Randomized algorithms 1 Intro, hashing

CS240

Spring 2022

Rui Fan

Outline

- Introduction
- Probability review
- Max-cut and randomized quicksort
- Hashing
 - Closed addressing
 - Universal hashing
 - □ Perfect hashing

Randomized algorithms

- Till now, all of our algorithms have been deterministic.
 - ☐ Given an input, the algorithm always does the same thing.
- It turns out it's very useful to allow algorithms to be nondeterministic.
 - As the algorithm operates, it's allowed to make some random choices.
 - □ Running the algorithm multiple times on same input can produce different behaviors.

Why randomized algorithms?

- For many problems, randomized algorithms work better than deterministic ones.
 - □ Faster / uses less memory
 - □ Simpler, easier to understand.
 - □ Some problems that provably can't be solved (or solved efficiently) by deterministic algorithms can be solved by randomized ones.
 - According to quantum mechanics, the world is inherently probabilistic, so nature is randomized!

How can randomness help?

- Say you have a string of length n that's half A's and half B's.
- We want to find a location in the string with an A.
- Any deterministic algorithm takes n/2+1 steps in the worst case.
- But by checking random locations, a randomized algorithm finds an A in 2 steps in expectation.

How can randomness help?

Measure the area of this

Method 1

- Method 2
- Print the shape out on a piece of paper.
- Throw 100 darts at it.
- See what percent land in the shape.
- Multiply by area of your paper.

Las Vegas vs Monte Carlo

- A Las Vegas randomized algorithm always produces the right answer. But it's running time can vary depending on its random choices.
 - We want to minimize the expected running time of a Las Vegas algorithm.
- A Monte Carlo algorithm always has the same running time. But it sometimes produces the wrong answer, depending on its random choices.
 - We want to minimize the error probability of a Monte Carlo algorithm.

- Discrete probability theory is based on events and their probabilities.
 - □ Events can be composed of more basic events.
 - □ Ex Event of rolling a 2 on a fair dice, with probability 1/6.
 - □ Ex Event of rolling an even number, with probability ½.
 Composed of basic events of rolling a 2, 4 or 6.
 - \square If A is event, write Pr[A]=y. E.g. $Pr[roll\ a\ 2]=1/6$
- Two events A, B are independent if Pr[A∧B]=Pr[A]*Pr[B].
 - Ex Events A="2 on first roll" and B="3 on second roll" are independent, because Pr[A∧B]=1/36=Pr[A]*Pr[B]=1/6*1/6.
 - Ex Events A="2 on first roll" and B="the two rolls sum to 5" are not independent, because Pr[A∧B]=1/36≠Pr[A]*Pr[B]=1/6*4/36.

- Random variables
 - A variable which takes values with certain probabilities. The probabilities sum to 1.
 - \square Ex X = value from roll of dice. Values are $\{1,2,3,4,5,6\}$, each with probability 1/6.
 - □ Ex Y = number of heads in 4 flips of fair coin. Values are $\{0,1,2,3,4\}$, with probabilities $\{1/16,4/16,6/16,4/16,1/16\}$.
 - □ Ex Z = number of flips of fair coin till first head. Values are $\{1,2,3,...\}$, with probabilities $\{1/2,1/4,1/8,...\}$.
 - \square We write Pr[X=x]=y, e.g. Pr[Z=3]=1/8.

re.

- Expectation of random variable X
 - $\square E[X] = \sum_{x} x^* Pr[X = x].$
 - ☐ The average value of X, over many trials.
 - □ Ex X=number of heads in 4 flips.E[X]=0*1/16+1*4/16+2*6/16+3*4/16+4*1/16=2.
 - If you flip a coin 4 times, for 1000 times, on average you see 2 heads per 4 flips.
- An indicator variable X for a event E is a random variable that's 1 of E occurs, and 0 otherwise.
- If event E has probability p of occurring, and X is E's indicator variable, then E[X]=p.
 - □ Because E[X]=Pr[E occurs]*1+Pr[E doesn't occur]*0=p.
 - □ This is a convenient fact we'll frequently use.

b/A

- Linearity of expectations
 - ☐ Given random variables X, Y, E[X+Y]=E[X]+E[Y].
 - □ Extends to any number of random variables, e.g. E[X+Y+Z]=E[X]+E[Y]+E[Z].
 - The random variables do not have to be independent.
 - Very useful property!
 - Ex Let X=number of heads in 100 coin flips. Calculate E[X].
 - Direct method: 1*Pr[1 head]+2*Pr[2 heads]+...+100*Pr[100 heads], a very complicated sum.
 - Linearity method: $X=X_1+X_2+...+X_{100}$, where $X_i=$ number of heads on i'th flip.
 - \blacksquare E[X_i]=0*Pr[0 heads]+1*Pr[1 head]=1/2.
 - \blacksquare E[X]=E[X₁]+...+E[X₁₀₀]=100/2=50.

