

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

(NASA-CR-144597) RESULTS OF AN N76-22255
INVESTIGATION OF JET FLUME EFFECTS ON A
0.010-SCALE MODEL (75-OTS) OF THE SPACE
SHUTTLE INTEGRATED VEHICLE IN THE 8 X 7-FOOT Unclas
LEG OF THE NASA/AMES UNITARY WIND TUNNEL G3/18 14356

SPACE SHUTTLE

AEROTHERMODYNAMIC DATA REPORT

JOHNSON SPACE CENTER

HOUSTON, TEXAS

DATA MANagement services

DMS-DR-2219 NASA CR-144,597 VOLUME 1 OF 2

RESULTS OF AN INVESTIGATION OF JET PLUME

EFFECTS ON AN 0.010-SCALE MODEL (75-OTS) OF THE

SPACE SHUTTLE INTEGRATED VEHICLE IN THE 8 X 7-FOOT

LEG OF THE NASA/AMES UNITARY WIND TUNNEL (1A82C)

by

P. J. Hawthorne Rockwell International Space Division

Prepared under NASA Contract Number NAS9-13247

bу

Data Management Services Chrysler Corporation Space Division New Orleans, La. 70189

for

Engineering Analysis Division

Johnson Space Center National Aeronautics and Space Administration Houston, Texas

WIND TUNNEL TEST SPECIFICS:

Test Number: ARC 87-044

NASA Series Number: IA82C Model Number: 75-OTS

Test Dates: November 8 through 15, 1974

Occupancy Hours: 60

FACILITY COORDINATOR:

AERODYNAMIC ANALYSIS ENGINEER:

Phone: (415) 965-6258

Jack Brownson J. S. Stone
Mail Stop 227-5 Mail Code ACO7

Ames Research Center Rockwell International

Moffett Field, Ca. 94035 . Space Division

Phone: (415) 965-6262 12214 Lakewood Blvd.
Downey, Ca. 90241

Phone: (213) 922-4800

PROJECT ENGINEERS:

P. J. Hawthorne
Mail Code ACO7
Rockwell International
Space Division
12214 Lakewood Blvd.

D. L. Kassner
Mail Stop 227-7
Ames Research Center
Moffett Field, Ca. 94035

Phone: (213) 922-3785

DATA MANAGEMENT SERVICES:

Downey, Ca. 90241

Prepared by: Liaison--D. A. Sarver

Operations -- R. H. Lindahl

Reviewed by: D. E. Poucher

.).

Approved: A. J. Sham Concurrence:

Data Operations Data Management Services

Chrysler Corporation Space Division assumes no responsibility for the data presented other than display characteristics.

RESULTS OF AN INVESTIGATION OF JET PLUME

EFFECTS ON AN 0.010-SCALE MODEL (75-OTS) OF THE

SPACE SHUTTLE INTEGRATED VEHICLE IN THE 8 X 7-FOOT

LEG OF THE NASA/AMES UNITARY WIND TUNNEL (IA82C)

, by

P. J. Hawthorne, Rockwell International Space Division

ABSTRACT

This document presents results of a wind tunnel test of the Rockwell International Space Shuttle Mated Vehicle in the NASA Ames Research Center at Moffett Field, California. The test is identified as IA82C and was conducted in the 8 X 7-foot leg of the Ames Unitary Plan Wind Tunnel.

The primary test objective was to define the base pressure environment of the first and second stage mated vehicle in a supersonic flow field from Mach 2.60 through 3.50 with simulated rocket engine exhaust plumes. The secondary objective was to obtain the pressure environment of the Orbiter at various vent port locations at these same freestream conditions.

Data were obtained at angles of attack from -4° through +4° at zero yaw, and at yaw angles from -4° through +4° at zero angle of attack, with rocket plume sizes varying from smaller than nominal to much greater than nominal. Failed Orbiter engine data were also obtained. Elevon hinge moments and wing panel load data were obtained during all runs.

(THIS PAGE INTENTIONALLY LEFT BLANK.)

•

TABLE OF CONTENTS

		Page
ABSTRACT	•	iii
INDEX OF M	ODEL FIGURES	2
INDEX OF E	DATA FIGURES	3
NOMENCLATU	IRE ·	12
REMARKS		. 18
CONFIGURAT	TIONS INVESTIGATED	19
MODEL INST	RUMENTATION	. 25
TEST FACIL	ITY DESCRIPTION	27
DATA REDUC	CTION	28
TABLES		•
Ι.	TEST CONDITIONS	31
II.	DATASET/RUN NUMBER COLLATION SUMMARY	32
III.	MODEL DIMENSIONAL DATA	37 ·
IV.	MPS BLOWING SYSTEM SET PRESSURES	70
٧.	SRB BLOWING SYSTEM SET PRESSURES	71
VI.	BASE AND BODY FLAP PRESSURE TAP LOCATION	72
VII.	IA82C COEFFICIENT SCHEDULE	73
FIGURES		
MODE	<u>L</u>	. 74
DATA	(SEE VOLUME 1)	· 9 <u>1</u>
APPENDIX	(SEE VOLUME 2)	_
TABU	LATED SOURCE DAT/	

INDEX OF MODEL FIGURES

Figure	Title	· Page
1.	Axis systems.	
•	a. General	74
	b. Control Surface Deflections	75
	c. Panel Loads and Hinge Moments	76
2.	Model Sketches.	
	 a. Integrated Space Shuttle Vehicle Launch Configuration 	77
	b. Orbiter (0 ₁) Components	78
	c. External Tank (T ₂₈) Protrusions	79
	d. SRB (S ₂₂) Protrusions	80
	e. Integrated Space Shuttle Vehicle Second Stage	81
	f. Orbiter Base and Body Flap Pressure Tap Array	82
	g. Orbiter Vent Pressure Tap Array	83
	h. ET Base Pressure Tap Array	84
	i. SRM Base Pressure Tap Array	85
	j. Definition of Θ _i	86
3.	Model photographs.	
	 a. 75-OTS in the ARC 8 x 7 Wind Tunnel, 3/4 Front View 	87
	b. 75-OTS in the ARC 8 x 7 Wind Tunnel,3/4 Rear View	88
	c. 75-0T in the ARC 8 x 7 Wind Tunnel, $\alpha = -4^{\circ}$, $P_{\rm C}/P_{\infty} >> N$	89
	d. 75-0TS in the ARC 8 x 7 Wind Tunnel, $\alpha = 0^{\circ}, P_{c}/P_{m} >> N$	90

INDEX OF DATA FIGURES

FIGURE NUMBER	TITLE	CONDITIONS VARYING	PLOTTED COEFFICIENTS SCHEDULE	PAGES
4	MPS PLUME SIZE EFFECT ON WING LOADS IN PITCH, MACH = 3.0	PT, CONFIG.	Α	1-5
5,	MPS PLUME SIZE EFFECT ON WING LOADS IN PITCH, MACH = 3.5	PT, CONFIG.	А	6-10
6	MPS PLUME SIZE EFFECT ON ELEVON HINGE MOMENTS IN PITCH, MACH = 3.0	PT, CONFIG.	В	11-12
7	MPS PLUME SIZE EFFECT ON ELEVON HINGE MOMENTS IN PITCH, MACH = 3.5	PT, CONFIG	В	13-14
8	MPS PLUME SIZE EFFECT ON WING LOADS IN YAW, MACH = 3.0	PT, CONFIG.	С	15-19
9	MPS PLUME SIZE EFFECT ON WING LOADS IN YAW, MACH = 3.5	PT, CONFIG.	С	20-24
10	MPS PLUME SIZE EFFECT ON ELEVON HINGE MOMENTS IN YAW, MACH = 3.0	PT, CONFIG.	. D	25 - 26
11	MPS PLUME SIZE EFFECT ON ELEVON HINGE MOMENTS IN YAW, MACH = 3.5	PT, CONFIG.	D	27-28
12	SRB PLUME SIZE EFFECT ON WING LOADS IN PITCH, MACH = 2.6	PT, CONFIG.	Α.	29-33
13	SRB PLUME SIZE EFFECT ON WING LOADS IN PITCH, MACH = 3.0	PT, CONFIG.	Α	34-38
14	SRB PLUME SIZE EFFECT ON WING LOADS IN PITCH, MACH = 3.5	PT, CONFIG.	. A	, 39-43

ω

FIGURE NUMBER	TITLE	CONDITIONS VARYING	PLOTTED COEFFICIENTS SCHEDULE	PAGES
15	SRB PLUME SIZE EFFECT ON ELEVON HINGE MOMENTS IN PITCH, MACH = 2.6	PT, CONFIG.	В	44-45
16	SRB PLUME SIZE EFFECT ON ELEVON HINGE MOMENTS IN PITCH, MACH = 3.0	PT, CONFIG.	Ř	46-47
17	SRB PLUME SIZE EFFECT ON ELEVON HINGE MOMENTS IN PITCH, MACH 3.5	PT, CONFIG.	В	48-49
18	SRB PLUME SIZE EFFECT ON WING LOADS IN YAW, MACH = 2.6	PT, CONFIG:	С	50-54
19	SRB PLUME SIZE EFFECT ON WING LOADS IN YAW, MACH = 3.0	PT, CONFIG.	С	55-59
20	SRB PLUME SIZE EFFECT ON WING LOADS IN YAW, MACH = 3.5	PT, CONFIG.	С	60-64
21	SRB PLUME SIZE EFFECT ON ELEVON HINGE MOMENTS IN YAW, MACH = 2.6	PT, CONFIG.	D	65-66
22	SRB PLUME SIZE EFFECT ON ELEVON HINGE MOMENTS IN YAW, MACH = 3.0	PT, CONFIG.	D .	67-68
23	SRB PLUME SIZE EFFECT ON ELEVON HINGE MOMENTS IN YAW, MACH = 3.5	PT, CONFIG.	D	69-70
24	MPS PLUME SIZE/ENG. OUT EFFECT ON WING LOADS IN PITCH, MACH = 2.6	PT, CONFIG.	А	71-75
25	MPS PLUME SIZE/ENG. OUT EFFECT ON WING LOADS IN PITCH, MACH = 3.0	PT, CONFIG.	А	76-80

4

FIGURE NUMBER	TITLE	CONDITIONS VARYING	PLOTTED COEFFICIENTS SCHEDULE	PAGES
26	MPS PLUME SIZE/ENG. OUT EFFECT ON WING LOADS IN PITCH, MACH = 3.5		А	81-85
27	MPS PLUME SIZE/ENG. OUT EFFECT ON ELV. HINGE MOMENTS IN PITCH, MACH = 2.6	PT, CONFIG.	В .	86-87
28	MPS PLUME SIZE/ENG. OUT EFFECT ON ELV. HINGE MOMENTS IN PITCH, MACH = 3.0	PT, CONFIG.	В	88-89
29	MPS PLUME SIZE/ENG. OUT EFFECT ON ELV. HINGE MOMENTS IN PITCH, MACH = 3.5	CONFIG.	В	90-91
30	MPS PLUME SIZE/ENG. OUT EFFECT ON WING LOADS IN YAW, MACH = 2.6	PT, CONFIG.	С	92-96
31	MPS PLUME SIZE/ENG. OUT EFFECT ON WING LOADS IN YAW, MACH = 3.0	PT, CONFIG.	C .	97-101
32	MPS PLUME SIZE/ENG. OUT EFFECT ON WING LOADS IN YAW, MACH = 3.5	CONFIG.	С	102-106
33	MPS PLUME SIZE/ENG. OUT EFFECT ON ELV. HINGE MOMENTS IN YAW, MACH = 2.6	PT, CONFIG.	D	107-108
34	MPS PLUME SIZE/ENG. OUT EFFECT ON ELV. HINGE MOMENTS IN YAW, MACH = 3.0	PT, CONFIG.	D	109-110
35	MPS PLUME SIZE/ENG. OUT EFFECT ON ELV. HINGE MOMENTS IN YAW, MACH=3.5	CONFIG.	D	111-112
36	ELEVON DEFLECTIONS EFFECT ON WING LOADS IN PITCH, POWER OFF, MACH = 2.6	ELV-IB, PT	Α	113-117

S

FIGURE NUMBER	TITLE	CONDITIONS VARYING	PLOTTED COEFFICIENTS SCHEDULE	PAGES
37	ELEVON DEFLECTIONS EFFECT ON WING LOADS IN PITCH, POWER OFF, MACH = 3.0	ELV-IB, PT	А	118-122
38	ELEVON DEFLECTIONS EFFECT ON WING LOADS . IN PITCH, POWER OFF, MACH = 3.5	ELV-IB	А	123-127 ·
39	ELEVON DEFLECTIONS EFFECT ON ELEVON H.M. IN PITCH, POWER OFF, MACH = 2.6	ELV-IB, PT	В	128-129
40	ELEVON DEFLECTIONS EFFECT ON ELEVON H.M. IN PITCH, POWER OFF, MACH = 3.0	ELV-IB, PT	В	130-131
. 43	ELEVON DEFLECTIONS EFFECT ON ELEVON H.M. IN PITCH, POWER OFF, MACH = 3.5	ELV-IB	В	132-133
42	ELEVON DEFLECTIONS EFFECT ON WING LOADS IN YAW, POWER OFF, MACH = 2.6	ELV-IB, PT	С	134-138
43	ELEVON DEFLECTIONS EFFECT ON WING LOADS IN YAW, POWER OFF, MACH = 3.0	ELV-IB, PT	С	139-143
44	ELEVON DEFLECTIONS EFFECT ON WING LOADS IN YAW, POWER OFF, MACH = 3.5	ELV-IB	, C .	144-148
45	ELEVON DEFLECTIONS EFFECT ON ELEVON H.M. IN YAW, POWER OFF, MACH = 2.6	ELV-IB, PT	D	149-150
46	ELEVON DEFLECTIONS EFFECT ON ELEVON H.M. IN YAW, POWER OFF, MACH = 3.0	ELV-IB, PT	D	151-152
47	ELEVON DEFLECTIONS EFFECT ON ELEVON H.M. IN YAW, POWER OFF, MACH = 3.5	ELV-IB	D	153-154

FIGURE NUMBER	TITLE	CONDITIONS VARYING	PLOTTED COEFFICIENTS SCHEDULE	PAGES
48	ELEVON DEFLECTIONS EFFECT ON WING LOADS IN PITCH, POWER ON, MACH = 2.6	ELV-IB, PT	A	155-159
49	ELEVON DEFLECTIONS EFFECT ON WING LOADS IN PITCH, POWER ON, MACH = 3.0	ELV-IB	A .	160-164
50	ELEVON DEFLECTIONS EFFECT ON WING LOADS IN PITCH, POWER ON, MACH = 3.5	ELV-IB	Α	165-169
51	ELEVON DEFLECTIONS EFFECT ON ELEVON H.M. IN PITCH, POWER ON, MACH = 2.6	ELV-IB, PT	В	170-171
52	ELEVON DEFLECTIONS EFFECT ON ELEVON H.M. IN PITCH, POWER ON, MACH = 3.0	ELV-IB	В	172-173
53	ELEVON DEFLECTIONS EFFECT ON ELEVON H.M. IN PITCH, POWER ON, MACH = 3.5	ELV-IB	В	174-175
54	ELEVON DEFLECTIONS EFFECT ON WING LOADS IN YAW, POWER ON, MACH = 2.6	ELV-IB, PT	С	176-180
55	ELEVON DEFLECTIONS EFFECT ON WING LOADS IN YAW, POWER ON, MACH = 3.0	ELV-IB	С	181-185
56	ELEVON DEFLECTIONS EFFECT ON WING LOADS IN YAW, POWER ON, MACH = 3.5	ELV-IB	С	186-190
57	ELEVON DEFLECTIONS EFFECT ON ELEVON H.M. IN YAW, POWER ON, MACH = 2.6	ELV-IB, PT	D	191-192
58 '	ELEVON DEFLECTIONS EFFECT ON ELEVON H.M. IN YAW, POWER ON, MACH = 3.0	ELV-IB	D	193-194

