Reykjavík University			1
		5.4. Trial Division Primality Testing	17
		5.5. Miller-Rabin Primality Test	17
		5.6. Sieve of Eratosthenes	18
m viRUs		5.7. Modular Multiplicative Inverse	18
Team Reference Document		5.8. Modular Exponentiation	18
Team Reference Document		5.9. Chinese Remainder Theorem	18
		5.10. Linear Congruence Solver	18
00/11/001/		5.11. Numeric Integration	18
26/11/2014		5.12. Fast Fourier Transform	18
		5.13. Formulas	18
Contents		5.14. Numbers and Sequences	19
		6. Geometry	19
1. Code Templates	2	6.1. Primitives	19
1.1. Basic Configuration	2	6.2. Polygon	20
1.2. C++ Header	2	6.3. Convex Hull	20
1.3. Java Template	2	6.4. Line Segment Intersection	20
2. Data Structures	2	6.5. Great-Circle Distance	21
2.1. Union-Find	2	6.6. Triangle Circumcenter	21
2.2. Segment Tree	2	6.7. Closest Pair of Points	21
2.3. Fenwick Tree	3	6.8. 3D Primitives	21
2.4. Matrix	3	6.9. Polygon Centroid	22
2.5. AVL Tree	4	6.10. Formulas	22
2.6. Heap	5	7. Other Algorithms	22
2.7. Skiplist	6	7.1. Binary Search	22
2.8. Dancing Links	6	7.2. Ternary Search	22
2.9. Misof Tree	7	7.3. 2SAT	22
2.10. k-d Tree	7	7.4. Stable Marriage	23
2.11. Sqrt Decomposition	8	7.5. Algorithm X	23
3. Graphs	8	7.6. nth Permutation	24
3.1. Single-Source Shortest Paths	8	7.7. Cycle-Finding	24
3.2. All-Pairs Shortest Paths	8	7.8. Dates	24
3.3. Strongly Connected Components	9	8. Useful Information	24
3.4. Cut Points and Bridges	9	8.1. Tips & Tricks	24
3.5. Minimum Spanning Tree	9	8.2. Fast Input Reading	24
3.6. Topological Sort	9	8.3. Worst Time Complexity	25
3.7. Euler Path	10	8.4. Bit Hacks	25
3.8. Bipartite Matching	10		
3.9. Maximum Flow	11		
3.10. Minimum Cost Maximum Flow	12		
3.11. All Pairs Maximum Flow	12		
3.12. Heavy-Light Decomposition	13		
3.13. Tarjan's Off-line Lowest Common Ancestors Algorithm	13		
4. Strings	13		
4.1. Trie	13		
4.2. Suffix Array	14		
4.3. Aho-Corasick Algorithm	14		
4.4. The Z algorithm	15		
4.5. Palindromic Tree	15		
5. Mathematics	15		
5.1. Big Integer	15		
5.2. Binomial Coefficients	17		
5.3. Euclidean algorithm	17		

```
Reykjavík University
          1. Code Templates
                           ----public static void main(String[] args) throws Exception {-------// 02
                           -----Scanner in = new Scanner(System.in):-----// ef
1.1. Basic Configuration. Vim and (Caps Lock = Escape) configuration.
                           ------PrintWriter out = new PrintWriter(System.out, false);------// 62
o.ygtxmal ekrpat # setxkbmap dvorak for dvorak on gwerty
                           -----// code-----// e6
setxkbmap -option caps:escape
                           -----out.flush():-----// 56
set -o vi
                           xset r rate 150 100
                           }-----// 00
cat > ~/.vimrc
set nocp et sw=4 ts=4 sts=4 si cindent hi=1000 nu ru noeb showcmd showmode
                                      2. Data Structures
syn on | colorscheme slate
                           2.1. Union-Find. An implementation of the Union-Find disjoint sets data structure.
1.2. C++ Header. A C++ header.
                           struct union find {-----// 42
#include <cassert>-----------------// 65 ----int find(int x) { return p[x] < 0 ? x : p[x] = find(p[x]); }-------// ba
#include <cmath>-----// 7d ----bool unite(int x, int y) {-------// 6c
#include <cstdio>------// 2e ------int xp = find(x), yp = find(y);------// 64
#include <cstdlib>------// 11 ------if (xp == yp) return false;------// 0b
#include <cstring>------// d0 -------if (p[xp] < p[yp]) p[xp] += p[yp], p[yp] = xp;------// 3a
#include <ctime>------// 28 -------| p[xp] += p[xp], p[xp] = yp;------// 3e
#include <iostream>------// ec ----int size(int x) { return -p[find(x)]; } };------// 28
#include <map>-----// 02
#include <stack>-----// cf int f(int a, int b) { return min(a, b); }-------// 4f
#include <vector>-----// 4f int f(int a, int b) { return a + b; }-----// dd
using namespace std;------// 7b #endif-----// 7b
-----// 7e struct segment_tree {------------------------// ab
const double pi = acos(-1);------// 49 ----int mk(const vi &arr, int l, int r, int i) {------// 12
typedef unsigned long long ull;------// 81 -----int m = (l + r) / 2;-----// de
typedef vector<vi>vvi;------// 31 ------propagate(l, r, i);-------// 12
typedef vector<vii>vvii;-------// 4b ------if (r < a || b < l) return ID;------// c7
template <class T> T mod(T a, T b) { return (a % b + b) % b; }------// 70 -----if (a <= l && r <= b) return data[i];----------// ce
template <class T> int size(const T &x) { return x.size(); }-----// 68 -----int m = (l + r) / 2;------// 7a
                           -----return f(q(a, b, l, m, 2*i+1), q(a, b, m+1, r, 2*i+2)); }------// 5c
1.3. Java Template. A Java template.
                           ----void update(int i, int v) { u(i, v, 0, n-1, 0); }-----// 90
-----// a3 ------if (l == i && r == i) return data[j] = v;--------// 4a
```

```
2.4. Matrix. A Matrix class.
```

```
Reykjavík University
----return data[j] = f(u(i, v, l, m, 2*j+1), u(i, v, m+1, r, 2*j+2)); \}----// 34
----void range_update(int a, int b, int v) { ru(a, b, v, 0, n-1, 0); }------// 71
----int ru(int a, int b, int v, int l, int r, int i) {-------// e0
-----propagate(l, r, i);-----// 19
-----if (l > r) return ID;------// cc
-----if (r < a || b < l) return data[i];-----// d9
-----if (l == r) return data[i] += v;-----// 5f
-----if (a <= l \& r <= b) return (lazy[i] = v) * (r - l + 1) + data[i]:----// 76
-----int m = (l + r) / 2;-----// e7
-----return data[i] = f(ru(a, b, v, l, m, 2*i+1),-----// θe
----}------// 47
----void propagate(int l, int r, int i) {-----// b5
-----if (l > r || lazy[i] == INF) return;-----// 83
-----data[i] += lazy[i] * (r - l + 1);-----// 99
-----if (l < r) {------// dd
------else lazy[2*i+1] += lazy[i];-----// 72
------if (lazy[2*i+2] == INF) lazy[2*i+2] = lazy[i];-----// dd
------else lazy[2*i+2] += lazy[i];-----// a4
-----lazv[i] = INF:-----// c4
}:-----// 17
2.3. Fenwick Tree. A Fenwick Tree is a data structure that represents an array of n numbers. It
supports adjusting the i-th element in O(\log n) time, and computing the sum of numbers in the range
i...j in O(\log n) time. It only needs O(n) space.
struct fenwick_tree {------// 98
----int n; vi data;------// d3 ------return res; }-----
----fenwick_tree(int _n) : n(_n), data(vi(n)) { }-------// db ----matrix<T> transpose() {--------// dd
----void update(int at, int by) {------// 76 -----matrix<T> res(cols, rows);-----// b5
-------while (at < n) data[at] += by, at |= at + 1; }-------// fb -------for (int i = 0; i < rows; i++)------// 9c
------int res = 0;-------// c3 -----return res; }------// c3
-----return res; }------// e4 -----matrix<T> res(rows, cols), sq(*this);------// 4d
----int rsq(int a, int b) { return query(b) - query(a - 1); }-------// be -------for (int i = 0; i < rows; i++) res(i, i) = T(1);------// bf
```

```
template <> bool eq<double>(double a, double b) { return abs(a - b) < EPS; }---// a7
                                                template <class T>-----// 53
                                                class matrix {------// 85
                                                public:----// be
                                                ----int rows, cols;------// d3
                                                ----matrix(int r, int c) : rows(r), cols(c), cnt(r * c) {------// 34
                                                -----data.assign(cnt, T(0)); }-----// d0
                                                ----matrix(const matrix& other) : rows(other.rows), cols(other.cols),-----// fe
                                                -----cnt(other.cnt), data(other.data) { }-----// ed
                                                ----T& operator()(int i, int j) { return at(i, j); }------// e0
                                                ----void operator +=(const matrix& other) {------// c9
                                                ------for (int i = 0; i < cnt; i++) data[i] += other.data[i]; }------// e5
                                                ----void operator -=(const matrix& other) {------// 68
                                                ------for (int i = 0: i < cnt: i++) data[i] -= other.data[i]: }------// 88
                                                ----void operator *=(T other) {------// ba
                                                ------for (int i = 0; i < cnt; i++) data[i] *= other; }------// 40
                                                ----matrix<T> operator +(const matrix& other) {------// ee
                                                ------matrix<T> res(*this); res += other; return res; }------// 5d
                                                ----matrix<T> operator -(const matrix& other) {------// 8f
                                                ------matrix<T> res(*this); res -= other; return res; }------// cf
                                               ----matrix<T> operator *(T other) {------// be
                                                ------matrix<T> res(*this); res *= other; return res; }------// 37
                                                ----matrix<T> operator *(const matrix& other) {------// 95
                                                ------matrix<T> res(rows, other.cols);------// 57
                                                -----for (int i = 0; i < rows; i++) for (int j = 0; j < other.cols; j++)----// 7a
                                                -----for (int k = 0; k < cols; k++)-----// fc
                                               -----res(i, j) += at(i, k) * other.data[k * other.cols + j];-----// eb
};------// 57 -----while (p) {------// cb
struct fenwick_tree_sq {------// d4 -----if (p & 1) res = res * sq;-----// c1
----<mark>int</mark> n; fenwick_tree x1, x0;------// 18 -----p >>= 1;------// 68
----fenwick_tree_sq(int _n) : n(_n), x1(fenwick_tree(n)),------// 2e ------if (p) sq = sq * sq;------// 9c
-----x0(fenwick_tree(n)) { }------// 7c -----} return res; }-------
----// insert f(y) = my + c if x <= y------// 17 ----matrix<T> rref(T &det) {------// 89
----void update(int x, int m, int c) { x1.update(x, m); x0.update(x, c); }-----// 45 ------matrix<T> mat(*this); det = T(1);--------// 21
};-----// 13 ------// e5
void range_update(fenwick_tree_sq &s, int a, int b, int k) {-------// 89 ------while (k < rows && eq<T>(mat(k, c), T(0))) k++;-----// f9
----s.update(a, k, k * (1 - a)); s.update(b+1, -k, k * b); }------// 7f ------if (k >= rows) continue;-------// 3f
----return s.query(b) - s.query(a-1); }-----// f3 ------det *= T(-1);--------------------// 7a
```

```
template <class K> bool eq(K a, K b) { return a == b; }-----// 2a
```

```
Reykjavík University
------for (int i = 0; i < cols; i++)-------// ab ----void erase(node *n, bool free = true) {-------// 58
------if (!eq<T>(mat(r, c), T(1)))-------// 2c -----else if (n->l && !n->r) parent_leq(n) = n->l, n->l->p = n->p;-----// 6b
------for (int i = cols-1; i >= c; i--) mat(r, i) /= mat(r, c);-----// 5d ------else if (n->l && n->r) {---------------------------// 6c
------for (int i = 0; i < rows; i++) {----------// 3d ------node *s = successor(n);--------// e5
------T m = mat(i, c);--------// e8 ------erase(s, false);---------// 0a
------if (i != r && !eq<T>(m, T(0)))-------// 33 ------s->p = n->p, s->l = n->l, s->r = n->r;------// 5a
------} return mat; }-------// 8f ------parent_leg(n) = s, fix(s);-------// 82
private:-----// e0 -----return;-------// e5
----vector<T> data;------// 41 ------fix(n->p), n->p = n->l = n->r = NULL;-------// 43
-----if (!n) return NULL;-----// 37
2.5. AVL Tree. A fast, easily augmentable, balanced binary search tree.
                           -----if (n->r) return nth(0, n->r);------// 23
#define AVL_MULTISET 0------// b5 -----node *p = n->p;------// a7
template <class T>-----// 22 -----return p; }-----// c7
class avl_tree {------// ff ----node* predecessor(node *n) const {------// b4
public:-----// f6 ------if (!n) return NULL;-------// dd
----struct node {-------// 45 -----if (n->l) return nth(n->l->size-1, n->l);------// 10
------int size, height;------// 33 -------while (p && p->l == n) n = p, p = p->p;------// 6d
------l(NULL), r(NULL), size(1), height(0) { } };-------// @d ----inline int size() const { return sz(root); }------// ef
----node *root;------// 91 ----node* nth(int n, node *cur = NULL) const {------// e4
-----node *cur = root;------// b4 ------while (cur) {------// 29
------while (cur) {-------// 8b ------if (n < sz(cur->l)) cur = cur->l;------// 75
-----if (cur->item < item) cur = cur->r;------// 71 -----else if (n > sz(cur->l)) n -= sz(cur->l) + 1, cur = cur->r;-----// cd
------else if (item < cur->item) cur = cur->l;------// cd -----else break;-----
------else break; }------// 4f ------} return cur; }------// ed
------return cur; }-------// 84 ----int count_less(node *cur) {-------// ec
----node* insert(const T &item) {-------// 4e -----int sum = sz(cur->l);------// bf
-----prev = *cur;-----// f0 -----cur = cur->p;-----// eb
#if AVL_MULTISET-----// 0a private:----// d5
#else------// ff ----inline int height(node *n) const { return n ? n->height : -1; }------// a6
------else return *cur;------// 54 -----return n && height(n->r); }------// a8
-----node *n = new node(item, prev);-------// eb ----inline bool too_heavy(node *n) const {------// @b
-----*cur = n, fix(n); return n; }-----// 29
                           -----return n && abs(height(n->l) - height(n->r)) > 1; }-----// f8
----void erase(const T &item) { erase(find(item)); }-----// 67
```

```
Reykjavík University
------if (n) { delete_tree(n->l), delete_tree(n->r); delete n; } }------// ef #define SWP(x,y) tmp = x, x = y, y = tmp------// fb
------if (n->p->l == n) return n->p->l;-------// 83 ----bool operator ()(const int &a, const int &b) { return a < b; } };------// e9
------if (n->p->r == n) return n->p->r;-------// cc template <class Compare = default_int_cmp>------// 30
------if (!n) return;---------// @e ----int len, count, *q, *loc, tmp;--------// @a
------n->height = 1 + max(height(n->l), height(n->r)); }-------// 41 ----inline bool cmp(int i, int j) { return _cmp(q[i], q[j]); }------// a0
------while (i > 0) {------// 1a
-----parent_leg(n) = l; \[ \]-----// fc
                               -----int p = (i - 1) / 2;-----// 77
-----augment(n), augment(l)-------// 81 ------while (true) {---------------------// 3c
----void fix(node *n) {-------// 0d -------int m = r >= count || cmp(l, r) ? l : r;------// cc
------while (n) { augment(n);-------// 69 ------if (!cmp(m, i)) break;------// 42
