WYDZIAŁ ELEKTRONIKI I TECHNIK INFORMACYJNYCH LABORATORIUM Ćwiczenie 1 – Pomiary przepływu cieczy Imię i Nazwisko Numer albumu Data

Imię i Nazwisko	Numer albumu	Data		
Paweł Rawicki	283529	05.12.2020		

Przed wykonaniem zadania należy przeczytać instrukcję do ćwiczeń 1 i 2, dostępną na stronie przedmiotu na serwerze Studia.

Rozwiązane zadania należy przesłać na adres: gp227@ise.pw.edu.pl w terminie do 7.12.2020r.

W dniu 2.12.2020 wykład w ramach przedmiotu PCzP będzie poświęcony pomiarom przepływu.

Zadanie 1.

Charakterystyka pewnego przepływomierza cieczy opisana jest funkcją:

$$p = k \cdot Q$$

W jakich jednostkach jest wyrażona stała k? Założyć jednostki dla wielkości fizycznych: p i Q.

Wyznaczyć charakterystykę przepływomierza p=f(Q) w zakresie $Q=1\div 10$ m³/h. W tym celu należy utworzyć stosowną tabelę oraz sporządzić wykres. Założyć wartość liczbową k równą 2a+1, gdzie a jest ostatnią cyfrą numeru albumu.

$$p[\frac{kg}{m*s^2}] \rightarrow [Pa]$$

$$Q\left[\frac{m^3}{h}\right]$$

 $k\left[\frac{3600kg}{s*m^4}\right] = 2*9+1 = 19$ (konwersja jednostek z godzin na sekundy)

Q	1	2	3	4	5	6	7	8	9	10
p	19	38	57	76	95	114	133	152	172	190

Jakie typy przepływomierzy posiadają taką charakterystykę?

Taką charakterystykę posiadają przepływomierze wykorzystujące różnicę ciśnień (manometryczne) takie jak kryzowe, zwężkowe, dyszowe.

Zadanie 2.

Charakterystyka pewnego przepływomierza cieczy opisana jest funkcją:

$$f = k \cdot Q$$

W jakich jednostkach jest wyrażona stała k? Założyć jednostki dla wielkości fizycznych: f i Q.

Wyznaczyć charakterystykę przepływomierza $f=\phi(Q)$ w zakresie $Q=1\div 10$ dm³/h. W tym celu należy utworzyć stosowną tabelę oraz sporządzić wykres. Założyć wartość liczbową *k* równą 3+2*a*, gdzie *a* jest ostatnią cyfrą numeru albumu.

$$f\left[\frac{1}{s}\right] \rightarrow [Hz]$$

$$f\left[\frac{1}{s}\right] \to [Hz]$$

$$Q\left[\frac{dm^3}{h}\right]$$

$$k\left[\frac{3600}{dm^3}\right] = 2 * 9 + 3 = 21$$
 (konwersja jednostek z godzin na sekundy)

Q	1	2	3	4	5	6	7	8	9	10
f	21	42	63	84	105	126	147	168	189	210

Jakie typy przepływomierzy posiadają taką charakterystykę? **Taką charakterystykę mają przepływomierze o liniowej charakterystyce (ciśnieniowe) które posiadają przetworniki elektryczne zamieniajcie nieelektryczne na elektryczne.**

Zadanie 3.

Klasa pewnego przepływomierza wynosi 1.

Zakres pomiarowy: $Q_{min} = (a+2) \text{ m}^3/\text{h}$.

$$Q_{max} = (b+15) \text{ m}^3/\text{h}.$$

gdzie: a – odpowiada ostatniej cyfrze numeru albumu,

b – odpowiada dwóm ostatnim cyfrom numeru albumu

Wyznaczyć zależność (w postaci wykresu) błędu względnego pomiaru strumienia objętości od wartości mierzonej.

a=9

b=29

$$Q_{min} = (a+2)=11 \text{ m}^3/\text{h}.$$

$$Q_{max} = (b+15)=44 \text{ m}^3/\text{h}.$$

