Journal

Hugo Simon

hugo.simon@telecom-paris.fr

1 Introduction

Let $\mathcal{X} = \{x_i \mid i \in [1, n]\}$ be a set of n datapoints. Let Θ be a space of parameters, and θ an element of Θ . We consider cost functions of the form:

$$L(\theta) = \sum_{x \in \mathcal{X}} f_{\theta}(x)$$

Let $S = \{x_i \mid i \in [1, m]\}$ be a submultiset (possibly with repetitions) of X. To each element $x \in S$, associate a weight $\omega(x) \in \mathbb{R}^+$. Define the estimated cost associated to the weighted submultiset S as:

$$\hat{L}(\theta) = \sum_{x \in \mathcal{L}} \omega(x) f_{\theta}(x)$$

Definition 1.1 (Coreset). Let $\varepsilon \in]0,1[$. \mathcal{S} is a ε -coreset for L if, for any parameter θ , the estimated cost is equal to the exact cost up to a relative error:

$$\forall \theta \in \Theta \quad \left| \frac{\hat{L}(\theta)}{L(\theta)} - 1 \right| \le \varepsilon$$
 (1)

An important consequence of the coreset property is the following

$$(1 - \varepsilon)L\left(\theta^{\text{opt}}\right) \le (1 - \varepsilon)L\left(\hat{\theta}^{\text{opt}}\right) \le \hat{L}\left(\hat{\theta}^{\text{opt}}\right) \le \hat{L}\left(\theta^{\text{opt}}\right) \le (1 + \varepsilon)L\left(\theta^{\text{opt}}\right)$$
 (2)

See Bachem et al. 2017.

2 Variance arguments

2.1 Multinomial case

In the multinomial case, we have $S \sim \mathcal{M}(m,q)$ i.e. m i.i.d. categorical sampling with $\mathbb{P}(x_i) = q(x_i)$. Then an unbiased estimator of L is

$$\hat{L}_{iid}(\theta) = \sum_{x_i \in \mathcal{S}} \frac{f_{\theta}(x_i)}{mq(x_i)}$$

Its variance is

$$\operatorname{Var}_{\operatorname{iid}}(\theta) := \frac{1}{m} \operatorname{Var}\left[\frac{f_{\theta}(x_i)}{q(x_i)}\right] = \frac{1}{m} \sum_{x \in \mathcal{X}} \frac{f_{\theta}(x)^2}{q(x)} - \frac{1}{m} L(\theta)^2 = f_{\theta}^{\top} \left(\frac{Q^{-1}}{m} - \frac{\boldsymbol{J}}{m}\right) f_{\theta}$$
(3)

where $Q = \operatorname{diag}(q)$ and $\boldsymbol{J} = \boldsymbol{j}\boldsymbol{j}^{\top}$ the matrix full of ones.

For any query $\theta \in \Theta$, the variance is reduced to 0 by

$$q_{\theta}(x) := \frac{f_{\theta}(x)}{L(\theta)}$$

2.2 DPP case

In the DPP case, we have $S \sim \mathcal{DPP}(K)$, $\pi_i := K_{ii}$. Then an unbiased estimator of L is

$$\hat{L}_{\text{DPP}}(\theta) = \sum_{x_i \in \mathcal{S}} \frac{f_{\theta}(x_i)}{\pi_i}$$

Its variance can be computed using ε_i as the counting variable for x_i :

$$\mathbb{V}\mathrm{ar}_{\mathrm{DPP}}(\theta) = \sum_{i,j} \mathbb{E}\left[\varepsilon_{i}\varepsilon_{j}\right] \frac{f_{\theta}(x_{i})f_{\theta}(x_{j})}{\pi_{i}\pi_{j}} - L(\theta)^{2} \quad \text{with} \quad \mathbb{E}\left[\varepsilon_{i}\varepsilon_{j}\right] = \begin{cases} \det(K_{\{i,j\}}) = \pi_{i}\pi_{j} - K_{ij}^{2}, & \text{if } i \neq j \\ \mathbb{E}\left[\varepsilon_{i}\right] = \pi_{i}, & \text{if } i = j \end{cases}$$

