Mathematics 172 Homework

The problems cover some of the material that would have been covered in the lectures we missed from the storm days. Recall that the **absolute value** of a real number is defined by

$$|x| = \begin{cases} x, & \text{if } x \ge 0; \\ -x, & \text{if } x < 0. \end{cases}$$

In what follows you can use the fact that x < 0 implies that -x > 0.

- **1.** Show that for all real numbers x that $|x| \ge 0$. Hint: There are two cases (1) $x \ge 0$ and (2) x < 0.
- **2.** Show that for $x, y \in \mathbb{R}$ that |xy| = |x||y|. Hint: There are four cases (1) $x, y \ge 0$, (2) $x \ge 0$ and y < 0, (3) x < 0 $y \ge 0$, and (4) x, y < 0.
- **3.** Show that if a is a positive number and -a < x < a, then |x| < a. Hint: There are two cases, $x \ge 0$ and x < 0.
- **4.** Show that if $0 \le r_1 < n$ and $0 \le r_2 < n$, then $|r_1 r_2| < n$. Hint: We are given the inequality

$$(1) 0 \le r_1 < n$$

$$(2) 0 \le r_2 < n.$$

Multiply the inequality (2) by -1 (and remember that multiplying and inequality by a negative number reverses the inequality) to get

$$-n < -r_2 < 0.$$

Add this to the inequality (1) to get

$$-n < r_1 - r_2 < n$$
.

Now you can use Problem 3 (with a = n and $x = r_1 - r_2$).

Recall the *division algorithm* with says that if n is a positive integer and a is any integer, then there exist unique integers q (the *quotient*) and r (the *remainder*) such that

$$a = nq + r$$
 and $0 \le < r$.

Also recall that $a \equiv b \mod n$ means that $n \mid (a - b)$

- **5.** Show that if a and b have the same remainder when divided by n that $a \equiv b \mod n$. Hint: We have done this at least once in class.
- **6.** If $a \equiv b \mod n$, then a and b have the same remainder when divided by n. Hint: Assume that $a \equiv b \mod n$. That is n | (a b). Now the remainders when a and b are divided by n are defined by

$$a = q_1 n + r_1$$

$$b = q_2 n + r_2$$

where q_1, q_2, r_1, r_2 are ingeters and $0 \le r_1, r_2 < n$.

Goal: to show $r_1 = r_2$.

Do this in steps:

- (a) Use that $n \mid (a b)$ to show there is an integer k such (a b) = kn.
- (b) Show

$$(r_1 - r_2) = (a - b) + (q_2 - q_1)n.$$

(c) Combine parts (a) and (b) so show there is an integer ℓ such that

$$r_1 - r_2 = \ell n$$

for some integer ℓ .

- (d) Use Problem 3 to show that $|r_1 r_2| < n$. (Use a = n and $x = r_1 r_2$.)
- (e) Use Parts (c) and (d) to show that $|\ell| < 1$.
- (f) Finish the proof by noting that the only integer ℓ with $|\ell| < 1$ is $\ell = 0$. Use this to show $r_1 r_2 = 0$ thereby finish the proof.

Note that Problems 5 and 6 together give

Theorem 1. Let n be a positive integer and a and b any integers. Then $a \equiv b \mod n$ if and only if a and b have the same remainder when divided by n.

- 7. Show the number α is irrational if and only if $\frac{1+2\alpha}{2\alpha}$ is irrational.
- **8.** Show the following are equivalent for the real number β :
- (a) β is irrational.
- (b) $1 + 2\beta$ is irrational.
- (c) $\frac{1+\beta}{1-\beta}$ is irrational.