4 alu

कार्बन डाइऑक्साइड वायमंडल में फैल कर पृथ्वी से विकिरित ऊष्मा को पृथ्वी पर रोककर ग्रीन हाउस प्रभाव पैदा करती है। इसलिए इसे ग्रीन हाउस गैस भी कहते हैं। और इसके अभाव में धरती इतनी ठंडी हो जाती कि इस पर रहना असंभव होता। किंतु जब कारखानों एवं कार के धएँ से वायमंडल में इसका स्तर बढता है, तब इस ऊष्मा के द्वारा पृथ्वी का तापमान बढता है। इसे भुमंडलीय तापन (ग्लोबल वार्मिंग) कहते हैं। तापमान में इस वृद्धि के कारण पृथ्वी के सबसे ठंडे प्रदेश में जमी हुई बर्फ़ पिघलती है। जिसके परिणामस्वरूप समुद्र के जलस्तर में वृद्धि होती है, जिससे तटीय क्षेत्रों में बाढ़ आ जाती है। दीर्घ अवधि में इसके कारण जलवाय में अत्यधिक परिवर्तन हो सकता है, जिसके फलस्वरूप कुछ पौधे एवं पश् लुप्त हो सकते हैं।

हमारी पृथ्वी चारों ओर से वायु की घनी चादर से घिरी हुई है, जिसे वायुमंडल कहते हैं। पृथ्वी पर सभी जीव जीवित रहने के लिए वायुमंडल पर निर्भर हैं। यह हमें साँस लेने के लिए वायु प्रदान करता है एवं सूर्य की किरणों के हानिकारक प्रभाव से हमारी रक्षा करता है। यदि सुरक्षा की यह चादर न हो तो हम दिन के समय सूर्य की गर्मी से तप्त होकर जल सकते है एवं रात के समय ठंड से जम सकते हैं। अत: यह वह वायुराशि है जिसने पृथ्वी के तापमान को रहने योग्य बनाया है।

वायुमंडल का संघटन

क्या आप जानते हैं कि जिस वायु का उपयोग हम साँस लेने के लिए करते हैं, वास्तव में वह अनेक गैसों का मिश्रण होती है? नाइट्रोजन तथा ऑक्सीजन ऐसी दो गैसें हैं, जिनसे वायुमंडल का बड़ा भाग बना है। कार्बन डाइऑक्साइड,

चित्र 4.1 : वायु के संघटक

हीलियम, ओजोन, आर्गान एवं हाइड्रोजन कम मात्रा में पाई जाती हैं। इन गैसों के अलावा धूल के छोटे-छोटे कण भी हवा में मौजूद होते हैं। चित्र 4.1 में वृत्तारेख दिया गया है, जिसमें वायु के विभिन्न संघटकों के प्रतिशत दर्शाए

नाइट्रोजन, वायु में सर्वाधिक पाई जाने वाली गैस है। जब हम साँस लेते हैं तब फेफड़ों में कुछ नाइट्रोजन भी ले जाते हैं और फिर उसे बाहर निकाल देते हैं। परंतु पौधों को अपने जीवन के लिए नाइट्रोजन की आवश्यकता होती है। वे सीधे वायु से नाइट्रोजन नहीं ले पाते। मृदा तथा कुछ पौधों की जड़ों में रहने वाले जीवाणु वायु से नाइट्रोजन लेकर इसका स्वरूप बदल देते हैं, जिससे पौधे इसका प्रयोग कर सकें।

ऑक्सीजन वायु में प्रचुरता से मिलने वाली दूसरी गैस है। मनुष्य तथा पशु साँस लेने में वायु से ऑक्सीजन प्राप्त करते हैं। हरे पादप, प्रकाश संश्लेषण द्वारा ऑक्सीजन उत्पन्न करते हैं। इस प्रकार वायु में ऑक्सीजन की मात्रा समान बनी रहती है। यदि हम वृक्ष काटते हैं तो यह संतुलन बिगड़ जाता है।

