

Monolithic fireproof glazing

Publication number: DE19710289

Publication date:

1998-05-14

Inventor:

SEIDEL HORST DR (CH); MORIN CLAUDE (FR);

JEANVOINE PIERRE (FR)

Applicant:

VETROTECH SAINT GOBAIN INT AG (CH)

Classification:

- internationai:

E06B5/16; C03B27/00; C03B27/04; C03C3/083;

C03C3/087; C03C4/00; C03C23/00; E06B5/10;

C03B27/00; C03C3/076; C03C4/00; C03C23/00; (IPC1-

7): C03C4/00; C03B27/00; C03C3/087

- european:

C03B27/00; C03C3/087; C03C23/00D

Application number: DE19971010289 19970313

Priority number(s): DE19971010289 19970313

Also published as:

EP0864546 (A1)
US5990023 (A1)
JP2003306343 (A)
JP11001341 (A)
PL188208B (B1)

more >>

Report a data error here

Abstract of DE19710289

Fire resistance class G glazing consists of a thermally toughened silica glass pane with safety glass properties, the glass having a thermal expansion coefficient (20-300 deg C) of 6-8.5 (preferably 6.5-7.5) *10<-6> K<-1>, a thermal stress factor (phi) of 0.5-0.8 (preferably 0.6-0.7) N/mm<2>.K, a softening point (10<7.6> dPa.s viscosity) of 750-830 (preferably 800-820) deg C and a working point (10<4> dPa.s viscosity) of \}1,190 deg C.

Data supplied from the esp@cenet database - Worldwide

THIS PAGE BLANK (USPTO)

" sales" to

(9) BUNDESREPUBLIK DEUTSCHLAND

DEUTSCHES PATENTAMT

[®] Patentschrift[®] DE 197 10 289 C 1

② Aktenzeichen:

197 10 289.1-45

Anmeldetag:

13. 3.97

43 Offenlegungstag:

Veröffentlichungstag der Patenterteilung: 14. 5.98 (5) Int. Cl.⁶: C 03 C 4/00 C 03 B 27/00 C 03 C 3/087

(5)

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

(73) Patentinhaber:

Vetrotech Saint-Gobain (International) AG, Walchwil, CH

74) Vertreter:

Biermann, W., Dr.-Ing., Pat.-Ass., 52066 Aachen

② Erfinder:

Seidel, Horst, Dr., Walchwil, CH; Morin, Claude, Puteaux, FR; Jeanvoine, Pierre, Poissy, FR

Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften:

DE 43 25 656 C2 DE 28 18 804 B2 DE 24 13 552 B2 DE 23 13 442 B2

(M) Feuerwiderstandsfähige Verglasung

Für die Herstellung feuerwiderstandsfähiger Verglasungen der Feuerwiderstandsklassen G aus mit einer herkömmlichen Vorspannanlage thermisch vorgespannten Glasscheiben mit Sicherheitsglaseigenschaften werden Gläser verwendet, die einen Wärmeausdehnungskoeffizienten α₂₀₋₃₀₀ von 6 bis 8,5 10-6 K-1, einen Wärmespannungsfaktor φ von 0,5 bis 0,8 N/(mm²·K), einen Erweichungspunkt von 750 bis 830°C und einen Verarbeitungspunkt von höchstens 1190°C aufweisen.

BEST AVAILABLE COPY

BEST AVAILABLE COPY

Beschreibung

Die Erfindung betrifft eine feuerwiderstandsfähige Verglasung der Feuerwiderstandsklassen G aus einer mit einer üblichen Vorspannanlage mit Luftabschreckung thermisch vorgespannten Silikatglasscheibe mit Sicherheitsglaseigenschaften.

