(19) BUNDESREPUBLIK **DEUTSCHLAND**

๓ DĔ 3430894 A1

DEUTSCHES PATENTAMT

② Aktenzeichen: P 34 30 894.6 Anmeldetag: 22. 8.84 (43) Offenlegungstag: 14. 3.85

(5) Int. Cl. 3:

A61 K 39/116

A 61 K 39/106 A 61 K 39/108 A 61 K 39/385

DE 3430894 A

30 Unionspriorität: 32 33 31 23.08.83 IL 69558

(71) Anmelder:

Yeda Research and Development Co., Ltd., Rehovot,

(74) Vertreter:

Vossius, V., Dipl.-Chem. Dr.rer.nat.; Vossius, D., Dipl.-Chem.; Tauchner, P., Dipl.-Chem. Dr.rer.nat.; Heunemann, D., Dipl.-Phys. Dr.rer.nat.; Rauh, P., Dipl.-Chem. Dr.rer.nat., Pat.-Anw., 8000 München

② Erfinder:

Sela, Michael; Arnon, Ruth, Rehovot, IL; Jacob, Chaim O., Petach Tikva, IL

(A) Impfstoff gegen Cholera und gegen Hitze-labiles E. coli-Toxin

Es wird ein synthetischer Impfstoff gegen Cholera und Hitze-labiles E.coli-Toxin bereitgestellt, der eine Verbindung eines hochmolekularen Trägers mit einem synthetischen Polypeptid enthält, das in seiner Sequenz einem Teil der Untereinheit B des natürlichen Cholera-Toxins entspricht. Die Sequenzen entsprechen beispielsweise den Aminosäure-Positionen 45 bis 64, 50 bis 64 und 8 bis 20 der Untereinheit B oder diesen ähnlichen, jedoch leicht modifizierten Sequenzen.

VOSSIUS · TAUCHNER · HEUNEMANN · RAUH

SIEBERTSTRASSE 4 · 8000 MÜNCHEN 86 · PHONE: (089) 47 40 75 CABLE: BENZOLPATENT MÜNCHEN · TELEX 5-29 453 VOPAT D

3430894

22. August 1984

5 u.Z.: T 229 (Ra/Jae/Ke)

Case: T/546

YEDA RESEARCH AND DEVELOPMENT COMPANY LIMITED Rehovot, Israel

10

"Impfstoff gegen Cholera und gegen Hitze-labiles E. coli-Toxin"

15

Patentansprüche

- Impfstoff gegen Cholera und gegen Hitze-labiles E. coli-Toxin, dadurch gekennzeichnet,
 daß er ein / Verknüpfungsprodukt
 daß er ein / aus einem hochmolekularen Träger mit einem Polypeptid umfaßt, das einem Teil der Sequenz der Untereinheit B des natürlichen Choleratoxins entspricht.
- Impfstoff nach Anspruch 1, dadurch gekennzeichnet, daß
 das Polypeptid synthetischen Ursprungs ist.
 - 3. Impfstoff nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Sequenz im wesentlichen den Aminosäurepositionen 50 bis 64 der Untereinheit B des Choleratoxins entspricht.
 - 4. Impfstoff nach Anspruch 3, dadurch gekennzeichnet, daß das Polypeptid im wesentlichen die Sequenz Val-Glu-Val-Pro-Gly-Ser-Gln-His-Ile-Asp-Ser-Gln-Lys-Lys-Ala aufweist.
- oder 2,
 5. Impfstoff nach Anspruch 1/dadurch gekennzeichnet, daß
 die Sequenz im wesentlichen den Aminosäurepositionen 8 bis
 20 der Untereinheit B des Choleratoxins entspricht.

L

- 6. Impfstoff nach Anspruch 5, dadurch gekennzeichnet, daß das Polypeptid im wesentlichen die Sequenz Leu-Cyc-Ala-Glu-Tyr-His-Asn-Thr-Gln-Ile-his-Thr-Leu aufweist.
- 7. Impfstoff nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Sequenz im wesentlichen den Aminosäurepositionen 45 bis 64 der Untereinheit B des Choleratoxins entspricht.
- 8. Impfstoff nach Anspruch 7, dadurch gekennzeichnet, daß

 10 das Polypeptid im wesentlichen die Sequenz Gly-Ala-Thr-PheGlu-Val-Glu-Val-Pro-Gly-Ser-Gln-His-Ile-Asp-Ser-Gln-Lys-LysAla aufweist.
- Impfstoff nach Anspruch 1, dadurch gekennzeichnet, daß
 der hochmolekulare Träger ein Toxoid ist.
 - 10. Impfstoff nach Anspruch 9, dadurch gekennzeichnet, daß das Toxoid Tetanus-Toxoid ist.
- 20 11. Impfstoff nach Anspruch 9, dadurch gekennzeichnet, daß der hochmolekulare Träger ein Polymerisat des Poly AL-Typs mit einem durchschnittlichen Molekulargewicht von mindestens 50000 ist.
- 25 12. Verwendung des Impfstoffs nach Anspruch 1 bis 11, gegebenenfalls zusammen mit einem geeigneten Adjuvants oder Verdünnungsmittel, zur Erzeugung von Immunität gegen Choleratoxin und Hitze-labiles E. coli-Toxin.

