第132回 人工知能基本問題研究会 2025年3月19日

非対称ATTENTIONを用いた集合埋め込みと ヘテロジニアス集合マッチング・検索への応用

和歌山大学・大学院システム工学研究科 理研・革新知能統合センター 八谷 大岳

※本研究はJSPS科研費JP23K11218の助成を受けたものです。

Y. Saito et al., ECCV2020

- □ 重複せず順序を持たない複数の要素が組み合わさったデータ
 - □ 例:
 - ファッションや家具コーデ:調和する複数のアイテム(画像、商品名、属性など)の集合

夏の30代ママコーデ https://blog.smasell.jp/archives/5347

■ 人のグループ:共通の趣味や目的を持つ人(属性、画像など)の集合

■ 点群データ:物体を構成する3次元の点の集合

https://www.blickfeld.com/blog/on-device-motion-detection/

https://tech-deliberate-jiro.com/3dmodel/

定式化

□ 集合X:ベクトル $x_i \in \mathbb{R}^{1 \times D}$ を要素に持つ集合

$$\mathcal{X} = \{x_1, x_2, ..., x_{N^X}\}$$
 N^X :要素数

- 順列生成関数Ⅱ:集合Xの全ての順列の集合を生成
 - 例) $X = \{a, b, c\}$ の場合

$$\Pi(\mathcal{X}) = \{\{a, b, c\}, \{a, c, b\}, \{b, a, c\}, \{b, c, a\}, \{c, a, b\}, \{c, b, a\}\}$$

□ Permutation invariance (順不変) : $f(x) = f(\pi x)$

 $\pi X \in \Pi(X)$ $\pi: 順列を変更する作用素(順列操作作用素)$

□ Permutation equivalence (順同変) : $f(\pi X) = \pi f(X)$

$$f(\mathcal{X}) = \{ \| \boldsymbol{x} \|^2; \boldsymbol{x} \in \mathcal{X} \}$$

$$f(\mathcal{X}) = \{ \| \boldsymbol{x} \|^2; \boldsymbol{x} \in \mathcal{X} \}$$

$$\pi f(\mathcal{X}) = \pi f(\{a, b, c\}) = \pi \{a^2, b^2, c^2\} = \{b^2, c^2, a^2\}$$

 \square 目的:順不変性を持ち適応的な関数f(X)を作りたい

内容:

- □ 集合データとは
- □様々な順不変関数
- □ 順不変関数のまとめ
- □ 集合マッチングへの応用
- □ 集合検索への発展とまとめ

単純な順不変関数: sum pooling

□ sum poolingを用いた順不変性を満たす関数

$$f(\mathcal{X}) = \sum_{i=1}^{N_X} x_i$$

□ $X = \{4,1,-3\}$ の場合の全ての順列 $\Pi(X)$:

$$\Pi(\mathcal{X}) = \{ \{4,1,-3\}, \{4,-3,1\}, \{1,4,-3\}, \{1,-3,4\}, \{-3,4,1\}, \{-3,1,4\} \}$$

$$f({4,1,-3}) = 4 + 1 - 3 = 2$$

$$f(\{1, -3, 4\}) = 1 - 3 + 4 = 2$$

$$f({4,-3,1}) = 4 - 3 + 1 = 2$$

$$f(\{-3,4,1\}) = -3 + 4 + 1 = 2$$

$$f({1,4,-3}) = 1 + 4 - 3 = 2$$

$$f({-3,1,4}) = -3 + 1 + 4 = 2$$

$$f(\mathcal{X}) = f(\pi \mathcal{X})$$

$$\pi \mathcal{X} \in \Pi(\mathcal{X})$$

Deep sets

- 😕 単純なsum poolingのみでは適応的な処理は不可
- □ Deep sets: 以下の定理を提案

Theorem 2 A function f(X) operating on a set X having elements from a countable universe, is a valid set function, i.e., **invariant** to the permutation of instances in X, iff it can be decomposed in the form $\rho\left(\sum_{x\in X}\phi(x)\right)$, for suitable transformations ϕ and ρ .

