CSC-654 Algorithms Design & Analysis Homework #4 Mostafa Abdelmegeed

1.	T(n) - T([n/2]) + 1 is O(lgn)
	Assume T(n) < clgn + n>no, C70, No
	$T(n) \leq c \left \frac{n}{2} \right + 1$
	We can get rid of the Cailing by
	adding 1
	$T(n) \leqslant C \lg \left(\frac{n}{2} + 1\right) + 1$
	$T(n) < clg(\frac{n+2}{2})+1$
	= Clg(n+2) - Clg(2+1)
	- Clg(n+2) - C+1
	We cont conclude From the algebra our assumption

So, we will subtract alower-order term from the guess
term from the guess
Assuming $T(n) \leqslant clg(n-d)$
$T(n) \leq c \left[\frac{n}{2} - \frac{1}{4} \right] + 1$
$< Clg\left(\frac{1}{2} - 2 + 1\right) + 1$
$< clg\left(\frac{n+2d-2}{2}\right)+1$
= Clg(n+2d-2)-clg(2+1)
= Clg(n-2+2+)-(C-1)
A = = = = = = = = = = = = = = = = = = =
T(n) = clg(n-2+2d)-(c-1) we can use
$\frac{1}{\sqrt{1-2}}$
to get T(n) (clg (n-2)
For all C>1
101

1011 5
T(n) = 2T(n/4) + 1
a = 2 $b = 4$ $F(n) = 1$
nlog, a = nlog, 2 = In = (In) = (no.5)
o_{o} $f(n) = O(1) = O(n^{0.5-0.5})$
by Assuming E=0.5
où Case 1 applies
$T(n) = \Theta(\sqrt{n})$

B.	$T(n) = 2T(n/2) + \sqrt{n}$ $a = 2 \qquad b = 2 \qquad f(n) = \sqrt{n} = n^{0.5}$
	$n^{\log_{b} a} = n' - \Theta(n)$
	== f(n) = O(n
	f(n) A
	of $(n) = O(n^{1-0.5})$ where $\varepsilon = 0.5$
	30 Case 1 applies
	S_0 $T(n) = \Theta(n)$

C. T(n) = 2T(n/2) + M a = 2 b = 2 f(n) = n $n^{\log_b a} = n^1 = \Theta(n)$ $a = f(n) = O(n^{\log_b a}) = O(n)$ $a = f(n) = O(n \log_b a)$ $T(n) = O(n \log_b a)$

6.	We know that Strasser's (0(nlg7)
	$\overline{I(n)} = a \overline{I(n/4)} + \Theta(n^2)$
	$b=4$ $f(n)=\Theta(n^2)$
	Using Case 1
	$T(n) = \Theta(n^{\log_{b} \alpha}) = \Theta(n^{\log_{a} \alpha})$
	By unifying log bases to Simplify
	Comparison T(n)= \(\text{O}\)(n\forall \(\frac{1}{3}\)\)
	% √a < 7 a < 49
	so The largest integer would be [48]