Das Matrix-Tree-Theorem

Bachelorarbeit der Fakultät für Mathematik der Ludwig-Maximilians-Universität München

vorgelegt von

Christopher Mann

geboren in Freising

München, den

Contents

1	Einl	eitung	3				
2	Gru	Grundlegende Definitionen und Notationen Das Matrix-Tree-Theorem					
3	Das						
	3.1	Tuttes Matrix-Tree-Theorem	5				
	3.2	Kirchhoffs Matrix-Tree-Theorem	6				
4	Anz	ahl Spannbäume für bestimmte Graphenklassen	7				
	4.1	Der vollständige Graph K_n (Satz von Cayley)	7				
	4.2	vollständige multipartite Graphen	8				
	4.3	Cartesische Produkte von Graphen	8				
	4.4	F_n (Fan)(Fächer?)	8				
	4.5	W_n (Räder)	8				
	4.6	circulant Graphs	10				
L	eerzei	chen im Dokument!!!!!!!					

1 Einleitung

Kirchhoff, als "Erfinder" des MTT

Anwendungsgebiete außerhalb der Mathematik

Ausblick auf die Bachelorarbeit

2 Grundlegende Definitionen und Notationen

Wir beginnen damit, ein paar wichtige Begriffe und Notationen einzuführen, die wir später häufiger benutzen werden. In einem Matrix-Tree-Theorem wird immer ein Zusammenhang zwischen bestimmten Matrizen und den Spannbäumen eines Graphen beschrieben. Daher bieten sich die folgenden zwei Definitionen an, wobei wir eine für ungerichtete und die andere für gerichtete Graphen verwenden werden:

Definition 2.1 Laplacematrix

Für einen Graphen G mit Knoten 1,..,n definieren wir die Laplacematrix L_n wie folgt: Der Eintrag l_{ii} ist gleich dem Grad von i und für $i \neq j$ ist l_{ij} gleich (-1), falls i und j beachbart sind, und sonst 0.

Definition 2.2 *Kirchhoffmatrix*

Für einen gerichteten Multigraphen D mit Knoten 1,...,n definieren wir die Kirchhoffmatrix K(D) wie folgt:

Der Eintrag k_{ij} der Kirchhoff-Matrix gleich dem Ausgangsgrad des Knoten i, falls i = j, und gleich minus der Anzahl von Kanten von i nach j, für $i \neq j$.

Definition Multigraph bleibt wenn dann hier, im Kapitel "Tuttes..." stört das nur, ich weiß aber noch nicht ob die überhaupt nötig ist, das sollte allgemein bekannt sein

Im Verlauf dieser Arbeit werden wir immer wieder die Anzahl der Spannbäume eines Graphen ausrechnen, daher definieren wir k(G) als die Anzahl der Spannbäume eines beliebigen Graphen G.

Das kam später dazu; ich bin noch unschlüssig ob ich die Definitionen lieber wie oben, oder wie hier als Text machen soll (Je nachdem, wie schnell ich mit dem Schreiben bin, könnte ich noch Links in die Bachelorarbeit integrieren)

Stand jetzt werde ich die Definitionen hervorheben, notation jedoch im Fließtext unterbringen

Definition out-branching (aboreszenz!), nicht hier!!

3 Das Matrix-Tree-Theorem

Nachdem wir nun alle notwendigen Lemmas und Definitionen beisammen haben, können wir mit dem wichtigsten Teil dieser Arbeit anfangen, dem Beweis des Matrix-tree-theorems selbst. Wir beweisen zuerst eine Version für gerichtete Multigraphen, bevor wir uns der Version für ungerichtete Graphen als einem Spezialfall davon widmen.

3.1 Tuttes Matrix-Tree-Theorem

Um die Version des Matrix-Tree-Theorems für gerichtete Multigraphen und den Beweis zu verstehen, müssen wir erst den Begiff der Aboreszenz einführen.

Aboreszenz, branching, etc.

