Towards improving the Database of Local Fields

David P. Roberts University of Minnesota, Morris

November 12, 2021

Two-paragraph summary

The p-adic field section of the LMFDB tabulates degree n extensions of \mathbb{Q}_p , including for all $n \leq 15$ and $p \leq 199$. For example, always up to isomorphism, there are 795 nonic extensions K/\mathbb{Q}_3 and 1823 octic extensions K/\mathbb{Q}_2 . Interesting invariants include *visible slopes*, *hidden slopes*, and *Galois groups*.

The main framework for improvement is to focus first on visible slopes. Here there is a strong general theory valid for general K/F, not just the case $F = \mathbb{Q}_p$. It centers on Krasner-Monge near-canonical polynomials for totally ramified extensions K/F. These polynomials let one collect all extensions of a given F with given visible slopes into a single parameterized family, and the dependence on F is mild. The family structure then facilitates the investigation of hidden slopes and Galois groups.

Overview

- 1. Introduction, including a tour of the database.
- 2. The ramification invariant I of an extension K/F, as captured in the totally wild degree p^w case by

heights
$$\langle h_1, \dots, h_w \rangle$$
, slopes $[s_1, \dots, s_w]$, or rams (r_1, \dots, r_w) .

- 3. The set \mathcal{I} of possible ramification invariants.
- 4. From ramification invariants to pictures.
- 5. From pictures to near-canonical polynomials.
- 6. Hidden slopes and Galois groups in two sample families.

1.1. Notation for classifyng extensions

Let $n \in \mathbb{Z}_{\geq 1}$ and let F be a field. An important problem is to describe the set F(n) of isomorphism classes of separable field extensions K/F of degree n.

Let G run over conjugacy classes of transitive subgroups of S_n . Then Galois theory gives a natural decomposition

$$F(n) = \coprod_G F(G)$$
.

One would like to describe each F(G) individually.

Now let F be a p-adic field, i.e. a finite extension of \mathbb{Q}_p or $\mathbb{F}_p((t))$, with uniformizer $\pi \in \Pi \subset \mathcal{O} \subset F$ as usual. Then every K/F has a discriminant ideal Π^c , giving

$$F(n) = \prod_{G} \prod_{G} F(G, c).$$

The sets F(G,c) are finite and one would like to describe them individually.

1.2. Overview of the 795 nonic 3-adic fields

There are 81 nonzero $|\mathbb{Q}_3(G,c)|$ with 22 Galois groups G and 16 discriminant exponents c involved. On the table, groups G are sorted first by the number of cubic subfields: ≥ 2 , 1, and then 0. In the third column, $A = \operatorname{Aut}(K/\mathbb{Q}_3)$ is the centralizer of the Galois group G.

G	G	A	0	9	10	12	13	15	16	18	19	20	21	22	23	24	25	26
9	9T2	9				1												
18	9 <i>T</i> 4	3		2		1		6, 3	3		9							
18	9 <i>T</i> 5									1								
36	9 <i>T</i> 8					1		2		3	3							
9	9 <i>T</i> 1	9	1			2								9				
18	9 <i>T</i> 3									1				1				3
27	9 <i>T</i> 6	3				2								6				
27	9 <i>T</i> 7	3				1			3									
54	9 <i>T</i> 10								6	11				8 9				24
54	9 <i>T</i> 11					2			1	8				9				
54	9 <i>T</i> 12	3									9		27					
54	9 <i>T</i> 13			2		1		2		3 9	3		9					İ
81	9 <i>T</i> 17	3				9				9				18				
108	9 <i>T</i> 18						2 6	4		3	12		18	9				
162	9 <i>T</i> 20	3					6	12		9	45			27			81	
162	9 <i>T</i> 21											27				27		54
162	9 <i>T</i> 22			6		3		6					9	9	27			İ
324	9 <i>T</i> 24								6	12	9	27	9		27	27	27	İ
36	9 <i>T</i> 9					1			1									
72	9 <i>T</i> 14				1					3								
72	9 <i>T</i> 16				1					3								
144	9 <i>T</i> 19			2		2	2	6	2		6							

1.3. Tour of the p-adic section of the LMFDB

As said earlier, the LMFDB currently contains the sets $\mathbb{Q}_p(n)$ for all $p \leq 199$ and all $n \leq 15$, with information on each field K. E.g., the field K labeled 3.9.21.20 is defined by $x^9 + 12x^6 + 18x^4 + 3$.

