TBD^*

TBD

Yingying Zhou, Yang Wu, Xinyi Xu, Hong Pan

$10~{\rm March}~2021$

Abstract

First sentence. Second sentence. Third sentence. Fourth sentence.

Contents

1	Inti	roduction	2
2	Dat	za	2
	2.1	EDA	2
	2.2	internet usage frequency by education level	2
3	Mo	del	6
	3.1	Deception Level	6
	3.2	Affect Level	6
	3.3	Feature selection	8
	3.4	regression model	10
4	Res	sults	12
5	Dis	cussion	12
	5.1	First discussion point	12
	5.2	Second discussion point	12
	5.3	Third discussion point	12
	5.4	Weaknesses and next steps	12
\mathbf{A}	App	pendix	13
	A.1	missing value	13
\mathbf{R}_{0}	efere	ences	15

 $^{{\}rm ^*Code\ and\ data\ are\ available\ at:\ https://github.com/yangg1224/Political_Deepfake_Videos.git.}$

1 Introduction

2 Data

2.1 EDA

2.1.1 treat distribution

Figure 1: Employee numbers distribution

2.1.2 education level distribution by PID

2.1.3 sexism by education level

2.2 internet usage frequency by education level

```
## Warning: Use of 'EDA$educ' is discouraged. Use 'educ' instead.
```

Warning: Use of 'EDA\$meta_OS' is discouraged. Use 'meta_OS' instead.

Warning: Use of 'EDA\$age_65' is discouraged. Use 'age_65' instead.

2.2.1 post favor by treat

2.2.2 Average deception level by treat

'summarise()' ungrouping output (override with '.groups' argument)

Figure 2: Educational level by PID

Table 1: Average deception level of each media format

treat	Average Deception Level
video	3.228438
audio	3.351178
text	3.305946
skit	2.569316
ad	2.989059

Figure 3: sexism by education level

Figure 4: internet usages

Figure 5: Distribution of feelings towards Sanders in six different situations

3 Model

3.1 Deception Level

3.1.1 T test1

Table 2: T test: Deception level of video vs audio

AVG_deception_video	AVG_deception_audio	p.value	conf.low	conf.high	method	alternative
3.228438	3.348243	0.0538155	-0.2415774	0.0019682	Welch Two Sample t-test	two.sided

3.1.2 T test2

Table 3: T test: Deception level of video vs text

AVG_deception_video	AVG_deception_text	p.value	conf.low	conf.high	method	alternative
3.228438	3.304207	0.2244956	-0.1980699	0.0465321	Welch Two Sample t-test	two.sided

3.1.3 T test3

Table 4: T test: Deception level of video vs skit

AVG_deception_video	AVG_deception_skit	p.value	conf.low	conf.high	method	alternative
3.228438	2.574586	0	0.5024785	0.8052267	Welch Two Sample t-test	two.sided

3.2 Affect Level

3.2.1 T test 1

Table 5: T test: Affect level of video vs control

AVG_affect_video	AVG_affect_control	p.value	conf.low	conf.high	method	alternative
42.38222	45.34257	0.0492027	-5.910363	-0.0103468	Welch Two Sample t-test	two.sided

3.2.2 T test2

Table 6: T test: Affect level of video vs text

AVG_affect_video	AVG_affect_text	p.value	conf.low	conf.high	method	alternative
42.38222	45.37953	0.0435446	-5.907686	-0.0869413	Welch Two Sample t-test	two.sided

3.2.3 T test3

Table 7: T test: Affect level of video vs audio

AVG_affect_video	AVG_affect_audio	p.value	conf.low	conf.high	method	alternative
42.38222	45.96825	0.0157972	-6.497318	-0.6747556	Welch Two Sample t-test	two.sided

3.2.4 T test 4

Table 8: T test: Affect level of video vs skit

AVG_affect_video	AVG_affect_skit	p.value	conf.low	conf.high	method	alternative
42.38222	43.5619	0.4193787	-4.044298	1.684923	Welch Two Sample t-test	two.sided

