Business Case Study: Netflix

About NETFLIX

Netflix is one of the most popular media and video streaming platforms. They have over 10000 movies or tv shows available on their platform, as of mid-2021, they have over 222M Subscribers globally. This tabular dataset consists of listings of all the movies and tv shows available on Netflix, along with details such as - cast, directors, ratings, release year, duration, etc.

Business Problem

Our goal is to analyze the data and generate insights that could help Netflix in deciding which type of shows/movies to produce and how they can grow the business in different countries.

Importing libraries & Data

```
In [1]:
```

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

In [2]:

df = pd.read_csv('https://d2beiqkhq929f0.cloudfront.net/public_assets/assets/000/000/940/original/netflix.csv')
df.head()

Out[2]:

	show_id	type	title	director	cast	country	date_added	release_year	rating	duration	listed_in	description
0	s1	Movie	Dick Johnson Is Dead	Kirsten Johnson	NaN	United States	September 25, 2021	2020	PG- 13	90 min	Documentaries	As her father nears the end of his life, filmm
1	s2	TV Show	Blood & Water	NaN	Ama Qamata, Khosi Ngema, Gail Mabalane, Thaban	South Africa	September 24, 2021	2021	TV- MA	2 Seasons	International TV Shows, TV Dramas, TV Mysteries	After crossing paths at a party, a Cape Town t
2	s3	TV Show	Ganglands	Julien Leclercq	Sami Bouajila, Tracy Gotoas, Samuel Jouy, Nabi	NaN	September 24, 2021	2021	TV- MA	1 Season	Crime TV Shows, International TV Shows, TV Act	To protect his family from a powerful drug lor
3	s4	TV Show	Jailbirds New Orleans	NaN	NaN	NaN	September 24, 2021	2021	TV- MA	1 Season	Docuseries, Reality TV	Feuds, flirtations and toilet talk go down amo
4	s5	TV Show	Kota Factory	NaN	Mayur More, Jitendra Kumar, Ranjan Raj, Alam K	India	September 24, 2021	2021	TV- MA	2 Seasons	International TV Shows, Romantic TV Shows, TV	In a city of coaching centers known to train I

Understanding data

```
In [3]:
```

```
print("No. of rows:",df.shape[0],"\nNo. of columns",df.shape[1])
```

No. of rows: 8807 No. of columns 12

Based on the above info we have data related to 8,807 movies/TV shows. We will confirm this again based on the unique show_id values

In [4]:

df.info()

RangeIndex: 8807 entries, 0 to 8806 Data columns (total 12 columns): Non-Null Count Dtype # Column ---_____ 8807 non-null 0 show_id object 1 type 8807 non-null object 2 title 8807 non-null object 3 director 6173 non-null object Δ cast 7982 non-null object country 7976 non-null object date_added 8797 non-null object release_year 8807 non-null int64 rating 8803 non-null object duration 8804 non-null object 10 listed_in 8807 non-null object 11 description 8807 non-null object dtypes: int64(1), object(11) memory usage: 825.8+ KB

<class 'pandas.core.frame.DataFrame'>

We are also provided with a data dictionary:

- Show_id: Unique ID for every Movie / Tv Show
- Type: Identifier A Movie or TV Show
- Title: Title of the Movie / Tv Show
- Director: Director of the Movie
- Cast: Actors involved in the movie/show
- Country: Country where the movie/show was produced
- · Date added: Date it was added on Netflix
- Release year: Actual Release year of the movie/show
- Rating: TV Rating of the movie/show
- Duration: Total Duration in minutes or number of seasons
- Listed_in:Genre
- Description: The summary description

Notes:

- 1. Based on the above, we have some inconcistencies with the **data types** of certain columns. Some columns need to be converted to categorical types and Date_added needs to be converted to *DATETIME* format.
- 2. We can also observe that some columns have missing values.

Null values check

In [5]:

```
#Creating a function to check null values by percent and counts (helpful tofetch by function when we treat missing values)
def nulls(df=df):
    nulls = pd.DataFrame({'count':df.isnull().sum(),'percent':round(df.isnull().sum()*100/len(df),2)})
    plt.figure(figsize=(12,6))
    plt.title('Missing values in the dataset')
    sns.heatmap(df.isnull(), cbar=False)
    plt.ylabel('Now number')
    return nulls[nulls['count']>0]
nulls()
```

Out[5]:

	count	percent
director	2634	29.91
cast	825	9.37
country	831	9.44
date_added	10	0.11
rating	4	0.05
duration	3	0.03

- From the above we can see that we have 6 columns with missing values. We will decide on the treatement of the same when we explore the data individually by columns.
- Based on the heatmap, there is no pattern found with consistent missing values across columns. Each column can be treated individually.

