Gramatici independente de context

Definitia 1: O gramatica $G = (V, \Sigma, S, R)$ se numeste **gramatica indepenenta de context** daca toate regulile sale sunt de forma:

$$A \rightarrow x$$
,

unde $A \in V$ si $x \in (V \cup \Sigma)^*$.

Definitia 2: Un limbaj generat de o gramatica independenta de context se numeste **limbaj independent de context**.

Observatii:

- 1. Orice limbaj regulat este i.d.c.
- 2. Limbajul $L = \{ a^n b^n \mid n \ge 0 \}$ (despre care am aratat ca nu este regulat) este i.d.c.. Intradevar, limbajul L este generat de gramatica i.d.c. $G = (\{S\}, \Sigma, S, R)$ cu regulile:

$$S \rightarrow aSb$$

$$S \rightarrow \lambda$$

Definitia 3: O derivatie se numeste **derivatie la stanga** daca la fiecare pas al derivatiei variabila cea mai din stanga se inlocuieste.

O derivatie se numeste **derivatie la dreapta** daca la fiecare pas al derivatiei variabila cea mai din dreapta se inlocuieste.

Exemplu: Fie gramatica i.d.c. $G = (\{S, A, B\}, \{a, b\}, S, R)$ ale carei reguli sunt:

$$S \rightarrow AB$$

$$A \rightarrow aA$$

$$B \rightarrow Bbb$$

$$A \rightarrow a$$

$$B \rightarrow \lambda$$

Este usor de observat ca limbajul generat de G este $L(G) = \{a^mb^{2n} \mid m \ge 1, n \ge 0\}$. Scriem in continuare doua derivatii care conduc la acelasi cuvant:

$$S \Rightarrow AB \Rightarrow aAB \Rightarrow aaB \Rightarrow aaBbb \Rightarrow aabb$$
 (derivare la stanga)

si, respectiv:

$$S \Rightarrow AB \Rightarrow ABbb \Rightarrow Abb \Rightarrow aAbb \Rightarrow aabb$$
 (derivare la dreapta)

Se observa ca in cazul primei derivari de fiecare data variabila ce mai din stanga se inlocuieste, iar la a doua derivare variabila cea mai din dreapta se inlocuieste. Asadar, prima derivare este la stanga, iar a doua este la dreapta.

Arbore de derivare

O alta modalitate de a prezenta o gramatica i.d.c. este printr-un arbore de derivare.

Definitia 4: Fie $G = (V, \Sigma, S, R)$ o gramatica indepenenta de context. Un arbore se numeste **arbore de derivare** al gramaticii G daca si numai daca indeplineste simultan regulile:

- 1. S este radacina arborelui
- 2. Fiecare frunza este etichetata cu λ sau un terminal $a \in \Sigma$
- 3. Fiecare nod intermediar (care nu este frunza) este etichetat cu un neterminal A ∈ V
- 4. Daca un varf este etichetat cu neterminalul $A \in V$ si copii lui sunt a_1, a_2, i_1, a_n , atunci gramatica G contine regula:

$$A \rightarrow a_1 a_2 i$$
 .a_n

5. Un nod care are ca si fiu pe λ nu mai poate avea alti copii.

Definitia 5: Un arbore se numeste **arbore partial de derivare** pentru gramatica G daca si numai daca indeplineste simultan regulile 1, 3, 4, si 5 de mai sus si regula:

2'. Fiecare frunza este etichetata cu λ , cu un terminal $a \in \Sigma$ sau cu un neterminal $A \in V$.

Parcurgand un arbore de derivare in adancime, iar copiii de la stanga la dreapta si luand in considerare numai terminalele, se obtine o **propozitie** a limbajului L(G).

Parcurgand un arbore partial de derivare in adancime si luand in considerare numai frunzele, se obtine o asa numita forma **proprozitionala** a gramaticii G.

Un arbore de derivare da o descriere explicita si usoara a unei derivari.

