NLP Sneet 2

. Missing from Sheet 1

ପ୍ର

5. Mention two words that have

		ed,5,ing	g, tion, or, c
	lemma	Ster	
Same lemmas Played and Some Playing Stems	Play Play	Play	
Some lemmos lie and different lied Stems	lie lie	lie Ii	
different actional aced Some Stems	on action ace	ac	
different Stems	IK walk	Walk	

1. Write the equation for trigram Probability estington $P(\omega_i|\omega_{i:i-1}) = P(\omega_i|\omega_{i-2}\omega_{i-1}) = \frac{C(\omega_{i-2}\omega_{i-1}\omega_i)}{C(\omega_{i-2}\omega_{i-1})}$ $N-96m \rightarrow N-1 \text{ words} \qquad C(\omega_{i-2}\omega_{i-1})$ then write all nontero Probabilities for (5)(5) I am Sam (15) (5)(5) Sam I am (15) (5.7(5) I do not like green eggs and ham (15) $P(I|\langle 5\rangle\langle 5\rangle) = \underbrace{2}_{3} \leftarrow c(\langle 5\rangle\langle 5\rangle)$ $P(aml(5)I) = \frac{1}{2}$ $P(Sam|Iam) = \frac{1}{2}$ $P(\langle 15\rangle | am San) = 1$ $P(\langle S \rangle | Son(\langle S \rangle) = \frac{1}{1}$ $P(\langle 5 \rangle | \langle 15 \rangle \langle 5 \rangle) = \frac{2}{2}$ $P(San(5)(5)) = \frac{1}{3}$ P(I/(S>San) = 1 P(am I Sam I) = + P((15) | Iam) = 1 P((5) am (15)) = -* 8 more Probabilities, all equal to 1 @P((5) (/5)(5)) = 2

2. Given is a bigiam Probability matrix

- normal bigram and add-1 smoothed Version.

a) Using normal Bigram Probabilities:

$$P(w_{in}) = P(I(S))P(wont|I)P(chineselwont)$$

 $P(Road | Chinere) P(\langle 15 \rangle | Road)$

$$= 0.25 \times 0.33 \times 0.0065 \times 0.52 \times 0.68$$

= 0.00189

b) using add-1 smoothed Probabilities:

$$= 0.09 \times 0.21 \times 0.0029 \times 0.052 \times 0.4$$

= 0.0000024

C) unsmoothed 95 higher because smoothing moves Probability mass from events with nontern Probability to events of two Popability. This is evident by how it adds I in the numerator and IVI in the denominator; this decreases any fraction with a nontero denominator as IVI).

Juocab. length

3. Train a bigram model on the Pollowing corpus without adding an end of sentence token

* Recall that training means to compute all the needed biggam Probabilities.

$$w_{i.1} \begin{cases} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{2}{2} \end{cases}$$

- · first write the count in black (will will)
- · Sum Por the Court Wi-1 (red)
- . divide to get Probs

> Find the Sum of the Arababilities of all Possible two-word Sequences
> They are aa, ab, ba, bb

$$P(s)aa) = P(aks)P(ala) = 2 \times 1 = 1$$

 $P(s)ab) = P(aks)P(bla) = 2 \times 1 = 1$
 $P(s)ab) = P(bks)P(alb) = 2 \times 1 = 1$
 $P(s)ba) = P(bks)P(alb) = 2 \times 1 = 1$
 $P(s)bb) = P(bks)P(blb) = 2 \times 1 = 1$

- Their Sum 95 Clearly 1 > The Sm of Probabilities of all Possible 3-word Sequences (5) ab a 118 <5> b9 a (5) aa 9 (5) bb a 118 (5)abb 1/8 (5) ba b 1/8 (5) aa b <5>bbb reach's a Product of 3 Probabilities, each being = to half. * Conclusion: the Bigram model makes all Sequences of a given length have Probabilities that Sum to 1 - That 95, it doesn't assign a single Hobability distribution across all sentences , i.e., when we compute the Probability of a Sontena, we don't get 9+3 true Probability across all Possible Sentences. => we want the distribution across all sentences to be I Bothis * This 95 the role of the (15) token - once we add it the matrix becomes a, b, (5) (5) 214 2/4 1/4 1/4 2/4

