1.0)
$$\frac{1}{2}$$
 $\frac{1}{3}$ $\frac{1}{3}$

I free variable, (x3=free so the solution set) x,=x3 is Idomension! (x2=+2x3) is Idonersonul dKd a line

3. a)
$$A = \begin{cases} 121 \\ -1.3 - 1 \\ 283 \end{cases} \begin{cases} 000 \\ 010 \\ 0001 \end{cases}$$

1. $R_2 = R_2 + R_1 = \begin{cases} 121 \\ 0.43 \\ 0.41 \end{cases}$

2. $R_3 = R_3 - 2R_1 = \begin{cases} 121 \\ 0.43 \\ 0.41 \end{cases}$

3. $R_1 = R_1 + 2R_2 = \begin{cases} 101 \\ 0.41 \\ 0.41 \end{cases}$

4. $R_3 = R_3 + 4R_2 \begin{cases} 101 \\ 0.41 \\ 0.41 \end{cases}$

5. $R_2 = -1 \cdot R_2 \begin{cases} 101 \\ 0.41 \\ 0.41 \end{cases}$

7. $R_1 = R_1 - R_3 = \begin{cases} 101 \\ 0.41 \\ 0.41 \end{cases}$

8. $R_1 = R_1 - R_3 = \begin{cases} 101 \\ 0.41 \\ 0.41 \end{cases}$

9. $R_1 = R_1 - R_3 = \begin{cases} 101 \\ 0.41 \\ 0.41 \end{cases}$

1. $R_1 = R_1 - R_2 = \begin{cases} 101 \\ 0.41 \\ 0.41 \end{cases}$

1. $R_2 = R_1 + 2R_2 = \begin{cases} 101 \\ 0.41 \\ 0.41 \end{cases}$

1. $R_3 = R_3 + 4R_2 = \begin{cases} 101 \\ 0.41 \\ 0.41 \end{cases}$

1. $R_1 = R_1 - R_2 = \begin{cases} 101 \\ 0.41 \\ 0.41 \end{cases}$

1. $R_2 = R_1 + 2R_2 = \begin{cases} 101 \\ 0.41 \\ 0.41 \end{cases}$

1. $R_3 = R_1 + 2R_2 = \begin{cases} 101 \\ 0.41 \\ 0.41 \end{cases}$

1. $R_1 = R_1 - R_2 = \begin{cases} 101 \\ 0.41 \\ 0.41 \end{cases}$

1. $R_2 = R_1 + 2R_2 = \begin{cases} 101 \\ 0.41 \\ 0.41 \end{cases}$

1. $R_3 = R_1 + 2R_2 = \begin{cases} 101 \\ 0.41 \\ 0.41 \end{cases}$

1. $R_1 = R_1 - R_2 = \begin{cases} 101 \\ 0.41 \\ 0.41 \end{cases}$

1. $R_2 = R_1 + 2R_2 = \begin{cases} 101 \\ 0.41 \\ 0.41 \end{cases}$

1. $R_3 = R_1 + 2R_2 = \begin{cases} 101 \\ 0.41 \\ 0.41 \end{cases}$

1. $R_1 = R_1 + 2R_2 = \begin{cases} 101 \\ 0.41 \\ 0.41 \end{cases}$

1. $R_2 = R_1 + 2R_2 = \begin{cases} 101 \\ 0.41 \\ 0.41 \end{cases}$

1. $R_3 = R_1 + 2R_2 = \begin{cases} 101 \\ 0.41 \\ 0.41 \end{cases}$

1. $R_1 = R_1 + 2R_2 = \begin{cases} 101 \\ 0.41 \\ 0.41 \end{cases}$

1. $R_2 = R_1 + 2R_2 = \begin{cases} 101 \\ 0.41 \\ 0.41 \end{cases}$

1. $R_3 = R_1 + 2R_2 = \begin{cases} 101 \\ 0.41 \\ 0.41 \end{cases}$

1. $R_1 = R_1 + 2R_2 = \begin{cases} 101 \\ 0.41 \\ 0.41 \end{cases}$

1. $R_2 = R_1 + 2R_2 = \begin{cases} 101 \\ 0.41 \\ 0.41 \end{cases}$

1. $R_3 = R_1 + 2R_2 = \begin{cases} 101 \\ 0.41 \\ 0.41 \end{cases}$

1. $R_1 = R_1 + 2R_2 = \begin{cases} 101 \\ 0.41 \\ 0.41 \end{cases}$

1. $R_1 = R_1 + 2R_2 = \begin{cases} 101 \\ 0.41 \\ 0.41 \end{cases}$

