

MAY 2021

The Climate Registry (TCR) is pleased to present its 2021 default emission factors. Each year, we update the default emission factors associated with our program because:

- 1. The components of energy (electricity, fuel, etc.) change over time, and;
- 2. Emission factor quantification methods are frequently refined.

Members that rely on these emission factors to measure and report base year inventories should assess whether changes in emissions factors over time materially impact their base year emissions, and consider adjusting accordingly. The default emission factors are incorporated into the <u>Climate Registry Information System (CRIS)</u> for use in emissions calculations. We publish these default factors to our website to advance best practices, consistency, and transparency in greenhouse gas (GHG) accounting.

Our default emission factors are compiled from publicly available data sources, which are cited at the bottom of each table. TCR is not responsible for the underlying data or methodology used to calculate these default emission factors, or for communicating any changes to the data sources that occur between our annual updates.

As detailed in TCR's <u>General Reporting Protocol</u> (GRP), you should apply the most up-to-date emission factor available in CRIS (or otherwise) when calculating emissions. To calculate indirect emissions associated with electricity using grid average emission factors, you should apply the emission factor that corresponds with the year being reported (or the most recent previous year), and may not apply a factor that post-dates the reporting year.

There are four important changes to note in the 2021 default emission factor update:

- 1. Table 2.4 U.S Default Factors for Calculating CH₄ and N₂0 Emissions from Highway Vehicles by Technology Type: There is a new distinction between ARB LEV III and EPA Tier 3. This will not affect most members but TCR staff will contact reporters currently using this emission factor to determine which factor they wish to utilize going foward.
- 2. Table 2.5 U.S Default Factors for Calculating CH₄ and N₂0 Emissions from Highway Vehicles by Model Year: The model year ranges for Diesel Passenger Cars, Diesel Light-Duty Trucks, Diesel Medium and Heavy-Duty Trucks and Busses, and Diesel Motorcycles have changed.
- 3. Table 3.1 U.S Default Factors for Calculating Emissions from Grid Electricity by eGRID Subregion: The U.S EPA published *The Emissions and Generation Resource Integrated Database (eGRID) Technical Guide with Year 2019 Data*. When these publications are released TCR updates electricity emission factors by EPA grid region for members to use in their reporting. This emission factor publication shows emission factors for electricity based on 2019 emissions data, published in 2021. The 2019 eGRID publication also added a new regional emission factor for Puerto Rico (PRMS).
- 4. Table 3.9 U.S. Green-e® Residual Mix Emissions Rates by eGRID Subregion: TCR members can now use Green-e® Residual Mix Emissions Rates to calculate emissions totals for their market-based electricity purchases. Green-e® Residual Mix emission factors correspond to the eGRID subregions. Organizations should use the most specific emission factors available in the hierarchy of contractual instruments for the market-based method.¹ In the absence of other contractual instruments (i.e., certificates or RECs, contracts, utility-specific emission factors), organizations should use residual mix emission factors to calculate emissions for market-based purchased electricity instead of the regional emission factor (e.g., eGRID).

TCR members are encouraged to contact <u>help@theclimateregistry.org</u> with questions or feedback on these default emission factors or citation information.

Sincerely,

The Climate Registry

¹ See GRP sections C-12 to C-14.

List of Tables

GRP Ref.	Table No.	Table Name	Page
	1.1	U.S. Default Factors for Calculating CO ₂ Emissions from Combustion of Fossil Fuel and Biomass	1
	1.2	Canadian Default Factors for Calculating CO ₂ Emissions from Combustion of Natural Gas, Petroleum Products, and Biomass	5
	1.3	Canadian Default Factors for Calculating CO ₂ Emissions from Combustion of Coal	9
Stationary Combustion	1.4	Canadian Default Factors for Calculating CH ₄ and N ₂ O Emissions from Combustion of Natural Gas, Petroleum Products, Coal, and Biomass	12
у Сош	1.5	Default Factors for Calculating CH ₄ and N ₂ O Emissions by Technology Type for the Electricity Generation Sector	15
ationaı	1.6	Default Factors for Calculating CH ₄ and N ₂ O Emissions from Kilns, Ovens, and Dryers	17
St	1.7	Default Factors for Calculating CH ₄ and N ₂ O Emissions by Technology Type for the Industrial Sector	18
	1.8	Default Factors for Calculating CH ₄ and N ₂ O Emissions by Technology Type for the Commercial Sector	20
	1.9	U.S. Default Factors for Calculating CH ₄ and N ₂ O Emissions by Fuel Type for the Industrial and Energy Sectors	21
	1.10	Default Factors for Calculating CH ₄ and N ₂ O Emissions by Fuel Type for the Residential and Commercial Sectors	23
	2.1	U.S. Default Factors for Calculating CO ₂ Emissions from Combustion of Transport Fuels	24
	2.2	Canadian Default Factors for Calculating CO ₂ Emissions from Combustion of Transport Fuels	26
۔	2.3	Canadian Default Factors for Calculating CH ₄ and N ₂ O Emissions from Mobile Combustion	27
bustion	2.4	U.S. Default Factors for Calculating CH ₄ and N ₂ O Emissions from Highway Vehicles by Technology Type	30
Mobile Combustion	2.5	U.S. Default Factors for Calculating CH ₄ and N ₂ O Emissions from Highway Vehicles by Model Year	32
Mobile	2.6	U.S. Default Factors for Calculating CH ₄ and N ₂ O Emissions from Alternative Fuel Vehicles	36
	2.7	U.S. Default Factors for Calculating CH ₄ and N ₂ O Emissions from Non-Highway Vehicles	38

	2.8	Default Factors for Calculating LTO Emissions for Typical Aircraft	40
	2.9	Factors for Estimating CH ₄ and N ₂ O Emissions from Gasoline and Diesel Vehicles (SEM)	42
	3.1	U.S. Default Factors for Calculating Emissions from Grid Electricity by eGRID Subregion	43
	3.2	Canadian Default Factors for Calculating Emissions from Grid Electricity by Province	45
a)	3.3	Mexican Default Factors for Calculating Emissions from Grid Electricity	46
Electricity Use	3.4	Non-North America Default Factors for Calculating Emissions from Electricity Generation	47
ctric	3.5	Average Cost per Kilowatt Hour by U.S. State	54
Ele	3.6	Canadian Energy Intensity by Building Activity	57
	3.7	U.S. Electricity and Natural Gas Intensity by Building Activity	58
	3.8	U.S. Utility-Specific CO ₂ Emission Factors for Purchased Electricity	59
	3.9	U.S. Green-e® Residual Mix Emissions Rates by eGRID Subregion)	65
0	4.1	Default Factors for Calculating Emissions from Refrigeration/ Air Conditioning Equipment	67
Fugitive	4.2	Default Composition of Refrigerant Blends that Contain HFCs and PFCs	68
	4.3	U.S. Default Factors for Calculating CO ₂ Emissions from Geothermal Energy Production	69
Global Warming Potentials	5.1	Default Global Warming Potential Factors for Required Greenhouse Gases	70
Glc War Pote	5.2	Default Global Warming Potential Factors for Refrigerant Blends	72
		Conversion Factors	77

Table 1.1 U.S. Default Factors for Calculating ${\rm CO_2\,Emissions}$ from Combustion of Fossil Fuel and Biomass

Fuel Type	Heat Content	Carbon Content (Per Unit Energy)	Fraction Oxidized	CO ₂ Emission Factor (Per Unit Energy)	CO ₂ Emission Factor (Per Unit Mass or Volume)
Coal and Coke	MMBtu / short ton	kg C / MMBtu		kg CO ₂ / MMBtu	kg CO ₂ / short ton
Anthracite	25.09	28.28	1	103.69	2602
Bituminous	24.93	25.44	1	93.28	2325
Subbituminous	17.25	26.50	1	97.17	1676
Lignite	14.21	26.65	1	97.72	1389
Coal Coke	24.80	31.00	1	113.67	2819
Mixed Electric Utility/Electric Power	19.73	26.05	1	95.52	1885
Unspecified Residential/Com*	19.09	26.09	1	95.66	1826
Mixed Commercial Sector	21.39	25.71	1	94.27	2016
Mixed Industrial Coking	26.28	25.61	1	93.90	2468
Mixed Industrial Sector	22.35	25.82	1	94.67	2116
Natural Gas	Btu / scf	kg C / MMBtu		kg CO₂/ MMBtu	kg CO ₂ / scf
US Weighted Average**	1026.00	14.47	1	53.06	0.05444
Greater than 1,000 Btu**	>1000	14.47	1	53.06	varies
975 to 1,000 Btu**	975 – 1,000	14.73	1	54.01	varies
1,000 to 1,025 Btu**	1,000 – 1,025	14.43	1	52.91	varies
1,025 to 1,035 Btu**	1,025 – 1,035	14.45	1	52.98	varies
1,025 to 1,050 Btu**	1,025 – 1,050	14.47	1	53.06	varies
1,050 to 1,075 Btu**	1,050 – 1,075	14.58	1	53.46	varies
1,075 to 1,100 Btu**	1,075 – 1,100	14.65	1	53.72	varies
Greater than 1,100 Btu**	>1,100	14.92	1	54.71	varies
(EPA 2010) Full Sample**		14.48	1	53.09	n/a
(EPA 2010) <1.0% CO2**		14.43	1	52.91	n/a
(EPA 2010) <1.5% CO2**		14.47	1	53.06	n/a
(EPA 2010) <1.0% CO2 and <1,050 Btu/scf**	<1,050	14.42	1	52.87	n/a
(EPA 2010) <1.5% CO2 and <1,050 Btu/scf**	<1,050	14.47	1	53.06	n/a
(EPA 2010) Flare Gas**	>1,100	15.31	1	56.14	n/a

Petroleum Products	MMBtu / gallon	kg C / MMBtu		kg CO ₂ / MMBtu	kg CO₂/ gallon
Distillate Fuel Oil No. 1	0.139	19.98	1	73.25	10.18
Distillate Fuel Oil No. 2	0.138	20.17	1	73.96	10.21
Distillate Fuel Oil No. 4	0.146	20.47	1	75.04	10.96
Residual Fuel Oil No. 5	0.140	19.89	1	72.93	10.21
Residual Fuel Oil No. 6	0.150	20.48	1	75.10	11.27
Still Gas	0.143	18.20	1	66.73	9.53
Used Oil	0.138	20.18	1	74.00	10.21
Kerosene	0.135	20.51	1	75.20	10.15
LPG	0.092	16.83	1	61.71	5.68
Propane (Liquid)	0.091	17.15	1	62.87	5.72
Propylene	0.091	18.48	1	67.77	6.17
Ethane	0.068	16.25	1	59.60	4.05
Ethylene	0.058	17.99	1	65.96	3.83
Isobutane	0.099	17.71	1	64.94	6.43
Isobutylene	0.103	18.78	1	68.86	7.09
Butane	0.103	17.66	1	64.77	6.67
Butylene	0.105	18.74	1	68.72	7.22
Naptha (<401 deg F)	0.125	18.55	1	68.02	8.50
Natural Gasoline	0.110	18.24	1	66.88	7.36
Other Oil (>401 deg F)	0.139	20.79	1	76.22	10.59
Pentanes Plus	0.110	19.10	1	70.02	7.70
Petrochemical Feedstocks	0.125	19.37	1	71.02	8.88
Petroleum Coke (Liquid)	0.143	27.93	1	102.41	14.64
Special Naptha	0.125	19.73	1	72.34	9.04
Unfinished Oils	0.139	20.33	1	74.54	10.36
Heavy Gas Oils	0.148	20.43	1	74.92	11.09
Lubricants	0.144	20.26	1	74.27	10.69
Motor Gasoline	0.125	19.15	1	70.22	8.78
Aviation Gasoline	0.120	18.89	1	69.25	8.31
Kerosene Type Jet Fuel	0.135	19.70	1	72.22	9.75
Asphalt and Road Oil	0.158	20.55	1	75.36	11.91
Crude Oil	0.138	20.33	1	74.54	10.29

Petroleum Waxes	0.132	19.80	1	72.60	9.57
Fossil Fuel-derived Fuels (gaseous)	MMBtu / scf	kg C / MMBtu		kg CO₂/ MMBtu	kg CO₂/ scf
Acetylene***	0.00147	19.53	1	71.61	0.11
Blast Furnace Gas	0.000092	74.81	1	274.32	0.02524
Coke Oven Gas	0.000599	12.78	1	46.85	0.02806
Propane (Gas)	0.002516	16.76	1	61.46	0.15463
Fuel Gas	0.001388	16.09	1	59.00	0.08189
Fossil Fuel-derived Fuels (solid)	MMBtu / short ton	kg C / MMBtu		kg CO₂/ MMBtu	kg CO ₂ / short ton
Municipal Solid Waste	9.95	24.74	1	90.70	902
Tires	28.00	23.45	1	85.97	2407
Plastics	38.00	20.45	1	75.00	2850
Petroleum Coke (Solid)	30.00	27.93	1	102.41	3072
Biomass Fuels-Solid	MMBtu / short ton	kg C / MMBtu		kg CO ₂ / MMBtu	kg CO ₂ / short ton
Wood and Wood Residuals (12% moisture content)	17.48	25.58	1	93.80	1640
Agricultural Byproducts	8.25	32.23	1	118.17	975
Peat	8.00	30.50	1	111.84	895
Solid Byproducts	10.39	28.78	1	105.51	1096
Kraft Black Liquor (NA hardwood)		25.55	1	93.70	n/a
Kraft Black Liquor (NA softwood)		25.75	1	94.40	n/a
Kraft Black Liquor (Bagasse)		26.05	1	95.50	n/a
Kraft Black Liquor (Bamboo)		25.55	1	93.70	n/a
Kraft Black Liquor (Straw)		25.94	1	95.10	n/a
Municipal Solid Waste (Biomass)	9.95	24.74	1	90.70	902
Biomass Fuels-Gaseous	MMBtu / scf	kg C / MMBtu		kg CO₂/ MMBtu	kg CO₂/ scf
Biogas (Captured Methane)	0.000655	14.20	1	52.07	0.034106
Landfill Gas (50% CH ₄ /50%CO ₂)	0.000485	14.20	1	52.07	0.025254
Wastewater Treatment Biogas****	varies	14.20	1	52.07	varies
Biomass Fuels - Liquid	MMBtu / gallon	kg C / MMBtu		kg CO ₂ / MMBtu	kg CO₂/ gallon
Ethanol (100%)	0.084	18.67	1	68.44	5.75
Biodiesel (100%)	0.128	20.14	1	73.84	9.45
Rendered Animal Fat	0.125	19.38	1	71.06	8.88
Vegetable Oil	0.120	22.24	1	81.55	9.79

Source: Heat Content and CO₂ emission factors per unit energy are from EPA Final Mandatory Reporting of Greenhouse Gases Rule Tables C-1 and AA-1, and the associated eCFR database Title 40 Protection of the Environment, Part 98 Mandatory Greenhouse Gas Reporting as amended December 2016. Carbon Content is derived using the heat content and/or default emission factor. The source marked with * heat content factor for Unspecified Residential/Corn is derived from the U.S. Energy Information Administration, Monthly Energy Review (December 2020). Sources marked with ** are from US Inventory of Greenhouse Gas Emissions and Sinks 1990-2018 (April 2020) Annex 2, Tables A- 51, and A-61. Sources marked with *** are derived from the API Compendium of Greenhouse Gas Emissions Methodologies for the Oil and Gas Industry (August 2009), Section 3.6.3, Table 3-8. Sources marked with **** are derived from the EPA Climate Leaders Technical Guidance (2008) Table B-2. A fraction oxidized value of 1.00 is from the Intergovernmental Panel on Climate Change (IPCC), Guidelines for National Greenhouse Gas Inventories (2006). Sources marked as n/a = data not available.