7

FIGURE	* TITLE.		PLOTTED OEFFICIENTS SCHEDULE	PAGES
59	ELEVON DEFLECTIONS EFFECT ON ELEVON H.M. IN YAW, POWER ON, MACH = 3.5	ELV-IB	D	195 - 196
60	ELEVON DEFLECTIONS EFFECT ON WING LOADS IN PITCH, POWER OFF, MACH = 2.6	ELV-IB,ELV-OB,PŤ	, A	197-201
61	ELEVON DEFLECTIONS EFFECT ON WING LOADS IN PITCH, POWER OFF, MACH = 3.0	ELV-IB,ELV-OB,PT	A	202-206
62	ELEVON DEFLECTIONS EFFECT ON WING LOADS IN PITCH, POWER OFF, MACH = 3.5	ELV-IB,ELV-OB	À	207-211
63	ELEVON DEFLECTIONS EFFECT ON ELEVON H.M. IN PITCH, POWER OFF, MACH = 2.6	ELV-IB,ELV-OB,PT	В	212-213
6 4	ELEVON DEFLECTIONS EFFECT ON ELEVON H.M. IN PITCH, POWER OFF, MACH = 3.0	ELV-IB,ELV-OB, PT	В	214-215
65	ELEVON DEFLECTIONS EFFECT ON ELEVON H.M. IN PITCH, POWER OFF, MACH = 3.5	ELV-IB,ELV-OB	В	216-217
66	ELEVON DEFLECTIONS EFFECT ON WING LOADS IN YAW, POWER OFF, MACH = 2.6	ELV-IB,ELV-ÒB,PT	Č	218-222
67	ELEVON DEFLECTIONS EFFECT ON WING LOADS IN YAW, POWER OFF, MACH = 3.0	ELV-IB,ELV-OB,PT	C	223-227
68	ELEVON DEFLECTIONS EFFECT ON WING LOADS IN YAW, POWER OFF, MACH = 3.5	ELV-IB,ELV-OB	С	228-232
69 .	ELEVON DEFLECTIONS EFFECT ON ELEVON H.M. IN YAW, POWER OFF, MACH = 2.6	ELV-IB,ELV-OB,PT	D	233-234

 ∞

FIGURE	INDEX OF DATA FIGURES	CONDITIONS	PLOTTED COEFFICIENTS	
FIGURE NUMBER	TITLE	VARYING	SCHEDULE	PAGES
70	ELEVON DEFLECTIONS EFFECT ON ELEVON H.M. IN YAW, POWER OFF, MACH = 3.0	ELV-IB,ELV-OB,P	T D	235-236
71	ELEVON DEFLECTIONS EFFECT ON ELEVON H.M. IN YAW, POWER OFF, MACH = 3.5	ELV-IB, ELV-0	В Б	237-238
72	ELEVON DEFLECTIONS EFFECT ON WING LOADS IN PITCH, POWER ON, MACH = 2.6	ELV-IB,ELV-OB,P	T· A	239-243
73	ELEVON DEFLECTIONS EFFECT ON WING LOADS IN PITCH, POWER ON, MACH = 3.0	ELV-IB, ELV-0	В А	244-248
74	ELEVON DEFLECTIONS EFFECT ON WING LOADS IN PITCH, POWER ON, MACH = 3.5	ELV-IB, ELV-0	В А	249-253
75	ELEVON DEFLECTIONS EFFECT ON ELEVON H.M. IN PITCH, POWER ON, MACH = 2.6	ELV-IB,ELV-OB,P	Т В _.	254-255
76	ELEVON DEFLECTIONS EFFECT ON ELEVON H.M. IN PITCH, POWER ON, MACH = 3.0	ELV-IB, ELV-0	В В	256-257
77	ELEVON DEFLECTIONS EFFECT ON ELEVON H.M. IN PITCH, POWER ON, MACH = 3.5	ELV-IB, ELV-O	В В	258-259
78	ELEVON DEFLECTIONS EFFECT ON WING LOADS IN YAW, POWER ON, MACH = 2.6	·ELV-IB,ELV-OB,P	т с	260-264
79	ELEVON DEFLECTIONS EFFECT ON WING LOADS IN YAW, POWER ON, MACH = 3.0	ELV-IB, ELV-0	В С	265-269
80	ELEVON DEFLECTIONS EFFECT ON WING LOADS IN YAW, POWER ON:, MACH = 3.5	ELV-IB, ELV-0	В С	270-274

9

FIGURE NUMBER	TITLE	PLOTTED CONDITIONS COEFFICIENTS VARYING SCHEDULE	PAGES
81	ELEVON DEFLECTIONS EFFECT ON ELEVON H.M. IN YAW, POWER ON, MACH = 2.6	ELV-IB, ELV-QB,PT D	275-276
82	ELEVON DEFLECTIONS EFFECT ON ELEVON H.M. IN YAW, POWER ON, MACH = 3.0	EFA-IB, EFA-OB D	277-278
83	ELEVON DEFLECTIONS EFFECT ON ELEVON H.M. IN YAW, POWER ON, MACH = 3.5	ELV-IB, ELV-OB D	279-280
84	2ND STAGE-MPS PLUME SIZE/ENG. OUT EFFECT ON WING LOADS IN PITCH, MACH = 3.5	CONFIG. A	281-285
85	2ND STAGE-MPS PLUME SIZE/ENG. OUT EFFECT ON ELEVON H.M. IN PITCH, MACH = 3.5	CONFIG. B	286-287
86	2ND STAGE-MPS PLUME SIZE/ENG. OUT EFFECT ON WING LOADS IN YAW, MACH = 3.5	CONFIG. C	288-292
87	2ND STAGE-MPS PLUME SIZE/ENG. OUT EFFECT ON ELEVON H.M. IN YAW, MACH = 3.5	CONFIG. D	293-294
88	SUMMARY-NOMINAL PLUME EFFECT ON WING LOADS, ELV-IB = ELV-OB = 0.0	ALPHA E	295-299
89·	SUMMARY-NOMINAL PLUME EFFECT ON ELEVON HINGE MOMENTS, ELV-IB = ELV-OB = 0.0	· ALPHA F	300-301
90	SUMMARY-MPS PLUME EFFECT ON WING LOADS, SRB OFF, DELVIB = DELVOB = 0.0	CONFIG. E	302-306
91	SUMMARY-MPS PLUME EFFECT ON ELEVON H.M., SRB OFF, DELVIB = DELVOB = 0.0	CONFIG. F	307-308

	THOER OF BATA FIGURES	(OUTCTUGE A)		
FIGURE NUMBER	TITLE	CONDITIONS VARYING	PLOTTED COEFFICIENTS SCHEDULE	PAGES
92	SUMMARY-MPS PLUME/SRB PLUME EFFECT ON WING LOADS, DELVIB = DELVOB = 0.0	CONFIG.	Е	309-313
93	SUMMARY-MPS PLUME/SRB PLUME EFFECT ON ELEVON H.M., DELVIB = DELVOB = 0.0	CONFIG.	F	314-315
94	SUMMARY-ELEVON DEFLECTIONS EFFECT ON WING LOADS, POWER OFF	DELVIB, DELVO	DB E .	316-320
95	SUMMARY-ELEVON DEFLECTIONS EFFECT ON ELEVON H.M., POWER OFF	DELVIB, DELVO	DB F	321-322
96	SUMMARY-ELEVON DEFLECTIONS EFFECT ON WING LOADS, NOMINAL POWER ON	DELVIB, DELVO	DB E	323-327
97	SUMMARY-ELEVON DEFLECTIONS EFFECT ON ELEVON H.M., NOMINAL POWER ON	DELVIB, DELVO	OB F	328-329
			•	

PLOTTED COEFFIGIENTS SCHEDULE:

- A) CBMW, CTMW, CNW, XWCP/L, YWCP/B versus ALPHA
- B) CHEI, CHEO versus ALPHA
- C) CBMW, CTMW, CNW, XWCP/L, YWCP/B versus BETA
- D) CHEI, CHEO versus BETA
- E) DCBMW, DCTMW, DCNW, DXWCP, DYWCP versus MACH
- F) DCHEI, DCHEO versus MACH

NOMENCLATURE

<u>General</u>

Comb a 7	Plot	n-ciululu
Symbol -	Symbol '	<u>Definition</u>
a		speed of sound; m/sec, ft/sec
c_p	СР	pressure coefficient; $(p_1 - p_{\infty})/q$
М	MACH	Mach number; V/a
p .		pressure; N/m ² , psf
q	Q(NSM) Q(PSF)	dynamic pressure; $1/2\rho V^2$, N/m^2 , psf
RN/L	RN/L	unit Reynolds number; per m, per ft
V		velocity; m/sec, ft/sec
α	ALPHA	angle of attack, degrees
β	BETA	angle of sideslip, degrees
ψ	PSI	angle of yaw, degrees
ρ		mass density; kg/m³, slugs/ft³
	Refe	rence & C.G. Definitions
A b		base area; m ² , ft ²
b _{REF}	BREF	reference span; m, ft
b.		model span; m, ft
c.g.	•	center of gravity
REF	LREF	reference length, m, ft mean aerodynamic chord; m, ft
S _W	SREF	wing area or reference area; m ² , ft ²
	MRP	moment reference point

Symbol ·	Plot Symbol	<u>Definition</u>
	XMRP	moment reference point on X axis
	YMRP	moment reference point on Y axis
	ZMRP	moment reference point on Z axis
A_T_SRB		SRB nozzle throat area, in ²
A _{TMPS}		MPS nozzle throat area, in ²
b _w	BW	wing bending moment, about $Y_0 = 106.$, in-1bf
c _{BW}	CBMW	wing bending moment coefficient, about $Y_0 = 106$
¯c _e	CE	elevon reference length, in
c _{hei}	CHEI	inner elevon hinge moment coefficient, about hinge line
c _{heo}	CHE0	outer elevon hinge moment coefficient, about hinge line
c_{N_W}	CNW	wing panel normal force coefficient
$c_{p_{\hat{1}}}$	CPi	surface tap pressure coefficient, i = tap number
c_{T_W}	CTMW	wing torsion moment coefficient, about $X_0 = 1307$
$\delta_{ extsf{e}^{ extsf{i}}}$	ELV-IB	inboard elevon deflection, degrees
δ _{eo}	ELV-OB	outboard elevon deflection, degrees
€MPS	EPSLN0	expansion ratio, MPS nozzle
€SRM	EPSLNS	expansion ratio, SRM nozzle
ET	ET	external tank
h _{ei}	HEI	inner elevon hinge moment about hinge line, in-lbs

Symbol	Symbol	Definition
heo	HE0	outer elevon hinge moment about hinge line, in-lbs
v^{LE} .	LAMBDA:	leading edge sweep angle, deg.
P_{S}	PS	static pressure; psia
$\theta_{\mathbf{i}}$		nozzle plume boundary exit angle measured relative to the nozzle centerline
ML	ML	local Mach number
MPS	MPS	main propulsion system
nW	NW	wing panel normal force - 1bf
Pi	Pi	surface pressure at ith tap number
Pc		chamber pressure, psia
Pco	PCORB	Orbiter chamber pressure, psia
P _{cs}	PCSRM	SRM chamber pressure, psia
Pei	PEi	nozzle exit, i indicates nozzle location, psia
\hat{P}_{L} .	PL	local static pressure, psia
P_{∞}	PO	tunnel freestream static pressure, psia
P _{t.}	PT	tunnel freestream total pressure, psia
P _{ti}	PTi	local total pressure at ith probe, psia
P _{co} /P _c	MPSČPR	Orbiter chamber to freestream pressure ratio
P _{CS} /P _o	SRBCPR	SRB chamber to freestream pressure ratio
P _{ei} /P _o	RPEI	exit to freestream pressure ratio at ith station
S _e	SE	elevon computation area, ft ²

Symbo1	Plot Symbol	<u>Definition</u>	1
SRB	SRB .	solid rocket booster	
SSME	SSME	space shuttle main engines	
T_{T}	TTR	average tunnel total temperature °R	
$\tau_{T_{ORB}}$	TTORB	Orbiter plume air total temperature,	°R
$T_{T_{SRM}}$	TTSRM	SRM plume air total temperature, °R	
T_W	TW	wing panel torsion moment, in-1bf	
w _{SRB}		SRB nozzle weight flow rate, lb/sec	
WMPS		MPS nozzle weight flow rate lb/sec	

Subscripts

i - Nozzle number,

1 = Top MPS nozzle,
2 = L.H. MPS nozzle, 3 = R.H. MPS nozzle, 4 = L.H. SRB nozzle, 5 = R.H. SRB nozzle,

or:

i = surface tap numbers, see figure 2i

∞ = freestream tunnel conditions b = base

1 = local

s = static conditions

t = total conditions

Additions

Symbol	Symbol Symbol	<u>Definition</u>
XC _p /l _{REF}	XWCP/L	wing center of pressure as a fraction of body length
YC _p /b _{REF}	YWCP/B	wing center of pressure as a fraction of body span
^{∆δ} ei	DELVIB	incremental inboard elevon deflection, degrees
Δδ _{eo}	DELVOB	incremental outboard elevon deflection, degrees
ΔCp	DCP	incremental surface tap pressure coefficient
${}^{\nabla}C^{BM}$	DCBMW	incremental wing bending moment coefficient, about $Y_0 = 106$
∆C _{TW}	'DCTMW	incremental wing torsion moment coefficient, about $X_0 = 1307$
∆CNW	DCNW	incremental wing panel normal force coefficient
ΔC _{hei}	DCHEI	hinge moment coefficient increment for inboard elevon due to power/plume effect, power on- power off
ΔC _{heo}	DCHE0	hinge moment coefficient increment for outboard elevon due to power/plume effect, power on- power off
۵XC _p /۱ _{REF}	DXWCP	incremental wing center of pressure as a fraction of body length
ΔYC _p /b _{REF}	DYWCP	incremental wing center of pressure as a fraction of body span
ΦВ	PHĪ	SRM base angle of roll, degrees
φ0	PHI	Orbiter angle of roll, degrees
ΦS	PHI.	SRB Mach rake angle of roll, degrees
ФТ	PHI	external tank angle of roll, degrees

NOMENCLATURE (Concluded)

Symbol	Plot Symbol	<u>Definition</u>
x_{B}	XB	SRM base longitudinal distance, in
. ^X 0	X0	Orbiter longitudinal distance, in
Y ₀	Y0	Orbiter lateral distance, in
z ₀	ZO	Orbiter vertical distance, in
X _S	XS	SRB Mach rake longitudinal distance, in
x_{T}	XT	external tank longitudinal distance, in
R, in		radius of tap location, in
R/R _{OD}	R/ROD	radius of tap location divided by outer radius
δ_{BF}	BDFLAP	body flap deflection angle, degrees
δ _r	RUDDER	rudder deflection angle, degrees
δ _e	ELEVON	elevon deflection angle, degrees
δSB	SPDBRK	speed brake flare angle, degrees

REMARKS

To obtain data for data sets (comprised of three data runs), the wind tunnel freestream Mach number was set, and the model nozzle blowing system pressures were set and allowed to stabilize. Pressure and panel data were then recorded at each of the five α/β combinations.

No difficulty was encountered in bleeding off the added mass of model nozzle plume air from the tunnel circuit to maintain constant freestream conditions.

Good data confidence is assignable on the basis of model and instrumentation performance and running checks for anomalies made throughout the test program.

Hinge moment data are good, and wing normal force and bending moment data are in reasonable agreement with prior data. Wing root torsional moment data differ from expected values. However, this difference is primarily due to loads on the forward wing glove (a primary contribution to wing root torsional moment) which were not measured by the instrumentation on the model.

Zero returns on the wing gauges taken varied less than 0.4% and sensitivity shifts were negligible. The elevon zero returns were generally less than 0.3% with zero shift of less than 0.4%. These values are for full scale ranges which were nominally 1.05 times the maximum test loads for wing normal and bending, 3 times in torsion and 1.5 times the elevon hinge moments.

CONFIGURATIONS INVESTIGATED

The model was a blade strut mounted 0.010-scale replica of the Rockwell International first stage (Orbiter, external oxygen hydrogen tank and solid rocket boosters) Space Shuttle Vehicle. The model was used to simulate the second stage by the removal of the solid rocket boosters.

The model was fabricated entirely of Armco steel stock, with the exception of mechanical fasteners, seals, and electrical instrumentation by and under the direction of the B-I Division of Rockwell International.

The basic Orbiter was in accord with Rockwell International drawing VL70-000140C lines with the substitution of the blunter VL70-08410 and VL70-08401 Orbital Maneuvering System (OMS) pods on the upper sidewalls and the elimination of the drag chute fairing from the vertical tail, reverting to the prior drawing, VL70-000146A. This combination has been designated - "140C modified" or VC70-000002.

The Orbiter is of blended wing body design with a double delta planform (81/45ALE) 12% thick wing and full span elevons with a six inch interpanel gap between the independently deflectable inner and outer panels. A single centerline vertical tail with rudder and/or speedbrake capability is mounted between the two OMS pods, and a single body flap to aid in trim control during reentry from orbit is fitted on the lower trailing edge of the fuselage; the rudder/speedbrake and body flaps are not deflectable on this model. The Orbiter configuration simulated is shown in figure 2b.

