STAT448 - Advanced Data Analysis Homework 4

Name: Xinyan Yang

Exercise 1 Solution:

(a).

Testing Global Null Hypothesis: BETA=0							
Test Chi-Square DF Pr > ChiS							
Likelihood Ratio	13.3381	1	0.0003				
Score	7.1865	1	0.0073				
Wald	5.8270	1	0.0158				

Analysis of Maximum Likelihood Estimates							
Parameter DF Estimate Standard Error Wald Chi-Square Pr >							
Intercept	1	-0.1213	0.3061	0.1571	0.6918		
Aspartate	1	0.0164	0.00679	5.8270	0.0158		

Odds Ratio Estimates					
Effect	ect Point Estimate 95% Wald Confidence Limits				
Aspartate	1.017	1.003	1.030		

Obs	Age	Gender	ТВ	DB	Alkphos	Alamine	Aspartate	TP	ALB	AGRatio	LiverPatient	resid_fem1	cd_fem1
117	28	Female	1	0.3	90	18	108	6.8	3.1	0.8	No	-2.28188	0.20391

First, I use the stepwise method to fit a logistic regression model with all predictors and get the above results. From the influence plots we can see that, there are no observations with cook's distance (which refers to CBar in the plots) greater than 0.5 in this model. However, I do find an observation with its absolue value of Pearson residual greater than 2, and I decide to remove it and refit the model.

(b).

Testing Global Null Hypothesis: BETA=0						
Test	Pr > ChiSq					
Likelihood Ratio	17.2614	1	<.0001			
Score	7.9344	1	0.0049			
Wald	7.0431	1	0.0080			

Analysis of Maximum Likelihood Estimates							
Parameter DF Estimate Standard Error Wald Chi-Square					Pr > ChiSq		
Intercept	1	-0.3120	0.3440	0.8224	0.3645		
Aspartate	1	0.0238	0.00897	7.0431	0.0080		

Odds Ratio Estimates						
Effect	Point Estimate 95% Wald Confidence Limits					
Aspartate	1.024	1.006	1.042			

Partition for the Hosmer and Lemeshow Test							
		LiverPati	ent = Yes	LiverPatient = No			
Group	Total	Observed	Expected	Observed	Expected		
1	11	5	5.45	6	5.55		
2	13	8	6.68	5	6.32		
3	14	10	7.54	4	6.46		
4	12	7	6.70	5	5.30		
5	13	6	7.52	7	5.48		
6	14	10	8.47	4	5.53		
7	15	7	9.70	8	5.30		
8	13	7	9.32	6	3.68		
9	13	12	10.94	1	2.06		
10	15	15	14.67	0	0.33		

Hosmer and Lemeshow Goodness-of-Fit Test					
Chi-Square	DF	Pr > ChiSq			
8.9558	8	0.3460			

I have removed two influential points with pearson residual value <-2 and I refit the logistic model and get only one significant predictor which is aspartate.

The p-value of aspartate is 0.008, which means that aspartate is significant under the significance level of 5%.

The P-value of Hosmer-Lemeshows test result is 0.346, which means that we should not reject the null hypothesis and we conclude that there is no lackness of fit in this model.

From the influence plots we can find that, most points have a cook's distance which less than 0.05, and there is one observation has a really large Cbar value.

(c).

The confidence interval of odds ratio doesn't include 0, which means that the predictor aspartate is statistically significant. The point estimate of aspartate is 1.024, which means that the odds of female having a liver would increase by exp^1.024 with one unit increase in aspartate.

2. Solution:

(a)

Testing Global Null Hypothesis: BETA=0							
Test Chi-Square DF Pr > ChiSq							
Likelihood Ratio	80.8655	4	<.0001				
Score	41.2153	4	<.0001				
Wald	34.9743	4	<.0001				

Analysis of Maximum Likelihood Estimates							
Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq		
Intercept	1	-0.2194	0.6509	0.1136	0.7360		
Age	1	0.0190	0.00819	5.3685	0.0205		
DB	1	0.5046	0.1723	8.5752	0.0034		
Alamine	1	0.0182	0.00526	11.9229	0.0006		
AGRatio	1	-0.8511	0.4140	4.2261	0.0398		

Odds Ratio Estimates						
Effect	Point Estimate					
Age	1.019	1.003	1.036			
DB	1.656	1.182	2.322			
Alamine	1.018	1.008	1.029			
AGRatio	0.427	0.190	0.961			