Problem 1: Max-Cut

- We studied the Min-Cut problem, which is closely related to finding the max flow in a network.
- Max-Cut is the opposite of Min-Cut.
- Given a graph G, split vertices into two sides to maximize the number of edges between the sides.

Max-Cut

- Unlike Min-Cut, Max-Cut is NP-complete.
- We'll give a very simple randomized Monte Carlo 2-approximation algorithm.
 - Monte Carlo means the algorithm sometimes returns the wrong answer, i.e. a cut that's not a 2approximation.
 - Monte Carlo also means the algorithm always runs in a fixed amount of time.
 - Put each node in a random side with probability ½.

Correctness

- Lemma In a graph with e edges, the algorithm produces a cut with expected size e/2.
- Proof Let X be a random variable equal to the size of the cut. We want to bound E[X].
 - □ For each edge e, let X_e be the indicator variable of whether e is in the cut.
 - I.e. X_e=1 if e is in the cut and 0 otherwise.
 - \square So X= $\Sigma_{\rm e}$ X_e.
 - □ Given an edge e=(i,j), e is in the cut if i and j are on different sides.
 - □ So Pr[e in cut]=Pr[(i in L) \land (j in R)] + Pr[(j in L) \land (i in R)]=1/4+1/4=1/2.
 - \square So E[X_e]=1/2.
 - \square So E[X]=e/2 by linearity of expectations.

Correctness

- Since a cut can have at most e edges, the e/2 edges the algorithm outputs in expectation is a 2 approximation.
- Note that we only bounded expected size of the algorithm's cut.
 - □ In any particular execution, the algorithm can output a cut that's smaller or larger than e/2.
 - On average, the cut has size e/2.
 - □ It's possible to bound the probability the algorithm outputs a cut significantly smaller than e/2, but we won't do this.

Problem 2: Quicksort

- Recall the Quicksort algorithm.
 - Pick a pivot element s.
 - Partition the elements into two sets, those less than s and those more than s.
 - Recursively Quicksort the two sets.

Complexity of Quicksort

- Let T(n) be the time to Quicksort n numbers.
- T(n) is small in practice.
- But in the worst case, $T(n)=O(n^2)$.
 - Occurs with very uneven splits. I.e. the rank of the pivot is very small or large.
 - □ Ex If pivot is smallest element, then T(n)=T(1)+T(n-1)+n-1. This solves to $T(n)=O(n^2)$.
 - T(1) and T(n-1) to recursively sort each side, n-1 to partition the elements wrt the pivot.
- As long as the pivot is near the middle, Quicksort takes O(n log n) time.
 - □ Ex If the pivot is always in the middle half, [n/4, 3n/4], then $T(n) \le T(n/4) + T(3n/4) + n-1$, which solves to $O(n \log n)$.

Randomized Quicksort

- Quicksort is only slow if we keep picking very small or large pivots.
- Let's pick the pivot at random. Intuitively, we shouldn't be unlucky and always pick small or large pivots.
- Pick a random pivot element s.
- Partition the elements into two sets, those less than s and those more than s.
- Recursively RQuicksort the two sets.

ÞΑ

Complexity of RQuicksort

- Let R(n) be the expected time to RQuicksort n numbers.
- With probability 1/n, the pivot has rank 1 (is smallest element), in which case R(n)=R(1)+R(n-1)+n-1.
- With probability 1/n, the pivot has rank 2, and R(n)=R(2)+R(n-2)+n-1.
- **...**
- With probability 1/n, the pivot has rank k, and R(n)=R(k)+R(n-k)+n-1.
- Putting these together, we have $R(n) = 1/n^*(R(1)+R(n-1)+R(2)+R(n-2)+...+R(n-1)+R(1)+n^*1/n^*(n-1)=$ $2/n^*\Sigma_k R(k) + n-1.$

Complexity of RQuicksort

- We solve the recurrence for R(n) using the substitution method. We guess $R(n) \le an \log n + b$ for some constants a, b>0 to be determined.
- We first need the following lemma.

