Tyshkevich's Graph Decomposition: The Building Blocks

Boxuan Meng and Zahra Ben Sabeur

Directed Reading Program CO 2

July 30th, 2024

Graphs... What are They?

Definition (Graph):

A **Graph** G = (V, E) consists of vertices V and edges E, which are unordered pairs of vertices.

More simply we could think of a graph as a set of dots with lines connecting them!

Vertices and Their Relationships

Definition (Adjacent):

Two vertices u and v are called **adjacent** if they share an edge, these vertices can also be called neighbours.

Cliques and Stable Sets

Definition (*Clique*): A subset $X \subseteq V(G)$ is called a **clique** if for any two vertices $u, v \in X$, v is adjacent to u.

Definition *(Stable Set)*: A subset $X \subseteq V(G)$ is called a **stable set** if for any two vertices $u, v \in X$, v is not adjacent to u.

The Star of the Show: Split Graphs

Definition (Split Graph): A graph G is called a Split Graph if its vertex set can be partitioned into two disjoint sets K and S; where K is a clique and S is a stable set.

Recall that partitioned means that for every vertex $v \in V(G)$, v is either in K or in S, but not in both, ie. $V(G) = K \sqcup S$

Chordal Graphs... The Underdogs!

Now that we know what split graphs are, how can we characterize them further?

Definition (*Path*): A path is a sequence of **distinct** vertices $v_0, v_1 \dots v_k$ such that $v_0 v_1, v_1 v_2, \dots \in E(G)$

Definition (Cycle): A cycle is a path plus an edge $v_k v_1$

Chordal Graphs... The Underdogs!

Definition (Complement): Let G be a graph, \bar{G} is the complement of G such that $e \in E(\bar{G})$ if and only if $e \notin E(G)$

Definition (Chordal Graph): A chordal graph is a graph G where every cycle C of length greater than or equal to 4 has a chord (an edge not in C that joins two vertices in C)

Chordal Graphs... The Underdogs!

Now using all of these new definitions we can finally give our first characterization of split graphs!

Theorem (Földes, Hammer 1977):

G is a split graph **if and only if** both G and \bar{G} are chordal graphs.

We will give a proof for the forwards implication of this claim.

- Suppose that G is a split graph.
- ► Further suppose that G contains a cycle C of length greater than or equal to 4.

The Proof!

- Proof by contradiction: Suppose that the cycle C does not contain a chord (ie. we are assuming that G is not chordal).
- Claim: Two vertices of C are in K

► Then since the length of C is greater than of equal to 4, it follows that all remaining vertices lie in S, and therefore S contains at least 2 adjacent vertices ⇒

Therefore, G must be chordal. If G is split, then \bar{G} is also split, and so \bar{G} must also be chordal.

Graphs P_4 and $K_{1,3}$

Now that we know what kinds of graphs have a KS-partition, what kinds of graphs have a unique KS-partition? Something like P_4 ?

A split graph is *balanced* if it has a unique KS-partition. Otherwise is *unbalanced*.

► Let's compare the size of *K* with the largest clique, and the size of *S* with the largest stable set.

Graphs P_4 and $K_{1,3}$

What's the difference between P_4 and $K_{1,3}$?

▶ We can't find a vertex $v \in K$ in P_4 such that $S \cup \{v\}$ is a stable set.

Such vertices are called swing vertices.

Frame Title

Theorem: If G is a split graph, then G is unbalanced if and only if G has a swing vertex.

- We have 2 different KS-partition, one of them must has a smaller clique...
- Can only smaller than 1
- Swing vertex

The swing vertex gives us 2 KS-partitions.

Tyshkevich's Graph Decomposition: Putting It All Together

Elaine Zhao and Nitya Kandadai

Directed Reading Program CO 2

July 30th, 2024

Tyshkevich Composition - Definition

Tyshkevich composition is is an operation which composes a split graph with a fixed K/S partition and a simple graph. It is defined as follows:

 $(G_1,K,S)\circ G_2=H$, where $H=G_1+G_2$, with the added edges $\{(u,v):u\in K,v\in G_2\}$

Why do we care?

The **Tyshkevich Decomposition** of a graph G is $G = (G_k, K_k, S_k) \circ ... \circ (G_1, K_1, S_1) \circ G_0$, where every G_i is **indecomposable**.

Theorem: (Tyshkevich 1980)

Every graph has a unique Tyshkevich decomposition.

Thus, Tyshkevich decomposition of graphs is analogous to **prime factorization of integers**.

Tyshkevich Decompositions vs Prime Factorization

Tyshkevich decomposition	Prime factorization
Unique	
Can't be broken down further	
Associative	
NOT Commutative	Commutative

And I'm supposed to just... do this?

Take a look at this graph:

Now that we've defined this operation, some natural questions come to mind:

- How can we find the Tyshkevich decomposition of a graph?
- ► How can we tell if a graph is decomposable?

Luckily, we have some easily identifiable properties to help us out!

A graph G has a **dominating vertex** if and only if it can be decomposed as $G = (G_1, \{v\}, \emptyset) \circ G_2$ for some G_2 .

A graph G has an **isolated vertex** if and only if it can be decomposed as $G = (G_1, \emptyset, \{v\}) \circ G_2$ for some G_2 .

