```
clc; clear; close all;
zipf();
```


ans = 10×4 table

	Words	NumOccurren	PercentOfText	CumulativePe
1	"the"	1450	5.2846	5.2846
2	"and"	802	2.9230	8.2076
3	"j"	789	2.8756	11.0832
4	"to"	714	2.6022	13.6854
5	"of"	711	2.5913	16.2767
6	"a"	695	2.5330	18.8097
7	"it"	454	1.6546	20.4643
8	"in"	431	1.5708	22.0351
9	"that"	429	1.5635	23.5987
10	"he"	405	1.4761	25.0747

```
%5a)
plot(1:size(words), numOccurrences);
xlabel('Rank of a word');
ylabel('Number of Occurrences');
```



```
%Better Plotted on log graph
loglog(numOccurrences);
xlabel('Rank of a word');
ylabel('Number of Occurrences');
```



```
%5b)
%Top 10 words based on number of occurrences
words(rankIndex(1:10))
ans = 10×1 string array
    "the"
    "and"
    "i"
    "to"
    "of"
    "a"
    "it"
    "in"
    "that"
    "he"
%5c)
% frequency of most common word
fMostCommon = numOccurrences(1)
```

fMostCommon = 1450

f5CommonMeasured = 711

f5CommonMeasured = numOccurrences(5)

% N = 5

```
f5CommonCalculated = fMostCommon * 1/5
```

f5CommonCalculated = 290

% N = 10

f10CommonMeasured = numOccurrences(10)

f10CommonMeasured = 405

f10CommonCalculated = fMostCommon * 1/10

f10CommonCalculated = 145

% while the raw data may seem to differ by a significant amount, if the

- % calculated and measured values are compared in relation to the log-log
- % graphical representation, it can be seen that Zipf's Law holds such that
- % the frequency of the nth most common word is approximately 1/n times the
- % frequency of the most common word.