The External Tank (ET) was in accord with Rockwell International

CONFIGURATIONS INVESTIGATED (Continued)

drawing VC78-000002 for general confirmation. The attach hardware was on drawing VL78-000062B and is the same as fitted to model 52T. The tank was of cylindrical cross-section and had a liquid oxygen vent valve housing with lightning rod at the front of the 612.0" radius tangent ogive nose. The outer surface simulated was what is referred to on later drawings as the outside skin line which is the surface without the TPS thickness (SOFI) added. Longeron hat section stiffeners between the oxygen and hydrogen portions of the ET were simulated.

The general arrangement of External Tank is shown in Figure 2c.

The Solid Rocket Boosters (SRB) were modelled to conform to Rockwell International drawing VC77-000002A with the exception that to maintain consistency with model 88-S, the nozzle external contours were reflective of the earlier VL77-000066 drawing with a nozzle gimbal point 86.8 inches from the exit plane.

The SRB's are of cylindrical form with a flared base shielding the nozzle and forward skirt with a conical nose. A data capsule on the forward skirt, the cable systems tunnel and aft skirt stiffening struts were simulated.

The general layout of an SRB is shown in Figure 2d.

The model was basically in accord with Rockwell International Shuttle Control drawing VC72-000002 with the exceptions noted, and may be properly referred to as Modified Vehicle 4 or proposed Vehicle 5.

The general layout of the first and second stage vehicles is shown

CONFIGURATION INVESTIGATED (Continued)

in Figures 2a and 2e.

The Ames Unitary Tunnel high pressure air supply was utilized for cold jet plume simulation of the jet plumes eminating from the Orbiter MPS and SRB nozzles. The Orbiter MPS and the SRB nozzles were on each of two independent air supply systems which allow for separate throttling of each nozzle system.

The blowing nozzles were test flowed in calibration programs at the Rocketdyne Rocket Nozzle Test Facility to determine that a satisfactory quiescent plume shape was produced, and to calibrate initial turning angle versus chamber pressure. These calibrations were performed with an appropriate simulated air supply system, MPS or SRB, to most accurately reproduce the quiescent plume shape that could be expected with the nozzle mounted on the model, and consequently most accurately predict the Newtonian plume to be obtained at tunnel freestream conditions.

The initial turning angle is defined in Figure 2j. Results of the nozzle calibrations are tabulated in Table IV.

The plume shapes for various Mach numbers were obtained by using one nozzle contour and setting specific values of P_{co}/P_{∞} or P_{ei}/P_{∞} for each different Mach number. The nominal settings are presented in Tables IV and V for the Orbiter and SRB nozzles.

The theoretical flow rates for MPS and SRB nozzle can be obtained by the following equations:

CONFIGURATIONS INVESTIGATED (Continued)

Assume:
$$T_T = 560^{\circ} R (100^{\circ} F)$$

$$A_{T_{MPS}} = .04285 \text{ in}^2$$

$$A_{T_{SRB}} = .32715 \text{ in}^2$$

$$\dot{w}_{MPS} = .00098 P_{co} \text{ lb/sec per MPS nozzle}$$

$$\dot{w}_{SRB} = .0074 P_{cs} \text{ lb/sec per SRB nozzle}$$

The following nomenclature was used to designate Orbiter components (0_1) :

Nomenclature	Orbiter Component
B ₆₂ .	Body
c ₁₂	Canopy
E ₅₂	Elevon
F ₁₀	Body flap
^M 16	OMS pod
R_{5}	Rudder
N ₈₇ .	MPS nozzles
N ₈₉	OMS nozzle
v ₈	Vertical tail
W ₁₂₇	Wing

The nomenclature for the external oxygen hydrogen tank (T_{28}) was:

Nomenclature		Tank Component
FR ₁₀		Aft attach cross beam

CONFIGURATIONS INVESTIGATED (Continued)

Nomenclature	Tank Component
T ₂₈	External tank
AT ₂₈	Attach structure
AT ₃₁	Attach structure
AT ₃₂ .	Attach structure
PT ₁₂	ET protuberances
PT ₂₂	ET protuberances
PT ₂₃	ET protuberances
PT ₂₄	ET protuberances
PT ₂₅	ET protuberances
PT ₂₆	ET protuberances
PT ₂₇	ET protuberances
FL ₁₀	Feedline '
FL ₁₁	Feedline

The nomenclature for the Solid Rocket Booster (S_{22}) was:

Nomenclature	SRB Component	
s ₂₂	Solid rocket booster	
N ₈₈	SRB nozzle	
PS ₂₀	SRB protuberances	
PS ₂₁	SRB protuberances	
PS ₂₂	SRB protuberances	
PS ₁₄	SRB protuberances	
PS ₁₃	SRB protuberances	

CONFIGURATIONS INVESTIGATED (Concluded)

PS₁₅ SRB protuberances

PS₁₆ SRB protuberances

The entire mated vehicle first stage was 0 $_1$ T_{28} $S_{22},$ and the second stage was 0 $_1$, $T_{28}.$

Dimensional data are presented in Table III.

MODEL INSTRUMENTATION

Two three-pack scanivalves mounted at the base of the blade were used to accrue data from 82 surface pressure taps, distributed as follows:

<u>Location</u>	Number of Taps
Orbiter base	13
OMS pod base	4
Vertical	1
Body flap	5
Side of Orbiter	20
External tank	31 `
SRB bases	8

These pressure taps were hardlined to the connection at the scanivalve. The basic array of the pressure taps is shown in figures 2f through i.

The numbering scheme is 100 series taps on the Orbiter, 200 series on the External Tank and 300 series on the SRB's.

The right hand wing was made with the panel integral with a three component strain gauged beam to allow root bending moment, root torsion noment and panel normal force to be measured. The .015 inch gap to the Orbiter fuselage was not sealed.

The left hand wing panel was rigidly attached to the fuselage of the Drbiter, but was provided with plain bearing hinged deflectable elevon with the inner and outer panels supported in torsion by individual strain gauged beams to allow elevon hinge moments to be obtained. The elevon

MODEL INSTRUMENTATION (Concluded)

was made with a cylindrical section lower gap and a conical section upper gap with centerlines on the elevon hingeline so that the elevon gap will remain constant with deflection. No attempt was made to simulate the elevon flapper doors.

To provide similar model aeroelastic characteristics on both wings, the elevon arrangement on the right hand wing was identical to the left hand, but the beams were not gauged.

TEST FACILITY DESCRIPTION

The Ames Research Center Unitary Plan Wind Tunnel 8 x 7-foot supersonic test circuit is a closed-return, variable-density, air medium continuous flow facility with a 16 foot long test section and was used for IA82C. The throat has flexible sidewalls for control of tunnel Mach number. The tunnel is capable of attaining Mach numbers from 2.45 to 3.50 at Reynolds numbers from below $1.0 \times 10^6/\text{ft}$ to approximately $5.0 \times 10^6/\text{ft}$.

Models are supported in general from stings mounted to a body of revolution on a floor to ceiling strut system. Internal strain-gauge balances are used for force and moment data, and pressure instrumentation is provided.

Schlieren and shadowgraph equipment is available as well as additional force, moment, and stress monitoring instrumentation for specific models.

A high pressure cold air supply system for simulation of reaction motor exhaust plumes was installed, with operation from the control room. This system had a new series of redundant regulators fitted and the system updated in 1974. Flow capabilities run to greater than 100 lbm/second of unheated air at 3000 psig, fed from a huge vertical subterranian bottle field allowing large flows for protracted periods.

DATA REDUCTION

The blowing systems were monitored at two nominal stations, upstream of the nozzle (chamber pressure) and at the nozzle exits. The ratios of chamber pressure to freestream static were computed:

$$\frac{P_{co}}{P_{\infty}} = \frac{PCORB}{PO} = MPSCPR$$

$$\frac{P_{CS}}{P_{\infty}} = \frac{PCSRM}{PO} = SRBCPR$$

$$\frac{P_{ei}}{P_{m}} = \frac{PEi}{Po} = RPEi$$

The plume air total temperatures, TTORB and TTSRM were also recorded.

Pressure coefficients were computed as follows:

$$\frac{P_{i} - P_{\infty}}{q} = C_{p_{i}}$$

where:

 P_i = individual measured pressure.

For the base pressures,

ì

DATA REDUCTION (Continued)

and for the vent location pressures,

The inboard elevon panel and outboard elevon panel hinge moment coefficients were computed:

CHEI =
$$\frac{\text{HEI}}{\text{Se } \tilde{\text{c}}_{\text{e}}}$$

CHEO =
$$\frac{\text{HEO}}{\text{Se }\bar{\text{c}}_{\text{e}}}$$

Right hand wing computations were:

$$CNW = \frac{NW}{qS_W}$$

$$CBMW = \frac{BW}{qS_Wb}$$

$$\begin{array}{ccc} \text{CTMW} & = & \frac{\text{TW}}{\text{qS}_{\text{W}} \overline{\text{c}}} \end{array}$$

The following reference dimensions were used: .

Symbol	Model Scale Value	Full Scale Value
þ	9.3668 in	936.68 in
ē _e	0.907 in	90.70 in
· <u>c</u>	4.748 in	474.80 in
S _e	0.0210 ft ²	210.00 ft ²
S_W	0.2690 ft ²	2690.00 ft ²
b _{REF}	12.903 in	1290.3 in
^ℓ REF	12.903 in	1290.3 in

Note: Coefficient equations on previous page do not use the plot

DATA REDUCTION (Concluded)

reference block LREF (ℓ_{REF}) and BREF (ℓ_{REF}) values.

All the IA82C source data is presented in the Appendix. However, only the wing panel loads and hinge moment plotted data figures are presented in this report (data sets RE5XXX).

The IA82B pressure data (Mach number range of 1.55 to 2.20) was combined with the pressure data from IA82C (Mach number range of 2.60 to 3.50) and plotted versus Mach number. These results are published in the IA82B report (DMS-DR-2231).

TABLE I.

TEST : IA82C	77.05		DATE : Nov. 1974
	TEST CON	IDITIONIC	DAIL
	FEST CON	INI TIONS	•
MACH NUMBER	REYNOLDS NUMBER (per_ft) x 106	DYNAMIC PRESSURE (pounds/sq. inch)	STAGNATION TEMPERATURE (degrees Fahrenheit)
2.6	2.6	3.58	120° max
2.6	1.2	1.63	120° max
3.0	2.1	2.59	120° max
3.0	1.55	1.89	120° max
3.0	1.0	1.18	. 120° max
3.5	1.67	1.70	120° max
3.5	1.2 ·	1.23	120° max
3.5	. 78	0.77	1.20° max
			•
		,	
BALANCE UTILIZED:			
Within the Contractor - Ja		1,	COEFFICIENT
	CAPACITY:	ACCURACY: ;	TOLERANCE:
NF			
SF		,	
AF			
PM			-
. RM			
YM		-	. 1
•	_		•
COMMENTS:	•		
		•	
			•
			4.1

DATAS	£ .	ONFIGURATION	,	sc			ROL D			NO. OF	МА	CH NU	MBERS	OR ALTER	NATE IND	PENDE	NT VA	RIABLE	. }
DENTIF				α	β	SRF	MPS		SEO	RUNS	MACH:	PT	SRB	SSME	X=-4	X=0	X=4		
RE5 00	0,	728 Szz		4	10		_	0	0	<u> </u>	3.0	14.7	<u> </u>	-	/	2	3		
02		· · · · · · · · · · · · · · · · · · ·				_				<u> </u>	2.6				4	5	6		
03					1	N	N			<u> </u>			627	1091		8	9		
0	/				B	<۸	N						332	1091	10	11	12		<u> </u>
0:	5	`				٧<	^						1378	1091	/3	14	15		
00	,					N	$\langle N \rangle$						627	685	16	17	/8		
0	7	<u> </u>				Ν	۸۷					¥	627	1621	.19	20	21		
08	<u>r </u>					ŊΝ	<i>N</i>				7	6.7	1411	497	22	23	24		
0	7					NK	N				3.0	i	1456	473	25	20	27		
, /	0					-	ンソント				,		_	1820	28	29	30		
/	/						<i>>></i> W					4	_	1147	3/	32	उद		
- /	2-				٧	אל	N					10.7	1382	757	34	35	56		
7.	3				٦	7	N					15.1	868	1040	37	38	39		
/	+				B	į	N						-	1040	40	41	42		
1:	5				į	4	ンベ						-	1520	43	44	-/		
10				Ш		< N	Ν						388	1040	46	47	48		
17						N	< N						868	656	49	50	5/		
[†] /8		P		¥	Ý	Ν	> N	7	Ą		Ý	¢,	868	1520	52	53	54		
	7], , 13	<i>ふッ</i> パ	- 6	· /,· ·	25	1	31		37	•	43	49	73 5	5	61		67	
تبليك	السلام		سبا		ا_د	1.1			111	بيل	لبيا	بينيا	ىلىد		······		1.1	L	

•	DATA SET	CONFIGURATION	, -	sc					ECTION							RNATE IND	.,			.)
-	DENTIFIER				β	SRB	MPS	1		RUN	s MAÇA		PT	5RB	SSME	X=-4	X=0	x = 4	 	
8	<u>E5019</u>	O, Tz8 522		4	<u>C</u>	_		0	0		3.5	1	15.1		-	55	56	57	ļ	<u> </u>
	20			$\perp \downarrow$	1	~	~					1		1/75	948	58	59	60		
L	21				B	-	>4							-	1521	61	62	63		
L	22	ļ				_	N					\perp			948	64	65	66		
	23	ļ 				< <i>N</i>	~					İ		524	948	. 67	68	69		
	24					~	<~							1175	607	70	7/	72		
	25					Ν	>N						1	1175	1521	73	74	75		
	26					٧٨	Ν					7	0.7	/239	672	76	77	78		
	27					j	>> ^					Τ.	6.7	-	837	79	80	81		1
Γ	28			i	П	_	N							_	1246	82	83	84		
	79					٧لا	N	Ÿ		1			•	1012	427	£5	86	87		
	30			П				4			2.6	1	5./	_	-	8.8	89	90		1
	3'			;		Ν	Ν	-		<u> </u>		Τ	1	642	1116	91	92	93		
Γ	32					-	_		11		3.0	1		_	_	94	95	96		
F	33			-		Ň	- îv	+		1		\top	-	888	1064	527	98	99		
	34						-		11	1	3.5	T	1	_	-	100	101	102		t
	35					Ν	7	_	1 7	1		-		1175	948	103	104	105		†
┨	1 36	Ÿ			+	-	_	+	-4	1	2.6	\dagger	+	_	_	156	107	108		
	7	13	19			 25		31		37			<u> </u>					!		1
丰.			1									43		49	1	35	61		67	
T		.) ^		, ,	- -L					ICENT					<u> </u>	2,0,2,4	יייין אַמו	AR (1)	IDVA	R (2)
	a OR SCHEDUL	110 -	4,0,4		/ .	,, ,	1 ./	<u> </u>						(3) C	= - 4, -2	(U, Z, 4	a	ALC	<u> </u>	

	TA SET	CONFIGUR	RATION	so	но.	CONT	ROL D	EFLE	CTION	NO.	MA		MBERS	(OR ALTE	RNATE IND	-)	
	NTIFIER									RUNS	MACH		SRB	SSME	X=-4	X=0	X=4	<u> </u>	<u> </u>	
E	5037	0,72852	Z	14	B	\ <u>\</u>	~	4	-4	ļ		15.1	642	1116	109	110	///	ļ		
4	38			$\bot\!\!\!\!\bot$	Н.		_				3.0				112	1/3	114		ļ	
_	37			44	igspace	~	Ŋ			<u> </u>			888	1064	115	116	117		<u> </u>	
_	40			\coprod			_				3.5		-	-	118	119	120		<u> </u>	_
_	41			\coprod	1	W	~	7			<u> </u>		1175	948	12/	/22	/23		<u> </u>	
_	42		···	\coprod	'	-	- 1	10			2.6		_		/24	125	126			
\perp	43					N	N				+		642	1114	127	/28	129			
	44		4								3.0		-	-	130	131*	135			
\downarrow	45	 				N	~				•		888	1064	/33	134	135			
\perp	46	; }			<u> </u>	-					3.5		~		136	137	138			
	47				V	~	~	4			1		1175	948	139	140	141			_
ľ	48				\mathcal{D}	-	-	8			2.6			-	142	143	144			
	49				$ \mathcal{D} $	~	Ν				1		642	1116	145	146	147			
	50				С		- 1				3.0		-	-	148	149	150			
	51					~	~						888	1064	151	152	153	• • • • • • • • • • • • • • • • • • • •		_
	52					_	-				3.5			-	154	155	156			7
1	53	•			¥	~	N		+		4		//75	948	157	158	159			_
S.	54	4	•	7	В	-	-	+	0		2.6	7	_	_	160	161	162			_
	7	13	19			25		31		37		43	49			<u> </u>		67		7!
	بلثب		· · · · · ·						1.1.1						······································			<u> </u>		ŕ
<u>.T</u>		· · · · · ·		4		4		c	DEFFIC	CENTS				لنبيب	160 55 -2,0,2 0,4 @	61		67 L 1D	VAI	