Note: Where not provided from the EPA Final Mandatory Reporting of Greenhouse Gases Rule, default CO₂ emission factors (per unit energy) are calculated as: Carbon Content × Fraction Oxidized × 44/12. Default CO₂ emission factors (per unit mass or volume) are calculated using the equation: Heat Content × Carbon Content × Fraction Oxidized × 44/12 × Conversion Factor (if applicable).

Table 1.2 Canadian Default Factors for Calculating CO₂ Emissions from Combustion of Natural Gas, Petroleum Products, and Biomass

Fuel Type	Carbon Content (Per Unit Energy)	Heat Content	Fraction Oxidized	CO ₂ Emission Factor (Per Unit Mass or Volume)
Natural Gas	kg C / GJ	GJ / megalitre		g CO ₂ / m3
All Provinces				
Still gas (Upgrading Facilities)	n/a	43.24	1	2140
Still gas (Refineries & Others)	n/a	36.08	1	2183
Newfoundland and Labrador				
Marketable	n/a	39.03	1	1901
Non-Marketable	n/a	39.03	1	2494
Nova Scotia				
Marketable	n/a	39.03	1	1901
Non-Marketable	n/a	39.03	1	2494
New Brunswick				
Marketable	n/a	39.03	1	1901
Non-Marketable	n/a	39.03	1	n/o
Quebec				
Marketable	n/a	39.03	1	1887
Non-Marketable	n/a	39.03	1	n/o
Ontario				
Marketable	n/a	39.03	1	1888
Non-Marketable	n/a	39.03	1	n/o

Manitoba							
Marketable	n/a	39.03	1	1886			
Non-Marketable	n/a	39.03	1	n/a			
Saskatchewan							
Marketable	n/a	39.03	1	1829			
Non-Marketable	n/a	39.03	1	2441			
Alberta							
Marketable	n/a	39.03	1	1928			
Non-Marketable	n/a	39.03	1	2392			
British Columbia							
Marketable	n/a	39.03	1	1926			
Non-Marketable	n/a	39.03	1	2162			
Yukon							
Marketable	n/a	39.03	1	1901			
Non-Marketable	n/a	39.03	1	2401			
Northwest Territories							
Marketable	n/a	39.03	1	1901			
Non-Marketable	n/a	39.03	1	2466			
Natural Gas Liquids	kg C / GJ	GJ / Kilolitre		g CO₂/ L			
Propane: Residential Propane	n/a	25.31	1	1515			
Propane: Other Uses Propane	n/a	25.31	1	1515			

Ethane	n/a	17.22	1	986
Butane	n/a	28.44	1	1747
Refinery LPGs (All Stationary)	n/a	n/a	1	1629
Petroleum Products	kg C / GJ	GJ / Kilolitre		g CO₂/ L
Light Fuel Oil Electric Utilities	n/a	38.80	1	2753
Light Fuel Oil Industrial	n/a	38.80	1	2753
Light Fuel Oil Producer Consumption	n/a	38.80	1	2670
Light Fuel Oil Residential	n/a	38.80	1	2753
Light Fuel Oil Forestry, Construction, Public Administration, Commercial/Institutional	n/a	38.80	1	2753
Heavy Fuel Oil (Electric Utility, Industrial, Forestry, Construction, Public Administration, Commercial/Institutional)	n/a	42.50	1	3156
Heavy Fuel Oil (Residential)	n/a	42.50	1	3156
Heavy Fuel Oil (Producer Consumption)	n/a	42.50	1	3190
Kerosene (Electric Utility, Industrial, Producer Consumption, Residential, Forestry, Construction, Public Administration, Commercial/Institutional)	n/a	37.68	1	2560
Diesel	n/a	38.30	1	2681
Petroleum Coke from Upgrading Facilities	n/a	40.57	1	3494
Petroleum Coke from Refineries & Others	n/a	46.35	1	3778
Motor Gasoline	n/a	35.00	1	2307
Biomass	kg C / GJ	GJ/t		g CO2 / kg
Wood Fuel/Wood Waste	n/a	18.00	1	1715

Spent Pulping Liquor	n/a	14.00	1	1250
Landfill Gas	n/a	n/a	1	2752
Stoves and Fireplaces	n/a	n/a	1	1539
Pellet Stove	n/a	n/a	1	1652
Other Wood-burning Equipment	n/a	n/a	1	1539

Source: Default CO₂ emission factors: Environment Canada, National Inventory Report, 1990-2018: Greenhouse Gas Sources and Sinks in Canada (April 2020), Annex 6: Emission Factors, Tables A6.1-1, A6.1-3, A6.1-4, A6.1-5, A6.6-1 and A6.6-2. The CO₂ emission factor for refinery LPGs is from: Environment Canada, National Inventory Report, 1990-2012: Greenhouse Gas Sources and Sinks in Canada (2015), Annex 8: Emission Factors, Table A8-5. Default Heat Content: Statistics Canada, Report on Energy Supply and Demand in Canada, 2016-Revision (April 2019), Energy conversion factors, p. 132; Default Carbon Content: Canada-specific carbon content coefficients are not available. If you cannot obtain measured carbon content values specific to your fuels, you should use the default emission factor; Default Fraction Oxidized: Intergovernmental Panel on Climate Change (IPCC), Guidelines for National Greenhouse Gas Inventories (2006). n/a=data not available. n/o=not occurring.

Note: Red text indicates a revised emission factor for Manitoba from the previous publication.

Table 1.3 Canadian Default Factors for Calculating ${\rm CO_2}$ Emissions from Combustion of Coal

Province and Coal Type	Carbon Content	Heat Content	Fraction Oxidized	CO ₂ Emission Factor
Newfoundland and Labrador	kg C / GJ	GJ/t		g CO₂/ kg
Canadian Bituminous	n/a	28.96	1	2211
Foreign Bituminous	n/a	29.82	1	2540
Foreign Sub-Bituminous	n/a	19.15	1	1865
Lignite	n/a	15.00	1	1469
Prince Edward Island	kg C / GJ	GJ/t		g CO₂/ kg
Canadian Bituminous	n/a	28.96	1	2211
Foreign Bituminous	n/a	29.82	1	2540
Foreign Sub-Bituminous	n/a	19.15	1	1865
Lignite	n/a	15.00	1	1469
Nova Scotia	kg C / GJ	GJ/t		g CO₂/ kg
Canadian Bituminous	n/a	28.96	1	2357
Foreign Bituminous	n/a	29.82	1	2540
Foreign Sub-Bituminous	n/a	19.15	1	1865
Lignite	n/a	15.00	1	1469
New Brunswick	kg C / GJ	GJ/t		g CO₂/ kg
Canadian Bituminous	n/a	26.80	1	2224

Foreign Bituminous	n/a	29.82	1	2540
Foreign Sub-Bituminous	n/a	19.15	1	1865
Lignite	n/a	15.00	1	1469
Quebec	kg C / GJ	GJ/t		g CO₂ / kg
Canadian Bituminous	n/a	28.96	1	2224
Foreign Bituminous	n/a	29.82	1	2662
Lignite	n/a	15.00	1	1469
Ontario	kg C / GJ	GJ/t		g CO₂/ kg
Canadian Bituminous	n/a	25.43	1	2224
Foreign Bituminous	n/a	29.82	1	2651
Foreign Sub-Bituminous	n/a	19.15	1	1865
Lignite	n/a	15.00	1	1469
Manitoba	kg C / GJ	GJ/t		g CO₂/ kg
Foreign Bituminous	n/a	29.82	1	2651
Foreign Sub-Bituminous	n/a	19.15	1	1865
Lignite	n/a	15.00	1	1469
Saskatchewan	kg C / GJ	GJ/t		g CO₂ / kg
Canadian Bituminous	n/a	25.43	1	2224
Canadian Sub-Bituminous	n/a	19.15	1	1774
Lignite	n/a	15.00	1	1464

Alberta	kg C / GJ	GJ/t		g CO₂/ kg
Canadian Bituminous	n/a	25.43	1	2224
Foreign Bituminous	n/a	n/a	1	2662
Canadian Sub-Bituminous	n/a	19.15	1	1774
Lignite	n/a	15.00	1	1469
British Columbia	kg C / GJ	GJ/t		g CO₂ / kg
Canadian Bituminous	n/a	26.02	1	2224
Canadian Sub-Bituminous	n/a	19.15	1	1774
Lignite	n/a	15.00	1	1469
All Provinces and Territories	kg C / GJ	GJ/t		g CO₂/ kg
Coke	n/a	28.83	1	3173
Anthracite	n/a	27.70	1	2411
Coke Oven Gas	n/a	19.14	1	687

Source: Default CO₂ Emission Factors: Environment Canada, National Inventory Report, 1990-2018: Greenhouse Gas Sources and Sinks in Canada (April 2020), Annex 6: Emission Factors, Tables A6.1-8 and A6.1-9; Default Heat Content: Statistics Canada, Report on Energy Supply and Demand in Canada, 2016-Revision (April 2019), Energy conversion factors, p. 132 (value for Foreign Bituminous uses heat content of "Imported bituminous" value, for Foreign Sub-Bituminous uses heat content of "Sub- bituminous"); Default Carbon Content: Canada-specific carbon content coefficients are not available. If you cannot obtain measured carbon content values specific to your fuels, you should use the default emission factor; Default Fraction Oxidized: Intergovernmental Panel on Climate Change (IPCC), Guidelines for National Greenhouse Gas Inventories (2006) and Environment Canada, National Inventory Report, 1990-2015: Greenhouse Gas Sources and Sinks in Canada (April 2017), Annex 4: Reference Approach Energy Conversion and Emission Factors for Canada. n/a=data not available.

Note: CO₂ emission factors from Environment Canada originally included fraction oxidized factors of less than 100% for Solid - Primary Fuels. Values were converted to include a 100% oxidation rate using 98.8% for Anthracite, 98.8% for Bituminous, 99.4% for Subbituminous, and 99.5% for Lignite based on the rates used to calculate the original factors.

Table 1.4 Canadian Default Factors for Calculating CH_4 and N_2O Emissions from Combustion of Natural Gas, Petroleum Products, Coal, and Biomass

Fuel Type	CH₄ Emission Factor (Per Unit Mass or Volume)	N₂O Emission Factor (Per Unit Mass or Volume)
Natural Gas	g CH₄/ m³	g N₂O / m³
Electric Utilities	0.490	0.049
Industrial	0.037	0.033
Producer Consumption (NonMarketable)	6.4	0.060
Pipelines	1.900	0.050
Cement	0.037	0.034
Manufacturing Industries	0.037	0.033
Residential, Construction, Commercial/Institutional, Agriculture	0.037	0.035
Natural Gas Liquids	g CH₄/ L	g N₂O / L
Propane (Residential)	0.027	0.108
Propane (All Other Uses)	0.024	0.108
Ethane	0.024	0.108
Butane	0.024	0.108
Refinery LPGs	0.024	0.108
Refined Petroleum Products	g CH₄/ L	g N₂O / L
Light Fuel Oil (Electric Utilities)	0.18	0.031
Light Fuel Oil (Industrial and Producer Consumption)	0.006	0.031

Light Fuel Oil (Residential)	0.026	0.006
Light Fuel Oil (Forestry, Construction, Public Administration, and Commercial/Institutional)	0.026	0.031
Heavy Fuel Oil (Electric Utilities)	0.034	0.064
Heavy Fuel Oil (Industrial and Producer Consumption)	0.12	0.064
Heavy Fuel Oil (Residential, Forestry, Construction, Public Administration, and Commercial/Institutional)	0.057	0.064
Kerosene (Electric Utilities, Industrial, and Producer Consumption)	0.006	0.031
Kerosene (Residential)	0.026	0.006
Kerosene (Forestry, Construction, Public Administration, and Commercial/Institutional)	0.026	0.031
Diesel (Refineries and Others)	0.078	0.022
Diesel (Upgraders)	0.078	0.022
Still Gas (Refineries and Others)	0.0317	0.00002
Still Gas (Upgraders)	0.0389	0.00002
Motor Gasoline (Unspecified)	0.100	0.02
Petroleum Coke	g CH₄/ L	g N₂O / L
Upgrading Facilities	0.12	0.024
Refineries & Others	0.12	0.0275
Coal	g CH₄/ kg	g N₂O / kg
Coal (Electric Utilities)	0.02	0.03
Coal (Industry and Heat & Death & Plants)	0.03	0.02
Coal (Residential, Public Administration)	4.00	0.02

Coke	0.03	0.02
Coal (gas)	g CH₄/ m³	g N ₂ O / m³
Coke Oven Gas	0.04	0.04
Biomass	g CH₄/ kg	g N₂O / kg
Wood Fuel/Wood Waste (Industrial Combustion)	0.10	0.07
Spent Pulping Liquor (Industrial Combustion)	0.03	0.005
Stoves and Fireplaces (Advance Technology or Catalytic Control)	5.9	0.12
Stoves and Fireplaces (Conventional, Inserts)	12.9	0.12
Pellet Stove	4.12	0.059
Other Wood-burning Equipment	4.12	0.059
Landfill Gas	kg CH₄/ t	kg N₂O / t
Landfill Gas (Industrial Combustion)	0.05	0.005

Source: Environment Canada, National Inventory Report, 1990-2018: Greenhouse Gas Sources and Sinks in Canada (April 2020), Annex 6: Emission Factors, Tables A6.1-2, A6.1-3, A6.1-4, A6.1-6, A6.1-7, A6.1-10, A6.6-1, and A6.6-2. n/a=data not available.

Note: The CH₄ and the N₂O emission factors for refinery LPGs is from: Environment Canada, National Inventory Report, 1990-2012: Greenhouse Gas Sources and Sinks in Canada (2014), Annex 8: Emission Factors, Table A8-4.

