

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА – Российский технологический университет»

ИНСТИТУТ КИБЕРНЕТИКИ КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ

Лабораторная работа 3

по дисциплине «Системы массового обслуживания»

Тема: "Многоканальные системы массового обслуживания с бесконечной очередью"

Выполнил: Студент 4-го курса

Скорописцев М.М.

Группа: КМБО-04-18

Оглавление

Задание	
Краткие теоретические сведения	7
Средства языка программирования	9
Результаты расчетов	
Задание 1	
Задание 2	14
Задание 3	
Анализ результатов	21
Система массового обслуживания (D M n)	21
Система массового обслуживания (M D n)	21
Система массового обслуживания (М М п)	
Список литературы	24
Приложение	25

Задание

В рассматриваемых системах массового обслуживания (СМО) состояние в любой момент времени t характеризуется числом заявок, находящихся в СМО. Для всех СМО задано количество приборов n, все приборы пронумерованы.

Событием в развитии СМО является переход из одного состояния в другое. События могут быть двух типов: 1 — появление в системе новой заявки, 2 завершение обслуживания заявки прибором (при этом данный прибор освобождается, и, если есть заявки в очереди, то первая из них поступает сразу же на обслуживание в этот прибор). Если при появлении в системе новой заявки есть свободные приборы, то она сразу же принимается на обслуживание свободным прибором с наименьшим номером, в противном случае заявка становится в очередь типа FIFO.

Система массового обслуживания (D|M|n).

Дано:

- время между приходом заявок ΔT_3 (заданная постоянная величина);
- параметр μ показательного распределения времени обслуживания заявки каждым прибором.

В момент поступлении каждой заявки на обслуживание в прибор определяется время её обслуживания $t_{oбс\pi}$ в соответствии с показательным законом распределения с заданным параметром μ .

Предполагается, что в начальный момент времени t=0 в СМО нет заявок, т.е. состояние системы 0, и через заданное время ΔT_3 в СМО поступит первая заявка (произойдет событие с номером 1). Момент наступления первого события (типа 1) равен $t_{coo}(1) = \Delta T_3$, в этот момент определяется время обслуживания $t_{obcn}(1)$ заявки 1 в соответствии с показательным законом распределения с параметром μ . После события 1 система находится в состоянии 1.

Система массового обслуживания (M|D|n).

Дано:

- среднее число заявок λ , поступающих за единицу времени (время между приходом заявок имеет показательное распределение с параметром λ);
- время обслуживания заявки прибором $T_{o\bar{b}}$ (заданная постоянная величина).

Предполагается, что в начальный момент времени $t\!=\!0$ система находится в состоянии 0 и в этот момент определяется время поступления в систему первой заявки $t_3(1)$ в соответствии с показательным законом распределения с параметром λ .

III. Система массового обслуживания (M|M|n).

Дано:

- среднее число заявок λ , поступающих за единицу времени (время между приходом заявок имеет показательное распределение с параметром λ);
- параметр μ показательного распределения времени обслуживания заявки каждым прибором.

Предполагается, что в начальный момент времени $t\!=\!0$ система находится в состоянии 0 и в этот момент определяется время поступления в систему первой заявки $t_3(1)$ в соответствии с показательным законом распределения с параметром λ , а в момент поступления каждой заявки на обслуживание в прибор определяется время её обслуживания $t_{oбcs}(1)$ в соответствии с показательным законом распределения с параметром μ .

Требуется:

- 1. Провести моделирование первых 100 событий в развитии каждой системы.
- 2. Составить таблицу 1 с данными о событиях:
- номер события l;
- момент наступления события $t_{coo}(l)$;
- тип события Type(l);
- состояние СМО C(l) после события l;

- минимальное оставшееся время $t_{ocmun}(l)$ обслуживания приборами заявок после события l (если после события все приборы свободны, то $t_{ocmun}(l) = -1$);
- время ожидания $t_{oxc3}(l)$, через которое после события l в СМО появится новая заявка;
- номер заявки j(l), участвующей в событии l.
- 3. Составить таблицу 2 с данными о всех поступивших заявках:
- номер заявки j;
- момент $t_3(j)$ появления заявки j в СМО;
- номер места в очереди q(j), на которое попала заявка j (если заявка сразу начала обслуживаться, то номер места в очереди q(j)=0);
- время пребывания заявки в очереди $t_{ou}(j)$;
- момент начала обслуживания заявки $t_{\mu\rho\delta}(j)$;
- время обслуживания заявки $t_{oбcn}(j)$;
- момент $t_{\kappa o \delta}(j)$ окончания обслуживания заявки j и выхода её из СМО.
- 4. Составить таблицу 3 с данными о приборах:
- номер прибора k;
- общее число заявок N(k), поступивших на обслуживание в данный прибор на интервале $[0,t_{co6}(100)]$;
- общее время занятости прибора $t_{3ah}(k)$ на интервале $[0,t_{coo}(100)]$.
- коэффициент простоя прибора на интервале $[0,t_{coo}(100)]$ (отношение времени простоя прибора на интервале $[0,t_{coo}(100)]$ к $t_{coo}(100)$);
- Найти:
- число заявок J(100), поступивших в СМО на интервале $[0,t_{coo}(100)]$;
- число JF(100) полностью обслуженных заявок на интервале $[0,t_{coo}(100)];$
- среднее число заявок, находившихся в СМО, на интервале $[0,t_{coo}(100)]$, которое находится по формуле $\overline{z}(100) = \frac{1}{100} \sum_{l=1}^{100} z(l)$, где z(l) число заявок в СМО после события l;
- среднее время пребывания заявок в очереди на интервале $[0,t_{co\delta}(100)]$, которое находится по формуле $\overline{t}_{oq}(100) = \frac{1}{JF(100)} \sum_{j=1}^{JF(100)} t_{oq}(j)$;

— среднее время пребывания заявок в СМО на интервале $[0,t_{co\delta}(100)]$, которое находится по формуле $\overline{t}_{CMO}(100) = \frac{1}{JF(100)} \sum_{j=1}^{JF(100)} [t_{\kappa o\delta}(j) - t_s(j)];$

Для СМО (D|M|n) и (M|D|n) составить таблицу относительных частот пребывания СМО в состояниях следующего вида:

i	$v_i^{(100)}$
0	$v_0^{(100)}$
1	v ₁ (100)
•••	•••

где i – состояние СМО, $v_i(100)$ – отношение числа попаданий СМО в состояние i за 100 событий к 100.

Для СМО (M|M|n) найти первые значения стационарных вероятностей состояний $(r_0, r_1, r_2, ..., r_M)$, где $M = \max\{C(l), l = 1, ..., 100\}$ и составить таблицу относительных частот пребывания СМО в состояниях следующего вида:

i	r_i	$v_i^{(100)}$	$ v_i(100) - r_i $
0	r_0	$v_0^{(100)}$	$ v_0(100)-r_0 $
1	r_1	v ₁ (100)	$ v_1(100)-r_1 $
		•••	•••
M	$r_{_{M}}$	$v_{M}(100)$	$ v_{\scriptscriptstyle M}(100)-r_{\scriptscriptstyle M} $
	$\sum_{i=0}^{M} r_i$	$\sum_{i=0}^{M} v_i(100)$	$\max\{ v_i(100)-r_i \}$

Вывод результатов проводить с округлением до 0,00001.

Краткие теоретические сведения

CMO
$$(M|M|n)$$

Состояние СМО (M|M|n) в любой момент времени t характеризуется числом заявок Z_t , находящихся в СМО. СМО может находится в состояниях k = 0, 1, 2,...:

в состоянии 0 прибор свободен, в состоянии $k \ge n+1$ прибор занят и k-n заявка находится в очереди. Вероятности состояний $P(Z_t = k) = p_k(t), k = 0, 1, 2,....$

Граф СМО (M|M|n) имеет вид

Система дифференциальных уравнений Колмогорова для вероятностей состояний СМО (M|M|n) имеет вид

$$\begin{cases} p'_{0}(t) = -\lambda p_{0}(t) + \mu p_{1}(t); \\ p'_{k}(t) = \lambda p_{k-1}(t) - (\lambda + k\mu)p_{k}(t) + (k+1)\mu p_{k+1}(t), 1 \le k < n, \\ p'_{n}(t) = \lambda p_{n-1}(t) - (\lambda + n\mu)p_{n}(t) + n\mu p_{n+1}(t); \\ p'_{k}(t) = \lambda p_{k-1}(t) - (\lambda + n\mu)p_{k}(t) + n\mu p_{k+1}(t), k > n. \end{cases}$$

Функция распределения времени т между двумя последовательно приходящими заявками

$$F_{\tau}(x) = \begin{cases} 0, x \leq 0; \\ 1 - e^{-\lambda x}, x > 0. \end{cases}$$

Плотность распределения времени τ между двумя последовательно приходящими заявками

$$f_{\tau}(x) = \begin{cases} 0, x < 0; \\ \lambda e^{-\lambda x}, x \ge 0. \end{cases}$$

Среднее время между двумя последовательно приходящими заявками $\overline{\tau} = \frac{1}{\lambda}$.