The degree n of any field factors as utp^w with u and t its unramified and tamely ramified parts. There are w wild slopes $\hat{s}_1 \leq \cdots \leq \hat{s}_w$, as introduced in the next section. The "slope content" of our example (not directly given in the LMFDB) is $[[\hat{s}_1, \hat{s}_2]]_t^u = [[2, \frac{17}{6}]]_1^1 = [[2, \frac{17}{6}]]$.

The LMFDB does however always gives the much-harder-to-calculate slope content of the Galois closure L. In our example G=9T24 has $324=2^23^4$ elements and the slope content of L is

$$\left[\left[\frac{3}{2}, \mathbf{2}, \frac{5}{2}, \frac{17}{6} \right] \right]_{2}^{2}.$$

At this level, the wild slopes are breaks in the Artin upper numbering of the ramification filtration on G. They consist of the wild slopes already **visible** in K, and also some more *hidden* slopes.

2.1. The canonical filtration of a p-adic extension

Any $K/F \in F(n)$ has a canonical filtration obtained by climbing from F to K via suitable minimally ramified subextensions. To focus on the main phenomena, we first restrict to u = t = 1 so $n = p^w$.

As we'll see, for any 2-adic field F, the picture arises from many octic extensions K/F, e.g. from 32 in the case $F=\mathbb{Q}_2$. The filtration takes the form

$$F = K_0 \subset K_1 \subset K_2 \subset K_3 = K$$

with each $[K_i : K_{i-1}] = 2$.

The numerical invariants are captured in three equivalent ways:

Heights
$$\langle\langle H_1, H_2, H_3 \rangle\rangle = \langle\langle 1, 5, 15 \rangle\rangle$$
, slopes $[s_1, s_2, s_3] = [1, 2, \frac{5}{2}]$, or Rams $((R_1, R_2, R_3)) = ((1, 3, 5))$.

We switch to focusing on wild ramification only, writing

$$\operatorname{cond}(K_i/K_j) = c(K_i/K_j) - \operatorname{deg}(K_i/K_j) + 1.$$

The definitions are then $H_i = \operatorname{cond}(K_i/K_0)$ and $R_i = \operatorname{cond}(K_i/K_{i-1})$.

The definitions are then $H_i = \text{cond}(K_i/K_0)$ and $K_i = \text{cond}(K_i/K_{i-1})$ Accordingly, we also switch from the website's Artin-Fontaine slopes \hat{s}_i to the Serre-Swan slopes s_i via $\hat{s}_i = s_i + 1$. When the canonical filtration has fewer than w steps we keep a uniform notation that refers to nonexistent subfields:

Here the filtration is $F=K_0\subset K_1\subset K_2\subset K_3=K$. The invariants are

$$I=\langle\langle 1,\frac{17}{3},15\rangle\rangle=\left[1,\frac{7}{3},\frac{7}{3}\right]=\left(\left(1,\frac{11}{3},\frac{11}{3}\right)\right).$$

When K_i is nonexistent, H_i is no longer forced to be integral. Similarly too, a ram R_j repeated ρ times is now only forced to have a denominator dividing $P_{\rho}(p) := p^{\rho-1} + p^{\rho-2} + \cdots + p + 1$.

2.2.Including unramified and tame steps

A general extension K/F contains its canonical tower $F \subset F_{\mathrm{un}} \subset K_0 \subset \cdots \subset K$ with the \cdots representing wild steps as before. Its ramification invariant is a symbol $I = W_t^u$, with W expressible as a W-tuple in three equivalent ways, as before. The more general pictures now include t but not u. An example for p=2 is

In this example, $I = \langle \langle H_1, H_2 \rangle \rangle_3^u = [s_1, s_2]_3^u = ((R_1, R_2))_3^u$. For every base F and every positive integer u there are fields with invariant I. For example, for $F = \mathbb{Q}_2$ and u = 1 there are ?? such fields.

