

Introduction

Solid Mechanics

Linear Elasticity Boundary Value Problems

Remaining Work

Software and Coding Languages

Using Physics-Informed Neural Networks for Solving Forward and Inverse Problems in Solid and Fluid Mechanics

Presented by: Alexandros Papados (AMSC)
Advisor: Professor Balakumar Balachandran (ENME)

University of Maryland, College Park: Applied Mathematics, Applied Statistics, & Scientific Computing

May 11, 2021

Table of Contents

Introductio

W-PINNs-D

Solid Mechanic

Linear Elasticity Boundary Value Problems

Remaining Work

- Introduction
- W-PINNs-DE
- Solid Mechanics
- 4 Linear Elasticity Boundary Value Problems
- Remaining Work
- **6** Software and Coding Languages

Table of Contents

Introduction

W-PINNs-DE

Solid Mechanic

Linear Elasticity Boundary Value Problems

Remaining Work

- Introduction
- 2 W-PINNs-DE
- Solid Mechanics
- 4 Linear Elasticity Boundary Value Problems
- 6 Remaining Work
- 6 Software and Coding Languages

Project Proposal Recap

Introduction

W-PINNs-DE

Solid Mechanic

Linear Elasticity Boundary Value Problems

Remaininį Work

- Investigate PINNs and their ability to solve forward and inverse problems in solid and fluid mechanics
- Compare to classical numerical methods such FVM, FEM, and NLS
- Problems in question:
 - Conservation Laws Burgers equation, Euler equations for compressible flow [1] - Fluid Mechanics
 - Plane stress linear elasticity boundary value problem [2] –
 Solid Mechanics

Why PINNs?

Introduction
W-PINNs-DE

Solid Mechanic

Linear Elasticity Boundary Value Problems

Remaining Work

Software and Coding Languages

Advantages:

- Simplistic implementation to solve PDEs compared to FVM and FEM
- Parameter estimation requires less data and is faster than standard parameter estimation methods
- Meshless method
- Purpose is to "solve supervised learning tasks while respecting any given law of physics described by a general nonlinear partial differential equation" (Karniadakis et al.)

Drawbacks:

- Forward problem is slower than classical PDE solvers at times
- Weak theoretical grounding

PINNs Universal Approximation Theorem

Introduction
W-PINNs-DE

Solid Mechanic

Linear Elasticity Boundary Value Problems

Remaining Work

Software and Coding Languages

Theorem (Pinkus, 1999):

Let $\mathbf{m}^i \in \mathbb{Z}_+^d$, i=1,...,s,and set $m=\max_{i=1,...,s} |\mathbf{m}^i|$. Assume $\sigma \in C^m(\mathbb{R})$ and is not a polynomial. Then the space of single hidden layer neural nets:

$$\mathcal{M}(\sigma) = span\{\sigma(\mathbf{w} \cdot \mathbf{x} + b) : \mathbf{w} \in \mathbb{R}^d, b \in \mathbb{R}\}$$

is dense in $C^{m^1,\ldots,m^s}(\mathbb{R}^d)$. In other words, for any $f\in C^{m^1,\ldots,m^s}(\mathbb{R}^d)$, any compact $K\subset\mathbb{R}^d$, and any $\epsilon>0$, there exists a $g\in\mathcal{M}(\sigma)$ satisfying

$$\max_{\mathbf{x}\in K}\left|D^{\mathbf{k}}f(\mathbf{x})-D^{\mathbf{k}}g(\mathbf{x})\right|<\epsilon$$

for all $\mathbf{k} \in \mathbb{Z}_+^d$ for which $\mathbf{k} \leq \mathbf{m}^i$.

