Recall that the complex derivative of a function $f:A \rightarrow C$ at an interior point ZOEACC is defined as $\int_{z \to z_0}^{1} \left(z_0\right) = \lim_{z \to z_0} \frac{\int_{z - z_0}^{1} \left(z_0\right)}{z - z_0}$ if this limit exists.

Recall also that $f:U \to \mathbb{C}$ is said to be analytic on an open set UCC if it has a complex derivative at every point 20 in U. We also showed that the analyticity of f on U is equivalent to differentiability of f in the real sense and the

Cauchy - Riemann equations
$$\frac{3u}{3x} = \frac{3v}{3y}, \quad \frac{3v}{3x} = -\frac{9u}{3y}$$

holding everywhere on U for the component functions $u(x_iy) = Re(f(x+iy)), \quad v(x_iy) = Im(f(x+iy))$

Constantness criteria for analytic functions

As the first consequences of Cauchy-Riemann equations, let us note some rigidity results for analytic functions.

Recall first from calculus:

Lemma

If a function $u: D \rightarrow \mathbb{R}$ on a constant on D.

The plane is such that $\frac{\partial}{\partial x}u \equiv 0$ and $\frac{\partial}{\partial y}u \equiv 0$ on D.

A straightforward consequence is:

Lemma If a function $f:D \to C$ on a constant. Lemma If a function $f:D \to C$ on a constant.

Using this and Cauchy-Riemann equations, me get somewhat surprinsing sufficient criteria for an analytic function to be constant.

Lemma

Let DCC be a connected open subset of the complex plane, and let $f:D \to C$ be an analytic function. If any one of the functions $z \mapsto Re(f(z))$, $z \mapsto Im(f(z))$, or $z \mapsto |f(z)|$ is constant. Then f itself is constant.

Proof: Write u(x,y) = Re(f(x+iy)) and V(x,y) = Im (f(x+iy)) for the component functions. Assume first that u is constant on D. Then $\frac{13u}{3x} \equiv 0$ and on = 0. By C-R equations we get $\frac{3x}{3\lambda} = -\frac{3\lambda}{3\alpha} \equiv 0 \quad \frac{3\lambda}{3\lambda} = \frac{3x}{3\alpha} \equiv 0$ which implies that v is also a constant on D, and thus f = u + iv is indeed a constant. Assuming a constant similarly leads to a constant (by C-R) and thus f constant.

For the final case, assume $|f(x+iy)|^2 = u(x_1y)^2 + v(x_1y)^2 = c.$ If c=0 then immediately $f\equiv 0$, so we may assume c>0.

Then differentiating this equation w.r.t. x and y we get $\partial \cdot \alpha \cdot \frac{\partial x}{\partial x} + \partial \cdot y \cdot \frac{\partial x}{\partial y} = 0$ $\mathcal{J} \cdot v \cdot \frac{\partial u}{\partial n} + \mathcal{J} \cdot v \cdot \frac{\partial u}{\partial n} = O$ Using C-R equations, these imply $\int_{\Omega} \frac{\partial x}{\partial \sigma} - \lambda \cdot \frac{\partial a}{\partial \sigma} = 0$ $n \cdot \frac{\partial^n}{\partial n} + \lambda \cdot \frac{\partial x}{\partial n} = 0$ Multiply the first of these by u and the second by v and add to get $Q = \frac{3x}{3^n} - \frac{3x}{3^n} + \frac{3x}{3^n} + \frac{3x}{3^n} + \frac{3x}{3^n}$ $= \left(u^2 + u^2 \right) \frac{\partial u}{\partial x} = c \cdot \frac{\partial u}{\partial x} .$ We conclude $\frac{\partial u}{\partial x} = 0$. Similarly, multiplying the first by -v and the second by u and adding, we get $\frac{\partial u}{\partial \eta} = 0$. Thus u is a constant on D. By the first part of the proof, then, f is a constant again.

Harmonicity and harmonic conjugates

Def;

Def;

A C^2 - function $u : U \rightarrow \mathbb{R}$ on an open set $U \subset \mathbb{R}^2$ is harmonic if $\Delta u := \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ on U.

