Skolornas Matematiktävling

Svenska Dagbladet Svenska Matematikersamfundet

Lösningar till finaltävlingen den 18 november 1973

1. Metod 1. $\log_8 4 = \log_8 8 - \log_8 2 = 1 - \log_8 2$. Subtraktion i 8-systemet ger

$$- \underbrace{\begin{array}{c} 1,0000 \\ 0,2525 \\ \hline 0,5253 \end{array}}$$

Eftersom $\log_8 8 = 1$ är exakt blir felet i $\log_8 4$ därvid detsamma som i $\log_8 2$ (men med motsatt tecken) dvs mindre än en halv enhet i sista siffran.

Metod 2. $4 = 8^{2/3}$ ger $\log_8 4 = 2/3$. Division i 8-systemet ger

med periodisk fortsättning: $0,525252\dots$ Detta ger rätt avrundat $\log_8 4 = 0,5253.$

2. Prövning visar $a_1=1, \ a_n< n^2$ för $2\le n\le 11, \ a_{12}=144, \ a_{13}>13^2, \ a_{14}>14^2$. För att visa att $a_n>n^2$ för alla n>12 konstaterar man att om $a_{n-1}>(n-1)^2$ och $a_n>n^2$ så är $a_{n+1}>(n-1)^2+n^2=2n^2-2n+1$ vilket är $>(n+1)^2=n^2+2n+1$ blott $n^2>4n$, vilket är sant då n>12. Härav får man successivt att $a_{15}>15^2, \ a_{16}>16^2, \dots$ (induktion).

Svar: n = 1, n = 12

3. Kalla längderna av PA_1 , PB_1 , PC_1 för x, y, z och längden av sidan i triangeln $A_1B_1C_1$ för d. PB_1 och PC_1 är vinkelräta: $d^2=y^2+z^2$. PA_1 och PC_1 bildar vinkeln 120° . Cos-satsen på PA_1C_1 ger $d^2=x^2+z^2+xz$. PA_1 och PB_1 bildar vinkeln 150° . Cos-satsen på PA_1B_1 ger $d^2=x^2+y^2+\sqrt{3}xy$. Vi har alltså fått

$$d^{2} = y^{2} + z^{2}$$

$$d^{2} = x^{2} + z^{2} + xz$$

$$d^{2} = x^{2} + y^{2} + \sqrt{3}xy$$

Eliminerar man d^2 och z får man

$$(y^2 - x^2)^2 = x^2(x^2 + \sqrt{3}xy)$$

vilket kan förenklas till

$$\left(\frac{y}{x}\right)^3 - 2\frac{y}{x} - \sqrt{3} = 0.$$

Man hittar lätt roten $y/x=\sqrt{3}$. Faktorsatsen ger då

$$\left(\frac{y}{x} - \sqrt{3}\right) \left(\left(\frac{y}{x}\right)^2 + \sqrt{3}\frac{y}{x} + 1\right) = 0.$$

Här har andragradsekvationen inga positiva lösningar. $y=x\sqrt{3}$ ger $z=(y^2-x^2)/x=2x$. Förhållandet blir alltså $x:y:z=1:\sqrt{3}:2$.

4. Förenkling av det givna villkoret ger

$$ap^3 - bp^3 + bp + b^2 = 0 (1)$$

De tre första termerna i denna likhet är delbara med p. Alltså måste även b^2 vara delbar med p och därmed även b. Skriv b=pc. Insättning i (1) ger efter förenkling

$$ap = cp^2 - c^2 - c.$$

Talen a och b saknar gemensam heltalsfaktor större än 1; detsamma måste då också gälla a och c. Eftersom högra ledet i sista likheten är delbart med c måste därför c vara 1 eller p. Vi undersöker dessa båda möjligheter.

- 1) $c=1,\,ap=p^2-2.$ Då måste 2 ha p som heltalsfaktor vilket endast är möjligt då p=2. Då är $a=1,\,b=2.$
- 2) c = p, $a = p^2 p 1$, $b = p^2$. Eftersom a här inte är delbar med p, finns denna lösning för varje primtal p som gör a positiv dvs varje primtal.
- 5. Låt P_1 , Q_1 vara en annan lösning. Då är polynomen $(fQ-P)Q_1$ och $(fQ_1-P_1)Q$ delbara med x^{2n+1} . Detta gäller då även deras skillnad

$$(fQ - P)Q_1 - (fQ_1 - P_1)Q = P_1Q - PQ_1.$$

Men P_1Q-PQ_1 är ett polynom av högst graden 2n. Då det är delbart med x^{2n+1} måste det vara nollpolynomet. Alltså är för alla x

$$P_1(x)Q(x) - P(x)Q_1(x) = 0$$

vilket visar att $P_1(x)/Q_1(x) = P(x)/Q(x)$.

6. Genom 1) och 2) bestäms f(n) entydigt för n positivt heltal. Sätter vi in x=n och $x=n+\frac{1}{2}$ i 3) får vi uppskattningar uppåt och nedåt för $f\left(n+\frac{1}{2}\right)$. Eftersom

$$f\left(n+\frac{1}{2}\right) = f\left(n-\frac{1}{2}\right) + \sqrt{n-\frac{1}{2}}$$

ger x = n i 3)

$$f(n) < f\left(n + \frac{1}{2}\right) - \frac{1}{2}\sqrt{n - \frac{1}{2}}.$$

Sätter vi $x = n + \frac{1}{2}$ i 3) får vi

$$f\left(n+\frac{1}{2}\right) < \frac{1}{2}\left(f(n) + f(n+1)\right) = f(n) + \frac{1}{2}\sqrt{n}.$$

Vi har alltså fått fram

$$f(n) + \frac{1}{2}\sqrt{n - \frac{1}{2}} < f\left(n + \frac{1}{2}\right) < f(n) + \frac{1}{2}\sqrt{n}.$$

Härigenom blir $f(n+\frac{1}{2})$ bestämd till ett intervall av längden $\frac{1}{2}\left(\sqrt{n}-\sqrt{n-1/2}\right)$. På grund av 2) är då även $f\left(\frac{1}{2}\right)$ bestämd till ett intervall av denna längd. Nu är

$$\frac{1}{2}\left(\sqrt{n} - \sqrt{n-1/2}\right) = \frac{1}{2}\frac{1/2}{\sqrt{n} - \sqrt{n-1/2}}.$$

Som framgår av högra ledet går detta mot 0 då $n\to\infty$. $f\left(\frac12\right)$ måste således på grund av villkoren ligga i en följd av intervall vars längder går mot 0. $f\left(\frac12\right)$ är därför entydigt bestämd av de givna villkoren.

Lösningarna hämtade, med författarens tillstånd, ur:

Skolornas Matematiktävling Problem 1969 – 1990 med lösningar utarbetade av Olof Hanner