## 66.70 Estructura del Computador

## Sistemas numéricos

## Sistemas para la representación de números

√ ¿Qué número representa "112"?

✓ Números en la tecnología digital

## Sistemas para la representación de números

Para representar números necesitamos símbolos y una forma de organizarlos

 Desarrollo histórico: marcas en bastones, nudos en una cuerda,...

Problema con los valores altos

## Sistemas para la representación de números

Solución al problema de valores altos:

- Con números pequeños se van agregando unidades por medio de marcas
- Cuando se alcanza un determinado número se hace una marca distinta

 Históricamente el "punto de corte" usado por diversas culturas fue el 10 (cantidad de dedos en las manos)

## Símbolos en el sistema egipcio





Sistema griego

Han utilizado sistemas aditivos las civilizaciones:

- Egipcia
- sumeria (de base 60, sexagesimal)
- hitita, cretense,
- azteca (de base 20)
- romana
- las alfabéticas de los griegos, armenios, judíos y árabes

Los números parecen palabras compuestas por letras

=> las palabras tienen un valor numérico (hay que sumar las cifras que corresponden a las letras que las componen)

Aparece una nueva suerte de disciplina mágica que estudiaba la relación entre los números y las palabras.

En algunas sociedades como la judía y la árabe, que utilizaban un sistema similar, el estudio de esta relación ha tenido una gran importancia y ha constituido una disciplina aparte: la kábala, que persigue fines místicos y adivinatorios.

### Símbolos del sistema árabe

· 1 7 % £ 6 7 7 8 9

## El sistema árabe (decimal)

✓ No es aditivo sino <u>posicional</u> con un <u>número limitado</u> <u>de simbolos</u>

- Desarrollado en India antes del siglo VII e introducido en Europa por los árabes.
- Babilonios, chinos y mayas en distintas épocas llegaron al mismo principio
- Entre el sistema actual y el de los Indios sólo hay diferencias en la forma que escribimos los 9 dígitos y el cero

## Distintas versiones de los símbolos del sistema numérico decimal

| Europeo                                   | 0 | 1 | 2  | 3  | 4  | 5   | 6  | 7 | 8 | 9  |
|-------------------------------------------|---|---|----|----|----|-----|----|---|---|----|
| Arábico-Índico                            |   | ١ | ۲  | ٣  | ٤  | ٥   | ٦  | ٧ | ٨ | ٩  |
| Arábico-Índico Oriental<br>(Persa y Urdu) | • | 1 | ۲  | ٣  | ۴  | ۵   | 9  | ٧ | ٨ | ٩  |
| <b>Devanagari</b><br>(Hindi)              |   | 8 | ર  | 3  | 8  | ц   | ٤  | b | ۷ | ९  |
| Tamil                                     |   | ಹ | 2_ | ΓЪ | சு | (F) | ტი | ត | அ | ტი |

## El sistema decimal no es el único sistema numérico posicional

Un sistema numérico posicional queda definido por:

- ✓ Símbolos disponibles
- ✓ Peso de cada posición

#### Analizar los siguientes ejemplos:

- Base 10
- Base cualquiera (base 3, octal, hexadecimal. etc.)

Representar 42 en diferentes bases

### Conversión entre diferentes bases

#### Casos:

- Conversión de cualquier base a base 10
- Conversión de base 10 a otra base
- Conversión entre dos bases diferentes de 10
- Bases potencias de otras bases

### Conversión entre bases - Métodos

- A base 10 -> sumatoria
- De base 10 a otra base -> Divisiones sucesivas
- Estimación en base a los pesos a incluir en la sumatoria
- Base que es potencia de otra base:
  - Agrupar y convertir cada grupo en un dígito
  - Desagrupar dígito a dígito

