Fondamenti di analisi matematica e probabilità

Indice

- 1. <u>Indice</u>
- 2. Lo spazio e le curve
 - 1. Lo spazio e la distanza
 - 1. Vettori e norma in \$\mathbb{R}^{\nabla}
 - 1. Esempi
 - 2. <u>Definizione (norma e distanza)</u>
 - 3. Proposizione (disuguaglianza triangolare)
 - 4. <u>Definizione (palla aperta/chiusa)</u>
 - 5. <u>Definizione (quadrati/(iper)cubi chiusi/aperti)</u>
 - 6. Proposizione
 - 1. <u>Dimostrazione</u>
 - 1. <u>a)</u>
 - 2. <u>b)</u>

Lo spazio e le curve

Lo spazio e la distanza

Vettori e norma in \mathbb{R}^n

Un generico vettore $\underline{x} \in \mathbb{R}^n$ si indica con $\underline{x} = (x_1, \ldots, x_n)$, $(x_1, \ldots, x_n) \in \mathbb{R}$ dove n sono le dimensioni dello spazio.

Esempi

$$n=1$$
 $x\in\mathbb{R}$

$$n = 2 \ \ x = (x, y)$$

$$n = 3 \ x = (x, y, z)$$
.

Definizione (norma e distanza)

La norma di un vettore $x\in\mathbb{R}^n$ è definita come $||x||=\sqrt{x_1^2+\dots x_{n-1}^2+x_n^2}$.

La distanza tra $x,y\in Rr^n$ è (x,y)=||x-y||

Proposizione (disuguaglianza triangolare)

$$||x + y|| \le ||x|| + ||y||$$

Definizione (palla aperta/chiusa)

Una "palla" chiusa di centro $p\in\mathbb{R}^n$ e raggio $r\geq 0$ (se r=0 è degenere, quindi un punto) è definita come l'insieme dei punti di \mathbb{R}^n la cui distanza è minore uguale di r, cioè:

$$B(p,r]:=\{x\in\mathbb{R}^n:||x-p||\leq r\}$$

Analogamente la palla aperta di stesso centro e raggio è indicata con

$$B(p,r[:=\{x \in \mathbb{R}^n: ||x-p|| < r\}$$

La differenza, chiamata (iper)sfera (cerchio se le dimensioni sono due), è

$$\partial B(p,r] = \partial B(p,r[:=\{x\in\mathbb{R}:||x-p||=r\}$$

Definizione (quadrati/(iper)cubi chiusi/aperti)

Un cubo (quadrato se le dimensioni sono due, ipercubo se le dimensioni sono più di tre) chiuso di centro $q\in\mathbb{R}^n$ e semilato (o raggio) r si definisce come

$$Q(q,r]=\{\underline{x}\in\mathbb{R}^n:|x_1-q_1|\leq r,\,\,\ldots,\,\,|x_n-q_n|\leq r\}$$

Proposizione

Ogni palla contiene un cubo di stesso centro e viceversa ogni cubo contiene una palla con lo stesso centro. Infatti per ogni $p\in\mathbb{R}^n$ e $r\geq 0$ si ha $B(p,r]\subseteq Q(p,r)$ e $Q(p,r)\subseteq B(p,r\sqrt{n}]$

Dimostrazione

a)

$$B(p,r] \subseteq Q(p,r]$$

Se $x \in B(p,r]$ allora $orall i = 1, \ldots, n$ si ha $|x_i - p_i| \leq |x - p| \leq r$ da cui $x \in Q(p,r]$.

b)

$$Q(p,r]\subseteq B(p,r\sqrt{n}]$$
 Se $x\in Q(p,r]$ allora $|x-p|^2=\sum_{i=1}^n|x_i-p_i|^2\leq \sum_{i=1}^nr^2=nr^2$. Perciò $x\in B(p,r\sqrt{n}]$. \Box