HW3 - SPO

Khyathi Balusu 2/18/2020

Problem 1

Part (1)

Part (2)

```
library(lpSolve)
## Warning: package 'lpSolve' was built under R version 3.6.2
c=c(-1,4)
A=matrix(0,3,2)
A[1,1:2]=c(-10,20)
A[2,1:2]=c(5,10)
A[3,1:2]=c(1,0)
        [,1] [,2]
## [1,] -10 20
## [2,] 5 10
## [3,]
        1 0
dir=c("<=",'<=','<=')
B=c(22,49,5)
s=lp("max",c,A,dir,B,all.int = TRUE)
s$status
## [1] 0
cat('Solutions are : ',s$solution)
## Solutions are : 2 2
cat('\nObjective Value : ',s$objval)
## Objective Value : 6
```


Figure 1: Question 1

Part (3)

Feasible solutions = 16

```
count = 0
cat("Feasible Solutions are:\n")
```

Feasible Solutions are:

```
for (i in seq(0,5,1)){
  for (j in seq(0,20,1)){
    if ((-10*i+20*j<=22)&(5*i+10*j<=49)){
      cat("(",i,",",j,")\n")
      count=count+1
    }
  }
}</pre>
```

```
## ( 0 , 0 )
## ( 0 , 1 )
## ( 1 , 0 )
## ( 1 , 1 )
## ( 2 , 0 )
## ( 2 , 1 )
## ( 2 , 2 )
## ( 3 , 0 )
```

```
## ( 3 , 1 )
## ( 3 , 2 )
## ( 4 , 0 )
## ( 4 , 1 )
## ( 5 , 0 )
## ( 5 , 1 )
## ( 5 , 2 )

cat("\n Total Count = ",count)

##
## Total Count = 16
Difference = 16-8 = 8
```

Problem 2

```
library(lpSolve)
c=c(9,5,6,4)
A=matrix(0,3,4)
A[1,1:4]=c(6,3,5,2)
A[2,1:4]=c(0,0,1,1)
A[3,1:4]=c(1,1,0,0)
Α
        [,1] [,2] [,3] [,4]
## [1,]
           6
                3
                     5
## [2,]
           0
                0
                     1
                          1
## [3,]
           1
dir=c("<=",'<=','>=')
B=c(11,1,1)
s=lp("max",c,A,dir,B,all.bin = TRUE)
s$status
## [1] 0
cat('Solutions are : ',s$solution)
## Solutions are : 1 1 0 1
cat('\nObjective Value : ',s$objval)
##
## Objective Value: 18
```

Investment strategy: invest in building for factory and warehouse with exception for warehouse in Austin.

Problem 3

Part (1)

Part (2)

```
library(lpSolve)
c=rep(1,12)
A=matrix(0,12,12)
A[1,] = c(1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0)
A[2,] = c(0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0)
A[3,] = c(1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0)
A[4,] = c(0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0)
A[5,] = c(1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0)
A[6,] = c(0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0)
A[7,] = c(1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0)
A[8,] = c(1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0)
A[9,] = c(1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0)
A[10,] = c(0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1)
A[11,] = c(0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1)
A[12,] = c(0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1)
dir=rep('>=',12)
B=rep(1,12)
s=lp("min",c,A,dir,B,all.bin = TRUE)
s$status
## [1] 0
cat('Solutions are : ',s$solution)
## Solutions are : 1 0 0 0 0 0 1 0 1 0 0
cat('\nObjective Value (The minimum number of hubs) : ',s$objval)
## Objective Value (The minimum number of hubs) : 3
Recommendation hubs: Atlanta, New York, Salt Lake City
```


Figure 2: Qiestion 3

Question 4:			ansites 2
Initial coll's	width =	120 indu	3 1 1
patterns possi			
25 10	37 in	541	waste
4			120-100=
			120-112=
18 8 100	0	2 ×	120-108
0	3	0	120-111=
16.16	2	0	120 -19 = 2
	11		
	0		120-104 =
211221 23			es each
pattern is in	sed.	1,5	
minimize: 2	20 x . + 8x	+12x.+9	x, + 21x+
1000000	2	3+	1627
consteain:			
			> 233
	3x2 + 25 +		
	3x4+2x5		8

Figure 3: Questio 4

Problem 4

Part (1)

Part (2)

```
C = c(20,8,12,9,21,4,16)
A = matrix(0, 3, 7)

A[1,] = c(4, 3, 0, 0, 1, 1, 2)
A[2,] = c(0, 1, 0, 3, 2, 1, 0)
A[3,] = c(0, 0, 2, 0, 0, 1, 1)

b = c(233, 148, 106)

dir = rep(">=", 3)

s=lp("min",C,A,dir,b,compute.sens = 1, all.int = TRUE)

cat("Status is:",s$status,"\n")

## Status is: 0

cat("Solution is:",s$solution,"\n")

## Solution is: 0 42 0 0 0 107 0

cat("Wastage is:",s$objval,"\n")

## Wastage is: 764
```

Problem 5

```
A = matrix(0, 7, 7)
A[1,] = c(0, 1, 1, 1, 1, 1, 0)
A[2,] = c(0, 0, 1, 1, 1, 1, 1)
A[3,] = c(1, 0, 0, 1, 1, 1, 1)
A[4,] = c(1, 1, 0, 0, 1, 1, 1)
A[5,] = c(1, 1, 1, 0, 0, 1, 1)
A[6,] = c(1, 1, 1, 1, 0, 0, 1)
A[7,] = c(1, 1, 1, 1, 0, 0)
b = c(5, 13, 12, 10, 14, 8, 6)
C = c(330, 360, 360, 360, 360, 330, 300)
dir = rep(">=", 7)
s=lp("min", C, A, dir, b, compute.sens = 1, all.int = TRUE)
```

	Question 5:
	Decision valiables:
	x, - Sunday, Monday off
	2 - monday, Tuesday off
	xy - Saturday, Surday off
	Minimizing: 3002 + 360x2 + 360x3 + 360x4 + 360x5
	+ 330x + 300x
	Constlains: 23+24+x5+ x5+ x77/3
6	22+x3+24+35+X6>5
	x, + xy + x5 + x6 + x7 >1/2
18	2, +2, + 25+26 + 27 5/16
	7, 1 x + x 3 + x + 2 > 14
	x, + x2+23+x4+x7 78
	2, + 2, + 3 + 2, + 2, 26
	3, 3

Figure 4: Question 5

```
## [1] 0

cat('Solutions are : ',s$solution)

## Solutions are : 2 0 3 0 1 1 8

cat('\nObjective Value : ',s$objval)

##
## Objective Value : 4830
```

Ideal Pattern - M-F with Saturday and Sunday off.