Exemplu: Pentru gramatica din exemplul de mai sus arborele de mai jos este un arbore partial de derivare:

Arborele partial de derivare de mai sus are forma propozitionala: aaABbb.

Arborele de derivare de mai jos corespunde oricarei derivari din exemplul de mai sus:

Propozitia obtinuta in urma parcurgerii arborelui de derivare este: aabb.

Teorema 1: Fie $G = (V, \Sigma, S, R)$ o gramatica independenta de context.

- 1. Pentru fiecare $w \in \Sigma^*$ generat de G exista un arbore derivare a carui parcurgere este w.
- 2. Parcurgerea unui arbore partial de derivare al lui G conduce la o forma propozitionala a gramaticii G.

Demonstratie:

- 1. Fiecare propozitie $w \in \Sigma^*$ se obtine in urma unei derivari care este echivalenta cu un arbore de derivare.
- 2. Evident.

Parsare top-down

Pentru o gramatica i.d.c. $G = (V, \Sigma, S, R)$ ne intereseaza sa decidem daca un string $w \in L(G)$ si, daca da, sa gasim un arbore de parsare. Pentru aceasta exista o metoda denumita **parsare top-down**.

Parsarea top-down porneste cu regulile de forma:

$$S \rightarrow x$$
.

Daca exista $x \in (V \cup \Sigma)^*$ care sa se potriveasca cu w, atunci se inlocuieste in x variabila A cea mai din stanga cu y daca exista regula de forma:

$$A \rightarrow y$$
.

Adica avem derivatia:

$$S => x = x_1 A x_2 => x_1 y x_2 \ (x_1 \in \Sigma^*).$$

Daca yx_2 nu este format numai din terminale, atunci se inlocuieste in yx_2 variabila B cea mai din stanga cu partea dreapta z a unei reguli de forma:

$$B \rightarrow z$$
.

Se continua inlocuirea cea mai stanga variabila pana ce se obtine w sau pana se observa ca derivatia nu conduce la w.

Exemplu:

Fie gramatica i.d.c.:

$$S \rightarrow SS|aSb|bSa|\lambda$$
.

Pentru string-ul w = aabb avem in prima iteratie a algoritmului:

$$S \Rightarrow SS$$

$$S => aSb$$

$$S => bSa$$

$$S => \lambda$$

Este evident ca ultimele doua derivari nu pot conduce la w. Pentru primele obtinem in a doua iteratie a algoritmului (inlocuind variabila S din stanga cu partea dreapta a regulilor gramaticii):

$$S \Rightarrow SS \Rightarrow SSS$$

$$S \Rightarrow SS \Rightarrow aSbS$$

$$S => SS => bSaS$$

$$S \Rightarrow SS \Rightarrow S$$

Si pentru a doua:

$$S \Rightarrow aSb \Rightarrow aSSb$$

$$S \Rightarrow aSb \Rightarrow aaSbb$$

$$S => aSb => abSab$$

$$S \Rightarrow aSb \Rightarrow ab$$

Derivarile 3, 7 si 8 se elimina evident pentru ca nu pot conduce la w = aabb. Derivarea 4 se poate elimina si ea pentru ca am ajuns la o forma propozitionala prin care am mai trecut.

In iteratia urmatoare a algoritmului se obtine w in derivarea 6:

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb = w$$
.

Este evident ca o implementare top-down directa (exhaustiva) conduce la un algoritm exponential ineficient. De aceea inainte de aplicarea algoritmului se aplica optimizari gramaticii.

Teorema 2: Daca o gramatica nu contine reguli de forma:

$$A \rightarrow \lambda$$

si

$$A \rightarrow B$$
,

unde A, B sunt variabile, atunci algoritmul de cautare exhaustiva se termina in numar finit de pasi si decide daca exista sau nu o derivatie care sa conduca la orice string dat w.

