Rui Ji (1000340918)

1. i To get tangent vector, we take derivative of (x(t), y(t)) respect to t.

To get tangent vector, we take derivative of
$$(x(t), y(t))$$
 respect to t .

$$x'(t) = (4\cos(2\pi t) + \frac{\cos(32\pi t)}{16})' = -2\pi(4\sin(2\pi t) + \sin(32\pi t))$$

$$y'(t) = (2\sin(2\pi t) + \frac{\sin(32\pi t)}{16})' = 2\pi(2\cos(2\pi t) + \cos(32\pi t))$$
Then the tangent vector is $(-(4\sin(2\pi t) + \sin(32\pi t)), (2\cos(2\pi t) + \cos(32\pi t)))$

- ii To get normal vector, we know that at any point normal vector is perpendicular to tangent vector; hence, normal vector is $((2\cos(2\pi t) + \cos(32\pi t)), (4\sin(2\pi t) + \sin(32\pi t)))$ or $(-(2\cos(2\pi t) + \cos(32\pi t)), -(4\sin(2\pi t) + \sin(32\pi t)))$.
- iii The curve is symmetric around X-axis and symmetric around Y-axis.

We could notice that both x(t) and y(t) are periodic functions which repeat over intervals of 1 radians.

Also if a function f(x) is symmetric around X-axis means f(x) = -f(x) and is symmetric around Y-axis means f(x) = f(-x).

Symmetric around X-axis:

First, we know that cos(t) = cos(-t) which means x(t) = x(-t). Also, sin(t) = -sin(-t)which means y(t) = -y(-t). Then at t and -t time, the curve has same x coordinates but opposite y coordinates; hence, the curve is symmetric around X-axis.

Symmetric around Y-axis:

We know that $cos(t) = -cos(\pi - t)$ which means x(t) = -x(0.5 - t). Also, $sin(t) = sin(\pi - t)$ which means y(t) = y(0.5 - t). Then at t and 0.5 - t time, the curve has opposite x coordinates but same y coordinates; hence, the curve is symmetric around Y-axis.

iv Since both x(t) and y(t) are periodic functions which repeat over intervals of 1 radians, and symmetric around both X-axis and Y-axis.

Then perimeter:

$$p = 4 \int_0^{0.25} \sqrt{(x'(t))^2 + (y'(t))^2} dt$$
$$= 4 \int_0^{0.25} \sqrt{(2\pi(4\sin(2\pi t) + \sin(32\pi t)))^2 + (2\pi(2\cos(2\pi t) + \cos(32\pi t)))^2} dt$$

v Define f(t) as follow:

$$f(t) = \sqrt{(2\pi(4\sin(2\pi t) + \sin(32\pi t)))^2 + (2\pi(2\cos(2\pi t) + \cos(32\pi t)))^2}$$

The way we approximate the perimeter is approximate the integral above. So we divide the interval [0,0.25] to n sub-interval $[x_0,x_1],[x_1,x_2]...[x_{n-1},x_n]$ where $x_0=0,x_n=0.25$. Then calculate sum, $perimeter=4\sum_{i=0}^{i=n-1}[(f(x_{i+1})-f(x_i))(x_{i+1}-x_i)]$.

- 2. Denote C_1 to be the circle with radius r_1 and C_2 to be the circle with radius r_2 ($r_2 > r_1$).
 - i The area of donut is $A = \pi(r_2)^2 \pi(r_1)^2 = \pi((r_2)^2 (r_1)^2)$.
 - ii There can be 0,1, 2,3 and 4 intersections.
 - iii The distance from the centre (p_1) of the circles to line $p(\lambda) = p_0 + \lambda \overrightarrow{d}$ is

distance:
$$d = \|(p_0 - p_1) - ((p_0 - p_1) \cdot \overrightarrow{n})\overrightarrow{n}\|$$
 where $\overrightarrow{n} = \frac{\overrightarrow{d}}{|\overrightarrow{d}|}$

- (1) if $d > r_2$, then there is no intersection;
- (2) if $d = r_2$, then there is 1 intersection, then solve the equation

$$\|(p_0 - p_1) - \lambda \overrightarrow{d}\| = r_2$$

get one solution λ_0 and $p(\lambda_0)$ is the location of the intersection.

(3) if $r_2 > d > r_1$, then there 2 intersections, then solve the equation

$$\|(p_0 - p_1) - \lambda \overrightarrow{d}\| = r_2$$

get two solutions λ_0 , λ_1 and $p(\lambda_0)$, $p(\lambda_1)$ are the location of the intersections.

(4) if $d = r_1$, then there are 3 intersections, then solve then solve the equation

$$\|(p_0 - p_1) - \lambda \overrightarrow{d}\| = r_2$$

$$\|(p_0-p_1)-\lambda \overrightarrow{d}\|=r_1$$

get three solutions λ_0 , $\lambda_1\lambda_2$ and $p(\lambda_0)$, $p(\lambda_1)$, $p(\lambda_2)$ are the location of the intersections.

