Содержание

Задача А.	Фаброзавры-дизайнеры [3 секунды, 64 мегабайта]	2
Задача В.	Варенье [2 секунды, 256 мегабайт]	3
Задача С.	Substring Query [2 секунды, 512 мегабайт]	4
Задача D.	Мощные юнги [5 секунд, 256 мегабайт]	5
Задача Е.	Инверсии на отрезке [4 секунды, 64 мегабайта]	6
Задача F.	Ралли и штампы [2 секунды, 256 мегабайт]	7

Задача А. Фаброзавры-дизайнеры [3 секунды, 64 мегабайта]

Фаброзавры известны своим тонким художественным вкусом и увлечением ландшафтным дизайном. Они живут около очень живописной реки и то и дело перестраивают тропинку, идущую вдоль реки: либо насыпают дополнительной земли, либо срывают то, что есть. Для того, чтобы упростить эти работы, они поделили всю тропинку на горизонтальные участки, пронумерованные от 1 до N, и их переделки устроены всегда одинаково: они выбирают часть дороги от L-ого до R-ого участка (включительно) и изменяют (увеличивают или уменьшают) высоту на всех этих участках на одну и ту же величину (если до начала переделки высоты были разными, то и после переделки они останутся разными).

Поскольку, как уже говорилось, у фаброзавров тонкий художественный вкус, каждый из них считает, что их река лучше всего выглядит с определенной высоты. Поэтому им хочется знать, есть ли поблизости от их дома место на тропинке, где высота на их взгляд оптимальна. Помогите им в этом разобраться.

Формат входных данных

Первая строка входного файла содержит два числа N и M — длину дороги и количество запросов соответственно ($1 \le N, M \le 10^5$). На второй строке содержатся N чисел, разделенных пробелами — начальные высоты соответствующих частей дороги; высоты не превосходят 10^4 по модулю. В следующих M строках содержатся запросы по одному на строке.

Запрос + L R X означает, что высоту частей дороги от L-ой до R-ой (включительно) нужно изменить на X. При этом $1 \le L \le R \le N$, а $|X| \le 10^4$.

Запрос ? L R X означает, что нужно проверить, есть ли между L-ым и R-ым участками (включая эти участки) участок, где дорога проходит точно на высоте X. Гарантируется, что $1 \le L \le R \le N$, а $|X| \le 10^9$.

Формат выходных данных

На каждый запрос второго типа нужно вывести в выходной файл на отдельной строке одно слово «YES» (без кавычек), если нужный участок существует, и «NO» в противном случае.

стандартный ввод	стандартный вывод
10 5	NO
0 1 1 3 3 3 2 0 0 1	YES
? 3 5 2	YES
+ 1 4 1	
? 3 5 2	
+ 7 10 2	
? 9 10 3	

Задача В. Варенье [2 секунды, 256 мегабайт]

Малыш и Карлсон решили пойти на прогулку. Они знают, что прогулка будет совсем скучной, если перед ней не опустошить несколько банок варенья.

Малыш достал из кладовки N банок варенья и выставил их в ряд. В банке номер i содержится ровно a_i грамм варенья. Карлсон немного подумал и решил, что в некоторых банках недостаточно варенья, и что в банке номер i должно быть хотя бы b_i грамм варенья.

Выходить из этой ситуации Карлсон хочет в M этапов. На каждом этапе он выбирает числа $l,\,r,\,x$ и $y,\,$ а затем выполняет следующие операции: в банку номер l он добавляет x грамм варенья, в банку номер l+1-x+y грамм варенья, в банку номер $l+2-x+2\cdot y,\,$ и так далее. В банку номер r наш герой добавит $x+y\cdot (r-l)$ грамм варенья.

Малышу хочется определить для каждой банки i наименьший номер операции, после которой в ней станет хотя бы b_i грамм варенья. Помогите Малышу: найдите соответствующее число для каждой банки.

Формат входных данных

В первой строке входного файла задано одно число N ($1 \le n \le 10^5$) — количество банок. Во второй строке заданы N чисел a_i ($0 \le a_i \le 2 \cdot 10^9$) — изначальное количество варенья в банке номер i. В третьей строке заданы N чисел b_i ($0 \le b_i \le 2 \cdot 10^9$) — минимальное количество варенья, которое должно быть в банке номер i.

В четвертой строке задано M ($0 \le M \le 10^5$) — число этапов добавления варенья в банки, которые выполнит Карлсон. В следующих M строках описаны сами этапы в хронологическом порядке. Каждый этап задан четырьмя числами l, r, x и y ($1 \le l \le r \le N$, $0 \le x, y \le 3 \cdot 10^5$).

Формат выходных данных

Выведите N чисел в одной строке, разделенные пробелом. Число номер i должно быть равно нулю, если в банке номер i изначально было достаточно варенья, номеру этапа, после которого в ней станет хотя бы b_i варенья, или -1, если даже после выполнения всех этапов, в этой банке будет недостаточно варенья. Этапы нумеруются с единицы.

стандартный ввод	стандартный вывод
5	1 2 0 3 -1
5 4 4 2 1	
7 7 4 7 7	
3	
1 2 2 0	
2 5 1 1	
3 4 2 2	

Задача С. Substring Query [2 секунды, 512 мегабайт]

У Пупы есть n строк S_1, S_2, \ldots, S_n Однажды его друг Лупа пришёл в бухгалтерию и попросил его ответить на q вопросов: сколько строк среди $S_{l_i}, S_{l_i+1}, \ldots, S_{r_i}$ содержат P_i как подстроку? Но в бухгалтерии все перепутали, и ответить на запросы за Пупу придется Вам.