Feuerwiderstandsfähige Verglasungen der Feuerwiderstandsklassen G müssen einschließlich ihrer Rahmen und Halterungen beim Brandversuch nach DIN 4102 bzw. ISO/ 10 DIS 834-1 für eine bestimmte Zeitdauer dem Durchtritt von Feuer und Rauch widerstehen. Die Glasscheiben dürfen während dieser Zeitdauer weder unter dem Einfluß der Spannungen, die durch den Temperaturgradienten zwischen der Scheibenfläche und dem eingespannten Rand entstehen, 15 Brandversuch im Randbereich entstehenden hohen Zugszerspringen, noch dürfen sie während dieser Zeit ihren Erweichungspunkt überschreiten, da sie sonst ihre Standfestigkeit verlieren und dadurch die Öffnung freigeben. Entsprechend der Zeitdauer in Minuten, während der sie dem Feuer widerstehen, werden sie den Feuerwiderstandsklassen G 30, 20 G 60, G 90 oder G 120 zugeordnet.

Feuerwiderstandsfähige Glasscheiben sind üblicherweise in Rahmen gehalten, die den Rand der Glasscheiben gegen die Hitzeeinwirkung mehr oder weniger abschirmen. Der dadurch entstehende Temperaturgradient zwischen der 25 Scheibenmitte und dem Rand führt zu erheblichen Zugspannungen im Randbereich und zu einer Zerstörung der Glasscheiben, wenn nicht besondere Maßnahmen zur Kompensation dieser Zugspannungen getroffen werden. Diese Maßnahmen bestehen in einer thermischen Vorspannung der 30 Glasscheiben, durch die im Randbereich starke Druckvorspannungen erzeugt werden. Durch die thermische Vorspannung können der Glasscheibe zusätzlich Sicherheitsglaseigenschaften verliehen werden, wenn die Vorspannung so erfolgt, daß die Glasscheibe beim Bruch in kleine Krümel zer- 35 fällt.

Die Höhe der Vorspannungen in der Scheibenfläche und im Randbereich läßt sich grundsätzlich spannungsoptisch messen. Die spannungsoptische Messung ist jedoch verhältnismäßig aufwendig. In der Praxis ist man daher dazu über- 40 gegangen, den Vorspannungszustand über die durch die Vorspannung erreichte Biegezugfestigkeit entsprechend DIN 52303 bzw. EN 12150 zu bestimmen. Dabei hat sich empirisch gezeigt, daß es erforderlich ist, eine Biegezugfestigkeit von wenigstens 120 N/mm² zu erzeugen, wenn die Glas- 45 scheibe den durch den Temperaturgradienten entstehenden Zugspannungen am Rand standhalten soll. Da nicht vorgespannte Glasscheiben eine Grund-Biegezugfestigkeit von etwa 50 N/mm² aufweisen, bedeutet das, daß es notwendig ist, durch die Vorspannung die Biegezugfestigkeit um we- 50 nigstens 70 N/mm² zu erhöhen. Diese Erhöhung der Biegezugfestigkeit entspricht in ihrem Zahlenwert unmittelbar der Höhe der Oberflächendruckvorspannungen.

Eine weitere Erhöhung der Feuerwiderstandsdauer läßt sich durch Erhöhung der Einstandstiefe der Glasscheibe im 55 Rahmen erreichen. Bei einer Biegezugfestigkeit der Glasscheibe von 120 N/mm² und einer Einstandstiefe von 10 mm entspricht die Verglasung z. B. der Feuerwiderstandsklasse G 30, während sich mit einer Einstandstiefe von 20 mm die Feuerwiderstandsklasse G 90 erreichen läßt. 60

Glasscheiben aus üblichem Floatglas (Kalk-Natron-Silikatglas) lassen sich mit herkömmlichen Vorspannanlagen gut vorspannen, da diese Glaszusammensetzungen einen verhältnismäßig großen Wärmeausdehnungskoeffizienten von mehr als $8.5 \cdot 10^{-6} \text{K}^{-1}$ aufweisen. Mit üblichem Float- 65 glas lassen sich Biegezugfestigkeiten von bis zu 200 N/mm² erreichen. Unter der Wirkung der durch den Temperaturgradienten entstehenden Zugspannungen zerspringen sie des-

halb bei einem Glaseinstand von etwa 10 mm nicht, jedoch verlieren sie ihre Standfestigkeit wegen ihrer verhältnismäßig niedrigen Erweichungstemperatur von etwa 730°C. Vorgespannte Glasscheiben aus Floatglas entsprechen daher un-5 ter normalen Einbaubedingungen allenfalls der Feuerwiderstandsklasse G 30.

