Курс математического анализа

Кренделев

19 июня 2006 г.

Оглавление

L	Мн	ожества	13
	1.1	Введение в теорию множеств	13
		ОПР 1.1.1 (Множество)	13
		ОПР 1.1.2 (Задание множества)	13
		1.1.3 Обозначения	
		1.1.4 Способы задания множеств	13
		ОПР 1.1.5 (Подмножества)	13
		1.1.6 Свойства принадлежности	14
		1.1.6.1 Свойства множеств	14
	1.2	Логическая символика	14
		ОПР 1.2.1 (Высказывание)	14
		ОПР 1.2.2 (Операции)	
		ОПР 1.2.3 (Кванторы)	14
	1.3	Операции над множествами	15
		ОПР 1.3.1 (Операции над множествами)	15
		ОПР 1.3.2 (Декартово произведение)	15
	1.4	Отображение множеств	
		ОПР 1.4.1 (Отображение множеств)	
		ОПР 1.4.2 (Тождественное отображение)	15
		ОПР 1.4.3 (Постоянное отображение)	16
		ОПР 1.4.4 (Обратная функция)	16
		ОПР 1.4.5 (Типы отображений)	
		ОПР 1.4.6 (Обратное отображение)	16
		ОПР 1.4.7 (Суперпозиция отображения)	16
		1.4.7.1 Упражнение	16
		ОПР 1.4.8 (График отображения)	16
	1.5	Вещественные числа	17
		1.5.1 Введение	17
		ОПР 1.5.2 (Аксиомы сложения)	
		Следствие 1.5.2.1 (Следствия аксиом сложения)	
		ОПР 1.5.3 (Аксиомы умножения)	17

	Следствие 1.5.3.1 (Свойства аксиом умножения)	18
	ОПР 1.5.3.2 (Деление и вычитание)	18
	ОПР 1.5.4 (Аксиомы порядка)	18
	Следствие 1.5.4.1 (Следствия аксиом порядка)	
1.6	Натуральные числа	18
	ОПР 1.6.1 (Индуктивное множество)	18
	УТВ 1.6.1.1 (Существование индуктивного множества)	19
	УТВ 1.6.1.2 (О пересечении индуктивных множеств)	19
	ОПР 1.6.2 (Множество натуральных чисел)	19
	Следствие 1.6.2.1 (Индуктивные подмножества \mathbb{N})	19
	Следствие 1.6.2.2 (Следствие 1)	20
	Следствие 1.6.2.3 (Метод математической индукцией)	20
	ОПР 1.6.3 (Различные множества)	20
	ОПР 1.6.4 (Множество целых чисел)	20
1.7	Степень числа	20
	ОПР 1.7.1 (Степень числа)	
	1.7.1.1 Свойства степени	21
	Теорема 1.7.2 (Тождество 1)	21
	Теорема 1.7.3 (Тождество 2)	
1.8	Аксиома Архимеда	21
	ОПР 1.8.1 (Аксиома Архимеда)	21
	Следствие 1.8.1.1 (Следствие 1)	
	Следствие 1.8.1.2 (Следствие 2)	22
1.9	Абсолютная величина	
	ОПР 1.9.1 (Абсолютной величины)	22
	Следствие 1.9.1.1 (Свойства абсолютной величины)	23
1.10	Расширенная числовая прямая	23
	ОПР 1.10.1 (Расширенная числовая прямая)	23
	ОПР 1.10.2 (Множества на расширенной числовой прямой)	23
1.11	Верхняя и нижняя грани	24
	ОПР 1.11.1 (Верхняя и нижняя грани)	24
	ОПР 1.11.2 (Ограниченность множества)	
	1.11.2.1 Обозначение множеств граней	
	ОПР 1.11.3 (Точная грань)	
1.12	Аксиома непрерывности	
	ОПР 1.12.1 (Аксиома непрерывности)	
1.13	Аксиома о вложенных отрезках	
	ОПР 1.13.1 (Максимум и минимум множества)	25
	1.13.1.1 Некоторые обозначения	25
	ОПР 1.13.2 (Вложенность интервалов)	25
	ОПР 1.13.3 (Вложенность семейства интервалов)	25
	ОПР 1.13.4 (Аксиома о вложенных отрезках)	25
	Теорема 1.13.4.1 (Об эквивалентности аксиом)	25

Оглавление

Стр. 4

MFH Corporation

_				-
	1.14 Сечение Дедекинда	26	ОПР 2.7.3 (Монотонного возрастания последовательности) 35	5
	ОПР 1.14.1 (Сечения)	26	ОПР 2.7.4 (Монотонного убывания последовательности) 35	
	ОПР 1.14.2 (Аксиома Дедекинда)	26	ОПР 2.7.5 (Монотонности последовательности)	
	Теорема 1.14.2.1 (Об эквивалентности аксиом)		Теорема 2.7.6 (О пределе монотонной последовательности) 35	5
	1.15 Дроби и операции на ними		ОПР 2.7.7 (Истинности высказывания)	
	ОПР 1.15.1 (Десятичные дроби)		Теорема 2.7.8 (О неравенстве пределов)	6
	1.15.1.1 Алгоритм построения десятичной дроби		ОПР 2.7.9 (Ограниченной последовательности)	
	Следствие 1.15.1.2 (Свойства десятичных дробей)		Теорема 2.7.10 (О промежуточном пределе (лемма о двух мили-	
	ОПР 1.15.2 (Действительное число)		ционерах))	7
	1.15.2.1 Действия над действительными числами		ОПР 2.7.11 (Арифметические критерии сходимости последова-	
	Лемма 1.15.3 (О монотонности степени)		тельности)	7
	Теорема 1.15.4 (О корне n ой степени из действительного числа)		УТВ 2.7.12 (Об эквивалентности критериев сходимости)	
	1.16 Счетные множества		Следствие 2.7.13 (Об ограниченности сходящейся последователь-	
	ОПР 1.16.1 (Счетных множеств)		ности)	7
	ОПР 1.16.2 (Конечных множеств)		Следствие 2.7.14 (Сходимость последовательности из модулей) . 38	
	ОПР 1.16.3 (Не более чем счетных множеств)		2.8 Арифметические свойства предела	
	ПРЕДЛ 1.16.4 (О не более, чем счетных подмножествах)		Теорема 2.8.1 (О пределе суммы)	
	ПРЕДЛ 1.16.5 (Инъекция не более, чем счетных множеств)		Теорема 2.8.2 (О произведении пределов)	
	ПРЕДЛ 1.16.6 (Сюрьекция не более, чем счетных множеств)		Теорема 2.8.3 (Об обратном произведении)	
	ПРЕДЛ 1.16.7 (Определение эквивалентных множеств)		Следствие 2.8.4 (Теорема об отношении пределов)	
	Теорема 1.16.8 (Эквивалентность № своим бесконечным подмно-		2.9 Подпоследовательности	0
	жествам)	30	ОПР 2.9.1 (Подпоследовательности)	
	Следствие 1.16.8.1 (К теореме)		Теорема 2.9.2 (О подпоследовательности сходящейся последова-	
	ПРЕДЛ 1.16.9 (Об объединение счетных множеств)		тельности)	0
	Теорема 1.16.10 (Кантора о счетном объединении счетных мно-		Следствие 2.9.3 (О не сходимости последовательности) 41	1
	жеств)	31	ОПР 2.9.4 (Частичного предела)	1
	Следствие 1.16.10.1 (К теореме)		Теорема 2.9.5 (Вейрштрасса о подпоследовательностях) 41	1
	Теорема 1.16.11 (Не счётность \mathbb{R})		ОПР 2.9.6 (Верхних и нижних пределов)	2
			Теорема 2.9.7 (Критерий Коши сходимости последовательности) 42	2
2	1	33	ОПР 2.9.8 (Последовательности Коши)	2
	ОПР 2.1 (Выпуклого отрезка)		Следствие 2.9.9 (из критерия Коши)	
	ОПР 2.2 (Элементарной окрестности)		2.10 Числовые ряды	3
	ОПР 2.3 (Элементарной окрестности $+\infty$ и $-\infty$)		ОПР 2.10.1 (Числового ряда)	3
	ОПР 2.4 (Окрестности)	33	ОПР 2.10.2 (Суммы ряда)	3
	Следствие 2.4.1 (Свойства окрестностей)		Теорема 2.10.3 (Существование суммы положительного ряда) 43	3
	ОПР 2.5 (Диаметра множества)		Теорема 2.10.4 (О необходимом признаке сходимости ряда) 43	
	2.6 Последовательности и их пределы		Теорема 2.10.5 (Об ограниченности частичных сумм) 45	
	ОПР 2.6.1 (Последовательности)		ОПР 2.10.6 (Суммы рядов)	
	2.6.1.1 Способы задания последовательностей		Теорема 2.10.7 (О сумме сходящихся рядов) 45	
	2.6.2 Операции над последовательностями		ОПР 2.10.8 (Остатка ряда)	
	2.7 Пределы последовательностей		Теорема 2.10.9 (О сходимости остатка ряда) 46	
	ОПР 2.7.1 (Топологическое определение предела)		Теорема 2.10.10 (Критерий Коши о сходимости ряда) 46	
	Теорема 2.7.2 (О единственности предела)	35	2.11 Знакоположительные ряды	7
	_	,		,

Лекции по математическому анализу http://MFH.gorodok.net/

Лекции по математическому анализу http://MFH.gorodok.net/

ОПР 2.11.1 (Знакоположительного ряда)		Теорема 3.1.14 (Критерий Гейне существования предела функции в предельной точке)	
Теорема 2.11.3 (Признак сравнение для знакоположительных рядов)		Теорема 3.1.15 (Алгебраический свойства предела функции в точ- ке)	66
Теорема 2.11.5 (Асимптотический признак сходимости)	49	Теорема 3.2.1 (О неравенствах пределов функций)	66
Теорема 2.11.6 (Признак Даламбера сходимости ряда)	50	ОПР 3.2.4 (Убывающих функций)	67 68
ОПР 2.12.1 (Знакопеременных рядов)	51	Теорема 3.2.6 (О пределе монотонной функции)	69
менных рядов)	52	ОПР 3.3.1 (Непонятно чего)	69
2.12.4.1 Полезные факты	53	Теорема 3.3.3 (О равенстве односторонних пределов)	70
ОПР 2.13.1 (Абсолютной сходимости)	55	ОПР $3.4.2~(O)$	70 71
Следствие 2.13.4 (Признак Даламбера (для произвольных рядов)) Следствие 2.13.5 (Признак Коши (для произвольных рядов))	56	Лемма 3.4.4 (Лемма 1)	71
ОПР 2.13.6 (Произведения по Коши)	.).,	5 Непрерывность функций	72
3 Функции	59	3.5.1.1 Расшифрование	
3.1 Пределы функций	59	Следствие 3.5.3 (Характеризация непрерывной функции через односторонние пределы)	72
ОПР 3.1.3 (Канонической базы)	60 60	Теорема 3.5.4 (Алгебраические свойства непрерывных функций) Теорема 3.5.5 (О непрерывности суперпозиции функций) Лемма 3.5.6 (Непрерывность постоянной и тождественно функций)	72 73 73
ОПР 3.1.5 (Предельной точки)	61	Следствие 3.5.7 (Многочлен степени не большей n)	74
Лемма 3.1.8 (Лемма ПЗ (о характеризации предельных точек)) . Лемма 3.1.9 (Лемма П4)	61 3.6 62	,	74
ОПР 3.1.10 (Замыкания множества)	62	ОПР 3.6.2 (Точки разрыва)	75
ОПР 3.1.12 (Изолированной точки)	63	ОПР 3.6.4 (Скачка функции) ОПР 3.6.5 (Устранимой точки разрыва II-го рода) Теорема 3.6.6 (О точках разрыва для монотонных функций)	75
Лекции по математическому анализу http://MFH.gorodok.	net/	Лекции по математическому анализу http://MFH.gorodok.n	iet/

	Теорема 3.6.7 (Больцано-Вейрштрасса (доказательство))			Теорема 5.1.7 (Необходимость и достаточность дифференцируе-	0.0
	Следствие 3.6.7.1 ()			мости функции)	
	Следствие 3.6.7.2 (Теорема о промежуточных значениях).			Теорема 5.1.8 (Алгебраические свойства производной)	
	Теорема 3.6.8 (О связности)			Теорема 5.1.9 (Дифференцирование суперпозиций)	
	Теорема 3.6.9 (Непрерывность монотонной функции)			Следствие 5.1.10 (Дифференцирование обратной функции)	
	Теорема 3.6.10 (Об обратной функции)		5.2	Качественные свойства дифференцируемых функций	
	Теорема 3.6.11 (Вейерштрасса о максимуме и минимуме)			ОПР 5.2.1 (Локальных минимума и максимума)	
3.7	Равномерная непрерывность	81		ОПР 5.2.2 (Локального экстремума)	100
	ОПР 3.7.1 (Равномерной непрерывности)	81		Теорема 5.2.3 (Теорема Ферма)	
	ОПР 3.7.2 (Модуля непрерывности)	81		Теорема 5.2.4 (Теорема Ролля)	101
	Следствие 3.7.2.2 (Непрерывность равномерно непрерыв-			Теорема 5.2.5 (Коши или теорема о среднем значении)	101
	ной функции)	81		Следствие 5.2.6 (Теорема Лагранжа о среднем значении)	102
	3.7.3 Конструкция	81		Теорема 5.2.7 (Дифференциальный критерий монотонности функ-	
	Теорема 3.7.4 (Условие равномерной непрерывности)	82		ции)	102
	Теорема 3.7.5 (Кантора о равномерной непрерывности)			5.2.8 Правила Лопиталя	103
3.8	Элементарные функции			ОПР 5.2.8.1 (Неопределенность вида $\frac{0}{0}$)	103
	3.8.1 Показательная и логарифмическая функции			Теорема 5.2.8.2 (Правило Лопиталя $1, \frac{0}{0}$)	
	Теорема 3.8.2 ()			ОПР 5.2.8.3 (Неопределенность вида $\frac{\infty}{\infty}$)	
	Следствие 3.8.3 ()			Теорема 5.2.8.4 (Правило Лопиталя $2, \frac{\infty}{\infty}$)	
	Теорема 3.8.4 (Теорема1)		6.3	Производные высших порядков	
	Следствие 3.8.4.1 ()			ОПР 6.3.1 ()	
	Следствие 3.8.4.2 ()			6.3.3 Дифференцируемых, непрерывных множеств функций	
	Следствие 3.8.4.3 ()			6.3.4 Список <i>п</i> -тых производных:	
	Теорема 3.8.5 (Непрерывность e^x в нуле)			6.3.5 Свойства высших производных:	
	Следствие 3.8.5.1 ()			Теорема 6.3.6 (Формула Лейбница для производных произведения	
	Теорема 3.8.6 ()		6.4	Формула Тейлора	
	Теорема 3.8.7 (Монотонность exp)		0.1	ОПР 6.4.1 (Многочлена)	
	Теорема 3.8.8 (Поведение exp на ∞)			Лемма 6.4.2 (Формула Тейлора для многочленов)	
	Теорема 3.8.9 (Замечательный предел)			Теорема 6.4.3 (Формула Тейлора с остаточным членом в форме	100
				Лагранжа)	109
	ОПР 3.8.10 (Показательной функции)			7.4.4 Стандартные разложения	
	3.8.11 Тригонометрические функции			ОПР 7.4.5 ()	
	Лемма 3.8.12 ()			Достаточный признак существования экстремума	
	Теорема 4.8.13 (Теорема2)		1.5	Достаточный признак существования экстремума	
	Теорема 4.8.14 (Замечательный предел)			v.	
	4.8.15 Гиперболические функции	93	7.6	Теорема 7.5.2 (Достаточный признак существования экстремума) Выпуклые функции	
П	фференциальное исчисление функций одной переменной	OF.	7.0	ОПР 7.6.1 (Выпуклой и вогнутой функции)	
		95 05		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
0.1	Основные определения и теоремы			7.6.2 Геометрический смысл выпуклости	
	ОПР 5.1.1 (Множества, плотного в себе)			ОПР 7.6.2.1 (Выпуклость в \mathbb{R}^2)	
	ОПР 5.1.3 (Производной функции)			ОПР 7.6.2.2 (Надграфика и подграфика)	115
	ОПР 5.1.4 (Правая и левая производные)			Теорема 7.6.2.3 (Геометрическая характеристика выпук-	115
	ОПР 5.1.5 (Дифференцируемой функции)			лости)	
	Теорема 5.1.6 ()			Теорема 8.6.3 (Неравенство Йенсена)	116
	Лекции по математическому анализу http://MFH.gorodok.r	$_{ m net}/$		Лекции по математическому анализу http://MFH.gorodok	.net/

		Теорема 8.6.4 (Критерий выпуклости функции)	117
		Теорема 8.6.5 (Дифференциальный критерий выпуклости)	119
		Следствие 8.6.6 (Теорема:)	120
	9.7	Основные неравенства анализа	121
		Теорема 9.7.1 (Неравенство Коши для среднего арифметического	
		и среднего геометрического)	121
		Следствие 9.7.1.1 (Теорема (неравенство Юнга))	121
		Следствие 9.7.1.2 (Лемма (о произведении))	122
		Следствие 9.7.1.3 (Теорема (Неравенство Гёльдера))	123
		Следствие 9.7.1.4 (Теорема (неравенство Коши-Буняковского	o))124
		Следствие 9.7.1.5 (Теорема (Неравенство Минковского)) .	
	10.8	Снова об уравнении $f(x) = 0$	126
		ОПР 10.8.1 ()	126
		УТВ 10.8.2 ()	127
		Лемма 10.8.3 ()	127
		Теорема 10.8.4 (Ослабленный признак монотонного возрастания	
		функции)	129
12		F F + 7	133
	12.1	Первообразная	
		ОПР 12.1.1 (Точной первообразной)	
		ОПР 12.1.3 (Истинность высказывания в основном)	
		ОПР 12.1.4 (Непрерывность в основном)	
		ОПР 12.1.5 (Дифференцируемость в основном)	
		ОПР 12.1.6 ()	
		ОПР 12.1.7 (Первообразной)	134
		ОПР 12.1.10 (Интегрируемость f)	135
		Лемма 12.1.11 ()	
		Следствие 12.1.11.1 ()	
		Следствие 12.1.11.2 ()	135
		Теорема 12.1.12 (Алгебраические свойства интегрируемых функ-	
		ций)	
		12.1.13 Множества всех превообразных функции на множестве .	
		ОПР 12.1.14 (Неопределенного интеграла)	
		ОПР 12.1.15 (Определенного интеграла)	
		Лемма 12.1.17 (Корректность определенного интеграла)	
		ОПР 12.1.18 (Криволинейной трапеции)	
		Лемма 12.1.19 (Ньютона)	
		Следствие 12.1.19.1 ()	
	12.2	Свойства интегралов	
		Теорема 12.2.1 (Об интегрируемости на объединении отрезков) .	
		Следствие 12.2.1.1 ()	
		Теорема 12.2.2 (О линейности определенного интеграла)	140

Глава 1

Множества

1.1 Введение в теорию множеств

ОПР 1.1.1 (Множество).

 Π ервичное понятие — совокупность объектов.

ОПР 1.1.2 (Задание множества).

Множество считается заданным, если для любого объекта мы можем сказать, принадлежит этот объект множеству или нет.

1.1.3 Обозначения

- $\triangleright A, B, C \dots$ обозначения множеств;
- $ightarrow x,y,z\dots$ элементы множества;
- $\triangleright x$ принадлежит множеству $A x \in A$;
- $\triangleright x$ не принадлежит множеству $A x \notin A$;
- $\triangleright A$ включено в $B A \subseteq B$;
- $ightarrow \emptyset$ nycmoe множество.

1.1.4 Способы задания множеств

- 1. $\{\alpha, \beta, \gamma, \ldots\}$ перечисление;
- 2. $x \in A$, если выполнено свойство A(x).

ОПР 1.1.5 (Подмножества).

Пусть A и B множества. Будем говорить, что $A\subseteq B$, если из $x\in A$ следует $x\in B$.

1.1.6 Свойства принадлежности

- 1. $A \subseteq A$;
- 2. $A \subseteq B$ и $B \subseteq C$, тогда $A \subseteq C$;
- 3. $A \subseteq B$ и $B \subseteq A$, тогда A = B;
- 4. A = B, тогда B = A;
- 5. A = B и B = C, тогда A = C.

1.1.6.1 Свойства множеств

- 1. A = A однородность;
- 2. A = B, тогда B = A симметрия;
- 3. A = B, B = C, тогда A = C транзитивность.

1.2 Логическая символика

ОПР 1.2.1 (Высказывание).

Высказыванием назовём повествовательным предложением о каких либо свойствах объекта.

- Если x объект, то P(x) предложение.
- Нас интересует истинно выражение или ложь.

ОПР 1.2.2 (Операции).

- 1. P&Q истинно, если истинны и P, и Q называется логическим "И "или "КОНЪЮНКЦИЯ ;
- 2. P|Q истинно, если истинно P или Q называется логическим "ИЛИ "или "ДИЗЪЮНКЦИЯ ;
- 3. $\ \ ^{7}P\ ucmuhho,\ ecлu\ ложно\ P.\ -\ OTРИЦАНИЕ\ ;$
- 4. $P\Rightarrow Q-u$ з истинности P следует истинность $Q-\mathrm{C}\Pi\mathrm{E}\Pi\mathrm{C}\Pi\mathrm{B}\Pi\mathrm{E}$ "или "ИМПЛИКАЦИЯ ;
- 5. $P \Leftrightarrow Q P$ и Q равносильны, т.е. $(P \Rightarrow Q)\&(Q \Rightarrow P)$.

ОПР 1.2.3 (Кванторы).

Следующие "значки" принято называть кванторами, и использовать для сокращения записи:

- $\forall \partial ns \ ecex;$
- \exists cywecmsyem;
- \bullet | $makoe \ что$.

1.3 Операции над множествами

ОПР 1.3.1 (Операции над множествами).

Пусть A, B — множества, тогда:

1.
$$A \cup B = C \leftrightharpoons \{x \in C \Leftrightarrow (x \in A) \lor (x \in B)\}$$
 — объединение;

2.
$$A \cap B = C \leftrightharpoons \{x \in C \Leftrightarrow (x \in A) \& (x \in B)\}$$
 — nepeceuenue;

3.
$$A \setminus B = C \leftrightharpoons \{x \in C \Leftrightarrow (x \in A)\&(x \notin B)\}$$
 — вычитание;

4. $A \cap B = \emptyset$, тогда $A \setminus B = A - дополнение.$

ОПР 1.3.2 (Декартово произведение).

Пусть A, B — множества, тогда $A \times B \Longrightarrow \{\{x,y\} | x \in A, y \in B\}$ — декартово (прямое) произведение. В общем случае $A_1 \times \cdots \times A_n = \{\{x_1, \dots x_n\} | x_i \in A_i \quad \forall i\}$. В частном случае, когда $\forall i$: $A_i = A, A \times \cdots \times A = A^n$.

1.4 Отображение множеств

ОПР 1.4.1 (Отображение множеств).

Пусть A, B — множества, тогда отображением $f: A \to B$ называется любое правило, которое каждому элементу из A единственным образом со-поставляет элемент из B. При $x \in A, y \in B$ записывается: y = f(x). При этом:

•
$$D(f) \leftrightharpoons \{x \in A \mid f(x)\};$$

D(f) — область определения;

•
$$E(f) \leftrightharpoons \{y \in B | \exists x \in A | E(x) = y\};$$

$$E(f)$$
 — область значений;

$$y \in E(f)$$
;

$$y = F(x)$$
.

ОПР 1.4.2 (Тождественное отображение).

$$F: A \to A \leftrightharpoons \forall x \quad F(x) = x;$$

Также обозначается:

F(x) = id(x) = x.

Стр. 16

ОПР 1.4.3 (Постоянное отображение).

 $F: A \to B \leftrightharpoons \forall x \quad F(a) = b, \ npu \ a \in A, b \in B.$

- $F(A) \leftrightharpoons \{y \in B \mid y = F(x)\}$ образ A относительно отображения F;
- $F^{-1}(B) \leftrightharpoons \{x \in A \mid y = F(x), y \in B\}$ прообраз B относительно отображения F.

ОПР 1.4.4 (Обратная функция).

Если $f^{-1}(y)$ состоит из единственного элемента $\forall y \in E(f)$, тогда говорят, что функция f обладает обратной и обозначают $f^{-1}: B \to A$.

ОПР 1.4.5 (Типы отображений).

Пусть $f: A \to B$, тогда:

- f сюрьекция (отображение на), если $\forall y \in B \quad \exists x \in A \mid f(x) = y;$
- f инъекция (разнозначность), если $\forall x_1, x_2 \in A | x_1 \neq x_2$ $f(x_1) \neq f(x_2)$;
- \bullet f- биекция (взаимооднозначность), если f- ин $ext{текция}$ и сюрьекция;
- Обратное отображение.

ОПР 1.4.6 (Обратное отображение).

Пусть $F: A \to B$ — отображение, тогда F^{-1} — обратное отображение, если $\forall y \in B$ $\exists x \mid F(x) = y;$

Eсли F- интективно и сюрьективно, то определено $G=F^{-1}$ $G\colon B\to A$.

ОПР 1.4.7 (Суперпозиция отображения).

Пусть A,B,C — множества; $f\colon A\to B,\quad g\colon B\to C,$ тогда $h=g(f)=g\circ f$ — суперпозиция функций f и $g,h\colon A\to C.$

1.4.7.1 Упражнение

 \triangleright Доказать, что $f \circ (g \circ h) = (f \circ g) \circ h$.

ОПР 1.4.8 (График отображения).

 $G(F) = \{(x,y) \in A \times B | y = F(x)\}$ G(F) — график отображения. Замечание.

Если G — обратное отображение F и $F\colon A\to B$, тогда $G\circ F\colon A\to A; G\circ F=idA; F\circ G\colon B\to B=idB.$

MFH Corporation

Стр. 18

1.5 Вещественные числа

1.5.1 Введение

- $\triangleright \mathbb{R}$ множество действительных чисел;
- $\triangleright f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$: f(x,y) = x + y сложение:
- $\triangleright q: \mathbb{R} \times \mathbb{R} \to \mathbb{R}; \quad q(x,y) = x \cdot y$ умножение.

ОПР 1.5.2 (Аксиомы сложения).

- A1. $\exists 0 \forall x \in R: x+0=x cyществование нуля;$
- A2. $\forall x, y \in \mathbb{R}$ $x + y = y + x \kappa o M M y m a m u s H o c m b$:
- A3. $\forall x \in \mathbb{R} \quad \exists (-x) \mid x + (-x) = 0 cyществование аддитивного обратного;$
- A4. $\forall x, y, z \in \mathbb{R}$ x + (y + z) = (x + y) + z accoulamus + acc

Следствие 1.5.2.1 (Следствия аксиом сложения).

- 1. 0 единственный:
- 2. Обратный элемент для x единственный;
- 3. Уравнение x + a = b имеет единственный корень (решение).

- 1. Пусть таких элементов два: $0_1, 0_2$, тогда $0_1 = 0_1 + 0_2 = 0_2$;
- 2. Пусть y_1, y_2 обратные элементы для x, тогда $y_2 = 0 + y_2 =$ $(x+y_1)+y_2=(x+y_2)+y_1=0+y_1=y_1;$
- 3. x = b + (-a)

$O\Pi P 1.5.3$ (Аксиомы умножения).

- $M1. \exists 1 \in \mathbb{R} | \forall x \in R: \quad x \cdot 1 = x \quad существование единицы;$
- $M2. \ \forall x, y \in \mathbb{R} \ \ x \cdot y = y \cdot x \kappa o m m y m a m u в h o c m ь$:
- $M3. \ \forall x \in \mathbb{R} \quad | x \neq 0 \quad \exists y \in \mathbb{R} | x \cdot y = 1 cyществование мультипликативного$ обратного;
- $M4. \ \forall x, y, z \in \mathbb{R} \ x \cdot (y \cdot z) = (x \cdot y) \cdot z accoulum u$ вность;
- $(A+M) \ \forall x,y,z \in \mathbb{R} \ (x+y) \cdot z = x \cdot z + y \cdot z \partial u c m p u б y m u в но c m ь;$

Следствие 1.5.3.1 (Свойства аксиом умножения).

- 1. Елинина елинственна:
- 2. $\forall x \neq 0$ обратный элемент единственный.

ОПР 1.5.3.2 (Деление и вычитание).

- $x \cdot \frac{1}{y} = \frac{x}{y} \partial e \lambda e \mu u e;$

ОПР 1.5.4 (Аксиомы порядка).

Пусть Q(x,y) — некоторое высказывание на $\mathbb{R} \times \mathbb{R}$. $Q(x,y): x \leq y$ порядок.

Если $x \leq y$ и $y \leq x$, то говорят x = y:

Если $x \leq y$, но $x \neq y$, то x < y.

- $O0. \ x,y \in \mathbb{R}, \quad us \ mp\"{e}x \ высказываний <math>x < y, x = y, x > y \ ucmuho \ moлько$ одно:
- $O1. \ \forall x \in \mathbb{R} \colon x \leqslant x$
- O2. $\forall x, y, z \in \mathbb{R}$: $ecnu \ x \leq y, y \leq z, mo \ x \leq z$;
- O3. $\forall x, y \in \mathbb{R}$: $ec_{A}u \ x \leq y$. $mo \ \forall z \colon x + z \leq y + z$:
- O4. $z \in \mathbb{R}, z \ge 0$ $u \forall x, y \in \mathbb{R}$: $ec_{\lambda}u \ x \le y$, $mo \ z \cdot x \le z \cdot y$.

Следствие 1.5.4.1 (Следствия аксиом порядка).

Пусть $a, b \in \mathbb{R}$, тогда:

- 1. Если a > 0, b > 0, то a + b > 0:
- 2. Если a > 0, b > 0, то $a \cdot b > 0$:
- 3. Если $a \neq 0$, то $a \cdot a > 0$:
- $4. \ 0 < 1.$

Натуральные числа

ОПР 1.6.1 (Индуктивное множество).

Mножество $M \subseteq \mathbb{R}$ назовём индуктивным, если выполнены условия:

1. $1 \in M$;

П

П

Стр. 20

 $2. \ \forall x \in M \Rightarrow x+1 \in M.$

УТВ 1.6.1.1 (Существование индуктивного множества).

⊳ Индуктивное множество существует.

Доказательство.

$$\checkmark \mathbb{R} \subseteq \mathbb{R}$$
:

$$\checkmark 1 \in \mathbb{R}$$
:

$$\checkmark \ \forall x \in \mathbb{R} \colon x + 1 \in \mathbb{R}.$$

Следовательно, \mathbb{R} — индуктивное множество.

УТВ 1.6.1.2 (О пересечении индуктивных множеств).

 Любое пересечение индуктивных множеств является индуктивным множеством.

- 1 принадлежит всем множествам, следовательно 1 принадлежит пересечению всех множеств.
- \circ Пусть x принадлежит пересечению множеств, тогда x принадлежит каждому множеству, значит, 1+x принадлежит каждому множеству, и следовательно 1+x принадлежит пересечению всех множеств.
- Условия из определения индуктивного множества выполнены, значит, пересечение индуктивных множеств является индуктивным множеством.

ОПР 1.6.2 (Множество натуральных чисел).

Множеством натуральных чисел называется пересечение всех индуктивных множеств из \mathbb{R} . Обозначается: \mathbb{N}

Следствие 1.6.2.1 (Индуктивные подмножества ℕ).

ightharpoonup Если $M\subseteq \mathbb{N}$ и M индуктивно, то $M=\mathbb{N}.$

Доказательство.

т.к.
$$M$$
 — индуктивно, то $M \subseteq \mathbb{N} \Rightarrow M = \mathbb{N}$.

Следствие 1.6.2.2 (Следствие 1).

$$\triangleright \ 1 < 2 < 3 < \dots \qquad \forall x \colon x < x + 1.$$

Следствие 1.6.2.3 (Метод математической индукцией).

- $ightarrow \Pi$ усть задано множество высказываний зависимых от натурального числа $P(n), n \in \mathbb{N}.$
 - \circ Пусть P(1) истинно;
 - \circ Если P(k) истинно, то P(k+1) истинно; Тогда P(n) истинно $\forall n \in \mathbb{N}$.

Доказательство.

$$M$$
 множество $\{k \mid P(k) - \text{истинно}\}.$
$$\left\{ \begin{array}{l} 1 \in M \\ k \in M \Rightarrow k+1 \in M \end{array} \right\} \Rightarrow M - \text{индуктивное множество}.$$

ОПР 1.6.3 (Различные множества).

1.
$$(-A) \leftrightharpoons \{-x \mid x \in A\};$$

2.
$$A + B = C \leftrightharpoons \{x + y \mid x \in A, y \in B\};$$

3.
$$A \cdot B = C \leftrightharpoons \{x \cdot y | x \in A, y \in B\};$$

4.
$$A - B \leftrightharpoons A + (-B)$$
.

ОПР 1.6.4 (Множество целых чисел).

- *Множество* целых чисел $\mathbb{Z} = \mathbb{N}_i \mathbb{N}$;
- *Множество* рациональных чисел: $\{x \in \mathbb{Q} \Leftrightarrow x = \frac{p}{q}, \imath\partial e \ p, q \in \mathbb{Z}, q \neq 0\}.$

1.7 Степень числа

ОПР 1.7.1 (Степень числа).

Пусть $a \in \mathbb{R}, a \neq 0$, тогда:

1.
$$a^0 = 1$$
: $a^1 = a$: $a^2 = a \cdot a^1$: ... $a^n = a \cdot a^{n-1}$, $n \in \mathbb{N}$:

2.
$$a^0 = 1; a^{-1} = \frac{1}{a}; a^{-2} = \frac{1}{a^2}; \dots a^{-n} = \frac{1}{a^n}.$$

1.7.1.1 Свойства степени

Пусть $a, b \in \mathbb{R}$ $n, m \in \mathbb{N}$, тогда:

- 1. $a^n \cdot b^n = (a \cdot b)^n$;
- $2. \ a^{n+m} = a^n \cdot a^m;$
- 3. $(a^n)^m = a^{nm}$.

Теорема 1.7.2 (Тождество 1).

- $\forall q \neq 0$ справедливо $1 + q + q^2 + \dots + q^{n-1} = \frac{1 q^n}{1 q}$.
- Доказательство.
 - \circ Т.к. $q \neq 0$, то 1 q обратим.
 - $\circ \ (1-q)(1+q+q^2+\cdots+q^{n-1}) = 1 \cdot (1+q+q^2+\cdots+q^{n-1}) q \cdot \\ \cdot (1+q+q^2+\cdots+q^{n-1}) = 1-q^n \Rightarrow \\ 1+q+q^2+\cdots+q^{n-1} = \frac{1-q^n}{1-q}.$

Теорема 1.7.3 (Тождество 2).

- $ightarrow \ orall A, B \in \mathbb{R}$ справедливо $A^n B^n = (A-B)(A^{n-1} \cdot B^0 + A^{n-2} \cdot B^1 + \ldots + A^1 \cdot B^{n-2} + A^0 \cdot B^{n-1}).$
- Доказательство.
 - \circ Если B=0, то тождество очевидно.
 - \circ Пусть $B \neq 0$, тогда определим $q = A \cdot \frac{1}{B} = \frac{A}{B}$. Подставив q в тождество 1.7.2, получим требуемое.

1.8 Аксиома Архимеда

ОПР 1.8.1 (Аксиома Архимеда).

 $\forall a \in \mathbb{R} \colon \exists k \in Z \mid a < k.$

Следствие 1.8.1.1 (Следствие 1).

⊳ <u>Пусть</u>

$$a \in \mathbb{R}$$
 и $\forall n \in \mathbb{N} \colon a \leqslant \frac{1}{n}$.

Лекции по математическому анализу http://MFH.gorodok.net/

⊳ Тогда

Стр. 22

 $a \leqslant 0$.

Доказательство.

