(19) BUNDESREPUBLIK **DEUTSCHLAND**

® Offenlegungsschrift _m DE 102 21 034 A 1

(f) Int. Cl.⁷: C 07 J 1/00 A 61 K 31/565

DEUTSCHES PATENT- UND MARKENAMT

- (21) Aktenzeichen: 102 21 034.9 22 Anmeldetag: 3. 5. 2002
- (3) Offenlegungstag: 20.11.2003

(71) Anmelder:

Schering AG, 13353 Berlin, DE

(74) Vertreter:

Anwaltskanzlei Gulde Hengelhaupt Ziebig & Schneider, 10117 Berlin

(72) Erfinder:

Ring, Sven, 07749 Jena, DE; Schubert, Gerd, Dr., 07743 Jena, DE; Tornus, Ingo, Dr., 16761 Hennigsdorf, DE; Kaufmann, Günter, Dr., 07743 Jena, DE; Elger, Walter, Dr., 14195 Berlin, DE; Schneider, Birgitt, 07745 Jena, DE

56 Entgegenhaltungen:

DE 198 09 845 A1 DE 197 06 061 A1 DE 43 32 284 A1 DE 43 32 283 A1 00 57 115 A2

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Prüfungsantrag gem. § 44 PatG ist gestellt

- ⑤
 17α-Fluoralkyl-11ß-benzaldoxim-Steroide, Verfahren zu deren Herstellung, diese Steroide enthaltende pharmazeutische Präparate sowie deren Verwendung zur Herstellung von Arzneimitteln
- Es werden Verbindungen der allgemeinen Formel I sowie deren pharmazeutisch verträgliche Salze beschrieben, in der R₁ für Wasserstoff, C₁- bis C₆-Alkyl, COR₄ COOR4 COSR4 oder CONHR5 steht, worin R4 C1- bis C6-Alkyl oder unsubstituiertes oder substituiertes Aryl ist und worin R5 Wasserstoff, C1- bis C6-Alkyl oder unsubstiwasserston, C_1 - bis C_6 -Aikyi oder unsubstituiertes oder substituiertes Aryl ist, worin ferner R_2 für Wasserstoff, C_1 - bis C_6 -Aikyl oder C_1 - bis C_6 -Acyl steht und R_3 für eine C_nF_{2n+1} -Gruppe, bei der n=1,2 oder 3 ist, oder eine $CH_2O(CH_2)_mC_nF_{2n+1}$ -Gruppe steht, bei der m=0 oder 1 und n=1,2 oder 3 sind. Außerdem wird ein Verfahren und n=1,2 oder 3 sind. Außerdem wird ein Verfahren und n=1,2 oder 3 sind. fahren zur Herstellung der Verbindungen mit der allgemeinen Formel I angegeben. Die Verbindungen sind zur Herstellung von Arzneimitteln einsetzbar.

Beschreibung

[0001] Die vorliegende Erfindung betrifft neuartige 17α-Fluoralkyl-11β-benzaldoxim-Steroide, ein Verfahren zu deren Herstellung, diese Wirkstoffe enthaltende pharmazeutische Präparate sowie deren Verwendung zur Herstellung von Arzneimitteln, insbesondere zur postmenopausalen Substitutionstherapie von gynäkologischen Erkrankungen, wie Uterusmyomen oder dysmenorischen Beschwerden.

[0002] Antigestagen wirksame Steroide sind bereits aus EP 0 057 115 A2 bekannt. Es kann sich hierbei um in 11-Stellung substituierte 3-Oxo-estra-4,9-diene handeln.

[0003] Aus DE 43 32 283 A1, DE 43 32 284 A1, DE 198 09 845 A1 (PCT/DE 99/00 408) sind 11β-Benzaldoxime der Steroidreihe bekannt, die spezielle antigestagene Eigenschaften aufweisen:

In DE 43 32 283 A1 und DE 43 32 284 A1 sind 11β -Benzaldoxim-3-oxo-estra-4,9-dien-Derivate beschrieben, die gemäss DE 43 32 283 A1 in 17β -Stellung mit Hydroxy, Alkoxy, Acyloxy oder Aryloxy und in 17α -Stellung mit ω -Fluoralkyl substituiert sein können.

[0004] In DE 198 09 845 A1 sind substituierte 11β-Benzaldoxim-3-oxo-estra-4,9-diene beschrieben. Es handelt sich hierbei um S-substituierte Kohlensäurethiolester dieser Verbindungen. Die Verbindungen können ebenfalls in 17β-Stellung mit Hydroxy, Alkoxy, Acyloxy oder Aryloxy und in 17α-Stellung mit w-Fluoralkyl substituiert sein.

[0005] Andererseits sind Steroide mit 17α-Fluoralkylketten in DE 197 06 061 A1 offenbart. Diese Verbindungen, insbesondere ZK 230211 (4-[17β-Hydroxy-17α-(1,1,2,2,2-pentafluorethyl)-3-oxoestra-4,9-dien-11β-yl]benzaldehyd: U. Führmann; H. Hess-Stumpp, A. Cleve, G. Neef, W. Schwede, J. Hoffmann, K.-H. Fritzemeier und K. Chwalisz: J. Med. Chem., 2000, 43, 5010–5016), zeigen eine nahezu reine antagonistische Aktivität, hohe Rezeptorselektivität und u. a. antiproliferative Aktivität in Tumormodellen.

[0006] Die der vorliegenden Erfindung zugrunde liegende Aufgabe besteht darin, Wirkstoffe mit antigestagener Wirkung zu finden, die gegenüber den bekannten Verbindungen deutlich reduzierte antiglucocorticoide Wirkung aufweisen und die zur postmenopausalen Substitutionstherapie oder zur Behandlung von gynäkologischen Erkrankungen, wie Uterusmyomen oder dysmenorischen Beschwerden geeignet sind.

[0007] Eine weitere Aufgabe, die der vorliegenden Erfindung zugrunde liegt, besteht darin, ein Verfahren zur Herstellung der Wirkstoffe zu finden.

[0008] Weiterhin besteht eine Aufgabe darin, pharmazeutische Präparate zu finden, die die Wirkstoffe enthalten.

[0009] Die Aufgabe wird gelöst durch die erfindungsgemässen 17α-Fluoralkyl-11β-benzaldoxim-Steroide gemäss Anspruch 1, durch das Verfahren zu deren Herstellung gemäss Anspruch 7, durch ein Pharmazeutisches Präparat, enthaltend die erfindungsgemässen Verbindungen gemäss Anspruch 10 sowie die Verwendung der erfindungsgemässen Verbindungen zur Herstellung von Arzneimitteln gemäss Anspruch 11. Bevorzugte Ausführungsformen der Erfindung sind in den Unteransprüche angegeben.

[0010] Die erfindungsgemässen Verbindungen haben die allgemeinen Formel I:

worin

 R_1 für Wasserstoff, C_1 - bis C_6 -Alkyl, COR_4 , $COOR_4$, $COSR_4$ oder $CONHR_5$ steht, worin R_4 C_1 - bis C_6 -Alkyl oder unsubstituiertes oder substituiertes Aryl ist und worin R_5 Wasserstoff, C_1 - bis C_6 -Alkyl oder unsubstituiertes oder substituiertes Aryl ist

R₂ für Wasserstoff, C₁- bis C₆-Alkyl oder C₁- bis C₆-Acyl steht und R₃ für eine C_nF_{2n+1} -Gruppe, bei der n = 1, 2 oder 3 ist, oder eine $CH_2O(CH_2)_mC_nF_{2n+1}$ -Gruppe steht, bei der m = 0 oder 1 und n = 1, 2 oder 3 sind.

[0011] In allen übrigen Positionen des Steroidgrundgerüstes sowie an dem Phenylenrest in 11β-Stellung können anstelle von Wasserstoff andere beliebige Substituenten, insbesondere Alkyl- und Arylgruppen, gebunden sein. Ausserdem betrifft die vorliegende Erfindung pharmazeutisch verträgliche Salze dieser Verbindungen. Derartige Säureadditionssalze können Salze anorganischer und organischer Säuren sein, beispielsweise Salze der Salzsäure, Bromwasserstoffsäure, Phosphorsäure, Schwefelsäure, Oxalsäure, Maleinsäure, Fumarsäure, Milchsäure, Weinsäure, Äpfelsäure, Citronensäure, Salicylsäure, Adipinsäure und Benzoesäure. Weitere verwendbare Säuren sind beispielsweise in: Fortschritte der Arzneimittelforschung, Bd. 10, Seiten 224–225, Birkhäuser Verlag, Basel und Stuttgart, 1966 sowie in: Journal of Pharmaceutical Sciences, Bd. 66, Seiten 1–5 (1977) beschrieben.

