Machine Learning Based Adaptive Cybersecurity Incident Detection

Progress report: 40%

Thanawat Tejapijaya

Krittawat Thongnoppakao

Punyawat Jaroensiripong

Karin Sumongkayothin, Ph.D (Main-Advisor)

Suratose Tritilanunt, Ph.D (Co-Advisor)

Konglit Hunchangsith, Ph.D (Co-Advisor)

Prarinya Siritanawan, Ph.D (JAIST-Advisor)

-

Introduction

- Research Papers Review
 - Machine Learning Anomaly detection Method Review
 - Anomaly detection using Hilbert's Curve flow-to-image and CNN method review
 - MAD-GAN review
 - Paper Implementation
- Proposed Method

- Classical Machine Learning (Supervised Learning)
 - Z. K. MASEER et al. have shown the comparison in the classical machine learning model on CIC-IDS2017 dataset with multi-attack classification. (Attack type e.g. Normal, Brute Fource, XSS, SQL Injection etc.)

	Model	Accura cy	F1- Score	Precision	Recall
1	K-Nearest Neighbors (KNN)	99.52%	99.49%	99.49%	99.52%
2	Decision tree (DT)	99.49%	99.42%	99.43%	99.49%
3	Naïve Bayes (NB)	98.86%	98.85%	99.01%	98.86%

Top 3 Supervised ML models with CIC-IDS2017

- Classical Machine Learning (Unsupervised Learning)
 - Z. K. MASEER et al. have shown the comparison in the classical machine learning model on CIC-IDS2017 dataset with multi-attack classification. (Attack type e.g. Normal, Brute Fource, XSS, SQL Injection, etc.)

	Model	Accura cy	F1- Score	Precisio n	Recall
1	Expectation-Maximization (EM)	60.06%	74.11%	86.88%	60.06%
2	Self Organizing Maps (SOM)	59.06%	74.11%	85.88%	60.00%
3	K-means	25.59%	39.96%	97.47%	25.59%

Deep Learning

• J. Jose et al. have shown the comparison in Deep neural network, Long shortterm memory (LSTM) and Convolutional Neural Network (CNN) on CIC-IDS2017 and other network attacks (e.g. NSL-KDD).

	Model	Accura	F1-Score	Precision	Recall
		су			
1	Long short-term memory (LSTM)	97.67%	93.55%	94.96%	95.95%
2	Convolutional Neural Network (CNN)	99.61%	93.09%	97.05%	95.00%
3	Deep neural network	90.61%	84.60%	80.85%	84.60%

• P. S. Muhuri et al. have shown the performace of the LSTM on NSL-KDD

Table 8. Binary classification performance results using 99 features.

No. of Neurons	Accu	ıracy					
in Hidden Layers	Training %	Testing %	Precision	Recall	f ₁ -Score	TPR	FPR
5	99.99	99.83	1.00	1.00	1.00	0.999	0.004
10	99.99	99.81	1.00	1.00	1.00	0.999	0.003
20	99.99	99.80	1.00	1.00	1.00	0.999	0.004
40	99.99	99.91	1.00	1.00	1.00	0.999	0.003
60	99.99	99.91	1.00	1.00	1.00	0.999	0.004
80	99.99	99.84	1.00	1.00	1.00	0.999	0.003
100	99.99	99.82	1.00	1.00	1.00	0.999	0.007

Reference: Using a long short-term memory recurrent neural network (LSTM-RNN) to classify network attacks (PS. Muhuri et al., 2020)

Paper Implementation - Result

- Top 5 models that have the best F1-Score
- F1-Score is the harmonic mean between Precision and Recall

Model_type	Model	Accuracy	Precision	Recall	F1-Score	TPR	FPR	TNR	FNR
1win	model_20.h5	0.798306	0.829287	0.798306	0.798322	0.701707	0.074040	0.925960	0.298293
1win	model_40.h5	0.790587	0.823349	0.790587	0.790453	0.690485	0.077129	0.922871	0.309515
10win	model_10.h5	0.784602	0.819318	0.784602	0.784291	0.680621	0.077985	0.922015	0.319379
1win	model_5.h5	0.784466	0.820831	0.784466	0.784023	0.677160	0.073731	0.926269	0.322840
1win	model_80.h5	0.783889	0.820795	0.783889	0.783398	0.675524	0.072907	0.927093	0.324476

Table 8. Binary classification performance results using 99 features.

No. of Neurons	Accu	racy					
in Hidden Layers	Training %	Testing %	Precision	Recall	f ₁ -Score	TPR	FPR
5	99.99	99.83	1.00	1.00	1.00	0.999	0.004
10	99.99	99.81	1.00	1.00	1.00	0.999	0.003
20	99.99	99.80	1.00	1.00	1.00	0.999	0.004
40	99.99	99.91	1.00	1.00	1.00	0.999	0.003
60	99.99	99.91	1.00	1.00	1.00	0.999	0.004
80	99.99	99.84	1.00	1.00	1.00	0.999	0.003
100	99.99	99.82	1.00	1.00	1.00	0.999	0.007

The evaluation from the paper.

The evaluation by implementation.

Model_type	Model	Accuracy	Precision	Recall	F1-Score	TPR	FPR	TNR	FNR
1win	model_20.h5	0.798306	0.829287	0.798306	0.798322	0.701707	0.074040	0.925960	0.298293
1win	model_40.h5	0.790587	0.823349	0.790587	0.790453	0.690485	0.077129	0.922871	0.309515
10win	model_10.h5	0.784602	0.819318	0.784602	0.784291	0.680621	0.077985	0.922015	0.319379
1win	model_5.h5	0.784466	0.820831	0.784466	0.784023	0.677160	0.073731	0.926269	0.322840
1win	model_80.h5	0.783889	0.820795	0.783889	0.783398	0.675524	0.072907	0.927093	0.324476

Anomaly detection using Hilbert Curve technique and Convolutional Neural Network (CNN) method review

 P. Jaroensiripong has shown the potential of CNN, the image classification model to detect intrusion from image of network flow which training on 2 dataset

Dataset	Accura cy	F1-Score	Precision	Recall
NSL-KDD	77.87%	77.82%	90.63%	68.18%
CIC-IDS2017	91.52%	92.01%	93.73%	90.36%

Multivariate Anomaly Detection for Time Series Data with Generative Adversarial Networks review

 To generate data samples and to detect anomalies in Cyber-Physical Systems (CPSs) with Generative Adversarial Networks (GANs) based on LSTM-RNN using multivariate time series data generated by the systems.

Proposed Anomaly detection Method

- Idea came from ensemble machine learning method
- Each model will be trained by different type of cyber attack
- Integrate every trained model to predict one result

Model training methodology

Overall Model

Thank You