$$\Delta = \frac{2m_p}{L}$$
 $N_q = \frac{m_p^2}{3L^2}$ $SQNR = \frac{S_o}{N_q} = \frac{3S_oL^2}{m_p^2}$

$$BW_{min} = \frac{Rate}{2}$$

Polar Coding:

BW	$2Rb(\frac{1}{2}$ -wid 4x BWmin) or Rb(1-wid, 2x BWmin)
Power	Most efficient
DC	Not zero (but can be made zero w/ Manchester)

ON-OFF coding:

BW	Same as Polar	
Power	2x Power of Polar (or 4x Energy)	
DC	Not zero	

Bipolar (single bit error)

BW	Rb (No half-width pulse)	
Power	2x Power (3dB)	
DC	DC Null	

Nyquist 1st Criteria ISI

sinc gives Rb/2 BW but falls off at 1/t, other functions have faster roll-off but (1+r)Rb/2 BW. Raised cos when r = 1, falls off at $1/t^3$.

Controlled ISI

ZFE

	Multiamplitude	Orthogonal
Rate	$\log_2 M$	$\log_2 M$
BW	Independent of M	М
SNR (power)	M^2	Independent of M

PSK requires 3dB less power than ASK(on/off). BW(FSK) > BW(ASK or PSK). Can't use coherent demodulation for PSK but can for DPSK. DPSK 1 is same as previous bit and 0 is opposite.

FSK m-array, power const but BW increases with M linearly

PSK

$$\theta_{M} = \theta_{0} + \frac{2\pi}{M} (m-1)$$

If BW was B HZ, then FHSS will we (occupy)

a BW B = LB

L: spreading factor

$$T_s$$
: symbol duration $R_s = \frac{1}{T_s}$ symbol rate T_c : Chip duration

If To > To -> FH is show happing

If To < Ts -> FH is fast hopping (multiple

symbols (hops) hops over the duration of a symbol)

- * Suppose a jamming source has level of jamming power P_
- Narrow band signal BW = Bs, Jammer also has BW = Bs Interference level = $\frac{P_1}{B_c}$ = I

Signal -to_interference ratio =
$$\left(\frac{E_b}{I}\right)_{NB} = \left[\frac{E_b B_s}{P_J}\right]$$

FHSS has BN = B = LBs . Jamming source will

divide its power
$$\Rightarrow$$
 $I = \frac{P_J}{B_c} = \frac{P_J}{LB_s} \Rightarrow \begin{bmatrix} SIR_F = \frac{E_b LB_s}{P_J} \end{bmatrix}$

BW after spreading is L times broader than the original signal.

$$B_c = LB_s + B_s = (L+1)B_s \simeq LB_s$$

Convolution of spectra of Saam and c(t)

Let P: be the total power of interference.

Interference spectral level before =
$$\frac{P_i}{B_s}$$
, $\frac{1}{5}$ $\frac{B_s}{2}$ $\frac{1}{5}$ $\frac{1}{5}$

After despreading, the interf. spectral =
$$\frac{P_i}{(L_{\uparrow 1})B_s}$$
, $f_c B_c \leqslant f \leqslant f_{\uparrow 2} E_c$

$$\frac{\text{SIR before}}{\text{SIR after}} = \frac{\frac{E_b}{P_i}}{\frac{E_b}{P_i}(L+1)B_s} = \frac{L}{L+1}$$

SIR improves by a factor of (L+1) = L which is the spreading factor.

DSSS is very effective against narrowband jamming signals

TABLE 3.2 Properties of Fourier Transform Operations

Operation	g (t)	G(f)
Linearity	$\alpha_1 g_1(t) + \alpha_2 g_2(t)$	$\alpha_1 G_1(f) + \alpha_2 G_2(f)$
Duality	G(t)	g(-f)
Time scaling	g(at)	$\frac{1}{ a }G\left(\frac{f}{a}\right)$
Time shifting	$g(t-t_0)$	$G(f)e^{-j2\pi ft_0}$
Frequency shifting	$g(t)e^{j2\pi f_0t}$	$G(f-f_0)$
Time convolution	$g_1(t) * g_2(t)$	$G_1(f)G_2(f)$
Frequency convolution	$g_1(t)g_2(t)$	$G_1(f)*G_2(f)$
Time differentiation	$\frac{d^n g(t)}{dt^n}$	$(j2\pi f)^n G(f)$
Time integration	$\int_{-\infty}^{t} g(x) dx$	$\frac{G(f)}{j2\pi f} + \frac{1}{2}G(0)\delta(f)$