Statistical Summary of data

```
In [6]:
```

```
#Year
df.describe(exclude='object').round()
```

Out[6]:

	release_year
count	8807.0
mean	2014.0
std	9.0
min	1925.0
25%	2013.0
50%	2017.0
75%	2019.0
max	2021.0

- Based on the above we have movies from the year 1925 to 2021
- $\bullet \ \ \, \text{The } \textbf{mean} \, \text{suggests that most movies could be around the year} \, \textbf{2014} \, (\text{to be confirmed during univariate analysis}) \\$
- The std of 9 could mean that the distribution of years might not be widely seperated and significant gap between years might NOT be observed. (Except probably in the first quartile since the range is huge from 1925 to 2013)

In [7]:

```
#All other categorical columns
df.describe(include='object')
```

Out[7]:

description	listed_in	duration	rating	date_added	country	cast	director	title	type	show_id	
8807	8807	8804	8803	8797	7976	7982	6173	8807	8807	8807	count
8775	514	220	17	1767	748	7692	4528	8807	2	8807	unique
Paranormal activity at a lush, abandoned prope	Dramas, International Movies	1 Season	TV- MA	January 1, 2020	United States	David Attenborough	Rajiv Chilaka	Dick Johnson Is Dead	Movie	s1	top
4	362	1793	3207	109	2818	19	19	1	6131	1	freq

We will have to seperate columns with multiple tags into seperate rows to analyze different entities of the dataset. This will be done while we perform visual analysis.

(eg. cast has many people which might cause a grouped analysis)

Changing data types

```
In [8]:
```

```
#Changing to date-time format
df['date_added'] = pd.to_datetime(df['date_added'])

#Changing to 'object' format
df['release_year'] = df['release_year'].astype('object')
```

```
In [9]:
```

```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 8807 entries, 0 to 8806
Data columns (total 12 columns):
#
    Column
                  Non-Null Count Dtype
                  8807 non-null
    show_id
                                  object
                 8807 non-null
                                  object
    type
    title
                  8807 non-null
                                  object
    director
                 6173 non-null
                                  object
    cast
                  7982 non-null
                                  object
                  7976 non-null
    country
                                  object
                                  datetime64[ns]
    date added
                 8797 non-null
    release_year 8807 non-null
                                  object
                  8803 non-null
8
    rating
                                  object
                  8804 non-null
    duration
                                  object
10 listed_in
                  8807 non-null
                                  object
                 8807 non-null
11 description
                                  object
dtypes: datetime64[ns](1), object(11)
memory usage: 825.8+ KB
```

Now that all data types have appropriately been typecasted we will continue with further analysis

Unique values count

In [10]:

```
for i in df:
    print(i+':',df[i].nunique())
show id: 8807
```

```
title: 8807
director: 4528
cast: 7692
country: 748
date_added: 1714
release_year: 74
rating: 17
duration: 220
listed_in: 514
description: 8775
```

- We have 8807 unique show id and title which suggests that there is no duplication in the number of movies.
- Further inspection is required to understand other categories. We will try to understand the columns with reasonable categories.

```
In [11]:
```

```
# Type of show
pd.DataFrame({'count':df['type'].value_counts(),'percent':round(df['type'].value_counts(normalize=True)*100,2)})
```

Out[11]:

	count	percent
Movie	6131	69.62
TV Show	2676	30.38

We have 70% as movies and 30% as TV shows from the data

```
In [12]:
```

```
# Rating of show
pd.DataFrame({'count':df['rating'].value_counts(),'percent':round(df['rating'].value_counts(normalize=True)*100,2)})
```

Out[12]:

	count	percent
TV-MA	3207	36.43
TV-14	2160	24.54
TV-PG	863	9.80
R	799	9.08
PG-13	490	5.57
TV-Y7	334	3.79
TV-Y	307	3.49
PG	287	3.26
TV-G	220	2.50
NR	80	0.91
G	41	0.47
TV-Y7-FV	6	0.07
NC-17	3	0.03
UR	3	0.03
74 min	1	0.01
84 min	1	0.01
66 min	1	0.01

There are some ill-placed categories (giving us duration instead of rating) in rating column which will need to be treated

In [13]:

```
#Treating the wrongly placed values
df.loc[df['rating'].isin(['74 min','84 min','66 min']), 'duration'] = df.loc[df['rating'].isin(['74 min','84 min','66 min']),
df.loc[df['rating'].isin(['74 min','84 min','66 min']), 'rating'] = np.nan
pd.DataFrame({'count':df['rating'].value_counts(),'percent':round(df['rating'].value_counts(normalize=True)*100,2)})
```

Out[13]:

	count	percent
TV-MA	3207	36.44
TV-14	2160	24.55
TV-PG	863	9.81
R	799	9.08
PG-13	490	5.57
TV-Y7	334	3.80
TV-Y	307	3.49
PG	287	3.26
TV-G	220	2.50
NR	80	0.91
G	41	0.47
TV-Y7-FV	6	0.07
NC-17	3	0.03
UR	3	0.03

For columns which have multiple nested categories (eg. cast, director, country, listed_in) we will treat and analyze these during visual analysis.

