Polymath: Groth16 Is Not The Limit

Helger Lipmaa, University of Tartu, Estonia

Computation: *f*Public input (statement) x
Private input (witness) w

Computation: f

Public input (statement) x

Computation: f

Public input (statement) x

Private input (witness) w

STS

Computation: f

Public input (statement) x

STS

Computation: f

Public input (statement) x

Private input (witness) w

Computation: f

Public input (statement) x

STS

STS

Computation: f

Public input (statement) x

Private input (witness) w

Computation: f

Public input (statement) x

STS

STS

Proof π that f(x, w) = 1

Completeness

Computation: f

Public input (statement) x

Private input (witness) w

Computation: f

Public input (statement) x

STS

STS

- Completeness
- Knowledge-soundness

Computation: f

Public input (statement) x

Private input (witness) w

Computation: f

Public input (statement) x

STS

STS

- Completeness
- Knowledge-soundness
- Zero-knowledge

Computation: f

Public input (statement) x

Private input (witness) w

STS

Computation: f

Public input (statement) x

STS

- Completeness
- Knowledge-soundness
- Zero-knowledge
- Succinct arguments

Huge progress in zk-SNARK land in last 5 years Landscape In 2024, Groth 16 still landed supreme after 8 years

- Shortest argument
- Fastest verifier

Good for Verifier Groth16 Brakedown + Groth16 FRI + Groth16

- Long input => need fast prover
- Proof has to be "short enough"
- Verifier's circuit should be simple
- GKR, FRI, Brakedown, Bulletproofs, ...

- Long input => need fast prover
- Proof has to be "short enough"
- Verifier's circuit should be simple
- GKR, FRI, Brakedown, Bulletproofs, ...

- Semi-long input => need decent prover
- Proof has to be "super succinct"
- Groth16!

accepted

- Groth16 is non-universal?
 - "V_{in} accepts" is a fixed language
 - Non-universality is ok
- Groth16 slow prover?
 - We apply Π_{out} to semi-long input $\underline{\omega}$
- But can we improve on $|\pi_{out}|$ and V speed? $\cite{\mathbb{P}}$

- Groth16 is non-universal?
 - "V_{in} accepts" is a fixed language
 - Non-universality is ok
- Groth16 slow prover?
 - We apply Π_{out} to semi-long input $\underline{\omega}$
- But can we improve on $|\pi_{out}|$ and V speed? 🤪

Pros:			

Pros:

Shorter argument

- Shorter argument
 - 1536 -> 1408 bits @ 128-bit

- Shorter argument
 - 1536 -> 1408 bits @ 128-bit
 - 3072 -> 1792 bits @ 192-bit

- Shorter argument
 - 1536 -> 1408 bits @ 128-bit
 - 3072 -> 1792 bits @ 192-bit
- Faster verifier

- Shorter argument
 - 1536 -> 1408 bits @ 128-bit
 - 3072 -> 1792 bits @ 192-bit
- Faster verifier
 - Potentially, for short x

- Shorter argument
 - 1536 -> 1408 bits @ 128-bit
 - 3072 -> 1792 bits @ 192-bit
- Faster verifier
 - Potentially, for short x
 - Definitely, for long x

- Shorter argument
 - 1536 -> 1408 bits @ 128-bit
 - 3072 -> 1792 bits @ 192-bit
- Faster verifier
 - Potentially, for short x
 - Definitely, for long x
- Batch-friendly

- Shorter argument
 - 1536 -> 1408 bits @ 128-bit
 - 3072 -> 1792 bits @ 192-bit
- Faster verifier
 - Potentially, for short x
 - Definitely, for long x
- Batch-friendly
 - No adversarially output \mathbb{G}_2 elements

- Shorter argument
 - 1536 -> 1408 bits @ 128-bit
 - 3072 -> 1792 bits @ 192-bit
- Faster verifier
 - Potentially, for short x
 - Definitely, for long x
- Batch-friendly
 - No adversarially output \mathbb{G}_2 elements

