Kevin S. Bello Medina (Kevin Bello)

https://kevinsbello.github.io/

RESEARCH INTERESTS

I am broadly interested in Artificial Intelligence and Machine Learning. My research focuses on developing algorithms that are computationally and statistically efficient for various machine learning problems. Specific Topics of Interest: Combinatorial problems in machine learning, causal discovery, causal representation learning, distribution shifts, structured prediction, (non)convex optimization, high-dimensional statistics, fundamental limits, latent variable modeling.

ACADEMIC POSITIONS

Joint Postdoctoral Fellow

Sept. 2021 - present

University of Chicago (Booth School of Business) and

Carnegie Mellon University (Machine Learning Department)

Mentors: Bryon Aragam (UChicago) and Pradeep Ravikumar (CMU)

EDUCATION

Ph.D. in Computer Science

Aug. 2016 - Aug. 2021

Purdue University, Indiana, USA

Thesis: "Structured Prediction: Statistical and Computational Guarantees in Learning and Inference"

Advisor: Jean Honorio

B.Sc. in Mechatronics Engineering (Robotics)

Aug. 2009 - Dec. 2014

Universidad Nacional de Ingenieria, Lima, Peru

Summa Cum Laude

HONORS AND AWARDS

• DAAD AI-net Fellowship DAAD's support of an individual one-week networking visit to German institutions,	2023
and membership in the DAAD AI-net Fellows and Alumni Network.	
NeurIPS Scholar Award	2022
NSF Computing Innovation Fellowship	2021
Prestigious award given by the Computing Research Association and	
Computing Community Consortium to support two-year postdoctoral positions	
Bilsland Dissertation Fellowship	2021
Competitive award given to the most outstanding students at Purdue University	
• NeurIPS Travel Award 2	018, 2019
• Grant to participate in the Machine Learning Summer School, Kyoto University	2015
• Highest accumulated GPA of my class, Universidad Nacional de Ingenieria	2014
 Peruvian Council of Science and Technology (Concytec) research grant 	2013
Presidente Manuel Pardo y Lavalle Prize	2012
Highest honor given to undergraduates at Universidad Nacional de Ingenieria	
• Grant to participate in the 1st Latin American Theoretical Informatics School, University of Chile	2012

PUBLICATIONS

PREPRINTS / UNDER REVIEW

[1] "iSCAN: Identifying Causal Mechanism Shifts among Nonlinear Additive Noise Models.". T. Chen, K. Bello, B. Aragam and P. Ravikumar.

Preprint, 2023.

[2] "Global Optimality in Bivariate Gradient-based DAG Learning.".

C. Deng, **K. Bello**, B. Aragam and P. Ravikumar. Preprint, 2023.

[3] "Direct Learning with Guarantees of the Difference DAG Between Structural Equation Models".

A. Ghoshal, K. Bello and J. Honorio.

Preprint, 2023.

PEER-REVIEWED CONFERENCES

[4] "Optimizing NOTEARS Objectives via Topological Swaps.".

C. Deng, K. Bello, B. Aragam and P. Ravikumar.

International Conference on Machine Learning (ICML), USA, 2023.

[5] "DAGMA: Learning DAGs via M-matrices and a Log-Determinant Acyclicity Characterization".

K. Bello, B. Aragam and P. Ravikumar.

Neural Information Processing Systems (NeurIPS), USA, 2022.

[6] "On the Fundamental Limits of Exact Inference in Structured Prediction".

H. Lee, K. Bello, and J. Honorio.

IEEE International Symposium on Information Theory (ISIT), Finland, 2022.

[7] "A Thorough View of Exact Inference in Graphs from the Degree-4 Sum-of-Squares Hierarchy".

K. Bello, C. Ke, and J. Honorio.

International Conference on Artificial Intelligence and Statistics (AISTATS), Spain, 2022.

[8] "Inverse Reinforcement Learning in the Continuous Setting with Formal Guarantees".

G. Dexter, K. Bello, and J. Honorio.

Neural Information Processing Systems (NeurIPS), Canada, 2021.

[9] "A Le Cam Type Bound for Adversarial Learning and Applications".

K. Bello*, Q. Xu*, and J. Honorio.

IEEE International Symposium on Information Theory (ISIT), Australia, 2021.

[10] "Fairness Constraints can Help Exact Inference in Structured Prediction".

K. Bello and J. Honorio.

Neural Information Processing Systems (NeurIPS), Canada, 2020.

[11] "Minimax Bounds for Structured Prediction Based on Factor Graphs".

K. Bello, A. Ghoshal and J. Honorio.

International Conference on Artificial Intelligence and Statistics (AISTATS), Italy, 2020.

[12] "Exact Inference in Structured Prediction".

K. Bello and J. Honorio.

Neural Information Processing Systems (NeurIPS), Canada, 2019.

[13] "Learning Latent Variable Structured Prediction Models with Gaussian Perturbations".

K. Bello and J. Honorio.

Neural Information Processing Systems (NeurIPS), Canada, 2018.

[14] "Computationally and Statistically Efficient Learning of Bayes Nets Using Path Queries".

K. Bello and J. Honorio.

Neural Information Processing Systems (NeurIPS), Canada, 2018.

[15] "Improving Topic Coherence Using Entity Extraction Denoising".

R. Cardenas, K. Bello, A. Coronado and E. Villota.

The Prague Bulletin of Mathematical Linguistics, Czech Republic, 2018.

[16] "Panorama of the Market Demand for Mechanical Engineers in South American Countries".

R. Cardenas, K. Bello, A. Valle, E. Villota and A. Coronado.

ASME-IMECE, USA, 2015.

