

Departamento de Engenharia Informática e de Sistemas

Metodologias de Otimização e Apoio à Decisão

Revisões de Investigação Operacional

Formulação do modelo de PL

Considere o seguinte problema:

Uma pequena fábrica de brinquedos de madeira pretende produzir três novos brinquedos: comboios, cavalos e cabanas. A produção destes brinquedos requer mão-de-obra especializada de carpintaria e acabamentos. A produção de um comboio requer 1 hora de carpintaria e 1 hora de acabamentos. A produção de um cavalo requer 3 horas de carpintaria e 2 de acabamentos. A produção de uma cabana requer 2 horas de carpintaria e 1 de acabamentos. A fábrica tem 10 empregados na secção de carpintaria e 7 na secção de acabamentos, sendo o horário semanal de qualquer um dos empregados, de 40 horas.

Com a venda dos comboios, cavalos e cabanas a fábrica tem lucros unitários de **20**€, **50**€ e **25**€, respetivamente.

A fábrica pretende saber quais as quantidades de cada tipo de brinquedo que deve produzir de forma a maximizar o seu lucro semanal. (Assuma que a fábrica vende tudo o que produzir.)

Para ajudar a fábrica a obter resposta pretendida, <u>formule o problema em</u> <u>termos de um modelo de programação linear</u>.

O método gráfico

Resolva cada um dos seguintes problemas pelo <u>método gráfico</u>:

Minimizar
$$z = 3x_1 + 2x_2$$
 Maximizar $z = 3x_1 - x_2$

 sujeito a
 sujeito a

 $2x_1 + 2x_2 \le 8$
 $2x_1 + x_2 \ge 2$
 $x_1 + 5x_2 \ge 10$
 $x_1 + 3x_2 \ge 3$
 $-x_1 + 3x_2 = 6$
 $x_2 \le 4$
 $x_1 \ge 0$, $x_2 \ge 0$
 $x_1 \ge 0$, $x_2 \ge 0$

 $+3x_2 \ge 3$

 $X_2 \leq 4$

O método Simplex

Considere o seguinte problema de programação linear:

$$\begin{array}{ll} \textit{Maximizar} \ z = -x_1 + 2x_2 \\ \text{sujeito a} \\ x_1 + 3x_2 \geq 6 \\ x_1 - x_2 \leq 1 \\ x_1 \leq 5 \\ x_1 \geq 0, \, x_2 \geq 0 \end{array}$$

Resolva-o pelo <u>método Simplex</u> usando a <u>técnica do "Grande M"</u>

Considere agora o seguinte problema de programação linear:

Minimizar
$$z = 3x_1 + 2x_2 + 4x_3$$

sujeito a
 $2x_1 + x_2 + 3x_3 = 60$
 $3x_1 + 3x_2 + 5x_3 \ge 120$
 $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$

Resolva-o pelo <u>método Simplex</u> usando a <u>técnica das "Duas Fases"</u>

Considere agora o seguinte problema de programação linear:

Maximizar
$$z = x_1 + x_2$$

sujeito a
 $x_1 + 2x_2 \le 4$
 $x_1 + x_2 = 3$
 $x_1 \ge 0, x_2 \ge 0$

Resolva-o pelo <u>método Simplex</u> usando a <u>técnica das "Duas Fases"</u>

Considere agora o seguinte problema de programação linear:

Minimizar
$$z = 3x_1 + 2x_2 + 4x_3$$

sujeito a
 $2x_1 + x_2 + 3x_3 = 60$
 $3x_1 + x_2 + 5x_3 \ge 120$
 $x_1, x_2, x_3 \ge 0$

Resolva-o pelo <u>método Simplex</u> usando a <u>técnica do "Grande M"</u>
(<u>Sugestão:</u> Resolva este exercício e conclua que se trata de um **problema** impossível, sem solução, pois atingirá o quadro ótimo com uma variável artificial na base)

Dualidade - O método dual do Simplex

Resolva o seguinte problema de programação linear pelo método dual do

Simplex:

Minimizar
$$z = 3x_1 + 2x_2$$

sujeito a
 $2x_1 + x_2 \ge 10$
 $-3x_1 + 2x_2 \le 6$
 $x_1 + x_2 \ge 6$
 $x_1 \ge 0$, $x_2 \ge 0$

Dualidade - Formulação do problema dual

1

Maximizar
$$z = 3x_1 - 2x_2$$

sujeito a

$$x_1 \leq 4$$

$$x_1 + 3x_2 \le 15$$

$$2x_1 + x_2 \le 10$$

$$x_1 \ge 0$$
 , $x_2 \ge 0$

2.

Minimizar
$$z = x_1 + 9x_2 + x_3$$

sujeito a

$$x_1 + 2x_2 + 3x_3 \ge 9$$

$$3x_1 + 2x_2 + 2x_3 \le 15$$

$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$$

Relações Primal-Dual

PROBLEMA DE MAXIMIZAÇÃO	<	PASSAGEM AO DUAL		
	≤	≥ 0	. , .	
<i>i-</i> ésima restrição	≥	≤ 0	<i>i-</i> ésima variável	
restrição	=	Livre	variavei	
	≥ 0	>		
<i>j</i> -ésima variável	≤ 0	≤	<i>j-</i> ésima restrição	
	livre	=	restrição	

Dualidade - Obtenção da solução do dual

Maximizar $z = 2x_1 - x_2$

sujeito a

$$2x_1 + 4x_2 \ge 8 \tag{1}$$

$$x_1 + 2x_2 \ge 4$$
 (2)

$$2x_1 + 2x_2 \le 6 \tag{3}$$

$$x_1 \ge 0, x_2 \ge 0$$

Considerando x₃ e x₅ as variáveis **surplus** e **artificial** da restrição funcional (1), x₄ e x₆ as variáveis **surplus** e **artificial** da restrição funcional (2), e x₇ a variável **slack** da restrição funcional (3), o quadro ótimo do Simplex é:

	Ci	2	-1	0	0	-M	-M	0	
X Β	c_B/x_i	X 1	X 2	X 3	X 4	X 5	X 6	X 7	b
X 2	-1	0	1	0	-1	0	1	-1/2	1
X 3	0	0	0	1	-2	-1	2	0	0
X 1	2	1	0	0	1	0	-1	1	2
	zj-cj	0	0	0	3	М	M-3	5/2	3

Dualidade – Exercício completo

```
Minimizar z = x_1 + 2x_2 + 4x_3

sujeito a

x_1 + 3x_2 \le 5

x_1 + 3x_3 \ge 4

x_2 + x_3 \le 9

x_1, x_2, x_3 \ge 0
```

- Resolva-o pelo método dual do Simplex
- Formule o problema dual que lhe está associado
- A partir dos resultados obtidos na 1ª alínea, indique qual é a solução ótima do problema dual