循環小數

康明昌

(-)

學過中學數學的人都知道如何把循環小 數化成有理數。至於把有理數化成循環小數 更是小學生都會的題目。例如,

 $1/7 = 0.142 857 \dots (6 位循環節),$ $1/13 = 0.076 923 \dots (6 位循環節),$ $1/17 = 0.0588 2352 9411 7647 \dots (16 位循環節),$

1/73 = 0.0136 9863 (8位循環節), 1/97 = 0.0103 0927 8350 5154 6391 7525 7731 9587 6288 6597 9381 4432 9896 9072 1649 4845 3608 2474 2268 0412 3711 3402 0618 5567 (96位循環節),

1/137 = 0.0072 9927.....(8位循環節). 任給一個有理數,例如 19/235,它的循環節 究竟有幾位?

在(1)式中,循環節都是偶數位,因此 我們可以把它分成前後兩段。注意,前段第k 個數與後段第 k 個數的和恆為 9。以 1/7 為例, 把循環節分成 142 與 857 兩段, 結果: 1 與 8, 4 與 5, 2 與 7, 這些數的和都是 9。這是「偶然」還是「必然」?

再看 1/7 的循環小數表示式,

 $1/7 = 0.\dot{1}42 \ 85\dot{7}, \quad 2/7 = 0.\dot{2}85 \ 71\dot{4},$ $3/7 = 0.\dot{4}28 \ 57\dot{1}, \quad 4/7 = 0.\dot{5}71 \ 42\dot{8},$ $5/7 = 0.\dot{7}14 \ 28\dot{5}, \quad 6/7 = 0.\dot{8}57 \ 14\dot{2},$

把 1/7 的循環節 142 857輪換排列: 如果從 2出發, 得 285 714, 這是 2/7 的循環節; 如果從 4出發, 得 428 571, 這是 3/7 的循環節。以下類推。

要說明以上的現象,並不需要高深的數學。只要具備「同餘」(congruence)的概念便足以揭破謎底。偉大的數學家高斯 (Carl F. Gauss, 1777~1855年) 在他的名著「Disquisitiones Arithmeticae」([4, Articles 312~318])就完整的討論過有理數的循環節。當代有名的數學家 John H. Conway與 Richard K. Guy 在他們合著的書「The book of numbers」([2, p.157~171])也討論過循環小數的性質。即使到1909年,美國

的數學期刊「Annals of Mathematics」都 還有關於循環小數的論文 ([3, p.177])。物理 學家 Richard P. Feynman 對於 1/243 的 循環小數表示式感到十分驚奇 ([8]):

 $1/243 = 0.004 \ 115 \ 226 \ 337 \ 448 \ 559??? \dots$

最近「科學雙月刊」雜誌又有一篇文章 談到這些奇妙的數:談祥柏,「初探精細結構 常數」([10])。似乎連循環小數都有無窮的奧 妙。是耶?非耶?

本文的目的是想借用初等數學的方法, 說明以上現象。讀者不需要學過初等數論, 只 要具備類似 [5, p.53~54; 9, p.6~10] 的知 識即可。

爲了讀者方便,略微說明同餘的符號如下: 設 n 是任意正整數, a, b 是任意整數, 如果 n 可以整除 a-b 時,我們說: 在模 n 之下, a 與 b 同餘; 記爲 $\lceil a \equiv b \pmod{n} \rfloor$ 。例如, $5 \equiv -2 \pmod{7}$ 。在本文中,N 代表所有正整數的集合。

 (\square)

觀察 (1) 式, 我們是否可以發現: 如果 p 是質數, 並且 d 是 1/p 的循環節的位數, 則 d 可整除 p-1?

