dbl>
1
    1 Brazil
                                   0
                                             0
    1 France
2
                                     6
                                              6
                                      5
3
    1 Germany
                                                5
4
                                   0
                                             0
    1 Iran
5
                                   3
                                            3
    1 Italy
6
    1 Russia
                                    0
                                              0
7
    1 Spain
                                    0
                                             0
                                        2
                                                  2
8
    1 United Kingdom
9
     1 United States of America
                                           6
                                                    6
10
     2 Brazil
                                    1
                                             1
# ... with 38 more rows
```

```
> ggplot(all_time_top10_cases, aes(x=month, y=highest_cumcases_top10,
group=Country, color=Country)) +
```

- + theme_bw() +
- + geom line() +
- + geom point() +
- + ggtitle("The world wide cumulative cases for top 10 countries") +
- + scale y log10()

Warning messages:

- 1: Transformation introduced infinite values in continuous y-axis
- 2: Transformation introduced infinite values in continuous y-axis
- > ggplot(all_time_top10_cases, aes(x=month, y=newcases_top10, group=Country, color=Country)) +
- + theme_bw() +
- + geom_line() +
- + geom point() +
- + ggtitle("The world wide new cases for top 10 countries") +
- + scale_y_log10()

Warning messages:

- 1: Transformation introduced infinite values in continuous y-axis
- 2: Transformation introduced infinite values in continuous y-axis
- > # 10. Build a graph for the top 10 countries with current highest active cases which was
- > # obtained previously in question 7. The graph should have one subgraph (i.e. using facet
- > # function) for each of these countries, every subgraph should show how the new cases, new
- > # deaths, and new recovered cases were changing over time (Use log for Y axis for better
- > # presentation, Use different colour to distinguish between new cases, deaths, and
- > # recovered).
- > # [hint: geom_line function with date on x_axis and each of the values of the variables in y_axis]

```
>
```

2.06e6

> top10activeW\$Country [1] "United States of America" "United Kingdom" "Russia" [4] "Italy" "Spain" "France" [7] "Brazil" "Turkey" "Netherlands" [10] "India" > > all time top10active data <- covid19 cum %>% + filter(Country %in% top10activeW\$Country) > all_time_top10active_data # A tibble: 1,185 x 23 # Groups: Country [10] Code Country Date Continent NewCases NewDeaths NewTests Recovered Population GDP <dbl> <chr> <chr> <date> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> 0 1 BRA Brazil 2020-01-01 South Am~ 0 0 0 209469333 2.06e6 2 FRA France 2020-01-01 Europe 0 66987244 2.58e6 0 0 0 3 IND India 2020-01-01 Asia 0 0 0 0 1352617328 2.58e6 4 ITA Italy 2020-01-01 Europe 0 0 0 60431283 1.94e6 0 5 NLD Netherl~ 2020-01-01 Europe 0 0 0 0 17231017 8.31e5 6 RUS Russia 2020-01-01 Europe 0 0 0 0 144478050 1.53e6 7 ESP Spain 2020-01-01 Europe 0 0 0 0 46723749 1.31e6 8 GBR United ~ 2020-01-01 Europe 0 0 0 0 66488991 2.63e6 9 USA United ~ 2020-01-01 North Am~ 0 0 0 0 327167434 1.95e7 10 BRA Brazil 2020-01-02 South Am~ 0 0 0 0 209469333

```
# ... with 1,175 more rows, and 13 more variables: GDPCapita <dbl>, month
<dbl>, week <dbl>,
# CumCases <dbl>, CumDeaths <dbl>, CumRecovered <dbl>, CumTests <dbl>,
Active <dbl>,
# FatalityRate <dbl>, Cases 1M Pop <dbl>, Deaths 1M Pop <dbl>,
Recovered 1M Pop <dbl>,
# Tests 1M Pop <dbl>
>
> all time top10active cases <- all time top10active data[ , c("Country", "Date",
"NewCases", "NewDeaths", "Recovered", "month")]
> all time top10active cases <- all time top10active cases %>%
+ group by(month, Country) %>%
+ summarise(newcases top10active=sum(NewCases),
newdeaths top10active=sum(NewDeaths),
         recovered top10active=sum(Recovered))
+
`summarise()` has grouped output by 'month'. You can override using the `.groups`
argument.
>
> all time top10active cases <- all time top10active cases %>%
+ gather(Top10active Data, value, -month, -Country)
> all time top10active cases
# A tibble: 144 x 4
# Groups: month [5]
 month Country
                          Top10active Data
                                             value
  <dbl> <chr>
                          <chr>
                                         <dbl>
1
    1 Brazil
                      newcases top10active
                                              0
2
    1 France
                        newcases top10active
                                               6
3
    1 India
                      newcases top10active
                                              1
4
    1 Italy
                      newcases top10active
5
    1 Netherlands
                          newcases top10active
                                                 0
```

