Name:	
Roll No.:	
Invigilator's Signature :	

CS/BCA/SEM-4/BM-401/2012 2012

STATISTICS, NUMERICAL METHODS & ALGORITHMS

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for any *ten* of the following :

 $10 \times 1 = 10$

- i) The number of significant digits in 1.00234 is
 - a) 3

b) 4

c) 5

- d) 6.
- ii) The relation between shift operator E and forward difference operator Δ is given by
 - a) $\Delta = 1 + E$
- b) $E = 1 + \Delta$

c) $E = \Delta$

d) $E = \Delta + 2$.

CS/BCA/SEM-4/BM-401/2012

iii)	When the number 1.004355 is rounded to 5 decimal places, then it becomes						
	a)	1.00436	b)	1.00435			
	c)	1.00434	d)	none of these.			
iv)	The	order of convergence	e of New	ton-Raphson method is			
	a)	3	b)	2			
	c)	1	d)	4.			
v)	Lagr	ange's interpolation	formula	is usd for			
	a)	only equispaced val	ues				
	b)	only unequispaced	values				
	c)	both equispaced &	unequis _l	paced values			
	d)	none of these.					
vi)	The	number of sub-int	tervals i	required for Simpson's			
	$\frac{1}{3}$ rule of numerical integration is						
	a)	even	b)	odd			
	c)	even or odd	d)	none of these.			
vii)	The	error in Runge-Kutta	a metho	d of 4th order is			
	a)	0 (h ²)	b)	$0 (h^3)$			
	c)	$0~(~h^{~4}~)$	d)	0 (h ⁵).			
viii)	The	sum of the approxi	mate nu	umbers 2.56, 4.56273,			
	1.25	33, 1.05342 is					
	a)	9.4291	b)	9.429			
	c)	9.43	d)	9.5.			
4321		2					

ix) Under the condition that f(a), f(b) have opposite signs and a < b, the first approximation of one of the roots of f(x) = 0 by Regula-Falsi method is given by

a)
$$\frac{bf(a) + af(b)}{f(a) + f(b)}$$

b)
$$\frac{a f(a) - b f(b)}{f(a) - f(b)}$$

c)
$$\frac{a f(b) - b f(a)}{f(b) - f(a)}$$

d)
$$\frac{a f(a) + b f(b)}{f(a) + f(b)}$$
.

- x) Which of the following methods is an iterative method?
 - a) Gauss elimination
- b) Gauss-Jordan
- c) Gauss-Jacobi
- d) Gauss-Seidel.
- xi) A system of equations AX = b where $A = (a_{ij})_{n \times n}$ is said to be diagonally dominant if

a)
$$|a_{ii}| > \sum_{\substack{j=1 \ j \neq i}}^{n} |a_{ij}|$$
 for all i

b)
$$|a_{ii}| < \sum_{\substack{j=1 \ j \neq i}}^{n} |a_{ij}|$$
 for all i

c)
$$|a_{ii}| > \sum_{j=1}^{n} |a_{ij}|$$
 for all i

d)
$$|a_{ii}| < \sum_{j=1}^{n} |a_{ij}|$$
 for all i .

CS/BCA/SEM-4/BM-401/2012

- xii) If E_a is the absolute error in a quantity whose tree and approximated values are given by x_t and x_a , then the relative error is given by
 - a) $\frac{E_a}{x_a}$
- b) $\left| \frac{E_a}{x_t} \right|$
- c) $\left| \frac{E_a}{x_t x_a} \right|$
- d) $\mid E_a \mid$.
- xiii) When the Gauss elimination method is used to solve BX = A, B is transformed into
 - a) a lower triangular matrix
 - b) a unit matrix
 - c) a singular matrix
 - d) an upper triangular matrix.
- xiv) When $x = \phi(x)$ admits a real root in [a, b], then
 - a) $| \phi'(x) | < 1$
 - b) $| \phi^{l}(x) | > 1$
 - c) $| \phi'(x) | = 1$
 - d) none of these.
- xv) The degree of precision of Simpson's $\frac{1}{3}$ rd rule is
 - a) 1

b) 2

c) 3

d) none of these.

GROUP - B

(Short Answer Type Questions)

Answer any *three* of the following. $3 \times 5 = 15$

2. Compute f(b) from he following table using Newton's Divided Difference Formula:

X	4	5	7	10	11	13
f(x)	48	100	294	900	1210	2028

3. Find the missing term in the following table :

X	0 1		2 3		4
f(x)	1	3	9	_	81

4. Compute y(0.2) from the equation

$$\frac{dy}{dx} = x - y$$
; y (0) = 1, taking $h = 0.1$, by Runge-Kutta method of fourth order, correct to five decimal places.

5. Evaluate $\int_{0}^{\infty} \frac{dx}{1+x^2}$ using Weddle's rule, taking n=6

correct to 4 decimal places.

- 6. Find a root of $e^{-x} 3x = 0$ correct to two decimal places, using the method of fixed point iteration.
- 7. Find a real root of the equation $x^3 2x = 5$ by Regula-Falsi method correct up to 2 significant digits.

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

8. a) Find the inverse of the matrix $\begin{pmatrix} 2 & -2 & 4 \\ 2 & 3 & 2 \\ -1 & 4 & -1 \end{pmatrix}$ by

Gauss-elimination method.

b) Solve the following system of equations by LU-factorization method :

$$5x + 2y + z = -12$$

 $-x + 4y + 2z = 20$
 $2x - 3y + 10z = 3$ 7 + 8

9. a) Given the table of $y = \log_{10} (x + 2)$ with spacing h = 1, find the value of y'(0) and y''(4).

x:	0	1	2	3	4
y :	0.3010	0.4771	0.6020	0.6990	0.7782

- b) Find a real root of $x^3 4x = 9$ correct up to 3 decimal places by bisection method. 8 + 7
- 10. a) Find y (0.10) and y (0.15) by Euler's method from the differential equation :

$$\frac{dy}{dx} = x^2 + y^2, y(0) = 0$$

correct up to 4 decimal places, taking h = 0.05.

b) The value of *x* and *y* are given below :

<i>x</i> :	5	6	9	11	
<i>y</i> :	12	13	14	16	

Find the value of y when x = 10 using Lagrange's interpolation formula. 8 + 7

From the following table of values of x and f(x)11. a) determine f(0.29):

X	0.22	0.24	0.26	0.28	0.30
f(x)	1.6698	1.6804	1.6912	1.7024	1.7139

Using Taylor's series method find y at x = 1.1, 1.2 by b) solving $\frac{dy}{dx} = (x^2 + y^2)$ given by y(1) = 2.3.

$$7 + 8$$

12. a) Solve the following system of linear equations by Gauss-Seidel method of iteration (correct up to 3 decimal places):

$$10x + y + z = 12$$

$$10x + y + z = 12$$

 $2x + 10y + z = 13$

$$2x + 2y + 10z = 14$$
.

- Write Algorithm for finding the equation by Newtonb) Raphson method. 8 + 7
- Solve by Euler's modified method, the following 13. a) differential equation for x = 0.02 taking h = 0.01:

$$\frac{dy}{dx} = x^2 + y, y(0) = 1.$$

Solve the equation b)

$$\frac{dy}{dx} = x + y, y(0) = 1 \text{ at } x = 0.2,$$

by Picard's method (take only three integrations). 8 + 7