Lecture 5

Qiong Wang

Lecture 5 Model and Solutions for Convex Optimization Problems

Qiong Wang

Department of Industrial and Enterprise Systems Engineering University of Illinois at Urbana-Champaign

September 18-20, 2023

Fortune's Formula

Lecture 5

Qiong Wang

- 1948: Claude Shannon (Information Theory) "The Mathematical Theory of Communication".
- 1956: John Kelly (Kelly Criterion), "A New Interpretation of Information Rate".
- 1966: Edward Thorp, "Beat the Dealer: A Winning Strategy for the Game of Twenty-One".
- 1967: Edward Thorp and Sheen Kassouf, "Beat the Market: A Scientific Stock Market System".
- 1999: Edward Thorp, "The Kelly Criterion in Blackjack Sports Betting and the Stock Market".
- 2006: William Poundstone, "Fortune's Formula: The Untold Story of the Scientific Betting System That Beat the Casinos and Wall Street".

Kelly's Criterion:Simple Case

Lecture 5

Qiong Wang

Problem Statement: Suppose that you can make repeated investments on something that generates (1+b) for each dollar invested if you succeed and results a complete loss (0) if you fail. The probability of success is p. Starting from a fixed initial budget, you can keep investing as long as you have money left. Your objective is to maximize your wealth after N^{th} round, where N is a large number. How much should you invest in each round?

Model Formulation: let x be % of budget that you invest

	amount not invested	return	total
win	1-x	x(1+b)	1 + bx
lose	1-x	0	1-x

expected wealth after Nth round (K: number of times you win)

$$W_N(x) = (1 + bx)^K (1 - x)^{N-K}.$$

Question: how to choose x to maximize $W_N(x)$.

Problem Transformation

Lecture 5

Qiong Wang

$$\max_{0 \le x \le 1} \{ W_N(x) \} \quad \text{ where } \quad W_N(x) = (1 + bx)^K (1 - x)^{N - K}.$$

- how does the optimal solution depend on W (besides that it is large)?
 - how to determine the value of K? $g_N(x) = \frac{\ln W_N(x)}{N} = \frac{\ln(1+bx)^K + \ln(1-x)^{N-K}}{N}$ $= \frac{K}{N} \ln(1+bx) + \frac{N-K}{N} \ln(1-x)$
- 1 for any given N maximizing $W_N(x)$ is the same as maximizing $g_N(x)$.
- 2 by the Law of Large Numbers

$$\lim_{N\to\infty}\frac{K}{N}=p,$$

3 so as N gets large, $g_N(x)$ converges to

$$g(x) = p \ln(1 + bx) + (1 - p) \ln(1 - x)$$

Optimal Solution of Kelly's Criterion (Simple Case)

Lecture 5

Qiong Wang

$$\max_{0 \le x \le 1} \{ p \ln(1 + bx) + (1 - p) \ln(1 - x) \}.$$

• take derivative and set it to zero:

$$p\frac{b}{1+bx} - (1-p)\frac{1}{1-x} = 0.$$
 Constant

solve the equation

$$\frac{1+bx}{pb} = \frac{1-x}{1-p} \longrightarrow x = p - \frac{1-p}{b}.$$

Is that all?.

$$x^* = \max\left(p - \frac{1-p}{b}, 0\right).$$

- when is it optimal to invest all $(x^* = 1)$? if and only if p = 1.
- when is it optimal to invest no money $(x^* = 0)$? if and only if $pb \le (1 p)$.

Example: Kelly's Criterion

Lecture 5

Qiong Wang

The General Case:

Suppose that you can make repeated investments on a set of S scenarios. One and only one scenario realizes and the probability of getting scenario i is p_i $(1 \le i \le S)$, so

$$p_1 + ... + p_S = 1.$$

If scenario i realizes, you receive $1 + b_i$ $(1 \le i \le S)$ from each dollar bet on that scenario and lose all your bets on other scenarios.

Question: What percentage of your budget should you bet on each scenario?

