嘉佰达软件板通用协议 V4

一、物理接口

此协议支持嘉佰达软件板 RS485/RS232/UART 接口通用协议,与上位机协议一致,波特率为 9600BPS 或者其他客户定制速率。

二、.帧结构

起始位	状态位	命令码	长度	数据内容	校验	停止位
0xDD	0xA5-读	寄存器地址	表示数据长度,不包括本	数据内容,长度为0时,此处	为数据段内容+长度字节+命令码字节的校验和然后在取反加	0x77
	0x5A-写		身	跳过	1,高位在前,低位在后	

三、命令解释

命令码:读 03读取基本信息及状态

读 04 读取电池单体电压

读 05 读取保护板硬件版本号

主机发送读取基本信息 0x03 指令

	0xDD	0xA5	0x03	0	(没有时为空)	checksum	0x77
В	BMS 响应读取基本信息 0x03 指令						
	0xDD	0x03	状态 , 0 表	表示数据长度,不包括本	数据内容,长度为0时,此处	checksum	0x77
			正确	身,响应写时长度为0	跳过		
			错误则返回	0		checksum	0x77
			0x80				

主机发送: DD A5 03 00 FF FD 77

BMS 响应: DD 03 00 1B 17 00 00 00 02 D0 03 E8 00 00 20 78 00 00 00 00 00 10 48 03 0F 02 0B 76 0B 82 FB FF 77 红色为被校验字节,为所有的字节的总和: 后面 2 个为校验结果,为前面所有校验的总和取反+1 的结果

数据内容解释

数据内容	字节大小	说明
总电压	2BYTE,单位 10mV , 高字节在前 , 下同	
电流	2BYTE,单位 10mA	通过电流判断电池充放电状态,充电为正,放电为负。
剩余容量	2BYTE,单位 10mAh	
标称容量	2BYTE,单位 10mAh	
循环次数	2BYTE	
生产日期	2BYTE	采用 2 个字节传送比如 0x2068,其中日期为最低 5 为: 0x2028&0x1f = 8 表示日期;月份(0x2068>>5)&0x0f=
		0x03 表示 3 月;年份就为 2000+ (0x2068>>9) = 2000 + 0x10 =2016;
均衡状态	2BYTE	每一个 bit 则表示每一串均衡,0 为关闭,1 为打开 表示 1~16 串
均衡状态_高	2BYTE	每一个 bit 则表示每一串均衡,0 为关闭,1 为打开 表示 17~32 串,最高支持 32 串 V0 版基础上增加
保护状态	2BYTE	每一个 bit 表示一种保护状态, 0 为未保护, 1 发生保护 详见注 1:
软件版本	1byte	0x10 表示 1.0 版本
RSOC	1byte	表示剩余容量百分比
FET 控制状态	1byte	MOS 指示状态,bit0 表示充电,bit1 表示放电,0 表示 MOS 关闭,1 表示打开
电池串数	1byte	电池串数
NTC 个数 N	1byte	NTC 个数
N个NTC内容	2*N,单位 0.1K,高在前	采用绝对温度传输,2731+(实际温度*10),0度=2731 25度=2731+25*10=2981

注 1:	保护状态说明	bit4	充电过温保护	bit9	放电过流保护
bit0	单体过压保护	bit5	充电低温保护	bit10	短路保护
bit1	单体欠压保护	bit6	放电过温保护	bit11	前端检测 IC 错误
bit2	整组过压保护	bit7	放电低温保护	bit12	软件锁定 MOS
bit3	整组欠压保护	bit8	充电过流保护	bit13~	-bit15 预留

主机发送读取单体电压 0x04 指令

	0xDD	0xA5	0x04	0	(没有时为空)	checksum	0x77
BMS 响应读取基本信息 0x03 指令							
	0xDD	0x04	状态,0表正确	表示数据长度,不包括本身,响应写时长度为0	数据内容,长度为0时,此处跳	checksum	0x77
			错误则返回 0x80	0	过	checksum	0x77

主机发送: DD A5 04 00 FF FC 77

BMS 响应: DD 04 00 1E 0F 66 0F 63 0F 63 0F 64 0F 3E 0F 63 0F 37 0F 5B 0F 65 0F 3B 0F 63 0F 63 0F 3C 0F 66 0F 3D F9 F9 77 红色为被校验字节,为所有的字节的总和;后面2个为校验结果,为前面所有校验的总和取反+1的结果

数据内容解释

数据长度	数据长度为电池串数 N 乘以 2
第一串单体电压	2Byte,单位 mV,高位在前
第二串单体电压	2Byte,单位 mV,高位在前
第三串单体电压	2Byte,单位 mV,高位在前
第 N 串单体电压	2Byte,单位 mV,高位在前