कार्बन डाइऑक्साइड अन्य महत्त्वपूर्ण गैस है। हरे पादप अपने भोजन के रूप में कार्बन डाइऑक्साइड का प्रयोग करते हैं और ऑक्सीजन वापस देते हैं। मनुष्य और पशु कार्बन डाइऑक्साइड बाहर निकालते हैं। मनुष्यों तथा पशुओं द्वारा बाहर छोड़ी जाने वाली कार्बन डाइऑक्साइड की मात्रा पादपों द्वारा प्रयोग की जाने वाली गैस के बराबर होती है, जिससे यह संतुलन बना रहता है। परंतु यह संतुलन कोयला तथा खनिज तेल आदि ईंधनों के जलाने से गड़बड़ा जाता है। वे वायुमंडल में प्रतिवर्ष करोड़ों टन कार्बन डाइऑक्साइड की बढ़ोतरी करते हैं। परिणामस्वरूप कार्बन डाइऑक्साइड का बढ़ा हुआ आयतन पृथ्वी पर मौसम तथा जलवायु को प्रभावित करता है।

जब वायु गरम होती है, तो फैलती है और हल्की होकर ऊपर उठती है। ठंडी वायु सघन और भारी होती है। इसीलिए इसमें नीचे रहने की प्रवृत्ति होती है। गरम वायु के ऊपर उठने पर आस-पास के क्षेत्रों से ठंडी वायु रिक्त स्थान को भरने के लिए वहाँ आ जाती है। इस प्रकार वायु-चक्र चलता रहता है।

वायुमंडल की संरचना

हमारा वायुमंडल पाँच परतों में विभाजित है, जो पृथ्वी की सतह से आरंभ होती हैं। ये हैं - क्षोभमंडल, समतापमंडल, मध्यमंडल, बाह्य वायुमंडल एवं बहिर्मंडल (चित्र 4.2)।

क्षोभमंडल : यह परत वायुमंडल की सबसे महत्त्वपूर्ण परत है। इसकी औसत

बहिर्मंडल बाह्य वायुमंडल 100 90 मध्यसीमा 80 70 ऊँचाई (कि.मी. में) मध्यमंडल 60 50 समताप सीमा 40 समताप मंडल 30 हवाईजहाज 20 ओज़ोन 10 क्षोभसीमा माउंट एवरेस्ट क्षोभमंडल

चित्र 4.2 : वायुमंडल की परतें

ऊँचाई 13 किलोमीटर है। हम इसी मंडल में मौजूद वायु में साँस लेते हैं। मौसम की लगभग सभी घटनाएँ जैसे— वर्षा, कुहरा एवं ओलावर्षण इसी परत के अंदर होती हैं।

समतापमंडल : क्षोभमंडल के ऊपर का भाग समताप मंडल कहलाता है। यह लगभग 50 किलोमीटर की ऊँचाई तक फैला है। यह परत बादलों एवं मौसम संबंधी घटनाओं से लगभग मुक्त होती है। इसके फलस्वरूप यहाँ की परिस्थितियाँ हवाई जहाज उड़ाने के लिए आदर्श होती हैं। समताप मंडल की एक महत्त्वपूर्ण विशोषता यह है कि इसमें ओज़ोन गैस की परत होती है। यह परत सूर्य से आने वाली हानिकारक गैसों से हमारी रक्षा करती है।

मध्यमंडल: यह वायुमंडल की तीसरी परत है। यह समताप मंडल के ठीक ऊपर होती है। यह लगभग 80 किलोमीटर की ऊँचाई तक फैली है। अंतरिक्ष से प्रवेश करने वाले उल्का पिंड इस परत में आने पर जल जाते हैं।

बाह्य वायुमंडल : बाह्य वायुमंडल में बढ़ती ऊँचाई के साथ तापमान अत्यधिक तीव्रता से बढ़ता है। आयन मंडल इस परत का एक भाग है। यह 80 से 400 किलोमीटर तक फैला है। रेडियो संचार

के लिए इस परत का उपयोग होता है। वास्तव में पृथ्वी से प्रसारित रेडियो तरंगें इस परत द्वारा पुन: पृथ्वी पर परावर्तित कर दी जाती हैं।

बिहर्मंडल - वायुमंडल की सबसे ऊपरी परत को बिहर्मंडल के नाम से जाना जाता है। यह वायु की पतली परत होती है। हल्की गैसें जैसे-हीलियम एवं हाइड्रोजन यहीं से अंतरिक्ष में तैरती रहती हैं।

