Claims 18, 19 and 21, line 1, delete "1" and insert ---50---.

Claim 25, line 1, delete "24" and insert

Claims 27-29, line 1, delete "26" and insert

Claims 41-49, cancel without prejudice.

Please add the following new claims.

50. (New) A compound of Formula I:

 $\bigcap_{i} I_i$

Formula I

wherein W, X, Y and Z are each independently selected from $C-R_3$, $C-R_4$, $C-R_5$, $C-R_6$ and N (nitrogen) and that no more than two of W, X, Y and Z are N;

wherein R_3 , R_4 , R_5 and R_6 are each independently hydrogen, hydroxy, sulfhydryl, lower alkoxy (1-4 carbon

Pl

atoms), lower thioalkoxy (1-4 carbon atoms), lower alkyl (1-4 carbon atoms), halo, CN, CF_3 , NO_2 , $COOR_7$ or NR_7R_8 ; wherein R_7 and R_8 are independently hydrogen or

wherein R_7 and R_8 are independently hydrolower alkyl (1-4 carbon atoms);

M is oxygen;

O S
$$\parallel$$
 -O-C-O(CH₂)_n, -O-C-(CH₂)_n, and -O-(CH₂)_n,

wherein R_{11} and R_{12} are independently hydrogen or lower alkyl (1-4 carbon atoms); n=0 or 1;

 R_1 and R_2 independently are:

an alkyl of 1 to 6 carbon atoms,

unsubstituted, mono or polysubstituted phenyl or polyaromatic,

unsubstituted, mono or polysubstituted heteroaromatic, with hetero atom(s) N (nitrogen), O (oxygen) and/or S (sulfur) or,

unsubstituted, mono or polysubstituted aralkyl, unsubstituted, mono or polysubstituted cyclo or

polycycloalkyl hydrocarbon, or

mono or polyheterocycle (3 to 8 atoms per ring) with one to four hetero atoms as N (nitrogen), O (oxygen) or S (sulfur); and

wherein the substitutions are selected from hydrogen

- lower alkyl of 1-4 carbon atoms,
- $(CH_2)_i OR_{13}$
- (CH₂)_iSR₁₃
- trifluoromethyl
- nitro
- halo

- cyano

- azido
- acetyl

$$\left(\begin{array}{c}R_{16}\\ \\ -C\\ \\ R_{15}\end{array}\right)_{i}--COOR_{13}$$

$$\left(\begin{array}{c} R_{16} \\ - C \\ - R_{15} \end{array}\right)_{i} - -CONR_{13}R_{14}$$

$$\left(\begin{array}{c} R_{16} \\ - C \\ R_{15} \end{array}\right)_{i} - NR_{13}R_{14}$$

$$\left(\begin{array}{c} R_{16} \\ - C \\ - C \\ R_{15} \end{array}\right)_{i} - CONHSO_{2}R_{13}$$

$$(CH_2)_i$$
 OC(O) R_{13}

$$\begin{pmatrix}
R_{16} \\
-C \\
C \\
R_{15}
\end{pmatrix}_{i}
-S(O)_{j} R_{13}$$

$$\begin{pmatrix} R_{16} \\ -C \\ R_{15} \end{pmatrix} -S(O)_{j}NR_{13}R_{14}$$

- (CH₂)_i tetrazole, and
- polyhydroxy alkyl or cycloalkyl of from 5 to 8 carbon atoms,

wherein i and j are independently 0, 1, 2; R_{13} , R_{14} , R_{15} , R_{16} are each independently hydrogen, lower alkyl (1-4 carbon atoms), alkaryl of from 7 to 10 carbon atoms;

 ${\rm NR}_{13}{\rm R}_{14}$ is also mono or bicyclic ring with one to four hetero atoms as N,O,S;

provided that when W, X, Y and Z are each C-R $_3$, C-R $_4$, C-R $_5$ and C-R $_6$ and R $_3$, R $_4$, R $_5$ and R $_6$ are hydrogen and A is

NH—C— and R_1 is unsubstituted phenyl, then R_2 cannot be unsubstituted phenyl;

further provided that when W, X, Y and Z are each C-R $_3$, C-R $_4$, C-R $_5$, and C-R $_6$ and R $_3$, R $_4$, R $_5$ and R $_6$ are hydrogen or halogen and

M is oxygen, and

 R_2 is unsubstituted or mono substituted phenyl and wherein substitution is chloro, bromo, butyl, n-butoxy, iso-butoxy, then R_1 cannot be unsubstituted or mono substituted phenyl, or unsubstituted naphthyl wherein substitution is chloro or bromo.

51. (New) The compound of claim 50 wherein:

W and Y are each independently C-R₃, C-R₅ or N,

X and Z are each independently C-R₄ or C-R₆,

wherein R₃, R₄, R₅ and R₆ are each independently

chlorine, bromine, iodine, carbmethoxy, carboxy, methoxy,

methyl thio, thiomethyl, thioethyl, and hydroxy;

A is selected from

O
$$\| N-NO_2 \|$$
-O-C-N-(CH₂)_n, and -N-C-N-(CH₂)_n
 $\| R_{12} \|$
 $\| R_{11} \|$

wherein R_{11} and R_{12} are independently hydrogen or alkyl of from 1 to 4 carbon atoms, n is 0 or 1;

 ${\rm R}_1$ and ${\rm R}_2$ are independently an unsubstituted, mono or polysubstituted

phenyl,

T

pyridyl,

pyrrolyl,

furanyl,

thiofuranyl,

pyrimidinyl,

indolyl,

quinolinyl,

quinaxolinyl; or

a cyclo or polycycloalkyl hydrocarbon of 6 to 12 carbon atoms;

wherein up to three substituents per ring are present.

52. (New) The compound of claim $\S 0$ wherein: W is C-R₃ or N wherein R₃ is selected from hydrogen, chlorine, bromine, iodine, methoxy, and methyl; X is C-R₄ wherein R₄ is selected from hydrogen, chlorine, hydroxy, methoxy, sulfhydryl and thioethylether; Y is C-R₅ wherein R₅ is selected from hydrogen, chlorine, bromine, iodine, methoxy, methyl, carboxy, and carbmethoxy;

Z is $C-R_6$ and N, wherein R_6 is hydrogen;

A is selected from

$$\begin{array}{c} O \\ \parallel \\ -N-C-N-(CH_2)_n - , \\ \mid \qquad \mid \\ R_{11} \qquad R_{12} \end{array}$$

 ${\rm R}_1$ and ${\rm R}_2$ are independently phenyl, mono or polysubstituted phenyl, pyridyl,

pyrrolyl,

furanyl,

thiofuranyl,

pyrimidinyl,

indoly1,

quinolinyl, quinaxolinyl.

