Ferienkurs Analysis 2 für Physiker	Name:	
Sommersemester 2018		
Probeklausur	Matrikelnummer:	
21.09.18		
Prüfungsdauer: 90 Minuten		

Die Klausur enthält ${\bf 9}$ Seiten (einschließlich dieses Deckblattes) sowie ${\bf 8}$ Fragen. Sie können insgesamt ${\bf 69}$ Punkte erreichen.

Einzig erlaubtes Hilfsmittel ist ein, wenn notwendig beidseitig, handbeschriebenes DIN-A4 Blatt. Insbesondere dürfen keine Fachbücher & Skripte sowie elektronischen Hilfsmittel jeder Art (z.B. Handy, Taschenrechner, Laptop,...) verwendet werden.

Bewertungstabelle

On the contract of the contrac									
Aufgabe:	1	2	3	4	5	6	7	8	\sum
Punkte:	9	9	8	4	7	6	12	14	69
Ergebnis:									

Note:	

Viel Erfolg!

1. $\boxed{9 \; Punkte} \; \text{Sei} \; \Phi : Q \to \mathbb{R}^2,$

$$\Phi(x,y) = \begin{pmatrix} \ln\left(\frac{x}{y}\right) \\ 2\sqrt{xy} \end{pmatrix},$$

wobei $Q := \{(x, y) \in \mathbb{R}^2 \, | \, x > 0 \text{ und } y > 0 \}.$

(a) Bestimmen Sie die Ableitung von Φ :

- (b) Kreuzen Sie die richtigen Antworten an:
 - \square Φ ist stetig.
 - \square Φ ist stetig partiell differenzierbar.
 - \square $D\Phi(x,y)$ ist invertierbar.
 - \square $D\Phi(x,y)$ is symmetrisch.
 - \square Φ ist ein lokaler Diffeomorphismus.
 - $\Box \det D\Phi(x,y) = 0.$
 - $\square \Phi(V)$ mit $V := \{(x,y) \in Q \mid x=y\}$ eine eine eindimensionale Untermannigfaltigkeit.
 - $\Box \ \Phi(V)$ mit $V:=\{(x,y)\in Q\,|\, x=y\}$ eine eine zweidimensionale Untermannigfaltigkeit.

2. $\boxed{9 \; Punkte}$ Gegeben sei die Kurve $\gamma:(0,1) \to \mathbb{R}^3$,

$$\gamma(t) = \begin{pmatrix} \sqrt{1+t^2} \\ 3 \\ \sqrt{1+t^2} \end{pmatrix}.$$

- (a) Bestimmen Sie die Bogenlänge von γ .
- (b) Sei $I \subset \mathbb{R}$ ein mehrpunktiges Intervall und $\varphi : I \to (0,1)$ eine \mathcal{C}^1 -Parametertransformation. Beweisen Sie, dass $\tilde{\gamma} := \gamma \circ \varphi$ die gleiche Bogenlänge wie γ hat.

- 3. 8 Punkte Wir betrachten die Funktion $f: \mathbb{R}^{n \times n} \to \mathbb{R}, f(A) = \det A$.
 - (a) Warum ist f überall differenzierbar?
 - (b) Zeigen Sie, dass $f'_1(H) = \operatorname{tr} H$ für alle $H \in \mathbb{R}^{n \times n}$. Hinweise: 1. Sie dürfen benutzen, dass wenn $f: U \to \mathbb{R}$, $U \subset \mathbb{R}^{n \times n}$ offen, differenzierbar ist in $A \in U$, dann

$$f'_A(H) = \lim_{t \to 0} \frac{f(A + tH) - f(A)}{t}.$$

2. Für das charakteristische Polynom $p_A(\lambda)$ einer Matrix $A \in \mathbb{R}^{n \times n}$ gilt, dass

$$p_A(\lambda) = \lambda^n + \operatorname{tr}(A)\lambda^{n-1} + c_{n-2}(A)\lambda^{n-2} + \dots + c_1(A)\lambda + \det A$$

 $f\ddot{u}r\ c_1(A),\ldots,c_{n-1}(A)\in\mathbb{R}.$

(c) Sei $A \in \mathbb{R}^{n \times n}$ invertierbar. Zeigen Sie, dass $f'_A(H) = \det(A) \operatorname{tr}(A^{-1}H)$. Hinweis: Führen Sie die Aufgabe auf den Teil (b) zurück.

4. $\boxed{4 \; Punkte}$ Seien $f: \mathbb{R}^2 \to \mathbb{R}$ und $g: \mathbb{R} \to \mathbb{R}$ differenzierbare Funktionen. Bestimmen Sie die Ableitung der Funktion $F: \mathbb{R} \to \mathbb{R}$,

$$F(x) := f(x, g(x)),$$

in Termen der (partiellen) Ableitungen von f und g. Begründen Sie Ihre Antwort.

5. $\boxed{7 \; Punkte}$ Gegeben sei das Vektorfeld $v: \mathbb{R}^2 \setminus \{0\} \to \mathbb{R}^2$,

$$v(x) = f(|x|) \frac{x}{|x|},$$

mit $f:(0,\infty)\to\mathbb{R}$ differenzierbar.

(a) Bestimmen Sie die Rotation von v:

(b) Ein Punktteilchen bewegt sich im Vektorfeld v mit konstanter Geschwindigkeit auf dem Kreis um $0 \in \mathbb{R}^2$ mit Radius 1. Bestimmen Sie das Arbeitsintegral für einen Kreisumlauf im mathematisch positiven Sinne. Begründen Sie Ihre Antwort.

6. 6 Punkte Sei $f: \mathbb{R}^2 \to \mathbb{R}$ eine in $a = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ differenzierbare Funktion mit f(a) = 2. Die Richtungsableitung von f in a lautet:

$$D_v f(a) = \begin{cases} 3 & \text{für } v = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \\ 1 & \text{für } v = \begin{pmatrix} 1 \\ -1 \end{pmatrix}. \end{cases}$$

Bestimmen Sie das Taylorpolynom erster Ordnung von f um a. Begründen Sie Ihre Antwort.

7. 12 Punkte Bestimmen Sie die lokalen Minima und Maxima der Funktion $f: \mathbb{R}^2 \to \mathbb{R}$,

$$f(x,y) = x^2 + 2y^2 - x$$

auf:

- (a) der offenen Einheitskreisscheibe $E:=\{(x,y)\in\mathbb{R}^2\,|\,x^2+y^2<1\}.$
- (b) dem Rand ∂E der offenen Einheitskreisscheibe.

8. 14 Punkte Gegeben sei die folgende Differentialgleichung

$$x'(t) - x(t)\cos(t) = f(t)$$

mit $f:\mathbb{R}\to\mathbb{R}$ stetig. Bestimmen Sie die allgemeine reelle Lösung für

- (a) f(t) = 0.
- (b) $f(t) = \cos(t)$.

Zeichnen Sie ferner im Fall (a) das zugehörige Richtungsfeld der Differentialgleichung und geben Sie ein erstes Integral an.