(5) if $d < r_1$, then there are 4 intersections, then solve then solve the equation

$$\|(p_0 - p_1) - \lambda \overrightarrow{d}\| = r_2$$

$$\|(p_0 - p_1) - \lambda \overrightarrow{d}\| = r_1$$

get three solutions λ_0 , λ_1 , λ_2 , λ_3 and $p(\lambda_0)$, $p(\lambda_1)$, $p(\lambda_2)$, $p(\lambda_3)$ are the location of the intersections.

- iv If both line and donut transformed by a non-uniform scale (s_x, s_y) , then intersection won't change. Suppose the old location is (x, y), then location after scale it will be $(s_x x, s_y y)$.
- v Suppose A(x,y) is a point on the donut. After scaling, it becomes $A'(s_xx,s_yy)$. Then $\Delta(A'A)=(A'-A)$, and $\theta=\arccos(\frac{\overrightarrow{A'-A}\cdot\overrightarrow{d}}{|\overrightarrow{A'-A}||\overrightarrow{d}|})$. Then if $\pi<\theta<2\pi$ means after scaling A is closer to the line, if $0<\theta<\pi$ means A is away from the line after scaling and $\theta=0\lor\theta=\pi$ means the distance from A to the line remains the same.
- 3. (a) Translation and uniform scaling do not commute First, translate by (1,0), then scaled by $(\frac{1}{2},\frac{1}{2})$:

Now, apply it reversely, scaled by $(\frac{1}{2}, \frac{1}{2})$, then translate by (1,0):

Hence, clearly translation and uniform scaling do not commute.

(b) Translation and non-uniform scaling do not commute. First we scaled by $(1, \frac{1}{2})$, then translate by (0, 1):

Now, we apply translation first, then scaling:

Hence, translation and non-uniform scaling do not commute.

(c) Scaling and rotation, both having the same fixed points commute. Scaling by (1,2), then rotating $\frac{\pi}{2}$:

Now, rotating first then scaling

(d) Scaling and scaling, having different fixed points do not commute. First, Scaling around (0,0) by (2,0), then around (1,0) by (2,0):

First, Scaling around (1,0) by (2,0), then around (0,0) by (2,0):

(e) Translation and shear do not commute. First, shearing by $\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$, then translate by (0,1):

Now, we first translate by (0,1) then shearing by $\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$:

Hence, translation and shear do not commute.

4. i First we create 3 vectors $\overrightarrow{v_0-q}$, $\overrightarrow{v_1-q}$, $\overrightarrow{v_2-q}$ using $\overrightarrow{v_0}$, $\overrightarrow{v_1}$, $\overrightarrow{v_2}$ and \overline{q} .

$$\theta_0 = \arccos(\frac{\overrightarrow{v_0 - q} \cdot \overrightarrow{v_1 - q}}{|\overrightarrow{v_0 - q}| |\overrightarrow{v_1 - q}|})$$

$$\theta_1 = \arccos(\frac{\overrightarrow{v_0 - q} \cdot \overrightarrow{v_2 - q}}{|\overrightarrow{v_0 - q}||\overrightarrow{v_2 - q}|})$$

$$\theta_2 = \arccos(\frac{\overrightarrow{v_1 - q} \cdot \overrightarrow{v_2 - q}}{|\overrightarrow{v_1 - q}||\overrightarrow{v_2 - q}|})$$

Then q is inside the triangle iff $(\theta_0 + \theta_1 + \theta_2 = 2\pi) \wedge (\theta_0 \neq \pi) \wedge (\theta_1 \neq \pi) \wedge (\theta_2 \neq \pi)$; q is on the triangle iff $(v_0 = q) \vee (v_1 = q) \vee (v_2 = q) \vee (\theta_0 + \theta_1 + \theta_2 = 2\pi) \wedge ((\theta_0 = \pi) \vee (\theta_1 = \pi) \vee (\theta_2 = \pi))$);

Otherwise, *q* is outside the triangle.

ii Suppose we are given with 4 vertices $V = \{v_0, v_1, v_2, v_3\}$ and edge set $E = \{(v_0, v_1), (v_1, v_2), (v_2, v_3), (v_3, v_0)\}$

