

Машинное обучение и нейросетевые модели

Лекция 2. Байесовские методы в машинном обучении

Лектор: Кравченя Павел Дмитриевич

Волгоград 2025

План лекции

- 1. Основные понятия классического машинного обучения.
- 2. Классический и байесовский подходы к машинному обучению.
- 3. Принципы максимальных правдоподобия и апостериорной вероятности.
- 4. Частотный и байесовский подходы к описанию событий в ML.
- 5. Основная проблема байесовского подхода.
- 6. Оценка интегралов методами Монте-Карло.
- 7. Понятия и виды семплирования случайных величин. Forward sampling.
- 8. Фреймворк вероятностного программирования Руго.
- 9. Реализация вероятностной модели с помощью Pyro.
- 10. Реализация сторонних эффектов в Руго. Понятие «трасс».

Классическое машинное обучение. Основные понятия

- Объектом называется <u>сущность</u>, к которой применяется алгоритм ML.
- **Признаками** называются некоторые <u>характеристики</u> объекта, набор которых определяет объект в задачах машинного обучения.
- Набор объектов и соответствующих им признаков представляет собой матрицу «объекты-признаки»:

$$\mathbf{X} = \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ \vdots & \ddots & \vdots \\ x_{n1} & \cdots & x_{nm} \end{pmatrix} \in \mathbb{X}, \qquad \mathbb{X} = \mathbb{R}^{n \times m}$$

rge n - количество объектов, <math>m - количество признаков каждого объекта.

• В задачах обучения «*с учителем*» определяется вектор **меток** для множества объектов:

$$\mathbf{t}=(t_1\quad t_2\quad \cdots\quad t_n)^{\mathrm{T}}\in\mathbb{T}, \qquad \mathbb{T}=\mathbb{R}^n$$
 или $\mathbb{T}=\{c_0,c_1,\ldots,c_K\}^n$

Классическое машинное обучение. Основные понятия

- Датасет, для всех объектов которого определены как признаки, так и метки, называется обучающей выборкой.
- Предсказываемый системой машинного обучения результат называется целевой переменной:

$$\mathbf{y} = (y_1 \quad y_2 \quad \cdots \quad y_n)^{\mathrm{T}} \in \mathbb{Y}, \qquad \mathbb{Y} = \mathbb{R}^n \text{ или } \mathbb{Y} = \{c_0, c_1, \dots, c_K\}^n$$

- **Алгоритмом**, или <u>моделью</u> ML, называется функция: $a: \mathbb{X} \to \mathbb{Y}$.
- Как правило, при решении задачи задают определенный *класс функций* модели с точностью до <u>параметров</u> $\mathbf{w} = (w_0, w_1, ..., w_m)$: $\mathbf{y} = a(\mathbf{X}, \mathbf{w})$.
- Качество работы модели на <u>одном объекте</u> из *обучающей выборки* оценивают с помощью **функции ошибки**: $L(y,t) \in \mathbb{R}_+$.
- Функция ошибки равна нулю, если предсказанное значение равно метке. Чем сильнее отличаются у и t, тем больше значение функции ошибки.

Классическое машинное обучение. Основные понятия

Качество работы модели на всей обучающей выборке размера попределяют с использованием эмпирического риска:

$$Q(\mathbf{X}, \mathbf{t}, \mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} L[a(\mathbf{x}_i, \mathbf{w}), t_i].$$

- Принцип минимума эмпирического риска выражает факт того, что лучшим образом обученная модель должна соответствовать минимально возможному значению эмпирического риска.
- **Обучить модель** с точки зрения <u>классического машинного обучения</u> означает получить значения <u>весов модели</u>, при которых она достигает <u>минимального</u> значения эмпирического риска:

$$\mathbf{w}_{opt} = \underset{\mathbf{w} \in \mathbb{W}}{\min}[\mathbf{Q}(\mathbf{X}, \mathbf{t}, \mathbf{w})] = \underset{\mathbf{w} \in \mathbb{W}}{\arg\min} \left[\sum_{i=1}^{n} \mathbf{L}[a(\mathbf{x}_i, \mathbf{w}), t_i] \right].$$

