We claim that

$$x = x_1 y_1 + x_2 y_2 + \dots + x_n y_n$$

works. Indeed, using the above congruences, for i = 2, ..., n, we get

$$x \equiv x_1 y_1 + x_i \pmod{\mathfrak{a}_i},\tag{*}$$

but since $\mathfrak{a}_2 \cdots \mathfrak{a}_n \subseteq \mathfrak{a}_i$ for $i = 2, \dots, n$ and $y_1 \equiv 0 \pmod{\mathfrak{a}_2 \cdots \mathfrak{a}_n}$, we have

$$x_1 y_1 \equiv 0 \pmod{\mathfrak{a}_i}, \quad i = 2, \dots, n$$

and equation (*) reduces to

$$x \equiv x_i \pmod{\mathfrak{a}_i}, \quad i = 2, \dots, n.$$

For i = 1, we get

$$x \equiv x_1 \pmod{\mathfrak{a}_1}$$
,

therefore

$$x \equiv x_i \pmod{\mathfrak{a}_i}, \quad i = 1, \dots, n.$$

proving surjectivity.

The classical version of the Chinese Remainder Theorem is the case where $A = \mathbb{Z}$ and where the ideals \mathfrak{a}_i are defined by n pairwise relatively prime integers m_1, \ldots, m_n . By the Bezout identity, since m_i and m_j are relatively prime whenever $i \neq j$, there exist some $u_i, u_j \in \mathbb{Z}$ such that $u_i m_i + u_j m_j = 1$, and so $m_i \mathbb{Z} + m_j \mathbb{Z} = \mathbb{Z}$. In this case, we get an isomorphism

$$\mathbb{Z}/(m_1\cdots m_n)\mathbb{Z} \approx \prod_{i=1}^n \mathbb{Z}/m_i\mathbb{Z}.$$

In particular, if m is an integer greater than 1 and

$$m = \prod_{i} p_i^{r_i}$$

is its factorization into prime factors, then

$$\mathbb{Z}/m\mathbb{Z} \approx \prod_{i} \mathbb{Z}/p_{i}^{r_{i}}\mathbb{Z}.$$

In the previous situation where the integers m_1, \ldots, m_n are pairwise relatively prime, if we write $m = m_1 \cdots m_n$ and $m'_i = m/m_i$ for $i = 1 \ldots, n$, then m_i and m'_i are relatively prime, and so m'_i has an inverse modulo m_i . If t_i is such an inverse, so that

$$m_i't_i \equiv 1 \pmod{m_i},$$