АЛЮМИНИЙ И СПЛАВЫ АЛЮМИНИЕВЫЕ ДЕФОРМИРУЕМЫЕ

Марки

Издание официальное

Предисловие

1 РАЗРАБОТАН ОАО «Всероссийский институт легких сплавов» (ВИЛС), Межгосударственным техническим комитетом МТК 297 «Материалы и полуфабрикаты из легких и специальных сплавов»

ВНЕСЕН Госстандартом России

2 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол № 12 от 21 ноября 1997 г.)

За принятие проголосовали:

Наименование государства	Наименование национального органа по стандартизации
Азербайджанская Республика Республика Армения Республика Беларусь Республика Казахстан Киргизская Республика Республика Молдова Российская Федерация Республика Таджикистан Туркменистан Республика Узбекистан Украина	Азгосстандарт Армгосстандарт Госстандарт Беларуси Госстандарт Республики Казахстан Киргизстандарт Молдовастандарт Госстандарт России Таджикгосстандарт Главная государственная инспекция Туркменистана Узгосстандарт Госстандарт

Изменение № 1 принято Межгосударственным советом по стандартизации, метрологии и сертификации (протокол № 23 от 22 мая 2003 г.)

За принятие изменения проголосовали национальные органы по стандартизации следующих государств: AZ, AM, BY, GE, KZ, KG, MD, RU, TJ, TM, UZ, UA [коды альфа-2 по МК (ИСО 3166) 004]

- 3 В таблицах 1—6 приводятся марки и химический состав алюминия и алюминиевых сплавов с учетом требований международного стандарта ИСО 209-1—89 «Деформируемые алюминий и алюминиевые сплавы. Химический состав и виды изделий. Часть 1. Химический состав»
- 4 Постановлением Государственного комитета Российской Федерации по стандартизации и метрологии от 8 декабря 1998 г. № 433 межгосударственный стандарт ГОСТ 4784—97 введен в действие в качестве государственного стандарта Российской Федерации с 1 июля 2000 г.
 - 5 B3AMEH ΓΟCT 4784—74
- 6 ИЗДАНИЕ (август 2009 г.) с Изменением № 1, утвержденным в ноябре 2003 г. (ИУС 2—2004), Поправками (ИУС 11-2000, 5-2004, 4-2005)

© ИПК Издательство стандартов, 1999 © СТАНДАРТИНФОРМ, 2009

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания на территории Российской Федерации без разрешения Федерального агентства по техническому регулированию и метрологии

ГОСТ 4784—97

Содержание

1	Область применения
2	Нормативные ссылки
3	Общие требования
Π	риложение А Правила округления

АЛЮМИНИЙ И СПЛАВЫ АЛЮМИНИЕВЫЕ ДЕФОРМИРУЕМЫЕ

Марки

Aluminium and wrought aluminium alloys. Grades

Дата введения 2000—07—01

1 Область применения

Настоящий стандарт распространяется на алюминий и деформируемые алюминиевые сплавы, предназначенные для изготовления полуфабрикатов (лент в рулонах, листов, кругов-дисков, плит, полос, прутков, профилей, шин, труб, проволоки, поковок и штампованных поковок) методом горячей или холодной деформации, а также слябов и слитков.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 1131—76 Сплавы алюминиевые деформируемые в чушках. Технические условия

ГОСТ 8617—81 Профили прессованные из алюминия и алюминиевых сплавов. Технические условия

ГОСТ 15176—89 Шины прессованные электротехнического назначения из алюминия и алюминивых сплавов. Технические условия

ГОСТ 17232—99 Плиты из алюминия и алюминиевых сплавов. Технические условия

ГОСТ 18475—82 Трубы холоднодеформированные из алюминия и алюминиевых сплавов. Технические условия

ГОСТ 18482—79 Трубы прессованные из алюминия и алюминиевых сплавов. Технические условия

ГОСТ 21488—97 Прутки прессованные из алюминия и алюминиевых сплавов. Технические условия

ГОСТ 22233—2001 Профили прессованные из алюминиевых сплавов для светопрозрачных ограждающих конструкций. Технические условия

ГОСТ 23786—79 Трубы бурильные из алюминиевых сплавов. Технические условия

3 Общие требования

Марки и химический состав алюминия должны соответствовать указанным в таблице 1.

