

Claims

1. A matrix-type display apparatus which drives a display panel including a plurality of pixels disposed in matrix form and displays an image, characterized by including:

a converting means for γ -converting an input video signal, using n (which is an integer of two or above) pairs of γ -characteristics which are made up of first and second γ -characteristics different from each other; and

a selecting means for selecting one pair of γ -characteristics from among the n pairs of γ -characteristics according to a transmittance to be used for display, and selecting an output supplied to the display panel from among the $2n$ outputs which are γ -corrected by the converting means, so that a first distribution area ratio of pixels driven by the video signal γ -corrected by use of the first γ -characteristic of the selected pairs of γ -characteristics and a second distribution area ratio of pixels driven by the video signal γ -corrected by use of the second γ -characteristic of the selected pairs of γ -characteristics are equal to a distribution area ratio specified in advance for the selected pairs of γ -characteristics.

2. The matrix-type display apparatus according to claim 1, characterized in that the selecting means selects an output supplied to the display panel from among the $2n$ outputs which

are γ -corrected by the converting means, so that the first distribution area ratio and the second distribution area ratio are equal to the distribution area ratio in a block unit of $(n+1)$ pixels per block.

3. The matrix-type display apparatus according to claim 2, characterized in that the first distribution area ratio and the second distribution area ratio for each pair of γ -characteristics are selected out of $k/(n+1)$ and $(1-k)/(n+1)$, if k is an integer of one to n .

4. The matrix-type display apparatus according to claim 1, characterized in that:

each pixel of the display panel is made up of, as one pixel, a first sub-pixel which has a first pixel area S_a and a second sub-pixel which has a second pixel area S_b ($=m \times S_a$, herein, $m > 1$); and

the selecting means selects an output supplied to the display panel from among the $2n$ outputs which are γ -corrected by the converting means, so that the first distribution area ratio and the second distribution area ratio are equal to the distribution area ratio in a block unit of the one pixel per block.

5. The matrix-type display apparatus according to claim 4, characterized in that the first distribution area ratio

and the second γ -distribution area ratio for each pair of γ -characteristics are selected out of $1/(m+1)$ and $m/(m+1)$.

6. The matrix-type display apparatus according to claim 5, characterized in that the second pixel area S_b satisfies the relation of $1.5S_a \leq S_b \leq 3S_a$.

7. The matrix-type display apparatus according to claim 1, characterized in that:

each pixel of the display panel is made up of, as one pixel, a first sub-pixel which has a first pixel area S_a and a second sub-pixel which has a second pixel area S_b ($=m \times S_a$, herein, $m > 1$); and

the selecting means selects an output supplied to the display panel from among the $2n$ outputs which are γ -corrected using each γ -characteristic by the converting means, so that the first distribution area ratio and the second distribution area ratio are equal to the distribution area ratio in a block unit of the two pixels per block.

8. The matrix-type display apparatus according to claim 7, characterized in that the first distribution area ratio and the second γ -distribution area ratio for each pair of γ -characteristics are selected from among $1/(2+2m)$, $m/(2+2m)$, $2/(2+2m)$, $(1+m)/(2+2m)$, $2m/(2+2m)$, $(2+m)/(2+2m)$, and $(2m+1)/(2+2m)$.

9. The matrix-type display apparatus according to claim 8, characterized in that the second pixel area S_b satisfies the relation of $1.2S_a \leq S_b \leq 2S_a$.

10. The matrix-type display apparatus according to any of claims 1 to 9, characterized in that the selecting means selects an output supplied to the display panel from among the 2^n outputs which are γ -corrected by the converting means, in a unit of one pixel made up of an R-pixel, a G-pixel and a B-pixel.

11. The matrix-type display apparatus according to any of claims 1 to 9, characterized in that the selecting means selects an output supplied to the display panel from among the 2^n outputs which are γ -corrected by the converting means, for each of an R-pixel, a G-pixel and a B-pixel which are each set as one pixel.

12. The matrix-type display apparatus according to any of claims 1 to 11, characterized in that the display panel is a liquid-crystal display panel.

13. A driving method for a matrix-type display apparatus which drives a display panel including a plurality of pixels disposed in matrix form and displays an image, characterized

by including:

a converting step of γ -converting an input video signal, using n (which is an integer of two or above) pairs of γ -characteristics which are made up of first and second γ -characteristics different from each other; and

a selecting step of selecting one pair of γ -characteristics from among the n pairs of γ -characteristics according to a transmittance to be used for display, and selecting an output supplied to the display panel from among the $2n$ outputs which are γ -corrected in the converting step, so that a first distribution area ratio of pixels driven by the video signal γ -corrected by use of the first γ -characteristic of the selected pairs of γ -characteristics and a second distribution area ratio of pixels driven by the video signal γ -corrected by use of the second γ -characteristic of the selected pairs of γ -characteristics are equal to a distribution area ratio specified in advance for the selected pairs of γ -characteristics.