Теорія категорії І курс магістратура, 2 семестр

26 березня 2024 р.

0.1 Основні означення

Definition 0.1.1 Категорія C складається з наступних компонент:

- із набору **об'єктів**; об'єкти позначають за x, y, z, \ldots , а набір позначають за Ob(C);
- із набору **морфізмів із** x в y C(x,y) для всіх $x,y\in C$; морфізми позначають за $\alpha,\beta,\gamma,\ldots$ Позначення $\alpha\colon x\to y$ або $x\stackrel{\alpha}{\to} y$ означають α морфізм із x в y; ми називаємо x джерелом та y ціллю;
- кожний об'єкт x має **тотожний морфізм** $1_x \colon x \to x;$
- для кожних морфізмів $\alpha \colon x \to y, \ \beta \colon y \to z$ існуватиме **композиція морфізмів** $\beta \alpha \colon x \to z.$ При цьому всьому зобов'язані виконуватися такі аксіоми:
- 1) для всіх морфізмів $\alpha \colon x \to y$ виконано $1_y \circ \alpha = \alpha \circ 1_x = \alpha;$
- 2) для кожних трьох морфізмів $\alpha \colon w \to x, \beta \colon x \to y, \gamma \colon y \to z$ виконується асоціативність композиції, тобто $\alpha(\beta\gamma) = (\alpha\beta)\gamma$.

Remark 0.1.2 Морфізми ще часто називають **стрілочками**.

Remark 0.1.3 Морфізм 1_x для кожного об'єкта x – єдиний.

Example 0.1.4 Розглянемо **Set** – це буде категорія, яка складається з наступного:

- $\operatorname{Ob}(\mathbf{Set}) \operatorname{набір} \operatorname{всіх} \operatorname{множин};$
- Hom(Set) набір всіх функцій;
- тотожне відображення $1_X \colon X \to X$ задається як $x \mapsto x;$
- композиція між $f\colon X\to Y$ та $g\colon Y\to Z$ задається $g\circ f$ таким чином: $x\mapsto f(x)\mapsto g(f(x)).$ Ясно, що всі ці дві аксіоми виконані.

Важливо, що $Ob(\mathbf{Set})$ – це саме <u>набір</u> всіх множин, а не множина всіх множин. Тому що парадокс Рассела стверджує, що не існує множини, елементи яких будуть множинами.

До речі, $\mathbf{Set}(X,Y)$ – набір всіх відображень $f\colon X\to Y$ – буде, насправді, <u>множиною</u>. Відображення між двома множинами – це просто підмножина декартового добутку $X\times Y$. Коли ми беремо дві довільні множини X,Y, то звідси $X\times Y$ теж буде множиною.

Example 0.1.5 Розглянемо стисло ще приклади категорій:

Категорія	Об'єкти	Морфізми
\mathbf{Grp}	групи	гомоморфізми груп
${f Ab}$	абелеві групи	гомоморфізми груп
\mathbf{Rng}	кільця	гомоморфізми кілець
Ring	кільця з одиницею	гомоморфізм кілець, що зберігають одиницю
$_R{f Mod}$	R-модуль	R-лінійне відображення
\mathbf{Top}	топологічні простори	неперервній відображення
\mathbf{Met}	метричні простори	неперервні відображення
\mathbf{Man}	гладкі многовиди	гладкі відображення

Example 0.1.6 Можна представити категорію за допомогою графів. Категорія **0** буде взагалі порожньо виглядати. Категоріїя **1**, категорія **2**, категорія **3** виглядають таким чином:

Так само ε категорії $4,5,\ldots$

Example 0.1.7 Розглянемо моноїд M. Ми можемо утворити категорію \mathcal{M} , яка містить єдиний об'єкт — це моноїд.

Example 0.1.8 Розглянемо так званий посет (P, \prec) (partially ordered set). Скажемо, що $\mathrm{Ob}(P) = P$ та P(i,j) – це будуть тільки ті стрілки, для яких $i \prec j$. Композиція тут існує, оскільки \prec є транзитивним відношенням. Також існує тотожне відображення, оскільки \prec є рефлексивним відношенням.

Навіть не обов'язково тут вимагати, щоб для (P, \prec) відношення \prec було антисиметричним.

Definition 0.1.9 Категорія C називається дискретною, якщо

$$C(x,y) = \begin{cases} \emptyset, & x \neq y \\ \{1_x\}, & x = y \end{cases}$$

Тобто існують лише стрілки $x \to x$, і тільки тотожні.

Definition 0.1.10 Категорія D називається підкатегорією C, якщо

набір об'єктів D міститься в наборі об'єктів C

набір стрілок $x \to y$ в D міститься в наборі стрілок $x \to y$ в C для довільних об'єктів x,y із D композиція двох морфізмів в D задається так само, як і в C

Definition 0.1.11 Підкатегорія D категорії C називається **повною**, якщо

набір стрілок x, y в D збігається з набором стрілок x, y в C, для довільних об'єктів x, y із D

Example 0.1.12 Зокрема маємо кілька прикладів:

- 1) категорія **Ab** буде повною підкатегорією **Grp**;
- 2) категорія **FinSet** буде повною підкатегорією **Set**.

Definition 0.1.13 Категорія C називається малою, якщо

класи
$$Ob(C)$$
, $Hom(C)$ – множини.

Інакше категорія C називатиметься **великою**.

Категорія C називається **локально малою**, якщо

для кожних двох об'єктів x, y клас C(x, y) – множина

Example 0.1.14 Зокрема **Set**, **Grp** – великі категорії, але локально малі.

Definition 0.1.15 Категорія C називається конкретною, якщо

об'єктами категорії будуть множини, а морфізмі – відображення між множинами, що зберігає "структуру".

Example 0.1.16 Зокрема категорія **Grp** – конкретна. Проте категорія **HTop** (тут все як в категорії **Top**, просто беруться гомотопічні відображення) – не конкретна.

0.2 Узагальнення ін'єкції та сюр'єкції

0.2.1 Мономорфізм

Definition 0.2.1 Задано C – категорія.

Морфізм $\alpha \colon x \to y$ називається мономорфізмом (monic), якщо

$$\alpha \beta_1 = \alpha \beta_2 \implies \beta_1 = \beta_2$$

Тобто морфізм – мономорфізм, якщо можна завжди скоротити зліва.

$$z \xrightarrow{\beta_2} x \xrightarrow{\alpha} y$$

Часто мономорфізми позначають як $\alpha \colon x \rightarrowtail y$.

Theorem 0.2.2 У конкретній категорії кожний ін'єктивний морфізм — мономорфізм.

Proof.

Нехай C — конкретна категорія та $\alpha: X \to Y$ — ін'єктивний морфізм. Нехай $\beta_1, \beta_2: Z \to X$ — морфізми C та припустимо, що $\alpha\beta_1 = \alpha\beta_2$. Для всіх $z \in Z$ ми маємо $\alpha(\beta_1(z)) = \alpha\beta_1(z) = \alpha\beta_2(z) = \alpha(\beta_2(z))$, тому за ін'єктивністю, $\beta_1(z) = \beta_2(z)$. Отже, $\beta_1 = \beta_2$, тобто α — мономорфізм.

Remark 0.2.3 Зворотне твердження не працює.

Example 0.2.4 Розглянемо повну категорію **Div** підкатегорії **Grp**. Тут абелева група з категорії **Div** називається **подільною**, якщо $\forall a \in A, \forall n \in \mathbb{Z} \setminus \{0\} : \exists b \in A : a = nb$.

Оберемо об'єкти $\mathbb{Q}, \mathbb{Q}/\mathbb{Z}$ із нашої категорії **Div** та гомоморфізм $\alpha \colon \mathbb{Q} \to \mathbb{Q}/\mathbb{Z}$, який є сюр'єктивним. Даний морфізм не ін'єктивний, оскільки $\ker \alpha = \mathbb{Z}$. Стверджується, що α – мономорфізм.

Нехай $\beta_1,\beta_2\colon A\to \mathbb{Q}$ — морфізми в **Div** та припустимо, що $\beta_1\neq\beta_2$. Тоді існує елемент $a\in A$, для якого $\beta_1(a)-\beta_2(a)\neq 0$. Ліворуч раціональне число, тож $\beta_1(a)-\beta_2(a)=\frac{r}{s}$ для деяких $r,s\in \mathbb{Z}$ та $r\neq 0,s\neq 0$. Оскільки A — подільна група, то існує для елемента $a\in A$ та n=2r існує $b\in A$, для якого a=nb. Тоді $\beta_1(nb)-\beta_2(nb)=n\beta_1(b)-n\beta_2(b)=\frac{r}{s}$.

Отже, $\beta_1(b) - \beta_2(b) = \frac{1}{2s} \notin \mathbb{Z}$, а тому звідси $\alpha\beta_1 \neq \alpha\beta_2$.

Theorem 0.2.5 У категоріях **Set**, **Top**, **Grp**, **Rng** морфізм ін'єктивний ← морфізм – мономорфізм.

Proof.

Ми вже знаємо, що ін'єктивний морфізм – мономорфізм. Залишилося довести зворотний бік для цих категоріях.

(Set). Нехай $\alpha\colon X\to Y$ — мономорфізм. Оберемо $x_1,x_2\in X$ та припустимо, що $\alpha(x_1)=\alpha(x_2)$. Покладемо $z=0\in\mathbb{Z}$ та покладемо $Z=\{z\}$ (хоча тут може бути будь-який сінглтон), визначимо $\beta_1,\beta_2\colon Z\to X$ як $\beta_1(z)=x_1,\beta_2(z)=x_2$. Тоді $\alpha(\beta_1(z))=\alpha(\beta_1(z))=\alpha(x_1)=\alpha(x_2)=\alpha(\beta_2(z))=\alpha\beta_2(z)$. За монічністю, звідси $\beta_1=\beta_2$, тобто $x_1=\beta_1(z)=\beta_2(z)=x_2$. Таким чином, α — ін'єктивний.

