From Contrastive to Abductive Explanations and Back Again

Alexey Ignatiev¹, Nina Narodytska², Nicholas Asher³, and Joao Marques-Silva³

¹Monash University, Melbourne, Australia ²VMware Research, CA, USA ³IRIT, CNRS, Toulouse, France

eXplainable AI

Why? Status Quo

Taxonomy of ML Model Explanations

Formal Explanations

classifier $\tau : \mathbb{F} \to \mathcal{K}$, instance \mathbf{v} s.t. $\tau(\mathbf{v}) = c$

abductive explanation X

$$\forall (\mathbf{x} \in \mathbb{F}) . \wedge_{j \in \mathcal{X}} (x_j = v_j) \rightarrow (\tau(\mathbf{x}) = c)$$

contrastive explanation ${\cal Y}$

$$\exists (\mathbf{x} \in \mathbb{F}). \wedge_{j \notin \mathcal{Y}} (x_j = v_j) \wedge (\tau(\mathbf{x}) \neq c)$$

Explanation Examples

$$\mathbb{F} = \{0, 1, 2\}^5 \qquad \mathcal{K} = \{\ominus, \oplus\}$$

R₀: IF
$$x_1 = 1 \land x_2 = 1$$
 THEN \ominus R₁: ELSE IF $x_3 \neq 1$ THEN \ominus THEN \ominus

observe
$$\tau(1, 1, 1, 1, 1) = \Theta$$

Minimal Hitting Set Duality

AXps are minimal hitting sets of CXps, and vice versa.

Enumerating CXps

Function CXPENUM(τ , \mathbf{v} , c) **Input:** τ : ML model, \mathbf{v} : Input instance, $c = \tau(\mathbf{v})$: Prediction // Block CXps 1 $\mathcal{I} \leftarrow \emptyset$ while true: $\mu \leftarrow \mathsf{ExtractCXp}(\tau, \mathbf{v}, c, \mathcal{I})$ if $\mu = \emptyset$: break $\mathsf{ReportCXp}(\mu)$ $\mathcal{I} \leftarrow \mathcal{I} \cup \bigvee_{j \in \mu} (x_j = v_j)$ Function EXTRACTCXP(τ , v, c, \mathcal{I}) **Input:** τ : classifier, **v**: Input instance, $c = \tau(\mathbf{v})$: Prediction, \mathcal{I} : Blocked CXps Output: S: Minimal set $\mathcal{S} \leftarrow [|\mathbf{v}|]$ foreach $j \in S$: if SAT $(\bigwedge_{i \notin S \setminus \{j\}} (x_i = v_i) \land \mathcal{I} \land \tau(\mathbf{x}) \neq c)$: $\mathcal{S} \leftarrow \mathcal{S} \setminus \{j\}$ //S is CXp return ${\cal S}$

Enumerating AXps and CXps

Function XPENUM(τ , \mathbf{v} , c) **Input:** τ : ML model, **v**: Input instance, $c = \tau(\mathbf{v})$: Prediction $\mathcal{K} = (\mathcal{N}, \mathcal{P}) \leftarrow (\emptyset, \emptyset)$ // Block AXps & CXps while true: $(st_{\lambda}, \lambda) \leftarrow \text{FindMHS}(\mathcal{P}, \mathcal{N})$ // MHS of \mathcal{P} s.t. \mathcal{N} if $\neg st_{\lambda}$: break $st_{c'} \leftarrow \mathsf{SAT}(\bigwedge_{j \in \lambda} (x_j = v_j) \land \tau(\mathbf{x}) \neq c)$ if $\neg st_{c'}$: // entailment holds ReportAXp(λ) $\mathcal{N} \leftarrow \mathcal{N} \cup \bigvee_{j \in \lambda} (x_j \neq v_j)$ else: $\mu \leftarrow \mathsf{ExtractCXp}(\tau, \mathbf{v}, c, \mathcal{P})$ ReportCXp (μ) $\mathcal{P} \leftarrow \mathcal{P} \cup \bigvee_{j \in u} (x_j = v_j)$

Explanation Enumeration Results

	Dataset					
	Adult	Lending	Recidivism	Compas	German	Spambase
# of instances	5579.0	4414.0	3696.0	778.0	1000.0	2344.0
total time (sec.)	7666.9	443.8	3688.0	78.4	16 943.2	6859.2
minimal time (sec.)	0.1	0.0	0.1	0.0	0.2	0.1
average time (sec.)	1.4	0.1	1.0	0.1	16.9	2.9
maximal time (sec.)	13.1	0.8	8.9	0.5	193.0	23.1
total oracle calls	492 990.0	69 653.0	581 716.0	21 227.0	748 164.0	176 354.0
minimal oracle calls	14.0	11.0	17.0	13.0	23.0	12.0
average oracle calls	88.4	15.8	157.4	27.3	748.2	75.2
maximal oracle calls	581.0	73.0	1426.0	134.0	7829.0	353.0
total # of AXps	52 137.0	8105.0	60 688.0	1931.0	59 222.0	18 876.0
average # of AXps	9.4	1.8	16.4	2.5	59.2	8.1
average AXp size	5.3	1.9	6.4	3.8	7.5	4.6
total # of CXps	66 219.0	8663.0	77 784.0	3558.0	66 781.0	24 774.0
average # of CXps	11.9	2.0	21.1	4.6	66.8	10.6
average CXp size	2.4	1.4	2.6	1.5	3.6	2.3

Debugging SHAP

The "real vs fake" images. The first row shows results for the *real image 6*; the second – results for the *fake image 6*. The first column shows examples of inputs; the second – heatmaps of XGBoost's important features; the third – heatmaps of SHAP's explanation. Last three columns show heatmaps of CXp of different cardinality. The brighter pixels are more influential features.