Causality and Causal Misperception in Dynamic Games

Sungmin Park

The Ohio State University

November 12, 2024

What I do

Question

How should we capture players' misperceptions about causality in extensive-form games?

Answer

Let each player best respond to a belief about Nature and others' actions consistent with observed outcomes

 $ilde{}$ "Observation-consistent equilibrium (OE)"

What I do

Question

How should we capture players' misperceptions about

causality in extensive-form games?

Answer

Let each player best respond to a belief about Nature and others' actions consistent with observed outcomes

"Observation-consistent equilibrium (OE)"

What I do

Question

How should we capture players' misperceptions about

causality in extensive-form games?

Answer

Let each player best respond to a belief about Nature and others' actions consistent with observed outcomes

"Observation-consistent equilibrium (OE)"

Motivation

People have varying perceptions of causality

Causality: How actions affect outcomes

Simplest example

- Smoker chooses to smoke (s = 1) or not (s = 0).
 - \circ If he smokes, Nature gives him cancer with prob $\pi_1=2/3$.
 - \circ If not, Nature gives him cancer with prob $\pi_0 = 1/3$.
- He gets $r < \frac{1}{3}$ if he smokes and loses 1 if he gets cancer.
- Smoker's strategy is the prob $\sigma \in [0,1]$ of smoking.
- Smoker's **belief** is $\beta = (\beta_0, \beta_1)$ where β_s is the subjective probability of getting cancer given s.

Smoker's Problem

 \Rightarrow Under rational expectations, one shouldn't smoke because the causal effect of smoking on cancer $(\frac{2}{3} - \frac{1}{3} = \frac{1}{3})$ is larger than the reward r

Observational consistency

Definition

Given strategy $\sigma \in [0,1]$, a belief $\beta \in [0,1]^2$ is observation-consistent if

$$\underbrace{\sigma\beta_1 + (1-\sigma)\beta_0}_{\text{perceived marginal prob of cancer}} = \underbrace{\sigma \cdot \frac{2}{3} + (1-\sigma) \cdot \frac{1}{3}}_{\text{actual marginal prob of cancer}}$$

Interpretation

- Smoker sees a population of smokers choosing σ overall and sees the overall rate of cancer patients, but do not know the conditional probabilities
- What the smoker thinks Nature does (β_0, β_1) and what Nature really does $(\frac{1}{3}, \frac{2}{3})$ are observationally equivalent

Illustration of an observational consistency

Suppose I smoke half of the time ($\sigma = 0.5$).

Remark: There are many observation-consistent beliefs.

Principle of Maximum Entropy

Notation

- $\mathbf{p}(\sigma, \beta)$: vector of probabilities over the 4 terminal nodes.
- $G(\cdot)$: Shannon entropy function.

Definition

Given strategy $\sigma \in (0,1)$, an observation-consistent belief $\beta^* \in [0,1]^2$ maximizes the entropy if

$$\beta^* \in \underset{\beta \text{ is obs-cons}}{\operatorname{argmax}} G(\mathbf{p}(\sigma, \beta)).$$

Interpretation

 Among many worldviews consistent with observation, choose the one that assumes the least information

Illustration of maximum entropy

A point prediction on belief

Maximum entropy ⇒ correlation neglect

Claim

For every $\sigma \in (0,1)$, the maximum-entropy belief β^* satisfies

$$\beta_0^* = \beta_1^* = (1 - \sigma) \cdot \frac{1}{3} + \sigma \cdot \frac{2}{3}.$$

Meaning The smoker doesn't think smoking causes cancer

Intuition The smoker observes no evidence of dependence between smoking and cancer, so he believes in none.

General result (Shore and Johnson, 1980; Csiszar, 1991)

Maximum entropy ⇔ correlation neglect, whenever agents observe only the marginal prob. distribution between two variables

Equilibrium

Definition

A strategy-belief pair (σ,β) is an observation-consistent equilibrium (OE) if

- Given the belief β , the strategy σ is a best response (subjectively), and
- **2** Given the strategy σ , the belief β is an observation-consistent.