3.1 Соотношение железа и кремния в алюминии должно быть не менее единицы.

(Измененная редакция, Изм. № 1).

3.2 Марки и химический состав алюминиевых сплавов систем алюминий-медь-магний и алюминий-медь-марганец должны соответствовать указанным в таблице 2.

(Измененная редакция, Изм. № 1; Поправки, ИУС 11—2000, 5—2004).

3.3 Марки и химический состав алюминиевых сплавов системы алюминий-марганец должны соответствовать указанным в таблице 3.

(Измененная редакция, Изм. № 1).

ΓΟCT 4784—97

- 3.3.1 Соотношение железа и кремния в сплаве АМцС должно быть больше единицы.
- 3.4 Марки и химический состав алюминиевых сплавов системы алюминий-магний должны соответствовать указанным в таблице 4.

(Измененная редакция, Изм. № 1).

- $3.4.1~\mathrm{B}$ сплаве марки AMr2, предназначенном для изготовления ленты, применяемой в качестве тары-упаковки в пищевой промышленности, массовая доля магния должна быть от $1.8~\mathrm{дo}$ 3.2~%.
- 3.5 Марки и химический состав алюминиевых сплавов системы алюминий-магний-кремний должны соответствовать указанным в таблице 5.

(Измененная редакция, Изм. № 1; Поправка, ИУС 11—2000).

3.6 Марки и химический состав алюминиевых сплавов системы алюминий-цинк-магний должны соответствовать указанным в таблице 6.

(Измененная редакция, Изм. № 1).

- 3.7 В алюминии и алюминиевых сплавах, указанных в таблицах 1—6, допускается частичная или полная замена титана бором или другими модифицирующими добавками, обеспечивающими мелкозернистую структуру.
- $3.8\,$ В алюминии и алюминиевых сплавах, полуфабрикаты из которых применяют при изготовлении изделий пищевого назначения, массовая доля свинца должна быть не более $0,15\,\%$, массовая доля мышьяка не более $0,015\,\%$.

Марки алюминия и алюминиевых сплавов пищевого назначения дополнительно маркируются буквой «Ш».

(Измененная редакция, Изм. № 1).

- 3.9 Химический состав сплавов марок Д1, Д16, АМг5 и В95, предназначенных для изготовления проволоки для холодной высадки, должен соответствовать указанному в таблице 7. При этом марка дополнительно маркируется буквой «П».
- 3.10 Марки и химический состав алюминия и алюминиевых сплавов, предназначенных для изготовления сварочной проволоки, должны соответствовать указанным в таблице 8.

(Поправки, ИУС 11—2000, 4—2005).

- 3.11 Содержание элементов в таблицах 1—8 максимальное, если не указаны пределы.
- 3.12 Химический состав алюминия и алюминиевых сплавов в таблицах 1—8 дан в процентах по массе. Расчетное значение или значение, полученное из анализа, округляют в соответствии с правилами округления, приведенными в приложении А.
- 3.13 В графу «Прочие элементы» входят элементы, содержание которых не представлено, а также элементы, не указанные в таблицах.
- $3.14~\mathrm{B}$ расчет прочих элементов включают массовые доли элементов, выраженные с точностью до второго десятичного знака и равные 0.01~% и более.
- 3.15 Массовая доля бериллия устанавливается по расчету шихты, не определяется, а обеспечивается технологией производства.
- 3.16 В протоколах анализа химического состава дается обобщенное заключение по соответствию содержания прочих элементов требованиям ГОСТ 4784, исходя из единичных значений и суммы значений этих элементов.

Содержание каждого из прочих элементов в протоколах не указывают.