REVISE	$\overline{}$	o_	1.	_	7.5
ノイトレ ノングリ	')	/-	_		/

DATA SET	CONFIGURATION	_	HD.			EFLE		NO. OF				ORALTER		N=0		ABLE	
DENTIFIER		α	-	•				RUNS	MACH		SRB	SSME	163	164	165		
RES 055	0, T28 Szz	A	B	N	N	8	0	ļ	2.6	15.1	642	1116			1		
56			-			<u> </u>		ļ	3.0		-		166	167	168		
57		\coprod	Ш	~	N			ļ	<u> </u>		888	1064	169	170	171		
58									3-5		_	-	172	173	174		
59			4	~	~	🛊					1175	948	175	176	177		
60			D			10			2.6		_		178	179	180		
61				~	N				į.		642	1116	181	182	183		
62				_					3.0		_	-	184	185	186		
63				N	~		Ιİ	1	1		888	1064	187	188	189		
64					_				3,5		_	_	190	191	192		,
		╫		N	~		 	 	1		1175	948	193	194	/95		
65	U. 44 Sq.	╂┼╴	B	Α	N	0	 -	╁┈┈	2.6	_	642	1116	196	197	198		-
66	#1 MPS OUT	H		~	/\frac{1}{2\psi}	1	╁┼┼	 	3.0	_	888	1064	199	200	201		
67		H		 	 		$\vdash \vdash$	1		_	 	948	202	203	204		
_ 68	▼	H		٨	Ν.			ļ	3.5		1175	 	205		207		
69	#2 MP.S OUT	-	ig ig	Α.	N	- -		ļ	2.6		642	1116		206	 		
70		!	- -	N	-N	 	 	ļ	3.0		888	 	208	209	210		
7/	† †	1	1	~	11	+	1	<u> </u>	3,5	Y	1175	948	. 211	212.	2/3		
			<u> </u>				<u> </u>		لـــــا		<u></u>	<u> </u>					
	7 13 19			25		31		37		43	49	5	5	61 .		57	
لنيال		لــــــــــــــــــــــــــــــــــــــ	Lı	سبا	• • • •	14	111	11		نسا	111	لببب		سبا		IDVAR	

DATA SET	CONFIGURATION	sc	но.	CONT	ROL D	EFLE	CTION	NO.	МА	CH NU	MBERS	OR ALTE	RNATE INDI	EPENDE	NT VA	RIABLE	}	_
IDENTIFIER	CONFIGURATION	α	β	5RB	MPS	$\mathcal{S}_{E\mathcal{I}}$	SEO	OF RUNS	MACH			SSME		X=0				_
RE5072	OITZ8, #2 SSME OUT	A	B		~	0	0		3.5	15.1	-	948	214	2/5	2/6			
73	#1 SSME OUT			_	~						-	948	217	2/8	219			
74				_							-		220	27/	2.2 2-			_
75				1	N						-	948	223	274	225		1	_
76					<n< td=""><td></td><td></td><td></td><td></td><td></td><td>-</td><td>607</td><td>226</td><td>227</td><td>228</td><td></td><td> </td><td>,</td></n<>						-	607	226	227	228		 	,
77				,	>~					1		1321	229	230	23/		1	_
78		П		1	>>/٧					6.7		837	232	233	 		1	_
79				-	ンシンへ			,		1	-	1248	235	234	237			_
7 80	Y	1	V	į	>>>\n	•	Ÿ				-	1820	238	239	240		1	_
						- 1				1							†	-
																	 	-
						-											1	
																	1	_
	•																	_
																	 	
·	,																-	_
																		_
7	13 19			:5	A	31		37	- , .	43	49			<u></u>			L	_
													55	61		67		Ī

TABLE III

MODEL DIMENSIONAL DATA

MODEL COMPONE	NT: <u>BODY - B62</u>		
GENERAL DESCR	IPTION: Configuration 1	10 C orbiter f	uselage MCR
200-Ri, Simila	ar to 140 A/B fuselage exc	ept aft body re	vised and
improved midbody	y-wing-boot fairing, X _o =	940 to X ₀ = 104	0.
MODEL SCALE:		•	
DRAWING NUMBER	VL70-000140C, -0002020	C,-000205A, -000	200B, -0002 03A .
			• • • • • • • • • • • • • • • • • • • •
DIMENSIONS		FULL SCALE	MODEL SCALE
Length ((IML: Fwd Sta. X _o =238),In	. 1290.3	12.903
Length ((OML: Fwd Sta X ₀ =235), In	1293.3	12.933
Max Widtl	h(@ X _O = 1528.3), In.	264.0	2.640
Max Dept	h (@ X _o = 1464), In.	250.0	2.500
Fineness	Ratio	4.899	4.899
Ārea -	Ft ²		
М	ax. Cross-Sectional	340.885	.03409
P	lanform		
W	etted		
В	gse		

TABLE III (COST'D) MODEL DIMENSIONAL DATA

MODEL COMPONENT : CANOPY - C12	-	
GENERAL DESCRIPTION: _configuration140) C orbiter ca	nopy, vehicle
cabin No. 31 updated to MCR 200-Ri. Us	sed with fuselag	е В ₆₂ .
MODEL SCALE: 0.010		
DRAWING NUMBER)2B, -000204	
DIMENSIONS:	FULL SCALE	MODEL SCALE
Length ($X_0 = 434.643-578$), in.	143.357	1.434
Max Width (@ X _o = 513.127), In.	152.412	1.524
Max Depth ($Z_0=501$ to 449.39), I	n. 51.61	0.516
Fineness Ratio		American de la collège de la lagra de la lagra de la collège de la collège de la collège de la collège de la c
Area		
Max. Cross-Sectional		
Planform	SECONO / 2000/01- Talkinia "Misson "Misson, picanjil, 1909. 1 4	CONTRACTOR OF THE PARTY OF THE
Wetted	*	
Base		

TABLE III (Cont'd)

MODEL COMPONENT: ELEVON - E52		
GENERAL DESCRIPTION: Elevon for configu X ₀ = 1387, elevon split line X _w = 312.5. centerbodies.	ration 140C. Hing	eline at
MODEL SCALE: 0.010		
DRAWING NUMBER: VL70-000140C.	006089, -006092,	SS-A01260
DIMENSIONS: (Data for One Side)	FULL-SCALE	MODEL SCALE
Area - Ft ²	210.0.	0.021
Span (equivalent), In.	349.2	3,492
Inb'd equivalent chord, In.	118.0	1.180
Outb'd equivalent chord, In.	55.19	0.552
Ratio movable surface chord/ total surface chord		·.
At Inb'd equiv. chord	0.2096	0.2096
At Outb'd equiv. chord	0.4004	0.4004
Sweep Back Angles, degrees		
Leading Edge	0.0	. 0.0
Tailing Edge	- 10.056	-10.056
Hingeline (Product of Area & c)	0.00	0.0
Area Moment (Morandotexhingexhine),	1587:25	0.0016
Mean Aerodynamic Chord, In.	90.7	0.907
Hingeline dihedral (origin at $Z_0 = 261.3509$), deg.	5.229	5.229

MODEL DIMENSIONAL DATA

MODEL COMPONENT : BODY FLAP - F10		
GENERAL DESCRIPTION : Configuration 1	40C body flap.	Hingeline
located at X ₀ = 1532, Z ₀ = 238.		
Note that the second of the se		•
MODEL SCALE: 0.010		
DRAWING NUMBER	355114	
-		
CIMENSIONS :	FULL SCALE	MODEL SCALE
Length $(X_0=1525.5 \text{ to } X_0=1613), II$	87_50	0.875
Max Width (@ L.E., X ₀ = 1525.5),	In. 256.00	2,560
Max Depth $(X_0 = 1532)$, In.	<u> 19.798</u>	0,198
Fineness Ratio		
Area - Ft ²		
Max. Cross-Sectional (@H.L.)	<u>35.196</u>	.00352
Planform	135.00	.01350
Wetted	-	
Base (X _Q = 1613)	4.89	.0005
•		

TABLE III (CONT'D) MODEL DIMENSIONAL DATA

MODEL COMPONENT : OMS POD - M16		
GENERAL DESCRIPTION: Configuration	140C Orbiter OMS	pod - short pod
. ·		
MODEL SCALE: 0 010	,	
DRAWING NUMBER:	008410	<u>,</u>
	•	
DIMENSIONS:	FULL SCALE	MODEL SCALE
Length (OMS Fwd Sta X ₀ =1310.5)	,In <u>· 258.50</u>	2.585
Max Width (@ $X_0 = 1511$), In.	136.8	1_368
Max Depth (@ X ₀ = 1511), In.	74.70	0.747
Fineness Ratio	2.484	2,484
Area - Ft ²		,
Max. Cross-Sectional	58.864	0.00589
Planform		
Wetted		
Base		

MODEL DIMENSIONAL DATA

MODEL COMPONENT: RUDDER - R5		
GENERAL DESCRIPTION: Configuration 140C	orbiter rudder (identical_
to configuration 140A/B rudder).	•	
MODEL SCALE: 0.010	,	
DRAWING NUMBER: VL70-000146B, -0	000095	
DIMENSIONS:	FULL-SCALE	MODEL SCALE
Area - Ft ²	100.15	0.01002
Span (equivalent) , In.	· 201.00	2.010
Inb'd equivalent chord , In.	91.585	0.916
Outb'd equivalent chord , In.	50.833	0.508
Ratio movable surface chord/ total surface chord		
At Inb'd equiv. chord	0.400	0.400
At Outb'd equiv. chord	0.400	0.400
Sweep Back Angles, degrees	- •	
Leading Edge	34.83	34.83
Trailing Edge	26.25	26.25
Hinge line	34.83	34.83
Area Moment 1 Product of Area and c), Ft3	610.92	0.000610
Mean Aerodynamic Chord	73.2	0.732

MODEL DIMENSIONAL DATA

MODEL COMPONENT: MPG NOZZLES - N 87		
GENERAL DESCRIPTION: Flow-through MPS nor	zzles.	
	·	
MODEL SCALE: 0.010	·	
DRAWING NUMBER: SS-A01279		
DIMENSIONS:	FULL SCALE	MODEL SCALE
MACH NO. 2.6, 3v0, 3.5		
Length - In. Gimbal Point to Exit Plane Throat to Exit Plane	_157.0 _181.55	1.570 1.816
Diameter - In. Exit Throat Inlet	90.435 23.3502	<u>0.9044</u> _0.2335
Area - ft ² Exit Throat	<u>44.607</u> 2_97 <u>4</u>	0.00446
Gimbal Point (Station) - In. Upper Nozzle Xo Yo Zo	1445.00 0.0 443.00	14,450 0.0 4,430
Lower Nozzles Xo Yo Z	1468 17	14.682 0.530 3.426
Null Position - Deg Upper Nozzle Pitch Yaw	_16º _0º	
Tower Nozzle Pitch Yaw	10°	10°

TABLE III (CORT'D) MODEL DIMENSIONAL DATA

MODEL COMPONENT: NOZZLES - N89		
GENERAL DESCRIPTION: OMS nozzle in stowed por	sition which is outboard	8 deg and down
deg from null position. Use with M16.	`	
MODEL SCALE = 0.010		
DRAWING NO. SS-A01279		
DIMENSIONS	FULL SCALE	MODEL SCALE
Mach No.		· -
Length ~ in.		
Gimbal Point to Exit Plan	·56.0	0.560
Throat to Exit Plane		,
Diameter~in.		·
Exit (O.D.)	50_0	0.50
Throat		
Inlet		
Area~ft ² .		
Exit		*.
Throat	•	
Gimbal Point (station)~in.	•	
X _o	1518.00	15.180
Yo	88.00	0.880
Z o ·	492.0	4.920
Null Position~deg.		
Pitch	150491	<u>15</u> 049*
Yew	6°30:	6°30.

MODEL DIMENSIONAL DATA

MODEL COMPONENT: VERTICAL - V 8		·····
GENERAL DESCRIPTION: Configuration 140C, orbit	er vertical ta	11
(identical to configuration 140A/B vertical tail)		
MODEL SCALE: 0.010	,	
DRAWING NUMBER:		
DIMENSIONS:	FULL SCALE	MODEL SCALE
TOTAL DATA	•	
Area (Theo) - Ft ² Planform Span (Theo) - In. Aspect Ratio Rate of Taper Taper Ratio Sweep-Back Angles, Degrees. Leading Edge * Trailing Edge 0.25 Element Line	413.253 315.720 1.675 0.507 0.404 45.000 26.2 41.130	0.0413 3.157 1.675 0.507 0.404 45.000 26.2 41.130
Chords: Root (Theo) WP Tip (Theo) WP MAC Fus. Sta. of .25 MAC W.P. of .25 MAC B.L. of .25 MAC	268.500 108.470 199.808 1463.50 635.522 0.000	2.685 1.085 1.998 14.635 6.355
Airfoil Section Leading Wedge Angle - Deg. Trailing Wedge Angle - Deg. Leading Edge Radius	10.000 14.920 2.00	10.000 14.920 0.02
Void Area Blanketed Area		0.000

ORIGINAL PAGE IS OF POOR QUALITY

TABLE III (CONT'D) MODEL DIMENSIONAL DATA

MODEL COMPONENT: WING-W 127)ATA	,
GENERAL DESCRIPTION: Configuration 140C orbiter w	ing, MCR 200-R)	similar to
140A/B wing W116but with refinements: improved	wing-boot-midbod	y fairing
$(X_0 = 940 \text{ to } X_0 = 1040)$; elevon split line relo	cated from Yo=28	1 to Y ₀ =312.5.
MODEL SCALE. 0.010		
CN TREE	DWG. NO. VL70	-000140C, -000200I
DIMENSIONS:	FULL-SCALE	MODEL SCALE
Area (Theo.) Ft2 Planform Span (Theo In. Aspect Ratio Rate of Taper Taper Ratio Dihedral Angle, degrees Incidence Angle, degrees Aerodynamic Twist, degrees Sweep Back Angles, degrees Leading Edge Trailing Edge 0.25 Element Line Chords: Root (Theo) B.P.0.0. Tip, (Theo) B.P. MAC Fus. Sta. of .25 MAC W.P. of .25 MAC B.L. of .25 MAC EXPOSED DATA Area (Theo) Ft2 Span, (Theo) In. BP108 Aspect Ratio Taper Ratio Chords Root BP108 Tip 1.00 b MAC Fus. Sta. of .25 MAC W.P. of .25 MAC W.P. of .25 MAC Airfoil Section (Rockwell Mod NASA) XXXX-64 Root b Tip b Tip b Tip b Leading Edge Cuff Planform Area Ft2 Leading Edge Intersects Fus M. L. @ Sta Leading Edge Intersects Wing @ Sta	2690.00 936.68 2.265 1.177 0.200 3.500 0.500 3.000 45.000 -10.056 35.209 680.24 137.85 474.81 1136.83 290.58 182.13 1751.50 720.68 2.059 0.245 562.09 137.85 392.83 1185.98 294.70 251.77 0.113 0.12	0.2690 9.3668 2.265 1.177 0.200 3.500 0.500 3.000 45.000 -10.056 35.200 6.892 1.379 4.748 11.368 2.906 1.821 0.1752 7.207 2.059 0.245 5.621 1.379 3.928 11.860 2.943 2.518 0.113 0.12
ORIGINAL PAGE IS OF POOR QUALITY		and the second s
TOOK QUALITY		ı

MODEL DIMENSIONAL DATA

MODEL COMPONENT: FAIRING - FR10

GENERAL DESCRIPTION: Umbilical door fairing between aft ET/orbiter

attach structure.

MODEL SCALE: 0.010

DRAWING NO.: VL78-000063, -000062B, Martin Marietta 82600207000

DIMENSIONS:	•	FULL SCALE	MODEL SCALE
Leading edge at	$\mathbf{x}_{\mathbf{T}}$	2052 :0	20.520
Length		193.00	1.930
Width ·		15.00	0.150

TABLE III (CORT'D) MODEL DIMENSIONAL DATA

MODEL COMPONENT : <u>EXTERNAL TANK</u>	- ^т 28	
GENERAL DESCRIPTION: Same as T	except larger.	
MODEL SCALE: 0.010		
DRAWING NUMBER: <u>VL72-000143D, VL7</u> (Dimensions are to		ML, TPS not included)
DIMENSIONS :	FULL SCALE	MODEL SCALE
Length, 'In.	1844.275	18.443
Max Width , Diameter, In.	331.00	3.310
Max Depth	***	
Fineness Ratio	5.687	5.687
Area - Ft ²		
Max. Cross-Sectional	597.53	e.o.298
Planform	1	
Wetted		
Base		

MODEL DIMENSIONAL DATA

MODEL COMPONENT: ATTACH STRUCTURE - AT28

GENERAL DESCRIPTION: Rear orbiter to ET attach structure (LH and RH)

(2 members).

