# **Generated Clocks Demo Script**

## Introduction

This demonstration provides high-level instructions on creating constraints for generated clocks and analyzing the timing reports of the generated clock.

### **Preparation:**

• Required files: \$TRAINING PATH/Generated Clock/demo/KCU105/verilog

· Required hardware: None

## **Generated Clocks**

| Action with Description |                                                                                                                                                        | Point of Emphasis and Key Takeaway                                                                                                                |  |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--|
| •                       | Launch the Vivado™ Design Suite.                                                                                                                       |                                                                                                                                                   |  |
| •                       | Unzip the project using the Tcl Console:                                                                                                               |                                                                                                                                                   |  |
|                         | <pre>exec unzip \$::env(TRAINING_PATH)/ Generated_Clock/demo/KCU105/veri log.zip -d \$::env(TRAINING_PATH)/ Generated_Clock/demo/KCU105/veri log</pre> |                                                                                                                                                   |  |
| •                       | Open the wave_gen.xpr project from the following directory:  \$TRAINING_PATH/Generated_Clock/demo/KCU105/verilog                                       |                                                                                                                                                   |  |
| •                       | Open the synthesized design.                                                                                                                           | <ul> <li>You can open the synthesized design by using either:</li> <li>Flow Navigator</li> <li>Tcl Console</li> <li>Horizontal toolbar</li> </ul> |  |
| •                       | Open and view wave_gen_timing.xdc.                                                                                                                     | <ul> <li>How many clocks are created in the XDC?</li> <li>wave_gen_timing has one created clock constraint on clk_pin_p.</li> </ul>               |  |

|         | Action with Description           |   | Point of Emphasis and Key Takeaway                                                                                                                                                 |
|---------|-----------------------------------|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| • Enter | report_clocks in the Tcl Console. | • | report_clocks returns a table showing all the clocks in the design.                                                                                                                |
|         |                                   | • | How many clocks are returned from the report_clocks command?                                                                                                                       |
|         |                                   |   | <ul> <li>Four total clocks are returned from the<br/>command. You can observe that there<br/>are three generated clocks that are<br/>propagated from one primary clock.</li> </ul> |

```
Clock Report
 Attributes
       P: Propagated
       G: Generated
     A: Auto-derived
       R: Renamed
       V: Virtual
      I: Inverted

        Clock
        Period(ns)
        Waveform(ns)
        Attributes
        Sources

        clk_pin_p
        3.333
        {0.000 1.666}
        P
        {clk_pin_p}

        clkfbout_clk_core
        9.999
        {0.000 5.000}
        EGA
        {clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_gen_i0/clk_g
                                                                                                                                                                                              {clk_gen_i0/clk_core_i0/inst/mmcme3_adv_inst/CLKFBOUT}
                                                                                                                                                                                              {clk_gen_i0/clk_core_i0/inst/mmcme3_adv_inst/CLKOUT0}
                                                                                                                                                                                             {clk_gen_i0/clk_core_i0/inst/mmcme3_adv_inst/CLKOUT1}
 Generated Clocks
 Generated Clock : clkfbout_clk_core
Master Source : clk_gen_i0/clk_core_i0/inst/mmcme3_adv_inst/CLKIN1

Master Clock : clk_pin_p

Edges : {1 2 3}

Edge Shifts(ns) : {0.000 3.333 6.666}
 Generated Sources : {clk_gen_i0/clk_core_i0/inst/mmcme3_adv_inst/CLKFBOUT}
 Generated Clock : clk_out1_clk_core
Master Source : clk_gen_i0/clk_core_i0/inst/mmcme3_adv_inst/CLKIN1

Master Clock : clk_pin_p

Edges : {1 2 3}

Edge Shifts(ns) : {0.000 0.833 1.667}
 Generated Sources : {clk_gen_i0/clk_core_i0/inst/mmcme3_adv_inst/CLKOUT0}
Generated Clock : clk_out2_clk_core

Master Source : clk_gen_i0/clk_core_i0/inst/mmcme3_adv_inst/CLKIN1

Master Clock : clk_pin_p
 Edges : {1 2 3}
Edge Shifts(ns) : {0.000 0.914 1.828}
 Generated Sources : {clk_gen_i0/clk_core_i0/inst/mmcme3_adv_inst/CLKOUT1}
```

