PHILIPS

Instruction manual

Gerätehandbuch

Mode d'emploi

35 MHz Dual channel oscilloscope 35 MHz Zweikanal - Oszilloskop Oscilloscope 35 MHz à double trace

PM 3218

9444 032 18..1

9499 443 00102

IMPORTANT

In correspondence concerning this instrument, please quote the type number and serial number as given on the type plate.

WICHTIG

Bei Schriftwechsel über dieses Gerät wird gebeten, die genaue Typenbezeichnung und die Gerätenummer anzugeben. Diese befinden sich auf dem Leistungsschild.

IMPORTANT

RECHANGE DES PIECES DETACHEES (Réparations)

Dans votre correspondance et dans vos réclamations se rapportant à cet appareil, veuillez TOUJOURS indiquer le numéro de type et le numéro de série qui sont marqués sur la plaquette de caractéristiques.

Note:

The design of this instrument is subject to continuous development and improvement.

Consequently, this instrument may incorporate minor changes in detail from the information

contained in this manual.

Bemerkung: Die Konstruktion und Schaltung dieses Geräts wird ständig weiterentwickelt und verbessert.

Deswegen kann dieses Gerät von den in dieser Anleitung stehenden Angaben abweichen.

Remarques: Cet appareil est l'objet de développements et améliorations continuels. En conséquence, certains

détails mineurs peuvent différer des informations données dans la présente notice d'emploi

et d'entretien.

Contents

1.	GENERAL INFORMATION	3
1.1.	INTRODUCTION	9
1.2.	CHARACTERISTICS	10
1.2.1.	C.R.T.	10
1.2.2.	Vertical or Y-axis	10
1.2.3.	Horizontal or X-axis	11
1.2.4.	Main time base	11
1.2.5.	Delayed time base	11
1.2.6.	X Deflection	12
1.2.7.	Triggering of the main time base	12
1.2.8.	Triggering of the delayed time base	12
1.2.9.	Calibration generator	12
	Power supply	13
		13
	Environmental characteristics	
	Mechanical data	13
1.2.13.	Z-mod input	13
1.3.	ACCESSORIES	14
1.3.1.	Supplied with the instrument	14
1.3.2.	Optional	14
1.4.	BLOCK DIAGRAM DESCRIPTION	15
1.4.1.	Y Channel	15
1.4.2.	Main time-base triggering	15
1.4.3.	Main time-base circuit	15
1.4.4.	Hold-off circuit	15
1.4.5.	Z-axis	15
1.4.6.	Delayed time-base triggering	16
1.4.7.	Delayed time-base circuit	16
1.4.8.	Alternate time-base logic	16
1.4.9.	Power supply	16
2.	DIRECTIONS FOR USE	17
2.1.	INSTALLATION	17
2.1.1.	Safety regulations	17
2.1.2.	Local mains connection and fuse protection	17
2.1.3.	Connection to an external supply	18
2.1.4.	Front cover and instrument positions	18
2.2.	CONTROLS AND SOCKETS	18
2.2.1.	Cathode-ray tube and POWER controls	18
2.2.2.	Vertical channels	
2.2.3.	Horizontal channel	19
		19
2.2.4.	Main time-base generator	20
2.2.5.	Delayed time base generator	21
2.2.6.	Miscellaneous	21
2.3.	OPERATING INSTRUCTIONS	22
2.3.1.	Switching on the instrument	22
2.3.2.	Preliminary settings of the controls	22
2.3.3.	Input coupling (AC/DC, 0)	22

2.3.4. Use of probes

2.3.5. Adjustment of attenuator probes

2.3.6.	Selection of chopped or alternate modes	23
2.3.7.	Differential mode	24
2.3.8.	Selection of trigger mode	24
2.3.9.	Triggering source	25
2.3.10.	Time-base magnifier	26
2.3.11.	Hold-off	26
2.3.12,	XY-measurements	26
2.3.13.	Using the delayed time base	26
2.4.	PROCEDURES REQUIRED FOR THE REMOVAL OF FUSES, BEZEL AND CONTRAST PLATE	27
2.4.1.	Removing the instrument covers	27
2.4.2.	Removing the mains transformer	28
2.4.3.	Replacing the thermal fuse F101	29
2.4.4.	Replacing the fuse F201	29
2.4.5.	Removing the bezel and the contrast plate	29
3.	SERVICE DATA	75
FIGUR	ES	
1.1.	35MHz dual-channel oscilloscope PM3218	9
1.2.	Dimensions	14
1.3.	Block diagram	14
2.1.	Rear view of the oscilloscope showing the voltage adapter set to 220 V	17
2.2.	Front view of the oscilloscope showing controls and sockets	18
2.3.	Adjusting an attenuator probe	23
2.4.	Suppression of common mode signals	24
2.5.	Block diagram of composite trigger circuit	25
2.6.	Removing the instrument covers and the carrying handle	27
2.7.	Replacing the thermal fuse	28
2.8.	Replacing the thermal fuse	2 8
2.9.	Removing the bezel and the contrast plate	2 9

22

23

Inhalt

1.	ALLGEMEINES	31
1.1.	EINLEITUNG	31
1.2.	TECHNISCHE DATEN	32
1.2.1.	Elektronenstrahlröhre	32
1.2.2.	Vertikale oder Y-Achse	32
1.2.3.	Horizontale oder X-Achse	33
1.2.4.	Hauptzeitablenkung	33
1.2.5.	Verzögerte Zeitablenkung	33
1.2.6.	X-Ablenkung	34
1.2.7.	Triggerung der Hauptzeitablenkung	34
1.2.8.	Triggerung der verzögertenzeitablenkung	34
1.2.9.	Kalibriergenerator	34
	Stromversorgung	35
	Einflussgrössen	35
	Mechanische Daten	35
	Z-achsen steuerung	35
1.3.	ZUBEHÖR	36
1.3.1.	Standardzubehör	36
1.3.2.	Wahlzubehör	36
1.4.	BLOCKSCHALTBILDBESCHREIBUNG	37
1.4.1.	Y-Kanal	37
1.4.2.	Triggerung der Hauptzeitablenkung	37
1.4.3.	Haupzeitablenkschaltung	37
1.4.4.	Sperrschaltung	37
1.4.5.	Z-Achse	37
1.4.6.	Triggerung der verzögerten Zeitablenkung	38
1.4.7.	Schaltung der verzögerten Zeitablenkung	38
1.4.8.	Alternierende Zeitablenk-Logik	38
1.4.9.	Speisung	38
2.	GEBRAUCHSANLEITUNG	39
		20
2.1.	INBETRIEBNAHME	39 39
2.1.1.	Sicherheitsvorschriften	
2.1.2.	Örtlicher Netzanschluss und Sicherung	39
2.1.3.	Anschluss an eine externe Stromversorgung	40
2.1.4.	Abdeckhaube und Betriebslage	40
2.2	DEDIENUM CCEL EMENTE LIND BLICHCEN	40
2.2.	BEDIENUNGSELEMENTE UND BUCHSEN	40
2.2.1.	Elektronenstrahlröhre und POWER-Einstellelemente Vertikale Kanäle	41
2.2.2.	Horizontaler Kanal	41
2.2.3.		42
2.2.4.	Hauptzeitablenkgenerator	42
2.2.5.	Verzögerter zeitablenkgenerator	43
2.2.6.	Verschiedenes	43
2.3.	BEDIENUNGSANLEITUNG	44
2.3.1.	Einschalten des Geräts	44
2.3.2.	Vorbereitende Einstellungen	44
	Eingangskopplung	44

2.9.

2.3.4.	Anwendung von Messköpfen	44
2.3.5.	Einstellen der Abschwächer-Messköpfe	45
2.3.6.	Einstellen der geschoppten oder der alternierenden Darstellungsart	45
2.3.7.	Differentielle betriebsart	46
2.3.8.	Einstellen der Triggerart	46
2.3.9.	Triggerquelle	47
2.3.10.	Dehnung der Zeitablenkung	48
2.3.11.	Einstellen der Sperrzeit	48
2.3.12.	XY messungen	48
2.3.13.	Gebrauch der verzögerten zeitablenkung	48
2.3.11.	XY messungen	48
2.3.12.	Gebrauch der verzögerten zeitablenkung	48
2.4.	VERFAHREN ZUM ENTFERNEN VON SICHERUNGEN, BILDRÖHRENRAHMEN UND KONTRAST-	
	PLATTE	49
2.4.1.	Abnehmen der Abdeckhauben	49
2.4.2.	Ausbau des Netztransformators	50
2.4.3.	Ersetzen der Schmelzsicherung F101	51
2.4.4.	Ersetzen der Sicherung F201	51
2.4.5.	Abnehmen des Bildröhrenrahmens und der Kontrastplatte	51
3.	SERVICE DATEN (nur aufs Englisch)	75
ABBIL	DUNGEN	
1.1. 1.2.	35 MHz Zweikanal-Oszillograf PM3218 Abmessungen	31 36
2.1.	Rückansicht des Oszillografen mit Spannungsumschalter in 220 V Stellung	39
2.2.	Vorderansicht des Oszillografen mit Bedienungsorganen und Buchsen	40
2.3.	Einstellen des Abschwächer-Messköpfs	45
2.4.	Gleichtaktunterdrückung	46
2.5.	Blockschaltbild der zusammengesetzte (composite) Triggerschaltung	47
2.6.	Abnehmen der Gerätabdeckhauben und des Tragbügels	49
2.7.	Ersetzen der Schmelzsicherung	50
2.8.	Ersetzen der Schmelzsicherung	50
2.9	Abbehmen des Bildröhrenrahmens und der Kontrastplatte	51

