



# **Model Development Phase**

| Date          | 26th June 2024                                                                                          |
|---------------|---------------------------------------------------------------------------------------------------------|
| Team ID       | SWTID1720080161                                                                                         |
| Project Title | Revolutionizing Liver Care: Predicting Liver<br>Cirrhosis Using Advanced Machine Learning<br>Techniques |
| Maximum Marks | 4 Marks                                                                                                 |

## **Initial Model Training Code, Model Validation and Evaluation Report**

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

#### **Initial Model Training Code:**

### Using SVM to test the model

Splitting the data into Train and Test

```
[695] from sklearn.model_selection import train_test_split, cross_val_score
[696] X_train, X_test, y_train, y_test = train_test_split(X, y_encoded, test_size=0.2, random_state=42)
```

Since the outcome is highly skewed we oversample the data

```
[697] from imblearn.over_sampling import RandomOverSampler
   os=RandomOverSampler(random_state=0)
   X_resampled, y_resampled = os.fit_resample(X_train, y_train)
```





```
model = svm.SVC()
model.fit(X_resampled, y_resampled)
y_pred = model.predict(X_test)
print("Test Accuracy:", accuracy_score(y_test, y_pred))

from sklearn.metrics import confusion_matrix, classification_report
    confusion_matrix = confusion_matrix(y_test, y_pred)

print("Confusion Matrix:")
    print(confusion_matrix)

classification_report = classification_report(y_test, y_pred)

print("Classification Report:")
    print(classification_report)
Test Accuracy: 0.902834008097166
```

Using Logistic Regression to test the model

```
from sklearn.metrics import confusion_matrix, classification_report

model = LogisticRegression(penalty="l1",C=0.01,solver="liblinear")
model.fit(X_resampled, y_resampled)

y_pred = model.predict(X_test)

print("Test Accuracy:", accuracy_score(y_test, y_pred))
```





# ${\bf Model\ Validation\ and\ Evaluation\ Report:}$

| Model                        | (                                                                         | Classific                                            | cation l                               | Report                                           | Accuracy                                  |                                  |
|------------------------------|---------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------|--------------------------------------------------|-------------------------------------------|----------------------------------|
| SUPPORT<br>VECTOR<br>MACHINE | Classification R<br>pr<br>0<br>1<br>accuracy<br>macro avg<br>weighted avg | eport:<br>ecision<br>0.72<br>0.99<br>0.85<br>0.92    | recall<br>0.97<br>0.88<br>0.92<br>0.90 | f1-score<br>0.82<br>0.93<br>0.90<br>0.88<br>0.91 | support<br>58<br>189<br>247<br>247<br>247 | Test Accuracy: 0.902834008097166 |
| Model 2                      | Screenshot of the classification report                                   |                                                      |                                        |                                                  | Accuracy Value                            |                                  |
| LOGISTIC<br>REGRESSION       | Classitication  0 1  accuracy macro avg weighted avg                      | керогт:<br>precision<br>0.85<br>0.99<br>0.92<br>0.96 | 0.97<br>0.95                           | f1-score<br>0.90<br>0.97<br>0.95<br>0.94<br>0.95 | 58<br>189<br>247<br>247<br>247            | Test Accuracy: 0.951417004048583 |

| MODEL 1 CONFUSION<br>MATRIX | MODEL 2<br>CONFUSION<br>MATRIX |
|-----------------------------|--------------------------------|
| Confusion Matrix:           | Confusion Matrix:              |
| [[ 56                       | [[ 56                          |