INDIAN INSTITUTE OF TECHNOLOGY, GUWAHATI

DEPARTMENT OF MECHANICAL ENGINEERING OPTIMIZATION METHODS IN ENGINEERING – ME 609 PROJECT PHASE – 3

CONSTRAINTS OPTIMIZATION WITH PENALTY METHOD

SUBJECT INSTRUCTOR: PROF. DEEPAK SHARMA

SUBMITTED BY:

NAME: AVINASH YADAV

ROLL NO: 214103109

SPECIALIZATION: COMPUTATIONAL MECHANICS

- > The penalty method is one of the constrained optimization method. In this method if the constraint violated then objective functions get penalized.
- Now the constraint transformed into the unconstraint problem by adding the penalty term of each constraint violation.
- It works in the series of sequence and each time penalty added with new point obtained and form a sequence of series.
- Penalty method are two types:

Interior & exterior penalty method

- This method works for the feasible points and penalize points that are close to constraint boundary.
- > This methods penalize the infeasible points but not the feasible solutions.

- > This method uses previous points to create new points.
- First of all we set a n linearly independent search direction and perform a series of unidirectional search along the each of search direction from previous best point.
- This procedure help in the finding of minimum by one pass in the n universal directions.

Parallel subspace property \implies

- ➤ It is method to reach the optimum solution by using the property of conjugate direction.
- ➤ It is method which gives exact solution of quadratic problem by traversing all the direction once.

Bounding phase method ⇒

Bounding phase method is a single variable optimization direct search bracketing method.

- This method begins with the initial guess.
- > Then finds a search direction based on the two function evaluations at the initial guess.
- After that a exponential search strategy is used to bracket the minimum point.
- Large value of delta respond to fast bracketing but the accuracy is poor.
- Small value of delta respond to better accuracy but it requires more number of iterations.

Newton Raphson method ⇒

- Convergence plot depends on the initial points and nature of objective function.
- At the every iterations the first and second derivatives of the function values are calculated .
- If the initial guess is near to the minima then it converges and give exact value.

QUESTION NO. 1

$$\min f(x) = (x_1 - 10)^3 + (x_2 - 20)^3$$

$$g_1(x) = (x_1 - 5)^2 + (x_2 - 5)^2 - 100 \ge 0$$

$$g_2(x) = (x_1 - 6)^2 + (x_2 - 5)^2 - 82.81 \le 0$$

$$13 \le x_1 \le 20, \quad 0 \le x_2 \le 4$$

At initial guess X1 = 18, X2 = 4;

X1*	X2*	F(X*)
5.708198	-18.582888	-35101.670536
28.168565	-18.582569	879349.448069
29.445654	-18.582533	10415710.220063
29.568885	-18.582530	105796712.707921
29.581165	-18.582529	1059608324.811890
29.582393	-18.582529	10597724626.985151
14.089197	0.830944	-6968.586754
14.094418	0.841755	-6962.492578
14.094942	0.842840	-6961.881760
14.094994	0.842949	-6961.820664
14.094994	0.842949	-6961.759581

At initial guess X1 = 13, X2 = 0;

X1*	X2*	F(X*)	
5.708200	-18.582889	-35101.670536	
28.168566	-18.582570	879349.650930	
29.445655	-18.582534	10415712.423899	
29.568886	-18.582531	105796734.922819	
29.581166	-18.582530	1059608547.142989	
29.582394	-18.582530	10597726850.559156	
14.089197	0.830944	-6968.586754	
14.094418	0.841755	-6962.492578	
14.094942	0.842840	-6961.881760	
14.133667	0.919113	-6873.298637	
14.094999	0.842960	-6961.814554	
14.094999	0.842960	-6961.808447	

Values at different initials points:

N	X1	X2	X1*	X2*	F(X*)	
1	18	4	14.094994	0.842949	-6961.759581	
2	14	1	14.094994	0.842949	-6961.759580	
3	15	3	14.094994	0.842949	-6961.759584	
4	16	1	14.107546	0.869491	-6932.012634	
5	17	2	14.094994	0.842949	-6961.759566	
6	19	4	14.094999	0.842960	-6961.808447	
7	20	1	14.094994	0.842949	-6961.759583	
8	20	4	14.094994	0.842949	-6961.759546	
9	18	1	14.094994	0.842949	-6961.759698	
10	16	3	14.094994	0.842949	-6961.759568	