Es sind jedoch auch monolithische Glasscheiben der Feuerwiderstandsklasse G 60 und höher bekannt. Diese bestehen aus Glaszusammensetzungen mit einer hohen Erweichungstemperatur von oberhalb 815°C, und weisen infolgedessen eine lange Standzeit beim Brandversuch auf. Hierfür eignen sich insbesondere hitzebeständige Borosilikat- und Alumosilikatgläser. Auch diese Glasscheiben müssen jedoch thermisch vorgespannt werden, wenn sie den beim pannungen widerstehen sollen.

Die Anwendung der thermischen Vorspannung für Brandschutzgläser aus hitzebeständigen Borosilikat- oder Alumosilikatgläsern ist aus der DE 23 13 442 B2 und der DE 24 13 552 B2 bekannt. Nach diesen Druckschriften eignen sich zum Vorspannen nur solche Gläser, deren Produkt aus Wärmedehnung α und Elastizitätsmodul E 1 bis 5 kp \cdot cm $^{-2}$ \cdot °C⁻¹ beträgt, das heißt Boro- oder Alumosilikatgläser mit einer Wärmedehnung von $\alpha_{20-300} = 3$ bis 6,5 · 10⁻⁶ °C⁻¹. Die nötige Randvorspannung dieser Glasscheiben kann jedoch nicht mit Hilfe der üblichen Luftvorspannanlagen erreicht werden, sondern erfolgt nach einem speziellen Verfahren, bei dem die Glasscheiben beim Aufheizen zwischen etwas kleinere Keramikplatten gelegt werden, so daß der Rand der Glasscheibe über die Keramikplatten hinausragt und daher beschleunigt abgekühlt wird, während die Scheibenmitte unter der Wirkung der Keramikplatten sich mit starker Verzögerung abkühlt. Zwar läßt sich auf diese Weise die erforderliche Randvorspannung erzeugen, doch weisen die so hergestellten Glasscheiben keine Sicherheitsglaseigenschaften auf.

Aus der DE 43 25 656 C2 ist es bekannt, zur Herstellung monolithischer Brandschutzgläser Gläser zu verwenden, die einen Wärmeausdehnungskoeffizienten a zwischen 3 und $6 \cdot 10^{-6} \text{ K}^{-1}$, eine spezifische Wärmespannung ϕ zwischen 0,3 und 0,5 N/(mm 2 · K), einen Erweichungspunkt (= Temperatur bei der Viskosität 10^{7,6} dPa · s) oberhalb von 830°C und einen Verarbeitungspunkt (= Temperatur bei der Viskosität 10⁴ dPa·s) von 1190° bis 1260°C aufweisen. Die spezifische Wärmespannung ist diejenige glasspezifische Größe, die sich aus dem Wärmeausdehnungskoeffizienten α, dem Elastizitätsmodul E und der Poisson-Konstante μ nach der Formel $\varphi = \alpha \cdot E/(1-\mu)$ errechnet. Gläser mit diesen physikalischen Eigenschaften lassen sich auf einer herkömmlichen Luftvorspannanlage sowohl mit der erforderlichen Randdruckvorspannung als auch auf der gesamten Fläche mit der für eine feine Krümelung erforderlichen Vorspannung versehen, so daß keine speziellen Maßnahmen zum Vorspannen erforderlich sind und das Herstellverfahren dadurch wesentlich vereinfacht wird. Gläser mit diesen physikalischen Eigenschaften enthalten jedoch notwendigerweise B₂O₃, Al₂O₃ und ZrO₂ in Mengen, die den Schmelzprozeß und den Verarbeitungsprozeß erschweren. Sie lassen sich nach dem wegen seiner besonderen Wirtschaftlichkeit bewährten Floatverfahren nicht herstellen, weil ihr Verarbeitungspunkt zu hoch ist und der Schmelzprozeß außerdem besondere Maßnahmen erfordert.

