

e-Journal

Peternakan Tropika

Journal of Tropical Animal Science

email: peternakantropika ejournal@yahoo.com email: jurnaltropika@unud.ac.id

Udayana

PENGARUH SUPLEMENTASI MINYAK IKAN LEMURU (Sardinela longiseps) DALAM KONSENTRAT-MOLAMIKSTERHADAP POTONGAN PRIMAL KARKASSAPI BALI

Mahardhika A.I. G, N.L.P. Sriyani, dan A. A. Oka

Fakultas Peternakan, Universitas Udayana, Denpasar Hp; +6281337875308, E-mail: mahardhikaatmaja@ymail.com

ABSTRAK

Penelitian mengenai pengaruh suplementasi minyak ikan lemuru dalam konsentratmolamiksterhadap sapi bali jantan dilakukan di desa Gobleg dan di RPH Temesi untuk pemotongan. Materi yang digunakan dalam penelitian ini berupa sapi bali jantan yang berjumlah 12 ekor. Tujuan dari penelitian ini untuk mengetahui pengaruh suplementasi minyak ikan dalam ransum terhadappersentase potongan primal karkas sapi bali.Pengaruh pemberian perbedaan level suplementasi minyak ikan dalam ransum terhadap persentase potongan primal karkas sapi.

Rancangan yang digunakan dalam penelitian ini adalah Rancangan Acak Kelompok, dengan tiga perlakuan ransum dan empat blok berat badan sehingga terdapat 12 unit percobaan. Sapi-sapi dialokasikan secara acak kedalam tiga perlakuan, yaitu sapisapi yang mendapat perlakuan kontrol RKMBI₀yaitu konsentrat-molamiks tanpa minyak ikan, RKMBI5konsentrat-molamiks berminyak ikan 5%, dan RKMBI10konsentratmolamiks berminyak ikan 10%. Rumput gajah diberikan secara ad-libitum yang dipotong dengan mesin chopper pada semua perlakuan. Konsentrat diberikan dua kali sehari sebanyak 3 kg/hari yang dicampur bersama rumput

Hasil penelitian menunjukkan bahwa suplementasi minyak ikan lemuru dan peningkatan level suplementasi minyak ikan dalam konsentrat-molamiks tidak memberikan pengaruh nyata terhadap potongan primal karkas sapi bali bagian forequarter maupun *hindquater*.

Kata kunci: minyak ikan lemuru, potongan primal karkas

EFFECTS OF LEMURU FISH OIL (Sardinela longiseps) SUPPLEMENTATION IN CONCENTRATE-MOLAMIX TO PRIMAL **CUT OF BALL CATTLE CARCASS**

ABSTRACT

A study on the effects of lemuru fish oil supplementation in concentrate-molamix was carried out on male balicattle in the Gobleg village and in the abattoirTemesifor cutting process. The material usedwere twelve male bali cattle in this study. The aim of this research was to determine influence of lemuru fish oil supplementation on the percentage of primal cut carcass of bali cattle.

Randomized Complete Block Design was used in this study. There were 12 experimental units consisted of three treatments of diet and four blocks of live weight. The cattle were randomly allocated into threediet treatmentgroups. Cattle feed concentratemolamix without fish oil were plotted as a control (RKMBI₀) while the other groupswere cattle feed concentrate-molamix with 5% fish oil (RKMBI₅) and cattle fed concentratemolamix with 10% fish oil (RKMBI₁₀). All treatment groups were fed elephant grass *adlibitum* and 3 kg/day concentrate twice daily.

This study showed that supplementation of lemuru fish oil in the concentrate-molamix did not significantly affect the primal cuts of bali cattle carcasses either their forequarters and hindquarters.

Keywords: lemuru fish oil, primal cut carcas

PENDAHULUAN

Industri peternakan penggemukan sapi di Bali pada umumnya masih bersifat tradisional, dimana dalam pemberian pakannya hanya bertujuan untuk meningkatkan berat badan. Belum banyak pemberian pakan secara khusus ditunjukan untuk meningkatkan kualitas daging. Pertambahan berat badan sapi jantan dengan pakan rumput saja 0,23 kg/hari (Saka 2001). Pakan yang diberikan dalam bentuk konsentrat-*molamiks* sangat diperlukan dalam meningkatkan produksi ternak sapi bali. Konsentrat-*molamiks* selain mengandung molasis dan mineralmix juga mengandung mineral S, Zn, dan N (nitrogen) yang secara keseluruhan mampu berfungsi sebagai metabolik modulator dalam meningkatkan serapan dan efisiensi pemanfaatan nutrient, untuk proses produksi (Putra, 2006). Selain itu, suplementasi sumber energi (minyak ikan) juga akan mampu meningkatkan kualitas pakan yang nantinya akan mempengaruhi produksi karkas dan potongan primal karkas yang dihasilkan.

