Crescent Bank Project

By: Daniel Fox, Nancy Kohut, Amanda Barry, Carter Mitchell, and Andrew Possi

Agenda

CRESCENTBANK*

- 1. Company background
- 2. Project background
- 3. Dataset Overview
- Data cleaning, preparation, and exploratory data analysis
 (EDA)
- 5. Correlation Matrix
- 6. Partial Dependence Plots
- 7. Feature Importance
- 8. Initial Models
- 9. Model Evaluation Metrics
- 10. Conclusion

Crescent Bank Background

CRESCENTBANK*

- Founded in New Orleans in 1991
- Currently nationwide with over 450 employees
- \$1,121,005,000 in assets
- Business mainly consists of:
 - Auto loans
 - Local banking services
- Sourced from over 6,000 car dealerships across 34 states
- Strengthen relationships to expand market share
- Looking to find new opportunities for partnerships

Project Background

- Largely subprime loans
- Looking to predict which customers are likely to default in the next 180 days
 - Reduce Losses
 - Improve Profitability
- Dataset contains information on loans that are 30-59 days past due on payments
- Understanding what factors can predict a default before it occurs
- More efficient allocation of resources to prevent defaults
- Reducing loan loss rates while maintaining customer satisfaction
- Models in Python

Dataset Overview

Column Name	Description
BUS_DATE	Business Date
ACCOUNT	Account Number
DPD	Days Past Due
NUM_PMTS_LIFE	Number of Payments - Lifetime
NUM_PMTS_6M	Number of Payments - Last 6 months
LAST PMT DATE	Last Payment Date
LAST_RPC_DATE	Last Right Person Contact Date
LAST_OB_RPC	Last OutBound RPC Date
RPC_COUNT_6M	Number of RPCs in the last 6 months
NUM_EXTENSIONS	Number of Extensions - Lifetime
LAST_EXTENSION_DATE	Last Extension Date
AVG_PMT_DPD	Avg DPD when a payment is made
NUM_NSF_CHECKS	Number of Not Sufficient Funds checks
NSF_PMTS_PERC	NSF count/ PMT Count
PAST_REPO	Past Repossession
DARv3	Dollars at Risk Score
PROMISE_KEPT_RATE	Ratio of Promises Kept
LAST_PROMISE_DATE	Last Promise Date
LAST_PROMISE_KEPT_DATE	Last Promise Kept Date
мов	Month on Book
AMOUNT_FINANCED	Amount Finianced
PRINCIPAL_BALANCE	Principal Balance
INTEREST_BALANCE	Interest Balance
TARGET VAR	Target Variable

Data Cleaning, Preparation, EDA

- Initial Data Assessment
 - Dataset contained over 75,000 records
 - Identified issues with missing values and unbalanced data
- Data Cleaning Steps
 - Corrected date timestamps
- Variable Creation
 - Created new variables to use in model
 - Payment ratio, time-based, financial ratio variables
- Data Transformation
- Final Dataset Structure
 - Target Variable based on 180 days delinquency
 - Split 80% training 20% test

Exploratory Data Analysis

- Distribution analysis of key variables
- Correlation analysis between features
- Partial dependence analysis to understand feature relationships with default probability

Feature Importance

<u>Top Predictive Features:</u>

- 1. MOB (Months on Book) 36.7%
- 2. Interest/financed ratio 35.1%
- 3. Days since last payment 8.7%
- 4. Number of payments in life of loan 5.8%
- 5. Past repo indicator 3.2%
- 6. Principal balance 2.4%
- 7. Days since last extension 2.0%
- 8. Days since last RPC 1.7%
- 9. DPD 1.6%
- 10. Average payment DPD 1.6%

Data Dictionary for Selected Variables

Variable Name	Definition
payments_ratio_life	Ratio of payments made to payments due over the lifetime of the loan
interest/financed	Current Interest balance divided by total amount financed
days_since_last_payment	Days since last payment was received
PAST_REPO_B	Binary indicator if the customer has had a car repossessed in the past
NUM_PMTS_LIFE	Total number of payments the customer has made over the life of the loan
AVG_PMT_DPD	Average days past the due date for a customer's payments

Exploratory Data Analysis: Payments Ratio Life

Exploratory Data Analysis: Num Pmts Life

Exploratory Data Analysis: interest/financed

Exploratory Data Analysis: days since last payment

Exploratory Data Analysis: Past Repo B

Exploratory Data Analysis: Avg Pmt DPD

Exploratory Data Analysis: Target Variable

Correlation Matrix

Correlation Matrix

- 0.8

0.6

- 0.4

- 0.2

- 0.0

- -0.2

- -0.4

Payments_ratio_life
Ratio of payments made to payments due over
the lifetime of the loan

interest/financed Current Interest balance divided by total amount financed

Days_since_last_paymentDays since last payment was received

PAST_REPO_B

Binary indicator if the customer has had a car repossessed in the past or not

NUM_PMTS_LIFE

Total number of payments the customer has made over the life of the loan

AVG_PMT_DPD

Average days past the due date for a customer's payments

Final Models

Random Forest Model

- Cross Validation Accuracy 64.24%
- Test Accuracy 64.94%
- Cross Validation AUC Score 0.7009
- Test AUC Score 0.718
- Hyperparameter tuning revealed an ideal depth of 10
- Feature importance consistent with decision tree model

Final Models

XGBoost Model

- Cross Validation Accuracy 64.47%
- Test Accuracy 65.39%
- Cross Validation AUC Score 0.7001
- Test AUC Score 0.7096
- Hyperparameter tuning revealed an ideal depth of 6

Final Models

Decision Tree Model

- Cross Validation Accuracy 63.35%
- Test Accuracy 63.47%
- Cross Validation AUC Score 0.6818
- Test AUC Score 0.6872
- Balanced class approach used to address data imbalance

AUC Graph: Random Forest (Best)

The testing ROC AUC is: 0.718

AUC Graph: XGBoost

AUC Graph: Decision Tree

AUC Graph: Logistic Regression

AUC Graph: k-Nearest Neighbors (worst)

Conclusion

- Developed predictive models for loan default within 6 months
 - Best Metric: AUC which measures the model's performance across all possible classification thresholds
 - Best Accuracy (AUC) score was from the Random Forest model of 71.8%
- Key predictor identified
 - Interest/financed ratio: Current Interest balance divided by total amount financed

Moving Forward

- In conclusion, our team is grateful for the opportunity to contribute to Crescent Bank's ongoing success and growth by identifying key trends, inefficiencies, and opportunities in the data.
- We believe the findings and our conclusions will benefit Crescent Bank for many years to come!

Thank You!