MODEL SCALE:	0.010				
DRAWING NO.:	VI.78-000063, VI	<u>:</u> 78-000062B		•	
DIMENSIONS:		MEMBER		FULL SCALE	MODEL SCALE
		和	Хo	_1317.00	_13.170 _
			Yo	<u>- 96.50 (LH</u>	
			Z _o	96.50 (RH 267.50_) 0.965 2.675
			Y	2058.00	20.580
			$\mathbf{x_{T}}$	- <u>125.68</u> (LH	
			T	125.68 (RH	·
			z_{T}	_515.5	5.155
		#2	x o'	1317.00_	_13.170
			Ϋ́ο	96_50_(LH)0.965`
			Z _o	96.50 (RH 267.50) 0.965 2.675
			X _T	1872.00	18.720
			T _{T,}	- 125.68 (LH 125.68 (RH	
			z_{T}	504.5) 1.257 5.045
Diamete	er, In.	鱼	•	11.5	0.115
		#2		15.5	0.155

MODEL DIMENSIONAL DATA

MODEL COMPONENT: ATTACH STRUCT	JRE - AT ₃₁	•	
GENERAL DESCRIPTION: Rear ET	to SRB attach	structure (LH and	RH), 3 members
MODEL SCALE: 0.010		MODEL DRAWING	
DRAWING NO.: <u>V178-000063</u> 000	0062B, -00006	6	
DIMENSIONS:	MEMBER	FULL SCALE	MODEL SCALE
	#L	·1·	20.580 LH)-1.715 4.570 15.110 0.5324 0.570 20.580 -1.639 4.498 15.110 0.766
	<i>#</i> 3	$egin{array}{lll} Z_{S'} & & & 15.73 \\ X_{T} & & & 2058.00 \\ Y_{T} & & -161.72 \\ Z_{T} & & & 343.00 \\ \end{array}$	0.157 20.580 - 1.617 3.430
		X _s <u>1511.00</u> Y _c 53.24	

MODEL DIMENSIONAL DATA

MODEL COMPONENT: ATTACH STRUCTURE - AT32

Attach structure dia., in.

GENERAL DESCRIPTION: Forward orbiter/ET attach structure (2 member structure)

MODEL SCALE: 0.010 MODEL DRAWING NO.: DRAWING NO .: <u>VL78-000062B</u>, <u>Martin</u> Marietta 8260020914 DIMENSIONS: FULL SCALE MODEL SCALE X_o 3.882 388 15 Yo 0.0 Zo LWR LML LWR LML $\mathbf{x}_{\mathbf{T}}$ $\mathbf{Y}_{\mathbf{T}}$ \mathbf{z}_{T} $\mathbf{x}_{\mathbf{T}}$ 3,882 $\mathbf{Y}_{\mathbf{T}}$ z_{T} LWR LML Yo

0.060

MODEL DIMENSIONAL DATA

MODEL COMPONENT: ET PROTUBERANCE - PT12

GENERAL DESCRIPTION: Lightning rod attached to ET nose.

2

MODEL SCALE: 0.010

DRAWING NO.: VL78-00068B

DIMENSIONS:	FULL SCALE	MODEL SCALE
Length - In.	30.90	0.309
Diameter - In.	3.20	0.032

MODEL DIMENSIONAL DATA

MODEL COMPONENT: ELECTRICAL LINE - PT22

GENERAL DESCRIPTION: Left-hand electrical conduit line on T28.

MODEL SCALE: 0.010

DRAWING NO.: VL78-000063, VL78-000062B

DIMENSIONS:		FULL SCALE MODEL SCALE
Leading edge at:	$x_{\mathbf{T}}$	1084.333 10.843
	$\mathtt{Y}_{\mathbf{T}}$	- 99.591 - 0.996
	$\mathbf{z_{T}}$	- 139.620 - 1. 3 96
Trailing edge at:	· X _T	2058.00 20.580
	$\mathtt{Y}_{\mathbf{T}}$	- 99.591 - 0.996
	$\mathbf{z}_{\mathbf{r}}$	- 139.620 - 1.396
Conduit size:		2.0 x 6.0 0.02 x 0.06

Centerline of line located radially at $\emptyset = 35.5^{\circ}$

TABLE III (COMP'D)

MODEL DIMENSIONAL DATA

MODEL COMPONENT: LO2 RECIRCULATION LINE - PT23

GENERAL DESCRIPTION: LO2 recirculation line on right-hand upper side

of T₂₈.

MODEL SCALE: 0.010

DRAWING NO.: VL78-000063, VL78-000062B, Martin Marietta 82600207000

DIMENSIONS:		FULL SCALE	MODEL SCALE
Leading edge at:	$\mathbf{x}_{\mathbf{T}}$	1040.667	10.407
	$\mathtt{Y}_{\mathbf{T}}$	94 .16 9	0.942
	z_{T}	540.934	5.409
Trailing edge at:	$\mathbf{x_{T}}$	2062.920	20.629
	$\mathtt{Y}_{\mathbf{T}}$	70.000	0.700
	$\mathbf{z_{T}}$	573.934	5.739
Diameter of line		4.0	0.040

Centerline of lines located radially at $\phi = 33^{\circ}45^{\circ}$ (Right of TDC looking forward).

TABLE III (COMP'D)

MODEL DIMENSIONAL DATA

MODEL COMPONENT: LH2 RECIRCULATION LINE - PT24

GENERAL DESCRIPTION: LB recirculation line on T28.

MODEL SCALE: 0.010

DRAWING NO.: VL78-000063, VL78-000062B, Martin Marietta 82600207000

DIMENSIONS:		FULL SCALE	MODEL SCALE
Leading edge at:	$\mathbf{x_T}$.040.667	10.407
•	$\mathtt{Y}_{\mathbf{T}}$	- 94.169	- 0.942
	$\mathbf{z}_{\mathbf{r}}$	540.934	5.409
Trailing edge at:~	$\mathbf{x_{r}}_{-\infty}$	2062.920	20.629
	$\mathtt{Y}_{\mathbf{T}}$	- 70.00	- 0.700
	$\mathbf{z_{T}}$	573-934	5.739
Diameter of line		4.00	0.040

Centerline of line located radially at $\phi = 33^{\circ}45^{\circ}$

(Left of TDL looking forward)

MODEL DIMENSIONAL DATA

MODEL COMPONENT: ELECTRICAL LINE - PT25

GENERAL DESCRIPTION: Right-hand aft electrical conduit line on T28

with $\ensuremath{\text{LH}_2}$ pressure sensor line and $\ensuremath{\text{LO}_2}$ vent valve actuator line.

MODEL SCALE: 0.010

DRAWINGS NO.: VL78-000063, VL78-000062B, Martin Marietta 82600207000

DIMENSIONS:		FULL SCALE	MODEL SCALE	
Leading edge at:	$x_{\mathtt{T}}$	1084.333	10.843	
	$\mathbf{Y}_{\mathbf{T}}$	99.591	0.996	
	$z_{ ext{T}}$	139.620	1.396	
Trailing edge at:	$\mathbf{z}_{\mathbf{T}}$	2058.00	20.580	
	$\mathbf{Y}_{\mathbf{T}}$	99.591	0.996	
	$z_{f r}$	139,620	1.396	
Conduit size		2.0 x 6.0	0.020 x 0.00	5

Centerline of line located radially at $\phi = 35.5^{\circ}$

MODEL DIMENSIONAL DATA

MODEL COMPONENT: LO2 PRESSURE LINE - PT26

GENERAL DESCRIPTION: LO2 pressure line on the T28.

MODEL SCALE: 0.010

DRAWING NO.: VL78-000063, VL78-000062B, Martin Marietta 82600207000

DIMENSIONS:		FULL SCALE	MODEL SCALE
Leading edge at:	X _T	360.733	3.607
•	YŢ	15-145	0.151
	Z _T	407.718	4.077
Trailing edge at:	$\mathbf{x}^{\mathbf{L}}$	2083.5	20.835
,	YŢ	63.25	0.633
	\mathbf{z}_{T}	609.00	6.090
Centerline of line located radiall	y at $\phi = 27^{\circ}$		
Line diameter		2.0	0.020

MODEL DIMENSIONAL DATA

MODEL COMPONENT: ELECTRICAL LINE - PT27

GENERAL DESCRIPTION: Electrical conduit on the right-hand forward section

of T28.

MODEL SCALE: 0.010

DRAWING NO.: VL78-000062B

DIMENSIONS:		FULL SCALE	MODEL SCALE
Leading edge at:	$\mathbf{x_{T}}$	360.733	3.607
	YT	11.549	0.115
	$\mathbf{z_r}$	412.474	4.125
Trailing edge at:	$\mathbf{x_{T}}$	876.273	8.763
	$\mathbf{Y_{T}}$	226.114	2.261
	$\mathbf{z}_{\mathbf{p}}$	646.774	6.468

Centerline of conduit located radially at ϕ =

MODEL DIMENSIONAL DATA.

MODEL COMPONENT: FEEDLINE - FLIO

GENERAL DESCRIPTION: LH2 feedline on upper left-hand side of T28.

MODEL SCALE: 0.010

DRAWING NO.: VL78-000063, VL78-000062B

DIMENSIONS:	•	FULL SCALE	MODEL SCALE
Leading edge at:	ХŢ	2071.5	20.715
•	. Y _T	- 70.0	- 0.700
	$\mathbf{z_r}$	573 • 93 <u>+</u>	5.739
Trailing edge at:	$\mathbf{x_{T}}$	2081.8	20.818
	$\mathbf{Y}_{\mathbf{T}}$	- 70.0	-0.700
,	$\mathbf{z_{T}}$	58 ¹ 4.059	5.841
Diameter of line (17.0]	.D.)	18.160	0.182

MODEL DIMENSIONAL DATA

MODEL COMPONENT: FEEDLINE: - FL

GENERAL DESCRIPTION: LO2 feedline on upper right-hand of T28.

MODEL SCALE: 0.010

DRAWING NO.: VL78-000063, VL78-000062B

DIMENSIONS:	•	FULL SCALE	MODEL SCALE
Leading edge at:	$\mathbf{x}_{\mathbf{T}}$	1000.667	10.007
•	\mathbf{Y}_{T}	70.00	0.700
	z_{T}	150.519	1.505
Trailing edge at:	$\mathbf{x}_{\mathbf{T}}$	2071.5	20.715
	$\mathbf{Y}_{\mathbf{T}}$	70.00	0.700
	$z_{ m T}$	573.934	5.739
Diameter of line (17.0 I.D.)		18.16 o.D.	0.182

TABLE III (COET'D) MODEL DIMENSIONAL DATA

MODEL COMPONENT : BOOSTER SOLID ROCKET MOTOR - S22			
GENERAL DESCRIPTION: The BSRM is an external propulsion system			
which is jettisoned and recoverable aft	er burnout. The	BSRM's can be	
refurbished and reused after recovery.			
MODEL SCALE: 0.010			
DRAWING NUMBER:	0002		
DIMENSIONS:	FULL SCALE	MODEL SCALE	
Length, In.	1789.60	17.896	
Max Width, Tank Dia., In.	146.00	1.460	
Max Depth, Aft shroud dia., In.	_208.20	<u>5_085</u>	
Fineness Ratio	8.596	8.596	
Area - Ft ²			
Max. Cross-Sectional	236.423	0.0236	
Planform			
Wetted		,	
Base			
WP of BSRM centerline (Z_{T})	400.00	4.00	
FS of BSRM nose (X_T)	743.0	7.430	
BP of BSRM centerline ($Y_{\mathbf{T}}$)	250.5	2.505	

MODEL DIMENSIONAL DATA

MODEL COMPONENT: NOZZLES - N88			
GENERAL DESCRIPTION: Flow-through SRB	nozzle simulato	r € = 7.0 prote	otype.
MODEL SCALE = 0.010			
DRAWING NO. SS-A01281	·	1	
MACH NO.: 2.6, 3.0, 3.5	5		
DIMENSIONS		FULL SCALE	MODEL SCALE
Mach No: 2.6, 3.0	3.5	•	
Length ~ in.			
Gimbal Point to Exit Plane		86.8	_0.868_
Throat to Exit Plane		_112.135	_1.121
Diameter~in.			
Exit		144.290	1.443
Throat		64.53.	0.645
Inlet			0.04)
Area~ft ² .			
Exit			
Throat		_356.738	_C_03567
- .		_22.712	0.00227
Gimbal Point (station)~in.			
X _B		1902.6 ·	19.026
TB.	<u>+</u>	250.5	
$\mathbf{z_B}$	_	_	
Null Position~d			
Pitch -		0	•
Yav			_0
•	62 .~	0	

TABLE III (COMT'S) MODEL DIMENSIONAL DATA

MODEL COMPONENT :SRB_PROTUBERA	NCES - PS ₂₀	
GENERAL DESCRIPTION :Electrical_t	unnel on SRB side,	30 deg taper
leading edge, circular cross-section		•
discontinued from X _B = 1504.25 to 15	•	
MODEL SCALE: 0.010	MODEL DRAWING:	SS-A01281
DRAWING NUMBER: VC77-000002A		
DIMENSIONS:	FULL SCALE	MODEL SCALE
Length , In.	1.384.57	<u> 13.846 · </u>
Max Width	13.00	0.130
Max Depth	3.72	0,037
Radius	6.19	0.0619
Area		
Max. Cross-Sectional		
Planform	-	
Wetted	,	*
Base	***************************************	
Taper at leading edge	30 deg. '	30 deg.

MODEL DIMENSIONAL DATA

MODEL COMPONENT: CIRCUMFERENTIAL STIFFENER - PS21

GENERAL DESCRIPTION: Four-ring stiffeners located at aft end of the

solid rocket boosters. The stiffener is a curved I-beam.

MODEL SCALE: 0.010

DRAWING NO.: VC77-000002

DIMENSIONS:	FULL SCALE	MODEL SCALE
Height	4.7	0.047
Length, In.	4.0	0.040
Locations:	1602.0	
•	1694.4	
	1729.0	,
	1771.4	

MODEL DIMENSIONAL DATA

MODEL COMPONENT: SRB PROTUBERANCE - PS22

GENERAL DESCRIPTION: Tie-down fixture on aft skirt. Total of four

mounted @ 30 deg to the vertical SRM centerline.

MODEL SCALE: 0.010

DRAWING NO.: VC77-000002

DIMENSIONS:	FULL SCALE	MODEL SCAL
Leading edge @ XB =	1855.2	18.552
Trailing edge @ XB =	1925.2	19.252
Width, maximum, In.	14.5	0.145
Height, maximum	9.0	0.090
Plan taper	.120	120
OAC	70.0	0.700

Tapers from zero height at 1855.2 to 9" @ 1925.2

MODEL DIMENSIONAL DATA

MODEL COMPONENT: SOLID ROCKET BOOSTER - EXTERNAL TANK ATTACH - PS14

GENERAL DESCRIPTION: Two ring stiffeners located at aft end of solid

rocket boosters. The stiffener is curved L-beam.

MODEL SCALE: 0.010

DRAWING NO.: VC77-000002

DIMENSIONS:		FULL SCALE	MODEL SCALE
Height, In.		8.00	0.0800
Length, In.		3.00	0.0300
Location	$X_{B} = 1511.00$		-

MODEL DIMENSIONAL DATA.

MODEL COMPONENT: CIRCUMFERENTIAL STIFFENER - PS13

GENERAL DESCRIPTION: Ring stiffener located at the point where the

skirt flares. The stiffener is I-beam.

MODEL SCALE: 0.010

DRAWING NO.: VC77-000002

DIMENSIONS:		FULL SCALE	MODEL SCALE
Height, In.		6.50	0.065
Length, In.		4.00	0.040
Location:	$X_{B} = 1833.70$	•	

TABLE III (CORT'D)

MODEL DIMENSIONAL DATA

MODEL COMPONENT: Data capsule and CAMERA - PS15

GENERAL DESCRIPTION: Cylinder located on forward skirt of SRB

containing camera and data storage equipment, mounted longitudinally.