2.3. Conversions formulas among H_k , R_k , and s_k

The three ways of describing a ramification invariant I interrelate via

$$H_{k} \stackrel{2a}{=} t \sum_{j=1}^{k} \phi(p^{j}) s_{j}, \qquad H_{k} \stackrel{2b}{=} \sum_{j=1}^{k} p^{k-j} R_{j},$$

$$s_{k} \stackrel{1a}{=} \frac{H_{k} - H_{k-1}}{t \phi(p^{k})}, \qquad ts_{k} \stackrel{3}{=} \frac{R_{k}}{\phi(p^{k})} + \sum_{j=1}^{k-1} \frac{R_{j}}{p^{j}},$$

1a captures the definition of slope as rise/run. 1b emphasizes that R_k measures how K_k/K_{k-1} is more ramified than the unramified algebra K_{k-1}^p/K_{k-1} . 2a and 2b are their inversions, each intuitive in its own right. $3 = 1a \circ 2b$ and $4 = 1b \circ 2a$ are less directly intuitive.

 $R_k \stackrel{1b}{=} H_k - pH_{k-1}, \quad R_k \stackrel{4}{=} t\phi(p^k)s_k - t\phi(p)\sum_{i=1}^{k-1}\phi(p^i)s_j.$

2.4. Conversions formulas among h_k , r_k , and s_k

It is often better to scale down quantities associated with K_k/F by the ramification degree $[K_k : F_{\rm un}] = tp^k$, writing $h_k = H_k/(tp^k)$ and $r_k = R_k/(tp^k)$. With the abbreviation $\epsilon = 1/(p-1)$, one has

$$h_k \stackrel{2a}{=} \frac{1}{1+\epsilon} \sum_{j=1}^k \frac{s_j}{p^{k-j}}, \quad h_k \stackrel{2b}{=} \sum_{j=1}^k r_j,$$

$$s_k \stackrel{1a}{=} (1+\epsilon)h_k - \epsilon h_{k-1}, \qquad \qquad s_k \stackrel{3}{=} (1+\epsilon)r_k + \sum_{j=1}^{k-1} r_j,$$

$$r_k \stackrel{1b}{=} h_k - h_{k-1}, \quad r_k \stackrel{4}{=} \frac{s_k}{1+\epsilon} - \frac{p-1}{1+\epsilon} \sum_{j=1}^{k-1} \frac{s_j}{p^{k-j}}.$$

The integrality properties of H_k and R_k are obscured, but now the quantities are roughly on similar scales, with $r_k \in [0, te]$ as we'll discuss, and thus $h_k \in [0, kte]$ and $s_k \in [0, (k + \epsilon)te]$. In particular, (2b) and (3) give the nice formula $s_k = h_k + \epsilon r_k$.

3.1. Allowed $R_1 = \cdots = R_\rho$ in one-step extensions

The set of R_1 arising in one-step degree p^{ρ} extensions of a field F is very simple and depends only on the ramification index $e = \operatorname{ord}_{\Pi}(p)!$

In the case of $e = \infty$, i.e. function fields, it is

$$\mathcal{R}_{
ho,\infty,
ho} = rac{\mathbb{Z}_{\geq 1} -
ho \mathbb{Z}_{\geq 1}}{P_
ho(
ho)} = rac{\mathbb{Z}_{\geq 1} -
ho \mathbb{Z}_{\geq 1}}{
ho^{
ho-1} +
ho^{
ho-2} + \cdots
ho + 1}.$$

In the case $e < \infty$, i.e. extensions of \mathbb{Q}_p , it is

$$\mathcal{R}_{p,e,\rho} = (\mathcal{R}_{p,\infty,\rho} \cap (0,pe)) \cup \left\{ \begin{array}{l} \{pe\} & \text{if } \rho = 1, \\ \{\} & \text{if } \rho > 1. \end{array} \right.$$

The conversion formulas are trivial in the one-step extension context, $s_1 = \epsilon R_1$ and $H_\rho = P_\rho(p)R_1$.

