Universidade de Fortaleza - UNIFOR

Inteligência Artificial Computacional

T296

Msc. Prof. Paulo Cirillo Souza Barbosa Centro de Ciências Tecnológicas - CCT Fortaleza, Ceará, Brasil

Sumário

- Redes Neurais Artificiais (RNA).
- 1.1 Introdução.
- 1.2 Neurônio Biológico.
- 1.3 Neurônio Artificial
- 2 Redes RBF
- 2.1 Projeto da camada oculta

/177 Prof. Paulo Cirillo CCT, UNIFOR

Introdução.

- São modelos computacionais inspirados no sistema nervoso de seres vivos.
- São definidas por um conjunto de unidades de processamento, caracterizadas por neurônios artificiais que são interconectados através de uma matriz de pesos (sinapses artificiais).
- Características principais:
 - Adaptação por experiência.
 - 2 Capacidade de aprendizado.
 - Habilidade de generalização.
 - Organização de dados.
 - Tolerância a falhas.
 - Armazenamento distribuído.
 - Facilidade de prototipagem.

- Aplicações:
 - Aproximador universal de funções.
 - Controle de processos.
 - Reconhecimento/classificação de padrões.
 - Agrupamento de dados.
 - Sistemas de previsão.
 - Otimização de sistemas.
 - Memórias Associativas.

Neurônio Biológico.

- O neurônio nada mais é do que uma célula que consegue conduzir estímulos elétricos advindos de reações físico-químicas.
 - Dendritos.
 - Soma ou Corpo Celular.
 - Axônio.
 - 4 Sinapses.

- **Dendritos** Ramificações correspondentes aos canais de entrada de informação (sinais elétricos, escala mV).
- Corpo Celular Local onde é feito o balanço energético da célula nervosa (soma das contribuições de energia).
- Axônios Canal de saída do neurônio, ou seja, caminho de propagação dos impulsos nervosos em direção a outros neurônios ou músculos.
- Sinapses Pontos de contato entre neurônios onde há passagem de neurotransmissores do axônio de um neurônio para os dendritos de outro neurônio.

Prof. Paulo Cirillo CCT. UNIFOR

O Fluxo da informação ocorre sempre no sentido: Dendritos ⇒ Corpo Celular ⇒ Axônio.

 O axônio emite um impulso elétrico (potencial de ação) apenas se o balanço energético realizado no corpo celular for maior que um certo limiar. Neste caso, diz-se que o neurônio disparou ou está ativado.

- A chegada deste sinal de disparo no terminal do axônio, faz com que neurotransmissores sejam liberados na fenda sináptica.
- Sinapses podem ser excitatórias (facilitam a passagem do potencial de ação) ou inibitórias (inibem a passagem do potencial de ação).
- Neurônios podem fazer conexões:
 - 1 com outros neurônios.
 - 2 com os músculos diretamente.
 - 3 com os órgãos sensoriais.

Curiosidades!

- Um comparativo pode ser feito com relação às portas lógicas, que operam na ordem dos nanossegundos.
- Um neurônio biológico opera na ordem dos milissegundos.
- Como computadores tem características "inferiores"ao cérebro humano?

Curiosidades!

- Um comparativo pode ser feito com relação às portas lógicas, que operam na ordem dos nanossegundos.
- Um neurônio biológico opera na ordem dos milissegundos.
- Como computadores tem características "inferiores"ao cérebro humano?
- Há cerca de 10 Bilhões de neurônios no cortex cerebral (massa cinzenta).
- O córtex é a estrutura responsável pelas habilidades cognitivas superiores, tais como memória, raciocínio lógico, linguagem, consciência, dentre outras.

Neurônio de Mculloch - Pitts.

• Modelo proposto em: MCCULLOCH, Warren S.; PITTS, Walter. A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, v. 5, n. 4, p. 115-133, 1943.

- Modelo proposto em: MCCULLOCH, Warren S.; PITTS, Walter. A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, v. 5, n. 4, p. 115-133, 1943.
- Faz-se necessário **destacar** que se trata de um modelo, ou seja, é uma aproximação do neurônio natural.

- Modelo proposto em: MCCULLOCH, Warren S.; PITTS, Walter. A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, v. 5, n. 4, p. 115-133, 1943.
- Faz-se necessário destacar que se trata de um modelo, ou seja, é uma aproximação do neurônio natural.
- Portanto, o neurônio M-P é uma aproximação útil do neurônio real, pois, serve até hoje como bloco construtivo básico de algoritmos de RNA.

- Modelo proposto em: MCCULLOCH, Warren S.; PITTS, Walter. A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, v. 5, n. 4, p. 115-133, 1943.
- Faz-se necessário **destacar** que se trata de um modelo, ou seja, é uma aproximação do neurônio natural.
- Portanto, o neurônio M-P é uma aproximação útil do neurônio real, pois, serve até hoje como bloco construtivo básico de algoritmos de RNA.
- A modelagem realizada está ligada aos aspectos do processamento da informação em um neurônio biológico, ou seja, os caminhos e etapas pelas quais passam os potenciais de ação que trafegam:

10/177 Prof. Paulo Cirillo CCT, UNIFOR

- Modelo proposto em: MCCULLOCH, Warren S.; PITTS, Walter. A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, v. 5, n. 4, p. 115-133, 1943.
- Faz-se necessário destacar que se trata de um modelo, ou seja, é uma aproximação do neurônio natural.
- Portanto, o neurônio M-P é uma aproximação útil do neurônio real, pois, serve até hoje como bloco construtivo básico de algoritmos de RNA.
- A modelagem realizada está ligada aos aspectos do processamento da informação em um neurônio biológico, ou seja, os caminhos e etapas pelas quais passam os potenciais de ação que trafegam:
 - 1 de um neurônio a outro neurônio,

- Modelo proposto em: MCCULLOCH, Warren S.; PITTS, Walter. A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, v. 5, n. 4, p. 115-133, 1943.
- Faz-se necessário destacar que se trata de um modelo, ou seja, é uma aproximação do neurônio natural.
- Portanto, o neurônio M-P é uma aproximação útil do neurônio real, pois, serve até hoje como bloco construtivo básico de algoritmos de RNA.
- A modelagem realizada está ligada aos aspectos do processamento da informação em um neurônio biológico, ou seja, os caminhos e etapas pelas quais passam os potenciais de ação que trafegam:
 - 1 de um neurônio a outro neurônio,
 - 2 receptores sensoriais a um neurônio, ou

- Modelo proposto em: MCCULLOCH, Warren S.; PITTS, Walter. A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, v. 5, n. 4, p. 115-133, 1943.
- Faz-se necessário destacar que se trata de um modelo, ou seja, é uma aproximação do neurônio natural.
- Portanto, o neurônio M-P é uma aproximação útil do neurônio real, pois, serve até hoje como bloco construtivo básico de algoritmos de RNA.
- A modelagem realizada está ligada aos aspectos do processamento da informação em um neurônio biológico, ou seja, os caminhos e etapas pelas quais passam os potenciais de ação que trafegam:
 - de um neurônio a outro neurônio,
 - 2 receptores sensoriais a um neurônio, ou
 - 3 de um neurônio a um atuador (e.g. músculo).

- Modelo proposto em: MCCULLOCH, Warren S.; PITTS, Walter. A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, v. 5, n. 4, p. 115-133, 1943.
- Faz-se necessário destacar que se trata de um modelo, ou seja, é uma aproximação do neurônio natural.
- Portanto, o neurônio M-P é uma aproximação útil do neurônio real, pois, serve até hoje como bloco construtivo básico de algoritmos de RNA.
- A modelagem realizada está ligada aos aspectos do processamento da informação em um neurônio biológico, ou seja, os caminhos e etapas pelas quais passam os potenciais de ação que trafegam:
 - de um neurônio a outro neurônio,
 - 2 receptores sensoriais a um neurônio, ou
 - 3 de um neurônio a um atuador (e.g. músculo).
- Deseja-se portanto, desenvolver modelos matemáticos que representem os dendritos, as sinapses, o corpo celular e o axônio.

• Cada ramo dendrítico é modelado como um canal, pelo qual flui a informação de entrada $(x_i, j = 1, \dots, p)$.

 A força (ou eficiência) das conexões sinápticas de uma certa árvore dendrítica é modelada como um fator (peso sináptico), cujo papel é modular o fluxo de sinais passando por uma certa árvore dendrítica.

A função do corpo celular de realizar o balanço ou acúmulo energético é modelada por uma operação de somatório sobre as entradas moduladas pelos pesos sinápticos.

$$u =$$

• A função do corpo celular de realizar o balanço ou acúmulo energético é modelada por uma operação de somatório sobre as entradas moduladas pelos pesos sinápticos.

$$u = w_1 x_1 + w_2 x_2 + \cdots + w_p x_p - \theta$$

- x_1, x_2 são as entradas.
- w_1, w_2 os pesos sinápticos.
- θ representa o limiar (*threshold*)
- -1 é o viés bias
- *u* ativação.

- x_1, x_2 são as entradas.
- w_1, w_2 os pesos sinápticos.
- θ o limiar (bias, viés, *threshold*)
- *u* ativação.

• Dado o seguinte neurônio, com duas entradas x_1 e x_2 , o seu modelo pode ser escrito como:

• A combinação linear *u* é dada por:

• Dado o seguinte neurônio, com duas entradas x_1 e x_2 , o seu modelo pode ser escrito como:

• A combinação linear *u* é dada por:

$$u = w_1 x_1 + w_2 x_2 - \theta$$

• Para fins de classificação, pode-se trabalhar no plano (x_1, x_2) , ou seja, u = 0.

$$u = w_1 x_1 + w_2 x_2 - \theta = 0$$

Neurônio de Mculloch - Pitts.

$$u = w_1 x_1 + w_2 x_2 - \theta = 0$$
$$x_2 = -\frac{w_1}{w_2} x_1 + \frac{\theta}{w_2}$$

• Esta equação define a seguinte reta em (x_1, x_2) .

• Assim, um neurônio M-P pode ser usado para separar com eficiência, duas classes que estejam bem isoladas uma da outra.

Exemplo 1: Implementação das portas **OR**, **AND** e **NOT**.

• **OR**: É possível encontrar uma reta que separe os pontos da Classe **UM** (y=1) dos da Classe **DOIS** (y=0)?

x_1	$\overline{x_1}$	y
0	0	
0	1	
1	0	
1	1	

Exemplo 1: Implementação das portas **OR**, **AND** e **NOT**.

- **OR**: É possível encontrar uma reta que separe os pontos da Classe **UM** (y=1) dos da Classe **DOIS** (y=0)?
- É possível encontrar mais de uma reta?

x_1	$\overline{x_1}$	y
0	0	0
0	1	1
1	0	1
1	1	1

Exemplo 1: Implementação das portas **OR**, **AND** e **NOT**.

- OR: É possível encontrar uma reta que separe os pontos da Classe UM (y=1) dos da Classe DOIS (y=0)? SIM
- É possível encontrar mais de uma reta? Quantas?

Exemplo 1: Implementação das portas **OR**, **AND** e **NOT**.

- OR: É possível encontrar uma reta que separe os pontos da Classe UM (y=1) dos da Classe DOIS (y=0)? SIM
- É possível encontrar mais de uma reta? Quantas? Infinitas.

x_1	$\overline{x_1}$	y
0	0	0
0	1	1
1	0	1
1	1	1

Exemplo 1: neurônio MP das portas **OR**.

$$w_1 = w_2 = 1 \text{ e } \theta = 0.5$$

 $y = 1, \text{ se } u \ge 0$
 $y = 0, \text{ se } u < 0$

Exemplo 1: neurônio MP das portas AND.

$$w_1 = w_2 = 1 \text{ e } \theta = 1.5$$

 $y = 1, \text{ se } u \ge 0$
 $y = 0, \text{ se } u < 0$

Exemplo 1: neurônio MP das portas NOT.

$$w_1 = -1 \text{ e } \theta = -0.5$$

 $y = 1, \text{ se } u \ge 0$
 $y = 0, \text{ se } u < 0$

Redes Neurais Artificiais (RNA)

Notas importantes.

• O neurônio MP pode ser usado para implementar as portas lógicas AND, OR e NOT porque estas, do ponto de vista geométrico, podem ser interpretadas como um problema de classificação binária (duas categorias).

5/177 Prof. Paulo Cirillo CCT, UNIFOR

Redes Neurais Artificiais (RNA)

Notas importantes.

- O neurônio MP pode ser usado para implementar as portas lógicas AND, OR e NOT porque estas, do ponto de vista geométrico, podem ser interpretadas como um problema de classificação binária (duas categorias).
- O neurônio MP, do ponto de vista geométrico, pode ser intepretado como uma reta (2D), ou um plano (3D) ou ainda um hiperplano (> 3D), que é usado para separar duas categorias de dados distintas.

5/177 Prof. Paulo Cirillo CCT, UNIFOR

- O neurônio MP pode ser usado para implementar as portas lógicas AND, OR e NOT porque estas, do ponto de vista geométrico, podem ser interpretadas como um problema de classificação binária (duas categorias).
- O neurônio MP, do ponto de vista geométrico, pode ser intepretado como uma reta (2D), ou um plano (3D) ou ainda um hiperplano (> 3D), que é usado para separar duas categorias de dados distintas.
- Na implementação das portas lógicas AND, OR e NOT, os valores dos pesos e do limiar foram determinados pelo projetista com base na análise geométrica do problema.

CCT, UNIFOR Prof. Paulo Cirillo

- O neurônio MP pode ser usado para implementar as portas lógicas AND, OR e NOT porque estas, do ponto de vista geométrico, podem ser interpretadas como um problema de classificação binária (duas categorias).
- O neurônio MP, do ponto de vista geométrico, pode ser intepretado como uma reta (2D), ou um plano (3D) ou ainda um hiperplano (> 3D), que é usado para separar duas categorias de dados distintas.
- Na implementação das portas lógicas AND, OR e NOT, os valores dos pesos e do limiar foram determinados pelo projetista com base na análise geométrica do problema.
- Como fazer com que o neurônio M-P determine de forma automática os valores dos pesos e do limiar para um problema específico?

CCT, UNIFOR Prof. Paulo Cirillo

- O neurônio MP pode ser usado para implementar as portas lógicas AND, OR e NOT porque estas, do ponto de vista geométrico, podem ser interpretadas como um problema de classificação binária (duas categorias).
- O neurônio MP, do ponto de vista geométrico, pode ser intepretado como uma reta (2D), ou um plano (3D) ou ainda um hiperplano (> 3D), que é usado para separar duas categorias de dados distintas.
- Na implementação das portas lógicas AND, OR e NOT, os valores dos pesos e do limiar foram determinados pelo projetista com base na análise geométrica do problema.
- Como fazer com que o neurônio M-P determine de forma automática os valores dos pesos e do limiar para um problema específico?
- Para que o neurônio M-P seja capaz de aprender sozinho a resolver um problema de classificação é necessário dotá-lo de uma regra de aprendizagem.

Prof. Paulo Cirillo

- O neurônio MP pode ser usado para implementar as portas lógicas AND, OR e NOT porque estas, do ponto de vista geométrico, podem ser interpretadas como um problema de classificação binária (duas categorias).
- O neurônio MP, do ponto de vista geométrico, pode ser intepretado como uma reta (2D), ou um plano (3D) ou ainda um hiperplano (> 3D), que é usado para separar duas categorias de dados distintas.
- Na implementação das portas lógicas AND, OR e NOT, os valores dos pesos e do limiar foram determinados pelo projetista com base na análise geométrica do problema.
- Como fazer com que o neurônio M-P determine de forma automática os valores dos pesos e do limiar para um problema específico?
- Para que o neurônio M-P seja capaz de aprender sozinho a resolver um problema de classificação é necessário dotá-lo de uma regra de aprendizagem.
- Uma regra de aprendizagem nada mais é do que uma equação que altera os valores dos pesos e do limiar em função dos erros cometidos durante a execução da tarefa de classificação.

Prof. Paulo Cirillo

Redes Neurais Artificiais (RNA)

- Vamos assumir que existe uma lei matemática, ou função $\mathbf{H}(\cdot)$. Tal função chamada de mapeamento, que relaciona um vetor de entrada $\mathbf{x} \in \mathbb{R}^{p+1}$ qualquer com um vetor de saída $\mathbf{y} \in \mathbb{R}^c$. Matematicamente essa relação pode ser descrita como $\mathbf{y} = \mathbf{H}(\mathbf{x})$.
- Porém, $\mathbf{H}(\cdot)$ é

- Vamos assumir que existe uma lei matemática, ou função $\mathbf{H}(\cdot)$. Tal função chamada de mapeamento, que relaciona um vetor de entrada $\mathbf{x} \in \mathbb{R}^{p+1}$ qualquer com um vetor de saída $\mathbf{y} \in \mathbb{R}^c$. Matematicamente essa relação pode ser descrita como $\mathbf{y} = \mathbf{H}(\mathbf{x})$.
- Porém, $\mathbf{H}(\cdot)$ é desconhecida.
- Esse mapeamento pode representar diversos problemas de interesse prático.
 - Aproximação de Função.

- Vamos assumir que existe uma lei matemática, ou função $\mathbf{H}(\cdot)$. Tal função chamada de mapeamento, que relaciona um vetor de entrada $\mathbf{x} \in \mathbb{R}^{p+1}$ qualquer com um vetor de saída $\mathbf{y} \in \mathbb{R}^{c}$. Matematicamente essa relação pode ser descrita como $\mathbf{y} = \mathbf{H}(\mathbf{x})$.
- Porém, $\mathbf{H}(\cdot)$ é desconhecida.
- Esse mapeamento pode representar diversos problemas de interesse prático.
 - Aproximação de Função.
 - Classificação de padrões.