Lemma 1.1
$$\sum_{k=1}^{n-1} k \log k \leq \frac{1}{2} n^2 \log n - \frac{1}{8} n^2$$
.

Proof.

$$\sum_{k=1}^{n-1} k \log k = \sum_{k=1}^{\lceil n/2 \rceil - 1} k \log k + \sum_{k=\lceil n/2 \rceil}^{n-1} k \log k$$

$$\leq (\log n - 1) \sum_{k=1}^{\lceil n/2 \rceil - 1} k + \log n \sum_{k=\lceil n/2 \rceil}^{n-1} k$$

$$= \log n \sum_{k=1}^{n-1} k - \sum_{k=1}^{\lceil n/2 \rceil - 1} k$$

$$\leq \frac{1}{2} n(n-1) \log n - \frac{1}{2} (\frac{n}{2} - 1) \frac{n}{2}$$

$$\leq \frac{1}{2} n^2 \log n - \frac{1}{8} n^2$$

Complexity of RQuicksort

■ Now we can solve for R(n).

$$R(n) = \frac{2}{n} \sum_{k=1}^{n-1} R(k) + \Theta(n)$$

$$\leq \frac{2}{n} \sum_{k=1}^{n-1} (ak \log k + b) + \Theta(n)$$

$$= \frac{2a}{n} \sum_{k=1}^{n-1} k \log k + \frac{2b(n-1)}{n} + \Theta(n)$$

$$\leq \frac{2a}{n} (\frac{1}{2}n^2 \log n - \frac{1}{8}n^2) + \frac{2b}{n}(n-1) + \Theta(n)$$

$$\leq an \log n - \frac{a}{4}n + 2b + \Theta(n)$$

$$= an \log n + b + (\Theta(n) + b - \frac{a}{4}n)$$

$$\leq an \log n + b$$

by choosing a so that $\frac{a}{4}n > \Theta(n) + b$.

Hash tables

- A hash table is a randomized data structure to efficiently implement a dictionary.
- Supports find, insert, and delete operations all in expected O(1) time.
 - \square But in the worst case, all operations are O(n).
 - □ The worst case is provably very unlikely to occur.
- A hash table does not support efficient min / max or predecessor / successor functions.
 - \square All these take O(n) time on average.
- A practical, efficient alternative to binary search trees if only find, insert and delete needed.

Direct addressing

- Suppose we want to store (key, value) pairs, where keys come from a finite universe U = {0, 1, ..., m-1}.
- Use an array of size m.
 - insert(k, v) Store v in array position k.
 - ☐ find(k) Return the value in array position k.
 - □ delete(k) Clear the value in array position k.
- All operations take O(1) time.
- The problem is, if m is large, then we need to use a lot of memory.
 - □ Uses O(|U|) space.
 - Ex For 32 bit keys, need 16 GB memory. For 64 bit keys, more memory than in world.
 - □ Ex What about string based keys?
- Also, if only need to store few values, lots of space wasted.

Hash table

- Similar to direct addressing, but uses much less space.
- Idea Instead of storing directly at key's location, convert key to much smaller value, and store at this location.
- A hash table consists of the following.
 - A universe U of keys.
 - ☐ An array of T of size m.
 - □ A hashing function h: $U \rightarrow \{0,1,...,m-1\}$.
- We'll talk later about how to pick good hash functions.
- insert(k, v) Hash key to h(k). Store v in T[h(k)].
- find(k) Return the value in T[h(k)]
- delete(k) Delete the value in T[h(k)]
- Assuming h(k) takes O(1) time to compute, all ops still take O(1) time. Uses O(m) space.
- If $m \ll |U|$, then hashing uses much less space than direct addressing.
- However, our current scheme doesn't quite work, due to collisions.

Collisions

- We store a key at array position h(k).
- But what if two keys hash to the same location, i.e. $k_1 \neq k_2$, but $h(k_1) = h(k_2)$?
 - □ This is called a collision.
- Collisions are unavoidable when |U| > m.
 - By Pigeonhole Principle, must exist at least two different keys in U that hash to same value.
- Two basic ways to deal with collisions, closed and open addressing.

