Linear Programming Counterexamples

Eklavya Sharma

1 Shapes

Example 1 (Square Pyramid). Let

$$\begin{split} P := \{(x, y, z) : \max(|x|, |y|) \leq z, z \leq 1\} \\ = \{(x, y, z) : x \leq z, -x \leq z, y \leq z, -y \leq z, z \leq 1\}. \end{split}$$

Then P is an (inverted) square pyramid. The base of the pyramid is $[-1,1]^2 \times \{1\}$. Its vertices are (0,0,0), (-1,-1,1), (-1,1,1), (1,-1,1), (1,1,1).

Example 2 (Square Pyramid). Let

$$P := \{(x, y, z) : x \le z, y \le z, x \ge 0, y \ge 0, z \ge 0\}.$$

Then P is an (inverted) square pyramid. The base of the pyramid is $[0,1]^2 \times \{1\}$. Its vertices are (0,0,0), (0,0,1), (0,1,1), (1,0,1), (1,1,1).

2 Degeneracy vs Redundancy

Example 3 (Redundancy \Rightarrow Degeneracy). Let $P := \{(x,y) : 0 \le x \le 1, 0 \le y \le 1\}$. Then every extreme-point is non-degenerate. Adding the constraint $y \le 2$ doesn't add degeneracy but adds redundancy.

Example 4 (Degeneracy \Rightarrow Redundancy). Let $P := \{(x,y) : y \le x, y \le -x, y \ge 0\}$ (so $P = \{(0,0)\}$). Then (0,0) is a degenerate extreme point, but no constraint is redundant.

Example 5 (Degeneracy \Rightarrow Redundancy). Let P be a square pyramid (c.f. Example 1). Then there is a degenerate extreme point but no constraint is redundant.

3 Simplex Method

Example 6. Let $b \in \mathbb{R}_{>0}$ and $a \in \mathbb{R}^n$, where $0 < a_1 < a_2 < \ldots < a_n$. Consider the LP

$$\max_{x \ge 0} \quad a^T x \quad where \quad \sum_{i=1}^n x_i \le b.$$

Clearly, the optimal solution is $[0,0,\ldots,0,b]$. In standard form, the LP becomes

$$\min_{x \ge 0} \sum_{i=1}^{n} (-a_i)x_i \quad where \quad \sum_{i=1}^{n+1} x_i = b.$$

Suppose our initial basis is $\{x_{n+1}\}$. For ease of notation, let $x_0 := x_{n+1}$.

If we run the simplex method with Bland's rule (variable of lowest index enters basis), then there will be n iterations, where in the i^{th} iteration, x_i enters the basis and x_{i-1} leaves the basis. Hence, we visit each of the n+1 bases. If b>0, each basis corresponds to a unique BFS. If b=0, all bases correspond to the same BFS $\mathbf{0}$.

If we run the simplex method with Dantzig's rule (variable of most negative reduced cost enters basis), then there will be just 1 iteration where x_n enters and x_{n+1} leaves.

Example 7. For the following LP, where $b \in \mathbb{R}_{\geq 0}$, the optimal solution is (b,0).

$$\max_{x \geq 0, y \geq 0} \quad 2x + 3y \quad where \quad x + 2y \leq b.$$

Bland's rule takes 1 iteration but Dantzig's rule takes 2 iterations. There are 3 bases. When b > 0, each base corresponds to a different BFS. When b = 0, all bases correspond to the same BFS $\mathbf{0}$.