Optimal Transport

Theory, Computation and Applications

Wenchong Huang

School of Mathematical Sciences, Zhejiang University.

Dec. 30th, 2024

Overview

Principal concern: the distance between two probability measures.

First introduced in 1781 by Monge.

Relative subjects: probability theory, geometry, graph theory, machine learning...

Applications:

- Image registration and warping;
- Reflector design;
- Retrieving information from shadowgraphy and proton radiography;
- Seismic tomography and reflection seismology.

Some well-known researchers:

- Gasoard Monge (France);
- Leonid Kantorovich (Russia);
- Yann Brenier (France);
- Xianfeng Gu (顾险峰, China);

Fig. 1. Three main scenarios for Kantorovich OT

Fig. 2. Solving maze with OT

Fig. 3. 2D shape interpolation with OT

Fig. 4. Histogram equalization with OT

- 1 Theory
- 2 Computation

The sand-moving problem

A child wants to make a pile of sand in the shape of a castle.

Cost: 1 kcal per shovel and per meter horizontally.

Target: Minimize the total cost.

Fig. 5. The sand-moving problem.

The sand-moving problem

A child wants to make a pile of sand in the shape of a castle.

Cost: 1 kcal per shovel and per meter horizontally.

Target: Minimize the total cost.

Fig. 5. The sand-moving problem.

Let's denote the source shape by f(x) and the target by g(x). The sand-moving problem cound be formulated as: find a **transport mapping** $T:\mathbb{R}\to\mathbb{R}$ to minimize

$$\int_{\mathbb{D}} |T(x) - x| f(x) \ dx,\tag{1}$$

which satisfies

$$\int_{T(U)} g(x) \ dx = \int_{U} f(x) \ dx \text{ for all open interval } U \subset \mathbb{R}. \tag{2}$$

The allocation problem

There are some steel coils to be transported from warehouses to factories. The transport cost is \$1 per coil and per kilometer. How to minimize the total cost?

Fig. 6. The allocation problem.

The allocation problem

There are some steel coils to be transported from warehouses to factories. The transport cost is \$1 per coil and per kilometer. How to minimize the total cost?

Fig. 6. The allocation problem.

Assume the i-th warehouse has a_i coils and the j-th factory needs b_i coils. And assume the distance between the i-th warehouse and the j-th factory is d_{ij} . The allocation problem could be formulated as: find a **transport matrix** v_{ij} to minimize

$$\sum_{i,j} d_{ij} v_{ij} \tag{3}$$

which satisfies

$$a_i = \sum_j v_{ij}, \quad orall i, \qquad ext{and} \qquad b_j = \sum_i v_{ij}, \quad orall j.$$

The Monge formulation

Denote $\mathcal{M}^1_+(\mathcal{X})$ the set of probability measures on \mathcal{X} .

Definition (push-forward)

Suppose $\mu \in \mathcal{M}^1_+(\mathcal{X})$ and a map $T: \mathcal{X} \to \mathcal{Y}$. Say $\nu \in \mathcal{M}^1_+(\mathcal{Y})$ is the push-forward of μ by T if $\int_{\mathcal{U}} h(y) \ d\nu(y) = \int_{\mathcal{U}} h(T(x)) \ d\mu(x), \quad \forall h \in \mathcal{C}(\mathcal{Y}).$ (5)

Write $T_{\#}\mu := \nu$.

Example (push-forward of a discrete measure)

Suppose α is a discrete measure

$$\alpha = \sum_{i=1}^{n} a_i \delta_{x_i}.$$

Then the push-forward of α by T is

$$T_{\#}\alpha = \sum_{i=1} a_i \delta_{T(x_i)}.$$

Fig. 7. push-forward of a discrete measure

¹ Gaspard Monge. "Mémoire sur la théorie des déblais et des remblais". In: Histoire de l'Académie Royale des Sciences (1781):

The Monge formulation

Denote $\mathcal{M}^1_+(\mathcal{X})$ the set of probability measures on \mathcal{X} .

Definition (push-forward)

Suppose
$$\mu \in \mathcal{M}^1_+(\mathcal{X})$$
 and a map $T: \mathcal{X} \to \mathcal{Y}$. Say $\nu \in \mathcal{M}^1_+(\mathcal{Y})$ is the push-forward of μ by T if
$$\int_{\mathcal{Y}} h(y) \ d\nu(y) = \int_{\mathcal{X}} h(T(x)) \ d\mu(x), \quad \forall h \in \mathcal{C}(\mathcal{Y}). \tag{5}$$

Write $T_{\#}\mu := \nu$.