------if (too_heavy(n)) {-------// 4c -----swp(m, i), i = m; } }-----// 1d
------if (left_heavy(n) && right_heavy(n->l)) left_rotate(n->l);-----// a9 public;------
------else if (right_heavy(n) && left_heavy(n->r))-------// b9 ----heap(int init_len = 128) : count(0), len(init_len), _cmp(Compare()) {------// b9
-----right_rotate(n->r);------// 08 ------q = new int[len], loc = new int[len];------// f8
------if (left_heavy(n)) right_rotate(n);------// 93 ------memset(loc, 255, len << 2); }-----// f7
------else left_rotate(n);------// d5 ----~heap() { delete[] q; delete[] loc; }------// 09
------n = n->p; }-------// 28 ----void push(int n, bool fix = true) {-------// b7
#ifdef RFSI7F-----// a9
Also a very simple wrapper over the AVL tree that implements a map interface.
                                -----int newlen = 2 * len;-----// 22
#include "avl_tree.cpp"-----// 01
                                -----while (n >= newlen) newlen *= 2;------// 2f
-----// ba
                                -----int *newq = new int[newlen], *newloc = new int[newlen];-----// e3
template <class K, class V>-----// da
                                -----for (int i = 0; i < len; i++) newq[i] = q[i], newloc[i] = loc[i]; --//94
class avl_map {------// 3f
                                -----memset(newloc + len, 255, (newlen - len) << 2);-----// 18
public:----// 5d
                                -----delete[] q, delete[] loc;-----// 74
----struct node {------// 2f
                                -----loc = newloc, q = newq, len = newlen;-----// 61
------K key; V value;------// 32
                               #else-----// 54
-----node(K k, V v) : key(k), value(v) { }-----// 29
                                -----assert(false):-----// 84
-----bool operator < (const node &other) const { return key < other.key; } };// 92
                                #endif------// 64
----avl_tree<node> tree:-----// b1
                                ----V& operator [](K key) {------// 7c
                                -----assert(loc[n] == -1);-----// 8f
-----typename avl_tree<node>::node *n = tree.find(node(key, V(0)));-----// ba
                               -----loc[n] = count, q[count++] = n;-----// 6b
------if (!n) n = tree.insert(node(key, V(0)));------// cb
                                ------if (fix) swim(count-1); }------// bf
-----return n->item.value;------// ec
                               ----}------// 2e
                                -----assert(count > 0):-----// eb
}:-----// af
                               ------loc[q[0]] = -1, q[0] = q[--count], loc[q[0]] = 0;------// 50
                                -----if (fix) sink(0);-----// 80
2.6. Heap. An implementation of a binary heap.
```

```
Reykjavík University
----}------FIND_UPDATE(x->next[i]->item, target);-------// 3a
----void heapify() { for (int i = count - 1; i > 0; i--)----------// 39 ------int lvl = bernoulli(MAX_LEVEL);----------------------// 7a
------if (cmp(i, (i - 1) / 2)) swp(i, (i - 1) / 2); }--------// 0b ------if(lvl > current_level) current_level = lvl;-----------------------// 8a
----void update_key(int n) {--------------------------// 26 -----x = new node(lvl, target);-------------------// 36
----void clear() { count = 0, memset(loc, 255, len << 2); } };-------// 58 ------update[i] = x;-----------// 20
                                      -----update[i]->lens[i] = pos[0] + 1 - pos[i];------// 42
2.7. Skiplist. An implementation of a skiplist.
                                      ------for(int i = lvl + 1; i <= MAX_LEVEL; i++) update[i]->lens[i]++;------// 07
#define BP 0.20-----// aa
                                      -----size++;-----// 19
#define MAX_LEVEL 10------// 56
                                      -----return x; }-----// c9
unsigned int bernoulli(unsigned int MAX) {------// 7b
                                      ----void erase(T target) {------// 4d
----unsigned int cnt = 0;-----// 28
----while(((float) rand() / RAND_MAX) < BP \&\& cnt < MAX) cnt++;-----// d1
                                      ------FIND_UPDATE(x->next[i]->item, target);-------// 6b
                                      -----if(x && x->item == target) {-----// 76
----return cnt; }-----// a1
template<class T> struct skiplist {------// 34
                                      ------for(int i = 0; i <= current_level; i++) {-------// 97
                                      -----if(update[i]->next[i] == x) {------// b1
----struct node {------// 53
                                      -----update[i]->next[i] = x->next[i];------// 59
                                      -----update[i]->lens[i] = update[i]->lens[i] + x->lens[i] - 1;--// b1
-----int *lens:-----// 07
                                      -----} else update[i]->lens[i] = update[i]->lens[i] - 1;-----// 88
                                      ------#define CA(v, t) v((t*)calloc(level+1, sizeof(t)))-------// 25
                                      -----delete x; _size--;------// 81
-----node(int level, T i) : item(i), CA(lens, int), CA(next, node*) {}-----// 7c
                                      ------while(current_level > 0 && head->next[current_level] == NULL)-----// 7f
-----/node() { free(lens); free(next); }; };-----// aa
                                      -----current_level--; } } };-----// 59
----int current_level, _size;------// 61
----node *head;------// b7
                                      2.8. Dancing Links. An implementation of Donald Knuth's Dancing Links data structure. A linked
----skiplist() : current_level(0), _size(0), head(new node(MAX_LEVEL, 0)) { };-// 7a
                                      list supporting deletion and restoration of elements.
-----skiplist() { clear(); delete head; head = NULL; }------// aa
                                      template <class T>-----// 82
----#define FIND_UPDATE(cmp, target) \|-----// c3
                                      struct dancing_links {-----// 9e
------int pos[MAX_LEVEL + 2]; \[\[\]\------// 18
                                      ----struct node {------// 62
-----memset(pos, 0, sizeof(pos)); \-----// f2
                                      -----T item:-----// dd
-----node *update[MAX_LEVEL + 1]; \| ------// 01
                                      -----node(const T &_item, node *_l = NULL, node *_r = NULL)------// 6d
-----memset(update, 0, MAX_LEVEL + 1); \[\bar{\}\]------// 38
                                      -----: item(_item), l(_l), r(_r) {------// 6d
                                      -----if (l) l->r = this;-----// 97
-----for(int i = MAX\_LEVEL; i >= 0; i--) { \sqrt{\phantom{a}}
                                      -----if (r) r->l = this;-----// 81
-----pos[i] = pos[i + 1]; \\------// 68
                                      ------}-------// 2d
----};------// d3
------update[i] = x; N-----------// dd ----dancing_links() { front = back = NULL; }------// 72
----void clear() { while(head->next && head->next[0])-------// 91 -----if (!front) front = back;-------------// d2
------erase(head->next[0]->item); }-------// e6 ------return back;--------------------------// cθ
------return x && x->item == target ? x : NULL; }-------// 50 ----node *push_front(const T &item) {--------// 4a
----int count_less(T target) { FIND_UPDATE(x->next[i]->item, target);------// 80 ------if (!back) back = front;--------------------// 10
-----return pos[0]; }------// 19 -----return front;------// cf
```

```
Reykjavík University
------if (!n->l) front = n->r; else n->l->r = n->r;-------// ab -------bb(pt _from, pt _to) : from(_from), to(_to) {}------// 57
------if (!n->l) front = n; else n->l->r = n;--------// a5 ------if (p.coord[i] < from.coord[i])------// a0
}:------sum += pow(p.coord[i] - to.coord[i], 2.0);------// 8c
                                   2.9. Misof Tree. A simple tree data structure for inserting, erasing, and querying the nth largest
                                   -----return sqrt(sum); }-----// ef
element.
                                   ------bb bound(double l, int c, bool left) {------// b6
#define BITS 15------pt nf(from.coord), nt(to.coord);------// 5c
----int cnt[BITS][1<<BITS];------// aa ------else nf.coord[c] = max(nf.coord[c], l);------// 71
----misof_tree() { memset(cnt, 0, sizeof(cnt)); }------// b0 -----return bb(nf, nt); } };------// 3b
----void erase(int x) { for (int i = 0; i < BITS; cnt[i++][x]--, x >>= 1); }---// 49 ------pt p; node *\, *r;----------------------------// 46
----int nth(int n) {-------// 8a ------node(pt _p, node *_l, node *_r) : p(_p), l(_l), r(_r) { } };------// 23
------int res = 0;-------// a4 ----node *root;------// 30
------for (int i = BITS-1; i >= 0; i--)------// 99 ----// kd_tree() : root(NULL) { }------// 97
------if (cnt[i][res <<= 1] <= n) n -= cnt[i][res], res |= 1;------// f4 ----kd_tree(vector<pt> pts) { root = construct(pts, 0, size(pts) - 1, 0); }----// 19
-----return res:------// 3a ----node* construct(vector<pt> &pts, int from, int to, int c) {------// 4e
----}-----if (from > to) return NULL;------// af
}:------// 0a ------int mid = from + (to - from) / 2;-----// 7d
                                   -----nth_element(pts.begin() + from, pts.begin() + mid,-----// d8
2.10. k-d Tree. A k-dimensional tree supporting fast construction, adding points, and nearest neigh-
                                   -----pts.begin() + to + 1, cmp(c));-----// 84
bor queries.
                                   -----return new node(pts[mid], construct(pts, from, mid - 1, INC(c)),-----// f1
#define INC(c) ((c) == K - 1 ? 0 : (c) + 1) - \cdots / 77
                                   ------construct(pts, mid + 1, to, INC(c))); }-----// 50
template <int K>-----// cd ----bool contains(const pt &p) { return _con(p, root, 0); }------// 8a
class kd_tree {------// 7e ----bool _con(const pt &p, node *n, int c) {------// ff
-------double coord[K];-------// d6 ------if (cmp(c)(n->p, p)) return _con(p, n->r, INC(c));------// ae
-----pt() {}------// c1 -----return true; }------// 8e
-----pt(double c[K]) { for (int i = 0; i < K; i++) coord[i] = c[i]; }-----// 4c ----void insert(const pt &p) { _ins(p, root, 0); }------// e9
------double dist(const pt &other) const {--------// 6c ----void _ins(const pt &p, node* &n, int c) {------// 7d
-----double sum = 0.0;------// c4 -----if (!n) n = new node(p, NULL, NULL);------// 29
------for (int i = 0; i < K; i++)-------// 23 ------else if (cmp(c)(p, n->p)) _ins(p, n->l, INC(c));------// 13
-----sum += pow(coord[i] - other.coord[i], 2.0);------// 46 -----else if (cmp(c)(n->p, p)) _ins(p, n->r, INC(c)); }------// f8
------return sqrt(sum); } };------// ad ----void clear() { _clr(root); root = NULL; }-----// 15
----struct cmp {------// 8f ----void _clr(n->l), _clr(n->r), delete n; }-----// 92
-----cmp(int _c) : c(_c) {}------// a5 -----assert(root);----------// 24
------bool operator ()(const pt &a, const pt &b) {-------// 26 -----double mn = INFINITY, cs[K];------// 0d
-----cc = i == 0 ? c : i - 1;------// bc -----pt from(cs);------// af
-----return a.coord[cc] < b.coord[cc];------// b7 -----pt to(cs);------
-----return false; } };------// e2 ____}
----struct bb {------// 30
```

```
Reykjavík University
----pair<pt, bool> _nn(-------// cd ----T.erase(T.begin() + i);--------// ca
                                                }-----// 9a
-----const pt &p, node *n, bb b, double &mn, int c, bool same) {------// 1d
-----if (!n || b.dist(p) > mn) return make_pair(pt(), false);------// c5
                                                                      3. Graphs
------bool found = same || p.dist(n->p) > EPS, l1 = true, l2 = false;------// 6d
-----pt resp = n->p;------// 3d
                                                 3.1. Single-Source Shortest Paths.
------if (found) mn = min(mn, p.dist(resp));------// c9
-----node *n1 = n->l, *n2 = n->r;-----// dc
                                                3.1.1. Dijkstra's algorithm. An implementation of Dijkstra's algorithm. It runs in \Theta(|E|\log|V|) time.
-----for (int i = 0: i < 2: i++) {------// 74
                                                int *dist. *dad:-----// 46
------if (i == 1 || cmp(c)(n->p, p)) swap(n1, n2), swap(l1, l2);------// ab
                                                 struct cmp {------// a5
-----pair<pt, bool> res =-----// f0
                                                 ----bool operator()(int a, int b) {------// bb
-----nn(p, n1, b.bound(n->p.coord[c], c, l1), mn, INC(c), same);---// ad
                                                 -----return dist[a] != dist[b] ? dist[a] < dist[b] : a < b; }------// e6
-----if (res.second && (!found || p.dist(res.first) < p.dist(resp)))----// 17
                                                 }:-----// 41
-----resp = res.first, found = true;-----// 62
                                                 pair<int*, int*> dijkstra(int n, int s, vii *adj) {------// 53
------}------// b7
                                                 ----dist = new int[n];-----// 84
-----return make_pair(resp, found); } };-----// c8
                                                 ----dad = new int[n];-----// 05
                                                 ----for (int i = 0; i < n; i++) dist[i] = INF, dad[i] = -1;-------// d6
2.11. Sqrt Decomposition. Design principle that supports many operations in amortized \sqrt{n} per
                                                 ----set<<u>int</u>, cmp> pq;-----// 04
operation.
                                                 ----dist[s] = 0, pq.insert(s);-----// 1b
struct segment {-----// b2
                                                 ----while (!pq.empty()) {------// 57
----vi arr:-----// 8c
                                                 ------int cur = *pq.begin(); pq.erase(pq.begin());-----// 7d
----segment(vi _arr) : arr(_arr) { } };-----// 11
                                                 ------for (int i = 0; i < size(adj[cur]); i++) {------// 9e
vector<segment> T:-----// a1
                                                 -----int nxt = adj[cur][i].first,-----// b8
int K;-----// dc
                                                 -----ndist = dist[cur] + adj[cur][i].second;------// \theta c
void rebuild() {------// 17
                                                 -----if (ndist < dist[nxt]) pq.erase(nxt),------// e4
----int cnt = 0;-----// 14
                                                 -----dist[nxt] = ndist, dad[nxt] = cur, pq.insert(nxt);------// 0f
----for (int i = 0; i < size(T); i++)-----// 7d
                                                 -----cnt += size(T[i].arr);-----// 1e
                                                 ----}-----// e8
