

2.4 節末問題 2.4 的解答

問題 2.4.1

答案如下。另外,用大0記法表示的值,是透過「刪除最重要的項後,再去掉常數倍(如 $7N^2$ 中7的部分)」這樣的操作而求得的(\rightarrow **2.4.8項**)。。

- 1. $T_1(N) = O(N^3)$
- 2. $T_2(N) = O(N)$
- 3. $T_3(N) = O(2^N)$
- 4. $T_4(N) = O(N!)$

問題 2.4.2

這個程式執行二重迴圈, 每個變數的取值如下:

- 變數 **i**:1,2,3,...,*N* 的 *N* 種值
- 變數 j:1,2,3,...,100N 的 100N 種值

因此,總迴圈次數為 $N \times 100N = 100N^2$ 次,也就是說計算複雜度是 $O(N^2)$ 。另外,迴圈次數用乘法表示的原因,將變數 \mathbf{i} 和 \mathbf{j} 的取值方式排列成一個矩形($\rightarrow 2.4.5$ 項)。的話即可容易理解。

	j=1	j=2	j=3	j=4	j=5	j=6	j=7	j = 8	•••	j = 100N	
i = 1	i = 1 $j = 1$	i = 1 $j = 2$	i = 1 $j = 3$	i = 1 $j = 4$	i = 1 $j = 5$	i = 1 $j = 6$	i = 1 $j = 7$	i = 1 $j = 8$		i = 1 $j = 100N$	
i=2	i = 2 $j = 1$	i = 2 $j = 2$	i = 2 $j = 3$	i = 2 $j = 4$	i = 2 $j = 5$	i = 2 j = 6	i = 2 $j = 7$	i = 2 $j = 8$		i = 2 $j = 100N$	N 租
:	i	:	ŧ	:	i	ŧ	:	i.		i	1=
i = N	i = N $j = 1$	i = N $j = 2$	i = N $j = 3$	$i = N \\ j = 4$	$i = N \\ j = 5$	i = N j = 6	$i = N \\ j = 7$	$i = N \\ j = 8$		$i = N \\ j = 100N$	
											•

問題 2.4.3

為了確認 $\log_2 N$ 和 $\log_{10} N$ 之間只有常數倍的差異,我們可以將 $\log_2 N$ 除以 $\log_{10} N$ 。 根據底數轉換公式(\rightarrow **2.3.10項**),下式會成立。

$$\frac{\log_2 N}{\log_{10} N} = \frac{\log_2 N}{\log_2 N \div \log_2 10} = \log_2 10 = 3.32$$

因此,可知 $\log_2 N$ 是 $\log_{10} N$ 的約 3.32 倍。這也是在用大 O 記法表示對數時,使用如 $O(\log N)$ 而省略底數表示的一個原因。

問題 2.4.4

答えは以下のようになります。なお、は と同じ意味です答案如下。另外, $N\log N$ 的 意思與 $N \times \log N$ 相同。

計算次數	N log N	N ²	2 ^N
106 次以內	<i>N</i> ≤ 60000	<i>N</i> ≤ 1000	<i>N</i> ≤ 20
10 ⁷ 次以內	<i>N</i> ≤ 500000	<i>N</i> ≤ 3000	<i>N</i> ≤ 23
108 次以內	$N \leq 4000000$	<i>N</i> ≤ 10000	<i>M</i> ≤ 26
10 ⁹ 次以內	$N \le 40000000$	<i>N</i> ≤ 30000	<i>N</i> ≤ 30

問題 2.4.5

由於 N 增加 2 時,執行時間大約增加 9 倍,因此計算複雜度應該是 $O(3^N)$ 。另外,由於 $O(N\times 3^N)$ 或 $O(10^{N/2})$ 也不會不自然,因此可以作為另一個解答。

問題 2.4.6

直覺的做法是以 "a" \rightarrow "aardvark" \rightarrow "aback" \rightarrow "abalone" \rightarrow "abandon" \rightarrow 這樣的方式,從前面記載的單字開始一個一個搜尋。然而,當單字數為 N 的時候步驟數最差情況是 N 次,若 N=100000 ,對人類來說幾乎不可能。因此,如果使用例如以下的方法,可以更有效率(\rightarrow **2.4.7項**)。

重複進行「查看目前考慮範圍中間的單字,然後檢查在它之前還是之後」。下圖顯示了當單字數為 100000 個時的步驟示意圖。

這是很類似二元搜尋法的方法,只需 $\lceil \log_2 N \rceil$ 個步驟即可找到目標單字。

另外,實作中,尋找例如「第 50000 個單字在哪裡」這樣的問題也很麻煩,因此,在一開始的問題中,與大致中央頁面的單字進行比較即可。大家在使用字典查單字時,不妨嘗試使用二元搜尋法。