 Γ

Die Erfindung bezieht sich auf Impfstoffe, die dazu geeignet 5 sind, selektive Immunität gegen Choleratoxin (CT) und Hitzelabiles E. coli-Toxin (LT von E. coli) zu induzieren. Die Impfstoffe enthalten ein Verknüpfungsprodukt eines hochmolekularen Anteils mit einem Polypeptid, das einem bestimmten, verhältnismäßig kurzen Teil der Untereinheit B des 10 natürlichen Toxins entspricht. Beispielsweise werden Polypeptide verwendet, die den Aminosäurepositionen 50 bis 64, 8 bis 20 und 45 bis 64 der Untereinheit B des natürlichen Choleratoxins entsprechen. Der Träger ist ein geeignetes Toxoid, wie das Tetanustoxoid, oder ein synthe-15 tisches Polymer mit angemessenem Molekulargewicht, wie Poly AL (ein Alanin-Lysin-Polymer) mit einem Molekulargewicht von mindestens etwa 50 000 und vorzugsweise etwa

Antiseren gegen die Sequenz der Aminosäuren 50 bis 64 neutralisieren in signifikanter Weise die biologische Aktivität sowohl des Choleratoxins als auch/Hitze-labilen E. colitoxins.

100 000. Die Polypeptide sind vorzugsweise synthetischen Ursprungs und können mit Hilfe bekannter Methoden der Polypep-

tidsynthese, wie der Festphasen-Synthese nach Merrifield, synthetisiert

Geeignete synthetische Peptide, die an passende Träger gebunden sind, induzieren Antikörper, die mit Proteinen kreuzreagieren können, die solche Peptidsequenzen enthalten. Dies wurde bereits für das Hühnereiweiß-Lysozym, das Hüllprotein des Bacteriophagen MS2 sowie das Influenzagezeigt.
Hämagglutinin/ Ähnliche Ergebnisse sind für das Protein M von Streptococcus pyogenes, das Diphtherietoxin, das Hepatitis-Virus und das Maul- und Klauenseuche-Virus berichtet worden. In verschiedenen Fällen konnten die Antikörper die

L

20

25

werden.

- 4 -

biologische Aktivität von Viren und Toxinen neutralisieren.

Es ist die Aufgabe der vorliegenden Erfindung, synthetische Peptide bereitzustellen, die Antikörper induzieren können, welche wirksam das Choleratoxin und andere ähnliche Toxine, wie das Hitze-labile E. coli-Toxin neutralisieren. Das den Vibrio cholera-Toxin besteht aus/zwei Untereinheiten A und B. Die Untereinheit A aktiviert die Adenylatcyclase, die die biologische Aktivität steuert, die Untereinheit B dagegen ist verantwortlich für die Bindung an zelluläre Rezeptoren und enthält die meisten immunogenen Determinanten. Antikörper gegen die Untereinheit B können die biologische Aktivität des intakten Toxins neutralisieren. Jedes Monomer der pentameren Untereinheit B (Choleragenoid) besteht aus einer Kette von 103 Aminosäureresten.

Die Erfindung bezieht sich auf die Synthese verschiedener Peptide der Untereinheit B des Choleratoxins und auf Antikörper, die sowohl das intakte Choleratoxin, als auch andere Toxine, wie das Hitze-labile E.coli Toxin, neutralisieren.

Es werden synthetische Impfstoffe gegen Choleratoxine und Hitze-labile E. coli-Toxin bereitgestellt. Diese enthalten ein geeignetes Polypeptid, das einem bestimmten Bereich der Untereinheit B des Choleratoxins entspricht und an einen geeigneten polymeren hochmolekularen Träger, wie geeignete Toxoide (Tetanustoxoid oder ähnliche) oder geeignete Polymere, wie Poly AL mit einem Molekulargewicht von mindestens etwa 50 000 und vorzugsweise etwa 100 000 bis gebunden ist. 120 000,7 Geeignete synthetische Polypeptide entsprechen entweder den Aminosäurepositionen 50 bis 64, 45 bis 64 oder 8 bis 20 der Untereinheit B des Choleratoxins. Die Aminosäuren 50 bis 64 der Untereinheit B des Choleratoxins entsprechen der Sequenz Val-Glu-Val-Pro-Gly-Ser-Gln-His-Ile-Asp-Ser-Gln-Lys-Lys-Ala, die Aminosäuren 8 bis 20 der Sequenz Leu-Cys-Ala-Glu-Tyr-His-Asn-Thr-Gln-Ile-His-Thr-Leu und

