

Grelha de respostas certas

Versão A

Grupo	1	2	2			ć	3				4	4		5
		a)	b)	a)	b)	c)	d)	e)	f)	a)i.	a)ii.	b)i.	b)ii.	
	С	D	В	В	С	В	A	F	A	С	В	D	D	С

Versão B

Grupo	1		2				}				4	4		5
		a)	b)	a)	b)	c)	d)	e)	f)	a)i.	a)ii.	b)i.	b)ii.	
	A	Е	В	С	D	A	Е	F	С	В	С	С	E	A

Resolução abreviada do 1° Teste

Versão A

1. Admita que A e B são dois acontecimentos independentes de um espaço de probabilidades (Ω, \mathcal{F}, P) , que $P(A) = \frac{1}{2}$ e que $P(A \cup B) = \frac{2}{3}$. Considere as seguintes afirmações:

(1)
$$P(B) = \frac{1}{3}$$
 (2) $P(A|B) = \frac{1}{2}$

Qual ou quais as afirmação(ões) correta(s)?

A Apenas a afirmação (1) B Apenas a firmação (2) C Ambas as afirmações D n.o

(1) Pela independência dos acontecimentos, $P(A \cap B) = P(A)P(B) = \frac{1}{2}P(B)$ $P(A \cup B) = P(A) + P(B) - P(A \cap B) \Leftrightarrow \frac{2}{3} = \frac{1}{2} + P(B) - \frac{1}{2}P(B) \Leftrightarrow P(B) = \frac{1}{3}$ (2) $P(A|B) = P(A) = \frac{1}{2}$

(1.6) 2. Uma empresa farmacêutica fez um ensaio clínico para avaliar a eficácia dos medicamentos A, B e C para o tratamento da obesidade. Os três medicamentos foram administrados respetivemente a 30%, 30% e 40% dos doentes, tendo cada um recebido apenas um dos medicamentos. No final do estudo, 75% dos doentes perderam peso. Sabe-se ainda que 90% dos doentes que tomaram o medicamento A perderam peso, e a correspondente percentagem para o medicamento B é 80%.

Seleccionado ao acaso um doente de entre os que realizaram este ensaio clínico:

(1.6) (a) Qual a probabilidade de um doente, que recebeu o medicamento C, perder peso?

A 0.3 B 0.4 C 0.5 D 0.6 E 0.7 F n.o.

(1.6) (b) Qual a probabilidade de um doente, que perdeu peso, ter recebido o medicamento A?

A 0.17 B 0.36 C 0.33 D 0.27 E 0.9 F n.o.

Considerem-se os acontecimentos:

 $A,\,B,\,C$ - a um doente ter sido administrado o tratamento A, B, C, respectivamente L - um doente perder peso no final do estudo

$$\begin{array}{l} P\left(A\right) = 0.3 \quad P\left(B\right) = 0.3 \quad P\left(C\right) = 0.4 \\ P\left(L\left|A\right) = 0.9 \quad P\left(L\left|B\right.\right) = 0.8 \quad P\left(L\right) = 0.75 \end{array}$$

(a)
$$P(L) = P(L|A) P(A) + P(L|B) P(B) + P(L|C) P(C) \Leftrightarrow 0.75 = 0.51 + 0.4 P(L|C) \Leftrightarrow P(L|C) = 0.6$$

(b)
$$P(A|L) = \frac{P(L \cap A)}{P(L)} = \frac{P(L|A)P(A)}{P(L)} = \frac{0.9 \times 0.3}{0.75} = 0.36$$

3. Considere (X,Y) um par aleatório com a seguinte função de probabilidade conjunta:

$X \setminus Y$	-1	0	1	
-1	0.2	0	0.2	0.000 0 6 10 0 4
0	0	$0 \\ 0.2$	0	$com \ p \in]0, 0.4[$
1	p	0	0.4 - p	

(a) O valor de P(X + Y < 0) é: (1.4)

$$f A$$
 $0.4-p$ $f B$ 0.2 $f C$ $0.4+p$ $f D$ 0.4 $f E$ 1 $f F$ n.o.