Introducing $\Pi = \operatorname{diag}(\pi)$ and $\tilde{K} = \Pi^{-1} K^{\odot 2} \Pi^{-1}$, we can rewrite

$$\mathbb{V}ar_{DPP}(\theta) = \sum_{i} \left(\frac{1}{\pi_{i}} - 1\right) f_{\theta}(x_{i})^{2} - \sum_{i \neq j} \frac{K_{ij}^{2}}{\pi_{i}\pi_{j}} f_{\theta}(x_{i}) f_{\theta}(x_{j}) = f_{\theta}^{\top}(\Pi^{-1} - \tilde{K}) f_{\theta}$$
(4)

For a Bernoulli process where $\mathbb{P}(x_i \in \mathcal{S}) = \pi_i$ independently, the DPP kernel reduces to its diagonal i.e. $K = \Pi$ then $\tilde{K} = I$. We denote its variance $\mathbb{V}ar_{\text{diag}}$.

2.3 m-DPP case

In the m-DPP case, we have $S \sim \mathcal{DPP}(K) \mid |S| = m$, and the marginals $b_i := \mathbb{E}[\varepsilon_i]$ have an analytic form. Then an unbiased estimator of L is

$$\hat{L}_{\text{mDPP}}(\theta) = \sum_{x_i \in \mathcal{S}} \frac{f_{\theta}(x_i)}{b_i}$$

Note that we could also be interested in a biaised cost function such as the diversified risk introduced by Zhang et al. 2017

$$\tilde{L}(\theta) = \frac{1}{m} \mathbb{E}_{x \sim \text{mDPP}}[f_{\theta}(x)] = \frac{1}{m} \sum_{x_i \in \mathcal{X}} b_i f_{\theta}(x_i)$$

Then an unbiased estimator of \tilde{L} is

$$\hat{\tilde{L}}_{\text{mDPP}}(\theta) = \frac{1}{m} \sum_{x_i \in \mathcal{S}} f_{\theta}(x_i)$$

We can switch between L and \tilde{L} , substituting $f_{\theta}(x_i)$ by $\frac{b_i f_{\theta}(x_i)}{m}$.

Returning to the estimation of L, we are interested in the variance of \hat{L}_{mDPP} which is

$$\operatorname{Var}_{\mathrm{mDPP}}(\theta) = \sum_{i} \left(\frac{1}{b_i} - 1 \right) f_{\theta}(x_i)^2 + \sum_{i \neq j} C_{ij} f_{\theta}(x_i) f_{\theta}(x_j)$$
 (5)

where
$$C_{ij} = \frac{\mathbb{E}[(\varepsilon_i - b_i)(\varepsilon_j - b_j)]}{\mathbb{E}[\varepsilon_i]\mathbb{E}[\varepsilon_j]} = \frac{\mathbb{E}[\varepsilon_i \varepsilon_j]}{b_i b_j} - 1$$

Observe that if the m-DPP kernel is reduced to its diagonal $(C_{ij} = 0)$, we recover $\mathbb{V}ar_{diag}$, the variance of a Bernoulli process with same marginals $(\pi_i = b_i)$, though here the number of elements sampled is fixed to m.

In order to benefit from some variance reduction, one should want $\forall i \neq j$, $C_{ij}f_{\theta}(x_i)f_{\theta}(x_j) < 0$ for a given m-DPP. Zhang et al. 2017 discuss that intuitively, if the m-DPP kernel rely on some similarity measure and that f is smooth for it, then 2 similar points should have both negative correlation $(C_{ij} < 0)$ and their value have positive scalar product $(f_{\theta}(x_i)f_{\theta}(x_j) > 0)$. Reversely, it is argued that 2 dissimilar points should have negative correlation, and their value show "no tendency to align" hinting $f_{\theta}(x_i)f_{\theta}(x_j) < 0$. We could more conservatively consider that the induced variance change, wether positive or negative, would in either case be small, as for DPP and m-DPP, 2 dissimilar points tend toward independance.

2.4 Variance comparaison

In order to compare processes with same marginals, we set $\Pi = mQ$. Then $\mathbb{V}ar_{iid}$, $\mathbb{V}ar_{diag}$ and $\mathbb{V}ar_{DPP}$ are quadratic forms of f_{θ} associated with respective matrices

$$\begin{cases} \mathbb{V} ar_{iid} \equiv \Pi^{-1} - \frac{J}{m} \\ \mathbb{V} ar_{diag} \equiv \Pi^{-1} - I \\ \mathbb{V} ar_{DPP} \equiv \Pi^{-1} - \tilde{K} \end{cases}$$

2.4.1 DPP versus diag?

The DPP variance strictly beats uniformly the Bernoulli process variance if \tilde{K} strictly dominates identity i.e.

$$\forall f_{\theta}, \mathbb{V}ar_{\mathsf{DPP}} < \mathbb{V}ar_{\mathsf{diag}} \iff \tilde{K} \succ I$$
 (6)

But \tilde{K} is a symmetric positive definite matrix and by Hadamard inequality $\det(\tilde{K}) \leq \prod_i \tilde{K}_{ii} = 1$. Therefore at least one of its eigenvalue is lower than 1, hence $\tilde{K} \not\succ I$.

