

Тамарин Вячеслав

December 3, 2020

Contents

1	Введение в теорию сложности вычислений			5
		1.0.1	Напоминания	5
		1.0.2	Детерминированная машина Тьюринга	6
	1.1	Класс	ы сложности	8
		1.1.1	Классы Dtime и P	8
	1.2	Недет	ерминированная машина Тьюринга	9
	1.3	Сведе	ения и сводимости	10
		1.3.1	Трудные и полные задачи	11
		1.3.2	Булевы схемы	12
	1.4	Teope	ма Кука-Левина	12
		1.4.1	Оптимальный алгоритм для \widetilde{NP} -задачи	13

CONTENTS 4

Chapter 1

Введение в теорию сложности вычислений

Лекция 1: †

1.0.1 Напоминания

Обсудим, что мы решаем.

Обозначение.

- Алфавит будет бинарный {0,1};
- Множество всех слов длины $n: \{0,1\}^n$;
- Множество всех слов конечной длины $\{0,1\}^*$;
- Длина слова *x*: |*x*|.

Определение 1

Язык (задача распознавания, decision problem) — $L \subseteq \{0,1\}^*$.

Индивидуальная задача — пара, первым элементом которой является условие, а второй – решение; принадлежит $\{0,1\}^* \times \{0,1\}^*$.

Массовая задача — некоторое множество индивидуальных задач, то есть бинарное отношение на $\{0,1\}^*$.

Определение 2

Будем говорить, что алгоритм **решает задачу поиска** для массовой задачи R, если для условия x он находит решение w, удовлетворяющее $(x, w) \in R$.

Можем сопоставить массовой задаче, заданной отношением R, язык

$$L(R) - \{x \mid \exists w : (x, w) \in R\}.$$

Пример 1.0.1 (Массовая задача и соответствующий язык).

FACTOR =
$$\{(n, d) \mid d \mid n, 1 < d < n\}$$
.

Здесь условием задачи является натуральное число n, а решением некоторый (не 1, и не n) числа n. Данной задаче соответствует язык

L(FACTOR) = множество всех составных чисел.

5 nov

1.0.2 Детерминированная машина Тьюринга

Определение 3: Детерминированная машина Тьюринга

Детерминированная машина Тьюринга —

- конечный алфавит (с началом ленты и пробелом): $\Sigma = \{0, 1, \triangleright, _\}$;
- несколько лент, бесконечных в одну сторону;
- читающие/пишущие головки, по одной на каждую ленту;
- конечное множество состояний, в том числе начальное (q_S/q_0) , принимающее (q_Y/q_{acc}) и отвергающее (q_N/q_{rei}) ;
- управляющее устройство (программа), содержащее для каждых $q, c_1, \dots c_k$ одну инструкцию вида

$$(q,c_1,\ldots c_k)\mapsto (q',c'_1,\ldots c'_k,d_1,\ldots d_k),$$

где $q,q' \in Q$ — состояния, $c_i,c_i' \in \Sigma$ — символы, обозреваемые головками, $d_i \in \{\to,\leftarrow,\cdot\}$ — направления движения головок.

ДМТ **принимает** входное слово, если заканчивает работу в q_{acc} , и **отвергает**, если заканчивает в q_{rej} .

ДМТ M распознает язык A, если принимает все $x \in A$ и отвергает все $x \notin A$.

$$A = L(M)$$
.

Замечание. Обычно есть отдельная строка только для чтения, куда записаны входные данные, и строка только для вывода, куда нужно поместить ответ. Остальные строки будут рабочими.

Определение 4

Время работы машины M на входе x — количество шагов (применений инструкций) до достижения q_{acc} или q_{rej} .

Используемая память — суммарное крайнее правое положение всех головой на *рабочих* лентах.

Теорема 1.0.1. Для любого $k \in \mathbb{N}$, работу ДМТ M с k рабочими лентами, работающую t шагов, можно промоделировать на ДМТ с двумя рабочими лентами за время $\mathcal{O}(t \log t)$, где константа $\mathcal{O}(\ldots)$ зависит только от размеров записи машины M).

• Перестроим исходную МТ:

- Запишем все ленты в одну строку по символу из всех лент по очереди.
- Будем бегать «лентой по головке»: выровняем все ленты, чтобы головки стояли друг над другом и далее будем сдвигать нужную ленту.
- Заметим, что двустороннюю ленту можно смоделировать на односторонней с увеличением количества операций в константу раз: разрезаем двустороннюю пополам и записываем элементы через один.
- Теперь поймем, как экономично сдвигать ленты в однострочной записи.