- Vamos assumir que existe uma lei matemática, ou função $\mathbf{H}(\cdot)$. Tal função chamada de mapeamento, que relaciona um vetor de entrada $\mathbf{x} \in \mathbb{R}^{p+1}$ qualquer com um vetor de saída $\mathbf{y} \in \mathbb{R}^c$. Matematicamente essa relação pode ser descrita como $\mathbf{y} = \mathbf{H}(\mathbf{x})$.
- Porém, $\mathbf{H}(\cdot)$ é desconhecida.
- Esse mapeamento pode representar diversos problemas de interesse prático.
 - Aproximação de Função.
 - 2 Classificação de padrões.
- Aproximação de função, a saída é quantitativa e é normalmente dada por números reais.
- Para classificação, a saída é qualitativa, muitas vezes representadas por +1s e -1s.
- Independente da aplicação, é de desejo a construção de um modelo adaptativo que aproxime a função **H** a partir dos pares entrada-saída.

- A rede Perceptron Simples (PS) é considerada o primeiro algoritmo de redes neurais artificiais.
- Proposta em 1958 por Frank Rosenblatt em: *ROSENBLATT, Frank. The perceptron: a probabilistic model for information storage and organization in the brain. Psychological review, v. 65, n. 6, p. 386, 1958.*
- Em sua versão mais simples, trata-se de um neurônio de M-P dotado de

7/177 Prof. Paulo Cirillo CCT, UNIFOR

- A rede Perceptron Simples (PS) é considerada o primeiro algoritmo de redes neurais artificiais.
- Proposta em 1958 por Frank Rosenblatt em: *ROSENBLATT, Frank. The perceptron: a probabilistic model for information storage and organization in the brain. Psychological review, v. 65, n. 6, p. 386, 1958.*
- Em sua versão mais simples, trata-se de um neurônio de M-P dotado de uma regra de aprendizagem ou algoritmo de aprendizagem.
- Tal regra é o mecanismo que torna a rede PS um dispositivo inteligente.

7/177 Prof. Paulo Cirillo CCT, UNIFOR

• A arquitetura do neurônio da rede PS é dada por

• Este modelo, significa que para um problema de classificação binário, tem-se:

$$\sum_{j=1}^{p} w_j x_j \ge \text{limiar} \longrightarrow Classe 1.$$

$$\sum_{i=1}^{p} w_{j} x_{j} < \text{limiar} \longrightarrow Classe 2.$$

• Ou então, este pode ser reescrito em uma única equação:

Este modelo, significa que para um problema de classificação binário, tem-se:

$$\sum_{j=1}^{p} w_j x_j \geq \text{limiar} \longrightarrow \textit{Classe} 1.$$

$$\sum_{i=1}^{p} w_j x_j < \text{limiar} \longrightarrow Classe 2.$$

Ou então, este pode ser reescrito em uma única equação:

$$y(t) = sinal(u(t))$$

$$= sinal\left(\left(\sum_{j=1}^{p} w_j x_j\right) - limiar\right)$$

Redes Neurais Artificiais (RNA)

Algoritmo do Perceptron Simples.

$$= sinal\left(\left(\sum_{j=1}^{p} w_j x_j\right) - limiar\right)$$

$$= sinal\left(\left(\sum_{j=1}^p w_j x_j\right) - limiar\right)$$

Pode-se reescrever *limiar* = $\theta = w_0$ e adicionar o artifício $x_0 = -1$.

$$y(t) = sinal\left(\left(\sum_{j=1}^{p} w_{j} x_{j}\right) + \theta(-1)\right)$$

$$= sinal\left(\left(\sum_{j=1}^{p} w_{j} x_{j}\right) + w_{0} x_{0}\right)$$

$$= sinal\left(\sum_{j=1}^{p} w_{j} x_{j}\right) = sinal(\mathbf{w}^{T} \mathbf{x}) = sinal(u(t))$$

• Nesta, os vetores **x** e **w** são definidos como:

$$\mathbf{x} = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \\ x_p \end{bmatrix} = \begin{bmatrix} -1 \\ x_1 \\ x_2 \\ \vdots \\ x_p \end{bmatrix} \qquad \mathbf{w} = \begin{bmatrix} w_0 \\ w_1 \\ w_2 \\ \vdots \\ w_p \end{bmatrix} = \begin{bmatrix} \theta \\ w_1 \\ w_2 \\ \vdots \\ w_p \end{bmatrix}$$

Do ponto de vista geométrico, o que representa u(t)?

• Nesta, os vetores **x** e **w** são definidos como:

$$\mathbf{x} = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \\ x_p \end{bmatrix} = \begin{bmatrix} -1 \\ x_1 \\ x_2 \\ \vdots \\ x_p \end{bmatrix} \qquad \mathbf{w} = \begin{bmatrix} w_0 \\ w_1 \\ w_2 \\ \vdots \\ w_p \end{bmatrix} = \begin{bmatrix} \theta \\ w_1 \\ w_2 \\ \vdots \\ w_p \end{bmatrix}$$

Do ponto de vista geométrico, o que representa u(t)?Exato!!!

• Nesta, os vetores **x** e **w** são definidos como:

$$\mathbf{x} = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \\ x_p \end{bmatrix} = \begin{bmatrix} -1 \\ x_1 \\ x_2 \\ \vdots \\ x_p \end{bmatrix} \qquad \mathbf{w} = \begin{bmatrix} w_0 \\ w_1 \\ w_2 \\ \vdots \\ w_p \end{bmatrix} = \begin{bmatrix} \theta \\ w_1 \\ w_2 \\ \vdots \\ w_p \end{bmatrix}$$

- Do ponto de vista geométrico, o que representa u(t)?Exato!!! Uma SIMILARIDADE.
- Sabendo disto, se o ângulo entre \mathbf{x} e \mathbf{w} for menor que 90° , o que dizer sobre $\mathbf{u}(t)$?

• Nesta, os vetores **x** e **w** são definidos como:

$$\mathbf{x} = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \\ x_p \end{bmatrix} = \begin{bmatrix} -1 \\ x_1 \\ x_2 \\ \vdots \\ x_p \end{bmatrix} \qquad \mathbf{w} = \begin{bmatrix} w_0 \\ w_1 \\ w_2 \\ \vdots \\ w_p \end{bmatrix} = \begin{bmatrix} \theta \\ w_1 \\ w_2 \\ \vdots \\ w_p \end{bmatrix}$$

- Do ponto de vista geométrico, o que representa u(t)? Exato!!! Uma SIMILARIDADE.
- Sabendo disto, se o ângulo entre x e w for menor que 90° , o que dizer sobre u(t)?
- Se o ângulo entre \mathbf{x} e \mathbf{w} for maior que 90° , o que dizer sobre $\mathbf{u}(t)$?

• Nesta, os vetores **x** e **w** são definidos como:

$$\mathbf{x} = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \\ x_p \end{bmatrix} = \begin{bmatrix} -1 \\ x_1 \\ x_2 \\ \vdots \\ x_p \end{bmatrix} \qquad \mathbf{w} = \begin{bmatrix} w_0 \\ w_1 \\ w_2 \\ \vdots \\ w_p \end{bmatrix} = \begin{bmatrix} \theta \\ w_1 \\ w_2 \\ \vdots \\ w_p \end{bmatrix}$$

- Do ponto de vista geométrico, o que representa u(t)? Exato!!! Uma SIMILARIDADE.
- Sabendo disto, se o ângulo entre \mathbf{x} e \mathbf{w} for menor que 90° , o que dizer sobre $\mathbf{u}(t)$?
- Se o ângulo entre x e w for maior que 90° , o que dizer sobre u(t)?

$$y(t) = sinal(u(t)) = \begin{cases} +1, & u(t) \ge 0 \\ -1, & u(t) < 0 \end{cases}$$

• O processo de aprendizagem consiste na modificação (ou ajuste) dos parâmetros do neurônio M-P, até que se consiga resolver o problema de interesse ou que se chegue ao final do período de aprendizagem. **Pergunta:** Quais são os parâmetros do modelo?

- O processo de aprendizagem consiste na modificação (ou ajuste) dos parâmetros do neurônio M-P, até que se consiga resolver o problema de interesse ou que se chegue ao final do período de aprendizagem. **Pergunta:** Quais são os parâmetros do modelo? **Pesos e o limiar**
- A regra de aprendizagem é uma função de dois fatores:
 - ① Erro entre a saída desejada d(t) e a saída gerada pela rede y(t). Logo, e(t) = d(t) y(t).
 - 2 Informação fornecida pelo vetor de entrada x.
- O processo de aprendizagem, ou seja, o ajuste dos parâmetros do neurônio M-P, é guiado pelo erro e(t) e pelo vetor de entrada \mathbf{x} .

- Como projetar a regra de aprendizagem?
- Uma regra de aprendizagem pode ser projetada com base em:
 - Argumentos geométricos ou empíricos.
 - ② Critério de otimização de função-custo.
- Em geral, uma regra de aprendizagem tem a seguinte forma:

$$\mathbf{w}(t+1) = \mathbf{w}(t) + \Delta \mathbf{w}(t)$$

- Em que:
 - $\mathbf{0}$ $\mathbf{w}(t)$ é o conhecimento atual (ou memória).
 - 2 Δ **w**(t) informação adquirida (ou incremento na memória).
 - $\mathbf{3}$ $\mathbf{w}(t+1)$ memória é modificada com o acréscimo de nova informação.

$$\Delta \mathbf{w}(t) = \mathbf{F}(e(t), \mathbf{x}(t))$$

Redes Neurais Artificiais (RNA)

- Utilizaremos argumentos **geométricos** para obter a regra de aprendizagem:
- ullet Portanto, quais os possíveis valores que a variável erro e(t) pode assumir?

- Utilizaremos argumentos **geométricos** para obter a regra de aprendizagem:
- Portanto, quais os possíveis valores que a variável erro e(t) pode assumir?

- Utilizaremos argumentos **geométricos** para obter a regra de aprendizagem:
- ullet Portanto, quais os possíveis valores que a variável erro e(t) pode assumir?
 - **1** e(t) = d(t) y(t) = 2 (d = +1 e y = -1).
 - 2 e(t) = d(t) y(t) = -2 (d = -1 e y = +1).

- Utilizaremos argumentos geométricos para obter a regra de aprendizagem:
- Portanto, quais os possíveis valores que a variável erro e(t) pode assumir?
 - **1** e(t) = d(t) y(t) = 2 (d = +1 e y = -1).
 - 2 e(t) = d(t) y(t) = -2 (d = -1 e y = +1).
 - 3 e(t) = d(t) y(t) = 0 (d = -1 e y = -1) ou (d = +1 e y = +1).
- Com valores iniciais para **w**, o algoritmo deve testar: dado $\mathbf{x}(t)$ se $sinal(u(t)) \neq d(t)$ é verdadeiro.
- Então ajustar o vetor de pesos de acordo com:

$$\mathbf{w}(t+1) = \mathbf{w}(t) + \Delta \mathbf{w}(t)$$

- Utilizaremos argumentos **geométricos** para obter a regra de aprendizagem:
- Portanto, quais os possíveis valores que a variável erro e(t) pode assumir?

 - 2 e(t) = d(t) y(t) = -2 (d = -1 e y = +1).
 - 3 e(t) = d(t) y(t) = 0 (d = -1 e y = -1) ou (d = +1 e y = +1).
- Com valores iniciais para w, o algoritmo deve testar: dado $\mathbf{x}(t)$ se $sinal(u(t)) \neq d(t)$ é verdadeiro.
- Então ajustar o vetor de pesos de acordo com:

$$\mathbf{w}(t+1) = \mathbf{w}(t) + \Delta \mathbf{w}(t)$$

$$\mathbf{w}(t+1) = \mathbf{w}(t) + \Delta \mathbf{w}(t)$$

• O que pode ser feito para que *y* seja igual a *d*??

• O que pode ser feito para que *y* seja igual a *d*??

• O que pode ser feito para que *y* seja igual a *d*??

• O que pode ser feito para que *y* seja igual a *d*??

$$w(t+1) = w(t) - x(t)$$

• O que deve ser feito nesses casos?

$$w(t+1) = w(t)$$

Redes Neurais Artificiais (RNA)

Algoritmo do Perceptron Simples (Regra de Aprendizagem).

• As equações mostradas na interpretação geométrica, podem ser combinadas em uma única equação dependente do erro e do vetor de entrada:

• As equações mostradas na interpretação geométrica, podem ser combinadas em uma única equação dependente do erro e do vetor de entrada:

$$\mathbf{w}(t+1) = \mathbf{w}(t) + e(t)\mathbf{x}(t)$$

Qual problemática desta abordagem?

As equações mostradas na interpretação geométrica, podem ser combinadas em uma única equação dependente do erro e do vetor de entrada:

$$\mathbf{w}(t+1) = \mathbf{w}(t) + e(t)\mathbf{x}(t)$$

- Qual problemática desta abordagem?
- Há, portanto, uma maneira de tornar o processo de ajuste do vetor w mais estável.
- Isto pode ser realizado, ao adicionar um fator de escala η , comumente conhecido como passo, ou taxa de aprendizagem.

 As equações mostradas na interpretação geométrica, podem ser combinadas em uma única equação dependente do erro e do vetor de entrada:

$$\mathbf{w}(t+1) = \mathbf{w}(t) + e(t)\mathbf{x}(t)$$

- Qual problemática desta abordagem?
- Há, portanto, uma maneira de tornar o processo de ajuste do vetor **w** mais estável.
- Isto pode ser realizado, ao adicionar um fator de escala η , comumente conhecido como passo, ou taxa de aprendizagem.

$$\mathbf{w}(t+1) = \mathbf{w}(t) + \eta \cdot e(t)\mathbf{x}(t)$$

• As equações mostradas na interpretação geométrica, podem ser combinadas em uma única equação dependente do erro e do vetor de entrada:

$$\mathbf{w}(t+1) = \mathbf{w}(t) + e(t)\mathbf{x}(t)$$

- Qual problemática desta abordagem?
- Há, portanto, uma maneira de tornar o processo de ajuste do vetor **w** mais estável.
- Isto pode ser realizado, ao adicionar um fator de escala η , comumente conhecido como passo, ou taxa de aprendizagem.

$$\mathbf{w}(t+1) = \mathbf{w}(t) + \eta \cdot e(t)\mathbf{x}(t)$$

• Em que $0 < \eta \le 1$.

As equações mostradas na interpretação geométrica, podem ser combinadas em uma única equação dependente do erro e do vetor de entrada:

$$\mathbf{w}(t+1) = \mathbf{w}(t) + e(t)\mathbf{x}(t)$$

- Qual problemática desta abordagem?
- Há, portanto, uma maneira de tornar o processo de ajuste do vetor w mais estável.
- Isto pode ser realizado, ao adicionar um fator de escala η , comumente conhecido como passo, ou taxa de aprendizagem.

$$\mathbf{w}(t+1) = \mathbf{w}(t) + \eta \cdot e(t)\mathbf{x}(t)$$

• Em que $0 < \eta \le 1$.

Algorithm 1: Pseudocódigo para ajuste (fase de treinamento), do perceptron.

```
1: Início (t = 0)
 2: Definir o valor de \eta entre 0 e 1.
 3: Inicializar o vetor de pesos \mathbf{w}(t) com valores nulos ou aleatórios.
 4: ERRO ← EXISTE
 5: while ERRO == 'EXISTENTE' do
        ERRO \longleftarrow 'INEXISTE'.
        for Todas amostras em x do
 8:
           \mathbf{u}(\mathbf{t}) \longleftarrow \mathbf{w}^T(t)\mathbf{x}(t)
 9:
           y(t) \longleftarrow signal(u(t))
            \mathbf{w}(t+1) \longleftarrow \mathbf{w}(t) + \eta(d(t) - y(t))\mathbf{x}(t)
10:
11:
           if d(t)!=y(t) then
               ERRO ← 'EXISTENTE'
12:
13:
            end if
14:
        end for
15:
        t \leftarrow t + 1
16: end while
17. FIM TREIN AMENITO
```


Algorithm 2: Pseudocódigo para operação (fase de teste), do perceptron.

- 1: Obter uma amostra ($\mathbf{x}_{desconhecido}$) a ser classificada
- 2: Utilizar o vetor w já estimado
- 3: Realizar as seguintes operações:
- 4: $\mathbf{u} \leftarrow \mathbf{w}^T \mathbf{x}_{desconhecido}$
- 5: $y(t) \leftarrow signal(u(t))$
- 6: **if** y==-1 **then**
- 7: amostra percence a classe A
- 8: **else**
- 9: amostra percence a classe B
- 10: **end if**

Exemplo

• Considere o conjunto de dados fornecido

- Trata-se de um tipo elementar de algoritmo adaptativo.
- Seu nome original é *ADAptive LINear Element* (ou em português, Elemento Linear Adaptativo).
- O presente modelo foi proposto por Widrow & Hoff (1960).
- O modelo ADALINE têm seus parâmetros ajustados por meio de uma regra de atualização recursiva:

9/177 Prof. Paulo Cirillo CCT, UNIFOR

- Trata-se de um tipo elementar de algoritmo adaptativo.
- Seu nome original é *ADAptive LINear Element* (ou em português, Elemento Linear Adaptativo).
- O presente modelo foi proposto por Widrow & Hoff (1960).
- O modelo ADALINE têm seus parâmetros ajustados por meio de uma regra de atualização recursiva:
 - Regra de Widrow-Hoff.

