Stateful Black Box Testing for 5G

Standalone Network

Yeongbin Hwang

Committee Members

Prof. Yongdae Kim – chair

Prof. Minsuk Kang

Prof. Insu Yun

5G SA Network Architecture

Control plane procedures are always preceded by the user plane procedures

Control Plane Procedures

- Registration Procedure
 - The first step for a UE to use a cellular services
 - There are many message exchanges.

Fundamental Problems in Cellular Network

Description of standard (3GPP) has amibiguities

- The 3GPP specifications are based on natural language
- Standard leave implementation (exact behavior) details to the vendors
- There are conformance test specs
 - But, only focused on normal situation (no adversary model)

Mobile network operators & vendors are different

Different carriers with different device vendors suffer from different vulnerabilities

Many approaches to finding implementation vulnerabilities

Previous Works

Touching the Untouchables: Dynamic Security Analysis of the LTE Control Plane

Previous Works

- On the Challenges of Automata Reconstruction in LTE Networks, Wisec
 2021
 - They tested invalid messages in various states and detected abnormal behavior of the network.

Limitations of Previous Works

- Only considered the initial, REGISTERED state
 - LTEFuzz
 - Can't find vulnerabilities in different states

- Only tested the limited attack scenarios
 - On the Challenges of Automata Reconstruction
 - Can't find vulnerabilities in different scenarios ex)
 - Invalid sequence number -> Impersonation
 - Unauthenticated message -> DoS

Goal of Our Work

- Conduct the first uplink stateful testing that considers the various attack scenarios in 5G SA Network
 - Attack scenarios
 - Modify, Replay, Inject, Drop
 - Implement a testing framework

Methodology

- 1. Define test type and guideline
- 2. Extract state machine of UE in network
- 3. Generate test cases

4. Test and Analyze

Define Test Type and Guideline

Attack Model

MitM (Man-in-the-Middle)

Attacker can eavesdrop, modify, relay, and drop messages between the victim
 UE and the base station

Fake UE

- Form of man-on-the-side in cellular network.
- If an attacker knows the identity of the victim UE,
 he can impersonate the victim UE
- FBS
- SigOver

Base Station

Definition of Test Type

* MitM

MODIFY, DROP, REPLAY, INJECT

* Fake UE

REPLAY, INJECT

Guidelines for Target Messages

- Target protocol: NAS protocol
- Uplink message

Attack model	Туре	Target Messages	Implications	
MitM MODIFY		Messages with capability field	Eavesdropping, Impersonate	
		Messages with integrity protection	Impersonate	
	REPLAY	Messages with sequence number	DoS, Impersonate	
	DROP	Messages that can induce the timer	DoS	
	INJECT	Messages with identity field	DoS	
Fake UE	INJECT	Messages with identity field	DoS	
	REPLAY	Messages with sequence number	DoS, Impersonate	

Guidelines for Target Messages

- Target protocol: NAS protocol
- Uplink message

Attack model	Туре	Target Messages	Implications
MitM MODIFY		Messages with capability field	Eavesdropping, Impersonate
		Messages with integrity protection	Impersonate
	REPLAY	Messages with sequence number	DoS, Impersonate
	DROP	Messages that can induce the timer	DoS
	INJECT	Messages with identity field	DoS
Fake UE	INJECT	Messages with identity field	DoS
	REPLAY	Messages with sequence number	DoS, Impersonate

Guidelines for Target Messages

- Target protocol: NAS protocol
- Uplink message

Attack model	Туре	Target Messages	Examples	
MitM MODIFY		Messages with capability field	Registration request	
		Messages with integrity protection	Regi req, SMComplete, Regi Comp	
	REPLAY	Messages with sequence number	Regi req, SMComplete, Deregi req	
	DROP	Messages that can induce the timer		
	INJECT	Messages with identity field		
Fake UE	INJECT	Messages with identity field	Regi req, Deregi req, Service req	
	REPLAY	Messages with sequence number	Regi req, SMComplete, Deregi req	

Extract State Machine of UE in Network

State Machine of UE in Network

- Defined in 3GPP specification
- Abstracted state machine

Many message exchanges between 5GMM-DEREGISTERED and 5GMM-

Message Exchanges during Registration

Transition: Send message/ Receive message

Build the State Machine

Transition: Send message/ Receive message

Generate Test Cases

Select the Valid States

- Replay: check sequence number
 - Can test before obtaining the new security context

