Activité Fonction carrée

1)On considère la fonction $f: x \mapsto x^2$ définie sur $]-\infty; +\infty[$

a.
$$f(7) = 49$$
, $f(-11) = 121$, $f(-\sqrt{3}) = 3$, $f\left(\frac{\sqrt{2}}{5}\right) = \frac{2}{25}$

b.
$$f(\sqrt{5} - 1) = f(1 - \sqrt{5}) = (\sqrt{5} - 1)^2 = 5 - 2 \times \sqrt{5} \times 1 + 1^2 = 6 - 2\sqrt{5}$$

c.
$$A = 3 - \sqrt{7}$$
 puis $A^2 = (3 - \sqrt{7})^2 = 9 - 6\sqrt{7} + 7 = 16 - 6\sqrt{7}$

d.
$$(\sqrt{18} + \sqrt{98})^2 = 18 + 2\sqrt{18}\sqrt{98} + 98 = 116 + 2\sqrt{18 \times 98} = 116 + 2 \times 42 = 200$$

2)
$$x^2 < 8 \iff x^2 - 8 < 0 \iff (x - \sqrt{8})(x + \sqrt{8}) < 0$$

x	$-\infty$		$-\sqrt{8}$		$\sqrt{8}$		$+\infty$
$x - \sqrt{8}$		_		_	0	+	
$x + \sqrt{8}$		_	0	+		+	
$(x^2 - 8)$		+	0	_	0	+	

Donc
$$S =]-\sqrt{8}, \sqrt{8}[$$

On a étudié le signe de x^2-8 juste avant donc, on va juste rajouter une ligne dans notre tableau de signes !

x	$-\infty$		$-\sqrt{8}$		0		$\sqrt{8}$		$+\infty$
$(x^2 - 8)$		+	0	_		_	0	+	
x		_		_	0	+		+	
$x(x^2-8)$		_	0	+	0	_	0	+	

Donc,
$$x(x^2 - 8) > 0 \iff x \in]-\sqrt{8}, 0[\cup]\sqrt{8}, +\infty[$$

- 3)
- a. Une fonction est paire si elle est symétrique par rapport à l'axe des ordonnées (axe vertical).
- b. On va utiliser la définition par le calcul : f(-x) = f(x).
- c. $f(-x) = (-x)^4 + 4(-x)^2 + 1 = (-x)^2 \times (-x)^2 + 4x^2 + 1 = x^4 + 4x^2 + 1 = f(x)$ Donc la fonction est une fonction paire.