Aus der DE 28 18 804 B2 sind zwar für die Verwendung als Brandschutzgläser vorgesehene Borosilikatglaszusammensetzungen bekannt, die sich aufgrund eines verhältnismäßig niedrigen Verarbeitungspunkts nach dem Floatglasverfahren erschmelzen und auch mit Hilfe üblicher Vorspannanlagen vorspannen lassen. Diese Gläser enthalten je-

doch 11,5 bis 14,5% B₂O₃ und weisen im übrigen ähnliche physikalische Eigenschaften auf wie die aus der DE 43 25 656 C2 bekannten Gläser. Auch bei diesen Gläsern sind die durch Luftabschreckung erzielbaren Druckvorspannungen bzw. die Biegezugfestigkeit auf verhältnismäßig niedrige Werte begrenzt, und darüber hinaus weisen diese Gläser die beim Erschmelzen von Borosilikatgläsern bekannten Schwierigkeiten und Nachteile auf.

Der Erfindung liegt die Aufgabe zugrunde, monolithische Brandschutzgläser der Feuerwiderstandsklassen G bereitzustellen, die einerseits mit Hilfe herkömmlicher Luftvorspannanlagen vorgespannt werden können, andererseits aber aus Glaszusammensetzungen bestehen, die sich wirtschaftlich und technologisch problemlos erschmelzen und nach dem üblichen Floatglasverfahren zu Flachglas verarbeiten lassen, das bezüglich seines Aspekts und seiner optischen Eigenschaften mit dem bekannten Floatglas vergleichbar ist.

Gemäß der Erfindung wird diese Aufgabe durch die Verwendung von Gläsern gelöst, die einen Wärmeausdehnungskoeffizienten α_{20-300} von 6 bis $8.5 \cdot 10^{-6}$ K⁻¹, einen Wärmespannungsfaktor φ von 0.5 bis 0.8 N/(mm² · K), einen Erweichungspunkt (Viskosität = $10^{7.6}$ dPa · s) von 750° bis 830° C und einen Verarbeitungspunkt (Viskosität = 10^{4} dPa · s) von höchstens 1190° C aufweisen.

Glaszusammensetzungen, die diese physikalischen Eigenschaften aufweisen, lassen sich unter bekannten Glaszusammensetzungen auswählen, wobei darauf zu achten ist, daß diese Glaszusammensetzungen kein oder zumindest möglichst wenig B_2O_3 und Al_2O_3 aufweisen.

Es hat sich gezeigt, daß Gläser mit den erfindungsgemäßen Eigenschaften sich nicht nur verhältnismäßig gut erschmelzen lassen, sondern daß sie sich für die Herstellung von monolithischen Brandschutzgläsern besonders eignen, weil sie auch bei der herkömmlichen Luftvorspannung eine 35 wesentlich höhere Biegezugfestigkeit aufweisen als die für die Herstellung von Brandschutzgläsern bekannten Borosilikat- und Alumosilikatgläser. Wegen ihres größeren Wärmeausdehnungskoeffizienten und ihres größeren Wärmespannungsfaktors lassen sich nämlich mit Hilfe der üblichen 40 Vorspannanlagen deutlich höhere Biegezugfestigkeiten, das heißt deutlich höhere Druckvorspannungen erzeugen, so daß die erzielbare Temperaturunterschiedsfestigkeit (TUF) zwischen dem eingespannten kalten Rand und der heißen Scheibenmitte dadurch deutlich höher wird. Andererseits 45 hat es sich gezeigt, daß die Standfestigkeit dieser Gläser vollständig ausreichend ist, um selbst bei einer Scheibendicke von nur 5 mm und einer Einstandstiefe im Rahmen von 10 mm der Feuerwiderstandsklasse G 30 zu genügen. Mit den erfindungsgemäß verwendeten Gläsern können aber 50 auch die höheren Feuerwiderstandsklassen G 60 und G 90 und sogar G 120 erreicht werden, wenn gegebenenfalls Glasscheiben größerer Dicke und Rahmen mit einem größeren Glaseinstand verwendet werden, das heißt Rahmen, die den Rand der Glasscheibe um ein größeres Maß, beispiels- 55 weise bis zu 25 mm, überdecken.