[0012] Bei den in der vorliegenden Erfindung erwähnten Resten R₁ handelt es sich insbesondere um ein Wasserstoffatom oder um eine Methylgruppe oder um Acylgruppen, wie beispielsweise um Formyl-, Acetyl-, Propionyl- und Benzoylreste, oder um Kohlensäureestergruppen, beispielsweise Methoxycarbonyl- oder Ethoxycarbonylreste, oder um

Kohlensäurethiolestergruppen, wie Methylthiocarbonyl- oder Ethylthiocarbonylreste, oder um Urethangruppen, wie Ethylaminocarbonyl- oder unsubstituierte oder substituierte Phenylaminocarbonylreste. Der substituierte Phenylaminocarbonylrest ist vorzugsweise mit einem C_1 - bis C_6 -Perlluoralkylrest substituiert.

[0013] R₂ steht vorzugsweise für ein Wasserstoffatom, eine Methyl- oder eine Acetylgruppe.

[0014] R_3 steht insbesondere für ein Perfluoralkyl mit n=1,2 oder 3. Somit kann R_3 für 1,1,1-Trifluormethyl, 1,1,2,2,2-Pentafluorethyl oder 1,1,2,2,3,3,3-Heptafluorpropyl stehen. Ausserdem kann R_3 für 1,1,1-Trifluorethyloxymethyl stehen, wenn R_3 durch die allgemeine Formel $CH_2O(CH_2)_mC_nF_{2n+1}$ gegeben ist und in diesem Falle m=1 und n=1 sind

5

10

15

25

30

35

40

45

55

[0015] Die erfindungsgemässen Verbindungen sind insbesondere die folgenden 17α -Fluoralkyl- 11β -benzaldoxim-Steroide:

- 1) $4-[17\beta-Hydroxy-17\alpha-(1,1,1-trifluormethyl)-3-oxoestra-4,9-dien-11\beta-yl]$ benzaldehyd-1(E)-oxim
- 2) 4-[17β-Hydroxy-17α-(1,1,1-trifluormethyl)-3-oxoestra-4,9-dien-11β-yljbenzaldehyd-1(Z)-oxim
- 3) 4-[17β-Hydroxy-17α-(1,1,1-trifluormethyl)-3-oxoestra-4,9-dien-11β-yl]benzaldehyd-1 (E)-[O-(ethylamino)carbonyl]oxim
- 4) $4-[17\beta-Hydroxy-17\alpha-(1,1,2,2,2-pentafluorethyl)-3-oxoestra-4,9-dien-11\beta-yl]$ benzaldehyd-1(E)-oxim
- 5) $4-[17\beta-Hydroxy-17\alpha-(1,1,2,2,2-pentafluorethyl)-3-oxoestra-4,9-dien-11\beta-yl]$ benzaldehyd-1(E)-O-acetyfoxim
- 6) 4-[17 β -Hydroxy-17 α -(1,1,2,2,2-pentafluorethyl)-3-oxoestra-4,9-dien-11 β -yl]benzaldehyd-1(E)-[O-(ethylamino)carbonyl]oxim
- 7) $4-[17\beta-Hydroxy-17\alpha-(1,1,2,2,2-pentafluorethyl)-3-oxoestra-4,9-dien-11\beta-yl]benzaldehyd-1(E)-[O-(ethylt-hio)carbonyl]oxim$
- 8) $4-[17\beta-Hydroxy-17\alpha-(1,1,2,2,2-pentafluorethyl)-3-oxoestra-4,9-dien-11\beta-yl]benzaldehyd-1(E)-[O-(et-hoxy)carbonyl]oxim$
- 9) 4-[17β-Hydroxy-17 α -(1,1,2,2,2-pentafluorethyl)-3-oxoestra-4,9-dien-11 β -yl]benzaldehyd-1(E)-[O-(methoxy)carbonyl]oxim
- 10) 4-[17β-Hydroxy-17α-(1,1,2,2,3,3,3-heptafluorpropyl)-3-oxoestra-4,9-dien-11β-yl]-benzaldehyd-1(E)-oxim
- 11) 4-[17β-Methoxy-17α-(1,1,1-trifluormethyl)-3-oxoestra-4,9-dien-11β-yl]benzaldehyd-1(E)-oxim
- 12) $4-[17\beta-Methoxy-17\alpha-(1,1,1-trifluormethyl)-3-oxoestra-4,9-dien-11\beta-yl]benzaldehyd-1(E)-[O-(ethylamino)carbonyl]oxim$
- 13) $4-[17\hat{\beta}-Methoxy-17\alpha-(1,1,2,2,2-pentafluorethyl)-3-oxoestra-4,9-dien-11\beta-yl]$ benzaldehyd-1(E)-oxim
- 14) 4-[17β-Methoxy-17α-(1,1,2,2,2-pentaffuorethyl)-3-oxoestra-4,9-dien-11β-yl]benzaldehyd-1(E)-O-acetylo-xim
- 15) 4-[17β-Methoxy-17α-(1,1,2,2,2-pentafluorethyl)-3-oxoestra-4,9-dien-11β-yl]benzaldehyd-1(E)-[O-(ethylamino)carbonyl]oxim
- 16) 4- $[17\beta$ -Methoxy- 17α -(1,1,2,2,2-pentafluorethyl)-3-oxoestra-4,9-dien- 11β -yl]benzaldehyd-1(E)- $\{O-\{(4'-trifluormethyloxy)phenylamino\}$ carbonyl $\}$ oxim
- 17) 4-[17β-Methoxy-17α-(1,1,2,2,2-pentafluorethyl)-3-oxoestra-4,9-dien-11β-yl]benzaldehyd-1(E)-[O-(ethoxy)carbonyl]oxim
- 18) $4-[17\beta-Methoxy-17\alpha-(1,1,2,2,2-pentafluorethyl)-3-oxoestra-4,9-dien-11\beta-yl]$ benzaldehyd-1(E)-[O-(methoxy)carbonyl]oxim
- 19) 4-[17 β -Methoxy-17 α -(1,1,2,2,2-pentafluorethyl)-3-oxoestra-4,9-dien-11 β -yl]benzaldehyd-1(E)-[O-(ethylt-hio)carbonyl]oxim
- 20) 4-[17 β -Acetoxy-17 α -(1,1,2,2,2-pentafluorethyl)-3-oxoestra-4,9-dien-11 β -yl]benzaldehyd-1(E)-[O-(ethylamino)carbonyl]oxim
- 21) $4-[17\beta-Acetoxy-17\alpha-(1,1,2,2,2-pentafluorethyl)-3-oxoestra-4,9-dien-11\beta-yl]$ benzaldehyd-1(E)-oxim
- 22) 4-[17β-Hydroxy-17α-[(1,1,1-trifluorethyloxy)methyl]-3-oxoestra-4,9-dien-11β-yl] benzaldehyd-1(E)-oxim

[0016] In den Dokumenten zum Stand der Technik werden die erfindungsgemässen 17α-Fluoralkyl-11β-benzaldoxim-Steroide und deren Ester-, Thiolester- oder Urethan-Derivate nicht offenbart. Die erfindungsgemässen Verbindungen sind daher neu und aus der Literatur bisher nicht bekannt. Das biologische Wirkprofil der genannten Verbindungen ist nicht beschrieben Es ist nicht möglich, mit einem "Antigestagen" alle potentiellen Anwendungsmöglichkeiten abzudekken (W. Elger, K. Chwalisz, Reproduktionsmedizin, 1999, 15, 318–335; I. M. Spitz, H. J. Bennink: Steroids, 2000, 65, 837–838). Die erfindungsgemässen Verbindungen sind zur postmenopausalen Substitutionstherapie, auch in Kombination mit einem Estrogen, geeignet oder können zur Behandlung von gynäkologischen Erkrankungen, wie Uterusmyomen oder dysmenorischen Beschwerden eingesetzt werden.