53. (New) The compound of claim 50 wherein A is

54. (New) The compound of claim 50 wherein A is

W, X, Y, and Z are selected from $C-R_3$, $C-R_4$, $C-R_5$, $C-R_6$ and N and at least one and no more than two of W, X, Y and Z are N.

55. (New) The compound of claim 50 having the structure:

wherein R_x is hydroxy, sulfhydryl, lower alkoxy (1-4 carbon atoms), lower thioalkoxy (1-4 carbon atoms), lower alkyl (1-4 carbon atoms), halo, CN, CF₃, NO₂, COOR₇ or NR₇R₈, where x=0-3;

wherein $\ensuremath{\text{R}}_7$ and $\ensuremath{\text{R}}_8$ are independently hydrogen or lower alkyl (1-4 carbon atoms).

56. (New) The compound of claim 50 wherein: W, X, Y and Z are selected from C-R₃, C-R₄, C-R₅ and C-R₆;

 R_1 and R_2 cannot both be phenyl in the same compound.

57. (New) The compound of claim 50 wherein:

W, X, Y, and Z are each independently selected from C-R₃, C-R₄, C-R₅, C-R₆ and wherein R₃, R₄, R₅ and R₆ are independently selected from hydroxy, sulfhydryl, lower alkoxy, lower thioalkoxy, lower alkyl, CN, CF₃, NO₂, COOR₇, and NR₇R₈.

58. (New) The compound of claim 50 wherein: W, X, Y and Z are each independently selected from C-R₃, C-R₄, C-R₅, C-R₆ and wherein R₃, R₄, R₅ and R₆ are as defined above but they cannot be hydrogen or halogen;

- 59. (New) The compound selected from the group consisting of:
- 2-Thioxo-3-o-tolyl-2,3-dihydro-1H-quinazolin-4-one
- 3-(2-Ethyl-phenyl)-2-thioxo-2,3-dihydro-1H-quinazolin-4-one
- 3-(4-Chloro-phenyl)-2-thioxo-2,3-dihydro-1H-quinazolin-4-one
- 3-(2,3-Dichloro-phenyl)-2-thioxo-2,3-dihydro-1H-quinazolin-4-one
- 3-(3-Fluoro-phenyl)-2-thioxo-2,3-dihydro-1H-quinazolin-4
 -one
- 3-Naphthalen-1-yl-2-tioxo-2,3-dihydro-1H-quinazolin-4-one
- 3-(3-Methoxy-phenyl)-2-thioxo-2,3-dihydro-1H-quinazolin-4-one

- 3-(3-Dimethylamino-phenyl)-2-thioxo-2,3-dihydro-1H -quinazolin-4-one
- 3-[4-(Morpholine-4-sulfonyl)-phenyl]-2-thioxo-2,3-dihydro
 -1H-quinazolin-4-one
- 3-Pyridin-3-yl-2-thioxo-2,3-dihydro-1H-quinazolin-4-one
- 3-(4-Methoxy-phenyl)-2-thioxo-2,3-dihydro-1H-quinazolin-4-one
- 3-(3-Isopropoxy-phenyl)-2-thioxo-2,3-dihydros-1H-pyrido [2,3-d]pyrimidin-4-one
- 3-(3,4-Dimethoxy-phenyl)-2-thioxo-2,3-dihydro-1H-quinazolin-4-one.
- 60. (New) A compound selected from the group consisting of::
- 3-(2-Ethyl-phenyl)-2-hydrazino-3H-quinazolin-4-one
- 3-(2,3-Dichloro-phenyl)-2-hydrazino-3H-quinazolin-4-one
- 2-Hydrazino-3-naphthalen-1-yl-3H-quinazolin-4-one
- 2-Hydrazino-3-(3-methoxy-phenyl)-3H-quinazolin-4-one
- 3-(3-Dimethylamino-phenyl)-2-hydrazino-3H-quinazolin-4-one
- 2-Hydrazino-3-[4-(morpholine-4-sulfonyl)-phenyl]-3H -quinazolin-4-one
- 2-Hydrazino-3-pyridin-3-yl-3H-quinazolin-4-one
- 3-(3-Amino-phenyl)-2-hydrazino-3H-quinazolin-4-one
- 2-Hydrazino-3-(3-isopropoxy-phenyl)-3H-pyrido[2,3-d]pyrimidin-4-one
- 3-(3,4-Dimethoxy-phenyl)-2-hydrazino-3H-quinazolin-4-one.

61. (New) A compound of Formula I:

Formula I

wherein W, X, Y and Z are each independently selected from $C-R_3$, $C-R_4$, $C-R_5$, $C-R_6$ and N (nitrogen) and that no more than two of W, X, Y and Z are N;

wherein R_3 , R_4 , R_5 and R_6 are each independently hydrogen, hydroxy, sulfhydryl, lower alkoxy (1-4 carbon atoms), lower thioalkoxy (1-4 carbon atoms), lower alkyl (1-4 carbon atoms), halo, CN, CF₃, NO₂, COOR₇ or NR₇R₈;

wherein R_7 and R_8 are independently hydrogen or lower alkyl (1-4 carbon atoms);

M is oxygen;

O S
$$\parallel$$
 -O-C-O(CH₂)_n, -O-C-(CH₂)_n, and -O-(CH₂)_n,

wherein R_{11} and R_{12} are independently hydrogen or lower alkyl (1-4 carbon atoms); n=0 or 1;

 R_1 is alkyl of 1 to 6 carbon atoms,

 R_2 is

unsubstituted, mono or polysubstituted phenyl or polyaromatic, unsubstituted, mono or polysubstituted heteroaromatic, with hetero atom(s) N (nitrogen), O (oxygen) and/or S (sulfur) or, unsubstituted, mono or

polysubstituted aralkyl, unsubstituted, mono or polysubstituted cyclo or

polycycloalkyl hydrocarbon, or mono or polyheterocycle (3 to 8 atoms per ring) with one to four hetero atoms as N (nitrogen), O (oxygen) or S (sulfur); and

wherein the substitutions are selected from

- hydrogen
- lower alkyl of 1-4 carbon atoms,
- (CH₂)_iOR₁₃
- (CH₂)_iSR₁₃
- trifluoromethyl
- nitro
- halo
- cyano
- azido
- acetyl

$$\begin{pmatrix} R_{16} \\ | \\ -C \\ | \\ R_{15} \end{pmatrix}, -COOR_{13}$$

$$\begin{pmatrix} R_{16} \\ -C \\ R_{15} \end{pmatrix} -CONR_{13}R_{14}$$

$$\left(\begin{array}{c} R_{16} \\ - C \\ R_{15} \end{array}\right)_{i} - - NR_{13}R_{14}$$

