

Part I: Checking the Data

Cliff Ang Vice President, Compass Lexecon

Importance of Checking Projections

- Garbage-In → Garbage-Out
- You have to get comfortable with all elements of the projections
- Most elements are modeled as a percentage of revenues or percentage of change in revenues

Visually Inspecting the Data

```
# Create two vectors: one for historical (hist) revenues
# and another for projected (proj) revenues
> hist <- c(28.4, 32.2, 36.8, 39.8, 44.3, 51.1, 60.4,
            58.4, 62.5, 69.9, rep(0, 5))
> proj <- c(rep(0,10), 73.7, 77.8, 86.8, 93.6, 85.3)
> rev all <- rbind(hist, proj)</pre>
> colnames(rev all) <- seq(2008, 2022, 1)</pre>
# Create bar plot of revenues data
> barplot(rev all,
  col = c("red", "blue"),
   main = "Historical vs. Projected Revenues")
> legend("topleft",
         legend = c("Historical", "Projected"),
         fill = c("red", "blue"))
```

Bar Plot

Using Trend Analysis

Regression Result

```
> reg <- lm(rev ~ trend + shift, data = rev)</pre>
> summary(reg)
# Call:
# lm(formula = rev ~ trend + shift, data = rev)
# Residuals:
     Min 1Q Median 3Q Max
# -7.2232 -1.5508 -0.2843 0.7700 5.6184
# Coefficients:
       Estimate Std. Error t value Pr(>|t|)
# (Intercept) 23.4011 2.2066 10.61 1.89e-07 ***
# trend 4.5416 0.3511 12.94 2.09e-08 ***
# shift 0.9978 3.2179
                              0.31 0.762
# Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
# Residual standard error: 3.377 on 12 degrees of freedom
# Multiple R-squared: 0.9777, Adjusted R-squared: 0.974
# F-statistic: 263.3 on 2 and 12 DF, p-value: 1.222e-10
```


Let's practice!

Part I: Checking the Perpetuity Growth Rate

Cliff Ang Vice President, Compass Lexecon

Checking the Perpetuity Growth Rate

Perpetuity Growth Rate (PGR) is a *sustainable growth rate*

- It cannot be greater than the overall growth rate of the economy
- It is a growth rate that is financed by the operations of the firm

Determinants of the Perpetuity Growth Rate

The PGR is bounded by the following relationship:

PGR = Reinvestment Rate * Return on Equity,

where

- Reinvestment Rate = (CapEx + Incr. in WC D&A) / After-Tax Income
- Return on Equity equals the Cost of Equity in steady-state

Example

Suppose you have a firm with a reinvestment rate of 20% and an ROE of 10%. Can the firm sustain an assumed PGR of 4%?

```
> reinvestment <- 0.20
> roe <- 0.10

> reinvestment * roe
[1] 0.02

> pgr <- 0.04
> pgr / roe
[1] 0.4
```


Let's practice!

Part II: Dividend Discount Model

Cliff Ang Vice President, Compass Lexecon

Single-Stage Dividend Disocunt Model

There are two types of stocks firms issue: preferred stocks and common stocks

Many preferred and common stocks pay dividends

- Dividends are typically the "cash flows" that investors receive from holding stocks
- We can then discount this stream of dividends to value the stock

Discounting Dividends

Constant Dividend Stream

$$V=div_{t+1}/k$$

Suppose $div_{t+1} = \$50$ and k = 6.25%.

```
> div <- 50
> k <- 0.0625
> div / k
[1] 800
```

Dividend with Constant Growth

$$V=div_{t+1}/(k-g)$$

Suppose $div_{t+1} = \$50$, k = 6.25%, and g = 2%.

```
> div <- 50
> k <- 0.0625
> g <- 0.02
> div / (k - g)
[1] 1176.471
```


Two-Stage DDM - No Dividends During First Stage

- You can still use a DDM even for firms that do not currently pay dividends
- Firms with high growth may not pay dividends now, but one can reasonably expect the firm's growth to slow down and begin paying dividends at some point in the future

What to do then?

- Use a 2-stage Model
 - 1st stage: No dividends for T years
 - 2nd stage: Expect firm to pay dividends beginning Year T + 1

Mathematically:

$$V = 0 + (div_{T+1}/(k-g))*(1/(1+k)^T)$$

Example

Year	1	2	3	4	5	6	7	
Dividends	0	0	0	0	0	\$50	\$51	

```
> div6 <- 50
> g <- 0.02
> k <- 0.0625
> 0 + (div6 / (k - g)) * (1 / (1 + k)^6)
[1] 817.7253
```


Let's practice!