Mid-Year Presentation

Introduction

Solid Mechanic

Linear Elasticity Boundary Value Problems

Remaining Work

Software and Coding Languages Euler Equations for compressible flow

- Single Contact Discontinuity
 - Conserved form
 - Weighted loss function (W-PINNs)
- Sod Shock Tube Problem
 - Characteristic Form
 - Weighted loss function and domain extended (W-PINNs-DE)
 - Major contribution to the study of PINNs
- Inverse Problem

Table of Contents

Introductio

W-PINNs-DE

Solid Mechanic

Linear Elasticity Boundary Value Problems

Remaining Work

- Introduction
- W-PINNs-DE
- Solid Mechanics
- 4 Linear Elasticity Boundary Value Problems
- Remaining Work
- 6 Software and Coding Languages

W-PINNs-DE Validation

Recall the characteristic form of the Euler equations

$$\frac{\partial \boldsymbol{U}}{\partial t} + \boldsymbol{A} \frac{\partial \boldsymbol{U}}{\partial x} = 0$$

where,

$$\mathbf{U} = \begin{pmatrix} \rho, u, p \end{pmatrix}^{\mathsf{T}}, \ \mathbf{A} = \begin{pmatrix} u & \rho & 0 \\ 0 & u & \frac{1}{\rho} \\ 0 & \rho a^2 & u \end{pmatrix}$$

where
$$a = \sqrt{\gamma p/\rho}$$

W-PINNs-DE

C_11:J

Mechanics Linear

Elasticity Boundary Value Problems

Remaining Work

Problem	ρ_L	uL	p_L	ρ_R	u_R	p _R
Single Contact Discontinuity	1.4	0.1	1.0	1.0	0.1	1.0
Double Expansion Fan	1.0	-1.0	0.4	1.0	1.0	0.4
Sod Shock Tube Problem	1.0	0.0	1.0	0.125	0.0	0.1
Reverse Shock Tube Problem	0.125	0.0	0.1	1.0	0.0	1.0
High Speed Shock Tube 1	0.125	0.0	0.1	1.0	0.75	1.0
High Speed Shock Tube 2	0.445	0.698	0.70	0.5	0.0	0.571

Domain Extension

Given

$$\mathbf{u} = \begin{cases} \mathbf{u_L}, & x < x^* \\ \mathbf{u_R}, & x > x^* \end{cases}$$

 $\textit{\textbf{u}}_{\textit{\textbf{L}}} > \textit{\textbf{u}}_{\textit{\textbf{R}}} \implies \text{Left Leaning Extension, ex)} \ [0,1] \rightarrow [-1.5,3.125]$

Initial State of Shock Tube - Left Leaning

 $\textit{\textbf{u}}_{\textit{\textbf{L}}} < \textit{\textbf{u}}_{\textit{\textbf{R}}} \implies \text{Right Leaning Extension, ex)} \ [0,1] \rightarrow [-2.6175, 2.5]$

Initial State of Shock Tube - Right Leaning

Introductio

W-PINNs-DE

Solid Mechanics

Linear Elasticity Boundary Value Problems

Remaininį Work

W-PINNs-DE Architecture

W-PINNs-DE

Solid Mechanic

Linear Elasticity Boundary Value Problems

Remaining Work

Software and Coding Languages

Weighted Loss Function:

$$G(\boldsymbol{\theta}) = \frac{\omega_f}{N_f} \left| \left| \frac{\partial \tilde{\boldsymbol{U}}}{\partial t}(\boldsymbol{x}, t, \boldsymbol{\theta}) + \boldsymbol{A} \frac{\partial \tilde{\boldsymbol{U}}}{\partial \boldsymbol{x}}(\boldsymbol{x}, t, \boldsymbol{\theta}) \right| \right|_{\Omega \times (0, T], \nu_1}^2 + \frac{\omega_{IC}}{N_{IC}} \left| \left| \tilde{\boldsymbol{U}}(\boldsymbol{x}, 0, \boldsymbol{\theta}) - \boldsymbol{\boldsymbol{U}}(\boldsymbol{x}, 0) \right| \right|_{\Omega, \nu_2}^2$$

where $\omega_f=0.1$ and $\omega_{IC}=10$

- For each problem we sample points from the computational domain, $N_{x,t} = \{1000, 1000\}.$
- The learning rate is taken to be 0.0005
- Each neural network has 7 layers with 30 neurons per layer, with tanh() activation function for non-linear layers