Стационарные вероятности состояний

Стационарные вероятности состояний l_0, l_1, l_2, \dots удовлетворяют системе линейных алгебраических уравнений

$$\begin{cases} 0 = -\lambda r_{0} + \mu r_{1}; \\ 0 = \lambda r_{k-1}(t) - (\lambda + k\mu) r_{k}(t) + (k+1)\mu r_{k+1}(t), 1 \le k < n; \\ 0 = \lambda r_{n-1}(t) - (\lambda + n\mu) r_{n}(t) + n\mu r_{n+1}(t); \\ 0 = \lambda r_{k-1}(t) - (\lambda + n\mu) r_{k}(t) + n\mu r_{k+1}(t), k > n. \end{cases}$$

а также уравнению нормировки

$$\sum_{k=0}^{\infty} r_k = 1.$$

Следствия из СЛАУ для стационарных вероятностей состояний:

$$r_1 = \rho r_0$$
, $\lambda r_{k-1} = k \mu r_k$ при $1 \le k \le n$, $\lambda r_{k-1} = n \mu r_k$ при $k \ge n+1$, где $\rho = \frac{\lambda}{\mu}$.

Поэтому $r_k = \frac{\rho^k}{k!} r_0$. при $1 \le k \le n$, $r_{n+l} = v^l r_n$ при k = n+l, $l \ge 1$, где $v = \frac{\lambda}{n\mu} = \frac{\rho}{n}$. Из уравнения нормировки получаем, что при v < 1

$$r_0 = \{1 + \rho + \frac{\rho^2}{2!} + \dots + \frac{\rho^{n-1}}{(n-1)!} + \frac{\rho^n}{n!} \frac{1}{1-\nu}\}^{-1}$$

Вероятность отказа

$$P_{\text{OTK}} = 0$$

Относительная пропускная способность

$$Q = 1$$

Абмолютная пропускная способность

$$A = \lambda Q = \lambda$$

Среднее число занятых приборов

$$\overline{k} = \rho$$

Средняя длина очереди

$$\overline{q} = \frac{v r_n}{(1-v)^2}$$

Среднее число заявок, находящихся в СМО

$$\overline{z} = \overline{k} + \overline{q} = \rho + \frac{v r_n}{(1 - v)^2}$$

Среднего времени пребывания заявок в очереди

$$\overline{t}_{oq} = \frac{\overline{q}}{\lambda} = \frac{r_n}{n\mu(1-\nu)^2} = \frac{n\mu r_n}{(n\mu-\lambda)^2}.$$

Среднего времени пребывания заявок в СМО

$$\overline{t}_{\scriptscriptstyle CMO} = \frac{\overline{z}}{\lambda} = \frac{\overline{k}}{\lambda} + \frac{\overline{q}}{\lambda} = \frac{1}{\mu} + \frac{r_n}{n\mu(1-\nu)^2}.$$

Средства языка программирования

np.random.exponential($1/\lambda$, size) - возвращает случайное вещественное число из экспоненциального (показательного)

Результаты расчетов

Вариант №72, n = 11 $T_{o6} = 0.178, \Delta T_3 = 1.741$, $\lambda = 6.178, ~\mu = ~0.571$

Задание 1

Система массового обслуживания (D|M|n).

$$\Delta T_{_3}=1.741$$
 , $\mu=~0.571$

l	$t_{\cos}(l)$	Type(l)	C(l)	$t_{ ext{oct}}(l)$	$t_{_{ m OK3}}(l)$	j(l)
1	1.741	1	1	0.65043	1.741	1
2	2.39143	2	0	-1	1.09057	1
3	3.482	1	1	1.17694	1.741	2
4	4.65894	2	0	-1	0.56406	2
5	5.223	1	1	3.03249	1.741	3
6	6.964	1	2	1.29149	1.741	4
7	8.25549	2	1	1.17034	0.44951	3
8	8.705	1	2	0.23552	1.741	5
9	8.94052	2	1	0.48531	1.50548	5
10	9.42583	2	0	-1	1.02017	4
11	10.446	1	1	2.75215	1.741	6
12	12.187	1	2	0.13082	1.741	7
13	12.31782	2	1	0.88033	1.61018	7
14	13.19815	2	0	-1	0.72985	6
15	13.928	1	1	0.32926	1.741	8
16	14.25726	2	0	-1	1.41174	8
17	15.669	1	1	3.53433	1.741	9
18	17.41	1	2	1.79333	1.741	10
19	19.151	1	3	0.05233	1.741	11
20	19.20333	2	2	0.33646	1.68867	9
21	19.53979	2	1	3.05432	1.35221	10
22	20.892	1	2	1.70211	1.741	12
23	22.59411	2	1	1.23881	0.03889	11
24	22.633	1	2	1.19992	1.741	13
25	23.83292	2	1	0.30814	0.54108	12
26	24.14106	2	0	-1	0.23294	13
27	24.374	1	1	1.37363	1.741	14
28	25.74763	2	0	-1	0.36737	14
29	26.115	1	1	0.62574	1.741	15
30	26.74074	2	0	-1	1.11526	15
31	27.856	1	1	1.60045	1.741	16
32	29.45645	2	0	-1	0.14055	16
33	29.597	1	1	0.33362	1.741	17
34	29.93062	2	0	-1	1.40738	17
35	31.338	1	1	2.44824	1.741	18
36	33.079	1	2	0.70724	1.741	19
37	33.78624	2	1	6.15657	1.03376	18
38	34.82	1	2	2.01229	1.741	20

	T =	1 .	1 _	T	1	1
39	36.561	1	3	0.06646	1.741	21
40	36.62746	2	2	0.20483	1.67454	21
41	36.83229	2	1	3.11052	1.46971	20
42	38.302	1	2	0.38676	1.741	22
43	38.68876	2	1	1.25404	1.35424	22
44	39.94281	2	0	-1	0.10019	19
45	40.043	1	1	3.17694	1.741	23
46	41.784	1	2	1.41864	1.741	24
47	43.20264	2	1	0.01731	0.32236	24
48	43.21994	2	0	-1	0.30506	23
49	43.525	1	1	4.53263	1.741	25
50	45.266	1	2	2.79163	1.741	26
51	47.007	1	3	1.05063	1.741	27
52	48.05763	2	2	0.03354	0.69037	25
53	48.09117	2	1	2.10041	0.65683	27
54	48.748	1	2	1.44358	1.741	28
55	50.19158	2	1	0.03127	0.29742	26
56	50.22285	2	0	-1	0.26615	28
57	50.489	1	1	3.11391	1.741	29
58	52.23	1	2	1.37291	1.741	30
59	53.60291	2	1	0.35381	0.36809	29
60	53.95673	2	0	-1	0.01427	30
61	53.971	1	1	1.759	1.741	31
62	55.712	1	2	0.018	1.741	32
63	55.73	2	1	0.3694	1.723	31
64	56.0994	2	0	-1	1.3536	32
65	57.453	1	1	0.79767	1.741	33
66	58.25067	2	0	-1	0.94333	33
67	59.194	1	1	4.0957	1.741	34
68	60.935	1	2	0.57565	1.741	35
69	61.51065	2	1	1.77905	1.16535	35
70	62.676	1	2	0.6137	1.741	36
71	63.2897	2	1	1.84583	1.1273	34
72	64.417	1	2	0.71853	1.741	37
73	65.13553	2	1	1.09326	1.02247	36
74	66.158	1	2	0.07079	1.741	38
75	66.22879	2	1	0.15069	1.67021	37
76	66.37948	2	0	-1	1.51952	38
77	67.899	1	1	0.51915	1.741	39
78	68.41815	2	0	-1	1.22185	39
79	69.64	1	1	0.27067	1.741	40
80	69.91067	2	0	-1	1.47033	40
81	71.381	1	1	0.7228	1.741	41
82	72.1038	2	0	-1	1.0182	41
83	73.122	1	1	1.49218	1.741	42
84	74.61418	2	0	-1	0.24882	42
85	74.863	1	1	3.13286	1.741	43
86	76.604	1	2	0.0627	1.741	43
87	1	2	1	1.32916	1.6783	44
	76.6667	2			•	
88	77.99586	_ <u></u>	0	-1	0.34914	43

