Text Mining and Embedding

Vector Space Model (VSM)

Ninghao Liu

Department of Computer Science University of Georgia

Today's lecture

- Ranked retrieval
- Scoring documents
- Term frequency
- Collection statistics
- Weighting schemes
- Vector space scoring

Ranked retrieval

- Thus far, our queries have all been Boolean.
 - Documents either match or don't.
- Good for expert users with precise understanding of their needs and the collection.
 - Also good for applications: Applications can easily consume thousands of results.
- Not good for the majority of users.
 - Most users incapable of writing Boolean queries (or they are, but they think it's too much work).
 - Most users don't want to wade through thousands of results.
 - This is particularly true of web search.

Problem with Boolean search: feast or famine

- Boolean queries often result in either too few (=0) or too many (thousands) results.
- Query 1: "standard user dlink 650" → 200,000 hits
- Query 2: "standard user dlink 650 no card found" → 0 hits
- It takes a lot of skill to come up with a query that produces a manageable number of hits.
 - AND gives too few; OR gives too many

Ranked retrieval models

- Rather than a set of documents satisfying a query expression, in ranked retrieval, the system returns an ordering over the (top) documents in the collection for a query
- Free text queries: Rather than a query language of operators and expressions, the user's query is just one or more words in a human language
- In principle, there are two separate choices here, but in practice, ranked retrieval has normally been associated with free text queries and vice versa

Feast or famine: not a problem in ranked retrieval

- When a system produces a ranked result set, large result sets are not an issue
 - Indeed, the size of the result set is not an issue
 - We just show the top k (\approx 10) results
 - We don't overwhelm the user
 - Premise: the ranking algorithm works

Scoring as the basis of ranked retrieval

- We wish to return in order the documents most likely to be useful to the searcher
- How can we rank-order the documents in the collection with respect to a query?
- Assign a score say in [0, 1] to each document
- This score measures how well document and query "match".

Query-document matching scores

- We need a way of assigning a score to a query/document pair
- Let's start with a one-term query
- If the query term does not occur in the document: score should be 0
- The more frequent the query term in the document, the higher the score (should be).
- We will look at a number of alternatives for this.

Take 1: Jaccard coefficient

- A commonly used measure of overlap of two sets A and B
- jaccard(A,B) = $|A \cap B| / |A \cup B|$
- jaccard(A,A) = 1
- jaccard(A,B) = 0 if $A \cap B = 0$
- A and B don't have to be the same size.
- Always assigns a number between 0 and 1.

Jaccard coefficient: Scoring example

- What is the query-document match score that the Jaccard coefficient computes for each of the two documents below?
- Query: ides of march
- Document 1: caesar died in march
- Document 2: the long march

Issues with Jaccard for scoring

- It doesn't consider term frequency (how many times a term occurs in a document)
- Rare terms in a collection are more informative than frequent terms. Jaccard doesn't consider this information
- We need a more sophisticated way of normalizing for length
- Later in this lecture, we'll use $|A \cap B|/\sqrt{|A \cup B|}$
- ... instead of |A ∩ B|/|A ∪ B| (Jaccard) for length normalization.

Binary term-document incidence matrix

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	1	1	0	0	0	1
Brutus	1	1	0	1	0	0
Caesar	1	1	0	1	1	1
Calpurnia	0	1	0	0	0	0
Cleopatra	1	0	0	0	0	0
mercy	1	0	1	1	1	1
worser	1	0	1	1	1	0

Each document is represented by a binary vector $\in \{0,1\}^{|V|}$

Term-document count matrices

- Consider the number of occurrences of a term in a document:
 - Each document is a count vector in N

 in N

 in N

 in N
 in N
 in N
 in N
 in N
 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in N

 in

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	157	73	0	0	0	0
Brutus	4	157	0	1	0	0
Caesar	232	227	0	2	1	1
Calpurnia	0	10	0	0	0	0
Cleopatra	57	0	0	0	0	0
mercy	2	0	3	5	5	1
worser	2	0	1	1	1	0

Bag of words model

- Vector representation doesn't consider the ordering of words in a document
- "John is quicker than Mary" and "Mary is quicker than John" have the same vectors
- This is called the <u>bag of words</u> model.
- In a sense, this is a step back: The positional index was able to distinguish these two documents.
- We will look at "recovering" positional information later in this course.
- For now: bag of words model