Example (push-forward of a discrete measure)

Suppose α is a discrete measure

$$\alpha = \sum_{i=1}^{n} a_i \delta_{x_i}.$$

Then the push-forward of α by ${\it T}$ is

$$T_{\#}\alpha = \sum_{i=1} a_i \delta_{T(x_i)}.$$

Fig. 7. push-forward of a discrete measure

Given two probability measures μ on \mathcal{X} and ν on \mathcal{Y} , and a cost function c(x,y). Optimal transport could be generally formulated as the Monge problem:

$$\min_{T} \left\{ \int_{\mathcal{X}} c(x, T(x)) \ d\mu(x) : T_{\#}\mu = \nu \right\}$$
 (6)

The Monge problem between discrete measures is introduced by Monge¹.

6 / 12

The Kantorovich formulation

Here's another general formulation of $\mathsf{OT},$ we first recall the three main scenarios for $\mathsf{OT}.$

²Leonid Kantorovich. "On the transfer of masses". In: Doklady Akademii Nauk 37.2 (1942).□ ▶ ◀ 🗗 ▶ ◀ 👼 ▶ ◀ 👼 ▶ 🧵 🛫 🖍 🔾 🦠

The Kantorovich formulation

Here's another general formulation of $\mathsf{OT},$ we first recall the three main scenarios for $\mathsf{OT}.$

Given two probability measures μ on $\mathcal X$ and ν on $\mathcal Y$, and a cost function c(x,y). Optimal transport could be generally formulated as the Kantorovich problem²:

$$\mathcal{L}_c(\mu, \nu) = \min_{\pi} \int_{\mathcal{X} \times \mathcal{Y}} c(x, y) \ d\pi(x, y), \tag{7}$$

where π is a measure on $\mathcal{X} \times \mathcal{Y}$, whose marginals are μ and ν , that is,

$$\mu = \int_{\mathcal{V}} \pi(\cdot, y) \ dy, \qquad \nu = \int_{\mathcal{X}} \pi(x, \cdot) \ dx. \tag{8}$$

²Leonid Kantorovich. "On the transfer of masses". In: Doklady Akademii Nauk 37.2 (1942).□ ▶ ◀ 🗇 ▶ ◀ 🖹 ▶ ◀ 📱 ▶ 🥞 🛩 🔾 🤆

Wasserstein disrtance

Here we suppose $\mathcal{X} = \mathcal{Y}$ and $c(x, y) = d(x, y)^p$ (p > 1), where d is a distance on \mathcal{X} .

³Cédric Villani. Optimal Transport: Old and New. Vol. 338. Springer Verlag, 2009.

Wasserstein disrtance

Here we suppose $\mathcal{X}=\mathcal{Y}$ and $c(x,y)=d(x,y)^p\ (p>1)$, where d is a distance on $\mathcal{X}.$

Theorem (Wasserstein distance)

Under the above assumptions, $\mathcal{L}_c(\mu,\nu)^{1/p}$ is a distance on $\mathcal{M}^1_+(\mathcal{X}).$

The distance $\mathcal{W}_p(\mu,\nu):=\mathcal{L}_c(\mu,\nu)^{1/p}$ is called $p ext{-Wasserstein}$ distance.

Wasserstein disrtance

Here we suppose $\mathcal{X} = \mathcal{Y}$ and $c(x,y) = d(x,y)^p \ (p > 1)$, where d is a distance on \mathcal{X} .

Theorem (Wasserstein distance)

Under the above assumptions, $\mathcal{L}_c(\mu,\nu)^{1/p}$ is a distance on $\mathcal{M}^1_+(\mathcal{X})$.

The distance $\mathcal{W}_p(\mu,\nu):=\mathcal{L}_c(\mu,\nu)^{1/p}$ is called p-Wasserstein distance.

