³⁵K ε+β⁺ decay (175 ms) 1980Ew02

Parent: 35 K: E=0; J^{π}=3/2+; T_{1/2}=175 ms 2; Q(ϵ)=11874.4 9; % ϵ +% β + decay=100

- 1980Ew02,1979Ca15: A 600-MeV proton beam was produced from the synchrocyclotron at CERN-ISOLDE and bombard a ScC₂ target. The ⁴⁵Sc(p,8n3p) spallation reaction products diffused out of the target and reached a tungsten surface ionization source where potassium isotopes were selectively ionized. The beam was extracted from the ion source, separated by the ISOLDE analyzing magnet, and collected by a mylar foil for γ -ray measurements and then a carbon foil for proton measurements. γ rays were detected using a Ge(Li) detector. Time for positron activities were determined using a 700- μ m thick silicon detector. Protons were detected using a 20- μ m-700- μ m thick Δ E-E telescope of silicon surface barrier detectors with FWHM=50 keV. Measured E γ (<5 MeV), I γ , E $_p$ (>0.9 MeV), I $_p$. Deduced Deduced levels, J, π , decay branching ratios, log ft, parent ³⁵K T $_{1/2}$, and coefficients of the isobaric multiplet mass equation for A=36, T=2 quartets. Comparisons with shell-model calculations and the mirror nucleus ³⁵Cl. Also see abstracts 1978HaYH, 1979HaZY, 1979HaZT, and 1979AnZZ.
- 2018Sa54: A 36-MeV/nucleon 36 Ar primary beam was produced from the K500 cyclotron at Texas A&M University. The secondary 35 K beam was produced via the 1 H(36 Ar, 35 K)2n reaction of 36 Ar bombarding a LN₂-cooled hydrogen gas target, separated by MARS, and implanted into a 45- μ m DSSD sandwiched between a 140- μ m SSSD and a 1-mm Si-pad detector in a pulsed-beam mode. ε + β +-delayed protons were detected by the implantation detector. γ rays were detected by two HPGe detectors. Measured E_D(>300 keV), I_D, E γ , I γ , p γ -coin, $\gamma\gamma$ -coin. Deduced parent 35 K T_{1/2}.
- 2019ChZU: Same beam production as 2018Sa54. 35 K was implanted into the AstroBox2 detector filled with 800-Torr P5 gas. $\varepsilon + \beta^+$ -delayed protons were detected by the implantation detector. γ rays were detected by 4 Clover Ge detectors. Measured $E_p(>100 \text{ keV})$, I_p , $E\gamma$, $I\gamma$, $p\gamma$ -coin, $\gamma\gamma$ -coin.
- 1998Sc19: A polarized 35 K beam was produced via the fragmentation of 500-MeV/nucleon 40 Ca impinging on a 9 Be target at GSI, separated using Δ E-tof by FRS, momentum-selected by slits, and implanted into a KBr single crystal placed in the central region of a magnet. Positrons were detected using plastic scintillators. γ rays were detected using a Ge detector. Measured β -decay asymmetry and $\beta\gamma$ -coin. Deduced polarization and g-factor of 35 K ground state from β -NMR and 35 K $T_{1/2}$ from $\beta\gamma$ -decay time spectra.
- 2006Me04: A polarized 35 K beam was produced via the proton-pickup reaction 36 Ar(9 Be, 10 Li) 35 K, separated by NSCL-A1900, and implanted into a KBr crystal. Positrons were detected using plastic scintillators. Deduced the magnetic dipole moment and g-factor of 35 K ground state from β -NMR.

Theoretical studies involving ³⁵K decay: shell model (1985Br29, 2003Sm02).