Term frequency tf

- The term frequency tf_{t,d} of term t in document d is defined as the number of times that t occurs in d.
- We want to use tf when computing querydocument match scores. But how?
- Raw term frequency is not what we want:
 - A document with 10 occurrences of the term is more relevant than a document with 1 occurrence of the term.
 - But not 10 times more relevant.
- Relevance does not increase proportionally with term frequency.
 NB: frequency = count in IR

Log-frequency weighting

The log frequency weight of term t in d is

$$w_{t,d} = \begin{cases} \log_{10} (1 + tf_{t,d}), & \text{if } tf_{t,d} > 0 \\ 0, & \text{otherwise} \end{cases}$$

- Score for a document-query pair: sum over terms t in both q and d:
- score = $\sum_{t \in q \cap d} (\log_{10} (1 + tf_{t,d}))$
- The score is 0 if none of the query terms is present in the document.

Log-frequency weighting – an example

The log frequency weight of term t in d is

$$w_{t,d} = \begin{cases} \log_{10} (1 + tf_{t,d}), & \text{if } tf_{t,d} > 0 \\ 0, & \text{otherwise} \end{cases}$$

- Score for a document-query pair: sum over terms *t* in both *q* and *d*:
- score= $\sum_{t \in q \cap d} (\log_{10} (1 + tf_{t,d}))$
- Query: today the dawgs won dawgs
- Doc 1: dawgs today dawgs have won
- Doc 2: dawgs today the dawgs lost

Document frequency

- Rare terms are more informative than frequent terms
 - Recall stop words
- Consider a term in the query that is rare in the collection (e.g., arachnocentric)
- A document containing this term is very likely to be relevant to the query arachnocentric
- → We want a high weight for rare terms like arachnocentric.

Document frequency, continued

- Frequent terms are less informative than rare terms
- Consider a query term that is frequent in the collection (e.g., high, increase, line)
- A document containing such a term is more likely to be relevant than a document that doesn't
- But it's not a sure indicator of relevance.
- → For frequent terms, we want high positive weights for words like *high*, *increase*, *and line*
- But lower weights than for rare terms.
- We will use document frequency (df) to capture this.

idf weight

- df_t is the <u>document</u> frequency of t: the number of documents that contain t
 - $-df_t$ is an inverse measure of the informativeness of t
 - $-df_t \leq N$
- We define the idf (inverse document frequency) of t by $\operatorname{idf}_t = \log_{10} (N/\operatorname{df}_t)$
 - We use $\log (N/df_t)$ instead of N/df_t to "dampen" the effect of idf.

Will turn out the base of the log is immaterial.

idf example, suppose N = 1 million

term	df _t	idf _t
calpurnia	1	
animal	100	
sunday	1,000	
fly	10,000	
under	100,000	
the	1,000,000	

$$idf_t = log_{10} (N/df_t)$$

There is one idf value for each term *t* in a collection.

Effect of idf on ranking

- Does idf have an effect on ranking for oneterm queries, like
 - iPhone
- idf has no effect on ranking one term queries
 - idf affects the ranking of documents for queries with at least two terms
 - For the query capricious person, idf weighting makes occurrences of capricious count for much more in the final document ranking than occurrences of person.

Collection vs. Document frequency

- The collection frequency of t is the number of occurrences of t in the collection, counting multiple occurrences.
- Example:

Word	Collection frequency	Document frequency
insurance	10440	3997
try	10422	8760

 Which word is a better search term (and should get a higher weight)?

tf-idf weighting

 The tf-idf weight of a term is the product of its tf weight and its idf weight.

$$\mathbf{w}_{t,d} = \log_{10}(1 + t\mathbf{f}_{t,d}) \times \log_{10}(N/d\mathbf{f}_t)$$

- Best known weighting scheme in information retrieval
 - Note: the "-" in tf-idf is a hyphen, not a minus sign!
 - Alternative names: tf.idf, tf x idf
- Increases with the number of occurrences within a document
- Increases with the rarity of the term in the collection

Score
$$(q,d) = \sum_{t \in q \cap d} tf.idf_{t,d}$$

- There are many variants
 - How "tf" is computed (with/without logs)
 - Whether the terms in the query are also weighted

— ...