Table 1.5 Default CH_4 and N_2O Emission Factors by Technology Type for the Electricity Generation Sector

Fuel Type and Basic Technology	Configuration	CH ₄ (g / MMBtu)	N₂O (g / MMBtu)
Liquid Fuels			
Residual Fuel Oil/Shale Oil Boilers	Normal Firing	0.8	0.3
Residual Fuel Oil/Shale Oil Boilers	Tangential Firing	0.8	0.3
Gas/Diesel Oil Boilers	Normal Firing	0.9	0.4
Gas/Diesel Oil Boilers	Tangential Firing	0.9	0.4
Large Diesel Oil Engines >600hp (447kW)		4.0	n/a
Solid Fuels			
Pulverized Bituminous Combustion Boilers	Dry Bottom, wall fired	0.7	0.5
Pulverized Bituminous Combustion Boilers	Dry Bottom, tangentially fired	0.7	1.4
Pulverized Bituminous Combustion Boilers	Wet Bottom	0.9	1.4
Bituminous Spreader Stoker Boilers	With and without re-injection	1.0	0.7
Bituminous Fluidized Bed Combustor	Circulating Bed	1.0	61.1
Bituminous Fluidized Bed Combustor	Bubbling Bed	1.0	61.1
Bituminous Cyclone Furnace		0.2	1.6
Lignite Atmospheric Fluidized Bed		n/a	71.2
Natural Gas			

Fuel Type and Basic Technology	Configuration	CH ₄ (g / MMBtu)	N ₂ O (g / MMBtu)
Boilers		0.9	0.9
Gas-Fired Gas Turbines >3MW		3.8	0.9
Large Dual-Fuel Engines		245.0	n/a
Combined Cycle		0.9	2.8
Peat			
Peat Fluidized Bed Combustor	Circulating Bed	3.0	7.0
Peat Fluidized Bed Combustor	Bubbling Bed	3.0	3.0
Biomass			
Wood/Wood Waste Boilers		9.3	5.9
Wood Recovery Boilers		0.8	0.8

Source: IPCC, Guidelines for National Greenhouse Gas Inventories (2006), Chapter 2: Stationary Combustion, Table 2.6. Values were converted back from LHV to HHV using IPCC's assumption that LHV are five percent lower than HHV for coal and oil, 10 percent lower for natural gas, and 20 percent lower for dry wood. (The IPCC converted the original factors from units of HHV to LHV, so the same conversion rates used by the IPCC were used here to obtain the original values in units of HHV.) Values were converted from kg/TJ to g/MMBtu using 1 kg = 1000 g and 1 MMBtu = 0.001055 TJ. n/a=data not available.

Table 1.6 Default Factors for Calculating CH_4 and N_2O Emission from Kilns, Ovens, and Dryers

Industry	Source	CH₄ (g / MMBtu)	N₂O (g / MMBtu)
Cement, Lime	Kilns - Natural Gas	1.04	n/a
Cement, Lime	Kilns – Oil	1.0	n/a
Cement, Lime	Kilns – Coal	1.0	n/a
Coking, Steel	Coke Oven	1.0	n/a
Chemical Processes, Wood, Asphalt, Copper, Phosphate	Dryer - Natural Gas	1.04	n/a
Chemical Processes, Wood, Asphalt, Copper, Phosphate	Dryer – Oil	1.0	n/a
Chemical Processes, Wood, Asphalt, Copper, Phosphate	Dryer – Coal	1.0	n/a

Source: IPCC, Guidelines for National Greenhouse Gas Inventories (2006), Chapter 2: Stationary Combustion, Table 2.8. Values were converted back from LHV to HHV using IPCC's assumption that LHV are five percent lower than HHV for coal and oil and 10 percent lower for natural gas. Values were converted from kg/TJ to g/MMBtu using 1 kg = 1000 g and 1 MMBtu = 0.001055 TJ. n/a=data not available.

Table 1.7 Default Factor for Calculating ${\rm CH_4}$ and ${\rm N_2O}$ Emissions by Technology Type for the Industrial Sector

Fuel Type and Basic Technology	Configuration	CH₄ (g / MMBtu)	N₂O (g / MMBtu)
Liquid Fuels			
Residual Fuel Oil Boilers		3.0	0.3
Gas/Diesel Oil Boilers		0.2	0.4
Large Stationary Diesel Oil Engines >600hp (447 kW)		4.0	n/a
Liquefied Petroleum Gases Boilers		0.9	4.0
Solid Fuels			
Other Bituminous/Sub-bit. Overfeed Stoker Boilers		1.0	0.7
Other Bituminous/Sub-bit. Underfeed Stoker Boilers		14.0	0.7
Other Bituminous/Sub-bituminous Pulverized	Dry Bottom, wall fired	0.7	0.5
Other Bituminous/Sub-bituminous Pulverized	Dry Bottom, tangentially fired	0.7	1.4
Other Bituminous/Sub-bituminous Pulverized	Wet Bottom	0.9	1.4
Other Bituminous Spreader Stokers		1.0	0.7
Other Bituminous/Sub-bit. Fluidized Bed Combustor	Circulating Bed	1.0	61.1
Other Bituminous/Sub-bit. Fluidized Bed Combustor	Bubbling Bed	1.0	61.1
Natural Gas			
Boilers		0.9	0.9
Gas-Fired Gas Turbines >3MW		3.8	0.9
Natural Gas-fired Reciprocating Engines	2-Stroke Lean Burn	658.0	n/a
Natural Gas-fired Reciprocating Engines	4-Stroke Lean Burn	566.9	n/a

Fuel Type and Basic Technology	Configuration	CH₄ (g / MMBtu)	N ₂ O (g / MMBtu)
Natural Gas-fired Reciprocating Engines	4-Stroke Rich Burn	104.4	n/a
Biomass			
Wood/Wood Waste Boilers		9.3	5.9

Source: IPCC, Guidelines for National Greenhouse Gas Inventories (2006), Chapter 2: Stationary Combustion, Table 2.7. Values were converted from LHV to HHV assuming that LHV are five percent lower than HHV for coal and oil, 10 percent lower for natural gas, and 20 percent lower for dry wood. (The IPCC converted the original factors from units of HHV to LHV, so the same conversion rates used by the IPCC were used here to obtain the original values in units of HHV.) Values were converted from kg/TJ to g/MMBtu using 1 kg = 1000 g and 1 MMBtu = 0.001055 TJ. n/a=data not available.

Table 1.8 Default Factors for Calculating ${\rm CH_4}$ and ${\rm N_2O}$ Emissions by Technology Type for the Commercial Sector

Fuel Type and Basic Technology	Configuration	CH₄(g / MMBtu)	N₂O (g / MMBtu)
Liquid Fuels			
Residual Fuel Oil Boilers		1.4	0.3
Gas/Diesel Oil Boilers		0.7	0.4
Liquefied Petroleum Gases Boilers		0.9	4.0
Solid Fuels			
Other Bituminous/Sub-bit. Overfeed Stoker Boilers		1.0	0.7
Other Bituminous/Sub-bit. Underfeed Stoker Boilers		14.0	0.7
Other Bituminous/Sub-bit. Hand-fed Units		87.2	0.7
Other Bituminous/Sub-bituminous Pulverized Boilers	Dry Bottom, wall fired	0.7	0.5
Other Bituminous/Sub-bituminous Pulverized Boilers	Dry Bottom, tangentially fired	0.7	1.4
Other Bituminous/Sub-bituminous Pulverized Boilers	Wet Bottom	0.9	1.4
Other Bituminous Spreader Stokers		1.0	0.7
Other Bituminous/Sub-bit. Fluidized Bed Combustor	Circulating Bed	1.0	61.1
Other Bituminous/Sub-bit. Fluidized Bed Combustor	Bubbling Bed	1.0	61.1
Natural Gas			
Boilers		0.9	0.9
Gas-Fired Gas Turbines >3MWa		3.8	1.3
Biomass			
Wood/Wood Waste Boilers		9.3	5.9
	•		

Source: IPCC, Guidelines for National Greenhouse Gas Inventories (2006), Chapter 2: Stationary Combustion, Table 2.10. Values were converted from LHV to HHV assuming that LHV are five percent lower than HHV for coal and oil, 10 percent lower for natural gas, and 20 percent lower for dry wood. (The IPCC converted the original factors from units of HHV to LHV, so the same conversion rates used by the IPCC were used here to obtain the original values in units of HHV.) Values were converted from kg/TJ to g/MMBtu using 1 kg = 1000 g and 1 MMBtu = 0.001055 TJ.

Table 1.9 U.S. Default Factors for Calculating CH_4 and N_2O Emissions by Fuel Type Industrial and Energy Sectors

Fuel Type / End-Use Sector	CH₄ (kg / MMBtu)	N ₂ O (kg / MMBtu)	
Coal			
Industrial	0.011	1.6E-3	
Energy Industry	0.011	1.6E-3	
Coke			
Industrial	0.011	1.6E-3	
Energy Industry	0.011	1.6E-3	
Petroleum Products			
Industrial	3.0E-3	6.0E-4	
Energy Industry	3.0E-3	6.0E-4	
Natural Gas			
Industrial	1.0E-3	1.0E-4	
Energy Industry	1.0E-3	1.0E-4	
Municipal Solid Waste			
Industrial	0.032	4.2E-3	
Energy Industry	0.032	4.2E-3	
Tires			
Industrial	0.032	4.2E-3	
Energy Industry	0.032	4.2E-3	
Blast Furnace Gas			
Industrial	2.2E-5	1.0E-4	
Energy Industry	2.2E-5	1.0E-4	
Coke Oven Gas			
Industrial	4.8E-4	1.0E-4	
Energy Industry	4.8E-4	1.0E-4	
Biomass Fuels Solid (except Wood and Wood Residuals)			
Industrial	0.032	4.2E-3	
Energy Industry	0.032	4.2E-3	
Wood and Wood Residuals			

0.0072	3.6E-3
0.0072	3.6E-3
3.2E-3	6.3E-4
3.2E-3	6.3E-4
1.1E-3	1.1E-4
1.1E-3	1.1E-4
1.9E-3	4.2E-4
	0.0072 3.2E-3 3.2E-3 1.1E-3

Source: CH₄ and N₂O emission factors per unit energy are from EPA Final Mandatory Reporting of Greenhouse Gases Rule Table C-2. Except those marked with * are from Table AA-1.

Note: For coal combustion, organizations who fall within the IPCC "Energy Industry" category can employ a value of 1g of CH4/mmBtu.

Table 1.10 Default Factors for Calculating CH_4 and N_2O Emission by Fuel Type for the Residential and Commercial Sectors

Fuel Type / End-Use Sector	CH₄ (g / MMBtu)	N₂O (g / MMBtu)		
Coal				
Residential	300.7	1.5		
Commercial	10.0	1.5		
Petroleum Products				
Residential	10.0	0.6		
Commercial	10.0	0.6		
Natural Gas				
Residential	4.7	0.1		
Commercial	4.7	0.1		
Wood				
Residential	253.2	3.4		
Commercial	253.2	3.4		

Source: IPCC, Guidelines for National Greenhouse Gas Inventories (2006), Chapter 2: Stationary Combustion, Tables 2.4 and 2.5. Values were converted from LHV to HHV assuming that LHV are five percent lower than HHV for coal and oil, 10 percent lower for natural gas, and 20 percent lower for dry wood. (The IPCC converted the original factors from units of HHV to LHV, so the same conversion rates used by the IPCC were used here to obtain the original values in units of HHV.) Values were converted from kg/TJ to g/MMBtu using 1 kg = 1000 g and 1 MMBtu = 0.001055 TJ.

Table 2.1 U.S. Default Factors for Calculating ${\rm CO_2}$ Emissions from Combustion of Transport Fuels

Fuel Type	Carbon Content (Per Unit Energy)	Heat Content	Fraction Oxidized	CO₂ Emission Factor (Per Unit Volume)
Fuels Measured in Gallons	kg C / MMBtu	MMBtu / barrel		kg CO₂/ gallon
Gasoline	19.2	5.25	1	8.78
Diesel Fuel	20.2	5.80	1	10.21
Aviation Gasoline	18.9	5.04	1	8.31
Jet Fuel (Jet A or A-1)	19.7	5.67	1	9.75
Kerosene	20.5	5.67	1	10.15
Residual Fuel Oil No. 5	19.9	5.88	1	10.21
Residual Fuel Oil No. 6	20.5	6.30	1	11.27
Crude Oil	20.3	5.80	1	10.29
Biodiesel (B100)	20.1	5.38	1	9.45
Ethanol (E100)	18.7	3.53	1	5.75
Methanol*	n/a	n/a	1	4.10
Liquefied Natural Gas (LNG)	n/a	n/a	1	4.50
Liquefied Petroleum Gas (LPG)	17.2	3.86	1	5.68
Propane (Liquid)	16.8	3.82	1	5.72
Ethane	16.3	2.86	1	4.05
Isobutane	17.7	4.16	1	6.43
Butane	17.7	4.33	1	6.67
Renewable Diesel (R100)**	20.2	5.80	1	10.21
Fuels Measured in Standard Cubic Feet	kg C / MMBtu	Btu / Standard cubic foot		kg CO ₂ / Standard cubic foot
Compressed Natural Gas (CNG)	14.5	1026	1	0.05444
Propane (Gas)	16.8	2516	1	0.15463
Renewable Natural Gas***	14.5	1026	1	0.05444

Source: Heat content and default emission factors are from EPA Final Mandatory Reporting of Greenhouse Gases Rule Table C-1. Carbon content derived using the heat content and default emission factor. A fraction oxidized of 1.00 is from the IPCC, Guidelines for National Greenhouse Gas Inventories (2006). CNG and LNG CO₂ factors are from EPA Center for Corporate Climate Leadership GHG Emission Factors Hub (March 2018). *Methanol emission factor is calculated from the properties of the pure compounds. ** Renewable Diesel (R100) emission factor assumes that chemical properties of renewable diesel are indistinguishable from petroleum-based diesel according to CalEPA Fuels Guidance Document, Version 2.0, September 2015. *** Renewable Natural Gas (RNG) emission factor assumes that RNG is chemically identical to fossil natural gas according to U.S. Department of Energy Office of Energy Efficiency and Renewable Energy's Alternative Fuels Data Center information on Natural Gas Vehicle Emissions. n/a=data not available.

Note: Carbon contents are calculated using the following equation: (Emission Factor / (44/12) / Heat Content x Conversion Factor. Heat content factors are based on higher heating values (HHV).

