DPP 2.2

Limits of Algebraic and Trigonometric Functions

Single Correct Answer Type

- 1. The value of $\lim_{x\to 0} \frac{\sqrt{1-\cos x^2}}{1-\cos x}$ is

- (c) $\sqrt{2}$
- (d) None of these
- 2. $\lim_{x \to \frac{\pi}{2}} (1 \sin x) \tan x =$

- 3. The value of $\lim_{x\to\infty} x^2 \left(1 \cos\frac{1}{x}\right)$ is

- 4. $\lim_{x \to \infty} \sqrt[3]{x} \left(\sqrt[3]{(x+1)^2} \sqrt[3]{(x-1)^2} \right) =$
- (a) $\frac{1}{3}$ (b) $\frac{2}{3}$ (c) 1 (d) $\frac{4}{3}$
- 5. $\lim_{n \to \infty} \frac{3 \cdot 2^{n+1} 4 \cdot 5^{n+1}}{5 \cdot 2^n + 7 \cdot 5^n} =$

- (b) 3/5 (c) -4/7 · (d) -20/7
- 6. $\lim_{x\to 2^+} \{x\} \frac{\sin(x-2)}{(x-2)^2} = \{x\}$ denotes the fractional part

- (b) 2
- (d) does not exist

- (c) $\pi/2$
- (d) non existent

- 9. $\lim_{x\to 0} \left[\frac{\sin^{-1} x}{\tan^{-1} x} \right] = \text{(where [.] denotes the greatest integer)}$
- (d) none of these
- 10. The value of $\lim_{x \to \frac{\pi}{4}} \frac{\sqrt{1 \sqrt{\sin 2x}}}{\pi 4x}$ is

- **11.** The value of $\lim_{x \to 0} \left(e^{\sqrt{x^4 + 1}} e^{(x^2 + 1)} \right)$ is

- 12. The value of $\lim_{x \to \pi/4} \frac{\tan^3 x \tan x}{\cos\left(x + \frac{\pi}{4}\right)}$ is
 - (a) 8

- (d) -2
- 13. $\lim_{x \to \frac{\pi}{2}} \frac{(1 \sin x) (8x^3 \pi^3) \cos x}{(\pi 2x)^4}$

 - (a) $-\frac{\pi^2}{16}$ (b) $\frac{3\pi^2}{16}$ (c) $\frac{\pi^2}{16}$ (d) $-\frac{3\pi^2}{16}$

- (a) 5 (b) 2010 (c) $\frac{502}{1005}$ (d) 0
- 15. If $\lim_{x \to 0} \frac{f(x)}{x^2} = a$ and $\lim_{x \to 0} \frac{f(1 \cos x)}{g(x) \sin^2 x} = b$ (where $b \neq 0$), (a) 0 (b) $-\frac{\pi^2}{2}$ (c) $-\frac{\pi^2}{4}$ (d) $-\frac{\pi^2}{8}$
 - then $\lim_{x\to 0} \frac{g(1-\cos 2x)}{x^4}$ is

DPP 2.3

Limits of Exponential and Logarithmic Functions, Limits of Functions $f(x)^{g(x)}$ Type

Single Correct Answer Type

- 1. The value of $\lim_{x\to 0^+} \frac{\tan x^{\frac{1}{5}}}{(\tan^{-1}\sqrt{x})^2} \frac{\log(1+5x)}{(e^{3\sqrt[5]{x}}-1)}$ is

- 2. The value of $\lim_{x\to 3} \frac{(x^3+27)\log_e(x-2)}{x^2-9}$ is
- (b) 18
- - (a) 0
 - (b) -4(c) 6
- 5. If graph of the function y = f(x) is continuous and passes through point (3, 1) then $\lim_{x\to 3} \frac{\log_e(3f(x)-2)}{2(1-f(x))}$ is equal

- $\lim_{x \to 0} \left[f(x) + \log \left(1 \frac{1}{e^{f(x)}} \right) \log(f(x)) \right] = 0. \text{ Then } f(0) \text{ is }$

