

1

# Methods



- Convolution methods
- Spectral convolution
- Spatial convolution

Korea Institute of Energy Technology 2022-04-11

## GCN - Math Background



- Graph signal processing
- Normalized graph Laplacian
  - $-L = I D^{-1/2}AD^{-1/2}$
  - L is symmetric and PSD  $\Rightarrow L = U\Lambda U^T$  where U is matrix of eigenvalues and  $\Lambda$  is diagonal matrix of eigenvalues
  - $-UU^T=I$
- Graph Fourier transform
  - $-F(x) = U^T x = \hat{x}$
  - Inverse Fourier transform:  $x = F^{-1}(\hat{x}) = U\hat{x}$ 
    - $\rightarrow$   $x = \sum_{i} \hat{x}_{i} u_{i}$
- Graph convolution with filter, g
  - $-x*g = F^{-1}(F(x) \odot F(g)) = U(U^T x \odot U^T g)$  where  $\odot$  is element-wise
  - Denote the filter as  $g_{\theta} = diag(U^Tg)$ 
    - $\rightarrow x * g_{\theta} = U g_{\theta} U^T x$

Korea Institute of Energy Technology 2022-04-11

3

## GCN - Math Background



- Chebyshev approximation
  - Approximate  $g_{\theta}$  by Chebyshev polynomials of U
  - $-g_{ heta}=\sum_{i=1}^K heta_i' T_i(\widetilde{\Lambda})$  where  $\widetilde{\Lambda}=rac{2}{\lambda_{max}}\Lambda-I$  and  $heta_i'\in R^K$  is a vector of Chebyshev coefficients  $T_0(x) = 0, T_1(x) = x$  $T_i(x) = 2xT_{i-1}(x) - T_{i-2}(x)$

$$- \Rightarrow x * g_{\theta} = U(\sum_{i=1}^{K} \theta_{i} T_{i}(\widetilde{\Lambda})) U^{T} x = \sum_{i=1}^{K} \theta_{i} T_{i}(\widetilde{L}) x$$

 $T_i(\widetilde{L}) = UT_i(\widetilde{\Lambda})U^T$ **Proof by induction** 

- Further simplification
  - $-x * g_{\theta} = \sum_{i=1}^{K} \theta_i T_i(\tilde{L}) x$
  - Let K=1,  $\lambda_{max}=2$
  - $\Rightarrow x * g_{\theta} = \theta_0 x \theta_1 D^{-1/2} A D^{-1/2} x$
  - Let  $\theta = \theta_0 = -\theta_1$ 
    - $\rightarrow x * g_{\theta} = \theta (I + D^{-1/2}AD^{-1/2})x$

Kipf & Welling, "Semi-supervised classification with graph convolutional networks," ICLR, 2017.

- In case of multi-channel input & output
- $\rightarrow$   $H = X * g_{\Theta} = f(\bar{A}X\Theta)$  where  $\bar{A} = I + D^{-1/2}AD^{-1/2}$ ,  $f(\cdot)$  an activation

Korea Institute of Energy Technology 2022-04-11



Korea Institute of Energy Technology 2022-04-11

5

# Results

• Node Embedding of GCN



#### **GCN-Results**



• Semi-supervised node classification (Accuracy)

| Method             | Citeseer       | Cora           | Pubmed         | NELL           |
|--------------------|----------------|----------------|----------------|----------------|
| ManiReg [3]        | 60.1           | 59.5           | 70.7           | 21.8           |
| SemiEmb [28]       | 59.6           | 59.0           | 71.1           | 26.7           |
| LP [32]            | 45.3           | 68.0           | 63.0           | 26.5           |
| DeepWalk [22]      | 43.2           | 67.2           | 65.3           | 58.1           |
| ICA [18]           | 69.1           | 75.1           | 73.9           | 23.1           |
| Planetoid* [29]    | 64.7 (26s)     | 75.7 (13s)     | 77.2 (25s)     | 61.9 (185s)    |
| GCN (this paper)   | 70.3 (7s)      | 81.5 (4s)      | 79.0 (38s)     | 66.0 (48s)     |
| GCN (rand. splits) | $67.9 \pm 0.5$ | $80.1 \pm 0.5$ | $78.9 \pm 0.7$ | $58.4 \pm 1.7$ |

