Intro

In this notebook, we will:

- 1. Get a little practice with NumPy (https://numpy.org/) and Pandas (https://pandas.pydata.org/))
- 2. Keep building intuitions about the geometry of data
- 3. Practice with vector notation and vector operations, and learn to type math notation in Jupyter notebooks

All of that will get us ready for next week, when we will formalize our intuitions about geometric distance into mathematical formulas, which we will apply in towards our first ML method, K-nearest neighbors.

```
In [1]: # Step one: You should have numpy and pandas installed. If you used co
    nda, you should already have these libraries

# make sure this code runs
    import numpy as np
    import pandas

# If numpy and pandas are totally new to you, I suggest doing a quick
    tutorial to get set up
    # There are many, many tutorials for these libraries available online.
    This course won't focus on
    # installing and using numpy and pandas.
```

```
In [2]: import pandas as pd

# this line tells Jupyter notebook to show plots in the notebook
%matplotlib inline

df = pd.read_csv("covid.csv") # import some data, available on canvas
df
```

Out[2]:

	state/region	population	num_positive	governor_party
0	AL	4833722	108433	republican
1	AK	735132	5060	republican
2	AZ	6626624	193537	republican
3	AR	2959373	52665	republican
4	CA	38332521	621562	democrat
5	CO	5268367	52838	democrat

6	CT	3596080	50897	democrat
7	DE	925749	16451	democrat
8	FL	19552860	573416	republican
9	GA	9992167	237030	republican
10	HI	1404054	4825	democrat
11	ID	1612136	27477	republican
12	IL	12882135	207413	democrat
13	IN	6570902	80415	republican
14	IA	3090416	52428	republican
15	KS	2893957	33885	democrat
16	KY	4395295	39315	republican
17	LA	4625470	137918	democrat
18	ME	1328302	4168	democrat
19	MD	5928814	100212	republican
20	MA	6692824	123200	republican
21	MI	9895622	102259	democrat
22	MN	5420380	65152	democrat
23	MS	2991207	72136	republican
24	МО	6044171	67475	republican
25	MT	1015165	5750	democrat
26	NE	1868516	30241	republican
27	NV	2790136	61305	democrat
28	NH	1323459	6988	republican
29	NJ	8899339	187455	democrat
30	NM	2085287	23302	democrat
31	NY	19651127	425508	democrat
32	NC	9848060	144952	democrat
33	ND	723393	8587	republican
34	ОН	11570808	108287	republican
35	OK	3850568	48342	republican
36	OR	3930065	23262	democrat

37	PA	12773801	124460	democrat
38	RI	1051511	20335	democrat
39	SC	4774839	106497	republican
40	SD	844877	10274	republican
41	TN	6495978	133708	republican
42	TX	26448193	535582	republican
43	UT	2900872	46652	republican
44	VT	626630	1515	republican
45	VA	8260405	106687	democrat
46	WA	6971406	66885	democrat
47	WV	1854304	8564	democrat
48	WI	5742713	70246	democrat
49	WY	582658	3286	republican

```
In [3]: # Examine the dataframe and answer the following questions
# 1. How many features are there?
# 2. How many observations are there?
# There are four features and 50 observations.
```

```
In [4]: df_as_matrix = df.to_numpy() # This converts the pandas dataframe to a
    numpy library

# What is the size of `df_as_matrix`?
# The size of a matrix is the number of rows and columns in the matrix
# hint: https://numpy.org/devdocs/reference/generated/numpy.shape.html
    np.shape(df_as_matrix)

# 50 x 4
```

Out[4]: (50, 4)

```
In [5]: # What does the 4th row of df_as_matrix represent?
# - Remember that numbering starts at 0 so the 1st row has index 0.

fourth_row = df_as_matrix[3]
# type your code here, filling the variable fourth_row

# What does fourth_row represent, in the dataset?

# The fourth row represents the Arkansas observation.

In [6]: # What is the 2nd column of df_as_matrix?
# - Remember that numbering starts at 0, so the 1st row has index 0.

second_col = df_as_matrix[:,1]
```

Plotting states by population

Now let's go ahead and plot states by population. Remember that population is just one dimension in the dataset. We're starting with population because it's *way* easier to think in one dimension than in, say, seven dimensions. However, by next week you will have tools to reason about data in an arbitrary number of dimensions.