Problem	Epochs	Original Domain, (x, t)	Extended Domain, (x, t)
Single Contact Discont.	44,350	$[0,1] \times [0,0.2]$	$[-1.5, 3.125] \times [0, 0.2]$
Double Expansion Fan	40,165	$[0,1] \times [0,0.2]$	$[-2.6175, 2.5] \times [0, 0.2]$
Sod Shock Tube	76,140	$[0,1] \times [0,0.2]$	$[-1.5, 3.125] \times [0, 0.2]$
Reverse Sod Shock Tube	76,140	$[0,1] \times [0,0.2]$	$[-2.625, 2.5] \times [0, 0.2]$
High-speed Shock Tube 1	55,765	$[-0.5, 1.5] \times [0, 0.2]$	$[-2.625, 2.5] \times [0, 0.2]$
High-speed Shock Tube 2	67,200	$[0,1] \times [0,0.2]$	$[-2.625, 3.125] \times [0, 0.2]$

Single Contact Discontinuity

Introductio

W-PINNs-DE

Solid Mechanic

Linear Elasticity Boundary Value Problems

Remaining Work

Figure 1: $N_f = 20,000, N_{IC} = 1000$

$\frac{\rho_{approx} - \rho_{exact} _{2}}{ \rho_{exact} _{2}}$	$\left \frac{u_{approx} - u_{exact} _2}{ u_{exact} _2} \right $	Papprox — Pexact 2
1.622 <i>e</i> – 04	1.2e - 03	1.608 <i>e</i> - 04

Sod Shock Tube Problem

Introductioi

W-PINNs-DE

Solid Mechanic

Linear Elasticity Boundary Value Problems

Remaininį Work

Figure 2: $N_f = 11,000, N_{IC} = 1000$

$\left \frac{\rho_{approx} - \rho_{exact} _2}{ \rho_{exact} _2} \right $	$\left \frac{u_{approx} - u_{exact} _2}{ u_{exact} _2} \right $	Papprox = Pexact 2 Pexact 2
8.6e — 03	6.29 <i>e</i> – 02	8.2 <i>e</i> – 03

Reverse Sod Shock Tube Problem

Introductio

W-PINNs-DE

Solid Mechanic

Linear Elasticity Boundary Value Problems

Remaining Work

Figure 3: $N_f = 10,500, N_{IC} = 1000$

$\frac{\rho_{approx} - \rho_{exact} _{2}}{ \rho_{exact} _{2}}$	$\left \frac{u_{approx} - u_{exact} _{2}}{ u_{exact} _{2}} \right $	Papprox - Pexact 2 Pexact 2
8.5 <i>e</i> – 03	3.04 <i>e</i> - 02	6.6 <i>e</i> – 03

Double Expansion Fan

Introductio

W-PINNs-DE

Solid Mechanic

Linear Elasticity Boundary Value Problems

Remaininį Work

Figure 4: $N_f = 10,500, N_{IC} = 1000$

$\left \frac{\rho_{approx} - \rho_{exact} _2}{ \rho_{exact} _2} \right $	$\left \begin{array}{c} \left \frac{u_{approx} - u_{exact} _2}{\left \left u_{exact} \right \right _2} \end{array} \right \right $	$\frac{P_{approx} - P_{exact} _2}{ P_{exact} _2}$
2.0e — 03	2.9e — 03	2.0e - 03

High Speed Shock Tube 1

ntroductio

W-PINNs-DE

Solid Mechanic

Linear Elasticity Boundary Value Problems

Remainin Work

Figure 5: $N_f = 10,500, N_{IC} = 1000$

$\frac{\rho_{approx} - \rho_{exact} _2}{ \rho_{exact} _2}$	$\left \frac{u_{approx} - u_{exact} _{2}}{ u_{exact} _{2}} \right $	$\frac{p_{approx} - p_{exact} _2}{ p_{exact} _2}$
6.7e - 03	3.29 <i>e</i> – 02	5.0e — 03

High Speed Shock Tube 2

Introductio

W-PINNs-DE

Solid Mechanic

Linear Elasticity Boundary Value Problems

Remaininį Work

Figure 6: $N_f = 11,000, N_{IC} = 1000$

$\left \frac{\rho_{approx} - \rho_{exact} _2}{ \rho_{exact} _2} \right $	$\left \frac{u_{approx} - u_{exact} _2}{ u_{exact} _2} \right $	$\frac{P_{approx} - P_{exact} _2}{ P_{exact} _2}$
7.7e — 03	1.4e - 02	6.9 <i>e</i> – 03

