Tutorial III EABCN Training School

Christian Wolf

June 2018

Tutorial Objectives

- 1. Fast numerical differentiation: AD
- 2. Heterogeneous-agent perturbation methods in discrete time
 - Combine perturbation methods with EGP
- 3. Model reduction techniques (discrete + continuous time)
 - Reducing controls (e.g. value function)
 - Reducing states (e.g. the distribution)
- 4. Estimation of heterogeneous-agent models
 - VMA-based approach vs. state-space representation
 - Discrete time vs. continuous time

1

- 1. Automatic Differentiation
- Perturbation Methods in Discrete Time The Growth Model A Heterogeneous-Agent Version
- 3. Model Reduction
 Reducing Controls
 Reducing Endogenous States
- Estimation of Heterogeneous-Agent Models SS vs. VMA Likelihood Evaluation in Continuous Time

- 1. Automatic Differentiation
- Perturbation Methods in Discrete Time The Growth Model A Heterogeneous-Agent Version
- Model Reduction
 Reducing Controls
 Reducing Endogenous States
- Estimation of Heterogeneous-Agent Models SS vs. VMA Likelihood Evaluation in Continuous Time

Differentiation Techniques

- Need to differentiate many times, and accurately
 - o For PHACT: 60,000 equations, 120,000 + x derivatives, each derivative requires many uses of the chain rule
- No chance for differentiation by hand or symbolic differentiation
- Passable alternative: finite differences
 - \circ Need to evaluate equilibrium conditions 120, 000(\times 2) times
 - o Problems: pretty slow, often very inaccurate
- Our preferred solution: automatic differentiation
 - See overview and coding package on SeHyoun's webpage
 - How it works: every computer program is just a string of elementary operations with known derivatives, so get full derivative using chain rule
 - Why it's appealing: accurate to machine precision + fast

A Simple Example

1. Specify function of interest and evaluation point

$$f(x) = x^2$$
$$x_0 = 10$$

2. Turn x_0 into automatic differentiation object

$$x_0 = \mathsf{myAD}(x_0)$$

3. Apply automatic differentiation package

$$f(x_0)$$
 = getvalues $(f(x_0))$ = 100
 $f'(x_0)$ = getderivs $(f(x_0))$ = 20

1. Automatic Differentiation

2. Perturbation Methods in Discrete Time

The Growth Model A Heterogeneous-Agent Version

Model Reduction
 Reducing Controls
 Reducing Endogenous States

 Estimation of Heterogeneous-Agent Models SS vs. VMA Likelihood Evaluation in Continuous Time

- 1. Automatic Differentiation
- Perturbation Methods in Discrete Time
 The Growth Model
 Add to represent the Add

- Model Reduction
 Reducing Controls
 Reducing Endogenous States
- Estimation of Heterogeneous-Agent Models SS vs. VMA Likelihood Evaluation in Continuous Time

The Growth Model

Household block

$$C_t^{-\gamma} = \beta \mathbb{E}_t \left[(1 + r_{t+1}) C_{t+1}^{-\gamma} \right]$$

$$L_t = 1$$

$$A_t + C_t = w_t L_t + (1 + r_t) A_{t-1}$$

Firm block

$$\begin{array}{rcl} w_t & = & (1-\alpha)e^{z_t}K_{t-1}^{\alpha}L_t^{-\alpha} \\ r_t - \delta & = & \alpha e^{z_t}K_{t-1}^{\alpha-1}L_t^{1-\alpha} \\ Y_t & = & e^{z_t}K_{t-1}^{\alpha}L_t^{1-\alpha} \\ I_t & = & K_t - (1-\delta)K_{t-1} \end{array}$$

