大物实验

I. 结论部分

From b站链接 和 复习sheet

1. 测量相关概念

- 1. **测量的四要素**:包括**被测对象、测量程序、测量准确度和计量单位**。这些要素是进行任何测量活动时需要考虑的基本方面。
- **直接测量量**:指的是可以直接测量得到的量,不需要通过任何函数关系计算。
- ,**间接测量量**:需要通过 **已知的函数关系,** 将直接测量的量经过计算来得到想要测量的量。【算出来的】
- 4.**测量的精密度**:指多次重复测量得到的值**相互接近**的程度,反映了测量结果的一致性。
- . **测量的准确度**:指测量数据的**平均值与真实值接近**的程度,反映了测量结果的准确性。
- ,**测量的正确度**:指测量数据集中于真实值附近的程度,这涉及到测量结果的系统误差。

pic1:精密,不准确 pic2:不精密,但更准确 pic3:精密且准确

2. 误差

- 1. 误差特点:
- 1. 普遍存在
- 2. 误差是小量
- 3. 无法得到误差值
- 2. 按误差定义分类:
- 1. **绝对误差**:指的是测量结果与被测量的真实值之间的差异,它表示误差的大小,并且是一个有符号、有单位的量。计算公式为:

绝对误差 = 测量值 - 真值

2. 相对误差:表示误差的严重程度,是一个无符号、无单位的量,通常用分数或百分数表示。计算公式为:

相对误差 =
$$\left(\frac{\left|\overline{M}$$
量值 $-$ 真值 $\right|}{$ 其值 $}\right) \times 100\%$

3,**标准误差**(也称为标准差或均方根差,在实验教学中指有限次测量):是一种衡量数 据分散程度的统计量,用于评估测量结果的可靠性。计算公式为:

标准误差 =
$$\sqrt{\frac{1}{n-1}\sum_{i=1}^{n}|\text{绝对误差}|^2}$$

其中 n 是测量次数, ∑ 表示求和。

3. 误差的来源与分类:

拳例	见下表	测一本书的厚度 (涨落)。	电表没调零就用/读错写错数据
处理	见下表	可 <u>邇过多次</u> 测量来減小	避免
特点	可预知, <u>不可避免</u>	是无规则涨落, <u>不可避免</u> 。存在 一定的统计规律(一般服从 <u>正态</u> <u>分布</u>)	回避免
上	类 多 多	环境偶 然性	大心粗
各	系统误差 (装置误 差)	随机误差 (偶然误 差)	粗大误差 (过失误 差)

系统 养	定义	处理	拳
已定系统误差	在同等条件下,对同一个待测量	可通过实验方法或引	电表、读数显微镜的
	进行多次测量,测量值和真值的	入修正值方法进行修	零位误差(调不好
	偏离总是相同的那部分误差分量	正,也 必须修正 。	的,仪器 <u>本身</u> 的)
未定系统误差	已知存在于某个范围,而不知具	后面 <u>B类不确定度</u> 计算	仪器的 允差 (示值误
	体数值的系统误差	会提到。	差)

(2) 正态分布(高斯分布)

测量值的均值看做真值(无穷次测量)

单峰性:你的测量值中和相差越小的值出现的概率 **- 对称性:大小相等的正负误差等机会出现在真值两 侧。

Ms. 有界性:非常大的误差出现概率几乎为 0。 抵偿性:测量次数非常多时候,正负误差几乎抵消 为 0,所以看做真值。

 $x_1, x_2, \ldots, x_i, \ldots, x_n$

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

平均值

单次测量标准差
$$S(x_i) = \sqrt{\frac{1}{(n-1)} \sum_{i=1}^{n} (x_i - \overline{x})^2}$$

意义: 中随便<mark>某一次结果</mark>相 对于偏离程度。

平均值标准差 $S(\overline{x}) = \frac{S(x_i)}{\sqrt{n}} = \sqrt{\frac{1}{n(n-1)}} \sum_{i=1}^{n} (x_i - \overline{x})^2$

3. 不确定度

一个数/不为零的正数

直接测量量的标准不确定度

回接测量量的**合成标准不确定度**

不确定度分类

扩展不确定度

3.1 不确定度计算:

$$\overline{x} = rac{1}{n} \sum_{i=1}^n x_i \Rightarrow u(A) pprox S(\overline{x}) = \sqrt{rac{1}{n(n-1)} \sum_{i=1}^n (x_i - \overline{x})^2}$$

$$\Delta_{orall} \Rightarrow u_B(X) = rac{\Delta_{orall}}{\sqrt{3}}$$

(事实上, $\Delta_{\mathrm{K}} = k u_B$) 只是默认取了 $\sqrt{3}$

$$u(X) = \sqrt{u_A(X)^2 + u_B(X)^2}$$

间接测量:

(2) 间接测量量 $Y = f(X_1, X_2 ... X_k ... X_N)$ 的合成标准不确定度 $u_c(Y)$

f是和差形式

f是积商形式

$$u_c(Y) = \sqrt{\sum_{k=1}^{N} \left(\frac{\partial f}{\partial X_k} u(X_k)\right)^2} \qquad Y \to u_c(Y) = \frac{Y}{\sqrt{\sum_{k=1}^{N} \left(\frac{\partial \ln f}{\partial X_k} u(X_k)\right)^2}}$$

计算的时候,先分别计算,再用间接测量公式

• 以
$$E = \frac{8DmgL}{\pi d^2b\delta s}$$
为例, 先算 $u(m), u(L), u(D), u(d), u(b), u(\delta s)$

• f 是积商形式, $\ln f = \ln 8g + \ln m + \ln L + \ln D - \ln \pi - 2 \ln d - \ln b - \ln \delta s$

$$\begin{split} \bar{E} &= \frac{\sum_{i=1}^{n} E_i}{5} \rightarrow u_c(E) = \bar{E} \sqrt{\left(\frac{u(m)}{\bar{m}}\right)^2 + \left(\frac{u(L)}{\bar{L}}\right)^2 + \left(\frac{u(D)}{\bar{D}}\right)^2 + \left(\frac{2u(\bar{d})}{\bar{d}}\right)^2 + \left(\frac{u(\bar{b})}{\bar{b}}\right)^2 + \left($$

4. 有效数字

• 位数问题 (高中学很多了...

• 科学计数法: 1.5kg \rightarrow 1500g(×) \rightarrow 1.5 \times 10 3g V

4.1 单位换算:

十进制单位变换:不影响有效数字位数

正: 1200 g → 1.200 kg 误: 1200 g → 1.2 kg

事十进制单位变换:保持误差所在位在单位变换后还是有效数字末位

如: $\bar{\theta} = 93.5^{\circ}$

误差为0.1°, 先进行误差换算, 0.1° $\rightarrow \frac{\pi}{180} \times 0.1$ rad ≈ 0.002 rad 換算: $\bar{\theta} = 93.5^{\circ} \rightarrow \bar{\theta} = \frac{\pi}{180} \times 93.5 \text{ rad} = 1.632 \text{ rad}$

4.2 运算法则:

加減: 结果可以数字位置与参与运算诸数可疑数字最大的位置一致。 如: 12.4 + 0.571 = 12.971 = 13.0 乘除:

$$+ 2.3574$$

$$14.6974 = 14.70$$

[
$$\mathfrak{H}$$
] 16] $\times 12.3$ $\times 12.3$ 70722 47148 $+23574$

函数

》三角函数的计算结果有效数字与角度的有效数字位数相同。

如: sin (30.2) = 0.503019 = 0.503

》对数运算其尾数与真数的有效数字位数相同。

如: lg 3.27 = 0.514 ▶其他函数:自变量可疑位上下变动一个单位,观察函数结; 一位上变动,结果的可疑位就取在该位。如: p19 [例9] ▶通过函数计算确定(误差传递公式)。如: p21 [例17]

(1) 三角函数值的有效位数表示法

三角函数计算结果的有效数字与角度的有效数字位数相同

[6]7] $\sin(30.2) = 0.503019 = 0.503$

(2) 对数的有效位数表示法

对数运算结果的有效数字位数,其尾数与真数的有效数字位数相同。

[6] 8] lg 3. 27 = 0. 514

(3) 其他函数的有效位数表示法

下面给出一种简单直观的方法,即将自变量可疑位上下变动一个单位,观察 函数结果在哪一位上变动,结果的可疑位就取在该位上。

[例9] 求3.25。

$$\sqrt[2a]{3.24} = 1.0605405$$

$$\sqrt[2a]{3.25} = 1.0607039$$

$$\sqrt[2a]{3.26} = 1.060869$$

$$\sqrt[2a]{3.25} = 1.0607$$

所以

4.3 不确定度传递公式表:

常用函数的不确定度传递公式(见表 1-5-1) 8.8

表 1-5-1

不确定度传递公式	$u_y = \sqrt{u_{s_1}^2 + u_{s_2}^2}$	$u_{y} = \sqrt{u_{s_{1}}^{2} + u_{s_{2}}^{2}}$	$u_y = \sqrt{a^2 u_{s_1}^2 + b^2 u_{s_2}^2}$	$u_y = y \sqrt{\left(\frac{u_{s_1}}{x_1}\right)^2 + \left(\frac{u_{s_2}}{x_2}\right)^2}$	$u_y = y \sqrt{\left(\frac{u_{x_1}}{x_1}\right)^2 + \left(\frac{u_{x_2}}{x_2}\right)^2}$	$u_y = y \sqrt{m^2 \left(\frac{u_{s_1}}{x_1}\right)^2 + n^2 \left(\frac{u_{s_2}}{x_2}\right)^2}$	$u_y = ku_s$	$u_y = \frac{u_x}{x}$	$u_y = \cos x u_x$
函数式	$y = x_1 + x_2$	$y = x_1 - x_2$	$y = ax_1 + bx_2$	$y=x_1\cdot x_2$	$y=x_1/x_2$	$y = x_1^m \cdot x_2^n$	y = kx	<i>y</i> = ln <i>x</i>	$y = \sin x$

4.4 有效数字的修约法则:

四舍六入五奏偶

• 不可连续修约!

正: 15.455 → 15 误: 15.455 → 15.46 → 15.5 → 16

4.5 不确定度的保留位数!

> 不确定度保留位数

当不确定度第1位有效数字是1或2时,可取两位,3以上只可有1位有效数字。

ト不确定度修约法则

(因为要知最大误差限) 欲保留的最低位后的这1位数不为零则进位,为零则舍去。

$$u(s) = 0.0311 \dots \text{cm}^2 \rightarrow 0.04 \dots \text{cm}^2$$

$$u(s) = 0.0211 \dots \text{cm}^2 \rightarrow 0.022 \dots \text{cm}^2$$

5. 测量结果的表达

最终结果的有效数字位数是由**合成不确定度确定**!

- 先保留不确定度的位数: 1或2位有效数字,如果数字不为0则进位。
- 再保留均值的位数: 均值的最后一位应与不确定度的最后一位对齐。
- 当结果较大或较小时,应注意使用科学计数法和进行单位换算。

6. 数据处理方法

6.1 逐差法

为发挥多次测量的优越性,将数据分成前后两组:

 A_1 , A_2 , A_3 , A_4 , A_5 \cancel{A} — \cancel{a} ,

A₆、A₇、A₈、A₉、A₁₀为另一组;

将这两组对应相减,得出5组,且每一组相减间距是

原来临近间距的5倍,这样有:

$$\Delta A = \frac{(A_6 - A_1) + (A_7 - A_2) + (A_8 - A_3) + (A_9 - A_4) + (A_{10} - A_5)}{(A_{10} - A_5)}$$

这种处理数据的方法称为<mark>逐差法</mark>。此法的优点是充分利用所测的数据,有利于减少测量的随机误差和仪器带来的误差。

条件:线性,等间距

6.2 最小二乘法:

n组实验数据: (x_i,y_i) ,若理论上满足直线方程:y=bx+a各测量沿垂直于x轴的方向到直线的距离的平方和为:

$$arepsilon = \sum_{i=1}^n \left[y_i - (bx_i + a)
ight]^2$$

要使 ε 最小, b 和 a 取值为

$$\begin{cases} \frac{\partial \varepsilon}{\partial b} = 0 \\ \frac{\partial \varepsilon}{\partial b} = 0 \Rightarrow \begin{cases} b = \frac{\sum x_i y_i - n\bar{x}\bar{y}}{\sum x_i^2 - n(\bar{x})^2} \\ a = \bar{y} - b\bar{x} \end{cases}$$

6.3 列表法

6.4 作图法

7. 绪论细节/错题

1. [23-24秋冬]

测量仪器	读出数值	有效数字
最小分度 1mm 米尺	. 0.1mm 整数倍	可靠位 1mm 位 存疑位 0.1mm 位
50 分度游标卡尺	0.02mm 整数倍	可靠位 0.02mm 位 无存疑位, 因为不估读
螺旋测微器	0.001mm 整数倍	可靠位 0.01mm 位 存疑位 0.001mm 位