Define:

$$\theta_{0} = \arccos(\frac{\overrightarrow{v_{1} - v_{0}} \cdot \overrightarrow{v_{2} - v_{0}}}{|\overrightarrow{v_{1}} - v_{0}||\overrightarrow{v_{2}} - v_{0}|}) + \arccos(\frac{\overrightarrow{v_{1} - v_{0}} \cdot \overrightarrow{v_{3}} - v_{0}}{|\overrightarrow{v_{1}} - v_{0}||\overrightarrow{v_{3}} - v_{0}|}) + \arccos(\frac{\overrightarrow{v_{2} - v_{0}} \cdot \overrightarrow{v_{3}} - v_{0}}{|\overrightarrow{v_{2}} - v_{0}||\overrightarrow{v_{3}} - v_{0}|})$$

$$\theta_{1} = \arccos(\frac{\overrightarrow{v_{0} - v_{1}} \cdot \overrightarrow{v_{2}} - v_{1}}{|\overrightarrow{v_{0}} - v_{1}||\overrightarrow{v_{2}} - v_{1}|}) + \arccos(\frac{\overrightarrow{v_{0} - v_{1}} \cdot \overrightarrow{v_{3}} - v_{1}}{|\overrightarrow{v_{0}} - v_{1}||\overrightarrow{v_{3}} - v_{1}|}) + \arccos(\frac{\overrightarrow{v_{2} - v_{1}} \cdot \overrightarrow{v_{3}} - v_{1}}{|\overrightarrow{v_{2}} - v_{1}||\overrightarrow{v_{3}} - v_{1}|})$$

$$\theta_{2} = \arccos(\frac{\overrightarrow{v_{1} - v_{2}} \cdot \overrightarrow{v_{3}} - v_{2}}{|\overrightarrow{v_{1}} - v_{2}||\overrightarrow{v_{3}} - v_{2}|}) + \arccos(\frac{\overrightarrow{v_{1} - v_{2}} \cdot \overrightarrow{v_{0}} - v_{2}}{|\overrightarrow{v_{1}} - v_{2}||\overrightarrow{v_{0}} - v_{2}|}) + \arccos(\frac{\overrightarrow{v_{1} - v_{2}} \cdot \overrightarrow{v_{3}} - v_{2}}{|\overrightarrow{v_{1}} - v_{3}||\overrightarrow{v_{2}} - v_{3}|})$$

$$\theta_{3} = \arccos(\frac{\overrightarrow{v_{1} - v_{3}} \cdot \overrightarrow{v_{2}} - v_{3}}{|\overrightarrow{v_{1}} - v_{3}||\overrightarrow{v_{2}} - v_{3}|}) + \arccos(\frac{\overrightarrow{v_{1} - v_{3}} \cdot \overrightarrow{v_{0}} - v_{3}}{|\overrightarrow{v_{1}} - v_{3}||\overrightarrow{v_{0}} - v_{3}|}) + \arccos(\frac{\overrightarrow{v_{1} - v_{3}} \cdot \overrightarrow{v_{2}} - v_{3}}{|\overrightarrow{v_{1}} - v_{3}||\overrightarrow{v_{2}} - v_{3}|})$$

Check if any θ_0 , θ_1 , θ_2 , θ_3 equals 2π , if $\theta_x = 2\pi$ we know that quadrilateral is concave. And based on (i) we also know that v_x is inside the triangle with vertices $V \setminus v_x$. Then connect v_x , v_y where $(v_y \in V \setminus v_x) \wedge ((v_x, v_y) \notin E)$, and quadrilateral is now split into the union of two triangles.

If none of θ_0 , θ_1 , θ_2 , θ_3 equals 2π which means the quadrilateral is convex. Then just connect one of two diagonals (i.e (v_0, v_2) or (v_1, v_3)), the quadrilateral is now split into the union of two triangles.

- iii Suppose we are given with n vertices $V = \{v_0, v_1, v_2, v_3...v_{(n-1)}\}$ and edge set $E = \{(v_0, v_1), (v_1, v_2), (v_2, v_3), (v_3, v_4)..., (v_{n-2}, v_{n-1}), (v_{n-1}, v_0)\}$. pick any vertex v_i in the vertices set V (i.e v_0), then connect v_i to the rest of the vertices if there no edge between them.
- iv Counterexample, this algorithm won't work for concave, for example if we choose $v_i = v_2$ in the following graph.

v For any point q, we connect q with every vertex in the vertices set V, and define

$$\theta_{i} = \arccos(\frac{\overrightarrow{v_{i} - q} \cdot \overrightarrow{v_{i+1}}_{(mod\ n)} - \overrightarrow{q}}{|\overrightarrow{v_{i} - q}|| |\overrightarrow{v_{i+1}}_{(mod\ n)} - \overrightarrow{q}|}) \quad 0 \le i \le n - 1$$

Also, define the line function for each edge i is l_i . Then q is inside the polygon iff $\sum_{i=0}^{n-1} \theta_i = 2\pi$ and q doesn't satisfy any line function l_i . q is on the polygon iff $\sum_{i=0}^{n-1} \theta_i = 2\pi$ and satisfy some line function l_i . Otherwise, q is outside the polygon.