Interpretable Machine Learning

Leave One Covariate Out (LOCO)

Figure: Bike Sharing Dataset

Learning goals

- Definition of LOCO
- Interpretation of LOCO

► Tibshirani (2018)

LOCO idea: Remove the feature from the dataset, refit the model on the reduced dataset, and measure the loss in performance compared to the model fitted on the complete dataset.

► Tibshirani (2018)

LOCO idea: Remove the feature from the dataset, refit the model on the reduced dataset, and measure the loss in performance compared to the model fitted on the complete dataset.

Definition: Given training and test datasets $\mathcal{D}_{\text{train}}$, $\mathcal{D}_{\text{test}} \subseteq \mathcal{D}$, some \mathcal{I} and a model $\hat{f} = \mathcal{I}(\mathcal{D}_{\text{train}})$. Then LOCO for a feature $j \in \{1, \dots, p\}$ can be computed as follows:

• learn model on dataset $\mathcal{D}_{\text{train},-i}$ where feature x_i was removed, i.e.

$$\hat{\mathit{f}}_{-\mathit{j}} = \mathcal{I}(\mathcal{D}_{\mathsf{train}_{},-\mathit{j}})$$

► Tibshirani (2018)

LOCO idea: Remove the feature from the dataset, refit the model on the reduced dataset, and measure the loss in performance compared to the model fitted on the complete dataset.

- learn model on dataset $\mathcal{D}_{\text{train},-j}$ where feature x_j was removed, i.e. $\hat{f}_{-i} = \mathcal{I}(\mathcal{D}_{\text{train},-i})$
- compute the difference in local L_1 loss for each element in $\mathcal{D}_{\text{test}}$, i.e. $\Delta_j^{(i)} = \left| y^{(i)} \hat{f}_{-j}(x_{-j}^{(i)}) \right| \left| y^{(i)} \hat{f}(x^{(i)}) \right| \text{ with } i \in \mathcal{D}_{\text{test}}$

► Tibshirani (2018)

LOCO idea: Remove the feature from the dataset, refit the model on the reduced dataset, and measure the loss in performance compared to the model fitted on the complete dataset.

Definition: Given training and test datasets $\mathcal{D}_{\text{train}}$, $\mathcal{D}_{\text{test}} \subseteq \mathcal{D}$, some \mathcal{I} and a model $\hat{f} = \mathcal{I}(\mathcal{D}_{\text{train}})$. Then LOCO for a feature $j \in \{1, \dots, p\}$ can be computed as follows:

- learn model on dataset $\mathcal{D}_{\mathsf{train},-j}$ where feature x_j was removed, i.e. $\hat{f}_{-i} = \mathcal{I}(\mathcal{D}_{\mathsf{train},-i})$
- ② compute the difference in local L_1 loss for each element in $\mathcal{D}_{\text{test}}$, i.e. $\Delta_j^{(i)} = \left| y^{(i)} \hat{f}_{-j}(x_{-j}^{(i)}) \right| \left| y^{(i)} \hat{f}(x^{(i)}) \right|$ with $i \in \mathcal{D}_{\text{test}}$
- $oldsymbol{3}$ yield the importance score $\mathsf{LOCO}_j = \mathsf{med}\left(\Delta_j\right)$

► Tibshirani (2018)

LOCO idea: Remove the feature from the dataset, refit the model on the reduced dataset, and measure the loss in performance compared to the model fitted on the complete dataset.

Definition: Given training and test datasets $\mathcal{D}_{\text{train}}$, $\mathcal{D}_{\text{test}} \subseteq \mathcal{D}$, some \mathcal{I} and a model $\hat{f} = \mathcal{I}(\mathcal{D}_{\text{train}})$. Then LOCO for a feature $j \in \{1, \dots, p\}$ can be computed as follows:

- **1** learn model on dataset $\mathcal{D}_{\text{train},-i}$ where feature x_i was removed, i.e. $\hat{f}_{-i} = \mathcal{I}(\mathcal{D}_{\text{train }-i})$
- 2 compute the difference in local L_1 loss for each element in \mathcal{D}_{test} , i.e. $\Delta_j^{(i)} = \left| y^{(i)} - \hat{t}_{-j}(x_{-j}^{(i)}) \right| - \left| y^{(i)} - \hat{t}(x^{(i)}) \right| \text{ with } i \in \mathcal{D}_{\mathsf{test}}$
- 3 yield the importance score LOCO_i = med (Δ_i)

The method can be generalized to other loss functions and aggregations. If we use mean instead of median we can rewrite LOCO as

$$\mathsf{LOCO}_j = \mathcal{R}_{\mathsf{emp}}(\hat{t}_{-j}) - \mathcal{R}_{\mathsf{emp}}(\hat{t}).$$

BIKE SHARING EXAMPLE

Interpretation: LOCO estimates the generalization error of the learner on a reduced dataset \mathcal{D}_{-j} .