Cons:			

Pros:

- Shorter argument
 - 1536 -> 1408 bits @ 128-bit
 - 3072 -> 1792 bits @ 192-bit
- Faster verifier
 - Potentially, for short x
 - Definitely, for long x
- Batch-friendly
 - No adversarially output \mathbb{G}_2 elements

Cons:

Slower prover

Pros:

- Shorter argument
 - 1536 -> 1408 bits @ 128-bit
 - 3072 -> 1792 bits @ 192-bit
- Faster verifier
 - Potentially, for short x
 - Definitely, for long x
- Batch-friendly
 - No adversarially output \mathbb{G}_2 elements

Cons:

- Slower prover
 - 4-8 times (no implementation**)

Pros:

- Shorter argument
 - 1536 -> 1408 bits @ 128-bit
 - 3072 -> 1792 bits @ 192-bit
- Faster verifier
 - Potentially, for short x
 - Definitely, for long x
- Batch-friendly
 - No adversarially output \mathbb{G}_2 elements

Cons:

- Slower prover
 - 4-8 times (no implementation**)
 - Should be ok in composition

Pros:

- Shorter argument
 - 1536 -> 1408 bits @ 128-bit
 - 3072 -> 1792 bits @ 192-bit
- Faster verifier
 - Potentially, for short x
 - Definitely, for long x
- Batch-friendly
 - No adversarially output \mathbb{G}_2 elements

Cons:

- Slower prover
 - 4-8 times (no implementation**)
 - Should be ok in composition
- Uses random oracle

Pros:

- Shorter argument
 - 1536 -> 1408 bits @ 128-bit
 - 3072 -> 1792 bits @ 192-bit
- Faster verifier
 - Potentially, for short x
 - Definitely, for long x
- Batch-friendly
 - No adversarially output \mathbb{G}_2 elements

- Slower prover
 - 4-8 times (no implementation**)
 - Should be ok in composition
- Uses random oracle
 - Mostly theoretical objection

Pros:

- Shorter argument
 - 1536 -> 1408 bits @ 128-bit
 - 3072 -> 1792 bits @ 192-bit
- Faster verifier
 - Potentially, for short x
 - Definitely, for long x
- Batch-friendly
 - No adversarially output \mathbb{G}_2 elements

- Slower prover
 - 4-8 times (no implementation**)
 - Should be ok in composition
- Uses random oracle
 - Mostly theoretical objection
 - Initial SNARKs in composition use RO anyhow

Pros:

- Shorter argument
 - 1536 -> 1408 bits @ 128-bit
 - 3072 -> 1792 bits @ 192-bit
- Faster verifier
 - Potentially, for short x
 - Definitely, for long x
- Batch-friendly
 - No adversarially output \mathbb{G}_2 elements

- Slower prover
 - 4-8 times (no implementation**)
 - Should be ok in composition
- Uses random oracle
 - Mostly theoretical objection
 - Initial SNARKs in composition use RO anyhow
 - But RO makes certain apps difficult

Pros:

- Shorter argument
 - 1536 -> 1408 bits @ 128-bit
 - 3072 -> 1792 bits @ 192-bit
- Faster verifier
 - Potentially, for short x
 - Definitely, for long x
- Batch-friendly
 - No adversarially output \mathbb{G}_2 elements

- Slower prover
 - 4-8 times (no implementation**)
 - Should be ok in composition
- Uses random oracle
 - Mostly theoretical objection
 - Initial SNARKs in composition use RO anyhow
 - But RO makes certain apps difficult
- No SnarkPack?