Demonstratie: La fiecare iteratie a algoritmului fiecare forma propozitionala construita de o derivatie creste in lungime cu cel putin o unitate sau o variabila este inlocuita cu o combinatie de terminale. Cresterea in lungime nu are rost sa o efectuam decat pana fiecare forma propozitionala ajunge de lungimea lui w. Asadar, avem cel mult |w|-1

cresteri in lungime a fiecarei forme propozitionale si cel mult |w| inlocuiri de variabile cu terminale.

Algoritmul se incheiei dupa cel mult 2|w|-1 iteratii (q.e.d.).

Daca aplicam algoritmul top-down in forma exhaustiva obtinem cel mult:

$$\sum_{k=1}^{2|w|-1} |R|^k = \frac{|R|^{2|w|} - 1}{|R| - 1}$$

forme propozitionale, unde |R| este numarul de reguli ale gramaticii. Asadar, complexitatea algoritmului top-down in implementare exhaustiva are complexitatea $O(|R|^{2|w|})$.

Exista insa algoritm in complexitate $O(|w|^3)$ care parseaza orice $w \in L(G)$.

Definitie 1: O gramatica i.d.c. $G = (V, \Sigma, S, R)$ se numeste **gramatica simpla** sau **s**-**gramatica**, daca toate regulile ei sunt de forma:

$$A \rightarrow ax$$

unde $A \in V$, $a \in \Sigma$, $x \in V^*$ si nu exista $A \in V$, $a \in \Sigma$, $x, y \in V^*$ astfel incat regulile:

$$A \rightarrow ax$$
, $A \rightarrow ay$

sa fie amandoua in R.

Este evident ca parsarea oricarei propozitii $w \in L(G)$ se poate face intr-o gramatica simpla in complexitate O(|w|). Este ideal atunci sa ne apropiem cat mai mult posibil de o s-gramatica inainte de a incepe parsarea.

Ambiguitatea gramaticilor i.d.c.

Definitie 2: O gramatica i.d.c. G se numeste **ambigua** daca exista mai mult de un arbore de derivare pentru anumite propozitii $w \in L(G)$.

Atunci cand definim o gramatica trebuie sa eliminam ambiguitatile pentru ca fiecare propozitie sa fie interpretata unic.

De exemplu, pentru expresia a+b*c putem construi doi arbori de derivare:

Ambiguitatea de mai sus este rezolvata pentru limbajele de programare prin stabilirea precedentei de aplicare a opertorilor, ceea ce face ca numai primul arbore de derivare sa fie valid.

Definitie 3: Un limbaj i.d.c. se numeste **ambiguu** daca orice gramatica ce il genereaza este ambigua.

Simplificarea gramaticilor i.d.c.

Teorema 3: Fie o gramatica i.d.c. $G = (V, \Sigma, S, R)$ care contine urmatoarea regula:

$$A \rightarrow x_1Bx_2$$
.

Consideram regulile din R care au pe B ca termen in partea stanga:

$$B \to y_1 | y_2 | i \quad . | y_n.$$

Plecand de la G construim gramatica $G' = (V, \Sigma, S, R')$ prin eliminarea regulii

$$A \rightarrow x_1Bx_2$$

si prin adaugarea regulilor:

$$A \rightarrow x_1y_1x_2|x_1y_2x_2|\text{i} \quad .|x_1y_nx_2.$$

Gramaticile G si G' sunt echivalente, adica L(G) = L(G').

Demonstratie: Daca o derivare a lui $w \in L(G)$ in G nu contine regula eliminata in constructia lui G', atunci aceeasi derivare a lui w se obtine si in G'.

Daca pentru derivarea unei propozitii $w \in L(G)$ in G se foloseste regula ce se doreste a fi eliminata, atunci avem (in G):

(1)
$$S = > * z_1Az_2 = > z_1x_1Bx_2z_2 = > z_1x_1y_kx_2z_2 = > * w (k \in \{1, 2, i, n\}).$$

Derivarea de mai sus se poate rescrie in G' astfel:

(2)
$$S = > * z_1Az_2 = > z_1x_1y_kx_2z_2 = > * w$$

folosind regula introdusa in G':

$$A \rightarrow x_1 y_k x_2$$
.