Karkas merupakan produk utama yang dihasilkan dari pemotongan ternak karena memiliki nilai ekonomis yang tinggi. Dari karkas yang dihasilkan ini dapat dibuat berbagai potongan primal karkas yang mempunyai nilai ekonomi. Namun dari berbagai potongan primal karkas ini tidak sama harga jualnya, sehingga ada potongan primal karkas yang harganya mahal, sedang dan rendah. Terjadinya disparitas harga antara potongan primal yang satu dengan potongan primal karkas yang lain menyebabkan adanya istilah potongan utama karkas dengan nilai jual yang tinggi. Potongan primal karkas utama (*primal cut*) yang memiliki nilai jual yang mahal adalah *short loin*, *sirloin*, dan *prime rib*.

Suplementasi minyak ikan lemuru sebagai sumber asam lemak rantai panjang tidak jenuh diharapkan dapat meningkatkan efisiensi energi yang mengarah pada peningkatan energi yang tersedia. Asam lemak tidak jenuh ganda teroksidasi lebih cepat dari pada asam lemak jenuh maupun asam lemak tidak jenuh tunggal (Sardesi, 1992). Lemak dan minyak merupakan sumber energi paling padat, yang menghasilkan 9 kalori untuk tiap gram, yaitu 2½ kali besar energi yang dihasilkan oleh karbohidrat dan protein dalam jumlah yang sama. Asam lemak tidak jenuh dapat menurunkan gas methan (CH₄),

meningkatkan produksi asam propionat dan menurunkan nisbah antara asam asetat dengan asam propionat. Sebagian besar energi yang dimanfaatkan oleh ternak pedaging berasal dari proses glukoneogenesis asam propionat. Dengan meningkatnya proporsi asam propionat, dan menurunnya gas methan (CH₄) diharapkan efisiensi energi meningkat.Kondisi seperti ini sangat menunjang peningkatan pertumbuhan ternak ruminansia, yang berakibat pada peningkatan produksi karkas dan potongan primal karkas.

Sehubungan dengan hal tersebut diatas maka penelitian ini dilakukan untuk mengetahui persentase bagian-bagian potongan primal karkas (*primal cuts*) sapi bali sebagai akibat adanya perlakuan tingkat suplementasi minyak ikan yang berbeda dalam ransum yang diberikan selama penelitian. Penelitian ini diharapkan memberikan manfaat sebagai bahan informasi bagi masyarakat mengenai perlakuan efektif berupa banyaknya tambahan minyak ikan dalam ransum sapi bali yang tepat dalam upaya meningkatkan persentase potongan primal karkas sapi bali serta sebagai bahan informasi bagi peneliti selanjutnya.

Berdasarkan latar belakang di atas, maka dapat dirumuskan masalah sebagai berikut; (1) Apakah pemberian konsentrat-molamiks berminyak ikan dapat meningkatkan persentase potongan primal karkas (primal cuts) sapi bali?, dan (2) Berapakah persentase suplementasi minyak ikan dalam konsentrat-molamiks untuk menghasilkan persentase potongan primal karkas yang optimal?. Penelitian ini bertujuan untuk mengetahui persentase potongan primal karkas sapi bali akibat suplementasi minyak ikan dalam konsentrat-molamiks dapat berpengaruh terhadap persentase potongan primal karkas sapi bali.

MATERI DAN METODE

Materi

Materi yang digunakan dalam penelitian ini adalah sapi bali jantan dengan ratarata umur dua setengah tahun (I₂) yang diperoleh dari pasar hewan Bringkit Badung. Jumlah sapi bali jantan yang dipergunakan dalam penelitian ini sebanyak 12 ekor dengan kondisi fisik yang heterogen.

Pakan yang digunakan dalam penelitian ini terdiri atasdua jenis pakan yaitu hijauan (rumput gajah) yang diberikan secara *ad-ibitum* sebagai pakan dasar dan konsentrat 3 kg/ekor/hari dalam bentuk *mash* (tepung) yang disusun berdasarkan perhitungan

komposisi zat-zat makanan menurut rekomendasi Kearl (1982) yang tersaji pada Tabel 1. Pemberian air minum diberikan sekali dalam sehari yaitu pada pukul 14.00 Wita diberikan pada ternak sampai ternak itu merasa cukup dan puas untuk minum.