更一般的, 我們可以證明:

定理 1: 如果 $1 \le b < a$, a 沒有 2或 5的質因數, 並且 a 與 b 互質, 那麼 b/a 的循環節位數恰好等於: $\min\{e \in N : 10^e \equiv 1 \pmod{a}\}$ 。

例如, $10^6 \equiv 1 \pmod{91}$,因此69/91 的循環節位數必定 ≤ 6 。根據 Lagrange 定理 ([5, Theorem 1.5., p.52; 9, 2.31., p.54]),循環節位數必定整除 6。事實上,69/91 = 0.758241。讀者如果已經檢查過: $10^2 \not\equiv 1 \pmod{91}$, $10^3 \not\equiv 1 \pmod{91}$, $10^4 \not\equiv 1 \pmod{91}$, $10^5 \not\equiv 1 \pmod{91}$, $10^6 \equiv 1 \pmod{91}$,你當然可以肯定的斷定69/91 恰有 6 位循環節。

如果你碰到的數是 489/235, 怎麼判斷它的循環節呢? 首先, 把分母中 2 或 5 的因數提出: $489/235=489/(5\cdot47)=(2\cdot489)/(10\cdot47)=(1/10)\cdot(978/47)=(1/10)\cdot\{20+(38/47)\}$ 。因此, 489/235 的循環節與 38/47 的循環節是一樣的 (何故?), 而它正也是 1/47 的循環節。

現在我們開始證明定理1。

設 $d = \min\{e \in N : 10^e \equiv 1 \pmod{a}\}$ 。如果 b/a 有 r 位循環小節,即

$$b/a = 0.\cdots \dot{c}_1 c_2 \cdots \dot{c}_r$$

則

$$10^r(b/a) = *.\underbrace{\cdots}_{S} \dot{c}_1 c_2 \cdots \dot{c}_r,$$

其中 $s \in N \cup \{0\}$ 。

因此, $(10^r - 1)(b/a)$ 只有 s 位小數, 也就是, $10^s \cdot (10^r - 1)(b/a)$ 是正整數。可 知, 存在正數 m 使得

$$10^s (10^r - 1)b = am.$$

因爲 a 與 b 互質, a 也與 10 互質, 故 知 a 可整除 $10^r - 1$, 也就是: $10^r \equiv 1 \pmod{a}$ 。根據 d 的定義, 可知: $d \leq r$ 。

在另一方面,因爲 a 整除 $10^d - 1$,所以 a 也整除 $(10^d - 1)b$ 。因此,存在正整數 q 使 得

$$(10^d - 1)b = aq,$$

也就是,

$$10^d \cdot b = aq + b.$$

因爲 $1 \le b < a$, 所以 $b \ge 10^d \cdot b$ 除 以 a 的餘數。可知 $d \le$ 循環節的位數。(讀者只須取個實例做做看便知; 例如, 取 22/37, d = 3。) 得證。

定理 2: 如果 $1 \le b < a$, a 沒有 2 或 5 的質因數, 並且 a 與 b 互質, 那麼 b/a 的循環節位數必整除 $\varphi(a)$ 。 ($\varphi(n)$ 是 Euler 的 φ 函數 [5, p.47; 9, p.69~71])。因此, 若

 $p \neq 5$ 是任一奇質數,且 p 不整除 b,則 b/p 的循環節位數必整除 p-1。

證明: 利用 Euler 定理 ([5, Theorem 2.5., p.102; 9, p. 69]); 請注意, $\min\{e \in N: 10^e \equiv 1 \pmod n\}$ 其實是10在乘法群 $(Z/nZ)^{\times}$ 的秩 (order)。得證。

定理 3: 如果 $n,m \geq 3$, 2與5都不整除 mn, 並且 n 與 m 是互質的正整數, 則 1/mn 的循環小數位數是 1/m 與 1/n 循環小數位數的最小公倍數。

證明: 根據「中國餘數定理」([5, p.107; $9, p.164 \sim 165$]), 再利用定理 1。

例題 4: 以下列出一些質數 p 與 1/p 的循環節位數:

	質數	-	3	7	11	13	17	19	23	29	31	37	41
循	環食	节位數	1	6	2	6	16	18	22	28	15	2	5
43	47	53	59	61	67	71	73	79	83	89	97	101	103
21	46	13	58	60	33	35	8	13	41	44	96	4	34
107	109	113	127	131	137	139	149	151	157	163	167	173	179
53	108	112	42	130	8	46	148	75	78	81	166	86	178
181	191	193	197	199	211	223	227	229	233	239	241	251	263
180	95	192	98	99	30	222	113	228	232	7	30	50	262
269	271	277 281	283	_									
268	5	69 28	141										