Abnehmen des Bildröhrenrahmens und der Kontrastplatte

Table des matières

1.	GENERALITES	53
1.1.	INTRODUCTION	53
1.2.	CARACTERISTIQUES	54
1.2.1.	Tube cathodique	54
1.2.2.	Axe vertical ou Y	54
1.2.3.	Axe X ou horizontal	55
1.2.4.	Base de temps principale	55
1.2.5.	Base de temps retardée	55
1.2.6.	Déviation X	56
1.2.7.	Déclenchement de la base de temps principale	56
1.2.8.	Déclenchement de la base de temps retardée	56
1.2.9.	Générateur d'étalonnage	57
1.2.10.	Alimentation	57
1.2.11.	Conditions ambiantes	57
1.2.12.	Caractéristiques mécaniques	57
1.2.13.	Entreé modulation-Z	57
1.3.	ACCESSOIRES	58
1.3.1.	Fournis avec l'instrument	58
1.3.2.	En option	58
1.4.	DESCRIPTION DU SCHEMA SYNOPTIQUE	59
1.4.1.	Voie Y	59
1.4.2.	Déclenchement de la base de temps principale	59
1.4.3.	Circuit de base de temps principale	59
1.4.4.	Circuit de blocage	59
1.4.5.	Axe Z	59
1.4.6.	Déclenchement de la base de temps retardée	60
1.4.7.	Circuit de base de temps retardée	60
1.4.8.	Logique de base de temps alternée	60
1.4.9.	Alimentation	60
2.	MODE D'EMPLOI	61
2.1.	INSTALLATION	61
2.1.1.	Règlements de sécurité	61
2.1.2.	Branchement sur le secteur et fusibles	61
2.1.3.	Branchement sur une alimentation extérieure	62
2.1.4.	Couvercle avant et position de l'instrument	62
2.2.	COMMANDES ET PRISES	62
2.2.1.	Tube cathodique et commandes de puissance	62
2.2.2.	Déviation verticale	63
2.2.3.	Déviation horizontale	63
2.2.4.	Générateur de base de temps principale	64
2.2.5.	Générateur de base de temps retardée	65
2.2.6.	Divers	65
2.3.	INSTRUCTIONS D'UTILISATION	66
2.3.1.	Mise de l'instrument en circuit	66
2.3.2.	Réglage préliminaire des commandes	66

2.3.11. 2.3.12.	Emploi des sondes Réglage des sondes atténuatrices Choix entre modes commuté et alterné Mode différentiel Choix du mode de déclenchement Source de déclenchement Agrandisseur de base de temps Réglage de blocage Messures XY Utilisation de la base de temps retardée PROCESSUS REQUIS A LA DEPOSE DE FUSIBLES, VISIERE ET PLAQUE DE CONTRASTE	66 67 67 68 68 69 70 70 70
2.4.1.	Dépose des couvercles	71
2.4.2.	Dépose du transformateur secteur	72
2.4.3.	Remplacement d'un fusible thermique F101	73
2.4.4.	Remplacement du fusible F201	73
2.4.5.	Dépose de la visière et de la plaque de contraste	73
3.	NOTICE DE SERVICE (seulement en Anglais)	75
FIGUR	ES	
1.1.	Oscilloscope 35 MHz à double trace PM3218	53
1.2.	Dimensions	58
2.1.	Vue arrière de l'oscilloscope avec carrousel en position 220 V	61
2.2.	Vue avant de l'oscilloscope montrant les commandes et douilles	62
2.3.	Ajustage d'une sonde atténuatrice	67
2.4.	Réjection en mode commun	68
2.5.	Schéma synoptique du circuit de déclenchement mixte	69
2.6.	Dépose des couvercles et de la poignée de l'appareil	71
2.7.	Remplacement d'un fusible thermique	72
2.8.	Remplacement d'un fusible thermique	72
2.9.	Dépose de la visière et de la plaque de contraste	73

1. General information

1.1 INTRODUCTION

The 35 MHz dual-channel oscilloscope PM 3218 is a compact, portable instrument, ergonomically designed to facilitate its extensive measuring capabilities.

The instrument provides both a main and a delayed timebase with provision for alternate timebase displays, comprehensive triggering facilities including peak-to-peak Auto, DC coupling and automatic TV waveform display.

A large 8 x 10 cm screen with illuminated internal graticule lines makes for easier viewing, and a 10 kV accelerating potential gives a high intensity trace with a well-defined spot.

A double-insulated power supply allows the frame ground to be directly connected to floating ground circuits provided that this ground does not carry live potentials. By this means, interference by ground currents, as is frequently experienced with grounded oscilloscopes, is also substantially reduced.

The wide range of applications enabled by the above features is further extended by a versatile power supply that enables the instrument to be operated from different line voltages as well as from d.c. For field operation an optional battery version is also available.

Warning: The frame ground (and the ground lead of the probe) must not be connected to live potentials.

Fig. 1.1. 35 MHz dual-channel oscilloscope PM3218

1.2. CHARACTERISTICS

Cross talk between channels

Temperature drift

Instability of the spot position:

This instrument has been designed and tested according to IEC Publication 348 for Class II instruments and has been supplied in a safe condition. The present Instruction Manual contains information and warnings which shall be followed by the purchaser to ensure safe operation and to retain the instrument in a safe condition. Properties expressed in numerical values with stated tolerances are guaranteed for ambient temperatures of +5 °C ... +40 °C unless stated otherwise. Numerical values without tolerances are typical and represent the characteristics of an average instrument. The data apply after a warming-up period of 30 minutes.

	Designation	Specification	Additional Iniormation
1.2.1	C.R.T.		
	Туре	D14-125 GH/08	Rectangular tube face, mesh type, post accelerator, metal backed phosphor.
	Measuring area	8 x 10 divisions	1 div. equals 1 cm
	Screen type	P31 (GH)	P7 (GM) optional
	Total acceleration	10 kV	
	Graticule	Internal	Cont. variable illumination
	Engravings	Centimetre divisions with subdivisions of 2 mm along the central axes. Dotted lines indicate 10% and 90% of measuring lattice for measurement of rise time.	
1.2.2	Vertical or Y-axis		
	Display modes	Channel A only Channel B only A and B chopped A and B alternating A and B added	
	Channel B polarity	Normal or inverted	
	Response:		
	Frequency range	DC: 0 35 MHz (-3dB) AC: 2 Hz 35 MHz (-3dB)	
	Rise time	≤ 10ns	
	Pulse aberrations	≤ ± 3% (≤ 4% pp)	Measured at 6 div. amplitude and applied rise time of ≥ 1 ns.
	Deflection coefficients	2 mV/DIV 10 V/DIV	1-2-5 sequence
	Continuous control range	1 : ≥ 2,5	
	Deflection accuracy	± 3 %	
	Input impedance	1 M $\Omega/20$ pF	
	Input RC time	0,1 s	Coupling switch to AC
	Maximum permissible input voltage	400 V, d.c. + a.c. peak	
	Chopping frequency	pprox 500 kHz	
	Vertical positioning range	16 divisions	
	Dynamic range	24 divisions	
	Visible signal delay	≥ 2 divisions	At 10ns
	C.M.R.R. in A-B mode	\geqslant 40 dB at 1 MHz	After adjustment at d.c. or low

-40 dB or better at 10 MHz

≤ 0,3 div/hour

frequencies

Both attenuators in the same setting

1.2.3 Horizontal or X-axis

Horizontal deflection can be obtained from either the Main time base or the Delayed time base or a combination of the two, or from the signal source selected for X-deflection. In this case X-Y diagrams can be displayed using A, B, the Ext input connector, or Line as a signal source for horizontal deflection.

Display modes

- Main time base
- Main time base intensifiedby delayed time baseMain time base and delayed
- Main time base and delayed time base alternately displayed
- Delayed time base
- XY or XY/Y operation

X deflection by:

- Channel A signal
- Channel B signal
- Signal applied to EXT connector of
 - main time base
- Line frequency

1.2.4 Main time base

Operation

Automatic

Possibility of automatic free-running in the absence of triggering signals

Triggered

Time coefficients

0,5 s/DIV 0,1 μs/DIV

1-2-5 sequence

Continuous control range

1:≥2,5

Coefficient error

± 3% 10x ± 5% including x10 magnifier

Magnification

Max. effective time

coefficient

10 ns/DIV

1.2.5 Delayed time base

Operation

Delayed time base either starts immediately after delay time or is triggerable after the delay time, by the selected delayed time base trigger source

Time coefficients

 $1 \text{ ms/DIV} - 0.1 \mu\text{s/DIV}$

1-2-5 sequence

Continuous control range

1:≥2,5

Coefficient error

± 3%

Delay time

In steps variable with main

time base.

Continuously variable with 10-turn potentiometer between 0 x and 10 x the time coefficient of the

main time base

Incremental delay time

accuracy

0,5%

Delay time jitter

 $\mathbf{1}: \geqslant 20.000$

Designation

Specification

Additional information

1.2.6 X Deflection

Source

A, B, EXT, EXT ÷ 10 or LINE

As selected by trigger source switch, if push-button X DEFL, is depressed

Deflection coefficients

A or B: As selected by

AMPL/DIV

EXTERNAL: 0,2 DIV EXT + 10 : 2V/DIV

LINE 8 divisions at nominal line

voltage.

Deflection accuracy

± 10%

Frequency range

DC: 0 1 MHz (-3 dB)

over 6 divisions

Phase shift

 \leq 3° at 100 kHz

Dynamic range

24 divisions

For frequencies ≤ 100 kHz

1.2.7 Triggering of the main time base

Source

Ch. A, Ch. B, Composite, External ÷ 10 and line

Trigger mode

Automatic, normal AC normal DC, TV-line and TV frame

Trigger sensitivity

Internal: 0,5 div (DC 5 MHz)

1 div (DC 50 MHz)

External: 150 mV (DC 5MHz)

200 mV (DC 50MHz)

Ext. ÷ 10: 1,5V (DC 5MHz)

2V (DC 50MHz)

Triggering frequency range

AUTO: 20 Hz..... ≥ 50 MHz AC: 5 Hz..... ≥ 50 MHz

DC: 0 Hz..... ≥ 50 MHz

Level range

AUTO: Proportional to peak-to-peak value of

trigger signal.

