

主讲人: 李全龙

本讲主题

802.11无线局域网简介(1)

IEEE 802.11无线局域网

802.11b

- ❖ 2.4-2.5GHz免费频段 (unlicensed spectrum)
- ❖ 最高速率: 11 Mbps
- ❖ 物理层采用直接序列扩频 (DSSS)技术
 - 所有主机使用相同的码 片序列

802.11a

- 5-6 GHz频段
- 最高速率: 54 Mbps

802.11g

- 2.4-2.5 GHz频段
- 最高速率: 54 Mbps

802.11n: 多天线(MIMO)

- 2.4-2.5 GHz频段
- 最高速率: 600 Mbps

- ❖ 均使用CSMA/CA多路访问控制协议
- ❖ 均有基础设施(基站)网络模式和特定网(自组网)网络模式

IEEE 802.11无线局域网

标准	频段	数据速率	物理层	优缺点	
802.11b	2.4 GHz	最高11 Mb/s	扩频	最高数据率较低,价格最低, 信号传播距离最远,且不易受阻碍	
802.11a	5 GHz	最高54 Mb/s	OFDM	最高数据率较高,支持更多用户同时上网,价格最高,信号传播距离较短,且易受阻	
802.11g	2.4 GHz	最高54 Mb/s	OFDM	最高数据率较高,支持更多用户同时上网,信号传播距离最远,且不易受阻,价格比 802.11b 贵	
802.11n	2.4 GHz 5 GHz	最高600 Mb/s	MIMO OFDM	使用多个发射和接收天线以允许更高的数据传输率,当使用双倍带宽(40 MHz)时速率可达600 Mb/s	

IEEE 802.11体系结构

- * 无线主机与基站通信
 - 基站(base station) = 访问 点(access point-AP)
- ❖ 基本服务集BSS(Basic Service Set), 也称为单 元(cell)
 - 基础设施网络模式:
 - 无线主机
 - AP: 基站
 - 自组网(ad hoc)模式:
 - 只有主机

802.11: 信道与AP关联

- ❖802.11b: 2.4GHz-2.485GHz频谱划分为11个不同 频率的信道
 - 每个AP选择一个频率(信道)
 - 存在干扰可能: 相邻的AP可能选择相同的信道!
- ❖主机: 必须与某个AP关联(associate)
 - 扫描信道, 监听包含AP名称(服务集标识符-SSID)和 MAC地址的信标(beacon)帧
 - 选择一个AP进行关联
 - 可能需要进行身份认证
 - 典型情形:运行DHCP获取IP地址等信息

802.11AP关联:被动扫描与主动扫描

被动扫描(scanning):

- ❖ 各AP发送信标帧
- ❖ 主机(H1)向选择的AP发送关联 请求帧
- ❖ AP向主机(H1)发送关联响应帧

主动扫描:

- ❖ 主机(H1)主动广播探测请求帧 (Probe Request Frame)
- ❖ AP发送探测响应帧(Probe Response Frame)
- ❖ 主机(H1)向选择的AP发送关联 请求帧
- ❖ AP向主机(H1)发送关联响应帧

主讲人: 李全龙

本讲主题

802.11无线局域网简介(2)

802.11: 多路访问控制

- ❖ 避免冲突: 2+结点同时传输
- * 802.11: CSMA 发送数据前监听信道
 - 避免与正在进行传输的其他结点冲突
- ❖ 802.11: 不能像CSMA/CD那样, 边发送、边检测冲突!
 - 无线信道很难实现
 - 无法侦听到所有可能的冲突: 隐藏站、信号衰落
 - 目标: 避免冲突(avoid collisions)-CSMA/C(ollision)A(voidance)

IEEE 802.11 MAC协议: CSMA/CA

802.11 sender

- 1 if 监听到信道空闲了**DIFS时间** then 发送整个帧(无同时检测冲突,即CD)
- 2 if 监听到信道忙 then

开始随机退避计时

当信道空闲时, 计时器倒计时

当计时器超时时, 发送帧

if 没有收到ACK then

增加随机退避间隔时间

重复第2步

802.11 receiver

- if 正确接收帧

延迟SIFS时间后,向发送端发送ACK (由于存在隐藏站问题)

IEEE 802.11 MAC协议: CSMA/CA

基本思想:允许发送端"预约"(reserve)信道,而不是随机发送数据帧,从而避免长数据帧的冲突

- ❖ 发送端首先利用CSMA向BS发送一个很短的RTS (request-to-send)帧
 - RTS帧仍然可能彼此冲突 (但RTS帧很短)
- ❖ BS广播一个CTS(clear-to-send)帧作为对RTS的响应
- * CTS帧可以被所有结点接收
 - 消除隐藏站影响
 - 发送端可以发送数据帧
 - 其他结点推迟发送

利用很小的预约帧彻底避免了数据帧冲突!

冲突避免(CA): RTS-CTS交换

IEEE 802.11 MAC帧

IEEE 802.11数据帧地址

- ❖802.11数据帧有4个地址字段
- ❖地址 4 用于自组网络
- ❖地址1~地址3:

去往 AP (To AP)	来自 AP (From AP)	地址 1	地址 2	地址 3
0	1	目的地址	AP 地址	源地址
1	0	AP地址	源地址	目的地址

IEEE 802.11数据帧地址