主机发送读取保护板的硬件版本号 0x05 指令,最长支持 31 个字符,通过上位机的设备型号写入型号

	0xDD	0xA5	0x05	0	(没有时为空)	checksum	0x77
R	MS 响应语	売取基本信	自 0v03 指会				

BMS 响应读取基本信息 0x03 指令

0xDD	0x04	状态,0表正确	表示数据长度,不包括本身,响应写时长度为0	数据内容,长度为0时,此处跳过	checksum	0x77
		错误则返回 0x80	0		checksum	0x77

数据内容解释

数据长度 N	设备类型名称长度
BYTE0	第一个字符的 ASCII 码(比如硬件版本为 LH-XXXX,那么长度为 7,byte0 = 'L')
BYTE(N-1)	

主机发送: DD A5 05 00 FF FB 77

BMS 响应: DD 05 00 0A 30 31 32 33 34 35 36 37 38 39 FD E9 77 --代表它的硬件版本号 0123456789

红色为被校验字节,为所有的字节的总和;后面2个为校验结果,为前面所有校验的总和取反+1的结果

四、控制 MOS 指令

主机发送控制 MOS 指令

起始位	状态位	命令码	长度	数据内容	校验	停止位
0xDD	0X5A	0XE1	0X02	0X00 <mark>XX</mark>	CHECKSUM_H CHECKSUM_L	0X77

BMS 响应读取基本信息 0x03 指令

0xDD	0xe1	0x00	0x00		Checksum_H Checksum_L	0x77
------	------	------	------	--	-----------------------	------

注意: 其中校验计算方式与其他方式一致。其中 XX 表示控制 MOS 的状态。

XX 的值	MOS 的动作		
0x00	解除软件关闭 MOS 管动作		
0x01	软件关闭充电 MOS,解除软件关闭放电 MOS		
0x02	软件关闭放电 MOS,解除软件关闭充电 MOS		
0x03	软件同时关闭充放电 MOS		
不要写超过自范围的值			

例: 主机端发送 DD 5A E1 02 00 02 FF 1B 77 则表示软件关闭放电 MOS;

五、协议数据说明:

主机发送读取单体电压 0x04 指令, BMS 返回数据说明:

- DD --帧头, 起始字节
- 04 --命令码,读取单体电压
- 00 --状态码, 非 0 为错误, 0 为正确
- 22 --数据短长度,为34个数据,表示电池组有17串,一串2个数据
- 0EC8 --第 1 节单体电压 3784
- 0EC8 --第 2 节单体电压 3744
- 0ECB -- 第 3 节单体电压
- 0ECF -- 第 4 节单体电压
- 0ECA --第 5 节单体电压
- 0EC7 -- 第 6 节单体电压
- 0ECA --第 7 节单体电压
- 0ECD -- 第 8 节单体电压
- 0EC9 --第 9 节单体电压
- 0ECA --第 10 节单体电压
- 0ECB --第 11 节单体电压
- 0ECB --第 12 节单体电压
- 0EC8 --第 13 节单体电压
- 0ECC --第 14 节单体电压
- 0EC8 --第 15 节单体电压
- 0EC9 --第 16 节单体电压
- 0EC9 --第 17 节单体电压
- F187 --校验码
- 77 --结束码

主机发送读取基本信息 0x03 指令, BMS 返回数据说明:

DD --起始

03 --命名码

00 -- 状态码

1F --数据长度

19DF -- 总电压 = 6623 = 66.23V,单位是 10mV

F824 --总电流 = 63524, 最高位为 1, 为放电, 电流值= 65536-63524 = 2012, 单位是 10mA, 所以最终电流为-20.12A

0DA5 --剩余容量 = 3493, 单位 10mAH, 最终剩余容量值为 34930mAH

0FA0 --标称容量 =4000, 因为单位是 10mAH, 所有最终容量是 40000mAH

0002 --循环次数。2次

2491 --生产日期

0000 --均衡低

0000 --均衡高

0000 --保护状态

12 --软件版本

57 --剩余容量百分比87

03 --MOS 状态

11 --电池串数 17

04 --温度探头个数

0B98 --第一个温度 2968 -2731 =247,单位为 0.1℃ = 24.7℃

0BA9 --第2个温度

0B96 --第3个温度

0B97 --第4个温度

F89A --校验码

77 --结束码

六、修订历史

版本说名	说明
V0 版本	初稿
V1 版本	兼容 30 串保护板,增加均衡高 16 位
V2 版本	增加读取硬件版本号指令,相对应参数设置中的设备类型
V3 版本	增加 BMS 返回数据说明
V4 版本	增加校验说明,增加控制 MOS 的指令