Exam 1 Review

Problem 1. Use the plot of the function f(x) below to answer the following questions:

(i)
$$f(2)$$

(ii)
$$\lim_{x\to 2^-} f(x)$$

(iii)
$$\lim_{x \to 2^+} f(x)$$

(iv)
$$\lim_{x\to 2} f(x)$$

(v)
$$\lim_{x \to -2^-} f(x)$$

(vi)
$$\lim_{x \to -2^+} f(x)$$

(vii)
$$\lim_{x \to -2} f(x)$$

(viii)
$$\lim_{x \to -\infty} f(x)$$

(ix)
$$\lim_{x\to\infty} f(x)$$

- (x) What is the *y*-intercept of f(x)?
- (xi) What are the zeros of f(x)?
- (xii) If f(x) has any vertical asymptotes, give their equation.
- (xiii) Where is f(x) continuous?
- (xiv) List at least 4 values for x at which f(x) is not differentiable.

Problem 2. For the function f(x), whose graph is shown in the figure below, compute the following limits. If the limit does not exist, write 'DNE.'

(i)
$$\lim_{x \to -3^-} f(x)$$

(v)
$$\lim_{x \to 2^+} f(x)$$

(ii)
$$\lim_{x \to -3^+} f(x)$$

(vi)
$$\lim_{x\to 2} f(x)$$

(iii)
$$\lim_{x \to -3} f(x)$$

(vii)
$$\lim_{x \to -\infty} f(x)$$

(iv)
$$\lim_{x \to 2^-} f(x)$$

(viii)
$$\lim_{x \to \infty} f(x)$$

Also, find and classify and discontinuities for f(x). Determine any values where f(x) is not differentiable. Finally, determine the value of the derivative at x=-1 and x=5.

Problem 3. For the function f(x), whose graph is shown in the figure below, compute the following limits. If the limit does not exist, write 'DNE.'

(i)
$$\lim_{x \to -4^-} f(x)$$

(x)
$$\lim_{x \to 2^+} f(x)$$

(ii)
$$\lim_{x \to -4^+} f(x)$$

(xi)
$$\lim_{x\to 2} f(x)$$

(iii)
$$\lim_{x \to -4} f(x)$$

(xii)
$$f(2)$$

(iv)
$$f(-4)$$

(xiii)
$$\lim_{x \to 4^-} f(x)$$

(v)
$$\lim_{x \to -1^-} f(x)$$

(xiv)
$$\lim_{x \to 4^+} f(x)$$

(vi)
$$\lim_{x \to -1^+} f(x)$$

(xv)
$$\lim_{x\to 4} f(x)$$

(vii)
$$\lim_{x \to -1} f(x)$$

(xvi)
$$f(4)$$

(viii)
$$f(-1)$$

(xvii)
$$\lim_{x \to -\infty} f(x)$$

(ix)
$$\lim_{x \to 2^-} f(x)$$

(xviii)
$$\lim_{x \to \infty} f(x)$$

Problem 4. Showing all your work, compute the following limits:

(i)
$$\lim_{a \to 0} \frac{\sin(5a)}{3a}$$

(xii)
$$\lim_{x \to \infty} x \sin\left(\frac{1}{x}\right)$$

(ii)
$$\lim_{x \to -\infty} \left(\frac{1}{x} - \arctan x \right)$$

(xiii)
$$\lim_{x \to -4} \frac{x+4}{x^2-16}$$

(iii)
$$\lim_{x\to 4} \frac{x^2 - 5x + 4}{x^2 - 2x - 8}$$

(xiv)
$$\lim_{x \to 0} \frac{\cos x - 1}{2x^2}$$

(iv)
$$\lim_{r \to 0} \frac{\tan^2(r)}{r}$$

(xv)
$$\lim_{g \to \infty} \frac{4 - g}{g^3 + 1}$$

(v)
$$\lim_{x \to 1} \frac{x+5}{|x+1|}$$

(xvi)
$$\lim_{h\to 0} 3\sqrt{h} \sin\left(\frac{5}{h}\right)$$

(vi)
$$\lim_{x \to \infty} \frac{4x^2 - 3x + 7}{6x^2 + 7}$$

(xvii)
$$\lim_{v \to -3^-} \frac{4v+1}{v+3}$$

(vii)
$$\lim_{s \to \infty} \left(1 + \frac{6}{s}\right)^{2s}$$

(xviii)
$$\lim_{y \to \infty} \left(1 - \frac{1}{5y}\right)^y$$

(viii)
$$\lim_{s \to 3^+} \frac{1-s}{s-3}$$

(xix)
$$\lim_{w\to 0} \frac{\sin(6w)}{\sin(2w)}$$

(ix)
$$\lim_{q \to 0^+} (1 + 5q)^{4/q}$$

(xx)
$$\lim_{u\to 0} \frac{\tan(\pi u)}{\sin(\pi u)}$$

(x)
$$\lim_{x \to \frac{\pi}{2}} \frac{\cos x}{\cot x}$$

$$(xxi) \lim_{t \to -\infty} \frac{1 - t^3}{5t + 6}$$

(xi)
$$\lim_{x\to 5^-} \frac{5x-25}{|x-5|}$$

(xxii)
$$\lim_{x\to 3} \left(\frac{2x}{x+3} - |x|\right)$$

Problem 5. Determine whether the given function is continuous on the given interval \mathcal{I} :

(i)
$$f(x) = \frac{x \sin x}{x - 5}$$
, $\mathcal{I} = (-4, 4)$

(iii)
$$h(x) = \frac{4x}{x^2 - x - 6}$$
, $\mathcal{I} = (1, \infty)$

(ii)
$$g(x) = e^x \cos x - 3x^2, \mathcal{I} = (-\infty, \infty)$$

(ii)
$$g(x) = e^x \cos x - 3x^2$$
, $\mathcal{I} = (-\infty, \infty)$ (iv) $j(x) = \sqrt[3]{x} - \log_6(x^2 + 1)$, $\mathcal{I} = (-\infty, \infty)$

Problem 6. Determine the largest interval where the following functions are continuous:

(i)
$$f(x) = (1 - 2x)^3$$

(iv)
$$j(x) = e^x - \ln x$$

(ii)
$$g(x) = \sin^2 x - \cos x + \sqrt{x}$$

(v)
$$k(x) = \frac{x^2 - 1}{x^3 - 4x^2 - 5x}$$

(iii)
$$h(x) = \frac{x}{x+3}$$

(vi)
$$\ell(x) = \sin(1 - x^2) + \arctan x + 5$$

Problem 7. Find a, b so that the following function is everywhere continuous. Be sure to use any necessary theorems and the definition of continuity to prove f(x) is everywhere continuous.

$$f(x) = \begin{cases} 6 - x, & x \le -1\\ ax - b, & -1 < x \le 3\\ x^2 - 3x, & 3 < x \end{cases}$$

Problem 8. Using the definition of the derivative, find the derivative of the given function at the indicated value:

(i)
$$f(x) = x^2 - 5x + 2$$
, $a = 1$

(iii)
$$h(x) = \sqrt{x+7}, a = 2$$

(ii)
$$g(x) = \frac{1}{x}$$
, $a = -3$

(iv)
$$j(x) = |2x - 1|, a = 3$$

Problem 9. Using the definition of the derivative, find the derivative of the given function:

(i)
$$f(x) = 2x^2 - 3x + 5$$

(iii)
$$h(x) = \frac{x}{x+1}$$

(ii)
$$q(x) = \sqrt{1-x}$$

(iv)
$$j(x) = 2x^{3/2}$$

Problem 10. Showing all your work, compute the following:

(i)
$$\frac{d}{dx} \left(5\sqrt[3]{x^2} - 4e^{2x} \right)$$

(vii)
$$\frac{d}{dx}e^{10x}\sin x\cos x$$

(ii)
$$\frac{d}{dx} \cos^3(2^{-x})$$

(viii)
$$\frac{d^2}{dx^2} \left(\frac{1}{3^x} - \frac{1}{x^2 - x} \right)$$

(iii)
$$\frac{d}{dx} \log_5(x) \arctan(5x)$$

(ix)
$$\frac{d}{dx} \left(\frac{\sec x - x}{\sqrt{x} \ln x} \right)$$

(iv)
$$\frac{d}{dx} \left(\frac{x - x^3}{5x - 6} \right)$$

(x)
$$\frac{d}{dx} \left(1 - \frac{x}{x - \cot x} \right)^5$$

(v)
$$\frac{d^2}{dx^2} \left(-2\csc(e^x) - \operatorname{arcsec} x\right)$$

(xi)
$$\frac{d}{dx} x^3 \tan^2(3x)$$

(vi)
$$\frac{d}{dx} \left(\frac{8^{-x} \sin x}{(2x+1)^2} \right)$$

(xii)
$$\frac{d^2}{dx^2} (3x^2 - 5x + 9)^{12}$$