5

10

15

20

25

30

- die Aminosäuren 45 bis 64 der Sequenz Gly-Ala-Thr-Phe-Glu-Val-Glu-Val-Pro-Gly-Ser-Gln-His-Ile-Asp-Ser-Gln-Lys-Lys-Ala. In der Sequenz der Aminosäurepositionen 50 bis 64 ist es möglich, das aminoterminale Val durch beliebige andere Aminosäuren zu ersetzen. Anstelle des carboxyterminalen Ala kann Cys inseriert werden. Auf diese Art und Weise modifizierte Polypeptide haben eine ähnliche oder sogar eine bessere Ak-
- In die Sequenz der Aminosäurepositionen 8 bis 20 kann anstelle von Cys die Aminosäure Ala eingesetzt werden. Die erhaltene Aktivität ist ähnlich. Dies wurde durch Experimente ermittelt.
- Es ist klar, daß auch leichte Modifikationen in Bezug auf Kettenlänge und Zusammensetzung der vorstehend definierten Sequenzen verwendet werden können, ohne von der Erfindung abzuweichen.
- Um die Antikörperbildung zu induzieren, muß das Polypeptid an einen geeigneten Träger mit geeignetem Molekulargewicht gebunden sein. Das Tetanustoxoid hat sich als geeigneter Träger erwiesen. Ebenso kann jedes geeignete Polymer verwendet werden, vorzugsweise besteht dies aus Aminosäuren wie
- Poly AL (ein Alanin-Lysin-Copolymer) mit einem durchschnittlichen Molekulargewicht von etwa 100 000 bis 120 000. Anscheinend wird ein Molekulargewicht von mindestens 50 000 benötigt.
- Es wurde gefunden, daß die synthetischen Impfstoffe auch gegen Hitze-labiles Toxin von E. coli (LT von E. coli) wirksam sind. Antikörper gegen die beiden Peptide neutralisieren sowohl die Aktivität des LT von E. coli als auch die des Choleratoxins (CT). Das dritte Polypeptid, mit der Sequenz der Aminosäurepositionen 45 bis 64 hat eine leicht bessere Wirksamkeit als das mit der Sequenz der Aminosäurepositionen

:--

tivität.

- 50 bis 64. Durch Radioimmunoassay und den Immuno-Blotting-Test wurde die Kreuzreaktivität von anti-(8-20-Polypeptid) / -Antikörpern und anti-(50-64-Polypeptid) / mit dem LT von E. coli nachgewiesen. Die Neutralisierung des LT-E. coli verhindert die Induktion der Adenylatcyclase-Aktivität durch das Toxin, die Flüssigkeitsezernierung in abgebundenen Ileumschleifen des Rattendarms und die Induktion der Adenylatcyclase-Aktivität durch Choleratoxin.
- Das nachstehende Beispiel erläutert die Erfindung.

Beispiel

Choleratoxin wurde gekauft. Die Trennung der Untereinheiten und die Isolation der Untereinheit B wurde durch Gelfiltration durch Sephadex G-75 nach der Methode von C.Y. Lai ("CRC Critical Reviews" Bioch 9, S. 171 - 207 (1980)) in Sprozentiger Ameisensäure durchgeführt./ t-Butyloxycarbonyl-(t-boc)-Derivate der verschiedenen Aminosäuren wurden ebenfalls gekauft. Alle anderen Reagenzien weisen die für analytische Zwecke erforderliche oder die beste verfügbare Reinheit auf.

Peptidsynthese:

Die Peptide wurden nach der Festphasen-Methode von B.B.

Merrifield (Sci. 150, Seiten 178 bis 185 (1965)) synthetisiert.

Dabei wurden folgende Seitenketten-Schutzgruppen der t-bocDerivate verwendet: Benzyläther für die Hydroxylgruppen von
Serin und Threonin, Dichlorbenzyläther für die phenolische

Hydroxylgruppe des Tyrosins, und Carbobenzoxy-Gruppen für die ξAminogruppe von Lysin. Die α-Carboxyl-Gruppe von Asparagin und
Glutamin wurde durch Veresterung mit p-Nitrophenol geschützt.

Die Nitroguanidino-Gruppe von Arginin und die Imidazol-Gruppe
von Histidin wurden durch Tosyl-Gruppen geschützt. Das Ausgangs-Aminosäure-Harz wurde durch Veresterung der entsprechenden t-boc-Aminosäure mit dem Chlor-methylierten Harz

(Polystyrol - 1 % Divinylbenzol) hergestellt.

Das Fortschreiten der Synthesereaktion wurde durch Ninhydrin-Analyse überwacht. Wenn sich aus Ninhydrin-Test und Aminosäure-Analyse ergab, daß die Kopplungsreaktion zu weniger als 99 % abgelaufen war, wurden zwei Kopplungsreaktionszyklen durchgeführt. Bei der Synthese von CTP 6 wurden zur Verhinderung der Oxidation von Tryptophan 5 % (v/v) 1,2-Äthandithiol zur Trichloressigsäure zugegeben. Die Schutzgruppen wurden entfernt und die Peptide wurden vom Harz bei 0°C durch Behandlung mit wasserfreiem HF (Fluor-Wasserstoff),der 10 % Anisol und 1 % 1,2-Äthandithiol als Spülmittel enthielt, abgetrennt.

Die nach dem Abtrennen vom Harz wiedergewonnenen Rohpeptide wurden mit Sephadex G-25 Säulen gereinigt. Die Reinheit der Peptide wurde durch Aminosäure-Analyse, Gegenstromhochdrucks-flüssigkeitschromatographie (HPLC) und/oder Hochspannungs-Papierelektrophorese geprüft.

