NLPCC-ADL 第二天会议纪要

gaoisbest 自然语言处理实践 2018-08-27

Natural Language Processing and Chinese Computing (**NLPCC**) 大会 [1] 正在召开,今天是第二天,主要是 Advanced Disciplines Lectures (**ADL**) 的分享。NLPCC 会持续召开到 8 月 30 号,我也会持续更新每天的报告记录,供大家参考,由于时间紧迫等原因,一些内容只是给出提纲,具体内容以后有时间再详细阐述。

今天有两个主题报告,即神经信息检索 (Neural Information Retrieval, Neural IR) 和 NLP 的联合学习 (Joint Models for NLP)。

2 Neural IR

今天上午来自加拿大蒙特利尔大学的聂建云老师 [2] 和其博士生聂一凡共同分享了 Neural IR 的最新研究进展。

IR 是什么?

给定 Query 和一些 Documents,如何把与 Query 最相关的 Documents 找出来并排序,就是 Information Retrieval 问题。

传统的 IR 方法有 TFIDF, BM25 等,然后利用 Learning to rank (由昨天作报告的刘铁岩老师提出的) 考虑各种特征进行 rerank. 一个缺点是,这些特征一般都是人工指定的,因此出现了 Neural IR, 用 Neural Networks 自动提取特征。

IR 与 Sentence matching 是不同的, IR 的每个 document 都是非常长的, 而 Sentence matching 都是短文本。

IR 方法分类

总的来说, Neural IR 模型可以分为两类,即 Representation-based 和 Interaction-based. 下面分别介绍两类模型,两类结合的模型,最后总结比较它们。

Representation-based IR 也就是基于表示的 IR, 把 Query 和 Documents 分别表示成 vector, 然后做距离度量 (如 cos距离, MLP等), 常 用的模型有 DSSM, CDSSM, ARC-I等。

DSSM 是由微软在 2013 年提出的,本质是 word hashing + DNN, word hashing 用于解决 OOV 问题,并大大降低了维度。Word hashing 是基于 tri-grams 实现的。举例: What a lovely day => [#Wh, Wha, hat, at#, #a#, #lo, lov, ove, vel, ely, ly#, #da, day, ay#]。

DSSM 是用搜索中的用户点击数据训练的,即用户输入 Query,搜索引擎返回一堆 Documents,如果用户点击了某些 Documents,这些就是训练时的正样本。值得注意的是,DSSM 的训练数据是 (Query, Document title),而不是Document content,因此 DSSM 适用的是短文本匹配。

CDSSM 是使用 Convolution 代替 DSSM 的 DNN 来做的, Convolution 的 window size 设置为 3. 效果优于 DSSM.

ARC-I 也是使用 Convolution 做 sentence matching 的。

总的来说,对长文本的 Documents 做 representation 是非常困难的,因此 Representation-based IR 只适用于短文本。

Interaction-based IR 考虑了 Query 的每个词与 Document 的每个词的 Interaction,即如果把 Query 每个词当作列,Document 的每个词当作行,那么二者的 Interaction 会构成一个 matrix。

常用的模型有 MatchPyramid, ARC-II, DRMM 等。

MatchPyramid 的原理是使用 Convolution 对 Interaction matrix 做操作。Interaction matrix 的每个元素是 Query 词和 Document 词的 word vector 的 cos 相似度。

ARC-II 也是基于 Convolution 的,使用 Conv1D 自动生成Interaction matrix 的每个元素。

DRMM 利用了直方图的概念; K-NRM 利用 Kernel pooling; Conv-KNRM 基于 Convolution 考虑了 Query 的 n-gram 特征; SRNN 加入了空间特征; 基于 Document 太长,并不是所有的词语都对 Query 有用的假设, DeepRank 只考虑若干个词,即 DeepRank 把 Query 的每个字在 Document 中出现位置的前后几个字拿出来做操作,最后合并这些相关词语。 HiNT 首先把 Document 均分成固定长度的片段,然后在每个片段是做 SRNN。

Representation-based IR 和 Interaction-based IR 的结合。

DuetNet 的 local model 是考虑 Interaction 的, distributed model 考虑了 representation, 然后把两者结合起来。

二者比较

由于 IR 问题的 Document 都是长文本,对长文本的 representation 学习一直没有得到很好的解决,因此 Interaction-based IR 通常是优于 Representation-based IR 的。Representation-based IR 的参数很多,而 Interaction-based IR 的参数很少。

最后,博士生聂一凡介绍了他的工作,即 Multi-level Abstraction Matching.

实现

Github 的 MatchZoo [3] 提供了上述大部分模型的实现,但是与同学们交流的过程中,说在同样的数据下,这个实现不如自己实现的模型准确度高。

下午来自浙江西湖高等研究院的张岳老师 [4] 作了关于 Joint Models 的报告。

所谓 Joint Learning 就是同时训练多个任务,比如同时训练分词和词性标注。

张老师做的报告非常详细,讲述了从做博士开始发表的关于 Joint Models 的一些 paper 详细原理,由于我是 Joint Models 小白,下午听的也是一脸懵逼。在这里我就简单列举一下学习资料,希望在大体上有些思路,详细的内容请阅读张老师个人主页列举的 Papers。

思路

Joint Learning 的训练思路总体来说可以分为三类:

- Joint Learning, Joint Search
- Separate Learning, Joint Search
- Joint Learning, Separate Search

分类

Joint Learning 的模型设计可以分为两类:

- Statistical Models
- Deep Learning Models

Statistical Methods 分为:

- Graph-Based
- Transition-Based

Graph-Based 分为:

- Joint Label Structure
- Reranking
- Joint Modeling (Multi task)
- Joint Modeling (Single task)

Deep Learning Models 分为:

- Neural Transition-based Models
- Nerual Graph-Based Models (Multi-task Learning)

Nerual Graph-Based Models 分为:

- Cross Task
- Cross Domain
- Cross Lingual
- Cross Standard

中文 NER 的最新研究成果 ACL 2018 paper LatticeLSTM [5] 的作者就是张老师。

给我的感觉是张老师对相同研究方向的同事们非常熟悉,无论是澳大利亚,还是印尼等,每个人做的什么工作张口就来,可见张老师在其研究方向上的功力颇为深厚。

4 参考文献

- [1] http://tcci.ccf.org.cn/conference/2018/index.php
- [2] http://rali.iro.umontreal.ca/nie/jian-yun-nie-en/
- [3] https://github.com/faneshion/MatchZoo
- [4] http://www.wias.org.cn/index.php?
- a=kydetail&catid=487&id=8925&web=chinese
 - [5] https://github.com/jiesutd/LatticeLSTM

我们有一个自然语言处理实践交流群,喜欢交流的朋友可以加我微信: gaoisbest 拉大家入群。大家可以关注公众号,阅读 NLPCC 大会的后几天笔记分享。