

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.01 Информатика и вычислительная техника

ОТЧЕТ

по лабораторной работе № 2_

 Название:
 Исследование мультиплексоров

 Дисциплина:
 Схемотехника

 Студент
 ИУ6-52Б (Группа)
 И.С. Марчук (Подпись, дата)

 Преподаватель
 Т.А.Ким (Подпись, дата)
 Т.А.Ким (И.О. Фамилия)
 Цель работы: изучение принципов построения и методов синтеза дешифраторов; макетирование и экспериментальное исследование дешифраторов.

Вариант: 8

Комбинация сигналов: 10101001

ФАЛ: 0, 1, 2, 4, 9, 11, 12, 13, 15

Ход работы

- 1. Исследование ИС ADG408 или ADG508 (рис.6) в качестве коммутатораMUX~8-1 цифровых сигналов:
- а) на информационные входы D0 ...D7 мультиплексора подать комбинацию сигналов, заданную преподавателем из табл. 2. Логические уровни 0 и 1 задавать источниками напряжения U=5 В и 0 В (общая);
- б) на адресные входы A2, A1, A0 подать сигналы Q3, Q2. Q1 соответственно с выходов 4-разрядного двоичного счетчика (младший разряд Q0). На вход счетчика подать импульсы генератора с частотой 500 к Γ ц.

Рисунок 1 - исследование мультиплексора ADG508

в) снять временную диаграмму сигналов при EN=1 и провести ее анализ. Наблюдение сигналов выполнить на логическом анализаторе.

Рисунок 2 - временная диаграмма сигналов в схеме

- 2. Исследование ИС ADG408 или ADG508 (рис.6) в качестве коммутатора MUX 8-1 аналоговых сигналов:
- а) на информационные входы D0 ...D7 мультиплексора подать дискретные уровни напряжений с источников напряжения UCC (приложение Multisim): 0B; 0.7 B; 1.4 B; 2.1 B; 2.8 B; 3.5 B; 4.2 B; 5.0 B;
- б) на адресные входы A2, A1, A0 подать сигналы Q3, Q2. Q1 соответственно с выходов 4-разрядного двоичного счетчика (младший разряд Q0). На вход счетчика подать импульсы генератора с частотой 500 кГц;

Рисунок 3 - использования мультиплексора в качестве коммутатора аналоговых сигналов

в) снять временную диаграмму сигналов при EN=1 и провести ее анализ. Наблюдение сигналов выполнить на логическом анализаторе, выходного сигнала мультиплексора — на логическом анализаторе и осциллографе. Совместить развертки сигналов, регистрируемых логическим анализатором и осциллографом.

Рисунок 4 - временные диаграммы сигналов на логическом анализаторе и осциллографе

Как видно на показаниях осциллографа, при переключении мультиплексора сигнал искажается помехами. Для их устранения установим на выходе простейший ФНЧ на основе конденсатора.

Рисунок 5 - использования мультиплексора в качестве коммутатора аналоговых сигналов с применением ФНЧ

Как видно из показаний осциллографа ниже, влияние помех на сигнал после введения ФНЧ уменьшилось.

Рисунок 6 - показания осциллографа после введения ФНЧ

3. Исследование ИС ADG408 или ADG508 (рис.6) как коммутатора MUX 8—1 цифровых сигналов в качестве формирователя ФАЛ четырех переменных. ФАЛ задается преподавателем из табл. 2. Проверить работу формирователя в статическом и динамическом режимах. Снять временную диаграмму сигналов формирователя ФАЛ и провести ее анализ.

Составим таблицу истинности, указанной ФАЛ (Таблица 1). Таблица 1 - таблица истинности ФАЛ.

n	X4	X3	X2	X1	F	Примеч.
0	0	0	0	0	1	D0=1
1	0	0	0	1	1	
2	0	0	1	0	1	D1=!X1
3	0	0	1	1	0	
4	0	1	0	0	1	D2=!X1
5	0	1	0	1	0	
6	0	1	1	0	0	D3=0
7	0	1	1	1	0	
8	1	0	0	0	0	D4=X1
9	1	0	0	1	1	
10	1	0	1	0	0	D5=X1
11	1	0	1	1	1	
12	1	1	0	0	1	D6= 1
13	1	1	0	1	1	
14	1	1	1	0	0	D7=X1
15	1	1	1	1	1	

На основе таблицы истинности составим схему, подавая 3 сигнала на адресные входы и один (в случаях, когда это необходимо) сигнал - на информационные входы.

Рисунок 7 - реализация ФАЛ на мультиплексоре

Рисунок 8 - временная диаграмма сигналов в схеме

4. Наращивание мультиплексора.

Построить схему мультиплексора MUX 16-1 на основе простого мультиплексора MUX 4-1 и дешифратора DC 2-4 (рис.2, второй вариант

наращивания, см. выше). Исследовать мультиплексора MUX 16 – 1 в динамическом режиме. На адресные входы подать сигналы с 4-разрядного двоичного счетчика, на информационные входы D0 ...D15 – из табл. 2. Провести анализ временной диаграммы сигналов мультиплексора MUX 16–1.

Рисунок 9 – Логическая функция на мультиплексоре 16-1

Рисунок 10 - временная диаграмма сигналов

Вывод: были изучены принципы работы мультиплексора, а также способы построения на нем логических функций.