Layerwise Relevance Propagation

For Neural Nets with Local Renormalization Layer

Structure of the talk:

- What? Explainability
- Why?
 - Previous methods Sensitivity.
 - Issues
 - New Idea?
- How? Layer Wise Relevance Propagation.
 - Intuition
 - Setup
 - Hurdle Non Linearity
 - Solution Taylor Decomposition
 - Deep Taylor Decomposition
- A special case:
 - LRP for Layer Normalization.
 - Experiments for LRP with Layer Normalization.

The WHAT: Explainability

"Why is a given image classified as a sheep?"

Previous Approach: Sensitivity

Sensitivity analysis:

$$R_i = \left(\frac{\partial f}{\partial x_i}\right)^2$$

Previous Approach: Sensitivity, cont.

Sensitivity analysis:

$$R_i = \left(\frac{\partial f}{\partial x_i}\right)^2$$

Problem: sensitivity analysis does not highlight cars

Input gradient (on which sensitivity analysis is based), becomes increasingly highly varying and unreliable with neural network depth.

New Idea:

Propagate from backwards?

Cue: LRP

Layer Wise Relevance Propagation

Forward Training

Relevance Backprop

where $R^{(L,L+1)}_{i < -j}$ = Message sent to neuron i at layer (L) by neuron j at layer (L+1)

Explaining Neural Network Predictions

Explaining Neural Network Predictions

Theoretical interpretation
Deep Taylor Decomposition

$$r_i = \frac{x_i}{\sum_i \sum_i x_i w_{ij}} = \frac{x_i}{\sum_i x_i w_{ij}} = \frac{x_i}{\sum_$$

 r_i depends on the activations **and** the weights

Explaining Neural Network Predictions

Relevance Conservation Property

$$\sum_{p} r_{p} = \ldots = \sum_{i} r_{i} = \sum_{j} r_{j} = \ldots = f(x)$$

General Framework of LRP for neural nets

The general framework of LRP is to find $\mathbf{V_{ij}}$ which intuitively make sense

$$R_{i \leftarrow j}^{(l,l+1)} = v_{ij} R_j^{(l+1)}$$
 with $\sum_i v_{ij} = 1$

- 1. Linear network: V_{ii} can be directly proportional to the activation.
- Non linear function like ReLU and tanh:
 Due to monotonicity of ReLU and tanh pre-activation inputs (weight * inputs) still makes sense

$$R_{i \leftarrow j}^{(l,l+1)} = \frac{z_{ij}}{z_j + \epsilon \cdot \operatorname{sign}(z_j)} R_j^{(l+1)} \qquad \qquad R_{i \leftarrow j}^{(l,l+1)} = \left((1+\beta) \frac{z_{ij}^+}{z_j^+} - \beta \frac{z_{ij}^-}{z_j^-} \right) R_j^{(l+1)}$$

Deep Taylor Decomposition / LRP

$$R_{j} = \sum_{k} \left(\alpha \frac{a_{j} w_{jk}^{+}}{\sum_{j} a_{j} w_{jk}^{+}} - \beta \frac{a_{j} w_{jk}^{-}}{\sum_{j} a_{j} w_{jk}^{-}} \right) R_{k}$$

Relevance should be redistributed to the lower-layer neurons $(a_j)_j$ in proportion to their excitatory effect on a_k . "Counter-relevance" should be redistributed to the lower-layer neurons $(a_j)_j$ in proportion to their inhibitory effect on a_k .

analysis [Montavon'17]

For the specific case $\alpha=1$, the whole LRP procedure can be seen as a *deep Taylor decomposition* of the neural network function.

Deep Taylor Decomposition / LRP

Simple Taylor

Deep Taylor

Taylor Expansion for like ReLU and tanh- Root Points

$$f(x) \approx f(x_0) + Df(x_0)[x - x_0]$$

$$= f(x_0) + \sum_{d=1}^{V} \frac{\partial f}{\partial x_{(d)}}(x_0)(x_{(d)} - x_{0(d)})$$

$$f(x) \approx \sum_{d=1}^{V} \frac{\partial f}{\partial x_{(d)}}(x_0)(x_{(d)} - x_{0(d)})$$
 such that $f(x_0) = 0$

Local Renormalization Layers in Neural Nets

Until Now: A Taylor-based approach was used in for decomposing ReLU neurons by exploiting their local linearity.

