VISUAL CRYPTOGRAPHY

SPARSH GUPTA, MARK BELANGER, SIDNEY TAYLOR

SHAMIR'S VISUAL CRYPTOGRAPHY SCHEME

HOW WHITE PIXELS ARE HANDLED

Shares are made of the same subpixel arrangement

HOW BLACK PIXELS ARE HANDLED

Shares are made of reciprocal subpixel arrangements

PIXEL EXPANSION (BLACK PIXEL SHARES)

Each pixel is broken into sub-pixels, and that get encoded

SHAMIR'S SCHEME EXAMPLE (PIXEL EXPANSION)

Share 2

GENERAL PIXEL ENCODING MATRIX (FOR 2 SHARES)

Share 2

KOUT OF N SCHEME – DECODING SHARES

 S_0 => white pixel shares S_1 => black pixel shares

KOUT OF N SCHEME - DECRYPTING IMAGE

DECOMPOSING COLOR IMAGES

Color images can be represented using combinations of cyan, magenta, and yellow

[4]

HOW IT WORKS

Decompose image into CMY (i.e each pixel looks something like (1, 0, 1)) \rightarrow pixel-by-pixel encryption into the 4 shares with pixel expansion

CREATING THE BLACK SHARE

Step 1: Select one of these for each pixel:

ARRANGEMENT OF COLOR SHARES

- Depends on the black share
- CMY fills white space depending on if it needs to be shown

COLORS THAT CAN BE CREATED

Mask	Revealed color (C,M,Y)	Share1(C)	Share2(M)	Share3(Y)	Stacked image	Revealed color quantity (C,M,Y)
	(0, 0, 0)					(1/2, 1/2, 1/2)
	(1, 0, 0)					(1, 1/2, 1/2)
	(0, 1, 0)					(1/2, 1, 1/2)
	(0, 0, 1)					(1/2, 1/2, 1)
	(1, 1, 0)					(1, 1, 1/2)
	(0, 1, 1)					(1/2, 1, 1)
	(1, 0, 1)					(1, 1/2, 1)
	(1, 1, 1)					(1, 1, 1)

RED PIXEL EXAMPLE

If black share subpixel group is

COLOR IMAGE VISUAL CRYPTOGRAPHY EXAMPLE

REFERENCES

- [1] https://www.cs.jhu.edu/~fabian/courses/CS600.624/NaorShamir-VisualCryptography.pdf
- [2] https://www.researchgate.net/publication/353374619 An overview of visual cryptography techniques
- [3] https://www.ciphermachinesandcryptology.com/en/visualcrypto.htm
- [4] https://www.sciencedirect.com/science/article/pii/S0031320302002583#SEC3
- [5] https://homes.esat.kuleuven.be/~fvercaut/talks/visual.pdf
- [6] https://fardapaper.ir/mohavaha/uploads/2018/12/Fardapaper-A-Comprehensive-Study-of-Visual-Cryptography.pdf
- [7] https://www.101computing.net/visual-cryptography/