(b) O valor de V(X+1) é: (1.4)

$$f A$$
 $p(1-p)$ $f B$ 0.5 $f C$ 0.8 $f D$ 1.8 $f E$ 1.8+p $f F$ n.o.

___ Falsa

(c) Se E(X + Y) = 0.2, então: (1.4)

(1.4)(d) Assuma que p = 0.2. A covariância entre X e Y tem valor:

$$f A = 0$$
 $f B = 0.1$ $f C = 0.2$ $f D = 0.3$ $f E = 0.4$ $f F = n.o.$

(e) Indique o valor lógico da afirmação: X e Y são duas variáveis independentes. (1.0)

Verdadeira

(1.4) (f) Assuma
$$p=0.2$$
 e considere a v.a. $M=\max(X,Y)$. A função de probabilidade da v.a. M é:

(a)
$$P(X+Y<0) = P(X=-1;Y=-1) + P(X=-1;Y=0) + P(X=0;Y=-1) = 0.2$$

(b)
$$E(X) = 0$$
 $E(X^2) = 0.8$ $V(X) = 0.8$ $V(X+1) = V(X) = 0.8$

(c)
$$E(Y) = -0.2 - p + 0.6 - p = 0.4 - 2p$$

 $E(X + Y) = 0.2 \Leftrightarrow E(X) + E(Y) = 0.2 \Leftrightarrow 0.4 - 2p = 0.2 \Leftrightarrow p = 0.1$

(d)
$$E(X) = 0$$
 $E(Y) = 0$ $E(XY) = 0$ $cov(X, Y) = 0$

(e)
$$X$$
 e Y serão v.a.'s independentes sse
$$P\left(X=x;Y=y\right)=P\left(X=x\right)P\left(Y=y\right),\ x=-1,0,1\ ;\ y=-1,0,1$$

Como P(X = -1; Y = 0) = 0 e P(X = -1) $P(Y = 0) = 0.4 \times 0.2$, concluímos que X e Y não são v.a.'s independentes.