От противного

- $\checkmark \text{ Пусть } a > 0 \Rightarrow \exists \frac{1}{a} > 0;$
- $\checkmark \ \ \frac{1}{a} \in \mathbb{R} \Rightarrow_{\text{(по аксиоме Архимеда)}} \exists s \ 0 < \frac{1}{a} < s \Rightarrow s > 0 \Rightarrow s \in \mathbb{N};$
- $\sqrt{\frac{1}{a}} < s \Rightarrow 1 < as \Rightarrow a > \frac{1}{s}$.

Получили противоречие, следовательно, $a \leq 0$.

Следствие 1.8.1.2 (Следствие 2).

- ⊳ Пусть
 - $A > 1, A \in \mathbb{R};$
 - $\circ \ a \in \mathbb{R} \colon \forall n \in \mathbb{N} \colon a \leqslant A^{-n} \leqslant \frac{1}{A^n}.$
- ⊳ Тогда
 - $a \leqslant 0$.
- ⊳ Доказательство.
 - \circ Так как A>1 то $\exists \beta \in \mathbb{R} | \beta>0$ и $A=1-\beta$. Тогда $A^n=(1+\beta)^n=\underbrace{(1+\beta)(1+\beta)\dots(1+\beta)}_{n}=1+n\beta+$ что-то положительное $\Rightarrow A^n>$
 - $1 + n\beta > n\beta^n$
 - $\circ \forall n \colon a \leqslant \frac{1}{A^n} \Rightarrow a \leqslant \frac{1}{n\beta} \Rightarrow a \cdot \beta \leqslant \frac{1}{n} \Rightarrow ($ из следствия $1.8.1.1)a \cdot \beta \leqslant 0;$ Но $\beta > 0$, следовательно $a \leqslant 0$.

1.9 Абсолютная величина

ОПР 1.9.1 (Абсолютной величины).

Отображение $| \ | : \mathbb{R} \to \mathbb{R}$, действующее по следующему правилу:

$$|x| = \begin{cases} x, & x \geqslant 0; \\ -x, & x < 0. \end{cases}$$

называется абсолютной величиной.

Стр. 24

Следствие 1.9.1.1 (Свойства абсолютной величины).

- 1. $|x \cdot y| = |x| \cdot |y|$: в частности |-x| = |x|:
- 2. Если $a \in \mathbb{R}$, a > 0, то:
 - (a) $|x| \le a \Leftrightarrow -a \le x \le a$;
 - (b) $|x| < a \Leftrightarrow -a < x < a$.
- 3. $|x+y| \leq |x| + |y|$ —неравенство треугольника;
- 4. $||x| |y|| \le |x y|$.

⊳ Доказательство.

- 1. Вытекает из определения;
- 2. Вытекает из определения;
- 3.

MFH Corporation

Из свойства 2 абсолютной величины 1.9.1.1 получаем: $|x+y| \le$ $\leq |x| + |y|$;

- 4. $\checkmark x = (x y) + y$; y = (y x) + x;
 - ✓ Из свойства 3 абсолютной величины 1.9.1.1 получаем: |x| = $|(x-y)+| \le |x-y|+|y| \Rightarrow |x|-|y| \le |x-y|;$ $|y| = |(y - x) + x| \le |y - x| + |x| \Rightarrow -|y - x| \le |x| - |y| \Rightarrow$ \Rightarrow (свойство 1) $-|x-y| \leqslant |x|-|y|$;

Используя свойство 2, получаем: $||x| - |y|| \le |x - y|$.

Расширенная числовая прямая 1.10

ОПР 1.10.1 (Расширенная числовая прямая).

Введём пару объектов:

- $-\infty$ некий объект, обладающий свойством: $\forall x \in \mathbb{R} \colon -\infty < x$;
- $+\infty$ некий объект, обладающий свойством: $\forall x \in \mathbb{R} : x < +\infty$.

 $Tor\partial a \ \overline{\mathbb{R}} \leftrightharpoons \mathbb{R} \cup \{-\infty, +\infty\}$ — расширенная числовая прямая.

ОПР 1.10.2 (Множества на расширенной числовой прямой).

1. $[a,b] \leftrightharpoons \{x \in \mathbb{R} | a \leqslant x \leqslant b\}$ — замкнутый отрезок;

http://MFH.gorodok.net/ Лекции по математическому анализу

2. $(a,b) \rightleftharpoons \{x \in \mathbb{R} \mid a < x < b\}$ — открытый отрезок;

MFH Corporation

- 3. $(a,b] \leftrightharpoons \{x \in \mathbb{R} | a < x \le b\}$ полуоткрытый отрезок;
- 4. $[a,b) \leftrightharpoons \{x \in \mathbb{R} | a \leqslant x < b\} nonyomкрытый отрезок;$
- 5. $(-\infty, +\infty) \leftrightharpoons \overline{\mathbb{R}}$:
- 6. $(-\infty, a] \leftrightharpoons \{x \in \mathbb{R} | x \leqslant a\};$
- 7. $(-\infty, a) = \{x \in \mathbb{R} \mid x < a\}$:
- 8. $[a, +\infty) \leftrightharpoons \{x \in \mathbb{R} \mid a \leqslant x\};$
- 9. $(a, +\infty) \leftrightharpoons \{x \in \mathbb{R} \mid a < x\}$:

Верхняя и нижняя грани

ОПР 1.11.1 (Верхняя и нижняя грани).

 $\Pi ucm b A \subseteq \mathbb{R}.$

- Число $\ell \in \mathbb{R}$ называется верхней гранью множества A, если $\forall x \in A \colon x \leqslant A$ $\leq \ell$:
- Число $\ell \in \mathbb{R}$ называется нижней гранью множества A, если $\forall x \in A \colon x \geqslant$ $\geqslant \ell$.

ОПР 1.11.2 (Ограниченность множества).

Mножество A называется:

- ограниченным сверху, если в \mathbb{R} существует верхняя грань множества A;
- ullet ограниченным снизу, если в $\mathbb R$ существует нижняя грань множества A:
- ограниченным, если оно ограниченно снизу и сверху.

1.11.2.1 Обозначение множеств граней

- \triangleright $\Gamma^{+}(A)$ множество верхних граней множества A;
- \triangleright $\Gamma^{-}(A)$ множество нижних граней множества A;

ОПР 1.11.3 (Точная грань).

• $\mathit{Число}\ q \in \Gamma^+(A)\ \mathit{называется}\ \mathsf{точной}\ \mathsf{верхней}\ \mathsf{гранью}\ \mathit{множества}\ A\ \mathit{если}$ $\forall q' \in \Gamma^+(A) : q \leqslant q'.$

Обозначается $q = \sup(A) = \sup a$;

П

• Число $q \in \Gamma^-(A)$ называется точной нижней гранью множества A если $\forall q' \in \Gamma^-(A) \colon q' \leqslant q.$

Обозначается $q = \inf(A) = \inf_{a \in A} a;$

1.12 Аксиома непрерывности

ОПР 1.12.1 (Аксиома непрерывности).

Bсякое подмножество $A\subseteq\mathbb{R}$ обладает точной верхней и точной нижней гранями.

1.13 Аксиома о вложенных отрезках

ОПР 1.13.1 (Максимум и минимум множества).

Пусть $A \subseteq \mathbb{R}$; $\ell \in \overline{\mathbb{R}}$. Тогда:

- если ℓ верхняя грань A и ℓ \in A, то ℓ максимум множества A. Обозначается $\ell=\max{(A)}=\max_{a\in A}a$.
- если ℓ нижняя грань A и ℓ \in A, то ℓ минимум множества A. Обозначается $\ell = \min{(A)} = \min_{a \in A} a$.

1.13.1.1 Некоторые обозначения

 $(a,b);a,b\in\overline{\mathbb{R}}$ — любой интервал между а и b .

ОПР 1.13.2 (Вложенность интервалов).

Пусть $J_1 = \langle a, b \rangle; J_2 = \langle c, d \rangle$.

Ecли $a\leqslant c < d\leqslant b,$ то интервал J_2 называется вложенным в интервал $J_1.$

Обозначается $J_2 \subseteq J_1, J_2 \leqslant J_1$.

ОПР 1.13.3 (Вложенность семейства интервалов).

Множество (семейство) интервалов $J_1, J_2, ..., J_k, ...$ называется вложенным, если $\forall k \colon J_{k+1} \subseteq J_k$.

ОПР 1.13.4 (Аксиома о вложенных отрезках).

Для любого семейства замкнутых отрезков существует точка, принадлежащая всем отрезкам в этом семействе, т.е. $\exists x \in \mathbb{R} \ \forall k \colon x \in J_k$.

Теорема 1.13.4.1 (Об эквивалентности аксиом).

 $\,\triangleright\,$ Из аксиомы непрерывности 1.12.1 на стр. 25 следует аксиома о вложенных отрезках 1.13.4.

Лекции по математическому анализу http://MFH.gorodok.net/

⊳ Доказательство.

Стр. 26

Пусть:

- $\checkmark A$ множество левых концов интервалов J_k из аксиомы о вложенных отрезках;
- \checkmark A множество правых концов интервалов J_k из аксиомы о вложенных отрезках.

 $A\subseteq\mathbb{R};\ B\subseteq\mathbb{R}\Rightarrow_{\text{(по аксиоме непрерывности)}}\exists\inf B,\exists\sup A;$ По построению, получаем $\inf B=\sup A.$

1.14 Сечение Дедекинда

ОПР 1.14.1 (Сечения).

Пусть $L, H - \partial$ ва подмножества $\overline{\mathbb{R}}$ такие, что:

- 1. в L и H есть хотя бы один элемент \mathbb{R} ;
- 2. $\forall x \in L, \forall y \in H \text{ umeem mecmo } x < y.$
- (L, H) называется сечением (по Дедекинду).

ОПР 1.14.2 (Аксиома Дедекинда).

Для любого сечения (L,H) либо L имеет максимальный элемент, либо H имеет минимальный элемент.

Теорема 1.14.2.1 (Об эквивалентности аксиом).

▶ Из аксиомы непрерывности 1.12.1 на стр. 25 следует аксиома Дедекинда 1.14.2.

1.15 Дроби и операции на ними

ОПР 1.15.1 (Десятичные дроби).

- $a, \alpha_1 \alpha_2 \dots \alpha_n$ конечная десятичная дробь;
- $a, \alpha_1 \alpha_2 \dots \alpha_n \dots$ бесконечная десятичная дробь, если для любого натурального k можно указать α_k .

1.15.1.1 Алгоритм построения десятичной дроби

 \triangleright Пусть x — рационально, тогда, согласно аксиоме Архимеда 1.8.1 на стр. 21, существует число $a \in \mathbb{Z}$ такое, что $a < x \le a + 1$;

MFH Corporation

- \triangleright Найдем наибольшее число α_1 такое, что $a + \frac{\alpha_1}{10}$ Получим: $a, \alpha_1 < x \leqslant$ $\leq a, \alpha_1 + \frac{1}{10};$
- \triangleright Затем ищем $\alpha_2, \alpha_3, \ldots$ На каком-то шаге m получим:

$$a, \alpha_1 \alpha_2 \dots \alpha_m < x \leqslant a, \alpha_1 \alpha_2 \dots \alpha_m + \frac{1}{10^m}.$$

Мы получили десятичную дробь.

Следствие 1.15.1.2 (Свойства десятичных дробей).

- 1. В десятичных дробях число нулей не бесконечно;
- 2. Разложение в бесконечные десятичные дроби для различных чисел различно.

Доказательство.

1. Пусть $a, \alpha_1 \alpha_2 \dots$ разложение числа x в десятичную дробь и пусть условие не выполнено, т.е. с какой-то позиции в разложении идут только нули. Тогда

$$1 < x - a, \alpha_1 \alpha_2 \dots \alpha_m \leqslant \frac{1}{10^{m+k}};$$
$$0 < x - a, \alpha_1 \alpha_2 \dots \alpha_m \leqslant 0.$$

2. Пусть $x \neq y$, а их разложения в десятичные дроби одинаково. Значит

$$a, \alpha_1 \alpha_2 \dots \alpha_m < x \leqslant a, \alpha_1 \alpha_2 \dots \alpha_m + \frac{1}{10^m};$$

$$a, \alpha_1 \alpha_2 \dots \alpha_m < y \leqslant a, \alpha_1 \alpha_2 \dots \alpha_m + \frac{1}{10^m};$$

$$\Rightarrow \forall m \colon 0 < |x - y| \leqslant \frac{1}{10^m} \Rightarrow 0 < |x - y| \leqslant 0.$$

Следовательно, x, y совпадают.

ОПР 1.15.2 (Действительное число).

Действительным числом называется бесконечная десятичная дробь в виде $x = a, \alpha_1 \alpha_2 \dots \alpha_k \dots$

1.15.2.1 Действия над действительными числами

Пусть

Стр. 28

$$x = a, \alpha_1 \alpha_2 \dots \alpha_k \dots; y = b, \beta_1 \beta_2 \dots \beta_k \dots$$

Тогла:

- $\circ x = y$, если a = b, и $\forall i \in \mathbb{N}$ $\alpha_i = \beta_i$;
- $\circ x < y$, если a < b или a = b, $\exists k \in \mathbb{N} \mid \alpha_k < \beta_k$ и $\forall i < k\alpha_i = \beta_i$
- \circ $-x = -a, \alpha_1 \alpha_2 \dots \alpha_k \dots$
- $\circ x + y = a + b, \alpha_1 + \beta_2 \alpha_2 + \beta_2 \dots \alpha_n + \beta_n \dots$
- Произвеление:

Лемма 1.15.3 (О монотонности степени).

⊳ Пусть

$$x, y \in \mathbb{R}; x > 0; y > 0.$$

⊳ Тогда

 $\forall n \in \mathbb{N}, n > 1$ имеет место:

- 1. $x < y \Rightarrow x^n < y^n$
- $2. x^n < y^n \Rightarrow x < y.$
- - 1. $x < y \Rightarrow x^2 < xy, xy < y^2 \Rightarrow x^2 < y^2$; И так далее (по индукции).
 - 2. От противного.
 - \checkmark Пусть x=y, тогда $x^n=y^n-$ ПРОТИВОРЕЧИЕ;
 - ✓ Пусть x > y, тогда по свойству 1 получаем $x^n > y^n \Pi PO$ -ТИВОРЕЧИЕ.

Следовательно, x < y.

Теорема 1.15.4 (О корне n ой степени из действительного числа).

- $\forall c \geqslant 0, c \in \mathbb{R} \quad \forall n \in \mathbb{N}, n > 1 \quad \exists ! x \in \mathbb{R}, x \geqslant 0 \mid x^n = c^{\mathrm{I}}$
- Доказательство.

¹⁾∃! — существует, и единственный

П

П

✓ Существование.

 $\sqrt[n]{c} = a, \alpha_1 \alpha_2 \dots \alpha_n$, при этом $\forall k > 0$ имеет место $a, \alpha_1 \alpha_2 \dots \alpha_k \dots < \infty$ $\sqrt[n]{c} < a, \alpha_1 \alpha_2 \dots \alpha_k \dots + \frac{1}{10^k}$

MFH Corporation

✓ Единственность.

Пусть есть два элемента $x, y \mid x^n = c, y^n = c$. Допустим, что $x \neq y$, тогда возможны два случая:

1. x < y: Тогда из леммы $1.15.3 \Rightarrow x^n < y^n \Rightarrow c < c - ПРОТИВОРЕ-$ ЧИЕ.

2. x > y; Аналогично.

1.16 Счетные множества

ОПР 1.16.1 (Счетных множеств).

Множество A называется счетным, если существует инъекция: ν : $A \to$ \mathbb{N} . ν — нимеририющее отображение.

1. ν — определено $\forall x \in A$:

2. Ecau $x, y \in A$ $u x \neq y$, mo $\nu(x) \neq \nu(y)$.

ОПР 1.16.2 (Конечных множеств).

A называется конечным, если $\exists m \in M \colon \nu \colon A \to \{1, 2, \ldots, m\}$ — взаимооднозначное. Если такого m не сишествиет, то A — бесконечно.

ОПР 1.16.3 (Не более чем счетных множеств).

 $E c n A - \kappa o n e u n u c u e m n o n o A$ не более, чем счетно.

ПРЕДЛ 1.16.4 (О не более, чем счетных подмножествах).

⊳ Пусть

 $B \subseteq A$ и A — не более, чем счетно.

⊳ Тогда

B — не более, чем счетно.

Доказательство.

 \circ Пусть $x \in B \Rightarrow x \in A \Rightarrow \nu(x) \in \mathbb{N}$:

 \circ Пусть $x, y \in B \Rightarrow x, y \in A; \nu(x) = \nu(y) \Leftrightarrow x = y.$

ПРЕДЛ 1.16.5 (Инъекция не более, чем счетных множеств).

⊳ Пусть

Стр. 30

 $f: A \to B$ — инъективно. B — не более, чем счетное множество.

⊳ Тогда

A — не более, чем счетно.

Доказательство.

Пусть $x \in A$, тогда $f(x) \in B \Rightarrow \mu \colon A \to \mathbb{N} \Rightarrow \mu = \nu \circ f$, где ν нумерирующее для B.

ПРЕДЛ 1.16.6 (Сюрьекция не более, чем счетных множеств).

⊳ Пусть

 $f: A \to B$ — сюрьективно. A — не более, чем счетное множество.

⊳ Тогда

B — не более, чем счетное множество.

ПРЕДЛ 1.16.7 (Определение эквивалентных множеств).

 \triangleright Два множества A и B называются эквивалентными, если существует взаимооднозначное отображение $f: A \to B$ (биективное).

Теорема 1.16.8 (Эквивалентность N своим бесконечным подмножествам).

 \triangleright Всякое бесконечное подмножество $M \subseteq \mathbb{N}$ эквивалентно \mathbb{N} . Это означает, что $\exists \nu \colon M \to \mathbb{N}$ — взаимооднозначное.

Доказательство.

 $M \subseteq \mathbb{N} \Rightarrow$

 $\checkmark \exists x_1 | x_1 - \text{наименьший для } M; \Rightarrow \nu(x_1) = 1; M_1 = M \setminus \{x_1\};$

 $\checkmark \exists x_2 | x_2$ — наименьший для M_1 ; $\Rightarrow \nu(x_2) = 2$; $M_2 = M \setminus \{x_2\}$;

✓ И так далее.

Получаем, что ν определена на всем множестве M и $\forall k \in \mathbb{N} \colon \exists x_k$ по построению.

Следствие 1.16.8.1 (К теореме).

П

П

⊳ Все счетные множества эквивалентны.

Доказательство.

Пусть A, B — два счетных множества. Тогда определены нумерации $\nu \colon A \to \mathbb{N}, \, \mu \colon B \to \mathbb{N} \quad \Rightarrow \, \nu(A) \subset \mathbb{N}, \, \mu(B) \subset \mathbb{N} \quad \Rightarrow \, \exists f \colon \nu(A) \to \mathbb{N}$ \mathbb{N} . $\exists a : \mu(B) \to \mathbb{N} \Rightarrow \mu^{-1} \circ q^{-1} \circ f \circ \nu : A \to B$ — взаимооднозначное отображение.

ПРЕДЛ 1.16.9 (Об объединение счетных множеств).

⊳ Пусть

A. B — два счетных множества.

⊳ Тогда

 $A \cup B$ — счетное множество.

⊳ Доказательство.

 $A = \{a_1, a_2, \dots, a_n, \dots\}; B = \{b_1, b_2, \dots, b_n, \dots\}; A \cup B = \{a_1, b_1, a_2, b_2, \dots, a_n, b_n, \dots\} | \nu(a_k) = \{a_1, a_2, \dots, a_n, a_n, \dots\} | \nu(a_k) = \{a_1, a_2, \dots, a_n, a_n, \dots\} | \nu(a_k) = \{a_1, a_2, \dots, a_n, a_n, \dots\} | \nu(a_k) = \{a_1, a_2, \dots, a_n, a_n, \dots\} | \nu(a_k) = \{a_1, a_2, \dots, a_n, a_n, \dots\} | \nu(a_k) = \{a_1, a_2, \dots, a_n, a_n, \dots\} | \nu(a_k) = \{a_1, a_2, \dots, a_n, a_n, \dots\} | \nu(a_k) = \{a_1, a_2, \dots, a_n, a_n, \dots\} | \nu(a_k) = \{a_1, a_2, \dots, a_n, a_n, a_n, \dots\} | \nu(a_k) = \{a_1, a_2, \dots, a_n, a_n, a_n, \dots\} | \nu(a_k) = \{a_1, a_2, \dots, a_n, a_n, a_n, \dots\} | \nu(a_k) = \{a_1, a_2, \dots, a_n, a_n, a_n, \dots\} | \nu(a_k) = \{a_1, a_2, \dots, a_n, a_n, a_n, \dots\} | \nu(a_k) = \{a_1, a_2, \dots, a_n, a_n, a_n, \dots\} | \nu(a_k) = \{a_1, a_2, \dots, a_n, a_n, a_n, \dots\} | \nu(a_k) = \{a_1, a_2, \dots, a_n, a_n, a_n, \dots\} | \nu(a_k) = \{a_1, a_2, \dots, a_n, a_n, a_n, \dots\} | \nu(a_k) = \{a_1, a_2, \dots, a_n, a_n, a_n, a_n, \dots\} | \nu(a_k) = \{a_1, a_2, \dots, a_n, a_n, a_n, \dots\} | \nu(a_k) = \{a_1, a_2, \dots, a_n, a_n, a_n, \dots, a_n, a_n, a_n, a_n, \dots\} | \nu(a_k) = \{a_1, a_2, \dots, a_n, a_n, a_n, \dots, a_n, a_n, \dots, a_n, a_n, \dots\} | \nu(a_k) = \{a_1, a_2, \dots, a_n, a_n, a_n, \dots, a_n, a_n, a_n, \dots, a_n, a_n, a_n, \dots\} | \nu(a_k) = \{a_1, a_2, \dots, a_n, a_n, \dots, a_n,$ 2k-1, $\nu(b_k)=2k\Rightarrow \nu\colon (A\cup B)\to \mathbb{N}$ — нумерация для $A\cup B$.

MFH Corporation

Теорема 1.16.10 (Кантора о счетном объединении счетных множеств).

⊳ Пусть

 $A_1, A_2, \ldots, A_n, \ldots$ – счетных набор счетных множеств.

⊳ Тогда

 $C = \bigcup_{i=1}^{\infty} A_i$ — счетное множество.

Следствие 1.16.10.1 (К теореме).

 $\triangleright \mathbb{O}$ — счетно.

Теорема 1.16.11 (Не счётность \mathbb{R}).

⊳ Пусть

$$A \subseteq \mathbb{R}; A = [a, b], a < b.$$

⊳ Тогда

Множество A не является счетным.

Доказательство.

Стр. 32

 \circ Можно считать, что [a, b] = [0, 1].

Пусть [0,1] — счётно, значит существует элемент $x_1 \in [0,1]$. [0,1] = $[0,\frac{1}{3}] \cup [\frac{1}{3},\frac{2}{3}] \cup [\frac{2}{3},1]$. Существует хотя бы один интервал $[\alpha_1,\beta_1] \mid x_1 \notin$ $[\alpha_1, \beta_1].$

Рассмотрим $[\alpha_1, \beta_1]$ и элемент x_2 : $[\alpha_1, \beta_1]$ разбиваем на 3 части. очевидно $\exists [\alpha_2, \beta_2] \mid x_2 \notin [\alpha_2, \beta_2]$. Заметим, что $[\alpha_2, \beta_2] < [\alpha_1, \beta_1]$.

По индукции получим интервал $[\alpha_n, \beta_n] \mid x_n \neq \in [\alpha_n, \beta_n], \quad [\alpha_n, \beta_n] < \infty$ $[\alpha_{n-1},\beta_{n-1}].$

Получим семейство вложенных замкнутых отрезков. По теореме о вложенных отрезках $\exists y \in [\alpha_n, \beta_n] \quad \forall n \in \mathbb{N}$. Но элементу y невозможно приписать никакой номер, т.к. по построению она не может совпадать ни с одной из точек x_1, x_2, \ldots, x_n .

П

Глава 2

Числовые последовательности и пределы

ОПР 2.1 (Выпуклого отрезка).

Множество $U \subseteq \overline{\mathbb{R}}$ называется выпуклым, если $\forall x, y \in U \Rightarrow [x, y] \in U$.

ОПР 2.2 (Элементарной окрестности).

Элементарной ε окрестностью точки $p\in\mathbb{R}$ называется множество вида $B_p(\varepsilon)=\{x\ |\ |x-p|<\varepsilon\}.$

ОПР 2.3 (Элементарной окрестности $+\infty$ и $-\infty$).

Элементарной окрестностью точки $+\infty \in \mathbb{R}$ называется множество вида $(r, +\infty)$, т.е. $\{x \in \mathbb{R} | x > r, r \in \mathbb{R} \}$.

Аналогично, элементарной окрестностью точки $-\infty \in \overline{\mathbb{R}}$ называется $(-\infty, r)$, т.е. $\{x \in \mathbb{R} | x < r, r \in \mathbb{R} \}$.

ОПР 2.4 (Окрестности).

Множество $U \subseteq \mathbb{R}$ называется окрестностью точки P, если существует элементарная окрестность V точки P, такая, что $U \subseteq V$.

Следствие 2.4.1 (Свойства окрестностей).

- \triangleright 1. Если U- окрестность точки P, то $P \in U$;
 - 2. Если U и V- окрестности точки P, то $W=U\cap V-$ окрестность точки P;
 - 3. Если $U \subseteq V$ и U— окрестность точки P, то V— окрестность точки P;
 - 4. Всякая окрестность точки P содержит выпуклый отрезок;

5. (отделимость) $\forall P,\,Q\in\overline{\mathbb{R}}\,P\neq Q \text{ существуют окрестности }U_P\text{ и }U_Q\,\big|\,U_P\cap U_Q=\varnothing.$

Доказательство.

(5) Пусть $P \neq Q$. Тогда предположим, что P < Q. Отсюда получаем: $P < \frac{P+Q}{2} < Q \Rightarrow B_P(\frac{P-Q}{4}) \cap B_Q(\frac{P-Q}{4}) = \varnothing.$

ОПР 2.5 (Диаметра множества).

 Π усть $S \subseteq \mathbb{R}$, тогда диаметр множества S это:

$$\operatorname{diam} S \stackrel{def}{=} \sup_{\forall x, y \in S} |x - y|.$$

2.6 Последовательности и их пределы

ОПР 2.6.1 (Последовательности).

Последовательностью называется любое отображение $f: \mathbb{N} \to \overline{\mathbb{R}}$. Следовательно, любая последовательность — это не более, чем счетное множество.

Говорят, что последовательность задана, если $\forall n \in \mathbb{N}$ можно указать x_n, n -ый элемент последовательности.

2.6.1.1 Способы задания последовательностей

- \triangleright 1. В виде формулы. Пример: $x_n = f(n)$;
 - 2. В виде итераций. Пример: $x_{n+1} = f(x_n)$.

2.6.2 Операции над последовательностями

- \triangleright Пусть даны две последовательности $\{x_1, x_2, \ldots, x_n \ldots\} = x; \{y_1, y_2, \ldots, y_n \ldots\} = y.$
- ⊳ Тогда:
 - 1. $\exists z = x + y \stackrel{def}{=} \{x_1 + y_1, x_2 + y_2, \dots, x_n + y_n, \dots\};$
 - 2. $\exists z = x \cdot y \stackrel{def}{=} \{x_1 \cdot y_1, x_2 \cdot y_2, \dots, x_n \cdot y_n, \dots\};$
 - 3. Если $y_n \neq 0, \forall n \in \mathbb{N}, \text{ то } \exists z = \frac{x}{y} \stackrel{def}{=} \{ \frac{x_1}{y_1}, \frac{x_2}{y_2}, \dots, \frac{x_n}{y_n}, \dots \};$
 - 4. Последовательность вида a, a, \ldots, a, \ldots называется постоянной последовательностью;
 - 5. $\exists z=\frac{1}{y}$ называется обратной последовательностью, если $y_n\neq 0 \ \forall n\in\mathbb{N}.$

Стр. 36

П

2.7 Пределы последовательностей

ОПР 2.7.1 (Топологическое определение предела).

Будем говорить, что последовательность x_n сходится (стремится) κ a, где $a \in \mathbb{R}$, при $n \to \infty$ (и записывать в виде $x \to a$ при $n \to \infty$ или $\lim_{n \to \infty} x_n = a$), если для любой окрестности U точки а существует такой номер M, что $\forall n \geqslant M \colon x_n \in U$.

Теорема 2.7.2 (О единственности предела).

⊳ <u>Пусть</u>

$$x_n \to a$$
 и $x_n \to b$ при $n \to \infty$.

⊳ Тогда

a = b.

Доказательство.

 \circ Пусть U окрестность точки a, а V окрестность точки b, тогда согласно определению предела 2.7.1: $\exists M_1 \mid x_n \in U \ \forall n \geqslant M_1; \ \exists M_2 \mid x_n \in V \ \forall n \geqslant M_2 \Rightarrow$ выбираем $M = \max{\{M_1, M_2\}}$ и получаем, что $\forall n \geqslant M: x_n \in U, x_n \in V \Rightarrow x_n \in (U \cap V) \Rightarrow \forall U, V: U \cap V \neq \varnothing$, с другой стороны по свойству 5 для окрестностей 2.4.1, если $a \neq b$, получаем $\exists U, V \mid U \cap V = \varnothing -$ противоречие $\Rightarrow a = b$.

ОПР 2.7.3 (Монотонного возрастания последовательности).

Последовательность x_n называется монотонно возрастающей (строго монотонно возрастающей), если $\forall n \in \mathbb{N} \colon x_n \leqslant x_{n+1} \ (x_n < x_{n+1}).$

ОПР 2.7.4 (Монотонного убывания последовательности).

Последовательность x_n называется монотонно убывающей (строго монотонно убывающей), если $\forall n \in \mathbb{N} \colon x_n \geqslant x_{n+1} \ (x_n > x_{n+1}).$

ОПР 2.7.5 (Монотонности последовательности).

Последовательность называется монотонной (строго монотонной), если она либо монотонно убывает, либо монотонно возрастает (либо строго монотонно убывает, либо строго монотонно возрастает).

Теорема 2.7.6 (О пределе монотонной последовательности).

- ightharpoonup Всякая монотонная последовательность имеет предел в $\overline{\mathbb{R}}.$
- Доказательство.

- Мы рассмотрим случай, когда последовательность монотонно возрастет. Для монотонно убывающей последовательности рассуждения аналогичны.
- $\circ~$ Пусть x_n монотонно возрастающая последовательность., тогда возьмем $a=\sup_{i\in\mathbb{N}}x_i.$ Пусть:
 - 1. $a = -\infty \Rightarrow x_n = a \ \forall n \in \mathbb{N} \Rightarrow \lim_{n \to \infty} x_n = a = -\infty;$
 - 2. $a \neq -\infty$, $a > -\infty$. Рассмотрим окрестность точки a, U = [r, a]. Пусть V- произвольная окрестность точки a, тогда: $\exists r \mid U \subseteq \subseteq V; \exists M \mid x_M \in [r, a], \Rightarrow \forall n > M \colon x_n \in [r, a],$ т.к. $x_{n+1} \geqslant x_n$. Значит, топологические условия существования предела 2.7.1 выполнены, следовательно, a- предел.

ОПР 2.7.7 (Истинности высказывания).

Будем говорить, что высказывание P(n) истинно, начиная с некоторого номера, $ecnu \; \exists M \in \mathbb{N} \; \forall n \geqslant M \colon P(n) - ucmuhho.$

Теорема 2.7.8 (О неравенстве пределов).

⊳ Пусть

$$x_n \to a, \ y_n \to b$$
 при $n \to \infty; \ a, b \in \mathbb{R}$.

⊳ Тогда

- 1. Если a < b, то $x_n < y_n$ начиная с некоторого номера;
- 2. Если $x_n \leqslant y_n$ начиная с некоторого номера, то $a \leqslant b$.

Доказательство.

- 1. Если a < b, то $\exists c \in \mathbb{R} \ | \ a < c < b$. Множества $(-\infty, c)$ и $(c, +\infty)$ не пересекаются. $(-\infty, c)$ окрестность точки a; $(c, +\infty)$ окрестность точки b. $x_n \to a \Rightarrow \exists M_1 \in \mathbb{R} \ | \ \forall n > M_1 \colon x_n \in (-\infty, c);$ $y_n \to b \Rightarrow \exists M_2 \in \mathbb{R} \ | \ \forall n > M_2 \colon y_n \in (c, +\infty)$. Если $M = \max\{M_1, M_2\}$, то $\forall n > M \colon x_n \in (-\infty, c); \ y_n \in (c, +\infty) \Rightarrow x_n < y_n$.
- 2. От противного. Пусть a > b, тогда согласно пункту 1, $\exists M \in \mathbb{N} | \forall n > M \colon x_n > y_n$ противоречие, значит, $a \leqslant b$.

ОПР 2.7.9 (Ограниченной последовательности).

Последовательность x_n называется ограниченной, если $\exists M \in \mathbb{N} | \forall n \in \mathbb{N}: |x_n| < M$.

П

Теорема 2.7.10 (О промежуточном пределе (лемма о двух милиционерах)).

⊳ <u>Пусть</u>

 v_n, x_n, w_n — три последовательности, причем:

- $\circ \lim_{n \to \infty} v_n = \lim_{n \to \infty} w_n = a;$
- о $x_n \in [v_n, w_n]$ начиная с некоторого номера.

⊳ Тогда

$$\exists \lim_{n \to \infty} x_n = a.$$

⊳ Доказательство.

- о Перепишем условия в ином виде:
 - 1. $\exists M_1 \in \mathbb{N} \ \forall n \geqslant M_1 \colon x_n \in [v_n, w_n];$
 - 2. $\forall V_a : \exists M_2 \in \mathbb{N} \ \forall n \geqslant M_2 : v_n \in V_a;$
 - 3. $\forall V_a : \exists M_3 \in \mathbb{N} \ \forall n \geqslant M_3 : w_n \in V_a$
- \circ Пусть $M=\max\{M_1,\,M_2,\,M_3\}\Rightarrow \forall n\geqslant M$ условия $1,\,2,\,3-$ выполнены одновременно, значит, $v_n\in V_a,\,w_n\in V_a\Rightarrow [v_n,\,w_n]\subseteq V_a\Rightarrow x_n\in V_a.$

ОПР 2.7.11 (Арифметические критерии сходимости последовательности). Пусть x_n — последовательность, тогда:

1.
$$x_n \to a \ npu \ n \to \infty \Leftrightarrow \forall \varepsilon > 0 \colon \exists M \in \mathbb{N} \ \forall n > M \colon |x_n - a| < \varepsilon;$$

2.
$$x_n \to +\infty$$
 npu $n \to \infty \Leftrightarrow \exists M \in \mathbb{N} | \forall n > M : \forall t \in \mathbb{R} : x_n \geqslant t;$

3.
$$x_n \to -\infty$$
 npu $n \to \infty \Leftrightarrow \exists M \in \mathbb{N} | \forall n > M : \forall t \in \mathbb{R} : x_n \leqslant t$.

УТВ 2.7.12 (Об эквивалентности критериев сходимости).

Топологические и арифметические критерии сходимости последовательностей эквивалентны.

Следствие 2.7.13 (Об ограниченности сходящейся последовательности).

⊳ Пусть

$$x_n \to a$$
 при $n \to \infty$ и $a \in \mathbb{R}$.

⊳ Тогда

Последовательность x_n — ограничена.

Лекции по математическому анализу http://MFH.gorodok.net/

MFH Corporation

- \circ Пусть $\varepsilon = 1$: $\exists M \mid \forall n > M \colon |x_n a| < 1$. Тогда: $\forall n > M \colon |x_n| = |x_n a + a| \le |x_n a| + |a| \le 1 + |a|$.
- \circ Пусть $S = \max\{|x_1|, |x_2|, \dots, |x_M|, 1+|a|\}$, тогда последовательность x_n ограничена: $\forall n \in \mathbb{N} \colon x_n \leqslant S$.

Следствие 2.7.14 (Сходимость последовательности из модулей).

