Excercise 1

```
import random
random.seed(0)
salaries = [round(random.random()*1000000, -3) for _ in range(100)]
df = pd.DataFrame(salaries)
\overline{\pm}
                0
      0 844000.0
      1 758000.0
      2 421000.0
      3 259000.0
      4 511000.0
      95 917000.0
     96 793000.0
     97 82000.0
     98 613000.0
     99 486000.0
     100 rows × 1 columns
 Next steps: ( View recommended plots ) ( New interactive sheet )
#code segment for getting the mean
mean = df.mean()
mean
\overline{z}
               0
     0 585690.0
     dtype: float64
#code segment for getting the median
median = df.median()
median
\overline{2}
               0
     0 589000.0
     dtype: float64
#code segment for getting the mode
mode = df.mode()
mode
\overline{z}
               0
      0 477000.0
#code segment for getting the sample variance
sample_variance = df.var()
sample_variance
```

```
\overline{\Rightarrow}
                   0
     0 7.066405e+10
     dtype: float64
#code segment for getting the standard deviation
sample_standard_deviation = df.std()
sample_standard_deviation
\overline{z}
     0 265827.113825
     dtype: float64
  Excercise 2
#code segment for getting the range
range = df.max() - df.min()
range
\overline{z}
               0
     0 995000.0
     dtype: float64
#code segment for getting the coefficient of variation
cv = (df.std() / df.mean()) * 100
CV
\overline{2}
     0 45.386999
     dtype: float64
#code segment for getting the Interquartile Range
q1 = df.quantile(0.25)
q3 = df.quantile(0.75)
iqr = q3 - q1
iqr
     0 413250.0
     dtype: float64
#code segment for getting the Quartile Coefficient of Dispersion
qcd = (q3 - q1) / (q3 + q1)
qcd
     0 0.33866
     dtype: float64
  Excercise 3
import pandas as pd
diabetes = pd.read_csv('diabetes.csv')
```

```
diabetes
```

<u> </u>		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPe
	0	6	148	72	35	0	33.6	
	1	1	85	66	29	0	26.6	
	2	8	183	64	0	0	23.3	
	3	1	89	66	23	94	28.1	
	4	0	137	40	35	168	43.1	
	***		•••			***	***	
	763	10	101	76	48	180	32.9	
	764	2	122	70	27	0	36.8	
	765	5	121	72	23	112	26.2	
	766	1	126	60	0	0	30.1	
	767	1	93	70	31	0	30.4	

768 rows × 9 columns

Identify columns
diabetes.columns

Identify the data types of the data
diabetes.dtypes

dtype: object

Display the total number of records
diabetes.shape[0]

→ 768

Display the first 20 records
diabetes.head(20)

$\overline{\Rightarrow}$		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedi
_	0	6	148	72	35	0	33.6	
	1	1	85	66	29	0	26.6	
	2	8	183	64	0	0	23.3	
	3	1	89	66	23	94	28.1	
	4	0	137	40	35	168	43.1	
	5	5	116	74	0	0	25.6	
	6	3	78	50	32	88	31.0	
	7	10	115	0	0	0	35.3	
	8	2	197	70	45	543	30.5	
	9	8	125	96	0	0	0.0	
	10	4	110	92	0	0	37.6	
	11	10	168	74	0	0	38.0	
	12	10	139	80	0	0	27.1	
	13	1	189	60	23	846	30.1	
	14	5	166	72	19	175	25.8	
	15	7	100	0	0	0	30.0	
	16	0	118	84	47	230	45.8	
	17	7	107	74	0	0	29.6	
	18	1	103	30	38	83	43.3	
	19	1	115	70	30	96	34.6	

Display the last 20 records
diabetes.tail(20)

$\overline{\Rightarrow}$		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPe
	748	3	187	70	22	200	36.4	
	749	6	162	62	0	0	24.3	
	750	4	136	70	0	0	31.2	
	751	1	121	78	39	74	39.0	
	752	3	108	62	24	0	26.0	
	753	0	181	88	44	510	43.3	
	754	8	154	78	32	0	32.4	
	755	1	128	88	39	110	36.5	
	756	7	137	90	41	0	32.0	
	757	0	123	72	0	0	36.3	
	758	1	106	76	0	0	37.5	
	759	6	190	92	0	0	35.5	
	760	2	88	58	26	16	28.4	
	761	9	170	74	31	0	44.0	
	762	9	89	62	0	0	22.5	
	763	10	101	76	48	180	32.9	
	764	2	122	70	27	0	36.8	
	765	5	121	72	23	112	26.2	
	766	1	126	60	0	0	30.1	
	767	1	93	70	31	0	30.4	

Change the Outcome column to Diagnosis dcopy = diabetes.rename(columns = {'Outcome':'Diagnosis'}) dcopy

