Beschreibung

Fluoreszenz-Biosensorchip und Fluoreszenz-Biosensorchip-Anordnung

5

Die Erfindung betrifft einen Fluoreszenz-Biosensorchip und eine Fluoreszenz-Biosensorchip-Anordnung.

Die Bio- und Gentechnologie hat in den letzten Jahren

zunehmend an Bedeutung gewonnen. Eine Grundtechnik in der

Bio- und Gentechnologie ist es, biologische Moleküle wie DNA

(Desoxyribonukleinsäure) oder RNA, Proteine, Polypeptide etc.

nachweisen zu können. Vor allem Biomoleküle, in denen

Erbgutinformation kodiert ist, insbesondere DNA-Moleküle

15 (Desoxyribonukleinsäure) sind für viele medizinische
Anwendungen von großem Interesse. Daher erlangen
Nachweisverfahren zunehmende Bedeutung bei der industriellen
Identifikation und Bewertung von neuen Medikamenten
organischer und gentechnolgischer Herkunft. Diese

Nachweisverfahren eröffnen vielfältige Anwendungen beispielsweise in der medizinischen Diagnostik, in der Pharmaindustrie, in der chemischen Industrie, in der Lebensmittelanalytik sowie in der Umwelt- und Lebensmitteltechnik.

25

20

Eine DNA ist eine Doppelhelix, die aus zwei vernetzten wendelförmigen Einzelketten, sog. Halbsträngen, aufgebaut ist. Jeder dieser Halbstränge weist eine Basensequenz auf, wobei mittels der Reihenfolge der Basen (Adenin, Guanin, 30 Thymin, Cytosin) die Erbinformation festgelegt ist. DNA-Halbstränge weisen die charakteristische Eigenschaft auf, sehr spezifisch nur mit ganz bestimmten anderen Molekülen eine Bindung einzugehen. Daher ist es für das Andocken eines Nukleinsäurestrangs an einen anderen Nukleinsäurestrang

35 Voraussetzung, dass die beiden Moleküle zueinander komplementär sind. Anschaulich müssen die beiden Moleküle zueinander passen wie ein Schlüssel und das dazu passende Schloss (sog. Schlüssel-Schloss-Prinzip).

Dieses von der Natur vorgegebene Prinzip kann zum selektiven Nachweis von Molekülen in einer zu untersuchenden Flüssigkeit verwendet werden. Die Grundidee eines auf diesem Prinzip basierenden Biochip-Sensors besteht darin, dass auf einem Substrat aus einem geeigneten Material zunächst sogenannte Fängermoleküle (z.B. mittels Mikrodispensierung) aufgebracht und immobilisiert werden, d.h. an der Oberfläche des Biochip-Sensors dauerhaft fixiert werden. In diesem Zusammenhang ist es bekannt, Biomoleküle mit Thiol-Gruppen (SH-Gruppen) an Gold-Oberflächen zu immobilisieren.

Ein solcher Biochip-Sensor mit einem Substrat und daran gebundenen Fängermolekülen, die beispielsweise auf einen bestimmten nachzuweisenden DNA-Halbstrang sensitiv sind, wird üblicherweise zum Untersuchen einer Flüssigkeit auf das Vorhandensein von zu den Fängermolekülen komplementären DNA-Halbsträngen verwendet werden. Hierzu ist die auf das Vorhandensein eines bestimmten DNA-Halbstrangs zu untersuchende Flüssigkeit mit dem immobilisierten Fängermolekülen in Wirkkontakt zu bringen. Sind ein Fängermolekül und ein zu untersuchender DNA-Halbstrang zueinander komplementär, so hybridisiert der DNA-Halbstrang an dem Fängermolekül, d.h. er wird daran gebunden. Wenn infolge dieser Bindung sich der Wert einer messtechnisch erfassbaren physikalischen Größe in charakteristischer Weise ändert, so kann der Wert dieser Größe gemessen werden und auf diese Weise das Vorhandensein oder Nichtvorhandensein eines DNA-Halbstrangs in einer zu untersuchenden Flüssigkeit nachgewiesen werden.

30

35

40

25

5

10

15

20

Das beschriebene Prinzip ist nicht auf den Nachweis von DNA-Halbsträngen beschränkt. Vielmehr sind weitere Kombinationen von auf dem Substrat aufgebrachten Fängermolekülen und zu erfassenden Molekülen in einer zu untersuchenden Flüssigkeit bekannt. So können beispielsweise Nukleinsäuren als Fängermoleküle für Peptide oder Proteine, die nukleinsäurespezifisch binden, verwendet werden. Weiterhin bekannt ist, Peptide oder Proteine als Fängermoleküle für andere, das Fängerpeptid bzw. das Fängerprotein bindende Proteine oder Peptide zu verwenden. Von Bedeutung ist ferner

die Verwendung von niedermolekularen chemischen Verbindungen als Fängermoleküle für an diese niedermolekularen Verbindungen bindende Proteine oder Peptide. Niedermolekulare chemische Verbindungen sind solche chemischen Verbindungen, die weniger als etwa 1.700 Dalton (Molekulargewicht in Gramm pro Mol) aufweisen. Umgekehrt ist auch die Verwendung von Proteinen und Peptiden als Fängermoleküle für eventuell in einer zu untersuchenden Flüssigkeit vorhandene niedermolekulare Verbindungen möglich.

10

Zum Nachweis der erfolgten Bindung zwischen dem auf dem Substrat aufgebrachten Fängermolekül und dem in der zu untersuchenden Flüssigkeit vorhandenen, zu erfassenden Molekül sind elektronische Nachweisverfahren bekannt. So kann 15 beispielsweise der Wert der Kapazität zwischen zwei Elektroden gemessen werden, an denen Fängermoleküle immobilisiert sind. Hybridisieren nachzuweisende Moleküle mit den Fängermolekülen, so verändert sich der Wert der Kapazität in charakteristischer Weise und das Hybridisierungsereignis kann mittels eines elektrisches Signal nachgewiesen werden. 20 Ein derartiger DNA-Sensor ist beispielsweise in [1] beschrieben. Allerdings ist die Nachweisempfindlichkeit solcher elektronischer Nachweismethoden für DNA-Moleküle begrenzt. Auch treten Probleme dergestalt auf, dass empfindliche Biomoleküle (z.B. DNA, Proteine) zersetzt werden 25 können, wenn sie in direkten Kontakt mit freien elektrischen Ladungen an der Oberfläche von Elektroden gelangen. Es ist bekannt, dass viele Proteine außerhalb eines für jedes Protein charakteristischen Bereichs von pH-Werten denaturieren. 30

Alternativ werden optische Verfahren zum Nachweis der
Hybridisierung von nachzuweisenden Molekülen verwendet. Die
Detektion eines Hybridisierungsereignisses kann auf optische

Weise erfolgen, wenn ein hybridisiertes Molekül einen
Fluoreszenzfarbstoff mit der Fähigkeit aufweist,
elektromagnetische Fluoreszenzstrahlung in einem
charakteristischen Wellenlängenbereich zu emittieren, nachdem
der Fluoreszenzfarbstoff mittels Absorption von Licht eines
primären Wellenlängenbereichs angeregt worden ist. Die im

Analyten enthaltenen nachzuweisenden Biomoleküle, beispielsweise DNA-Halbstränge, sind hierfür über ein geeignetes Linker-Molekül mit einem Fluoreszenzmarker zu koppeln. Haben die auf diese Weise fluoreszenzmarkierten nachzuweisenden Biomoleküle mit den auf der Sensoroberfläche immobilisierten Fängermolekülen hybridisiert, und wird Licht einer geeigneten Wellenlänge eingestrahlt, das von dem Fluoreszenzmarker absorbierbar ist, so wird das eingestrahlte Licht von den Fluoreszenzmarkern absorbiert und Lichtquanten einer anderen Wellenlänge reemittiert (Resonanzfluoreszenz). 10 Die Intensität des von der Sensoroberfläche reemittierten Fluroreszenz-Lichtes ist dann ein Maß für die Zahl der angedockten nachzuweisenden Moleküle. Das reemittierte Fluoreszenzlicht hat grundsätzlich eine längere Wellenlänge (und niedrigere Energie) als das anregende Primärlicht. 15 Dieser physikalische Effekt macht eine Trennung des Fluoreszenzlichtes vom anregenden Licht mittels Verwendung geeigneter optischer Filter möglich, die wellenlängenabhängig absorbieren, reflektieren bzw. transmittieren. Werden diese Filter geeignet gewählt, um für die Wellenlänge des 20 Primärlichtes undurchlässig zu sein, dagegen aber für die Wellenlänge des reemittierten Lichtes durchlässig zu sein, so ist ein Nachweis des reemittierten Lichtes mittels hinter dem Filter angeordneten Detektoren möglich.

25

Häufig ist die Intensität des nachzuweisenden Fluoreszenzlichtes einige Größenordnungen geringer als die Intensität des anregenden Primärlichtes, was die messtechnische Erfassung des Fluoreszenzlichtes erschwert und die Nachweisempfindlichkeit des Sensors begrenzt. Ferner soll 30 mittels des Sensors die Intensität des Fluoreszenzlichtes über einen möglichst großen Bereich quantitativ erfassbar sein (hoher Dynamikbereich). Darüber hinaus wird von einer Sensoranordnung eine gute Ortsauflösung verlangt, da häufig die Sensorelemente der Anordnung mit unterschiedlichen 35 Fängermolekülen ausgestattet sind, um simultan unterschiedliche nachzuweisende Moleküle nachweisen zu können. An die Qualität der Optik eines Auslesegerätes sind daher hohe Anforderungen gestellt.

Bei bekannten Auslesegeräten werden typischerweise ein Laserscanner zur Anregung und ein konfokales Mikroskop zum Detektieren des emittierten Lichtes verwendet. In den Detektionsstrahlengang ist ferner ein optisches Kantenfilter eingefügt, das die anregende Wellenlänge unterdrückt ("long wave pass").

In Fig. 1A ist ein Fluoreszenz-Biosensorchip 100 gezeigt, der aus [2] bekannt ist. Der Fluoreszenz-Biosensorchip 100 weist auf eine Lichtquelle 101, die Licht 100a eines breiten 10 Wellenlängenbereichs emittiert. Das von der Lichtquelle 101 emittierte Licht 100a tritt durch das Lichtquellenfilter 102 hindurch, wodurch im Wesentlichen monochromatisches Primärlicht auf den Biochip 103 einfällt. Auf dem Biochip 103 ist eine biologische Probe angebracht, wobei die biologischen 15 Moleküle einen Fluoreszenzmarker aufweisen. Die Fluoreszenzmarker der Biomoleküle auf dem Biochip 103 sind derart eingerichtet, dass sie das durch das Lichtquellenfilter 102 transmittierte Licht der Lichtquelle 101 absorbieren. Nach erfolgter Absorption des Lichts 20 reemittieren die Fluoreszenzmarker Licht einer zweiten Wellenlänge, die sich von der Wellenlänge des eintreffenden Lichtes unterscheidet. Das reemittierte Licht ist langwelliger als das Primärlicht 100a (Rotverschiebung). Das von den Fluoreszenzmarkern der Biomoleküle auf den Biochip 25 103 reemittierte Licht trifft auf die Linse 104, die derart eingerichtet ist, dass sie die einzelnen Lichtsignale ortsrichtig auf die CCD-Sensoreinrichtung 106 abbildet. Bevor das Licht auf die CCD-Sensoreinrichtung 106 trifft, tritt es durch das Sensorfilter 105 hindurch. Das Sensorfilter 105 ist 30 derart eingerichtet, dass es für die Wellenlänge des reemittierten Lichtes durchlässig ist, wohingegen es für die Wellenlänge des Primärlichts undurchlässig ist. Die CCD-Sensoranordnung 106 ("charge coupled device") registriert die Fluoreszenzereignisse auf dem Biochip 103. Allerdings ist die 35 aufgrund der Optik bzw. des komplizierten Messsystems erforderliche Justage des apparativ aufwändigen Fluoreszenz-Biosensorchips 100 kompliziert, woraus eine verbesserungsbedürftige Benutzerfreundlichkeit des

Fluoreszenz-Biosensorchips 100 resultiert. Dies ist nachteilhaft. Ferner ist der Fluoreszenz-Biosensorchip 100 teuer, da er teure Einzelkomponenten wie die CCD-Sensoranordnung 106 aufweist.

5

Aus [3], [4] ist ein weiterer Fluoreszenz-Biosensorchip 110 bekannt, der in Fig. 1B gezeigt ist. Der Fluoreszenz-Biosensorchip 110 weist eine Lichtquelle 111 auf, die Licht 111a eines primären Wellenlängenbereiches emittiert. Das von der Lichtquelle 111 emittierte Licht 111a tritt zunächst 10 durch ein optisches Element 112 und anschließend durch ein Lichtquellenfilter 113 hindurch. Das Lichtquellenfilter 113 ist derart eingerichtet, dass es nur für elektromagnetische Strahlung einer bestimmten Wellenlänge oder eines bestimmten Wellenlängenbereichs durchlässig ist. Das durch das 15 Lichtquellenfilter 113 transmittierte Licht wird mittels eines optischen Reflektorelements 114 umgelenkt und gelangt dadurch in Kavitäten 116 eines Probenhalters 115, in der die zu untersuchenden biologischen Moleküle angeordnet sind. Hat in einer der Kavitäten 116 ein Hybridisierungsereignis 20 stattgefunden, d.h. haben einen Fluoreszenzmarker aufweisende Moleküle mit den Fängermolekülen in einer der Kavitäten 116 hybridisiert, so können geeignet gewählte Fluoreszenzmarker das auf die Kavitäten 116 einfallende Licht der Lichtquelle 111 absorbieren und mit einer zu größeren Wellenlängen hin 25 verschobenen Wellenlänge reemittieren. Das Primärlicht und das reemittierte Licht gelangen auf das Sensorfilter 117, das für Licht der Wellenlängen der Fluoreszenz-Strahlung durchlässig ist, wohingegen es für Licht der Wellenlängen des Primärlichts im Wesentlichen undurchlässig ist. Daher gelangt 30 im Idealfall ausschließlich das Fluoreszenzlicht auf die Photodetektoren 118 auf dem Biochip 119. Ein Signal auf den Photodetektoren 118 ist nur dann erfassbar, wenn auf der einem Photodetektor 118 räumlich entsprechenden Kavität ein Hybridisierungsereignis stattgefunden hat. Wie in Fig. 1B 35 durch die gepunkteten Linien angedeutet, sind die Einzelkomponenten des Fluoreszenz-Biosensorchips 110 vom Benutzer zusammenbaubar. Zwar ist damit die räumliche Trennung der Bauelemente, die zu einer großen räumlichen

Ausdehnung führt, verringert, jedoch weist der Fluoreszenz-Biosensorchip 110 einen geringen Bedienungskomfort auf. Ferner ist der Fluoreszenz-Biosensorchip 110 für viele Anwendungen zu teuer.

5

Die aus dem Stand der Technik bekannten Fluoreszenz-Biosensorchips weisen einen komplizierten Aufbau und eine komplexe Struktur auf, sind groß und damit teuer. Ferner sind die aus dem Stand der Technik bekannten Fluoreszenz-Biosensorchips teilweise nicht sehr benutzerfreundlich. 10 Aus [5] ist ein weiterer Sensorchip bekannt. Dieser weist eine gemäß dem CMOS-Prozess hergestellte Photodiode und ein integriertes Fabry-Perot-Filter auf. Ein Fabry-Perot-Filter ist aus zwei teildurchlässigen Spiegeln aufgebaut, die in 15 einem definierten Abstand voneinander angeordnet sind, wobei die Innenfläche des ersten Spiegels idealerweise totalreflektierend ist und die Innenfläcke des anderen Spiegels eine Reflektivität nur wenig unterhalb von eins aufweist. Tritt einfallendes Licht durch den ersten Spiegel hindurch, so wird das Licht an der Innenfläche des zweiten 20 Spiegels und anschließend an der Innenfläche des ersten Spiegels, dann wieder an der Innenfläche des zweiten Spiegels usw. vielfach reflektiert, wobei bei jeder Reflektion an der Innenfläche des zweiten Spiegels auch ein geringer Anteil 25 durch den zweiten Spiegel transmittiert wird. Die transmittierten Einzelstrahlen interferieren derart, dass das Fabry-Perot-Interferometer nur für Licht bestimmter Wellenlängen durchlässig ist. Der aus [5] bekannte Biosensor ist allerdings nicht zum Nachweis biologischer Moleküle vorgesehen. 30

Selbiges gilt für eine aus [6] bekannte Sensoranordnung. Aus [6] ist eine Kamera auf der Basis von in einem Substrat integrierten Photodioden bekannt, wobei ein Bildpunkt des von der Kamera aufzuzeichnenden Bildes aus drei Photodioden zusammengesetzt ist, welche drei Photodioden gemäß dem RGB-System mit einem roten, einem grünen und einem blauen Filter bedeckt sind.

- Aus [7] ist eine Vorrichtung und ein Verfahren mit Feldlichtquellenarray für eine integrierte Probenerfassung bekannt.
- 5 [8] offenbart ein Verfahren zur Herstellung eines mit biologisch oder chemisch funktionellen Materialien beschichteten Trägers.
- In [9] ist eine Lichtemissions-Detektionsvorrichtung
 beschrieben, die eine LCD-Matrix als zweidimensionale
 steuerbare Lichtquelle und eine der LCD-Matrix zugewandtgegenüberliegende CCD-Matrix zur Detektion des optischen
 Verhaltens einer jeweiligen zwischen LCD-Matrix und CCDMatrix befindlichen Probensubstanz aufweist.

Aus [10] sind ein Verfahren und eine Vorrichtung zum ortsaufgelösten fluoreszenzoptischen Nachweis von auf einer Oberfläche eines planaren Trägers immobilisierten Substanzen bekannt.

20

15

Bei einem aus [11] bekannten HybridisierungsDetektionsverfahren wird die Menge von auf Spots einer
Glasplatte fixierten Sonden ermittelt, indem
Fluoreszenzmaterial zum Identifizieren der Sonden zum
25 Emittieren von Licht gebracht wird. Die Menge von mit den
Sonden hybridisierter Probe wird ermittelt, indem
Fluoreszenzmaterial zum Identifizieren der Probe zum
Emittieren von Licht gebracht wird.

30 [12] offenbart ein Analyse-Substrat unter Verwendung der Übertragung von Fluoreszenzlicht.

