$c \in \mathbb{R}$ $a \in \mathbb{R}$

1 Wzory na pochodne wybranych funkcji

$$c' = 0,$$

$$(x^{a})' = ax^{a-1},$$

$$(\log_{a} x)' = \frac{1}{x \cdot \ln a},$$

$$(\sin x)' = \cos x,$$

$$(\cos x)' = -\sin x,$$

$$(\cot x)' = \frac{1}{\sin^{2} x},$$

$$(\arctan x)' = \frac{1}{\sqrt{1 - x^{2}}},$$

$$(\arctan x)' = \frac{1}{\sqrt{1 - x^{2}}},$$

$$(\arctan x)' = \frac{-1}{1 + x^{2}},$$

$$(\sinh x)' = \cosh x,$$

$$(\cosh x)' = \frac{-1}{\sinh^{2} x}$$

$$(\cosh x)' = \frac{-1}{\sinh^{2} x}$$

$$(\cosh x)' = \sinh x,$$

$$(\cosh x)' = \sinh x,$$

$$(\cosh x)' = \frac{1}{\cosh^{2} x},$$

2 Pochodna sumy, różnicy, iloczynu, ilorazu funkcji

$$(f(x) + g(x))' = f'(x) + g'(x)$$

$$(c \cdot f(x))' = c \cdot f'(x), \qquad c - \text{liczba}$$

$$(f(x) \cdot g(x))' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$

$$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{g^2(x)}, \qquad \text{o ile } g \neq 0$$

3 Pochodna funkcji złożonej

Dana jest funkcja złozona $y=(g^\circ w)(x)$ czyli y=g(w(x)). w=w(x)- funkcja wewnętrzna, y=g(w)- funkcja zewnętrzna

3.1 Wzory na pochodne funkcji złożonych

$$c' = 0,$$

$$(w^{a})' = aw^{a-1} \cdot w', \qquad (a^{w})' = a^{w} \ln a \cdot w', \qquad (e^{w})' = e^{w} \cdot w',$$

$$(\log_{a} w)' = \frac{1}{w \cdot \ln a} \cdot w', \qquad (\ln w)' = \frac{1}{w} \cdot w',$$

$$(\sin w)' = (\cos w) \cdot w', \qquad (\cos w)' = (-\sin w) \cdot w', \qquad (\operatorname{tg} w)' = \frac{1}{\cos^{2} w} \cdot w',$$

$$(\operatorname{ctg} w)' = \frac{1}{\sin^{2} w} \cdot w',$$

$$(\operatorname{arcsin} w)' = \frac{1}{\sqrt{1 - w^{2}} \cdot w'} \qquad (\operatorname{arccos} w)' = \frac{1}{\sqrt{1 + w^{2}}} \cdot w' \qquad (\operatorname{arctg} w)' = \frac{1}{1 + w^{2}} \cdot w',$$

$$(\operatorname{arcctg} w)' = \frac{-1}{1 + w^{2}} \cdot w',$$

$$(\sinh w)' = (\cosh w) \cdot w', \qquad (\cosh w)' = (\sinh w) \cdot w', \qquad (\operatorname{tgh} w)' = \frac{1}{\cosh^{2} w} \cdot w',$$

$$(\operatorname{ctgh} w)' = \frac{-1}{\sinh^{2} w} \cdot w',$$

4 Całki Oznaczone

Definicja całki oznaczonej z funkcji $f(x) \ge 0$ w przedziale < a, b >

Dla każdej z lcizb $n = 1, 2, 3, \dots$ postępujemy następująco:

Przedział $\langle a, b \rangle$ dzielmy na podprzedziały punktami $x_0, x_1, x_2, \dots x_n$.

Punkty u_1, u_2, \ldots, u_n nazywamy **punktami podziału**.

Długości kolejnych podprzdziałów $\langle x_0, x_1 \rangle, \langle x_1, x_2 \rangle, \dots, \langle x_{n-1}, x_n \rangle$ oznaczamy przez $\Delta x_1, \Delta x_2, \dots, \Delta x_n$.

Największą z tych liczb nazywamy punktami pośrednimi.

Tworzymy sumę, zwaną sumą całkową

$$\sigma_n = f(u_1) \cdot \Delta x_1 + f(u_2) \cdot \Delta x_2 + \dots + f(u_2) \cdot \Delta x_2 = \sum_{k=1}^n f(u_k) \cdot \Delta x_k$$

Jeśli istnieje i jest skończona granica sum całkowych σ_n przy $n \to \infty$ oraz gdy zachodzą poniższe założenia 1-3, to granice tę nazywamy całką oznaczoną funkcji f(x) w przedziale a, b.

Oznaczamy ją symbolem $\int_a^b f(x)dx$.

- 1. Średnica podzału musić zmierzać do 0, gdy n zmierza do ∞ .
- 2. Granica nie może zależeć od wyboru punktów podziału $x_0, x_1, x_2, \dots, x_n$ dla $n=1,2,3,\dots$
- 3. Granica nie może zależeć od wyboru punktów pośrednich $u_0, u_1, u_2, \dots, u_n$ dla $n = 1, 2, 3, \dots$

krótko: $\lim_{n\to\infty} \sigma_n = \int_a^b f(x) dx$ jeżeli granica ta jest skończona i zachodzą założenia 1-3. Jeżeli $\int_a^b f(x) dx$ istnieje, to f(x) nazywa się funkcją **całkowalną** w przedziale < a, b >.

Funkcja ciągła w przedziale domkniętym jest w tym przedziale całkowalna.

$$\int_{a}^{b} (f(x) + g(x)) dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx \qquad \int_{a}^{b} \lambda f(x) dx = \lambda \int_{a}^{b} f(x) dx, \lambda \in \mathbb{R}$$
$$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx$$

4.1 Właściowści

Załóżmy, że funkcjie f(x), g(x) to funkcjie całkowalne w przedziale $\langle a, b \rangle$

1.
$$\int_{a}^{b} (f(x) + g(x))dx = \int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx$$

2.
$$\int_{a}^{b} \lambda f(x) dx = \lambda \int_{a}^{b} f(x) dx, \lambda \in \mathbb{R}$$

3.
$$\int_a^b f(x)dx = -\int_b^a f(x)dx.$$

4. Niech
$$c \in \langle a, b \rangle$$
 wtedy $\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b + f(x)dx$.

5. Niech
$$f(x) \le g(x)$$
 w $< a, b >$ wtedy $\int_a^b f(x) dx \le \int_a^b g(x) dx$.

4.2 Twierdzenie o wratości średniej

Dla dowolonej funkcji ciągłej f(x) w przedziale $\langle a, b \rangle$ istnieje taka liczba $h \in \langle a, b \rangle$, że

$$\int_{a}^{b} f(x)dx = (b - a)f(h)$$

5 Całki nieoznaczone

Funkcja F jest **funkcją pierwotną** funkcji f na przedziale I, jeżeli F'(x) = f(x) dla każdego $x \in I$.

5.1 Twierdzenie (warunek wystrczający instnienia funkcji pierwotnej)

Jeżeli funkcja jest ciagłą na przedzale to, ma funkcję pierwotną na tym przedziale.

5.2 Definicja

Całkę nieoznaczoną funkcji f zapisujemy w postaci $\int f(x)dx$ i definiujemy następująco:

$$\int f(x)dx = F(x) + c, \text{ gdy } F'(x) = f(x)$$

c – stała całkowania

5.3 Całki nioznaczone pewnych funkcji elementarnych

1.

