Основы машинного обучения

Лекция 14

Случайные леса. Градиентный бустинг.

Евгений Соколов

esokolov@hse.ru

НИУ ВШЭ, 2025

Бэггинг

- Смещение $a_N(x)$ такое же, как у $b_n(x)$
- Разброс $a_N(x)$:
- $\frac{1}{N}$ (разброс $b_n(x)$) + ковариация $(b_n(x), b_m(x))$
- Если базовые модели независимы, то разброс уменьшается в N раз!
- Чем более похожи выходы базовых моделей, тем меньше эффект от построения композиции

Смещение и разброс: деревья

Смещение и разброс: бэггинг

Случайный лес

Жадный алгоритм

$SplitNode(m, R_m)$

- 1. Если выполнен критерий останова, то выход
- 2. Ищем лучший предикат: $j, t = \arg\min_{j,t} Q(R_m, j, t)$
- 3. Разбиваем с его помощью объекты: $R_\ell = \left\{\{(x,y) \in R_m | \left[x_j < t\right]\right\}$, $R_r = \left\{\{(x,y) \in R_m | \left[x_j \geq t\right]\right\}$
- 4. Повторяем для дочерних вершин: SplitNode (ℓ, R_ℓ) и SplitNode (r, R_r)

Жадный алгоритм

 $SplitNode(m, R_m)$

- 1. Если выполнен критерий останова, то выход
- 2. Ищем лучший предикат: $j, t = \arg\min_{j,t} Q(R_m, j, t)$
- 3. Разбиваем с его помощью объекты: $R_\ell = \left\{\{(x,y) \in R_m | \left[x_j < t\right]\right\}$, $R_r = \left\{\{(x,y) \in R_m | \left[x_j \geq t\right]\right\}$
- 4. Повторяем для дочерних вершин: SplitNode (ℓ, R_ℓ) и SplitNode (r, R_r)

Выбор предиката

$$j, t = \arg\min_{j,t} Q(R_m, j, t)$$

• Будем искать лучший предикат среди случайного подмножества признаков размера q

Корреляция между деревьями

Hastie, Tibshirani, Friedman. The Elements of Statistical Learning.

Корреляция между деревьями

Рекомендации для q:

- Регрессия: $q = \frac{d}{3}$
- Классификация: $q = \sqrt{d}$

Случайный лес (Random Forest)

```
Для n = 1, ..., N:
```

- 1. Сгенерировать выборку $ilde{X}$ с помощью бутстрапа
- 2. Построить решающее дерево $b_n(x)$ по выборке $ilde{X}$
- 3. Дерево строится, пока в каждом листе не окажется не более n_{min} объектов
- 4. Оптимальное разбиение ищется среди q случайных признаков

Случайный лес (Random Forest)

```
Для n = 1, ..., N:
```

- 1. Сгенерировать выборку $ilde{X}$ с помощью бутстрапа
- 2. Построить решающее дерево $b_n(x)$ по выборке \tilde{X}
- 3. Дерево строится, пока в каждом листе не окажется не более n_{min} объектов
- 4. Оптимальное разбиение ищется среди q случайных признаков

Выбираются заново при каждом разбиении!

Случайный лес (Random Forest)

• Регрессия:

$$a(x) = \frac{1}{N} \sum_{n=1}^{N} b_n(x)$$

• Классификация:

$$a(x) = \arg\max_{y \in \mathbb{Y}} \sum_{n=1}^{N} [b_n(x) = y]$$

Универсальный метод

- Ошибка сначала убывает, а затем выходит на один уровень
- Случайный лес не переобучается при росте N

Out-of-bag

- Каждое дерево обучается примерно на 63% данных
- Остальные объекты как бы тестовая выборка для дерева
- X_n обучающая выборка для $b_n(x)$
- Можно оценить ошибку на новых данных:

$$Q_{test} = \frac{1}{\ell} \sum_{i=1}^{\ell} L\left(y_i, \frac{1}{\sum_{n=1}^{N} [x_i \notin X_n]} \sum_{n=1}^{N} [x_i \notin X_n] b_n(x_i)\right)$$

Важность признаков

- Перестановочный метод для проверки важности j-го признака
- Перемешиваем соответствующий столбец в матрице «объекты-признаки» для тестовой выборки
- Измеряем качество модели
- Чем сильнее оно упало, тем важнее признак