Таблица 1 — Алюминий

Обозначе	ние марок					Ma	ассовая дол	я элементо	в, %					Ппот
	по ИСО	T 7	ST7	3.5	Марга-	3. A	T .7	T.T.		Другие	Прочие з	элементы	Алюми-	Плот-
по НД*	209-1	Кремний	Железо	Медь	нец	Магний	Хром	Цинк	Титан	элементы	Каждый	Сумма	ний, не менее	кг/дм ³
АД000	A199,8 1080A	0,15	0,15	0,03	0,02	0,02		0,06	0,02		0,02		99,80	2,70
А Д00 1010	Al99,7 1070A	0,20	0,25	0,03	0,03	0,03		0,07	0,03		0,03		99,70	2,70
АД00E 1010E	EA199,7 1370	0,10	0,25	0,02	0,01	0,02	0,01	0,04		Бор: 0,02 Ванадий+ титан: 0,02	0,02	0,10	99,70	2,70
	Al99,6 1060	0,25	0,35	0,05	0,03	0,03		0,05	0,03	Ванадий: 0,05	0,03		99,60	2,70
А Д0 1011	Al99,5 1050A	0,25	0,40	0,05	0,05	0,05		0,07	0,05		0,03		99,50	2,71
А Д0Е 1011Е	EA199,5 1350	0,10	0,40	0,05	0,01		0,01	0,05		Бор: 0,05 Ванадий+ титан: 0,02	0,03	0,10	99,50	2,71
АД1 1013	A199,3	0,3	0,3	0,05	0,025	0,05		0,1	0,15		0,05		99,30	2,71
АД 1015	A199,0 1200	Крем- ний+же- лезо: 1,0		0,1	0,1			0,10	0,15		0,05	0,15	99,0	2,71
АД1пл		0,30	0,30	0,02	0,025	0,05		0,1	0,15		0,02		99,30	2,71

^{*} FOCT 1131, FOCT 8617, FOCT 15176, FOCT 17232, FOCT 18475, FOCT 18482, FOCT 21488, FOCT 22233, FOCT 23786.

Примечания

- 1 «Е» применяется для обозначения марки алюминия с гарантированными электрическими характеристиками.
- 2 Фактическое содержание алюминия в нелегированном алюминии определяется разностью между 100~% и суммой всех элементов, присутствующих в количестве 0,010~% или более каждый, выраженных с точностью до второго десятичного знака.
 - 3 При определении марки алюминия содержание титана, введенного в качестве модификатора, не следует учитывать в сумме примесей.
 - 4 Допускается содержание меди в сплаве АД1пл устанавливать, равное 0,05 %.
 - 5 В алюминии марки АД0 для листовых заготовок, подвергаемых дальнейшей формовке, допускается введение титана до 0.15~%.

Таблица 2 — Алюминиевые сплавы систем алюминий-медь-магний и алюминий-медь-марганец

Обозна	чение марок						Mac	совая дол	я элемент	гов, %					Плот-
по НД*	по ИСО 209-1	Крем-	Железо	Медь	Марга-	Магний	Хром	Цинк	Титан	Никель	Другие	Прочие э	лементы	Алюми-	ность, кг/дм ³
потід	110 PICO 209-1	ний	AKCACSO	титодь	нец	тутал пин	Аром	ципк	Титап	ПИКСЛЬ	элементы	Каждый	Сумма	ний	
Д1 1110	AlCu4MgSi 2017	0,20— 0,8	0,7	3,5— 4,8	0,40— 1,0	0,40— 0,8	0,10	0,3	0,15		Титан+цир- коний: 0,20	0,05	0,15	Осталь- ное	2,80
Д16 1160	AlCuMg1 2024	0,50	0,50	3,8— 4,9	0,30— 0,9	1,2— 1,8	0,10	0,25	0,15		Титан+цир- коний: 0,20	0,05	0,15	То же	2,77
Д16ч	2124	0,20	0,30	3,8— 4,9	0,30— 0,9	1,2— 1,8	0,10	0,25	0,15			0,05	0,15	»	2,78
B65 1165		0,25	0,2	3,9— 4,5	0,3— 0,5	0,15— 0,30		0,1	0,1			0,05	0,1	»	2,80
Д18 1180	AlCu2,5Mg 2117	0,5	0,5	2,2— 3,0	0,20	0,20— 0,50	0,10	0,1				0,05	0,15	»	2,74
Д19 1190		0,5	0,5	3,8— 4,3	0,5— 1,0	1,7— 2,3		0,1	0,1		Бериллий: 0,0002— 0,005	0,05	0,1	»	2,76
Д19ч		0,2	0,3	3,8— 4,3	0,4— 0,9	1,7— 2,3		0,1	0,1		Бериллий: 0,0002— 0,005	0,05	0,1	»	2,76
AK4 1140		0,5— 1,2	0,8— 1,3	1,9— 2,5	0,2	1,4— 1,8		0,3	0,1	0,8— 1,3		0,05	0,1	»	2,77
AK4-1 1141		0,35	0,8— 1,4	1,9— 2,7	0,2	1,2— 1,8	0,1	0,3	0,02— 0,10	0,8— 1,4		0,05	0,1	»	2,80
АК4-1ч	2618	0,10— 0,25	0,9— 1,3	1,9— 2,7		1,3— 1,8		0,10	0,04— 0,10	0,9— 1,2		0,05	0,15	»	2,80
1201	AlCu6Mn 2219	0,20	0,30	5,8— 6,8	0,20—	0,02		0,10	0,02—		Цирконий: 0,10—0,25 Ванадий: 0,05—0,15	0,05	0,15	>>	2,85
AK6 1360		0,7— 1,2	0,7	1,8— 2,6	0,4— 0,8	0,4— 0,8		0,3	0,1	0,1		0,05	0,1	»	2,75

