Chapter07 Back Propagation

- 1. To compute the gradients efficiently, we use back propagation
- 2. $\frac{\partial C}{\partial W} = \frac{\partial C}{\partial Z} \cdot \frac{\partial Z}{\partial W}$
 - a) Forward Pass: Compute $\frac{\partial Z}{\partial W}$ for all parameters

 The result is the input connected by the weight
 - b) Backward Pass: Compute $\frac{\partial C}{\partial Z}$ for all activation function inputs z $\frac{\partial C}{\partial Z} = \frac{\partial C}{\partial a} \cdot \frac{\partial a}{\partial Z} = \frac{\partial C}{\partial a} \cdot \sigma'(z)$

Chapter08 Keras

- 1. Keras is the interface of Tensorflow or Theano
- 2. Code:
 - a) model = Sequential()
 - b) model.add(Dense(input_dim=28*28,units = 500,activation = 'relu'))
 - c) model.add(Dense(units = 500, activation = 'relu'))
 - d) model.add(Dense(units = 10, activation = 'softmax'))
 - e) model.compile(loss = 'categorical_crossentropy', optimizer = 'adam', metrics = ['accuracy'])
 - f) model.fit(x_train, y_train, batch_size = 100, epochs = 20)
- 3. Batch size influences both speed and performance, usually with the increasing of batchsize, speed will be faster, and performance will drop.
- 4. Mini-batch is faster than stochastic gradient descent, the reason is that the use of GPU can speed up the matrix operation