Programm

- Tag 1:
- Generelle Einführung in ML / Al
- Grundlagen NLP
- Praxisblock NLP
- Embeddings
- Praxisblock Embeddings
- Abschluss mit Fragen und Diskussion
- Tag 2:
- Kurzes Recap
- RAG
- Praxisblock naive RAG
- Advanced RAG und Agents
- Praxisblock Agent
- MLOps / Abschluss mit Fragen und Diskussion

Eure Erwartungen

Menti.com 7131 8194

AGENDA

Einführung

NLP

Embeddings

Abschluss

Daniel Dutli

Typ der das Zeug erledigt

- Data Scientist aus Leidenschaft
- Bekennender Vibe Coder Weintrinker
- Feels the AGI
- Mitgründer der enki GmbH

Marco Crisafulli

Vater, ML Enthusiast und manchmal lustig

- Studium in Informatik an der HSR
- Software-Entwickler bei HxGN Schweiz
- Data-Engineer bei Avobis Data
- Hat Cursor immer noch nicht installiert
- Mitgründer der enki GmbH

Geschichte

"Artificial Intelligence (AI) is the simulation of human intelligence processes by machines, especially computer systems."

ChatGPT - 2024

Unterschiede

Aspekt	Klassische Programmierung	Maschinelles Lernen	
Problemlösung	Explizite Regeln und Logik	Lernen aus Daten	
Umgang mit Unsicherheit	Deterministisch	Probabilistisch	
Datenabhängigkeit	Gering	Hoch	
Anpassungsfähigkeit	Statisch	Dynamisch	
Entwicklungsprozess	Linear	Iterativ	

Funktionsweise

Training

- Das Modell wird angepasst
- Viele Daten werden dem Modell "gezeigt"
- Label (das was gelernt werden soll) muss bekannt sein
- Das Modell lernt aus Fehler

Inference

- Das Modell wird nicht angepasst
- Einzelne Daten werden dem Modell "gezeigt"
- Label ist nicht bekannt
- Das Modell lernt nicht

Modellgrösse zu Zeit

Modell Qualität zu Anzahl Datenpunkte

Möglichkeiten

The Top 50 Gen Al Web Products, by Unique Monthly Visits				
1. ChatGPT	11. IIElevenLabs	21. R PhotoRoom	31. PIXAI	41. 💠 MaxAl.me
2. Gemini*	12. Hugging Face	22. YODAYO	32. 壽 ideogram	42. / Craiyon
3. character.ai	13. Leonardo.Ai	23. Clipchamp	33. Pinvideo Al	43. OpusClip
4. 👣 liner	14. Midjourney	24. 🕞 runway	34. Feplicate	44. BLACKBOX AI
5. QuillBot	15. SpicyChat	25. YOU	35. Playground	45. CHATPDF
6. Poe	16. 🧔 Gamma	26. DeepAI	36. ✔ Suno	46. // PIXELCUT
7. perplexity	17. Crushon Al	27. © Eightify	37. Chub.ai	47. Vectorizer.Al
8. JanitorAl	18. cutout.pro	28. candy.ai	38. Speechify	48. ÖDREAMGF
9. CIVITAI	19. (?) PIXLR	29. NightCafe	39. phind	49. Photomyne
10. Claude	20. VEED.IO	30. VocalRemover	40. 🏠 NovelAI	50. Oll•1 Otter.ai

Einordnung

- Gehören zum Task Text -> Text Generation
- Ziel ist den nächsten Token vorherzusagen
- Sehr teuer

Anwendung

- Chatbots
- RAG
- Spezialisierte Text Aufgaben

Anbieter

OpenAl (Microsoft) - ChatGPT

Google - Gemini

Antrophic (Amazon) - Claude

Meta – Llama

Image Generator

Einordnung

- Gehören zum Task Bild-> Text-To-Image (u.a.)
- Ziel ist Bildstörungen zu entfernen
- Teuer

Anwendung

- Kunst
- Bildbearbeitung
- Unterhaltung

Anbieter

OpenAI (Microsoft) - Dall-E Midjourney Inc. - Midjourney StabillityAI – Stable Diffusion

Speech synthesis

Einordnung

- Gehören zum Task Audio-> Text-To-Speech
- Ziel ist das nächste Stück Ton vorherzusagen
- Teuer wenn sehr gut

Anwendung

- Sprachassistent
- Service-Line
- Hilfe für Personen mit visuellen Einschränkungen

Anbieter

OpenAl (Microsoft) - GPT-40

ElevenLabs - ElevenLabs

Image Classification

• Zu welcher Klasse gehört dieses Bild?

Object Detection

 Welche Klassen sind im Bild und wo?

Image segmentation

 Welche Klassen sind im Bild und wo GENAU?

Automatic speech recognition (ASR)

Wer sagt was?

NLP

Natural Language Processing (NLP)

Einordnung

- Computer sollen natürliche Sprache verstehen
- Bereits Alan Turing hat sich 1950 damit befasst
- Symbolic, Statistical und Neural Networks

Abgrenzung

- Alles was irgendwie mit Sprache zu tun hat (auch OCR, Speech Recognition, Text-to-Speech)
- Heute eher alles was mit (geschriebenem) Text zu tun hat

Translation

- Eines der ältesten ML Probleme
- "Urmutter" heutiger
 Modelle

Text Classification

 Zu welcher Klasse gehört dieser Text?

Named Entity Recognition (NER)

 Welche "Objekte" kommen in diesem Text vor?

