ti23 assignment 02 Alabrsh Panov Zeitler

```
1.1.) geg: \neg \neg x0 = x0
           \rightarrow \neg \neg x0 =
                       = \neg \neg x0 \wedge 1
                                                                                  //Ident
                       = \neg \neg x0 \land (x0 \lor \neg x0)
                                                                                  //Compl
                       = (\neg \neg x0 \land x0) \lor (\neg \neg x0 \land \neg x0)
                                                                                  //Distrib
                       = (\neg \neg x0 \land x0) \lor 0
                                                                                  //Compl
                       = (\neg \neg x0 \land x0) \lor (x0 \land \neg x0)
                                                                                  //Compl
                       = x0 \wedge (\neg x0 \vee \neg \neg x0)
                                                                                  //Distrib
                       = x0 \wedge 1
                                                                                  //Compl
                       = x0
1.2.) geg: (x_0 \lor \neg x_1) \land x_1 = x_0 \land x_1
           \rightarrow (x_0 \lor \neg x_1) \land x_1 =
                                                                                 //Distrib.
                                   = (x_0 \wedge x_1) \vee (x_1 \wedge \neg x_1)
                                   = (x_0 \wedge x_1) \vee 0
                                                                                  // Compl.
                                   = (x_0 \wedge x_1)
```

1.2.) in Wahrheitstabelle:

X_0	X ₁	$\neg x_1$	$(x_0 \vee \neg x_1)$	$(x_0 \vee \neg x_1) \wedge x_1$	$x_0 \wedge x_1$
0	0	1	1	0	0
0	1	0	0	0	0
1	0	1	1	0	0
1	1	0	1	1	1

1.3.) geg:
$$(x_0 \lor x_1) \land (x_0 \lor \neg x_1) = x_0$$

 $\rightarrow (x_0 \lor x_1) \land (x_0 \lor \neg x_1) =$
 $= x_0 \lor (x_1 \land \neg x_1)$ //Distrib.
 $= x_0 \lor 0$ // Compl.
 $= x_0$

1.3.) in Wahrheitstabelle:

X0	X1	$\neg x_1$	$(x_0 \vee x_1)$	$(x_0 \lor \neg x_1)$	$(x_0 \lor x_1) \land (x_0 \lor \neg x_1)$
0	0	1	0	1	0
0	1	0	1	0	0
1	0	1	1	1	1
1	1	0	1	1	1

2.1.) wir wissen aus Aufg. 1: $x0 <=> \neg(\neg x0)$, d.h.: $x0 <=> \neg(\neg x0) \land x0$

x0	x1	x2	x1 V x2	x0 ∧(x1 ∨ x2)	$(x0 \land (x1 \lor x2)) \land x2$	$(\neg(\neg x0) \land x0) \land x1$	$((x0 \land (x1 \lor x2)) \land x2)$
							$\vee ((\neg(\neg x0) \land x0) \land x1)$
0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	0	0	0	0
1	0	0	0	0	0	0	0
1	0	1	1	1	1	0	1
1	1	0	1	1	0	1	1
1	1	1	1	1	1	1	1
				g(x0, x1, x2)			h(x0, x1, x2)

```
2.2.) geg: g(x_0, x_1, x_2) = x_0 \wedge (x_1 \vee x_2)

h(x_0, x_1, x_2) = (x_0 \wedge (x_1 \vee x_2) \wedge x_2) \vee ((\neg \neg x_0 \wedge x_0) \wedge x_1)

\rightarrow (x_0 \wedge (x_1 \vee x_2) \wedge x_2) \vee ((\neg \neg x_0 \wedge x_0) \wedge x_1) =

= (x_0 \wedge x_2) \vee (x_0 \wedge x_0) \wedge x_1 // Covering

= (x_0 \wedge x_2) \vee (x_0 \wedge x_0) \wedge x_1 // Involution

= (x_0 \wedge x_2) \vee (x_0 \wedge x_1) // Idempotency

= x_0 \wedge (x_2 \vee x_1) // Distributivity

+Commutivität
```

3.1.) Dargestellte Schaltung siehe \rightarrow src (3.1.circuit.dig)

Table 1: completed truth table for the combinational circuit

x0	x1	NOT	AND	OR	NOR1	NOR2	NAND	y0
0	0	1	0	0	0	1	1	1
0	1	0	0	1	1	0	1	1
1	0	1	0	1	0	1	0	0
1	1	0	1	1	0	0	1	1

- 3.2.) Wahrheitstabelle zum booleschen Ausdruck siehe \rightarrow src (3.2.truthtable.csv)
 - zu implementierende äquivalente Schaltung siehe → src (3.2.circuit.dig)

Boolesche Ausdruck: geg:

х0	x1	y0
0	0	1
0	1	1
1	0	0
1	1	1

- →wir schauen uns die 1en an
- →wie kommt man darauf?

Lösungsweg:
$$y0 = (\neg x0 \land \neg x1) \lor (\neg x0 \land x1) \lor (x0 \land x1)$$
 //vereinfachen
$$= \neg x0 \land (\neg x1 \land x1) \lor (x0 \land x1)$$

$$= (\neg x0 \land 1) \lor (x0 \land x1)$$

$$= \neg x0 \lor (x0 \land x1)$$

$$= (\neg x0 \lor x0) \land (\neg x0 \lor x1)$$

$$= 1 \land (\neg x0 \lor x1)$$

$$= \neg x0 \lor x1$$
Lsg: $y0 = \neg x0 \lor x1$

111				
4.1.)	X0	X1	Х3	Y0
	0	0	0	0
	0	0	1	0
	0	1	0	0
	0	1	1	1
	1	0	0	0
	1	0	1	1

1

1

1

1

4.2.) Boolescher Ausdruck: $y0 = (\neg x0 \land x1 \land x2) \lor (x0 \land \neg x1 \land x2) \lor (x0 \land x1 \land \neg x2)$

1

0

4.3.) zu implemtierende Schaltung siehe \rightarrow src (4.3.circuit)

0

1

4.4.) Wahrheitstabelle zu Schaltung siehe \rightarrow src (4.4.truthtable)