1а) Представим эту задач в виде набора шаров (шары это ступеньки). Тогда, будем устанавливать разделители между шарами, причем наличие разделителя означает шаг на тот шар (ступеньку), который слева от разделителя. Таким образом, у нас всегда существует разделитель слева от самого левого шара (т.к. мы всегда оказываемся на нижней площадке). Остается расставить k разделителей по п местам.

 $\frac{n(n-1)...(n-(k-1))}{k!}=\frac{n!}{(n-k)!k!}$ Очевидно, что это C_n^k . Тогда ответ, это сумма: $\sum_{k=1}^n C_n^k=(1+1)^n=2^n$ (по биному Ньютона). Ответ: 2^n

16) Предположим, что ни для одной из наших пар чисел не выполняется условие для разности. Это означает, что все наши числа имеют различные остатки при делении на 12. Представим все наши числа в виде: $x_i = 12a_i + b_i$, где $b_i \in \{0, 1, 2, ..., 11\}$, и при этом все b_i различны.

Выберем некоторые числа x_1 и x_2 и перемножим их:

$$x_1x_2 = (12a_1 + b_1)(12a_2 + b_2) = 144a_1a_2 + 12a_1b_2 + 12a_2b_1 + b_1b_2$$

Очевидно, что такое число делится на 12 только в том случае, если b_1b_2 делится на 12. Тогда, числа b_1 и b_2 являются одной из пар множества: $\{(2,6),(3,4),(3,8),(4,6),(4,9),(6,8),(8,9)\}$, либо одно из них равно 0. Попытаемся построить такое множество остатков, что среди них не будет нуля и ни возникнет ни одной из вышеперечисленных пар.

Очевидно, можем включить в это множество числа 1,5,7,10,11. Остается выбрать 4 числа из множества: $\{2,3,4,6,8,9\}$. Если мы добавим все числа, кроме пары (3,4), то у нас возникнет пара (2,6). Если добавим число 3, но не добавим число 4, то у нас либо возникнет пара (2,6), либо, если мы исключим также одно из чисел такой пары, возникнет пара (3,8). Если добавим, число 4, но не добавим число 3, то у нас либо возникнет пара (2,6), либо, если мы исключим также одно из чисел такой пары, возникнет пара (4,9). Ну и, очевидно, что мы не можем одновременно включить пару (3,4) в наше множество.

Таким образом, мы доказали, что невозможно выбрать множество остатков таким образом (при всех различных остатках), чтобы у нас не было пары чисел, произведение которых делится на 12. Из этого следует, что для любых 9 целых чисел выполняется условие о разности, либо, в случае его невыполнения, выполняется условие о произведении, ч. т. .д.

- 2а) Найдем кол-во расстановок, при котором хотя бы две из этих трех книг стоят рядом.
 - Если все три стоят рядом: $18 \cdot 3 \cdot 2 = 18 \cdot 6 18$ способов поставить три книги рядом в ряду из 20 книг, 6 способов переставить выбранные книги внутри тройки.
 - Если только две стоят рядом: $(2 \cdot 17 + 16 \cdot 17) \cdot 6 = 17 \cdot 18 \cdot 6$. $17 \cdot 2$ когда две книги стоят вместе и при этом одна из них на краю полки (17 способов поставить оставшуюся книгу), $16 \cdot 17$ когда две книги стоят вместе и при этом не около края полки (16 способов поставить оставшуюся книгу), 6 способов переставить книги внутри тройки.

Таким образом, $(18+17\cdot 18)\cdot 6=18\cdot 18\cdot 6$. Кроме того, нужно домножить на 17!, т. к. остальные 17 книг мы можем как-угодно расставить. Тогда, итоговое число $18\cdot 6\cdot 18!$.

А т. к. нам нужны все случаи, кроме нужныъ нам, мы должны вычесть:

$$20! - 18 \cdot 6 \cdot 18! = 272 \cdot 18!$$

Ответ: 272 · 18!

26) Выставим все книги в ряд и начнем расставлять между ними k разделителей (причем разделители могут стоять на n+1 месте, если мы имеем n книг). Тогда, кол-во способов, которыми мы можем расставить разделители: $\frac{(n+1)n...(n+1-(k-1))}{k!} = \frac{(n+1)!}{(n+1-k)!k!} = C_{n+1}^k$. В нашем случае 5 коробок и 20 книг $\rightarrow k=4, n=20$

Таким образом, получаем C_{21}^4 . Кроме того, порядок книг, выставленных в ряд также может меняться, таким образом, получаем $C_{21}^4 \cdot 20!$

Ответ: $C_{21}^4 \cdot 20!$

- $2 \mathrm{B})$ Удалим все буквы и посчитаем кол-во всех возможных буквенных комбинаций из оставшихся букв:
 - Всего 18 букв
 - Буква «в» повторяется 3 раза, буквы «е», «с» и «т» по 2 раза. Букв «о» 5.