Korea Institute of Energy Technology 2022-04-11

7

# GraphSAGE



Hamilton, Ying, & Leskovec, "Inductive representation learning on large graphs," NIPS, 2017

- Compute node embedding based on local network neighborhoods
- Aggregation strategies
  - Max
  - Average



#### **Stacking Layers**



- Model can be of arbitrary depth (Layers)
  - Nodes have embedding at each layer
  - Layer-0 embedding of node u is its input feature,  $x_u$
  - Layer-K embedding gets information from nodes that are K hops away



Korea Institute of Energy Technology 2022-04-11

9

## Average Aggregation



- Average information(message) from neighbors
  - $\mathbf{h}_v^0 = \mathbf{x}_v$  (Initialize node embedding)

$$\mathbf{h}_v^k = \sigma \left( \mathbf{W}_k \sum_{u \in N(v)} \frac{\mathbf{h}_u^{k-1}}{|N(v)|} + \mathbf{B}_k \mathbf{h}_v^{k-1} \right), \ \, \forall k \in \{1,...,K\} \quad \textit{(Update)}$$

 $\mathbf{z}_v = \mathbf{h}_v^K$  (After k – step aggregation)

- After K-layers of neighborhood aggregation, we get output embedding for each node  $(z_v)$
- We can feed these embedding into any loss function
- Run stochastic gradient descent to train

Korea Institute of Energy Technology 2022-04-11

#### **Training**



#### Unsupervised training

- When we do not have label, only graph structure can be used
- Goal: make similar nodes have similar embeddings
  - Node proximity in the graph

#### Supervised training

- Ground truth or manually assigned labels
- Directly train the model to make the input has the output of right label



11

#### Inductiveness



- The same aggregation parameters are shared for all nodes:
  - The number of model parameters is sublinear in |V| and we can **generalize** to unseen nodes



Korea Institute of Energy Technology

2022-04-11

12

## GCN & GraphSAGE



• Graph Convolutional Network (GCN) and GraphSAGE are slightly differ

$$\begin{aligned} \mathbf{h}_v^k &= \sigma \left( \mathbf{W}_k \sum_{u \in N(v)} \frac{\mathbf{h}_u^{k-1}}{|N(v)|} + \mathbf{B}_k \mathbf{h}_v^{k-1} \right) \\ &\qquad \qquad \mathbf{VS}. \\ \mathbf{GCN \ Neighborhood \ Aggregation} \\ \mathbf{h}_v^k &= \sigma \left( \mathbf{W}_k \sum_{u \in N(v) \cup v} \frac{\mathbf{h}_u^{k-1}}{\sqrt{|N(u)||N(v)|}} \right) \\ \mathbf{same \ matrix \ for \ self \ and \ n} \\ &\qquad \qquad \text{eighbor \ embeddings} \end{aligned}$$

Korea Institute of Energy Technology 2022-04-11

13

13

# **Graph Convolutional Network**



- Empirically, GCN discovers the configuration that births the best results
  - More parameter sharing
  - Down-weights high degree neighbors

$$\mathbf{h}_v^k = \sigma \left( \mathbf{W}_k \sum_{u \in N(v) \cup v} \frac{\mathbf{h}_u^{k-1}}{\sqrt{|N(u)||N(v)|}} \right)$$

use the same transformation matrix fo r self and neighbor embeddings

instead of simple average, normalization varies across neighbors

$$\begin{split} \mathbf{H}^{(k+1)} &= \sigma \left( \mathbf{D}^{-\frac{1}{2}} \tilde{\mathbf{A}} \mathbf{D}^{-\frac{1}{2}} \mathbf{H}^{(k)} \mathbf{W}_k \right) \\ \text{where} \quad \tilde{\mathbf{A}} &= \mathbf{A} + \mathbf{I} \\ \mathbf{D}_{ii} &= \sum_{j} \mathbf{A}_{i,j} \\ \text{\tiny 2022-04-11} \end{split}$$