Closed addressing

- In closed addressing, every entry in hash table points to a linked list.
 - □ Keys that hash to the same location get added to the linked list.
 - ☐ For simplicity, we'll ignore values from now on and only focus on keys.
- insert(k) Add k to the linked list in T[h(k)].
- find(k) Search the linked list in T[h(k)] for k.
- delete(k) Delete k from the linked list in T[h(k)].
- Suppose the longest list has length \hat{n} , and average length list is \bar{n} .
 - \square Each operation takes worst case $O(\hat{n})$ time.
 - \square An operation on a random key takes $O(\overline{n})$ time.

Load factor

- The key to making closed addressing hashing fast is to make sure list lengths aren't too long.
- For this, we want the hash function to appear random.
 - ☐ Assume that any key is uniformly likely to be hashed to any table location.
- Suppose the hash table contains n items, and has size m.
- Then under the uniform hashing assumption, each table location has on average n/m keys.
 - \Box Call $\alpha = n/m$ the load factor.
- So the average time for each operation is $O(\alpha)$.
- However, even with uniform hashing, in the worst case, all keys can hash to the same location. So the worst case performance is O(n).

Picking a hash function

- We saw that we want hash functions to hash keys to "random" locations.
 - □ However, note that each hash function is itself a deterministic function, i.e. h(k) always has the same value.
 - If h(k) can produce different values, we can't find key k in the hash table anymore.
- It's hard to find such random hash functions, since we don't assume anything about the distribution of input keys.
 - □ Ex For any hash function, there are always $\geq |U|/m$ keys from the universe hashing to the same location. So if the input is exactly this set, and $|U|/m \geq n$, then all ops take O(n) time.
- In practice, we use a number of heuristic functions.

Heuristic hash functions

- Assume the keys are natural numbers.
 - □ Convert other data types to numbers.
 - □ Ex To convert ASCII string to natural number, treat the string as a radix 128 number. E.g. "pt"
 → (112*128)+116 = 14452.
- Division method h(k) = k mod m
 - □ Often choose m a prime number not too close to a power of 2.
- Multiplication method $h(k) = \lfloor m \ (k \ A \ \text{mod} \ 1) \rfloor$, where A is some constant.
 - □ Knuth's suggestion is $A = \frac{\sqrt{5}-1}{2} \approx 0.618034 \dots$

Universal hashing

- As we said, regardless of the hash function, an adversary can choose a set of n inputs to make all operations O(n) time.
- Universal hashing overcomes this using randomization.
 - □ No matter what the n input keys are, every operation takes O(n/m) time in expectation, for a size m hash table.
 - \square Note O(n/m) time is optimal.
- Instead of using a fixed hash function, universal hashing uses a random hash function, chosen from some set of functions H.
- Say H is a universal hash family if for any keys $x \neq y$

$$\Pr_{h \in H}[h(x) = h(y)] = 1/m$$

- So if we randomly choose a hash function from H and use it to hash any keys x, y, they have 1/m probability of colliding.
- Note the hash functions in H are not random. However, we choose which function to use from H randomly.

NA.

Universal hashing

- Thm Let H be a universal hash family. Let S be a set of n keys, and let $x \in S$. If $h \in H$ is chosen at random, then the expected number of $y \in S$ s.t. h(x) = h(y) is n/m.
- Proof Say $S = \{x_1, ..., x_n\}$.
 - □ Let X be a random variable equal to the number of $y \in S$ s.t. h(x) = h(y).
 - \square Let $X_i = 1$ if $h(x_i) = h(x)$ and 0 otherwise.
 - $\Box E[X_i] = \Pr_{h \in H}[h(x_i) = h(x)] \times 1 + \Pr_{h \in H}[h(x_i) \neq h(x)] \times 0 = 1/m.$
 - First equality follows by universal hashing property.
 - $\square E[X] = E[X_1] + \dots + E[X_n] = n/m.$

r,e

Constructing universal hash family 1

- Choose a prime number p such that p > m, and p > all keys.
- Let $h_{ab}(k) = ((ak + b) \mod p) \mod m$.
- Let $H_{pm} = \{h_{ab} \mid a \in \{1, 2, ..., p-1\}, b \in \{0, 1, ..., p-1\}\}.$
- Thm H_{pm} is a universal hash family.
- Proof Let x, y < p be two different keys. For a given h_{ab} let $r = (ax + b) \mod p$, $s = (ay + b) \mod p$
- We have $r \neq s$, because $r s \equiv a(x y) \mod p \neq 0$, since neither a nor x y divide p.
- Also, each pair (a, b) leads to a different pair (r, s), since $a = ((r s)(x y)^{-1} \mod p)$, $b = (r ax) \mod p$
 - □ Here, $(x y)^{-1} \mod p$ is the unique multiplicative inverse of x y in \mathbb{Z}_p^* .