This Paper: The paper considers how to deal with a special class of non-linear neurons known for local renormalization i.e. calculate v_ij (distributing relevance)

$$R_{i \leftarrow j}^{(l,l+1)} = v_{ij} R_j^{(l+1)}$$
 with $\sum_i v_{ij} = 1$

Where the non linearity is renormalization and described by

$$y_k(x_1, \dots, x_n) = \frac{x_k}{(1 + b \sum_{i=1}^n x_i^2)^c}$$

Non Linearity to Linearity - Taylor Series

For a nonlinear function y_{k} :

$$\frac{\partial y_k}{\partial x_j} = \frac{\delta_{kj}}{(1 + b\sum_{i=1}^n x_i^2)^c} - 2bc \frac{x_k x_j}{(1 + b\sum_{i=1}^n x_i^2)^{c+1}}$$

Choice of root point?

•
$$Z = (0, 0, 0, \dots, x_k, \dots, 0)$$
 - No off diagonal contributions

Therefore we choose this

•
$$Z = (x_1, x_2, \dots x_n)$$

Taylor series for Batch Renormalization

$$y_k(z_1) \approx \frac{x_k}{(1+bx_k^2)^c} - 2bc \sum_{j:j\neq k} \frac{x_k x_j^2}{(1+b\sum_{i=1}^n x_i^2)^{c+1}}$$

Qualitative Checks on Approximation:

- The sign of relevance is preserved for x_k
- 2. For suppressing neurons, their relevance can be flipped with the x_i^2 term
- 3. In the limit of constant normalization, the identity is recovered

Experiment: MNIST

Experiment: Pixel Flipping

Observation

- Randomly assigning most relevant pixels leads to highest rate of decay
- Randomly assigning least relevant pixels lead to lowest rate of decay

Conclusion: Meaningful pixel-wise decomposition

Experiment: Non Linear vs Linear Neurons

rule for basic layers	rule for normalization layers	AUC score
eq. $4,5, \epsilon = 0.01$	identity	37.10
eq. $4,5, \epsilon = 0.01$	first-order Taylor	35.47
eq. 4,6, $\beta = 1$	identity	56.13
eq. 4,6, $\beta = 1$	first-order Taylor	53.82

$$R_{i \leftarrow j}^{(l,l+1)} = \frac{z_{ij}}{z_j + \epsilon \cdot \operatorname{sign}(z_j)} R_j^{(l+1)} \qquad \qquad R_{i \leftarrow j}^{(l,l+1)} = \left((1+\beta) \frac{z_{ij}^+}{z_j^+} - \beta \frac{z_{ij}^-}{z_j^-} \right) R_j^{(l+1)}$$

Observations

- Lower AUC represents lower accuracy after perturbing highest relevant pixels first implying lower AUC is better
- In both realizations of messages, the non linear renormalization using first order Taylor series performs better

Experiment: Taylor vs No Taylor

dataset	methods	$\Delta_{\epsilon=1}^{\epsilon=0.01}$	$\Delta_{\epsilon=0.01}^{\epsilon=100}$	$\Delta_{\epsilon=1}^{eta=1}$	$\Delta_{\beta=1}^{\beta=0}$
Imagenet	identity	-21.29	2.75	-42.61	-49.07
	Taylor	-12.29	-41.75	-34.44	-50.76
MIT Places	identity	-20.19	12.91	-14.55	-49.37
	Taylor	-11.65	-22.55	-8.82	-48.7

dataset	methods	$\epsilon=1$	$\epsilon = 0.01$	$\epsilon = 100$	$\beta = 1$	$\beta = 0$
Imagenet	$\mathrm{AUC}_{\mathrm{Taylor}} - \mathrm{AUC}_{\mathrm{identity}}$	-35.84	-26.84	8.47	0.29	1.98
MIT Places	$\mathrm{AUC}_{\mathrm{Taylor}} - \mathrm{AUC}_{\mathrm{identity}}$	-33.13	-24.59	5.34	-0.39	-1.06

Observations

 Taylor approximations for local renormalization have the best results searching over a range of parameters for both Imagenet and MIT Places

Resources

 Initial Paper: <u>https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0130140</u>

2. Deep Taylor Decomposition: http://www.heatmapping.org/deeptaylor/

3. http://www.heatmapping.org/ (Knowledge Hub LRP)

4. Demo: https://lrpserver.hhi.fraunhofer.de/image-classification