9/177 Prof. Paulo Cirillo CCT, UNIFOR

- Trata-se de um tipo elementar de algoritmo adaptativo.
- Seu nome original é *ADAptive LINear Element* (ou em português, Elemento Linear Adaptativo).
- O presente modelo foi proposto por Widrow & Hoff (1960).
- O modelo ADALINE têm seus parâmetros ajustados por meio de uma regra de atualização recursiva:
 - Regra de Widrow-Hoff.
 - 2 Regra Delta.

- Trata-se de um tipo elementar de algoritmo adaptativo.
- Seu nome original é *ADAptive LINear Element* (ou em português, Elemento Linear Adaptativo).
- O presente modelo foi proposto por Widrow & Hoff (1960).
- O modelo ADALINE têm seus parâmetros ajustados por meio de uma regra de atualização recursiva:
 - Regra de Widrow-Hoff.
 - 2 Regra Delta.
 - Algoritmos de adaptação LMS (Least Mean Squares).

Widrow-Hoff.

• Há diferença entre o perceptron?

• Em que o vetor de entradas e o de pesos, são definidos como:

$$\mathbf{x}(t) = \begin{bmatrix} x_0(t) \\ x_1(t) \\ x_2(t) \\ \vdots \\ x_p(t) \end{bmatrix} = \begin{bmatrix} -1 \\ x_1(t) \\ x_2(t) \\ \vdots \\ x_p(t) \end{bmatrix} \qquad \mathbf{w} = \begin{bmatrix} w_0 \\ w_1 \\ w_2 \\ \vdots \\ w_p \end{bmatrix} = \begin{bmatrix} \theta \\ w_1 \\ w_2 \\ \vdots \\ w_p \end{bmatrix}$$

• A saída desejada d(t) do presente modelo tem qual ordem?

• Em que o vetor de entradas e o de pesos, são definidos como:

$$\mathbf{x}(t) = \begin{bmatrix} x_0(t) \\ x_1(t) \\ x_2(t) \\ \vdots \\ x_p(t) \end{bmatrix} = \begin{bmatrix} -1 \\ x_1(t) \\ x_2(t) \\ \vdots \\ x_p(t) \end{bmatrix} \qquad \mathbf{w} = \begin{bmatrix} w_0 \\ w_1 \\ w_2 \\ \vdots \\ w_p \end{bmatrix} = \begin{bmatrix} \theta \\ w_1 \\ w_2 \\ \vdots \\ w_p \end{bmatrix}$$

- A saída desejada d(t) do presente modelo tem qual ordem?
- Isto porque se trata apenas de **UM** único neurônio. Para uma rede com múltiplos neurônios,o modelo passa a se chamar MADALINE.
- Em princípio a saída desejada pode assumir qualquer valor real.
- Contudo, em problemas de classificação de padrões a saída desejada assume geralmente apenas dois valores $d \in \{-1, +1\}$

Redes Neurais Artificiais (RNA)

Modelo ADALINE.

• Quais são os parâmetros ajustáveis do modelo ADALINE?

Redes Neurais Artificiais (RNA)

Modelo ADALINE.

- Quais são os parâmetros ajustáveis do modelo ADALINE?
- O vetor de pesos **w**.
- Qual diferença entre o PS e o ADALINE?

- Quais são os parâmetros ajustáveis do modelo ADALINE?
- O vetor de pesos w.
- Qual diferença entre o PS e o ADALINE?

$$u(t) = \left(\sum_{j=1}^{p} w_j(t) x_j(t)\right) - \theta = \left(\sum_{j=1}^{p} w_j(t) x_j(t)\right) - w_0 x_0 = \sum_{j=0}^{p} w_j(t) x_j(t) = \mathbf{w}^T(t) \mathbf{x}(t)$$

Assim, u(t) é simplesmente o produto escalar

- Quais são os parâmetros ajustáveis do modelo ADALINE?
- O vetor de pesos w.
- Qual diferença entre o PS e o ADALINE?

$$u(t) = \left(\sum_{j=1}^{p} w_j(t) x_j(t)\right) - \theta = \left(\sum_{j=1}^{p} w_j(t) x_j(t)\right) - w_0 x_0 = \sum_{j=0}^{p} w_j(t) x_j(t) = \mathbf{w}^T(t) \mathbf{x}(t)$$

- Assim, u(t) é simplesmente o produto escalar do vetor de entradas $\mathbf{x}(t)$ com o vetor de pesos $\mathbf{w}(t)$
- Como dito, $u(t) \in \mathbb{R}$, ou seja, pode assumir infinitos valores.
- Quantização escalar é o processo de transformar a saída contínua u(t) em discreta $y(t) \in \{+1, -1\}$
- Já utilizamos alguma função quantizadora?

- Uma função quantizadora bastante utilizada em reconhecimento de padrões é construída com a função sinal (sign function)
- Dica importante: A codificação das saídas desejadas, deve ser compatível com a saída quantizadora.

Prof. Paulo Cirillo CCT, UNIFOR

- Definições iniciais:
 - A precisão instantânea (ou seja, no instante t) do modelo ADALINE é medida com base no Erro Quadrático(EQ):

$$\varepsilon(t) = \frac{1}{2}e^2(t) = \frac{1}{2}(d(t) - u(t))^2$$

• Em que e(t) = d(t) - u(t) é o erro associado à apresentação do par entrada-saída ($\mathbf{x}(t), d(t)$).

- A regra de aprendizagem, é baseada na minimização de uma medida global do desempenho.
- Esta medida é chamada de Erro Quadrático Médio (EQM), que é produzida para todos os pares entrada-saída ($\mathbf{x}(t), d(t)$):

$$J[\mathbf{w}] = \frac{1}{N} \sum_{t=1}^{N} \varepsilon(t) = \frac{1}{2N} \sum_{t=1}^{N} e^{2}(t) = \frac{1}{2N} \sum_{t=1}^{N} [d(t) - u(t)]^{2}$$

- Em que w denota o conjunto de todos os parâmetros ajustáveis do modelo.
- Os parâmetros do modelo ADALINE devem ser especificados de modo que este produza uma saída bem próxima da esperada para um vetor de entrada $\mathbf{x}(t)$.
- Ou seja, identificar um \mathbf{w} ótimo (\mathbf{w}^*) que minimize o EQM.

• Um procedimento iterativo de se chegar aos parâmetros ótimos envolve o uso da equação recursiva:

$$w_j(t+1) = w_j(t) - \eta \frac{\partial \varepsilon(t)}{\partial w_j(t)}$$

- Em que η é a taxa de aprendizagem $0 < \eta < 1$.
- Utilizando a regra da cadeia, na derivada exibida, pode-se fazer:

 Um procedimento iterativo de se chegar aos parâmetros ótimos envolve o uso da equação recursiva:

$$w_j(t+1) = w_j(t) - \eta \frac{\partial \varepsilon(t)}{\partial w_j(t)}$$

- Em que η é a taxa de aprendizagem $0 < \eta < 1$.
- Utilizando a regra da cadeia, na derivada exibida, pode-se fazer:

$$\frac{\partial \varepsilon(t)}{\partial w_j(t)} = \frac{\partial \varepsilon(t)}{\partial e(t)} \cdot \frac{\partial e(t)}{\partial u(t)} \cdot \frac{\partial u(t)}{\partial w_j(t)}$$

Redes Neurais Artificiais (RNA)

Regra de Aprendizagem.

$$\frac{\partial \varepsilon(t)}{\partial e(t)} = e(t)$$
$$\frac{\partial e(t)}{\partial u(t)} = -1$$
$$\frac{\partial u(t)}{\partial w_j(t)} = x_j(t)$$

Assim, a regra recursiva de ajuste dos pesos é dada por:

$$w_j(t+1) = w_j(t) + \Delta w_j(t)$$

$$w_j(t+1) = w_j(t) + \eta e(t)x_j(t)$$

• De maneira vetorial, a regra de ajuste do pesos pode ser escrita como:

$$\mathbf{w}(t+1) = \mathbf{w}(t) + \eta \Delta J[\mathbf{w}]$$
$$= \mathbf{w}(t) + \eta e(t)\mathbf{x}(t)$$

• É possível verificar a interpretação geométrica deste ajuste de pesos da seguinte maneira:

- Pontos importantes:
 - Em sua etapa de treinamento, o modelo ADALINE deve ser interrompido quando a convergência acontecer, ou seja: Quando a diferença dos EQM entre duas épocas sucessivas for suficientemente pequeno:

$$|EQM_{atual} - EQM_{anterior}| \le \epsilon$$

- ② Onde ϵ é a precisão a ser definida pelo projetista da rede ADALINE.
- Outro critério de parada, envolve simplesmente a definição de um número máximo de épocas.
- É de interesse verificar a curva de aprendizagem do modelo, dado o problema proposto. Para tal feito, deve-se para cada época plotar valores dos EQM cálculados.

Algoritmo ADALINE (Treinamento).

Algorithm 3: Pseudocódigo para ajuste (fase de treinamento), do ADALINE.

- 1: Definir o valor de η , número máximo de épocas e precisão (ϵ).
- 2: Inicializar o vetor de pesos $\mathbf{w}(t)$ com valores nulos \mathbf{ou} aleatórios.
- 3: Iniciar o contador de épocas ($epoch \leftarrow 0$)
- 4: repeat
- 5: $EQM_{anterior} \leftarrow EQM(\mathbf{x}, d, \mathbf{w})$
- 6: **for** todas as N amostras de treinamento **do**
- 7: $u(t) \longleftarrow \mathbf{w}^T(t)\mathbf{x}(t)$
 - 8: $\mathbf{w}(t+1) \longleftarrow \mathbf{w}(t) + \eta(d(t) u(t))\mathbf{x}(t)$
- 9: end for
- 10: $epoch \leftarrow epoch + 1$
- 11: $EQM_{atual} \leftarrow EQM(\mathbf{x}, d, \mathbf{w})$
- 12: **until** $|EQM_{atua} EQM_{anterior}| \le \epsilon$ OU Número máximo de épocas atingido

Algoritmo ADALINE (Treinamento).

Algorithm 4: Algoritmo para cálculo do EQM.

- 1: *EQM* ← 0
- 2: for todas as amostras de treinamento do
- 3: $u(t) \leftarrow \mathbf{w}^T(t)\mathbf{x}(t)$
- 4: $EQM \leftarrow EQM + (d(t) u(t))^2$
- 5: end for
- 6: $EQM \longleftarrow \frac{EQM}{2N}$

Algoritmo do ADALINE (Regra de Aprendizagem).

Algorithm 5: Pseudocódigo para operação (fase de teste), do ADALINE.

- 1: Obter uma amostra ($\mathbf{x}_{desconhecido}$) a ser classificada
- 2: Utilizar o vetor **w** já estimado
- 3: Realizar as seguintes operações:
- 4: $\mathbf{u} \leftarrow \mathbf{w}^T \mathbf{x}_{desconhecido}$
- 5: $y(t) \leftarrow signal(u(t))$
- 6: **if** y==-1 **then**
- 7: amostra percence a classe A
- 8: **else**
- 9: amostra percence a classe B
- 10: **end if**

Dicas importantes ao trabalhar com estes algoritmos.

- Normalizar os vetores de entrada se as variáveis apresentarem ordens de grandeza desigual.
- Logo, a normalização dos dados equaliza as ordens de grandeza dos atributos usados em um problema de classificação.

Métodos 1: Norma constante

• Consiste em manter constante e igual a 1, as normas dos vetores de atributos **x**

$$x = \frac{x}{\|x\|}$$

• O que acontece com o vetor quando esta normalização é aplicada?

Métodos 1: Norma constante

• Consiste em manter constante e igual a 1, as normas dos vetores de atributos x

$$\mathbf{x} = \frac{\mathbf{x}}{\|\mathbf{x}\|}$$

- O que acontece com o vetor quando esta normalização é aplicada?
- Mudança apenas no comprimento, ou seja, o vetor resultante é múltiplo do vetor original.

$$\mathbf{x}_{normalizado} = \frac{1}{\|\mathbf{x}\|} \mathbf{x} = \alpha \mathbf{x}$$

• Esta é uma normalização do tipo **local**, ou seja,

Métodos 1: Norma constante

• Consiste em manter constante e igual a 1, as normas dos vetores de atributos x

$$\mathbf{x} = \frac{\mathbf{x}}{\|\mathbf{x}\|}$$

- O que acontece com o vetor quando esta normalização é aplicada?
- Mudança apenas no comprimento, ou seja, o vetor resultante é múltiplo do vetor original.

$$\mathbf{x}_{normalizado} = \frac{1}{\|\mathbf{x}\|} \mathbf{x} = \alpha \mathbf{x}$$

• Esta é uma normalização do tipo **local**, ou seja,depende apenas dos valores das componentes do vetor.

Métodos 2: Mudança de escala

- Procedimento é realizado variável a variável e requer a determinação do valor mínimo e valor máximo da variável
- Este, portanto, trata-se de um procedimento de normalização global.
- na faixa [0, +1]:

$$x_j^{norm} = \frac{x_j - min(\mathbf{X})}{max(\mathbf{X}) - min(\mathbf{X})}$$

• na faixa [-1,+1]:

$$x_j^{norm} = 2 \cdot \left(\frac{x_j - min(\mathbf{X})}{max(\mathbf{X}) - min(\mathbf{X})}\right) - 1$$

Métodos 3:Padronização da variável (média=0, variância =1)

• A normalização estatística é dada por

$$x_j^{norm} = \frac{x_j - x}{\sigma_x}$$

$$\bar{x} = \frac{\sum_{i=1}^p x_i}{p}$$

$$\sigma_x = \sqrt{\left(\frac{\sum_{i=1}^p (x_i - \bar{x})^2}{p - 1}\right)}$$

Informações importantes

- Por se tratarem de transformações lineares, as normalizações descritas não alteram a natureza da distribuição da variável normalizada em relação à variável original.
- Em outras palavras, o tipo de PDF (*Probability Density Function*) da variável permanece o mesmo. Ex: se PDF for gaussiana, continua gaussiana após a transformação.

- Qual medida discutida até agora para avaliar o desempenho?
- É um procedimento aplicado em qual etapa?

- Qual medida discutida até agora para avaliar o desempenho?
- É um procedimento aplicado em qual etapa?

$$TA = \frac{\text{Quantidade de amostras de teste classificadas corretamente}}{\text{Número total de vetores de atributos}}$$

- Contudo, uma análise com mais medidas pode ser realizada ao construir uma matriz de confusão.
- Trata-se de uma matriz de ordem $c \times c$, porém a sua versão elementar é 2×2 .

- **VP** e **VN** representam respectivamente a quantidade de predições corretas para a condição positiva e negativa.
- FP é a quantidade de predições erradas para a condição real negativa.
- FN é a quantidade de predições realizadas de maneira errada para a condição real positiva.

• Desta matriz, pode-se extrair diversas medidas, porém, destacam-se:

Acurácia =
$$\frac{VP + VN}{VP + VN + FP + FN}$$

Sensibilidade = $\frac{VP}{VP + FN}$
Especificidade = $\frac{VN}{VN + FP}$

Redes Perceptron de Multicamadas

• Comumente conhecidas como Multilayer Perceptron (MLP).

- Comumente conhecidas como Multilayer Perceptron (MLP).
- São caracterizadas pela presença de pelo menos uma camada intermediária (conhecida como *hidden layer*) de neurônios.

- Comumente conhecidas como Multilayer Perceptron (MLP).
- São caracterizadas pela presença de pelo menos uma camada intermediária (conhecida como *hidden layer*) de neurônios.
- Tal camada se situa entre as camadas de entrada e saída.

- Comumente conhecidas como Multilayer Perceptron (MLP).
- São caracterizadas pela presença de pelo menos uma camada intermediária (conhecida como hidden layer) de neurônios.
- Tal camada se situa entre as camadas de entrada e saída.
- Desta maneira, as redes MLP possuem no mínimo duas camadas de neurônios.

- Comumente conhecidas como Multilayer Perceptron (MLP).
- São caracterizadas pela presença de pelo menos uma camada intermediária (conhecida como *hidden layer*) de neurônios.
- Tal camada se situa entre as camadas de entrada e saída.
- Desta maneira, as redes MLP possuem no mínimo duas camadas de neurônios.
- É um poderoso algoritmo de aprendizado de máquina com diversas aplicações em diferentes problemas.
 - Aproximação universal de funções.

- Comumente conhecidas como Multilayer Perceptron (MLP).
- São caracterizadas pela presença de pelo menos uma camada intermediária (conhecida como *hidden layer*) de neurônios.
- Tal camada se situa entre as camadas de entrada e saída.
- Desta maneira, as redes MLP possuem no mínimo duas camadas de neurônios.
- É um poderoso algoritmo de aprendizado de máquina com diversas aplicações em diferentes problemas.
 - Aproximação universal de funções.
 - 2 Reconhecimento de padrões.

- Comumente conhecidas como Multilayer Perceptron (MLP).
- São caracterizadas pela presença de pelo menos uma camada intermediária (conhecida como *hidden layer*) de neurônios.
- Tal camada se situa entre as camadas de entrada e saída.
- Desta maneira, as redes MLP possuem no mínimo duas camadas de neurônios.
- É um poderoso algoritmo de aprendizado de máquina com diversas aplicações em diferentes problemas.
 - Aproximação universal de funções.
 - 2 Reconhecimento de padrões.
 - 3 Identificação e controle de processos.