Metode

Rancangan yang digunakan dalam penelitian ini adalah Rancangan Kelompok Lengkap Teracak (randomized complete block design), dengan tiga perlakuan ransum dan empat blok atau kelompok berat badan sehingga terdapat 12 unit percobaan. Ketiga perlakuan tersebut adalah:RKMBI₀: Rumput gajah + tambahan konsentrat-molamiks berminyak ikan 0%, RKMBI₅: Rumput gajah + tambahan konsentrat-molamiks berminyak ikan 5%, RKMBI₁₀: Rumput gajah + tambahan konsentrat-molamiks berminyak ikan 10%. Rasio pemberian rumput gajah : konsentrat RKMBI₀ = 65,06: 34,9,rasio pemberian rumput gajah : konsentrat RKMBI₅ = 63,58: 36,42, rasio pemberian rumput gajah : konsentrat RKMBI₁₀ = 63,05: 36,9.

Tabel 1. Komposisi Nutrient Rumput Gajah dan Konsentrat

Nutrien Ransum	Komposisi Nutrient				
	Rumput Gajah	KMBI 0	KMBI 5	KMBI 10	
Bahan Kering (%)	23,50	89,97	90,6	90,53	
Energi (Kkal/kg)	3.928,92	4.499,27	4.603,75	4.826,02	
Protein kasar (%)	6,56	20,71	19,60	18,65	
Lemak kasar (%)	2,04	9,30	11,78	15,34	
NDF(%)	78,94	46,14	44,71	46,02	
ADF (%)	56,12	23,38	23,92	22,18	
Kadar abu(%)	14,69	11,17	10,37	10,05	
Bahan organic (%)	85,31	88,83	89,62	89,95	
Linolenat (%)	-	0,48	0,48	0,47	

Sumber; Sriyani (2013)

Analisis pada labolatorium Balai Penelitian Ternak Ciawi Bogor dan labolatorium terpadu IPB.

Keterangan : KMBI₀ KMBI₅

= konsentrat-molamiks tanpa minyak ikan = konsentrat-molamiks berminyak ikan 5%

KMBI₁₀ = konsentrat-molamiks berminyak ikan 10%

Pada saat sapi bali tiba di RPH ditimbang berat badannya, setelah itu ditempatkan di kandang peristirahatan.Keesokan harinya sebelum sapi disembelih dilakukan penimbangan kembali dan pendataan.Kemudian setelah sapi disembelih dilakukan pembagian karkas kanan dan kiri, serta diberi tanda sebelum dimasukkan ke ruang pelayuan selama 24 jam.Keesokan harinya sampel diambil lagi dan dikeluarkan dari ruang pelayuan, kemudian ditentukan tempat pemotongan sampel yaitu pada daerah antara rusuk ke 12 dan

13. Sebelum di potong menjadi uraian potongan primal karkas *forequarter* dan *hindquarter* ditimbang untuk menentukan berat awal sebelum penguraian karkas. Penguraian karkas mengunakan metode USDA (1965 dikutip Levie, 1977) seperti tersaji pada Gambar 1.

Gambar 1. Potongan Primal Karkas Sapi Dewasa (Beef) (Levie, 1977)

Variabel yang diamati dalam penelitian adalah persentase potongan primal karkas bagian *hindquarter* yaitu1. *Rump*, 2. *Round*, 3. *Hind shank*, 4. *Sirloin*, 5. *Short loin* dan 6. *Flank*, danpersentase potongan primal karkas bagian *forequarter* yaitu7. *Prime rib*, 8. *Plate*, 9. *Chuck*, 10. *Brisket*, 11. *Fore shank*, dan 12. *Neck*. Data yang diperoleh dianalisa dengan Sidik Ragam, apabila diantara perlakuan terdapat perbedaan yang nyata (P<0.05), maka analisis dilanjutkan dengan Uji Jarak Berganda Duncan dengan tingkat signifikan 5% (Steel dan Torrie, 1991).

Penelitian ini dilaksanakan di kebun milik Ibu Yani Yuhani Panigoro yang dikelola oleh PT. Sarana Bali Ventura Denpasar di Dusun Asah, Desa Gobleg, Kecamatan Banjar, Kabupaten Buleleng, Provinsi Bali. Penelitian berlangsung selama empat bulan untuk pemeliharaan dan di rumah pemotongan hewan (RPH) Mergantaka, Temesi, Gianyar untuk perecahan karkas selama satu minggu.

