CLAIMS

What is claimed is:

1	1. A phynosineate-polymer composition comprising.
2	(a) a phyllosilicate; and
3	(b) a polymer layer adsorbed onto the basal surface of the phyllosilicate
4	providing a phyllosilicate-polymer composition, wherein the phyllosilicate-polymer
5	composition is present as a single phyllosilicate-polymer phase and the phyllosilicate-polymer
6	composition exhibits an anomalous basal spacing.
	2. The phyllosilicate-polymer composition of claim 1 wherein the polymer
2	has at least one hydroxyl group.
	3. The phyllosilicate-polymer composition of claim 1 further comprising a
2	second polymer layer adsorbed onto the basal surface of the phyllosilicate.
1	4. The phyllosilicate-polymer composition of claim 2 wherein the polymer
2	is selected from the group consisting of polyethylene glycol, polypropylene glycol and
	monoalkyl ether derivatives thereof.
1	5. The phyllosilicate-polymer composition of claim 2 wherein the polymer
2	comprises greater than 27 weight percent of the phyllosilicate-polymer composition.
1	6. The phyllosilicate-polymer composition of claim 2 wherein the exchange
2	sites on the basal surface of the phyllosilicate is bound substantially with hydrogen ions.
1	7. The phyllosilicate-polymer composition of claim 2 wherein the basal
2	spacing of the phyllosilicate-polymer composition increases as the molecular weight of the
3	polymer increases.

polymer increases.

٦,

- 8. An anisotropic liquid crystalline composite, comprising:
 2 (a) a phyllosilicate-polymer composite, comprising;
 3 (1) a phyllosilicate; and
 4 (2) a polymer adsorbed onto the phyllosilicate,
 5 wherein the phyllosilicate-polymer composite is birefringent.
- 9. The anisotropic liquid crystalline composite of claim 8 wherein the phyllosilicate is nematically oriented in the phyllosilicate-polymer composition.
 - 10. The anisotropic liquid crystalline composite of claim 8 wherein the phyllosilicate comprises more than 10 percent of the phyllosilicate-polymer composite.
 - 11. The anisotropic liquid crystalline composite of claim 8 wherein the phyllosilicate is selected from the group consisting of kaolins, talcs and montmorillonites.
 - 12. The anisotropic liquid crystalline composite of claim 8 wherein the polymer is water soluble.
 - 13. The anisotropic liquid crystalline composite of claim 8 further comprising a material selected from the group consisting of polyethylene glycol based surfactants and polypropylene glycol based surfactants.
- 1 14. The anisotropic liquid crystalline composite of claim 13 further 2 comprising an antioxidant.
- 1 15. The anisotropic liquid crystalline composite of claim 13 wherein the liquid crystalline composite is extrudable.
- 1 16. The anisotropic liquid crystalline composite of claim 8 wherein the 2 phyllosilicate-polymer composition comprises a barrier layer, the barrier layer providing a gas 3 permeability below a gas permeability of the polymer alone.

(i

3

6

7

1

7,

- 1 17. A method for producing an anisotropic liquid crystalline composite from 2 a phyllosilicate and a polymer comprising:
 - (a) suspending a phyllosilicate in a compatible solvent;
- 4 (b) dissolving a polymer that is soluble in the compatible solvent in the 5 compatible solvent; and
 - (c) removing a sufficient amount of the compatible solvent to produce an anisotropic liquid crystalline composite.
 - 18. The method of claim 17 wherein the compatible solvent is water.
 - 19. The method of claim 18 wherein the polymer is polyethylene glycol.
 - 20. The method of claim 18 wherein the anisotropic liquid crystalline composite comprises less than about two percent water by weight.
 - 21. The method of claim 18 further comprising purifying the phyllosilicate prior to suspending the phyllosilicate in the compatible solvent.
 - 22. The method of claim 18 wherein the anisotropic liquid crystalline composition comprises between about 30 and 70 percent phyllosilicate.
 - 23. The method of claim 18 further comprising adding a polypropylene glycol or polyethylene glycol based surfactant to the compatible solvent.
- The method of claim 23 further comprising extruding the anisotropic liquid crystalline composite to produce a barrier layer of the anisotropic liquid crystalline composite.
- 25. A barrier film for use in packaging and coating applications having reduced gas permeability comprising an anisotropic liquid crystalline composite layer having a gas permeability below the gas permeability of a polymer in the liquid crystalline composite.
 - 26. The barrier film of claim 25 wherein the film is transparent.

1

1

1

2

- 1 27. The barrier film of claim 25 wherein the liquid crystal composite comprises a phyllosilicate and a polymer.
- 1 28. The barrier film of claim 27 wherein the phyllosilicate comprises greater 2 than ten percent by weight of the liquid crystalline composite layer.
- 1 29. The barrier film of claim 28 wherein the phyllosilicate comprises 2 between about 30 and about 70 percent by weight of the liquid crystalline composite layer.
 - 30. The barrier film of claim 25 wherein the liquid crystalline composite layer comprises an inner layer of a multilayer film.
 - 31. The barrier film of claim 25 wherein the liquid crystalline composite layer further comprises a polyethylene glycol based surfactant.