

Chaos et météo

Avril 2024, Paris

Grégoire Le Lay, Laboratoire MSC (UPCité / CNRS)

Roue à eau

https://www.youtube.com/watch?v=7A_rl-DAmUE

Comportement de la roue

- Paramètres (debit entrant, temps de vidange, frottment...)
- Variables (vitesse de rotation, répartition de la masse d'eau)
- Lois physique (Bilan de masse + théorème du moment cinétique)

Trois équations différentielles couplées

$$J \dot{\omega} = -\nu \omega + gM x$$

$$\dot{x} = -K x + \omega y$$

$$\dot{y} = -K y - \omega x + \frac{QR}{M}$$

Comportement de la roue

Trois **équations différentielles** couplées

Variables:

- ω vitesse de rotation
- x position horizontale du centre de gravité
- y position verticale du centre de gravité

Chaos

Trois **équations différentielles** couplées **non-linéaires**

$$J\dot{\omega} = -\nu \omega + gM x$$

$$\dot{x} = -K x + \omega y$$

$$\dot{y} = -K y - \omega x + \frac{QR}{M}$$

Chaos

Trois **équations différentielles** couplées **non-linéaires**

$$\begin{split} J\,\dot{\omega} &= -\nu\,\omega &+ gM\,x\\ \dot{x} &= -K\,x &+ \omega\,y\\ \dot{y} &= -K\,y &- \omega\,x &+ \frac{QR}{M} \end{split}$$

Sensibilité exponentielle aux conditions initiales!

+

apériodicité

=

chaos déterministe

Paramétrisation

$$J \dot{\omega} = -\nu \omega + gM x$$

$$\dot{x} = -K x + \omega y$$

$$\dot{y} = -K y - \omega x + \frac{QR}{M}$$

$$\frac{1}{\sigma}\dot{W} = -W + X$$

$$\dot{X} = -X + WY$$

$$\dot{Y} = -Y - WX + \rho$$

Système compliqué (8 paramètres)...

- $\bullet \ M$ Masse
- R Rayon
- Q Débit entrant
- ν Frottement

- ullet K Taux de vidange
- 9 Gravité
- α Angle d'inclinaison
- ,J Moment d'inertie

... Mais le comportement final du système ne depend que de deux **nombres sans dimensions**

$$\rho = \frac{R Q g \sin \alpha}{K^2 \nu}$$

$$\sigma = \frac{\nu}{J K}$$

Le nombre de Rayleigh compare l'apport de mouvement au ralentissement Le nombre de Prandtl compare deux modalités de ralentissement

Paramétrisation

En fonction de la valeur des nombres de Rayleigh et de Prandtl le système peut adopter différents comportements

- Rotation à vitesse constante (zone hachurée)
- Comportement périodique (zones blanches)
- Comportement chaotique (zones en couleur)

À quoi ressemble un modèle minimal de la météo ?

Ingrédients :

La Terre

À quoi ressemble un modèle minimal de la météo ?

Ingrédients :

- La Terre
- L'atmosphère

À quoi ressemble un modèle minimal de la météo ?

Ingrédients:

- La Terre
- L'atmosphère
- Le Soleil

On oublie:

- L'humidité
- Les nuages
- Le relief
- · La variation de la pesanteur
- La rotation de la Terre

• ...

À quoi ressemble un modèle minimal de la météo ?

Ingrédients:

- La Terre
- L'atmosphère
- Le Soleil

On oublie:

- L'humidité
- Les nuages
- Le relief
- · La variation de la pesanteur
- La rotation de la Terre

•

À quoi ressemble un modèle minimal de la météo ?

Chaos et météo

Même un modèle minimal de la météo est chaotique!

> À quel point est-il difficile de prédire le temps qu'il fait ?

Chaos et météo

1961 : ENIAC : premier ordinateur programmable, puissance ~ 500 flop

2014 : Beaufix, supercalculateur de météofrance, 1 petaflop (10¹⁵)

Prévision météo honnête sur 24 h

Prévision météo honnête sur pas très longtemps

