Обзор литературы по ассембелрам

Дмитрий Яковлев

EPAM Systems

18 октября 2016 г.

План

- 1 Ввведение
- 2 Модель ошибки на данных BioNano
- 3 Ассемблеры
 - TWIN
 - OPTIMA
 - MAligner
 - OMBlast
- 4 Ссылки

Ввведение

Модель ошибок: общие сведения

- Было рассмотрено 3 датасета карт от BioNano
- С помощью RefAligner был построен референс
- Далее был проведён анализ ошибок

Модель ошибок: ошибка в длине фрагмента

Валуев:

$$e_k = \frac{o_k - r_k}{\sqrt{r_k}} \sim N(0, \sigma)$$
 $o_k \sim N(r_k, \sigma^2 r_k)$

Новый подход:

$$s_k = rac{o_k}{r_k}$$
 $s_k \sim Laplace(\mu, eta)$

Модель ошибок: пропущенные разрезы

Было замечено, что вероятность пропущенного разреза зависит от длины до соседних разрезов.

$$p_c(d_{avg}) = lpha_3 \, d_{avg}^3 + lpha_2 \, d_{avg}^2 + lpha_1 \, d_{avg} + lpha_0 \ d_{avg} = rac{ ext{среднее расстояние до соседей}}{1200}$$

Модель ошибок: лишние разрезы (1)

$$I_{fp}=rac{
m pасстояние \ ot \ лишнего \ pазреза \ до \ конца \ карты}{
m длина \ ontuveckoй \ kaptы} \ n_{fp}\sim 0.18 \ Poisson(0)+0.6 \ Poisson(1)+0.22 \ Poisson(3)$$

Модель ошибок: лишние разрезы (2)

$$l_{\rm fp} \sim \begin{cases} U[0.1, 0.9], & 0.1 \le l_{\rm fp} \le 0.9, \text{ w.p. } 0.8852 \\ N(0.1, 0.044186), & l_{\rm fp} < 0.1, \text{ w.p. } 0.0574 \\ N(0.9, 0.044186), & l_{\rm fp} > 0.9, \text{ w.p. } 0.0574 \end{cases}$$

Ассемблеры

TWIN

OPTIMA

OPTIMA: Общие сведения

OPTIMA: Алгоритм

Этапы выравнивания:

- Поиск стартовых мест (сидов) для начала выравнивания
- Парное выравнивание карты с референсом
- Определение значимых выравниваний
- Объединение пересекающихся выравниваний

OPTIMA: Композитные сиды

Композитные сиды:

Множество фрагментов o_k , o_{k+1} , ..., o_s возможно совпадает с множеством фрагментов r_l , r_{l+1} , ..., r_t :

$$\frac{\left|\sum_{i=k}^{s} o_i - \sum_{j=l}^{t} r_i\right|}{\sqrt{\sum_{j=l}^{t} \sigma_j^2}} \le C_{\sigma} \tag{1}$$

OPTIMA: Поиск стартовых сидов

Алгоритм поиска сидов для выравнивания:

- По референсу строятся композитные сиды и сортируются по первому элементу
- У карты берётся произвольный сид, по которому будем искать множество подходящих локаций(1) в референсе
- Бинарным поиском (по первому элементу) ищем множество подходящих сидов в референсе
- Далее линейно проверяем и оставляем только те, которые удовлетворяют (1)
- Таким образом получаем множество сидов на референсе, где карта может быть выравнена
- Сложность алгоритма $O(m(\log n + c \#seeds_{c=1}))$

ОРТІМА: Парное выравнивание карты с референсом

После обнаружения схожих сидов на референсе происходит парное выравнивание алгоритмом динамического программирования:

$$Score_{s,t} = \min_{k \le s, l \le t} C_{ce} (s - k + t - l) + \chi^{2}_{k...s,l...t} + Score_{k-1,l-1}$$

$$\chi^{2}_{k...s,l...t} = \frac{\left(\sum_{i=k}^{s} o_{i} - \sum_{j=l}^{t} r_{i}\right)^{2}}{\sum_{i=l}^{t} \sigma^{2}_{j}}$$

 C_{se} - штраф за пропущенные фрагменты

OPTIMA: Определение значимости выравнивания

Пусть a - выравнивание из множества выравниваний ${\mathcal A}$

$$Z - score(a \in \mathcal{A}, f) = \frac{f_a - Mean(f_{\mathcal{A}})}{SD(f_{\mathcal{A}})}$$

где f - характеристика выравнивания.

Тогда статистическая значимость выравнивания:

$$\vartheta(a \in \mathcal{A}) = Z - score(-Z - score(a, \#matches) + Z - score(a, \#cuterrors) + Z - score(a, WHT(\chi^2, \#matches)))$$

где
$$\mathit{WHT}(\chi^2,\#\mathit{matches}) = \frac{\sqrt[3]{\frac{\chi^2}{\#\mathit{matches}}} - \left(1 - \frac{1}{9}\frac{2}{\#\mathit{matches}}\right)}{\sqrt{\frac{1}{9}\frac{2}{\#\mathit{matches}}}}$$

OPTIMA: Объединение пересекающихся выравниваний

Ращбиение на блоки:

OPTIMA: Результаты

Результаты для 2100 карт:

Algorithm	Drosophila (A)		Drosophila (B)		Human (A)		Human (B)	
	S	Р	S	Р	S	Р	S	Р
OPTIMA	90	100	49	99	83	100	43	98
Gentig v.2 (d)	59	100	24	99	53	96	20	80
Gentig v.2 (tp)	59	100	24	98	54	95	20	88
SOMA v.2 (v)	72	73	31	39	50	50	17	20
Likelihood (d+a)	49	49	29	30	24	24	14	14
Likelihood (d+a+t)	64	65	38	39	33	34	18	19
Likelihood (p+a+t)	75	75	39	39	62	62	19	20

S - чувствительность

Р - точность

tp - найстрока параметров в соотвествии с генерацией данных

р - параметры, указанные в статьях авторов

d - стандартные настройки

t - обрезание концов карт

MAligner

MAligner: Общие сведения

Два подхода:

- На основе алгоритма Смита-Ватермана
 - 1 Построение множества выравниваний на референсе
 - ② Отклонение выравниваний с помощью M-Score
- На основе индексации

MAligner: Алгоритм динамического программирования

Пусть имеются два выравненных участка с n и m пропущенными фрагментами длины r и m на референсе и карте соотвественно. Тогда выравнивание имеет следующее значение:

$$Score(q, r, m, n) = S(q, r) + C_q m + C_r n$$

$$S(q, r) = \left(\frac{q - r}{\sigma(r)}\right)^2$$

$$\sigma(r) = \max(\alpha r, \sigma_{min})$$

 C_q - штраф за пропущенные фрагменты на карте C_r - штраф за пропущенные фрагменты на референсе σ_{min} - для фрагментов малой длины, ошибка больше α - доля референса, которая будет использовать как стандартное отклонение

MAligner: M-Score - значимость выравнивания

Предложена оценка M-Score для определения значимости выравнивания:

$$egin{aligned} m_{\mathcal{A}} &= \mathop{\textit{median}}_{A \in \mathcal{A}} \{\mathit{Score}(A)\} \ MAD_{\mathcal{A}} &= \mathop{\textit{median}}_{A \in \mathcal{A}} \{|\mathit{Score}(A) - m_{\mathcal{A}}|\} \ M - \mathit{Score}_{\mathcal{A}}(A) &= \frac{\mathit{Score}(A) - m_{\mathcal{A}}}{\mathit{MAD}_{\mathcal{A}}} \end{aligned}$$

Score(A) - значение выравнивания A \mathcal{A} - 100 лучших выравниваний по Score(A)

MAligner: Результаты

OMBlast

OMBlast: Общие сведения

OMBlast: Алгоритм

Этапы выравнивания:

- Поиск стартовых мест (сидов) для начала выравнивания
- Расширение сидов
- Объединение пересекающих выравниваний
- Построение итогового выравнивания

OMBlast: Поиск стартовых сидов - индексация

Фрагмент q на карте совпадает с фрагментом r на референсе:

$$r(1-T_s)-T_m \leq q \leq r(1+T_s)+T_m$$

 T_s - ошибка масштабирования T_m - ошибка измерений

OMBlast: Поиск стартовых сидов - бины

OMBlast: Расширение сидов

OMBlast: Объединение выравниваний (1)

Строится взвешенный ациклический граф:

- Вершины выравненные разрезы
- Рёбра между двумя парами последовательно (на одной карте) выравненных разрезов
- Веса $t_m u_m t_{es} u_{es} t_{ms} u_{ms}$ u_m количество совпадений u_{es} количество лишних разрезов u_{ms} количество пропущенных разрезов

OMBlast: Объединение выравниваний (2)

$$R_{1}Q_{1} \xrightarrow{R_{2}Q_{2} \rightarrow R_{3}Q_{3} \rightarrow R_{4}Q_{4} \rightarrow R_{6}Q_{5} \rightarrow R_{7}Q_{6} \rightarrow R_{8}Q_{7}} R_{9}Q_{8}$$

$$R_{3}Q_{2} \rightarrow R_{4}Q_{3} \rightarrow R_{5}Q_{4} \xrightarrow{R_{7}Q_{5} \rightarrow R_{8}Q_{6}} R_{8}Q_{6}$$

OMBlast: Объединение выравниваний (3)

С помощью динамического программирования определяется путь в графе с наибольшим весом

OMBlast: Результаты - входные данные

Organism	Genome	Total	Average Bases
Organism	Size (Mbp)	Signals	Between Signals (kbp)
E. coli	4.6	683	6.8 ± 7.3
S. cerevisiae	12.1	1953	6.2 ± 6.7
C. elegans	100.3	14837	6.8 ± 8.0
H. sapiens	3088.3	377143	8.2 ± 83.2

Error Rate	None	Low	Medium	High
Extra Signal Rate	0	0.000005	0.00001	0.00002
Missing Signal Rate	0	0.05	0.1	0.2
Scaling	0	0.02	0.04	0.08
Measurement (bp)	0	500	500	500
Resolution (bp)	0	1200	1200	1200

OMBlast: Результаты - время работы

OMBlast: Результаты - точность и полнота

OMBlast: Результаты - наличие SV

Ссылки

Исходники

В открытом доступе:

- TWIN
- OPTIMA
- MAligner
- OMBlast

Спасибо за внимание!