89	78.345	1	1	6.26698	1.741	45
90	80.086	1	2	2.181	1.741	46
91	81.827	1	3	0.02296	1.741	47
92	81.84996	2	2	0.41704	1.71804	47
93	82.267	2	1	2.34498	1.301	46
94	83.568	1	2	0.02584	1.741	48
95	83.59384	2	1	1.01813	1.71516	48
96	84.61198	2	0	-1	0.69702	45
97	85.309	1	1	0.79652	1.741	49
98	86.10552	2	0	-1	0.94448	49
99	87.05	1	1	0.95301	1.741	50
100	88.00301	2	0	-1	0.78799	50

Таблица 2

ц <u>а 2 </u>						
j	$t_{\scriptscriptstyle 3}(j)$	q(j)	$t_{o4}(j)$	$t_{\text{hof}}(j)$	$t_{\text{обсл}}(j)$	$t_{\text{kof}}(j)$
1	1.741	0	0	1.741	0.65043	2.39143
2	3.482	0	0	3.482	1.17694	4.65894
3	5.223	0	0	5.223	3.03249	8.25549
4	6.964	0	0	6.964	2.46183	9.42583
5	8.705	0	0	8.705	0.23552	8.94052
6	10.446	0	0	10.446	2.75215	13.19815
7	12.187	0	0	12.187	0.13082	12.31782
8	13.928	0	0	13.928	0.32926	14.25726
9	15.669	0	0	15.669	3.53433	19.20333
10	17.41	0	0	17.41	2.12979	19.53979
11	19.151	0	0	19.151	3.44311	22.59411
12	20.892	0	0	20.892	2.94092	23.83292
13	22.633	0	0	22.633	1.50806	24.14106
14	24.374	0	0	24.374	1.37363	25.74763
15	26.115	0	0	26.115	0.62574	26.74074
16	27.856	0	0	27.856	1.60045	29.45645
17	29.597	0	0	29.597	0.33362	29.93062
18	31.338	0	0	31.338	2.44824	33.78624
19	33.079	0	0	33.079	6.86381	39.94281
20	34.82	0	0	34.82	2.01229	36.83229
21	36.561	0	0	36.561	0.06646	36.62746
22	38.302	0	0	38.302	0.38676	38.68876
23	40.043	0	0	40.043	3.17694	43.21994
24	41.784	0	0	41.784	1.41864	43.20264
25	43.525	0	0	43.525	4.53263	48.05763
26	45.266	0	0	45.266	4.92558	50.19158
27	47.007	0	0	47.007	1.08417	48.09117
28	48.748	0	0	48.748	1.47485	50.22285
29	50.489	0	0	50.489	3.11391	53.60291
30	52.23	0	0	52.23	1.72673	53.95673
31	53.971	0	0	53.971	1.759	55.73
32	55.712	0	0	55.712	0.3874	56.0994
33	57.453	0	0	57.453	0.79767	58.25067
34	59.194	0	0	59.194	4.0957	63.2897
35	60.935	0	0	60.935	0.57565	61.51065
		1	1			

36	62.676	0	0	62.676	2.45953	65.13553
37	64.417	0	0	64.417	1.81179	66.22879
38	66.158	0	0	66.158	0.22148	66.37948
39	67.899	0	0	67.899	0.51915	68.41815
40	69.64	0	0	69.64	0.27067	69.91067
41	71.381	0	0	71.381	0.7228	72.1038
42	73.122	0	0	73.122	1.49218	74.61418
43	74.863	0	0	74.863	3.13286	77.99586
44	76.604	0	0	76.604	0.0627	76.6667
45	78.345	0	0	78.345	6.26698	84.61198
46	80.086	0	0	80.086	2.181	82.267
47	81.827	0	0	81.827	0.02296	81.84996
48	83.568	0	0	83.568	0.02584	83.59384
49	85.309	0	0	85.309	0.79652	86.10552
50	87.05	0	0	87.05	0.95301	88.00301

Задание 2

Система массового обслуживания (M|D|n).

 $T_{o6} = 0.178$, $\lambda = 6.178$,

l	$t_{\cos}(l)$	Type(l)	C(l)	$t_{\text{oct}}(l)$	$t_{o i 3}(l)$	j(l)
1	0.12425	1	1	0.178	0.18398	1
2	0.30225	2	0	-1	0.00598	1
3	0.30823	1	1	0.178	0.02848	2
4	0.33671	1	2	0.14952	0.24977	3
5	0.48623	2	1	0.02848	0.10025	2
6	0.51471	2	0	-1	0.07177	3
7	0.58649	1	1	0.178	0.04247	4
8	0.62895	1	2	0.13553	0.0015	5
9	0.63045	1	3	0.13403	0.3289	6
10	0.76449	2	2	0.04247	0.19487	4
11	0.80695	2	1	0.0015	0.15241	5
12	0.80845	2	0	-1	0.1509	6
13	0.95936	1	1	0.178	0.31052	7
14	1.13736	2	0	-1	0.13252	7
15	1.26988	1	1	0.178	0.11959	8
16	1.38947	1	2	0.05841	0.08939	9
17	1.44788	2	1	0.11959	0.03098	8
18	1.47887	1	2	0.08861	0.52945	10
19	1.56747	2	1	0.08939	0.44084	9
20	1.65687	2	0	-1	0.35145	10
21	2.00831	1	1	0.178	0.24658	11
22	2.18631	2	0	-1	0.06858	11
23	2.2549	1	1	0.178	0.162	12
24	2.41689	1	2	0.016	0.05136	13
25	2.4329	2	1	0.162	0.03536	12
26	2.46826	1	2	0.12664	0.13827	14
27	2.59489	2	1	0.05136	0.01163	13
28	2.60652	1	2	0.03973	0.03206	15
29	2.63859	1	3	0.00767	0.28645	16
30	2.64626	2	2	0.13827	0.27878	14
31	2.78452	2	1	0.03206	0.14052	15
32	2.81659	2	0	-1	0.10845	16
33	2.92504	1	1	0.178	0.12961	17
34	3.05466	1	2	0.04839	0.04612	18
35	3.10077	1	3	0.00227	0.22185	19
36	3.10304	2	2	0.12961	0.21958	17
37	3.23266	2	1	0.04612	0.08997	18
38	3.27877	2	0	-1	0.04385	19
39	3.32262	1	1	0.178	0.01059	20
40	3.33321	1	2	0.16741	0.03097	21
41	3.36419	1	3	0.13644	0.04781	22
42	3.412	1	4	0.08862	0.13654	23

		•		•	•	
43	3.50062	2	3	0.01059	0.04791	20
44	3.51121	2	2	0.03097	0.03733	21
45	3.54219	2	1	0.04781	0.00635	22
46	3.54854	1	2	0.04146	0.00031	24
47	3.54885	1	3	0.04115	0.01378	25
48	3.56263	1	4	0.02737	0.01258	26
49	3.57521	1	5	0.01479	0.07422	27
50	3.59	2	4	0.13654	0.05944	23
51	3.64943	1	5	0.0771	0.07355	28
52	3.72298	1	6	0.00356	0.12137	29
53	3.72654	2	5	0.00031	0.11782	24
54	3.72685	2	4	0.01378	0.11751	25
55	3.74063	2	3	0.01258	0.10373	26
56	3.75321	2	2	0.07422	0.09114	27
57	3.82743	2	1	0.07355	0.01692	28
58	3.84436	1	2	0.05663	0.02951	30
59	3.87386	1	3	0.02712	0.03436	31
60	3.90098	2	2	0.12137	0.00724	29
61	3.90823	1	3	0.11413	0.03032	32
62	3.93854	1	4	0.08381	0.14985	33
63	4.02236	2	3	0.02951	0.06604	30
64	4.05186	2	2	0.03436	0.03654	31
65	4.08623	2	1	0.03032	0.00217	32
66	4.0884	1	2	0.02815	0.06314	34
67	4.11654	2	1	0.14985	0.03499	33
68	4.15154	1	2	0.11486	0.12779	35
69	4.2664	2	1	0.06314	0.01293	34
70	4.27933	1	2	0.05021	0.15196	36
71	4.32954	2	1	0.12779	0.10176	35
72	4.43129	1	2	0.02604	0.01502	37
73	4.44631	1	3	0.01102	0.17183	38
74	4.45733	2	2	0.15196	0.16081	36
75	4.60929	2	1	0.01502	0.00885	37
76	4.61814	1	2	0.00617	0.0544	39
77	4.62431	2	1	0.17183	0.04823	38
78	4.67254	1	2	0.1236	0.2873	40
79	4.79614	2	1	0.0544	0.1637	39
80	4.85054	2	0	-1	0.1093	40
81	4.95984	1	1	0.178	0.1075	41
82	5.00434	1	2	0.173	0.19852	42
83	5.13784	2	1	0.1333	0.06502	41
84	5.18234	2	0	-1	0.00302	42
85	5.20286	1	1	0.178	0.6556	43
86	5.38086	2	0	-1	0.0330	43
87	5.85846	1	1	0.178	0.4770	44
88	6.03646	2	0	-1	0.10035	44
89	6.04681	1	1	0.178	0.01033	45
90	6.09222	1	2	0.178	0.04341	46
90	6.09222	1	3	0.13239	0.00497	47
91	6.09719	2	2	0.12762	0.34518	47
74	0.22401			0.04341	0.41/30	43

