Logique de programmation

1. Algorithmique et programmation

1.1 Algorithmique

L'algorithmique est la science des algorithmes.

Un algorithme est une suite ordonnée d'instructions qui indique la démarche à suivre pour résoudre un problème. Un algorithme ne doit contenir que des instructions compréhensibles par celui qui devra l'exécuter.

1,2 Définition d'un programme

Suite organisée d'instructions <u>élémentaires</u>, l'ordinateur les exécutera les unes après les autres, séquentiellement.

Un programme a UN début et UNE fin.

Langages informels pour la réalisation de la logique (algorithme) :

Pseudo-code

Début de pgm carte de visite

Afficher "Michelle"

Afficher 'HENRY'

Fin du pgm

Ordinogramme

Un bon programme est fiable (robuste), économe, clair et documenté.

16 novembre 2017 page :1/10

1.3 La programmation

L'ordinateur ne comprend que des instructions élémentaires exprimées en langage machine.

1.4 Langage de programmation

Un langage de programmation est composé d'un ensemble de mots-clés, de règles très précises indiquant comment on peut assembler ceux-ci pour former des « phrases » (syntaxe). Ils permettent au programmeur de programmer dans un langage plus « naturel » que le langage machine. Ils sont aussi des programmes « traducteur », se chargeant de traduire les instructions en langage binaire (séquence de 0 et de 1), seul langage compris de l'ordinateur, lui permettant ainsi d'exécuter celles-ci.

Compilateur et interpréteur

Il existe deux types de langages de programmation qui diffèrent par leur méthode de traduction en langage machine : interpréteurs et des compilateurs.

Les interpréteurs :

Les interprètes traduisent ET exécutent les instructions les unes après les autres.

Les compilateurs:

Les compilateurs traduisent toutes les instructions du programme en langage machine. Une fois que la traduction est terminée, l'exécution peut se réaliser.

Comparatif des deux principes : avantages et inconvénients ?

Solutions hybrides

février 2021 page :2/10

2. Variables, constantes, types, partie déclarative

2.1 Variables

Une variable est une valeur représentée par un identificateur (nom significatif). Sa valeur peut évoluer au cours de l'exécution du programme.

ex:

nom ← "Henry"

somme ← 2

RAM

Table d'allocation

identificateur	adresse
nom	х
somme	У

Afficher nom => recherche dans la table d'allocation, si l'identificateur est trouvé alors il y aura affichage de la valeur stockée à l'adresse référencée.

2.2 Constantes

Une constante est une valeur représentée par un identificateur (nom significatif). Sa valeur ne peut évoluer au cours de l'exécution du programme.

Ex:

Début pgm compta

var montant : $N \leftarrow 0$

cste TVA : N \leftarrow 0.21 // seule assignation possible et obligatoire, dans la déclaration

 \dots // calculs divers mentionnant la constante TVA en lieu et place de la valeur littérale

// En cas de changement de valeur de la tva, le programmeur ne devra modifier que la partie déclarative.

2.3 Types de données

L Logique ou booléen

N Nombre

C Caractère(s)

2.4 Partie déclarative

Section en début de programme qui regroupe toutes les déclarations de variables et de constantes.

Représentation ordinogramme

var montant : $N \leftarrow 0$ cste TVA : $N \leftarrow 0.21$

février 2021 page :3/10

3. Affectation

Ou comment attribuer une valeur à une variable ou constante.

3.1 Assignation

C'est le programmeur qui attribue la valeur d'une variable vis une instruction du programme.

variable (à gauche) ← valeur (ou expression à droite)

ex:

var somme : N ←0	somme
somme ← 5	0
somme ← somme + 10	5
Afficher somme	15

La table des valeurs montre la progression des valeurs d'une ou de plusieurs variables. Ell est très utile pour le tersting du code.

Représentation ordinogramme :

3.2 Lecture

Le programmeur, via une instruction de saisie, permet à l'utilisateur de rentre une valeur qui sera assignée à la variable.

Ex:

$$vara, b: N \leftarrow 0$$

•••

Saisir a

Saisir b // Saisir a,b autorisé

Représentation ordinogramme :

Il est impossible de proposer une constante dans ce type d'instruction.

février 2021 page :4/10

4. Expressions booléennes

4.1 Type Logique (ou booléen)

Valeurs possibles: true, false (ou T, F)

4.2 Expression booléenne

Une expression dont le type de résultat est logique.