```
6
    1 Russia
                       newcases_top10active
                                              0
7
    1 Spain
                      newcases_top10active
8
    1 United Kingdom
                           newcases_top10active
                                                  2
    1 United States of America newcases top10active
9
                                                    6
10
     2 Brazil
                      newcases top10active
# ... with 134 more rows
>
> top10activeW %>%
+ ggplot(aes(x=Country, y=Active, group=Country, color=Country, fill=Country))
+
+ geom_bar(stat='identity')+
+ theme bw()
> all_time_top10active_cases %>%
+ ggplot(aes(x=month, y=value, group=Top10active Data,
color=Top10active Data)) +
+ geom_line() +
+ theme_bw() +
+ facet_wrap(~Country, scale="free") +
+ scale_y_log10()
Warning message:
Transformation introduced infinite values in continuous y-axis
> #------TASK-3:DATA-DRIVEN MODELLING------#
> library(modelr)
> library(broom)
Attaching package: 'broom'
The following object is masked from 'package:modelr':
  bootstrap
```

- > # 1. Based on the data of the last day, that you have extracted in the previous task, create a
- > # separate dataframe named "cor data" with the data of these variables
- > # (CumCases, CumTests, Population, GDP, GDPCapita).
- > # [Hint: you can use select function on the lastday data dataframe]
- > cor_data <- Last_day_data[, c("CumCases", "CumTests", "Population", "GDP",
 "GDPCapita")]</pre>
- > cor data
- # A tibble: 207 x 5

CumCases CumTests Population GDP GDPCapita

```
<dbl> <dbl> <dbl> <dbl> <dbl>
```

- 1 2894 0 37172386 21992 619
- 2 803 0 2866376 13039 4450
- 3 4648 0 42228429 167555 4055
- 4 750 0 77006 3278 39153
- 5 35 0 30809762 126505 4247
- 6 3 0 14731 311 29493
- 7 25 0 96286 1248 14803
- 8 4874 58685 44494502 637486 14400
- 9 2507 0 2951776 11536 3937
- 10 100 0 105845 2664 25655
- # ... with 197 more rows
- > # 2. Compute the correlation matrix between the variables of the "cor_data" and visualise
- > # this correlation matrix.

>

> cor(cor_data)

CumCases CumTests Population GDP GDPCapita

CumCases 1.0000000 0.8897823 0.23201137 0.8515318 0.14270183

CumTests 0.8897823 1.0000000 0.23525764 0.7318026 0.14273118

```
Population 0.2320114 0.2352576 1.00000000 0.5642929 -0.07901111
        0.8515318 0.7318026 0.56429288 1.0000000 0.12807801
GDP
GDPCapita 0.1427018 0.1427312 -0.07901111 0.1280780 1.00000000
> library(GGally)
Registered S3 method overwritten by 'GGally':
 method from
 +.gg ggplot2
> ggcorr(cor data, label=TRUE, label alpha = TRUE)
> # 3. Divide the cor data into training and testing, where training data represent
65%
> # of the number of rows.
> sample idx <- sample(c(TRUE, FALSE), nrow(cor data), replace = T, prob =
c(0.65, 0.35)
> train <- cor_data[sample_idx, ]
> test <- cor_data[!sample_idx, ]</pre>
> train
# A tibble: 137 x 5
 CumCases CumTests Population GDP GDPCapita
   <dbl>
           <dbl>
                    <dbl> <dbl>
                                    <dbl>
     750
            0
                 77006 3278
1
                                39153
2
            0 30809762 126505
     35
                                   4247
3
      3
           0
                14731 311
                              29493
4
     25
            0
                 96286 1248
                                14803
5
    4874
           58685 44494502 637486
                                      14400
6
    2507
                 2951776 11536
                                   3937
7
     100
                 105845 2664
             0
                                 25655
8
    15621 285883 8847037 416835
                                       47718
9
    1984
             0 9942334 40748
                                   4146
```

```
10
      83
            0
                385640 11791
                                 29825
# ... with 127 more rows
>
> test
# A tibble: 70 x 5
 CumCases CumTests Population
                                 GDP GDPCapita
          <dbl>
                    <dbl> <dbl>
   <dbl>
                                    <dbl>
1
    2894
             0 37172386 21992
                                    619
2
    803
            0 2866376 13039
                                   4450
3
    4648
             0 42228429 167555
                                    4055
4
    6825 664756 24992369 1408675
                                       57613
5
    3533 155501 1569439 35325
                                     23688
6
     82
                286641 4353
            0
                                16494
7
                 63968 5601 102192
     115
            0
              0 209469333 2055512
   107780
                                       9821
9
      7
           0
                29802
                        902
                               31917
     1652
10
           50303 7024216 58222
                                      8218
# ... with 60 more rows
> # 4. Train a linear regression model to predict cumulative cases from the GDP of
the
> # countries. Then, evaluate this model on the test data and print the root mean
> # square error value.
>
> single_model <- lm(CumCases ~ GDP, data = train)
> print(single_model)
Call:
Im(formula = CumCases ~ GDP, data = train)
```

Coefficients:

