LOGIKA MATEMATIKA

By: Sri Rezeki Candra Nursari

Komposisi nilai

```
• UAS = 36% Open note
```

```
• ABSEN = 5 %
```

100%

Blog: reezeki2011.wordpress.com

MATERI

- Teori Himpunan
- Aksioma aljabar boolean
- Fungsi boolean,
- Komplemen fungsi
- Konversi bentuk fungsi,

- Operasi dan gerbang logika,
- Penyederhanaan fungsi boolean
- Kalkulus proposisi,
- Kalkulus predikat

Fungsi BOOLEAN

Fungsi Boolean

- Fungsi booleamdapat disederhanakan dalam tiga cara :
 - 1. Secara Aljabar dengan menggunakan rumus /aksioma yang berlaku pada fungsi boolean
 - 2. Menggunakan Peta Karnaugh
 - 3. Menggunakan metode Quine Mc Cluskey (metode Tabulasi)

Definisi

- Fungsi Boolean dengan n variabel adalah fungsi yang dapat dibentuk dari aturan aturan sebagai berikut :
 - Fungsi Identitas → fungsi proyeksi satu variabel, dimana f(x)=x
 - Fungsi Konstan

$$f(x_1, x_2, x_3, x_4, x_n) = a$$

Fungsi Proyeksi

$$f(x_1, x_2, x_3, x_4, ..., x_n) = x_i i=1,2,3...n$$

Fungsi Komplemen

$$g(x_1, x_2, x_3, x_4, ..., x_n) = f(x_1, x_2, x_3, x_4, ..., x_n)$$

Fungsi Gabungan

$$h(x_1, x_2, x_n) = f(x_1, x_2, x_n) + g(x_1, x_2, x_n)$$

$$h(x_1, x_2, x_n) = f(x_1, x_2, x_n) \cdot g(x_1, x_2, x_n)$$

Contoh

Fungsi Boolean dengan variabel x,
 y, z, a yang merupakan suatu
 elemen dalam aljabar

$$-f(x) = x + x'a$$

 $-g(x,y) = x'y + xy' + y'$
 $-h(x,y,z) = x'y + xy' + y'$

Contoh

Fungsi Boolean dengan variabel x,
 y, z, a yang merupakan suatu
 elemen dalam aljabar

$$f(x) = x + x'a$$

 $g(x,y) = x'y + xy' + y'$
 $h(x,y,z) = x'y + xy' + y'$

 Jika f adalah fungsi Boolean dengan satu variabel, maka untuk semua nilai x, adalah f(x) = f(1)x + f(0)x'

- Untuk kemungkinan bentuk f, ada 5, yaitu
 - 1. f adalah fungsi konstan,
 - \rightarrow f(x)=a
 - F(1)x = f(0)x' = ax + ax' = a(x+x)' = a1 = a= f(x)
 - 2. f adalah fungsi identitas, f(1)x+f(0)x'= 1x+0x' = x+0 = x= f(x)

Untuk kemungkinan bentuk f, ada 5, yaitu

3.
$$g(x) = (f(x))'$$

 $g(x) = (f(x))'$
 $(f(x))' = (f(1)x + f(0)x')'$
 $= (f(1)x)' + (f(0)x')'$
 $= ((f(1))' + x') ((f(0))' + x)$
 $= (f(1))'(f(0))' + (f(1))'x + (f(0))'x' + xx'$
 $= (f(1))'(f(0))'x + (f(1))'x + (f(1))'(f(0))'x' + (f(0))'x'$
 $= (f(1))'x + (f(0))'x'$
 $= g(1)x + g(0)x'$

Untuk kemungkinan bentuk f, ada 5, yaitu

4.
$$h(x) = f(x) + g(x)$$

= $f(1)x + f(0)x' + g(1)x + g(0)x'$
= $f(1) + g(1))x + f(0) + g(0))x'$
= $h(1)x + h(0)x'$

