Analog Electronic Circuits (EC2.103): Endsem exam Instructor: Prof. Abhishek Srivastava, CVEST, IIIT Hyderabad Date: 1st May 2024 Decreased and Marks: 30

Date: 1st May, 2024, Duration: 3 Hours, Max. Marks: 30

Instructions:

• Clearly write your assumptions (if any)

• You can use own handwritten short notes (maximum 2 A-4 sheets both sides) in the exam hall

• Use of mobile phone and computers are not allowed during this exam

1. Consider M_1 is biased in saturation for the amplifier circuit shown in Figure 1 and channel length modulation effect is also present. As modulation effect is also present. Assume coupling capacitance (C_{C1}, C_{C2}) have negligible impedances

(a) Draw small signal model of the amplifier and derive voltage gain $\frac{v_{out}}{v_{in}}$.

[2 Mark]

(b) Derive the expression for Z_{in} .

[2 Mark]

(c) Derive the expression for the current gain $A_i = \frac{i_{out}}{i_{in}}$.

[2 Mark]

2. For the circuit shown in fig. 2,

- (a) Derive the voltage gain transfer function $A_v(s) = \frac{v_{out}(s)}{v_{in}(s)}$. Find the poles and zeros. [2 Mark]
- (b) Sketch the Bode magnitude plot for $A_v(s)$. Clearly mention slopes, pole and zero values on the [2 Mark] plot.
- (c) What is the frequency range for which the circuit acts like a differentiator. Explain briefly. What will be the effect of the high frequency noise on the circuit, discuss briefly. [2 Mark]

3. Answer the following:

(a) Consider the circuits shown in figure 3. It is given that the cut-in voltage of the diode is 0.7 V, thermal voltage $V_T = 25$ mV, $V_{IN} = 10$ V, $v_{in} = sin(\omega_0 t) V$ and $R = 10 k\Omega$. As shown in the figure, find v_{OUT} . [2 Mark]

As shown in Fig. 4(a), derive the overall transconductance (G_m) of the combination of N devices. It is given that the transconductance of a Q_i transistor is g_{mi} , where i = 1 to N. N BJT devices overall trans

Figure 4

(c) For the circuit shown in Fig. 4(c), find the % change in I_C if V_{BE} decreases by 1%. (a) For the circuit shown in Fig. 5(a), plot v_{out} vs v_{in} , when v_{in} ranges from negative to positive

conductance

(a)

(b) Draw voltage transfer characteristics of the circuit shown in Fig. 5(b) by sweeping v_{in} from -VDD to +VDD. Clearly mark the voltage levels (input and output) and directions on the plot. It is given that $R_1 = 2R_2$ and $V_B = \frac{3VDD}{4}$.

(a) Briefly discuss the method for extracting NMOS threshold voltage (V_T) parameter from SPICE simulations. Which mode of MOSFET operation would you prefer and why? Give necessary circuit setup, equations and graphs to support your answer. [2 Mark]

(b) For Fig. 6, derive $A_v = \frac{v_{out}}{v_{in}}$ (you can ignore C_C). Design $(I_D, \text{W/L} \text{ and resistor values})$ for $A_v = 5$, $R_S = 0\Omega$, $R_3 = 500\Omega$, total DC power $(P_{DC}) \le 2$ mW, VDD = 1.8 V, $V_{GS} = 0.8 \text{ V}$, $V_{R_3} = 0.55 \ V$, $\mu_n C_{ox} = 100 \mu A/V^2$, $V_{TH} = 0.5 \ V$ and $\lambda = 0$. [4 Mark]

Good luck!!