

-175-

WHAT IS CLAIMED IS:

1. A compound of Formula I:

5

(I)

10 wherein:

D¹ is a C₁-C₃ alkane-diyl;

D² is CH or nitrogen;

15

D⁴ is oxygen or sulfur;

R¹ is phenyl,

which phenyl is optionally substituted with one to three substituents

20 independently selected from the group consisting of halo, C₁-C₄ alkyl, C₁-C₄ alkoxy, cyano, difluoromethyl, trifluoromethyl, and trifluoromethoxy;

25 R² is selected from the group consisting of hydroxy, C₁-C₄ alkyl, optionally substituted phenyl, naphthyl, C₃-C₁₀ cycloalkyl, pyridyl, optionally substituted pyrrolidinyl,

optionally substituted piperidinyl,

which C₁-C₄ alkyl is optionally substituted with hydroxy, C₁-C₂ alkoxy, optionally substituted phenyl, pyridyl, -NR⁶R⁷, or naphthyl;

-176-

which pyridyl is further optionally substituted with one to two halo, C₁-C₃ alkyl;

R³ is C₁-C₄ alkyl, optionally substituted phenyl, -C(O)-R⁴, or -S(O)₂-R⁴,

5 which C₁-C₄ alkyl is further optionally substituted with R⁴;

R⁴ is optionally substituted phenyl;

or R² and R³, together with the nitrogen to which they are attached, form a 4-11

10 membered heterocyclic ring,

which heterocyclic ring is further optionally substituted with one to four substituents independently selected from the group consisting of optionally substituted phenyl, C₃-C₆ cycloalkyl, pyridyl, halo, hydroxy, oxo, and C₁-C₄ alkyl;

15

wherein the C₁-C₄ alkyl is further optionally substituted with one to two substituents selected from the group consisting of C₁-C₃ alkoxy, optionally substituted phenyl, oxo, phenoxy, pyridyl, and pyrrolidinyl;

20 R⁶ and R⁷ are each independently hydrogen, C₁-C₄ alkyl, -S(O)₂-CH₃, or C₁-C₄ alkoxy carbonyl, or R⁶ and R⁷, together with the nitrogen to which they are attached, form a 4-7 membered saturated heterocyclic ring;

25 R⁵ is hydrogen, halo, trifluoromethyl, C₁-C₄ alkyl, C₁-C₄ alkoxy, C₃-C₆ cycloalkyl, furyl, pyrazolyl, imidazolyl, -NR¹³R¹⁴, pyridyloxy, benzyloxy, phenyl, phenoxy, pyrrolyl, thienyl, phenylthio, or anilino,

30 which phenyl, phenoxy, pyrrolyl, thienyl, phenylthio, or anilino group may be optionally substituted on the ring with one to two substituents independently selected from the group consisting of halo, C₁-C₄ alkyl, C₁-C₄ alkoxy, trifluoromethyl, and -S(O)_q(C₁-C₄ alkyl),

-177-

or R⁵ is a radical selected from the group consisting of:

, and

5 wherein

W is a bond, -CHR¹⁵-, -C(O)-, -O-, -NR¹⁵-, or -S(O)_q-;

q is 0, 1, or 2;

10

R¹⁵ is selected from the group consisting of hydrogen, hydroxy, C₁-C₄ alkyl, acetyl, carbamoyl, phenyl, benzyl, and -S(O)₂CH₃;

Z¹, Z², and Z³ are each independently CH or nitrogen;

15

R¹³ and R¹⁴ are each independently hydrogen, C₁-C₄ alkyl, -S(O)₂-CH₃ or C₃-C₆ cycloalkyl;

20 wherein the C₁-C₄ alkyl is optionally substituted with one C₁-C₂ alkoxy or di(C₁-C₂ alkyl)amino;

or R¹³ and R¹⁴, together with the nitrogen to which they are attached, form a 4-7 membered saturated heterocyclic ring;