The notation C^k (keN) is used for k times continuously differentiable functions, i.e., functions whose all partial derivatives of order k are continuous functions. So C^2 means "twice continuously differentiable". With this assumption, in particular the Laplacian $\Delta u = \frac{3^2u}{3x^2} + \frac{3^2u}{3y^2}$ is well-defined (and continuous).

Lemma

| Suppose that f: U -> C is analytic and its component functions u = Re(f) and v = Im(f) are

twice continuously differentiable. Then u and v are harmonic.

Remark We will prove later that analytic functions have derivatives of all orders, so the assumption that a and I are C'turns out to be unnecessary (automatically quaranteed already by the analyticity of f).

Proof: Consider, e.g., u. Exchanging the order of partial derivatives (see calculus courses for justification) and using C-R equations, we find $= -\frac{3^{x}}{3} \left(\frac{3^{x}}{3^{x}} \right) = -\frac{3^{x}}{3} \left(\frac{3^{x}}{3^{x}} \right) = -\frac{3^{x}}{3^{x}}. \quad \square$ $\frac{3^{x}}{3^{x}} = -\frac{3^{x}}{3^{x}} \left(\frac{3^{x}}{3^{x}} \right) = -\frac{3^{x}}{3^{x}}. \quad \square$

As another rigidity property, one may try to reconstruct an analytic function from its real part u (or imaginary part 1) only! By the previous lemma, the real part must at least be harmonic.

Let u: U - R be a harmonic function on an open set $U \subset \mathbb{R}^2$.

Then a function $v: U \to \mathbb{R}$ is called a harmonic conjugate of u if the function $x + iy \mapsto u(x_iy) + iv(x_iy)$ is analytic in U.

Let us consider an example of how to find harmonic conjugates.

Example Let $a: \mathbb{R}^2 \longrightarrow \mathbb{R}$ be the function $u(xy) = x^2y - \frac{1}{3}y^3.$ Let us try to (systematically) find a harmonic conjugate to u, i.e., a function v: R2 > R s.t. $f(x+iy) = u(x_1y) + iv(x_1y)$ defines an analytic function C-C. For this to be possible, u has to at least be harmonic, so let us verify that first. Calculate: $\frac{\partial^2}{\partial x^2} u(x,y) + \frac{\partial^2}{\partial x^2} u(x,y)$ $= \frac{3^{2}}{3^{2}} \left(x^{2} y - \frac{1}{3} y^{3} \right) + \frac{3^{2}}{3^{2}} \left(x^{2} y - \frac{1}{3} y^{3} \right)$ $= \frac{3}{3x} \left(2xy - 0 \right) + \frac{3}{3y} \left(x^2 - y^2 \right)$ $= \lambda_{y} + (-\lambda_{y}) = 0.$

So indeed u is harmonic.

If v is a harmonic conjugate, then together with u it has to satisfy C-R equations

$$\frac{\partial \hat{A}}{\partial \Lambda} = \frac{\partial x}{\partial \Lambda} = \frac{\partial x}{\partial \Lambda} \left(x_{3} \hat{A} - \frac{3}{4} \hat{A}_{3} \right) = 3x\hat{A}$$

$$\frac{\partial x}{\partial \Lambda} = -\frac{3\hat{A}}{\partial \Lambda} = -\frac{3\hat{A}}{\partial \Lambda} \left(x_{3} \hat{A} - \frac{3}{4} \hat{A}_{3} \right) = -x_{3} + \hat{A}_{3}$$

Considering a fixed $x \in \mathbb{R}$, the function $y \mapsto V(x_1 y)$ has to be (by the second equation above) of the form

$$\lambda(x', \lambda) = \int 3x \lambda' d\lambda = C(x) + x \lambda'$$

where $C(x) \in \mathbb{R}$ is an integration constant that may depend on x.

The first equation above then requires that

$$-x^{2}+y^{2} = \frac{3v}{3x} = C'(x) + y^{2},$$
from which we get $C'(x) = -x^{2}.$
This implies $C(x) = -\frac{1}{3}x^{2} + c$

with CER. Now simplifying, we have found that v must be of the form $v(x_{l}y) = -\frac{1}{3}x^{3} + xy^{2} + c$.