Table 2.2 Canadian Default Factors for Calculating CO₂ Emissions from Combustion of Transport Fuels

Fuel Type	Carbon Content (kg C / GJ)	Heat Content	Fraction Oxidized	CO ₂ Emission Factors
		GJ / kiloliter		g CO₂/ L
Motor Gasoline	n/a	35.00	1	2307
Diesel	n/a	38.30	1	2681
Light Fuel Oil	n/a	38.80	1	2753
Heavy Fuel Oil	n/a	42.50	1	3156
Aviation Gasoline	n/a	33.52	1	2365
Aviation Turbo Fuel	n/a	37.40	1	2560
Propane	n/a	25.31	1	1515
Ethanol	n/a	n/a	1	1508
Biodiesel	n/a	n/a	1	2472
Kerosene	n/a	n/a	1	2560
		GJ / megaliter		g CO₂/ L
Natural Gas	n/a	39.03	1	1.9

Source: Default CO₂ Emission Factors: Environment Canada, National Inventory Report, 1990-2018: Greenhouse Gas Sources and Sinks in Canada (April 2020) Annex 6: Emission Factors, Table A6.1-13; Default Heat Content: Statistics Canada, Report on Energy Supply and Demand in Canada, 2017-Revision (May 2019), Energy conversion factors, p. 132; Default Carbon Content: Not available for Canada. If you cannot obtain measured carbon content values specific to your fuels, you should use the default emission factor. Default Fraction Oxidized: A value of 1.00 is used following the Intergovernmental Panel on Climate Change (IPCC), Guidelines for National Greenhouse Gas Inventories (2006).

Table 2.3 Canadian Default Factors for Calculating ${\rm CH_4}$ and ${\rm N_2O}$ Emissions from Mobile Combustion

Vehicle Type	CH ₄ Emission Factor (g CH ₄ /L)	N ₂ O Emission Factor (g N ₂ O/L)
Light-Duty Gasoline Vehicles (LDGVs)		
Tier 2	0.14	0.022
Tier 1	0.23	0.47
Tier 0	0.32	0.66
Oxidation Catalyst	0.52	0.20
Non-Catalytic Controlled	0.46	0.028
Light-Duty Gasoline Trucks (LDGTs)		
Tier 2	0.14	0.022
Tier 1	0.24	0.58
Tier 0	0.21	0.66
Oxidation Catalyst	0.43	0.20
Non-Catalytic Controlled	0.56	0.028
Heavy-Duty Gasoline Vehicles (HDGVs)		
Three-Way Catalyst	0.068	0.2
Non-Catalytic Controlled	0.29	0.047
Uncontrolled	0.49	0.084
Gasoline Motorcycles		
Non-Catalytic Controlled	0.77	0.041
Uncontrolled	2.3	0.048
Light-Duty Diesel Vehicles (LDDVs)		
Advance Control*	0.051	0.22
Moderate Control	0.068	0.21
Uncontrolled	0.10	0.16
Light-Duty Diesel Trucks (LDDTs)		
Advance Control*	0.068	0.22
Moderate Control	0.068	0.21
Uncontrolled	0.085	0.16

Heavy-Duty Diesel Vehicles (HDDVs)					
Advance Control	0.11	0.151			
Moderate Control	0.14	0.082			
Uncontrolled	0.15	0.075			
Gas Fueled Vehicles					
Natural Gas Vehicles	0.009	0.00006			
Propane Vehicles	0.64	0.028			
Railways					
Diesel Train	0.15	1.0			
Marine					
Gasoline Boats	0.22	0.063			
Diesel Ships	0.25	0.072			
Light Fuel Oil Ships	0.26	0.073			
Heavy Fuel Oil Ships	0.29	0.082			
Kerosene	0.25	0.071			
Aviation					
Aviation Gasoline	2.2	0.23			
Aviation Turbo Fuel	0.029	0.071			
Renewable Fuels					
Biodiesel	**	**			
Ethanol	***	***			
Off-Road Vehicles					
Off-road Gasoline 2-stroke	10.61	0.013			
Off-road Gasoline 4-stroke	5.08	0.064			
Off-road Diesel <19kW	0.073	0.022			
Off-road Diesel >=19kW, Tier 1-3	0.073	0.022			
Off-road Diesel >= 19kW, Tier 4	0.073	0.227			
Off-road Natural Gas	0.0088	0.00006			
Off-road Propane	0.64	0.087			

Source: Environment Canada, National Inventory Report, 1990-2018: Greenhouse Gas Sources and Sinks in Canada (April 2020) Annex 6: Emission Factors, Table A6.1-13. *Advanced control diesel emission factors should be used for Tier 2 diesel vehicles. **Diesel CH4 and N2O emission factors (by mode and technology) shall be used to calculate biodiesel emissions. ***Gasoline CH4 and N2O emission factors (by mode and technology) shall be used to calculate ethanol emissions.

Table 2.4 U.S. Default Factors for Calculating CH_4 and N_2O Emissions from Highway Vehicles by Technology Type

Vehicle Type/Control Technology Gasoline Passenger Cars EPA Tier 3 ARB LEV III EPA Tier 2 ARB LEV II ARB LEV II EPA Tier 1 EPA Tier 0 Oxidation Catalyst Non-Catalyst Control	0.0055 0.0045 0.0072 0.0070 0.0100 0.0271 0.0704 0.1355 0.1696 0.1780	0.0015 0.0012 0.0048 0.0043 0.0205 0.0429 0.0647 0.0504 0.0197
EPA Tier 3 ARB LEV III EPA Tier 2 ARB LEV II ARB LEV EPA Tier 1 EPA Tier 0 Oxidation Catalyst Non-Catalyst Control	0.0045 0.0072 0.0070 0.0100 0.0271 0.0704 0.1355 0.1696 0.1780	0.0012 0.0048 0.0043 0.0205 0.0429 0.0647 0.0504 0.0197
ARB LEV III EPA Tier 2 ARB LEV II ARB LEV EPA Tier 1 EPA Tier 0 Oxidation Catalyst Non-Catalyst Control	0.0045 0.0072 0.0070 0.0100 0.0271 0.0704 0.1355 0.1696 0.1780	0.0012 0.0048 0.0043 0.0205 0.0429 0.0647 0.0504 0.0197
EPA Tier 2 ARB LEV II ARB LEV EPA Tier 1 EPA Tier 0 Oxidation Catalyst Non-Catalyst Control	0.0072 0.0070 0.0100 0.0271 0.0704 0.1355 0.1696 0.1780	0.0048 0.0043 0.0205 0.0429 0.0647 0.0504 0.0197
ARB LEV II ARB LEV EPA Tier 1 EPA Tier 0 Oxidation Catalyst Non-Catalyst Control	0.0070 0.0100 0.0271 0.0704 0.1355 0.1696 0.1780	0.0043 0.0205 0.0429 0.0647 0.0504 0.0197
ARB LEV EPA Tier 1 EPA Tier 0 Oxidation Catalyst Non-Catalyst Control	0.0100 0.0271 0.0704 0.1355 0.1696 0.1780	0.0205 0.0429 0.0647 0.0504 0.0197
EPA Tier 1 EPA Tier 0 Oxidation Catalyst Non-Catalyst Control	0.0271 0.0704 0.1355 0.1696 0.1780	0.0429 0.0647 0.0504 0.0197
EPA Tier 0 Oxidation Catalyst Non-Catalyst Control	0.0704 0.1355 0.1696 0.1780	0.0647 0.0504 0.0197
Oxidation Catalyst Non-Catalyst Control	0.1355 0.1696 0.1780	0.0504 0.0197
Non-Catalyst Control	0.1696 0.1780	0.0197
	0.1780	
		N N197
Uncontrolled	0.0405	0.0107
Low Emission Vehicles*	0.0105	0.0150
Gasoline Light Trucks (Vans, Pickup Trucks, SUVs)		
EPA Tier 3	0.0092	0.0012
ARB LEV III	0.0065	0.0012
EPA Tier 2	0.0100	0.0025
ARB LEV II	0.0084	0.0057
ARB LEV	0.0148	0.0223
EPA Tier 1	0.0452	0.0871
EPA Tier 0	0.0776	0.1056
Oxidation Catalyst	0.1516	0.0639
Non-Catalyst Control	0.1908	0.0218
Uncontrolled	0.2024	0.0220
Low Emission Vehicles*	0.0148	0.0157
Gasoline Medium and Heavy-Duty Vehicles Trucks and Busses		
EPA Tier 3	0.0252	0.0063
ARB LEV III	0.0411	0.0136
EPA Tier 2	0.0297	0.0015
ARB LEV II	0.0391	0.0015

ARB LEV	0.0300	0.0466	
EPA Tier 1	0.0655	0.1750	
EPA Tier 0	0.2630	0.2135	
Oxidation Catalyst	0.2356	0.1317	
Non-Catalyst Control	0.4181	0.0473	
Uncontrolled	0.4604	0.0497	
Low Emission Vehicles*	0.0303	0.0320	
Diesel Passenger Cars			
Aftertreatment	0.0302	0.0192	
Advanced	0.0005	0.0010	
Moderate	0.0005	0.0010	
Uncontrolled	0.0006	0.0012	
Diesel Light-Duty Trucks			
Aftertreatment	0.0290	0.0214	
Advanced	0.0010	0.0015	
Moderate	0.0009	0.0014	
Uncontrolled	0.0011	0.0017	
Diesel Medium and Heavy-Duty Vehicles (Trucks and Busses)			
Aftertreatment	0.0095	0.0431	
Advanced	0.0051	0.0048	
Moderate	0.0051	0.0048	
Uncontrolled	0.0051	0.0048	
Motorcycles			
Non-Catalyst Control	0.0672	0.0069	
Uncontrolled	0.0899	0.0087	

Source: US Inventory of Greenhouse Gas Emissions and Sinks 1990-2018 (April 2020) Annex 3, Table A-96. *The CH_4 and N_2O emissions from Low-Emission Vehicles are from: US Inventory of Greenhouse Gas Emissions and Sinks 1990-2015 (April 2017) Annex 3, Table A-108.

Table 2.5 U.S. Default Factors for Calculating ${\rm CH_4}$ and ${\rm N_2O}$ Emission from Highway Vehicles by Model Year

Vehicle Type and Year	CH₄ (g / mi)	N₂O (g / mi)
Gasoline Passenger Cars		
Model Years 1984-1993	0.0704	0.0647
Model Year 1994	0.0617	0.0603
Model Year 1995	0.0531	0.0560
Model Year 1996	0.0434	0.0503
Model Year 1997	0.0337	0.0446
Model Year 1998	0.0247	0.0395
Model Year 1999	0.0222	0.0362
Model Year 2000	0.0175	0.0304
Model Year 2001	0.0105	0.0212
Model Year 2002	0.0102	0.0207
Model Year 2003	0.0098	0.0185
Model Year 2004	0.0083	0.0089
Model Year 2005	0.0076	0.0067
Model Year 2006	0.0076	0.0075
Model Year 2007	0.0072	0.0052
Model Year 2008	0.0071	0.0049
Model Year 2009	0.0072	0.0048
Model Year 2010	0.0071	0.0046
Model Year 2011	0.0071	0.0046
Model Year 2012	0.0071	0.0046
Model Year 2013	0.0071	0.0046
Model Year 2014	0.0071	0.0046
Model Year 2015	0.0068	0.0042
Model Year 2016	0.0065	0.0038
Model Year 2017	0.0054	0.0018
Model Year 2018	0.0052	0.0016
Gasoline Light Trucks (Vans, Pickup Trucks, St	JVs)	
Model Years 1987-1993	0.0813	0.1035

Model Year 1994	0.0646	0.0982
Model Year 1995	0.0517	0.0908
Model Year 1996	0.0452	0.0871
Model Year 1997	0.0452	0.0871
Model Year 1998	0.0412	0.0787
Model Year 1999	0.0333	0.0618
Model Year 2000	0.0340	0.0631
Model Year 2001	0.0221	0.0379
Model Year 2002	0.0242	0.0424
Model Year 2003	0.0221	0.0373
Model Year 2004	0.0115	0.0088
Model Year 2005	0.0105	0.0064
Model Year 2006	0.0108	0.0080
Model Year 2007	0.0103	0.0061
Model Year 2008	0.0096	0.0038
Model Year 2009	0.0095	0.0036
Model Year 2010	0.0095	0.0035
Model Year 2011	0.0096	0.0034
Model Year 2012	0.0096	0.0033
Model Year 2013	0.0095	0.0035
Model Year 2014	0.0095	0.0033
Model Year 2015	0.0094	0.0031
Model Year 2016	0.0091	0.0029
Model Year 2017	0.0084	0.0018
Model Year 2018	0.0081	0.0015
Gasoline Medium and Heavy-Duty Trucks and E	Busses	
Model Years 1985-1986	0.4090	0.0515
Model Year 1987	0.3675	0.0849
Model Years 1988-1989	0.3492	0.0933
Model Years 1990-1995	0.3246	0.1142
Model Year 1996	0.1278	0.1680
Model Year 1997	0.0924	0.1726
<u>- </u>		

Model Year 1998	0.0655	0.1750
Model Year 1999	0.0648	0.1724
Model Year 2000	0.0630	0.1660
Model Year 2001	0.0577	0.1468
Model Year 2002	0.0634	0.1673
Model Year 2003	0.0602	0.1553
Model Year 2004	0.0298	0.0164
Model Year 2005	0.0297	0.0083
Model Year 2006	0.0299	0.0241
Model Year 2007	0.0322	0.0015
Model Year 2008	0.0340	0.0015
Model Year 2009	0.0339	0.0015
Model Year 2010	0.0320	0.0015
Model Year 2011	0.0304	0.0015
Model Year 2012	0.0313	0.0015
Model Year 2013	0.0313	0.0015
Model Year 2014	0.0315	0.0015
Model Year 2015	0.0332	0.0021
Model Year 2016	0.0321	0.0061
Model Year 2017	0.0329	0.0084
Model Year 2018	0.0326	0.0082
Diesel Passenger Cars		
Model Years 1960-1982	0.0006	0.0012
Model Years 1983-2006	0.0005	0.0010
Model Years 2007-2018	0.0302	0.0192
Diesel Light Duty Trucks		
Model Years 1960-1982	0.0011	0.0017
Model Years 1983-1995	0.0009	0.0014
Model Years 1996-2006	0.0010	0.0015
Model Years 2007-2018	0.0290	0.0214
Diesel Medium and Heavy-Duty Trucks and Bus	ses	
Model Years 1960-2006	0.0051	0.0048

Model Years 2007-2018	0.0095	0.0431		
Diesel Motorcycles				
Model Years 1960-1995	0.0899	0.0087		
Model Years 1996-2018	0.0069	0.0672		

Source: US Inventory of Greenhouse Gas Emissions and Sinks 1990-2018 (April 2020) Annex 3, Tables A-107 - A-111.