Aggregation

$$A_t = K_t$$
$$Y_t = C_t + I_t$$

• Exogenous process

$$z_t = \rho_z z_{t-1} + \sigma_z \epsilon_t^z$$

- Automatic Differentiation
- Perturbation Methods in Discrete Time The Growth Model
 A Heterogeneous-Agent Version
- Model Reduction
 Reducing Controls
 Reducing Endogenous States
- Estimation of Heterogeneous-Agent Models SS vs. VMA Likelihood Evaluation in Continuous Time

EGP in a Growth Model

- Firm block, aggregation, exogenous process unaffected
- Useful to split household block into two parts
 - Micro decisions

$$c_t(s) = f(a(s), w_t, r_t, emuc_t)$$

 $emuc_t = \mathbb{E}_t [c_{t+1}(s')]$
 $\ell_t(s) = y(s)$

Aggregation

$$C_t = \int_{\mathcal{S}} c_t(s) d\lambda_t(s)$$

$$L_t = \int_{\mathcal{S}} \ell_t(s) d\lambda_t(s)$$

$$A_t + C_t = w_t L_t + (1 + r_t) A_{t-1}$$

The Linearized Model

- Comparison to continuous time
 - \circ Need to keep track of distribution and emuc object (rather than v)
 - Expectational errors only appear in updating of emuc term
- Linearization gives standard gensys form:

$$G_0 \begin{pmatrix} \mathsf{emuc}_t \\ \lambda_t \\ x_t \end{pmatrix} = G_1 \begin{pmatrix} \mathsf{emuc}_{t-1} \\ \lambda_{t-1} \\ x_{t-1} \end{pmatrix} + \Pi \eta_t + \Psi \varepsilon_t$$

- o x_t collects all the other aggregates: C_t , L_t , w_t , r_t , A_t
- \circ Usual structure: emuc_t and λ_t large-dimensional, x_t small-dimensional
- Let's take a look at some codes . . .

7

- 1. Automatic Differentiation
- Perturbation Methods in Discrete Time The Growth Model A Heterogeneous-Agent Version
- 3. Model Reduction

Reducing Controls
Reducing Endogenous States

 Estimation of Heterogeneous-Agent Models SS vs. VMA Likelihood Evaluation in Continuous Time

The Basic Idea

We have the generic system

$$\begin{pmatrix} \dot{v}_t \\ \dot{\lambda}_t \\ \dot{x}_t \end{pmatrix} = G_1 \begin{pmatrix} v_t \\ \lambda_t \\ x_t \end{pmatrix} + \Pi \eta_t + \Psi \varepsilon_t \quad \text{or} \quad \begin{pmatrix} v_t \\ \lambda_t \\ x_t \end{pmatrix} = G_1 \begin{pmatrix} v_{t-1} \\ \lambda_{t-1} \\ x_{t-1} \end{pmatrix} + \Pi \eta_t + \Psi \varepsilon_t$$

- This is slightly less general than canonical gensys: $G_0 = I$
- We need this assumption: Schur decomposition vs. QZ decomposition, distribution reduction
- Not a huge loss of generality (just need to solve out some linear relationships)
- Problem: v_t and λ_t are large-dimensional
- Idea: let's force them to live in subspaces of \mathbb{R}^{n_v} and \mathbb{R}^{n_λ} , respectively
 - \circ Project on small-dimensional subspaces with semi-orthogonal bases X_{ν} , X_{λ}
 - o This gives

$$v_t = X_v (X'_v X_v)^{-1} X'_v v_t + \text{residual} = X_v \tilde{v}_t + \text{residual}$$

 $\lambda_t = X_\lambda (X'_\lambda X_\lambda)^{-1} X'_\lambda \lambda_t + \text{residual} = X_\lambda \tilde{\lambda}_t + \text{residual}$

Applying Reduction

Ignoring the projection errors this gives

$$v_t = X_v \tilde{v}_t, \qquad \tilde{v} = X_v' v_t$$

 $\lambda_t = X_\lambda \tilde{\lambda}_t, \qquad \tilde{v} = X_\lambda' \lambda_t$

