Reachability analysis of linear hybrid systems via block decomposition

Sergiy Bogomolov, Marcelo Forets, Goran Frehse, Kostiantyn Potomkin, and **Christian Schilling**

EMSOFT 2020

Overview

Preliminaries

Decomposed reachability analysis

Decomposed intersection

Evaluation

Linear hybrid systems

Also called hybrid automata with affine dynamics

Preliminaries

000

Linear hybrid systems

Linear hybrid systems

General form:

Preliminaries

000

Reachability analysis for continuous systems

- Start from set of initial states
- Discretize time and enclose all executions in $t \in [0, \delta]$
- Apply abstraction and propagate in discrete steps until invariant is violated (not shown)
- Flowpipe (union of orange sets) encloses all executions

Preliminaries

000

Discrete transitions: guard intersection

• Intersect with **transition guard** (polyhedron)

000

Discrete transitions: assignment

• Apply assignment (affine map) to guard intersection

Preliminaries

000

Discrete transitions: fixpoint

• Check for **fixpoint** (inclusion in previous flowpipe)

Overview

Decomposed reachability analysis

Decomposed intersection

Preliminaries

Cartesian decomposition

Cartesian decomposition

Decomposed reachability analysis for continuous systems¹

• Decomposition algorithm computes projected flowpipe

¹S. Bogomolov et al. HSCC. 2018.

Decomposed reachability analysis for hybrid systems

- Properties of flowpipe from decomposition algorithm:
 - Low dimensional (only computed in selected dimensions)
 - Decomposed (Cartesian product of sets)
- Goal: use decomposition algorithm in hybrid setting
- Questions and obstacles:
 - Which dimensions do we need to compute?
 - Benefit from low dimensions
 - Benefit from decomposed sets
 - Decomposition algorithm needs high-dimensional input

Guards in decomposed setting

• Decomposition algorithm computes projected flowpipe

• Guard $\mathcal{G} := x_1 + 0x_2 \ge 5.35 \simeq \{x_1 \mid x_1 \ge 5.35\} \times \{x_2 \mid \top\}$ is **decomposed** in same blocks; projection on $x_1 : x_1 \ge 5.35$

Guards in decomposed setting

- Compute flowpipe in low dimensions
- Detect intersection with projected guard
- Compute flowpipe in high dimensions only if needed

Decomposed reachability analysis for hybrid systems

Questions and obstacles:

- ✓ Which **dimensions** do we need to compute?
 - → Dimensions constrained in guards (and safety property)
- ✓ Benefit from low dimensions.
 - → Computation in low dimensions
- ✓ Benefit from decomposed sets
 - \rightarrow Other operations (assignment, fixpoint check, clustering) special-cased for decomposed sets (not presented)
- ✓ Decomposition algorithm needs high-dimensional input
 - → Result of guard intersection is high dimensional

Overview

Preliminaries

Decomposed reachability analysis

Decomposed intersection

Evaluation

• For
$$\widehat{\mathcal{X}} = \mathcal{X}_1 \times \mathcal{X}_2, \widehat{\mathcal{G}} = \mathcal{G}_1 \times \mathcal{G}_2$$
 with $\mathcal{X}_1, \mathcal{G}_1 \subseteq \mathbb{R}^n, \mathcal{X}_2, \mathcal{G}_2 \subseteq \mathbb{R}^m$ we have

$$\widehat{\mathcal{X}} \cap \widehat{\mathcal{G}} = (\mathcal{X}_1 \times \mathcal{X}_2) \cap (\mathcal{G}_1 \times \mathcal{G}_2) = (\mathcal{X}_1 \cap \mathcal{G}_1) \times (\mathcal{X}_2 \cap \mathcal{G}_2)$$

Corollary:

$$\widehat{\mathcal{X}} \cap \widehat{\mathcal{G}} = \emptyset \iff (\mathcal{X}_1 \cap \mathcal{G}_1 = \emptyset) \vee (\mathcal{X}_2 \cap \mathcal{G}_2 = \emptyset)$$