(f)
$$M = \max(X, Y) \begin{cases} -1 & 0 & 1 \\ 0.2 & 0.2 & 0.6 \end{cases}$$

		Α	B(4, 0.6)	В	H(12, 8, 4)	C	H(20, 12, 4)	D	B(12, 0.5)	E	H(20,4,8)	F
(1.5)	ii.		. , ,		(, , , ,		m (20, 12, 4) um dado azul		, , ,		, , , ,	
(1.0)		mais)			a ser serecer	011000	am addo abar	00111 (01	01 (011040110	iado oo	III I casas do	-
		A	0.0646	В	0.3633	C	0.1536	D	0.1387	E	0.3456	F
	(b) Nui	na sele	ecção ao acas	so e c	om reposição	de 5 d	dados, consider	re o n.º	X de dados	azuis c	btidos:	
(1.5)	i.	a prodecin		de se	rem obtidos	mais	de 4 dados az	zuis tem	valor (arre	dondad	lo com 4 cas	as
		A	0.8925	В	0.8911	C	0.8448	D	0.0102	E	0.1648	F
(1.5)	ii.	a pro valor:		la v.a	. X assumir	valores	s no intervalo].	E(X) –	$1.5\sigma(X)$,	$E\left(X\right)$ -	$+1.5\sigma(X)$ [te	em
		A	0.8925	В	0.8911	С	0.8448	D	0.8352	E	0.1648	F
	 i. ii. (b) Seja X ~ i. 	$Y \sim P(Y)$ $P(Y) \sim B(5)$ $P(X) = E(X)$ $P(X) = E(X)$	$H(20, 12, 4)$ = 3) = $\frac{\binom{12}{3}}{\binom{20}{4}}$ a. o de dados $(\frac{8}{20}) \equiv B(5, 4) = P(X)$ $(\frac{8}{20}) = 5 \times 0.4 = 6$ $(\frac{8}{20}) = \frac{1}{20} = \frac{1}{20}$	$\frac{\binom{8}{1}}{\binom{1}{1}} = $ azuis $0.4)$ $K = 5$ $= 2$ $1.5\sigma ($	0.363261093 0.363261093 0.363261093 0.363261093 0.363261093 0.363261093 0.363261093 0.363261093 0.363261093 0.363261093 0.363261093 0.363261093 0.363261093 0.363261093 0.363261093 0.363261093 0.363261093 0.363261093 0.363261093 0.363261093	s 5 lan 0.010 $(X) = 1.5\sigma$	cuma selecção con comparison comparis	pendento $\overline{.6} pprox 1.09$	es do dado. 95			
(1.2) 5.		ente ex	cclusivos, que $P(A \cup B) = 1$	$A \neq P(A \cap$	\bar{B} , que $P(A)$) > 0 e	ilidades $(\Omega, \mathcal{F}, \mathcal{F})$ e que $P(B) > 0$ $P(A \cup B) = B$). Indiqu	ıe qual a op	ção cor	reta:	OS
	 P (P ($A \cup B)$ $A \cup B)$ $A) + F$	$P(A) + B$ $P(A) + B$ $P(B) < 1 \Leftrightarrow$	$P\left(B\right)$ $P\left(B\right)$ $P\left(A\right)$	> 0 e P $< 1 - P(B)$	$= P(A \cup A \cup A)$ $\Rightarrow P(A \cup A \cup A)$	n.o. $A) + P(B) > 0$ $\overline{B}) = P(\overline{A \cap B})$ $(A) < P(\overline{B})$ $\leq P(\overline{B}) \text{ é Ve}$	$\overline{B} = 1$	Porque A 7		sa Falsa	_

Falsa

n.o.

n.o.

n.o.

n.o.

4. Uma caixa contém 8 dados azuis e 12 dados vermelhos.

(1.5)

(a) Numa selecção ao acaso e sem reposição de 4 dados,

i. o n.º de dados vermelhos obtidos tem distribuição:

• $P(\overline{A}) - P(\overline{B}) = 1 - P(A) - 1 + P(B) = P(A) + P(B)$

Versão B

1. Admita que A e B são dois acontecimentos independentes de um espaço de probabilidades (Ω, \mathcal{F}, P) , que $P(B) = \frac{1}{3}$ e que $P(A \cup B) = \frac{1}{2}$. Considere as seguintes afirmações:

(1)
$$P(A) = \frac{1}{4}$$

(1)
$$P(A) = \frac{1}{4}$$
 (2) $P(B|A) = \frac{1}{3}$

Qual ou quais as afirmação(ões) correta(s)?

Ambas as afirmações B Apenas a firmação (1) C Apenas a afirmação (2)

(1) Pela independência dos acontecimentos, $P(A \cap B) = P(A) P(B) = \frac{1}{3} P(A)$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) \Leftrightarrow \frac{1}{2} = P(A) + \frac{1}{3} - \frac{1}{3}P(A) \Leftrightarrow P(A) = \frac{1}{4}$$

(2)
$$P(B|A) = P(B) = \frac{1}{3}$$

2. Uma empresa farmacêutica fez um ensaio clínico para avaliar a eficácia dos medicamentos $A, B \in C$ para o tratamento da obesidade. Os três medicamentos foram administrados respetivemente a 50%, 25% e 25% dos doentes, tendo cada um recebido apenas um dos medicamentos. No final do estudo, 80% dos doentes perderam peso. Sabe-se ainda que 80% dos doentes que tomaram o medicamento B perderam peso, e a correspondente percentagem para o medicamento $C \neq 90\%$.

Seleccionado ao acaso um doente de entre os que realizaram este ensaio clínico:

(1.6)(a) Qual a probabilidade de um doente, que recebeu o medicamento A, perder peso?

 \triangle 0.375

В 0.125 C = 0.425

| D | 0.36

 \square 0.75

F n.o.

