

V 101

Das Trägheitsmoment

Felix Symma Joel Koch felix.symma@tu-dortmund.de joel.koch@tu-dortmund.de

Durchführung: 30.11.2021 Abgabe: 07.12.2021

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Einleitung	3
2	Theorie	3
3	Durchführung 3.1 Versuchsaufbau . 3.2 Bestimmung der Apperaturkonstanten . 3.3 Trägheitsmoment zweier Körper . 3.4 Trägheitsmoment einer Holzpuppe .	$\frac{4}{4}$
4	Auswertung4.1 Apparatekonstante4.2 Trägheitsmomente einfacher Körper4.3 Trägheitsmoment einer Modellpuppe	7
5	Diskussion	12
6	Daten	13
7	Anhang	15
Lit	eratur	19

1 Einleitung

Ziel dieses Versuches ist es, die Trägheitsmoment von verschiedenen Körpern zu bestimmen. Außerdem soll der Steiner'sche Satz verifiziert werden.

2 Theorie

Ein Trägheitsmoment ist immer bezüglich einer Achse definiert, um die sich das zu beobachtende Objekt dreht. Dreht sich ein ausgedehnter Körper um eine feste Achse, so dreht sich jedes einzelne Massenelement m_i des Körpers und es folgt das Gesamtträgheitsmoment des Körpers zu

$$I = \sum_{i} r_i^2 \cdot m_i. \tag{1}$$

- \sim Dabei ist r_i der Abstand des i-ten Massenelements m_i senkrecht zur Drehachse.
- Für unendlich viele infinitesimal kleine Massenelemente geht die Gleichung Gleichung 1 in die folgende Relation über.

$$I = \int r_{\perp}^2 \, dm \tag{2}$$

Für die Beschreibung komplexerer Körper, wird der beschriebene Körper in einzelne Teilkörper aufgeteilt. Das Gesamtträgheitsmoment ergibt sich dann als die Summe der Trägheitsmomente der Teilkörper. Dabei ist darauf zu achten, dass alle aufsummierten Körper sich auf die gleiche Achse beziehen. Ist die Drehachse nicht gleich der Schwerpunktsache des Körpers, so liefert der Steiner'sche Satz einen Weg zur Berechnung des Trägheitsmomentes sofern die beiden Achsen parallel zueinander sind.

$$I = I_{\rm S} + ma^2 \tag{3}$$

- Dabei ist I_S das Trägheitsmoment des Körpers bei Drehung um die Schwerpunktsache, m die Masse des Körpers und a der Abstand der Schwerpunktsache zur Drehachse.
- Wirkt auf einen Körper im Abstand \vec{r} eine Kraft \vec{F} , so wirkt auf ihn ein *Drehmoment*, was wie folgt defieniert ist.

Formel in Satt
$$\vec{M} = \vec{F} \times \vec{r}$$
 (4)

5. O. Eine Spiralfeder, wie sie auch an der Apparatur in dem Versuch angebracht ist, verrichtet ein Drehmoment, das der Auslenkung entgegengerichtet ist. Es folgt damit der Zusammenhang.

$$\vec{M} = -D\vec{\varphi} \tag{5}$$

Keine Klammeru

Dabei ist D die Winkelrichtgröße, beziehungsweise der Proportionalitätsfaktor und $\vec{\varphi}$ der Auslenkwinkel ([2]). Unter einer solchen Voraussetzung führt der Körper eine harmonische Schwingung aus, dessen Periodendauer wie folgt lautet.

$$T = 2\pi \sqrt{\frac{I}{D}} \quad \bullet \tag{6}$$

3 Durchführung

3.1 Versuchsaufbau

Für die Durchführung des Versuches wird eine Drehachse verwendet. Diese besteht aus einer Achse, die beidseitig in einem Rahmen drehbar gelagert ist. Die Achse ist außerdem über eine Spiralfeder mit dem Rahmen verbunden. Am oberen Ende der Achse können verschiedene Objekte platziert werden. Durch Messung der Schwingungsdauer kann so ein Träheitsmoment bestimmt werden.