93	6.27022	2	1	0.00497	0.17215	46
94	6.27519	2	0	-1	0.16718	47
95	6.44237	1	1	0.178	0.00907	48
96	6.45144	1	2	0.16893	0.40338	49
97	6.62037	2	1	0.00907	0.23444	48
98	6.62944	2	0	-1	0.22538	49
99	6.85481	1	1	0.178	0.16186	50
100	7.01667	1	2	0.01614	0.03443	51

Таблица 2

i	$t_3(j)$	q(j)	$t_{o4}(j)$	$t_{\text{ho6}}(j)$	$t_{ m oбc}$ л (j)	$t_{\text{коб}}(j)$
1	0.12425	0	0	0.12425	0.178	0.30225
2	0.30823	0	0	0.30823	0.178	0.48623
3	0.33671	0	0	0.33671	0.178	0.51471
4	0.58649	0	0	0.58649	0.178	0.76449
5	0.62895	0	0	0.62895	0.178	0.80695
6	0.63045	0	0	0.63045	0.178	0.80845
7	0.95936	0	0	0.95936	0.178	1.13736
8	1.26988	0	0	1.26988	0.178	1.44788
9	1.38947	0	0	1.38947	0.178	1.56747
10	1.47887	0	0	1.47887	0.178	1.65687
11	2.00831	0	0	2.00831	0.178	2.18631
12	2.2549	0	0	2.2549	0.178	2.4329
13	2.41689	0	0	2.41689	0.178	2.59489
14	2.46826	0	0	2.46826	0.178	2.64626
15	2.60652	0	0	2.60652	0.178	2.78452
16	2.63859	0	0	2.63859	0.178	2.81659
17	2.92504	0	0	2.92504	0.178	3.10304
18	3.05466	0	0	3.05466	0.178	3.23266
19	3.10077	0	0	3.10077	0.178	3.27877
20	3.32262	0	0	3.32262	0.178	3.50062
21	3.33321	0	0	3.33321	0.178	3.51121
22	3.36419	0	0	3.36419	0.178	3.54219
23	3.412	0	0	3.412	0.178	3.59
24	3.54854	0	0	3.54854	0.178	3.72654
25	3.54885	0	0	3.54885	0.178	3.72685
26	3.56263	0	0	3.56263	0.178	3.74063
27	3.57521	0	0	3.57521	0.178	3.75321
28	3.64943	0	0	3.64943	0.178	3.82743
29	3.72298	0	0	3.72298	0.178	3.90098
30	3.84436	0	0	3.84436	0.178	4.02236
31	3.87386	0	0	3.87386	0.178	4.05186
32	3.90823	0	0	3.90823	0.178	4.08623
33	3.93854	0	0	3.93854	0.178	4.11654
34	4.0884	0	0	4.0884	0.178	4.2664
35	4.15154	0	0	4.15154	0.178	4.32954
36	4.27933	0	0	4.27933	0.178	4.45733
37	4.43129	0	0	4.43129	0.178	4.60929
38	4.44631	0	0	4.44631	0.178	4.62431
39	4.61814	0	0	4.61814	0.178	4.79614

40	4.67254	0	0	4.67254	0.178	4.85054
41	4.95984	0	0	4.95984	0.178	5.13784
42	5.00434	0	0	5.00434	0.178	5.18234
43	5.20286	0	0	5.20286	0.178	5.38086
44	5.85846	0	0	5.85846	0.178	6.03646
45	6.04681	0	0	6.04681	0.178	6.22481
46	6.09222	0	0	6.09222	0.178	6.27022
47	6.09719	0	0	6.09719	0.178	6.27519
48	6.44237	0	0	6.44237	0.178	6.62037
49	6.45144	0	0	6.45144	0.178	6.62944
50	6.85481	0	0	6.85481	0.178	7.03281
51	7.01667	0	0	7.01667	0.178	7.19467

Задание 3

Система массового обслуживания (M|M|n).

$$\lambda = 6.178, \ \mu = 0.571$$

	I	T	1	1	1	1
l	$t_{\cos}(l)$	Type(l)	C(l)	$t_{ m oct}(l)$	$t_{\text{ож3}}(l)$	j(l)
1	0.04947	1	1	1.15165	0.04996	1
2	0.09943	1	2	0.55276	0.05136	2
3	0.15079	1	3	0.5014	0.20726	3
4	0.35805	1	4	0.29414	0.14826	4
5	0.50631	1	5	0.14588	0.00234	5
6	0.50865	1	6	0.14354	0.17005	6
7	0.65219	2	5	0.54894	0.02651	2
8	0.6787	1	6	0.52242	0.15305	7
9	0.83175	1	7	0.36937	0.31272	8
10	1.14447	1	8	0.05665	0.07969	9
11	1.20112	2	7	0.20185	0.02304	1
12	1.22416	1	8	0.17881	0.12538	10
13	1.34954	1	9	0.05343	0.02906	11
14	1.3786	1	10	0.02437	0.23742	12
15	1.40297	2	9	0.36911	0.21305	7
16	1.61602	1	10	0.14508	0.08133	13
17	1.69736	1	11	0.06375	0.08781	14
18	1.7611	2	10	0.01098	0.02407	13
19	1.77208	2	9	0.201	0.01309	5
20	1.78517	1	10	0.18791	0.02368	15
21	1.80886	1	11	0.16422	0.15416	16
22	1.96302	1	12	0.01006	0.1166	17
23	1.97308	2	11	0.09816	0.10654	10
24	2.07124	2	10	0.08665	0.00838	14
25	2.07962	1	11	0.07827	0.1194	18
26	2.15789	2	10	0.02304	0.04113	8
27	2.18093	2	9	0.05621	0.01809	9
28	2.19902	1	10	0.03813	0.19487	19
29	2.23714	2	9	0.05092	0.15675	6
30	2.28806	2	8	0.37863	0.10583	15
	•	•	17		1	1

31	2.39389	1	9	0.2728	0.11795	20
32	2.51184	1	10	0.2728	0.56908	21
33	2.66669	2	9	0.13463	0.30908	18
34	2.79365	2	8	0.12090	0.41423	4
35	2.90748	2	7	0.11303	0.23727	19
36	3.08092	1	8	0.33966	0.17344	22
37	3.41801	1	9	0.00257	0.01018	23
38	3.42058	2	8	0.54358	0.01010	20
39	3.42819	1	9	0.53598	0.1988	24
40	3.62699	1	10	0.33717	0.13649	25
41	3.76348	1	11	0.20068	0.04914	26
42	3.81263	1	12	0.15154	0.67448	27
43	3.96416	2	11	0.21961	0.52294	11
44	4.18377	2	10	0.09791	0.30334	16
45	4.28168	2	9	0.20412	0.20543	21
46	4.4858	2	8	0.28446	0.00131	27
47	4.48711	1	9	0.28316	0.06864	28
48	4.55575	1	10	0.21451	0.06671	29
49	4.62246	1	11	0.1478	0.13027	30
50	4.75273	1	12	0.01753	0.03972	31
51	4.77027	2	11	0.03473	0.02219	22
52	4.79245	1	12	0.01254	0.32636	32
53	4.805	2	11	0.24098	0.31381	30
54	5.03348	2	10	0.0125	0.08533	32
55	5.04598	2	9	0.15197	0.07283	26
56	5.11881	1	10	0.07914	0.055	33
57	5.17382	1	11	0.02414	0.39446	34
58	5.19796	2	10	0.20829	0.37032	12
59	5.40624	2	9	0.39178	0.16204	3
60	5.56828	1	10	0.22974	0.05351	35
61	5.62179	1	11	0.17624	0.14081	36
62	5.76259	1	12	0.03543	0.19068	37
63	5.79803	2	11	0.13895	0.15524	31
64	5.93697	2	10	0.08189	0.0163	33
65	5.95327	1	11	0.0656	0.03439	38
66	5.98766	1	12	0.0312	0.29306	39
67	6.01887	2	11	0.0866	0.26185	17
68	6.10547	2	10	0.17904	0.17525	29
69	6.28072	1	11	0.00379	0.37172	40
70	6.28451	2	10	0.16276	0.36793	38
71	6.44727	2	9	0.04866	0.20517	25
72	6.49594	2	8	0.28567	0.15651	40
73	6.65244	1	9	0.12917	0.01817	41
74	6.67061	1	10	0.111	0.06888	42
75	6.73949	1	11	0.04212	0.04086	43
76	6.78035	1	12	0.00125	0.12856	44
77	6.78161	2	11	0.19239	0.1273	35
78	6.90891	1	12	0.06509	0.05126	45
79	6.96017	1	13	0.01383	0.06241	46
80	6.974	2	12	0.12602	0.04859	24