[0017] Die vorliegende Erfindung betrifft auch ein Herstellverfahren für die erfindungsgemässen 17α -Fluoralkyl- 11β -benzaldoxim-Steroide.

[0018] Die 17α-Fluoralkylgruppen können in das Steroidgerüst eingeführt werden, indem nach an sich bekannten Methoden von einem 17-Keton ausgegangen wird. So ist von Ruppert die Herstellung des Trifluormethyltrimethylsilans beschrieben worden (Tetrahedron Letters, 1984, 25, 2195), das in Gegenwart von Tetrabutylammoniumfluorid zur Einführung der Trifluormethylgruppe aus Aldehyden und Ketonen bestens geeignet ist. (R. Krishnamurti, D. R. Bellew, G. K. S. Prakash, J. Org. Chem., 1991, 56, 984 und Lamberth, J. prakt. Chem., 1996, 338, 586–587, Ruppert's Reagent).

[0019] Zur Einführung der homologen Fluoralkylgruppen in das Steroidgerüst kann von 17-Ketonen ausgegangen werden. Hierzu sind Verfahren beschrieben worden, bei denen Fluoralkylverbindungen mit der allgemeinen Formel Halogen- C_nF_{2n+1} , mit Metallen zu metallorganischen Verbindungen der Alkali- oder Erdalkalireihe mit der allgemeinen Formel Metall- C_nF_{2n+1} in situ umgesetzt werden. Letztere können anschliessend mit den 17-Ketonen zu 17 α -Fluoralkyl-17 β -hydroxyverbindungen umgesetzt werden. (DE 197 06 061 A1). Die 17 α -Fluoralkoxymethylgruppierung kann vorzugsweise durch Ringöffnungreaktion aus einem entsprechenden 17(20)-Spiroepoxid eingeführt werden [Ponsold, Hüb-

ner, Schnabel, Strecke, Arzneimittel-Forschung (Drug Res.), 24 (1974) 896–900] eingeführt werden. [0020] Das Verfahren zur Herstellung der Ausgangsmaterialien mit der allgemeinen Formel II:

II

20

45

die zur Herstellung der erfindungsgemässen Verbindungen mit der allgemeinen Formel I benötigt werden, ist in EP 0 411 733 A2 und DE 43 32 283 A1 beschrieben: Zur Herstellung der Verbindungen mit der allgemeinen Formel II kann beispielsweise eine mit der nachfolgenden allgemeinen Formel III angegebene Verbindung verwendet werden, wobei R³', R⁴', R⁶', R¬' und R³': die entsprechende Bedeutung in EP 0 411 733 A2 in Formel II angegebenen Reste R³', R⁴', R⁶, R¬ bzw. R³ haben:

Ш

und diese hierzu unter Säurebehandlung in einem mit Wasser mischbaren Lösungsmittel, gegebenenfalls unter Erwärmung, in eine Verbindung überführt werden, bei der die Reste in 3-Stellung zu einer 3-Oxo-Gruppe umgesetzt und durch Austritt der Hydroxygruppe in 5α-Stellung eine Δ^{4,5}-Doppelbindung im Steroidgrundgerüst gebildet werden. Hierzu sind in EP 0 411 733 A2 nähere Angaben enthalten, die hiermit als Offenbarung in die vorliegende Anmeldung aufgenommen werden. Die zur Herstellung der Verbindungen mit der allgemeinen Formel III eingesetzten Verfahren, die von den letztendlich gewünschten Substituenten der erfindungsgemässen Verbindungen abhängen, sind in EP 0 411 733 A2 ebenfalls näher angegeben. Daher wird die sich darauf beziehende Offenbarung in diesem Dokument ebenfalls in die vorliegende Anmeldung aufgenommen. Die entsprechenden Angaben in DE 43 32 283 A1 zur Herstellung der Verbindungen mit der allgemeinen Formel II werden ebenfalls als Offenbarung in die vorliegende Anmeldung mit aufgenommen.

[0021] Zur Bildung der Benzaldoximgruppe und damit zur Herstellung der erfindungsgemässen Verbindungen mit der allgemeinen Formel I wird in erfindungsgemässer Weise vorgeschlagen, die durch Einführung der fluorierten Alkylgruppe in 17β-Stellung erhaltene Verbindung mit der allgemeinen Formel II mit einem Salz eines Hydroxylamins in einem basischen Lösungsmittel umzusetzen, so dass ein 17α-Fluoralkyl-11β-benzaldoxim-Steroid entsteht, worin R₁ Wasserstoff ist, und diese Verbindung anschliessend gegebenenfalls zu verestern, zu verethern oder in ein entsprechendes
 Carbamat, Kohlensäure- oder Thiokohlensäure-Derivat zu überführen. Die weiteren Reste R₂ und R₃ in dieser allgemeinen Formel haben die weiter oben angegebenen Bedeutungen. Das Salz des Hydroxylamins ist dabei vorzugsweise ein Hydrochlorid oder Hydrosulfat. Das basische Lösungsmittel ist vorzugsweise Pyridin.

[0022] Zur Herstellung der erfindungsgemässen Verbindungen kann die Verbindung mit der allgemeinen Formel II in

einer alternativen Ausführungsform der Erfindung auch mit einer Verbindung mit der allgemeinen Formel NH₂-O-R₁, worin R₁ die vorgenannte Bedeutung hat, umgesetzt werden. Auch diesbezüglich wird auf die entsprechende Beschreibung in DE 43 32 283 A1 verwiesen, die hiermit in die Offenbarung der vorliegenden Anmeldung mit aufgenommen wird.

[0023] Die Methoden für die in vitro- und die in vivo-Tests mit den erfindungsgemässen Verbindungen können EP () 411 733 A2 sowie DE 43 32 283 A1 entnommen werden:

Die erfindungsgemässen 17α-Fluoralkyl-11β-benzaldoxim-Steroide werden am Progesteronrezeptor gebunden (vgl. Tab. 1) und besitzen im Vergleich zu RU 486 (4-[17β-Hydroxy-17α-(1,1,2,2,2-pentafluorethyl)-3-oxoestra-4,9-dien-11β-yl]-N,N-dimethylanilin) in der Regel eine deutlich reduzierte antiglucocorticoide Wirkung, nachgewiesen durch die verminderte Glucocorticoid-Rezeptorbindung in vitro (vgl. Tab. 1).

 $Tabelle \ 1$ Rezeptorbindung von 17 α -Fluoralkyl-11 β -benzaldoxim-Steroiden

Verbindung nach Beispiel	relative molare Bindungs- affinität RBA (%) zum Progesteronrezeptor Progesteron = 100 %	relative molare Bindungs- affinität RBA (%) zum Glucocorticoidrezeptor Dexamethason = 100 %		
1	272	163		
2	123	113		
3	98	187		
4	23	10		
5	0,5	10		
6	230	84		
zum Vergleich:				
RU 486 (Mifepriston ®) *	506	685		
Onapriston ®	22	39		

^{*} RU 486: 4-[17 β -Hydroxy-17 α -(1,1,2,2,2-pentafluorethyl)-3-oxoestra-4,9-dien-11 β -yl]-N,N-dimethylanilin

Tabelle 2

Frühabortive Wirkung bei der Ratte nach subcutaner Applikation vom 5.–7.-Graviditätstag [Applikation 0,2 ml/Tier/Tag in Benzoylbenzoat/Rizinusöl (1 + 4 v/v)

Substanz	Dosis	Dosis Komplette (mg/Tier/Tag) Graviditätshemmung *	
	(mg/Tier/Tag)		
		N# /N	
Vehikel		0/6	0
Beispiel 1	1	4/4	100
	0,3	4/4	100
	0,1	1/4	75
	0,03	0/6	0
Beispiel 2	1	5/5	100
Beispiel 3	1	4/4	100
Beispiel 4	1	2/4	50
Beispiel 6	1	4/4	100
	0,3	4/4	100
	0,1	4/4 100 1/4 75 0/6 0 5/5 100 4/4 100 2/4 50 4/4 100 4/4 100 0/4 0 5/5 100 1/5 20 0/5 0 4/4 100	
RU 486 **	3	5/5	100
	1	1/5	20
	0,3	0/5	0
ZK 230 211 ***	3	4/4	100
	1	3/4	75
	0,3	0/6	0