(')'

$$\left(\begin{array}{c} R_{16} \\ - C \\ R_{15} \end{array}\right)_{i} - CONHSO_{2}R_{13}$$

$$(CH_2)_i$$
 $OC(O)$ R_{13}

$$\left(\begin{array}{c} R_{16} \\ - C \\ R_{15} \end{array}\right)_{i} - S(O)_{j} R_{13}$$

, and

$$\left(\begin{array}{c} R_{16} \\ -C \\ R_{15} \end{array}\right)_{i} - S(O)_{j}NR_{13}R_{14}$$

 ${\rm NR}_{13}{\rm R}_{14}$ is also mono or bicyclic ring with one to four hetero atoms as N,O,S;

provided that when W, X, Y and Z are each C-R $_3$, C-R $_4$, C-R $_5$ and C-R $_6$ and R $_3$, R $_4$, R $_5$ and R $_6$ are hydrogen and A is

NH—C— and R_1 is unsubstituted phenyl, then R_2 cannot be unsubstituted phenyl;

further provided that when W, X, Y and Z are each C-R $_3$, C-R $_4$, C-R $_5$, and C-R $_6$ and R $_3$, R $_4$, R $_5$ and R $_6$ are hydrogen or halogen and

M is oxygen, and

 R_2 is unsubstituted or mono substituted phenyl and wherein substitution is chloro, bromo, butyl, n-butoxy, iso-butoxy, then R_1 cannot be unsubstituted or mono substituted phenyl, or unsubstituted naphthyl wherein substitution is chloro or bromo.

62. (New) A compound having the structure:

Formula I

wherein W, X, Y and Z are each independently selected from $C-R_3$, $C-R_4$, $C-R_5$, $C-R_6$ and N (nitrogen) and that no more than two of W, X, Y and Z are N;

wherein R_3 , R_4 , R_5 and R_6 are each independently hydrogen, hydroxy, sulfhydryl, lower alkoxy (1-4 carbon atoms), lower thioalkoxy (1-4 carbon atoms), lower alkyl (1-4 carbon atoms), halo, CN, CF₃, NO₂, COOR₇ or NR₇R₈;

wherein R_7 and R_8 are independently hydrogen or lower alkyl (1-4 carbon atoms);

M is oxygen;

C'

O S
$$\parallel$$
 -O-C-O(CH₂)_n, -O-C-(CH₂)_n, and -O-(CH₂)_n,

wherein R_{11} and R_{12} are independently hydrogen or lower alkyl (1-4 carbon atoms); n=0 or 1;

 R_1 and R_2 independently are:

an alkyl of 1 to 6 carbon atoms,

unsubstituted, mono or polysubstituted phenyl or polyaromatic,

unsubstituted, mono or polysubstituted heteroaromatic, with hetero atom(s) N (nitrogen), O (oxygen) and/or S (sulfur) or,

unsubstituted, mono or polysubstituted aralkyl,

unsubstituted, mono or polysubstituted cyclo or

polycycloalkyl hydrocarbon, or

mono or polyheterocycle (3 to 8 atoms per ring) with one to four hetero atoms as N (nitrogen), O (oxygen) or S (sulfur); and

wherein the substitutions are selected from

- hydrogen
- lower alkyl of 1-4 carbon atoms,
- (CH₂)_iOR₁₃
- (CH₂)_iSR₁₃
- trifluoromethyl
- nitro

- halo

- cyano

- azido

- acetyl

$$\begin{pmatrix} R_{16} \\ -C \\ R_{15} \end{pmatrix}_{i} --CONR_{13}R_{14}$$

$$\left(\begin{array}{c} R_{16} \\ - C \\ - R_{15} \end{array}\right)_{i} - NR_{13}R_{14}$$

$$\left(\begin{array}{c} R_{16} \\ -C \\ R_{15} \end{array}\right)_{i} - CONHSO_{2}R_{13}$$

$$\left(CH_{2}\right)_{i}$$
 $OC\left(O\right)$ R_{13}

$$\begin{pmatrix} R_{16} \\ - C \\ R_{15} \end{pmatrix}_{i} - S(O)_{j} R_{13}$$

and

$$\begin{pmatrix} R_{16} \\ -C \\ R_{15} \end{pmatrix}_{i} -S(O)_{j}NR_{13}R_{14}$$

wherein i and j are independently 0, 1, 2, R_{13} , R_{14} , R_{15} , R_{16} are each independently hydrogen, lower alkyl, alkaryl of from 7 to 10 carbon atoms; and

 $$\operatorname{NR}_{13}\operatorname{R}_{14}$$ may also be mono or bicyclic ring with one to four hetero atoms as N,O,S.

63. (New) A method for treating a condition advantageously affected by the binding of the compound of Formula I to a CCK receptor in a mammal in need of such treatment comprising providing an effective binding amount of the compound of Formula I:

Formula I

wherein W, X, Y and Z are each independently selected from $C-R_3$, $C-R_4$, $C-R_5$, $C-R_6$ and N (nitrogen) and that no more than two of W, X, Y and Z are N;

wherein R_3 , R_4 , R_5 and R_6 are each independently hydrogen, hydroxy, sulfhydryl, lower alkoxy (1-4 carbon atoms), lower thioalkoxy (1-4 carbon atoms), lower alkyl (1-4 carbon atoms), halo, CN, CF₃, NO₂, COOR₇ or NR₇R₈;

wherein R_7 and R_8 are independently hydrogen or lower alkyl (1-4 carbon atoms);

M is oxygen;

wherein R_{11} and R_{12} are independently hydrogen or lower alkyl (1-4 carbon atoms); n=0 or 1;

