

Show that the SI base units of intensity are  $kg s^{-3}$ .

[2]

(b) (i) The intensity I of a sound wave is related to the amplitude  $x_0$  of the wave by

$$I = K\rho c f^2 x_0^2$$

where  $\rho$  is the density of the medium through which the sound is passing, c is the speed of the sound wave, f is the frequency of the sound wave and K is a constant.

Show that K has no units.

| (11) | Calculate the intensity, in pw m <sup>-2</sup> , of a sound wave where |                                                                                                                        |  |
|------|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--|
|      | and                                                                    | K = 20,<br>$\rho = 1.2$ in SI base units,<br>c = 330 in SI base units,<br>f = 260 in SI base units<br>$x_0 = 0.24$ nm. |  |
|      |                                                                        |                                                                                                                        |  |
|      |                                                                        |                                                                                                                        |  |
|      |                                                                        |                                                                                                                        |  |
|      |                                                                        |                                                                                                                        |  |

intensity = .....pW m<sup>-2</sup> [3]

2 A signal generator is connected to two loudspeakers  $L_1$  and  $L_2$ , as shown in Fig. 2.1.



Fig. 2.1

A microphone M, connected to the Y-plates of a cathode-ray oscilloscope (c.r.o.), detects the intensity of sound along the line ABC.

The distances  $L_1A$  and  $L_2A$  are equal.

The time-base of the c.r.o. is switched off.

The traces on the c.r.o. when M is at A, then at B and then at C are shown on Fig. 2.2, Fig. 2.3 and Fig. 2.4 respectively.



these traces, 1.0 cm represents 5.0 mV on the vertical scale.

| (a) | (i) | Explain why coherent waves are produced by the loudspeakers. |    |
|-----|-----|--------------------------------------------------------------|----|
|     |     |                                                              |    |
|     |     |                                                              | •• |
|     |     |                                                              |    |
|     |     |                                                              | •  |
|     |     | r                                                            | -1 |

|           | the principle of superposition to explain the traces shown with M at |  |  |  |  |
|-----------|----------------------------------------------------------------------|--|--|--|--|
| 1.        | Α,                                                                   |  |  |  |  |
|           |                                                                      |  |  |  |  |
|           |                                                                      |  |  |  |  |
|           | [1]                                                                  |  |  |  |  |
| <b></b> . | u,                                                                   |  |  |  |  |
|           |                                                                      |  |  |  |  |
|           | [1]                                                                  |  |  |  |  |
| 3.        | C.                                                                   |  |  |  |  |
|           |                                                                      |  |  |  |  |
|           |                                                                      |  |  |  |  |
|           | <br>2.<br>                                                           |  |  |  |  |

(b) The sound emitted from  $L_1$  and  $L_2$  has frequency 500 Hz. The time-base on the c.r.o. is switched on.

The microphone M is placed at A.

On Fig. 2.5, draw the trace seen on the c.r.o.

On the vertical scale,  $1.0\,\mathrm{cm}$  represents  $5.0\,\mathrm{mV}$ . On the horizontal scale,  $1.0\,\mathrm{cm}$  represents  $0.10\,\mathrm{ms}$ .



Fig. 2.5

3 A steel ball falls from a platform on a tower to the ground below, as shown in Fig. 3.1.



Fig. 3.1

The ball falls from rest through a vertical distance of 192 m. The mass of the ball is 270 g.

- (a) Assume air resistance is negligible.
  - (i) Calculate
    - 1. the time taken for the ball to fall to the ground,

2. the maximum kinetic energy of the ball.

maximum kinetic energy = ......J [2]

(ii) State and explain the variation of the velocity of the ball with time as the ball falls to the ground.

.....[1]

(iii) Show that the velocity of the ball on reaching the ground is approximately 60 m s<sup>-1</sup>.

**(b)** In practice, air resistance is not negligible. The variation of the air resistance R with the velocity v of the ball is shown in Fig. 3.2.



Fig. 3.2

Fig. 3.2 to state and explain qualitatively the variation of the acceleration of the ball

(i)

|       | with the distance fallen by the ball.                                                                          |
|-------|----------------------------------------------------------------------------------------------------------------|
|       |                                                                                                                |
|       |                                                                                                                |
|       |                                                                                                                |
|       | [3]                                                                                                            |
| (ii)  | The speed of the ball reaches 40 m s <sup>-1</sup> . Calculate its acceleration at this speed.                 |
|       |                                                                                                                |
|       |                                                                                                                |
|       |                                                                                                                |
|       | acceleration = $m s^{-2}$ [2]                                                                                  |
| (iii) | information from <b>(a)(iii)</b> and Fig. 3.2 to state and explain whether the ball reaches terminal velocity. |
|       |                                                                                                                |
|       |                                                                                                                |
|       | [2]                                                                                                            |

4 A block is pulled on a horizontal surface by a force *P* as shown in Fig. 4.1.



Fig. 4.1

The weight of the block is  $180\,\mathrm{N}$ . The force P is  $35\,\mathrm{N}$  at  $60^\circ$  to the vertical. The block moves a distance of  $20\,\mathrm{m}$  at constant velocity.