Weitere Vorteile und zweckmäßige Ausgestaltungen und Weiterbildungen der Erfindung ergeben sich aus den Unteransprüchen und aus der nachfolgenden Beschreibung verschiedener Ausführungsbeispiele.

Beispiel 1

Zur Herstellung des Brandschutzglases wird eine 5 mm dicke Flachglasscheibe verwendet, die nach dem Floatverfahren hergestellt wurde und folgende Zusammensetzung in Gew.-% aufweist: 75,4% SiO₂, 11,0% Na₂O, 12,0% CaO, 1,0% Al₂O₃, 0,3% K₂O, 0,3% andere Oxide.

Dieses Glas weist folgende physikalischen Eigenschaften auf:

Wärmeausdehnungskoeffizient $\alpha_{20-300} = 7.6 \cdot 10^{-6} \text{K}^{-1}$ Wärmespannungsfaktor $\phi = 0.69 \text{ N/(mm}^2 \cdot \text{K)}$

Elastizitätsmodul $E = 7.14 \cdot 10^4 \text{ N/mm}^2$

Elastizitatsmodul $E = 7.14 \cdot 10^{4} \text{ N/m}$ Poisson-Konstante $\mu = 0.215$

Erweichungspunkt EP = 761°C

Verarbeitungspunkt VP = 1061°C

Mehrere Glasscheiben der Größe 90 × 55 cm² wurden an den Kanten feingeschliffen und auf einer üblichen Luftvorspannanlage in horizontaler Lage vorgespannt. Zu diesem Zweck wurden sie auf eine Temperatur von etwa 670°C erwärmt und mit zwei üblichen Blaskästen schroff abgekühlt. Die Blaskästen waren mit in Reihen angeordneten Blasdüsen versehen, wobei der Abstand der Blasdüsenreihen voneinander etwa 8 cm, der gegenseitige Abstand der Blasdüsen in den Blasdüsenreihen 3 cm und der Durchmesser der Düsenöffnung 8 mm betrugen. Der Abstand der Düsenöffnungen von der Glasoberfläche betrug etwa 5 cm, und der statische Druck der Luft in den Blaskästen 7,5 kPa·s ± 10%.

Messungen der Biegezugfestigkeit an den vorgespannten Glasscheiben nach dem in der EN 12150 beschriebenen Verfahren ergaben Biegezugfestigkeiten der Glasscheiben in Höhe von 210 ± 10 N/mm². Dieser Wert entspricht einer Oberflächendruckvorspannung von etwa 160 N/mm².

Mit drei derartigen Glasscheiben wurden Brandversuche entsprechend der Norm ISO/DIS 834-1 durchgeführt, wobei der Glaseinstand im Rahmen 10 mm betrug. Bei zwei Brandversuchen hielten die Glasscheiben dem Feuer 65 min lang stand, bei dem dritten Brandversuch 71 min lang. Damit erfüllt diese Brandschutzverglasung die Bedingungen der Feuerwiderstandsklasse G 60.

Beispiel 2

Es wurden 6 mm dicke Glasscheiben der im Beispiel 1 genannten Zusammensetzung verwendet, die ebenfalls nach dem Floatglasverfahren hergestellt wurden. Das Glas wies folglich dieselben physikalischen Eigenschaften auf wie im Beispiel 1. In diesem Fall wurden mehrere Glasscheiben mit den Abmessungen $70 \times 150 \, \mathrm{cm}^2$ am Rand feingeschliffen und unter den gleichen Bedingungen wie beim Beispiel 1 thermisch vorgespannt.

Messungen der Biegezugfestigkeit an diesen vorgespannten Glasscheiben ergaben Werte von 250 ±15 N/mm². An drei dieser 6 mm dicken Glasscheiben wurden Brandversuche durchgeführt, wobei der Glaseinstand im Metallrahmen bei diesen Versuchen 15 mm betrug. Bei allen anderen drei Brandversuchen betrug die Standzeit mehr als 90 min, so daß diese Brandschutzgläser mit 6 mm Dicke und 15 mm Einstandstiefe im Rahmen den Bedingungen der Feuerwiderstandsklasse G 90 genügen.

