Multi-Task and Transfer Learning in Low-Resource Speech Recognition

Joshua Meyer

PhD Candidate
Department of Linguistics
University of Arizona

Roadmap

- Overview of Transfer Learning
 - Multi-Task Learning
 - Copy-Paste Transfer
- Multi-Task Learning Studies
 - Linguistic Tasks
 - Engineered Tasks
 - Discovered Tasks
- Copy-Paste Transfer Studies
 - Multilingual Transfer
 - Model Interpretability
- Conclusion

Introduction

Motivation

Current training methods for automatic speech recognition require massive collections of data.

However, most use-cases have little — if any — available data.

Motivation

Current training methods for automatic speech recognition require massive collections of data.

However, most use-cases have little — if any — available data.

Motivation

Current training methods for automatic speech recognition require massive collections of data.

However, most use-cases have little — if any — available data.

But we can exploit similar use-cases!

"THE DOG"

"THE DOG"

ASR Acoustic Modeling

T H E D O G

Phonetic Labels

Phonetic Labels

Phonetic Labels

Phonetic Labels

Multi-Task Learning

But first, what is a task?

Multi-Task Learning

{rottweiler, large}

{collie, large}

{terrier, small}

Multi-Task Learning

{collie, large}

{terrier, small}

Multi-Task Learning

{collie, large}

{terrier, small}

Multi-Task Learning

{collie, large}

{terrier, small}

Multi-Task Studies

Monolingual Experiments

	$\mathbf{WER}\%$		
Auxiliary Tasks	Triphones	Monophones	
STL Baseline	41.67		
Voice	41.16	42.36	
Place	42.66	40.61	
Manner	42.03	41.70	
Voice + Place	42.90	41.49	
Voice + Manner	42.45	42.66	
Place + Manner	42.66	41.82	
Voice + Manner + Place	42.42	42.72	

Monolingual Experiments

	$\mathbf{WER}\%$				
Auxiliary Tasks	Triphones	Monophones			
STL Baseline	41.67				
Voice	41.00	40.43			
Place	41.37	41.46			
Manner	40.43	41.34			
Voice + Place	41.31	41.28			
Voice + Manner	41.25	42.18			
Place + Manner	42.03	42.48			
Voice + Manner + Place	41.64	41.88			

Multilingual Experiments

	$\mathbf{WER}\%$			
Auxiliary Tasks	Triphones	Monophones		
STL Baseline	5	3.07		
Phonemes	53.95	52.78		
Voice	54.05	53.85		
Place	55.22	53.95		
Manner	53.37	53.27		
Voice + Place	55.22	53.46		
Voice + Manner	55.12	53.46		
Place + Manner	55.51	53.66		
Voice + Manner + Place	54.15	54.44		

Multilingual Experiments

	$\mathbf{WER}\%$			
Auxiliary Tasks	Triphones	Monophones		
STL Baseline	53.07			
Phonemes	51.80	51.61		
Voice	52.39	53.46		
Place	51.90	52.29		
Manner	52.00	51.80		
Voice + Place	52.68	52.78		
Voice + Manner	$\boldsymbol{51.22}$	$\boldsymbol{51.32}$		
Place + Manner	50.83	53.66		
Voice + Manner + Place	52.78	52.39		

Copy-Paste Transfer Studies

Quick Overview of DeepSpeech

Model Architecture

Transfer Experiments on ASR

Experimental Design

- 5 depths for slicing source model
- x 2 update scenarios (frozen vs. fine-tuned)
- x 12 target languages

TOTAL == 120 experiments

Hyperparameters

Single GPU training

24 train batch, 48 dev batch

20% dropout rate

0.0001 learning rate with ADAM

Early stopping based on last 5 steps

Data (Spoken Corpora)