It remains to check that v of the above form indeed makes f = u + iv analytic, but this indeed follows, since C-R equations hold for these continuously differentiable functions u, v.

The analytic functions f = u + ivtake the form

$$f(x+iy) = u(x,y) + iv(x,y)$$

$$= x^{2}y - \frac{1}{3}y^{3} + ixy^{2} - \frac{i}{3}x^{3} + ic$$

$$= -\frac{i}{3}(x+iy)^{3} + ic$$
i.e. $f(z) = -\frac{i}{3}z^{3} + ic$

A natural question: Is it always possible to find a harmonic conjugate to a given harmonic function $u: U \rightarrow \mathbb{R}$?

Not quite. For example the function $u: \mathbb{R}^2 \geq (0,0)^2 \longrightarrow \mathbb{R}$ and $u(x,y) = \log(x^2 + y^2)$ is harmonic, but does not have a (single-valued) harmonic conjugate on $U = \mathbb{R}^2 \cdot \{(0,0)^2\}$. The obstruction is related to topology: U is

In simply connected domains, it turns out that harmonic conjugates always exist. For concreteness, we state this only for disks.

not simply-connected (there are

non-contractible loops in U).

Lemma (Local existence of harmonic conj.)

Let $B = B(z_0, R) \subset C$ be a disk, and let $u : R \to R$ be a harmonic function.

Then there exists another harmonic function $v : B \to R$ such that $v : R \to R$ such that

The proof is not very difficult (uses Stokes' formula from cakulus) but we omit it here.

The complex derivatives obey many familiar differentiation rules.

Linearity

Suppose that $f,g:A \to \mathbb{C}$ have complex derivatives $f'(z_0)$ and $g'(z_0)$ at $z_0 \in A$. Then

 $z \mapsto f(z) + g(z)$ has derivative $(f+g)'(z_0) = f'(z_0) + g'(z_0)$ at z_0 .

Also for any $C \in \mathbb{C}$, $z \mapsto c \cdot f(z)$ has derivative $(c \cdot f)'(z_0) = c \cdot f'(z_0)$ at z_0 .

(These properties are direct consequences of the linearity of limits and the definition of complex derivatives.)

[derivative_linearity

Chain rule If A,BCC are subsets of C and $f: A \rightarrow B$, $q: B \rightarrow C$ are functions which have derivatives -f'(zo) and g'(wo) at interior points zo EA and $w_0 = f(z_0) \in B$, then $z \mapsto g(f(z)) = (g \circ f)(z)$ has derive $(g \circ f)'(z_0) = f'(z_0) \cdot g'(f(z_0))$ at z_0 .

Leibniz product rule If fig: A -> C have derivatives f'(zo) and g'(zo) at zo EA, then $z \mapsto f(z) \cdot q(z)$ has derivative

Quotient rule have derivatives f(zo) If $f, d: A \rightarrow \mathbb{C}$

 $(f \cdot g)'(z_0) = f'(z_0) \cdot g(z_0) + f(z_0) \cdot g'(z_0).$

and $g'(z_0)$ at $z_0 \in A$ and $g(z_0) \neq 0$, then $z \mapsto \frac{f(z)}{g(z)}$ has derivative f'(zo) g(zo) - f(zo) g'(zo)
g(zo) 2 $\left(\frac{1}{3}\right)(z_0) =$

Finally, for derivatives of local inverse functions we have:

Lemma

Suppose that an analytic function of has in some neighborhood of a point zo a continuous inverse function f'', and suppose that the derivative $f'(z_0)$ is nonzero.

Then the inverse function f'' has a family has a derivative $(\mathcal{L}_{-1})'(\mathfrak{f}(z^{\circ})) = \frac{\mathcal{L}_{1}(z^{\circ})}{2}.$

Remark We will later see that analytic functions of have continuous local inverse functions near any point Zo where the derivative f(zo) is nonzero.

Proof: Let $U \subset C$ be a neighborhood of z_0 such that $f: U \to V$ has an inverse function $f^{-1}: V \to U$ which is continuous. Denote $w_0 = f(z_0)$.

