Formulae, Molecular Formulae and Empirical Formulae

How to calculate empirical (experimental) formulas:

If you are lucky you may be given masses

1.	Write down what elements are present in the compound (including	e.g. Cu	e.g. O
	oxygen if there is mass missing)		

2.	Write down the masses of each element present	e.g.	e.g.
		32.0g	8.0g

3. Divide **mass** of each element by
$$A_r$$
 32.0/63.55 8.0/16.0 = 0.5

4. multiply each result by the same number to **obtain simplest possible** formula with whole numbers (integers)
$$x2 = 1$$
 $x2 = 1$

You may only be given % composition

Write down the **empirical formula**

1.	Write down what elements are present in the compound (including oxygen if there is mass missing)	Cu	О
2.	Write down % composition by mass:	80%	20%
	Find the $\mathbf{A_r}$ of each element from Periodic Table (P.T.) or memory*	63.55	16.00
3.	Find the ratio of $\%$ composition / A_r	80/63.55 = 1.26	20/16.00 = 1.25
4.	Divide by smallest number to obtain relative proportions**	1	1

CuO

• Try questions 2 and 3 on handout 2

Question 4 is H/W

Practical

- calcium carbonate → calcium oxide + carbon dioxide
- $CaCO_3 \rightarrow CaO + CO_2$
- What is the M_r of CaCO₃ CaO and CO₂?
- 100.09, 56.08 and 44.01
- If you heat 1 g of calcium carbonate, it will decompose to give calcium oxide and carbon dioxide. How much carbon dioxide gas will be given off?
- 0.44 g. (44% by mass of the original calcium carbonate)