http://www.math.uni.wroc.pl/~aracz

7 kwietnia 2018 r.

Zastosowania równań liniowych rzędu drugiego

Zadanie 73. Sprawdzono eksperymentalnie, że ciężarek o masie 1 kg zawieszony na pewnej sprężynie rozciąga ją o 49/320 metra. Ciągniemy ten ciężarek w dół o dodatkowe 1/4 metra i puszczamy. Oblicz amplitudę, okres i częstotliwość powstałych drgań. Przyjmij g=9.8 m/s².

Zadanie 74. Niech $y(t) = Ar^{r_1t} + Be^{r_2t}$ gdzie $|A| + |B| \neq 0$.

- a) Udowodnij, że y(t) zeruje się najwyżej raz.
- b) Udowodnij, że y'(t) zeruje się najwyżej raz.

Zadanie 75. Niech $y(t) = (A + Bt)e^{rt}$ gdzie $|A| + |B| \neq 0$.

- a) Udowodnij, że y(t) zeruje się najwyżej raz.
- b) Udowodnij, że y'(t) zeruje się najwyżej raz.

Zadanie 76. Mały ciężarek o masie 1 kg jest zawieszno na sprężynie o stałej sprężystości równej 2 N/m. Cały układ jest zanurzony w lepkiej cieczy o współczynniku tłumienia 3 Ns/m. W chwili t=0 ciężarek wychylono o 1/2 m od położenia równowagi. Udowodnij, że po zwolnieniu ciężarka powróci on bezpośrednio do stanu równowagi gdy $t\to\infty$.

Zadanie 77. Mały ciężarek o masie 1 kg jest zawieszno na sprężynie o stałej sprężystości równej 1 N/m. Cały układ jest zanurzony w lepkiej cieczy o współczynniku tłumienia 2 Ns/m. W chwili t=0 ciężarek wychylono o 1/4 m od położenia równowagi. Udowodnij, że po nadaniu ciężarkowi w chwili początkowej prędkości 1 m/s, minie on położenie równowagi, a następnie powoli powróci do stanu równowagi gdy $t \to \infty$.

Zadanie 78. Na ciężarek o masie 4 kg, zawieszony na sprężynie o stałej strężystości 64 N/m, działa okresowo siła $F(t) = A\cos^3\omega t$. Znajdź wszystkie wartości ω , dla których zachodzi rezonans. Tłumienie drgań pomijamy.

Zadanie 79. Działo w czołgu jest przymocowane do układu pochłaniającego drgania o stałej sprężystości $100\alpha^2$ i stałej tłumienia 200α (w odpowiednich jednostkach). Masa działa wynosi 100 kg. Załóżmy, że funkcja y(t) opisująca wychylenie działa ze stanu spoczynku po oddaniu strzału w chwili t=0, spełnia zagadnienie początkowe

$$100y'' + 200\alpha y' + 100\alpha^2 y = 0; \quad y(0) = 0, \quad y'(0) = 100 \text{ m/s}.$$

Wymaga się, aby po oddaniu strzału wielkość $y^2 + (y')^2$ była mniejsza niż 0,01. Jak duże musi być α żeby to zagwarantować pół sekundy po oddaniu strzału?

Zadanie 80. Znajdź rozwiązanie szczególne $\phi(t)$ równania $my'' + cy' + ky = F_0 \cos \omega_0 t$ w postaci $\psi(t) = A \cos(\omega t - \phi)$. Udowodnij, że aplituda drgań A jest największa gdy $\omega^2 = \omega_0^2 - \frac{1}{2}(c/m)^2$. Taka wartość ω nazywa się *częstotliwością rezonansową* układu. Co dzieje się w tym układzie gdy $\omega_0^2 < \frac{1}{2}(c/m)^2$.

Równania liniowe wyższych rzędów

Zadanie 81. Znajdź rozwiązania następujących zagadnień:

- a) $y^{(iv)} y = 0$, y(0) = 1, y'(0) = y''(0) = 0, y'''(0) = -1;
- b) $y^{(v)} 2y^{(iv)} + y''' = 0$, y(0) = y'(0) = y''(0) = y'''(0) = 0, $y^{(iv)}(0) = -1$;
- c) $y^{(iv)} + y'' = t$, y(0) = 0, y'(0) = 2, y''(0) = 1, y'''(0) = 0, $y^{(iv)}(0) = 1$;
- d) $y''' 2y'' + y' = e^t$, y(0) = 2, y'(0) = y''(0) = y'''(0) = 0, $y^{(iv)}(0) = 1$.