⊳ Пусть

$$x_n \to a$$
 при $n \to \infty$.

⊳ Тогда

$$|x_n| \to |a|$$
 при $n \to \infty$.

 \circ Следует из арифметического критерия сходимости + свойства модуля $\big||a|-|b|\big|\leqslant |a-b|.$

2.8 Арифметические свойства предела

Теорема 2.8.1 (О пределе суммы).

⊳ <u>Пусть</u>

$$\circ x_n \to a; y_n \to b$$
 при $n \to \infty;$

 \circ a+b— определено.

⊳ Тогда

$$\exists \lim_{n \to \infty} (x_n + y_n) = a + b.$$

Доказательство.

- 1. Пусть $a, b \in \mathbb{R}$. $\forall \varepsilon > 0 \colon \exists M_1 | \forall n > M_1 \colon |x_n a| < \frac{\varepsilon}{2}; \ \exists M_2 | \forall n > M_2 \colon |y_n b| < \frac{\varepsilon}{2}$. Выберем $M = \max\{M_1, M_2\} \Rightarrow \forall n > M \colon |x_n + y_n (a + b)| = |x_n a + y_n b| \leqslant |x_n a| + |y_n b| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon;$
- 2. Пусть $a \in \mathbb{R}$, $b = +\infty$, тогда: $x_n \to a \Rightarrow x_n$ ограничена. $\exists d \forall n \in \mathbb{N}$: $x_n < c$; Но, начиная с некоторого номера: $\forall t \in \mathbb{R}$: $y_n > t c \Rightarrow x_n + y_n \geqslant t c + c = t \Rightarrow x_n + y_n \to +\infty$.

П

Теорема 2.8.2 (О произведении пределов).

⊳ Пусть

$$\circ \lim_{n \to \infty} x_n = a;
\lim_{n \to \infty} y_n = b;$$

 $\circ a \cdot b$ — определено.

⊳ Тогда

$$\exists \lim_{n \to \infty} x_n \cdot y_n = a \cdot b.$$

Доказательство.

1. (Случай 1) Пусть $a, b \in \mathbb{R}$. Пусть

$$\checkmark c a, b \in (-c, c);$$

$$\checkmark$$
 $\varepsilon > 0$ — произвольное.

Тогда, начиная с некоторого номера N:

✓ в силу теоремы об ограниченности последовательности:

$$\star |x_n| \leqslant c;$$

$$\star |y_n| \leqslant c.$$

✓ по определению предела 2.7.11:

$$\star |x_n - a| < \frac{\varepsilon}{2c};$$

$$\star |y_n - b| < \frac{\varepsilon}{2c}.$$

Пусть M такое, что выполнены все четыре условия $\Rightarrow \forall n > M$: $|x_n \cdot y_n - a \cdot b| = |x_n(y_n - b) + (x_n - a)b| \leqslant |x_n(y_n - b)| + |b(x_n - a)| = |x_n| \cdot |y_n - b| + |b| \cdot |x_n - a| < c \cdot \frac{\varepsilon}{2c} + c \cdot \frac{\varepsilon}{2c} = \varepsilon$

2. (Случай 2) Пусть $b=+\infty,\ a>0$. Пусть $t\in\mathbb{R}$, тогда существует такое c, что начиная c некоторого номера $x_n>c$, т.к. $\lim_{n\to\infty}y_n=+\infty$, то $y_n>\frac{t}{c}$ — начиная c некоторого номера. Значит: $x_n\cdot y_n>c\cdot\frac{t}{c}=t\Rightarrow\lim_{n\to\infty}x_n\cdot y_n=+\infty$.

Теорема 2.8.3 (Об обратном произведении).

⊳ Пусть

$$\lim_{n \to \infty} x_n = a, \ a \neq 0.$$

⊳ Тогда

$$\lim_{n \to \infty} \frac{1}{x_n} = \frac{1}{a}.$$

Лекции по математическому анализу http://MFH.gorodok.net/

Доказательство.

(Случай 1)

MFH Corporation

Пусть
$$|a| = \infty. \forall t \in \mathbb{R} : \exists M | \forall n > M : |x_n| > t \Rightarrow \forall t \in \mathbb{R} : \frac{1}{|x_n|} < \frac{1}{t} \Rightarrow \forall \varepsilon = \frac{1}{t} > 0 : \left| \frac{1}{x_n} - 0 \right| < \varepsilon \Rightarrow \left| \frac{1}{x_n} \right| \to 0 \Rightarrow \lim_{n \to \infty} \frac{1}{x_n} = 0.$$

 \circ (Случай 2) Пусть $|a| \neq \infty, a > 0$. $\exists c \in [0, a]$ начиная с некоторого номера $x_n > c$. Поскольку $x_n \to a$, то $|x_n - a| \leqslant c^2 \varepsilon \Rightarrow \left| \frac{1}{x_n} - \frac{1}{a} \right| = \frac{|x_n - a|}{|x_n| \cdot |a|} < \varepsilon$.

Следствие 2.8.4 (Теорема об отношении пределов).

⊳ Пусть

$$\circ \lim_{n \to \infty} x_n = a; \lim_{n \to \infty} y_n = b;$$

$$\circ \frac{a}{b}$$
 — определено.

⊳ Тогда

$$\exists \lim_{n \to \infty} \frac{x_n}{y_n} = \frac{a}{b}.$$

Доказательство.

о Следует из теорем: 2.8.3 и 2.8.2.

2.9 Подпоследовательности

ОПР 2.9.1 (Подпоследовательности).

Пусть есть некоторое отображение $n_k : \mathbb{N} \to \mathbb{N}$. Предположим, что отображение n_k обладает следующим свойством— $n_k \to \infty$, при $k \to \infty$.

Предположим, что есть последовательность x_n , тогда x_{n_k} называется подпоследовательностью последовательности x_n .

Теорема 2.9.2 (О подпоследовательности сходящейся последовательности).

▶ Всякая подпоследовательность сходящейся последовательности сходится, и ее предел совпадает с пределом последовательности. Т.е.

$$\lim_{n \to \infty} x_n = a \Rightarrow \exists \lim_{k \to \infty} x_{n_k} = a.$$

Доказательство.

Стр. 42

 \circ Пусть $\varepsilon > 0$. $\lim_{n \to \infty} x_n = a \Rightarrow \exists M | \forall n > M \colon |x_n - a| < \varepsilon$.

Рассмотрим подпоследовательность x_{n_k} . Поскольку $n_k \to \infty$, при $k \to \infty$, то $\exists j | \forall k > j n_k > M \Rightarrow \forall k > j | x_{n_k} - a | > \varepsilon$. Это и означает сходимость любой подпоследовательности.

MFH Corporation

Следствие 2.9.3 (О не сходимости последовательности).

Если для последовательности x_n существует такие две сходящиеся подпоследовательности x_{n_k} и x_{n_j} , что $\lim_{k\to\infty} x_{n_k} \neq \lim_{j\to\infty} x_{n_j}$, то последовательность не сходится.

Пример 2.9.3.1 (К следствию).

$$x_n = \cos \pi n = (-1)^n.$$

$$x_{2k} = 1 \Rightarrow \lim_{k \to \infty} x_{2k} = 1;$$

$$x_{2k+1} = -1 \Rightarrow \lim_{k \to \infty} x_{2k+1} = -1;$$

$$\Rightarrow \lim_{k \to \infty} x_{2k} \neq \lim_{k \to \infty} x_{2k+1}.$$

ОПР 2.9.4 (Частичного предела).

Пусть x_n — некоторая последовательность. Точка $a\in \overline{\mathbb{R}}$ называется частичным пределом последовательности x_n , если существует такая подпоследовательность x_{n_k} , что $\lim_{k\to\infty} x_{n_k}=a$.

Теорема 2.9.5 (Вейрштрасса о подпоследовательностях).

ightharpoonup Множество частичных пределов последовательности содержит наибольший и наименьший элементы в $\overline{\mathbb{R}}$ и следовательно всякая последовательность содержит сходящуюся в $\overline{\mathbb{R}}$ подпоследовательность.

Доказательство.

- \circ Пусть x_n- некоторая последовательность. Рассмотрим множество вида $U_n=\{x_n,\,x_{n+1},\,\ldots\}$. Пусть $v_n=\sup U_n$. Очевидно, что $U_{n+1}\subset\subset U_n\Rightarrow v_{n+1}\leqslant v_n\Rightarrow$ последовательность v_n монотонно убывающая. Значит: $\exists\lim_{n\to\infty}v_n=h\in\overline{\mathbb{R}}$.
- \circ (Случай 1) Пусть $h=-\infty$. Тогда $-\infty < x_n \leqslant v_n \Rightarrow \lim_{n\to\infty} x_n = h = -\infty$.
- \circ (Случай 2) Пусть $h > -\infty$.

Тогда существует такая последовательность u_n , что u_n — монотонно возрастает и $u_n < h$, $\lim_{n \to \infty} u_n = h$, $(u_n = h - \frac{1}{n}, \text{ если } h \in \mathbb{R}$ или $u_n = n$, если $h = +\infty$).

Лекции по математическому анализу http://MFH.gorodok.net/

По построению:

 $\forall k \colon u_k < v_k = \sup U_k. \text{ T.к. } v_k = \sup U_k \Rightarrow \exists x_{n_k} \big| \ x_{n_k} > u_n \text{ if } x_{n_k} < v_k.$ $\lim_{k \to \infty} u_k = h, \lim_{k \to \infty} v_k = h \Rightarrow \lim_{k \to \infty} k \to \infty) x_{n_k} = h.$

Следовательно, всякая последовательность имеет сходящуюся в $\overline{\mathbb{R}}$ подпоследовательность.

ОПР 2.9.6 (Верхних и нижних пределов).

 $\Pi y cm \delta x_n$ — некоторая последовательность. $\Pi y cm \delta A$ — множество частичных пределов, тогда:

$$\overline{\lim}_{n\to\infty} x_n \stackrel{def}{=} \sup A; \underline{\lim}_{n\to\infty} x_n \stackrel{def}{=} \inf A;$$

Ecли $\overline{\lim}_{n \to \infty} x_n = \underline{\lim}_{n \to \infty} x_n$, то последовательность x_n имеет предел.

Теорема 2.9.7 (Критерий Коши сходимости последовательности).

ightharpoonup Последовательность x_n сходится $\Leftrightarrow \forall \varepsilon > 0 \colon \exists M \in \mathbb{N} \mid \forall \ell, k > M, \colon |x_\ell - x_k| < \varepsilon.$

Доказательство.

- \Rightarrow Пусть $x_n \to a$ при $n \to \infty$. Пусть $\varepsilon > 0$, выберем $M \mid \forall n > M \colon |x_n a| < \frac{\varepsilon}{2}$. Тогда $|x_\ell x_k| = |x_\ell a x_k + a| \leqslant |x_\ell a| + |x_k a| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$ условие Коши выполнено.
- \leftarrow Пусть x_n удовлетворяет условию Коши. Значит, у x_n есть сходящаяся подпоследовательность (т. Вейрштрасса 2.9.5 на стр. 41).

$$|x_{n_k}| \lim_{k \to \infty} x_{n_k} = a; |x_n - a| = |x_n - x_{n_k} + x_{n_k} - a| \le |x_n - x_{n_k}| + |x_{n_k} - a| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

ОПР 2.9.8 (Последовательности Коши).

Последовательность x_n называется фундаментальной (последовательностью Коши), если она удовлетворяет условию Коши 2.9.7

Следствие 2.9.9 (из критерия Коши).

Пусть $\circ a_n = x_n \cdot y_n$, причем $\lim_{n \to \infty} x_n = 0$; $\circ y_n$ — ограничена, т.е. $\forall n \in \mathbb{N} \colon |y_n| \leqslant c, \ c \in \mathbb{R}$.

Тогда $\lim_{n\to\infty} a_n = 0$

Стр. 44

2.10 Числовые ряды

ОПР 2.10.1 (Числового ряда).

Пусть дана последовательность $a_1, a_2, \ldots, a_n, \ldots$

$$S_1 = a_1$$

$$S_2 = S_1 + a_2;$$

. .

$$S_n = S_{n-1} + a_n.$$

Последовательность S_n называется последовательностью частичных сумм ряда (определяет ряд). Обозначается: $\sum_{n=1}^{\infty} a_n$.

ОПР 2.10.2 (Суммы ряда).

 $\lim_{n\to\infty}S_n=S$ называется суммой ряда.

 $Ecnu\ S \in \mathbb{R},\ mo\ psd$ называется сходящимся.

Теорема 2.10.3 (Существование суммы положительного ряда).

⊳ Пусть

 $\forall i \in \mathbb{N} : a_i \geqslant 0$ (ряд положительный).

⊳ Тогда

Ряд имеет сумму, возможно бесконечную.

⊳ Доказательство.

 \circ Т.к. $S_n = S_{n-1} + a_n \Rightarrow S_b \leqslant S_{n-1}$. Следовательно, последовательность частичных сумм монотонно возрастает, а значит, согласно теореме о монотонных последовательностях ?? на стр. ??, S_n имеет предел в $\overline{\mathbb{R}}$.

Теорема 2.10.4 (О необходимом признаке сходимости ряда).

⊳ <u>Пусть</u>

Ряд
$$\sum_{n=1}^{\infty} a_n - \cos$$
дится.

⊳ Тогда

$$\lim_{i \to \infty} a_i = 0$$

Доказательство.

 \circ Рассмотрим две подпоследовательности S_n :

$$S_k,\ s_{k-1}\Rightarrow S_k,\ S_{k-1}-$$
сходятся. $\lim_{k\to\infty}S_k=\lim_{k\to\infty}S_{k-1}=S$ (сумма ряда).

Заметим, что:
$$S_k - S_{k-1} = a_k$$
(по построению) $\Rightarrow \lim_{k \to \infty} (S_k - S_{k-1}) = \lim_{k \to \infty} a_k \Rightarrow S - S = \lim_{k \to \infty} a_k \Rightarrow \lim_{k \to \infty} a_k = 0.$

Пример 2.10.4.1 (Полезные примеры).

1.
$$\sum_{n=0}^{\infty} 1$$
$$S_n = \sum_{k=0}^{n-1} 1 = n \Rightarrow \lim_{n \to \infty} S_n = \lim_{n \to \infty} n = \infty$$

2.
$$\sum_{n=0}^{\infty} (-1)^n$$
.

- (а) Последовательность частичных сумм ограничена;
- (b) S_n не имеет предела $(1,0,1,0,\dots)$; $S_{2n}=1,S_{2n+1}=0.$

$$3. \ \sum_{n=0}^{\infty} q^n$$
 — частичная последовательность. $S_n = rac{1-q^{n+1}}{1-q}$

(a)
$$|q| < S$$
 $\lim S_n = \frac{1}{1-q}$

(b)
$$|q| > S$$
 $\lim S_n$ — не существует.

4.
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)};$$

$$\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1};$$

$$1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \dots + 1 - \frac{1}{n+1};$$

$$S_n = 1 - \frac{1}{n+1};$$

$$\lim S_n = \lim \left(1 - \frac{1}{n+1}\right) = 1;$$

$$5. \sum_{n=1}^{\infty} rac{1}{n}$$
 — гармонический ряд.
$$\lim_{n o \infty} X_n = 0.$$
 Докажем, что ряд расходящийся.
$$\frac{1}{n} > 0 \forall n \Rightarrow \lim_{n o \infty} S_n = L \; (\text{L может быть равна } \infty)$$

$$S_{2^k} \colon S_1 = 1, S_2 = 1 + rac{1}{2}, \ldots;$$

$$S_{2^k} = 1 + (rac{1}{2} + rac{1}{3}) + (rac{1}{4} + rac{1}{5} + \ldots + rac{1}{7}) + \ldots + (rac{1}{2^{k-1}} + rac{1}{2^k-1})$$
 (телескопический

П

П

метод) $\geqslant 1 + \frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8} + \dots + \frac{1}{8} + \dots + (\frac{1}{2^{k-1}} + \dots + \frac{1}{2^{k-1}}) = 1 + \frac{k}{2};$ $S_{2^k} \geqslant 1 + \frac{k}{2} \Rightarrow \lim_{n \to \infty} S_{2^k} = \infty \Rightarrow \lim_{n \to \infty} S_n = \infty.$

6. $\sum_{n=1}^{\infty} \frac{1}{n^S} \quad \S > 1;$

 $\prod_{n=1}^{n=1}$ При S>1 этот ряд сходиться. S_n монотонно возрастает $\Rightarrow \exists \lim_{n\to\infty} S_n = L;$

$$S_{2^{k}-1} = 1 + \left(\frac{1}{2^{3}} + \frac{1}{3^{3}}\right) + \left(\frac{1}{4^{3}} + \ldots + \frac{1}{7^{3}}\right) + \ldots + \left(\frac{1}{2^{(k-1)S}} + \ldots + \frac{1}{2^{(k-1)S}}\right) \leqslant$$

$$\leqslant 1 + \left(\frac{1}{2^{S}} + \frac{1}{2^{S}}\right) + \left(\frac{1}{4^{S}} + \ldots + \frac{1}{4^{S}}\right) + \ldots + \frac{1}{2^{(k-1)S}} + \ldots + \frac{1}{2^{(k-1)S}} = 1 + \frac{2}{2^{S}} + \frac{4}{4^{S}} + \ldots + \frac{2^{k-1}}{2(k-1)S} = 1 + \frac{1}{2^{S-1}} + \left(\frac{1}{2^{S-1}}\right)^{2} + \ldots + \left(\frac{1}{2^{S-1}}\right)^{k-1} = \frac{1 - \left(\frac{1}{2^{S-1}}\right)^{k}}{1 - \frac{1}{2^{S-1}}};$$

Заметим
$$\lim \frac{1-(\frac{1}{2^{S-1}})^k}{1-\frac{1}{2^{S-1}}} = \frac{1}{1-\frac{1}{2^{S-1}}}$$

 $\exists \lim_{n \to \infty} S_n = L, L < \infty;$

Теорема 2.10.5 (Об ограниченности частичных сумм).

⊳ <u>Пусть</u>

Ряд
$$\sum_{k=1}^{\infty} a_k$$
 сходится.

⊳ Тогда

Последовательности частичных сумм ограничена (обратное не верно).

Доказательство.

 \circ Ряд $\sum_{k=1}^{\infty} a_k$ сходится, значит, S_n имеет предел. $\lim_{n\to\infty} S_n = S,\ S\in\mathbb{R} \Rightarrow S_n$ — ограничена из теоремы 2.7.13 на стр. 37 об ограниченности сходящейся последовательности.

ОПР 2.10.6 (Суммы рядов).

Пусть даны два ряда $\sum a_i \ u \sum b_i$, тогда ряд $\sum (a_i + b_i)$ называется суммой рядов.

Eсли $\lambda \in \mathbb{R}$, то $\sum \lambda a_i$ называется произведением ряда на число.

Теорема 2.10.7 (О сумме сходящихся рядов).

⊳ <u>Пусть</u>

$$A = \sum a_i; \ B = \sum b_i$$
— два сходящихся ряда. $\lambda, \ \mu \in \mathbb{R}$.

⊳ Тогда

$$\sum (\lambda a_i + \mu b_i) = \lambda A + \mu B.$$

Лекции по математическому анализу http://MFH.gorodok.net/

Доказательство

Стр. 46

$$\circ S_n = (\lambda a_1 + \mu b_1) + (\lambda a_2 + \mu b_2) + \ldots + (\lambda a_n + \mu b_n) = \lambda (a_1 + a_2 + \ldots + a_n) + \mu (b_1 + b_2 + \ldots + b_n) = \lambda A_n + \mu B_n.$$

$$\circ \lim_{n \to \infty} S_n = \lim_{n \to \infty} (\lambda A_n + \mu B_n) = \lambda \lim_{n \to \infty} A_n + \mu \lim_{n \to \infty} B_n = \lambda A + \mu B.$$

ОПР 2.10.8 (Остатка ряда).

Пусть дан ряд $\sum\limits_{i=1}^{\infty}a_{i}$. Предположим, что зафиксировано m, тогда $\sum\limits_{i=1}^{\infty}a_{i}=1$

$$a_1 + a_2 + \ldots + a_m + \sum_{i=m+1}^{\infty} a_i$$
.

$$R_m = \sum_{i=m+1}^{\infty} a_i$$
 — остаток ряда.

$$\sum_{i=1}^{\infty} a_i = S_m + R_m.$$

Теорема 2.10.9 (О сходимости остатка ряда).

⊳ Пусть

$$P$$
яд $\sum_{i=1}^{\infty} - c$ ходится.

⊳ Тогда

 $\forall m \in \mathbb{N} \colon R_m$ — то же сходится.

Доказательство

$$\circ$$
 $\delta = \sum_{n=0}^{m-1}$, тогда $S_n = \delta + S_n^m$ S_n^m — частичная сумма ряда R_m $S_n^m = S_n \cdot \delta \lim_{n \to \infty} S_n - \delta = L - \delta \Rightarrow \lim_{n \to \infty} S_n^m$ — существует $\Rightarrow R_m$ — сходится.

Теорема 2.10.10 (Критерий Коши о сходимости ряда).

$$ho$$
 Ряд $\sum\limits_{i=1}^{\infty}a_i$ сходится \Leftrightarrow $\forall \varepsilon>0$: $\exists M\in\mathbb{N}$ $\forall n>M, \forall p\in\mathbb{N}\colon |a_n+a_{n+1}+\ldots+a_{n+p}|<\varepsilon$

$$\circ S_n$$
— последовательность частичных сумм. $S_{n+p}-S_n=(a_{n+1}+a_{n+2}|\ldots+a_{n+p});\ |S_{n+p}-S_n|=|a_{n+1}+a_{n+2}+\ldots+a_{n+p}|.$

MFH Corporation

П

2.11 Знакоположительные ряды

ОПР 2.11.1 (Знакоположительного ряда).

 $\mathit{Psd} \sum a_i$ называется знакоположительным (положительным), если $\forall i \in \mathbb{N} \colon a_i \geqslant 0.$

Лемма 2.11.2 (Достаточный признак сходимости положительного ряда).

⊳ Пусть

 $\sum a_i$ — положительный ряд такой, что последовательность его частичных сумм ограниченна.

⊳ Тогда

Ряд $\sum a_i$ сходится.

- \circ Поскольку $S_{n+1} = S_n + a_{n+1}$ и $a_{n+1} \geqslant 0$, значит, $S_{n+1} \geqslant S_n \Rightarrow S_n$ монотонна. По теореме ?? на стр. ??, получаем, что S_n сходится, возможно к бесконечности.
- \circ Согласно ограниченности, получаем $\exists M \in \mathbb{R} \ \forall n \in \mathbb{N} \colon 0 < S_n \leqslant M$. Значит $\lim_{n \to \infty} S_n \leqslant M \Rightarrow$ ряд $\sum a_i$ сходится.

Теорема 2.11.3 (Признак сравнение для знакоположительных рядов).

⊳ Пусть

 $A=\sum a_i$ и $B=\sum b_i$ — два положительных ряда, причем, начиная с некоторого номера $M\in\mathbb{N}\colon \forall i>M\colon 0\geqslant a_i\geqslant b_i.$

⊳ Тогда

- \circ Если ряд B сходится, то и ряд A сходится;
- \circ Если ряд A расходится, то и ряд B расходится.

- \circ Заметим, что $A_n = a_1 + a_2 + \ldots + a_n \leqslant b_1 + b_2 + \ldots + b_n = B_n \Rightarrow A_n \leqslant B_n \Rightarrow$ последовательность A_n ограниченна. Согласно лемме $2.11.2 \ A_n$ сходится.
- \circ Пусть A_n расходится, значит, $\lim_{n\to\infty}A_n=\infty$. $A_n\leqslant B_n$, используя свойства пределов 2.7.8 на стр. 36, получаем $\lim_{n\to\infty}A_n\leqslant \lim_{n\to\infty}B_n\Rightarrow$ $\Rightarrow \lim_{n\to\infty}B_n\geqslant \infty\Rightarrow \lim_{n\to\infty}B_n=\infty\Rightarrow$ ряд B— расходится.

Лекции по математическому анализу http://MFH.gorodok.net/

ОПР 2.11.4 (Одинаково сходящихся рядов).

Два ряда $\sum a_i \ u \sum b_i$ будем называть одинаково сходящимися, если они оба одновременно либо сходятся, либо расходятся.

Теорема 2.11.5 (Асимптотический признак сходимости).

⊳ Пусть

Стр. 48

 $\sum a_i$ и $\sum b_i$ — два знакоположительных ряда. Предположим, что $\lim_{n \to \infty} rac{a_n}{b_n} = L
eq 0$.

⊳ Тогда

Ряды $\sum a_i$ и $\sum b_i$ обладают одинаковой сходимостью.

- \circ Во-первых, заметим, что L>0;
- \circ Во-вторых: т.к. $\lim_{n\to\infty} \frac{a_n}{b_n} = L \Rightarrow \forall \varepsilon \colon \exists M \in \mathbb{N} \mid \forall n > M \colon \left| \frac{a_n}{b_n} L \right| < \varepsilon \Rightarrow$ $\Rightarrow -\varepsilon < \frac{a_n}{b_n} - L < \varepsilon \Rightarrow L - \varepsilon < \frac{a_n}{b_n} < L - \varepsilon.$
- \circ Выберем такое ε , что $L \varepsilon > 0$. Тогда

$$(L-\varepsilon)b_n < a_n < (L+\varepsilon)b_n$$
.

Согласно теореме об алгебраических свойствах рядов 2.10.7 на стр. 45 получаем, что если ряд $\sum b_n$ сходится, то ряды $\sum (L+\varepsilon)b_n$, $\sum (L-\varepsilon)b_n$ тоже сходятся.

Получаем:

$$0 < (L - \varepsilon)b_n < a_n; \ 0 < a_n < (L + \varepsilon)b_n.$$

- о Согласно признаку сравнения 2.11.3:
 - ✓ Из $0 < (L \varepsilon)b_n < a_n$ следует:
 - \star если ряд $\sum a_n$ сходится, то ряд $\sum b_n$ тоже сходится;
 - \star если ряд $\sum b_n$ расходится, то ряд $\sum a_n$ тоже расходится;
 - \checkmark Из $0 < a_n < (L + \varepsilon_n)b_n$ следует:
 - \star если ряд $\sum b_n$ сходится, то ряд $\sum a_n$ тоже сходится;
 - \star если ряд $\sum a_n$ расходится, то ряд $\sum b_n$ тоже расходится;

Пример 2.11.5.1 (Примеры использования теоремы).

Стр. 50

1.

$$\sum \frac{1}{n^2 + n + 1} \sim \sum \frac{1}{n_2} \Rightarrow \lim_{n \to \infty} \frac{\frac{1}{n^2 + n + 1}}{\frac{1}{n^2}} = \lim_{n \to \infty} \frac{n^2}{n^2 + n + 1} = 1;$$

2.

$$\sum \frac{1}{\sqrt{n(n+10)}} \sim \sum \frac{1}{n} \Rightarrow \lim_{n \to \infty} \frac{\frac{1}{\sqrt{n(n+10)}}}{\frac{1}{n}} = \lim_{n \to \infty} \frac{n}{\sqrt{n(n+10)}} = 1.$$

Следствие 2.11.5.2 (Частные случаи теоремы).

- ightharpoonup Пусть $\lim_{n\to\infty}\frac{a_n}{b_n}=0$, тогда:
 - \circ если $\sum b_i$ сходится, то $\sum a_i$ сходится;
 - \circ если $\sum a_i$ расходится, то $\sum b_i$ расходится.
- ightharpoonup Пусть $\lim_{n\to\infty} \frac{a_n}{b_n} = \infty$, тогда $\lim_{n\to\infty} \frac{b_n}{a_n} = 0$.

Теорема 2.11.6 (Признак Даламбера сходимости ряда).

⊳ Пусть

 $A = \sum a_i$ — знакоположительный ряд;

Предположим, что $\exists \lim_{n\to\infty} \frac{a_{n+1}}{a_n} = q$.

⊳ Тогда

- 1. если q > 1, то ряд A расходится.
- 2. если q = 1, то ряд A может как сходиться, так и расходиться;
- 3. если q < 1, то ряд A сходится;

Доказательство.

- 1. Пусть q>1. Тогда $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=q>1$. Следовательно, начиная с некоторого номера $M\colon a_{n+1}>a_n$. Значит, $\lim_{n\to\infty}a_n>0$. Получаем, что не выполнен необходимый признак сходимости 2.10.4 на стр. 43.
- 2. Пусть q = 1. Рассмотрим два ряда:

$$\sqrt{\sum \frac{1}{n}}$$
 — расходится;

 $\sqrt{\sum \frac{1}{n^2}}$ — сходится;

Ho q=1 для обоих рядов.

Лекции по математическому анализу http://MFH.gorodok.net/

3. Пусть 0 < q < 1. Тогда $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = q < 1$. Следовательно, $\exists \varepsilon > 0 | \exists M \in \mathbb{N} | \forall n > M \colon \left| \frac{a_{n+1}}{a_n} \right| < 1 - \varepsilon$. Пусть $\alpha = 1 - \varepsilon$, $0 < \alpha < 1$, следовательно, $a_{n+1} \leqslant \alpha a_n$. Рассмотрим остаток ряда R_m :

$$a_{m+1} \leqslant \alpha a_m;$$

 $a_{m+2} \leqslant \alpha a_{m+1} \leqslant \alpha^2 a_m;$
...

$$a_{m+k} \leqslant \alpha^k a_m$$
.

Получаем:
$$R_m = \sum_{n=m}^{\infty} a_n \leqslant \sum_{n=m}^{\infty} a_m \alpha^{n-m} \leqslant a_m \sum_{n=m}^{\infty} \alpha^{n-m} = a_m \alpha^{-m} \sum_{n=0}^{\infty} \alpha^n - a_n \alpha^{-m} = a_m \alpha^{-m} \sum_{n=0}^{\infty} \alpha^{-m} = a_n \alpha^{-m} = a_m \alpha^{-m$$

П

Теорема 2.11.7 (Радикальный признак Коши сходимости ряда).

⊳ <u>Пусть</u>

 $A = \sum a_i$ — знакоположительный ряд;

Предположим, что $\exists \lim_{n \to \infty} \sqrt[n]{a_n} = q$.

⊳ Тогда

- 1. если q > 1, то ряд A расходится.
- 2. если q=1, то ряд A может как сходиться, так и расходиться;
- 3. если q < 1, то ряд A сходится;

- 1. Пусть q>1. Тогда $\lim_{n\to\infty} \sqrt[n]{a_n}=q>1$. Следовательно, начиная с некоторого номера $\sqrt[n]{a_n}>1\Rightarrow a_n>1$. Нарушено необходимое условие сходимости ряда 2.10.4 на стр. 43.
- 2. Пусть q = 1. Рассмотрим два ряда:

$$\sqrt{\sum \frac{1}{n}}$$
 — расходится;

 $\checkmark \sum \frac{1}{n^2} -$ сходится;

Но q = 1 для обоих рядов.

3. Пусть 0 < q < 1. Тогда $\lim_{n \to \infty} \sqrt[n]{a_n} = q < 1$. Следовательно, $\exists M \in \mathbb{N} | \forall n > M \colon \sqrt[n]{a_n} < 1$. Значит, $\exists \alpha < 1 | \forall n > M \colon \sqrt[n]{a_n} \leqslant \alpha \Rightarrow \forall n > M \colon a_n \leqslant \alpha^n$. Т.к. $\alpha < 1$, то $\sum \alpha^n -$ сходится, а значит, $\sum a_n -$ сходится.

2.12 Знакопеременные ряды

ОПР 2.12.1 (Знакопеременных рядов).

Pяд $\sum\limits_{n=1}^{\infty} (-1)^{n-1}a_n$, где $\forall n\in\mathbb{N}\colon a_n\geqslant 0$ называется знакопеременным рядом.

Теорема 2.12.2 (Признак сходимости Лейбница для знакопеременных рядов).

⊳ <u>Пусть</u>

- $\circ \sum (-1)^{n-1}a_n, \ a_n \geqslant 0$ знакопеременный ряд;
- \circ a_n монотонно убывает;
- $\circ \lim a_n = 0.$

⊳ Тогда

 $Pяд \sum (-1)^{n-1} a_n$ сходится.

Доказательство.

• Рассмотрим две подпоследовательности частичных сумм:

✓
$$S_{2k+1} = a_1 - (a_2 - a_3) - \dots - (a_{2k} - a_{2k+1}) \leqslant a_1$$
, t.k. $\forall n \in N : a_{n+1} \leqslant a_n$;

$$\checkmark S_{2k} = (a_1 - a_2) + (a_3 - a_4) + \ldots + (a_{2k-1} - a_{2k});$$

Получим: $0 \leqslant S_{2k}$; $S_{2k} \leqslant S_{2k+1}$; $\exists \lim_{k \to \infty} S_{2k}$.

 $\circ S_{2k+1} = S_{2k} + a_{2k+1} \Rightarrow \lim_{k \to \infty} S_{2k+1} = \lim_{k \to \infty} S_{2k} + \lim_{k \to \infty} a_{2k+1} \Rightarrow \lim_{k \to \infty} S_{2k+1} = \lim_{k \to \infty} S_{2k}.$

$$\left. egin{array}{c} S_{2k+1} \ S_{2k} \end{array}
ight.
ight.$$
 сходятся.

Запишем это маленько в другой форме:

$$\lim_{k \to \infty} S_{2k} = L \Rightarrow \forall \varepsilon > 0 \colon \exists M_1 \in \mathbb{N} | \forall k > M_1 \colon |S_{2k} - L| < \varepsilon;$$
$$\lim_{k \to \infty} S_{2k+1} = L \Rightarrow \forall \varepsilon > 0 \colon \exists M_2 \in \mathbb{N} | \forall k > M_2 \colon |S_{2k+1} - L| < \varepsilon.$$

Пусть $M=\max\{M_1,\,M_2\},\,$ тогда $\forall n>M\colon |S_n-L|<arepsilon\Rightarrow \lim_{n\to\infty}S_n=L.$

Лемма 2.12.3 (Неравенство Абеля).

⊳ Пусть

$$u_k \geqslant u_{k+1} \geqslant \ldots \geqslant u_\ell \geqslant 0;$$

 $v_k, v_{k+1}, \ldots, v_\ell \in \mathbb{R}.$

⊳ Тогда

Имеет место неравенство Абеля:

$$\left| \sum_{n=k}^{\ell} u_n v_n \right| \leqslant h \cdot u_k,$$

где
$$h = \sup_{j \in [k, \ell]} \left| \sum_{n=k}^{j} v_n \right|.$$

Доказательство.

- \circ Обозначим $S_j = \sum_{n=k}^{j} v_n, \ j \in \{k, k+1, \dots, \ell\}.$
- \circ Положим $S_{k-1} = 0$ Тогда $v_j = S_j S_{j-1}$;

$$\begin{split} \left| \sum_{n=k}^{\ell} u_n v_n \right| &= |u_k v_k + u_{k+1} v_{k+1} + \ldots + u_\ell v_\ell| = \\ &= |u_k (S_k - S_{k-1}) + u_{k+1} (S_{k+1} - S_k) + \ldots + u_\ell (S_\ell - S(\ell-1))| = \\ &= |S_k (u_k - u_{k+1}) + S_{k+1} (u_{k+1} - u_{k+2} + \ldots + S_{\ell-1} (u_{\ell-1} - u_\ell) + S_\ell u_\ell| \leqslant \\ &\leqslant |S_k| |u_k - u_{k+1}| + |S_{k+1}| |u_{k+1} - u_{k+2}| + \ldots + |S_{\ell-1}| |u_{\ell-1} - u_\ell| + |S_\ell| |u_\ell| \leqslant \\ &\leqslant (\text{\tiny (T.K. } u_k \geqslant u_{k+1} \geqslant \ldots \geqslant u_\ell \geqslant 0) h(u_k - u_{k+1} + u_{k+1} - \ldots + u_{\ell-1} - u_\ell - u_\ell) = hu_k. \end{split}$$

Теорема 2.12.4 (Признак Абеля-Дирихле сходимости рядов).