Satz 3.1.1 (Tuttes Matrix-Tree-Theorem) *Sei D ein gerichteter Multigraph mit Kirchoffmatrix K(D). Die Anzahl der Aboreszenzen aus einem Knoten i ist gleich der det(K_{\bar{i}}(D)).*

Um das zu beweisen lassen wir uns von [1] inspirieren. Also zeigen wir zuerst folgendes Lemma:

Lemma 3.1.2 Sei D ein gerichteter Multigraph mit maximalem Eingangsgrad = 1 und i ein Knoten in D

Dann hat D maximal eine Aboreszenz mit Wurzel i. Desweiteren ist $det(K_{\bar{i}}(D)) \in \{0,1\}$ und genau dann, wenn D eine Aboreszenz mit Wurzel i besitzt, ist $det(K_{\bar{i}}(D)) = 1$.

Beweis von Lemma 3.1.2:

Wir nehmen zuerst an, dass D eine Aboreszenz mit Wurzel i hat.

Da der maximale Eingangsgrad = 1 ist, schließen wir, dass für jeden Knoten außer i, die eine, eingehnende Kante in dieser Aboreszenz enthalten ist.

Weil das Vertauschen von Zeilen einer Matrix deren Determinante nicht ändert, dürfen wir annehmen, dass i = 1 ist und die übrigen Knoten in der Reihenfolge einer Breitensuche durchnummeriert sind.

Dann ist nämlich $K_{\bar{i}}(D)$ eine obere Dreiecksmatrix mit Diagonaleinträgen = 1, also $det(K_{\bar{i}}(D)) = 1$. Jetzt nehmen wir an, dass D keine Aboreszenz mit Wurzel i besitzt.

Falls ein anderer Knoten als *i* Eingangsgrad = 0 hat, sind die alle Einträge der entsprechenden Spalte von $K_{\bar{i}}(D)$ und damit auch $det(K_{\bar{i}}(D))$ gleich 0

Also dürfen wir zu guter Letzt annehmen, dass für alle von *i* verschiedenen Knoten der Eingangsgrad = 1 ist.

Da jedoch D keine Aboreszenz mit Wurzel i besitzt, hat D einen Zyklus, der i nicht enthält.

Da aber jeder Knoten $\neq i$ Eingangsgrad = 1 hat, sind die Spalten, die mit den Knoten in diesem Zyklus korrespondieren linear abhängig und damit $det(K_{\bar{i}}(D)) = 0$. Damit haben wir unser Lemma bewiesen.

Nun können wir uns dem Beweis von Tuttes Matrix-Tree-Theorem widmen.

Beweis:

Beweis fertig schreiben

Ohne Beschränkung der Allgemeinheit können wir i = 1 annehmen.

Wir werden jetzt $det(K_{\bar{1}}(D))$ mithilfe der Matrizen von oben vereinfachen und dann ausrechnen. Hierzu sei \hat{D} der Graph der aus D durch löschen aller in den Knoten 1 eingehenden Kanten entsteht und $d^-(j)$ der Eingangsgrad eines Knoten j. Dann folgt:

$$det(K_{\bar{1}}(\hat{D})) = \sum_{e_2}^{d^{-}(2)} det(K_{e_2}(\hat{D}))$$
 (1)

,wobei $K_{e_j}(\hat{D})$ aus \hat{D} durch löschen aller in den Knoten j eingehenden Kanten außer e_j entsteht. Wiederholen wir das für die übrigen Knoten, bekommen wir:

$$det(K_{\bar{1}}(\hat{D})) = \sum_{e_2}^{d^{-}(2)} \dots \sum_{e_n}^{d^{-}(n)} det(K_{e_n})$$
(2)

Mit Lemma 3.1.2 schließen wir, dass genau das die Aboreszenzen mit Wurzel i zählt.

Da $det(K_{\bar{i}}(D))$ aus K(D) durch löschen der mit Knoten i korrespondierenden Zeile und Spalte entstanden ist und wir ohne Beschränkung der Allgemeinheit i = 1 annehmen durften, gilt:

$$det(K_{\bar{1}}(\hat{D})) = det(K_{\bar{1}}(D)) = det(K_{\bar{i}}(D))$$
(3)

Das vervollständigt unseren Beweis von Tuttes Matrix-Tree-Theorem.