20

5

10

Verknüpfung der Peptide mit Tetanus-Toxoid

Zwei Verknüpfungsmethoden wurden angewendet:

- 25 I) 1-Athyl-3-(3'-dimethylaminopropyl)-carbodiimid-hydrochlorid als Kopplungsagens (nach Müller et al., Proc. Nat. Acad. Sci, USA 79, Seiten 569 bis 573 (1982)).
- II) Während es sich noch am Harz befand, wurde das Peptid
 vor der HF-Spaltung durch t-boc-p-Aminophenylessigsäure
 (PAPA) verlängert. Die PAPA-Peptide wurden in kalter 2 N
 Salzsäure gelöst, durch Zugabe von eiskalter wäßriger
 Natriumnitritlösung (0,1 molar) diazotiert und zu einer Lösung von Tetanustoxoid in NaHCO₃ (0,5 molar) zugegeben. Dabei wurde der pH-Wert durch Zugabe von konzentriertem Na₂CO₃
 auf 8,5 gehalten. Das Reaktionsgemisch wurde nach 10 Stun-

den bei 4^OC gegen 10 mM Ammoniumcarbonat dialysiert und gefriergetrocknet. Der Peptidgehalt der Verknüpfungsprodukte, wurde, sofern möglich, durch Aminosäureanalyse und Markierung mit 125 J bestimmt.

5

Immunisierungsverfahren

Kaninchen wurden, wie von Müller et al. (Proc. Nat. Acad. Sci. USA 79, Seiten 569 - 573 (1982)) beschrieben, durch an mehreren Stellen verabreichte intradermale Injektionen von 1 mg des Verknüpfungsprodukts, gelöst in 0,5 ml Pi/NaCl und emulgiert in 0,5 ml vollständigem Freund's Adjuvans, sowie mit verschiedenen Verstärkern versehen, immunisiert.

Festphasen-Radioimmunoassay (RIA)

- Dieser wurde auf Antigen-beschichteten (0,5 bis 1,0 μg/Bohrung), biegsamen V-Boden-Mikrotiter-Platten durchgeführt (vorbeschichtet mit Glutaraldehyd (0,2 %) sofern Peptide als Antigen verwendet wurden). Zunächst wurde eine Dreifachverdünnungsreihe des zu testenden Serums und anschließend mit Bolton und Hunter-Reagens (10 cpm/50 μl/Bohrung) mit 125 J markiertes Protein A zugegeben. Die gewaschenen und getrockneten Bohrungen der Mikrotiterplatten wurden ausgeschnitten und in einem γ-Zähler gezählt.
- 25 Bei kompetitiven Inhibitionstests wurden die Antigen-beschichteten Bohrungen mit 10-fach Verdünnungsreihen einer Lösung des zu testenden Inhibitor-Peptids in Pi/NaCl (0,1 % BSA) inkubiert, bevor jeweils die gleiche Verdünnungsstufe eines Antipeptid-Serums zugesetzt wurde.

30

Enzyme Labelled Immunosorbent Assay (ELISA)

Dieser wurde ähnlich dem RIA durchgeführt, jedoch wurden Platten mit flachem Boden und eine Verbindung des Protein A mit ß-Galactosidase (Amersham) anstatt der radioaktiven Markie-rung verwendet. Nach Zugabe des Substrats (O-Nitrophenyl-ß-galactopyranosid) wurden die Platten maschinell ausgewertet.

P 34 18994.6 Yeda Research & Development Co., Ltd. Our Ref.: T 229

Case: T/546 - 9 -

2. Oktober 1984

3430894

1 Immunpräzipitation

Nach der Chloramin-T-Methode wurde Cholera-Toxin mit 125 J markiert (Heitmancik et al., Infect. Immun. 17, Seiten 621-628, (1977)). Die Immunpräzipitation wurde im wesentlichen nach

- 5 S.W. Kessler durchgeführt (J. Immunol. 115, Seiten 1617 bis 1624 (1975)). Das ¹²⁵J-markierte Cholera-Toxin wurde an intakte Staphylococcus A präadsorbiert und anschließend mit verschiedenen Antiseren umgesetzt. Durch Zugabe gleicher Mengen Staphylococcus A wurden Präzipitate erhalten, die
- 10 durch Gelelektrophorese auf SDS-Polyacrylamid-Gelen und anschließender Autoradiographie analysiert wurden.

Elektrophorese-Blotting-Verfahren

Auf einem 5 - 15-prozentigen SDS-Polyacrylamid-Gel in seine

Untereinheiten getrenntes Cholera-Toxin wurde auf Nitrocellulose-Papier nach der Methode von Towbin et al (Proc.
Natl. Acad. Sci. USA 76, Seiten 4350 bis 4354 (1979)) übertragen. Der so hergestellte Blot wurde zur Verringerung der
unspezifischen Antiserum-Bindung 1 Stunde mit 9 mM Tris HCl-

- 20 Puffer, 0,9 molar NaCl, 3 % w/v BSA, pH 7,4, inkubiert, und anschließend in Streifen zerschnitten. Diese Streifen wurden 3 Stunden bei Raumtemperatur mit 1:50 Verdünnungen verschiedener Antiseren inkubiert. Nach sorgfältigem Waschen wurden die Streifen 2 Stunden mit 125 I-markiertem Ziegen-anti-Kanin-
- 25 chen-IgG (5 x 10 cpm/ml) inkubiert. Von den gewaschenen und getrockneten Blots wurden Autoradiogramme hergestellt.