⊳ Пусть

Дан ряд $\sum\limits_{n=1}^{\infty}u_{n}v_{n}$, причём выполнены следующие условия:

- I. u_n монотонно убывающая последовательность такая, что $\lim_{n\to\infty}u_n=0$;
- II. частичные суммы S_n ряда $\sum_k v_k$ ограничены.

⊳ Тогда

Ряд
$$\sum\limits_{n=1}^{\infty}u_{n}v_{n}$$
 — сходится.

⊳ Доказательство.

- о Будем проверять условие Коши 2.10.10 на стр. 46.
- \circ Пусть $\varepsilon > 0$. Определим $\forall j\colon\ S_j = \sum\limits_{n=1}^j v_n \Rightarrow \exists h |\ \forall j \in \mathbb{N}\colon |S_j| \leqslant h.$

Поскольку $\lim_{n\to\infty}u_n=0$, то существует такой номер M, что $\forall n>M$: $u_n<\frac{\varepsilon}{2h}$.

 \circ Пусть $\ell > k \geqslant M$, тогда

$$\left| \sum_{n=k}^{\ell} v_n \right| = |S_{\ell} - S_{k-1}| \leqslant |S_{\ell}| + |S_{k-1}| \leqslant 2h$$

$$\left| \sum_{n=k}^{\ell} u_n v_n \right| \leqslant \left| \sum_{n=k}^{\ell} u_k v_n \right| \leqslant 2h u_k < 2h \frac{\varepsilon}{2h} = \varepsilon.$$

Условие Коши выполнено, ряд сходится.

2.12.4.1 Полезные факты

Имеют место следующие равенства:

$$\sum_{x=0}^{m} \sin\left(xa+b\right) = \frac{\sin\left(\frac{a(m+1)}{2}\right) \cdot \sin\left(\frac{am}{2}+b\right)}{\sin\frac{a}{2}};\tag{2.12.1}$$

$$\sum_{x=0}^{m} \cos\left(xa+b\right) = \frac{\sin\left(\frac{a(m+1)}{2}\right) \cdot \cos\left(\frac{am}{2}+b\right)}{\sin\frac{a}{2}}.$$
 (2.12.2)

$$I \sum_{x=0}^{m} \sin\left(xa+b\right) = \frac{\sin\left(\frac{a(m+1)}{2}\right) \cdot \sin\left(\frac{am}{2}+b\right)}{\sin\frac{a}{2}}.$$

Докажем индукцией по m.

1. Проверим базу индукции: $m = 0 \Rightarrow \sin b = \sin b$;

Лекции по математическому анализу http://MFH.gorodok.net/

2. Пусть равенство верно при m, докажем, что оно верно и при m+1, т.е. докажем, что

$$\sum_{x=0}^{m} \sin(ax+b) = \frac{\sin\frac{a(m+1)}{2}\sin\left(\frac{am}{2}+b\right)}{\sin\frac{a}{2}} + \sin(a(m+1)+b) = \frac{\sin\frac{a(m+2)}{2}\sin\frac{a(m+2)}{2$$

или

$$\sin\frac{a(m+1)}{2}\sin\left(\frac{am}{2}+b\right) + \sin\frac{a}{2}\sin\left(a(m+1)+b\right) = \sin\frac{a(m+2)}{2}\sin\left(\frac{a(m+1)}{2}+b\right)$$

Используем формулу преобразования произведения тригонометрических функций к сумме, получим

$$\frac{1}{2} \left[\cos \left(\frac{a}{2} - b \right) - \cos \left(\frac{a(m+1)}{2} + \frac{am}{2} + b \right) \right] + \sin \frac{a}{2} \sin \left(a(m+1) + b \right) =$$

$$= \frac{1}{2} \left[\cos \left(\frac{a}{2} - b \right) - \cos \left(\frac{a(m+2)}{2} + \frac{a(m+1)}{2} + b \right) \right]$$

Значит:

$$\sin\frac{a}{2}\sin(a(m+1)+b) = \frac{1}{2}\left[\cos\left(\frac{a(m+1)}{2} + \frac{am}{2} + b\right) - \cos\left(\frac{a(m+2)}{2} + \frac{am}{2}\right)\right]$$
$$= \sin\frac{a}{2}\sin(a(m+1)+b);$$

II Аналогично.

Пример 2.12.4.2 (,, основной ").

$$\triangleright \sum_{n=1}^{\infty} \frac{\sin nx}{n}, \ x \in \mathbb{R}.$$

Данный ряд сходится.

Доказательство.

о Пусть

$$u_n = \frac{1}{n}$$
; $v_n = \sin nx$.

Тогда

$$S_k = \sum_{k=1}^k \sin nx; \ \exists h | |S_k| \leqslant k - \forall k \in \mathbb{N}.$$

Лекции по математическому анализу http://MFH.gorodok.net/

Следствие 2.13.4 (Признак Даламбера (для произвольных рядов)).

$$S_k = \left| \sum_{n=1}^k \sin nx \right| = \left| \sum_{n=0}^k \sin nx \right| =_{\text{(из ((2.12.1)) на стр. 53, если положить } b = 0, x = n, a = x)} \left| \frac{\sin \frac{x(k+1)}{y \cos \frac{x}{2}} \sin \frac{xk}{2}}{\sin \frac{x}{2}} \right| \leqslant \lim_{n \to \infty} \left| \frac{\sin \frac{x(k+1)}{2} \sin \frac{xk}{2}}{\sin \frac{x}{2}} \right| \leqslant \lim_{n \to \infty} \left| \frac{\sin \frac{x(k+1)}{2} \sin \frac{xk}{2}}{\sin \frac{x}{2}} \right| = q.$$

При $x \neq 0$, $x \neq 2\pi$ S_k ограничены; при x = 0 или $x = 2\pi \sin nx = 0$

2.13Абсолютная сходимость

ОПР 2.13.1 (Абсолютной сходимости).

Pяд $\sum a_i$ называется абсолютно сходящимся, если pяд $\sum |a_i|$ сходится.

Теорема 2.13.2 (Об абсолютной сходимости ряда).

⊳ Пусть

Ряд абсолютно сходится

⊳ Тогда

Он сходится. Обратное не верно.

Доказательство.

 $\circ~$ Пусть ряд $\sum a_i$ абсолютно сходится. Применим признак Коши 2.10.10

$$\varepsilon > 0$$
: $M \forall k > M, \forall \ell > 0$: $||a_k| + |a_{k+1}| + \ldots + |a_{k+\ell}|| < \varepsilon$.

$$|a_k + a_{k+1} + \ldots + a_{k+\ell}| \le |a_k| + |a_{k+1}| + \ldots + |a_{k+\ell}| = ||a_k| + |a_{k+1}| + \ldots + |a_{k+\ell}||$$
 \not Доказательство.

Значит, ряд $\sum a_i$ сходится.

 \circ Ряд $\sum\limits_{n=1}^{\infty}{(-1)^nrac{1}{n}}-$ сходится, но ряд $\sum\limits_{n=1}^{\infty}\left|(-1)^nrac{1}{n}
ight|=\sum\limits_{n=1}^{\infty}rac{1}{n}-$ расходит-

ОПР 2.13.3 (Условно сходящегося ряда).

Eсли ряд $\sum a_i$ сходится, а ряд $\sum |a_i|$ расходится, то ряд называют услоно сходящимся.

$$\sum \lim_{x \to \infty} \frac{1}{y + 1} \frac{x(k+1)}{y + 2} \frac{\sin \frac{xk}{2}}{x^2} \le \lim_{x \to \infty} \frac{x}{2} \lim_{x \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = q.$$

⊳ Тогда

Стр. 56

- 1. Если q < 1 то ряд сходится абсолютно;
- 2. Если q = 1 то нельзя ничего сказать о сходимости ряда;
- 3. Если q > 1 то ряд расходится.

Доказательство.

 \circ Поскольку ряд $\sum |a_i|$ — знакоположительный, рассмотрим $\lim_{n\to\infty} \frac{|a_{n+1}|}{|a_n|} =$ $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right|;$

Далее применим признак Даламбера 2.11.6 на стр. 49.

Следствие 2.13.5 (Признак Коши (для произвольных рядов)).

⊳ Пусть

Дан ряд
$$\sum a_i \mid \exists \lim_{n \to \infty} \sqrt[n]{|a_n|} = q.$$

⊳ Тогда

- 1. Если q < 1 то ряд сходится абсолютно;
- 2. Если q = 1 то нельзя ничего сказать о сходимости ряда;
- 3. Если q > 1 то ряд расходится.

• Аналогично предыдущему (2.13.4).

ОПР 2.13.6 (Произведения по Коши).

Пусть даны два ряда $\sum a_i$, $\sum b_i$. Тогда ряд $\sum c_i$ называется произведением по Коши рядов $\sum a_i$, $\sum b_i$, если $c_n = \sum_{i=0}^n a_i \cdot b_{n-i}$.

Теорема 2.13.7 (Мертенса).

⊳ Пусть

Ряды $\sum a_i$, $\sum b_i$ — сходятся абсолютно.

⊳ Тогда

Ряд $\sum c_i$ (произведение по Коши) сходится.

Глава 3

Функции

3.1 Пределы функций

3.1.1 Напоминание

⊳ Элементарные окрестности

$$o p \in \mathbb{R}, B_{\varepsilon}(p) = \{x \in \mathbb{R} \mid p - \varepsilon < x < p + \varepsilon\};$$

$$p = +\infty$$
: $B_{\varepsilon}(p) = \{x \mid x > \varepsilon\}$:

$$\circ p = -\infty \colon B_{\varepsilon}(p) = \{x \mid x < \varepsilon\}.$$

Окрестность точки p — любое множество U такое, что существует элементарная окрестность $B_{\varepsilon}(p) \mid B_{\varepsilon}(p) \subset U$.

Множество окрестностей p обозначим $\vartheta(p)$.

Лемма 3.1.2 (Лемма 0).

⊳ <u>Пусть</u>

 $U_i(p)$ — элементарные окрестности точки p, i = 1, 2, ..., n.

⊳ Тогда

Существует окрестность V точки p такая, что $\forall i \colon V \in U_i(p)$.

Доказательство.

 \circ Поскольку $U_i(p)$ — элементарные окрестности, то $\exists \varepsilon_i \forall i : U_i(p) = B_{\varepsilon_i}(p)$.

$$\circ$$
 Пусть $\varepsilon = \min_{i=1, 2, ..., n} \varepsilon_i \Rightarrow V = B_{\varepsilon} \in U_i(p) - \forall i.$

ОПР 3.1.3 (Канонической базы).

Для любой точки p существует набор элементарных окрестностей $U_n(p)$, которые называются канонической базой точки pu определяется следующим образом:

- $Ecnu\ p \in \mathbb{R}, \ mo\ U_n(p) = B_{\frac{1}{n}}(p);$
- $Ecnu\ p = +\infty \ mo\ U_n(p) = (n, +\infty);$
- $Ecnu\ p = -\infty \ mo\ U_n(p) = (\infty, -n).$

Лемма 3.1.4 (Лемма 1).

⊳ <u>Пусть</u>

 $p \in \overline{\mathbb{R}}, x_n$ — последовательность, $\forall n \colon x_n \in U_n(p)$.

⊳ Тогда

$$\lim_{n\to\infty} x_n = p.$$

Доказательство.

 \circ Пусть $p \in \mathbb{R}$.

$$\forall n \colon x_n \in U_n(p) \Rightarrow \forall n \colon p - \frac{1}{n} < x_n < p + \frac{1}{n} \Rightarrow 0 \leqslant |x_n - p| < \frac{1}{n};$$
$$\lim_{n \to \infty} |x_n - p| = \lim_{n \to \infty} \frac{1}{n} = 0 \Rightarrow x_n \to p.$$

 \circ Пусть $p = +\infty$.

$$x \in U_n(p) \Rightarrow x_n > n \Rightarrow \lim_{n \to \infty} x_n = +\infty;$$

 \circ Пусть $p=-\infty$.

$$x \in U_n(p) \Rightarrow x_n < -n \Rightarrow \lim_{n \to \infty} x_n = -\infty.$$

ОПР 3.1.5 (Предельной точки).

Точка p называется предельной точкой множества M (точкой прикосновения), если $\forall U \in \vartheta(p) \colon \exists x \in M \mid x \neq p \mid u \mid x \in U \cap M$

Пример 3.1.5.1 (Пример 1).

b предельная точка интервала (a, b).

Пример 3.1.5.2 (Пример 2).

Пусть
$$x_n \Big| \lim_{n \to \infty} x_n = a \in \mathbb{R};$$
 $\{x_1, x_2, \ldots, x_n, \ldots\} \Rightarrow a$ —предельная точка.

Лемма 3.1.6 (Лемма $\Pi 1$).

- ⊳ <u>Пусть</u>
 - $\circ \ M \subset E \subset \overline{\mathbb{R}};$
 - \circ p предельная точка для M.
- ⊳ Тогда

p — предельная точка для E.

- Доказательство.
 - Следует из определения.

Лемма 3.1.7 (Лемма $\Pi 2$).

⊳ Пусть

p — предельная точка для M.

⊳ Тогда

 $\forall U \in \vartheta(p) \colon p$ — предельная точка $M \cap U$.

- Доказательство.
 - о Следует из определения.

Лемма 3.1.8 (Лемма ПЗ (о характеризации предельных точек)).

⊳ Пусть

$$M \subset \overline{\mathbb{R}}, M \neq \emptyset.$$

⊳ Тогда

T p н $\lim_{n\to\infty} x_n = p$.

Лекции по математическому анализу http://MFH.gorodok.net/

Доказательство.

Стр. 62

 (\Rightarrow) Пусть p предельная точка M, тогда рассмотрим каноническую базу:

$$U_n(p), \ \forall n \colon U_n(p) \cap M \neq \varnothing;$$

$$x_n \in U_n(p), \ x_n \neq p;$$

$$x_n \in U_n(p) - \forall n \in \mathbb{N}.$$

Согласно лемме 1 3.1.4 на стр. 60, последовательность x_n такова, что $\lim_{n\to\infty}x_n=p.$

(\Leftarrow) Пусть $\lim_{n\to\infty}x_n=p$, причём $x_n\in M,\,x_n\neq p$. Значит, $\forall \varepsilon>0\colon\exists S\in\mathbb{N}$ $\forall k>S\colon |x_k-p|<\varepsilon$. Пусть $\varepsilon=\frac{1}{n}$, тогда $\forall n>0\colon\exists S\in\mathbb{N}$ $\forall k>S\colon |x_k-p|<\frac{1}{n}$. Значит, точка p предельная.

Лемма 3.1.9 (Лемма $\Pi 4$).

⊳ <u>Пусть</u>

 $M \in \overline{\mathbb{R}}, \ M \neq \emptyset, \ p = \sup M, \ q = \inf M.$

⊳ Тогда

 $p,q \notin M$ — предельные точки множества M.

Т.к. $p = \sup M$, то $\exists x \in M \mid x < p$. Рассмотрим окрестность $(p - \varepsilon, p + \varepsilon)$ точки p.

Для всякой такой окрестности $\exists y \in M \mid y \in B_{\varepsilon}(p)$. Действительно, если бы такая точка не существовала, то p — не sup.

ОПР 3.1.10 (Замыкания множества).

 Π усть $M \subset \overline{\mathbb{R}}, M \neq \varnothing$. Назовём замыканием множества M множество

 $\overline{M} \stackrel{def}{=} M \cup \{$ множество предельных точек $M\}.$

ОПР 3.1.11 (Замкнутого множества).

 $\mathit{Ecлu}\ M = \overline{M},\ \mathit{mo}\ M\ \mathit{называюm}\ \mathit{замкнутым}.$

Cледствие 3.1.11.1 (Из леммы $\Pi 4$).

$$M = \langle a, b \rangle, a < b.$$

⊳ Тогда

$$\overline{M} = [a, b].$$

⊳ Доказательство.

- \circ Если a < x < b, то x предельная точка по лемме 3.1.8 (если взять $x_n = x \frac{1}{n} \Rightarrow \lim n \to \infty x_n = x$).
- $a = \inf M, b = \sup M$ предельные точки, согласно лемме 3.1.9.
- о Докажем, что других точек нет.

Пусть $p \not\in [a,\,b],\, p—$ предельная точка. Тогда либо p > b, либо p < a.

Пусть p > b, тогда если $\varepsilon = \frac{|b-p|}{2}$, то $B_{\varepsilon}(p) \cap [a, b] = \emptyset$.

Аналогично для p < a.

ОПР 3.1.12 (Изолированной точки).

Пусть $M \subset \overline{\mathbb{R}}, M \neq \varnothing$. Тогда точка $p \in M$ называется изолированной, если p не является предельной.

ОПР 3.1.13 (Предела функции в предельной точке).

Пусть $M \subset \overline{\mathbb{R}}, M \neq \emptyset, f: M \to \mathbb{R}, M \subset D(f);$

Пусть р предельная точка М.

Число $L \in \overline{\mathbb{R}}$ называется пределом функции f в точке p при $x \to p$ по множеству M, если

$$\forall \varepsilon > 0 \colon \exists U \in \vartheta(p) \mid \forall x \in U \cap M \colon x \neq p, |f(x) - L| < \varepsilon.$$

M это обозначают $\lim_{\substack{x \to p \\ x \in M}} f(x) = L.$

Пример 3.1.13.1.

$$f(x) = \frac{x^2 - 1}{x - 1}, \ D(f) = (-\infty, 1) \cup (1, \infty) = M; \lim_{\substack{x \to 1 \\ x \in M}} f(x) = x + 1 = 2;$$

 $\triangleright \lim_{\substack{x \to 1 \\ x \in M}} \sqrt{x-1} = 0, \text{ если } M = [1, \infty).$

Теорема 3.1.14 (Критерий Гейне существования предела функции в предельной точке).

⊳ Пусть

 $\circ M \subset \overline{\mathbb{R}}, M \neq \emptyset, p$ —предельная точка;

Лекции по математическому анализу http://MFH.gorodok.net/

$$\circ f: M \to \mathbb{R}, M \subset D(f);$$

MFH Corporation

⊳ Предположим, что

Для любой последовательности $x_n | \forall n \colon x_n \to p, \ x_n \neq p$ последовательность $y_n = f(x_n)$ сходится.

⊳ Тогда

Существует предел $\lim_{\substack{x\to\infty\\x_n\in M}} f(x_n) = L, \ L = \lim_{n\to\infty} y_n.$

⊳ Доказательство.

<u>Шаг 1.</u> Если все последовательности $f(x_n)$, то у них тот же предел. Пусть $x_n \to p, y_n \to p$ — пробные последовательности.

$$a_n = f(x_n), b_n = f(y_n);$$

 $z_n = x_1, y_1, \dots, x_n, y_n, z_n \to p;$
 $c_n = f(z_n).$

Последовательность c_n сходится в силу условия теоремы.

По построению a_n и b_n подпоследовательности c_n . Согласно теореме о подпоследовательностях

$$\underline{\lim} na_n = \underline{\lim} nb_n = \underline{\lim} nc_n.$$

Для некоторой последовательности x_n получаем $\underline{\lim} nf(x_n) = L$.

<u>Шаг 2.</u> <u>Напомним:</u> Если p — предельная точка, то $\lim_{x\to p} f(x) = L$ существует, если

$$\forall \varepsilon > 0 \colon \exists U(p) \mid \forall x \in U(p) \colon || < \varepsilon.$$

Пусть для какой-то последовательности $\underline{\lim} nf(x_n) = L$, а условие существования предела не выполнено. Тогда

$$\forall U(p) \colon \exists x \in U(p) | |f(x) - L| \geqslant \varepsilon.$$

Выбирая в качестве U(p) стандартную базу, получаем что

$$\forall n \colon \exists x_n \in B_n(p) | |f(x_n) - L| \geqslant \varepsilon \Rightarrow$$
$$\underline{\lim} nx_n = p, \ f(x_n) = a_n, \ |a_n - L| \geqslant \varepsilon; \ |\underline{\lim} na_n - L| \geqslant \varepsilon \Rightarrow \underline{\lim} na_n \neq L.$$

<u>Шаг 3.</u> Если $\exists \lim_{x \to p} f(x) = L$, то для любой последовательности $x_n \to p$: $\underline{\lim} n f(x_n) = L$.

Очевидно, в следствии ограниченности предела функции.

Лекции по математическому анализу http://MFH.gorodok.net/

П

Стр. 66

П

Следствие 3.1.14.1 (Не существование предела).

⊳ <u>Пусть</u>

p— предельная точка и существуют две последовательности $x_n,\ y_n$ такие, что

$$x_n \to p, y_n \to p, \underline{\lim} nf(x_n) \neq \underline{\lim} nf(x_n).$$

⊳ Тогда

Функция не имеет предела в точке p.

Теорема 3.1.15 (Алгебраический свойства предела функции в точке).

⊳ Пусть

f и g — две функции, определённые на одной и той же окрестности M предельной точки p.

⊳ Предположим, что

$$\exists \lim_{\substack{x \to p \\ x \in M}} f(x) = A;$$
$$\exists \lim_{\substack{x \to p \\ x \in M}} g(x) = B.$$

⊳ Тогда

- 1. Если A+B определено, то $\exists \lim_{\substack{x \to p \\ x \in M}} (f(x)+g(x)) = A+B$
- 2. Если $A\cdot B$ определено, то $\exists\lim_{\substack{x\to p\\x\in M}}(f(x)\cdot g(x))=A\cdot B$
- 3. Если существует такая окрестность U точки p, что $\forall x \in U \setminus \{p\} \colon g(x) \neq 0$, тогда $\exists \lim_{\substack{x \to p \\ x \in M \cap (U \setminus \{p\})}} \frac{f(x)}{g(x)} = \frac{A}{B}$, при условии что $\frac{A}{B}$ определено.

∘ Пусть $x_n \to p$ —пробная последовательность. $\exists S \mid \forall n > S \colon x_n \in M$, тогда согласно теореме Гейне 3.1.14 на стр. 63

$$\underline{\lim} n f(x_n) = A;$$

$$\underline{\lim} n g(x_n) = B.$$

Из теорем об алгебраических свойствах предела последовательности (2.8.1 на стр. 38,2.8.2 на стр. 39, 2.8.3 на стр. 39) получаем:

$$\exists \underline{\lim} n(f(x) + g(x)) = A + B;$$
$$\exists \underline{\lim} n(f(x) \cdot g(x)) = A \cdot B;$$
$$\exists \underline{\lim} n \frac{f(x)}{g(x)} = \frac{A}{B}.$$

Поскольку, это верно для всякой пробной последовательности, то согласно теореме Гейне 3.1.14 на стр. 63, получаем, что существуют пределы функций.

3.2 Качественные свойства предела

Теорема 3.2.1 (О неравенствах пределов функций).

⊳ Пусть

Пусть $V \subset \overline{\mathbb{R}}, \, p$ — предельная точка $V, \,\, u(x)$ и v(x) — пара функций, определённых на V.

⊳ Предположим, что

Существует окрестность U(p) точки p такая, что

$$\forall x \in U(p) \cap V \colon u(x) \geqslant v(x).$$

⊳ Тогда

Если
$$\exists \lim_{\substack{x \to p \\ x \in V \cap U(p)}} u(x) = A, \ \exists \lim_{\substack{x \to p \\ x \in V \cap U(p)}} v(x) = B, \text{ то } A \geqslant B.$$

Доказательство.

 \circ Возьмём пробную последовательность $x_n \to p$ $x_n \in V \cap U(p)$. $\forall x_n$ имеет место $\forall n \in \mathbb{N} \colon u(x_n) \geqslant v(x_n)$.

$$u(x_n) = a_n, v(x_n) = b_n;$$

 $\underline{\lim} na_n = A, \ \underline{\lim} nb_n = B \Rightarrow A \geqslant B_{\text{(согласно теореме о неревенстве пределов для последов}}$

Теорема 3.2.2 (О существовании промежуточного предела).

Стр. 68

⊳ Пусть

Пусть $V \subset \overline{\mathbb{R}}, \, p$ —предельная точка $V, \,\, u(x), \, v(x), \, w(x)$ —три функций, определённых на V.

⊳ Предположим, что

Существует окрестность U(p) точки p такая, что

$$\forall x \in U(p) \cap V \colon u(x) \geqslant w(x) \geqslant v(x).$$

⊳ Тогда

Если
$$\exists \lim_{\substack{x \to p \\ x \in V \cap U(p)}} u(x) = A, \ \exists \lim_{\substack{x \to p \\ x \in V \cap U(p)}} v(x) = A, \ \text{то} \ \exists \lim_{\substack{x \to p \\ x \in V \cap U(p)}} v(x) = A.$$

⊳ Доказательство.

о Возьмём пробную последовательность $x_n \to p$ $x_n \in V \cap U(p)$. $\forall x_n$ имеет место

$$\begin{array}{cccc} u(x_n) & \geqslant & w(x_n) & \geqslant & v(x_n) \\ \parallel & & \parallel & & \parallel \\ a_n & & c_n & & b_n \end{array}$$
$$a_n \geqslant c_n \geqslant b_n.$$

Применим лемму о существовании промежуточного предела для последовательностей 2.7.10 на стр. 37 и получим:

$$\lim_{\substack{x\to p\\x\in V\cap U(p)}}u(x)\geqslant \lim_{\substack{x\to p\\x\in V\cap U(p)}}w(x)\geqslant \lim_{\substack{x\to p\\x\in V\cap U(p)}}v(x)\Rightarrow \exists \lim_{\substack{x\to p\\x\in V\cap U(p)}}w(x)=A.$$

Для любой пробной последовательности.

ОПР 3.2.3 (Возрастающих функций).

• Функция f, определенная на множестве $S \subset \overline{\mathbb{R}}$, называется возрастающей, если

$$\forall x, y \in S \colon x < y \Rightarrow f(x) \leqslant f(y).$$

• Функция f, определенная на множестве $S \subset \overline{\mathbb{R}}$, называется строго возрастающей, если

$$\forall x, y \in S \colon x < y \Rightarrow f(x) < f(y).$$

ОПР 3.2.4 (Убывающих функций).

Лекции по математическому анализу http://MFH.gorodok.net/

• Функция f, определенная на множестве $S \subset \overline{\mathbb{R}}$, называется убывающей, если

$$\forall x, y \in S \colon x < y \Rightarrow f(x) \geqslant f(y).$$

• Функция f, определенная на множестве $S \subset \overline{\mathbb{R}}$, называется строго убывающей, если

$$\forall x, y \in S \colon x < y \Rightarrow f(x) > f(y).$$

ОПР 3.2.5 (Монотонных функций).

- Функция f, определенная на множестве $S \subset \overline{\mathbb{R}}$, называется монотонной, если она либо возрастает, либо убывает.
- Функция f, определенная на множестве $S \subset \overline{\mathbb{R}}$, называется монотонной, если она либо строго возрастает, либо строго убывает.

Теорема 3.2.6 (О пределе монотонной функции).

⊳ Пусть

f возрастает на < a, b >.

⊳ Тогда

Существуют пределы:

$$\lim_{\substack{x \to a \\ x \in \langle a, b \rangle}} f(x) = H;$$

$$\lim_{\substack{x \to b \\ x \in \langle a, b \rangle}} f(x) = L;$$

Причём:

$$H = \sup_{x \in \langle a, b \rangle} f(x) = \sup \{y \mid \exists x \in \langle a, b \rangle \colon y = f(x)\}; \\ L = \inf_{x \in \langle a, b \rangle} f(x) = \inf \{y \mid \exists x \in \langle a, b \rangle \colon y = f(x)\}; \\ L = \inf_{x \in \langle a, b \rangle} f(x) = \inf \{y \mid \exists x \in \langle a, b \rangle \colon y = f(x)\}; \\ L = \inf_{x \in \langle a, b \rangle} f(x) = \inf \{y \mid \exists x \in \langle a, b \rangle \colon y = f(x)\}; \\ L = \inf_{x \in \langle a, b \rangle} f(x) = \inf \{y \mid \exists x \in \langle a, b \rangle \colon y = f(x)\}; \\ L = \inf_{x \in \langle a, b \rangle} f(x) = \inf \{y \mid \exists x \in \langle a, b \rangle \colon y = f(x)\}; \\ L = \inf_{x \in \langle a, b \rangle} f(x) = \inf \{y \mid \exists x \in \langle a, b \rangle \colon y = f(x)\}; \\ L = \inf_{x \in \langle a, b \rangle} f(x) = \inf \{y \mid \exists x \in \langle a, b \rangle \colon y = f(x)\}; \\ L = \inf_{x \in \langle a, b \rangle} f(x) = \inf \{y \mid \exists x \in \langle a, b \rangle \colon y = f(x)\}; \\ L = \inf_{x \in \langle a, b \rangle} f(x) = \inf \{y \mid \exists x \in \langle a, b \rangle \colon y = f(x)\}; \\ L = \inf_{x \in \langle a, b \rangle} f(x) = \inf \{y \mid \exists x \in \langle a, b \rangle \colon y = f(x)\}; \\ L = \inf_{x \in \langle a, b \rangle} f(x) = \inf_{x$$

Доказательство.

 \circ Для $x \to p$.

I Пусть $H=-\infty$, тогда $\forall x\in < a,\, b>: f(x)\leqslant -\infty \Rightarrow f(x)=-\infty \Rightarrow \lim_{x\to b}-\infty.$

II Пусть $h > -\infty$, тогда

$$\forall \varepsilon > 0 \colon \exists \delta \middle| \forall x \in (b - \delta, b) \colon f(x) \in (H - \varepsilon, H).$$
$$\forall z \in (b - \delta, b) \colon f(z) \geqslant H - \varepsilon_{\text{(из возрастания)}}.$$

Лекции по математическому анализу http://MFH.gorodok.net/

П

 \circ Аналогично для $x \to a$.

Теорема 3.2.7 (О пределе суперпозиции).

⊳ <u>Пусть</u>

- \circ f,g— две функции такие, что $f\colon U\to V,\ g\colon V\to \mathbb{R},$ где $U,V\in\overline{\mathbb{R}}.$
- $\circ \ p$ предельная точка U. $q=\lim_{x\to p}f(x)$ предельная точка $V\!.$

⊳ Тогда

$$\lim_{x \to p} g(f(x)) = \lim_{y \to q} g(y),$$

если
$$\exists \lim_{x \to p} f(x), \exists \lim_{y \to q} g(y).$$

Доказательство.

о Пусть x_n — пробная последовательность в $U, x_n \to p$, тогда рассмотрим $y_n = f(x_n)$:

$$\underline{\lim} ny_n = \underline{\lim} nf(x_n) = q \Rightarrow y_n \to q \text{ в } V \Rightarrow \underline{\lim} ng(y_n) - \text{существует.}$$

3.3 Односторонние пределы

ОПР 3.3.1 (Непонятно чего).

Пусть $J = \langle a, b \rangle$, a . Тогда

$$J^+ = J \cap (p, +\infty);$$

$$J^- = J \cap (-\infty, p).$$

ОПР 3.3.2 (Одностороннего предела).

$$\lim_{\substack{x\to p\\x\in J^-}}f(x)=\lim_{\substack{x\to p-\\x\to p}}=f(p-0)-$$
 предел слева;
$$\lim_{\substack{x\to p\\x\in I^+}}f(x)=\lim_{\substack{x\to p+\\x\in I^+}}=f(p+0)-$$
 предел справа.

Теорема 3.3.3 (О равенстве односторонних пределов).

Лекции по математическому анализу http://MFH.gorodok.net/

⊳ Пусть

$$M \subset \overline{\mathbb{R}}$$
, p —предельная точка M .

⊳ Предположим, что

Существуют односторонние пределы в точке p, причём $\lim_{p+} f(x) = \lim_{p+} f(x) = L$.

⊳ Тогда

$$\exists \lim_{x \to p} f(x) = L.$$

Доказательство.

 \circ Пусть L правый и левый пределы f в точке $p \in M$, тогда

$$\forall \varepsilon \colon \exists \delta_1 | \forall x \in J^- | |x - p| < \delta_1 \Rightarrow |f(x) - L| < \varepsilon;$$

$$\forall \varepsilon \colon \exists \delta_2 | \forall x \in J^+ | |x - p| < \delta_2 \Rightarrow |f(x) - L| < \varepsilon.$$

Пусть $\delta = \min \{\delta_1, \delta_2\}$, тогда $\forall x \colon |x - p| < \delta \Rightarrow$

$$\checkmark$$
 если $x > p$, то $|x - p| < \delta \Rightarrow |f(x) - L| < \varepsilon$;

$$\checkmark$$
 если $x < p$, то $|x - p| < \delta \Rightarrow |f(x) - L| < \varepsilon$.

Значит:

$$\forall x \colon |x-p| < \delta \Rightarrow |f(x)-L| < \varepsilon \Rightarrow$$
 (согласно определению 2.7.11 на стр. 37) $\exists \lim_{x \to p} f(x) =$

3.4 О-символика

ОПР 3.4.1 (Бесконечно малой функции).

Будем говорить, что f(x) является бесконечно малой относительно g(x) в точке $p,\ ecnu$

$$\forall \varepsilon > 0 \colon \exists U \in \vartheta(p) \mid |f(x)| \leqslant \varepsilon |g(x)| \ \forall x \in U.$$

B этом случае nuwym f(x) = o(g(x)) npu $x \to p$.

ОПР 3.4.2 (O).

Будем говорить, что f(x) = O(g(x)) при $x \to p$, если

$$\exists U \in \vartheta(p) \ u \ C \in \mathbb{R} \ |f(x)| \leqslant C|g(x)| \ \forall x \in U.$$

Лекции по математическому анализу http://MFH.gorodok.net/

Стр. 72

ОПР 3.4.3 (Эквивалентных функций).

Будем говорить, что $f(x) \sim g(x)$ (эквивалентна) $npu \ x \to p, \ ecлu$

$$f(x) - g(x) = o(g(x)) \ npu \ x \to p.$$

Лемма 3.4.4 (Лемма 1).

⊳ Пусть

g(x) такое, что существует окрестность U(p) точки p такая, что $\forall x \in U(p) \smallsetminus \{p\} \colon g(x) \neq 0.$

⊳ Тогда

- 1. f(x) = o(g(x)) при $x \to p \Leftrightarrow \lim_{x \to p} \frac{f(x)}{g(x)} = 0;$
- 2. f(x) = O(g(x)) при $x \to p \Leftrightarrow \lim_{x \to p} \frac{f(x)}{g(x)} = O(1) = L \neq 0;$
- 3. $f(x) \sim (g(x))$ при $x \to p \Leftrightarrow \lim_{x \to p} \frac{f(x)}{g(x)} = 1$.

⊳ Доказательство.

 $\circ\,$ Следует из определений 3.4.2 на стр. 70, 3.4.1 на стр. 70 и 3.1.13 на стр. 63.

Лемма 3.4.5 (Лемма 2).

ho f(x)=o(g(x)), при $x\to p$, если существует функция $\alpha(x)|\lim_{x\to p}\alpha(x)=0$. $f(x)=\alpha(x)g(x),$ при $x\in U(p),$ где U(p)- окрестность точки p.

⊳ Доказательство.

• Следует из алгебраических свойств предела (3.1.15 на стр. 65).

Лемма 3.4.6 (Свойства эквивалентных функций).

- 1. $f \sim f$;
- 2. если $q \sim f$, то $f \sim q$;
- 3. если $f \sim g$, $g \sim h$, то $f \sim h$;
- 4. если $f_i \sim g_i, \forall i = 1, 2, ..., n$, то $f_1 f_2 ... f_n \sim g_1 g_2 ... g_n$;
- 5. если $f \sim g$ и $\lim_{x \to p} f(x) = a$, то $\lim_{x \to p} g(x) = a$.

Лекции по математическому анализу http://MFH.gorodok.net/

3.5 Непрерывность функций

Пусть $f: M \to \mathbb{R}, p \in M, f(p)$.

ОПР 3.5.1 (Непрерывности функции в точке).

