Image Filtering


```
>> Ig = 0.5*(I(:,:,1)+I(:,:,2));
>> [bw,thresh] = edge(Ig,'canny'); imagesc(bw); colormap(gray)
```


In a computer... an image is a 2 dimensional table of numbers, a 2D matrix

121	121	118	111	 21
134	136	137	132	 23
133	131	136	136	 25
136	145	148	151	 34
137	140	147	149	 54
231	233	243	244	 179

I(i,j) is the sensor value at location x = i, y = j

$$I(2,1) = 134$$

$$I(3,4) = 136$$

Any 2D matrix can be seen as an image

Examples:

Brightness = 0.5*(R+G)


```
>> I = imread(image_file);
```

>> figure(1); image(I);

>> pixval on;


```
I = double(I);
Ig = 0.5*(I(:,:,1) + I(:,:,2));
figure(2); imagesc(Ig);
Colormap(gray);
```


Linear functions

- Simplest: linear filtering.
 - Replace each pixel by a linear combination of its neighbors.
- The prescription for the linear combination is called the "convolution kernel".

0	5	3	(0
4	5	1		0
1	1	7)

Local image data

0 0 0 0 0.5 0 0 1 0.5

kernel

7

Modified image data 11

(Freeman)

Simple Neural Network

This leads to parallel computation

Anatomy of eye

The macula is the center of vision (and retina) and the fovea (FAZ) is the focal point approximately only 0.4mm in diameter. Reading, driving, etc. is all performed here.

Photo-sensors

- 1) Light pass through retina cells, excites Rod and Cone
- 2) Cone: color(spectral) sensitive, R,G,B, 6 Million
- 3) Rod: more photo sensitive, peak at 580nm(yellow), 120 M
- 4) What happens if you miss one type of Cone cells?

Retina up-close

Linear filtering (warm-up slide)

original

?

(Following examples taken from B. Freeman)

Linear filtering (warm-up slide)

original

Filtered (no change)

Linear filtering

original

?

shift

original

i ixei oiiset

shifted

Linear filtering

original

?

Blurring

original

Blurred (filter applied in both dimensions).

Blur examples

Blur examples

Linear filtering (warm-up slide)

original

Linear filtering (no change)

original

Filtered (no change)

Linear filtering

original

(remember blurring)

original

Blurred (filter applied in both dimensions).

Sharpening

original

Sharpened original

Sharpening example

Sharpened (differences are accentuated; constant areas are left untouched).

Sharpening

before after

Image filtering

$$g[m,n] = \sum_{k,l} I(m+k,n+l) * f(k,l)$$

Output Input Kernal Image Image

Image filtering

$$g[m,n] = \sum_{k,l} I(m+k,n+l) * f(k,l)$$

Image I 8x8

Kernel *f* 3x3

Output g

1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1
1	1	1	1	$\begin{pmatrix} 1 \end{pmatrix}$	11	1	1
1	1	1	1		Т		
0	0	0	0	0	0	0	0
0	0	0	0	0	0	9	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

1	2	3	
4	5	6	
7	8	9	

28	39	39	39	39	39	39	24
33	45	45	45	45	45	45	27
33	45	45	45	45	45	45	27
16	21	21	21	21	21	21	12
5	6	6	6	5	6	6	3
0	0	0	0	0	0	0	0
							i

0

Register

Same position

а	b	С
d	e	f
g	h	i

Loop over every pixel (m,n)

Calculate result = a*1+b*2+...+i*9

Special case: impulse function

Special case: impulse function

<Note> The output is the kernel flipped left-right, up-down!

Convolution

Let I be an Signal(image), Convolution kernel f,

$$g[m,n] = I \otimes f = \sum_{k,l} I(m-k,n-l) * f(k,l)$$
Output Input Image Kernal Image

Convolution

- $g[m,n] = I \otimes f = \sum_{k,l} I(m-k,n-l) * f(k,l)$
- Convolution is filtering with kernel flipped

Image Convolution:

$$f[m,n] = I \otimes g = \sum_{k,l} I[m-k,n-l]g[k,l]$$

$$f[m,n] = I \otimes g = \sum_{k,l} I[m-k, n-l]g[k,l]$$

$$= \sum_{k,l} I[m+k, n+l]g'[k,l]$$

Image Kernel

0	0	0	0	0
0	1	0	0	0
0	1	0	0	0
0	1	0	1	0
0	0	0	1	0

1	1
	1
	1

0	0	0	0	0
0	1	0	0	0
0	1	0	0	0
0	1	0	1	0
0	0	0	1	0

1		
1		
1	1	

Kernel		In	nage				Οι	utput		
1										
1	0	0	0	0	0	0	0	0	0	0
1	0 1	1	0	0	0	0	1	0	0	0
	0	1	0	0	0	0	1	0	0	0
	0	1	0	1	0	0	1	0	1	0
	0	0	0	1	0	0	0	0	1	0

	Ir	nage Kernel				Οι	utput
		1					
0	0	0 1	0	0	0	1	1
0	1	0 1	0 1	0	0	1	0
0	1	0	0	0	0	1	0
0	1	0	1	0	0	1	0