讀者有沒有發現, 1/p 的循環節位數恰好是 p-1 的質數相當多? 例如, p=7,17,19,23,29,47,59,61,.....。是不是有無窮多的質數 p 使

得 1/p 的循環節恰有 p-1 位? 這種質數的數目能否有個 比較精確的估計? 這就是 所謂的 [Artin 猜想]([6])。

設 p 是奇質數。如果 1/p

有 d 位循環節,利用定理 1 可以證明: $1/p^2$ 的循環節位數是 dp 。同理,若 $1/p^n$ 的循環節位數是 $dp^m (0 \le m < n)$,則 $1/p^{n+1}$ 的循環節位數是 dp^m 或 dp^{m+1} 。注意, $1/487^2$ 的循環節都有 486 位 ([1, p.79]) 。

(\equiv)

回到 1/7, 2/7, ..., 6/7 的循環小數表示式,爲什麼它們都可以經由 1/7 = 0.142857 的循環節輪換排列得到?

因爲 1/7 = 0.142 857... 所以 10(1/7) = 1.428 571... 。因此 3/7 = [10/7] = 0.428 571。同理,考慮 [30/7] = 2/7,[20/7] = 6/7,[60/7] = 4/7,[40/7] = 5/7,[50/7] = 1/7。得證。

但是 1/7 的循環節恰有 6(=7-1) 位。 如果是 1/137, 結果會如何?

 $1/137 = 0.\dot{0}072 \ 992\dot{7},$ $10/137 = 0.\dot{0}729 \ 927\dot{0},$ $100/137 = 0.\dot{7}299 \ 270\dot{0},$ $41/137 = 0.\dot{2}992 \ 700\dot{7},$ $136/137 = 0.\dot{9}927 \ 007\dot{2},$ $127/137 = 0.\dot{9}270 \ 072\dot{9},$ $37/137 = 0.\dot{2}700 \ 729\dot{9},$ $96/137 = 0.\dot{7}007 \ 299\dot{2}.$

在乘法群 $G = (Z/137Z)^{\times}$ 中, 設 H 是 10 所生成的子群, 則 H 恰有 8 個元素, 就

是以上8個數的分子部份: 1, 10, 100, 41, 136, 127, 37, 96。

考慮 G 中之 H 陪集表示法 ([5, p. 52; 9, p.55]):

 $G = H \cup 3H \cup 9H \cup 27H \dots \cup 3^{16}H$ 。 例如,陪集 $7H = \{7, 70, 15, 13, 130, 67, 122, 124\}$ 。

因爲 7/137 = 0.0510 9489, 所以

 $70/137 = 0.\dot{5}109 \ 489\dot{0},$ $15/137 = 0.\dot{1}094 \ 890\dot{5},$ $13/137 = 0.\dot{0}948 \ 905\dot{1},$ $130/137 = 0.\dot{9}489 \ 051\dot{0},$ $67/137 = 0.\dot{4}890 \ 510\dot{9},$ $122/137 = 0.\dot{8}905 \ 109\dot{4},$

 $124/137 = 0.9051 \ 0948$.

同理,取出其餘的陪集也可做出類似的結果。結論: 分數 1/137, 2/137, ..., 136/137 可分成17個軌道 (「陪集」!),每個軌道有8個元素,這8個元素的循環小數表示式是某一循環節做輪換造成的。

(四)

爲什麼把 24/91 = 0.263 736 的循環結分成兩段: 263 與736, 其對應項 (2 與7, 6 與3, 3 與6) 之和爲9?

