DOI: 10.3969/j.issn.1001-8972.2013.10.085

关于智能行走辅助仪的设计与研究

黄春燕 王冬梅 高育新 陈 露 昝 望 上海电机学院

摘要

本文设计的导盲仪是一种协助盲人安全行进 的重要辅具。文中介绍了智能行走辅助仪的 总体结构及工作原理,并对其关键技术超声 波测距、GPS导航、语音播报等原理及解决 方案进行了详细阐述。

关键词

超声波测距;GPS导航;语音控制;盲人导 航

1 设计背景

现有导盲仪主要用于盲人的指引,功能 -笨重且不便携带,更无定位、导航、紧 急帮助等功能,而且对传统的探测指引也不 便。目前,现有的各种类型的"导盲仪/导 盲棍"等,虽然种类不少,但它们主要有以下 不足: 功能简单,携带不便,设计不合理, 缺少人性化提示等。而智能行走辅助仪则具 有导航,提供线路,紧急提示和协助行走等 功能,且携带方便。本设计主要是将导盲仪 装在皮带上,这样盲人外出时,只要系上皮 带便可轻松便捷地使用导盲的功能,可为盲 人提供安全便利。

2 智能行走辅助仪的结构和工作原理

2.1 总体结构

智能行走辅助仪主要由皮带内外装置部 分以及语音控制、GPS导航、超声波部分等 组成,如图1所示。

图1 智能行走辅助仪的结构说明示意图 皮带部分包括皮带上固定有超声波发射 与接收探头,使用时,超声波探头方向指向 探测方向, 当前方有障碍物时, 单片机产生 40kHz 方波, 通过超声波反射探头,产生 一段一段的超声波,同时单片机计时器开始 计时。超声波在空气中传播遇到障碍物,被 反射后由超声波接收探头接收回波, 经放大 电路放大及检波电路检波产生中断, 单片机 计时器停止计时。单片机对数据进行处理, 根据超声波测距原理,可计算出障碍物的距 离。皮带内可放置连接线路以连接外部超声 波发射与接收模块、语音控制模块等。当超口 声波发射装置发出的超声波被前方障碍物反

射并被接收装置接收时,语音控制模块会根 据障碍物的距离,发出语音提示和警告,以 提醒使用者。其中1,2:启动与停止按键; 3:产品外壳:4:超声波发射与接收模块: 5:语音控制与GPS模块;6:连接电线; 7:皮带;8:皮带头;9,10:超声波发射 与接收探头

2.2 工作原理

按下"启动"键开始工作,超声波发射 与接收模块开始工作。工作时先由单片机控 制的振荡源产生信号以驱动超声波传感器 使它发射脉冲。当第一个超声波脉冲发射 后, 计数器开始计数, 在检测到第一个回波 脉冲的瞬间,计数器停止计数,计算出从发 射到接收的时间差 t,最终利用单片机计 算出距障碍物的距离,按计算出的距离的不 同语音控制部分发出易于区分的不同频率的 提示音。工作原理图如图2所示。

图2 工作原理图

3 关键的技术及其解决方案

3.1 承载模块

电子装置承载盒具有二相间隔侧壁,且 每一侧壁设有至少一开孔。所述防震模块用 以设置于该两侧壁的开孔,每一防震模块包 括一防震垫圈以及一销件。防震垫圈用以套 设于侧壁的开孔,销件用以伸入防震垫圈并 使防震垫圈局部径向扩张,借此使防震垫圈 迫紧于侧壁,并且避免销件产生偏斜,借此 增加防震模块设置在侧壁的稳定性。

本发明涉及一种模块式承载结构,该结 构包括由多个大跨度水平梁互连起来的多根 垂直支承柱,某些梁承载在多根倾斜的支撑 杆上, 诸支撑杆的底端铰接在诸立柱上。根 据本发明,每根支承在倾斜支撑杆上的梁是 由形成一中心空间的两个并列的胶合层叠的 翼板构成,中心空间中自由地通过一被动缆 索,该缆索的两端固定在对应的立柱上,通 过布置在构成梁的并列的翼板之间的多个端 板承载在诸倾斜的支撑杆上,并刚性地固定 在其上。

