WQD7011 Numerical Optimization

Mathematical Modelling

Content

- Model and Modelling
- Building Models
- Example

LimCK 2 / 20

Model

- Models describe our beliefs about how the world functions – an abstraction of reality.
- In mathematical modelling, we translate those beliefs into the language of mathematics.
- However, systems in real world are far too complicated to model – models are not perfectly accurate!

Purpose of Modelling

- Understanding problems better
- Communicating with others
- Formulate ideas and identify underlying assumptions
- Perform computation with computers

Objectives of Modelling

- Develop scientific understanding
 - Knowns and unknowns are clearly discussed
- Test the effect of change in a system
- Aid decision making include optimization!

LimCK 5 / 20

Type of models

- Deterministic vs stochastic model
 - Deterministic models : ignore random variations
 - Stochastic model : uncertainty is present deal with randomness
 - In the real world, uncertainty is a part of everyday life, so a stochastic model could literally represent anything.
 - However, in some cases, we may want to ignore the randomness to make the modelling simpler.

"A good theory" (or model) "should be as simple as possible, but not simpler."

Albert Einstein

Type of models

- Mechanistic vs Empirical model
 - Mechanistic models : use a large amount of theoretical information is used to describe the relation between variables
 - Empirical model: Mainly based on data.

LimCK 7 / 20

Type of models

- Static vs Dynamic models
 - Static models: systems in steady state
 - Dynamic models : systems that change over time.
 Usually have a time parameter in the models.

LimCK 8 / 20

Stages of Modelling

- 1)Building
- 2)Studying
- 3)Testing
- 4)Use

May revert back to building stage if required

Building Model

- Make sure we are clear about the objective this determine the direction of our project.
 - Want to optimize something?
 - Max or min?
 - To predict something?

Building Models – Systems Analysis

- In this stage, we build the basic framework of the model.
- This normally start with listing a set of assumptions (our believes on the way of the system work)
- Future works are based on the believes
- Newton assume mass is a constant he develop classical mechanics

Einstein assume mass can be depend on velocity – he developed theory of relativity

(Newton may develop nothing if he assumed mass is a variable)

Building Models – Systems Analysis

- We may want to draw diagram to visualize how the system work, especially if the system is complex.
- Example: Modelling the Spread of COVID-19

If conservation law is obeyed:

$$E\varepsilon = I$$

 $R + D = S$

$$I = infectious$$

 μ - natural death rate

Building Models – Equations Formation

- Determine the equations that describe the system.
 - May come from literature
 - Someone may have develop a model that similar to yours.
 - However, due to different environment / data / ..., these equation may not be used directly.
 - Analogies from physics
 - Used a physical system that well developed by physicists and similar to yours
 - Data Exploration
 - Explore data and fit your equations to it.

Building Models – Solving Equations

- Analytically manipulation on the equations we obtain to find the solution. But this is not easy especially if the model is stochastic.
- Numerically.

• A chemical company has 2 factories F₁ and F₂ and a dozen retail outlets R_1, R_2, \ldots, R_{12} . Each factory F_i can produce a_i tons of a certain chemical product each week. a_i is called the capacity of the plant. Each retail outlet R, has a known weekly demand of b_i tons of the product. The distance of factory F_i to retail outlet R_i is denoted as d_{ij} . Assume that x_{ij} is the amount of the chemical product received by outlet R_i from factory F_i, develop a model that represent the minimization of the shipping cost.

• A chemical company has 2 factories F_1 and F_2 and a dozen retail outlets R_1 , R_2 , . . . , R_{12} . Each factory F_i can produce a_i tons of a certain chemical product each week. a_i is called the capacity of the plant. Each retail outlet R_j has a known weekly demand of b_j tons of the product. The distance of factory F_i to retail outlet R_j is denoted as d_{ij} . Assume that x_{ij} is the amount of the chemical product received by outlet R_j from factory F_i , develop a model that represent the minimization of the shipping cost.

Objective: minimize the total cost of shipping.

Assumptions:

• A chemical company has 2 factories F_1 and F_2 and a dozen retail outlets R_1 , R_2 , . . . , R_{12} . Each factory F_i can produce a_i tons of a certain chemical product each week. a_i is called the capacity of the plant. Each retail outlet R_j has a known weekly demand of b_j tons of the product. The distance of factory F_i to retail outlet R_j is denoted as d_{ij} . Assume that x_{ij} is the amount of the chemical product received by outlet R_j from factory F_i , develop a model that represent the minimization of the shipping cost.

Objective: minimize the total cost of shipping.

Assumptions:

- ✓ Uncertainty of travelling is small → deterministic model.
- The transporter only travel between factories and outlets, not between outlets and outlets
- \checkmark The shipping cost per ton is linearly proportional to distance, d_{ij}

A chemical company has 2 factories F_1 and F_2 and a dozen retail outlets R_1 , R_2 , . . . , R_{12} . Each factory F_i can produce a_i tons of a certain chemical product each week. a_i is called the capacity of the plant. Each retail outlet R_j has a known weekly demand of b_j tons of the product. The distance of factory F_i to retail outlet R_j is denoted as d_{ij} . Assume that x_{ij} is the amount of the chemical product received by outlet R_j from factory F_i , develop a model that represent the minimization of the shipping cost.

18 / 20

A chemical company has 2 factories F_1 and F_2 and a dozen retail outlets R_1 , R_2 , . . . , R_{12} . Each factory F_i can produce a_i tons of a certain chemical product each week. a_i is called the capacity of the plant. Each retail outlet R_j has a known weekly demand of b_j tons of the product. The distance of factory F_i to retail outlet R_j is denoted as d_{ij} . Assume that x_{ij} is the amount of the chemical product received by outlet R_j from factory F_i , develop a model that represent the minimization of the shipping cost.

$$a_1 = x_{1,1} + x_{1,2} + \dots + x_{1,12} + \text{remaining}$$

$$a_1 \ge \sum_{j=1}^{12} x_{1j}$$

$$b_1 \le x_{1,1} + x_{2,1}$$

$$\propto d_{ij} X_{ij} = C_{ij} X_{ij}$$
 19/20

A chemical company has 2 factories F_1 and F_2 and a dozen retail outlets R_1 , R_2 , . . . , R_{12} . Each factory F_i can produce a_i tons of a certain chemical product each week. a_i is called the capacity of the plant. Each retail outlet R_j has a known weekly demand of b_j tons of the product. The distance of factory F_i to retail outlet R_j is denoted as d_{ij} . Assume that x_{ij} is the amount of the chemical product received by outlet R_j from factory F_i , develop a model that represent the minimization of the shipping cost.

Objective function :
$$\min \sum_{ij} c_{ij} x_{ij}$$

subject to
$$\sum_{j=1}^{12} x_{ij} \le a_i$$
, $i = 1, 2$, $\sum_{j=1}^{2} x_{ij} \ge b_j$, $j = 1, \dots, 12$, $x_{ij} \ge 0$, $i = 1, 2, j = 1, \dots, 12$.

Constraints