# Big data and its applications \*Project\* Professor G. Uzbelger – Spring Sem. 2017-2018

Thomas Bourany<sup>1,2</sup>

 $^1$ UPMC-Sorbonne University – Math-Model (LJLL)  $^2$ Certificat Big Data

Defense, July, 2nd

# Introduction – Challenges ENS

- Classification challenge
  - Predict if a transaction (good purchased) on PriceMinister platform is subject to a claim.
  - Multiclass classif for purpose of the claim
  - Using descriptive data on buyer, seller and transaction (good)
- Metrics : ROC AUC
  - Receiver operating characteristic, Area under curve.
  - True Pos. wrt. False Pos. : Power  $(1 - \beta)$  in terms of 1st class error  $(\alpha)$
  - Weighted (multiclasses)

#### Introduction – Data cleaning

- ▶ Dep. variable : Claims 'OK' (≈ 50%), 'WITHDRAWAL', 'SELLER CAN-CEL POSTERIORI', 'NOT RECEI-VED', 'DIFFERENT', 'UNDEFI-NED', 'DAMAGED', 'FAKE'

- ⇒ Unbalanced data.
  - ► Indep. variables, different types :
    - Prices and potential 'numerical' variables (e.g. count & score)
    - Type and family of goods (strict categorical data)
    - Buyers and sellers locations
    - Dates, time & others (easy) variables

► Transform (string) cat. variable into numerical variable

# Item price of the transaction



#### Estimation



- ► Transformation steps :
  - 1. *J* categories of prices, consider histogram values :  $n_j$  observations for the category between  $x_j$  and  $x_{j+1}$  (with  $j \in \{1, ..., J\}$ )
  - 2. Simulate a subsample of  $n_j$  observations uniformly distributed in  $[x_i; x_{j+1}]$
  - 3. Concatenate a sample with these  $n = \sum_{i} n_{i}$  observations
  - 4. Estimate the shape & scale parameters of a gamma distributions on this *n*-observations simulated sample (gamma.fit).
  - 5. Compute conditional expectation  $\mu_j = \mathbb{E}(X|x_j < X < x_{j+1})$ , for X a r.v. following a gamma distrib. with param. estimated in previous step [using IPP and numerical integration].
  - 6. Assign the num. value  $\mu_i$  for data in category " $[x_i; x_{i+1}]$ ".
- **Example**:

```
 \begin{aligned} \{[0,10];[10,20];[20,50];[50,100],[100,500];[500,1000];[1000,5000];[5000;6000]\} \\ &\Rightarrow \quad \{3;15;33;72;188;607;1213;5026\} \end{aligned}
```

► Same method applied to Shipping price and Warranty price.



➤ Same method applied to count variables: Purchase count (buyer) and sales count (seller).



# Data cleaning $-2^{nd}$ : spatial variables

- ► Three spatial variables :
  - Departement (buyer)
  - Departement (seller)
  - Country (seller)





- Distance buyer-seller may matter for the transaction
  - Similar mechanism to distance/transaction cost in gravity models in

# Data cleaning $-2^{nd}$ : spatial variables

- ► How to compute the (geodesic) distance :
  - Cross country distance: constructed by Head & Mayer (2002) and Mayer & Zignago (2011)
  - Dep. location : Prefecture latitude and longitude data from INSEE.
  - Matching (dep. code & cities) and cleaning (depts. that don't exist).
  - Computation of distance via ad-hoc formula  $dist = \arccos(\sin(\operatorname{lat}_a)\sin(\operatorname{lat}_b) + \cos(\operatorname{lat}_a)\cos(\operatorname{lat}_b)\cos(\operatorname{long}_b \operatorname{long}_a))R_{earth}$
- Results:



# Data cleaning $-3^{rd}$ : Categorical variables

- Usual treatment for categorical variables :
- Binarization :
  - If a variable has K potential categories
  - Create K-1 new dummy variables : 1 for a type, 0 if it is the 'standard' (most frequent) category.
  - Choice of the reference often non-ambiguous (one type is often very frequent).



