Лабораторная работа №1.

Дискретизация и квантование сигналов

Часть 1. Ортогональные системы в гильбертовом пространстве. Ряды Фурье. Частотное представление сигнала

Цель работы

Изучение ортогональных систем в гильбертовом пространстве, а также преобразования Фурье.

Задание

1. Найти коэффициенты разложения функции $f(x) = \begin{cases} 1, x \in [1/4;1/2) \\ 2, x \in [1/2;3/4) \end{cases}$ в ряд 0, *иначе*

Фурье по системе Хаара, используя функцию fseries. (можно использовать функцию heaviside для задания f(x)).

Проверить выполнение равенства Парсеваля $\sum \lambda_n^2 \cdot \|r_n(x)\|^2 = \|f(x)\|^2$, где

$$||f(x)|| = \left(\int_{-\infty}^{\infty} f(x)^2 dx\right)^{1/2}$$
 (письменно).

```
function c = fseries(target fun, T0, T1, K, basis)
% Нахождение коэффициентов \Phiурье.
% Использование:
  c = fseries(target fun, T0, T1, K, basis)
   target_fun - исходная функция
   basis - 'fourier' (по усолчанию), 'walsh', 'rademacher'
   то, т1 - начало и конец периода функции
  К - вектор номеров искомых коэффициентов
  с - вектор коэффициентов Фурье
% Пример:
   >> c = fseries(@(x) sin(x), 0, 1, [0:3], 'walsh')
                -0.2149 -0.1057 -0.0148
    0.4597
if (nargin < 5)
   basis = 'fourier';
end
switch lower (basis)
   case 'fourier'
       f_int = @(t, k) target_fun(t) .* exp(-i * 2 * pi * k * t / (T1 - T0));
       fromZero = 0;
    case 'rademacher'
       f_{int} = 0(t, k) target_{fun}(t) .* rademacher((t - T0) / (T1 - T0), k);
       fromZero = 1:
    case 'walsh'
       f int = @(t, k) target fun(t) .* walsh((t - T0) / (T1 - T0), k);
       fromZero = 1;
    case 'haar'
       c = haar coef(target fun, K, T0, T1);
       return;
end
```

```
l = 1;
for k = K
    if (fromZero & k < 0)
        c(1) = 0;
else
        c(1) = 1 / (T1 - T0) * quadl(@(t) f_int(t, k), T0, T1);
end
    l = 1 + 1;
end</pre>
```

Функции Хаара:

```
function y = haar(t, n)
% к-я функция Хаара
L = length(t);
if (n == 0)
   y(1:L) = 1;
    return;
end
k = floor(log2(n));
m = n - 2^k;
y = zeros(1, L);
step width = L / 2 (k + 1);
support start = floor(step width * 2 * m) + 1;
support middle = floor(step width * (2 * m + 1));
support end = floor(step width * (2 * m + 2));
if (support end > L)
    support end = L;
y(support start:support middle) = sqrt(2^k);
y(support_middle + 1 : support_end) = -sqrt(2^k);
```

Нахождение коэффициентов ряда Фурье для системы Хаара:

```
function res = haar coef(f int, K, T0, T1)
i = 1;
for n = K
    if n < 0
        res(i) = 0;
    elseif n == 0
        res(i) = quadl(f int, T0, T1);
    else
       k = floor(log2(n));
       m = n - 2^k;
        step width = 1 / 2 ^ (k + 1);
        support(1) = step_width * 2 * m;
        support(2) = step_width * (2 * m + 1);
        support(3) = step_width * (2 * m + 2);
        support = support * (T1 - T0) + T0;
        res(i) = quadl(f int, support(1), support(2));
        res(i) = res(i) - quadl(f_int, support(2), support(3));
        res(i) = res(i) * sqrt(2 ^ k);
    end
    i = i + 1;
end
```

```
res = res / (T1 - T0);
```

