## **BOHR MODEL**

General Chemistry I, Lecture Series 4 Pengxin Liu

Reading: OGB8 §§3.3, 4.1, 4.2, 4.3



### Quantum mechanism

- Energy Quantization (能量非连续)
- Wave-particle duality (波粒二象性)



# Syllabus

| Week | Sunday               | Monday                | Wednesday                           | Friday                                       |
|------|----------------------|-----------------------|-------------------------------------|----------------------------------------------|
| 1    |                      |                       | Sept 18<br>Overview<br>Formula      | Sept 20<br>Formula<br>Nomenclature Q0        |
| 2    |                      | Sept 23<br>Recitation |                                     | Sept 27 Classical atoms Bonding & valence Q1 |
| 3    |                      |                       |                                     |                                              |
| 4    | Oct 7<br>PS1 due     |                       |                                     | Oct 11<br>Bohr model Q2                      |
| 5    | Oct 13<br>Recitation | Oct 14<br>Recitation  | Oct 16 Bohr model Quantum mechanics | Oct 18  Quantum mechanics  Hydrogen atom Q3  |
| 6    | Oct 20<br>PS2 due    | Oct 21<br>Recitation  |                                     | Oct 25<br>Hydrogen atom<br>Review 1 Q4       |

## Syllabus

- Week 4
  - Wave
  - Quantum mechanism of light (energy & particle-like behavior)
  - Bohr Model (to explain light-emitting observation)
- Week 5
  - Matter waves (electrons)
  - Wave function (electron)
- Week 6
  - Wave function and its solution of H atom
  - Electron density, the shape and size

light extends to matter

### **Outline**

Fundamentals of waves

- Light
  - Light is electromagnetic wave
  - Spectra
  - The particle nature of light (wave-particle duality)
  - Quantization of energy
- Flame Tests
- Balmer, Rydberg & Bohr
- The Bohr model
  - Quantization of energy in atoms

### Wave: Basics





Traveling Waves 行波

Standing wave 驻波

## Wave: Properties



Amplitude 振幅 A = 1

Wavelength 波长  $\lambda$  = 6.3 cm  $\leftrightarrow$  Wavenumber 波数  $\tilde{v}$  =  $\lambda^{-1}$  ≈ 0.16 cm<sup>-1</sup>

Period 周期  $T = 3.0 \text{ s} \leftrightarrow \text{Frequency 频率} \quad V = T^{-1} \approx 0.33 \text{ Hz}$ 

Speed 波速  $s = \lambda / T = \lambda v \approx 2.1 \text{ cm} \cdot \text{s}^{-1}$ 

$$c_{\text{vacuum}} = 3.0 \times 10^8 \text{ m} \cdot \text{s}^{-1}$$

For visible light,  $\lambda = 400-700$  nm,

## Wave: Phase 相位

Moon phases:



Wave phases:



# Wave: Phase 相位





## Phase in Traveling Waves 行波

Phase propagates in both time and space.

$$\varphi(x) = \frac{2\pi x}{\lambda} = 2\pi \tilde{v}x$$

$$\varphi(t) = -\frac{2\pi t}{T} = -2\pi vt$$



$$y(x,t) = A \sin \left[\varphi(x) + \varphi(t)\right] = A \sin \left[2\pi \left(\frac{x}{\lambda} - \frac{t}{T}\right)\right].$$

speed = 
$$\frac{\Delta x}{\Delta t} = \frac{\lambda}{T}$$

## Standing Waves 驻波



- Equals the sum of two traveling waves in opposite directions;
- Does not propagate in either direction and fits in a confined space;

$$y(x,t) = \frac{A_0}{2} \sin \left[ 2\pi \left( \frac{x}{\lambda} - \frac{t}{T} \right) \right] + \frac{A_0}{2} \sin \left[ 2\pi \left( \frac{x}{\lambda} + \frac{t}{T} \right) \right]$$