Aus [13] ist ein Verfahren und eine Einrichtung zur Bestimmung von Substanzen, wie z.B. DNA-Sequenzen, in einer 35 Probe, bekannt.

Der Erfindung liegt das Problem zugrunde, einen weniger aufwändigen und somit kostengünstigeren Fluoreszenz-Biosensorchip zu schaffen.

Das Problem wird durch einen Fluoreszenz-Biosensorchip und eine Fluoreszenz-Biosensorchip-Anordnung mit den Merkmalen gemäß den unabhängigen Patentansprüchen gelöst.

Ein Fluoreszenz-Biosensorchip weist ein Substrat, mindestens eine in oder auf dem Substrat angeordnete DetektionsEinrichtung zum Erfassen von elektromagnetischer Strahlung, eine auf dem Substrat angeordnete optische Filterschicht und eine auf der optischen Filterschicht angeordnete

Immobilisierungs-Schicht zum Immobilisieren von Fängermolekülen auf, wobei die Detektions-Einrichtung, die Filterschicht und die Immobilisierungs-Schicht in dem Fluoreszenz-Biosensorchip integriert sind.

Erfindungsgemäß sind also alle Komponenten des Fluoreszenz-15 Biosensorchips in dem Fluoreszenz-Biosensorchip integriert. Indem alle Komponenten des Fluoreszenz-Biosensorchips dadurch räumlich sehr eng benachbart sind, hat der Fluoreszenz-Biosensorchip eine sehr geringe Größe. Dadurch ist ein sehr kompakter Fluoreszenz-Biosensorchip bereitgestellt. Die 20 Immobilisierungs-Schicht, die erfindungsgemäß als Sensorebene dient, und die in dem Substrat integrierten Detektions-Einrichtungen, die zum indirekten Nachweis von Hybridisierungsereignissen dienen, sind größenordnungsmäßig typischerweise weniger als 100 ·m voneinander entfernt 25 angeordnet, was eine gute Ortsauflösung des Fluoreszenz-Biosensorchips zur Folge hat. Auch ist der erfindungsgemäße Fluoreszenz-Biosensorchip derart konzipiert, dass er mit standardisierten CMOS-kompatiblen halbleitertechnologischen 30 Verfahren herstellbar ist. Somit ist die Entwicklung teurer Maschinen zum Herstellen des Fluoreszenz-Biosensorchips entbehrlich, wodurch der Fluoreszenz-Biosensorchip kostengünstig und mit geringem Aufwand herstellbar ist. Auch sind die Einzelkomponenten des Fluoreszenz-Biosensorchips aus kostengünstigen Materialien herstellbar. 35

Bei dem Fluoreszenz-Biosensorchip der Erfindung ist das Substrat vorzugsweise aus Silizium-Material hergestellt. So kann das Substrat beispielsweise ein Silizium-Wafer sein. Die mindestens eine Detektions-Einrichtung des erfindungsgemäßen Fluoreszenz-Biosensorchips weist gemäß einem bevorzugten Ausführungsbeispiels mindestens eine Photodiode auf, die derart eingerichtet ist, dass damit elektromagnetische Strahlung eines ersten Wellenlängenbereichs detektierbar ist.

Indem die mindestens eine Detektions-Einrichtung als
Photodiode ausgestaltet ist, die in dem Substrat integriert
ist, ist ein empfindlicher und kostengünstig herstellbarer
Detektor für elektromagnetische Strahlung bereitgestellt.

Vorzugsweise ist die optische Filterschicht derart eingerichtet, dass die optische Filterschicht
15 elektromagnetische Strahlung eines zweiten
Wellenlängenbereichs absorbiert und/oder reflektiert, wobei zumindest ein Teil des ersten Wellenlängenbereichs außerhalb des zweiten Wellenlängenbereichs liegt.

- Anschaulich ist die optische Filterschicht derart eingerichtet, dass sie denjenigen Teil der auf die Oberfläche der optischen Filterschicht eintreffenden elektromagnetischen Strahlung absorbiert und/oder reflektiert, die von der Photodiode abgeschirmt werden soll, da diese
- 25 elektromagnetische Strahlung nicht die nachzuweisende Strahlung ist. Indem zumindest ein Teil des ersten Wellenlängenbereichs, in dem die Photodiode auf den Nachweis elektromagnetischer Strahlung sensitiv ist, außerhalb des zweiten Wellenlängenbereichs liegt, ist sichergestellt, dass
- die von der Photodiode nachzuweisende elektromagnetische Strahlung die optische Filterschicht zumindest teilweise durchdringen kann. Dadurch unterdrückt die Absorptionsschicht die Bestrahlung der Photodioden mit solcher elektromagnetischer Strahlung, die nicht von an der
- Immobilisierungs-Schicht hybridisierten nachzuweisenden Molekülen stammt, beispielsweise Streulicht aus der Umgebung oder Primärlicht zum Anregen von Fluoreszenzmarkern von gegebenenfalls an der Immobilisierungs-Schicht hybridisierten nachzuweisenden Molekülen. Mittels einer geeigneten Wahl der
- 40 optischen Filterschicht kann daher die

Nachweisempfindlichkeit des Fluoreszenz-Biosensorchips erhöht werden.

Die optische Filterschicht weist vorzugsweise mindestens ein Bandfilter und/oder mindestens ein Kantenfilter auf.

Unter einem Bandfilter wird im weiteren ein optisches Filter verstanden, das im Wesentlichen in einem Wellenlängenbereich zwischen einer unteren Grenzwellenlänge und einer oberen Grenzwellenlänge für elektromagnetische Strahlung undurchlässig ist, wohingegen der Bandfilter unterhalb der unteren Grenzwellenlänge und oberhalb der oberen Grenzwellenlänge für elektromagnetische Strahlung im Wesentlichen durchlässig ist.

Unter einem Kantenfilter wird im Weiteren ein optisches Filter verstanden, das im Wesentlichen entweder für elektromagnetische Strahlung unterhalb einer Grenzwellenlänge undurchlässig ist und für elektromagnetische Strahlung oberhalb der Grenzwellenlänge durchlässig ist, oder das für elektromagnetische Strahlung oberhalb einer Grenzwellenlänge undurchlässig ist und für elektromagnetische Strahlung unterhalb der Grenzwellenlänge durchlässig ist.

Das mindestens eine Bandfilter, das die optische 25 Filterschicht aufweisen kann, kann ein dielektrisches Interferenzfilter mit einer Schichtenfolge aus mindestens zwei Materialien sein, wobei ein erstes Material einen hohen Brechungsindex und ein zweites Material einen niedrigen Brechungsindex aufweist. Das erste Material mit einem hohen 30 Brechungsindex ist vorzugsweise eines der Materialien Titanoxid (TiO_2) , Siliziumnitrid (Si_3N_4) , Hafniumoxid (HfO_2) , Zirkoniumoxid (ZrO2), Aluminiumoxid (Al2O3), Polysilizium (polykristallines Silizium) oder Indium-Zinn-Oxid (ITO). Das erste Material kann aber auch Siliziumdioxid (SiO2) sein. 35 Ferner kann das erste Material eine beliebige Mischung aus den genannten oder anderen Materialien sein, derart, dass das erste Material einen geeigneten Brechungsindex aufweist. Die Verwendung der meisten der genannten Materialien als erstes Material für das dielektrische Interferenzfilter hat den 40

Vorteil, dass das Aufbringen von Schichten der genannten Materialien mit standardisierten CMOS-Prozessen realisierbar ist. Dies wirkt sich vorteilhaft auf die Kosten des Fluoreszenz-Biosensorchips auf, da es die Herstellung des Fluoreszenz-Biosensorchips mit standardisierten und 5 ausgereiften Verfahren ermöglicht. Das zweite Material des dielektrischen Interferenzfilters mit einem niedrigen Brechungsindex ist vorzugsweise Siliziumdioxid (SiO,), das ebenfalls mit CMOS-Prozessen kompatibel ist und somit die kostengünstige und wenig aufwändige Herstellung des 10 Fluoreszenz-Biosensorchips unterstützt. Das zweite Material kann aber auch eines der Materialien Titanoxid (TiO,), Siliziumnitrid (Si,N,), Hafniumoxid (HfO,), Zirkoniumoxid (ZrO₂), Aluminiumoxid (Al₂O₂), Polysilizium (polykristallines Silizium) oder Indium-Zinn-Oxid (ITO) sein. Ferner kann das 15 zweite Material eine beliebige Mischung aus den genannten oder anderen Materialien sein, derart, dass das zweite Material einen geeigneten Brechungsindex aufweist. Es ist zu betonen, dass die Materialien des dielektrischen Filters des 20 erfindungsgemäßen Fluoreszenz-Biosensorchips nicht auf die genannten Materialien beschränkt sind. Es kann für das erste Material mit einem hohen Brechungsindex jedes andere geeignete Material mit einem ausreichend hohen Brechungsindex gewählt werden, und es kann für das zweite Material mit einem niedrigen Brechungsindex jedes andere geeignete Material mit einem ausreichend niedrigen Brechungsindex gewählt werden.

Entscheidend für die Funktionalität des dielektrischen Interferenzfilters ist es, dass das dielektrische Interferenzfilter für Licht zwischen einer ersten Grenzwellenlänge und einer zweiten Grenzwellenlänge möglichst undurchlässig sein soll. Mit anderen Worten soll das Interferenzfilter derart eingerichtet sein, dass es für elektromagnetische Strahlung mit einer Wellenlänge oberhalb der unteren Grenzwellenlänge und unterhalb der oberen Grenzwellenlänge einen Transmissionskoeffizienten von idealerweise Null, realistischerweise möglichst nah bei Null aufweist. Dagegen soll das dielektrische Interferenzfilter für elektromagnetische Strahlung mit einer Wellenlänge unterhalb der unteren Grenzwellenlänge oder oberhalb der 40

: •

30

35

oberen Grenzwellenlänge möglichst gut durchlässig sein, d.h.
für elektromagnetische Strahlung der genannten
Wellenlängenbereiche einen Transmissionskoeffizienten von
idealerweise eins, realistischerweise möglichst nahe bei eins
aufweisen. Ferner soll das dielektrische Interferenzfilter
eine große Flankensteilheit aufweisen, d.h., dass der
Transmissionskoeffizient bei der unteren Grenzwellenlänge
möglichst sprunghaft von eins auf Null abfallen und bei der
oberen Grenzwellenlänge möglichst sprunghaft von Null auf
eins ansteigen soll.

Vorzugsweise ist das dielektrische Interferenzfilter eine Anordnung aus 31 Schichten mit abwechselnd hohem und niedrigen Brechungsindex:

15

40

0;5H; L; (HL)14; 0,5H

Dabei sind die Schichtdicken in Vierteln von optischen Wellenlängen angegeben, d.h. in Vielfachen und Bruchteilen 20 von •/4. Mit der Bezeichnung 0,5H ist eine Schicht aus einem hochbrechenden ("H" für "high") Material bezeichnet, deren Dicke der Hälfte einer Viertel Wellenlänge des eingestrahlten Lichtes in dem durchlaufenden Medium entspricht. 0,5H bezeichnet demzufolge eine •/8-Schicht aus dem hochbrechenden Material, wobei • der Quotient aus der Vakuum-25 Lichtwellenlänge und dem Brechungsindex des Mediums ist. Auf die •/8-Schicht des hochbrechenden Materials folgt eine •/4-Schicht des niederbrechenden Materials ("L" für "low"). Darauf folgen 14 •/4-Doppelschichten aus alternierend dem hochbrechenden Material und dem niederbrechenden Material. 30 Die Schichtanordnung wird wiederum von einer •/8-Schicht aus dem hochbrechenden Material abgeschlossen. Das beschriebene Schichtsystem ist aus alternierenden Schichten von Siliziumdioxid-Material (niederbrechend) und Siliziumnitrid-Material (hochbrechend) aufgebaut. 35

Mittels Einstellen der Schichtdicken lässt sich die Wellenlänge des Reflexionsmaximums bei einem festgelegten Einfallswinkel des Lichtes festlegen. Gemäß dem oben beschriebenen bevorzugten Ausführungsbeispiels des dielektrischen Interferenzfilters aus 31 Schichten Siliziumdioxid/Siliziumnitrid wird Licht in einem Wellenlängenbereich zwischen ungefähr 350 Nanometer und ungefähr 390 Nanometer zu mehr als 99% reflektiert.

5

40

Wie oben beschrieben, kann die optische Filterschicht des Fluoreszenz-Biosensorchips der Erfindung auch mindestens ein Kantenfilter aufweisen. Das Kantenfilter ist vorzugsweise ein aus einem organischen Material hergestelltes Farbfilter.

- Derartige Farbfilter aus organischen Materialien weisen einen wellenlängenabhängigen Absorptionskoeffizienten auf.

 Derartige Farbfilter aus organischen Materialien weisen zwar häufig keine steilen Filterflanken auf, wie sie für einen großen Dynamikbereich erforderlich sind, jedoch haben
- derartige Filter die vorteilhafte Eigenschaft, häufig keine starke Welligkeit aufzuweisen, d.h. keine oszillatorischen Merkmale in der Absorptionskoeffizient-Wellenlängen-Kennlinie aufzuweisen. Daher ist der Einsatz von Kantenfiltern erfindungsgemäß besonders vorteilhaft, wenn ein Kantenfilter mit einem Bandfilter kombiniert wird.
 - Die geeignete Kombination von mindestens einem Bandfilter und/oder mindestens einem Kantenfilter ermöglicht es, die Absorptionseigenschaften der optischen Filterschicht des
- 25 Fluoreszenz-Biosensorchips der Erfindung flexibel auf die Bedürfnisse des Einzelfalls einstellen zu können. Für Anwendungen, bei denen eine mäßige Nachweisempfindlichkeit ausreichend ist, kann die optische Filterschicht einfach ausgestaltet sein. Alternativ dazu kann die optische
- Filterschicht gestaltet sein, um eine optimierte
 Nachweisempfindlichkeit des Fluoreszenz-Biosensorchips
 beispielsweise in bestimmten Wellenlängenbereichen zu
 ermöglichen. Daher kann mittels des erfindungsgemäßen
 Ausgestaltens der optischen Filterschicht eine gewünschte
- Balance zwischen Kostengünstigkeit und Nachweisgenauigkeit erreicht werden.

Der Fluoreszenz-Biosensorchip weist vorzugsweise ferner eine Schaltkreis-Schicht zwischen dem Substrat und der optischen Filterschicht auf, wobei in die Schaltkreis-Schicht mindestens ein elektrisches Bauelement integriert ist und wobei die Schaltkreis-Schicht mit der mindestens einen Detektions-Einrichtung elektrisch gekoppelt ist.

- Indem die Schaltkreis-Schicht zwischen dem Substrat und der optischen Filterschicht angeordnet ist, ist eine Herstellung des Fluoreszenz-Biosensorchips mit der Schaltkreis-Schicht nach einem standardisierten CMOS-Prozess ermöglicht. Dies trägt zur Kostengünstigkeit des Fluoreszenz-Biosensorchips
- bei. Die Schaltkreis-Schicht dient im Wesentlichen dazu, ein von den Detektions-Einrichtungen detektiertes Hybridisierungsereignis auf der Immobilisierungs-Schicht elektrisch auszulesen. Erfolgt auf der Immobilisierungs-Schicht ein Hybridisierungsereignis und wird von den
- hybridisierten nachzuweisenden Molekülen ein elektromagnetisches Fluoreszenzsignal in Richtung der Photodioden ausgesendet, so erfolgt in den Photodioden eine Ladungstrennung, die mittels der elektronischen Bauelemente der Schaltkreis-Schicht elektrisch auslesbar ist.

20

25

Insbesondere ist mittels der Schaltkreis-Schicht die mindestens eine Detektions-Einrichtung elektrisch ansteuerbar. Mit anderen Worten kann jede einzelne Photodiode dahingehend ausgelesen werden, ob an ihr ein elektrisches Signal infolge eines Hybridisierungsereignisses auf der Immobilisierungs-Schicht anliegt

Die Immobilisierungs-Schicht des Fluoreszenz-Biosensorchips weist beispielsweise eines oder eine Kombination der 30 Materialien Siliziumdioxid, Siliziumnitrid organisches Material und/oder Gold auf

Ferner können gemäß dem erfindungsgemäßen FluoreszenzBiosensorchip eine Vielzahl von Fängermolekülen mit der

Immobilisierungs-Schicht gekoppelt sein, wobei die
Fängermoleküle derart eingerichtet sind, dass an die
bindungsbereiten Fängermoleküle ein zu dem Fängermolekül
komplementäres nachzuweisendes Molekül ankoppelbar ist.
Insbesondere kann die Anzahl nachzuweisender Moleküle größer
sein als die Anzahl der auf der Immobilisierungs-Schicht

eines Fluoreszenz-Biosensorchips immobilisierten Fängermoleküle. Hat jedes der Fängermoleküle eines Fluoreszenz-Biosensorchips mit einem nachzuweisenden Molekül hybridisiert, ist der Fluoreszenz-Biosensorchip in "Sättigung", d.h. er weist keine bindungsbereiten 5 Fängermoleküle mehr auf, so dass nicht hybridisierte nachzuweisende Moleküle ggf. mit anderen Fängermolekülen an außerhalb des Sättigungszustands befindlichen Fluoreszenz-Biosensorchips (z.B. bei einer Anordnung mehrerer Fluoreszenz-Biosensorchips) hybridisieren können. Die 10 Fängermoleküle können insbesondere Nukleinsäuren (DNA oder RNA), Peptide, Polypeptide, Proteine oder niedermolekulare Verbindungen sein. Unter niedermolekularen Verbindungen werden in der Chemie Verbindungen mit molekularen Massen von unter 1.700 Dalton (Molekülmasse in Gramm pro Mol) verstanden. Das oder die Materialien, aus dem oder denen die Immobilisierungs-Schicht hergestellt ist, wird oder werden auf die anzukoppelnden Fängermoleküle abgestimmt. Die Fängermoleküle werden mittels der Mikrodispensierungstechnik an der Oberfläche der Immobilisierungs-Schicht immobilisiert. 20 Dabei bilden sich automatisch ("Self Assembly"-Technik) Bindungen zwischen dem Material der Immobilisierungs-Schicht und solchen Endgruppen der Fängermoleküle, die mit dem Material der Immobilisierungs-Schicht eine chemische Bindung eingehen. Besonders vorteilhafte Eigenschaften weist-25 diesbezüglich des Materialpaar Gold/Schwefel auf, sodass als besonders vorteilhafte Kombination die Anbindung von schwefelhaltigen Gruppen (beispielsweise Thiol-Endgruppen)

Die Fängermoleküle sind sehr selektiv auf ganz bestimmte, zu den Fängermolekülen komplementäre nachzuweisende Moleküle sensitiv. Mit anderen Worten lagern sich nur ganz bestimmte, 35 strukturell passende nachzuweisende Moleküle an ein bestimmtes Fängermolekül an. Bringt man also verschiedene Fängermoleküle auf der Oberfläche der Immobilisierungs-Schicht an, so ist eine parallele Analyse verschiedener nachzuweisender Stoffe möglich. Die parallele Analyse verschiedener nachzuweisender Stoffe, beispielsweise

von Fängermolekülen mit aus Goldmaterial hergestellten

Immobilisierungs-Schichten anzuführen ist.