Окончание таблицы 2

Обозна	чение марок						Mac	совая дол	я элемент	гов, %					Плот-
по НД*	по ИСО	Крем-	Железо	Медь	Марга-	Магний	Хром	Цинк	Титан	Никель	Другие	Прочие з	элементы	Алюми-	ность, кг/дм ³
110 1124	209-1	ний	ARCHOGO	тутодъ	нец	14141111111	търом	щин	Tritaii	TTTTKCJID	элементы	Каждый	Сумма	ний	К1/ДИ
AK8 1380 1105	AlCu4SiMg 2014 —	0,50— 1,2 3,0	0,7	3,9— 5,0 2,0— 5,0	0,40— 1,0 0,3— 1,0	0,20— 0,8 0,4— 2,0	0,10	0,25	0,15	0,2	Титан+цир- коний: 0,20 Титан+ хром+цир- коний: 0,2	0,05	0,15	Осталь- ное То же	2,80

^{*} ΓΟCT 1131, ΓΟCT 8617, ΓΟCT 15176, ΓΟCT 17232, ΓΟCT 18475, ΓΟCT 18482, ΓΟCT 21488, ΓΟCT 22233, ΓΟCT 23786.

Примечание— Сумма титан+цирконий ограничивается только для экструдированных и кованых полуфабрикатов и только в том случае, когда есть договоренность между изготовителем и потребителем.

Таблица 3 — Алюминиевые сплавы системы алюминий-марганец

Обознач	нение марок					Массовая	я доля элем	ентов, %					Плот-
по НД*	по ИСО	Кремний	Железо	Медь	Марга-	Магний	Хром	Цинк	Титоп	Прочие з	элементы	Алюми-	ность, кг/дм ³
110 11/4	209-1	крсмии	ислозо	ТУТСДБ	нец	тугат ний	Аром	ципк	Титан	Каждый	Сумма	ний	К1/ДИ
MM 1403	AlMnMg0,5 3005	0,6	0,7	0,30	1,0— 1,5	0,20— 0,6	0,10	0,25	0,10	0,05	0,15	Осталь- ное	2,72
АМ ц 1400	AlMn1Cu Al 3003	0,6	0,7	0,2	1,0— 1,5	0,2		0,10	0,1	0,05	0,15	То же	2,73
АМцС 1401		0,15— 0,35	0,25— 0,45	0,1	1,0— 1,4	0,05		0,1	0,1	0,05	0,1	»	2,73
Д12 1521	AlMn1Mg1 3004	0,30	0,7	0,25	1,0— 1,5	0,8— 1,3		0,25		0,05	0,15	*	2,72

^{*} FOCT 1131, FOCT 8617, FOCT 15176, FOCT 17232, FOCT 18475, FOCT 18482, FOCT 21488, FOCT 22233, FOCT 23786.

