Dpto. de Matemáticas. CÁLCULO NUMÉRICO. Curso 19/20

Problemas. Hoja 4

Problema 1. El método o algoritmo de Horner para evaluar en x_0 el polinomio $P(x) = a_0 + a_1x + \cdots + a_Nx^N$ consiste formalmente en las siguientes operaciones:

$$q_{N-1} = a_N,$$

 $q_{N-i-1} = q_{N-i}x_0 + a_{N-i}, i = 1, \dots, N,$
 $P(x_0) = q_{-1}.$

Escriba el algoritmo para N=4 y calcule el número de operaciones que realiza.

Problema 2. Use el algoritmo de Horner para evaluar $Q(x) = -12 - x^2 - 4x^3 + x^4 + x^5$ en $x_0 = \pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12$. ¿Cuáles son las soluciones enteras de la ecuación Q(x) = 0?

Problema 3. Demuestre que con el algoritmo de Horner se obtiene el resto de la división de P(x) entre $x-x_0$ así como los coeficientes del polinomio cociente de la división.

Problema 4. Dado el polinomio $P(x) = a_0 + a_1x + \cdots + a_Nx^N$ halle los b_i de modo que $P(x) = b_0 + b_1(x - x_0) + \cdots + b_N(x - x_0)^N$ para x_0 dado. Escriba $1 + x + (1/2)x^2 + (1/6)x^3$ en potencias de x - 1.

Problema 5. Escriba en potencias de $x-x_0$ un polinomio cuyos coeficientes en potencias de $x-x_1$ se conocen. Escriba en potencias de x-2 el polinomio $1-2(x-1)+3(x-1)^2+(1/2)(x-1)^3$.

Problema 6. Escriba para la función $f(x) = \int_0^x e^{-s^2} ds$ los polinomios de Taylor en x = 0 para N = 0, 1, 2, 3, 4, 5 y 6. ¿Son todos distintos?

Problema 7. Calcule los polinomios de Taylor de grado menor o igual que N en $x_0 = 0$ de las funciones e^x , $\sin(x)$, $\cos(x)$, 1/(1+x) y $\log(1+x)$.

Problema 8. Calcule los polinomios de Taylor en $x_0 = 0$ de la función e^{-x^2} usando las expresiones que obtuvo en el problema anterior para e^x . Utilice los polinomios de Taylor de e^{-x^2} para obtener los de $f(x) = \int_0^x e^{-s^2} ds$.

Problema 9. Escriba el polinomio de Taylor de grado 2 de e^x en $x_0 = 0$. Pase el polinomio a potencias de x - 1. Calcule el polinomio de Taylor de grados 2 de e^x en $x_0 = 1$. ¿Coinciden los resultados?

Problema 10. Si en el problema de Taylor la función es ella misma un polinomio de grado menor o igual que N, ¿qué polinomio de Taylor se obtiene al interpolarla?

Problema 11. Demuestre que si un polinomio se escribe en potencias de $x - x_0$ los coeficientes correspondientes son las derivadas sucesivas del polinomio evaluadas en x_0 divididas por los factoriales. Explique cómo usar el algoritmo de Horner para evaluar en un punto x_0 un polinomio dado y sus derivadas hasta la m-ésima.

Problema 12. Si en el problema de Taylor el polinomio que coincide con la función y sus derivadas hasta la N-ésima en el punto x_0 se buscase de grado menor o igual que N+1 la solución existiría pero ya no sería única. Encuentre todos los polinomios que resuelven el problema.

Problema 13. Demuestre que un polinomio es par, respectivamente impar, si y sólo si, al escribirlo en potencias de x sólo contiene potencias pares, repectivamente impares. ¿Qué se puede decir de al derivada de una función par o impar? Demuestre que el polinomio de Taylor de grado menor o igual que N en $x_0 = 0$ de una función par, respectivamente impar, es par, respectivamente impar. Estudie a continuación el caso $x_0 \neq 0$.

Problema 14. Para la función $f(x) = x^3 \sqrt{|x|}$ halle todos los polinomios de Taylor en $x_0 = 0$ que existan. Compruebe que se verifica que $f - P = o((x-x_0)^N)$ cuando $x \to x_0$ siendo P el polinomio de Taylor de grado menor o igual que N en x_0 .

Problema 15. Pruebe que si un polinomio P tiene grado menor o igual que N y es tal que $P = o((x-x_0)^N)$ cuando $x \to x_0$, entonces P es idénticamente nulo.

Problema 16. Para la función $f(x) = \int_0^x e^{-s^2} ds$ y cuando $x \to 0$ encuentre todos los polinomios Q de grado menor o igual que 3 tales que f - Q = o(1). Idem f - Q = o(x). Idem f - Q = o(x).

Problema 17. Utilice el polinomio de Taylor para aproximar el valor de la función $\sin(x)$ en $x = \pi/4$. ¿Qué valor de N hay que tomar para conseguir un error menor que 5×10^{-7} ?

Problema 18. Sean a y b números reales positivos con b < a. La fórmula

$$\sqrt{a+b} \approx \sqrt{a} + \frac{b}{2\sqrt{a}}$$

se utiliza para aproximar el valor de la raiz cuadrada. Pruebe que dicha fórmula equivale a usar el polinomio de Taylor de grado 1 de la función \sqrt{x} en $x_0 = a$ y evaluarlo en x = a + b. Demuestre que la aproximación dada por esta fórmula es siempre por exceso. Dé una cota del error absoluto y otra del error relativo que se cometen al usar la fórmula.