3.2 Bestimmung der Apperaturkonstanten

Zuerst müssen die Winkelrichtgröße D und das Eigenträgheitsmoment T_D der Drilachse bestimmt werden, da diese für die spätere Bestimmung der Trägheitsmomente notwendig sind.

Zur Bestimmung der Winkelrichtgröße wird auf die Achse eine weitere senkrechte Achse montiert. An der senkrechten Achse kann dann mit einer Federwaage, bei einem festen Abstand zum Mittelpunkt, die rücktreibende Kraft der Feder, zu einem zugehörigen Winkel, gemessen werden.

Um einen genauen Wert für die Winkelrichtgröße zu erhalten wird diese Messung für zehn verschiedene Winkel bei einem Abstand von $10\,\mathrm{cm}$ durchgeführt. Mit Gleichung 5 kann so die Winkelrichtgröße D ausgerechnet werden.

Bei der Bestimmung des Eigenträgheitsmomentes I_D wird ebenfalls die senkrechte Achse auf der Drillachse benötigt. An dieser werden an beiden Enden identische Gewichte mit dem gleichen Abstand zum Mittelpunkt angebracht. Es wird dann das System in Schwingung versetzt, wobei die Schwingungsdauer gemessen wird. Diese Messung wird ebenfalls zehn mal mit verschiedenen Abständen der Gewichte zum Mittelpunkt wiederholt.

Um Messfehler durch die Reaktionszeit zu minimieren, wird die Zeit von jeweils fünf Schwingvorgängen gestoppt und diese dann durch fünf geteilt, um einen gemittelten Wert für einen Schwingvorgang zu erhalten. Die gemessenen Werte werden anschließend gegeneinander aufgetragen und durch lineare Regression das Eigenträgheitsmomentes I_D bestimmt.

3.3 Trägheitsmoment zweier Körper

Zur Bestimmung der Trägheitsmomente verschiedener Körper werden diese zunächst nacheinander auf der Drillachse montiert. Die Drillachse wird dann um einen festen Winkel ausgelenkt und die Schwingungsdauer gemessen. Auch hier wird erneut die Zeit von zehn Schwingvorgängen gemessen und diese dann durch zehn geteilt, um einen gemittelten Wert für eine Schwingperiode zu erhalten.

Aus der gemessenen Schwingungsdauer, der Winkelrichtgröße D und dem Eigenträgheitsmomentes I_D kann nun das Trägheitsmoment des Körpers berechnet werden.

Dies wir im Anschlus alles für den zweiten Körper wiederholt.

3.4 Trägheitsmoment einer Holzpuppe

Das Trägheitsmoment einer Holzpuppe soll für zwei verschiedene Stellungen bestimmt werden.

Zunächst werden die einzelnen Körperteile der Puppe vermessen und die Puppe gewogen, um im Nachhinein das theoretische Trägheitsmoment der Puppe ausrechnen zu können.

Für die Messung wird die Puppe auf der Drillachse befestigt. Bei der ersten Stellung sind die Beine parallel zur Drehachse angelehnt, die Arme hingegen nach Außen ausgestreckt (siehe Abbildung 2). Die Puppe wird nun in Schwingung versetzt, wobei die Messung der Schwingungsdauer analog zu den vorherigen Körpern abläuft. Sie wird allerding seperat für zwei Außlenkwinkel, nämlich 90 und 120 Grad gemessen.

Für die zweite Stellung werden neben den Armen auch noch die Beine der Puppe nach vorne bzw. hinten ausgelenkt (Abbildung 3). Die Messung passiert wieder analog zur ersten Stellung.

4 Auswertung

Im folgenden werden die Mittelwerte mit

Diesen Absah brancht ihr nicht olie Formel für den killel west müsst gar nicht nennen. Nur die Formel für die Fehlervechnung müsst ihr bei der eisen Fehlerrechnung nennen.
$$\bar{x} = \frac{1}{n} \sum_{i}^{n} x_i$$

 $\bar{x} = \frac{1}{n} \sum_{i} x_i \tag{7}$

und die Standardabweichung mit

$$\Delta \bar{x} = \frac{1}{n(n-1)} \sum_{i=1}^{n} (x_i - \bar{x})^2$$
 (8)

berechnet. Aus Werten mit Unsicherheiten lassen sich mithilfe der Gauß'schen Fehlerfortpflanzung, die daraus abgeleiteten Größen berechnen, die folgendermaßen definiert ist:

$$\Delta f = \sqrt{\sum_{i}^{n} \left(\frac{\partial f}{\partial x_{i}} \cdot x_{i}\right)^{2}} \tag{9}$$

4.1 Apparatekonstante

Die Berechnung der Winkelrichtgröße D berechnet sich über (Gleichung 5) mit dem konstanten Abstand $a=10\mathrm{cm}$ zu den folgenden Werten.