Example below

```
In [14]:
```

```
# Rating of show
pd.DataFrame({'count':df['cast'].value_counts(),'percent':round(df['cast'].value_counts(normalize=True)*100,2)})
```

count percent David Attenborough 0.24 19 Vatsal Dubey, Julie Tejwani, Rupa Bhimani, Jigna Bhardwaj, Rajesh Kava, Mousam, Swapnil 0.18 Samuel West 10 0.13 Jeff Dunham 7 0.09 6 David Spade, London Hughes, Fortune Feimster 0.08 Michael Peña, Diego Luna, Tenoch Huerta, Joaquin Cosio, José María Yazpik, Matt Letscher, Alyssa Diaz 1 0.01 0.01 Takeru Sato, Kasumi Arimura, Haru, Kentaro Sakaguchi, Takayuki Yamada, Kendo Kobayashi, Ken Yasuda, Arata Furuta, Suzuki Matsuo, Koichi 0.01 Yamadera, Arata lura, Chikako Kaku, Kotaro Yoshida Toyin Abraham, Sambasa Nzeribe, Chioma Chukwuka Akpotha, Chioma Omeruah, Chiwetalu Agu, Dele Odule, Femi Adebayo, Bayray McNwizu, 0.01 1 Vicky Kaushal, Sarah-Jane Dias, Raaghav Chanana, Manish Chaudhary, Meghna Malik, Malkeet Rauni, Anita Shabdish, Chittaranjan Tripathy 0.01

7692 rows × 2 columns

Exploratory Data Analysis

Creating functions to ease-up further analysis steps

```
In [15]:
```

```
#Function to fetch value counts of columns and percentage parallely
def values_col(data):
    return pd.DataFrame({'count':data.value_counts(),'percent':round(data.value_counts(normalize=True)*100,2)})
```

```
In [16]:
```

```
#Creating function for converting to list
def make_list(x):
    if ',' in str(x):
        return x.split(', ')
    else:
        return x

#Creating a function to unnest columns with nested values
def unnest(col, df):
    return df[col].apply(make_list).explode().reset_index(drop=True)
```

```
In [17]:
```

```
#Testing above
unnest('cast', df)
```

Out[17]:

```
0
                            NaN
                    Ama Oamata
1
                   Khosi Ngema
2
                 Gail Mabalane
3
                Thabang Molaba
4
              Manish Chaudhary
64946
64947
                  Meghna Malik
64948
                 Malkeet Rauni
64949
                Anita Shabdish
64950
         Chittaranjan Tripathy
Name: cast, Length: 64951, dtype: object
```

Now that we have created a function which allows us to easily unnest, we will employ this to visualize and understand values in each column better.

We will combine univariate and bivariate analysis (with respect to type of the show) as and where it's feasible and would possibly get interesting insights.

show_id

```
In [18]:
```

```
df['show_id'].describe()

Out[18]:

count   8807
unique   8807
top   s1
freq   1
Name: show_id, dtype: object
```

We have 8807 unique show IDs. This suggests that no shows are being duplicated and we have all unique records.

title

```
In [19]:
```

```
df['title'].describe()
Out[19]:
count 8807
```

count 8807
unique 8807
top Dick Johnson Is Dead
freq 1
Name: title, dtype: object

We have 8807 unique titles. This just confirms our previous observation with show id that we have all unique titles in our data.

type

In [20]:

```
plt.pie(df['type'].value_counts(), labels=['Movie', 'TV Show'], explode=[0.02,0], autopct='%.1f')
values_col(df['type'])
```

Out[20]:

	count	percent
Movie	6131	69.62
TV Show	2676	30.38

Our data is divided into 2 categories essentially: Movies (70%) & TV Shows (30%)

We will divide our data seperately for a more thorough analysis since both segments need to be considered as seperate entitites.

```
In [21]:
```

```
movies = df[df['type']=='Movie']
tv = df[df['type']=='TV Show']
```

```
In [22]:
```

```
movies.shape, tv.shape
```

```
Out[22]:
```

```
((6131, 12), (2676, 12))
```

director

In [23]:

values_col(movies['director'])

Out[23]:

	count	percent
Rajiv Chilaka	19	0.32
Raúl Campos, Jan Suter	18	0.30
Suhas Kadav	16	0.27
Marcus Raboy	15	0.25
Jay Karas	14	0.24
Dennis Rovira van Boekholt	1	0.02
Naoto Amazutsumi	1	0.02
Jenny Gage	1	0.02
Kaila York	1	0.02
Mozez Singh	1	0.02

4354 rows × 2 columns

From the above, we can see that we need to unnest director column to identify the actual counts of directors.