Binary → count → weight matrix

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	5.25	3.18	0	0	0	0.35
Brutus	1.21	6.1	0	1	0	0
Caesar	8.59	2.54	0	1.51	0.25	0
Calpurnia	0	1.54	0	0	0	0
Cleopatra	2.85	0	0	0	0	0
mercy	1.51	0	1.9	0.12	5.25	0.88
worser	1.37	0	0.11	4.15	0.25	1.95

Each document is now represented by a real-valued vector of tf-idf weights $\in \mathbb{R}^{|V|}$

Documents as vectors

- So we have a |V|-dimensional vector space
- Terms are axes of the space
- Documents are points or vectors in this space
- Very high-dimensional: tens of millions of dimensions when you apply this to a web search engine
- These are very sparse vectors most entries are zero.

Queries as vectors

- Key idea 1: Do the same for queries: represent them as vectors in the space
- Key idea 2: Rank documents according to their proximity to the query in this space
- proximity = similarity of vectors
- proximity ≈ inverse of distance
- Recall: We do this because we want to get away from the you're-either-in-or-out Boolean model.
- Instead: rank more relevant documents higher than less relevant documents

Formalizing vector space proximity

- First cut: distance between two points
 - (= distance between the end points of the two vectors)
- Euclidean distance?
- Euclidean distance is a bad idea . . .
- . . . because Euclidean distance is large for vectors of different lengths.

Why distance is a bad idea

 The Euclidean distance between \vec{q} and \vec{d}_2 is large even though the distribution of terms in the query \vec{q} and the distribution of terms in the document \overrightarrow{d}_{2} are very similar.

Use angle instead of distance

- Thought experiment: take a document d and append it to itself. Call this document d'.
- "Semantically" d and d' have the same content
- The Euclidean distance between the two documents can be quite large
- The angle between the two documents is 0, corresponding to maximal similarity.
- Key idea: Rank documents according to angle with query.

From angles to cosines

- The following two notions are equivalent.
 - Rank documents in <u>decreasing</u> order of the angle between query and document
 - Rank documents in <u>increasing</u> order of cosine(query,document)
- Cosine is a monotonically decreasing function for the interval [0°, 180°]

From angles to cosines

But how – and why – should we be computing cosines?

Length normalization

- A vector can be (length-) normalized by dividing each of its components by its length for this we use the L₂ norm: $\|\vec{x}\|_2 = \sqrt{\sum_i x_i^2}$
- Dividing a vector by its L2 norm makes it a unit (length) vector (on surface of unit hypersphere)
- Effect on the two documents d and d' (d appended to itself) from earlier slide: they have identical vectors after length-normalization.
 - Long and short documents now have comparable weights

cosine(query,document)

 q_i is the tf-idf weight of term i in the query d_i is the tf-idf weight of term i in the document

 $\cos(\vec{q}, \vec{d})$ is the cosine similarity of \vec{q} and \vec{d} ... or, equivalently, the cosine of the angle between \vec{q} and \vec{d} .

Cosine for length-normalized vectors

 For length-normalized vectors, cosine similarity is simply the dot product (or scalar product):

$$\cos(\vec{q}, \vec{d}) = \vec{q} \bullet \vec{d} = \sum_{i=1}^{|V|} q_i d_i$$

for q, d length-normalized.

Cosine similarity illustrated

Cosine similarity amongst 3 documents

- How similar are the novels
- SaS: Sense and
- Sensibility
- PaP: Pride and Prejudice, and
- WH: Wuthering Heights?

term	SaS	PaP	WH
affection	115	58	20
jealous	10	7	11
gossip	2	0	6
wuthering	0	0	38

Term frequencies (counts)

Note: To simplify this example, we don't do idf weighting.

3 documents example contd.