 R_1 and R_2 independently are:

an alkyl of 1 to 6 carbon atoms,

unsubstituted, mono or polysubstituted phenyl or polyaromatic,

unsubstituted, mono or polysubstituted heteroaromatic, with hetero atom(s) N (nitrogen), O (oxygen) and/or S (sulfur) or,

unsubstituted, mono or polysubstituted aralkyl,
unsubstituted, mono or polysubstituted cyclo or
 polycycloalkyl hydrocarbon, or
mono or polyheterocycle (3 to 8 atoms per ring) with one to
four hetero atoms as N (nitrogen), O (oxygen) or S
(sulfur); and

wherein the substitutions are selected from

- hydrogen
- lower alkyl of 1-4 carbon atoms,
- (CH₂)_iOR₁₃
- (CH₂)_iSR₁₃
- trifluoromethyl
- nitro
- halo
- cyano
- azido
- acetyl

$$\begin{pmatrix} R_{16} \\ -C \\ R_{15} \end{pmatrix}_{i} -COOR_{13}$$

$$\begin{pmatrix} R_{16} \\ -C \\ R_{15} \end{pmatrix}_{i} -CONR_{13}R_{14}$$

$$\begin{pmatrix} R_{16} \\ -C \\ R_{15} \end{pmatrix}_{i} -NR_{13}R_{14}$$

$$\begin{pmatrix} R_{16} \\ -C \\ R_{15} \end{pmatrix} -CONHSO_2R_{13}$$

$$\left(CH_{2}\right)_{i}$$
 $OC(O)$ R_{13}

$$\begin{pmatrix} R_{16} \\ -C \\ R_{15} \end{pmatrix}_{i} -S(O)_{j} R_{13}$$

and

$$\begin{pmatrix} R_{16} \\ -C \\ R_{15} \end{pmatrix}_{i} -S(O)_{j}NR_{13}R_{14}$$

wherein i and j are independently 0, 1, 2, R_{13} , R_{14} , R_{15} , R_{16} are each independently hydrogen, lower alky, alkaryl of from 7 to 10 carbon atoms; and

 $\mbox{NR}_{13}\mbox{R}_{14}$ is also mono or bicyclic ring with one to four hetero atoms as N,O,S.

64. (New) A method of reducing gastric acid secretion in a mammal comprising administering an effective gastric acid secretion reducing amount to a mammal in need thereof a compound of Formula I:

Formula I

wherein W, X, Y and Z are each independently selected from $C-R_3$, $C-R_4$, $C-R_5$, $C-R_6$ and N (nitrogen) and that no more than two of W, X, Y and Z are N;

wherein R_3 , R_4 , R_5 and R_6 are each independently hydrogen, hydroxy, sulfhydryl, lower alkoxy (1-4 carbon atoms), lower thioalkoxy (1-4 carbon atoms), lower alkyl (1-4 carbon atoms), halo, CN, CF₃, NO₂, COOR₇ or NR₇R₈;

wherein R_7 and R_8 are independently hydrogen or lower alkyl (1-4 carbon atoms);

M is oxygen;

O S
$$\parallel$$
 -O-C-O(CH₂)_n, -O-C-(CH₂)_n, and -O-(CH₂)_n,

wherein R_{11} and R_{12} are independently hydrogen or lower alkyl (1-4 carbon atoms); n = 0 or 1;

 ${\tt R}_{\tt 1}$ and ${\tt R}_{\tt 2}$ independently are:

an alkyl of 1 to 6 carbon atoms,

unsubstituted, mono or polysubstituted phenyl or polyaromatic,

unsubstituted, mono or polysubstituted heteroaromatic, with hetero atom(s) N (nitrogen), O (oxygen) and/or S (sulfur) or,

unsubstituted, mono or polysubstituted aralkyl, unsubstituted, mono or polysubstituted cyclo or polycycloalkyl hydrocarbon, or

mono or polyheterocycle (3 to 8 atoms per ring) with one to four hetero atoms as N (nitrogen), O (oxygen) or S (sulfur); and

wherein the substitutions are selected from

- hydrogen
- lower alkyl of 1-4 carbon atoms,
- (CH₂)_iOR₁₃
- (CH₂)_iSR₁₃
- trifluoromethyl
- nitro
- halo
- cyano
- azido
- acetyl

$$\begin{pmatrix} R_{16} \\ -C \\ R_{15} \end{pmatrix}_{i} -COOR_{13}$$

29

 $\begin{pmatrix} & \begin{pmatrix} & R_{16} \\ & &$

$$\begin{pmatrix} & R_{16} \\ & | \\ & -C \\ & | \\ & R_{15} \end{pmatrix}_{i} -NR_{13}R_{14}$$

$$\left(\begin{array}{c} R_{16} \\ - \\ C \\ R_{15} \end{array}\right)_{i} - CONHSO_{2}R_{13}$$

 $(CH_2)_i$ OC(O) R_{13}

$$\begin{pmatrix} R_{16} \\ -C \\ R_{15} \end{pmatrix}_{i} -S(O)_{j} R_{13}$$

and

$$\begin{pmatrix} R_{16} \\ -C \\ R_{15} \end{pmatrix}_{i} -S(O)_{j}NR_{13}R_{14}$$

wherein i and j are independently 0, 1, 2, R_{13} , R_{14} , R_{15} , R_{16} are each independently hydrogen, lower alky, alkaryl of from 7 to 10 carbon atoms; and $NR_{13}R_{14}$ is also mono or bicyclic ring with one to four hetero atoms as N,O,S.

65. (New) A method of reducing anxiety in a mammal, comprising administering an effective anxiety reducing amount to a mammal in need thereof a compound of Formula I:

Formula I

wherein W, X, Y and Z are each independently selected from $C-R_3$, $C-R_4$, $C-R_5$, $C-R_6$ and N (nitrogen) and that no more than two of W, X, Y and Z are N;

wherein R_3 , R_4 , R_5 and R_6 are each independently hydrogen, hydroxy, sulfhydryl, lower alkoxy (1-4 carbon atoms), lower thioalkoxy (1-4 carbon atoms), lower alkyl (1-4 carbon atoms), halo, CN, CF₃, NO₂, COOR₇ or NR₇R₈;

wherein ${\bf R}_7$ and ${\bf R}_8$ are independently hydrogen or lower alkyl (1-4 carbon atoms);

M is oxygen;

O S
$$\parallel$$
 -O-C-O(CH₂)_n, -O-C-(CH₂)_n, and -O-(CH₂)_n,

wherein R_{11} and R_{12} are independently hydrogen or lower alkyl (1-4 carbon atoms); n = 0 or 1;