Frozen Transfer Results

	Character Error Rate						
	Νι	ımber of	Layers C	Copied fr	om Engl	ish	
Lang.	None	1	2	3	4	5	
sl	23.35	23.93	25.30	18.87	17.53	26.24	
ga	31.83	29.08	36.14	27.22	29.07	32.27	
CV	48.10	46.13	47.83	38.00	35.23	42.88	
br	21.47	19.17	20.76	18.33	17.72	21.03	
tr	34.66	32.98	35.47	33.00	33.66	36.71	
it	40.91	39.20	41.55	38.16	39.40	43.21	
су	34.15	32.46	33.93	31.57	35.26	36.56	
tt	32.61	29.20	30.52	27.37	28.28	31.28	
ca	38.01	36.44	38.70	36.51	42.26	47.96	
fr	43.33	43.30	43.47	43.37	43.75	43.79	
kab	25.76	25.57	25.97	25.45	27.77	29.28	
de	43.76	44.48	44.08	43.70	43.77	43.69	

Table 2. Frozen Transfer Learning Character-error rates (CER)

Frozen Transfer Results

	Character Error Rate						
	Νι	ımber of	Layers C	Copied fr	om Engl	ish	
Lang.	None	1	2	3	4	5	
sl	23.35	23.93	25.30	18.87	17.53	26.24	
ga	31.83	29.08	36.14	27.22	29.07	32.27	
CV	48.10	46.13	47.83	38.00	35.23	42.88	
br	21.47	19.17	20.76	18.33	17.72	21.03	
tr	34.66	32.98	35.47	33.00	33.66	36.71	
it	40.91	39.20	41.55	38.16	39.40	43.21	
су	34.15	32.46	33.93	31.57	35.26	36.56	
tt	32.61	29.20	30.52	27.37	28.28	31.28	
ca	38.01	36.44	38.70	36.51	42.26	47.96	
fr	43.33	43.30	43.47	43.37	43.75	43.79	
kab	25.76	25.57	25.97	25.45	27.77	29.28	
de	43.76	44.48	44.08	43.70	43.77	43.69	

Table 2. Frozen Transfer Learning Character-error rates (CER)

Frozen Transfer Results

	Character Error Rate						
	Νι	ımber of	Layers C	Copied fr	om Engl	ish	
Lang.	None	1	2	3	4	5	
sl	23.35	23.93	25.30	18.87	17.53	26.24	
ga	31.83	29.08	36.14	27.22	29.07	32.27	
CV	48.10	46.13	47.83	38.00	35.23	42.88	
br	21.47	19.17	20.76	18.33	17.72	21.03	
tr	34.66	32.98	35.47	33.00	33.66	36.71	
it	40.91	39.20	41.55	38.16	39.40	43.21	
су	34.15	32.46	33.93	31.57	35.26	36.56	
tt	32.61	29.20	30.52	27.37	28.28	31.28	
ca	38.01	36.44	38.70	36.51	42.26	47.96	
fr	43.33	43.30	43.47	43.37	43.75	43.79	
kab	25.76	25.57	25.97	25.45	27.77	29.28	
de	43.76	44.48	44.08	43.70	43.77	43.69	

Table 2. Frozen Transfer Learning Character-error rates (CER)

Fine-Tuning Transfer Results

Character Error Rate Number of Layers Copied from English						
	Ni	imber of	Layers (Copied fr	om Engl	ish
Lang.	None	1	2	3	4	5
sl	23.35	21.65	26.44	19.09	15.35	17.96
ga	31.83	31.01	32.2	27.5	25.42	24.98
CV	48.1	47.1	44.58	42.75	27.21	31.94
br	21.47	19.16	20.01	18.06	15.99	18.42
tr	34.66	34.12	34.83	31.79	27.55	29.74
it	40.91	42.65	42.82	36.89	33.63	35.10
СУ	34.15	31.91	33.63	30.13	28.75	30.38
tt	32.61	31.43	30.80	27.79	26.42	28.63
ca	38.01	35.21	39.02	35.26	33.83	36.41
fr	43.33	43.26	43.51	43.24	43.20	43.19
kab	25.76	25.5	26.83	25.25	24.92	25.28
de	43.76	43.69	43.62	43.60	43.76	43.69

