#### Probabilistic Clustering (why)

- In all the cluster analysis methods we have discussed so far, each data object can be assigned to at most one clusters.
- In what situations may a data object belong to more than one cluster?
  - Clustering product reviews: a customer review might relate to multiple products/services. If we want to cluster reviews per product/service, we must allow that a review can belong to many clusters.
  - Clustering to study user search intent: a user of an online store would typically perform some search. It is important to understand the search intent: searching for product, for customer support, for offers, etc. In one session however, the user may search with multiple intents.

#### Fuzzy Set and Fuzzy Cluster

Fuzzy cluster: A fuzzy set  $F_s: X \to [0, 1]$  (value between 0 and 1)

Example: Popularity of cameras is defined as a fuzzy mapping

| Camera | Sales (units) |
|--------|---------------|
| A      | 50            |
| B      | 1320          |
| C      | 860           |
| D      | 270           |

$$Pop(o) = \begin{cases} 1 & \text{if } 1,000 \text{ or more units of } o \text{ are sold} \\ \frac{i}{1000} & \text{if } i \text{ } (i < 1000) \text{ units of } o \text{ are sold} \end{cases}$$

Function pop() defines a fuzzy set of popular digital cameras. The fuzzy set of digital cameras according to Pop() is  $\{A(0.05), B(1), C(0.86), D(0.27)\}$ , where the degree of membership is written in parentheses.

In fuzzy clustering, a cluster is a fuzzy set of objects that belong to this cluster. The degree of membership of every object indicates how strong this object is related to this cluster.

## Fuzzy (Soft) Clustering

Formally, given a set of objects,  $o_1, \dots, o_n$ , a **fuzzy clustering** of k **fuzzy clusters**,  $C_1$ , ...,  $C_k$ , can be represented using a **partition matrix**,  $M = [w_{ij}]$ . where  $w_{ij}$  is the membership degree of  $o_i$  in fuzzy cluster  $C_i$ . The partition matrix should satisfy the following three requirements:

P1: for each object  $o_i$  and cluster  $C_{i'}$ ,  $0 \le w_{ij} \le 1$  (fuzzy set).

P2: for each object  $o_{j'}$   $\sum_{j=1}^k w_{ij} = 1$  equal participation in the clustering P3: for each cluster  $C_j$ ,  $0 < \sum_{i=1}^n w_{ij} < n$  ensures there is no empty cluster.

### Fuzzy (Soft) Clustering

Example: Let cluster features be

C₁: "digital camera" and "lens"

C<sub>2</sub>: "computer"

$$w_{ij} = \frac{|R_i \cap C_j|}{|R_i \cap (C_1 \cup C_2)|} = \frac{|R_i \cap C_j|}{|R_i \cap \{digital\ camera, lens, computer\}|}.$$

| Review-id | Keywords                       |
|-----------|--------------------------------|
| $R_1$     | digital camera, lens           |
| $R_2$     | digital camera                 |
| $R_3$     | lens                           |
| $R_4$     | digital camera, lens, computer |
| $R_5$     | computer, CPU                  |
| $R_6$     | computer, computer game        |

$$M = \left[ egin{array}{ccc} 1 & 0 \ 1 & 0 \ rac{2}{3} & rac{1}{3} \ 0 & 1 \ 0 & 1 \end{array} 
ight]$$

### Fuzzy (Soft) Clustering

How to evaluate how well a fuzzy clustering describes a data set? Let  $c_1$ , ...,  $c_k$  as the center of the k clusters

For an object o<sub>i</sub>, sum of the squared error (SSE), p is a parameter:

$$SSE(o_i) = \sum_{j=1}^{k} w_{ij}^p dist(o_i, c_j)^2$$

For a cluster C<sub>j</sub>, SSE:

$$SSE(C_j) = \sum_{i=1}^{n} w_{ij}^{p} dist(o_i, c_j)^2$$

For the whole clustering:

$$SSE(\mathcal{C}) = \sum_{i=1}^{n} \sum_{j=1}^{k} w_{ij}^{p} dist(o_i, c_j)^2$$

- Is there Algorithm to detect probabilistic clusters in the data?
- A data set that is the subject of cluster analysis can be regarded as a sample of the possible instances of the hidden clusters, but without any cluster labels.
- Statistically, we can assume that a hidden cluster is a distribution over the data space, which can be mathematically represented using a probability density function (or distribution function).
- For a probabilistic cluster, *C*, its probability density function, *f* , and a point, *o*, in the data space, *f* (*o*) is the relative likelihood that an instance of *C* appears at *o*.

- Example: Suppose that there are 2 categories for digital cameras sold
  - consumer line vs. professional line
  - density functions f<sub>1</sub>, f<sub>2</sub> for C<sub>1</sub>, C<sub>2</sub>
  - obtained by probabilistic clustering



- For a price value of, say, \$1000,  $f_1(1000)$  is the relative likelihood that the price of a consumer-line camera is \$1000. Similarly,  $f_2(1000)$  is the relative likelihood that the price of a professional-line camera is \$1000.
- The starting point of our analysis is that we don't know the probability density function of the two clusters.

- Suppose we want to find k probabilistic clusters,  $C_1$ , ...,  $C_k$ , through cluster analysis of D.
- Conceptually, we can assume that D is formed as follows. Each cluster  $C_j$  is associated with a probability,  $w_j$ . We then run the following two steps n times to generate  $D = \{o_1, ..., o_n\}$ :
  - Choose a cluster,  $C_j$ , according to probabilities  $W_j$ .
  - Choose an instance of  $C_j$  according to its probability density function,  $f_j$ .
- This is called the **mixture model**. It assumes that a set of observed objects is a mixture of instances from multiple probabilistic clusters, and conceptually each observed object is generated independently.
- The task of *probabilistic model-based cluster analysis* is to infer infer a set of k probabilistic clusters that is mostly likely to generate D using the above data generation process.

