Lemma. Given any $X, Y \in \mathrm{Ob}_{\mathbf{Pos}_{\mathcal{U}}}$, $\mathrm{Hom}_{\mathbf{Pos}_{\mathcal{L}}}(X; Y)$ is a bounded lattice with intersection \wedge of morphisms in $\mathbf{Pos}_{\mathcal{L}}$ as meet, union \vee of morphisms in $\mathbf{Pos}_{\mathcal{L}}$ as join, least upper bound $\mathsf{T}_{\mathrm{Hom}_{\mathbf{Pos}_{\mathcal{L}}}(X;Y)}: X \to Y$ given by

$$\mathsf{T}_{\mathsf{Hom}_{\mathbf{Pos}_{\mathscr{L}}}(X;Y)}^{\star} : X \to \mathscr{L}Y$$

$$x \mapsto Y,$$

and greatest lower bound $\perp_{\operatorname{Hom}_{\mathbf{Pos}_{9/}}(X;Y)}: X \to Y$ given by

$$\perp_{\operatorname{Hom}_{\mathbf{Pos}_{\mathscr{L}}}(X;Y)}^{\star} : X \to \mathscr{L}Y$$

$$x \mapsto \emptyset.$$