Zero Knowledge Traders

Ernesto Carrella George Mason University, Krasnow Institute

May 11, 2013

Contents

■ Introduction

Zero Knowledge Seller

Zero Knowledge Firm

► Tatonnement

- ► Tatonnement
- Bilateral trading

- ► Tatonnement
- Bilateral trading
 - Gintis' evolution

- Tatonnement
- Bilateral trading
 - Gintis' evolution
 - Axtell's matching

- Tatonnement
- Bilateral trading
 - Gintis' evolution
 - Axtell's matching
 - Howitt's shops

- Tatonnement
- Bilateral trading
 - Gintis' evolution
 - Axtell's matching
 - Howitt's shops
- Learning in auctions

- Tatonnement
- Bilateral trading
 - Gintis' evolution
 - Axtell's matching
 - Howitt's shops
- Learning in auctions
 - Zero Intelligence Plus

- Tatonnement
- Bilateral trading
 - Gintis' evolution
 - Axtell's matching
 - Howitt's shops
- Learning in auctions
 - Zero Intelligence Plus
 - Gjerstad and Dickhaut

I'd like to code a trading behavior for agents that is:

Simple

- ▶ Simple
- Adaptive

- ► Simple
- Adaptive
- General Purpose

- Simple
- Adaptive
- General Purpose
- Price-Maker

- Simple
- Adaptive
- General Purpose
- Price-Maker
- And not just for trading

Contents

Introduction

Zero Knowledge Seller

Zero Knowledge Firm

Imagine a seller

- Imagine a seller
- Assume target (sell 100 units each day)

- Imagine a seller
- Assume target (sell 100 units each day)
- Seller has zero knowledge:

- Imagine a seller
- Assume target (sell 100 units each day)
- Seller has zero knowledge:
 - No knowledge what the demand looks like

- Imagine a seller
- Assume target (sell 100 units each day)
- Seller has zero knowledge:
 - No knowledge what the demand looks like
 - No knowledge who the competition is

- Imagine a seller
- Assume target (sell 100 units each day)
- Seller has zero knowledge:
 - No knowledge what the demand looks like
 - No knowledge who the competition is
 - No knowledge of the model

- Imagine a seller
- Assume target (sell 100 units each day)
- Seller has zero knowledge:
 - No knowledge what the demand looks like
 - No knowledge who the competition is
 - No knowledge of the model
- All the seller can do is set its sale price.

Zero Knowledge seller

▶ The seller sets a price and see how much it sells.

Zero Knowledge seller

- ▶ The seller sets a price and see how much it sells.
- When below target it decreases its price (and viceversa)

Zero Knowledge seller

- ▶ The seller sets a price and see how much it sells.
- When below target it decreases its price (and viceversa)
- Adapts periodically.

Sellers and PID

Given distance from target

$$e = y^* - y$$

Chooses the value of the price p

Sellers and PID

Given distance from target

$$e = y^* - y$$

Chooses the value of the price p

Updates through a simple PID controller

$$p_t = ae_t + b \int_0^t e_{\tau} d\tau + c \frac{de_t}{dt}$$

$$p_t = ae_t + b\sum_{0}^{t} e_{ au} d au + crac{de_t}{dt}$$

▶ PID Controllers use no information.

- ▶ PID Controllers use no information.
- PID Controllers assume no model knowledge.

- ▶ PID Controllers use no information.
- ▶ PID Controllers assume no model knowledge.
- Feed-Forwarding

- ▶ PID Controllers use no information.
- ▶ PID Controllers assume no model knowledge.
- Feed-Forwarding
- Easily split targeting and maximizing.

PID Controllers: Drawbacks

▶ 3+1 parameters per controller

PID Controllers: Drawbacks

- ▶ 3+1 parameters per controller
 - Draw from a generating distribution
 - Endogenize through evolution
 - Auto-tune

PID Controllers: Drawbacks

- ▶ 3+1 parameters per controller
 - Draw from a generating distribution
 - Endogenize through evolution
 - Auto-tune
- Lumpy World

PID Controllers: Drawbacks

- ▶ 3+1 parameters per controller
 - Draw from a generating distribution
 - Endogenize through evolution
 - Auto-tune
- Lumpy World
- Windup and saturation

A seller test

Sample Run 1

Figure: A sample run with the PID controller finding the right price

Sample Run 2

Figure: Another sample run, with inventory driven undershoot

A twist

A twist

Tinkering over Learning

Figure: The seller adapts, without being told

Contents

Introduction

Zero Knowledge Seller

Zero Knowledge Firm

Where do targets come from?

► Trading is nice, but producing and trading is better

Where do targets come from?

- Trading is nice, but producing and trading is better
- ► A full theory of a firm.

Where do targets come from?

- Trading is nice, but producing and trading is better
- A full theory of a firm.
- ► Tinkering, independent units.

Zero Knowledge Firm

Zero Knowledge Firm

Monopolist

▶ Add one firm, with a single plant and a sales department.

- Add one firm, with a single plant and a sales department.
- ▶ The firm has absolutely no knowledge of the world

- Add one firm, with a single plant and a sales department.
- The firm has absolutely no knowledge of the world
- What will happen?

Model Monopolist

Model Monopolist

Model Monopolist, different hill-climber

Competitive

Just as before, but now 5 firms

Zero Knowledge Firm

In the model

- ▶ Just as before, but now 5 firms
- ▶ The firms have no knowledge of each other

Zero Knowledge Firm

In the model

- ▶ Just as before, but now 5 firms
- ▶ The firms have no knowledge of each other
- What will happen?

Model Competition, volume

Model Competition, price