(**Top**). Насправді, все аналогічно, тільки є деякі зауваження. На множину Z треба задати дискретну топологію (єдина можлива топологія для неї). Відображення β_1, β_2 будуть уже неперервними через дискретність Z.

(**Grp**). Нехай $\alpha \colon G \to H$ – мономорфізм. Розглянемо $\beta_1, \beta_2 \colon \ker \alpha \to G$ – перший буде вкладенням, другий буде тривіальним. Тоді $\alpha\beta_1 = \alpha\beta_2$. Дійсно,

$$\alpha\beta_1(g) = \alpha(g) \stackrel{g \in \ker \alpha}{=} e = \alpha(e) = \alpha\beta_2(g).$$

За монічністю, звідси $\beta_1=\beta_2$, тобто β_1 – тривіальне вкладення. Отже, $\ker\alpha=\{e\}$, а це означає ін'єктивніть α .

(Rng). Таке саме доведення.

0.2.2 Розщеплений мономорфізм

Definition 0.2.6 Задано C – категорія.

Морфізм $\alpha \colon x \to y$ називається розщепленим мономорфізмом (split monic), якщо

$$\exists \beta \colon y \to x : \beta \alpha = 1_x$$

Морфізм – розщеплений мономорфізм, тобто даний морфізм має лівий оборотний.

$$\int_{1_{x}} x \xrightarrow{\alpha} y$$

Theorem 0.2.7 Кожний розщеплений мономорфізм – мономорфізм.

Proof.

Нехай $\alpha \colon x \to y$ — розщеплений мономорфізм в категорії, тобто існує морфізм $\beta \colon y \to x$, для якого $\beta \alpha = 1_x$. Нехай $\beta_1, \beta_2 \colon z \to x$ будуть морфізмами та припустимо, що $\alpha \beta_1 = \alpha \beta_2$. Тоді $\beta_1 = 1_x \beta_1 = \beta \alpha \beta_1 = \beta \alpha \beta_2 = 1_x \beta_2 = \beta_2$.

Theorem 0.2.8 У конкретній категорії кожний розщеплений мономорфізм – ін'єктивний морфізм.

Proof.

Нехай C – конкретна категорія та $\alpha\colon X\to Y$ – розщеплений мономорфізм, тобто існує морфізм $\beta\colon Y\to X$, для якого $\beta\alpha=1_X$. Припустимо $\alpha(x_1)=\alpha(x_2)$. Тоді

$$x_1 = 1_X(x_1) = \beta \alpha(x_1) = \beta(\alpha(x_1)) = \beta(\alpha(x_2)) = \beta \alpha(x_2) = 1_X(x_2) = x_2.$$

Remark 0.2.9 Зворотне твердження не працює.

Example 0.2.10 Розглянемо категорію **Grp**. Вкладення $\alpha \colon 2\mathbb{Z} \to \mathbb{Z}$ – ін'єктивний гомоморфізм. Але це не буде розщепленим мономорфізмом.

!Припустимо, що все ж таки він розщеплений мономорфізм, тобто існує гомоморфізм β : $\mathbb{Z} \to 2\mathbb{Z}$, для якого $\beta\alpha = 1_{2\mathbb{Z}}$. Тоді $2\beta(1) = \beta(2) = \beta(\alpha(2)) = \beta\alpha(2) = 2$, тобто $\beta(1) = 1$, але це суперечність! Просто тому що β відображає на $2\mathbb{Z}$.

Можна аналогічні міркування провести для категорії **Rng**.

Example 0.2.11 Розглянемо категорію **Top**. Оберемо тотожне відображення $\alpha \colon \mathbb{R} \to \mathbb{R}$, де область визначення має дискретну топологія, а область значень – стандартну. Тоді α – ін'єктивний, але не розщеплений мономорфізм.

!Припустимо, що існує морфізм β : $\mathbb{R} \to \mathbb{R}$, для якого $\beta \alpha = 1_{\mathbb{R}}$. Тоді $\beta = \beta 1_{\mathbb{R}} = \beta \alpha = 1_{\mathbb{R}}$, однак множина $\{0\}$ відкрита в \mathbb{R} з дискретною топологією, але $\beta^{-1}\{0\} = \{0\}$ не відкрита в стандартній топології. Це суперечність! Тому що β – неперервне відображення.

Theorem 0.2.12 Задано $\alpha \colon X \to Y$ – морфізм в категорії **Set**.

Proof.

 \implies Дано: α — розщеплений мономорфізм. Оскільки **Set** — конкретна категорія, то звідси α — ін'єктивний.

Тепер нехай $X = \emptyset$. Тоді за умовою, існує $\beta \colon Y \to X$, для якого $\beta \alpha = 1_X = 1_\emptyset$. Тоді оскільки β — функція, то $Y = \emptyset$.

 \leftarrow Дано: α – ін'єктивний та $X = \emptyset \implies Y = \emptyset$.

Нехай $X \neq \emptyset$, тобто існує елемент $x_0 \in X$. Оскільки α – ін'єктивний, то $\alpha \colon X \to \operatorname{Im} \alpha$, буде задавати бієкцію, тож для кожного $y \in \operatorname{Im} \alpha$ існує єдиний елемент $\beta(y) \in X$, для якого $\alpha(\beta(y)) = y$. Це визначає функцію $\beta \colon \operatorname{Im} \alpha \to X$, що розширюється до функції $\beta \colon Y \to X$, якщо покласти $\beta(y) = x_0, y \notin \operatorname{Im} \alpha$. Для $x \in X$ ми маємо $\beta\alpha(x) = \beta(\alpha(x)) = x = 1_X(x)$.

Нехай
$$X=\emptyset$$
, тоді $Y=\emptyset$ та порожня функція $\beta\colon Y\to X$ задовольняє $\beta\alpha=1_X$.

Отже, в конкретній категорії маємо таку діаграму:

розщеплений мономорфізм \implies ін ективний \implies мономорфізм

Приклади нам показали, що жодні два терміни не збігаються загалом.

У більш загальних категоріям *ін'єктивність* більше не визначена, бо ми там оперуємо множинами. Але якщо слово *ін'єктивний* видалити, то діаграма залишається справедливою.

У повній підкатегорії Set, що містить всі непорожні множини, всі ці три терміни збігаються.

0.2.3 Епіморфізм

Definition 0.2.13 Задано C – категорія.

Морфізм $\alpha: x \to y$ називається **епіморфізмом** (**еріс**), якщо

$$\beta_1 \alpha = \beta_2 \alpha \implies \beta_1 = \beta_2$$

Тобто морфізм – епіморфізм, якщо можна завжди скоротити справа (дуальне означення мономорфізма).

$$x \xrightarrow{\alpha} y \xrightarrow{\beta_1} z$$

Часто епіморфізми позначають як $\alpha \colon x \twoheadrightarrow y$.

Theorem 0.2.14 У конкретній категорії кожний сюр'єктивний морфізм – епіморфізм.

Proof.

Нехай C – конкретна категорія та $\alpha \colon X \to Y$ – сюр'єктивний морфізм. Нехай $\beta_1, \beta_2 \colon Y \to Z$ – морфізми C та припустимо, що $\beta_1 \alpha = \beta_2 \alpha$. Оберемо $y \in Y$. Оскільки α – сюр'єктивне, то $y = \alpha(x)$ для деякого $x \in X$. Тоді маємо $\beta_1(y) = \beta_1(\alpha(x)) = \beta_1\alpha(x) = \beta_2\alpha(x) = \beta_2(\alpha(x)) = \beta_2(y)$. Отже, $\beta_1 = \beta_2$.

Remark 0.2.15 Зворотне твердження не працює.

Example 0.2.16 Розглянемо категорію \mathbf{Rng} та оберемо вкладення $\alpha \colon \mathbb{Z} \to \mathbb{Q}$, яке не є сюр'єктивним. Але доведемо, що α – епіморфізм.

Нехай $\beta_1,\beta_2:\mathbb{Q}\to\mathbb{R}$ – морфізми з Rng та припустимо, що $\beta_1\alpha=\beta_2\alpha$. Тоді $\beta_1(n)=\beta_2(n)$ для будь-якого цілого $n\in\mathbb{Z}$. При $n\neq 0$ ми маємо

$$\beta_1(n^{-1}) = \beta_1(n^{-1} \cdot 1) = \beta_1(n^{-1})\beta_1(1) = \beta_1(n^{-1})\beta_2(1) = \beta_1(n^{-1})\beta_2(n)\beta_2(n^{-1}) = \beta_1(n^{-1})\beta_1(n)\beta_2(n^{-1}) = \beta_1(1)\beta_2(n^{-1}) = \beta_2(1)\beta_2(n^{-1}) = \beta_2(1)\beta_2($$

$$\beta_1(1)\beta_2(n^{-1}) = \beta_2(1)\beta_2(n^{-1}) = \beta_2(1 \cdot n^{-1}) = \beta_2(n^{-1}).$$
 Таким чином, для $m, n \in \mathbb{Z}$ при $n \neq 0$ ми маємо наступне: $\beta_1\left(\frac{m}{n}\right) = \beta_1(m)\beta_1(n^{-1}) = \beta_2(m)\beta_2(n^{-1}) = \beta_2(m)\beta_2(n^{-1}) = \beta_2\left(\frac{m}{n}\right).$ Отже. $\beta_1 = \beta_2$.

Theorem 0.2.17 У категоріях **Set**, **Top**, **Grp** морфізм сюр'єктивний \iff морфізм – епіморфізм.

Proof.