Формат входных данных

На первой строке 2 целых числа n,q $(1 \leqslant n,q \leqslant 200\,000)$. Каждая из следующих n строк содержит ровно одну строку S_i $(|S_1| + |S_2| + \cdots + |S_n| \leqslant 200\,000)$. Последние q строк содержат запросы. Каждый запрос задаётся двумя целыми числами l_i, r_i и строкой P_i . $(1 \leqslant l_i \leqslant r_i \leqslant n, |P_1| + |P_2| + \cdots + |P_n| \leqslant 200\,000)$ Все строки состоят из букв "a" и "b".

Формат выходных данных

На каждый вопрос выведите одно число – ответ на вопрос.

стандартный ввод	стандартный вывод
4 2	2
a	2
b	
ab	
bab	
1 3 a	
1 4 ab	

Задача D. Мощные юнги [5 секунд, 256 мегабайт]

Имеется список из n юнг, для каждого из которых известен его рост a_1, a_2, \ldots, a_n . Рассмотрим некоторый его подсписок $a_l, a_{l+1}, \ldots, a_r$, где $1 \le l \le r \le n$, и для каждого натурального числа s обозначим через K_s число юнг с ростом s в этом подсписке. Назовем мощностью подсписка сумму произведений $K_s \cdot K_s \cdot s$ по всем различным натуральным s. Так как количество различных чисел в массиве конечно, сумма содержит лишь конечное число ненулевых слагаемых.

Необходимо вычислить мощности каждого из t заданных подсписков.

Формат входных данных

Первая строка содержит два целых числа n и t $(1 \le n, t \le 200000)$ — длина списка и количество запросов соответственно.

Вторая строка содержит n натуральных чисел a_i $(1 \le a_i \le 10^6)$ — рост юнг.

Следующие t строк содержат по два натуральных числа l и r $(1 \le l \le r \le n)$ — индексы левого и правого концов соответствующего подсписка.

Формат выходных данных

Выведите t строк, где i-ая строка содержит единственное натуральное число — мощность подсписка i-го запроса.

стандартный ввод	стандартный вывод
3 2	3
1 2 1	6
1 2	
1 3	
8 3	20
1 1 2 2 1 3 1 1	20
2 7	20
1 6	
2 7	

Задача Е. Инверсии на отрезке [4 секунды, 64 мегабайта]

Дана перестановка из n элементов.

Ответьте на m запросов про число инверсий для подотрезка перестановки от l до r.

Инверсией называется пара индексов i,j такая, что i < j и $a_i > a_j$, где a_i - это i-ый элемент перестановки.

Формат входных данных

В первой строке задано число $n\ (1\leqslant n\leqslant 10^5).$

Во второй строке задана перестановка из n элементов (элементы перестановки — попарно различные целые числа от 1 до n).

В третьей строке задано число $m \ (1 \leqslant m \leqslant 10^5)$.

В последующих m строках содержится по два числа, l и r, границы запроса $(1 \le l, r \le n)$.

Формат выходных данных

Выведите m строк, ответы на данные запросы.

стандартный ввод	стандартный вывод
5	2
4 5 2 3 1	2
3	8
1 3	
3 5	
1 5	
6	1
5 2 4 3 1 6	4
4	8
4 6	8
2 5	
1 5	
1 6	

Задача F. Ралли и штампы [2 секунды, 256 мегабайт]

Дан связный неориентированный граф с n вершинами и m рёбрами. Вершины пронумерованы от 1 до n, а рёбра пронумерованы от 1 до m, где i-е ребро соединяет вершины a_i и b_i .

На этом графе q команд из двух человек участвует в ралли со штампами. Ралли для i-й команды выглядит следующим образом:

- Один участник команды начинается в вершине x_i , другой в вершине y_i .
- Оба из них исследуют граф, двигаясь по рёбрам. Им нужно посетить суммарно z_i вершин, включая их начальные вершины. При этом, если каждая вершина учитывается не более одного раза, даже если она посещалась несколько раз или посещалась обоими участниками команды.
- Оценка команды определяется как наибольший номер ребра, по которому кто-то из них прошёл. Их цель минимизировать это значение.

Найти минимально возможный балл для каждой пары.

Формат входных данных

Первая строка содержит два целых числа n и m $(3 \le n \le 10^5, n-1 \le m \le 10^5)$ — количество вершин и рёбер в графе.

Каждая из следующих m строк содержит два целые числа a_i и b_i $(1 \le a_i < b_i \le n)$, задающие рёбра графа.

Следующая строка содержит одно целое число q ($1 \le q \le 10^5$) — количество команд.

Каждая из следующих q строк содержит три целых числа x_i , y_i и z_i ($1 \leqslant x_i < y_i \leqslant n$, $3 \leqslant z_i \leqslant n$), задающие начальные вершины для участников очередной команды и требуемое число вершин для посещения.

Гарантируется, что граф является связным.

Формат выходных данных

Для каждой команды выведите одно целое число — их минимально возможный результат.

стандартный ввод	стандартный вывод
5 6	1
2 3	2
4 5	3
1 2	1
1 3	5
1 4	5
1 5	
6	
2 4 3	
2 4 4	
2 4 5	
1 3 3	
1 3 4	
1 3 5	