The second column represents the population of the state.

What second col represent, in the dataset?

```
In [7]:
        import matplotlib.pyplot as plt
        # https://stackoverflow.com/questions/15943945/annotate-scatterplot-fr
        om-a-pandas-dataframe
        def plotdf1D(df ):
            YOU DONT NEED TO MODIFY THIS FUNCTION
            This function makes a 1D scatter plot of the data, along the popul
        ation dimension
            plt.clf()
            df = df .copy()
            df_["_"] = 0
            plt.scatter(df ['population'],df [" "])
            plt.ylim(-.01, .01)
            plt.xlabel("Population (Millions)")
            # zip joins x and y coordinates in pairs
            for x,y,z in zip(df_["population"], df_["_"], df_["state/region"])
                plt.yticks(color='w')
                plt.annotate(z, # this is the text
                              (x,y), # this is the point to label
                             textcoords="offset points", # how to position the
        text
                             xytext=(0,10), # distance from text to points (x,
        y)
                             ha='center') # horizontal alignment can be left,
        right or center
            plt.show()
```

```
In [8]: # Try plotting all of the states by population.
# The plot is a bit crowded.
plotdflD(df)
```


In [9]: # Filter your dataframe to states with fewer than 1M people
hint: this requires filtering the dataframe with pandas

less_than_1M = df.iloc[second_col< 1000000] # this variable should be
a dataframe of states with fewer than 1M people</pre>

plotdf1D(less_than_1M)

and plot it

Just eyeballing the plot of states with fewer than 1M people, which state is closest to Vermont along the population dimension?

Wyoming

```
In [10]: # Now lets represent each state as a 1D vector, with one dimension, fo
    r population

population_vectors = df["population"].to_numpy()
    population_vectors.size

# What is the size of "population_vectors"?

# 50

# What do the rows represent in population_vectors?

# Each of the 50 states.

# What do the columns represent in population_vectors?

# The population of each state.
```

Out[10]: 50

Practice with math in Jupyter notebooks

In this class, we will write a bit of math in Jupyter notebooks.

- To write math in notebooks, you use dollar signs \$like this\$.
- We will use bold letters to represent vectors. For instance, this represents a vector q
 - (You can double click the cell to see the dollar signs, showing how to render the symbol).
- We will use q_i to refer to component i of vector q.
- So if q = < 11, 2, 31 >then $q_0 = 11$ and $q_2 = 31$

Let the vector x represent population_vectors expressed in vector notation.

1. What is x_{23} ?

The cell in the second row, third column

1. How would you represent the population of Colorado, using vector notation?

x₆₂

Increasing the dimensions

Now let's plot the data in two dimensions instead of one

```
In [11]:
         def plotdf2D(df_):
             YOU DONT NEED TO MODIFY THIS FUNCTION
             This function makes a 2D scatter plot of the data, along the popul
         ation dimension
             plt.clf()
             df = df .copy()
             plt.scatter(df ['population'],df ["num positive"])
             plt.xlabel("Population (Millions)")
             plt.ylabel("# Cases")
             # zip joins x and y coordinates in pairs
             for x,y,z in zip(df ["population"], df ["num positive"], df ["stat
         e/region"]):
                 plt.annotate(z, # this is the text
                               (x,y), # this is the point to label
                              textcoords="offset points", # how to position the
         text
                              xytext=(0,10), # distance from text to points (x,
         y)
                              ha='center') # horizontal alignment can be left,
         right or center
             plt.show()
```


Use the plotdf2D function to plot the data in two dimensions, then answer the following questions

1. What state is closest to North Dakota (ND) in overall in feature space (i.e. shortest line between points)?

Alaska

1. What state is closest to North Dakota (ND) along the #Cases dimension?

South Dakota

1. What state is closest to North Dakota (ND) along the Population dimension?

Alaska

Turning in your work

For this assignment, you will turn in your .ipynb notebook file and a PDF of the notebook. Click Kernel \rightarrow Restart & Run All and then click File \rightarrow Download As \rightarrow PDF to make a nice PDF of the notebook. Turn in both the .ipynb and .pdf files for assignment 2 on Canvas.