- Comumente conhecidas como Multilayer Perceptron (MLP).
- São caracterizadas pela presença de pelo menos uma camada intermediária (conhecida como *hidden layer*) de neurônios.
- Tal camada se situa entre as camadas de entrada e saída.
- Desta maneira, as redes MLP possuem no mínimo duas camadas de neurônios.
- É um poderoso algoritmo de aprendizado de máquina com diversas aplicações em diferentes problemas.
 - Aproximação universal de funções.
 - 2 Reconhecimento de padrões.
 - 3 Identificação e controle de processos.
 - 4 Previsão de séries temporais.
 - 6 Otimização de sistemas.

- Comumente conhecidas como Multilayer Perceptron (MLP).
- São caracterizadas pela presença de pelo menos uma camada intermediária (conhecida como *hidden layer*) de neurônios.
- Tal camada se situa entre as camadas de entrada e saída.
- Desta maneira, as redes MLP possuem no mínimo duas camadas de neurônios.
- É um poderoso algoritmo de aprendizado de máquina com diversas aplicações em diferentes problemas.
 - Aproximação universal de funções.
 - 2 Reconhecimento de padrões.
 - 3 Identificação e controle de processos.
 - 4 Previsão de séries temporais.
 - 6 Otimização de sistemas.
- Além disto, apresenta-se como ferramenta no tratamento de problemas não-lineares, que exigem o mapeamento entrada-saída não-linear.

Redes Perceptron de Multicamadas

• A rede MLP é categorizada como uma pertencente a classe de redes *feedforward*, cujo treinamento é realizado de maneira **supervisionada**.

• A rede MLP é categorizada como uma pertencente a classe de redes *feedforward*, cujo treinamento é realizado de maneira **supervisionada**.

• Conforme ilustrado, o fluxo de informações na estrutura da rede se inicia na camada de entrada, e finaliza na camada neural de saída.

Arquitetura das Redes Perceptron de Multicamadas

• É constituída de um conjunto de unidades entradas (que recebem os sinais)

Arquitetura das Redes Perceptron de Multicamadas

- É constituída de um conjunto de unidades entradas (que recebem os sinais)
- Uma ou mais camadas ocultas (ou escondidas) compostas por **neurônios não-lineares**.

- É constituída de um conjunto de unidades entradas (que recebem os sinais)
- Uma ou mais camadas ocultas (ou escondidas) compostas por neurônios não-lineares.
- Uma saída composta por um ou mais neurônios que podem ser lineares ou não-lineares.

- É constituída de um conjunto de unidades entradas (que recebem os sinais)
- Uma ou mais camadas ocultas (ou escondidas) compostas por **neurônios não-lineares**.
- Uma saída composta por um ou mais neurônios que podem ser lineares ou não-lineares.
- Em uma rede MLP padrão, não há a existência de qualquer tipo de realimentação dos valores produzidos pela camada neural de saídas, ou pelas intermediárias.

- É constituída de um conjunto de unidades entradas (que recebem os sinais)
- Uma ou mais camadas ocultas (ou escondidas) compostas por neurônios não-lineares.
- Uma saída composta por um ou mais neurônios que podem ser lineares ou não-lineares.
- Em uma rede MLP padrão, não há a existência de qualquer tipo de realimentação dos valores produzidos pela camada neural de saídas, ou pelas intermediárias.
- A sua popularidade, se deu com o trabalho: RUMELHART, David E. et al. Parallel distributed processing. New York: IEEE, 1988.

Prof. Paulo Cirillo

- É constituída de um conjunto de unidades entradas (que recebem os sinais)
- Uma ou mais camadas ocultas (ou escondidas) compostas por neurônios não-lineares.
- Uma saída composta por um ou mais neurônios que podem ser lineares ou não-lineares.
- Em uma rede MLP padrão, não há a existência de qualquer tipo de realimentação dos valores produzidos pela camada neural de saídas, ou pelas intermediárias.
- A sua popularidade, se deu com o trabalho: RUMELHART, David E. et al. Parallel distributed processing. New York: IEEE, 1988.
- Neste trabalho, explicitou-se o algoritmo de aprendizagem denominado backpropagation.

Prof. Paulo Cirillo

• A figura mostra a arquitetura de rede MLP *feedforward* com duas camadas ocultas e **totalmente** conectada.

- A figura mostra a arquitetura de rede MLP *feedforward* com duas camadas ocultas e **totalmente** conectada.
- Isto significa que, um neurônio em qualquer camada da rede é conectado à todas as unidades/neurônios da camada anterior e o sinal progride da esquerda para direita (em sua fase de operação).

• Neste caso, as saídas dos neurônios da primeira camada oculta, serão as próprias entradas daqueles neurônios pertencentes à segunda camada neural escondida.

- Neste caso, as saídas dos neurônios da primeira camada oculta, serão as próprias entradas daqueles neurônios pertencentes à segunda camada neural escondida.
- Para a figura exibida, as saídas dos neurônios da segunda camada neural escondida, serão as respectivas entradas dos neurônios presentes na camada de saída.

CCT, UNIFOR

Arquitetura Redes Perceptron de Multicamadas

• Diferente das redes PS e ADALINE, a rede MLP

• Diferente das redes PS e ADALINE, a rede MLP pode conter diversos neurônios na camada de saída, sendo cada saída representada como a saída do processo a ser mapeado.

- Diferente das redes PS e ADALINE, a rede MLP pode conter diversos neurônios na camada de saída, sendo cada saída representada como a saída do processo a ser mapeado.
- Pode-se então definir *m* de duas maneiras amplamente utilizadas:
 - ① m = C, sendo C a quantidade de classes (1-out-of-Q).

- Diferente das redes PS e ADALINE, a rede MLP pode conter diversos neurônios na camada de saída, sendo cada saída representada como a saída do processo a ser mapeado.
- Pode-se então definir *m* de duas maneiras amplamente utilizadas:
 - m = C, sendo C a quantidade de classes (1-out-of-Q).
 - 2 m é o maior inteiro igual ou menor que \sqrt{C} ($m > \sqrt{C}$).

• Ainda falando no contraste em relação ao PS e ADALINE, em que um único neurônio era responsável pelo mapeamento, o conhecimento relacionado ao comportamento entrada/saída é **distribuído** por todos os neurônios na rede MLP.

- Ainda falando no contraste em relação ao PS e ADALINE, em que um único neurônio era responsável pelo mapeamento, o conhecimento relacionado ao comportamento entrada/saída é distribuído por todos os neurônios na rede MLP.
- Conforme o processo de aprendizagem da rede avança, estes neurônios começam a "descobrir"as características salientes presentes nos dados.

- Ainda falando no contraste em relação ao PS e ADALINE, em que um único neurônio era responsável pelo mapeamento, o conhecimento relacionado ao comportamento entrada/saída é **distribuído** por todos os neurônios na rede MLP.
- Conforme o processo de aprendizagem da rede avança, estes neurônios começam a "descobrir"as características salientes presentes nos dados.
- Em seguida, realizam uma transformação não-linear nos dados de entrada para um novo espaço, onde as classes de interesse podem ser mais facilmente separadas.

Resumo inicial - Redes Perceptron de Multicamadas

• Unidades de Entrada:

Resumo inicial - Redes Perceptron de Multicamadas

- Unidades de Entrada: responsáveis pela simples passagem dos valores de entrada para os neurônios das camadas seguintes.
- **Camada(s) oculta(s):** contém neurônios responsáveis pelo processamento não-linear da informação de entrada, de modo a facilitar a resolução do problema.

1/177 Prof. Paulo Cirillo CCT, UNIFOR

Resumo inicial - Redes Perceptron de Multicamadas

- Unidades de Entrada: responsáveis pela simples passagem dos valores de entrada para os neurônios das camadas seguintes.
- **Camada(s) oculta(s):** contém neurônios responsáveis pelo processamento não-linear da informação de entrada, de modo a facilitar a resolução do problema.
- **Camada de saída:** contém os neurônios responsáveis pela geração da saída da rede neural, após as entradas terem sido devidamente processadas pelos neurônios ocultos.

1/177 Prof. Paulo Cirillo CCT, UNIFOR

• Uma rede MLP com **uma** camada oculta é representada por:

 $\mathbf{MLP}(p, q_1, m)$

• Uma rede MLP com **uma** camada oculta é representada por:

$$\mathbf{MLP}(p, q_1, m)$$

 $\mathbf{0}$ p é o número de variáveis de entrada.

$$\mathbf{MLP}(p, q_1, m)$$

- 1 p é o número de variáveis de entrada.
- 2 q_1 é o número de neurônios ocultos.

• Uma rede MLP com **uma** camada oculta é representada por:

 $\mathbf{MLP}(p, q_1, m)$

- 1 p é o número de variáveis de entrada.
- 1 m é o número de neurônios de saída.

$$\mathbf{MLP}(p, q_1, m)$$

- 1 p é o número de variáveis de entrada.
- Q q_1 é o número de neurônios ocultos.
- M é o número de neurônios de saída.
- Desta maneira, a quantidade de parâmetros (*Z*) para ajuste é dado por:

$$Z = (p+1)q_1 + (q_1+1)m$$

Construção de Rede Perceptron de Multicamadas

$$\mathbf{MLP}(p,q_1,q_2,m)$$

Construção de Rede Perceptron de Multicamadas

• Uma rede MLP com duas camadas ocultas é representada por:

$$\mathbf{MLP}(p,q_1,q_2,m)$$

 $\mathbf{0}$ p é o número de variáveis de entrada.

$$\mathbf{MLP}(p,q_1,q_2,m)$$

- 1 p é o número de variáveis de entrada.
- \mathbf{Q} q_1 é o número de neurônios ocultos na primeira camada.

$$\mathbf{MLP}(p,q_1,q_2,m)$$

- \bigcirc *p* é o número de variáveis de entrada.
- Q Q é o número de neurônios ocultos na primeira camada.

$$\mathbf{MLP}(p,q_1,q_2,m)$$

- p é o número de variáveis de entrada.
- Q_1 é o número de neurônios ocultos na primeira camada.
- 4 *m* é o número de neurônios de saída.
- Desta maneira, a quantidade de parâmetros (Z) para ajuste é dado por:

$$Z = (p+1)q_1 + (q_1+1)q_2 + (q_2+1)m$$

- Notas importantes:
 - ① A especificação de *p* e *m* são ditadas pela forma como o problema é codificado para ser resolvido por uma RNA.

- Notas importantes:
 - ① A especificação de *p* e *m* são ditadas pela forma como o problema é codificado para ser resolvido por uma RNA.
 - ② A especificação dos valores de $q_1, q_2, \dots q_o$ dependem da complexidade do problema, ou seja, é preciso realizar vários testes até encontrar os valores mais adequados.

4/177 Prof. Paulo Cirillo CCT, UNIFOR

- Notas importantes:
 - A especificação de p e m são ditadas pela forma como o problema é codificado para ser resolvido por uma RNA.
 - ② A especificação dos valores de $q_1, q_2, \dots q_o$ dependem da complexidade do problema, ou seja, é preciso realizar vários testes até encontrar os valores mais adequados.
- Todavia para ambos os casos existem regras que definem as quantidades dos neurônios na(s) camada(s) ocultas e de saída.
- Veremos estas regras ao final deste conteúdo.

- Neurônio artificial da rede MLP:
- Um neurônio qualquer da rede MLP, seja oculto ou de saída é representado genericamente como na figura abaixo

• Qual diferença deste modelo para o de M-P?

Construção de Rede Perceptron de Multicamadas

A função de ativação!

- A função de ativação!
- No modelo M-P a função é do tipo degrau(hard)

- A função de ativação!
- No modelo M-P a função é do tipo **degrau**(*hard*)
- No modelo MLP a função de ativação é do tipo **sigmoidal**(soft).

- A função de ativação!
- No modelo M-P a função é do tipo **degrau**(*hard*)
- No modelo MLP a função de ativação é do tipo **sigmoidal**(soft).
- Assim, a saída deixa de ser uma variável do tipo **ON-OFF** (binária[0,1] ou bipolar[-1,+1].

Prof. Paulo Cirillo CCT, UNIFOR

- A função de ativação!
- No modelo M-P a função é do tipo **degrau**(*hard*)
- No modelo MLP a função de ativação é do tipo **sigmoidal**(soft).
- Assim, a saída deixa de ser uma variável do tipo **ON-OFF** (binária[0,1] ou bipolar[-1,+1].
- Passando a ser uma variável real ou analógica (qualquer valor entre [0,1] ou [-1,+1].

Prof. Paulo Cirillo

Neurônio de Mculloch - Pitts.

- A função de ativação y(t) não se limita apenas ao degrau bipolar.
- Funções parcialmente diferenciáveis.

☐ Função degrau (*heavyside/hard limiter*)

$$g(u) = \begin{cases} 1, & \text{se } u \ge 0 \\ 0, & \text{se } u < 0 \end{cases}$$

☐ Função degrau bipolar ou sinal (symmetric hard limiter)

$$g(u) = \begin{cases} 1, & \text{se } u > 0 \\ 0, & \text{se } u = 0 \\ -1, & \text{se } u < 0 \end{cases} \text{ ou } g(u) = \begin{cases} 1, & \text{se } u \ge 0 \\ -1, & \text{se } u < 0 \end{cases}$$

Neurônio de Mculloch - Pitts.

- A função de ativação y(t) não se limita apenas ao degrau bipolar.
- Funções parcialmente diferenciáveis.

☐ Função rampa simétrica

$$g(u) = \begin{cases} a, & \text{se } u > a \\ u, & \text{se } -a \le u \le a \\ -a, & \text{se } u < -a \end{cases}$$

Neurônio de Mculloch - Pitts.

- A função de ativação y(t) não se limita apenas ao degrau bipolar.
- Funções totalmente diferenciáveis.

$$g(u) = \frac{1}{1 + e^{-\beta \cdot u}} \quad \beta > 0$$

Neurônio de Mculloch - Pitts.

- A função de ativação y(t) não se limita apenas ao degrau bipolar.
- Funções totalmente diferenciáveis.

☐ Função tangente hiperbólica

$$g(u) = \frac{1 - e^{-\beta \cdot u}}{1 + e^{-\beta \cdot u}} \quad \beta > 0$$

☐ Função gaussiana

$$g(u) = e^{-\frac{(u-c)^2}{2\sigma^2}} \quad \sigma \neq 0$$

Neurônio de Mculloch - Pitts.

- ullet A função de ativação y(t) não se limita apenas ao degrau bipolar.
- Função Identidade.
 - ☐ Função linear (identidade)

$$g(u) = u$$

Neurônio de Mculloch - Pitts.

- A função de ativação y(t) não se limita apenas ao degrau bipolar.
- Funções parcialmente diferenciáveis.

☐ Função degrau (*heavyside*/ *hard limiter*)

☐ Função degrau bipolar ou sinal (symmetric hard limiter)

$$g(u) = \begin{cases} 1, & \text{se } u > 0 \\ 0, & \text{se } u = 0 \\ -1, & \text{se } u < 0 \end{cases} \text{ ou } g(u) = \begin{cases} 1, & \text{se } u \ge 0 \\ -1, & \text{se } u < 0 \end{cases}$$

Neurônio de Mculloch - Pitts.

- A função de ativação y(t) não se limita apenas ao degrau bipolar.
- Funções parcialmente diferenciáveis.

☐ Função rampa simétrica

$$g(u) = \begin{cases} a, & \text{se } u > a \\ u, & \text{se } -a \le u \le a \\ -a, & \text{se } u < -a \end{cases}$$

Neurônio de Mculloch - Pitts.

- A função de ativação y(t) não se limita apenas ao degrau bipolar.
- Funções totalmente diferenciáveis.

$$g(u) = \frac{1}{1 + e^{-\beta \cdot u}} \quad \beta > 0$$

Neurônio de Mculloch - Pitts.

- A função de ativação y(t) não se limita apenas ao degrau bipolar.
- Funções totalmente diferenciáveis.

☐ Função tangente hiperbólica

$$g(u) = \frac{1 - e^{-\beta \cdot u}}{1 + e^{-\beta \cdot u}} \quad \beta > 0$$

☐ Função gaussiana

$$g(u) = e^{-\frac{(u-c)^2}{2\sigma^2}} \quad \sigma \neq 0$$

Neurônio de Mculloch - Pitts.

- A função de ativação y(t) não se limita apenas ao degrau bipolar.
- Função Identidade.
 - ☐ Função linear (identidade)

$$g(u) = u$$

Construção de Rede Perceptron de Multicamadas

• Duas funções sigmoidais amplamente utilizadas são:

- Duas funções sigmoidais amplamente utilizadas são:
- Sigmóide Logística:

$$y_i = \frac{1}{1 + exp(-u_i)}$$
 $y_i \in (0,1)$

- Duas funções sigmoidais amplamente utilizadas são:
- Sigmóide Logística:

$$y_i = \frac{1}{1 + exp(-u_i)}$$
 $y_i \in (0,1)$

• Sua derivada vale:

$$y_i' = \frac{dy_i}{du_i} = y_i(1 - y_i)$$

- Duas funções sigmoidais amplamente utilizadas são:
- Sigmóide Logística:

$$y_i = \frac{1}{1 + exp(-u_i)}$$
 $y_i \in (0,1)$

Sua derivada vale:

$$y_i' = \frac{dy_i}{du_i} = y_i(1 - y_i)$$

Tangente Hiperbólica:

$$y_i = \frac{1 - exp(-u_i)}{1 + exp(-u_i)}$$
 $y_i \in (-1, 1)$

- Duas funções sigmoidais amplamente utilizadas são:
- Sigmóide Logística:

$$y_i = \frac{1}{1 + exp(-u_i)}$$
 $y_i \in (0,1)$

Sua derivada vale:

$$y_i' = \frac{dy_i}{du_i} = y_i(1 - y_i)$$

Tangente Hiperbólica:

$$y_i = \frac{1 - exp(-u_i)}{1 + exp(-u_i)}$$
 $y_i \in (-1, 1)$

Sua derivada vale:

$$y_i' = \frac{dy_i}{du_i} = 0.5 * (1 - y_i^2)$$

- Vantagens:
 - Derivadas fáceis de calcular.

