

PRELIMINARY AMENDMENT

AMENDMENTS TO THE SPECIFICATION

Amend the specification by adding before the first line the sentence:

This application is a National Stage application of PCT/US2003/026834 filed August 28, 2003.

Please amend paragraph [153] as follows:

[153] Each node w **902** of the tree, including the leaf nodes are assigned a secret key sk_w by the authorizer. To decrypt a message encrypted using PK during period i , only key $sk_{i < i >}$ is needed. In addition, given key sk_w **903**, it is possible to efficiently derive descendant keys sk_{ew} **904** sk_{w0} and sk_{w1} **905** for descendant nodes w_0 **904** and w_1 **905** and the descendants derived from these keys of these nodes. However, given PK and i , and without sk_{ew} sk_w for all prefixes w of $< i >$, it is infeasible to derive $sk_{i < i >}$ or to decrypt messages encrypted during time-periods up to including i .

PRELIMINARY AMENDMENT

Please add the following Abstract of the Disclosure:

The present invention provides methods for sending a digital message from a sender to a recipient in a public-key based cryptosystem comprising an authorizer. The authorizer can be a single entity or comprise a hierarchical or distributed entity. The present invention allows communication of messages by an efficient protocol, not involving key status queries or key escrow, where a message recipient can decrypt a message from a message sender only if the recipient possesses up-to-date authority from the authorizer. The invention allows such communications in a system comprising a large number (e.g. millions) of users.