PHUS 230 Horonar Ser 13 Journous

FOR A OMPOD, OLDER HAXMONIC OSCILLARD, THE THE DEPENDENCE OF THE PISPLANDED

13 GIVAN BY ...

$$A(\omega) = \frac{f_0 Im}{\sqrt{(\omega_0^2 - \omega^2)^2 + \omega^2 \delta^2}} : ton \delta = \frac{\omega \delta}{\omega_0^2 - \omega^2}$$

THE NATURA PROGRAMMENT OF THE BPLING WAS FOUND TO BE ...

THE CRITICAL VALUE OF THE DAYING PAREMOTOR WE LOWD TO BE.,

SO ONE PANTING PARMEDLA HOLE IS

0) IN OLAS, WE FOUND A FORMULA FOR THE FREDVINION THAT GIES RISE TO A MAXIMUM AMERICA, WHAR, OF

b) The MAXIMUM AVERDE 15 GIVE 31..

$$A(\omega_{\text{MAX}}) = A_{\text{MX}} = \frac{f_0 \omega_0 \left(1 - 8/4 \omega_0^2\right)^{-1/2}}{R 8} = \frac{(2.50 \text{ N}) (9.15 \text{ and } 5)}{(46.0 \text{ N/m}) (2.295^{-1})} \left(1 - (2.195)/4 (9.15 \text{ and } 5)^2\right)^{-1/2}}{(46.0 \text{ N/m}) (2.295^{-1})}$$

$$A_{\text{MX}} = 0.219 \text{ M}$$

c)
$$Q = \frac{\omega_0}{8} = \frac{9.15 \, \text{Raols}}{2.195} = 4.00$$

d)
$$A(\omega)$$
: 2.50N/0.550 Mg = $\frac{4.545 \text{ m/s}^2}{\sqrt{(9.154N/s)^2 - (211 \text{ RNO/s})^2 + (211 \text{ RNO/s})^2(2.295')^2}} = \frac{4.545 \text{ m/s}^2}{\sqrt{19585^2 + 207.05^4}}$

e)
$$\delta = tan \left(\frac{(2\pi Rapl_5)(2.295^{-1})}{(9.15 \pi Rapl_5)^2 - (2\pi Rapl_5)^2} \right) = tan \left(0.325 \right) = 18.0^{\circ}$$

so , in samuel ...

$$x(t) = A(w) \cos(wt - \delta)$$
 where $A(w) = 0.0977 m^{2}$:
 $\delta = 18.0^{\circ}$

2.
$$x(t) = A(\omega)\cos(\omega t - \delta) + Be^{-\delta t/2}\cos(\omega_1 t + \phi)$$

$$=\sqrt{(9.15 \, \text{RANS})^2 - (2.295 \, \frac{1}{2})^2} = 9.08 \, \text{RANS}$$

WIN IN MA CONDITIONS ...

$$x(t=0) = +0.0550m$$

$$\frac{-84}{4} \left[\frac{1}{4} \left(\frac{1}{4} \left(\frac{1}{4} \right) \cos \left(\frac{1}{4} + \frac{1}{4} \right) \right) + \frac{1}{4} \left(\frac{1}{4} \cos \left(\frac{1}{4} + \frac{1}{4} \right) \right) \right] \\ = -\omega \frac{1}{4} \left[\frac{1}{4} \left(\frac{1}{4} \cos \left(\frac{1}{4} + \frac{1}{4} \right) + \frac{1}{4} \cos \left(\frac{1}{4} + \frac{1}{4} \right) \right) \right] \\ = -\omega \frac{1}{4} \left[\frac{1}{4} \cos \left(\frac{1}{4} + \frac{1}{4} \right) + \frac{1}{4} \cos \left(\frac{1}{4} + \frac{1}{4} \right) \right]$$

$$= -\omega A(\omega) \sin(\omega t - \delta) - B e^{-8t/2} \left[\frac{\chi}{2} \cos(\omega_1 t + \phi) + \omega_1 \sin(\omega_1 t + \phi) \right]$$

$$= -\omega A(\omega) \sin(\omega t - \delta) - B e^{-8t/2} \left[\frac{\chi}{2} \cos(\omega_1 t + \phi) + \omega_1 \sin(\omega_1 t + \phi) \right]$$

b) HOWING THE KEST INTIA CONDITION ...

$$\chi(t=0) = A(\omega)\cos(-\delta) + B\cos(\phi) = + 0.0550m$$

$$= A(\omega)\cos(-\delta) + B\cos(\phi) = + 0.0550m$$

$$= (0.0977m)\cos(-18.0^{\circ}) + B\cos(\phi) = 0.0929m + B\cos(\phi) = +0.0550m$$

$$\int \beta \cos(\phi) = -0.0379 \text{m}$$

*) x(t=05) = - wA(w)SIN(-8) - 3/2 cos(+) + w, SIN(+)] = +0.450m/5

$$=-\left(2N(RAD/5)\left(0.0977m\right)SIN\left(-18.0^{\circ}\right)-B\left(\frac{2.295}{2}\right)\cos\left(\frac{4}{7}\right)+\left(\frac{9.08}{2}\pi M/5\right)SIN\left(\frac{4}{7}\right)\right)$$

$$= 0.190 \text{m/s} - B/(1.155^{-1})\cos\phi + (9.085^{-1})\sin\phi] = + 0.450 \text{m/s}$$

$$B[(1.155')\cos(\phi) + (9.085')\sin(\phi)] = -0.260 \text{ m/s}$$

SO IN SUMMARM ...