AC, DC: 16 div. at Internal

+ or -8 div and

trigg., 3,2 V at external

+or -1,6V referenced to centre of screen

trigg., and 32V at ext. \div 10

+ or -16V referenced to centre of screen

Triggering slope

Positive or negative going

Input impedance

 $1 \, \text{M}\Omega //20 \, \text{pF}$

Maximum permissible

input voltage

400 V, d.c. + a.c. peak

Hold-off time

variable

1.2.8 Triggering of the delayed time base

Source

chA, chB, Composite,

External, MTB.

Other trigger specifications are identical to "triggering of the main time base" with the exception of the trigger modes EXT. ÷ 10, TV and AUTO.

1.2.9 Calibration generator

Output voltage

1,2 Vpp

Square wave

Accuracy

± 1%

Frequency

≈ 2 kHz

Measured 30 cm above grounded plate

of 1 m²

	Designation	Specification	Additional Information
1.2.10	Power supply		
	AC supply:	Double insulated	Safety class II, IEC 348
	Nominal voltage range (on line-mains voltage adaptor)	110, 127, 220 or 240 Vac ± 10%	
	Nominal frequency range	50 400 Hz ± 10%	
	Power consumption	30 W max.	At nominal mains voltage
	DC supply:		
	Voltage range	22-27 V dc 20-28 V	Floating input with relaxed specifications
	Current consumption	1,1 A max.	
	Capacity to earth	185 pF	Measured with rubber feet on grounded metal plate of 1 m ²

1.2.11. Environmental characteristics

Storage and transport

The environmental data are valid only if the instrument is checked in accordance with the offical checking procedure. Details on these procedures and failure criteria are supplied on request by the PHILIPS organisation in your country, or by N.V. PHILIPS' GLOEILAMPENFABRIEKEN, TEST AND MEASURING DEPARTMENT, EINDHOVEN, THE NETHERLANDS.

DEPARTMENT, EINDHOVEN, THE NETHERLANDS.				
Ambient temperatures:				
Rated range of use	+ 5°C +40°C			
Operating	–10 ^o C +55 ^o C			

Altitude:

Operating to 5000 m (15000 ft)

Non-operating to 15000 m (45000 ft)

Humidity 21 days cyclic damp heat 25°C -40°C, R.H. 95%

Shock 30 g: half sinewave shock of 11ms duration: 3 shocks per

-40°C ... +70°C

direction for a total of 18 shocks

27 pF

Vibration Vibrations in three directions with a maximum of 15 min.

per direction, 5-55 Hz and amplitude of 0.7mm_{pp} and 49 max.

acceleration.

Unit mounted on vibration table without shock absorbing material.

Electromagnetic interference Meets VDE 0871 and VDE 0875 Grenzwertklasse B.

Safety The isolation between the oscilloscopes and line fulfills the safety

requirements of IEC 348 for metal encased class $\boldsymbol{\Pi}$ instruments.

1.2.12 Mechanical data

Dimensions:

Length445 mmHandle and controls excludedWidth335 mmHandle excludedHeight137 mmFeet excluded

Weight 8,4 kg (18,5 lb) approx.

1.2.13. Z-mod input TTL compatible "0" blanks display "1" normal intensity see chapter 3.6.

Fig. 1.3. Block diagram

Fig. 1.2. Dimensions

1.3. ACCESSORIES

1.3.1. Supplied with the instrument

Front cover
2 BNC 4 mm adaptor
2 Probes
Instruction manual

1.3.2. Optional

PM 8925	Passive probe set 10:1 (1.5 m) 40 MHz
PM 8925L	Passive probe set 10:1 (2.5 m) 40 MHz
PM 8921	Passive probe set 1:1 (1.5 m) 15 MHz
PM 8921L	Passive probe set 1:1 (2.5 m) 15 MHz
PM 8940	Isolation amplifier
PM 8943	1: 1, 10: 1 and 100: 1 650 MHz FET-probe
PM 9355	Current probe
PM 8910	Polaroid anti-glare filter
PM 9380	Oscilloscope camera
PM 8971	Camera adaptor
PM 8962	19" Rack mount adaptor
PM 9366	Collapsible viewing hood
PM 8980	Closed long type viewing hood
PM 8901	Rechargeable battery pack 330 V d.c./24 V d.c.
PM 8991	Trolley
PM 8992/01	Accessory pouch
Trimming tool kit	

See also Chapter 3.5. "INFORMATION CONCERNING ACCESSORIES".

1.4. BLOCK DIAGRAM DESCRIPTION (Fig. 1.3.)

1.4.1. Y Channel

The vertical channels A and B for the signals to be displayed are identical, each comprising an input coupling switch, an input step attenuator, an impedance converter and a preamplifier with trigger pick-off.

A channel multivibrator, controlled by the display mode pushbuttons, switches either channel A or channel B to the final Y amplifier via the delay line. The channel multivibrator is operated by a pulse at the end of the sweep, and offers an uninterrupted display of the A and B waveforms in the ALT mode. In the ADD position, both switching amplifiers couple the signals through, thus adding channels A and B. By inverting the B channel amplifier (PULL TO INVERT B) the A — B mode is obtained.

The AMPL/DIV switches provide x 1 or x 10 gain control of the preamplifier, which offers in conjunction with the step attenuator a full range of deflection coefficients in a 1-2-5 sequence.

1.4.2. Main time base triggering

To initiate sweeps, trigger signals can be derived from the A and B vertical channel preamplifiers, from an external source, or internally from the mains supply (LINE triggering) as selected by the trigger source switch. Composite triggering (A and B depressed) is derived from the delay-line driver stage. The polarity of the trigger signal, negative or positive-going, on which the display will start is determined by changing the output polarity of the impedance converter.

With the AUTO switch depressed, the peak-to-peak level detector comes into operation. The peak-to-peak level of the signal then determines the range of the LEVEL control.

With AC or DC depressed, the range of the LEVEL control is fixed.

In the TVL and TVF modes the LEVEL control is inoperative and the TV sync separator is switched into circuit, thus initiating sweeps with line or frame pulses depending on the setting of the TVL and TVF switches.

1.4.3. Main time base circuit

For normal internal time base operation the horizontal amplifier is fed by sweeps from the time base circuit. With AUTO depressed, in the absence of trigger signals, the output of the sweep generator is fed back via the hold-off circuit and gate to its input. This causes sweeps to free-run and a resultant trace is displayed on the screen. As soon as the AUTO control circuit detects a trigger (i.e. a change in the output of the sweep-gating logic) the sweep is fed back to the sweep-gating logic. This causes the circuit to revert to the normal triggering mode in which sweeps are initiated only by trigger pulses at the input of the sweep-gating logic.

With AC or DC depressed, AUTO control is made inoperative. Sweeps are then only produced provided a trigger signal is present and the LEVEL control appropriately set.

The display can be magnified in the horizontal direction by increasing the gain of the final amplifier by a factor of x10 (also the X DEFL mode).

When the X DEFL pushbutton of the horizontal selection switch is depressed, the sweep generator output to the final amplifier is inhibited and the impedance converter is connected directly to the final amplifier. In this way, the signals normally selected for triggering, or an external source, can now be used for horizontal deflection.

1.4.4. Hold-off circuit

The hold-off stage, as its name implies, "holds-off" triggers from the input of the time base circuit until the trace has completely returned and the time base circuits are completely reset. The hold-off time can be decreased by turning the HOLD-OFF control clockwise.

1.4.5. Z Axis

The Z amplifier provides for the blanking of the trace during the fly-back and hold-off time. In addition, it blanks the sweep in the CHOP mode during the switching transients. More over the trace can be blanked by a signal applied to the external Z-mod input. The l.f. components of the blanking signal are modulated and demodulated before they are applied to the Wehnelt cylinder together with the a.c. coupled h.f. components.

1.4.6. Delayed time base triggering

To initiate sweeps, trigger signals can be derived from the A and B vertical channel preamplifiers, or from an external source as selected by the trigger source push button switch.

With both the A and B pushbuttons depressed simultaneously, composite triggering is derived from the delay-line driver stage of the Y amplifier channel. AC and DC coupling is provided to the impedance converter. The polarity of the trigger signal, negative or positive-going, on which the display will start, is determined by changing the output polarity of the impedance converter by the SLOPE switch.

With MTB selected, the delayed time base starts directly after the delay time. The DELAY TIME control in conjunction with the comparator determines the delay time for the delayed time base generator.

1.4.7. Delayed time base circuit

The delayed time base is operative unless its TIME/DIV switch is in the OFF position. It starts immediately after the delay time, or upon receipt of the first trigger pulse after the delay time.

The sawtooth signal derived from the main time base sweep generator is passed to a comparator where it is compared with an accurately adjustable d.c. voltage, controlled by the DELAY TIME control.

The comparator output is pulse-shaped and provides the required delay pulse for the sweep-gating logic of the delayed time base generator. A sawtooth voltage is then initiated.

The delayed sweep is reset by the hold-off circuit of the delayed time base (end of the sweep detection) or by the main time base.

It can be started again by the output signal of the comparator after the initiation of the next main time base sweep.

When pushbutton MTB of the horizontal deflection mode controls is selected, the part of the trace coinciding with the delayed sweep is intensified.

1.4.8. Alternate time base logic

In ALT TB mode an electronic switch enables main time base display and delayed time base display to be alternately traced on the screen.

The two displays can be separated by varying the voltage applied to the vertical amplifier, derived from the driving circuits of the electronic switch. This separation is symmetrically variable by means of the TRACE SEPARATION control on the front panel.

In the ALT TB mode the vertical channel multivibrator is controlled by a signal derived from the electronic switch.

In the vertical and horizontal ALT modes, successively are displayed on the screen, Channel A and main time base, Channel A and delayed time base, Channel B and main time base, Channel B and delayed time base.

1.4.9. Power supply

The mains (line) supply is transformed and rectified before being applied to a d.c. to a.c. converter. When the instrument is operated from a battery supply, the battery output is connected directly to the d.c. to a.c. converter.