- Vantagens:
 - Derivadas fáceis de calcular.
 - 2 Interpretação da saída como taxa média de disparo, em vez de simplesmente indicar se o neurônio está ou não ativado.

- Vantagens:
 - Derivadas fáceis de calcular.
 - 2 Interpretação da saída como taxa média de disparo, em vez de simplesmente indicar se o neurônio está ou não ativado.
- Desvantagens:

- Vantagens:
 - Derivadas fáceis de calcular.
 - Interpretação da saída como taxa média de disparo, em vez de simplesmente indicar se o neurônio está ou não ativado.
- Desvantagens:
 - Elevado custo computacional para implementação em sistemas embarcados devido à presença

Prof. Paulo Cirillo CCT, UNIFOR

- Vantagens:
 - Derivadas fáceis de calcular.
 - Interpretação da saída como taxa média de disparo, em vez de simplesmente indicar se o neurônio está ou não ativado.
- Desvantagens:
 - Elevado custo computacional para implementação em sistemas embarcados devido à presença da função exponencial.

$$exp(x) = \sum_{i=0}^{i=\infty} \frac{x^i}{i!}$$

Processo de treinamento da rede MLP

• O processo de treinamento utilizando o algoritmo do *backpropagation*, é comumente conhecido como a regra Delta generalizada.

- O processo de treinamento utilizando o algoritmo do *backpropagation*, é comumente conhecido como a regra Delta generalizada.
- Este processo é realizado mediante as aplicações de duas fases bem específicas.

- O processo de treinamento utilizando o algoritmo do backpropagation, é comumente conhecido como a regra Delta generalizada.
- Este processo é realizado mediante as aplicações de duas fases bem específicas.

• A primeira fase a ser aplicada é denominada propagação adiante (*forward*).

- A primeira fase a ser aplicada é denominada propagação adiante (forward).
- Em que os sinais de entrada $\{x_1, x_2, \dots x_p\}$ de uma amostra do conjunto de treinamento, são inseridos nas entradas da rede.

- A primeira fase a ser aplicada é denominada propagação adiante (forward).
- Em que os sinais de entrada $\{x_1, x_2, \cdots x_p\}$ de uma amostra do conjunto de treinamento, são inseridos nas entradas da rede.
- Estes, são propagados camada a camada até a produção da saída.

- A primeira fase a ser aplicada é denominada propagação adiante (forward).
- Em que os sinais de entrada $\{x_1, x_2, \cdots x_p\}$ de uma amostra do conjunto de treinamento, são inseridos nas entradas da rede.
- Estes, são propagados camada a camada até a produção da saída.
- Neste processo, os pesos sinápticos e os limiares não são ajustados.

- A primeira fase a ser aplicada é denominada propagação adiante (forward).
- Em que os sinais de entrada $\{x_1, x_2, \cdots x_p\}$ de uma amostra do conjunto de treinamento, são inseridos nas entradas da rede.
- Estes, são propagados camada a camada até a produção da saída.
- Neste processo, os pesos sinápticos e os limiares não são ajustados.

Processo de treinamento da rede MLP

• Em sequência, as respostas produzidas pela rede são comparadas com as respostas desejadas, produzindo assim um sinal de erro.

- Em sequência, as respostas produzidas pela rede são comparadas com as respostas desejadas, produzindo assim um sinal de erro.
- Com isto, inicia-se a segunda fase do método backpropagation, denominada propagação reversa (backward).

- Em sequência, as respostas produzidas pela rede são comparadas com as respostas desejadas, produzindo assim um sinal de erro.
- Com isto, inicia-se a segunda fase do método *backpropagation*, denominada propagação reversa (*backward*).
- Nesta etapa, os pesos e limiares **são** ajustados.

- Em sequência, as respostas produzidas pela rede são comparadas com as respostas desejadas, produzindo assim um sinal de erro.
- Com isto, inicia-se a segunda fase do método *backpropagation*, denominada propagação reversa (*backward*).
- Nesta etapa, os pesos e limiares **são** ajustados.
- As aplicações sucessivas das fases *forward* e *backward* fazem com que os pesos sinápticos e limiares dos neurônios se ajustem automaticamente em cada iteração, de modo a diminuir a soma dos erros produzidos pela resposta da rede.

Derivação do algoritmo backpropagation - Sentido Direto

Derivação do algoritmo backpropagation- Sentido Direto

Derivação do algoritmo backpropagation-Sentido Direto

Derivação do algoritmo backpropagation- Sentido Direto

Derivação do algoritmo backpropagation-Sentido Direto

- Nesta topologia, pode-se definir as seguintes terminologias:
 - $\mathbf{0}$ $\mathbf{x} \in \mathbb{R}^{(p+1) \times 1}$ incluindo o limiar de ativação, é a N-ésima amostra apresentada na iteração.

Derivação do algoritmo backpropagation-Sentido Direto

- Nesta topologia, pode-se definir as seguintes terminologias:
 - $\mathbf{0}$ $\mathbf{x} \in \mathbb{R}^{(p+1) \times 1}$ incluindo o limiar de ativação, é a N-ésima amostra apresentada na iteração.
 - \mathbf{Q} $\mathbf{W}^{(L)}$ é a L-ésima matriz de pesos que deve ser ajustada no processo de treinamento.

Derivação do algoritmo backpropagation- Sentido Direto

- Nesta topologia, pode-se definir as seguintes terminologias:
 - $\mathbf{0}$ $\mathbf{x} \in \mathbb{R}^{(p+1) \times 1}$ incluindo o limiar de ativação, é a N-ésima amostra apresentada na iteração.
 - $\mathbf{0}$ $\mathbf{W}^{(L)}$ é a L-ésima matriz de pesos que deve ser ajustada no processo de treinamento.
 - $\mathbf{3}$ \mathbf{i}^L é o L-ésimo vetor de entrada ponderada para a L-ésima camada.

Derivação do algoritmo backpropagation-Sentido Direto

- Nesta topologia, pode-se definir as seguintes terminologias:
 - $\mathbf{0}$ $\mathbf{x} \in \mathbb{R}^{(p+1) \times 1}$ incluindo o limiar de ativação, é a N-ésima amostra apresentada na iteração.
 - \mathbf{Q} $\mathbf{W}^{(L)}$ é a L-ésima matriz de pesos que deve ser ajustada no processo de treinamento.
 - $\mathbf{3}$ \mathbf{i}^L é o L-ésimo vetor de entrada ponderada para a L-ésima camada.
 - 4 \mathbf{y}^L é o L-ésimo vetor de saída após a aplicação da função de ativação em cada neurônio na camada L.

Derivação do algoritmo backpropagation-Sentido Direto

- Nesta topologia, pode-se definir as seguintes terminologias:
 - **1** $\mathbf{x} \in \mathbb{R}^{(p+1)\times 1}$ incluindo o limiar de ativação, é a *N*-ésima amostra apresentada na iteração.
 - \mathbf{Q} $\mathbf{W}^{(L)}$ é a L-ésima matriz de pesos que deve ser ajustada no processo de treinamento.
 - $\mathbf{3}$ \mathbf{i}^L é o *L*-ésimo vetor de entrada ponderada para a *L*-ésima camada.
 - \mathbf{q} \mathbf{v}^L é o L-ésimo vetor de saída após a aplicação da função de ativação em cada neurônio na camada L.

$$\mathbf{y}^{(1)} = g(\mathbf{i}^{(1)})$$

$$\mathbf{y}^{(1)} = g(\mathbf{i}^{(1)})$$
 $\mathbf{y}^{(L-1)} = g(\mathbf{i}^{(L-1)})$ $\mathbf{y}^{(L)} = g(\mathbf{i}^{(L)})$ $\mathbf{y}^{(m)} = g(\mathbf{i}^{(m)})$

$$\mathbf{y}^{(L)} = g(\mathbf{i}^{(L)})$$

$$\mathbf{y}^{(m)} = g(\mathbf{i}^{(m)})$$

106/177

Redes Neurais Artificiais (RNA)

Derivação do algoritmo backpropagation- Sentido Direto

- Nesta topologia, pode-se definir as seguintes terminologias:
 - **1** $\mathbf{x} \in \mathbb{R}^{(p+1)\times 1}$ incluindo o limiar de ativação, é a *N*-ésima amostra apresentada na iteração.
 - \mathbf{Q} $\mathbf{W}^{(L)}$ é a L-ésima matriz de pesos que deve ser ajustada no processo de treinamento.
 - $\mathbf{3}$ \mathbf{i}^L é o *L*-ésimo vetor de entrada ponderada para a *L*-ésima camada.
 - a \mathbf{y}^L é o L-ésimo vetor de saída após a aplicação da função de ativação em cada neurônio na camada L.

$$\mathbf{y}^{(1)} = g(\mathbf{i}^{(1)})$$

$$\mathbf{y}^{(1)} = g(\mathbf{i}^{(1)})$$
 $\mathbf{y}^{(L-1)} = g(\mathbf{i}^{(L-1)})$ $\mathbf{y}^{(L)} = g(\mathbf{i}^{(L)})$ $\mathbf{y}^{(m)} = g(\mathbf{i}^{(m)})$

$$\mathbf{y}^{(L)} = g(\mathbf{i}^{(L)})$$

$$\mathbf{z}^{(m)} = g(\mathbf{i}^{(m)})$$

$$\mathbf{i}^{(1)} = \mathbf{W}^{(1)} \mathbf{x}$$

$$\mathbf{i}^{(1)} = \mathbf{W}^{(1)} \mathbf{x}$$
 $\mathbf{i}^{(L-1)} = \mathbf{W}^{(L-1)} \mathbf{y}^{(1)}$ $\mathbf{i}^{(L)} = \mathbf{W}^{(L)} \mathbf{y}^{(L-1)}$ $\mathbf{i}^{(m)} = \mathbf{W}^{(L+1)} \mathbf{y}^{(L)}$

$$\mathbf{i}^{(L)} = \mathbf{W}^{(L)} \mathbf{y}^{(L-1)}$$

$$\mathbf{i}^{(m)} = \mathbf{W}^{(L+1)} \mathbf{y}^{(L)}$$

Derivação do algoritmo backpropagation-Sentido Direto

- Nesta topologia, pode-se definir as seguintes terminologias:
 - **1** $\mathbf{x} \in \mathbb{R}^{(p+1)\times 1}$ incluindo o limiar de ativação, é a *N*-ésima amostra apresentada na iteração.
 - \mathbf{Q} $\mathbf{W}^{(L)}$ é a L-ésima matriz de pesos que deve ser ajustada no processo de treinamento.
 - $\mathbf{3}$ \mathbf{i}^L é o *L*-ésimo vetor de entrada ponderada para a *L*-ésima camada.
 - a \mathbf{y}^L é o L-ésimo vetor de saída após a aplicação da função de ativação em cada neurônio na camada L.

$$\mathbf{y}^{(1)} = g(\mathbf{i}^{(1)})$$

$$\mathbf{y}^{(1)} = g(\mathbf{i}^{(1)})$$
 $\mathbf{y}^{(L-1)} = g(\mathbf{i}^{(L-1)})$ $\mathbf{y}^{(L)} = g(\mathbf{i}^{(L)})$ $\mathbf{y}^{(m)} = g(\mathbf{i}^{(m)})$

$$\mathbf{y}^{(L)} = g(\mathbf{i}^{(L)})$$

$$^{(m)}=g(\mathbf{i}^{(m)})$$

$$\mathbf{i}^{(1)} = \mathbf{W}^{(1)}$$

$$\mathbf{i}^{(1)} = \mathbf{W}^{(1)} \mathbf{x}$$
 $\mathbf{i}^{(L-1)} = \mathbf{W}^{(L-1)} \mathbf{y}^{(1)}$ $\mathbf{i}^{(L)} = \mathbf{W}^{(L)} \mathbf{y}^{(L-1)}$ $\mathbf{i}^{(m)} = \mathbf{W}^{(L+1)} \mathbf{y}^{(L)}$

$$\mathbf{w}^{(L)} = \mathbf{W}^{(L)} \mathbf{y}^{(L-1)}$$

$$\mathbf{i}^{(m)} = \mathbf{W}^{(L+1)} \mathbf{y}^{(L)}$$

• $g(\cdot)$ neste exemplo, representa a função de ativação escolhida no projeto da rede.

Derivação do algoritmo backpropagation-Sentido Direto

- Nesta topologia, pode-se definir as seguintes terminologias:
 - **1** $\mathbf{x} \in \mathbb{R}^{(p+1)\times 1}$ incluindo o limiar de ativação, é a *N*-ésima amostra apresentada na iteração.
 - \mathbf{Q} $\mathbf{W}^{(L)}$ é a L-ésima matriz de pesos que deve ser ajustada no processo de treinamento.
 - $\mathbf{3}$ \mathbf{i}^L é o *L*-ésimo vetor de entrada ponderada para a *L*-ésima camada.
 - 1 \mathbf{y}^L é o L-ésimo vetor de saída após a aplicação da função de ativação em cada neurônio na camada L.

$$\mathbf{y}^{(1)} = g(\mathbf{i}^{(1)})$$

$$\mathbf{y}^{(1)} = g(\mathbf{i}^{(1)})$$
 $\mathbf{y}^{(L-1)} = g(\mathbf{i}^{(L-1)})$ $\mathbf{y}^{(L)} = g(\mathbf{i}^{(L)})$ $\mathbf{y}^{(m)} = g(\mathbf{i}^{(m)})$

$$\mathbf{y}^{(L)} = g(\mathbf{i}^{(L)})$$

$$^{(m)}=g(\mathbf{i}^{(m)})$$

$$\mathbf{i}^{(1)} = \mathbf{W}^{(1)}$$

$$\mathbf{i}^{(1)} = \mathbf{W}^{(1)} \mathbf{x}$$
 $\mathbf{i}^{(L-1)} = \mathbf{W}^{(L-1)} \mathbf{y}^{(1)}$ $\mathbf{i}^{(L)} = \mathbf{W}^{(L)} \mathbf{y}^{(L-1)}$ $\mathbf{i}^{(m)} = \mathbf{W}^{(L+1)} \mathbf{y}^{(L)}$

$$\mathbf{w}^{(L)} = \mathbf{W}^{(L)} \mathbf{y}^{(L-1)}$$

$$\mathbf{x}^{(m)} = \mathbf{W}^{(L+1)} \mathbf{y}^{(L)}$$

- $g(\cdot)$ neste exemplo, representa a função de ativação escolhida no projeto da rede.
- Pode-se verificar na Figura que a saída m, não possui a adição do termo $y_0^{(m)} = -1$. Alguém arrisca dizer o motivo disto?

Derivação do algoritmo backpropagation- Sentido Reverso (função custo)

 Após a computação do sinal real no final da rede MLP, pode-se inicializar a derivação do algoritmo backpropagation ao definir a função representativa do erro de aproximação.

Derivação do algoritmo backpropagation- Sentido Reverso (função custo)

- Após a computação do sinal real no final da rede MLP, pode-se inicializar a derivação do algoritmo *backpropagation* ao definir a função representativa do erro de aproximação.
- Esta tem o papel de medir o desvio entre as respostas produzidas pelos neurônios na camada de **saída** em relação aos valores desejados.

07/177 Prof. Paulo Cirillo CCT, UNIFOR

- Após a computação do sinal real no final da rede MLP, pode-se inicializar a derivação do algoritmo backpropagation ao definir a função representativa do erro de aproximação.
- Esta tem o papel de medir o desvio entre as respostas produzidas pelos neurônios na camada de saída em relação aos valores desejados.
- Portanto, o sentido reverso da rede começa na camada de saída, com a determinação do erro produzido por cada um dos neurônios de saída.

Prof. Paulo Cirillo

- Após a computação do sinal real no final da rede MLP, pode-se inicializar a derivação do algoritmo *backpropagation* ao definir a função representativa do erro de aproximação.
- Esta tem o papel de medir o desvio entre as respostas produzidas pelos neurônios na camada de **saída** em relação aos valores desejados.
- Portanto, o sentido reverso da rede começa na camada de saída, com a determinação do erro produzido por cada um dos neurônios de saída.

$$e_k = d_k - y_k, \qquad k = 1, \cdots m$$

• Em que d_k é a saída desejada para o k—ésimo neurônio da amada de saída.

- Após a computação do sinal real no final da rede MLP, pode-se inicializar a derivação do algoritmo backpropagation ao definir a função representativa do erro de aproximação.
- Esta tem o papel de medir o desvio entre as respostas produzidas pelos neurônios na camada de saída em relação aos valores desejados.
- Portanto, o sentido reverso da rede começa na camada de saída, com a determinação do erro produzido por cada um dos neurônios de saída.

$$e_k = d_k - y_k, \quad k = 1, \cdots m$$

- Em que d_k é a saída desejada para o k-ésimo neurônio da amada de saída.
- O valor instantâneo da energia do erro para o k-ésimo neurônio de saída é dado por $\frac{1}{2}e_{\nu}^{2}$.

