

POLITECHNIKA KRAKOWSKA WYDZIAŁ INFORMATYKI I TELEKOMUNIKACJI KIERUNEK: INFORMATYKA

SZEREGI CZASOWE, GIEŁDA I EKONOMIA

DANE ARPA CHAIN VS WHITE NOISE

SPRAWOZDANIE Z LABORATORIUM

Maria Guz

Polecenia

Temat 1.

- 1. Pobranie danych giełdowych.
- 2. Stworzenie wykresu pobranych danych w skali liniowej i pół-logarytmicznej.
- 3. Obliczenie logarytmicznych stóp zwrotu (logarithmic returns) pobranych danych oraz stworzenie ich wykresu.
- 4. Znormalizowanie szeregu stóp zwrotu (średnia równa 0 i odchylenie standardowe 1).
- 5. Wyrysowanie danych.

Temat 2.

- 1. Wygenerowanie danych o rozkładzie normalnym (white noise).
- 2. Stworzenie wykresu pobranych danych.
- 3. Policzenie sumy skumulowanej (ruch Browna).
- 4. Stworzenie wykresu dla sumy skumulowanej.

Temat 3.

- 1. Dla danych giełdowych (stopy zwrotu) i wygenerowanych policzenie histogramów.
- 2. Znormalizowanie histogramów (suma wartości słupków powinna być równa 1).
- 3. Policzenie parametrów rozkładów (skośności oraz kurtozy).
- 4. Przedstawienie obu znormalizowanych rozkładów na jednym wykresie.

Temat 4.

- 1. Dla danych giełdowych (stopy zwrotu) i wygenerowanych (biały szum) policzenie funkcji autokorelacji.
- 2. Policzenie funkcji autokorelacji dla modułu stóp zwrotu oraz modułu danych wygenerowanych. Sporządzenie odpowiedniego wykresu.
- 3. Policzenie widma mocy dla danych gieldowych (stopy zwrotu) i wygenerowanych (biały szum).
- 4. Policzenie widma mocy dla modułu stóp zwrotu oraz modułu danych wygenerowanych. Sporządzenie odpowiedniego wykresu.

Wykonanie

Zadania zostały zrealizowane za pomocą języka programowania Python oraz dzięki środowisku PyCharm. Wybór tych narzędzi podyktowany był ich prejrzystością, intuicyjnością i prostotą. Do przeprowadzenia obliczeń wykorzystano studencki serwer obliczeń Torus za pośrednictwem JetBrains Gateway.

Dane

Analizowane dane dotyczą ceny ARPA Chain. Dane zostały pozyskane z pliku mat. i zapisane do pliku csv. Dane składają się z 912 393 rekordów, z których pierwsze 10 zostało zaprezentowane na grafice poniżej.

```
0 0.01028
1 0.01026
2 0.01027
3 0.01026
4 0.01026
5 0.01027
7 0.01027
8 0.01026
9 0.01026
```

Temat 1.

Dane pobrano w postaci pliku .csv i wczytano w następujący sposób.

```
dane = pd.read csv(r'dane.csv', header=None)
```

Następnie wygenerowano wykresy danych w skali liniowej i pół-logarytmicznej.

```
plot plt(title,
                               ylabel,
                                          data,
                       xlabel,
                                                  filename,
x scale log=False, y scale log=False):
   if x scale log:
       plt.xscale('log')
    if y scale log:
       plt.yscale('log')
   plt.title(title)
   plt.xlabel(xlabel)
   plt.ylabel(ylabel)
   plt.plot(data, scalex=scalexy[0], scaley=scalexy[1])
   plt.savefig(filename)
    plt.close()
```


Obliczono logarytmiczne stopy zwrotu:

```
def zwroc_stopy_zwrotu(df):
    stopy_arr = []
    for i in range(len(df) - 1):
        stopy_arr.append((df[0][i + 1] - df[0][i]) / df[0][i])
    return stopy arr
```

I wygenerowano wykres zarówno nieznormalizowanego szeregu stóp zwrotu :

Jak i znormalizowanego:

Sprawdzono również wartości średniej i odchylenia standardowego:

```
print("Srednia = ", round(stopyZwrotu_norm.mean()))
print("Odchylenie Standardowe = ", stopyZwrotu_norm.std())

Srednia = 0.0
Odchylenie Standardowe = 1.0
```

Temat 2.