Классический и байесовский подходы к машинному обучению

Классический подход к ML	Байесовский подход к ML
1. <u>Модель</u> :	
$\mathbf{y} = \mathbf{X}\mathbf{w} \iff \begin{array}{c} y_i = w_n x_{i,m} + w_{m-1} x_{i,m-1} + \dots + w_1 x_{i1} + w_0 \\ \forall i \in [1n] \end{array}$	
2. Датасеты: $train$: $D = (X, t)$, $test$: $D^{pr} = (X^{pr})$	
3. <u>Обучение: минимизация эмпирического риска</u> :	
$\mathbf{w}_{opt} = \underset{\mathbf{w} \in \mathbb{W}}{\operatorname{arg min}} \left[\sum_{i=1}^{n} L[a(x_i, \mathbf{w}), t_i] \right]$	

Минимизация эмпирического риска как максимизация правдоподобия

Пусть модель имеет ошибку, распределенную *нормально*:
$$\mathbf{t} = \mathcal{N}(\mathbf{y}, \sigma \mathbb{I}) \ \Rightarrow \ p(\mathbf{t} \mid \mathbf{X}, \mathbf{t}, \mathbf{w}) = \frac{1}{2\pi\sqrt{\sigma}} \cdot e^{\frac{[a(\mathbf{X}, \mathbf{w}) - \mathbf{t}]^2}{2\sigma^2}}$$

Запишем правдоподобие модели для датасета $\mathbf{\mathcal{D}} = (\mathbf{X}, \mathbf{t}) = \{\mathbf{x}_i, t_i\}_{i=1}^m$:

$$p(\mathbf{D} \mid \mathbf{w}) = p(\mathbf{t} \mid \mathbf{X}, \mathbf{w}) = \prod_{i=1}^{n} p(t_i \mid \mathbf{x}_i, \mathbf{w}) = \left(\frac{1}{2\pi\sqrt{\sigma}}\right)^n \cdot \prod_{i=1}^{n} e^{-\frac{[a(x_i, \mathbf{w}) - t_i]^2}{2\sigma^2}}$$

Запишем логарифм правдоподобия с целью избавиться от произведений:

$$\log[p(\mathbf{D} \mid \mathbf{w})] = n \cdot \log\left(\frac{1}{2\pi\sqrt{\sigma}}\right) - \frac{1}{2\sigma^2} \sum_{i=1}^{n} [a(x_i, \mathbf{w}) - t_i]^2$$
$$\log[p(\mathbf{D} \mid \mathbf{w})] \to \max_{\mathbf{w} \in \mathbb{W}} \iff \frac{1}{n} \cdot \sum_{i=1}^{n} [a(x_i, \mathbf{w}) - t_i]^2 \to \min_{\mathbf{w} \in \mathbb{W}}$$

Классический и байесовский подходы к машинному обучению

Классический подход к ML	Байесовский подход к ML
1. <u>Модель</u> :	
$\mathbf{y} = \mathbf{X}\mathbf{w} \iff \begin{array}{c} y_i = w_n x_{i,m} + w_{m-1} x_{i,m-1} + \dots + w_1 x_{i1} + w_0 \\ \forall i \in [1n] \end{array}$	
2. <u>Датасеты:</u> train: $\mathbf{\mathcal{D}}=(\mathbf{X},\mathbf{t})$, test: $\mathbf{\mathcal{D}}^{pr}=(\mathbf{X}^{pr})$	
3. <u>Обучение: минимизация эмпирического риска</u> :	
$\mathbf{w}_{opt} = \underset{\mathbf{w} \in \mathbb{W}}{\arg\min} \left[\sum_{i=1}^{n} L[a(x_i, \mathbf{w}), t_i] \right]$	
эквивалентна максимизации правдоподобия:	
$\mathbf{w}_{\text{opt}} = \underset{\mathbf{w} \in \mathbb{W}}{\text{arg max}} \left[\prod_{i=1}^{n} p(t_i \mid x_i, \mathbf{w}) \right] = \underset{\mathbf{w} \in \mathbb{W}}{\text{arg max}} (P(\mathbf{t} \mid \mathbf{X}, \mathbf{w}))$	
Решается аналитически / градиентными методами.	
4. Предсказание по обученной модели:	
$\mathbf{y}^{\mathrm{pr}} = a(\mathbf{X}^{\mathrm{pr}}, \mathbf{w}_{opt}) = \mathbf{X}^{\mathrm{pr}} \mathbf{w}_{\mathrm{opt}}$	