Woraus sich der Mittelwert für die Winkelrichtgröße ergibt.

Keine Klam mesu Satz zur Tabelle Tabelle 1 ist ... zuentnehmen."

Tabelle 1: Winkelrichtgröße D

Auslenkung φ / DEG	F/N	$D / 10^{-3} \mathrm{N} \mathrm{m}$	
70	0.20	0 _f 286	
80	$0,\!24$	0.,300	Komma
90	$0,\!28$	0.311	
100	$0,\!33$	0.330	
110	$0,\!35$	0.318	
120	$0,\!39$	0.325	
130	$0,\!41$	0.315	
140	$0,\!47$	0.336	
150	$0,\!49$	0.327	
160	$0,\!52$	0.325	
170	$0,\!55$	0.324	

$$\bar{D} = (0, 317 \pm 0, 03293)10^{-3} \text{N m}$$
 (10)

Das Trägheitsmoment der Drillachse ergibt sich mit zwei Gewichten. Sie haben ein zylinderförmiges Gewicht von $m_1=(223,2\pm0,1)\mathrm{g}$ und $m_2=(222.8\pm0,1)\mathrm{g}$ und jeweils eine Höhe $h=30\mathrm{mm}$ und einen Durchmesser $d=35\mathrm{mm}$.

Tabelle 2: Messwerte zum Eigenträgheitsmoment ${\cal I}_D$ 。

	Schwingungsdauer T / s	Abstand a / mm
Sat	3,08	60
Zur Tabollo	3,40	80
zur Tabelle feht!	$4,\!32$	100
Terri.	4,83	120
	$4,\!32$	140
	4,83	160
	$5,\!37$	180
	5,76	200
	$6,\!28$	220
	7,36	240

Die Trägheitsmomente der beiden Gewichte lassen sich mithilfe (Gleichung 3) vereinfachen. Zur Berechnung des Trägheitsmomentes der Drillachse I_D , wird eine lineare Regression verwendet.

$$T^2 = ba^2 + c \tag{11}$$

Die Messwerte und die Regression sind in Abbildung 1 aufgetragen. Die Trägheitsmomente werden mit

$$\begin{split} I_{\mathrm{Stab}} &= \frac{1}{12} m l^2 \\ I_{\mathrm{Zylinder}} &= m (\frac{r^2}{4} + \frac{h^2}{12}) \end{split}$$

 $I_{
m Stab}=rac{1}{12}ml^2$ Alle Formeln in $I_{
m Zylinder}=m(rac{r^2}{4}+rac{h^2}{12})$

berechnet ([1]).

50.

Die abgebildete lineare Regression der Form y = ax + b liefert die folgenden Werte

$$a = 0.02415 \pm 0.0004202$$
) Einheiten!

Abbildung 1: Messwerte und lineare Regression •

Daraus folgt für das Trägheitsmomentes der Drillachse mit

$$I_D = \frac{bD}{4\pi^2} - 2m(\frac{r^2}{4} + \frac{h^2}{12}) \tag{12}$$

und

$$\Delta I_D = \sqrt{\frac{b}{4\pi^2}(\Delta D)^2 + \frac{D}{4\pi^2}(\Delta b)^2} \tag{33}$$

der Wert $I_D=(0,01079\pm0,001351)\mathrm{kgm^2}$

4.2 Trägheitsmomente einfacher Körper

Untersucht werden ein Zylinder und eine Kugel, dessen Rotationsachse je die Schwerpunktsachse der beiden Körper ist. Die Trägheitsmomente des Zylinders berechnet sich, analog zu oben, durch

$$I_{\rm Zylinder} = \frac{1}{2} m R^2$$
 \rightarrow Theorie (14)
$$I_{\rm Kugel} = \frac{2}{5} m R^2 \, . \label{eq:I_Xylinder}$$

und das der Kugel durch

$$I_{\text{Kugel}} = \frac{2}{5} mR^2 \,. \tag{15}$$

Dabei ist R der Radius und m die Gesamtmasse der jeweiligen Körper.