----K = static_cast<int>(ceil(sqrt(cnt)) + 1e-9);------// 76
                                                 ----return pair<int*, int*>(dist, dad);-----// cc
----vi arr(cnt);------// 41
                                                 }-----// af
----for (int i = 0, at = 0; i < size(T); i++)-----// 24
------for (int j = 0; j < size(T[i].arr); j++)------// 76
                                                3.1.2. Bellman-Ford algorithm. The Bellman-Ford algorithm solves the single-source shortest paths
-----arr[at++] = T[i].arr[j];-----// 89
                                                 problem in O(|V||E|) time. It is slower than Dijkstra's algorithm, but it works on graphs with
----T.clear();------// b5
                                                negative edges and has the ability to detect negative cycles, neither of which Dijkstra's algorithm can
----for (int i = 0; i < cnt; i += K)-----// 9f
-----T.push_back(segment(vi(arr.begin()+i, arr.begin()+min(i+K, cnt))));----// 77
                                                 int* bellman_ford(int n. int s. vii* adi. bool& has_negative_cycle) {------// cf
}-----// e5
                                                 ----has_negative_cycle = false;-----// 47
int split(int at) {------// 64
                                                 ----int* dist = new int[n];-----// 7f
----int i = 0;-----// f7
                                                 ----for (int i = 0; i < n; i++) dist[i] = i == s ? 0 : INF;------// 10
----while (i < size(T) && at >= size(T[i].arr))------// a7
                                                 ----for (int i = 0; i < n - 1; i++)-----// a1
-----at -= size(T[i].arr), i++;-----// 38
                                                 ------for (int j = 0; j < n; j++)------// c4
----if (i >= size(T)) return size(T);------// 89
                                                 -----if (dist[j] != INF)-----// 4e
----if (at == 0) return i;------// 05
                                                 ------for (int k = 0; k < size(adj[j]); k++)------// 3f
----T.insert(T.begin() + i + 1, segment(vi(T[i].arr.begin() + at, T[i].arr.end())));
                                                 -----dist[adj[j][k].first] = min(dist[adj[j][k].first],-----// 61
----T[i] = segment(vi(T[i].arr.begin(), T[i].arr.begin() + at));------// 60
                                                 -----dist[j] + adj[j][k].second);------// 47
----return i + 1:-----// c0
                                                 ----for (int j = 0; j < n; j++)-----// 13
}-----// 00
                                                 ------for (int k = 0; k < size(adj[j]); k++)------// a0
void insert(int at, int v) {-----// 87
                                                 ------if (dist[i] + adj[i][k].second < dist[adj[i][k].first])------// ef
----vi arr; arr.push_back(v);------// 30
                                                 -----has_negative_cvcle = true:-----// 2a
----T.insert(T.begin() + split(at), segment(arr));------// 2a
                                                 ----return dist:-----// 2e
}-----// bd
                                                 }-----// c2
void erase(int at) {------// f4
----int i = split(at); split(at + 1);------// 48
                                                3.2. All-Pairs Shortest Paths.
```

```
Reykjavík University
                                                 #define MAXN 5000----// f7
3.2.1. Floyd-Warshall algorithm. The Floyd-Warshall algorithm solves the all-pairs shortest paths
                                                 int low[MAXN], num[MAXN], curnum;-----// d7
problem in O(|V|^3) time.
                                                 void dfs(const vvi &adj, vi &cp, vii &bri, int u, int p) {------// 22
void floyd_warshall(int** arr, int n) {------// 21
                                                 ----low[u] = num[u] = curnum++;-----// a3
----for (int k = 0; k < n; k++)------// 49
                                                 ----int cnt = 0; bool found = false;-----// 97
------for (int i = 0; i < n; i++)------// 21
                                                 ----for (int i = 0; i < size(adj[u]); i++) {-------// f3
-----for (int j = 0; j < n; j++)-----// 77
                                                 -----int v = adj[u][i];-----// 26
-----if (arr[i][k] != INF && arr[k][j] != INF)-----// b1
                                                 -----if (num[v] == -1) {------// f9
-----arr[i][j] = min(arr[i][j], arr[i][k] + arr[k][j]);------// e1
                                                 -----dfs(adj, cp, bri, v, u);-----// 7b
}-----// 86
                                                 -----low[u] = min(low[u], low[v]);------// ea
                                                 -----cnt++:-----// 8f
3.3. Strongly Connected Components.
                                                 -----found = found || low[v] >= num[u];-----// fd
                                                 ------if (low[v] > num[u]) bri.push_back(ii(u, v));-------// 52
3.3.1. Kosaraju's algorithm. Kosarajus's algorithm finds strongly connected components of a directed
                                                 -----} else if (p != v) low[u] = min(low[u], num[v]); }------// c4
graph in O(|V| + |E|) time.
                                                 ----if (found && (p !=-1 \mid \mid cnt > 1)) cp.push_back(u); }-------// dc
#include "../data-structures/union_find.cpp"---------------------// 5e
                                                 pair<vi,vii> cut_points_and_bridges(const vvi &adj) {------// 35
-----// 11
                                                 ----int n = size(adj);-----// 34
vector<br/>bool> visited;------// 66
                                                 ----vi cp; vii bri;------// 63
                                                 ----memset(num, -1, n << 2);------// 4e
-----// a5
                                                 ----curnum = 0:-----// 43
void scc_dfs(const vvi &adj, int u) {-----// a1
                                                 ----for (int i = 0: i < n: i++) if (num[i] == -1) dfs(adj. cp. bri. i. -1):----// e5
----int v; visited[u] = true;-----// e3
                                                 ----return make_pair(cp, bri); }------// 70
----for (int i = 0; i < size(adj[u]); i++)-----// c5
                                                 3.5. Minimum Spanning Tree.
-----if (!visited[v = adj[u][i]]) scc_dfs(adj, v);------// 6e
----order.push_back(u):-----// 19
                                                 3.5.1. Kruskal's algorithm.
}-----// dc
                                                 #include "../data-structures/union_find.cpp"-----// 5e
                                                      -----// 11
pair<union_find, vi> scc(const vvi &adj) {------// 3e
                                                 // n is the number of vertices-----// 18
----int n = size(adj), u, v;-----// bd
                                                 // edges is a list of edges of the form (weight, (a, b))-----// c6
----order.clear():-----// 22
                                                 // the edges in the minimum spanning tree are returned on the same form-----// 4d
----union_find uf(n);------// 6d
                                                 vector<pair<int, ii> > mst(int n, vector<pair<int, ii> > edges) {------// a7
----vi dag:-----// ae
                                                 ----union_find uf(n);------// 04
----vvi rev(n);------// 20
                                                 ----sort(edges.begin(), edges.end());-----// 51
----for (int i = 0; i < n; i++) for (int j = 0; j < size(adj[i]); j++)-----// b9
                                                 ----vector<pair<int, ii> > res;-------// 71
-----rev[adj[i][j]].push_back(i);-----// 77
                                                 ----for (int i = 0; i < size(edges); i++)-----// ce
----visited.resize(n), fill(visited.begin(), visited.end(), false);------// 04
                                                 ------if (uf.find(edges[i].second.first) !=-----// d5
----for (int i = 0; i < n; i++) if (!visited[i]) scc_dfs(rev, i);------// e4
                                                 -----// 8c
----fill(visited.begin(), visited.end(), false);-----// c2
                                                 -----res.push_back(edges[i]);------// d1
----stack<int> S;-----// 04
                                                   -----uf.unite(edges[i].second.first, edges[i].second.second);------// a2
----for (int i = n-1; i >= 0; i--) {------// 3f
                                                        -----// 5b
------if (visited[order[i]]) continue;-----// 94
                                                 ----return res;------// 46
-----S.push(order[i]), dag.push_back(order[i]);------// 40
------while (!S.empty()) {------// 03
-----visited[u = S.top()] = true, S.pop(), uf.unite(u, order[i]);-----// 1b
                                                 3.6. Topological Sort.
-----for (int j = 0; j < size(adj[u]); j++)-----// 21
                                                3.6.1. Modified Depth-First Search.
-----if (!visited[v = adj[u][j]]) S.push(v);-----// e7
void tsort_dfs(int cur, char* color, const vvi& adj, stack<int>& res,-----// ca
                                                 ------bool& has_cycle) {------// a8
----return pair<union_find, vi>(uf, dag);-----// f2
                                                ---color[cur] = 1;-----// 5b
}-----// ca
                                                ----for (int i = 0; i < size(adj[cur]); i++) {------// 96
                                                 -----int nxt = adj[cur][i];-----// 53
                                                 -----if (color[nxt] == 0)------// 00
3.4. Cut Points and Bridges.
```

```
Reykjavík University
                                                10
------tsort_dfs(nxt, color, adj, res, has_cycle);-------// 5b ------} else s.push(cur), cur = adj[cur][--outdeg[cur]];-------// d8
------else if (color[nxt] == 1)--------// 53 ---}------// ba
------has_cycle = true;-------// c8 ---return at == 0;----------// c8
3.8. Bipartite Matching.
----color[cur] = 2;-----// 16
----res.push(cur);-----// cb
                         3.8.1. Alternating Paths algorithm. The alternating paths algorithm solves bipartite matching in
}-----// 9e
                         O(mn^2) time, where m, n are the number of vertices on the left and right side of the bipartite
.
-----// ae
                         graph, respectively.
vi tsort(int n, vvi adj, bool& has_cycle) {------// 37
                         vi* adj;-----// cc
----has_cycle = false;-----// 37
                         bool* done:----// b1
----stack<int> S;-----// 54
                         int* owner;-----// 26
----vi res:-----// d1
                         int alternating_path(int left) {-----// da
----char* color = new char[n];-----// b1
                         ----if (done[left]) return 0;------// 08
----memset(color, 0, n);-----// ce
                         ----done[left] = true;-----// f2
----for (int i = 0; i < n; i++) {------// 96
                         ----for (int i = 0; i < size(adj[left]); i++) {-------// 34
------if (!color[i]) {------// d5
                         ------int right = adj[left][i];------// b6
-----tsort_dfs(i, color, adj, S, has_cycle);-----// 40
                         ------if (owner[right] == -1 || alternating_path(owner[right])) {-------// d2
-----if (has_cycle) return res;------// 6c
                         -----owner[right] = left: return 1:-----// 26
-----}------// 70
                         ------} }-------// 7a
----}------// df
                         ----return 0; }-----// 83
----while (!S.empty()) res.push_back(S.top()), S.pop();------// 94
----return res:-----// 07
                         3.8.2. Hopcroft-Karp algorithm. An implementation of Hopcroft-Karp algorithm for bipartite match-
}-----// 1f
                         ing. Running time is O(|E|\sqrt{|V|}).
3.7. Euler Path. Finds an euler path (or circuit) in a directed graph, or reports that none exist.
                         #define MAXN 5000-----// f7
#define MAXE 5000-------// 87 #define dist(v) dist[v == -1 ? MAXN : v]-------// 0f
vi adj[MAXV];------// ff struct bipartite_graph {------// 2b
ii start_end() {------// 30 ---bipartite_graph(int _N, int _M) : N(_N), M(_M),------// 8d
----}-----dist(-1) = INF;-------// 96
}------foreach(u, adj[v]) if(dist(R[*u]) == INF)------// 95
bool euler_path() {------dist(R[*u]) = dist(v) + 1, q[r++] = R[*u];------// 60
---ii se = start_end();------// 45 -------------------// fe
-----cur = s.top(); s.pop();------// d7 ------if(dfs(R[*u])) {-------// d7
```

```
------return true;-------// 1f ------if(s == t) return 0;--------------// 9d
-----}-----memset(d, -1, n * sizeof(int));------// a8
------l = r = 0, d[q[r++] = t] = 0;-------// @e
----void add_edge(int i, int j) { adj[i].push_back(j); }------// 11 -------for (int v = q[l++], i = head[v]; i != -1; i = e[i].nxt)------// a2
------memset(R, -1, sizeof(int) * M);-------// 39 ------memcpy(curh, head, n * sizeof(int));------// 10
-----return matching;------// fc ------if (res) reset();--------// fc ------// 21
};-----// d3 ---}
                 }:-----// 3b
3.9. Maximum Flow.
                 3.9.2. Edmonds Karp's algorithm. An implementation of Edmonds Karp's algorithm that runs in
3.9.1. Dinic's algorithm. An implementation of Dinic's algorithm that runs in O(|V|^2|E|). It computes
                 O(|V||E|^2). It computes the maximum flow of a flow network.
the maximum flow of a flow network.
                 #define MAXV 2000-----// ba
-----edge() { }------// 38 ---};------// 38 ---};-------// 38 ---}
----flow_network(int _n, int m = -1) : n(_n), ecnt(0) {-------// d3 ------memset(head = new int[n], -1, n << 2);-------// 58
-----e.reserve(2 * (m == -1 ? n : m));------// 3a
------head = new int[n], curh = new int[n];--------// 6b ----void destroy() { delete[] head; }-------// d5
------memset(head, -1, n * sizeof(int));--------// 56 ----void reset() { e = e_store; }------// 1b
----void reset() { e = e_store; }--------// 87 ------e.push_back(edge(u, vu, head[v])); head[v] = ecnt++;------// bc
----void add_edge(int u, int v, int uv, int vu = 0) {-------// cd ----}------// ef
------for (int &i = curh[v], ret; i != -1; i = e[i].nxt)-------// f9 ------memset(d, -1, n << 2);------------------// 3b
------for (int u = q[l++], i = head[u]; i != -1; i = e[i].nxt)-----// c6
```

