Local averaging methods

MATH-412 - Statistical Machine Learning

Principle of local averaging methods

Goal: solve a (non-linear) regression problem.

Principle : At a point x predict the corresponding value y by a weighted mean of the y_i for x_i some neighbors of x.

Mathematically, we consider decision functions of the form :

$$\widehat{f}: x \mapsto \sum_{i=1}^{n} \omega_i(x) y_i$$

where $\omega_i(x)$ are weights that sum to 1, that depend on the input training data and that account for some form of similarity between the input x and the previously seen inputs x_i .

Idea : If points x_i with significant weights are closest to x and $f^*(x) = \mathbb{E}[Y|X=x]$ is continuous then \widehat{f} should approximate f^* as n increases.

Some local averaging methods

- K-nearest neighbors
- Histogram based methods
- Nadaraya-Watson prediction functions (aka kernel smoothers)

K-nearest neighbors

Assume that \mathcal{X} equipped with some distance d.

Let $V_k(x)$ the set of the k nearest neighbors of x for the distance d.

The weights are defined as:

$$\omega_i(x) = \frac{1_{\{x_i \in V_k(x)\}}}{k}.$$

The decision function is then

$$\widehat{f}(x) = \sum_{i=1}^{n} \omega_i(x) \, y_i$$

Histogram based methods

Relies on a finite or countable partition $\{A_1, A_2, \ldots\}$ of \mathcal{X} .

Let $s(x, x_i) = \sum_{k=1}^{K} 1_{\{x \in A_k\}} 1_{\{x_i \in A_k\}}$. So $s(x, x_i) = 1$ iff x and x_i are in the same bin.

Pick the weights:

$$\omega_i(x) = \tilde{s}(x, x_i) = \frac{s(x, x_i)}{\sum_{j=1}^n s(x, x_j)}$$

with the convention $\frac{0}{0} = 0$. The prediction function is then

$$\widehat{f}(x) = \sum_{i=1}^{n} \omega_i(x) \, y_i$$

• Decision trees are actually histogram based methods, based on a partition that is learnt from the same data.

Convolution kernels

Convolution kernels are functions $K : \mathbb{R} \to \mathbb{R}_+$.

where $(x)_{+} = \max(0, x)$ denotes the positive part.

- First used by Parzen and Rosenblatt for density estimation.
- Are naturally extended to \mathbb{R}^p using $K_p: x \mapsto K(||x||)$.

Nadaraya-Watson estimators (aka kernel smoothers)

Principle: use the convolution kernels to define a similarity measure that depends on the Euclidean distance.

Weights take the form:

$$\omega_i(x) = \tilde{s}(x, x_i) = \frac{s(x, x_i)}{\sum_{i=1}^n s(x, x_i)} \quad \text{with} \quad s(x, x_i) = K\Big(\frac{\|x - x_i\|}{h}\Big).$$

 $\rightarrow h$ is a bandwidth hyperparameter that control the scale.

Star velocity estimation with kNN

FIGURE 6.8. The left panel shows three-dimensional data, where the response is the velocity measurements on a galaxy, and the two predictors record positions on the celestial sphere. The unusual "star"-shaped design indicates the way the measurements were made, and results in an extremely irregular boundary. The right panel shows the results of local linear regression smoothing in \mathbb{R}^2 , using a nearest-neighbor window with 15% of the data.

Comments on local averaging methods

- Methods from non-parametric statistics
- Generalizes to other similarity measures (i.e. $s(x,x) \ge s(x,z) \ge 0$).
- Their suffer seriously from the curse of dimensionality
- But k-NN is adaptive to the intrinsic dimensionality and scale of the data.
- They are a particular case of *local regression models* (degree 0).
- They are linear smoothers (aka linear estimator) :

$$\widehat{m{f}} = \widetilde{m{S}} m{y}$$
 with $\widetilde{m{S}}_{i,j} = \widetilde{s}(x_i,x_j), \ \widehat{m{f}} = \left(\widehat{f}(x_i)\right)_i$, and $m{y} = (y_i)_i$

• If the similarity measure s(x,z) does not depend on the data set 1 then the LOO risk estimate takes the form

$$\widehat{R}^{\text{LOO}} = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{y_i - \widehat{f}_{-i}(x_i)}{1 - \widetilde{s}(x_i, x_i)} \right)^2$$

^{1.} This assumption fails for k-nearest neighbor

Local Empirical Risk minimization

Idea : Solve a local version of the ERM by introducing weights $s(x,x_i)\geq 0$ that are large if x and x_i are close or similar. Solve

$$f_x = \arg\min_{f \in S} \frac{1}{n} \sum_{i=1}^{n} s(x, x_i) \, \ell(f(x_i), y_i)$$

and define $\widehat{f}(x) = f_x(x)$. In particular if the local prediction function is a constant prediction function $f_x(z) = a_x$ then

$$\widehat{f}(x) = a_x$$
 with $a_x = \arg\min_{a \in \mathcal{A}} \frac{1}{n} \sum_{i=1}^n s(x, x_i) \, \ell(a, y_i)$

Local averaging and local quadratic ERM

Consider the particular case of the square loss:

- $\mathcal{A} = \mathcal{Y} = \mathbb{R}$ and $\ell(a, y) = \frac{1}{2}(a y)^2$
- with constant local prediction functions : f(x') = a

We need to solve:

$$a_x = \arg\min_{a} \frac{1}{2n} \sum_{i=1}^{n} s(x, x_i) (a - y_i)^2$$

Setting the gradient of the local ER to zero we get : $0 = a_x \sum_i s(x,x_i) - \sum_i s(x,x_i) \, y_i$

So that
$$\left| \widehat{f}(x) = a_x = \sum_{i=1}^n \widetilde{s}(x, x_i) \, y_i \right|$$
 with $\widetilde{s}(x, x_i) = \frac{s(x, x_i)}{\sum_{j=1}^n s(x, x_j)}$,

and we recover local averaging prediction functions.

Local linear regression

- We still consider $\ell(a,y) = \frac{1}{2}(a-y)^2$
- but now we consider local prediction functions that are linear functions : $f(\mathbf{x}') = \boldsymbol{w}^{\top}\mathbf{x}' + b$

$$\widehat{f}(\mathbf{x}) = \mathbf{w}_{\mathbf{x}}^{\top} \mathbf{x} + b_{\mathbf{x}} \quad \text{width} \quad (\mathbf{w}_{\mathbf{x}}, b_{\mathbf{x}}) = \arg\min_{\mathbf{w}, b} \frac{1}{2n} \sum_{i=1}^{n} s(\mathbf{x}, \mathbf{x}_{i}) (\mathbf{w}^{\top} \mathbf{x}_{i} + b - y_{i})^{2}$$

- Local linear regression is also known as LOWESS (Locally weighted scattergram smoothing) or it generalization called LOESS.
- Local linear regression can generalized to *local polynomial regression* and *local spline regression*.