- 7. $\lim_{x \to \infty} x^2 \sin \left(\log_e \sqrt{\cos \frac{\pi}{v}} \right)$
- 8. If $\lim_{x \to \infty} \left(\frac{x+c}{x-c} \right)^x = 4$ then the value of e^c is
- (a) 1/4 (b) 1/2
- (c) 1
- (d) 2

- 12. If $f(x) = \lim_{n \to \infty} \left(\cos \frac{x}{\sqrt{n}} \right)^n$, then the value of $\lim_{x \to 0} \frac{f(x) 1}{x}$
 - (a) 0

- (a) 0 (b) 1 (c) e^2 (d) 2 14. Let $f: R \to R$ be such that f(a) = 1, f'(a) = 2. Then

 - (a) e^2 (b) e^4
- (c) e^{-4}
- **16.** If $f(n) = \lim_{x \to 0} \left(\left(1 + \sin \frac{x}{2} \right) \left(1 + \sin \frac{x}{2^2} \right) ... \left(1 + \sin \frac{x}{2^n} \right) \right)^{\frac{1}{x}}$ then $\lim_{n\to\infty} f(n) =$
 - (b) e (c) 0
- 17. $\lim_{n\to\infty} (1-x+x\cdot \sqrt[n]{e})^n$ is equal to
 - (a) e^x (c) e^{2x}
- (b) e^{-x}
- (d) none of these

(d) ∞

Limits Using L'Hospital's Rule and Expansion Formula

Single Correct Answer Type

1. The value of
$$\lim_{x \to 1} \frac{\sqrt[13]{x} - \sqrt[7]{x}}{\sqrt[5]{x} - \sqrt[3]{x}}$$
 is

(a)
$$\frac{44}{91}$$
 (b) $\frac{45}{91}$ (c) $\frac{45}{89}$ (d) $\frac{40}{93}$

(b)
$$\frac{45}{91}$$

(c)
$$\frac{43}{89}$$

d)
$$\frac{40}{93}$$

2.
$$\lim_{x \to 1} \frac{1 + \log x - x}{1 - 2x + x^2} =$$

(b)
$$-1$$

(d)
$$-1/2$$

(d) 8

3. The value of
$$\lim_{x\to 0} \frac{1-\cos 2x}{e^{x^2} - e^x + x}$$
 is

4. If
$$f'(a) = \frac{1}{4}$$
, then $\lim_{h \to 0} \frac{f(a+2h^2) - f(a-2h^2)}{f(a+h^3-h^2) - f(a-h^3+h^2)}$

5.
$$\lim_{x \to 0^+} \frac{1}{x\sqrt{x}} \left(a \tan^{-1} \frac{\sqrt{x}}{a} - b \tan^{-1} \frac{\sqrt{x}}{b} \right)$$
 has the value equal

$$(a) \frac{a-1}{a}$$

(a)
$$\frac{a-b}{3}$$

(c)
$$\frac{(a^2 - b^2)}{6a^2b^2}$$

(d)
$$\frac{a^2 - b^2}{3a^2b^2}$$

6. The value of
$$\lim_{x\to 0} \left(\frac{1+2x}{1+3x}\right)^{\frac{1}{2}} \cdot e^{x}$$
 is

- (a) $e^{\frac{5}{2}}$ (b) e^2 7. If $f: R \to R$ be a differentiable function at x = 0 satisfying

$$f(0) = 0$$
 and $f'(0) = 1$, then the value of
$$\lim_{x \to 0} \frac{1}{x} \sum_{n=1}^{\infty} (-1)^n f\left(\frac{x}{n}\right) =$$

(a) 0 (b)
$$-\log 2$$
 (c) 1

8. The value of
$$\lim_{x \to \frac{3\pi}{4}} \frac{1 + \sqrt[3]{\tan x}}{1 - 2\cos^2 x}$$
 is

(a)
$$-1/2$$

(a)
$$-1/2$$
 (b) $-2/3$ (c) $-3/2$ (d) $-1/3$

9. Let
$$g(x) = \frac{(x-1)^n}{\log \cos^m (x-1)}$$
; $0 < x < 2$ m and n are integers,

 $m \neq 0, n > 0$ and. If $\lim_{x \to 1^+} g(x) = -1$, then (a) n = 1, m = 1 (b) n = 1, m = -1