81	7.02259	1	13	0.02949	0.00233	47
82	7.02491	1	14	0.02716	0.05708	48
83	7.05208	2	13	0.04794	0.02991	45
84	7.08199	1	14	0.01803	0.2341	49
85	7.10002	2	13	0.82051	0.21607	44
86	7.16336	2	12	0.75717	0.15273	47
87	7.31609	1	13	0.21235	0.35687	50
88	7.52844	2	12	0.39209	0.14452	48
89	7.67296	1	13	0.24757	0.13374	51
90	7.8067	1	14	0.11383	0.06877	52
91	7.87547	1	15	0.04505	0.14134	53
92	7.92053	2	14	0.06827	0.09629	41
93	7.9888	2	13	0.07723	0.02802	36
94	8.01682	1	14	0.04922	0.026	54
95	8.04281	1	15	0.02322	0.14585	55
96	8.06603	2	14	0.25198	0.12263	34
97	8.12673	2	13	0.19129	0.06193	52
98	8.18866	1	14	0.12935	0.16103	56
99	8.31801	2	13	0.11103	0.03168	39
100	8.34969	1	14	0.07935	0.4794	57

Таблица 2

a <u>Z</u>						
j	$t_3(j)$	q(j)	$t_{oq}(j)$	$t_{\text{HOG}}(j)$	$t_{ m oбc}_{ m J}(j)$	$t_{\text{kof}}(j)$
1	0.04947	0	0	0.04947	1.15165	1.20112
2	0.09943	0	0	0.09943	0.55276	0.65219
3	0.15079	0	0	0.15079	5.25546	5.40624
4	0.35805	0	0	0.35805	2.4356	2.79365
5	0.50631	0	0	0.50631	1.26578	1.77208
6	0.50865	0	0	0.50865	1.7285	2.23714
7	0.6787	0	0	0.6787	0.72427	1.40297
8	0.83175	0	0	0.83175	1.32614	2.15789
9	1.14447	0	0	1.14447	1.03646	2.18093
10	1.22416	0	0	1.22416	0.74892	1.97308
11	1.34954	0	0	1.34954	2.61462	3.96416
12	1.3786	0	0	1.3786	3.81935	5.19796
13	1.61602	0	0	1.61602	0.14508	1.7611
14	1.69736	0	0	1.69736	0.37389	2.07124
15	1.78517	0	0	1.78517	0.50289	2.28806
16	1.80886	0	0	1.80886	2.37491	4.18377
17	1.96302	1	0.01006	1.97308	4.04579	6.01887
18	2.07962	0	0	2.07962	0.58707	2.66669
19	2.19902	0	0	2.19902	0.70846	2.90748
20	2.39389	0	0	2.39389	1.02669	3.42058
21	2.51184	0	0	2.51184	1.76984	4.28168
22	3.08092	0	0	3.08092	1.68934	4.77027
23	3.41801	0	0	3.41801	6.59968	10.01769
24	3.42819	0	0	3.42819	3.54581	6.974
25	3.62699	0	0	3.62699	2.82028	6.44727
26	3.76348	0	0	3.76348	1.2825	5.04598
27	3.81263	1	0.15154	3.96416	0.52164	4.4858
		·				

