SYNTEZA STRUKTURALNA AUTOMATU PARAMETRYCZNEGO (AP)

Synteza AP jest dwuetapowa:

- w pierwszym etapie syntezuje się automat parametryczny uzyskany w wyniku nałożenia grafów (graf wynikowy składa się z wejściowych sygnałów wewnętrznych s oraz stanów b_i),
- w drugim etapie wykonuję się syntezę sygnałów wejściowych s (wg wzoru 3 Instrukcji s(t)=f(z(t),b(t),P). Utworzone sygnały podaje się na wejście utworzonego w punkcie wcześniejszym automatu.

A. Etap I – synteza strukturalna

Syntezie podlega graf z rys.3 instrukcji składający się z czterech stanów i z czterech wewnętrznych sygnałów wejściowych (s₁..s₄). Zakodujmy i sygnały wewnętrzne wg tabeli 1 i 2. Synteza zostanie wykonana na przerzutnikach JK.

ino.

	\mathbf{Q}_1	\mathbf{Q}_2
b_1	0	0
b_2	0	1
b_3	1	0
b_4	1	1

tab.2

	S_1	S_2
\mathbf{S}_1	0	0
S_2	0	1
S ₃	1	0
S4	1	1

Na podstawie grafu z rys.3 instrukcji tworzymy następująca tabelę przejść (tab.3)

tab.3

3	stan\sygna ł	$\mathbf{b_1}$	$\mathbf{b_2}$	\mathbf{b}_3	$\mathbf{b_4}$
	\mathbf{S}_1	b_2	b_3	b_1	b_1
	S ₂	b_3	b_2	b_2	b_4
	S ₃	*	b_4	b_3	*
	S4	*	*	b ₄	*

tab.4	Q(t)	Q(t+1)	J	K
tablica	0	0	0	*
przejść	0	1	1	*
przerz. JK	1	0	*	1
	1	1	*	0

Zapiszmy tą tabelę trochę w innej formie (tab.5 - kolumny [1], [2], [3]) i wykorzystując tabele 1 i 2 zakodujmy ją (sygnał s kodowany jest w kolumnch [4] i [5], stan b(t) w kolumnach [6] i [7], stan b(t+1) w kolumnach [8] i [9]). Ostatnie cztery kolumny wypełnimy na podstawie tablicy przejść przerzutnika JK (tab.4) oraz kolumn [6], [7], [8], [9]. Np. dla pierwszego wiersza dla przerzutnika 1 (Q₁) następuje przejście ze stanu 0 do 0. Na podstawie tabeli przejść przerzutnika JK odpowiada to sygnałowi 0 na wejściu J i dowolnemu (oznaczonemu jako *) na wejściu K. Wobec tego te symbole wpisujemy odpowiednio pod J₁ i K₁ (kolumny [10] i [11]). Następnie ta samą operację robimy dla przerzutnika 2 (Q₂) tj. na podstawie kolumny [7] i [9] wynika przejście ze stanu 0 na 1, co odpowiada podaniu na odpowiednie wejście J i K przerzutnika sygnałów 1 i * - wpisujemy do tabeli w kolumnach

[12] i [13]. Następnie w analogiczny sposób uzupełniamy pozostale wiersze w wyniku czego uzyskamy tabelę jak przedstawiono poniżej.

tab.5	s _i [1]	stan(t) [2]	stan(t+1) [3]	S1 [4]	S2 [5]	Q ₁ (t) [6]	Q ₂ (t) [7]	Q ₁ (t+1) [8]	Q ₂ (t+1) [9]	J1 [10]	K1 [11]	J2 [12]	K2 [13]
	\mathbf{S}_1	b_1	b2	0	0	0	0	0	1	0	*	1	*
	S ₂	b_1	b3	0	1	0	0	1	0	1	*	0	*
	S ₁	b_2	b3	0	0	0	1	1	0	1	*	*	1
	S ₂	b_2	b2	0	1	0	1	0	1	0	*	*	0
	S ₃	b_2	b4	1	0	0	1	1	1	1	*	*	0
	S ₁	b ₃	b1	0	0	1	0	0	0	*	1	0	*
	S ₂	b_3	b2	0	1	1	0	0	1	*	1	1	*
	S ₃	b_3	b3	1	0	1	0	1	0	*	0	0	*
	S ₄	b_3	b4	1	1	1	0	1	1	*	0	1	*
	\mathbf{s}_1	b_4	b1	0	0	1	1	0	0	*	1	*	1
	\mathbf{S}_2	b ₄	b4	0	1	1	1	1	1	*	0	*	0

