1 λ dependent on Y

using setup from Hall & Racine 2015

"Data pairs (x_i, y_i) are assumed to be generated by the model, $y_i = g(x_i) + \epsilon_i$ where $x_1, ..., x_n$ are independent and identically distributed as x, with density f(x) supported on a compact interval I, and the experimental errors ϵ_i are independent and identically distributed with zero mean finite variance, independent too of the x_i s." g arbitrary, unspecified

S as estimate of g, $S := \hat{g}(\lambda, X)$

 $\hat{g}_{\lambda}(x_i) = S_{i,\lambda}Y$ where S_i is the i'th row of S_{λ} , Y the column vector of regressands, and $\hat{g}_{\lambda}^{-i}(x_i)$ is the estimate for g with the i'th data point removed

minimizing

$$GCV(\lambda) = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{y_i - \hat{g}_{\lambda}(x_i)}{1 - tr(S_{\lambda})/n} \right)^2 = \frac{n(Y - S_{\lambda}Y)^{\top} (Y - S_{\lambda}Y)}{(n - tr(S_{\lambda}))^2}$$

vields

$$\frac{\partial GCV}{\partial \lambda} = 0 \to tr(\frac{\partial S_{\lambda}}{\partial \lambda}) \frac{\hat{\epsilon}^{\top} \hat{\epsilon}}{n - tr(S_{\lambda})} - (\frac{\partial S_{\lambda}}{\partial \lambda} Y)^{\top} \hat{\epsilon} = 0$$

where $\hat{\epsilon} = Y - S_{\lambda}Y$. need $\frac{\partial^2 GCV}{\partial \lambda^2}$ to use newton's method to find λ

2 function spaces

for spline, s(x), is continuous in X and has continuous derivatives in X up to order-1, with $\int (s^{(order-1)})^2 dx < \infty$

for local polynomials with polynomial kernels, the estimating functions are only continuous in X with $\int (p(x)^{(q)})^2 dx < \infty$ for q=1,...,m, where m is the sum of the degree of local polynomial and twice the degree of the kernel.

for local polynomials with the Gaussian kernel, the estimating functions belong to C^{∞} and L^2

so the estimating functions are from different function spaces with different continuity conditions.

3 smoothness

column rank of X_0 increasing in smoothness (ie $[1\ X-X_0\ (X-X_0)^2\ (X-X_0)^3\ ...]$, thus $tr(X_0(X_0^\top X_0)^{-1}X_0^\top)$ is increasing in smoothness λ can impart smoothness without adding higher order columns to X_0