11

Reykjavík University

```
Reykjavík University
------(d[v = e[i].v] == -1 || d[u] + 1 < d[v]))------// 2f -----q.insert(s); d[s] = 0;------------// 1d
------while (at !=-1) x = min(x, e[at].cap), at = p[e[at^1].v]; ------// 8a -------for (int i = head[u]; i : != -1; i = e[i].nxt) {-------// \theta 2
------q.insert(v);-------------------// bc
------}------------------// da
3.10. Minimum Cost Maximum Flow. An implementation of Edmonds Karp's algorithm, modi-
                            ------if (p[t] == -1) break:-----// 09
fied to find shortest path to augment each time (instead of just any path). It computes the maximum
                            -----int x = INF, at = p[t];-----// e8
flow of a flow network, and when there are multiple maximum flows, finds the maximum flow with
                            ------while (at !=-1) x = min(x, e[at].cap), at = p[e[at^1].v];------// 32
minimum cost. Running time is O(|V|^2|E|\log|V|).
                            -----at = p[t], f += x;-----// 43
#define MAXV 2000------// ba -------while (at != -1)------// 53
int d[MAXV], p[MAXV], pot[MAXV];-----// 80
                           -----e[at].cap -= x, e[at^1].cap += x, at = p[e[at^1].v];-----// 95
----bool operator ()(int i, int j) {-------// 8a -------for (int i = 0; i < n; i++) if (p[i] != -1) pot[i] += d[i];-----// ff
-----return d[i] == d[j] ? i < j : d[i] < d[j];------// 89 -----}
};-----// cf -----return ii(f, c);------// e7
struct flow_network {------// eb ___}
----struct edge {------// 9a
                           }:-----// d7
------int v, cap, cost, nxt;------// ad
------edge(int _v, int _cap, int _cost, int _nxt)------// ec
                           3.11. All Pairs Maximum Flow.
-----: v(_v), cap(_cap), cost(_cost), nxt(_nxt) { }------// c4
                            3.11.1. Gomory-Hu Tree. An implementation of the Gomory-Hu Tree. The spanning tree is con-
----}:------// ad
                            structed using Gusfield's algorithm in O(|V|^2) plus |V|-1 times the time it takes to calculate the
----int n, ecnt, *head;------// 46
                            maximum flow. If Dinic's algorithm is used to calculate the max flow, the running time is O(|V|^3|E|).
----vector<edge> e, e_store;------// 4b
                           #include "dinic.cpp"-----// 58
----flow_network(int _n, int m = -1) : n(_n), ecnt(0) {------// dd
-----e.reserve(2 * (m == -1 ? n : m));------// e6
                            .....// 25
------memset(head = new int[n], -1, n << 2);-------// 6c bool same[MAXV];-------// 59
----void destroy() { delete[] head; }------------------------// ac ----int n = g.n, v;------------------------------// 5d
------push_back(edge(u, vu, -cost, head[v])); head[v] = ecnt++;-------// 53 ------par[s].second = g.max_flow(s, par[s].first, false);-------// 38
------memset(pot, 0, n << 2);-------// 24 -----same[v = q[l++]] = true;------// c8
------int f = 0, c = 0, v;-------------------// d4 -------for (int i = q.head[v]; i != -1; i = q.e[i].nxt)-------// 33
------d[q[r++] = g.e[i].v] = 1;------// f8
-----set<int, cmp> q;------// d8 ------for (int i = s + 1; i < n; i++)------// 68
```

```
Reykjavík University
                                                               13
-----if (par[i].first == par[s].first && same[i]) par[i].first = s;----// ea ------res = (loc[uat[u]] < loc[vat[v]] ? uat[u] : vat[v]), u--, v--;----// 13
------while (true) {-------// 3a ------u = parent[head[u]];------// 4b
-----cap[curl[i] = mn;------// 63 -----return f(res, values.query(loc[v] + 1, loc[u])); }-----// 47
-----mn = min(mn, par[cur].second), cur = par[cur].first;-----// 28 -----return f(query_upto(u, l), query_upto(v, l)); } };-----// 52
}------// 99 struct tarjan_olca {------// 87
----if (s == t) return 0;------// dd ----vi *adj, answers;-------// dd
----int cur = INF, at = s;------// 65 ----vii *queries;------// 66
------cur = min(cur, qh.first[at].second), at = qh.first[at].first;------// bd ----union_find uf;----------------------------------// 70
----return min(cur, qh.second[at][t]);-------// 6d ----tarjan_olca(int n, vi *_adj) : adj(_adj), uf(n) {--------------// 78
}------// a2 -----colored = new bool[n];------// 8d
                                -----ancestor = new int[n];-----// f2
3.12. Heavy-Light Decomposition.
                                -----queries = new vii[n];-----// 3e
#include "../data-structures/segment_tree.cpp"-----// 16 -----memset(colored, 0, n);------// 6e
struct HLD {-----// 25
                                ----}-----// 6b
----vi sz, head, parent, loc;------// 81 ------queries[x].push_back(ii(y, size(answers)));------// a0
----vvi below; segment_tree values;------// 96 ------queries[v].push_back(ii(x, size(answers)));------// 14
----HLD(int _n) : n(_n), sz(n, 1), head(n), parent(n, -1), loc(n), below(n) {--// 4f ------answers.push_back(-1);----------------------// ca
-----vi tmp(n, ID); values = segment_tree(tmp); }------// a7 ____}
----void update_cost(int u, int v, int c) {-------// 12 -----ancestor[u] = u;----
------if (parent[v] == u) swap(u, v); assert(parent[u] == v); -------// 9f -------for (int i = 0; i < size(adj[u]); i++) {-------// 2b
-----values.update(loc[u], c); }------// 9a ------// 9a ------int v = adj[u][i];-------// 38
----void csz(int u) { for (int i = 0; i < size(below[u]); i++)------// 63 -----process(v);-----
----void part(int u) {------// 37 ------ancestor[uf.find(u)] = u;-----// d8
------head[u] = curhead; loc[u] = curloc++;-------// 25 ________
------for (int i = 0; i < size(below[u]); i++)-------// a7 ------for (int i = 0; i < size(queries[u]); i++) {------// 34
------if (best == -1 || sz[below[u][i]] > sz[best]) best = below[u][i];--// 19 ------int v = queries[u][i].first;------// 38
-----if (best != -1) part(best);-------// 19 -----if (colored[v]) {------------// c5
------for (int i = 0; i < size(below[u]); i++)------// 7d -----answers[queries[u][i].second] = ancestor[uf.find(v)];-----// 33
------if (below[u][i] != best) part(curhead = below[u][i]); }------// 30 -----}
----void build() { int u = curloc = 0;------// 67
------while (parent[u] != -1) u++;-------// db ____}
-----csz(u); part(curhead = u); }-----// 5e
                                }:-----// 5f
----int lca(int u, int v) {-------// 21
-----vi uat, vat; int res = -1;-----// e2
                                              4. Strings
------while (u != -1) uat.push_back(u), u = parent[head[u]];------// e6
------while (v != -1) vat.push_back(v), v = parent[head[v]];-----// 5b
                                4.1. Trie. A Trie class.
```

```
Reykjavík University
----struct node {-------// ae ------for (int i = 0; i < n; i++) P[0][i] = s[i] - 'a';-------// 8d
------for (int stp = 1, cnt = 1; cnt >> 1 < n; stp++, cnt <<= 1) {------// 46
------for (int i = 0; i < n; i++)-------// d5
public:------L[L[i].p = i].nr = ii(P[stp - 1][i],------// fc
----node* root;------i + cnt < n ? P[stp - 1][i + cnt] : -1);------// e5
----trie() : root(new node()) { }---------// 8f ------sort(L.begin(), L.end()):---------// bc
----template <class I>------(int i = 0; i < n; i++)--------// 85
----void insert(I begin, I end) {-------// 3c -------P[stp][L[i].p] = i > 0 &&------// eb
-------L[i].nr == L[i - 1].nr ? P[stp][L[i - 1].p] : i;------// fd
------while (true) {--------// 67 -----}-----// 73
------else {-------// 3e ----int lcp(int x, int y) {-------// 05
-----typename map<T, node*>::const_iterator it;------// 01 -----if (x == y) return n - x;------------// 7f
-----it = cur->children.find(head);------// 77 ------for (int k = size(P) - 1; k >= 0 && x < n & y < n; k--)------// 07
------pair<T, node*> nw(head, new node());------// cd -----return res;-----
----template<class I>-----// b9
                                  4.3. Aho-Corasick Algorithm. An implementation of the Aho-Corasick algorithm. Constructs a
----int countMatches(I begin, I end) {-----// 7f
                                  state machine from a set of keywords which can be used to search a string for any of the keywords.
-----node* cur = root;-----// 32
                                  struct aho_corasick {-----// 78
------while (true) {------// bb
                                  ----struct out_node {------// 3e
-----if (begin == end) return cur->words;-----// a4
                                  -----string keyword; out_node *next;-----// f0
-----else {------// 1e
                                  -----out_node(string k, out_node *n) : keyword(k), next(n) { }------// 26
-----T head = *begin;-----// 5c
                                  ----}:------// b9
-----typename map<T, node*>::const_iterator it;------// 25
                                  ----struct go_node {------// 40
-----it = cur->children.find(head);-----// d9
-----if (it == cur->children.end()) return 0;-----// 14
                                  -----map<char, qo_node*> next;------// 6b
-----begin++, cur = it->second; } } -----// 7c
                                  -----out_node *out; go_node *fail;-----// 3e
                                  -----go_node() { out = NULL; fail = NULL; }-----// 0f
----template<class I>-----// 9c
                                  ----};------// c0
----int countPrefixes(I begin, I end) {------// 85
                                  ----go_node *go;-----// b8
-----node* cur = root;-----// 95
                                  ----aho_corasick(vector<string> keywords) {------// 4b
------while (true) {------// 3e
                                  -----go = new go_node();-----// 77
-----if (begin == end) return cur->prefixes;-----// f5
                                  ------foreach(k, keywords) {-------// e4
-----else {------// 66
                                  -----qo_node *cur = qo;-----// 9d
-----T head = *begin;-----// 43
                                  -----foreach(c, *k)-----// 38
-----typename map<T, node*>::const_iterator it;------// 7a
                                  -----cur = cur->next.find(*c) != cur->next.end() ? cur->next[*c] :--// 3d
-----it = cur->children.find(head);------// 43
                                  -----(cur->next[*c] = new qo_node());-----// 75
-----if (it == cur->children.end()) return 0;-----// 71
                                  -----cur->out = new out_node(*k, cur->out);------// 6e
-----begin++, cur = it->second; } } };-----// 26
                                  4.2. Suffix Array. An O(n \log^2 n) construction of a Suffix Tree.
                                  -----queue<go_node*> q;------// 8a
struct entry { ii nr; int p; };-------// f9 ------foreach(a, go->next) q.push(a->second);------// a3
bool operator <(const entry &a, const entry &b) { return a.nr < b.nr; }------// 77 -------while (!q.empty()) {-----------------------------// 43
----suffix_array(string _s) : s(_s), n(size(s)) {--------// e5 ------q.push(s);-----------------------// 76
```

```
-----st = st->fail;-----// 3f
------s->fail = st->next[a->first];-------// 29 #define MAXN 100100-------// 29
------out->next = s->fail->out;------// 65 } *st = new state[MAXN+2];-------// 57
-----vector<string> res;------// ef ------char c = s[n++]; int p = last;------// a3
------qo_node *cur = qo;--------// 61 -------while (n - st[p].len - 2 < 0 || c != s[n - st[p].len - 2]) p = st[p].link;
------foreach(c, s) {-------// 6c ------if (!st[p].to[c-BASE]) {------// 05
-----cur = cur->fail;------// 9e -----st[p].to[c-BASE] = q;-----// bb
------if (!cur) cur = qo;------------------// 2f ------st[q].len = st[p].len + 2;-------// 86
-----cur = cur->next[*c];-------// 58 ------do { p = st[p].link;-------// c8
-----res.push_back(out->keyword);------// 0d ------else st[q].link = st[p].to[c-BASE];------// e6
-----return res;------// c1 -----last = st[p].to[c-BASE];------// 30
----}-----return 0; } };------// da
};-----// 32
                             5. Mathematics
4.4. The Z algorithm. Given a string S, Z_i(S) is the longest substring of S starting at i that is
also a prefix of S. The Z algorithm computes these Z values in O(n) time, where n = |S|. Z values 5.1. Big Integer. A big integer class.
can, for example, be used to find all occurrences of a pattern P in a string T in linear time. This is
                     struct intx {------// cf
accomplished by computing Z values of S = TP, and looking for all i such that Z_i \geq |T|.
                     ----intx() { normalize(1); }------// 6c
int* z_values(const string &s) {------// 4d ----intx(string n) { init(n); }------// b9
----int n = size(s);-------// 97 ----intx(int n) { stringstream ss; ss << n; init(ss.str()); }------// 36
-----z[i] = 0;------// c9 ----static const unsigned int radix = 10000000000U;------// f0
-----l = r = i;------// a7 ----void init(string n) {------// 13
-----z[i] = r - l; r--;--------// fc -----if (n.empty()) n = "0";---------// 99
------} else if (z[i - l] < r - i + 1) z[i] = z[i - l];--------// bf ------if (n[0] == '-') res.sign = -1, n = n.substr(1);------// 3b
-----z[i] = r - l; r--; } }------// 8d --------int idx = i - j;---------// cd
```

