電磁気学 期末試験

2018年2月13日(火) 10時40分-12時10分

[注意] 真空の誘電率を ϵ_0 , 真空の透磁率を μ_0 とする。また, \vec{i} , \vec{j} , \vec{k} はそれぞれ z, y, z 方向の単位ペクトルである。結果のみではなく、結論に至る過程も配述すること。

1

半径 R の円形の平行板コンデンサーに電流を流して帯電させる. 時刻 t における平行板の面電荷密度をそれぞれ $\sigma(t)$, $-\sigma(t)$ として, 時刻 t における下記の量を求めよ. ただし, コンデンサー (円柱形) の側面を A とする.

- 1) コンデンサー内の電場の強さ E(t).
- 2) コンデンサー内の電東 $\Phi_E(t)$ と変位電流 $I_d(t)$.
- 3) 側面 A における磁場の強さ B(t).
- 4) 側面 A におけるポインティング・ベクトルの大きさ S(t).

2

真空中をz方向に伝わる電磁波の電場と磁場が,

$$\vec{E} = E(z,t)\vec{i}, \qquad E(z,t) = E_0 \sin(kz - \omega t)$$

$$\vec{B} = B(z,t)\vec{j}, \qquad B(z,t) = B_0 \sin(kz - \omega t)$$

で表されるとき,以下の問いに答えよ.ここで, E_0 , B_0 ,k, ω は定数とする.また,光速 c は $c=\frac{\omega}{k}=\frac{1}{\sqrt{\epsilon_0\mu_0}}$ と替ける.

- 1) アンペール・マクスウェルの法則 $\vec{\nabla} \times \vec{B} = \epsilon_0 \mu_0 \frac{\partial \vec{E}}{\partial t}$ から, $\frac{E_0}{B_0}$ と c の間の関係式を導け.
- 2) この電磁波のエネルギー密度 u_{em} を求めよ. また、ポインティング・ベクトル \vec{S} を u_{em} を用いて表せ.

3

以下の問いに答えよ. 2), 3) には計算の過程を詳しく記述すること.

- 1) 磁場 \vec{B} をベクトルポテンシャル \vec{A} の成分 A_{x} , A_{y} , A_{z} で表せ.
- 2) k を定数として $\vec{A} = k(0, 0, xy)$ のとき、 破場 \vec{B} を求めよ.
- 3) 2) の B について, 発散 ▽・B の値を求めよ.

4

図のように、幅 l で抵抗を無視できるような導線に、質量 m, 抵抗 R の導線 ab を水平にかけて、鉛直面内に閉回路をつくる。この閉回路に垂直で一様な静磁場 B をかけ、導線 ab を自由落下させる。重力加速度の大きさを g として、以下の問いに答えよ。

- 2) 1) のとき, 回路を流れる電流 I の大きさと流れる 向きを求めよ.
- 3) 1) のとき, 導線 ab に働くアンペールの力の大き さと向きを求めよ。
- 4) 1) のとき, 導線 ab の運動方程式を書け.
- 5) 十分時間がたったときの、導線 ab の落下速度 v_{∞} を求めよ.

5

図のように、抵抗 R と自己インダクタンス L のコイルが起電力 ϕ の電池につながれた RL 回路を考える、以下の問いに答えよ、

- 1) 時刻 t における電流 I についての微分方程式を求めよ.
- 2) 1) を解いて電流を時間の関数として求めよ。 ただ t=0 で t=0 とする.
- 3) 十分時間が経って電流が $I_0 = \frac{\phi}{R}$ になったとき、電池を取り除いた、電池を取り除いた後の電流についての微分方程式を求めよ
- 4) 3) を解いて電流を時間の関数として求めよ。ただしt=0 で $I=I_0$ とする
- 5) 3) で電池を取り除いたときにコイルが持っていたエネルギー $\frac{1}{2}L(I_0)^2$ と、その後に発生したジュール熱が等しいことを示せ、