- 1. Определимся, какие величины, входящие в модель, будут **случайными**, а какие **детерминированными**.
 - ✓ <u>Случайные</u> величины имеют **распределение**, в то время как <u>детерминированные</u> представлены конкретным значением.
 - ✓ Нужно определить, какие величины в модели мы будем моделировать. Далее, нужно понять, для каких величин в модели важно и нужно распределение, и мы готовы его определять, а для каких достаточно численного значения.
 - ✓ Случайные величины, конкретную реализацию которых <u>можно получить из данных</u> (датасета), будут **наблюдаемыми**, остальные **латентными**.
 - ✓ В модели должны присутствовать как <u>наблюдаемые</u>, так и <u>латентные</u> величины. Чаще всего, латентными величинами являются <u>определяемые параметры</u> модели.

Пример: линейная регрессия.

- ✓ **Признаки** Х считаются известными <u>детерминированными значениями</u>, которые служат входными данными для модели. Их обычно <u>не моделируют</u>, поскольку они заданы в <u>датасете</u>.
 - Но если признак <u>пропущен в модели</u>, и сама модель используется для его оценки, то его потребуется промоделировать. Тогда, признак становится <u>случайной величиной</u>.

- ✓ **Целевая переменная у** определена только для обучающей выборки, но на этапе предсказаний её нужно получить из модели. Моделируем её <u>случайной величиной</u>, которая на этапе обучения будет <u>наблюдаемой</u>, а на этапе предсказаний <u>латентной</u>.
- ✓ Параметры регрессии w <u>связывают</u> целевую переменную с признаками и содержат некоторую <u>степень неопределённости</u>. Параметры регрессии требуется моделировать, рассматриваем их как <u>латентные случайные величины</u>.
- 2. Записываем **совместное распределение** случайных величин и выражаем его в общем виде через <u>правдоподобие</u> и <u>априорные вероятности</u>.

$$p(\mathbf{w}, \mathbf{D}) = p(\mathbf{D} \mid \mathbf{w}) \cdot p(\mathbf{w}).$$

- **3. Конкретизируем** записанные <u>правдоподобие</u> и <u>априорные вероятности</u> для <u>конкретной, рассматриваемой модели</u>, учитываем <u>её особенности</u>.

 <u>Пример</u>: линейная регрессия.
 - ✓ <u>Совместное распределение</u> целевой переменной и весов запишется в виде:

$$p(\mathbf{w}, \mathbf{y}, \mathbf{X}) = p(\mathbf{y} \mid \mathbf{w}, \mathbf{X}) \cdot p(\mathbf{w}).$$

✓ Будем считать, что в серии экспериментов целевая переменная для каждого объекта **не зависит** от других объектов, т.е. условная плотность распределения целевой переменной факторизуется:

$$p(\mathbf{y} \mid \mathbf{w}, \mathbf{X}) = \prod_{i=1}^{n} p(y_i \mid \mathbf{w}, \mathbf{x}_i).$$