Будем говорить, что f непрерывна в точке p, если

 $\forall \varepsilon \colon \exists \text{ окрестность } U(p) \text{ точки } p \ \forall x \in U(p) \colon |f(x) - f(p)| < \varepsilon.$

3.5.1.1 Расшифрование

 $\triangleright f$ непрерывна в точке p, если

$$\forall \varepsilon > 0 \colon \exists \delta > 0 \mid \forall x \colon |x - p| < \delta \Rightarrow |f(x) - f(p)| < \varepsilon.$$

Следствие 3.5.2 (Эквивалентные определения)

f непрерывна в точке $p \in M$, если для любой последовательности $x_n \to p$ при $n \to \infty$: $x_n \in M$, $x_n \neq p$:

- 1. $y_n = f(x_n)$ сходится при $n \to \infty$;
- $2. \ \underline{\lim} ny_n = f(p).$

Следствие 3.5.3 (Характеризация непрерывной функции через односторонние пределы).

⊳ <u>Пусть</u>

У функции f существуют односторонние пределы в точке p, причём

- $\circ f(p-0), f(p+0) \in \mathbb{R};$
- f(p-0) = f(p+0).

⊳ Тогда

$$f(p-0) = f(p+0) = f(p).$$

• Очевидно (используем теорему о существовании предела 3.3.3 на стр. 69).

Теорема 3.5.4 (Алгебраические свойства непрерывных функций).

⊳ Пусть

$$f: M \to \mathbb{R}, g: M \to \mathbb{R}, p \in M.$$

⊳ Предположим, что

f, q — непрерывны в точке p.

⊳ Тогда

Следующие функции непрерывны в точке p:

- 1. f + q
- 2. |f|
- 3. $f \cdot q$
- 4. если существует окрестность U(p) точки p такая, что $\forall x \in U(p) \colon q(x) \neq 0$ 0, то $\frac{f}{g}$ — непрерывна в точке p.

⊳ Доказательство.

Вытекает из:

- 1. Определение непрерывной функции через пределы (следствие 3.5.2 на стр. 72);
- 2. Теорема Гейне (3.1.14 на стр. 63)
- 3. Алгебраические свойства предела (теорема 3.1.15 на стр. 65)

Теорема 3.5.5 (О непрерывности суперпозиции функций).

⊳ Пусть

$$f: V \to W, g: W \to \mathbb{R}.$$

⊳ Предположим, что

$$p \in V$$
, $f(p) \in W$.

⊳ Пусть

f — непрерывна в точке p, а q непрерывна в точке f(p).

⊳ Тогда

$$h = g(f(x))$$
 — непрерывна в точке p .

• Следует из теоремы о пределе суперпозиции (3.2.7 на стр. 69).

Лемма 3.5.6 (Непрерывность постоянной и тождественно функций).

Лекции по математическому анализу http://MFH.gorodok.net/

 \triangleright Функции f(x) = b— постоянная и g(x) = x— тождественная функции непрерывны в любой точке \mathbb{R} .

⊳ Доказательство.

Стр. 74

 \circ Пусть $p \in \mathbb{R}$. Рассмотрим последовательность $x_n | \lim nx_n = p$. Тогда

1.
$$y_n = f(x_n) = b$$
, $\underline{\lim} ny_n = b = f(p)$;

2.
$$y_n = g(x_n) = x_n$$
, $\underline{\lim} ny_n = \underline{\lim} ny_n = p = g(p)$.

 $C_{\Lambda}edcmeue\ 3.5.7\ (Многочлен степени не большей\ n).$

$$P_n(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n = \sum_{i=0}^n a_i x^i$$
 — называется *многочленом* степени не большей n .

 $P_n(x)$ — непрерывен на всей числовой оси.

Следствие 3.5.8 (Дробно-рациональная функция).

$$Q_n(x)=rac{P_n(x)}{P_n^2(x)}$$
— называется дробно-рациональной функцией.

$$Q_n(x)$$
 — непрерывна в точках $p \in \mathbb{R}$ $p_n^2(p) \neq 0$.

ОПР 3.5.9 (Непрерывности на множестве).

 $\Pi ycmb \ f \colon M \to \mathbb{R}, \ f -$ называется непрерывной на множестве M, если она непрерывна в каждой его точке.

Глобальные свойства непрерывных функций

Теорема 3.6.1 (Больцано-Вейрштрасса (условие)).

⊳ Пусть

f(x) — непрерывная функция на $[a, b] \subset \mathbb{R}$, a < b.

⊳ Предположим, что

$$f(a) < 0, f(b) \geqslant 0.$$

⊳ Тогда

$$\exists c \in [a, b] \ f(c) = 0.$$

ОПР 3.6.2 (Точки разрыва).

Пусть $f: \langle a, b \rangle \to \mathbb{R}$. Если $p \in \langle a, b \rangle$ такая, что f не является непрерывной в точке p, то p—называется точкой разрыва.

ОПР 3.6.3 (Классификация точек разрыва).

Если в точке $p\colon f(p-0)$ и $f(p+0)\in\mathbb{R}; f(p-0)\neq f(p+0),$ то точка p называется точкой разрыва I-го рода.

B любом другом случае — точкой разрыва II-го рода.

ОПР 3.6.4 (Скачка функции).

f(x+0) - f(x-0) — называется скачком функции в точке x.

Пример 3.6.4.1 (Точек разрыва).

⊳ Пример 1.

$$f(x)=\begin{cases} 1, & x\geqslant 0;\\ 0, & x<0.\\ \lim_{x\to 0+}f(x)=1, & \lim_{x\to 0-}f(x)=0\Rightarrow x=0$$
— точка разрыва І-го рода.

⊳ Пример 2.

$$f(x) = \frac{1}{|x|};$$

$$\lim_{x \to 0+} f(x) = +\infty, \lim_{x \to 0-} f(x) = +\infty.$$

⊳ Пример 3.

$$\begin{split} f(x) &= \sin\frac{1}{x}, \ x = 0;\\ \sin y &= 0, \ y = \pi k \Rightarrow \frac{1}{x} = \pi k \Rightarrow x = \frac{1}{\pi k}, \ k \in \mathbb{Z};\\ a_k &= \frac{1}{\pi k} \Rightarrow \underline{\lim} n \sin a_k = \lim 0 = 0;\\ \sin y &= 1, \ y = \frac{\pi}{2} + 2\pi k \Rightarrow \frac{1}{x} = \frac{\pi}{2} + 2\pi k \Rightarrow x = \frac{1}{\frac{\pi}{2} + 2\pi k}, \ k \in \mathbb{Z};\\ b_k &= \frac{1}{\frac{\pi}{2} + 2\pi k} \Rightarrow \underline{\lim} n \sin b_k = \lim 1 = 1. \end{split}$$

ОПР 3.6.5 (Устранимой точки разрыва II-го рода).

 $\Pi y c m b$

- x- точка разрыва для f;
- существуют односторонние пределы в точкех: f(x-0) и f(x+0);
- \bullet скачок функции f в точке x равен 0;

Тогда точка х называется устранимой точкой разрыва I-го рода.

Пример 3.6.5.1 (Устранимой точки разрыва).

$$f(x) = \frac{x^2 - 1}{x - 1};$$
 $\lim_{x \to 1+} f(x) = \lim_{x \to 1+} (x + 1) = 2, \quad \lim_{x \to 1-} f(x) = \lim_{x \to 1-} (x + 1) = 2 \Rightarrow x = 1 -$ vстранимая точка разрыва І-го рода.

Лекции по математическому анализу http://MFH.gorodok.net/

Теорема 3.6.6 (О точках разрыва для монотонных функций).

⊳ Пусть

Стр. 76

$$f \colon < a, b > \to \overline{\mathbb{R}}, f$$
 — монотонна.

⊳ Тогда

 $\forall p \in < a, b>, a — является точкой разрыва І-го рода.$

⊳ Причём

- \circ если f(x) монотонно возрастает, то $f(p-0) \leqslant f(p) \leqslant f(p+0)$;
- \circ если f(x) монотонно убывает, то $f(p-0)\geqslant f(p)\geqslant f(p+0)$.

⊳ Доказательство.

 \circ Пусть $p \in \langle a, b \rangle$, тогда рассмотрим два интервала $J^- = \langle a, p \rangle$, $J^+ = (p, b \rangle)$. f монотонно на интервале J^- . По теореме о пределе монотонной функции 3.2.6 на стр. 68 получаем:

$$\exists \lim_{\substack{x \to p \\ x \in J^-}} f(x) = f(p-0).$$

• Совершенно аналогично:

$$\exists \lim_{\substack{x \to p \\ x \in J^+}} f(x) = f(p+0).$$

 \circ Пусть f возрастает. Тогда

$$f(x) \leqslant f(p) - \forall x \in J^{-} \Rightarrow \lim_{\substack{x \to p \\ x \in J^{-}}} f(x) = f(p-0) \leqslant f(p);$$

$$f(x) \geqslant f(p) - \forall x \in J^{+} \Rightarrow \lim_{\substack{x \to p \\ x \in J^{+}}} f(x) = f(p+0) \geqslant f(p);$$

$$\Rightarrow f(p-0) \leqslant f(p) \leqslant f(p+0).$$

 \circ Аналогично для случая, когда f монотонно убывает.

Теорема 3.6.7 (Больцано-Вейрштрасса (доказательство)).

⊳ Пусть

$$f(x)$$
 — непрерывная функция на $[a, b] \subset \mathbb{R}, a < b$.

П

⊳ <u>Предположим, что</u>

$$f(a) < 0, f(b) \ge 0.$$

⊳ Тогда

$$\exists \varphi \in (a, b] f(\varphi) = 0$$
 и $\forall x \in (a, \varphi) \colon f(x) > 0.$

Доказательство.

Шаг 1.

$$[a_0, b_0] = [a, b].$$

Пусть $[a_n, b_n]$ — построен. Тогда рассмотрим $c_n = \frac{a_n - b_n}{2}$: Если $f(c_n) > 0$, тогда $a_{n+1} = c_n$, $b_{n+1} = b_n$, иначе $a_{n+1} = a_n$, $b_{n+1} = c_n$.

Свойства построения:

 $\checkmark \forall n \colon [a_{n+1}, b_{n+1}] \subset [a_n, b_n];$

$$\checkmark |b_n - a_n| = \frac{|b-a|}{2^n};$$

 $√ a_n, b_n$ — образуют систему вложенных отрезков.

Таким образом:

$$\checkmark \exists \varphi \ \forall n : \varphi \in [a_n, b_n], \ a_n \leqslant \varphi \leqslant b_n;$$

$$\checkmark \underline{\lim} n|b_n - a_n| = \underline{\lim} n^{\frac{|b-a|}{2^n}} = 0; \Rightarrow \underline{\lim} na_n = \underline{\lim} nb_n = \varphi;$$

$$\checkmark f(a_n) > 0 \Rightarrow \underline{\lim} n f(a_n) \geqslant 0;$$

$$\checkmark f(b_n) \leqslant 0 \Rightarrow \underline{\lim} n f(b_n) \leqslant 0.$$

В силу непрерывности: $\underline{\lim} n f(a_n) = \underline{\lim} n f(b_n) \Rightarrow \underline{\lim} n f(a_n) = 0 = f(\varphi).$

Шаг 2.

$$f(a)>0;\ S=\{x\in[a,\,b]|f(x)>0\},\ S
eq \varnothing.$$
 Докажем, что inf S eq

Пусть inf S=a. Тогда \forall окрестности $B_{\frac{1}{n}}(a)$ точки $a\colon \exists x_n\in S \mid x_n\in B_{\frac{1}{n}}(a);\ x_n\to a$ при $n\to\infty$.

$$f(x_n) = 0 \Rightarrow \underline{\lim} nf(x_n) = 0 = f(a) > 0$$
—противоречие.

Следствие 3.6.7.1.

a.

⊳ Пусть

- \circ f(x) непрерывна на < a, b >;
- $p \in (a, b)$ и f(p) > 0.

Лекции по математическому анализу http://MFH.gorodok.net/

⊳ Тогда

Стр. 78

$$\exists \varepsilon > 0 \mid \forall x \in [p - \varepsilon, p + \varepsilon] \colon f(x) > 0.$$

Следствие 3.6.7.2 (Теорема о промежуточных значениях).

⊳ Пусть

- \circ f непрерывна на [a, b];
- $\circ p = f(a), q = f(b).$

⊳ Тогда

$$\forall h \in [p, q] ($$
если $p < q)$ или $h \in [q, p($ иначе $) : \exists x | f(x) = h.$

Доказательство.

 \circ Применим теорему Больцано-Вейрштрасса 3.6.7 к функции g(x) = f(x) - h.

Теорема 3.6.8 (О связности).

⊳ Пусть

$$f: \langle a, b \rangle \to \overline{\mathbb{R}}, f$$
 непрерывна на $\langle a, b \rangle$.

⊳ Тогда

Если I отрезок на < a, b>, то f(I) — либо точка, либо отрезок.

- \circ Пусть $p = \inf_{x \in \langle a, b \rangle} f(x), \ q = \sup_{x \in \langle a, b \rangle} f(x)$. Очевидно, что $p \leqslant q$.
 - √ Если p=q, тогда функция f постоянная, и значит, её образ точка;
 - ✓ Пусть p < q.

$$f(I) \subset [p, q]; f(I) \supset (p, q)$$

Докажем, что $\forall y \in (p, q) \colon \exists x \ f(x) = y.$

Пусть $y = \in (p, q)$, тогда в силу определения точных граней, получаем $\exists x_1 \mid f(x_1) > y$; и $\exists x_2 \mid f(x_2) < y$.

* Пусть $x_1 < x_2$. Рассмотрим интервал $[x_1, x_2]$:

$$f(x_1)-y>0, f(x_2)-y<0 \Rightarrow$$
 (в силу теоремы 3.6.7) $\exists x_3 \in [x_1, x_2] | f(x_3)-y=0$

* Если $x_1 > x_2$, аналогично рассматриваем интервал x_2, x_1 .

П

П

Стр. 80

П

Теорема 3.6.9 (Непрерывность монотонной функции).

⊳ <u>Пусть</u>

$$J = \langle a, b \rangle$$
, f — монотонна.

⊳ Тогда

Если
$$f(J) \subset \mathbb{R}$$
 — интервал, то f непрерывна.

Доказательство.

о (От противного)

Пусть f(x) монотонна и существует точка x_0 , в которой f не является непрерывной. Предположим, что f — монотонно возрастает, $f(x_0)$ значение функции в точке x_0 .

$$\exists \lim_{x \to x_0 - 0} f(x) = f(x_0 - 0) \Rightarrow f(x_0 - 0) \leqslant f(x_0) \Rightarrow$$

(по теореме (3.6.6 на стр. 76), рес точки разрыва I-го рода) $f(x_0 - 0) < f(x_0) \Rightarrow \exists p \mid f(x_0 - 0) < p < f(x_0).$

Очевидно, что не существует точки x_1 такой, что $f(x_1) = p$. Значит, множество f(J) не отрезок. Противоречие.

Теорема 3.6.10 (Об обратной функции).

⊳ Пусть

$$J = < a, \, b >, \, f$$
 — строго монотонная, непрерывная функция на J .

⊳ Тогда

Существует обратная функция $f^{-1}\colon f(J)\to J$, которая строго монотонна и непрерывна.

 \triangleright

- \circ Если f возрастает, то f^{-1} возрастает;
- \circ Если f убывает, то f^{-1} убывает.

⊳ Доказательство.

 \circ Функция f не постоянна.

Лекции по математическому анализу http://MFH.gorodok.net/

 \circ \checkmark Пусть f возрастает.

Т.к. f непрерывна и не постоянна, то f(J) — отрезок. Если $x_1 < x_2$, то $f(x_1) < f(x_2)$, и следовательно, $\forall y \in f(J) : \exists ! x \mid y = f(x)$. Значит, обратная функция f^{-1} для f существует.

 \checkmark Докажем, что f^{-1} строго монотонно возрастает. Пусть $y_1 < y_1, \ y_1, \ y_2 \in f(J)$, тогда $\exists x_1, \ x_2 | \ y_1 = f^{-1}(x_1), \ y_2 = f^{-1}(x_2)$. Предположим, что $x_1 > x_2$, тогда

$$f(x_1) > f(x_2)$$
 $\parallel -$ противоречие. $y_1 > y_2$

Значит, $x_1 < x_2$ и f^{-1} монотонно возрастает.

✓ f(J)— отрезок, f^{-1} : $f(J) \to J$ переводит отрезок в отрезок, значит, f^{-1} непрерывна.

Теорема 3.6.11 (Вейерштрасса о максимуме и минимуме).

⊳ <u>Пусть</u>

- $\circ \ J = [a, \, b] \subset \mathbb{R};$
- о $f \colon [a, b] \to \mathbb{R}$ непрерывна на [a, b].

⊳ Тогда

- 1. f ограниченна, т.е. $\exists M \ \forall x \in [a, b] \colon |f| < M$;
- 2. $\exists \alpha, \beta \in [a, b] | f(\alpha) = \min_{x \in [a, b]} f(x), f(\beta) = \max_{x \in [a, b]} f(x).$

Доказательство.

- \circ Если f постоянная, то теорема очевидно.
- \circ Пусть f не постоянна, тогда $S=f([a,\,b])$ отрезок. $p=\inf_{x\in [a,\,b]}f(x),\,q=\sup_{x\in [a,\,b]}f(x),\,S\subset [p,\,q].$

Существует последовательность $a_n \subset S$, $a_n \to p$ при $n \to \infty$. $\exists x_n \in [a,b] \mid f(x_n) = a_n$. $x_n \in [a,b] - \forall n \in \mathbb{N}$, значит, x_n — ограничена, следовательно можно выбрать сходящуюся подпоследовательность x_{n_k} .

Пусть $x_0 = \underline{\lim} kx_{n_k}, \ x_0 \in [a, b], \ f(x_{n_k}) = a_{n_k}.$

 a_{n_k} — подпоследовательность сходящейся последовательности a_n . $\varliminf k a_{n_k} = p \Rightarrow \varliminf k f(x_{n_k}) = \varliminf a_{n_k} = p = f(x_0)$.

Равномерная непрерывность

ОПР 3.7.1 (Равномерной непрерывности).

 $\Pi ycmb \ A \subset \overline{\mathbb{R}}$. Тогда $f: A \to \mathbb{R}$ называется равномерно непрерывной, если $\forall \varepsilon > 0 \colon \exists \delta > 0 \mid \forall x, y \in A \colon |x - y| < \delta \Rightarrow |f(x) - f(y)| < \varepsilon.$

MFH Corporation

ОПР 3.7.2 (Модуля непрерывности).

 $\Pi y cm b \ w(t)$ определена на отрезке [0, h). Будем говорить, что функция w(t) является молулем непрерывности финкциии f на множестве A, если

- a). $w(t) \ge 0$ u w(t) возрастает:
- 6). $\lim_{t \to 0} w(t) = 0;$
- *6*). $\forall x, y \in A: |x y| < h \Rightarrow |f(x) f(y)| < w(|x y|).$

Пример 3.7.2.1 (Липшицевы и Гельдеровы функций).

 $\triangleright \Pi$ усть $w(t) = c \cdot t$.

Множество таких функций f на множестве A, что $|f(x) - f(y)| \leq c$. $|x-y| = \forall x, y$, называется Липшицевыми функциями с показателем

 $\triangleright \Pi \text{ VCTL } w(t) = c \cdot t^{\alpha}.$

Множество функций f с модулем непрерывности w(t) называется Γ ель- $\frac{\partial e}{\partial t}$ деровыми функциями с показателем α .

Следствие 3.7.2.2 (Непрерывность равномерно непрерывной функции).

 \triangleright Если функция f — равномерно непрерывна на A, то f — непрерывна.

3.7.3 Конструкция

⊳ Пусть

 $A \subset \mathbb{R}$.

⊳ Рассмотрим

$$A^2 = A \times A \stackrel{def}{=} \{(x, y) \mid x, y \in A\}.$$

⊳ Введем

1.
$$D_t(A) = \{(x, y) \in A^2 | |x - y| < t \};$$

2.
$$\Omega_f(t) = \sup_{(x,y) \in D_t(A)} |f(x) - f(y)|.$$

Лекции по математическому анализу http://MFH.gorodok.net/

⊳ Свойства

Стр. 82

- a). $\Omega_f(t) \geqslant 0$;
- б). $\Omega_f(0) = 0$;
- в). Если $t_1 < t_2$, то $\Omega_f(t_1) \le \Omega_f(t_2)$:
- Γ). $|f(x) f(y)| \leq \Omega_f(|x y|)$.

Теорема 3.7.4 (Условие равномерной непрерывности).

 $\triangleright f$ — равномерно непрерывна на $A \Leftrightarrow$ существует модуль непрерывности w(f) для функции f на множестве A.

⊳ Доказательство.

 \Leftarrow Пусть существует модуль непрерывности w(t), тогда т.к. $\lim_{t\to 0} w(t) =$ 0, To:

$$\forall \varepsilon > 0 \colon \exists \delta > 0 \ | \ t < \delta \Rightarrow w(t) < \varepsilon \Rightarrow |f(x) - f(y)| \leqslant w(|x - y|) < \varepsilon - \forall x, \ a \in A \ |x - y| < \varepsilon - \forall x \in A \ |x - y| < \varepsilon = 0$$

 \Rightarrow Пусть f равномерно непрерывна, тогда согласно конструкции 3.7.3построим функцию $\Omega_f(t)$.

Согласно равномерной непрерывности:

$$\forall \varepsilon > 0 \colon \exists \delta > 0 | \forall x, \ y | x - y | \Rightarrow |f(x) - f(y)| < \frac{\varepsilon}{2}.$$

$$\sup_{x, \ y | \ |x - y| < \delta} |f(x) - f(y)| \leqslant \frac{\varepsilon}{2} < \varepsilon.$$

Тогда $\Omega_f(t)$ — модуль непрерывности.

Пример 3.7.4.1 (Не равномерно непрерывной функции).

⊳ Пусть

 $A = [0, \infty).$

⊳ Тогда

Функция $f(x) = x^2$ не является равномерно непрерывной на A.

⊳ Доказательство.

$$\circ$$
 Пусть $x=x, y=x+t, x\geqslant 0$, тогда $|f(x+t)-f(x)|=|(x^2+2tx+t^2)-(x^2)|=t^2+2xt.$

П

Теорема 3.7.5 (Кантора о равномерной непрерывности).

⊳ <u>Пусть</u>

f— непрерывна на $[a, b] \subset \mathbb{R}$.

⊳ Тогда

f— равномерно непрерывна на [a, b].

Доказательство.

Пусть A = [a, b] для функции f.

Построим функцию $\Omega_f(t) = Sup|f(x) - f(y)|$ для x,y |x-y| < t Докажем, что $\Omega_f(t)$ — ограничена на множестве [0,b-a]. Согласно теореме Вейерштрасса (О тах и тіп) $|f(x)| \leq \max \underline{\lim} t s_{x \in [a,b]} |f(x)| = L;$

 $|f(x) - f(y)| \le |f(x)| + |f(y)| \le 2L;$

 $Sup|f(x)-f(y)|\leqslant 2L$, для $x,y\in [a,b]\Rightarrow \Omega_f(t)\leqslant 2L$ $\ \, orall t\in [0,b-a),$ т.к. $\Omega_f(t)$ — ограничена и $\Omega_f(t)$ — монотонна, то по теореме о пределе монотонной функции $\Rightarrow \exists \lim \varliminf ts_{t\to 0}\Omega_f(t)=\alpha.$

Докажем, что $\alpha = 0$.

Пусть $t=\frac{1}{n}, n\in N$. Рассмотрим $\Omega_f(\frac{1}{n})=Sup|f(x)-f(y)|$, для x,y $|x-y|<\frac{1}{n}$. Согласно определению $\sup \forall n\exists x_n,y_n\in A$ $|f(x_n)-f(y_n)|\geqslant \Omega_f(\frac{1}{n})-\frac{1}{n}$, т.к. $|x_n-y_n|<\frac{1}{n}\Rightarrow \lim \lim_{n\to\infty}|x_n-y_n|=0$ $x_n\in [a,b]\Rightarrow x_n$ — ограниченная последовательность \Rightarrow по т. Вейерштрасса у неё существует сходящаяся подпоследовательность x_{n_k} $\lim \lim_{n\to\infty} t_{n_{n-\infty}} x_{n_k}=x_0$

 x_0 — предельная точка [a,b]

[a,b] — замкнут $\Rightarrow x_0 \in [a,b]$ Выберем y_{n_k} :

такую, что $\lim \underline{\lim} t s_{n\to\infty} |x_n - y_n| = 0 \Rightarrow y_{n_k}$ — сходиться.

 $\lim \underline{\lim} t s_{k \to \infty} y_{n_k} = x_0$. Т.к. f непрерывна на $[a,b] \Rightarrow f$ — непрерывна в x_0

 $\begin{cases}
\lim \underline{\lim} t s_{k \to \infty} f(x_{n_k}) = f(x_0); \\
\lim \underline{\lim} t s_{k \to \infty} y_{n_k} = f(x_0).
\end{cases}$ Это непрерывно в $x_0 \Rightarrow \lim \underline{\lim} t s_{k \to \infty} |f(x_{n_k}) - f(x_{n_k})| = \lim_{n \to \infty} f(x_n) = \lim_{n \to$

 $|f(x_{n_k}) - f(y_{n_k})| \ge \Omega_t(\frac{1}{n_k}) - \frac{1}{n_k}$ $|f(x_{n_k}) - f(y_{n_k})| + \frac{1}{n_k} \ge \Omega_f(\frac{1}{n_k}) \ge 0$

Перейдём к пределу при $k \to \infty$, тогда $\lim \underline{\lim} t s_{n \to \infty} \Omega_f(\frac{1}{n_k}) = 0$ по лемме о 3 милиционерах $\lim \underline{\lim} t s_{t \to 0} \Omega_f(t) = \alpha \Rightarrow \alpha = 0$.

3.8 Элементарные функции

3.8.1 Показательная и логарифмическая функции

 $f: \mathbb{R} \to \mathbb{R} \quad a \neq 0, a \in \mathbb{R}$

Придумать функцию, которая удовлетворяет следующим свойствам:

1. $f_a(1) = a$;

Стр. 84

- 2. $f_a(x+y) = f_a(x) \cdot f_a(y);$
- 3. f_a непрерывна.

Свойства $f_a(x)$:

- 1. $f_a(0) = 1 \quad \forall a, a \neq 0;$ Док-во. $f_a(1+0) = f_a(1) \cdot f_a(0) = f_a(1) \Rightarrow f_a(0) = 1.$
- 2. $f_a(x) = \frac{1}{f_a(x)};$ Док-во. $L = f_a(x-x) = f_a(x) \cdot f_a(-x) \Rightarrow f_a(-x) = \frac{1}{f_a(x)}.$
- 3. $f_a(x)\geqslant 0;$ Док-во. $f_a(x)=f_a(\frac{x}{2}+\frac{x}{2})=f_a(\frac{x}{2})\cdot f_a(\frac{x}{2})=(f_a(\frac{x}{2}))^2\geqslant 0$ В силу свойств действительных чисел.
- 4. $f_a(\frac{m}{n}) = (a^m)^{\frac{1}{n}} \quad m, n \in \mathbb{Z};$ Док-во. $f_a^n(\frac{m}{n}) = \underbrace{f_a(\frac{m}{n}) \cdot f_a(\frac{m}{n}) \cdot \dots f_a(\frac{m}{n})}_{\text{n pas}} = f_a\underbrace{(\frac{m}{n} + \frac{m}{n} + \dots + \frac{m}{n})}_{\text{n pas}} = f_a(m) = f_a\underbrace{(\frac{m}{n} + \frac{m}{n} + \dots + \frac{m}{n})}_{\text{n pas}} = f_a(m) = f_a\underbrace{(\frac{m}{n} + \frac{m}{n} + \dots + \frac{m}{n})}_{\text{n pas}} = f_a(m) = f_a\underbrace{(\frac{m}{n} + \frac{m}{n} + \dots + \frac{m}{n})}_{\text{n pas}} = f_a(m) = f_a\underbrace{(\frac{m}{n} + \frac{m}{n} + \dots + \frac{m}{n})}_{\text{n pas}} = f_a(m) = f_a\underbrace{(\frac{m}{n} + \frac{m}{n} + \dots + \frac{m}{n})}_{\text{n pas}} = f_a(m) = f_a\underbrace{(\frac{m}{n} + \frac{m}{n} + \dots + \frac{m}{n})}_{\text{n pas}} = f_a\underbrace{(\frac{m}{n} + \frac{m}{n} + \dots + \frac{m}{n})}_{\text{n pas}} = f_a\underbrace{(\frac{m}{n} + \frac{m}{n} + \dots + \frac{m}{n})}_{\text{n pas}} = f_a\underbrace{(\frac{m}{n} + \frac{m}{n} + \dots + \frac{m}{n})}_{\text{n pas}} = f_a\underbrace{(\frac{m}{n} + \frac{m}{n} + \dots + \frac{m}{n})}_{\text{n pas}} = f_a\underbrace{(\frac{m}{n} + \frac{m}{n} + \dots + \frac{m}{n})}_{\text{n pas}} = f_a\underbrace{(\frac{m}{n} + \frac{m}{n} + \dots + \frac{m}{n})}_{\text{n pas}} = f_a\underbrace{(\frac{m}{n} + \frac{m}{n} + \dots + \frac{m}{n})}_{\text{n pas}} = f_a\underbrace{(\frac{m}{n} + \frac{m}{n} + \dots + \frac{m}{n})}_{\text{n pas}} = f_a\underbrace{(\frac{m}{n} + \frac{m}{n} + \dots + \frac{m}{n})}_{\text{n pas}} = f_a\underbrace{(\frac{m}{n} + \frac{m}{n} + \dots + \frac{m}{n})}_{\text{n pas}} = f_a\underbrace{(\frac{m}{n} + \frac{m}{n} + \dots + \frac{m}{n})}_{\text{n pas}} = f_a\underbrace{(\frac{m}{n} + \frac{m}{n} + \dots + \frac{m}{n})}_{\text{n pas}} = f_a\underbrace{(\frac{m}{n} + \frac{m}{n} + \dots + \frac{m}{n})}_{\text{n pas}} = f_a\underbrace{(\frac{m}{n} + \frac{m}{n} + \dots + \frac{m}{n})}_{\text{n pas}} = f_a\underbrace{(\frac{m}{n} + \frac{m}{n} + \dots + \frac{m}{n})}_{\text{n pas}} = f_a\underbrace{(\frac{m}{n} + \frac{m}{n} + \dots + \frac{m}{n})}_{\text{n pas}} = f_a\underbrace{(\frac{m}{n} + \frac{m}{n} + \dots + \frac{m}{n})}_{\text{n pas}} = f_a\underbrace{(\frac{m}{n} + \frac{m}{n} + \dots + \frac{m}{n})}_{\text{n pas}} = f_a\underbrace{(\frac{m}{n} + \frac{m}{n} + \dots + \frac{m}{n})}_{\text{n pas}} = f_a\underbrace{(\frac{m}{n} + \frac{m}{n} + \dots + \frac{m}{n})}_{\text{n pas}} = f_a\underbrace{(\frac{m}{n} + \frac{m}{n} + \dots + \frac{m}{n})}_{\text{n pas}} = f_a\underbrace{(\frac{m}{n} + \dots + \frac{m}{$
- 5. Если $f_a(x)$ непрерывна в x = 0, то она непрерывна на \mathbb{R} ; Док-во. Если t непрерывна в x = 0, то $\Rightarrow \lim_{x \to 0} f_a(x) = f_a(x) = 1$ (Согласно свойству 1)

Пусть $x_0 \in \mathbb{R}$, тогда $\lim_{x \to x_0} f_a(x) = \lim_{x \to x_0} f_a(x - x_0) \cdot f_a(x_0) = f_a(x_0) \cdot \lim_{x \to x_0} f_a(x - x_0) = f_a(x_0) \cdot \lim_{y \to 0} f_a(y) = f_a(x).$

Если $y = x - x_0$, то $f_a(x)$ — непрерывна.

Теорема 3.8.2.

⊳ Пусть

f,g — две непрерывные функции на $\mathbb R$ Предположим, что $f(q)=g(q) \quad \forall q \in Q$

⊳ Тогда

$$\forall x \in \mathbb{R} \quad f(x) = g(x)$$

Доказательство.

Пусть $x\in\mathbb{R}$. Выберем пробную последовательность $q_n\to x$, при $n\to\infty$, тогда в силу непрерывности

$$\lim_{\substack{n \to \infty \\ n \to \infty}} f(q_n) = f(x)$$

$$\lim_{\substack{n \to \infty \\ q_n \in \mathbb{Q}}} g(q_n) = g(x)$$

Следствие 3.8.3.

Любые две непрерывные функции $f_a(x)$ и $g_a(x)$, удовлетворяющие свойствам (1 и 2) совпадают.

Пусть $x = \frac{m}{n}$ $q \in \mathbb{Q}$

Согласно свойству (4):

$$f_a(\frac{m}{n})=(a^m)^{\frac{1}{n}}$$
 $g_a(\frac{m}{n})=a^{\frac{m}{n}},$ тем самым $\forall q\in\mathbb{Q}$ $f_a(q)=g_a(q)$

 $f_a(x)$ — называется показательной функцией с показателем a.

Построение функции.

Пусть $x \in \mathbb{R}$.

Определим $f(x) = \lim_{n \to \infty} (1 + \frac{x}{n})^n$:

- 1. f(0) = 1;
- 2. f(x) определена $\forall x \in \mathbb{R}$;
- 3. f(x) непрерывна при x = 0;
- 4. $f(x+y) = f(x) \cdot f(y).$

1 | n

Стр. 86

Неравенство Бернулли: $(1+n)^m \geqslant 1+mn \quad \forall m \in \mathbb{N}, \forall n > -1$ При n=0 или m=1 достигается равенство.

Теорема 3.8.4 (Теорема1).

- $\triangleright f(x)$ определена $\forall x \in \mathbb{R}$.
- Доказательство.
 - \circ Пусть $x\in\mathbb{R}$, тогда $\exists k\in\mathbb{N}$ x>-k (из аксиомы Архимеда) $z_n=(1+\frac{x}{n})^n$ некоторая последовательность. Докажем, что n>k.

 z_n — монотонно возрастает. $z_n > 0$. Если докажем, что $\frac{z_{n+1}}{z_n} > 1$, то $z_{n+1} > z_n$ n > k $1 + \frac{x}{n} = \frac{n+x}{n} \geqslant \frac{n-k}{n} > 0$ $\frac{z_{n+1}}{z_n} = \frac{(1+\frac{x}{n+1})^{n+1}}{(1+\frac{x}{n})^n} = (1+\frac{x}{n}) \cdot (\frac{1+\frac{x}{n+1}}{1+\frac{x}{n}})^{n+1} = (1+\frac{x}{n})(1+\frac{1+\frac{x}{n+1}}{1+\frac{x}{n}})$

$$\frac{z_{n+1}}{z_n} = \frac{(1+\frac{x}{n+1})}{(1+\frac{x}{n})^n} = (1+\frac{x}{n}) \cdot (\frac{1+\frac{x}{n+1}}{1+\frac{x}{n}})^{n+1} = (1+\frac{x}{n})(1+\frac{1+\frac{x}{n+1}}{1+\frac{x}{n}} - 1)^{n+1} = (1+\frac{x}{n})(1+\frac{x}{n+1+\frac{1}{n}})^{n+1} = (1+\frac{x}{n})(1+\frac{x}{n+1+\frac{1}{n}})^{n+1} = (1+\frac{x}{n})(1+\frac{x}{n+1+\frac{1}{n}})^{n+1} = (1+\frac{x}{n})(1+\frac{x}{n+1+\frac{1}{n}})^{n+1} = (1+\frac{x}{n})(1+\frac{x}{n+1+\frac{1}{n}})^{n+1} \ge (1+\frac{x}{n})(1+\frac{x}{n+1+\frac{1}{n}})^{n+1} \ge (1+\frac{x}{n})(1+\frac{x}{n+1+\frac{1}{n}})^{n+1} = (1+\frac{x}{n})(1+\frac{x}{n+1+\frac{1}{n}})^{n+1} \ge (1+\frac{x}{n})(1+\frac{x}{n+1+\frac{1}{n}})^{n+1} \ge (1+\frac{x}{n})(1+\frac{x}{n+1+\frac{1}{n}})^{n+1} = (1+\frac{x}{n})(1+\frac{x}{n+1+\frac{1}{n}})^{n+1} \ge (1+\frac{x}{n})(1+\frac{x}{n+1+\frac{1}{n}})^{n+1} \ge (1+\frac{x}{n})^{n+1} \ge (1+\frac{x}{n})^{n+1$$

 \circ Таким образом, $z_n = (1 + \frac{x}{n})^n$ при x > k монотонно возрастает.

$$-\infty < (1 + \frac{x}{k})^k < \lim_{n \to 0} (1 + \frac{x}{n})^n.$$

Пусть $l \in \mathbb{N}$, предположим, что x < l. Следовательно, -x > -l. $(1-\frac{x}{n})^n$ при -x > -l монотонно возрастает.

