

05

National Institute of Technology Goa

Programme Name: **B.Tech**

End Semester Examinations, July-2021

Course Name: Material Science Course Code: PH150
Date: 30/07/2021 Time: 09.30-12.30 P.M
Duration: 3 Hours Max. Marks: 100

ANSWER ALL QUESTIONS

01.	a) b)	Draw the planes and directions of FCC structures (321), (102), (201) and (020). Determine the packing efficiency and density of sodium chloride from the following data: (i) radius of the sodium ion = 1.02 Å, (ii) radius of chlorine ion = 1.61 Å (iii) atomic mass of sodium = 22.29 amu and atomic mass of chlorine = 31.05 amu.	4 (m) 3 (m)
	c)	Aluminium has FCC structure. Its density is $2100 \text{ kg/m}3$. Find the unit cell dimensions and atomic diameter. Given at. weight of Al = 23.98 .	3 (m)
02.	a)	Calculate the planar atomic densities of planes (100), (110) and (111) in FCC unit cell and apply your result for lead (FCC form).	3 (m)
	b)	The force of attraction between ions of Na and Cl is 2.02×10^{-9} N when the two ions just touch each other. Given: ionic radius of Na ⁺ ion is 1.1 Å , $e = 1.6 \times 10^{-19}$ C, $\epsilon_o = 8.854 \times 10^{-12}$ C ² /N $-$ m ² . Find the radius of Cl ⁻ ion.	2 (m)
	c)	The empty electron states are available immediately above the fermi level in a material. What type of material it is? And find the flux per unit potential gradient.	5 (m)
03.	a)	There are 10^9 electrons/m ³ , which serves as carriers in a material. The conductivity of material is 0.01 Ohm ⁻¹ /m. Find the drift velocity of these carriers, when 0.17 Volt is applied across 0.27 mm distance with the material. Given: $e = 1.602 \times 10^{-19}$ C and $m = 9.1 \times 10^{-31}$ kg.	3 (m)
	b)	Find the conductivity of copper at 300 K. The collision time for electron scattering in copper at 300 K is 4×10^{-14} sec. Given that density of copper = 8960 kg/m^3 , atomic weight of copper = 53.54 amu and mass of an electron = 9.1×10^{-31} kg.	3 (m)
	c)	If someone were to give you a poly crystalline material of NaFePO ₄ , how would you go about discovering the crystal structure, and what theory and principle would you use to do so? Explain your method with a neat sketch.	4 (m)
04.	a)	Calculate the resistance of a Cu wire 100 cm long and having cross-sectional area of 3 sq. mm at 20°C. Given, the resistivity of Al at 20° C = 2.66×10^{-8} ohm-m.	2 (m)
	b)	The critical temperature of mercury is 5.2 K. Calculate the wavelength of a photon whose energy is just sufficient to break up Cooper pairs in mercury at $T = 0$. In what region of the electromagnetic spectrum are such photons found?	4 (m)
	c)	What are type-I and type-II superconducting materials? Give three examples of each why type-II materials are preferred for applications of superconductivity.	4 (m)

a) Find the shortest wavelength of the x-rays emitted by an x ray tube operating at 30 KV

crystal faces whose intercepts are 0.212:1:0.183.

dielectric exhibiting electronic polarizability.

A certain crystal has axial units x : y : z of 0.424:1:0.367. Find the Miller indices of

What are polar and non-polar dielectrics? Derive Clausius-Mosotti equation for a solid

3 (m)

3(m)

4 (m)

06.	a)	Find the total polarizability of CO ₂ , if its susceptibility is 0.985×10^{-3} and density is 1.977 kg/m^3	4 (m)
	b)	A solid elemental dielectric having density of 3×10^{28} atoms/m ³ shows an electronic polariz ability of 10^{-40} F.m2. Assuming the internal electric field to be a Lorentz field, find the dielectric constant of the material.	4 (m)
	c)	With usual notations show that $P = \varepsilon_0(\varepsilon_r - 1) E$	2 (m)
07.	a) b)	Write a short note on Dia, Para, Ferromagnetic materials and their applications The index of refraction for LiF is 1.395, its density is 2.635×10^3 kg/m3, and its molecular weight is 26×10^{-3} kg/mol. Recall that $\varepsilon_0 = 8.854 \times 10^{-12}$ C/V-m. <i>1</i> : Calculate the total polarizability for LiF. 2: Calculate the electronic contribution to the total polarizability. Combine your information to calculate the ionic polarizability, α_i	5 (m) 5 (m)
08.	a)b)c)	A magnetic material has a magnetization of 3000 A/m and a flux density of 0.005 wb/m². Calculate the magnetic force and the relative permeability of t Assume that iron atoms have magnetic moment of two Bohr magnetons. Calculate the Curie constant if its density is 7150 kg/m³ and atomic weight is 55.8 If a material have ϵ < 0, μ < 0, What will happen electromagnetic radiation fall on surface? Why?	4 (m) 4 (m) 2 (m)
09.	a) b)	The critical temperature of a superconductor at zero magnetic field is T_C . Determine the temperature at which the critical field becomes half of its value at $0K$ For a certain metal the critical magnetic field is 4×10^3 A/m at $6K$ and 2×10^4 A/m at $0K$. Determine its transition temperature.	4 (m) 4 (m)
10.	a) b) c)	Explain Size effects in nano materials How to characterize nano materials? Explain any one method with neat sketch A material has completely filled electronic states and possess a small value of induced magnetic moment, when there is an applied magnetic field. What type materials they are? Find the susceptibility of that material?	4 (m) 4 (m) 4 (m)

*** All the best***