- ✓ Здесь случайные величины y_i являются **локальными**, поскольку относятся к <u>конкретным</u> <u>наблюдениям</u>, а величина **w глобальная**, поскольку описывает характеристики <u>всего датасета</u>.
- ✓ Положим, что каждая целевая переменная имеет <u>нормальное распределение</u> со <u>средним</u>, которое определяется как <u>линейная комбинация весов регресии и признаков</u>, и <u>параметром</u> <u>среднеквадратическим отклонением</u> σ:

$$p(y_i \mid \mathbf{w}, \mathbf{x}_i) = \mathcal{N}(\mu_i, \sigma^2); \qquad \qquad \mu_i = (\mathbf{X}\mathbf{w})_i = \sum_{j=1}^n w_j x_{ij} + w_0.$$

✓ Каждый из признаков <u>независимо от других</u> входит в модель; логично положить, что все <u>веса регрессии</u> для всех m признаков также **независимы** друг от друга:

$$p(\mathbf{w}) = \prod_{j=1}^{m} p(w_j) \cdot p(w_0).$$

- \checkmark Теперь нужно задать <u>априорные распределения весов</u> модели $p(w_0), p(w_1), ..., p(w_m)$. Априорные распределения задают наши изначальные представления о распределении весов.
- ✓ Априорные распределения могут быть <u>информативными</u> и <u>неинформативными</u>.
- ✓ **Информативное** распределение отражает <u>сильные предварительные убеждения</u> о значении параметра. Например, мы из личного опыта знаем, <u>какие примерно значения</u> может принимать вес линейной регрессии в конкретной задаче.
- ✓ Неинформативное распределение отражает минимальные предварительные убеждения о значении параметра. Например, полагает одинаковую вероятность весов в некоторой области.
- ✓ Пусть, наши <u>предварительные знания</u> позволяют нам использовать только <u>неинформативное</u> <u>распределение</u>, например:

$$p(w_i) = \mathcal{N}(0, \sigma_0^2) \quad \forall i \in [0, m], \quad \sigma_0 \in \mathbb{R}_+.$$

√ Таким образом, мы задали байесовскую модель <u>линейной регрессии</u>:

$$p(\mathbf{w}, \mathbf{y}, \mathbf{X}) = \prod_{i=1}^{n} p(y_i \mid \mathbf{w}, \mathbf{x}_i) \cdot \prod_{j=1}^{m} p(w_j) \cdot p(w_0). \qquad \mu_i = \sum_{j=1}^{m} w_j x_{ij} + w_0;$$

$$p(y_i \mid \mathbf{w}, \mathbf{x}_i) = \mathcal{N}(\mu_i, \sigma^2); \qquad p(w_j) = \mathcal{N}(0, \sigma_0^2) \quad \forall i \in [0, m], \quad \sigma_0 \in \mathbb{R}_+.$$

- Определить байесовскую модель это означает определить совместное распределение случайных величин, входящих в неё: $p(\mathbf{w}, \mathbf{\mathcal{D}})$.
- В модели задаются априорные распределения латентных случайных величин, которые, после того, как мы пронаблюдали данные, изменятся в соответствии с теоремой Байеса:

$$p(\mathbf{w} \mid \mathbf{D}) = \frac{p(\mathbf{D} \mid \mathbf{w}) \cdot p(\mathbf{w})}{\int_{S} p(\mathbf{D} \mid \mathbf{w}) \cdot p(\mathbf{w}) d\mathbf{w}}.$$

- Процесс вычисления <u>апостериорных распределений латентных величин</u> называется байесовским инференсом.
- Инференс относится к этапу <u>обучения модели</u>. Он предполагает получение <u>распределений весов</u>, с которыми модель <u>с заданными правдоподобием</u> и <u>априорными распределениями весов</u>, описывающих наши <u>изначальные</u> <u>знания, эффективно описывает наблюдаемые данные</u>.