Problem Formulation: Decisions and Objective

Lecture 5

Qiong Wang

decisions: x_0 : % of fund to keep on hand,

 x_i : % of fund to bet on scenario i (i = 1, ..., S).

• N bets, number of times of having scenario i is K_i (i = 1, ..., S),

$$K_1 + ... + K_S = N.$$

ullet if scenario i becomes true: your wealth is multiplied by a factor of

$$x_0 + (1 + b_i)x_i, \quad i = 1, ..., S.$$

the objective is to maximize

$$[x_0 + (1+b_1)x_1]^{K_1} \times \times [x_0 + (1+b_S)x_S]^{K_S}.$$

ullet objective function transformation: take log, divide by N,

$$\frac{K_1}{N} \ln[x_0 + (1+b_1)x_1] + + \frac{K_S}{N} \ln[x_0 + (1+b_S)x_S]$$

apply the Law of Large Numbers:

$$p_1 \ln[x_0 + (1+b_1)x_1] + \dots + p_S \ln[x_0 + (1+b_S)x_S].$$

Problem Formulation: Constraints

Lecture 5

objective:
$$\sum_{i=1}^{S} p_i \ln[x_0 + (1+b_i)x_i]$$

constraints: $x_0 > 0, x_1 > 0, ..., x_s > 0$

$$x_0 + \dots + x_S = 1 \longrightarrow \begin{cases} x_0 + \dots + x_S \le 1, \\ x_0 + \dots + x_S \ge 1. \end{cases}$$
If the constraint $x_0 + \dots + x_S > 1$?

question: do we really need the constraint $x_0 + ... + x_S \ge 1$?

answer: no (why?)

problem completely defined by:

$$\label{eq:subject_to_subject_to} \begin{split} \max_{x_0,...,x_S} \left\{ \sum_{i=1}^S p_i \ln[x_0 + (1+b_i)x_i] \right\} \\ \text{subject to} \qquad & x_0 + + x_S \leq 1, \\ & x_0 \geq 0, x_1 \geq 0, ..., x_S \geq 0. \end{split}$$

Convex Optimization Problem

Lecture 5

Qiong Wang

$$\max_{\mathbf{x}} \left\{ g(\mathbf{x}) \right\}$$
 subject to $h_j(\mathbf{x}) \leq 0, \ j=1,..,J.$

- g(x) is a concave function of x (convex if min. g(x), i.e., max. -g(x))
- the set of all feasible solutions is convex (i.e., $h_j(x)$ are convex functions):
 - for all $j=1,...,J,\ h_j(\mathbf{x})$ is a convex function $(0\leq \alpha \leq 1)$:

$$x = \alpha x_1 + (1 - \alpha)x_2 \longrightarrow h_j(x) \le \alpha h_j(\mathbf{x}_1) + (1 - \alpha)h_j(\mathbf{x}_2).$$

• if x_1 and x_2 are feasible, $\alpha x_1 + (1 - \alpha)x_2$ is feasible $(0 \le \alpha \le 1)$.

convex set

non convex set

Implications of Concave Objective Function

Lecture 5

Qiong Wang

g(x) is a concave function: any x_1 , x_2 , and $0 \le \alpha \le 1$:

$$x = \alpha x_1 + (1 - \alpha)x_2 \longrightarrow \alpha g(x_1) + (1 - \alpha)g(x_2) \le g(x)$$

so:
$$\alpha g(x_1) + (1 - \alpha)g(x_2) \le \alpha g(x) + (1 - \alpha)g(x)$$
,

i.e.
$$(1-\alpha)(g(x_2)-g(x)) \leq \alpha(g(x)-g(x_1)).$$

if $g(x_2) \ge g(x)$, then $g(x) \ge g(x_1)$,

if $g(x) \leq g(x_1)$, then $g(x_2) \leq g(x)$.

this won't happen

How to Solve a Convex Optimization Problem

Lecture 5

Qiong Wanı

setting the derivative to zero?

what if the optimal solution is at the boundary?