3.2. Example: One-step extensions for p = 2

From the previous slide for multiplicities $\rho=1$ and $\rho=2$,

The cutoff for e=1 is indicated and so the corresponding sets are

$$\begin{array}{rcl} \mathcal{R}_{2,1,1} & = & \{ & & 1, & & 2 & \}, \\ \mathcal{R}_{2,1,2} & = & \{ & \frac{1}{3}, & & 1, & \frac{5}{3} & & \}. \end{array}$$

Over \mathbb{Q}_2 , the quadratic fields for the Rams 1 and 2 are respectively $\mathbb{Q}_2(\sqrt{d})$ for $d \in \{-1, -1*\}$ and $d \in \{2, 2*, -2, -2*\}$, with say *=5. The quartic fields appear on the LMFDB as

$(R_1, R_2) = (1/3, 1/3)$	$(R_1,R_2)=(1,1)$	$(R_1, R_2) = (5/3, 5/3)$
$[x^4 + 2x + 2 \ [4/3, 4/3]_3^2 \ S_4]$	$x^4 + 2x^3 + 2x^2 + 2 [2,2]^3$ A	$x^4 + 4x^2 + 4x + 2 [8/3, 8/3]_3^2 S_4$
	$x^4 + 2x^3 + 2[2,2]^2 D_0$	$ x^4 + 4x^2 + 2 [8/3, 8/3]_3^2 S_4$
	$x^4 + 2x^3 + 6 [2,2]^2 D$	4

3.3. Occurring invariants *I* in multistep extensions

Fix a ground field F with $\operatorname{ord}_{\Pi}(p) = e$ and consider its totally ramified extensions of degree p^w .

Break up this set of extensions according to their multiplicity vector $m=(m_1,\ldots,m_k)$. Let $M_i=\sum_{j=1}^i m_j$. Let $\mathcal{I}_{p,e,m}$ be the set of occurring invariants I. Then necessarily $\mathcal{I}_{p,e,m}$ is in

$$\widehat{\mathcal{I}}_{p,e,m} = \{ (\overbrace{R(1),\ldots,R(1)}^{m_1},\ldots,\overbrace{R(k),\ldots,R(k)}^{m_k}) : R(i) \in \mathcal{R}_{p,ep^{M_{i-1},m_i}} \}.$$

The index gymnastics hide a simple Cartesian product! E.g. $\widehat{\mathcal{I}}_{p,e,(3,2)}$ consists of tuples (R_1,R_1,R_1,R_4,R_4) with $(R_1,R_4)\in\mathcal{R}_{p,e,3}\times\mathcal{R}_{p,p^3e,2}$.

The set $\mathcal{I}_{p,e,m}$ is then the subset of $\widehat{\mathcal{I}}_{p,e,m}$ such that the list of rams $R(1),\ldots,R(k)$, or equivalently the list of slopes $s(1),\ldots,s(k)$, is strictly increasing. The elementary nature of $\mathcal{I}_{p,e,w}=\coprod_{m\vdash w}\mathcal{I}_{p,e,m}$ is illustrated by the next slide by $\mathcal{I}_{3,1,2}=\mathcal{I}_{3,1,(1,1)}\coprod\mathcal{I}_{3,1,(2)}$.

3.4. Invariants for tot. ram. nonic 3-adic fields

Rams (R_1, R_2) and slopes $[\hat{s}_1, \hat{s}_2]$ with m = (1, 1) before m = (2):

The Cartesian structure of $\widehat{\mathcal{I}}_{3,1,(1,1)}$ is visible in Rams as $\{1,2,3\} \times \{1,2,4,5,7,8,9\}$, but obscured in slopes.

The Cartesian structure on the (1,1) part is still visible in the total masses to the right, where K/Fhas mass |1/Aut(K/F)|.

12 12 18 6

4.1. From an invariant I to its picture

A invariant $I = W_t^u$ with W = h = s = r determines a picture in the window $[0, tp^w] \times [0, \hat{s}_w]$ that does not depend on u. For example,

$$W = \langle \langle 11, 62, 252 \rangle \rangle = [5.5, 8.5, 10.\overline{5}] = ((11, 29, 66))$$

with t = 1 determines

The points in the *i*-column will give constraints on the coefficient of the x^i term in Eisenstein polynomials, with x^{tp^w} corresponding to the lower right point and the constant term to the lower left point and points above it.