Korea Institute of Energy Technology

## **GraphSAGE**



- Aggregation function
  - Average



Korea Institute of Energy Technology 2022-04-11

15

15

# **Neighbor Aggregation**



- Variants of Aggregation function
  - $\mathrm{AGG} = \sum_{u \in N(v)} \frac{\mathbf{h}_u^{k-1}}{|N(v)|}$ – Mean  $\mathbf{AGG} = \underbrace{\gamma} \{ \mathbf{Qh}_u^{k-1}, \forall u \in N(v) \} )$ - Pool
  - LSTM  $AGG = LSTM ([\mathbf{h}_u^{k-1}, \forall u \in \pi(N(v))])$
- GAT (Graph Attention Network)
  - Both GCN & GraphSAGE use fixed weights
  - GAT automatically adjusts the importance (weights) of neighbors

Velickovic, et.al., "Graph attention networks," ICLR, 2017.

Korea Institute of Energy Technology 2022-04-11

# GCN - appendix



#### o GCN

- $\ H_{:,j}^{(k)} = \sigma \Big( \textstyle \sum_{i=1}^{f_{k-1}} U \Theta_{i,j}^{(k)} U^T \, H_{:,i}^{(k-1)} \Big), \ \ j=1,2,\dots,f_k \ \ \text{with learnable filter,}$  $g_{ heta} = \Theta_{i,j}^{(k)}$  ,  $\sigma$  is an activation function such as ReLU
  - k: layer index
  - $\boldsymbol{H}^{(k-1)} \in R^{n \times f_{k-1}}$ : input signal with  $f_{k-1}$  channels
  - $\Theta_{i,j}^{(k)}$ : diagonal matrix
- $\rightarrow$  Complexity  $O(n^3)$  for eigen-decomposition

Korea Institute of Energy Technology 2022-04-11

17



## **Spectral**



- In signal processing
  - Fourier transform
  - Basis: Elementary sine and cosine waves of different frequencies
  - Represent signal as a sum of basis

#### In graph

- Basis: eigenvectors (values) of graph Laplacian matrix (L, defined later)
  - Eigenvector: Orthogonal components of graph
- Spectral: Eigen-decomposition of L

Korea Institute of Energy Technology

19

19

# **Spectral Analysis**



• Adjacency matrix, A where  $A_{ij}=1$  if edge (i, j)  $\in$  E



Adjacency matrix, A where 
$$A_{ij} = 1$$
 if edge 
$$A = \begin{bmatrix} 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

Has n real eigenvalues n Eigenvectors are real valued

and orthogonal

- Eigenpair (eigenvector, eigenvalue) of A:  $Ax_i = \lambda_i \cdot x_i$
- Spectrum: Eigenvectors of matrix A ordered by the magnitude (strength) of their eigenvalues

$$\Lambda = (\lambda_1, \ \lambda_2, \ \lambda_3, \ \cdots, \lambda_n), \ \lambda_i \le \lambda_{i+1}$$

Analyze the spectrum

Korea Institute of Energy Technology

# Adjacency and Degree Matrices





$$\mathbf{D} = \begin{bmatrix} 3 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Diagonal Non-singular and positive definite (if no isolated node)

N orthogonal eigenpairs

– 
$$\lambda_i = k_i, \; \pmb{x}_i = (0, \dots, 1, 0, \dots, 0)$$
 i-th elemen

How about D-A?

Korea Institute of Energy Technology

21

# Example: d-regular graph



21

- o d-regular graph
  - Every node has d edges
- Connected d-regular graph and its adjacency matrix, A
- $\rightarrow x_n = 1 = (1,1,...,1)$  is the largest (principal) eigenvector with eigenvalue  $\lambda_n$ = d
- The second largest (secondary) eigenvector,  $x_{n-1}$
- ullet Eigenvectors,  $x_n$  and  $x_{n-1}$ , are orthogonal



Assume 
$$|S1| = |S2|$$

$$x_{n-1}[k] = \begin{cases} 1, & \text{if } k \in S1 \\ -1, & \text{if } k \in S2 \end{cases}$$

2-regular

Now suppose that S1 and S2 are sparsely connected Then eigenvector,  $x_{n-1}$ , is a good partition How to find such eigenvector?