Разобьем строку на блоки начиная от позиции головки в две стороны: справа блоки R_i , слева L_i . При этом $|L_i| = |R_i| = 2^i$. Раздвинем символы, заполняя пустоту специальными символами пустоты, так, чтобы в каждом блоке ровно половина элементов были пустыми.

Далее будем поддерживать такое условие:

- 1. В блоке либо информация, либо пусто, либо наполовину пусто
- 2. L_i пустой, согда R_i полный
- 3. L_i наполовину пустой, согда R_i наполовину полный
- 4. L_i полный, согда R_i пустой

Figure 1.1: Построение новой МТ

Пусть нужно подвинуть головку влево. Найдем слева первый не пустой блок L_i . Возьмем из него правую половину и разложим по пустым $L_{< i}$ так, чтобы порядок сохранился и каждый из $L_{< i}$ стал полупустым, а первый символ попал под головку.

Так получится сделать, так как всего перемещаемых символов 2^{i-1} , а в j-й блок будет помещено 2^{j-1} символов, поэтому всего в $L_{< i}$ поместится

$$1 + 2 + 4 + \ldots + 2^{i-2} = 2^{i-1} - 1.$$

И один символ под головку.

Чтобы инвариант сохранился нужно теперь исправить правую часть.

Так как первые i-1 левых блоков были пусты, первые i-1 правых блоков полны, а R_i пуст. Заполним половину в R_i символами из R_{i-1} . Теперь R_{i-1} пустой, а меньшие полные. Проделаем ту же операцию еще раз для i-1, потом для i-2 и так далее.

Кода мы дойдем до R_1 , положим туда элемент из-под головки.

Итого, инвариант сохранился.

• Посчитаем количество операций. В алгоритме мы переносим различные отрезки из одного места в другое. Чтобы делать это за линию, сначала скопируем нужный участок на вторую ленту, а затем запишем с нее.

Тогда при перераспределении происходит $c \cdot 2^i$ операций: каждый символ переносили константное число раз (на вторую ленту, со второй ленты) плюс линейное перемещение от L_i к R_i несколько раз.

Докажем, что с i-м блоком происходят изменения не чаще 2^{i-1} шагов. Пусть L_i пустой хотя бы наполовину заполнен. Когда мы забрали половину из него, мы заполнили все $L_{< i}$ и $R_{< i}$ наполовину.

Поэтому, чтобы изменить L_i еще раз, нужно сначала опустошить все $L_{< i}$. При перераспределении в левой части становится на один элемент меньше, а всего там 2^{i-1} заполненное место. Для того, чтобы все они ушли из левой половины, придется совершить 2^{i-1} сдвигов.

Figure 1.2: Структура блоков

Итого, для t шагов исходной машины будет

$$\sum_{i} c \cdot 2^{i} \cdot \frac{t}{2^{i-1}} = \mathcal{O}(t \log t).$$

Теорема 1.0.2 (Об универсальной МТ). Существует ДМТ U, выдающая на входе (M, x) тот же результат, что дала бы машина M на входе x, за время $\mathcal{O}(t \log t)$, где t — время работы M на входе x.

□ Используем прием из прошлой теоремы 1.0.1.

1.1 Классы сложности

1.1.1 Классы Dtime и Р

Определение 5: Конструируемая по времени функция

Функция $t: \mathbb{N} \to \mathbb{N}$ называется конструируемой по времени, если

- $t(n) \ge n$;
- двоичную запись t(|x|) можно найти по входу x на ДМТ за t(|x|) шагов.

Определение 6: Класс Dtime

Язык L принадлежит классу **Dtime**[t(n)], если существует ДМТ M, принимающая L за время $\mathcal{O}(t(n))$, где t конструируема по времени.

Константа может зависеть от языка, но не от длины входа.

Определение 7: Класс Р

Класс языков, распознаваемых за полиномиальное время на ДМТ —

$$\mathbf{P} = \bigcup_{c} \mathbf{Dtime}[n^{c}].$$

Будем обозначать задачи, заданные отношениями волной.

Определение 8

Массовая задача R **полиномиально ограничена**, если существует полином p, ограничивающий длину кратчайшего решения:

$$\forall x \, \Big(\exists u \colon (x, u) \in R \Longrightarrow \exists w \colon \big((x, w) \in R \land |w| \le p(|x|) \big) \Big).$$

Массовая задача R полиномиально проверяема, если существует полином q, ограничивающий время проверки решения: для любой пары (x, w) можно проверить принадлежность $(x, w) \in R$ за время q(|(x, w)|).

