Convolutional Neural Networks

Gain an understanding of the structure and background of CNNs

Gain an in-depth understanding of components and mechanism that

makes up a CNN

Implement simple Convolutions and Filters with numpy

Lecture Content

- What is a Convolutional Neural Network
- Structure and Components of a CNN
- Convolutions
- Filters
- Pooling
- Dropout
- Activation Functions
- Next Time: Image Classification

Word of Images

Representing Images with Numbers

- Image can be represented as an array of pixel values.
- A black & white image is simply a 2D Matrix

Color Images

• Will need a 3D matrix to represent a RGB image.

Pixel of an RGB image are formed from the corresponding pixel of the three component images

Convolution(convolution-layer-a.png (1150×500) (stanford.edu))

.: What Happens within the Convolution?

Apply a Filter/Kernal

Pooling

Padding

Why Use Filters

- Filters help extract Different Feature.
- Different Filters will give Different features.

A Simple 1 D Filter

Convolutional Neural Networks - Key Idea

Convolution Exercise 1

Input: 7x7

Filter: 3x3

Q: How big is output?

20 * * * *

Convolution Exercise 1 - Answer

7

Input: 7x7

Filter: 3x3

Output: 5x5

21

Convolution Spatial Dimensions

Input: 7x7

Filter: 3x3

Output: 5x5

' In general:

Input: W

Filter: K

Output: W - K + 1

Convolution Calculation

Time for you to Work

5	3	4
1	0	0
3	6	1
9	0	2
7	4	3

0	1
-1	2

What if we want to Preserve the output Dimensions?

- Padding to the rescue.
- Add zeros around the input set to make it look bigger.
- Increate the number of convolutions we can apply.

Convolution Spatial Dimensions

Input: 7x7

Filter: 3x3

Output: 5x5

0	0	0	0	0	0	0	0	0
0							100	0
0								0
0	1	1 2			The state of the s			0
0								0
0								0
0							5	0
0								0
0	0	0	0	0	0	0	0	0

In general:

Input: W

Filter: K

Padding: P

Output: W - K + 1 + 2P

Very common: "same padding"

Set P = (K - 1) / 2

Then output size = input size

26

Padding

0	0	0	0
0	5	3	4
0	1	0	0
0	3	6	1
0	9	0	2
0	7	4	3

0	1
-1	2

Padding Exercise

Padding

0	0	0	0
0	5	3	4
0	1	0	0
0	3	6	1
0	9	0	2
0	7	4	3

0	1
-1	2

10	1	5
7	2	4
7	9	-4
21	-3	5
23	1	4

Pooling

Downsampling

For convolution with kernel size K, each element in the output depends on a K x K **receptive field** in the input

Each successive convolution adds K-1 to the receptive field size With L layers the receptive field size is 1 + L * (K-1)

Careful – "receptive field wrt to the input" vs "receptive field wrt the previous fayer"

Each successive convolution adds K-1 to the receptive field size With L layers the receptive field size is 1 + L * (K-1)

Problem: For large images we need many layers for each output to "see" the whole image image

Each successive convolution adds K-1 to the receptive field size With L layers the receptive field size is 1 + L * (K-1)

Problem: For large images we need many layers for each output to "see" the whole image image

Solution: Downsample inside the network

. : Side Note on Strides

Strided Convolution

Input: 7x7

Filter: 3x3

Stride: 2

36

Strided Convolution

Input: 7x7

Filter: 3x3

Stride: 2

Strided Convolution

Input: 7x7

Filter: 3x3 Output: 3x3

Stride: 2

38

Strided Convolution

Input: 7x7

Output: 3x3 Filter: 3x3

Stride: 2

In general:

Input: W

Filter: K

Padding: P

Stride: S

Output: (W - K + 2P) / S + 1

Can we do stride 3?

Input: 7x7

Filter: 3x3 Output: 3x3

Stride: 3?

