

1. (a) Determine the equations of the tangent and normal to the curve $x \sin xy = x^2 + y^2 - 1$ at the point (1,0).

(b) Given that $f(x, y) = xy^2 - x^2y$, where x = r - 2s and y = 3r + s, find

(i) $\frac{\partial f}{\partial r}$ (ii) $\frac{\partial f}{\partial s}$ (iii) $\frac{\partial^2 f}{\partial s^2}$ (iv) $\frac{\partial (x, y)}{\partial (r, s)}$ at the point -(r, s) = (2, 1).

2. (a) Investigate the limiting behaviour of the function

$$f(x, y) = \frac{x^2 y^2}{x^4 + y^2}$$
 as $(x, y) \to (0,0)$.

(b) If $u(x, y) = x^3y - 4xy^3 + 2y^3$, find du when x = 3, y = 2, $\Delta x = 0.3$ and $\Delta y = 0.02$.

(c) Given that u = xyz, v = xy + xz + yz and w = x + y + z, show that

$$\frac{\partial(u,v,v)}{\partial(x,y,z)} = (x-y)(y-z)(z-x).$$
 Surjet Suzxte so z 1.

13. (a) Show that the function $u(x, y) = 2x^3 - 3xy^2 + y^3$ satisfies the partial differential equation $u_{xx} + 2u_{xy} + 2u_{yy} = 0$.

(b) Find and classify all the critical points of the function $f(x, y) = 6xy - 3x^2y - 2xy^2$

4. (a) The acceleration of a particle at any time t is given by $\vec{a} = 12\cos 2t\mathbf{i} - 8\sin 2t\mathbf{j} + 24t\mathbf{k}$. If the velocity \vec{V} and displacement \vec{r} are zero at

(b) Classify the critical points (0,0,0), (2,-2,-2) and (-2,-2,2) of the function $f(x,y,z) = xyz - x^2 - y^2 - z^2$.

5. (a) If $f(x, y) = xye^{-xy}$, find (i) $f_{xx}(x, y)$ (ii) $f_{xy}(x, y)$ (i) $f_{yy}(x, y)$.

(b) Given $\vec{F} = x^2 y \mathbf{i} - xz \mathbf{j} + 5 yz \mathbf{k}$, evaluate $\int_C \vec{F} \cdot d\vec{r}$, C is the straight line joining (-1,0,1) to (1,2,-3).

6. (a) Define a harmonic function in R^2 , hence show that the function $u(x, y) = x^2 - y^2 - 2xy - x + y - 3$ is harmonic in R^2 .

(b) If V = xy, evaluate $\int V d\tau$, where τ is the volume bounded by the planes x = y = z = 0 and x + y + z = 1.

(2) = f'(x12).12 (2) (2-

UNIVERSITY OF JOS, DEPARTMENT OF MATHEMATICS, B.Sc./B.Ed. FIRST SEMESTER EXAMINATION 2017/2018 SESSION MTH202: ELEMENTARY DIFFERENTIAL EQUATIONS I – 3 CREDIT UNITS

Answer any FOUR Questions, Time Allowed: 2 Hours

- (a) Use the method of variable separable to solve the differential equation $(1+x^2)\frac{dy}{dx} = xy(1+y).$ (b) Use the method of variation of parameters to solve the differential equation $y'' y' 2y = 2e^{-x}$.
- 12. (a) Solve the first order linear differential equation $2(y-4x^2)dx + xdy = 0$. (b) Obtain the general solution of the Bernoulli's equation $xdy - [y + xy^3(1 + \ln x)]dx = 0$.
- (3. (a) Show that the differential equation $(ye^{xy} 2y^3)dx + (xe^{xy} 6xy^2 2y)dy = 0$ is exact and solve it. (b) Use Laplace transform to solve the initial value problem y'' + y' 2y = 2t, y(0) = 0, y'(0) = 1.
- 4. (a) Show that the differential equation $(x^2 xy + y^2)dx xydy = 0$ is homogeneous and solve it. (b) Obtain the solution of the differential equation $y'' + 4y = x^2 + 3e^x$, y(0) = 0, y'(0) = 2 using the method of undetermined coefficients.
- 5. (a) Find the general solution of the system $X' = \begin{pmatrix} 4 & -1 \\ -4 & 4 \end{pmatrix} X$. (b) If $L\{f(t)\} = F(s)$ and $L\{t'' f(t)\} = (-1)^n \frac{d''}{ds''} (F(s))$, then find $L\{t^2 \cos 2t\}$.
- 6. (a) Convert the differential equation $(x^4 + y^4)dx + xy^3dy = 0$ into an exact equation using an appropriate integrating factor and hence find a function, u(x, y) that satisfies such an equation.
 - (b) Solve the system of equations