- Consider a set C of k probabilistic clusters  $C_1, ..., C_k$  with probability density functions  $f_1, ..., f_k$ , respectively, and their probabilities  $\omega_1, ..., \omega_k$ .
- The probability of an object o generated by cluster  $C_i$  is

$$P(o|C_j) = \omega_j f_j(o)$$

• The probability of *o* generated by the set of cluster *C* is

$$P(o|\mathbf{C}) = \sum_{j=1}^{k} \omega_j f_j(o)$$

• Since objects are assumed to be generated independently, for a data set  $D = \{o_1, ..., o_n\}$ , we have,

$$P(D|\mathbf{C}) = \prod_{i=1}^{n} P(o_i|\mathbf{C}) = \prod_{i=1}^{n} \sum_{j=1}^{k} \omega_j f_j(o_i)$$

• Since objects are assumed to be generated independently, for a data set D =  $\{o_1, ..., o_n\}$ , we have,

$$P(D|\mathbf{C}) = \prod_{i=1}^{n} P(o_i|\mathbf{C}) = \prod_{i=1}^{n} \sum_{j=1}^{k} \omega_j f_j(o_i)$$

- Task: Find a set C of k probabilistic clusters s.t.  $P(D \mid C)$  is maximized.
- However, maximizing  $P(D \mid \mathbf{C})$  is often intractable since the probability density function of a cluster can take an arbitrarily complicated form.
- To make it computationally feasible (as a compromise), assume the probability density functions being some parameterized distributions

#### Univariate Gaussian Mixture Model

- Assume that the probability density function of each cluster follows a 1-d Gaussian distribution. Suppose that there are k clusters.
- The probability density function of each cluster are centered at  $\mu_j$  with standard deviation  $\sigma_i$ ,  $\theta_i$ , = ( $\mu_i$ ,  $\sigma_i$ ) is:

$$P(o_i|\Theta_j) = \frac{1}{\sqrt{2\pi\sigma_j}} e^{-\frac{(o_i - \mu_j)^2}{2\sigma^2}}$$

Assuming that each cluster has the same probability w<sub>i</sub>:

$$P(o_i|\mathbf{\Theta}) = \sum_{j=1}^{k} \frac{1}{\sqrt{2\pi}\sigma_j} e^{-\frac{(o_i - \mu_j)^2}{2\sigma^2}}$$

• The task is then to minimize:

$$P(\mathbf{O}|\mathbf{\Theta}) = \prod_{i=1}^{n} \sum_{j=1}^{k} \frac{1}{\sqrt{2\pi}\sigma_j} e^{-\frac{(\sigma_i - \mu_j)^2}{2\sigma^2}}$$

#### The EM (Expectation Maximization) Algorithm

The k-means algorithm has two steps at each iteration:

**Expectation Step** (E-step): Given the current cluster centers, each object is assigned to the cluster whose center is closest to the object: An object is *expected to belong to the closest cluster* 

**Maximization Step** (M-step): Given the cluster assignment, for each cluster, the algorithm *adjusts the center* so that *the sum of distance* from the objects assigned to this cluster and the new center is minimized

**The (EM) algorithm:** A framework to approach maximum likelihood or maximum a posteriori estimates of parameters in statistical models.

**E-step** assigns objects to clusters according to the current fuzzy clustering or parameters of probabilistic clusters

**M-step** finds the new clustering or parameters that minimize the sum of squared error (SSE) or the expected likelihood

### Quality: What Is Good Clustering?

A <u>good clustering</u> method will produce high quality clusters high <u>intra-class</u> similarity: cohesive within clusters low <u>inter-class</u> similarity: distinctive between clusters

The <u>quality</u> of a clustering method depends on
the similarity measure used by the method
its implementation, and
Its ability to discover some or all of the <u>hidden</u> patterns

#### **Examples of Quality Measures**

- Sum of square distances to centroids:
  - The squared distance between from the representative to every other point in the cluster is calculated, then summed over all points.
  - Suitable for representative based methods.
  - Favors spherical clusters.
- Intracluster to intercluster distance ratio:
  - Sample pairs of points in D.
  - Let P denote the pairs in the same cluster, and Q denote the pairs in different clusters.
  - Compute:
    - Intra/Inter
  - Smaller values are better.

$$Intra = \sum_{(\overline{X_i}, \overline{X_j}) \in P} dist(\overline{X_i}, \overline{X_j}) / |P|$$

$$Inter = \sum_{(\overline{X_i}, \overline{X_j}) \in Q} dist(\overline{X_i}, \overline{X_j}) / |Q|$$

### **Examples of Quality Measures**

- Silhouette coefficient:
  - Let D<sub>avg-in</sub> denote the average distance between a point in the cluster and every other point in the same cluster.
  - Let D<sub>avg-out\_i</sub> denote the average distance between a point in the cluster and every other point in the cluster i.
  - Let D<sub>avg-out-min</sub> be the minimum Davg-out\_i.

$$S_i = \frac{Dmin_i^{out} - Davg_i^{in}}{\max\{Dmin_i^{out}, Davg_i^{in}\}}$$

 The silhouette coefficient will be drawn from the range (−1, 1). Large positive values indicate highly separated clustering. Negative values are indicative of some level of "mixing" of data points from different clusters.

### Credits and Readings

- These slides, except when explicitly stated, use material from:
  - Charu C.Aggarwal. Data Mining The Textbook, Springer
  - Han, J., Kamber, M. and Pei, J. Data Mining Concepts and Techniques,
     Morgan Kaufmann Publishers, Burlington.