Pros:

- Shorter argument
 - 1536 -> 1408 bits @ 128-bit
 - 3072 -> 1792 bits @ 192-bit
- Faster verifier
 - Potentially, for short x
 - Definitely, for long x
- Batch-friendly
 - No adversarially output \mathbb{G}_2 elements

- Slower prover
 - 4-8 times (no implementation**)
 - Should be ok in composition
- Uses random oracle
 - Mostly theoretical objection
 - Initial SNARKs in composition use RO anyhow
 - But RO makes certain apps difficult
- No SnarkPack?
 - Not known how to batch preexisting proofs

• pp = $(p, \mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T, [1]_1, [1]_2, \hat{e})$

- $pp = (p, \mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T, [1]_1, [1]_2, \hat{e})$
 - \mathbb{G}_i are additive abelian groups of large prime order p

- $pp = (p, \mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T, [1]_1, [1]_2, \hat{e})$
 - \mathbb{G}_i are additive abelian groups of large prime order p
 - $[1]_i$ is a generator of \mathbb{G}_i

- $pp = (p, \mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T, [1]_1, [1]_2, \hat{e})$
 - \mathbb{G}_i are additive abelian groups of large prime order p
 - $[1]_i$ is a generator of \mathbb{G}_i
 - $\hat{e}: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$ is a bilinear map

- $pp = (p, \mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T, [1]_1, [1]_2, \hat{e})$
 - \mathbb{G}_i are additive abelian groups of large prime order p
 - $[1]_i$ is a generator of \mathbb{G}_i
 - $\hat{e}: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$ is a bilinear map
 - $\hat{e}([a]_1, [b]_2) = [ab]_T \text{ for } a, b \in \mathbb{F}_p$

- $pp = (p, \mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T, [1]_1, [1]_2, \hat{e})$
 - \mathbb{G}_i are additive abelian groups of large prime order p
 - $[1]_i$ is a generator of \mathbb{G}_i
 - $\hat{e}: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$ is a bilinear map
 - $\hat{e}([a]_1, [b]_2) = [ab]_T \text{ for } a, b \in \mathbb{F}_p$
- "Standard" curve for 128-bit security level: BLS12-381

- $pp = (p, \mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T, [1]_1, [1]_2, \hat{e})$
 - \mathbb{G}_i are additive abelian groups of large prime order p
 - $[1]_i$ is a generator of \mathbb{G}_i
 - $\hat{e}: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$ is a bilinear map
 - $\hat{e}([a]_1, [b]_2) = [ab]_T \text{ for } a, b \in \mathbb{F}_p$
- "Standard" curve for 128-bit security level: BLS12-381
 - $\mathscr{E}(\mathbb{F}_p) = 256$, $\mathscr{E}(\mathbb{G}_1) = 384$, $\mathscr{E}(\mathbb{G}_2) = 2\mathscr{E}(\mathbb{G}_1) = 768$ (bits)

- pp = $(p, \mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T, [1]_1, [1]_2, \hat{e})$
 - \mathbb{G}_i are additive abelian groups of large prime order p
 - $[1]_i$ is a generator of \mathbb{G}_i
 - $\hat{e}: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$ is a bilinear map
 - $\hat{e}([a]_1, [b]_2) = [ab]_T \text{ for } a, b \in \mathbb{F}_p$
- "Standard" curve for 128-bit security level: BLS12-381
 - $\mathscr{E}(\mathbb{F}_p) = 256$, $\mathscr{E}(\mathbb{G}_1) = 384$, $\mathscr{E}(\mathbb{G}_2) = 2\mathscr{E}(\mathbb{G}_1) = 768$ (bits)
- Curves for 192-bit security level:

Pairings

For Muggles

- pp = $(p, \mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T, [1]_1, [1]_2, \hat{e})$
 - \mathbb{G}_i are additive abelian groups of large prime order p
 - $[1]_i$ is a generator of \mathbb{G}_i
 - $\hat{e}: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$ is a bilinear map
 - $\hat{e}([a]_1, [b]_2) = [ab]_T \text{ for } a, b \in \mathbb{F}_p$
- "Standard" curve for 128-bit security level: BLS12-381
 - $\mathscr{E}(\mathbb{F}_p) = 256$, $\mathscr{E}(\mathbb{G}_1) = 384$, $\mathscr{E}(\mathbb{G}_2) = 2\mathscr{E}(\mathbb{G}_1) = 768$ (bits)
- Curves for 192-bit security level:
 - $\mathscr{E}(\mathbb{F}_p) = 256$, $\mathscr{E}(\mathbb{G}_1) = 512$, $\mathscr{E}(\mathbb{G}_2) = 4\mathscr{E}(\mathbb{G}_1) = 2048$ (bits)