Beweis fertig schreiben

Beweis von Tuttes Matrix-Tree-Theorem:

3.2 Kirchhoffs Matrix-Tree-Theorem

Nun werden wir das Matrix-Tree-Theorem für ungerichtete Graphen formulieren und beweisen, dass wir auch im weiteren Verlauf dieser Arbeit verwenden werden um die Anzahl der Spannbäume für verschiedene Graphenklassen zu bestimmen.

Satz 3.2.1 (Kirchoffs Matrix Tree Theorem) *Sei* G *ein ungerichteter Graph und* L_n *die dazuge-hörige Laplacematrix. Dann gilt:*

- (1) Die Anzahl der Spannbäume von G gleich einem beliebigen Kofaktor von L_n .
- (2) Die Anzahl der Spannbäume von G ist gleich $\frac{1}{n}\lambda_1...\lambda_{n-1}$, wobei $\lambda_1,...,\lambda_{n-1}$ die Eigenwerte von L_n sind, die ungleich null sind.

Beweis:

Teil 1) des Kirchhoffs Matrix-Tree-Theorem folgt quasi direkt aus Tuttes Matrix-Tree-Theorem. Sei \vec{G} der gerichtete Graph, der entsteht, wenn man jede Kante in G als zwei gerichtete ansieht. Wir betrachten einen beliebigen Knoten aus \vec{G} , der natürlich auch in G ist.

Da nach Definition jeder Knoten in jedem Spannbaum mit jedem anderen wegverbunden ist, korrespondiert jeder Spannbaum von G mit genau einem out-branching aus unserem Knoten in \vec{G} .

Da jede Kante in \vec{G} auch in die entgegengesetzte Richtung vorhanden ist, können wir schließen, dass $L_n = K(\vec{G})$, wobei L_n die Laplacematrix von G ist.

Jeder Kofaktor von L_n ist also gleich jedem Kofaktor von $K(\vec{G})$.

Beweis: es ist irrelevant, welchen Kofaktor vo Ln wir nehmen!

Wir folgern daraus mit Tuttes Matrix-Tree-Theorem, dass die Anzahl der Spannbäume in G gleich einem beliebigen Kofaktor von L_n ist.

Um Teil 2) zu zeigen, berufen wir uns auf ein bekanntes Ergebnis der linearen Algebra;

Das Produkt der Eigenwerte einer Matrix ist gleich der Summe seiner Hauptminoren. Das kann man zum Beispiel in [4] nachlesen.

Da L_n n Hauptminoren hat, folgt mit Teil 1), dass die Anzahl der Spannbäume von G ist gleich $\frac{1}{n}\lambda_1...\lambda_{n-1}$, wobei $\lambda_1,...,\lambda_{n-1}$ die Eigenwerte von L_n sind, die ungleich null sind.

Damit ist Kirchhoffs Matrix-Tree-Theorem bewiesen.

out-branching ersetzen

4 Anzahl Spannbäume für bestimmte Graphenklassen

Nachdem Kirchhoff's Matrix-Tree-Theorem nun bewiesen ist, werden wir damit im Folgenden Formeln für die Berechnung der Anzahl der Spannbäume für verschiedene Klassen von ungerichteten Graphen finden. Begegnen werden uns unter Anderem der vollständige Graph, multipartite Graphen, Räder und as Quadrat eines Kreises (Square of a cycle)). Dabei werden wir uns an der ein- oder anderen Stelle ein paar Eigenschaften bestimmter Matrizen, Determinanten, aber auch zum Beispiel von Chebychev-polynomen zunutze machen, da das Ausrechnen eines Kofaktors der Laplacematrix hier oft nicht der schnellste und intelligenteste Weg ist um ans Ziel zu kommen.

4.1 Der vollständige Graph K_n (Satz von Cayley)

Als Einstieg soll der vollständige Graph mit n Knoten kurz K_n dienen.

Satz 4.1.1 (Satz von Cayley) K_n besitzt genau n^{n-2} verschiedene Spannbäume.