HASIL DAN PEMBAHASAN

Hasil penelitian menunjukkan suplementasi minyak ikan lemuru dalam konsentratmolamiks tidak menunjukan perbedaan nyata (P>0,05) diantara persentase berat karkas
(Tabel 2).Besarnya berat karkas sangat dipengaruhioleh kondisi ternak saat sebelum
dipotongdan berat kosong tubuh ternak. Berat potongsangat berhubungan erat dengan
pertumbuhan.Pertumbuhan sangat ditentukan oleh faktor pakanyang diberikan sehingga
dapat menghasilkan beratpotong yang maksimal. Kondisi tersebut sangat
berpengaruhlangsung terhadap berat karkas danpersentase karkas. Menurut Soeparno

(2005), berathidup berkorelasi dengan persentase lemak karkas,persentase karkas berkisar antara 50-60%.

Hasil analisis statistik menunjukan bahwa rataan persentase potongan primal karkas bagian *prime rib* dari ketiga perlakuan masing-masing RKMBI₀ adalah 8,38%, yang lebih rendah 5,01% dari perlakuan RKMBI₅ dan 3,70% lebih rendah dari perlakuan RKMBI₁₀. Sementara rataan potongan primal karkas perlakuan RKMBI₅ adalah 8,80%, yang lebih tinggi 1,25% dari perlakuan RKMBI₁₀. Secara statistik tidak berbeda nyata (P>0,05) tabel 2. Hasil yang tidak berbeda nyata ini diduga akibat perlakuan pemotongan ternak dan faktor penimbangan karkas setelah pemotongan, Soeparno (2005) menyatakan bahwa bobot hidup berkorelasi denganpersentase karkas. Hasil ini sejalan dengan penelitian Sriwijayanti *et al.*, 2012, faktor umur yang sama tidak akan mempengaruhi persentase potongan primal karkas depan *(forequater)* yang dihasilkan, bahwa sapi bali umur muda (1,5-2,5 tahun) dan umur dewasa (3-4 tahun), tidak memiliki hubungan dengan berat karkas depan ditinjau dari potongan primal karkas.

Tabel 2. Pengaruh Suplementasi Minyak Ikan Lemuru pada Konsentrat-*Molamiks* terhadap Persentase Potongan Primal Karkas Bagian Forequarter dan Hindquarter

Variabel		Perlakuan		
	RKMBI ₀	RKMBI 5	RKMBI 10	SEM
Berat Karkas (Kg)	160,50 a	146,10 a	143,65 a	6,84
Forequarter				
Prime Rib (%)	$8,38^{a}$	$8,80^{a}$	$8,69^{a}$	0,28
Plate (%)	6,21a	$6,28^{a}$	5,71 ^a	0,32
Brisket (%)	$6,70^{a}$	$6,67^{a}$	$6,36^{a}$	0,30
Chuck (%)	$24,37^{a}$	$23,32^{a}$	23,38a	0,55
Neck (%)	$2,59^{a}$	2,61a	$2,54^{a}$	0,10
Fore Shank (%)	$3,17^{a}$	$3,15^{a}$	3,54 ^a	0,14
Hindquarter				
Round (%)	$9,80^{a}$	11,44 ^a	10,99 a	0,66
Rump (%)	7,63 a	7,80 a	7,77 a	0,25
Sir Loin (%)	8,76 a	8,89 a	8,71 a	0,20
Shorth Loin (%)	11,7 a	10,46 a	11,54 a	0,44
Flank (%)	2,25 a	2,42 a	2,09 a	0,35
Hind Shank (%)	7.18 a	7, 53 a	8,23 a	0,58

Keterangan:

RKMBI₀ = Ransum kontrol (Rumput gajah + konsentrat-molamiks tanpa minyak ikan)

RKMBI₅ = Rumput gajah + konsentrat-molamiks berminyak ikan 5%

RKMBI₁₀ = Rumput gajah + konsentrat-molamiks berminyak ikan 10%

= Huruf superscript pada kolom yang sama menunjukkan perbedaan yang tidak nyata

(p>0,05)