मौसम एवं जलवायु

"क्या आज वर्षा होगी?" "क्या आज दिन साफ़ होगा और धूप निकलेगी?" कितनी ही बार हमने क्रिकेट प्रेमियों के मुँह से एकदिवसीय मैच के भविष्य पर अनुमान लगाते सुना होगा? यदि हम कल्पना करें कि हमारा शरीर एक रेडियो है और मस्तिष्क उसके स्पीकर, तो मौसम वह है जो इसके नियंत्रण बटनों से छेड़छाड़ करता रहता है। मौसम, वायुमंडल की प्रत्येक घंटे तथा दिन-प्रतिदिन की स्थिति होती है। आई एवं गर्म मौसम किसी को भी चिड़चिड़ा बना सकता है। अच्छा, हवादार मौसम हमें आनंद देता है और हम घूमने की योजना भी बना सकते हैं। मौसम नाटकीय रूप से दिन-प्रतिदिन बदलता है। किंतु दीर्घ काल में किसी स्थान का औसत मौसम, उस स्थान की जलवायु बताता है। क्या अब आप समझ गए कि हम मौसम का दैनिक पूर्वानुमान क्यों करते हैं?

तापमान

आप प्रतिदिन जिस तापमान का अनुभव करते हैं, वह वायुमंडल का तापमान होता है। वायु में मौजूद ताप एवं शीतलता के परिमाण को तापमान कहते हैं।

वायुमंडल का तापमान केवल दिन और रात में ही नहीं बदलता बल्कि ऋतुओं के अनुसार भी बदलता है। शीत ऋतु की अपेक्षा ग्रीष्म ऋतु ज्यादा गर्म होती है।

आतपन एक महत्त्वपूर्ण कारक है, जो तापमान के वितरण को प्रभावित करता है। सूर्य से आने वाली वह ऊर्जा जिसे पृथ्वी रोक लेती है, आतपन कहलाती है।

आतपन (सूर्यातप) की मात्रा भूमध्य रेखा से ध्रुवों की ओर घटती है। इसलिए तापमान उसी प्रकार घटता जाता है। क्या

यह जानकर आपको आश्चर्य होगा कि पृथ्वी सूर्य की ऊर्जा के 2,000,000,00 भाग का केवल एक भाग (दो अरबवाँ) ही प्राप्त करती है।

चित्र 4.3 : मौसम की जानकारी के लिए यंत्र

तापमान को मापने की मानक इकाई डिग्री सेल्सियस है। इस का आविष्कार ऐंडर्स सेल्सियस ने किया था। सेल्सियस पैमाने पर जल 0° सेल्सियस पर जमता है एवं 100° सेल्सियस पर उबलता है।

क्या आप जानते हैं कि चाँद पर वायु नहीं है, अतएव वहाँ वायु दाब भी नहीं है। अंतरिक्ष यात्री जब चाँद पर जाते हैं, तो वे विशेष रूप से सुरिक्षत हवा से भरी हुई अंतरिक्ष पोशाक पहनते हैं। यदि वे इस अंतरिक्ष पोशाक को न पहनें तो अंतरिक्ष यात्रियों के शरीर द्वारा विपरीत बल लगने के कारण उनकी रक्त शिराएँ फट सकती हैं। जिससे अंतरिक्ष यात्री रक्तस्त्रावित हो सकते हैं।

पवन का नाम उसके आने की दिशा के आधार पर निर्धारित होता है। उदाहरण के लिए— पश्चिम से आने वाली पवन को पश्चिमी (पछुवा) पवन कहते हैं।

अब आप समझ गए होंगे कि ध्रुव बर्फ़ से क्यों ढँके हुए हैं? यदि पृथ्वी का तापमान अत्यधिक बढ़ जाता है तो यह इतनी गर्म हो जाएगी कि यहाँ कुछ फ़सलें नहीं उग सकेंगी। गाँवों की अपेक्षा नगरों का तापमान बहुत अधिक होता है। दिन के समय में ऐसाफेल्ट से बनी सड़कें एवं धातु और कंक्रीट से बने भवन गर्म हो जाते हैं। रात के समय यह ऊष्मा मुक्त हो जाती है।

नगर के भीड़ वाले ऊँचे भवन गर्म वायु को रोक लेते हैं, जिससे नगरों का तापमान बढ जाता है।

वायु दाब

यह जानकर आपको आश्चर्य होगा कि वायु हमारे शरीर पर उच्च दाब के साथ बल लगाती है। किंतु हम इसका अनुभव नहीं करते हैं। यह इसलिए होता है, क्योंकि वायु का दाब हमारे ऊपर सभी दिशाओं से लगता है, और हमारा शरीर विपरीत बल लगाता है।