 \blacksquare 順不変な関数f(x)は必ず以下の形に分解できる

$$f(\mathcal{X}) = \rho\left(\sum_{\mathbf{x} \in \mathcal{X}} \phi(\mathbf{x})\right)$$

 $\phi(x)$:要素に適用される適切な変換関数

 $\rho(\cdot)$: 最終的な出力を決める適切な変換関数

- $\phi(\cdot)$ と $\rho(\cdot)$ を、MLPなどの学習可能なモデルで表現することにより、順不変かつ適応的な関数f(x)を実現
- $\phi(\cdot)$ は、各要素xを独立に処理するため、集合内の要素の共起性に基づく変換が不可

9

J. Lee et al., ICML2019

- □ 集合X、Y: ベクトルX、Y ∈ $\mathbb{R}^{1 \times D}$ を要素に持つ集合 $X = \{x_1, x_2, ..., x_{N^X}\} \qquad Y = \{y_1, y_2, ..., y_{N^Y}\} \qquad N^X \setminus N^Y : \text{アイテム数}$
- \square 計算の便宜上、集合X、Yを行列X、Yで表現

$$X = [\boldsymbol{x}_1; \boldsymbol{x}_2; ...; \boldsymbol{x}_{N^X}] \in \mathbb{R}^{N^X \times D}$$
 $Y = [\boldsymbol{y}_1; \boldsymbol{y}_2; ...; \boldsymbol{y}_{N^Y}] \in \mathbb{R}^{N^Y \times D}$

- Multi-head attention block (MAB) :
 - Multi-head attention:

$$\operatorname{attention}(Q, K, V) = \operatorname{Softmax}\left(\frac{1}{\sqrt{D}}QK^{\mathrm{T}}\right)V$$

 $Q'_h = \operatorname{Attention}(QW_h^Q, KW_h^K, VW_h^V)$

 $MultiHead(Q, K, V) = Concat(Q'_1, Q'_2, ..., Q'_H)W^H$

MAB:

$$MAB(X, Y) = LayerNorm(H + rFF(H))$$

H = LayerNorm(X + MultiHead(X, Y, Y))

rFF: 要素独立な(次元方向の) 全結合層

Attentionの性質とSAB

□ Attention:<mark>順同変</mark>と要素単位の順不変を同時に満たす

$$Q' = \text{Attention}(Q, K, V) = \begin{bmatrix} q_1 & & & \\ & q_2 & & \\ & & &$$

$$imes rac{1}{\sqrt{D}}$$
、softmaxは省略

順同変: $f(\pi Q) = \pi f(Q)$ 出力Q'とQ''の順列は入力Qの順列と同じ

$$Q'' = \text{Attention}(Q, K, V) = \begin{bmatrix} q_2 \\ q_1 \end{bmatrix} \begin{bmatrix} v_3 \\ k_3 \end{bmatrix} \begin{bmatrix} v_2 \\ v_1 \end{bmatrix}$$

$$= \begin{bmatrix} q_2 k_3^T & v_3 + q_2 k_2^T & v_2 + q_2 k_1^T & v_1 \\ q_1 k_3^T & v_3 + q_1 k_2^T & v_2 + q_1 k_1^T & v_1 \end{bmatrix}$$

順不変: $f(X) = f(\pi X)$ 出力Q'とQ''の各要素の値は、 入力Kの順列に依存しない

□ Set Attention Block (SAB): MABをself-attentionで処理

$$SAB(X) = MAB(X, X)$$

Pooling MA (PMA)

 \square Qを学習可能な行列 $S \in \mathbb{R}^{K \times D}$ に置き換え、順不変性を実現

$$PMA(X) = MAB(S, rFF(X))$$

■ K = 1の場合の例:

$$\left(\begin{array}{c} S' \\ \end{array} \right) = \operatorname{softmax} \left(\frac{1}{\sqrt{D}} \left(\begin{array}{c} S \\ \end{array} \right) \left(\begin{array}{c} X^{\mathrm{T}} \\ \end{array} \right) \left(\begin{array}{c} X \\ \end{array} \right) \right)$$

- SとXの関係に基づく重み係数を用いて、Xの線形結合によりpooling
- 出力S'は、入力Xの順列に依存しない

内容:

- □ 集合データとは
- □様々な順不変関数
- □ 順不変関数のまとめ
- □ 集合マッチングへの応用
- □ 集合検索への発展とまとめ

順不変関数のまとめ

 $\Pi(X)$:集合Xの全順列の集合(順列生成関数)

π:順列を変更する作用素(順列操作作用素)

