Thyroid specific antigens

and how they affect thyroid cancer

biological background

TRAs and thyroid cancer

- mTECs express TRAs
- Hashimoto's and Grave's diseases as most common autoimmune disorders
- Tumor Associated Antigens are expressed in thymus Interlobular septum
- Radiation & thyroid cancer
 - sensitive to long-term effects
 - o 80% papillary carcinoma
 - activation of MAPK signal cascade

structure of the thymus gland

https://www.vectorstock.com/royalty-free-vector/structure-thymus-gland-infographics-vector-12904537

our dataset

the structure of our dataset

5 arrays of patients with papillary thyroid cancer (PTC), who were exposed to radiation

4 arrays of patients with PTC, who were NOT exposed to radiation

5 arrays of patients with healthy thyroid tissue

quality control - boxplots

RNA degradation plot

quality control -**RNA** degradation plot

human thyroid cancer rawdata (GSE35570) (Handkiewicz-Junak et all., 2016)

quality control - scatterplots

the biological question

objective

Identify which genes are upregulated or downregulated in radiation exposed samples compared to nonexposed samples and healthy samples for drug targets in cancer therapy

General methods:

- Data filtering and Cleanup
- 2. Descriptive statistics
- 3. Dimension reduction
 - PCA
 - Clustering
- 4. Differential expression analysis
 - One-way ANOVA
 - Post hoc test (Tukey)
- 5. Sorting of genes (Gene ontology)
- 6. Linear regression analysis and proportion test

Feng, C.; Liu, S.; Zhang, H.; Guan, R.; Li, D.; Zhou, F.; Liang, Y.; Feng, X. Dimension Reduction and Clustering Models for Single-Cell RNA Sequencing Data: A Comparative Study. Int. J. Mol. Sci. 2020, 21, 2181

Clustering

Are genes significantly differentially expressed? Upregulated? Downregulated? Are there any genes co-expressed?

Sorting of genes

Do genes differentially expressed can be clustered under a specific characteristic? Location in the cell? Function? Relation a specific signaling pathway? Do these genes have any relation to one another?

Regression analysis

How well can the expression data of one gene be used to predict the expression of another?

Future perspectives

Is the relation important for cancer? Diagnostic? Treatment? Cause of unregulated cell growth or an effect of this? (Further review bibliography and specific gene function)

Timeline

- This timeline should be an approximation of how we expect the workload to be divided across the semester.
- Week 1, which has already passed, is also taken in consideration.

our results so far

PCA

Further questions:

Are those outliers of the not-exposed group?

→ adding for chips

ANOVA and post hoc test

=> SYTL5 is upregulated in thyroid cancer

Next step:

cluster genes in biological context

Main literature

Dinkelacker 2007, "A database of genes that are expressed in a tissue-restricted manner to analyse promiscous gene expression in medullary thymic epithelial cells." Diplomarbeit, Albert-Ludwigs-Universitaet, Freiburg, Germany, 2007.

Dinkelacker, 2019, PhD thesis, "Chromosomal clustering of tissue-restricted antigens", University of Heidelberg.