Die Werte der beiden Körper sindx

$$\begin{aligned} m_{\rm Kugel} &= (810.9 \pm 0.1) {\rm g} \\ d_{\rm Kugel} &= 12.7 {\rm cm} \\ m_{\rm Zylinder} &= (367.8 \pm 0.1) {\rm g} \\ h &= 9.00 {\rm cm} \\ d_{\rm Zylinder} &= 8.72 {\rm cm} \\ a &= untereinander : \end{aligned}$$

Damit ergeben sich die Theoriewerte der Trägheitsmomente für den Zylinder und für die Kugel.

$$\begin{split} I_{\rm Kugel, Theorie} &= 1.306 \cdot 10^{-3} \rm kgm^2 \\ I_{\rm Zylinder, Theorie} &= 0.349 \cdot 10^{-3} \rm kgm^2 \end{split}$$

Die gemessenen Schwingungsdauern wurden in ... aufgeführt. Die gemittelten Periodendauern wurden dazu benutzt durch die Gleichung (Gleichung 6) die Trägheitsmomente der Körper zu berechnen.

Tabelle 3: gemessene Periodendauer

		•
$T_{\rm Zylinder}$ / s	$T_{ m Kugel}$ / s	
0.876	1.706	L
0.856	1.724	Komma
0.828	1.708	
0.848	1.692	
0.843	1.691	
0.847	1.699	
0.804	1.684	
0.822	1.677	
0.862	1.697	
0.828	1.687	
		•

Damit ergeben sich die Mittelwerte zu

$$T_{\text{Zylinder}} = 0,8414 \pm 0,02012 \text{s}$$

und

$$T_{\rm Kugel} = 1,6965 \pm 0,01289 {\rm s}$$

Und damit die Trägheitsmomente zu mit Welcher Formel Verweis!

$$I_{\text{Zylinder}} = 0,005685 \pm 0,0006501 \text{kgm}^2$$

und

$$I_{\text{Kugel}} = 0,02311 \pm 0,002426 \text{kgm}^2$$

Formuliesury?
Sollik wern
Vor den
Endergebnissen
Stehen!

mit Gauß'scher Fehlerfortpflanzung

$$\Delta I = \sqrt{(\frac{2DT}{4\pi^2})^2 (\Delta T)^2 + (\frac{T^2}{4\pi^2})^2 (\Delta D)^2}$$
 (16)

4.3 Trägheitsmoment einer Modellpuppe

Zur Bestimmung des Trägheitsmomentes der Modellpuppe wird die Puppe in einzelne Teile unterteilt. Dabei wird angenommen, dass sich die einzelnen Gliedmaßen durch Zylinder approximieren lassen können und eine homogene Massenverteilung besitzt. Die Volumina der Einzelteile werden durch

$$V = \pi r^2 h \tag{17}$$

bestimmt. Danach werden die Massenanteile der Einzelteile bestimmt. Die Gesamtmasse der Puppe beträgt

$$m_{ges} = (\underline{166.8 \pm 0.1})$$
g.

Die Abmaße der Körperteile werden jeweils, über die gesamte Länge verteilt, fünf mal gemessen. Somit wird auf die unterschiedlichen Radien der Glieder Rücksicht genommen (zum Beispiel ist beim Arm der Oberarm dicker, als der Unterarm). Die Mittelwerte werden dazu genutzt die Trägheitsmomente auszurechnen.