Applying the reduction:

$$\begin{pmatrix} \tilde{v}_t \\ \dot{X}_t \\ \dot{x}_t \end{pmatrix} = X'G_1X \begin{pmatrix} \tilde{v}_t \\ \tilde{\lambda}_t \\ x_t \end{pmatrix} + X'\Pi\eta_t + X'\Psi\varepsilon_t \text{ or } \begin{pmatrix} \tilde{v}_t \\ \tilde{\lambda}_t \\ x_t \end{pmatrix} = X'G_1X \begin{pmatrix} \tilde{v}_{t-1} \\ \tilde{\lambda}_{t-1} \\ x_{t-1} \end{pmatrix} + X'\Pi\eta_t + X'\Psi\varepsilon_t$$

where

$$X = \begin{pmatrix} X_{\nu} & 0 & 0 \\ 0 & X_{\lambda} & 0 \\ 0 & 0 & I \end{pmatrix}$$

- Side note: strictly speaking should also reduce expectational errors with $\tilde{\eta}^{\rm v}_t = X_{\rm v} \eta^{\rm v}_t$, but irrelevant because only subspace $X'\Pi$ matters anyway
- Reduction before differentiation reduces differentiation requirements
- Resulting system is just $n_{\tilde{v}} + n_{\tilde{\lambda}} + n_{x}$ -dimensional
- Remaining question: how do we find X_{ν} , X_{λ} ?

9

- 1. Automatic Differentiation
- Perturbation Methods in Discrete Time The Growth Model A Heterogeneous-Agent Version
- 3. Model Reduction
 Reducing Controls
 Reducing Endogenous States
- Estimation of Heterogeneous-Agent Models SS vs. VMA Likelihood Evaluation in Continuous Time

Reducing Controls

- Controls are very amenable to simple spline-based reduction
 - o Example: v(a, z)/emuc(a, z) are smooth in a given z and z given a
 - o Spline reduction (e.g. cubic) using a coarse basis thus promising
- What we normally do
 - Choose $n_{\tilde{a}}$ spline points to reduce $n_a \times 1$ asset grid a
 - For each z apply spline reduction
 - Provides overall reduction from $n_a \times n_z$ to $n_{\tilde{a}} \times n_z$
- Could probably do better exploiting smoothness in z direction
- Bottom line: generally not a big deal

- 1. Automatic Differentiation
- Perturbation Methods in Discrete Time The Growth Model A Heterogeneous-Agent Version
- 3. Model Reduction
 Reducing Controls
 Reducing Endogenous States
- Estimation of Heterogeneous-Agent Models SS vs. VMA Likelihood Evaluation in Continuous Time

The Basic Idea

Once solved the system will look like this:

$$\dot{s}_t = As_t + B\varepsilon_t,$$
 $s_t = As_{t-1} + B\varepsilon_t$
 $y_t = Cs_t + D\varepsilon_t,$ $y_t = Cs_{t-1} + D\varepsilon_t$

- Why there's scope for reduction
 - We are interested in the mapping from ε_t (small-dimensional) to y_t (small-dimensional) through s_t (large-dimensional)
 - o The mapping from inputs to outputs is thus small-dimensional
 - Why should we need to carry around all the information in s_t? a subspace MUST be enough to characterize input-output linkage
- Logic of what I'll say works equally well for continuous and discrete time
 - Bayer et al. (2017): "In discrete time, there is no obvious basis for the state-space reduction"
 - To show that this is wrong I'll do discrete time today

1

Input-Output Linkage and Reduction

In the full model we have

$$h_t = \begin{cases} D & \text{if } t = 0\\ CA^{t-1}B & \text{if } t > 0 \end{cases}$$

• With reduced state vector $\tilde{s}_t = X_s' s_t$ we instead get

$$\tilde{h}_t = \begin{cases} D & \text{if } t = 0\\ CX_s X_s' A^{t-1} X_s X_s' B & \text{if } t > 0 \end{cases}$$