Получение предсказания по байесовской модели

- Как правило, задача предсказания по байесовской модели заключается в определении распределения случайных переменных, которые во время инференса были наблюдаемыми, а теперь стали латентными. Например, целевая переменная на тестовом множестве.
- Эта задача сводится к определению <u>предиктивного распределения</u>.
- Предиктивным называют распределение <u>ненаблюдаемой переменной</u> \mathbf{y}^{pr} при условии <u>наблюдаемых данных</u> $\mathbf{\mathcal{D}}^{pr}$ и <u>обучающих данных</u> $\mathbf{\mathcal{D}}$:

$$p(\mathbf{y}^{\mathrm{pr}} \mid \mathbf{\mathcal{D}}^{\mathrm{pr}}, \mathbf{\mathcal{D}}) = \int_{\mathbf{w}} p(\mathbf{\mathcal{D}}^{\mathrm{pr}} \mid \mathbf{w}) \cdot p(\mathbf{w} \mid \mathbf{\mathcal{D}}) d\mathbf{w} = \mathbb{E}_{\mathbf{W} \sim p(\mathbf{w} \mid \mathbf{\mathcal{D}})} [p(\mathbf{\mathcal{D}}^{\mathrm{pr}} \mid \mathbf{w})].$$

<u>Пример</u>: линейная регрессия с <u>правдоподобием</u> $p(y \mid w, X)$ и <u>апостериорным распределением весов</u> $p(w \mid y, X)$:

$$p(\mathbf{y}^{\mathrm{pr}}|\mathbf{X}^{\mathrm{pr}},\mathbf{y},\mathbf{X}) = \int_{\mathbf{w}} p(\mathbf{y}^{\mathrm{pr}}|\mathbf{X}^{\mathrm{pr}},\mathbf{w}) \cdot p(\mathbf{w}|\mathbf{y},\mathbf{X}) d\mathbf{w} = \mathbb{E}_{\mathbf{W} \sim p(\mathbf{w}|\mathbf{y},\mathbf{X})}[p(\mathbf{y}^{\mathrm{pr}}|\mathbf{X}^{\mathrm{pr}},\mathbf{w})].$$

Классический и байесовский подходы к машинному обучению

Классический подход к ML

1. <u>Модель</u>:

$$\mathbf{y} = \mathbf{X}\mathbf{w} \iff \begin{array}{c} y_i = w_n x_{i,m} + w_{m-1} x_{i,m-1} + \dots + w_1 x_{i1} + w_0 \\ \forall i \in [1..n] \end{array}$$

- 2. Датасеты: train: $\mathcal{D} = (\mathbf{X}, \mathbf{t})$, test: $\mathcal{D}^{pr} = (\mathbf{X}^{pr})$
- 3. Обучение: минимизация эмпирического риска:

$$\mathbf{w}_{opt} = \underset{\mathbf{w} \in \mathbb{W}}{\operatorname{arg min}} \left[\sum_{i=1}^{n} L[a(x_i, \mathbf{w}), t_i] \right]$$

эквивалентна максимизации правдоподобия:

$$\mathbf{w}_{\text{opt}} = \underset{\mathbf{w} \in \mathbb{W}}{\text{arg max}} \left[\prod_{i=1}^{n} p(t_i \mid x_i, \mathbf{w}) \right] = \underset{\mathbf{w} \in \mathbb{W}}{\text{arg max}} (P(\mathbf{t} \mid \mathbf{X}, \mathbf{w}))$$

Решается аналитически / градиентными методами.

4. Предсказание по обученной модели:

$$\mathbf{y}^{\mathrm{pr}} = a(\mathbf{X}^{\mathrm{pr}}, \mathbf{w}_{opt}) = \mathbf{X}^{\mathrm{pr}} \mathbf{w}_{\mathrm{opt}}$$

Байесовский подход к ML

Модель:

$$p(\mathbf{y}, \mathbf{X}, \mathbf{w}) = p(\mathbf{y} \mid \mathbf{X}, \mathbf{w}) p(\mathbf{w}) = p(\mathbf{w}) \prod_{i=1}^{n} p(y_i \mid \mathbf{x}_i, \mathbf{w})$$

$$p(w_j) = \mathcal{N}(0, \sigma_0^2),$$

$$p(y_i \mid \mathbf{x}_i, \mathbf{w}) = \mathcal{N}(\mathbf{x}_i \cdot \mathbf{w}, \sigma^2) \quad \forall j \in [0..m]$$