$$X_1' = X_1 + X_2 + 2e'$$

$$X_2' = 4X_1 + X_2 - e'.$$

UNIVERSITY OF JOS
DEPARTMENT OF MATHEMATICS
FIRST SEMESTER EXAMINATION 2016/2017 SESSION
B.SC./B.ED: ELEMENTARY DIFFERENTIAL EQUATIONS 1 (3 CREDITS)
ANSWER ANY FOUR QUESTIONS, TIME ALLOWED: 2 ½ HOURS

- 1. What is a Differential equation? (a) Solve the First Order Differential equation $xdy + ydx = \sin x dx$. (b) Show that the equation $(xe^{\frac{y}{x}} + y)dx xdy = 0$ is homogeneous and solve it.
- 2. (a) Show that the equation $(2xy \tan y)dx + (x^2 x\sec^2 y)dy = 0$ is exact and solve it. (b) A certain radioactive material is known to decay at a rate proportional to the amount present. A block of this material originally having a mass of 100g is observed after 20 years to have a mass of only 80g. (i) Find an expression for the mass of the material at any time t. (ii) Find the half-life of the material.
- 3 (a) Solve the Differential equation $\frac{d^2y}{dx^2} 4\frac{dy}{dx} + 4y = 0$. (b)(i) Verify that e^x and x are solutions of the homogeneous equation corresponding to $(1-x)y^a + xy' y = 2(x-1)^2e^x$, 0 < x < 1 (ii) Find the general solution using variation of parameters.
- 4. Define a First Orde: System (a) Solve the system $\frac{(2D+1)X_1+DX_2=t}{(D-1)X_1+DX_2=2}$ (b) Find the general solution of the system $X'=\begin{pmatrix}2&9\\1&2\end{pmatrix}X$.
- 5. Given a function f(t), what is the Laplace Transform of f(t)? (a) Prove that $L\{\sin 3t\} = \frac{3}{s^2 + 9}$.
- (b) Hence find $L\{t^2 \sin 3t\}$ 6. (a) Show that $L\{e^{kt}\} = \frac{1}{s-k}$. (b) Find the inverse Laplace Transform of $F(s) = \frac{2s+1}{s^2+s-6}$.

UNIVERSITY OF JOS, DEPARTMENT OF MATHEMATICS, B.Sc./B.Ed. FIRST SEMESTER EXAMINATION 2017/2018 SESSION MTH202: ELEMENTARY DIFFERENTIAL EQUATIONS I – 3 CREDIT UNITS

Answer any FOUR Questions, Time Allowed: 2 Hours

- (a) Use the method of variable separable to solve the differential equation $(1+x^2)\frac{dy}{dx} = xy(1+y)$. (b) Use the method of variation of parameters to solve the differential equation $y'' y' 2y = 2e^{-x}$.
- 12. (a) Solve the first order linear differential equation $2(y-4x^2)dx + xdy = 0$. (b) Obtain the general solution of the Bernoulli's equation $xdy - [y + xy^3(1 + \ln x)]dx = 0$.
- (3. (a) Show that the differential equation $(ye^{xy} 2y^3)dx + (xe^{xy} 6xy^2 2y)dy = 0$ is exact and solve it. (b) Use Laplace transform to solve the initial value problem y'' + y' 2y = 2t, y(0) = 0, y'(0) = 1.
- 4. (a) Show that the differential equation $(x^2 xy + y^2)dx xydy = 0$ is homogeneous and solve it. (b) Obtain the solution of the differential equation $y'' + 4y = x^2 + 3e^x$, y(0) = 0, y'(0) = 2 using the method of undetermined coefficients.
 - 5. (a) Find the general solution of the system $X' = \begin{pmatrix} 4 & -1 \\ -4 & 4 \end{pmatrix} X$. (b) If $L\{f(t)\} = F(s)$ and $L\{t'' f(t)\} = (-1)'' \frac{d''}{ds''} (F(s))$, then find $L\{t^2 \cos 2t\}$.
- 6. (a) Convert the differential equation $(x^4 + y^1)dx + xy^3dy = 0$ into an exact equation using an appropriate integrating factor and hence find a function, u(x, y) that satisfies such an equation.
 - (b) Solve the system of equations

$$X_1' = X_1 + X_2 + 2e'$$

$$X_{1}' = 4X_{1} + X_{2} - e'$$

UNIVERSITY OF JOS
DEPARTMENT OF MATHEMATICS
FIRST SEMESTER EXAMINATION 2016/2017 SESSION
B.SC./B.ED: ELEMENTARY DIFFERENTIAL EQUATIONS 1 (3 CREDITS)
ANSWER ANY FOUR QUESTIONS, TIME ALLOWED: 2 ½ HOURS