Toxin-Neutralisierungs-Aktivität

30 I. Gefäß-Permeabilitäts-Test

Der Test wurde im wesentlichen nach J.P. Craid (J. Bacteriol. 92, Seite 795 (1966)) und C.Y. Lai (CRC Critical Reviews in Biochem. 9, Seiten 171 bis 207 (1980)) durchgeführt: Verdünnungsreihen der zu testenden Antiseren wurden mit

35 einer konstanten Menge Cholera-Toxin vermischt, 1 Stunde bei Raumtemperatur inkubiert und 0,1 ml der Reaktionsgemische wur-

BNSDOCID: <DE___3430894A1__>

den erwachsenen Kaninchen an drei rasierten Hautstellen intrakutan injiziert. Nach 18 Stunden wurden den Kaninchen 1 ml/kg
5 % Evans -Blau intravenös injiziert und der Durchmesser der
sich ergebenden blauen Verhärtung wurde 1 Stunde später gemessen. Als Neutralisationsendpunkt wurde die höchste SerumVerdünnung angesehen, die das Auftreten blauer Verhärtungen
verhindert. Bei jedem Kaninchen wurde sowohl eine positive
(kein Antiserum) als auch eine negative (kein Cholera-Toxin)
Kontrolle durchgeführt.

10

II. Test mit abgebundenen Ileum-Schleifen

Der Test wurde im wesentlichen wie von Fujita und Finkelstein (J.Infect. Dis. 125, Seiten 647 bis 655 (1972)) beschrieben, durchgeführt. Dazu wurden Ratten oder erwachsene Kaninchen, die 12 Stunden lang gehungert hatten mit Äther anästhesiert, das Abdomen geöffnet und der Dünndarm wurde in 3 bis 4 cm lange Schleifen gebunden, wobei 10 cm vom Zwölffingerdarm entfernt begonnen wurde. In die Schleifen wurden verschiedene Verdünnungen der zu testenden Seren injiziert und das Abdomen wieder verschlossen. Die Seren waren vorher mit einer konstanten Menge Cholera-Toxin inkubiert worden. Nach 5 Stunden ohne Futter und Wasser wurden die Tiere geschlachtet. Durch Bestimmung der Länge und des Gewichts jeder Darmschleife wurde die Flüssigkeitsansammlung pro cm der Schleife bestimmt. Bei jedem Tier wurden sowohl positive (kein Antiserum) als/negative (kein Cholera-Toxin) Kontrollen durchgeführt.

Spaltung der Untereinheit B

30 Zur Festlegung der Bereiche, die an der Antigenreaktion teilnehmen, wurde die Untereinheit B mit CNBr in drei Fragmente zerlegt: Aminosäuren 1 bis 37 und 69 bis 101, durch Disulfid-Brücken zwischen den Cystein-Resten an Position 9 und 86 verbunden; Aminosäuren 36 bis 68 und Aminosäuren 102 bis 103.

Die Fragmente wurden auf Sephadex G-50 Säulen getrennt und die beiden größeren Peptide wurden auf ihre Reaktivität mit

Antiseren gegen Cholera-Toxin getestet. Das größte Peptid war teilweise kreuzreaktiv mit dem anti-Cholera-Toxin-Serum, wogegen das Peptid mit den Aminosäuren 38 bis 68 anti-Toxinhomologe anti-Seren inhibierte, obwohl es nicht direkt an diese anti-Seren binden konnte (nicht gezeigte Ergebnisse).

Auswahl von Peptiden für die Synthese

Die Auswahl von Peptiden zur Chemo-Synthese wurde durch die vorstehend beschriebenen Ergebnisse mit den CNBr-Fragmenten der Untereinheit B bestimmt. Es wurde das Peptid mit den Aminosäuren 30 bis 42 (CTP 2) synthetisiert, da angenommen wurde, daß Arg 35 oder die umgebende Region an der Antikörperund Rezeptor-Bindungs-Aktivität beteiligt ist (Duffy et al., Biochem. Biophys. Res. Comm. 91, Seiten 1005 - 1010 (1979)).

- Das Peptid mit den Aminosäuren 83 97 (CTP 6), das Trp 88 enthält, wurde synthetisiert, weil die chemische Modifikation dieses Restes die Bindung vom GM1 an Cholera-Toxin verhindert hatte (De Wolf et al., J. Biol. Chem. Bd. 256 Seite 5481 5488 (1981)). Außerdem wurde das Peptid mit der
- höchsten Durchschnitts-Hydrophilizität (Aminosäurereste 79-84) synthetisiert, weil von solchen Sequenzen angenommen wird, daß sie in oder direkt benachbart zu antigenen Determinanten liegen (Hopp et al., Proc. Natl. Acad. Sci. USA 78, Seiten 3824 3828 (1981)). Da von Arnon et al. (Biochem.
- J. 75, Seiten 103-109 (1960)) die Antigenität von TyrosinResten beschrieben worden war, wurden auch die Peptide, die
 die Tyrosinreste an Position 12 und Position 76/hergestellt,
 nämlich CTP 1 (Aminosäurereste 8 20) und CTP 5 (Aminosäurereste 75 85). Weil das letztere der Peptide nur 11 Aminosäurereste enthielt, wurde ein zusätzliches Peptid(CTP 4
 - saurereste enthielt, wurde ein zusätzliches Peptid(CTP 4 genannt) mit einer längeren Sequenz hergestellt (Aminosäurereste 69 bis 85). Das Peptid mit den Aminosäuren 50 64 (CTP 3) wurde synthetisiert, weil es ein Teil des inhibierenden CNBr-Fragments mit den Aminosäuren 38 bis 68 ist.