\Rightarrow		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPe
	0	6	148	72	35	0	33.6	
	1	1	85	66	29	0	26.6	
	2	8	183	64	0	0	23.3	
	3	1	89	66	23	94	28.1	
	4	0	137	40	35	168	43.1	
	•••		•••			***	***	
	763	10	101	76	48	180	32.9	
	764	2	122	70	27	0	36.8	
	765	5	121	72	23	112	26.2	
	766	1	126	60	0	0	30.1	
	767	1	93	70	31	0	30.4	

768 rows × 9 columns

Next steps: (View recommended plots) (New interactive sheet)

Create a new column Classification that display "Diabetes" if the value of outcome is 1 , otherwise "No Diabetes" dcopy['Classification'] = (dcopy['Diagnosis'] == 1).map({True: 'Diabetes', False: 'No Diabetes'}) dcopy

\Rightarrow		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPe
	0	6	148	72	35	0	33.6	
	1	1	85	66	29	0	26.6	
	2	8	183	64	0	0	23.3	
	3	1	89	66	23	94	28.1	
	4	0	137	40	35	168	43.1	

	763	10	101	76	48	180	32.9	
	764	2	122	70	27	0	36.8	
	765	5	121	72	23	112	26.2	
	766	1	126	60	0	0	30.1	
	767	1	93	70	31	0	30.4	
	7.0	40 1						

768 rows × 10 columns

Next steps: (View recommended plots) (New interactive sheet)

Create a new dataframe "withDiabetes" that gathers data with diabetes newdata = dcopy[dcopy['Diagnosis']==1] withDiabetes = pd.DataFrame(newdata) withDiabetes

Y		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPe
	0	6	148	72	35	0	33.6	
	2	8	183	64	0	0	23.3	
	4	0	137	40	35	168	43.1	
	6	3	78	50	32	88	31.0	
	8	2	197	70	45	543	30.5	
	***		•••			***	***	
	755	1	128	88	39	110	36.5	
	757	0	123	72	0	0	36.3	
	759	6	190	92	0	0	35.5	
	761	9	170	74	31	0	44.0	
	766	1	126	60	0	0	30.1	

268 rows × 10 columns

Next steps:

New interactive sheet

New interactive sheet

Create a new dataframe "noDiabetes" thats gathers data with no diabetes
newdata2 = dcopy[dcopy['Diagnosis']==0]
noDiabetes = pd.DataFrame(newdata2)
noDiabetes

		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPe
	1	1	85	66	29	0	26.6	
	3	1	89	66	23	94	28.1	
	5	5	116	74	0	0	25.6	
	7	10	115	0	0	0	35.3	
	10	4	110	92	0	0	37.6	
	•••							
7	62	9	89	62	0	0	22.5	
7	63	10	101	76	48	180	32.9	
7	64	2	122	70	27	0	36.8	
7	65	5	121	72	23	112	26.2	
7	67	1	93	70	31	0	30.4	
50	00 rc	ws × 10 columns						

Next steps: (View recommended plots) (New interactive sheet)

Create a new dataframe "Pedia" that gathers data with age 0 to 19
newdata3 = dcopy[dcopy['Age'] <= 19]
Pedia = pd.DataFrame(newdata3)
Pedia</pre>

Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigr

Create a new dataframe "Adult" that gathers data with age greater than 19
newdata4 = dcopy[dcopy['Age'] >= 19]
Adult = pd.DataFrame(newdata4)
Adult

```
\overline{z}
         Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPec
                                                             0 33.6
      0
                         148
      1
                   1
                          85
                                       66
                                                    29
                                                             0 26.6
                                       64
                                                             0 23.3
      2
                   8
                         183
                                                     0
                                                    23
                   1
                          89
                                                            94 28.1
      3
                                       66
                   0
                                       40
                                                    35
                                                           168 43.1
      4
                         137
                  10
                         101
                                                    48
                                                           180 32.9
     763
                                       76
     764
                  2
                         122
                                       70
                                                    27
                                                             0 36.8
Next steps: ( View recommended plots ) ( New interactive sheet )
                                                             0 30.1
                                                             0 00 /
import numpy as np
# Use numpy to get the average age and glucose value.
avg_age = np.mean(dcopy['Age'])
avg_glucose = np.mean(dcopy['Glucose'])
print("Average Age:", avg_age)
print("Average Glucose:", avg_glucose)
   Average Age: 33.240885416666664
Average Glucose: 120.89453125
# Use numpy to get the median age and glucose value.
median_age = np.median(dcopy['Age'])
median_glucose = np.median(dcopy['Glucose'])
print("Median Age:", median_age)
```

print("Median Glucose:", median_glucose)

Use numpy to get the middle values of glucose and age.

→ Median Age: 29.0

→ Middle Age: 29.0

Median Glucose: 117.0

middle_age = np.median(dcopy['Age'])
middle_glucose = np.median(dcopy['Glucose'])

print("Middle Age:", middle_age)
print("Middle Glucose:", middle_glucose)

Middle Glucose: 117.0