1 Pattern Matching

A new syntacic category: patterns \mathcal{P} :

$$egin{array}{lll} arPsi & = & \mathbb{N} & - & \mathrm{number} \\ & - & & \mathrm{wildcard} \\ & & & [arPsi] & - & \mathrm{array} \\ & & & \mathcal{CP}^* & - & \mathrm{S-expression} \\ & & & & \mathcal{X}@\mathcal{P} & - & \mathrm{named\ pattern} \end{array}$$

Concrete syntax mainly repeats the abstract; in S-expression patterns extra round brackets are used to delimit the constructor's name from arguments (if any); arguments of array/S-expression patterns are delimited by commas, and extra round brackets can be used to group subpatterns. Additionally, one derived form is used: an identifier x is treated as a pattern x@.

Pattern matching expression:

$$\mathcal{E}+=$$
 case \mathcal{E} of $(\mathcal{P}\times\mathcal{E})^+$ esac

In a concrete syntax branches of case expression are delimited by "|", and in each branch " \rightarrow " is used to delimit pattern from expression.

Well-formedness of case expressions is established in an obvious manner:

$$\frac{e: \mathbf{Val} \quad e_i: a}{\text{case } e \text{ of } p_1 \to e_1 \dots p_k \to e_k \text{ esac}: a}$$

2 Operational Semantics

There are two aspects that have to be covered in semantic description of pattern matching:

- the criterion for a scrutinee to be matched by a pattern;
- the descipline of binding support.

The latter aspect is covered by a desugaring. First, we define a mapping

$$\beta: \mathscr{P} \to \mathscr{E} \to \mathscr{X} \to \mathscr{E}$$

in a following manner:

$$\begin{array}{rcl} \beta \, n \, e & = & \lambda_{-}.\bot \\ \beta_{-} \, e & = & \lambda_{-}.\bot \\ \beta \, ([p_{0} \dots p_{k}]) \, e & = & \\ \beta \, (C \, p_{0} \dots p_{k}) \, e & = & (\beta \, p_{0} \, e[0])[\beta \, p_{1} \, e[1]] \dots [\beta \, p_{k} \, e[k]] \\ \beta \, (x@\, p) \, e & = & (\beta \, p \, e)[x \leftarrow e] \end{array}$$

This function determines a proper subvalue of an expression bound by an identifier in a pattern. For example, for a pattern $[x, C(_, y)]$ and scrutenee s the value of $\beta[x, C(_, y)]s$ can be described by the following table:

$$\begin{array}{ccc} x & \rightarrow & s[0] \\ y & \rightarrow & s[1][1] \end{array}$$

Then, given a pattern-matching expression case e of ... we, first, bind the expression e to a fresh variable, say, s:

var
$$s = e$$
; case s of ...

Then, we transform each branch $p \rightarrow e$ into the following:

$$\begin{array}{ccc} p & \rightarrow \mathrm{var} & b_1 = \beta \, p \, s \, b_1 \, , \\ & & \dots \\ & b_k = \beta \, p \, s \, b_k \, ; \\ & e \end{array}$$

where b_1, \ldots, b_k are all bindings in p.

Now, for determining the descipline of matching we need an extra relation

$$match \subseteq \mathcal{P} \times \mathcal{V}$$

between patterns and values. We define it in a following way:

$$match(_, v)$$

$$match(n, n)$$

$$\frac{match(p_i, v_i)}{match([p_1, ..., p_k], [v_1, ..., v_k])}$$

$$\frac{match(p_i, v_i)}{match(Cp_1, ..., p_k, Cv_1, ..., v_k)}$$

$$\frac{match(p, v)}{match(x@p, v)}$$

Finally, the operational semantics of pattern-matching expression can be given by the following rules:

$$c \xrightarrow{e} \langle c', v \rangle$$

$$v \vdash c' \xrightarrow{(p_1, e_1)...(p_k, e_k)} p c''$$

$$c \xrightarrow{\text{case } e \text{ of } p_1 \to e_1 \dots p_k \to e_k \text{ esac}} c''$$

where an additional transition " $\longrightarrow_{\mathcal{P}}$ " is defined as follows:

$$\begin{aligned} & \mathit{match}(p, v) \\ & c \xrightarrow{e} c' \\ \hline \\ & v \vdash c \xrightarrow{(p, e)ps} {}_{\mathscr{P}} c' \\ & \xrightarrow{\neg \mathit{match}(p, v)} \\ & \underbrace{v \vdash c \xrightarrow{ps}_{\mathscr{P}} c'}_{v \vdash c \xrightarrow{(p, e)ps}_{\mathscr{P}} c'} \end{aligned}$$