Untuk kemungkinan bentuk f, ada 5, yaitu

5.
$$k(x) = f(x) g(x)$$

 $f(x)g(x) = (f(1)x + f(0)x')(g(1)x + g(0)x')$
 $= f(1)g(1)xx + f(1)g(0)xx' +$
 $f(0)g(1)x'x + f(1)g(1)xx$
(bentuk kanonik)
 $= f(1)g(1)x + f(0)g(0)x'$
 $= k(1)x + k(0)x'$

Bentuk Kanonik

- f(x,y)=f(1,1)xy+f(1,0)xy'+f(0,1)x'y+f(0,0)x'y'
- Rumus pembentukan bentuk kanonik f fungsi boolean dengan n variabel adalah

```
f(x_1, .... x_n) = \sum f(e_1, .... e_n) x_1^e_1 x_2^e_2 .... X_n^e_n
```

Dimana

e_i bernilai 0 dan 1

x_ie_i diartikan xi atau x_i' sesuai dengan e₁

bernilai 0 dan 1

Bentuk Fungsi

- Suatu fungsi boolean dapat dinyatakan dalam berbagai bentuk berbeda, tetapi mempunyai arti yg sama. Dgn hukum De Morgan h & k fungsi yg sama
- Contoh fungsi-fungsi Boolean

$$F(x) = x + x'a$$

$$g(x,y) = x'y + xy' + y'$$

$$h(x,y) = x'y'$$

$$k(xy) = (x+y)'$$

$$f1(xy) = (x' \cdot Y')$$

$$f2(xy) = (x+y)'$$

Bentuk Fungsi Boolean

- $\bullet f(x) = x + x'a$
- f mempunyai 4 elemen aljabar Boolean yaitu 0,a,a',1

X =1	f(x)
0	$0 + 1 \cdot a = a$
a	$a + a' \cdot a = a + 0 = a$
a'	$a' + a \cdot a = a' + a = 1$
1	$1 + 0 \cdot a = 1 + 0 = 1$

Bentuk Kanonik dari f(x)=x+x'a

$$f(x) = f(1) x + f(0)x'$$
= 1.x + a.x'
= x + a.x'
= (x + a) + (x+x')
= (x + a) . 1
= x + a

Kegunaan Bentuk Kanonik

 Untuk menentukan apakah dua ekspresi merupakan fungsi yang sama

Cara Representasi Tabel Kebenaran

1. Representasi secara Aljabar

$$ightharpoonup$$
 $F = xyz'$

2. Representasi dengan Tabel Kebenaran

X	y	Z	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

Jumlah elemen pada tabel kebenaran 2ⁿ, dimana n adalah banyaknya variabel biner

Konversi Tabel Kebenaran Menjadi Bentuk Aljabar

X	у	Z	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

F1 =
$$x'y'z + xy'z' + xyz$$

= m1 + m4 + m7
F1' = $x'y'z' + x'yz' + x'yz + xy'z + x'y'z$
F1 = $(x+y+z)(x+y'+z)(x+y'+z')(x'+y+z')(x+y+z')$
= $(F1')'$ = M0 M2 M3 M5 M6

Fungsi Boolean Dalam Bentuk Sum Of Product (SOP) / Product Of Sum (POS)

X	y	Sum Of Product (SOP) F		Product O	f Sum (POS)
		term	nilai	Term	nilai
0	0	x'y'	m_0	x + y	M_0
0	1	x'y	m_1	x + y'	M_1
1	0	xy'	m_2	x' + y	M_2
1	1	ху	m_3	x' + y'	M_3

Metode Peta Karnaugh (K-Map)

- Penjelasan tentang fungsi tabel kebenaran Boolean dalam bentuk gambar
- Tujuan K-Map untuk menyederhanakan fungsi bolean sampai enam variabel
- Diagram/peta yang terdiri dari beberapa kotak yang bersisian, setiap bujursangkar merepresentasikan sebuah minterm

Peta Karnaugh (K-Map) untuk 2 variabel

Fungsi Boolean Dalam Bentuk Sum Of Product (SOP) / Product Of Sum (POS)