(1.6)(b) Qual a probabilidade de um doente, que perdeu peso, ter recebido o medicamento C?

> Α 0.375

0.28125

 $\boxed{\mathsf{C}}$ 0.9

D 0.225 E = 0.2

F n.o.

Considerem-se os acontecimentos:

A, B, C - a um doente ter sido administrado o tratamento A, B, C, respectivamente L - um doente perder peso no final do estudo

$$P(A) = 0.5$$
 $P(B) = 0.25$ $P(C) = 0.25$ $P(L|B) = 0.8$ $P(L|C) = 0.9$ $P(L) = 0.8$

(a)
$$P(L) = P(L|A) P(A) + P(L|B) P(B) + P(L|C) P(C) \Leftrightarrow 0.8 = 0.425 + 0.5 P(L|A) \Leftrightarrow P(L|A) = 0.75$$

(b)
$$P(C|L) = \frac{P(L \cap C)}{P(L)} = \frac{P(L|C)P(C)}{P(L)} = \frac{0.9 \times 0.25}{0.8} = 0.28125$$

3. Considere (X,Y) um par aleatório com a seguinte função de probabilidade conjunta:

$X \setminus Y$	-1	0	1	
-1	0.2	0	p	
0	0	0.2	0	
1	0.2	0	0.4 - p	

 $com p \in [0, 0.4[$

(a) O valor de $P(X + Y \ge 0)$ é: (1.4)

A 0.4

B 1

0.8

D p + 0.2

 $\left[\mathsf{E} \right] = 0.2$

F n.o.

(1.4)	(b) O valor de $V(2+Y)$ é:
(1.4)	
(1.4)	
(1.1)	
(1.0)	A 0.2 B -0.1 C 0.3 D -0.2 E 0 F $n.o.$ (e) Indique o valor lógico da afirmação: X e Y são duas variáveis independentes. Urrdadeira Falsa
(1.4)	(f) Assuma $p=0.1$ e considere a v.a. $M=\max(X,Y)$. A função de probabilidade da v.a. M é:
	$ \boxed{ \textbf{A} } M \left\{ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	$\frac{X\setminus Y \ -1 0 1 }{-1 0.2 0 p 0.2 + p} \\ 0 0 0.2 0 0.2 \\ 1 0.2 0 0.4 - p 0.6 - p \\ \hline 0.4 0.2 0.4 1 \\ \\ \hline \\ (a) P(X+Y\geq 0) = 1 - P(X+Y<0) = 1 - P(X=-1;Y=-1) - P(X=-1;Y=0) = 1 - 0.2 = 0.8 \\ (b) E(Y) = 0 E(Y^2) = 0.8 V(Y) = 0.8 V(2+Y) = V(Y) = 0.8 \\ \\ (c) E(X) = -0.2 - p + 0.6 - p = 0.4 - 2p \\ E(X-Y) = 0 \Leftrightarrow E(X) - E(Y) = 0 \Leftrightarrow 0.4 - 2p = 0 \Leftrightarrow p = 0.2 \\ \\ (d) E(X) = 0 E(Y) = 0 E(XY) = 0.2 - p - 0.2 + 0.4 - p = 0.4 - 2p = 0 cov(X,Y) = 0 \\ \\ (e) X \in Y \text{ serão v.a.'s independentes sse} \\ P(X=x;Y=y) = P(X=x)P(Y=y), x=-1,0,1; y=-1,0,1 \\ \\ Como P(X=0;Y1) = 0 e P(X=0)P(Y=1) = 0.2 \times 0.4, concluímos que X \in Y não são v.a.'s independentes. \\ \\ (f) M = \max(X,Y) \begin{cases} -1 0 1 \\ 0.2 0.2 0.6 \end{cases}$
(1.5)	 4. Uma caixa contém 12 dados azuis e 8 dados vermelhos. (a) Numa selecção ao acaso e sem reposição de 5 dados, i. o n.º de dados azuis obtidos tem distribuição:
(1.0)	
(1.5)	$A \cap H$ (12, 8, 5) $B \cap H$ (20, 12, 5) $C \cap B$ (5, 0.6) $D \cap H$ (20, 5, 12) $E \cap B$ (12, 0.5) $F \cap B$ n.o. ii. A probabilidade de vir a ser seleccionado um dado vermelho tem valor (arredondado com 4 casas decimais):
	A 0.0542 B 0.0768 C 0.2554 D 0.3456 E 0.1208 F n.o.
	(b) Numa selecção ao acaso e com reposição de 4 dados, considere o n.º X de dados vermelhos obtidos:
(1.5)	i. a probabilidade de serem obtidos mais de 3 dados vermelhos tem valor (arredondado com 4 casas decimais):