The output of the regulator is coupled to a transformer and rectifier which, after rectification, provides the -1.5 kV potential and the circuit supply voltages. The -1.5 kV is also multiplied to 8.5 kV to supply the required total accelerating voltage of $\approx 10 \text{ kV}$.

2. Directions for use

2.1 INSTALLATION

2.1.1 Safety regulations (in accordance with IEC 348)

Before connecting the instrument to the mains (line), visually check the cabinet, controls and connectors etc. to ascertain whether any damage has occurred in transit. If any defects are apparent, do not connect the instrument to the mains (line).

The instrument must be disconnected from all voltage sources and any high voltage points discharged before any maintenance or repair work is carried out. If adjustments or maintenance of the operating instrument with covers removed is inevitable, it must be carried out only by a skilled person who is aware of the hazards involved. In normal operation the double-insulated power supply obviates the need of a safety ground.

Warning: It must be borne in mind that in all measurements the frame ground of the oscilloscope is raised to the same potential as that of the measuring ground probe connection. Neither the probe's ground lead nor the frame ground shall be connected to live potentials.

2.1.2 Local mains (line) connection and fuse protection

Before connecting the instrument to the mains (line) ensure that it is set to the local mains (line) voltage. On delivery the instrument is set to 220 V. If the instrument is to be used with 110 V, 127 V or 240 V supply, the appropriate voltage should be selected by turning the adaptor on the rear panel to indicate the voltage required (see Fig. 2.1).

The instrument is protected from overloads by a thermal fuse fitted between the mains (line) transformer windings. It can be replaced after having removed the instrument rear panel (see section 2.4.)

Fig. 2.1. Rear view of the oscilloscope showing the voltage adapter set to 220 V.

2.1.3 Connection to an external supply

An external supply or battery of 22 V to 27 V capable of delivering at least 1 A can be connected to the socket on the rear panel. (DC Power input cord set: 4822 321 20125).

The inner conductor must be connected to the negative pole and the outer conductor to the positive pole, as indicated on the rear panel.

The instrument is protected against overloads and reversed polarity by an internal fuse and diode. This fuse can be replaced after having removed the instrument rear panel (see section 2.4.).

2.1.4 Front cover and instrument position

The front cover can be simply removed by pulling it from the front.

The instrument may be used horizontally or in several sloping positions by using the carrying handle as a tilting bracket.

To unlock the handle, simultaneously push in both pivot centre knobs.

2.2 CONTROLS AND SOCKETS (Refer to Fig. 2.2)

2.2.1 Cathode-ray tube and POWER controls

ILLUM Continuously variable control of the graticule illumination;

POWER ON incorporates mains (line) switch. POWER ON pilot lamp indicates

the ON state.

INTENS Continuously variable control of the trace brilliance.

FOCUS Allows beam to be focused for minimum spot size.

TRACE ROTATION Screwdriver adjustment to align the trace with the horizontal

graticule lines.

MAT 313

Fig. 2.2. Front view of the oscilloscope showing controls and sockets.

2.2.2 Vertical channels

Display mode switch

Function

A - ALT - CHOP - ADD - B

5-way pushbutton switch selecting the vertical display mode. With all buttons released, the ALT mode is in operation.

Vertical deflection is achieved by the signal connected to the input

of channel A.

ALT

The display is switched over from one vertical channel to the other

at the end of every cycle of the timebase signal.

CHOP

The display is switched over from one vertical channel to the other

at a fixed frequency. (f ≈ 500 kHz)

ADD

В

Vertical deflection is achieved by the sum signal of channels A and B.

Vertical deflection is achieved by the signal connected to the input of channel B.

POSITION

Continuously variable controls giving vertical shift of the display.

PULL TO INVERT B

Push-pull switch combined with the channel B POSITION control.

When pulled, channel B signal is inverted.

AMPL/DIV (outer-knob)

Step control of the vertical deflection coefficients, ranging from

2 mV/div up to 10 V/div in a 1-2-5 sequence.

AMPL/DIV (centre-knob)

Continuously variable control of the vertical deflection coefficients. Note that the deflection coefficient is calibrated only with the centre-knob switched to the CAL position (fully-clockwise).

Input coupling switch

Signal coupling: 2-way pushbutton switch

AC/DC - 0

AC (depressed)

Coupling via a blocking capacitor

DC (released)

Direct coupling

0 (depressed)

Connection between input circuit and input socket is interrupted and

the input circuit is grounded.

A $(1M\Omega//20pF)$

BNC socket for channel A input

B $(1M\Omega//20pF)$

BNC socket for channel B input

2.2.3 Horizontal channel

X deflection source switch

Function

DTB MTB — XDEFL ←ALT TB — Horizontal-deflection controls; 3-way pushbutton switch

DTB

The horizontal deflection voltage is supplied by the delayed timebase generator.

мтв

The horizontal deflection voltage is supplied by the main timebase generator. A portion of the trace is intensified when the delayed

timebase is running.

The delayed timebase generator is switched off when the

DELD TIME/DIV switch is in the OFF position.

If no buttons are depressed the effect is the same as the MTB button depressed (only the MTB LEVEL control is not operating in this situation).

DTB MTB

When both the DTB and MTB pushbuttons are selected simultaneously, the horizontal deflection voltage is supplied by the main and delayed timebases alternately.

X DEFL

Horizontal deflection is achieved by the channel A signal, the channel B signal, the mainsfrequency signal or an external signal applied to the external input socket of the main time base.

X POS/X MAGN Continuously variable control giving horizontal shift of the display;

> incorporates a push-pull switch, PULL FOR x 10, which increases the horizontal deflection coefficient by a factor of 10. The

> magnifier is also operative if an external X deflection signal is used.

TRACE SEP Continuously variable control of the vertical space between the two

time-base displays in the ALT.TB mode.

2.2.4 Main time base generator

SLOPE (IN +,OUT-)

LEVEL Continuously variable control to select the level of the triggering

signal at which the timebase generator starts.

This control incorporates a push-pull switch, which enables choice of triggering on the positive or negative-going edge of the triggering signal. For TV triggering, select - for negative video signals and

+ for positive video signals.

Trigger mode switch

Function AC - AUTO - DC 3-way pushbutton switch selecting the trigger mode.

L TVLJLTVFJ With all pushbuttons released AUTO sweep mode is in operation at

a fixed range of the LEVEL control.

AUTO A trace is displayed in the absence of trigger signals. The range of the

LEVEL control is proportional to the peak-to-peak value of the

triggering signal.

AC Normal triggering and fixed range of the LEVEL control. The DC

component of the trigger signal is blocked.

DC Normal triggering and fixed range of the LEVEL control. The DC

component of the trigger signal is passed.

AUTO Line synchronisation is obtained. └ TVL ┘

AUTO DC

└ TVF-

HOLD OFF

Frame synchronisation is obtained.

Continuously variable control of hold-off time

Function Trigger source switch

B-EXT -EXT÷10

├─ LINE ─┤ L COMP-

4-way pushbutton switch selects the trigger source, (or the source of horizontal deflection if X deflection source switch is depressed

for X DEFL).

With all pushbuttons released, the effect is the same as the A

button depressed.

Signal derived from channel A Α

В Signal derived from channel B

Composite signal, derived after the electronic switch. Triggering └-COMPoccurs on the displayed waveforms (not usable with X DEFL).

External signal derived via the adjacent 1 M Ω //20pF socket. EXT and EXT÷10

LINE (MAINS) Signal derived from the line (mains) voltage. (Inoperable when

instrument is battery-powered).

Selects the time coefficient from .1 μ s/div to .5 s/div in a 1-2-5 TIME/DIV (outer switch)

sequence.

Continuously variable control of the time coefficients. Must be TIME/DIV (inner knob)

> switched to CAL position (i.e. fully clockwise) for the time axis to be calibrated according to the indication of the TIME/DIV switch.

 $1 M\Omega - 20 pF$ BNC socket for external triggering or horizontal deflection.

2.2.5 Delayed time base generator

LEVEL

SLOPE (IN +, OUT -)

Continuously variable control to select over a fixed range the level of the triggering signal at which the time base generator starts. This control incorporates a push-pull switch, which enables choice of triggering on the positive or negative going edge of the triggering signal.

Triager mode switch

AC - DC

AC

DC

DELAY TIME

Trigger source switch

A - B - EXT - MTB

LCOWP

Α

В

L COMP →

EXT

MTB

TIME/DIV (outer switch)

TIME/DIV (inner knob)

 $1M\Omega - 20 pF$

2.2.6 Miscellaneous

CAL

DC POWER IN

LINE (MAINS) VOLTAGE ADAPTOR

Z-MOD

Function

2-way pushbutton switch selecting the trigger mode

Normal triggering and fixed range of the LEVEL control. The DC

component of the trigger signal is blocked.

Normal triggering and fixed range of LEVEL control. The DC

component of the trigger signal is passed.

Continuously variable vernier control of the delay time, together with the TIME/DIV controls of the main time base generator.

Function

4-way pushbutton switch selects the trigger source and starting point of delayed time base. No pushbutton depressed has the same

effect as the MTB button depressed.

Internal triggering

Signal derived from channel A.

Internal triggering

Signal derived from channel B.

Composite signal, derived after the electronic channel switch.

Triggering occurs on the displayed waveform, after selected delay

time.

Triggering on an external signal connected to the adjacent

1M Ω //20pF socket.

Internal triggering signal derived from the main time base to start

the delayed time base immediately after the selected delay time.

Selects the time coefficient from .1 μ s/div to 1 ms/div in a 1-2-5 sequence. Incorporates an OFF position by which the delayed

time base generator is switched off.

Continuously variable control of the time coefficients. Must be in

the CAL position (i.e. fully clockwise) for the time axis to be calibrated according to the indication of the TIME/DIV switch.

BNC socket for external triggering signal.

Output socket supplying squarewave voltage \approx 2 kHz at an amplitude

of 1.2 V p-p ± 1%. To be used for probe compensation and/or

checking vertical deflection accuracy.