30

verschiedener DNA-Halbstränge oder verschiedener Proteine, wirkt zeitsparend und ist besonders für "High Throughput Screening"-Analysen interessant. So kann die Analyse einer Lösung einer unbekannten Zusammensetzung idealerweise in einem einzigen Analyseschritt unter Verwendung des erfindungsgemäßen Fluoreszenz-Biosensorchips realisiert werden. Eine derartige hochparallele Analyse wirkt zeitsparend.

Diejenigen auf der Oberfläche der Immobilisierungs-Schicht 10 immobilisierten Fängermoleküle, die im Wesentlichen oberhalb einer der Detektions-Einrichtungen angeordnet sind, können als zu dieser Detektions-Einrichtung zugehörige Sensoren dienen. Bei der Verwendung des erfindungsgemäßen Fluoreszenz-Biosensorchips tritt nun das Problem auf, dass auf die 15 Detektions-Einrichtungen nicht nur das nachzuweisende Licht von den mit den Fängermolekülen hybridisierten nachzuweisenden Molekülen einfällt. Vielmehr fällt auf die Detektions-Einrichtungen auch Streulicht aus der Umgebung oder zum Anregen von Fluoreszenzmarkern vorgesehenes 20 Primärlicht ein. Diese parasitäre elektromagnetische Strahlung verfälscht das Signal der Detektions-Einrichtungen. Daher ist es wünschenswert, die Stärke dieses Rauschsignals (bzw. Untergrundsignals) quantitativ zu erfassen und von den 25 detektierten Signalen zu subtrahieren. Dies ist erfindungsgemäß realisierbar, indem ein Oberflächenabschnitt der Immobilisierungs-Schicht frei von Fängermolekülen ist, sodass an der mindestens einen unterhalb dieses Oberflächenabschnitts angeordneten Detektions-Einrichtung ein 30 Rauschsignal abnehmbar ist.

Indem das Rauschsignal von den Signalen aller anderen Detektions-Einrichtungen subtrahiert wird, ist von den anderen Signalen der Beitrag von parasitärem Streulicht von dem zu detektierenden Fluoreszenzlicht trennbar, wodurch die Nachweisempfindlichkeit des Fluoreszenz-Biosensorchips erhöht ist. Das Rauschsignal (auch Nulleffekt oder Untergrundsignal genannt) kann auch simultan von mehreren Detektions-Einrichtungen gemessen werden, was die

40 Nachweisempfindlichkeit weiter erhöht.

Vorzugsweise weisen die nachzuweisenden Moleküle und/oder die Fängermoleküle einen Fluoreszenzmarker auf, wobei der Fluoreszenzmarker derart eingerichtet ist, dass er elektromagnetische Strahlung eines dritten Wellenlängenbereichs absorbiert und nach erfolgter Absorption elektromagnetische Strahlung eines vierten Wellenlängenbereich emittiert, wobei zumindest ein Teil des dritten Wellenlängenbereichs außerhalb des vierten Wellenlängenbereichs liegt, und wobei zumindest ein Teil des vierten Wellenlängenbereichs innerhalb des ersten

Im Weiteren wird die Funktionalität des FluoreszenzBiosensorchips der Erfindung anschaulich beschrieben. Wenn an
der Oberfläche des Fluoreszenz-Biosensorchips keine
nachzuweisenden Moleküle mit Fluoreszenzmarkern an den
Fängermolekülen angelagert sind, so gelangt extern
eingestrahltes Licht durch die Fängermoleküle und die
Immobilisierungs-Schicht im Wesentlichen ungeschwächt
hindurch. Das eingestrahlte Licht wird jedoch von einer
entsprechend gewählten Filterschicht reflektiert und gelangt
daher nicht bis zu den in das Substrat integrierten
Photodioden.

Wellenlängenbereichs liegt.

25

Bringt man die Oberfläche des Fluoreszenz-Biosensorchips dagegen mit einer Lösung, die nachzuweisende Moleküle enthält, in Kontakt, so können nachzuweisende Moleküle mit den auf der Immobilisierungs-Schicht des Fluoreszenz-Biosensorchips angeordneten Fängermolekülen hybridisieren, 3.0 falls die Fängermoleküle und die nachzuweisenden Moleküle nach dem Schlüssel-Schloss-Prinzip zusammenpassen. Die hybridisierten nachzuweisenden Moleküle sind mit einem geeigneten Fluoreszenzmarker versehen. Alternativ können die auch die Fängermoleküļe mit einem Fluoreszenzmarker versehen 35 sein. Fluoreszenzmarker sind Molekülgruppen, die elektromagnetische Strahlung eines bestimmten Wellenlängenbereichs (oben als der dritte Wellenlängenbereich bezeichnet) absorbieren und nach erfolgter Absorption elektromagnetische Strahlung eines anderen 40

Wellenlängenbereichs (oben vierter Wellenlängenbereich genannt) emittieren. Die Fluoreszenzmarker reemittieren elektromagnetische Strahlung mit im Vergleich zu dem eingestrahlten Licht erhöhten Wellenlängen. Fluoreszenzmarker werden an nachzuweisende Moleküle üblicherweise über sogenannte Linker-Moleküle, also das nachzuweisende Molekül mit dem Fluoreszenzmarker (bzw. dem Fängermolekül) koppelnde Moleküle, angekoppelt. Hybridisieren nachzuweisende Moleküle mit daran angekoppelten Fluoreszenzmarkern an an der Oberfläche der Immobilisierungs-Schicht immobilisierten Fängermolekülen, so befinden sich die Fluoreszenzmarker räumlich nahe der Immobilisierungs-Schicht. Wird Licht eines geeigneten Wellenlängenbereichs von extern eingestrahlt, so kann diese elektromagnetische Strahlung von den

15 Fluoreszenzmarkern absorbiert werden, sofern die elektromagnetische Strahlung zumindest eine Wellenlänge innerhalb des dritten Wellenlängenbereichs aufweist, innerhalb dem die Fluoreszenzmarker elektromagnetische Strahlung absorbieren können. Dadurch werden die

10

- Fluoreszenzmarker in einen elektronischen Anregungszustand versetzt, der durch eine mittlere Lebensdauer gekennzeichnet ist. Im Mittel nach dieser mittleren Lebensdauer reemittieren die Fluoreszenzmarker elektromagnetische Strahlung eines vierten Wellenlängenbereichs, wobei der vierte
- 25 Wellenlängenbereich langwelligere elektromagnetischere Strahlung aufweist als der dritte Wellenlängenbereich. Mit anderen Worten hat das von den Fluoreszenzmarkern reemittierte Licht eine längere Wellenlänge als das einfallende Licht. Allerdings ist die Intensität des
- reemittierten Lichtes typischerweise mehrere Größenordnungen geringer als die Intensität des einfallenden Lichtes, das beispielsweise von einer externen Strahlungsquelle bereitgestellt ist. Das Fluoreszenzlicht des vierten Wellenlängenbereichs und das nicht absorbierte extern
- einfallende Licht durchlaufen die Immobilisierungs-Schicht und gelangen zu der optischen Filterschicht. Wie oben beschrieben, ist die optische Filterschicht derart eingerichtet, dass die optische Filterschicht elektromagnetische Strahlung eines zweiten
- 40 Wellenlängenbereichs totalreflektiert, wobei zumindest ein

Teil des ersten Wellenlängenbereichs, in dem die Detektions-Einrichtungen elektromagnetische Strahlung detektieren können, außerhalb des zweiten Wellenlängenbereichs liegt. Der zweite Wellenlängenbereich, in dem die optische Filterschicht totalreflektiert, ist erfindungsgemäß derart eingerichtet, 5 dass das von extern einfallende Licht im Wesentlichen reflektiert wird und dass das von den Fluoreszenzmarkern reemittierte Licht des vierten Wellenlängenbereichs im Wesentlichen durch die optische Filterschicht transmittiert wird. Dadurch gelangt im Wesentlichen nur das 10 intensitätsschwache Fluoreszenzlicht durch die Filterschicht hindurch, wohingegen das intensitätsstarke externe Licht, das zur Anregung der Fluoreszenzmarker diente, reflektiert wird. Die von einem an einem bestimmten Fängermolekül befindlichen 15 Fluoreszenzmarker emittierte elektromagnetische Strahlung des vierten Wellenlängenbereichs durchdringt die optische Filterschicht und gelangt idealerweise nach Hindurchtreten durch die im Wesentlichen transparente Schaltkreis-Schicht auf diejenige Photodiode in dem Substrat, die von dem 20 emittierenden Fluoreszenzmarker den geringsten Abstand aufweist. Die Photodiode, die derart eingerichtet ist, dass damit elektromagnetische Strahlung eines ersten Wellenlängenbereichs detektierbar ist, ist zum Nachweis der elektromagnetischen Fluoreszenzstrahlung des vierten Wellenlängenbereichs geeignet, da der erfindungsgemäße 25 Fluoreszenz-Biosensorchip derart eingerichtet ist, dass zumindest ein Teil des vierten Wellenlängenbereichs innerhalb des ersten Wellenlängenbereichs liegt. Dadurch ist die Photodiode geeignet zum Nachweis der Fluoreszenzstrahlung und 30 ist somit geeignet zum indirekten Nachweis eines Hybridisierungsereignisses auf einem darüber angeordneten Fängermolekül.

Alternativ können Hybridisierungsereignisse mittels

Detektieren von Fluoreszenzstrahlung nachgewiesen werden,
indem nach Andocken nachzuweisender Moleküle an
Fluoreszenzmarker aufweisende Fängermoleküle die Sensorebene
mit einer derart eingerichteten Substanz in Wirkkontakt
gebracht wird, dass mittels dieser Substanz Fluoreszenzmarker
aufweisende Fängermoleküle ohne angedockte nachzuweisende

Moleküle von der Sensorebene abgelöst werden, wohingegen Fängermoleküle mit daran angedockten nachzuweisenden Molekülen auch in Anwesenheit der Substanz an der Sensorebene angedockt bleiben. Nachdem Fluoreszenzmarker aufweisende Fängermoleküle ohne damit hybridisierten nachzuweisenden 5 Molekülen abgelöst sind, verbleiben an der Sensorebene lediglich solche Fluoreszenzmarker aufweisende Fängermoleküle, an denen nachzuweisende Moleküle angedockt sind. Diese Hybridisierungsereignisse sind dann gemäß dem 10 oben beschriebenen Prinzip mittels Erfassen der Fluoreszenzstrahlung der an den Fängermolekülen angekoppelten Fluoreszenzmarkern nachweisbar. Gemäß dem beschriebenen Alternativkonzept ist es entbehrlich, Fluoreszenzmarker an nachzuweisenden Molekülen zu binden, statt dessen ist eine Anbindung der Fluoreszenzmarker an den Fängermolekülen 15 möglich.

Gemäß einem weiteren Alternativkonzept können
Fluoreszenzmarker erst nach den Hybridisierungsereignissen
zugegeben werden. Sind die Fluoreszenzmarker derart
eingerichtet, dass sie nur an Fängermolekülen mit daran
hybridisierten nachzuweisenden Molekülen binden (z.B. nur an
doppelsträngiger DNA binden), so ist die Intensität der von
den Fluoreszenzmarkern emittierten elektromagnetischen
Strahlung charakteristisch für die Anzahl der erfolgten
Hybridisierungsereignisse.

one and the section was a contracting to

Erfindungsgemäß können auch verschiedene Fluoreszenzmarker verwendet werden, um unterschiedliche Moleküle mit

unterschiedlichen Fluoreszenzmarkern nachzuweisen. Dadurch ist eine parallele Analyse möglich, mittels welcher die verschiedenen Komponenten eines Analyten simultan untersuchbar und quantifizierbar sind.

Als Fluoreszenzmarker wird beispielsweise Coumarin (1,2-Benzpyron 2H-1-Benzpyran-2-on, C₉H₆O₂) verwendet. Der Fluoreszenzfarbstoff Coumarin hat die Eigenschaft, bei Anregung mit elektromagnetischer Strahlung der Wellenlänge 370 Nanometer in einem Wellenlängenbereich um ungefähr 460

Nanometer herum elektromagnetische Fluoreszenzstrahlung zu reemittieren. Der Fluoreszenzmarker Coumarin gewährleistet also eine ausreichend starke Rotverschiebung der reemittierten elektromagnetischen Strahlung, sodass anregende und emittierte elektromagnetische Strahlung voneinander gut trennbar sind. Als Fluoreszenzmarker kann auch jedes andere geeignete Material wie beispielsweise FITC, Cy2, Alexa Fluor 488, BODIPY 493, Rhodamine 123, R6G, TET, JOE, HEX, BODIPY 530, Alexa 532, R-Phycoerythrin, TRITC, Cy3, TAMRA, Texas Red, ROX, BODIPY 630 und Cy5 verwendet werden.

5

10

Die Oberfläche des Fluoreszenz-Biosensorchips weist vorzugsweise eine matrizenartige Anordnung einzelner Sensorfelder auf. Wie oben angesprochen, ist jedes einzelne -15 Sensorfeld mittels der Schaltkreis-Schicht einzeln auslesbar. Um die Integrationsdichte der Sensorfelder zu erhöhen, sind die Sensorfelder möglichst dicht angeordnet. Dies ist für "High-Throughput-Screening"-Anwendungen vorteilhaft. Andererseits ist die dichte Anordnung von Sensorfeldern mit 20 der Gefahr verbunden, dass optisches Übersprechen von einem Sensorfeld zu einem benachbarten Sensorfeld auftreten kann. Die in dem Substrat integrierten Photodioden bilden die Immobilisierungs-Schicht mit den daran immobilisierten Fängermolekülen ortsrichtig ab. Dadurch ist eine Photodiode 25 im Wesentlichen auf die Fluoreszenzstrahlung derjenigen Fängermoleküle sensitiv, die im Wesentlichen oberhalb der Photodiode angeordnet sind. Unter optischem Übersprechen wird nun verstanden, dass elektromagnetische Fluoreszenzstrahlung eines Fluoreszenzmarkers nicht auf die im Wesentlichen 30 darunter liegende Photodiode abgestrahlt wird, sondern beispielsweise in Richtung einer links oder rechts neben dieser Photodiode angeordneten anderen Photodiode emittiert wird. Dadurch besteht die Gefahr, dass ein Hybridisierungsereignis an einem Fängermolekül 35 fehlerhafterweise von einer Photodiode, die nicht unterhalb des Fängermoleküls angeordnet ist, nachgewiesen wird. Es ist ein Vorteil der Erfindung, dass erfindungsgemäß Möglichkeiten geschaffen sind, optisches Übersprechen zwischen benachbarten Sensorfeldern gering zu halten oder zu unterbinden. Daraus resultiert die vorteilhafte Wirkung, dass eine hohe Integrationsdichte von Sensoren auf dem Fluoreszenz-Biosensorchip mit verringertem optischen Übersprechen kombiniert ist.

Um dieses Ziel zu erreichen, ist vorzugsweise in mindestens einen Oberflächenbereich des Fluoreszenz-Biosensorchips mindestens ein Isolations-Graben zum optischen Isolieren benachbarter Detektions-Einrichtungen eingebracht, welcher 10 mindestens eine Isolations-Graben sich durch die Immobilisierungs-Schicht hindurch bis in einen Bereich der optischen Filterschicht hineinerstreckt derart, dass unterhalb jedes Bereichs zwischen zwei benachbarten Isolations-Gräben jeweils eine Detektions-Einrichtung 15 angeordnet ist. Vorzugsweise ist mindestens ein Teil der Oberfläche des mindestens einen Isolations-Grabens mit einer Schicht aus einem absorbierenden Material bedeckt oder es ist mindestens einer der Gräben mit einem absorbierenden Material gefüllt, wobei das absorbierende Material derart eingerichtet 20 ist, dass mittels des absorbierenden Materials elektromagnetische Strahlung zumindest des jeweiligen Wellenlängenbereichs bzw. der jeweiligen Wellenlängenbereiche absorbiert oder reflektiert wird.

25

5

Wenn, wie oben beschrieben, von einem bezogen auf die Lichteinfallsrichtung im Wesentlichen oberhalb einer ersten Photodiode angeordneten Fluoreszenzmarker Fluoreszenzstrahlung in eine Richtung emittiert wird, in der nicht die darunter gelegene Photodiode, sondern eine daran benachbarte Photodiode angeordnet ist, so kann mittels eines zwischen die Photodioden geeignet eingebrachten und mit einem elektromagnetische Strahlung absorbierenden Material zumindest teilweise aufgefüllten Grabens verhindert werden, dass die elektromagnetische Fluoreszenzstrahlung von einer "falschen" Photodiode nachgewiesen wird. Statt einem falschen Nachweis wird die Fluoreszenzstrahlung von dem absorbierenden Material in dem Graben absorbiert.

Dadurch ist die Gefahr des optischen Übersprechens herabgesetzt. Dies ist vorteilhaft, da dadurch die Nachweisempfindlichkeit des Fluoreszenz-Biosensorchips erhöht und die Fehleranfälligkeit des Fluoreszenz-Biosensorchips verringert ist.

5

35

Optisches Übersprechen kann weiter verringert werden, indem in mindestens einem Bereich der Schaltkreis-Schicht eine Barriereschicht aus einem absorbierenden Material vorgesehen ist, derart, dass unterhalb jedes Bereichs zwischen zwei benachbarten Barriereschichten jeweils eine Detektions-Einrichtung angeordnet ist, wobei das absorbierende Material derart eingerichtet ist, dass es elektromagnetische Strahlung zumindest des jeweiligen Wellenlängenbereichs bzw. der jeweiligen Wellenlängenbereiche absorbiert oder reflektiert.