Sabt zur

Tabelle 4: Durchmesser der Körperteile

$d_{ m Arm}$ / cm	$d_{ m Kopf}$ / cm	d_{Bein} / cm	$d_{ m Torso}$ / cm
13.3	17.6	13.4	40.0
16.1	19.0	16.5	33.4
14.0	21.7	17.2	28.1
16.8	30.6	16.0	36.4
11.2	32.2	20.9	36.5

Als Mittelwerte ergibt sich dadurch

$$\begin{aligned} d_{\text{Arm}} &= (14, 28 \pm 2, 0094) \text{cm} \\ d_{\text{Kopf}} &= (24, 24 \pm 6, 0566) \text{cm} \\ d_{\text{Bein}} &= (16, 8 \pm 2, 4191) \text{cm} \\ d_{\text{Torso}} &= (34, 88 \pm 3, 9827) \text{cm} \end{aligned}$$

Die Längen der Körperteile sind folgendermaßen:

$$\begin{split} l_{\rm Arm} &= 0,0870 \mathrm{m} \text{ ,} \\ l_{\rm Unterarm} &= 0,0410 \mathrm{m} \text{ ,} \\ l_{\rm Bein} &= 0,1244 \mathrm{m} \text{ ,} \\ l_{\rm Torso} &= 0,06576 \mathrm{m} \text{ ,} \\ l_{\rm Unterarm} &= 0,01644 \mathrm{m} \text{ ,} \end{split}$$

Das Volumen eines Zylinders ist gegeben durch (Gleichung 17) mit Fehlerfortpflanzung

$$\Delta V = \sqrt{(2\pi Lr)^2 (\Delta r)^2}$$
 keine who much (18)

Damit erhält man für die Volumen

The man function of the volument
$$V_{\rm Arm} = (0,001393 \pm 0,0007843) {\rm m}^3$$
 , $V_{\rm Kopf} = (0,007458 \pm 0,001891) {\rm m}^3$, $V_{\rm Bein} = (0,002758 \pm 0,001588) {\rm m}^3$, $V_{\rm Torso} = (0,001156 \pm 0,002870) {\rm m}^3$,

Für das Gesamtvolumen lautet die Fehlerfortpflanzung

Dadurch ergibt sich als Gesamtvolumen

$$V_{\text{Ges}} = 0.012765 \pm 0.005387 \text{m}^3$$

Es werden die Trägheitsmomente für zwei unterschiedliche Stellungen der Puppe berechnet. Abbilder der Stellungen der Puppe sind im folgenden dargestellt unter Abbildung 2 und unter Abbildung 3. Als erster wurde das Trägheitsmoment in der Stellung 1 und danach in der Stellung2 gemessen.

Die Abstände der Körperteile zur Drehachse ergeben sich über die Radien der Körperteile.

Damit ergeben sich die Trägheitsmomente für die erste Stellung zu mit wekner

$$\begin{split} I_{\rm Arm} &= 0.70351 {\rm kgm^2} \\ I_{\rm Kopf} &= 0.715769 {\rm kgm^2} \\ I_{\rm Bein} &= 0.127145 {\rm kgm^2} \\ I_{\rm Torso} &= 0.229718 {\rm kgm^2} \\ I_{\rm Puppe} &= 2.60682 {\rm kgm^2} \, \bullet \end{split}$$

und die Trägheitsmomente für die zweite Stellung zu

$$\begin{split} I_{\rm Arm} &= 0.70351 {\rm kgm}^2 \, / \\ I_{\rm Kopf} &= 0.715769 {\rm kgm}^2 \, / \\ I_{\rm Bein} &= 1.20679 {\rm kgm}^2 \, / \\ I_{\rm Torso} &= 0.229718 {\rm kgm}^2 \, / \\ I_{\rm Puppe} &= 4.76611 {\rm kgm}^2 . \end{split}$$

Die Trägheitsmomente wurden analog zu denen der Kugel und des Zylinders berechnet. Dabei sind die Schwingungsdauern im folgenden aufgelistet:

 T_1 entspricht der Stellung 1 unter Auslenkung um 90°, T_2 der Stellung 1 unter Auslenkung um 120°. Analog dazu sind T_3 und T_4 für die Stellung 2. Gemäß Gleichung (Gleichung 6) folgt für die Puppe

$$I_{\text{Puppe}} = \frac{T^2 D}{4\pi} - I_D \tag{20}$$

Tabelle 5: Schwingungsdauer

T_1 / s	T_2 / s	T_3 / s	T_4 / s
0.792	0.790	1.094	1.070
0.816	0.906	1.148	1.098
0.840	0.784	1.096	1.096
0.798	0.784	1.058	1.084
0.816	0.812	1.144	1.198

