CURSO DE ENGENHARIA ELÉTRICA

Lista n.1

Fenômenos de Transporte - Kátia Lopes

1. Faça as conversões das unidades indicadas:

- a) 30 kpsi → MPa
- b) 15 lbf.pé → kgf.m
- c) 5 kgf/cm2 → psi
- d) 50 kpsi → Mpa

2. Faça a conversão dos seguintes valores:

(a) 26 milhas/h para ft/s;

R: 38,13 ft/s

(b) $\frac{46,8 \text{ cm}^5}{\text{s}^5.\text{g}}$ para $\frac{\text{m}^5}{\text{dia}^5.\text{kg}}$;

R: $2,25 \times 10^{19} \frac{\text{m}^5}{\text{dia}^5.\text{kg}}$

(c) 1,3 Km/s para milhas/h;

R: 2908,15 milhas/h

(d) 300 *J/min* para *Hp*;

R: 6,7×10⁻³ Hp

(e) $30 \text{ } ft^3/\text{min}^2 \text{ para } in^3/\text{s}^2$.

R: 14,4 in³/s²

3. Uma quantidade é dada como 200 ft.lbf/min.ton. Expresse-a:

- (a) No sistema SI;
- (b) No sistema CGS.

CURSO DE ENGENHARIA ELÉTRICA

Lista n.1

Fenômenos de Transporte – Kátia Lopes

- 4. O "FERN" é definido como a unidade de força requerida para acelerar a massa de um "bung" com a aceleração da gravidade na superfície da lua (em m/s^2) que é igual a 1/6 da aceleração normal da gravidade na Terra.
- (a) Qual o g_c deste sistema?

R: $\frac{1,63 \text{ bung.m/s}^2}{\text{Fern}}$

(b) Qual o peso de um objeto de 3 bungs na lua (em Ferns)? E na Terra?

R: 3 Ferns; 18 Ferns

- 5) Para calibrar os pneus de um automóvel, seu manual recomenda a pressão de 22 lbf/pol 2. Chegando ao posto de serviços, o proprietário do veículo constata que o manômetro do compressor de ar registra as pressões em kgf/cm2.
- 6) Um projetista está dimensionando uma mola e precisa de um material que tenha o limite elástico mínimo de 500 MPa (tensão mecânica). Consultando os dados de um fornecedor, ele encontra um material, que após sofrer tratamento térmico de têmpera e revenido, de 600 N/mm2. Este material serve ao projeto?
- 7) Um mecânico vai apertar os parafusos dos flanges de uma tubulação. O torque de aperto recomendado é de 8 lbf.pé. O torquímetro a ser usado tem sua escala dada em N.m.
- 8) Um guindaste elevou uma carga de 5 toneladas a uma altura de 70 metros em 2 minutos. Determine a potência desenvolvida em HP.
- 9) Determine o trabalho realizado em unidade SI, por um automóvel que desloca um bloco sobre um plano horizontal, ao longo de 500 in, exercendo uma força horizontal de 120 kgf.
- 10) Imagine que você foi contratado para ser o projetista de uma indústria local. O seu primeiro trabalho é dimensionar um grande número de barras de sustentação de carga e para tanto, descobre que precisa de um aço que tenha o limite elástico mínimo de 360 MPa. Consultando os dados de um fornecedor, mostrados na tabela abaixo:

Aço (classificação UNS)	Limite de resistência elástico	Custo por tonelada
G 10100 LQ (laminado a quente)	26 000 lb/pol ²	R\$ 500,00
G 10150 EF (estirado a frio)	47 000 lb/pol ²	R\$ 650,00
G 10180 EF	54 000 lb/pol ²	R\$ 700,00
G 10350 estirado a 427 °C	81 000 lb/pol ²	R\$1100,00

Você deverá encontrar o tipo de aço que sirva ao projeto e que tenha o menor custo. Qual dos tipos de aço mostrados atende melhor aos requisitos de projeto e custo?