Input socket at the rear of the instrument allows operation by an external d.c. supply. Rated supply voltage 22 V to 27 V, current

capability > 1A.

Must be set according to section 2.1.2 before the instrument is

connected to the local mains voltage.

See chapter 3.6.

2.3 OPERATING INSTRUCTIONS

2.3.1 Switching on the instrument

Before connecting the instrument to any supply, the instructions given in section 2.1 Installation, should be carefully carried out.

The oscilloscope will meet specifications (see section 1.2) normally after a warming-up period of approximately 15 minutes. However, if the instrument has been subjected to an extremely cold environment (e.g. left in a car overnight in freezing conditions) and is then brought in for use in a warm room, a warming-up period of sufficient length should be allowed (see 1.2.11).

2.3.2 Preliminary settings of the controls

This procedure is a general indication of whether the oscilloscope is functioning correctly and provides a suitable starting point before any measurements are made.

Refer to Fig. 2.2 for location of controls.

Set INTENS and FOCUS controls in mid position.

Depress AUTO and select an average time coefficient between 10 μ s/div and 10 ms/div with the TIME/DIV switch. With all other pushbuttons normal (not depressed) channel A and channel B traces can be positioned on the screen with the relevant POSITION controls. Set the INTENS control for a display of medium brightness and adjust FOCUS control for well focused traces.

2.3.3 Input coupling (AC/DC, 0)

AC coupling (pushbutton depressed) is useful to block the d.c. component of a signal. Choice of AC limits the lower frequencies, causing low repetition rate sinewave signals to be attenuated and low repetition rate square-waves to be distorted. The degree of attenuation is determined by the input RC time (0.1s). Input RC time is extended by 10 if 10:1 passive probes are employed.

When switching to AC coupling it will take approximately five input RC times before the trace is stabilised to the average value of the input signal.

AC position measurements cannot be made with respect to ground.

0 position disconnects input source and short-circuits input of amplifier to provide zero signal check.

DC coupling (pushbutton released) provides for full range frequency input, i.e. down to d.c.

2.3.4 Use of probes

1:1 passive probes should only be used for d.c. and low frequencies.

Capacitive loading attenuates high frequencies or increases the rise-time of measurement signals (dependent on source impedance).

10:1 passive probes have less capacitive loading; usually about 10pF to 20pF. FET probes are superior, especially when measurements are to be taken from high impedance test points or at the upper frequency limit of the oscilloscope bandwidth.

10:1 passive probes must be properly compensated before use. Incorrect compensation leads to pulse distortion or amplitude errors at high frequencies.

For correct adjustment, the CAL output connection can be used (see Fig. 2.3.)

2.3.5. Adjustment of attenuator probes

- Connect the compensation box to socket A and place the tip of the probe on socket CAL.
- Insert a small screwdriver through the hole in the compensation box and adjust the trimmer to obtain a correct display as shown in Fig. 2.3.

Fig. 2.3. Adjusting an attenuator probe

2.3.6. Selection of chopped or alternate modes

(A ALT CHOP ADD B)

In dual channel operations (CHOP or ALT depressed) the chopped mode (depress CHOP) must be selected for relatively slow sweep speeds (from .1 ms/div to .5 s/div) or at low repetition rates of sweeps occuring, even at high sweep rates. Selection of the ALTernate mode under these circumstances would make comparisons between waveforms difficult because traces would actually appear to be written one by one. However, when the display is fast enough to be interrupted by the chopping frequency the alternate mode must be selected (depress ALT), usually at sweep rates faster than .1 ms/div.

2.3.7. Differential mode

The A - B mode can be selected by depressing ADD and pulling the channel B POSITION control.

In measurements where signal lines carry substantial common mode signals (e.g. hum) the differential mode will cancel out these signals and leave the remainder of interest (A - B). The capability of the oscilloscope to suppress common mode signals is given by the CMR factor (see Fig. 2.4).

To obtain the degree of common mode rejection as specified, channel A and B gains must first be equalised. This can be done by connecting both channels to the CAL output connector, and adjusting one of the continuous controls with the AMPL/DIV switch for minimum deflection on the screen.

When passive 10:1 probes are used a similar equalisation process is recommended by adjusting their compensating controls for minimum deflection.

Fig. 2.4. Suppression of common mode signals

2.3.8. Selection of trigger mode

(AC AUTO DC)

The AUTO mode is most useful because it provides trace(s) on the screen even in the absence of trigger signals. Furthermore, for a signal amplitude larger than 1 division, this mode provides stable triggering independently of the position of the LEVEL control; its range is automatically adjusted to the peak-to-peak value of the signal selected for triggering.

In this way the setting of the LEVEL control is facilitated at small amplitudes of the trigger signal.

The AUTO mode cannot be employed for signals with low repetition rates (10 Hz or lower) because the sweeps would be able to free run in between triggers. Therefore, for low repetition signals normal triggering must be used (AC or DC depressed).

In normal triggering, sweeps are only initiated with a trigger signal applied and the LEVEL control set appropriately.

With AC or DC depressed the range of the LEVEL control is fixed (+ or -8 divisions or more at the extremes of the LEVEL control with respect to mid screen).

The DC component in the trigger signal can be blocked by depressing AC. This is useful when triggering must take place on a.c. signals superimposed on a large d.c. level.

With AC coupling, the level at which the display starts will change with alterations in the average value of the trigger signal. The trigger level is thus no longer referenced to signal ground. This may cause instability with waveforms that vary in time interval from cycle to cycle. Normally it is preferable to use the DC position.

Slope selection is made with pushbutton +/-. In TV mode — must be selected for negative video signals and + for positive video signals. The LEVEL control is inoperable in the TV mode.

No buttons depressed offers an extra mode of use, a trace is on screen in the absence of a trigger signal, but the LEVEL range is fixed.

2.3.9. Trigger sources

The main time base trigger sources can be selected by the front-panel TRIG or X DEFL pushbuttons.

- Internal triggering will be most commonly used because it requires only one signal (the input signal) to obtain stable triggering.
- External triggering. When tracing many signals it is advantageous to use an external signal for triggering.
 There is no need to set and reset the trigger controls (LEVEL, SLOPE and SOURCE) on changing the input signal. Furthermore the two A and B inputs remain free for examining waveforms.
- Selection of trigger source. In comparing waveforms that are a multiple of each other's frequency, always select the signal, that has the lowest repetition rate as the trigger source. Not doing so may lead to double pictures (chopped mode) or untrue time-shifts (alternate mode).
- Composite triggering. With internal triggering signals are obtained from either the A channel, the B channel preamplifier stages or, when COMP is selected by depressing both A and B pushbuttons, from the delay line driver stage that follows the electronic channel switch.

Composite triggering offers three advantages:

- 1. In differential mode (A B measurements) triggering is derived from the differential signal. Triggering is not disturbed by common mode signals.
- 2. For one channel operation it is not necessary to switch trigger sources from A to B or vice versa.
- 3. In the alternate mode, it is possible to compare signals that are not related in time.

Note: When composite triggering is employed in dual channel operation (chopped or alternate), and there is only one signal applied (to A or B input), stable triggering cannot be obtained. This is only normal since the trigger source is also switched from A to B (see Fig. 2.5).

- Line (mains) triggering is useful when the signal input is mains (line) frequency related.

Fig. 2.5. Block diagram of composite trigger circuit

2.3.10. Time-base magnifier

The magnifier is operated by pulling the switch incorporated in the X position control. When this switch is in the x10 position, the time-base sweep speed is increased 10 times. The sweep time is therefore determined by dividing the indicated TIME/DIV value by 10.

2.3.11. Hold-off.

This control can be used to increase the sweep hold-off time.

2.3.12. XY Measurements

Measurements can be made up to 100 kHz with less than 30 phase error between horizontal and vertical channels.

The sensitivity for the different XY modes is shown in the following table:

X deflection	Sensitivity
Α	AMPL/DIV A ± 10%
В	AMPL/DIV B ± 10%
EXT	0.2 V/DIV
EXT÷10	2 V/DIV
LINE	8 divisions

2.3.13. Using the Delayed time-base

The delayed time base can be used for the accurate study of complex signals. The delayed time base generator starts (TIME/DIV switch not at OFF) after the selected delay time and the delayed signal is intensified when the MTB pushbutton of the horizontal deflection controls has been selected.

The DELAY TIME potentiometer control enables the intensified portion to be shifted along the time axis. The duration of the intensified portion, its length, can be controlled in steps and continuously by means of the TIME/DIV controls of the delayed time base generator. When pushbutton DTB of the horizontal deflection controls is depressed, the intensified portion occupies the full width of the screen.

In the DTB position, the delay time (i.e. the interval between the starting points of the main time base and that of the delayed time base) is determined by the setting of the main time base TIME/DIV controls and the DELAY TIME control. The PM3218 is equipped with display switching. This offers the instrument user a simultaneous display of the signal on the two time scales provided by the main time base and by the delayed time base.

By selecting ALT TB, detailed examination of a certain portion of the main time base display is enabled by expanding the time interval of interest, using the delayed time base.

Expansion is achieved by selecting a correspondingly faster sweep for the delayed time base TIME/DIV control and positioning the time interval by the DELAY TIME potentiometer.

The part of the signal under detailed observation by the delayed time base also remains as an intensified portion of the main time base display. This not only facilitates the location of the required detail during dialling, but also serves as a visual indication of the portion of the overall trace being examined. Selection of ALT TB thus enables immediate correlation of the detail with the overall signal, which may be extremely complex, without the need to switch between MTB and DTB.

2.4. PROCEDURES REQUIRED FOR THE REMOVAL OF FUSES, BEZEL AND CONTRAST PLATE

2.4.1. Removing the instrument covers

Always ensure that the mains supply is disconnected before removing any instrument cover plates.

The instrument is protected by three covers: a front panel protection cover, a wrap-around cover with carrying handle, and a rear panel.

