Batch: Hinglish

Theory of Computation Undecidability

DPP 02

[MSQ]

Let L = {(X) | is a DFA and L (X) is a infinite language
}; where (X) represents the illustration of the deterministic finite automata (DFA).

Then which of the statement is/are correct?

- (a) It is recognizable by Turing.
- (b) Its complement is recognizable by Turing.
- (c) It is Turing decidable (recursive).
- (d) It is context-free but not regular.

[MSQ]

- **2.** Which of the following statement is/are incorrect?
 - (a) If L is CFL and A is DCFL then L-A is CFL.
 - (b) The subset of a decidable language is always decidable.
 - (c) If L and A are DCFL then $\left(\overline{L}\, \cap \, \overline{A}\right)$ is CFL.
 - (d) None of the above are incorrect.

[MCQ]

- 3. Consider some language $P \in \{0,1\}^*$ reduces to another language $Q \in \{0,1\}^*$. Which of the following statement is true?
 - (a) P is decidable.
 - (b) A Turing machine that recognizes P can be used to construct a truing that recognizes Q.
 - (c) If Q is decidable then P is decidable.
 - (d) If P is decidable then Q is decidable.

[MCQ]

- **4.** Consider the following statement:
 - S_1 : In phase structured language, membership problem is semi decidable.
 - S_2 : In context-free languages, membership problem can be solved in ploynomial time.
 - (a) Only S₁ is true
 - (b) Only S_2 is true
 - (c) Both S_1 and S_2 is true
 - (d) Neither S_1 nor S_2 is true

[MCQ]

- **5.** Consider the following statements:
 - **S₁:** For a decidable language X, X^R may or may not be decidable. (X^R represents the reverse of language X).
 - S_2 : If X is not recursively enumerable then \overline{X} must be recursively enumerable.
 - (a) Only S_1 is true
 - (b) Only S₂ is true
 - (c) Both $S_1 \& S_2$ are false
 - (d) Both $S_1 & S_2$ are true

[MCQ]

- **6.** Consider the following statements about Turing machine.
 - **S₁:** If there is some Turing machine that accepts every string in L and rejects every string not in L then L is decidable.
 - **S₂:** If there is some Turing machine that accepts every string in L and either rejects or loops on every string not in L, then L is semi-decidable or computably enumerable (CE).
 - (a) Only S_1 is true
 - (b) Only S₂ is true
 - (c) Both $S_1 \& S_2$ are true
 - (d) Neither S_1 nor S_2 is true

[MSO]

- **7.** Which of the following is/are decidable properties of context-free?
 - (a) for context-free grammar X, find if string $w \in X$.
 - (b) for context-free grammar X, find if $L(X) = \phi$.
 - (c) for context-free grammar X, find if L(X) is infinite.
 - (d) none of the above are decidable properties of context free.

[MCQ]

- **8.** Consider the following statements:
 - **S₁:** There is language for which no TM available. Then surely language will be Not RE.
 - S_2 : Language is undecidable if and only there is no HTM available for language.

Which of the following is incorrect?

- (a) S_1 only.
- (b) S_2 only.
- (c) Both S_1 and S_2 .
- (d) Neither S_1 Nor S_2 .

Answer Key

- (a, b, c) 1.
- 2. (a, b, c)
- 3. **(c)**
- 4. **(c)**

- 5.
- (c) (c) (a, b, c) (d) 7.
- 8.

Hint & Solutions

1. (a, b, c)

 $L \rightarrow regular$

(a) True: Regular ⊂ recursively enumerable.

(b) True: regular = regular and regular \subset RE.

(c) True: regular \subset recursive.

2. (a, b, c)

(a) False: CFL is not closed under intersection.

(b) False: Σ^* is decidable but it has undecidable subsets ($a^p \to P$ is not prime)

(c) False: same as option a Hence, a, b, c are false

3. (c)

If P is reduced to Q then properties of Q are possessed by P hence, answer is 'C'.

4. (c)

S₁: True → membership problem in unrestrited (∴ Phrase is unerstricted) is semi-decidable

 S_2 : True \rightarrow using CYK algorithm, membership problem in context-free language can be solved in ploynomial time.

5. (c)

S₁: False \rightarrow On input 'P', the algorithm for X^R , will reverse 'P' and then run the algorithm for X.

S₂: False → There are language like REGULAR which are not R.E. and their complement is also not RE.

6. (c)

- If there is some Turing machine that accepts every string in L and rejects every string not in 'L' then 'L' is decidable.
- If there is some Turing machine that accepts every string in L and either rejects or loops on every string not in L then L is semi decidable or computably enumerable (CE).

7. (a, b, c)

- There exists a membership algorithm for CFG so, it is decidable.
- Context-free emptiness problem is decidable.
- The context-free finiteness problem is decidable.

8. (d)

Both statements are correct.

So, Correct option is (d).

Any issue with DPP, please report by clicking here:- $\frac{https://forms.gle/t2SzQVvQcs638c4r5}{https://smart.link/sdfez8ejd80if}$ For more questions, kindly visit the library section: Link for web: $\frac{https://smart.link/sdfez8ejd80if}{https://smart.link/sdfez8ejd80if}$

PW Mobile APP: https://smart.link/7wwosivoicgd4

