TD: Interférences de N ondes cohérentes

Exercice 1

Trois trous d'Young S_1 , S_2 et S_3 , distants de a, sont éclairés par une source ponctuelle, émettant une radiation monochromatique de longueur d'onde λ_0 , placée au foyer principal objet d'une lentille convergente (L_1). On observe les interférences à l'infini, c'est-à-dire en un point M dans le plan focal d'une lentille convergente (L_2) de distance focale image f'.

- **1. a.** Représenter le montage étudié sur un schéma.
- **b.** Tracer les rayons, issus de S, qui arrivent au même point M de l'écran après avoir traversé chacun des trois trous.
- **2.** a. Évaluer la différence de marche $\delta_{2/1}(M)$ du rayon passant par S_2 par rapport au rayon passant par S_1 . Exprimer de même $\delta_{3/2}(M)$.
- **b.** Les trois ondes qui interférent au point M sont-elles cohérentes ? Justifier votre réponse.
- c. En déduire l'intensité vibratoire observée sur l'écran et représenter ses variations en fonction de la position du point d'observation M.

Exercice 2 : spectroscopie à réseau

Un réseau de pas ${\bf a}$ est éclairé par une source de longueur d'onde λ_0 sous incidence normale :

Pour les ordres $|k| \in [1, 2]$, on donne les valeurs de θ et θ' :

	k = 1	k = 2
θ_k	23°12′	49°18′
θ'_k	-19°30′	-44°15′

- 1. L'incidence est-elle vraiment quasi-normale ?
- 2. Calculer le pas du réseau et le nombre de traits par millimètre pour $\lambda_0=0.5461~\mu m.$
- 3. On éclaire le réseau avec une autre source de longueur d'onde λ_1 inconnu. On mesure $\theta_2=42^{\circ}09'$ et $\theta'_2=-37^{\circ}43'$. Calculer λ_1 .