1. More logical equivalence examples

Laws of Logical Equivalence						
Name	OR version	AND version				
Commutative	A + B = B + A	A * B = B * A				
Associative	(A + B) + C = A + (B + C)	(A * B) * C = A * (B * C)				
Distributive	A + (B * C) = (A + B) * (A + C)	A * (B + C) = (A * B) + (A * C)				
Idempotent	A + A = A	A * A = A				
Identity	A + 0 = A	A * 1 = A				
	A + 1 = 1	A * 0 = 0				
Complement	A +~A = 1	A * ~A = 0				
	~1 = 0	~0 = 1				
Double Negative	~(~A) = A					
De Morgan's	~(A + B) = ~A * ~B	~(A * B) = ~A + ~B				
Absorption	A + (A * B) = A	A * (A + B) = A				

a. Prove the OR version of the Absorption Law, A + A * B = A.

Assertion	Reason	
A + A * B	Initial function	
= (A * 1) + (A * B)	Identity Law for AND	
= A * (1 + B)	Distributive Law for AND	
= A * (1)	Identity Law for OR	
= A	Identity Law for AND	

b. Simplify the following digital logic circuit using propositional algebra.

Assertion	Reason	
f = ((A * ~B) + (A * B)) * B	Initial circuit logic	
= (A * (~B + B)) * B	Distributive Law for AND	
= (A * 1) * B	Complement Law for OR	
= A * B	Identity Law for AND	

2. More on gates

- a. Functionally complete sets a set of gates that can implement any Boolean function
- b. Universal gate a single gate that is a functionally complete set on its own
 - i. Less gates, easier fabrication
 - ii. AND, OR, NOT
 - 1. XOR takes five gates: $A \oplus B = A * ^B + ^A * B$
 - iii. AND, NOT
 - 1. OR requires four gates to implement DeMorgan's law
 - 2. $A + B = ^(A * ^B)$
 - iv. OR, NOT
 - 1. AND requires four gates to implement DeMorgan's law
 - 2. $A * B = ^(A + ^B)$
 - v. NAND 1 is the NAND operator
 - 1. ~A = A ↑ A
 - 2. $A + B = (A \uparrow A) \uparrow (B \uparrow B)$
 - 3. A * B = (A \uparrow B) \uparrow (A \uparrow B), this requires only 2 NANDs because (A \uparrow B) is used twice
 - 4. $A \oplus B = (A \uparrow (A \uparrow B)) \uparrow (B \uparrow (A \uparrow B))$, just 4 NANDs needed because $(A \uparrow B)$ is used twice
 - vi. NOR \downarrow is the NOR operator.
 - 1. ~A = A ↓ A
 - 2. $A * B = (A \downarrow A) \downarrow (B \downarrow B)$,
 - 3. $A \oplus B = ((A \downarrow A) \downarrow (B \downarrow B)) \downarrow (A \downarrow B)$
 - 4. $A + B = (A \downarrow B) \downarrow (A \downarrow B)$, just 2 NOR gates needed
- c. Implement using transistors

3. Truth tables

- d. Boolean function with n variables has 2ⁿ rows
- e. Entire set resembles counting upwards in binary, e.g. 000, 001, 010, 011... with 3 variables
- f. Minterms
 - i. Product term in which each of the n variables appears once (in either complemented or uncomplemented term)
 - ii. Minterm results in a 1 for output of a single cell expression, 0s for all other rows in truth table
 - iii. Boolean function can be represented by sum of all minterms for which function is true
 - 1. Sum-of-products form (SOP)
- g. Maxterms
 - i. Like minterms, variables can only appear once in complemented or uncomplemented form
 - ii. Maxterm results in a 0 for the output of a single cell expression, 1s for all other rows in truth table
 - iii. The complement of the corresponding row's minterm
 - iv. Boolean function can be represented as product of all maxterms for which function is false
 - 1. Product-of-sums form (POS)
- h. SOP easier to work with, more natural, but sometimes POS can lead to simpler logic
- i. Term indices correspond to binary concatenation of row variable's truth values
 - i. Minterms represented with lower case m, e.g. m₂ for inputs 010
 - ii. Maxterms represented with upper case M, e.g. M₅ for inputs 101
- j. Example: 3-variable Boolean function true when A is true, B is true, and C is false
 - i. Minterm $m_6 = AB\overline{C}$ (110), maxterm $M_6 = \overline{A} + \overline{B} + C$
 - ii. $m_0 = \overline{ABC}$ (000), and $m_7 = ABC$ (111)

- 4. Synthesizing using gates
 - k. Consider a Boolean function of three variables
 - i. True when either, but not both, of the first two variables is true
 - ii. Truth table below

Index	Α	В	С	f(A, B, C)	Minterm	Maxterm
0	0	0	0	0	$m_0 = \overline{ABC}$	$M_0 = A + B + C$
1	0	0	1	0	$m_1 = \overline{ABC}$	$M_1 = A + B + \overline{C}$
2	0	1	0	1	$m_2 = \overline{A}B\overline{C}$	$M_2 = A + \overline{B} + C$
3	0	1	1	1	$m_3 = \overline{A}BC$	$M_3 = A + \overline{B} + \overline{C}$
4	1	0	0	1	$m_4 = A\overline{BC}$	$M_4 = \overline{A} + B + C$
5	1	0	1	1	$m_5 = A\overline{B}C$	$M_5 = \overline{A} + B + \overline{C}$
6	1	1	0	0	$m_6 = AB\overline{C}$	$M_6 = \overline{A} + \overline{B} + C$
7	1	1	1	0	$m_7 = ABC$	$M_7 = \overline{A} + \overline{B} + \overline{C}$

I. Sum-of-products

i.
$$f = \overline{A}B\overline{C} + \overline{A}BC + A\overline{B}C + A\overline{B}C = m_2 + m_3 + m_4 + m_5$$