Wie oben beschrieben ist der Isolations-Graben in die Immobilisierungs-Schicht und zumindest teilweise in die optische Filterschicht eingebracht, beispielsweise geätzt.

- Fluoreszenzstrahlung, die in einem derartigen Winkel von einem Fluoreszenzmarker reemittiert wird, dass die Fluoreszenzstrahlung bei ihrem Weg zu einer links oder rechts der unterhalb des Fluoreszenzmarkers angeordneten Photodiodenicht durch den Isolations-Graben hindurch tritt, sondern
- unterhalb des Isolations-Grabens durch die Schaltkreis-Schicht läuft, kann trotz des Isolations-Grabens von einer "falschen" Photodiode nachgewiesen werden. Mittels der Isolations-Gräben ist die Gefahr optischen Übersprechens also verringert, nicht aber unbedingt vollständig ausgeschlossen.

Um optisches Übersprechen weiter herabzusetzen, können wie oben beschrieben Barriereschichten aus absorbierendem Material in die Schaltkreis-Schicht eingebracht werden. Diese Barriereschichten haben im Wesentlichen dieselbe Funktion wie das absorbierende Material in den Isolations-Gräben, nämlich

Fluoreszenzstrahlung auf dem Weg zu einer "falschen"
Photodiode zu absorbieren und/oder zu reflektieren.
Allerdings nimmt die Barriereschicht diese Funktionalität in der Schaltkreis-Schicht wahr, wohingegen die Isolations-

40 Gräben diese Funktionalität in der Immobilisierungs-Schicht

und in der optischen Filterschicht wahrnehmen. Vorzugsweise erfüllen die Barriereschichten in der Schaltkreis-Schicht eine Doppelfunktion. Einerseits wird - wie oben beschriebenoptisches Übersprechen mittels der Barriereschichten unterbunden, andererseits können die absorbierenden und/oder 5 reflektierenden Barriereschichten, sofern diese aus einem elektrisch leitfähigen Material hergestellt sind, auch die Funktion elektronischer Bauelemente in der Schaltkreis-Schicht wahrnehmen. So können beispielsweise die 10 Barriereschichten als elektrische Zuleitungen zu den Photodioden in den Substrat dienen. Vorzugsweise sind die Barriereschichten in die Schaltkreis-Schicht eingebrachte metallische Leiterbahnen oder Durchgangslöcher, die mit einem elektrisch leitfähigen und elektromagnetische Strahlung absorbierenden/reflektierenden Material aufgefüllt sind. 15 Mittels der Barriereschichten ist optisches Übersprechen zwischen benachbarten Sensorfeldern weiter vermindert, wodurch die Nachweisempfindlichkeit erhöht ist. Die erfindungsgemäße Doppelfunktion der Barriereschicht als Mittel zum Vermindern optischen Übersprechens einerseits und 20 als elektrisch integrierte Bauelemente andererseits ist ökonomisch und platzsparend. in the firm a magnetic field of the

Durch die Erfindung ist ferner eine Fluoreszenz-Biosensorchip-Anordnung mit einem Fluoreszenz-Biosensorchip 25 und einer elektromagnetischen Strahlungsquelle bereitgestellt. Der Fluoreszenz-Biosensorchip weist auf ein Substrat, mindestens eine im oder auf dem Substrat angeordnete Detektions-Einrichtung zum Erfassen von elektromagnetischer Strahlung eines ersten 30 Wellenlängenbereichs, eine auf dem Substrat angeordnete optische Filterschicht zum Absorbieren und/oder Reflektieren von elektromagnetischer Strahlung eines zweiten Wellenlängenbereichs, eine auf der optischen Filterschicht angeordnete Immobilisierungs-Schicht zum Immobilisieren von 35 Fängermolekülen, wobei die Detektions-Einrichtung, die Filterschicht und die Immobilisierungs-Schicht in dem Fluoreszenz-Biosensorchip integriert sind. Die elektromagnetische Strahlungsquelle ist derart eingerichtet, dass mittels der elektromagnetischen Strahlungsquelle ein 40

Oberflächenbereich des Fluoreszenz-Biosensorchips mit elektromagnetischer Strahlung eines dritten Wellenlängenbereichs bestrahlbar ist.

- Es ist zu betonen, dass all diejenigen Ausgestaltungen, die weiter oben bezugnehmend auf den erfindungsgemäßen Fluoreszenz-Biosensorchip beschrieben sind, auch für die erfindungsgemäße Fluoreszenz-Biosensorchip-Anordnung gelten.
- Die Fluoreszenz-Biosensorchip-Anordnung der Erfindung weist zusätzlich zu dem erfindungsgemäßen Fluoreszenz-Biosensorchip im Wesentlichen eine elektromagnetische Strahlungsquelle auf. Die elektromagnetische Strahlungsquelle ist dafür vorgesehen, den Oberflächenbereich des Fluoreszenz-Biosensorchips mit
- elektromagnetischer Strahlung eines dritten
 Wellenlängenbereichs zu bestrahlen. Vorzugsweise ist die
 elektromagnetische Strahlungsquelle ein Laser, eine
 Leuchtdiode, eine Gasentladungslampe oder eine Glühlampe.
 Ist die elektromagnetische Strahlungsquelle als Laser
- ausgestaltet, so ist dadurch ermöglicht, dass die Oberfläche des Fluoreszenz-Biosensorchips mit monochromatischem, schmalbandigem Licht bestrahlbar ist. Monochromatisches Licht ist mittels einer Filterschicht, deren optische Absorptionseigenschaften wellenlängenabhängig sind, gut wegfilterbar.

Die Fluoreszenz-Biosensorchip-Anordnung weist ferner eine Vielzahl von Fängermolekülen auf, die mit der Immobilisierungs-Schicht gekoppelt sind und die derart eingerichtet sind, dass an die Fängermoleküle ein zu dem Fängermolekül komplementäres nachzuweisendes Molekül ankoppelbar ist. Die Ankopplung der Fängermoleküle an die Immobilisierungs-Schicht erfolgt so, wie dies weiter oben bezugnehmend auf den Fluoreszenz-Biosensorchip beschrieben worden ist.

Jedes nachzuweisende Molekül weist darüber hinaus einen Fluoreszenzmarker auf, wobei der Fluoreszenzmarker derart eingerichtet ist, dass er zumindest teilweise elektromagnetische Strahlung des dritten Wellenlängenbereichs absorbiert und nach erfolgter Absorption elektromagnetische Strahlung eines vierten Wellenlängenbereichs emittiert, wobei zumindest ein Teil des dritten Wellenlängenbereichs außerhalb des vierten Wellenlängenbereichs liegt und wobei zumindest ein Teil des vierten Wellenlängenbereichs innerhalb des ersten Wellenlängenbereichs liegt. Darüber hinaus liegt zumindest ein Teil des ersten Wellenlängenbereichs außerhalb des zweiten Wellenlängenbereichs.

5

10

Im Weiteren wird die Funktionalität der erfindungsgemäßen Fluoreszenz-Biosensorchip-Anordnung näher beschrieben. Mittels der elektromagnetischen Strahlungsquelle wird die Oberfläche der Fluoreszenz-Biosensorchip-Anordnung mit 15 elektromagnetischer Strahlung des dritten Wellenlängenbereichs bestrahlt. An der Oberfläche der Fluoreszenz-Biosensorchip-Anordnung der Erfindung befindet sich die Immobilisierungs-Schicht, an der Fängermoleküle immobilisiert sind. Eine Lösung mit nachzuweisenden Molekülen wird mit dieser aktiven Sensoroberfläche in Wirkkontakt gebracht. Sind in dieser Lösung befindliche nachzuweisende Moleküle mit auf der Immobilisierungs-Schicht immobilisierten Fängermolekülen ausreichend komplementär, so erfolgt eine 25 Hybridisierung der nachzuweisenden Moleküle mit den Fängermolekülen. Die nachzuweisenden Moleküle sind beispielsweise über ein Linker-Molekül mit einem Fluoreszenzmarker gekoppelt, wobei der Fluoreszenzmarker derart eingerichtet ist, dass er zumindest teilweise elektromagnetische Strahlung des dritten Wellenlängenbereichs 30 absorbiert. Daher erfolgt nach der Hybridisierung der nachzuweisenden Moleküle an den Fängermolekülen eine Absorption des von der elektromagnetischen Strahlungsquelle emittierten Lichtes durch die Fluoreszenzmarker an den nachzuweisenden Molekülen. Die Fluoreszenzmarker sind derart 35 eingerichtet, dass nach der Absorption elektromagnetischer Strahlung des dritten Wellenlängenbereichs die Fluoreszenzmarker elektromagnetische Strahlung eines vierten Wellenlängenbereichs emittieren, wobei zumindest ein Teil des dritten Wellenlängenbereichs außerhalb des vierten 40

Wellenlängenbereichs liegt. Dies bedeutet, dass die Fluoreszenzstrahlung der Fluoreszenzmarker langwelliger ist als die zuvor absorbierte Strahlung des dritten Wellenlängenbereichs, die von der elektromagnetischen Strahlungsquelle bereitgestellt ist. Die Primärstrahlung in dem dritten Wellenlängenbereich und die Fluoreszenzstrahlung in dem vierten Wellenlängenbereich durchdringen die Immobilisierungs-Schicht und gelangen dann zu der optischen Filterschicht. Die optische Filterschicht ist derart eingerichtet, dass mittels der optischen Filterschicht 10 elektromagnetische Strahlung des zweiten Wellenlängenbereichs absorbiert und/oder reflektiert wird. Idealerweise wird von der optischen Filterschicht die elektromagnetische Strahlung des dritten Wellenlängenbereichs, die von der externen elektromagnetischen Strahlungsquelle stammt, vollständig reflektiert bzw. absorbiert. Dagegen wird idealerweise von der optischen Filterschicht die elektromagnetische Strahlung des vierten Wellenlängenbereichs, die von den Fluoreszenzmarkern stammt, vollständig transmittiert. Mit anderen Worten ist die optische Filterschicht derart 20 eingerichtet, dass sie für das Fluoreszenzlicht vollständig durchlässig ist, wohingegen sie für das Licht der elektromagnetischen Strahlungsquelle vollständig undurchlässig ist.

25

Dadurch gelangt im Idealfall ausschließlich die Fluoreszenzstrahlung zu den in dem Substrat integrierten Detektions-Einrichtungen zum Erfassen von elektromagnetischer Strahlung des ersten Wellenlängenbereichs. Erfindungsgemäß liegt zumindest ein Teil des vierten Wellenlängenbereichs, in 30 dem die Fluoreszenzstrahlung der Fluoreszenzmarker liegt, innerhalb des ersten Wellenlängenbereichs, innerhalb dem die Detektions-Einrichtungen zum Erfassen von elektromagnetischer Strahlung fähig sind. Dadurch kann die erfolgte Hybridisierung von nachzuweisenden Molekülen samt 35 Fluoreszenzmolekülen mit an der Oberfläche der Immobilisierungs-Schicht gebundenen Fängermolekülen mittels eines elektrischen Signals an den in dem Substrat integrierten Photodioden nachgewiesen werden. Dabei kommt der geeigneten Einstellung der beteiligten Wellenlängenbereiche eine maßgebliche Bedeutung zu.

Im Weiteren werden Ausgestaltungen der FluoreszenzBiosensorchip-Anordnung der Erfindung beschrieben, mittels
welcher die Nachweisempfindlichkeit der FluoreszenzBiosensorchip-Anordnung erhöhbar ist.

Vorzugsweise ist die elektromagnetische Strahlungsquelle 10 derart ausrichtbar, dass die von der elektromagnetischen Strahlungsquelle emittierte elektromagnetische Strahlung unter einem vorgebbaren Winkel zur Normalen-Richtung der optischen Filterschicht.

15 Anschaulich ist die Richtung, unter der die elektromagnetische Strahlung der elektromagnetischen Strahlungsquelle auf die Fängermoleküle einfällt, vorgebbar, beispielsweise indem eine elektromagnetische Strahlungsquelle verwendet wird, die ein Bündel paralleler Lichtstrahlen 20 erzeugt, und indem diese elektromagnetische Strahlungsquelle verschiebbar, drehbar, schwenkbar bzw. kippbar eingerichtet ist. Mittels eines schrägen Einfalls des anregenden Lichtes auf die Fluoreszenzmarker trifft der durch den optischen Filter transmittierte Teil des anregenden Lichtes nicht direkt auf diejenige Photodiode, die im Wesentlichen 25 unterhalb des absorbierenden und emittierenden Fluoreszenzmarkers angeordnet ist. Mit anderen Worten wird das die Nachweisempfindlichkeit der Fluoreszenz-Biosensorchip-Anordnung verringernde störende Primärlicht 30 teilweise "geometrisch" abgeschirmt. Um zu verhindern, dass das schräg einfallende anregende Licht in benachbarten Photodioden nachteilige Wirkungen entfaltet, kann das schräg einfallende anregende Licht wie oben beschrieben mittels Isolations-Gräben und/oder Barriereschichten gegebenenfalls vom Nachweis abgeschirmt werden. 35

Mittels Ausnützens des schrägen Einfalls der elektromagnetischen Strahlung der elektromagnetischen Strahlungsquelle können Schatteneffekte vorteilhaft genutzt werden, um die Nachweisempfindlichkeit der Fluoreszenz-Biosensorchip-Anordnung zu erhöhen.

Gemäß einer anderen Ausgestaltung der Erfindung ist die elektromagnetische Strahlungsquelle derart eingerichtet, dass die von der elektromagnetischen Strahlungsquelle emittierte elektromagnetische Strahlung in Pulsen emittiert ist und bei dem die Detektions-Einrichtungen derart eingerichtet sind, dass die von den Fluoreszenzmarkern emittierte elektromagnetische Strahlung in den Zeitintervallen zwischen den Pulsen mittels der Detektions-Einrichtungen detektierbar ist.

Dabei wird der physikalische Effekt ausgenützt, dass der 15 angeregte Elektronenzustand des Fluoreszenzmarkers nach Absorbieren des anregenden Lichtes eine endliche, von Null verschiedene Lebensdauer aufweist. Strahlt man einen kurzen Puls von anregendem Licht mittels der elektromagnetischen Strahlungsquelle auf die Fluoreszenzmarker ein, so werden die Fluoreszenzmarker mittels Absorption des Lichts in einen 20 angeregten Elektronenzustand versetzt. Das nicht von den Fluoreszenzmarkern absorbierte einfallende Licht erreicht aufgrund der hohen Lichtgeschwindigkeit quasi instantan die Detektoreinrichtungen, deren Signal zu diesem Zeitpunkt nicht 25 erfasst_wird_ Mit anderen Worten sind die Detektions-Einrichtungen während des Pulses ausgeschaltet. Nach einem Zeitintervall, das im Wesentlichen der mittleren Lebensdauer des angeregten Elektronenzustandes des Fluoreszenzmarkers entspricht, wird von den Fluoreszenzmarkern eine zeitverzögerte elektromagnetische Fluoreszenzwelle 30 abgestrahlt. Die Zeitverzögerung liegt in der Größenordnung der natürlichen Lebensdauer von angeregten Elektronenzuständen (ungefähr Mikrosekunden bis Nanosekunden). Wird erst nach dieser Zeitverzögerung das Messsignal der Detektions-Einrichtungen aufgenommen, so ist 35 der parasitäre Nachweis von anregendem Licht vermieden und es wird nur Fluoreszenzstrahlung nachgewiesen. Hierzu sind vorzugsweise Detektions-Einrichtungen mit ausreichend guter Zeitauflösung zu wählen, beispielsweise Photodioden, die eine

Zeitauflösung im Sub-Nanosekundenbereich aufweisen. Mittels

40

Unterdrückung des Nachweises des Primärlichtes ist die Nachweisempfindlichkeit der Fluoreszenz-Biosensorchip-Anordnung der Erfindung erhöht.

5 Ausführungsbeispiele der Erfindung sind in den Figuren dargestellt und werden im Weiteren näher erläutert.

Es zeigen:

10 Figur 1A eine schematische Ansicht eines Fluoreszenz-Biosensorchips gemäß dem Stand der Technik,

Figur 1B eine Explosionsdarstellung eines anderen
Fluoreszenz-Biosensorchips gemäß dem Stand der
Technik,

Figur 2 eine Querschnittsansicht eines FluoreszenzBiosensorchips gemäß einem ersten Ausführungsbeispiel
der Erfindung,

20

15

- Figur 3 eine Querschnittsansicht eines FluoreszenzBiosensorchips gemäß einem zweiten
 Ausführungsbeispiel der Erfindung,
- 25 Figur 4 ein Diagramm, das schematisch die Abhängigkeit der Transmission von der Wellenlänge eines dielektrischen Interferenzfilters gemäß einem bevorzugten Ausführungsbeispiel der erfindungsgemäßen optischen Filterschicht zeigt,

30

- Figur 5A eine Draufsicht eines Fluoreszenz-Biosensorchips gemäß einem dritten Ausführungsbeispiel der Erfindung,
- 35 Figur 5B eine vergrößerte teilweise Querschnittsansicht entlang der Schnittlinie I-I' aus Figur 5A gemäß dem

dritten bevorzugten Ausführungsbeispiels des Fluoreszenz-Biosensorchips der Erfindung,

Figur 6A ein Schaltbild mit einer Ansteuerlogik zum Ansteuern
eines Sensorfeldes gemäß einem bevorzugten
Ausführungsbeispiel des Fluoreszenz-Biosensorchips
der Erfindung,

Figur 6B eine vergrößerte Ansicht der Ansteuerlogik zum

Ansteuern eines Sensorfeldes gemäß dem bevorzugten
Ausführungsbeispiel des Fluoreszenz-Biosensorchips
der Erfindung,

Figur 7 eine Querschnittsansicht einer Fluoreszenz
Biosensorchip-Anordnung gemäß einem bevorzugten

Ausführungsbeispiel der Erfindung.

Im Weiteren wird bezugnehmend auf Fig. 2 ein Fluoreszenz-Biosensorchip 200 gemäß einem ersten Ausführungsbeispiel der 20 Erfindung beschrieben.