Groth16: Bird's-Eye

Computation: f

Public input (statement) x

Private input (witness) w

srs(f)

Computation: f

Public input (statement) x

srs(f)

SRS depends on the circuit

Groth16: Bird's-Eye

Computation: f

Public input (statement) x

Private input (witness) w

srs(f)

Computation: f

Public input (statement) x

$$\pi = ([a]_1, [b]_2, [c]_1)$$

- SRS depends on the circuit
- Argument length: only 3 group elements

Groth16: Bird's-Eye

Computation: f

Public input (statement) x

Private input (witness) w

srs(f)

Computation: f

Public input (statement) x

$$\pi = ([a]_1, [b]_2, [c]_1)$$

- SRS depends on the circuit
- Argument length: only 3 group elements
- Verifier executes three pairings and x group ops

• Groth16 has three group elements

- Groth16 has three group elements
- Lower bound [Groth, EC16]:

- Groth16 has three group elements
- Lower bound [Groth, EC16]:
 - At least two group elements needed

- Groth16 has three group elements
- Lower bound [Groth, EC16]:
 - At least two group elements needed
 - One of them has to be in G₂

- Groth16 has three group elements
- Lower bound [Groth, EC16]:
 - At least two group elements needed
 - One of them has to be in \mathbb{G}_2
- Using a different arithmetization, one can have two group elements

- Groth16 has three group elements
- Lower bound [Groth, EC16]:
 - At least two group elements needed
 - One of them has to be in G₂
- Using a different arithmetization, one can have two group elements
 - SAP (Square Arithmetic Programming) instead of R1CS

- Groth16 has three group elements
- Lower bound [Groth, EC16]:
 - At least two group elements needed
 - One of them has to be in \mathbb{G}_2
- Using a different arithmetization, one can have two group elements
 - SAP (Square Arithmetic Programming) instead of R1CS
 - However, then one relies on symmetric pairings

- Groth16 has three group elements
- Lower bound [Groth, EC16]:
 - At least two group elements needed
 - One of them has to be in G₂
- Using a different arithmetization, one can have two group elements
 - SAP (Square Arithmetic Programming) instead of R1CS
 - However, then one relies on symmetric pairings
 - Group elements will be considerably longer => worse in practice

- Groth16 has three group elements
- Lower bound [Groth, EC16]:
 - At least two group elements needed
 - One of them has to be in \mathbb{G}_2
- Using a different arithmetization, one can have two group elements
 - SAP (Square Arithmetic Programming) instead of R1CS
 - However, then one relies on symmetric pairings
 - Group elements will be considerably longer => worse in practice
 - The lower bound works in the standard model (no RO)

- Groth16 has three group elements
- Lower bound [Groth, EC16]:
 - At least two group elements needed
 - One of them has to be in \mathbb{G}_2
- Using a different arithmetization, one can have two group elements
 - SAP (Square Arithmetic Programming) instead of R1CS
 - However, then one relies on symmetric pairings
 - Group elements will be considerably longer => worse in practice
 - The lower bound works in the standard model (no RO)
 - It talks about #group elements, not bit-length

For non-muggles

• Problem: \mathbb{G}_2 elements are long

- Problem: \mathbb{G}_2 elements are long
- $[b]_2 \Longrightarrow [b]_1$, but how?