• evaluate solutions at boundaries of the feasible region (like we do with LP)?

what if the optimal solution is in the interior of the feasible region?

Karush-Kuhn-Tucker (KKT) Method

Lecture 5

$$\max_{\mathbf{x}} \left\{ g(\mathbf{x}) \right\}$$
 subject to $h_j(\mathbf{x}) \leq 0, \ j=1,..,J.$

 $g(\mathbf{x})$ is concave and $h_j(\mathbf{x})$ (j = 1, ..., J) are convex functions.

- attach a penalty λ_j , to each constraint $h_j(x) \leq 0, j = 1,...,J$
- choose x to maximize

$$\mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}) = \mathbf{g}(\mathbf{x}) - \sum_{j=1}^{J} \lambda_j h_j(\mathbf{x}),$$

by setting their derivatives to zero.

(definition: λ_i are Lagrange multipliers; \mathcal{L} is the Lagrangian).

impose following conditions on the solution: for all j = 1,...J,

$$\lambda_j \geq 0,$$
 $h_j(\mathbf{x}) \leq 0,$
 $\lambda_i h_j(\mathbf{x}) = 0.$

Optimal Solution

Lecture 5

Qiong Wan

let $(\mathbf{x}^*, \boldsymbol{\lambda}^*)$ be a solution of

$$\frac{\partial \mathcal{L}}{\partial x_i} = \frac{\partial \mathbf{g}}{\partial x_i} - \sum_{j=1}^J \lambda_j \frac{\partial h_j}{\partial x_i} = 0, \quad i = 1, ..., n,$$

$$\lambda_j h_j(\mathbf{x}) = 0, \quad j = 1, ..., J,$$

$$\lambda_j \geq 0, \quad j = 1, ..., J,$$

$$h_j(\mathbf{x}) \leq 0, \quad j = 1, ..., J.$$

• given λ^* , because $\partial \mathcal{L}/\partial x_i = 0$ for all $i = 1, \dots, m$, \mathbf{x}^* maximizes

$$\mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}^*) = g(\mathbf{x}) - \sum_{i=1}^J \lambda_j^* h_j(\mathbf{x}), \quad (\mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}^*) \text{ is concave in } \mathbf{x}).$$

- $h_i(\mathbf{x}^*) \leq 0$ for all j, so \mathbf{x}^* is feasible.
- to show x^* maximizes g(x): let x be a feasible solution:

$$g(\mathsf{x}) \leq g(\mathsf{x}) - \sum_{j=1}^J \lambda_j^* h_j(\mathsf{x}) = \mathcal{L}(\mathsf{x}, \lambda^*) \leq \mathcal{L}(\mathsf{x}^*, \lambda^*) = g(\mathsf{x}^*).$$

(because
$$\lambda_{i}^{*} h_{i}(\mathbf{x}^{*}) = 0, j = 1, \dots, J$$
).

Summary on KKT Conditions

Lecture 5

Qiong Wang

for convex optimization problem (with a concave objective function to *maximize* and a convex feasible region):

- transform "hard" constraints into "soft" penalties.
- Penalty (aka Lagrange multipliers) for violating the constraint should be
 - positive;
 - sufficiently high to prevent any violation of restrictions;
 - zero if constraints are strictly satisfied (aka complementary slackness).
- the optimal solution is characterized by the first-order conditions for maximizing the Lagrangian and the above three conditions on the penalty.

Back to Kelly's Criterion (the general case)

Lecture 5

Qiong Wan

$$\max_{x_0,...,x_S} \left\{ \sum_{i=1}^S p_i \ln[x_0 + (1+b_i)x_i] \right\}$$

subject to

$$x_0 + x_1 + \dots + x_S \le 1,$$

$$x_i \ge 0, \quad i = 1, ..., S.$$

i = 1, ..., S scenarios;

 p_i : probability of scenario i;

 b_i : return in scenario i;

 x_i : % of budget to bet on scenario i;

 x_0 : cash to keep on hand.

