Collision between radiative and adiabatic supersonic flows

Quentin MORENO-GELOS

Anabella ARAUDO Antoine GINTRAND Vladimir TIKHONCHUK Stefan WEBER

Adiabatic and radiative shocks in protostellar jets

High densities: radiative shocks are expected to form.

High velocities: adiabatic shocks is also possible.

Adiabatic shocks: efficient at particle acceleration

Radiative shocks: strongly compress the gas.

The termination shocks in protostellar jets

 γ -ray emission by inelastic p-p collisions

Sketch of the interaction between two constant supersonic flows

General equation of the model

$$\begin{split} &\partial_t \rho + \partial_x (\rho \ v) = 0 \\ &\partial_t v + v \partial_x v + \frac{1}{\rho} \partial_x P = 0 \\ &\partial_t \left(\frac{1}{2} \rho \ v^2 + e \right) + \partial_x \left[v \left(\frac{1}{2} \rho \ v^2 + e + P \right) \right] = -\Lambda \end{split}$$

Cooling time/lenght

$$t_{\text{cool}} = \frac{P_{2R}(0)}{(\gamma_R - 1)\Lambda_{2R}(0)}$$

$$x_{\text{cool}} = V_{1R}(0)t_{\text{cool}}$$

Perfect gas
$$(\gamma - 1)e = P = \rho k T/m$$

Adiabatic shock jump conditions

$$\frac{\rho_2}{\rho_1} = -\frac{V_1}{V_2} = \frac{\gamma + 1}{\gamma - 1}, \qquad \frac{P_2}{\rho_1 V_1^2} = \frac{2}{\gamma + 1}$$

$$V_{1L,R} = |S_{L,R} - v_{1L,R}|$$
$$V_{2L,R} = |S_{L,R} - v_{2L,R}|$$

Self-similar analysis

$$\rho = \rho_{1R} n(\xi), \qquad v = V_{1R} u(\xi) + S_R \xi, \qquad \frac{kT}{m} = V_{1R}^2 z(\xi), \qquad \xi = \frac{x}{x_{\text{ra}}}$$

 $\Lambda = \frac{C_R}{t}$ is self-similar and homogeneous inside the layer

$$\frac{dn}{d\xi} = \frac{\alpha\lambda(\gamma_R - 1)}{u(\gamma_R z - u^2)}$$

$$\frac{du}{d\xi} = \frac{\alpha[\lambda(\gamma_R - 1) + \gamma_R nz - nu^2]}{n(\gamma_R z - u^2)}$$

$$\frac{dz}{d\xi} = \frac{\alpha\lambda(\gamma_R - 1)(u^2 - z)}{nu(\gamma_R z - u^2)}$$

Normalized parameters

$$\alpha = \frac{S_R}{V_{1R}}$$

$$\lambda = \frac{C_R}{\rho_{1R} V_{1R}^2} \propto \frac{t}{t_{\text{cool}}}$$

Self-similar profile of the shell

$$\eta = 0$$
 $\eta = 1$ discontinuity shock front

Adiabatic shock jump conditions

$$\frac{\rho_{II}}{\rho_{I}} = \frac{\gamma + 1}{\gamma - 1},$$

$$\frac{V_{II}}{V_{I}} = \frac{\gamma - 1}{\gamma + 1},$$

$$T_{II} = \frac{2(\gamma_{R} - 1)}{(\gamma_{R} + 1)^{2}} V_{I}^{2}$$

Parameter space

BRP-solutions

$$\rho_{1L}v_{1L}^2 = \rho_{1R}v_{1R}^2$$

 $\beta = 0$ infinitely light adiabatic gas

$$\beta = \infty$$

radiative flow reflected from a wall $_{0.05}$

ASTROPHYSICS / LABORATORY EXPERIMENTS

Sutherland & Dopita (1993)

ASTROPHYSICS / LABORATORY EXPERIMENTS

Rodriguez et al. (2012)