CONFERENCE PRESENTATIONS AND INVITED TALKS

- [1] "iSCAN: Identifying Causal Mechanism Shifts among Nonlinear Additive Noise Models" Workshop on Spurious Correlations, Invariance, and Stability at ICML. Hawaii, July 2023.
- [2] "iSCAN: Identifying Causal Mechanism Shifts among Nonlinear Additive Noise Models" Max Planck Institute for Intelligent Systems. Tübingen, July 2023.
- [3] "DAGMA: Learning DAGs via M-matrices and a Log-Determinant Acyclicity Characterization" Midwest Machine Learning Symposium (MMLS). Chicago, May 2023.
- [4] "DAGMA: Learning DAGs via M-matrices and a Log-Determinant Acyclicity Characterization" Neural Information Processing Systems (NeurIPS). New Orleans, December 2022.
- [5] "DAGMA: Learning DAGs via M-matrices and a Log-Determinant Acyclicity Characterization" Bay Area Machine Learning Symposium (BayLearn). San Francisco, October 2022.
- [6] "Exact Inference in Structured Prediction"
 Research Experience for Peruvian Undergraduates CS Seminar. Virtual, July 2021.
- [7] "Bayesian Network Learning with Path Queries" IEEE EMBS, Universidad Nacional de Ingenieria. Virtual, June 2021.
- [8] "Exact Inference in Graphs and its Structural Properties"
 Carnegie Mellon University (Pradeep Ravikumar's Lab). Virtual, April 2021.
- [9] "Exact Inference in Graphs and its Structural Properties"
 Massachusetts Institute of Technology CSAIL (David Sontag's Lab). Virtual, April 2021.
- [10] "Exact Inference in Graphs and its Structural Properties"

 Massachusetts Institute of Technology CBMM (Tomaso Poggio's Lab). Virtual, April 2021...
- [11] "Exact Inference in Graphs"
 Peru's 3rd Symposium of Deep Learning. Virtual, January 2021.
- [12] "Fairness Constraints can Help Exact Inference in Structured Prediction" Neural Information Processing Systems (NeurIPS). Virtual, December 2020.
- [13] "Ph.D. Research Experience"
 TECHSUYO Accelerating digital transformation in Peru. Virtual, October 2020.
- [14] "Minimax Bounds for Structured Prediction Based on Factor Graphs" Artificial Intelligence and Statistics (AISTATS). Virtual, August 2020.
- [15] "Exact Inference in Structured Prediction"

 Neural Information Processing Systems (NeurIPS). Vancouver, December 2019.
- [16] "Learning Latent Variable Structured Prediction Models with Gaussian Perturbations" Neural Information Processing Systems (NeurIPS). Montreal, December 2018.
- [17] "Computationally and Statistically Efficient Learning of Bayes Nets Using Path Queries" Neural Information Processing Systems (NeurIPS). Montreal, December 2018.
- [18] "Labor Market Demand Analysis for Engineering Majors in Peru Using Topic Modeling" Machine Learning Summer School (MLSS). Kyoto, August 2015.

PROFESSIONAL SERVICE

- Chair of the LXAI Workshop at ICML 2020.
- Reviewer:

Conferences: NeurIPS 2023, ICML 2023, ICLR 2023, NeurIPS 2022, ICML 2022, ICLR 2022, AAAI 2022, NeurIPS 2021, ICML 2021, AISTATS 2021, ICLR 2021, NeurIPS 2020, IJCAI 2020, NeurIPS 2019.

Journals: Journal of Machine Learning Research (JMLR), IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), Transactions on Machine Learning Research (TMLR), Journal of Computational and Graphical Statistics (JCGS).

RESEARCH EXPERIENCE

Research Assistant

June 2017 - Aug. 2021 Advisor: *Jean Honorio*

Department of Computer Science, Purdue University

• Analyzed the degree-4 sum-of-squares hierarchy for exact inference in graphs.

- Studied the effect of fairness constraints in exact inference for structured prediction.
- Analyzed information-theoretic bounds for adversarial learning.
- Derived lower bounds to characterize learnability of structured prediction models, specifically, factor graph models with unary and pairwise factors.
- Studied the sufficient conditions to perform exact inference in polynomial time for structured prediction trough the use of semidefinite programming relaxations.
- Developed a computationally efficient method for the learning of latent-variable structured prediction models under Gaussian perturbations, and studied its generalization properties by using PAC-Bayes and Rademacher complexity.
- Studied the learning of causal Bayesian networks by using path queries. A poly-time algorithm with polynomial sample complexity was proposed.

PhD Intern May 2020 - Aug. 2020

Facebook AI Supervisor: Maxim Grechkin and Hao Ma

• Studied backward compatible representations of Facebook content, i.e., explored how to reconstruct an *old* pre-trained embedding given a *new* pre-trained embedding from a more complex model.

PhD InternMay 2019 - Aug. 2019Facebook AISupervisor: Yunlong He

• Proposed domain-based metrics for a feature selection algorithm as part of the Ads Ranking team.

TEACHING EXPERIENCE

Teaching Assistant

Department of Computer Science, Purdue University

• Data Mining and Machine Learning (CS 373)

Spring 2021 Fall 2020

Statistical Machine Learning (CS 578)Data Structures and Algorithms (CS 251)

Fall 2016, Spring 2017

ACADEMIC REFERENCES

Pradeep Ravikumar, Postdoctoral Advisor

Carnegie Mellon University

Professor, Machine Learning Department, School of Computer Science

email: pradeepr@cs.cmu.edu

Bryon Aragam, Postdoctoral Advisor

The University of Chicago

Assistant Professor, Booth School of Business

email: nikhyl.aragam@chicagobooth.edu

Jean Honorio, Doctoral Advisor

Purdue University

Assistant Professor, Computer Science Department

email: jhonorio@purdue.edu