

<u>Lecture 21: Introduction to</u>
Generalized Linear Models;

<u>Course</u> > <u>Unit 7 Generalized Linear Models</u> > <u>Exponential Families</u>

> 3. Review

3. Review

Meaning of Conditional Expectation

2/3 points (graded)

Consider the model $Y|\mathbf{X} \sim \mathcal{N}(\mathbf{X}^T \beta, 1)$, where \mathbf{X} is a p-dimensional random variable. Here, β is a fixed constant. Indicate whether the following statements are true, or false.

 $\mathbb{E}\left[Y|\mathbf{X}
ight]$ is a constant random variable.

True			
False			
•			

If X_i 's are iid Gaussian, then the conditional mean, $\mathbb{E}[Y|\mathbf{X}]$ is Gaussian random variable. (Assume β is a real-valued vector).

☐ True ✔			

X

The expected value of Y, $\mathbb{E}[Y]$ is a non-constant random variable, if we assume that each X_i has mean μ .

True

False

Solution:

- False. Note that the conditional mean is equal to $\mathbf{X}^T \beta$, which indeed is a random variable.
- True. Note that $\mathbf{X}^T \beta = \sum_{i=1}^p X_i \beta_i$ is a sum of iid Gaussian random variables, and is itself a Gaussian random variable.
- False. Note that $\mathbb{E}[Y] = \mathbb{E}[\mathbb{E}[Y|\mathbf{X}]] = \mathbb{E}[\mathbf{X}^T \beta] = \sum_{i=1}^p \beta_i \mu$, which is constant, using the law of iterated expectations.

Submit

You have used 1 of 1 attempt

1 Answers are displayed within the problem

Generalizing Two Components of Linear Models

Previously, we encountered the idea of a **regression function** . More precisely, given a pair of random variables X,Y, we can write down the function $\mu\left(x\right)$ defined to be

$$\mu\left(x
ight) := \mathbb{E}\left[Y \mid X = x\right].$$

Hide Discussion
Add a Post
by recent activity ▼

© All Rights Reserved