Определение 9: Класс NP

 $\widetilde{\text{NP}}$ — класс задач поиска, задаваемых полиномиально ограниченными полиномиально проверяемыми массовыми задачами.

Определение 10: Класс Р

 $\widetilde{\mathbf{P}}$ — класс задач поиска из $\widetilde{\mathbf{NP}}$, разрешимых за полиномиальное время.

То есть класс задач поиска, задаваемых отношениями R, что для всех $x \in \{0,1\}^*$ за полиномиальное время можно найти w, для которого $(x,w) \in R$.

Ключевой вопрос теории сложности $\widetilde{\mathbf{P}} \stackrel{?}{=} \widetilde{\mathbf{NP}}$

Определение 11: Класс NP

NP — класс языков (задач распознавания), задаваемых полиномиально ограниченными полиномиально проверяемыми массовыми задачами:

$$NP = \{L(R) \mid R \in \widetilde{NP}\}.$$

Замечание. $L \in \mathbf{NP}$, если существует массовая п.о.п.п. задача, такая, что

$$\forall x \in \{0,1\}^* : x \in L \iff \exists w : (x,w) \in R.$$

Определение 12: Класс Р

Р— класс языков (задач распознавания), распознаваемых за полиномиальное время.

$$P = \{L(R) \mid R \in P\}.$$

Замечание. Очевидно, P ⊆ NP.

Ключевой вопрос теории сложности $\mathbf{P} \stackrel{?}{=} \mathbf{NP}$

Лекция 2: †

12 nov

1.2 Недетерминированная машина Тьюринга

Определение 13: Недетерминированная машина Тьюринга

Недетерминированная машина Тьюринга — машина Тьюринга, допускающая более одной инструкции для данного состояния $q \in Q$ и $c_1, \ldots c_k \in \Sigma$, то есть для состояния q и символа c функция δ будет многозначной.

Из такого определения получаем дерево вычислений вместо последовательности состояний ДМТ.

Мы говорим, что НМТ² **принимает** вход, если существует путь в дереве вычислений, заканчивающийся принимающим состоянием.

¹полиномиально ограниченная полиномиально проверяемая

²недетерминированная машина Тьюринга

Утверждение. В машины (ДМТ / НМТ) с заведомо ограниченным временем работы можно встроить и считать время вычислений на входах одной длины всегда . Для этого можем просто записать на дополнительную ленту t(n) единиц и стирать по одной за ход.

Определение 14: Эквивалентное определние НМТ

Недетерминированная машина Тьюринга — ДМТ, у которой есть дополнительный аргумент (конечная подсказка w на второй ленте).

□ Докажем эквивалентность. Представим дерево вычисления как бинарное дерево и пронумеруем ребра из каждой вершины 0 и 1. Теперь запишем нужную принимающую ветку на ленту-подсказку. По подсказке можем построить дерево, где будет нужный путь.

Определение 15

Еще одно определение класса NP — класс языков, принимаемых полиномиальными по времени HMT.

1.3 Сведения и сводимости

Определение 16: Сведение по Карпу

Язык L_1 **сводится по Карпу** к языку L_2 , если существует полиномиально вычислимая функция f такая, что

$$\forall x : x \in L_1 \iff f(x) \in L_2.$$

Определение 17: Сведение по Левину

Задача поиска (отношение) R_1 **сводится по Левину** к задаче R_2 , если существуют функции f, g, h такие, что для всех x_1 , y_1 , y_2 верно

- $R_1(x_1, y_1) \Longrightarrow R_2(f(x_1), g(x_1, y_1));$
- $R_1(x_1, h(f(x_1), y_2)) \longleftarrow R_2(f(x_1), y_2);$
- f, g, h полиномиально вычислимые.

Замечание. Первое условие нужно для того, чтобы образы каждого входа, имеющего решение первой задачи, имели решение и второй задачи.

Теорема 1.3.1. Классы $P, NP, \widetilde{P}, \widetilde{NP}$ замкнуты относительно этих сведений.

□ Рассмотрим $R_2 \in \tilde{\mathbf{P}}$ и $R_1 \to R_2$. Тогда должно выполняться $R_1 \in \tilde{\mathbf{P}}$. Аналогично для $\widetilde{\mathbf{NP}}$. В обоих случаях R_2 задано п.о.п.п. Если говорим про $\tilde{\mathbf{P}}$, то еще есть алгоритм, работающий за полиномиально время.