- Problem: \mathbb{G}_2 elements are long
- $[b]_2 \Longrightarrow [b]_1$, but how?
- Groth16 uses pairings to do quadratic checks

- Problem: G₂ elements are long
- $[b]_2 \Longrightarrow [b]_1$, but how?
- Groth16 uses pairings to do quadratic checks
- We can KZG-open the polynomial commitment $[b]_1$ to some b and do quadratic checks by using \bar{b}

- Problem: G₂ elements are long
- $[b]_2 \Longrightarrow [b]_1$, but how?
- Groth16 uses pairings to do quadratic checks
- We can KZG-open the polynomial commitment $[b]_1$ to some b and do quadratic checks by using \bar{b}
- KZG opening is shorter than a \mathbb{G}_2 element

- Problem: G₂ elements are long
- $[b]_2 \Longrightarrow [b]_1$, but how?
- Groth16 uses pairings to do quadratic checks
 - We can KZG-open the polynomial commitment $[b]_1$ to some b and do quadratic checks by using \bar{b}
 - KZG opening is shorter than a \mathbb{G}_2 element
 - (a field element \bar{b} and a \mathbb{G}_1 element $[h]_1$)

- Problem: \mathbb{G}_2 elements are long
- $[b]_2 \Longrightarrow [b]_1$, but how?
- Groth16 uses pairings to do quadratic checks
 - We can KZG-open the polynomial commitment $[b]_1$ to some b and do quadratic checks by using \bar{b}
 - KZG opening is shorter than a \mathbb{G}_2 element
 - (a field element \bar{b} and a \mathbb{G}_1 element $[h]_1$)

Problem:

- we still have $[b]_1$ in the argument!
- $\ell([b]_2) < \ell([b]_1) + \ell(\bar{b}) + \ell([h]_1)$ in 128-bit level

 $\pi = ([a]_1, [b]_1, [c]_1, \bar{b}, [h]_1)$

If we use SAP instead of R1CS, we get $[b]_1 = [a]_1$

If we use SAP instead of R1CS, we get $[b]_1 = [a]_1$

No need to send it!

If we use SAP instead of R1CS, we get $[b]_1 = [a]_1$

- No need to send it!
- Cost: circuit ≈ 2 longer => slower prover

If we use SAP instead of R1CS, we get $[b]_1 = [a]_1$

- No need to send it!
- Cost: circuit ≈ 2 longer => slower prover
 - Multiplication gates => squaring gates

If we use SAP instead of R1CS, we get $[b]_1 = [a]_1$

- No need to send it!
- Cost: circuit ≈ 2 longer => slower prover
 - Multiplication gates => squaring gates

Problem:

- Groth16 has five trapdoors, KZG is univariate
- Not clear how to use KZG

Univariatization:

Scenic Route to Polymath $\pi = ([a]_1, [c]_1, \bar{b}, [h]_1)$

- Univariatization:
 - Replace each trapdoor with x^i for some i and a single trapdoor x

- Univariatization:
 - Replace each trapdoor with x^i for some i and a single trapdoor x
- Also done in [Lipmaa, PKC 2022] who used exhaustive search to find i's

- Univariatization:
 - Replace each trapdoor with x^i for some i and a single trapdoor x
- Also done in [Lipmaa, PKC 2022] who used exhaustive search to find i's

Problem:

- even after exhaustive search, the exponents i are quite large
- KZG prover time Ω (polynomial degree)
 - => Results in high prover complexity

Scenic Route to Polymath $\pi = ([a]_1, [c]_1, \bar{b}, [h]_1)$

Observation 1: Groth16 for SAP has -1 trapdoor

Observation 1: Groth16 for SAP has -1 trapdoor

Observation 1: Groth16 for SAP has -1 trapdoor

Observation 2:

 One trapdoor in Groth16 is only needed to mask SRS elements corresponding to the statement

Observation 1: Groth16 for SAP has -1 trapdoor

- One trapdoor in Groth16 is only needed to mask SRS elements corresponding to the statement
- We use a different verification algorithm, getting rid of "statement" trapdoor