4.2. The recipe for drawing the I-picture, part 1

There are w closed bands; in general they may overlap, but they are not overlapping in this example. The top edge of the k^{th} band B_k decreases from $(0, \hat{s}_k)$ to (tp^w, s_k) . All drawn points (i, j) are integral and, besides (0, 1) and $(tp^w, 0)$, occur only in the bands. Then an integral point $(i, j) \in B_k$ is drawn iff it is exactly divisible by p^{w-k} or it's on the boundary. It is drawn solidly iff the first condition holds. If all slopes are different, there is exactly one point on each lower edge, drawn as \circ or \bullet . There is at most one point on the upper edge, drawn as \circ .

4.3. The recipe for drawing the I-picture, part 2

Denote the lower case heights $h_k = H_k/(tp^k)$ and the lower case rams $r_k = R_k(tp^k)$ using single delimiters. So the current example becomes

$$I = \langle 3\frac{2}{3}, 6\frac{8}{9}, 9\frac{1}{3} \rangle = [5.5, 8.5, 10.\overline{5}] = (3\frac{2}{3}, 9\frac{2}{3}, 22).$$

A band has a green point if and only if it is the highest band for its slope. Then it is at is at $(i,j) = (\langle h_k \rangle tp^w, \lceil h_k \rceil)$ so that e.g. the first \bullet comes from $3\frac{2}{3}$ and is at $(i,j) = (\frac{2}{3} \cdot 27,4) = (18,4)$. Equivalently, the lower edge of B_k goes through (tp^w, h_k) . Also, B_k contains exactly $|r_k p^{k-1}|$ \bullet 's, and then also a \bullet iff $r_k p^{k-1}$ is nonintegral.

5.1. The Krasner-Monge parametrized polynomial

Index a point (i,j) by the integer $m=tp^w(j-1)+i$, so that the $k^{\rm th}$ \bullet or \circ becomes $m=tp^wh_k$. Introduce variables a_m , b_m and c_m for drawn points in bands of the form \bullet , \bullet , and \circ . Form the polynomial

$$\pi + \sum_{(i,j) \text{ as } \bullet} a_m \pi^j x^i + \sum_{(i,j) \text{ as } \bullet} b_m \pi^j x^i + \sum_{(i,j) \text{ as } \circ} c_m \pi^j x^i + x^{tp^w}$$

Our earlier example $I = [1, \frac{11}{6}] = (\frac{2}{3}, 2\frac{1}{3}) = (\frac{2}{3}, 1\frac{4}{9})$ yields

For $\pi = 3$, it's $(3 + 9c_9) + 9a_{13}x^4 + 9b_{14}x^5 + 3a_6x^6 + 9b_{16}x^7 + x^9$.

Notation for the Krasner-Monge theorem

Let F be a p-adic field with residue field \mathbb{F}_q with $q=p^f$.

For d a divisor of f, the additive map

$$\mathbb{F}_q \to \mathbb{F}_q : k \mapsto k^{p^d} - k$$

has kernel \mathbb{F}_{p^d} and so image $T_d \subset \mathbb{F}_q$ of index p^d .

Choose a uniformizer π and a lift $\kappa \subset \mathcal{O}$ of \mathbb{F}_{p^f} . Require $0 \in \kappa$ and write $\kappa^{\times} = \kappa - \{0\}$. For each divisor d of f, choose a lift $\kappa_d \subset \kappa$ of \mathbb{F}_q/T_d , so that $|\kappa_d| = p^d$ and $\kappa_f = \kappa$. For $F = \mathbb{Q}_p$, we always just take $\pi = p$ and $\kappa = \{0, 1, \ldots, p-1\}$.

For a ramification invariant I, let

- α be its number of •'s;
- β be its number of •'s;.
- $\gamma = \sum_{m} \gcd(\rho(m), f)$ where m runs over indices of o's and $\rho(m)$ it the number of times the corresponding slope is repeated.

Krasner-Monge theorem

Theorem

Let F be a p-adic field with $e, f \in \mathbb{Z}_{\geq 1}$ as usual and chosen π and κ_d as on the previous slide. Let $I \in \mathcal{I}_{p,e}(tp^w)$ be a possible ramification invariant for totally ramified degree tp^w extensions of F. Consider the polynomials in the corresponding Krasner-Monge family

$$\pi + \sum_{(i,i) \text{ as } \bullet} a_m \pi^j x^i + \sum_{(i,i) \text{ as } \bullet} b_m \pi^j x^i + \sum_{(i,i) \text{ as } \circ} c_m \pi^j x^i + x^{tp^w}$$

with $a_m \in \kappa^{\times}$, $b_m \in \kappa$, and $c_m \in \kappa_{\gcd(\rho(m),f)}$. Then the corresponding extensions are in F(I), with each K represented $\frac{p^{\gamma}}{|\operatorname{Aut}(K/F)|}$ times.