Что можно узнать про R_1 ? Если есть решение для R_1 , то функция g дает решение R_2 , которое не на много длиннее. Еще есть h, которая позволяет построить из решения R_2 обратно построить решение R_1 .

- Пусть есть некоторое решение y_1 для задачи R_1 . Для него можно получить некоторое решение R_2 $g(x_1, y_1)$.
 - Так как R_2 полиномиально ограничено, для него есть полиномиальное решение поменьше. Поэтому, когда оно будет возвращено функцией h, исходное решение y_2 тоже окажется коротким.
- Полиномиальная проверяемость проверяется аналогично.
- Про алгоритм: если есть алгоритм для R_2 и x_1 , сначала перегоняем $x_1 \to f(x_1)$, далее применяем алгоритм, получаем y_2 , а далее, используя h, перегоняем обратно в R_1 .

Определение 18: Оракульная МТ

Оракульная МТ — МТ с доступом к оракулу, который за один шаг дает ответ на некоторый вопрос.

Обозначение.

При переходе в состояние $q_{\rm in}$ происходит «фантастический переход» в состояние $q_{\rm out}$, заменяющий содержимое некоторой ленты на ответ оракула.

 M^{B} — оракульная машина M, которой дали оракул B.

Определение 19: Сведение по Тьюрингу

Язык или задача A **сводится по Тьюрингу** к B, если существует оракульная машина полиномиальная по времени M^{\bullet} такая, что M^{B} решает A.

Например, если A — язык, $A = L(M^B)$.

Пример 1.3.1. Классы **P** и $\tilde{\mathbf{P}}$ замкнуты относительно сведений по Тьюрингу. А **NP** и $\tilde{\mathbf{NP}}$ могут быть незамкнуты: если $A = \mathbf{UNSAT}$, $B = \mathbf{SAT}$, $M^O(x) = \overline{(x \in O)}$, и A сводится по Тьюрингу к B, но $B \in \mathbf{NP}$, а про A не известно.

1.3.1 Трудные и полные задачи

Определение 20: Трудный и полные задачи

Задача A называется **трудной** для класса **C**, если $\forall C \in \mathbf{C}: C \to A$.

Задача A называется **полной** для класса C, если она трудная и принадлежит C.

Теорема 1.3.2. Если A — **NP**-трудная и $A \in P$, то P = NP.

Следствие 1. Если A — **NP**-полная, то $A \in P \iff P = NP$.

Задача об ограниченной остановке

Определение 21: ВН

Определим задачу об ограниченной остановке $\widetilde{\mathbf{BH}}(\langle M, x, 1^t \rangle, w)^a$ так: дана НМТ M и вход x, требуется найти такую подсказку w, чтобы M распознавала x не более чем за t шагов.

Соответствующая задача распознавания — ответить, существует ли такая подсказка.

aздесь 1^t — служебные t единиц

Теорема 1.3.3. Задача об ограниченной остановке \widetilde{NP} -полная, а соответствующий язык NP-полный.

- Принадлежность \widetilde{NP} и NP следует из существования универсальной ДМТ, которая за $\mathcal{O}(t\log t)$ промоделирует вычисление ДМТ, описание которой дано ей на вход.
- Проверим, что язык **NP**-трудный. Пусть язык L принадлежит **NP**, что равносильно существованию для соответствующего отношения R машины Тьюринга $M^*(x,w)$, которая работает за $\operatorname{poly}(|x|)$.

Сведем L к задаче **ВН**. Рассмотрим тройку $\langle M^*, x, 1^{\mathsf{poly}(|x|)} \rangle$. Пусть функция f(x) будет равна этой тройке. Если и только если существует подсказка w для тройки f(x) принадлежит **ВН**, а наш язык L и определяется машиной M^* .

• Аналогично для задач поиска.

1.3.2 Булевы схемы

Определение 22: Булева схема

Булева схема — ориентированный граф без циклов,в вершинах которого записаны бинарные, унарные или нульарные операции над битами (\land, \lor, \oplus) , при этом есть специальные вершинывходы и вершины-выходы.

Определение 23: CIRCUIT_SAT

CIRCUIT_SAT =
$$\{(C, w) \mid C$$
 — булева схема, $C(w) = 1\}$.

Очевидно, что **CIRCUIT_SAT** \in **NP**. Чтобы доказать **NP**-трудность, сведем **BH** \rightarrow **CIRCUIT_SAT**: будем рисовать конфигурацию MT на схемах.