15

Reykjavík University

```
Reykjavík University
                                                      16
-------if (idx < 0) continue;-------// 52 ------c.data.push_back(carry % intx::radix);------// 86
-----digit = digit * 10 + (n[idx] - '0');------// 1f -----carry /= intx::radix:------// fd
-----res.data.push_back(digit);-------// 07 -----return c.normalize(sign);-------// 20
------data = res.data;-------// 7d ----intx operator -(const intx& b) const {-------// 53
------if (sign > 0 && b.sign < 0) return *this + (-b);-------// 8f
----intx& normalize(int nsign) {---------// 3b ------if (sign < 0 && b.sign < 0) return (-b) - (-*this);------// a1
------if (data.empty()) data.push_back(0);-------// fa ------if (*this < b) return -(b - *this);------// 36
------for (int i = data.size() - 1; i > 0 && data[i] == 0; i--)-------// 27 ------intx c; c.data.clear();--------// 6b
------data.erase(data.begin() + i);-------// 67 ------long long borrow = 0;------// f8
------borrow = data[i] - borrow - (i < b.size() ? b.data[i] : 0ULL);----// a9
----}------c.data.push_back(borrow < 0 ? intx::radix + borrow : borrow);-----// ed
------if (first) outs << n.data[i], first = false;------// 33 ----intx operator *(const intx& b) const {------// bd
-----stringstream ss: ss << cur:------// 8c ------long long carry = 0:------// 20
-----string s = ss.str();-------// 64 -------for (int j = 0; j < b.size() || carry; j++) {-------// c0
-----while (len < intx::dcnt) outs << '0', len++;-------// 0a ------carry += c.data[i + j];----------// 18
------c.data[i + j] = carry % intx::radix;------// 86
------if (sign != b.sign) return sign < b.sign;--------// cf ------assert(!(d.size() == 1 && d.data[0] == 0));-------// e9
------if (size() != b.size())--------// 4d ------intx q, r; q.data.assign(n.size(), 0);-----// ca
------return sign == 1 ? size() < b.size() : size() > b.size();------// 4d -------for (int i = n.size() - 1; i >= 0; i--) {--------// 1a
------for (int i = size() - 1; i >= 0; i--) if (data[i] != b.data[i])------// 35 ------r.data.insert(r.data.begin(), 0);---------// c7
------return false;-------// ca -------long long k = θ;-------// cc
----intx operator -() const { intx res(*this); res.sign *= -1; return res; }---// 9d -------k = (long long)intx::radix * r.data[d.size()];-------// f7
------if (sign > 0 && b.sign < 0) return *this - (-b):---------// 36 -------r = r - abs(d) * k:------------------// 15
------if (sign < 0 && b.sign > 0) return b - (-*this);--------// 70 --------while (r < 0) r = r + abs(d), k-;--------// 11
-----intx c; c.data.clear();------// 18 -----}
------unsigned long long carry = 0;------// 5c -----return pair<intx, intx>(q.normalize(n.sign * d.sign), r);-----// a1
-----carry += (i < size() ? data[i] : OULL) +------// 91 ---intx operator /(const intx& d) const {------// a2
-----(i < b.size() ? b.data[i] : 0ULL);-------// 0c -----return divmod(*this,d).first; }------// 1e
```

```
Reykjavík University
                                                                                      17
------return divmod(*this,d).second * sign; }-------// 5a ----for (int i = 1; i <= k; i++) res = res * (n - (k - i)) / i;-------// bd
5.1.1. Fast Multiplication. Fast multiplication for the big integer using Fast Fourier Transform.
#include "fft.cpp"-----// 13
                                            integers a, b.
                                            int gcd(int a, int b) { return b == 0 ? a : gcd(b, a % b); }-----// d9
intx fastmul(const intx &an, const intx &bn) {------// ab
                                             The extended Euclidean algorithm computes the greatest common divisor d of two integers a, b
----string as = an.to_string(), bs = bn.to_string();-----// 32
                                            and also finds two integers x, y such that a \times x + b \times y = d.
----int n = size(as), m = size(bs), l = 1,------// dc
                                            int egcd(int a, int b, int& x, int& y) {-----// 85
-----len = 5, radix = 100000,-----// 4f
                                            ----if (b == 0) { x = 1; y = 0; return a; }------// 7b
-----*a = new int[n], alen = 0,-----// b8
                                            ----else {------// 00
-----*b = new int[m], blen = 0;-----// 0a
                                            ------int d = eqcd(b, a % b, x, y);------// 34
----memset(a, 0, n << 2);------// 1d
                                            -----x -= a / b * y;-----// 4a
----memset(b, 0, m << 2);-----// 01
                                            -----swap(x, y);-----// 26
----for (int i = n - 1; i >= 0; i -= len, alen++)------// 6e
                                            -----return d;------// db
------for (int j = min(len - 1, i); j >= 0; j--)------// 43
                                            ----}-------// 9e
-----a[alen] = a[alen] * 10 + as[i - j] - '0';-----// 14
----for (int i = m - 1; i >= 0; i -= len, blen++)-----// b6
------for (int j = min(len - 1, i); j >= 0; j--)-----// ae
                                            5.4. Trial Division Primality Testing. An optimized trial division to check whether an integer is
-----b[blen] = b[blen] * 10 + bs[i - j] - '0';------// 9b
                                            prime.
----while (l < 2*max(alen,blen)) l <<= 1;------// 51
                                            bool is_prime(int n) {------// 6c
----cpx *A = new cpx[l], *B = new cpx[l];-----// 0d
                                            ----if (n < 2) return false;-----// c9
----for (int i = 0; i < l; i++) A[i] = cpx(i < alen ? <math>a[i] : 0, 0);-----// 35
                                            ----if (n < 4) return true;------// d9
----for (int i = 0; i < l; i++) B[i] = cpx(i < blen ? b[i] : 0, 0);-----// 66
                                            ----if (n % 2 == 0 || n % 3 == 0) return false;-----// Of
----fft(A, l); fft(B, l);-----// f9
                                            ----if (n < 25) return true;------// ef
----for (int i = 0; i < l; i++) A[i] *= B[i];------// e7
                                            ----int s = static_cast<int>(sqrt(static_cast<double>(n)));------// 64
----fft(A, l, true);-----// d3
                                            ----for (int i = 5; i <= s; i += 6)-----// 6c
----ull *data = new ull[1];-----// e7
                                            ------if (n % i == 0 || n % (i + 2) == 0) return false;------// e9
----for (int i = 0; i < l; i++) data[i] = (ull)(round(real(A[i])));------// 06
                                            ----return true; }-----// 43
----for (int i = 0; i < l - 1; i++)-----// 90
-----if (data[i] >= (unsigned int)(radix)) {------// 44
                                            5.5. Miller-Rabin Primality Test. The Miller-Rabin probabilistic primality test.
-----data[i+1] += data[i] / radix:-----// e4
                                            #include "mod_pow.cpp"-----// c7
-----data[i] %= radix;-----// bd
                                            bool is_probable_prime(ll n, int k) {------// be
----if (~n & 1) return n == 2;------// d1
----int stop = l-1;------// cb
                                            ----if (n <= 3) return n == 3;-----// 39
----while (stop > 0 && data[stop] == 0) stop--;------// 97
                                            ----int s = 0; ll d = n - 1;------// 37
----stringstream ss;-----// 42
                                            ----while (~d & 1) d >>= 1, s++;------// 35
----ss << data[stop];-----// 96
                                            ----while (k--) {------// c8
----for (int i = stop - 1; i >= 0; i--)-----// bd
                                            ------ll a = (n - 3) * rand() / RAND_MAX + 2;------// 06
-----ss << setfil('0') << setw(len) << data[i]:-----// b6
                                            -----ll x = mod_pow(a, d, n);------// 64
----delete[] A; delete[] B;-----// f7
----delete[] a; delete[] b;-----// 7e
                                            -----if (x == 1 || x == n - 1) continue;-----// 9b
                                            ------bool ok = false;-----// 03
----delete[] data;-----// 6a
----return intx(ss.str());-----// 38
                                            -----for (int i = 0; i < s - 1; i++) {------// 6b
                                            -----x = (x * x) % n;
}-----// d9
                                            -----if (x == 1) return false;-----// 4f
------}------// a9
k items out of a total of n items.
                                            -----if (!ok) return false;-----// 00
int nck(int n, int k) {-----// f6
----if (n - k < k) k = n - k;-----// 18
                                            ----} return true; }------// bc
```

```
Reykjavík University
5.6. Sieve of Eratosthenes. An optimized implementation of Eratosthenes' Sieve.
                                                      ----return res:------// 03
                                                     }-----// 1c
vi prime_sieve(int n) {-----// 40
----int mx = (n - 3) >> 1, sq, v, i = -1;------// 27
                                                     5.11. Numeric Integration. Numeric integration using Simpson's rule.
----vi primes:-----// 8f
                                                     double integrate(double (*f)(double), double a, double b,-----// 76
----bool* prime = new bool[mx + 1];-----// ef
                                                      ------double delta = 1e-6) {------// c0
----memset(prime, 1, mx + 1);------// 28
                                                      ----if (abs(a - b) < delta)------// 38
----if (n >= 2) primes.push_back(2);-----// f4
                                                      -----return (b-a)/8 *-----// 56
----while (++i <= mx) if (prime[i]) {-----// 73
                                                      -----(f(a) + 3*f((2*a+b)/3) + 3*f((a+2*b)/3) + f(b));-----// e1
-----primes.push_back(v = (i << 1) + 3);-----// be
                                                      ----return integrate(f, a,-----// 64
-----if ((sq = i * ((i << 1) + 6) + 3) > mx) break;-----// 2d
                                                      -----(a+b)/2, delta) + integrate(f, (a+b)/2, b, delta);------// \theta c
------for (int j = sq; j <= mx; j += v) prime[j] = false; }-----// 2e
                                                        ·----// 4b
----while (++i \le mx) if (prime[i]) primes.push_back((i << 1) + 3);-----// 29
----delete[] prime; // can be used for O(1) lookup-----// 36
                                                     5.12. Fast Fourier Transform. The Cooley-Tukey algorithm for quickly computing the discrete
----return primes; }-----// 72
                                                     Fourier transform. Note that this implementation only handles powers of two, make sure to pad with
5.7. Modular Multiplicative Inverse. A function to find a modular multiplicative inverse.
                                                      #include <complex>-----// 8e
#include "egcd.cpp"-----// 55
                                                      typedef complex<long double> cpx;-----// 25
-----// e8
                                                      void fft(cpx *x, int n, bool inv=false) {------// 23
int mod_inv(int a, int m) {------// 49
                                                      ----for (int i = 0, j = 0; i < n; i++) {-------// f2
----int x, y, d = eqcd(a, m, x, y);-----// 3e
                                                      ------if (i < j) swap(x[i], x[j]);------// 5c
----if (d != 1) return -1;------// 20
                                                      ------int m = n>>1;------// e5
----return x < 0 ? x + m : x;------// 3c
                                                      ------while (1 <= m && m <= j) j -= m, m >>= 1;-----// fe
                                                      -----j += m:-----// ab
                                                      ----}-----// 1e
5.8. Modular Exponentiation. A function to perform fast modular exponentiation.
                                                      ----for (int mx = 1; mx < n; mx <<= 1) {------// 9d
template <class T>-----// 82
                                                      T mod_pow(T b, T e, T m) {-----// aa
                                                      ------for (int m = 0; m < mx; m++, w *= wp) {------// 40
----T res = T(1);-----// 85
                                                      ------for (int i = m; i < n; i += mx << 1) {------// 33
----while (e) {------// b7
                                                      -----cpx t = x[i + mx] * w;-----// f5
-----if (e & T(1)) res = mod(res * b, m);------// 41
                                                      -----x[i + mx] = x[i] - t;-----// ac
-----b = mod(b * b, m), e >>= T(1); }------// b3
                                                      -----x[i] += t:-----// c7
----return res:-----// eb
                                                      }-----// c5
                                                      ----}-----------// 70
5.9. Chinese Remainder Theorem. An implementation of the Chinese Remainder Theorem.
                                                      ----if (inv) for (int i = 0; i < n; i++) x[i] /= cpx(n);------// 3e
#include "eacd.cpp"-----// 55
                                                     }-----// 7d
int crt(const vi& as, const vi& ns) {------// c3
----int cnt = size(as), N = 1, x = 0, r, s, l;------// 55
                                                     5.13. Formulas.
----for (int i = 0: i < cnt: i++) N *= ns[i]: ------// 88
                                                         • Number of ways to choose k objects from a total of n objects where order matters and each
----for (int i = 0; i < cnt; i++)-----// f9
                                                          item can only be chosen once: P_k^n = \frac{n!}{(n-k)!}
------egcd(ns[i], l = N/ns[i], r, s), x += as[i] * s * l;-------// b\theta
                                                         • Number of ways to choose k objects from a total of n objects where order matters and each
----return mod(x, N); }-----// 9e
                                                          item can be chosen multiple times: n^k
                                                         • Number of permutations of n objects, where there are n_1 objects of type 1, n_2 objects of type
5.10. Linear Congruence Solver. A function that returns all solutions to ax \equiv b \pmod{n}, modulo
                                                          2, ..., n_k objects of type k: \binom{n}{n_1, n_2, ..., n_k} = \frac{n!}{n_1! \times n_2! \times \cdots \times n_k!}
                                                         • Number of ways to choose k objects from a total of n objects where order does not matter
#include "egcd.cpp"-----// 55
                                                          and each item can only be chosen once:
vi linear_congruence(int a, int b, int n) {-----// c8
                                                          \binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k} = \binom{n}{n-k} = \prod_{i=1}^k \frac{n-(k-i)}{i} = \frac{n!}{k!(n-k)!}, \binom{n}{0} = 1, \binom{0}{k} = 0
----int x, y, d = egcd(a, n, x, y);-----// 7a
----vi res;------// f5
                                                         • Number of ways to choose k objects from a total of n objects where order does not matter
                                                          and each item can be chosen multiple times: f_k^n = \binom{n+k-1}{k} = \frac{(n+k-1)!}{k!(n-1)!}
----if (b % d != 0) return res:------// 30
----int x\theta = mod(b / d * x, n); ------// 48
                                                         • Number of integer solutions to x_1 + x_2 + \cdots + x_n = k where x_i > 0: f_k^n
```

