Complex Numbers and the Riemann Hypothesis How to win \$1 000 000

Vincent Macri Richard Yi

William Lyon Mackenzie C.I. Math Club

© Vincent Macri and Richard Yi, 2018

Table of Contents

1 Complex Numbers

2 The Riemann Zeta Function

Usually, we work with <code>real</code> numbers. Real include all integers, rational numbers, and irrational numbers. e.g. $1,~6.9,~\pi,~e,~\sqrt{123}$

Definition of i

 $i \text{ is defined as } \sqrt{-1}.$

$$\therefore i^2 = -1; (-i)^2 = -1$$

Definition of a complex number

A complex number is the sum of a real and imaginary number.

e.g.
$$1 + i$$
, $\pi + ei$, $0 + i$, $1 + 0i$, etc

Complex numbers have interesting properties, including how they and, multiply, and exponentiate.

Adding and Subtracting Complex Numbers Complex Numbers

You can add and subtract complex numbers like you would add polynomials (combine like terms).

Example 1

$$(5+3i) + (6+4i) = 11+7i$$

$$(3+6i) - (6-4i) = -3+2i$$

For some complex number a+bi, its **conjugate** is a-bi. The conjugate of a complex number z=a+bi is denoted with \overline{z} .

Example

What is the conjugate of 3 + 5i?

For some complex number a+bi, its **conjugate** is a-bi. The conjugate of a complex number z=a+bi is denoted with \overline{z} .

Example

What is the conjugate of 3 + 5i?

$$3-5i$$

For some complex number a + bi, its **conjugate** is a - bi. The conjugate of a complex number z = a + bi is denoted with \overline{z} .

Example

What is the conjugate of 3 + 5i?

$$3 - 5i$$

For some complex number a+bi, its **magnitude** is a^2+b^2 . The magnitude of a complex number z=a+bi is denoted with |z|.

Example

What is the magnitude of 3 + 5i?

For some complex number a + bi, its **conjugate** is a - bi. The conjugate of a complex number z = a + bi is denoted with \overline{z} .

Example

What is the conjugate of 3 + 5i?

$$3-5i$$

For some complex number a+bi, its **magnitude** is a^2+b^2 . The magnitude of a complex number z=a+bi is denoted with |z|.

Example

What is the magnitude of 3 + 5i?

$$3^2 + 5^2$$
$$= 34$$

You can multiply complex numbers like you would multiply binomials (using FOIL).

If
$$a = 5 + 3i$$
 and $b = 6 + 4i$, then $(5 + 3i) \times (6 + 4i)$
 $= (5 \times 6) + (5 \times 4i) + (3i \times 6) + (3i \times 4i)$
 $= 30 + 20i + 18i + 12i^2$
 $= 30 + 38i - 12$
 $= 18 + 38i$

Multiplying Complex Numbers Complex Numbers

A complex number multiplied by its congugate always gives its magnitude.

$$(5+3i) \times (5-3i)$$

= $5^2 - (3i)^2$
= 34

To divide complex numbers, make the denominator into a real number by multiplying top and bottom by its congugate.

$$\frac{1+2i}{2-3i}$$

$$= \frac{(1+2i)(2+3i)}{(2-3i)(2+3i)}$$

$$= \frac{2+3i+4i+6i^2}{2^2-(3i)^2}$$

$$= \frac{-4+7i}{13}$$

$$= \frac{-4}{12} + \frac{7}{13}i$$

Dividing Complex Numbers Complex Numbers

The general formula for dividing complex numbers a by b is:

Formula

$$\frac{a\times \overline{b}}{|b|}$$

Complex Plane Complex Numbers

Complex points can be visualized on the complex plane.

Complex Plane Complex Numbers

Complex points can be visualized on the complex plane.

The **magnitude** of the number is the distance of the point from the origin.

The **argument** is the polar angle (angle counter-clockwise from the x-axis in the positive direction) of the point.

