APPENDIX B

1	25. ((Amended) A diode laser system, comprising:
2	a las	er head assembly generating an output beam, the laser head assembly including:
3	,	M modules which generate M laser beams, wherein each of said M laser beams
4	under'	has a different [single] unconstrained wavelength; and
5	under nowarked	M-2 dichroic filters, wherein each of said M-2 dichroic filters transmits a
6	(pro-	corresponding one of said M laser beams and reflects all other of said M laser
7		beams into a predetermined optical path to produce said output beam,
8	where M is an integer $[\ge] \ge 2$.	
1	26. (Amended) A diode laser system, comprising:
2	a las	er head assembly which generates an output beam, the laser head assembly including
3		M modules which generate M laser beams, wherein each of said M laser beams
4		occupies a different wavelength band;
5	nath C	M-R dichroic bandedge filters, wherein each of said M-R dichroic bandedge
6	1. 12	filters transmits at least a respective one of said M laser beams occupying a given
7		wavelength band and reflects all other of said M laser beams not occupying the
8		given wavelength band; and
9		an optical device which combines said M laser beams to thereby produce said
10		output beam,
11	wherein:	
12	M ar	nd R are positive integers; and
13	M is	an integer ≥2.
1	31. (Amended) A laser head assembly which generates an output beam including M laser
2	beams, comprising:	

3	ivi modules generating M laser beams, wherein each of said M laser beams has a different	
4	single wavelength; and	
5	M-2 dichroic <u>bandedge</u> filters, wherein each of said M-2 dichroic <u>bandedge</u> filters	
6	transmits a corresponding one of said M laser beams and reflects all other of said M laser	
7	beams;	
8	wherein M is an integer $[\ge] \ge 2$.	
1	32. (Amended) The laser head assembly as recited in claim 31, further comprising a fiber	
2	coupling device collecting said M laser beams to produce an output beam[;].	
1	33. (Amended) A method for generating a high energy laser beam, comprising:	
2	(a) generating P collimated laser beams, each of the P collimated laser beams having an	
3	unconstrained wavelength within an Mth wavelength band;	
4	(b) repeating step (a) M times so as to produce MxP collimated laser beams [having]	
5	grouped into M different [wavelengths] wavelength bands; and	
6	(c) coupling said MxP collimated laser beams into an optical path to produce a high	
7	energy beam,	
8	wherein M and P are integers ≥ 2 .	
1	36. (Amended) A diode laser system, comprising:	
2	laser head assembly (LHA) which generates an output beam, the LHA including:	
3	M modules generating M laser beams, wherein each of said M laser beams has a different	
4	single wavelength;	
5	M-1 first dichroic <u>bandedge</u> filters defining an optical waveguide for directing all of said	
6	M laser beams into the optical path, wherein each of said M-1 [first] bandedge dichroic filters	
7	transmits a corresponding one of said M laser beams and reflects all other said M laser beams;	
8	and	

SERIAL NO.: 09/498,254 PATENT APPLICATION SUPPLEMENTAL RESPONSE UNDER 37 C.F.R. §§1.115 AND 1.121

9	a fiber coupling device disposed adjacent to the optical path for collecting said M laser	
10	beams to thereby produce an output beam;	
11	where M is an integer ≥ 2 .	
1	40. (Amended) A diode laser system, comprising:	
2	first means for generating M first laser beams, wherein each of said M first laser beams	
3	has a different single wavelength;	
4	M-l first filter means defining a first optical waveguide for directing all of said M first	
5	laser beams into [an] a first optical path, wherein each of said M-1 filter means transmits a	
6	corresponding one of said M first laser beams and reflects all other said M first laser beams;	
7	second means for generating M second laser beams, wherein each of said M second laser	
8	beams has a different single wavelength;	
9	M-1 second filter means defining a second optical waveguide for directing all of said M	
10	second laser beams into a second optical path, wherein each of said M-1 second filter means	
11	transmits a corresponding one of said M second laser beams and reflects all other said M second	
12	laser beams;	
13	polarization combining means disposed at the intersection of said first and second optical	
14	paths for coupling said M first and said M second laser beams into said second optical path to	
15	thereby produce 2M polarization coupled laser beams; and	
16	fiber coupling means disposed adjacent to said second optical oath for collecting said 2M	
17	polarization coupled laser beams to thereby produce an cutout laser beam,	
18	wherein M is a integer ≥ 2.	
1	41. (Amended) A method for generating a high energy laser beam, comprising:	
2	(a) generating P collimated laser beams, each of the P collimated laser beams having an	
3	unconstrained wavelength within an Mth wavelength band;	
4	(b) repeating step (a) M times so as to produce MxP collimated laser beams [having]	

SERIAL NO.: 09/498,254 PATENT APPLICATION SUPPLEMENTAL RESPONSE UNDER 37 C.F.R. §§1.115 AND 1.121

5	grouped into M different [wavelengths] wavelength bands;
6	(c) coupling said MxP collimated laser beams into an optical oath; and
7	(d) coupling said MxP collimated laser beams into an ith optical fiber to thereby produce
8	a corresponding ith output laser beam, where $i = 1$ to N;
9	where M, N and P are positive integers and both M and P > 2.