Observation 1: Groth16 for SAP has -1 trapdoor

- One trapdoor in Groth16 is only needed to mask SRS elements corresponding to the statement
- · We use a different verification algorithm, getting rid of "statement" trapdoor
 - Verifier becomes faster

 $\pi = ([a]_1, [c]_1, \bar{b}, [h]_1)$

Observation 1: Groth16 for SAP has -1 trapdoor

- One trapdoor in Groth16 is only needed to mask SRS elements corresponding to the statement
- We use a different verification algorithm, getting rid of "statement" trapdoor
 - Verifier becomes faster
 - In Polymath, V interpolates a polynomial in \mathbb{F}_p of degree $|\mathbf{x}|$

Observation 1: Groth16 for SAP has -1 trapdoor

- One trapdoor in Groth16 is only needed to mask SRS elements corresponding to the statement
- We use a different verification algorithm, getting rid of "statement" trapdoor
 - Verifier becomes faster
 - In Polymath, V interpolates a polynomial in \mathbb{F}_p of degree $|\mathbf{x}|$
 - Instead of doing x -long MSM in Groth16

We only have three trapdoors

- We only have three trapdoors
- It is easier to choose "good" exponents!

- We only have three trapdoors
- It is easier to choose "good" exponents!

We replace two trapdoors with y^{α} and y^{γ} , where $y = x^{\sigma}$

- We only have three trapdoors
- It is easier to choose "good" exponents!

We replace two trapdoors with y^{α} and y^{γ} , where $y = x^{\sigma}$

• x is real trapdoor, α , γ , σ are field elements

- We only have three trapdoors
- It is easier to choose "good" exponents!

We replace two trapdoors with y^{α} and y^{γ} , where $y = x^{\sigma}$

- x is real trapdoor, α , γ , σ are field elements
- Exhaustive search to find "smallest" exponents that result in knowledgesoundness

 $\pi = ([a]_1, [c]_1, \bar{b}, [h]_1)$

- We only have three trapdoors
- It is easier to choose "good" exponents!
 - We replace two trapdoors with y^{α} and y^{γ} , where $y = x^{\sigma}$
 - x is real trapdoor, α , γ , σ are field elements
- Exhaustive search to find "smallest" exponents that result in knowledgesoundness
- Kamek saith: $\alpha = 3$, $\gamma = -5$, $\sigma = n + 3$

- We only have three trapdoors
- It is easier to choose "good" exponents!

We replace two trapdoors with y^{α} and y^{γ} , where $y = x^{\sigma}$

- x is real trapdoor, α , γ , σ are field elements
- Exhaustive search to find "smallest" exponents that result in knowledgesoundness
- Kamek saith: $\alpha = 3$, $\gamma = -5$, $\sigma = n + 3$

Problem:

- SRS is circuit-dependent
- It does not contain enough elements to compute $[h]_1$

We add another trapdoor $[z]_1$ that is **only** used to compute KZG opening

This adds elements to the SRS

Scenic Route to Polymath $\pi = ([a]_1, [c]_1, \bar{b}, [h]_1)$

We add another trapdoor $[z]_1$ that is **only** used to compute KZG opening

This adds elements to the SRS

• Completeness and zero-knowledge proofs are short and standard

- Completeness and zero-knowledge proofs are short and standard
- Soundness proof is seven pages

- Completeness and zero-knowledge proofs are short and standard
- Soundness proof is seven pages
- 1. Groth16 itself has a complicated proof

- Completeness and zero-knowledge proofs are short and standard
- Soundness proof is seven pages
- 1. Groth16 itself has a complicated proof
- 2. Using virtual trapdoors x^{l} instead of independent trapdoors makes proof more complicated

- Completeness and zero-knowledge proofs are short and standard
- Soundness proof is seven pages
- 1. Groth16 itself has a complicated proof
- 2. Using virtual trapdoors x^i instead of independent trapdoors makes proof more complicated
- 3. To get tight security after Fiat-Shamir, we prove special-soundness