Der Fluoreszenz-Biosensorchip 200 weist ein Substrat 201, mindestens eine in oder auf dem Substrat 201 angeordnete Detektions-Einrichtung 202 zum Erfassen von

elektromagnetischer Strahlung, eine auf dem Substrat 201 angeordnete optische Filterschicht 203 und eine auf der optischen Filterschicht 203 angeordnete Immobilisierungs-Schicht 204 zum Immobilisieren von Fängermolekülen auf. Die Detektions-Einrichtungen 202, die Filterschicht 203 und die Immobilisierungs-Schicht 204 sind in dem Fluoreszenz-

Biosensorchip 200 integriert, wie in Fig. 2 gezeigt.

Gemäß dem in Fig. 2 gezeigten Ausführungsbeispiel des erfindungsgemäßen Fluoreszenz-Biosensorchips 200 ist das Substrat 201 aus Siliziummaterial hergestellt. Darüber hinaus sind sechs Detektions-Einrichtungen 202 bereitgestellt, wobei jede der sechs Detektions-Einrichtungen 202 als Photodiode ausgebildet ist, die derart eingerichtet sind, dass damit elektromagnetische Strahlung eines ersten Wellenlängenbereichs detektierbar ist. Wie in Fig. 2 gezeigt, sind benachbarte Detektions-Einrichtungen 202 in einem Abstand "d" voneinander angebracht. Der Abstand "d", der gemäß dem in Fig. 2 gezeigten Ausführungsbeispiel gleich 200 Mikrometer ist, ist ein Maß für die Pixelgröße eines Sensorfeldes auf der Oberfläche des Fluoreszenz-

Biosensorchips. Mit anderen Worten gehören all diejenigen auf der Oberfläche der Immobilisierungs-Schicht 204 immobilisierbaren Fängermoleküle, die zu einer bestimmten Detektions-Einrichtung 202 einen geringeren Abstand haben als zu allen anderen Sensoreinrichtungen 202, zu einem

Sensorpixel. Der Abstand "d" ist daher ein Maß für die eindimensionale Ortsauflösung des erfindungsgemäßen Fluoreszenz-Biosensorchips 200. Mit anderen Worten ist d' ein Maß für die zweidimensionale Ortsauflösung des erfindungsgemäßen Fluoreszenz-Biosensorchips 200, d.h. für die erforderliche Oberfläche des Fluoreszenz-Biosensorchips 200 pro Sensorpixel.

Die optische Filterschicht 203 ist derart eingerichtet, dass die optische Filterschicht 203 elektromagnetische Strahlung eines zweiten Wellenlängenbereichs absorbiert, wobei zumindest ein Teil des ersten Wellenlängenbereichs außerhalb des zweiten Wellenlängenbereichs liegt.

Gemäß dem in Fig. 2 gezeigten Ausführungsbeispiel ist die optische Filterschicht 203 als Kantenfilter ausgestaltet. Das Kantenfilter 203 des Fluoreszenz-Biosensorchips 200 absorbiert elektromagnetische Strahlung unterhalb einer Grenzwellenlänge. Das optische Kantenfilter 203 ist ein aus einem organischen Material hergestelltes Farbfilter.

Wie in Fig. 2 gezeigt, hat die optische Filterschicht 203 eine Dicke "h", die gemäß dem beschriebenen Ausführungsbeispiel in der Größenordnung von 70 Mikrometer liegt. Die Dicke "h" der als organisches Kantenfilter

35

25

ausgestalteten optischen Filterschicht 203 ist ausreichend groß zu wählen, um solche elektromagnetische Strahlung, die nicht zu den Detektions-Einrichtungen 202 gelangen soll, möglichst vollständig zu absorbieren, und die als organisches Kantenfilter ausgestaltete optische Filterschicht 203 ist ausreichend dünn zu wählen, um solche elektromagnetische Strahlung, die zu den Detektions-Einrichtungen 202 gelangen soll, um von den Detektions-Einrichtungen 202 nachgewiesen zu werden, in ausreichendem Maße zu transmittieren.

10

· 5

Die in Fig. 2 gezeigte Immobilisierungs-Schicht 204 ist gemäß dem beschriebenen Ausführungsbeispiel eine dünne Goldschicht.

Der Fluoreszenz-Biosensorchip 200 weist ferner eine

Schaltkreis-Schicht 205 zwischen dem Substrat 201 und der optischen Filterschicht 203 auf, wobei in die Schaltkreis-Schicht 205 mindestens ein elektrisches Bauelement integriert ist, und wobei die Schaltkreis-Schicht 205 mit der mindestens einen Detektions-Einrichtung 202 elektrisch gekoppelt ist.

20

Die elektrischen Bauelemente, die in der Schaltkreis-Schicht 205 integriert sind, sind in Fig. 2 nicht gezeigt. Die Schaltkreis-Schicht 205 ist derart eingerichtet, dass mittels der Schaltkreis-Schicht 205 die Detektions-Einrichtungen 202 jeweils einzeln elektrisch ansteuerbar sind. Ein 25 Ausführungsbeispiel für einen geeigneten elektrischen Ansteuer-Schaltkreis wird weiter unten beschrieben. Gemäß dem in Fig. 2 gezeigten Fluoreszenz-Biosensorchip 200 weist die Schaltkreis-Schicht 205 MOS-Transistoren zum Auswählen einer der Detektions-Einrichtungen 202, elektrisch leitende 30 Verbindungen zum Ankoppeln der Detektions-Einrichtung 202 an einen Ansteuer-Schaltkreis und weitere elektronische Bauelemente auf, die zur Verstärkung und Auswertung des Messsignals dienen. Diese elektrischen Bauelemente sind in die Schaltkreis-Schicht 205 integriert. Wie in Fig. 2 35 gezeigt, hat die Schaltkreis-Schicht 205 eine Dicke "l", die gemäß dem beschriebenen Ausführungsbeispiel ungefähr fünf Mikrometer ist. Die Dicke "l" sollte ausreichend klein gewählt sein bzw. die Materialien sollten geeignet gewählt

sein, dass Verluste infolge Absorption nachzuweisender elektromagnetischer Strahlung in der Schaltkreis-Schicht 205 gering sind.

- Der Fluoreszenz-Biosensorchip 200 enthält ferner eine Vielzahl von Fängermolekülen 206, die mit der Immobilisierungs-Schicht 204 gekoppelt sind und die derart eingerichtet sind, dass an jedes der bindungsbereiten Fängermoleküle 206 ein zu dem Fängermolekül 206
- komplementäres nachzuweisendes Molekül 207 ankoppelbar ist. Die in Fig. 2 gezeigten Fängermoleküle 206 sind DNA-Halbstränge. Jedes nachzuweisende Molekül 207 weist einen Fluoreszenzmarker 208 auf.
- Die Fluoreszenzmarker 208 sind derart eingerichtet, dass die Fluoreszenzmarker 208 elektromagnetische Strahlung eines dritten Wellenlängenbereichs absorbieren und nach erfolgter Absorption elektromagnetische Strahlung eines vierten Wellenlängenbereichs emittieren. Der in Fig. 2 gezeigte
- Fluoreszenzmarker 208 ist Coumarin. In das in Fig. 4 gezeigte Diagramm ist das Emmisionsspektrum von Coumarin eingezeichnet, nachdem der Fluoreszenzfarbstoff Coumarin mit elektromagnetischer Strahlung der Wellenlänge 370 Nanometer angeregt worden ist. Man erkennt eine relativ breite
- Absorptionsbande mit einem Maximum nahe 460 Nanometer. Dieses Emissionsspektrum entspricht gemäß dem beschriebenen Ausführungsbeispiel dem oben definierten vierten Wellenlängenbereich.
- Wie in Fig. 2 gezeigt, ist der Oberflächenbereich des Fluoreszenz-Biosensorchips 200 nicht nur mit nachzuweisenden Molekülen 207, die mit einem Fluoreszenz-Marker 208 gekoppelt sind, in Wirkkontakt. Ferner sind auch Moleküle 209 in Wirkkontakt mit den Fängermolekülen 206 auf der Oberfläche
- der Immobilisierungs-Schicht 204. Diese Moleküle 209 sind ebenfalls mit Fluoreszenzmarkern 210 gekoppelt, die sich allerdings von den mit den nachzuweisenden Molekülen 207 gekoppelten Fluoreszenzmarkern 208 dahingehend unterscheiden, dass die Fluoreszenzmarker 210 in anderen

Wellenlängenbereichen absorbieren bzw. fluoreszieren als die Fluoreszenzmarker 208 der nachzuweisenden Moleküle 207. Im Unterschied zu den nachzuweisenden Molekülen 207, die zu den Fängermolekülen 206 komplementär sind und infolgedessen an die Fängermoleküle angelagert sind, sind die Moleküle 209 zu den Fängermolekülen 206 nicht komplementär und daher nicht in der Lage, mit den Fängermolekülen 206 zu hybridisieren. Diese Betrachtung zeigt, dass der Nachweis von Molekülen mittels Anlagerns an die Fängermoleküle 206 sehr selektiv erfolgt.

Wären die Moleküle 210 zu den Fängermolekülen 206 komplementär, so würden nur die Moleküle 210 mit den Fängermolekülen 206 hybridisieren, wohingegen die nachzuweisenden Moleküle 208 mit den Fängermolekülen 206 in diesem alternativen Falle nicht hybridisieren würden. Die Entscheidung, ob die Moleküle 207 oder die Moleküle 209 an den Fängermolekülen 206 anlagern, kann mittels Analyse der

Wellenlänge des Fluoreszenzlichts der Fluoreszenzmarker 208 oder 210 bestimmt werden.

Im Weiteren wird die Funktionalität des FluoreszenzBiosensorchips 200 beschrieben. Der Fluoreszenz-Biosensorchip
200 wird mit einer Lösung in Kontakt gebracht, welche unter
anderem die nachzuweisenden Moleküle 207 mit daran über
Linker-Moleküle gekoppelten Fluoreszenzmarkern 208 enthält.

Zu den Fängermolekülen 206 komplementäre Moleküle 207
hybridisieren mit den Fängermolekülen 206. Gegebenenfalls
wird ein geeigneter Spül- bzw. Wasch-Schritt durchgeführt.
Das Hybridisierungsereignis ist mittels Einstrahlung von
elektromagnetischer Strahlung des dritten

30 Wellenlängenbereichs, in dem die Fluoreszenzmarker 208 absorbieren, nachweisbar.

Nach erfolgter Absorption reemittieren die Fluoreszenzmarker 208 Licht eines vierten Wellenlängenbereichs, wobei das reemittierte Licht langwelliger ist als das absorbierte Licht. Sowohl das eingestrahlte Licht als auch das Fluoreszenzlicht treten durch die im Wesentlichen transparente Immobilisierungs-Schicht 204 hindurch und gelangen zu der optischen Filterschicht 203.

35

Die als organisches Kantenfilter ausgestaltete optische Filterschicht 203 ist als Sperrfilter für die anregende Lichtwellenlänge (dritter Wellenlängenbereich) ausgeführt. Das heißt, das Licht der eingestrahlten Wellenlänge wird von der optischen Filterschicht 203 im Wesentlichen vollständig absorbiert, wohingegen das Fluoreszenzlicht des vierten Wellenlängenbereichs durch die optische Filterschicht 203 im Wesentlichen ungeschwächt transmittiert wird.

Nach dem Hindurchtreten durch die im Wesentlichen 10 transparente Schaltkreis-Schicht 205 gelangt das Fluoreszenzlicht vorzugsweise zu derjenigen der Photodioden 202, die im Wesentlichen unterhalb desjenigen Fluoreszenzmarkers 208 angeordnet ist, von welchem das Fluoreszenzlicht emittiert wurde. Die Photodioden 202 sind 15 derart eingerichtet, dass damit elektromagnetische Strahlung des ersten Wellenlängenbereichs detektierbar ist. Indem die Fluoreszenzmarker 208 derart eingerichtet sind, dass zumindest ein Teil des vierten Wellenlängenbereichs 20 (derjenige Wellenlängenbereich, in dem die Fluoreszenzstrahlung liegt) innerhalb des ersten Wellenlängenbereichs liegt, ist die Photodiode 202 imstande, das Fluoreszenzlicht nachzuweisen. Dadurch wird einerseits ein Hybridisierungsereignis nachgewiesen, andererseits ist die Intensität des nachgewiesenen Fluoreszenzlichtes ein Maß 25 für die Zahl der angelagerten Moleküle, d.h. für den Grad der Komplementarität zwischen Fängermolekülen 206 und nachzuweisenden Molekülen 207.

Licht der anregenden Wellenlänge gelangt nicht durch die 30 optische Filterschicht 203 und ist daher nicht in den Photodioden 202 nachweisbar. Dadurch ist erfindungsgemäß eine Trennung des Fluoreszenzlichtes von dem anregenden Licht mittels der optischen Filterschicht 203 ermöglicht. Da Photodioden 202 einen sehr hohen Dynamikbereich aufweisen, 35 ist bei dem erfindungsgemäßen Fluoreszenz-Biosensorchip eine hohe Nachweisempfindlichkeit erreichbar. Unter einem hohen Dynamikumfang wird verstanden, dass von dem Detektor elektromagnetische Fluoreszenzstrahlung eines großen 40

Intensitätsbereichs messbar ist.

Die Ortsauflösung des Fluoreszenz-Biosensorchips 200 wird nicht, wie gemäß dem Stand der Technik, mittels einer Linsenoptik erzielt, sondern mittels elektrischer Auswahl eines Sensorbereiches auf der Immobilisierungs-Schicht 204, die im Wesentlichen oberhalb einer bestimmten Photodiode 202 angeordnet ist.

Wie in Fig. 2 gezeigt, ist ein Oberflächenabschnitt 211 der Immobilisierungs-Schicht 204 frei von Fängermolekülen 206, 10 sodass an der mindestens einen unterhalb dieses Oberflächenabschnittes 211 angeordneten Referenz-Detektions-Einrichtung 202a, ein Rauschsignal abnehmbar ist. Da oberhalb der Referenz-Detektions-Einrichtung 202a keine Fängermoleküle auf der Oberfläche der Immobilisierungs-Schicht 204 15 immobilisiert sind, können sich in diesem Oberflächenabschnitt 211 auch keine nachzuweisenden Moleküle 207 anlagern, sodass in diesem Oberflächenabschnitt 211 keine Fluoreszenzmarker 208 angeordnet sind. Daher gelangt keine 20 Fluoreszenzstrahlung auf die Referenz-Detektions-Einrichtung 202a. Hinsichtlich der parasitären, auf die Detektions-Einrichtungen 202, 202a einfallenden elektromagnetischen Strahlung (beispielsweise anregendes Licht oder Streulicht aus der Umgebung) gilt für die Referenz-Detektions-Einrichtung 202a das Gleiche wie für die Detektions-25 Einrichtungen 202. Daher ist an der Referenz-Detektions-Einrichtung 202a dasjenige Rauschsignal oder Untergrundsignal oder Nullsignal abnehmbar, das von der parasitären elektromagnetischen Strahlung herrührt, und das von den 30 Signalen aller anderen Detektions-Einrichtungen 202 abzuziehen ist, um ein Signal zu erhalten, das der Intensität des Fluoreszenzlichtes proportional ist. Diese Subtraktion wird mittels einer elektronischen Differenzschaltung durchgeführt.

35

Bezugnehmend auf **Fig. 3** wird ein Fluoreszenz-Biosensorchip 300 gemäß einem zweiten Ausführungsbeispiel der Erfindung beschrieben.

Der Fluoreszenz-Biosensorchip 300 weist ein Substrat 301, eine in dem Substrat angeordnete Detektions-Einrichtung 302 zum Erfassen von elektromagnetischer Strahlung, eine auf dem Substrat 301 angeordnete optische Filterschicht 303 und eine auf der optischen Filterschicht 303 angeordnete Immobilisierungs-Schicht 304 zum Immobilisieren von Fängermolekülen auf. Die Detektions-Einrichtung 302, die Filterschicht 303 und die Immobilisierungs-Schicht 304 sind in dem Fluoreszenz-Biosensorchip 300 integriert.

10

15

Die Funktionalität des Fluoreszenz-Biosensorchips 300 entspricht weitgehend dem des Fluoreszenz-Biosensorchips 200, der oben bezugnehmend auf Fig. 2 beschrieben ist. Daher wird an dieser Stelle nur auf diejenigen Merkmale eingegangen, die in der Fluoreszenz-Biosensorchip-Anordnung 300 abweichend von der Fluoreszenz-Biosensorchip-Anordnung 200 ausgestaltet sind.

So ist die optische Filterschicht 303 abweichend von der in 20 Fig. 2 gezeigten optischen Filterschicht 203 als Bandfilter ausgebildet. Der genaue Aufbau der optischen Filterschicht 303 wird weiter unten bezugnehmend auf Fig. 4 beschrieben.

Die Detektions-Einrichtung 302 ist wie in Fig. 3 gezeigt als
Photodiode 302 ausgebildet, die in das Substrat 301
integriert ist. Wie in Fig. 3 gezeigt, sind in das Substrat
301 weitere integrierte Schaltkreiselemente 304 eingebracht.
Der Silziumdioxid-Bereich 304a dient zum elektrischen
Isolieren benachbarter Photodioden 302. Die n-dotierten
Siliziumbereiche 304b, 304c sind Teil der Ansteuerelektronik,
mit der eine bestimmte Photodiode 302 ansteuerbar ist. Das
Substrat 301 ist ein p-dotiertes Silizium-Substrat.

Darüber hinaus ist eine Schaltkreis-Schicht 306 zwischen dem Substrat 301 und der optischen Filterschicht 303 angeordnet, wobei in die Schaltkreis-Schicht 306 mindestens ein elektrisches Bauelement 306a integriert ist, und wobei die Schaltkreis-Schicht 306 mit der Detektions-Einrichtung 302 elektrisch gekoppelt ist.

Wie in Fig. 3 gezeigt, bilden die integrierten Schaltkreiselemente 306a gemeinsam mit den n-dotierten Silizium-Bereichen 304b, 304c und dem p-dotierten Silizium-Substrat 301 eine transistorähnliche Anordnung aus, wobei mittels dieser transistorähnlichen Anordnung die Detektions-Einrichtung 302 elektrisch ansteuerbar ist.

Auf der Immobilisierungs-Schicht 305 sind eine Vielzahl von Fängermolekülen immobilisiert, von denen in Fig. 3 aus 10 Gründen der Einfachheit nur ein Fängermolekül 307 eingezeichnet ist. Das in Fig. 3 gezeigte Fängermolekül 307 ist ein DNA-Halbstrang, dessen Basen 307a in Fig. 3 schematisch eingezeichnet sind.

