Dernière mise à jour	Informatique	Denis DEFAUCHY – <u>Site web</u>	
07/02/2023	2 – Dictionnaires et	Dácumá	
	programmation dynamique	Résumé	

Informatique

2

Dictionnaires et programmation dynamique

Résumé

Dernière mise à jour	Informatique	Denis DEFAUCHY – <u>Site web</u>
07/02/2023	2 – Dictionnaires et programmation dynamique	Résumé

Principe		
Problème	Un problème d'optimisation est posé au rang n	
Force brute	Les algorithmes par force brute qui étudient toutes les possibilités sont souvent de complexité en temps de l'ordre de 2^n ou 3^n	
Sous problème simple	Trouver un sous problème plus simple qui permet de passer du rang n-1 au rang n par récurrence	
Initialisation	Initialiser le traitement au rang 0	
Récurrence (Equation de Bellman)	Itérer par récurrence jusqu'au rang n	
Résultat	Obtenir le résultat attendu	
Etapes intermédiaires (Rétro programmation)	Remonter la solution pour obtenir les étapes intermédiaires	

	Exemple : Partition équilibrée d'enti	•		
Problème	On souhaite partitionner un ensemble d'entiers strictement positifs $E=\{e_0,e_1,\dots,e_{n-1}\}$ de somme totale S_E en deux familles F et G avec $E=F\cup G$ et $F\cap G=\emptyset$ telles que la somme des éléments de F soit aussi proche que possible de la somme des éléments de G			
Sous problème simple	Pour $i \in [0, n]$ et $j \in [0, S]$ avec $S = \left\lfloor \frac{S_E}{2} \right\rfloor$, est-il possible de trouver un sousensemble avec au plus i éléments parmi les premiers éléments $E_i =$			
Initialisation	$D(i,j) = \begin{cases} T \\ False \end{cases}$	$\{e_0,e_1,\dots,e_{i-1}\} \text{ de } E \text{ dont la somme est \'egale \'a } j ?$ $D(i,j) = \begin{cases} True \ si \ j = 0 \\ False \ si \ i = 0 \ et \ j \neq 0 \end{cases}$ $\forall i \in [1,n], \forall j \in [1,S]$		
Récurrence (Equation de Bellman)	$\forall i \in [1,n], \forall j \in [1,S]$ $D(i,j) = D(i-1,j) \ ou \ (j \ge e_{i-1} \ et \ D(i-1,j-e_{i-1}))$ Remplissage d'une table visible ci-dessous			
Résultat	La plus grande valeur de j telle que $D(n,j)=True$ indique la plus grande demisomme atteignable avec tous les éléments de E			
Etapes intermédiaires (Rétro programmation)	deux conditions : $ - C1: D(i-1,j) = True: \text{On rempas l'élément } e_i \text{ à } F, \text{ on l'ajoute } c \\ - C2: j \geq e_{i-1} \text{ et } D(i-1,j-e_{i-1}) \\ \text{ une ligne au-dessus et } e_{i-1} \text{ cases} \\ \text{Alors, tant que } i > 0 \text{ ou } j > 0: \text{ je privilég} \\ - \text{Si C1 } (\forall \text{C2}): \text{Action associée à C1} \\ - \text{Sinon } (\text{C2}): \text{action associée à C2} \\ \hline \text{Chemin en privilégiant C1} \\ \hline $	$P(i) = True : On va à la case (i-1, j-e_{i-1}) $ sà gauche, et on ajoute e_{i-1} à F gie C1		
	$F = \{1,1\}$; $G = \{1,2\}$	$F = \{1,1\}$; $G = \{2,1\}$		

Dernière mise à jour	Informatique	Denis DEFAUCHY – <u>Site web</u>
07/02/2023	2 – Dictionnaires et programmation dynamique	Résumé

Méthodes de programmation

On remplit généralement une table à deux dimensions qui représente l'intégralité des sous problèmes traités lors de la résolution et un utilise généralement un dictionnaire pour mémoriser ces cas. Les clés sont des couples (i,j) et les valeurs sont celles que renvoie l'algorithme

La programmation itérative est très simple à mettre en œuvre

Méthode itérative « de bas en haut »

Méthode récursive « de haut en bas »

La méthode récursive doit impérativement être mémoïsée afin que la complexité soit la même qu'avec la méthode itérative.