Резюме

- Случайный лес метод на основе бэггинга, в котором делается попытка повысить разнообразие деревьев
- Метод практически без гиперпараметров
- Можно оценить обобщающую способность без тестовой выборки

Исправление ошибок моделей и идея бустинга

Проблемы бэггинга

- Если базовая модель окажется смещённой, то и композиция не справится с задачей
- Базовые модели долго обучать и применять, дорого хранить

- Возьмём простые базовые модели
- Будем строить композицию последовательно и жадно
- Каждая следующая модель будет строиться так, чтобы максимально корректировать ошибки построенных моделей

$$a_N(x) = \sum_{n=1}^N b_n(x)$$

• Обучение первой модели:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} L(y_i, b_1(x_i)) \to \min_{b_1(x)}$$

$$a_N(x) = \sum_{n=1}^N b_n(x)$$

$$\frac{1}{\ell} \sum_{i=1}^{\ell} L(y_i, a_{N-1}(x_i) + b_N(x_i)) \to \min_{b_N(x)}$$

$$a_N(x) = \sum_{n=1}^N b_n(x)$$

$$\frac{1}{\ell} \sum_{i=1}^{\ell} L(y_i, a_{N-1}(x_i) + b_N(x_i)) \rightarrow \min_{b_N(x)}$$

$$a_N(x) = \sum_{n=1}^N b_n(x)$$

• Обучение N-й модели:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} L(y_i, a_{N-1}(x_i) + b_N(x_i)) \to \min_{b_N(x)}$$

• Непонятно, как обучать дерево на такое в общем случае

Резюме

- В бустинге базовые модели обучаются последовательно
- Каждая следующая корректирует ошибки уже построенных
- В общем случае получается функционал, на который может быть сложно обучать деревья

Бустинг для среднеквадратичной ошибки

$$a_N(x) = \sum_{n=1}^N b_n(x)$$

$$\frac{1}{\ell} \sum_{i=1}^{\ell} L(y_i, a_{N-1}(x_i) + b_N(x_i)) \rightarrow \min_{b_N(x)}$$

$$a_N(x) = \sum_{n=1}^N b_n(x)$$

$$\frac{1}{\ell} \sum_{i=1}^{\ell} (a_{N-1}(x_i) + b_N(x_i) - y_i)^2 \to \min_{b_N(x)}$$

$$a_N(x) = \sum_{n=1}^N b_n(x)$$

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \left(b_N(x_i) - \left(y_i - a_{N-1}(x_i) \right) \right)^2 \to \min_{b_N(x)}$$

$$a_N(x) = \sum_{n=1}^N b_n(x)$$

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \left(b_N(x_i) - \left(y_i - a_{N-1}(x_i) \right) \right)^2 \to \min_{b_N(x)}$$

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \left(b_N(x_i) - s_i^{(N)} \right)^2 \to \min_{b_N(x)}$$

•
$$s_i^{(N)} = y_i - a_{N-1}(x_i)$$
 — остатки

Первая итерация

$$\frac{1}{\ell} \sum_{i=1}^{\ell} (b_1(x_i) - y_i)^2 \to \min_{b_1(x)}$$

Вторая итерация

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \left(b_2(x_i) - \left(y_i - b_1(x_i) \right) \right)^2 \to \min_{b_2(x)}$$

Третья итерация

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \left(b_3(x_i) - \left(y_i - b_1(x_i) - b_2(x_i) \right) \right)^2 \to \min_{b_3(x)}$$

Визуализация

Визуализация

Визуализация

Random Forest

Ошибка бустинга на обучении и тесте

Резюме

- В случае с MSE обучение базовых моделей сводится к обычной процедуре обучения с заменой целевой переменной
- Бустинг может переобучаться, поэтому надо следить за ошибкой на тестовой выборке

Сложности с произвольной функцией потерь

$$a_N(x) = \sum_{n=1}^N b_n(x)$$

• Обучение N-й модели:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} L(y_i, a_{N-1}(x_i) + b_N(x_i)) \to \min_{b_N(x)}$$

$$\frac{1}{\ell} \sum_{i=1}^{\ell} L(y_i, a_{N-1}(x_i) + b_N(x_i)) \to \min_{b_N(x)}$$

• Может, просто обучаться на остатки, как в MSE?

$$\frac{1}{\ell} \sum_{i=1}^{\ell} L(y_i - a_{N-1}(x_i), b_N(x_i)) \to \min_{b_N(x)}$$

Логистическая функция потерь

$$a_N(x) = \operatorname{sign} \sum_{n=1}^{N} b_n(x)$$

$$L(y, z) = \log(1 + \exp(-yz))$$

• Может, просто обучаться на остатки, как в MSE?