- What are generated clocks?
  - Clocks are generated automatically when a primary clock propagates to a cell that generates new clocks.
  - All these clocks can be described in XDC.

| Action with Description                                                                                                                                                                       | Point of Emphasis and Key Takeaway                                                                                                                      |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| View the details of the generated clocks in the report_clocks command output.                                                                                                                 | In addition to the summary of clocks, the report_clocks command shows how each generated clock is generated.                                            |  |  |
|                                                                                                                                                                                               | Master Source is the pin of the clock<br>management cell that receives the input<br>clock.                                                              |  |  |
|                                                                                                                                                                                               | Master Clock is the clock that propagated to the Master Source.                                                                                         |  |  |
|                                                                                                                                                                                               | The relationship between the master and generated clock is shown by:                                                                                    |  |  |
|                                                                                                                                                                                               | <ul> <li>Multiply By, Divided By, or Edges, and<br/>Edge Shift.</li> </ul>                                                                              |  |  |
| Let's find out one of the generated clocks<br>by using the master source as a pin.                                                                                                            | Clocks generated automatically by the tool are objects.                                                                                                 |  |  |
| • Enter get_clocks -of_objects [get_pins                                                                                                                                                      | Like all objects, they should be queried by using the available commands.                                                                               |  |  |
| <ul> <li>clk_gen_i0/clk_core_i0/inst/mmcm</li> <li>e3_adv_inst/CLKOUT1] in the Tcl</li> <li>console.</li> <li>This command returns the generated</li> <li>clock clk_out2_clk_core.</li> </ul> | The names of the clocks are not guaranteed to follow any naming convention and may vary between tool versions.                                          |  |  |
|                                                                                                                                                                                               | The clock should be obtained through an object to which it is attached.                                                                                 |  |  |
| Selecting the path with clk_out2_clk_core as the path group.                                                                                                                                  | The requirement used for a path running<br>on a generated clock is determined by the                                                                    |  |  |
| <ul> <li>Here you can select any path, one such<br/>path is selected here as an example.</li> </ul>                                                                                           | <ul> <li>attributes of the generated clock.</li> <li>The clock used for both the source and</li> <li>destination flip flop in running on the</li> </ul> |  |  |
| • Enter report_timing -from [get_pins uart_tx_i0/uart_baud_gen_tx_i0/i nternal_count_reg[2]/C] -to [get_pins uart_tx_i0/uart_baud_gen_tx_i0/i nternal_count_reg[6]/D] in the Tcl console.     | destination flip-flop is running on the clk_out2_clk_core, which is the output of the MMCM running at 193.75 MHz.                                       |  |  |
| View the contents of the report.                                                                                                                                                              |                                                                                                                                                         |  |  |

#### **Action with Description**

#### **Point of Emphasis and Key Takeaway**

```
Slack (MET) :
                          4.340ns (required time - arrival time)
                          uart tx i0/uart baud gen tx i0/internal count reg[2]/C
 Source:
                            (rising edge-triggered cell FDRE clocked by clk out2 clk core) {rise@0.000ns fall@2.580ns period=5.161ns})
                          uart_tx_i0/uart_baud_gen_tx_i0/internal_count_reg[6]/D
 Destination:
                            (rising edge-triggered cell FDSE clocked by clk_out2_clk_core) {rise@0.000ns fall@2.580ns period=5.161ns})
 Path Group:
                          clk out2 clk core
                          Setup (Max at Slow Process Corner)
 Path Type:
 Requirement:
                    5.161ns (clk_out2_clk_core rise@5.161ns - clk_out2_clk_core rise@0.000ns)
0.664ns (logic 0.250ns (37.651%) route 0.414ns (62.349%))
 Data Path Delay:
                    0.004H5 (105-1)
2 (LUT3=1 LUT5=1)
-0 145ns (DCD - SCI
 Logic Levels:
                          -0.145ns (DCD - SCD + CPR)
 Clock Path Skew:
   Destination Clock Delay (DCD): -1.061ns = (4.100 - 5.161)
   Source Clock Delay
                           (SCD):
                                      -0.684ns
   Clock Pessimism Removal (CPR): 0.232ns
 Clock Uncertainty: 0.071ns ((TSJ^2 + DJ^2)^1/2) / 2 + PE
   Total System Jitter (TSJ): 0.071ns
   Discrete Jitter (DJ):
                                      0.122ns
   Phase Error
                             (PE):
                                      0.000ns
```