15

20

25

An das Fängermolekül 307 ist ein zu dem Fängermolekül 307 komplementäres nachzuweisendes Molekül 308 angekoppelt. Das nachzuweisende Molekül 308 weist einen Fluoreszenzmarker 309 auf. Bei dem Fängermolekül 307 und bei dem nachzuweisenden Molekül 308 handelt es sich um zwei zueinander komplementäre DNA-Halbstränge.

 $\mathcal{L}^{2}(\mathcal{S}_{i}) = \mathcal{L}^{2}(\mathcal{S}_{i}) + \mathcal{L}^{2}(\mathcal{S}_{i}) + \mathcal{L}^{2}(\mathcal{S}_{i}) + \mathcal{L}^{2}(\mathcal{S}_{i})$

Unter nochmaliger Bezugnahme auf Fig. 3 wird im Weiteren erläutert, auf welche Weise mittels des Fluoreszenz-Biosensorchips 300 ein Hybridisierungsereignis nachweisbar ist.

Elektromagnetische Strahlung eines dritten Wellenlängenbereichs 310, die beispielsweise von einer 30 externen elektromagnetischen Strahlungsquelle (nicht gezeigt in Fig. 3) bereitgestellt ist, trifft auf den Fluoreszenzmarker 309 und wird von diesem teilweise absorbiert. Der Fluoreszenzmarker 309 reemittiert elektromagnetische Fluoreszenzstrahlung eines vierten 35 Wellenlängenbereichs 311, wobei ein Teil der emittierten Fluoreszenzstrahlung auf den Fluoreszenz-Biosensorchip 300 gelangt. Die elektromagnetische Strahlung des vierten Wellenlängenbereichs 311 trifft auf die Filterschicht 303, die derart eingerichtet ist, dass die elektromagnetische

Strahlung des vierten Wellenlängenbereichs 311 zumindest teilweise durch die Filterschicht 303 transmittiert wird. Dieser Teil gelangt, wie in Fig. 3 gezeigt, zu der Photodiode 302 und wird dort erfasst. Die elektromagnetische Strahlung des vierten Wellenlängenbereichs 310 wird größtenteils an der optischen Filterschicht 303 reflektiert. Dadurch gelangt im Idealfall keine elektromagnetische Strahlung des dritten Wellenlängenbereichs 310 auf die Photodiode 302. Somit ist es erfindungsgemäß realisiert, dass ausschließlich 10 nachzuweisendes Fluoreszenzlicht des vierten Wellenlängenbereichs 311 bis zu der Detektions-Einrichtung 302 vordringt, wohingegen das Primärlicht des dritten Wellenlängenbereichs 310 nicht bis zu der Detektions-Einrichtung 302 vordringt.

15

20

25

30

Im Weiteren wird beschrieben, wie die optische Filterschicht 303 gemäß einem bevorzugten Ausführungsbeispiel ausgestaltet ist. Die optische Filterschicht 303 ist als Bandfilter ausgestaltet, das ein dielektrischer Interferenzfilter mit einer Schichtenfolge aus zwei Materialien ist, wobei ein erstes Material einen hohen Brechungsindex und ein zweites Material einen niedrigen Brechungsindex aufweist. Das erste Material mit einem hohen Brechungsindex ist Siliziumnitrid, und das zweite Material mit einem niedrigen Brechungsindex ist Siliziumdioxid. Das dielektrische Interferenzfilter gemäß dem beschriebenen bevorzugten Ausführungsbeispiel weist 31 alternierende Schichten aus abwechselnd Siliziumdioxid und Siliziumnitrid auf. Das vorliegende dielektrische Interferenzfilter wird durch folgende Nomenklatur beschrieben:

0,5H; L; (HL)14; 0,5H

Diese Nomenklatur ist wie folgt zu lesen: 35 Mit "H" ist eine Schicht aus dem hochbrechenden Material (d.h. aus einem Material mit einem hohen Brechungsindex), im Beispiel Siliziumnitrid, bezeichnet. Mit "L" ist eine Schicht aus dem niederbrechenden Material mit einem kleinen Brechungsindex bezeichnet, im vorliegenden Fall

- Siliziumdioxid. Mit der hochgestellten Zahl 14 ist angezeigt, dass 14 alternierende Doppelschichten aus abwechselnd der hochbrechenden und niederbrechenden Schicht vorgesehen sind. Die Schichtdicken sind in Vielfachen von •/4 (•:
- 5 Lichtwellenlänge im Medium) angegeben. Mit •/4 ist der vierte Teil der Lichtwellenlänge im Medium gemeint, d.h. der Quotient aus der Lichtwellenlänge im Vakuum und dem Brechungsindex des jeweiligen Mediums. Mit anderen Worten weist die erfindungsgemäße Filterschicht eine •/8-Schicht des
- 10 hochbrechenden Materials, eine •/4-Schicht des niederbrechenden Material, 14 Doppelschichten, wobei jede der Doppelschichten aus einem •/4-Plättchen des hochbrechenden Materials und einem •/4-Plättchen des niederbrechenden Materials aufgebaut ist, sowie eine •/8-Schicht des
- 15 hochbrechenden Materials auf. Dadurch wird ein
 Interferenzfilter mit einer Wellenlängenabhängigkeit der
 Transmission, wie sie in Fig. 4 gezeigt ist, erhalten. Wie in
 Fig. 4 gezeigt, reflektiert ein derartig ausgestalteter
 dielektrischer Interferenzfilter elektromagnetische Strahlung
- in dem Wellenlängenbereich zwischen 350 Nanometer und 390 Nanometer zu mehr als 99%. Insbesondere ist die Wellenlänge des Reflektionsmaximums, d.h. des Transmissionsminimums in Fig. 4, bei einem festgelegten Einfallswinkel der elektromagnetischen Strahlung mittels Justage der
- 25 Schichtdicke der Einzelschichten des dielektrischen Interferenzfilters einstellbar. Da die berechnete Transmission in Abhängigkeit der Wellenlänge, wie sie in Fig. 4 dargestellt ist, in einem relativ breiten Wellenlängenbereich zwischen 350 Nanometer und 390 Nanometer
 - ein ausgeprägtes Transmissionsminimum aufweist, ist ein derartiges Filter auch zum Unterdrücken des anregenden Lichtes breitbandiger Anregungsquellen wie z.B. Leuchtdioden geeignet. Sollen spektral noch breitere Lichtquellen verwendet werden, die beispielsweise auch bei
 - Jichtwellenlängen unterhalb der linken Flanke bei 350 Nanometer elektromagnetische Strahlung emittieren, so ist ein zusätzliches Filter erforderlich, um elektromagnetische Strahlung im unteren Wellenlängenbereich wegzufiltern. Dies

kann beispielsweise mittels eines geeigneten Kantenfilters realisiert sein.

In das in Fig. 4 gezeigte Diagramm ist als gestrichelte Linie auch das Emissionsspektrum von Coumarin eingezeichnet, wie es nach einer Anregung des Farbstoffes mit elektromagnetischer Strahlung der Wellenlänge 370 Nanometer erhalten wird. Wenngleich das Emissionsspektrum von Coumarin relativ breitbandig ist, so ist doch die linke Flanke des Emissionsspektrums von Coumarin deutlich langwelliger, als 10 die rechte Grenze desjenigen Wellenlängenbereichs, in dem das oben beschriebene optische Filter annähernd totalreflektiert. Der langwellige Durchlassbereich des dielelektrischen Interferenzfilters ist möglichst flach zu gestalten, d.h. es ist besonders günstig, über den gesamten Fluoreszenzbereich 15 des Farbstoffs hinweg eine annähernd konstante und möglichst hohe Transmission zu gewährleisten. Dies kann mittels Variation der Schichtdicken der dielektrischen Filterschicht sowie der dafür verwendeten Materialien geschehen. Das beschriebene dielektrische Interferenzfilter ist für den 20 erfindungsgemäßen Fluoreszenz-Biosensorchip geeignet, wenn als Fluoreszenzmarker Coumarin verwendet wird. Unter nochmaliger Bezugnahme auf Fig. 4 ist die Transmission des beschriebenen dielektrischen Interferenzfilters oberhalb etwa 25 415 Nanometer größer als 75%, oberhalb von 450 Nanometer größer als 92%. Dadurch wird das Fluoreszenzlicht des Farbstoffes Coumarin beim Durchgang durch die optische Filterschicht nur wenig geschwächt. Es ist nochmals zu betonen, dass für die Funktionalität des dielektrischen Interferenzfilters eine möglichst große Flankensteilheit 30 (also ein möglichst sprunghafter Anstieg von einer Transmission Null auf eine Transmission eins) vorteilhaft ist, um das Anregungslicht gut zu unterdrücken und das Emissionsspektrum möglichst geringfügig zu dämpfen.

35

Im Weiteren wird der in Fig. 5A, Fig. 5B gezeigte Fluoreszenz-Biosensorchip 500 beschrieben.

In Fig. 5A ist eine Draufsicht auf den Fluoreszenz-Biosensorchip 500 gezeigt, und in Fig. 5B ist eine Querschnittsansicht eines Teil des in Fig. 5A gezeigten Fluoreszenz-Biosensorchips 500 entlang der Schnittlinie I-I'

gezeigt. Der in Fig. 5A, Fig. 5B gezeigte Fluoreszenz-Biosensorchip 500 ist ein drittes bevorzugtes Ausführungsbeispiel des erfindungsgemäßen Fluoreszenz-Biosensorchips und unterscheidet sich nur hinsichtlich einiger Aspekte von den zuvor beschriebenen Fluoreszenz-

Biosensorchips 200, 300. Im Weiteren wird nicht die komplette 10 Funktionalität des Fluoreszenz-Biosensorchips 500 erläutert, " vielmehr wird nur auf die ergänzenden Merkmale verglichen mit den zuvor beschriebenen Ausführungsbeispielen schwerpunktmäßig eingegangen.

15

20

In Fig. 5B ist ein Fluoreszenz-Biosensorchip 500 mit einem Substrat 501, mindestens einer in oder auf dem Substrat 501 angeordneten Detektions-Einrichtung 502 zum Erfassen von elektromagnetischer Strahlung, einer auf dem Substrat 501 angeordneten optischen Filterschicht 503 und einer auf der optischen Filterschicht 503 angeordneten Immobilisierungs-Schicht 505 zum Immobilisieren von Fängermolekülen gezeigt. Die Detektions-Einrichtungen 502, die optische Filterschicht 503 und die Immobilisierungs-Schicht 505 sind in dem Fluoreszenz-Biosensorchip 500 integriert.

Das Substrat 501 ist ein p-dotiertes Silizium-Substrat. Die Detektions-Einrichtungen 502 sind in das Substrat 501 integrierte Silizium-Photodioden. Die optische Filterschicht 503 ist gemäß dem bezugnehmend auf Fig. 5A, Fig. 5B 30 beschriebenen Ausführungsbeispiel ein dielektrisches Interferenzfilter. Die Immobilisierungs-Schicht 505 ist eine dünne Goldschicht. Neben den Silizium-Photodioden 502 sind in das Substrat 501 Siliziumdioxid-Bereiche 504 eingebracht.

35

Zwischen dem Substrat 501 und der optischen Filterschicht 503 ist ferner eine Schaltkreis-Schicht 504 angeordnet, wobei in die Schaltkreis-Schicht 504 mindestens ein elektrisches Bauelement 506a integriert ist und wobei die SchaltkreisSchicht 504 mit der mindestens einen Detektions-Einrichtung 502 elektrisch gekoppelt ist. Diese Kopplung ist in Fig. 5B explizit gezeigt. Die integrierten Schaltkreiselemente 506a, die in Fig. 5B eingezeichnet sind, sind elektrisch leitfähige Verbindungsmittel, die eine Ankopplung der Silizium-Photodioden 502 an eine Ansteuerelektronik ermöglichen.

5

10

Der Fluoreszenz-Biosensorchip 500 weist ferner eine Vielzahl von Fängermolekülen 507 auf, die mit der Immobilisierungs-Schicht 505 gekoppelt sind, und die derart eingerichtet sind, dass an die Fängermoleküle 507 ein zu dem Fängermolekül 507 komplementäres nachzuweisendes Molekül 508 ankoppelbar ist.

Mit der Bezugsziffer 507a sind die einzelnen Basen

bezeichnet, welche die als DNA-Halbstrang ausgebildeten
Fängermoleküle 507 aufweisen. Wie in Fig. 5B gezeigt, sind zu
den DNA-Halbsträngen 507 komplementäre nachzuweisende
Moleküle 508, ebenfalls DNA-Halbstränge, an Fängermolekülen
507 angelagert. Da auch die nachzuweisenden Moleküle 508 DNAHalbstränge sind, weisen auch die nachzuweisenden Moleküle
508 einzelne Basen 508a auf. An den nachzuweisenden Molekülen
508 sind Fluoreszenzmarker 509 angekoppelt.

Darüber hinaus ist in mindestens einen Oberflächenbereich des Fluoreszenz-Biosensorchips 500 mindestens ein Isolations-25 Graben 510 zum optischen Isolieren benachbarter Detektions-Einrichtungen 502 eingebracht, welcher mindestens eine Isolations-Graben 510 sich durch die Immobilisierungs-Schicht 505 hindurch bis in einen Bereich der optischen Filterschicht 503 hinein erstreckt, derart, dass unterhalb jedes Bereichs 30 zwischen zwei benachbarten Isolations-Gräben 510 jeweils eine Detektions-Einrichtung 502 angeordnet ist. Wie in Fig. 5B gezeigt, ist der mindestens eine Isolations-Graben 510 mit einer Schicht aus einem absorbierenden Material 511 bedeckt, wobei das absorbierende Material 511 derart eingerichtet ist, 35 dass es elektromagnetische Strahlung absorbiert.

Die Funktionalität des Isolations-Grabens 510 und des in dem Isolations-Graben 510 eingebrachten absorbierenden Materials

511 wird im Folgenden bezugnehmend auf Fig. 5B und insbesondere die darin schematisch eingezeichnete elektromagnetische Fluoreszenzstrahlung 512, die von dem in Fig. 5B links angeordneten Fluoreszenzmarker 509 ausgesandt wird, erläutert. Wie oben angesprochen, entsprechen die verschiedenen Detektions-Einrichtungen 502 in dem Substrat 501 den Sensorpixeln auf der Oberfläche der Immobilisierungs-Schicht 505. Anschaulich gehören all diejenigen auf der Oberfläche der Immobilisierungs-Schicht 505 immobilisierten Fängermoleküle 507 zu derjenigen Detektions-Einrichtung 502, 10 die im Wesentlichen unterhalb dieses Fängermoleküls 507 angeordnet ist. So ist bezugnehmend auf Fig. 5B die linke Detektions-Einrichtung 502 zum Nachweis von Fluoreszenzstrahlung vorgesehen, die von dem linken auf der Oberfläche der Immobilisierungs-Schicht 505 immobilisierten 15 Fängermolekül 507 ausgeht. Und die rechte in Fig. 5B gezeigte Detektions-Einrichtung 502 dient dem Nachweis von Fluoreszenzstrahlung, die von einem Fluoreszenzmarker 509 herrührt, der an ein nachzuweisendes Molekül 508 angebunden ist, welches nachzuweisende Molekül 508 an ein Fängermolekül 20 507 angedockt ist, das sich im Wesentlichen oberhalb der rechten Detektions-Einrichtung 502 befindet.

Wie in Fig. 5B gezeigt, wird von dem linken Fluoreszenzmarker 509 elektromagnetische Fluoreszenzstrahlung 512 ausgesendet. 25 Gemäß dem oben Gesagten sollte diese Fluoreszenzstrahlung, die eine indirekte Folge eines Hybridisierungsereignisses an dem linken auf der Oberfläche der Immobilisierungs-Schicht 505 angeordneten Fängermoleküls 507 ist, von der linken Detektions-Einrichtung 502 nachgewiesen werden. Die 30 elektromagnetische Fluoreszenzstrahlung 512 wird aber in eine derartige Richtung ausgesendet, dass diese nicht auf die linke in Fig. 5B gezeigte Detektions-Einrichtung 502, sondern eher in Richtung der rechten Detektions-Einrichtung 502 abgestrahlt wird. Würde die elektromagnetische 35 Fluoreszenzstrahlung 512 von der rechten Detektions-Einrichtung 502 nachgewiesen, so würde dies die Messung verfälschen.

Dieses Phänomen wird als optisches Übersprechen zwischen zwei benachbarten Sensorfeldern, die zu der linken bzw. der rechten Detektions-Einrichtung 502 gehören, bezeichnet. Mit dem teilweise mit dem absorbierenden Material 511 gefüllten Isolations-Graben 510 ist erreicht, dass das unerwünschte Phänomen des optischen Übersprechens vermindert ist.

5

Wie in Fig. 5B gezeigt, wird die elektromagnetische Fluoreszenzstrahlung 512 zwar in Richtung der rechten in Fig. 5B gezeigten Silizium-Photodiode 502 ausgesandt, jedoch muss 10 diese elektromagnetische Fluoreszenzstrahlung 512 auf dem Weg zu der rechten Silizium-Photodiode 502 den Isolations-Graben 510 und das darin teilweise eingefüllte absorbierende Material 511 durchlaufen. Das absorbierende Material 511 ist derart eingerichtet, dass dadurch elektromagnetische 15 Strahlung insbesondere in dem Wellenlängenbereich der Fluoreszenzstrahlung der verwendeten Fluoreszenzmarker 509 absorbiert wird. Dadurch wird die elektromagnetische Fluoreszenzstrahlung 512 in dem absorbierenden Material 511 20 in dem Isolations-Graben 510 absorbiert und kann daher nicht zu der rechten in Fig. 5B gezeigten Detektions-Einrichtung 502 gelangen: Dadurch ist optisches Übersprechen zwischen benachbarten Sensorfeldern vermindert.