- Após a computação do sinal real no final da rede MLP, pode-se inicializar a derivação do algoritmo backpropagation ao definir a função representativa do erro de aproximação.
- Esta tem o papel de medir o desvio entre as respostas produzidas pelos neurônios na camada de saída em relação aos valores desejados.
- Portanto, o sentido reverso da rede começa na camada de saída, com a determinação do erro produzido por cada um dos neurônios de saída.

$$e_k = d_k - y_k, \quad k = 1, \cdots m$$

- Em que d_k é a saída desejada para o k-ésimo neurônio da amada de saída.
- O valor instantâneo da energia do erro para o k-ésimo neurônio de saída é dado por $\frac{1}{2}e_{\nu}^{2}$.

• O valor instantâneo **total** do erro (Erro Quadrático Instantâneo), pode ser obtido somando-se os termos $\frac{1}{2}e_k^2$ para todos os m neurônios de saída:

$$J(t) = \frac{1}{2} \sum_{k=1}^{m} e_k^2 = \frac{1}{2} \sum_{k=1}^{m} (d_k - y_k)^2$$
 (1)

para a obtenção da regra de aprendizagem para a rede MLP, a função custo de interesse é o Erro
 Quadrático Médio (EQM) calculado para os N vetores de treinamento, e é dado por

$$EQM = \frac{1}{N} \sum_{t=1}^{N} J(t) = \frac{1}{2N} \sum_{k=1}^{t=1} \sum_{k=1}^{m} (d_k(t) - y_k(t))^2$$

• Pretende-se então a minimização desta função ao realizar a minimização de I(t).

Derivação do algoritmo backpropagation- Sentido Reverso (minimização da função custo)

• O algoritmo de retropropagação do erro aplica uma correção Δw_{ki}^m ao peso sináptico w_{ki}^m , que é proporcional ao gradiente da função J(t), expresso por $\partial J(t)/\partial w_{ki}^m$.

09/177 Prof. Paulo Cirillo CCT, UNIFOR

Derivação do algoritmo backpropagation-Sentido Reverso (minimização da função custo)

- O algoritmo de retropropagação do erro aplica uma correção Δw_{i}^{m} ao peso sináptico w_{i}^{m} , que é proporcional ao gradiente da função J(t), expresso por $\partial J(t)/\partial w_{ki}^m$.
- Para calcular esta derivada faz-se o uso da regra da cadeia para fatorá-la em vários termos.

$$\frac{\partial J(t)}{\partial w_{ii}^m} = \frac{\partial J(t)}{\partial e_k(t)} \frac{\partial e_k(t)}{\partial y_k(t)} \frac{\partial y_k(t)}{\partial u_k(t)} \frac{\partial u_k(t)}{\partial w_{ki}^m(t)}$$

• Cada derivada parcial pode ser calculada como

$$\frac{\partial J(t)}{\partial e_k(t)} = e_k(t)$$

$$\frac{\partial e_k(t)}{\partial y_k(t)} = -1$$

$$\frac{\partial y_k(t)}{\partial u_k(t)} = g'_k(u_k(t)) = y'_k(t)$$

$$\frac{\partial u_k(t)}{\partial w_{ki}^m(t)} = y_i^{(L)(t)}$$

Derivação do algoritmo backpropagation-Sentido Reverso (minimização da função custo)

• Portanto o gradiente de $\partial J(t)/\partial w_{ki}^m$ é dado por

$$\frac{\partial J(t)}{\partial w_{ki}^m} = -e_k \cdot g_k'(u_k(t)) y_i^L(t)$$

A regra de aprendizagem para ajuste dos pesos na camada de saída é dada por:

$$w_{ki}^{m}(t+1) = w_{ki}^{m}(t) + \Delta w_{ki}^{m}(t)$$

$$w_{ki}^{m}(t+1) = w_{ki}^{m}(t) - \eta \frac{\partial J(t)}{\partial w_{ki}^{m}(t)}$$

$$w_{ki}^{m}(t+1) = w_{ki}^{m}(t) + \eta e_{k}(t) g_{k}'(u_{k}(t)) y_{k}^{L}(t)$$

Em que a constante η é a taxa de aprendizagem, ou passo de adaptação (0 > η > 1).

Derivação do algoritmo backpropagation- Sentido Reverso (Atualização dos pesos na camada de saída)

 A Equação exibida anteriormente, é conhecida como Regra Delta Generalizada, a qual é derivada a partir da Regra Delta (chamada de LMS ou Regra de Widrow-Hoff).

Derivação do algoritmo backpropagation- Sentido Reverso (Atualização dos pesos na camada de saída)

- A Equação exibida anteriormente, é conhecida como Regra Delta Generalizada, a qual é derivada a partir da Regra Delta (chamada de LMS ou Regra de Widrow-Hoff).
- Esta pode ser reescrita em versão matricial da seguinte forma:

Derivação do algoritmo backpropagation- Sentido Reverso (Atualização dos pesos na camada de saída)

- A Equação exibida anteriormente, é conhecida como Regra Delta Generalizada, a qual é derivada a partir da Regra Delta (chamada de LMS ou Regra de Widrow-Hoff).
- Esta pode ser reescrita em versão matricial da seguinte forma:

$$\mathbf{W}^{(L+1)}(t+1) = \mathbf{W}^{(L+1)}(t) + \eta \delta^{(L+1)}(t) \mathbf{y}^{(L)}(t)$$

Derivação do algoritmo backpropagation- Sentido Reverso (Atualização dos pesos na camada de saída)

- A Equação exibida anteriormente, é conhecida como Regra Delta Generalizada, a qual é derivada a partir da Regra Delta (chamada de LMS ou Regra de Widrow-Hoff).
- Esta pode ser reescrita em versão matricial da seguinte forma:

$$\mathbf{W}^{(L+1)}(t+1) = \mathbf{W}^{(L+1)}(t) + \eta \delta^{(L+1)}(t) \mathbf{y}^{(L)}(t)$$

• Em que δ vale:

$$\boldsymbol{\delta}^{(L+1)} = g'(\mathbf{i}^{(m)}) \circ (\mathbf{d} - \mathbf{y}^m)$$

- Nesta, o representa o produto de **Hadamard** (*element-wise product*).
- Em notação algorítmica o peso pode ser ajustado:

$$\mathbf{W}^{(L+1)} \longleftarrow \mathbf{W}^{(L+1)} + \eta \boldsymbol{\delta}^{(L+1)} \otimes \mathbf{y}^{(L)}$$

Derivação do algoritmo *backpropagation-* Sentido Reverso (Atualização dos pesos na camada de saída)

- A Equação exibida anteriormente, é conhecida como Regra Delta Generalizada, a qual é derivada a partir da Regra Delta (chamada de LMS ou Regra de Widrow-Hoff).
- Esta pode ser reescrita em versão matricial da seguinte forma:

$$\mathbf{W}^{(L+1)}(t+1) = \mathbf{W}^{(L+1)}(t) + \eta \delta^{(L+1)}(t) \mathbf{y}^{(L)}(t)$$

• Em que δ vale:

$$\boldsymbol{\delta}^{(L+1)} = g'(\mathbf{i}^{(m)}) \circ (\mathbf{d} - \mathbf{y}^m)$$

- Nesta, o representa o produto de **Hadamard** (*element-wise product*).
- Em notação algorítmica o peso pode ser ajustado:

$$\mathbf{W}^{(L+1)} \longleftarrow \mathbf{W}^{(L+1)} + n \boldsymbol{\delta}^{(L+1)} \otimes \mathbf{v}^{(L)}$$

- É preciso verificar a equivalência de ordem, ao multiplicar os vetores $\delta^{(L+1)}$ e $\mathbf{y}^{(L)}$ (obs: \otimes trata-se do **produto externo**).
- Além disto, deve-se **lembrar** que em $\mathbf{y}^{(L)}$ nesta etapa, há a presença do **bias**, portanto, $\mathbf{y}^{(L)} \in \mathbb{R}^{q_L+1}$.

Derivação do algoritmo backpropagation- Sentido Reverso (Atualização dos pesos na camada de saída)

Derivação do algoritmo backpropagation- Sentido Reverso (Atualização dos pesos camadas ocultas)

• Para o ajuste das matrizes de pesos nas camadas subsequentes, faz-se um procedimento similar ao que foi realizado na saída.

Derivação do algoritmo backpropagation- Sentido Reverso (Atualização dos pesos camadas ocultas)

- Para o ajuste das matrizes de pesos nas camadas subsequentes, faz-se um procedimento similar ao que foi realizado na saída.
- Para este caso os neurônios nas camadas ocultas não tem acesso a uma saída desejada equivalente a **d**.

Derivação do algoritmo backpropagation- Sentido Reverso (Atualização dos pesos camadas ocultas)

- Para o ajuste das matrizes de pesos nas camadas subsequentes, faz-se um procedimento similar ao que foi realizado na saída.
- Para este caso os neurônios nas camadas ocultas não tem acesso a uma saída desejada equivalente a d.
- O artifício utilizado pelos pesquisadores foi projetar uma espécie de medida de erro para os neurônios ocultos, sem que houvesse uma saída desejada.

CCT, UNIFOR Prof. Paulo Cirillo

Derivação do algoritmo backpropagation- Sentido Reverso (Atualização dos pesos camadas ocultas)

- Para o ajuste das matrizes de pesos nas camadas subsequentes, faz-se um procedimento similar ao que foi realizado na saída.
- Para este caso os neurônios nas camadas ocultas não tem acesso a uma saída desejada equivalente a d.
- O artifício utilizado pelos pesquisadores foi projetar uma espécie de medida de erro para os neurônios ocultos, sem que houvesse uma saída desejada.
- O erro neste caso, é obtido a partir dos erros dos neurônios de saída por meio de uma projeção no sentido reverso ao fluxo da rede.

Prof. Paulo Cirillo

Derivação do algoritmo backpropagation- Sentido Reverso (Atualização dos pesos camadas ocultas)

- Para o ajuste das matrizes de pesos nas camadas subsequentes, faz-se um procedimento similar ao que foi realizado na saída.
- Para este caso os neurônios nas camadas ocultas não tem acesso a uma saída desejada equivalente a d.
- O artifício utilizado pelos pesquisadores foi projetar uma espécie de medida de erro para os neurônios ocultos, sem que houvesse uma saída desejada.
- O erro neste caso, é obtido a partir dos erros dos neurônios de saída por meio de uma projeção no sentido reverso ao fluxo da rede.
- Novamente o gradiente da função custo deve ser calculado, agora na direção de \mathbf{W}^L .

Prof. Paulo Cirillo

Derivação do algoritmo backpropagation- Sentido Reverso (Atualização dos pesos camadas ocultas)

• Com o auxílio da regra da cadeia, pode-se fazer:

$$\frac{\partial J(t)}{\partial w_{ij}^{(L)}} = \frac{\partial J(t)}{\partial y_i^{(L)}} \frac{\partial y_i^{(L)}}{\partial u_i^{(L)}} \frac{\partial u_i^{(L)}}{\partial w_{ij}^{(L)}}$$
$$\frac{\partial J(t)}{\partial y_i^{(L)}} = -\sum_{k=1}^m w_{ki}^m \delta_k^{(L+1)}$$
$$\frac{\partial y_i^{(L)}}{\partial u_i^{(L)}} = g'(u^{(L)})$$
$$\frac{\partial u_i^{(L)}}{\partial w_{ij}^{(L)}} = y_i^{(L-1)}$$

Derivação do algoritmo backpropagation- Sentido Reverso (Atualização dos pesos nas camadas ocultas)

• Novamente, reescrevendo a regra LMS de forma matricial, tem-se:

$$\mathbf{W}^{(L)} = \mathbf{W}^{(L)} + \eta \boldsymbol{\delta}^{(L)} \otimes \mathbf{y}^{(L-1)}$$

• em que $\delta^{(L)}$ vale:

$$\boldsymbol{\delta}^{(L)} = g'(\mathbf{i}^{(L)}) \circ (\mathbf{W_b}^{(L+1)} \boldsymbol{\delta}^{(L+1)})$$

- Em que $\delta^{(L)}$ é definido como o gradiente local em relação ao j—ésimo neurônio da camada escondida.
- Desta maneira a matriz $\mathbf{W_b}^{(L+1)}$ representa a matriz $\mathbf{W}^{(L+1)}$ que é **transposta** sem a influência do bias.
- Uma dica importante nesta etapa, é omitir toda a coluna referente aos pesos do bias.
- Da mesma maneira como foi realizado anteriormente, em $\mathbf{y}^{(L-1)}$ nesta etapa, há a presença do **bias**, portanto, $\mathbf{v}^{(L)} \in \mathbb{R}^{q_L+1}$.

Derivação do algoritmo backpropagation- Sentido Reverso (Atualização dos pesos na camada de saída)

Derivação do algoritmo *backpropagation*- Sentido Reverso (Atualização dos pesos na primeira camada oculta)

• O processo é muito similar ao ajuste nas demais camadas escondidas, portanto se faz a aplicação novamente da regra da cadeia. Assim:

$$\frac{\partial J(t)}{\partial w_{ij}^{(1)}} = \frac{\partial J(t)}{\partial y_i^{(1)}} \frac{\partial y_i^{(1)}}{\partial u_i^{(1)}} \frac{\partial u_i^{(1)}}{\partial w_{ij}^{(1)}}$$

Derivação do algoritmo *backpropagation-* Sentido Reverso (Atualização dos pesos na primeira camada oculta)

$$\frac{\partial u_i^1}{\partial w_{ij}^1} = \mathbf{x}$$

$$\frac{\partial y_i^{(1)}}{\partial u_i^{(1)}} = g'(u^{(1)})$$

$$\frac{\partial J(t)}{\partial y_i^{(1)}} = -\sum_{q_2}^{k=1} \sigma^2 \mathbf{w}^2$$

Derivação do algoritmo *backpropagation-* Sentido Reverso (Atualização dos pesos camadas ocultas)

• Novamente, reescrevendo a regra LMS uma última vez de forma matricial, tem-se:

$$\mathbf{W}^{(1)} = \mathbf{W}^{(1)} + \eta \boldsymbol{\delta}^{(1)} \otimes \mathbf{x}$$

• em que $\delta^{(1)}$ vale:

$$\delta^{(1)} = g'(\mathbf{i}^{(1)}) \circ (\mathbf{W_b}^{(2)} \boldsymbol{\delta}^{(2)})$$

• Qual principal diferença desta etapa para as demais camadas ocultas?

Derivação do algoritmo backpropagation- Sentido Reverso (Atualização dos pesos na camada de saída)

MLP Algoritmos para Configuração - Treinamento - Teste.

Algorithm 6: Pseudocódigo configuração da topologia da rede MLP.

- 1: Definir a quantidade *L* de camadas escondidas.
- 2: Definir a quantidade de neurônio em cada uma das L camadas escondidas: $[q_1, q_2, q_3, \cdots, q_L]$.
- 3: Definir a quantidade de neurônios *m* na camada de saída.
- 4: Definir o valor da taxa de aprendizagem η .
- 5: Definir a quantidade máxima de épocas maxEpoch.
- 6: Definir o critério de parada em função do erro (EQM).
- 7: Criar uma lista (*list*) dos elementos: \mathbf{W} , \mathbf{i} , \mathbf{y} , $\boldsymbol{\delta}$ cada uma com L+1 posições.
- 8: Inicializar as L + 1 matrizes **W** com valores aleatórios pequenos (-0.5, 0.5).
- 9: Receber os dados de treinamento com a ordem $\mathbf{X}_{treino} \in \mathbb{R}^{p \times N}$ e os rótulos de treinamento com ordem $\mathbf{Y}_{treino} \in \mathbb{R}^{c \times N}$.
- 10: Adicionar o vetor linha de -1 na primeira linha da matriz de dados X_{treino} , resultando em $X_{treino} \in \mathbb{R}^{(p+1) \times N}$.
 - Obs1: Em Python pode-se gerar números aleatórios entre 0 e 1 com a função np.random.random_sample()
 - **Obs2**: Ao inicializar as matrizes de peso, lembrar da presença do *bias*.

Figura base para construção do algoritmo

MLP Algoritmos Para Configuração Treinamento.

Algorithm 7: Pseudocódigo para treinamento da rede MLP.

- 1: EQM ← 1.
- 2: Epoch \leftarrow 0.
- 3: while EQM>CritérioParada && Epoch<MaxEpoch do
- for Cada amostra em X_{treino} do
- 5: $\mathbf{x}_{amostra} \leftarrow N$ -ésima amostra de \mathbf{X}_{treino} .
- $Forward(\mathbf{x}_{amostra})$ 6:
- $\mathbf{d} \longleftarrow N$ -ésimo rótulo de \mathbf{X}_{treino} .
- $BackWard(\mathbf{x}_{amostra}, \mathbf{d}).$
- end for
- 10: $EQM \leftarrow EQM()$.
- 11: Epoch \leftarrow Epoch +1.
- 12: end while

MLP Algoritmos Para Configuração Treinamento.

Algorithm 8: Pseudocódigo para o Forward da rede MLP.

```
1: Receber a amostra \mathbf{x}_{amostra} \in \mathbb{R}^{(p+1)\times 1}.
 2: j \longleftarrow 0
 3: for cada matriz de peso W em cada uma das L + 1 camadas. do
           if i == 0 then
            \mathbf{i}[j] \longleftarrow \mathbf{W}[j] \cdot \mathbf{x}_{amostra}
           \mathbf{y}[j] \longleftarrow g(\mathbf{i}[j])
           else
               \mathbf{y}_{bias} \leftarrow \mathbf{y}[j-1] com adição de -1 na primeira posição do vetor.
            \mathbf{i}[j] \longleftarrow \mathbf{W}[j] \cdot \mathbf{y}_{bias}
            \mathbf{y}[j] \longleftarrow g(\mathbf{i}[j])
10:
11:
           end if
          j \leftarrow j + 1
13: end for
```


MLP Algoritmos Para Configuração Treinamento.