3.2 GPS导航模块

GPS导航仪是能够帮助用户准确定位当 前位置,并且根据既定的目的地计算行程 本发明的导航是通过语音提示的方式来引导 本发明的导航是通过语音提示的方式来引导。 本发明的导航是通过语音提示的方式来引导。 本发明的导航是通过语音提示的方式来引导。 本发明的导航是通过语音提示的方式来引导。

GPS的用户设备是由接收机硬件、机内 软件以及GPS数据的后处理软件包组成的。 GPS接收机的结构分为天线单元和接收单元 两大部分。对干测地型接收机来说,两个单 元一般分成两个独立的部件,观测时将天线 单元安置在测站上,接收单元则置于测站附 近的适当地方,并用电缆线将两者连接成-个整机。实际上,也可以将天线单元和接收 单元制作成一个整体,而在观测时将其安置 在测站点上。

GPS模块就是集成了RF射频芯片、基 带芯片和核心CPU,并加上相关外围电路 而组成的一个集成电路。它像"收音机"一 样接收、解调卫星的广播C/A码信号,中 以频率为1575.42MHz。GPS模块并不播发 信号,属于被动定位。特点是点位速度快, 但误差大。GPS模块通过串行通信口不断输 出NMEA格式的定位信息及辅助信息,供 接收者选择应用。

3.3 语音控制部分

语音控制部分,主要是由BMP5008语 音模块完成该模块使用地址选段放音模式: 将"PO口功能选择端P0口悬空,将JK2插 座的P00~P05定义为6段单键触发模式,可 以寻址1~6段内容,P00~P05引脚低电平

本系统设计将最大测距距离3.5m 分为6个区间,分别为:0~1.00m; 1.00m ~ 1.50m; 1.50m ~ 2.00m; 2.00 m ~ 2.50m; 2.50m ~ 3.00m; 3.00 m~3.50m,每个区间分别对应一段语音内 容, 每个区间所对应的编码依次为0x fe, Ox fd, Ox fb, Oxf7, Oxe, f Oxd.f系统测 得障碍物的距离后, 根据距离所在区间, 将 对应的编码输入到P00~P05,BMP5008接 收到编码后,自动播报出该区间语音内容, 提醒盲人,达到帮助其安全行走的目的。

3.4 超声波探测模块

3.4.1 超声波测距的原理 超声波发生器内部结构有一个共振板和

5 仿真电路设计

TMS320F28332DSP通过提供的仿真接口用以解决高速DSP系统的仿真功能。本系统提供的在线扫描仿真功能,给系统联调带来了极大便利。

本设计仿真头采用多股双绞屏蔽信号 线。为保证外部板卡和仿真器之间的数据传 输质量,本系统设计了一款带信号缓冲能力 的仿真电路。如图7所示,

EMO和EMI经上提拉接到VCC上,以产生小于5us的信号上拉时间,经理论计算和多次试验,本系统电阻取值22k。

图7 仿真接口电路

6 采集检测电路设计

逆变器主控系统要对关键的电压、电流或温度等模拟量进行检测,以实施精确的闭环控制、故障诊断和保护,在逆变系统里使用了多种检测元件,包括电流霍尔传感器、电压霍尔传感器等。本系统控制方式采用了电压电流双闭环控制,需要对输出电压和输出电感电流瞬时值进行采集检测。电压检测采用LEM公司的电压传感器电压霍尔(CV-1000)检测。

