지도학습-회귀모델

Boston housing price

- 평균 주택가격 예측
 - 13개의 특성(feature)
 - CRIM: 근방 범죄율
 - ZN : 주택지 비율
 - INDUS: 상업적 비즈니스에 활용되지 않는 농지 면적
 - CHAS: 경계선에 강에 있는지 여부
 - NOX : 산화 질소 농도
 - RM: 자택당 평균 방 갯수
 - AGE: 1940 년 이전에 건설된 비율
 - DIS: 5 개의 보스턴 고용 센터와의 거리에 다른 가중치 부여
 - RAD: radial 고속도로와의 접근성 지수
 - TAX : 10000달러당 재산세
 - PTRATIO: 지역별 학생-교사 비율
 - B: 지역의 흑인 지수 (1000(B 0.63)^2), B는 흑인의 비율.
 - LSTAT : 빈곤층의 비율
 - price: 1978년 보스턴 주택 가격, 506개 주택 가격 중앙값(단위 천달러)

오렌지3를 활용한 분석

회귀 모델 평가지표

종류

- MAE (Mean Absolue Error)
 - 실제 값과 예측 값의 차이를 절댓값으로 변환해 평균한 것
- MSE (Mean Squared Error)
 - 실제 값과 예측 값의 차이를 제곱해 평균한 것
- RMSE (Root Mean Squared Error)
 - MSE 값은 오류의 제곱을 구하므로 실제 오류 평균보다 더 커지는 특성이 있어 MSE에 루트를 씌운 값
- 값이 작을수록 예측값과 실제값의 차이가 없다는 뜻

$$MAE = \frac{1}{N} \sum_{i=1}^{N} |y_i - \hat{y}|$$

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y})^2$$

$$RMSE = \sqrt{MSE} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y})^2}$$

파이썬을 활용한 분석

- 판다스(pandas)
 - 데이터 분석을 위한 파이썬 라이브러리

- 사이킷런(scikit-learn)
 - 머신러닝을 위한 파이썬 라이브러기

파이썬을 활용한 분석

 파이썬에서 머신러닝 분석을 할 때 유용 하게 사용할 수 있는 라이브러리

- 데이터 수집
 - 라이브러리 추가
 - from sklearn.datasets import load_boston
 - 학습모델에 사용가능한 데이터프레임만들기
 - df = pd.DataFrame(data=boston.data, columns=boston.feature_names)
 - df['price'] = boston.target

- 학습데이터 분리
 - from sklearn.model_selection import train_test_split
 - Train, Test 데이터 분리하기
 - x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3, random_state=10)

- 선형회귀모델 학습
 - 라이브러리 추가
 - from sklearn.linear_model import LinearRegression
 - -모델 만들기
 - model = LinearRegression()
 - 학습하기
 - model.fit(x_train, y_train)

- 평가하기
 - 라이브러리 추가
 - from sklearn.metrics import mean_squared_error
 - import numpy as np
 - 예측하기
 - y_train_predict = model.predict(x_train)
 - 평가하기
 - rmse = (np.sqrt(mean_squared_error(y_train, y_train_predict)))