Generalized Linear Models

Melissa Guzman

March 16, 2016

Etherpad:

https://public.etherpad-mozilla.org/p/404GLMs

Link to all material:

https://github.com/lmguzman/GLMs

What is a frequency distribution?

What frequency distributions can you remember?

Frequency Distributions

Poisson

Negative Binomial

Why do we care?

Relative species abundance of beetles sampled from the river Thames collected by C.B. Williams (1964). (Magurran 2004)

Learning Objectives

By the end of this lesson the students will:

- Differentiate and categorize GLMs vs ANOVAS and regressions
- Identify the different components of GLMs
- Select the most appropriate GLM
- Carry out a GLM

Generalised Linear Models (GLM)

"Errors" are <u>not</u> normally distributed

e.g.

- Binomial
- Negative binomial
- Poisson
- etc.

LO: Differentiate and categorize GLMs vs ANOVAS and regressions

When do we use them?

Used when the residuals from a linear model are not-normal

Whilst it is the error distribution (the residuals) that is important, the distribution of the dependent variable has a strong influence on this.

General formula

$$y = g(\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_i X_i) + \varepsilon$$

X are your explanatory variables

y your response variable

 β are the coefficients

 ε is the error term

Where g is a function (called the link function) which transforms each value of y in relation to the linear predictors (the variables and their coefficients) i.e. the link function transforms the dependent variable within the model.

LO: Identify the different components of GLMs

What is the link function?

Link Functions: defining the shape of the relationship between the dependent & independent variables.

Why use a link function instead of transforming the data?

Let's fit some models to that data

```
model1 <- lm(log(y)^x)
model2 <- glm(y^x, family = gaussian (link = "log"), start=c(1, 1))
```


Using a link function is often better than simply transforming the dependent variable, because it doesn't simply attempt to make the variance constant. Instead, it fits a function that "adjusts" the variance as the data is being fitted.

What links should I use?

Families

gaussian (c)

inverse.gaussian (c)

gamma (c)

quasi (c)

poisson (d)

quasipoisson (d)

negative binomial (d)

binomial (d)

quasibinomial (d)

d = discrete, c = continous

First link is the default

Links

identity, log, inverse

 $1/\mu^2$, inverse, identity, log

inverse, identity, log

logit, probit, cloglog, identity, inverse,

 $1/\mu^2$, sqrt, power

log, identity, sqrt

identity, logit, probit cloglog

log, sqrt, identity use glm.nb function from

MASS library

logit, probit, cauchit, log, cloglog

identity, logit, probit, cloglog

So many options... How do I choose?

Start with the default link function for the family error term that you have chosen. E.g. for family = binomial, the "logit" is the default link function.

The "correct" combination of family and link function is arrived at by trial and error, comparing

- residual distributions (aiming for normal)
- adjusted R2 values (where relevant, higher is better)
- AIC values (lower is better) of different nested models

LO: Select the most appropriate GLM

Challenge

How old are you?

How many siblings do you have?

How tall are you?

What is your sex?

How many nights a week do you sleep at least 6 hours

What type of distribution are these?

Can you think of other types of data with the same distribution?

What family and link functions would you use?

How do I do it in R?

Let's look at some data first.

```
Lizards <- read.csv('Data/lizards.txt', sep = "\t")
head(Lizards)</pre>
```

```
## n sun height perch time species
## 1 20 Shade High Broad Morning opalinus
## 2 13 Shade Low Broad Morning opalinus
## 3 8 Shade High Narrow Morning opalinus
## 4 6 Shade Low Narrow Morning opalinus
## 5 34 Sun High Broad Morning opalinus
## 6 31 Sun Low Broad Morning opalinus
```

LO: Carry out a GLM

Histogram of Lizards\$n


```
LizardsModelLM <- lm(n ~ sun + height + species, data = Lizards)

LizardsModel <- glm(n ~ sun + height + species, family = poisson (link = log), data = Lizards)
```

Check assumptions of the model

I. Distribution of the residuals

```
par(mfrow = c(2,2))
plot(LizardsModelLM)
```


Let's see the GLM

par(mfrow = c(2,2))
plot(LizardsModel)

2. Overdispersion

In a poisson distribution, mean = variance

Overdispersion parameter $\theta = \frac{\text{residual deviance}}{\text{residual degrees of freedom}}$

LizardsModel\$deviance / LizardsModel\$df.residual

[1] 6.352926

If your model is overdispersed use the quasi family. In this case, quasipoisson

pseudo R^2 explained deviance

Pseudo $R^2 = \frac{\text{null deviance-residual deviance}}{\text{null deviance}}$

(LizardsModel\$null.deviance - LizardsModel\$deviance) / LizardsModel\$null.deviance

