A Planar Subdivision Method, Beyond Straight Lines

IS-LAB seminar
Saeed, September 2016
[with special thanks to Adam Duracz]

Objective

Problem Statement - Assumptions

Output: partitioning of space

- Space: a 2D plane.
- Classes of Curves:
 - > straight lines; as an example of an *unbounded* class,
 - circles; as an example of a bounded class.
- **No Redundancy**: if two curves were identical, their intersection would be the same curve which is beyond a finite set of points.

Problem Statement - Terminology

- Curves: A curve set contains the level-curves of some multivariable functions.
- Faces: A face is the "interior" region of a "Jodan Curve", i.e. a closed and simple compilation of curves.
- Unbounded Faces

Functions

- **member:** a function of points which returns the face that encompass a given point.
- **neighbor:** is a function of faces and returns all other faces that are neighboring the input face by the mean of [at least] one shared edge in their boundaries.

Doubly Connected Edge List

- Half-Edge
 - twin
 - directed
 - start-node, end-node
- Membership

Doubly Connected Edge List

- Half-Edge
- Membership
 - cross-product
 - convexity assumed

Partitioning Procedure

Partitioning Procedure – intersection & half-edge identification

Partitioning Procedure - Face Identification via path following

Why circles?

West Virginia University

McMaster University

Belk Library

Southern Indiana University

^{*} all maps are from the web, links under titles.

So, what's the deal with circles?

- None intersecting circles
- Sorting nodes over curves
- Edges are no longer vectors
- Holes
- Membership function

- None intersecting circles
- Sorting nodes over curves
- Edges are no longer vectors
- Holes
- Membership function

- None intersecting circles
- Sorting nodes over curves
- Edges are no longer vectors
 - finding the correct successor via departure angle of the edge
- Holes
- Membership function

- None intersecting circles
- Sorting nodes over curves
- Edges are no longer vectors
 - finding the correct successor via departure angle of the edge first derivative
- Holes
- Membership function

- None intersecting circles
- Sorting nodes over curves
- Edges are no longer vectors
 - Tangency
- Holes
- Membership function

- None intersecting circles
- Sorting nodes over curves
- Edges are no longer vectors
 - Tangency second derivative
- Holes
- Membership function

- None intersecting circles
- Sorting nodes over curves
- Edges are no longer vectors
- Holes
- Membership function

- None intersecting circles
- Sorting nodes over curves
- Edges are no longer vectors
- Holes
 - Subgraphs and super-face
- Membership function

- None intersecting circles
- Sorting nodes over curves
- Edges are no longer vectors
- Holes
- Membership function

Challenges:

- None intersecting circles
- Sorting nodes over curves
- Edges are no longer vectors
- Holes
- Membership function
 - Point-In-Polygone, ...

Point-In-Polygone: "The number of intersections for a ray passing from the exterior of the polygon to any point; if odd, it shows that the point lies inside the polygon. If it is even, the point lies outside the polygon; this test also works in three dimensions"*.

^{* &}quot;Point-In-Polygone", the description and image from wikipedia.

Intersection: finding nodes and half-edges

Constructing a Multi-Directional Graph (MDG)

Connected components

Decomposing sub-graphs (i.e. connected components)

Detecting overlay (and super-face)

Updating faces according to overlay and super-faces.

Merging sub-graphs

Implementation

Private repo available at:

https://github.com/saeedghsh/subdivision/

Dependencies:

- Python >=2.6
- numpy >= 1.10.2
- sympy >= 1.0
- networkx >= 1.10
- matplotlib >= 1.4.3

Summary

Contributions:

- Extending the subdivision algorithm beyond straight-line
- A prototype of the implementation

TODO:

- implementation efficiency speed
- degenerate cases
- subdivision overlay (i.e. intersection)

Summary

Contributions:

- Extending the subdivision algorithm beyond straight-line
- A prototype of the implementation

TODO:

- implementation efficiency speed
- degenerate cases
- subdivision overlay (i.e. intersection)

Summary

Contributions:

- Extending the subdivision algorithm beyond straight-line
- A prototype of the implementation

TODO:

- implementation efficiency speed
- degenerate cases
- subdivision overlay

Future work

- Identifying degenerate casesDynamic subdivision
- Subdivision overlay intersection, ...

Future work

Challenges

- Identifying degenerate cases
- Dynamic subdivision
- Subdivision overlay intersection, ...

Implementation

- Handling degenerate cases,
- Including more practical curves
 - rays (half-line) and line segments
 - rarcs, ellipses, ...
- Extending the implementation to include "subdivision overlay",

Future work

Challenges

- Identifying degenerate cases
- · Dynamic subdivision
- Subdivision overlay intersection, ...

Implementation

- Handling degenerate cases,
- Including more practical curves
 - rays (half-line) and line segments
 - ✓ arcs, ellipses, ...
- Extending the implementation to include "subdivision overlay",

In Application

- Deploying in a multi-layer semantic map, (also documenting a proper API)
- Integrating robotics related feature,
 - collision detection,
 - path planning libraries,...

Thank you