Online

Section B2

Time: 45 Minutes

In Graphland, there are many vertices and **undirected edges** between these vertices with specific costs. But there is also a weird constraint in Graphland, no matter what your source or destination is, you must visit the holy edge (u, v). Not going through this edge is a serious crime in Graphland.

Given a source and destination node, you are to output the path with the lowest cost. Your recommended path should have the holy edge (u, v) as an intermediate edge. If such a path doesn't exist, you must report this. Use Floyd-Warshall algorithm to solve the problem.

Input / Output

The first line of input consists of 2 integers N and M, the no. of input vertices and edges respectively. The next M lines contain 3 integers u, v and w indicating there is an edge from vertex u to v of cost w.

After these M lines, the immediate next line will contain two integers U and V, the two endpoints of the holy edge. You may assume this edge will always exist (i.e. given as input).

The next lines will contain two vertex numbers X and Y respectively. You are to give output a path of the lowest cost from X to Y with the holy edge (u, v) present as an intermediate edge.

The program terminates when -1 -1 is given as input for X and Y respectively.

Sample Input	Sample Output
88	No path from 5 to 3 through 2 6
165	Shortest Path Weight: 30
258	Path: 1> 6(5)> 2(7)> 5(8)> 4(2)> 8(8)
267	Shortest Path Weight: 30
468	Path: 8> 4(8)> 5(2)> 2(8)> 6(7)> 1(5)
5 4 2	No path from 3 to 4 through 2 6
577	Shortest Path Weight: 7
767	Path: 2> 6(7)
8 4 8	No path from 8 to 3 through 2 6
26	Shortest Path Weight: 22
5 3	Path: 7> 6(7)> 2(7)> 5(8)
18	Shortest Path Weight: 22
81	Path: 5> 2(8)> 6(7)> 7(7)
3 4	
26	
83	
75	
57	
-1 -1	