25 which 4-7 membered saturated heterocyclic ring is further optionally substituted with one to two C₁-C₂ alkyl;

or a pharmaceutically acceptable salt thereof;

with the proviso that the following compounds are not claimed:

[5-methyl-1-(3-pyrrolidin-1-ylpropyl)-1H-1,2,3-triazol-4-yl]piperazin-1-yl-methanone; {1-[2-(4-nitrophenyl)ethyl]-5-methyl-1H-1,2,3-triazol-4-yl}piperazin-1-yl-methanone; [1-(4-methoxybenzyl)-5-methyl-1H-1,2,3-triazol-4-yl]piperazin-1-yl-methanone; [5-methyl-1-(3-imidazol-1-ylpropyl)-1H-1,2,3-triazol-4-yl]piperazin-1-yl-methanone; (5-methyl-1-benzyl-1H-1,2,3-triazol-4-yl)piperazin-1-yl-methanone; (1-benzyl-5-methyl-1H-1,2,3-triazol-4-yl)-1,4-diazepan-1-yl-methanone;

5 [1-(3,5-bis-trifluoromethyl-benzyl)-5-morpholin-4-yl-1H-[1,2,3]triazol-4-yl]-morpholin-4-yl-methanone; 1-(3,5-bis-trifluoromethyl-benzyl)-5-pyridin-4-yl-1H-[1,2,3]triazole-4-carboxylic acid (2-amino-ethyl)-(2-chloro-benzyl)-amide dihydrochloride; 1-(3,5-bis-trifluoromethyl-benzyl)-5-morpholin-4-yl-1H-[1,2,3]triazole-4-carboxylic acid (2-amino-ethyl)-(2-chloro-benzyl)-amide hydrochloride; 1-(3,5-bis-trifluoromethyl-benzyl)-5-morpholin-4-yl-1H-[1,2,3]triazole-4-carboxylic acid (2-amino-ethyl)-[1-(2-chlorophenyl)-ethyl]-amide dihydrochloride; 1-(3,5-bis-trifluoromethyl-benzyl)-5-pyridyl-4-yl-1H-[1,2,3]triazole-4-carboxylic acid (2-amino-ethyl)-[1-(2-chloro-phenyl)-ethyl]-amide dihydrochloride;

10 {2-[[1-(3,5-bis-trifluoromethyl-benzyl)-5-pyridin-4-yl-1H-[1,2,3]triazole-4-carbonyl]-(2-chloro-benzyl)-amino]-ethyl}-carbamic acid tert-butyl ester; {2-[[1-(3,5-bis-trifluoromethyl-benzyl)-5-chloro-1H-[1,2,3]triazole-4-carbonyl]-(2-chloro-benzyl)-amino]-ethyl}-carbamic acid tert-butyl ester; (2-{[1-(3,5-bis-trifluoromethyl-benzyl)-5-chloro-1H-[1,2,3]triazole-4-carbonyl]-[1-(2-chloro-phenyl)-ethyl]-amino}-ethyl)-carbamic acid tert-butyl ester; (2-{[1-(3,5-bis-trifluoromethyl-benzyl)-5-pyridin-4-yl-1H-[1,2,3]triazole-4-carbonyl]-[1-(2-chloro-phenyl)-ethyl]-amino}-ethyl)-carbamic acid tert-butyl ester; {2-[[1-(3,5-bis-trifluoromethyl-benzyl)-5-morpholin-4-yl-1H-[1,2,3]triazole-4-carbonyl]-(2-chloro-benzyl)-amino]-ethyl}-carbamic acid tert-butyl ester; and (2-{[1-(3,5-bis-trifluoromethyl-benzyl)-5-morpholin-4-yl-1H-[1,2,3]triazole-4-carbonyl]-[1-(2-chloro-phenyl)-ethyl]-amino}-ethyl)-carbamic acid tert-butyl ester.

15

2. The compound of **Claim 1** wherein D⁴ is oxygen.

30 3. The compound of **Claim 1 or 2** wherein D² is nitrogen.