To facilitate removal of the wrap-around cover and the rear panel, first ensure that the front cover is in position.

Then proceed as follows:

- Hinge the carrying handle clear of the front cover; to this end, push both pivot centre buttons (Fig. 2.6.).
- Stand the instrument on its protective front cover on a flat surface.
- Slacken the two coin-slot screws located on the rear panel.
- Lift the rear panel and unplug the connector on the power supply board.
- Lift off the wrap-around cover.
- For access to the front-panel, stand the instrument horizontally and snap off the front cover.

Fig. 2.6. Removing the instrument covers

2.4.2. Removing the mains transformer

- Remove wrap-around cover and rear panel (section 2.4.1.).
- Take the lid off the voltage adapter compartment after removing the 4 cross-slotted screws.
- Remove the 4 cross-slotted screws that hold the lid of the transformer compartment.
- Lift the lid with the attached transformer, simultaneously sliding the wire form between transformer and voltage adapter out of the slit in the transformer compartment.
- The transformer and thermal fuse are then accessible for replacement.

Fig. 2.7. Replacing the thermal fuse

Fig. 2.8. Replacing the thermal fuse

2.4.3. Replacing the thermal fuse F101

- Remove the mains transformer (section 2.4.2.).
- Unsolder fuse terminals 1 and 2 (Fig. 2.7. and 2.8.).
- Only the fuse wire of the old fuse is replaced and not the complete fuse; to this end, bend the housing of the fuse slightly outwards, disengage the locking pin and pull out the wire.
- Take the new fuse and remove the fuse wire out of its housing in the same way as described above.
- Push the new fuse wire into the housing of the old one until the locking pin snaps into the hole. The loop
 in the fuse wire must point to terminal 1.
- Solder the fuse wire to terminals 1 and 2.

2.4.4. Replacing the fuse F201

- Remove wrap-around cover and rear panel (section 2.4.1.).
- Fuse F201, which is located on the power supply printed circuit board, is now accessible for replacement.

2.4.5. Removing the bezel and the contrast plate

- Take hold of the bezel's bottom corners and gently pull it from the front panel (Fig. 2.9.).
- The contrast filter can be removed by pressing it gently out of the bezel.

Fig. 2.9. Removing the bezel and the contrast plate

3.3. INFORMATION FOR ASSISTENCE IN FAULT FINDING

3.3.1. Mains transformer data

The available unloaded voltage tappings and the number of turns per winding are listed in the circuit diagram (Fig. 3.44) in the form of a table.

3.3.2. Voltages and waveforms in the instrument

The d.c. voltage levels at the electrodes of the transistors and the voltage waveforms in the time-base generators are shown at the relevant points on the circuit diagrams (Fig. 3.44, Fig. 3.45 and Fig. 3.46). The oscilloscope under test must be set in the following way to measure the voltage wave forms as shown in Fig. 3.44 and Fig. 3.46.

- Display mode switch S1 to position "A".
- X deflection selector switch S3 to position "MTB".
- MTB trigger mode switch S4 to position "AUTO".
- A POSITION potentiometer R2 at mid-range.
- A AMPL/DIV switch S9 to 1 V/div. and potentiometer R9 to CAL.
- Input signal on A input socket X2: 2,5 kHz sine-wave voltage for 8 div. deflection.
- X POSITION potentiometer R6 at mid-range.
- X MAGN switch S7 to position "X1".
- MTB LEVEL potentiometer R7 at mid-range.
- DTB LEVEL potentiometer R5 at mid-range.
- MTB SLOPE switch S8 in position "+".
- DTB SLOPE switch S6 in position "+".
- MTB TRIGGER source selector switch S22 to position "A".
- DTB TRIGGER source selector switch S21 to position "A".
- MTB TIME/DIV switch S15 to 0,2 ms/div. and potentiometer R12 to CAL.
- DTB TIME/DIV switch S13 to OFF for measuring the diagrams 1-2-3-4-5-6-7-8-9-10-13-14-18a-18b-18d-19a en 19b.
- DTB TIME/DIV switch S13 to 50 μ s/div. for measuring the diagrams 11-12-15-16-17-18c-18e and 19c.

3.3.3. Remark

In case of a defect it is always possible to apply to the world wide PHILIPS Service Organization. When the instrument is to be sent to a PHILIPS Service Workshop for repair, the following points should be observed:

- Attach a label with your name and address to the instrument.
- Give a complete description of the faults found, or the service required.
- Use the original packing, or, if this is no longer available, carefully pack the instrument in a wooden crate or box.
- Send the instrument to the address obtained after consultation with the local PHILIPS Organization.

Fig. 3.19. Adjusting elements amplifier board

3.4

3.4.1.

3.4.2.

			•	

3.4. DISMANTLING THE INSTRUMENT

3.4.1. General information

This section provides the dismantling procedures required for the removal of components during repair and routine maintenance operations. All circuit boards removed from the oscilloscope should be adequately protected against damage, and all normal precautions regarding the use of tools must be observed.

During dismantling procedures, a careful note of all leads disconnected must be made so that they may be reconnected to their correct terminals during assembly.

Always ensure that the mains supply is disconnected before removing any instrument cover plates.

Damage may result if the instrument is switched on when a circuit board has been removed, or if a circuit board is removed within one minute of switching off the instrument.

3.4.2. Removing the instrument covers

The instrument is protected by three covers: a front panel protection cover, a wrap-around cover with carrying handle, and a rear panel.

To facilitate removal of the wrap-around cover and the rear panel, first ensure that the front cover is in position.

Then proceed as follows:

- hinge the carrying handle clear of the front cover; to this end, push both pivot centre buttons (Fig. 3.20).
- stand the instrument on its protective front cover on a flat surface
- slacken the two coin-slot screws located on the rear panel
- lift the rear panel and unplug the connector on the power supply board
- lift off the wrap-around cover
- for access to the front-panel, stand the instrument horizontally and snap off the front cover.

Fig. 3.20. Removing the instrument covers.