• Number of subsets of a set with n elements: 2^n

----for (int k = 0; k < d; k++) res.push_back(mod(x0 + k * n / d, n));-----// 21

Reykjavík University

- $|A \cup B| = |A| + |B| |A \cap B|$
- $|A \cup B \cup C| = |A| + |B| + |C| |A \cap B| |A \cap C| |B \cap C| + |A \cap B \cap C|$
- Number of ways to walk from the lower-left corner to the upper-right corner of an $n \times m$ grid by walking only up and to the right: $\binom{n+m}{m}$
- Number of strings with n sets of brackets such that the brackets are balanced: $C_n = \sum_{k=0}^{n-1} C_k \bar{C}_{n-1-k} = \frac{1}{n+1} {2n \choose n}$
- Number of triangulations of a convex polygon with n points, number of rooted binary trees with n+1 vertices, number of paths across an $n \times n$ lattice which do not rise above the main diagonal: C_n
- Number of permutations of n objects with exactly k ascending sequences or runs: $\left\langle \begin{smallmatrix} n \\ k \end{smallmatrix} \right\rangle = \left\langle \begin{smallmatrix} n \\ n-k-1 \end{smallmatrix} \right\rangle = k \left\langle \begin{smallmatrix} n-1 \\ k \end{smallmatrix} \right\rangle + (n-k+1) \left\langle \begin{smallmatrix} n-1 \\ k-1 \end{smallmatrix} \right\rangle = \sum_{i=0}^k (-1)^i \binom{n+1}{i} (k+1-i)^n, \left\langle \begin{smallmatrix} n \\ 0 \end{smallmatrix} \right\rangle = \left\langle \begin{smallmatrix} n \\ n-1 \end{smallmatrix} \right$
- Number of permutations of n objects with exactly k cycles: $\binom{n}{k} = \binom{n-1}{k-1} + (n-1)\binom{n-1}{k}$
- Number of ways to partition n objects into k sets: $\binom{n}{k} = k \binom{n-1}{k} + \binom{n-1}{k-1}, \binom{n}{0} = \binom{n}{n} = 1$
- Number of permutations of length n that have no fixed points (derangements): $D_0 = 1, D_1 =$ $0, D_n = (n-1)(D_{n-1} + D_{n-2})$
- Number of permutations of length n that have exactly k fixed points: $\binom{n}{k}D_{n-k}$
- Jacobi symbol: $\left(\frac{a}{b}\right) = a^{(b-1)/2} \pmod{b}$
- Heron's formula: A triangle with side lengths a, b, c has area $\sqrt{s(s-a)(s-b)(s-c)}$ where
- Pick's theorem: A polygon on an integer grid containing i lattice points and having b lattice points on the boundary has area $i + \frac{b}{2} - 1$.
- Divisor sigma: The sum of divisors of n to the xth power is $\sigma_x(n) = \prod_{i=0}^r \frac{p_i^{(a_i+1)x}-1}{p_i^x-1}$ where $n = \prod_{i=0}^{r} p_i^{a_i}$ is the prime factorization.
- Divisor count: A special case of the above is $\sigma_0(n) = \prod_{i=0}^r (a_i + 1)$.
- Euler's totient: The number of integers less than n that are comprime to n are $n \prod_{p|n} \left(1 \frac{1}{p}\right)$ where each p is a distinct prime factor of n.
- König's theorem: In any bipartite graph, the number of edges in a maximum matching is equal to the number of vertices in a minimum vertex cover.
- The number of vertices of a graph is equal to its minimum vertex cover number plus the size of a maximum independent set.
- $gcd(2^a 1, 2^b 1) = 2^{gcd(a,b)} 1$

5.14. Numbers and Sequences. Some random prime numbers: 1031, 32771, 1048583, 33554467, 1073741827, 34359738421, 1099511627791, 35184372088891, 1125899906842679, 36028797018963971.