4. The compound of **Claims 1-3** wherein D¹ is methylene.

5. The compound of **Claims 1-4** wherein R¹ is 3,5-bis-trifluoromethyl-phenyl.
6. The compound of **Claims 1-5** wherein R⁵ is phenyl.
5
7. The compound of **Claims 1-6** wherein R² is C₁-C₄ alkyl, which is optionally substituted with optionally substituted phenyl.
10
8. The compound of **Claim 7** wherein R² is 2-chloro-benzyl.
10
9. The compound of **Claims 1-8** wherein R³ is C₁-C₄ alkyl, which C₁-C₄ alkyl is optionally substituted with R⁴.
15
10. The compound of **Claim 9** wherein R³ is methyl.
15
11. The compound of **Claims 1-6** wherein R² and R³, together with the nitrogen to which they are attached, form a 4-11 membered heterocyclic ring, which heterocyclic ring is further optionally substituted with one to four substituents independently selected from the group consisting of optionally substituted phenyl, C₃-C₆ cycloalkyl, pyridyl, halo, hydroxy, oxo, and C₁-C₄ alkyl,
20 wherein the C₁-C₄ alkyl is further optionally substituted with one to two substituents selected from the group consisting of C₁-C₃ alkoxy, optionally substituted phenyl, oxo, phenoxy, pyridyl, and pyrrolidinyl.
25
12. The compound of **Claim 11** wherein R² and R³, together with the nitrogen to which they are attached, form pyrrolidin-1-yl, which pyrrolidin-1-yl is further optionally substituted with one to four substituents independently selected from the group consisting of optionally substituted phenyl, C₃-C₆ cycloalkyl, pyridyl, halo, hydroxy, oxo, and C₁-C₄ alkyl,
30 wherein the C₁-C₄ alkyl is further optionally substituted with one to two substituents selected from the group consisting of C₁-C₃ alkoxy, optionally substituted phenyl, oxo, phenoxy, pyridyl, and pyrrolidinyl.

-180-

13. The compound of **Claim 12** wherein R² and R³, together with the nitrogen to which they are attached, form 2-(2-chloro-phenyl)-pyrrolidin-1-yl.

5 14. The compound of **Claim 1** wherein the compound is 1-(3,5-Bis-trifluoromethyl-benzyl)-5-phenyl-1H-[1,2,3]triazole-4-carboxylic acid (2-chloro-benzyl)-methyl-amide.

10 15. The compound of **Claim 1** wherein the compound is [1-(3,5-Bis-trifluoromethyl-benzyl)-5-phenyl-1H-[1,2,3]triazol-4-yl]-[2-(2-chloro-phenyl)-pyrrolidin-1-yl]-methanone.

15 16. A pharmaceutical composition comprising a compound of **Claim 1**, or a pharmaceutically acceptable salt thereof, in combination with a pharmaceutically acceptable carrier, excipient, or diluent.

17. A method for treating a condition associated with an excess of tachykinins, comprising: administering to a patient in need thereof an effective amount of a compound of Formula (I):

(I)

wherein:

25 D¹ is a C₁-C₃ alkane-diyl;

D² is CH or nitrogen;

D⁴ is oxygen or sulfur;

R¹ is phenyl,

which phenyl is optionally substituted with one to three substitutents independently selected from the group consisting of halo, C₁-C₄ alkyl, C₁-C₄ alkoxy, cyano, difluoromethyl, trifluoromethyl, and trifluoromethoxy;

R² is selected from the group consisting of hydroxy, C₁-C₄ alkyl, optionally substituted phenyl, naphthyl, C₃-C₁₀ cycloalkyl, pyridyl, optionally substituted pyrrolidinyl, optionally substituted piperidinyl,

10 which C₁-C₄ alkyl is optionally substituted with hydroxy, C₁-C₂ alkoxy, optionally substituted phenyl, pyridyl, -NR⁶R⁷, or naphthyl;

15 which pyridyl is further optionally substituted with one to two halo, C₁-C₃ alkyl;

