Today:

J Review problem] tangent plane Linear Approximation Differentials

11.6] Chain rule

of = 3t dx + 3t dy

EXAMPLE 4 The base radius and height of a right circular cone are measured as 10 cm and 25 cm, respectively, with a possible error in measurement of as much as 0.1 cm in each. Use differentials to estimate the maximum error in the calculated volume of the cone.

$$V(Y,h) = \frac{1}{3}\pi Y^{2}h$$

$$\frac{dV = ??}{dV} = \frac{3V}{3Y}dY + \frac{3V}{3h}dh$$

$$\frac{dY}{dY} = \frac{3}{3Y}dY + \frac{1}{3}PX^{2}dh$$

$$\frac{dV}{dY} = \frac{2}{3}PYh dY + \frac{1}{3}PX^{2}dh$$

$$\frac{dV}{dY} = \frac{1}{3}PYh dY + \frac{1}{3}PX^{2}dh$$

$$\frac{dV}{dY} = \frac{1}{3}PXh dY + \frac{1}{3}PXh dY$$

$$\frac{31}{1} = ?? \%$$

$$= \frac{3}{126}$$

$$\approx 3.024$$

$$= 2.4\%$$

I−6 • Find an equation of the tangent plane to the given surface at the specified point.

$$\frac{\partial z}{\partial x} = -\frac{\partial z}{\partial x} (x - x_0) + \frac{\partial z}{\partial y} (y - y_0)$$

$$\frac{\partial z}{\partial x} = -\frac{\partial z}{\partial x} (x - y_0) + \frac{\partial z}{\partial y} (y - y_0)$$

$$\frac{\partial z}{\partial x} = -\frac{\partial z}{\partial x} (x - y_0) + \frac{\partial z}{\partial y} (y - y_0)$$

$$\frac{\partial z}{\partial x} = -\frac{\partial z}{\partial x} (x - y_0) + \frac{\partial z}{\partial y} (y - y_0)$$

$$\frac{\partial z}{\partial x} = -\frac{\partial z}{\partial x} (x - y_0) + \frac{\partial z}{\partial y} (y - y_0)$$

$$\frac{\partial z}{\partial x} = -\frac{\partial z}{\partial x} (x - y_0) + \frac{\partial z}{\partial y} (y - y_0)$$

$$\frac{\partial z}{\partial x} = -\frac{\partial z}{\partial x} (x - y_0) + \frac{\partial z}{\partial y} (y - y_0)$$

$$\frac{\partial z}{\partial x} = -\frac{\partial z}{\partial x} (x - y_0) + \frac{\partial z}{\partial y} (y - y_0)$$

$$\frac{\partial z}{\partial x} = -\frac{\partial z}{\partial x} (x - y_0) + \frac{\partial z}{\partial y} (y - y_0)$$

$$\frac{\partial z}{\partial x} = -\frac{\partial z}{\partial x} (x - y_0) + \frac{\partial z}{\partial y} (y - y_0)$$

$$\frac{\partial z}{\partial x} = -\frac{\partial z}{\partial x} (x - y_0) + \frac{\partial z}{\partial y} (y - y_0)$$

$$\frac{\partial z}{\partial x} = -\frac{\partial z}{\partial x} (x - y_0) + \frac{\partial z}{\partial y} (y - y_0)$$

$$\frac{\partial z}{\partial x} = -\frac{\partial z}{\partial x} (x - y_0) + \frac{\partial z}{\partial y} (y - y_0)$$

$$\frac{\partial z}{\partial x} = -\frac{\partial z}{\partial x} (x - y_0) + \frac{\partial z}{\partial y} (y - y_0)$$

$$\frac{\partial z}{\partial x} = -\frac{\partial z}{\partial x} (x - y_0) + \frac{\partial z}{\partial y} (y - y_0)$$

$$\frac{\partial z}{\partial x} = -\frac{\partial z}{\partial x} (x - y_0) + \frac{\partial z}{\partial y} (y - y_0)$$

$$\frac{\partial z}{\partial x} = -\frac{\partial z}{\partial x} (x - y_0) + \frac{\partial z}{\partial y} (y - y_0)$$

$$\frac{\partial z}{\partial x} = -\frac{\partial z}{\partial x} (x - y_0) + \frac{\partial z}{\partial y} (y - y_0)$$

30. The pressure, volume, and temperature of a mole of an ideal gas are related by the equation PV = 8.31T, where P is measured in kilopascals, V in liters, and T in kelvins. Use differentials to find the approximate change in the pressure if the volume increases from 12 L to 12.3 L and the temperature decreases from 310 K to 305 K.

$$P = 8.31 T/V$$

$$dP = ?? given V = 12, T = 310, dY = 0.3, dT = -5$$

$$dP = \frac{\partial P}{\partial V} dV + \frac{\partial P}{\partial T} dT$$

$$= -8.8 \Omega$$

$$\frac{\partial f}{\partial t} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial f}{\partial y} \frac{\partial x}{\partial t}$$

Temperature at point (X,y)

$$x = \omega_{S}(t)$$

$$y = 8iu(t)$$

$$\sqrt{t} = 8iu(t)$$

$$\sqrt{t} = \omega_{S}t + 8iu(t)$$

$$\sqrt{t} = \omega_{S}t + 8iu(t)$$

$$\sqrt{t} = \omega_{S}t + 4\pi \Delta t$$

$$- 3\pi \Delta t + 3\pi \Delta t$$

$$= [-8iut) + 1$$

EXAMPLE I If $z = x^2y + 3xy^4$, where $x = \sin 2t$ and $y = \cos t$, find dz/dt when

t = 0.