 Π р и м е ч а н и е — В алюминий марки AMц для листовых заготовок, подвергаемых дальнейшей формовке, допускается введение титана до 0.2%.

¬ Таблица 4 — Алюминиевые сплавы системы алюминий-магний

Обознач	нение марок					N	Лассовая д	цоля элеме	ентов, %					Плот-
то ЦП*	по ИСО	Vnoverri	У	Молт	Марга-	Marraria	Vnove	ITerre	Титолг	Другие	Прочие э	лементы	Алюми-	ность,
по НД*	209-1	Кремний	Железо	Медь	нец	Магний	Хром	Цинк	Титан	элементы	Каждый	Сумма	ний	КГ/ДМ ³
АМг0,5 1505		0,1	0,1	0,1	0,2	0,4— 0,8					0,05	0,1	Осталь- ное	2,70
АМг1 1510	AlMg1 5005	0,30	0,7	0,20	0,20	0,50— 1,1	0,10	0,25			0,05	0,15	То же	2,69
АМг1,5	AlMg1,5 5050	0,40	0,7	0,20	0,10	1,1— 1,8	0,10	0,25			0,05	0,15	»	2,69
АМг2 1520	AlMg2 5251	0,40	0,50	0,15	0,1—0,6	1,8— 2,6	0,05	0,15	0,15		0,05	0,15	»	2,69
АМг2,5	AlMg2,5 5052	0,25	0,40	0,10	0,10	2,2— 2,8	0,15— 0,35	0,10			0,05	0,15	»	2,68
АМг3 1530		0,5—0,8	0,5	0,1	0,3— 0,6	3,2— 3,8	0,05	0,2	0,1		0,05	0,1	»	2,66
	A1Mg3 5754	0,40	0,40	0,10	0,50	2,6— 3,6	0,30	0,20	0,15	Марганец+ хром: 0,10—0,6	0,05	0,15	»	2,66
АМг3,5	AlMg3,5 5154	0,25	0,40	0,10	0,10	3,1—3,9	0,15— 0,35	0,20	0,20	Бериллий: 0,0008 Марганец+ хром: 0,10—0,50	0,05	0,15	>>	2,66
AMΓ4,0 1540	AlMg4 5086	0,40	0,50	0,10	0,20— 0,7	3,5— 4,5	0,05— 0,25	0,25	0,15		0,05	0,15	»	2,66
АМг4,5	AlMg4,5 5083	0,40	0,40	0,10	0,40— 1,0	4,0— 4,9	0,05— 0,25	0,25	0,15		0,05	0,15	>>	2,66
	AlMg5Cr 5056	0,30	0,40	0,10	0,05—	4,5— 5,6	0,05— 0,20	0,10			0,05	0,15	»	2,65
АМг5 1550		0,5	0,5	0,1	0,3— 0,8	4,8— 5,8		0,2	0,02— 0,10	Бериллий: 0,0002—0,005	0,05	0,1	»	2,65
АМг6 1560		0,4	0,4	0,1	0,5— 0,8	5,8— 6,8		0,2	0,02— 0,10	Бериллий: 0,0002—0,005	0,05	0,1	»	2,64

^{*} ΓΟCT 1131, ΓΟCT 8617, ΓΟCT 15176, ΓΟCT 17232, ΓΟCT 18475, ΓΟCT 18482, ΓΟCT 21488, ΓΟCT 22233, ΓΟCT 23786.

