

Closing the gap: Evaluating On Body Injector technologies and their readiness for commercialization

Aaron Wubshet September 2024

Agenda

- Project Background and Objective
- Approach
- Project Summary
- Next Steps

Amgen is a biotechnology company, focusing on discovering, developing, manufacturing, and delivering therapeutics.

Background Approach Project Summary Next Steps

- They were founded in 1980 in Thousand Oaks, CA where their HQ is located.
 - Singapore and Puerto Rico are two of their larger drug manufacturing plants
- \$28.2 billion in revenue and over 26,000 employees globally
- Amgen focuses on four main therapeutic areas: oncology, inflammation, general
 medicine and rare disease.
- Amgen invests heavily in R&D, developing biologic and synthetic medicines many of which are administered with drug delivery devices.

This project aims to evaluate the gap between existing drug delivery devices and market / patient needs

Background

Approacl

Project Summary

Next Step

Background

- Amgen has two primary electromechanical (EM) devices for drug delivery: Onpro and AutoTouch
 - AutoTouch: reusable autoinjector used with Enbrel to treat rheumatoid arthritis
 - Onpro: on body injector used with Neulasta to boost white blood cell
- Key Question: What strategies can be implemented to make delivery devices more appealing to patients?
- To narrow scope of the discussion of EM drug delivery devices, on-body injectors (OBI) will be the primary focus

Identify and evaluate the gap

- Hypothesis to test: Drug delivery devices have a wide range of features serving different markets and patients with varying success
 - Market participants must respond appropriately to technology and patient use trends to ensure the best possible technology is available to patients
- Incorporating patient and market dynamics into product strategies and roadmaps is difficult and complex
 - Multiple stakeholders contribute across the value chain
 - Successful implementations are likely accelerate product development

Focused enhancements studies

- Demonstrate potential pathways to determine what is the best OBI technology across different market and patient needs
- Conduct case studies on value of different features and prototype features
- Consolidate investigation results into a transparent strategic document to align devices and drug product teams on best path forward for patients when it comes to drug delivery

Reviewing the OBI market landscape will require understanding patient needs, various product offerings / features, and trends

Background

Approac

Project Summary

Next Steps

Market overview

- Electromechanical drug delivery mechanisms are designed to precisely and in a controlled manner administer drugs to patients using actuators and sensors to improve the experience
- Different categories include: autoinjectors, on-body injectors, smart inhalers, infusion pumps
- Major distinction within OBIs is insulin vs non-insulin
 - Non-insulin offerings make up about 40% of the market
 - Relatively new market compared to other devices

Trends, competitors, features

- Major players in the OBI space include companies like West and BD with Enable, LTS, and Sensile more recently entering the market
- Key specifications include max volume, viscosity capabilities, reusability, connectivity, dose type, and lyophilization
- Early trends identified such as larger volume, platform capabilities, stronger pumps (to support higher viscosities), and partial reusability
 - Connectivity is still viewed as a nice to have if it doesn't complicate the process

Initial potential patient needs

- Wearability
 - Comfort
 - Size
 - Weight
- Sterilization process and avoiding infection
- Audio / visual cues
 - Progress tracking
 - Error notification
- Dose accuracy
- Simplicity / ease of use

Multiple case studies and feature enhancements will be explored

Background

Approac

Project Summary

Next Steps

Increasing volume / viscosity

- A significant portion of biologics are administered through intravenously (IV) when initially released
 - High bioavailability
 - Well understood approval processes
- Expanding to subcutaneous (SC) or intramuscular (IM) injections comes with the benefit of reaching more patients
- However, the lower bioavailability means more drug product is required
 - Higher volume and/or higher concentration resulting in higher
- 6 viscosities

Lyophilization reconstitution

- Freeze drying certain medications allow for longer shelf life
- The resulting drug product is usually stored in a sealed vial of powder with a separate diluent
- The reconstitution of the diluent and powder creates a solution to be administered
- Enabling that reconstitution to happen at home in autoinjectors and OBIs is a highly sought after and difficult feature

Temperature

- Temperature is a key variable that impacts drug efficiency, injection comfort, and shelf life
- Drug product often is required to reach room temperature before administration
- Some drugs even require being above room temperature and must be warmed
- While extending drug shelf life usually requires lower temperatures especially for biologics during transportation and storage

Temperature sensing and modeling enhancements to autoinjector platforms provide blueprint that can be replicated for OBIs

Background

Approach

Project Summary

Next Steps

Collect temperature data

- 4 sources of temperature data can be provided to the microprocessor
- Modifying the firmware to collect the data is likely too slow of a process, so instead external wire based temperature probes used to gather data
- Different environmental chambers used to test temperature trend from baseline to room temperature

Train & evaluate ML models

- Time based model to estimate equilibrium time
- Survey of different potential approaches to compare complexity and accuracy
- Linear models, time-series models, and potentially neural nets to be tested
- Concern will be memory capacity required to execute a prediction efficiently due to portable nature of the device

Determine implementation

- Firmware on the microprocessor written and handled by external CMO partner
- Initial model and training will be written in a higher level language (e.g., Python), but implementation will have to be in C most likely
- Coordination with that partner to ensure additional functionality (i.e., machine learning model implementation) can fit within the timing, memory, and bandwidth constraints

Develop actionable, strategic initiatives backed up by enhancement study results to share with key stakeholders

Background

Approac

Project Summary

Next Ster

- Strategic initiatives
 - Leverage market landscape study, case studies, and feature prototyping experience to ideate key initiatives to meet various market and patient needs
 - Circulate initiatives and gather input on relative prioritization and impact
- Identify primary relevant stakeholders
 - Near term and long term drug product teams with patient needs that align with available and soon-to-be available technologies
 - Business development partners to aid in identifying partnerships and acquisition targets to help achieve relevant initiatives
 - Executive sponsors to champion specific initiatives
- Lay out execution plan for key initiatives