SEM = Standar Error of the Treatmet Means

Bobot karkas, persentase karkas, komponen karkas (tulang dan daging), dan *meat-bone ratio*, sangat dipengaruhi oleh kualitas, konsumsi dan komposisi nutrisi bahan penyusun pakan yang digunakan dalam penelitian. Jenis pakan, komposisi kimia dankonsumsi pakan berpengaruh besar terhadap pertumbuhan. Konsumsi protein dan energi yang lebihtinggi akan menghasilkan laju pertumbuhan yanglebih cepat (Soeparno, 2005). Selama penelitian berlangsung konsumsi bahan kering pada sapi perlakuan RKMBI₅ dan RKMBI₁₀ sangat nyata lebih rendah (P<0,01) dibandingkan dengan sapi perlakuan RKMBI₀, turunnya konsumsi bahan kering ini diikuti oleh turunnya konsumsi bahan organik, protein, energi, ADF (*acid detergent fiber*) dan NDF (*neutral detergent fiber*) kecuali konsumsi lemak yang tersaji pada Tabel 3.

Tabel 3. Pengaruh Suplementasi Minyak Ikan pada Konsentrat-*Molamiks* Terhadap Konsumsi Bahan Kering dan Nutrien Ransum

Variabel	Ransum Perlakuan			SEM	Cia
	RKMBI ₀	RKMBI ₅	RKMBI ₁₀	SEM	Sig
Bahan Kering (kg)	6,86a	5,85 ^b	5,36°	0,32	**
Bahan Organik (g/e/h)	5936,30a	$5086,30^{b}$	4665,10°	55,95	**
Protein (g/e/h)	789,01a	$662,08^{b}$	591,01°	9,24	**
Energi (kkal)	28230,41a	24500,00 ^b	22040,30°	235,6	**
NDF(g/e/h)	$4629,70^{a}$	$3892,50^{b}$	$3580,60^{c}$	40,56	**
ADF (g/e/h)	3065,30a	2599,01 ^b	2336,30°	19,08	**
Lemak (g/e/h)	314,55°	327,03 ^b	$372,86^{a}$	3,45	**

Sumber: Sriyani 2013

Keterangan:

 $RKMBI_0 \ = Ransum \ kontrol \ (\ rumput \ gajah + konsentrat \textit{-}molamik \textit{s} tanpa \ minyak \ ikan)$

RKMBI₅ = Rumput gajah + konsentrat-molamiks berminyak ikan 5%

RKMBI₁₀ = Rumput gajah + konsentrat-molamiks berminyak ikan 10%

** = Berbeda sangat nyata (P<0,01)

SEM = Standar Error of the Treatmet Means

Tabel 4. Pengaruh Suplementasi Minyak Ikan pada Konsentrat-Molamiks Terhadap Kecernaan Bahan Kering dan Nutrien Ransum (%)

Variabel -	Ra	Ransum Perlakuan			Sia
	RKMBI ₀	RKMBI ₅	RKMBI ₁₀	- SEM	Sig
Bahan Kering	55,80	59,11	60,15	1,41	ns
Protein	76,17	77,69	78,29	0,77	ns
NDF	46,37	51,30	52,20	1,07	ns
Bahan Organik	59,95	63,48	63,98	1,27	ns
Lemak	81,51°	$85,08^{b}$	89,87ª	0,50	*

Sumber: Sriyani 2013

Keterangan:

RKMBI₀ = Ransum kontrol (rumput gajah + konsentrat-molamikstanpa minyak ikan)

 $RKMBI_5 = Rumput \ gajah + konsentrat-molamiks \ berminyak \ ikan 5\%$

 $RKMBI_{10} = Rumput gajah + konsentrat-molamiks berminyak ikan 10%$

* = Berbeda nyata (P < 0.05)

ns = Non significant

SEM = Standar Error of the Treatmet Means

Walaupun tingkat konsumsi bahan kering dan bahan organik rendah tidak mempengaruhi tingkat kecernaan dari sapi-sapi pada tiga perlakuan, justru tingkat kecernaan bahan kering, protein, NDF(neutral detergent fiber), dan bahan organik tidak menunjukkan perbedaan yang nyata (P>0,05) seperti tersaji pada Tabel 4, bahkan tingkat kecernaan lemak semakin meningkat sejalan dengan peningkatan suplementasi minyak dalam ransum. Konsumsi bahan kering menurun, akan tetapi ternak akan mengefesienkan pemanfaatan bahan kering yang dimakan untuk kebutuhan produksinya. Oleh karena itu penurunan konsumsi tidak akan mempengaruhi perbedaan persentase dari potongan primal karkas bagian forequater dan hindquarter yang dihasilkan dari perbedaan level suplementasi minyak ikan dalam ransum.

