Architecture des ordinateurs IFT1227 Introduction

Franz Girardin

18 janvier 2024

Couche logique numérique Constituées de portes logiques construite à partir de transisteurs qui prennent un signal 0 ou 1 et calcule une fonction logique ET, OU et NON, etc.

Porte NON

 $Y = \overline{A}$

Porte NAND

A	В	Y
0	0	1
0	1	1
1	0	1
1	1	0

 $Y = \overline{AB}$

Y = A

Porte \mathbb{NOR}

 $Y = \overline{A + B}$

Porte \mathbb{ET}

A	В	Y
0	0	0
0	1	1
1	0	1
1	1	1

Y = AB

Porte XNOR

Porte OU

Porte \mathbb{XOR}

A	В	Y
0	0	0
0	1	0
1	0	0
1	1	1

1 1

0 1

1 0

Y = A + B

Porte NOR3

А	A	В	C	Y
	0	0	0	1
	0	0	1	0
	0	1	0	0
	0	1	1	0
	1	0 0 1	0 1	0
	1	0	1	0
	1	1	0	0
	1	1	1	0

 $Y = \overline{A \oplus B}$

 $Y = A \oplus B$

$Y = \overline{A + B + C}$

Porte AND3

Y = ABC

Définition de la marge de bruit Tolérance d'un circuit aux perturbations pouvant fausser l'interprétation du signal.

- $\, \triangleright \ \, V_{IH} : \min(V|V_{in} ::= \mathbf{1})$
- $\triangleright V_{IL} : \max(V|V_{in} := \mathbf{0})$
- ► Signal reçu min ou max est être interprété comme 1 ou 0.
- $ightharpoonup V_{OH}: \min(V|V_{out} := 1)$
- $\triangleright V_{OL}: \max(V|V_{out} := \mathbf{0})$
- ▶ Signal **min** ou **max** que l'émetteur s'engage à fournir pour être interprété comme 1 ou 0.

$$NM_H = V_{OH} (\acute{e}m.) - V_{IH} (src.)$$

 $NM_L = V_{IL} (src.) - V_{OL} (\acute{e}m.)$

Transistors

Éléments de base des circuits électroniques. Ils sont composés de trois broches; le drain, la source, et la grille qui contrôle les deux autres comme un interrupteur. La figure suivante représente un transistor hors tension off, un transistor hors tension mais polarisé off et un transistor sous tension on.

Composition d'un circuit

Circuit::= E., S., spec. *fonct.*, spec. *temp*.

Propriétés d'un circ. combinatoire

- ightharpoonup Noeud \Longrightarrow In ou connexion à un Out.
- ▶ Aucun chemin cyclique.

Sommes de produits SOP En considérant les variables In d'une ligne de la table de vérité, il faut identifier la conjonction (produit) nécessaire pour engendrer un 1 logique. Un minterm est une représentation du produit engendrant un 1 logique.

A	В	Y	minterm
V	F	0	\overline{AA}
0	1	1	$\overline{A}B$
1	0	0	$A\overline{B}$
1	1	1	AB

$$Y(A, B) = \overline{A}B + AB \longleftrightarrow Y(A, B) = \sum (1, 3)$$

Produits de sommes En considérant les variables In d'une ligne de la table de vérité, il faut identifier la **somme** nécessaire pour engendrer un **0** logique. Un maxterm est une représentation de la somme engendrant un 0 logique.

A	В	Y	maxterm
V	F	0	A + B
0	1	1	$A + \overline{B}$
1	0	0	$\overline{A} + B$
1	1	1	$\overline{A} + \overline{B}$

$$Y(A, B) = (A + B)(A + \overline{B}) = \prod_{A \in A} (0, 2)$$

Axiome	Dual	Nom
$B = 0 \text{ if } B \neq 1$	$B=1 \text{ if } B \neq 0$	Binary field
$\overline{0} = 1$	$\overline{1} = 0$	NOT
$0 \cdot 0 = 0$	1 + 1 = 1	AND/OR
1 · 1 = 1	0+0=0	AND/OR
$0\cdot 1\cdot 0=0$	1+0=1+1=1	AND/OR

Dual	Nom
B+0=B	Identité
	Élément nul
	Indépotence
	Involution
	Complément
	Dual $B+0=B$ $B+1=1$ $B+B=B$ $\overline{B}=B$ $B+\overline{B}=1$

De Morgan

$$\neg (A+B) = \neg A + \neg B$$
$$\neg (A \cdot B) = \neg A \cdot \neg B$$

$$Y = \overline{A} \cdot \overline{B} \cdot \overline{C} + A\overline{B}\overline{C} + A\overline{B}C$$

Simple règles de schématisation Les E. sont en haut à gauche et les S. sont en bas à droite; on utilise des fils droits, préférablement.

(c) Fils se croissant sans point (∴ non connectés)

Circuit de priorité

A_3	A_2	A_1	A_0	Y_3	Y_2	Y_1	Y_0
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	0
0	0	1	1	0	0	1	0
0	1	0	0	0	1	0	0
0	1	0	1	0	1	0	0
0	1	1	0	0	1	0	0
0	1	1	1	0	1	0	0
1	0	0	0	1	0	0	0
1	0	0	1	1	0	0	0
1	0	1	0	1	0	0	0
1	0	1	1	1	0	0	0
1	1	0	0	1	0	0	0
1	1	0	1	1	0	0	0
1	1	1	0	1	0	0	0
1	1	1	1	1	0	0	0

Exemple simple de circuit combinatoire Représentation d'un circuit de priorité

Entrés don't care d ou \mathbb{X} Ces entrés sont utilisées pour spécifier que la variables possédant le don't care n'affecte pas le résultat de la fonction logique. Une file de priorité peut être résumée par la table sui-

A_3	A_2	A_1	A_0	Y_3	Y_2	Y_1	Y_0
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	d	0	0	1	0
0	1	d	d	0	1	0	0
1	d	d	d	1	0	0	0

 $\begin{center} \textbf{Contention: signal } X & \textbf{Se produit lorsque les} \\ \end{center}$ portes logiques et les entrées sont telles que la sortie à générer est contradictoire.

Tampon à trois étal : signal $\mathbb Z$ Circuit dans lequel une entrée E est connecté à une porte tampon et contrôle la propagation du signal. Lorsque l'entrée E est sous tension haute, la porte agit comme un tampon normal; lorsque l'entrée E est sous tension basse, la porte produit le signal $\mathbb Z$ qui indique que Aest contrôlé.

Méthodes de Karnaugh Méthode **graphique** permettant de simplifier les formules de circuits

- Organiser les éléments en grille de façon à ce que chaque cellule ne diffère d'une cellule voisine que par 1 bit.
- ▶ Remplir la grille de façon à refléter le tableau d'origine.
- ▶ Grouper ou entourer les cellules adjacentes qui possèdent un 1.

A	В	С	Y
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

		AB				
		00	01	11	10	
C	0	1	0	0	0	
С	1	1	0	0	0	

		AB			
		00	01	11	10
С	0	$\overline{A} \cdot \overline{B} \cdot \overline{C}$	0	0	0
	1	$\overline{A} \cdot \overline{B}C$	0	0	0

Multiplexeur

- $\triangleright 2^n$ lignes d'entrées
- $\, \triangleright \, 2^n$ N lignes de sélections
- $\triangleright 2^n$ Une seule sorties Y

Possède deux implémentations secondaires, soit (1) ${f portes}$ logiques et (2) ${f tampons}$ à trois états.