Perception Introduction

How is perception different from sensation

Sensation

- Transduction: converting physical energy into neural impulses
- Largely bottom-up processing
- Earliest processing

Perception

- Phenomenology: perceptual experience
- Top-down processing
- Our interpretation of sensations

Bottom-up vs top-down processing

Three basic principals

Physical reality and experience are qualitatively different Sensation and perception are active processes

Selectively orient attention, interpret

Sensation and perception are adaptive

• Learn from experience

Sensing the environment

Sensory receptors

- Detect physical energy
- Translate energy into neural signals (transduction)

There is a minimum amount of energy needed to activate the system (threshold)

Sensory systems are sensitive changes in stimulation level

Psychophysics

Experiment techniques for measuring the percept associated with a stimulus

Data give insight into how sensory information is processed by the brain to generate perception

Thresholds

Sensory systems require a minimum amount of energy for activate (absolute threshold)

Signal detection theory proposes that two distinct processes are required for detecting a stimulus:

- Initial sensory process: the observer's sensitivity to the stimulus
- Decision process: the observer's **response bias** (readiness to report detecting a stimulus when not certain)

Did you see/hear/smell/ it?

Response bias

False alarms and correct rejections give information about the decision process and sensitivity (initial sensory processing) interacts with top-down effects

Response bias occurs for many reasons

- Expectations
- Motivation
- Bottom-up effects

When do people respond? Thresholds

Absolute thresholds

- Minimal amount of stimulation needed to perceive a stimuli
 - Light, pressure difference, chemical molecules.

Just noticeable difference (JND)

• The minimum amount a stimuli must change in order to produce a noticeable difference 50% of the time

Absolute Thresholds

Examples of Absolute Thresholds Adopted from Brown et al., 1962 D. Weston, 2003 **Threshold** Sense Vision A candle flame 30 miles away Hearing A watch ticking 20 feet away A drop of perfume in a six-room house Smell A teaspoon of sugar in a gallon of water **Taste** A wing of a fly on your cheek, dropped 1 cm Touch

Just noticeable difference

A laws of perception

Weber's Law

 Regardless of the magnitude of two stimuli, the second must differ by a constant proportion from the first to be perceived as different

That's Weber's Law!

Interesting stuff

Figure 3. Dim light colour vision and thresholds of species tested so far. Colours in the bars code for receptor types contributing to vision (red: peak sensitivity >550 nm, green: peak sensitivity 490 – 550 nm, blue: peak sensitivity 430 – 490 nm, purple: peak sensitivity < 430 nm, grey indicates achromatic rod vision). Question marks indicate unknown thresholds. Honeybee *Apis mellifera* [14], hummingbird hawkmoth *Macroglossum stellatarum* [29], elephant hawkmoth *Deilephila elpenor* [30], white-lined sphinx *Hyles lineata* [30], nocturnal carpenter bee *Xylocopa tranquebarica* [31], common toads *Bufo bufo* and *B. garganizans* [32], common frog *Rana temporaria* [32], helmet gecko *Tarentola chazaliae* [33], budgerigar *Melopsittacus undulatus* [34], blue tit *Cyanistes caeruleus* [35], chicken *Gallus gallus* [36] and horse *Equus caballus* [37].