MODEL SCALE: 0.010

DRAWING NO.: VC77-000002

DIMENSIONS:		1
DTMENSTORS:	FULL SCALE	MODEL SCALE
Length, In. at $X_B = 403.38$	36.00	0.360
Diameter, In.	9.00	0.090

TABLE III. (Concluded)

MODEL DIMENSIONAL DATA

MODEL COMPONENT: FORWARD ATTACH - PS16

GENERAL DESCRIPTION: On SRB, forward SRB-ET attach

MODEL SCALE: 0.010

DRAWING NO.: VC77-000002

DIMENSIONS:	FULL SCALE	MODEL SCALE
Height, In.	9.50	0,:0950
Inner:		2,2-
Length, In, @ $X_B = 442.70$	կi . 28	0.443
Width, In.	16.00	0.160
Outer:		
Length, In. @ X _B = 442.70	23.85	0.239
Width, In.	11.00	0.110

TABLE IV. MPS BLOWING SYSTEM SET PRESSURES

						
MACH	PT	CHAMBER PRESSURE				
Meo	,	0; =N+3	0;=N	0;=N-3		
1,55 2,0 2,2 2.6	14.7	1341 1616 1705 1621	1006 930 1018	745 648 605 685		
3.5		1520 1486	926	656 598		
1.55 2.0 2.2 2.6 3.0 3.5	10.7	976 1177 1241 1179 1106 1078	732 677 741 793 757 672	542 472 440 499 477 434		
1.55 2.0 2.2 2.6 3.5	6.7	611 736 778 739 692 685	458 424 469 497 473 427	339 295 276 313 299 276		

B; = N+3 indicates 3° Over protottes

Prome torning angle

=">N"

B; = N-3 = "<N"

TABLE V. - SRB BLOWING SYSTEM SET PRESSURES

MACH	PT	CHAM	BER PR	ESSURE	
Mas		0; = N+10	0;=N+5	0:- N	B;=N-5
1.55 2.0 2.2 2.6 3.0 3.5	14.7	1266 1597 1925 3095 3200	804 846 921 1378 1900 1708	547 560 514 629 868 1148	372 357 344 332 388 512
1.55 2.0 2.2 2.6 3.0 3.5	10.7	921 1163 1401 2251 2328	585 616 67! 1002 1382 1239	398 408 374 453 632 833	27/ 260 250 241 282 37/
1.55 2.0 2.2 2.6 3.0 3.5	6.7	577 728 878 1411 1456	367 385 420 628 865 779	250 255 235 286 395 524	170 163 157 151 171 233

TABLE VI.- BASE AND BODY FLAP PRESSURE TAP LOCATION

;				
	TAP DUMBER	Yo	Z.	Ž
	101	0	324.7	
	102	- 53.0	309.4	
	103	53.0	309.4	
	104	-110.0	324.7	
OSBITER	105	1.10.0	324.7	
3456	106	DELE,	LED	
	107	- \ O3.0	5.83.3	
	108	103.0	383.3	
	109	0	396.1	
	110:	- 25.0	401.9	
	111	25.0	401.9	,
	112	- 86.0	435.6	
	113	800	₹38. 6	,
	114	0	494.2	
	121	- 66.0	505	•
OMS	122	60.0	5০\$,
	123	-120.0	460	
	124	120.0	460	
VERTICAL	131	0	534.0	
	141	-75		1565.0
700E	142	0		.
FLAP	143	75		
	144	-75		
	145	75		
	146	0		7
	<u> </u>	<u> </u>		<u></u>

TABLE VII.

IA82C COEFFICIENT SCHEDULE

ſ		I ·		· · · · · · · · · · · · · · · · · · ·	Coefficients									
	Dataset Type	Dataset Sequence	lst ID	2nd ID	1	2	3	4	5	6	7	8	9	10 <i>.</i>
	RE5XXX	01 - 80	ALPHA	BETA	масн	CNW	CTMW	CBMW	CHEI	CHEO				
	AE5XXX	01 - 80	ALPHA	BETA	CP151	CP152	CP153	CP154	CP155	CP156	CP157	CP158	CP159	CP160
	BE5XXX	01 - 80	ALPHA .	BETA	CP161	CP162	CP163	CP164	CP165	CP166	CP167	CP168	CP169	CP170
	CE5XXX	01 - 80	ALPHA	BETA	CP101	CP102	CP103	CP104	CP105	CP107	CP108	CP109	CP110	CP111
40	DE5XXX	01 - 80	ALPHA	BETA	CP112	CP113	CP114	CP121	CP122	CP123	CP124	CP131		
	EE5XXX	01 - 80	АСРНА	BETA	CP141	CP142	CP143	CP144	CP145				,	
	R E5HXX	- 01 - 80	ALPHA	BETA		CP201	- CP231	as a f	unction	of rad	ius and	PHI val	ues.	
	IE5XXX	01 - 80	ALPHA	BETA	CP231	CP311	CP312	CP313	CP314	CP301	CP302	CP303	CP304	Q(PSF)

Note: ID = independent variable

Notes:

- 1. Positive directions of angles are indicated by arrows
- 2. For clarity, origins of wind and stability Yw axes have been displaced from the center of gravity Z,

a. GeneralFigure 1. - Axis Systems.

BODY FLAP DEFLECTIONS

b. Control Surface deflections

Figure 1. - Continued.

ORIGINAL PAGE IS OF POOR QUALITY

c. Panel Loads and Hinge Moments

Figure 1. - Concluded.

a. Integrated Space Shuttle Vehicle Launch Configuration

Figure 2. - Model Sketches.

b. Orbiter $(O_{\tilde{l}})$ Components

Figure 2. - Continued.

c. External Tank (T_{28}) Protrusions Figure 2. - Continued.

d. SRB (S_{22}) Protrusions Figure 2. - Continued.

Figure 2. - Continued.

f. Orbiter Base and Body Flap Pressure Tap Array Figure 2. - Continued.

X/L MEASURED FROM 238.0 L= 1290.3 IN FULL SCALE

g. Orbiter Vent Pressure Tap Array

Figure 2. - Continued.

TAP	R, in	श्च
NO NOEZ		
201	o`	-
SOS	0.7448	270
203	1,0509	O
204	}	90
205		180
206	•	270
207	1.3902	6
Zog		45
209		90
2/6		135
211		180
SIZ	·	225
213	1	270
214	₹	315
215	1.4812	0
216	•	ඉං

TAP	Bin	ď
217 218 219 220 221 222 224 227 227 228 229 230 231	1. 55 SO	13 18 18 0 0 0 13 80 5 0 9 0 1 18 19 27 0 5 18 18 19 27 0 5 18 18 18 18 18 18 18 18 18 18 18 18 18

h. ET Base Pressure Tap Array

Figure 2. - Continued.

LEFT HAUD SHOWN

TAPS ARE FREE STANDING INSIDE SICIET

947	No's	V		RIT	L. H.
1517	<i>∟ H</i>	УB		Ф8	Φ5
301	311	1000		O°	o
SOE	312		·	120	60
303	313			ાઠ૦	180
304	314	1		३००	240

i. SRM Base Pressure Tap ArrayFigure 2. - Continued.

86

Q' is THE DLUME EXIT ANGLE MEASURED RELATIVE TO THE MOZZLE CENTERLINE. HOMINAL IS INDICATIVE OF THE PEOTOTYPE PLUME SHAPE AND INSTIAL TURNING ANGLE; LESS THAN DOMINAL INDICATES A SMALLER AND GREATER THAN HOMINAL A LARGER THAN DROTTY PE PLUME.

> j. Definition of Θ_i Figure 2. - Concluded.

a. 75-OTS in the ARC 8 \times 7 Wind Tunnel, 3/4 Front View Figure 3. Model photographs.

b. 75-OTS in the ARC 8 x 7 Wind Tunnel, 3/4 Rear View Figure 3. - Continued.

OF POOR QUALITY

c. 75-0T in the ARC 8 x 7 Wind Tunnel, $\alpha \text{=-}4^{\circ}$, $P_{\text{C}}/P_{\infty}\text{>>}N$ Figure 3. - Continued.

d. 75-OTS in the ARC 8 x 7 Wind Tunnel, $\alpha \text{=}\,0^{\circ}$, $P_{\text{C}}/P_{\infty}\text{>>}N$ Figure 3. - Concluded.

DATA

(A)BETA .00

PAGE

CADBLEA .00

FIG. 5 MPS PLUME SIZE EFFECT ON WING LOADS IN PITCH, MACH=3.5

PAGE

(A)BETA .00 PAGE

(A)BETA .00 PAGE

(A)BETA = .00 PAGE 12

FIG. 7 MPS PLUME SIZE EFFECT ON ELEVON HINGE MOMENTS IN PITCH, MACH=3.5

(A)BETA = .00 PAGE 14

MPS PLUME SIZE EFFECT ON WING LOADS IN YAW, MACH=3.0 FIG. 8 .00

FIG. 8 MPS PLUME SIZE EFFECT ON WING LOADS IN YAW, MACH=3.0
(A)ALPHA = .00

(A)ALPHA =.00 PAGE

FIG. 9 MPS PLUME SIZE EFFECT ON WING LOADS IN YAW, MACH=3.5

FIG. 9 MPS PLUME SIZE EFFECT ON WING LOADS IN YAW, MACH=3.5

FIG. 9 MPS PLUME SIZE EFFECT ON WING LOADS IN YAW, MACH=3.5
(A)ALPHA = .00

FIG. 9 MPS PLUME SIZE EFFECT ON WING LOADS IN YAW, MACH=3.5

FIG. 10 MPS PLUME SIZE EFFECT ON ELEVON HINGE MOMENTS IN YAW, MACH=3.0

(A) ALPHA = .00

FIG. 11 MPS PLUME SIZE EFFECT ON ELEVON HINGE MOMENTS IN YAW, MACH=3.5

(A)ALPHA = .00

FIG. 12 SRB PLUME SIZE EFFECT ON WING LOADS IN PITCH, MACH=2.6
(A)BETA = .00

FIG. 12 SRB PLUME SIZE EFFECT ON WING LOADS IN PITCH, MACH=2.6

FIG. 12 SRB PLUME SIZE EFFECT ON WING LOADS IN PITCH, MACH=2.6
(A)BETA = .00

FIG. 12 SRB PLUME SIZE EFFECT ON WING LOADS IN PITCH, MACH=2.6
(A)BETA = .00

FIG. 13 SRB PLUME SIZE EFFECT ON WING LOADS IN PITCH, MACH=3.0
(A)BETA = .00

FIG. 13 SRB PLUME SIZE EFFECT ON WING LOADS IN PITCH, MACH=3.0
(A)BETA = .00

FIG. 13 SRB PLUME SIZE EFFECT ON WING LOADS IN PITCH, MACH=3.0
(A)BETA = .00

FIG. 13 SRB PLUME SIZE EFFECT ON WING LOADS IN PITCH, MACH=3.0

FIG. 14 SRB PLUME SIZE EFFECT ON WING LOADS IN PITCH, MACH=3.5

(A)BETA = .00

FIG. 14 SRB PLUME SIZE EFFECT ON WING LOADS IN PITCH, MACH=3.5

(A)BETA = .00

PAGE 40

FIG. 14 SRB PLUME SIZE EFFECT ON WING LOADS IN PITCH, MACH=3.5

FIG. 14 SRB PLUME SIZE EFFECT ON WING LOADS IN PITCH, MACH=3.5

(A)BETA = .00

FIG. 15 SRB PLUME SIZE EFFECT ON ELÉVON HINGE MOMENTS IN PITCH, MACH=2.6

(A)BETA = .00

PAGE 44

FIG. 15 SRB PLUME SIZE EFFECT ON ELEVON HINGE MOMENTS IN PITCH, MACH=2.6

(A)BETA = .00

PAGE

FIG. 16 SRB PLUME SIZE EFFECT ON ELEVON HINGE MOMENTS IN PITCH, MACH=3.0

(A)BETA = .00

PAGE 46

FIG. 16 SRB PLUME SIZE EFFECT ON ELEVON HINGE MOMENTS IN PITCH, MACH=3.0

(A)BETA = .00

PAGE

FIG. 17 SRB PLUME SIZE EFFECT ON ELEVON HINGE MOMENTS IN PITCH, MACH=3.5

(A)BETA = .00 .PAGE. 48

FIG. 17 SRB PLUME SIZE EFFECT ON ELEVON HINGE MOMENTS IN PITCH, MACH=3.5

(A)BETA = .00

FIG. 18 SRB PLUME SIZE EFFECT ON WING LOADS IN YAW, MACH=2.6

FIG. 18 SRB PLUME SIZE EFFECT ON WING LOADS IN YAW, MACH=2.6

FIG. 18 SRB PLUME SIZE EFFECT ON WING LOADS IN YAW, MACH=2.6

FIG. 18 SRB PLUME SIZE EFFECT ON WING LOADS IN YAW, MACH=2.6

FIG. 19 SRB PLUME SIZE EFFECT ON WING LOADS IN YAW, MACH=3.0
(A)ALPHA = .00

(A)ALPHA =.00

FIG. 19 SRB PLUME SIZE EFFECT ON WING LOADS IN YAW, MACH=3.0
(A)ALPHA = .00

FIG. 19 SRB PLUME SIZE EFFECT ON WING LOADS IN YAW, MACH=3.0

FIG. 19 SRB PLUME SIZE EFFECT ON WING LOADS IN YAW, MACH=3.0
(A)ALPHA = .00.

PAGE · 59

FIG. 20 SRB PLUME SIZE EFFECT ON WING LOADS IN YAW, MACH=3.5

(A)ALPHA =.00

FIG. 20 SRB PLUME SIZE EFFECT ON WING LOADS IN YAW, MACH=3.5
(A)ALPHA = .00

FIG. 21 SRB PLUME SIZE EFFECT ON ELEVON HINGE MOMENTS IN YAW, MACH=2.6

(A) ALPHA = .00

PAGE

FIG. 21 SRB PLUME SIZE EFFECT ON ELEVON HINGE MOMENTS IN YAW, MACH=2.6

(A)ALPHA = .00

FIG. 22 SRB PLUME SIZE EFFECT ON ELEVON HINGE MOMENTS IN YAW, MACH=3,0

(A)ALPHA = .00

FIG. 22 SRB PLUME SIZE EFFECT ON ELEVON HINGE MOMENTS IN YAW, MACH=3.0

(A)ALPHA = .00

FIG. 23 SRB PLUME SIZE EFFECT ON ELEVON HINGE MOMENTS IN YAW, MACH=3.5

(A)ALPHA = :00

FIG. 23 SRB PLUME SIZE EFFECT ON ELEVON HINGE MOMENTS IN YAW, MACH=3.5

(A)ALPHA = .00

PAGE

FIG. 24 MPS PLUME SIZE/ENG. OUT EFFECT ON WING LOADS IN PITCH, MACH=2.6

(A)BETA = .00

PAGE -71

FIG. 24 MPS PLUME SIZE/ENG. OUT EFFECT ON WING LOADS IN PITCH, MACH=2.6

(A)BETA = .00

PAGE 72

FIG. 24 MPS PLUME SIZE/ENG. OUT EFFECT ON WING LOADS IN PITCH, MACH=2.6

(A)BETA = .00

PAGE

.00 PAGE

FIG. 24 MPS PLUME SIZE/ENG. OUT EFFECT ON WING LOADS IN PITCH, MACH=2.6

(A)BETA = .00

PAGE

FIG. 25 MPS PLUME SIZE/ENG. OUT EFFECT ON WING LOADS IN PITCH, MACH=3.0

(A)BETA = .00

FIG. 25 MPS PLUME SIZE/ENG. OUT EFFECT ON WING LOADS IN PITCH, MACH=3.0

(A)BETA = .00

PAGE 78

FIG. 25 MPS PLUME SIZE/ENG. OUT EFFECT ON WING LOADS IN PITCH, MACH=3.0

(A)BETA = .00

FIG. 26 MPS PLUME SIZE/ENG. OUT EFFECT ON WING LOADS IN PITCH, MACH=3.5

(A)BETA = .00

FIG. 26 MPS PLUME SIZE/ENG. OUT EFFECT ON WING LOADS IN PITCH, MACH=3.5

(A)BETA = .00

FIG. 26 MPS PLUME SIZE/ENG. OUT EFFECT ON WING LOADS IN PITCH, MACH=3.5

[A]BETA = .00

(A)BETA .00 PAGE

FIG. 26 MPS PLUME SIZE/ENG. OUT EFFECT ON WING LOADS IN PITCH, MACH=3.5

(A)BETA = .00

FIG. 27 MPS PLUME SIZE/ENG. OUT EFFECT ON ELV. HINGE MOMENTS IN PITCH, MACH=2.6

(A)BETA = .00

PAGE 86

FIG. 27 MPS PLUME SIZE/ENG, OUT EFFECT ON ELV. HINGE MOMENTS IN PITCH, MACH=2.6

(A)BETA = .00

PAGE 87

FIG. 28 MPS PLUME SIZE/ENG. OUT EFFECT ON ELV. HINGE MOMENTS IN PITCH, MACH=3.0 (A)BETA = .00

FIG. 28 MPS PLUME SIZE/ENG. OUT EFFECT ON ELV. HINGE MOMENTS IN PITCH, MACH=3.0

(A)BETA = .00

PAGE 89

FIG. 29 MPS PLUME SIZE/ENG. OUT EFFECT ON ELV. HINGE MOMENTS IN PITCH, MACH=3.5

(A)BETA = .00

PAGE 90

FIG. 29 MPS PLUME SIZE/ENG. OUT EFFECT ON ELV. HINGE MOMENTS IN PITCH, MACH=3.5

(A)BETA = .00

PAGE 91

FIG. 30 MPS PLUME SIZE/ENG. OUT EFFECT ON WING LOADS IN YAW, MACH=2.6

(A)ALPHA = .00

PAGE

£.