Als Mittelwert ergebibt sich dadurch

$$T_{\text{Stelling 1}} = 0.8138s$$

 $T_{\text{Stelling 2}} = 1.1086s$

woraus die Trägheitsmomente folgen

$$I_{\rm Stellung~1} = -0.010773 \cdot 10^{-6} \rm kgm^2 \\ I_{\rm Stellung~2} = -0.017869 \cdot 10^{-6} \rm kgm^2 \\ I_{\rm Stellung~2} = -0.017869 \cdot 10^{-6} \rm kgm^2$$

Das entspricht einer Abwertung des experimentellen Wertes von dem Theoriewert um 41.33% für die erste Stellung und 37.49% für die zweite Stellung.

5 Diskussion

Die Messwerte unterscheiden sich zum Teil recht stark von den Theoriewerten, was vermutlich daran liegt, dass große Messfehler in die Berechnung der Werte eingegangen ist. So wurde beim Messen der Durchmesser der jeweiligen Körperteile nicht auf die unterschiedlich breiten Einzelteile eingegangen (beim Arm zum Beispiel bei Ober- und Unterarm), sondern ein Mittelwert für den Durchmesser des gesamten Körperteiles genommen.

Ein weiterer großer Faktor für Abweichungen von den Theoriewerten ist das Messen der Periodendauer. Zum Stoppen der Zeit einer Periodendauer wurde eine Stoppuhr verwendet, die manuell ausgelöst und gestoppt werden musste. Durch menschliche Verfehlungen, wie zum Beispiel der Reaktionszeit, wurden die Zeiten verfälscht. Es wurde zwar versucht durch eine höhere Anzahl an Messungen dieser Unsicherheit vorzubeugen, jedoch spielt sie dennoch in das Endergebnis mit ein.

Die Abweichung bei der Bestimmung des Trägheitsmomentes der Kugel beträgt 17.6953% und die bei dem Zylinder 16.2894%. Es läasst sich, unter Berücksichtigung der eingegangenen Fehler sagen, dass der Wert der Abweichung dennoch recht groß ist. Eigentlich war zu erwarten, dass sich die prozentuale Abweichung auf unter 10% beläuft. Entweder sind, entgegen den Erwartungen, schlechte Messwerte vorgenommen worden, oder es handelt sich um einen systematischen Fehler zum Beispiel von der Messapparatur.

Die Abweichungen bei der Bestimmung der Trägheitsmomente der Puppe in verschiedenen Stellungen ist mit 41.33% bei der ersten Stellung und mit 37.49% allerdings noch höher. Hier muss man allerdings die Näherungen mit einbeziehen, die für die Puppe getroffen wurden. Es wurden alle Körperteile, auch der Kopf, auf Zylinder approximiert. Auch wurde für die Gliedmaßen nicht beide einzelne Glieder gemessen und dessen Trägheitsmomente berechnet, sondern wurde für ein Glied das Trägheitsmoment exemplarisch bestimmt und in dem Gesamtträgheitsmoment doppelt einbezogen.

Da bei der Puppe so viele Approximierungen vorgenommen wurden ist allerdings daon auszugehen, dass der experimentell bestimmte Wert näher am tatsächlichen Wert ist, als der theoretisch bestimmte Wert.

The misst in der Diskussion die Endergebnisse noch mal explisit nemen (Experimentelle Hie Theoretische) Donn erst hier die Abweichung bestimmen und diskutieren Ihr solllet außer dem das Verhältnis dar beiden Positionen oler Puppe bestimmen (I_1/I_2) und davon olann die Abweichlung!

bei Protenten Nur 2 Nochkomma-Steller

Ihr brancht Kein extra Kapitel mit den Daten!