2.4.2 DPP versus i.i.d.?

The DPP variance strictly beats uniformly the multinomial variance if \tilde{K} strictly dominates $\frac{J}{m}$ i.e.

$$\forall f_{\theta}, \mathbb{V}ar_{DPP} < \mathbb{V}ar_{iid} \iff \tilde{K} \succ \frac{J}{m}$$
 (7)

K being positive of rank $r \in [0, n]$, it exists $V = (V_i \mid i \in [1, n]) \in \mathcal{M}_{r,n}$ such that $K = V^\top V$.

For any vector $v \in \mathbb{R}^r$, Copenhaver et al. 2013 define its diagram vector

$$\tilde{v} := \frac{1}{\sqrt{r-1}} ((v_k^2 - v_l^2, \sqrt{2r}v_k v_l) \mid k < l)^\top \in \mathbb{R}^{r(r-1)}$$

concatenating all the differences of squares and products.

Then introducing $\tilde{V} = \left(\tilde{V}_i \mid i \in \llbracket 1, n \rrbracket\right)$ allows us to rewritte $\tilde{K}_{ij} = \frac{J}{r} + \frac{r-1}{r} \tilde{V}^\top \tilde{V}$. Therefore, for a projective DPP with rank r = m, we have $\tilde{K} - \frac{J}{m} = \frac{m-1}{m} \tilde{V}^\top \tilde{V} \succeq 0 \quad (\succ \text{if } m > 1)$. That is to say, for every multinomial sampling, we have a DPP which always beats it uniformly.

3 State of the art

Definition 3.1 (Sensitivity). The sensitivity σ_i of a datapoint x_i and the total sensitivity \mathfrak{S} of \mathcal{X} are

$$\begin{cases} \sigma_i = \sup_{\theta \in \Theta} q_{\theta}(x_i) = \sup_{\theta \in \Theta} \frac{f_{\theta}(x_i)}{L(\theta)} & \in [0, 1] \\ \mathfrak{S} = \sum_{i=1}^n \sigma_i \end{cases}$$

3.1 Main proof

Let s be an upper bound on sensitivity σ i.e. $\forall i, s_i \geq \sigma_i$, and $S := \sum_{i=1}^n s_i$. Furthermore, let sample $\mathcal{S} \sim \mathcal{M}(m, s/S)$, the multinomial sampling case. Define $g_{\theta}(x_i) := \frac{q_{\theta}(x_i)}{s_i} = \frac{f_{\theta(x_i)}}{s_i L(\theta)} \in [0, 1]$

By Hoeffding's inequality, we thus have for any $\theta \in \Theta$ and $\varepsilon' > 0$

$$\mathbb{P}\left[\left|\mathbb{E}\left[g_{\theta}(x)\right] - \frac{1}{m} \sum_{x \in \mathcal{S}} g_{\theta}(x)\right| > \varepsilon'\right] \le 2 \exp\left(-2m\varepsilon'^{2}\right) \tag{8}$$

and by definition, $\mathbb{E}[g_{\theta}(x)] = \frac{1}{S}$ and $\frac{1}{m} \sum_{x \in \mathcal{S}} g_{\theta}(x) = \frac{\hat{L}_{iid}(\theta)}{SL(\theta)}$, thus

$$\mathbb{P}\left[|L(\theta) - \hat{L}_{iid}(\theta)| > \varepsilon' SL(\theta)\right] \le 2\exp\left(-2m\varepsilon'^2\right)$$

Hence, S satisfies the ε -coreset property 1.1 for any single query $\theta \in \Theta$ with probability at least $1 - \delta$, if we choose

$$m \ge \frac{S^2}{2\varepsilon^2} \log \frac{2}{\delta}$$

justify the use of a projective DPP. requires $r \geq m$ but we always have $m \leq r$, therefore r = m

3.2 Extension to all queries

See Uniform guarantee for all queries in Bachem et al. 2017. Introducing the pseudo-dimension d', it gives

$$m \ge \mathcal{O}(\frac{S^2}{2\varepsilon^2}(d' + \log\frac{2}{\delta}))$$
 (9)

See **Theorem 5.5** of Braverman et al. 2016 for an improved bound (when f is positive?).

$$m \ge \mathcal{O}(\frac{S}{2\varepsilon^2}(d'\log S + \log\frac{2}{\delta}))$$
 (10)

4 Improving concentration with DPP

Assume better variance with DPP, can we improve concentration?

