Tracciamento di oggetti estesi multipli

Corso di Laurea Magistrale in Ingegneria Elettrica e dell'Automazione

Candidato

Matteo Tesori

Relatori

Prof. Luigi Chisci

Prof. Giorgio Battistelli

Dott. Lin Gao

Università degli Studi di Firenze 16 Luglio 2021

università degli studi FIRENZE

DINFO

DIPARTIMENTO DI INGEGNERIA DELL'INFORMAZIONE

Introduzione

Tracciamento di oggetti estesi multipli: determinare posizione e forma di molti oggetti estesi

- Problema 1: tracciare un singolo oggetto esteso
- Problema 2: tracciare più oggetti estesi simultaneamente

Tracciamento di un singolo oggetto

esteso

Definizione di oggetto esteso

Oggetto puntiforme: generica entità fisica in grado di generare non più di una singola misura.

Oggetto esteso: generica entità fisica in grado di generare contemporaneamente più misure.

Modello di un oggetto esteso

Posizione: vettore aleatorio m contenente le coordinate Cartesiane ξ, η del centro geometrico dell'oggetto.

$$m \triangleq \begin{bmatrix} \xi & \eta \end{bmatrix}'$$

Forma: ellisse aleatoria parametrizzata da tre variabili aleatorie - angolo di orientazione θ , lunghezza I_1 , larghezza I_2 dell'oggetto. Tale ellisse è rappresentata dalla matrice aleatoria definita positiva $X \propto SS'$, dove

$$\mathbf{S} \triangleq \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} \mathbf{I}_1 & 0 \\ 0 & \mathbf{I}_2 \end{bmatrix}$$

Modello di moto (parte 1)

Idea: l'oggetto, pilotato da s (velocità longitudinale) e ω (velocità angolare), segue la dinamica del modello *ad uniciclo*. Inoltre, lunghezza e larghezza $I \triangleq [I_1 \ I_2]'$ sono costanti nel tempo

Posizione

$$m{m}_{k+1} = m{m}_k + Tm{s}_k \begin{vmatrix} \cosm{ heta}_k \\ \sinm{ heta}_k \end{vmatrix} + m{w}_{m{m},k}$$

• Forma

$$egin{aligned} oldsymbol{ heta}_{k+1} &= oldsymbol{ heta}_k + oldsymbol{T} oldsymbol{\omega}_k + oldsymbol{w}_{oldsymbol{ heta},k} \ oldsymbol{I}_{k+1} &= oldsymbol{I}_k + oldsymbol{w}_{oldsymbol{I},k} \end{aligned}$$

Assunzione di base: il vettore velocità è allineato all'asse longitudinale dell'oggetto.

$$ec{s} = s egin{bmatrix} \cos heta \ \sin heta \end{bmatrix}$$

Modello di moto (parte 2)

Osservazione: l'equazione di posizione e l'equazione di orientazione sono modelli a velocità costante

$$ec{m{m}}_{k+1} = ec{m{m}}_k + Tec{m{s}}_k + m{w}_{m{m},k} \ m{ heta}_{k+1} = m{ heta}_k + Tm{\omega}_k + m{w}_{m{ heta},k}$$

dove il vettore di posizione \vec{m} è espresso in coordinate Cartesiane mentre il vettore di velocità \vec{s} è espresso in coordinate polari (modulo s e fase θ).

Idea: considerare un modello a derivata N-esima costante

$$\vec{m}_{k+1} = \vec{m}_k + \sum_{i=0}^{N-1} \frac{T^i}{i!} \vec{s}_k^{(i)} + w_{m,k}$$

$$oldsymbol{ heta}_{k+1} = oldsymbol{ heta}_k + \sum_{i=0}^{N-2} rac{\mathcal{T}^i}{i!} \, oldsymbol{\omega}_k^{(i)} + oldsymbol{w}_{oldsymbol{ heta},k}$$

ed

- 1. esprimere il vettore di posizione \vec{m} in coordinate Cartesiane
- 2. esprimere il vettore di velocità \vec{s} e le sue derivate in coordinate coordinate polari

Modello di moto (parte 3)

Il risultato è un nuovo modello che coinvolge non solo s e ω , ma anche

$$\dot{s}$$
 \ddot{s} ... $s^{(N-1)}$ $\dot{\omega}$ $\ddot{\omega}$... $\omega^{(N-2)}$

Questo modello, proposto dall'autore, è chiamato Lambda:Omicron di ordine lineare $\Lambda=N$ ed ordine angolare O=N-1 (in breve, modello N:N-1) e può essere generalizzato al caso in cui Λ e O sono arbitrari.

