

Thesis Title

Kjetil Børs-Lind

December 2016

PROJECT

Department of Production and Quality Engineering
Norwegian University of Science and Technology

Supervisor 1: Professor Ask Burlefot

Supervisor 2: Professor Fingal Olsson

Preface

Some preface.

Trondheim, 2012-12-16

(Your signature)

Ola Nordmann

Acknowledgment

I would like to thank the following persons for their great help...

O.N.

(Your initials)

Summary and Conclusions

...

Contents

	Pref	face	j
	Ack	nowledgment	ii
	Sun	nmary and Conclusions	iii
1	Intr	roduction	2
	1.1	Background	2
		Objectives	2
	1.3	Limitations	3
		Approach	3
			3
	1.5	Structure of the Report	3
2	Exis	sting Solutions	4
	2.1	CyberSea Simulator	4
3	Imp	plementation and Simulation of Sensors	5
	3.1	Sensors Implemented on Odin	5
		3.1.1 Radar	5
		3.1.2 Lidar	5
	3.2	Generating Virtual Sensor Data	5
		3.2.1 Generating Data from Virtual Environment	5
		3.2.2 Raw vs Preprocessed Sensor Data	6
4	Sim	nulator - HIL interface	7
	4.1	Physical Interface	7
	4 2	Software Interface	7

CONTENTS 1

		4.2.1 Necessary Exchange of Information	7		
		4.2.2 Message Protocol	7		
5	Log	ging and Visualization of Simulation	8		
	5.1	Logging	8		
	5.2	Visualization	8		
	5.3	C++ example?	8		
6	Use	of Model in Autonomous Testing Environment (ROS)	9		
7	Oth	ner Agents and their Behavior as Part of Simulated Environment	10		
	7.1	Possible Agents	10		
		7.1.1 Ships	10		
		7.1.2 Small Boats	10		
	7.2	Pros and Cons of Agents Behavior	10		
		7.2.1 Reactivity?	10		
		7.2.2 Predictability	10		
		7.2.3 Possibility of Repeating Scenario	10		
8	Sun	nmary	11		
	8.1	Summary and Conclusions	11		
	8.2	Discussion	11		
	8.3	Recommendations for Further Work	11		
A	Acre	onyms	12		
В	Add	litional Information	13		
	B.1	Introduction	13		
		B.1.1 More Details	13		
Bi	Bibliography				

Introduction

Introduction to the problem, some background about the Survey Explorer project..

1.1 Background

Where do we stand? What has been done before?

Problem Formulation

Literature Survey

What Remains to be Done?

...

1.2 Objectives

The main objectives of this project are

- 1. Investigate existing solutions for HIL testing of autonomous boat
- 2. Describe implementation of sensors and data processing on Odin and/or Jolner for situational awareness above the surface.

- 3. Discuss complexity and solutions related to simulation of raw sensor data from Radar, Lidar and camera versus simulation of pre-processed data.
- 4. Specify interface between simulator and autonomous navigation system.
- 5. Specify system for logging and visualization of simulation in real-time and for post simulation analysis.
- 6. Necessary protyping in C++ and MATLAB to verify assumptions.
- 7. Investigate which other agents (ships, small boats etc.) that can be interesting to implement as a part of the simulation environment.
- 8. Discuss methods for using the model as a part of an automized test environment related to ROS, MROS, scripting, repetition and regression testing.

1.3 Limitations

1.4 Approach

1.5 Structure of the Report

The rest of the report is organized as follows. Chapter 2 gives an introduction to ...

Existing Solutions

2.1 CyberSea Simulator

The CyberSea Simulator developed by Marine Cybernetics is a simulator for HIL testing of Dynamic Positioning (DP) systems.

Key points from [Johansen et al. (2005)]:

- Capabilities for data logging and real-time presentation of results
- Emphasis on vessel dynamics and accurate simulation of vessel motion at low speed (<
 3kts, wave, wind and current loads (of course, because of DP) in six degrees of freedom
 "using a nonlinear rigid-body model of the vessel".
- Several options for interface between HIL Simulator and Computer Control System ("Analog, digital, serial/NMEA protocol", normal network protocol or "dedicated test I/O built into the DP computer system").
- Generation of realistic signals from all the common sensors and position reference systems (such as "Gyro-compasses, VRUs, wind sensors, thruster feedback [...], power feedback from thrusters, switchboard and generator sets") used in modern DP technology "contaminated with typical noise levels".
- Advanced generation of GNSS signals with possibility of simulating a broad specter of common failure modes.

- 2.2 MSS (Fossen)
- 2.3 MCSim (Marine Cybernetics)
- 2.4 Gazebo (ROS)

Implementation and Simulation of Sensors

3.1 Sensors Implemented on Odin

A brief description of the sensors on Odin used for situational awareness above the surface. How is the data processed?

3.1.1 Radar

...

3.1.2 Lidar

...

3.2 Generating Virtual Sensor Data

How to generate realistic sensor data during simulation. Discuss complexity and benefits regarding generating raw data versus preprocessed information.

3.2.1 Generating Data from Virtual Environment

Using maps of sea and coast line, information of other simulated agents and 3D models of installations in sea (for example harbors) to decide what the sensors "see".

3.2.2 Raw vs Preprocessed Sensor Data

Complexity and benefits regarding generating raw data versus preprocessed information.

Simulator - HIL interface

- 4.1 Physical Interface
- 4.2 Software Interface
- **4.2.1** Necessary Exchange of Information
- 4.2.2 Message Protocol

Logging and Visualization of Simulation

- 5.1 Logging
- 5.2 Visualization
- **5.3** C++ example?

Use of Model in Autonomous Testing Environment (ROS)

Other Agents and their Behavior as Part of Simulated Environment

- 7.1 Possible Agents
- **7.1.1 Ships**
- 7.1.2 Small Boats
- 7.2 Pros and Cons of Agents Behavior
- 7.2.1 Reactivity?
- 7.2.2 Predictability
- 7.2.3 Possibility of Repeating Scenario

Summary and Recommendations for Further Work

- 8.1 Summary and Conclusions
- 8.2 Discussion
- **8.3** Recommendations for Further Work

Appendix A

Acronyms

FTA Fault tree analysis

MTTF Mean time to failure

RAMS Reliability, availability, maintainability, and safety

Appendix B

Additional Information

This is an example of an Appendix. You can write an Appendix in the same way as a chapter, with sections, subsections, and so on.

B.1 Introduction

B.1.1 More Details

Bibliography

Johansen, T. A., Fossen, T. I., and Vik, B. (2005). Hardware-in-the-loop testing of dp systems. Technical report, Marine Cybernetics, Norwegian University of Science and Technology, Trondheim, Norway.