

Pre-training on Large-Scale Heterogeneous Graph

Xunqiang Jiang¹, Tianrui Jia¹, Yuan Fang², Chuan Shi^{1,3}*, Zhe Lin³, Hui Wang³

¹Beijing University of Posts and Telecommunications

²Singapore Management University

³Peng Cheng Laboratory, Shenzhen, China

- 1 Introduction
- 2 PT-HGNN
- 3 Experiments
- 4 Conclusions

- 1 Introduction
- 2 PT-HGNN
- 3 Experiments
- 4 Conclusions

Graph Neural Network (GNN)

GCN

GraphSAGE

Various Applications of GNN

Recommendation System

Polypharmacy

- GNNs need abundant task-specific labeled → Better results
 - > However, labeled data is usually **expensive** or **infeasible** to obtain

- **Learning from Unlabeled Data** → **Pre-training**
 - Unlabeled data (i.e., the whole graph) is abundant
 - Recent progresses of pre-training in CV and NLP relieve the reliance on labeled data, and some recent works propose to pre-train GNNs in a self-supervised manner

- **Existing pre-training methods for GNNs**
 - They are mainly designed for homogeneous graphs
- **Heterogeneous Graphs**

Large heterogeneous graphs with different relations and rich semantics

- ◆ 1. How to effectively capture the semantic and structural properties on a heterogeneous graph during pre-training
 - ➤ Structural properties, rich semantics → varying characteristics of different types
 - ➤ Preserve the inherent semantic and structural properties → Node and Network Schema

- ◆ 2. How to efficiently pre-train GNNs on a large-scale heterogeneous graph
 - ➤ Real-word heterogeneous graphs: billions of nodes and edges → Scalability

- 1 Introduction
- 2 PT-HGNN
- 3 Experiments
- 4 Conclusions

PT-HGNN

Preserve heterogeneous semantic and structural properties as transferable knowledge, and sparsify large-scale heterogeneous graph for efficient pre-training

- Relation-based sparsification for efficiency
- Design the node- and schemalevel pre-training tasks

Figure 1: The overall framework of PT-HGNN.

Node-level pre-training task: Negative sample selection

$$\mathcal{N}_{\langle u,R,v\rangle}^{node} = \{\langle u,R,v^{-}\rangle \mid \phi(v) = \phi(v^{-}), (u,v^{-}) \notin \mathcal{E}, Sim(v,v^{-}) \leq \delta\}$$

1. Select negative samples from the same relation

Node-level pre-training task: Negative sample selection

2. Select negative samples dissimilar enough

 a_3

Cosine similarity in the embedding space

For paper p_1 and relation paper-author, a_1 is the positive sample, a_2 is a similar sample, a_3 is a negative sample.

Schema-level pre-training task

Model the relation between **center node**

with context nodes

Network schema captures both high-order semantics and structural properties

Meta-path

Motif

schema

- meta-graph is limited to express high-order structure
- motif is intractable to match when the graph is so large
- schema is the only defining structure that captures both semantic and structural properties

Schema-level pre-training task

sampling according to schema

center node with context nodes

Schema-level pre-training task

- Sampling Negative samples from:
 - The current batch with two target nodes of the same type

$$\mathcal{N}_{u}^{1} = \{\mathcal{P}_{u^{-}}^{sche} \mid u^{-} \in \mathcal{V}_{B}, u \neq u^{-}, \phi(u) = \phi(u^{-})\}$$

Previous batch with two target nodes of the same type

$$\mathcal{N}_u^2 = \{ \mathcal{P}_v^{sche} \mid \phi(u) = \phi(v), v \in \mathcal{V}_B^{t-1} \},$$

Edge Sparsification

Why edge Sparsification:

- Preserve more **meaningful** edges (lower noise in graphs)
- Improve the time efficiency on large graph

Method: Relation based Personalized PageRank

Acceleration:

Random-Walk Formulation (Forward Search) + Top-K Entries

Edge Sparsification

The construction process of sparse heterogeneous graph

- 1 Introduction
- 2 PT-HGNN
- 3 Experiments
- 4 Conclusions

Baselines

- **EdgePred**
- **GPT-GNN**

DGI

- **GraphCL**
- ContextPred **No-Pretrain**

Datasets

Open Academic Graph (OAG) unifies two academic graphs:

Microsoft Academic Graph and Aminer

Statistics of Datasets

Dataset	#nodes	#edges	#venues	#papers	#fields	#authors	#institutes	#P-V	#P-P	#P-F	#P-A	#A-I
CS	11,918,983	107,263,811	27,433	5,597,605	289,930	5,985,759	18,256	5,597,606	31,441,552	47,462,559	15,571,614	7,190,480
Mater	4,552,941	42,161,581	15,141	2,442,235	79,305	2,005,362	10,898	2,442,235	13,011,272	19,119,947	5,582,765	2,005,362
Engin	5,191,920	36,146,719	19,867	3,239,504	99,444	1,819,100	14,005	3,239,504	4,848,158	22,498,822	3,741,135	1,819,100
Chem	12,158,967	159,537,437	19,142	7,193,321	183,782	4,748,812	13,910	7,193,321	74,018,600	57,162,528	16,414,176	4,748,812
OAG	178,663,987	2,236,196,802	53,073	89,606,257	615,288	88,364,081	25,288	89,606,258	1,021,237,518	657,049,405	300,853,688	167,449,933