在 24/91 的情況, 利用定理1可知: 10^6 $\equiv 1 \pmod{91}$ 。 因此, $10^3 \equiv -1 \pmod{91}$ 。 所以, 91 整除 10^3+1 , 91 也整除 $24(10^3+1)$ = 24+24000。 但是, 24/91=0.263 736, 24000/91=n+0.736 263 (回憶第 (三)

節的方法), 其中 n 是 24000/91 的整數部份。

因爲 24/91 + 24000/91 是整數, 可知

也是個整數。

這個整數當然是1。

因此 A=263+736 能是什麼樣的數呢? 首先,如果 $A\geq 1000$,那麼 $0.\dot{2}63$ $73\dot{6}+0.\dot{7}36$ $26\dot{3}$ 就超出 1;如果 $A\leq 998$,那麼 $0.\dot{2}63$ $73\dot{6}+0.\dot{7}36$ $26\dot{3}$ 就比 0.999 $999\dots$ 還要小。所以 A 只能是 999! 得證對應項之和必爲 9。現在你能不能證明以下定理?

定理 5: 若 $p \ge 7$ 是個質數, n 與 m 是任意正整數且 p 不整除 m, 則 m/p^n 的循環節有偶數位。將此循環節分成前後兩段, 則此兩段之對應項的和皆爲 9。

討論: 若 n 與 m 是任意互質之正整數, 且 n 與 10 互質,以上定理對於 m/n 仍然 成立,只要它滿足以下兩個條件: (i) m/n 的 循環節位數是偶數,令其爲 2k; (ii) $10^k \equiv$ $-1 \pmod{n}$ 。因此,這個定理對於 24/91 也 是成立的。但是在 37/303 = 0.1221 的情 形,因爲 $10^2 \not\equiv -1 \pmod{303}$,這個定理就 不適用了。

回到 (1) 式, 1/7 的循環節是3的倍數, 因此可以把它拆成 14, 28, 57 三段,它們 的和恰爲 99。(你能不能也給個「合理」的解 釋?) 但是,在(1)式中,1/17與1/73的循環節是4的倍數,把它們拆成四段,前後兩段的和(注意:不是對應項的和!)可能是99或198(假設每一小段有兩個數字)。請讀者對此也做個「合理的解釋」。

考慮 1/7 的長除法,

當商分別是 1, 4, 2, 8, 5, 7 時, 其餘數分別是 3, 2, 6, 4, 5, 1。把這些餘數分成兩段:326與451, 其對應項之和恰好是除數7!爲什麼?

假設
$$1/7 = 0.\dot{a}_1 a_2 \dots a_k \ b_1 b_2 \dots \dot{b}_k$$
, 當 $1 \le i \le k$,

$$10^{i} = 7 \cdot (a_{1}a_{2} \dots a_{i}) + r(\text{r}$$
是餘數),
 $10^{i+k} = 7 \cdot (b_{1}b_{2} \dots b_{i}) + s(\text{s}$ 是餘數)。

因為 $10^k \equiv -1 \pmod{7}$, 因此 $10^i + 10^{i+k}$ 可被 7整除, 所以 r+s 也可被整除, 得證 r+s=7。

例題6 ([1, p.77]): 怎麼求出 1/97 的循環小數表示式?

利用長除法,得 1/97 = 0.0103 0927 835 $\frac{5}{97}$ 。

60 數學傳播 25 卷 3 期 民 90 年 9 月

但是 5/97 是 1/97 的 5倍, 因此把 0103 0927 835 乘上 5倍, 得

 $1/97 = 0.0103\,0927\,8350\,5154\,6391\,75\frac{25}{97}$.

注意, $25 = 100 \div 4$ 。因此以上的小數可以「推進」100倍, 再除以4。得

$$25/97 = 0.2577 \ 3195 \ 8762 \ 8865$$
$$9793 \ 75 \frac{25 \cdot 25}{97}.$$

但是 $75\frac{25\cdot25}{97} = 81\frac{43}{97}$, $81\frac{43}{97} = 81.4432\frac{36}{97}$ 。 得知

 $1/97 = 0.0103 \ 0927 \ 8350 \ 5154 \ 6391$ $7525 \ 7731 \ 9587 \ 6288 \ 6597$ $9381 \ 4432 \dots;$

以下還有48位小數,但是根據定理5的討論,前段與後段對應數之和爲9。故,接下來的數應爲 9896 9072...,得 (1) 式中1/97的表示式。

(五)