- 2. Датасеты: train: $\mathbf{\mathcal{D}} = (\mathbf{X}, \mathbf{y})$, test: $\mathbf{\mathcal{D}}^{pr} = (\mathbf{X}^{pr})$
- 3. <u>Обучение: определение апостериорных</u> вероятностей весов модели по теореме Байеса:

$$p(\mathbf{w} \mid \mathbf{y}, \mathbf{X}) = \frac{p(\mathbf{y} \mid \mathbf{X}, \mathbf{w})p(\mathbf{w})}{\int p(\mathbf{y} \mid \mathbf{X}, \mathbf{w})p(\mathbf{w})d\mathbf{w}}$$

Решается процедурой байесовского инференса.

4. <u>Предсказание по обученной модели</u>:

$$p(\mathbf{y}^{\text{pr}}|\mathbf{X}^{\text{pr}},\mathbf{y},\mathbf{X}) = \int p(\mathbf{y}^{\text{pr}}|\mathbf{X}^{\text{pr}},\mathbf{w})p(\mathbf{w}|\mathbf{y},\mathbf{X})d\mathbf{w}$$

• Вычислим вместо апостериорного распределения весов их *значения*, при которых достигается *максимум распределения*:

$$\mathbf{w}_{opt}^{MAP} = \underset{\mathbf{w} \in \mathbb{W}}{\text{arg max}}[p(\mathbf{w} \mid \mathbf{y}, \mathbf{X})] = \underset{\mathbf{w} \in \mathbb{W}}{\text{arg max}}[p(\mathbf{y} \mid \mathbf{X}, \mathbf{w})p(\mathbf{w})]$$

- Получили точечную оценку из принципа максимального апостериорного распределения. В ряде случаев, оценка может быть нерепрезентативной.
- Пусть мы не знаем априорное распределение весов. Предположим, что веса распределены равномерно, т.е. $w_i \sim \mathcal{U}(a,b)$. Тогда принцип *MAP* примет вид:

$$\mathbf{w}_{opt}^{MLE} = \arg\max_{\mathbf{w} \in \mathbb{W}} \left[\frac{1}{b-a} \cdot p(\mathbf{y} \mid \mathbf{X}, \mathbf{w}) \right] = \arg\max_{\mathbf{w} \in \mathbb{W}} [p(\mathbf{y} \mid \mathbf{X}, \mathbf{w})]$$

• Получили принцип максимального правдоподобия, применяющийся при точечной оценке весов в классическом машинном обучении.

• Рассмотрим записанную ранее <u>модель линейной регрессии</u> с априорными распределениями весов и правдоподобием в виде:

$$p(\mathbf{y} \mid \mathbf{X}, \mathbf{w}) = \prod_{i=1}^{n} \mathcal{N}(y_i; \mathbf{x}_i \cdot \mathbf{w}, \sigma^2), \qquad p(\mathbf{w}) = \prod_{j=1}^{m} \mathcal{N}(w_j; 0, \sigma_0).$$

• Тогда оценка максимального правдоподобия выразится таким образом:

$$\mathbf{w}_{opt}^{MLE} = \arg\max_{\mathbf{w} \in \mathbb{W}} [p(\mathbf{w}) \cdot p(\mathbf{y} \mid \mathbf{X}, \mathbf{w})] = \arg\max_{\mathbf{w} \in \mathbb{W}} \left[\prod_{j=1}^{m} \mathcal{N}(w_j; 0, \sigma_0) \cdot \prod_{i=1}^{n} \mathcal{N}(y_i; \mathbf{x}_i \cdot \mathbf{w}, \sigma^2) \right] =$$

$$= \arg\max_{\mathbf{w} \in \mathbb{W}} \left[\log \left(\prod_{j=1}^{m} \mathcal{N}(w_j; 0, \sigma_0) \cdot \prod_{i=1}^{n} \mathcal{N}(y_i; \mathbf{x}_i \cdot \mathbf{w}, \sigma^2) \right) \right] =$$