35 Ar Levels

E(level) [†]	$\mathrm{J}^{\pi \ddagger}$	T _{1/2}	Comments
0	3/2+	1.7756 s <i>14</i>	
1184.01 25	1/2+		
1750.72 25	$(5/2)^+$		
2637.99 26	3/2+		
2982.79 12	5/2+		
4065.0? <i>4</i>	$(1/2^+,3/2^+,5/2^+)$		
4528.2 <i>4</i>	$(1/2^+,3/2^+,5/2^+)$		
4725.9 6	1/2+		
4785.8 <i>11</i>	$1/2^+, 3/2^+, 5/2^+$		
5572.66 <i>15</i>	3/2+		T=3/2
6348 11	(1/2,3/2,5/2)		$E(p0)_{c.m.}$ =452 keV 11 (2019ChZU).
7053 11	$3/2^+,5/2^+$		E(p0) _{c.m.} =1157 keV 11 (2019ChZU).
7255 11			E(p3) _{c.m.} =693 keV 11 (2019ChZU).
7283 11			$E(p0)_{c.m.}$ =1387 keV 11 (2019ChZU).
7431 <i>11</i>			E(p3) _{c.m.} =869 keV 11 (2019ChZU).
7518 <i>11</i>	1/2+,3/2+,5/2+		E(level): weighted average of E(level) of 7497 20, 7510 20, and 7527 11. The former two E(level) are deduced from E(p0) _{c.m.} =1601 20 (1980Ew02) and E(p1) _{c.m.} =1467 20 (1980Ew02), respectively, with the corresponding E(level)(34 Cl) (2012Ni10) and S(p)(35 Ar)=5896.2 7 (2021Wa16). The 7527 11

 $^{^{35}\}text{K-J}^{\pi}$, $T_{1/2}$: From the Adopted Levels of ^{35}K .

³⁵K-T_{1/2}: Weighted average of 175 ms 2 (2018Sa54), 178 ms 8 (1998Sc19), and 190 ms 30 (1980Ew02).

 $^{^{35}}$ K-Q(ε + β ⁺): From 2021Wa16.

 $^{^{35}}$ K-%(ε + β +)p=0.37 15 for E(p)>0.9 MeV (1980Ew02). E(p)<0.9 MeV has also been observed (2018Sa54,2019ChZU).

³⁵K ε+ β ⁺ decay (175 ms) 1980Ew02 (continued)

³⁵Ar Levels (continued)

E(level)[†] $J^{\pi \ddagger}$ Comments

is from 2019ChZU with E(p3)_{c.m.}=965 11.

8393? 20 $1/2^+,3/2^+,5/2^+$ E(level): weighted average of E(level) of 8392 20, 8392 20, and 8395 20, deduced from E(p0)_{c.m.}=2496 20 (1980Ew02), E(p1)_{c.m.}=2349 20 (1980Ew02), and E(p2)_{c.m.}=2038 20 (1980Ew02), respectively, with the corresponding E(level)(34 Cl) (2012Ni10) and S(p)(35 Ar)=5896.2 7 (2021Wa16).