Synthese und Verknüpfung von Peptiden

Die synthetisierten Peptide gehören zu verschiedenen Bereichen der Untereinheit B des Cholera-Toxins (Figur 1). Die einzige Abweichung von der natürlichen Sequenz ist der Austausch von 5 Cystein-Resten an Aminosäureposition 9 und 86 (in CTP 1 und 6) durch Alanin-Reste, um die Bildung von Aggregaten zu verhindern. Die Ergebnisse der Aminosäure-Analysen der Peptide stimmten recht gut mit den erwarteten Werten für die verschiedenen Aminosäure-Reste überein. Die Reinheit der Peptide wurde weiter durch Gegenstrom-Hochdruck-Flüssigkeitschromatographie (HPLC) und/oder Hochspannungs-Papierelektrophorese festgestellt. Das Endprodukt enthielt weniger als 5 % Verunreinigungen. Die gereinigten Peptide wurden an Tetanus-Toxoid entweder mit einem wasserlöslichen Carbodiimid als Verknüpfungsoder durch eine Azobindung, falls PAPA-Deri-Reagens yate der Peptide verwendet wurden / Der Vorteil der Bindung über PAPA-Reste ist die Spezifität der Verknüpfung, die nur zwischen den aminoterminalen Aminogruppen des PAPA und den Histidin- oder Tyrosin-Resten des Trägers vorkommt (Spirer et 20 al., Eur. J. Immunol. 7, Seite 69 - 74 (1977)). Durch beide Verknüpfungsmethoden werden gleichwertige Produkte erhalten

Immunologische Reaktivität.

(Tabelle I).

Die Verknüpfungsprodukte aller sechs Peptide mit TetanusToxoid induzierten Antikörper, die auch auf die entsprechenden homologen Peptide spezifisch reagieren (Figur 2). Die
stärkste Immunantwort wurde bei CTP 1 und CTP 6 beobachtet
(Figur 2). Vier der Antiseren waren außerdem in verschiedenem
Ausmaß gegenüber der vollständigen Untereinheit B und dem
vollständigen nativen Cholera-Toxin kreuzreaktiv. Diese Kreuzreaktivität wurde durch drei Tests nachgewiesen: Festphasenradioimmunoassay (Figur 2), Immuno-Blotting-Technik (Figur 3)
und Immunpräzipitation (Tabelle II). Alle drei Methoden ergaben ähnliche Resultate.

- Das Peptid CTP 3 induzierte Antikörper, die eine starke Kreuzreaktivität mit dem intakten Toxin zeigten. Diese war in ihrem Ausmaß vergleichbar mit der anti-Peptid-Reaktion auf homologe Peptide (Figur 2). Sowohl die anti-Peptid-Reaktion auf homologe Peptide als auch die Kreuzreaktivität sind natürlich spezifisch, denn sie können vollständig durch Zugabe eines Überschusses freien CTP 3 Peptids inhibiert werden (Figur 4). Außerdem ist CTP 3 das einzige der untersuchten Peptide, das mit Antiserum gegen intaktes natives Cholera-Toxin (Figur 5) reagierte. Daraus folgt, daß die Kreuzreaktivität mit einem nativen Protein nicht typisch für jedes der aus ihm abgeleiteten Segmente ist.
- Dies wird weiter durch einen Vergleich der verwandten Peptide CTP 4 (Aminosäureposition 69 85) und CTP 5 (Aminosäurebestätigt.
 position 75 85) / Obwohl ein Antiserum gegen CTP 5 einen
 hohen Titer gegenüber dem homologen Peptid hatte, kreuzreagierte es weder mit der Untereinheit B noch mit dem GesamtToxin. Die Verlängerung dieses Peptids um sechs Aminosäure20 reste ergab CTP 4, das Antikörper hervorrief, die mit den
 intakten Proteinen kreuzreagierten, obwohl die homologen
 anti-Peptid-Titer nicht deutlich höher waren als im Falle
 von CTP 5.
- Die Ergebnisse der Immunpräzipitations-Experimente (Tabelle II)
 erläutern die quantitative Seite der Kreuzreaktivität zwischen den anti-Peptid-Antikörpern und dem Cholera-Toxin.
 Die anti-Peptid CTP 3-Antikörper zeigen tatsächlich die
 höchste Kreuzreaktivität. Diese beträgt ungefähr 30 % der
 homologen Toxin-anti-Toxin-Reaktion. In Übereinstimmung mit
 den Ergebnissen aus dem RIA sind anti-CTP 1- und -CTP 6Antikörper signifikant kreuzreaktiv mit dem intakten Toxin,
 wogegen die restlichen Peptide nur geringe Reaktivität
 zeigen. Das Amino-Blott-Experiment bestätigt diese Ergebnisse und gibt einen zusätzlichen interessanten Hinweis.
 Weil in diesem Fall das intakte Cholera-Toxin durch Elektro-

1 phorese vor der Wechselwirkung mit den verschiedenen Antiseren in seine beiden Untereinheiten zerlegt wurde, ist aus den Ergebnissen klar, daß ein Antiserum gegen CTP 1 nicht nur mit der Untereinheit B, sondern auch in einem bemerkenswerten 5 Ausmaß mit der Untereinheit A des Cholera-Toxins reagiert.

