

Art of Problem Solving 2007 Cono Sur Olympiad

Cono Sur Olympiad 2007

Day 1	
1	Find all pairs (x, y) of nonnegative integers that satisfy
	$x^3y + x + y = xy + 2xy^2.$
2	Given are 100 positive integers whose sum equals their product. Determine the minimum number of 1s that may occur among the 100 numbers.
3	Let ABC be an acute triangle with altitudes AD , BE , CF where D , E , F lie on BC , AC , AB , respectively. Let M be the midpoint of BC . The circumcircle of triangle AEF cuts the line AM at A and X . The line AM cuts the line CF at Y . Let Z be the point of intersection of AD and BX . Show that the lines YZ and BC are parallel.
Day 2	
1	Some cells of a 2007×2007 table are colored. The table is <i>charrua</i> if none of the rows and none of the columns are completely colored.(a) What is the maximum number k of colored cells that a charrua table can have? (b) For such k , calculate the number of distinct charrua tables that exist.
2	 Let ABCDE be a convex pentagon that satisfies all of the following: -There is a circle Γ tangent to each of the sides. -The lengths of the sides are all positive integers. -At least one of the sides of the pentagon has length 1. -The side AB has length 2. Let P be the point of tangency of Γ with AB. (a) Determine the lengths of the segments AP and BP. (b) Give an example of a pentagon satisfying the given conditions.
3	Show that for each positive integer n , there is a positive integer k such that the decimal representation of each of the numbers $k, 2k, \ldots, nk$ contains all of the digits $0, 1, 2, \ldots, 9$.

Contributors: Shu