Output: (N-F)/S+1

e.g.
$$N = 7$$
, $F = 3$:

stride
$$1 \Rightarrow (7 - 3)/1 + 1 = 5$$

stride
$$2 \Rightarrow (7 - 3)/2 + 1 = 3$$

stride
$$3 \Rightarrow (7 - 3)/3 + 1 = 2.33 \otimes$$

.: Back to Max Pooling

Pooling Layers: Downsampling

Hyperparameters:

Kernel Size Stride Pooling function

42

Max Pooling

kernel size and stride 2

6 8 3 4

Introduces **invariance** to small spatial shifts
No learnable 43 parameters!

Average Pooling

64 x 224 x 224

Avg pooling with 2x2 kernel size and stride 2

4	5
2	2

Introduces **invariance** to small spatial shifts
No learnable parameters!

Pooling Summary

Input: C x H x W

Hyperparameters:

- Kernel size: K
- Stride: S
- Pooling function (max, avg)

Output: C x H' x W' where

- H' = (H K) / S + 1
- W' = (W K) / S + 1

Learnable parameters: None!

Common settings:

max,
$$K = 2$$
, $S = 2$

max,
$$K = 3$$
, $S = 2$ (AlexNet)

45

.: Tips: Normalization

Normalization

Why do we need to normalize our data?

Extreme example:

- sometimes pixel range is [0, 255], sometimes it's [0, 1]

What is the problem?

Network activations will be completely different!!

You want the inputs to be in a similar range → low variance

Normalization

Usually inserted after Fully Connected or Convolutional layers, and before nonlinearity.

$$\hat{x} = \frac{x - E[x]}{\sqrt{Var[x]}}$$

How to normalize

Next Q: from what do you compute the mean & variance?

- BatchNorm computes mean and
 var from each batch
- Depends on the batch, so need to keep a running average and store these.
- LayerNorm/InstanceNorm do not need this.

* 'Use of Dropout Layers

Dropout

- Literally used to drop out some neurons
- It acts as a mask that nullifies the contribution of random neuron.
- This prevents them from passing in values to the next layer.
- Good for dealing with overfitting

Without Dropout

With Dropout

· · · What Activation Functions can we use

Non-negative Activations

Softmax (output layer)

Other Components

- Flattening Layer
- Fully Connected Layer

. : Overall Architecture

One neuron, that looks at 5x5 region and outputs a sheet of activation map

One neuron, that looks at 5x5 region and outputs a sheet of activation map

Convolution Layer: With many images

Compared with MLPs

. Detecting the Parameter counts

Case Study: AlexNet

[Krizhevsky, Sutskever, Hinton, NeurIPS 2012]

Task: ImageNet 1000-class classification

	Input			Conv 4		Outpu t
HxW C	227x 227 3	55x55 96	27x27 256	13x13 384		1x1 1000

You transform one volume to another with convolution

Case Study: AlexNet

[Krizhevsky, Sutskever, Hinton, NeurIPS 2012]

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4

Hint:

(227-11)/4 + 1 = 55

Q: What is the output volume size after Conv1?

A: 55x55x96

Q: how many parameters in this layer?

A: (3*11*11) * 96

Case Study: AlexNet

[Krizhevsky, Sutskever, Hinton, NeurIPS 2012]

Input: 227x227x3 images After Conv1: 55x55x96

Second layer: Pool1: 3x3 at stride 2

Q: What is the output volume size after Pool1?

A: (55-3)/2 + 1 = 27

27x27x96

Q: how many parameters in this layer?

A: 0!!!

How to Prevent Overfitting?

- Early stopping don't overdo training!
- Weight decay / regularization with L1/L2 norm
- Drop out

$$E(W) = \sum_{i=0}^{N} loss(f_W(x_i), y_i) + \gamma ||W||^2$$

- Use loads of training data with good variability
- Use a carefully designed network architecture with batch normalization etc.