□ Deep sets : $f(X) = \rho(\sum_{x \in X} \phi(x))$

M. Zaheer, NeurIPS 2017

■ Pooling&順不変性: sum-pooling

ullet $\phi(\cdot)$: 入力は要素x

□ PointNet: $f(X) = \rho \left(\max_{x \in X} \phi(x) \right)$

C. R. Qi et al., CVPR2017

□ Pooling&順不変性: max-pooling

 $\phi(\cdot)$:入力は要素x

□ Janossy pooling : $f(X) = \rho\left(\frac{1}{|\Pi(X)|}\sum_{\pi X \in \Pi(X)} \phi(\pi X)\right)$

■ Pooling&順不変性: sum-pooling

R. L. Murphy et al., ICLR2019

順不変関数のまとめ 2

- □ SetNet (NetVLAD) : $f(X) = \rho(\sum_{x \in X} \phi_2(x) \phi_1(x))$
 - Pooling&順不変性:線形結合
 - $\phi_1(x) = \{x c_k; k = 1, 2, ..., C\}$: クラスターとの差
- Y. Zhong et al., ECCV2018
- $\phi_2(x) = \text{softmax}(\{xw_k + b_k; k = 1, 2, ..., C\})$: 重み係数
- ρ:クラスターkに関する正規化和
- □ PoolingMA : $f(X) = \rho(\sum_{x \in X} \phi_2(X) \phi_1(x))$
 - Pooling&順不変性:線形結合
 - $\Phi_1 = xW^V$

- J. Lee et al., ICML2019
- $\phi_2 = \operatorname{softmax}(\{(\mathbf{s}W^Q)(\mathbf{x}W^K)^T\}; \mathbf{x} \in \mathcal{X})$:重み係数
- □ DuMLP-pin: $f(X) = \rho(\sum_{x \in X} \phi_2(x)\phi_1(x))$
 - Pooling&順不変性:線形結合

- J. Fei et al., AAAI2022
- $\phi_1(\cdot)$ 、 $\phi_2(\cdot)$: 異なるMLP(片方が重み係数の役割)

内容:

- □ 集合データとは
- □様々な順不変関数
- □ 順不変関数のまとめ
- □ 集合マッチングへの応用
- □ 集合検索への発展とまとめ

集合マッチングとは

Y. Saito et al., ECCV2020

」 Oエリ集合 $X \in \mathbb{R}^{N^X imes D}$ と調和する集合 $Y^* \in \mathbb{R}^{N^Y imes D}$ をギャラリGから選択

$$Y^* = \operatorname*{argmax} f(X, Y)$$

$$Y \in \mathcal{G}$$

$$\mathcal{G} = \left\{ Y^1, Y^2, \dots, Y^{N^g} \right\}$$

 $f(X,Y) \in [0,1]:$ 集合 $X \succeq Y$ の<mark>調和度合い</mark>の返すスコア関数

ファッションコーデ推薦

- □ スコア関数*f(X,Y*)の要件:
 - 集合間の交換性: f(X,Y) = f(Y,X)
 - \blacksquare 要素間の順不変性: $f(X,Y) = f(\pi X,\pi Y)$

Group ReID

 $f(X,Y) = f(\pi Y, \pi X)$

集合マッチングの種類

- H. Hachiya & Y. Saito, Neurocomputing 2024 X. Liu et al., ICCV 2019 18

 - ホモジニアス集合マッチング:
 - 同一物体や人物を含む集合同士のマッチング問題
 - Group Re-IDや動画を用いた顔・物体認識など
 - 特徴空間上で類似した集合同士がマッチング

- ヘテロジニアス集合マッチング:
 - 異なる種類の物体の集合同士のマッチング問題
 - ファッションや家具のコーデ推薦など
 - 特徴空間上で離れた集合同士でも調和

調和する離れたベクトルを近づける変換が要

Attentionベース集合マッチング

19

Saito, Nakamura, Hachiya, Fukumizu, ECCV2020

 \neg SABとMABを繰り返し、集合xとyの要素ベクトルを変換

(X,Y)と(X,Y)にて順不変を満たす必要

□ Cross similarity score (CSS): 全ペア間の内積

$$f(\mathcal{X}, \mathcal{Y}) = \frac{1}{N^X N^Y} \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} \text{ReLU}\left(\frac{(xW)(yW)^T}{\sqrt{D}}\right)$$