Пусть $m = \max(l, x)$, тогда если n > m, то:

$$\left(1 + \frac{x}{n}\right)^n \cdot \left(1 - \frac{x}{n}\right)^n = \left(1 - \frac{x^2}{n^2}\right)^n \leqslant 1 \quad \forall x \neq 0 \Rightarrow$$

$$\Rightarrow \left(1 + \frac{x}{n}\right)^n \leqslant \frac{1}{\left(1 + \frac{x}{n}\right)^n} \leqslant \frac{1}{\left(1 + \frac{x}{l}\right)^l} < \infty.$$

Т.е. z_n — монотонно возрастает и ограниченна. Значит существует предел $\forall x \in \mathbb{R}$.

Отсюда следует, что $\forall x$ функция $f(x) = \lim_{n \to \infty} (1 + \frac{x}{n})^n$ — определена. $f(x) = \exp(x) = e^x$ — называется экспонента.

Следствие 3.8.4.1.

 $\lim_{n \to \infty} (1 + \frac{1}{n}) = e^1 = \exp(1).$

Следствие 3.8.4.2.

Если -k < x < l, то:

$$\left(1 + \frac{x}{k}\right)^k \leqslant e^x \leqslant \frac{1}{\left(1 - \frac{x}{l}\right)}$$

Следствие 3.8.4.3.

Если x > 0, то:

$$e^x \geqslant 1 + x$$
.

Если x < 1, то:

$$e^x < \frac{1}{1-x}.$$

Теорема 3.8.5 (Непрерывность e^x в нуле).

 $\triangleright e^x$ непрерывна в точке x=0.

 $e^0 = 1$ (из определения).

Пусть $z_n \to 0$ при $n \to \infty$ приближает последовательность. Т.к. $\lim_{n\to\infty} z_n = 0$, то $\exists M \mid \forall n>M \quad |z_n|<1$.

Пусть n > M, тогда:

$$(1 + \frac{z_n}{n}) \cdot (1 - \frac{z_n}{n}) = 1 - \frac{z_n^2}{n^2} < 1 \Rightarrow$$

$$\Rightarrow (1+rac{z_n}{n})^n \leqslant rac{1}{(1-rac{z_n}{n})^n} \leqslant rac{1}{1-z_n}$$
 следует из свойств.

T.e.
$$(1+z_n) \leqslant e^{z_n} \leqslant \frac{1}{1-z_n}$$
.

Если $z_n\to 0$, то $1+z_n\to 1$ и $\frac{1}{1-z_n}\to 1$. Следовательно по теореме о трех милиционерах, $\lim_{n\to\infty}e^{z_n}=1$.

Лекции по математическому анализу http://MFH.gorodok.net/

Следствие 3.8.5.1.

Пусть
$$z_n \to a$$
 при $n \to \infty$, тогда $(1 + \frac{z_n}{n})^n \to e^n$.

Теорема 3.8.6.

$$\Rightarrow \exp(x+y) = \exp(x) \cdot \exp(y)$$
.

⊳ Доказательство.

$$\exp(x)\cdot\exp(y) = \lim_{n\to\infty} (1+\frac{x}{n})^n \cdot \lim_{n\to\infty} (1+\frac{y}{n})^n = \lim_{n\to\infty} \left((1+\frac{x}{n})(1+\frac{y}{n}) \right)^n = \lim_{n\to\infty} \left(1+\frac{y}{n} \right)^n = \lim_{n\to\infty} \left($$

Т.е. $z_n=x+y+\frac{xy}{n}.\ z_n\to x+y$ при $n\to\infty.$ Следовательно:

$$\lim_{n \to \infty} \left(1 + \frac{z_n}{n} \right)^n = \exp(x + y).$$

Теорема 3.8.7 (Монотонность ехр).

 $\triangleright \exp(x)$ — строго монотонно возрастает на \mathbb{R} .

Доказательство.

Пусть $x_1 < x_2; x_1, x_2 \in \mathbb{R}$. Рассмотрим:

$$\exp(x_2) = \exp(x_2 - x_1 + x_1) = \exp(x_1) \cdot \exp(x_2 - x_1)$$
 \geqslant $\exp(x_1) \cdot (1 + x_2 - x_1) >$ по след. 3

Т.е. строгая монотонность доказана.

Теорема 3.8.8 (Поведение \exp на ∞).

$$\triangleright \lim_{x \to +\infty} \exp(x) = \infty.$$

$$\lim_{x \to -\infty} \exp(x) = 0.$$

$$\circ$$
 При $x > 0$ по следствию 3: $\exp(x) \geqslant 1 + x \Rightarrow \lim_{x \to \infty} (1 + x) = \infty$.

П

Стр. 90

 $\circ~$ Рассмотрим функцию e^{-x} . Тогда $0 < e^{-x} < \frac{1}{1-x}$. Тогда $\lim_{x \to \infty} \frac{1}{1-x} = 0$.

Теорема 3.8.9 (Замечательный предел).

$$\triangleright \lim_{x\to 0} \left(\frac{e^x - 1}{x}\right) = 1.$$

Доказательство.

Можно считать, что $x \in (-1;1)$. Согласно следствию 2 имеет место $1+x < e^x < \frac{1}{1-x}$ Следовательно:

$$x < e^x - 1 < \frac{1}{1 - x} - 1 = \frac{x}{1 - x}.$$

 \circ Пусть x > 0, тогда:

$$1 < \frac{e^x - 1}{x} < \frac{1}{1 - x}.$$

Т.к. $\lim_{x} \to 0 \frac{1}{1-x} = 1$, то по теореме о 3-х милиционерах:

$$\lim_{x \to 0-} \frac{e^x - 1}{x} = 1.$$

 \circ Пусть x < 0, тогда:

$$1 > \frac{e^x - 1}{x} > \frac{1}{1 - x}.$$

Т.к. $\lim_{x} \to 0 \frac{1}{1-x} = 1$, то по теореме о 3-х милиционерах:

$$\lim_{x \to 0+} \frac{e^x - 1}{x} = 1.$$

Таким образом построена функция e^x такая, что e^x — определена на $(-\infty, +\infty)$; e^x принимает значения на $(0, \infty)$; e^x — строго монотонна; $e^{(x+y)} = e^x \cdot e^y$.

Согласно теореме об обратной функции существует обратная функция, которую мы обозначим $\ln x$. Свойства $\ln x$:

- 1. $\ln x$ непрерывна на области определения (следует из теоремы об обратной функции);
- 2. $\ln x$ строго монотонно возрастающая (следует из теоремы об обратной функции);

Лекции по математическому анализу http://MFH.gorodok.net/

- 3. $e^{\ln x} \ \forall x \in (0, \infty), \ \ln e^x = x \ \forall x \in (-\infty, +\infty)$ (следует из теоремы об обратной функции);
- 4. $\ln(x_1 \cdot x_2) = \ln x_1 + \ln x_2$.

Пусть $x_1 > 0, x_2 > 0; \ y_1 = \ln x_1, y_2 = \ln x_2. \ e^{y_1 + y_2} = e^{y_1} \cdot e^{y_2} = e^{\ln x_1} \cdot e^{\ln x_2} = x_1 \cdot x_2.$ Следовательно:

$$\ln e^{y_1 + y_2} = \ln(x_1 + x_2)$$

$$\ln e^{y_1 + y_2} = y_1 + y_2 = \ln x_1 + \ln x_2.$$

 $\ln \frac{x_1}{x_2} = \ln x_1 - \ln x_2$ доказательство аналогично.

5. $\forall x > 0$ $1 - \frac{1}{x} < \ln x < x - 1$.

При x > 0 $e^x > 1 + x$. Пусть $x = \ln y$, тогда:

$$1 + \ln y < e^{\ln y} \Rightarrow$$

$$\Rightarrow y - 1 > \ln y. \tag{1}$$

Согласно свойству 4 $\ln \frac{1}{x} = -\ln x$. В неравенстве (1) сделаем замену $y = \frac{1}{x}$:

$$\frac{1}{z} - 1 > \ln \frac{1}{z} = -\ln z \Rightarrow \ln z > 1 - \frac{1}{z} \,\forall z > 0.$$

6. Замечательный предел:

$$\lim_{y \to 0} \frac{\ln(1+y)}{y} = 1$$

Пусть x=1+y. Т.к. согласно свойству 5 $x-1\geqslant \ln x\geqslant 1-\frac{1}{x}$, то при замене получаем:

$$y \ge \ln(1+y) \ge 1 - \frac{1}{y+1} = \frac{y}{y+1}.$$
 (2)

Пусть y > 0, тогда:

$$1 \geqslant \frac{\ln(1+y)}{y} \geqslant \frac{1}{y+1}.$$

 $\lim_{y \to 0+} \frac{\ln(y+1)}{y} = 1$ по теореме о трех милиионерах.

Пусть y < 0, тогда:

$$1 \leqslant \frac{\ln(1+y)}{y} \leqslant \frac{1}{y+1}.$$

 $\lim_{y \to 0-} \frac{\ln(y+1)}{y} = 1$ по теореме о трех милиионерах.

Стр. 92

П

7.

$$\lim_{y \to \infty} \ln y = +\infty$$

$$\lim_{y \to 0} \ln y = -\infty$$

Следует из теоремы об обратной функции.

ОПР 3.8.10 (Показательной функции).

Пусть $a > 0, a \neq 1$. Определим функцию $a^x = \exp(x \ln a)$:

1.
$$a^0 = 1$$
;

2.
$$a^1 = a$$
;

3.
$$a^{x+y} = \exp((x+y) \ln a) = \exp(x \ln a) \cdot \exp(y \ln a) = a^x \cdot a^y;$$

 $4. \, a^x -$ непрерывная функция, т.к. является суперпозицией 2-х непрерывных финкиий:

5.
$$\exp(\frac{m}{n}\ln a) = a^{\frac{m}{n}}$$
.

Тригонометрические функции 3.8.11

 $l=2\pi$.

 $\cos \alpha$ — проекция со знаком.

 $\sin \alpha$ — проекция со знаком.

 $\alpha \in (0,\pi)$ по периодичности.

Тем самым $\sin x$, $\cos x$ определены $\forall x \in \mathbb{R}$.

$$tg x = \frac{\sin x}{\cos x}.$$
$$ctg x = \frac{\cos x}{\sin x}$$

$$\operatorname{ctg} x = \frac{\cos x}{\sin x}$$

Лемма 3.8.12.

 $\forall x \in (0, \frac{\pi}{2})$ имеет место: $\sin x < x < \operatorname{tg} x$.

⊳ Доказательство.

Лекции по математическому анализу http://MFH.gorodok.net/

 \triangle_1 — площадь треугольника OAB; \triangle_2 — площадь треугольника OCB; \triangle_3 — площадь треугольника OAD; $\triangle_3 < \triangle_1 < \triangle_2$ $\triangle_1 = r^2 \sin x \cdot \frac{1}{2};$ $\triangle 2 = r^2 \operatorname{tg} x \cdot \frac{1}{2};$ $\triangle 3 = r^2 x \cdot \frac{1}{2};$ $\frac{1}{2}r^2\sin x < \frac{1}{2}r^2x < \frac{1}{2}r^2\tan x.$

Следствие: $\forall x \in [-\frac{\pi}{2}, \frac{\pi}{2}] \quad |\sin x| \leqslant |x|$.

Теорема 4.8.13 (Теорема2).

 \triangleright Функции $\sin x$, $\cos x$ равномерно непрерывны на \mathbb{R} ; $\operatorname{tg} x$, $\operatorname{ctg} x$ непрерывны на области определения

⊳ Доказательство.

 $|x_0, x_1 \in \mathbb{R} \quad |\sin x_1 - \sin x_0| = 2|\sin \frac{x_0 - x_1}{2}| \cdot |\cos \frac{x_0 + x_1}{2}| \le 2 \cdot |\sin \frac{x_1 - x_0}{2}|$. Пусть $|x_0-x_1|<\varepsilon<\frac{\pi}{2}$, тогда в силу неравенства $|\sin x|<|x|\forall x$ |x|< $\begin{aligned} & \left| \sin \frac{x_1 - x_0}{2} \right| < \left| \frac{x_1 - x_0}{2} \right| \\ & \left| \sin x_1 - \sin x_0 \right| \leqslant 2 \cdot \left| \sin \frac{x_1 - x_0}{2} \right| < 2 \cdot \frac{x_1 - x_0}{2} = |x_1 - x_0| < \varepsilon \Rightarrow \sin x - \varepsilon \end{aligned}$ равномерно непрерывна. Для соз аналогично.

Если F равномерно непрерывна $\Rightarrow F$ равномерна $\Rightarrow \operatorname{tg} x, \operatorname{ctg} x$ непрерывны на области определения.

Теорема 4.8.14 (Замечательный предел).

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

Доказательство.

Пусть x > 0, тогда согласно неравенству $\sin x < x < \operatorname{tg} x$; $1 < \frac{x}{\sin x} < \frac{1}{\cos x}.$ $\lim_{x \to 0+} 1 = 1;$ $\lim_{x \to 0+} \frac{1}{\cos x} = \frac{1}{\lim_{x \to 0+} \cos x} = \frac{1}{\cos 0} = 1$. По теореме о зажатой функции $\lim_{x \to 0} \frac{x}{\sin x} = 1;$

Стр. 94

 $\frac{x}{\sin x} = \frac{1}{\frac{\sin x}{x}}$, отсюда следует существование предела справа. Пусть $x < 0 \Rightarrow -x > 0$;

 $\sin -x < -x < \operatorname{tg} x;$

 $1>x>\frac{1}{\cos x}$, по тем же рассуждениям \Rightarrow существует предел слева \Rightarrow существует предел.

 $\sin x$ — непрерывна, строго монотонно возрастает на $\left(-\frac{\pi}{2}; \frac{\pi}{2}\right)$. По теореме об обратной функции, существует обратная функция $\arcsin x$ — эта функция строго монотонно возрастает.

 $\cos x$ — непрерывна, строго монотонно убывает на $(0;\pi)$ соответственно существует обратная функция $\arccos x$, которая строго монотонно убывает. Для $\operatorname{tg} x, \operatorname{ctg} x$ — аналогично.

4.8.15 Гиперболические функции

- 1. $\sinh x = \frac{e^x e^- x}{2}$;
- 2. $ch x = \frac{e^x + e^- x}{2}$;
- 3. $th x = \frac{sh x}{ch x}$;
- 4. $cth x = \frac{ch x}{sh x}$;
- 5. $\cosh^2 x \sinh^2 x = 1$:

Пример 4.8.16 (К формулам).

$$y = \sinh x;$$

$$e^{x} - e^{-}x = 2y;$$

$$z = e^{x}, z > 0;$$

$$z + \frac{1}{z} = 2y;$$

$$z^{2} - 2zy - 1 = 0;$$

$$D = 4y^{2} + 4;$$

$$z_{1,2} = \frac{2y \pm \sqrt{4y^{2} + 4}}{2} = y \pm \sqrt{y^{2} + 1};$$

$$z = y + \sqrt{y^{2} + 1};$$

$$e^{x} = y + \sqrt{y^{2} + 1};$$

$$x = \ln(y + \sqrt{y^{2} + 1}) \Rightarrow \operatorname{arcshy} = \ln(y + \sqrt{y^{2} + 1})$$

Глава 5

Дифференциальное исчисление функций одной переменной

5.1 Основные определения и теоремы

ОПР 5.1.1 (Множества, плотного в себе).

Множество $A \subset \overline{\mathbb{R}}$ называется плотным в себе если $\forall x \in A, \ x$ - предельная точка A.

Пример 5.1.2 (Плотного множества).

A = < a, b > при a < b.

ОПР 5.1.3 (Производной функции).

Пусть A плотно в себе, $f:A\to\mathbb{R}, a\in A$. Рассмотрим выражение $\frac{f(x)-f(a)}{x-a}$ при $x\neq a$. Если $\exists \lim_{x\to a} \frac{f(x)-f(a)}{x-a}=k$, то k называется производной функции f в точке a u обозначается $k=f'(a)=\frac{df}{dx}(a)=D_xf(a)$.

ОПР 5.1.4 (Правая и левая производные).

Пусть A плотно в себе, $f:A\to\mathbb{R}, a\in A$. Рассмотрим выражение $\frac{f(x)-f(a)}{x-a}$ при $x\neq a$. Если $\exists \lim_{x\to a+} \frac{f(x)-f(a)}{x-a}=k$, то k называется правой производной функции f в точке a (обозначается $f'_r(a)$).

 $\lim_{x \to a-} \frac{f(x) - f(a)}{x - a} = f'_l(a)$ — левая производная.

ОПР 5.1.5 (Дифференцируемой функции).

Пусть А плотно в себе, $f:A\to\mathbb{R}, a\in A$. Функция f называется дифференцируемой в точке a если $\exists L\in\mathbb{R}$ u функция $\alpha(x)\mid \lim_{x\to a}\alpha(x)=0\mid f(x)=f(a)+L(x-a)+\alpha(x)\cdot |x-a|$.

Эквивалентно: f(x) = f(a) + L(x-a) + o(|x-a|) при $x \to a$.

Теорема 5.1.6.

ightharpoonup Если функция f дифференцируема в точке a, то она непрерывна в точке a (обратное неверно, например: f(x) = |x|, a = 0). Т.к. f дифференцируема в точке a, то $\exists L$ и $\alpha(x) \mid f(x) = f(a) + L(x - a) + \alpha(x) \mid x - a \mid$.

$$\lim_{x \to a} f(x) = \lim_{x \to a} (f(x) + L(x - a) + \alpha(x) \cdot |x - a|) =$$

$$= f(a) + L \lim_{x \to a} (x - a) + \lim_{x \to a} (\alpha(x) \cdot |x - a|) = f(a) + 0 + 0 = f(a)$$

Следовательно, f(x) дифференцируема.

Теорема 5.1.7 (Необходимость и достаточность дифференцируемости функции).

 \triangleright Для того, чтобы функция f была дифференцируема в точке a, необходимо и достаточно, чтобы существовала конечная производная в точке a. При этом L(из усл. дифф.) = f'(a).

⊳ Доказательство.

Необходимость:

Пусть f дифференцируема в точке a, тогда

$$f(x) = f(a) + L(x - a) + \alpha(x) \cdot |x - a|.$$

Пусть $x \neq a$:

$$f(x) - f(a) - L(x - a) = \alpha(x) \cdot |x - a|$$

$$\frac{f(x) = f(a)}{x - a} - L = \alpha(x) \cdot \frac{|x - a|}{x - a}$$

$$\sigma(x) = \begin{cases} \frac{|x - a|}{x - a} & x \neq a \\ 0 & x = a \end{cases}$$

 $\sigma(x)$ ограничена, т.е. $|\sigma(x)| \leq 1$

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} - L = 0$$

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = L \Rightarrow$$
 существует производная

$$f'(a) = L$$

Стр. 98

Достаточность:

Рассмотрим
$$\alpha(x) = \begin{cases} \frac{x-a}{|x-a|} \cdot (\frac{f(x)-f(a)}{x-a} - f'(a)) & x \neq a \\ 0 & x = a \end{cases}$$

$$\lim_{x \to a} \alpha(x) = \lim_{x \to a} \left(\frac{x - a}{|x - a|} \cdot \left(\frac{f(x) - f(a)}{x - a} - f'(a) \right) \right)$$

MFH Corporation

$$\lim_{x \to a} (\frac{f(x) - f(a)}{x - a} - f'(a)) = 0$$
 т.к. производная существует

а это означает дифференцируемость.

Теорема 5.1.8 (Алгебраические свойства производной).

⊳ Пусть

A — плотно в себе, $f: A \to \mathbb{R}$, $q: A \to \mathbb{R}$, $a \in A$, f, q — дифференцируемы в точке a. Введём:

$$P(x) = f(x) + g(x)$$
$$Q(x) = f(x) \cdot g(x)$$
$$R(x) = \frac{f(x)}{g(x)}, \qquad (g(x) \neq 0)$$

⊳ Тогда

1.
$$P'(a) = f'(a) + g'(a)$$

2.
$$Q'(a) = f'(a) \cdot g(a) + f(a) \cdot g'(a)$$

3. $R'(a) = \frac{f'(a) \cdot g(a) - f(a) \cdot g'(a)}{a^2(a)}$

Дифференцируемость означает, что производная в точке a конечна.

1.

$$\lim_{x \to a} \frac{P(x) - P(a)}{x - a} = \lim_{x \to a} \frac{f(x) + g(x) - f(a) - g(a)}{x - a} =$$

$$= \lim_{x \to a} \left(\frac{f(x) - f(a)}{x - a} + \frac{g(x) - g(a)}{x - a} \right) =$$

$$= \lim_{x \to a} \frac{f(x) - f(a)}{x - a} + \lim_{x \to a} \frac{g(x) - g(a)}{x - a} = f'(a) + g'(a)$$

Лекции по математическому анализу http://MFH.gorodok.net/

2. $\lim_{x \to a} \frac{Q(x) - Q(a)}{x} = \lim_{x \to a} \frac{f(x) \cdot g(x) - f(a) \cdot g(a)}{x} =$ $= \lim_{x \to a} \left(\frac{(f(x) - f(a)) \cdot g(a) + (g(x) - g(a)) \cdot f(a)}{x - a} \right) =$ $= \lim_{x \to a} (\underbrace{\frac{f(x) - f(a)}{x - a}}_{\text{KOHEURS}} \cdot \underbrace{g(a)}_{\text{Cymi-et}} + \underbrace{\frac{g(x) - g(a)}{x - a}}_{\text{Cymi-et}} \cdot f(a)) = f'(a) \cdot g(a) + g'(a) \cdot f(a)$

3.

$$\lim_{x \to a} \frac{\frac{f(x)}{g(x)} - \frac{f(a)}{g(a)}}{x - a} = \lim_{x \to a} \frac{f(x) \cdot g(a) - f(a) \cdot g(x)}{(x - a) \cdot g(a) \cdot g(x)} =$$

$$= \frac{1}{g^2(a)} \lim_{x \to a} \left(\frac{f(x) \cdot g(x) - f(a) \cdot g(x)}{x - a} \right) = \frac{1}{g^2(a)} \lim_{x \to a} \left(\frac{(f(x) - f(a)) \cdot g(a)}{x - a} - \frac{f'(a) \cdot g(a) - f(a) \cdot g'(a)}{g^2(a)} \right)$$

Теорема 5.1.9 (Дифференцирование суперпозиций).

 $\triangleright A, B$ — плотные в себе, $f: A \to \mathbb{R}, q: B \to \mathbb{R}, a \in A, b \in B$, причём b = f(a). Рассмотрим $h(x) = (q \circ f)(x) = q(f(x))$. Если f — дифференцируема в точке a, q — дифференцируема в точке b, то h — дифференцируема в точке a, при этом

$$h'(a) = q'(b) \cdot f'(a) = q'(f(a)) \cdot f'(a).$$

Доказательство.

Пусть y = f(x), т.к. q — дифференцируема в точке b = f(a), то имеет место:

$$g(y) = g(b) + g'(b)(y - b) + \beta(y) \cdot |y - b|$$

$$g(f(x)) = g(f(a)) + g'(f(a))(f(x) - b) + \beta(f(x)) \cdot |f(x) - b|$$

$$h(x) - h(a) = g'(f(a)) \cdot (f(x) - f(a)) + \beta(f(x)) \cdot |f(x) - f(a)|$$

Пусть $x \neq a$:

$$\frac{h(x) - h(a)}{x - a} = g(f(a)) \cdot \frac{f(x) - f(a)}{x - a} + \beta(f(x)) \cdot \frac{|f(x) - f(a)|}{x - a}$$

$$\lim_{x \to a} \frac{h(x) - h(a)}{x - a} = g'(f(a)) \cdot \lim_{x \to a} \frac{f(x) - f(a)}{x - a} + \lim_{x \to a} \beta(f(x)) \cdot \frac{|f(x) - f(a)|}{x - a} =$$

$$= g'(f(a)) \cdot f'(a) + 0.$$

Следствие 5.1.10 (Дифференцирование обратной функции).

⊳ Пусть

 $f \colon A \to \mathbb{R},$ A-плотно в себе, b = f(a) и существует обратная функция $f^{-1} = g.$

⊳ Тогда

 f^{-1} — дифференцируема в точке b, причём $(f^{-1})'(b)=g'(b)=rac{1}{f'(a)},$ где b=f(a).

$$(f^{-1})'f(a) = \frac{1}{f'(a)}$$
 $(f'(a) \neq 0).$

⊳ Доказательство.

Пусть $f^{-1} = g$ — обратная функция. Тогда

$$(g \circ f)(x) = x$$

Продифференцируем её:

$$g'(f(x)) \cdot f'(x) = 1 \Rightarrow$$

 $g'(f(a)) \cdot f'(a) = 1 \Rightarrow$
 $\Rightarrow g'(b) = \frac{1}{f'(a)}$

Доказательство дифференцируемости аналогично доказательству в теореме о дифференцируемости суперпозиции.

5.2 Качественные свойства дифференцируемых функций

ОПР 5.2.1 (Локальных минимума и максимума).

Пусть A — плотно в себе, $f: A \to \mathbb{R}$, $x_0 \in A$. Будем говорить, что точка x_0 является точкой локального максимума функции f если $\exists U(x_0) \mid \forall x \in U(x_0)$ $f(x) \leqslant f(x_0)$.

 $Ecnu\ f(x) \geqslant f(x_0),\ mo\ x_0$ — точка локального минимума.

ОПР 5.2.2 (Локального экстремума).

 $Ecnu\ x_0 - moчка$ локального минимума или локального максимума функции f, то x_0 называется точкой локального экстремума функции f.

Теорема 5.2.3 (Теорема Ферма).

⊳ Пусть

 $f: \langle a, b \rangle \to \mathbb{R}, x_0$ — внутренняя точка интервала $\langle a, b \rangle$.

⊳ Тогда

если x_0 — точка локального экстремума и f — дифференцируема в точке x_0 , то $f'(x_0) = 0$.

Доказательство.

 \circ Пусть x_0 — точка локального максимума. Тогда $\exists U(x_0) \mid \forall x \in U(x_0) \quad f(x) \leqslant \leqslant f(x_0)$. Раз $U(x_0)$ — окрестность, то \exists элементарная окрестность вида $(x_0 - \delta, x_0 + \delta) \subset U(x_0)$.

Т.к. x_0 — точка максимума, то $f(x) - f(x_0) < 0$.

Пусть $x > x_0$, тогда $x - x_0 > 0 \Rightarrow$

$$\frac{f(x) - f(x_0)}{x - x_0} < 0$$

Т.к. функция дифференцируема, то имеет место:

$$\lim_{x \to x_0 + 0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0) \leqslant 0 \qquad \text{по предельному переходу}$$

Пусть $x < x_0$, тогда $x - x_0 < 0 \Rightarrow$

$$\frac{f(x) - f(x_0)}{x - x_0} > 0 \Rightarrow$$

$$\lim_{x \to x_0 + 0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0) \ge 0$$

$$\Longrightarrow f'(x_0) = 0.$$

Стр. 102

о Для локального минимума аналогично.

Теорема 5.2.4 (Теорема Ролля).

⊳ Пусть

 $f\colon [a,b] o \mathbb{R},\, f$ — непрерывна на $[a,b],\, f$ — дифференцируема на $(a,b),\, f(a)=f(b).$

⊳ Тогда

$$\exists c \in (a,b) \mid f'(c) = 0.$$

⊳ Доказательство.

Поскольку f непрерывна на [a,b], то по теореме Вейерштрасса $\exists c_1, c_2 \in [a,b]$ такие, что:

$$M = f(c_1) = \max_{x \in [a,b]} f(x)$$

$$m = f(c_2) = \min_{x \in [a,b]} f(x)$$

 \circ Если M=m, тогда $f(x)=const\Rightarrow f'(x)=0$

Тогда выбираем точку $c \neq a$ и $c \neq b$.

 \circ Пусть $M \neq m$. Т.к. f(a) = f(b), то очевидно, что одна из точек c_1, c_2 не совпадает ни с a, ни с b.

Пусть c — та из точек c_1, c_2 , которая не совпадает с a и b. Следовательно, c — экстремальная точка функции f. Тогда по теореме Ферма f'(c)=0.

Теорема 5.2.5 (Коши или теорема о среднем значении).

⊳ Пусть

 $f\colon [a,b]\to\mathbb{R},\ g\colon [a,b]\to\mathbb{R};\ f,g$ — непрерывны на [a,b] и дифференцируемы на (a,b). Предположим, что $g'(x)\neq 0$ $\forall x\in (a,b).$

⊳ Тогда

$$\exists c \in (a,b) \mid \frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(c)}{g'(c)}.$$

Доказательство.

Лекции по математическому анализу http://MFH.gorodok.net/

Докажем, что $g(b)-g(a)\neq 0$. Действительно: если бы g(b)-g(a)=0, то по теореме Ролля $\exists d\in (a,b)\mid g'(d)=0$, что противоречит условию.

Рассмотрим функцию

$$F(x) = (f(x) - f(a))(g(b) - g(a)) + (g(x) - g(a))(f(b) - f(a))$$

Утверждение 1: F(x) — непрерывна на [a, b] (очевидно);

Утверждение 2: F(x) — дифференцируема на (a,b) — (тоже очевидно);

Утверждение 3: F(a) = 0 и F(b) = 0;

По теореме Ролля $\exists c \in (a,b) \mid F'(c) = 0.$

$$F'(x) = f'(x) (g(b) - g(a)) - g'(x) (f(b) - f(a)) \Rightarrow$$

$$F'(c) = f'(c) (g(b) - g(a)) - g'(c) (f(b) - f(a)) = 0 \Rightarrow$$

(t.k. $g'(c) \neq 0$, $(g(b) - g(a)) \neq 0$)

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}$$

П

Следствие 5.2.6 (Теорема Лагранжа о среднем значении).

⊳ Пусть

 $f \colon [a,b] \to \mathbb{R}, f$ — непрерывна на [a,b], f — дифференцируема на (a,b).

⊳ Тогда

$$\exists c \in (a,b) \mid f(a) - f(b) = f'(c) \cdot (b-a)$$

Доказательство.

В теореме о среднем значении положим g(x) = x. g(x) — удовлетворяет всем условиям теоремы. g'(x) = 1 подставляем в теорему:

$$\frac{f(b) - f(a)}{b - a} = f'(c)$$

Отсюда следует утверждение следствия.

Теорема 5.2.7 (Дифференциальный критерий монотонности функции).

Стр. 103

⊳ Пусть

 $f \colon [a,b] \to \mathbb{R}, \, f$ — дифференцируема на (a,b).

⊳ Тогда

1. f(x) — монотонно возрастает на $(a,b) \Leftrightarrow f'(x) \geqslant 0 \quad \forall x \in (a,b)$

2. f(x) — монотонно убывает на $(a,b) \Leftrightarrow f'(x) \leq 0 \quad \forall x \in (a,b)$

⊳ Доказательство.

• Докажем для возрастания.

 \longrightarrow Пусть f — возрастает, $x_0 \in (a,b), x_0 < x$, тогда $f(x) \geqslant f(x_0) \Rightarrow$

$$\frac{f(x) - f(x_0)}{x - x_0} \geqslant 0 \Rightarrow$$

$$\lim_{x \to x_0 + 0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0) \geqslant 0$$

Т.к. x_0 — произвольная точка, то $f'(x_0) \geqslant 0 \quad \forall x_0 \in (a,b)$.

 \longleftarrow Пусть f'(x) > 0, $x \in (a, b)$, $x_1 < x_2 \mid [x_1, x_2] \in (a, b)$.

Тогда по теореме Лагранжа:

$$f(x_2) - f(x_1) = f'(c) \cdot (x_2 - x_1)$$
 где $c \in (x_1, x_2)$

Отсюда:

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(c) \geqslant 0 \qquad \text{(по условию)}$$

$$x_1 - x_2 > 0 \Rightarrow f(x_2) - f(x_1) \ge 0 \Rightarrow f(x_2) \ge f(x_1).$$

о Для убывания аналогично.

5.2.8 Правила Лопиталя

ОПР 5.2.8.1 (Неопределенность вида $\frac{0}{0}$).

Пусть $(a,b) \subset \mathbb{R}, a < b; f,g$ — непрерывные функции на [a,b]; f,g — дифференцируемые функции на (a,b).

Предположим, что:

$$g(x) \neq 0 \quad \forall x \in (a, b)$$

$$\lim_{x \to a+0} f(x) = \lim_{x \to a+0} g(x) = 0$$

Нас интересует $\lim_{x\to a+0} \frac{f(x)}{g(x)}$. В этом случае говорят, что возникла неопределенность вида $\frac{0}{0}$ в точке a.

Для точки в аналогично (с заменой правых пределов на левые).

Лекции по математическому анализу http://MFH.gorodok.net/

Теорема 5.2.8.2 (Правило Лопиталя 1, $\frac{0}{0}$).

⊳ Пусть

 $\frac{f(x)}{g(x)}$ — неопределенность вида $\frac{0}{0}$ в точке a.

⊳ Тогда

если

$$\lim_{x \to a+0} \frac{f'(x)}{g'(x)} = A,$$

то

$$\lim_{x \to a+0} \frac{f(x)}{g(x)} = A$$
 , где $A \in \mathbb{R}$

⊳ Доказательство.

 \circ Пусть A - конечно, $\varepsilon>0$. Следовательно, $\exists U(a)$ вида $(a,x_0]\mid \left|\frac{f'(x)}{g'(x)}-A\right|<$

 $\varepsilon \quad \forall x \in (a,x_0)$. Это следует из определения предела.

Заметим, что:

$$\frac{f(x)}{g(x)} = \frac{f(x) - f(a)}{g(x) - g(a)}$$
 T.K. $f(a) = g(a) = 0$

Следовательно, по теореме Коши о среднем:

$$\exists c \in (a, x_0) \mid \frac{f(x_0) - f(a)}{g(x_0) - g(a)} = \frac{f'(c)}{g'(c)} = \frac{f(x)}{g(x)} \Rightarrow$$

$$\left| \frac{f(x)}{g(x)} - A \right| < \varepsilon \quad \forall x \in (a, x_0)$$

A это означает, что $\lim_{x\to a+0} \frac{f(x)}{g(x)} = A$.

 \circ Пусть $A=+\infty$, тогда $\forall \varepsilon>0$ $\frac{f'(x)}{g'(x)}>\frac{1}{\varepsilon}.$

Дальше аналогично.

 \circ Пусть $A=-\infty$, тогда $\forall \varepsilon>0$ $\frac{f'(x)}{g'(x)}<-\frac{1}{\varepsilon}$. Дальше аналогично.

ОПР 5.2.8.3 (Неопределенность вида $\frac{\infty}{\infty}$).

Пусть f, g — непрерывные функции на [a,b]; f, g — дифференцируемые функции на (a,b).

Лекции по математическому анализу http://MFH.gorodok.net/

Предположим, что:

$$\lim_{x \to a+0} f(x) = \lim_{x \to a+0} g(x) = \infty$$

 $Hac\ uhmepecyem\ \lim_{x\to a+0} rac{f(x)}{g(x)}.\ B$ этом случае говорят, что возникла неопределенность вида $rac{\infty}{\infty}$ в точке a (или при $x\to a$).