Таблица 5 — Алюминиевые сплавы системы алюминий-магний-кремний

Обознач	ение марок					M	ассовая дол	ля элемент	юв, %					Плот-
по НД*	по ИСО	Кремний	Железо	Медь	Марга-	Магний	Хром	Цинк	Титан	Другие	Прочие э	лементы	Алюми-	ность,
110 11/4	209-1	кремнии	ислезо	тисдь	нец	Магнии	Аром	цинк	ТИТАН	элементы	Каждый	Сумма	ний	кг/дм ³
АД31 1310	AlMg0,7Si 6063	0,20— 0,6	0,5	0,1	0,1	0,45— 0,9	0,10	0,2	0,15		0,05	0,15	Осталь- ное	2,71
АД31E 1310E	E—AlMgSi 6101	0,30— 0,7	0,50	0,10	0,03	0,35—	0,03	0,10		Бор: 0,06	0,03	0,10	То же	2,71
АД33 1330	AlMg1SiCu 6061	0,40— 0,8	0,7	0,15— 0,40	0,15	0,8— 1,2	0,04— 0,35	0,25	0,15		0,05	0,15	»	2,70
АД35 1350	AlSi1MgMn 6082	0,7— 1,3	0,50	0,10	0,40— 1,0	0,6— 1,2	0,25	0,20	0,10		0,05	0,15	»	2,70
AB 1340		0,5— 1,2	0,5	0,1— 0,5	0,15— 0,35	0,45— 0,90	0,25	0,2	0,15		0,05	0,1	>>	2,70
	6151	0,6— 1,2	1,0	0,35	0,20	0,45— 0,8	0,15— 0,35	0,25	0,15		0,05	0,15	»	2,70

^{*} ΓΟCT 1131, ΓΟCT 8617, ΓΟCT 15176, ΓΟCT 17232, ΓΟCT 18475, ΓΟCT 18482, ΓΟCT 21488, ΓΟCT 22233, ΓΟCT 23786.

Таблица 6 — Алюминиевые сплавы системы алюминий-цинк-магний

Об	означение марок						Macco	вая доля	элементо	ов, %					
по НД*	по ИСО 209-1	Крем- ний	Железо	Медь	Марга- нец	Магний	Хром	Цинк	Титан	Цирко- ний	Другие элементы	1	очие енты	Алюми- ний	Плот- ность, кг/дм ³
		111111			ПОЦ					117171		Каждый	Сумма		
1915	AlZn4,5Mg1,5Mn 7005	0,35	0,40	0,1	0,20— 0,7	1,0— 1,8	0,06— 0,20	3,4— 4,0	0,1	0,08-		0,05	0,15	Осталь- ное	2,77
1925	AlZnMg1,5Mn	0,7	0,7	0,8	0,2—	1,3— 1,8	0,2	3,4— 4,0	0,1	0,1-0,2		0,05	0,1	То же	2,77
В95оч		0,1	0,15	1,4— 2,0	0,2— 0,6	1,8— 2,8	0,1— 0,25	5,0— 6,5	0,07			0,05	0,1	»	2,85
В95пч		0,1	0,05— 0,25	1,4— 2,0	0,2— 0,6	1,8— 2,8	0,1— 0,25	5,0— 6,5	0,07		Никель: 0,1	0,05	0,1	>>	2,85

 $[\]Pi$ р и м е ч а н и е — «E» применяется для алюминиевого сплава с электрическими характеристиками.

Обоз	начение марок						Mac	совая дол	я элементов,	%					
по НД*	по ИСО 209-1	Крем-	Железо	Медь	Марга-	Маг-	Хром	Цинк	Титан	Цирко-	Другие	_	очие енты	Алюми-	Плот- ность, кг/дм ³
		ний	711031030	тчтодъ	нец	ний	7 L D 0111	1-471111		ний	элементы	Каж- дый	Сумма	ний	
B95 1950		0,5	0,5	1,4— 2,0	0,2— 0,6	1,8— 2,8	0,10— 0,25	5,0— 7,0	0,05		Никель: 0,1	0,05	0,1	Осталь- ное	2,85
	AlZn5,5MgCu 7075	0,40	0,50	1,2— 2,0	0,30	2,1— 2,9	0,18— 0,28	5,1— 6,1	0,20		Титан+ цирконий: 0,25	0,05	0,15	То же	2,80
	7175	0,15	0,20	1,2— 2,0	0,10	2,1— 2,9	0,18— 0,28	5,1— 6,1	0,10			0,05	0,15	>>	2,85
В93пч		0,1	0,2— 0,4	0,8— 1,2	0,1	1,6— 2,2		6,5— 7,3	0,1			0,05	0,1	»	2,84
B95-1		1,5	1,0	1,0— 3,0	0,2— 0,8	0,6— 2,6	0,25	0,8— 2,0	Титан+ цирко- ний: 0,20		Никель: 0,2	0,05	0,2	>>	2,85
B95-2		1,5	0,9	1,0— 3,0	0,2— 0,8	1,0— 2,8	0,25	2,0— 6,5	Титан+ цирко- ний: 0,15		Никель: 0,2	0,05	0,2	>>	2,85
АЦпл		0,3	0,3		0,025			0,9— 1,3	0,15			0,05	0,1	>>	2,80

