資料探勘 (Data Mining)

參考資料:

資料探勘 (Data Mining) Dr. Tun-Wen Pai

Business Intelligence and Data Mining Anil K. Maheshwari, Ph.D.

資料探勘的介紹

資料探勘是一種技術,為了探索大量經過組織的資料中,得到有利的資訊、見解與模式。

資料探勘利用了統計學、人工智慧領域、機器學習的知識,挖掘資料中未知的資訊,例如發現資料的類 別與結構、分類資料等等。

資料蒐集與資料選擇

從大量支離破碎的資料中很難探勘出有用的資訊,所以我們需要先做資料蒐集與資料選擇。

資料從大量的資料來源中被蒐集,此時資料是支離破碎的,所以我們需要經過一系列的處理(例如資料 倉儲的 ETL)

在建立資料倉儲之前,我們可以使用企業模式的資料模型(Enterprise Data Model, EDM),為這些資料打造一個統一的框架。

經過資料倉儲一系列的處理之後得到組織過的資料,再從這些資料進行探勘。

這也是為什麼資料倉儲被用來幫助資料探勘,因為資料探勘需要整理過的資料,此時即完成了資料蒐集與資料選擇。

資料淨化

資料的品質會嚴重影響到資料探勘,所以我們會希望資料都是高品質的,也因此我們需要把資料淨化。

我們可以利用一些手段進行資料淨化,例如:填充遺失的欄位、處理異常值、劃分連續型變數等等。經過資料淨化,就可以確保資料都是高品質,確保不會造成 Garbage in Garbage out 的問題。

以下列舉一些資料淨化的手段:

- 1. 重複的資料需要被移除,從各方資料來源蒐集資料可能會導致出現重複的資料,所以需要被移除。
- 2. 欄位若遺失值則需要被填上去,如果不該被填上去,則這個欄位應該被移除。

- 3. 資料元素從單一單位轉換成另一個單位。
 例如透過總病人數量與總花費較難得到有利的資訊,但如果資料是病人與花費的對應關係,那麼我們可以從這邊得到更有利的資訊。
- 4. 連續型變數可以被劃分以利於資料探勘更佳。 例如工作經驗可以被劃分成低、中、高。
- 5. 資料元素可能需要經過調整,讓他能夠隨著時間的推移產生可比性。 例如大量不同的貨幣可以被調整成通用貨幣,用來評估通膨的情況。
- 6. 極值需要被移除。
- 7. 偏差數值需要經過矯正,來確保分析結果是正常的。
- 8. 資料應該保持同樣的顆粒度(Granularity),來讓資料能夠比較。 例如:櫃台銷售所產生的資料通常都是以日為單位,而銷售員的資料通常都是以月為單位。 為此我們應該將櫃台銷售調整成月為單位,兩個資料才做比較。
- 9. 資料需要足夠密集。

Confusion Matrix

Confusion Matrix 可用來監督學習、可以確定在機器學習中是否將兩個不同類型的資料混淆了。

以採檢病人是否為陽性反應為例,我們可以獲得以下的表格。

		True Class			
		Positive	Negative		
d Class	Negative Positive	True Positive (TP)	False Positive (FP)		
Predicted Class		False Negative (FN)	True Negative (TN)		

Figure 4.1 Confusion matrix

以理想的情況來說,採檢試劑要能夠分辨出陽性(True Positive)與陰性(True Negative)。 但必定會出現偽陰(False Negative)與偽陽(False Positive)的情況出現。 將這些數值填入表格,即可得到一個 Confusion Matrix。

我們可以擴展表格,得到更多的資訊。

		Predicte	ed condition	Sources: [20][21][22][23][24][25][26][27] view • talk • edit	
	Total population = P + N	Positive (PP)	Negative (PN)	Informedness, bookmaker informedness (BM) = TPR + TNR - 1	Prevalence threshold (PT) $= \frac{\sqrt{TPR \times FPR} - FPR}{TPR - FPR}$
Actual condition	Positive (P)	True positive (TP),	False negative (FN), type II error, miss, underestimation	True positive rate (TPR), recall, sensitivity (SEN), probability of detection, $ \begin{array}{l} \text{hit rate, power} \\ = \frac{TP}{P} = 1 - FNR \end{array} $	False negative rate (FNR), miss rate = $\frac{FN}{F} = 1 - TPR$
	Negative (N)	False positive (FP), type I error, false alarm, overestimation	True negative (TN), correct rejection	False positive rate (FPR), probability of false atarm, fall-out $= \frac{FP}{N} = 1 - TNR$	True negative rate (TNR), specificity (SPC), selectivity $= \frac{TN}{T} = 1 - FPR$
	Prevalence = P P+N	Positive predictive value (PPV), precision = TP PP = 1 - FDR	False omission rate (FOR) = FN = 1 - NPV	Positive likelihood ratio (LR+) = TPR FPR	Negative likelihood ratio (LR-) = FNR TNR
	Accuracy (ACC) = TP + TN P + N	False discovery rate (FDR) = FP = 1 - PPV	Negative predictive value (NPV) = TN = 1 - FOR	Markedness (MK), deltaP (Δp) = PPV + NPV - 1	Diagnostic odds ratio (DOR) = LR+
	Balanced accuracy (BA) $= \frac{TPR + TNR}{2}$	F ₁ score = 2PPV×TPR = 2TP PPV+TPR = 2TP+FP+FN	Fowlkes–Mallows index (FM) = √PPVxTPR	Matthews correlation coefficient (MCC) = √TPR×TNR×PPV×NPV - √FNR×FPR×FOR×FDR	Threat score (TS), critical success index (CSI), Jaccard index $= \frac{TP}{TP + FN + FP}$