X	х у		Sum Of Pi	roduct (SOP)	Product Of Sum (POS)		
			term	nilai	Term	nilai	
0	0	0	x'y'z'	m_0	x + y + z	M_0	
0	0	1	x'y'z	m_1	x + y + z'	M_1	
0	1	0	x'yz'	m_2	x + y' + z	M_2	
0	1	1	x′yz	m_3	x + y' + z'	M_3	
1	0	0	xy'z'	m_4	x' + y + z	M_4	
1	0	1	xy'z	m_5	x + y' + z	M_5	
1	1	0	xyz'	m ₆	X' + Y' + Z	M_6	
1	1	1	хух	m ₇	x' + y' + z'	M_7	

Peta Karnaugh (K-Map) untuk 3 variabel

Peta Karnaugh (K-Map) untuk 4 variabel

WX VZ	00	01	11	10
00	w'x'y'z'	w'x'y'z	w'x'yz	w'x'yz'
01	wx'y'z'	wx'y'z	wx'yz	wx'yz'
11	wxy'z'	wxy'z	wxyz	wxyz'
10	wx'y'z'	wx'y'z	wx'yz	wx'yz'

Peta Karnaugh (K-Map) untuk 5 variabel

Mis	000	001	011	010	110	111	101	100
0	v/w/x/y/z*	vwxyz	v'w'x'yz	v/w/x/yz/	vwxyz*	y'w'xyz	v'w'xy'z	√w'xy'z'
1	vwxyz	vwxyz	v'wx'yz	v/w/yz/	√wxyz'	√wxyz	v'wxy'z	v'uncy'z'
1	vwx'y'z'	vwx'y'z	vwx'yz	vwxyz'	vwxyz'	vwxyz	vwxyz	vwx'y'z'
0	vw'x'y'z'	vw/x/y/z	w/xyz	vw'x'yz'	w/xyz'	vw'xyz	wixyz	vwixyizi

Peta Karnaugh (K-Map) untuk 6 variabel

NW Y	000	001	011	010	110	111	101	100
000	uvwxyz'	uvwxyz	uvwxyz	uvwxyz'	u/wxyz	u'v'w'xyz	u'v'w'xy'z	u/wxyz
001	uvwcyz	uvwxyz	uvwxyz	uvwxyz	n.A.waka.	urv wayz	urviwayz.	uvwayz
011	u'vwx'y'z'	u'vwx'y'z	u'vwx'yz	u'vwx'yz'	n/wwwyz*	u/vwxyz	s/vwxy/z	u'veny'z'
010	u'vw'x'y'z'	wwxyz	u/w/x/yz	n,Am,x,As,	n, n. s.	u'vw'xyz	u'vw'xy'z	u'vw'sy'z'
110	www.yz	uwxyz	uvw'x'yz	sew'x'yz'	nvw,xAs,	uvw'xyz	uvw/xy/z	unways
***	nvwx,A,S,	uvwx'y'z	uvwx'yz	uvwx'yz'	uvwxyz'	uwxyz	uwwy'z	uvwxy'z'
101	uvwxyz:	uv'wx'y'z	ur/wx/yz	uv/wx/yz/	uv'wxyz'	uv'wxyz	uw'wxy'z	uv'exy'z'
100	uvwxyz	uvwxyz	uv'w'x'yz	sownyc	uv'w'xyz'	uvwxyz	swwwyz	uvwxyx

Soal

- 1. Jika C adalah fungsi Boolean dengan himpunan $\{0, a, a', b, b', c, c', 1\}$ dan f adalah fungsi Boolean sehingga f(0,0,0) = f(0,0,1) = f(1,0,0) = a ; f(0,1,0) = f(0,1,1) = 1 ; f(1,0,1) = f(1,1,0) = c' dan <math>f(1,1,1) = 1, Tentukan f(a',c,b)
- 2. Bentuk kanonik dengan 1 variabel
- 3. Bentuk kanonik dengan 2 variabel
- 4. Bentuk kanonik dengan 3 variabel
- 5. Bentuk kanonik dengan 4 variabel
- Bentuk kanonik dengan 5 variabel
- Bentuk kanonik dengan 6 variabel