CS 418: Interactive Computer Graphics In-class Worksheet 3

Viewing and Hierarchical Modeling

1. Modeling a (part of) a Solar System

Fix the following code so that it correctly models the Earth and Moon positions. You can insert Push/Pop commands and rearrange any lines of code you wish.


```
PushMatrix
Scale(7917,7917,7917) // Set Earth diameter
Translate (AU,0,0) // AU = distance from Earth to Sun
Rotate 360*days/365,(0,1,0) // Rotation around sun
Scale (2159,2519,2519) // Set moon diameter
Rotate 360*days/27,(0,1,0) // Moon rotation around Earth
Translate 238856,0,0 // Earth to moon distance
DrawMoon
DrawEarth
PopMatrix
```

2. Memory Layout of Matrices in WebGL

Suppose we have the following transformation matrix:

Suppose we have the
$$\begin{bmatrix} a & b & c & t_x \\ d & e & f & t_y \\ g & h & i & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Write down the column-major layout of the matrix in memory:

Write down the row-major layout of the matrix in memory:

Our vertex shaders have typically transformed vertex positions using a line of code like this:

Suppose in your JavaScript code your matrices are laid out in row-major instead of column-major order. How could you change the vertex shader code to accommodate that? Just alter the one line.

3. View Transformation

What viewing transformation matrix is produced by having the eyepoint at (1,0,0) with the lookat point at (4,0,0) and an up vector of <0,1,0>?