將同樣的概念,可以套用到機器分類數字、機器分類花...等情況,所以可以適用於績效評估機器學習。

AUC - ROC Curve

我們可以使用 AUC - ROC Curve 來進行機器學習的績效評估。

對於上面表格,我們可以設定特定的閥值,用來得到在這個閥值中的真陽、真陰、偽陽、偽陰數量,進而劃出由兩個曲線組成的圖片。

例如我們預期在 TPR 閥值低於 0.5 時則為陰性,在閥值高於 0.5 時則為陽性。 此時我們可以預期沒有任何偽陰、偽陽的情況,所以可以得到以下這張圖。

這時無論到哪點都不會出現偽陽性,故 ROC 曲線呈現直角,幾乎是完美分類。

另一個例子,若我們期望 TPR 閥值低於 0.5 時為陰性,高於 0.5 時則陽性。 然而結果不如預期,得到了以下這張圖。

這時我們只需要反預測即可校正回上例。

换另一個不理想的例子,若可能出現偽陰偽陽的情況,

例如閥值是 0.46 時,陰性與陽性都出現,這時就會出真陽、偽陽的情況,得到以下這張圖。可以發現,在出現 FPR 時,TPR 的數值稍微下跌,而在之後幾乎回到 1 的位置。

另一個例子,若無論在任何閥值出現的情況,真陰、真陽的人數都一樣,則這個模型視同無效,因為檢驗一個人是否偽陰偽陽的機率相等於隨機。

我們可以透過描點的方式畫出 ROC 曲線,就可以從 ROC 曲線中得出 AUC 值,若 AUC 值越大則模型越好。

機器學習的種類

1. 學習問題

- 1. 監督式學習:所有資料都被標註,給機器去學習與分類,通常來說對機器最簡單,對人類來說 最累。
- 2. 非監督式學習:所有資料都沒有被標註,透過機器去尋找特徵的學習分式,對機器最困難,誤 差較大。
- 3. 強化式學習:不標註任何資料,但告訴機器哪步正確,哪步錯誤,讓機器逐步自我修正。

2. 混合學習問題

1. 半監督式學習:對少部分資料進行標註,機器透過有標註的資料找出特徵並進行分類,能使非監督式學習的準確率提升。

- 2. 自我監督式學習:從一堆沒有 label 標註的資料,訓練出一個監督式模型,然後造出更多 label。
- 3. 多實例學習:輸入許多「包」,這些包都含有許多實例,若所有實例都是負例時則包即為負包,若有至少一個實例為正例時,包即為正包。

3. 推論統計學

- 1. 歸納學習:用來辨識汽車的知識可以用來提升辨識卡車的能力,以現有問題的解決模型利用在 其他不同但相關的問題上。
- 2. 演繹學習:利用廣泛的前提去推論較具體的結論,通常依賴前提是否正確。
- 3. 轉導學習:通過觀察特定的訓練樣本,來預測特定測試樣本的方法。

4. 學習技術

- 1. 多任務學習:利用單一一個模型,解決多個問題
- 2. 主動學習:從每輪學習迭代中,尋找出一個最不確定的一個或一組樣本,來讓外部反饋者給予回饋。
- 3. 線上學習:利用當前的資料來直接更新模型,進而在預測前根據先前的資料給予預測。
- 4. 遷移學習:一個模型先訓練一個例子,接著所有模型用這個模型的訓練例子當成起始點,訓練 其他的例子。
- 5. 集成學習: 集成兩個以上合適的模型,接著從這個集成的模型上訓練。。
- 6. 聯盟式學習:從各式各樣的自訓練模型中,在不用給自己數據的情況下,也可以進行訓練得到模型。

Reference Website:

- 1. Marketing. (n.d.). 你知道機器學習(Machine Learning),有幾種學習方式嗎?伊雲谷eCloudvalley. Retrieved April 5, 2022, from https://www.ecloudvalley.com/zh-hant/machine-learning/
- 2. 自監督學習 self-supervised learning 介紹. (2021, June 11). 藏字閣. https://jigfopsda.c om/zh/posts/2021/self_supervised_learning/
- 3. *多實例學習*. (2021, August 31). 維基百科,自由的百科全書. https://zh.wikipedia.org/wiki/%E5%A4%9A%E7%A4%BA%E4%BE%8B%E5%AD%A6%E4%B9%A0
- 4. *遷移學習*. (2020, September 19). 維基百科,自由的百科全書. https://zh.wikipedia.org/wiki/%E8%BF%81%E7%A7%BB%E5%AD%A6%E4%B9%A0
- 5. 簡要介紹Active Learning(主動學習)思想框架,以及從IF (isolation forest) 衍生出來的演算法: FBIF (Feedback-Guided Anomaly Discovery). (n.d.). IT人. Retrieved April 5, 2022, from https://iter01.com/420911.html
- 6. Su, S. (2021, December 13). 聯盟式學習 (Federated Learning) Sherry.AI. Medium. h ttps://medium.com/sherry-ai/%E8%81%AF%E7%9B%9F%E5%BC%8F%E5%AD%B8%E 7%BF%92-federated-learning-b4cc5af7a9c0