Development of Discontinuous Galerkin simulation Framework for Hypersonic Shock-Boundary Layer Interaction

Potluri Vachan Deep IIT Bombay

Supervisors: Profs. Bhalchandra Puranik and Kowsik Bodi

PhD joining date: 17 July 2018

Teaching information

Year	Semester	Internal (IITB)	External (VJTI, Mumbai)
2018	Autumn	Engineering Drawing	
2019	Spring	Engineering Drawing	
2019	Autumn	Engineering Drawing	
2020	Spring	Applied Thermodynamics	
2020	Autumn	Thermodynamics	
2021	Spring	Applied Thermodynamics	Advanced Fluid Dynamics
	Autumn	Thermodynamics	Computational Fluid Dynamics

Hypersonic CFD: conclusions based on FV numerical simulations [CMT09; Kni+12; Can15; Gai15; Kni+17]

Issues

- Grid generation for complex geometries
- Heat transfer sensitivity to modelling, grid and numerical details

Needs

- Solution uncertainty quantification (wrt model parameters) and improved physical models
- Adaptive, mixed element techniques (a)
- Schemes capable of subcell resolution (b)
- Accurate low dissipation methods for turbulent simulations (C)
- Efficient parallel computation algorithms d

Features of DG method [HW07; CKS12]

- Arbitrarily high order of accuracy ©
- Cell-local interpolation, compact stencil (b) (d)
- Works with unstructured, 3d, curved and mixed element meshes a
- Extremely suitable for hp adaptive techniques ⓐ
- ► Highly suitable for high performance computing d

Ref.	Discretization	Geometry	Flow regime	Polynomial order ${\cal N}$
[LD09]	Conservative residual distribution PG	Sharp DC	Laminar NEQ	1
[KC10]	SUPG	HCEF, blunt DC	Laminar PrG	1
[GLD18]	Entropy residual distribution Galerkin	Sharp DC	Laminar NEQ	1
[Hol+18]	SUPG	Blunt DC	Laminar PrG	1
$[Chi {+} 19]^1$	DG	Sharp DC	Laminar PrG	1-3

 $^{^{1}\ \}mathrm{Used}\ \mathrm{polynomial}\ \mathrm{order}\ \mathrm{sequencing}\ \mathrm{to}\ \mathrm{obtain}\ \mathrm{high}\ \mathrm{order}\ \mathrm{steady}\ \mathrm{solution}$

Proposed an extension to subcell limiter of [Hen+21] (red box)

Bassi-Rebay 1 extension to supersonic compressible Navier-Stokes equations [BR97] (blue box)

► Viscous residual blending for hypersonic flows (green box)

Comparison with FV simulation on unadaptive grid of equivalent resolution:

	x_{sep}/L	x_{att}/L
[Gno01]	0.52	1.31
PLENS	0.52	1.28

Discrepancy in post-corner solution \leftrightarrow local time stepping algorithm

Reason: rapid change in cell size above the corner \implies high variation in local time step \implies delinking of solution above corner

Conclusion

- ▶ Proposed an extension of a subcell limiter for Euler equations to viscous hypersonic flows
- lacktriangle Stable and reasonably accurate simulations were performed for $M_\infty \geq 6$ with N=2
 - ullet $M_{\infty}=11.3$ case: pre-corner solution OK, diffusion of local time step may give better post-corner results

Future work

- Optimise: the current code implementation is slow Extend to turbulent (RANS) solver [?]
- ullet Validate the hypersonic extension on stronger cases ullet Analysis of separation control (double cone geometry) with higher values of N technique(s) for scramjet intakes

References I

- [BR97] F Bassi and S Rebay. "A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier–Stokes Equations". In: *Journal of Computational Physics* 131.2 (1997), pp. 267–279.
- [Can15] Graham Candler. "Rate-dependent energetic processes in hypersonic flows". In: *Progress in Aerospace Sciences* 72 (2015), pp. 37–48.
- [Chi+19] Eric J Ching et al. "Shock capturing for discontinuous Galerkin methods with application to predicting heat transfer in hypersonic flows". In: Journal of Computational Physics 376 (2019), pp. 54–75.
- [CKS12] Bernardo Cockburn, George E Karniadakis, and Chi-Wang Shu. "The Development of Discontinuous Galerkin Methods". In: Discontinuous Galerkin methods: theory, computation and applications. Ed. by Bernardo Cockburn, George E Karniadakis, and Chi-Wang Shu. Vol. 11. Springer Science & Business Media, 2012. Chap. 1.
- [CMT09] Graham Candler, Dimitri Mavriplis, and Loretta Trevino. "Current status and future prospects for the numerical simulation of hypersonic flows". In: 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. 2009, p. 153.
- [Gai15] Datta Gaitonde. "Progress in Shock Wave/Boundary Layer Interactions". In: Progress in Aerospace Sciences 72 (2015), pp. 80–99.
- [GLD18] Jesús Garicano-Mena, Andrea Lani, and Gérard Degrez. "An entropy-variables-based formulation of residual distribution schemes for non-equilibrium flows". In: Journal of Computational Physics 362 (2018), pp. 163–189.
- [Gno01] Peter A Gnoffo. "CFD validation studies for hypersonic flow prediction". In: 39th Aerospace Sciences Meeting and Exhibit. 2001. DOI: 10.2514/6.2001-1025.

References II

- [Hen+21] Sebastian Hennemann et al. "A provably entropy stable subcell shock capturing approach for high order split form DG for the compressible Euler equations". In: *Journal of Computational Physics* 426 (2021), p. 109935.
- [Hol+18] Kevin R Holst et al. "High-Order Simulations of Shock Problems using HPCMP CREATE (TM)-AV Kestrel COFFE". In: 2018 AIAA Aerospace Sciences Meeting. 2018, p. 1301.
- [HW07] Jan S Hesthaven and Tim Warburton. *Nodal discontinuous Galerkin methods: algorithms, analysis, and applications.* Springer Science & Business Media, 2007.
- [KC10] Benjamin S Kirk and Graham F Carey. "Validation Studies of Fully Implicit, Parallel Finite Element Simulations of Laminar Hypersonic Flows". In: AIAA Journal 48.6 (2010), pp. 1025–1036.
- [Kni+12] Doyle Knight et al. "Assessment of CFD capability for prediction of hypersonic shock interactions". In: Progress in Aerospace Sciences 48-49 (2012), pp. 8-26.
- [Kni+17] Doyle Knight et al. "Assessment of predictive capabilities for aerodynamic heating in hypersonic flow". In: *Progress in Aerospace Sciences* 90 (2017), pp. 39–53.
- [LD09] Andrea Lani and Herman Deconinck. "Conservative residual distribution method for hypersonic flows in thermochemical nonequilibrium". In: 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. 2009, p. 460.