DSI - Predicción

Luis Cabañero Gómez

Introducción

Competición DengAl de DrivenData

Intentos: 24

Mejor puntuación: 25.2188

Herramientas

- Python
- NumPy
- Pandas
- Scikit-Learn
- Keras
 - TensorFlow

Acercamiento al problema

Un modelo por ciudad

Considerar la temporalidad de los datos

Exploración de los datos

http://drivendata.co/blog/dengue-benchmark/

Exploración de los datos

Exploración de los datos

Código - Ficheros

- funciones.py
- validacion.py
- prediccion.py
- scriptLSTM.py

Mejor resultado - Selección de características

```
Humedad
reanalysis specific humidity g per kg
reanalysis dew point temp k
Temperatura
station avg temp c
station min temp c
Tiempo
weekofyear
```

Mejor resultado - Topología de la red

5 neuronas de entrada

El número de características seleccionadas

Forma de cono o embudo

Más neuronas en las primeras capas

Menos al final

Una neurona de salida

Solo se busca un valor

Mejor resultado - Entrenamiento

Épocas: 1500

Algoritmo de optimización: Adam

Ratio de aprendizaje: 0.05

Ratio de decaimiento: 0.005

Entrenamiento Iquitos

Entrenamiento San Juan

Aproximaciones fallidas

Eliminar filas con datos faltantes

Considerar el carácter temporal de los datos

Suavizado exponencial

Suavizado promediando ventanas

RNN

Suavizado temporal del número de casos

Problemas encontrados

Convergencia hacia mínimos locales

Falta de convergencia

Número limitado de intentos

Lecciones aprendidas

Trabajar con Keras y TensorFlow

Validación cruzada

Probar varias perspectivas