(a)
$$n = 1, m = 1$$

(b)
$$n = 1, m = -$$

(c)
$$n=2, m=2$$

(d)
$$n > 2, m = n$$

Comprehension Type

For Ouestions 10 and 11

Let f(x) be the fourth degree polynomial such that f'(0) = -6

$$f(0) = 2$$
 and $\lim_{x \to 1} \frac{f(x)}{(x-1)^2} = 1$

- 10. The value of f(2) is
 - (a) 1 (b) 0
- 11. The value of f'(2) is (b) 5
- (c) 2

(c) 6

(d) 7

Answers Key -

5. (d)

Single Correct Answer Type

Comprehension Type

DPP 2.5 2.8 Calculus

Finding the Unknown

Single Correct Answer Type

1. Number of integral values of
$$\lambda$$
 for which

Number of integral values of
$$x$$
 to
$$\lim_{x \to 1} \sec^{-1} \left(\frac{\lambda^2}{\log_e x} - \frac{\lambda^2}{x - 1} \right) \text{ does not exist is}$$

(a) 1 (b) 2
2. If
$$\lim_{x\to 0} \frac{e^{ax} - e^{x} - x}{x^2} = b$$
 (finite), then
(a) $a = 2, b = 0$ (b) $a = 0, b = \frac{3}{2}$

(c)
$$a = 2, b = \frac{3}{2}$$
 (d) $a = 0, b = 2$

(d)
$$a = 0, b = 2$$

3. If
$$\lim_{x \to 0} \frac{x^3}{\sqrt{a+x} (bx - \sin x)} = 1$$
, $a > 0$, then $a + b$ is equal

(a) 36 (b) 37 (c) 36 (d) 4. If
$$\lim_{x \to \infty} x \log_e \begin{pmatrix} \alpha/x & 1 & \gamma \\ 0 & 1/x & \beta \\ 1 & 0 & 1/x \end{pmatrix} = -5$$
, where α , β , γ are

finite real numbers, then

(a)
$$\alpha = 2, \beta = 1, \gamma \in R$$

(b)
$$\alpha = 2, \beta = 2, \gamma = 5$$

(c)
$$\alpha \in R, \beta = 1, \gamma \in R$$

(d)
$$\alpha \in R, \beta = 1, \gamma = 5$$

Multiple Correct Answers Type

5. If
$$\lim_{x\to 0} \frac{de^x + b\cos x + ce^{-x}}{e^{2x} - 2e^x + 1} = 4$$
, then

(a)
$$a = 2$$

(b)
$$b = -4$$

(a)
$$u = 2$$

(c) $c = 2$

(b)
$$b = -4$$

(d) $a + b + c = -8$

(a)
$$a=2$$

(b) $a+b+c=-8$
(c) $c=2$
(d) $a+b+c=-8$
(d) $a+b+c=-8$
 $\tan ([x^3]-[x]^3)$
(exists finitely, is/are (c) 0 (d) 2

$$(c)$$
 -1

Comprehension Type

For Questions 7 and 8

$$L = \lim_{x \to 0} \frac{\sin(\sin x) - \sin x}{ax^5 + bx^3 + c} = -\frac{1}{12}$$

7. The value/values of a is
$$(a) \in R \qquad (b) \quad 2$$

8. The value/values of b is
(a)
$$\in R$$
 (b) 2

(d) 1

For Questions 9 and 10

If
$$f(x) = \lim_{n \to \infty} \frac{(x^2 + ax + 1) + x^{2n}(2x^2 + x + b)}{1 + x^{2n}}$$
 and $\lim_{x \to \pm 1} f(x)$

exists, then

9. The value of
$$a$$
 is

(a)
$$-1$$
 (b) 1
10. The value of *b* is

$$\begin{array}{ccc} \text{(a)} & -1 & \text{(b)} \end{array}$$

Answers Key

Single Correct Answer Type

5. (a, b, c) 6. (a, b)