Beweis:

Ein sehr ähnlicher Beweis findet sich in [3]. Wir wollen das Matrix-Tree-Theorem verwenden und betrachten deshalb die Determinante der Matrix $M_n \in M_{n-1}(\mathbb{Z})$, die durch das Streichen der ersten Zeile und Spalte der Laplacematrix $L_n \in M_n(\mathbb{Z})$ von K_n entsteht:

$$M_{n} := \begin{pmatrix} n-1 & -1 & \dots & \dots & -1 \\ -1 & n-1 & -1 & \dots & \dots & -1 \\ -1 & -1 & n-1 & -1 & \dots & -1 \\ \dots & \dots & \dots & \dots & \dots \\ -1 & \dots & \dots & \dots & -1 & n-1 \end{pmatrix}$$
(4)

Da sich die Determinante durch elementare Zeilen- und Spaltenoperationen nicht ändert, dürfen wir die erste Spalte von allen anderen subtrahieren und erhalten:

$$det(M_n) := det \begin{pmatrix} n-1 & -n & \dots & \dots & -n \\ -1 & n & 0 & \dots & \dots & 0 \\ -1 & 0 & n & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ -1 & 0 & \dots & \dots & 0 & n \end{pmatrix}$$
 (5)

Mit demselben Argument wie oben addieren wir zur ersten Zeile alle übrigen und es ergibt sich:

$$det(M_n) := det \begin{pmatrix} 1 & 0 & \dots & \dots & 0 \\ -1 & n & 0 & \dots & \dots & 0 \\ -1 & 0 & n & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ -1 & 0 & \dots & \dots & 0 & n \end{pmatrix}$$
 (6)

Wir berechnen den Wert dieser Determinante durch Entwicklung nach der ersten Zeile. Weil die Matrix M_n eine $n-1 \times n-1$ Matrix ist, gilt:

$$det(M_n) = n^{n-2} (7)$$

Nach Kirchhoff's Matrix-Tree-Theorem ist genau das die Anzahl der Spannbäume des K_n

4.2 vollständige multipartite Graphen

4.3 Cartesische Produkte von Graphen

In diesem Teil zeigen wir, was im Bezug auf die Anzahl der Spannbäume geschieht, wenn man das kartesische Produkt von Graphen bildet.

Lemma 4.1 eigenwerte kartesisches Produkt v. Graphen (Kronekersumme Aidb + idaB)

das ist eigentlich kein Lemma bleibt aber für den Moment so markiert

4.4 F_n (Fan)(Fächer?)

Nun werden wir Fan-Graphen F_n betrachten. Diese entstehen wenn wir an einen Pfad-Graphen P_{n-1} einen weiteren Knoten so ankleben, dass er mit allen übrigen Knoten adjazent ist.

Wir wollen in diesem Kapital folgendes über die Anzahl der Spannbäume in Fan-Graphen zeigen:

(8)

Diesmal halten wir uns an einen Beweis von Bogdanowicz [2]

4.5 W_n (Räder)

Der vorletzte Stop auf unserer Reise sind die sogenannten Wheel-Graphen. Hier wird zu einem zyklischen Graphen C_n mit Knoten $\{v_1,..,v_n\}$, $n \ge 3$ ein weiterer Knoten z hinzugefügt, der mit allen anderen Knoten benachbart ist, sodass der Wheel-Graph W_n entsteht (Achtung: W_n hat n+1 Knoten).

Satz 4.2 Für die Anzahl der Spannbäume in einem Rad gilt:

$$k(W_n) = \left(\frac{3+\sqrt{5}}{2}\right)^n + \left(\frac{3+\sqrt{5}}{2}\right)^n - 2 \tag{9}$$

Beweis:

Um die Formel für die Berechnung der Anzahl der Spannbäume eines solchen Graphen herzuleiten, lassen wir von [5] inspirieren. Wir beobachten, dass wir den Fan-Graphen F_n bekommen, wenn wir die Kante v_1v_n aus W_n entfernen. Die Anzahl der Spannbäume von F_n kennen wir bereits von oben. Um die Anzahl der Spannbäume von Rädern zu berechnen, zeigen wir zuerst die rekursive Beziehung

$$k(W_{n+1}) = k(F_{n+1}) + k(F_n) + k(W_n)$$
(10)

Um das zu tun, werden die Spannbäume von W_{n+1} in drei verschiedene Klassen einteilen, wie man auch in den Abbildungen unten sehen kann:

1) Alle Spannbäume, die die Kante $v_{n+1}v_1$, aber nicht die Kante $v_{n+1}z$ enthalten; das sind genau so viele, wie die Spannbäume von W_n .