Reciproc, daca avem derivarea (2) in G', atunci se obtine derivarea (1) in G pentru orice $w \in L(G')$ (q.e.d.).

Exemplu: Pentru gramatica:

$$S \rightarrow aaA|abBb|AA$$

 $B \rightarrow b|aAa$,

eliminand regula:

$$S \rightarrow abBb$$

se obtine gramatica echivalenta:

$$S \rightarrow aaA|abbb|abaAab|AA$$

 $B \rightarrow b|aAa$.

Se observa ca a doua regula este inutila, ceea ce face ca si variabila B sa fie inutila in G'.

Eliminarea regulilor inutile

In gramatica G data prin regulile:

$$S \to aSb|\lambda|A$$

$$A \to aA$$

se observa ca a treia si ultima regula sunt inutile deoarece nu conduc la o derivare a niciunei propozitii $w \in L(G)$. Mai mult, si variabila A este inutila in G.

Definitie 4: O variabila $A \in V$ din gramatica i.d.c. $G = (V, \Sigma, S, R)$ se numeste **utila** daca exista $x, y \in (V \cup T)^*$ si $w \in L(G)$ pentru care avem derivarea:

$$S => * xAy => * w.$$

In exemplul de mai sus variabila S este utila, A nu este.

Pornind de la o gramatica $G = (V, \Sigma, S, R)$ urmatorul algoritm construieste o gramatica $G' = (V' \subseteq V, \Sigma, S, R' \subseteq R)$ echivalenta in care toate variabilele si toate regulile sunt utile:

Pasul 1. $V' := \emptyset$;
Pasul 2. $\frac{\textbf{Repeta}}{\textbf{Adaugat}} := \textbf{false}$; $\frac{\textbf{Pentru}}{\textbf{fiecare } A \in V \text{ executa}}$ $\frac{\textbf{Daca}}{\textbf{Daca}} \text{ exista in } R \text{ regula de forma}$ $A \to x, \text{ unde } x \in (V' \cup \Sigma)^*$ $\frac{\textbf{atunci}}{\textbf{V'}} := V' \cup \{A\};$ Adaugat := true; $\frac{\textbf{sfarsit daca}}{\textbf{sfarsit pentru}};$

Pasul 3. R' contine regulile din R care sunt definite folosind simboluri din $V' \cup \Sigma$.

Teorema 4: L(G) = L(G'), unde G' este gramatica ce a fost construita cu algoritmul de mai sus.

Demonstratie: Orice derivare in G de forma:

pana cand not Adaugat;

$$S = > * w$$
, unde $w \in L(G)$

este formata numai cu reguli din R'. Asadar, cele doua gramatici sunt echivalente (q.e.d.).

Eliminarea λ -regulilor

Definitie 5: O regula de forma:

 $A \rightarrow \lambda$

se numeste λ -regula.

O variabila A pentru care exista derivarea:

$$A => * \lambda$$

se numeste variabila λ -derivabila.

Urmatorul algoritm determina multimea V_{λ} formata cu variabilele λ -derivabile:

Pasul 1: $V_{\lambda} := \emptyset$;

Pasul 2: Pentru fiecare regula de forma $A \rightarrow \lambda$ executa

$$V_{\lambda} := V_{\lambda} \cup \{A\};$$

sfarsit pentru;

Pasul 3: Repeta

Adaugat := **false**;

Pentru fiecare $A \in V$ **executa**

Daca exista in R regula de forma

 $A \rightarrow x$, unde $x \in (V_{\lambda})^*$

atunci

 $V_{\lambda} := V_{\lambda} \cup \{A\};$

Adaugat := **true**;

sfarsit daca;

sfarsit pentru;

pana cand not Adaugat;

Daca o gramatica $G = (V, \Sigma, S, R)$ nu accepta propozitia λ ($\lambda \notin L(G)$), atunci gramatica $G' = (V, \Sigma, S, R')$ construita de algoritmul mai jos este echivalenta cu G si nu contine λ -reguli:

Pasul 1: Se construieste V_{λ} cu algoritmul de mai sus;

Pasul 2: R' se initializeaza cu regulile R, mai putin cele de forma $A \rightarrow \lambda$.