* leere Uteri

5

10

15

20

25

30

35

- ** RU 486: 4-[17 β -Hydroxy-17 α -(1,1,2,2,2-pentafluorethyl)-3-oxoestra-4,9-dien-11 β -yl]-N,N-dimethylanilin
- *** ZK 230211: 4-[17β-Hydroxy-17α-(propin-1yl)-3-oxoestra-4,9-dien-11ß-yl]benz-aldehyd
 - N: Zahl der angepaarten Weibchen
- N[#]: Zahl der nichtgraviden Weibchen
 - [0024] Die erfindungsgemässen Verbindungen sind zur postmenopausalen Substitutionstherapie und zur Behandlung von gynäkologischen Erkrankungen, wie Uterusmyomen sowie dysmenorischen Beschwerden geeignet.
- [0025] Gegenstand der vorliegenden Erfindung sind auch Arzneistoffe (pharmazeutische Präparate) zur oralen, rektalen, subcutanen, intravenösen oder intramuskulären Anwendung, die zusammen mit üblichen Trägern und gegebenenfalls Verdünnungsmitteln mindestens eine Verbindung mit der allgemeinen Formel I als Wirkstoff enthalten.
 - [0026] Erfindungsgemässe Arzneimittel werden mit den üblichen festen oder flüssigen Trägerstoffen und/oder Verdünnungsmitteln und den üblicherweise allgemein eingesetzten Hilfsstoffen entsprechend der gewünschten Applikationsart in einer geeigneten Dosierung und in an sich bekannter Weise hergestellt. Bei einer bevorzugten oralen Darreichungsform werden vorzugsweise Tabletten, Filmtabletten, Dragees, Kapseln, Pillen, Pulver, Lösungen oder Suspensionen auch als Depotform zubereitet.
 - [0027] Daneben sind parenterale Arzneiformen, wie Injektionslösungen oder aber Suppositorien in Betracht zu ziehen.

[0028] Arzneiformen als Tabletten können beispielsweise durch Mischen des Wirkstoffes mit bekannten Hilfsstoffen, wie Dextrose, Zucker, Sorbit, Mannit, Polyvinylpyrrolidon, Sprengmitteln, wie Maisstärke oder Alginsäure, Bindemitteln, wie Stärke oder Gelatine, Gleitmitteln, wie Magnesiumstearat oder Talk, und/oder Mitteln, die einen Depoteffekt erzielen können, wie Carboxypolymethylen, Carboxymethylcellulose, Celluloseacetatphthalat oder Polyvinylacetat, erhalten werden. Die Tabletten können auch aus mehreren Schichten bestehen.

5

15

20

25

40

45

55

60

[0029] Analog lassen sich Dragees durch Überziehen von analog zu den Tabletten hergestellten Kernen mit üblicherweise in Drageeüberzügen verwendeten Mitteln, beispielsweise Polyvinylpyrrolidon oder Schellack, Gummiarabicum, Talk, Titandioxid oder Zucker bereiten. Die Drageehülle kann dabei auch aus mehreren Schichten bestehen, wobei beispielsweise die oben genannten Hilfsstoffe verwendet werden.

[0030] Die Lösungen oder Suspensionen mit dem erfindungsgemässen Wirkstoff können zur Verbesserung des Geschmacks mit Stoffen, wie Saccharin, Cyclamat oder Zucker, und/oder mit Aromastoffen, wie Vanillin oder Orangeextrakt, versetzt werden. Weiterhin können sie mit Suspendierhilfsstoffen, wie Natriumcarboxymethylcellulose oder Konservierungsmitteln, wie p-Hydroxybenzoesäure, vermischt werden.

[0031] Die Kapseln können durch Mischen des Arzneistoffes mit Trägern, wie Milchzucker oder Sorbit, hergestellt werden, die dann in die Kapseln eingebracht werden.

[0032] Suppositorien können vorzugsweise durch Mischen des Wirkstoffes mit geeigneten Trägermaterialien, wie Neutralfetten oder Polyethylenglykolen oder dessen Derivaten, hergestellt werden.

[0033] Die galenische Zubereitung enthält die Wirkstoffe in einer Menge von 1 bis 100 mg, wobei bei einer Anwendung am Menschen von 1 bis 600 mg pro Tag benötigt werden.

[0034] Durch die nachfolgenden Beispiele wird die vorliegende Erfindung erläutert, aber nicht eingeschränkt.

Beispiel 1

a) Herstellung der Ausgangsverbindung

4-[17 β -Hydroxy-17 α -(1,1,1-trifluormethyl)-3-oxoestra-4,9-dien-11 β -yl]benzaldehyd

[0035] 1 g 3,3-Dimethoxy-11 β -{[4-(1,1-ethylendioxy)methyl)phenyl}-5 α -hydroxy-estr-9-en-17-on wird in 30 ml abs. THF gelöst, mit 1,0 g Molsieb 3 Å versetzt und 30 Minuten lang unter Argon gerührt. Man kühlt auf 0°C ab, tropft 1,5 ml Trifluormethyltrimethylsilan zu, rührt 10 Minuten lang nach und gibt dann 1 g Tetrabutylammoniumfluorid zu. Nach 10 min bei 5°C wird die Reaktionslösung durch Zugabe von 10 ml 1 n HCl zersetzt. Man lässt auf Raumtemperatur kommen, gibt jeweils 100 ml Wasser und Essigester zu, trennt die Phasen, wäscht die organische Phase neutral, trocknet über Natriumsulfat, filtriert die organische Phase ab und engt unter Vakuum ein. Nach Zugabe von Aceton verbleiben 1,05 g gelbe Kristalle. Umkristallisation aus Aceton und Behandlung mit tert.-Butylmethylether ergeben 480 mg 4-[17 β -Hydroxy-17 α -(1,1,1-trifluormethyl)-3-oxoestra-4,9-dien-11 β -yl]benzaldehyd. Die Mutterlauge wird mittels Chromatographic gereinigt und ergibt weitere 320 mg Aldehydprodukt.

Schmp.: 284 bis 292°C (Aceton)

 $\alpha_D = +221^{\circ} (CHCl_3)$

¹H-NMR: [300 MHz, CDCl₃,]: 0.58 (s, 3H, H-18); 4.51 (d, 1H, J = 7.1 Hz, H-11α), 5.81 (s, 1H, H-4), 7.38 (d, 2H, J = 8.3 Hz, CH-arom.); 7.81 (d, 2H, J = 8.3 Hz), 9.97 (s, 1H, CH=O). MS (m/e, 70 eV): 444.19061 (M^+ , 100%), 426.18390 (M^+ -H₂O).

b) Herstellung der erfindungsgemässen Verbindung

4-[17β-Hydroxy-17α-(trifluormethyl)-3-oxoestra-4,9-dien-11β-yl]benzaldehyd-(1E)-oxim (Verbindung Nr. 1)

[0036] 549 mg 4-[17β-Hydroxy-17α-(trifluormethyl)-3-oxoestra-4,9-dien-11β-yl]benzaldehyd werden in 5 ml Pyridin gelöst, mit 83 mg Hydroxylaminhydrochlorid versetzt und 1,5 Stunden lang bei Raumtemperatur gerührt. Danach wird die Lösung in Eiswasser eingerührt. Der Niederschlag wird abgesaugt, mit Wasser gewaschen und getrocknet. Das Rohprodukt wird mittels Chromatographie an Kieselgel (0,05-0,063 mm) mit einem Hexan/Essigester-Gradienten gereinigt. Es werden 493 mg Rohprodukt erhalten, die aus tert.-Butylmethylether/n-Hexan umkristallisiert werden. Schmp.: 163 bis 167°C unter Zersetzung (tert.-Butylmethylether/n-Hexan)

 α_D = +244° (CHCl₃) 1 H-NMR: [300 MHz, CDCl₃, TMS]: 0.60 (s, 3H, H-18); 4.44 (d, 1H, J = 7.1 Hz, H-11 α), 5.80 (s, 1H, H-4), 7.20 (d, 2H, J = 8.3 Hz, CH-arom.); 7.50 (d, 2H, J = 8.3 Hz); 7.70 (s, 1H, NOH), 8.10 (s, 1H CH=N).

MS/m7e, 70 eV): 459.20001 (M+), 442.199931 (M+-OH, 100%).