以上的討論不只對於10進位的循環小數展開成立;當q是大於1的正整數,以上的性質對於q進位的循環小數展開式也成立([7, p.149])。

在過去兩三百年,究竟有哪些人研究過循環小數的性質?研究哪些問題? Dickson在 [3]的第六章有非常詳盡的記錄。但是,這都是過眼煙雲,讀者不看也罷。本文的目的之一是想告訴讀者,有一些看似「神祕」的現象其實可以用很簡單的數學方法加以證明,這

些數學方法有時難度並不高,有些則難度甚高 (如: Artin 猜想 [6])。

在本文結束之前, 我們看一看 Conway 與 Guy 書中的一個例子 ([2, p.170])。

例題 7: 如果 $n/91 = 0.\dot{a}bc \ de\dot{f}$,那麼有沒有一個正整數 m 使得 $m/91 = 0.\dot{f}ed\ cb\dot{a}$?例如,

 $13/91 = 0.\dot{1}42\ 85\dot{7},$

69/91 = 0.758241,

7/91 = 0.076923

 $30/91 = 0.\dot{3}29 67\dot{0},$

 $1/91 = 0.\dot{0}10 98\dot{9},$

 $90/91 = 0.989 \ 010$

5/91 = 0.054945,

2/91 = 0.021978

80/91 = 0.879 120

4/91 = 0.043956

60/91 = 0.659 340,

14/91 = 0.153846,

59/91 = 0.648351

24/91 = 0.263736

 $58/91 = 0.637 \ 362.$

爲什麼分母「必須」是91?這些對偶的數,如 13與69,7與30等,是怎麼找到的?首先,如 果

$$n/91 = 0.\dot{a}bc \ de\dot{f},$$

$$m/91 = 0.\dot{f}ed \ cd\dot{a},$$

那麼, $n/91 = abcdef/(10^6 - 1)$, $m/91 = fedcba/(10^6 - 1)$ 。

當然,如果任取 a, b, c, d, e, f,那麼 $abcdef/(10^6-1)$ 與 $fedcba/(10^6-1)$ 就 是我們希望找的有理數。

但是這兩個有理數的分母太大,不夠 「有趣」,我們希望分母小一點。

因爲 $10^6 - 1 = 3^3 \cdot 7 \cdot 11 \cdot 13 \cdot 37$, 並且 $1/3^3$ 的循環節有三位,而 1/7, 1/11, 1/13, 1/37 的循環節分別有 6位, 2位, 6位, 3位 (見例題 4)。

因此,如果 $abcdef/(10^6-1)$ 與 $fedcba/(10^6-1)$ 有 6位循環節,根據定理 3,化簡後的 $abcdef/(10^6-1)$ 與 $fedcba/(10^6-1)$ 的公分母不可能是 $7 \cdot 11 \cdot 13$,也不可能是 $3^3 \cdot 7 \cdot 13 \cdot 37$ 。

令 g 是 $abcdef/(10^6-1)$ 與 $fedcba/(10^6-1)$ 化簡後的公分母,那麼 $g=7, 13, 11\cdot 37, 7\cdot 13, 3^3\cdot 11, 3^2\cdot 7, 3^2\cdot 13$ 等等,都是可能的人選。但是由 (1) 式可知 1/7不合我們的需求。同理,1/13 也不合需求。

因為 $10^3 - 1 = 3^3 \cdot 37$, 如果 g 與 $3 \cdot 37$ 互 質, 那麼我們還可以利用定理 5。(即, 把循環節分成兩段, 則前後段對應項之和為 9)。

如果 g 剛好是 $7 \cdot 13 = 91$, 則 abcdef, fedcba 與 $10^6 - 1$ 的公因子 G 爲 $3^3 \cdot 11 \cdot 37$, 並且它必須整除 $abcdef - fedcba = (a - f)(10^5 - 1) + (b - e)10(10^3 - 1) + (c - d)10^2 \cdot 9 = 9 \cdot \{(a - f) \cdot 111111 + (b - e) \cdot 10 \cdot 111 + (c - d)10^2\}$ 。可知 $3 \cdot 11 \cdot 37$ 必須整除 $(a - f) \cdot 111111 + (b - e) \cdot 10 \cdot 1111 + (c - d)10^2$ 。所以 11(a - f - c + d) 應是 $3 \cdot 37 = 111$ 的倍數, 並且 a - f - b + e + c - d 應是 11