Table 2.6 U.S. Default Factors for Calculating CH_4 and N_2O Emissions from Alternative Fuel Vehicles

Vehicle Type	CH₄ (g / mi)	N ₂ O (g / mi)
Light-Duty Cars		
Methanol-Flex Fuel ICE	0.008	0.006
Ethanol-Flex Fuel ICE	0.008	0.006
CNG ICE	0.082	0.006
CNG Bi-fuel	0.082	0.006
LPG ICE	0.008	0.006
LPG Bi-fuel	0.008	0.006
Biodiesel (BD100)	0.030	0.019
Light-Duty Trucks		
Ethanol-Flex Fuel ICE	0.012	0.011
CNG ICE	0.123	0.011
CNG Bi-fuel	0.123	0.011
LPG ICE	0.012	0.013
LPG Bi-fuel	0.012	0.013
LNG	0.123	0.011
Biodiesel (BD100)	0.029	0.021
Medium Duty Trucks		
CNG ICE	4.200	0.001
CNG Bi-fuel	4.200	0.034
LPG ICE	0.014	0.034
LPG Bi-fuel	0.014	0.001
LNG	4.200	0.043
Biodiesel (BD100)	0.009	0.001
Heavy-Duty Trucks		
Neat Methanol ICE	0.075	0.028
Neat Ethanol ICE	0.075	0.028
CNG ICE	3.700	0.001
LPG ICE	0.013	0.026

LPG Bi-fuel	0.013	0.026
LNG	3.700	0.001
Biodiesel (BD100)	0.009	0.043
Buses		
Neat Methanol ICE	0.022	0.032
Neat Ethanol ICE	0.022	0.032
CNG ICE	10.000	0.001
LPG ICE	0.034	0.017
LNG	10.000	0.001
Biodiesel (BD100)	0.009	0.043
	<u> </u>	•

Source: US Inventory of Greenhouse Gas Emissions and Sinks 1990-2018 (April 2020) Annex 3, Tables A-112 - A-113.

Table 2.7 U.S. Default Factors for Calculating CH_4 and N_2O Emission from Non-Highway Vehicles

Vehicle Type / Fuel Type	CH₄ (g / gallon)	N₂O (g / gallon)				
Ships and Boats						
Residual Fuel Oil	0.55	0.55				
Gasoline 2 Stroke	9.54	0.06				
Gasoline 4 Stroke	4.88	0.23				
Distillate Fuel Oil (Diesel)	0.31	0.50				
Rail						
Diesel Fuel	0.80	0.26				
Aircraft						
Jet Fuel	0.00	0.30				
Aviation Gasoline	7.06	0.11				
Agricultural Equipment						
Gasoline-Equipment 2 Stroke	12.96	0.06				
Gasoline-Equipment 4 Stroke	7.24	0.21				
Gasoline-Off-road Trucks	7.24	0.21				
Diesel-Equipment	0.28	0.49				
Diesel-Off-Road Trucks	0.13	0.49				
LPG	2.19	0.39				
Construction/Mining Equipment						
Gasoline-Equipment 2 Stroke	12.42	0.07				
Gasoline-Equipment 4 Stroke	5.59	0.20				
Gasoline-Off-Road Trucks	5.59	0.20				
Diesel-Equipment	0.20	0.47				
Diesel-Off-Road Trucks	0.13	0.49				
LPG	1.05	0.41				
Lawn and Garden Equipment						
Gasoline-Residential 2 Stroke	16.49	0.05				
Gasoline-Residential 4 Stroke	6.36	0.18				

Gasoline-Commercial 2 Stroke	15.57	0.06			
Gasoline-Commercial 4 Stroke	5.84	0.18			
Diesel-Commercial	0.33	0.47			
LPG	0.35	0.41			
Airport Equipment					
Gasoline 4 Stroke	2.58	0.25			
Diesel	0.17	0.49			
LPG	0.33	0.41			
Industrial/Commercial Equipment					
Gasoline 2 Stroke	15.14	0.06			
Gasoline 4 Stroke	5.48	0.20			
Diesel	0.23	0.47			
LPG	0.44	0.41			
Logging Equipment					
Gasoline 2 Stroke	12.03	0.08			
Gasoline 4 Stroke	6.71	0.18			
Diesel	0.10	0.49			
Railroad Equipment					
Gasoline 4 Stroke	5.78	0.19			
Diesel	0.44	0.42			
LPG	1.20	0.41			
Recreational Equipment					
Gasoline 2 Stroke	7.81	0.03			
Gasoline 4 Stroke	8.45	0.19			
Diesel	0.41	0.41			

Source: US Inventory of Greenhouse Gas Emissions and Sinks 1990-2018 (April 2020) Annex 3, Table A-114 - A-115. Original factors converted to g/gallon fuel using fuel density defaults from US Inventory of Greenhouse Gas Emissions and Sinks 1990-2018 (April 2020) Annex 6.5.

Table 2.8 Default Factors for Calculating LTO Emission for Typical Aircraft

Aircraft	CO ₂ (kg / LTO)	CH₄ (kg / LTO)	N₂O (kg / LTO)
A300	5450	0.12	0.2
A310	4760	0.63	0.2
A319	2310	0.06	0.1
A320	2440	0.06	0.1
A321	3020	0.14	0.1
A330-200/300	7050	0.13	0.2
A340-200	5890	0.42	0.2
A340-300	6380	0.39	0.2
A340-500/600	10660	0.01	0.3
707	5890	9.75	0.2
717	2140	0.01	0.1
727-100	3970	0.69	0.1
727-200	4610	0.81	0.1
737-100/200	2740	0.45	0.1
737-300/400/500	2480	0.08	0.1
737-600	2280	0.10	0.1
737-700	2460	0.09	0.1
737-800/900	2780	0.07	0.1
747-100	10140	4.84	0.3
747-200	11370	1.82	0.4
747-300	11080	0.27	0.4
747-400	10240	0.22	0.3
757-200	4320	0.02	0.1
757-300	4630	0.01	0.1
767-200	4620	0.33	0.1
767-300	5610	0.12	0.2
767-400	5520	0.10	0.2
777-200/300	8100	0.07	0.3

Aircraft	CO₂ (kg / LTO)	CH₄ (kg / LTO)	N₂O (kg / LTO)
DC-10	7290	0.24	0.2
DC-8-50/60/70	5360	0.15	0.2
DC-9	2650	0.46	0.1
L-1011	7300	7.40	0.2
MD-11	7290	0.24	0.2
MD-80	3180	0.19	0.1
MD-90	2760	0.01	0.1
TU-134	2930	1.80	0.1
TU-154-M	5960	1.32	0.2
TU-154-B	7030	11.90	0.2
RJ-RJ85	1910	0.13	0.1
BAE 146	1800	0.14	0.1
CRJ-100ER	1060	0.06	0.03
ERJ-145	990	0.06	0.03
Fokker 100/70/28	2390	0.14	0.1
BAC111	2520	0.15	0.1
Dornier 328 Jet	870	0.06	0.03
Gulfstream IV	2160	0.14	0.1
Gulfstream V	1890	0.03	0.1
Yak-42M	2880	0.25	0.1
Cessna 525/560	1070	0.33	0.03
Beech King Air	230	0.06	0.01
DHC8-100	640	0.00	0.02
ATR72-500	620	0.03	0.02

Source: IPCC, Guidelines for National Greenhouse Gas Inventories (2006), Volume 2: Energy, Chapter 3: Mobile Combustion, Table 3.6.9. LTO = landing/take-off.

Table 2.9 Factors for Estimating CH_4 and N_2O Emissions from Gasoline and Diesel Vehicles (SEM)

GHG	MT GHG per MT of CO₂
CH ₄	2.34E-05
N₂O	2.50E-05

Source: Derived from US Inventory of Greenhouse Gas Emissions and Sinks 1990-2018 (April 2020), Table 2-13. Only includes data for passenger cars and light-duty trucks.

Table 3.1 U.S. Default Factors for Calculating Emissions from Grid Electricity by eGRID Subregion

eGRID 2019	eGRID 2019 Subregion	2019 Emission Rates		
Subregion	Name	(lbs CO ₂ / MWh)	(lbs CH ₄ / GWh)	(lbs N ₂ O / GWh)
AKGD	ASCC Alaska Grid	1,114.40	98	13
AKMS	ASCC Miscellaneous	549.30	26	4
AZNM	WECC Southwest	952.30	68	10
CAMX	WECC California	453.20	33	4
ERCT	ERCOT All	868.60	57	8
FRCC	FRCC All	861.00	55	7
HIMS	HICC Miscellaneous	1,185.60	143	22
HIOA	HICC Oahu	1,694.50	185	28
MROE	MRO East	1,502.60	147	22
MROW	MRO West	1,098.40	119	17
NEWE	NPCC New England	488.90	77	10
NWPP	WECC Northwest	715.20	68	10
NYCW	NPCC NYC/Westchester	553.80	21	2
NYLI	NPCC Long Island	1,209.00	157	20
NYUP	NPCC Upstate NY	232.30	17	2
PRMS	Puerto Rico Miscellaneous	1,537.30	84	13
RFCE	RFC East	695.00	53	7
RFCM	RFC Michigan	1,189.30	114	16
RFCW	RFC West	1,067.70	99	14
RMPA	WECC Rockies	1,242.60	117	17
SPNO	SPP North	1,070.00	112	16

SPSO	SPP South	1,002.00	70	10
SRMV	SERC Mississippi Valley	806.80	43	6
SRMW	SERC Midwest	1,584.40	169	25
SRSO	SERC South	969.20	71	10
SRTV	SERC Tennessee Valley	949.70	87	13
SRVC	SERC Virginia/Carolina	675.40	58	8
US Territories (not an eGRID Region)*	N/A	1,891.57	75.91	17.13

Source: U.S. EPA Year 2019 eGRID 14th edition (February 2021: eGRID subregion annual total output emission rates). Except * from Department of Energy Guidance on Voluntary Reporting of Greenhouse Gases, Form EIA-1605 (2007), Appendix F, Electricity Emission Factors, Table F-1.

Table 3.2 Canadian Default Factors for Calculating Emissions from Grid Electricity by Province

2 .	2018 Emission Rates		
Province	g CO ₂ / kWh	g CH₄ / kWh	g N₂O / kWh
Alberta	750	0.04	0.01
British Columbia	9.5	0.003	0.0007
Manitoba	1.9	0.0001	0.00
New Brunswick	260	0.02	0.004
Newfoundland and Labrador	40	0.0006	0.001
Northwest Territories	150	0.01	0.00
Nova Scotia	680	0.03	0.01
Nunavut	720	0.0	0.0
Ontario	20	0.004	0.001
Prince Edward Island	14	0.0005	0.0002
Quebec	1.2	0.0	0.00
Saskatchewan	660	0.05	0.02
Yukon	49	0.003	0.00

Source: Environment Canada, National Inventory Report, 1990-2018: Greenhouse Gas Sources and Sinks in Canada (April 2020) Annex 13: Emission Factors, Table A13-2 - A13-14.

Table 3.3 Mexican Default Factors for Calculating Emissions from Grid Electricity

Year	Emission Rates (kg CO₂e / MWh)
2000	604.1
2001	625
2002	600
2003	571.2
2004	549.6
2005	550.1
2014	454
2015	458
2016	458
2017	582
2018	527
2019	505

Source: Asociación de Técnicos y Profesionistas en Aplicación Energética (ATPAE), 2003, Metodologías para calcular el Coeficiente de Emisión Adecuado para Determinar las Reducciones de GEI Atribuibles a Proyectos de EE/ER – Justificación para la selección de la Metodología, versión final 4.1 (June 2003), proyecto auspiciado por la Agencia Internacional de Estados Unidos para el Desarrollo Internacional, México, D.F., México. Factors are a national average of all the power plants operating and delivering electricity to the National Electric System and do not include transmission and distribution losses. Factors for 2002 to 2005 were not calculated with actual data but instead estimated using the Electricity Outlooks published by Mexico's Ministry of Energy. Default emission factors for electricity in years 2014-2019 sourced from Gobierno De Mexico's Registro Nacional de Emisiones Aviso Sobre El Factor De Emisión Eléctrico reports.

Note: These emission rates are in units of CO2 equivalent (CO2e) and include emissions of CO2, CH4, and N2O.

Table 3.4 Non-North American Default Factors for calculating Emissions from Electricity Generation

Region / Country / Economy	2010 Emission Rates (g CO ₂ / kWh)	2011 Emission Rates (g CO ₂ / kWh)
Albania	2	7
Algeria	548	556
Angola	440	390
Argentina	367	390
Armenia	92	123
Australia	841	823
Austria	188	215
Azerbaijan	439	455
Bahrain	640	601
Bangladesh	593	564
Belarus	449	441
Belgium	220	196
Benin	720	722
Bolivia	423	433
Bosnia and Herzegovina	723	794
Botswana	2517	1787
Brazil	87	68
Brunei Darussalam	717	717
Bulgaria	535	591
Cambodia	804	793
Cameroon	207	200

Region / Country / Economy	2010 Emission Rates (g CO ₂ / kWh)	2011 Emission Rates (g CO ₂ / kWh)
Chile	410	441
Chinese Taipei	624	601
Colombia	176	108
Congo	142	230
Costa Rica	56	64
Côte d'Ivoire	445	437
Croatia	236	334
Cuba	1012	955
Cyprus	697	732
Czech Republic	589	591
Dem. Rep. of Congo	3	3
Denmark	360	315
Dominican Republic	589	743
DPR of Korea	465	475
Ecuador	389	345
Egypt	450	457
El Salvador	223	243
Eritrea	646	849
Estonia	1014	1086
Ethiopia	7	7
Finland	229	191
France	79	61

Region / Country / Economy	2010 Emission Rates (g CO ₂ / kWh)	2011 Emission Rates (g CO ₂ / kWh)
FYR of Macedonia	685	811
Gabon	383	378
Georgia	69	102
Germany	461	477
Ghana	259	215
Gibraltar	762	752
Greece	718	720
Guatemala	286	286
Haiti	538	382
Honduras	332	371
Hong Kong, China	723	768
Hungary	317	317
Iceland	0	n/a
India	912	856
Indonesia	709	755
Iraq	1003	903
Ireland	458	427
Islamic Rep. of Iran	565	578
Israel	689	727
Italy	406	402
Jamaica	711	620
Japan	416	497

Region / Country / Economy	2010 Emission Rates (g CO ₂ / kWh)	2011 Emission Rates (g CO ₂ / kWh)
Jordan	566	637
Kazakhstan	403	431
Kenya	274	294
Korea	533	545
Kosovo	1287	1109
Kuwait	842	787
Kyrgyzstan	59	45
Latvia	120	133
Lebanon	709	707
Libya	885	636
Lithuania	337	270
Luxembourg	410	387
Malaysia	727	688
Malta	872	862
Mongolia	949	837
Montenegro	405	653
Morocco	718	729
Mozambique	1	1
Myanmar	262	255
Namibia	197	24
Nepal	1	1
Netherlands	415	404

Region / Country / Economy	2010 Emission Rates (g CO ₂ / kWh)	2011 Emission Rates (g CO ₂ / kWh)
Netherlands Antilles	707	708
New Zealand	150	141
Nicaragua	460	471
Nigeria	405	433
Norway	17	13
Oman	794	741
Pakistan	425	409
Panama	298	357
Paraguay	n/a	n/a
People's Rep. of China	766	764
Peru	289	297
Philippines	481	492
Poland	781	780
Portugal	255	303
Qatar	494	490
Republic of Moldova	517	486
Romania	413	499
Russian Federation	384	437
Saudi Arabia	737	754
Senegal	637	689
Serbia	718	784
Singapore	499	500

Region / Country / Economy	2010 Emission Rates (g CO ₂ / kWh)	2011 Emission Rates (g CO ₂ / kWh)
Slovak Republic	197	200
Slovenia	325	338
South Africa	927	869
Spain	238	291
Sri Lanka	379	469
Sudan	344	204
Sweden	30	17
Switzerland	27	30
Syrian Arab Republic	594	602
Tajikistan	14	12
Thailand	513	522
Togo	195	206
Trinidad and Tobago	700	506
Tunisia	463	455
Turkey	460	472
Turkmenistan	954	983
Ukraine	392	450
United Arab Emirates	598	600
United Kingdom	457	441
United Rep. of Tanzania	329	288
Uruguay	81	197
Uzbekistan	550	559

Region / Country / Economy	2010 Emission Rates (g CO ₂ / kWh)	2011 Emission Rates (g CO ₂ / kWh)
Venezuela	264	234
Vietnam	432	429
Yemen	655	633
Zambia	3	3
Zimbabwe	660	358

Source: 2010 emission rates from CO₂ Emissions from Fuel Combustion Highlights (2012) © OECD/IEA, 2012, CO₂ emissions per kWh from electricity and heat generation. 2011 emission rates from CO₂ Emissions from Fuel Combustion Highlights (2013) © OECD/IEA, 2013, CO₂ emissions per kWh from electricity and heat generation. Values were converted from tonnes/tWh to g/kWh using 1 tonne = 1,000,000 g and 1 tWh = 1,000,000,000 kWh. n/a=data not available.