Loss Plots

itroduction

W-PINNs-DE

Solid Mechanic

Linear Elasticity Boundary Value Problems

Remaining Work

Figure 7: The plot on the left is a magnification of the plot on the right

Loss Plots

troduction

W-PINNs-DE

Solid Mechanic

Linear Elasticity Boundary Value Problems

Remaining Work

Figure 8: Magnification of the plot from previous slide

Conclusions W-PINNs-DE

introductic

W-PINNs-DE

Solid Mechanic

Linear Elasticity Boundary Value Problems

Remaining Work

- W-PINNs-DE can solve complicated shock tube problems to impressive degree of accuracy
- Competitive numerical tool to solve conservation laws
 - Method may be used to solve isothermal Euler equations, and advection dominated compressible Navier-Stokes equations

Table of Contents

Introductio

W-PINNs-DE

Solid Mechanics

Linear Elasticity Boundary Value Problems

Remaining Work

- Introduction
- 2 W-PINNs-DE
- Solid Mechanics
- 4 Linear Elasticity Boundary Value Problems
- 6 Remaining Work
- 6 Software and Coding Languages

Table of Contents

Introductio

W-PINNs-DE

Solid Mechanic

Linear Elasticity Boundary Value Problems

Remaining Work

- Introduction
- 2 W-PINNs-DE
- Solid Mechanics
- 4 Linear Elasticity Boundary Value Problems
- 6 Remaining Work
- **6** Software and Coding Languages

LEBVP

Linear Elasticity Boundary Value Problems

- Motivation: Solid and Structural Mechanics
- The material matrix for an isotropic material in an elasticity boundary value problem consisting of two parameters, E - Young's Modulus, and ν - Poisson Ratio.
- Let $M_{E\nu}=\frac{E}{(1+\nu)(1-2\nu)}$. Then the material matrix is defined by:

 Solve for the amount of deformation a material undergoes under prescribed body loading, f, and surface loading, g

LEBVP

Introduction

Solid Mechanics

Linear Elasticity Boundary Value Problems

Remaining Work

Software and Coding Languages • The deformation tensor is defined as

$$\mathbf{u} = (u_1, u_2, u_3)^T$$

- u_i corresponds to the deformation in the x, y, and z direction, and $u_i : \mathbb{R}^3 \to \mathbb{R}$.
- We solve for the deformation of a material undergoing loading by solving the equilibrium equation:

$$\begin{cases}
-\nabla \cdot \boldsymbol{\sigma} = \boldsymbol{f}, & x \in \Omega \subset \mathbb{R}^3 \\
\boldsymbol{u} = 0, & x \in \Gamma_D \\
\boldsymbol{\sigma} \cdot \boldsymbol{\nu} = \boldsymbol{g}, & x \in \Gamma_N
\end{cases}$$
(1)

where,

$$\sigma = C\epsilon, \ \epsilon_{ij} = \frac{1}{2} \left[\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right] + \frac{1}{2} \sum_{k=1}^{3} \frac{\partial u_i}{\partial x_k} \frac{\partial u_j}{\partial x_k}, \ i, j = 1, 2, 3$$

LEBVP

Since we are considering a LEBVP, the parabolic terms vanish, hence

$$\epsilon = \frac{1}{2} \left[\nabla \mathbf{u} + \nabla \mathbf{u}^T \right]$$
$$= A \nabla \mathbf{u}$$