Osservazione: il modello ad uniciclo è un modello Lambda:Omicron con ordine lineare $\Lambda=1$ e ordine angolare O=1 (modello 1:1).

Modello di osservazione

Idea: l'oggetto genera n misure y^1, \ldots, y^n , ognuna delle quali è uniformemente distribuita nell'ellisse di forma e corrotta da rumore Gaussiano additivo \mathbf{v} .

$$egin{align} oldsymbol{y}_k^i &= oldsymbol{m}_k + oldsymbol{S}_k oldsymbol{h}^i + oldsymbol{V}_k^i \ oldsymbol{h}^i &\sim \mathcal{N}(0,R) \ i &= 1,2,\ldots,n \ \end{pmatrix}$$

dove $C_{0,1}$ indica il cerchio di raggio unitario centrato nell'origine

In letteratura, il modello di osservazione considerato prende il nome di *Multiplicative Error Model* (MEM).

Stima iterativa

• Stato cinematico

$$egin{aligned} m{r} & ext{$\triangleq \left[m{m}' \quad m{\lambda}' \quad m{o}'
ight]'$} \ m{\lambda} & ext{$\triangleq \left[m{s} \quad \dot{m{s}} \quad \dots \quad m{s}^{(\Lambda-1)} \
ight]'$} \ m{o} & ext{$\triangleq \left[m{\omega} \quad \dot{m{\omega}} \quad \dots \quad m{\omega}^{(O-1)}
ight]'$} \end{aligned}$$

• Stato di forma

$$oldsymbol{
ho} riangleq egin{bmatrix} oldsymbol{ heta} & oldsymbol{l}' \end{bmatrix}'$$

Stato globale

$$\mathbf{x} \triangleq \begin{bmatrix} \mathbf{r}' & \mathbf{p}' \end{bmatrix}'$$

Ad ogni istante di campionamento k si stima $x_k \approx \hat{x}_{k|k}$ attraverso due operazioni cicliche:

1. Predizione

$$(\hat{x}_{k-1|k-1}, P_{k-1|k-1}) \xrightarrow{\text{modellodi moto}} (\hat{x}_{k|k-1}, P_{k|k-1})$$

2. Correzione

$$(\hat{x}_{k|k-1}, P_{k|k-1}) \xrightarrow{\text{modello di osservazione}} (\hat{x}_{k|k}, P_{k|k})$$

Il modello Lambda:Omicron è un modello non lineare della forma

$$\mathbf{x}_{k+1} = f(\mathbf{x}_k) + \mathbf{w}_k$$

 $\mathbf{w}_k \sim \mathcal{N}(0, Q)$

Equazioni di predizione (filtro di Kalman esteso)

$$\begin{split} \hat{x}_{k|k-1} &\triangleq f(\hat{x}_{k-1|k-1}) \\ P_{k|k-1} &\triangleq \hat{J}_{k-1|k-1} P_{k-1|k-1} \hat{J}'_{k-1|k-1} + Q \end{split}$$

dove $\hat{J}_{k-1|k-1}$ è lo Jacobiano di transizione valutato nella precedente stima corretta

$$\left. \hat{J}_{k-1|k-1} \triangleq \frac{\partial f}{\partial \mathbf{x}} \right|_{\mathbf{x} = \hat{\lambda}_{k-1|k-1}}$$

Equazioni di correzione (stimatore BLUE (Best Linear Unbiased Estimator))

$$\hat{r}_{k|k} \triangleq \hat{r}_{k|k-1} + \Sigma_{rar{y}}\Sigma_{ar{y}}^{-1}(ar{y}_k - \hat{ar{y}}_{k|k-1})
onumber
onumb$$

dove:

• \bar{y}_k è la misura media osservata al tempo k

$$\bar{y}_k \triangleq \frac{1}{n} \sum_{i=1}^n y_k^i$$

ullet $\hat{ar{y}}_{k|k-1}$ è la predizione della misura media $ar{y}_k$

$$\hat{\bar{y}}_{k|k-1} \triangleq \mathbb{E}_{k|k-1}[\bar{y}_k] = \hat{m}_{k|k-1}$$

- ullet $\Sigma_{ar{y}}$ è la covarianza della misura media $ar{y}_k$
- ullet $\Sigma_{rar{y}}$ è la cross-covarianza tra lo stato cinematico $oldsymbol{r}_k$ e la misura media $ar{y}_k$