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \log \left(1 + \exp \left(-\left(y_i - a_{N-1}(x_i) \right) b_N(x_i) \right) \right) \to \min_{b_N(x)}$$

- Если $y_i = a_{N-1}(x_i)$, то объект не участвует в обучении
- Иначе $y_i a_{N-1}(x_i) = \pm 2$

Логистическая функция потерь

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \log \left(1 + \exp \left(-\frac{y_i - a_{N-1}(x_i)}{2} b_N(x_i) \right) \right) \to \min_{b_N(x)}$$

- Если $y_i = a_{N-1}(x_i)$, то объект не участвует в обучении
- Если $y_i \neq a_{N-1}(x_i)$, то базовая модель учится выдавать корректный класс

Логистическая функция потерь

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \log \left(1 + \exp \left(-\frac{y_i - a_{N-1}(x_i)}{2} b_N(x_i) \right) \right) \to \min_{b_N(x)}$$

•
$$y_i = +1$$
, $\sum_{n=1}^{N-1} b_n(x_i) = -0.5 o$ надо $b_N(x_i) > 0.5$

•
$$y_i = +1$$
, $\sum_{n=1}^{N-1} b_n(x_i) = -100 o$ надо $b_N(x_i) > 100$

- Но на обоих объектах будет одинаково максимизироваться отступ
- На объектах с корректными ответами никак не контролируется выход $b_N(x)$

Резюме

- Нельзя заменить обучение добавки к композиции на обучение базовой модели на отклонение от ответов
- Не учитываются особенности функции потерь

Градиентный бустинг в общем виде

• Обучение *N*-й модели:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} L(y_i, a_{N-1}(x_i) + b_N(x_i)) \to \min_{b_N(x)}$$

• Ошибка на объекте x_i при прогнозе новой модели, равном z :

$$L(y_i, a_{N-1}(x_i) + z)$$

• Как посчитать, куда и как сильно сдвигать $a_{N-1}(x_i)$, чтобы уменьшить ошибку?

• Обучение *N*-й модели:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} L(y_i, a_{N-1}(x_i) + b_N(x_i)) \to \min_{b_N(x)}$$

• Ошибка на объекте x_i при прогнозе новой модели, равном z :

$$L(y_i, a_{N-1}(x_i) + z)$$

- Как посчитать, куда и как сильно сдвигать $a_{N-1}(x_i)$, чтобы уменьшить ошибку?
- Посчитать производную

• Ошибка на объекте x_i при прогнозе новой модели, равном z :

$$L(y_i, a_{N-1}(x_i) + z)$$

• Посчитаем производную:

$$s_i^{(N)} = -\frac{\partial}{\partial z} L(y_i, z) \bigg|_{z=a_{N-1}(x_i)}$$

• Посчитаем производную:

$$s_i^{(N)} = -\frac{\partial}{\partial z} L(y_i, z) \bigg|_{z=a_{N-1}(x_i)}$$

- Знак показывает, в какую сторону сдвигать прогноз на x_i , чтобы уменьшить ошибку композиции на нём
- Величина показывает, как сильно можно уменьшить ошибку, если сдвинуть прогноз
- Если ошибка почти не сдвинется, то нет смысла что-то менять

Градиентный бустинг

• Обучение *N*-й модели:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \left(b_N(x_i) - s_i^{(N)} \right)^2 \to \min_{b_N(x)}$$

$$\left. s_i^{(N)} = -rac{\partial}{\partial z} L(y_i,z)
ight|_{z=a_{N-1}(x_i)}$$
— сдвиги

Градиентный бустинг

• Обучение *N*-й модели:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \left(b_N(x_i) - s_i^{(N)} \right)^2 \to \min_{b_N(x)}$$

$$\left. s_i^{(N)} = -rac{\partial}{\partial z} L(y_i,z)
ight|_{z=a_{N-1}(x_i)}$$
— сдвиги