Obs	Age	Gender	ТВ	DB	Alkphos	Alamine	Aspartate	TP	ALB	AGRatio	LiverPatient	resid_ma1	cd_ma1
85	50	Male	5.8	3	661	181	285	5.7	2.3	0.67	No	-11.9466	0.67834

Obs	Age	Gender	ТВ	DB	Alkphos	Alamine	Aspartate	TP	ALB	AGRatio	LiverPatient	resid_ma1	cd_ma1
85	50	Male	5.8	3.0	661	181	285	5.7	2.3	0.67	No	-11.9466	0.67834
86	50	Male	7.3	3.6	1580	88	64	5.6	2.3	0.60	No	-6.1538	0.31694

After perform the stepwise selection, we have 4 predictors left. From the influence plots we can find that, there is one observation with cook's distance greater than 0.5 and there are two observations with

residual less than -5. I decide to refit the model after removing these three observations.

(b)

	Model Fit Statistics							
Criterion	Intercept Only	Intercept and Covariates						
AIC	466.539	371.029						
SC	470.574	391.207						
-2 Log L	464.539	361.029						

Testing Global Null Hypothesis: BETA=0							
Test	Chi-Square	DF	Pr > ChiSq				
Likelihood Ratio	103.5096	4	<.0001				
Score	46.5621	4	<.0001				
Wald	37.4811	4	<.0001				

	Analysis of Maximum Likelihood Estimates								
Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq				
Intercept	1	-2.1636	0.5644	14.6970	0.0001				
Age	1	0.0176	0.00838	4.4040	0.0359				
DB	1	0.7113	0.2590	7.5405	0.0060				
Alkphos	1	0.00631	0.00185	11.6205	0.0007				
Aspartate	1	0.00910	0.00364	6.2581	0.0124				

	Odds Ratio Estimates								
Effect Point Estimate 95% Wald Confidence Limits									
Age	1.018	1.001	1.035						
DB	2.037	1.226	3.384						
Alkphos	1.006	1.003	1.010						
Aspartate	1.009	1.002	1.016						

Hosmer and Lemeshow Goodness-of-Fit Test						
Chi-Square	DF	Pr > ChiSq				
5.2159	8	0.7343				

After removing all influential points and fit the logistic model, I get the above results.

The model choose 4 predictors which are age, DB, alkphos, aspartate.

The p-value of all 4 predictors are all less than 0.05, which mean that these 4 predictors all significant under the significance level of 5%.

The P-value of Hosmer-Lemeshows test result is 0.7343, which means that we should not reject the null hypothesis and we conclude that there is no lackness of fit in this model.

From the influence plots we can find that, all points have a cook's distance which less than 0.5, but there still exists some points which have a larger value than the others, and the residuals are between -3 and 2.

(c).

The confidence interval of all 4 odds ratios don't include 0, which means that all 4 predictors are statistically significant.

The point estimate of age is 1.018, which means that the odds of male having a liver would increase by exp^1.018 with one unit increase in age.

The point estimate of DB is 2.037, which means that the odds of male having a liver would increase by exp^2.037 with one unit increase in DB.

The point estimate of alkphos is 1.006, which means that the odds of male having a liver would increase by exp^1.006 with one unit increase in alkphos.

The point estimate of aspartate is 1.009, which means that the odds of having a liver would increase by exp^1.009 with one unit increase in aspartate.

The difference between the model for male and female is that the model for female has only 1 predictor and the model for male has 4 predictors.

3. Solution:

Model Information					
Data Set	WORK.HYPER				
Distribution	Gamma				
Link Function	Log				
Dependent Variable	bp				

	Analysis Of Maximum Likelihood Parameter Estimates									
Parameter		DF	Estimate	Standard Error		95% ce Limits	Wald Chi- Square	Pr > ChiSq		
Intercept		1	5.1612	0.0182	5.1256	5.1968	80724.3	<.0001		
drug	X	1	-0.0740	0.0198	-0.1129	-0.0352	13.94	0.0002		
drug	Y	1	0.0138	0.0198	-0.0251	0.0526	0.48	0.4879		
drug	Z	0	0.0000	0.0000	0.0000	0.0000				
diet	N	1	0.0907	0.0162	0.0589	0.1224	31.36	<.0001		
diet	Y	0	0.0000	0.0000	0.0000	0.0000				
biofeed	A	1	0.0580	0.0162	0.0262	0.0897	12.82	0.0003		
biofeed	P	0	0.0000	0.0000	0.0000	0.0000				
Scale		1	211.9407	35.2957	152.9181	293.7446				

