

marcel.koeppen [©] uni-osnabrueck.de marcel.luetkedreimann [©] uni-osnabrueck.de

Übung zur Vorlesung Betriebssysteme Wintersemester 2021/22

Übungsblatt 10: Sicherheit und Mobile Systeme

♦ Abgabe der Lösungen bis Montag, 17. Januar 14:00 im AsSESS

Aufgabe 1: (1+2+2 = 5 Punkte)

- 1. Wodurch wird in einem Android-System sichergestellt, dass der OOM-Killer jederzeit Applikationen beenden kann, um Speicher freizugeben, ohne dass es zu Datenverlusten kommt?
- 2. Beschreiben Sie kurz, welche Informationen in den Unix-Systemdateien /etc/passwd und /etc/shadow abgelegt werden. Erklären Sie, wie diese Aufteilung der Benutzerdatenbank zur Sicherheit des Systems beiträgt.
- 3. Beschreiben Sie, wie es auf einem Linux-System während der Ausführung eines Programms dazu kommen kann, dass die Systemaufrufe getuid() und geteuid() verschiedene Ergebnisse liefern.

Aufgabe 2: Verlustleistung in CMOS-Halbleitern (3 Punkte)

Ein Mikroprozessor kann an drei verschiedenen Betriebspunkten betrieben werden:

- 1. 300 MHz Taktfrequenz bei 1V Betriebsspannung
- 2. 800 MHz Taktfrequenz bei 1.2V Betriebsspannung
- 3. 1 GHz Taktfrequenz bei 1.3V Betriebsspannung

Bestimmen Sie für jeden der Betriebspunkte die statische, dynamische und Gesamtverlustleistung des Prozessors. Gehen Sie dabei von einem konstanten Leck-Strom von 10 mA und einer geschalteten Kapazität von $\alpha C_L = 1.5$ nF aus.

Aufgabe 3: Energy Aware Scheduling (1+3+1=5 Punkte)

Auf einer CPU gibt es zwei Leistungsklassen von CPU-Kernen: leistungsfähige Kerne (Big) und stromsparende Kerne (Little). Von jeder Leistungsklasse sind zwei CPU-Kerne vorhanden und die Kerne derselben Leistungsklasse sind jeweils in einer Performance-Domäne zusammengefasst. Auf dieser CPU soll nun mit dem EAS-Scheduler ein Task so auf einem CPU-Kern platziert werden, dass der Energiebedarf des Systems minimiert wird. Die folgende Tabelle gibt ein Energiemodell für die CPU an, in dem für die Arbeitspunkte der CPU-Kerne die Kapazitäten und Leistungswerte angegeben sind.

Little (CPU0, CPU1)		Big (CPU2, CPU3)	
Kapazität	Leistung	Kapazität	Leistung
230	50	512	150
615	180	768	300
768	260	1024	400

Der Task T lief bisher auf CPU 0 und verursacht eine mittlere Auslastung von 150. Die Auslastung der CPUs liegt aktuell (inklusive Task T) bei: CPU0: 370, CPU1: 200, CPU2: 700, CPU3: 750.

- 1. Bestimmen Sie für jede Performance-Domäne den Kandidaten-CPU-Kern, auf den der Task verschoben werden könnte.
- 2. Berechnen Sie für die drei von EAS betrachteten Szenarien für die Platzierung des Tasks T die benötigte Energie. Beachten Sie, dass sich dabei die Betriebspunkte der Performance-Domänen ändern können.
- 3. Auf welchem Kern sollte der Task platziert werden, um den Energiebedarf des Systems zu minimieren?