Algorithm 9: Pseudocódigo para o BackWard da rede MLP.

```
1: Receber a amostra \mathbf{x}_{amostra} \in \mathbb{R}^{(p+1)\times 1} e seu rótulo \mathbf{d} \in \mathbb{R}^{c\times 1}.
 2: j \leftarrow Quantidade de matrizes W – 1.
 3: while i > 0 do
           if j + 1 ==Quantidade de matrizes W, then
 5:
               \delta[j] \longleftarrow g'(\mathbf{i}[j]) \circ (\mathbf{d} - \mathbf{y}[j]).
 6:
                \mathbf{y}_{bias} \longleftarrow \mathbf{y}[j-1] com adição de -1 na primeira posição do vetor.
                \mathbf{W}[j] \longleftarrow \mathbf{W}[j] + \eta(\boldsymbol{\delta}[j] \otimes \mathbf{y}_{bias})
 8:
           else if i == 0 then
 9:
                \mathbf{W_h}[i+1] Recebe a matriz \mathbf{W}[i+1] transposta sem a coluna que multiplica pelos limiares de ativação.
10:
                \delta[j] \longleftarrow g'(\mathbf{i}[j]) \circ (\mathbf{W_b}[j+1] \cdot \delta[j+1]).
11:
                 \mathbf{W}[j] \longleftarrow \mathbf{W}[j] + \eta(\boldsymbol{\delta}[j] \otimes \mathbf{x}_{amostra})
12:
            else
13:
                 \mathbf{W_h}[j+1] Recebe a matriz \mathbf{W}[j+1] transposta sem a coluna que multiplica pelos limiares de ativação.
14:
                \delta[j] \longleftarrow g'(\mathbf{i}[j]) \circ (\mathbf{W_b}[j+1] \cdot \delta[j+1]).
15:
                \mathbf{y}_{bias} \leftarrow \mathbf{y}[j-1] com adição de -1 na primeira posição do vetor.
16:
                 \mathbf{W}[j] \longleftarrow \mathbf{W}[j] + \eta(\boldsymbol{\delta}[j] \otimes \mathbf{y}_{bias})
17:
            end if
18:
           j \leftarrow j-1
19: end while
```


MLP Algoritmos Para Configuração Treinamento.

Algorithm 10: Pseudocódigo para o Erro Quadrático Médio.

```
1: EQM \leftarrow 0
 2: for Cada amostra em X<sub>treino</sub> do
         \mathbf{x}_{amostra} \leftarrow N-ésima amostra de \mathbf{X}_{treino}.
       Forward(\mathbf{x}_{amostra})
         \mathbf{d} \longleftarrow N-ésimo rótulo de \mathbf{X}_{treino}.
     EQI \longleftarrow 0
       i \leftarrow 0
         for Cada neurônio na camada de saída do
            EQI \leftarrow EQI + (d[i] - \mathbf{v}[QTD_L - 1][i])^2
10:
        j \leftarrow j + 1
11:
         end for
         EOM \leftarrow EOM + EOI
13: end for
```

14: $EQM \leftarrow EQM/(2 * QtdAmostrasTreino)$

MLP etapa de teste.

Algorithm 11: Pseudocódigo para fase de operação (teste) da rede MLP.

- 1: for Cada amostra em X_{teste} do
- 2: $\mathbf{x}_{amostra} \leftarrow N$ -ésima amostra de \mathbf{X}_{teste} .
- 3: $Forward(\mathbf{x}_{amostra})$
- 4: Realizar a atribuição desta amostra para a classe cujo índice do vetor de saída da rede MLP possuir maior valor.
- 5: end for

Construção de Rede Perceptron de Multicamadas

• Duas funções sigmoidais amplamente utilizadas são:

Construção de Rede Perceptron de Multicamadas

- Duas funções sigmoidais amplamente utilizadas são:
- Sigmóide Logística:

$$y_i = \frac{1}{1 + exp(-u_i)}$$
 $y_i \in (0,1)$

Sua derivada vale:

$$y_i' = \frac{dy_i}{du_i} = y_i(1 - y_i)$$

Tangente Hiperbólica:

$$y_i = \frac{1 - exp(-u_i)}{1 + exp(-u_i)}$$
 $y_i \in (-1, 1)$

Sua derivada vale:

$$y_i' = \frac{dy_i}{du_i} = 0.5 * (1 - y_i^2)$$

Informações importantes para a construção de redes neurais.

- O projeto de uma RNA envolve a especificação de diversos itens, cujos valores influenciam consideravelmente a operação do algoritmo.
- Desta maneira, é interessante conhecer cada parâmetro do modelo, e quais valores estes podem assumir.

30/177 Prof. Paulo Cirillo CCT, UNIFOR

Dimensão do vetor de entrada (p).

- Em teoria, este item pode assumir valores entre 1 e ∞ .
- Porém, há um limite superior que depende da aplicação de interesse e do custo de se medir as variáveis presentes em x.
- Deve-se ter em mente que um valor alto para p, não indica necessariamente um melhor desempenho para rede neural, pois, pode haver redundância no processo de medição.
- Algumas vezes, a quantidade p é tão elevada, que o processo se torna inviável ou extremamente custoso. Neste caso, pode-se realizar a escolha das variáveis mais relevantes para o problema.
- O caso ideal seria que cada variável $1, \dots, p$ tivesse informação exclusiva apenas para ela.
- Do ponto de vista estatístico, isto equivale dizer que as variáveis são independentes ou não-correlacionadas entre si.

Dimensão do vetor de saída (*m*).

- Também depende da aplicação.
- Se o interesse está em aproximação de funções, $\mathbf{y} = F(\mathbf{x})$, a quantidade de neurônios na camada de saída deve refletir diretamente a quantidade de funções de saída desejadas.
- Se o interesse está em problemas de classificação de padrões, a quantidade de neurônios na camada de saída deve codificar o número de classes desejadas.
- É importante destacar que classes, referem-se aos rótulos associados ao vetor de dados. Comumente cada rótulo pode ser um valor não numérico (e.g. classe dos professores, classe dos secretários, classe dos coordenadores, etc).
- Estes devem ser convertidos para forma numérica para se treinar a rede MLP. Tal procedimento é comumente conhecido como codificação da saída da rede.
- A codificação mais comum é utilizar um único neurônio na camada de saída, e atribuir 1 para a classe 1 e atribuir 0 (ou -1) para a classe 2.

Dimensão do vetor de saída (*m*).

- A dimensão do vetor de saída desejado, corresponde ao número de classes do problema em questão.
- Desta maneira, pode-se definir um neurônio de saída para cada classe.
- Um exemplo prático disto, é quando se tem um problema com três classes, logo, existirão três neurônios de saída.
- Como um vetor de entrada, não pertencerá a mais de uma classe ao mesmo tempo, o vetor de saída desejada valor 1 na componente correspondente à classe deste vetor, e 0 (ou -1) para outras componentes.
- Por exemplo, seja o vetor de entrada $\mathbf{x} \in \mathbb{R}^{p \times 1}$ pertence à segunda classe, então seu vetor de saída $\mathbf{d} = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}^T$

- Encontrar o número ideal de neurônios da camada escondida **não** é uma tarefa fácil, pois, depende de diversos fatores, dos quais não temos total controle. Pode-se destacar fatores importantes como:
 - Quantidade de dados disponíveis para treinar a rede.
 - 2 Qualidade dos dados disponíveis.
 - 3 Número de parâmetros ajustáveis (pesos e limiares da rede).
 - 4 Complexidade do problema.
 - 6 Além disto, pode-se imaginar que este é um problema apenas para uma camada.
- O valor de q é geralmente encontrado por tentativa e erro, em função da capacidade de generalização da topologia definida.
- Um valor ideal, é aquele permite com que o modelo tenha desempenho adequado tanto para os dados de treinamento como para os "desconhecidos".
- Existem algumas fórmulas que foram criadas para tentar resolver este problema em particular da quantidade de neurônios na(s) camada(s) escondida(s).

- Deve-se ter em mente que estas regras devem ser usadas apenas para dar um valor inicial para q.
- Desta maneira, deve-se treinar e testar várias vezes a rede MLP com diversas topologias, de modo a certificar que a rede generaliza bem para novos dados.
- Pode-se destacar três regras amplamente utilizadas:
 - Regra do valor médio: O número de neurônios na camada escondida é igual ao valor médio do número de entradas e o número de saída da rede:

$$q = \frac{p+m}{2}$$

- Pode-se destacar três regras amplamente utilizadas:
 - **1 Regra da raiz quadrada**: O número de neurônios na camada escondida é igual a raiz quadrada do produto do número de entradas pelo número de saídas da rede:

$$q=\sqrt{p*m}$$

2 Regra Kolmogorov: O número de neurônios na camada escondida é igual a duas vezes o número de entrada da rede adicionado de 1:

$$q = 2p + 1$$

- As equações exibidas anteriormente apenas consideram características da rede, e desprezam informações úteis, tais como números de dados disponíveis para treinar e testar a rede.
- Uma regra que define um valor inferior para q levando em consideração o número de dados de treinamento é dada por:

$$q \ge \frac{N-1}{p+2}$$

Entretanto, deve-se ter em mente a seguinte regre geral: É necessário se ter muito mais dados do que parâmetros ajustáveis. Logo, $N \gg Z$

• Uma maneira refinada de expressar a última equação, pode ser realizada de acordo com a equação

$$q \approx \left(\frac{\varepsilon N - m}{p + m + 1}\right),\,$$

em que ε é o erro percentual máximo aceitável durante a fase de teste (operação) da rede.

• Esta equação é bastante completa, visto que considera não só apenas a estrutura da rede, como também o erro máximo tolerado para teste e o número de dados disponíveis.

Funções de ativação

- Em teoria, cada neurônio pode ter uma função de ativação distinta dos demais.
- Entretanto, para simplificar o projeto da rede, é comum adotar a mesma função para todos os neurônios.
- Em geral, utiliza-se como escolha a função logística ou a tangente hiperbólica.
- Aquela que for escolhida para os neurônios nas camadas escondidas, será adotada para os neurônios na camada de saída também.
- Em algumas aplicações, é comum escolher uma função de ativação linear para os neurônios na camada de saída, ou seja, $g(\mathbf{u}) = C \cdot \mathbf{u}$, em que C é uma constante positiva.
- Neste caso, $g'(\mathbf{u}) = C$.
- É reforçado ainda que esta função ser linear não altera o poder computacional da rede, porém, deve-se lembrar que os neurônios na camada escondida devem ter uma função de ativação não-linear.

Critério de parada e Convergência.

- A convergência da rede MLP é, em geral, avaliada com base nos valores do EQM por época de treinamento.
- Em geral, o treinamento da rede é interrompido quando EQM_{evoca} atinge um limite inferior adequado para o problema, por exemplo, $EQM \le 0,001$ ou quando o número máximo de épocas for atingido.
- Porém, uma outra análise também pode ser realizada quando o problema é de classificação: pela acurácia na classificação por época

$$Acurácia_{epoca} = \frac{Número de vetores classificados corretamente}{Nmerototal devetores}.$$

• O gráfico que pode ser construído a partir destas medidas, $EQM_{evoca} \times$ número de épocas ou Acurácia_{enoca} × número de épocas é chamado de curva de aprendizagem da rede neural.

Avaliação da rede treinada

- Para validar a rede treinada, é importante testar sua resposta para dados de entrada diferentes daqueles utilizados na etapa de treinamento.
- Entretanto, nem sempre é possível realizar novas medições, e portanto, faz-se necessário treinar a rede com apenas uma parte dos dados selecionados aleatoriamente.
- Desta maneira, os dados são divididos em treinamento, com tamanho $N_1 < N$ e de teste, com tamanho $N_2 = N N_1$.
- Em geral, escolhe-se N_1 para que a razão N_1/N esteja na faixa 0,75 a 0,90.
- O valor EQM calculado com os dados de teste é chamado de **erro de generalização** da rede, pois testa a capacidade da mesma em "extrapolar"o conhecimento aprendido durante o treinamento.
- Destaca-se ainda que geralmente o erro de generalização é superior ao erro de treinamento, pois, trata-se de um novo conjunto de dados.

- Pré-processamento dos dados:
 - Antes de apresentar os dados para a rede é comum mudar a escala original pelos métodos já discutidos anteriormente.
 - Entretanto, essa normalização dos dados pode ser escolhida a partir da definição das funções de ativação nos neurônios da rede.
 - Para a escolha da função logística, aplica-se a seguinte transformação em cada uma das p componentes do vetor:

$$x_j^* = \frac{x_j - min(x_j)}{max(\mathbf{X}) - min(\mathbf{X})}$$

4 E para o caso do uso da função tangente hiperbólica, aplica-se:

$$x_j^* = 2 \cdot \left(\frac{x_j - min(\mathbf{X})}{max(\mathbf{X}) - min(\mathbf{X})} \right) - 1$$

Dicas para um bom projeto da rede MLP

- Taxa de aprendizagem variável:
 - ① É interessante utilizar uma taxa de aprendizagem variável ao longo do tempo, $\eta(t)$, decaindo até um valor baixo com o passar das iterações.

$$\eta(t) = \eta_0 \left(1 - rac{1}{t_{max}}
ight)$$
 , Decaimento linear

$$\eta(t) = \frac{\eta_0}{1+t}$$
, Decaimento exponencial.

Nestas equações, η_0 é o valor inicial da taxa de aprendizagem, e t_{max} é o número máximo de apresentações dado por:

$$t_{max} = N_1 \cdot \text{Número máximo de épocas}$$

② É interessante inicializar η com um valor alto ($\eta_0 < 0, 1$), e terminar com um valor bem baixo, na ordem de $\eta \approx 0,0001$, de modo a estabilizar o processo de aprendizado.

Termo de momento:

1 Na equação de ajuste dos pesos da rede, é interessante adicionar um termo de momento, que possui objetivo em tornar o processo de modificação dos pesos mais estável.

$$\mathbf{W}^{(L+1)}(t+1) = \mathbf{W}^{(L+1)}(t) + \eta \boldsymbol{\delta}^{(L+1)} \otimes \mathbf{y}^{(L)} + \alpha [\mathbf{W}^{(L+1)}(t) - \mathbf{W}^{(L+1)}(t-1)]$$

$$\mathbf{W}^{(L)}(t+1) = \mathbf{W}(t)^{(L)}(t) + \eta \boldsymbol{\delta}^{(L)} \otimes \mathbf{y}^{(L-1)} + \alpha [\mathbf{W}^{(L)}(t) - \mathbf{W}^{(L)}(t-1)]$$

Em que α é a constante chamada fator de momento e é mantido na faixa 0 a 0,9.

Dicas para um bom projeto da rede MLP

Termo de momento:

∆W Large

Generalização:

- A rede MLP é um dos algoritmos de aproximação mais poderosos que existem, porém, todo este poder computacional, se não for utilizado corretamente, não necessariamente implica em uma rede que seja capaz de generalizar corretamente.
- 2 A definição desta generalização adequada é a habilidade da rede em utilizar o conhecimento armazenado nos seus pesos e limiares para gerar saídas coerentes para novos vetores de entrada.
- Uma generalização é considerada boa quando a rede foi capaz de aprender a relação entrada-saída do mapeamento de interesse. O bom treinamento da rede, depende de vários fatores: parâmetros ajustáveis e todos os hiperparâmetros a serem definidos.

Generalização:

- Com relação aos parâmetros ajustáveis, um dos principais motivos de um treinamento inadequado, é pelo fato de um possível subdimensionamento ou sobredimensionamento da rede MLP.
- Neste caso, pode haver a ocorrência de um underfitting ou overfitting da rede. Em ambos casos, a capacidade de generalização é ruim.
- O underfitting ocorre quando a rede não tem poder computacional suficiente para aprender o mapeamento de interesse.
- O overfitting ocorre quando a rede possui neurônios ocultos demais (incluindo camadas ocultas), e memoriza os dados de treinamento.
- O ajuste ideal é obtido para um número de camadas ocultas e neurônios nestas camadas que confere à rede um bom desempenho durante a fase de teste, ou seja, uma boa generalização.

Generalização:

- 1 Uma das técnicas utilizadas para treinar a rede MLP, de modo a garantir uma generalização é conhecida como parada prematura (early stopping).
- Neste método, o conjunto de treinamento também é dividido em duas partes, uma para estimação dos parâmetros da rede e outra para validação durante o treinamento.
- Stete conjunto de validação, deve ser usado de "tempos em tempos", por exemplo, a cada 5 épocas de treinamento. Quando isto ocorrer, deve-se medir o EQM de validação.
- 4 A ideia do early stopping, é interromper o treinamento quando o EQM de validação assumir uma tendência de crescimento.
- Sessa tendência é um indicativo que a rede está começando a se especializar demais nos dados de estimação.

Dicas para um bom projeto da rede MLP

Generalização:

Rede de Funções de Base Radial - RBF

- *Radial Basis Function* (RBF).
- RBF são funções em que seus valores de mapeamento são dependentes da distância:
 - Com relação à distância.
 - 2 Com relação à um ponto c, normalmente chamada de centro.
- A arquitetura da rede RBF é utilizada para as mesmas aplicações da rede MLP padrão:
 - Aproximação universal de função.
 - 2 Classificação de padrões.
- Entretanto, diferentemente da rede MLP, a rede RBF apresenta apenas uma única camada oculta, além da camada de saída.
- Os neurônios na camada oculta (funções de base radial), possuem funções de ativação não lineares diferentes das estudadas na rede MLP.
- Já os neurônios na camada de saída possuem, em geral, saída linear.