2. 测量的四要素:包括被测对象、测量程序、测量准确度和计量单位

- 3. 随机误差正态分布的行致: 单峰性、对称性、有界性、抵偿性
- 4。 仪表七等级: $6.1,\ 0.2,\ 0.5,\ 1.0,\ 1.5,\ 2.5,\ 5.0,\ 数字越小准确度越高,$ $k=rac{\pi n \, ext{RR}^2}{\pi R} imes 100$
- 。例题:电/压表20mV,准确度等级1级,测得值5.6mV,求相对误差
- $k = 0.1 \rightarrow \bar{\pi}$ 債 误 差 $20 \times 10^{-3} \times 1 \times 10^{-3} = 2 \times 10^{-5} = 0.02 mV$
- 相对误差 $\frac{0.02}{5.6} = 4\%$
- 系统误差的原因?
- 1. 仪器准确度不够(最小刻度、老化等问题)
- 2. 实验方案依据的理论公式不完善
- 3. 环境温度、湿度和条件变化
- 4. 测量者心理、习惯和人为因素
- 如何减小、消除系统误差?
- 1. 仪器调整、标定
- 2. 实验设计 (例如分光计读数时使用双视窗, 消除偏心差)
- 3. 同一个人操作,避免读书差异
- 7. 误差的有效位数与修约法则和不确定度一样

II. 分光计

- 1. 分光计调整的三个目的
- [粗调]
- 【望远镜调焦无穷远】-- 自准直法 -- 示意图
- 1,平面反射镜放载物台,反光面正对望远镜
- 2. 调目镜滚轮直到找到叉丝
- 3. 调望远镜倾斜螺钉,同时微微左右移动,直到找到叉丝
- 4. 调调焦螺钉直至清晰
- 5. 调倾斜螺钉,亮十字与叉丝上刻线重合
- 【望远镜光轴、载物台平面和分光计中心转轴垂直】
- 放置:反射镜面T①②,望远镜正对反射面 / 转180。 • 太偏上:调望远镜倾斜脚

- 太偏下: 调载物平台下倾斜螺钉①②
- 。第二步,反射镜改放①②连线平行的平台面的直径上,调节螺丝③重合,不能再动望 远镜和①②了
- 5. 分光光度计的组成:望远镜/平行光管/载物平台/读数装置
- 6. 三棱镜顶角为什么应接近平台中心偏上一点点的位置?
- [分光计左右窗读数的原理]: 仪器偏心差

$$\omega = (\omega_1 + \omega_2) /2;$$

$$\omega = [(\theta_1 - \theta_1) + (\theta_2 - \theta_2)]/2$$

III. 示波器

- 1. 李萨如: $f_y:f_x=N_x:N_y$
- 2. 一些调节方法:

- 3:校正电压输出及接地。其中 CAL 连接器可连接输出校正电压信号(1 kHz,0.6 Upp),用于仪器的操作检测和探头波形的调整。 1接地可用于接地调导
- 4;垂直调节部分;CH1、CH2 接口用于输入信号的连接;EXT 指触发源连接接口;VOLTS/DIV 指偏转因数选择;POSITION 为垂直位移调节;CH1、CH2 按钮用于通道显示选择;GND 指接地选择;DC/AC 指交直流耦合选择;ADD 指 CH1、CH2 两信号叠加;INV 指倒相选择。
- 5.水平调节部分:POSITION 为水平位移调节; TIME/DIV 指扫描速率和幅度选择; FINE 指水平位移微调; WAG×10 指光标在水平方向扫描速度扩大 10倍; ALT 指交替显示模式; CHOP 指断续显示模式。
- 6:触发部分:TRIG LEVEL 指调节触发电平幅值;SLOPE 指触发斜率选择;SOURCE 指触发源选择;COUPL 指触发耦合模式选择。

7;HORIZ DISPLAY 水平显示模式:A 指单踪或双踪显示选择,X-Y 指李萨

- 8;SWEEP MODE 扫描模式选择:AUTO,NORM,SGL/RST。
- 9:FUNCTION: 光标测量。

如图等闭合曲线显示选择。

- 3. 仪器:示波管、放大器(X轴放大,Y轴放大)、扫描和触发
- 4。 用比较法验证 $f_y = nf_x$, f_y 是信号频率, f_x 是扫描频率; $T_y > T_x$ 右移, $T_y < T_x$ 左移
 - 5. 电压测量:
- 直接测量法: $U_{P-P} = D \cdot h$, VOLTS/DIV 选择偏转因数 光标测量法: $\Delta V \Delta t OFF$ 选择 ΔU , TCK/C2 选择光标
- · = | | | | |
- 6. 频率测量:
- 直接测量法, $T_x = Q \cdot x$
- 光标测量法
- 二极管正向导通电压测量:

电路图:

计算公式: $\left(\frac{U_{1p-2}}{2}-U_{2p}\right)$ 是导通电压

图 4-1-9

相位差 $\Delta \Phi = \frac{X \ \text{方向上两个被形起点间距离}_{x_1(\text{cm})}}{X \ \text{方向上一个周期所占的距离}_{x(\text{cm})}} \times 360^\circ$

9. 左移/右移:调整TRIG LEVEL