Basics of high-latitude electrodynamics

Basic equations: Ohm's law

Generalised Ohm's law describes the current

$$\mathbf{J} = \boldsymbol{\sigma} \cdot (\mathbf{E} + \mathbf{U} \times \mathbf{B})$$

In largely collisionless plasma (in the solar wind, or in the magnetosphere above ~2,000 km), the conductivity is nearly infinite

$$\mathbf{E} + \mathbf{V} \times \mathbf{B} = 0$$

Ohm's law is the ideal MHD approximation

= frozen-in magnetic field

Basic equations: current continuity

Electrical coupling between the regions is described by

the current continuity:

$$\nabla \cdot \mathbf{J} = 0$$

And Faraday's law:

$$\nabla \times \mathbf{E} + \partial \mathbf{B} / \partial t = 0$$

The regions considered for the high-latitude magnetosphere-ionosphere coupling:

- highly-conductive ionosphere (below 200 km);
- magnetosphere (above ~2,000 km);
- transition layer (ideal Ohm's law partially holds).

Magnetic field topology under southward IMF

Magnetospheric region:

- open field lines (linked to IMF);
- closed field lines (could be closed far in the tail);
- polar cap is magnetically linked to the solar wind.

Solar wind – ionosphere coupling in the polar cap

Solar wind electric field $E_{sw}=-V_{sw}\times B_{sw}$ Under a southward IMF, a dawn-to-dusk \textbf{E}_{sw} maps to the polar cap ionosphere:

$$\mathbf{V}_{\mathrm{I}} = \mathbf{E}_{\mathrm{I}} \times \mathbf{B}_{\mathrm{I}} / B_{\mathrm{I}}^{2}$$

Mapping factors:

$$B_I/B_{sw} = 50,000 \,\text{nT/5 nT} = 10^4$$

 $E_I/E_{sw} = 50 \,\text{mV m}^{-1}/2 \,\text{mV m}^{-1} = 125$
 $V_I/V_{sw} = 1 \,\text{km s}^{-1}/400 \,\text{km s}^{-1} = 2.5 \times 10^{-3}$

Circuit energetics

Resulting ionospheric current from the mapping:

$$J = \boldsymbol{\sigma} \cdot E_{I}$$

with the Pedersen component parallel to \boldsymbol{E}_{I} Thus $\boldsymbol{J} \cdot \boldsymbol{E} > 0$

⇒ Polar ionosphere is a load (=energy sink!)
Where the electrical energy comes from?

Solar wind current (solar wind decelerates):

$$\mathbf{J}_{\perp} = (\rho/B^2)\mathbf{B} \times d\mathbf{V}/dt$$

Thus
$$J_{sw} \cdot E_{sw} < 0$$

⇒ Solar wind is the generator, feeding the ionosphere as a load!

Auroral precipitations and the oval

Credit: NOAA

Field aligned current (FAC) system

Satellite observations of FACs

AMPERE data J, component of FACs (positive upward) - NH projection TIEGCM output - J. (A/m2) - NH projection -0.5 -1.5 00:20 UT 04-Aug-2010 DOY = 216 00:20 UT 04-Aug-2010 DOY = 216 00 MLT 00 MLT

First satellite observations by *Ijima and Potemra* (1976).

Credit: AGU

Plasma convection under southward IMF

Observations of plasma convection: radar networks

JHU/APL Software by R.J.Barnes

Satellite and model data can be added

Bz-/By-

http://superdam.jhuapl.edu

IMF control of plasma convection

• Clear convection patterns under southward (Bz) IMF.

 Complex/weak convection under northward IMF.

• East-west IMF (By) causes asymmetries.

From Grocott and Milan, 2014 Credit: AGU