3.3 Feature selection

```
##
## Attaching package: 'plyr'
## The following object is masked from 'package:here':
##
##
       here
## The following object is masked from 'package:ggpubr':
##
##
       mutate
## The following objects are masked from 'package:dplyr':
##
##
       arrange, count, desc, failwith, id, mutate, rename, summarise,
##
       \operatorname{summarize}
## The following object is masked from 'package:purrr':
##
##
       compact
```


3.4 regression model

```
##
## lm(formula = post_favor_Warren ~ ., data = Dummy_data)
##
## Residuals:
##
      Min
               1Q Median
                               ЗQ
                                      Max
## -75.311 -18.212 -2.727 19.805 90.071
## Coefficients: (4 not defined because of singularities)
                                         Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                                        3.632e+01 7.293e+00
                                                               4.980 6.63e-07 ***
## Zip
                                        7.401e-05 3.108e-05
                                                               2.381 0.01729 *
## gender.L
                                       -7.360e+00 6.817e+00 -1.080 0.28037
## gender.Q
                                       -4.675e+00 3.962e+00 -1.180 0.23814
## ambivalent_sexism
                                       -3.404e+00 5.450e-01 -6.245 4.66e-10 ***
## script_bidenshit
                                       -3.325e+00 1.688e+00 -1.969 0.04902 *
```

```
-2.803e+00
                                                     1.694e+00
                                                                 -1.655
                                                                         0.09800 .
## script_trumpshit
## script_cherokee
                                         -8.180e-01
                                                     1.683e+00
                                                                 -0.486
                                                                         0.62690
## script_lgbtq
                                          7.008e-01
                                                     1.995e+00
                                                                  0.351
                                                                         0.72537
## script_loans
                                         -1.528e+00
                                                     1.981e+00
                                                                 -0.771
                                                                         0.44048
## believed_true
                                         -2.870e+00
                                                     3.301e-01
                                                                 -8.697
                                                                         < 2e-16 ***
## post_dig_lit
                                         -8.912e-01
                                                     3.128e+00
                                                                 -0.285
                                                                         0.77568
## internet usage
                                          9.849e-01
                                                     6.704e-01
                                                                  1.469
                                                                         0.14188
## crt
                                         -7.587e-01
                                                     1.858e+00
                                                                 -0.408
                                                                         0.68295
## 'educ_<High school'
                                         -6.541e+00
                                                     4.387e+00
                                                                 -1.491
                                                                         0.13600
## 'educ_High school'
                                         -9.286e+00
                                                      1.345e+00
                                                                 -6.904 5.84e-12 ***
## educ_College
                                         -7.573e+00
                                                      1.168e+00
                                                                 -6.482 1.01e-10 ***
## educ_Postgraduate
                                                 NA
                                                             NA
                                                                     NA
                                                                              NA
## 'HHI_$100k-$150k'
                                          4.729e+00
                                                     2.022e+00
                                                                  2.339
                                                                         0.01938 *
                                                                  1.575
## 'HHI_>$150k'
                                          3.530e+00
                                                     2.242e+00
                                                                         0.11540
## 'HHI_$25k-$49k'
                                         -1.682e+00
                                                     1.187e+00
                                                                 -1.417
                                                                         0.15668
## 'HHI_$50k-$74k'
                                         -6.030e-01
                                                     1.341e+00
                                                                 -0.450
                                                                         0.65285
## 'HHI_$75k-$99k'
                                         -3.746e-01
                                                     1.309e+00
                                                                 -0.286
                                                                         0.77474
## 'HHI N/A'
                                         -5.860e+00
                                                     3.361e+00
                                                                 -1.744
                                                                         0.08130
## Ethnicity_Black
                                          5.560e+00
                                                     2.791e+00
                                                                  1.992
                                                                         0.04642 *
## Ethnicity_Other
                                          7.650e-02
                                                     3.160e+00
                                                                  0.024
                                                                         0.98069
## Ethnicity_White
                                          1.348e+00
                                                     2.165e+00
                                                                  0.623
                                                                         0.53348
## 'Hispanic_Not Hispanic'
                                                     2.078e+00
                                          7.631e-01
                                                                  0.367 0.71344
## Region_Northeast
                                          7.649e+00
                                                     1.841e+00
                                                                  4.155 3.32e-05 ***
## Region_South
                                          1.294e+00
                                                     1.180e+00
                                                                  1.097
                                                                         0.27260
## Region_West
                                         -2.038e+00
                                                     1.741e+00
                                                                 -1.170
                                                                         0.24187
## response_wave_ID_SV_eyxdeXOuISXzakt
                                         -1.595e+00
                                                     1.086e+00
                                                                 -1.469
                                                                         0.14195
## 'quality_passed all quality screens'
                                         -3.572e+00
                                                                 -2.617
                                                     1.365e+00
                                                                         0.00892 **
## meta_OS_mobile
                                         -9.888e-01
                                                     1.104e+00
                                                                 -0.896
                                                                         0.37043
## 'age_65_>65'
                                         -3.776e+00
                                                     9.454e-01
                                                                 -3.994 6.61e-05 ***
## PID_Democrat
                                          3.812e+01
                                                     9.955e-01
                                                                 38.290
                                                                         < 2e-16 ***
## PID_Independent
                                          1.174e+01
                                                     1.432e+00
                                                                  8.201 3.15e-16 ***
## PID_Republican
                                                 NA
                                                             NA
                                                                     NA
                                                                              NA
## treat_video
                                          2.687e+00
                                                     1.551e+00
                                                                  1.732
                                                                         0.08334
## treat_audio
                                          3.081e+00
                                                     1.544e+00
                                                                  1.995
                                                                         0.04606 *
                                          3.948e+00
                                                      1.533e+00
                                                                  2.576
                                                                         0.01004 *
## treat_text
## treat_skit
                                                 NA
                                                             NA
                                                                     NA
                                                                              NA
## treat ad
                                                             NΑ
                                                                     NΑ
                                                                              NA
## exp_1_prompt_info
                                          7.433e-01 8.424e-01
                                                                  0.882 0.37764
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 26.8 on 4091 degrees of freedom
## Multiple R-squared: 0.3974, Adjusted R-squared: 0.3916
## F-statistic: 69.16 on 39 and 4091 DF, p-value: < 2.2e-16
```