SIMPULAN DAN SARAN

Simpulan

Berdasarkan hasil penelitian diatas maka dapat disimpulkan bahwasuplementasi dan peningkatan level minyak ikan lemuru dalam konsentrat-*molamiks* tidak memberikan pengaruh nyata terhadap berat potongan primal karkas sapi bali yang dihasilkan.

Saran

Dalam pemanfaatan limbah minyak ikan lemuru yang berkualitas rendah sebagai pakan ternak ruminansia perlu dilakukan proses pengadaptasian ternak yang lebih lama untuk hasil yang lebih optimal.Perlu dilakukan pemrosesan lebih lanjut minyak ikan lemuru yang digunakan sebagai pakan ternak untuk menekan bau amis sehingga, akseptebilitas dan palatabilitasnya dapat meningkat.Perlu dilakukan penelitian lebih lanjut guna mengetahui efektifitas suplementasi minyak ikan dalam meningkatkan persentase potongan primal karkas sapi bali jantan.

UCAPAN TERIMAKASIH

Pada kesempatan ini kami mengucapkan banyak terimakasih kepada Rektor Universitas Udayana dan DekanFakultas Peternakan Universitas Udayanabapak Dr. Ir. Ida Bagus Gaga Partama, MS atas pelayanan administrasi dan fasilitas pendidikan yang diberikan kepada penulisselama menjalani perkulihaan.Kepada pihak P.T Sarana Bali Ventura (SBV) dan pak Haji Amir direktur P.T Sarana Duta Berlian sebagai pengelola

RPH dan rekan sejawat I Putu Gede Ardiyasa atas kesempatan bekerjasama dalam melaksanakan penelitian ini sehingga dapat berlangsung lancar dan selesai tepat waktu.

DAFTAR PUSTAKA

- Ashes, J.R., B.D. Siebert, S.K. Gulati, A.Z. Cuthbertson, and T.W. Scott. 1992. Incorporation of n-3 Fatty acids of fish oil into tissue and serum lipids of ruminants. Lipids, 27:629631.
- Christie.WW. 1979.The Composition Structure and Fuction of Lipids in the Tisues in Ruminant Animals. In; W.W Christie (ed). Lipid metabolism in ruminant animals. Pergamon Press. New York. PP. 95-190
- Hafes, E.S.S. 1975. Reproduction in Farm Animals. 3rd Edition. USA: Lea and Febiger publishing, PP. 101-141
- Kearl, L.C. 1982. Nutrient Requirement of Ruminants in Developing Countries.International Feedstuff Institute Utah Agric. Exp. Sta. Utah State Univ. Logan Utah, USA.
- Levie, A. 1977.The Meat Handbook.3^d end.The Avi Publishing Co., Inc., Westport, Connecticut, USA.
- Putra, S. 2006. Brosur mineralmix untuk temak sapi dan kambing. Jurusan Nutrisi dan Pakan Temak, Fakultas Petemakan, Universitas Udayana, Denpasar.
- Saka, I K 2001. Perbaikan dan peningkatan produksi ternak potong dengan pakan imbuhan, laser puncture dan pendekatan agroforestry. In Kartiarso, J.I. Pariwono, S.M nababan, Tatie Soedewo, Paryono dan Abdul Kadir Rahman. Proseding Seminar Nasional Peternakan Pasca IAEUP.
- Sardesi, V.M. 1992. Nutritional role of polyunsaturated fatty acids. J. Nutr.Biochem.3: 154-162.
- Soeparno. 2005. Ilmu dan Teknologi Daging. Cetakan ke-4. Gadjah Mada University Press, Yogyakarta.
- Sriwijayanti Dewa Ayu, Gede Putu, Djoko Rudyanto. 2012. Hubungan antara umur dengan berat karkas depan (*fore quater*) ditinjau dari potongan primal sapi bali jantan. Lab Kesehatan Masyrakat Veteriner Fakultas Kedokterna Hewan Universitas Udayana: Indonesia Medicus Veteriner 1(2): 202-216
- Sriyani.N.L.P. 2013. Respons produksi dan kandungan omega-3 daging pada sapi bali yang diberikan pakan konsentrat-*molamiks* berminyak ikan. Disertasi Doktor. Program Pascasarjana Universitas Udayana: Denpasar
- Steel, R. G. D. and J. H. Torrie. 1991."Principle and Procedures of Statistic".McGrow Hill Book Bo. Inc, New York.