	Function values	
Best	-6961.808447	
Worst	-6932.012634	
Mean	- 6958.78978	
Median	-6961.7595	
Standard deviation	8.9257268	

QUESTION NO. 2

$$\max f(x) = \frac{\sin^3(2\pi x_1)\sin(2\pi x_2)}{x_1^3(x_1 + x_2)}$$

$$g_1(x) = x_1^2 - x_2 - 1 \le 0$$

$$g_2(x) = 1 - x_1 + (x_2 - 4)^2 \le 0$$

$$0 \le x_1 \le 10, \ \ 0 \le x_2 \le 10$$

At initial guess X1= 6, X2=2;

X1*	X2*	F(X*)	
-0.005884	4.243985	58.333162	
-0.005092	4.243991	57.312358	
-0.000820	4.243981	47.172704	
1.227972	4.245377	0.095825	
1.227972	4.245377	0.095825	

Optimum function value V/S No. of iterations

At initial guess X1= 4, X2=9;

X1*	X2*	F(X*)
-0.714352	3.747087	0.522052
-0.006780	3.243763	74.009320
0.017003	3.243832	51.405839
1.227972	4.245377	0.095825
1.227972	4.245377	0.095825

Values at different initials points:

N	X1	X2	X1*	X2*	F(X*)	
1	2	8	1 227072	4 245277	0.095825	
1	2	٥	1.227972	4.245377	0.0000	
2	3	10	1.227972	4.245377	0.095825	
3	4	7	1.734144	4.746096	0.029144	
4	5	9	1.227972	4.245377	0.095825	
5	6	6	1.734144	4.746096	0.029144	
6	7	1	1.324399	3.430439	0.027264	
7	8	1	1.680372	3.795697	0.019621	
8	8	10	1.227972	4.245377	0.095825	
9	9	4	1.227972	4.245377	0.095825	
10	10	6	1.227972	4.245377	0.095825	

	Function values
Best	0.095825
Worst	0.019621
Mean	0.0680123
Median	0.095825
Standard deviation	0.0341539

QUESTION NO. 3

$$\begin{aligned} \min f(x) &= x_1 + x_2 + x_3 \\ g_1(x) &= -1 + 0.0025(x_4 + x_6) \leq 0 \\ g_2(x) &= -1 + 0.0025(-x_4 + x_5 + x_7) \leq 0 \end{aligned}$$

$$\begin{split} g_3(x) &= -1 + 0.01(-x_6 + x_8) \leq 0 \\ g_4(x) &= 100x_1 - x_1x_6 + 833.33252x_4 - 83333.333 \leq 0 \\ g_5(x) &= x_2x_4 - x_2x_7 - 1250x_4 + 1250x_5 \leq 0 \\ g_6(x) &= x_3x_5 - x_3x_8 - 2500x_5 + 1250000 \leq 0 \\ 100 &\leq x_1 \leq 1000, \\ 10 &\leq x_i \leq 1000, \text{ i=4,5,6,7,8} \\ 1000 &\leq x_i \leq 10000 \text{ ,i=2,3} \end{split}$$

Due to the more no. of constraints it might be the penalty increases too much and the function value coming very large.

- Then minima of the function depends upon the initial guess.
- At some initial guesses it converges into local minima and at some initial guesses it converges into global minima due to movement in various direction.
- When function converges to minima then penalty become zero.
- First of all it minimize the function after that when R increases then it minimize Sequence of constraint which added with function by adding penalty.
- In the some function at different initial guess first the function value increases after that it converges to minima after some iteration.
- In some cases the function works very well and minimize after certain iteration.

Conclusion ⇒

- ➤ The penalty method is the best method used in constrained optimization which includes penalty for constraint violation .
- Any constraint convex, concave, linear and non-linear can be handled.

- > At every iteration the penalized function get distorted as compare to objective function.
- > Due to penalized function convergence result in slower convergence.
- > It requires more no. of function evaluations.
- > Local minima can exist due to distorted penalized function.

Thank You