## Conversión entre bases

|   | Binary<br>(base 2) | Octal<br>(base 8) | Decimal<br>(base 10) | Hexadecimal<br>(base 16) |
|---|--------------------|-------------------|----------------------|--------------------------|
|   | 0                  | 0                 | 0                    | 0                        |
|   | 1                  | 1                 | 1                    | 1                        |
|   | 10                 | 2                 | 2                    | 2                        |
|   | 11                 | 3                 | 3                    | 3                        |
|   | 100                | 4                 | 4                    | 4                        |
|   | 101                | 5                 | 5                    | 5                        |
|   | 110                | 6                 | 6                    | 6                        |
|   | 111                | 7                 | 7                    | 7                        |
|   | 1000               | 10                | 8                    | 8                        |
| A | 1001               | 11                | 9                    | 9                        |
|   | 1010               | 12                | 10                   | A                        |
|   | 1011               | 13                | 11                   | В                        |
|   | 1100               | 14                | 12                   | C                        |
|   | 1101               | 15                | 13                   | D                        |
|   | 1110               | 16                | 14                   | E                        |
|   | 1111               | 17                | 15                   | F                        |

Menor la base -> mayor cantidad de dígitos

- Representar 2532 en binario

## Elección de un sistema para representar números enteros

(a) Símbolos (b) Pesos

(c) Cantidad de dígitos

#### Rango representable

- Cuántos valores distintos?
- Cuál es el valor máximo?
- Cuál es el valor mínimo?

Ej.; Procesador de 16 bits

## Sistema de punto fijo

Puede aplicarse a una base cualquiera, incluyendo la binaria

- Cómo convertir un número en base diez a otra base
- Cómo convertir un número a base 10
- Precisión de la conversión

Alternativa: PUNTO FLOTANTE

Ej.; Procesador de 16 bits

## Sistemas para representar números enteros con signo

- Magnitud y signo
- Complemento a la base menos 1
- Complemento a la base

## Sistemas para representar signo

| Decimal Two's Complement  -8 1000 |      |                    |                |
|-----------------------------------|------|--------------------|----------------|
|                                   |      | J <del>/</del> 178 | / <del>-</del> |
| -7                                | 1001 | 1000               | 1111           |
| -6                                | 1010 | 1001               | 1110           |
| -5                                | 1011 | 1010               | 1101           |
| -4                                | 1100 | 1011               | 1100           |
| -3                                | 1101 | 1100               | 1011           |
| -2                                | 1110 | 1101               | 1010           |
| -1                                | 1111 | 1110               | 1001           |
| 0                                 | 0000 | 1111 or 0000       | 1000 or 0000   |
| 1                                 | 0001 | 0001               | 0001           |
| 2                                 | 0010 | 0010               | 0010           |
| 3                                 | 0011 | 0011               | 0011           |
| 4                                 | 0100 | 0100               | 0100           |
| 5                                 | 0101 | 0101               | 0101           |
| 6                                 | 0110 | 0110               | 0110           |
| 7                                 | 0111 | 0111               | 0111           |

## Representación en magnitud y signo

#### • Forma de representación



- + N → Idem binario puro
- N  $\rightarrow$  Priner bit a izq es 1

#### • Rango representable

$$(-2^{n-1}+1)_{10} \le x \le (2^{n-1}-1)_{10}$$

#### Con 4 bits

| 1111         | -7 |
|--------------|----|
| 1110         | -6 |
| 1101         | -5 |
| 1100         | -4 |
| 1011         | -3 |
| 1010         | -2 |
| 1001         | -1 |
| 1000 or 0000 | 0  |
| 0001         | 1  |
| 0010         | 2  |
| 0011         | 3  |
| 0100         | 4  |
| 0101         | 5  |
| 0110         | 6  |
| 0111         | 7  |
|              |    |

## Representación en complemento a la base menos 1

En binario (base 2) => "COMPLEMENTO A 1"

#### • Forma de representación

$$+ N \rightarrow Idem binario puro$$

$$-N \rightarrow C_{b-1}(N) = b^n - 1 - N$$

**b**: base **n**: cant. de dígitos

#### En binario:

$$-N \longrightarrow C_1(N) = 2^n - 1 - N$$

Se puede obtener haciendo la resta o invirtiendo bit a bit

#### Rango representable

$$(-2^{n-1}+1)_{10} \le x \le (2^{n-1}-1)_{10}$$

¿ Cuál es el rango representable con 8 bits, 16 bits y 32 bits?