Corollary

The total number of extensions in F(I) is $\geq (q-1)^{\alpha}q^{\beta}$, with equality if $\gamma = 0$.

6.1 The case $I = [\hat{s}_1, \hat{s}_2] = [2, \frac{17}{6}]$ over \mathbb{Q}_3

The database says there are 36 fields falling in four packets of nine. As said before, the family is

$$f(a_6, a_{13}, b_{14}, b_{16}, c_9, x) = (3 + 9c_9) + 9a_{13}x^4 + 9b_{14}x^5 + 3a_6x^6 + 9b_{16}x^7 + x^9,$$

Since there is just one c and f=1, the ambiguity parameter is $\gamma=1$ and each field K has $p^{\gamma}=3$ near-canonical defining polynomials. The ambiguity is easily resolved by setting a parameter to 0 and the packets are cleanly described:

```
f(1, 2, 0, b_{16}, c_{9}, x) gives 9T13 and hidden slopes [5/2]_2 f(1, 1, b_{14}, b_{16}, 0, x) gives 9T18 and hidden slopes [5/2]_2^2 f(2, 2, 0, b_{16}, c_{9}, x) gives 9T22 and hidden slopes [3/2, 5/2]_2 f(2, 1, b_{14}, b_{16}, 0, x) gives 9T24 and hidden slopes [3/2, 5/2]_2^2
```

6.2 The case $I = [\hat{s}_1, \hat{s}_2] = [\frac{5}{2}, \frac{17}{6}]$ over \mathbb{Q}_3

The database says that in this case there are 18 fields falling into two packets of nine. The Krasner-Monge family is

$$g(a_{14}, b_{12}, b_{16}, x) = 3 + 9b_{12} + 9a_{14}x^5 + 9b_{16}x^7 + x^9$$

Defining polynomials are in this case unique and

$$g(2, b_{12}, b_{16}, x)$$
 gives $9T11$ and hidden slopes $[2]_2$ $g(1, b_{12}, b_{16}, x)$ gives $9T18$ and hidden slopes $[2]_2^2$

In general, resolvent constructions should have nice descriptions via the universal families. For example, $9\,T13$ from the previous slide and $9\,T11$ are the same abstract group. The bijection between

- the nine 9T13 fields defined by $f(1, 2, 0, b_{16}, c_9, x)$ and
- the nine 9T11 fields defined by $g(2, b_{12}, b_{16}, x)$

is given by
$$c_9 = b_{12}$$
 and $b_{16} = b_{16} + 1 - b_{12}^2$.

6.3 The case $I = [\hat{s}_1, \hat{s}_2] = [3/2, \frac{8}{3}]$ over \mathbb{Q}_3

The database gives five types of fields. The family is

$$f(a_3, a_{11}, b_{13}, b_{14}, c_{15}) = 3 + 9x^2a_{11} + 3x^3a_3 + 9x^4b_{13} + 9x^5b_{14} + 9x^6c_{15} + x^9$$

The five types are

Here \star can be any element of $\{0,1,2\}$ without changing the field. Otherwise, different parameters give different fields.

Commented main references

Much of this material has origin in:

M. Krasner, Sur la primitivité des corps p-adiques, Mathematica (Cluj) 13 (1937) 72-191.

Krasner's results were modernized in:

P. Deligne, Les corps locaux de caractéristique p, limites de corps locaux de caractéristique 0, in Representations of Reductive Groups over a Local Field (1984), pp. 119–157.

The original database from which the LMFDB database grew:

J. W. Jones and D. P. Roberts, *A database of local fields*, J. Symbolic Comput. 41(1) (2006) 80–97.

A modernization which, like Krasner, emphasizes polynomials:

M. Monge, A family of Eisenstein polynomials generating totally ramified extensions, identification of extensions and construction of class fields. Int. J. Number Theory 10 (2014), no. 7, 1699–1727.