- Para uso da rede RBF, é necessário ter um número finito de N exemplos de treinamento na forma (\mathbf{x}, \mathbf{d})
- Assume-se que estes vetores são relacionado segundo uma lei matemática $F(\cdot)$, tal que: $\mathbf{d}(t) = \mathbf{F}[\mathbf{x}(t)]$. Em que $t = 1, 2, \dots N$.
- Uma maneira de se adquirir conhecimento sobre $F(\cdot)$ é através de dados disponíveis.
- Pode-se então utilizar a rede RBF para gerar uma aproximação de $F(\cdot)$, denotada por $\hat{F}(\cdot)$, tal que

$$\hat{\mathbf{y}}(t) = \hat{\mathbf{F}}[\mathbf{x}(t)]$$

- Em que ŷ é a saída gerada pela rede.
- Espera-se que esta saída seja próxima da saída real $\mathbf{d}(t)$

• Cada vetor de entrada é representado como:

$$\mathbf{x}(t) = \begin{bmatrix} x_1(t) \\ \vdots \\ x_p(t) \end{bmatrix}$$

• Enquanto o vetor de saída associado ao vetor de entrada é representado por:

$$\mathbf{d}(t) = \begin{bmatrix} d_1(t) \\ \vdots \\ d_m(t) \end{bmatrix}$$

• Define-se ainda x_j como uma componente qualquer do vetor de entrada \mathbf{x} , e d_k uma componente qualquer do vetor de saída desejada \mathbf{d} .

O vetor de pesos de cada função de base radial, também chamado de centro da função de base, é representado como:

$$\mathbf{c}_{i} = \begin{bmatrix} c_{i1} \\ \vdots \\ c_{ij} \\ \vdots \\ c_{ip} \end{bmatrix}$$

- Em que c_{ij} é o peso que conecta a j—ésima entrada à i—ésima função de base.
- Assim como na rede MLP, as funções de base não têm acesso direto à saída da rede RBF.

De modo semelhante, o vetor de pesos associado ao k-ésimo neurônio da camada de saída é representado como:

$$\mathbf{w}_k = egin{bmatrix} w_{k0} \ dots \ w_{kq} \end{bmatrix} = egin{bmatrix} heta_k \ dots \ w_{kq} \end{bmatrix}$$

- Em que θ_k é o limiar associado ao neurônio de saída k.
- q é o número de funções de base radial (valor igual à quantidade de neurônios na camada oculta).

RBF - Projeto da camada oculta

- Esta etapa envolve a especificação:
 - Do número de funções de base.
 - 2 Determinação dos seus parâmetros
 - 3 Determinação dos pesos dos neurônios de saída.
- Este material, baseia-se na construção a rede RBF com base em: J. E. Moody and C. Darken. Fast learning in networks of locally-tuned processing units. Neural Computation, 1(1):281–294, 1989.
- Estes autores separam o treinamento da rede RBF em três etapas executadas em sequência.
- Durante a primeira etapa, usa-se um algoritmo de formação de agrupamentos para encontrar os chamados **centros** das funções de base.
- A segunda etapa trata do uso de métodos heurísticos para determinar o raio ou abertura de cada função de base.
- Por último, uma vez determinados os centros e os raios, pode-se computar os pesos dos neurônios da camada de saída através de um algoritmo de aprendizagem supervisionado.
- O processo de treinamento, inicia-se pela camada intermediária e é encerrado na saída.

• Assim, após a apresentação de um vetor de entrada \mathbf{x} na iteração t, calcula-se a ativação da i—ésima função de ativação por meio de:

$$u_i(t) = ||\mathbf{x}(t) - \mathbf{c}_i(t)||, \qquad i = 1, \dots, q$$

- Em que q é o número de funções de base desta camada, e o vetor \mathbf{c}_i , mantido constante para o neurônio i, define o centro da i—ésima função de base.
- A saída da i-ésima função de base é calculada por:

$$y_i(t) = g(u_i(t)) = \exp\left\{-\frac{u_i^2(t)}{2\sigma_i^2}\right\}, \qquad i = 1, \dots, q$$

• Em que σ_i é o chamado raio da i–ésima função de base, pois define a largura (abertura) da função de ativação gaussiana deste neurônio.

Discussões sobre a gaussiana

• Como já discutido, **c** é o centro da função de base e σ^2 denota a variância, a qual indica o quão disperso está o potencial de ativação u

Discussões sobre a gaussiana

RBF - Projeto da camada oculta

• O que acontece quando **x** está próximo ao vetor **c**?

• O que acontece quando **x** está próximo ao vetor **c**?

- Quando o vetor de entrada está próximo de seu **centro c**_i, o neurônio *i* fornece resposta máxima $(y_i \approx 1)$.
- Desta maneira, diz-se que cada neurônio da camada escondida tem seu próprio **campo receptivo** no espaço de entrada, que é uma região centrada em \mathbf{c}_i com tamanho proporcional a σ_i .
- Em outras palavras, o neurônio produzirá respostas similares para todos aqueles padrões que estejam a uma mesma distância radial do centro da gaussiana.

- Um comparativo com a rede MLP pode ser realizado, pois, este computa fronteiras de decisão das classes por intermédio de uma combinação de hiperplanos.
- Na rede RBF, com funções de ativação gaussiana, as fronteiras delimitadoras são definidas por campos receptivos hiperesféricos.
- Com isto, a classificação dos padrões considerará a distância radial em relação ao centro das hiperesféras.

RBF - Projeto da camada oculta

Diferença MLP e RBF.

- Assim, o principal objetivo do treinamento dos neurônios da camada intermediária, consiste em posicionar os centros de suas gaussianas de forma apropriada.
- Existem duas maneiras amplamente utilizadas de se determinar os centros das funções de base.
- A primeira de forma aleatória, e a segunda através de um método não supervisionado. Tais métodos são dependentes somente das características dos dados.

64/177 Prof. Paulo Cirillo CCT, UNIFOR

RBF - Seleção aleatória de centros

Este método consiste em selecionar aleatoriamente um certo número q de entradas para atuarem como centros da rede RBF. Matematicamente pode-se escrever:

$$\mathbf{c}_i = \mathbf{x}_k, \qquad i = 1, \cdots q$$

- Em que k é um número inteiro escolhido aleatoriamente, **sem reposição** entre 1 e N.
- Para cada *i* deve-se escolher um *k* diferente para não haver repetição de centros.

RBF - Seleção por quantização vetorial

- O segundo método envolve a determinação dos centros através de um algoritmo de **quantização vetorial**, sejam eles de origem não-neural como *K*—médias, ou de origem neural, tais como rede SOM, neural-GAS ou WTA.
- Desta maneira, descreve-se um dos algoritmos mais simples de formação de agrupamento, popularmente conhecido por WTA(*Winner-Take-All*).
- Sua formulação foi proposta por Kohonen em: T. K. Kohonen. Self-Organizing Maps. Springer-Verlag, Berlin, Heidelberg, 2nd extended edition, 1997.

166/177 Prof. Paulo Cirillo CCT, UNIFOR

RBF - Seleção por quantização vetorial

Algorithm 12: Pseudocódigo para o Erro Quadrático Médio.

- 1: Definir o número de funções de base radial (q)
- 2: Definir a taxa de aprendizagem η (0 < η < 1)
- 3: Iniciar os **centros** c_i , $i = 1, \dots, q$ com valores aleatórios
- 4: Fazer t=0
- 5: while t<N do
- 6: Selecionar aleatoriamente (sem reposição) o vetor de entrada x(t).
- 7: Determinar o índice do centro mais próximo de $\mathbf{x}(t)$, ou seja,

$$i^* = \underset{\forall i}{\operatorname{arg\,min}} \|\mathbf{x}(t) - \mathbf{c}_i(t)\|$$

8: Aplicar a seguinte regra não supervisionada:

$$\mathbf{c}_i(t+1) = \begin{cases} \mathbf{c}_i(t) + \eta[\mathbf{x}(t) - \mathbf{c}_i(t)] & \text{se } i = i^*(t) \\ \mathbf{c}_i(t) & \text{caso contrário} \end{cases}$$

- 9: Fazer t = t + 1
- 10: end while

RBF - Seleção por quantização vetorial

- Alguns comentários importantes sobre a regra de aprendizagem da rede WTA.
 - A cada iteração só atualiza o centro que está mais próximo do vetor de entrada atual.
 - 2 Interrompe-se o treinamento da rede quando:
 - A variação do erro de quantização em função da época de treinamento for pequena.
 - Quando o número máximo de épocas for atingido.
- Este erro é calculado por:

$$E_q = \frac{\sum_{t=0}^{N-1} \|\mathbf{x}(t) - \mathbf{c}_{i^*}(t)\|^2}{N}$$

em que $\mathbf{c}_{i^*}(t)$ é o centroide mais próximo de $\mathbf{x}(t)$

RBF - Determinação do raio das funções de base

- Uma vez que os centros das funções de base tenham sido determinados, o passo seguinte é definir os raios (σ_i) das várias funções de base.
- Este parâmetro é de fundamental importância para o projeto da rede RBF.
- Se ele for muito alto, existe um elevado grau de superposição entre campos receptivos das funções de base. Isto pode levar a uma baixa precisão, ou seja, a rede generaliza demais.
- Se σ for muito pequeno a superposição deixa de existir, porém a precisão é elevada apenas para os casos em que $\mathbf{x}(t) \approx \mathbf{c}_i$. Neste caso a rede não generaliza bem.

69/177 Prof. Paulo Cirillo CCT, UNIFOR

RBF - Determinação do raio das funções de base

- Existem diversas técnicas para determinar σ_i , contudo, algumas amplamente utilizadas são:
 - **1** Um único raio utilizado por todos os neurônios, ou seja, $\sigma_i = \sigma$. Isso significa que todas as funções de base terão a mesma abertura. Neste caso, uma estratégia comum consiste em fazer σ igual a uma fração da maior distância entre os centros de todos os neurônios:

$$\sigma = \frac{d_{max}(\mathbf{c}_i, \mathbf{c}_j)}{\sqrt{2q}}, \quad \forall i \neq j$$

Em que
$$d_{max}(\mathbf{c}_i, \mathbf{c}_j) = \max_{\forall i \neq j} {\|\mathbf{c}_i - \mathbf{c}_j\|}.$$

RBF - Determinação do raio das funções de base

- Existem diversas técnicas para determinar σ_i , contudo, algumas amplamente utilizadas são:
 - ① Um único raio utilizado por todos os neurônios, ou seja, $\sigma_i = \sigma$. Isso significa que todas as funções de base terão a mesma abertura. Neste caso, uma estratégia comum consiste em fazer σ igual a uma fração da maior distância entre os centros de todos os neurônios:

$$\sigma = \frac{d_{max}(\mathbf{c}_i, \mathbf{c}_j)}{\sqrt{2q}}, \quad \forall i \neq j$$

Em que $d_{max}(\mathbf{c}_i, \mathbf{c}_i) = \max_{\forall i \neq i} {\|\mathbf{c}_i - \mathbf{c}_i\|}.$

2 Cada neurônio usa seu próprio valor de raio, que tem seu valor definido como metade da menor distância do neurônio *i* e o centro mais próximo.

$$\sigma_i = \frac{d_{min}(\mathbf{c}_i, \mathbf{c}_j)}{2}, \quad \forall i \neq j$$

Em que $d_{min}(\mathbf{c}_i, \mathbf{c}_i) = \min_{\forall i \neq i} {\|\mathbf{c}_i - \mathbf{c}_i\|}.$

RBF - Determinação do raio das funções de base

- Existem diversas técnicas para determinar σ_i , contudo, algumas amplamente utilizadas são:
 - 3 Uma variante do caso 2. O raio da *i*-ésima função de base é a distância média do centro desta base para os $K(1 \le K \ll q)$ centros mais próximos:

$$\sigma_i = \frac{\sum_{k=1}^K d(\mathbf{c}_i, \mathbf{c}_{i_k})}{N},$$

em que i_k é o índice do k-ésimo centro mais próximo de c_i .

RBF - Projeto da camada de saída

- Após a determinação dos centros e raios das funções de base da camada intermediária, a última etapa consiste em estimar a matriz de pesos.
- Nesta, pode-se utilizar uma regra de aprendizagem como por exemplo as utilizadas nos algoritmos do perceptron simples, LMS ou MLP.
- Entretanto, será exibido a estimação desta matriz através do método dos mínimos quadrados (MOO/OLS/LMO).
- Durante esta terceira etapa, os centros e raios calculados nas duas etapas anteriores não tem valores alterados.

CCT. UNIFOR Prof. Paulo Cirillo

RBF - Projeto da camada de saída (MQ)

- Para aplicar tal método, que estima a matriz de pesos na camada de saída, deve-se acumular todas as saídas dos neurônios **ocultos** em uma matriz **Z**. A ideia é que cada vetor de entrada $\mathbf{x}(t) \in \mathbb{R}^p$ seja transformado em um vetor de saída dos neurônios **ocultos** $\mathbf{z}(t) \in \mathbb{R}^q$.
- Portanto, após a aplicação do vetor de entrada na camada oculta, tem-se q saídas que podem ser representadas por um único vetor $\mathbf{z}(t) \in \mathbb{R}^{q+1}$.

$$\mathbf{z}(t) = egin{bmatrix} z_0(t) \ z_1(t) \ dots \ z_q(t) \end{bmatrix} = egin{bmatrix} +1 \ z_1(t) \ dots \ z_q(t) \end{bmatrix}$$

em que foi adicionado um valor constante igual a $z_0(t) = +1$.

RBF - Projeto da camada de saída (MQ)

• Para cada vetor de entrada $\mathbf{x}(t) \in \mathbb{R}^p, t = 1, \dots, N$, tem-se um vetor $\mathbf{z}(t)\mathbb{R}^{q+1}$ correspondente, que deve ser organizado como uma coluna de uma matriz \mathbf{Z} . Esta matriz organizada é $\mathbf{Z} \in \mathbb{R}^{[q+1] \times N}$:

$$\mathbf{Z} = \left[\mathbf{z}(1)|\mathbf{z}(2)|\cdots|\mathbf{z}(N)\right]$$

• Sabe-se que para cada vetor de entradas, tem-se um vetor de saídas desejadas $\mathbf{d}(t)$ correspondente. Pode-se organizar todos os N vetores desejados ao longo das colunas da matriz $\mathbf{D} \in \mathbb{R}^{m \times N}$:

$$\mathbf{D} = \left[\mathbf{d}(1) | \mathbf{d}(2) | \cdots | \mathbf{d}(N) \right]$$

RBF - Projeto da camada de saída (MQ)

- Pode-se entender o cálculo dos pesos na camada de saída como o cálculo dos parâmetros de um mapeamento linear entre a camada oculta e a de saída.
- O papel do vetor de "entrada" para a camada de saída na iteração t é desempenhado pelo vetor $\mathbf{z}(t)$, enquanto o vetor de saída é representado por $\mathbf{d}(t)$.
- Assim, busca-se estimar uma matriz W que melhor represente o mapeamento:

$$\mathbf{d}(\mathbf{t}) = \mathbf{W}\mathbf{z}(t)$$

Ou em sua versão matricial:

$$\mathbf{D} = \mathbf{WZ}$$

RBF - Projeto da camada de saída (MQ)

- Desta maneira, podemos utilizar o método dos mínimos quadrados já discutido nas nas notas de aula sobre os fundamentos da regressão linear e projeto do classificador linear de mínimos quadrados.
- Assim, usando as matrizes **Z** e **D**, a matriz **W** pode ser estimada através de:

76/177 Prof. Paulo Cirillo CCT, UNIFOR

RBF - Projeto da camada de saída (MQ)

- Desta maneira, podemos utilizar o método dos mínimos quadrados já discutido nas nas notas de aula sobre os fundamentos da regressão linear e projeto do classificador linear de mínimos quadrados.
- Assim, usando as matrizes **Z** e **D**, a matriz **W** pode ser estimada através de:

$$\mathbf{W} = \mathbf{D}\mathbf{Z}^T(\mathbf{Z}\mathbf{Z}^T)^{-1}$$

- É importante realizar alguns comentários sobre a matriz **W**:
- É importante ressaltar que para satisfazer a equação $\mathbf{d}(\mathbf{t}) = \mathbf{W}\mathbf{z}(t)$ é necessário que $\mathbf{W} \in \mathbb{R}^{m \times [q+1]}$
- A k-ésima linha da matriz **W**, corresponde ao vetor de pesos do k-ésimo neurônio de saída.

RBF - Considerações finais

- Por se tratar de uma rede com aprendizado supervisionado, a rede RBF é aplicada aos mesmos problemas da rede MLP.
- A rede RBF pode ser entendida como um modelo matemático que realiza aproximação de funções através da combinação linear de funções de base gaussiana.
- Para ser usada como classificador de padrões, a codificação dos vetores de saída desejadas segue a mesma lógica daquela utilizada para a rede MLP. Ou seja, o número de neurônios na camada de saída é igual ao número de classes, exceto para o caso em que se tem apenas duas classes. Para este caso, necessita-se apenas de um neurônio de saída.
- Durante o treinamento, a saída desejada do neurônio associado à classe do vetor de entrada atual deve ser igual a 1, enquanto as saídas desejadas para outros neurônios deverão ser iguais a 0 (ou -1).
- Durante a fase de teste, o vetor de entrada(cuja classe é desconhecida), será associado à classe representada pelo neurônio que gerar maior valor para $y_k(t)$.

Prof. Paulo Cirillo CCT. UNIFOR