Problem 1

(a) Let (X, μ) be a measure space. For $f: X \to [0, +\infty]$ measurable, we define a measure ν by $\nu(E) = \int_E f \, d\mu$ where $E \subseteq X$ is measurable. If $g: X \to \mathbb{C}$ is measurable, show that $g \in L^1(X, \nu)$ if and only if $gf \in L^1(X, \mu)$ and that $\int g \, d\nu = \int f g \, d\mu$ for all $g \in L^1(X, \nu)$.

Proof.

 \Longrightarrow : Suppose $g \in L^1(X, \nu)$, so $\int |g| d\nu < +\infty$. Thus $|g| \in L^+(X, \nu)$, so by problem 5 on homework 4, $\int |g| d\nu = \int |g| f d\mu = \int |gf| d\mu$, so $gf \in L^1(X, \mu)$.

 \Longrightarrow : Suppose $gf \in L^1(X,\mu)$. So $\int |g| d\nu = \int |g| f d\mu = \int |gf| d\mu < +\infty$, whence $g \in L^1(X,\nu)$.

Now let $g \in L^1(X, \nu)$ and write g = u + iv where u = Re(g) and v = Im(g). Let u^+, u^-, v^+, v^- be the positive and negative parts of u and v respectively. As $g \in L^1(X, \nu)$, each of these functions are in $L^+(X, \nu)$. Then, using nonnegativity of these functions and problem 5 of homework 4,

$$\int g \, d\nu = \int u \, d\nu + i \int v \, d\nu = \int u^+ \, d\nu - \int u^- \, d\nu + i \int v \, d\nu - i \int v \, d\nu$$
$$= \int u^+ f \, d\mu - \int u^- f \, d\mu + i \int v^+ f \, d\mu - i \int v^- f \, d\mu = \int g f \, d\mu.$$

(b) Let $(X, \Sigma), (Y, \mathcal{F})$ be measurable spaces and let $\mu : \Sigma \to [0, +\infty]$ be a measure. Let $\phi : X \to Y$ be measurable. If $f : Y \to \mathbb{C}$ is measurable, show that $f \in L^1(Y, \phi_*(\mu))$ if and only if $f \circ \phi \in L^1(X, \mu)$ and that $\int f d(\phi_*(\mu)) = \int f \circ \phi d\mu$ for all $f \in L^1(Y, \phi_*(\mu))$.

Proof.

 \Longrightarrow : Suppose that $f \in L^1(Y, \phi_*(\mu))$. Then

$$\int |f| \, d(\phi_*(\mu)) < +\infty$$

Problem 2

Let $f(x) = x^{-1/2}$ if 0 < x < 1, f(x) = 0 otherwise. Let $(r_n)_{n=1}^{\infty}$ be an enumeration of the rationals, and set $g(x) = \sum_{n=1}^{\infty} 2^{-n} f(x - r_n)$.

- (a) Show that $g \in L^1(m)$, and in particular that $g < \infty$ a.e.
- (b) Prove that g is discontinuous at every point and unbounded on every interval, and it remains so after any modification on a Lebesgue null set.
- (c) Prove that $g^2 < \infty$ almost everywhere, but g^2 is not integrable on any interval.

Problem 3

Compute the following limits and justify the calculations:

(a) $\lim_{n\to\infty} \int_0^\infty (1+(x/n))^{-n} \sin(x/n) dx$.

Proof. Let $f_n(x) = (1 + (x/n))^{-n} \sin(x/n)$ for $x \in [0, +\infty)$. Then for all $x \in [0, +\infty)$, $f(x) := \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} f_n(x)$ $0/e^x = 0$, so $\int f(x) dx = 0$. On the other hand, we estimate via cherrypicking terms in the binomial expansion that for $n \in \mathbb{N} \setminus \{1\}$,

$$|f_n| = \frac{|\sin(\frac{x}{n})|}{(1+\frac{x}{n})^n} \le \frac{1}{(1+\frac{x}{n})^n} \le \frac{1}{1+\binom{n}{2}x^2} \le \frac{1}{1+x^2}$$

which is in L^1 . Hence, by the dominated convergence theorem, $\lim_{n\to\infty} \int_0^\infty f_n(x) dx = \int_0^\infty f(x) dx = 0$.