 $W \in \mathbb{R}^{D \times D}$

集合交換性と要素順不変性を満たす

- □ 学習: K-pair-set loss
 - K個の集合をランダムに選択しミニバッチを作成
 - 各集合をランダムにX^(k)とY^(k)に分割
 - $\chi^{(k)} \xi y^{(k)} \xi$ positive
 - $\chi^{(k)}$ と $y^{(k'\neq k)}$ および $\chi^{(k'\neq k)}$ と $y^{(k)}$ をnegative
 - 交差エントロピー最小化によりモデルを学習

Attentionベース集合間マッチングの課題

20

H. Hachiya & Y. Saito, Neurocomputing2024

□ スコア計算*f(X,Y*)における<mark>勾配消失</mark>

·CSSの場合:

·max pooling+内積の場合:

$$f(X,Y) = (\max X)(\max Y)^{\mathrm{T}}$$
 $\max X \in \mathbb{R}^{1 \times D}$ 最大以外の要素に対する勾配が消失

·PMA+内積の場合:

$$f(X,Y) = (PMA(X))(PMA(Y))^{T}$$
$$PMA(X) = MAB(S, rFF(X))$$

極端に類似度が高い要素があると、Softmaxにより勾配が消失

- □ Attention:要素数が少ない場合、変換は限定的
 - QをVの凸包上での変換

$$x_1' = \operatorname{attention}(x_1, Y, Y) = w_1 y_1 + w_2 y_2 + \dots + w_{N_Y} y_{N_Y}$$

$$w_1 + w_2 + \dots + w_{N_Y} = 1 \qquad w_i \ge 0$$

■ Vの要素が2個しかない場合は、線分上に移動

提案法:集合代表ベクトル

H. Hachiya & Y. Saito, Neurocomputing2024

」学習可能ベクトル $\mathbf{s} \in \mathbb{R}^{1 \times D}$ を各集合に要素として追加

$$X_S = [s; X], Y_S = [s; Y]$$

- SABとMABを介して変換し、集合を表すベクトルsxとsyを獲得
- \Box スコア計算:集合代表ベクトルの内積 $f(X,Y) = s_X s_Y^T$
 - 単純な内積計算のみなので、勾配消失を回避

提案法:非対称Attentionによる集合変換

H. Hachiya & Y. Saito, Neurocomputing2024

Bi-PMA: Bi-directional PMA

$$X_s' = \operatorname{attention}(X_s, X_s, X_s)$$

■ Xとs双方向のattentionにより、広い凸包上で変換

- Pivot-cross attention
- $X_s' = \operatorname{attention}(X_s, [X_s; Y_s])$
- KeyとValueに自分自身も入れることにより、より広い凸包上で変換

Set-norm & cross-set-norm

Hachiya & Saito, Neurocomputing2024

L. H. Zhang et al., ICML2022

」Attentionの内積計算:共通の空間で行うべき

$$Q' = Attention(Q, K, V) = softmax((X_s W^Q)(Y_s W^K))(Y_s W^V)$$

□ 既存のNormalizationの正規化対象:

- Attention対象の集合に合わせて正規化
 - Set-norm: ぞれぞれの集合 X_s 、 Y_s で平均 $\mu \in \mathbb{R}^{1 \times D}$ と標準偏差 $\sigma \in \mathbb{R}^{1 \times D}$ を計算
 - Γ Cross-set-norm:集合ペア[X_s ; Y_s]内で共通の平均 μ と標準偏差 σ を計算

$$q'_{id} = \gamma_d \frac{q_{id} - \mu_d}{\sigma_d} + \beta_d$$

集合間マッチングの評価データ

25

Hachiya & Saito, Neurocomputing2024

ホモジニアス集合マッチング:

- Group Re-ID :
 - Market-1501 (https://docs.cvat.ai/docs/manual/advanced/formats/format-market1501/)
 - **■** ラベル: $l_{XY} = \begin{cases} 1 & \text{if } X \succeq Y$ が同じグループ otherwise
 - 例: N_x = 3の場合

ヘテロジニアス集合マッチング:

- 手書き数字の和の偶奇判別:
 - MNIST (https://yann.lecun.com/exdb/mnist/)
 - ラベル: $l_{XY} = \begin{cases} 1 & \text{if } X + Y = 偶数 \\ 0 & \text{otherwise} \end{cases}$
 - 例:5以下の数字、最大要素数=5

- Fashion outfit matching :
 - SHIFT15M (https://github.com/st-tech/zozo-shift15m)
 - ラベル : $l_{XY} = \begin{cases} 1 & \text{if } X \succeq Y$ が同じコーデ otherwise
 - 例:最大要素数=5の場合

