

LAB # 5

CSE-202L Digital Logic Design Lab Fall 2022

SUBMITTED BY:

Ali Asghar(21PWCSE2059)
Suleman Shah(21PWCSE1983)
Abu Bakar(21PWCSE2004)

DATED:

11th November, 2022

SUBMITTED TO:

Engr. Rehmat Ullah

Department of Computer Systems Engineering University of Engineering & Technology, Peshawar

ADDERS AND SUBTRACTORS

OBJECTIVES:

- To Design and construct half adder, full adder, half subtractor and full subtractor circuits
- Verify their truth tables using logic gates

COMPONENTS:

- IC's
 - o 7408 Quad-2-Input AND Gate
 - o 7432 Quad-2-Input OR Gate
 - o 7486 Quad-2-Input XOR Gate
 - o 7404 Hex Inverters
- LED's
- Dip Switch
- 520/1KΩ Resistors

THEORY:

A digital adder circuit adds binary signals & a subtractor subtracts binary signals. Half Adder/Subtractor is a basic circuit that adds / subtracts 2 bits and generates Sum or Difference along with Carry / Borrow. Unlike Half Adder or Subtractor a Full Adder / Subtractor has the provision to take consideration of previous Carry / Borrow also.

LOGIC DIAGRAM HALF ADDER

TRUTH TABLE

А	В	CARRY	SUM
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

SUM = A'B + AB'

A'B+B'A=A xor B

CARRY = AB

LOGIC DIAGRAM FULL ADDER:

FULL ADDER USING TWO HALF ADDER

TRUTH TABLE

А	В	С	CARRY	SUM
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

 $\mathsf{SUM} = \mathsf{A'B'Y} + \mathsf{A'BY'} + \mathsf{ABY} + \mathsf{AB'Y'} = \mathsf{Y}(\mathsf{A'B'} + \mathsf{AB}) + \mathsf{Y'}(\mathsf{A'B} + \mathsf{AB'}) = \mathsf{YX'} + \mathsf{Y'X}$

CARRY = AB + BY + AY = Y(A+B) + AB

LOGIC DIAGRAM HALF SUBTRACTOR

TRUTH TABLE

А	В	BORROW	DIFFERENCE
0	0	0	0
0	1	1	1
1	0	0	1
1	1	0	0

$$0-0=0$$

 $0-1=1$, borrow 1
 $1-0=1$
 $1-1=0$

DIFFERENCE= A'B + AB' BORROW = A'B

LOGIC DIAGRAM FULL SUBTRACTOR

FULL SUBTRACTOR USING TWO HALF SUBTRACTOR

TRUTH TABLE

А	В	С	BORROW	DIFFERENCE
0	0	0	0	0
0	0	1	1	1
0	0	1	1	1
0	1	Ü	1	1
0	1	1	1	0
1	0	0	0	1
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

$$BORROW = A'D + BD + A'B = A'(B+D) + BD$$

PROCEEDURE

- 1. Connections are given as per circuit diagram.
- 2. Logical inputs are given as per circuit diagram.
- 3. Observe the output and verify the truth table.

LAB WORK:

HALF ADDER

FULL ADDER

HALF SUBTRACTOR

FULL SUBTRACTOR