Beispiel 2

a) Herstellung der Ausgangsverbindung

 $4\hbox{-}[17\beta\hbox{-Hydroxy-}17\alpha\hbox{-}(1,1,2,2,2\hbox{-pentafluorethyl})\hbox{-}3\hbox{-}oxoestra\hbox{-}4,9\hbox{-}dien\hbox{-}11\beta\hbox{-}yl]] benzaldehyd}$

[0037] 20 g 3,3-Dimethoxy-11β-{[4-(1,1-ethylendioxy)methyl]phenyl}-5α-hydroxy-estr-9-en-17-on werden in 600 ml Diethylether suspendiert und unter Rühren auf –78°C gekühlt. Es werden 48 g Pentafluorethyliodid zugegeben und anschliessend langsam 76 ml einer 1,5 ml Lösung von Methyllithium-Lithiumbromidkomplex in Diethylether zugetropft. Es wird 2 Stunden lang bei –78°C gerührt und dann auf 21 gesättigte Natriumhydrogencarbonatlösung gegossen. Anschliessend wird mit Essigsäureethylester extrahiert, getrocknet und eingeengt. Der Rückstand wird in 200 ml

70% iger Essigsäure aufgenommen und 60 min lang auf 60°C erwärmt. Man lässt abkühlen und versetzt mit 400 ml Wasser, wobei das Produkt ausfällt. Der Niederschlag wird abgesaugt, mit Wasser gewaschen und mit tert.-Butylmethylether ausgekocht. Man erhält 4-[17β-Hydroxy-17α-(1,1,2,2,2-pentafluorethyl)-3-oxoestra-4,9-dien-11β-yl]-benzaldehyd. Schmp.: 220 bis 230°C (tert.-Butylmethylether)

 1 H-NMR (CDCl3): 0,58 (s, 3H, H-18), 4.52 (d, 1H, J = 7.03 Hz, H-11 α), 5.81 (s, 1H, H-4), 7.38 (d, 2H, J = 7.81 Hz, CH-11 α) arom.); 7.81 (d, 2H, J = 8.6 Hz), 9.96 (s, 1H, CH=O). ¹⁹F-NMR: 77.8 (3F, CF₃), 119 (2F, CF₂)

b) Herstellung der erfindungsgemässen Verbindung

 $[0038] \quad 2.5 \text{ g} \quad 4-[17\beta-\text{Hydroxy-}17\alpha-(1,1,2,2,2-\text{pentafluorethyl})-3-\text{oxoestra-}4,9-\text{dien-}11\beta-\text{yl}]-\text{benzaldehyd} \quad \text{werden} \quad \text{in} \quad \text{for all } \beta = 1.00 \text{ for all } \beta = 1.00 \text{ fo$ 32 ml Pyridin gelöst und mit 450 mg Hydroxylamin-Hydrochlorid innerhalb von 4 Stunden bei Raumtemperatur umgesetzt. Man giesst in Eiswasser ein, saugt den Niederschlag ab, trocknet und reinigt mittels Chromatographie. Nach Umkristallisation aus Aceton wird 4-[17β-Hydroxy-17α-(1,1,2,2,2-pentafluorethyl)-3-oxoestra-4,9-dien-11β-yl]benzaldehyd-(1E)-oxim erhalten.

Schmp.: 220 bis 230°C 1 H-NMR: 0.59 (s, 3H, H-18); 4.45 (d, 1H, J = 6.6 Hz, H-11 α), 5.80 (s, 1H, H-4), 7.20 (d, 2H, J = 8.2 Hz, CH-arom.); 7.48 (d, 2H, J = 8.2 Hz); 8.10 (s, 1H CH=N) 8.24 (s, 1H, NOH), 19 F-NMR: 77.3 (3F, CF₃), 119 (2F, CF₂)

10

25

40

45

60

Beispiel 3

 $4-[17\beta-Hydroxy-17\alpha-(1,1,2,2,2-pentafluorethyl)-3-oxoestra-4,9-dien-11\beta-yl] benzaldehyd-1-on-(1E)-\{O-(ethylami-1)\}-1-(ethylami-1)\}-1-(ethylami-1)$ no)carbonyl-oxim (Verbindung Nr. 6)

 $\textbf{[0039]} \quad \textbf{1,4 g} \quad \textbf{4-[17\beta-Hydroxy-17\alpha-(1,1,2,2,2-pentafluorethyl)-3-oxoestra-4,9-dien-11\beta-yl]-benzaldehyd-(1E)-oximal and the sum of th$ (Verbindung Nr. 4) werden in 50 ml Toluen gelöst, mit 2,26 ml Triethylamin sowie 1,2 ml Ethylisocyanat versetzt und auf 60°C erwärmt. Das Gemisch wird 1,5 Stunden lang gerührt, auf 10°C gekühlt, mit 25 ml wässriger Ammoniaklösung sowie 100 ml Essigsäureethylester versetzt und 30 min lang nachgerührt. Nach der Phasentrennung wird die organische Phase mit Wasser neutral gewaschen, mit Natriumsulfat getrocknet und unter Vakuum eingeengt. Der Rückstand wird aus Essigsäureethylester umkristallisiert. Man erhält 4-[17β-Hydroxy-17α-(1,1,2,2,2-pentafluorethyl)-3-oxoestra-4,9dien- 11β -yl)benzaldehyd-1-on-(1E)-{O-(ethylamino)carbonyl-oxim.

Schmp.: 140 bis 146°C (Essigsäureethylester)

J = 5.7 Hz, -NH-) 7.27 und 7.59 (2d, je 2H, J = 9 Hz, CH-arom.), 8,29 (s, 1H, CH=N). ¹⁹F-NMR (386 MHz): 77.6 (3F, CF₃), 119 (2F, CF₂)

Beispiel 4

a) Herstellung der Ausgangsverbindung

a1) Stufe A

 $11\beta - \{[4-(1,1-Ethylendioxy)methyl]phenyl\} - 17\alpha - (1,1,2,2,2-pentafluorethyl) - 3,3,17\beta - tri-methoxy-estr-9-en-5\alpha - olember - 11\beta - \{[4-(1,1-Ethylendioxy)methyl]phenyl\} - 17\alpha - (1,1,2,2,2-pentafluorethyl) - 3,3,17\beta - tri-methoxy-estr-9-en-5\alpha - olember - 11\beta - \{[4-(1,1-Ethylendioxy)methyl]phenyl\} - 17\alpha - (1,1,2,2,2-pentafluorethyl) - 3,3,17\beta - tri-methoxy-estr-9-en-5\alpha - olember - 11\beta - \{[4-(1,1-Ethylendioxy)methyl]phenyl\} - 17\alpha - (1,1,2,2,2-pentafluorethyl) - 3,3,17\beta - tri-methoxy-estr-9-en-5\alpha - olember - 11\beta - \{[4-(1,1-Ethylendioxy)methyl]phenyl\} - 17\alpha - (1,1,2,2,2) - pentafluorethyl) - 3,3,17\beta - tri-methoxy-estr-9-en-5\alpha - olember - 11\beta - \{[4-(1,1-Ethylendioxy)methyl]phenyl\} - 17\alpha - (1,1,2,2,2) - pentafluorethyl) - 3,3,17\beta - tri-methoxy-estr-9-en-5\alpha - olember - 11\beta - \{[4-(1,1-Ethylendioxy)methyl]phenyl\} - 17\alpha - (1,1,2,2,2) - pentafluorethyl) - 3,3,17\beta - tri-methoxy-estr-9-en-5\alpha - olember - 11\beta - (1,1,2,2,2) - pentafluorethyl) - 3,3,17\beta - tri-methoxy-estr-9-en-5\alpha - olember - 11\beta - (1,1,2,2,2) - pentafluorethyl) - 3,3,17\beta - tri-methoxy-estr-9-en-5\alpha - olember - 11\beta - (1,1,2,2,2) - pentafluorethyl) - 3,3,17\beta - tri-methoxy-estr-9-en-5\alpha - olember - 11\beta - (1,1,2,2,2,2) - pentafluorethyl) - 3,3,17\beta - tri-methoxy-estr-9-en-5\alpha - olember - 11\beta - ole$

[0040] 602 mg 3,3-Dimethoxy-11 β -{[4-(1,1-ethylendioxy)-methyl]phenyl}-17 α -(1,1,2,2,2-pentafluorethyl)-estr-9en-5α,17β-diol werden unter Kühlung und Argon-Schutzgas in 5 ml Toluen gelöst. 232 mg Kalium tert.-butanolat werden portionsweise im Wechsel mit Methyliodid in Toluen über 2 Stunden zugefügt. Nach 3 Stunden wird mit 20 ml Wasser versetzt, und die Phasen werden getrennt. Die wässrige Phase wird mit Toluen nachextrahiert, der vereinigte Extrakt neutral gewaschen und über Natriumsulfat getrocknet.