This observation is based on the records of Raúl Campos, Jan Suter

In [24]:

```
#tv
tv_directors = unnest('director', tv)

#plotting top 10
sns.barplot(x=values_col(tv_directors).index[:10], y=values_col(tv_directors)['count'][:10])
plt.xticks(rotation=90)
plt.title('Top 10 Directors - TV')
values_col(tv_directors)
```

Out[24]:

	count	percent
Alastair Fothergill	3	0.96
Ken Burns	3	0.96
Jung-ah Im	2	0.64
Gautham Vasudev Menon	2	0.64
Iginio Straffi	2	0.64
Jesse Vile	1	0.32
Ellena Wood	1	0.32
Picky Talarico	1	0.32
Pedro Waddington	1	0.32
Michael Cumming	1	0.32

299 rows × 2 columns

In [25]:

```
#movie
mv_directors = unnest('director', movies)
#plotting top 10
sns.barplot(x=values_col(mv_directors).index[:10], y=values_col(mv_directors)['count'][:10])
plt.xticks(rotation=90)
plt.title('Top 10 Directors - Movie')
values_col(mv_directors)
```

Out[25]:

	count	percent
Rajiv Chilaka	22	0.33
Jan Suter	21	0.32
Raúl Campos	19	0.29
Suhas Kadav	16	0.24
Marcus Raboy	15	0.23
Vrinda Samartha	1	0.02
Nicholaus Goossen	1	0.02
Stig Bergqvist	1	0.02
Paul Demeyer	1	0.02
Mozez Singh	1	0.02

4777 rows × 2 columns

Notes:

- Based on the ratios of moves vs. TV shows, there seems to be NO abnormality in the no. of directors whos Titles have been featured on Netflix
- We can do further analysis country-wise to get insights on director based releases.
- The top 5 directors are:

In [26]:

```
for n,i in enumerate(values_col(df['director']).index[:5]):
    print(n+1,')',i)
```

- 1) Rajiv Chilaka
- 2) Raúl Campos, Jan Suter
- 3) Marcus Raboy 4) Suhas Kadav
- 5) Jay Karas

cast

```
In [27]:
```

```
values_col(df['cast'])
```

Out[27]:

	count	percent
David Attenborough	19	0.24
Vatsal Dubey, Julie Tejwani, Rupa Bhimani, Jigna Bhardwaj, Rajesh Kava, Mousam, Swapnil	14	0.18
Samuel West	10	0.13
Jeff Dunham	7	0.09
David Spade, London Hughes, Fortune Feimster	6	0.08
		
Michael Peña, Diego Luna, Tenoch Huerta, Joaquin Cosio, José María Yazpik, Matt Letscher, Alyssa Diaz	1	0.01
Nick Lachey, Vanessa Lachey	1	0.01
Takeru Sato, Kasumi Arimura, Haru, Kentaro Sakaguchi, Takayuki Yamada, Kendo Kobayashi, Ken Yasuda, Arata Furuta, Suzuki Matsuo, Koichi Yamadera, Arata lura, Chikako Kaku, Kotaro Yoshida	1	0.01
Toyin Abraham, Sambasa Nzeribe, Chioma Chukwuka Akpotha, Chioma Omeruah, Chiwetalu Agu, Dele Odule, Femi Adebayo, Bayray McNwizu, Biodun Stephen	1	0.01
Vicky Kaushal, Sarah-Jane Dias, Raaghav Chanana, Manish Chaudhary, Meghna Malik, Malkeet Rauni, Anita Shabdish, Chittaranjan Tripathy	1	0.01

7692 rows × 2 columns

• We will have to unnest the column and analyze based on different types of shows.

