

Blatt 1

1 Beweistechniken

- (a) Man zeige: Die Summe zweier ungerader ganzer positiver Zahlen ist eine gerade Zahl. Dabei sei 1 die erste ungerade Zahl größer 0.
- (b) Man zeige: Die Summe der Quadrate zweier gerader Zahlen ist gerade.
- (c) Man zeige: Für alle $n \in \mathbb{N}$ ist $n^2 + n$ gerade.
- (d) Man mache sich anhand einer Wahrheitstafel die Äquivalenz:

$$(A \Rightarrow B) \Leftrightarrow (\neg B \Rightarrow \neg A) \tag{1}$$

für A und B beliebige Aussagen noch einmal klar.

- (e) Man zeige: Für $l \in \{k^2 | k \in \mathbb{N}\}$ gilt: Ist l gerade, dann ist auch \sqrt{l} gerade. (Tipp: Man benutze Kontraposition).
- (f) Man zeige: Die Menge der natürlichen Zahlen hat kein größtes Element. (Tipp: Man benutze Reductio ad absurdum).

2 Surjektivität, Injektivität und Bijektivität

Entscheide durch Beweis oder Gegenbeispiel, ob die Funktionen Injektiv, Surjektiv oder Bijektiv sind:

- (a) $f: \mathbb{N} \to \mathbb{N}, n \to 2n+1$
- (b) $g: (-\pi, \pi) \to (-5, 5), x \to \cos(x)$
- (c) $h: [-2, \infty) \to [-2, \infty), x \mapsto x^2 2x 1$
- (d) $i: \mathbb{R} \setminus \{0\} \to \mathbb{R}, x \mapsto \frac{x^3}{|x|}$
- (e) $j: \mathbb{C} \to \mathbb{C}, z \to \sin(z)$

(Tipp: Schreibe den Sinus als Linearkombinationen aus e-Funktionen.)

3 Verknüpfte Funktionen

Seien M,N und P nichtleere Mengen und $f:M\to N$ und $g:N\to P$ Abbildungen, sodass $g\circ f=g(f(x))$ bijektiv ist. Zeige:

- (a) f ist injektiv
- (b) g ist surjektiv

4 Umkehrfunktion

Gegeben sei $f: \mathbb{R} \to \mathbb{R}, f(x) = x^2 + 2x - 2$.

- (a) Skizziere f(x) in einem geeigneten Bereich um den Scheitelpunkt.
- (b) Schränke den Definitions und den Wertebereich so ein, dass f(x) bijektiv ist. (Angeben reicht!)
- (c) Bestimme die Umkehrabbildung und gebe explizit den Definitions- und Wertebereich von f^{-1} an.
- (d) Gebe $f \circ f^{-1}$ und $f^{-1} \circ f$ explizit an.
- (e) Skizziere f^{-1} in einem geeigneten Bereich.

5 Induktion

Man beweise per Induktion

- (a) $5+3^n$ ist für alle $n \in \mathbb{N}$ durch 2 teilbar.
- (b) $\sum_{k=1}^{n} (k^2 1) = \frac{1}{6} (2n^3 + 3n^2 5n)$
- (c) $\prod_{k=1}^{n} 3^{2k} = 3^{n(n+1)}$
- (d) $\prod_{k=1}^{n} (1+x_k) \ge 1 + \sum_{k=1}^{n} x_k$, wobei $x_1, ..., x_n \ge 0, n \in \mathbb{N}$ fest.

6 Infimum und Supremum von Mengen

Geben Sie falls möglich für die folgenden Mengen je zwei obere und untere Schranken, Infimum, Minimmum, Supremum und Maximum an.

- (a) $\{0, -3, 5, 7\}$
- (b) $\left\{\frac{1}{2n+1} \middle| n \in \mathbb{Z} \setminus \{0\}\right\}$
- (c) $\{\exp(n)|n\in\mathbb{N}\}$

7 Infimum und Supremum bei Funktionen

Geben Sie falls möglich an:

- (a) $\inf_{x \in \mathbb{R}} \exp(x)$ und $\min_{x \in \mathbb{R}} \exp(x)$
- (b) $\inf_{x \in \mathbb{R}} \arctan(x)$ und $\min_{x \in \mathbb{R}} \arctan(x)$
- (c) $\sup_{x \in \mathbb{R}} \sin(x)$ und $\min_{x \in \mathbb{R}} \sin(x)$
- (d) $\sup_{x \in \mathbb{R}} x^2$ und $\sup_{x \in [0,1]} x^2$

8 Monotonie

Sind die folgenden Funktionen $f_\iota:\mathbb{R}\to\mathbb{R}$ (strikt) monoton? Begründen Sie. Geben Sie sonst eine Einschränkung des Definitionsbereichs an, sodass die Funktionen monoton sind.

- (a) $f_1: x \mapsto x^3$
- (b) $f_2: x \mapsto \sin(x)$
- (c) $f_3: x \mapsto -\exp(x)$
- (d) $f_4: x \mapsto x^3 x$

Finden Sie ein Beispiel für eine monotone aber nicht streng monotone Funktion.

9 Komplexe Zahlen

Berechnen und stellen Sie in der Form a + ib dar:

(a)
$$\frac{2}{4+i}$$

(d)
$$i + e^{i\pi}$$

(g)
$$Re(i \cdot (2+2i))$$

(b)
$$e^{i\pi/4} + e^{i3\pi/4}$$

(e)
$$\frac{3+4i}{e^{i5\pi/4}}$$

(h)
$$\text{Im}(|13/2 \cdot e^{i\pi/5}|)$$

(c)
$$e^{i\pi/4} + e^{-i\pi/4}$$

(d)
$$i + e^{i\pi}$$

(e) $\frac{3+4i}{e^{i5\pi/4}}$
(f) $|(4+i) \cdot e^{i\pi/13}|$

(i)
$$e^{i\pi/4+1}$$