

Spark Program

CHAPTER 7: REGRESSION ANALYSIS

Chapter Objectives

In this chapter, we will:

- → Introduce Linear Regression
- → Explore data preparation
- → Train and test regression model

Regression Analysis

Data Preparation

Algorithms

Linear Regression

- → Given a collection of X, Y points, you could easily see there is a pattern
- → If you remember enough algebra, you could describe the pattern of dots as roughly following the red line, which could be described with the formula y = 1.5x + .01

Linear Regression (continued)

- → The idea is that the line that best describes the pattern of dots is the one that has the least distances of the dots from the line
- → The formula that describes the line could then be used to predict a value that we have not observed
 - The better the line and formula are at describing that pattern of dots,
 the more accurate that prediction should be
- → Extrapolate this idea onto more than just two axes and instead try to find a line that goes through many different dimensions and you have the idea of multiple linear regression
 - $y = \alpha + \beta 1x + \beta 2x^2 + \dots + \beta ixi + \epsilon$
- → Has many use cases
 - Predicting a stock or commodity price
 - Predicting election results
 - Predicting crime rate

Linear Regression (continued)

- → Is a supervised model that requires training from a known set of data and testing to see how good it is at predicting before using it for real predictions
- → Only works with numeric values
 - Categorical data needs to be dummy encoded
- → Does not deal well with missing data, so must be fixed by removing or replacing with central tendency
- → There are many algorithms to do this, each with its own pros and cons

Regression Analysis

Data Preparation

Algorithms

Dataset

→ For our examples, let's use a public data set of housing data

```
import pandas as pd
import seaborn as sns
sns.distplot(df.toPandas()['MEDV'])
```

→ Plotting the distribution of Prices shows that they are normally distributed, except for some outliers, so let's try comparing the model with them and then later filter out

```
dfRaw = dfRaw.where('MEDV < 48')</pre>
```


Convert Categorical Features

- → Categorical data cannot stay as string, so it must be converted to a numeric format and then into a vector format
- → pyspark has a class which will transform a column into indexed numbers for each unique string value

```
from pyspark.ml.feature import StringIndexer
indexer = StringIndexer(inputCol = col, outputCol = col+'_Index')
x = indexer.fit(df).transform(df).select(col, col+'_Index').distinct()
display(x.orderBy(col))
display(x.orderBy(col+'_Index'))
```

→ For convenience, use this helper function we made:

```
display(pyh.StringIndexEncode
(df, ['TOWN', 'TRACT']))
```

23.0 64.0 61.0
64.0 61.0
61.0
17.0
27.0
18.0
32.0
54.0
31.0

	TOWN	TOWN_Index
0	Cambridge	0.0
1	Boston Savin Hill	1.0
2	Lynn	2.0
3	Boston Roxbury	3.0
4	Newton	4.0
5	Somerville	5.0
6	Boston South Boston	6.0
7	Quincy	7.0
8	Boston East Boston	8.0
9	Brookline	9.0

One-Hot Encoding

- → Numerical indexes are good for some algorithms such as Naive Bayes and Decision Trees, but ones that use distance calculations would get distorted
- Need to re-encode this as One-Hot Encoding which creates a separate column for each unique value and fills the columns with zeros and ones
- → In Spark, this column needs to be a single Vector column, unlike Pandas which makes a lot of unique columns
- → Sparse vectors are hard to interpret visually, but they are not meant for human eyes
- → Must first re-encode data with StringIndexer

```
from pyspark.ml.feature import OneHotEncoderEstimator
encoder = OneHotEncoderEstimator(inputCols=[col + '_Index'],
outputCols=[col+'_Vector'])
display(encoder.fit(df).transform(df))
```

One-Hot Encoding (continued)

→ SparseVector **version**

	TOWN	TOWN_Index	TOWN_Vector
0	Cambridge	0.0	(1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1	Boston Savin Hill	1.0	(0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
	Lynn	2.0	(0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0,
3	Boston Roxbury	3.0	(0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0,
4 5	Newton	4.0	(0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0,
	Somerville	5.0	(0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0,
6	Boston South Boston	6.0	(0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0,
7	Quincy	7.0	(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0,
8	Boston East Boston	8.0	(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
9	Brookline	9.0	(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,

→ Helper function to call StringIndexer, then OneHotEncoder

display(pyh.OneHotEncode(df, ['TOWN', 'TRACT']))

Putting It All Together

- → You have to OneHotEncode all categorical data, then assemble all the features into one vector and the target variable into another
- → Spark provides the VectorAssembler class to do this
- → Our helper function makes the whole process more convenient
- → Just pass in a DataFrame, list of categorical, numeric, and target columns and it returns a DataFrame with the two columns needed for machine learning algorithms

```
dfML = pyh.AssembleFeatures(df, categorical_features,
numeric_features, target_label = 'target', target_is_categorical
= False))
```

Explore Numerical Features

- → Generally, you want to take a look at the numerical features and get standard measurements like min, max, mean, std
 - DataFrames have a describe method which makes that easy
- → The provided helper functions make that easier

```
numeric_features = ['totalvolume','PLU4046', 'PLU4225',
'PLU4770', 'smallbags', 'largebags', 'xlargebags']
display(df.select(numeric)describe())
```

	summary	CRIM	ZN	INDUS	CHAS	NOX
0	count	487	487	487	487	487
1	mean	3.663863696098563	10.944558521560575	11.155215605749499	0.059548254620123205	0.5544979466119098
2	stddev	8.745039991517844	22.587028902677194	6.820162970724796	0.23689130625554344	0.11678383814441988
3	min	0.00632	0.0	0.74	0	0.385
4	max	88.9762	100.0	27.74	1	0.871

Prepare the Data

- → Data must be in a DataFrame of two vectorized objects
 - Features will contain all the independent variables
 - Target will be the dependent variable we are trying to predict
- → The provided helper functions make that easier
- → Then split the data into a train and test set with the randomSplit function

Regression Analysis

Data Preparation

Algorithms

Run the Model

- → Create and instance of the regression class
- → There are several to choose from
 - LinearRegression
 - GeneralizedLinearRegression
 - DecisionTreeRegressor
 - RandomForestRegressor
 - GBTRegressor
 - AFTSurvivalRegression
 - IsotonicRegression

Run the Test

25	5.084273	13.8	[18.4982, 0.0, 18.1, 0.0, 0.668, 4.138, 100.0,
26	18.237093	14.0	[0.2909, 0.0, 21.89, 0.0, 0.624, 6.174, 93.6,
27	15.081058	14.3	[0.88125, 0.0, 21.89, 0.0, 0.624, 5.637, 94.7,
28	18.499367	14.3	[5.58107, 0.0, 18.1, 0.0, 0.713, 6.436, 87.9,
29	16.793500	14.8	[5.66637, 0.0, 18.1, 0.0, 0.74, 6.219, 100.0,
Roo	t Mean So	quared	Error on Test set: 4.370645041

Regression Analysis

Data Preparation

Algorithms

Next Steps

- → Regression has a lot more complexity to it once you master the basics
- → Use Pipelines to create more complex transformations in a more efficient way
- → Some subjects to explore in this area:
 - Under- and over-fitting a model
 - Correlation between the independent variables

Chapter Summary

In this chapter, we have:

- → Introduced Linear Regression
- → Explored data preparation
- → Trained and test regression model