1. $R_1 = R_1 + 2R_2 = \begin{cases} 101 \\ 0.41 \\ 0.41 \end{cases}$

1. $R_1 = \begin{cases} 101 \\ 0.41 \\ 0.41 \end{cases}$

1. $R_2 = \begin{cases} 101 \\ 0.41 \\ 0.41 \end{cases}$

1. $R_1 = \begin{cases} 101 \\ 0.41 \\ 0.41 \end{cases}$

1. $R_1 = \begin{cases} 101 \\ 0.41 \\ 0.41 \end{cases}$

1. $R_1 = \begin{cases} 101 \\ 0.41 \\ 0.41 \end{cases}$

1. $R_2 = \begin{cases} 101 \\ 0.41 \\ 0.41 \end{cases}$

1. $R_1 = \begin{cases} 101 \\ 0.41$

 $\begin{pmatrix}
a & b \\
0 & d
\end{pmatrix}$ $(a-\lambda)(d-\lambda) - 1/20$ $ad-a\lambda-d\lambda+\lambda^2 \text{ or roods are}$ $eigenvalues > (\lambda-a)(\lambda-d)$

Eigenspiel= A- (X-a) [6]

Eigenspare 2= A-(X-d) [6]

6. 4)
$$\begin{bmatrix} -1 & 2 & -1 \\ 0 & 0 & -1 \end{bmatrix}$$

 $\lambda = \begin{bmatrix} -2 & 0 \\ 0 & 0 \end{bmatrix}$

$$\left(\frac{7}{2}\right)^{a} \left(\frac{9}{2}\right)^{a} \left(\frac{9}{2}\right)^$$

$$d = \sqrt{(4-1)^2 + (-4-1)^2 + (0-2)^2}$$

$$\sqrt{38} = 26.164$$

$$d)$$
 $cos(a)$ $=$

$$ancos(0) = \sqrt{\frac{1}{2}}$$

8)
$$\begin{pmatrix} b_1 \\ b_2 \end{pmatrix} \rightarrow \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}$$
 $3c_1 - c_2$

$$T_{rel} = \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} \begin{pmatrix} c_1 \\ c_1 \end{pmatrix}$$

$$\frac{1}{\sqrt{2}}\left(-\frac{7}{2}\right)\left(-\frac{7$$

$$U_1 = V_1 = \begin{bmatrix} -2 \\ -2 \end{bmatrix}$$

$$U_{2}=V_{2}-\frac{U_{1}\cdot V_{2}}{U_{1}\cdot U_{1}}U_{1}=\begin{bmatrix} -2\\0\\0\end{bmatrix}$$

$$V_{3} = V_{3} - \frac{U_{1}V_{3}}{U_{1}U_{1}} \quad U_{1} - \frac{U_{2}V_{3}}{U_{2}U_{2}} \quad V_{2} = \begin{bmatrix} 0 \\ -3 \\ 3 \end{bmatrix}$$

$$\frac{1}{\sqrt{2}} \left[\frac{\sqrt{2}}{\sqrt{2}} \right] = \left[\frac{1}{\sqrt{2}} \right]$$

$$\frac{\sqrt{2}}{\sqrt{2}} \left[\frac{\sqrt{2}}{\sqrt{2}} \right]$$

$$\frac{\sqrt{2}}{\sqrt{2}} \left[\frac{\sqrt{2}}{\sqrt{2}} \right]$$

10. a) an eigenvector is the vector by which a browsformation con occur which will einter brearly stretch the vector, or flip it, stretch the vector, or flip it, but not chang it. Eigenvalue is like scalors, An Eigenvalue is the factor by which a vector's stretched by an eigenvector. If on eigenvector stretch a vector is a vector is a vector is size, the eigenvector will be?

5. i) = 5A ii) = -12Aiii) = -12A

11. False 12 True 13 False 14 True 15 1 rue 16 Fulse 1) True 18 Fulst 19 True 20 Folse 22 to be C) ad 23 It He/ (110n+ O, Ois comampe 25 Folse, Subspace is stat which is

> Bonns: Good kild Madd City