COMP30026 Models of Computation Assignment Melp

https://eduassistpro.github.

Lecture Week 1

Add Wechatedu_assist_pr

Assignment Project Exam Help

https://eduassistpro.github.

Add WeChat edu_assist_pr

Chomsky Hierarchy Again

Context-Sensitive Grammars (Not Examinable)

A context-sensitive grammar G is a 4-tuple (V, Σ, R, S) , where

Assiigning set of terminals, ject Exam Help

- R i
- https://eduassistpro.github.
 - $|x| \leq |y|$, or (2) $S \to \epsilon$.

Let u, v, Add Wochat edu_assist_R.pr

$$L(G) = \{ s \in \Sigma^* \mid S \stackrel{*}{\Rightarrow} s \}$$

A language which can be generated by some context-sensitive grammar is a context-sensitive language.

Context-Sensitive Grammars (Not Examinable)

A context-sensitive grammar G is a 4-tuple (Y_{Σ}, R, S), where X_{Σ} is a finite set of variables,

- Σ is a fi
- R ihttps://eduassistpro.github.
- Each rule is of the form (1) $x \rightarrow y$ and |x| Avoid (2) Chat edu_assist_pr

Theorem: A context-free language can be generated by a context-sensitive grammar.

Context-Sensitive Grammars. (Not Examinable)

This context-sensitive grammar generates $L = \{a^nb^nc^n|n \ge 1\}$: Assignment Project Exam Help $S \rightarrow aSBC \mid aBC$

https://eduassistpro.github.

 $bC \rightarrow bc$

Add WeChat edu_assist_pr

```
S \Rightarrow aSBC \Rightarrow aaSBCBC \Rightarrow aaaBCBCBC \Rightarrow aaaBBCCBC \Rightarrow aaaBBCBCC \Rightarrow aaabbBCCC \Rightarrow aaabbBCCC \Rightarrow aaabbbcCC \Rightarrow aaabbbcCC \Rightarrow aaabbbccC \Rightarrow aaabbbccC
```

Context-Sensitive Grammars. (Not Examinable)

A context-sensitive grammar G is a 4-tuple (V, Σ, R, S) , where

Assignification of the Project Exam Help

- R i
- https://eduassistpro.github.
 - $|x| \le |y|$, or (2) $S \to \epsilon$.

Let u, v, Add Wochat edu_assist_R.pr

$$L(G) = \{ s \in \Sigma^* \mid S \stackrel{*}{\Rightarrow} s \}$$

Context-sensitive languages are recognised by linear bounded automata (Turing machines with a tape of a bounded finite length)

Unrestricted Grammars. (Not Examinable)

An unrestricted grammar G is a 4-tuple (V, Σ, R, S) , where

Assignment Project Exam Help

- Σ is a finite set of terminals,
- sihttps://eduassistpro.github.

```
Let u, v, w \in (V \cup \Sigma)^*. Then uxw \Rightarrow Add We Chat edu_assist_pr
```

Languages generated by unrestricted grammars are recognised by Turing machines (Turing recognisable).

Assignment Project Exam Help

https://eduassistpro.github.

Add WeChat edu_assist_pr

Turing Machines

A Turing machine has an unbounded tape through which it takes its Assignment Project Exam Help Unlike ou https://eduassistp ro.github. both read from and write to the tape, and right over the tape. unbo

The machine has distinct accept and reject states, in which it accepts/rejects irrespective of where its tape head is.

Turing Machines Formally

Assignment Project Exam Help

- ំ ្ជាំ កំttps://eduassistpro.githប់៦.
- $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$ is the tr
- q₀ is the accept state, and hat edu_assist_pr
- $q_r \neq q_a$ is the reject state.

The Transition Function

Assignment, Project Extan Help

- current state q, and
- https://eduassistpro.github.
- over-write tape symbol x by y, and over-write tape symbol x by y, and
- move the tape head in direction d.

Drawing Turing Machines

Assignment Project Exam Help We can have a graphical notation for Turing machines similar to that

for finite a

On an ahttps://eduassistpro.github.

- $x \rightarrow d$ when $\delta(q_i, x) = (q_j, x, d)$, an $x \rightarrow d$ when $\delta(q_i, x) = (q_j, x, d)$, an $x \rightarrow d$ when $\delta(q_i, x) = (q_j, x, d)$, an

Turing Machine Example 1

Assignment Project Exam Help https://eduassistpro.github. Add WeChat edu_assist_procession This machine recognises the regular language ()*.