Note: Emission rates more recent than 2011 are not publicly available, but are available for purchase from the International Energy Agency.

Table 3.5 Average Cost per Kilowatt Hour by U.S. State

State	2019 Average Retail Price Residential (¢/kWh)	2019 Average Retail Price Commercial (¢/kWh)	2019 Average Retail Price Industrial (¢/kWh)
AK Total	22.92	19.80	16.94
AL Total	12.53	11.52	5.95
AR Total	9.80	8.78	6.13
AZ Total	12.43	10.25	6.28
CA Total	19.15	16.67	13.40
CO Total	12.18	10.43	7.40
CT Total	21.87	16.75	13.44
DC Total	12.98	12.26	8.22
DE Total	12.55	9.53	7.70
FL Total	11.70	9.27	7.65
GA Total	11.76	10.02	6.17
HI Total	32.06	29.23	25.76
IA Total	12.46	9.99	6.60
ID Total	9.89	7.67	6.08
IL Total	13.03	9.08	6.52
IN Total	12.58	11.03	7.36
KS Total	12.71	10.29	7.35
KY Total	10.80	10.15	5.57
LA Total	9.80	8.91	5.23
MA Total	21.92	16.80	14.76

MD Total	13.12	9.97	7.80
ME Total	17.89	12.83	9.22
MI Total	15.74	11.39	7.07
MN Total	13.04	10.34	7.53
MO Total	11.14	9.07	7.11
MS Total	11.27	10.52	5.85
MT Total	11.13	10.41	5.45
NC Total	11.42	8.81	6.30
ND Total	10.30	9.01	7.94
NE Total	10.77	8.85	7.65
NH Total	20.05	15.93	13.09
NJ Total	15.85	12.23	10.16
NM Total	12.51	9.79	5.48
NV Total	12.00	8.04	6.14
NY Total	17.94	14.06	5.61
OH Total	12.38	9.72	6.55
OK Total	10.21	7.98	5.07
OR Total	11.01	8.85	5.86
PA Total	13.80	8.71	6.41
RI Total	21.73	16.38	15.59
SC Total	12.99	10.58	6.11
SD Total	11.55	9.59	7.81
TN Total	10.87	10.65	5.68
TX Total	11.76	8.06	5.45

UT Total	10.40	8.26	5.98
VA Total	12.07	8.18	6.85
VT Total	17.71	15.98	11.05
WA Total	9.71	8.75	4.80
WI Total	14.18	10.72	7.31
WV Total	11.25	9.16	6.02
WY Total	11.18	9.64	6.73

Source: Energy Information Administration: Electric Power Annual, Table 2.10: Average Price of Electricity to Ultimate Customers by End-Use Sector, by State, in cents per kilowatt-hour (October 2020).

Table 3.6 Canadian Energy Intensity by Building Activity

Principal Building Activity	GJ / m²	Electricity / Natural gas split (%)	
Office building (non-medical)	1.13	58/42	
Medical office building	1.28	49/51	
Elementary or secondary school	0.88	37/63	
Assisted daily or residential care	1.3	45/55	
Warehouse	0.82	40/60	
Hotel, motel, or lodge	1.24	43/57	
Hospital	2.45	32/68	
Food or beverage store	1.87	70/30	
Non-food retail store	1.12	46/54	
Other activity or function*	1.19	43/57	

Source: Statistics Canada, Survey of Commercial and Institutional Energy Use, 2014 (September 2016), Tables 2 and 7. Energy intensity values in Canada include both electricity (49%) and natural gas (51%) consumption (a small subset of other fuel types is included in the natural gas portion). Members should apportion their consumption totals between activities accordingly.

Table 3.7 U.S. Electricity and Natural Gas Intensity by Building Activity

Principal Building Activity Annual Intensy	Electricity Intensity (kWh / ft²)	Natural Gas Intensity (ft ³ NG/ft ²)
Education	11.0	29.8
Food Sales	48.7	61.3
Food Service	44.9	159.2
Health Care	25.8	78.5
Inpatient	31.0	101.1
Outpatient	18.7	38.0
Lodging	15.3	43.8
Mercantile	18.3	33.5
Retail (other than mall)	15.2	21.5
Enclosed and strip malls	21.1	41.3
Office	15.9	26.8
Public Assembly	14.5	33.9
Public Order and Safety	14.9	39.5
Religious Worship	5.2	28.1
Service	8.3	42.7
Warehouse and Storage	6.6	19.4
Other	28.3	57.2
Vacant	4.5	13.9

Source: 2012 Commercial Buildings Energy Consumption Survey, Energy Information Administration (http://www.eia.doe.gov/emeu/cbecs), Tables E6 (Electricity) and E8 (Natural Gas).

Table 3.8 U.S. Utility-Specific CO₂ Emission Factors for Purchased Electricity

Utility	Factor Type	CO ₂ Emission Factor lbs / MWh
2005		
Northern States Power Company (Xcel Energy)	System Average	1236.79
Public Service Company of Colorado (Xcel Energy)	System Average	1847.47
Southwestern Public Service Company (Xcel Energy)	System Average	1693.15
2006		
Northern States Power Company (Xcel Energy)	System Average	1225.77
Public Service Company of Colorado (Xcel Energy)	System Average	1834.24
Southwestern Public Service Company (Xcel Energy)	System Average	1615.99
2007		
Northern States Power Company (Xcel Energy)	System Average	1234.59
Public Service Company of Colorado (Xcel Energy)	System Average	1752.67
Southwestern Public Service Company (Xcel Energy)	System Average	1638.03
2009		
Bonneville Power Administration	System Average	93.17
	Retail Power	1036.17
Modesto Irrigation District	Special Power	0.00
	Wholesale Power	2048.09
Northern States Power Company (Xcel Energy)	System Average	1104.51
Public Service Company of Colorado (Xcel Energy)	System Average	1611.58
Southwestern Public Service Company (Xcel Energy)	System Average	1574.10
Pacific Gas & Electric	System Average	575.38
2010		
Bonneville Power Administration	System Average	134.70
City of Vernon, Light and Power	System Average	775.83
	Retail Power	942.99
Modesto Irrigation District	Special Power	0.00
	Wholesale Power	2026.12
Newmont Nevada Energy Investment	Wholesale Power	2055.79
Northern States Power Company (Xcel Energy)	System Average	1033.97
Public Service Company of Colorado (Xcel Energy)	System Average	1660.08
Southwestern Public Service Company (Xcel Energy)	System Average	1558.67
	Retail Power	526.47
Sacramento Municipal Utility District	Special Power	0.00
	Wholesale Power	828.58

	Retail Power	45.57
Seattle City Light	Special Power	0.00
	Wholesale Power	537.64
Pacific Gas & Electric	System Average	444.64
2011		
Bonneville Power Administration	System Average	47.86
City of Vernon, Light and Power	System Average	731.49
Northern States Power Company (Xcel Energy)	System Average	1071.45
Public Service Company of Colorado (Xcel Energy)	System Average	1618.19
Southwestern Public Service Company (Xcel Energy)	System Average	1472.69
Pacific Gas & Electric	System Average	392.87
	Retail Power	429.29
Sacramento Municipal Utility District	Special Power	0.00
	Wholesale Power	795.14
	Retail Power	13.77
Seattle City Light	Special Power	0.00
	Wholesale Power	218.75
2012		
Bonneville Power Administration	System Average	36.91
City of Vernon, Light and Power	System Average	765.97
Matropolitan Water District of Southern California	Wholesale Power	658.73
Metropolitan Water District of Southern California	Self-consumed Power	157.87
Northern States Power Company (Xcel Energy)	System Average	930.35
Public Service Company of Colorado (Xcel Energy)	System Average	1547.64
Southwestern Public Service Company (Xcel Energy)	System Average	1558.67
Pacific Gas & Electric	System Average	444.62
	Retail Power	521.73
Sacramento Municipal Utility District	Special Power	0.00
	Wholesale Power	799.77
	Retail Power	25.62
Seattle City Light	Special Power	0.00
	Wholesale Power	362.85
2013		
Bonneville Power Administration	System Average	43.65
City of Palo Alto	System Average	0.00
City of Vernon, Light and Power	System Average	760.86
Metropolitan Water District of Southern California	Wholesale Power	610.82
monoponian viator biotriot of obutriotti Galifottia	-	

Northern States Power Company (Xcel Energy)	System Average	950.19	
Public Service Company of Colorado (Xcel Energy)	System Average	1371.27	
Southwestern Public Service Company (Xcel Energy)	System Average	1512.37	
Pacific Gas & Electric (Corrected)	System Average	427.27	
	Retail Power	559.86	
Sacrameto Municipal Utility District	Special Power	0.00	
	Wholesale Power	816.02	
	Retail Power	33.23	
Seattle City Light	Special Power	0.00	
	Wholesale Power	491.61	
2014			
Bonneville Power Administration	System Average	36.82	
City of Palo Alto	System Average	0.00	
Metropolitan Water District of Southern California	Wholesale Power	610.82	
metopolitan viator biother of countries camornia	Self-consumed Power	458.55	
Northern States Power Company (Xcel Energy)	System Average	961.21	
Public Service Company of Colorado (Xcel Energy)	System Average	1472.69	
Southwestern Public Service Company (Xcel Energy)	System Average	1485.91	
Pacific Gas & Electric	System Average	434.92	
	Retail Power	561.08	
Sacrameto Municipal Utility District	Special Power	0.00	
	Wholesale Power	803.58	
	Retail Power	20.08	
Seattle City Light	Special Power	0.00	
	Wholesale Power	376.25	
Sonoma Clean Power	Special Power - EverGreen	51.00	
	Retail Power - CleanStart	224.38	
2015			
Bonneville Power Administration	System Average	36.44	
City of Palo Alto	System Average	0.00	
Imperial Irrigation District	System Average	1037.52	
Metropolitan Water District of Southern California	Wholesale Power	650.32	
	Self-consumed Power	358.60	
Northern States Power Company (Xcel Energy)	System Average	877.44	
Public Service Company of Colorado (Xcel Energy)	System Average	1468.28	
Southwestern Public Service Company (Xcel Energy)		4075.00	
1 7 (377	System Average	1375.68	
Pacific Gas & Electric	System Average System Average	404.51	

	Wholesale Power	667.34
	Retail Power	52.44
Seattle City Light	Special Power	0.00
	Wholesale Power	319.31
0 0 0	Special Power - EverGreen	57.00
Sonoma Clean Power	Retail Power - CleanStart	217.57
University of California, Office of the President	System Average	719.06
2016		
Materia elitara Matera District of Courthaum Colifornia	Wholesale Power	568.65
Metropolitan Water District of Southern California	Self-consumed Power	239.56
Northern States Power Company (Xcel Energy)	System Average	817.91
Public Service Company of Colorado (Xcel Energy)	System Average	1342.61
Southwestern Public Service Company (Xcel Energy)	System Average	1287.50
Pacific Gas & Electric	System Average	293.67
Sonoma Clean Power	Special Power - EverGreen	57.00
Sonoma Clean Power	Retail Power - CleanStart	97.76
Bonneville Power Administration	System Average	35.76
	Retail Power	31.12
Seattle City Light	Special Power	0.00
	Wholesale Power	216.67
	Retail Power	492.95
Sacramento Municipal Utility District	Special Power	0.00
	Wholesale Power	852.75
University of California, Office of the President	System Average	493.61
CleanPowerSF	Special Power - Green	186.74
CleanPowerSF	Special Power - SuperGreen	0.00
Hadah Hadahii	Wholesale Power	0.12
Hetch Hetchy	Retail Power	0.00
2017		
Metropolitan Water District of Southern California	Wholesale Power	526.90
wienopolitan water District of Southern California	Self-consumed Power	293.21
Sonoma Clean Power	Special Power - EverGreen	53.00
Sonoma Clean Fower	Retail Power - CleanStart	127.98
University of California, Office of the President	System Average	208.50
Pacific Gas & Electric	System Average	210.44
	Retail Power	383.60
Sacramento Municipal Utility District	Special Power	0.00
	Wholesale Power	645.95
	Retail Power	46.37

Seattle City Light	Special Power	0.00
, ,	Wholesale Power	106.12
Northern States Power Company (Xcel Energy)	System Average	822.32
Public Service Company of Colorado (Xcel Energy)	System Average	1302.93
Southwestern Public Service Company (Xcel Energy)	System Average	1239.00
, , , , , ,	Special Power - Green	0.00
CleanPowerSF	Special Power - SuperGreen	0.00
	Wholesale Power	0.12
Hetch Hetchy	Retail Power	0.00
Bonneville Power Administration	System Average	27.21
2018	, J	
	Special Power - Renewable 100	0.00
East Bay Community Energy	Special Power - Brilliant 100	0.00
	Special Power - Bright Choice	100.75
	Wholesale Power	806.89
	Special Power- Wind Source	0.00
Northern States Power Company	Special Power- Renewable Connect	0.00
	Retail Power	820.12
	Wholesale Power	1210.34
Public Service Company of Colorado	Special Power	0.00
	Retail Power	1307.34
	Wholesale Power	1170.65
Southwestern Public Service Company	Special Power	0.00
	Retail Power	1170.65
0 0	Special Power - EverGreen	46.02
Sonoma Clean Power	Retail Power - CleanStart	98.81
University of California, Office of the President	System Average	138.17
	Retail Power	465.17
Sacramento Municipal Utility District	Special Power	0.00
	Wholesale Power	590.84
	Wholesale Power	192.46
Seattle City Light	Special Power	0.00
	Retail Power	32.05
Clean Dayyar CF	Special Power- Green	110.38
CleanPowerSF	Special Power- SuperGreen	0.00
	Special Power- 100% Green Power	0.00
Clean Power Alliance	Special Power- 65% Renewable Power	6.01
	Special Power- Clean Power	1.64

	Special Power- Lean Power	10.59
Pacific Gas & Electric	System Average	206.29
2019		
Pacific Gas & Electric	System Average	2.68
	Special Power- 100% Green Power	0.00
Clean Power Alliance	Special Power- Clean Power	359.28
	Special Power- Lean Power	594.97
East Bay Community Energy	Special Power- Brilliant 100	0.00
Last Bay Community Energy	Special Power- Bright Choice	135.10
University of California, Office of the President	System Average	0.00
Bonneville Power Administration	System Average	34.42
Sonoma Clean Power	Special Power- EverGreen	40.90
Solidina Clean Fower	Retail Power- CleanStart	39.51

Source: These emission factors have been reported by TCR members using the Electric Power Sector (EPS) Protocol and the option to develop utility-specific electricity delivery metrics. TCR members who are customers of these utilities can use these verified emission factors when quantifying market-based Scope 2 emissions. Utility-specific emission factors have been converted from tonnes/MWh to lbs/MWh in order to streamline reporting in CRIS.