Inhibition der Adenylat-Cyclase-Aktivität

Weil die Diarrhoe als Reaktion auf CT oder LT ein Ergebnis der Aktivierung der Adenylat-Cyclase in der Zellmembran der

10 Epithel-Zellen des Dünndarms ist, wurde bestimmt, inwieweit die verschiedenen Antisera CT-induzierte oder LT-induzierte Adenylat-Cyclase-Aktivität inhibieren. Die Enzymaktivität wurde durch Bestimmung des Ausmaßes der cAMP-Produktion in dispergierten Hühner-Nieren-Zellen ermittelt. Wie in Tabelle V

15 gezeigt, inhibieren Antiseren gegen CTP 1 und CTP 3 spezifisch die CT-induzierte Adenylat-Cyclase-Aktivität bis zu etwa 60 bis 65 %. Dasselbe gilt für die LT-induzierte Adenylat-Cyclase-Aktivität, denn anti-CTP1- und anti-CTP3-Antikörper inhibieren diese Aktivität spezifisch in einem ähn-

Neutralisation der biologischen Aktivität

Die Fähigkeit biologische Effekte des Cholera-Toxins zu neutralisieren wurde für die Seren gegen die verschiedenen

25 Peptide ermittelt. Dazu wurden zwei in vivo-Tests der CholeraToxin-Aktivität angewendet, nämlich ein Hauttest, bei dem
die verstärkte Gefäßpermeabilität, die durch das Toxin hervorgerufen wird, gemessen wird, und außerdem ein Test, bei
dem die Flüssigkeitsansammlung, die vom Cholera-Toxin in ab30 gebundenen Dünndarmschleifen erwachsener Kaninchen induziert
wird, gemessen wird. Die Ergebnisse dieser beiden Experimente werden in den Tabellen III und IV gezeigt. In beiden Fällen verursachten anti-CTP 3-Antikörper eine teilweise Inhibition der Toxin-Aktivität. Obwohl das anti-CTP 3-Antiserum
weniger wirksam gegen natives Cholera-Toxin war als gegen
dieses gerichtetes Antiserum, verhinderte es doch bis zu 40 %

der Flüssigkeitsansammlung im Kaninchendarm. Obwohl diese beiden Tests in vivo durchgeführt worden sind, beweisen sie lediglich die Gegenwart von Antikörpern in den Seren der immunisierten Kaninchen. Das Peptid CTP 3,/ dessen Antikörper die stärkste immuno-

5 logische Kreuzreaktion mit Cholera-Toxin zeigten, hat eine bemerkenswerte Fähigkeit, Antikörper zu induzieren, die die biologische Aktivität des Cholera-Toxins neutralisieren. Es kann für die Induktion eines immunologischen Schutzes gegenüber diesem Toxin verwendet werden.

10

Die vorstehend beschriebenen Versuche zeigen, daß die erfindungsgemäß hergestellten synthetischen Impfstoffe für die Impfung gegen Cholera-Toxin verwendet werden können. Die zur Impfung von Menschen erforderliche Menge des am Träger gebundenen Polypeptids beträgt etwa 2 bis 20 mg. Es ist klar, daß das Verknüpfungsprodukt in einem geeigneten Trägermaterial mit geeignetem Adjuvans angewendet werden muß.

20

25

30

35

BN8DOCID: <DE ... 3430894A1 |

┙

Tabelle I

1

Eigenschaften verschiedener Verbindungen von Peptiden mit Tetanus-Toxoid (MW 150 000)

5	Peptid	Position	Verknüpfungs-	Peptid/Träger-Verhältnis			
			Methode	zur Verknüpfung verwendet (mol/mol)	im Verknüpfungs- produkt (mol/mol)		
	BP ₁	8-20	PAPA*	95	54		
10			EDCI**	40	27		
	BP ₂	30-42	EDCI	45	11		
	BP ₃	50-64	PAPA	94	63		
	_		EDCI	41	14		
15	BP4	69-85	EDCI	40	19		
	BP ₅	75-85	EDCI	35	10		
	BP ₆	83-97	PAPA	75	25		
	-		EDCI	49	24		

^{*} PAPA = p-Aminophenylessigsaure, die an das Peptid über eine Amid20
Bindung gebunden ist und nach der Diazotierung mit dem Protein
verbunden Wird

Tabelle II

Immunpräzipitation von

125

J-Cholera-Toxin durch verschiedene Antipeptidseren

Serum	gefälltes ¹²⁵ J-Cholera-Toxin		
	cpm	<pre>% der Gesamt-Radioaktivität</pre>	
30 anti-CTP1	41880	4,4	
anti-CTP2	9119	0,9	
anti-CTP3	66498	7,0	
anti-CTP4	4956	0,5	
anti-CTP5	2980	0,3	
35 anti-CTP6	47813	5,0	
anti-Cholera-Toxin	221560	23,0	
Präimmun-Serum	2694	0,28	

^{**} EDCI = 1-Äthyl-3-(3-dimethylaminopropyl)-carbodiimid-hydrochlorid

Tabelle III

Inhibition Cholera-Toxin induzierter Gefäß-Permeabilität in der Kaninchenhaut durch anti-CTP 3-Peptid-Antikörper

5.