Equazioni di correzione (stimatore BLUE)

$$\begin{split} \hat{\rho}_{k|k} &\triangleq \hat{\rho}_{k|k-1} + \Sigma_{p\overline{Y}} \Sigma_{\overline{Y}}^{-1} (\overline{Y}_k - \hat{\overline{Y}}_{k|k-1}) \\ P_{k|k}^p &\triangleq P_{k|k-1}^p - \Sigma_{p\overline{Y}} \Sigma_{\overline{Y}}^{-1} \Sigma_{p\overline{Y}}' \end{split}$$

dove:

• \overline{Y}_k è la covarianza empirica dell'insieme di misure osservate al tempo k espressa in forma vettoriale

$$\overline{Y}_k riangleq ext{vec} \left[rac{F}{n-1} \sum_{i=1}^n (y_k^i - \hat{ar{y}}_{k|k-1}) (y_k^i - \hat{ar{y}}_{k|k-1})'
ight]$$

- ullet $\hat{\overline{Y}}_{k|k-1}$ è la predizione (valore atteso) della covarianza empirica $\overline{\overline{Y}}_{k|k-1}$
- ullet $\Sigma_{\overline{Y}}$ è la covarianza della misura media $ar{y}_k$
- $\sum_{p\overline{Y}}$ è la cross-covarianza tra lo stato di forma $m{p}_k$ e la covarianza empirica \overline{Y}_k

LO-MEM vs MEM-EKF*

2:1-MEM filtro proposto

Stato

$$oldsymbol{x} riangleq iggl[oldsymbol{\xi} \quad oldsymbol{\eta} \quad oldsymbol{s} \quad oldsymbol{s} \quad oldsymbol{\delta} \quad oldsymbol{\theta} \quad oldsymbol{I}' \ iggr]'$$

• Predizione

filtro di Kalman esteso basato sul modello di moto non lineare Lambda:Omicron di ordini $\Lambda=2$ e ${\cal O}=1$

ullet Correzione effettuata con 1 passo che processa la misura media $ar{y}$

CT-NCV MEM-EKF*
[Baum et al., 2018]

Stato

Predizione

filtro di Kalman basato sul modello di moto lineare a velocità (Cartesiana) costante e velocità angolare costante

Correzione

effettuata in n passi sequenziali che processano (una alla volta) le misure y^1, \ldots, y^n

Nuove difficoltà

Incertezze

- numero di oggetti
- partizionamento misure
- associazione cluster-oggetto

Non-idealità sensori

- false misure
- occlusioni

PHD (Probability Hypothesis Density): controparte multi-oggetto del concetto di PDF (Probability Density Function). Integra al numero di oggetti in scena ed assume massimi in prossimità dei loro stati.

- Filtro PHD [Mahler, 2009]
 - 1. calcola la PHD predetta $D_{k|k-1}(\cdot)$ e la PHD corretta $D_{k|k}(\cdot)$
 - 2. stima del numero di oggetti come

$$\hat{N}_{k|k} \triangleq \int D_{k|k}(x) \, \mathrm{d}x$$

3. stima gli stati degli oggetti tramite i maggiori $\hat{N}_{k|k}$ punti di massimo locali $\hat{x}^1_{k|k},\ldots,\hat{x}^{\hat{N}}_{k|k}$ della PHD corretta $D_{k|k}(\cdot)$

Il filtro *GM-PHD* (Gaussian Mixture - PHD) [Granstrom et al., 2012] assume che le PHD predetta e corretta siano misture di Gaussiane

PHD predetta

$$D_{k|k-1}(x) = \sum_{i=1}^{\nu_{k|k-1}} w_{k|k-1}^{i} \mathcal{N}(x; x_{k|k-1}^{i}, P_{k|k-1}^{i})$$

PHD corretta

$$D_{k|k}(x) = \sum_{i=1}^{
u_{k|k}} w_{k|k}^i \mathcal{N}(x; x_{k|k}^i, P_{k|k}^i)$$

dove i parametri predetti $\{x_{k|k-1}^i, P_{k|k-1}^i\}_{i=1}^{\nu_{k|k-1}}$ e corretti $\{x_{k|k}^i, P_{k|k}^i\}_{i=1}^{\nu_{k|k-1}}$ sono dati dal particolare filtro per singolo oggetto esteso considerato.

Conclusioni e sviluppi futuri

Il filtro LO-MEM possiede le seguenti caratteristiche:

- (PRO): costo computazionale inferiore rispetto il filtro MEM-EKF*
- (PRO): maggiore accuratezza rispetto il filtro MEM-EKF* (sotto oppurtune ipotesi)
- (PRO): implementazione PHD più rigorosa rispetto quella del filtro MEM-EKF*
- (CONTRO): modello di moto non generale
- (CONTRO): numericamente instabile in condizioni di grande incertezza
- (CONTRO): può richiedere tempi di campionamento brevi