- Пусть каждый этаж системы конфигурация ДМТ. Всего этажей будет столько же, сколько шагов в МТ, то есть t. Если в последнем этаже q_{acc} , то результат 1.
- Пересчет конфигураций: меняются только гейты рядом с положением головки. Выделим подсхему, которая должна по состоянию и элементу рядом с головкой получить новое состояние, положение головки и поменять элемент, то есть построить новый уровень с измененными элементами.

Для хранения головки будем после каждого символа с ленты хранить d_i равное единице, если головка на символе c_i перед ним.

Если $d_i = 0$, то новый $c'_i = c_i$, иначе нужно заменить c_i на c'_i из программы МТ:

$$(q, c_{i-1}, c_i, c_{i+1}, d_{i-1}, d_i, d_{i+1}) \mapsto (q', c'_i, d'_i).$$

• Так как входная строка x нам дана, запаяем ее в схему. Тогда входом схемы останется подсказка w для HMT, а выходом — попадание в q_{acc} .

Таким образом, мы по M, x, t построили схему C(w).

Лекция 3: †

1.4 Теорема Кука-Левина

3-SAT =
$$\{(F, A) \mid F - B \text{ 3-KH}\Phi, F(A) = 1\}.$$

Теорема 1.4.1 (Кук-Левин). **3-SAT** — **NP**-полная задача.

□ Мы уже доказали полноту задач выполнимости булевых схем, поэтому будем сводить к ней.

Пусть у нас есть некоторая схема. Для каждого гейта заведем по переменной, которая обозначает результат операции в этом гейте. Входы тоже остаются гейтами в схеме.

Запишем для гейтов клозы длины 3, которые выражают результат в зависимости от аргументов.

Например, для входов x, y и операции $\Phi = g(x, y)$,

$$(x \lor y \lor \neg g)$$
$$(\neg x \lor \neg y \lor \neg g)$$
$$(x \lor \neg y \lor g)$$
$$(\neg x \lor y \lor g)$$

Еще для последнего гейта g (выходного) запишем клоз (g).

Значение в полученной схеме будет соответствовать результату конъюнкции всех переменных и наоборот: по формуле можем построить булеву схему и входные переменные выполняют ее.

Теорема 1.4.2. Пусть $R \in \widetilde{NP}$, и соответствующий язык полон L(R) — NP-полон. Тогда R сводится по Тьюрингу к L(R).

 \square Во-первых, задача поиска из **NP** сводится к $\widetilde{\textbf{SAT}}$. При этом **SAT** сводится к L(R).

Осталось свести $\widetilde{\mathsf{SAT}} \to \mathsf{SAT}$. Пусть нам дали выполняющий набор для F. Подставим первую переменную x_1 как 0 и как 1 в F (это тоже формулы) и спросим у оракула SAT про $F[x_1 = 0] \in \mathsf{SAT}$ и $F[x_1 = 1] \in \mathsf{SAT}$.

Так как F выполнима, хотя бы одна из полученных схем выполнима. Выберем ее и продолжим подставлять в нее. Так мы дойдем до конечной истиной формулы. Следовательно, последовательность подставляемых значений x_i и будет выполняющим набором.

1.4.1 Оптимальный алгоритм для NP-задачи

Пусть мы хотим решить задачу, заданную отношениям R, с входом x. Давайте переберем все машины (не только полиномиальные) и, если какая-то машина выдала результат y проверим его R(x,y) за полином. Если ответ подошел, то просто заканчиваем работу, иначе продолжаем ждать других результатов.

Если машины были бы запущены параллельно, то мы бы нашли ответ за время самой быстрой машины на данном входе.

А мы будем делать шаги «змейкой»: выделим для l-ой машины 2^{-l} времени.

На очередном этапе $2^l(1+2k)$ будем моделировать k-ый шаг машины M.

Посчитаем замедление алгоритма. Мы хотим выдать ответ не сильно позже, чем самая быстрая машина. Но заметим, что такая машина одна, поэтому l это константа, следовательно, множитель 2^l тоже константа.

Как моделировать эти машины? Если было бы быстрое обращение к каждому элементу памяти, то $t(x) \leq \mathrm{const}_i \cdot t_i + p(|x|)$ (последнее на проверку), в случае с ДМТ получаем $t(x) \leq \mathrm{const}_i \cdot p(t_i(x))$.

Лекция 4: †

26 nov

Рассмотрим язык **QBF**_k, состоящий из замкнутых истинных формул вида

$$\exists X_1 \forall X_2 \exists X_3 \dots X_k \varphi$$
,

где φ — формула в КНФ или ДНФ, а $\{X_i\}_{i=1}^k$ — разбиение множества переменных этой формулы на непустые подмножества.