Problema 19. Demuestre la fórmula integral del error del polinomio de Taylor integrando por partes reiteradamente:

$$f(x) - P(x) = \frac{1}{N!} \int_{x_0}^x (x - s)^N f^{(N+1)}(s) ds.$$

Problema 20. El peso específico p del agua a diversas temperaturas centígradas t es como sigue:

t	p
0	0.999871
1	0.999928
2	0.999969
3	0.999991

Aproxime el valor en t=4 usando la forma de Lagrange e interpolación lineal en las abscisas 2 y 3; cuadrática en las abscisas 1, 2 y 3; cúbica en las abscisas 0, 1, 2 y 3.

Problema 21. Dado un problema de interpolación de Lagrange pruebe que los correspondientes l_i forman una base del espacio vectorial de los polinomios de grado menor o igual que N.

Problema 22. Sin efectuar ningún cálculo pruebe que los $l_i(x)$ suman 1. Pruebe a continuación que $x_0l_0(x)+x_1l_1(x)+\cdots+x_Nl_N(x)\equiv x$. Generalice.

Problema 23. Pruebe que

$$l_i(x) = \frac{W(x)}{(x - x_i)W'(x_i)}$$

donde $W(x) = (x - x_0) \cdots (x - x_N)$.

Problema 24. Si en el problema de interpolación de Langrange: encontrar P(x) tal que $P(x_i) = f(x_i)$ para $i = 0, \dots, N$; el polinomio P(x) se buscase

de grado menor o igual que N+1 la solución ya no sería única. Escriba todos los polinomios de grado menor o igual que N+1 que son solución del problema.

Problema 25. Resuelva el problema 20 usando la forma de Newton.

Problema 26. Pruebe, usando la definición, que si f es un polinomio de grado menor o igual que N entonces cualquier diferencia dividida de f de orden mayor o igual que N+1 es nula.

Problema 27. Formule un algoritmo tipo Horner para evaluar los polinomios interpoladores escritos en la forma de Newton.

Problema 28. Pruebe que el polinomio interpolador en forma de Lagrange puede escribirse en la forma

$$P(x) = W(x) \left[\frac{F_0}{x - x_0} + \dots + \frac{F_N}{x - x_N} \right],$$

donde $W(x)=(x-x_0)\cdots(x-x_N)$ y las F_i son constantes. Reescrito de esta forma el polinomio se evalúa con 2N+1 sumas/restas, N+1 multiplicaciones y N+1 divisiones.

Problema 29. Pruebe que si la función f = gh entonces

$$f[x_0, \dots, x_N] = g[x_0]h[x_0, \dots, x_N] + g[x_0, x_1]h[x_1, \dots, x_N] + \dots + g[x_0, \dots, x_N]h[x_N].$$

Problema 30. Se va a tabular la función seno (con el argumento medido en grados) en abscisas equiespaciadas para luego efectuar interpolación lineal entre los nodos inmediatamente inferior y superior al ángulo deseado. Si se desean errores menores que 5×10^{-6} ¿bastará tabular de grado en grado? ¿Y de medio grado en medio grado?

Problema 31. Se interpola la función e^x en N+1 puntos dos a dos distintos cualesquiera del intervalo [a,b]. Pruebe que al hacer $N \to \infty$ la sucesión de los polinomios de interpolación converge a e^x para cada $x \in [a,b]$ y que la convergencia es uniforme.

Problema 32. Pruebe que el espacio $M_0^1(\Delta)$ de las funciones continuas y lineales a trozos sobre la partición Δ es un espacio vectorial. Pruebe que

es de dimensión N+1. Para $i=0,\dots,N$ denote por $L_i(x)$ la función de $M_0^1(\Delta)$ que vale 1 en el nodo x_i y 0 en el resto de nodos de la partición. Dibuje las gráficas de las funciones y explique por qué se llaman funciones sombrero. Demuestre que las N+1 $L_i(x)$ constituyen una base de $M_0^1(\Delta)$. Demuestre que dada una función f su interpolante lineal a trozos es

$$f(x_0)L_0(x) + \cdots + f(x_N)L_N(x)$$
.

Problema 33. Dada una partición Δ con N intervalos se eligen N ecuaciones $y = a_i + b_i x + c_i x^2$. ¿Existe necesariamente un elemento de $M_0^2(\Delta)$ cuya restricción al i-ésimo intervalo sea $y = a_i + b_i x + c_i x^2$?

Problema 34. Pruebe que $M_0^2(\Delta)$ es un espacio vectorial. Pruebe que es de dimensión 2N+1. Para cada $i=0,\cdots,N$ denote por $Q_i(x)$ la función de $M_0^2(\Delta)$ que toma el valor 1 en x_i y se anula en los restantes nodos de la partición así como en los puntos medios. Para cada $i=1,\cdots,N$ denote por $Q_{i-1/2}(x)$ a la función de $M_0^2(\Delta)$ que se anula en los nodos x_i , vale 1 en $x_{i-1/2}$ y se anula en los restantes puntos medios de los intervalos. Demuestre que las 2N+1 funciones construidas constituyen una base del espacio $M_0^2(\Delta)$. Demuestre que para cada función f su interpolante cuadrático a trozos es

$$f(x_0)Q_0(x) + f(x_{1/2})Q_{1/2}(x) + f(x_1)Q_1(x) + \cdots + f(x_N)Q_N(x).$$

Problema 35. Suponga que desconoce los valores de f' en a y en b pero conoce los de f''. Demuestre que dada una partición hay un único spline cúbico H que coindice con f en cada nodo y que además verifica f'' = H'' en x = a, b. Suponga que no dispone ni de f' ni de f'' en los extremos del intervalo. Pruebe que hay un único spline cúbico que coincide con la función en los nodos y que tiene derivada tercera continua en x_1 y x_{N-1} .