(b) $\lim_{n\to\infty} \int_0^1 (1+nx^2)(1+x^2)^{-n} dx$.

Proof. Let $f_n(x) = (1 + nx^2)(1 + x^2)^{-n}$ on [0, 1]. Let $f(x) = \lim_{n \to \infty} (1 + nx^2)(1 + x^2)^{-n} = \text{By Bernoulli's}$ inequality, for $n \in \mathbb{N}$

$$|f_n| \le (1+x^2)^n (1+x^2)^{-n} = 1$$

which is in $L^1([0,1],m)$. Thus, by the dominated convergence theorem

$$\lim_{n \to \infty} \int_0^1 f_n(x) \, dx = \int_0^1 \lim_{n \to \infty} (1 + nx^2)(1 + x^2)^{-n} = \int_0^1 \lim_{n \to \infty} \frac{x^2}{(1 + x^2)^n \ln(1 + x^2)2x} \, dx = 0.$$

(c) $\lim_{n\to\infty} \int_0^\infty n \sin(x/n) [x(1+x^2)]^{-1} dx$

Proof. Let $f_n(x) = n \sin(x/n)[x(1+x^2)]^{-1}$ and $f(x) = \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \frac{\cos(x/n)}{1+x^2} = \frac{1}{1+x^2}$. For $n \in \mathbb{N}$, note that

$$|f_n| \le \frac{1}{1+x^2}$$

which is in L^+ , so by the dominated convergence theorem $\lim_{n\to\infty}\int_0^\infty n\sin(x/n)[x(1+x^2)]^{-1}\,dx=\int_0^\infty \frac{1}{1+x^2}\,dx=\int_0^\infty \frac{1}{1+x^2}\,dx$ $\pi/2$.

(d) $\lim_{n\to\infty} \int_a^\infty n(1+n^2x^2)^{-1} dx$.

Proof. We compute

$$\int_{a}^{\infty} n(1+n^2x^2)^{-1} dx = \int_{na}^{\infty} \frac{1}{1+x^2} dx = \frac{\pi}{2} - \arctan(na).$$

If a > 0, $\lim_{n \to \infty} \frac{\pi}{2} - \arctan(na) = 0$.

If a = 0, $\lim_{n \to \infty} \frac{\pi}{2} = \frac{\pi}{2}$. If a < 0, $\lim_{n \to \infty} \frac{\pi}{2} - \arctan(na) = \frac{\pi}{2} - (-\frac{\pi}{2}) = \pi$.

Problem 4

(a) Suppose $\mu(X) < \infty$. If f and g are complex-valued measurable functions on X, define

$$\rho(f,g) = \int \frac{|f-g|}{1+|f-g|} d\mu.$$

Then ρ is a metric on the space of measurable functions if we identify functions that are equal a.e., and $f_n \to f$ with respect to this metric if and only if $f_n \to f$ in measure.

(b) Suppose (X, μ) is a finite measure space. Let ρ be the metric in (a). Show that a sequence of measurable functions $f_n: X \to \mathbb{C}$ is Cauchy in measure if and only if it is Cauchy with respect to ρ .

Problem 5

Suppose that $|f_n| \leq g \in L^1$ and $f_n \to f$ in measure.

- (a) Prove that $\int f d\mu = \lim_{n\to\infty} \int f_n d\mu$.
- (b) Prove that $f_n \to f$ in L^1 .

Problem 6

If $f:[a,b]\to\mathbb{C}$ is Lebesgue measurable and $\varepsilon>0$, there is a compact set $E\subseteq[a,b]$ such that $\mu(E^c)<\varepsilon$ and $f|_E$ is continuous. (*Hint*: Use Egoroff's theorem and Theorem 2.26)