In [28]:

```
#top 10 cast
values_col(unnest('cast', df))[:10]
```

Out[28]:

	count	percent
Anupam Kher	43	0.07
Shah Rukh Khan	35	0.05
Julie Tejwani	33	0.05
Naseeruddin Shah	32	0.05
Takahiro Sakurai	32	0.05
Rupa Bhimani	31	0.05
Akshay Kumar	30	0.05
Om Puri	30	0.05
Yuki Kaji	29	0.05
Paresh Rawal	28	0.04

In [29]:

```
mv_cast = unnest('cast', movies)
#plotting top 10
sns.barplot(x=values_col(mv_cast).index[:10], y=values_col(mv_cast)['count'][:10])
plt.xticks(rotation=90)
plt.title('Top 10 Directors - Movie')
values_col(mv_cast)
```

Out[29]:

	count	percent
Anupam Kher	42	0.09
Shah Rukh Khan	35	0.08
Naseeruddin Shah	32	0.07
Akshay Kumar	30	0.07
Om Puri	30	0.07
Sushma Bakshi	1	0.00
Yusuf Hussain	1	0.00
Amarjeet Amle	1	0.00
Priya	1	0.00
Chittaranjan Tripathy	1	0.00

25951 rows × 2 columns

In [30]:

```
tv_cast = unnest('cast', tv)

#plotting top 10
sns.barplot(x=values_col(tv_cast).index[:10], y=values_col(tv_cast)['count'][:10])
plt.xticks(rotation=90)
plt.title('Top 10 Directors - TV')
values_col(tv_cast)
```

Out[30]:

	count	percent
Takahiro Sakurai	25	0.13
Yuki Kaji	19	0.10
Daisuke Ono	17	0.09
Junichi Suwabe	17	0.09
Ai Kayano	17	0.09
Bhumibhat Thavornsiri	1	0.01
Thanongsak Suphakan	1	0.01
Kanjanaporn Plodpai	1	0.01
Boonsong Nakphoo	1	0.01
Hina Khawaja Bayat	1	0.01

14863 rows × 2 columns

Based on the TOP casts:

- The top 10 cast in movies seem to be from Bollywood Movies
- While top 10 cast in TV seems to be from Asian TV (Anime, KDrama, etc.)

Overall top 10 cast suggests that there are many bollywood affiliated cast titles.

country

```
In [32]:
```

```
values_col(df['country'])
```

Out[32]:

	count	percent
United States	2818	35.33
India	972	12.19
United Kingdom	419	5.25
Japan	245	3.07
South Korea	199	2.49
Romania, Bulgaria, Hungary	1	0.01
Uruguay, Guatemala	1	0.01
France, Senegal, Belgium	1	0.01
Mexico, United States, Spain, Colombia	1	0.01
United Arab Emirates, Jordan	1	0.01

748 rows × 2 columns

From the above, we need to unnest this column as well

In [33]:

```
#top 10 countries
values_col(unnest('country', df))[:10]
```

Out[33]:

	count	percent
United States	3689	36.84
India	1046	10.45
United Kingdom	804	8.03
Canada	445	4.44
France	393	3.92
Japan	318	3.18
Spain	232	2.32
South Korea	231	2.31
Germany	226	2.26
Mexico	169	1.69

In [34]:

```
# No. of unique countries
unnest('country', df).unique().size
```

Out[34]:

128

In [35]:

```
mv_country = unnest('country', movies)
#plotting top 10
sns.barplot(x=values_col(mv_country).index[:10], y=values_col(mv_country)['count'][:10])
plt.xticks(rotation=90)
plt.title('Top 10 Countries - Movie')
values_col(mv_country)
```

Out[35]:

	count	percent
United States	2751	37.31
India	962	13.05
United Kingdom	532	7.21
Canada	319	4.33
France	303	4.11
Bermuda	1	0.01
Angola	1	0.01
Armenia	1	0.01
Mongolia	1	0.01
Montenegro	1	0.01

122 rows × 2 columns

In [36]:

```
tv_country = unnest('country', tv)

#plotting top 10
sns.barplot(x=values_col(tv_country).index[:10], y=values_col(tv_country)['count'][:10])
plt.xticks(rotation=90)
plt.title('Top 10 Countries - TV')
values_col(tv_country)
```

Out[36]:

	count	percent
United States	938	35.53
United Kingdom	272	10.30
Japan	199	7.54
South Korea	170	6.44
Canada	126	4.77
Malta	1	0.04
Belarus	1	0.04
United Arab Emirates	1	0.04
Uruguay	1	0.04
Switzerland	1	0.04

66 rows × 2 columns

Notes:

- Our data has a total of 128 countries.
- United States is leading by beng the most producing country in both the categories by heavily drastic numbers.
- USA, UK & Canada are leading in both segments by being in the top 5.

date_added

In [37]:

```
date_counts = df['date_added'].value_counts().reset_index()
date_counts
```

Out[37]:

	index	date_added
0	2020-01-01	110
1	2019-11-01	91
2	2018-03-01	75
3	2019-12-31	74
4	2018-10-01	71
1709	2017-02-21	1
1710	2017-02-07	1
1711	2017-01-29	1
1712	2017-01-25	1
1713	2020-01-11	1

1714 rows × 2 columns

In [38]:

```
plt.figure(figsize=(15,5))
plt.subplot(1,2,1)
sns.lineplot(x = date_counts['index'], y=date_counts['date_added'])
plt.subplot(1,2,2)
sns.scatterplot(x = date_counts['index'], y=date_counts['date_added'])
plt.suptitle('Date-wise increase in no. of shows', fontsize=15)
plt.show()
```

Date-wise increase in no. of shows

- The increase in no. of titles has increased drastically starting from 2014 onwards based on our data
- 2020 seems to have the highest no. of shows added.