 R_1 and R_2 independently are:

an alkyl of 1 to 6 carbon atoms,

unsubstituted, mono or polysubstituted phenyl or polyaromatic,

unsubstituted, mono or polysubstituted heteroaromatic, with hetero atom(s) N (nitrogen), O (oxygen) and/or S (sulfur) or,

unsubstituted, mono or polysubstituted aralkyl,

unsubstituted, mono or polysubstituted cyclo or

polycycloalkyl hydrocarbon, or

mono or polyheterocycle (3 to 8 atoms per ring) with one to four hetero atoms as N (nitrogen), O (oxygen) or S (sulfur); and

wherein the substitutions are selected from

- hydrogen
- lower alkyl of 1-4 carbon atoms,

- $(CH_2)_iOR_{13}$

- $(CH_2)_i SR_{13}$

- trifluoromethyl

- nitro

- halo

- cyano

- azido

- acetyl

$$\left(\begin{array}{c} R_{16} \\ -C \\ R_{15} \end{array}\right)_{i} -COOR_{13}$$

$$\left(\begin{array}{c} R_{16} \\ -C \\ R_{15} \end{array}\right)_{i} - CONR_{13}R_{14}$$

$$\left(\begin{array}{c} R_{16} \\ - C \\ - C \\ R_{15} \end{array}\right)_{i} - NR_{13}R_{14}$$

$$\begin{pmatrix} R_{16} \\ - C \\ R_{15} \end{pmatrix}_{i} - CONHSO_{2}R_{13}$$

C'

$$\left(CH_{2}\right)_{i}$$
 $OC(O)$ R_{13}

$$\begin{pmatrix} R_{16} \\ - C \\ R_{15} \end{pmatrix}_{i} - S(O)_{j} R_{13}$$

and

$$\begin{pmatrix} R_{16} \\ -C \\ R_{15} \end{pmatrix}_{i} -S(O)_{j}NR_{13}R_{14}$$

wherein i and j are independently 0, 1, 2, $R_{13},\ R_{14},\ R_{15},\ R_{16}$ are each independently hydrogen, lower alky, alkaryl of from 7 to 10 carbon atoms; and

 $\ensuremath{\text{NR}_{13}\text{R}_{14}}$ is also mono or bicyclic ring with one to four hetero atoms as N,O,S.

66. (New) A method for treating gastrointestinal ulcers in a mammal comprising administering an effective gastrointestinal ulcer treating amount to a mammal in need thereof a compound of Formula I:

Formula I

wherein W, X, Y and Z are each independently selected from $C-R_3$, $C-R_4$, $C-R_5$, $C-R_6$ and N (nitrogen) and that no more than two of W, X, Y and Z are N;

wherein R_3 , R_4 , R_5 and R_6 are each independently hydrogen, hydroxy, sulfhydryl, lower alkoxy (1-4 carbon atoms), lower thioalkoxy (1-4 carbon atoms), lower alkyl (1-4 carbon atoms), halo, CN, CF₃, NO₂, COOR₇ or NR₇R₈;

wherein R_7 and R_8 are independently hydrogen or lower alkyl (1-4 carbon atoms);

M is oxygen;

wherein R_{11} and R_{12} are independently hydrogen or lower alkyl (1-4 carbon atoms); n=0 or 1;

 R_1 and R_2 independently are:

an alkyl of 1 to 6 carbon atoms,

unsubstituted, mono or polysubstituted phenyl or polyaromatic,

unsubstituted, mono or polysubstituted heteroaromatic, with hetero atom(s) N (nitrogen), O (oxygen) and/or S (sulfur) or,

unsubstituted, mono or polysubstituted aralkyl, unsubstituted, mono or polysubstituted cyclo or polycycloalkyl hydrocarbon, or

mono or polyheterocycle (3 to 8 atoms per ring) with one to four hetero atoms as N (nitrogen), O (oxygen) or S (sulfur); and

wherein the substitutions are selected from

- hydrogen
- lower alkyl of 1-4 carbon atoms,
- (CH₂)_iOR₁₃
- (CH₂)₁SR₁₃
- trifluoromethyl
- nitro
- halo
- cyano
- azido
- acetyl

$$\left(\begin{array}{c} R_{16} \\ -C \\ R_{15} \end{array}\right)_{i} -COOR_{13}$$

$$\begin{pmatrix} & R_{16} \\ -- C \\ & R_{15} \end{pmatrix}_{i} -- CONR_{13}R_{14}$$

$$\begin{pmatrix} R_{16} \\ - C \\ - R_{15} \\ \end{pmatrix}_{i} - NR_{13}R_{14}$$

$$\left(\begin{array}{c} R_{16} \\ | \\ -C \\ | \\ R_{15} \end{array}\right)_{i} - CONHSO_{2}R_{13}$$

$$\begin{pmatrix} R_{16} \\ -C \\ R_{15} \end{pmatrix}_{i} -S(O)_{j} R_{13}$$

 γ / and

$$\begin{pmatrix} R_{16} \\ -C \\ R_{15} \end{pmatrix}_{j} -S(O)_{j}NR_{13}R_{14}$$

wherein i and j are independently 0, 1, 2, R_{13} , R_{14} , R_{15} , R_{16} are each independently hydrogen, lower alky, alkaryl of from 7 to 10 carbon atoms; and

 $\ensuremath{\text{NR}_{13}\text{R}_{14}}$ is also mono or bicyclic ring with one to four hetero atoms as N,O,S.

67. (New) A method of treating psychosis in a mammal comprising administering an effective psychosis in a mammal comprising administering an effective psychosis treating amount to a mammal in need thereof a compound of Formula I:

Formula I

wherein W, X, Y and Z are each independently selected from $C-R_3$, $C-R_4$, $C-R_5$, $C-R_6$ and N (nitrogen) and that no more than two of W, X, Y and Z are N;

wherein R_3 , R_4 , R_5 and R_6 are each independently hydrogen, hydroxy, sulfhydryl, lower alkoxy (1-4 carbon atoms), lower thioalkoxy (1-4 carbon atoms), lower alkyl (1-4 carbon atoms), halo, CN, CF₃, NO₂, COOR₇ or NR₇R₈;

wherein R_7 and R_8 are independently hydrogen or lower alkyl (1-4 carbon atoms);

M is oxygen;

O S
$$\parallel$$
 -O-C-O(CH₂)_n, -O-C-(CH₂)_n, and -O-(CH₂)_n,

wherein R_{11} and R_{12} are independently hydrogen or lower alkyl (1-4 carbon atoms); n = 0 or 1;