$$y(x,t) = A_0 \sin\left(2\pi\frac{x}{\lambda}\right) \cos(2\pi\frac{t}{T}).$$

## Summary

#### **Properties of Wave**

• A

S

0

#### Traveling wave

Propagates in an open space

$$y(x,t) = A \sin\left[2\pi\left(\frac{x}{\lambda} - \frac{t}{T}\right)\right]$$

#### Standing wave

- Stays in a confined space
- Can be separated into an amplitude part and an oscillatory part

$$y(x,t) = A_0 \sin\left(2\pi\frac{x}{\lambda}\right) \cos(2\pi\frac{t}{T})$$

### **Outline**

Fundamentals of waves

- Light
  - Light is electromagnetic wave
  - Spectra
  - The particle nature of light (wave-particle duality)
  - Quantization of energy
- Flame Tests
- Balmer, Rydberg & Bohr
- The Bohr model
  - Quantization of energy in atoms

## Light: Particle or Wave?

- 1850s, light is transverse wave (横波) carried by Ether.
- 1845, Faraday found magnetic field twisted light.
- 1864, Maxwell proposed visible light as a propagating wave of electromagnetic radiation.
- 1888, Hertz proved so.



Isaac Newton (1643 - 1727)



Christiaan Huygens James C. Maxwell (1629-1695)



(1831 - 1879)

## Electromagnetic Wave



- Light consists of oscillating electric and magnetic fields oriented perpendicular to each other.
- These fields are produced by the motion of charged particles in the source of the light.
- Not sustained by some propagating medium.



## Blackbody radiation



## Blackbody radiation

- solved in 1900 by Max Planck
- Planck assumed that the energy of an oscillator (En) can have only discrete, or quantized, values:
  - $E_n$ =nhv, where n=1,2,3,...



## Light: Wave or Particle?



Max Planck (Berlin, 1858–1947)

Albert Einstein (Zürich, 1879–1955)

"Energy is quantized in matter but not in light."

"Light is also quantized."

### The Photoelectric Effect

Photo- 光





## Photon: The Energy Quanta of Light



Einstein 1905:  $E_{k,max} + \Phi = E_{light} \propto V$  $E_{light} = hV$ 



## Light Also Bears Momentum

(1) Planck 1900, Einstein 1905:

$$E = hv$$

(2) Einstein 1916:

$$E = mc^2$$

(3) Definition of momentum

$$p = mv$$
,  $v = c$  for light

$$(1)+(2)+(3)$$

$$p = \frac{hv}{c} = \frac{h}{\lambda}$$



Albert Einstein (Zürich, 1879–1955)

#### Photon and Electromagnetic Wave 电磁波







Photoelectric effect (1)  $E_{photon} = hv$ 

Electromagnetic wave (2)  $E_{\text{light}} \propto \mathcal{E}^2$ 

(1)+(2): 
$$N_{\rm photon} \propto \mathcal{E}^2$$

Light frequency → Energy of a single photon

Light intensity → Number of photons

# Light and Rain: An Analogy



## Summary

- Wave–particle duality
  - Light can behave like particles
  - Energy is quantized in light.

$$E_{\text{photon}} = hv$$

$$p_{\text{photon}} = \frac{h}{\lambda}$$

### Brief history of Early Quantum Mechanics

- On light
- 1900 Max Planck: E<sub>n</sub>=nhv
- 1905 Albert Einstein:  $E = mc^2$   $p_{photon} = \frac{h}{\lambda}$
- 1913 Niels Bohr: The Bohr Model for H
- On matter
- 1924 Louis de Broglie:  $p = m_e v = \frac{h}{\lambda}$
- 1926 Erwin Schrödinger: Schrödinger Equation
- 1926 Max Born:  $P(x) = |\psi(x)|^2$

### **Outline**

- Fundamentals of waves
- Light
  - Light is electromagnetic wave
  - Spectra
  - The particle nature of light (wave-particle duality)
  - Quantization of energy
- Flame Tests
- Balmer, Rydberg & Bohr
- The Bohr model
  - Quantization of energy in atoms

### Flame Tests







## Gas Discharge Tubes





Xenon lamp 氙灯



Neon lamp 氖(霓虹)灯

## Sodium Flames and Sodium Lamps





NaCl Soda-lime glass Sweat

An element in various compounds shows the same flame color.

