Analiză matematică 2 (Calcul diferențial în \mathbb{R}^n) Examen scris la grupa 311 (20.6.2010)

- 1. Pentru calculul integralei improprii $I_n = \int_1^\infty \frac{\arctan x}{x^{2n}} dx \ (n \ge 1)$, se consideră și integrala improprie $J_n = \int_1^\infty \frac{dx}{x^{2n-1}(x^2+1)} \ (n \ge 1)$. Se cere:
 - a) Să se calculeze J_1 .
 - b) Să se arate că $J_n = \frac{1}{2n-2} J_{n-1}$ oricare ar fi $n \ge 2$.
 - c) Să se arate că

$$J_n = \frac{(-1)^{n+1}}{2} \left(\ln 2 + \sum_{k=1}^{n-1} \frac{(-1)^k}{k} \right)$$
 oricare ar fi $n \ge 1$.

- d) Să se determine I_n .
- 2. Să se determine punctele critice ale funcției $f: \mathbb{R}^2 \times (0, \infty) \to \mathbb{R}$, definite prin

 $f(x, y, z) = \frac{x}{x^2 + 1} + ye^{y-1} + ze^y \ln z$

- și să se precizeze natura acestora.
- 3. Să se studieze diferențiabilitatea în punctul (0,0) a funcției $f: \mathbb{R}^2 \to \mathbb{R}$, definite prin

$$f(x,y) = \begin{cases} (x^2 + y^2) \sin \frac{y}{x} & \text{dacă } x \neq 0 \\ 0 & \text{dacă } x = 0. \end{cases}$$

4. Teorema referitoare la diferențiabilitatea compusei a două funcții diferențiabile (enunț și demonstrație).