 R_1 and R_2 independently are:

an alkyl of 1 to 6 carbon atoms,

unsubstituted, mono or polysubstituted phenyl or polyaromatic,

unsubstituted, mono or polysubstituted heteroaromatic, with hetero atom(s) N (nitrogen), O (oxygen) and/or S (sulfur) or

unsubstituted, mono or polysubstituted aralkyl, unsubstituted, mono or polysubstituted cyclo or

polycycloalkyl hydrocarbon, or

mono or polyheterocycle (3 to 8 atoms per ring) with one to four hetero atoms as N (nitrogen), O (oxygen) or S (sulfur); and

wherein the substitutions are selected from

- hydrogen
- lower alkyl of 1-4 carbon atoms,
- $(CH_2)_i OR_{13}$
- (CH₂)_iSR₁₃
- trifluoromethyl
- nitro
- halo

- cyano

- acetyl
$$\begin{pmatrix} R_{16} \\ - C \\ R_{15} \end{pmatrix}_{i} - COOR_{13}$$

$$\left(\begin{array}{c} R_{16} \\ | \\ -C \\ | \\ R_{15} \end{array}\right)_{i} - CONR_{13}R_{14}$$

$$\left(\begin{array}{c} R_{16} \\ - \\ C \\ R_{15} \end{array}\right)_{i} - NR_{13}R_{14}$$

$$\bigcirc / \qquad \left(\begin{array}{c} R_{16} \\ - C \\ R_{15} \end{array} \right)_i - CONHSO_2R_{13}$$

$$(CH_2)_i \circ C(O) R_{13}$$

$$\begin{pmatrix} R_{16} \\ -C \\ R_{15} \end{pmatrix}_{i} -S(O)_{j} R_{13}$$

and

$$\begin{pmatrix} R_{16} \\ - C \\ R_{15} \end{pmatrix}_{i} - S(O)_{j}NR_{13}R_{14}$$

wherein i and j are independently 0, 1, 2, R_{13} , R_{14} , R_{15} , R_{16} are each independently hydrogen, lower alky, alkaryl of from 7 to 10 carbon atoms; and

 $\mbox{NR}_{13}\mbox{R}_{14}$ is also mono or bicyclic ring with one to four hetero atoms as N,O,S.

68. (New) A method of blocking drug or alcohol withdrawal reaction in a mammal comprising administering an effective withdrawal reaction blocking amount to a mammal in need thereof a compound of Formula I:

44

Formula I

wherein W, X, Y and Z are each independently selected from $C-R_3$, $C-R_4$, $C-R_5$, $C-R_6$ and N (nitrogen) and that no more than two of W, X, Y and Z are N;

wherein R_3 , R_4 , R_5 and R_6 are each independently hydrogen, hydroxy, sulfhydryl, lower alkoxy (1-4 carbon atoms), lower thioalkoxy (1-4 carbon atoms), lower alkyl (1-4 carbon atoms), halo, CN, CF_3 , NO_2 , $COOR_7$ or NR_7R_8 ;

wherein R_7 and R_8 are independently hydrogen or lower alkyl (1-4 carbon atoms);

M is oxygen;

wherein R_{11} and R_{12} are independently hydrogen or lower alkyl (1-4 carbon atoms); n=0 or 1; $R_1 \text{ and } R_2 \text{ independently are:}$ an alkyl of 1 to 6 carbon atoms,

unsubstituted, mono or polysubstituted phenyl or polyaromatic,

unsubstituted, mono or polysubstituted heteroaromatic, with hetero atom(s) N (nitrogen), O (oxygen) and/or S (sulfur) or,

unsubstituted, mono or polysubstituted aralkyl, unsubstituted, mono or polysubstituted cyclo or polycycloalkyl hydrocarbon, or

mono or polyheterocycle (3 to 8 atoms per ring) with one to four hetero atoms as N (nitrogen), O (oxygen) or S (sulfur); and

wherein the substitutions are selected from

- hydrogen
- lower alkyl of 1-4 carbon atoms,
- (CH₂)_iOR₁₃
- $(CH_2)_1 SR_{13}$
- trifluoromethyl
- nitro
- halo
- cyano
- azido
- acetyl

$$\begin{pmatrix} R_{16} \\ - C \\ R_{15} \end{pmatrix}_{i} - COOR_{13}$$

$$\left(\begin{array}{c} R_{16} \\ -C \\ R_{15} \end{array} \right)_{i} - CONR_{13}R_{14}$$

$$\begin{pmatrix} R_{16} \\ - C \\ R_{15} \end{pmatrix}_{i} - NR_{13}R_{14}$$

$$\left(\begin{array}{c} R_{16} \\ -C \\ R_{15} \end{array}\right)_{i} - CONHSO_{2}R_{13}$$

$$\left(CH_{2}\right)_{i}$$
 $OC(O)$ R_{13}

$$\begin{pmatrix} R_{16} \\ - C \\ R_{15} \end{pmatrix}_{i} - S(O)_{j} R_{13}$$

and

$$\begin{pmatrix}
 & \begin{pmatrix}
 & R_{16} \\
 & C \\
 & R_{15}
\end{pmatrix}_{i} -S(O)_{j}NR_{13}R_{14}$$

wherein i and j are independently 0, 1, 2, R_{13} , R_{14} , R_{15} , R_{16} are each independently hydrogen, lower alky, alkaryl of from 7 to 10 carbon atoms; and

 $\ensuremath{\text{NR}_{13}\text{R}_{14}}$ is also mono or bicyclic ring with one to four hetero atoms as N,O,S.

69. (New) A method of treating pain in a mammal comprising administering an effective amount to a mammal in need thereof a compound of Formula I:

Formula I

wherein W, X, Y and Z are each independently selected from $C-R_3$, $C-R_4$, $C-R_5$, $C-R_6$ and N (nitrogen) and that no more than two of W, X, Y and Z are N;

wherein R_3 , R_4 , R_5 and R_6 are each independently hydrogen, hydroxy, sulfhydryl, lower alkoxy (1-4 carbon

atoms), lower thioalkoxy (1-4 carbon atoms), lower alkyl (1-4 carbon atoms), halo, CN, CF_3 , NO_2 , $COOR_7$ or NR_7R_8 ; wherein R_7 and R_8 are independently hydrogen or lower alkyl (1-4 carbon atoms);

M is oxygen;

O S
$$\|$$
 -O-C-O(CH₂)_n, -O-C-(CH₂)_n, and -O-(CH₂)_n,

wherein R_{11} and R_{12} are independently hydrogen or lower alkyl (1-4 carbon atoms); n=0 or 1;

