Solutions Manual for Gregory F. Lawler's Introduction to Stochastic Processes

Jonathan Bown

Part I

Finite Markov Chains

Problem 1.1.

Problem 1.2. Consider a Markov chain with state space 0,1 and transition matrix

$$\mathbf{P} = \begin{bmatrix} 1/3 & 2/3 \\ 3/4 & 1/4 \end{bmatrix}$$

Assuming that the chain starts in state 0 at time n = 0, what is the probability that it is in state 1 at time n = 3?

Solution. This is just some basic matrix multiplication. The chain starts in state 0 at time n = 0 so we will look at the first row of the matrix \mathbf{P}^3 .

Problem 1.3.

Solution. (a) We have that $P = \begin{bmatrix} 0.4 & 0.2 & 0.4 \\ 0.6 & 0 & .4 \\ 0.2 & 0.5 & 0.3 \end{bmatrix}$ The matrix P^n converges pretty quickly so you only need to use a power of say, 100. Using R gives the following:

$$P^{100} = \begin{bmatrix} 0.3787879 & 0.2575758 & 0.3636364 \\ 0.3787879 & 0.2575758 & 0.3636364 \\ 0.3787879 & 0.2575758 & 0.3636364 \end{bmatrix}$$

Thus the common row vector is

$$\pi = (0.3787879, 0.2575758, 0.3636364)$$

Problem 1.4.

Solution. \Box

Problem 1.5.

Solution. (1) Recurrent classes: $\{0,1\},\{2,4\}$. Transient class: $\{3,5\}$

(2) To analyze large time behavior of the Markov chain on the class $R_1 = \{0, 1\}$, we need only to consider its matrix

$$\mathbf{P}_{\{\mathbf{0},\mathbf{1}\}} = \begin{pmatrix} 0 & 1 \\ 0 & 0.5 & 0.5 \\ 1 & 0.3 & 0.7 \end{pmatrix}$$

Solving $\pi \mathbf{P}_{\{\mathbf{0},\mathbf{1}\}} = \pi$ we get its invariant probability $\pi = (\frac{3}{8}, \frac{5}{8})$. Then $\lim_{n \to \infty} P_n(0,0) = \frac{3}{8}$.

(3) To find $\lim_{n\to\infty} P_n(5,0)$, we first find $\lim_{n\to\infty} P_n(0,R_1)$, the probability that the chain will be absorbed into $R_1 = \{0,1\}$. Rearrange P we can write it as

$$\tilde{\mathbf{P}}_{\{\mathbf{0},\mathbf{1}\}} = \begin{cases} \{0,1\} & \{2,4\} & 3 & 5 \\ \{0,1\} & 1 & 0 & 0 & 0 \\ \{2,4\} & 0 & 1 & 0 & 0 \\ 0.5 & 0.25 & 0 & 0.25 \\ 5 & 0.2 & 0.2 & 0.2 & 0.4 \end{cases} = \begin{bmatrix} I & 0 \\ S & Q \end{bmatrix}$$

Then it follows from $\lim_{n\to\infty} \tilde{\mathbf{P}}^{\mathbf{n}} = \begin{pmatrix} I & 0 \\ (I-Q)^{-1}S & 0 \end{pmatrix}$ (see Section 1.5) and

$$(I-Q)^{-1}S = \frac{1}{11} * \begin{pmatrix} 7 & 4 \\ 6 & 5 \end{pmatrix}$$

that $\lim_{n\to\infty} P_n(5,R_1) = \frac{6}{11}$. Combining it with (2) we get $\lim_{n\to\infty} P_n(5,0) = \frac{6}{11} * \frac{3}{8} = \frac{9}{44} = .2045$

Problem 1.6.

Solution.	
-----------	--

Problem 1.7.

Solution. \Box

Problem 1.8.

Solution. \Box

Problem 1.9.

Solution. \Box

Problem 1.10.

Solution. \Box

Problem 1.11.	
Solution.	
Problem 1.12.	
Solution.	
Problem 1.13.	
Solution.	
Problem 1.14.	
Solution.	
Problem 1.15.	
Solution.	
Problem 1.16.	
Solution.	
Problem 1.17.	
Solution.	
Problem 1.18.	
Solution.	
Problem 1.19.	
Solution.	
Problem 1.20.	
Solution.	
Problem 1.21.	
Solution.	

Countable Markov Chains

Problem 2.1.

Solution.

Continuous-Time Markov Chains

Problem 3.1.

Solution.

Chapter 4 Optimal Stopping

Problem 4.1.

Solution.

Martingales

Problem 5.1.

Solution.

Renewal Processes

Problem 6.1.

Solution.

Reversible Markov Chains

Problem 7.1.

Solution.

Brownian Motion

Problem 8.1.

Solution.

Chapter 9
Stochastic Integration