• For
$$\widehat{\mathcal{X}} = \mathcal{X}_1 \times \mathcal{X}_2$$
, $\widehat{\mathcal{G}} = \mathcal{G}_1 \times \mathcal{G}_2$ with $\mathcal{X}_1, \mathcal{G}_1 \subseteq \mathbb{R}^n, \mathcal{X}_2, \mathcal{G}_2 \subseteq \mathbb{R}^m$ we have

$$\widehat{\mathcal{X}} \cap \widehat{\mathcal{G}} = (\mathcal{X}_1 \times \mathcal{X}_2) \cap (\mathcal{G}_1 \times \mathcal{G}_2) = (\mathcal{X}_1 \cap \mathcal{G}_1) \times (\mathcal{X}_2 \cap \mathcal{G}_2)$$

Corollary:

$$\widehat{\mathcal{X}} \cap \widehat{\mathcal{G}} = \emptyset \iff (\mathcal{X}_1 \cap \mathcal{G}_1 = \emptyset) \lor (\mathcal{X}_2 \cap \mathcal{G}_2 = \emptyset)$$

• If furthermore \mathcal{G}_2 is universal and \mathcal{X}_2 is nonempty:

$$\mathcal{X}_2 \cap \mathcal{G}_2 = \mathcal{X}_2 \neq \emptyset$$

Hence

$$\widehat{\mathcal{X}} \cap \widehat{\mathcal{G}} = \emptyset \iff \mathcal{X}_1 \cap \mathcal{G}_1 = \emptyset$$

• Decomposition algorithm computes projected flowpipe

Decomposed intersection

00000

- Cases for intersection $\widehat{\mathcal{X}} \cap \mathcal{G}$ with $\widehat{\mathcal{X}} = \mathcal{X}_1 \times \mathcal{X}_2$:
 - $\checkmark \hat{\mathcal{X}}$ and \mathcal{G} decomposed in same structure
 - \mathcal{G} not decomposed in same structure as $\widehat{\mathcal{X}}$
 - G not decomposed at all

Non-decomposed guard intersection

- Cases for intersection $\widehat{\mathcal{X}} \cap \mathcal{G}$ with $\widehat{\mathcal{X}} = \mathcal{X}_1 \times \mathcal{X}_2$:
 - \checkmark $\widehat{\mathcal{X}}$ and \mathcal{G} decomposed in same structure
 - ullet ${\cal G}$ not decomposed in same structure as $\widehat{{\cal X}}$
 - ullet $\mathcal G$ not decomposed at all

• Let π_1 and π_2 be suitable projection matrices

$$\widehat{\mathcal{G}} := \pi_1 \mathcal{G} \times \pi_2 \mathcal{G} \quad \supseteq \mathcal{G}
\widehat{\mathcal{X}} \cap \widehat{\mathcal{G}} = (\mathcal{X}_1 \cap \pi_1 \mathcal{G}) \times (\mathcal{X}_2 \cap \pi_2 \mathcal{G}) \quad \supseteq \widehat{\mathcal{X}} \cap \mathcal{G}$$

1) High-dimensional intersection:

- Expensive
- Exact

Task:
$$\mathcal{X}_1 \times \mathcal{X}_2 \times \mathcal{X}_3 \times \ldots \times \mathcal{X}_n \cap \mathcal{G}_{1,2,3,\ldots,n}$$

2) Low-dimensional intersection:

- Efficient
- Projection $\pi \mathcal{G}$ can be very coarse

Task:
$$X_1 \times X_2 \times X_3 \times ... \times X_n \cap G_{1,2,3,...,n}$$

3) Medium-dimensional intersection:

Project onto blocks' variables to embed back in high-dimensional set

$$\boxed{\pi_1 \tilde{\mathcal{X}}} \times \boxed{\mathcal{X}_2} \times \boxed{\pi_3 \tilde{\mathcal{X}}} \times \ldots \times \boxed{\mathcal{X}_n}$$

- Middle ground
- First step exact
- Projection applied to a bounded set only

Overview

Evaluation

Outline

Experiments:

- Scaling in number of constrained dimensions k for intersection operation
- Reachability analysis
- Scaling in k for reachability analysis

Scalability in *k*: Intersection operation

- Experiment: overapproximate $\mathcal{X} \cap \mathcal{G}_k$ where $\mathcal{X} \subseteq \mathbb{R}^{1024}$ is a hypercube and \mathcal{G}_k is the half-space $x_1 + \cdots + x_k \leq 2$ (Note: \mathcal{G}_k properly cuts \mathcal{X} for k > 0)
- Evaluate different algorithms to approximate the intersection
 - *Deco-1*: project (here: to 1D blocks), compute exactly via half-space representation, and recombine ("low")
 - Deco-k: same as DecoLow but in kD ("medium")
 - *Min*: estimate support function via (coarse) heuristics $\rho_{\mathcal{X} \cap \mathcal{G}}(\ell) \leq \min(\rho_{\mathcal{X}}(\ell), \rho_{\mathcal{G}}(\ell))$
 - Optim: estimate support function via optimization¹
 - H-rep: compute exactly via half-space representation

¹G. Frehse and R. Ray. ADHS. 2012.