Następnie na podstawie tabeli 5 budujemy tabele Karnaugh dla poszczególnych wejść przerzutników. Sygnały Qi w tabelach Karnough odnoszą się do chwili t. Np. wiersz pierwszy tabeli 5 określa stan 0000(bo S1=0, S2=0, Q1=0, Q2=0). Dla tego stanu wg kolumn [10], [11], [12] i [13] wpisujemy do tablicy J₁ symbol 0, dla tablicy K₁ symbol *, do tablicy J₂ symbol 1 i do tablicy K₂ symbol *. Należy zauważyć, że nie wszystkie stany występują w tabeli 5. Dla tych stanów wpisujemy do tablic symbol *(dowolny sygnał). W wyniku tych operacji otrzymamy tablice Karnough przedstawione poniżej i na tej podstawie dokonujemy minimalizacji otrzymując w ten sposób wzory na pobudzenie wejść przerzutników (J₁, K₁, J₂, K₂)

J1

$S_1S_1\backslash Q_1Q_2$	00	01	11	10
00	0	1	*	*
01	1	0	*	*
11	*	*	*	*
10	*	1	*	*

 $J_1 = /S_2Q_2 + S_2/Q_2$

K1

$S_1S_1\backslash Q_1Q_2$	00	01	11	10
00	*	*	1	1
01	*	*	0	1
11	*	*	*	0
10	*	*	*	0

 $K_1 = /S_1/S_2 + /S_1/Q_2$

Zapis /X_i oznacza negację X_i

 J_2

$S_1S_2\backslash Q_1Q_2$	00	01	11	10
00	1	*	*	0
01	0	*	*	1
11	*	*	*	1
10	*	*	*	0

K_2	
Q_1Q_1	

$S_1S_2\backslash Q_1Q_2$	00	01	11	10
00	*	1	1	*
01	*	0	0	*
11	*	*	*	*
10	*	0	*	*

$$J_2 = /S_2/Q_1 + S_2Q_1$$

$$K2 = /S_1/S_2$$

Otrzymaliśmy wzory opisujące wejścia przerzutników i na tej podstawie można narysować schemat automatu.

Dla przypomnienia:

Qi oznaczy wyjście i-tego przerzutnika.

B. Etap 2 – synteza sygnałów s

Z rysunku 3 instrukcji wynika, że nasz automat składa się z czterech stanów (b..b₄) oraz czterech sygnałów (s₁..s₄). Zadaniem tego etapu syntezy jest wyprowadzenie zależności pomiędzy sygnałami s a stanami b, sygnałami wejściowymi i numerem automatu. Do tego potrzebna nam będzie tabela, która mówi jakiemu stanowi b odpowiada stan q w zadanym automacie. Tabelę tą otrzymano podczas operacji nakładania grafów.

tab.6	В	\mathbf{p}_1	\mathbf{p}_2
	b_1	q_2	q_4
	b_2	q_3	q_5
	b_3	q_1	q_6
	b_4	*	q ₇

Jak napisano wyżej sygnały s zależą od stanu bieżącego, sygnału z oraz parametru p. Poniżej przedstawiono przyporządkowanie sygnałów s. Do przyporządkowania wykorzystuje się grafy automatów (rys.1 i rys.2 instrukcji) oraz graf automatu zastępczego (rys.3). Sposób utworzenia poniższej tabeli jest następujący:

np. dla grafu z rys.1 przejściu ze stanu q do q pod wpływem z odpowiada przejściu ze stanu b₁ do b₃. Jeżeli teraz spojrzymy na graf na rys.3 to przejściu ze stanu b₁ do b₃ odpowiada sygnał s₂ i dlatego wpisujemy go w odpowiednie miejsce naszej tabeli.