	Immunitätste	es <u>t</u> Gefäß-Perme	Gefäß-Permeabilitäts-Reaktion			
	(ng Toxin)	anti-Cholera-Toxin	anti-CTP 3 ^b	Präimmun-Serum	b	
	0,5	-	- .	+++		
	1,0	-	+	+++		
)	2,0	- .	+++	+++		
	3,0	-	+++	+++		

- the starke blaue Verhartung
 - + schwache blaue Verhärtung
 - keine Blaufärbung
 - b Alle Seren wurden in der Verdünnung 1 : 10 eingesetzt

20

25

30

35

NSDOCID: «DE___3430894A1_I >

لــ

Tabelle IV

Neutralisation von Cholera-Toxin durch Antiseren gegen das Peptid CTP 3

(Aminosäureposition 50 - 64)

5	Cholera- Toxin (µg)	Serum	Verdün- nung	Gewicht/cm Schleife	Reduzierte Sekretion (%)
	0,0	keins (Kochsalzlösung)		0,20	
	1,5	keins (Kochsalzlösung)		1,30	
10	1,5	anti-Cholera-Toxin	1:20	0,45	
	1,5	anti-CTP 3	1:2	1,02	40
	1,5	normales Kaninchen-Serum	1:2	1,25	
	3,0	keins (Kochsalzlösung)		1,36	
15	3,0	anti-Cholera-Toxin	1:20	0,51	
	3,0	anti-CTP 3	1:2	1,08	33
	5,0	keins (Kochsalzlösung)		1,42	
	5,0	anti-Cholera-Toxin	1:20	0,58	
	5,0	anti-CTP 3	1:2	1,32	12
20	7,5	keins (Kochsalzlösung)		1,42	
	7,5	anti-Cholera-Toxin	1:20	0,60	
	7,5	anti-CTP 3	1:2	1,32	12
	10,0	keins (Kochsalzlösung)		1,50	
25	10,0	anti-Cholera-Toxin	1:20	0,69	
	10,0	anti-CTP 3	1:2	1,50	0

Voraussgesetzt, daß die Reduktion, die durch das Antiserum gegen
Cholera-Toxin hervorgerufen wird, 100 % ist.

Tabelle V

Spezifität der cAMP Inhibition durch Antiseren

	Antiserum	Cholera-Toxin		Parathyroid-Hormone		Isoproterenol		
	zugegeben	pmol/		Signi	pmol/		pmol/	
		250000 Zeller		fikanz (p) ^a	250000 Zellen	95	250000 Zellen	93
10								
	keins	5,9 ^b	100		3,7	100	4,8	100
	NRS	5,6	95	n.s.	3,5	94	4,6	95
	CT	0,5	8	0,001	3,8	100	4,6	95
5	CTP1	3,2	54	0,01	3,7	. 100	4,7	98
	CTP3	2,5	42	0,01	3,5	94	4,6	95
	TT	5,6	95	n.s.	n.t. ^d		n.t.	

a Signifikanz der Differenz zwischen Cholera-Toxin-induziertem cAMP ohne Antiserum und mit einem der angewendeten Antiseren

b Werte entsprechen dem Mittel aus drei Versuchen

25 c n.s.- nicht signifikant

d n.t.-nicht getestet.

30

35

BN9DOCID: «DE___3430894A1___>

1 Kurze Beschreibung der Zeichnungen:

- Figur 1 zeigt die Aminosäuresequenz der Untereinheit B des Cholera-Toxins;
- Figur 2 veranschaulicht die Antikörper-Antwort von Kaninchen auf verschiedene Peptide der Untereinheit B des Cholera-Toxins;
- 10 Figur 3 erläutert die Kreuzreaktivität verschiedener Peptide, die durch die Immuno-Blott-Methode ermittelt
 wurde;
- Figur 4 erläutert die Kreuzreaktivität der Peptide und die Inhibition durch eines der synthetischen Peptide;
 - Figur 5 erläutert die Reaktivität des Peptids mit den Aminosäuren 50 64 mit Antiserum gegen Cholera-Toxin.

Reaktionen mit: - homologen Peptiden;

- der Untereinheit B des Cholera-Toxins;

und 0 - Cholera-Toxin.

Bei allen Peptiden mit Ausnahme von CTP 3 ist der Unterdie 25 schied in den Maßstäben für/Reaktionen zwischen dem Peptid und den intakten Proteinen zu beachten.

30

20

5

.23.

Nummer: Int. Cl.³: Anmeldetag: Offenlegungstag: 34 30 894 A 61 K 39/116 22. August 1984 14. März 1985

Primär-Struktur der Untereinheit B

Thr - Pro - Gln - Asn - Ile - Thr - Asp - Leu - Cys - Ala - Glu - Tyr - His - Asn - Thr - Gln - Ile - His - Thr - Leu - Asn - Asn - Lys - Ile - Phe - Ser - Tyr - Thr - 40

Glu - Ser - Leu - Ala - Gly - Lys - Arg - Glu - Met - Ala - Ile - Ile - Thr - Phe - Lys - Asn - Gly - Ala - Thr - Phe - Glu - Val - Glu - Val - Pro - Gly - Ser - Gln - His - Ile - Asp - Ser - Gln - Lys - Lys - Ala - Ile - Glu - Arg - Met - Lys - Asn - 80

Thr - Leu - Arg - Ile - Ala - Tyr - Leu - Thr - Glu - Ala - Lys - Val - Glu - Lys - Lys - Val - Glu - Lys - Val - Glu - Lys - Met - Ala - Ala - Asn - Asn - Lys - Thr - Pro - His - Ala - Ile - Ala - Ala - Ile - Ser - Met - Ala - Asn

Fig. 1

Fig. 2

Fig. 3

Fig. 4

 \mathcal{C}

Fig. 5