Select the Valid States

MODIFY (capability)

- States that can send unprotected message that contain capability
- Ex) Init

REPLAY

- States that do not have a new security context
- Ex) S1, S3, S6

MODIFY (protected message)

- States that contain security context
- Ex) Init, S2, S3, S5

❖ INJECT

- State that have valid identity
- Ex) S1, S2, S3, S5, S6

Generate Test Cases

MODIFY (capability)

- States that can send unprotected message that contain capability
- Ex) Init

REPLAY

- States that do not have a new security context
- Ex) S1, S3, S6

MODIFY (protected message)

- States that contain security context
- Ex) Init, S2, S3, S5

❖ INJECT

- State that have valid identity
- Ex) S1, S2, S3, S5, S6

	Test type			
state	Inject	Modify		Poplay
	mject	Capability	Message	Replay
Init	-	0	0	-
S1	0	-	-	0
S2	0	-	0	-
S3	0	-	0	0
S4	-	-	-	-
S5	0	-	0	-
S6	0	-	-	0

Test and Analyze

Experiment Setup & Implementation

❖ Tester

- UE-gNB simulator based on Open5GCore
- Support 3 type scenarios.
 - Modify, Replay, Inject
- Automate a stateful testing

Target Core Network (AMF)

- Open source project: Open5GS
- Commerical equipment: Amarisoft
- Operator's vendor: Vendor₁, Vendor₂

Testing

- 1. Move the victim UE to targeted state
- 2. Execute test scenario (Inject, modify, replay)
- 3. Observe problematic behavior and logging
- 4. message, state mutation (1~3 repeat)

Result – Open Source

- ❖ We tested a total of 1155 messages in Open5GS
 - Found 12 implementation flaws
- -: not supported, X: Benign

ototo	Open5GS				
state	Inject	Modify	Replay		
Init	-	NEA0 allowed, Invalid MAC allowed	-		
S1	Victim UE's Connection release	-	Victim UE's Connection release		
S2	Victim UE's Connection release	Х	-		
S 3	Victim UE's Connection release	Plain allowed, Invalid MAC allowed	Victim UE's Connection release		
S4	-	-	-		
S 5	Victim UE's Connection release	X	-		
S6	Victim UE's Connection release	-	Victim UE's Connection release		

Result – Commercial Equipment

- ❖ We tested a total of 1155 messages in Amarisoft
 - Found 3 implementation flaws
- -: not supported, X: Benign

ototo	Amari			
state	Inject	Modify	Replay	
Init	-	NIA0, NEA0 allowed	-	
S1	Victim UE's Connection release	-	Victim UE's Connection release	
S2	Х	X	-	
S 3	X	X	X	
S4	-	-	-	
S5	X	X	-	
S6	X	-	X	

Result – Operator's Vendor

- ❖ We tested only Inject type in two networks
 - a total of 96 messages in Vendor₁
 - a total of 480 messages in Vendor₂
- Found 1 implementation flaw

state	Vendor₁	Vendor ₂	
Olaio	Inject	Inject	
Init	-	-	
S1	-	X	
S2	Victim UE's Connection release	Х	
S3	-	X	
S4	-	-	
S5	-	X	
S6	-	X	

Result – Modify

Registration request with modified NEA, NIA algorithms.

0000 = Spare Half Octet: 0

- Detect invalid behaviors
 - Amarisoft: NIAO, NEAO allowed
 - Open5GS: NEA0 allowed


```
Message type: Registration request (0x41)
                                              > 5GS registration type
                                              > NAS key set identifier
                                              > 5GS mobile identity

∨ UE security capability

                                                  Flement ID: 0x2e
                                                  Length: 4
                                                  1... .... = 5G-EA0: Supported
                                                  .0.. .... = 128-5G-EA1: Not supported
                                                  ..0. .... = 128-5G-EA2: Not supported
                                                  ...0 .... = 128-5G-EA3: Not supported
                                                  .... 0... = 5G-EA4: Not supported
                                                  .... .0.. = 5G-EA5: Not supported
                                                  .... ..0. = 5G-EA6: Not supported
                                                   ... ... 0 = 5G-EA7: Not supported
                                                  1... .... = 5G-IA0: Supported
Message type: Security mode command (0x5d)
  0000 .... = Type of ciphering algorithm: 5G-EAO (null ciphering algorithm) (0)
   .... 0000 = Type of integrity protection algorithm: 5G-IAO (null integrity protection
```

Result – Modify

- In 5G, UE send the registration request in the security mode complete.
- Valid behaviors
 - If AMF received the NAS message container,
 - AMF shall consider the NAS message as the initial NAS message that triggered the procedure
 - Have to restart the security mode command.