On passe souvent par une première fonction simple qui renvoie une valeur du tableau, mais de complexité importante, pour ensuite l'intégrer à une version mémoïsée

```
def PEEP_it(E):
    D = {}
    S = sum(E)
    ni = len(E)
    nj = int(S/2)
    for i in range(ni+1):
        D[(i,0)] = True
    for j in range(1,nj+1):
        D[(0,j)] = False
    for i in range(1,ni+1):
        for j in range(1,ni+1):
            c1 = D[(i-1,j)]
            e = E[i-1]
            c2 = (j >= e) and D[(i-1,j-e)]
            D[(i,j)] = c1 or c2
```

return D

```
if j==0:
    return True
elif i==0:
    return False
else:
    c1 = PEEP_rec_ij(i-1,j,E)
    e = E[i-1]
    c2 = (j >= e) and PEEP_rec_ij(i-1,j-e,E)
    return (c1 or c2)
```

```
def PEEP_rec_mem(E):
    def rec(i,j,E):
         if (i,j) in dico:
              return dico[(i,j)]
          else:
              if j==0:
                   res = True
              elif i==0:
                   res = False
                   c1 = rec(i-1,j,E)
                    e = E[i-1]
                   c2 = (j >= e) and rec(i-1,j-e,E)
res = (c1 or c2)
              dico[(i,j)] = res
              return res
    dico = \{\}
    S,ni,nj = sum(E),len(E),len(E)//2
for i in range(ni+1):
         for j in range(nj+1):
               rec(i,j,E)
     return dico
```

Attention à bien créer la variable intermédiaire res puis à l'utiliser (ne pas faire plusieurs appels de rec)

De même, c'est un détail qui coûte le prix du hachage, renvoyer res plutôt que dico[(i,j)] Parfois, la version descendante ne calcule pas toutes les cases et peut être légèrement plus intéressante

Dans les deux cas, avec la liste $\{1,1,2,1\}$, on obtient une table de dimensions (n+1)(S+1):

e_i	i∖j	0	1	2
1	0	1	0	0
1	1	1	1	0
2	2	1	1	1
1	3	1	1	1
	4	1	1	1

Remarque : A chaque étape k, il est possible de stocker l'étape k-1 y ayant conduit dans le dictionnaire, pour réaliser ensuite relativement simplement la remontée de la solution ex : TD2-3 – Le compte est bon

Dernière mise à jour	Informatique	Denis DEFAUCHY – <u>Site web</u>
07/02/2023	2 – Dictionnaires et programmation dynamique	Résumé