Теорема 5.2.8.4 (Правило Лопиталя $2, \frac{\infty}{\infty}$).

⊳ Пусть

 $\frac{f(x)}{g(x)}$ — неопределенность вида $\frac{\infty}{\infty}$ в точке a.

⊳ Тогда

если

$$\lim_{x \to a+0} \frac{f'(x)}{g'(x)} = A,$$

TO

$$\lim_{x \to a+0} \frac{f(x)}{g(x)} = A$$
 , где $A \in \mathbb{R}$

Заметим, что если $\lim_{x\to a+0} f(x) = \infty$, то $\lim_{x\to a+0} \frac{1}{f(x)} = 0$.

Теперь остаётся правильно применить правило Лопиталя 1 для функций $\frac{1}{f(x)}, \frac{1}{g(x)}$.

6.3 Производные высших порядков

ОПР 6.3.1.

Стр. 106

Пусть A- плотное в себе множество, $f\colon A\to \mathbb{R} \ \ \forall x\in A,\ f-$ дифференцируема в точке x_0 .

f'(x) — отображение $A \to \mathbb{R}$. Предположим, что f'(x) дифференцируема в A.

По индукции определяются высшие производные:

$$f^{(n+1)}(x) = \lim_{y \to x} \frac{f^{(n)}(y) - f^{(n)}(x)}{y - x}$$

Пример 6.3.2 (Обозначений производных высших порядков).

$$f'(x), f''(x), f^{v}(x)$$

$$f^{(n)}(x) = \frac{d^{n}f}{dx^{n}} = D^{n}f(x).$$

6.3.3 Дифференцируемых, непрерывных множеств функций

 $ightarrow D^n(A,\mathbb{R})=\{$ множество всех n-раз дифференцируемых функций на $A\}$

 $ightharpoonup C^n(A,\mathbb{R}) = \{$ множество функций на A таких, что что они обладают непрерывными производными всех порядков до n включительно $\}$

> $C^0(A,\mathbb{R})=\{$ множество всех непрерывных функций на $A\}$

Очевидное следствие: $C^n(A,\mathbb{R}) < D^n(A,\mathbb{R})$

6.3.4 Список n-тых производных:

1.
$$x^a$$
 $(x^a)^{(n)} = a(a-1)(a-2)\dots(a-n+1)x^{a-n}$, $a \in \mathbb{R}$

2.
$$a^{x}$$
 $(a^{x})^{(n)} = \ln^{n} a \cdot a^{x}$
 $(e^{x})^{(n)} = e^{x}$

3.
$$\ln x$$
 $(\ln x)^{(n)} = (-1)^{n-1} \cdot \frac{(n-1)!}{x^n}$

4.
$$\sin bx \qquad (\sin bx)^{(n)} = b^n \sin(bx + \frac{\pi n}{2})$$

5.
$$\cos bx$$
 $(\cos bx)^{(n)} = b^n \cos(bx + \frac{\pi n}{2})$

Всё доказывается по индукции.

6.3.5 Свойства высших производных:

 $f,g\in D^n(A,\mathbb{R})$, тогда

- 1. $(f+g)^{(n)} = f^{(n)} + g^{(n)}$ следует из определения производной;
- 2. $\forall a \in \mathbb{R}(af)^{(n)} = a(f^{(n)})$ следует из определения производной Для $C^n(A,\mathbb{R})$ оба свойства аналогично $\Rightarrow D^n, C^n$ векторные пространства.
- 3. если $f, g \in D^n(A, \mathbb{R})$, то $f \cdot g \in D^n(A, \mathbb{R})$.

Теорема 6.3.6 (Формула Лейбница для производных произведения).

 \triangleright Если $f,g\in D^n(A,\mathbb{R})$, то $f\cdot g\in D^n(A,\mathbb{R})$, причем:

$$D^n(f \cdot g) = \sum_{k=0}^n C_n^k D^{n-k}(f) \cdot D^k(g)$$
 ,где $C_n^k = \frac{n!}{k!(n-k)!}$

⊳ Доказательство.

Из формулы Лейбница следует утверждение теоремы (т.к. f, g — дифференцируемы, а C_n^k — константа).

Доказательство формулы Лейбница: (по индукции)

 \circ При k=1 это верно (по формуле дифференцирования произведения):

$$D(f \cdot g) = Df \cdot g + f \cdot Dg = C_1^0 Df \cdot g + C_1^1 f \cdot Dg$$

 \circ Пусть при n — верно:

$$D^{n}(f \cdot g) = \sum_{k=0}^{n} C_{n}^{k} D^{n-k}(f) \cdot D^{k}(g)$$

Докажем:

$$D^{n+1}(f \cdot g) = D(D^n(f \cdot g)) = D(\sum_{k=0}^n C_n^k D^{n-k}(f) \cdot D^k(g)) = \sum_{k=0}^n C_n^k D(D^{n-k}(f) \cdot D^k(g)) = D(D^n(f \cdot g)) = D(D^n(f \cdot$$

$$=\sum_{k=0}^{n}nC_{n}^{k}\left(D^{n-k+1}(f)\cdot D^{k}(g)+D^{n-k}(f)\cdot D^{k+1}(g)\right)=\sum_{k=0}^{n}C_{n}^{k}D^{n-k+1}(f)\cdot D^{k}(g)+\sum_{k=0}^{n}C_{n}^{k}D^{n-k}(f)\cdot D^{k+1}(g)=\sum_{k=0}^{n}C_{n}^{k}D^{n-k+1}(f)\cdot D^{k}(g)$$

Положим k = s - 1

$$=\sum_{k=0}^{n} C_{n}^{k} D^{n-k+1}(f) D^{k}(g) + \sum_{k=1}^{n+1} C_{n}^{s-1} D^{n-s+1}(f) \cdot D^{s} =$$

Лекции по математическому анализу http://MFH.gorodok.net/

Положим s = k

$$=\sum_{k=0}^{n} C_{n}^{k} D^{n-k+1}(f) D^{k}(g) + \sum_{k=1}^{n+1} C_{n}^{k} D^{n-k+1}(f) D^{k}(g) =$$

$$=C_n^0 D^{n+1}(f) \cdot g + \sum_{k=1}^n \left((C_n^k + C_n^{k-1}) \cdot D^{n-k+1}(f) \cdot D^k(g) \right) + C_n^k f \cdot D^{n+1}(g) =$$

(Поскольку $C_n^0=C_{n+1}^0, C_n^n=C_{n+1}^{n+1},$ то по свойству биномиальных коэффициентов $C_n^k+C_n^{k-1}=C_{n+1}^k)$

$$= \sum_{k=0}^{n+1} C_{n+1}^k D^{n+1-k}(f) \cdot D^k(g)$$

6.4 Формула Тейлора

ОПР 6.4.1 (Многочлена).

Отображение $P^n \colon \mathbb{R} \to \mathbb{R}$ вида $P^n(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n$ — многочлен $(a_i \in \mathbb{R})$.

$$\deg(P^n) = \max_n \mid a_i \neq 0$$
 — степень многочлена; $\deg(0) = -infty;$ $\deg(const) = 0;$

Многочлены можно складывать, умножать; можно брать суперпозицию многочленов.

Лемма 6.4.2 (Формула Тейлора для многочленов).

⊳ <u>Пусть</u>

$$P(x) = a_0 + a_1 x + \ldots + a_n x^n, c \in \mathbb{R}$$

⊳ Тогда

 \exists единственный набор $b_1,b_2,\ldots,b_n\mid P(x)=b_0+b_1(x-c)+\ldots+b_n(x-c)^n$, причем $b_k=\frac{P(n)(c)}{k!}$

Доказательство.

Т.к.
$$P(x) = b_0 + b_1(x-c) + \ldots + b_n(x-c)^n$$
, то:
$$P(c) = b_0$$

$$P'(x) = b_1 + 2b_2(x-c) + \ldots + kb_k(x-c)^{k-1} + \ldots + nb_n(x-c)^{n-1}$$

$$P'(c) = b_1$$

По индукции:

$$P^{(k)}(x) = k! \cdot b_k + (x - c) \cdot Q(x)$$

$$P^{(k)}(c) = k! \cdot b_k \Rightarrow b_k = \frac{P^k(c)}{k!}$$

Теорема 6.4.3 (Формула Тейлора с остаточным членом в форме Лагранжа).

$$f$$
 — непрерывна на $[a,b], f \in D^{n+1}((a,b),\mathbb{R})$. Предположим $\forall k \leqslant n+1$ $\exists \lim_{x\to a+0} f^{(k)}(x) = f^{(k)}(a)$

Лекции по математическому анализу http://MFH.gorodok.net/

⊳ Тогда

Стр. 110

 $\exists c \in (a,b) \mid f(b) = \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (b-a)^k + R_n$, где R_n — остаточный член в форме Лагранжа, который имеет вид:

$$R_n = \frac{f^{(n+1)}(c)}{(n+1)!} (b-a)^{n+1}$$

Замечание:

- 1. При n=1 формула Тейлора совпадает с формулой Лагранжа;
- 2. Если f полином, то формула Тейлора совпадает с формулой Тейлора для полиномов.

Доказательство.

 \circ **Лемма:** Пусть f, g определены на [a, b]; f, g (n + 1) раз непрерывно дифференцируемы на (a, b);

$$\forall k=0,1,\ldots,n+1 \quad \exists \lim_{x\to a+0} f^{(k)}(x) = \lim_{x\to a+0} g(k)(x) = 0.$$
 Пусть $g^{(k)}(x) \neq 0 \quad \forall x \in (a,b).$

Тогда

$$\exists c \in (a,b) \mid \frac{f(b)}{g(a)} = \frac{f^{(n+1)}(c)}{g^{(n+1)}(c)}.$$

Доказательство леммы:

По теореме Коши о среднем:

$$\frac{f(b)}{g(b)} = \frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c_1)}{g'(c_1)}$$
, где $c_1 \in (a, b)$

Рассмотрим интервал (a, c_1) , тогда:

$$\frac{f'(c_1)}{g'(c_1)} = \frac{f'(c_1) - f'(a)}{g'(c_1) - g'(a)} = \frac{f''(c_2)}{g''(c_2)} \qquad , \text{ где } c_2 \in (a, c_1)$$

Действуем по индукции, тогда найдется точка $c_n\mid \frac{f(b)}{g(b)}=\frac{f^{(n+1)}(c_{n+1})}{g^{(n+1)}(c_{n+1})}$ c_{n+1} обозначим через $c\in (a,b)$

• Доказательство теоремы:

Выберем функции $F(x) = f(x) \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x-a)^k, G(x) = (x-a)^{n+1}$

Очевидно в силу свойств f(x), F(x), G(x) удовлетворяют условиям леммы.

$$\left(\sum_{k=0}^{n} \frac{f^{(k)}}{k!} (x-a)^{k}\right)^{(m)} = f^{(m)}(a)$$

 $F^{(m)}(x) = f^{(m)}(x) - f(m)(a)$ Тогда по лемме получаем:

$$\frac{F(b)}{G(b)} = \frac{f(b) - \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (b-a)^{k}}{(b-a)^{n+1}} = \frac{F^{(n+1)}(c)}{G^{(n+1)}(c)} = \frac{f^{(n+1)}(c)}{(n+1)!} \Rightarrow$$

$$\Rightarrow f(b) - \sum_{k=0}^{n} \frac{f(k)(a)}{k!} (b-a)^{k} = \frac{f^{(n+1)}(c)}{(n+1)!} (b-a)^{n+1} \qquad , c \in (a,b)$$

$$\Rightarrow f(b) = \sum_{k=0}^{n} \frac{f(k)(a)}{k!} (b-a)^{k} + \frac{f^{(n+1)}(c)}{(n+1)!} (b-a)^{n+1}$$

Обычно пишут:

$$f(x) = \sum_{k=0}^{n} \frac{f(k)(a)}{k!} (x-a)^k + \frac{f^{(n+1)}(c)}{(n+1)!} (x-a)^{n+1}$$
 — разложение функции в ряд Тейлора

Замечание:

- 1. Если a=0, то разложение называется разложением Макларена.
- 2. Формула Тейлора с остаточным членом в форме Пеано:

Пусть $f^{(n+1)}(x)$ ограничена на [a,b], тогда:

$$R_n = \frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1} = \frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^n(x-a) \Rightarrow$$

$$\Rightarrow R_n = o((x-a)^n)$$
 при $x \to a$

Действительно:

$$\lim_{x \to a} \frac{R_n}{(x-a)^n} = \lim_{x \to a} \underbrace{\frac{f(n+1)(c)}{(n+1)!}}_{\text{ограничено}} \underbrace{(x-a)}_{\to 0} \Rightarrow$$

$$\Rightarrow f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k + o((x-a)^n)$$
 — формула Тейлора с остаточным членом в форме Пеано.

7.4.4 Стандартные разложения

1.
$$e^x = 1 + x + \ldots + \frac{x^n}{n!} + o(x^n)$$

2.
$$\sin x = x - \frac{x^3}{3!} + \dots + (-1)^{n-1} \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+1})$$

3.
$$\cos x = 1 - \frac{x^2}{2!} + \ldots + (-1)^n \frac{x^{2n}}{(2n)!} + o(x^{2n})$$

4.
$$\ln(1+x) = x - \frac{x^2}{2!} + \ldots + (-1)^{n-1} \frac{x^n}{n!} + o(x^n)$$

5.
$$(1+x)^m = 1 + mx + \frac{m(m-1)}{2!}x^2 + \dots + \frac{m(m-1)\dots(m-n+1)}{n!}(x^n) + o(x^n)$$

$O\Pi P 7.4.5$

Пусть $f:(a,b)\to\mathbb{R}$, тогда $f\in C^\infty((a,b),\mathbb{R})$ если $\forall n\in\mathbb{N}$ f-дифференируема на <math>(a,b).

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n$$

Пример:
$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

7.5 Достаточный признак существования экстремума

Лемма 7.5.1.

⊳ Пусть

$$f:(a,b)\to\mathbb{R},\ p\in(a,b),\ f(x)=f(p)+A(x-p)^n+o((x-p)^n)$$

⊳ Тогда

1. если n — чётное, то p — точка экстремума f:

- (a) $A > 0 \min;$
- (b) $A < 0 \max;$
- 2. если n -нечетное, то p не является экстремальной точкой.

Запишем функцию в следующем виде:

$$f(x) = f(p) + A(1+eta(x)) \cdot (x-p)^n$$
 , где $eta(x) o 0$ при $x o p$

 \exists окрестность U точки p: $U = (p - \delta, p + \delta) \mid (1 + \beta(x)) > 0 \quad \forall x \in U$.

 \circ Пусть n — четно, тогда:

 \checkmark если A > 0, то:

$$f(x) - f(p) = A(1 + \beta(x))(x - p)^n \geqslant 0 \quad \forall x \in U \Rightarrow p$$
— точка min

 \checkmark если A<0, то: $f(x)-f(p)\leqslant 0\Rightarrow p$ — точка $\max\Rightarrow$ при четном n p — экстремум.

 \circ Пусть n — нечетно, $A \neq 0$ тогда:

 \checkmark если A > 0, то:

$$f(x) - f(p) = A(1 + \beta(x))(x - p)^n \geqslant 0 \quad \forall x \in U \Rightarrow p$$
— точка min

 \checkmark если A<0, то: $f(x)-f(p)\leqslant 0\Rightarrow p$ — точка $\max\Rightarrow$ при четном n p — экстремум.

Теорема 7.5.2 (Достаточный признак существования экстремума).

⊳ Пусть

$$f:(a,b)\to\mathbb{R},\ f\in D^{(n+1)}(a\cdot b),\ f'(p)=0,\ f''(p)=0,\ \ldots,\ f^{(n)}(p)=0,\ A=f^{(n+1)}(p)\neq 0$$

Лекции по математическому анализу http://MFH.gorodok.net/

⊳ Тогда

Стр. 114

если n+1 четно, то p — локальный экстремум, причем если A>0, то p — точка min, если A<0, то p — точка max. Если n+1 — нечетно, то p не локальный экстремум.

⊳ Доказательство.

Т.к. $f \in D^{n+1}(a,b), p \in (a,b)$, то можно применить формулу Тейлора:

$$f(x) = f(p) + \frac{f'(p)}{1!}(x-p) + \ldots + \frac{f^{(n+1)}(p)}{(n+1)!}(x-p)^{n+1} + o((x-p)^{n+1})$$

Поскольку по условию первые n производных равны 0, то:

$$f(x) = f(p) + \frac{f^{(n+1)}(p)}{(n+1)!}(x-p)^{n+1} + o((x-p)^{n+1}).$$

Теперь применяем лемму.

7.6 Выпуклые функции

ОПР 7.6.1 (Выпуклой и вогнутой функции).

Пусть $f: \langle a, b \rangle \to \mathbb{R}, \langle a, b \rangle - выпуклое множество, т.е. если <math>x_1, x_2 \in \langle a, b \rangle, \ mo \ \forall \lambda, \mu \ | \ \lambda + \mu = 1 \ (\lambda \geqslant 0, \mu \geqslant 0) \ x = \lambda x_1 + \mu x_2 \in \langle a, b \rangle.$

Говорят, что f — выпукло (или выпукло сверху) на $< a, b > ecли \, \forall x_1, x_2 \in < a, b > uмеет место <math>f(\lambda x_1 + \mu x_2) \le \lambda f(x_1) + \mu f(x_2) \quad (\lambda > 0, \mu > 0, \lambda + \mu = 1).$ Если равенство возможно только при $x_1 = x_2$, то говорят, что f — строго выпукло.

Говорят, что f — вогнуто (или выпукло снизу) на $< a, b > ecли \ \forall x_1, x_2 \in < a, b > uмеет место <math>f(\lambda x_1 + \mu x_2) \geqslant \lambda f(x_1) + \mu f(x_2) \quad (\lambda > 0, \mu > 0, \lambda + \mu = 1).$ Если равенство возможно только при $x_1 = x_2$, то говорят, что f — строго выпукло.

Замечание: Если f — выпукла, то (-f) — очевидна вогнута. Будем изучать только выпуклые функции.

7.6.2 Геометрический смысл выпуклости

ОПР 7.6.2.1 (Выпуклость в \mathbb{R}^2).

Пусть $A \subset \mathbb{R}^2$. Говорят, что A — выпукло в \mathbb{R}^2 если $\forall p,q \in A, \forall \lambda, \mu \mid \lambda > 0, \mu > 0, \lambda + \mu = 1$ $\lambda p + \mu q \in A$

ОПР 7.6.2.2 (Надграфика и подграфика).

Пусть $f: \langle a, b \rangle \to \mathbb{R}$, тогда:

$$\Gamma^+ = \{(x,y) \mid x \in \langle a,b \rangle, y \geqslant f(x)\}$$
 — надграфик (выпуклое множество)

$$\Gamma^- = \{(x,y) \mid x \in \langle a,b \rangle, y \leqslant f(x)\}$$
 — поддерафик (выпуклое множество) $\Gamma^+ \cap \Gamma^- - \operatorname{epadyk}(x,f(x)).$

Теорема 7.6.2.3 (Геометрическая характеристика выпуклости).

> f: $< a,b> \to \mathbb{R}$ выпукла тогда и только тогда, когда $\Gamma^+(f)$ — выпуклое множество в \mathbb{R}^2

Доказательство.

 $\circ \longrightarrow$

Пусть f — выпукло, тогда если $\lambda > 0$, $\mu > 0$, $\lambda + \mu = 1$, $x_1, x_2 \in (a, b)$, то $f(\lambda x_1 + \mu x_2) \leq \lambda f(x_1) + \mu f(x_2)$.

Пусть точка $(x_1, y_1) \in \Gamma^+(f)$, тогда $y_1 \ge f(x_1)$.

Пусть точка $(x_2, y_2) \in \Gamma^+(f)$, тогда $y_2 \ge f(x_2)$.

$$\lambda y_1 + \mu y_2 \geqslant \lambda f(x_1) + \mu f(x_2) \Rightarrow (\lambda x_1 + \mu x_2, \lambda y_1 + \mu y_2) \in \Gamma^+(f)$$

$$\lambda(x_1, y_1) + \mu(x_2, y_2) = (\lambda x_1 + \mu x_2, \lambda y_1 + \mu y_2) \Rightarrow \Gamma^+(f)$$
— выпукло.

Лекции по математическому анализу http://MFH.gorodok.net/

0 ←

Стр. 116

Пусть $\Gamma^+(f)$ — выпукло; $(x_1,y_1),(x_2,y_2)\in\Gamma^+(f)$. Тогда $\lambda(x_1,y_1)+\mu(x_2,y_2)=(\lambda x_1+\mu x_2,\lambda y_1+\mu y_2)\in\Gamma^+(f)$. $\lambda>0,\ \mu>0,\ \lambda+\mu=1,\ < a,b>$ — выпукло $\Rightarrow \lambda x_1+\mu x_2\in< a,b>$ $\lambda y_1+\mu y_2\geqslant f(\lambda x_1+\mu x_2)$ $\lambda f(x_1)+\mu f(x_2)\geqslant f(\lambda x_1+\mu x_2)$. Следовательно, f — выпукла сверху.

Теорема 8.6.3 (Неравенство Йенсена).

⊳ Пусть

J — выпуклое подмножество $\overline{\mathbb{R}}, f\colon J\to\mathbb{R}, f$ — выпукла сверху. Пусть $x_0,x_1,\ldots,x_n\in J, a_0,\lambda_1,\ldots,\lambda_n\in\mathbb{R},$ причем $\lambda_i>0\quad \forall i=0,1,\ldots,n$ и $\lambda_0+\lambda_1+\ldots+\lambda_n=1$

⊳ Тогда

- 1. Если $x = \lambda_0 x_0 + \lambda_1 x_1 + \ldots + \lambda_n x_n$, то $x \in J$;
- 2. $f(\lambda_0 x_0 + \lambda_1 x_1 + \ldots + \lambda_n x_n) \leq \lambda_0 f(x_0) + \lambda_1 f(x_1) + \ldots + \lambda_n f(x_n)$

Причем если f — строго выпукла сверху, то равенство $f(\lambda_0 x_0 + \lambda_1 x_1 + \dots + \lambda_n x_n) = \lambda_0 f(x_0) + \lambda_1 f(x_1) + \dots + \lambda_n f(x_n)$ возможно только в том случае, когда $x_0 = x_1 = \dots = x_n$.

Доказательство.

 \circ По индукции. Пусть n=1. Если $x_0,x_1\in J,\ \lambda_0,\lambda_1\in\mathbb{R},\ \lambda_0>0,\lambda_1>0,\ \lambda_0+\lambda_1=1,$ то $x=\lambda_0x_0+\lambda_1x_1\in J$ в силу выпуклости множества J.

Рассмотрим:

$$f(\lambda_0 x_0 + \lambda_1 x_1) \leqslant \lambda_0 f(x_0) + \lambda_1 f(x_1)$$
 (в силу выпуклости f на J)

 $f(\lambda_0 x_0 + \lambda_1 x_1) \leqslant \lambda_0 f(x_0) + \lambda_1 f(x_1)$ только если $x_0 = x_1$ (следует из строгой вып

 \circ Пусть при n — верно, рассмотрим при n+1.

$$x_0, x_1, \dots, x_{n-1}, x_n, x_{n+1}$$
 (число точек заведомо $\geqslant 3$)

 $\lambda_0,\lambda_1,\dots,\lambda_{n-1},\lambda_n,\lambda_{n+1}$ (набор точек, удовлетворяющих условию)

Рассмотрим:

$$x = \lambda_0 x_0 + \lambda_1 x_1 + \ldots + \lambda_{n-1} x_{n-1} + \lambda_n x_n + \lambda_{n+1} x_{n+1}$$
 (1)

Пусть $\lambda'_n = \lambda_n + \lambda_{n+1}$.

Если $\lambda'_n = 0$, то очевидно верно (попадаем в случай n).

Пусть $\lambda'_n \neq 0$. Тогда рассмотрим $\alpha = \frac{\lambda_n}{\lambda'_n}$ и $\beta = \frac{\lambda_{n+1}}{\lambda'_n}$.

 $x' = \alpha x_n + \beta x_{n+1} \quad \Rightarrow x' \in J$ (это следует из выпуклости).

Заметим, что
$$x = \lambda_0 x_0 + \lambda_1 x_1 + \ldots + \lambda_{n-1} x_{n-1} + \lambda'_n \underbrace{(\alpha x_n + \beta x_{n+1})}_{x'}$$
.

Поскольку $\lambda_0 + \lambda_1 + \ldots + \lambda_{n-1} + \lambda'_n = 1$ и $\lambda_i > 0$, то $x \in J$ (следует из истинности при n). То есть 1-ое свойство доказано.

 \circ Применим шаг n к формуле (1):

$$f(x) \leqslant \lambda_0 f(x_0) + \ldots + \lambda_{n-1} f(x_{n-1}) + \lambda'_n f(\alpha x_n + \beta x_{n+1}) \leqslant$$

 $\leqslant \lambda_0 f(x_0) + \ldots + \lambda_{n-1} f(x_{n-1}) + \lambda_n' (\alpha f(x_n) + \beta f(x_{n+1})) =$ (следует из свойства выпуклости f)

$$= \lambda_0 f(x_0) + \ldots + \lambda_{n-1} f(x_{n-1}) + \lambda'_n \alpha f(x_n) + \lambda'_n \beta f(x_{n+1}) = \qquad (2)$$

$$=\lambda_0 f(x_0)+\ldots+\lambda_n f(x_n)+\lambda_{n+1} f(x_{n+1}) \Rightarrow$$
 неравентсво доказано.

Докажем строгое неравенство. Пусть f — строго выпукло, тогда по предположению индукции равенство возможно если $x_0 = x_1 = \ldots = x_{n-1} = \alpha x_n + \beta x_{n+1}$. В силу строгой выпуклости f последнее равенство (2) возможно только если $x_n = x_{n+1} = x_0 = x_1 = \ldots$

Теорема 8.6.4 (Критерий выпуклости функции).

ightharpoonup Пусть $J=(a,b),\,f\colon (a,b)\to \mathbb{R},\,f\in D^1(J).$ Если f — выпукла на j тогда $\forall x,p\in J$ имеет место:

$$f(x) \geqslant f(p) + f'(p)(x - p) \tag{3}$$

Если f — строго выпукла, то равенство (3) возможно только при x=p.

Обратно: если $f \in D^1(J)$ и $\forall x, p \in J$ имеет место (3), то f — выпукла на (a,b). Причем если (3) имеет место только при x=p, то f — строго выпукла вверх на (a,b).

Доказательство.

 $\circ \longrightarrow$

 $f\in D^1(J),\ f$ — выпукла; $x,p\in J.$ Пусть $x\neq p$ (в противном случае неравенство выполняется тривиально).

Пусть $0 < \lambda < 1$, тогда $1 - \lambda > 0, \lambda \in \mathbb{R}$.

Заметим, что $\lambda + (1-\lambda) = 1,\, \lambda x + (1-\lambda)p \in J$ в силу выпуклости J.

Лекции по математическому анализу http://MFH.gorodok.net/

Тогда $\lambda f(x) + (1-\lambda)f(p) \geqslant f(\lambda x + (1-\lambda)p)$ следует из выпуклости f.

Перепишем:

$$\lambda f(x) \geqslant \lambda f(p) + (f(p+\lambda(x-p)) - f(p)) = \lambda f(p) + \frac{(f(p+\lambda(x-p)) - f(p))}{(x-p)}(x-p)$$
$$f(x) \geqslant f(p) + \frac{(f(p+\lambda(x-p)) - f(p))}{\lambda(x-p)}(x-p)$$

Т.к. неравенство выполняется $\forall \lambda > 0$, перейдём слева и справа к пределу при $\lambda \to 0$:

$$\lim_{\lambda \to 0} \frac{(f(p + \lambda(x - p)) - f(p))}{\lambda(x - p)} = f'(p) \Rightarrow$$

 $\Rightarrow f(x) \geqslant f(p) + f'(p)(x-p)$ при $x \neq p$

Т.к. при x = p очевидно, то неравенство (3) доказано.

Пусть f — строго выпукло, $x \neq p$, тогда:

$$\frac{f(x)+f(p)}{2}>f\left(\frac{x+p}{2}\right)$$
 (в неравенстве Йенсена $\lambda=\frac{1}{2}$)

$$f\left(\frac{x+p}{2}\right) = f\left(p + \frac{x-p}{2}\right) \geqslant f(p) + f'(p) \cdot \left(\frac{x-p}{2}\right)$$
 (следует из (3))
 $f(x) + f(p) > 2f(p) + f'(p)(x-p) \Rightarrow f(x) > f(p) + f'(p)(x-p).$

. .

Пусть $f \in D^1(J)$ и $\forall x, p \in J$ f(x) > f(p) + f'(p)(x - p). Пусть $x_1, x_2 \in J$, $\lambda > 0$, $\mu > 0$, $\lambda + \mu = 1$, тогда:

$$f(x_1 \geqslant f(p) + (x_1 - p)f'(p)$$

$$f(x_2 \geqslant f(p) + (x_2 - p)f'(p)$$

Домножим первое и второе неравенства на $\lambda>0$ и $\mu>0$ соответственно и сложим:

$$\lambda f(x_1) + \mu f(x_2) \geqslant \lambda f(p) + \mu f(p) + f'(p)(\lambda x_1 - \lambda p + \mu x_2 - \mu p) \Rightarrow$$
$$\Rightarrow \lambda f(x_1) + \mu f(x_2) \geqslant f(p) + f'(p)(\lambda x_1 + \mu x_2 - p)$$

Поскольку p — произвольно, то пусть $p = \lambda x_1 + \mu x_2$. Следовательно:

$$\lambda f(x_1) + \mu f(x_2) \geqslant f(\lambda x_1 + \mu x_2) \tag{4}$$

А это и означает выпуклость.

Если (3) — строгое неравенство, то и (4) тоже строгое неравенство если $x_1 \neq x_2$.

Стр. 120

Теорема 8.6.5 (Дифференциальный критерий выпуклости).

ightharpoonup Пусть $f:(a,b)\to\mathbb{R},\ f\in D^1((a,b))$. Для выпуклости f на (a,b) (строгой выпуклости f на (a,b)) необходимо и достаточно, чтобы f'(x) возрастала на (a,b) (строго возрастала на (a,b)).

⊳ Доказательство.

• Необходимость:

Пусть $f \in D^1((a,b))$. Тогда $\forall x, p \in (a,b)$ (в силу предыдущих теорем):

$$f(x) \geqslant f(p) + f'(p)(x - p)$$

Пусть $x_1 = x$, $x_2 = p$, тогда:

$$f(x_1) \geqslant f(x_2) + f'(x_2)(x_1 - x_2)$$

Пусть $x_2 = x$, $x_1 = p$, тогда:

$$f(x_2) \geqslant f(x_1) + f'(x_1)(x_2 - x_1)$$

Очевидно, что эти 2 неравенства должны выполняться одновременно.

Сложим 2 неравенства:

$$f(x_1) + f(x_2) \ge f(x_2) + f(x_1) + f'(x_2)(x_1 - x_2) + f'(x_1)(x_2 - x_1) \Rightarrow$$
$$\Rightarrow (f'(x_2) - f'(x_1))(x_1 - x_2) \le 0$$

Если $x_2 > x_1$, то:

$$f'(x_2) - f'(x_1) \geqslant 0 \quad \Rightarrow \quad f'(x_2) \geqslant f'(x_1) \quad \Rightarrow \quad f'(x) - \text{возрастает}$$

Если f — строго выпукла, то неравенства строгие:

$$f'(x_2) > f'(x_1)$$
 \Rightarrow $f'(x)$ — строго возрастает.

 \circ Достаточность: Пусть f'(x) возрастает на (a,b).

Надо доказать, что

$$\forall x, p \in (a, b) \quad f(x) \geqslant f(p) + f'(p)(x - p) \tag{5}.$$

Рассмотри u(x) = f(x) - f(p) - f'(p)(x-p) (p — фиксировано), тогда u'(x) = f'(x) - f'(p).

Лекции по математическому анализу http://MFH.gorodok.net/

 \checkmark Если $x \geqslant p$, то в силу возрастания f'(x): $f'(x) - f'(p) \geqslant 0$. $u'(x) \geqslant 0$, тогда при x > p u(x) — возрастает (по уже доказанной части теоремы). Следовательно:

$$u(x)\geqslant u(p)\Rightarrow$$

$$\Rightarrow u(x)-u(p)\geqslant 0\quad \text{при }x\geqslant p\Rightarrow$$

$$\Rightarrow u(x)-u(p)=u(x)\geqslant 0\quad \Rightarrow$$

 $\Rightarrow f(x)-f(p)-f'(p)(x-p)\geqslant 0$ т.е. при $x\geqslant p$ неравенство (5) выполнено.

✓ Пусть x < p, тогда повторяем те же рассуждения для u(x) и получаем, что (5) выполнено.

Следствие 8.6.6 (Теорема:).

⊳ Тогда

f — выпукла тогда и только тогда, когда $f''(x) \ge 0 \quad \forall x \in (a,b)$ и строго выпукла если $\forall (\alpha,\beta) \in (a,b) \quad \exists x \in (\alpha,\beta) \mid f''(x) > 0$.

Доказательство.

Очевидно.

9.7 Основные неравенства анализа

Теорема 9.7.1 (Неравенство Коши для среднего арифметического и среднего геометрического).

$$\lambda_i > 0 \quad \forall i = 1, \dots, n; \sum_{i=1}^n \lambda_i = 1. \text{ Пусть } x_i \geqslant 0 \quad \forall i = 1, \dots, n.$$

⊳ Тогда

 $\lambda_1x_1+\lambda_2x_2+\ldots+\lambda_nx_n\geqslant x_1^{\lambda_1}\cdot x_2^{\lambda_2}\cdot\ldots\cdot x_n^{\lambda_n}$. Причем равенство возможно только если $x_1=x_2=\ldots=x_n$.

Комментарий: при $\lambda_1 = \frac{1}{2}, \ \lambda_2 = \frac{1}{2}, \ x_1 = x, \ x_2 = y$: $\frac{x+y}{2} = \sqrt{xy}$.

Доказательство.

Если хотя бы одно $x_i=0$ неравенство очевидно. Будем считать, что $x_i>0$.

• Рассмотрим $\phi(x) = -\ln x$: функция определена на выпуклом множестве $(0,\infty)$. $\phi'(x) = -\frac{1}{x}, \ \phi''(x) = -\frac{1}{x^2} \Rightarrow \forall x \in (0,\infty) \quad \phi''(x) > 0 \Rightarrow \Rightarrow (-\ln x)$ выпукла сверху на $(0,\infty)$.

Рассмотрим элемент $x = \lambda_1 x_1 + \lambda_2 x_2 + \ldots + \lambda_n x_n, \quad x \in (0, \infty).$ Из неравенства Йенсена:

$$-\lambda \ln x_1 - x_2 \ln x_2 - \dots - x_n \ln x_n \geqslant -\ln(\lambda_1 x_1 + \lambda_2 x_2 + \dots + \lambda_n x_n)$$
$$\ln(x_1^{\lambda_1} \cdot x_2^{\lambda_2} \cdot \dots \cdot x_n^{\lambda_n}) \leqslant \ln(\lambda_1 x_1 + \lambda_2 x_2 + \dots + \lambda_n x_n)$$

Т.к. ln - монотонно возрастающая функция, то:

$$x_1^{\lambda_1} \cdot x_2^{\lambda_2} \cdot \ldots \cdot x_n^{\lambda_n} \leqslant \lambda_1 x_1 + \lambda_2 x_2 + \ldots + \lambda_n x_n$$

Второе утверждение следует из того, что $\phi''(x) > 0 \Rightarrow (-\ln x)$ строго выпукла сверху и равенство в силу неравенства Йенсена возможно только если $x_1 = x_2 = \ldots = x_n$.

Следствие 9.7.1.1 (Теорема (неравенство Юнга)).

⊳ Пусть

$$p>0, \ q>0 \mid \frac{1}{p}+\frac{1}{q}=1 \ (p,q-$$
 сопряженные показатели).