## From Colors to Spectra

Prism 棱镜





Grating 光栅



## Gas Discharge Spectra

9/21/2024



## Experimental H Spectrum (1860s)



## The Balmer Formula (1885)



$$\frac{656}{365} \approx 1.80 = \frac{9}{5} = \frac{9}{9-4}$$

$$\frac{486}{365} \approx 1.33 = \frac{4}{3} = \frac{16}{16-4}$$

$$\Rightarrow \lambda_n = B \frac{n^2}{n^2-4}, \ B = 365 \text{ nm}, \ n = 3,4,5...$$

## The Balmer Formula (1885)

TABLE II .- BALMER'S SERIES OF LINES IN THE ARC SPECTRUM OF HYDROGEN.

|                              |     | Wave-length, $\lambda$ . in Å (10 <sup>-10</sup> m) |           |             |
|------------------------------|-----|-----------------------------------------------------|-----------|-------------|
| H line.                      | n   | Calculated.                                         | Observed. | Difference. |
| H <sub>a</sub> or C          | 3   | 6564.96                                             | 6564.97   | +0.01       |
| $H_{\mathcal{B}}$ or $F$     | 4   | 4862.93                                             | 4862.93   |             |
| Hy or G                      | 5   | 4341.90                                             | 4342.00   | -0.1        |
| $H_{\lambda}'$ or $\lambda$  | 6   | 4103.10                                             | 4103.11   | +0.01       |
| H, or H                      | 7   | 3971.4                                              | 3971.4    | -           |
| H <sub>ζ</sub> or a          | . 8 | 3890.3                                              | 3890.3    |             |
| $H_n^{\Sigma}$ or $\beta$    | 9 , | 3836.7                                              | 3836.8    | +0.1        |
| H <sub>θ</sub> or γ          | 10  | 3899.2                                              | 3799.2    | _           |
| $H_i$ or $\delta$            | 11  | 3771.9                                              | 3771.9    |             |
| H <sub>K</sub> or $\epsilon$ | 12  | 3751.4                                              | 3751.3    | -0.1        |
| H <sub>λ</sub> or ζ          | 13  | 3735.6                                              | 3735.3    | -0.3        |
| H <sub>μ</sub> or η          | 14  | 3723.2                                              | 3722.8    | -0.4        |
| $H_{\nu}$ or $\theta$        | 15  | 3713.2                                              | 3712.9    | -0.3        |

1. J. S. Ames, Philosophical Magazine, 1890, 30, 33.

## The Rydberg Formula (1888)



$$\lambda_n = B \frac{n^2}{n^2 - 4}$$

$$\Rightarrow \frac{1}{\lambda_n} = \frac{1}{B} \left( 1 - \frac{4}{n^2} \right)$$

$$\Rightarrow \frac{1}{\lambda_n} = \frac{4}{B} \left( \frac{1}{2^2} - \frac{1}{n^2} \right)$$

$$\frac{1}{\lambda} = R_{H} \left( \frac{1}{m^2} - \frac{1}{n^2} \right), m < n.$$

R<sub>H</sub>: Rydberg's constant

## Bohr's Interpretation (1913)

$$\frac{1}{\lambda} = R_{\rm H} \left( \frac{1}{m^2} - \frac{1}{n^2} \right), \ m < n.$$



$$hv = \Delta E = E_{\text{final}} - E_{\text{initial}}$$

- In an atom, there are various states 能态 of fixed, discrete energy.
- Emission or absorption of light results from a transition 跃迁 between two of these states.



 The energy quantum hv of the absorbed/emitted light equals the transition energy.



Niels Bohr (Copenhagen, Cambridge, 1885–1962)

### The Bohr Model for H

- The electron orbits the nucleus.
- Each orbit is a circle specified by an angular momentum  $L = nh/2\pi$  ( $n \in \mathbb{N}$ ).
- The electron is stable in these orbits,
   but gains or loses energy when jumping between the orbits.







