

OC - Organização de Computadores OC05 - Circuitos Sequenciais

Tecnologia em Sistemas para Internet

Antônio Neco de Oliveira, Dr.

TSI, 2023/1

Circuitos Sequenciais

Objetivos:

- Revisar:
 - Identidades da álgebra booleana.
 - Conceitos relacionados aos circuitos combinacionais.
- Analisar os circuitos sequenciais:
 - Distinguir os diferentes tipos de flip-flops.
 - Entender o funcionamento dos registradores.
 - Diferenciar contadores síncronos e assíncronos.

REVISÃO: Identidades básicas da álgebra booleana

POSTULADOS BÁSICOS				
$A \cdot B = B \cdot A$	A + B = B + A	Propriedade comutativa.		
$A\cdot (B+C)=(A\cdot B)+(A\cdot C)$	$A + (B \cdot C) = (A + B) \cdot (A + C)$	Propriedade distributiva.		
$1 \cdot A = A$	0 + A = A	Elementos de identidade.		
$A \cdot \overline{A} = 0$	$A + \overline{A} = 1$	Elementos de inversão.		
OUTRAS IDENTIDADES				
$0 \cdot A = 0$	1 + A = 1	-		
$A \cdot A = A$	A + A = A	-		
$A\cdot (B\cdot C)=(A\cdot B)\cdot C$	A+(B+C)=(A+B)+C	Propriedade associativa		
$\overline{A \cdot B} = \overline{A} + \overline{B}$	$\overline{A} + \overline{B} = \overline{A} \cdot \overline{B}$	Teorema de DeMorgan		

REVISÃO: Portas Lógicas (símbolos gráficos)

- O bloco fundamental de construção de todos os circuitos lógicos é a porta lógica.
- Uma porta lógica é um circuito eletrônico que produz um sinal de saída que é uma operação booleana simples em seus sinais de entrada.

Nome	Símbolo gráfico	Função algébrica	Tabela verdade
AND	A B	$F = A \bullet B$ ou $F = AB$	AB F 00 0 01 0 10 0 11 1
OR	A F	F = A + B	AB F 0000 011 1001 1111
NOT	A — F	$F = \overline{A}$ ou $F = A'$	A F 0 1 1 0
NAND	A B	$F = \overline{AB}$	AB F 0 0 1 0 1 1 1 0 1 1 1 0
NOR	A B F	$F = \overline{A + B}$	A B F 0 0 1 0 1 0 1 0 0 1 1 0
XOR	A B F	$F = A \oplus B$	ABF 000 011 101 4 = 1150= 90

REVISÃO: Circuitos Combinacionais - Multiplexadores

S2	S1	F
0	0	D0
0	1	D1
1	0	D2
1	1	D3

REVISÃO: Circuitos Combinacionais - Decodificadores

- Um decodificador é um circuito combinacional com um número de linhas de saída, em que somente uma delas é acionada por vez.
- Qual linha de saída será acionada vai depender do padrão das linhas de entrada.
- Em geral, um decodificador tem n entradas e 2ⁿ saídas.
- Figura: Decodificador com três entradas e oito saídas.

REVISÃO: Circuitos Combinacionais - Somadores

- A adição binária difere da álgebra booleana porque o resultado inclui um termo de carry (C).
- Para um somador de múltiplos bits funcionar, cada um dos somadores de um bit deve ter três entradas, inclusive o carry a partir do próximo somador de menor ordem.

Figura: Circuito somador de 4 bits.

Cin	Α	В	Soma	C_{out}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Circuitos sequenciais

- Uma forma mais complexa de circuito lógico digital é o circuito sequencial.
- A saída atual de um circuito sequencial depende não somente da entrada atual, mas também do histórico das entradas.
- Outra forma, geralmente mais útil, de visualizar isso é que a saída atual do circuito sequencial depende da entrada e do estado atual desse circuito.
- A forma mais simples de circuito sequencial é o flip-flop.
- Existe uma ampla gama de **flip-flops**, e todos eles compartilham duas propriedades:
 - O flip-flop é um dispositivo biestável.
 - O flip-flop tem duas saídas, que são sempre complementos uma da outra.