输出电感电流瞬时值检测使用LEM公司的电流传感器,型号为LF-1005S。原副边比值为1000:1,也就是说如果一次线路

中额定电流峰值为5A,则电流传感器二次输出电流为5mA,本系统中采样器副边电阻取值500,对应的副边信号幅值为5V,数据采集系统电路原理如图8所示。

运放U1与电阻R1-R4构成输入信号调整电路;R3、R4为增益电阻;R13为阻抗匹配电阻;D1、D2对输入到A/D转换器的模拟信号进行钳位,防止输入电压过高损坏A/D转换器;V_{In}为输出电压经电阻分压后,输出至滤波电感产生电流,此后在电流传感器上检测到的相应电压量,V_{out}为送入主控DSP的A/D口的采样电压。

7 结语

风光能联动发电是目前比较热门的一项 技术,本逆变器控制系统硬件部分的设计、 制造、调试均已完成,设备试验数据理想, 产品基本定型。目前本文作者正在系统集成 化和电源质量上作改进,争取针对市场上现 有风光能联动发电系统出现的一些问题,探 索一些改良手段,最后希望该型技术为我国 广大的新能源技术工作者提供一点有益思路 和帮助。

参考文献

[1]Bin Wu著;卫三民,苏位峰,宇文博译.大功率变频器及交流传动[M].机械工业出版社 [2]苏绍禹.风力发电机设计与运行维护,中国 电力出版社

[3]陈国呈.新型电力电子变换技术.中国电力出版社

[4]胡学林.可编程控制器教程.电子工业出版社 [5]陈渝光,苏玉刚.电力电子技术.重庆大学出 版社

[6]李爱文.现代逆变技术及其应用.科学出版社

图8 数据采集系统电路原理图

(C)1994-2021 China Aca國內控制系统电路原理图onic Publishing House. All rights

◀◀ 上接第150页

两个压电晶片。当它的两级外加脉冲信号频率等于压电晶片的固有振荡频率时,压电晶片将会发生共振,并带动共振板振动,便产生超声波。在超声波探测的电路中,发射端输出一系列脉冲方波,其宽度为发射超声波与接收超声波的时间间隔,输出脉冲个数与被测距离成正比。被测物距越远,脉冲宽度越大。

超声波测距的工作原理是把40KHz脉冲串输入到超声波发射器两端后,脉冲信号经超声波内部振子振荡产生了机械波,再通过空气介质传播到被测面,接收器接收到由被测面反射到超声波的信号,在超声波接收器的两端,超声波往返时间是超声波经气体介质的传播到接收器的时间。声波传输的距离是超声波往返时间与气体介质中的声速相乘的结果,声波传输距离的一半即所测的距率

3.4.2 超声波测距的计算

根据超声波在空气中传播的性质,并考虑空气温度对超声波传播速度的影响,得出超声波测距的计算公式。

1) 超声波速度计算公式:

C=C0+0.607*T (1)

式中,C0:零摄氏度下,超声波在空气中的传播速度为332m/s;T:空气的实际摄氏温度。

2) 距离计算公式:

 $L=(T^*C)/2 \tag{2}$

式中, T:由微处理器计数器计算而得。

4 结语

随着现代科技的发展,盲人的生活水平也应有相应的提高。智能行走辅助仪使用了现代化的技术具有方便携带、设计美观、功能多等优点,为盲人带来了生活中的便利与安全,也让他们享受到了专属于他们的光明。

参考文献

[1]沙爱军.基于单片机的超声波测距系统的研究与设计.电子科技,2009

[2]曾祥进,王敏,黄心汉.自动增益电路在超声波测距系统中的应用研究[J].测控技术,2005,24(7):69-71 [3]张兰.基于ARM 的超声波导盲系统[D].山东

[3]张兰.基于ARM 的超声波导盲系统[D].山东师范大学,2010

[4]韩雪峰.导盲机器人[D].哈尔滨工程大学,

作者简介

黄春燕.女,上海电机学院通信工程专业;

王冬梅.女,工学博士,上海电机学院机械学院副教授;

高育新.男,上海电机学院材料成型及控制工 程专业;

陈露 女,上海电机学院电子信息工程专业; 昝望,男也上海电机学院院材料成型及控制工程专业。