0	1	1	0	0
0	1	0	0	0
0	1	0	0	0
0	1	0	1	0
0	0	0	1	0

Kernel

0	0 1	0	0	0
0	1 1	0	0	0
0	1 1	0 1	0	0
0	1	0	1	0
0	0	0	1	0

0	1	1	0	0
0	1	2	0	0
0	1	0	0	0
0	1	0	1	0
0	0	0	1	0

Kernel

0	0	0	0	0
0	1	0 1	0	0
0	1	0	0	0
0	1	0	1	0
0	0	0	1	0

0	1	1	0	0
0	1	2	0	0
0	1	0	0	0
0	1	0	1	0
0	0	0	1	0

0	0	0	0	0
Kernel				
0 1	1	0	0	0
0 1	1	0	0	0
0	1	0	1	0
0	0	0	1	0

0	1	1	0	0
0	1	2	0	0
0	1	0	0	0
0	1	0	1	0
0	0	0	1	0

0	0	0	0	0
	Kernel			
0	1 1	0	0	0
0	1	0	0	0
0	1	0 1	1	0
0	0	0	1	0

0	1	1	0	0
0	1	2	0	0
0	1	3	0	0
0	1	0	1	0
0	0	0	1	0

0	0	0	0	0
		Kernel		
0	1	0	0	0
		1		
0	1	0	0	0
		1		
0	1	0	1	0
		1	1	
0	0	0	1	0

0	1	1	0	0
0	1	2	0	0
0	1	3	1	0
0	1	0	1	0
0	0	0	1	0

0	0	0	0	0	0	1	1	0	0
			Kernel						
0	1	0	0 1	0	0	1	2	0	0
0	1	0	0 1	0	0	1	3	1	1
0	1	0	1	0 1	0	1	0	1	0
0	0	0	1	0	0	0	0	1	0

0	0	0	0	0
0	1	0	0	0
0	1 Kernel	0	0	0
0	1 1	0	1	0
0	0 1	0	1	0
	1	1		

0	1	1	0	0
0	1	2	0	0
0	1	3	1	1
0	0	2	1	2
0	0	1	1	0

0	0	0	0	0
0	1	0	0	0
0	1	0 Kernel	0	0
0	1	0 1	1	0
0	0	0 1	1	0
		1	1	

0	1	1	0	0
0	1	2	0	0
0	1	3	1	1
0	0	2	1	2
0	0	1	0	2

Kernel

Image

0	0	0	0	0
0	1	0	0	0
0	1	0	0	0
0	1	0	1	0
0	0	0	1	0

Ouput

0	1	1	0	0
0	1	2	0	0
0	1	3	1	1
0	0	2	1	2
0	0	1	0	2

• Convolution has commutative property $f \otimes I$

Impulse functions shift images

а	b c		
d	е	f	
യ	h	i	

Kernel f

1	0	0
0	0	0
0	0	0

Kernel *f'*

0	0	0
0	0	0
0	0	1

Result

e	f	0
h	i	0
0	0	0

• In this case the resulting image shifted to the upper left

• Convolution has commutative property $I \otimes f$

Proof of Commutative property

- $g[m,n] = I \otimes f = f \otimes I$
- $g[m,n] = I \otimes f = \sum_{k,l} I(m-k,n-l) * f(k,l)$
- Let k' = m k, l' = n l, then k = m - k', l = n - l'
- $g[m,n] = \sum_{k',l'} I(k',l') * f(m-k',m-l') = f \otimes I$

2D visualization of convolution (full)

Image I

Kernel f

Output g

1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

3x3

1	3	6	6	6	6	6	6	5	3
5	12	21	21	21	21	21	21	16	9
12	27	45	45	45	45	45	45	33	18
12	27	45	45	45	45	45	45	33	18
11	24	39	39	39	39	39	39	28	15
7	15	24	24	24	24	24	24	17	9
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

8x8

10x10

2D visualization of convolution (same)

Image I

1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

Kernel f

1	2	3
4	5	6
7	8	9

3x3

Output g

12	21	21	21	21	21	21	16
27	45	45	45	45	45	45	33
27	45	45	45	45	45	45	33
24	39	39	39	39	39	39	28
15	24	24	24	24	24	24	17
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

8x8

2D visualization of convolution (valid)

Image I

1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

Kernel f

1	2	3			
4	5	6			
7	8	9			
2 2					

3x3

Output g

45	45	45	45	45	45
45	45	45	45	45	45
39	39	39	39	39	39
24	24	24	24	24	24
0	0	0	0	0	0
0	0	0	0	0	0

6x6

8x8

Linear independence

Dilation

Dilation

The locus of pixels $\mathbf{p} \in S_{\mathbf{p}}$ such that $(\tilde{Z} + \mathbf{p}) \cap I \neq \emptyset$.

dilated image

original / dilation

original image

 $SE = Z_8$

Dilation through Image Shifting

Examples of image operation as convolution

Average Filter

- Mask with positive entries, that sum 1.
- Replaces each pixel with an average of its neighborhood.
- If all weights are equal, it is called a BOX filter.

F

1/9 1 1 1 1 1 1 1 1 1

(Camps)

Example 1: Smoothing by Averaging

Gaussian Averaging

- Rotationally symmetric.
- Weights nearby pixels more than distant ones.
 - This makes sense as probabalistic inference.

 A Gaussian gives a good model of a fuzzy blob

2D filters, more on this later...

• is the **Laplacian** operator:

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

An Isotropic Gaussian

 The picture shows a smoothing kernel proportional to

$$e^{-\frac{x^2+y^2}{2\sigma^2}}$$

 (which is a reasonable model of a circularly symmetric fuzzy blob)

Smoothing with a Gaussian

Salvador Dali, "Gala Contemplating the Mediterranean Sea, which at 30 meters becomes the portrait of Abraham Lincoln", 1976

Salvador Dali, "Gala Contemplating the Mediterranean Sea, which at 30 meters becomes the portrait of Abraham Lincoln", 1976

Image smoothing can remove noise, and also ...