Table 3. Fine-Tuned Transfer Learning Character-error rates (CER)

Fine-Tuning Transfer Results

Character Error Rate						
	Νι	ımber of	Layers (Copied fr	om Engl	ish
Lang.	None	1	2	3	4	5
sl	23.35	21.65	26.44	19.09	15.35	17.96
ga	31.83	31.01	32.2	27.5	25.42	24.98
CV	48.1	47.1	44.58	42.75	27.21	31.94
br	21.47	19.16	20.01	18.06	15.99	18.42
tr	34.66	34.12	34.83	31.79	27.55	29.74
it	40.91	42.65	42.82	36.89	33.63	35.10
СУ	34.15	31.91	33.63	30.13	28.75	30.38
tt	32.61	31.43	30.80	27.79	26.42	28.63
ca	38.01	35.21	39.02	35.26	33.83	36.41
fr	43.33	43.26	43.51	43.24	43.20	43.19
kab	25.76	25.5	26.83	25.25	24.92	25.28
de	43.76	43.69	43.62	43.60	43.76	43.69

Table 3. Fine-Tuned Transfer Learning Character-error rates (CER)

Interpretability Experiments

Regression on Embeddings

Regression on Embeddings

Regression on Embeddings

Speech vs. Noise

- Copied layers, added final FC layer with single output and logistic activation
- 13 languages vs. UrbanSound8k
- 5,005 train clips, 442 test clips per class

Classification Accuracy							
Number of Layers Copied from English							
1	2	3	4	5	6		
51.01	93.68	92.82	95.30	94.55	93.53		

Table 4. Speech vs. Non-Speech Audio Classification Accuracy

- Copied layers, added final FC layer with single output and logistic activation
- 13 languages vs. UrbanSound8k
- 5,005 train clips, 442 test clips per class

Table 4. Speech vs. Non-Speech Audio Classification Accuracy

- Copied layers, added final FC layer with single output and logistic activation
- 13 languages vs. UrbanSound8k
- 5,005 train clips, 442 test clips per class

English vs. German

English vs. German

- Copied layers, added final FC layer with single output and logistic activation
- English vs. German
- 5,000 train clips, 500 test clips per class

English vs. German

Table 5. English vs. German Audio Classification Accuracy (%)

Classification Accuracy							
Number of Layers Copied from English							
1	2	3	4	5	6		
51.01	93.68	92.82	95.30	94.55	93.53		

Table 4. Speech vs. Non-Speech Audio Classification Accuracy

	Classification Accuracy							
Νι	Number of Layers Copied from English							
1	2	3	4	5	6			
66.51	66.38	52.77	86.21	74.97	85.00			

Table 5. English vs. German Audio Classification Accuracy (%)

Discussion

Discussion

- 1) Transfer in ASR
 - Fine-tuning always helps
 - LSTM transfer is best, but only with fine-tuning
- 2) Interpretability Studies
 - At the third layer, the model has learned general speech, but language-agnostic representations

Thank you for your attention!

APPENDIX B: DeepSpeech

Data Details

		Dataset Size					
		Audio Clips			Unique Speakers		
Language	Code	Dev	Test	Train	Dev	Test	Train
Slovenian	sl	110	213	728	1	12	3
Irish	ga	181	138	1001	4	12	6
Chuvash	CV	96	77	1023	4	12	5
Breton	br	163	170	1079	3	15	7
Turkish	tr	407	374	3771	32	89	32
Italian	it	627	734	5019	29	136	37
Welsh	СУ	1235	1201	9547	51	153	75
Tatar	tt	1811	1164	11187	9	64	3
Catalan	са	5460	5037	38995	286	777	313
French	fr	5083	4835	40907	237	837	249
Kabyle	kab	5452	4643	43223	31	169	63
German	de	7982	7897	65745	247	1029	318

Table 1. Number of audio clips and unique speakers per language per dataset split.

Effect of Data Size