Pasul 3: Pentru fiecare regula in care in partea dreapta apar k > 0 variabile din V_{λ} , se

adauga 2^k-1 reguli in R' distincte doua cate doua in care cel putin o

variabila din V_{λ} se elimina (inlocuindu-se cu λ).

Teorema 5: L(G) = L(G'), unde G' este gramatica ce a fost construita cu algoritmul de mai sus.

Demonstratie: Fie $w \in L(G)$. Inseamna ca exista in G o derivare de forma:

$$S => * w$$
.

Daca in derivarea de mai sus avem $A = > * \lambda$, atunci:

(1) S => * uAv => * uv => * w.

Derivarea de mai sus este echivalenta in G' cu:

(2) S => * uv => * w.

Reciproc, daca avem in G' o derivare de tipul (2) pentru $w \in L(G)$, ea corespunde in G unei derivari de forma (1) (q.e.d.).

Exemplu: Sa se elimine λ -regulile pentru gramatica de mai jos:

 $S \rightarrow ABaC$

 $A \rightarrow BC$

 $B \to b|\lambda$

 $C \to D|\lambda$

 $D \rightarrow d$.

Se observa ca $V_{\lambda} = \{A, B, C\}$ (B, C intra direct in V_{λ} , deoarece exista regulile B $\rightarrow \lambda$ si $C \rightarrow \lambda$, iar A intra in V_{λ} deoarece exista regula $A \rightarrow BC$). Facand toate substitutiile posibile in partea dreapta a regulilor 1 si 2, obtinem gramatica echivalenta fara λ -reguli:

 $S \rightarrow ABaC |BaC| AaC |ABa| aC |Aa| Ba|a$

 $A \to B |C| BC$

 $B \rightarrow b$,

 $C \to D$,

 $D \rightarrow d$.

Eliminarea regulilor unitare

Definitie 6: O regula de forma:

 $A \rightarrow B$

se numeste **regula unitara**, unde $A, B \in V$.

Este evident ca o regula de forma $A \to A$ n-are nici un efect in generarea propozitiilor, ele putand fi eliminate. Asadar, prezinta interes numai eliminarea regulilor de forma $A \to B$, unde $A \ne B$.

Presupunem ca avem o gramatica $G = (V, \Sigma, S, R)$ fara λ -reguli pentru care vrem sa eliminam regulile unitare. Daca exista λ -reguli in G, ele pot fi eliminate (asa cum am vazut mai sus).

Algoritmul de constructie a gramaticii $G' = (V, \Sigma, S, R')$ echivalente cu G fara reguli unitate are urmatorii pasi:

- 1. R' o initializam cu regulile din R care nu sunt unitare.
- 2. **Pentru** fiecare pereche de variabile $A \neq B$ pentru care A =>* B executa

Pentru fiecare regula de forma $B \to x$ din R' **executa**

Adauga in R' regula $A \rightarrow x$;

sfarsit pentru;

sfarsit pentru.

Pentru determinarea perechilor de variabile $A \neq B$ pentru care $A =>^* B$ se constrieste graful de dependente $G_d = (V, U)$, unde $U = \{(A, B) \mid A, B \in V, \tilde{o}A \rightarrow B\ddot{o} \in R\}$. Este evident ca $A =>^* B$ ($A \neq B$) daca si numai daca exista un drum de la A la B in G_d . In consecinta, determinarea perechilor de variabile $A \neq B$ pentru care $A =>^* B$ se face aplicand un algoritm in timp liniar de parcurgere a grafului G_d din fiecare variabila.

Exemplu: Sa se elimine regulile unitare ale gramaticii:

 $S \to Aa | B$

 $B \to A|bb$,

 $A \rightarrow a |bc| B$

Graful G_d este:

Evident, parcurgand graful de mai sus obtinem: S => B, S => A, A => B si B => A.