集合間マッチングの精度比較

Hachiya & Saito, Neurocomputing 2024

」 評価指標 CMC=k:上位kに正解が入っている割合(3回の平均と分散)

		_	_	- 	, , , , , ,	. ~	חום ש.			-ノノ ロヘノ	
Λ++ <i>c</i>	ホモジニアス				ヘテロジニアス						
Attentionの回数 <i>L</i>		Group Re-ID			Even-total matching		Fashion-outfit matching				
III	method	L	CMC=1	CMC=2	CMC=3		$(N=3, N_{\tau}=5)$ CMC=1	$(N=5, N_{\tau}=5)$ CMC=1	CMC=1	CMC=2	CMC=3
バックボーンの基本形: SAB \times L +MAB \times L	maxPool	1 3	68.8 (2.0) 67.2 (21.0) 67.8 (2.1)	88.5 (1.3) 88.0 (1.1) 87.8 (1.3)	96.0 (0.7) 95.5 (0.6) 95.7 (0.5)		92.0 (2.7) 93.9 (0.3) 79.0 (24.8)	59.1 (1.8) 66.6 (10.3) 65.0 (16.0)	20.6 (0.6)	40.1 (0.6)	60.3 (0.3)
単純なpoolingと内積~	linearProj	1 3 5	68.1 (0.5) 60.5 (0.5) 43.2 (30.4)	88.7 (1.7) 82.4 (5.6) 62.2 (36.2)	96.2 (1.0) 92.9 (4.0) 75.4 (31.3)		91.2 (0.4) 94.1 (0.7) 92.1 (1.9)	56.1 (6.6) 59.1 (2.9) 60.5 (13.6)	21.6 (2.4)	42.0 (3.9)	62.2 (3.6)
	PMA	1 3 5	67.7 (1.9) 63.5 (4.7) 50.7 (26.6)	89.1 (0.5) 85.9 (3.0) 71.4 (27.8)	95.8 (0.5) 94.7 (1.2) 83.5 (20.7)		91.0 (1.7) 94.3 (0.3) 78.6 (24.5)	65.1 (5.6) 76.1 (0.8) 54.7 (6.9)	21.0 (1.3)	40.9 (2.0)	60.9 (1.3)
Lが大きくなると精度劣化〜 集合マッチング方式 、	CATSET	1 3 5	69.0 (3.2) 34.8 (22.8) 14.0 (10.4)	89.1 (2.7) 55.3 (24.8) 28.1 (19.3)	96.2 (1.1) 71.7 (18.8) 45.9 (23.7)		86.0 (4.2) 64.7 (22.7) 49.9 (0.4)	63.7 (2.3) 58.2 (7.4) 49.9 (0.4)	20.2 (0.0)	39.8 (0.0)	60.1 (0.0)
	CSS	1 3 5	67.7 (1.1) 24.7 (8.9) 17.7 (5.2)	88.3 (0.7) 45.5 (13.0) 35.1 (7.9)	94.8 (1.1) 61.7 (15.7) 54.2 (9.1)		91.7 (2.0) 89.5 (7.0) 50.2 (0.5)	65.1 (1.6) 60.0 (17.9) 50.7 (1.7)	20.2 (0.0)	39.8 (0.0)	60.1 (0.0)
動画ベース顔認識方式 ~	PIFR sparse	1 3 5	65.5 (7.5) 66.9 (1.4) 63.2 (1.2)	86.3 (5.5) 88.2 (1.1) 85.3 (1.8)	94.6 (2.1) 95.7 (0.3) 94.0 (0.7)		90.5 (0.6) 93.3 (0.9) 94.1 (0.2)	65.7 (1.7) 75.4 (6.9) 76.3 (9.9)	33.5 (27.6)	55.7 (27.6)	72.4 (21.3)
	PIFR collaborative	1 3 5	68.8 (2.1) 68.3 (1.9) 64.4 (4.1)	88.7 (0.9) 88.9 (1.1) 85.4 (4.4)	96.1 (1.0) 95.6 (0.5) 94.9 (1.6)		91.9 (0.6) 94.3 (0.3) 94.3 (0.5)	65.6 (0.4) 79.1 (6.9) 75.8 (9.3)	32.2 (20.7)	54.9 (26.2)	72.2 (20.8)
提案法:集合代表ベクトル +Bi-PMA+pivot-cross	bi-PMA + bi-PMA	1 3 5	64.4 (1.7) 69.1 (3.0) 67.3 (1.7)	86.7 (0.4) 88.7 (1.8) 88.6 (1.0)	94.5 (0.8) 95.0 (0.9) 95.9 (0.4)		94.9 (0.4) 94.6 (0.5) 94.6 (0.5)	83.6 (0.5) 87.5 (0.3) 75.6 (22.3)	81.4 (5.3)	96.3 (1.8)	99.2 (0.5)
	bi-PMA + pivot-cross	1 3 5	65.8 (3.8) 65.2 (4.0) 68.2 (2.3)	87.6 (2.8) 87.0 (2.6) 88.5 (1.8)	94.9 (1.4) 95.3 (1.1) 95.8 (1.2)		95.1 (0.1) 94.9 (0.2) 95.3 (0.6)	86.1 (1.2) 88.5 (0.6) 88.1 (1.0)	87.9 (1.5)	98.3 (0.6)	99.8 (0.1)