Ми вже знаємо, що сюр'єктивний морфізм – епіморфізм. Залишилося довести зворотний бік для цих категоріях.

(Set). Нехай $\alpha \colon X \to Y$ — епіморфізм морфізм. Нехай $\beta_1 \colon Y \to \{0,1\}$ буде характеристичною функцією для $\operatorname{Im} \alpha$ та нехай $\beta_2 \colon Y \to \{0,1\}$ буде стало дорівнювати 1. Тоді $\beta_1 \alpha = \beta_2 \alpha$, тому за епічністю, $\beta_1 = \beta_2$. Із цього випливає, що $\operatorname{Im} \alpha = Y$, що доводить сюр'єктивність α .

(**Top**). Проводиться те саме доведення, як з Set. Тільки треба $\alpha \colon X \to Y$ брати уже неперервне відображення, а на просторі $\{0,1\}$ задати недискретну топологію, щоб β_1,β_2 стали неерервними.

(Grp). Нехай $\alpha \colon G \to H$ – гомоморфізм груп та припустимо, що це – не сюр'єктивний. Звідси випливає, що $[H: {\rm Im}\, \alpha] > 1.$ Ми тоді доведемо, що α – не епіморфізм.

Випадок $[H:\operatorname{Im}\alpha]=2$. Нехай $\beta_1\colon H\to H/_{\operatorname{Im}\alpha}$ – канонічний гомоморфізм та $\beta_2\colon H\to H/_{\operatorname{Im}\alpha}$ – тривіальний гомоморфізм. Тоді $\beta_1 \alpha = \beta_2 \alpha$, але при цьому $\beta_1 \neq q\beta_2$, оскільки ${\rm Im}\, \alpha \neq H$. Тобто в даному випадку α – не епіморфізм.

Випадок $[H:\operatorname{Im}\alpha]>2$. Тоді існують два різних правих суміжних класи $K_1=\operatorname{Im}\alpha\cdot h_1$ та $K_2=$ $\operatorname{Im} \alpha \cdot h_2$, причому $K_1, K_2 \neq \operatorname{Im} \alpha$. Покладемо $b = h_1^{-1}h_2$ та зауважимо, що $K_1b = K_2$, а звідси $K_2b^{-1} = K_1$. Позначимо S_H за групу симетрії на H та оберемо бієкцію $\sigma \in S_H$, що задана формулою

$$\sigma(h) = \begin{cases} hb, & h \in K_1, \\ hb^{-1}, & h \in K_2,. \text{ Можна зауважити, що } \sigma^2 = 1_H \text{ та } \sigma(kh) = k\sigma(h) \text{ для всіх } k \in \operatorname{Im} \alpha, h \in H. \\ h, & \operatorname{ihakme} \end{cases}$$

Для $h \in H$ нехай λ_h буде елементом S_H , що заданий формулою $\lambda_h(x) = hx(x \in H)$. Тоді звідси отримаємо $\sigma \lambda_k = \lambda_k \sigma$ для всіх $k \in \operatorname{Im} \alpha$.

Визначимо $\beta_1,\beta_2\colon H\to S_H$ як $\beta_1(h)=\lambda_k$ та $\beta_2(h)=\sigma\lambda_k\sigma$. Ці два відображення справдлі задають гомоморфізм груп. Для $k \in \text{Im } \alpha$ ми маємо

 $β_2(k) = σλ_kσ = λ_kσ^2 = λ_k = β_1(k)$, a тому $β_1α = β_2α$. Із іншого боку, $β_2(h_1)(e) = σλ_{h_1}σ(e) = σλ_{h_2}σ(e)$ $\sigma(h_1) = h_2 \neq h_1 = \lambda_{h_1}(e) = \beta_1(h_1)(e)$. Тож звідси $\beta_1 \neq \beta_2$. Тобто і в цьому випадку α — не епіморфізм.

0.2.4 Розщеплений епіморфізм

Definition 0.2.18 Задано C – категорія.

Морфізм $\alpha: x \to y$ називається **розщепленим епіморфізмом**, якщо

$$\exists \beta \colon y \to x : \alpha \beta = 1_y$$

Морфізм – розщеплений епіморфізм, тобто даний морфізм має правий оборотний (дуальне означення розщепленого мономорфізма). Такий морфізм інколи ще називають ретракцією.

$$x \stackrel{\leftarrow}{\longleftrightarrow} y$$

Theorem 0.2.19 Кожний розщеплений епіморфізм – епіморфізм.

Proof.

Нехай $\alpha: x \to y$ — розщеплений епіморфізм в категорії, тобто існує морфізм $\beta: y \to x$, для якого $\alpha\beta = 1_1$. Нехай $\beta_1, \beta_2: y \to z$ будуть морфізмами та припустимо, що $\beta_1\alpha = \beta_2\alpha$. Тоді $\beta_1 = \beta_1 1_y = \beta_1 \alpha\beta = \beta_2 \alpha\beta = \beta_2 1_y = \beta_2$.

Theorem 0.2.20 У конкретній категорії кожний розщеплений епіморфізм – сюр'єктивний морфізм.

Proof.

Нехай C — конкретна категорія та $\alpha\colon X\to Y$ — розщеплений епіморфізм, тобто існує морфізм $\beta\colon Y\to X$, для якого $\alpha\beta=1_Y$. Нехай $y\in Y$, тоді покладемо $x=\beta(y)$. Звідси $\alpha(x)=\alpha(\beta(y))=\alpha\beta(y)=1_Y(y)=y$.

Remark 0.2.21 Зворотне твердження не працює.

Example 0.2.22 Розглянемо категорію **Grp** та визначимо морфізм $\alpha \colon \mathbb{Z}_4 \to \mathbb{Z}_2$, визначений як $\alpha(0) = \alpha(2) = 0$ та $\alpha(1) = \alpha(3) = 1$. Це буде сюр'єктивний гомоморфізм. Оскільки $1 \in \mathbb{Z}_2$ має порядок 2, то будь-який гомоморфізм $\beta \colon \mathbb{Z}_2 \to \mathbb{Z}_4$ зобов'язаний відображати 1 на 0 або 2. Таким чином, $\alpha\beta \neq 1_{\mathbb{Z}_2}$. Отже, α — не розщеплений епіморфізм.

Можна аналогічні міркування провести для категорії **Rng**.

Example 0.2.23 Розглянемо категорію **Top**. Маємо $\alpha \colon \mathbb{R} \to \mathbb{R}$ – тотожне відображення; у першого – дискретна топологія, у другого – стандартна. Тоді α – сюр'єктивний морфізм, але аналогічним чином можна довести, що це не епічний морфізм (як це було з епічним мономорфізмом).

Theorem 0.2.24 У категорії Set морфізм – розщеплений епіморфізм 👄 морфізм сюр'єктивний.

Proof.

Залишилося довести у зворотний бік.

 \sqsubseteq Дано: $\alpha: X \to Y$ – сюр'єктивний морфізм. Тобто для кожного $y \in Y$ знайдеться $\beta(y) \in X$, для якого $\alpha(\beta(y)) = y$, а це визначає функцію $\beta: Y \to X$, яка задовольняє $\alpha\beta = 1_Y$. Отже, α – розщеплений епіморфізм.

Отже, в конкретній категорії маємо таку діаграму:

розщеплений епіморфізм $\implies сюр'єктивний \implies$ епіморфізм

Приклади нам показали, що жодні два терміни не збігаються загалом.

У більш загальних категоріям *сюр'єктивність* більше не визначена, бо ми там оперуємо множинами. Але якщо слово *сюр'єктивний* видалити, то діаграма залишається справедливою. У категорії **Set** всі ці три терміни збігаються.

0.2.5 Біморфізми та ізоморфізми

Definition 0.2.25 Задано C – категорія.

Морфізм $\alpha \colon x \to y$ називається **біморфізмом**, якщо

 α — одночасно мономорфізм та епіморфізм

Морфізм $\alpha \colon x \to y$ називається **ізоморфізмом**, якщо

$$\exists \beta \colon y \to x : \beta \alpha = 1_x \qquad \alpha \beta = 1_y$$

Remark 0.2.26 Якщо α – ізоморфізм, то морфізм β в означенні – єдиний та позначається за α^{-1} .

Definition 0.2.27 Задано C – категорія.

Об'єкти x, y називаються **ізоморфними**, якщо

$$\exists \alpha \colon x \to y$$
 – ізоморфізм

Позначення: $x \cong y$ (це справді відношення еквівалентності).

Theorem 0.2.28 Морфізм — ізоморфізм \iff морфізм — розщеплений мономорфізм та розщеплений епіморфізм.

Proof.

 \Rightarrow митт ϵ во виплива ϵ з означення.

 \sqsubseteq Дано: α – розщеплений мономорфізм та розщеплений епіморфізм. Тобто існують морфізми $\beta, \gamma \colon y \to x$, для яких $\beta \alpha = 1_x$, $\alpha \gamma = 1_y$. Але тоді $\beta = \beta 1_y = \beta \alpha \gamma = 1_x \gamma = \gamma$. Отже, α – ізоморфізм.

Тепер ми маємо ось таку діаграму. Італік позначений лише для конкретних категорій.

Theorem 0.2.29 У категорії **Set**, **Grp** біморфізм, бієкція, ізоморфізм – це одне й те саме.

Proof

(Set). Нехай $\alpha\colon X\to Y$ — біморфізм. Зважаючи на діаграму вище, достатньо довести, що α — ізоморфізм. Оскільки α — мономорфізм та епіморфізм, то в даній категорії α — ін'єктивний та сюр'єктивний, тобто бієктивний. Значить, існує морфізм α^{-1} , для якого $\alpha^{-1}\alpha=1_X$, $\alpha\alpha^{-1}=1_Y$, що й доводить ізоморфність.