的倍數。結論: 只須選定 a, b, c, d, e, f 使 得

$$a-f-c+d\equiv 0\ (\mathrm{mod}\ 111),$$

$$a-f-b+e+c-d\equiv 0\ (\mathrm{mod}\ 11).$$

從第一個條件得知 f = a - c + d + 111k (k 是整數)。如果 $k \neq 0$,則不管 a, c, d 如何選取 ($0 \leq a, c, d \leq 9$), $|f| \geq 10$ 必成立。故 k = 0,並且 f = a - c + d。

把 f = a - c + d 代入第二個條件, 得知 e = b - 2c + 2d + 11h (h是整數)。經過討論可知 h = -2, -1, 0, 1, 2。

但是,根據定理 5,可知 a+f=b+e=c+d=9。結論: 取 a,b,c 使得 $0 \le a,b,c \le 9$,並且 d=9-c,f=9+a-2c,e=18+b-4c+11h $(h=0,\pm 1,\pm 2)$ 。請注意,a,b,c,d,e,f 還要滿足 ab+cd+ef=99 與 abcdef 是 $3^3\cdot 11\cdot 37=10,989$ 的倍數。這可以使 a,b,c 的選擇範圍更小。以下部份請讀者自行處理。

例題8: 決定所有的質數 p, 使得 1/p 的循環小數表示為 $0.00ab\ ccb\dot{a}$ 。

把 $0.\dot{0}0ab$ $ccb\dot{a}$ 化爲有理數,得 $1/p=abccba/(10^8-1)$ 。因爲 $10^8-1=3^2\cdot 11\cdot 73\cdot 101\cdot 137$,而 $10^4-1=3^2\cdot 11\cdot 101$,根據例題 4,11與 101的循環節分別是 2與 4;因此,如果 1/p 恰有 8 位循環節,則 p 只能是 73或 137。

根據定理 5, 得 c = 9, b = 9 - a。故 $abccba = a(10^5 + 1) + b(10^4 + 1) + 9900 =$ $89991a + 99990 = 3^2 \cdot 11 \cdot 101(9a + 10)$ 。

因此,把 $abccba/(10^8-1)$ 化簡,得 $(9a+10)/73\cdot 137$ 。但是 9a+10<137,

可知9a+10=73。得證 p=137 且 a=7,b=2, c=9。

可見只有一個質數 p, p = 137, 使得 1/p 是 8位循環節的循環小數, 並且 1/p 是 $0.\dot{0}0ab\ ccb\dot{a}$ 的形式。

仿照以上的討論,讀者請自行證明: 若m/n 的循環節有6位, $m/n=0.\dot{0}ab$ $cb\dot{a}$,並且 n 頂多有兩個質因數,證明 m/n=5/91或 4/143。

參考文獻

- A. H. Beiler, Recreations in the theory of numbers, 2nd ed., Dover Publ., New York, 1966.
- 2. J. H. Conway and R. K. Guy, The book of numbers, Springer, New York, 1998.
- 3. L. E. Dickson, History of the theory of numbers, Vol. 1, Chelsea, New York,

1952.

- 4. C. F. Gauss, Disquistiones Arithmeticae, English transl. by A. A. Clarke, Yale Univ. Press, New Haven, 1966.
- N. Jacobson, Basic algebra I, Freeman, San Francisco, 1974.
- M. Ram Murty, Artin's conjecture for primitive roots, Math. Intelligencer 10, No. 4 (1988), 59-67.
- M. R. Schroeder, Number theory in science and communication, Springer, Berlin, 1984.
- 8. 康明昌, 神秘的數,「中國時報」, 1994年4月 25日。
- 9. 康明昌, 近世代數, 聯經出版社, 台北, 1988。
- 10. 談祥伯,初探精細結構常數,「科學雙月刊」, 52卷第3期 (2000), 57-58。

—本文作者任教於台灣大學數學系—