R³ is C₁-C₄ alkyl, optionally substituted phenyl, -C(O)-R⁴, or -S(O)₂-R⁴,
which C₁-C₄ alkyl is further optionally substituted with R⁴;

20 R⁴ is optionally substituted phenyl;

or R² and R³, together with the nitrogen to which they are attached, form a 4-11 membered heterocyclic ring,

25 which heterocyclic ring is further optionally substituted with one to four substituents independently selected from the group consisting of optionally substituted phenyl, C₃-C₆ cycloalkyl, pyridyl, halo, hydroxy, oxo, and C₁-C₄ alkyl;

30 wherein the C₁-C₄ alkyl is further optionally substituted with one to two substituents selected from the group consisting of C₁-C₃ alkoxy, optionally substituted phenyl, oxo, phenoxy, pyridyl, and pyrrolidinyl;

-182-

R^6 and R^7 are each independently hydrogen, C_1 - C_4 alkyl, $-S(O)_2-CH_3$, or C_1 - C_4 alkoxy carbonyl, or R^6 and R^7 , together with the nitrogen to which they are attached, form a 4-7 membered saturated heterocyclic ring;

- 5 R^5 is hydrogen, halo, trifluoromethyl, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, C_3 - C_6 cycloalkyl, furyl, pyrazolyl, imidazolyl, $-NR^{13}R^{14}$, pyridyloxy, benzyloxy, phenyl, phenoxy, pyrrolyl, thienyl, phenylthio, or anilino,

10 which phenyl, phenoxy, pyrrolyl, thienyl, phenylthio, or anilino group may be optionally substituted on the ring with one to two substituents independently selected from the group consisting of halo, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, trifluoromethyl, and $-S(O)_q(C_1$ - C_4 alkyl),

15 or R^5 is a radical selected from the group consisting of:

, and

wherein

- 20 W is a bond, $-CHR^{15}-$, $-C(O)-$, $-O-$, $-NR^{15}-$, or $-S(O)_q-$;

q is 0, 1, or 2;

25 R^{15} is selected from the group consisting of hydrogen, hydroxy, C_1 - C_4 alkyl, acetyl, carbamoyl, phenyl, benzyl, and $-S(O)_2CH_3$;

Z^1 , Z^2 , and Z^3 are each independently CH or nitrogen;

30 R^{13} and R^{14} are each independently hydrogen, C_1 - C_4 alkyl, $-S(O)_2-CH_3$ or C_3 - C_6 cycloalkyl;

-183-

wherein the C₁-C₄ alkyl is optionally substituted with one C₁-C₂ alkoxy or di(C₁-C₂ alkyl)amino;

- 5 or R¹³ and R¹⁴, together with the nitrogen to which they are attached, form a 4-7 membered saturated heterocyclic ring;
 - which 4-7 membered saturated heterocyclic ring is further optionally substituted with one to two C₁-C₂ alkyl;
- 10 or a pharmaceutically acceptable salt thereof.

18. The method of **Claim 17** wherein the condition associated with an excess of tachykinins is selected from the group consisting of depression, anxiety, irritable bowel syndrome, and emesis.

15

19. A compound of Formula (I):

(I)

20

wherein:

D¹ is a C₁-C₃ alkane-diyl;

25 D² is CH or nitrogen;

D⁴ is oxygen or sulfur;

R¹ is phenyl,

-184-

which phenyl is optionally substituted with one to three substituents independently selected from the group consisting of halo, C₁-C₄ alkyl, C₁-C₄ alkoxy, cyano, difluoromethyl, trifluoromethyl, and trifluoromethoxy;

5 R² is selected from the group consisting of hydroxy, C₁-C₄ alkyl, optionally substituted phenyl, naphthyl, C₃-C₁₀ cycloalkyl, pyridyl, optionally substituted pyrrolidinyl, optionally substituted piperidinyl,

10 which C₁-C₄ alkyl is optionally substituted with hydroxy, C₁-C₂ alkoxy, optionally substituted phenyl, pyridyl, -NR⁶R⁷, or naphthyl;

which pyridyl is further optionally substituted with one to two halo, C₁-C₃ alkyl;