(**Grp**). Насправді, аналогічно. Але треба окремо пересвідчитися, що якщо α – гомоморфізм, то α^{-1} буде ним також.

Remark 0.2.30 Що по інших категоріях, які не потрапили в цю теорему.

 (\mathbf{Rng}) . Зауважимо, що $\mathbb{Z} \hookrightarrow \mathbb{Q}$ буде біморфізмом, але не бієкцією.

 (\mathbf{Top}) . Тотожне відображення $R \to R$, з дискретною та стандартною топологією відповідно, буде бієкцією, але не ізоморфізмом (тобто гомеоморфізмом в даному випадку).

0.3 Ініціальні та термінальні об'єкти

Definition 0.3.1 Задано C – категорія та $c \in C$ – об'єкт. Об'єкт c називається ініціальним, якщо

$$\forall x \in C : \exists ! \alpha \colon c \to x$$

Об'єкт c називається **термінальним**, якщо

$$\forall x \in C : \exists ! \beta : x \to c$$

Example 0.3.2 Зокрема в категорії **Set**, **Top** ініціальним об'єктом буде \emptyset ; термінальним об'єктом буде $\{x\}$ (будь-який сінглтон).

Example 0.3.3 У категоріях **Grp**, **Rng**, $_R$ **Mod** ініціальним та термінальним об'єктом одночасно буде $\{e\}$, де e – нейтральний елемент.

Example 0.3.4 У категорії **Ring** ініціальним об'єктом буде кільце \mathbb{Z} , а термінальним об'єктом буде тривіальне кільце $\{0\}$.

Theorem 0.3.5 Задано C – категорія, $c_1, c_2 \in C$ – обидва ініціальні. Тоді $c_1 \cong c_2$.

Proof.

За умовою, c_1 – ініціальний, тоді для об'єкта c_1 існує єдиний морфізм $\alpha\colon c_1\to c_2$. Аналогічно, c_2 – ініціальний, тоді для об'єкта c_1 існує єдиний морфізм $\beta\colon c_2\to c_1$. Розглянемо композицію $\beta\alpha\colon c_1\to c_1$ – такий морфізм буде єдиним в силу єдиності α,β . У категорії точно існує морфізм $1_{c_1}\colon c_1\to c_1$ – отже, в силу єдиності такого морфізму, $\beta\alpha=1_{c_1}$. Аналогічно доводиться, що $\alpha\beta=1_{c_2}$. Значить, $\alpha\colon c_1\to c_2$ буде ізоморфізмом.

Theorem 0.3.6 Задано C – категорія, $d_1, d_2 \in C$ – обидва термінальні. Тоді $d_1 \cong d_2$. Вправа: довести.

0.4 Добуток

Definition 0.4.1 Задано C – категорія та $\{c_1, c_2\}$ – сім'я об'єктів C. Сформуємо категорію \mathbf{D}_{pr} таким чином:

об'єктами будуть пари $(x, \{\alpha_1, \alpha_2\})$, де x – об'єкт в C та $\alpha_1 : x \to c_1, \alpha_2 : x \to c_2$ – морфізми в C;

морфізмом між об'єктами $(x,\{\alpha_1,\alpha_2\}) \to (y,\{\beta_1,\beta_2\})$ будуть всі морфізми $\gamma\colon x\to y$, для яких $\beta_1\gamma=\alpha_1,\ \beta_2\gamma=\alpha_2;$

композицією морфізмів буде композиція, як в категорії C.

Добутком сім'ї $\{c_1, c_2\}$ називають термінальний об'єкт категорії \mathbf{D}_{pr} .

Позначимо термінальний об'єкт за $(p, \{\pi_1, \pi_2\})$. Тоді за означенням термінальності, для кожного об'єкта $(x, \{\alpha_1, \alpha_2\})$ існує єдиний морфізм між $(x, \{\alpha_1, \alpha_2\})$ та $(p, \{\pi_1, \pi_2\})$. Тобто це означає, що існує єдиний морфізм $\gamma \colon x \to p$ в категорії C, для якого $\pi_1 \gamma = \alpha_1$, $\pi_2 \gamma = \alpha_2$.

Використовується позначення $p=c_1\times c_2$; морфізми $\pi_1\colon c_1\times c_2\to c_1,\ \pi_2\colon c_1\times c_2\to c_2$ називаються проєктивними морфізмами.

Remark 0.4.2 Аналогічним чином можна визначити в категорії C добуток деякої сім'ї об'єктів $\{c_i, i \in I\}$. Позначення: $p = \prod c_i$.

Example 0.4.3 Розглянемо категорію **Set**. Розглянемо сім'ю множин $\{X_i, i \in I\}$. Добутком цієї сім'ї множин є множина всіх функцій $f \colon I \to \bigcup_{i \in I} X_i$ таких, що $f(i) \in X_i$ для всіх $i \in I$. Це можна записати таким чином:

$$P = \prod_{i \in I} X_i = \left\{ f \colon I \to \bigcup_{i \in I} X_i \mid f(i) \in X_i, \forall i \in I \right\}$$

Для кожного $i \in I$ визначимо проєкцію $\pi_i \colon P \to X_i$ таким чином: $\pi_i(f) = f(i)$. Доведемо, що пара $(P, \{\pi_i\})$ буде утворювати добуток сім'ї $\{X_i\}$ (у категоріальному сенсі).

Proof.

Нехай Y — об'єкт з морфізмами $\alpha_i\colon Y\to X_i$. Хочемо знайти єдиний морфізм $\gamma\colon Y\to P$, щоб $\alpha_i=\pi_i\gamma$. Покладемо $\gamma\colon Y\to P$ таким чином: $\forall y\in Y\colon \gamma(y)$ буде функцією $I\to\bigcup_{i\in I}X_i$, причому

 $\forall i \in I: \gamma(y)_i = \alpha_i(y)$. Тоді $\pi_i \gamma(y) = \pi_i(\gamma(y)) = \gamma(y)_i = \alpha_i(y)$, тобто звідси $\pi_i \gamma = \alpha_i$ для всіх $i \in I$. !Припустимо, що існує функція $\gamma' \colon Y \to P$, для якої $\pi_i \gamma' = \alpha_i$. Тобто для кожного $y \in Y$ та кожного $i \in I$ виконано $\gamma'(y)(i) = \alpha_i(x)$. Але тоді $\gamma'(y)(i) = \pi_i(\gamma'(y)) = \pi_i \gamma'(y) = \alpha_i(y) = \gamma(y)(i)$. Суперечність!

Example 0.4.4 Розглянемо категорію **Grp**. Насправді, все так само робиться, як в категорії **Set**, ось тільки кожний X_i тепер буде групою. Визначаємо декартів добуток P — це буде група зі покомпонентним множенням: (fg)(i) = f(i)g(i). Це ще називають (зовнішнім) прямим добутком груп. Проєктивні відображення π_i будуть гомоморфізмами. Далі все те саме.

Для категорій $\mathbf{Rng}_{,R}\mathbf{Mod}$ все аналогічно.

Example 0.4.5 Залишилася категорія **Top**. Маємо (X_i, τ_i) – топологічні простори. Добуток топології для $P = \prod_{i \in I} X_i$, як відомо, породжується передбазою $\mathcal{S} = \bigcup_{i \in I} \left\{ \pi_i^{-1}(U) \mid U$ – відкрита в $X_i \right\}$. Це дозволяє нам створити таку топологію, що всі $\pi_i \colon P \to X_i$ стануть неперервними.

Це дозволяє нам створити таку топологію, що всі $\pi_i \colon P \to X_i$ стануть неперервними. Доведемо, що $\gamma \colon X \to P$, що була визначена вище, – неперервна. Оскільки ми створили топологію через передбазу, нам достатньо довести, що $\gamma^{-1}(\pi_i^{-1}(U))$ – відкриті. $\gamma^{-1}(\pi_i^{-1}(U)) = (\pi\gamma)^{-1}(U) = \alpha_i^{-1}(U)$ – відкрита, бо α_i припускалася, що неперервна.

0.5 Кодобуток

Definition 0.5.1 Задано C – категорія та $\{c_1, c_2\}$ – сім'я об'єктів C. Сформуємо категорію \mathbf{D}_{copr} таким чином:

об'єктами будуть пари $(x, \{\alpha_1, \alpha_2\})$, де x – об'єкт в C та $\alpha_1 : c_1 \to x, \alpha_2 : c_2 \to x$ – морфізми в C;

морфізмом між об'єктами $(x,\{\alpha_1,\alpha_2\}) \to (y,\{\beta_1,\beta_2\})$ будуть усі морфізми $\gamma\colon x\to y$, для яких $\gamma\alpha_1=\beta_1,\ \gamma\alpha_2=\beta_2;$

композицією морфізмів буде композиція, як в категорії C.

Той факт, що $(P, \{\pi_i\})$ задає добуток, доводиться аналогічно.

Кообутком сім'ї $\{c_1, c_2\}$ називають ініціальний об'єкт категорії \mathbf{D}_{copr} .

Позначимо ініціальний об'єкт за $(q, \{i_1, i_2\})$. Тоді за означенням ініціальності, для кожного об'єкта $(x, \{\alpha_1, \alpha_2\})$ існує єдиний морфізм між $(q, \{i_1, i_2\})$ та $(x, \{\alpha_1, \alpha_2\})$. Тобто це означає, що існує єдиний морфізм $\gamma \colon q \to x$ в категорії C, для якого $\gamma i_1 = \alpha_1, \ \gamma i_2 = \alpha_2$.

Використовується позначення $p=c_1\sqcup c_2$; морфізми $\imath_1\colon c_1\to c_1\sqcup c_2,\ \imath_2\colon c_2\to c_1\sqcup c_2$ називаються морфізмами вкладень.