### **Outline**

Fundamentals of waves

- Light
  - Light is electromagnetic wave
  - Spectra
  - The particle nature of light (wave-particle duality)
  - Quantization of energy
- Flame Tests
- Balmer, Rydberg & Bohr
- The Bohr model
  - Quantization of energy in atoms

### The Virial Theorem for Circular Orbits

Coulomb attraction = centripetal force 向心力

$$F = \frac{1}{4\pi\varepsilon_0} \frac{Ze^2}{r^2} = m_e \frac{v^2}{r}$$

$$\Rightarrow \frac{1}{4\pi\varepsilon_0} \frac{Ze^2}{r} = m_e v^2$$

$$\Rightarrow \frac{1}{8\pi\varepsilon_0} \frac{Ze^2}{r} = \frac{1}{2} m_e v^2 = E_k$$
Because  $V = -\frac{1}{4\pi\varepsilon_0} \frac{Ze^2}{r}$ ,



$$E_{k} = -\frac{V}{2}$$
,  $E = E_{k} + V = \frac{V}{2}$ .

### The Quantization Condition

Coulomb attraction = centripetal force 向心力

(1) 
$$F = \frac{1}{4\pi\epsilon_0} \frac{Ze^2}{r^2} = m_e \frac{v^2}{r}$$

Discrete orbits

(2) 
$$E = \frac{V}{2} = -\frac{1}{8\pi\varepsilon_0} \frac{Ze^2}{r}$$

(3) 
$$E \propto \frac{1}{n^2}, n \in \mathbb{N}$$

$$(2)+(3) \Longrightarrow r \propto n^2$$



Therefore  $L = m_e \mathbf{v} \cdot \mathbf{r} \propto \mathbf{n}$ 



$$L = m_{\rm e} v r = \frac{h}{2\pi} = n\hbar, \ n \in \mathbb{N}$$

## Solving the Unknowns: rand v

Coulomb attraction = centripetal force

(1) 
$$F = \frac{1}{4\pi\varepsilon_0} \frac{Ze^2}{r^2} = m_e \frac{v^2}{r}$$

Quantized angular momentum L

(2) 
$$L = m_{e} \mathbf{v} \cdot \mathbf{r} = n \frac{h}{2\pi}, \ n \in \mathbb{N}$$

$$(1)+(2)$$

 $r = \frac{n^2}{Z} \frac{\varepsilon_0 h^2}{\pi e^2 m_0} = \frac{n^2}{Z} a_0$ ,  $a_0 = 52.9$  pm is Bohr radius.

For hydrogen atom (Z = 1),

$$n = 1$$
,  $r = a_0 = 52.9$  pm;

$$n = 2$$
,  $r = 4a_0 = 212$  pm;

$$n = 3$$
,  $r = 9a_0 = 476$  pm.



$$r = \frac{n^2}{Z} a_0$$

## **Orbital Energies**

From previous pages:

$$E = 0$$

$$\sum_{n=2}^{\infty} n = 2$$

$$\sum_{n=1}^{\infty} n = 1$$

$$E = -\frac{1}{8\pi\varepsilon_0} \frac{Ze^2}{r}$$

$$r = \frac{n^2}{Z} a_0$$

$$\Rightarrow E = -\frac{1}{8\pi\varepsilon_0} \frac{Z^2e^2}{n^2a_0}$$

$$E = -\text{Ry} \frac{Z^2}{n^2}$$
, Ry = 2.18×10<sup>-18</sup> J = 13.6 eV

Ry: Rydberg energy



### **Bohr Model and Electron Orbits**



## Summary for the Bohr Model

- Stable orbits / states of H atom
- Transitions between the orbits
- Quantized orbital angular momentum



"Old quantum theory"

But the Bohr model doesn't work for the He atom at all!



Next lecture series: Quantum Mechanics

Reading: OGB8 §4