ε , β ⁺ radiations

E(decay)	E(level)	Ιβ ⁺ †	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$I(\varepsilon + \beta^+)^{\dagger}$	Comments
(3481 20)	8393?	0.062 26	4.3×10 ⁻⁴ 18	4.6 +3-2	0.062 26	av E β =1083.0 94; ε K=0.00619 22; ε L=6.57×10 ⁻⁴ 24; ε M=8.67×10 ⁻⁵ 32
(4356 11)	7518	>0.090	>3×10 ⁻⁴	5.0	>0.09	av E β =1497.6 53; ε K=0.002510 52; ε L=2.664×10 ⁻⁴ 57; ε M=3.515×10 ⁻⁵ 84 I(ε + β ⁺): 0.15 6 I(p0+p1) (1980Ew02). Evaluators adopted a lower limit due to unreported I(p3) (2019ChZU).
(5526 11)	6348	0.0025 5	$2.9 \times 10^{-6} 6$	7.2 1	$2.5 \times 10^{-3} 5$	av E β =2060.3 53; ε K=0.001037 19; ε L=1.100×10 ⁻⁴ 21; ε M=1.451×10 ⁻⁵ 31
(6301.7 14)	5572.66	36.3 24	0.0265 18	3.31 4	36.3 24	av E β =2436.61 44; ε K=6.519×10 ⁻⁴ 74; ε L=6.918×10 ⁻⁵ 87; ε M=9.13×10 ⁻⁶ 15
(7088.6 18)	4785.8	1.0 4	5×10 ⁻⁴ 2	5.2 2	1.0 4	av E β =2819.96 68; ε K=4.354×10 ⁻⁴ 50; ε L=4.620×10 ⁻⁵ 59; ε M=6.09×10 ⁻⁶ 10
(7148.5 15)	4725.9	2.1 4	0.0010 2	4.9 1	2.1 4	av E β =2849.20 54; ε K=4.232×10 ⁻⁴ 48; ε L=4.490×10 ⁻⁵ 57; ε M=5.924×10 ⁻⁶ 97
(7346.2 14)	4528.2	0.7 4	$3 \times 10^{-4} \ 2$	5.4 +4-2	0.7 4	av E β =2945.75 48; ε K=3.860×10 ⁻⁴ 44; ε L=4.095×10 ⁻⁵ 52; ε M=5.403×10 ⁻⁶ 89
(7809.4 14)	4065.0?	0.56 33	2.0×10 ⁻⁴ 12	5.6 +4-2	0.56 33	av E β =3172.24 48; ε K=3.147×10 ⁻⁴ 35; ε L=3.339×10 ⁻⁵ 42; ε M=4.405×10 ⁻⁶ 72
(8891.6 14)	2982.79	26.0 22	0.0060 5	4.27 <i>4</i>	26.0 22	av E β =3702.63 45; ε K=2.057×10 ⁻⁴ 23; ε L=2.182×10 ⁻⁵ 27; ε M=2.879×10 ⁻⁶ 47
(9236.4 14)	2637.99	≤0.4		≥6.2	≤0.4	av E β =3871.90 46; ε K=1.819×10 ⁻⁴ 20; ε L=1.930×10 ⁻⁵ 24; ε M=2.546×10 ⁻⁶ 42
(10123.7 14)	1750.72	11.9 9	0.00181 14	4.91 <i>4</i>	11.9 9	av E β =4308.03 46; ε K=1.358×10 ⁻⁴ 15; ε L=1.441×10 ⁻⁵ 18; ε M=1.901×10 ⁻⁶ 31
(10690.4 14)	1184.01	2.2 7	$2.8 \times 10^{-4} 9$	5.8 +2-1	2.2 7	av E β =4586.92 46; ε K=1.145×10 ⁻⁴ 13; ε L=1.215×10 ⁻⁵ 15; ε M=1.602×10 ⁻⁶ 26
(11874.4 17)	0	19 4	0.0018 4	5.1 <i>I</i>	19 4	av $E\beta$ =5170.29 44; ε K=8.275×10 ⁻⁵ 92; ε L=8.78×10 ⁻⁶ 11; ε M=1.158×10 ⁻⁶ 19 I(ε + β +): from 1980Ew02 assuming mirror log ft with a small asymmetry correction.

[†] Absolute intensity per 100 decays.

[†] From a least-squares fit to γ -ray energies in 1980Ew02 for levels connected with γ transitions.

[‡] From the Adopted Levels.

³⁵K ε+β⁺ decay (175 ms) 1980Ew02 (continued)

γ (35Ar)

Iy normalization: From $\Sigma\%$ Iy(y to g.s.)=80.6 40, deduced from 100– $\Sigma\%$ I_p-%I(ε + β +)(g.s.), where $\Sigma\%$ I_p=0.37 15 (1980Ew02) and %I(ε + β +)(g.s.)=19 4 (1980Ew02), corresponding to log ft=5.07 5, which was deduced from the 35 S (g.s.)-> 35 Cl (g.s.) mirror log ft=5.01 2 with a small asymmetry correction.