- Can we use the $\sqrt{N^{1+\frac{1}{d}}}$ rate from the SGD paper?
- Concentration inequality for a sum of **dependant** variables?

Theorem 3.4. from Pemantle et al. 2011: Let \mathbb{P} be a k-homogeneous probability measure on \mathcal{B}_n satisfying the Stochastic Covering Property (SCP). Let f be a 1-Lipschitz function on \mathcal{B}_n . Then

$$\mathbb{P}(|f - \mathbb{E}f| \ge a) \le 2\exp\left(-\frac{a^2}{8k}\right)$$

Bennett inequality: Let be $(X_i)_{i \in [1,n]}$ independant and centered real-valued random variables, and $\sigma^2 = \frac{1}{n} \sum_i \mathbb{V}\operatorname{ar}[X_i]$, then for any t > 0

$$\mathbb{P}\left\{\sum_{i=1}^{n} X_i > t\right\} \le \exp\left(-n\sigma^2 h\left(\frac{t}{n\sigma^2}\right)\right)$$

where $h(u) = (1 + u) \log(1 + u) - u$ for $u \ge 0$.

5 Discrete OPE

Can we bypass the Kernel Density Estimate (KDE) in SGD paper by using discrete OPE? See Gautschi 2004.

6 Holydays questions

- Variance for formula for k-DPP, in Zhang et al. 2017.
- How \tilde{K} eigenspaces look like? When $n \to \infty$?
 - How does it compare to Bardenet et al. 2020 ?
 - If f is given, can I find a K for which f is in "good" eigenspaces (eigenvalue ≥ 1).
- Defining discrete OPE, because discretized continuous OPE is probably not a DPP. See Gautschi Orthogonal Polynomials, 2004.
 - For making links with SGD paper Bardenet et al. 2021
 - Look at the limit e.g. for Jacobi ensembles.
- Take a Bernoulli and beat it with a DPP.
- Focus on metric we could have advantages on, e.g. look how variance decay with coreset size.
- Better with direct applications e.g. on k-means or linear regression

References

- Bachem, Olivier et al. (2017). Practical Coreset Constructions for Machine Learning. DOI: 10. 48550/ARXIV.1703.06476. URL: https://arxiv.org/abs/1703.06476.
- Bardenet, Rémi et al. (2020). "Monte Carlo with Determinantal Point Processes". In: *Annals of Applied Probability*. URL: https://hal.archives-ouvertes.fr/hal-01311263.
- Bardenet, Rémi et al. (2021). Determinantal point processes based on orthogonal polynomials for sampling minibatches in SGD. DOI: 10.48550/ARXIV.2112.06007. URL: https://arxiv.org/abs/2112.06007.
- Braverman, Vladimir et al. (2016). New Frameworks for Offline and Streaming Coreset Constructions. DOI: 10.48550/ARXIV.1612.00889. URL: https://arxiv.org/abs/1612.00889.
- Copenhaver, Martin S. et al. (2013). Diagram vectors and Tight Frame Scaling in Finite Dimensions. DOI: 10.48550/ARXIV.1303.1159. URL: https://arxiv.org/abs/1303.1159.
- Gautschi, Walter (2004). Orthogonal Polynomials: Computation and Approximation. Numerical Mathematics and Scientific Computation. Clarendon Press. ISBN: 0198506724. eprint: https://www.cs.purdue.edu/homes/wxg/0Pmatlab.pdf.
- Pemantle, Robin et al. (2011). Concentration of Lipschitz functionals of determinantal and other strong Rayleigh measures. DOI: 10.48550/ARXIV.1108.0687. URL: https://arxiv.org/abs/1108.0687.
- Zhang, Cheng et al. (2017). Determinantal Point Processes for Mini-Batch Diversification. DOI: 10.48550/ARXIV.1705.00607. URL: https://arxiv.org/abs/1705.00607.