 R_1 and R_2 independently are:

an alkyl of 1 to 6 carbon atoms,

unsubstituted, mono or polysubstituted phenyl or polyaromatic,

unsubstituted, mono or polysubstituted heteroaromatic, with hetero atom(s) N (nitrogen), O (oxygen) and/or S (sulfur) or,

unsubstituted, mono or polysubstituted aralkyl,

unsubstituted, mono or polysubstituted cyclo or

polycycloalkyl hydrocarbon, or

mono or polyheterocycle (3 to 8 atoms per ring) with one to four hetero atoms as N (nitrogen), O (oxygen) or S (sulfur); and

wherein the substitutions are selected from

- hydrogen
- lower alkyl of 1-4 carbon atoms,
- (CH₂)_iOR₁₃
- $(CH_2)_i SR_{13}$
- trifluoromethyl
- nitro

- halo

- cyano

- azido

acetyl

$$\begin{pmatrix} R_{16} \\ -C \\ R_{15} \end{pmatrix}_{i} -COOR_{13}$$

$$\begin{pmatrix} R_{16} \\ -C \\ R_{15} \end{pmatrix}_{i} -CONR_{13}R_{14}$$

$$\left(\begin{array}{c} R_{16} \\ -C \\ R_{15} \end{array}\right)_{i} -NR_{13}R_{14}$$

$$\begin{pmatrix} & R_{16} \\ - & C \\ & R_{15} \end{pmatrix}_{i} - CONHSO_{2}R_{13}$$

$$(CH_2)_i$$
 $OC(O)$ R_{13}

$$\begin{pmatrix} R_{16} \\ -C \\ R_{15} \end{pmatrix}_{i} -S(O)_{j} R_{13}$$

and

$$\left(\begin{array}{c} R_{16} \\ - C \\ R_{15} \end{array}\right)_{i} - S(O)_{j} NR_{13} R_{14}$$

wherein i and j are independently 0, 1, 2, R_{13} , R_{14} , R_{15} , R_{16} are each independently hydrogen, lower alky, alkaryl of from 7 to 10 carbon atoms; and $NR_{13}R_{14}$ is also mono or bicyclic ring with one to

four hetero atoms as N,O,S.

70. (New) A method of treating and/or preventing panic in a mammal comprising administering an effective amount to a mammal in need thereof a compound of Formula I:

Formula I

wherein W, X, Y and Z are each independently selected from $C-R_3$, $C-R_4$, $C-R_5$, $C-R_6$ and N (nitrogen) and that no more than two of W, X, Y and Z are N;

wherein R_3 , R_4 , R_5 and R_6 are each independently hydrogen, hydroxy, sulfhydryl, lower alkoxy (1-4 carbon atoms), lower thioalkoxy (1-4 carbon atoms); lower alkyl (1-4 carbon atoms), halo, CN, CF_3 , NO_2 , $COOR_7$ or NR_7R_8 ;

wherein R_7 and R_8 are independently hydrogen or lower alkyl (1-4 carbon atoms);

M is oxygen;

wherein R_{11} and R_{12} are independently hydrogen or lower alkyl (1-4 carbon atoms); n=0 or 1; $R_1 \text{ and } R_2 \text{ independently are:}$ an alkyl of 1 to 6 carbon atoms,

unsubstituted, mono or polysubstituted phenyl or polyaromatic,

unsubstituted, mono or polysubstituted heteroaromatic, with hetero atom(s) N (nitrogen), O (oxygen) and/or S (sulfur) or,

unsubstituted, mono or polysubstituted aralkyl, unsubstituted, mono or polysubstituted cyclo or polycycloalkyl hydrocarbon, or

mono or polyheterocycle (3 to 8 atoms per ring) with one to four hetero atoms as N (nitrogen), O (oxygen) or S (sulfur); and

wherein the substitutions are selected from

- hydrogen
- lower alkyl of 1-4 carbon atoms,
- $(CH_2)_iOR_{13}$
- $(CH_2)_i SR_{13}$
- trifluoromethyl
- nitro
- halo
- cyano
- azido
- acetyl

$$\begin{pmatrix} R_{16} \\ -C \\ R_{15} \end{pmatrix}_{i} -COOR_{13}$$

$$\begin{pmatrix} R_{16} \\ -C \\ R_{15} \end{pmatrix}_{i} -CONR_{13}R_{14}$$

$$\begin{pmatrix} & R_{16} \\ - & C \\ & R_{15} \end{pmatrix}_{i} - NR_{13}R_{14}$$

$$\left(\begin{array}{c} R_{16} \\ -C \\ R_{15} \end{array} \right)_{i} - CONHSO_{2}R_{13}$$

$$(CH_2)_i$$
 $OC(O)$ R_{13}

$$\begin{pmatrix} R_{16} \\ - C \\ R_{15} \end{pmatrix}_{i} - S(O)_{j} R_{13}$$

and

$$\left(\begin{array}{c} R_{16} \\ - C \\ R_{15} \end{array}\right)_{i} - S(O)_{j}NR_{13}R_{14}$$

wherein i and j are independently 0, 1, 2, R_{13} , R_{14} , R_{15} , R_{16} are each independently hydrogen, lower alky, alkaryl of from 7 to 10 carbon atoms; and

 $\mbox{NR}_{13}\mbox{R}_{14}$ is also mono or bicyclic ring with one to four hetero atoms as N,O,S.

71. (New) A method of diagnosis of gastrindependent tumors in a mammal, comprising administering to the mammal in need thereof an effective diagnosing amount of a radiolabelled iodo compound of Formula I:

Formula I

wherein W, X, Y and Z are each independently selected from $C-R_3$, $C-R_4$, $C-R_5$, $C-R_6$ and N (nitrogen) and that no more than two of W, X, Y and Z are N;

wherein R_3 , R_4 , R_5 and R_6 are each independently hydrogen, hydroxy, sulfhydryl, lower alkoxy (1-4 carbon atoms), lower thioalkoxy (1-4 carbon atoms), lower alkyl (1-4 carbon atoms), halo, CN, CF_3 , NO_2 , $COOR_7$ or NR_7R_8 ;

wherein ${\bf R_7}$ and ${\bf R_8}$ are independently hydrogen or lower alkyl (1-4 carbon atoms);

M is oxygen;

(nL

O O S
$$\parallel$$
 -O-S-N-(CH₂)_n, -O-C-(CH₂)_n, -O-C-N-(CH₂)_n, \parallel \parallel R₁₁

O S
$$\parallel$$
 -O-C-O(CH₂)_n, -O-C-(CH₂)_n, and -O-(CH₂)_n,

wherein R_{11} and R_{12} are independently hydrogen or lower alkyl (1-4 carbon atoms); n = 0 or 1;