6. Geometry

6.1. **Primitives.** Geometry primitives.

```
#include <complex>-----// 8e
#define P(p) const point &p-----// b8
#define L(p0, p1) P(p0), P(p1)-----// 30
#define C(p0, r) P(p0), double r-----// 08
#define PP(pp) pair<point,point> &pp-----// a1
typedef complex<double> point;-----// 9e
double dot(P(a), P(b)) { return real(conj(a) * b); }-----// 4a -----x = min(x, abs(c - closest_point(a,b, c, true)));-----// 48
double cross(P(a), P(b)) { return imag(conj(a) * b); }-----// f3 -----x = min(x, abs(d - closest_point(a,b, d, true)));-----// 75
point rotate(P(p), double radians = pi / 2, P(about) = point(\theta, \theta)) { ------// \theta b
----return (p - about) * exp(point(0, radians)) + about; }-----// f5
point reflect(P(p), L(about1, about2)) {------// 45
```

```
----point z = p - about1, w = about2 - about1;-----// 74
----return conj(z / w) * w + about1; }-----// d1
point proj(P(u), P(v)) { return dot(u, v) / dot(u, u) * u; }-----// 98
point normalize(P(p), double k = 1.0) { ------// a9
----return abs(p) == 0 ? point(0,0) : p / abs(p) * k; } //TODO: TEST-----// 1c
bool parallel(L(a, b), L(p, q)) { return abs(cross(b - a, q - p)) < EPS; }----// 74
double ccw(P(a), P(b), P(c)) { return cross(b - a, c - b); }-----// ab
bool collinear(P(a), P(b), P(c)) { return abs(ccw(a, b, c)) < EPS: }-----// 95
bool collinear(L(a, b), L(p, q)) {-----// de
----return abs(ccw(a, b, p)) < EPS && abs(ccw(a, b, q)) < EPS; }------// 27
double angle(P(a), P(b), P(c)) {------// 93
----return acos(dot(b - a, c - b) / abs(b - a) / abs(c - b)); }------// a2
double signed_angle(P(a), P(b), P(c)) {------// 46
----return asin(cross(b - a, c - b) / abs(b - a) / abs(c - b)); }------// 80
double angle(P(p)) { return atan2(imaq(p), real(p)); }-----// c\theta
point perp(P(p)) { return point(-imag(p), real(p)); }-----// 3c
double progress(P(p), L(a, b)) {-----// c7
----if (abs(real(a) - real(b)) < EPS)------// 7d
-----return (imag(p) - imag(a)) / (imag(b) - imag(a));------// b7
----else return (real(p) - real(a)) / (real(b) - real(a)); }------// 6c
----// NOTE: check for parallel/collinear lines before calling this function---// 88
----point r = b - a, s = q - p;------// 54
----double c = cross(r, s), t = cross(p - a, s) / c, u = cross(p - a, r) / c;--// 29
----if (segment && (t < 0-EPS || t > 1+EPS || u < 0-EPS || u > 1+EPS))------// 30
-----return false:-----// c0
----res = a + t * r:-----// 88
----return true:-----// 03
point closest_point(L(a, b), P(c), bool segment = false) {------// 06
----if (seament) {-------// 90
-----if (dot(b - a, c - b) > 0) return b;------// 93
-----if (dot(a - b, c - a) > 0) return a;-----// bb
----}------// d5
----double t = dot(c - a, b - a) / norm(b - a);------// 61
----return a + t * (b - a);-----// 4f
}-----// 19
double line_segment_distance(L(a,b), L(c,d)) {-----// f6
----double x = INFINITY:-----// 8c
----if (abs(a - b) < EPS && abs(c - d) < EPS) x = abs(a - c);-----// 5f
----else if (abs(a - b) < EPS) \times = abs(a - closest_point(c, d, a, true)); -----// 97
----else if (abs(c - d) < EPS) x = abs(c - closest\_point(a, b, c, true)):-----// 68
----else if ((ccw(a, b, c) < 0) != (ccw(a, b, d) < 0) &&-----// fa
-----(ccw(c, d, a) < 0) != (ccw(c, d, b) < 0)) x = 0:-----// bb
----else {------// 5b
-----x = min(x, abs(a - closest_point(c,d, a, true)));
-----x = min(x, abs(b - closest_point(c,d, b, true)));------// 75
---}-----// 60
----return x:-----// 57
```

```
Reykjavík University
}------// 8e -----in = !in:-----// b2
int intersect(C(A, rA), C(B, rB), point & res1, point & res2) { ---------// ca ----return in ? -1 : 1; }------------------------------// 77
int intersect(L(A, B), C(0, r), point & res1, point & res2) {-------// ab //----- if (ccw(a, b, p) >= 0) right.push_back(p);-----// e3
---- double h = abs(0 - closest_point(A, B, 0));------// a6 //-----// myintersect = intersect where-----// 24
---- if(r < h - EPS) return 0;------// 52 //------// f2
}-----// 09 //---- return pair<polygon, polygon>(left, right);------// 1d
int tangent(P(A), C(0, r), point & res1, point & res2) {------// f0 // }------// 37
----point v = 0 - A; double d = abs(v):-----// 07
                         6.3. Convex Hull. An algorithm that finds the Convex Hull of a set of points.
----if (d < r - EPS) return 0;-------// b3
----double alpha = asin(r / d), L = sqrt(d*d - r*r);------// 64 #include "polygon.cpp"-----// 58
----v = normalize(v, L);------// 37 #define MAXN 1000-----// 09
----res1 = A + rotate(v, alpha); res2 = A + rotate(v, -alpha);-----// 58
                        point hull[MAXN];-----// 43
----double theta = asin((rB - rA)/abs(A - B));--------------------------------// 3d
----u = normalize(u, rA);------// 58 ------if (i > 0 && p[i] == p[i - 1]) continue;------// b2
----P.first = A + normalize(v, rA); P.second = B + normalize(v, rB);------// 94 -------while (l >= 2 && ccw(hull[l - 2], hull[l - 1], p[i]) >= 0) l--;-----// 20
----Q.first = A + normalize(u, rA); Q.second = B + normalize(u, rB);------// 8e ------hull[l++] = p[i];-------// f7
}-----// e6 ---}-----// d8
                         ----int r = 1:-----// 59
6.2. Polygon. Polygon primitives.
                         ----for (int i = n - 2; i >= 0; i--) {------// 16
#include "primitives.cpp"------// e0 -----if (p[i] == p[i + 1]) continue;------// c7
----double area = 0; int cnt = size(p);------// a2 ---}
----for (int i = 1; i + 1 < cnt; i++)------// d2 ----return l == 1 ? 1 : r - 1;------// 6d
-----area += cross(p[i] - p[0], p[i + 1] - p[0]);-----// 7e }------// 79
----return area / 2; }------// e1
double polygon_area(polygon p) { return abs(polygon_area_signed(p)); }------// 25 6.4. Line Segment Intersection. Computes the intersection between two line segments.
----for (int i = 0, j = n - 1; i < n; j = i++)------// 77 ------A = B = a; return abs(a - d) < EPS; }------// ee
-----return 0;-----// cc -----return 0.0 <= p && p <= 1.0-----// 8a
------if (CHK(real, p[i], q, p[j]) || CHK(real, p[j], q, p[i]))-------// 1f ----else if (abs(c - d) < EPS) {-------// 26
```

```
Reykjavík University
                                                                                  21
------it = cur.lower_bound(point(-INFINITY, imag(pts[i]) - mn)):------// fc
----else if (collinear(a,b, c,d)) {-------// bc -------while (it != jt) mn = min(mn, abs(*it - pts[i])), it++;-----// 09
------double ap = progress(a, c,d), bp = progress(b, c,d);-------// a7 ------cur.insert(pts[i]); }-------// 82
------if (ap > bp) swap(ap, bp);--------// b1 ----return mn; }-------// 4c
-----if (bp < 0.0 || ap > 1.0) return false;------// 0c
                                          6.8. 3D Primitives. Three-dimensional geometry primitives.
------A = c + max(ap, 0.0) * (d - c);------// f6
                                          #include <cmath>-----// e5
-----B = c + \min(bp, 1.0) * (d - c); -----// 5c
                                          #define P(p) const point3d &p-----// e5
-----return true; }-----// ab
                                          #define L(p0, p1) P(p0), P(p1)-----// 3c
----else if (parallel(a,b, c,d)) return false;-----// ca
                                          #define PL(p0, p1, p2) P(p0), P(p1), P(p2)-----// 2d
----else if (intersect(a,b, c,d, A, true)) {------// 10
                                          struct point3d {-----// a1
-----B = A; return true; }-----// bf
                                          ----double x, y, z;------// 29
----return false:-----// b7
                                          ----point3d() : x(0), y(0), z(0) {}-----// 8a
}-----// 8b
                                          ----point3d(double _x, double _y, double _z) : x(_x), y(_y), z(_z) {}------// 1c
   ·----// e6
                                          ----point3d operator+(P(p)) const {------// dc
                                          -----return point3d(x + p.x, y + p.y, z + p.z); }-----// d4
6.5. Great-Circle Distance. Computes the distance between two points (given as latitude/longitude
coordinates) on a sphere of radius r.
                                          ----point3d operator-(P(p)) const {------// a7
                                         -----return point3d(x - p.x, y - p.y, z - p.z); }------// cc
double gc_distance(double pLat, double pLong,-----// 7b
                                          ----point3d operator-() const {------// 2e
-----// a4
                                          -----return point3d(-x, -y, -z); }------// 77
----pLat *= pi / 180; pLong *= pi / 180;-----// ee
                                         ----qLat *= pi / 180; qLong *= pi / 180;-----// 75
                                         -----return point3d(x * k, y * k, z * k); }-----// 1f
----return r * acos(cos(pLat) * cos(qLat) * cos(pLong - qLong) +-----// e3
-----sin(pLat) * sin(qLat));-----// dc
                                          -----return point3d(x / k, y / k, z / k); }-----// f0
-----// 60
}------// 3f ----double operator%(P(p)) const {-------// 30
                                          -----return x * p.x + y * p.y + z * p.z; }-----// e6
                                         ----point3d operator*(P(p)) const {------// 96
6.6. Triangle Circumcenter. Returns the unique point that is the same distance from all three
points. It is also the center of the unique circle that goes through all three points.
                                          -----return point3d(y*p.z - z*p.v. z*p.v. z*p.x - x*p.z. x*p.v - y*p.x); }------// 02
point circumcenter(point a, point b, point c) {------// 76 -----return sqrt(*this % *this); }------// c9
----return a + perp(b * norm(c) - c * norm(b)) / 2.0 / cross(b, c);------// 7a ------return (*this - p).length(); }-------// 5a
}------// c3 ----double distTo(P(A), P(B)) const {-----------------------------// d8
                                          -----// A and B must be two different points-----// 93
6.7. Closest Pair of Points. A sweep line algorithm for computing the distance between the closest
                                          -----return ((*this - A) * (*this - B)).length() / A.distTo(B); }------// 38
pair of points.
                                          ----point3d normalize(double k = 1) const {------// f0
#include "primitives.cpp"------// e0 -----// length() must not return 0--------// b8
-----/<sub>85</sub> ------return (*this) * (k / length()); }-------//<sub>46</sub>
-----real(a) < real(b) : imag(a) < imag(b); } };-------// 53 ------return A + v.normalize((v % (*this - A)) / v.length()); }------// 0c
struct cmpy { bool operator ()(const point &a, const point &b) {------// 6f ----point3d rotate(P(normal)) const {-------// 15
----return abs(imag(a) - imag(b)) > EPS ?-----// 0b -----// normal must have length 1 and be orthogonal to the vector-----// 0b
----sort(pts.beqin(), pts.end(), cmpx());-------// 0c ------return (*this) * cos(alpha) + rotate(normal) * sin(alpha); }------// a8
----set<point, cmpy> cur;-------// bd ----point3d rotatePoint(P(0), P(axe), double alpha) const{-------// f0
----set<point, cmpv>::const_iterator it, jt;------// a6 ------point3d Z = axe.normalize(axe % (*this - 0));-----// 89
----double mn = INFINITY:-----// f9 ------return 0 + Z + (*this - 0 - Z).rotate(alpha, 0); }------// 43
```

```
-----return abs(x) < EPS && abs(y) < EPS && abs(z) < EPS; }-----// 64
                                                6.10. Formulas. Let a = (a_x, a_y) and b = (b_x, b_y) be two-dimensional vectors.
----bool isOnLine(L(A, B)) const {------// bc
                                                   • a \cdot b = |a||b|\cos\theta, where \theta is the angle between a and b.
-----return ((A - *this) * (B - *this)).isZero(); }------// 8c
                                                   • a \times b = |a||b|\sin\theta, where \theta is the signed angle between a and b.
----bool isInSegment(L(A, B)) const {------// e0
                                                   • a \times b is equal to the area of the parallelogram with two of its sides formed by a and b. Half
-----return isOnLine(A, B) && ((A - *this) % (B - *this)) < EPS; }------// 52
                                                    of that is the area of the triangle formed by a and b.
----bool isInSegmentStrictly(L(A, B)) const {------// 73
-----return isOnLine(A, B) && ((A - *this) % (B - *this)) < -EPS; }------// 1c
                                                                  7. Other Algorithms
----double getAngle() const {-------// 20
                                                7.1. Binary Search. An implementation of binary search that finds a real valued root of the continuous
-----return atan2(y, x); }-----// 2a
                                                function f on the interval [a, b], with a maximum error of \varepsilon.
----double getAngle(P(u)) const {------// 19
                                                double binary_search_continuous(double low, double high,-----// 8e
-----return atan2((*this * u).length(), *this % u); }-----// 2f
                                                -----double eps, double (*f)(double)) {------// c0
----bool isOnPlane(PL(A, B, C)) const {------// c8
                                                ----while (true) {------// 3a
-----return abs((A - *this) * (B - *this) % (C - *this)) < EPS; } };------// 16
                                                ------double mid = (low + high) / 2, cur = f(mid);-----// 75
int intersect(L(A, B), L(C, D), point3d &0){-----// 81
                                                -----if (abs(cur) < eps) return mid;------// 76
----if (abs((B - A) * (C - A) % (D - A)) > EPS) return 0;-----// 3b
                                                ------else if (0 < cur) high = mid;------// e5
----if (((A - B) * (C - D)).length() < EPS)------// 6c
                                                -----else low = mid:-----// a7
-----return A.isOnLine(C, D) ? 2 : 0;-----// 3d
                                                ----}--------// b5
----point3d normal = ((A - B) * (C - B)).normalize();-----// 9b
----double s1 = (C - A) * (D - A) % normal;-----// 1e
----0 = A + ((B - A) / (s1 + ((D - B) * (C - B) % normal))) * s1;-----// 6e
                                                 Another implementation that takes a binary predicate f, and finds an integer value x on the integer
----return 1: }-----// 24
                                                interval [a,b] such that f(x) \wedge \neg f(x-1).
int intersect(L(A, B), PL(C, D, E), point3d & 0) {-----// ce
                                                int binary_search_discrete(int low, int high, bool (*f)(int)) {------// 51
----double V1 = (C - A) * (D - A) % (E - A):-----// 3c
                                                ----assert(low <= high);-----// 19
----double V2 = (D - B) * (C - B) % (E - B);-----// c8
                                                ----while (low < high) {-----// a3
----0 = A + ((B - A) / (V1 + V2)) * V1;------// 94 -----else low = mid + 1;-----// 03
----return 1; }------// 7a
                                               ----}-----// 9b
bool intersect(P(A), P(nA), P(B), P(nB), point3d &P, point3d &Q) \{-----//24\}
                                               ----assert(f(low));------// 42
---point3d n = nA * nB;-----// d3
                                                ----return low:------// a6
----if (n.isZero()) return false;------// b2
                                                }-----// d3
----point3d v = n * nA;------// c7
----P = A + (n * nA) * ((B - A) % nB / (v % nB));
                                                7.2. Ternary Search. Given a function f that is first monotonically increasing and then monotonically
---0 = P + n;
                                                cally decreasing, ternary search finds the x such that f(x) is maximized.
                                                template <class F>-----// d1
----return true: }-----// 1f
                                                double ternary_search_continuous(double lo, double hi, double eps, F f) {-----// e7
6.9. Polygon Centroid.
                                                ----while (hi - lo > eps) {------// 3e
#include "polygon.cpp"-----// 58
                                                ------double m1 = lo + (hi - lo) / 3, m2 = hi - (hi - lo) / 3;-----// e8
point polygon_centroid(polygon p) {------// 79
                                                -----if (f(m1) < f(m2)) lo = m1:-----// 1d
----double cx = 0.0, cy = 0.0; -----// d5
                                               -----else hi = m2;-----// b3
----double mnx = 0.0, mny = 0.0;-----// 22
                                               ----}-----// bb
----int n = size(p);------// 2d
                                                ----return hi:-----// fa
----for (int i = 0; i < n; i++)------// 24
                                                }-----// 66
-----mnx = min(mnx, real(p[i])),-----// 6d
                                               7.3. 2SAT. A fast 2SAT solver.
-----mny = min(mny, imag(p[i]));-----// 95
----for (int i = 0; i < n; i++)-----------// df #include "../graph/scc.cpp"------// c3
-----p[i] = point(real(p[i]) - mnx, imag(p[i]) - mny);------// c2 -----// 63
-----cx += (real(p[i]) + real(p[j])) * cross(p[i], p[j]);------// d5 ----vvi adj(2*n+1);------// 7b
----return point(cx, cy) / 6.0 / polygon_area_signed(p) + point(mnx, mny); }---// 2f ------adj[-clauses[i].first + n].push_back(clauses[i].second + n);------// 17
```

```
Reykjavík University
------if (clauses[i].first != clauses[i].second)-------// 87 ----node *head;---------------------------------// fe
-----adj[-clauses[i].second + n].push_back(clauses[i].first + n);-----// 93 ----exact_cover(int _rows, int _cols) : rows(_rows), cols(_cols), head(NULL) {-// b6
----pair<union_find, vi> res = scc(adj);------// 9f -----sol = new int[rows];------// 5f
----vi dag = res.second;------// 58 ------arr[i] = new bool[cols], memset(arr[i], 0, cols);------// 75
-----truth[cur + n] = truth[p]:------// b3 -------for (int j = 0; j < cols; j++)------// f5
-----truth[o] = 1 - truth[p];------// 80 -------if (i == rows || arr[i][j]) ptr[i][j] = new node(i, j);-----// 89
------if (truth[p] == 1) all_truthy.push_back(cur);--------// 5c ------else ptr[i][j] = NULL;-----------------// 32
----}------// d9 -----}------// 98
-----if (!ptr[i][j]) continue;-----// 35
7.4. Stable Marriage. The Gale-Shapley algorithm for solving the stable marriage problem.
                             -----int ni = i + 1, nj = j + 1;-----// b7
----queue<int> q;-------// f6 -------if (ni == rows + 1) ni = 0;-------// 81
----vi at(n, 0), eng(n, -1), res(n, -1); vvi inv(n, vi(n));-------// c3 -------if (ni == rows || arr[ni][i]) break;------// 19
----for (int i = 0; i < n; i++) q.push(i);------// fe ------ptr[i][j]->d = ptr[ni][j];-----// 71
----while (!q.empty()) {------// 55 -----ptr[ni][j]:>u = ptr[i][j];-----// c4
------int curm = q.front(); q.pop();------// ab -------while (true) {-------// c6
------for (int &i = at[curm]; i < n; i++) {---------// 9a -------if (nj == cols) nj = 0;-------// e2
------int curw = m[curm][i];-------// cf -------if (i == rows || arr[i][nj]) break;------// 8d
------if (eng[curw] == -1) { }-------// 35
-----q.push(eng[curw]);------// 8c -----ptr[i][j]->r = ptr[i][nj];-----// d5
-----else continue;-----// b4 ------ptr[i][nj]->l = ptr[i][j];------// 72
----}------head = new node(rows, -1);-------// 80
----return res;------head->r = ptr[rows][0];-------// 73
}------ptr[rows][0]->l = head;------// 3b
                             ------head->l = ptr[rows][cols - 1];-----// da
7.5. Algorithm X. An implementation of Knuth's Algorithm X, using dancing links. Solves the
                             ------ptr[rows][cols - 1]->r = head;------// 6b
Exact Cover problem.
                              ------for (int i = 0: i < cols: i++) {------// 97
bool handle_solution(vi rows) { return false; }------// 63
                             -----int cnt = -1:-----// 84
struct exact_cover {------// 95
                             -----for (int i = 0: i <= rows: i++)------// 96
----struct node {------// 7e ------if (ptr[i][j]) cnt++, ptr[i][j]->p = ptr[rows][j];------// cb
------<mark>int</mark> row, col, size;------// ae _______/ 59
------node(int _row, int _col) : row(_row), col(_col) {-------// c9 ------for (int i = 0; i <= rows; i++) delete[] ptr[i];------// bf
-----size = 0; l = r = u = d = p = NULL; }-----// c3 -----delete[] ptr;-----// 99
----};-------// c1 ...}
----int rows, cols, *sol;------// 7b
                             ----<mark>#</mark>define COVER(c, i, j) \\ \------// 6a
----bool **arr:------// e6
```

```
Reykjavík University
}-----// 42
------for (node *i = c->d; i != c; i = i->d) \sqrt{\phantom{a}}
------for (node *j = i->r; j != i; j = j->r) \sqrt{\phantom{a}}
                                                      7.8. Dates. Functions to simplify date calculations.
-----j->d->u = j->u, j->u->d = j->d, j->p->size--;-----// 16
                                                      int intToDay(int jd) { return jd % 7; }-----// 89
----#define UNCOVER(c, i, j) N-----// d0
                                                      int dateToInt(int y, int m, int d) {-----// 96
------for (node *i = c->u; i != c; i = i->u) \sqrt{\phantom{a}}
                                                      ----return 1461 * (y + 4800 + (m - 14) / 12) / 4 +-----// a8
-----367 * (m - 2 - (m - 14) / 12 * 12) / 12 -----// d1
-----j->p->size++, j->d->u = j->u->d = j; \\ \]
                                                      -----3 * ((v + 4900 + (m - 14) / 12) / 100) / 4 +------// be
------c->r->l = c->l->r = c:------// 91
                                                      -----d - 32075:-----// e0
----bool search(int k = 0) {------// bb
                                                      }-----// fa
-----if (head == head->r) {------// c3
                                                      void intToDate(int jd, int &y, int &m, int &d) {------// a1
-----vi res(k);-----// 9f
                                                      ----int x, n, i, j;------// 00
------for (int i = 0; i < k; i++) res[i] = sol[i];------// 75
                                                      ---x = id + 68569; 11
-----sort(res.begin(), res.end());-----// 87
                                                      ---n = 4 * x / 146097; 2f
-----return handle_solution(res);-----// 51
                                                      ---x = (146097 * n + 3) / 4:
------}-----// f5
                                                      ----i = (4000 * (x + 1)) / 1461001;-----// 0d
-----node *c = head->r, *tmp = head->r;------// 8e
                                                      ----x -= 1461 * i / 4 - 31:-----// 09
-----for ( ; tmp != head; tmp = tmp->r) if (tmp->size < c->size) c = tmp;---// 00
                                                      ---i = 80 * x / 2447;
-----if (c == c->d) return false;-----// b0
                                                      ---d = x - 2447 * j / 80;
-----COVER(c, i, j);-----// 7a
                                                      ---x = i / 11:-----// b7
------bool found = false:-----// 7f
                                                      ---m = i + 2 - 12 * x;
------for (node *r = c->d; !found && r != c; r = r->d) {-------// 88
                                                      ---v = 100 * (n - 49) + i + x
-----sol[k] = r->row;-----// ef
                                                      }-----// af
------for (node *j = r -> r; j = j -> r) { COVER(j -> p, a, b); }-----// 61
-----found = search(k + 1);-----// f1
                                                                          8. Useful Information
------for (node *j = r->l; j != r; j = j->l) { UNCOVER(j->p, a, b); }----// ab
-------}------// 1a
                                                        Tips & Tricks.
------UNCOVER(c, i, i):-----// 3a
                                                         • How fast does our algorithm have to be? Can we use brute-force?
-----return found:-----// 80
                                                         • Does order matter?
• Is it better to look at the problem in another way? Maybe backwards?
                                                         • Are there subproblems that are recomputed? Can we cache them?
                                                         • Do we need to remember everything we compute, or just the last few iterations of computation?
7.6. nth Permutation. A very fast algorithm for computing the nth permutation of the list \{0, 1, \dots, k-1\}
                                                         • Does it help to sort the data?
1}.
                                                         • Can we speed up lookup by using a map (tree or hash) or an array?
vector<int> nth_permutation(int cnt, int n) {------// 78
                                                         • Can we binary search the answer?
----vector<int> idx(cnt), per(cnt), fac(cnt);-----// 9e
                                                         • Can we add vertices/edges to the graph to make the problem easier? Can we turn the graph
----for (int i = 0; i < cnt; i++) idx[i] = i;------// 80
                                                          into some other kind of a graph (perhaps a DAG, or a flow network)?
----for (int i = 1; i <= cnt; i++) fac[i - 1] = n % i, n /= i;------// 04
                                                         • Make sure integers are not overflowing.
----for (int i = cnt - 1; i >= 0; i--)-----// 52
                                                         • Is it better to compute the answer modulo n? Perhaps we can compute the answer modulo
-----per[cnt - i - 1] = idx[fac[i]], idx.erase(idx.begin() + fac[i]);-----// 41
                                                          m_1, m_2, \ldots, m_k, where m_1, m_2, \ldots, m_k are pairwise coprime integers, and find the real answer
----return per:-----// 84
                                                          using CRT?
}-----// 97
                                                         • Are there any edge cases? When n = 0, n = -1, n = 1, n = 2^{31} - 1 or n = -2^{31}? When
                                                          the list is empty, or contains a single element? When the graph is empty, or contains a single
7.7. Cycle-Finding. An implementation of Floyd's Cycle-Finding algorithm.
                                                          vertex? When the graph contains self-loops? When the polygon is concave or non-simple?
ii find_cycle(int x0, int (*f)(int)) {------// a5
                                                         • Can we use exponentiation by squaring?
----int t = f(x0), h = f(t), mu = 0, lam = 1;------// 8d
----while (t != h) t = f(t), h = f(f(h));-----// 79
                                                      8.2. Fast Input Reading. If input or output is huge, sometimes it is beneficial to optimize the input
----h = x0:-----// 04
                                                      reading/output writing. This can be achieved by reading all input in at once (using fread), and then
----while (t != h) t = f(t), h = f(h), mu++;-----// 9d
                                                      parsing it manually. Output can also be stored in an output buffer and then dumped once in the end
```