Remark 0.5.2 Аналогічним чином можна визначити в категорії C кодобуток деякої сім'ї об'єктів $\{c_i, i \in I\}$. Позначення: $q = \coprod_{i \in I} c_i$.

Example 0.5.3 Розглянемо категорію **Set**. Розглянемо сім'ю множин $\{X_i, i \in I\}$ (якусь довільну). Визначимо множину Q ось так: $Q = \bigsqcup_i X_i'$, де в цьому випадку $X_i' = \{(x,i) \mid x \in X_i\}$ для всіх i.

Причому варто зауважити, що X_i' дійсно неперетинні, а також $X_i'\cong X_i$. Визначимо відображення $\imath_i\colon X_i\to Q$ таким чином: $\imath_i(x)=(x,i)$.

Доведемо, що пара $(Q, \{i_i\})$ буде утворювати кодобуток сім'ї $\{X_i\}$ (у категоріальному сенсі).

Proof.

Нехай $(X,\{\alpha_i\})$ — будь-який об'єкт $\mathbf{D}_{\text{сорт}}$. Визначимо відображення $\gamma\colon Q\to X$ ось таким чином: $\gamma((x,i))=\alpha_i(x)$. Зауважимо, що для всіх i та всіх $x\in X$ ми маємо $\gamma\circ \imath_i(x)=\gamma((x,i))=\alpha_i(x)$. Значить, γ буде морфізмом між цими двома об'єктами. Доведемо, що такий морфізм єдиний. Оберемо морфізм γ' , який діє між двома об'єктами, тобто $(Q,\{\imath_i\})$ та $(X,\{\alpha_i\})$. Тоді раз це морфізм, то справедлива рівність $\gamma'\circ \imath_i=\alpha_i$ для всіх i. Проте з іншого боку, $\alpha_i(x)=\gamma((x,i))$. Значить, $\gamma((x,i))=\alpha_i(x)=\gamma'\circ \imath_i(x)=\gamma'((x,i))$.

Example 0.5.4 Розглянемо категорію. **Top**. Як і в категорії **Set**, розглянемо сім'ю множин $\{X_i, i \in I\}$ (тільки тут вже топологічні простори). Визначимо множину Q так само, як було вище. На ній задається така топологія: U – відкрита в $Q \iff \imath_i^{-1}(U)$ – відкрита в X_i для всіх i. Тоді всі функції $\imath_i \colon X_i \to Q$, як було визначено вище, будуть неперервними. Далі аналогічним чином доводимо, що пара $\{Q, \{\imath_i\}\}$ утворює кодобуток.

Example 0.5.5 Розглянемо категорію R **Mod**. Нехай $\{M_i\}$ – сім'я модулів над кільцем R та позначимо $M = \bigoplus M_i$, який є підмодулем модуля $\prod M_i$. Просто тому що

$$M = \bigoplus_i M_i = \left\{ m \in \prod_i M_i \mid m_i
eq 0$$
 лише для скінченного числа індексів $i
ight\}$

Визначимо відображення $i_i \colon M_i \to M$ таким чином: $i_i(m)_j = \delta_{ij}(m)$, де δ_{ij} – Кронекер-дельта символ, який повертає m при i=j або 0 в інакшому випадку. Покажемо, що $(M,\{i_i\})$ буде утворювати кодобуток.

Proof.

Нехай $(N, \{\alpha_i\})$ – об'єкт категорії $\mathbf{D}_{\text{сорт}}$. Визначимо відображення $\gamma \colon M \to N$ таким чином: $\gamma(m) = \sum_i \alpha_i(m_i)$ (це скінченна сума, тому все тут коректно). Неважко пересвідчитися буде, що γ задає

$$\stackrel{i}{R}$$
-лінійне відображення. Також $\gamma \imath_i = \alpha_i$ для всіх i . Дійсно, $\gamma \imath_i(m) = \sum_j \alpha_j(\imath_i(m)_j) = \sum_j \alpha_j(\delta_{ij}(m)) = \alpha_i(m)$.

Таким чином, γ – морфізм в $\mathbf{D}_{\mathrm{copr}}$.

Припустимо, що γ' – інший морфізм між $(M,\{i_i\})$ та $(N,\{\alpha_i\})$. Зафіксуємо $m\in M$. Для всіх j маємо:

$$m_j = \sum_i \delta_{ij}(m_i) = \sum_i \imath_i(m_i)_j = \left(\sum_i \imath_i(m_i)\right)_j \implies m = \sum_i \imath_i(m_i).$$
$$\gamma'(m) = \gamma'\left(\sum_i \imath_i(m_i)\right) = \sum_i \gamma' \imath_i(m_i) = \sum_i \alpha_i(m_i) = \gamma(m).$$

Якщо покласти кільце $R = \mathbb{Z}$, то доведемо, що для категорії **Ab** існує кодобуток. Так само якщо покласти кільце R = F – поле, то доведемо, що для категорії **Vect**_F теж існує кодобуток.

0.6 Зрівняльник

Definition 0.6.1 Задано C – категорія та $\lambda_1, \lambda_2 \colon a \to b$ – два морфізми.

$$a \xrightarrow[\lambda_2]{\lambda_1} b$$

Сформуємо категорію \mathbf{D}_{eq} таким чином:

об'єктами будуть пари (x,α) , де x – об'єкт категорії C та $\alpha\colon x\to a$ – морфізм в C, щоб $\lambda_1\alpha=\lambda_2\alpha$;

$$x \xrightarrow{\alpha} a \xrightarrow{\lambda_1} b$$

морфізмом між об'єктами $(x, \alpha) \to (y, \beta)$ буде морфізм $\gamma \colon x \to y$ категорії C, для якого $\beta \gamma = \alpha$;

композицією морфізмів буде просто композиція в категорії C.

Зрівняльником (або equalizer) λ_1, λ_2 будемо називати термінальний об'єкт категорії \mathbf{D}_{eq} .

Позначимо термінальний об'єкт за (p,i). Тоді за означенням термінальності, для кожного об'єкта (x,α) існує єдиний морфізм між (x,α) та (p,i). Тобто це означає, що існує єдиний морфізм $\gamma\colon x\to p$ в категорії C, для якого $i\gamma=\alpha$ — тобто такий морфізм, що діаграма нижче комутується:

Example 0.6.2 Розглянемо категорію **Set**. Нехай $\lambda_1, \lambda_2 \colon A \to B$ — два відображення. Покладемо $P = \{a \in A \mid \lambda_1(a) = \lambda_2(a)\}$ та $i \colon P \to A$ — вкладення. Тоді $\lambda_1 i = \lambda_2 i$ (тобто звідси (P,i) буде об'єктом категорії $\mathbf{D}_{\rm eq}$, який був зазначений вище). Стверджується, що (P,i) — зрівнальник λ_1, λ_2 . Нехай (X,α) — довільний об'єкт категорії $\mathbf{D}_{\rm eq}$. Для кожного $x \in X$ ми маємо $\lambda_1(\alpha(x)) = \lambda_1\alpha(x) = \lambda_2\alpha(x) = \lambda_2(\alpha(x))$, тобто $\mathrm{Im}\,\alpha \subset P$. Оберемо відображення $\gamma \colon X \to P$ так, що $\gamma = \alpha$. Тоді звідси $i\gamma = \alpha$, тобто γ — морфізм між об'єктами $(X,\alpha) \to (P,i)$.

Оскільки i – ін'єктивний (як вкладення), то тоді це мономорфізм. Отже, γ – єдиний такий морфізм.

Example 0.6.3 Розглянемо категорію **Top**. Нехай $\lambda_1, \lambda_2 \colon A \to B$ – неперервні відображення. Визначимо P, i так само, як в попередньому прикладі (оскільки $P \subset A$, то можна визначити топологічний підпростір). Таким чином, i уже буде неперервним. Далі так само доводимо, що (P, i) – зрівнальник λ_1, λ_2 .

Example 0.6.4 Розглянемо категорію **Grp**. Нехай $\lambda_1, \lambda_2 \colon A \to B$ — два гомоморфізми груп та P — така сама множина, що в попередньому прикладі, яка є підгрупою A, тож $i \colon P \to A$ (знову вкладення) — гомоморфізм груп. Далі так само доводимо, що (P,i) — зрівнальник λ_1, λ_2 .

Аналогічно для категорій \mathbf{Rng} , $_R\mathbf{Mod}$.

Proposition 0.6.5 Задано C – категорія та $\lambda_1, \lambda_2 \colon a \to b$ – два морфізми. Припустимо, що (p, i) – зрівняльник λ_1, λ_2 . Тоді i – мономорфізм.

Proof.

Нехай $\beta_1, \beta_2 \colon x \to p$ – морфізми категорії C, для яких $i\beta_1 = i\beta_2$. Для зручності позначу $i\beta_1 = \alpha$. Оскільки (p,i) – об'єкт категорії $\mathbf{D}_{\rm eq}$, ми маємо наступне:

 $\lambda_1 \alpha = (\lambda_1 i) \beta_1 = (\lambda_2 i) \beta_1 = \lambda_2 \alpha.$

Отже, (x, α) – також об'єкт категорії \mathbf{D}_{eq} .

За початковими припущеннями, $i\beta_1 = \alpha$, $i\beta_2 = \alpha$. Але за єдиністю відображення з такими властивостями (зважаючи на означення зрівняльника), $\beta_1 = \beta_2$. Звідси i — мономорфізм.