29 4.55575 0 0 4.55575 1.54972 6.10547 30 4.62246 0 0 4.62246 0.18254 4.805 31 4.75273 1 0.01753 4.77027 1.02776 5.79803 32 4.79245 1 0.01254 4.805 0.22848 5.03348 33 5.11881 0 0 5.11881 0.81816 5.93697 34 5.17382 0 0 5.17382 2.89222 8.06603 35 5.56828 0 0 5.56828 1.21333 6.78161 36 5.62179 0 0 5.62179 2.36701 7.9888 37 5.76259 1 0.03543 5.79803 2.74995 8.54798 38 5.95327 0 0 5.95327 0.33124 6.28451 39 5.98766 1 0.0312 6.01887 2.29915 8.31801 40 6.28072 0	28	4.48711	0	0	4.48711	4.04694	8.53405
30 4.62246 0 0 4.62246 0.18254 4.805 31 4.75273 1 0.01753 4.77027 1.02776 5.79803 32 4.79245 1 0.01254 4.805 0.22848 5.03348 33 5.11881 0 0 5.11881 0.81816 5.93697 34 5.17382 0 0 5.17382 2.89222 8.06603 35 5.56828 0 0 5.56828 1.21333 6.78161 36 5.62179 0 0 5.62179 2.36701 7.9888 37 5.76259 1 0.03543 5.79803 2.74995 8.54798 38 5.95327 0 0 5.95327 0.33124 6.28451 39 5.98766 1 0.0312 6.01887 2.29915 8.31801 40 6.28072 0 0 6.628072 0.21522 6.49594 41 6.65244 0							
31 4.75273 1 0.01753 4.77027 1.02776 5.79803 32 4.79245 1 0.01254 4.805 0.22848 5.03348 33 5.11881 0 0 5.11881 0.81816 5.93697 34 5.17382 0 0 5.17382 2.89222 8.06603 35 5.56828 0 0 5.56828 1.21333 6.78161 36 5.62179 0 0 5.62179 2.36701 7.9888 37 5.76259 1 0.03543 5.79803 2.74995 8.54798 38 5.95327 0 0 5.95327 0.33124 6.28451 39 5.98766 1 0.0312 6.01887 2.29915 8.31801 40 6.28072 0 0 6.28072 0.21522 6.49594 41 6.65244 0 0 6.67061 6.78964 13.46025 43 6.73949 0							
32 4.79245 1 0.01254 4.805 0.22848 5.03348 33 5.11881 0 0 5.11881 0.81816 5.93697 34 5.17382 0 0 5.17382 2.89222 8.06603 35 5.56828 0 0 5.56828 1.21333 6.78161 36 5.62179 0 0 5.62179 2.36701 7.9888 37 5.76259 1 0.03543 5.79803 2.74995 8.54798 38 5.95327 0 0 5.95327 0.33124 6.28451 39 5.98766 1 0.0312 6.01887 2.29915 8.31801 40 6.28072 0 0 6.28072 0.21522 6.49594 41 6.65244 0 0 6.67061 6.78964 13.46025 43 6.73949 0 0 6.73949 2.64381 9.3833 44 6.96035 1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
33 5.11881 0 0 5.11881 0.81816 5.93697 34 5.17382 0 0 5.17382 2.89222 8.06603 35 5.56828 0 0 5.56828 1.21333 6.78161 36 5.62179 0 0 5.62179 2.36701 7.9888 37 5.76259 1 0.03543 5.79803 2.74995 8.54798 38 5.95327 0 0 5.95327 0.33124 6.28451 39 5.98766 1 0.0312 6.01887 2.29915 8.31801 40 6.28072 0 1 0.0312 6.01887 2.29915 8.31801 40 6.28072 0 0 6.28072 0.21522 6.49594 41 6.65244 0 0 6.67244 1.26809 7.92053 42 6.67061 0 0 6.673949 2.64381 9.3833 44 6.78035 <					_		
34 5.17382 0 0 5.17382 2.89222 8.06603 35 5.56828 0 0 5.56828 1.21333 6.78161 36 5.62179 0 0 5.62179 2.36701 7.9888 37 5.76259 1 0.03543 5.79803 2.74995 8.54798 38 5.95327 0 0 5.95327 0.33124 6.28451 39 5.98766 1 0.0312 6.01887 2.29915 8.31801 40 6.28072 0 0 6.28072 0.21522 6.49594 41 6.65244 0 0 6.65244 1.26809 7.92053 42 6.67061 0 0 6.67061 6.78964 13.46025 43 6.73949 0 0 6.78161 0.31841 7.10002 45 6.90891 1 0.06509 6.974 0.07808 7.05208 46 6.96017 2 <							
35 5.56828 0 0 5.56828 1.21333 6.78161 36 5.62179 0 0 5.62179 2.36701 7.9888 37 5.76259 1 0.03543 5.79803 2.74995 8.54798 38 5.95327 0 0 5.95327 0.33124 6.28451 39 5.98766 1 0.0312 6.01887 2.29915 8.31801 40 6.28072 0 0 6.28072 0.21522 6.49594 41 6.65244 0 0 6.65244 1.26809 7.92053 42 6.67061 0 0 6.67061 6.78964 13.46025 43 6.73949 0 0 6.73949 2.64381 9.3833 44 6.78035 1 0.00125 6.78161 0.31841 7.10002 45 6.90891 1 0.06509 6.974 0.07808 7.05208 46 6.96017 2			_	_			
36 5.62179 0 0 5.62179 2.36701 7.9888 37 5.76259 1 0.03543 5.79803 2.74995 8.54798 38 5.95327 0 0 5.95327 0.33124 6.28451 39 5.98766 1 0.0312 6.01887 2.29915 8.31801 40 6.28072 0 0 6.28072 0.21522 6.49594 41 6.65244 0 0 6.65244 1.26809 7.92053 42 6.67061 0 0 6.67061 6.78964 13.46025 43 6.73949 0 0 6.73949 2.64381 9.3833 44 6.78035 1 0.00125 6.78161 0.31841 7.10002 45 6.90891 1 0.06509 6.974 0.07808 7.05208 46 6.96017 2 0.0919 7.05208 3.54013 10.59221 47 7.02259 2 <td>34</td> <td>5.17382</td> <td>0</td> <td>0</td> <td>5.17382</td> <td>2.89222</td> <td>8.06603</td>	34	5.17382	0	0	5.17382	2.89222	8.06603
37 5.76259 1 0.03543 5.79803 2.74995 8.54798 38 5.95327 0 0 5.95327 0.33124 6.28451 39 5.98766 1 0.0312 6.01887 2.29915 8.31801 40 6.28072 0 0 6.28072 0.21522 6.49594 41 6.65244 0 0 6.65244 1.26809 7.92053 42 6.67061 0 0 6.67061 6.78964 13.46025 43 6.73949 0 0 6.73949 2.64381 9.3833 44 6.78035 1 0.00125 6.78161 0.31841 7.10002 45 6.90891 1 0.06509 6.974 0.07808 7.05208 46 6.96017 2 0.07743 7.10002 0.06334 7.16336 48 7.02491 3 0.13845 7.16336 0.36508 7.52844 49 7.08199 <t< td=""><td>35</td><td>5.56828</td><td>0</td><td>0</td><td>5.56828</td><td>1.21333</td><td>6.78161</td></t<>	35	5.56828	0	0	5.56828	1.21333	6.78161
38 5.95327 0 0 5.95327 0.33124 6.28451 39 5.98766 1 0.0312 6.01887 2.29915 8.31801 40 6.28072 0 0 6.28072 0.21522 6.49594 41 6.65244 0 0 6.65244 1.26809 7.92053 42 6.67061 0 0 6.67061 6.78964 13.46025 43 6.73949 0 0 6.73949 2.64381 9.3833 44 6.78035 1 0.00125 6.78161 0.31841 7.10002 45 6.90891 1 0.06509 6.974 0.07808 7.05208 46 6.96017 2 0.0919 7.05208 3.54013 10.59221 47 7.02259 2 0.07743 7.10002 0.06334 7.16336 48 7.02491 3 0.13845 7.16336 0.36508 7.52844 49 7.08199 <t< td=""><td>36</td><td>5.62179</td><td>0</td><td>0</td><td>5.62179</td><td>2.36701</td><td>7.9888</td></t<>	36	5.62179	0	0	5.62179	2.36701	7.9888
39 5.98766 1 0.0312 6.01887 2.29915 8.31801 40 6.28072 0 6.28072 0.21522 6.49594 41 6.65244 0 0 6.65244 1.26809 7.92053 42 6.67061 0 0 6.67061 6.78964 13.46025 43 6.73949 0 0 6.73949 2.64381 9.3833 44 6.78035 1 0.00125 6.78161 0.31841 7.10002 45 6.90891 1 0.06509 6.974 0.07808 7.05208 46 6.96017 2 0.0919 7.05208 3.54013 10.59221 47 7.02259 2 0.07743 7.10002 0.06334 7.16336 48 7.02491 3 0.13845 7.16336 0.36508 7.52844 49 7.08199 3 0.44645 7.52844 0.9006 8.42904 50 7.31609 2	37	5.76259	1	0.03543	5.79803	2.74995	8.54798
40 6.28072 0 6.28072 0.21522 6.49594 41 6.65244 0 0 6.65244 1.26809 7.92053 42 6.67061 0 0 6.67061 6.78964 13.46025 43 6.73949 0 0 6.73949 2.64381 9.3833 44 6.78035 1 0.00125 6.78161 0.31841 7.10002 45 6.90891 1 0.06509 6.974 0.07808 7.05208 46 6.96017 2 0.0919 7.05208 3.54013 10.59221 47 7.02259 2 0.07743 7.10002 0.06334 7.16336 48 7.02491 3 0.13845 7.16336 0.36508 7.52844 49 7.08199 3 0.44645 7.52844 0.9006 8.42904 50 7.31609 2 0.60444 7.92053 0.58823 8.50876 51 7.67296 2	38	5.95327	0	0	5.95327	0.33124	6.28451
41 6.65244 0 0 6.65244 1.26809 7.92053 42 6.67061 0 0 6.67061 6.78964 13.46025 43 6.73949 0 0 6.73949 2.64381 9.3833 44 6.78035 1 0.00125 6.78161 0.31841 7.10002 45 6.90891 1 0.06509 6.974 0.07808 7.05208 46 6.96017 2 0.0919 7.05208 3.54013 10.59221 47 7.02259 2 0.07743 7.10002 0.06334 7.16336 48 7.02491 3 0.13845 7.16336 0.36508 7.52844 49 7.08199 3 0.44645 7.52844 0.9006 8.42904 50 7.31609 2 0.60444 7.92053 0.58823 8.50876 51 7.67296 2 0.31584 7.9888 1.13704 9.12584 52 7.8067	39	5.98766	1	0.0312	6.01887	2.29915	8.31801
42 6.67061 0 0 6.67061 6.78964 13.46025 43 6.73949 0 0 6.73949 2.64381 9.3833 44 6.78035 1 0.00125 6.78161 0.31841 7.10002 45 6.90891 1 0.06509 6.974 0.07808 7.05208 46 6.96017 2 0.0919 7.05208 3.54013 10.59221 47 7.02259 2 0.07743 7.10002 0.06334 7.16336 48 7.02491 3 0.13845 7.16336 0.36508 7.52844 49 7.08199 3 0.44645 7.52844 0.9006 8.42904 50 7.31609 2 0.60444 7.92053 0.58823 8.50876 51 7.67296 2 0.31584 7.9888 1.13704 9.12584 52 7.8067 3 0.25933 8.06603 0.06069 8.12673 53 7.87547	40	6.28072	0	0	6.28072	0.21522	6.49594
43 6.73949 0 0 6.73949 2.64381 9.3833 44 6.78035 1 0.00125 6.78161 0.31841 7.10002 45 6.90891 1 0.06509 6.974 0.07808 7.05208 46 6.96017 2 0.0919 7.05208 3.54013 10.59221 47 7.02259 2 0.07743 7.10002 0.06334 7.16336 48 7.02491 3 0.13845 7.16336 0.36508 7.52844 49 7.08199 3 0.44645 7.52844 0.9006 8.42904 50 7.31609 2 0.60444 7.92053 0.58823 8.50876 51 7.67296 2 0.31584 7.9888 1.13704 9.12584 52 7.8067 3 0.25933 8.06603 0.06069 8.12673 53 7.87547 4 0.25125 8.12673 2.18987 10.3166 54 8.	41	6.65244	0	0	6.65244	1.26809	7.92053
44 6.78035 1 0.00125 6.78161 0.31841 7.10002 45 6.90891 1 0.06509 6.974 0.07808 7.05208 46 6.96017 2 0.0919 7.05208 3.54013 10.59221 47 7.02259 2 0.07743 7.10002 0.06334 7.16336 48 7.02491 3 0.13845 7.16336 0.36508 7.52844 49 7.08199 3 0.44645 7.52844 0.9006 8.42904 50 7.31609 2 0.60444 7.92053 0.58823 8.50876 51 7.67296 2 0.31584 7.9888 1.13704 9.12584 52 7.8067 3 0.25933 8.06603 0.06069 8.12673 53 7.87547 4 0.25125 8.12673 2.18987 10.3166 54 8.01682 3 0.3012 8.31801 0.94009 9.2581 55 <	42	6.67061	0	0	6.67061	6.78964	13.46025
45 6.90891 1 0.06509 6.974 0.07808 7.05208 46 6.96017 2 0.0919 7.05208 3.54013 10.59221 47 7.02259 2 0.07743 7.10002 0.06334 7.16336 48 7.02491 3 0.13845 7.16336 0.36508 7.52844 49 7.08199 3 0.44645 7.52844 0.9006 8.42904 50 7.31609 2 0.60444 7.92053 0.58823 8.50876 51 7.67296 2 0.31584 7.9888 1.13704 9.12584 52 7.8067 3 0.25933 8.06603 0.06069 8.12673 53 7.87547 4 0.25125 8.12673 2.18987 10.3166 54 8.01682 3 0.3012 8.31801 0.94009 9.2581 55 8.04281 4 -1 -1 -1 -1 -1 56 <	43	6.73949	0	0	6.73949	2.64381	9.3833
46 6.96017 2 0.0919 7.05208 3.54013 10.59221 47 7.02259 2 0.07743 7.10002 0.06334 7.16336 48 7.02491 3 0.13845 7.16336 0.36508 7.52844 49 7.08199 3 0.44645 7.52844 0.9006 8.42904 50 7.31609 2 0.60444 7.92053 0.58823 8.50876 51 7.67296 2 0.31584 7.9888 1.13704 9.12584 52 7.8067 3 0.25933 8.06603 0.06069 8.12673 53 7.87547 4 0.25125 8.12673 2.18987 10.3166 54 8.01682 3 0.3012 8.31801 0.94009 9.2581 55 8.04281 4 -1 -1 -1 -1 56 8.18866 3 -1 -1 -1 -1	44	6.78035	1	0.00125	6.78161	0.31841	7.10002
47 7.02259 2 0.07743 7.10002 0.06334 7.16336 48 7.02491 3 0.13845 7.16336 0.36508 7.52844 49 7.08199 3 0.44645 7.52844 0.9006 8.42904 50 7.31609 2 0.60444 7.92053 0.58823 8.50876 51 7.67296 2 0.31584 7.9888 1.13704 9.12584 52 7.8067 3 0.25933 8.06603 0.06069 8.12673 53 7.87547 4 0.25125 8.12673 2.18987 10.3166 54 8.01682 3 0.3012 8.31801 0.94009 9.2581 55 8.04281 4 -1 -1 -1 -1 56 8.18866 3 -1 -1 -1 -1	45	6.90891	1	0.06509	6.974	0.07808	7.05208
48 7.02491 3 0.13845 7.16336 0.36508 7.52844 49 7.08199 3 0.44645 7.52844 0.9006 8.42904 50 7.31609 2 0.60444 7.92053 0.58823 8.50876 51 7.67296 2 0.31584 7.9888 1.13704 9.12584 52 7.8067 3 0.25933 8.06603 0.06069 8.12673 53 7.87547 4 0.25125 8.12673 2.18987 10.3166 54 8.01682 3 0.3012 8.31801 0.94009 9.2581 55 8.04281 4 -1 -1 -1 -1 56 8.18866 3 -1 -1 -1 -1	46	6.96017	2	0.0919	7.05208	3.54013	10.59221
49 7.08199 3 0.44645 7.52844 0.9006 8.42904 50 7.31609 2 0.60444 7.92053 0.58823 8.50876 51 7.67296 2 0.31584 7.9888 1.13704 9.12584 52 7.8067 3 0.25933 8.06603 0.06069 8.12673 53 7.87547 4 0.25125 8.12673 2.18987 10.3166 54 8.01682 3 0.3012 8.31801 0.94009 9.2581 55 8.04281 4 -1 -1 -1 -1 56 8.18866 3 -1 -1 -1 -1	47	7.02259	2	0.07743	7.10002	0.06334	7.16336
50 7.31609 2 0.60444 7.92053 0.58823 8.50876 51 7.67296 2 0.31584 7.9888 1.13704 9.12584 52 7.8067 3 0.25933 8.06603 0.06069 8.12673 53 7.87547 4 0.25125 8.12673 2.18987 10.3166 54 8.01682 3 0.3012 8.31801 0.94009 9.2581 55 8.04281 4 -1 -1 -1 -1 56 8.18866 3 -1 -1 -1 -1	48	7.02491	3	0.13845	7.16336	0.36508	7.52844
51 7.67296 2 0.31584 7.9888 1.13704 9.12584 52 7.8067 3 0.25933 8.06603 0.06069 8.12673 53 7.87547 4 0.25125 8.12673 2.18987 10.3166 54 8.01682 3 0.3012 8.31801 0.94009 9.2581 55 8.04281 4 -1 -1 -1 -1 56 8.18866 3 -1 -1 -1 -1	49	7.08199	3	0.44645	7.52844	0.9006	8.42904
52 7.8067 3 0.25933 8.06603 0.06069 8.12673 53 7.87547 4 0.25125 8.12673 2.18987 10.3166 54 8.01682 3 0.3012 8.31801 0.94009 9.2581 55 8.04281 4 -1 -1 -1 -1 -1 56 8.18866 3 -1 -1 -1 -1 -1	50	7.31609	2	0.60444	7.92053	0.58823	8.50876
53 7.87547 4 0.25125 8.12673 2.18987 10.3166 54 8.01682 3 0.3012 8.31801 0.94009 9.2581 55 8.04281 4 -1 -1 -1 -1 -1 56 8.18866 3 -1 -1 -1 -1 -1	51	7.67296	2	0.31584	7.9888	1.13704	9.12584
53 7.87547 4 0.25125 8.12673 2.18987 10.3166 54 8.01682 3 0.3012 8.31801 0.94009 9.2581 55 8.04281 4 -1 -1 -1 -1 -1 56 8.18866 3 -1 -1 -1 -1 -1	52	7.8067	3	0.25933	8.06603	0.06069	8.12673
54 8.01682 3 0.3012 8.31801 0.94009 9.2581 55 8.04281 4 -1 -1 -1 -1 -1 56 8.18866 3 -1 -1 -1 -1 -1				0.25125			
55 8.04281 4 -1 -1 -1 -1 56 8.18866 3 -1 -1 -1 -1		8.01682	3			0.94009	
56 8.18866 3 -1 -1 -1 -1	55		4			-1	
	56			-1	-1	-1	-1