- Note: The timing numbers may vary depending on the version of the Vivado Design Suite and the OS.
- View the source clock path and datapath delay from the report.
- Timing reports always start at primary clocks.
- Propagates forward to generated clocks, and then on to the clocked elements.
- The source clock path starts from clk\_pin\_p and propagates on to mmcm output CLKOUT1; i.e., the generated clock.

```
Propagation starts
(clock clk_out2_clk_core rise edge)
                                                                          at Primary Clock
                            0.000
                                        0.000 r clk_pin_p (IN)
net (fo=0)
                              0.000
                                        0.000 clk_gen_i0/clk_core_i0/inst/clkin1_ibufds/I
DIFFINBUF (Prop_DIFFINBUF_DIFF_IN_P_0)
                                        0.393 r clk_gen_i0/clk_core_i0/inst/clkin1_ibufds/DIFFINBUF_INST/O
                          0.393
net (fo=1, unplaced)
                                        0.394 clk_gen_i0/clk_core_i0/inst/clkin1_ibufds/OUT
IBUFCTRL (Prop_IBUFCTRL_I_O)
                        0.000
                                        0.394 r clk gen iO/clk core iO/inst/clkin1 ibufds/IBUFCTRL INST/O
net (fo=1, unplaced)
                              0.785
                                        1.179 clk_gen_i0/clk_core_i0/inst/clk_in1_clk_core
MMCME3_ADV (Prop_MMCME3_ADV_CLKIN1_CLKOUT1)
                             -4.855 -3.676 r clk_gen_i0/clk_core_i0/inst/mmcme3_adv_inst/CLKOUT
0.325 -3.351 clk gen_i0/clk core i0/inst/clk out2 clk core
net (fo=1, unplaced)
                                       -3.351 clk_gen_i0/clk_core_i0/inst/clk_out2_clk_core
BUFGCE (Prop_BUFGCE_I_O)
                             0.083
                                       -3.268 r clk gen i0/clk core i0/inst/clkout2 buf/0
                                                                                                           Automatically
net (fo=149, unplaced)
                             2.584 -0.684 uart_tx_i0/uart_baud_gen_tx_i0/clk
                                      r uart_tx_i0/uart_baud_gen_tx_i0/clk
r uart_tx_i0/uart_baud_gen_tx_i0/internal_count_reg[2]
                                                                                                             Generated
FDRE
FDRE (Prop_FDRE_C_Q)
                                     -0.569 r uart_tx_i0/uart_baud_gen_tx_i0/internal_count_reg[2]/Q
-0.403 uart_tx_i0/uart_baud_gen_tx_i0/internal_count_reg_n_0_[2]
                             0.16
0.95
.225
net (fo=7, unplaced)
LUT3 (Prop_LUT3_I2_0)
                                       -0.308 r uart_tx_i0/uart_baud_gen_tx_i0/internal_count[6]_i_2/0
net (fo=2, unplaced)
                                       -0.083 uart_tx_i0/uart_baud_gen_tx_i0/internal_count[6]_i_2_n_0
                              0.040
LUT5 (Prop LUT5 IO O)
                                       -0.043 r uart_tx_i0/uart_baud_gen_tx_i0/internal_count[6]_i_1/0
                                    r uart_tx_i0/uart_baud_gen_tx_i0/internal_count_reg[6]/D
net (fo=1, unplaced)
       Source Clock Delay
                                  Arrival Time
```