(using fwrite). A simpler, but still effective, way to achieve speed is to use the following input reading

----h = f(t):-----// 00

----while (t != h) h = f(h), lam++;-----// 5e

Reykjavík University 25

8.3. Worst Time Complexity.

1 0				
	n	Worst AC Algorithm	Comment	
	≤ 10	$O(n!), O(n^6)$	e.g. Enumerating a permutation	
	≤ 15	$O(2^n \times n^2)$	e.g. DP TSP	
	≤ 20	$O(2^{n}), O(n^{5})$	e.g. $DP + bitmask technique$	
	≤ 50	$O(n^4)$	e.g. DP with 3 dimensions $+ O(n)$ loop, choosing ${}_{n}C_{k} = 4$	
	$\leq 10^{2}$	$O(n^3)$	e.g. Floyd Warshall's	
	$\leq 10^{3}$	$O(n^2)$	e.g. Bubble/Selection/Insertion sort	
	$\leq 10^{5}$	$O(n\log_2 n)$	e.g. Merge sort, building a Segment tree	
	$\leq 10^{6}$	$O(n), O(\log_2 n), O(1)$	Usually, contest problems have $n \leq 10^6$ (e.g. to read input)	

8.4. Bit Hacks.

- n & -n returns the first set bit in n.
- n & (n 1) is 0 only if n is a power of two.
- snoob(x) returns the next integer that has the same amount of bits set as x. Useful for iterating through subsets of some specified size.