[1] 0.6210064

Model Summary

```
summary(LizardsModel)
```

```
##
## Call:
## glm(formula = n ~ sun + height + species, family = poisson(link = log),
      data = Lizards)
##
## Deviance Residuals:
##
     Min
               10
                  Median
                              3Q
                                     Max
## -5.9107 -1.6984 -0.6075
                                   6.2438
                           0.6341
##
## Coefficients:
##
               Estimate Std. Error z value Pr(>|z|)
               ## (Intercept)
## sunSun
                           0.10858 13.694 < 2e-16 ***
                1.48684
                ## heightLow
## speciesopalinus 1.17576 0.09919 11.853 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
      Null deviance: 737.56 on 47 degrees of freedom
## Residual deviance: 279.53 on 44 degrees of freedom
## AIC: 450.78
## Number of Fisher Scoring iterations: 5
```

Challenge

Using the Boar csv, run the appropriate GLM.

Make sure you check the model assumptions and all appropriate link functions

Learning Objectives

By the end of this lesson the students will:

- Differentiate and categorize GLMs vs ANOVAS and regressions
- Identify the different components of GLMs
- Select the most appropriate GLM
- Carry out a GLM

Summary

Challenge 2 Solution

Look at the data first

```
Boar <- read.csv('Data/Boar.csv')
head(Boar)</pre>
```

```
## Tb sex age length

## 1 0 1 1 46.5

## 2 0 2 1 47.0

## 3 0 1 1 48.0

## 4 0 1 1 51.5

## 5 0 2 1 53.0

## 6 0 2 1 53.0
```

Tb is the response variable. Sex, age and length are explanatory variables.

```
summary(Boar)
```

```
##
                                                            length
          Tb
                           sex
                                            age
   Min.
           :0.0000
                                              :1.000
                                                               : 46.5
                      Min.
                             :1.000
                                      Min.
                                                       Min.
    1st Qu.:0.0000
                      1st Qu.:1.000
                                       1st Qu.:3.000
                                                       1st Qu.:106.0
                     Median :2.000
                                                     Median :121.0
##
   Median :0.0000
                                       Median :3.000
   Mean
                             :1.582
                                              :3.142
                                                               :116.8
           :0.4758
                      Mean
                                      Mean
                                                       Mean
    3rd Qu.:1.0000
                      3rd Qu.:2.000
                                       3rd Qu.:4.000
                                                       3rd Qu.:129.5
##
           :1.0000
                             :2.000
   Max.
                      Max.
                                       Max.
                                              :4.000
                                                       Max.
                                                               :165.0
   NA's
                      NA's
                             :35
                                       NA's
                                                       NA's
                                                               :110
           :58
                                              : 7
```

Let's check the distribion to see how it looks like.

```
hist(Boar$Tb)
```

Histogram of Boar\$Tb

Looking at the summary and histogram, Tb is a categorical variables with two categories. Therefore we need to use the binomial distribution.

We can start with a linear model

```
LinearBoarModel <- lm(Tb ~ sex * age * length, data = Boar)
par(mfrow = c(2,2))
plot(LinearBoarModel)</pre>
```


The residuals don't look very normally distributed. Let's use a binomial family.

The default link functions for the binomial distribution are: logit, probit, cauchit, log, cloglog Let's start with the logit function

```
LogitBoarModel <- glm(Tb ~ sex * age * length, family = binomial (link = logit), data = Boar)
```

Let's look at the AIC and pseudo R^2

```
## [1] 653.3006

(LogitBoarModel$null.deviance - LogitBoarModel$deviance) / LogitBoarModel$null.deviance
```

```
par(mfrow = c(2,2))
plot(LogitBoarModel)
```


Look at all the other link functions and choose the one with the lowest AIC and better distribution of the residuals.

```
probitBoarModel <- glm(Tb ~ sex * age * length, family = binomial (link = probit), data = Boar)

cauchitBoarModel <- glm(Tb ~ sex * age * length, family = binomial (link = cauchit), data = Boar)

logBoarModel <- glm(Tb ~ sex * age * length, family = binomial (link = log), data = Boar)

cloglogBoarModel <- glm(Tb ~ sex * age * length, family = binomial (link = cloglog), data = Boar)

AIC(LogitBoarModel, probitBoarModel, cauchitBoarModel, logBoarModel, cloglogBoarModel)</pre>
```

```
## cauchitBoarModel 8 652.2948
## logBoarModel 8 652.8498
## cloglogBoarModel 8 653.1425
```

Logit has the lowest AIC, so let's keep working with that

Let's check the distribution of the residuals.

```
par(mfrow = c(2,2))
plot(LogitBoarModel)
```


We also need to check for overdispersion

```
LogitBoarModel$deviance / LogitBoarModel$df.residual
```

```
## [1] 1.311318
```

 θ is close to I, so we can keep the binomial family.

We can keep refining the model using model simplification to choose a model we are happy with.	