□ 提案法:階層数Lを増やしても、ヘテロでも高い精度

マッチング結果の例:偶奇判別

Table 4: Examples of digits images in sets X and Y on even-total matching, and predicted scores using the existing methods, i.e., PMA (Sec. 3.1), CATSET (Sec. 3.2), CSS (Sec. 3.3), and PIFR sparse/collaborative (Sec. 3.4), and the proposed methods, i.e., bi-PMA (Sec. 4.2) and pivot-cross (Sec. 4.3), for the tasks with $(N = 5, N_{\tau} = 5)$ in the case of L = 3. Correctly predicted scores $\widehat{s(X,Y)}$ are indicated in bold.

label $s(X,Y)$	X	\overline{Y}
0		T: 0.918, CSS: 0.501, PIFR sparse: 0.887, 0.017, bi-PMA: 0.013, pivot-cross: 0.046
1	,	3 4 4 4 4 T: 0.592, CSS: 0.501, PIFR sparse: 0.670, 0.910, bi-PMA: 0.987, pivot-cross: 0.998
0		S H 3 5 © ET: 0.502, CSS: 0.501, PIFR sparse: 0.572, 0.360, bi-PMA: 0.003, pivot-cross: 0.009
1		3 4 3 / 2 T: 0.987, CSS: 0.501, PIFR sparse: 0.5671 0.953, bi-PMA: 0.962, pivot-cross: 1.000

要素ベクトルの変換過程

28

□ positiveペア間とnegativeペア間の類似度のヒストグラムの変化

□ 集合代表ベクトル*s*が識別的に変換されていくのがわかる

内容:

- □ 集合データとは
- □様々な順不変関数
- □ 順不変関数のまとめ
- □ 集合マッチングへの応用
- □ 集合検索への発展とまとめ

集合マッチングの課題と集合検索

- ポジティブ集合Y*を含むギャラリを予め用意するのは困難
 - 運用時には、未知のクエリ集合Xが入力される
 - コーデ推薦の場合、クエリはユーザが購入済み(使用中)のアイテムで構成
 - 集合を網羅的に作ると組み合わせ爆発

集合検索:予め集合のギャラリは用意せず、要素ベクトルのデータ

ベースDからDエリXに調和するDイテム \mathbf{v} *を検索し集合 \widehat{Y} *を作成

クエリ集合X:

カテゴリ集合Z: {'スカート','バッグ'}

Nakamura, et al., arXiv2023

まとめ

- 集合Xを扱う関数f(X)は、順不変性が必要
- 順不変性を満たす様々な関数:
 - Deep-sets, PointNet, JanossyPooling、Pooling MAなど
 - Attentionは、全体では順同変性、要素では順不変性を同時に持つ
- Attentionベースの集合マッチング:
 - Backbone: SABとMABを繰り返して要素ベクトルを変換

 - □包上での変換のため、要素数が少ない集合マッチングでは限定的
 Pivot-cross: クエリをキーとバリューに含めることにより、広い凸包上で変換
 - Head:順不変性を満たすように、学習ベースのマッチング関数f(X,Y)
 - 勾配消失が発生し、深い階層のBackboneの学習が困難
 - 集合代表ベクトルを導入し、単純な内積によりf(X,Y)を計算
- 集合検索への発展:
 - positive集合Y*を含むギャラリを用意するのは困難
 - → 要素ベクトルのデータベースから、クエリ集合に合う要素を順次検索し集合Y*を動的に作成