Ex: 15 < 3

NB : les deux opérandes doivent être de même type

Opérateurs relationnels : < <= > >= = <> (ou !=)

Rappel opérateurs mathématiques: + - / * mod (%)

Le modulo est le reste de la division entière.

Ex: 5 mod 2 // résultat = 1

Priorité des opérateurs et rôle des parenthèses.

Opérateur de concaténation :

Ex Mot← "Bon"+"jour" // "Bonjour"

Remarque : les algorithmes de comparaison :

Basé sur l'ASCII: 'A' < 'a' et 'Z' < 'a'

Basé sur Unicode : famille des a < famille des e ... et au sein d'une même famille, ordre plus logique, comme 'a' < 'A'.

4.2 Opérateurs booléens (ou logiques)

Ex: 15 < 3 AND 27 = 24 + 3

4.2.1 AND

Table de vérité du AND		
1 ^{er} opérande	2 ^e opérande	Résultat
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

4.2.2 OR

Table de vérité du OR		
1 ^{er} opérande	2 ^e opérande	Résultat

février 2021 page :5/10

Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

4.2.3 NOT

Table de vérité du NOT		
Opérande	Résultat	
Т	F	
F	Т	

4.2.4 Priorités

()

NOT

AND

OR

février 2021 page :6/10

5. Alternative

La structure alternative permet d'effectuer une séquence d'instructions si une condition est remplie et d'en effectuer une autre si celle-ci ne l'est pas.

L'exécution de l'alternative commence par l'évaluation de la condition (vraie ou fausse) suivie de l'exécution de la séguence d'instructions associées au résultat de la condition.

Syntaxe

SI condition (expression booléenne)

ALORS

bloc d'instructions

SINON

bloc d'instructions

FIN du si

Lorsque le résultat de l'évaluation de l'expression booléenne est :

- VRAI : seules les instructions du bloc ALORS sont exécutées
- FAUX : seules les instructions du bloc SINON sont exécutées

Représentation

février 2021 page :7/10

Table de valeurs

 Debut lireTintin
2.
VAR age :N <- 0
4.
5. Afficher "âge : "
6. Saisir age
7. SI age >= 7 ET age <= 77
8. ALORS
Afficher "vous lisez Tintin"
10. SINON
11. Afficher pas de Tintin"
12. FINSI
13.Fin lireTintin

N°	age	Ecran / clavier
1	?	
2	?	
3	0	
4	0	
5	0	-> âge :
6	80	<- 80
7	80	
10	80	
11	80	->pas de Tintin
12	80	
13	?	

N°	age	Ecran / clavier
1	?	
2	?	
3	0	
4	0	
5	0	-> âge :
6	35	<- 35
7	35	
8	35	
9	35	->vous lisez Tintin
12	35	
13	?	

5.1 Alternative sans sinon (facultatif)

Lorsque aucune instruction n'est à exécuter quand la condition est fausse, on n'indiquera pas le sinon.

Syntaxe

SI condition

ALORS

bloc d'instructions

FINSI

février 2021 page :8/10

5.2 Alternatives imbriquées

Ordinogramme

Pseudo-code

SI condition 1

ALORS

instructions(1)

SI condition 2

ALORS

instructions(2)

SINON

instructions(3)

Fin du si

instructions(4)

SINON

instructions(5)

SI <u>condition 3</u>

ALORS

instructions(6)

Fin du si

instructions(7)

Fin du si

février 2021 page :9/10

6. Alternative composée

La structure alternative composée permet d'effectuer une suite d'instructions en fonction de la valeur d'une variable.

L'exécution de l'alternative commence par une recherche du bloc d'instructions liées à la valeur de la variable (appelée sélecteur) et se poursuit en exécutant les instructions de ce bloc.

Syntaxe de l'alternative composée

```
Cas où variable (N ou C)

valeur 1:

bloc d'instructions

valeur 2:

bloc d'instructions

...

Sinon

bloc d'instructions
```

Fin du cas où

- Seules les instructions se trouvant dans le cas qui a la même valeur que l'expression numérique seront exécutées.
- Si aucun cas n'a la valeur de l'expression, ce sont les instructions du sinon qui sont exécutées (aucune si le sinon, qui est facultatif), n'est pas présent.
- L'alternative composée est une simplification d'écriture d'une alternative imbriquée.

Représentation

février 2021 page :10/10