Note: The emission factors in this table are updated once per year based on the verified emission factors available at the time of publication. More recent utility-specific emission factors may be available on TCR's website: https://www.theclimateregistry.org/our-members/cris-public-reports/.

Table 3.9 U.S. Green-e® Residual Mix Emissions Rates by eGRID Subregion

eGRID 2018	eGRID 2018 Subregion	2	2018 Emission Rates		
Subregion	Name	(lbs CO ₂ / MWh)	(lbs CH ₄ / GWh)	(lbs N ₂ O / GWh)	
AKGD	ASCC Alaska Grid	1049.44	82.77	11.10	
AKMS	ASCC Miscellaneous	525.08	24.00	4.00	
AZNM	WECC Southwest	1023.92	77.12	11.02	
CAMX	WECC California	498.00	34.10	4.01	
ERCT	ERCOT All	984.90	69.77	9.51	
FRCC	FRCC All	936.82	66.35	9.05	
HIMS	HICC Miscellaneous	1110.69	118.00	18.00	
HIOA	HICC Oahu	1669.94	180.00	27.00	
MROE	MRO East	1678.53	169.05	25.01	
MROW	MRO West	1290.18	143.60	20.81	
NEWE	NPCC New England	522.34	82.00	11.00	
NWPP	WECC Northwest	650.03	65.10	9.15	
NYCW	NPCC NYC/Westchester	596.41	22.00	3.00	
NYLI	NPCC Long Island	1184.24	139.00	18.00	
NYUP	NPCC Upstate NY	253.15	18.00	2.00	
RFCE	RFC East	716.22	61.02	8.00	
RFCM	RFC Michigan	1313.32	129.07	18.01	
RFCW	RFC West	1166.59	117.05	17.01	
RMPA	WECC Rockies	1284.13	124.02	18.15	
SPNO	SPP North	1241.98	132.40	19.22	
SPSO	SPP South	1318.00	102.81	14.69	

SRMV	SERC Mississippi Valley	855.88	55.08	8.01
SRMW	SERC Midwest	1680.73	186.84	27.27
SRSO	SERC South	1032.97	81.40	12.06
SRTV	SERC Tennessee Valley	1031.92	97.04	14.01
SRVC	SERC Virginia/Carolina	745.19	67.17	9.02

Source: 2020 Green-e® Residual Mix Emissions Rates (2018 Data). CH₄ and N₂O are from U.S. EPA Year 2018 eGRID 13th edition (March 2020: eGRID subregion annual total output emission rates).

Table 4.1 Default Factors for Calculating Emissions from Refrigeration/Air Conditioning Equipment

Type of Equipment	Refrigerant Capacity (kg)	Installation Emission Factor k (% of capacity)	Operating Emission Factor w (% of capacity/year)	Refrigerant Remaining at Disposal y (% of capacity)	Recovery Efficiency z (% of remaining)
Domestic Refrigeration	0.05 - 0.5	1%	0.50%	80%	70%
Stand-alone Commercial Applications	0.2 - 6	3%	15%	80%	70%
Medium & Large Commercial Refrigeration	50 - 2,000	3%	35%	100%	70%
Transport Refrigeration	3 - 8	1%	50%	50%	70%
Industrial Refrigeration including Food Processing and Cold Storage	10 -10,000	3%	25%	100%	90%
Chillers	10 - 2,000	1%	15%	100%	95%
Residential and Commercial A/C including Heat Pumps	0.5 - 100	1%	10%	80%	80%
Mobile Air Conditioning - Maritime	5.0 - 6,500	0.50%	40%	50%	50%
Mobile Air Conditioning - Railway	10 - 30	0.50%	20%	50%	50%
Mobile Air Conditioning - Buses	4 - 18	0.50%	20%	50%	50%
Mobile Air Conditioning - Other Mobile	0.5 - 2	0.50%	20%	50%	50%

Source: IPCC, 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (2019), Volume 3: Industrial Processes and Product Use, Table 7.9.

Note: Emission factors above are the most conservative of the range provided by the IPCC. The ranges in capacity are provided for reference. You should use the actual capacity of your equipment. If you do not know your actual capacity, you should use the high end of the range provided (e.g., use 2,000 kg for chillers).

Table 4.2 Default Composition of Refrigerant Blends that Contain HFCs and PFCs

Blend	Constituents	Composition (%)
R-405A	HCFC-22/HFC-152a/HCFC-142b/PFC-318	(45.0/7.0/5.5/42.5)
R-413A	PFC-218/HFC-134a/HC-600a	(9.0/88.0/3.0)
R-508A	HFC-23/PFC-116	(39.0/61.0)
R-508B	HFC-23/PFC-116	(46.0/54.0)

Source: 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 3, Table 7.8, page 7.44.

Table 4.3 U.S. Default Factors for Calculating CO₂
Emissions from Geothermal Energy Production

Fuel Type	Carbon Content (Per Unit Energy)	CO ₂ Emission Factor (Per Unit Energy)
Geothermal	kg C / MMBtu	kg CO ₂ / MMBtu
Flash Steam	2.18	7.99
Dry Steam	3.22	11.81
Binary	0.00	0.00
Binary/Flash Steam	0.00	0.00

Source: US Inventory of Greenhouse Gas Emissions and Sinks 1990-2018 (April 2020) Annex 2, Table A-41.

Table 5.1 Global Warming Potential Factors for Required Greenhouse Gases

Common Name	Formula	Chemical Name	SAR	TAR	AR4	AR5
Carbon dioxide	CO ₂		1	1	1	1
Methane	CH₄		21	23	25	28
Nitrous oxide	N ₂ O		310	296	298	265
Nitrogen trifluoride	NF ₃		n/a	10,800	17,200	16,100
Sulfur hexafluoride	SF ₆		23,900	22,200	22,800	23,500
Hydrofluorocarbons (HFC	s)					
HFC-23 (R-23)	CHF₃	trifluoromethane	11,700	12,000	14,800	12,400
HFC-32 (R-32)	CH ₂ F ₂	difluoromethane	650	550	675	677
HFC-41 (R-41)	CH₃F	fluoromethane	150	97	92	116
HFC-125 (R-125)	C₂HF₅	pentafluoroethane	2,800	3,400	3,500	3,170
HFC-134 (R-134)	C ₂ H ₂ F ₄	1,1,2,2- tetrafluoroethane	1,000	1,100	1,100	1,120
HFC-134a (R-134a)	C ₂ H ₂ F ₄	1,1,1,2- tetrafluoroethane	1,300	1,300	1,430	1,300
HFC-143 (R-143)	C ₂ H ₃ F ₃	1,1,2-trifluoroethane	300	330	353	328
HFC-143a (R-143a)	C ₂ H ₃ F ₃	1,1,1-trifluoroethane	3,800	4,300	4,470	4,800
HFC-152 (R-152)	$C_2H_4F_2$	1,2-difluoroethane	n/a	43	53	16
HFC-152a (R-152a)	$C_2H_4F_2$	1,1-difluoroethane	140	120	124	138
HFC-161 (R-161)	C₂H₅F	fluoroethane	n/a	12	12	4
HFC-227ea (R-227ea)	C₃HF ₇	1,1,1,2,3,3,3- heptafluoropropane	2,900	3,500	3,220	3,350
HFC-236cb (R-236cb)	C ₃ H ₂ F ₆	1,1,1,2,2,3- hexafluoropropane	n/a	1,300	1,340	1,210

HFC-236ea (R-236ea)	C₃H₂F ₆	1,1,1,2,3,3- hexafluoropropane	n/a	1,200	1,370	1,330
HFC-236fa (R-236fa)	C ₃ H ₂ F ₆	1,1,1,3,3,3- hexafluoropropane	6,300	9,400	9,810	8,060
HFC-245ca (R-245ca)	C ₃ H ₃ F ₅	1,1,2,2,3- pentafluoropropane	560	640	693	716
HFC-245fa (R-245fa)	C ₃ H ₃ F ₅	1,1,1,3,3- pentafluoropropane	n/a	950	1,030	858
HFC-365mfc	C ₄ H ₅ F ₅	1,1,1,3,3- pentafluorobutane	n/a	890	794	804
HFC-43-10mee (R- 4310)	^C 5 ^H 2 ^F 10	1,1,1,2,3,4,4,5,5,5- decafluoropentane	1,300	1,500	1,640	1,650
Perfluorocarbons (PFCs)						
PFC-14 (Perfluoromethane)	CF₄	tetrafluoromethane	6,500	5,700	7,390	6,630
PFC-116 (Perfluoroethane)	C ₂ F ₆	hexafluoroethane	9,200	11,900	12,200	11,100
PFC-218 (Perfluoropropane)	C ₃ F ₈	octafluoropropane	7,000	8,600	8,830	8,900
PFC-318 (Perfluorocyclobutane)	c-C₄F ₈	octafluorocyclobutane	8,700	10,000	10,300	9,540
PFC-3-1-10 (Perfluorobutane)	^C 4 ^F 10	decafluorobutane	7,000	8,600	8,860	9,200
PFC-4-1-12 (Perfluoropentane)	^C 5 ^F 12	dodecafluoropentane	n/a	8,900	9,160	8,550
PFC-5-1-14 (Perfluorohexane)	^C 6 ^F 14	tetradecafluorohexane	7,400	9,000	9,300	7,910
PFC-9-1-18 (Perfluorodecalin)	^C 10 ^F 18		n/a	n/a	>7,500	7,190
					· · · · · · · · · · · · · · · · · · ·	

Source: Intergovernmental Panel on Climate Change (IPCC) Second Assessment Report (SAR) published in 1995, Third Assessment Report (TAR) published in 2001, Fourth Assessment Report (AR4) published in 2007, and Fifth Assessment Report published in 2013. All defaults 100-year GWP values. For any defaults provided as a range, use exact value provided for the purpose of reporting to TCR. n/a=data not available.

Note: Complete reporters must include emissions of all Kyoto-defined GHGs (including all HFCs and PFCs) in inventory reports. If HFCs or PFCs are emitted that are not listed above, complete reporters must use industry best practices to calculate CO₂e from those gases.

Table 5.2 Global Warming Potentials of Refrigerant Blends

Refrigerant Blend	Gas	SAR	TAR	AR4	AR5
R-401A	HFC	18.2	15.6	16.12	17.94
R-401B	HFC	15	13	14	15
R-401C	HFC	21	18	18.6	20.7
R-402A	HFC	1680	2040	2100	1902
R-402B	HFC	1064	1292	1330	1205
R-403A	PFC	1400	1720	1766	1780
R-403B	PFC	2730	3354	3444	3471
R-404A	HFC	3260	3784	3922	3943
R-407A	HFC	1770	1990	2107	1923
R-407B	HFC	2285	2695	2804	2547
R-407C	HFC	1526	1653	1774	1624
R-407D	HFC	1428	1503	1627	1487
R-407E	HFC	1363	1428	1552	1425
R-407F	HFC	1555	1705	1825	1674
R-407G	HFC	1321	1334	1463	1331
R-407H	HFC	1314	1371	1495	1378
R-407I	HFC	1301	1332	1459	1337
R-408A	HFC	1944	2216	2301	2430
R-410A	HFC	1725	1975	2088	1924
R-410B	HFC	1833	2118	2229	2048
R-411A	HFC	15	13	14	15

R-411B	HFC	4.2	3.6	3.72	4.14
R-412A	PFC	350	430	442	445
R-415A	HFC	25.2	21.6	22.32	24.84
R-415B	HFC	105	90	93	104
R-416A	HFC	767	767	843.7	767
R-417A	HFC	1955	2234	2346	2127
R-417B	HFC	2450	2924	3027	2742
R-417C	HFC	1570	1687	1809	1643
R-418A	HFC	3.5	3	3.1	3.45
R-419A	HFC	2403	2865	2967	2688
R-419B	HFC	1982	2273	2384	2161
R-420A	HFC	1144	1144	1258	1144
R-421A	HFC	2170	2518	2631	2385
R-421B	HFC	2575	3085	3190	2890
R-422A	HFC	2532	3043	3143	2847
R-422B	HFC	2086	2416	2526	2290
R-422C	HFC	2491	2983	3085	2794
R-422D	HFC	2232	2623	2729	2473
R-422E	HFC	2135	2483	2592	2350
R-423A	HFC	2060	2345	2280	2274
R-424A	HFC	2025	2328	2440	2212
R-425A	HFC	1372	1425	1505	1431
R-426A	HFC	1352	1382	1508	1371
R-427A	HFC	1828	2013	2138	2024
	·				

