

ANALYSIS WITH PYTHON

Introduction

Airbnb is an online marketplace that connects people looking to rent out their homes with those seeking accommodations. It allows individuals to offer their homes, apartments, or even a room to travelers, typically at competitive rates compared to traditional hotels.

User Reviews

Experiences

Hosts

Variety of Listings

Guests

KEY ASPECTS

START EXPLORING THE DATA

LISTINGS DATA:

,													. 🖯 … 🛍	
	df= p	d.read_csv('listing	s.csv')									_	
													Pyt	thon
	de ba	nd()												
	df.he	au()											Pyt	thon
	id	name	host_id	host_name	neighbourhood_group	neighbourhood	latitude	longitude	room_type	price	minimum_nights	number_of_reviews	last_review	v re
	0 6606	Fab, private seattle urban cottage!	14942	Joyce	Other neighborhoods	Wallingford	47.65444	-122.33629	Entire home/apt	99.0	30	160	2023-08-05	5
	1 9419	Glorious sun room w/ memory foambed	30559	Angielena	Other neighborhoods	Georgetown	47.55017	-122.31937	Private room	76.0	2	196	2024-06-09	9
	2 9531	The Adorable Sweet Orange Craftsman	31481	Cassie	West Seattle	Fairmount Park	47.55495	-122,38663	Entire home/apt	189.0	3	97	2024-06-16	6
	3 9534	The Coolest Tangerine	31481	Cassie	West Seattle	Fairmount Park	47.55627	-122.38607	Entire home/apt	125.0	2	77	2023-12-27	7

df.shape

[5]

```
··· (6442, 18)
```

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6442 entries, 0 to 6441
Data columns (total 18 columns):
                                     Non-Null Count Dtype
    Column
    id
                                     6442 non-null
                                                     int64
 Θ
                                                     object
                                     6442 non-null
     name
                                                     int64
     host id
                                     6442 non-null
                                                     object
     host_name
                                     6442 non-null
     neighbourhood_group
                                                     object
                                     6442 non-null
     neighbourhood
                                     6442 non-null
                                                     object
     latitude
                                                     float64
                                     6442 non-null
     longitude
                                                     float64
                                     6442 non-null
                                                     object
     room type
                                     6442 non-null
     price
                                     6011 non-null
                                                     float64
     minimum_nights
                                                     int64
                                     6442 non-null
    number_of_reviews
                                                     int64
                                     6442 non-null
    last_review
                                                     object
                                     5601 non-null
    reviews_per_month
                                                     float64
                                     5601 non-null
     calculated_host_listings_count 6442 non-null
                                                     int64
    availability_365
                                     6442 non-null
                                                     int64
    number of reviews ltm
                                     6442 non-null
                                                     int64
    license
                                     5312 non-null
                                                     object
dtypes: float64(4), int64(7), object(7)
memory usage: 906.0+ KB
```

UNIVARIATE AND BIVARIATE ANALYSIS

```
import numpy as nd
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style('whitegrid')
%matplotlib inline
import warnings
warnings.filterwarnings('ignore')
df1=df.groupby('neighbourhood_group')['id'].count().reset_index()
```

	neighbourhood_group	id
0	Ballard	411
1	Beacon Hill	260
2	Capitol Hill	581
3	Cascade	261
4	Central Area	605
5	Delridge	195
6	Downtown	831
7	Interbay	15
8	Lake City	110
9	Magnolia	105
10	Northgate	199
11	Other neighborhoods	1249
12	Queen Anne	474
13	Rainier Valley	362
14	Seward Park	52
15	University District	268
16	West Seattle	464

```
plt.figure(figsize=(12, 12)) # Optional: Set the figure size
plt.bar(df1['neighbourhood_group'], df1['id'], color='skyblue')
plt.title('count by Neighbourhood', fontsize=16)
plt.xlabel('Neighbourhood', fontsize=12)
plt.ylabel('count', fontsize=12)
plt.xticks(rotation=45) # Rotate the x-axis labels for better readabilit
# Show the plot
plt.show()
```


- The Downtown area (831) and Central Area (605) follow "Other neighborhoods" as the second and third most represented neighborhoods, suggesting these are highly active or populated areas.
- Queen Anne (474), Capitol Hill (581), and West Seattle (464) are pointing to mid-level engagement

df2=df.groupby('neighbourhood')['id'].count().reset_index()

df2 neighbourhood id Adams 126 Alki 117 Arbor Heights 24 Atlantic 131 3 Belltown 343 West Woodland Westlake 84 18 Whittier Heights 70 Windermere 86 14 Yesler Terrace 87 69 88 rows × 2 columns

```
df3=df.groupby('room_type')['id'].count().reset_index()

df3

df3

room_type id
0 Entire home/apt 5387
1 Hotel room 21
2 Private room 1024
3 Shared room 10
```

```
plt.figure(figsize=(10, 12)) # Optional: Set the figure size
plt.bar(df3['room_type'], df3['id'], color='skyblue')
plt.title('count by room type', fontsize=16)
plt.xlabel('room type', fontsize=12)
plt.ylabel('count', fontsize=12)
plt.xticks(rotation=45) # Rotate the x-axis labels for better readability

# Show the plot
plt.show()
```


- "Entire home/apt" has the highest count with 5,387, indicating that this room type is the most commonly available or in demand
- "Private room" comes second with 1,024 which shows a significant demand for private rooms, likely driven by budget-conscious travelers.