	LR Statistics For Type 1 Analysis								
Source	2*LogLikelihood	DF	Chi-Square	Pr > ChiSq					
Intercept	-617.1508								
drug	-603.9951	2	13.16	0.0014					
diet	-581.2634	1	22.73	<.0001					
biofeed	-569.4689	1	11.79	0.0006					

LR S	LR Statistics For Type 3 Analysis								
Source	DF	Chi-Square	Pr > ChiSq						
drug	2	19.57	<.0001						
diet	1	26.03	<.0001						
biofeed	1	11.79	0.0006						

From the above results we can see that, all 3 predictors(drug, diet, biofeed) are significant under the significance level of 5%. And the MLE results tell us that drug Y, diet N and biofeed A would increase the blood pressure.

From the residual plot we can see that, there's no obvious trend in residuals and most fall in -2 to 2, therefore the assumptions of the model seem reasonable.

(b).

Model Information					
Data Set	WORK.HYPER				
Distribution	Poisson				
Link Function	Log				
Dependent Variable	bp				

Criteria For Assessing Goodness Of Fit							
Criterion	DF	Value	Value/DF				
Deviance	67	62.3950	0.9313				
Scaled Deviance	67	62.3950	0.9313				
Pearson Chi-Square	67	62.6547	0.9351				
Scaled Pearson X2	67	62.6547	0.9351				
Log Likelihood		56056.9547					
Full Log Likelihood		-285.0646					
AIC (smaller is better)		580.1291					

Criteria For Assessing Goodness Of Fit							
Criterion	DF	Value	Value/DF				
AICC (smaller is better)		581.0382					
BIC (smaller is better)		591.5125					

Analysis Of Maximum Likelihood Parameter Estimates									
Parameter		DF	Estimate	Standard Error	Wald 95% Confidence Limits		Wald Chi- Square	Pr > ChiSq	
Intercept		1	5.1613	0.0196	5.1229	5.1997	69435.9	<.0001	
drug	X	1	-0.0758	0.0215	-0.1179	-0.0338	12.50	0.0004	
drug	Y	1	0.0132	0.0210	-0.0279	0.0543	0.40	0.5293	
drug	Z	0	0.0000	0.0000	0.0000	0.0000			
diet	N	1	0.0922	0.0174	0.0582	0.1263	28.17	<.0001	
diet	Y	0	0.0000	0.0000	0.0000	0.0000			
biofeed	A	1	0.0578	0.0174	0.0238	0.0919	11.10	0.0009	
biofeed	P	0	0.0000	0.0000	0.0000	0.0000	•		
Scale		0	1.0000	0.0000	1.0000	1.0000			

LR Statistics For Type 1 Analysis									
Source	Deviance	Num DF	Den DF	F Value	Pr > F	Chi-Square	Pr > ChiSq		
Intercept	121.7935								
drug	101.7019	2	67	10.79	<.0001	21.57	<.0001		
diet	73.4968	1	67	30.29	<.0001	30.29	<.0001		
biofeed	62.3950	1	67	11.92	0.0010	11.92	0.0006		

LR Statistics For Type 3 Analysis								
Source	ce Num DF Den DF F Value Pr > F Chi-Square Pr > Ch							
drug	2	67	10.79	<.0001	21.57	<.0001		
diet	1	67	30.29	<.0001	30.29	<.0001		
biofeed	1	67	11.92	0.0010	11.92	0.0006		

From the above results we can see that, all 3 predictors(drug, diet, biofeed) are significant under the significance level of 5%. And the MLE results tell us that drug Y, diet N and biofeed A would increase the blood pressure.

The scaled deviance is less than 1, so the model is under diepersed.

From the residual plot we can see that, there's no obvious trend in residuals, therefore the assumptions of the model seem reasonable.

(c).

Results from the ANOVA model:

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	4	10925.00000	2731.25000	15.68	<.0001
Error	67	11669.00000	174.16418		
Corrected Total	71	22594.00000			

R-Square	Coeff Var	Root MSE	bp Mean
0.483535	7.152915	13.19713	184.5000

Source	DF	Anova SS	Mean Square	F Value	Pr > F
drug	2	3675.000000	1837.500000	10.55	0.0001
diet	1	5202.000000	5202.000000	29.87	<.0001
biofeed	1	2048.000000	2048.000000	11.76	0.0010

The similarities between these three models are that both 3 predictors are significant.

I think both the gamma model and poisson model would be better than the ANOVA model, because anova assumes normality of the data but from the histogram we can see than , the response variable actually has a left-skewed distribution. So I would prefer the gamma and poisson model.

