```
Warrick M
           Ti= kei (Gi: Rx)
         Assume (Gi: Px) o steady state
        Assume [Gi: Rx] & Steady state
    kI,j. [Gj: Rx7c+ 12-j [Gj: Rx]c = k+j [Gj][Rx70
                                                [ Gi: Rx] c= Kx,j · [Gi][Rx] == (Yx,j [Gi: Rx] = Kxij [Gi][Rx])
 P_{X,T} = R_X^o + E_{Gj} \cdot R_X J_c + E_{Gj} \cdot R_X J_o + \sum_{i=1}^{N} E_{Gi} \cdot R_X J_c + E_{Gi} \cdot R_X J_o + \sum_{i=1}^{N} E_{Gi} \cdot R_X J_c + E_{Gi} \cdot R_X J_o + \sum_{i=1}^{N} E_{Gi} \cdot R_X J_c + E_{Gi} \cdot R_X J_o + \sum_{i=1}^{N} E_{Gi} \cdot R_X J_c + E_{Gi} \cdot R_X J_o + \sum_{i=1}^{N} E_{Gi} \cdot R_X J_c + E_{Gi} \cdot R_X J_o + \sum_{i=1}^{N} E_{Gi} \cdot R_X J_c + E_{Gi} \cdot R_X J_o + \sum_{i=1}^{N} E_{Gi} \cdot R_X J_c + E_{Gi} \cdot R_X J_o + \sum_{i=1}^{N} E_{Gi} \cdot R_X J_c + E_{Gi} \cdot R_X J_o + \sum_{i=1}^{N} E_{Gi} \cdot R_X J_c + E_{Gi} \cdot R_X J_o +
                                  = \mathbb{R} \times^{o} + (I + \gamma_{x,i}) \overline{\mathcal{L}}_{i} \cdot \mathbb{R}_{x,j} + \sum_{i=i}^{N} \overline{\mathcal{L}}_{i} \cdot \mathbb{R}_{x,i} \cdot (G_{i} \cdot \mathbb{R}_{x,j}) 
  G_{j} = \underbrace{\frac{\sum \{ \exists G_{i} : P_{x} \}_{c} + \exists G_{i} : P_{x} \}_{o}}_{P_{x} = G_{i} : P_{x} \neq 0} }_{P_{x} = G_{i} : P_{x} = G_{i} 
                                  = \frac{43 \cdot \text{ray}}{(1 + 7 \times j) \cdot 4j + 7 \times j}
                                                                                                                                                                                                         GjiRXT-EGj: RXJO
                                                                                                                                                     (1+Txi)Gj+Txj*Kxj+&j
                                           Y = kej·Gj·PxT

(I+Txj) Gj+ Yxj *Kxj + Ej
                        When Kxiz Txi > Kxij Txj
```


Inducer was added at the beginning of phase 2.

Part b:

See Matlab output. S1 matrix for sensitivity array time function of phase 1 S2 matrix for sensitivity array time function of phase 2

Part c:

Importance of species in phase 1: P1>P3>P2

Importance of species in phase 2: P3>P2>P1

	v1	<i>v</i> 2	<i>v3</i>	v4	v5	ν6	b1	b2	<i>b3</i>	<i>b</i> 4	b5	b6	b7	b8	b9
G	-1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
RNAP	-1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
G*	1	-1	0	0	0	0	0	0	0	0	0	0	0	0	0
NTP	0	-924	0	0	0	0	0	-1	0	0	0	0	0	0	0
Pi	0	1848	0	0	616	2	0	0	0	0	0	0	0	0	1
NMP	0	0	924	0	0	0	0	0	0	1	0	0	0	0	0
mRNA	0	1	-1	-1	1	0	0	0	0	0	0	0	0	0	0
rib	0	1	-1	-1	1	0	0	0	0	0	0	0	0	0	0
tRNA	0	0	0	0	308	-1	0	0	0	0	0	0	0	0	0
rib*	0	0	0	1	-1	0	0	0	0	0	0	0	0	0	0
GTP	0	0	0	0	-616	0	0	0	0	0	0	0	-1	0	0
AAtRNA	0	0	0	0	-308	1	0	0	0	0	0	0	0	0	0
protein	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0
GDP	0	0	0	0	616	0	0	0	0	0	0	0	0	1	0
ATP	0	0	0	0	0	-1	0	0	0	0	-1	0	0	0	0
AA	0	0	0	0	0	0	-1	0	0	0	0	0	0	0	0
AMP	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0

```
xd=8.35;% mRNA degradation rate constant based on 2.1 min half life unit h
pd=9.9*10^(-3); %h^(-1)
p_conc=5*10^(-3); % gene p concentration in microM
rnap_conc=0.15; % rnap concentration in microM
ribo_conc=1.6; % ribosome concentration in microM
e_x=60*3600; kel=e_x/924; % 60 nt/sec; compute for enlongation rate constant ke
taul=2.7;% time constant for transcription
tau2=0.8;%time constant for translation
K_x=0.3;%dissociation constant of RNAP in microM
K_L=57;%dissociation constant of ribosome in microM
n=1.5; Kd=0.3; % Kd (disocciation constant of inducer) is in mM
fl=I^n/(Kd^n+I^n);
ul=(0.26+300*fl)/(1+0.26+300*fl);
r_x=(rnap_conc*kel/taul*(p_conc/(p_conc+K_x)))*u;
r_L=mRNA*ribo_conc/K_L*(16.5*3600/308);
```


The graph doesn't look right but the linprog kept giving me a constant max protein production value.

Don't know how to answer part c