

Ayudantía 4

17 de abril de 2020

Profesores C. Riveros - J. Salas

Tamara Cucumides y Bernardo Barías

Pregunta 1

Se define la siguiente operación entre dos conjuntos:

$$A\star B=A\setminus B\cup B\setminus A.$$

Demuestre que

$$A \star B = (A \cap B)^c \setminus (A \cup B)^c$$

Solución

$$(A \cap B)^c \setminus (A \cup B)^c = \{x \mid (x \in (A \cap B)^c) \land (x \notin (A \cup B)^c)\}$$

$$= \{x \mid (x \notin (A \cap B)) \land (x \in (A \cup B))\}$$

$$= \{x \mid \neg(x \in A \land x \in B) \land (x \in A \lor x \in B)\}$$

$$= \{x \mid (x \notin A \lor x \notin B) \land (x \in A \lor x \in B)\}$$

$$= \{x \mid ((x \notin A \lor x \notin B) \land x \in A) \lor ((x \notin A \lor x \notin B) \land x \in B)\}$$

$$= \{x \mid (x \notin B \land x \in A) \lor (x \notin A \land x \in B)\}$$

$$= \{x \mid (x \in A \setminus B) \lor (x \in B \setminus A)\}$$

$$= A \land B \cup B \land A = A \star B$$

Pregunta 2

Sea $P = \{A_1, ... A_n\}$ una colección de conjuntos no vacíos, y sea A un conjunto cualquiera. Se dice que P es una partición de A si y sólo si

- $A_i \cap A_j = \emptyset$ para todo $i \neq j$
- $A = \bigcup_{i=1}^n A_i$

Sean $\{A_1,...,A_m\}$ y $\{B_1,...,B_n\}$ particiones de un conjunto X. Muestre que la colección de conjuntos

$$P = \{A_i \cap B_j \neq \emptyset \mid 1 \le i \le m, 1 \le j \le n\}$$

también es una partición de X.

Solución

Para demostrar que $P=(C_1,\ldots,C_k)$ es partición, debemos demostrar dos cosas:

1. $C_i \cap C_j = \emptyset$ para todo $i \neq j$ Veamos que $C_i \cap C_j$ se ve de la siguiente manera

$$C_{i} \cap C_{j} = (A_{i'} \cap B_{j'}) \cap (A_{i''} \cap B_{j''})$$

= $(A_{i'} \cap B_{j'} \cap A_{i''}) \cap (A_{i'} \cap B_{j'} \cap B_{j''})$

Y ahora notamos que nos interesan los casos donde $C_i \neq C_j$, es decir el caso en que al menos $A_{i'} \neq A_{i''}$ o $B_{j'} \neq B_{j''}$ (si no, serian iguales).

Asumimos sin perdida de generalidad que $A_{i'} \neq A_{i''}$, entonces

$$(A_{i'} \cap B_{j'} \cap A_{i''}) \cap (A_{i'} \cap B_{j'} \cap B_{i''}) = \emptyset \cap (A_{i'} \cap B_{j'} \cap B_{i''})$$
$$= \emptyset$$

2. $X = \bigcup_{i=1}^{k} C_i$

Partamos mostrando la inclusión hacia la izquierda:

- $X \supseteq \bigcup_{i=1}^k C_i$ Sea $x \in \bigcup_{i=1}^k C_i$, entonces existe al menos un C_i tal que $x \in C_i$. Sea $C_i = A_{i'} \cap B_{i''}$, entonces $x \in A_{i'}$ y $x \in B_{i''}$. Ahora como $A_{i'}$ y $B_{i''}$ son partes de particiones de X, tenemos que $A_{i'} \subseteq X$ y $B_{i''} \subseteq X$, por lo tanto $A_{i'} \cap B_{i''} \subseteq X$ y finalmente $x \in X$.
- $X \subseteq \bigcup_{i=1}^k C_i$ Tomanos $x \in X$ y veamos que como $\{A_1, \ldots, A_m\}$ y $\{B_1, \ldots, B_n\}$ son particiones entonces existe un $A_i \in \{A_1, \ldots, A_m\}$ tal que $x \in A_i$ y de igual modo existe un $B_j \in \{B_1, \ldots, B_n\}$ tal que $x \in B_j$. De esta manera $x \in A_i \cap B_j \neq \emptyset$. Finalmente como $A_i \cap B_j \neq \emptyset$, entonces $A_i \cap B_j \in \bigcup_{i=1}^k C_i$ y se concluye que $x \in \bigcup_{i=1}^k C_i$.

