Robots Móviles

Tema 3. Localización y mapeado de un robot móvil Parte III. Localización con filtros Discretos y filtro de Kalman Extendido

Sergio Orts Escolano Otto Colomina Pardo

Índice

Filtros discretos

Filtro de Kalman (KF) y Filtro de Kalman Extendido (EKF)

Localización probabilística

$$Bel(x \mid z, u) = \alpha p(z \mid x) \int_{x'} p(x \mid u, x') Bel(x') dx'$$

Los filtros discretos usan una representación discretizada (histogramas)

Representación en un robot móvil real

Algoritmo Filtro Discreto Bayes

```
Algorithm Discrete Bayes filter(Bel(x),d):
1.
2.
    n = 0
3. If d is a perceptual data item z then
4.
         For all x do
5.
             Bel'(x) = P(z \mid x)Bel(x)
6.
             \eta = \eta + Bel'(x)
7.
        For all x do
8.
             Bel'(x) = \eta^{-1}Bel'(x)
9.
      Else if d is an action data item u then
         For all x do
10.
11.
             Bel'(x) = \sum P(x \mid u, x') Bel(x')
      Return Bel'(x)
12.
```


Optimizar la fase de medida

- Para actualizar la creencia sobre la medida del sensor y llevar a cabo la normalización se tiene que iterar sobre todas las células de la rejilla (línea 4 algoritmo anterior)
- Cuando la creencia está concentrada en un pico (habitual en localización cuando se conoce la pos. inicial), se quiere evitar actualizar partes irrelevantes del espacio de estados.
- Un enfoque es no actualizar subespacios enteros del espacio de estados.
- Esto, sin embargo, requiere monitorizar si el robot está localizado o no.
- Para lograr esto, se puede considerar la probabilidad de las observaciones para las partes "activas" del espacio de estado.

Optimizar la fase de movimiento

- El coste es de $O(n^2)$ donde n es el número de estados (líneas 10 y 11 del algoritmo)
- Posible optimización
 - Para la incertidumbre del movimiento asumir un modelo gaussiano limitado
 - Esto reduce el coste de actualización de $O(n^2)$ a O(n)
- Otra optimización
 - Paso 1: desplazar los datos en la rejilla según el movimiento medido.
 - Paso 2: convolucionar la rejilla usando un filtro Gaussiano separable.
- Ejemplo en 2 dimensiones:

	1/16	1/8	1/16	211	1/4	+			
	1/8	1/4	1/8		1/2		1/4	1/2	1/4
1	1/16	1/8	1/16		1/4				

- Unas pocas operaciones aritméticas
- Fácil de implementar

Localización con sonar y rejilla de ocupación

Representaciones basadas en árboles

Uniforme

Quadtree

Octree

2D

3D

Representaciones basadas en árboles

- Efficientes en espacio y tiempo
- Multi-resolución

OctoMap: an efficient probabilistic 3D mapping framework based on octrees, Armin Hornung · Kai M. Wurm · Maren Bennewitz · Cyrill Stachniss · Wolfram Burgard, Autonomous Robots, 34, 2013

Localización en vehículos autónomos

- Uso habitual de filtros bayesianos discretos
 - El GPS proporciona una estimación inicial razonable (error de algunos metros)
 - Basta con una rejilla "pequeña"

Robust and Precise Vehicle Localization based on Multi-sensor Fusion in Diverse City Scenes

Resumen

- Los filtros discretos son una forma alternativa de implementar los filtros Bayes
- Se basan en histogramas para representar la densidad.
- Su precisión depende de la resolución de la cuadrícula.
- Tienen grandes requerimientos de memoria y cómputo
- Puede recuperarse fácilmente de errores de localización
- Es necesario realizar aproximaciones especiales para que este enfoque use memoria dinámica y sea computacionalmente eficiente.

Índice

Filtros discretos Filtro de Kalman (KF) y Filtro de Kalman Extendido (EKF)

Suposición básica

- Vamos a representar Bel con una distribución gaussiana
 - Ventaja: simplicidad, solo necesitamos dos parámetros: media y varianza
 - Problema: unimodal, no hay "hipótesis alternativas"

Filtro de Kalman

Estima el estado x de un proceso discretizado en el tiempo

$$X_t = A_t X_{t-1} + B_t U_t + \varepsilon_t$$

Dada una observación (medida)

$$Z_t = C_t X_t + \delta_t$$

Componentes del Filtro de Kalman

- A Matriz (nxn) que describe cómo evoluciona el estado de t-1 a t sin controles ni ruido.
- B_t Matriz (nxl) que describe como el control u_t cambia el estado de t-1 a t.
- C_t Matriz (kxn) que describe como mapear el estado x_t a una observación z_t .
- \mathcal{E}_t Variables aleatorias que representan el ruido de movimiento y de medición. Son
- δ_t independientes y normalmente distribuidas con covarianza Q_t y R_t respectivamente

Sistemas lineales

Ejemplo actualización filtro de Kalman

It's a weighted mean!

