Red neuronal SOM

Jorge Luis Guevara Díaz

G. M. Edelman premio Nobel de medicina 1972

director del Instituto de Neurociencia y presidente del *Neurosciences Research Foundation*Jorge Luis Guevara Díaz

Teuvo Kohonen

$$y_i = -r_i(y_i) + EntradaNeurona_i + \sum_{i=1}^n z_{ij}y_j$$

$$\|x-w_c\|=\min_i(\|x-w_i\|)$$

$$w_i(t+1) == \left\{egin{array}{ll} w_i(t) + lpha(t)h(\mid i-g\mid)(x-w_i(t)) & ext{si } i\epsilon R \ 0 & si \geq 0 \end{array}
ight.$$

Funcion gaussiana

$$h(\mid i-g\mid,t) = e^{-\frac{(\mid i-g\mid)^2}{2R(t)^2}}$$

Función triangular

$$h(\mid i-g\mid,t) = \left\{ egin{array}{ll} 0 & ext{si}\mid i-g\mid > t \ rac{R(t)-\mid i-g\mid}{R(t)} & ext{si}\mid i-g\mid \leq t \end{array}
ight.$$

Jorge Luis Guevara Diaz

Jorge Luis Guevara Díaz

Algoritmo 1 Aprendizaje Kohonen

Requiere: inicializar pesos $w_{i,j}$ para cada neurona en la capa de competición

Mientras los pesos $w_{i,j}$ no varíen significativamente Hacer

Para cada patrón de entrada Hacer

presentar el patrón a la red

obtener la neurona ganadora

actualizar pesos de la neurona ganadora y de sus vecinos

Fin Para

actualizar tasa de aprendizaje y radio de vecindad

Fin Mientras

Aplicación de los SOM al Problema del Agente Viajero

Jorge Luis Guevara Díaz

Aplicación de los SOM al Problema del Agente Viajero

PRUEBAS

Numero ciudades	Ruta Greedy	Ruta Kohonen G	Ruta Kohonen T
4	1160	1160	1160
5	1111.6	1111.6	1111.6
6	1285.50	1115.34	1181.98
7	1567.70	1538.50	1567.70
8	1447.71	1540.44	1659.52
9	1667.81	1688.44	1659
10	1696.86	1672.53	1647.89
11	2061.35	1876.05	1958.55
12	1427.03	1469.86	1469.86
13	2173.22	2104.41	2089.77
14	1787.16	1797.55	1773.59
15	2547.85	2370.59	2605.72

```
Algoritmo 2 Mapa Autoorganizativo para el Problema del Agente Viajero
Requiere: inicializar pesos w_{i,j} para cada neurona en la capa de competición
  Mientras los pesos w_{i,j} no varíen significativamente Hacer
    Para cada nodo u_i de G(V,E) Hacer
       presentar la ciudad u_i a la red
       obtener la neurona ganadora
       Si la neurona ganadora, ha ganado antes para esta pasada Entonces
         Si valor < 0.5 Entonces
            crear neurona a la izquierda
            asignar pesos a la neurona creada w_{n,j} = (0.04 * w_{k-1,j} + (0.95)w_{k,j}) + (0.01\gamma_i)
         Si No
            crear neurona a la derecha
            asignar pesos a la neurona creada w_{n,j} = (0.04 * w_{k+1,j} + (0.95)w_{k,j}) + (0.01\gamma_i)
         Fin Si
       Fin Si
       Si si la neurona no gano para tres iteraciones seguidas Entonces
         eliminar la neurona
         actualizar pesos de la neurona ganadora y de sus vecinos
       Fin Si
     Fin Para
     actualizar tasa de aprendizaje y radio de vecindad
  Fin Mientras
```

 $\theta(V*n*iteraciones)^{\log 2}$