Now for ke C with lkl small enough, we have $w_0 + k \in V$, and we may write $f^{-1}(w_0 + k) = z_0 + h(k) \in U$ where $h(k) := f^{-1}(w_0 + k) - z_0$. By continuity of f^{-1} we have $\lim_{k \to 0} (h(k)) = \lim_{k \to 0} (f^{-1}(w_0 + k)) - z_0$ $= f^{-1}(w_0) - z_0 = 0$

Let us then consider the limit of difference quotients that defines the derivative of f' at wo:

$$\lim_{k\to 0} \frac{\int_{-\infty}^{\infty} (w_0 + k) - \int_{-\infty}^{\infty} (w_0)}{k}$$

$$= \lim_{k\to 0} \frac{z_0 + h(k) - z_0}{w_0 + k - w_0}$$

$$= \lim_{k\to 0} \frac{h(k)}{\int_{-\infty}^{\infty} (z_0 + h(k)) - \int_{-\infty}^{\infty} (z_0)} = \frac{1}{\int_{-\infty}^{\infty} (z_0)}$$
by definition of the derivative $\int_{-\infty}^{\infty} (z_0)$
and by properties of limits.

This shows $(\int_{-\infty}^{\infty} (z_0) + h(k))$ exists and equals $\int_{-\infty}^{\infty} (z_0) + h(k) - \int_{-\infty}^{\infty} (z_0)$

Examples of analytic functions

Polynomials

Let us progressively make some easy observations:

- · constant functions are analytic on C (zero derivative)
- · the identity function Z > Z is analytic on C (derivative const. 1)
- * inductively with Leibniz' rule we get that $z\mapsto z^n (=z\cdot z^{n-1})$ is analytic on C with derivative $n\cdot z^{n-1}$
- using linearity of derivatives, we find that any polynomial function $p: C \rightarrow C$ $p(z) = \alpha_n z^n + \alpha_{n-1} z^{n-1} + \dots + \alpha_n z + \alpha_0$

(with coefficients $\alpha_{0,1},...,\alpha_{n} \in \mathbb{C}$) is analytic on \mathbb{C} .

[polynomial - analyti

Rational functions

Let $p,q: C \rightarrow C$ be polynomial functions, and let $U = \{z \in C \mid q(z) \neq o\}$ (open set in C). The rational function $r: U \rightarrow C$, $r(z) = \frac{p(z)}{q(z)}$ is analytic on U by the derivative rule for quotients.

Exponential function

We saw that $\exp: \mathbb{C} \to \mathbb{C}$, $z \mapsto e^z$, is analytic on \mathbb{C} (by verifying Cauchy-Riemann equations).

Trigonometric functions

The trigonometric functions given by $\sin(z) = \frac{1}{2i}(e^{iz} - e^{-iz})$ and $\cos(z) = \frac{1}{2}(e^{iz} + e^{-iz})$ are analytic on C by analyticity of exp and linearity of derivatives.

Logarithms (NOTE: branch choice difficulties!) If l: U -> C is a continuous function on an open set UCO such that $e^{(w)} = w$ for any weU, then it provides a local inverse to the analytic function exp in a neighborhood of any point l(w) in its image. Since $\exp'(l(w)) = \exp(l(w)) = w$ by the inverse function derivative rule we find $\ell'(\omega) = \frac{1}{\exp'(\ell(\omega))} = \frac{1}{\omega}$. Such continuous local inverses to exp are called branches of the complex logarithm. The principal branch Log: C \ (-∞,6] → C is one, but there are others.

nth roots (NOTE: branch choice difficulties!) Fix $n \in \mathbb{N}$. If $r: U \to \mathbb{C}$ is a continuous function on an open set UCC such that $r(w)^n = w$ for any $w \in U$, then it provides a local inverse to the analytic function Z +> z" in a neighborhood of any point r(w) in its image. Since $\frac{d}{dz}(z^n) = n z^{n-1}$ by the inverse function derivative rule we find $\Gamma'(\omega) = \frac{1}{n \cdot \Gamma(\omega)^{n-1}}$ (Informally, $\frac{d}{dw} \sqrt{w} = \frac{1}{n \cdot (n \sqrt{n-1})}$

Such continuous inverses to z > z n are asked branches of the complex nth root function.