PROGRAMMING IN PYTHON II

Neural Network Implementation: Training

Michael Widrich Institute for Machine Learning

Copyright statement:

This material, no matter whether in printed or electronic form, may be used for personal and non-commercial educational use only. Any reproduction of this material, no matter whether as a whole or in parts, no matter whether in printed or in electronic form, requires explicit prior acceptance of the authors.

Outline

- 1. Gradient based methods
- 2. PyTorch for training neural networks
- 3. Loss functions
- 4. More on training
- 5. Python II Project

Gradient based methods

- We want to choose our NN weights such that our model output is equal to our target
- We can define a loss function
 - Computes a loss given our model output and the target
 - The higher the loss, the farther away our output is to our target
 - ☐ We want to minimize the loss of our model

Gradient based methods

- We can compute the derivative (gradient) of the model loss w.r.t. the current model weights
 - Direction of the gradient is in the same direction as the steepest ascent
 - □ We can compute the negative gradient, change the weights a little bit (learning rate) into the direction of the steepest decent, and repeat this procedure
 - If we (would) have a convex problem (no local minima), this leads us to the global minimum...
 - ... but often a local minimum is good enough anyway :)

Autograd

- Computing all gradients by hand is tedious
- Since we have a computational graph of our operations, the gradients can be computed automatically (using the autograd method)
 - See Theano, TensorFlow, and PyTorch in Programming in Python I
- In PyTorch, the gradients are typically computed using .backward() on a tensor
 - Computed gradients are accumulated automatically
 - Autograd can be used explicitly too (for 2nd order methods, meta learning, etc.)

Optimizers

- Different variations of gradient based optimizers exist
- Prominent examples:
 - Stochastic gradient descent (torch.optim.SGD)
 - · Simple gradient descent with learning rate
 - With optional momentum
 - Very common, good baseline
 - Learning rate and momentum as hyperparameters
 - Adam optimizer (torch.optim.Adam)
 - Gradient based optimizer with adaptive learning rate for each parameter and momentum
 - Very common, robust, sometimes doesn't work
 - Learning rate as hyperparameter

Performing a weigth update

- 1. Define optimizer optimizer
- 2. Compute loss loss
- Reset gradients optimizer.zero_grad()
- Compute gradients loss.backward()
- Perform weight update optimizer.step()
- 6. Repeat until end of training

Loss functions (1)

- Different loss functions for different tasks.
 - Different theoretical justifications
 - Not every loss function is suitable for every task
 - Choice of loss function depends on data, task, and model class

Loss functions (2)

- Common loss functions:
 - Regression (numerical target value): Mean squared error
 - Typically no output activation function
 - torch.nn.MSELoss()
 - Classification (target class): Cross entropy
 - Sigmoid or softmax output activation function
 - torch.nn.BCEWithLogitsLoss()
 - Classification (focus on classification border): Hinge loss

Training schemes

- Training can be done for a fixed number of updates or epochs
 - □ Epoch: One iteration over all training samples
 - □ Update: One weight update
 - Number of updates/epochs is a hyperparameter
- Early stopping
 - ☐ Check model loss on validation set every *n* updates/epochs
 - Continue training but save model with best validation loss
 - After training, choose saved model with best validation loss as final model (least over-fitting)

Regularization

- Regularization can be used to counter over-fitting
- Prominent examples:
 - □ Dropout: Dropping out features or inputs randomly
 - Weight penalty terms: Add additional term to training loss
 - I1 penalty: Add sum of absolute weight values to loss
 - I2 penalty: Add sum of squared weight values to loss
 - □ Noise: Add random noise to inputs or features

Monitoring

- Always monitor your model during training!
- Handy for development but lossy: Tensorboard
 - □ For final evaluation use e.g. .csv files
 - Always save the trained model parameters!
- Histograms: Weights, gradients, activations
- Line-plots: Loss, regularization terms (for training and validation set)

Practical aspects

- 16bit float: Adam stability parameter
- Not learning? Check gradients and weights do they change? are they sane values?
- Check the documentations of the functions
 - torch.nn.BCEWithLogitsLoss() expects the raw network output as input and adds sigmoid activation during computation for numerical stability
- Gradient clipping can help to stabilize training
- First find a model that over-fits on training set, then make it smaller/add regularization
- Prefer smaller/simpler models

Python II Project: Training

- We want to predict pixel values (=regression setting)
- If input is normalized, NN output has be de-normalized
- Regularization might help, e.g. I2 penalty with factor 10^{-5}
- First try to find a model that can over-fit on the training data
- Define your training, validation, and test set and keep them separated
- We will see data augmentation methods later