 $\varepsilon + \beta^+$ feeding is obtained from γ intensity balance at each level. 1980Ew02 states that in complex decay schemes of heavy nuclides this method is known to be suspect since there is significant γ intensity that is unobserved because it lies in a multitude of very weak γ -ray peaks. In a nucleus as light as 35 K the problem is less acute. They have generated a pandemonium test in the same spirit as in 1977Ha51 and find that less than one percent of the γ intensity from 35 K decay should be missed for that reason.

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \ddagger}$	E_i (level)	\mathtt{J}_{i}^{π}	\mathbb{E}_f	J^π_f	Comments
886.8 <i>5</i>	0.9 3	2637.99	3/2+	1750.72	$(5/2)^+$	$\%$ I γ =0.46 +19-17
1044.4 4	1.3 4	5572.66	3/2+	4528.2	$(1/2^+,3/2^+,5/2^+)$	$\%I\gamma = 0.66 + 25 - 23$
1184.0 <i>3</i>	14.3 7	1184.01	1/2+	0	3/2+	$\%I_{\gamma} = 7.2.5$
1426.8 <i>4</i>	3.0 5	4065.0?	$(1/2^+,3/2^+,5/2^+)$	2637.99	3/2+	$\%I_{\gamma} = 1.5 + 4 - 3$
1507.4 5	1.9 <i>4</i>	5572.66	3/2+	4065.0?	$(1/2^+,3/2^+,5/2^+)$	$\%I\gamma = 0.96 + 27 - 25$
1750.5 <i>3</i>	28 <i>1</i>	1750.72	$(5/2)^+$	0	3/2+	$\%I_{\gamma} = 14.1 \ 9$
1798.9 <i>5</i>	3.5 6	2982.79	5/2+	1184.01	1/2+	$\%I\gamma = 1.8 \ 4$
2589.8 <i>1</i>	52 2	5572.66	3/2+	2982.79	5/2+	$\%I\gamma = 26.3 \ 18$
2638.0 4	5.5 7	2637.99	3/2+	0	3/2+	$\%I\gamma = 2.8 \ 5$
^x 2697.7 6						Unplaced γ ray, accounting for no more than 1.2% ε + β ⁺ -feeding (1980Ew02). No ³⁵ Ar γ rays at this energy were observed in other reaction studies.
2934.5 5	3.5 6	5572.66	3/2+	2637.99	3/2+	$\%I\gamma = 1.8 \ 4$
2982.68 <i>13</i>	100 4	2982.79	5/2+	0	3/2+	$\%I\gamma = 50.5\ 27$
3542.0 <i>6</i>	2.9 6	4725.9	1/2+	1184.01	1/2+	$\%I\gamma = 1.5 \ 4$
3821.7 7	3.5 7	5572.66	3/2+	1750.72	$(5/2)^+$	$\%I\gamma = 1.8 \ 5$
4387.2 9	3.5 8	5572.66	3/2+	1184.01	1/2+	$\%I\gamma = 1.8 \ 5$
4527.9 7	2.6 7	4528.2	$(1/2^+,3/2^+,5/2^+)$	0	3/2+	$\%I\gamma = 1.3 \ 4$
4724.5 11	1.2 5	4725.9	1/2+	0	3/2+	$\%I\gamma = 0.61 + 30 - 27$
4785.4 11	1.9 7	4785.8	$1/2^+, 3/2^+, 5/2^+$	0	3/2+	$\%I\gamma = 1.0 \ 4$
5572.3 10	6.1 <i>16</i>	5572.66	3/2+	0	3/2+	%I γ =3.1 +10-9 1980Ew02 observed the double escape peak at 4550 keV of this γ ray. 2018Sa54 observed the photopeak at 5572 keV.

[†] From 1980Ew02.

 $^{^{\}ddagger}$ For absolute intensity per 100 decays, multiply by 0.505 29.

 $^{^{}x}$ γ ray not placed in level scheme.