• Result: if we choose X_s to be a semi-orthogonal basis of

$$\mathcal{O}_{k}(C,A) = \begin{pmatrix} C' \\ A'C' \\ (A')^{2}C' \\ \dots \\ (A')^{k-1}C' \end{pmatrix}$$

then $\tilde{h}_t = h_t$ for t = 0, 1, ..., k (proof in paper)

Making this practical

- Problem is that we don't know the solved-out dynamics . . .
- First simple idea: just focus on λ -part of the system

$$\lambda_t = G_1^{\lambda\lambda} \lambda_{t-1} + \Psi^{\lambda} \varepsilon_t + \text{rest}$$
 $x_t = G_1^{x\lambda} \lambda_{t-1} + \Psi^{x} \varepsilon_t + \text{rest}$

- Do reduction based on $A = G_1^{\lambda\lambda}$, $B = \Psi^{\lambda}$, $C = G_1^{\kappa\lambda}$, $D = \Psi^{\kappa}$
- Not efficient, but will attain correct solution for large (but finite) k
- · For efficiency gains
 - 1. Solve once using some starting guess
 - 2. Do correct reduction based on current solution
 - 3. Iterate until convergence

- 1. Automatic Differentiation
- Perturbation Methods in Discrete Time The Growth Model A Heterogeneous-Agent Version
- Model Reduction
 Reducing Controls
 Reducing Endogenous States
- 4. Estimation of Heterogeneous-Agent Models SS vs. VMA
 Likelihood Evaluation in Continuous Time

A Quick Review of Estimation

- Macro models are routinely estimated using a likelihood approach
 - Let's write the likelihood as

$$p(\mathcal{Y} \mid \theta)$$

where ${\cal Y}$ is data and θ is the parameter vector

- o Estimation then proceeds using ML or in some Bayesian fashion
- Likelihood evaluation proceeds in two steps
 - 1. Map parameters θ into an econometric model
 - o Requires model solution (e.g. perturbation, MIT shock)
 - This gives state-space representation

$$s_t = As_{t-1} + B\varepsilon_t$$

$$y_t = Cs_t$$

or vector moving-average representation

$$y_t = \sum_{\ell=0}^{T_{\text{max}}} \Theta_{\ell} \varepsilon_{t-\ell}$$

2. Need to evaluate likelihood of model given data ${\cal Y}$

Challenges of Heterogeneous-Agent Modeling

- Solving big models
 - This was the point of the previous lectures/tutorials
 - Conclusion: toolkit should have perturbation and MIT shocks in both continuous and discrete time
- Likelihood evaluation with rich panel dimension
 - Raises special econometric difficulties
 - No time; exciting work coming up by Mikkel Plagborg-Moller
- Likelihood evaluation beyond small recursive discrete-time models
 - o How to evaluate the likelihood in a VMA model?
 - How to evaluate the likelihood in SS/VMA in continuous time?
 - When should we prefer SS, when VMA?

- 1. Automatic Differentiation
- Perturbation Methods in Discrete Time The Growth Model A Heterogeneous-Agent Version
- Model Reduction
 Reducing Controls
 Reducing Endogenous States
- Estimation of Heterogeneous-Agent Models
 SS vs. VMA
 Likelihood Evaluation in Continuous Time

SS vs. VMA

- Pros and cons of the state-space representation
 - Exploits the fact that mapping from ε_t to y_t has special structure going through s_t
 - \circ With n_s small this is very convenient for likelihood evaluation via Kalman filtering \to ubiquitous use in representative-agent literature
 - o Maybe not as convenient in het-agent models where n_s is large
- Pros and cons of the VMA representation
 - System size is always large (e.g. $n_y \times n_\varepsilon \times 250$), but bounded above independent of micro heterogeneity
 - Reasonably fast likelihood evaluation feasible using Whittle likelihood approximation