Rozwiazania w postaci szeregów potęgowych

Zadanie 82. Znajdź rozwiązanie ogólne równań: y'' + ty' + y = 0, y'' - ty = 0, $y'' - t^3y = 0$. Zbadaj promień zbieżności otrzymanych szeregów potęgowych.

Zadanie 83. Znajdź rozwiazanie następujacych zagadnień:

- a) $y'' + t^2y = 0$, y(0) = 2, y'(0) = -1
- b) t(2-t)y'' 6(t-1)y' 4y = 0, y(1) = 1, y'(1) = 0

Zadanie 84. Równanie postaci $y'' - 2ty' + \lambda y = 0$, gdzie λ jest pewną stałą nazywa się równaniem Hermite'a. (a) Znajdź dwa niezależne rozwiązania równania Hermite'a. (b) Udowodnij, że dla $\lambda = 2n$ (n - liczba naturalna) równanie Hermite'a ma rozwiązanie w postaci wielomianu stopnia n

Zadanie 85. W poniższych zagadnieniach znajdź rekurencyjne wzory na współczynniki w rozwinieciu rozwiązania w szereg $\sum_{n=0}^{\infty}a_nt^n$ (PS. W przypadku problemów wyznacz tylko pięć pierwszych współczynników szeregu.)

- y(0) = 1, y'(0) = 0;a) (1-t)y'' + ty' + y = 0,
- b) $y'' + ty' + e^t y = 0$, y(0) = 1, y'(0) = 0;
- c) $y'' + y' + e^{-t}y = 0$, y(0) = 3, y'(0) = 5;

Transformata Laplace'a

Zadanie 86. Stosując wzór $\int_0^\infty e^{-x^2} dx = \sqrt{\pi}/2$ oblicz $\mathcal{L}\{t^{-1/2}\}$.

Zadanie 87. Uzasadnij, że każda z podanych funkcji ma wzrost podwykładniczy:

 t^n (dla każdego n > 0); $\sin at$; $e^{\sqrt{t}}$.

Zadanie 88. Uzasadnij, że nie istnieje transformata Laplace'a funkcji e^{t^2} .

Zadanie 89. Załóżmy, że f(t) ma wzrost podwykładniczy. Udowodnij, że $F(s) = \mathcal{L}\{f(t)\}$ daży do $0 \text{ gdy } s \to \infty.$

$$\mathcal{L}\left\{\frac{d^{n}f(t)}{dt^{n}}\right\} = s^{n}F(s) - s^{n-1}f(0) - \dots - \frac{(d^{n-1}f)(0)}{dt^{n-1}}$$

Zadanie 90. Niech $F(s) = \mathcal{L}\{f(t)\}$. Udowodnij indukcyjnie, że $\mathcal{L}\left\{\frac{d^n f(t)}{dt^n}\right\} = s^n F(s) - s^{n-1} f(0) - \ldots - \frac{(d^{n-1} f)(0)}{dt^{n-1}}.$ **Zadanie 91.** Stosując transformatę Laplace'a znajdź rozwiązania następujących zagadnień:

- a) $y'' 5y' + 4y = e^{2t}$, y(0) = 1, y'(0) = -1;
- b) $y'' 3y' + 2y = e^{-t}$, y(0) = 1, y'(0) = 0;
- c) $y''' 6y'' + 11y' 6y = e^{4t}$, y(0) = 0, y'(0) = 0, y''(0) = 0;

Zadanie 92. Oblicz transformaty Laplace'a funkcji: t^n , $t^n e^{at}$, $t \sin at$, $t^2 \cos at$.

Zadanie 93. Załóżmy, że $F(s) = \mathcal{L}\{f(t)\}$ oraz granica $\lim_{t \searrow 0} f(t)/t$ istnieje. Udowodnij, że $\mathcal{L}\{f(t)/t\} =$ $\int_{s}^{\infty} F(u) du$.

Oblicz transformaty Laplace'a funkcji: $\frac{\sin t}{t}$, $\frac{\cos at-1}{t}$, $\frac{e^{at}-e^{bt}}{t}$.

Zadanie 94. Stosując transformatę Laplace'a znajdź rozwiązania następujących zagadnień:

- a) $y'' + y = \sin t$, y(0) = 1, y'(0) = 2;
- b) $y'' + y = t \sin t,$ y(0) = 1, y'(0) = 2;
- c) $y'' + y' + y = 1 + e^{-t}$, y(0) = 3, y'(0) = -5;

Andrzej Raczyński