OpenAI – GPT 1 Improving Language Understanding by Generative Pre-Training

Alec Radford et al, 2018.07

Feb.4.2021 신한이

o. Abstract

- NLP
- Generative pre-training & Fine-tuning
- Input representations => 효과적인 접근법
- Task-agnostic Model
- State-of-the-art

1. Introduction

- '원본'의 텍스트에서 효과적으로 학습하는 능력. => 지도학습에 대한 의존성을 낮춤
- 문제점:
 - 1. 어떤 최적화 목적 함수가 더 효과적인지 모른다. 과제마다 적절한 방법이 다름.
 - 2. 특정 과제에 있어서 가장 효과적인 방법에 대한 일치된 의견이 없다.
- 이 논문에서는 비지도 사전학습(Unsupervised pre-training)과 지도 미세조정 (Supervised fine-tuning)의 조합을 사용
- 학습의 단계:
 - 1. 신경망 모델의 초기 parameter를 학습하기 위해 언어모델링 목적함수를 사용
 - 2. 이 parameter를 연관된 지도 목적함수를 사용하여 목표 과제에 적용
- 모델 구성은 Transformer 사용.
- RNN에 비해 장거리 의존성 부분에서 뛰어나다.

2. Related Work

Semi-supervised learning for NLP

-> 단어, 구, 문장 수준의 embedding은 미분류 데이터로부터 학습될 수 있고 다양한 문제에서 텍스트를 적절한 벡터표현으로 변환할 수 있다.

Unsupervised pre-training

-> 다른 접근법은 상당한 양의 parameter를 추가했지만, GPT는 그렇지 않다.

Auxiliary training objectives

-> 보조 목적 함수 추가

3.1. Unsupervised pre-training

학습은 두 단계로 진행된다.

- 1. 큰 말뭉치에서 대용량의 언어 모델을 학습한다.
- 2. 분류 데이터를 써서 특정 과제에 맞추어 모델을 미세조정한다.

$$L_1(\mathcal{U}) = \sum_i \log P(u_i|u_{i-k},\dots,u_{i-1};\Theta)$$

3.1. Unsupervised pre-training

$$h_0 = UW_e + W_p$$

$$h_l = \operatorname{transformer_block}(h_{l-1}) \ \ \forall l \in [1, n]$$

$$P(u) = \operatorname{softmax}(h_n W_e^T)$$

3.2. Supervised fine-tuning

$$P(y|x^1,\ldots,x^m) = \operatorname{softmax}(h_l^m W_y)$$

$$L_2(\mathcal{C}) = \sum_{(x,y)} \log P(y|x^1,\ldots,x^m)$$

$$L_3(\mathcal{C}) = L_2(\mathcal{C}) + \lambda * L_1(\mathcal{C})$$

3.3. Task-specific input transformations

Figure 1: (left) Transformer architecture and training objectives used in this work. (right) Input transformations for fine-tuning on different tasks. We convert all structured inputs into token sequences to be processed by our pre-trained model, followed by a linear+softmax layer.

4. Experiments

Method	MNLI-m	MNLI-mm	SNLI	SciTail	QNLI	RTE
ESIM + ELMo [44] (5x)	120	2	89.3	2	128	_
CAFE [58] (5x)	80.2	79.0	89.3	-	-	-
Stochastic Answer Network [35] (3x)	80.6	80.1	1.7	Ø	170	(5)
CAFE [58]	78.7	77.9	88.5	83.3		
GenSen [64]	71.4	71.3	2	<u> </u>	82.3	59.2
Multi-task BiLSTM + Attn [64]	72.2	72.1	-	-	82.1	61.7
Finetuned Transformer LM (ours)	82.1	81.4	89.9	88.3	88.1	56.0

Method	Story Cloze	RACE-m	RACE-h	RACE
val-LS-skip [55]	76.5	R <u>-3</u> 5	12	12
Hidden Coherence Model [7]	<u>77.6</u>	-	-	-
Dynamic Fusion Net [67] (9x)	2-	55.6	49.4	51.2
BiAttention MRU [59] (9x)	84	60.2	50.3	53.3
Finetuned Transformer LM (ours)	86.5	62.9	57.4	59.0

4. Experiments

Method	Classification		Semantic Similarity			GLUE
	CoLA (mc)	SST2 (acc)	MRPC (F1)	STSB (pc)	QQP (F1)	
Sparse byte mLSTM [16]	34 .5	93.2	=	/ <u>2</u> %	12	-
TF-KLD [23]	<u>=</u> 5	-	86.0	(4)	12)	100
ECNU (mixed ensemble) [60]	6- 3	-	-	81.0	-	1 to
Single-task BiLSTM + ELMo + Attn [64]	35.0	90.2	80.2	55.5	66.1	64.8
Multi-task BiLSTM + ELMo + Attn [64]	18.9	91.6	83.5	72.8	63.3	68.9
Finetuned Transformer LM (ours)	45.4	91.3	82.3	82.0	70.3	72.8

5. Analysis

6. Conclusion

- 자연어이해 능력이 뛰어난 단일 모델(framework)를 소개.
- •
- 12개 중 9개의 과제에 대해 state-of-the-art를 달성
- •
- 성능 향상이 가능
- •