- (a) Calculate
  - (i) the vertical force that the surface applies to the block (normal reaction force),

(ii) the work done by force P.

| (b) | (i)  | Explain why the block continues to move at constant velocity although work is done on the block by force $P$ . |
|-----|------|----------------------------------------------------------------------------------------------------------------|
|     |      |                                                                                                                |
|     |      | [1]                                                                                                            |
|     | (ii) | Explain, in terms of the forces acting, why the block remains in equilibrium.                                  |
|     |      |                                                                                                                |
|     |      |                                                                                                                |
|     |      | [2]                                                                                                            |

5 (a) The I-V characteristic of a semiconductor diode is shown in Fig. 5.1.



Fig. 5.1

| i) | Fig. 5.1 to explain the variation of the resistance of the diode as $\it V$ increases from zero to 0.8 V. |
|----|-----------------------------------------------------------------------------------------------------------|
|    |                                                                                                           |
|    |                                                                                                           |
|    |                                                                                                           |
|    |                                                                                                           |
|    |                                                                                                           |
|    | [3                                                                                                        |
|    |                                                                                                           |

(ii) Fig. 5.1 to determine the resistance of the diode for a current of 4.4 mA.

resistance = ..... $\Omega$  [2]

(b) A cell of e.m.f. 1.2V and negligible internal resistance is connected in series to a semiconductor diode and a resistor R<sub>1</sub>, as shown in Fig. 5.2.



Fig. 5.2

A resistor  $\rm R_2$  of resistance 375  $\Omega$  is connected across the cell. The diode has the characteristic shown in Fig. 5.1. The current supplied by the cell is 7.6 mA.

Calculate

| (i | i) | the | current | in | R <sub>a</sub> . |
|----|----|-----|---------|----|------------------|
| ١. | ,  |     |         |    | ٠,               |

current = ...... A [1]

(ii) the resistance of  $R_1$ ,

 $resistance = \dots \dots \Omega [2]$ 

(iii) the ratio

 $\frac{\text{power dissipated in the diode}}{\text{power dissipated in R}_2} \, .$ 

ratio = .....[2]

6 An arrangement for producing stationary waves in air in a tube that is closed at one end is shown in Fig. 6.1.



Fig. 6.1

A loudspeaker produces sound waves of wavelength  $0.680\,\mathrm{m}$  in the tube. some values of the length L of the tube, stationary waves are formed.

| (a) | Explain how stationary waves are formed in the tube. |
|-----|------------------------------------------------------|
|     |                                                      |
|     |                                                      |
|     | [2]                                                  |

- **(b)** The length L is adjusted between  $0.200\,\mathrm{m}$  and  $1.00\,\mathrm{m}$ .
  - (i) Calculate two values of *L* for which stationary waves are formed.

$$L = \dots m$$
 and  $L = \dots m$  [2]

(ii) On Fig. 6.2, label the positions of the antinodes with an  $\bf A$  and the nodes with an  $\bf N$  for the least value of  $\bf L$  for which a stationary wave is formed.



Fig. 6.2

| 8 | (a) | State the quantities, other than momentum, that are conserved in a nuclear reaction. |                                                                                                                                                                      |  |  |  |
|---|-----|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|   |     |                                                                                      | [2                                                                                                                                                                   |  |  |  |
|   | (b) |                                                                                      | tationary nucleus of uranium-238 decays to a nucleus of thorium-234 by emitting a article. The kinetic energy of the $\alpha$ -particle is $6.69 \times 10^{-13}$ J. |  |  |  |
|   |     | (i)                                                                                  | Show that the kinetic energy $E_{\mathbf{k}}$ of a mass $m$ is related to its momentum $p$ by the equation                                                           |  |  |  |
|   |     |                                                                                      | $E_{k} = \frac{p^2}{2m} .$                                                                                                                                           |  |  |  |
|   |     |                                                                                      |                                                                                                                                                                      |  |  |  |
|   |     |                                                                                      |                                                                                                                                                                      |  |  |  |
|   |     |                                                                                      |                                                                                                                                                                      |  |  |  |
|   |     |                                                                                      |                                                                                                                                                                      |  |  |  |
|   |     |                                                                                      | [1                                                                                                                                                                   |  |  |  |
|   |     | (ii)                                                                                 | the conservation of momentum to determine the kinetic energy, in keV, of the thoriun nucleus.                                                                        |  |  |  |
|   |     |                                                                                      |                                                                                                                                                                      |  |  |  |
|   |     |                                                                                      |                                                                                                                                                                      |  |  |  |
|   |     |                                                                                      |                                                                                                                                                                      |  |  |  |
|   |     |                                                                                      |                                                                                                                                                                      |  |  |  |
|   |     |                                                                                      |                                                                                                                                                                      |  |  |  |
|   |     |                                                                                      |                                                                                                                                                                      |  |  |  |
|   |     |                                                                                      | kinetic energy =keV [3                                                                                                                                               |  |  |  |
|   |     |                                                                                      |                                                                                                                                                                      |  |  |  |