In [128]:

```
plt.figure(figsize=(22,5))

plt.subplot(1,2,1)
sns.kdeplot(x = df['date_added'], hue = df['type'])
plt.ylabel(' ')
plt.yticks([])

plt.title('Tv shows vs. Movies - By date', fontsize=15)
plt.show()
```


- An increase in both segments is visible starting from 2015 oonwards
- The increase in counts of movies is significantly higher than tv shows based on our data
- Both segments seemed to peak at their respective max values at 2020

In [40]:

```
#Checking for month-wise increase
months = values_col(df['date_added'].dt.month)['count'].reset_index()
months = months.sort_values('index').reset_index(drop=True)
sns.barplot(x='index', y='count', data=months)
plt.title('Month-wise counts of releases', fontsize=15)
months
```

Out[40]:

	index	count
0	1.0	738
1	2.0	563
2	3.0	742
3	4.0	764
4	5.0	632
5	6.0	728
6	7.0	827
7	8.0	755
8	9.0	770
9	10.0	760
10	11.0	705
11	12.0	813

In [41]:

```
sns.kdeplot(x = df['date_added'].dt.month, hue=df['type'])
plt.xticks(np.arange(1,13))
plt.title('TV Shows vs. Movies - By Months', fontsize=15)
plt.show()
```


- The growth in movies and tv shows added to netflix seemed to be almost parallely increasing (or decreasing)
- The most shows were added in 3 sets of months:
 - December & January
 - July
 - March & April
- · Least shows were added in February and May

release_year

In [42]:

```
release_date_counts = df['release_year'].value_counts().reset_index()
release_date_counts
```

Out[42]:

	index	release_year
0	2018	1147
1	2017	1032
2	2019	1030
3	2020	953
4	2016	902
69	1959	1
70	1925	1
71	1961	1
72	1947	1
73	1966	1

74 rows × 2 columns

In [43]:

```
sns.kdeplot('release_year', data=df,)
plt.title('Shows Released Yearly', fontsize=15)
plt.show()
```


In [44]:

```
sns.kdeplot('release_year', data=df, hue='type')
plt.title('Movies vs. TV Shows - By Release Year', fontsize=15)
plt.show()
```


- Most shows were released after 2016
- · This pattern is consistent across both segments tv shows and movies.

rating

In [57]:

```
sns.countplot(df['rating'])
plt.xticks(rotation=90)
values_col(df['rating'])
```

/opt/anaconda3/lib/python3.9/site-packages/seaborn/_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Out[57]:

	count	percent
TV-MA	3207	36.44
TV-14	2160	24.55
TV-PG	863	9.81
R	799	9.08
PG-13	490	5.57
TV-Y7	334	3.80
TV-Y	307	3.49
PG	287	3.26
TV-G	220	2.50
NR	80	0.91
G	41	0.47
TV-Y7-FV	6	0.07
NC-17	3	0.03
UR	3	0.03

Notes:

• TV-MA and TV-14 contribute to >50% of the data

• Some categories have extremely low counts, such as: NR , G , TV-Y7-FV , NC-17 , UR

duration

```
In [58]:
```

```
df['duration']
Out[58]:
0
           90 min
        2 Seasons
1
2
         1 Season
         1 Season
3
        2 Seasons
4
8802
          158 min
        2 Seasons
8803
8804
           88 min
8805
           88 min
8806
          111 min
Name: duration, Length: 8807, dtype: object
```

This column consists different duration values for different type of show.

We will have to analyze them seperately.

```
In [61]:
```

```
# Ensuring the type of 'units' in the column
df['duration'].apply(lambda x: x.split(' ')[1]).unique()
```

```
Out[61]:
```

```
array(['min', 'Seasons', 'Season'], dtype=object)
```

There are 3 types of units:

- Movie : min
- TV Show: Season, Seasons

We will take this into consideriation when analyzing them.

In [64]:

```
#Ensuring movie dataset's column has only "min"
movies['duration'].apply(lambda x: x.split(' ')[1]).unique()
```

```
Out[64]:
```

```
array(['min'], dtype=object)
```

Looks good, lets visualize this.

