STATISTICAL METHODS IN FINANCE, PROBLEM SHEET 1 MSC IN MATHEMATICS AND FINANCE, 2023-2024

CRIS SALVI, WILL TURNER

Exercise 1.

(i) Let $\mathbf{A} \in \mathcal{M}_n$ with eigenvalues $\lambda_1 \dots \lambda_n$. Which of the following statements is incorrect:

(a)
$$\operatorname{Tr}(\mathbf{A}) = \sum_{i=1}^{n} \lambda_i = \lambda_1 + \lambda_2 + \dots + \lambda_n;$$

(a)
$$\operatorname{Tr}(\mathbf{A}) = \sum_{i=1}^{n} \lambda_i = \lambda_1 + \lambda_2 + \dots + \lambda_n;$$
 (c) \mathbf{A} is invertible if and only if $\min_{i=1,\dots,n} |\lambda_i| > 0;$ (b) If $\min_{i=1,\dots,n} \lambda_i > 0$ then \mathbf{A} is positive definite; (d) $\det(\mathbf{A}) = \prod_{i=1}^{n} \lambda_i = \lambda_1 \lambda_2 \cdots \lambda_n;$

(d)
$$\det(\mathbf{A}) = \prod_{i=1}^{n} \lambda_i = \lambda_1 \lambda_2 \cdots \lambda_n$$

(ii) Let $\mathbf{A} \in \mathcal{M}_{m,n}$ admit a singular decomposition $\mathbf{A} = \mathbf{U} \mathbf{\Lambda}^{1/2} \mathbf{V}^{\top}$, where $\mathbf{\Lambda} = \mathrm{Diag}\left(\sigma_1(\mathbf{A}), \dots, \sigma_r(\mathbf{A})\right)$, and $\mathbf{V} \in \mathcal{M}_{n,r}$ and $\mathbf{U} \in \mathcal{M}_{m,r}$. In what case are \mathbf{V} and \mathbf{U} of the same shape?

(c) $\mathbf{A} \in \mathcal{M}_n$;

(b)
$$\sigma_i(\mathbf{A}) \geq 0$$
 for all $i \in \{1 \dots r\}$;

(d) All the right singular vectors are orthogonal;

(iii) Let $\mathbf{x} \in \mathbb{R}^n$, then

(a)
$$\nabla_{\mathbf{x}}(\mathbf{A}\mathbf{x}) = \mathbf{A}$$
, for any $\mathbf{A} \in \mathcal{M}_{m,n}$;

(c)
$$\nabla_{\mathbf{x}} (\mathbf{x}^{\top} \mathbf{A}) = \mathbf{A}$$
, for any $\mathbf{A} \in \mathcal{M}_{n,m}$;

(b)
$$\nabla_{\mathbf{x}}(\mathbf{A}\mathbf{x}) = \mathbf{A}$$
, for any $\mathbf{A} \in \mathcal{M}_{n,m}$;

(d)
$$\nabla_{\mathbf{x}} (\mathbf{x}^{\top} \mathbf{A}) = \mathbf{A}^{\top}$$
, for any $\mathbf{A} \in \mathcal{M}_{m,n}$;

Exercise 2 (Weyl inequality). Let $A, B \in \mathbb{R}^{n \times n}$ be two symmetric matrices. Prove that for any $i \in \{1, ..., n\}$

$$\lambda_i(A) + \lambda_n(B) \le \lambda_i(A+B) \le \lambda_i(A) + \lambda_1(B).$$

where the eigenvalues are ordered in decreasing order.

Exercise 3 (Courant-Fischer min-max theorem). Let A be an $n \times n$ symmetric matrix. Ordering the eigenvalues of A in decreasing order as usual, show that for all $1 \le i \le n$

$$\lambda_i(A) = \sup_{\dim(V) = i} \inf_{v \in V : ||v||_2 = 1} v^\top A v$$

where V ranges over all subspaces of \mathbb{R}^n with the indicated dimension.

Date: May 9, 2024.

Exercise 4. Use Sterling's formula

$$n! = (1 + o(1))\sqrt{2\pi n}n^n e^{-n}$$

to show that for any $0 \leq p \leq 1$ the following holds

$$\lim_{n\to\infty}\frac{1}{n}\log\binom{n}{pn}=H(p)$$

where $H(p) = -p \log(p) - (1-p) \log(1-p)$.

DEPARTMENT OF MATHEMATICS, IMPERIAL COLLEGE LONDON

 $Email\ address \colon \mathtt{wft17@ic.ac.uk}$