

Appendice A

Conversione Decimale ↔ Binario

(numeri non negativi)

ε - macchina

Conversione Decimale → Binario (Numeri interi [≥1])

Si applica la divisione intera per 2 fino a ottenere 0. I resti delle divisioni, letti al contrario, formano la rappresentazione in binario

$$4_{10} = 100_2$$

$$5_{10} = 101_2$$

$$6_{10} = 110_2$$

Conversione Binario → Decimale (Numeri interi [≥1])

Il numero in Decimale è dato dal risultato della somma $b_{i-1}2^{i-1}+\cdots+b_12^1+b_02^0$, dove b è l'i-esimo bit della rappresentazione in Binario

$$100_2 = 1 \cdot 2^2 + 0 \cdot 2^1 + 0 \cdot 2^0 = 4_{10}$$

$$101_2 = 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = 5_{10}$$

$$110_2 = 1 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0 = 6_{10}$$

Conversione Decimale → Binario (Numeri non interi [fra 0 e 1])

Si applica la moltiplicazione per 2 fino a ottenere 1. Ogni volta che una parte intera è 1 si sottrae 1. Le parti intere delle moltiplicazioni, lette nell'ordine, formano la rappresentazione in binario

$$0.5_{10} = xxx_2$$
?

$$0.75_{10} = xxx_2$$
?

$$0.6875_{10} = xxx_2$$
?

$$0.5 \cdot 2 = 1 \rightarrow 1$$

$$0.75 \cdot 2 = 1.5 \rightarrow 1$$

$$0.6875 \cdot 2 = 1.375 \rightarrow 1$$

$$0.5_{10} = .1_2$$

$$0.5 \cdot 2 = 1 \rightarrow 1$$

$$0.375 \cdot 2 = 0.75 \rightarrow 0$$

$$0.75_{10} = .11_2$$

$$0.75 \cdot 2 = 1.5 \rightarrow 1$$

$$0.5 \cdot 2 = 1 \rightarrow 1$$

$$0.625_{10} = .1011_2$$

Conversione Decimale → Binario (Numeri non interi [fra 0 e 1])

Caso particolare: se prima di ottenere 1 (e quindi concludere la conversione) si ottiene un decimale d già visto in un passo precedente allora si può concludere la conversione notando che la rappresentazione in binario del numero decimale iniziale conterrà una parte periodica, a partire dal decimale d.

$$0.6_{10} = .xxx_{2}$$
?
 $0.6 \cdot 2 = 1.2 \rightarrow 1$
 $0.2 \cdot 2 = 0.4 \rightarrow 0$
 $0.4 \cdot 2 = 0.8 \rightarrow 0$
 $0.8 \cdot 2 = 1.6 \rightarrow 1$
 $0.6 \ gia'visto \rightarrow periodico$
 $0.6_{10} = .\overline{1001}_{2}$

Conversione Binario → Decimale (Numeri non interi [fra 0 e 1])

Il numero in Decimale è dato dal risultato della somma $b_1 2^{-1} + b_2 2^{-2} + \dots + b_i 2^{-i}$, dove b è l'i-esimo bit della rappresentazione in Binario

$$.100_2 = 1 \cdot 2^{-1} + 0 \cdot 2^{-2} + 0 \cdot 2^{-3} =$$

$$= 1 \cdot \frac{1}{2} + 0 \cdot \frac{1}{4} + 0 \cdot \frac{1}{8} = 0.5_{10}$$

$$.110_2 = 1 \cdot \frac{1}{2} + 1 \cdot \frac{1}{4} + 0 \cdot \frac{1}{8} = 0.75_{10}$$

$$.101_2 = 1 \cdot \frac{1}{2} + 0 \cdot \frac{1}{4} + 1 \cdot \frac{1}{8} = 0.625_{10}$$

Conversione Decimale ↔ Binario (Numeri interi e non interi [>0])

 Si possono applicare gli algoritmi visti precedentemente combinandoli insieme sulla parte intera e su quella frazionaria.

■ Esempio Binario → Decimale:

□
$$1101.0011_2 =$$

$$= 2^3 + 2^2 + 1 + \frac{1}{2^3} + \frac{1}{2^4} =$$

$$= 8 + 4 + 1 + 0.125 + 0.0625 = 13.1875_{10}$$

ε - macchina

 La rappresentazione dei numeri a virgola mobile tramite i moderni calcolatori è vincolata da una precisione limitata

Floating-point Numbers (Decimal)

Questo grafico mostra come i numeri rappresentabili siano maggiormente raggruppati intorno allo 0, mentre tendono a diventare più sparsi man mano che ci si allontana verso infinito

ε - macchina

- Definiamo ε macchina il più piccolo numero in virgola mobile in valore assoluto diverso da 0 che sommato all'unità dia un risultato diverso da 1.
- In maniera alternativa, possiamo dire che se la differenza di due numeri a e b <u>distinti</u> risulta

$$a-b<\varepsilon$$

- allora a b = 0, cioè a = b, contro l'hp iniziale.
- Questa caratteristiche potrebbe quindi essere responsabile di perdita di dati

ε - macchina

- E' possibile calcolare l'ε macchina.
- Esistono già delle approssimazioni teoriche del suo valore:

EEE 754 - 2008	Common name	C++ data type	Base b	Precision p	Machine epsilon $^{\mathrm{[a]}}b^{-(p-1)}/2$	Machine epsilon $^{[b]}b^{-(p-1)}$
binary16	half precision	not available	2	11 (one bit is implicit)	2 ⁻¹¹ = 4.88e-04	2 ⁻¹⁰ = 9.77e-04
binary32	single precision	float	2	24 (one bit is implicit)	2 ⁻²⁴ = 5.96e-08	2 ⁻²³ = 1.19e-07
binary64	double precision	double	2	53 (one bit is implicit)	2 ⁻⁵³ = 1.11e-16	2 ⁻⁵² = 2.22e-16
binary80	extended precision	_float80 ^[1]	2	64	2 ⁻⁶⁴ = 5.42e-20	2 ⁻⁶³ = 1.08e-19
binary128	quad(ruple) precision	_float128 ^[1]	2	113 (one bit is implicit)	2 ⁻¹¹³ = 9.63e-35	2 ⁻¹¹² = 1.93e-34
decimal32	single precision decimal	_Decimal32 ^[2]	10	7	5 × 10 ⁻⁷	10 ⁻⁶
decimal64	double precision decimal	_Decimal64 ^[2]	10	16	5 × 10 ⁻¹⁶	10 ⁻¹⁵
decimal128	quad(ruple) precision decimal	_Decimal128 ^[2]	10	34	5 × 10 ⁻³⁴	10 ⁻³³