Optimization

Rosiyah Faradisa

Optimization

Merupakan proses mendapatkan titik ekstrimum, yaitu :

- Maximun point
- Minimum point

Dari sebuah fungsi atau permasalahan

Optimization

Unconstrained Optimization

Optimasi tanpa fungsi atau kondisi batasan yang harus dipenuhi

Constrained Optimization

Optimasi dengan fungsi atau kondisi batasan yang harus dipenuhi

Unconstrained Optimization

Onedimensional

Multi dimensional

- Golden-search method
- Hyperbolic Interpolation
- Newton method
- Brent's method

- Direct method
- Gradient method

Maximum point on two-dimensional space

By IkamusumeFan - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=42043175

Multimodal

one-dimensional unconstrained optimization

Metode Golden Search (Open Method)

- 1. Tentukan batas bawah, x_l , dan batas atas, x_u , yang mengapit satu nilai local ekstrimum dari f(x)
- 2. Tentukan 2 interior point, x_1 dan x_2 , yang dihitung berdasarkan *golden ratio*

$$x_1 = x_l + d$$

$$x_2 = x_u - d$$

$$\text{Dengan } d = \frac{\sqrt{5} - 1}{2} (x_u - x_l)$$

- 3. Lakukan evaluasi:
 - Jika $f(x_1) > f(x_2)$ maka update nilai $x_l = x_2$
 - Jika $f(x_2) > f(x_1)$ maka update nilai $x_u = x_1$
- 4. Lakukan iterasi selanjutnya dengan nilai x_l dan x_u yang baru

Contoh soal (Golden Search Method)

Gunakan metode golden search untuk mendapatkan nilai optimum fungsu berikut :

$$f(x) = 2\sin x - \frac{x^2}{10}$$

Dalam interval $x_l = 0$ dan $x_u = 4$

• Solusi:

hitung d dengan menggunakan golden ratio

$$d = \frac{\sqrt{5} - 1}{2}(4 - 0) = 2.472$$

Sehingga diperoleh

$$x_1 = 0 + 2.472 = 2.472 \, \text{dan} \, f(x_1) = 0.63$$

$$x_2 = 4 - 2.472 = 1.528 \, dan \, f(x_2) = 1.76$$

Karna $f(x_2) > f(x_1)$ maka selanjutnya nilai x_u akan diperbarui dengan nilai x_1 , yaitu 2.472

Kemudian akan dilanjutkan perhitungan pada iterasi yang kedua, dengan $x_l=0$ dan $x_u=2.472$

Contoh soal (Golden Search Method)

Tabel berikut merupakan hasil perhitungan hingga iterasi ke 8

	xl	xu	d	x1	fx1	x2	fx2
1	0	4	2,47213595	2,47213595	0,62997447	1,52786405	1,76472025
2	0	2,47213595	1,52786404	1,52786404	1,76472025	0,94427191	1,53097555
3	0,94427191	2,47213595	0,94427191	1,88854382	1,54322337	1,52786404	1,76472025
4	0,94427191	1,88854382	0,58359214	1,52786405	1,76472025	1,30495168	1,75945198
5	1,30495168	1,88854382	0,36067978	1,66563146	1,71358022	1,52786404	1,76472025
6	1,30495168	1,66563146	0,22291236	1,52786404	1,76472025	1,4427191	1,7754748
7	1,30495168	1,52786404	0,13776741	1,44271909	1,7754748	1,39009663	1,77419951
8	1,39009663	1,52786404	0,08514494	1,47524157	1,77324246	1,4427191	1,7754748

Metode Golden Search (Open Method)_minimum point

- 1. Tentukan batas bawah, x_l , dan batas atas, x_u , yang mengapit satu nilai local ekstrimum dari f(x)
- 2. Tentukan 2 interior point, x_1 dan x_2 , yang dihitung berdasarkan *golden ratio*

$$x_1 = x_l + d$$

$$x_2 = x_u - d$$

$$\text{Dengan } d = \frac{\sqrt{5} - 1}{2} (x_u - x_l)$$

- 3. Lakukan evaluasi:
 - Jika $f(x_1) < f(x_2)$ maka update nilai $x_l = x_2$
 - Jika $f(x_2) < f(x_1)$ maka update nilai $x_u = x_1$
- 4. Lakukan iterasi selanjutnya dengan nilai x_l dan x_u yang baru

Parabolic Interpolation

Parabolic Interpolation

- Sebagaimana hanya ada satu garis lurus yang menghubungkan dua titik, maka hanya ada satu parabola (persamaan kuadrat) yang menghubungkan dua titik
- Parabolic interpolation menggunakan fakta bahwa persamaan kuadrat seringkali memberikan nilai perkiraan yang baik terhadap f(x) di dekat titik optimum

Metode Parabolic Equation

• Tentukan 3 titik perkiraan awal, x_0, x_1, x_2 kemudian hitung nilai maksimum perkiraan

$$x_3 = \frac{f(x_0)(x_1^2 - x_2^2) + f(x_1)(x_2^2 - x_0^2) + f(x_2)(x_0^2 - x_1^2)}{2f(x_0)(x_1 - x_2) + 2f(x_1)(x_2 - x_0) + 2f(x_2)(x_0 - x_1)}$$

Kemudian x_3 akan menggantikan salah satu titik awal, dengan mekanisme penggantian

$$x_0 = x_1$$
, $x_1 = x_2$, $x_2 = x_3$

Atau juga dapat menggunakan mekanisme penggantian nilai baru pada metode golden search