FIG. 30 MPS PLUME SIZE/ENG. OUT EFFECT ON WING LOADS IN YAW, MACH=2.6

(A) ALPHA = .00

PAGE 93

FIG. 30 MPS PLUME SIZE/ENG. OUT EFFECT ON WING LOADS IN YAW, MACH=2.6

(A)ALPHA = .00

PAGE

FIG. 30 MPS PLUME SIZE/ENG. OUT EFFECT ON WING LOADS IN YAW, MACH=2.6
(A)ALPHA = .00

FIG. 31 MPS PLUME SIZE/ENG. OUT EFFECT ON WING LOADS IN YAW, MACH=3.0

[A]ALPHA = .00

PAGE

FIG. 31 MPS PLUME SIZE/ENG. OUT EFFECT ON WING LOADS IN YAW, MACH=3.0

(A)ALPHA = .00

FIG. 31 MPS PLUME SIZE/ENG. OUT EFFECT ON WING LOADS IN YAW, MACH=3.0

(A)ALPHA = .00

FIG. 31 MPS PLUME SIZE/ENG. OUT EFFECT ON WING LOADS IN YAW, MACH=3.0

(A)ALPHA = .00

PAGE 100

FIG. 31 MPS PLUME SIZE/ENG. OUT EFFECT ON WING LOADS IN YAW, MACH=3.0

(A)ALPHA = .00

PAGÉ

FIG. 32 MPS PLUME SIZE/ENG. OUT EFFECT ON WING LOADS IN YAW, MACH=3.5

(A) ALPHA = .00

PAGE 102

FIG. 32 MPS PLUME SIZE/ENG. OUT EFFECT ON WING LOADS IN YAW, MACH=3.5

(A) ALPHA = .00

PAGE

FIG. 32 MPS PLUME SIZE/ENG. OUT EFFECT ON WING LOADS IN YAW, MACH=3.5

(A) ALPHA = .00

FIG. 32 MPS PLUME SIZE/ENG. OUT EFFECT ON WING LOADS IN YAW, MACH=3.5

(A)ALPHA = .00

PAGE 106

FIG. 33 MPS PLUME SIZE/ENG. OUT EFFECT ON ELV. HINGE MOMENTS IN YAW, MACH=2.6

[A]ALPHA = .00

PAGE 107

FIG. 33 MPS PLUME SIZE/ENG. OUT EFFECT ON ELV. HINGE MOMENTS IN YAW, MACH=2.6
(A) ALPHA = .00
PAGE 108

FIG. 34 MPS PLUME SIZE/ENG. OUT EFFECT ON ELV. HINGE MOMENTS IN YAW, MACH=3.0

(A)ALPHA = .00

PAGE 109

FIG. 34 MPS PLUME SIZE/ENG. OUT EFFECT ON ELV. HINGE MOMENTS IN YAW, MACH=3.0

(A) ALPHA = .00

FIG. 35 MPS PLUME SIZE/ENG. OUT EFFECT ON ELV. HINGE MOMENTS IN YAW, MACH=3.5

(A)ALPHA = .00

PAGE 111

FIG. 35 MPS PLUME SIZE/ENG. OUT EFFECT ON ELV. HINGE MOMENTS IN YAW, MACH=3.5

(A)ALPHA = .00

PAGE 112

FIG. 36 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN PITCH, POWER OFF, MACH=2.6
(A)BETA = .00

FIG. 36 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN PITCH, POWER OFF, MACH=2.6

(A)BETA = .00

FIG. 36 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN PITCH, POWER OFF, MACH=2.6

(A)BETA = .00

ELEVON DEFLECTIONS EFFECT ON WING LOADS IN PITCH, POWER OFF, MACH=2.6 (A)BETA =.00 PAGE 116

FIG. 36 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN PITCH, POWER OFF, MACH=2.6

(A)BETA = .00

PAGE 117

FIG. 37 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN PITCH, POWER OFF, MACH=3.0

(A)BETA = .00

PAGE 118

FIG. 37 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN PITCH, POWER OFF, MACH=3.0
(A)BETA = .00

FIG. 37 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN PITCH, POWER OFF, MACH=3.0

(A)BETA = .00

PAGE 120

FIG. 37. ELEVON DEFLECTIONS EFFECT ON WING LOADS IN PITCH, POWER OFF, MACH=3.0

(A)BETA = .00

FIG. 38 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN PITCH, POWER OFF, MACH=3.5
(A)BETA = .00

FIG. 38 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN PITCH, POWER OFF, MACH=3.5

(A)BETA = .00

PAGE 124

FIG. 38 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN PITCH, POWER OFF, MACH=3.5

(A)BETA = .00

PAGE 125

FIG. 38 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN PITCH, POWER OFF, MACH=3.5

(A)BETA = .00

PAGE 126

FIG. 38 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN PITCH, POWER OFF, MACH=3.5

(A)BETA = .00

PAGE 127

FIG. 39 ELEVON DEFLECTIONS EFFECT ON ELEVON H.M. IN PITCH, POWER OFF, MACH=2.6

(A)BETA = .00

PAGE 128

FIG. 39 ELEVON DEFLECTIONS EFFECT ON ELEVON H.M. IN PITCH, POWER OFF, MACH=2.6

(A)BETA = .00

PAGE 129

FIG. 40 ELEVON DEFLECTIONS EFFECT ON ELEVON H.M. IN PITCH, POWER OFF, MACH=3.0

(A)BETA = .00

PAGE 130

FIG. 40 ELEVON DEFLECTIONS EFFECT ON ELEVON H.M. IN PITCH, POWER OFF, MACH=3.0

(A)BETA = .00

PAGE 131

FIG. 41 ELEVON DEFLECTIONS EFFECT ON ELEVON H.M. IN PITCH, POWER OFF, MACH=3.5

(A)BETA = .00

PAGE 132

FIG. 41 ELEVON DEFLECTIONS EFFECT ON ELEVON H.M. IN PITCH, POWER OFF, MACH=3.5

(A)BETA = ...00

PAGE 133

DATA SET SYMBOL

CONFIGURATION DESCRIPTION

FIG. 42 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN YAW, POWER OFF, MACH=2.6 (A)ALPHA =.00 PAGE 134

FIG. 42 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN YAW, POWER OFF, MACH=2.6

(A)ALPHA = .00

PAGE 135

FIG. 42 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN YAW, POWER OFF, MACH=2.6

(A)ALPHA = .00

PAGE 136

FIG. 42 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN YAW, POWER OFF, MACH=2.6

(A)ALPHA = .00

PAGE 137

FIG. 42 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN YAW, POWER OFF, MACH=2.6

(A) ALPHA = .00

PAGE 138

FIG. 43 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN YAW, POWER OFF, MACH=3.0

(A)ALPHA = .00

PAGE 139

FIG. 43 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN YAW, POWER OFF, MACH=3.0

(A)ALPHA = .00

PAGE 140

FIG. 43 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN YAW, POWER OFF, MACH=3.0

(A) ALPHA = .00

PAGE 141

FIG. 43 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN YAW, POWER OFF, MACH=3.0

(A) ALPHA = .00

PAGE 142

FIG. 43 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN YAW, POWER OFF, MACH=3.0

(A) ALPHA = .00

PAGE 143

FIG. 44 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN YAW, POWER OFF, MACH=3.5

(A) ALPHA = .00

PAGE 144

FIG. 44 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN YAW, POWER OFF, MACH=3.5

(A) ALPHA = .00

PAGE 145

FIG. 44 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN YAW, POWER OFF, MACH=3.5

(A)ALPHA = .00

PAGE 146

ELEVON DEFLECTIONS EFFECT ON WING LOADS IN YAW, POWER OFF, MACH=3.5 PAGE (A)ALPHA =.00 . 147

FIG. 44 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN YAW, POWER OFF, MACH=3.5

(A)ALPHA = .00

PAGE 148

FIG. 45 ELEVON DEFLECTIONS EFFECT ON ELEVON H.M. IN YAW, POWER OFF, MACH=2.6

(A)ALPHA = .00

PAGE 149

FIG. 45 ELEVON DEFLECTIONS EFFECT ON ELEVON H.M. IN YAW, POWER OFF, MACH=2.6

(A) ALPHA = .00

PAGE 150

FIG. 46 ELEVON DEFLECTIONS EFFECT ON ELEVON H.M. IN YAW, POWER OFF, MACH=3.0

(A)ALPHA = .00

PAGE 152

FIG. 47 ELEVON DEFLECTIONS EFFECT ON ELEVON H.M. IN YAW, POWER OFF, MACH=3.5

(A)ALPHA = .00

PAGE 153

FIG. 47 ELEVON DEFLECTIONS EFFECT ON ELEVON H.M. IN YAW, POWER OFF, MACH=3.5

(A)ALPHA = .00

PAGE 154

FIG. 48 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN PITCH, POWER ON, MACH=2.6

(A)BETA = .00

PAGE 155

FIG. 48 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN PITCH, POWER ON, MACH=2.6

(A)BETA = .00

PAGE 156

FIG. 48 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN PITCH, POWER ON, MACH=2.6

(A)BETA = .00

PAGE 157

FIG. 48 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN PITCH, POWER ON, MACH=2.6

(A)BETA = .00

PAGE 158

FIG. 48 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN PITCH, POWER ON, MACH=2.6

(A)BETA = .00

PAGE 159

FIG. 49 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN PITCH, POWER ON, MACH=3.0

(A)BETA = .00

PAGE 160

FIG. 49 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN PITCH, POWER ON, MACH=3.0

(A)BETA = ...00

PAGE 161

FIG. 49 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN PITCH, POWER ON, MACH=3.0

(A)BETA = .00

PAGE 162

FIG. 49 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN PITCH, POWER ON, MACH=3.0

(A)BETA = .00

PAGE 164

FIG. 50 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN PITCH, POWER ON, MACH=3.5

(A)BETA = .00

PAGE 165

FIG. 50 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN PITCH, POWER ON, MACH=3.5

(A)BETA = .00

PAGE 166

FIG. 50 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN PITCH, POWER ON, MACH=3.5

(A)BETA = .00

PAGE 167

ELEVON DEFLECTIONS EFFECT ON WING LOADS IN PITCH, POWER ON, (A)BETA =.00 PAGE 168

FIG. 50 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN PITCH, POWER ON, MACH=3.5

(A)BETA = .00

PAGE 169

FIG. 51 ELEVON DEFLECTIONS EFFECT ON ELEVON H.M. IN PITCH, POWER ON, MACH=2.6

(A)BETA = .00

PAGE 170

FIG. 51 ELEVON DEFLECTIONS EFFECT ON ELEVON H.M. IN PITCH, POWER ON, MACH=2.6

(A)BETA = .00

PAGE 171

FIG. 52 ELEVON DEFLECTIONS EFFECT ON ELEVON H.M. IN PITCH, POWER ON, MACH=3.0

(A)BETA = .00

PAGE 172

FIG. 52 ELEVON DEFLECTIONS EFFECT ON ELEVON H.M. IN PITCH, POWER ON, MACH=3.0

(A)BETA = .00

PAGE 173

FIG. 53 ELEVON DEFLECTIONS EFFECT ON ELEVON H.M. IN PITCH, POWER ON, MACH=3.5

(A)BETA = .00

PAGE 174

FIG. 53 ELEVON DEFLECTIONS EFFECT ON ELEVON H.M. IN PITCH, POWER ON, MACH=3.5

(A)BETA = .00

PAGE 175

FIG. 54 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN YAW, POWER ON, MACH=2.6

(A) ALPHA = .00

PAGE 176

FIG. 54 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN YAW, POWER ON, MACH=2.6
(A)ALPHA = .00 . . PAGE 177

FIG. 54 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN YAW, POWER ON, MACH=2.6

(A) ALPHA = .00

PAGE 178

ELEVON DEFLECTIONS EFFECT ON WING LOADS IN YAW, POWER ON, MACH=2.6 (A)ALPHA =.00 PAGE 179

FIG. 54 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN YAW, POWER ON, MACH=2.6

(A)ALPHA = .00

PAGE 180

FIG. 55 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN YAW, POWER ON, MACH=3.0

(A)ALPHA = .00

PAGE 181

FIG. 55 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN YAW, POWER ON, MACH=3.0

(A) ALPHA = .00

PAGE 182

FIG. 55 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN YAW, POWER ON, MACH=3.0

(A) ALPHA = .00

PAGE 183

(A)ALPHA =.00 184 PAGE

FIG. 55 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN YAW, POWER ON, MACH=3.0

(A)ALPHA = .00

PAGE 185

FIG. 56 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN YAW, POWER ON, MACH=3.5

(A) ALPHA = .00

PAGE 186

FIG. 56 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN YAW, POWER ON, MACH=3.5

(A) ALPHA = .00

PAGE 187

FIG. 56 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN YAW, POWER ON, MACH=3.5

(A)ALPHA = .00

PAGE 188

FIG. 56 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN YAW, POWER ON, MACH=3.5

(A) ALPHA = .00

PAGE 190

FIG. 57 ELEVON DEFLECTIONS EFFECT ON ELEVON H.M. IN YAW, POWER ON, MACH=2.6

(A)ALPHA = .00

PAGE 191

FIG. 57 ELEVON DEFLECTIONS EFFECT ON ELEVON H.M. IN YAW, POWER ON, MACH=2.6

(A) ALPHA = .00

PAGE 192

FIG. 58 ELEVON DEFLECTIONS EFFECT ON ELEVON H.M. IN YAW, POWER ON, MACH=3.0

(A)ALPHA = .00

PAGE 193

FIG. 58 ELEVON DEFLECTIONS EFFECT ON ELEVON H.M. IN YAW, POWER ON, MACH=3.0

(A)ALPHA = .00

PAGE 194

FIG. 59 ELEVON DEFLECTIONS EFFECT ON ELEVON H.M. IN YAW, POWER ON, MACH=3.5

(A) ALPHA = .00

PAGE 195

FIG. 59 ELEVON DEFLECTIONS EFFECT ON ELEVON H.M. IN YAW, POWER ON, MACH=3.5

(A) ALPHA = .00

FIG. 60 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN PITCH, POWER OFF, MACH=2.6
(A)BETA = .00
PAGE 197

FIG. 60 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN PITCH, POWER OFF, MACH=2.6
(A)BETA = .00
PAGE 198

FIG. 60 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN PITCH, POWER OFF, MACH=2.6

(A)BETA = .00

PAGE 199

(A)BETA .00 PAGE 200

FIG. 60 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN PITCH, POWER OFF, MACH=2.6

(A)BETA = .00

PAGE 201

FIG. 61 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN PITCH, POWER OFF, MACH=3.0

(A)BETA = .00

PAGE 202

FIG. 61 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN PITCH, POWER OFF, MACH=3.0

(A)BETA = .00

PAGE 203

FIG. 61 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN PITCH, POWER OFF, MACH=3.0

(A)BETA = .00

PAGE 204

ELEVON DEFLECTIONS EFFECT ON WING LOADS IN PITCH, POWER OFF, MACH=3.0 (A)BETA =.00 PAGE 205

FIG. 61 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN PITCH, POWER OFF, MACH=3.0

(A)BETA = .00

PAGE 206

FIG. 62 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN PITCH, POWER OFF, MACH=3.5

(A)BETA = .00

PAGE 207

FIG. 62 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN PITCH, POWER OFF, MACH=3.5

(A)BETA = .00

PAGE 208

FIG. 62 ELEVON-DEFLECTIONS EFFECT ON WING LOADS IN PITCH, POWER OFF, MACH=3.5

(A)BETA = .00

PAGE 209

FIG. 62 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN PITCH, POWER OFF, MACH=3.5

(A)BETA = .00

PAGE 210

FIG. 62 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN PITCH, POWER OFF, MACH=3.5

(A)BETA = .00

PAGE 211.