2. Представить синусоиду в виде последовательности частичных сумм ряда Фурье по системам Уолша и Хаара, используя программу sum_task.m

```
clear;
close all;
total num = 20; % всего коэффициентов Фурье
basis = 'walsh'; % базис (fourier, walsh или haar)
то = 0; % начало периода
T1 = 1; % конец периода
points = 300; % число точек для вычисления функции
T = T1 - T0;
plot time = linspace(T0, T1, points);
h = figure;
set(h, 'DoubleBuffer', 'on');
K = [-total num : total num];
% Здесь нужно вычислить коэффициенты разложения функции fun
% в ряд Фурье.
% C = fseries(...);
fvalues = fun(plot time);
for i = 3 : 2 : length(K)
    ind = [-floor(i/2) : floor(i/2)] + total num + 1;
    % Здесь нужно вычислить частичную сумму ряда Фурье.
    % Индексы коэффициентов из вектора С, которые нужно
    % суммировать, содержатся в векторе ind.
    % Если задание выполнено верно, то при нажатии F5 вы
    % увидите, как происходит приближение функции fun
    % частичными суммами ряда Фурье
    % в выбранном базисе
    % S = real(fsum(...));
    plot(plot time, fvalues, 'k', plot time, S, 'r', 'LineWidth', 2);
    grid:
    axis([T0 T1 min(fvalues) - 0.1 max(fvalues) + 0.1]);
    title('Аппроксимация частичными суммами ряда Фурье')
    drawnow;
end
```

Функция для нахождения частичных сумм:

```
function Sn = fsum(c, K, T0, T1, t, basis)
% частичная сумма ряда Фурье
% Использование:
   Sn = fsum(c, K, T0, T1, t, basis)
   с - вектор коэффициентов Фурье
응
   ТО, Т1 - начало и конец периоды функции
용
   t - вектор отсчетов времени
응
  basis - базис 'fourier' (по усолчанию), 'walsh',
응
           'rademacher'
응
   Sn - частичная сумма
응
% Пример:
% c = [0.4597, -0.2149, -0.1057, -0.0148];
  K = [0 : 3];
  >> plot(fsum(c, K, 0, 1, [0:0.01:1], 'walsh'))
if (nargin < 6)
```

```
basis = 'fourier';
end
Sn = zeros(1, length(t));
switch lower (basis)
    case {'rademacher', 'walsh', 'haar'}
        basefun = inline([basis, '(t, k)'], 't', 'k');
        i = 1;
        for k = K
            w(i,:) = feval(basefun, (t - T0) / (T1 - T0), k);
             i = i + 1;
        end
        for m = 1 : length(t)
             Sn(m) = sum(c .* w(:,m)');
        end
    case 'fourier'
        for k = 1: length(t)
            Sn(k) = sum(c .* exp(j * 2 * pi * K * t(k)... / (T1 - T0)));
        end
end
```

3. С помощью программы sum_task.m выполнить интегральное преобразование Фурье (в символьном виде) тестового сигнала, построить амплитудный и фазовый спектры.

```
% Построение спектра Фурье в символьном виде
function sym fourier
% Отрезок, на котором будет строиться график
xmin = -3;
xmax = 3;
syms t v w f
close all;
f = -heaviside(t - 1 - 0.5) + heaviside(t - 0.5);
Sw = fourier(f);
S = subs(Sw, w, 2 * pi * v);
% ЧХ
subplot(2, 1, 1);
h = ezplot(действительная часть S, [xmin, xmax]);
set_pretty(h, [xmin, xmax, -1, 1.5]);
h = ezplot(мнимая часть S, [xmin, xmax]);
set pretty(h, [xmin, xmax, -1, 1.5], 'r');
grid;
% АЧХ
subplot(2, 1, 2);
       Здесь нужно построить АЧХ
h = ezplot(AYX, [xmin, xmax]);
set pretty(h, [xmin, xmax, -1, 1.5]);
return;
function set_pretty(h, axis_xy, color)
if nargin < 3
    color = 'b';
end
```

```
grid;
set(h, 'LineWidth',2.5, 'Color', color);
title(''); xlabel('');
% xmin xmax ymin ymax
axis(axis_xy);
```

Примечание.

По каждому заданию необходимо привести код (который вы напишите самостоятельно), вывод функций и графики при их наличии.

Часть 2. Исследование эффектов дискретизации

Цель работы

Исследование влияния частоты дискретизации на спектр дискретных сигналов.

Теоретические сведения

Пусть x(t) — непрерывная (или кусочно-непрерывная) функция, принимающая любые конечные значения. Сигналы, описываемые такими функциями, называются *аналоговыми*. Аналоговыми сигналами x(t) описывается большинство реальных физических процессов, причем интервал наблюдения обычно конечный: $t \in [a;b]$.