#nodes: 178 million; #edges: 2 billion

Experiments

Experiment results on Node classification and Link Prediction

Whole graph: OAG

Domain specific subgraphs: Computer science, material, chemistry, engineering

Dataset	Downstream	n Task	No pre-train	EdgePred	DGI	ContextPred	GraphCL	GPT-GNN	PT-HGNN	Improv.
	Paper–Field	NDCG MRR	27.42±0.42 23.17±0.45	31.37±0.32 32.13±0.52	32.82±0.67 33.43±0.81	33.15±0.71 33.24±0.57	32.64±0.65 33.24±0.67	35.24±0.47 33.57±0.71	36.04 ±0.37 37.76 ±0.42	2.27% 12.48%
CS	Paper-Venue	NDCG MRR	27.76±0.56 11.39±0.37	35.77±0.59 16.34±0.47	34.23±0.71 16.21±0.62	34.30±0.92 17.66±0.81	32.11±0.69 16.29±0.49	$\frac{36.15 \pm 0.53}{19.13 \pm 0.65}$	38.81±0.51 21.19±0.45	7.35% 10.76%
	Author ND	NDCG MRR	76.27±0.53 54.82±0.49	79.41±0.68 59.06±0.74	81.38±0.93 58.98±0.79	79.22±0.72 60.23±0.83	79.95±0.89 60.55±0.74	$\frac{80.20 \pm 0.51}{60.94 \pm 0.52}$	82.19±0.60 63.38±0.38	2.48% % 4.00% %
OAC	Paper-Ven	ue NDC	III						III	68 6.56% 57 6.19%
	Author NI	O NDC MRI	- II						ll l	

On average 4.98% improvement: our proposed pre-training strategy is capable of exploiting transferable information and graph properties on heterogeneous graphs

Experiment results on Node classification and Link Prediction

Evaluate the effect of node- and schema-level pre-training tasks on heterogeneous graphs

Downstream	n Task	No pre-train	${\rm PT\text{-}HGNN}_{node}$	PT-HGNN _{sche}	PT-HGNN
Daman Field	NDCG	27.42	35.80	35.16	36.04
Paper–Field	MRR	23.17	36.82	36.21	37.76
Paper-Venue	NDCG	27.76	36.23	35.24	38.81
raper-venue	MRR	11.39	20.42	18.92	21.19
Author ND	NDCG	76.27	80.41	81.25	82.19
Author ND	MRR	54.82	60.57	62.02	63.38

• Node-level: PT-HGNN_{node}

Schema-level : PT-HGNN_{sche}

Combination : PT-HGNN

- In link prediction, PT-HGNN $_{node}$ model the pairwise interaction, which performs better
- In node classification, PT-HGNN_{sche} obtain better performance by focusing on modeling the structure context
- The combination offers strong capability in both downstream tasks

Freezing vs. Full Fine-tuning

			<u>/</u>		
Downstrear	n Task	No pre-train	PT-HGNN (FE)	PT-HGNN	
Daman Field	NDCG	27.42	32.81	36.04	
Paper-Field	MRR	23.17	32.50	37.76	
Paper-Venue	NDCG	27.76	35.93	38.81	
raper-venue	MRR	11.39	18.45	21.19	
Author ND	NDCG	76.27	81.41	82.19	
Author ND	MRR	54.82	62.15	63.38	

- > PT-HGNN(FE) achieves better performance than the no pre-train model, which are able to capture the transferable knowledge.
- > the performance of PT-HGNN in freezing mode exhibits competitive performance to that of the full fine-tuning mode in some cases

Transfer Experiment

- Knowledge transferring from pre-training to fine-tuning
 does not guarantee a gain in performance
- Positive correlation value between graphs results in positive transferring and vice versa

(a) Correlation metric computed with a series of graph (b) The citation coefficient: the percentage of publica-(c) MRR gain (%) of the proposed method over the properties.

tions in graph Y that have citations in graph X method with no pre-training

Time Efficiency

Downst	ream Task	No PPR	PPR	Improv.
Paper-Field	NDCG	36.54	36.04	-1.38%
i aper-rieiu	MRR	38.12	37.76	-0.95%
Danar Vanua	NDCG	37.82	38.81	2.62%
Paper–Venue	MRR	20.42	21.19	3.77%
Author ND	NDCG	80.87	82.19	1.63%
Author ND	MRR	60.09	63.38	5.48%
Time Efficiency	Time Per Batch(s)	64.2	37.9	41.97%

- With the edges sparsification based on personalized PageRank, the training efficiency is increased
- Pre-training on the pre-processed heterogeneous graph achieve the competitive performance

- 1 Introduction
- 2 PT-HGNN
- 3 Experiments
- 4 Conclusions

Conclusion

- > PT-HGNN, which is a pre-training framework, enables the GNN to capture heterogeneous semantics and structural properties
- ➤ Edge sparsification strategy retains meaningful graph structures while accelerating the pre-training procedure
- > Extensive experiments on one of the largest heterogeneous graphs

Thank you!

Xunqiang Jiang, BUPT, skd621@bupt.edu.cn

More Information:

http://www.shichuan.org/

http://www.yfang.site