Střední průmyslová škola elektrotechnická a Vyšší odborná škola Pardubice MATURITNÍ ZKOUŠKA - TÉMATA PROFILOVÁ ČÁST MATURITNÍ ZKOUŠKY

Obor:	18-20-M/01 Informační technologie		
Zaměření:	Programování a hardware		
Povinná zkouška:	Hardware		
Třída:	4.D, 4.E	Školní rok:	2022/2023
Terminy:	jarní zkušební období, podzimní zkušební období		

1 Paměť a její adresace

Reálný režim, segmenty, offset

Chráněný režim, deskriptory, segmenty

Globální a lokální tabulky deskriptorů

Stránkování, TLB

Paměťové modely nepoužívající adresaci (fronta, zásobník)

2 Polovodičové paměti

Typické vývody, zápis a čtení, chipselect

Spojení více pamětí za účelem zvýšení celkové kapacity nebo šířky slova

SRAM, DRAM

Paměti nezávislé na napájení - ROM, PROM, EPROM, EEPROM, Sériová EEPROM FLASH (SLC, MLC)

Speciální paměti (vícebránová, NVRAM, Zálohovaná SRAM)

3 RISC a CISC, pipelining

Charakteristické rysy koncepce RISC a CISC

Výhody RISC návrhu

architektura moderních mikroprocesorů

typické fáze pipeliningu

hazardy, forwarding, load-use-delay, problém podmíněného skoku

Výpočetní výkon počítače, oscilátor, hodinový signál, důvody nutnosti synchronizace Růst taktovací frekvence, příklady mikroprocesorů, zastavení růstu frekvence

4 Paralelizace

Statická a dynamická paralelizace

VLIW

Superskalární procesor, IPC

Hyperthreading, vlákna

SIMD, MMX, SSE, pakované datové typy, výpočty se saturací

Amdahlův zákon

Problematika paralelního programování (vlákna, deadlock)

Možnosti zvyšování výkonu mikroprocesorů, multicore

5 První mikroprocesory řady x86

Základní pojmy mikroprocesorové techniky (registr, strojový kód, bit, bajt, data, šířka dat, architektura počítače)

Základní vlastnosti prvních mikroprocesorů řady x86, registry, režimy, přerušení a jeho obsluha, porty, DMA

6 Superskalární a vícejádrové mikroprocesory (IA-32, x86-64)

Základní vlastnosti (frekvence, výkon, možnosti, vnitřní struktura, cache) a historické souvislosti

Multicore procesory

Fáze Tick-Tock ve vývoji procesorů

AMD Ryzen

Vysvětlení souvisejících pojmů (BTB, Inkluzivní a exkluzivní cache, PCU, spekulativní provádění, NetBurst, Intel Core, FPU, TurboBoost, Systém Agent, Media Engine) IA-32, x86-64

Dennardovo škálování, Koomeyho zákon, dark-silicone a leakage current problém

7 Cache paměť

Důvod zavedení vyrovnávací paměti

Plně asociativní paměť, přímo mapovaná cache, vícecestná cache paměť

L1, L2 a L3 cache exkluzivní a inkluzivní

8 Sběrnice a základní deska

Základní vlastnosti a parametry sběrnic

Problematika sériové a paralelní komunikace, synchronizace, kódování, rušení

Vývoj sběrnic

Sběrnice PCI-E

Základní deska, severní můstek, jižní můstek, chipset

FSB, SDRAM, RAS, CAS, DDR paměti

9 Připojování periferních zařízení

Vývoj rozhraní pro připojování periferních zařízení (Sériová linka, Paralelní port, PS/2) USB

Další rozhraní (Firewire, eSATA)

Přenos obrazového signálu (VGA port, DVI, HDMI, DisplayPort)

10 Pevný disk a jeho fyzická a logická struktura

Princip magnetického záznamu dat, RLL kód

Základní parametry pevných disků

Fyzická struktura disku

CHS, LBA, ZBR, LMR, PMR, SMR

Souborové systémy FAT, NTFS, clustery a sektory

Defragmentace

MBR, oddíly, GPT, UEFI

11 Rozhraní pro připojování pevných disků, RAID, SSD

Vývoj rozhraní pro připojovaní disků (ST-506, IDE, PATA, SATA, S.M.A.R.T.)

Disková pole RAID

SSD (srovnání s pevným diskem, SLC/MLC/TLC, TBW, WAF, Overprovisioning, TRIM, IOPS)

Rozhraní pro připojování SSD

12 Tiskárna

Základní parametry tiskáren Používané barevné modely, dithering Technologie tisku, princip fungování tiskáren 3D tiskárny

13 Displeje

Barevný model RGB a barevná hloubka, Gamma křivka

Parametry LCD displejů (rozlišení, jas, kontrast, dynamický kontrast, pozorovací úhly, barevná hloubka, FRC dithering, odezva, input lag)

Typy podsvícení

Technologie TN, PVA/MVA, IPS, Quantum dot (srovnání vlastností)

OLED

e-ink

dotykové displeje

14 Snímače obrazu

CCD, CMOS snímač (princip, vlastnosti, parametry, použití)

Obrazové vady

Digitální fotoaparát, objektiv, clona expozice

Scanner

Čárový a QR kód

3D scan

15 Mobilní hardware

Historie a vývoj mobilního hardwaru

Notebooky a netbooky

Mikroprocesory Atom

Mikroprocesory ARM

System on chip, Embedded system

Smartphone, tablet

Polohovací zařízení, akcelerometr

GPS

Paměťové karty

NFC

16 Grafické adaptéry

Vývoj grafických adaptérů Uložení dat ve videopaměti 2D akcelerace, 3D akcelerace, základní pojmy

17 Optický záznam dat

Princip optického čtení dat, kódování CD, CD-R, CD-RW Otáčky a rychlost čtení (CLV, CAV, P-CAV, základní rychlosti a násobky) DVD, DVD+R, DVD-R, DVD+RW BluRay

18 Napájení počítače

Napájecí zdroje (funkce, parametry, linky, konektory, spínaný napájecí zdroj) Akumulátory Záložní zdroje energie (UPS)

Vypracoval:	Ing. Radek Jelínek
	Ing. Miroslav Koucký
Schváleno předmětovou sekcí IT1:	Ing. Miroslav Koucký
Schváleno ředitelem školy:	Mgr. Petr Mikuláš