$$Pr(\theta|y) = \frac{Pr(y|\theta)Pr(\theta)}{Pr(y)} \tag{1}$$

Equation (1) seems useful, eh?

Here's a dumb example of how to use some references: In paper we run our analysis in R (R Core Team 2020). We also use the tidyverse which was written by Wickham et al. (2019) If we were interested in baseball data then Friendly et al. (2020) could be useful.

We can use maths by including latex between dollar signs, for instance θ .

4 Results

- 5 Discussion
- 5.1 First discussion point
- 5.2 Second discussion point
- 5.3 Third discussion point
- 5.4 Weaknesses and next steps

A Appendix

A.1 missing value

```
## Loading required package: colorspace
## Loading required package: grid
## VIM is ready to use.
## Suggestions and bug-reports can be submitted at: https://github.com/statistikat/VIM/issues
## ## Attaching package: 'VIM'
## The following object is masked from 'package:datasets':
## ## sleep
## Warning in plot.aggr(res, ...): not enough vertical space to display frequencies
## (too many combinations)
```


Figure 6: Missing value Visualization

References

Friendly, Michael, Chris Dalzell, Martin Monkman, and Dennis Murphy. 2020. Lahman: Sean "Lahman" Baseball Database. https://CRAN.R-project.org/package=Lahman.

R Core Team. 2020. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.

Wickham, Hadley, Mara Averick, Jennifer Bryan, Winston Chang, Lucy D'Agostino McGowan, Romain François, Garrett Grolemund, et al. 2019. "Welcome to the tidyverse." *Journal of Open Source Software* 4 (43): 1686. https://doi.org/10.21105/joss.01686.