Если $t \in \{t_k\}$, то последовательность $\{x(t_k)\}$ называют дискретным сигналом. Рассмотрим дискретизацию аналогового сигнала с постоянным шагом Δt , то есть будем измерять аналоговый сигнал x(t) через равные промежутки времени Δt , называемые интервалом (периодом) дискретизации. Тогда получим некоторую последовательность значений $x_k = x(k\Delta t)$ — отсчётов дискретного сигнала.

Величина $f_s = \frac{1}{\Delta t}$ называется *частотой дискретизации* (sampling frequency). От ее выбора зависит возможность восстановления аналогового сигнала из дискретного без искажений. Согласно *теореме Котельникова* (отсчётов), точное восстановление непрерывного сигнала, имеющего спектр ограниченной частотной полосы (т.е. S(v)=0 при $|v|>F_{\rm max}$, $F_{\rm max}=\max_{v:S(v)\neq 0}|v|$), по его дискретным отсчётам $v:S(v)\neq 0$

возможно только в том случае, когда частота дискретизации f_s удовлетворяет условию:

$$f_{\rm s} \ge 2F_{\rm max} \ . \tag{1}$$

При несоблюдении этого условия возможно возникновение эффекта наложения частот, то есть в спектре дискретного сигнала могут появиться гармоники, которых, возможно, не было в исходном сигнале. Этот эффект приводит к необратимым искажениям в восстановленном аналоговом сигнале.

Аналогично одномерным ведут себя и двумерные сигналы. Эффект наложения частот хорошо заметен на цифровых изображениях (роль независимой переменной

 аналога времени в одномерных сигналах – в этом случае играют две пространственные координаты) при их некорректном масштабировании.

Задание

- 1. Синтезировать сигнал x(t), представляющий из себя сумму нескольких синусоид с разными частотами.
- 2. Определить допустимые значения частоты дискретизации f_s для сигнала x(t).
- 3. Построить по отсчетам график исходного сигнала и его спектра при нескольких различных частотах дискретизации. Сделайте вывод?
- 4. Проиллюстрировать на примере сигнала x(t) эффект наложения частот. Для этого необходимо привести сигнал x(t), который при некоторой частоте дискретизации будет совпадать с сигналом x(t). Такого эффекта можно добиться, если дискретизацию сигнала x(t) с неверной частотой дискретизации и восстановить его.
- 5. Воспроизвести сигнал x(t) с различными частотами дискретизации. Какие выводы можно сделать?
- 6. Загрузить тестовое изображение. Уменьшить частоту дискретизации в 2, 3, 4 раза с помощью прореживания матрицы исходного изображения. Сравнить полученные результаты с результатом использования функции imresize.

Примечание

При выполнении работы в MATLAB можно использовать следующие функции: fft, sound, imread, imshow.

Контрольные вопросы

- 1. Что такое спектр кусочно-гладкой функции?
- 2. Дать определение амплитудного и фазового спектра.
- 3. Как связаны друг с другом дискретное и интегральное преобразования Фурье?
- 4. Сформулировать теорему Котельникова.
- 5. Что такое спектр дискретного сигнала?
- 6. Как связаны спектры аналогового сигнала x(t) и соответствующего дискретного сигнала $\{x_k = x(k\Delta t)\}$?
- 7. Чему равен период спектра дискретного сигнала?
- 8. Схематично изобразить спектр дискретного сигнала с частотой дискретизации $f_s: f_s \geq 2F_{\max}\,,\, f_s < 2F_{\max}\,.$

9. В чем заключается эффект наложения частот? Привести пример эффекта наложения частот.

Часть 3. Исследование эффектов квантования

Цель работы

Исследование влияния параметров квантования на качество звуковых сигналов, изучение статистических аспектов квантования.

Теоретические сведения

Дискретный сигнал $\{x_k\}$, полученный из непрерывного сигнала x(t), может принимать любые значения из диапазона $[x_{\min}; x_{\max}]$. *Квантование* сигнала заключается в замене каждого отсчёта x_k значением из некоторого конечного множества $\Omega = \{d_j\}_{j=0}^{N-1}$, где d_j — возможные *уровни квантования*, в соответствии с некоторым правилом $Q: x_k \xrightarrow{Q} \hat{x}_k \in \Omega$ [1]. Полученный сигнал $\{\hat{x}_k\}$ называется $uu\phi$ ровым.