Log frequency weighting

•	After length
	normalization

term	SaS	PaP	WH
affection	3.06	2.76	2.30
jealous	2.00	1.85	2.04
gossip	1.30	0	1.78
wuthering	0	0	2.58

term	SaS	PaP	WH
affection	0.789	0.832	0.524
jealous	0.515	0.555	0.465
gossip	0.335	0	0.405
wuthering	0	0	0.588

```
cos(SaS,PaP) ≈ 0.789 × 0.832 + 0.515 × 0.555 + 0.335 × 0.0 + 0.0 × 0.0 ≈ 0.94
```

 $cos(SaS,WH) \approx 0.79$

 $cos(PaP,WH) \approx 0.69$

Why do we have cos(SaS,PaP) > cos(SaS,WH)?

Computing cosine scores

```
CosineScore(q)
     float Scores[N] = 0
  2 float Length[N]
  3 for each query term t
  4 do calculate w_{t,q} and fetch postings list for t
         for each pair(d, tf_{t,d}) in postings list
         do Scores[d] + = w_{t,d} \times w_{t,q}
  7 Read the array Length
     for each d
     do Scores[d] = Scores[d]/Length[d]
     return Top K components of Scores[]
10
```

tf-idf weighting has many variants

Term frequency		Document frequency		Normalization		
n (natural)	$tf_{t,d}$	n (no)	1	n (none)	1	
I (logarithm)	$1 + \log(tf_{t,d})$	t (idf)	$\log \frac{N}{df_t}$	c (cosine)	$\frac{1}{\sqrt{w_1^2 + w_2^2 + \ldots + w_M^2}}$	
a (augmented)	$0.5 + \frac{0.5 \times tf_{t,d}}{max_t(tf_{t,d})}$	p (prob idf)	$\max\{0,\log \frac{N-\mathrm{df}_t}{\mathrm{df}_t}\}$	u (pivoted unique)	1/u	
b (boolean)	$\begin{cases} 1 & \text{if } \operatorname{tf}_{t,d} > 0 \\ 0 & \text{otherwise} \end{cases}$			b (byte size)	$1/\mathit{CharLength}^{lpha}, \ lpha < 1$	
L (log ave)	$\frac{1 + \log(\operatorname{tf}_{t,d})}{1 + \log(\operatorname{ave}_{t \in d}(\operatorname{tf}_{t,d}))}$					

Columns headed 'n' are acronyms for weight schemes.

Why is the base of the log in idf immaterial?

Weighting may differ in queries vs documents

- Many search engines allow for different weightings for queries vs. documents
- SMART Notation: denotes the combination in use in an engine, with the notation *ddd.qqq*, using the acronyms from the previous table
- A very standard weighting scheme is: Inc.ltc

• Query: logarithmic tf (l in leftmost column), idf (t in second column), no normalization ...

tf-idf example: Inc.ltc

Document: car insurance auto insurance

Query: best car insurance

Term	Query					Document				Prod	
	tf-raw	tf-wt	df	idf	wt	n'lize	tf-raw	tf-wt	wt	n'lize	
auto	0	0	5000	2.3	0	0	1	1	2.3	0.46	0
best	1	1	50000	1.3	1.3	0.34	0	0	0	0	0
car	1	1	10000	2.0	2.0	0.52	1	1	2.0	0.40	0.21
insura nce	1	1	1000	3.0	3.0	0.78	2	1.3	3.9	0.79	0.62

Exercise: what is *N*, the number of docs?

Doc length =
$$\sqrt{2.3^2 + 0^2 + 2^2 + 3.9^2} \approx 4.95$$

Score =
$$0+0+0.21+0.62 = 0.83$$

Summary – vector space ranking

- Represent the query as a weighted tf-idf vector
- Represent each document as a weighted tf-idf vector
- Compute the cosine similarity score for the query vector and each document vector
- Rank documents with respect to the query by score
- Return the top K (e.g., K = 10) to the user

Precision and Recall

Precision = True Positive / Detected = TP/ (TP + FP)
Recall = True Positive / Malignant = TP / (TP + FN)

Precision and Recall

Precision = True Positive / Detected = TP/ (TP + FP)
Recall = True Positive / Malignant = TP / (TP + FN)

Resources for today's lecture

• IIR 6.2 – 6.4.3

- http://www.miislita.com/informationretrieval-tutorial/cosine-similaritytutorial.html
 - Term weighting and cosine similarity tutorial for SEO folk!