Can we get insight into whether the ...

- feature x_j is causal for the prediction \hat{y} ?
 - In general, no also because we refit the model (counterexample on the next slide)
- **2** feature x_i contains prediction-relevant information?
 - In general, no (counterexample on the next slide)
- \odot model requires access to x_i to achieve its prediction performance?
 - Approximately, it provides insight into whether the *learner* requires access to x_j

Example: Sample 1000 observations with

- $x_1, x_3 \sim N(0,5)$
- $x_2 = x_1 + \epsilon_2$ with $\epsilon_2 \sim N(0, 0.1)$
- $y = x_2 + x_3 + \epsilon$ with $\epsilon \sim N(0, 2)$

 \Rightarrow Fitting a LM yields

$$\hat{f}(x) = -0.02 - 1.02x_1 + 2.05x_2 + 0.98x_3$$

Example: Sample 1000 observations with

- $x_1, x_3 \sim N(0,5)$
- $x_2 = x_1 + \epsilon_2$ with $\epsilon_2 \sim N(0, 0.1)$
- $y = x_2 + x_3 + \epsilon$ with $\epsilon \sim N(0,2)$

⇒ Fitting a LM yields

$$\hat{f}(x) = -0.02 - 1.02x_1 + 2.05x_2 + 0.98x_3$$

Top: Correlation matrix

Bottom: LOCO importance of LM fitted on 70% of the data computed on 30% remaining observations

Example: Sample 1000 observations with

•
$$x_1, x_3 \sim N(0,5)$$

•
$$x_2 = x_1 + \epsilon_2$$
 with $\epsilon_2 \sim N(0, 0.1)$

•
$$y = x_2 + x_3 + \epsilon$$
 with $\epsilon \sim N(0,2)$

⇒ Fitting a LM yields

$$\hat{f}(x) = -0.02 - 1.02x_1 + 2.05x_2 + 0.98x_3$$

Top: Correlation matrix

Bottom: LOCO importance of LM fitted on 70% of the data computed on 30% remaining observations

 \Rightarrow We cannot infer (1) from LOCO (e.g. LOCO₂ \approx 0 but coefficient of x_2 is 2.05)

Example: Sample 1000 observations with

•
$$x_1, x_3 \sim N(0,5)$$

•
$$x_2 = x_1 + \epsilon_2 \text{ with } \epsilon_2 \sim N(0, 0.1)$$

•
$$y = x_2 + x_3 + \epsilon$$
 with $\epsilon \sim N(0, 2)$

 \Rightarrow Fitting a LM yields

$$\hat{f}(x) = -0.02 - 1.02x_1 + 2.05x_2 + 0.98x_3$$

Top: Correlation matrix

Bottom: LOCO importance of LM fitted on 70% of the data computed on 30% remaining observations

- \Rightarrow We cannot infer (1) from LOCO (e.g. LOCO₂ \approx 0 but coefficient of \emph{x}_2 is 2.05)
- \Rightarrow We also can't infer (2), e.g., $Cor(x_2, y) = 0.68$ but LOCO₂ ≈ 0

Example: Sample 1000 observations with

•
$$x_1, x_3 \sim N(0,5)$$

•
$$x_2 = x_1 + \epsilon_2$$
 with $\epsilon_2 \sim N(0, 0.1)$

•
$$y = x_2 + x_3 + \epsilon$$
 with $\epsilon \sim N(0,2)$

⇒ Fitting a LM yields

$$\hat{f}(x) = -0.02 - 1.02x_1 + 2.05x_2 + 0.98x_3$$

Top: Correlation matrix

Bottom: LOCO importance of LM fitted on 70% of the data computed on 30% remaining observations

- \Rightarrow We cannot infer (1) from LOCO (e.g. LOCO₂ \approx 0 but coefficient of x_2 is 2.05)
- \Rightarrow We also can't infer (2), e.g., $Cor(x_2, y) = 0.68$ but LOCO₂ ≈ 0
- \Rightarrow We can get insight into (3): x_2 and x_1 highly correlated with LOCO₁ = LOCO₂ \approx 0 $\rightsquigarrow x_2$ and x_1 can take each others place if one of them is left out (not the case for

 χ_3

PROS AND CONS

Pros:

- Requires (only?) one refitting step per feature for evaluation
- Easy to implement
- Testing framework available in Lei et al. (2018)

Cons:

- Does not provide insight into a specific model, but rather a learner on a specific dataset
- Model training is a random process, so estimates can be noisy (which is problematic for inference about model and data)
- \bullet Requires re-fitting the learner for each feature \to computationally intensive compared to PFI