Przyporządkowanie S

tab.7

nr automatu	sygnał	stan pocz.	stan końcowy	odpowiadający sygnał s
\mathbf{p}_1	\mathbf{z}_1	$b_1(q_2)$	$b_3(q_1)$	S_2
\mathbf{p}_1	\mathbf{z}_1	$b_2(q_3)$	$b_2(q_3)$	S_2
\mathbf{p}_1	\mathbf{z}_1	$b_3(q_1)$	$b_3(q_1)$	S ₃
\mathbf{p}_1	\mathbf{z}_1	b ₄ (*)	*	*
\mathbf{p}_1	\mathbf{Z}_2	$b_1(q_2)$	$b_2(q_3)$	s_1
\mathbf{p}_1	\mathbf{Z}_2	$b_2(q_3)$	$b_3(q_1)$	s_1
\mathbf{p}_1	\mathbf{Z}_2	$b_3(q_1)$	$b_1(q_2)$	s_1
\mathbf{p}_1	\mathbf{Z}_2	b ₄ ()		
p_2	\mathbf{Z}_3	$b_1(q_4)$	$b_2(q_5)$	s_1
p_2	\mathbf{Z}_3	$b_2(q_5)$	$b_4(q_7)$	S_3
p_2	\mathbf{Z}_3	$b_3(q_6)$	$b_2(q_5)$	S_2
p_2	\mathbf{Z}_3	$b_4(q_7)$	$b_4(q_7)$	S_2
p_2	\mathbf{Z}_4	$b_1(q_4)$	$b_3(q_6)$	S_2
p_2	\mathbf{Z}_4	$b_2(q_5)$	$b_3(q_6)$	s_1
p_2	\mathbf{Z}_4	$b_3(q_6)$	$b_4(q_7)$	S ₄
p_2	\mathbb{Z}_4	$b_4(q_7)$	$b_1(q_4)$	S ₁

Przystąpimy teraz do kodowania. Sygnały z_3 i z_4 możemy zamienić na z_1 i z_2 ponieważ nigdy nie będą jednocześnie pracowały automaty p_1 i p_2

Stany B zakodowane są na dwóch przerzutnikach wg tab.1 z etapu pierwszego, sygnały s na dwóch liniach wg tab.2 z etapu pierwszego a sygnały z na dwóch liniach i sygnały p na dwóch liniach wg poniższych tabel

	\mathbf{P}_1	P_2
\mathbf{p}_1	1	0
D 2	0	1

	Z_1	Z_1
\mathbf{z}_1	1	0
Zγ	0	1

Zamieniamy zatem sygnały na kody w tab.7 i otrzymamy na tej podstawie tab.8

tab.8

•	\mathbf{P}_{1}	P ₂	\mathbf{Z}_1	\mathbb{Z}_2	\mathbf{Q}_1	\mathbf{Q}_2	S_1	S_2
	1	0	1	0	0	0	0	1
	1	0	1	0	0	1	0	1
	1	0	1	0	1	0	1	0
	1	0	1	0	1	1	*	*
	1	0	0	1	0	0	0	0
	1	0	0	1	0	1	0	0
	1	0	0	1	1	0	0	0
	1	0	0	1	1	1	*	*
	0	1	1	0	0	0	0	0
	0	1	1	0	0	1	1	0
	0	1	1	0	1	0	0	1
	0	1	1	0	1	1	0	1
	0	1	0	1	0	0	0	1
	0	1	0	1	0	1	0	0
	0	1	0	1	1	0	1	1
	0	1	0	1	1	1	0	0

Na tej podstawie można napisać równanie na S_1 (w postaci sumy iloczynów – wybieramy te kombinacje dla których S_1 =1)

$$S_1=P_1/P_2Z_1/Z_2Q_1/Q_2+/P_1P_2Z_1/Z_2/Q_1Q_2+/P_1P_2/Z_1Z_2Q_1/Q_2$$

Ponieważ gdy P_1 =1 to P_2 =0 oraz gdy Z_1 =1 to Z_2 =0 (i vice versa) wobec tego możemy pousuwać ze wzoru na S_1 wszystkie negacje P i Z. W wyniku tej operacji otrzymamy następujący wzór na S_1 :

$$S_1 = P_1 Z_1 Q_1 / Q_2 + P_2 Z_1 / Q_1 Q_2 + P_2 Z_2 Q_1 / Q_2$$

Ponieważ w tabeli występuje stan obojętny (*) to możemy wpisać w kolumnie S_l i S_2 dla tego stanu dowolne wartości . Jeśli wstawimy w tym miejscu S_l =1 i S_2 =0 nasze równie na S_1 ulegnie zmianie i się zredukuje

