ERIC JAGODINSKI

(704) 608-2871 ejagodin@fau.edu

EDUCATION

Florida Atlantic University

2017 - Dec 2022*

SeaTech Research Center, Dania Beach, FL

- · Candidate for PhD in Ocean Engineering
- Dissertation: "Multi-Agent Reinforcement Learning Turbulent Flow Control" Autonomous Multi-Agent Control with Reinforcement Learning in turbulent fluids simulations using Convolutional Neural Networks and Long Short-Term Memory for drag reduction.

Florida Atlantic University 2018

SeaTech Research Center, Dania Beach, FL

• M.S. in Ocean Engineering Earned En Passant while completing courses for my PhD

Florida Atlantic University 2010 – 2016

Boca Raton, FL

- Bachelor of Science in Ocean Engineering
- Capstone Project: Full system designed and built prototype of an autonomous surface vehicle capable of GPS navigation and station keeping in dynamic conditions (Electrical Team Lead).

PROFESSIONAL EXPERIENCE

Course Instructor 2021

Florida Atlantic University, Boca Raton, FL

• Taught an undergraduate Fluid Mechanics course to a class of 30 students (in-person and remote).

Graduate Intern 2018

Naval Research Laboratory, Stennis Space Center, MS

• Developed simulations using OpenFOAM CFD software for rogue wave and wind interaction using High-Performance Computing.

Engineering Technician 2014-2015

Agilis Engineering, Palm Beach Gardens, FL

 Assembled computer monitoring and signal conditioning systems used on GE turbines for NextEra and analyzed real-time turbine data for monthly reports for Florida Power and Light.

RESEARCH

Publications

• Jagodinski, E., Zhu, X., Verma, S., **Data-driven identification of dynamically important regions in turbulent flows using 3D Convolutional Neural Networks** (*submitted*) Autonomously identified critical regions in turbulent flow using 3D convolutional neural networks and a custom modified interpretation technique. Applied advanced data science methods to analyze efficacy of the technique.

Conference Presentations

- Data-Driven blowing-suction control in a turbulent channel flow. APS Division of Fluid Dynamics (2021)
- Convolutional neural networks for identifying coherent turbulent structures. APS Division of Fluid Dynamics (2019)

Conference Posters

• Turbulent flow identification using 3D convolutional neural networks FAU Data-Driven Science and AI Conference (2021)

CERTIFICATIONS

- Google Data Analytics Specialization (2022) A professional certificate through Coursera on preparing, processing, analyzing and presenting data. (SQL, Tableau, R)
- Offshore Engineering Graduate Certificate (2018) A graduate level specialization. Courses: Advanced Hydrodynamics, Offshore Structures, Hydrodynamics of Ship Design.

SKILLS

- Python, Fortran, MATLAB, C++, Bash, R, SQL
- TensorFlow, Keras, CNN, LSTM, Deep RL, PCA, Data Science
- Git, Linux, HPC, DDT, Slurm, Tableau