Grafik dazu

2)Alle Spannbäume, die die Kante $v_{n+1}v_1$ nicht enthalten; das sind genau so viele, wie die Spannbäume von F_{n+1} .

Grafik dazu

3) Alle Spannbäume, die die Kante $v_{n+1}v_1$ und die Kante $v_{n+1}z$ enthalten; Wir beweisen im Folgenden, dass das so viele sind, wie die Spannbäume von F_n ;

Dafür werden wir zeigen, dass für die Anzahl der Spannbäume in Klasse 3 den gleichen rekursiven Formeln genügen wie die von F_n .

Sei a_n die Anzahl der Subgraphen von F_n , die aus genau zwei Komponenten bestehen, von denen eine den Knoten z und die andere v_n enthält. Wir definieren b_n als die Anzahl der Spannbäume in Klasse 3, die die Kanten v_nv_{n+1} und v_nz nicht enthalten. Die nachfolgende Abbildung verdeutlicht, dass $k(F_{n+1}) = 2k(F_n) + a_n$ für $n \ge 2$.

Grafik Konstruktion von Fn+1 aus Fn, und diesmal stimmt der Beweis wirklich

Wenn die Grafik drin ist evtl noch ein-zwei Sätze dazu

Sei M_n die Menge der Spannbäume von W_{n+1} aus Klasse 3; Die nächste Grafik zeigt, dass $|M_{n+1}| = |M_n| + b_n$ ist.

Grafik zur Konstruktion, damit ist das offensichtlich

Wenn die Grafik drin ist, evtl. noch ein-zwei Sätze dazu

Wir sehen leicht, dass $k(F_2) = |M_2|$ und $a_2 = b_2$; daraus schließen wir, dass die Anzahl der Spannbäume in Klasse 3 gleich $k(F_n)$ ist, was wir zeigen wollten. Da jeder Spannbaum von W_{n+1} in genau einer der 3 Klassen ist, gilt die rekursive Beziehung

$$k(W_{n+1}) = k(F_{n+1}) + k(F_n) + k(W_n)$$
(11)

Wir werden nun den Beweis per Induktion über $n \in \mathbb{N}$, $n \geq 3$ vervollständigen, wobei uns natürlich zu Gute kommt, dass uns die Anzahl der Spannbäume von Fan-Graphen schon bekannt ist. Für unseren Induktionsanfang sehen wir -zum Beispiel durch Anwendung von Kirchhoffs Matrix-Tree-Theorem- leicht, dass

$$k(W_3) = 16 = \left(\frac{3+\sqrt{5}}{2}\right)^3 + \left(\frac{3+\sqrt{5}}{2}\right)^3 - 2.$$
 (12)

Wir nehmen nun an, dass für ein $n \in \mathbb{N}$ die Formel

$$k(W_n) = \left(\frac{3+\sqrt{5}}{2}\right)^n + \left(\frac{3+\sqrt{5}}{2}\right)^n - 2 \tag{13}$$

gilt.

Damit bleibt noch zu zeigen, dass

$$k(W_{n+1}) = \left(\frac{3+\sqrt{5}}{2}\right)^{n+1} + \left(\frac{3+\sqrt{5}}{2}\right)^{n+1} - 2. \tag{14}$$

Das werden wir nun einfach ausrechnen. Nachdem wir im vorherigen Kapitel herausgefunden haben, wieviele Spannbäume Fan-Graphen haben, setzen wir das und unsere Induktionsannahme in die Gleichung (11) ein, und erhalten:

$$k(W_{n+1}) = \frac{(3+\sqrt{5})^{n+1} - (3-\sqrt{5})^{n+1}}{2^{n+1}\sqrt{5}} + \frac{(3+\sqrt{5})^n - (3-\sqrt{5})^n}{2^n\sqrt{5}} + (\frac{3+\sqrt{5}}{2})^n + (\frac{3-\sqrt{5}}{2})^n - 2$$
(15)