	Exemples des TD au programme		
	L'ensemble E est de dimension n . On souhaite partitionner un ensemble d'entiers strictement positifs		
2.5	$E = \{e_0, e_1,, e_{n-1}\}\$ de somme totale S_E en deux familles F et G avec $E = F \cup G$ et $F \cap G = \emptyset$ telles		
2-4	que la somme des éléments de F soit aussi proche que possible de la somme des éléments de G		
Partition équilibrée	Pour $i \in [0, n]$ et $j \in [0, S]$ avec $S = \left \frac{S_E}{2} \right $, est-il possible de trouver un sous-ensemble avec au plus i		
d'un tableau	Four $t \in [0, n]$ et $j \in [0, S]$ avec $S = [\frac{1}{2}]$, est-ii possible de trouver un sous-ensemble avec au plus t		
d'entiers	éléments parmi les premiers éléments $E_i = \{e_0, e_1,, e_{i-1}\}$ de E dont la somme est égale à j ? True $si \ j = 0$		
positifs PEEP	$\forall i \in [0,n], \forall j \in [0,S], D(i,j) = \begin{cases} True \ si \ j = 0 \\ False \ si \ i = 0 \ et \ j \neq 0 \\ D(i-1,j) \ ou \ (j \geq e_{i-1} \ et \ D(i-1,j-e_{i-1})) \end{cases}$		
O(nS)	$D(i-1,j)$ ou $D(i-1,j)$ ou $D(i-1,j)$ ou $D(i-1,j)$ $D(i-1,j-e_{i-1})$ La plus grande valeur de $D(i-1,j)$ telle que $D(i-1,j)$ D		
	tous les éléments de $\it E$		
	Soit $E = \{e_0, e_1, \dots, e_{n-1}\}$ un ensemble fini de n objets tels que chaque objet possède un poids $p_i > 0$		
	(contrainte) et une valeur $v_i > 0$ (objectif). On souhaite déterminer le sous ensemble F de E maximisant la somme total des valeurs de ses éléments, pour un poids limité à une valeur maximale		
2-5	P_{max} (dans un sac à dos).		
Ordonnancem	Quelle est la valeur maximale atteinte avec des éléments parmi les i premiers éléments de E pour un		
ent de tâches	poids du sac valant au plus i		
pondérées	0 si i = 0		
OTP	$\forall i \in [0, n], \forall i \in [0, P_{max}], D(i, j) = \begin{cases} max \begin{pmatrix} D(i-1, j) \\ p(i-1, j) \end{pmatrix} & \text{si } j \geq p_{i-1} \end{cases}$		
$O(nP_{max})$	$\forall i \in [0, n], \forall j \in [0, P_{max}], D(i, j) = \begin{cases} 0 \text{ si } i = 0 \\ D(i - 1, j) \\ D(i - 1, j - p_{i-1}) + v_{i-1} \end{cases} \text{ si } j \ge p_{i-1}$ $D(i - 1, j) \text{ sinon}$		
	La dernière case $D(n, P_{max})$ donne la valeur maximale atteinte en piochant parmi tous les éléments de		
	Soient $X_n = [x_1,, x_n]$ et $Y_m = [y_1,, y_m]$ deux séquences. Appelons X_i et Y_i les séquences X et Y		
	contenant leurs i premiers termes. On souhaite trouver la plus longue sous-séquence commune à X_n et		
2-6	Y_m (ex:agbcjkf & abdef \rightarrow abf).		
Plus longue	Quelle est la longueur de la PLSC entre X_i et Y_i , séquences X et Y contenant leurs i premiers termes		
sous-suite	0 - i = 0 - i = 0		
commune PLSC	$\forall i \in [0, n], \forall j \in [0, m], D(i, j) = \begin{cases} 0 \text{ st } t = 0 \text{ ou } j = 0 \\ D(i - 1, j - 1) + 1 \text{ st } x_i = y_j \\ max \begin{pmatrix} D(i - 1, j) \\ D(i - 1, j) \end{pmatrix} \text{ st } x_i \neq y_j \end{cases}$		
O(nm)			
O (IIII)			
	La dernière case $D(n,m)$ donne la longueur de la PLSC de X et Y		
	Soient deux chaines de caractères M_1 et M_2 de tailles respectives N_1 et N_2 . On cherche le nombre de modifications (insertion, suppression, remplacement) minimal à réaliser pour passer de l'une à l'autre.		
	Quelle est la distance de Levenshtein entre $M1_i$ et $M2_i$, contenant respectivement les i premières		
2-7	lettres de M_1 et les j premières lettres de M_2		
Distance	0		
d'édition	i si i = 0		
Levenshtein	$(D(i-1,j-1) \text{ si } M_1[i-1] = M_2[j-1]$		
$O(N_1N_2)$	$\forall i \in [0, N_1], \forall j \in [0, N_2], D(i, j) = \begin{cases} D(i - 1, j - 1) \end{cases}$		
\ 1 2'	$\begin{cases} sinon \\ 1 + min \\ D(i-1,j) \end{cases}$ sinon		
	$\forall i \in [0, N_1], \forall j \in [0, N_2], D(i, j) = \begin{cases} i \text{ si } j = 0 \\ j \text{ si } i = 0 \end{cases}$ $\begin{cases} D(i - 1, j - 1) \text{ si } M_1[i - 1] = M_2[j - 1] \\ 1 + min \begin{cases} D(i - 1, j - 1) \\ D(i - 1, j) \text{ sinon} \\ D(i, j - 1) \end{cases}$		
	Soit l'ensemble $E = \{0,1,,n-1\} = \{e_1,e_2,,e_n\}$ des n sommets du graphe représenté par la		
2-8	matrice d'adjacence G et W^k une matrice telle que $W^0=G$.		
Distances	Pour $k>0$, quels sont les poids minimaux W_{ij}^k des chemins, s'ils existent (∞ sinon), de tous les		
dans un	sommets i à tous les sommets j du graphe n'empruntant que des sommets intermédiaires dans		
graphe -	$\{e_1, e_2, \dots, e_k\}$		
Floyd-	$a_{ij} \operatorname{sl} k = 0$		
Warshall	$\forall (i,j) \in [0,n-1]^2, \forall k \in [0,n], D(i,j,k) = \begin{cases} G_{ij} \text{ si } k = 0 \\ D(i,j,k-1) \\ min \begin{pmatrix} D(i,k-1,k-1) + D(k-1,j,k-1) \end{pmatrix} \end{cases}$		
$O(n^3)$	$(D(l, K-1, K-1) + D(K-1, J, K-1))$ $W^n = D(i, i, n) \text{ oct lo noids minimal du chemin de i vers } i$		
	$W_{ij}^n = D(i,j,n)$ est le poids minimal du chemin de i vers j		
	Cet algorithme se programme avec le même coût en temps sur des matrices ou avec un dictionnaire Spécificités de la programmation dynamique		
Propriété de			
structure opt			
Chevauchem			
sous-problè			
SOUS PLODIC	23.0 a.r. taxioaa a.r ac rea reatinger a chaque role par inclinedation		

