

ECE 8890 Neural Network Final Project

Ensemble Generative Adversarial Networks for Anomaly Detection

Wenlong Wu

Advisor: Derek Anderson, James Keller University of Missouri May 2019

Overview and Motivation

Generative Adversarial Network (**GAN**) is a powerful framework to learn generative model and has been achieved a great success on image generation, image super-resolution and etc.

However, the GAN algorithm is mostly used on image datasets to learn the distribution of images nowadays [1]. Few research has been done on structure / tabular data to model the high-dimensional data distribution.

In this project, the GAN is used to **model data distribution on structure/tabular data** and to **detect potential outliers** that is out of data distribution.

Which image do you think is REAL?

- Two networks competing with each other.
- **Discriminator** D tries to distinguish between real samples and samples generated by **Generator** G.
- G tries to "fool" D.
- G will learn to generate samples similar to real data.

D and G plays two-player minimax game with value function V(G, D): $\min_{G} \max_{D} V(G, D) = E_{x \sim p_{data}} [\log D(x)] + E_{x \sim p_{z}(z)} [\log (1 - D(G(z)))]$

Methodology: Ensemble GAN

Fuzzy integral ensemble?

Experiments: model data distributions

Experiments: trajectory analysis

	Ensemble GAN			GMM		
DATASET	Precision	Recall	F1	Precision	Recall	F1
Gaussian	0.92	0.95	0.94	1.00	1.00	1.00
Jain	0.84	0.80	0.82	0.70	0.90	0.78
Pathbased	0.83	0.80	0.82	0.82	0.70	0.76
Flame	0.76	0.70	0.73	0.68	0.60	0.64

Trajectory 1:

-- Goes from cluster center to outside;

Trajectory 2:

-- Goes from one cluster to another cluster.

Summary and Future Work

- GAN has the ability to model data distribution:
 - Generator G learns to generate samples similar to real data
 - Discriminator D learns to distinguish between real and fake data
- Ensemble GAN performs better at modeling data distribution than the single GAN and the GMM;
- Ensemble GAN can serve as a base model for anomaly detection.
- Fuzzy integral ensemble can be used in the future;
- Ensemble GAN can be developed in data stream processing mode.

References

- [1] Brock, Andrew, Jeff Donahue, and Karen Simonyan. "Large scale gan training for high fidelity natural image synthesis." arXiv preprint arXiv:1809.11096 (2018).
- [2] https://dzone.com/articles/working-principles-of-generative-adversarial-netwo
- [3] http://cs.joensuu.fi/sipu/datasets/