 $\begin{array}{c} \frac{\partial u_1}{\partial x_1} \\ \frac{\partial u_1}{\partial x_2} \\ \frac{\partial u_2}{\partial x_3} \\ \frac{\partial u_2}{\partial x_2} \\ \frac{\partial u_2}{\partial x_3} \\ \frac{\partial u_2}{\partial x_3} \\ \frac{\partial u_3}{\partial x_3} \\ \frac{\partial u$

ntroduction V-PINNs-DE

Solid Mechanics

Linear Elasticity Boundary Value Problems

Remaining Work

Plane Stress

Introduction

W-PINNs-DI

Mechanic

Linear Elasticity Boundary Value Problems

Remaining Work

Software and Coding Languages A material undergoes plane stress provided the stress vector is zero in a specific plane. Here we chose to have zero stresses in the z-direction, hence,

$$\sigma_{3j} = \sigma_{i3} = 0$$
, for $i, j = 1, 2, 3$

Then the stress tensor in the xy - direction is defined by:

$$\sigma = \mathcal{C}_{E
u}\epsilon$$

$$=rac{{\cal E}}{(1-
u^2)}egin{pmatrix} 1 &
u & 0 \
u & 1 & 0 \ 0 & 0 & (1-
u)/2 \end{pmatrix} egin{pmatrix} \epsilon_{11} \ \epsilon_{22} \ \gamma_{12} \end{pmatrix}$$

where
$$\gamma_{12} = \left(\frac{\partial \textit{u}_1}{\partial \textit{x}_2} + \frac{\partial \textit{u}_2}{\partial \textit{x}_1} \right)$$

Forward Problem

Introductio

W-PINNs-DE

Solid Mechanic

Linear Elasticity Boundary Value Problems

Remaining Work

Software and Coding Languages

LEBVP

$$G\left[\frac{\partial^{2} u}{\partial x^{2}} + \frac{\partial^{2} u}{\partial y^{2}}\right] + G\left(\frac{1+\nu}{1-\nu}\right) \left[\frac{\partial^{2} u}{\partial x^{2}} + \frac{\partial^{2} v}{\partial y \partial x}\right] = \sin(2\pi x)\sin(2\pi y)$$

$$G\left[\frac{\partial^{2} v}{\partial x^{2}} + \frac{\partial^{2} v}{\partial v^{2}}\right] + G\left(\frac{1+\nu}{1-\nu}\right) \left[\frac{\partial^{2} v}{\partial v^{2}} + \frac{\partial^{2} u}{\partial x \partial v}\right] = \sin(\pi x) + \sin(2\pi y)$$

where $G=\frac{\mathcal{E}}{2(1+\nu)}$, E=1 is the Young's modulus, and $\nu=0.3$ is the Poisson ratio of the material. The problem has fixed boundary conditions.

Domains

Introduction

Solid Mechanic

Linear Elasticity Boundary Value Problems

Remaining Work

Software and Coding Languages We will solve this problem on two domains, $[0,1]^2$ and $[0,1]^2 \setminus [0,0.5] \times [0.5,1]$.

Figure 9: Domains for Plane Stress Problem

Issues Using PINNs

Introduction

Solid

Linear Elasticity Boundary Value Problems

Remaining Work

- PINNs have much difficulty approximating simple boundary conditions
- Immense error at the boundary

Preliminary Work - Square Domain - $[0,1]^2$

meroduction

W-PINNs-DI

Solid Mechanic

Linear Elasticity Boundary Value Problems

Remaining Work

Software and Coding Languages

Weighted Loss Function

Introduce a serve penalty for the BC loss term:

$$G(\theta) = G_{pde}(\theta) + \lambda_{bc}G_{bc}(\theta)$$

where $\lambda_{bc} = 10000$.

- We sample points from the computational domain, $N_{x,y} = \{500, 500\}.$
- The learning rate is taken to be 0.001
- Each neural network has 6 layers with 50 neurons per layer, with tanh() activation function for non-linear layers
- $N_f = 4000$, $N_{BC} = 500$, epochs = 200,000

Displacement in x

ntroduction

W-PINNs-DE

Solid Mechanic

Linear Elasticity Boundary Value Problems

Remainin Work

Figure 10: Displacement in x direction (PINNs)

Displacement in y

Introduction
W. DINNs DF

Solid Mechanic

Linear Elasticity Boundary Value Problems

Remaininį Work

Figure 11: Displacement in y direction (PINNs)

FEM Comparison

Introduction
W_PINING_DE

Solid Mechanic

Linear Elasticity Boundary Value Problems

Remainin_i Work

Figure 12: The left figure is the FEM solution, right is the PINNs solution of the displacement in the x-direction