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \frac{dy}{dt}$$

$$= (2xy + 3x^4) (2\cos xt) + (x^2 + 12xy^3) (-\sin t)$$

$$t = 0, x = 0, y = 1$$

EXAMPLE 3 If $z = e^x \sin y$, where $x = st^2$ and $y = s^2t$, find $\partial z/\partial s$ and $\partial z/\partial t$.

$$\frac{\partial z}{\partial t} = e^{x} \sin x \cdot 2st + e^{x} \omega s y \cdot s^{2}$$

EXAMPLE 5 If $u = x^4y + y^2z^3$, where $x = rse^t$, $y = rs^2e^{-t}$, and $z = r^2s\sin t$, find the value of $\partial u/\partial s$ when r = 2, s = 1, t = 0.

32. The radius of a right circular cone is increasing at a rate of 1.8 in/s while its height is decreasing at a rate of 2.5 in/s. At what rate is the volume of the cone changing when the radius is 120 in. and the height is 140 in.?

The temperature at a point (x, y) is T(x, y), measured in degrees Celsius. A bug crawls so that its position after t seconds is given by $x = \sqrt{1 + t}$, $y = 2 + \frac{1}{3}t$, where x and y are measured in centimeters. The temperature function satisfies $T_x(2, 3) = 4$ and $T_y(2, 3) = 3$. How fast is the temperature rising on the bug's path after 3 seconds?

The temperature at a point (x, y) is T(x, y), measured in degrees Celsius. A bug crawls so that its position after t seconds is given by $x = \sqrt{1 + t}$, $y = 2 + \frac{1}{3}t$, where x and y are measured in centimeters. The temperature function satisfies $T_x(2, 3) = 4$ and $T_y(2, 3) = 3$. How fast is the temperature rising on the bug's path after 3 seconds?

The temperature at a point (x, y) is T(x, y), measured in degrees Celsius. A bug crawls so that its position after t seconds is given by $x = \sqrt{1 + t}$, $y = 2 + \frac{1}{3}t$, where x and y are measured in centimeters. The temperature function satisfies $T_x(2, 3) = 4$ and $T_y(2, 3) = 3$. How fast is the temperature rising on the bug's path after 3 seconds?

DEFINITION The **directional derivative** of f at (x_0, y_0) in the direction of a unit vector $\mathbf{u} = \langle a, b \rangle$ is

$$D_{\mathbf{u}}f(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + ha, y_0 + hb) - f(x_0, y_0)}{h}$$

if this limit exists.

DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR

DEFINITION The **directional derivative** of f at (x_0, y_0) in the direction of a unit vector $\mathbf{u} = \langle a, b \rangle$ is

$$D_{\mathbf{u}}f(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + ha, y_0 + hb) - f(x_0, y_0)}{h}$$

if this limit exists.

THEOREM If f is a differentiable function of x and y, then f has a directional derivative in the direction of any unit vector $\mathbf{u} = \langle a, b \rangle$ and

$$D_{\mathbf{u}}f(x,y) = f_{x}(x,y)a + f_{y}(x,y)b$$

EXAMPLE 1 Find the directional derivative $D_{\bf u} f(x,y)$ if $f(x,y) = x^3 - 3xy + 4y^2$ and $\bf u$ is the unit vector given by angle $\theta = \pi/6$. What is $D_{\bf u} f(1,2)$?

DEFINITION If f is a function of two variables x and y, then the **gradient** of f is the vector function ∇f defined by

$$\nabla f(x, y) = \langle f_x(x, y), f_y(x, y) \rangle = \frac{\partial f}{\partial x} \mathbf{i} + \frac{\partial f}{\partial y} \mathbf{j}$$

EXAMPLE 3 Find the directional derivative of the function $f(x, y) = x^2y^3 - 4y$ at the point (2, -1) in the direction of the vector $\mathbf{v} = 2\mathbf{i} + 5\mathbf{j}$.

EXAMPLE 4 If $f(x, y, z) = x \sin yz$, (a) find the gradient of f and (b) find the directional derivative of f at (1, 3, 0) in the direction of $\mathbf{v} = \mathbf{i} + 2\mathbf{j} - \mathbf{k}$.

MAXIMIZING THE DIRECTIONAL DERIVATIVE

EXAMPLE 5

- (a) If $f(x, y) = xe^y$, find the rate of change of f at the point P(2, 0) in the direction from P to $Q(\frac{1}{2}, 2)$.
- (b) In what direction does f have the maximum rate of change? What is this maximum rate of change?

EXAMPLE 6 Suppose that the temperature at a point (x, y, z) in space is given by $T(x, y, z) = 80/(1 + x^2 + 2y^2 + 3z^2)$, where T is measured in degrees Celsius and x, y, z in meters. In which direction does the temperature increase fastest at the point (1, 1, -2)? What is the maximum rate of increase?