Scalability in k: Intersection operation

Reachability algorithms

- Evaluate different algorithms (verifying the safety property)
 - Deco: our algorithm (decomposed algorithms for both continuous and hybrid part), using 1D blocks and medium-dimensional intersection
 - Optim: decomposed algorithm for continuous part but high-dimensional algorithm for hybrid part, using 1D blocks and "Optim" intersection
 - SpaceEx LGG: support-function algorithm¹
 - SpaceEx STC: extension with automatic time step²

¹C. L. Guernic and A. Girard, CAV. 2009.

²G. Frehse et al. HSCC. 2013.

- m filters, $\mathbf{x} = [x, y, x_1, \dots, x_m]$ (plus auxiliary variable c)
- Constraints only in x and y (and c)
- Auxiliary variable c used to have just one loop iteration

Deco with 1D blocks: dark blue (Deco-1 intersection), orange (Deco-k intersection) Deco with 2D blocks and octagon approximation: light blue

SpaceEx LGG: red

Dashed line: threshold for safety property y < 0.5

Evaluation

Preliminaries

Models

Decomposed intersection

Benchmark	Dim(k)	ID
linear_switching	5 (1)	1
$spacecraft_noabort$	5 (4)	2a
spacecraft_120	5 (5)	2b
platoon_bounded	10 (4)	За
$platoon_unbounded$	10 (4)	3b
filtered_osc64	67 (3)	4a
filtered_osc128	131 (3)	4b
filtered_osc256	259 (3)	4c
$filtered_osc512$	515 (3)	4d
filtered_osc1024	1027 (3)	4e

Reachability analysis on different models

ID	Dim (k)	Step	Deco	Min	Optim	SpaceEx LGG	SpaceEx STC
1	5 (1)	10^{-4}	$2.50 imes 10^{0}$	1.27×10^{1}	2.81×10^{1}	2.60×10^{1}	$2.30 imes 10^{1}$
2a	5 (4)	0.04	5.30×10^{0}	3.42×10^{0}	2.19×10^2	1.18×10^{0}	3.50×10^{-1}
2b	5 (5)	0.04	5.30×10^{0}	$2.10 imes 10^0$	4.30×10^{1}	1.91×10^{0}	$8.10 imes 10^{-1}$
3a	10 (4)	0.01	$1.30 imes 10^{-1}$	$1.60 imes 10^{-1}$	5.69×10^{0}	5.55×10^{0}	$1.60 imes 10^{0}$
3b	10 (4)	0.03	$1.08 imes 10^{0}$	$1.16 imes 10^{0}$	4.96×10^{1}	3.46×10^{1}	$6.50 imes 10^{1}$
4a				$(7.43 \times 10^{0})^{\dagger}$			
4b				$(4.29 \times 10^1)^{\dagger}$			
4c	259 (3)	0.01	$2.80 imes 10^{1}$	$(9.19 \times 10^1)^{\dagger}$	9.99×10^{4}	8.70×10^3	OOM
				$(4.73 \times 10^2)^{\dagger}$		TO	TO
4e	1027 (3)	0.01	$\boxed{5.09\times10^2}$	$(5.11\times10^3)^{\dagger}$	ТО	ТО	ТО

[†]Safety property could not be proven (overapproximation too coarse)

 Add small constraints for k previously unconstrained dimensions in invariants and guards (filtered_osc128 model)

- Decomposed reachability algorithm for linear hybrid systems
- Integration of decomposed reachability algorithm for affine continuous systems
- Compute low-dimensional flowpipe
- Detect guard intersection in low dimensions
- Compute high-dimensional flowpipe only when necessary
- Highly scalable yet precise under appropriate conditions (decomposed, sparsely constrained guards etc.)