InitialUEMessage, Registration request

DownlinkNASTransport, Authentication request

UplinkNASTransport, Authentication response

DownlinkNASTransport, Security mode command

UplinkNASTransport, Security mode complete, Registration request

InitialContextSetupRequest, Registration accept

When the AMF receives an integrity protected initial NAS message which includes a NAS message container IE, the AMF shall decipher the value part of the NAS message container IE. If the received initial NAS message is a REGISTRATION REQUEST message or a SERVICE REQUEST message, the AMF shall consider the NAS message that is obtained from the NAS message container IE as the initial NAS message that triggered the procedure.

Result – Replay

- Capture a valid Deregistration request
- ❖ Replay the message when victim UE receives the Registration accept
- ✓ Item 0: id-RAN-UE-NGAP-ID. Detect invalid behaviors ProtocolIE-Field id: id-RAN-UE-NGAP-ID (85) criticality: reject (0) Open5GS: release the victim's connection value RAN-UE-NGAP-ID: 97 InitialUEMessage, Registration request-InitialContextSetupRequest, Registration accept InitialUEMessage, Deregistration request (UE originating) InitialContextSetupResponse id: id-UE-NGAP-IDs (114) Replay criticality: reject (0) UplinkNASTransport, Registration complete value UEContextReleaseCommand ∨ UE-NGAP-IDs: uE-NGAP-ID-pair (0) UEContextReleaseComplete ∨ uE-NGAP-ID-pair aMF-UE-NGAP-ID: 162 DownlinkNASTransport, Deregistration accept (UE originating) rAN-UE-NGAP-ID: 97

Result – Inject

- Inject a message that contain victim's identity
- Detect invalid behaviors
 - Vendor₁: release the victim's connection

```
InitialUEMessage, Registration request

DownlinkNASTransport, Authentication response

UplinkNASTransport, Authentication response

InitialUEMessage, Registration request

DownlinkNASTransport, Security mode command

UEContextReleaseCommand

UEContextReleaseCommand

UplinkNASTransport, Security mode complete, Registration request

ErrorIndication

Error

UEContextReleaseComplete
```


DoS Attack - Inject

Additional scenario

- Induce T3502 using the attempt counter
- DoS attacks for default 12 min.
- c) T3510 timeout.

The UE shall abort the registration update procedure and the N1 NAS signalling connection, if any, shall be released locally.

If the UE has initiated the registration procedure in order to enable performing the service request procedure for emergency services fallback, the UE shall inform the upper layers of the failure of the emergency services fallback (see 3GP P TS 24.229 [14]). Otherwise, the UE sha For the cases c, d and e the UE shall proceed as follows:

d) REGISTRATION REJECT message, other 5GMM cause va cases of 5GMM cause values #11, #22, #31, #72, #73, #74, according to subclause 5.5.1.3.5.

Timer T3510 shall be stopped if still running.

The registration attempt counter shall be incremented, unless it was already set to 5.

ſ	TIMER	TIMER	STATE	CAUSE OF START	NORMAL STOP	ON
L	NUM.	VALUE				EXPIRY
ſ	T3502	Default 12	5GMM-	At registration failure and the	Transmission of	Initiation of the
ı		min.	DEREGISTERED	attempt counter is equal to 5	REGISTRATION	registration
١		NOTE 1	5GMM-		REQUEST	procedure, if still
L			REGISTERED		message	required

Limitations

- Only NAS protocol
 - Currently, the implementation of the lower layer is not proper for testing the core network, so it is difficult to test the RRC layer.
- Incomplete state machine
 - It is difficult to build complete state machine because we only considered UEside log.
- Tests were not fully performed in operator's vendor

Conclusion

- In this work, first uplink stateful testing was performed to resolve the previous work's limitation in 5G SA network.
- ❖ As a result, we found 16 implementation flaws in the 4 networks.
 - 1 from commercial equipment (Vendor₁)
 - 3 from commercial equipment for research (Amarisoft)
 - 12 from open source projects (Open5GS)
- Problems vary depending on implementations.
 - Different networks have different vulnerabilities.
 - Carriers can identify the problem of the equipment without the vendor's source code.

Thank you