• **Note:** The timing numbers may vary depending on the version of the Vivado Design Suite and the OS.

| Action with Description                 | Point of Emphasis and Key Takeaway                                                                       |  |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------|--|
| View the destination clock path timing. | Like other setup checks, the destination clock delay starts at the next clock edge of the primary clock. |  |
|                                         | <ul> <li>Propagates to the generated clock and on<br/>to the destination flip-flop.</li> </ul>           |  |
|                                         | The slack is required time – arrival time.                                                               |  |
|                                         | Note that a minus sign is added by the tool which may cancel the minus of a negative number.             |  |



**Note:** The timing numbers may vary depending on the version of the Vivado Design Suite and the OS.

| Action with Description |                                                                                                                                                                                                                                                                                                                                | Point of Emphasis and Key Takeaway |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| •                       | From the Netlist window, select wave_gen > clk_gen_i0 and press <f4> to create a schematic.  Click + in clk_gen_i0 to expand.  Click + in clk_core_i0 to expand.  Click + in the inst module to expand it.  View the design schematic to analyze the logic for clk_samp (CLK).  Why should clk_samp (CLK) be constrained?</f4> | •                                  | Examining these above source and destination paths using the schematic.  A clock gate (BUFGCE/ BUFHCE) that is enabled periodically generates a decimated clock.  The period of the generated clock is N times the period of the input clock if the gate is activated one out of N clocks.  The timing engine cannot analyze the structure of the logic generating the CE and hence cannot automatically generate this clock.  clk_samp (CLK) is an example for this. You have to manually create a constraint for this generated clock.                                                                                                                                                                                |  |
| •                       | Enter the following command in the Tcl Console to manually create a constraint:  create_generated_clock -name clk_samp -source [get_pins {clk_gen_i0/BUFGCE_clk_samp_i0/I }] -divide_by 32 [get_pins {clk_gen_i0/BUFGCE_clk_samp_i0/O }]                                                                                       | •                                  | The generated clock can be manually generated with the create_generated_clock command.  create_generated_clock -name <name> -source <source/> <relationship> <objects>  • <name> is the user-assigned name for the new clock.  • <source/> is a port or pin that is associated with the clock to use as the reference clock.  • <relationship> is one of a number of options for specifying the relationship between the source clock and the generated clock.  • <objects> is the list of pins/ports/nets to attach the new clock to.  Save the constraints. You can see the new constraint in wave_gen_timing.xdc to create generated clock clk_samp.</objects></relationship></name></objects></relationship></name> |  |
| •                       | Enter report_clocks in the Tcl Console.                                                                                                                                                                                                                                                                                        | •                                  | Observe that clk_samp has been added under the generated clocks.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| •                       | Run the Timing Summary report.                                                                                                                                                                                                                                                                                                 |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |

#### **Action with Description**

- Select Intra clock paths > clk\_samp > setup in the Timing Summary report.
- Double-click any path under this group (the most critical path, for example) to view its properties.

#### **Point of Emphasis and Key Takeaway**

- The source clock delay always starts at the primary clock.
- Propagates through all generated clocks.
- In this case, propagates through both an automatically and manually generated clock.
- The requirement is the period of the manually generated clock.



- Note: The timing numbers may vary depending on the version of the Vivado Design Suite and the OS.
- View the Destination Clock Path section in the Timing Summary report.
- Like source clock delay, destination clock delay also starts at the primary clock and propagates through all generated clocks.



# **Summary**

This demonstration illustrated how to create generated clock constraints and analyze the timing reports of the generated clocks.

#### References:

- Supporting materials
  - Vivado Design Suite User Guide: Using Constraints (UG903)
  - Vivado Design Suite User Guide: Design Analysis and Closure Techniques (UG906)