Xiaoying Li

CS-225: Discrete Structures in CS

Homework Assignment 9, Part 2

Exercise Set 10.2: Question # 2, 9.b, 13, 20, 21

• Set 10.1 - Q#2

a. walk

Because it starts at v_1 and ends at v_0 , and it has repeated vertices v_1 and v_2 , and a repeated edge e_2 .

b. simple circuit

Because it starts and ends at the same vertex v_2 , contains at least one edge, does not contain a repeated edge, and does not have any other repeated vertex except the first and last.

c. closed walk

Because it has repeated vertices v_2 and v_4 , and a repeated edge e_5 , and it starts and ends at the same vertex v_4 .

d. circuit

Because it contains at least one edge, does not contain a repeated edge, and it starts and ends at the same vertex v_2 , but the vertex v_2 also appears at middle of the walk.

e. trail

Because it starts at v_0 and ends at v_1 , contains a repeated vertex v_2 , and it does not contain a repeated edge.

f. path

Because it starts at v_5 and ends at v_1 , and it does not contain a repeated edge or a repeated vertex.

● Set 10.1 – Q#9.b

Yes. Because graph G is connected and the degree of every vertex of G is a positive even integer, so G has an Euler circuit.

● Set 10.1 – Q#13

This graph does not have an Euler circuit. Because the degree of vertex v_1 is 5, degree of vertex v_7 is 3, degree of vertex v_8 is 3, and degree of vertex v_9 is 3, which are all odd degree, whereas all vertices of a graph with an Euler circuit have even degree. So the graph does not have an Euler circuit.

● Set 10.1 – Q#20

For this graph, there is no Euler Path from u to w. Because the degree of vertices e and h are 3, both odd, which indicates that not all the vertices of this graph except v and w have positive even degree. So there is no Euler Path from u to w.

• Set 10.1 – Q#21

For this graph, there is an Euler path from u to w. Because this graph is connected, u and w have odd degree [deg(u)=3 and deg(w)=3], and all other vertices have positive even degree [deg(v₀)=2, deg(v₁)=2, deg(v₂)=2, deg(v₃)=4, deg(v₄)=4, deg(v₅)=2, deg(v₆)=4, deg(v₇)=2].

One Euler path is $uv_0v_7v_6v_3uv_1v_2v_3v_4v_6wv_4v_5w$.