b/A

Constructing universal hash family 2

- Since there are p(p-1) pairs (a,b) and p(p-1) pairs (r,s) with $r \neq s$, then a random (a,b) produces a random (r,s).
- The probability x and y collide equals the probability $r \equiv s \mod m$.
- For fixed r, number of $s \neq r$ s.t. $r \equiv s \mod m$ is (p-1)/m.
- So for each r and random $s \neq r$, probability that $r \equiv s \mod m$ is ((p-1)/m))/(p-1) = 1/m.
- So $\Pr_{h_{ab} \in H_{pm}}[h_{ab}(x) = h_{ab}(y)] = 1/m$ and H_{pm} is universal.

Perfect hashing

- The hashing methods we've seen can ensure O(1) expected performance, but are O(n) in the worst case due to collisions.
- However, if we have a fixed set of keys, perfect hashing can ensure no collisions at all.
 - □ Perfect hashing maintains a static set, and allows find(k) and delete(k) in O(1) time.
 - □ It doesn't support insert(k).
- Ex The fixed set of keys may represent the file names on a non-writable DVD.

Perfect hashing

- Suppose we want to store n items with no collisions.
- Perfect hashing uses two levels of universal hashing.
 - \Box The first layer hash table has size m = n.
 - \square Use first layer hash function h to hash key to a location in T.
 - \square Each location j in T points to a hash table S_i with hash function h_i .
 - □ If n_j keys hash to location j, the size of S_j is $m_j = n_j^2$.
- We'll ensure there are no collisions in the secondary hash tables S_1, \dots, S_m .
 - \square So all operations take worst case O(1) time.
- Overall the space use is $O(m + \sum_{j=1}^{m} n_j^2)$.
 - □ We'll show this is O(n) = O(m).
 - So perfect hashing uses same amount of space as normal hashing.

Avoiding collisions

- Lemma Suppose we store n keys in a hash table of size $m = n^2$ using universal hashing. Then with probability $\geq 1/2$ there are no collision.
- Proof There are $\binom{n}{2}$ pairs of keys that can collide.
 - □ Each collision occurs with probability $1/m = 1/n^2$, by universal hashing.
 - \square So the expected number of collisions is $\frac{\binom{n}{2}}{n^2} \le \frac{1}{2}$.
 - □ By Markov's inequality the $Pr[\# collisions \ge 1] \le E[\# collisions] \le 1/2$.
- When building each hash table S_j , there's < 1/2 probability of having any collisions.
 - If collisions occur, pick another random hash function from the universal family and try again.
 - In expectation, we try twice before finding a hash function causing no collisions.

100

Space complexity

- Lemma Suppose we store n keys in a hash table of size m=n. Then the secondary hash tables use space $E\left[\sum_{j=0}^{m-1} n_j^2\right] \leq 2n$, where n_i is the number of keys hashing to location j.
- Proof $E\left[\sum_{j=0}^{m-1} n_j^2\right] = E\left[\sum_{j=0}^{m-1} (n_j + 2\binom{n_j}{2})\right] = E\left[\sum_{j=0}^{m-1} n_j\right] + 2E\left[\sum_{j=0}^{m-1} \binom{n_j}{2}\right]$
- $\sum_{j=0}^{m-1} \binom{n_j}{2}$ is the total number of pairs of hash keys which collide in the first level hash table.
 - \square By universal hashing, this equals $\binom{n}{2} \frac{1}{m} = \frac{n-1}{2}$.
- $\bullet E[\sum_{j=0}^{m-1} n_j] = n.$
- So $E\left[\sum_{j=0}^{m-1} n_j^2\right] \le n + \frac{2(n-1)}{2} < 2n$.