Result on OE

Every strategy is rationalizable by some observation-consistent belief

Claim

Every strategy σ has a belief β such that (σ, β) is an OE.

Note: Specifically, the OCE equilibria are

- ① $\sigma=0$, $\beta_0=\frac{1}{3}$, and $\beta_1-\beta_0\geq r$,
- 2 $\sigma=1$, $\beta_1=\frac{2}{3}$, and $\beta_1-\beta_0\leq r$, and

Idea Because there are many observation-consistent beliefs, there are many OEs.

Refinement of OE

Definition

An OE (σ, β) is a maximum-entropy observation-consistent equilibrium (MOE) if there exists a sequence of strategy-belief pairs

$$\{(\sigma^k, \beta^k)\}_{k=1}^{\infty} \longrightarrow (\sigma, \beta)$$

such that each σ^k is a totally mixed strategy and each β^k maximizes the entropy.

Result on MOE

A sharper prediction

Claim

A strategy-belief pair (σ, β) is an MOE if and only if

$$\sigma=1$$
 and $\beta_0=\beta_1=rac{2}{3}.$

Meaning

• Smoker keeps smoking while thinking that smoking doesn't cause cancer

Intuition

 MaxEnt OCE implies correlation neglect, so no other strategy is a best response.

Generalizing the observational structure

Motivation

• Correlation neglect sounds too naïve. Can we make agents more sophisticated? Yes! Give them better observation

Definition

Given an observational structure C (a matrix) and strategy σ , a belief β is observation-consistent if

$$C\mathbf{p}(\sigma,\beta) = C\mathbf{p}(\sigma,\pi).$$

Examples of C:

Examples of
$$C$$
:
$$\begin{bmatrix} 1 & \cdot & 1 & \cdot \\ \cdot & 1 & \cdot & 1 \end{bmatrix} \qquad \begin{bmatrix} 1 & \cdot & \cdot & \cdot \\ \cdot & 1 & \cdot & \cdot \\ \cdot & \cdot & 1 & \cdot \\ \cdot & \cdot & 1 & \cdot \\ \cdot & \cdot & \cdot & 1 \end{bmatrix} \qquad \begin{bmatrix} 1 & 2 & 3 & 4 \end{bmatrix}$$

$$\begin{bmatrix} 1 & \cdot & \cdot & \cdot \\ \cdot & 1 & \cdot & \cdot \\ \cdot & \cdot & 1 & \cdot \\ \cdot & \cdot & \cdot & 1 \end{bmatrix}$$

Generalizing the approach to extensive-form games

Finite extensive-form game with perfect recall + observational constraint

- *N*: set of players,
- H: set of histories (nodes), of which Ω is the set of terminal histories
- ι: mapping of non-terminal histories to players,
- π : probability distribution of Nature's moves,
- \mathcal{I} : collection of information sets,
- *u*: payoff function, and
- C: observational structure, a linear map $\Delta(\Omega) \to \mathbb{R}^{\ell}$

Theorem (Preview)

Every finite extensive-form game with perfect recall and observational constraint has an MOE.

Precise definition of equilibrium

Notation. (σ, β, μ) is a profile of strategies, beliefs, and posterior functions

Definition

A triple (σ, β, μ) is an observation-consistent equilibrium (OE) if for every player i,

- **1** the strategy σ_i is (subjectively) sequentially rational given (β_i, μ_i) ,
- **2** the belief β_i is observation-consistent given the strategy profile σ :

$$C\mathbf{p}(\sigma_i, \beta_i) = C\mathbf{p}(\sigma_i, (\sigma_{-i}, \pi)), \text{ and }$$

3 the posterior function μ_i is Bayes-consistent given (σ_i, β_i) .