0.7 Козрівняльник

Definition 0.7.1 Задано C – категорія та $\lambda_1, \lambda_2 \colon a \to b$ – два морфізми.

$$a \xrightarrow{\lambda_1} b$$

Сформуємо категорію $\mathbf{D}_{\mathrm{coeq}}$ таким чином:

об'єктами будуть пари (x,α) , де x – об'єкт категорії C та $\alpha\colon b\to x$ – морфізм в C, щоб $\alpha\lambda_1=\alpha\lambda_2;$

$$a \xrightarrow{\lambda_1} b \xrightarrow{\alpha} x$$

морфізмом між об'єктами $(x, \alpha) \to (y, \beta)$ буде морфізм $\gamma \colon x \to y$ категорії C, для якого $\gamma \alpha = \beta$;

композицією морфізмів буде просто композиція в категорії C.

Козрівняльником (або **coequalizer**) λ_1, λ_2 будемо називати ініціальний об'єкт категорії \mathbf{D}_{coeq} .

Позначимо ініціальний об'єкт за (q,π) . Тоді за означенням ініціальності, для кожного об'єкта (x,α) існує єдиний морфізм між (q,π) та (x,α) . Тобто це означає, що існує єдиний морфізм $\gamma\colon q\to x$ в категорії C, для якого $\gamma\pi=\alpha$ — тобто такий морфізм, що діаграма нижче комутується:

13

$$a \xrightarrow{\lambda_1} b \xrightarrow{\beta} \uparrow \qquad \uparrow \exists ! \gamma$$

Proposition 0.7.2 Задано C – категорія та $\lambda_1, \lambda_2 \colon a \to b$ – два морфізми. Припустимо, що (q, π) – козрівняльник λ_1, λ_2 . Тоді i – епіморфізм.

Насправді, доведення є аналогічним, коли мова була про зрівняльник \implies мономорфізм.

0.8 Пулбек

Definition 0.8.1 Задано C – категорія та $\lambda_1 \colon a_1 \to b, \ \lambda_2 \colon a_2 \to b$ – морфізми.

$$a_2 \downarrow \lambda_2 \\ a_1 \xrightarrow{\lambda_1} b$$

Сконструюємо категорію \mathbf{D}_{pb} ось таким чином:

об'єктами будуть пари $(x,(\alpha_1,\alpha_2))$, де x – об'єкт категорії C та $\alpha_1\colon x\to a_1,\ \alpha_2\colon x\to a_2$ – два морізми категорії C, для яких $\lambda_1\alpha_1=\lambda_2\alpha_2$;

$$x \xrightarrow{\alpha_2} a_2$$

$$\downarrow^{\alpha_1} \qquad \downarrow^{\lambda_2}$$

$$a_1 \xrightarrow{\lambda_1} b$$

морфізмами між об'єктами $(x,(\alpha_1,\alpha_2))$ та $(y,(\beta_1,\beta_2))$ будуть всі морфізми $\gamma\colon x\to y$ категорії C, для яких $\beta_1\gamma=\alpha_1,\ \beta_2\gamma=\alpha_2;$

композицією морфізмів буде композиція, як в категорії C.

Пулбеком пари морфізмів (λ_1, λ_2) будемо називати термінальний об'єкт категорії \mathbf{D}_{pb} .

Позначимо термінальний об'єкт за $(p,(\sigma_1,\sigma_2))$. Тоді за означенням термінальності, для кожного об'єкта $(x,(\alpha_1,\alpha_2))$ існує єдиний морфізм між $(x,(\alpha_1,\alpha_2))$ та $(p,(\sigma_1,\sigma_2))$. Тобто це означає, що існує єдиний морфізм $\gamma\colon x\to p$ в категорії C, для якого $\sigma_1\gamma=\alpha_1,\ \sigma_2\gamma=\alpha_2$.

Example 0.8.2 Розглянемо категорію **Set**. Нехай $\lambda_i\colon A_i\to B(i=1,2)$ будуть дві функції. Визначимо $A_1\times_B A_2=\{(a_1,a_2)\mid a_i\in A_i, i=1,2,\lambda(a_1)=\lambda(a_2)\}\subset A_1\times A_2$. Така множина називається розшарованим добутком λ_1,λ_2 .

Покладемо $P = A_1 \times_B A_2$ та визначимо $\sigma_i \colon P \to A_i$ таким чином: $\sigma_i((a_1, a_2)) = a_i, i = 1, 2$. Зауважимо, що $\lambda_1 \sigma_1 = \lambda_2 \sigma_2$. Дійсно, для $a = (a_1, a_2) \in P$ маємо наступне:

 $\lambda_1 \sigma_1(a) = \lambda_1(a_1) = \lambda_2(a_2) = \lambda_2 \sigma_2(a).$

Отже, $(P,(\sigma_1,\sigma_2))$ – об'єкт допоміжної категорії \mathbf{D}_{pb} . Я стверджую, що цей об'єкт буде пулбеком пари (λ_1,λ_2) .

Нехай $(X,(\alpha_1,\alpha_2))$ – об'єкт категорії \mathbf{D}_{pb} . Визначимо $\gamma\colon X\to P$ таким чином $\gamma(x)=(\alpha_1(x),\alpha_2(x))$.

Зауважимо, що $(\alpha_1(x), \alpha_2(x)) \in P$, оскільки $\lambda_1(\alpha_1(x)) = \lambda_2(\alpha_2(x))$ (в силу обраного об'єкта з \mathbf{D}_{pb}). Також зазначимо, що $\sigma_i \gamma = \alpha_i, i = 1, 2$, тому це формує морфізм між $(X, (\alpha_1, \alpha_2))$ та $(P, (\sigma_1, \sigma_2))$. Залишилося довести єдиність.

Нехай γ' – інший морфізм між $(X, (\alpha_1, \alpha_2))$ та $(P, (\sigma_1, \sigma_2))$.

 $\gamma'(x) = (\sigma_1 \gamma'(x), \sigma_2 \gamma'(x)) = (\alpha_1(x), \alpha_2(x)) = \gamma(x).$

Тобто $\gamma' = \gamma$, що доводить єдиність морфізма.

Example 0.8.3 Розглянемо категорію **Top**. Нехай $\lambda_i\colon A_i\to B(i=1,2)$ – уже неперервні відображення, на $A_1\times A_2$ покладемо добуток топологій A_1,A_2 , а також $P=A_1\times_B A_2$ – топологічний підпростір $A_1\times A_2$. Відображення $\sigma_i\colon P\to A$, які визначали минулого разу, – це звуження проєктивного відображення $A_1\times A_2\to A_i$ (що є неперервним), тому σ_i – неперервні. Аналогічно доводиться, що $(P,(\sigma_1,\sigma_2))$ утворює пулбек. Тільки ще варто зауважити, що $\gamma\colon X\to P\subset A_1\times A_2$, що було визначено як $\gamma(x)=(\alpha_1(x),\alpha_2(x))$, буде теж неперервним, оскільки кожний α_i – неперервний.

Example 0.8.4 Розглянемо категорію **Grp**. Нехай λ_i : $A_i \to B(i=1,2)$ – уже гомоморфізм груп, на $A_1 \times A_2$ стоїть прямий добуток груп A_1, A_2 , а також $P = A_1 \times_B A_2$ – підгрупа $A_1 \times A_2$ (вправа: довести). Також σ_i, γ , що задані так само, як було вище, – гомоморфізми. Тому $(P, (\sigma_1, \sigma_2))$ утворює пулбек за аналогічними міркуваннями.

Абсолютно аналогічно можна сказати про \mathbf{Rng}_{R} \mathbf{Mod} .

Theorem 0.8.5 Задано C – категорія.

Існують зрівняльники та скінченні добутки в $C \iff$ існують пулбеки та термінальний об'єкт категорії C.

Proof.

 \Rightarrow Дано: існують зрівняльники та скінченні добутки в C.

Добуток порожньої сім'ї об'єктів уже автоматично термінальний (TODO: обдумати).

Залишилося показати існування пулбеку. Нехай λ_i : $a_i \to b$ – два морфізми категорії C. За нашими умовами, існує добуток $(a_1 \times a_2, \{\pi_i\})$ сім'ї $\{a_1, a_2\}$, тобто існує термінальний об'єкт категорії \mathbf{D}_{pr} . Тобто у нас є одна діаграма:

Хто такий об'єкт x та звідки морфізми α_1, α_2 , буде ясно пізніше.

Також за умовою, існує зрівняльник для морфізмів $\lambda_1\pi_1$, $\lambda_2\pi_2$. Тобто у нас є друга діаграма:

Морфізм δ ми взяли з попередньої діаграми, а про об'єкт x та морфізм γ буде згодом.

Покладемо $\sigma_i = \pi_i \imath$. Зауважимо, що $\lambda_1 \sigma_1 = \lambda_1 \pi_1 \imath = \lambda_2 \pi_2 \imath = \lambda_2 \sigma_2$. Таким чином, $(p, (\sigma_1, \sigma_2))$ – об'єкт категорії \mathbf{D}_{pb} . Залишилося показати, що це – термінальний – і таким чином ми отримаємо пулбек.

Нехай $(x,(\alpha_1,\alpha_2))$ – об'єкт категорії \mathbf{D}_{pb} (тепер з об'єктом x та морфізмами α_1,α_2 на діаграмі стало ясніше). Тобто уже маємо $\lambda_1\alpha_1=\lambda_2\alpha_2$. Ми також маємо $\lambda_1\pi_1\delta=\lambda_1\alpha_1=\lambda_2\alpha_2=\lambda_2\pi_2\delta$, тож звідси $(x,\delta)\in\mathbf{D}_{\mathrm{eq}}$. Тоді за зрівняльником, існує морфізм $\gamma\colon x\to p$, для якого $i\gamma=\delta$ (тепер з морфізмом γ стало ясніше).

Зауважимо, що $\sigma_i \gamma = \pi_i \imath \gamma = \pi_i \delta = \alpha_i, i = 1, 2$, тобто звідси γ – це морфізм в \mathbf{D}_{pb} між об'єктами $(x, (\alpha_1, \alpha_2))$ та $(p, (\sigma_1, \sigma_2))$.

