

Data Driven Engineering I: Machine Learning for Dynamical Systems

Analysis of Static Datasets II: Clustering

Institute of Thermal Turbomachinery Prof. Dr.-Ing. Hans-Jörg Bauer

Learning landscape:

Learning types:

- [] Error-based learning
- □ Similarity based learning
- 1 Information based learning
- D Probability-based learning

How does it work?

"Different recipes (learning strategies) for different problems"

Today's Agenda

Basic Steps to Follow =

- o.) Understand the business/task-
- 1.) Understand the data.
- 2.) Explore & prepare the data.
- 3.) Shortlist candidate models.
- 4.) Training the model
- 5.) Evaluate the model predictions
- 6.) "Serve, the model of

Still

> 4 Major

of Tricky P

#0 Understanding the task

- □ Problem: Manufacturing error in a production line
- Modified sensory input: 28 variables including sensory input
- □ 280,000 instances, where only a small fraction (~500) of products are defective.
- ☐ **Heuristic**: <0.5% is defective

A similar example for you:

"Bosch Production Line Performance Reduce manufacturing failures"

#1 Understanding the data

- ☐ Check the data source: understand what the data refers to
- □ Objective: understand the characteristics of the data
- □ Look at the feature columns:
 - □ Any missing values?
 - Any features with NaN values?
 - Uniqueness of the dataset? ("cardinality")

19.11.2021

23	S23	284807	non-null	float64				
24	S24		non-null	float64				
25	S25	284807	non-null	float64				
26	S26	284807	non-null	float64				
27	S27	284807	non-null	float64				
28	S28	284807	non-nul	float64				
29	Class	284807	non-nul	object				
dtypes: float64(29), object(1)								

memory usage: 65.2+ MB

time: 54.5 ms

		Time	S1	S2	s3	S4	S5	s6	
	count	284807.000000	2.848070e+05	2.848070e+05	2.848070e+05	2.848070e+05	2.848070e+05	2.848070e+05	:
	mean	94813.859575	1.758743e-12	-8.252298e-13	-9.636929e-13	8.316157e-13	1.591952e-13	4.247354e-13	
	std	47488.145955	1.958696e+00	1.651309e+00	1.516255e+00	1.415869e+00	1.380247e+00	1.332271e+00	
	min	0.000000	-5.640751e+01	-7.271573e+01	-4.832559e+01	-5.683171e+00	-1.137433e+02	-2.616051e+01	
	25%	54201.500000	-9.203734e-01	-5.985499e-01	-8.903648e-01	-8.486401e-01	-6.915971e-01	-7.682956e-01	
	50%	84692.000000	1.810880e-02	6.548556e-02	1.798463e-01	-1.984653e-02	-5.433583e-02	-2.741871e-01	
	75%	139320.500000	1.315642e+00	8.037239e-01	1.027196e+00	7.433413e-01	6.119264e-01	3.985649e-01	
	max	172792.000000	2.454930e+00	2.205773e+01	9.382558e+00	1.687534e+01	3.480167e+01	7.330163e+01	
	time:	447 ms							

colab

#2 Exploring the data

- □ Objective: generate a data quality report
- ☐ Using standard statistical measures of central tendency and variation
 - □ tabular data and visual plots
 - ☐ mean, mode, and median
 - standard deviation and percentiles
 - □ bars, histograms, box and violin plots
- ✓ Missing values,
- ✓ Irregular cardinality problems,
 - 1 or comparably small
- ✓ Outliers
 - invalid outliers and valid outliers

#2 Exporing the data: Correlation Matrix

☐ Shows the correlation between each pair of features

$$Cov(a,b) = \frac{1}{n-1} \sum_{i=1}^{n} \left[(a_i - \overline{a}) \times (b_i - \overline{b}) \right]$$
Features

Features

mean

mean

□ Normalized form of "covariance"

$$Corr(a,b) = \frac{Cov(a,b)}{SD(a) \times SD(b)}$$

$$\frac{1}{SD(a) \times SD(b)}$$
* Normalized * Dimensionless Easy to interpret

□ Ranges between -1 and +1

#2 Preparing the Data

□ Clustering >> unsupervised >> training & test split not needed

☐ We will use it to **reduce the volume of the data** when needed:

- (+) does not need "k,, at the beginning
- (-) Always work every for white noise.

k-means:

- * partitioning n observation into 'k' clusters.
- (-) "k, is typically unknown ⇒ parametric analysis
- * define a similarity distance.
- * k-means is iterative & depends on its initialization