- Completeness and zero-knowledge proofs are short and standard
- Soundness proof is seven pages
- 1. Groth16 itself has a complicated proof
- 2. Using virtual trapdoors x^{l} instead of independent trapdoors makes proof more complicated
- 3. To get tight security after Fiat-Shamir, we prove special-soundness
- 4. Proof is in AGM with Oblivious Sampling [Lipmaa-Parisella-Siim, TCC 2023]

- Completeness and zero-knowledge proofs are short and standard
- Soundness proof is seven pages
- 1. Groth16 itself has a complicated proof
- 2. Using virtual trapdoors x^{l} instead of independent trapdoors makes proof more complicated
- 3. To get tight security after Fiat-Shamir, we prove special-soundness
- 4. Proof is in AGM with Oblivious Sampling [Lipmaa-Parisella-Siim, TCC 2023]
 - LPS23 noted that KZG is often used wrongly

- Completeness and zero-knowledge proofs are short and standard
- Soundness proof is seven pages
- 1. Groth16 itself has a complicated proof
- 2. Using virtual trapdoors x^i instead of independent trapdoors makes proof more complicated
- 3. To get tight security after Fiat-Shamir, we prove special-soundness
- 4. Proof is in AGM with Oblivious Sampling [Lipmaa-Parisella-Siim, TCC 2023]
 - LPS23 noted that KZG is often used wrongly
 - Constructions are secure in AGM but not when adversary can do o.s.

- Completeness and zero-knowledge proofs are short and standard
- Soundness proof is seven pages
- 1. Groth16 itself has a complicated proof
- 2. Using virtual trapdoors x^i instead of independent trapdoors makes proof more complicated
- 3. To get tight security after Fiat-Shamir, we prove special-soundness
- 4. Proof is in AGM with Oblivious Sampling [Lipmaa-Parisella-Siim, TCC 2023]
 - LPS23 noted that KZG is often used wrongly
 - Constructions are secure in AGM but not when adversary can do o.s.
 - And o.s. is for free!

- Completeness and zero-knowledge proofs are short and standard
- Soundness proof is seven pages
- 1. Groth16 itself has a complicated proof
- 2. Using virtual trapdoors x^i instead of independent trapdoors makes proof more complicated
- 3. To get tight security after Fiat-Shamir, we prove special-soundness
- 4. Proof is in AGM with Oblivious Sampling [Lipmaa-Parisella-Siim, TCC 2023]
 - LPS23 noted that KZG is often used wrongly
 - Constructions are secure in AGM but not when adversary can do o.s.
 - And o.s. is for free!

Part of Polymath's proof is machine-checked

First improvement on Groth16 since 2016

- First improvement on Groth16 since 2016
 - Hopefully** encourages other researchers to improve Groth16 even further

- First improvement on Groth16 since 2016
 - Hopefully** encourages other researchers to improve Groth16 even further
- Open problems:

- First improvement on Groth16 since 2016
 - Hopefully** encourages other researchers to improve Groth16 even further
- Open problems:
 - Big bottleneck: prover's speed

- First improvement on Groth16 since 2016
 - Hopefully** encourages other researchers to improve Groth16 even further

Open problems:

- Big bottleneck: prover's speed
- What is the lower bound in the RO for argument size?

- First improvement on Groth16 since 2016
 - Hopefully** encourages other researchers to improve Groth16 even further

Open problems:

- Big bottleneck: prover's speed
- What is the lower bound in the RO for argument size?
- Can we improve on verifier's speed (in any setting)?**

- First improvement on Groth16 since 2016
 - Hopefully** encourages other researchers to improve Groth16 even further

Open problems:

- Big bottleneck: prover's speed
- What is the lower bound in the RO for argument size?
- Can we improve on verifier's speed (in any setting)?**
 - Not necessarily pairing-based...