May (.

$$-0.0379m \left[(1.155') \cos \phi + (9.085') 511 \phi \right] = -0.260m/5$$

$$1.155^{-1} + (9.085^{-1}) ton = 6.865^{-1}$$

$$ton \phi = 0.629$$
 : $\phi = 32.2°$

MJ 41205. .

$$\beta = -\frac{0.0379m}{\cos(32.2^\circ)} = -0.0448m$$

CHECK: PLUGGING ONE REMUS INTO THE LESS HAND SLOE OF (4) 410-D7.

CHECK:
$$fungging one results$$
 $(0.0977m) cos(-18.0°) + (-0.0448m) cos(32.2°)$
 $(0.0977m) cos(-18.0°) + (-0.0448m) cos(32.2°)$

WN PURGENG ON KESYLVTS INTO THE LHS OF (++) YIROS ...

		$(t+\phi)$ x_1+x_2	09359 0.055008871		86191 0.075312454	36754 0.081991668	20318 0.08576569	86953 0.086333933	51048 0.083531417	99755 0.077339725	38073 0.067891009	58862 0.055464855	48443 0.040478186	87164 0.023468702	45156 0.005072662	73788 -0.014001927	0.02479348 -0.033005457	78691 -0.051178799	41015 -0.067785848	11326 -0.08214507	21945 -0.093658649
		$x_2=B^*exp(-\gamma t/2)^*cos(\omega_1 t+\phi)$	-0.037909359	-0.030673366	-0.022286191	-0.013236754	-0.004020318	0.004886953	0.013051048	0.020099755	0.025738073	0.029758862	0.032048443	0.032587164	0.031445156	0.028773788	0.024	0.019778691	0.014041015	0.007911326	0.001721945
m 1/s 1/s m	rad 1/s	$x_1=A^*\cos(\omega t-\delta)$	0.09291823	0.09682021	0.097598645	0.095228422	0.089786007	0.08144698	0.070480369	0.05723997	0.042152936	0.025705993	0.008429743	-0.009118462	-0.026372494	-0.042775715	-0.057798937	-0.07095749	-0.081826863	-0.090056396	-0.095380594
0.0977 m 9.15 1/ 2.29 1/ 6.2832 1/ 0.31416	0.562 rad 9.08 1/s	yt/2	0	0.02863	0.05725	0.08588	0.1145	0.14313	0.17175	0.20038	0.229	0.25763	0.28625	0.31488	0.3435	0.37213	0.40075	0.42938	0.458	0.48663	0.51525
Α = 8 Β = 8 Β = 8	φ = ω ₁ =	t(s)	0	0.025	0.02	0.075	0.1	0.125	0.15	0.175	0.2	0.225	0.25	0.275	0.3	0.325	0.35	0.375	0.4	0.425	0.45

:. 4.
$$2(x,t) = (0.2lm) \sin((0.36m^{-1})x + (0.525^{-1})t)$$

= $4 \sin(hx + \omega t)$

$$h = (0.30 \, \text{m}^{-1}) = 2\pi / 2$$
 50 $\lambda = \frac{2\pi}{(0.30 \, \text{m}^{-1})} = 17 \, \text{m}$ - Nt who and six

$$\frac{\partial^2}{\partial x} = h A \cos(hx + \omega t)$$

$$\frac{\partial^2}{\partial t} = \omega A \cos(hx + \omega t)$$

$$\frac{\partial z}{\partial x} = \frac{\pi}{h} \frac{\partial s}{\partial t} (hx + \omega t)$$

$$\frac{\partial^2 z}{\partial x^2} = -h^2 A s \ln(hx + \omega t)$$

$$\frac{\partial^2 z}{\partial t} = -\omega^2 A s \ln(hx + \omega t)$$

THE WARE OON 15 of THE KOLH ..

$$\frac{\partial^2 z}{\partial x} = \frac{1}{\sqrt{2}} \frac{\partial^2}{\partial t} = \frac{1$$

$$-h^2 A \sin(hx+wt) = \frac{1}{2} \cdot -w^2 A \cdot \sin(hx+wt)$$

$$h^2 = \frac{\omega^2}{\sqrt{2}} : ... \quad \forall i \neq j$$

DZ = WA COS (AX+W) WHICH HAS A MIXIMUM VALUE WHON COS (AX+W) = 2

$$\left(\frac{\partial z}{\partial t}\right) = \omega A = (0.525^{-1})(0.21m) = 0.11m/s$$

$$\frac{\partial^2 z}{\partial t^2} = -\omega^2 A \sin(kx + \omega t) \text{ which Has A HAXIMMI VALUE or } \left(\frac{\partial^2 z}{\partial t^2}\right) = \omega^2 A = (0.525')^2 (0.2m)$$