Algorithm:

- (i) Assume a center of cluster for k cluster: Mr.
- (ii) Compute the distance between each observation X & M
- (iii) Label each observation as belonging to the nearest cluster. It
- (iv) Find the "center of mass, for each cluster -> Mk

Ubjective Function:
$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} ||X_n - M_{lk}||^2$$
 find $||X_n - M_{lk}||^2$ find $||X_n - M_{lk}||^2$ minimizing J

$$||X_n - M_{lk}||^2$$

1)
$$\Gamma_{nk} = \left\{ \begin{array}{l} 1, & \text{if } k = \arg\min_{j} \|X_n - \mu_j\|^2 \right\} \text{ given } \mu_j \rightarrow \Gamma_{nk} \\ 0, & \text{otherwise} \end{array} \right.$$

$$\frac{\partial J}{\partial \mu_k} = 0 \implies 2 \sum_{n=1}^{N} f_{nk} (X_n - \mu_k) = 0 \implies \mu_k = \frac{\sum_{n} f_{nk} X_n}{\sum_{n} f_{nk}} \right] \text{ "Means}_{n}$$

Deciding on the # Clusters

- (i) Find I with increasing #k.

 (ii) Look at the variation:
- (iii) Pich a reasonable & value.

colab

#5 Evaluate model predictions

* Do you know a set of examples with labels?

(1) There is not any labelled data.

Silhouette Score:

* Relative distances between instances.

(2) There are some labelled data Homogeneity (Purity):

#5 Evaluate model predictions 2

Silhouette Score:

* Relative distances between instances.

(1) SC = b - a / max(a,b)where;

a → mean intra-cluster distance b → mean distance to the instances of the next closest cluster

Dilhouette Diagram

SC = +1 => Well inside in its own cluster

Away from others

~ b/b = 1.0

SC = -1 \Rightarrow Wrong Cluster (-a/a - -1)

SC ≈ 0 > Near the cluster boundary (a ~ b)

#5 Evaluate model predictions 3

- * k: cluster index (1,2,..., K)

 j: class index (0,1)

(3)
$$H_{kj} = N_{kj}/N_k$$
 } homog. of chuster k for class \dot{j}

(4)
$$H_k := \max(H_{kj}) \Rightarrow homo \cdot of cluster k$$

(6)
$$H = \sum_{k=1}^{K} N_k /_{N} H_k \Rightarrow \text{Overall homog.}$$

colab

#3 Candidate Models: Gaussian Mixtures

Mixture Models:

Idea: Obseration is constituted by P (Gaussian) processes

$$f_i = \sum_{p=1}^{k} \alpha_p f_p$$
 PDF weight

$$f_i = \sum_{p=1}^{k} \alpha_p \mathcal{N}(X_i, \mu_p, \sigma_p)$$
Gaussian MM

21

#3 Candidate Models: Gaussian Mixtures 2

Mixture Models:

- * Uses expectation maximization (EM) algorithm
- Similar to k-Means. Define "k,..
- * Bayesian Gaussian Mixture: Probabilistic interpretation
 Cluster # Optimization

Hint: EM algorithm is much slower than k-Means. Therefore, you can use k-means to determine the better initial conditions for GMM.

colab

- * There are three optrons here for distance calculation:
- ① Single Link \Rightarrow nearest neighbour clustering $\int_{0}^{\infty} \widetilde{O}(n^{2})$ time (v) Distance := min(dij)
- (3) Average link \Rightarrow mean distance (v) Distance $:=\frac{1}{n_i n_j} \sum_{i=1}^{n_i} \sum_{j=1}^{n_i} d_{ij}$ feature scaling is important

(i) Select a threshold value that separates clusters in the dendrogram

(ii) Assume that "distance, segragates natural clusters from the unnatural ones.

* Alternative:

"Bayessan Hier. Clustering"

colab

#3 Candidate Models: DBSCAN

Density - based Clustering: DBSCAN

* Groups points that are closely packed together

[points with many neighbours]

- * Outliers => "Low density," regions
- In k-Means ⇒ all instances are assigned to a cluster k.
 ★ In DBSCAN ⇒ k is not needed ⇒ There is also noise class.

You need: $\begin{cases} min \# points & \text{to be considered as a dense cluster.} \\ a distance measure to locate reighbours <math>(\epsilon)$

#3 Candidate Models: DBSCAN 2

Density-based Clustering: DBSCAN

#3 Candidate Models: DBSCAN 2

Density-based Clustering: DBSCAN

colab

Additional Notes