Lagrangian:

$$\mathcal{L}(\mathbf{x}, \lambda) = \sum_{i=1}^{S} p_{i} \ln[x_{0} + (1 + b_{i})x_{i}] - \bar{\lambda}(x_{0} + + x_{S} - 1) + \sum_{i=0}^{S} \lambda_{i}x_{i},$$

 λ_i : Lagrange multiplier attached to $x_i \geq 0$ (i = 0, ..., S).

 $\bar{\lambda}$: Lagrange multiplier attached to $x_0 + ... + x_S \leq 1$.

KKT Conditions

Lecture 5

Qiong Wang

$$\mathcal{L}(\mathbf{x}, \lambda) = \sum_{i=1}^{S} p_i \ln[x_0 + (1 + b_i)x_i] - \bar{\lambda}(x_0 + + x_S - 1) + \sum_{i=0}^{S} \lambda_i x_i$$

• derivatives of \mathbf{x}_i $(i = 1, \dots, S)$ to zero:

$$\frac{\partial \mathcal{L}}{\partial x_i} = \frac{p_i(1+b_i)}{x_0 + (1+b_i)x_i} - \bar{\lambda} + \lambda_i = 0, \quad i = 1,..., S,$$

derivatives of x₀ to zero:

$$\frac{\partial \mathcal{L}}{\partial x_0} = \sum_{i=1}^{5} \frac{p_i}{x_0 + (1+b_i)x_i} - \bar{\lambda} + \lambda_0 = 0.$$

- constraints: $x_0 + x_1 + ... + x_S \le 1$ and $x_i \ge 0$, i = 0, ..., S.
- complementary slackness condition:

$$\bar{\lambda}(x_0 + x_1 + ... + x_S - 1) = 0$$
 and $\lambda_i x_i = 0$, $i = 0, ..., S$.

• nonnegative penalties: $\bar{\lambda} \geq 0$ and $\lambda_i \geq 0$, i = 0, ... S.

Investment Insight I:

Lecture 5

Qiong Wang

Observation: from the condition that

$$\frac{\partial \mathcal{L}}{\partial x_i} = \frac{p_i(1+b_i)}{x_0+(1+b_i)x_i} - \bar{\lambda} + \lambda_i = 0,$$

can this equality hold if we let both $x_0 = 0$ and $x_i = 0$?

- what investment strategy corresponds to $x_0 = 0$ and $x_i = 0$?
- under this strategy, what happens if scenario i realizes?
- so to satisfy

$$\frac{\partial \mathcal{L}}{\partial x_i} = \frac{p_i(1+b_i)}{x_0 + (1+b_i)x_i} - \bar{\lambda} + \lambda_i = 0 \ \ \text{for all} \quad i = 1, \cdots, S,$$

what types of solutions can we have?

correspondingly, what does the solution tell us how to invest?

Investment Insight II: a little algebra first

Lecture 5

Qiong Wang

• for x_i to be optimal:

$$\frac{\partial \mathcal{L}}{\partial x_i} = \frac{p_i(1+b_i)}{x_0 + (1+b_i)x_i} - \bar{\lambda} + \lambda_i = 0, \quad i = 1,..,S,$$

so

$$\frac{p_i}{x_0 + (1 + b_i)x_i} = \frac{\bar{\lambda} - \lambda_i}{1 + b_i}, \quad i = 1, ..., S.$$
 (1)

(2)

• for x_0 to be optimal:

$$\frac{\partial \mathcal{L}}{\partial x_0} = \sum_{i=1}^{S} \frac{p_i}{x_0 + (1+b_i)x_i} - \bar{\lambda} + \lambda_0 = 0$$

