Introduction to Kähler geometry

Exercise sheet 7

Exercise 7.1. Assume that $D \subset M$ is a smooth hypersurface in a compact Kähler manifold M of complex dimension n. Assume that $L = \mathcal{O}_M(D)$ is ample.

1. Construct the following exact triples of coherent sheaves on M:

$$0 \to \Omega_M^p \otimes \mathcal{O}_M(-D) \to \Omega_M^p \to \Omega_M^p|_D \to 0,$$

$$0 \to \Omega_D^{p-1} \otimes \mathcal{O}_M(-D)|_D \to \Omega_M^p|_D \to \Omega_D^p \to 0.$$

- 2. Using the above exact triples, Kodaira vanishing and Serre duality, prove that the natural maps $H^q(M, \Omega_M^p) \to H^q(D, \Omega_D^p)$ are bijective for p+q+1 < n and injective for p+q < n.
- 3. Deduce the "weak Leschetz theorem": $H^k(M,\mathbb{C}) \to H^k(D,\mathbb{C})$ is bijective for $k \leq n-2$ and injective for $k \leq n-1$.

Exercise 7.2. A Hermitian metric h on a holomorphic vector bundle E over a compact Kähler manifold M is called Hermite-Einstein if

$$\sqrt{-1}\Lambda_{\omega}R_{\nabla} = \lambda \operatorname{Id}_{E}$$

for some $\lambda \in \mathbb{R}$. Prove that any holomorphic line bundle over a compact Kähler manifold admits a Hermite-Einstein metric.

In the following exercises ω , ω' denote Kähler metrics on a compact Kähler manifold M of dimension n, and ρ , ρ' denote the corresponding Ricci forms.

Exercise 7.3. Assume that $\lambda[\omega] = 2\pi c_1(M)$, where $\lambda = \pm 1$. Show that there exists a real-valued function f that satisfies $\rho = \lambda \omega + \sqrt{-1}\partial \bar{\partial} f$. Show that the metric $\omega' = \omega + \sqrt{-1}\partial \bar{\partial} u$ satisfies $\rho' = \lambda \omega'$ if and only if u is a solution of the equation

$$(\omega + \sqrt{-1}\partial \overline{\partial}u)^n = e^{f - \lambda u + C}\omega^n$$

for some constant C.

Exercise 7.4. Prove that for $\lambda = -1$ the equation from the previous exercise has at most one solution.

Exercise 7.5. Consider the operator $\mathcal{MA}_{\lambda}: u \mapsto e^{\lambda u}(\omega + \sqrt{-1}\partial \overline{\partial}u)^n$. Compute its differential at the point u and prove that the differential is surjective if $\omega + \sqrt{-1}\partial \overline{\partial}u$ is positive.