Definition (weak convergence)

Suppose $\mathcal X$ is compact. Say $(\mu_k)_{k\geq 1}\subset \mathcal M^1_+(\mathcal X)$ converges weakly to $\mu\in \mathcal M^1_+(\mathcal X)$ if

$$\int_{\mathcal{X}} g \ d\mu_k \to \int_{\mathcal{X}} g \ d\mu, \quad \forall g \in \mathcal{C}(\mathcal{X}). \tag{9}$$

Theorem (Wasserstein distance and weak convergence³)

On a compact domain \mathcal{X} , $(\mu_k)_{k\geq 1}\subset \mathcal{M}^1_+(\mathcal{X})$ converges weakly to $\mu\in \mathcal{M}^1_+(\mathcal{X})$ if and only if $\mathcal{W}_p(\mu_k,\nu)\to 0$.

Equivalence between the Kantorovich and Monge problems

Theorem (Kantorovich dual problem)

The Kantorovich problem can be solved in the dual space by

$$\mathcal{L}_c(\mu,\nu) = \sup_{(f,g) \in \mathcal{R}(c)} \int_{\mathcal{X}} f(x) \ d\mu(x) + \int_{\mathcal{Y}} g(y) \ d\nu(y), \tag{10}$$

where the set of admissible dual potential is

$$\mathcal{R}(c) := \{ (f, g) \in \mathcal{C}(\mathcal{X}) \times \mathcal{C}(\mathcal{Y}) : \forall (x, y), f(x) + g(y) \le c(x, y) \}. \tag{11}$$

The pair (f, g) is called Kantorovich potentials.

⁴Yann Brenier. "Polar factorization and monotone rearrangement of vector-valued functions" In: Communications on Pure and Applied Mathematics 44 4 (1991).

Equivalence between the Kantorovich and Monge problems

Theorem (Kantorovich dual problem)

The Kantorovich problem can be solved in the dual space by

$$\mathcal{L}_c(\mu,\nu) = \sup_{(f,g) \in \mathcal{R}(c)} \int_{\mathcal{X}} f(x) \ d\mu(x) + \int_{\mathcal{Y}} g(y) \ d\nu(y), \tag{10}$$

where the set of admissible dual potential is

$$\mathcal{R}(c) := \{ (f, g) \in \mathcal{C}(\mathcal{X}) \times \mathcal{C}(\mathcal{Y}) : \forall (x, y), f(x) + g(y) \le c(x, y) \}. \tag{11}$$

The pair (f, g) is called Kantorovich potentials.

Theorem (Brenier⁴)

In the case $\mathcal{X}=\mathcal{Y}=\mathbb{R}^d$ and $c(x,y)=\|x-y\|_2^2$, if at least one of the two input measures (denoted μ) has a density ρ_μ with respect to the Lebesgue measure, then the optimal π in the Kantorovich formulation is unique and is supported on the graph (x,T(x)) of a Monge map $T:\mathbb{R}^d\to\mathbb{R}^d$. This means that $\pi=(\mathrm{Id},T)\#\mu$, i.e.

$$\int_{\mathcal{X}\times\mathcal{Y}} h(x,y) \ d\pi(x,y) = \int_{\mathcal{X}} h(x,T(x)) \ d\mu(x), \quad \forall h \in \mathcal{C}(\mathcal{X}\times\mathcal{Y}). \tag{12}$$

Furthermore, this map T is uniquely defined as the gradient of a convex function φ , $T(x) = \nabla \varphi(x)$, where φ is the unique (up to an additive constant) convex function such that $(\nabla \varphi)_{\#} \mu = \nu$. This convex function is related to the dual potential f solving (10) as

$$\varphi(x) = \frac{\|x\|_2^2}{2} - f(x). \tag{13}$$

⁴Yann Brenier. "Polar factorization and monotone rearrangement of vector-valued functions" In: Communications on Pure and Applied Mathematics 44 4 (1901).

- 1 Theory
- 2 Computation

1-D discrete case

Here $\mathcal{X}=\mathcal{Y}=\mathbb{R}$. Suppose $\alpha=\frac{1}{n}\sum_{i=1}^n\delta_{x_i}$ and $\beta=\frac{1}{n}\sum_{i=1}^n\delta_{y_i}$ where $x_1\leq\cdots\leq x_n$ and $y_1\leq\cdots\leq y_n$.

Fig. 8. 1-D optimal transport in discrete case

Then the p-Wasserstein distance can be simply computed by

$$W_p(\alpha, \beta)^p = \frac{1}{n} \sum_{i=1}^n |x_i - y_i|^p.$$
 (14)

It's in fact a greedy algorithm.

Thank You