Korea Institute of Energy Technology

22

## **Example: Components**



- ullet Consider a graph with c components of  $n_1, n_2, \dots n_{\mathcal{C}}$  nodes Let each component is a d-regular graph
- Adjacency matrix



•  $x_1 = (\overline{1,1,1,0},.,0), \ x_2 = (0,.,0,\overline{1,.,1,0},0), \ x_c = (0,.,0,\overline{1,.,1})$  are eigenvectors with eigenvalue  $\lambda_{n-c+1} = \lambda_{n-c+2} = \cdots \lambda_n = d$ 

Korea Institute of Energy Technology

23

23

## **Graph Laplacian**



• Diffusion (such as pressure, heat, ...) between connected nodes



Diffusion constant

$$\frac{d\psi_i(t)}{dt} = C \cdot \sum_j A_{ij} \left( \psi_j(t) - \psi_i(t) \right)$$

$$= C \cdot \left( \sum_j A_{ij} \psi_j(t) - \sum_j A_{ij} \psi_i(t) \right)$$

$$= C \cdot \sum_j (A_{ij} - \delta_{ij} k_i) \psi_j(t)$$

- **o** In a matrix form,  $\frac{d \pmb{\psi}_-(t)}{dt} = \mathcal{C}(\mathbf{A} \mathbf{D}) \pmb{\psi}(t)$
- $\mathbf{o} \, \frac{d\boldsymbol{\psi}(t)}{dt} + \mathcal{C}(\mathbf{D} \mathbf{A})\boldsymbol{\psi}(t) = 0$
- $\bullet \frac{d\psi(t)}{dt} + C\mathbf{L}\psi(t) = 0, \text{ where}$   $L_{ij} = \begin{cases} k_i, & \text{if } i = j \\ -1, & \text{if } i \neq j \text{ and } (i,j) \in E \\ 0, & \text{o.w.} \end{cases}$

Laplacian operator

Diffusion equation:  $\frac{d\psi(t)}{dt} + C\nabla^2 \psi(t) = 0$ 

Korea Institute of Energy Technology

24

## **Graph Laplacian**



- Properties of L
  - Symmetric
  - Singular

A1=0 → Eigenvector 1=(1,1,...,1) with  $\lambda=0$ 

- Positive semidefinite
  - → all eigenvalues are nonnegative
  - → Eigenvectors are orthogonal
- Write  $\psi(t)$  as a linear combination of the eigenvectors

$$\psi(t) = \sum_{i} a_{i}(t) v_{i}$$

$$\Rightarrow \frac{da_i}{dt} + C\lambda_i a_i = 0$$

$$\rightarrow a_i(t) = a_i(0)e^{-C\lambda_i t}$$

$$\frac{d\boldsymbol{\psi}(t)}{dt} + C\mathbf{L}\boldsymbol{\psi}(t) = 0$$

Korea Institute of Energy Technology

25

25

## Spectrum of Graph Laplacian



- Arbitrarily assign +/- signs to two ends of an edge
- Define a matrix **B** (Edge incidence matrix) such that

$$-\mathbf{B}_{ij} = \begin{cases} +1, & \text{if } (i,j) \in E \text{ and } i \text{ is a positive end} \\ -1, & \text{if } (i,j) \in E \text{ and } i \text{ is a negative end} \\ 0, & \text{o.w.} \end{cases}$$





**o** Claim:  $\mathbf{L} = \mathbf{B}^T \mathbf{B}$ 

$$- (\mathbf{B}^T \mathbf{B})_{ij} = \sum_k \mathbf{B}_{ki} \cdot \mathbf{B}_{kj}$$
$$- = \mathbf{L}_{ij}$$

**o** Consider an eigenpair  $(v_i, \lambda_i)$  of **L** 

$$\Rightarrow \boldsymbol{v}_{i}^{T} \boldsymbol{L} \boldsymbol{v}_{i} = \lambda_{i} \boldsymbol{v}_{i}^{T} \boldsymbol{v}_{i} = \lambda_{i}$$

$$\boldsymbol{v}_{i}^{T} \boldsymbol{B}^{T} \boldsymbol{B} \boldsymbol{v}_{i} = (\boldsymbol{B} \boldsymbol{v}_{i})_{i}^{T} \boldsymbol{B} \boldsymbol{v}_{i}$$

Inner product of a real vector → Nonnegative

Korea Institute of Energy Technology

26