Wir bringen fast alles auf einen Nenner, sortieren die Terme und bekommen

$$k(W_{n+1}) = \frac{(3+\sqrt{5}+2+2\sqrt{5})(3+\sqrt{5})^n}{2^{n+1}\sqrt{5}} - \frac{(3+\sqrt{5}+2-2\sqrt{5})(3-\sqrt{5})^n}{2^{n+1}\sqrt{5}} - 2$$
(16)

zusammengehörige Terme farbig markieren

Ausrechnen führt uns zu

$$k(W_{n+1}) = \frac{3+\sqrt{5}}{2})^{n+1} + (\frac{3+\sqrt{5}}{2})^{n+1} - 2$$
(17)

Damit ist unser Induktionsbeweis abgeschlossen und wir haben gezeigt, dass unser Satz 9 über die Anzahl der Spannbäume in einem Rad gilt.

Rechnungen evtl. in equations packen

4.6 circulant Graphs

Wir nennen einen Graphen circulant mit n Knoten, wenn für $n \in \mathbb{N}$ und eine Menge $I \subset \{1, ..., \lfloor \frac{n}{2} \rfloor\} \subset \mathbb{N}$ gilt, dass jeder Knoten v genau zu jedem Knoten $(v+i)(\mod n)$ mit $i \in I$ benachbart ist; wir bezeichnen solch einen Graphen kurz mit C_n^I .

Wir erinnern uns, dass eine $n \times n$ Matrix zyklisch genannt wird, falls jede Spalte aus der vorherigen durch Anwendung der Permutation (1...n) hervorgeht. Das ist bei den Adjazenzmatrizen unserer circulant Graphs, aufgrund dessen, wann Konten benachbart sind, natürlich der Fall. Zu Gute kommt uns das bei der Berechnung der Anzahl von Spannbäumen in circulant Graphs, denn die Eigenwerte einer zyklischen Matrix sind wohlbekannt. Um die Formel für die Anzahl der Spannbäume überhaupt zu verstehen, müssen wir einen weiteren Begriff einführen. Nachdem wir nun alles beisammen haben, formulieren wir folgenden Satz:

Satz 4.6.1 Für die Anzahl der Spannbäume in circulant Graphs von Grad d gilt:

$$k\left(C_{n}^{I}\right) = \frac{1}{n} \prod_{j=1}^{n-1} \left(4 \sum_{i \in I} \sin^{2}\left(\frac{ij\pi}{n}\right)\right), falls \, d \, gerade \, ist \tag{18}$$

$$k\left(C_{n}^{I}\right) = \frac{1}{n} \prod_{j=1}^{n-1} \left(4\sum_{i \in I} \sin^{2}\left(\frac{ij\pi}{n}\right) - (-1)^{j} + 1\right), falls \, d \, ungerade \, ist \tag{19}$$

Beweis:

Wir beweisen den Satz wie [6].

Beweis schreiben

Beispiel 4.6.2 (C_n^2 - Das Quadrat eines Kreises)

Bild von einem Square of a cycle

Herleitung Formel

References

- [1] Jørgen Bang-Jensen and Gregory Z. Gutin. Digraphs. *Springer Monographs in Mathematics*, 2009.
- [2] Zbigniew Bogdanowicz. Formulas for the number of spanning trees in a fan. *Applied Mathematical Sciences (Ruse)*, pages 781 786, 01 2008.
- [3] Dietlinde Lau. Algebra und Diskrete Mathematik. Vol. 2, Lineare Optimierung, Graphen und Algorithmen, Algebraische Strukturen und Allgemeine Algebra mit Anwendungen. Springer, 2004.
- [4] Carl D. Meyer. *Matrix analysis and applied linear algebra*. SIAM, Society for Industrial and Applied Mathematics, 2005.
- [5] J Sedlacek. On the skeletons of a graph or digraph. *Proc. Calgary International Conference on Combinatorial Structures and their Applications, Gordon and Breach*, pages 387–391, 1970.
- [6] J. F. Wang and C. S. Yang. On the number of spanning trees of circulant graphs. *International Journal of Computer Mathematics*, 16(4):229–241, 1984.

Selbständigkeitserklärung

Ich versichere hiermit, die vorliegende Arbeit mit dem Titel
Das Matrix-Tree-Theorem
selbständig verfasst zu haben und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet zu haben.
Christopher Mann
München, den