[0041] Nach Einengung werden 662 mg Rohprodukt als Schaum erhalten, das ohne weitere Reinigung in die Stufe B eingesetzt wird.

¹H-NMR: [400 MHz, CDCl₃, TMS]: 0.56 (s, 3H, H-18); 2.35 (s, 1H, OH), 3.20 und 3.22 (2s, je 3H, 2 × OCH₃), 3.33 (s, 3H, OCH₃), 4.08 (m, 4H, Ethylenketal), 4.29 (d, 1H, J = 7.2 Hz, H-11 α), 4.62 (s, 1H, CH), 5.74 (s, 1H, 5-OH), 7.23 (d, 2H, J = 8.0 Hz, CH-arom.); 7.37 (d, 2H, J = 8.0 Hz, arom. CH)

a2) Stufe B

$4-[17\beta\text{-Methoxy-}17\alpha\text{-}(1,1,2,2,2\text{-pentafluorethyl})-3-oxoestra-4,9-dien-11\beta\text{-yl}] benzaldehyd all benzaldehyd benzaldehyd all benzaldehyd benza$

[0042] 640 mg 11β -{[4-(1,1-Ethylendioxy)methyl]phenyl}- 17α -(1,1,2,2,2-pentafluorethyl)-3,3,17 β -trimethoxy-estr-9-en-5α-ol werden unter Argon-Schutzgas in 10 ml Aceton gelöst, mit 300 mg p-Toluolsulfonsäure versetzt und 1 Stunde lang bei Raumtemperatur gerührt. Die Reaktionslösung wird in 500 ml Eiswasser eingerührt, wobei ein Produkt flockig ausfällt. Mit wässriger Natriumhydrogencarbonat-Lösung wird neutralisiert, der Niederschlag abgesaugt, das Filtrat mit Wasser gewaschen und getrocknet. Man erhält 411 mg Rohprodukt, das mit Hilfe der präparativen Schichtchro-

matographie gereinigt wird. Schmp.: 160 bis 162°C (CH₂Cl₂, tert.-Butylmethylether, n-Hexan) $\alpha_D = +200^{\circ} (CHCl_3)$ 1 H-NMR: [400 MHz, CDCl₃, TMS]: 0.61 (s, 3H, H-18); 3.36 (s, 3H, OCH₃), 4.49 (d, 1H, J = 6.8 Hz, H-11 α), 5.80 (s, 1H, H-4), 7.38 (d, 2H, J = 7.6 Hz, CH-arom.); 7.81 (d, 2H, J = 8.8 Hz), 9.96 (s, 1H, CH=O). ¹⁹F-NMR (386 MHz): 78.3 (s), 110.5 (d) und 113.7 (d) b) Herstellung der erfindungsgemässen Verbindung 4-[17β-Methoxy-17α-(1,1,2,2,2-pentafluorethyl)-3-oxoestra-4,9-dien-11β-yl]benzaldehyd-(1E)-oxim (Verbindung Nr. 10 13) [0043] Diese Verbindung wird entsprechend der Vorschrift gemäss Beispiel 2 aus 4-[17β-Methoxy-17α-(1,1,2,2,2pentafluorethyl)-3-oxoestra-4,9-dien-11β-yl]benzaldehyd mit Hydroxylaminhydrochlorid in Pyridin hergestellt. Schmp.: 122 bis 124°C (tert.-Butylmethylether) 15 $\alpha_{\rm D} = + 188^{\rm o} \, ({\rm CHCl_3})$ ¹H-NMR: [400 MHz, CDCl₃, TMS]: 0.64 (s, 3H, H-18); 3.36 (s, 3H, OCH₃), 4.44 (d, 1H, J = 6.4 Hz, H-11 α), 5.79 (s, 1H, H-4), 7.21 (d, 2H, J = 7.6 Hz, CH-arom.); 7.49 (d, 2H, J = 8.4 Hz); 8,02 (s, 1H, NOH), 8.10 (s, 1H CH=N). Beispiel 5 20 $4-[17\beta-Methoxy-17\alpha-(1,1,2,2,2-pentafluorethyl)-3-oxoestra-4,9-dien-11\beta-yl] benzaldehyd-1-on-(1E)-\{O-((4'-trifluorethyl)-3-oxoestra-4,9-dien-11\beta-yl]\} benzaldehyd-1-on-(1E)-((4'-trifluorethyl)-3-oxoestra-4,9-dien-11)-((4'-trifluorethyl)-3-oxoestra-4,9-dien-11)-((4'-trifluorethyl)-3-oxoestra-4,9-dien-11)-((4'-trifluorethyl)-3-oxoestra-4,9-dien-11)-((4'-trifluorethyl)-3-oxoestra-4,9-dien-11)-((4'-trifluorethyl)-3-oxoestra-4,9-dien-11)-((4'-trifluorethyl)-3-oxoestra-4,9-dien-11)-((4'-trifluorethyl)-3-oxoestra-4,9-dien-11)-((4'-trifluorethyl)-3-oxoestra-4,9-dien-11)-((4'-trifluorethyl)-3-oxoestra-4,9-dien-11)-((4'-trifluorethyl)-3-oxoestra-4,9-dien-11)-((4'-trifluorethyl)-3-oxoestra-4,9-dien-11)-((4'-trifluorethyl)-3-oxoestra-4,9-dien-11)-((4'-trifluorethyl)-3-oxoestra-4,9-dien-11)-((4'-trifluorethyl)-3-oxoestra-4,9-dien-11)-((4'-trifluorethyl)-3-oxoestra-4,9-dien-11)-((4'-trifluorethyl)-3-oxoestra-4,9-dien-11)-((4'-trifluorethyl)-3-oxoestra-4,9-dien-11)-((4'-trifluorethyl)-3-oxoestra-4,9-dien-11)-((4'-trifluorethyl)-((4'-trifluorethyl)-((4'-trifluorethyl)-((4'-trifluorethyl)-((4'-trifluorethyl)-((4'-trifluorethyl)-((4'-trifluorethyl)-((4'-trifluorethyl)-((4'-trifluorethyl)-((4'-trifluorethyl)-((4'-trifluorethyl)-((4$ methoxy)phenylamino|carbonyl-oxim [0044] Diese Verbindung wird entsprechend Beispiel 3 aus 4-{17β-Methoxy-17α-(1,1,2,2,2-pentafluorethyl)-3-oxocstra-4,9-dien-11β-yl]benzaldehyd-(1E)-oxim mit 4-Trifluormethoxymethylphenylisocyanat in Toluen hergestellt farbloser Schaum $\alpha_D = + 149^{\circ}$ (Chloroform) ¹H-NMR (400 MHz, CDCl₃, δ in ppm, TMS): 0.64 (s, 3H, H-18), 3.36 (s, 3H, OCH₃), 4.48 (d, J = 6.8 Hz, 1H, H-11), 5.80 (s, 1H, H-4), 7.21 und 7.54 (2d, je 2H, J = 8.8 Hz, CH-arom.), 7,31 und 7.65 (2d, je 2H, J = 8.0 Hz, CH-arom.), 8,16 30 (s, 1H, NH), 8.37 (s, 1H, CH=N). ¹⁹F-NMR (386 MHz): 58.4 (s), 78.3 (s), 110.7(d) und 113.8 (d) Beispiel 6 35 a) Herstellung des Ausgangsmaterials a1) Stufe A $4-[3,3-Dimethoxy-5\alpha,17\beta-dihydroxy-17\alpha-[(1,1,1-trifluorethyloxy)methyl]-estr-9-en-11\beta-yl]$ benzaldehyd-ethylenketal 40 [0045] 70 ml DMSO werden mit 1,54 g Kalium-tert.-butanolat bei Raumtemperatur gerührt. Man tropft 0,8 ml Trifluorethanol zu, rührt 10 Minuten lang nach und fügt anschliessend eine Lösung von 1,36 g 4-(3,3-Dimethoxy-5α-hydroxy-17(S)-spiroepoxy-estr-9-en-11β-yl)-benzaldehyd-ethylenketal in 30 ml DMSO zu. Unter Argonschutz wird auf 40°C erwärmt. Nach jeweils 3 und 5 Stunden werden weitere 0,8 ml Trifluorethanol und 1,54 g Kalium-tert.-butanolat zugefügt. 45 Nach 12 Stunden wird mit wässriger NH₄Cl-Lösung versetzt und mit Toluen ausgeschüttelt. Nach der üblichen Aufarbeitung werden 2,8 g Rohprodukt erhalten, das durch Chromatographie an Kieselgel gereinigt wird. Dieses gereinigte Produkt wird direkt in die nächste Stufe eingesetzt. $\alpha_D = -1^{\circ} (CHCl_3)$ MS: m/e 596.29809 M⁺ (C₃₂H₄₃F₃O₇) 50 a2) Stufe B $4-[17\beta-Hydroxy-17\alpha-[(1,1,1-trifluorethyloxy)methyl]-3-oxoestra-4,9-dien-11\beta-yl]benzaldehyd$ 55 [0046] 862 mg 4-[3,3-Dimethoxy-5α,17β-dihydroxy-17α-(1,1,1-trifluorethyloxymethyl)-estr-9-en-11β-yl-benzaldehyd-ethylenketal werden in 15 ml Aceton gelöst, mit 1,5 ml Wasser und 350 mg p-Toluolsulfonsäure versetzt und 1 Stunde lang bei Raumtemperatur gerührt. Man verdünnt mit Wasser und extrahiert mit Methylenchlorid. Die organische Phase wird neutral gewaschen, getrocknet und eingeengt. Man erhält 663 mg 4-[17β-Hydroxy-17α-(1,1,1-trifluorethyloxymethyl)-3-oxoestra-4,9-dien-11\u00db-yl]benzaldehyd als Schaum. Das Rohprodukt wird durch präparative Schichtchromatographie gereinigt. Schmp.: 100 bis 103°C (Ether) $\alpha_D = +169^{\circ} (CHCl_3)$ ¹H-NMR: [400 MHz, CDCl₃, TMS]: 0.53 (s, 3H, H-18); 3,45 und 3.91 (2 m, $2 \times \text{CH}_2$); 4.45 (d, 1H, J = 7.2 Hz, H-11 α),