```
(Intercept)
               GDP
-1.559e+03 5.746e-02
>
> summary(single model)
Call:
Im(formula = CumCases ~ GDP, data = train)
Residuals:
  Min
         1Q Median
                       3Q
                            Max
-263165 -315 1294 1590 144053
Coefficients:
        Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.559e+03 2.827e+03 -0.551 0.582
          5.746e-02 1.576e-03 36.447 <2e-16 ***
GDP
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 32330 on 135 degrees of freedom
Multiple R-squared: 0.9077, Adjusted R-squared: 0.9071
F-statistic: 1328 on 1 and 135 DF, p-value: < 2.2e-16
>
> #Test model on the test set
> test$Predicted_1 <- predict(single_model, test)</pre>
>
```

```
> # Compute the residual mean square error (RMSE) to evaluate the output of the
model.
>
> actuals <- test$CumCases
> predictions <- test$Predicted 1
> sqrt(mean((predictions-actuals)^2))
[1] 75431.51
> plot(single_model)
Hit <Return> to see next plot: plot(single_model)
Hit <Return> to see next plot: plot(single_model)
Hit <Return> to see next plot: plot(single model)
Hit <Return> to see next plot: plot(single model)
> # 5. Train another linear regression model to predict cumulative cases from all
the
> # other variables. Then, evaluate this model on the test data and print the root
> # mean square error value.
> multi model <- lm(CumCases ~ ., data = train)
> print(multi_model)
Call:
Im(formula = CumCases \sim ., data = train)
Coefficients:
(Intercept)
             CumTests Population
                                        GDP GDPCapita
-6.707e+02 4.822e-02 -9.689e-05 4.199e-02 -5.008e-02
```

```
>
> summary(multi_model)
Call:
Im(formula = CumCases \sim ., data = train)
Residuals:
  Min
         1Q Median
                       3Q Max
          102 1400 2832 104289
-183526
Coefficients:
        Estimate Std. Error t value Pr(>|t|)
(Intercept) -6.707e+02 2.706e+03 -0.248 0.805
            4.822e-02 5.258e-03 9.169 8.22e-16 ***
CumTests
Population -9.689e-05 1.842e-05 -5.259 5.68e-07 ***
GDP
         4.199e-02 2.328e-03 18.042 < 2e-16 ***
GDPCapita -5.008e-02 9.029e-02 -0.555 0.580
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 24410 on 132 degrees of freedom
Multiple R-squared: 0.9486, Adjusted R-squared: 0.947
F-statistic: 608.9 on 4 and 132 DF, p-value: < 2.2e-16
> # Test the second model on the testing data and evaluate its performance using
RMSE metrics
```

>

>

> test\$predicted_2 <- predict(multi_model, test)</pre>

```
> actuals <- test$CumCases
> predictions <- test$predicted 2
>
> sqrt(mean((predictions-actuals)^2))
[1] 39875.78
> plot(multi model)
Hit <Return> to see next plot: plot(multi model)
Hit <Return> to see next plot: plot(multi model)
Hit <Return> to see next plot: plot(multi_model)
Hit <Return> to see next plot: plot(multi_model)
> ggplot(cor_data, aes(GDP)) +
+ geom_histogram(aes(y = ..density..), fill = "aquamarine3") +
+ geom_density(color = "red")
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
> ggplot(cor_data, aes(GDPCapita)) +
+ geom_histogram(aes(y = ..density..), fill = "aquamarine3") +
+ geom_density(color = "red")
`stat bin()` using `bins = 30`. Pick better value with `binwidth`.
> ggplot(cor data, aes(CumTests)) +
+ geom histogram(aes(y = ..density..), fill = "aquamarine3") +
+ geom density(color = "red")
`stat bin()` using `bins = 30`. Pick better value with `binwidth`.
> ggplot(cor data, aes(Population)) +
+ geom histogram(aes(y = ..density..), fill = "aquamarine3") +
+ geom_density(color = "red")
`stat bin()` using `bins = 30`. Pick better value with `binwidth`.
> # For analysis:
> top10casesW %>%
```

```
+ ggplot(aes(x=Country, y=CumCases, group=Country, color=Country,
fill=Country)) +
+ geom_bar(stat='identity')+
+ theme_bw()
> top10casesW %>%
+ ggplot(aes(x=Country, y=CumCases, group=Country, color=Country,
fill=Country)) +
+ geom bar(stat='identity')+
+ theme bw()
> top10fatalityW %>%
+ ggplot(aes(x=Country, y=FatalityRate, group=Country, color=Country,
fill=Country)) +
+ geom_bar(stat='identity')+
+ theme_bw()
> top10testsW %>%
+ ggplot(aes(x=Country, y=CumTests, group=Country, color=Country,
fill=Country)) +
+ geom_bar(stat='identity')+
+ theme_bw()
>
```