AEP: (X_n) stochastic process, state space \mathcal{X} Then

$$-\frac{1}{n}\log_2 p_n(X_1,\ldots,X_n)\to h$$
 almost surely

h as entropy

 p_n joint distribution of X_1, \ldots, X_n

Theorem 0.1 (Ergodic theorem for finite Markov chains). (\mathcal{X}, P) where P is a transition matrix $P = (p(y|x))_{x,y \in \mathcal{X}}$ irreducible ν unique stationary (invariant) probability distribution: $\nu = (\nu(x))_{x \in \mathcal{X}}$ row vector; $\nu P = \nu$. Then for any initial distribution $\mu = (\mu(x))_{x \in \mathcal{X}}$ a Markov chain $(X_n)_{n \geq 0}$ for every function $f : \mathcal{X} \to \mathbb{R}$,

$$\frac{f(X_0) + f(X_1) + \dots + f(X_{n-1})}{n} \stackrel{a.s.}{\to} \int_{\mathcal{X}} f d\nu (= \sum_{x \in \mathcal{X}} f(x)\nu(x))$$

Theorem 0.2. Under the above assumptions $(X_n)_{n\geq 0}$ has the AEP.

Proof. $p_n(x_0, x_1, ..., x_n) = \mathbb{P}[X_0 = x_0, X_1 = x_1, ..., X_n = x_n] = \mu(x_0)p(x_1|x_0)p(x_2|x_1)...p(x_n|x_{n-1}) (= \mu_{x_0}p_{x_0, x_1}p_{x_1, x_2}...p_{x_{n-1}, x_n})$ We want to study

add pic

$$-\frac{1}{n+1}\log_2[\mu(X_0)p(X_1|X_0)\dots p(X_n|X_{n-1})]$$

$$=\frac{1}{n+1}[-\log_2(\mu(X_0)) + (-\log_2p(X_1|X_0)) + \dots + (-\log_2(p(X_n|X_{n-1})))]$$

Remark. we can replace $\frac{1}{n+1}$ by $\frac{n}{n+1}\frac{1}{n}$ since $\frac{n}{n+1}$ tends to 1.

with $f(x,y) = -\log_2 p(y|x)$, then this above

$$\sim \frac{1}{n}(f(X_0, X_1) + f(X_1, X_2) + \dots + f(X_{n-1}, X_n))$$

Look at new Markov chain: $(X_n, X_{n+1})_{n>0}$

$$\mathbb{P}[(X_n, X_{n-1}) = (x_2, y_2) | (X_{n-1}, X_n) = (x_1, y_1)] = q(x_2, y_2 | x_1, y_1) = \begin{cases} p(y_2 | y_1) & x_2 = y_1 \\ 0 & x_2 \neq y_1 \end{cases}$$

State space: $S = \{(x, y) \in \mathcal{X}^2 : p(y|x) > 0\}$ = oriented edges of the graph of (\mathcal{X}, P) . (S, Q) is irreducible? stationary distribution $\hat{\nu}$ Try

$$\mathbb{P}[(X_0, X_1) = (x, y)] = \nu(x)p(y|x)$$

if X_0 has distribution ν .

?:
$$\hat{\nu}Q \stackrel{?}{=} \hat{\nu}, (x,y) \in \mathcal{S}$$

$$\begin{split} \sum_{(u,v)\in\mathcal{S}} \hat{\nu}(u,v) \underbrace{((x,y)|(u,v))}_{p(y|x) \text{ if } v=x,0 \text{else}} &= \sum_{u:(u,x)\in\mathcal{S}} \nu(u,x) \hat{p}(y|x) \\ &= \sum_{u} \nu(u) p(x|u) p(y|x) \\ &= \nu(x) p(y|x) \checkmark \end{split}$$

Check whether p(y|x) is a probability distribution.

$$\sum_{x,y} \nu(x) p(y|x) = \sum_{y} \sum_{x} \nu(x) p(y|x) = \sum_{y} \nu(y) = 1$$

Thus,

$$\frac{1}{n}(f(X_0, X_1) + f(X_1, X_2) + \dots + f(X_{n-1}, X_n)) \to \sum_{(x,y) \in \mathcal{S}} f(x,y)\hat{\nu}(x,y)$$
$$= -\sum_{x,y} \nu(x)p(y|x)\log_2 p(y|x) = \sum_x \nu(x)H(p(\cdot|x)) = h$$

1 Codes

Data in \mathcal{X} have to be encoded efficiently (and transmitted and decoded). Data comes in with certain probabilities. $p(x) = \mathbb{P}[X = x]$, X random variable, random input. to be encoded by words (strings) over some finite "alphabet" (set) Σ (typically $\Sigma = \{0, 1\}$).

Definition. Source code: $C: \mathcal{X} \to \Sigma^+$ where $\Sigma^+ = \{a_1 \dots a_n | n \in \mathbb{N}, a_i \in \Sigma\}$ denotes the set of all non-empty words. C(x) is the codeword of $x \in \mathcal{X}$. $w \in \Sigma^*$: l(w) length (number of letters)

Expected code length:

$$L_C = \sum_{x \in \mathcal{X}} l(C(x))p(x) = \mathbb{E}(l(C(x)))$$

Example. *a*) $\mathcal{X} = \{1, 2, 3, 4\}$, and $\Sigma = \{0, 1\}$.

$$p(1) = \frac{1}{2}$$

$$p(2) = \frac{1}{4}$$

$$p(3) = p(4) = \frac{1}{8}$$

Then

$$C(1) = 0$$

 $C(2) = 10$
 $C(3) = 110$
 $C(4) = 111$

$$L_C = \frac{1}{2} + \frac{1}{2} + \frac{3}{4} = \frac{7}{4} \ (= H(X) = H(p))$$

b)
$$\mathcal{X} = \{1, 2, 3\} \ p(\cdot) = \frac{1}{3}$$

$$C(1) = 0$$
$$C(2) = 10$$

$$C(3) = 10$$

 $C(3) = 11$

$$L(C) = \frac{5}{3} = 1,66 > 1,58 \approx H(X) = \log_2(3)$$

Definition. Extension of C to \mathcal{X}^+ : $\mathcal{X}^+ \to \Sigma^+$ by

$$C(x_1 \dots x_n) = C(x_1)C(x_2)\dots C(x_n)$$

("concatenation") (remark for me: Semigroup homomorphism, free groups, \Rightarrow unique extension; with $C(\epsilon_{\mathcal{X}} = \epsilon_{\Sigma} \text{ we have a monoid-homomorphism})$

Definition (Properties of codes). 1. $C: \mathcal{X} \to \Sigma^+$ is called non-singular if it is injective

- 2. uniquely decodable if the extension $C: \mathcal{X}^+ \to \Sigma^+$ is injective
- 3. instantaneous (prefix free; prefix code) if no codeword C(x), $x \in \mathcal{X}$ is a prefix of another codeword $[\forall x, y \in \mathcal{X} : C(x) \text{ is not prefix of } C(y)]$

Example. $\mathcal{X} = \{a, b, c, d\}$ and $\Sigma = \{0, 1\}$.

1.

$$C(a) = 0$$

$$C(b) = 010$$

$$C(c) = 01$$

$$C(d) = 10$$

is non-singular, but C(ad) = C(b) and thus not uniquely decodable

2.

$$C(a) = 10$$

$$C(b) = 00$$

$$C(c) = 11$$

$$C(d) = 110$$

not instantaneous, but uniquely decodable. Why?

$$C(cbda) = 110011010$$

 $Think\ about\ it\ (exercise)$