15 R³ is C₁-C₄ alkyl, optionally substituted phenyl, -C(O)-R⁴, or -S(O)₂-R⁴,
which C₁-C₄ alkyl is further optionally substituted with R⁴;

R⁴ is optionally substituted phenyl;

20 or R² and R³, together with the nitrogen to which they are attached, form a 4-11 membered heterocyclic ring,

25 which heterocyclic ring is further optionally substituted with one to four substituents independently selected from the group consisting of optionally substituted phenyl, C₃-C₆ cycloalkyl, pyridyl, halo, hydroxy, oxo, and C₁-C₄ alkyl;

wherein the C₁-C₄ alkyl is further optionally substituted with one to two substituents selected from the group consisting of C₁-C₃ alkoxy, optionally substituted phenyl, oxo, phenoxy, pyridyl, and pyrrolidinyl;

-185-

R^6 and R^7 are each independently hydrogen, C_1-C_4 alkyl, $-S(O)_2-CH_3$, or C_1-C_4 alkoxy carbonyl, or R^6 and R^7 , together with the nitrogen to which they are attached, form a 4-7 membered saturated heterocyclic ring;

5 R^5 is hydrogen, halo, trifluoromethyl, C_1-C_4 alkyl, C_1-C_4 alkoxy, C_3-C_6 cycloalkyl, furyl, pyrazolyl, imidazolyl, $-NR^{13}R^{14}$, pyridyloxy, benzyloxy, phenyl, phenoxy, pyrrolyl, thienyl, phenylthio, or anilino,

10 which phenyl, phenoxy, pyrrolyl, thienyl, phenylthio, or anilino group may be optionally substituted on the ring with one to two substituents independently selected from the group consisting of halo, C_1-C_4 alkyl, C_1-C_4 alkoxy, trifluoromethyl, and $-S(O)_q(C_1-C_4$ alkyl),

15 or R^5 is a radical selected from the group consisting of:

16 , and

17 ;

18 wherein

20 W is a bond, $-CHR^{15}-$, $-C(O)-$, $-O-$, $-NR^{15}-$, or $-S(O)_q-$;

22 q is 0, 1, or 2;

25 R^{15} is selected from the group consisting of hydrogen, hydroxy, C_1-C_4 alkyl, acetyl, carbamoyl, phenyl, benzyl, and $-S(O)_2CH_3$;

28 Z^1 , Z^2 , and Z^3 are each independently CH or nitrogen;

30 R^{13} and R^{14} are each independently hydrogen, C_1-C_4 alkyl, $-S(O)_2-CH_3$ or C_3-C_6 cycloalkyl;

wherein the C₁-C₄ alkyl is optionally substituted with one C₁-C₂ alkoxy or di(C₁-C₂ alkyl)amino;

- 5 or R¹³ and R¹⁴, together with the nitrogen to which they are attached, form a 4-7 membered saturated heterocyclic ring;
 which 4-7 membered saturated heterocyclic ring is further optionally substituted with one to two C₁-C₂ alkyl;
 or a pharmaceutically acceptable salt thereof, for use in therapy.

10

20. Use of a compound of Formula (I):

15

wherein:

D¹ is a C₁-C₃ alkane-diyl;

20 D² is CH or nitrogen;

D⁴ is oxygen or sulfur;

R¹ is phenyl,

25 which phenyl is optionally substituted with one to three substituents independently selected from the group consisting of halo, C₁-C₄ alkyl, C₁-C₄ alkoxy, cyano, difluoromethyl, trifluoromethyl, and trifluoromethoxy;

-187-

R² is selected from the group consisting of hydroxy, C₁-C₄ alkyl, optionally substituted phenyl, naphthyl, C₃-C₁₀ cycloalkyl, pyridyl, optionally substituted pyrrolidinyl, optionally substituted piperidinyl,