6 Daten

Tabelle 6: Winkelrichtgröße D

Auslenkwinkel φ / DEG°	F/N
70	0.20
80	0.24
90	0.28
100	0.33
110	0.35
120	0.39
130	0.41
140	0.47
150	0.49
160	0.52
170	0.55

Tabelle 7: Eigenträgheitsmoment ${\cal I}_D$

Schwingungsdauer T / s	Abstand a / mm
3.08	60
3.40	80
3.83	100
4.32	120
4.83	140
5.37	160
5.76	180
6.28	200
6.84	220
7.36	240

 T_1 entspricht der Stellung 1 unter Auslenkum um 90°. T_2 entspricht der Stellung 1 unter Auslenkum um 120°. T_3 entspricht der Stellung 2 unter Auslenkum um 90°. T_4 entspricht der Stellung 2 unter Auslenkum um 120°.

Tabelle 8: Trägheitsmomente der Körper

$T_{ m Zylinder}$ / s	$T_{ m Kugel}$ / s
0.876	1.706
0.856	1.724
0.828	1.708
0.848	1.692
0.843	1.691
0.847	1.699
0.804	1.684
0.822	1.677
0.862	1.697
0.828	1.687

 ${\bf Tabelle~9:~Durchmesser~K\"{o}rperteile}$

$D_{ m Arm}$ / cm	$D_{ m Kopf}$ / cm	D_{Bein} / cm	D_{Torso} / cm
13.3	17.6	13.4	40.0
16.1	19.0	16.5	33.4
14.0	21.7	17.2	28.1
16.8	30.6	16.0	36.4
11.2	32.2	20.9	36.5

Tabelle 10: Schwingungsdauer

T_1 / s	T_2 / s	T_3 / s	T_4 / s
0.792	0.790	1.094	1.070
0.816	0.906	1.148	1.098
0.840	0.784	1.096	1.096
0.798	0.784	1.058	1.084
0.816	0.812	1.144	1.198

Die Bilder nicht in den Anhang! Durchführung ist ein guter Plats! 7 Anhang

Abbildung 2: Erste Stellung der Puppe

Abbildung 3: Zweite Stellung der Puppe

1101. Das Tro	ghei 65 mon	nent)		
			141 + 30 mm	
eder veage:	Abstance	pro Abbuin	CL CO IA	
pinkel 4 in G	roid Knad	Find	Abotemod r	in mm
70	0	30	100.	1
80	9	124		
30	5,0	8		
100		33		
110	0,	35		
120		39		
130	0,	41		
140	0,	4.0		٠, ا
150	0	43		
170	0,	52		
Gewiche1: 22	3.2 40	10 7 Bus	ummen: 44	5.9 504
Gewichtz. TE	S E O	14		-13 - 5,1
Gewichtz:	30 mos ho	ch, 35 mm	Durchme	-912
Gewicht 1: :	30 mn hos	h, 35 mm	~ 4	
Schwingung	solcaner T	- ins	lbseland a	in mm
3,08			Ba	
3,40			80	
2:07			100 .	
4,82			120	
5,37			140	
5.76			160	
5,76			180	
6.84			720	1
7,36			240	
Eylinder:	367,8 ± 0	1 4 9		
Ta	011.00	7 00	rchmese	. D
*	3,00 m	in Ho	he	
0, = 8.76				
D2 = 8,77		Ti in 3/10	Tz ins/	(0
D = 8.80 C	m	8,76	1	
	VPs.	8 50	17,06	
D= = 8, 18 C	m	8.28	17,24	
		8.48	14.08	
ugel: 810, 9 =	0.19	2.45	16,31	
0	0	8.47	16 99	
= 12,700	m	8, 48 8, 43 8, 43 8, 43 8, 43	16,84	
2 = 17,68c	m	8,22	16.31	
3 = 12,55cm		0102	16, 57	
4 = 12,60 c	m	8518	16,87	
5 = 12, 70 c	m			
72			K	9

Abbildung 4: Originale Messdaten

Abbildung 5: Originale Messdaten

Literatur

- $[1] \quad \text{TU Dortmund. } \textit{Versuch 101: Das Tr\"{a}gheitsmoment. 2021.}$
- $[2]\ \$ Dieter Meschede. $Gerthsen\ Physik.\ 25.$ Aufl. Springer, 2015.