25 Wie jedoch in Fig. 5B gezeigt ist, kann mittels der mit einem absorbierenden Material 511 gefüllten Isolations-Gräben 510 nicht vollständig optisches Übersprechen verhindert werden. Diesbezüglich sei auf die elektromagnetische Fluoreszenzstrahlung 513 verwiesen, die von dem rechten in Fig. 5B gezeigten Fluoreszenzmarker 509 ausgesendet wird. Die 30 Fluoreszenzstrahlung 513 wird ebenfalls nicht in Richtung der im Wesentlichen darunter liegenden Detektions-Einrichtung 502 ausgesendet, sondern eher in Richtung der links des Fluoreszenzmarkers 509 angeordneten Detektions-Einrichtung 502. Aufgrund der in Fig. 5B gezeigten geometrischen 35 Gegebenheiten wird die elektromagnetische Fluoreszenzstrahlung 513 nicht von dem absorbierenden Material 511 in dem Isolations-Graben 510 absorbiert. Diese Ausführungen zeigen, dass der Isolations-Graben 510 und das

absorbierende Material 511 allein optisches Übersprechen nicht in jedem Falle vollständig unterbinden.

Um optisches Übersprechen weiter zu vermindern, ist in mindestens einem Bereich der Schaltkreis-Schicht 504 eine Barriereschicht 514 aus einem absorbierenden Material angeordnet, derart, dass unterhalb jedes Bereichs zwischen zwei benachbarten Barriereschichten 514 jeweils eine Detektions-Einrichtung 502 angeordnet ist, wobei das 10 absorbierende Material derart eingerichtet ist, dass es elektromagnetische Strahlung absorbiert. Die Barriereschicht 514 absorbiert die elektromagnetische Fluoreszenzstrahlung 513. Dadurch ist mittels der Barriereschicht 514 das nachteilige Phänomen des optischen Übersprechens vermindert. Es ist diesbezüglich darauf hinzuweisen, dass auch die integrierten Schaltkreiselemente 506a neben ihrer elektronischen Funktionalität (beispielsweise als elektrisch leitfähige Verbindungsmittel) auch die Funktion der absorbierenden Barriereschicht 514 mitübernehmen können. Dazu 20 sind die integrierten Schaltkreiselemente 506a aus einem elektromagnetische Strahlung absorbierenden und/oder reflektierenden Material herzustellen. Die integrierten Schaltkreiselemente 506a können also eine Doppelfunktion wahrnehmen: Einerseits können sie als elektronische Schaltkreiselemente dienen, andererseits können sie dazu 25 beitragen, das Phänomen des optischen Übersprechens zu vermindern.

In Fig. 5A ist eine Draufsicht auf den Fluoreszenz
Biosensorchip 500 gemäß dem beschriebenen Ausführungsbeispiel
der Erfindung gezeigt. Insbesondere ist der Isolations-Graben
510, der gemäß dem gezeigten Ausführungsbeispiels als
zusammenhängender Isolationsbereich ausgestaltet ist, in
Fig. 5A gezeigt. Ferner sind die einzelnen Sensorfelder 515,

516, die durch die Bereiche zwischen den Isolations-Gräben
510 definiert sind, und die mit Fängermolekülen 507 belegt
sind, in Fig. 5A gezeigt. Insbesondere sind die Sensorfelder
515 und 516 gezeigt, die in Fig. 5B als vergrößerter
Querschnitt entlang der Schnittlinie I-I' gezeigt sind.

Im Folgenden wird das Schaltschema zum Ansteuern und Abtasten jeder einzelnen der Detektions-Einrichtungen gemäß einem bevorzugten Ausführungsbeispiel des Fluoreszenz-

Biosensorchips 600 beschrieben, der in Fig. 6A schematisch in Draufsicht gezeigt ist. In Fig. 6A ist eine im Wesentlichen matrixförmige Anordnung von Sensorfeldern 601 gezeigt. Dabei entspricht die in Fig. 6A gewählte Darstellung im Wesentlichen der Darstellung des Fluoreszenz-Biosensorchips 500 in Fig. 5A. In Fig. 5A nicht gezeigt und in Fig. 6A im Detail gezeigt ist die Schaltungstechnik, mittels derer jedes einzelne der Sensorfelder 601 des Fluoreszenz-Biosensorchips 600 ansteuerbar ist. Die Ansteuerbarkeit einer bestimmten

Zeile und die Ansteuerbarkeit einer bestimmten Spalte der matrixförmig angeordneten Sensorfelder 601 ist mittels der Ansteuerschaltung 602 realisiert.

Mittels der Ansteuerschaltung 602 ist mittels der Zeilenauswahl-Leitungen 603 und der Spaltenauswahl-Leitungen 604 jedes einzelne Sensorfeld 601 ansteuerbar.

Es ist zu betonen, dass die Zahl der Zeilenauswahl-Leitungen 603 (im Beispiel sechs) und der Spaltenauswahl-Leitungen 604 (im Beispiel sechs) von der Anzahl der Sensorfelder 601 abhängt. Ist die Zahl der Spalten des Sensorfeldes gleich 2^m, so sind 2m Zeilenauswahl-Leitungen 603 erforderlich. Ist die Zahl der Spalten der Sensorfelder 601 gleich 2ⁿ, so sind zum sequentiellen Ansteuern aller Spalten 2n Spaltenauswahl-Leitungen 604 erforderlich.

30

25

20

Im in Fig. 6A gezeigten Beispiel sind 8 = 2' Zeilen und 8 = 2' Spalten von Sensorfeldern 601 gezeigt, sodass $6 = 2 \times 3$ Zeilenauswahl-Leitungen 603 und $6 = 2 \times 3$ Spaltenauswahl-Leitungen 604 vorgesehen sind.

35

Wie in Fig. 6A gezeigt, sind die einzelnen Zeilenauswahl-Leitungen 603 voneinander teilweise abhängig. Die Zeilenauswahl-Leitungen 603 sind mit Zl, Zl, Z2, Z2, Z3 und Z3 bezeichnet. Dies bedeutet, dass wenn das Signal der

Zeilenauswahl-Leitung Zl auf einem logischen Wert "1" ist, das Signal der Zeilenauswahl-Leitung ZI auf einem logischen Wert "O" ist. Und wenn das Signal der Zeilenauswahl-Leitung Z1 auf einem logischen Wert "O" ist, ist das Signal der Zeilenauswahl-Leitung ZI auf einem logischen Wert "1". Die Signale an Zl und an Zl liegen also immer auf zueinander entgegengesetzten logischen Werten. Analog liegen auch die Zeilenauswahl-Leitungen 603 Z2 und Z2 auf zueinander komplementären Werten. Auch die Zeilenauswahl-Leitungen 603 Z3 und Z3 liegen auf zueinander komplementären Werten. 10 Dasselbe gilt für die Spaltenauswahl-Leitungen 604, die mit S1, S1, S2, S2, S3 und S3 bezeichnet sind. Die Signale an S1 und SI liegen stets auf zueinander komplementären logischen Werten, die Signale an S2 und S2 liegen stets auf zueinander komplementären Werten und die Signale an S3 und S3 liegen 15 stets auf zueinander komplementären Werten.

Jedes der Sensorfelder 601 ist mit drei der gemäß dem in Fig. 6A gezeigten Ausführungsbeispiel sechs Zeilenauswahl-Leitungen 603 gekoppelt und ist mit drei der gemäß dem in Fig. 6A gezeigten Ausführungsbeispiel sechs Spaltenauswahl-Leitungen 604 gekoppelt.

20

Im Folgenden wird exemplarisch erläutert, wie das in Fig. 6A
25 gezeigte ausgewählte Sensorfeld 601a mittels der gezeigten
Ansteuerschaltung 602 ansteuerbar ist.

Wie in Fig. 6B gezeigt, ist das ausgewählte Sensorfeld 601a mit einer ersten, einer zweiten und einer dritten

Zeilenauswahl-Leitung 603a, 603b und 603c gekoppelt. Wiederum bezugnehmend auf Fig. 6A ist die erste Zeilenauswahl-Leitung 603a Z1, die zweite Zeilenauswahl-Leitung 603b Z2 und die dritte Zeilenauswahl-Leitung 603c Z3. Darüber hinaus ist das ausgewählte Sensorfeld 601a mit einer ersten, einer zweiten und einer dritten Spaltenauswahl-Leitung 604a, 604b, 604c gekoppelt. Bezugnehmend auf Fig. 6A sind dies die erste

Spaltenauswahl-Leitung 604a SI, die zweite Spaltenauswahl-Leitung 604b S2 und die dritte Spaltenauswahl-Leitung 604c S3.

5 Innerhalb des ausgewählten Sensorfeldes 601a ist eine Photodiode 605 angeordnet, die im Wesentlichen einer der in Fig. 5A gezeigten Detektions-Einrichtungen 502 entspricht.

In Fig. 6B ist schematisch mit zwei Pfeilen mit der Bezugsziffer 606 angedeutet, dass die Photodiode 605 derart 10 eingerichtet ist, dass damit elektromagnetische Fluoreszenzstrahlung nachweisbar ist. Trifft auf die Photodiode 605 elektromagnetische Strahlung 606 ein, so andern sich die elektrischen Eigenschaften der Photodiode 605 in charakteristischer Art und Weise und es liegt an der 15 Source eines mit der Photodiode 605 gekoppelten ersten Transistors 607a ein elektrisches Signal an. Dieses Signal kann den ersten Transistor 607a nur dann passieren, wenn an dem Gate-Bereich des ersten Transistors 607a ein Spannungssignal anliegt und daher zwischen dem Source-Bereich 20 und dem Drain-Bereich ein leitender Kanal ausgebildet ist, d.h. wenn an der ersten Spaltenauswahl-Leitung 604a ein Signal mit einem logischen Wert "1" anliegt, also wenn an Si ein Signal mit einem logischen Wert "1" anliegt. Ist dies der Fall, so kann das elektrische Signal der Photodiode 605 von 25 dem Source-Bereich zu den Drain-Bereich des Transistors 607a gelangen und gelangt von dort weiter zu dem Source-Bereich des zweiten Transistors 607b.

Das elektrische Signal, das an dem Source-Bereich des zweiten Transistors 607b anliegt, kann nur dann zu dem Drain-Bereich des zweiten Transistors 607b gelangen, wenn an dem Gate-Bereich des Transistors zweiten 607b ein Spannungssignal anliegt und daher zwischen dem Source-Bereich und dem Drain-Bereich ein leitender Kanal ausgebildet ist, d.h. wenn das an der zweiten Spaltenauswahl-Leitung 604b anliegende elektrische Signal einen logischen Wert "1" aufweist, also wenn an S2 ein Signal mit einem logischen Wert "1" anliegt.

In diesem Fall gelangt das elektrische Signal von dem Source-Bereich des zweiten Transistors 607b zu dem Drain-Bereich des zweiten Transistors 607b und von dort aus zu dem Source-Bereich des dritten Transistors 607c. Das an dem Source-Bereich des dritten Transistors 607c anliegende elektrische Signal kann nur dann zu dem Drain-Bereich des dritten Transistors 607c gelangen, wenn an dem Gate-Bereich des dritten Transistors 607c ein Spannungssignal anliegt und daher zwischen dem Source-Bereich und dem Drain-Bereich ein leitender Kanal ausgebildet ist, d.h. wenn an der dritten 10 Spaltenauswahl-Leitung 604c und damit an S3 ein elektrisches Signal mit einem logischen Wert "1" anliegt. Ist dies der Fall, so gelangt das elektrische Signal von dem Source-Bereich des dritten Transistors 607c zu dem Drain-Bereich des dritten Transistors 607c und von dort aus zu dem elektrischen 15 Knoten 608. Dadurch ist die das ausgewählte Sensorfeld 601a aufweisende sechste Spalte von Sensorfeldern 601 ausgewählt. Mit anderen Worten ist die auszuwählende Spalte der Sensorfelder 601 von den an den Spaltenauswahl-Leitungen 603 anliegenden logischen Werten abhängig. 20

Um das ausgewählte Sensorfeld 601a auszuwählen, ist neben der Auswahl der entsprechenden Spalte von Sensorfeldern 601 auch die Auswahl der korrekten Zeile von Sensorfeldern 601 erforderlich. Im Weiteren wird beschrieben, wie eine Zeile 25 von Sensorfeldern 601 auswählbar ist. Der in Fig. 6B gezeigte elektrische Knotenpunkt 608 ist mit dem Source-Bereich eines vierten Transistors 609a gekoppelt. Das an dem Source-Bereich des vierten Transistors 609a anliegende elektrische Signal kann nur dann zu dem Drain-Bereich des vierten Transistors 30 609a gelangen, wenn an dem Gate-Bereich des vierten Transistors 609a ein Spannungssignal anliegt und daher zwischen dem Source-Bereich und dem Drain-Bereich ein leitender Kanal ausgebildet ist, d.h. genau dann, wenn an der mit dem Gate-Bereich des vierten Transistors 609a gekoppelten 35 ersten Zeilenauswahl-Leitung 603a ein elektrisches Signal mit einem logischen Wert "1" anliegt, also wenn an Zl ein elektrisches Signal mit einem logischen Wert "1" anliegt. Ist dies der Fall, so kann das an dem Source-Bereich des vierten

Transistors 609a anliegende elektrische Signal zu dem Drain-Bereich des vierten Transistors 609a gelangen und kann von dort aus zu dem Source-Bereich des fünften Transistors 609b gelangen. Das an dem Source-Bereich des fünften Transistors 609b anliegende elektrische Signal kann genau dann zu dem Drain-Bereich des fünften Transistors 609b gelangen, wenn die mit dem Gate-Bereich des fünften Transistors 609b gekoppelte zweite Zeilenauswahl-Leitung 603b mit einem elektrischen Signal mit einem logischen Wert "1" belegt ist. Das bedeutet, dass an der mit Z2 bezeichneten zweite Zeilenauswahl-Leitung 10 603b ein elektrisches Signal mit einem logischen Wert "1" anliegen muss. In diesem Falle gelangt das an dem Source-Bereich des fünften Transistors 609b anliegende elektrische Signal zu dem Drain-Bereich des fünften Transistors 609b und von dort aus zu dem Source-Bereich des damit gekoppelten 15 sechsten Transistors 609c. Wiederum kann das an dem Source-Bereich des sechsten Transistors 609c anliegende elektrische Signal nur dann zu dem Drain-Bereich des sechsten Transistors 609c gelangen, wenn an dem Gate-Bereich des sechsten 20 Transistors 609c ein Spannungssignal anliegt und daher zwischen dem Source-Bereich und dem Drain-Bereich ein leitender Kanal ausgebildet ist, d.h. wenn an der dritten Zeilenauswahl-Leitung 603c ein elektrisches Signal mit einem logischen Wert "1" anliegt, also wenn an Z3 ein elektrisches Signal mit einem logischen Wert "1" anliegt. Nur in diesem 25 Fall kann das an dem Source-Bereich des sechsten Transistors 609c anliegende elektrische Signal zu dem Drain-Bereich des sechsten Transistors 609c gelangen. Ist auch diese Bedingung erfüllt, so ist die dem ausgewählten Sensorfeld 601a zugehörige zweite Zeile von Sensorfeldern 601 ausgewählt. 30

Das ausgewählte Sensorfeld 601a ist also genau dann ausgewählt, wenn an der ersten Spaltenauswahl-Leitung 604a Si und an der zweiten Spaltenauswahl-Leitung 604b S2 und an der dritten Spaltenauswahl-Leitung 604c S3 und an der ersten Zeilenauswahl-Leitung 603a Zl und an der zweiten Zeilenauswahl-Leitung 603b Z2 und an der dritten Zeilenauswahl-Leitung 603c Z3 jeweils ein elektrisches

Signal mit einem logischen Wert "1" anliegt. Liegt auch nur an einer der sechs genannten Auswahl-Leitungen 603a, 603b, 603c, 604a, 604b, 604c ein elektrisches Signal mit einem logischen Wert "0" an, so ist das entsprechende Sensorfeld nicht ausgewählt. Sind sowohl Zeile als auch Spalte des ausgewählten Sensorfeldes 601a ausgewählt, so gelangt das von der Photodiode 605 detektierte elektrische Signal zu dem Mittel zum Erfassen des elektrischen Stroms 610 bzw. zu dem Mittel zum Erfassen der elektrischen Spannung 611. Dadurch ist ein bestimmtes ausgewähltes Sensorfeld 601a auswählbar und die Stärke des an der Detektions-Einrichtung 605 des ausgewählten Sensorfeldes 601a anliegenden elektrischen Sensorsignals auslesbar.

In Fig. 7 ist ein bevorzugtes Ausführungsbeispiels einer 15 Fluoreszenz-Biosensorchip-Anordnung 700 gezeigt, die im Weiteren näher erläutert wird. Die Fluoreszenz-Biosensorchip-Anordnung 700 weist einen Fluoreszenz-Biosensorchip 700a und eine elektromagnetische Strahlungsquelle 705 auf. Der Fluoreszenz-Biosensorchip 700a weist ein Substrat 701, sechs in dem Substrat 701 angeordnete Detektions-Einrichtungen 702 zum Erfassen von elektromagnetischer Strahlung eines ersten Wellenlängenbereichs, eine auf dem Substrat 701 angeordnete optische Filterschicht 703 zum Absorbieren und/oder Reflektieren von elektromagnetischer Strahlung eines zweiten 25 Wellenlängenbereichs und eine auf der optischen Filterschicht 703 angeordnete Immobilisierungs-Schicht 704 zum Immobilisieren von Fängermolekülen auf. Die Detektions-Einrichtungen 702, die optische Filterschicht 703 und die Immobilisierungs-Schicht 704 sind in dem Fluoreszenz-30 Biosensorchip 700a integriert. Die elektromagnetische Strahlungsquelle 705 ist derart eingerichtet, dass mittels der elektromagnetischen Strahlungsquelle 705 ein Oberflächenbereich des Fluoreszenz-Biosensorchips 700a mit elektromagnetischer Strahlung eines dritten 35 Wellenlängenbereichs bestrahlbar ist.

Wie in Fig. 7 gezeigt, weist der Fluoreszenz-Biosensorchip 700a eine Schaltkreis-Schicht 706 auf, die zwischen dem Substrat 701 und der optischen Filterschicht 703 angeordnet ist.

Die elektromagnetische Strahlungsquelle 705 ist ein Laser.