पृथ्वी की सतह पर वायु के भार द्वारा लगाया गया दाब, वायु दाब कहलाता है। वायुमंडल में ऊपर की ओर जाने पर दाब तेज़ी से गिरने लगता है। समुद्र स्तर पर वायु दाब सर्वाधिक होता है और ऊँचाई पर जाने पर यह घटता जाता है। वायु दाब का क्षेतिज वितरण किसी स्थान पर उपस्थित वायु के ताप द्वारा प्रभावित होता है। अधिक तापमान वाले क्षेत्रों में वायु गर्म होकर ऊपर उठती है। यह निम्न दाब क्षेत्र बनाता है। निम्न दाब, बादलयुक्त आकाश एवं नम मौसम के साथ जुड़ा होता है।

कम तापमान वाले क्षेत्रों की वायु ठंडी होती है। इसके फलस्वरूप यह भारी होती है। भारी वायु निमज्जित होकर उच्च दाब क्षेत्र बनाती है। उच्च दाब के कारण स्पष्ट एवं स्वच्छ आकाश होता है।

वायु सदैव उच्च दाब क्षेत्र से निम्न दाब क्षेत्र की ओर गमन करती है।

पवन

उच्च दाब क्षेत्र से निम्न दाब क्षेत्र की ओर वायु की गित को 'पवन' कहते हैं। आप पवन को काम करते देख सकते हैं। जब यह सड़क पर गिरी पित्तयों को उड़ाती अथवा तूफ़ान के समय पेड़ों को उखाड़ देती है। कभी-कभी जब पवन धीरे बहती है, तो आप इसे महीन धूल या धुएँ को उड़ाते देख सकते हैं। कभी-कभी पवन इतनी तेज होती है कि इसके विपरीत दिशा में चलना किठन हो जाता है। आपने अवश्य अनुभव किया होगा कि तेज पवन में छाता लेकर चलना आसान नहीं है। तीन अन्य उदाहरण सोचिए, जब तेज पवन के कारण आपके लिए समस्या उत्पन्न हुई हो। पवन को मुख्यत: तीन प्रकारों में विभाजित किया जा सकता है।

 स्थायी पवनें : व्यापारिक पश्चिमी एवं पूर्वी पवनें स्थायी पवनें हैं। ये वर्षभर लगातार निश्चित दिशा में चलती रहती हैं।

2. मौसमी पवनें : ये पवनें विभिन्न ऋतुओं में अपनी दिशा बदलती रहती हैं। उदाहरण के लिए—भारत में मानसूनी पवनें।

3. स्थानीय पवनें : ये पवनें किसी छोटे क्षेत्र में वर्ष या दिन के किसी विशेष समय में चलती हैं। उदाहरण के लिए—स्थल एवं समुद्री समीर। क्या आपको भारत के

उत्तरी क्षेत्र की गर्म एवं शुष्क स्थानीय पवन याद हैं? इसे 'लू' कहते हैं।

चित्र 4.4 : प्रमुख वायुदाब पेटियाँ

चक्रवात - प्राकृतिक आवेश

भारत के पूर्वी समुद्री तट पर स्थित ओडिशा में बंगाल की खाड़ी से उठने वाले चक्रवातों का खतरा बना रहता है। 17-18 अक्टूबर, 1999 को राज्य के पाँच जिलों में चक्रवात आया। 29 अक्टूबर, 1999 को एक अन्य महाचक्रवात आया, जिसने राज्य के एक बड़े भाग में तबाही मचाई। मुख्यत: पवन का वेग, वर्षा तथा ज्वारीय प्रोत्कर्ष से हानियाँ हुईं। 260 किलोमीटर प्रति घंटे तक के वेग वाली पवन 36 घंटे से भी ज्यादा समय तक चलती रही। तीव्र वेग वाली इस पवन ने पेड़ों को उखाड़ दिया और कच्चे घरों को नष्ट कर दिया। अनेक औद्योगिक भवनों तथा अन्य घरों की छतें भी उड़ गईं। विद्युत आपूर्ति एवं टेलीफ़ोन लाइनें पूरी तरह से कट

गईं। चक्रवात के फलस्वरूप लगातार तीन दिनों तक भारी वर्षा होती रही। इस वर्षा के कारण ओडिशा की प्रमुख निदयों में बाढ़ आ गई। चक्रवाती पवनों के कारण उठी ज्वारीय तरंगें स्थल पर 20 किलोमीटर तक आ गईं और फलस्वरूप तटीय क्षेत्रों में भयानक तबाही हुई। अचानक 7 से 10 मीटर ऊँची ज्वारीय तरंगें आ गयीं, जिसके कारण तैयार खड़ी धान की फ़सल पूरी तरह से नष्ट हो गयी।