We can leave the reject state q_r out with the understanding that transitions that are not specified go to q_r .

Turing Machine Configurations

We write *uqv* for this configuration:

Computations Formally

For all $q_i, q_j \in Q$, $a, b, c \in \Gamma$, and $u, v \in \Gamma^*$, we have

Assignment of Project Exam Help if
$$\delta(q_i, b) = (q_j, c, L)$$

The sta https://eduassistpro.github.

M accepts w iff there is a sequence of configurat C_k such that Add WeChat $edu_assist_properties of the sequence of configurat <math>C_k$ C_k

- **1** C_1 is the start configuration q_0w ,
- ② $C_i \Rightarrow C_{i+1}$ for all $i \in \{1 \dots k-1\}$, and
- **3** The state of C_k is q_a .

Turing Machines and Languages

The set of strings accepted by M is the language of M, L(M)A sanguage A is Turing recognisable (or recursively enumerable, or just r. e.

Note cahttps://eduassistpro.github.

If A is recognized by Wechat edu_assist_property that was that we can be say that we can

A language is Turing decidable (or recursive, or just decidable) iff some Turing machine decides it.

Turing Machine Example 2

This machine decides the language $\{0^{2^n} \mid n \geq 0\}$.

Running the machine on input 000:

$$q_0000 \Rightarrow \#q_100 \Rightarrow \#xq_20 \Rightarrow \#x0q_3 \sqcup \Rightarrow \#x0 \sqcup q_r$$

The Versatility of Turing Machines

We can decide that a Turing machine produces output (not just accept/reject) through its tape. This way a Turing machine can be a decided and the produces output (not just accept/reject) through its tape. This way a Turing machine can be a decided and the produces output (not just accept/reject) through its tape. This way a Turing machine can be a decided and the produces output (not just accept/reject) through its tape. This way a Turing machine can be a decided and the produces output (not just accept/reject) through its tape. This way a Turing machine can be a decided and the produces output (not just accept/reject) through its tape. This way a Turing machine can be a decided and the produces output (not just accept/reject) through its tape. This way a Turing machine can be a decided and the produces output (not just accept/reject) through its tape. This way a Turing machine can be a decided and the produces output (not just accept/reject) through its tape. The produce can be a decided and the decided and the produce can be a decided and

We can ca entations.

For example theoretic functions N N N

number theoretic functions $\mathbb{N} \to \mathbb{N}$.

Or, by suitable encoding, it can take multiple argumassist_preturn multiple results.

A Turing machine can also solve graph problems, once we decide on a suitable representation for graphs.

Robustness of Turing Machines

Assignment Project Exam Help Most differences are minute and technical and aim at making the

machin

machin https://eduassistpro.githyub.

Similarly, in addition to the two kinds of tape movem an allow a 'Ardye op the Chat edu_assist_pr

Turing machines are robust in the sense that such changes to the machinery do not affect what the machines are capable of computing.

Variants of Turing Machines

An ansattempt to make the Dring machine nor powerful We fould p

- Let i
- Let https://eduassistpro.github.
- Let there be several tapes, each with its independent tape head.
- * Add WeChat edu_assist_pr

However, none of this increases a Turing machine'

language recogniser.

Turing Machine Example 3

This machine decides the language $\{a^ib^jc^k\mid k=i\cdot j, i,j>0\}$.

Assignment Project Exam Help

https://eduassistpro.github.

 $\begin{array}{c}
a \to R \\
b \to B, R
\end{array}$ $\begin{array}{c}
B \to R \\
b \to L
\end{array}$ $\begin{array}{c}
B \to R \\
b \to L
\end{array}$ $\begin{array}{c}
B \to B, L
\end{array}$

 $b \to R \qquad C \to L$ $C \to R$

Exercise

Design a Turing machine with input alphabet $\{a, b, c\}$ which decides Assignment $P_{roject}^{i,j,k} = 0 \land i + i \Rightarrow k$. Help $a \rightarrow A, R \rightarrow b \rightarrow a, R \rightarrow a$ https://eduassistpro.github. Add WeChat edu_assist_pr $A \rightarrow R$ $C \rightarrow I$ $a \rightarrow A, R$