Ejemplo actualización filtro de Kalman (II)

Algoritmo Filtro de Kalman

- 1. Algorithm **Kalman_filter**(μ_{t-1} , Σ_{t-1} , U_t , Z_t):
- 2. Prediction:
- 3. $\mu_t = A_t \mu_{t-1} + B_t u_t$
- $\mathbf{4.} \quad \overline{\Sigma}_t = \mathbf{A}_t \Sigma_{t-1} \mathbf{A}_t^T + \mathbf{Q}_t$

K: ganancia de Kalman, en qué grado influye la medida del sensor

- Correction:
- 6. $K_t = \Sigma_t C_t^T (C_t \overline{\Sigma}_t C_t^T + R_t)^{-1}$
- 7. $\mu_t = \mu_t + K_t(Z_t C_t \mu_t)$
- 8. $\Sigma_t = (I K_t \overline{C_t}) \Sigma_t$ Innovación: diferencia entre la medida real y la predicha
- 9. Return μ_t , Σ_t

Sistemas no lineales

La mayoría de sistemas robóticos reales requieren funciones no lineales

$$X_{t} = A_{t-1} + B_{t}U_{t} + \varepsilon_{t}$$

$$Z_{t} = C_{t}X_{t} + \delta_{t}$$

$$X_{t} = g(U_{t}, X_{t-1})$$

$$Z_{t} = h(X_{t})$$

Sistemas no lineales

Distribuciones no Gaussianas

- Las funciones no lineales conducen a distribuciones no gaussianas
- El filtro de Kalman no es aplicable en estos casos!

Cómo podemos resolver este problema?

Linealización: Teorema Expansión de Taylor

EKF: Linealización

Algoritmo EKF

Extended Kalman filter($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$):

- Prediction:
- 3. $\bar{\mu}_t = g(u_t, \mu_{t-1})$
- $\sum_{t=1}^{T} G_{t} \Sigma_{t-1} G_{t}^{T} + Q_{t}$ 4.

- $\underline{ \mu_t} = A_t \mu_{t-1} + B_t u_t$ $\underline{ \Sigma_t} = A_t \Sigma_{t-1} A_t^T + O_t$

- 5. Correction:
- 6. $K_t = \sum_t H_t^T (H_t \sum_t H_t^T + R_t)^{-1}$
- $\mu_t = \overline{\mu}_t + K_t(Z_t h(\overline{\mu}_t))$
- 8. $\Sigma_t = (I - K_t H_t) \Sigma_t$

- $\longleftarrow K_t = \sum_t C_t^T (C_t \sum_t C_t^T + R_t)^{-1}$ $\mu_t = \overline{\mu}_t + K_t(Z_t - C_t\overline{\mu}_t)$

9. Return μ_t , Σ_t

$$H_t = \frac{\partial h(\overline{\mu}_t)}{\partial X_t}$$
 $G_t = \frac{\partial g(u_t, \mu_{t-1})}{\partial X_{t-1}}$

Ejemplo EKF

Resumen

- El EKF es una solución ad-hoc para tratar las no linealidades.
- Realiza linealización local en cada paso
- Funciona bien en la práctica para no linealidades moderadas (ejemplo: localización de marcadores).
- Es óptimo si la medición y el modelo de movimiento son lineales, en cuyo caso el EKF se reduce a KF.
- EKF es una solución aproximada (no es una solución "closed-form")

Bibliografía/Referencias

- Thrun, Burgard, Fox. Probabilistic Robotics.
 MIT Press, 2005.
 - Cap. 4 filtros discretos en general, Cap. 8 aplicación a la localización
 - Cap. 3. KF, EKF, cap. 7 aplicación a la localización
- Algunas transparencias/figuras tomadas de http://www.probabilistic-robotics.org

Robots Móviles

Filtros Discretos y Filtro de Kalman Extendido

Sergio Orts Escolano Otto Colomina Pardo

sorts @ ua.es