Анализ результатов

Система массового обслуживания (D|M|n)

Таблица 3

k	N(k)	$t_{\text{зан}}(k)$	Коэффициент простоя
0	31	36.22704	0.58834
1	15	19.02818	0.78378
2	4	2.79163	0.96828
3	0	0	1.0
4	0	0	1.0
5	0	0	1.0
6	0	0	1.0
7	0	0	1.0
8	0	0	1.0
9	0	0	1.0
10	0	0	1.0

Система массового обслуживания (M|D|n)

Таблица 3

k	N(k)	$t_{\text{3aH}}(k)$	Коэффициент простоя
0	22	1.69705	0.75814
1	16	1.71998	0.75487
2	8	1.25406	0.82127
3	3	0.41684	0.94059
4	1	0.16542	0.97643
5	1	0.15088	0.9785
6	0	0	1.0
7	0	0	1.0
8	0	0	1.0
9	0	0	1.0
10	0	0	1.0

Относительные частоты пребывания СМО в состояниях

	(D M n)	(M D n)
i	$v_i(100)$	$v_i(100)$
0	0.25	0.14
1	0.46	0.35
2	0.25	0.3
3	0.04	0.12
4		0.05
5		0.03
6		0.01

Система массового обслуживания (M|M|n)

Таблица 3

k	N(k)	$t_{\text{зан}}(k)$	Коэффициент простоя
0	5	8.04991	0.0359
1	8	7.54706	0.09613
2	6	7.5336	0.09774
3	4	7.52445	0.09884
4	3	7.27269	0.12899
5	6	6.64416	0.20426
6	3	6.77418	0.18869
7	3	5.35002	0.35926
8	7	5.56746	0.33321
9	3	6.45484	0.22694
10	6	5.0699	0.3928

 $r = (0, \, 3e\text{-}05, \, 0.00015, \, 0.00054, \, 0.00147, \, 0.00319, \, 0.00575, \, 0.00889, \, 0.01202, \, 0.01445, \, 0.01564, \, 0.01538, \, 0.01513, \, 0.01488, \, 0.01464, \, 0.0144)$

i	r_i	$v_i(100)$	$ v_i(100) - r_i $
0	0	0	0
1	3e-05	0.01	0.00997
2	0.00015	0.01	0.00985
3	0.00054	0.01	0.00946
4	0.00147	0.01	0.00853
5	0.00319	0.02	0.01681
6	0.00575	0.02	0.01425
7	0.00889	0.03	0.02111
8	0.01202	0.08	0.06798
9	0.01445	0.15	0.13555
10	0.01564	0.19	0.17436
11	0.01538	0.17	0.15462
12	0.01513	0.11	0.09487
13	0.01488	0.09	0.07512
14	0.01464	0.08	0.06536
15	0.0144	0.02	0.0056
	0.13655	1.0	0.17436