Flip-flop S-R ou latch S-R (Set-Reset)

Latch S-R implementado com portas NOR

Diagrama de temporização

 O circuito tem duas entradas e duas saídas, e consiste em duas portas NOR conectadas com realimentação.

- A saída do latch S-R muda, depois de um breve atraso de tempo, em resposta à alteração na entrada.
- Os eventos no computador digital são sincronizados por um pulso de clock, de modo que as mudanças ocorrem somente quando um pulso de clock acontece.
- Observe que as entradas R e S são passadas para as portas NOR somente durante o pulso de clock.
- Um problema com o flip-flop S-R é que a condição R = 1, S = 1 deve ser evitada.

S	R	Q
0	0	$Q_{Anterior}$
0	1	0 = Reset
1	0	1 = Set
1	1	?

Flip-flop D

Uma forma de fazer isso é permitir apenas uma única entrada.
 O flip-flop D realiza isso.

Flip-flops

- O flip-flop J-K tem duas entradas.
- Todavia, nesse caso todas as combinações possíveis nos valores de entrada são válidas.

Flip-flops básicos

Nome	Símbolo gráfico	Tabela verdade		
	s _ Q	s	R	Q_{n+1}
S-R	Ck	0	0 1	Q_n
	\overline{Q}	1	0 1	1 -
	J Q	J	K	Q_{n+1}
Ј-К	>Ck	0	0	Q _n
	к —	1	0	Q_n 0 $\frac{1}{Q_n}$
	D Q		D	Q _{n+1}
D	>Ck		0	0
	<u>Q</u>			1

Registradores

- Um registrador é um circuito digital usado dentro da CPU para armazenar um ou mais bits de dados.
- Dois tipos básicos de registradores costumam ser usados:
 - 1 Um registrador paralelo consiste em um conjunto de memória de 1 bit que pode ser lido ou escrito de modo simultâneo.
 - 2 Um registrador de deslocamento aceita e/ou transfere informação serialmente.

Registrador paralelo de 8 bits

Registrador de deslocamento de 5 bits

Contadores

- O contador é um registrador cujo valor é facilmente incrementado por 1 até atingir seu **módulo**, que é a capacidade do registrador.
- Um registrador composto por *n flip-flops* pode contar até $2^n 1$.
- Os contadores podem ser designados como assíncronos ou síncronos, dependendo do modo como operam.
- Os **contadores assíncronos** são relativamente lentos porque a saída de um *flip-flop* dispara uma mudança no estado do *flip-flop* seguinte.
- Em um **contador síncrono**, todos os *flip-flops* mudam de estado ao mesmo tempo.

Contador de propagação - assíncrono

- Um contador assíncrono é também chamado de contador de propagação, pois a alteração que ocorre para incrementar o contador começa em uma extremidade e se propaga até a outra.
- O contador é incrementado a cada pulso de clock e as entradas J e K, de cada flip-flop, são mantidas constantes em 1; Isso significa que, quando existe um pulso de clock, a saída em Q será invertida (1 a 0; 0 a 1).

 A alteração no estado é mostrada como ocorrendo na descida do pulso de clock; isso é conhecido como flip-flop sensível à borda.

Contador de propagação e o diagrama de temporização

- A alteração no estado é mostrada como ocorrendo na descida do pulso de clock.
- Isso é conhecido como flip-flop sensível à borda.
- O contador assíncrono tem a desvantagem do atraso envolvido na mudança do valor, que é proporcional ao tamanho do contador.

Contador síncrono - diagrama lógico

- Contadores síncronos: todos os *flip-flops* do contador mudam ao mesmo tempo.
- As entradas do primeiro flip-flop são mantidas em nível alto (1).
- A saída de cada flip-flop forma a combinação para a entrada do flip-flop seguinte.

Circuitos Sequenciais

Isso é tudo, pessoal!

Referências

STALLINGS William.

Arquitetura e Organização de Computadores. (10^a Edição), Pearson Education do Brasil, 2017.