Припустимо, що γ' – ще один такий же морфізм. Тоді $\pi_i \imath \gamma' = \sigma_i \gamma' = \alpha_i$ та аналогічно $\pi \imath \gamma = \alpha_i$. Але за єдиністю в добутку, $\imath \gamma' = \imath \gamma$. Оскільки \imath – мономорфізм, то звідси $\gamma' = \gamma$.

\leftarrow Дано: існують пулбеки та термінальний об'єкт категорії C.

Позначимо t за термінальний об'єкт C. Хочемо довести, що існує скінченний добуток в C; а для цього буде достатньо лише довести, що для сім'ї $\{a_1, a_2\}$ (тобто лише для двох об'єктів) існує добуток (TODO: додати пояснення).

Оскільки t – термінальний, то існують єдині морфізми λ_i : $a_i \to t, i = 1, 2$ в категорії C. За умовою, існує пулбек для пари (λ_1, λ_2) , тобто в категорії $\mathbf{D}_{\rm pb}$ існує термінальний об'єкт $(p, (\pi_1, \pi_2))$ (те, що π_i – це проєкція, на даному етапі це невідомо, але скоро своє позначення виправдає). У нас вже є перша діаграма:

Хто такий об'єкт x та морфізм γ , стане зараз ясно.

Ми тепер хочемо довести, що $(p, \{\pi_i\})$ утворює добуток сім'ї $\{a_1, a_2\}$. Тобто хочемо таку діаграму:

Знову ж таки, хто такий x та морфізм γ , стане скоро ясно.

Нехай $(x,\{\alpha_i\})$ – об'єкт категорії \mathbf{D}_{pr} (тепер за x стало ясно на діаграмах). Тоді зауважимо, що $\lambda_i\alpha_i\colon x\to t, i=1,2$ – два морфізми в термінальний об'єкт, тож за єдиністю, $\lambda_1\alpha_1=\lambda_2\alpha_2$. Але це означає, що пара $(x,(\alpha_1,\alpha_2))$ буде об'єктом категорії \mathbf{D}_{pb} , тоді за термінальністю \mathbf{D}_{pb} , існує єдиний морфізм $\gamma\colon x\to p$ категорії C, для якої $\pi_i\gamma=\alpha_i$ (тепер і про γ стало ясно на діаграмах). Власне, це й доводить існування добутку.

Залишилося довести, що існують зрівняльники в C. Нехай $\lambda_i \colon a \to b$ – два морфізми категорії C.

$$a \xrightarrow{\lambda_1} b$$

Ми вже знаємо вище, що існує $(a \times b, \{\pi_i\})$ – добуток сім'ї $\{a,b\}$. Двіча застосуємо означення добутку – отримаємо морфізми $\lambda_1', \lambda_2' \colon a \to a \times b$, для яких справедливі: $\pi \lambda_1' = 1_a \qquad \pi_1 \lambda_2' = 1_a \qquad \pi_1 \lambda_1' = \lambda_1 \qquad \pi_2 \lambda_2' = \lambda_2 \qquad (*).$

За припущенням, існує пулбек для (λ_1', λ_2') , тобто існує термінальний об'єкт $(p, (\sigma_1, \sigma_2))$ категорії \mathbf{D}_{pb} . Використовуючи перші дві рівності в (*), отримаємо:

$$\sigma_1 = 1_a \sigma_1 = \pi_1 \lambda_1' \sigma_1 = \pi_1 \lambda_2' \sigma_2 = 1_a \sigma_2 = \sigma_2.$$

Для зручності позначимо $i = \sigma_1 = \sigma_2$. За останніми двома рівностями в (*),

$$\lambda_1 i = \pi_2 \lambda_1' \sigma_1 = \pi_2 \lambda_2' \sigma_2 = \lambda_2 i.$$

Таким чином, отримали, що (p,i) – об'єкт \mathbf{D}_{eq} . Хочемо довести, що (p,i) буде зрівняльником λ_1, λ_2 , тобто хочемо таку діаграму:

Нехай $(x,\alpha) \in \mathbf{D}_{eq}$. Зокрема звідси $\lambda_1 \alpha = \lambda_2 \alpha \stackrel{\text{позн.}}{=} \beta$. Зауважимо, що $\lambda_i' \alpha, i = 1, 2$ – морфізми із $(x,(\alpha,\beta))$ в $(a \times \beta,(\pi_1,\pi_2))$. Справді,

$$\pi_1 \lambda_i' \alpha = 1_a \alpha = \alpha \qquad \pi_2 \lambda_i' \alpha = \lambda_i \alpha = \beta.$$

Оскільки другий об'єкт – термінальний, то за єдиністю, $\lambda'_1 \alpha = \lambda'_2 \alpha$, а звідси $(x, \alpha, \alpha) \in \mathbf{D}_{\mathrm{pb}}$. Отже, звідси існує єдиний морфізм $\gamma \colon x \to p$, для якого $\sigma_i \gamma = \alpha \iff i \gamma = \alpha$. Остання рівність закінчує доведення за існування зрівняльника.

0.9 Пушаут

Definition 0.9.1 Задано C – категорія та $\lambda_1 \colon a \to b_1, \ \lambda_2 \colon a \to b_2$ – морфізми.

$$\begin{array}{c}
a \xrightarrow{\lambda_2} b_2 \\
\downarrow_{\lambda_1} \\
b_1
\end{array}$$

Сконструюємо категорію \mathbf{D}_{po} ось таким чином:

об'єктами будуть пари $(x,(\alpha_1,\alpha_2))$, де x – об'єкт категорії C та $\alpha_1\colon b_1\to x,\ \alpha_2\colon b_2\to x$ – два морізми категорії C, для яких $\alpha_1\lambda_1=\alpha_2\lambda_2$;

$$\begin{array}{ccc}
a & \xrightarrow{\lambda_2} & b_2 \\
\downarrow^{\lambda_1} & & \downarrow^{\alpha_2} \\
b_1 & \xrightarrow{\alpha_1} & x
\end{array}$$

морфізмами між об'єктами $(x,(\alpha_1,\alpha_2))$ та $(y,(\beta_1,\beta_2))$ будуть всі морфізми $\gamma\colon x\to y$ категорії C, для яких $\gamma\alpha_1=\beta_1,\ \gamma\alpha_2=\beta_2;$

композицією морфізмів буде композиція, як в категорії C.

Пушаутом пари морфізмів (λ_1, λ_2) будемо називати ініціальний об'єкт категорії \mathbf{D}_{pb} .

Позначимо ініціальний об'єкт за $(q,(\tau_1,\tau_2))$. Тоді за означенням ініціальності, для кожного об'єкта $(x,(\alpha_1,\alpha_2))$ існує єдиний морфізм між $(q,(\tau_1,\tau_2))$ та $(x,(\alpha_1,\alpha_2))$. Тобто це означає, що існує єдиний морфізм $\gamma\colon q\to x$ в категорії C, для якого $\gamma\tau_1=\alpha_1,\ \gamma\tau_2=\alpha_2.$

Theorem 0.9.2 Задано C – категорія.

Існують козрівняльники та скінченні кодобутки в $C \iff$ існують пушаути та ініціальний об'єкт категорії C.

Доведення аналогічне, просто тут все дуальне.

0.10 Функтори

Definition 0.10.1 Задані C, D – категорії.

(Коваріантним) функтором із C в D називають функцію $F\colon C\to D$, яка відображає кожний об'єкт x категорії C на об'єкт F(x) категорії D; відображає кожний морфізм α категорії C в морфізм $F(\alpha)$ категорії D. Причому справедливе наступне:

якщо
$$\alpha\colon x\to y$$
 морфізм в C , то $F(\alpha)\colon F(x)\to F(y)$ $F(\beta\alpha)=F(\beta)F(\alpha)$ для всіх морфізмів $\alpha,\beta,$ для яких визначений $\beta\alpha$ $F(1_c)=1_{F(c)}$ для всіх об'єктів c категорії C

Definition 0.10.2 Заданий $F\colon C\to D$ — функтор. Для будь-яких двох об'єктів x,y категорії C функтор F звужується до функції $C(x,y)\to D(F(x),F(y))$.

Функтор F називається **точною (faithful)**, якщо ця звужена функція – ін'єктивна для всіх об'єктів x, y категорії C.

Функтор F називається **повним (full)**, якщо звужена функція – сюр'єктивна для всіх об'єктів x, y категорії C.

Example 0.10.3 Розглянемо **1**: $C \to C$ – тотожний функтор, який працює таким чином:

Ob
$$C \ni c \mapsto \mathbf{1}(c) = c \in \text{Ob } c;$$

 $\alpha \colon x \to y \mapsto \mathbf{1}(\alpha) = \alpha \colon x \to y.$

Тобто об'єкт та морфізм переводить на самого себе.

Example 0.10.4 Розглянемо $\mathrm{Const}_d\colon C\to D$, де d – об'єкт категорії D. Це так званий сталий функтор, який працює таким чином:

Ob
$$c \ni c \mapsto \operatorname{Const}_d(c) = d;$$

 $\alpha \colon x \to y \mapsto \operatorname{Const}_d(\alpha) = 1_d.$

Example 0.10.5 Забуваючий функтор

Прикладом цього буде функтор $\mathbf{Grp} \to \mathbf{Set}$, який відображає кожну групу на ту саму виділену множину та кожний морфізм переводить на самого себе. Суть забуваючого функтора в цьому прикладі полягає в наступному: ми тепер групу сприймаємо як множину та не думаємо про властивості, які там є. Точно так само ми тепер забуваємо, що відображення був гомоморфізмом колись. Ще приклади забуваючих функторів $\mathbf{Rng} \to \mathbf{Ab}$ (забуваємо за множення); $\mathbf{Met} \to \mathbf{Top}$ (забуваємо за метрику) тощо.