Precise definition of the refinement

Given a strategy profile σ , a player's observation-consistent belief β_i maximizes the entropy if

$$\beta_i \in \underset{\beta_i'}{\operatorname{argmax}} G(\mathbf{p}(\sigma_i, \beta_i')).$$

Definition

An OE (σ, β, μ) is a maximum-entropy observation-consistent equilibrium (MOE) if there exists a sequence

$$\{\sigma^k, \beta^k\}_{k=1}^{\infty} \longrightarrow (\sigma, \beta)$$

where each σ^k is a totally mixed strategy profile and each player's belief β_i^k maximizes the entropy.

Existence of MOE

Theorem

Every finite extensive-form game with perfect recall and observational constraint has an MOE.

Meaning

 There always exists a prediction where everyone best responds to what they think how others play, assuming the least information beyond observation.

Key proof step

• With ϵ -constrained strategies, mappings from a strategy profile σ to a maximum-entropy belief profile β_i and posterior function β_i are well-behaved.

Example: Ultimatum-like game with causal misperception

Manager-Worker game

- Manager (Player 1) decides a fair or unfair bonus to Worker (Player 2)
- Even if Manager chooses a fair bonus, Nature might change it to unfair or keep it fair
- If Worker receives fair bonus, he accepts. If not, he either accepts or rejects.
 - o He gets a thrill for rejecting an unfair Manager
- Worker doesn't know how likely Manager treats him unfairly in the interim or ex post

$$C = \begin{bmatrix} 1 & \cdot & 1 & \cdot & \cdot \\ \cdot & 1 & \cdot & 1 & \cdot \\ \cdot & \cdot & \cdot & \cdot & 1 \end{bmatrix}$$

Unique MOE

Manager always tries to be fair

Example: A centipede game

Figure: A four-node centipede game

Claim

Let the observational structure be $C=[0\ 1\ 2\ 3\ 4].$ There exists no MOE in which Alice Takes immediately.

Unique MOE of the centipede game

Each thinks the other mixes more than they really do

21 / 40

How to interpret the observational structure C

Literal interpretation

 C represents the actual observable outcomes in a population of players

Metaphorical interpretation

 C represents how players psychologically process observable outcomes

Literature

Bridging behavioral theory and standard game theory

Behavioral theory

(Spiegler, 2020, 2021, etc.)

- Single-person decisions
- Directed Acyclic Graphs
- Maximum-entropy beliefs
- Subjective best responses

My paper (MOE)

- Multiple players
- Observational structure (C)
- Maximum-entropy beliefs
- Subjective best responses

Standard game theory

(Kreps and Wilson, 1982, etc.)

- Multiple players
- Perfect observation
- Correct beliefs
- Objective best responses

23 / 40

Special case when players observe outcomes perfectly

Proposition

Suppose the observational structure C is the identity. Then

OE ← Self-confirming equilibrium*, and

MOE \iff Perfect Bayesian equilibrium.

* Version with sequential rationality.

 \Rightarrow OE and MOE nest standard concepts as special cases

Frequently Asked Questions

How is MOE different from _____?

- Self-confirming equilibrium
 - Battigalli and Guaitoli (1988); Battigalli (1997); Fudenberg and Levine (1993)
- Analogy-based expectation equilibrium
 - Jehiel (2005); Jehiel and Koessler (2008); Jehiel (2022)
- (Sequential) Cursed equilibrium
 - Eyster and Rabin (2005); Cohen and Li (2022); Fong et al. (2023)
- Berk-Nash equilibrium
 - Esponda and Pouzo (2016)

MOE and Common Causal Misperceptions

- Correlation neglect
- Omitted-variable bias (selection neglect)
- 3 Simultaneity bias (reverse causality bias)

1. A two-stage game of correlated consequences

$$N = \{1, 2, \dots, n\}$$

Stages

- 1. Players choose actions $x = (x_i)_{i \in N}$.
- 2. Nature chooses a consequence $y=(y_1,y_2)$ with conditional probability $\pi(y|x)>0$ for all (x,y).