In [89]:

```
sns.kdeplot(movies['duration'].apply(lambda x: int(x.split(' ')[0])))
plt.title('Distribution of movie duration', fontsize=14)
(movies['duration'].apply(lambda x: int(x.split(' ')[0]))).describe(percentiles=[0.025,0.05,0.1,0.25,0.5,0.75,0.9,0.95,0.97])
```

Out[89]:

```
6131.000000
count
            99.564998
28.289504
mean
std
             3.000000
min
            35.000000
2.5%
            52.000000
5%
10%
            65.000000
25%
            87.000000
50%
            98.000000
75%
           114.000000
90%
           133.000000
95%
           147.000000
97%
           156.000000
max
           312.000000
```

Name: duration, dtype: float64

Notes (movies):

- We can easily spot a significant no. of outliers with higher (and lower) duration of movies
 - Specifically, movies >180 (less than 3 percentile) mins seem to fall under outliers
 - There seems to be a good no. of movies which are <30 mins as well (less than 2.5 percentile). These could very well be short films treated as part of the wider movies section.</p>
- Average duration of movies is 98% (based on the median)

In [74]:

```
#Ensuring tv dataset's column has only "Season"/"Seasons"

tv['duration'].apply(lambda x: x.split(' ')[1]).unique()
```

Out[74]:

array(['Seasons', 'Season'], dtype=object)

In [83]:

Out[83]:

prefix	no. of seasons
Season	1
	10
	11
	12
	13
	15
	17
_	2
Seasons	3
	4
	5
	6
	7
	8
	9

- From the above, it's evident that the technical "terminology" is appropriate.
 - i.e. "Season" has only 1 season and "Seasons" has multiple

This means there's no other difference and data quality is fair. This will be treated to extract the no. only and then analyzed.

In [101]:

```
sns.displot(tv['duration'].apply(lambda x: int(x.split(' ')[0])))
plt.title('Distribution of no. of seasons of TV shows', fontsize=14)
plt.xticks(np.arange(1,18))
plt.show()
values_col(tv['duration'].apply(lambda x: int(x.split(' ')[0])))
```


duration

Out[101]:

	count	percent
1	1793	67.00
2	425	15.88
3	199	7.44
4	95	3.55
5	65	2.43
6	33	1.23
7	23	0.86
8	17	0.64
9	9	0.34
10	7	0.26
13	3	0.11
15	2	0.07
12	2	0.07
11	2	0.07
17	1	0.04

Notes (TV shows):

- The no. of seasons is inversely proportional to the count of tv shows with said no. of seasons.
 - _i.e. tv shows with less seasons are higher in number (and vice versa)
- Majority of the data has a single season (67%)
- TV shows >8 seasons seem to be very rare

${\tt listed_in}$

In [121]:

```
#Checing top 5
values_col(unnest('listed_in', df))[:5]
```

Out[121]:

	count	percent
International Movies	2752	14.24
Dramas	2427	12.56
Comedies	1674	8.66
International TV Shows	1351	6.99
Documentaries	869	4.50

In [120]:

```
plt.figure(figsize=(6,12))
plt.barh(values_col(unnest('listed_in', df)).index[::-1], values_col(unnest('listed_in', df))['count'][::-1])
plt.title('No. of movies listed in each category', fontsize=15)
plt.show()
```


Notes:

- International movies & Dramas seem to lead the chart by being the set with highest shows.
- · We can observe that there are multiple instances where TV shows and movies have the same type of category names,
 - eg: International Movies & Internation TV shows

We will seperate the types and visualize futher

In [124]:

```
#Movies

plt.figure(figsize=(6,7))
plt.barh(values_col(unnest('listed_in', movies)).index[::-1], values_col(unnest('listed_in', movies))['count'][::-1])
plt.title('No. of movies listed in each category', fontsize=15)
plt.show()

#Top 5 counts
values_col(unnest('listed_in', movies))[:5]
```


Out[124]:

	count	percent
International Movies	2752	20.86
Dramas	2427	18.40
Comedies	1674	12.69
Documentaries	869	6.59
Action & Adventure	859	6.51

Notes:

- The top 5 genres are as stated above.
- Top 3 genres seem to take up the highest portion (>50%) of the whole data.
 - i.e. International movies, Dramas, Comedies

```
In [125]:
```

```
#tv

plt.figure(figsize=(6,7))
plt.barh(values_col(unnest('listed_in', tv)).index[::-1], values_col(unnest('listed_in', tv))['count'][::-1])
plt.title('No. of movies listed in each category', fontsize=15)
plt.show()

#Top 5 counts
values_col(unnest('listed_in', tv))[:5]
```


Out[125]:

	count	percent
International TV Shows	1351	22.03
TV Dramas	763	12.44
TV Comedies	581	9.47
Crime TV Shows	470	7.66
Kids' TV	451	7.35