Разобьем отрезок $\left[x_{\min},x_{\max}\right]$ на N в общем случае неравных частей (по числу уровней квантования) точками $\left\{t_j\right\}_{j=0}^N$, называемыми *порогами квантования*, где $t_0=x_{\min}$ и $t_N=x_{\max}$. В этом случае правило квантования Q будет иметь следующий вид: если $x_k\in \left[t_j;t_{j+1}\right)$, то принять $\hat{x}_k=d_j$, j=0,...,N-1. Обычно $N=2^n$, где n — число бит для представления одного отсчёта сигнала.

Отсчёты дискретного сигнала удобно рассматривать как реализацию некоторой случайной величины X непрерывного типа, при этом процесс квантования представляет собой процесс преобразования случайной величины непрерывного типа в случайную величину дискретного типа: $\hat{X} = Q(X)$. Выбор правила квантования Q определяется техническими возможностями реализации квантователя, а также наличием информации о законе распределения X.

Для оценки ошибки квантования используется либо величина

$$\overline{\varepsilon^2} = M\Big(\big(X - \hat{X}\big)^2\Big),\tag{2}$$

где обозначение M используется для математического ожидания, а горизонтальная черта означает операцию усреднения; либо *отношение сигнал-шум* (signal-to-noise ratio, SNR):

$$SNR = 20 \cdot \lg \left(\frac{A_{signal}}{A_{noise}} \right), \tag{3}$$

где A_{signal} и A_{noise} — среднеквадратичные значения (root mean square, RMS) сигнала и шума соответственно, а под шумом понимается сигнал ошибки $E = X - \hat{X}$. Вычисление среднеквадратичного значения производится по формуле

$$A_{RMS} = \sqrt{\frac{1}{N} \sum_{i=0}^{N-1} A_i^2} \ . \tag{4}$$

Соотношение сигнал-шум выражается в децибелах (дБ). SNR тем выше, чем меньше амплитуда шума по отношению к амплитуде сигнала.

Если интервал равномерного квантования q достаточно мал, можно считать, что ошибка квантования E подчиняется равномерному закону распределения на отрезке $\left[-\frac{q}{2},\frac{q}{2}\right]$. В этом случае M(E) = 0, а дисперсия ошибки равна [1]

$$\varepsilon^2 = D(E) = \frac{q^2}{12}. (5)$$

Равномерное квантование

Равномерное квантование удобно использовать в случае, когда о величине X известно лишь то, что она попадает в некоторый диапазон $X \in [x_{\min}; x_{\max})$, либо необходимо реализовать простейший вариант квантователя [1].

При равномерном квантовании диапазон $[x_{\min}; x_{\max})$ разбивается на N равных интервалов длины $q = \frac{x_{\max} - x_{\min}}{N}$: $\Delta_j = [x_{\min} + jq; x_{\min} + (j+1)q), \ j = 0,..., N-1$. В качестве уровней квантования $\{d_j\}_{j=0}^{N-1}$ выбираются середины интервалов Δ_j : $d_j = x_{\min} + (j+0.5)q$. Правило квантования при этом имеет следующий вид: если $x \in \Delta_j$, то $Q(x) = d_j$.

Оптимальное квантование

В случае, когда известна функция плотности распределения вероятностей $f_X(x)$ случайной величины X, причем $f_X(x) > 0$ при $X \in [x_{\min}; x_{\max})$ и $f_X(x) = 0$ при $X \notin [x_{\min}; x_{\max})$, ошибка квантования (2) принимает вид [1]:

$$\overline{\varepsilon^2} = \sum_{j=0}^{N-1} \int_{t_j}^{t_{j+1}} (x - d_j)^2 f_X(x) dx.$$
 (6)

Для нахождения оптимального правила квантования необходимо решить задачу минимизации функции (6) по переменным $t_1,...,t_{N-1},\ d_0,...,d_{N-1}$. Данная задача сводится к решению системы уравнений:

$$\begin{cases}
t_{j} = \frac{d_{j-1} + d_{j}}{2}, \\
d_{j} = \int_{t_{j}}^{t_{j+1}} x f_{X}(x) dx / \int_{t_{j}}^{t_{j+1}} f_{X}(x) dx, \\
j = 0, ..., N-1.
\end{cases} (7)$$

Решение системы (7), которое в общем случае находится численными методами, определяет *квантователь Ллойда-Макса* и дает минимальное значение ошибки (6).