Beispiel 3

Für die Herstellung des Brandschutzglases wird ein Glas mit folgender Zusammensetzung verwendet: 67,0% SiO₂, 10,0% CaO, 2,0% MgO, 2,5% SrO, 7,0% Na₂O, 5,0% K₂O, 60 1,0% Al₂O₃, 5,5% ZrO₂.

Dieses Glas hat folgende physikalischen Eigenschaften: Wärmeausdehnungskoeffizient $\alpha_{20-300} = 7.9 \cdot 10^{-6} \text{K}^{-1}$ Wärmespannungsfaktor $\phi = 0.76 \text{ N/(mm}^2 \cdot \text{K)}$ Elastizitätsmodul $E = 7.7 \cdot 10^4 \text{ N/mm}^2$

Poisson-Konstante $\mu = 0.21$

Erweichungspunkt EP = 800°C Verarbeitungspunkt VP = 1190°C

Aus dem geschmolzenen Glas wird nach dem Floatver-

6

fahren ein 8 mm dickes Glasband hergestellt. Mehrere Glasscheiben der Größe $150 \times 70 \text{ cm}^2$ wurden an den Kanten feingeschliffen und wie in Beispiel 1 beschrieben auf einer üblichen Luftvorspannanlage vorgespannt.

Messungen der Biegezugfestigkeit an den vorgespannten 5 Glasscheiben ergaben Werte von 235 ±10 N/mm².

Mit drei derartigen vorgespannten Glasscheiben von 8 mm Dicke würden Brandversuche nach der genannten Norm durchgeführt, und zwar in diesem Fall mit einem Glaseinstand von 22 mm in Stahlrahmen. Bei allen drei 10 Brandversuchen betrug die Standzeit mehr als 120 min, so daß diese Brandschutzverglasung den Bedingungen der Feuerwiderstandsklasse G 120 genügt.

Patentansprüche

1. Feuerwiderstandsfähige Verglasung der Feuerwiderstandsklassen G aus einer mit einer herkömmlichen Vorspannanlage mit Luftabschreckung thermisch vorgespannten Silikatglasscheibe mit Sicherheitsglasei- 20 genschaften, gekennzeichnet durch die Verwendung von Gläsern mit einem Wärmeausdehnungskoeffizienten $\alpha_{20-300} = 6$ bis $8.5 \cdot 10^{-6} \text{K}^{-1}$, einem Wärmespannungsfaktor $\varphi = 0.5$ bis $0.8 \text{ N/(mm}^2 \cdot \text{K)}$, einem Erweichungspunkt (Viskosität = $10^{7.6}$ dPa · s) von 750° bis 25830° C und einem Verarbeitungspunkt (Viskosität = 10^{4} dPa · s) von höchstens 1190° C.

2. Feuerwiderstandsfähige Verglasung nach Anspruch 1, dadurch gekennzeichnet, daß die verwendeten Gläser einen Wärmeausdehnungskoeffizienten α_{20-300} 30 von 6,5 bis 7,5 · 10^{-6} K⁻¹, einen Wärmespannungsfaktor ϕ von 0,6 bis 0,7 N/(mm² · K), und einen Erweichungspunkt von 800° bis 820°C aufweisen.

3. Feuerwiderstandsfähige Verglasung nach Anspruch 1, gekennzeichnet durch folgende Glaszusammenset- 35 zung in Gew.-%:

SiO₂ 73 –76

CaO 11–13

Na₂O 10–12 K₂O 0,1– 0,5

Al₂O₃ 0,5–1,5

4. Feuerwiderstandsfähige Verglasung nach Anspruch 1, gekennzeichnet durch folgende Glaszusammensetzung in Gew.-%:

SiO₂ 65-69

CaO 9-11

MgO 1-3

SrO 2-4

Na₂O 6–8

K₂O 4-6 Al₂O₃ 0,5-1,5

 $ZrO_2 4-6$

5. Feuerwiderstandsfähige Verglasung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Glasscheibe eine Oberflächendruckvorspannung in 55 Höhe von 120 bis 200 N/mm², und vorzugsweise in Höhe von 150 bis 190 N/mm² aufweist.

15

60

40

45

50