Optical depth $\tau = \kappa L$

ASTROPHYSICS / LABORATORY EXPERIMENTS

	Astro stable		Astro unstable		Lab	
Plasma	Left	Right	Left	Right	Left	Right
γ	5/3	5/3	5/3	5/3	5/3	1.2
μ_i	1	1	1	1	1	131
$\rho_1 \; [\mathrm{g.cm^{-3}}]$	8.36×10^{-24}	8.36×10^{-22}	4.18×10^{-23}	4.18×10^{-21}	10^{-8}	10^{-6}
$v_1 \ [{\rm cm.s}^{-1}]$	3×10^7	-3×10^{6}	1.5×10^{8}	-1.5×10^{7}	8×10^{6}	-8×10^{5}
T_1 [K]	10^{3}	10^{2}	10^{3}	10^{2}	10^{3}	10^{3}
$t_{\rm cool}$ [s]	-	8.19×10^{7}	-	4.78×10^{9}	-	1.33×10^{-9}
$x_{\rm cool} \ [{ m cm}]$	-	3.27×10^{14}	-	9.55×10^{16}	-	1.42×10^{-3}
$[x_{\min}, x_{\max}]$ [cm]	$[-3 \times 10^{15}, 10^{15}]$		$[-1.2 \times 10^{18}, 1.2 \times 10^{17}]$		$[-3 \times 10^{-2}, 3 \times 10^{-3}]$	
$t_{ m max}$ [s]	4×10^8		2×10^{10}		6×10^{-9}	

Thermally stable solutions

Thermally stable solutions

Cooled Region (CR)

Radiative Region (RR)

Thermally unstable solutions

Parameter space

Discussion on the 1D analysis

Self-similar analysis with an homogenous cooling
 Scalability of the study between Astro and Lab

• Estimation of the shock velocity α in function of the cooling rate λ for any β (density ratio)

- Analytical estimation of the contact discontinuity at the first time of the shocks formation
 Acceleration which could lead to some instabilities (Rayleigh-Taylor)
- Stability analysis / Particle mixing
- Magnetic field
- Particle acceleration
- Experiment

Thermally unstable solutions

Fundamental mode Falle (1981)

Stability analysis

Stability analysis at self-similar time

Transverse stability

$$Q_{0}(x,t) = \begin{cases} \rho_{0}(x,t) \\ P_{0}(x,t) \\ v_{0}(x,t) \\ v_{\perp 0}(x,t) = 0 \\ \Lambda_{0}(x,t) \end{cases} \text{ and } Q_{1}(x,y,t) = \begin{cases} \rho_{1}(x,y,t) \\ P_{1}(x,y,t) \\ v_{1}(x,y,t) \\ v_{\perp 1}(x,y,t) \\ \Lambda_{1}(x,y,t) = 0 \end{cases}$$
(Vishniac, 1983) (Vishniac, 1987) (Vishniac, 1994)

Longitudinal stability

$$Q_{0}(x,t) = \begin{cases} \rho_{0}(x,t) \\ P_{0}(x,t) \\ v_{0}(x,t) \\ v_{\perp 0}(x,t) = 0 \\ \Lambda_{0}(x,t) \end{cases} \quad \text{and} \quad Q_{1}(x,t) = \begin{cases} \rho_{1}(x,t) \\ P_{1}(x,t) \\ v_{1}(x,t) \\ v_{\perp 1}(x,t) = 0 \\ \Lambda_{1}(x,t) \end{cases} \quad \text{(Chevalier & Imamura, 1982)}$$

Stability analysis

Proposal for Laser/Plasma experiment

Proposal for Laser/Plasma experiment

Particle acceleration

Adiabatic shocks: efficient at particle acceleration First-order Fermi acceleration

Radiative shocks: strongly compress the gas.

(Spitovsky et al. 2008)

Sketch of the particle acceleration

 x_{ad}

CRs escaping downstream Diffusion: PIC box ho_{1R} ho_{1L} Adiabatic layer Radiative layer v_{1R} v_{1L} $\Lambda = 0$ $\Lambda > 0$ $\Lambda = 0$ $\Lambda = 0$

 χ_{c}

 $x_{\rm rad}$

Numerical tools

HYBRID simulations for a complet description

- MHD code describes a thermal plasma.
- Particles are used to represent a non-thermal component (PIC module).
- A Boris pusher calculates the effect of electromagnetic fields on the particles
- The effect of charged particles on the thermal plasma can be described through the Ohm's law (Bai et al. 2015)

Advantages over pure PIC

- No need for a large particle population
- Can take advantage of adaptive mesh refinement
- No Maxwell equations, reduces noise

Disadvantages

- Limited regime: $n_{thermal} \gg n_{non-thermal}$
- Some restrictions owing to use of ideal MHD
- Need to determine a particle injection rate

(van Marle et al., 2018)