^{*} ΓΟCT 1131, ΓΟCT 8617, ΓΟCT 15176, ΓΟCT 17232, ΓΟCT 18475, ΓΟCT 18482, ΓΟCT 21488, ΓΟCT 22233, ΓΟCT 23786.

Примечание — Титан+цирконий ограничивается только для экструдированных и кованых полуфабрикатов и только в случае, когда есть договоренность между изготовителем и потребителем.

T а блица 7-Cплавы, предназначенные для изготовления проволоки для холодной высадки

Обозначе	ние марок]	Массовая доля элем	иентов, %				
буквенное	шифровое	Кремний	Железо	Медь	Марганец	Магний	Хром	Цинк	Титан	Прочие	элементы	Алюминий
ОУКВСИНОС	цифровое	Кремнии	железо	тисдь	мартансц	тугат нии	Аром	ципк	Титап	Каждый	Сумма	АЛЮМИНИИ
Д1П	1117	0,5	0,5	3,8-4,5	0,4-0,8	0,4-0,8		0,1	0,1	0,05	0,1	Остальное
Д16П	1167	0,5	0,5	3,8—4,5	0,3-0,7	1,2—1,6		0,1	0,1	0,05	0,1	То же
Д19П	1197	0,3	0,3	3,2—3,7	0,5—0,8	2,1—2,6	Бериллий: 0,0002—0,005	0,1	0,1	0,05	0,1	»
АМг5П	1557	0,4	0,4	0,2	0,2-0,6	4,7—5,7				0,05	0,1	»
В95П	1957	0,3	0,3	1,4—2,0	0,3—0,5	2,0—2,6	0,1-0,25	5,5—6,5		0,05	0,1	»

Таблица 8 — Сплавы, предназначенные для изготовления сварочной проволоки

Обознач	ение марок		,		1		Массов	ая доля эл	ементов,	%			,	
буквенное	цифровое	Кремний	Железо	Медь	Марга- нец	Магний	Хром	Цинк	Титан	Бериллий	Цирко- ний	JICMUTTI,	Сумма всех примесей	Алюминий
СвА99		0,003	0,003	0,003				0,003				0,001	0,010	Не менее 99,99
СвА97		0,015	0,015	0,005								0,01	0,03	Не менее 99,97
СвА85Т		0,04	0,04	0,01		0,01		0,02	0,2— 0,5				0,08	Остальное
СвА5		0,10— 0,25	0,2— 0,35	0,015								0,05	0,5	Не менее 99,95
СвАМц		0,2-0,4	0,3— 0,5	0,2	1,0— 1,5	0,05		0,1				0,1	1,35	Остальное
СвАМг3		0,5—0,8	0,5	0,05	0,3— 0,6	3,2— 3,8		0,2				0,1	0,85	То же
СвАМг5		0,4	0,4	0,05	0,5— 0,8	4,8— 5,8		0,2	0,1— 0,2	0,002— 0,005		0,1	1,4	»
	Св1557	0,15	0,3	0,05	0,2— 0,6	4,5— 5,5	0,07— 0,15			0,002— 0,005	0,2— 0,35	0,1	0,6	»