Converting a+bi form to and from magnitude-argument (**polar**) form requires some trigonometry.

a+bi form to polar form

$$\begin{aligned} & \text{Magnitude} = |z| = a^2 + b^2 \\ & \text{Argument} = arg(z) = atan2(a,b) \\ & atan2(y,x) = \begin{cases} \arctan(\frac{y}{x}) & \text{if } x > 0, \\ \arctan(\frac{y}{x}) + \pi & \text{if } x < 0 \text{ and } y \geq 0, \\ \arctan(\frac{y}{x}) - \pi & \text{if } x < 0 \text{ and } y < 0. \end{cases} \end{aligned}$$

(LATEXcode stolen from Wikipedia)

The atan2 formula is derived from CAST rule.

Converting a+bi form to and from magnitude-argument (**polar**) form requires some trigonometry.

Polar form to a + bi form

Where Re(z) is the real part of the complex number and Im(z) is the imaginary part of the complex number and $\theta = \arg(z)$,

$$Re(z) = |z| \times \cos(\theta)$$

$$Im(z) = |z| \times \sin(\theta)$$

Euler's Formula Complex Numbers

Given a complex number in polar form, it can also be written in a closed-form expression (without converting back to a + bi).

Euler's Formula

For some complex number z:

$$z = |z| \times e^{arg(z) \times i}$$

Anecdote: Within a certain set of people, whenever someone says "Euler's Formula" or "Euler's Theorem", another person always asks "which one?". It occurred to be that while this was not just a joke; we actually need clarification because we have at some point or another mentioned this formula, Euler's Formula about planar graphs, and the Euler-Fermat Theorem.

Complex Numbers

De Moivre's Formula gives us a useful way of exponentiating complex numbers in polar form.

Statement

For some complex number z and integer n, if $y=z^n$,

$$y| = |z|^n$$

$$arg(y) = arg(z) \times n$$

Less formally, a complex number raised to the $n^{\rm th}$ power has its magnitude raised to the $n^{\rm th}$ power and its argument multiplied by n.

This can be trivially proven with Euler's Formula.

Table of Contents

1 Complex Numbers

2 The Riemann Zeta Function

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} \left\{ s \in \mathbb{C} \mid \text{Re}(s) > 1 \right\}$$
$$s = \sigma + it$$

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} \left\{ s \in \mathbb{C} \mid \text{Re}(s) > 1 \right\}$$
$$s = \sigma + it$$

$$\operatorname{Re}(s) = \sigma > 1$$

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} \left\{ s \in \mathbb{C} \mid \text{Re}(s) > 1 \right\}$$
$$s = \sigma + it$$

$$Re(s) = \sigma > 1$$

There is another definition of the function for $\sigma \leq 1$, which is beyond the scope of this lesson.

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} \left\{ s \in \mathbb{C} \mid \text{Re}(s) > 1 \right\}$$
$$s = \sigma + it$$

$$Re(s) = \sigma > 1$$

There is another definition of the function for $\sigma \leq 1$, which is beyond the scope of this lesson.

 $\zeta(s)$ is symmetric across the vertical line $\sigma=-\frac{1}{2}.$

Negative one twelfth The Riemann Zeta Function

$$\sum_{n=1}^{\infty} n \neq -\frac{1}{12}$$

Negative one twelfth The Riemann Zeta Function

$$\sum_{n=1}^{\infty} n \neq -\frac{1}{12}$$

Some people incorrectly believe this because $\zeta(-1)=-\frac{1}{12}.$

$$\zeta(-1) = \sum_{n=1}^{\infty} \frac{1}{n^{-1}} = \sum_{n=1}^{\infty} n$$

Negative one twelfth The Riemann Zeta Function

$$\sum_{n=1}^{\infty} n \neq -\frac{1}{12}$$

Some people incorrectly believe this because $\zeta(-1) = -\frac{1}{12}$.

$$\zeta(-1) = \sum_{n=1}^{\infty} \frac{1}{n^{-1}} = \sum_{n=1}^{\infty} n$$

But, remember that Re(s) > 1, so here we cannot use the simple definition of the Riemann zeta function.

$$\sum_{n=1}^{\infty} n \neq -\frac{1}{12}$$

Some people incorrectly believe this because $\zeta(-1) = -\frac{1}{12}$.

$$\zeta(-1) = \sum_{n=1}^{\infty} \frac{1}{n^{-1}} = \sum_{n=1}^{\infty} n$$

But, remember that Re(s) > 1, so here we cannot use the simple definition of the Riemann zeta function.

The sum of the natural numbers is related to, but not equal to, $-\frac{1}{12}$.

