CLAIMS

What is claimed is:

1

8.

1	1.	A transmitter coupled to at least two single-channel links of a high-bandwidth
2	link, the transmitter comprising:	
3	at least two registers each associated with a single channel link and each receiving a	
4		ser data provided to the transmitter from a module; and
5	a fra	mer providing i) the user data from the module as a packet having a packet
6	delineator and based on a packet format, and ii) the packet delineator on a particular single-	
7	channel link; and	
8 9 10	where	ein one register provides a portion of the packet with the packet delineator to a
9	particular single-channel link, and each register provides a corresponding portion of the packet	
	to an associated single-channel link.	
1	2.	The invention as recited in claim 1, wherein, for a sequence of packets, the
2	transmitter inserts inter-packet fill to provide the packet delineator of each packet on the	
	particular single-channel link.	
1 1 12	3.	The invention as recited in claim 1, wherein at least one single-channel link is a
± 2	serial link.	
1	4.	The invention as recited in claim 3, wherein the serial link is an 8B/10B encoded
2	link operating in accordance with either a Ethernet standard, a Fibre-channel standard, or a	
3	Infiniband standard.	
1	5.	The invention as recited in claim 3, wherein the serial link applies scrambling to
2	the packet including the user data.	
1	6.	The invention as recited in claim 3, wherein the serial link operates in accordance
2	with a SONET standard.	
1	7.	The invention as recited in claim 1, wherein the at least two single-channel links
2	are parallel links.	

The invention as recited in claim 7, wherein the parallel links operate in

1

2

3

- 2 accordance with either a PCI bus standard or a RapidIO standard.
- 9. The invention as recited in claim 1, wherein the transmitter operates in a node in accordance with an asynchronous transfer mode standard or a synchronous optical network standard.
- 1 10. The invention as recited in claim 1, wherein the transmitter is embodied in an integrated circuit.
- 1 11. A receiver generating user data for a module from a packet received from at least two single-channel links forming a high-bandwidth link, the receiver comprising:
 - at least two registers each receiving a portion of the packet, wherein

one register provides a portion of the packet with a packet delineator from a particular single channel link, and each register provides a corresponding portion of the packet from an associated single-channel link; and

a framer that 1) forms the packet from the packet delineator and 2) extracts the user data based on a packet format.

- 12. The invention as recited in claim 11, wherein the packet format includes information in at least one message channel other than the user data.
- 13. The invention as recited in claim 11, wherein the packet format includes error detection or error detection/correction information.
- 14. The invention as recited in claim 13, wherein the error detection or error detection/correction information is cyclic redundancy check information.
- 1 15. The invention as recited in claim 11, wherein the packet format allows for discarding of inter-packet fill.
- 1 16. The invention as recited in claim 11, wherein the apparatus operates in a node in accordance with an asynchronous transfer mode standard or a synchronous optical network standard.
- 1 17. The invention as recited in claim 11, wherein the circuit is embodied in an 2 integrated circuit.

2

1

2

3

4

5

6

7

8

- 1 18. A method of transmitting user data from a module over at least two singlechannel links of a high-bandwidth link, the method comprising the steps of:
 - (a) receiving, in each of at least two registers each having a corresponding single channel link, a portion of user data from the module; and
 - (b) providing 1) the user data as a packet having a packet delineator based on a packet format, and 2) the packet delineator on a particular single-channel link; and

wherein one register provides a portion of the packet with the packet delineator to a particular single-channel link, and each register provides a corresponding portion of the packet to an associated single-channel link.

- 19. The invention as recited in claim 18, wherein step (b) further includes the step of inserting inter-packet fill such that the packet delineator occurs on the particular single-channel link for each packet in a sequence of packets.
- 20. The invention as recited in claim 18, wherein, for step (b) at least one single-channel link is a serial link.
- 21. The invention as recited in claim 20, wherein, for step (b) the serial link is an 8B/10B encoded link operating in accordance with either a Ethernet standard, a Fibre-channel standard, or a Infiniband standard.
- 22. The invention as recited in claim: 20, further including the step of scrambling at least one portion of the packet including the user data.
- 23. The invention as recited in claim 20, wherein, for step (b), the serial link operates in accordance with a SONET standard.
- 1 24. The invention as recited in claim 18, wherein, for step (b) the at least two singlechannel links are parallel links.
- The invention as recited in claim 18, wherein, for step (b) the parallel links operate in accordance with either a PCI bus standard or a RapidIO standard.
- The invention as recited in claim 18, wherein the method is implemented within a node in accordance with an asynchronous transfer mode standard or a synchronous optical network standard.

2

1

2

4

- 1 27. The invention as recited in claim 18, wherein the method is implemented within a 2 processor of an integrated circuit.
- 28. A method of generating user data for a module from a packet received from at least two single-channel links forming a high-bandwidth link, the method comprising the steps of:
 - (a) receiving, in each of at least two registers, a corresponding portion of the packet;
- (b) providing 1) a portion of the packet with a packet delineator from a particular single channel link, and 2) a corresponding portion of the packet from an associated single-channel link;
 - (c) forming the packet from the packet delineator; and
 - (d) extracting the user data based on a packet format.
 - 29. The invention as recited in claim 28, wherein step (d) extracts information in at least one message channel other than the user data.
 - 30. The invention as recited in claim 28, wherein step (c) forms the packet based on error detection or error detection/correction information included with the packet in accordance with the packet format.
 - 31. The invention as recited in claim 39, wherein the error detection or error detection/correction information is cyclic redundancy check information.
- 1 32. The invention as recited in claim 28, wherein step (c) discards inter-packet fill.
- 1 33. The invention as recited in claim 28, wherein the method is implemented within a node in accordance with an asynchronous transfer mode standard or a synchronous optical network standard.
 - 34. The invention as recited in claim 28, wherein the method is implemented within a processor of an integrated circuit.