2-枚举

2.A) 科幻nished套连接的nishing 7。 一组 Ē 说 科幻nished 一旦存在一个整数 ñ ∈ ñ 和双射 φè→ ♦ 1; ñ。

他们这么说 ñ 是 枢机主教 的 E: 是的元件的数量 E, 红衣主教笔记 (E) , |E| , 或# E.

- 一组是说 在无限 如果没有网络连接nished。
- 他们呼吁 独生子 一组基数1。
- · 对于无限 E 枢机主教 N,还有一个双射 � 1; ñ→ E,允许数目的元素 E 写: E = {-1 有2... 有 м.

实施例4。

• 卡({A,B,C,d})=4

•卡(�0;ñ)=N+1

•卡(�磔;ñ)=ñ-p+1

8号提案。 是否 \bar{E} 一个有限集合,和 \bar{E} ⊂ E. 然后 \bar{E} 是一个有限集合和:

卡(Ĕ) 卡(E)

随着当且仅当平等 *E =Ë*。

示例1。

推论1。 如果 F包括在 E是 F在无限,然后 E在无限。

建议9。 让 Ë和 "F两套无限,和 f: E→ F. Alors:

- 1- fest injective = ⇒ Card(E) � Card(F)
- 2- fest surjective = ⇒ Card(E) ♦ Card(F)
- 3- fest bijective = ⇒ Card(E) = Card(F)

Démonstration 2.

Proposition 10. Soient E et F deux non vides, avec E fini, et $f: E \rightarrow F$.
1- f(E) est fini, et Card(f(E)) ♦ Card(E).
2- Card($f(E)$) = Card(E) \Leftrightarrow fest injective. 3- fest surjective \Leftrightarrow F est fini et Card($f(E)$)
= Card(<i>F).</i>
Démonstration 3.
Théorème 7. Soient E et F deux ensembles finis, de même cardinal, et $f: E \to F$. Alors les trois assertions suivantes sont équivalentes :
1- f est injective. 2- f est
surjective. 3- f est
bijective.
Démonstration 4.
Théorème 8. Soient E et F deux ensembles finis, alors les ensembles suivants sont également finis, et on peut calculer leur cardinal :
• Eu F, avec # Eu F = #E +#F - # En F
• En F, avec # En F = #E +#F - # Eu F
• E×F, avec #E×F = #E ×# F
• Fe, avec #Fe=#F#E
• P(E), avec #P(E) = 2# E
2.b) Listes Définition 8. Soit E un ensemble fini, on appelle p - liste ou p - uplet tout élément de E_P , avec :
$E_{\rho=\{i\mid X^1,X^2,\ldots,X_{\rho}\}}/\forall\ i\in \diamondsuit\ 1;\rho\diamondsuit,x_{i}\in E\}$
Remarque 6. Attention, c'est une notion distincte d'un sous-ensemble de E à p éléments. D'une part, on peut avoir p ♦ Card(E), d'autre par
certains éléments d'un p-uplet peuvent se répéter, et enfin, l'ordre des éléments est important.
Théorème 9. Soit E un ensemble fini.

Card(E_P) = Card(E) $_P$

2.c) Arrangements et permutations Remarque 7. Dans une p-liste, certains éléments peuvent se répéter. Si l'on veut choisir une p-liste
d'éléments sans répétitions, cela revient à choisir un sous-ensemble F de E avec p éléments, ou encore à donner un ensemble F à p éléments,
et une fonction injective de E dans F (fonction correspondant au "choix" ou non de l'élément de E).
Définition 9. Soient <i>E</i> un ensemble, et <i>p</i> un entier naturel. On appelle <i>p</i> -arrangement d'éléments de <i>E</i>
toute p-liste d'éléments de E deux à deux distincts.
Proposition 11. Soit <i>E</i> un ensemble fini de cardinal <i>n</i> , <i>p</i> un entier. Le nombre de <i>p</i> -arrangements d'éléments de <i>E</i> est noté <i>A</i> _p n et :
Troposition 11. Out 2 th ensemble him de cardinarii, p un entier. Le nombre de p-arrangements d'éléments de 2 est note Aprèt.
$A_{pn}=n\times (n-1)\times \cdots \times (n-p+1)=n!$
$(n-p)! \text{ si } p \circledast n \text{ et } 0 \text{ sinon.}$
Remarque 8. Un p - arrangement est un p - uplet sans répétitions, mais l'ordre des éléments est important. Par exemple ; $(1, 4, 2)$ et $(1, 2, 4)$ sont
deux 3-arrangements différents de ♦ 1; 4 ♦.
Proposition 12. Soient E et F deux ensembles finis, de cardinaux respectifs n et p. Soit I l'ensemble des applications injectives de E dans F. Alor
:
$Card(I) = A_{P^{n}}$
Card(1) - Apri
Démonstration 5.
Définition 10. Soit E un ensemble fini, on appelle permutation de E toute bijection $\phi : E \rightarrow E$. L'ensemble des permutations de E est noté $S \in D$ e plus, si $E = \Phi$ 1; $n \Phi$, on note $S \in S \cap D$.
Lensemble des permutations de E est note SE De plus, si $E = \bigvee 1$; $N \bigvee 1$, on note $SE = SR$
Remarque 9. (σ(E), °) est un groupe (non-abélien).
Théorème 10. Si E est un ensemble fini, alors σ(E) est fini également et
Card(S_{E}) = Card(E)!
en particulier, on a
Card(S n) = n!
Démonstration 6.

2.d) Combinaison Définition 11. Soit E un ensemble. On appelle p- combinaison de E une partie de E ayant exactement

p éléments.

Remarque 10. Si on prend une *p*-combinaison particulière, il s'agit d'un sous-ensemble de *E*, donc d'une part, l'ordre des éléments n'a pas d'importance, et d'autre part, il n'y a pas de répétitions.

Théorème 11. Soit E un ensemble fini de cardinal n, et soit p ∈ ♦ 0; n ♦. Alors le nombre de p- combinaison de E est :

On le lit «p parmi n ».

Remarque 11. La dernière écriture nous indique que moralement, une combinaison est un arrangement dont on ne regarde pas l'ordre.

Proposition 13. Soient $n \in \mathbb{N}$, $p \in \emptyset$ 0; $n \diamondsuit$. On a alors : $\diamondsuit = \diamondsuit n \qquad \diamondsuit$

1-
$$\lozenge$$
 n

$$p$$

$$\lozenge = \lozenge n - 1$$

$$\lozenge + \lozenge n - 1$$

$$\lozenge$$
2- $\lozenge n$

$$p$$

$$\lozenge n \not \lozenge = 2n$$
3- n

$$p=0$$

2.e) Exercices Exercice I-5. Une fourmi se déplace sur les arêtes d'un tétraèdre. Chaque seconde, elle part d'un sommet pour aller à un autre sommet relié par une arête. Combien y a-t-il de chemins possibles en *n* secondes ? Même question pour un cube, et pour un dodécaèdre.

Exercice I-6. Combien y a-t-il de surjections de ♦ 1; n ♦ dans ♦ 1; 3 ♦ ?

Exercice I-7. On tire simultanément 8 cartes dans un jeu de 32 cartes. Combien y a-t-il de tirages possibles ? Combien d'entre eux contiennent deux carrés ?

Exercice I-8. Soient n et p deux entiers naturels non-nuls. Combien y a-t-il de listes de p entiers strictement croissantes ?

Exercice I-9. On veut organiser des matchs entre 2 *n* équipes de basket, chaque équipe disputant un match (c'est à dire, on veut construire *n* paires d'équipes). Combien y a-t-il de manière possible d'organiser ces matchs ?