 R_1 and R_2 independently are:

an alkyl of 1 to 6 carbon atoms,

unsubstituted, mono or polysubstituted phenyl or polyaromatic,

unsubstituted, mono or polysubstituted heteroaromatic, with hetero atom(s) N (nitrogen), O (oxygen) and/or S (sulfur) or.

unsubstituted, mono or polysubstituted aralkyl,

unsubstituted, mono or polysubstituted cyclo or polycycloalkyl hydrocarbon, or

mono or polyheterocycle (3 to 8 atoms per ring) with one to four hetero atoms as N (nitrogen), O (oxygen) or S (sulfur); and

wherein the substitutions are selected from

- hydrogen
- lower alkyl of 1-4 carbon atoms,
- $(CH_2)_i OR_{13}$
- (CH₂)_iSR₁₃
- trifluoromethyl
- nitro
- halo

- cyano

- azido

- acetyl

$$\begin{pmatrix}
R_{16} \\
-C \\
R_{15}
\end{pmatrix}_{i} -COOR_{13}$$

$$\left(\begin{array}{c} R_{16} \\ -C \\ R_{15} \end{array}\right)_{i} ---CONR_{13}R_{14}$$

$$\left(\begin{array}{c} R_{16} \\ - C \\ R_{15} \end{array}\right)_{i} - - NR_{13}R_{14}$$

$$\begin{pmatrix} R_{16} \\ -C \\ R_{15} \end{pmatrix}_{i} -CONHSO_{2}R_{13}$$

 $(CH_2)_i OC(O) R_{13}$

$$\begin{pmatrix} R_{16} \\ -C \\ R_{15} \end{pmatrix}_{i} -S(O)_{j} R_{13}$$

and

$$\begin{pmatrix} R_{16} \\ -C \\ R_{15} \end{pmatrix}_{i} -S(O)_{j}NR_{13}R_{14}$$

wherein i and j are independently 0, 1, 2, R_{13} , R_{14} , R_{15} , R_{16} are each independently hydrogen, lower alky, alkaryl of from 7 to 10 carbon atoms; and

 $\mbox{NR}_{13}\mbox{R}_{14}$ is also mono or bicyclic ring with one to four hetero atoms as N,O,S.

pharmaceutical 72. (New) Α composition comprising an effective therapeutical amount compound of Formula I and a pharmaceutically acceptable salt thereof with a pharmaceutically acceptable carrier and unit dosage form wherein the therapeutic indication is the group consisting selected from of an appetite suppressant, a gasteric acid secretion reducing agent, an anxiety reducing agent, a gasterointestinal ulser treating agent, a phycosis treating agent, a with drawal reaction blocking agent, a pain treatment agent, an agent for treating or preventing panic. An agent for treating gasterin dependent tumors

Formula I

wherein W, X, Y and Z are each independently selected from $C-R_3$, $C-R_4$, $C-R_5$, $C-R_6$ and N (nitrogen) and that no more than two of W, X, Y and Z are N;

wherein R_3 , R_4 , R_5 and R_6 are each independently hydrogen, hydroxy, sulfhydryl, lower alkoxy (1-4 carbon atoms), lower thioalkoxy (1-4 carbon atoms), lower alkyl (1-4 carbon atoms), halo, CN, CF_3 , NO_2 , $COOR_7$ or NR_7R_8 ;

wherein R_7 and R_8 are independently hydrogen or lower alkyl (1-4 carbon atoms);

M is oxygen;

O S
$$\parallel$$
 -O-C-O(CH₂)_n, -O-C-(CH₂)_n, and -O-(CH₂)_n,

wherein R_{11} and R_{12} are independently hydrogen or lower alkyl (1-4 carbon atoms); n = 0 or 1;

 R_1 and R_2 independently are:

an alkyl of 1 to 6 carbon atoms,

unsubstituted, mono or polysubstituted phenyl or polyaromatic,

unsubstituted, mono or polysubstituted heteroaromatic, with hetero atom(s) N (nitrogen), O (oxygen) and/or S (sulfur) or,

unsubstituted, mono or polysubstituted aralkyl,

unsubstituted, mono or polysubstituted cyclo or

polycycloalkyl hydrocarbon, or

mono or polyheterocycle (3 to 8 atoms per ring) with one to four hetero atoms as N (nitrogen), O (oxygen) or S (sulfur); and

 $\label{eq:wherein the substitutions} \ \text{are selected from} \\ \ \text{hydrogen}$

- lower alkyl of 1-4 carbon atoms,
- $(CH_2)_i OR_{13}$
- (CH₂)_iSR₁₃
- trifluoromethyl
- nitro
- halo
- cyano
- azido
- acetyl

$$\begin{pmatrix} R_{16} \\ -C \\ R_{15} \end{pmatrix}_{i} -COOR_{13}$$

$$\left(\begin{array}{c} R_{16} \\ -C \\ R_{15} \end{array}\right)_{i} --CONR_{13}R_{14}$$

$$\left(\begin{array}{c} R_{16} \\ - C \\ R_{15} \end{array}\right)_{i} - NR_{13}R_{14}$$

$$\left(\begin{array}{c} R_{16} \\ -C \\ R_{15} \end{array}\right) - CONHSO_2R_{13}$$

 $(CH_2)_i$ OC(O) R_{13}

$$\begin{pmatrix} R_{16} \\ - C \\ R_{15} \end{pmatrix}_{i} - S(O)_{j} R_{13}$$

$$\begin{pmatrix} R_{16} \\ -C \\ R_{15} \end{pmatrix}_{i} -S(O)_{j}NR_{13}R_{14}$$

- $(CH_2)_i$ tetrazole, and
- polyhydroxy alkyl or cycloalkyl of from 5 to 8 carbon atoms,

wherein i and j are independently 0, 1, 2, R_{13} , R_{14} , R_{15} , R_{16} are each independently hydrogen, lower alkyl (1-4 carbon atoms), alkaryl of from 7 to 10 carbon atoms;

 $$\operatorname{NR}_{13}\operatorname{R}_{14}$$ is also mono or bicyclic ring with one to four hetero atoms as N,O,S;

provided that when W, X, Y and Z are each C-R $_3$, C-R $_4$, C-R $_5$ and C-R $_6$ and R $_3$, R $_4$, R $_5$ and R $_6$ are hydrogen and A is

NH—C— and R_1 is unsubstituted phenyl, then R_2 cannot be unsubstituted phenyl;

67

further provided that when W, X, Y and Z are each C-R_3, C-R_4, C-R_5, and C-R_6 and R_3, R_4, R_5 and R_6 are hydrogen or halogen and