COMPONENT LOCATION LIST

Item Grid loc.	Item Grid loc.	Item Grid loc.	Item Grid loc.	Item Grid loc.	Item Grid loc.	Item Grid loc.	Item Grid loc.	Item Grid loc.	Item Grid loc.
C101 rear panel	C285 D-3	C517 E-2	C1007 C-5	C1509 G-4	R267 C-4	R413 on switch	R542 D-2	R640 D-3	R821 F-3
C200 power supply	C286 G-3	C518 E-2	C1008 C-5/D-5	C1511 G-5	R268 D-4	R414 S11	R543 D-2	R641 D-3/E-3	R822 F-3/G-3
C201 power supply	C301 att. unit	C519 E-2	C1009 C-5	C1512 on tube	R269 B-2/C-2	R416 att. unit	R546 E-2	R646 E-3	R823 G-3
C202 power supply	C305 att. unit	C520 C-2	C1011 C-5	C1601 B-2	R271 B-3	R417 att. unit	R547 E-2	R647 E-3	R824 G-3
C203 power supply	C307 att. unit	C521 E-2	C1012 C-5	C1602 B-2	R272 D-3	R418 att. unit	R548 E-2	R648 E-3	R825 G-3
C204 power supply	C308 att. unit	C522 F-2	C1101 B-4	C1651 F-4	R273 att. unit	R419 att. unit	R549 D-2	R649 D-3	R826 G-3
C206 power supply	C309 att. unit	C523 C-2	C1102 B-4	C1652 F-4	R274 B-4	R451 att. unit	R550 E-2	R650 E-2	R827 G-3
C207 power supply	C310 att. unit	C601 C-3	C1103 C-4	C1653 F-5	R276 C-3	R452 att. unit	R551 E-2	R651 E-3	R828 G-3
C208 power supply	C311 att. unit	C602 C-3	C1104 C-4	C1654 F-5	R277 D-4	R453 att. unit	R552 D-2	R652 D-3	R829 F-3
C209 power supply	C312 att. unit	C603 C-3	C1201 D-5	C1655 F-4	R278 F-4	R454 att. unit	R553 D-2	R653 D-3	R831 F-2
C211 power supply	C313 att. unit	C604 D-3	C1202 E-5	C1656 F-5	R279 G-3	R456 att. unit	R554 D-2	R654 D-3	R832 F-2
C212	C314 att. unit	C607 D-3	C1203 D-5	C1657 F-5	R281 G-3	R457 att. unit	R558 E-2	R658 E-3	R833 G-3
C213 high	C315 att. unit	C609 E-2	C1204 D-5	C1658 F-5	R302 att. unit	R458 att. unit	R559 E-2	R659 E-3	R837 F-3
C214 tension	C316 att. unit	C611 D-3	C1205 D-5	C1659 F-5	R303 on switch	R459 att. unit	R568 E-2	R661 E-3	R838 G-2
C216 unit	C317 att. unit	C613 E-3	C1206 E-5	C1660 E-3	R304 S9	R461 att. unit	R569 E-2	R662 E-3	R839 F-2
C217	C318 att. unit	C616 E-3	C1207 D-4	R1	R306 /	R462 att. unit	R571 F-2	R663 E-3	R843 F-2
C218 power supply	1	C617 E-3	C1208 E-5	R2	R307 att. unit	R463 att. unit	R572 F-2	R664 E-3	R847 F-2
C219 power supply	C320 att. unit	C618 E-3 C619 F-3	C1209 E-5	R3	R308 att. unit	R464 att. unit	R573 E-2 R577 F-2	R668 E-3	R848 F-2
C221 power supply C222 power supply	C322 att. unit	C620 C-3	C1210 E-4	R4	R309 att. unit	R466 att. unit	1	R669 E-3	R849 F-2
1	C324 att. unit	C621 E-3	C1301 E-5	R5	R311 att. unit	R467 att. unit	R600 C-3 R601 C-3	R671 E-3/F-3	R851 G-2
C223 power supply C224 power supply	C351 att. unit	C622 F-3	C1302 D-4 C1303 D-4	R6	R312 att. unit	R468 att. unit	R602 C-3	R672 E-3/F-3	R852 F-2
C224 power supply	C352 att. unit	C623 C-3	C1303 D-4 C1304 E-4	R7 front panel	R313 on switch R314 S9	R469 att. unit R500 C-2	R603 C-3	R673 E-3	R853 F-2
C227 power supply	C353 att. unit	C701 E-3	C1305 E-5	R9	1	R501 C-2	R604 C-3	R674 E-3 R676 E-3	R854 F-2
C228 power supply	C356 att. unit	C702 E-2	C1305 E-5	R10	R316 att. unit	R502 C-2	R606 C-3	R676 E-3 R677 F-3	R856 F-2 R857 F-2
C229 power supply	C401 att. unit	C703 E-3	C1307 D-5/E-5	R11	R318 att. unit	R503 C-2	R607 C-3	R701 E-2/E-2	R858 F-2
C231 power supply	C405 att. unit	C704 E-3	C1308 E-5	R12	R319 att. unit	R504 C-2	R608 C-3	R702 E-3	R859 F-2/G-2
C251 C-2	C407 att. unit	C705 E-2	C1309 D-5	R13	R351 att. unit	R506 C-2	R609 C-3	R703 E-2	R861 F-2
C252 D-2	C408 att. unit	C706 E-2	C1310 D-4	R14	R352 att. unit	R507 D-2	R611 C-3	R704 E-2	R862 F-2/G-2
C253 C-3	C409 att. unit	C707 F-2	C1311 D-5	R15	R353 att. unit	R508 D-2	R612 C-3	R706 E-3	R863 F-2
C254 D-3	C410 att. unit	C801 F-3	C1321 D-4	R200 power supply	R354 att. unit	R509 D-2	R613 C-3	R707 E-2/E-3	R864 G-2
C255 att. unit	C411 att. unit	C802 F-3		R201 power supply	R355 att. unit	R511 C-2	R614 D-3	R708 E-2/E-3	R866 F-2/F-3
C256 att. unit	C412 att. unit	C803 F-3	C1314 E-4	R202 power supply	R356 att. unit	R512 C-2	R616 D-3	R709 F-2	R1001 B-5
C257 B-4/B-5	C413 att. unit	C804 F-3	C1315 D-4	R203 power supply	R357 att. unit	R513 C-2	R617 C-3/D-3	R711 F-3	R1002 C-4
C258 B-3	C414 att. unit	C805 G-2	C1316 D-4	R204 power supply	R358 att. unit	R514 D-2	R618 C-3/D-3	R712 F-2	R1003 C-4
C259 D-4	C415 att. unit	C806 F-3	C1402 F-5	R206 power supply	R359 att. unit	R516 D-2	R619 C-3/D-3	R713 E-3	R1004 C-4
C261 E-4	C416 att. unit	C807 F-3		R207 power supply	R360 att. unit	R517 C-2/D-2	R621 C-3	R714 E-2	R1006 C-4
C262 F-5	C417 att. unit	C808 F-3	C1404 G-3	R208 power supply	R361 att. unit	R518 C-2/D-2	R622 D-3	R716 F-3	R1007 C-5
C263 E-4	C418 att. unit	C809 F-3	C1405 G-3	R209 power supply	R362 att. unit	R519 C-2/D-2	R623 D-3	R717 F-3	R1008 C-5
C266 B-3	C419 att. unit	C810 F-2	C1406 G-3	R210 power supply	R363 att. unit	R521 D-2	R624 D-3	R801 F-2	R1009 C-5
C267 D-4	C420 att. unit	C811 F-3	C1407 G-3	R211 high t.u.	R364 att. unit	R522 D-2	R626 D-3	R802 F-3	R1011 C-5
C268 D-4	C421 att. unit	C812 G-3	C1408 G-3	R212 power supply	R365 att. unit	R523 D-2	R627 D-3	R803 F-3	R1012 B-4
C269 C-4	C422 att. unit	C813 G-3	C1409 G-2	R227 B-3/C-3	R366 att. unit	R524 D-2	R628 D-3	R804 F-2	R1013 B-5
C271 C-4	C424 att. unit	C814 G-2	C1411 G-3	R251 B-2/C-2	R367 att. unit	R526 D-2	R629 D-3	R806 F-3	R1014 C-5
C272 D-4	C451 att. unit	C815 G-3	C1412 G-2	R252 B-2/C-2	R368 att. unit	R527 D-2	R631 D-3	R807 F-3	R1016 B-4
C273 C-2/C-3	C452 att. unit	C816 F-2	C1413 G-2/G-3	R253 B-3/C-3	R369 att. unit	R528 D-2	R632 D-3	R809 F-2/F-3	R1017 C-5
C274 B-3	C453 att. unit	C817 F-2	C1414 G-2/G-3	R254 C-3	R374 att. unit	R529 D-2	R633 D-3	R811 F-3	R1018 C-4
C2/6 D-3	C501 C-2 C502 C-2	C818 F-2 C821 F-2	C1416 G-2	R256 D-3	R402 att. unit	R531 D-2	R634 D-3	R812 F-3	R1019 C-5
C279 B.4/B.5	C502 C-2	C821 F-2 C1001 B-5	C1417 G-2	R257 att. unit	R403 on switch	R532 D-2	R635 D-3	R813 G-3	R1021 C-5
C278 B-4/B-5 C279 B-3	C504 D-2	C1001 B-5	C1501 G-5	R258 B-4	R404 > S11	R533 D-2	R636 E-3	R814 F-3	R1022 C-4
C279 B-3 C280 att. unit	C507 D-2	C1002 C-4	C1502 G-5	R259 B-3	R406	R534 D-2	R637 D-3/E-3 R638 E-3	R816 F-3	R1023 C-4
C281 D-4	C507 B-2	C1003 C-4	C1503 G-5 C1504 G-5	R261 E-3/E-4 R262 F-5	R407 att. unit	R535 D-2	R639 D-3/E-3	R817 F-3	R1024 C-4
C281 D-4	C511 D-2	C1005 C-4/D-4	C1504 G-5 C1506 G-4	R263 E-3/E-4	R408 att. unit R409 att. unit	R536 E-2	11000 0-3/6-3	R818 F-2	
C283 F-4	C513 E-2	C1006 C-4	C1500 G-4 C1507 G-5	R264 B-3	R409 att. unit	R537 E-2		R819 F-3	
C284 G-2	1.00		C1508 G-5	R266 D-4	R412 att. unit	R538 D-2/E-2 R539 E-2			
	<u> </u>	J [2.555		Line att. uiiit	R540 D-2			
						R541 E-2			
						J 11571 L-2			