Таблица из задания 5

	(D M n)	(M D n)	(M M n)
Число заявок $J(100)$,	50	51	57
поступивших в СМО на			
интервале $[0, t_{cof}(100)]$			
Число $JF(100)$, полностью	50	49	43
обслуженных заявок на			
интервале $[0, t_{\cos}(100)]$			
Среднее число заявок,	1.08	1.72	10.2
находившихся в СМО, на			
интервале $[0, t_{\cos}(100)]$			
Среднее время пребывания	0	0	0.06537
заявок в очереди на			
интервале $[0, t_{cof}(100)]$			
Среднее время пребывания	1.8009	0.18527	2.12693
заявок в СМО на интервале			
$[0, t_{\cos}(100)]$			

Список литературы

- 1. Гнеденко Б.В., Коваленко И.Н. Введение в теорию массового обслуживания. М.: ЛКИ, 2021. 400 с.
- 2. Кирпичников А.П. Методы прикладной теории массового обслуживания. M.: URSS, 2018.-224 с.
- 3. Ивченко Г.И., Каштанов В.А., Коваленко И.Н. Теория массового обслуживания. М.: URSS, 2012. 304 с.
- 4. Смирнов С.Н. Введение в прикладную теорию массового обслуживания. М.: Гелиос APB, 2016. 176 с.
- 5. Лобузов А.А., Гумляева С.Д., Норин Н.В. Задачи по теории случайных процессов. М.: МИРЭА, 1993. 68 с.
- 6. Алпатов Ю. Н. Моделирование процессов и систем управления. СПб: Лань, 2021. 140 с.
- 7. Самусевич Г. А. Моделирование процессов функционирования СМО.
 - М.: Издательство Юрайт, 2021. 117 с.

Приложение

main.py

```
from create_a_report import create_report

def main():
    create_report(72)

if __name__ == '__main__':
    main()
```

create_a_report.py

```
rom docx import Document
from Application import Application
from ListWrapper import ListWrapper
from constants import set_constants do set_e
from solution import event_handler, get_data_for_an_calc
from get_data import get_conditions
from work_with_document import fill_table_for_report,
def write_report_on_task(n_task: int, document, tables: list[[list[Application]
def get data for report() -> tuple:
def create report(variant, path to cond='lab 3.txt', doc name='Report.doc'):
    data = get conditions(variant, path to cond)
```

```
print(data)
variant = data.variant
name = data.name
set_c(*data.data)
data_for_report = get_data_for_report()

from constants import NUM_SMO, SERVICE_TIME, DELTA_T, LAMBD, MU

conditions = f'BapMaht N{variant}\n кол-во CMO = {NUM_SMO}, T

o6={SERVICE_TIME}, Ts={DELTA_T} lambda={LAMBD}, mu = {MU}'
print(conditions)

document = Document()
document.add_paragraph(name)
document.add_paragraph(conditions)

for i in range(3):
    write_report_on_task(i, document, data_for_report[i], conditions)
analytic_calc = data_for_report[3]
fill_table_analysis_of_calculations(document, analytic_calc)
document.save(doc_name)
```

solution.py

```
def event handler(n task: int):
def get data_for_table_5(smo):
def get frequency table(smo):
def get_vector_r(length):
```

```
vector.append(r0)
def get frequency table task 3(vector r, vector v):
        table.append([i, vector_r[i], vector_v[i], value])
def get data_for_an_calc(smo_list):
frequency table task 3]
```

Application.py

```
class Application:
"""

Класс для представления Заявки, поступившей в СМО
Атрибуты
```

```
self.app_time = application_time
def get data for report(self):
```

Controller SMO.py

```
self.application table: list[Application] = []
        self.min app service time = 0.
        self.time_arrival_next_app = 0.
        self.device_id_completing_app = 0
        self._app_list_need_to_complete = []
    def service first app(self):
event.event time, event.time until end service, end time)
        self. app list need to complete.append(self.current app number)
        self.event table.append(event)
        self.application table.append(app)
   def _get_selection(self, f_name: str):
```

```
def start system(self, num event: int):
       self.service first app() # обработка 1-й заявки
       self. update min app service time(0)
                   self. process app from queue(device)
               if self.min app service time > self.time_arrival_next_app:
self._completes_app_processing(self.devices_list[self.device id completing app])
```

```
if device.is free():
def _ger_app_service_time_devises(self) -> dict[Device, float]:
    """Спрашивает у приборов время окончания обслуживания заявки"""
              result[devise] = devise.get time_until_end_service_app()
def _update_min_app_service_time(self, time):
             if self.min app service time > value > 0: # 0 - прибор закончил
                  self.device id completing app = devise.get number()
def _process_current_app(self, device: Device):
    if self._app_list need to complete:
         self. update min app service time(self.time arrival next app)
```

```
self. update min app service time(0)
    if self.f selection to file:
    self._update min app service time(0)
   number application=self.current_app_number,
   app = Application(number=self.current_app_number,
def _completes_app_processing(self, device: Device):
    """Завершает обработку заявки"""
    self. update min app service time(self.min app service time)
                 status system=self.number_app_now,
                 time until end service=self.min app service time,
                 wait_time=self.time_arrival_next_app,
    self.event table.append(event)
      self.f selection to file:
```

```
service time = self.selection[str(num event)][0]
       device.give task (num app, service time)
        app.service time = service time
       app.end time = app.start service + app.service time
   def _add_app_to_queue(self):
    """Добавляем заявку в очередь"""
          elf.current app number += 1
            self.time_arrival_next_app =
get_time_between_applications(self.type_system)
self.time_arrival_next_app]
            self.time_arrival_next_app =
                      number application=self.current app number,
        self.event table.append(event)
        self.application table.append(app)
   def get frequency table(self):
            table 1.append(elem1.get data for report())
            reversed table 1.append(list(row))
```

```
def get data for report(self):
   def get column for table 5(self):
       num apps received += len(self.q)
       application_time_in_smp = 0.
               queue_time += app.stay_in_queue
               application time in smp += app.service time
       return [num apps received, num apps served,
               queue_time / num_apps_served,
               application_time_in_smp / num_apps_served,
def get frequency states(counter states: dict) -> list:
def get time between applications(data):
def get service time by requests(data):
   from constants import SERVICE TIME, MU
```

```
return SERVICE TIME
def _selection_to_file(data, f_name, dir_=''):
""" Записывает выборку в файл"""

if not os.path.exists(dir_ + f_name):
    with open(dir_ + f_name, 'w') as file:
    json.dump(data, file)
```

Device.py

```
f' app serviced through {self. time until end service app}
def give_task(self, number_app, time):
    self._num_serviced_applications.append(self._num_app)
def get number(self):
def get number app(self):
def update time until end service app(self, time: float) -> float:
    if self. time until end service app < time:</pre>
    if self. time until end service app != 0 and
def get time until end service app(self) -> float:
    return self. time until end service app
```

Event.py

```
      Class Event:

      """

      Класс для представления события

      Атрибуты

      -----

      ...

      Методы
```

```
self.num_application = number_application
def get_data for report(self):
           self.wait time, self.num application]
```

ListWrapper.py

```
class ListWrapper:
    """Обертка вокруг списка"""

def __init__ (self, lst: list[float | int]):
    self.lst = lst

def get_data_for_report(self) -> list[float | int]:
    """Возвращает список"""
    return self.lst

def __len__ (self):
    """Возвращает количество атрибутов в классе."""
    return len(self.lst)
```

```
def __iter__(self):
    return self.lst. iter ()
```

constants.py

```
NUM_FOR_ROUND = 5
NUM_EVENTS = 100

NUM_SMO = None  # количество доступных приборов
SERVICE_TIME = None  # время между приходом заявок
DELTA_T = None  # время между приходом заявок
LAMBD = None

MU = None  # параметр показательного распределения

def set_constants(num_smo, service_time, delta_t, lambd, mu):
    """Устанавливает значения констант."""
    global NUM_SMO, SERVICE_TIME, DELTA_T, LAMBD, MU
    NUM_SMO = num_smo
    SERVICE_TIME = service_time
    DELTA_T = delta_t
    LAMBD = lambd
    MU = mu
```