$$\begin{split} \mathbf{S}_1 &= \mathbf{P}_1 Z_1 \mathbf{Q}_1 / \mathbf{Q}_2 + \mathbf{P}_2 Z_1 / \mathbf{Q}_1 \mathbf{Q}_2 + \mathbf{P}_2 Z_2 \mathbf{Q}_1 / \mathbf{Q}_2 + \mathbf{P}_2 Z_1 / \mathbf{Q}_1 \mathbf{Q}_2 + \mathbf{P}_2 Z_2 \mathbf{Q}_1 / \mathbf{Q}_2 \\ \mathbf{S}_1 &= \mathbf{P}_1 Z_1 \mathbf{Q}_1 (/\mathbf{Q}_2 + \mathbf{Q}_2) + \mathbf{P}_2 (Z_1 / \mathbf{Q}_1 \mathbf{Q}_2 + Z_2 \mathbf{Q}_1 / \mathbf{Q}_2) \\ \mathbf{S}_1 &= \mathbf{P}_1 Z_1 \mathbf{Q}_1 + \mathbf{P}_2 (Z_1 / \mathbf{Q}_1 \mathbf{Q}_2 + Z_2 \mathbf{Q}_1 / \mathbf{Q}_2) + \mathbf{P}_2 Z_1 \end{split}$$

Analogicznie wyprowadzimy S_2

$$\begin{split} &S_2 = P_1 Z_1 / Q_1 / Q_2 + P_1 Z_1 / Q_1 Q_2 + P_2 Z_1 Q_1 / Q_2 + P_2 Z_1 Q_1 Q_2 + P_2 Z_2 / Q_1 / Q_2 + P_2 Z_2 Q_1 / Q_2 \\ &S_2 = P_1 Z_1 / Q_1 (/Q_2 + Q_2) + P_2 Z_1 Q_1 (/Q_2 + Q_2) + P_2 Z_2 / Q_2 (/Q_1 + Q_2) \\ &S_2 = P_1 Z_1 / Q_1 + P_2 Z_1 Q_1 + P_2 Z_2 / Q_2 \\ &S_2 = P_1 Z_1 / Q_1 + P_2 (Z_1 Q_1 + Z_2 / Q_2) \end{split}$$

Na podstawie wzorów na S1 i S2 budujemy układ kombinacyjny i dołączmy go do wejść S_1 i S_2 układu automatu syntezowanego na etapie 1.

Do pełnego zakończenia syntezy pozostało określenie funkcji wyjść. Do tego potrzebna będzie na następująca tabela uzyskana na podstawie grafów automatów.

В	\mathbf{p}_1	\mathbf{p}_2
b_1	$y_1(q_2)$	$y_5(q_4)$
b_2	$y_3(q_3)$	$y_3(q_5)$
b_3	$y_2(q_1)$	$y_4(q_6)$
b_4	*	$y_4(q_7)$

Jeżeli zakodujemy sygnały y_i na 5-ciu liniach wg poniższej tabeli

	\mathbf{Y}_{1}	\mathbf{Y}_{2}	\mathbf{Y}_3	\mathbf{Y}_{4}	Y_5
\mathbf{y}_1	1	0	0	0	0
y_2	0	1	0	0	0
y ₃	0	0	1	0	0
y ₄	0	0	0	1	0
y ₅	0	0	0	0	1

tc

$$Y_1 = p_1 b_1 = P_1 / Q_1 / Q_2$$

$$Y_2 = p_1 b_3 = P_2 * Q_1 / Q_2$$

$$Y_3 = p_1b_2 + p_2b_2 = (p_1 + p_2)b_2 = (P_1 + P_2)/Q_1Q_2 = /Q_1Q_2$$

$$Y_4 \!\!=\!\! p_2 b_3 \!\!+\!\! p_2 b_4 \!\!=\!\! p_2 (b_3 \!\!+\!\! b_4) \!\!=\!\! P_2 (Q_1/Q_2 \!\!+\!\! Q_1Q_2) \!\!=\!\! P_2 Q_1 (/Q_2 \!\!+\!\! Q_2) \!\!=\!\! P_2 Q_1$$

$$Y_5 = p_2 b_1 = P_2 / Q_1 / Q_2$$