```
df4=df.groupby('number_of_reviews')['id'].count().reset_index().head(30)
plt.figure(figsize=(10, 12)) # Optional: Set the figure size
plt.bar(df4['number_of_reviews'], df4['id'], color='skyblue')
plt.title('count by number of reviews', fontsize=16)
plt.xlabel('Number of reviews', fontsize=12)
plt.ylabel('count', fontsize=12)
plt.xticks(rotation=45) # Rotate the x-axis labels for better readability
# Show the plot
plt.show()
```


- There are 841 listings with zero reviews, the highest count in the dataset. This could indicate a large number of new or less popular listings that haven't been reviewed yet.
- The number of listings decreases as the number of reviews increases.
 - Listings with more than 20 reviews show a clear decline, with counts ranging between 35 and 50.

```
df['last_review']=pd.to_datetime(df['last_review'])

df['last_review_month']=df['last_review'].dt.month_name()
```

```
df5=df.groupby('last_review_month')['number_of_reviews'].count().reset_index()
```

df5

	last_review_month	number_of_reviews
0	April	245
1	August	167
2	December	107
3	February	106
4	January	128
5	July	99
6	June	3332
7	March	173
8	May	771
9	November	123
10	October	147
11	September	203

```
plt.figure(figsize=(8,8)) # Optional: Set the figure size
plt.bar(df5['last_review_month'], df5['number_of_reviews'], color='skyblue')
plt.title('count by number of reviews', fontsize=16)
plt.xlabel('Number of reviews', fontsize=12)
plt.ylabel('count', fontsize=12)
plt.xticks(rotation=45) # Rotate the x-axis labels for better readability

# Show the plot
plt.show()
```


- June accounts for the highest
 percentage of reviews at 59.49%,
 showing a significant spike in activity
 compared to other months.
- May follows with 13.77% of reviews, further supporting a busy late spring and early summer period for bookings.

```
df['last_review_YEAR']=df['last_review'].dt.year

df6=df.groupby('last_review_YEAR')['number_of_reviews'].count().reset_index()

[33]
```

df6

	last_review_YEAR	number_of_reviews
0	2015.0	3
1	2016.0	6
2	2017.0	5
3	2018.0	16
4	2019.0	40
5	2020.0	28
6	2021.0	54
7	2022.0	178
8	2023.0	720
9	2024.0	4551

- Starting in 2021, there is a significant rise in the number of reviews. In 2021, the reviews increased to 54, showing an 88% increase from the previous year (2020).
 - Explosive Growth in 2023 and 2024
- The majority of reviews (44.68%) were received in 2024. When combined with 2023, these two years account for 51.74% of all

reviews

]		df7	
		calculated_host_listings_count	id
	0	1	2585
	1	2	840
	2	3	387
	3	4	236
	4	5	170
	5	6	198
	6	7	105
	7	8	104
	8	9	54
	9	10	100

- Most Hosts Have Few Listings
 - 61.34% of hosts manage
 only one listing
 - 19.93% of hosts
 manage two listings
 - Hosts managing between
 3 and 6 listings represent
 about 9.18% to 4.70% of
 the total.

```
import seaborn as sns
sns.histplot(x='availability_365', data=df,kde=True,color='lightcoral')
```

<Axes: xlabel='availability_365', ylabel='Count'>

- Some listings are nearly unavailable, which could suggest various reasons such as being reserved for personal use, long-term rentals, or simply inactive listings.
- On the other hand, there are listings available for 350 days a year, which suggests a more professional or business-driven approach, with these listings likely being short-term rentals or managed by full-time hosts.

```
df8=df.groupby('room_type')['price'].mean().reset_index()
```

```
plt.figure(figsize=(8, 6))
plt.bar(df8['room_type'], df8['price'], color='lightcoral')

# Add Labels and title
plt.title('Bar Chart of room type Sorted by ID', fontsize=16)
plt.xlabel('Calculated room type', fontsize=12)
plt.ylabel('Average Price', fontsize=12)

# Display the plot
plt.show()
```


- Hotel rooms are approximately
 5.3 times more expensive than
 shared rooms and 2.37 times
 more expensive than entire
 homes/apartments.
 - Private rooms are about 1.24
 times more expensive than
 shared rooms, offering more
 privacy at a moderate increase
 in price.

df9=df.groupby('neighbourhood_group')['minimum_nights'].mean().reset_index()

	neighbourhood_group	minimum_nights
0	Ballard	10.754258
1	Beacon Hill	8.907692
2	Capitol Hill	15.156627
3	Cascade	22.793103
4	Central Area	11.039669
5	Delridge	10.441026
6	Downtown	11.172082
7	Interbay	17.800000
8	Lake City	9.000000
9	Magnolia	9.095238
10	Northgate	12.321608
11	Other neighborhoods	9.336269
12	Queen Anne	8.831224
13	Rainier Valley	7.110497
14	Seward Park	9.153846
15	University District	17.111940
16	West Seattle	8.715517

Neighborhoods like Cascade,
 Capitol Hill, Interbay, and
 University District show a
 preference for longer-term stays
 likely attracting visitors

Shorter minimum stays are more common in Rainier Valley,
 West Seattle, Beacon Hill, and Queen Anne, making these neighborhoods more suitable fo short-term tourists.