- 1. Automatic Differentiation
- Perturbation Methods in Discrete Time The Growth Model A Heterogeneous-Agent Version
- Model Reduction
 Reducing Controls
 Reducing Endogenous States
- Estimation of Heterogeneous-Agent Models
 SS vs. VMA
 Likelihood Evaluation in Continuous Time

Likelihood Evaluation in Continuous Time

We consider the system

$$\dot{s}_t = As_t + B\varepsilon_t, \quad y_t = Cs_t$$

- Likelihood evaluation proceeds via a DT-CT hybrid Kalman filter
 - Prediction step:

$$\begin{split} \hat{\mathbf{s}}_{k|t-1} &= -A\hat{\mathbf{s}}_{k|t-1} \quad \rightarrow \quad \hat{\mathbf{s}}_{t|t-1} = e^{-A}\hat{\mathbf{s}}_{t-1|t-1} \\ \dot{P}_{k|t-1} &= -AP_{k|t-1} - P_{k|t-1}A' + \Omega \quad \rightarrow \quad p_{t|t-1} = e^{-\tilde{A}}p_{t|t-1} + \tilde{A}^{-1}(I - e^{-\tilde{A}})\omega \end{split}$$
 where $\Omega \equiv BB'$ and $\tilde{A} \equiv (I \otimes A) + (A \otimes I)$

2. Updating step: from the innovation $v_t = y_t - C\hat{s}_{t|t-1}$ we get the Kalman gain

$$K_t = P_{t|t-1}C'(CP_{t|t-1}C')^{-1}$$

and so update

$$\hat{s}_{t|t} = \hat{s}_{t|t-1} + K_t v_t$$
 $P_{t|t} = P_{t|t-1} - K_t C P_{t|t-1}$

Thanks for your attention – Questions?

Appendix: General Stochastic Properties

For the states we start with conditional distributions: from

$$s_t = e^{-At} s_0 + \int_0^t e^{A(u-t)} B dW_u$$

we get

$$\mathbb{E}[s_t|s_0] \equiv \mu_t^s = e^{-At}s_0, \quad \operatorname{Var}[s_t|s_0] \equiv \Sigma_t^s = \int_0^t e^{A(u-t)}\Omega e^{A'(u-t)}du$$

or simplifying a bit

$$\operatorname{vec}(\Sigma_t^s) = \operatorname{vec}\left(\int_0^t e^{A(u-t)} \Omega e^{A'(u-t)} du\right)$$
$$= \int_0^t e^{(A \oplus A)(u-t)} \operatorname{vec}(\Omega) du$$
$$= (A \oplus A)^{-1} \left(I - e^{-(A \oplus A)t}\right) \operatorname{vec}(\Omega)$$

• The stationary distribution is now easy:

$$\mu^{s} = 0$$
 $\Sigma^{s} = \text{vec}^{-1} \left((A \oplus A)^{-1} \text{vec}(\Omega) \right)$

Appendix: General Stochastic Properties

• For covariance properties:

$$Cov[s_{t_1}, s_{t_2}|s_0] \equiv \sum_{t_1, t_2}^{s}$$

$$= \int_0^{t_1} e^{A(u-t_1)} \Omega e^{A'(u-t_2)} du$$

$$= \sum_{t_1}^{s} e^{-A'(t_2-t_1)}$$

and so

$$Cov[s_t, s_{t+q}] \equiv \Sigma_q^s = \Sigma^s e^{A'q}$$

- Properties of y then follow immediately
 - o Alternatively they can be computed directly from the VMA representation:

$$y_t = \int_0^\infty \Theta_s dW_{t-s}$$

and so

$$\Sigma^{y} = \int_{0}^{\infty} \Theta_{s} \Theta'_{s} ds$$

$$\Sigma^{y}_{q} = \int_{0}^{\infty} \Theta_{s} \Theta'_{s+q} ds$$