R-428A HFC 2830 3495 3607 3417 R-429A HFC 14 12 12 14 R-430A HFC 108.4 91.2 94.24 104.88 R-431A HFC 41 35 36 40 R-434A HFC 2662 3131 3245 3075 R-435A HFC 28 24 25 28 R-435A HFC 1567 1684 1805 1639 R-438A HFC 1890 2151 2264 2059 R-439A HFC 1641 1873 1983 1828 R-449A HFC 158 139 144 156 R-440A HFC 158 139 144 156 R-442A HFC 1609 1793 1888 1754 R-444A HFC 85 72 87 88 R-444B HFC 284 240						
R-430A HFC 106.4 91.2 94.24 104.88 R-431A HFC 41 35 36 40 R-434A HFC 2662 3131 3245 3075 R-435A HFC 28 24 25 28 R-437A HFC 1567 1684 1805 1639 R-438A HFC 1890 2151 2264 2059 R-438A HFC 1641 1873 1983 1828 R-439A HFC 158 139 144 156 R-440A HFC 158 139 144 156 R-442A HFC 1609 1793 1888 1754 R-444A HFC 85 72 87 88 R-444B HFC 284 240 293 295 R-445A HFC 117 117 128.7 117 R-446A HFC 342 374 459 460 R-447A HFC 540 493 582 571 R-447B HFC 666 646 739 714 R-448A HFC 1184 1308 1396 1223 R-449A HFC 1184 1308 1396 1222 R-449B HFC 1199 1320 1411 1296 R-449C HFC 1067 1167 1250 1146 R-450A HFC 1167 1167 1250 1146 R-450A HFC 546 546 600.6 546 R-450A HFC 546 546 600.6 546	R-428A	HFC	2930	3495	3607	3417
R-431A HFC 41 35 36 40 R-434A HFC 2662 3131 3245 3075 R-435A HFC 28 24 25 28 R-437A HFC 1567 1684 1805 1639 R-438A HFC 1890 2151 2264 2059 R-439A HFC 1841 1873 1983 1828 R-439A HFC 158 139 144 156 R-440A HFC 158 139 144 156 R-440A HFC 1609 1793 1888 1754 R-442A HFC 1609 1793 1888 1754 R-444B HFC 284 240 293 295 R-445A HFC 117 117 126.7 117 R-445A HFC 117 117 126.7 117 R-447A HFC 540 493	R-429A	HFC	14	12	12	14
R-434A HFC 2662 3131 3245 3075 R-435A HFC 28 24 25 28 R-437A HFC 1567 1684 1805 1639 R-438A HFC 1890 2151 2264 2059 R-439A HFC 1641 1873 1983 1828 R-440A HFC 158 139 144 156 R-442A HFC 1609 1793 1888 1754 R-444A HFC 85 72 87 88 R-444B HFC 284 240 293 295 R-445A HFC 117 117 128.7 117 R-446A HFC 442 374 459 460 R-447A HFC 540 493 582 571 R-447B HFC 666 646 739 714 R-449A HFC 1184 1308 1396 1282 R-449B HFC 1199 1320 1411	R-430A	HFC	106.4	91.2	94.24	104.88
R-435A HFC 28 24 25 28 R-437A HFC 1567 1684 1805 1639 R-438A HFC 1890 2151 2284 2059 R-439A HFC 1641 1873 1983 1828 R-440A HFC 158 139 144 156 R-442A HFC 1609 1793 1888 1754 R-444A HFC 85 72 87 88 R-444B HFC 284 240 293 295 R-445A HFC 117 117 128.7 117 R-446A HFC 442 374 459 460 R-447A HFC 540 493 582 571 R-447B HFC 666 646 739 714 R-449A HFC 1170 1300 1386 1273 R-449B HFC 1199 1320	R-431A	HFC	41	35	36	40
R-437A HFC 1567 1684 1805 1639 R-438A HFC 1890 2151 2264 2059 R-439A HFC 1641 1873 1983 1828 R-440A HFC 158 139 144 156 R-442A HFC 1609 1793 1888 1754 R-444A HFC 85 72 87 88 R-444B HFC 284 240 293 295 R-445A HFC 117 117 128.7 117 R-446A HFC 442 374 459 460 R-447A HFC 540 493 582 571 R-447B HFC 666 646 739 714 R-448A HFC 1170 1300 1386 1273 R-449A HFC 1184 1308 1396 1282 R-449B HFC 1199 1320 1411 1296 R-449C HFC 1067 1167 1250	R-434A	HFC	2662	3131	3245	3075
R-438A HFC 1890 2151 2264 2059 R-439A HFC 1641 1873 1983 1828 R-440A HFC 158 139 144 156 R-442A HFC 1609 1793 1888 1754 R-444A HFC 85 72 87 88 R-444B HFC 284 240 293 295 R-445A HFC 117 117 128.7 117 R-445A HFC 442 374 459 460 R-446A HFC 540 493 582 571 R-447B HFC 666 646 739 714 R-448A HFC 1170 1300 1386 1273 R-449A HFC 1184 1308 1396 1282 R-449B HFC 1199 1320 1411 1296 R-449C HFC 1067 1167 1250 1146 R-450A HFC 546 546 600.6<	R-435A	HFC	28	24	25	28
R-439A HFC 1641 1873 1983 1828 R-440A HFC 158 139 144 156 R-442A HFC 1609 1793 1888 1754 R-444A HFC 85 72 87 88 R-444B HFC 284 240 293 295 R-445A HFC 117 117 128.7 117 R-446A HFC 442 374 459 460 R-447A HFC 540 493 582 571 R-447B HFC 666 646 739 714 R-448A HFC 1170 1300 1386 1273 R-449A HFC 1184 1308 1396 1282 R-449B HFC 1199 1320 1411 1296 R-449C HFC 1067 1167 1250 1146 R-450A HFC 546 546 600.6 546 R-451A HFC 132.6 132.6 145.	R-437A	HFC	1567	1684	1805	1639
R-440A HFC 158 139 144 156 R-442A HFC 1609 1793 1888 1754 R-444A HFC 85 72 87 88 R-444B HFC 284 240 293 295 R-445A HFC 117 117 128.7 117 R-446A HFC 442 374 459 460 R-447A HFC 540 493 582 571 R-447B HFC 666 646 739 714 R-448A HFC 1170 1300 1386 1273 R-449A HFC 1184 1308 1396 1282 R-449B HFC 1199 1320 1411 1296 R-449C HFC 1067 1167 1250 1146 R-450A HFC 546 546 600.6 546 R-451A HFC 132.6 132.6 145.86 132.6	R-438A	HFC	1890	2151	2264	2059
R-442A HFC 1609 1793 1888 1754 R-444A HFC 85 72 87 88 R-444B HFC 284 240 293 295 R-445A HFC 117 117 128.7 117 R-445A HFC 117 117 128.7 117 R-446A HFC 442 374 459 460 R-447A HFC 540 493 582 571 R-447B HFC 666 646 739 714 R-448A HFC 1170 1300 1386 1273 R-449A HFC 1184 1308 1396 1282 R-449B HFC 1199 1320 1411 1296 R-449C HFC 1067 1167 1250 1146 R-450A HFC 546 546 600.6 546 R-451A HFC 132.6 132.6 145.86 132.6	R-439A	HFC	1641	1873	1983	1828
R-444A HFC 85 72 87 88 R-444B HFC 284 240 293 295 R-445A HFC 117 117 128.7 117 R-445A HFC 442 374 459 460 R-447A HFC 540 493 582 571 R-447B HFC 666 646 739 714 R-448A HFC 1170 1300 1386 1273 R-449A HFC 1184 1308 1396 1282 R-449B HFC 1199 1320 1411 1296 R-449C HFC 1067 1167 1250 1146 R-450A HFC 546 546 600.6 546 R-451A HFC 132.6 132.6 145.86 132.6	R-440A	HFC	158	139	144	156
R-444B HFC 284 240 293 295 R-445A HFC 117 117 128.7 117 R-446A HFC 442 374 459 460 R-447A HFC 540 493 582 571 R-447B HFC 666 646 739 714 R-448A HFC 1170 1300 1386 1273 R-449A HFC 1184 1308 1396 1282 R-449B HFC 1199 1320 1411 1296 R-449C HFC 1067 1167 1250 1146 R-450A HFC 546 546 600.6 546 R-451A HFC 132.6 132.6 145.86 132.6	R-442A	HFC	1609	1793	1888	1754
R-445A HFC 117 117 128.7 117 R-446A HFC 442 374 459 460 R-447A HFC 540 493 582 571 R-447B HFC 666 646 739 714 R-448A HFC 1170 1300 1386 1273 R-449A HFC 1184 1308 1396 1282 R-449B HFC 1199 1320 1411 1296 R-449C HFC 1067 1167 1250 1146 R-450A HFC 546 546 600.6 546 R-451A HFC 132.6 132.6 145.86 132.6	R-444A	HFC	85	72	87	88
R-446A HFC 442 374 459 460 R-447A HFC 540 493 582 571 R-447B HFC 666 646 739 714 R-448A HFC 1170 1300 1386 1273 R-449A HFC 1184 1308 1396 1282 R-449B HFC 1199 1320 1411 1296 R-449C HFC 1067 1167 1250 1146 R-450A HFC 546 546 600.6 546 R-451A HFC 132.6 132.6 145.86 132.6	R-444B	HFC	284	240	293	295
R-447A HFC 540 493 582 571 R-447B HFC 666 646 739 714 R-448A HFC 1170 1300 1386 1273 R-449A HFC 1184 1308 1396 1282 R-449B HFC 1199 1320 1411 1296 R-449C HFC 1067 1167 1250 1146 R-450A HFC 546 546 600.6 546 R-451A HFC 132.6 132.6 145.86 132.6	R-445A	HFC	117	117	128.7	117
R-447B HFC 666 646 739 714 R-448A HFC 1170 1300 1386 1273 R-449A HFC 1184 1308 1396 1282 R-449B HFC 1199 1320 1411 1296 R-449C HFC 1067 1167 1250 1146 R-450A HFC 546 546 600.6 546 R-451A HFC 132.6 132.6 145.86 132.6	R-446A	HFC	442	374	459	460
R-448A HFC 1170 1300 1386 1273 R-449A HFC 1184 1308 1396 1282 R-449B HFC 1199 1320 1411 1296 R-449C HFC 1067 1167 1250 1146 R-450A HFC 546 546 600.6 546 R-451A HFC 132.6 132.6 145.86 132.6	R-447A	HFC	540	493	582	571
R-449A HFC 1184 1308 1396 1282 R-449B HFC 1199 1320 1411 1296 R-449C HFC 1067 1167 1250 1146 R-450A HFC 546 546 600.6 546 R-451A HFC 132.6 132.6 145.86 132.6	R-447B	HFC	666	646	739	714
R-449B HFC 1199 1320 1411 1296 R-449C HFC 1067 1167 1250 1146 R-450A HFC 546 546 600.6 546 R-451A HFC 132.6 132.6 145.86 132.6	R-448A	HFC	1170	1300	1386	1273
R-449C HFC 1067 1167 1250 1146 R-450A HFC 546 546 600.6 546 R-451A HFC 132.6 132.6 145.86 132.6	R-449A	HFC	1184	1308	1396	1282
R-450A HFC 546 546 600.6 546 R-451A HFC 132.6 132.6 145.86 132.6	R-449B	HFC	1199	1320	1411	1296
R-451A HFC 132.6 132.6 145.86 132.6	R-449C	HFC	1067	1167	1250	1146
	R-450A	HFC	546	546	600.6	546
R-451B HFC 145.6 145.6 160.16 145.6	R-451A	HFC	132.6	132.6	145.86	132.6
	R-451B	HFC	145.6	145.6	160.16	145.6

R-452A	HFC	1724	2067	2139	1945
R-452B	HFC	632	607	697	675
R-452C	HFC	1789	2143	2219	2018
R-453A	HFC	1534	1664	1765	1636
R-454A	HFC	228	193	236	237
R-454B	HFC	448	379	465	466
R-454C	HFC	140	118	145	146
R-456A	HFC	624	618	684	626
R-457A	HFC	131	113	136	138
R-458A	HFC	1457	1576	1650	1564
R-460C	HFC	684	697	762	694
R-461A	HFC	2291	2676	2767	2567
R-462A	HFC	1883	2136	2249	2060
R-463A	HFC	1256	1400	1493	1377
R-464A	HFC	1106	1277	1321	1240
R-465A	HFC	137	116	142	142
R-500	HFC	37	31	32	36
R-503	HFC	4692	4812	5935	4972
R-504	HFC	313	265	325	326
R-507 or R-507A	HFC	3300	3850	3985	3985
R-509 or R-509A	PFC	3920	4816	4945	4984
R-512A	HFC	198	179	189.3	196.1
R-513A	HFC	572	572	629.2	572
R-513B	HFC	540	539.5	593	539.5

R-515A	HFC	348	420	386	402
R-516A	HFC	130	127	139	130

Source: Refrigerant blend GWPs are calculated using a weighted average from the blend composition and the IPCC GWP values. The blend compositions are from ASHRAE Standard 34-2019. The GWP values are 100- year values from the Intergovernmental Panel on Climate Change (IPCC) Second Assessment Report (SAR) published in 1995, Third Assessment Report (TAR) published in 2001, Fourth Assessment Report (AR4) published in 2007, and Fifth Assessment Report (AR5) published in 2013.

Conversion Factors

Mass			
1 pound (lb) =	453.6 grams (g)	0.4536 kilograms (kg)	0.0004536 metric tons
1 kilogram (kg) =	1,000 grams (g)	2.2046 pounds (lb)	0.001 metric tons
1 short ton (ton) =	2,000 pounds (lb)	907.18 kilograms (kg)	0.9072 metric tons
1 metric ton =	2,204.62 pounds (lb)	1,000 kilograms (kg)	1.1023 short tons
Volume			
1 cubic foot (ft ³) =	7.4805 U.S. gallons (gal)	0.1781 barrels (bbl)	
1 cubic foot (ft³) =	28.32 liters (L)	0.02832 cubic meters (m ³)	
1 U.S. gallon (gal) =	0.0238 barrels (bbl)	3.785 liters (L)	0.003785 cubic meters (m ³)
1 barrel (bbl) =	42 U.S. gallons (gal)	158.99 liters (L)	0.1589 cubic meters (m ³)
1 liter (L) =	0.001 cubic meters (m ³)	0.2642 U.S. gallons (gal)	0.0063 barrels (bbl)
1 cubic meter (m ³) =	6.2897 barrels (bbl)	264.17 U.S. gallons (gal)	1,000 liters (L)
Energy			
1 kilowatt hour (kWh) =	3,412 Btu (Btu)	3,600 kilojoules (KJ)	
1 megajoule (MJ) =	0.001 gigajoules (GJ)		
1 gigajoule (GJ) =	0.9478 million Btu (MMBtu)	277.8 kilowatt hours (kWh)	
1 British thermal unit (Btu) =	1,055 joules (J)	1.055 kilojoules (KJ)	
1 million Btu (MMBtu) =	1.055 gigajoules (GJ)	293 kilowatt hours (kWh)	
1 therm =	100,000 Btu	0.1055 gigajoules (GJ)	29.3 kilowatt hours (kWh)
Other			
kilo =	1,000		
mega =	1,000,000		
giga =	1,000,000,000		
tera =	1,000,000,000,000		
peta =	1,000,000,000,000,000		
1 mile =	1.609 kilometers		
1 metric ton carbon (C) =	44/ ₁₂ metric tons CO ₂		