Задание

Примечание: для анализа удобно выполнять сравнение с помощью графиков.

- 1. Синтезировать случайный дискретный сигнал $\{x_k\}$ с равномерным распределением. Построить по отсчетам его график.
- 2. Провести равномерное квантование отсчетов сигнала $\{x_k\}$, используя от 1 до 8 бит на отсчет. Построить ступенчатые графики сигнала после квантования.
- 3. Экспериментально определить ошибку квантования (2). Сравнить полученные результаты с теоретической оценкой (5).
- 4. Вычислить SNR (3). Исследовать зависимость SNR от числа бит, выделяемого для хранения одного отсчета сигнала.
- 5. Синтезировать случайный дискретный сигнал $\{x_k\}$ с нормальным распределением. Построить по отсчетам его график.
- 6. По полученной выборке оценить параметры \tilde{m} и $\tilde{\sigma}$.
- 7. Определить параметры квантователя Ллойда-Макса:

$$t'_k = t_k \widetilde{\sigma} + \widetilde{m}, d'_k = d_k \widetilde{\sigma} + \widetilde{m},$$

где $\{t_k\}$ и $\{d_k\}$ — параметры оптимального квантования для равномерного распределения с параметрами $m=0,\,\sigma=1$ (см. приложение).

- 8. Выполнить оптимальное квантование сигнала $\{x_k\}$, используя от 1 до 4 бит на отсчет.
- 9. Вычислить выборочные значения ошибки (2), (6) и SNR.
- 10. Выполнить равномерное квантование сигнала $\{x_k\}$ при числе бит на отсчет от 1 до 4. Сравнить результат с полученным в предыдущем пункте.
- 11. Тестовое изображение из первой части лабораторной работы проквантовать с различным числом уровней яркости: $L=8,\ 16,\ 24,\ 32,\ 64,\ 128.$ При каком значении L ложные контура уже не наблюдаются.

- 12. Добавьте шум с равномерным распределением на промежутке [-q/2; q/2], где $q = f_{\text{max}}/L$ ширина интервалов равномерного квантования до квантования. Как изменился результат?
- 13. Что будет, если шум добавлять после квантования?

Контрольные вопросы

- 1. В чем заключается процесс квантования?
- 2. Какие величины используются для оценки ошибки квантования? От чего зависит ошибка квантования?
- 3. Что такое равномерное квантование? В каких случаях его применяют?
- 4. Что такое оптимальное квантование Ллойда-Макса?
- 5. Чем нужно руководствоваться при выборе метода квантования?

Приложение

Пороги и уровни оптимального квантования Ллойда-Макса для случайной величины со стандартизованным нормальным распределением:

1. При использовании 1 бита на отсчет:

$$t = [-\infty; 0; \infty],$$

 $d = [-0.7979; 0.7979].$

2. При использовании 2 бит на отсчет:

$$t = [-\infty; -0.9816; 0; 0.9816; \infty],$$

$$d = [-1.5104; -0.4528; 0.4528; 1.5104].$$

3. При использовании 3 бит на отсчет:

$$t = [-\infty; -1,7479; -1,0500; 0; 1,0500; 1,7479; \infty],$$

$$d = [-2,1519; -1,3439; -0,7560, -0,2451; 0,2451; 0,7560; 1,3439; 2,1519].$$

4. При использовании 4 бит на отсчет:

$$t = \begin{bmatrix} -\infty; -2,4008; -1,8435; -1,4371; -1,0993; -0,7995; -0,5224; -0,2582; \\ 0; 0,2582; 0,5224; 0,7995; 1,0993; 1,4371; 1,8435; 2,4008; \infty \end{bmatrix},$$

$$d = \begin{bmatrix} -2,7326; -2,0690; -1,6180; -1,2562; -0,9423; -0,6568; -0,3880; \\ -0,1284; 0,1284; 0,3880; 0,6568; 0,9423; 1,2562; 1,6180; 2,0690; 2,7326 \end{bmatrix}.$$

Литература

1. Умняшкин С.В. Теоретические основы цифровой обработки и представления сигналов.