Обозначение марок		Массовая доля элементов, %												
буквенное	цифровое	Кремний	Железо	Медь	Марга- нец	Магний	Хром	Цинк	Титан	Бериллий	Цирко- ний	элементы,	Сумма всех примесей	Алюминий
	Св1577пч	0,1	0,15	0,1	0,5— 0,8	5,5— 6,5	0,1— 0,2	0,1			0,15— 0,25		0,1	Остальное
СвАМг6		0,4	0,4	0,1	0,5—	5,8— 6,8		0,2	0,1-0,2	0,002— 0,005		0,1	1,2	То же
СвАМг63		0,05	0,05	0,05	0,5— 0,8	5,8—		0,05		0,002— 0,005	0,15— 0,35	0,001	0,15	»
СвАМг61		0,4	0,4	0,05	0,8— 1,1	5,5—		0,2		0,0001 - 0,0003	0,002-0,12	0,1	1,15	»
CBAK5		4,5—6,0	0,6	0,2				Цинк+ олово: 0,1	0,1— 0,2			0,1	1,1	»
CBAK10		7,0— 10,0	0,6	0,1		0,10		0,2				0,1	1,1	»
	Св1201	0,08	0,15	6,0— 6,8	0,2— 0,4	0,02		0,05	0,1— 0,2	Ванадий: 0,05—0,15	0,1— 0,25	0,001	0,3	»

Примечания

- 1 Для всех марок, кроме марок СвАМг3, СвАК5, СвАК10, соотношение железа и кремния должно быть больше единицы.
- 2 В сплавах марок СвАМг3 и СвАК10 допускается массовая доля остаточного титана до 0,15 %.
- 3 По требованию потребителя из сплава марки СвАК5 изготовляют проволоку с содержанием железа не более 0,3 %, которую дополнительно маркируют буквой «У» (СвАК5У).

ПРИЛОЖЕНИЕ А (справочное)

Правила округления

А.1 Округление представляет собой отбрасывание значащих цифр справа до определенного разряда с возможным изменением цифры этого разряда.

Пример: Округление числа 132,48 до четырех значащих цифр будет 132,5.

А.2 В случае, если первая из отбрасываемых цифр (считая слева направо) меньше 5, последняя сохраняемая цифра не меняется.

Пример: Округление числа 12,23 до трех значащих цифр дает 12,2.

А.3 В случае, если первая из отбрасываемых цифр (считая слева направо) равна 5, последняя сохраняемая цифра увеличивается на единицу.

Пример: Округление числа 0,145 до двух значащих цифр дает 0,15.

 Π р и м е ч а н и е — B тех случаях, когда следует учитывать результаты предыдущих округлений, поступают следующим образом:

- если отбрасываемая цифра получилась в результате предыдущего округления в большую сторону, то последняя сохраняемая цифра сохраняется.

Пример: Округление до одной значащей цифры числа 0,15 (полученного после округления числа 0,149) дает 0,1;

- если отбрасываемая цифра получилась в результате предыдущего округления в меньшую сторону, то последняя оставшаяся цифра увеличивается на единицу (с переходом при необходимости в следующие разряды).

Пример: Округление числа 0,25 (полученного в результате предыдущего округления числа 0,25) дает 0,3.

А.4 В случае, если первая из отбрасываемых цифр (считая слева направо) больше 5, то последняя сохраняемая цифра увеличивается на единицу.

Пример: Округление числа 0,156 до двух значащих цифр дает 0,16.

А.5 Округление следует выполнять сразу до желаемого количества значащих цифр, а не по этапам.

Пример: Округление числа 565,46 до трех значащих цифр производится непосредственно на 565.

Округление по этапам привело бы:

на I этапе к 565,5;

на II этапе к 566 (ошибочно).

А.6 Целые числа округляют по тем же правилам, как и дробные.

Пример: Округление числа 12456 до двух значащих цифр дает $12 \cdot 10^3$.

УДК 669.71+669.715:006.354

MKC 77.120.10

B51

OKII 17 340

Ключевые слова: алюминий, алюминиевые деформируемые сплавы, химический состав, марки

Редактор *Н.В. Таланова*Технический редактор *В.Н. Прусакова*Корректор *А.С. Черноусова*Компьютерная верстка *И.А. Налейкиной*

Подписано в печать 21.09.2009. Формат $60 \times 84^{-1}/8$. Бумага офсетная. Гарнитура Таймс. Печать офсетная. Усл.печ.л. 1,86. Уч.-изд.л. 1,30. Тираж 79 экз. Зак. 610.