Payoffs

$$u_i(x,y)$$

Obs. structure

Marginal probabilities of pairs (x, y_1) and (x, y_2)

Correlation neglect

Proposition

An OE (σ, β, μ) is a MOE if and only if for every player i,

$$\beta_i(x_{-i}) = \sigma_{-i}(x_{-i}) \qquad \text{for all } x_{-i}, \text{ and}$$

$$\beta_i(y_1, y_2|x) = \pi(y_1|x)\pi(y_2|x) \qquad \text{for all } x \text{ and } (y_1, y_2).$$

Meaning In an MOE, players believe y_1 and y_2 remain (conditionally) independent regardless of their actions x.

Example Let x be whether an investment bank issues mortgage- backed securities or not. Let y be the default outcomes of two households.

Stylized example of correlation neglect

Figure: Effects of MBS on household default probabilities

2. An omitted-variable game

$$N = \{1, 2, \dots, n\}$$

Stages

- **1.** Nature assigns a state t with probability $\pi(t)$.
- 2. Players see the state t and choose actions $x = (x_i)_{i \in N}$.
- 3. Nature chooses a consequence y with probability $\pi(y|t,x)$.

Payoffs

$$u_i(t,x,y)$$

Obs. structure

Marginal probabilities of pairs (t,x) and (x,y)

Omitted-variable bias (selection neglect)

Proposition

An OE (σ, β, μ) is an MOE if and only if every player's belief β_i satisfies,

$$\begin{split} \beta_i(t) &= \pi(t), \\ \beta_i(x_{-i}|t) &= \sigma_{-i}(x_{-i}|t), \text{ and} \\ \beta_i(y|t,x) &= \sum_{t' \in \mathcal{T}} \pi(y|t',x) w(t',x) \qquad \text{for all } (t,x,y). \end{split}$$

Note: $w(\cdot)$ is a weight function such that $w(t',x) = \lim_{k \to \infty} \frac{\sigma^k(x|t')\pi(t')}{\sum_{t'' \in \mathcal{T}} \sigma^k(x|t'')\pi(t'')}$, for some sequence $\{\sigma^k\}_{k=1}^{\infty}$ of totally mixed strategy profiles converging to σ .

Meaning Players believe the effect of x on y is the same across states t

Stylized example of omitted-variable bias

Figure: Effects of college education on employment

3. Simultaneity game

Players

 $N = \{1, 2, \dots, n\}$

Stages

(1) Nature assigns a state $t \in \{Forward, Reverse\}$ with probability $\pi(t)$.

If t = F, (2) players learn t and choose actions $x = (x_i)_{i \in N}$ and

(3) Nature chooses consequence y with prob $\pi(y|F,x)$. If t = R, (2) Nature chooses consequence y with prob $\pi(y|R)$ and

33 / 40

(3) players learn (t, y) and choose actions $x = (x_i)_{i \in N}$.

 $u_i(t,x,y)$

Obs. structure

Pavoffs

Marginal probabilities of the pair (x, y)

Stylized example of simultaneity (reverse causality) bias

Figure: Effects of police size on violent crime rates

Wait... what do I even mean by causality?

Notation $p(\sigma_i, \beta_i)(E|h)$ is the subjective probability of event $E \subset \Omega$ given history h, strategy σ_i , and belief β_i .

Definition

Let (σ,β,μ) be an OE. An action a instead of b is a **subjective cause** of an event $E\subset\Omega$ given history h to player i if

$$p(\sigma_i, \beta_i)(E|h, a) > p(\sigma_i, \beta_i)(E|h, b).$$

An action a instead of b is an objective cause of an event $E\subset\Omega$ given history h to player i if

$$p(\sigma_i, (\sigma_{-i}, \pi))(E|h, a) > p(\sigma_i, (\sigma_{-i}, \pi))(E|h, b).$$

Extension: Infinite-horizon games

Figure: Stochastic game with permanent game types θ

Proposition $\label{eq:proposition}$ If players perfectly observe steady-state outcomes (θ,s,a,s') , $\mbox{MOE} \Longleftrightarrow \mbox{Markov perfect equilibrium (MPE)}.$

Illustration: Parent-Child game of social media use

Equilibrium in the Parent-Child game

		Child's strategy (σ_1)		Parent's strategy (σ_2)	
Equilibrium	Type $(heta)$	Bad mood	Good mood	Bad mood	Good mood
MPE	Not sensitive	Use	Use	Lenient	Lenient
	Sensitive	Don't	Use	Lenient	Lenient
MOE	Not sensitive	Use	Use	Strict	Lenient
	Sensitive	Use	Use	Strict	Lenient

Note: MPE refers to Markov perfect equilibrium. MOE refers to maximum-entropy observation-consistent equilibrium.