35 K ε + β + decay (175 ms) 1980Ew02

Decay Scheme

REFERENCES FOR A=35

1977Ha51	J.C.Hardy, L.C.Carraz, B.Jonson, P.G.Hansen - Phys.Lett. B 71, 307 (1977).
	The essential decay of pandemonium: A demonstration of errors in complex beta-decay schemes.
1978HaYH	REPT AECL-6366,p29,Hardy.
1979AnZZ	G.Andersson, E.Hagberg, B.Jonson, S.Mattsson, G.Nyman - NEANDC(OR)-152L, p.7 (1979).
	On-Line Studies of Very Unstable Nuclei.
1979Ca15	L.C.Carraz, G.T.Ewan, E.Hagberg, J.C.Hardy, B.Jonson, S.Mattsson, H.L.Ravn, P.Tidemand-Petersson, for the ISOLDE Collaboration - Phys.Lett. B 85, 212 (1979).
	A precise determination of the excitation energy of the lowest $T=3/2$ state in 35 Ar.
1979HaZT	E.Hagberg, J.C.Hardy, L.C.Carraz, P.G.Hansen, B.Jonson, S.Mattsson, H.L.Ravn, P.Tidemand-Petersson, G.T.Ewan - Bull.Am.Phys.Soc. 24, No.4, 613, DM11 (1979).
	A Precise Determination of the Excitation Energy of the Lowest $T = 3/2$ State in 35 Ar.
1979HaZY	E.Hagberg, J.C.Hardy - AECL-6452, p.14 (1979).
	The decays of ^{35}K and ^{36}K .
1980Ew02	G.T.Ewan, E.Hagberg, J.C.Hardy, B.Jonson, S.Mattsson, P.Tidemand-Petersson, I.S.Towner - Nucl. Phys. A343, 109
	(1980).
	The Decay of ³⁵ K.
1985Br29	B.A.Brown, B.H.Wildenthal - At.Data Nucl.Data Tables 33, 347 (1985).
	Experimental and Theoretical Gamow-Teller Beta-Decay Observables for the sd-Shell Nuclei.
1998Sc19	M.Schafer, WD.Schmidt-Ott, T.Dorfler, T.Hild, T.Pfeiffer, R.Collatz,H.Geissel, M.Hellstrom, Z.Hu, H.Irnich, N.Iwasa, M.Pfutzner, E.Roeckl, M.Shibata, B.Pfeiffer, K.Asahi, H.Izumi, H.Ogawa, H.Sato, H.Ueno, H.Okuno - Phys.Rev. C57, 2205 (1998).
	Polarization in Fragmentation, g Factor of ³⁵ K.
2003Sm02	N.A.Smirnova, C.Volpe - Nucl.Phys. A714, 441 (2003).
	On the asymmetry of Gamow-Teller β -decay rates in mirror nuclei in relation with second-class currents.
2006Me04	T.J.Mertzimekis, P.F.Mantica, A.D.Davies, S.N.Liddick, B.E.Tomlin - Phys.Rev. C 73, 024318 (2006).
	Ground state magnetic dipole moment of ³⁵ K.
2012Ni10	N.Nica, B.Singh - Nucl.Data Sheets 113, 1563 (2012).
	Nuclear Data Sheets for $A = 34$.
2018Sa54	A.Saastamoinen, G.J.Lotay, A.Kankainen, B.T.Roeder, R.Chyzh, M.Dag, E.McCleskey, A.Spiridon, R.E.Tribble - J.Phys.:Conf.Ser. 940, 012004 (2018).
	Study of excited states of 35 Ar through β -decay of 35 K for nucleosynthesis in novae and X-ray bursts.
2019ChZU	R.Chyzh - Thesis, Texas A and M University (2019).
	Measurement of β -delayed Protons from ^{35}K Relevant to the $^{34}Cl^{\rm g,m}(p,\gamma)^{35}Ar$ Reaction.
2021Wa16	M.Wang, W.J.Huang, F.G.Kondev, G.Audi, S.Naimi - Chin.Phys.C 45, 030003 (2021).
	The AME 2020 atomic mass evaluation (II). Tables, graphs and references.