```
df10=df.groupby('neighbourhood_group')['number_of_reviews'].mean().reset_index()
plt.figure(figsize=(8, 6))
plt.bar(df10['neighbourhood group'], df10['number of reviews'], color='lightcoral')
# Add labels and title
plt.title('Average number of reviews by neighbourhood group', fontsize=16)
plt.xlabel('Calculated neighbourhood_group', fontsize=12)
plt.ylabel('Average number of reviews', fontsize=12)
plt.xticks(rotation=35)
# Display the plot
plt.show()
```


- Interbay, Downtown, and Magnolia are top performers in terms of guest reviews, showing high engagement and likely popularity among visitors.
- Neighborhoods with lower review counts, like Cascade and University
 District, may either be less popular or have fewer listings available.
- Capitol Hill, Queen Anne, and Ballard are well-established in terms of guest interactions, indicating steady demand in these neighborhoods.


```
df['occupancy_rate']= (365-df['availability_365'])/365
```

```
df['occupancy_rate'].head(10)

√ 0.0s

    0.597260
    0.076712
    0.635616
    0.997260
    0.956164
    0.736986
    0.747945
    0.139726
    0.526027
     0.882192
Name: occupancy_rate, dtype: float64
```

```
df['net_revenue']=df['price']*(365-df['availability_365'])

    0.0s
```

	room_type	net_revenue
0	Entire home/apt	38399.101996
1	Hotel room	25849.700000
2	Private room	15488.637744
3	Shared room	11654.000000

- With a net revenue of 38,399.10 (accounting for 41.57% of total revenue), entire homes or apartments are the highest revenue earners
 - Hotel rooms contribute
 27.99% of the total
 revenue with a net
 revenue of 25,849.70.


```
data5=df.groupby('neighbourhood_group')['calculated_host_listings_count'].mean().reset_index()

data5=df.groupby('last_review_YEAR')['number_of_reviews'].mean().reset_index()

data5['pct_chnge_qty']=data5['number_of_reviews'].pct_change() * 100

data5['price_elasticity'] = data5['pct_chnge_qty'] / data4['Revenue_Growth_Rate']
```

	last_review_YEAR	number_of_reviews	pct_chnge_qty	price_elasticity
0	2015.0	23.666667	NaN	NaN
1	2016.0	10.500000	-55.633803	0.747161
2	2017.0	29.800000	183.809524	1.313035
3	2018.0	8.687500	-70.847315	1.948947
4	2019.0	54.200000	523.884892	61.146902
5	2020.0	90.321429	66.644702	-2.121453
6	2021.0	50.944444	-43.596503	11.999008
7	2022.0	26.606742	-47.773026	-0.724619
8	2023.0	34.358333	29.133939	-3.445921
9	2024.0	97.562294	183.955258	17.246746

data8=df.groupby('neighbourhood_group')['price'].mean().reset_index()


```
host_avg_reviews = df.groupby('host_id')['reviews_per_month'].mean().reset_index()

# Merge with availability_365
host_info = df[['host_id', 'availability_365']].drop_duplicates()
host_avg_reviews = host_avg_reviews.merge(host_info, on='host_id')

# Sort hosts by highest average reviews per month and lowest availability_365
top_hosts = host_avg_reviews.sort_values(by=['reviews_per_month', 'availability_365'], ascending=[False, True])

print(top_hosts.head(10))
```

	host_id	reviews_per_month	availability_365
5694	569419884	59.533333	134
5695	569419884	59.533333	155
5696	569419884	59.533333	158
5050	437880135	15.560000	50
4330	240730356	13.510000	117
1477	18141906	12.000000	3
3805	137418982	11.820000	37
3804	137418982	11.820000	155
1542	19928221	11.740000	216
4741	380578321	11.290000	274

RECOMMENDATIONS

- Invest in targeted marketing campaigns for entire homes/apartments to further boost their already high revenue contribution of 41.57%.
- Optimize pricing for hotel rooms to attract more short-term guests, as they have
 a strong revenue share but might be underutilized due to high costs.
- Entire homes/apartments dominate revenue, indicating high demand for private, long-term accommodation.
- Neighborhoods with high review counts, such as Interbay and Downtown, are likely to see higher guest satisfaction and demand, making them valuable areas to prioritize.