65

5.81 (s, 1H, H-4), 7.37 (d, 2H, J = 8.1 Hz, CH-arom.); 7.81 (d, 2H, J = 8.1 Hz), 9.98 (s, 1H, CH=O).

b) Herstellung der erfindungsgemässen Verbindung

 $4-[17\beta-Hydroxy-17\alpha-(1,1,1-trifluorethyloxymethyl)-3-oxoestra-4,9-dien-11\beta-yl] benzaldehyd-(1E)-oxim (Verbindung Nr. 22) \\$

[0047] Zur Herstellung der Titelverbindung werden 340 mg 4-[17β-Hydroxy-17α-(1,1,1-trifluorethyloxymethyl)-3-oxoestra-4,9-dien-11β-yl]benzaldehyd gemäss Beispiel 2 umgesetzt. Es werden 326 mg Rohprodukt erhalten. Das Rohprodukt wird durch präparative Schichtchromatographie an Kieselgel PF_{254nm} gereinigt. Schmelzpunkt: 132 bis 136°C (Ether)

 α_D = +182° ¹H-NMR (400 MHz, CDCl₃, δ in ppm, TMS): 0.55 (s, 3H, H-18), 3.45 und 3.89 (m, je 2H, CH₂), 4.39 (d, J = 6.8 Hz, 1H, H-11), 5.80 (s, 1H, HA), 7.20 und 7.49 (2d, je 2H, J = 8.4 Hz, CH-arom.), 7.60 (s, 1H, OH), 8.11 (s, 1H, CH=N). ¹⁹F-NMR(386 MHz): 58.4 (s), 78.3 (s), 110.7(d) und 113.8 (d)

Beispiel 7

a) Herstellung der Ausgangsverbindung

 $4-[17\beta-Hydroxy-17\alpha-(1,1,2,2,3,3,3-heptafluorpropyl)-3-oxoestra-4,9-dien-11\beta-yl]-benzaldehyd-11\beta-yl-benzaldehyd-11b-yl-benzaldehyd-yl-benzaldehyd-11b-yl-benzaldehyd-11b-yl-benzaldehyd-11b-yl-benzaldehyd-11b-yl-benzaldehyd-11b-yl-benzaldehyd-11b-yl-benzaldehyd$

[0048] 965 mg 3,3-Dimethoxy-11β-{[4-(1,1-ethylendioxy)methyl]phenyl}-5α-hydroxy-estr-9-en-17-on wird in 35 ml abs. THF gelöst, mit 1,0 g Molsieb 3 Å versetzt und 30 Minuten lang unter Argon gerührt. Man kühlt auf 0°C ab, tropft 0,5 ml 1,1,2,2,3,3,3-Heptafluorpropyltrimethylsilan zu, rührt 10 Minuten lang nach und gibt dann 55 mg Tetrabutylammoniumfluorid zu. Nach 10 Minuten bei 5°C wird die Reaktionslösung durch Zugabe von 10 ml 1 n HCl zersetzt. Man lässt auf Raumtemperatur kommen, rührt 2 Stunden lang nach, kühlt wieder auf 0°C ab und fügt weitere 0,5 ml 1,1,2,2,3,3,3-Heptafluorpropyltrimethylsilan zu. Nach 15 Minuten wird die Lösung durch Zugabe von 15 ml 1 N HCl hydrolysiert. Nach weiteren 30 Minuten werden 100 ml gesättigte Ammoniumchlorid-Lösung zugefügt, und die Lösung wird mit Essigester extrahiert. Man wäscht die organische Phase neutral, trocknet über Natriumsulfat, filtriert die organische Phase ab und engt unter Vakuum ein. Das braune Rohprodukt (924 mg) wird mittels Chromatographie an Kieselgel mit Essigester/n-Hexan 1: 2 gereinigt. Umkristallisation aus Aceton/n-Hexan ergibt 485 mg 4-[17β-Hydroxy-17α-(1,1,2,2,3,3,3-pentafluorpropyl)-3-oxoestra-4,9-dien-11β-yl]-benzaldehyd.

b) Herstellung der erfindungsgemässen Verbindung

4-[17β-Hydroxy-17α-(1,1,2,2,3,3,3-heptafluorpropyl)-3-oxoestra-4,9-dien-11β-yl]-benzaldehyd-(1E)-oxim (Verbindung Nr. 10)

[0049] Die Titelverbindung wird aus 4-[17β-Hydroxy-17α-(1,1,2,2,3,3,3-heptafluorpropyl)-3-oxoestra-4,9-dien-11β-yl]benzaldehyd durch Umsetzung mit Hydroxylaminhydrochlorid in Pyridin gemäss Beispiel 2 hergestellt. Schmo. 170 bis 175°C

 1 H-NMR: 0.59 (s, 3H, H-18); 4.45 (d, 1H, J = 6.6 Hz, H-11 α), 5.80 (s, 1H, H-4), 7.20 (d, 2H, J = 8.2 Hz, CH-arom.); 7.48 (d, 2H, J = 8.2 Hz); 8.10 (s, 1H CH=N) 8.24 (s, 1H, NOH)