R1342 E-4 R1343 E-4

Item Grid loc.	Item Grid loc.	Item Grid loc.	Item Grid loc.	Item Grid loc.	Item Grid loc.	Item Grid loc.	Item Grid loc.	Item Grid loc.
			D4500 5.5	D1050 5.5	V222	V701 E-2	V1218 E-5	V1516 G-4
R1026 C-5	R1218 D-5	R1344 E-4	R1506 F-5	R1652 F-5	V232 power supply	V701 E-2 V702 E-3	V1210 L3	V1517 G-4
R1027 C-5	R1219 E-5	R1346 E-4	R1507 G-4	R1653 F-5	V233 power supply	V702 E-3 V703 E-2	V1213 E-5	V1518 G-5
R1028 C-5	R1221 D-5	R1347 D-4	R1508 G-4	R1654 F-5	V234 power supply	V703 E-2 V704 E-3	V1301 E-4/E-5	V1519 G-5
R1029 C-4	R1222 E-5	R1376	R1509 G-4	R1656 F-5	V236 power supply	1	V1301 E-4/E 3	V1521 G-4
R1031 C-4	R1223 D-5	R1377	R1511 G-4	R1657 F-5	V237 power supply	1	V1302 E-5	V1522 G-4/G-5
R1032 C-4	R1224 D-5	R1378 on switch	R1512 G-4	R1658 F-5	V238 power supply	V802 F-3	V1303 E-5	V1523 G-4/G-5
R1034 C-4	R1226 D-5	N13/9 C12	R1513 G-5	R1659 F-5	V239 power supply	V803 F-3	V1305 E-5	V1524 G-4
R1036 C-4	R1227 E-4	N130	R1514 G-5	R1661 F-5	V241 power supply	V804 G-2	V1305 E-5 V1306 E-5	V1524 G-5
R1037 C-5	R1276	R1382	R1516 G-5	R1662 F-5	V242 power supply	V806 G-2	1	V1527 B-2
R1038 C-4	R1277	R1383 /	R1517 G-5	R1663 F-5	V243 power supply	V807 F-2	1	V1527 B-2 V1528 B-2
R1039 C-4	R1278	R1401 F-4	R1518 G-5	R1664 F-4	V244 power supply	V808 F-2	1	V1601 B-2
R1041 C-4	R1279	R1402 F-4	R1519 G-4	R1666 F-4	V246 power supply	V809 F-2	V1314 E-4	V1602 B-2
R1042 C-5	R1281	R1403 F-4	R1521 G-5	R1667 F-4	V247 power supply	V1001 C-4	V1316 E-4	V1602 B-2 V1603 B-2
R1043 C-5	R1282	R1404 F-5	R1522 G-4	R1668 F-4	V351 att. unit	V1002 C-4	V1318 E-4	V1603 B-2 V1604 B-2
R1044 C-5	R1283 > on switch	R1406 F-4/F-5	R1524 G-4	R1669 F-5	V352 att. unit	V1003 C-4	V1319 D-4	V1651 F-5
R1046 C-5	R1284 S15	R1407 F-5	R1526 G-4	R1671 F-4	V353 att. unit	V1004 C-5	V1321 E-4	i i
R1047 C-5	R1286	R1408 F-5	R1527 G-4	R1672 F-4	V354 att. unit	V1006 B-5	V1322 E-4	1
R1048 C-5	R1287	R1409 F-5	R1528 G-5	R1673 E-4	V451 att. unit	V1007 C-4/D-4	V1323 E-4	V1653 F-5 V1654 F-5
R1049 C-5	R1288	R1411 F-5	R1529 G-4	R1674 F-4	V452 att. unit	V1008 C-5	V1324 D-4 V1326 E-4	V1654 F-5 V1655 F-5
R1051 C-5	R1289	R1412 F-5	R1531 G-5	R1676 F-5	V453 att. unit	V1009 C-5	1	V1656 F-5
R1052 C-5	R1291 /	R1413 F-5	R1532 G-4	R1677 F-4	V501 C-2	V1011 C-4	V1401 E-4 V1402 F-5	V1657 F-5
R1101 B-4	R1301 E-5	R1414 F-4	R1533 G-4	R1678 F-4	V504 C-2	V1012 C-5	1 1	V1658 F-5
R1102 C-4	R1302 E-4	R1416 F-4	R1534 G-5	R1679 F-5		V1013 C-5	V1403 F-5 V1404 F-4	V1659 F-5
R1103 B-4	R1303 E-5	R1417 F-4	R1535 on tube	R1681 F-5		V1014 C-5	1	V1661 F-4
R1104 B-4	R1304 E-5	R1418 F-4	R1536 G-4	R1682 F-5	V508 E-2	V1016 C-5	V1406 F-4 V1407 F-4	V1662 E-4
R1106 B-4	R1305 E-4	R1419 F-4	R1537 G-4	R1683 F-4	V509 E-2	V1017 C-5	V1407 F-4 V1408 F-5	V1663 F-4/F-5
R1107 B-4	R1306 E-5	R1421 F-4	R1538 power supply	R1684 F-4	V511 D-2	V1018 C-5	V1408 F-5 V1409 F-5	V1664 E-4/F-4
R1108 B-4	R1307 E-5	R1422 F-4	R1539 power supply	R1686 F-4	V512 D-2	V1019 C-5		V1666 F-4
R1109 C-4	R1308 E-5	R1423 F-4	R1541 power supply	R1687 F-4	V513 E-2	V1020 C-5		V1667 F-4/F-5
R1111 C-4	R1309 E-5	R1424 F-5	R1542 power supply	R1688 F-4	V514 E-2	V1021 C-5	V1412 F-4/F-5 V1413 F-4	V1668 F-4
R1112 C-4	R1311 E-5	R1425 G-3	R1543 power supply	V1 tube	V518 E-2	V1022 C-4	1 1	D501 C-2/D-2
R1113 C-4	R1312 E-5	R1426 G-3	R1544 power supply	V201 power supply	V519 E-2	V1023 C-4	V1414 F-4	D601 C-3/D-3
R1114 C-4	R1313 D-4	R1427 G-3	R1546 power supply	V202 power supply	V521 F-2	V1024 C-5/D-5	V1416 G-2	D801 F-3
R1116 C-4	R1314 E-5	R1428 G-2	R1547 power supply	V203 power supply	V522 F-2	V1026 C-5/D-5	V1417 G-2	D1001 C-5
R1117 C-4	R1316 E-4	R1429 G-3	R1548 power supply	V204 power supply	V523 F-2	V1027 C-5	V1418 G-3	D1001 C-5
R1118 C-4	R1317 E-5	R1431 G-3	R1549 power supply	V206 power supply	V524 F-2	V1028 C-5	V1419 G-3	D1101 B-4/C-4 D1201 D-5
R1119 C-4	R1318 E-4	R1432 G-3	R1551 power supply	V207 power supply	V526 F-2	V1101 B-4	V1421 G-3	
R1121 C-4	R1319 E-4	R1433 G-3	R1552 on tube	V208 power supply	V601 C-3	V1102 B-4	V1422 G-3	D1202 D-5
R1122 C-4	R1321 D-4	R1434 G-3	R1553 G-5	V209 power supply	V604 C-3	V1103 C-4	V1423 G-3	D1203 D-4
R1123 C-4	R1322 E-4	R1436 G-2	R1601 B-2	V211 power supply	V608 E-3	V1104 C-4	V1424 G-2	D1204 D-4/D-5 D1301 D-4
R1124 C-4	R1324 D-4	R1437 G-3	R1602 B-2	V212 power supply	V609 E-3	V1106 C-4	V1426 G-3	D1301 D-4 D1302 D-4
R1201 D-5	R1326 D-4	R1438 G-4	R1603 B-2	V213 power supply	V611 D-3	V1107 C-4	V1427 G-2	1 1
R 1202 D-5	R1327 E-4	R1439 G-3	R1604 B-2	V214 power supply	V612 D-3	V1108 C-4	V1428 G-2	1 1
R1203 D-4	R1328 D-4	R1441 G-2	R1606 B-2	V216 power supply	V613 E-3	V1109 C-4/D-4	V1429 G-2	·
R1204 D-4	R1329 E-4	R1442 G-2	R1607 B-2	V217 power supply	V614 E-3	V1201 D-5	V1431 G-2	T201 power supply
R1205 D-5	R1330 D-4/E-4	R1443 G-3	R1608 B-2	V218 power supply	V616 E-3	V1202 D-5	V1501 G-4	T202 power supply
R1206 D-5	R1331 E-4	R1444 G-3	R1609 B-2	V219 power supply	V617 E-3	V1206 D-4	V1502 G-4	F201 power supply
R1207 D-5	R1332 E-4	R1446 G-2	R1611 B-2	V221 power supply	V618 E-3	V1207 D-5	V1503 G-4	K501 C-2
R1208 D-5	R1333 E-4	R1447 G-2	R1612 B-2	V222 power supply	V619 E-3	V1208 D-5	V1504 G-4	K601 C-3 K1401 F-4
R1209 G-4	R1334 E-4	R1443	R1613 B-2	V223 power supply	V621 F-3	V1209 E-5	V1506 G-4 V1507 G-4	1
R1210 D-5	R1336 E-4	R1449 > on R6	R1614 B-2	V224 power supply	V622 F-3	V1211 D-5	V1507 G-4 V1508 G-4	L201 power supply L202 power supply
R1211 E-5	R1337 E-4	R1451)	R1616 B-2	V226	V623 F-3	V1212 D-5 V1213 D-5	V1508 G-4 V1509 G-4	
R1212 E-5	R1338 E-4	R1501 F-4	R1617 B-2	V227 high	V624 F-3	V1213 D-5	V1509 G-4 V1511 G-4	L203 power supply L801 G-2
R1213 E-4	R1339 E-4	R1502 G-4	R1618 B-2	V228 / tension V229 unit	V626 F-3	V1214 E-4 V1216 D-5	V1511 G-4 V1512 G-4	L802 F-2
R1214 E-4	R1340 E-4	R1503 G-4	R1619 B-2 R1651 F-5	V229 unit		V1216 D-5 V1217 E-4	V1512 G-4 V1514 G-4	L1501 trace rot. coil
R1216 E-4	R1341 E-4	R1504 G-4	111001 1-0	V231 /	\	J	1 1 1017 07	L 1001 trace rot. coll
R1217 D-5	R1342 E-4							
ı	R1343 E-4	1						

 	в ј С ј D ј
1	A AMPL. /DIV. (R9)
20 X1 CAL	C523 & A A A A A A A A A A A A A A A A A A
A ALT STA- CHOP SIC	9n V1528 V1527 R253 K601 2 2 2 2 3 K601 2 2 2 3 K601 2 2 2 3 4 2 2 3 4 2
AC S2A	V1100 R1341 C279 R1341 C281 R1341 C281 R1341 C281 R1341 C281 R1341 C381 R1341 R1
ALT TB ALT TB ALT TB S3B XDEFL AC AC AC S4A	R1032 V1009 R1038 - R1039 - R104 - R1039 - R104 - R
TVL TVL AUTO SAB TVF DC SAC SAC SAC SAC SAC SAC SAC SAC SAC SA	D1001
POWERS (R1) POWERS (R1) POWERS (R1) LAMP (B1) WIPERS (R1) WIPERS (R1) WIPERS (R1)	DELAY TIME SLOPE SWITCH(S6) SLOPE SWITCH(S6) WIPER LEVEL (R5) DELAY TIME MULTIPLIER (I

Fig. 3.40. Vertical amplifier unit with rear side tracks

Fig. 3.43

Fig. 3.43. Vertical amplifier unit with upper side tracks

BY127 BY 206 000 e c b BD237 0A95 BZX75/C3V6 e° b° c° BC548C BC558B 0(+) k(-) BSS68 CHOPPER BLANKING SUPPRESSION SIGNAL FROM R1687 OF THE ALTERNATE TIME BASE LOGIC CQY 24A-1 V1507 V1508

0A95 BAW62

V1511

BC548C V1502 BAW62 V1503 BAW62 MAIN TIME - BASE UNBLANKING SIGNAL PROM DIODE V1206

DELAYED TIME - BASE UNBLANKING SIGNAL PROM DIODE V1308 +6,2V V1519 C1504 C1504 PR1516 PR1516 SIGNAL FROM V1658 OF THE ALTERNATE TIME-BASE LOGIC H10k → -12V R1 INTENS V1521 BC548C V 1517 C1507 FROM DTB TIME/DIV. SWITCH S13 POINT 8 C254 15/2 +12.D C253 15,u +12C C252 15,u -180V R 281 C286 100n +180V R279 C284 100n +180A V233 R212 10k 10k 22n C110 V234 BY206 V236 BY206 V237 BAW62 13 V238
BAX12
V239
BAX12
V241
BAX12 V27 BD377 C2224 C2223 T33µ

L202

C2227 C2226

T470µ T68µ C207 V213 R2 R208 V 222 V219 V214 BC5480 W242
BAX12
V243
BAX12
V244
BAX12 R 209 V216 BC558B C2229 C2228 C220µ C33µ 14 V247 DI BY206 ☐C211 〒68µ

Fig. 3.45. Circuit diagram of the vertical amplifiers

		•
		•
		·

		•
		•
		•