Definitionen

Token

- Die kleinste Einheit Text welche verarbeitet wird
- Meistens ein Wort. Aber auch Satzzeichen, Zahlen oder Silben

Document

- Ein zusammenhängedes Textstück welches als Einheit betrachtet wird
- o z.b ein Satz, Absatz, Artikel oder ein ganzes Buch

Corpus

- o Eine Sammlung von Dokumenten als Datengrundlage
- o z.b 100 Artikel oder 1 Million Tweets

Bag of Cats Words

- Einfaches aber effektives Verfahren
- Wie oft kommt ein Wort in einem Text vor
- Ergibt ein Vektor
 - o (Der länge des Vokabulars)

Beispiel

Dokument 1

Das Wetter ist heute schön

Dokument 2

Heute ist das Wetter schlecht

Wort	Dokument 1	Dokument 2
das	1	1
wetter	1	1
ist	1	1
heute	1	1
schön	1	0
schlecht	0	1

TF-IDF

- Term frequency inverse document frequency
- Methode zur Gewichtung von Wörter
- Ziel ist es wichtige Wörter hoch zu gewichten und unwichtige niedrig

$$w_{x,y} = tf_{x,y} \times log(\frac{N}{df_x})$$

TF-IDF

Term x within document y

 $tf_{x,y}$ = frequency of x in y df_x = number of documents containing xN = total number of documents

Beispiel

Dokument 1

Das Wetter ist heute schön

Dokument 2

Heute ist das Wetter schlecht

Wort	Dokument 1 (TF-IDF)	Dokument 2 (TF-IDF)
das	0.3	0.3
wetter	0.5	0.5
ist	0.3	0.3
heute	0.3	0.3
schön	0.9	0
schlecht	0	0.9

Vorteile

- Gut verstanden und einfache implementierung
- Effizient bei kleinen bis mittleren Texten
- Gute Baseline zum Vergleich
- Sehr nützlich für Suche (Google's early days) und Recommendation Engines (Heute noch)
- Lightweight ML pipelines (kein Deep Learning)

Nachteile

- Verlust von Kontext und Semantik
 - Wörter mit verschiedenen Bedeutungen
- Hohe Dimensionalität (skaliert schlecht)
- Verschwenderisch
 - Sparse Matrix Problem

Limitationen BoW & TF-IDF

Reihenfolge

"Dog bites Man" vs. "Man bites dog"

Negierungen

"I like this movie" vs. "I don't like this movie"

Synonyme & Polysemie (Mehrdeutigkeit)

- o "I love my automobile" vs. "I love my car"
- o "He opened a bank account" vs. "He sat by the river bank"

Kontext

"Apple releases new iPhone" vs. "Apple pie recipe for all"

Preprocessing

- Wörter sind nicht nur Wörter
- Vocabulary verkleinern

Preprocessing Methoden

- Text Cleaning
- Stopword Removal
 - o [This, is, an, example, for, stop, word, removal]
 - [This, example, stop, word, removal]
- Stemming
 - Automate, automatic, automation -> automat
- Lemmatization
 - Car, cars, cars', car's -> car
 - o Am, is, are -> be

Embeddings

TF-IDF bewertet Wörter basierend auf ihrer Häufigkeit – aber es versteht nicht, was Wörter bedeuten.

Um diese Bedeutung zu verstehen muss sie gelernt werden.

Feedforward networks with non-polynomial activation functions are dense in the space of continuous functions between two Euclidean spaces, with respect to the compact convergence topology.

Universal approximation theorem

Neuronals Netzwerk

- Viele Neuronen in Schichten
- Breite: Anzahl Neuronen in Schicht
- Tiefe: Anzahl Schichten
- Anzahl Neuronen bestimmt komplexität der Funktion (grob vereinfacht)

Neuron

- Inspiriert vom menschlichen Neuron
- Grundstein von Neuronalen Netzwerken

Backpropagation

- Forward Pass wird mit Ground Truth verglichen
- Fehler wird rückwärts durch Netzwerk propagiert
- Einfluss jedes Neurons wird berechnet
- Gewicht wird verändert um Fehler zu minimieren (Gradient Descent)

Forward Pass

Gradient Descent

https://youtube.com/playlist?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi&si=d6wubzIPlPp5E7ZE

https://playground.tensorflow.org/

Embeddings

- Wörter können als Vektoren dargestellt werden
- Ähnliche Bedeutung -> Ähnliche Vektoren
- Embeddings erfassen semantische Beziehung zwischen Wörtern
- Die Vektoren werden gelernt

Wozu ist das gut?

- Semantic Search
- Grundlage f
 ür LLM
- Hilft Zusammenhänge von Daten zu verstehen
- Herrlich zu visualisieren

Geschichte der Embedding Modelle

- Seit 2005 werden
 Embedding Modelle
 gelernt (Dank Yoshua
 Bengio)
- Word2Vec von Google hat das interesse Massiv gesteigert
- ELMo legt den Grundstein für LLM

Word2Vec

- Wann: 2013 Veröffentlichung der Original-Paper
 - o Efficient Estimation of Word Representations in Vector Space
 - Distributed Representations of Words and Phrases
- Entwicker: Tomas Mikolov bei Google Research
- Ziel: Wörter als dichte, kontinuierliche Vektoren repräsentieren, statt als One-Hot-Vektoren

- CBOW (Continous Bag of Words) Ein Wort aus dem Kontext vorhersagen
- Skip-Gram Kontextwörter aus einem Wort vorhersagen

CBOW

Skip-gram

- CBOW (Continous Bag of Words) Ein Wort aus dem Kontext vorhersagen
- Skip-Gram Kontextwörter aus einem Wort vorhersagen

Limitationen Embeddings

- Out-of-Vocabulary
- Kontext fehlt (auch wenn es manchmal nicht so scheint)
- Interpretierbarkeit ist schwierig (D > 4)

Abschluss

- Embeddings sind eine Kern-Idee von RAG
- Nächstes Mal: RAG und Agents
- Fragen?

Ende Tag 1