5 which C₁-C₄ alkyl is optionally substituted with hydroxy, C₁-C₂ alkoxy, optionally substituted phenyl, pyridyl, -NR⁶R⁷, or naphthyl;

which pyridyl is further optionally substituted with one to two halo, C₁-C₃ alkyl;

10 R³ is C₁-C₄ alkyl, optionally substituted phenyl, -C(O)-R⁴, or -S(O)₂-R⁴,
which C₁-C₄ alkyl is further optionally substituted with R⁴;

R⁴ is optionally substituted phenyl;

15 or R² and R³, together with the nitrogen to which they are attached, form a 4-11 membered heterocyclic ring,

20 which heterocyclic ring is further optionally substituted with one to four substituents independently selected from the group consisting of optionally substituted phenyl, C₃-C₆ cycloalkyl, pyridyl, halo, hydroxy, oxo, and C₁-C₄ alkyl;

25 wherein the C₁-C₄ alkyl is further optionally substituted with one to two substituents selected from the group consisting of C₁-C₃ alkoxy, optionally substituted phenyl, oxo, phenoxy, pyridyl, and pyrrolidinyl;

R⁶ and R⁷ are each independently hydrogen, C₁-C₄ alkyl, -S(O)₂-CH₃, or C₁-C₄ alkoxy carbonyl, or R⁶ and R⁷, together with the nitrogen to which they are attached, form a 4-7 membered saturated heterocyclic ring;

30

-188-

R^5 is hydrogen, halo, trifluoromethyl, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, C_3 - C_6 cycloalkyl, furyl, pyrazolyl, imidazolyl, $-NR^{13}R^{14}$, pyridyloxy, benzyloxy, phenyl, phenoxy, pyrrolyl, thienyl, phenylthio, or anilino,

5 which phenyl, phenoxy, pyrrolyl, thienyl, phenylthio, or anilino group may be optionally substituted on the ring with one to two substituents independently selected from the group consisting of halo, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, trifluoromethyl, and $-S(O)_q(C_1$ - C_4 alkyl),

10 or R^5 is a radical selected from the group consisting of:

, and

wherein

15

W is a bond, $-CHR^{15}-$, $-C(O)-$, $-O-$, $-NR^{15}-$, or $-S(O)_q-$;

q is 0, 1, or 2;

20

R^{15} is selected from the group consisting of hydrogen, hydroxy, C_1 - C_4 alkyl, acetyl, carbamoyl, phenyl, benzyl, and $-S(O)_2CH_3$;

Z^1 , Z^2 , and Z^3 are each independently CH or nitrogen;

25

R^{13} and R^{14} are each independently hydrogen, C_1 - C_4 alkyl, $-S(O)_2-CH_3$ or C_3 - C_6 cycloalkyl;

wherein the C_1 - C_4 alkyl is optionally substituted with one C_1 - C_2 alkoxy or di(C_1 - C_2 alkyl)amino;

30

-189-

or R¹³ and R¹⁴, together with the nitrogen to which they are attached, form a 4-7 membered saturated heterocyclic ring;

which 4-7 membered saturated heterocyclic ring is further optionally substituted with one

5 to two C₁-C₂ alkyl;

or a pharmaceutically acceptable salt thereof, for the manufacture of a medicament for the treatment of a condition associated with an excess of tachykinins.

10 21. A compound selected from the group consisting of: [1-(3,5-Bis-trifluoromethyl-benzyl)-5-(1-oxy-pyridin-4-yl)-1H-[1,2,3]triazol-4-yl]-[2-(2-chloro-phenyl)pyrrolidin-1-yl]-methanone, [1-(3,5-Bis-trifluoromethyl-benzyl)-5-(1-oxy-pyridin-3-yl)-1H-[1,2,3]triazol-4-yl]-[2-(2-chloro-phenyl)-pyrrolidin-1-yl]-methanone, and (R)-[1-(3,5-Bis-trifluoromethyl-benzyl)-5-(3,6-dihydro-2H-pyridin-1-yl)-1H-[1,2,3]triazol-4-yl]-[2-(2-chloro-phenyl)-pyrrolidin-1-yl]-methanone.

15