## **Neural Networks**

Applied to indoor wireless localization

Presented by: Manoj Basnet, Steven Hearne, Lian Sang, Greg Wagner

## Fundamental of Indoor Localization

Inspired by L. Miao's "Calibration-free wireless indoor localization (CAFLOC)."

- GPS-like navigation for indoor settings.
  - GPS signals are easily blocked by physical objects.
- Significant advantages to the population.
  - Public safety and luxurious investment.
- WiFi signal was used to bridge the target device and reference device.
  - WiFi is widely used and Received Signal Strength (RSSI) efficiency.
- Geometric mapping is used due to complexity of environment.

## Roles of Neural Network in Localization

Obtaining and formatting trainable dataset for the Neural Network.

Applying the PCA to better assist the Network.

Using Multi-Layered Perceptron to train and achieve the result.

# Background

## **Localization Technique**

### Fingerprint Mapping

Offline phase: Database building

- Site survey of all RSS signals on a reference device at all known locations.
- Collected by Wi-fi module built in the device i.e. 802.11 protocol.

Online phase: testing

#### Process

- Current measured
   values(features) from the
   sensor node(AP) adapted
   to requested form i.e.
   fingerprint vector
- Compares fingerprint vector against one in database and locate the target.

#### **Defects**

#### Defects

- Adds computational complexity
- IEEE 802.11 do not define how RSS should be presented
- Temporal variance of RSS

## **Related Works**



Fig. 2: VET170B: Location of the Experiment

|                  | L1  | L2  | L3   | L4   | Average |
|------------------|-----|-----|------|------|---------|
| Nearest Neighbor | 23% | 48% | 100% | 88%  | 64.75%  |
| CAFLOC1          | 83% | 91% | 96%  | 96%  | 91.5%   |
| CAFLOC2          | 93% | 91% | 100% | 100% | 96%     |

## CNN & Regression model for localization

- To take care of temporal variance of RSS, CNN based method is described by Jang et. al [1]
- Zou et.al [2] proposed the deep regression model using DNN-CNN-Dempster shafer.

### Our Attempt

 We tried to solve the localization problem just by using simple 2-layered perceptron and for the scenario it worked well.

## Methods



- We picked 3 locations in a room(MGB 202A) 2 meters apart from one another in a triangle.
- Used the application WifiInfoView.exe to gather data.
- Used the RSSI values of the strongest wireless access points for each scan.
- We took 1000 scans per location for a total of 3000 scans. We put these scans in a vector and stored it into a file.
- Half of the scans had non existent values where the access point dropped out of range. The scans with nan values were thrown out.

## Methods

- The network we used was a multilayer net.
- The network had 2 hidden layers with 64 hidden units. Because of the small number of locations in our test we did not need a bigger net.
- The hidden layers used ReLU and Sigmoid activation functions.
- And the output layer used categorical-cross entropy and softmax.
- We trained the network on our data set for 100 epochs and had 20% validation split.

## Results

### **Testing dataset**

- Timing
- Recall PCA
- Standardizing MethodInterpreting
- Did not use Random tests
- About testing locations



## Future Challenges & Prospects

#### Increase Scale

#### **Larger footprints**

- Spacing tests
- More Equipment

#### **Dynamic Environments**

- Testing
- Larger Networks

### Integrated Tech

#### **Integrate Database**

- SQL, BigQuery

#### Integrate API

## Increase Raw Data Efficiency

- New collection method
- Dedicated Devices

### Application

#### **Inventory Management**

- Automated

## **Indoor Landmark Based Navigation**

- Landmark
  Locations
- Store cardinality & distance with location

### References

- J. Jang and S. Hong, "Indoor Localization with WiFi Fingerprinting Using Convolutional Neural Network," 2018 Tenth International Conference on Ubiquitous and Future Networks (ICUFN), Prague, 2018, pp. 753-758. doi: 10.1109/ICUFN.2018.8436598
- J. Zou, X. Guo, L. Li, S. Zhu and X. Feng, "Deep Regression Model for Received Signal Strength based WiFi Localization," 2018 IEEE 23rd International Conference on Digital Signal Processing (DSP), Shanghai, China, 2018, pp. 1-4. doi: 10.1109/ICDSP.2018.8631593