Relation to dynamic stuctural dconometrics

Rational expectations (RE) assumption

- "Ubiquitous" even though it's a "very strong assumption" (Aguirregabiria and Mira, 2010)
- Relaxing it requires modeling or estimating beliefs (e.g., Aguirregabiria and Jeon, 2020)

Maximum-entropy belief assumption

- Offers a viable alternative to RE with a point-prediction on beliefs
- Only requires an existing model + observational structure C

Takeaway

Use my solution concept if you want to ...

- allow causal misperception in a dynamic model
- let misperception arise endogenously from the observational structure, and
- want narrow predictions

Takeaway

Use my solution concept if you want to ...

- allow causal misperception in a dynamic model
- let misperception arise endogenously from the observational structure, and
- want narrow predictions

References I

- Aguirregabiria, Victor and Jihye Jeon (2020) "Firms' beliefs and learning: Models, identification, and empirical evidence," *Review of Industrial Organization*, 56 (2), 203–235.
- Aguirregabiria, Victor and Pedro Mira (2010) "Dynamic discrete choice structural models: A survey," *Journal of Econometrics*, 156 (1), 38–67.
- Battigalli, Pierpaolo (1997) "On rationalizability in extensive games," *Journal of Economic Theory*, 74 (1), 40–61.
- Battigalli, Pierpaolo and Danilo Guaitoli (1988) Conjectural equilibria and rationalizability in a macroeconomic game with incomplete information: Università Commerciale L. Bocconi.
- Cohen, Shani and Shengwu Li (2022) "Sequential Cursed Equilibrium," arXiv preprint arXiv:2212.06025.
- Csiszar, Imre (1991) "Why least squares and maximum entropy? An axiomatic approach to inference for linear inverse problems," *The Annals of Statistics*, 2032–2066.
- Esponda, Ignacio and Demian Pouzo (2016) "Berk–Nash equilibrium: A framework for modeling agents with misspecified models," *Econometrica*, 84 (3), 1093–1130.

References II

- Eyster, Erik and Matthew Rabin (2005) "Cursed equilibrium," Econometrica, 73 (5), 1623-1672.
- Fong, Meng-Jhang, Po-Hsuan Lin, and Thomas R. Palfrey (2023) "Cursed Sequential Equilibrium," 10.48550/ARXIV.2301.11971.
- Fudenberg, Drew and David K Levine (1993) "Self-confirming equilibrium," *Econometrica: Journal of the Econometric Society*, 523–545.
- Jehiel, Philippe (2005) "Analogy-based expectation equilibrium," Journal of Economic Theory, 123 (2), 81-104.
- ——— (2022) "Analogy-based expectation equilibrium and related concepts: Theory, applications, and beyond."
- Jehiel, Philippe and Frédéric Koessler (2008) "Revisiting games of incomplete information with analogy-based expectations," *Games and Economic Behavior*, 62 (2), 533–557.
- Kreps, David M and Robert Wilson (1982) "Sequential equilibria," *Econometrica: Journal of the Econometric Society*, 863–894.

References III

Shore, John and Rodney Johnson (1980) "Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy," *IEEE Transactions on Information Theory*, 26 (1), 26–37.

Spiegler, Ran (2020) "Behavioral implications of causal misperceptions," *Annual Review of Economics*, 12, 81–106.

——— (2021) "Modeling players with random "data access"," Journal of Economic Theory, 198, 105374.