 \bigcirc 0.0256

B 0.4752

lacksquare 0.1296

D = 0.0473

F n.o.

E 0.1022

- (1.5)
- ii. a probabilidade da v.a. X assumir valores no intervalo $E(X) 1.5\sigma(X)$, $E(X) + 1.5\sigma(X)$ tem
 - A 0.7447
- B 0.1552
- \bigcirc 0.8925
- D 0.8592
- 0.8448
- F n.o.
- (a) Seja Y $n.^0$ de dados azuis obtidos após uma selecção casual e sem reposição de 5 dados.
 - i. $Y \sim H(20, 12, 5)$
 - ii. $P(Y=4) = \frac{\binom{12}{4}\binom{8}{1}}{\binom{20}{1}} = 0.255417957$
- (b) Seja X n^0 de dados vermelhos obtidos após 4 lançamentos independentes do dado.

$$X \sim B\left(4, \frac{8}{20}\right) \equiv B(4, 0.4)$$

i.
$$P(X > 3) = P(X = 4) = {4 \choose 4}0.4^4 = 0.0256$$

ii.
$$E\left(X\right)=4\times0.4=1.6$$
 $\sigma\left(X\right)=\sqrt{V\left(X\right)}=\sqrt{4\times0.4\times0.6}=\sqrt{0.96}\approx0.98$

$$P\left(X \in \left]E\left(X\right) - 1.5\sigma\left(X\right), E\left(X\right) + 1.5\sigma\left(X\right)\right[\right) = P\left(0.13 < X < 3.07\right) =$$

$$= P\left(1 \le X \le 2\right) = \sum_{k=1}^{2} P\left(X = k\right) = \sum_{k=1}^{2} {4 \choose k} 0.4^{k} \left(1 - 0.4\right)^{4-k} = 0.8448$$

- 5. Sejam $A \in B$ acontecimentos de um espaço de probabilidades (Ω, \mathcal{F}, P) . Sabendo que $A \in B$ são acontecimentos (1.2)mutuamente exclusivos, que $A \neq \overline{B}$, que P(A) > 0 e que P(B) > 0. Indique qual a opção correta:
 - $P(A) \leq P(\overline{B})$
- \blacksquare $P(A) P(B) = P(\overline{A}) P(\overline{B})$ \square $P(A \cup B) = P(A \cap B)$

- $P(A \cup B) = P(\overline{A} \cap \overline{B})$
- Ε n.o.
- $P(A \cup B) = P(A) + P(B) P(A \cap B) = P(A) + P(B) > 0$ e $P(A \cap B) = 0$ Falsa
- $P(A \cup B) = P(A) + P(B) > 0$ e $P(\overline{A} \cup \overline{B}) = P(\overline{A \cap B}) = 1$ Porque $A \neq \overline{B}$
- $P(A) + P(B) < 1 \Leftrightarrow P(A) < 1 P(B) \Leftrightarrow P(A) < P(\overline{B})$
 - $P(A) < P(\overline{B})$ implica que a afirmação $P(A) \le P(\overline{B})$ é Verdadeira
- $P(\overline{A}) P(\overline{B}) = 1 P(A) 1 + P(B) = P(A) + P(B)$ Falsa