Patentansprüche

1. 17α-Fluoralkyl-11β-benzaldoxim-Steroide mit der allgemeinen Formel I

15

20

45

50

55

60

65

I

worin R^1 für Wasserstoff, C_1 - bis C_6 -Alkyl, COR_4 , $COOR_4$, $COSR_4$ oder $CONHR_5$ steht, worin R_4 C_1 - bis C_6 -Alkyl oder unsubstituiertes oder substituiertes Aryl ist und worin R_5 Wasserstoff, C_1 - bis C_6 -Alkyl oder unsubstituiertes oder

ubstituiertes Aryl ist, R_2 für Wasserstoff, C_1 - bis C_6 -Alkyl oder C_1 - bis C_6 -Acyl steht und R_3 für eine C_nF_{2n+1} -Gruppe, bei der $n = 1$, 2 oder 3 ist, oder eine $CH_2O(CH_2)_mC_nF_{2n+1}$ -Gruppe steht, bei der $m = 0$ oder 1 und $n = 1$, 2 oder 3 sind,	
owie deren pharmazeutisch verträgliche Salze. 2. 17α-Fluoralkyl-11β-benzaldoxim-Steroide nach Anspruch 1, dadurch gekennzeichnet, dass R ¹ für Wasserstoff, Methyl, Formyl, Acetyl, Propionyl, Benzoyl, Methoxycarbonyl, Ethoxycarbonyl, Methylthiocarbonyl, Ethylthio-	5
arbonyl, Ethylaminocarbonyl oder unsubstituiertes oder substituiertes Phenylaminocarbonyl steht. 1. 17α-Fluoralkyl-11β-benzaldoxim-Steroide nach einem der Anspruch 2, dadurch gekennzeichnet, dass der subtituierte Phenylaminocarbonylrest ein mit einem C_1 - bis C_6 -Perfluoralkylrest substituiert ist. 1. 17α-Fluoralkyl-11β-benzaldoxim-Steroide nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass R^2 ür Wasserstoff. Methyl oder Λcetyl steht.	10
 i. 17α-Fluoralkyl-11β-benzaldoxim-Steroide nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass R³ ür 1,1,1-Trifluormethl, 1,1,2,2,2-Pentafluorethyl, 1,1,2,2,3,3,3-Heptafluorpropyl oder 1,1,1-Trifluorethyloxy steht. i. 17α-Fluoralkyl-11β-benzaldoxim-Steroide nach einem der Ansprüche 1 bis 5, nämlich i. 14-[17β-Hydroxy-17α-(1,1,1-trifluormethyl)-3-oxoestra-4,9-dien-11β-yl]benzaldehyd-1(E)-oxim 2) 4-[17β-Hydroxy-17α-(1,1,1-trifluormethyl)-3-oxoestra-4,9-dien-11β-yl]benzaldehyd-1(Z)-oxim 3) 4-[17β-Hydroxy-17α-(1,1,1-trifluormethyl)-3-oxoestra-4,9-dien-11β-yl]benzaldehyd-1(E)-[O-(ethylamino)carbonyl]oxim 	15
 4) 4-[17β-Hydroxy-17α-(1,1,2,2,2-pentafluorethyl)-3-oxoestra-4,9-dien-11β-yl]-benzaldehyd-1(E)-oxim 5) 4-[17β-Hydroxy-17α-(1,1,2,2,2-pentafluorethyl)-3-oxoestra-4,9-dien-11β-yl]-benzaldehyd-1(E)-O-acety-loxim 	. 20
 6) 4-[17β-Hydroxy-17α-(1,1,2,2,2-pentafluorethyl)-3-oxoestra-4,9-dien-11β-yl]-benzaldehyd-1(E)-[O-(ethylamino)carbonyl]oxim 7) 4-[17β-Hydroxy-17α-(1,1,2,2,2-pentafluorethyl)-3-oxoestra-4,9-dien-11β-yl]-benzaldehyd-1(E)-[O-(ethylthio)carbonyl]oxim 8) 4-[17β-Hydroxy-17α-(1,1,2,2,2-pentafluorethyl)-3-oxoestra-4,9-dien-11β-yl]-benzaldehyd-1(E)-[O-(ethylthio)carbonyl]oxim 	25
hoxy)carbonyl]oxim 9) 4-[17β-Hydroxy-17α-(1,1,2,2,2-pentafluorethyl)-3-oxoestra-4,9-dien-11β-yl]-benzaldehyd-1(E)-[O-(methoxy)carbonyl]oxim 10) 4-[17β-Hydroxy-17α-(1,1,2,2,3,3,3-heptafluorpropyl)-3-oxoestra-4,9-dien-11 β-yl]benzaldehyd-1(E)-	30
oxim 11) 4-[17β-Methoxy-17α-(1,1,1-trifluormethyl)-3-oxoestra-4,9-dien-11β-yl]benzaldehyd-1(E)-oxim 12) 4-[17β-Methoxy-17α-(1,1,1-trifluormethyl)-3-oxoestra-4,9-dien-11β-yl]benzaldehyd-1(E)-[O-(ethyla-mino)carbonyl]oxim 13) 4-[17β-Methoxy-17α-(1,1,2,2,2-pentafluorethyl)-3-oxoestra-4,9-dien-11β-yl]-benzaldehyd-1(E)-oxim 14) 4-[17β-Methoxy-17α-(1,1,2,2,2-pentafluorethyl)-3-oxoestra-4,9-dien-11β-yl]-benzaldehyd-1(E)-O-acc-	35
tyloxim 15) 4-[17β-Methoxy-17α-(1,1,2,2,2-pentafluorethyl)-3-oxoestra-4,9-dien-11β-yl]-benzaldehyd-1(E)-[O-(ethylamino)carbonyl]oxim 16) 4-[17β-Methoxy-17α-(1,1,2,2,2-pentafluorethyl)-3-oxoestra-4,9-dien-11β-yl]-benzaldehyd-1(E)-{O-[(4'-trifluormethoxy)phenylamino]carbonyl}oxim	40
17) 4-[17β-Methoxy-17α-(1,1,2,2,2-pentafluorethyl)-3-oxoestra-4,9-dien-11β-yl]-benzaldehyd-1(E)-[O-(et-hoxy)carbonyi]oxim 18) 4-[17β-Methoxy-17α-(1,1,2,2,2-pentafluorethyl)-3-oxoestra-4,9-dien-11β-yl]-benzaldehyd-1(E)-[O-(methoxy)carbonyl]oxim 19) 4-[17β-Methoxy-17α-(1,1,2,2,2-pentafluorethyl)-3-oxoestra-4,9-dien-11β-yl]-benzaldehyd-1(E)-[O-	45
(ethylthio)carbonyl]oxim 20) 4-[17β-Acetoxy-17α-(1,1,2,2,2-pentafluorethyl)-3-oxoestra-4,9-dien-11β-yl]-benzaldehyd-1(E)-[O-(ethylamino)carbonyl]oxim 21) 4-[17β-Acetoxy-17α-(1,1,2,2,2-pentafluorethyl)-3-oxoestra-4,9-dien-11β-yl]-benzaldehyd-1(E)-oxim 22) 4-[17β-Hydroxy-17α-[(1,1,1-trifluorethyloxy)methyl]-3-oxoestra-4,9-dien-11β-yl] benzaldehyd-1(E)-	50
oxim. 7. Verfahren zur Herstellung von 17α-fluoralkylierten-11β-Benzaldoxim-Steroiden mit der allgemeinen Formel I	55

I

worin die Reste R₁, R₂ und R₃ die in den Ansprüchen 1 bis 5 angegebenen Bedeutungen haben, dadurch gekennzeichnet, dass ein 11β-Benzaldehyd mit der allgemeinen Formel II

25

30

35

45

50

55

65

II

- mit einem Salz eines Hydroxylamins in einem basischen Lösungsmittel umgesetzt wird, so dass ein 17α -Fluoralkyl- 11β -benzaldoxim-Steroid entsteht, worin R_1 Wasserstoff ist, und diese Verbindung gegebenenfalls verestert, verethert oder in ein entsprechendes Carbamat, Kohlensäure- oder Thiokohlensäure-Derivat überführt wird.
 - 8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass das Salz des Hydroxylamins ein Hydrochlorid oder Hydroxulfat ist.
 - 9. Verfahren nach einem der Ansprüche 7 und 8, dadurch gekennzeichnet, dass das basische Lösungsmittel Pyridin ist.
 - 10. Pharmazeutisches Präparat, enthaltend mindestens ein 17α-Fluoralkyl-11β-benzaldoxim-Steroid mit der allgemeinen Formel I nach einem der Ansprüche 1 bis 6 sowie mindestens einen pharmazeutisch verträglichen Träger.

 11. Verwendung der 17α-Fluoralkyl-11β-benzaldoxim-Steroide mit der allgemeinen Formel I nach einem der Ansprüche 1 bis 6 zur Herstellung von Arzneimitteln.