Pregunta 3

Sea $S = \{1, ..., n\}$ un conjunto finito. Decimos que un conjunto $\mathcal{C} \subseteq \mathcal{P}(S)$ es una anti-cadena si para todo $A, B \in \mathcal{C}$ con $A \neq B$ se cumple que $A \nsubseteq B$ y $B \nsubseteq A$.

- 1. De una cota superior de la cantidad de anti-cadenas puede uno formar para $S = \{1, 2, 3, ..., n\}$. Explique su respuesta.
- 2. Un conjunto $C = \{A_1, \ldots, A_m\} \subseteq \mathcal{P}(S)$ se dice que es un sistema separador de S si para todo $i \neq j$ en S, existen $A \in \mathcal{C}$ y $B \in \mathcal{C}$ tal que $i \in A$, $i \notin B$, $j \notin A$ y $j \in B$ (en otras palabras, $i \in A \setminus B$ y $j \in B \setminus A$). El conjunto dual $C^* = \{B_1, \ldots, B_n\}$ de C se define como $B_i = \{k \in \{1, \ldots, m\} \mid i \in A_k\}$ para todo $i \leq n$. Demuestre que un conjunto C es un sistema separador si, y solo si, $|C^*| = n$ y C^* es una anti-cadena.

Solución

Nos piden demostrar que C es un sistema separador si, y solo si, $|C^*| = n$ y C^* es una anti-cadena. Partimos suponiendo que C es un sistema separador y demostramos:

■ $|\mathcal{C}^*| = n$. Por construcción tenemos que $\mathcal{C}^* = \{B_1, \dots B_n\}$, entonces para demostrar que $|\mathcal{C}^*| = n$ basta demostrar que los B_i para $i \in [1, n]$ son todos distintos entre si. Por contradicción supongamos que existen $i \neq j$ tal que $B_i = B_j$, entonces tenemos que $B_i = \{k \mid i \in A_k\} = \{k \mid j \in A_k\} = B_j$. Esto quiere decir que para todo A_k tal que $i \in A_k$, también $j \in A_k$. Esto es una contradicción con la premisa que C es separador.

• \mathcal{C}^* es una anti-cadena

Tenemos que demostrar que para cada $B_i, B_j \in \mathcal{C}^*$ con $i \neq j$ se cumple que $B_i \not\subseteq B_j$ y $B_j \not\subseteq B_i$. Por contradicción y sin perdida de generalidad supongamos que $B_i \subseteq B_j$. Esto implica que para todo i se tiene que los A_k tal que $i \in A_k$ contienen también a j. Entonces al tomar i, j no existen $A_m, A_n \in \mathcal{C}$ tal que $i \in A_m \setminus A_n$ y $j \in A_n \setminus A_m$ lo cual contradice que \mathcal{C} es sistema separador.

Ahora asumimos que $|\mathcal{C}^*| = n$ y \mathcal{C}^* es una anti-cadena y demostramos que \mathcal{C} es un sistema separador. Para esto, debemos demostrar que para todo par de números $i, j \in S$ con $i \neq j$ existen A_m y A_n tal que $i \in A_m \setminus A_n$ y $j \in A_n \setminus A_m$. Como $|\mathcal{C}^*| = n$ y \mathcal{C}^* es una anti-cadena, entonces los conjuntos B_i y B_j correspondientes a los números i, j no son subconjunto el uno del otro. Esto quiere decir en particular que existe un $k' \in B_i \setminus B_j$ y existe un $k'' \in B_j \setminus B_i$. Esto quiere decir que $i \in A_{k'}$ pero $j \notin A_{k'}$ y además $j \in A_{k''}$ pero $i \notin A_{k''}$. Dado que esto se cumple para cualquier $i, j \in S$, se concluye que \mathcal{C} es sistema separador.