

CHIP DESIGN AND USE

Anandha Gopalan (with thanks to N. Dulay and E. Edwards)

axgopala@imperial.ac.uk

Integrated Circuits

- All ICs (chips) are made up of logic gates
- Are square pieces of silicon onto which logic gates have been deposited
- Generally two rows of pins enable connection onto a larger circuit

IC – Sizes

Name	Abbreviation	Number of Gates
Small Scale Integrated	SSI	1-10
Medium Scale Integrated	MSI	10-100
Large Scale Integrated	LSI	100-100,000
Very Large Scale Integrated	VLSI	>100,000

Example SSI Chips

7400 - Nand Gates

7404 – hex inverter

The 7400 TTL series

Example Circuit with SSI/MSI Chips

- A multiple-input, single-output switch
- Also called MUX for short ©

- sel selects which of I₀ or I₁ is mapped to the output
- For example, sel = 0 selects I₀ and sel = 1 selects I₁
- Example is called a 2-to-1 MUX
- With n *selects*/control lines, we can have 2ⁿ input lines

2-to-1 Multiplexer

Source: http://www.sparkfun.com/tutorials/371

Truth Table

Α	В	X	A • X'	B•X	Υ
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	0	0	0
0	1	1	0	1	1
1	0	0	1	0	1
1	0	1	0	0	0
1	1	0	1	0	1
1	1	1	0	1	1

The 3 inputs A, B, C select which of the input lines (D₀-D₇) is copied through to the output F

 In general, a multiplexer has 2ⁿ inputs and n control lines and one output

 Fits nicely into a 14-pin package (with ground and +5V)

- A single-input, multiple-output switch
 - Opposite of a MUX
- Also called DEMUX ©
- Usually used in conjunction with a MUX

MSI Chips – Decoder

- A multiple-input, multiple-output logic circuit
 - Converts coded inputs into coded outputs
 - Binary Decoder has n inputs and 2ⁿ outputs
 - Necessary in applications such as data multiplexing and memory address decoding

MSI Chips – Decoder

- Only one output is 1 the one selected by the n-bit binary input number – the rest are zero
- Useful in transmitting line selection with fewer wires (e.g. selecting a memory chip)

MSI Chips – Decoder

Truth Table

Α	В	С	D ₇	D_6	D ₅	D ₄	D_3	D ₂	D ₁	D_0
0	0	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	1	0	0	0	0	0	0	1	0	0
0	1	1	0	0	0	0	1	0	0	0
1	0	0	0	0	0	1	0	0	0	0
1	0	1	0	0	1	0	0	0	0	0
1	1	0	0	1	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0

MSI Chips – Calculations – Comparator

- To compare two numbers
- Example: 1-bit comparison
 - Which gate to use?
 - Recall:

A	В	XOR
0	0	0
0	1	1
1	0	1
1	1	0

MSI Chips – Calculations – Comparator

The comparator returns 1
if the two n-bit inputs A and
B are equal, 0 otherwise

The Arithmetic Logic Unit (ALU)

- Digital circuit that performs arithmetic and logical operations
- Fundamental building block of the central processing unit (CPU) of a computer
 - Even the simplest microprocessors contain one for purposes such as maintaining timers
 - Processors found inside modern CPUs and graphics processing units (GPUs) accommodate very powerful and very complex ALUs
- Concept proposed in 1945 by Mathematician John von Neumann
- Research into ALUs remains an important part of computer science

ALU

• Recall: Full Adder

A	В	Carry In	Sum	Carry out
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

The Arithmetic Logic Unit (ALU)

- The ALU is able to perform multiple functions
- Depending on the input to the decoder (F₀,F₁) one of four functions is selected – A and B, A or B, not B, arithmetic A+B

8-bit ALU

- Can link together 1-bit ALUs to form a multi-bit ALU
 - Sometimes known as bit-slice circuits

Memory

- Useful variation on the SR latch circuit is the Data latch, or D latch
- Constructed by using the inverted S input as the R input signal
 - Allows for a single input → No race condition as input is inverted

Memory Chips

- The memory chip shown here comprises 12 D-latches in a 4x3 configuration
- The 3 bit data will be read or written to one of the four words selected by the input lines A₀/A₁
- A₀/A₁ are the address lines and I_n/O_n are the input/output data lines
- In fact, input and output are never used at the same time
 - Chips use the same pins for input and output

Memory Chips – Potential Layout

CPU Design – VLSI

Contains millions of gates – same structure as below

CPU Design – VLSI

