

Karboksylsyrers derivater: Nukleofil substitusjon på acyl-gruppen

Karboksylsyrers derivater

Viktige stoffklasser:

økende reaktivitet i nukleofil acyl substitusjon

De mer reaktive syrederivatene kan gi de mindre reaktive ved nukleofil substitusjon på acylgruppen

Nukleofil substitusjon på acyl-grupper

To-trinns: addisjon + eliminasjon = substitusjon

- Reaktiviteten bestemmes av
 - Stoffklassen:Reaktivitet for amid < ester < anhydrid < syreklorid
 - Trenden f
 ølger avtagende elektrontetthet på karbonyl-C
 - Trenden følger utgående gruppe-egenskapene til X
 - Sterisk hindrende grupper på α -karbonatomet Forgreninger på α -C reduserer reaktiviteten

Nukleofile reaksjoner ved acyl

- Hydrolyse
 - reaksjon med vann gir karboksylsyre (a)
- Alkoholyse
 - reaksjon med alkohol gir ester (b)
- Aminolyse
 - reaksjon med amin gir amid (c)
- Reduksjon
 - hydridreagenser gir aldehyd eller alkohol (d)
- Grignard-reaksjon
 - gir tertiær alkohol (e)

 Syreklorid (mest reaktivt) dannes fra karboksylsyre og SOCl₂

Amid fra karboksylsyre og amin

Direkte reaksjon mellom karboksylsyre og amin er vanskelig

$$\begin{array}{c} O \\ R \\ C \\ OH \end{array} + R'NH_2 \longrightarrow \begin{array}{c} O \\ R \\ R \\ NHR' \end{array} + H_2O$$

$$\begin{array}{c} O \\ R \\ NHR' \end{array} + R'NH_3$$

$$\begin{array}{c} O \\ R \\ NHR' \end{array} + R'NH_3$$

- Det basiske aminet gjør karboksylsyra om til det ganske ureaktive karboksylat-anionet
- OH⁻ er i tillegg en dårlig utgående gruppe
- DCC (disykloheksylkarbodiimid) benyttes til å gjøre karboksylsyren mer reaktiv før reaksjonen

$$\begin{array}{c} O \\ R \\ \end{array} + R'NH_2 + \\ O \\ DCC \\ \end{array} + \begin{array}{c} N \\ N \\ N \\ N \\ \end{array} + \begin{array}{c} O \\ N \\ N \\ N \\ N \\ \end{array} + \begin{array}{c} O \\ N \\ N \\ N \\ N \\ N \\ N \\ \end{array}$$

KJM 1110 - Mats Tilset 5

Karboksylsyrers derivater

Viktige stoffklasser:

økende reaktivitet i nukleofil acyl substitusjon

De mer reaktive syrederivatene kan gi de mindre reaktive ved nukleofil substitusjon på acylgruppen

Syrekatalysert forestring

- Likevektsreaksjon
- Stort overskudd alkohol nødvendig
- Syrekatalysert reaksjon
- Grundig studert mekanisme

¹⁸O isotopmerket metanol

Syrekloriders reaksjoner

- Hydrolyse til karboksylsyre
 - Tilsats av pyridin (base) for å fange opp HCI

- Omdanning til anhydrider
 - Nukleofil substitusjon med karboksylat

Syrekloriders reaksjoner

- Omdanning til ester: alkoholyse
 - Tilsats av pyridin (base) for å fange opp HCI

- Omdanning til amid: aminolyse
 - To mol amin forbrukes pr. mol syreklorid

$$\begin{bmatrix} \mathsf{CH}_3 \\ \mathsf{HN} & + \; \mathsf{HCI} \longrightarrow \; \mathsf{H}_2 \mathsf{N} (\mathsf{CH}_3)_2 \; \; \mathsf{CI}^{\scriptscriptstyle \mathsf{T}} \end{bmatrix}$$

Estere

- Blant de vanligst forekommende naturprodukter
 - Luktestoffer (fruktig) se http://en.wikipedia.org/wiki/Ester
 - Vegetabilsk fett
 - Biologiske systemer
- Industriell bruk
 - Løsemidler (eks. etylacetat, CH₃COOCH₂CH₃)
 - Myknere i plast-materialer
 - Forsåpning av fett (tidligere tiders såpeproduksjon)

Esterhydrolyse (spalting med vann)

- I surt miljø
 - reversibel reaksjon (likevekt)
 - mekanismen er den samme som for syrekatalysert esterdannelse fra karboksylsyre og alkohol, men i motsatt retning og rekkefølge

- I basisk miljø
 - "forsåpning"
 - irreversibel

Reduksjon av estere og Grignard-reaksjon med estere

Reduksjon av estere gir primære alkoholer

Grignard på estere gir tertiære alkoholer

 NB: Hydridreagenset "DIBAH" gir aldehyd i steden for alkohol, se tidligere kapittel!

Amider

α -aminosyrer

Hydrolyse til karboksylsyrer

- Basisk hydrolyse
- Sur hydrolyse
- Enzymkatalysert hydrolyse
- Reduksjon av amider
 - LiAlH₄ gir det tilsvarende aminet

Polyestere og polyamider

 $-\xi$ -O-(CH₂)_n-O-C-(CH₂)_m-C- ξ en polyester