Aplicand algoritmul de mai sus obtinem gramatica echivalenta, dar fara reguli unitare:

 $S \rightarrow a |bc| bb |Aa$,

 $A \rightarrow a |bb| bc$,

 $B \rightarrow a |bb| bc$.

Teorema 6: L(G) = L(G'), unde G' este gramatica ce a fost construita cu algoritmul de mai sus (eliminand regulile unitare).

Demonstratie: Fie $w \in L(G)$. Daca in derivarea propozitiei w se folosess reguli unitare astfelo incat A => *B din R:

$$S => uAv => uBv => uxv => w$$

unde $x \notin V$ si in derivarea A => *B s-au folosit numai reguli unitare. De asemenea, in G avem $B \to x$. In fiecare dintre aceste situatii in locul derivarii A => *B putem considera (conform algoritmului) derivarea A => x corespunzatoare regulii $A \to x$ din R'. Asadar, avem:

$$S => * uAv => uxv => * w.$$

Dupa inlocuirea tuturor situatiilor de forma celor de mai sus se obtine o derivare a lui w cu reguli din R', ceea ce inseamna ca $w \in L(G')$.

Consideram acum $w \in L(G')$. Fiecare regula de forma $A \to x$ folosita in derivarea lui w in G', daca nu este din R, inseamna ca a fost introdusa in R' in situatia in care A = > * B si $B \to x$ (in R). Inlocuind in derivarea lui w in G' situatiile A = > x cu A = > * B = > x, obtinem o derivare a lui w in L(G). Asadar, $w \in L(G)$ (q.e.d.).

In concluzie, simplificarea unei gramatici se face in urmatorii pasi:

- 1. Se elimina λ -regulile
- 2. Se elimina regulile unitare
- 3. Se elimina regulile inutile (si variabilele inutile).

Forma normala Chomsky

Definitie 7: O gramatica i.d.c. se spune ca este in **forma normala Chomsky**, daca este formata numai cu reguli de forma:

$$A \rightarrow BC$$
 $(A, B, C \in V)$

si reguli de forma:

$$A \rightarrow a$$
 $(A \in V, a \in \Sigma).$

Teorema 7: Pentru fiecare gramatica i.d.c. $G = (V, \Sigma, S, R)$ care nu recunoaste cuvantul vid exista o gramatica echivalenta G' in forma normala Chomsky.

Demonstratie: Presupunem fara a reduce generalitatea ca gramatica G nu are λ -reguli si nici reguli unitare. Constructia gramaticii echivalente in forma normala Chomsky se face in doi pasi:

Pasul 1: Pornind de la G se construieste gramatica $G_1 = (V_1, \Sigma, S, R_1)$. Initial consideram $V_1 = V$ si $R_1 = \emptyset$.

Consideram fiecare regula din R:

$$A \rightarrow x_1 x_2 i$$
 .x_n,

unde x_1, x_2, i ., $x_n \in V \cup \Sigma$.

Daca n=1, inseamna (din presupunerea initiala) ca $x_1\in \Sigma.$ In aceasta situatie regula:

$$(1)$$
 $A \rightarrow x_1$

se adauga in R'.

Daca $n \ge 2$, atunci pentru fiecare $x_i = a \in \Sigma$ ($i \in \{1, 2, i., n\}$) introducem in V_1 variabila X_a (daca nu este deja introdusa in V_1), iar in R' regula $X_a \to a$. De asemenea, in R' introducem regula:

(2)
$$A \rightarrow B_1B_2\hat{1}$$
 B_n

unde $B_i = x_i$, daca $x_i \in V$ si $B_i = X_a$, daca $x_i = a \in \Sigma$, pentru orice $i \in \{1, 2, i ..., n\}$.

Gramatica G_1 contine numai reguli de forma (1) si/sau (2). Este evident ca $L(G) = L(G_1)$.