#### Con 4 bits

| -7 |
|----|
| -6 |
| -5 |
| -4 |
| -3 |
| -2 |
| -1 |
| 0  |
| 1  |
| 2  |
| 3  |
| 4  |
| 5  |
| 6  |
| 7  |
|    |

## Representación en complemento a la base

En binario (base 2) => "COMPLEMENTO A 2"

#### • Forma de representación

$$-N \rightarrow C_b(N) = b^n - N$$

**b**: base **n**: cant. de dígitos

#### En binario:

$$-N \longrightarrow C2(N) = 2^n - N$$

Se puede obtener haciendo la resta

o invirtiendo bit a bit y sumando 1 ← Basado en complemento a 1

#### Rango representable

$$(-2^{n-1})_{10} \le x \le (2^{n-1} - 1)_{10}$$

¿ Cuál es el rango representable con 8 bits, 16 bits y 32 bits?

#### Con 4 bits

| 1000 | -0 |
|------|----|
| 1001 | -7 |

$$1110 -2$$

$$11111 -1$$

## Sistemas para representar signo

| Decimal Two's Complement  -8 1000 |      |                    |                |
|-----------------------------------|------|--------------------|----------------|
|                                   |      | J <del>/</del> 178 | / <del>-</del> |
| -7                                | 1001 | 1000               | 1111           |
| -6                                | 1010 | 1001               | 1110           |
| -5                                | 1011 | 1010               | 1101           |
| -4                                | 1100 | 1011               | 1100           |
| -3                                | 1101 | 1100               | 1011           |
| -2                                | 1110 | 1101               | 1010           |
| -1                                | 1111 | 1110               | 1001           |
| 0                                 | 0000 | 1111 or 0000       | 1000 or 0000   |
| 1                                 | 0001 | 0001               | 0001           |
| 2                                 | 0010 | 0010               | 0010           |
| 3                                 | 0011 | 0011               | 0011           |
| 4                                 | 0100 | 0100               | 0100           |
| 5                                 | 0101 | 0101               | 0101           |
| 6                                 | 0110 | 0110               | 0110           |
| 7                                 | 0111 | 0111               | 0111           |

#### **ENTEROS CON SIGNO**

# Convertir a base 10 números en complemento a 1 o números en complemento a 2

- Si el bit más significativo es 0
  - ✓ El número es positivo
  - ✓ Se convierte como si estuviera en binario puro (sumatoria de pesos)
- Si el bit más significativo es 1
  - ✓ El número es negativo
  - ✓ Fue obtenido complementando su módulo

Invierto ese proceso calculando su complemento

Tengo su módulo Convierto por sumatoria de pesos

¿ Cómo puedo distinguir si se trata de un entero con signo o sin signo? ¿ Cómo puedo distinguir si se trata de complemento a 1 o complemento a 2?

## Suma de números binarios

#### Sistema numérico:

- -8 bits
- Enteros sin signo

#### Sistema numérico:

- -8 bits
- Enteros con signo
- Repres. en compl. a 2

$$\begin{array}{c}
01010110 \\
+ \\
\hline
11010010 \\
\hline
????????
\end{array}$$

#### Resultado:

- Suma
- Se fue de rango?

## Suma de números binarios



#### Indicadores (flags)

- C Carry
- V Overflow
- Z Cero
- N Signo
- P Paridad

## Operación resta en binario

- Forma directa
- Como suma del complemento
- "Borrow"

### <u>álgebra de números VS. computadoras</u> Ley asociativa

#### El álgebra dice que:

$$a + (b + c) = (a + b) + c$$

Qué dice la computadora?

$$a = 90$$

$$b = 105$$

Procesador de 8 bits

## Suma de dos o más números definidos con distinta cantidad de bits



Enteros sin signo

**Enteros con signo** 

"EXTENSIÓN" DEL SIGNO

## Suma de Números con parte fraccionaria

(Punto fijo)

#### Ejemplo:

## Suma de Números con parte fraccionaria

(Punto fijo)

#### Ejemplo:

- Opera como en números enteros
- Se implementa operando con números enteros y definiendo un factor de escala fijo

## Representación de Números con parte fraccionaria



## Otras operaciones básicas con números enteros



#### Multiplicación y división

... mediante desplazamientos a derecha e izquierda

- ✓ Implementación sencilla
- ✓ Alta velocidad de proceso