6 14 14 214

	d you C				Sumof	Poba	bilities	oP
	Resibe				.0-	•-		
0	one wa		0.25	כנ	# ree wo rd 0.125			
P	0.5		O.a s		0.103		1	
							$\frac{1}{2^n} = 1$	L
١.	1. 2. 06	5 002	- H- P-	uh Co.	$C_{0}O_{0}$			
Ц.	We all	2 Give	riner		WHUS)		
	(5)	Iam	500	(15)				
			I am					
			~ Som		7			
	(5)	I do	not li	Ke gre	en eggs	s and s	som (15	>
	. the R	ornub .	we alre	eady Kn	ow C(u estimate) -(N-1):i-1	w;)/C(u) i-6-0:i-
	10 0	I W WIKI	r Jury like	<i>y</i> inau	eshrer.			
	* U	se lin	ear Enter	Polatio	on behi	Deen a	bigram	,
	~ a	d Wig	fram m	nodel t	on behi o Comf	we PG	bamlam	7)
	٦̈ (Saml	am) =	7	D(Samle	m)+1	72P(5	am)
					\			
	.giv	ien 71	$= 7^{3} = \frac{1}{2}$	- -	↓ / 2-		1	
	•				3+	C(am)	1/4	
					.	_ (_ , _ ,	725	5
							alload	5

= 0.413

• What is unigram PerPlexity for the test Set 0000030000

=> From the training Set, 9ts true that

$$P(0) = 91 / P(3) = 1 / 100$$

$$P(w_{i,n}) = TTP(w_i) = (91)^9 \cdot \frac{1}{100}$$

$$= 919$$

$$= 100^{10}$$

$$PP(W) = N \sqrt{\frac{1}{P(W_{i:n})}} = N \sqrt{\frac{91^9}{100^{10}}}^{-1}$$

6. Write the feed forward equations of an

$$h_t = P(Wx_t + Uh_{t-1})$$

. In this example, W=V=U=1 (hence x_t and h_t are scalars), P(x)=x and g(x)=x (linear units)

Cares

Z= =

The equations, here, reduce to

$$\rightarrow$$
 given $X = [2, -0.5, 1]$ find all network χ_0 χ_1 χ_2 Values. (h., χ_1 for $t \in \{0.1, 2\}$

· assume h. = 0

$$\chi_{\circ}=2 \rightarrow h_{\circ}=2+0 \rightarrow J_{\circ}=2$$

$$\chi_{1} = -0.5 \rightarrow h_{1} = -0.5 + 2 = 1.5 \rightarrow y_{0} = 1.5$$

$$\chi_2 = 1 \rightarrow h_2 = 1 + 1.5 = 2.5 \rightarrow y_0 = 2.5$$

?+-0.5->1.5+1->2.5 ?+5 learning addition (in Pact, the equations by definition describe a running sum)

unrolled Nework

+. / OC 1 - C - C - C - C - C - C - C - C - C
9 given is on RNN Char. level language model. (token is a char.) Vocab = {h,e,l,v}
$VoCab = \{h,e,L,o\}$
Vocab={h,e,l,o} Leach token is represented by a one-hot Leach
· Use Softmax to Compute final outfut
(eall, $P(X) = e^{X} = e^{\text{lement-wise}}$ 15 the Softman Rn. 10 e^{X_j} 10 e^{X_j} 10 e^{X_j} 10 e^{X_j} 11 e^{X_j} 12 e^{X_j} 13 e^{X_j} 15 e^{X_j}
$\frac{1}{\sqrt{2}e^{x_{j}}}$
i Check lec. for
Like It to Comple the Probability del
Vector by applying it on each of the
-> Use it to compute the Probability dist. Vector by applying it on each of the 4 out Put Uccos
$\begin{array}{c} e.g. \ P\begin{pmatrix} 1.0 \\ 2.2 \\ -3.0 \\ 4.1 \end{pmatrix} = \begin{pmatrix} e_{2.2} \\ e^{-3.0} \\ e^{4.1} \end{pmatrix} \cdot \frac{1}{e^{1} + e^{2.2} + e^{4.1}} \end{array}$
\u.i / \eui / e+e +e +e u.i
the air ha 01 % ha 0 1 1
. the given in Aut is he 11
Should
give next J
input (nello)
بالمنطت المنطت
recall that the what the 00 LO
Dut Put is a dist. I model gave x x
Over the Uscab.
Prediction is largest index in outlitutour) ()? below or after Softmax, it's the Some