▶ Тогда

 $\forall x,y \in \mathbb{R}$ имеет место:

$$\frac{|x|^p}{p} + \frac{|y|^q}{q} \geqslant xy$$
 (неравенство Юнга)

Лекции по математическому анализу http://MFH.gorodok.net/

Доказательство.

Стр. 122

Пусть $x_1 = |x|^p$, $x_2 = |y|^q$, $\lambda_1 = \frac{1}{p}$, $\lambda_2 = \frac{1}{q}$, $\lambda_1 + \lambda_2 = 1$, $\lambda_1 > 0$, $\lambda_2 > 0$, $x_1 \geqslant 0$, $x_2 \geqslant 0$.

Из неравенства Коши:

$$\frac{|x|^p}{p} + \frac{|y|^q}{q} \geqslant |x||y| \geqslant xy.$$

Следствие 9.7.1.2 (Лемма (о произведении)).

 $ightarrow \ \forall u\geqslant 0, v\geqslant 0; \ \forall p>0, q>0 \ | \ rac{1}{p}+rac{1}{q}=1$ имеет место:

$$u \cdot v = \inf_{t \in (0,\infty)} \left(\frac{|u|^p t^p}{p} + \frac{|v|^q}{q t^q} \right) \tag{1}$$

Доказательство.

- \circ Если u=v=0, то очевидно.
- \circ Если u > 0, v = 0, то слева 0, справа $\inf_{t \in (0,\infty)} \left(\frac{|u|^p t^p}{p} \right) = 0$.
- \circ Если u = 0, v > 0, то очевидно.
- \circ Будем считать, что u>0, v>0. Рассмотрим 2 выражения:

$$x = tu > 0, \quad y = v \frac{v}{t} > 0.$$

Подставим в неравенство Юнга:

$$\frac{|u|^p t^p}{p} + \frac{|v|^q}{qt^q} \geqslant tu \cdot \frac{v}{t} = uv.$$

Взяв inf от обеих частей, получим:

$$\inf_{t \in (0,\infty)} \left(\frac{|u|^p t^p}{p} + \frac{|v|^q}{q t^q} \right) \geqslant uv.$$

Можно выбрать такое t, что:

$$\frac{|u|^p t^p}{p} + \frac{|v|^q}{qt^q} = uv \Rightarrow \inf \text{достигается.}$$
 (2)

Покажем это. Найдём такое $t = u^{\alpha} \cdot v^{\beta}$, что первое слагаемое в равенстве (2) будет равняться $\frac{uv}{n}$. Т.е.:

$$u^p t^p = u^p u^{\alpha p} v^{\beta p} \Rightarrow$$

$$\Rightarrow u^{p(1+\alpha)}v^{\beta p} = uv.$$

Тогда:

$$p(1+\alpha)=1 \text{ и }\beta p=1 \Rightarrow$$

$$\alpha=\frac{1}{p}-1 \text{ и }\beta=\frac{1}{p}.$$

T.K. $\frac{1}{n} + \frac{1}{n} = 1$, To:

$$\alpha = \frac{1}{p} - \frac{1}{p} - \frac{1}{q} = -\frac{1}{q} \Rightarrow t = \frac{v^{\frac{1}{p}}}{u^{\frac{1}{q}}}.$$

Второе слагаемое из (2) имеет следующий вид:

$$\frac{v^q u}{qv^{\frac{q}{p}}} = \frac{v^{q - \frac{q}{p}} u}{q} = \frac{vu}{q}$$

$$\Longrightarrow \frac{uv}{p} + \frac{uv}{q} = uv(\frac{1}{p} + \frac{1}{q}) = uv.$$

Следствие 9.7.1.3 (Теорема (Неравенство Гёльдера)).

⊳ Пусть

Пусть даны 2 последовательности длины $n:(x_1,x_2,\ldots,x_n),(y_1,y_2,\ldots,y_n);\ p>$ $0, q > 0 \mid \frac{1}{n} + \frac{1}{q} = 1.$

⊳ Тогда

$$\left| \sum_{i=1}^{n} x_i y_i \right| \leqslant \left(\sum_{i=1}^{n} |x_i|^p \right)^{\frac{1}{p}} \cdot \left(\sum_{i=1}^{n} |y_i|^q \right)^{\frac{1}{q}}.$$

Доказательство.

Возьмём:

$$X = \left(\sum_{i=1}^{n} |x_i|^p\right)^{\frac{1}{p}}, \quad Y = \left(\sum_{i=1}^{n} |y_i|^q\right)^{\frac{1}{q}}, \quad t > 0$$

$$\left|\sum_{i=1}^{n} x_i y_i\right| = \left|\sum_{i=1}^{n} x_i t \frac{y_i}{t}\right| \leqslant \sum_{i=1}^{n} \left|x_i t \frac{y_i}{t}\right| = \underbrace{\sum_{i=1}^{n} |x_i t| \cdot \left|\frac{y_i}{t}\right|}_{\text{Hedbehctbo IOhia}} \leqslant \sum_{i=1}^{n} \left(\frac{|x_i|^p t^p}{p} + \frac{|y_i|^q}{qt^q}\right) = \underbrace{\sum_{i=1}^{n} |x_i t| \cdot \left|\frac{y_i}{t}\right|}_{\text{Hedbehctbo IOhia}}$$

Лекции по математическому анализу http://MFH.gorodok.net/

$$= \frac{t^p}{p} \sum_{i=1}^n |x_i|^p + \frac{1}{qt^q} \sum_{i=1}^n |y_i|^q = \frac{t^p}{p} \cdot X^p + \frac{1}{qt^q} Y^q.$$

Заметим, что:

$$\left|\sum_{i=1}^n x_i y_i\right| \leqslant \frac{t^p}{p} X^p + \frac{1}{q - t^q} Y^q \text{ выполняется } \forall t > 0.$$

Возьмем inf слева и справа по t>0, тогда согласно предыдущей лемме о произведении:

$$\left| \sum_{i=1}^{n} x_i y_i \right| \leqslant X \cdot Y = \left(\sum_{i=1}^{n} |x_i|^p \right)^{\frac{1}{p}} \cdot \left(\sum_{i=1}^{n} |y_i|^q \right)^{\frac{1}{q}}$$

Следствие 9.7.1.4 (Теорема (неравенство Коши-Буняковского)).

⊳ Пусть

Стр. 124

Пусть даны 2 последовательности длины $n: (x_1, x_2, \ldots, x_n), (y_1, y_2, \ldots, y_n)$

⊳ Тогда

$$\left|\sum_{i=1}^n x_i y_i\right| \leqslant \sqrt{\sum_{i=1}^n |x_i|^2} \cdot \sqrt{\sum_{i=1}^n |y_i|^2} \quad \text{неравенство Коши-Буняковского}.$$

Доказательство.

Очевидно. Следует из неравенства Гёлдера, где $p = q = \frac{1}{2}$.

Следствие 9.7.1.5 (Теорема (Неравенство Минковского)).

⊳ Пусть

Пусть даны 2 последовательности длины $n: (x_1, x_2, ..., x_n), (y_1, y_2, ..., y_n);$ $p \geqslant 1$.

⊳ Тогда

$$\left(\sum_{i=1}^{n} |x_i + y_i|^p\right)^{\frac{1}{p}} \leqslant \left(\sum_{i=1}^{n} |x_i|^p\right)^{\frac{1}{p}} \cdot \left(\sum_{i=1}^{n} |y_i|^q\right)^{\frac{1}{q}}.$$

Замечание: если p = 2, то это неравенство треугольника.

Доказательство.

- \circ Пусть p=1, тогда очевидно выполнено в силу того, что $\forall i \mid |x_i+y_i| \leqslant$
- \circ Будем считать, что p > 1.
 - \checkmark Если $\sum_{i=1}^{n} |x_i + y_i|^p = 0$, то неравенство очевидно.
 - ✓ Поэтому будем считать, что $\sum_{i=1}^{n} |x_i + y_i|^p > 0$

$$\sum_{i=1}^{n} |x_i + y_i|^p = \sum_{i=1}^{n} (|x_i + y_i|^{p-1} \cdot |x_i + y_i|) \le \sum_{i=1}^{n} (|x_i + y_i|^{p-1} \cdot (|x_i| + |y_i|)) =$$

$$= \sum_{i=1}^{n} (|x_i + y_i|^{p-1} \cdot |x_i|) + \sum_{i=1}^{n} (|x_i + y_i|^{p-1} \cdot |y_i|).$$

* Рассмотрим $\sum_{i=1}^n (|x_i+y_i|^{p-1}|x_i|)$: Применим неравенство Гёльдера с $q=\frac{p}{p-1}$, тогда $\frac{1}{q}=\frac{p-1}{p}$ \Rightarrow $\Rightarrow \frac{1}{a} + \frac{1}{a} = \frac{p-1}{a} + \frac{1}{a} = 1 \Rightarrow$

$$\Rightarrow \sum_{i=1}^{n} (|x_i + y_i|^{p-1} |x_i|) \leqslant \left(\sum_{i=1}^{n} |x_i + y_i|^{q(p-1)} \right)^{\frac{1}{q}} \cdot \left(\sum_{i=1}^{n} |x_i|^p \right)^{\frac{1}{p}}$$

⋆ Аналогично:

$$\sum_{i=1}^{n} (|x_{i} + y_{i}|^{p-1}|y_{i}|) \leq \left(\sum_{i=1}^{n} |x_{i} + y_{i}|^{q(p-1)}\right)^{\frac{1}{q}} \cdot \left(\sum_{i=1}^{n} |y_{i}|^{p}\right)^{\frac{1}{p}}$$

$$|\Longrightarrow \sum_{i=1}^{n} |x_{i} + y_{i}|^{p} \leq \left(\sum_{i=1}^{n} |x_{i} + y_{i}|^{q(p-1)}\right)^{\frac{1}{q}} \cdot \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{\frac{1}{p}} + \left(\sum_{i=1}^{n} |x_{i} + y_{i}|^{q(p-1)}\right)^{\frac{1}{q}} \cdot \left(\sum_{i=1}^{p} |y_{i}|^{p}\right)^{\frac{1}{p}} + \left(\sum_{i=1}^{n} |y_{i}|^{p}\right)^{\frac{1}{p}} \cdot \left(\sum$$

Таким образом:

$$\left(\sum_{i=1}^n |x_i+y_i|^{q(p-1)}\right)^{1-\frac{1}{q}} = \left(\sum_{i=1}^n |x_i+y_i|^{q(p-1)}\right)^{\frac{1}{p}} \leqslant \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}} + \left(\sum_{i=1}^n |y_i|^p\right)^{\frac{1}{p}}.$$

4. f'(x) < 0, f''(x) < 0:

3. f'(x) < 0, f''(x) > 0:

10.8 Снова об уравнении f(x) = 0

$O\Pi P 10.8.1.$

 Π усть $\xi \in \mathbb{R}$. Будем говорить, что ξ приближает $x \in \mathbb{R}$ с точностью ε $ecnu |x - \xi| < \varepsilon.$

Будем считать, что функция f(x) удовлетворяет следующим требованиям:

- f(x) определена на замкнутом интервале [a,b], f(x) непрерывна на [a,b]и $f(a) \cdot f(b) < 0$;
- $f(x) \in C^2([a,b])$:
- $f'(x) \neq 0$ и $f''(x) \neq 0$ $\forall x \in [a, b]$

Случаи:

Замечание 1. В силу теоремы Бельцано-Вейерштрасса для таких функций $\exists \xi \in (a,b) \mid f(\xi) = 0$. В силу монотонности ξ — единственна.

Замечание 2. Достаточно рассмотреть только один случай (например, 1). С помощью замены переменных и смены знака f(x) получаем все остальные.

Конструкция (как ищется):

1. Возьмём произвольную точку $x_0 \mid f(x_0) > 0$, например, $x_0 = b$. Проведём через точку $(x_0, f(x_0))$ касательную к функции, получим $(x_1, 0)$ — точку пересечения касательной и оси абсцисс. Аналогично проведём касательную через точку $(x_1, f(x_1))$ и получим точку $(x_2, 0)$. Действуя по индукции, найдём точку $(x_n, 0)$.

Рассмотрим касательную проходящую через точку $(x_n, f(x_n))$:

$$y = f(x_n) + f'(x_n)(x - x_n)$$
$$0 = f(x_n) + f'(x_n)(x - x_n)$$
$$\frac{f(x_n)}{f'(x_n)} = x_n - x \Rightarrow$$
$$\Rightarrow x = x_n - \frac{f(x_n)}{f'(x_n)} \Rightarrow$$

 $\Rightarrow x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$ — итерации Ньютона (метод Ньютона, метод секущих)

2.

УТВ 10.8.2.

 $\triangleright x_1, x_2, \dots, x_n$ сходится к ξ .

Доказательство.

Пусть $\xi \mid f(\xi) = 0$. Докажем лемму.

Лемма 10.8.3.

$$\checkmark \frac{\Pi \text{усть}}{x_n} \mid \xi \leqslant x_n \leqslant b$$

$$\sqrt{\frac{\text{Тогда}}{\xi \leqslant x_{n+1} \leqslant x_n}}$$

√ Доказательство.

$$\star x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, \ f(x_n) > 0, \ f'(x_n) > 0 \implies x_{n+1} \leqslant x_n.$$

Лекции по математическому анализу http://MFH.gorodok.net/

* Пусть $\theta \in [\xi, x_n]$, тогда по теореме Лагранжа $\frac{f(\xi) - f(x_n)}{\xi - x_n} = f'(\theta)$. Т.к. по условию $f(\xi) = 0$, то $f'(\theta) = \frac{f(x_n)}{x_n - \xi}$. f'(x) — возрастает $\Rightarrow f'(\theta) \leqslant f'(x_n)$ (т.к. $x_n > \theta$), следовательно:

$$\frac{f(x_n)}{x_n - \xi} \leqslant f'(x_n) \Rightarrow$$

$$\Rightarrow \frac{f(x_n)}{f'(x_n)} \leqslant x_n - \xi \Rightarrow$$

$$\Rightarrow \xi \leqslant x_n - \frac{f(x_n)}{f'(x_n)} = x_{n+1}$$

П

Cnedcmbue: Т.к. последовательность x_n монотонно убывает и ограничена снизу числом ξ (которое > a), то $\exists \lim_{n \to \infty} x_n = \overline{\xi}$.

Рассмотрим последовательность $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$. Перейдем к пределу при $n \to \infty$:

$$\overline{\xi} = \overline{\xi} - \frac{f(\overline{\xi})}{f'(\overline{\xi})}.$$

Отсюда следует, что:

$$\frac{f(\overline{\xi})}{f'(\overline{\xi})} = 0 \implies f(\overline{\xi}) = 0 \implies \xi = \overline{\xi}.$$

3. Определим скорость сходимости. Пусть $\theta \in (\xi, x_n)$, тогда:

$$0 = f(\xi) = f(x_n) + \frac{f'(x_n)}{1!} (\xi - x_n) + \frac{f''(\theta)}{2!} (\xi - x_n)^2$$
$$f(x_n) + f'(x_n)(\xi - x_n) + \frac{f''(\theta)}{2!} (\xi - x_n)^2 = 0$$
$$\frac{f(x_n)}{f'(x_n)} + \xi - x_n + \frac{f''(\theta)}{2!f'(x_n)} (\xi - x_n)^2 = 0$$
$$\xi - x_{n+1} + \frac{f''(\theta)}{2!f'(x_n)} (\xi - x_n)^2 = 0$$
$$x_{n+1} - \xi = \frac{f''(\theta)}{2!f'(x_n)} (\xi - x_n)^2.$$

Введем $L = \sup_{x \in [a,b]} f''(x), \ \gamma = \inf_{x \in [a,b]} f'(x).$ Пусть:

$$0 < \frac{f''(\theta)}{2!f'(x_n)} \leqslant \frac{L}{2\gamma} = M < \infty$$

$$0 < x_{n+1} - \xi \le M(x_n - \xi)^2 \le M^2(x_{n-1} - \xi)^4.$$

По индукции:

$$\alpha(x_{n+k}-\xi)\leqslant M^k(x_n-\xi)^{2^k}$$
 — оценка ошибки на k-ом шаге.

Примеры:

1. Пусть a > 0. Найдём \sqrt{a} на интервале $(0, +\infty)$.

$$f(x) = x^2 - a$$

$$f'(x) = 2x$$

$$f''(x) = 2$$

Таким образом f(x) удовлетворяет условиям. В качестве точки b возьмем $b=1+\frac{a}{2}.$ Рассмотрим $f(1+\frac{a}{2})=1+a+\frac{a^2}{4}-a\ >0.$ Итерационный процесс:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = x_n - \frac{x_n^2 - a}{2x_n} = x_n - \frac{x_n}{2} + \frac{a}{2x_n} = \frac{1}{2}(x_n + \frac{a}{x_n})$$
 — метод Герона.

2. Пусть a > 0. Найдем $a^{-1} = \frac{1}{a}$.

$$f(x)=a-rac{1}{x}$$
 на $(0,\infty)$ — непрерывна

$$f'(x) = \frac{1}{x^2} > 0$$

$$f''(x) = -\frac{2}{x^3} < 0$$

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = x_n - \frac{\frac{x_n a - 1}{x_n}}{\frac{1}{x_n^2}} = x_n - (x_n a - 1) = x_n - x_n^2 a + x_n = x_n(2 - ax_n).$$

Теорема 10.8.4 (Ослабленный признак монотонного возрастания функции).

⊳ Пусть

 $J=< a,b>\overline{\mathbb{R}},\ f\colon J\to\mathbb{R}.$ Предположим, что f — непрерывна на J и существует не более чем счетное множество $E\subset J\mid \forall x\in J\smallsetminus E\ f$ обладает левой производной.

Лекции по математическому анализу http://MFH.gorodok.net/

⊳ Тогда

Стр. 130

если $\forall x \in J \setminus E$ имеет место $f'_l(x) \geqslant 0$, то f возрастает на $J, f'_l(x) \leqslant 0$, то f — убывает на J.

Замечание: аналогичное утверждение имеет место для правой производной.

⊳ Доказательство.

Докажем для случая $f_I'(x) \geqslant 0$, для убывающей аналогично.

 \circ Предположим, что $f_l'(x) > 0 \quad \forall x \in J \setminus E$. Пусть $x_1, x_2 \in J, \ x_1 < x_2$. Надо доказать, что $f(x_1) \leqslant f(x_2)$. Допустим, это не так: $f(x_1) > f(x_2)$.

Рассмотрим множество A=f(E). Поскольку E — не более чем счетное, то A — не более чем счетное.

Пусть $p,q \in \mathbb{R}$ $p < q \mid f(x_2) < p < q < f(x_1)$. Очевидно такие точки существуют. Так как [p,q] — интервал, то он не является счетным множеством. Следовательно, $\exists k \in [p,q] \mid k \not\in A$.

Рассмотрим функцию $\psi(x) = f(x) - k$. Очевидно, что:

$$\psi(x_1) = f(x_1) - k > 0$$

$$\psi(x_2) = f(x_2) - k < 0$$

Следовательно, $\exists c \in [x_1, x_2] \mid \psi(c) = 0 \Rightarrow$ (по теореме Больцано-Вейерштрасса) k.

Т.к. $k \not\in A$, то $c \not\in E$. Следовательно, в точке c существует левая производная. причем $f'_l(c)>0$.

Если x < c, то согласно предположению f(x) - f(c) > 0 $Ra \ \frac{f(x) - f(c)}{x - c} < 0.$

$$\lim_{x \to c} \frac{f(x) - f(c)}{x - c} = f'_l(c) \leqslant 0.$$

Получили противоречие (т.к. мы предположили, что функция убывающая). Следовательно, если $f'_l(x)>0 \ \forall x\in J\smallsetminus E$, то f — монотонно возрастает. Т.е. для строго положительной производной мы доказали.

 \circ Пусть t>0. Рассмотри $\eta(x)=\frac{1}{1+e^{-x}},\ \tilde{f}(x)=f(x)+t\eta(x).$ Тогда:

$$\eta'(x) = \frac{e^{-x}}{(1 + e^{-x})^2} > 0.$$

Рассмотрим $\tilde{f}'_{I}(x)$, где $x \in J \setminus E$:

$$\tilde{f}'_{l}(x) = f_{l}(x) + \frac{e^{-x}}{(1 + e^{-x})^{2}}t \Rightarrow$$

$$\Rightarrow \forall t > 0 \ \tilde{f}'_l(x) > 0.$$

Следовательно по предыдущему, если $x_1 < x_2$, то $\tilde{f}(x_1) < \tilde{f}(x_2)$. Следовательно:

$$\forall t > 0 \ f(x_1) + t \frac{1}{1 + e^{-x_1}} \le f(x_2) + t \frac{1}{1 + e^{-x_2}}.$$

Переходим к пределу при $t \to 0$ и получаем, что $f(x_1) \leqslant f(x_2)$.

MFH Сопрактатіон ифференциальное исчисление функций одной переменной

Следовательно, $F(x) = |x| + F(0) \ \forall x \in \mathbb{R}$, но |x| не является дифферен-

цируемой.

Глава 12

Интегрирование функций одной переменной

12.1 Первообразная

Задача: пусть $f:(a,b)\to\mathbb{R}$. Требуется найти такую функцию F(x), где $x\in(a,b)$, что F'(x)=f(x) $\forall x\in(a,b)$.

ОПР 12.1.1 (Точной первообразной).

Eсли такая F существует, то она называется точной первообразной функции f на (a,b).

Пример 12.1.2.

$$f(x) = sgn(x), \text{ r.e. } f(x) = \begin{cases} 1, & x > 0 \\ 0, & x = 0 \\ -1, & x < 0 \end{cases}$$

Рассмотрим на промежутке $(-\infty, +\infty)$. Докажем, что точной первообразной нет.

Пусть F(x) существует, тогда она должна быть дифференцируема, значит есть соотношение:

$$F(x)-F(0)=F'(\xi)(x-0)$$
 $\xi\in(0,x)$, по теореме Лагранжа.

При x > 0 $F'(\xi) = 1$, тогда:

$$F(x) = F(0) + x.$$

При x < 0 $F'(\xi) = -1$, тогда:

$$F(x) = F(0) - x.$$
133

ОПР 12.1.3 (Истинность высказывания в основном).

Пусть A — некоторое множество. Предположим, что $\forall x \in A$ определено некоторое высказывание P(x). Пусть $E = \{x \in A \mid P(x) - ложно\}$.

Eсли E не более чем счетно, то будем говорить, что P(x) — истинно (или верно) в основном.

ОПР 12.1.4 (Непрерывность в основном).

f — непрерывна на множестве A в основном если множество точек разрыва не более чем счетно.

ОПР 12.1.5 (Дифференцируемость в основном).

f — дифференцируема на множестве A в основном если множество точек, где производной не существует, не более чем счетно.

O Π P 12.1.6.

Будем говорить, что F(x) = g(x) на множестве A в основном если $E = \{x \in A \mid f(x) \neq g(x)\}$ — не более чем счетно.

ОПР 12.1.7 (Первообразной).

Пусть $J = \langle a, b \rangle$, $f: \langle a, b \rangle \to \mathbb{R}$, f — определена в основном на J. F называется первообразной функции f на J если:

- 1. F непрерывна на J;
- 2. F дифференцируема в основном на J;
- 3. F'(x) = f(x) (равняется в основном).

Пример 12.1.8 $(F(x) = |x| \text{ на } \mathbb{R})$.

1. F непрерывна на \mathbb{R} ;

2.
$$F'(x) = \begin{cases} 1, & x > 0 \\ -1, & x < 0 \end{cases}$$

В 0 производной нет. Т.о. множество, где производной не существует не более чем счетно;

3. sgn(x) = F'(x) всюду кроме 0;

Следовательно, |x| — первообразная для sgn(x) (но это не точная первообразная).

Пример 12.1.9
$$(f(x) = sgn(\sin x) \cdot \cos x)$$
.

$$F(x) = |\sin x|, \sin x = 0$$
 при $x = \pi k$ (это множество счетно).

Стр. 136

 $F'(x) = sgn(\sin x)\cos x$ — равенство выполнено в основном.

Следовательно, F(x) — первообразная.

ОПР 12.1.10 (Интегрируемость f).

Будем говорить, что f — интегрируема на J = < a, b > ecли f — определена в основном и обладает первообразной F на J.

Лемма 12.1.11.

⊳ Пусть

f — интегрируема на J=< a,b>. Предположим, что $g\mid g=f$ в основном на J.

⊳ Тогда

g — интегрируема и F — первообразная для g.

⊳ Доказательство.

Пусть множество $E_1 \mid F'(x) = f(x)$ на $J \setminus E_1$. Пусть множество $E_2 \mid f(x) = g(x)$ на $J \setminus E_2$; $E = E_1 \cup E_2$.

Т.к. E_1 и E_2 не более чем счетны, то E — не более чем счетно.

Тогда на множестве $J \setminus E$ имеет место равенство:

$$F'(x) = f(x) = g(x).$$

Следовательно, F — первообразная для g и g — интегрируема.

Следствие 12.1.11.1.

⊳ Пусть

f — интегрируема на J=< a,b>. $I=< c,d> \mid I\subset J$.

⊳ Тогда

f — интегрируема на I.

Очевилно

Следствие 12.1.11.2 ().

Лекции по математическому анализу http://MFH.gorodok.net/

- \triangleright Первообразная функции 0 на J=< a,b> есть функция постоянная на J (если J не отрезок, то утверждение неверно).

Пусть есть первообразная $F(x) \Rightarrow F'(x) = 0$ в основном. Следовательно, $\exists E$ счетное $\mid F(x)$ дифференцируема на $J \setminus E$, $F'(x) = 0 \ \forall x \in J \setminus E$.

Согласно теореме об ослабленной монотонности (10.8.4) функция F — возрастающая, а с другой стороны F — убывающая. Следовательно, F=const в основном, следовательно по определению первообразной F — непрерывна.

П

$$\Longrightarrow F$$
 — всюду $const.$

Теорема 12.1.12 (Алгебраические свойства интегрируемых функций).

⊳ <u>Пусть</u>

 $J=< a,b>;\, f,g$ — интегрируемы на J; пусть F— первообразная для $f,\,G$ — первообразная для g (на J).

⊳ Тогда

 $\forall \lambda, \mu \in \mathbb{R}$ функция $h = \lambda f + \mu y$ — интегрируема на J. Причем $H = \lambda F + \mu G$ — первообразная для h.

Доказательство.

Раз f — интегрируема, то $\exists E_1$ (не более чем счетно) $| \forall x \in J \setminus E_1 \quad F'(x) = f(x)$.

Аналогично, $\exists E_2 \mid \forall x \in J \setminus E_2 \quad G'(x) = g(x)$.

Рассмотрим $E = E_1 \cup E_2$ (не более чем счетно). Следовательно $\forall x \in J \setminus E$ имеет место одновременно:

$$F'(x) = f(x)$$

$$G'(x) = g(x).$$

Домножим первое равенство на λ , а второе на μ и сложим:

$$\lambda F'(x) + \mu G'(x) = x f(x) + \mu g(x)$$
 ___ = $[\lambda F(x) + \mu G(x)]' = H'(x)$ т.к. можно дифф-ть

П

Замечание: Пусть f(x) — интегрируема на $J = \langle a, b \rangle$, $F_1(x)$ — первообразная f. Пусть $F_2(x)$ — первообразная функции f. Значит:

$$\exists E_1 \mid F_1(x) = f(x)$$
 на $J \setminus E_1$

$$\exists E_2 \mid F_2(x) = f(x)$$
 на $J \setminus E_2$.

Очевидно, если $E=E_1\cup E_2$, то $\forall x\in J\smallsetminus E$ $F_1'(x)=F_2'(x)\Rightarrow (F_1(x)-F_2(x))'=0$. Следовательно, согласно следствию 12.1.11.2 $F_1(x)-F_2(x)=c-const$. Опять же только на интервале.

12.1.13 Множества всех превообразных функции на множестве

 \triangleright Будем обозначать через [F(x)] множество всех первообразных функции f на J = < a, b >.

ОПР 12.1.14 (Неопределенного интеграла).

Множество всех первообразных F(x) *называется* неопределенным интегралом u *обозначается*:

$$\int f(x)dx = [F(x)]$$

 $\int f(x)dx = F(x) + c \quad \textit{где } c - \textit{произвольная const.}$

ОПР 12.1.15 (Определенного интеграла).

Пусть f — интегрируема на J=< a,b>, тогда выражение F(b)-F(a) называется определенным интегралом u обозначается:

$$\int_{a}^{b} f(x)dx = F(b) - F(a) \quad \Phi o p м y л a \ H ь ю m o н a - Лей б н u ц a.$$
 (1)

Пример 12.1.16 $\left(\int_0^1 \frac{dx}{x^2} \text{ при } x \in (0,1)\right)$.

 $F(x) = -\frac{1}{x} + c$. Определенный интеграл неопределен.

Лемма 12.1.17 (Корректность определенного интеграла).

> Определенный интеграл (1) определен корректно ((1) не зависит от выбора первообразной).

Доказательство.

Лекции по математическому анализу http://MFH.gorodok.net/

Пусть F — искомая первообразная; F_1 — другая первообразная.

Значит по определению первообразной $F_1 = F + c$. Следовательно:

$$\int_{a}^{b} f(x)dx = F_1(b) - F_1(a) = F(b) + c - F(a) - c = F(b) - F(a).$$

Предположим, что $\exists \mu_2 \colon S \to \mathbb{R}$ (где $S \subset R^2$); $\Xi = [a,b] \times [c,d]$. Предположим:

- 1. $\mu_2(\Xi) = |b a| \cdot |d c|;$
- 2. если $S_1 \subset S_2, \ S_1, S_2 \subset \mathbb{R}^2, \ \text{то} \ \mu_2(S_1) \leqslant \mu_2(S_2);$
- 3. если $S_1 \cap S_2 = \emptyset$, то $\mu_2(S_1 \cup S_2) = \mu_2(S_1) + \mu_2(S_2)$.

ОПР 12.1.18 (Криволинейной трапеции).

Пусть $f(x) \geqslant 0 \ \forall x \in [a,b]; f$ — непрерывна на [a,b].

 $W_f(p,t) = \{x,y \mid x \in [p,t], \ y \in [0,f(x)]\}$ — криволинейная трапеция

Лемма 12.1.19 (Ньютона).

ightharpoonup Функция $F(x) = \mu_2(W_f(a,x))$ является точной первообразной для положительной и непрерывной на [a,b] функции f, причем $F'(X) = f(x) \ \forall x \in (a,b)$.

Пусть $x \in (a,b), \ \epsilon > 0, \delta > 0$. В силу непрерывности f на [a,b] если $|x-x_0| < \delta$, то $|f(x)-f(x_0)| < \epsilon$.

 \circ Пусть $x > x_0$. Рассмотрим:

$$F(x) - F(x_0) = \mu_2(W_f(a, x)) - \mu_2(W_f(a, x_0)) = \mu_2(W_f(a, x_0)) + \mu_2(W_f(x_0, x)) - \mu_2(W_f(a, x)) = \mu_2(W_f(a, x)) - \mu_2(W_f(a, x)) + \mu_2(W_f(a, x)) +$$

Пусть $x' \in (x_0, x) \mid |f(x') - f(x_0)| < \frac{\epsilon}{2}$. Тогда:

$$-\frac{\epsilon}{2} < f(x') - f(x_0) < \frac{\epsilon}{2} \Rightarrow$$

 $\Rightarrow -\frac{\epsilon}{2} + f(x_0) < f(x') < f(x_0) + \frac{\epsilon}{2}$

Рассмотрим:

$$\mu_2(W_f(x_0,x)) \leqslant |x-x_0|(f(x_0)+\frac{\epsilon}{2})$$

$$\mu_2(W_f(x_0, x)) \le |x - x_0|(f(x_0) - \frac{\epsilon}{2})$$

Следовательно:

$$(x - x_0)(f(x_0) - \frac{\epsilon}{2}) \leqslant F(x) - F(x_0) \leqslant (x - x_0)(f(x_0) + \frac{\epsilon}{2}) \Rightarrow$$

$$\Rightarrow f(x_0) - \frac{\epsilon}{2} \leqslant \frac{F(x) - F(x_0)}{x - x_0} \leqslant f(x_0) + \frac{\epsilon}{2}$$

$$\Rightarrow -\frac{\epsilon}{2} \leqslant \frac{F(x) - F(x_0)}{x - x_0} - f(x_0) \leqslant \frac{\epsilon}{2}.$$

- \circ Если $x < x_0$, то аналогично.
- Таким образом:

$$\left| \frac{F(x) - F(x_0)}{x - x_0} - f(x_0) \right| \leqslant \frac{\epsilon}{2} < \epsilon.$$

 $\epsilon \to 0$ означает, что $|x-x_0| \to 0 \Rightarrow |F'(x_0)-f(x_0)| \leqslant 0 \Rightarrow$ по аксиоме Архимеда $F'(x_0) = f(x_0)$.

Следствие 12.1.19.1.

Очевидно, что если f — произвольная непрерывная функция на [a, b], $f = f^+ - f^-$ (f^+, f^- — положительные непрерывные функции на [a, b]).

Для f^+ , f^- первообразные существуют, следовательно и для их разности (для f) первообразная тоже существует.

12.2Свойства интегралов

Теорема 12.2.1 (Об интегрируемости на объединении отрезков).

⊳ Пусть

$$J = \langle a, b \rangle, c \in (a, b), J_1 = J \cap (-\infty, c), J_2 = J \cap (c, +\infty).$$

⊳ Тогда

если f — интегрируема на J_1 и J_2 , то они интегрируемы на J.

Лекции по математическому анализу http://MFH.gorodok.net/

Доказательство.

Стр. 140

Пусть F_1 — первообразная f на J_1 , F_2 — первообразная f на J_2 . Они существуют по условиям теоремы. Рассмотрим:

$$F(x) = \begin{cases} F_1(x) - F_1(c) & x \in J_1 \\ F_2(x) - F_2(c) & x \in J_2 \\ 0 & x = c \end{cases}$$

Если x > c, то F — непрерывна; если x < c то F — непрерывна, тогда:

$$\lim_{x \to c-0} F(x) = \lim_{x \to c-0} (F_1(x) - F_1(c)) = 0$$

$$\lim_{x \to c+0} F(x) = \lim_{x \to c-0} (F_2(x) - F_2(c)) = 0$$

Следовательно, F — непрерывна в точке c.

Пусть:

$$E_1 \mid F_1'(x) = f(x)$$
 если $x \in J_1 \setminus E_1$

$$E_2 \mid F_2'(x) = f(x)$$
 если $x \in J_2 \setminus E_2$

Рассмотрим $E = E_1 \cup E_2 \cup c$. Очевидно, E не более чем счетно. Следовательно на множестве $J \setminus E$ имеет место: F'(x) = f(x).

Следствие 12.2.1.1.

Пусть $f_1(x)$ — интегрируема на (a, c), $f_2(x)$ — интегрируема на (c, b). Тогда $f(x) = \begin{cases} f_1(x) & x \in (a,c) \\ f_2(x) & x \in (c,b) \\ \text{"чему угодно"} & x = c \end{cases}$ — интегрируема на (a,b).

Теорема 12.2.2 (О линейности определенного интеграла).

⊳ Пусть

f, q — интегрируемы на $[a, b], \lambda, \mu \in \mathbb{R}$.

▶ Тогда

$$\int_{a}^{b} \lambda f(x) + \mu g(x) dx = \lambda \int_{a}^{b} f(x) dx + \mu \int_{a}^{b} g(x) dx.$$

Доказательство.

f,g — интегрируемы, тогда существуют первообразные F,G. Следовательно по лемме Ньютона (12.1.19) $\lambda F + \mu G$ — первообразная для $\lambda f + \mu g$. Тогда:

$$\int_a^b (\lambda f + \mu g) dx = \lambda F(b) + \mu G(b) - \lambda F(a) - \mu G(a) =$$

$$= \lambda (F(b) - G(a)) + \mu (G(b) - G(a)) = \lambda \int_a^b f \, dx + \mu \int_a^b g \, dx.$$