Spark

Fast, Interactive, Language-Integrated Cluster Computing

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley, Michael Franklin, Scott Shenker, Ion Stoica

www.spark-project.org

Project Goals

Extend the MapReduce model to better support two common classes of analytics apps:

- >> Iterative algorithms (machine learning, graphs)
- >> Interactive data mining

Enhance programmability:

- >> Integrate into Scala programming language
- >> Allow interactive use from Scala interpreter

Motivation

Most current cluster programming models are based on *acyclic data flow* from stable storage to stable storage

Motivation

Most current cluster programming models are based on *acyclic data flow* from stable storage to stable storage

Benefits of data flow: runtime can decide where to run tasks and can automatically recover from failures

IVIap

Motivation

Acyclic data flow is inefficient for applications that repeatedly reuse a working set of data:

- >> Iterative algorithms (machine learning, graphs)
- >> Interactive data mining tools (R, Excel, Python)

With current frameworks, apps reload data from stable storage on each query

Solution: Resilient Distributed Datasets (RDDs)

Allow apps to keep working sets in memory for efficient reuse

Retain the attractive properties of MapReduce >> Fault tolerance, data locality, scalability

Support a wide range of applications

Outline

Spark programming model

Implementation

Demo

User applications

Programming Model

Resilient distributed datasets (RDDs)

- >> Immutable, partitioned collections of objects
- >> Created through parallel *transformations* (map, filter, groupBy, join, ...) on data in stable storage
- >> Can be cached for efficient reuse

Actions on RDDs

>> Count, reduce, collect, save, ...

Spark Operations

Transformations (define a new RDD)

filter
sample
groupByKey
reduceByKey
sortByKey

flatMap
union
join
cogroup
cross
mapValues

Actions

(return a result to driver program)

collect reduce count save lookupKey

Example: Log Mining

Load error messages from a log into memory, then interactively search for various patterns

```
lines = spark.textFile("hdfs://...")
errors = lines.filter(_.startsWith("ERROR"))
messages = errors.map(_.split('\t')(2))
cachedMsgs = messages.cache()

cachedMsgs.filter(_.contains("foo")).count
cachedMsgs.filter(_.contains("bar")).count
. . .
Result: scaled to 1 TB data in 5-7
```

sec

(vs 170 sec for on-disk data)

results tasks Block ' Driver Action Cache 2 Cache 3 Block 2 Block 3

franstormed

Cache

RDD Fault Tolerance

RDDs maintain *lineage* information that can be used to reconstruct lost partitions

```
EX: messages = textFile(...).filter(_.startsWith("ERROR"))
.map(_.split('\t')(2))

HDFS File Filtered RDD Mapped RDD

filter

(func = _.contains(...)) (func = _.split(...))
```

Fault Recovery Results

Example: Logistic Regression

Goal: find best line separating two sets of points

Example: Logistic Regression

```
val data = spark.textFile(...).map(readPoint).cache()
var w = Vector.random(D)
for (i <- 1 to ITERATIONS) {
  val gradient = data.map(p =>
    (1 / (1 + \exp(-p.y*(w \text{ dot } p.x))) - 1) * p.y * p.x
  ).reduce(_ + _)
 w -= gradient
println("Final w: " + w)
```

Logistic Regression Performance

Behavior with Not Enough RAM

Spark Applications

In-memory data mining on Hive data (Conviva)

Predictive analytics (Quantifind)

City traffic prediction (Mobile Millennium)

Twitter spam classification (Monarch)

Collaborative filtering via matrix factorization

. . .

Conviva GeoReport

Aggregations on many keys w/ same WHERE clause

40× gain comes from:

- >> Not re-reading unused columns or filtered records
- >> Avoiding repeated decompression
- >> In-memory storage of deserialized objects

Frameworks Built on Spark

Pregel on Spark (Bagel)

- >> Google message passing model for graph computation
- >> 200 lines of code

Hive on Spark (Shark)

- >> 3000 lines of code
- >> Compatible with Apache Hive
- >> ML operators in Scala

Implementation

Runs on Apache Mesos to share resources with Hadoop & other apps

Can read from any Hadoop input source (e.g. HDFS)

No changes to Scala compiler

Spark Scheduler

Dryad-like DAGs

Pipelines functions within a stage

Cache-aware work reuse & locality

Partitioning-aware to avoid shuffles

= cached data partition

Interactive Spark

Modified Scala interpreter to allow Spark to be used interactively from the command line

Required two changes:

- >> Modified wrapper code generation so that each line typed has references to objects for its dependencies
- >> Distribute generated classes over the network

Conclusion

Spark provides a simple, efficient, and powerful programming model for a wide range of apps

Download our open source release:

www.spark-project.org

Related Work

DryadLINQ, FlumeJava

>> Similar "distributed collection" API, but cannot reuse datasets efficiently across queries

Relational databases

>> Lineage/provenance, logical logging, materialized views

GraphLab, Piccolo, BigTable, RAMCloud

>> Fine-grained writes similar to distributed shared memory

Iterative MapReduce (e.g. Twister, HaLoop)

>> Implicit data sharing for a fixed computation pattern

Caching systems (e.g. Nectar)

>> Store data in files, no explicit control over what is cached