चक्रवात द्वारा विनाश

25 अक्टूबर 1999 को पूर्वी पोर्ट ब्लेयर के निकट थाईलैंड की खाड़ी में "अवदाब" के कारण यह चक्रवात उत्पन्न हुआ और यह धीरे-धीरे उत्तर-पश्चिमी दिशा में बढ़ा। गहन होकर इसने महाचक्रवात का रूप धारण कर लिया और 29 अक्टूबर को सुबह 10.30 बजे ओडिशा के इरेसामा एवं बालीकुडा के बीच के क्षेत्रों को प्रभावित किया।

इस महाचक्रवात ने भुवनेश्वर, कटक और 28 तटीय नगरों सिहत ओडिशा के पूरे तट को बर्बाद कर दिया। इससे लगभग 130 लाख लोग प्रभावित हुए। बहुत बड़ी संख्या में पशुओं की मौत हो गई। धान, सिब्जियों एवं फलों की खड़ी फ़सलों का भारी नुकसान हुआ। ज्वारीय प्रोत्कर्ष से उत्पन्न हुई लवणता के कारण कृषि योग्य विशाल भू-क्षेत्र अनुपजाऊ हो गए। साल, सागवान एवं बाँस के बागान वाले विशाल भ-क्षेत्र नष्ट हो गए। पारादीप एवं कोणार्क के बीच स्थित मैंग्रोव के जंगल लुप्त ही हो गए।

चक्रवाती वर्षा

पर्वतीय वर्षा

चित्र 4.5 : वर्षा के प्रकार

आर्द्रता

जब जल पृथ्वी एवं विभिन्न जलाशयों से वाष्पित होता है, तो यह जलवाष्प बन जाता है। वायु में किसी भी समय जलवाष्प की मात्रा को 'आईता' कहते हैं। जब वायु में जलवाष्प की मात्रा अत्यधिक होती है, तो उसे हम आई दिन कहते हैं। जैसे-जैसे वायु गर्म होती जाती है, इसकी जलवाष्प धारण करने की क्षमता बढ़ती जाती है और इस प्रकार यह और अधिक आई हो जाती है। आई दिन में, कपड़े सूखने में काफ़ी समय लगता है एवं हमारे शरीर से पसीना आसानी से नहीं सूखता और हम असहज महसूस करते हैं।

जब जलवाष्प ऊपर उठता है, तो यह ठंडा होना शुरू हो जाता है। जलवाष्प संघनित होकर ठंडा होकर जल की बूँद बनाते हैं। बादल इन्हीं जल बूँदों का ही एक समूह होता है। जब जल की ये बूँदें इतनी भारी हो जाती हैं कि वायु में तैर न सकें, तब ये वर्षण के रूप में नीचे आ जाती हैं।

आकाश में उड़ते हुए जेट हवाई जहाज अपने पीछे सफ़ेद पथ चिह्न छोड़ते हैं। इनके इंजनों से निकली नमी संघनित हो जाती है। वायु के गतिमान न रहने की स्थिति में यह संघनित नमी कुछ देर तक पथ के रूप में दिखाई देती है।

पृथ्वी पर जल के रूप में गिरने वाला वर्षण, वर्षा कहलाता है। ज्यादातर भौम जल, वर्षा जल से ही प्राप्त होता है। पौधे जल संरक्षण में मदद करते हैं। जब पहाड़ी पाश्वों से पेड़ काटे जाते हैं, वर्षा जल अनावृत पहाड़ों से नीचे बहता है एवं निचले इलाकों में बाढ़ का कारण बनता है। क्रियाविधि आधार पर वर्षा के तीन प्रकार होते हैं: संवहनी वर्षा, पर्वतीय वर्षा एवं चक्रवाती वर्षा (चित्र 4.5)।

पौधों तथा जीव-जंतुओं के जीवित रहने के लिए वर्षा बहुत महत्त्वपूर्ण है। इससे धरातल को ताज़ा जल प्रदान होता है। यदि वर्षा कम हो, तो जल की कमी तथा सूखा हो जाता है। इसके विपरीत अगर वर्षा अधिक होती है, तो बाढ़ आ जाती है।

1. निम्न प्रश्नों के उत्तर दीजिए-

- (क) वायुमंडल क्या है?
- (ख) वायुमंडल का अधिकतर भाग किन दो गैसों से बना है?
- (ग) वायुमंडल में कौन-सी गैस हरित गृह प्रभाव पैदा करती है?
- (घ) मौसम किसे कहते हैं?
- (च) वर्षा के तीन प्रकार लिखें।
- (छ) वायुदाब क्या है?