5

Gemäß dem in Fig. 7 gezeigten Ausführungsbeispiel der Fluoreszenz-Biosensorchip-Anordnung 700 weist der Fluoreszenz-Biosensorchip 700a eine Vielzahl von Fängermolekülen 707 auf, die mit der Immobilisierungs-Schicht 10 704 gekoppelt sind, und die derart eingerichtet sind, dass an die Fängermoleküle 707 ein zu dem Fängermolekül 707 komplementäres nachzuweisendes Molekül 708 ankoppelbar ist. Jedes nachzuweisende Molekül 708 weist einen Fluoreszenzmarker 709 auf, der derart eingerichtet ist, dass 15 er zumindest teilweise elektromagnetische Strahlung des dritten Wellenlängenbereichs absorbiert und nach erfolgter Absorption elektromagnetische Strahlung eines vierten Wellenlängenbereichs emittiert. Zumindest ein Teil des dritten Wellenlängenbereichs liegt außerhalb des vierten 20 Wellenlängenbereichs und zumindest ein Teil des vierten Wellenlängenbereichs liegt innerhalb des ersten Wellenlängenbereichs. Zumindest ein Teil des ersten Wellenlängenbereichs liegt außerhalb des zweiten Wellenlängenbereichs. Auch sind in Fig. 7 Moleküle 710 mit Fluoreszenzmarkern 711 gezeigt, die zu den Fängermolekülen 25 707 nicht komplementär sind und daher an diese nicht ankoppeln.

In diesem Dokument sind folgende Veröffentlichungen zitiert:

- [1] WO 99/38612
- 5 [2] WO 00/12759
 - [3] WO 99/27140
- [4] Vo-Dinh, T (1998) "Development of a DNA biochip:
 10 principle and applications" Sensors and Actuators B51:5259
- [5] Kong, SH, Correia, G, de Graaf, G, Bartek, M, Wolfenbuttel, RF (1998) "CMOS compatible optical sensors with thin film interference filters: fabrication and characterization" Workshop on Semiconductor Advances on Future Electronics SAFE'98, 291-294 (http://www.stw.nl/programmas/safe/safe98/proceedings/kong.pdf)

20

- [6] US 5 648 653
- [7] DE 197 31 479 A1
- 25 [8] DE 199 40 752 A1
 - [9] DE 199 40 751 A1
 - [10] DE 100 38 080 A1

- [11] JP 2000235035 A
- [12] WO 01/03833 A1
- 35 [13] DE 199 47 616 A1

Bezugszeichenliste

100 Fluoreszenz-Biosensorchip

- 101 Lichtquelle
- 5 101a Licht
 - 102 Lichtquellenfilter
 - 103 Biochip
 - 104 Linse
 - 105 Sensorfilter
- 10 106 CCD-Sensoranordnung
 - 110 Fluoreszenz-Biosensorchip
 - 111 Lichtquelle
 - 111a Licht
 - 112 optisches Element
- 15 113 Lichtquellenfilter
 - 114 Reflektor-Element
 - 115 Probenhalter
 - 116 Kavitäten
 - 117 Sensorfilter
- 20 118 Photodetektoren
 - 119 Biochip
 - 200 Fluoreszenz-Biosensorchip
 - 201 Substrat
 - 202 Detektions-Einrichtung
- 25 202a Referenz-Detektions-Einrichtung
 - 203 optische Filterschicht
 - 204 Immobilisierungs-Schicht
 - 205 Schaltkreis-Schicht
 - 206 Fängermolekül
- 30 207 nachzuweisendes Molekül
 - 208 Fluoreszenzmarker
 - 209 Moleküle
 - 210 Fluoreszenzmarker
 - 211 von Fängermolekülen freier Oberflächenabschnitt
- 35 300 Fluoreszenz-Biosensorchip
 - 301 p-dotiertes Silizium-Substrat
 - 302 Detektions-Einrichtung
 - 303 optische Filterschicht
 - 304 integrierte Schaltkreiselemente

58

304a Siliziumdioxid-Bereich 304b n-dotierter Silizium-Bereich 304c n-dotierter Silizium-Bereich 305 Immobilisierungs-Schicht 5 306 Schaltkreis-Schicht 306a integrierte Schaltkreiselemente 307 Fängermolekül 307a Basen 308 nachzuweisendes Molekül 309 Fluoreszenzmarker 10 310 elektromagnetische Strahlung eines dritten Wellenlängen-Bereichs 311 elektromagnetische Strahlung eines vierten Wellenlängen-Bereichs 15 500 Fluoreszenz-Biosensorchip 501 p-dotiertes Silizium-Substrat 502 Detektions-Einrichtungen 503 optische Filterschicht 504 Siliziumdioxid-Bereich 20 505 Immobilisierungs-Schicht 506 Schaltkreis-Schicht 506a integrierte Schaltkreiselemente 507 Fängermolekül 507a Basen 25 508 nachzuweisendes Molekül 508a Basen 509 Fluoreszenzmarker 510 Isolations-Graben 511 absorbierendes Material 30 512 elektromagnetische Fluoreszenzstrahlung 513 elektromagnetische Fluoreszenzstrahlung 514 Barriere-Schicht 515 Sensorfeld 516 Sensorfeld 35 600 Fluoreszenz-Biosensorchip 601 Sensorfeld 601a ausgewähltes Sensorfeld

602 Ansteuerschaltung

603 Zeilenauswahl-Leitungen

- 603a erste Zeilenauswahl-Leitung
- 603b zweite Zeilenauswahl-Leitung
- 603c dritte Zeilenauswahl-Leitung
- 604 Spaltenauswahl-Leitungen
- 5 604a erste Spaltenauswahl-Leitung
 - 604b zweite Spaltenauswahl-Leitung
 - 604c dritte Spaltenauswahl-Leitung
 - 605 Photodiode
 - 606 Pfeile
- 10 607a erster Transistor
 - 607b zweiter Transistor
 - 607c dritter Transistor
 - 608 elektrischer Knotenpunkt
 - 609a vierter Transistor
- 15 609b fünfter Transistor
 - 609c sechster Transistor
 - 610 Mittel zum Erfassen des elektrischen Stroms
 - 611 Mittel zum Erfassen der elektrischen Spannung
 - 700 Fluoreszenz-Biosensorchip-Anordnung
- 20 700a Fluoreszenz-Biosensorchip
 - 701 Substrat
 - 702 Detektions-Einrichtung
 - 703 optische Filterschicht
 - 704 Immobilisierungs-Schicht
- 25 705 elektromagnetische Strahlungsquelle
 - 706 Schaltkreis-Schicht
 - 707 Fängermolekül
 - 708 nachzuweisendes Molekül
 - 709 Fluoreszenzmarker
- 30 710 Moleküle
 - 711 Fluoreszenzmarker

Patentansprüche

- 1. Fluoreszenz-Biosensorchip
- o mit einem Substrat;
- 5 o mit mindestens einer in oder auf dem Substrat angeordneten Detektions-Einrichtung zum Erfassen von elektromagnetischer Strahlung;
 - mit einer auf dem Substrat angeordneten optischen Filterschicht;
- 10 mit einer auf der optischen Filterschicht angeordneten Immobilisierungs-Schicht zum Immobilisieren von Fängermolekülen;
 - wobei die Detektions-Einrichtung, die optische Filterschicht und die Immobilisierungs-Schicht in dem Fluoreszenz-Biosensorchip integriert sind.
 - 2. Fluoreszenz-Biosensorchip nach Anspruch 1, bei dem das Substrat aus Silizium-Material hergestellt ist.
- 3. Fluoreszenz-Biosensorchip nach Anspruch 1 oder 2, bei dem die mindestens eine Detektions-Einrichtung eine Photodiode aufweist, die derart eingerichtet ist, dass damit elektromagnetische Strahlung eines ersten Wellenlängenbereichs detektierbar ist.

25

15

- 4. Fluoreszenz-Biosensorchip nach Anspruch 3, bei dem die optische Filterschicht derart eingerichtet ist, dass die optische Filterschicht elektromagnetische Strahlung eines zweiten Wellenlängenbereichs reflektiert und/oder
- 30 absorbiert, wobei zumindest ein Teil des ersten Wellenlängenbereichs außerhalb des zweiten Wellenlängenbereichs liegt.
- Fluoreszenz-Biosensorchip nach einem der Ansprüche 1 bis
 4,
 bei dem die optische Filterschicht mindestens ein Bandfilter

und/oder mindestens ein Kantenfilter aufweist.

- 6. Fluoreszenz-Biosensorchip nach Anspruch 5, bei dem das Bandfilter ein dielektrisches Interferenzfilter mit einer Schichtenfolge aus mindestens zwei Materialien ist, wobei ein erstes Material einen hohen Brechungsindex und ein zweites Material einen niedrigen Brechungsindex aufweist.
- 7. Fluoreszenz-Biosensorchip nach Anspruch 5, bei dem das Kantenfilter ein aus einem organischen Material 10 hergestelltes Farbfilter ist.
 - 8. Fluoreszenz-Biosensorchip nach Anspruch 6, bei dem das erste Material eines oder eine Kombination der chemischen Elemente und Verbindungen
- 15 ° Titanoxid

5

- Siliziumnitrid
- Hafniumoxid
- Zirkoniumoxid
- Aluminiumoxid
- 20 o Poly-Silizium
 - Indium-Zinn-Oxid und
 - Siliziumdioxid

ist.

- 9. Fluoreszenz-Biosensorchip nach einem der Ansprüche 6 bis 8, bei dem das zweite Material eines oder eine Kombination der chemischen Elemente und Verbindungen
 - Titanoxid
 - Siliziumnitrid
 - 30 Hafniumoxid
 - Zirkoniumoxid
 - Aluminiumoxid
 - Poly-Silizium
 - Indium-Zinn-Oxid, und
 - 35 ° Siliziumdioxid

ist.

- 10. Fluoreszenz-Biosensorchip nach einem der Ansprüche 1 bis 9,
- 5 bei dem die Immobilisierungs-Schicht eines oder eine Kombination der Materialien
 - Siliziumdioxid
 - Siliziumnitrid
 - Gold und/oder
- 10 o organisches Material aufweist.
 - 11. Fluoreszenz-Biosensorchip nach einem der Ansprüche 1 bis 10,
- der ferner eine Schaltkreis-Schicht zwischen dem Substrat und der optischen Filterschicht aufweist,
 - wobei in die Schaltkreis-Schicht mindestens ein elektrisches Bauelement integriert ist;
- wobei die Schaltkreis-Schicht mit der mindestens einen
 Detektions-Einrichtung elektrisch gekoppelt ist.
 - 12. Fluoreszenz-Biosensorchip nach Anspruch 11, bei dem die Schaltkreis-Schicht derart eingerichtet ist, dass mittels der Schaltkreis-Schicht die mindestens eine Detektions-Einrichtung elektrisch ansteuerbar ist.
 - 13. Fluoreszenz-Biosensorchip nach einem der Ansprüche 1 bis 12

mit einer Vielzahl von Fängermolekülen, die mit der

Immobilisierungs-Schicht gekoppelt sind, und die derart
eingerichtet sind, dass an jedes der Fängermoleküle ein zu
dem Fängermolekül komplementäres nachzuweisendes Molekül
ankoppelbar ist.

- 35 14. Fluoreszenz-Biosensorchip nach Anspruch 13, bei dem die Fängermoleküle
 - Nukleinsäuren

- Peptide
- Proteine oder
- niedermolekulare Verbindungensind.

5

- 15. Fluoreszenz-Biosensorchip nach Anspruch 13 oder 14, bei dem ein Oberflächenabschnitt der Immobilisierungs-Schicht frei von Fängermolekülen ist, so dass an der mindestens einen unterhalb dieses Oberflächenabschnittes angeordneten
- 10 Detektions-Einrichtung ein Rauschsignal abnehmbar ist.
 - 16. Fluoreszenz-Biosensorchip nach einem der Ansprüche 13 bis 15,
- bei dem jedes nachzuweisende Molekül mindestens einen 15 Fluoreszenzmarker aufweist,
 - wobei der Fluoreszenzmarker derart eingerichtet ist, dass er elektromagnetische Strahlung eines dritten Wellenlängenbereichs absorbiert und nach erfolgter Absorption elektromagnetische Strahlung eines vierten Wellenlängenbereichs emittiert;
 - wobei zumindest ein Teil des dritten Wellenlängenbereichs außerhalb des vierten Wellenlängenbereich liegt;
- wobei zumindest ein Teil des vierten
 Wellenlängenbereichs innerhalb des ersten
 Wellenlängenbereichs liegt.
 - 17. Fluoreszenz-Biosensorchip nach Anspruch 16, bei dem der Fluoreszenzmarker eines der Materialien
- 30 ∘ Coumarin
 - FITC
 - o Cy2
 - Alexa Fluor 488
 - BODIPY 493
- 35 Rhodamine 123

- R6G
- TET
- JOE
- HEX
- 5 · o BODIPY 530 ·
 - Alexa 532
 - R-Phycoerythrin
 - TRITC
 - o Cy3
- 10 o TAMRA
 - o Texas Red
 - o ROX
 - BODIPY 630 und
 - Cv5
- 15 ist.
 - 18. Fluoreszenz-Biosensorchip nach einem der Ansprüche 1 bis 17,
- bei dem in mindestens einen Oberflächenbereich des

 Fluoreszenz-Biosensorchips mindestens ein Isolations-Graben

 zum optischen Isolieren benachbarter Detektions-Einrichtungen

 eingebracht ist, welcher mindestens eine Isolations-Graben

 sich durch die Immobilisierungs-Schicht hindurch bis in einen

 Bereich der optischen Filterschicht hineinerstreckt, derart,
- 25 dass unterhalb jedes Bereichs zwischen zwei benachbarten Isolations-Gräben jeweils eine Detektions-Einrichtung angeordnet ist.
 - 19. Fluoreszenz-Biosensorchip nach Anspruch 18,
- 30 bei dem mindestens ein Teil der Oberfläche des mindestens einen Isolations-Grabens mit einer Schicht aus einem absorbierenden Material bedeckt ist oder bei dem mindestens einer der Gräben mit einem absorbierenden Material gefüllt ist, wobei das absorbierende Material derart eingerichtet
- 35 ist, dass es elektromagnetische Strahlung zumindest des

jeweiligen Wellenlängenbereichs bzw. der jeweiligen Wellenlängenbereiche absorbiert oder reflektiert.

20. Fluoreszenz-Biosensorchip nach einem der Ansprüche 11 bis5 19,

bei dem in mindestens einem Bereich der Schaltkreis-Schicht eine Barriere-Schicht aus einem absorbierenden Material vorgesehen ist, derart, dass unterhalb jedes Bereichs zwischen zwei benachbarten Barriere-Schichten jeweils eine

10 Detektions-Einrichtung angeordnet ist, wobei das absorbierende Material derart eingerichtet ist, dass es elektromagnetische Strahlung zumindest des jeweiligen Wellenlängenbereichs bzw. der jeweiligen Wellenlängenbereiche absorbiert oder reflektiert.

15

20

25

- 21. Fluoreszenz-Biosensorchip-Anordnung
- mit einem Fluoreszenz-Biosensorchip, der aufweist
 - o ein Substrat;
 - o mindestens eine in oder auf dem Substrat
 angeordnete Detektions-Einrichtung zum Erfassen von
 elektromagnetischer Strahlung eines ersten
 Wellenlängenbereichs;
 - o eine auf dem Substrat angeordnete optische Filterschicht zum Absorbieren und/oder Reflektieren von elektromagnetischer Strahlung eines zweiten Wellenlängenbereichs;
 - o eine auf der optischen Filterschicht angeordnete Immobilisierungs-Schicht zum Immobilisieren von Fängermolekülen;
 - o wobei die Detektions-Einrichtung, die optische Filterschicht und die Immobilisierungs-Schicht in dem Fluoreszenz-Biosensorchip integriert sind; und
- mit einer elektromagnetischen Strahlungsquelle, die derart eingerichtet ist, dass mittels der elektromagnetischen Strahlungsquelle ein Oberflächenbereich des Fluoreszenz-Biosensorchips mit elektromagnetischer Strahlung eines dritten

Wellenlängenbereichs bestrahlbar ist.

- 22. Fluoreszenz-Biosensorchip-Anordnung nach Anspruch 21, bei dem die elektromagnetische Strahlungsquelle
- 5 ein Laser
 - eine Leuchtdiode
 - eine Gasentladungslampe oder
 - eine Glühlampe

ist.

10

15

25

23. Fluoreszenz-Biosensorchip-Anordnung nach Anspruch 21 oder 22,

bei welcher der Fluoreszenz-Biosensorchip einer Vielzahl von Fängermolekülen aufweist, die mit der Immobilisierungs-Schicht gekoppelt sind, und die derart eingerichtet sind, dass an die Fängermoleküle ein zu dem Fängermolekül komplementäres nachzuweisendes Molekül ankoppelbar ist.

- 24. Fluoreszenz-Biosensorchip-Anordnung nach Anspruch 23,
 20 bei dem die nachzuweisenden Moleküle und/oder die Fängermoleküle einen Fluoreszenzmarker aufweisen,
 - wobei der Fluoreszenzmarker derart eingerichtet ist, dass er zumindest teilweise elektromagnetische Strahlung des dritten Wellenlängenbereichs absorbiert und nach erfolgter Absorption elektromagnetische Strahlung eines vierten Wellenlängenbereichs emittiert;
 - wobei zumindest ein Teil des dritten Wellenlängenbereichs außerhalb des vierten Wellenlängenbereichs liegt;
- 30 ° wobei zumindest ein Teil des vierten
 Wellenlängenbereichs innerhalb des ersten
 Wellenlängenbereichs liegt.
- 25. Fluoreszenz-Biosensorchip-Anordnung nach Anspruch 21, 35 die derart eingerichtet ist, dass zumindest ein Teil des ersten Wellenlängenbereichs außerhalb des zweiten Wellenlängenbereichs liegt.

- 26. Fluoreszenz-Biosensorchip-Anordnung nach einem der Ansprüche 23 bis 25,
- bei dem die elektromagnetische Strahlungsquelle derart ausrichtbar ist, dass die von der elektromagnetischen Strahlungsquelle emittierte elektromagnetische Strahlung unter einem vorgebbaren Winkel zur Normalen-Richtung der optischen Filterschicht einfällt.
- 10 27. Fluoreszenz-Biosensorchip-Anordnung nach einem der Ansprüche 24 bis 26,
 - bei dem die elektromagnetische Strahlungsquelle derart eingerichtet ist, dass die von der elektromagnetischen Strahlungsquelle emittierte elektromagnetische Strahlung in
- Pulsen emittierbar ist, und bei dem die Detektions-Einrichtungen derart eingerichtet sind, dass die von den Fluoreszenzmarkern emittierte elektromagnetische Strahlung in den Zeitintervallen zwischen den Pulsen mittels der Detektions-Einrichtungen detektierbar ist.