FEM Comparison

Introduction
W-PINNs-DF

Solid Mechanic

Linear Elasticity Boundary Value Problems

Remaining Work

 $\textbf{Figure 13:} \ \ \textbf{The left is the FEM solution, right is the PINNs solution of the displacement in the y-direction}$

Table of Contents

introduction

W-PINNs-DE

Solid Mechanic

Linear Elasticity Boundary Value Problems

Remaining Work

- Introduction
- 2 W-PINNs-DE
- Solid Mechanics
- 4 Linear Elasticity Boundary Value Problems
- 6 Remaining Work
- 6 Software and Coding Languages

Remaining Work

itroduction

VV-PIIVIVS-L

Solid Mechanic

Linear Elasticity Boundary Value Problems

Remaining Work

- Solve LEBVP for both domains
- Compare to FEM
- Inverse Problem

Table of Contents

Introductio

W-PINNs-DE

Solid Mechanic

Linear Elasticity Boundary Value Problems

Remaining Work

- Introduction
- 2 W-PINNs-DE
- Solid Mechanics
- 4 Linear Elasticity Boundary Value Problems
- 6 Remaining Work
- 6 Software and Coding Languages

Software and Coding Languages

Introductio

W-PINNs-DE

Solid Mechanic

Linear Elasticity Boundary Value Problems

Remaining Work

Software and Coding Languages

Coding Languages

- Python
- MATLAB

Libraries

PyTorch

Reference

Introduction

Solid Mechanic

Elasticity Boundary Value Problems

Remaining Work

- [1] Roesner, K. G., Leutloff, D., Srivastava, R. C. (1995). *Computational fluid dynamics: Selected topics*. Berlin: Springer.
- [2] Chen, Y., Press, H. H. (2013). Computational Solid Mechanics Structural Analysis and Algorithms. Berlin: De Gruyter.
- [3] Thomas, J. W. (1999). *Numerical Partial Differential Equations:* Conservation Laws and Elliptic Equations. New York: Springer.
- [4] Golsorkhi, N. A., Tehrani, H. A. (2014). Levenberg-marquardt Method For Solving The Inverse Heat Transfer Problems. Journal of Mathematics and Computer Science, 13(04), 300-310. doi:10.22436/jmcs.013.04.03
- [5] Chen, Z. (2010). Finite Element Methods and their Applications. Berlin: Springer.
- [6] Mao, Z., Jagtap, A. D., Karniadakis, G. E. (2020). *Physics-informed neural networks for high-speed flows*. Computer Methods in Applied Mechanics and Engineering, 360, 112789. doi:10.1016/j.cma.2019.112789

Reference

Introduction
W. PINING DE

Solid Mechanic

> Elasticity Boundary Value Problems

Remaining Work

Software and Coding Languages [7] Raissi, M., Perdikaris, P., Karniadakis, G. (2019). *Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations.* Journal of Computational Physics, 378, 686-707. doi:10.1016/j.jcp.2018.10.045

[8] Sirignano, J., Spiliopoulos, K. (2018). *DGM: A deep learning algorithm for solving partial differential equations*. Journal of Computational Physics, 375, 1339-1364. doi:10.1016/j.jcp.2018.08.029

[9] Lu, L., Jagtap, A. D., Karniadakis, G. E. (2019). *DeepXDE: A Deep Learning Library for Solving Differential Equations*. ArXiv.org, arxiv.org/abs/1907.04502.

[10] Cybenko, G. (1989). *Approximation by superpositions of a sigmoidal function*. Mathematics of Control, Signals, and Systems, 2(4), 303-314. doi:10.1007/bf02551274

[11] Mishra, S., amp; Molinaro, R. (2020). Estimates on the generalization error of Physics Informed Neural Networks (PINNs) for approximating PDEs II: A class of inverse problems. https://arxiv.org/abs/2007.01138

The End

roduction

W-PINNs-DE

Solid Mechanic

Linear Elasticity Boundary Value Problems

Remaining Work

Software and Coding Languages

Thank You! Questions?