Wygenerowano dane o rozkładzie normalnym (white noise):

```
whiteNoise = np.random.normal(loc=0, scale=1, size=9076)
```

Sprawdzono wartości średniej i odchylenia standardowego:

```
print("Srednia = ", round(whiteNoise.mean()))
print("Odchylenie Standardowe = ", round(whiteNoise.std()))

Srednia = 0.0
Odchylenie Standardowe = 1.0
```


Następnie wygenerowano wykres danych:

Aby obliczyć sumę skumulowaną (ruchy Browna) zastosowano funkcję:

brown = np.cumsum(whiteNoise)

Wygenerowano wykres dla sumy skumulowanej:

Temat 3.

Zarówno dla danych giełdowych jak i wygenerowanego szumu stworzono histogramy:

Przedstawiono je również na jednym wykresie w skali pół-logarytmicznej:

Następnie znormalizowano stworzone histogramy dzieląc wartość każdego słupka na sumę wartości wszystkich słupków. Wyrysowano znormalizowane histogramy:

```
StopySuma = sum(histStopyZwrotu[0])
WhiteSuma = sum(histWhiteNoise[0])
plt.plot(histStopyZwrotu[1][:-1], (histStopyZwrotu[0]/StopySuma))
plt.plot(histWhiteNoise[1][:-1], (histWhiteNoise[0]/WhiteSuma))
```


Sprawdzono czy suma słupków jest równa 1:

```
print(sum(histWhiteNoise[0]/WhiteSuma))
print(sum(histWhiteNoise[0]/WhiteSuma))

1.0
1.0
```

Aby policzyć skośność i kurtozę wykorzystano funkcje biblioteki scipy.stats.mstats:

```
print("Dane")
          Kurtoza: ", stat.kurtosis(stopyZwrotu norm))
print("
print("
          Skośność: ", stat.skew(stopyZwrotu norm))
print("White Noise")
          Kurtoza: ", stat.kurtosis(whiteNoise))
print("
print("
          Skośność: ", stat.skew(whiteNoise))
      Dane giełdowe
         Kurtoza: [98.97735718]
         Skośność: [0.66026077]
      White Noise
         Kurtoza: 0.004388238394612998
         Skośność: 0.000714506761190646
```

Przedstawiono oba znormalizowane rozkłady na jednym wykresie:

Temat 4.

Zarówno dla danych giełdowych jak i wygenerowanych policzono funkcję autokorelacji.

```
acf_stopy = stats.tsa.acf(stopyZwrotu_norm, nlags=len(stopyZwrotu_norm) - 1)
# autokorelacja stop zwrotu

acf_stopy_abs = stats.tsa.acf(abs_stopy, nlags=len(stopyZwrotu_norm) - 1) #
autokorelacja modulu stop zwrotu

acf_white_noise = stats.tsa.acf(whiteNoise, nlags=len(whiteNoise) - 1)
# autokorelacja bialego szumu

acf_white_noise_abs = stats.tsa.acf(abs_white_noise,
nlags=len(abs_white_noise) - 1)
# autokorelacja modulu bialego szumu
```


Dla modułów danych giełdowych jak i wygenerowanych również policzono funkcję autokorelacji.

Następnie stworzono wykresy dla widma mocy sygnałów (skala logarytmiczna)

```
power_spectrum_stopy_zwrotu = np.abs(np.fft.fft(stopyZwrotu_norm)) ** 2
power_spectrum_white_noise = np.abs(np.fft.fft(whiteNoise)) ** 2
```

oraz dla widma mocy modułów sygnałów (również w skali logarytmicznej).

```
power_spectrum_stopy_zwrotu_abs = np.abs(np.fft.fft(abs(stopyZwrotu_norm))) ** 2
power_spectrum_white_noise_abs = np.abs(np.fft.fft(abs_white_noise)) ** 2
```