# Data cleaning $-3^{rd}$ : Categorical variables



- ▶ 'Typical' example of goods :
  - Cellphone accessories (typically a smartphone protection)
     purchased at a low cost (less than 10 euro, cf. estimation above),
     from China or from retailers in France.
  - Books, DVDs or CDs (again at a low price) from French editors or French retailers.

# Data cleaning $-4^{th}$ : other client data

- ▶ Age and Time from registration :
  - After cleaning:

#### Buyer age (left) and Time from registration (right) in years



### Classification algorithms – Regression and NN

- Multinomial Logit Regressions
  - Treatment heterogeneous depending on the class :
    - Fake/ Not received
       /Damaged
       ⇒ good classif.
    - Not so good for others (OK!)



# Classification algorithms – Regression and NN

- Multinomial Logit Regressions
  - Treatment heterogeneous depending on the class :
    - Fake/ Not received
       /Damaged
       ⇒ good classif.
    - Not so good for others (OK!)
- Neural Networks :
  - Completely unable to manage the unbalanced data
  - Despite change in hyperparameters, assign the same proba value for all





# Classification algorithms – Rebalancing

- ▶ Different methods to 'help' the algos to perform better on this unbalanced data set :
- ▶ Drop (randomly) 'OK' label data for the training dataset :
  - Increase performance (Roc Auc) by 2%.

Class repartition - Unbalanced (LHS), Rebalanced (RHS)



- ► Two-steps procedures (not implemented):
  - Binary classification : OK vs. Claim (50/50 : balanced data!)
  - Multiclass for type of claim issue : more balanced data for 7 other labels.

### Classification algorithms – Adaboost

- Adaboost :
  - Classifier as a linear combinaison of weak learners (simple decision tree).
  - Recursive algo (description in report).



# Classification algorithms – Adaboost

- Adaboost :
  - Classifier as a linear combinaison of weak learners (simple decision tree).
  - Recursive algo (description in report).



#### Classification algorithms – Random Forest

- ▶ Most efficient algorithm
  - Better on all classes



#### Assessment and conclusion

TABLE – Assessment of the different methods

| Algo           | Specification          | Accuracy | Roc Auc per class |       |       |         |       |        |       |          | Weighted |
|----------------|------------------------|----------|-------------------|-------|-------|---------|-------|--------|-------|----------|----------|
|                |                        |          | Dam               | Diff  | Fake  | Not Rec | OK    | Cancel | Undef | Withdraw | Roc Auc  |
| Logit          | Train data             | 0.497    | 0.625             | 0.563 | 0.848 | 0.641   | 0.611 | 0.603  | 0.664 | 0.653    | 0.626    |
| Logit          | Test data              | 0.504    | 0.631             | 0.578 | 0.837 | 0.627   | 0.605 | 0.603  | 0.633 | 0.664    | 0.621    |
| Logit          | Rebalanced train       | 0.315    | 0.604             | 0.520 | 0.829 | 0.639   | 0.582 | 0.616  | 0.659 | 0.638    | 0.617    |
| Logit          | Rebalanced test        | 0.466    | 0.633             | 0.539 | 0.839 | 0.631   | 0.580 | 0.599  | 0.651 | 0.663    | 0.615    |
| Neural network | 4 layers, 20 epochs    | 0.146    | 0.500             | 0.500 | 0.500 | 0.500   | 0.500 | 0.500  | 0.500 | 0.500    | 0.500    |
| Adaboost       | 200 estimators         | 0.325    | 0.590             | 0.527 | 0.808 | 0.566   | 0.519 | 0.554  | 0.580 | 0.586    | 0.543    |
| Adaboost       | 200 est., rebal. train | 0.263    | 0.605             | 0.531 | 0.774 | 0.577   | 0.537 | 0.577  | 0.580 | 0.585    | 0.557    |
| Random forest  | 20 estimators          | 0.361    | 0.664             | 0.607 | 0.736 | 0.719   | 0.688 | 0.704  | 0.690 | 0.688    | 0.690    |