Exercises for Optimization I

Sheet 2*

You can submit your solutions until Friday, May 6 at 23pm, Please name your file LastnameFirstnameSheet2

Exercise 1: Let $A \in \mathbb{R}^{m \times n}$ be a matrix with rank(A) = n and $b \in \mathbb{R}^m$ be given. Why does a unique solution to...

a) ...the linear fitting problem

$$\min_{x \in \mathbb{R}^n} ||Ax - b||^2$$

b) ...the restricted linear fitting problem

$$\min_{x \in M} ||Ax - b||^2, \quad \text{with } M := \{x \in \mathbb{R}^n ; x \ge 0\}$$

exist? Compute the solution x^* in the case of a).

Exercise 2: Let $f: X \to \mathbb{R}$ be defined on the convex set $X \subset \mathbb{R}^n$. Prove that f is convex, if and only if its *epigraph*

$$\operatorname{epi}(f) := \{(x, \alpha) \in X \times \mathbb{R} ; f(x) \le \alpha\}$$

is a convex set.

Exercise 3: Show that the *Rosenbrock function* $f : \mathbb{R}^2 \to \mathbb{R}$

$$f(x) := 100(x_2 - x_1^2)^2 + (1 - x_1)^2$$

has a global minimum, which is also the only stationary point of the function f. Furthermore calculate the eigenvalues of the hessian matrix of f at the global minimum.

Exercise 4: Are the following functions (strictly) convex? Prove (strict) convexity or give a counterexample.

- a) $f: \mathbb{R} \to \mathbb{R}$, $f(x) := x^2$
- b) $g: \mathbb{R} \to \mathbb{R}$, $g(x) := x^3$
- c) $h: \mathbb{R}^n \to \mathbb{R}$, h(x) := ||x||

^{*}**Group 2** will present the solutions.

Numerical Exercise 1: Implement the descent algorithm with $d^k = -\nabla f(x^k)$ and fixed steplength $t_k = 0.00125$ for the Rosenbrock function $f: \mathbb{R}^2 \to \mathbb{R}$

$$f(x) := 100(x_2 - x_1^2)^2 + (1 - x_1)^2.$$

Try at least 5 different starting points of your choice. As a termination condition use

$$\|\nabla f(x^k)\| < 10^{-5}$$

and don't iterate more than 10⁵ times. Visualize the iteration process.

Descent algorithm

- i) $x^0 \in \mathbb{R}^n$ given, k := 0 iteration counter
- ii) if x^k satisfies the termination condition: STOP with $x^* = x^k$
- iii) find a descent direction d^k of f in x^k
- iv) find a steplength t_k such that $f(x^k + t_k d^k) < f(x^k)$
- v) $x^{k+1} = x^k + t_k d^k$, k = k + 1, go to ii)