Notes:

- Top 5 shows are as shown above
- Although, its interesting to note that only International TV shows hold avery high % of tv shows (unlike 2 different categories in movies)
- To constitute majority of the data (i.e. ~50%) here we consider first 4 categories (instead of 3 like in movies)

rating by country

In [140]:

#Creating a dataframe to expand country-wise rating preferences
val = pd.DataFrame({'rating':df['rating'], 'country':df['country'].apply(make_list)}).explode('country').reset_index(drop=True
val

Out[140]:

	rating	country
0	PG-13	United States
1	TV-MA	South Africa
2	TV-MA	NaN
3	TV-MA	NaN
4	TV-MA	India
10840	R	United States
10841	TV-Y7	NaN
10842	R	United States
10843	PG	United States
10844	TV-14	India

10845 rows × 2 columns

In [158]:

```
plt.figure(figsize=(15,25))
sns.heatmap(pd.crosstab(val['country'], val['rating']), cmap='Blues', linecolor='k', linewidth=1)
plt.title('Counts of titles by country and ratings', fontsize=15)
plt.show()
```


Notes:

The most prominent sections seem to be:

- India:
 - TV-14
 - TV-MA
- Japan :
 - TV-14
 - TV-MA
- France & Spain :
 - TV-MA
- UK :
 - TV-MA
 - R
- USA :
 - TV-MA
 - TV-14
 - PG & PG-13
 - R
 - TV-PG

listed_in by country

In [161]:

Out[161]:

	genre	country
0	Documentaries	United States
1	International TV Shows	South Africa
2	TV Dramas	South Africa
3	TV Mysteries	South Africa
4	Crime TV Shows	NaN
23749	Children & Family Movies	United States
23750	Comedies	United States
23751	Dramas	India
23752	International Movies	India
23753	Music & Musicals	India

23754 rows × 2 columns

```
In [231]:
```

```
plt.figure(figsize=(15,25))
sns.heatmap(pd.crosstab(val['country'], val['genre']), cmap='Blues', linecolor='k', linewidth=1)
plt.title('Counts of titles by country and genre', fontsize=15)
plt.show()
```



```
In [229]:
```

```
temp = dur.groupby(['country','duration_bin']).count()
temp.reset_index().sort_values('duration', ascending=False)[:15]
```

Out[229]:

	country	duration_bin	duration
915	United States	(90, 120]	1358
914	United States	(60, 90]	859
348	India	(120, 180]	556
347	India	(90, 120]	323
899	United Kingdom	(90, 120]	283
916	United States	(120, 180]	270
913	United States	(30, 60]	187
275	France	(90, 120]	187
163	Canada	(90, 120]	158
162	Canada	(60, 90]	114
898	United Kingdom	(60, 90]	114
803	Spain	(90, 120]	112
291	Germany	(90, 120]	103
187	China	(90, 120]	82
900	United Kingdom	(120, 180]	81

With the above we get a good understanding of most preferred duration of movies and are popular across countries:

- USA: 90-120 mins, 60-90mins, 120-180mins
- India: 120-180mins, 90-120mins
- UK: 90-120mins

This goes to suggest that on a global scale, the most preferred duration for movies is 90-120 mins

Business Insights & Suggestions

Based on all the observations mentioned after each analytical piece, we can come to a conclusion of a few steps that can be taken proactively and could be considered as benchmark for selection & curation of future content on **Netflix**

These suggestions are:

- 1. To select the content it would be important to consider the most popular genres across both the types of shows(TV/Movies), which are --
 - Drama, Comedy & International TV/Movies
- 2. Most preferred duration for movies is 90-120 minutes and for TV shows it would be <4 Seasons
 - Although movies upto 180mins and atleast 60 mins can as well be considered since it has a significant popularity as well.
- 3. **TV-MA** or Content with *Mature Rating* is gloably popular. This type of content can be consumed by age groups of 17+. Such content curation can be further increased upon by considering other suggestions parallely.
 - For USA considering increasing content for Kids & Teens can be considered since those Genres and Ratings seem to be pretty popular.
- 4. Anime Shows is quite well prefrred by consuemrs in Japan, this can further be focussed upon, similarly Indian Movies and shows for indian population.
 - These 2 countries seem to hold a lot of popularity and potential consumers hence focusing on this segment can improve customer experience drastically.
- 5. Some **cast and directors** who are extremely popular are also potentially preferred for content selection.
 - 1. `Popular Cast`:
 - Anupam Kher
 - Shah Rukh Khan
 - Naseeruddin Shah
 - 2. `Popular Directors`:
 - Rajiv Chilaka
 - Raúl Campos
 - Jan Suter
 - Suhas Kadav