За допомогою функторів ми можемо строго визначити таке поняття як конкретна категорія.

Definition 0.10.6 Конкретною категорією називають пару (C, F), де C – категорія та $F: C \to \mathbf{Set}$ – точний функтор.

Definition 0.10.7 Задано $F: C \to D$ – функтор.

Кажуть, що F зберігає ізоморфність, якщо

$$\alpha \colon x \to y$$
 – ізоморфізм $C \implies F(\alpha) \colon F(x) \to F(y)$ – ізоморфізм D .

Кажуть, що F відбиває ізоморфізм, якщо

$$F(\alpha)\colon F(x)\to F(y)$$
 – ізоморфізм в $D\implies \alpha\colon x\to y$ – ізоморфізм в C .

 ${f Remark}$ 0.10.8 Позначимо якусь властивість за літеру P. У нашому означенні вище властивість P =ізоморфізм.

Це я до того, що ми можемо узагальнити означення про те, що таке 'зберігає властивість P' або 'відбиває властивість P'.

Theorem 0.10.9 Кожний функтор зберігає комутативність діаграм.

Proof.

Нехай $F\colon C\to D$ – функтор. Припустимо, що α_1,\ldots,α_n та β_1,\ldots,β_m – морфізми категорії C, для яких $\alpha, \beta \colon x \to y$, де $\alpha = \prod \alpha_i$ та $\beta = \prod \beta_i$. Нехай $\alpha = \beta$. Ми взяли якусь частину діаграми, яка комутує. Тоді

$$\prod_{i=1}^{N} F(\alpha_i) = F\left(\prod_i \alpha_i\right) = F(\alpha) = F(\beta) = F\left(\prod_i \beta_i\right) = \prod_i F(\beta_i).$$
 Отже, після переведення функтором комутативність діаграми залишається.

Theorem 0.10.10 Кожний точний функтор відбиває комутативність діаграм.

Proof.

Нехай $F\colon C\to D$ – точний функтор. Нехай $\prod F(\alpha_i)=\prod F(\beta_i)$. Тоді $F(\alpha) = F\left(\prod \alpha_i\right) = \prod F(\alpha_i) = \prod F(\beta_i) = F\left(\prod \beta_i\right) = F(\beta).$ У силі точності отримаємо $\alpha = \beta$.

Theorem 0.10.11 Кожний функтор зберігається розщеплені мономорфізми, розщеплені епіморфізми та ізоморфізми.

Proof.

Нехай $F: C \to D$ – фунтор.

Нехай $\alpha: x \to y$ – розщеплений мономорфізм в C, тобто існує $\beta: y \to x$, для якого $\beta\alpha = 1_x$. Тим часом $F(\beta)F(\alpha) = F(\beta\alpha) = F(1_x) = 1_{F(x)}$. Звідси $F(\alpha): F(x) \to F(y)$ – розщеплений мономорфізм. Аналогічно доводиться збереження розщепленого епіморфізма. Внаслідок цього буде збереження ізоморфізма.

Theorem 0.10.12 Кожний точний та повний функтор відбиває розщеплені мономорфізми, розщеплені епіморфізми та ізоморфізми.

Proof.

Нехай $F: C \to D$ – точний та повний фунтор.

Нехай $\alpha\colon x\to y$ – морфізм категорії C та припустимо, що $F(\alpha)\colon F(x)\to F(y)$ – розщеплений мономорфізм. Тоді існує морфізм $\beta' \colon F(y) \to F(x)$, для якого $\beta' F(\alpha) = 1_{F(x)}$. Оскільки функтор повний, то для морфізма β' існує морфізм $\beta\colon y\to x$, для якого $\beta'=F(\beta)$. Отже, $F(\beta\alpha) = F(\beta)F(\alpha) = \beta'F(\alpha) = 1_{F(x)} = F(1_x)$. Внаслідок точності отримаємо $\beta\alpha = 1_x \implies \alpha$ - розщеплений мономорфізм.

Аналогічно доводиться відбиття розщепленого епіморфізма. Внаслідок цього буде відбиття ізомор-

Definition 0.10.13 Функтор $F: C \to D$ називається **істотно сюр'єктивним**, якщо

$$\forall d \in \text{Ob } D : \exists x \in \text{Ob } C : d \cong F(x)$$

Theorem 0.10.14 Кожний точний, повний та істотно сюр'єктивний функтор зберігає мономорфізми, епіморфізми, біморфізми.

Proof.

Нехай $F \colon C \to D$ – функтор, який точний, повний та істотно сюр'єктивний.

Нехай α : $a \to b$ – мономорфізм в C. Ми хочемо довести, що $F(\alpha)$: $F(a) \to F(b)$ – мономорфізм.

Нехай $\mu_1, \mu_2 \colon y \to F(\alpha)$ — два морфізми в D та припустимо, що $F(\alpha)\mu_1 = F(\alpha)\mu_2$. Оскільки F істотно сюр'єктивний, то існує ізоморфізм $\beta \colon F(x) \to y$ для деякого $x \in C$. Оскільки F — повний, то існують морфізми $\lambda_1, \lambda_2 \colon x \to a$, для яких $F(\lambda_i) = \mu_i \beta, i = 1, 2$.

Далі $F(\alpha\lambda_i) = F(\alpha)F(\lambda_i) = F(\alpha)\mu_i\beta$, тому звідси $F(\alpha\lambda_1) = F(\alpha)\mu_1\beta = F(\alpha)\mu_2\beta = F(\alpha\lambda_2)$. Оскільки F точний, то $\alpha\lambda_1 = \alpha\lambda_2$, що дає $\lambda_1 = \lambda_2$ в силу монічності α . Внаслідок цього $\mu_1\beta = F(\lambda_1) = F(\lambda_2) = \mu_2\beta$. Оскільки β – ізоморфізм, то він епіморфізм, тому $\mu_1 = \mu_2$. Отже, $F(\alpha)$ – дійсно мономорфізм.

Аналогічно доводиться, що F зберігає епіморфізм, внаслідок чого біморфізм.

Theorem 0.10.15 Кожний точний функтор відбиває мономорфізм, епіморфізм, біморфізм.

Proof.

Нехай $F \colon C \to D$ тепер просто точний функтор.

Нехай α : $a \to b$ – морфізм в C, так, що $F(\alpha)$: $F(a) \to F(b)$ – мономорфізм. Оберемо такі λ_1, λ_2 : $x \to a$, щоб $\alpha \lambda_1 = \alpha \lambda_2$. Тоді звідси $F(\alpha)F(\lambda_1) = F(\alpha \lambda_1) = F(\alpha \lambda_2) = F(\alpha)F(\lambda_2)$, тому за монічністю $F(\lambda_1) = F(\lambda_2)$, а за точністю $\lambda_1 = \lambda_2$.

Аналогічно доводиться, що F відбиває епіморфізм, внаслідок чого біморфізм.

Definition 0.10.16 Задані C, D – категорії.

Контраваріантним функтором із C в D називають функцію $F\colon C\to D$, яка відображає кожний об'єкт x категорії C на об'єкт F(x) категорії D; відображає кожний морфізм α категорії C в морфізм $F(\alpha)$ категорії D. Причому справедливе наступне:

якщо
$$\alpha\colon x\to y$$
 морфізм в C , то $F(\alpha)\colon F(y)\to F(x)$ $F(\beta\alpha)=F(\alpha)F(\beta)$ для всіх морфізмів $\alpha,\beta,$ для яких визначений $\beta\alpha$ $F(1_c)=1_{F(c)}$ для всіх об'єктів c категорії C

Різниця між ко- та контраваріантними функторами полягає в перших двох умовах посередині. Грубо кажучи, ми при переході в іншу категорію функтором просто міняємо напрямок стрілок в протилежну сторону.

Позначімо $C^{\text{ор}}$ за **протилежну категорію** категорії C, де об'єкти ці самі, але стрілки та композиції перевернуті в зворотний бік. Тобто

$$C^{\mathrm{op}} = C;$$

 $\forall x, y \in C^{\mathrm{op}} : C^{\mathrm{op}}(x, y) = C(y, x);$

для морфізмів α, β в $C^{\text{ор}}$ композиція $\beta \alpha$ в $C^{\text{ор}}$ визначається як композиція $\alpha \beta$ в C (якщо вона визначена).

Remark 0.10.17 Таким чином, контраваріантний функтор $F\colon C\to D$ може бути записаний як (коваріантний) функтор $F\colon C^{\mathrm{op}}\to D$ та навпаки.

Theorem 0.10.18 Нехай (C, F) – конкретна категорія. Тоді (C^{op}, F') – конкретна категорія, де $F' \colon C^{op} \to \mathbf{Set}$ – деякий (точний) функтор. $TODO \colon \partial o \partial amu \ \partial o o e \partial e hhs.$

Definition 0.10.19 Функтор $F\colon C\to D$ називається ізоморфізмом, якщо

$$\exists G \colon D \to C$$
 – функтор : $GF = 1_C$ $FG = 1_D$

У цьому випадку категорії C,D називаються **ізоморфними**. Позначення: $C\cong D$.

Example 0.10.20 Зокрема \mathbb{Z} **Mod** \cong **Ab**. Дійсно, забуваючий функтор $F \colon \mathbb{Z}$ **Mod** \to **Ab** (забуваємо множення на скаляр) буде ізоморфізмом, тому що ми можемо взяти функтор $G \colon \mathbf{Ab} \to \mathbb{Z}$ **Mod**, який відображає кожну абелеву групу на себе (яка вже сприймається як \mathbb{Z} -модуль) та кожний морфізм в себе.