A graph G is an **unbalanced split graph** if and only if it can be decomposed as $G = G_1 \circ \{v\}$.

Rule 3 - Proof

G can be decomposed as $G = G_1 \circ \{v\} \implies G$ is an unbalanced split graph.

- ▶ Let K be the clique and let S be the stable set in G_1 in the decomposition.
- We know that v is adjacent to all vertices in K and to none of the vertices in S by the process of a Tyshkevich Composition.
- ▶ This means that G can be written as a split graph with the K-max partition $K \cup \{v\}$ and S or the S-max partition of K and $S \cup \{v\}$.
- ightharpoonup This means v is a swing vertex so G is unbalanced.

If every component of a **disconnected** graph G has 2 or more vertices (ie. has an edge), then G is **indecomposable**.

Rule 4 - proof

We prove the **contrapositive**:

G is decomposable \implies G is connected, or G has a component that is a single vertex.

- Let G be a decomposable graph, $G = (G_k, K_k, S_k) \circ ... \circ (G_1, K_1, S_1) \circ G_0$.
- ▶ Suppose K_k is non-empty. We observe that after adding edges, everything to the right of K_k becomes part of the same component as K_k .
- Any vertices in S_k are either isolated vertices or adjacent to something in K_k and thus part of this component. Thus G is either connected or has a component with no edges.
- ▶ Suppose K_k is empty. Then S_k is nonempty and its vertices are isolated. \square

Putting the Rules Together :D

Let's return to the graph we saw earlier:

Putting together the work we did using our rules, we get its Tyshkevich decomposition:

$$\begin{array}{c} K \\ S \end{array}$$

Checking our work:)

Let's get some more practice Tyshkevich-composing graphs and check our work!

$$\begin{array}{c} K \\ S \\ \hline \\ S \\ \hline \\ G_1 \\ \hline \\ G_2 \\ \hline \\ G_1 \\ \hline \\ G_2 \\ \hline \\ G_2 \\ \hline \\ G_3 \\ \hline \\ G_4 \\ \hline \\ G_6 \\ \hline \\ G_7 \\ \hline \\ G_8 \\ \hline \\ G_{1} \\ \hline \\ G_{2} \\ \hline \\ G_{2} \\ \hline \\ G_{3} \\ \hline \\ G_{4} \\ \hline \\ G_{5} \\ \hline \\ G_{7} \\ \hline \\ G_{8} \\ \hline \\ G_{1} \\ \hline \\ G_{2} \\ \hline \\ G_{3} \\ \hline \\ G_{4} \\ \hline \\ G_{5} \\ \hline \\ G_{7} \\ \hline \\ G_{8} \\ \hline \\ G_{1} \\ \hline \\ G_{2} \\ \hline \\ G_{3} \\ \hline \\ G_{4} \\ \hline \\ G_{5} \\ \hline \\ G_{7} \\ \hline \\ G_{8} \\ \hline \\ G_{8} \\ \hline \\ G_{1} \\ \hline \\ G_{1} \\ \hline \\ G_{2} \\ \hline \\ G_{3} \\ \hline \\ G_{4} \\ \hline \\ G_{5} \\ \hline \\ G_{7} \\ \hline \\ G_{8} \\ \hline \\ G_{8} \\ \hline \\ G_{1} \\ \hline \\ G_{1} \\ \hline \\ G_{2} \\ \hline \\ G_{1} \\ \hline \\ G_{2} \\ \hline \\ G_{1} \\ \hline \\ G_{1} \\ \hline \\ G_{2} \\ \hline \\ G_{1} \\ \hline \\ G_{2} \\ \hline \\ G_{3} \\ \hline \\ G_{4} \\ \hline \\ G_{1} \\ \hline \\ G_{1} \\ \hline \\ G_{2} \\ \hline \\ G_{3} \\ \hline \\ G_{4} \\ \hline \\ G_{1} \\ \hline \\ G_{2} \\ \hline \\ G_{3} \\ \hline \\ G_{4} \\ \hline \\ G_{5} \\ \hline \\ G_{7} \\ \hline \\ G_{8} \\ \hline \\ G_{1} \\ \hline \\ G_{1} \\ \hline \\ G_{2} \\ \hline \\ G_{3} \\ \hline \\ G_{4} \\ \hline \\ G_{5} \\ \hline \\ G_{5} \\ \hline \\ G_{7} \\ \hline \\ G_{8} \\ \hline \\ G_{1} \\ \hline \\ G_{1} \\ \hline \\ G_{1} \\ \hline \\ G_{2} \\ \hline \\ G_{3} \\ \hline \\ G_{4} \\ \hline \\ G_{1} \\ \hline \\ G_{1} \\ \hline \\ G_{2} \\ \hline \\ G_{3} \\ \hline \\ G_{4} \\ \hline \\ G_{5} \\ \hline \\ G_{5} \\ \hline \\ G_{7} \\ \hline \\ G_{8} \\ \hline \\ G_{1} \\ \hline \\ G_{1} \\ \hline \\ G_{2} \\ \hline \\ G_{3} \\ \hline \\ G_{4} \\ \hline \\ G_{5} \\ \hline \\ G_{5} \\ \hline \\ G_{7} \\ \hline \\ G_{7} \\ \hline \\ G_{8} \\ \hline \\$$

Thank you!