• use (??) to replace $p_i/(x_0 + (1+b_i)x_i)$ in (??):

$$\sum_{i=1}^{S} \frac{\bar{\lambda} - \lambda_i}{1 + b_i} - \bar{\lambda} + \lambda_0 = 0$$

i.e.,

$$\bar{\lambda}\left(\sum_{i=1}^{S} \frac{1}{1+b_i} - 1\right) = -\lambda_0 + \sum_{i=1}^{S} \frac{\lambda_i}{1+b_i}.$$

Investment Insight II: observation

Lecture 5

Qiong Wang

• repeat: first-order condition of x_0 :

$$\sum_{i=1}^{S} \frac{p_i}{x_0 + (1+b_i)x_i} - \bar{\lambda} + \lambda_0 = 0.$$

implication: $\bar{\lambda} > 0$.

repeat: from the last slide,

$$\bar{\lambda}\left(\sum_{i=1}^{S}\frac{1}{1+b_i}-1\right)=-\lambda_0+\sum_{i=1}^{S}\frac{\lambda_i}{1+b_i}.$$

since $\lambda_i \geq 0$ for all $i = 1, \dots, S$, if

$$\text{if} \qquad \sum_{i=1}^S \frac{1}{1+b_i} < 1, \text{then } \lambda_0 > 0$$

so $x_0=0$ (because $\lambda_0x_0=0$) and $x_i>0$ for all $i=1,\cdots S.$ why?

Investment Insight II: Explanation

Lecture 5

Example: S=2, $p_1=p_2=0.5$ (i.e., two scenarios with equal chance), and $b_1=b_2=2$ (i.e., i.e., 200% profit for the correct bet).

$$\frac{1}{1+b_1} + \frac{1}{1+b_2} = \frac{2}{3} < 1,$$

do you want to keep some cash on hand in this situation? what about any other values of p_1 and p_2 ?

More generally, suppose that you let

$$x_i = \frac{1/(1+b_i)}{1/(1+b_1) + \dots + 1/(1+b_s)}, i = 1, \dots, S$$

if scenario i occurs,

$$x_i(1+b_i) = \frac{1}{1/(1+b_1) + \dots + 1/(1+b_S)}$$

so in any scenario, your return:

r return:

$$x_i(1+b_i) > 1$$
 if $\sum_{i=1}^{S} \frac{1}{1+b_i} < 1$.

Investment Insight II: Discussion

Lecture 5

Qiong Wang

What happened: we infer from the KKT condition that when

$$\sum_{i=1}^S \frac{1}{1+b_i} < 1,$$

you should bet everything because there is free profit.

Arbitrage!

remember Fundamental Theorem of Asset Pricing? does it apply here?

- each scenario is an asset, current price 1, future value $1 + b_i$ or 0.
- what is the risk-neutral probability of scenario i ($i = 1, \dots, S$)?

$$1=\hat{
ho}_i(1+b_i) \longrightarrow \hat{
ho}_i=rac{1}{1+b_i}, \ i=1,..,S.$$

o can such probabilities exist if:

$$\sum_{i=1}^{S} \frac{1}{1+b_i} < 1.$$

Investment Insight: Optimization

Lecture 5

Qiong Wang

when
$$\sum_{i=1}^{S} \frac{1}{1+b_i} < 1$$
:

- arbitrage opportunity, bet every penny: $x_0 = 0$, and $x_i > 0$ (i = 1, ..., S).
- since $\lambda_i x_i = 0$, $\lambda_1 = = \lambda_S = 0$ (i = 1, ..., S).
- apply $x_0 = 0$ and $\lambda_i = 0$ $(i = 1, \dots, S)$ to the first-order condition:

$$\frac{\partial \mathcal{L}}{\partial x_i} = \frac{p_i(1+b_i)}{x_0 + (1+b_i)x_i} - \bar{\lambda} + \lambda_i = 0, \quad i = 1, ..., S,$$

$$\frac{p_1}{x_1} = \dots = \frac{p_S}{x_S} = \bar{\lambda}$$
 and $x_1 + \dots + x_S = 1$.

• so the optimal solution: $x_i^* = p_i \ (i = 1, \dots, S)$. Make sense?