理论计算机科学基础 期末整理

郭嘉睿 ntguojiarui@pku.edu.cn

2022年1月16日

7 时间复杂度

定理 7.1. 设 $t(n) \ge n$, 则每个 t(n) 时间多带 TM 都与某个 $O(t^2(n))$ 时间单带 TM 等价.

定理 7.2. 设 $t(n) \ge n$,则每个 t(n) 时间单带 NTM 均与某个 $2^{O(t(n))}$ 时间 DTM 等价.

定义 7.3 (NP). NP 的两个等价定义:

 $NP = \{L | L$ 有多项式时间验证机 $\} = \{L | 某个多项式时间 NTM 判定L\}.$

定理 7.4 (Cook 定理). 任何 NP 语言均可在多项式时间内归约到 cnf-SAT.

- 一些 NPC 问题及它们的归约:
 - 1. 3SAT, SAT: 通过 cnf-SAT 归约;
 - 2. CLIQUE, VC, HAMPATH, SUBSET-SUM: 通过 3SAT 归约;

8 空间复杂度

定理 8.1 (Savitch 定理). 设 $f(n) \ge \log n$, 则 NSPACE $(f(n)) \subseteq SPACE(f^2(n))$.

推论: PSPACE = NPSPACE.

定理 8.2. 全带量词布尔公式问题 TQBF 是 PSPACE 完全的.

一些 PSPACE 完全问题: 公式博弈 FORMULA-GAME, 广义地理学游戏 GG.

定义 8.3 (亚线性空间). 亚线性空间 TM 是指将 TM 的带分为一条输入带 (只读), 一条工作带 (读写) 和一条单向输出带 (只写, 禁止回头或修改), 且工作带的大小是亚线性的.

定理 8.4. PATH 是 NL 完全的.

定理 8.5. NL = coNL.

9 空间难解性

定理 9.1 (空间层次定理). 对于任意空间可构造函数 $f: \mathbb{N} \to \mathbb{N}$, 存在语言 A, 在空间 O(f(n)) 内判定但不在空间 o(f(n)) 内判定.

定理 9.2 (时间层次定理). 对于任意时间可构造函数 $t: \mathbb{N} \to \mathbb{N}$, 存在语言 A, 在时间 O(t(n)) 内判 定但不在时间 $o\left(\frac{t(n)}{\log t(n)}\right)$ 内判定.

定理 9.3. EQ_{REX↑} 是 EXPSPACE 完全的.

定理 9.4. NONMIN-FORMULA∈ NPSAT.

定理 9.5 (对角化的局限性). 存在语言 A, B, 使得 $P^A \subset NP^A$, $P^B = NP^B$.

定义 9.6 (ATM). 交错式 TM(ATM) 是一种 NTM, 其计算树中的非确定性分支点包括全称和存在 两类,一个全称分支点接受当且仅当它所有儿子接受,一个存在分支点接受当且仅当它至少一个儿子 接受,根接受则整个计算接受.

ATM 复杂性的结论: P = AL, PSPACE = AP, EXP = APSPACE.

定义 9.7 (电路族). 一个电路族 C 是无穷个电路 $C = (C_0, C_1, \cdots,)$, 其中 C_n 有 n 个输入变量. 若对每个字符串 $w, w \in A \Leftrightarrow C_n(w) = 1$, 其中 |w| = n, 则称 C 在 $\{0,1\}$ 上判定 A.

电路族的规模复杂性是 C 中的规模, 深度复杂性是 C 中从输入到输出的最长路径长度. P/poly = PSIZE = \bigcup SIZE(n^k).

定理 9.8. $TIME(t(n)) \subseteq SIZE(O(t^2(n)))$. 进一步, $P \subseteq PSIZE$.

定理 9.9. 电路可满足性问题 CIRCUIT-SAT 是 NP 完全的.

定理 9.10 (Karp-Lipton 定理). $NP \subseteq P/poly \Leftarrow PH = \Sigma_2 P$.

定义 9.11 (对数空间一致性). 一个布尔电路族 (C_1, \cdots) 是对数空间一致的, 当且仅当存在一个对数 空间 TM: T, 当输入 1^n 时, T 输出 $\langle C_n \rangle$.

定义 9.12 (NC 类). NC 类是指多项式规模, 对数多项式规模深度的电路. 更一般的, NC k 类是指多项式规模, $O(\log^k n)$ 深度的电路.

定理 9.13. CIRCUIT-VALUE(CVP) 是 P 完全的.

10 复杂性高级专题

定义 10.1 (PP). PP 指错误概率 $\varepsilon = 0.5$, 在多项式时间内运行的概率算法.

定义 10.2 (BPP). BPP 指错误概率 $\varepsilon = 0.5 - \delta$ (其中 δ 是任意常数), 在多项式时间内运行的概率算法.

定义 10.3 (RP). RP 指错误概率 $\varepsilon = 0.5 - \delta$ (其中 δ 是任意常数), 在多项式时间内运行且只出现弃 真型错误的概率算法.

定义 10.4 (coRP). coRP 指错误概率 $\varepsilon = 0.5 - \delta$ (其中 δ 是任意常数), 在多项式时间内运行且只出现取伪型错误的概率算法.

定义 10.5 (ZPP). ZPP 指错误概率 $\varepsilon = 0$, 期望运行时间为多项式时间的概率算法 (或: 在多项式时间内运行, 但允许 3 种输出 0, 1, ? 的概率算法).

它们之间的关系:

- 1. $ZPP \subseteq RP \cap coRP \subseteq RP \cup coRP \subseteq BPP \subseteq PP$.
- 2. BPP ⊆ PSIZE(利用加强引理证明).
- 3. BPP $\subseteq \Sigma_2 P \cap \Pi_2 P$.
- 4. $PH \subseteq P^{PP}$.

11 一些没什么用的东西

一些语言的接受性/空性/满性/等价性的复杂度:

	A	E	ALL	EQ
DFA	L	NL 完全	Р	PSPACE
NFA	NL 完全	NL 完全	PSPACE 完全	
PDA	至少 NL 完全		不可判定	不可判定
LBA	PSPACE 完全	不可判定	不可判定	不可判定
TM	不可判定	不可判定	不可判定	不可判定

运算封闭性 (Y 表示封闭, 表格中的条件表示在该操作下封闭当且仅当这一条件为真):

	Р	NP	coNP	EXP
\cap	Y	Y	Y	Y
U	Y	Y	Y	Y
~	Y	P=NP	P=NP	Y
•	Y	Y	Y	Y
*	Y	Y	Y	Y
同态	P=NP	Y		
$L_{\frac{1}{2}-}$	P=NP	Y		Y
RC	Y	Y	Y	Y
CUT	Y	Y	Y	Y