

IIC2213 — Lógica para Ciencias de la Computación — 1' 2022

Ayudantía 1

Pregunta 1: Calentamiento

Construya máquinas de Turing que decidan los siguientes lenguajes (como subconjuntos de $\{a,b\}^*$):

- 1. $\{w \mid w \text{ contiene al menos una } a\}$
- 2. Ø (el conjunto vacío)
- 3. $\{\epsilon\}$ (la palabra vacía)

Construya máquinas de Turing que computen las siguientes funciones:

1.
$$f(w) = \begin{cases} 0 & \text{si } ||w|| \text{ es par} \\ 1 & \text{si } ||w|| \text{ es impar} \end{cases}$$

2. f(n) = n + 1, con n un número natural codificado en binario

Pregunta 2: Propuesto

Sean n, m dos números en codificación binaria con ||n|| = ||m||. Construya una máquina de Turing que reciba un input de la forma n m y retorne en codificación binaria el número n + m.

Pregunta 3: Máquina de Turing con cinta para un lado

Definición: Una máquina de Turing con cinta para un solo lado es una tupla $M = (Q, \mathbf{A}, B, \vdash, q_0, F, \delta)$, donde

- $\bullet \ Q$ es un conjunto de estados
- A es un alfabeto que no contiene ni a B ni a \vdash
- $q_0 \in Q$ es el estado inicial
- $F \subseteq Q$ son los estados finales
- ullet es la función de transición, una función parcial definida como

$$\delta: Q \times (\mathbf{A} \cup \{B, \vdash\}) \to Q \times (\mathbf{A} \cup \{B\}) \times \{\leftarrow, \rightarrow\}$$

en donde además $\delta(q, \vdash)$ está siempre en $Q \times (\vdash) \times \{\rightarrow\}$, lo que quiere decir que cada vez que la máquina lee \vdash , tiene que volver a escribir \vdash y además moverse a la derecha.

El lenguaje aceptado por una máquina de Turing con cinta para un solo lado $M = (Q, \mathbf{A}, B, \vdash, q_0, F, \delta)$, escrito como L(M), corresponde a todas las palabras $w \in \mathbf{A}^*$ tal que M acepta a la palabra $w = a_1...a_n$ cuando comienza con la palabra $\vdash a_1...a_n$ escrita y el resto de las celdas vacías y con la cinta lectora apuntando al símbolo a_1 .

Demuestre que para cada máquina de Turing M existe una máquina de Turing con cinta para un solo lado M' tal que L(M) = L(M'), y que para cada máquina de Turing con cinta para un solo lado M existe una máquina de Turing M' tal que L(M) = L(M').