Тогда, число комбинаций без букв «о»:

$$\frac{18!}{3!2!2!2!} = \frac{18!}{48}$$

Тогда, мы просто расставляем буквы «о» на 19 позиций. Т. к. букв 5, число таких перестановок, очевидно, C_{19}^5

Таким образом, получаем число $\frac{18!C_{19}^5}{48}$

Ответ: $\frac{18!C_{19}^5}{48}$

- 3а) Расположим пирожные в ряд и расставим k разделителей на n+1 место (т. к. мы можем не купить ни одного пирожного какого-либо вида). Тогда, кол-во способов расставить эти разделители: C_{n+1}^k (из задачи 26). Мы имеем 27 пирожных и 4 вида $\to k=3, n=27 \to C_{28}^3$ Ответ: C_{28}^3
- **3b)** Запишем $x_i=y_i+i-1$, (где $y_i\geqslant 1)\to y_1+y_2+1+y_3+2+y_4+3=36\to y_1+y_2+y_3+y_4=30$

Расположим 30 (n) шаров в линию и поставим между ними 3 разделителя (k), причем разделители стоят только между шарами (n-1 позиция). Тогда, мы имеем:

$$\frac{(n-1)(n-2)...(n-1-(k-1))}{k!} = \frac{(n-1)!}{(n-1-k)!k!=C} = C_{n-1}^k = C_{29}^3$$

Ответ: C_{29}^3

3c)
$$2x_1 + 2x_2 + 2x_3 + 21x_4 + 2x_5 \le 66$$

x₄ = 1. Тогда получаем:

$$2x_1 + 2x_2 + 2x_3 + 2x_5 \leqslant 45$$

$$x_1 + x_2 + x_3 + x_5 \leq 22.5$$

$$4\leqslant x_1+x_2+x_3+x_5\leqslant 22$$
 (т. к. числа натуральные)

Решения этого неравенства можно представить в виде:

$$x_1 + x_2 + x_3 + x_5 = n, n \in \{4, 5, ..., 22\}$$

Чтобы найти кол-во решений в таком уравнении, нарисуем п шаров и расставим между ними 3 разделителя (по n-1 местам). Тогда кол-во способов сделать это и будет кол-вом решений уравнения: $\frac{(n-1)(n-2)(n-3)}{3!} = \frac{(n-1)!}{(n-4)!3!}$

Тогда, кол-во решений неравенства:

$$\sum_{n=4}^{22} \frac{(n-1)!}{(n-4)!3!}$$

х₄ = 2 Тогда:

$$2x_1 + 2x_2 + 2x_3 + 2x_5 \le 24$$

 $4 \le x_1 + x_2 + x_3 + x_5 \le 12$

Кол-во решений аналогично случаю $x_4=1$, только $n\in\{4,5,...,12\}\to\sum_{n=4}^{12}\frac{(n-1)!}{(n-4)!3!}$

ullet $x_4\geqslant 3$ Тогда: $2x_1+2x_2+2x_3+2x_5\leqslant 66-21x_4\leqslant 3$ не имеет решений в натуральных числах

Otbet:
$$\sum_{n=4}^{22} \frac{(n-1)!}{(n-4)!3!} + \sum_{n=4}^{12} \frac{(n-1)!}{(n-4)!3!}$$

4а) Рассмотрим кол-во способов, которыми можно разместить квадрат $k \times k$ внутри нашего квадрата $n \times n$. Очевидно, что проекции сторон на верхнюю и боковую тоже будут размером k, тогда мы можем двигать каждую из проекций вдоль соответстующей стороны, таким образом, получаем n-k+1 позиций для каждой проекции $\to (n-k+1)^2$ способов размещения самого квадрата. Тогда,

внутри квадрата $n \times n$ мы можем размещать квадраты размером до $n \times n$ включительно, т. е. $k \in \{1,...,n\}$ \rightarrow ответом будет являться число $\sum_{k=1}^n (n-k+1)^2 = n^2 + (n-1)^2 + ... + 2^2 + 1^2 = \frac{n(n+1)(2n+1)}{6}$ Ответ: $\frac{n(n+1)(2n+1)}{6}$

4b) Аналогично пункту а, мы выбираем первую сторону (длиной a) из верхней грани, тогда способов ее выбрать n-a+1, а т. к. $a\in\{1,...,n\}$, то всего $\sum_{a=1}^n(n-a+1)$ способов. Аналогично, для второй стороны (длиной b). Тогда, всего способов выбрать прямоугольник: $\sum_{a,b=1}^n((n-a+1)(n-b+1))=(\sum_{a=1}^n(n-a+1))\cdot(\sum_{b=1}^n(n-b+1))=\frac{n+1}{2}n^{\frac{n+1}{2}}n=\frac{(n^2+n)^2}{4}$ (по формуле суммы арфимитической прогрессии).

OTBET: $\frac{(n^2+n)^2}{4}$

4c) Заметим, что для буквы Γ любого вида можно построить прямоугольник вокруг нее, и причем каждому прямоугольнику соответствует 4 Γ . Соответственно, задача сводится к подсчету кол-ва прямоугольников, которых мы можем нарисовать, с линейными размерами $\geqslant 2$. Тогда, воспользуемся формулой, полученной в пункте b), немного изменив ее:

 $4 \cdot (\sum_{a=2}^{n} (n-a+1)) \cdot (\sum_{b=2}^{n} (n-b+1)) = 4 \cdot (\frac{1+n-1}{2} (n-1))^2 = (n^2-n)^2$ Ответ: $(n^2-n)^2$