- Как бы градиентный спуск в пространстве ответов на обучающей выборке
- Базовая модель будет делать корректировки на объектах так, чтобы как можно сильнее уменьшить ошибку композиции
- Сдвиги учитывают особенности функции потерь

Градиентный бустинг для MSE

$$s_i^{(N)} = -\frac{\partial}{\partial z} L(y_i, z) \bigg|_{z=a_{N-1}(x_i)} = -\frac{\partial}{\partial z} \frac{1}{2} (z - y_i)^2 \bigg|_{z=a_{N-1}(x_i)} =$$
$$= -(a_{N-1}(x_i) - y_i) = y_i - a_{N-1}(x_i)$$

Градиентный бустинг для MSE

$$s_i^{(N)} = -\frac{\partial}{\partial z} L(y_i, z) \bigg|_{z=a_{N-1}(x_i)} = -\frac{\partial}{\partial z} \frac{1}{2} (z - y_i)^2 \bigg|_{z=a_{N-1}(x_i)} =$$
$$= -(a_{N-1}(x_i) - y_i) = y_i - a_{N-1}(x_i)$$

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \left(b_N(x_i) - \left(y_i - a_{N-1}(x_i) \right) \right)^2 \to \min_{b_N(x)}$$

Градиентный бустинг для MSE

$$s_i^{(N)} = y_i - a_{N-1}(x_i)$$

•
$$y_i = 10$$
, $a_{N-1}(x_i) = 5$: $s_i = 5$

•
$$y_i = 10$$
, $a_{N-1}(x_i) = 15$: $s_i = -5$

Градиентный бустинг для асимметричной функции

$$L(y,z) = \frac{1}{2}([z < y](z - y)^2 + 5[z \ge y](z - y)^2)$$

$$s_i^{(N)} = -\frac{\partial}{\partial z} L(y_i, z) \bigg|_{z=a_{N-1}(x_i)} =$$

$$= [z < y](y - z) + 5[z \ge y](y - z)$$

Градиентный бустинг для асимметричной функции

$$s_i^{(N)} = [z < y](y - z) + 5[z \ge y](y - z)$$

•
$$y_i = 10$$
, $a_{N-1}(x_i) = 5$: $s_i = 5$

•
$$y_i = 10$$
, $a_{N-1}(x_i) = 15$: $s_i = -25$

$$s_i^{(N)} = -\frac{\partial}{\partial z} L(y_i, z) \Big|_{z=a_{N-1}(x_i)} =$$

$$= -\frac{\partial}{\partial z} \log(1 + \exp(-y_i z)) \Big|_{z=a_{N-1}(x_i)} =$$

$$= \frac{y_i}{1 + \exp(y_i a_{N-1}(x_i))}$$

$$s_i^{(N)} = -\frac{\partial}{\partial z} L(y_i, z) \Big|_{z=a_{N-1}(x_i)} =$$

$$= -\frac{\partial}{\partial z} \log(1 + \exp(-y_i z)) \Big|_{z=a_{N-1}(x_i)} =$$

$$= \frac{y_i}{1 + \exp(y_i a_{N-1}(x_i))}$$

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \left(b_N(x_i) - \frac{y_i}{1 + \exp(y_i a_{N-1}(x_i))} \right)^2 \to \min_{b_N(x)}$$

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \left(b_N(x_i) - \frac{y_i}{1 + \exp(y_i a_{N-1}(x_i))} \right)^2 \to \min_{b_N(x)}$$

- Отступ большой положительный: $\frac{y_i}{1 + \exp(y_i a_{N-1}(x_i))} \approx 0$
- Отступ большой отрицательный: $\frac{y_i}{1 + \exp(y_i a_{N-1}(x_i))} \approx \pm 1$

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \left(b_N(x_i) - \frac{y_i}{1 + \exp(y_i a_{N-1}(x_i))} \right)^2 \to \min_{b_N(x)}$$

•
$$y_i = +1$$
, $a_{N-1}(x_i) = -0.7$: $s_i = 0.67$

•
$$y_i = +1$$
, $a_{N-1}(x_i) = 2$: $s_i = 0.12$

Резюме

- Чтобы учесть особенности функции потерь, можно посчитать её производные в точке текущего прогноза композиции
- Базовую модель будем обучать на эти производные (со знаком минус)