Pasul 2: Pornind de la gramatica G_1 se construieste gramatica $G_2 = (V_2, \Sigma, S, R_2)$. Pornim cu $V_2 = V_1$ si $R_2 = \emptyset$.

In R_2 introducem regulile din R_1 de forma $A \to a$ si regulile de forma $A \to BC$ (in care in partea dreapta apar exact doua variabile din V_1).

Pentru fiecare regula din R₁ de forma:

$$A \rightarrow B_1B_2i$$
 .B_n,

cu n > 2 in V_2 introducem varibilele Y_1 , Y_2 , i ., Y_{n-2} , iar in R_2 introducem regulile:

$$\begin{split} A &\rightarrow B_1 Y_1 \\ Y_1 &\rightarrow B_2 Y_2 \\ \text{\'i} \quad . \\ Y_{\text{n-3}} &\rightarrow B_{\text{n-2}} Y_{\text{n-2}} \\ Y_{\text{n-2}} &\rightarrow B_{\text{n-1}} B_{\text{n}} \end{split}$$

Este evident ca $L(G) = L(G_1) = L(G_2)$ si G_2 este in forma normala Chomsky (q.e.d.).

Exemplu: Sa se gaseasca gramatica in forma normala Chomsky echivalenta cu gramatica i.d.c. G data prin regulile:

 $S \rightarrow ABa$

 $A \rightarrow aab$

 $B \rightarrow Ac$

Gramatica G₁ echivalenta cu G are regulile:

$$S \rightarrow ABX_a$$

$$A \rightarrow X_a X_a X_b$$

$$B \rightarrow AX_c$$

$$X_a \rightarrow a$$

$$X_b \rightarrow b$$

$$X_c \rightarrow c$$

iar $V_1 = \{S, A, B, X_a, X_b, X_c\}.$

Gramatica in forma normala Chomsky echivalenta cu G este:

$$S \rightarrow AY_1$$

$$Y_1 \rightarrow BX_a$$

$$A \rightarrow X_a Y_2$$

$$Y_2 \rightarrow X_a X_b$$

$$B \rightarrow AX_c$$

$$X_a \rightarrow a$$

$$X_b \rightarrow b$$

$$X_c \rightarrow c$$
,

iar
$$V_2 = \{S, A, B, X_a, X_b, X_c, Y_1, Y_2\}.$$

Forma normala Greibach

Definitie 8: O gramatica i.d.c. este in **forma normala Greibach**, daca ea are numai reguli de forma:

$$A \rightarrow ax$$

unde $A \in V$, $a \in \Sigma$ si $x \in V^*$.

Teorema 8: Pentru fiecare gramatica i.d.c. $G = (V, \Sigma, S, R)$ care nu recunoaste cuvantul vid exista o gramatica echivalenta G' in forma normala Greibach.

Exemplu: Sa se gaseasca gramatica in forma normala Greibach echivalenta cu gramatica i.d.c. G data prin regulile:

 $S \rightarrow AB$

 $A \rightarrow aAb$

 $B \rightarrow BB$

 $B \rightarrow Aa$

 $A \rightarrow a$

 $B \rightarrow b$

Intr-un prim pas facem prin substitutii ca partea dreapta a regulilor sa inceapa cu terminale:

 $S \to aAbB | aB$

 $A \rightarrow aAb$

 $B \to AaB|bB \qquad <=> \qquad \qquad B \to aAbaB|aaB|bB$

 $B \rightarrow aAba|aa$

 $A \rightarrow a$

 $B \rightarrow b$

In al doilea pas procedam ca in primul pas al transformarii in forma normala Chomski:

 $S \rightarrow aAX_bB|aB$

 $A \rightarrow aAX_b$

 $B \to aAX_bX_aB|aX_aB|bB$

 $B \rightarrow aAX_bX_a|aX_a|$

 $X_a \! \to a$

 $X_b \mathop{\rightarrow} b$

 $A \rightarrow a$

 $B \rightarrow b$