2. सही (✓) उत्तर चिह्नित कीजिए-

- (क) निम्नलिखित में से कौन-सी गैस हमें सूर्य की हानिकारक किरणों से बचाती हैं?
 - (i) कार्बन डाइऑक्साइड
- (ii) नाइट्रोजन
- (iii) ओज़ोन

- (ख) वायुमंडल की सबसे महत्त्वपूर्ण परत है
 - (i) क्षोभमंडल
- (ii) बाह्य वायुमंडल
- (iii) मध्यमंडल
- (ग) वायुमंडल की निम्न परतों में कौन-सी बादल विहीन है?
 - (i) क्षोभमंडल
- (ii) समताप मंडल
- (iii) मध्यमंडल
- (घ) वायुमंडल की परतों में जब हम ऊपर जाते हैं, तब वायुदाब
 - (i) बढ़ता है
- (ii) घटता है
- (iii) समान रहता है
- (च) जब वृष्टि तरल रूप में पृथ्वी पर आती है, उसे हम कहते हैं
 - (i) बादल
- (ii) वर्षा
- (iii) हिम

3. निम्नलिखित स्तंभों को मिलाकर सही जोड़े बनाइए-

- (क) व्यापारिक पवनें
- (i) सूर्य से आने वाली ऊर्जा
- (평) लू
- (ii) मौसमी पवन
- (ग) मानसून
- (iii) पवन की क्षैतिज गति
- (घ) पवन
- (iv) ओज़ोन गैस की परत
- (v) स्थायी पवन
- (vi) स्थानीय पवन

4. कारण बताइए-

- (क) आई दिन में गीले कपड़े सूखने में अधिक समय लेते हैं।
- (ख) भूमध्य रेखा से ध्रुवों की ओर जाने पर आतपन की मात्रा घटती जाती है।

5. आओ खेलें-

(क) दिए गए चार्ट की मदद से वर्ग पहेली समस्या को हल करें :

बाएँ से दाएँ

- 6. एक भारतीय पेड़ जो चौबीस घंटे ऑक्सीजन प्रदान करने का असाधारण गुण रखता है।
- 8. वायुमंडल में मौजूद एक गैस, जो केवल 0.03 प्रतिशत में पाई जाती है।
- 11. वायुमंडल की सबसे बाहरी परत।
- 12. बहुत सारी गैसों का मिश्रण।
- 14. जीवित रखने वाली गैस।
- 15. गतिशील वायु।
- 16. एक भारतीय पेड़, जिसका औषधीय गुणों के लिए महत्त्व है।
- 18. हानिकारक सूर्य किरणों से हमारी रक्षा करने वाली गैस।
- 19. निम्न दाब क्षेत्र।

ऊपर से नीचे

- 1. जलवाष्प की वायु में मात्रा।
- 2. वायुमंडल में धूल कण के चारों ओर जलवाष्प का संघनन।
- 3. उत्तर भारत में ग्रीष्म ऋतु में बहने वाली स्थानीय पवन का एक उदाहरण।
- 4. वायुमंडल में छोटे अंतराल के लिए बदलाव।
- 5. वर्षण का तरल रूप।
- 7. पृथ्वी के चारों ओर वायु की चादर।
- 9. वायु दाब को मापने का यंत्र।
- 10. सूर्य से आने वाली उर्जा।
- 13. शीत में दृश्यता को कम करता है।
- 17. जब सूर्य हमारे सिर के ऊपर होता है, वह समय।

28 हमारा पर्यावरण

(ख) एक सप्ताह का मौसम कैलेंडर बनाएँ। विभिन्न प्रकार के मौसम को दिखाने के लिए चित्रों या संकेतों का उपयोग करें। यदि मौसम में बदलाव आता है, तो आप एक दिन में एक से अधिक संकेतों का उपयोग कर सकते है। उदाहरण के लिए — वर्षा रुकने पर सूर्य बाहर निकलता है। एक उदाहरण नीचे दिया गया है:

दिन	मौसम
1.	धूप वाला दिन
2.	
3.	
4.	
5.	
6.	
7.	