FIG. 63 ELEVON DEFLECTIONS EFFECT ON ELEVON H.M. IN PITCH, POWER OFF, MACH=2.6

(A)BETA = .00

PAGE 212

FIG. 63 ELEVON DEFLECTIONS EFFECT ON ELEVON H.M. IN PITCH, POWER OFF, MACH=2.6

(A)BETA = .00

PAGE 213

FIG. 64 ELEVON DEFLECTIONS EFFECT ON ELEVON H.M. IN PITCH, POWER OFF, MACH=3.0

(A)BETA = .00

PAGE 214

FIG. 64 ELEVON DEFLECTIONS EFFECT ON ELEVON H.M. IN PITCH, POWER OFF, MACH=3.0

[A]BETA = .00

PAGE 215

FIG. 65 ELEVON DEFLECTIONS EFFECT ON ELEVON H.M. IN PITCH, POWER OFF, MACH=3.5

(A)BETA = .00

PAGE 216

FIG. 65 ELEVON DEFLECTIONS EFFECT ON ELEVON H.M. IN PITCH, POWER OFF, MACH=3.5

(A)BETA = .00

PAGE 217

FIG. 66 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN YAW, POWER OFF, MACH=2.6

(A)ALPHA = .00

PAGE ' 219

FIG. 66 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN YAW, POWER OFF, MACH=2.6

(A)ALPHA = .00

PAGE 220

ELEVON DEFLECTIONS EFFECT ON WING LOADS IN YAW, POWER OFF, MACH=2.6 FIG. 66 ·(A)ALPHA = .00 PAGE . 221

FIG. 66 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN YAW, POWER OFF, MACH=2.6

(A) ALPHA = .00

PAGE 222

FIG. 67 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN YAW, POWER OFF, MACH=3.0

(A)ALPHA = .00

PAGE 223

FIG. 67 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN YAW, POWER OFF, MACH=3.0

(A)ALPHA = .00

PAGE 224

FIG. 67 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN YAW, POWER OFF, MACH=3.0

(A)ALPHA = .00

PAGE 225

FIG. 67 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN YAW, POWER OFF, MACH=3.0

(A)ALPHA = .00

PAGE 226

FIG. 67 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN YAW, POWER OFF, MACH=3.0

(A) ALPHA = .00

PAGE 227

FIG. 68 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN YAW, POWER OFF, MACH=3.5

(A)ALPHA = .00

PAGE 228

FIG. 68 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN YAW, POWER OFF, MACH=3.5

(A)ALPHA = .00

PAGE 229

FIG. 68 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN YAW, POWER OFF, MACH=3.5

(A)ALPHA = .00

PAGE 230

FIG. 68 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN YAW, POWER OFF, MACH=3.5

(A)ALPHA = .00

PAGE 232

FIG. 69 ELEVON DEFLECTIONS EFFECT ON ELEVON H.M. IN YAW, POWER OFF, MACH=2.6

(A) ALPHA = .00

PAGE 233

FIG. 69 ELEVON DEFLECTIONS EFFECT ON ELEVON H.M. IN YAW, POWER OFF, MACH=2.6

(A) ALPHA = .00

PAGE 234

FIG. 70 ELEVON DEFLECTIONS EFFECT ON ELEVON H.M. IN YAW, POWER OFF, MACH=3.0

(A)ALPHA = .00

PAGE 235

FIG. 70 ELEVON DEFLECTIONS EFFECT ON ELEVON H.M. IN YAW, POWER OFF, MACH=3.0

(A) ALPHA = .00

PAGE 236

FIG. 71 ELEVON DEFLECTIONS EFFECT ON ELEVON H.M. IN YAW, POWER OFF, MACH=3.5

(A)ALPHA = .00

PAGE 237

FIG. 71 ELEVON DEFLECTIONS EFFECT ON ELEVON H.M. IN YAW, POWER OFF, MACH=3.5

(A)ALPHA = .00

PAGE 238

FIG. 72 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN PITCH, POWER ON, MACH=2.6

(A)BETA = .00

PAGE 239

FIG. 72 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN PITCH, POWER ON, MACH=2.6
(A)BETA = .00
PAGE 240

FIG. 72 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN PITCH, POWER ON, MACH=2.6

(A)BETA = .00

PAGE 241

FIG. 72 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN PITCH, POWER ON, MACH=2.6 (A)BETA =.00 PAGE 242

FIG. 72 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN PITCH, POWER ON, MACH=2.6

(A)BETA = .00

PAGE 243

FIG. 73 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN PITCH, POWER ON, MACH=3.0

(A)BETA = .00 PAGE 244

FIG. 73 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN PITCH, POWER ON, MACH=3.0

(A)BETA = .00

PAGE 245

FIG. 73 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN PITCH, POWER ON, MACH=3.0

(A)BETA = .00 . PAGE 246

FIG. 73 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN PITCH, POWER ON, MACH=3.0

(A)BETA = .00

PAGE 248

FIG. 74 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN PITCH, POWER ON, MACH=3.5

(A)BETA = .00

PAGE 249

(A)BETA .00 250 PAGE

FIG. 74 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN PITCH, POWER ON, MACH=3.5

(A)BETA = .00

PAGE 251

FIG. 74 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN PITCH, POWER ON, MACH=3.5

(A)BETA = .00

PAGE 253

FIG. 75 ELEVON DEFLECTIONS EFFECT ON ELEVON H.M. IN PITCH, POWER ON, MACH=2.6

(A)BETA = .00

PAGE 254

FIG. 75 ELEVON DEFLECTIONS EFFECT ON ELEVON H.M. IN PITCH, POWER ON, MACH=2.6

(A)BETA = .00

PAGE 255

(A)BETA =.00 256 PAGE

FIG. 76 ELEVON DEFLECTIONS EFFECT ON ELEVON H.M. IN PITCH, POWER ON, MACH=3.0

(A)BETA = .00

PAGE- 257

258 (A)BETA =PAGE .00

FIG. 77 ELEVON DEFLECTIONS EFFECT ON ELEVON H.M. IN PITCH, POWER ON, MACH=3.5

(A)BETA = .00

PAGE 259

FIG. 78 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN YAW, POWER ON, MACH=2.6

(A) ALPHA = .00

PAGE 260

FIG. 78 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN YAW, POWER ON, MACH=2.6

(A) ALPHA = .00

PAGE 261

(A)ALPHA =.00 PAGE 262

FIG. 78 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN YAW, POWER ON, MACH=2.6 PAGE 264

FIG. 79 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN YAW, POWER ON, MACH=3.0

(A)ALPHA = .00

PAGE 265

FIG. 79 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN YAW, POWER ON, MACH=3.0

(A)ALPHA = .00

PAGE 266

FIG. 79 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN YAW, POWER ON, MACH=3.0

(A)ALPHA = .00

PAGE 267

(A)ALPHA =.00 PAGE 268

FIG. 79 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN YAW, POWER ON, MACH=3.0

(A) ALPHA = .00

PAGE 269

FIG. 80 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN YAW, POWER ON, MACH=3.5

(A)ALPHA = .00

PAGE 270

FIG. 80 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN YAW, POWER ON, MACH=3.5

(A)ALPHA = .00

PAGE 271

FIG. 80 ELEVON DEFLECTIONS EFFECT ON WING LOADS IN YAW, POWER ON, MACH=3.5

(A)ALPHA = .00

PAGE 272

(A)ALPHA =.00 PAGE 274

FIG. 81 ELEVON DEFLECTIONS EFFECT ON ELEVON H.M. IN YAW, POWER ON, MACH=2.6

(A)ALPHA = .00

PAGÉ 275

FIG. 81 ELEVON DEFLECTIONS EFFECT ON ELEVON H.M. IN YAW, POWER ON, MACH=2.6
(A)ALPHA = .00
PAGE 276

FIG. 82 ELEVON DEFLECTIONS EFFECT ON ELEVON H.M. IN YAW, POWER ON, MACH=3.0

(A)ALPHA = .00

PAGE 277

FIG. 82 ELEVON DEFLECTIONS EFFECT ON ELEVON H.M. IN YAW, POWER ON, MACH=3.0

(A)ALPHA = .00

PAGE 278

FIG. 83 ELEVON DEFLECTIONS EFFECT ON ELEVON H.M. IN YAW, POWER ON, MACH=3.5

(A)ALPHA = .00

PAGE 279

FIG. 83 ELEVON DEFLECTIONS EFFECT ON ELEVON H.M. IN YAW, POWER ON, MACH=3.5

(A)ALPHA = .00

PAGE 280

FIG.84 2ND.STAGE- MPS PLUME SIZE/ENG. OUT EFFECT ON WING LOADS IN PITCH, MACH=3.5

(A)BETA = .00

PAGE 281

FIG.84 2ND.STAGE- MPS PLUME SIZE/ENG. OUT EFFECT ON WING LOADS IN PITCH, MACH=3.5

(A)BETA = .00

PAGE 282

FIG.84 2ND.STAGE- MPS PLUME SIZE/ENG. OUT EFFECT ON WING LOADS IN PITCH, MACH=3.5

FIG.84 2ND.STAGE- MPS PLUME SIZE/ENG. OUT EFFECT ON WING LOADS IN PITCH, MACH=3.5

(A)BETA = .00

PAGE 284

FIG.85 2ND.STAGE- MPS PLUME SIZE/ENG. OUT EFFECT ON ELEVON H.M.IN PITCH, MACH=3.5

(A)BETA = .00

PAGE 286

FIG.85 2ND.STAGE- MPS PLUME SIZE/ENG. OUT EFFECT ON ELEVON H.M.IN PITCH, MACH=3.5

(A)BETA = .00

PAGE 287

FIG.86 2ND.STAGE- MPS PLUME SIZE/ENG. OUT EFFECT ON WING LOADS IN YAW, MACH=3.5

(A)ALPHA = .00

PAGE 288

FIG.86 2ND.STAGE- MPS PLUME SIZE/ENG. OUT EFFECT ON WING LOADS IN YAW, MACH=3.5

(A)ALPHA = .00

PAGE 289

FIG.86 2ND.STAGE- MPS PLUME SIZE/ENG. OUT EFFECT ON WING LOADS IN YAW, MACH=3.5

(A)ALPHA = .00

PAGE 290

FIG.86 2ND.STAGE- MPS PLUME SIZE/ENG. OUT EFFECT ON WING LOADS IN YAW, MACH=3.5

FIG.87 2ND.STAGE- MPS PLUME SIZE/ENG. OUT EFFECT ON ELEVON H.M. IN YAW, MACH=3.5

(A)ALPHA = .00

PAGE 293

FIG.87 2ND.STAGE- MPS PLUME SIZE/ENG. OUT EFFECT ON ELEVON H.M. IN YAW, MACH=3.5

(A)ALPHA = .00

PAGE .294

FIG. 88 SUMMARY-NOMINAL PLUME EFFECT ON WING LOADS, ELV-IB=ELV-OB=0.0

(A)BETA = .00

295

DCTMW

COEFFICIENT,

TORS I ONAL-MOMENT

WING-ROOT

INCREMENTAL

(A)BETA = .00 PAGE

FIG. 88 SUMMARY-NOMINAL PLUME EFFECT ON WING LOADS, ELV-IB=ELV-OB=0.0

CARDETA - OO

FIG. 88 SUMMARY-NOMINAL PLUME EFFECT ON WING LOADS, ELV-IB=ELV-OB=0.0

(A)BETA = .00

PAGE 298

FIG. 88 SUMMARY-NOMINAL PLUME EFFECT ON WING LOADS, ELV-IB=ELV-OB=0.0

(A)BETA = .00

PAGE

PAGE 299

FIG. 89' SUMMARY-NOMINAL PLUME EFFECT ON ELEVON HINGE MOMENTS, ELV-IB=ELV-OB=0.0

(A)BETA = .00

PAGE 300

FIG. 89 SUMMARY-NOMINAL PLUME EFFECT ON ELEVON HINGE MOMENTS, ELV-IB=ELV-OB=0.0

(A)BETA = .00

PAGE 301

FIG. 90 SUMMARY- MPS PLUME EFFECT ON WING LOADS, SRB OFF, DELVIB=DELVOB=0.0

(A)BETA = .00

PAGE 302

FIG. 90 SUMMARY- MPS PLUME EFFECT ON WING LOADS, SRB OFF, DELVIB=DELVOB=0.0

(A)BETA = .00

FIG. 90 SUMMARY- MPS PLUME EFFECT ON WING LOADS, SRB OFF, DELVIB=DELVOB=0.0

[A)BETA = .00

PAGE 305

FIG. 90 SUMMARY- MPS PLUME EFFECT ON WING LOADS, SRB OFF, DELVIB=DELVOB=0.0

(A)BETA = .00

PAGE 306

FIG. 91 SUMMARY- MPS PLUME EFFECT ON ELEVON H.M., SRB OFF, DELVIB=DELVOB=0.0

(A)BETA = .00

PAGE 307

FIG. 91 SUMMARY- MPS PLUME EFFECT ON ELEVON H.M., SRB OFF, DELVIB=DELVOB=0.0

(A)BETA = .00

FIG. 92 SUMMARY- MPS PLUME/SRB PLUME EFFECT ON WING LOADS, DELVIB=DELVOB=0.0

(A)BETA = .00

PAGE 309

FIG. 92 SUMMARY- MPS PLUME/SRB PLUME EFFECT ON WING LOADS, DELVIB=DELVOB=0.0

(A)BETA = .00

PAGE 310

FIG. 92 SUMMARY- MPS PLUME/SRB PLUME EFFECT ON WING LOADS, DELVIB=DELVOB=0.0

(A)BETA = .00

PAGE 311

FIG. 92 SUMMARY- MPS PLUME/SRB PLUME EFFECT ON WING LOADS, DELVIB=DELVOB=0.0

(A)BETA = .00

PAGE 312

FIG. 92 SUMMARY- MPS PLUME/SRB PLUME EFFECT ON WING LOADS, DELVIB=DELVOB=0.0

(A)BETA = .00

FIG. 93 SUMMARY- MPS/SRB PLUME EFFECT ON ELEVON H.M., DELVIB=DELVOB=0.0

(A)BETA = .00

PAGE 314

FIG. 93 SUMMARY- MPS/SRB PLUME EFFECT ON ELEVON H.M., DELVIB=DELVOB=0.0

(A)BETA = .00

FIG. 94 SUMMARY-ELEVON DEFLECTIONS EFFECT ON WING LOADS, POWER OFF

(A)BETA = .00

PAGE 316

FIG. 94 SUMMARY-ELEVON DEFLECTIONS EFFECT ON WING LOADS, POWER OFF

PAGE 317

FIG. 94 SUMMARY-ELEVON DEFLECTIONS EFFECT ON WING LOADS, POWER OFF

(A)BETA = .00

PAGE

FIG. 94 SUMMARY-ELEVON DEFLECTIONS EFFECT ON WING LOADS, POWER OFF

PAGE

FIG. 94 SUMMARY-ELEVON DEFLECTIONS EFFECT ON WING LOADS, POWER OFF
(A)BETA = .00

FIG. 95 SUMMARY-ELEVON DEFLECTIONS EFFECT ON ELEVON H.M., POWER OFF

(A)BETA = .00

PAGE

FIG. 95 SUMMARY-ELEVON DEFLECTIONS EFFECT ON ELEVON H.M., POWER OFF

(A)BETA = .00

PAGE . 322

FIG. 96 SUMMARY-ELEVON DEFLECTIONS EFFECT ON WING LOADS, NOMINAL POWER ON PAGE

FIG. 96 SUMMARY-ELEVON DEFLECTIONS EFFECT ON WING LOADS, NOMINAL POWER ON PAGE 324

FIG. 96 SUMMARY-ELEVON DEFLECTIONS EFFECT ON WING LOADS, NOMINAL POWER ON CADBETA = .00

FIG. 96 SUMMARY-ELEVON DEFLECTIONS EFFECT ON WING LOADS, NOMINAL POWER ON PAGE 326

FIG. 96 SUMMARY-ELEVON DEFLECTIONS EFFECT ON WING LOADS, NOMINAL POWER ON PAGE

FIG. 97 SUMMARY-ELEVON DEFLECTIONS EFFECT ON ELEVON H.M., NOMINAL POWER ON

(A)BETA = .00

PAGE 328

FIG. 97 SUMMARY-ELEVON DEFLECTIONS EFFECT ON ELEVON H.M., NOMINAL POWER ON

(A)BETA = .00

PAGE 329