- 1. What is a Differential equation? (a) Solve the First Order Differential equation $xdy + ydx = \sin xdx$. (b) Show that the equation $(xe^{\frac{y}{x}} + y)dx xdy = 0$ is homogeneous and solve it.
- 2. (a) Show that the equation $(2xy \tan y)dx + (x^2 x\sec^2 y)dy = 0$ is exact and solve it. (b) A certain radioactive material is known to decay at a rate proportional to the amount present. A block of this material originally having a mass of 100g is observed after 20 years to have a mass of only 80g. (i) Find an expression for the mass of the material at any time t. (ii) Find the half-life of the material.
- 3 (a) Solve the Differential equation $\frac{d^2y}{dx^2} 4\frac{dy}{dx} + 4y = 0$. (b)(i) Verify that e^x and x are solutions of the homogeneous equation corresponding to $(1-x)y^x + xy' y = 2(x-1)^2 e^x$, 0 < x < 1 (ii) Find the general solution using variation of parameters.
- 4. Define a First Order System. (a) Solve the system $\frac{(2D+1)X_1+DX_2=t}{(D-1)X_1+DX_2=2}$ (b) Find the general solution of the system $X'=\begin{pmatrix} 2 & 9 \\ 1 & 2 \end{pmatrix} X$.
- 5. Given a function f(t), what is the Laplace Transform of f(t)? (a) Prove that $L\{\sin 3t\} = \frac{3}{s^2 + 9}$ (b) Hence find $L\{t^2 \sin 3t\}$
- 6. (a) Show that $L\{e^{kt}\} = \frac{1}{s-k}$. (b) Find the inverse Laplace Transform of $F(s) = \frac{2s+1}{s^2+s-6}$.

UNIVERSITY OF JOS

DEPARTMENT OF MATHEMATIC

FIRST SEMESTER EXAMINATION 2015/2016 SESSION
B.S.C./B.ED. MTH 202 ELEMENTARY DIFFERENTIAL EQUATIONS 1 (3 CREDITS

ANSWER ANY FOUR QUESTIONS. TIME ALLOWED: 2 1/2 HOURS

can be solved by the use of an integrating factor. Give the integrating factor. (b) Hence solve the equations (i) $x \frac{dy}{dx} + 2y = e^x$. (ii) $(1+x) \frac{dy}{dx} + xy = (1+x)^2$.

- 2. (a) Solve the first order differential equation $\frac{dy}{dx} = xy y$.
 - (b) Show that the equation $(x^2 xy + y^2)dx xydy = 0$ is homogeneous and solve it.
 - (e) Find the general solution of the Bernoulli equation $y^2 \frac{dy}{dx} + \frac{y^3}{x} = x^3 + 4$.
- 3. (a) Determine the most general form of M or N, if the following equations are exact;
- (i) $M(x,y)dx + (2x^2y^3 + x^4y)dy = 0$. (ii) (2xy + y + 1)dx + N(x,y)dy = 0.
- (b) Show that the equation $[\cos(x+y) y\sin(xy)]dx + [\cos(x+y) x\sin(xy)]dy = 0$ is exact and solve it.
- 4. (a) Show that the Laplace transformation of y' is given by $s^2Y(s) sy(0) y'(0)$.
 - (b) Hence solve the initial value problem y'' + 3y' + 2y = 0, y(0) = 1, y'(0) = 0by Laplace transform.
 - (c) Evaluate L(t' sinh at)
 - 5. (a) Solve the differential equation $\left(\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 8y = 0\right)$
 - (b) Use the method of undetermined coefficients to obtain the solution of the initial value

problem
$$\frac{d^2y}{dx^2} + 4y = x^2 + 3e^x$$
, $y(0) = 0$, $y'(0) = 2$. (c) Use variation of parameters to solve

- the equation
$$\frac{d^2y}{dx^2} + y = \sin x$$

6. (a) Given a matrix $A = \begin{pmatrix} -2 & 1 \\ -5 & 4 \end{pmatrix}$ obtain the eigen values of A and its corresponding

eigenvectors. (b) Solve the system of equations
$$\begin{pmatrix} X_1 = X_1 + X_2 \\ X_2 = 4X_1 + X_2 \end{pmatrix}$$