$$= \underset{\mathbf{w} \in \mathbb{W}}{\operatorname{arg max}} \left[\log \left(\prod_{j=1}^{m} \mathcal{N}(w_{j}; 0, \sigma_{0}) \right) + \log \left(\prod_{i=1}^{n} \mathcal{N}(y_{i}; \mathbf{x}_{i} \cdot \mathbf{w}, \sigma^{2}) \right) \right] =$$

$$= \underset{\mathbf{w} \in \mathbb{W}}{\operatorname{arg max}} \left[\sum_{j=1}^{m} \log \mathcal{N}(w_{j}; 0, \sigma_{0}) + \sum_{i=1}^{n} \log \mathcal{N}(y_{i}; \mathbf{x}_{i} \cdot \mathbf{w}, \sigma^{2}) \right] =$$

$$= \underset{\mathbf{w} \in \mathbb{W}}{\operatorname{arg max}} \left[\sum_{j=1}^{m} \log \left(\frac{1}{\sqrt{2\pi}\sigma_{0}} \cdot e^{-\frac{w_{j}^{2}}{2\sigma_{0}}} \right) + \sum_{i=1}^{n} \log \left(\frac{1}{\sqrt{2\pi}\sigma} \cdot e^{-\frac{(y_{i} - \mathbf{x}_{i} \cdot \mathbf{w})^{2}}{2\sigma}} \right) \right] =$$

$$= \underset{\mathbf{w} \in \mathbb{W}}{\operatorname{arg max}} \left[m \cdot \log \left(\frac{1}{\sqrt{2\pi}\sigma_{0}} \right) - \frac{1}{2\sigma_{0}} \sum_{j=1}^{m} w_{j}^{2} + n \cdot \log \left(\frac{1}{\sqrt{2\pi}\sigma} \right) - \frac{1}{2\sigma} \sum_{i=1}^{n} (y_{i} - \mathbf{x}_{i} \cdot \mathbf{w})^{2} \right] =$$

$$= \underset{\mathbf{w} \in \mathbb{W}}{\operatorname{arg \, min}} \left[\frac{1}{2\sigma_0} \sum_{j=1}^m w_j^2 + \frac{1}{2\sigma} \sum_{i=1}^n (y_i - \mathbf{x}_i \cdot \mathbf{w})^2 \right] = \underset{\mathbf{w} \in \mathbb{W}}{\operatorname{arg \, min}} \left[\frac{1}{2\sigma} \cdot \left(\frac{\sigma}{\sigma_0} \sum_{j=1}^m w_j^2 + \sum_{i=1}^n (y_i - \mathbf{x}_i \cdot \mathbf{w})^2 \right) \right] = \underset{\mathbf{w} \in \mathbb{W}}{\operatorname{arg \, min}} \left[\frac{\sigma}{\sigma_0} \sum_{j=1}^m w_j^2 + \sum_{i=1}^n (y_i - \mathbf{x}_i \cdot \mathbf{w})^2 \right] = \underset{\mathbf{w} \in \mathbb{W}}{\operatorname{arg \, min}} \left[L_{\text{reg}}(\mathbf{w}) + \sum_{i=1}^n L[a(x_i, \mathbf{w}), y_i] \right].$$

- Получили L_2 -регуляризацию: $L_{\text{reg}}(\mathbf{w}) = \alpha \cdot \sum_{j=1}^m w_j^2$, $\alpha = \frac{\sigma}{\sigma_0}$.
- Таким образом, <u>заданное априорное распределение</u> в байесовской модели имеет смысл <u>регуляризации в классической модели</u>, причём <u>семейство распределения</u> задаёт <u>вид регуляризационного</u> слагаемого.
- Можно показать, что априорное распределение весов <u>по закону Лапласа</u> эквивалентно L_1 -регуляризации.

Частотный и байесовский подходы к описанию событий в ML

	Частотный подход	Байесовский подход
Интерпретация случайности в модели	Объективная неопределенность	Субъективное незнание
Величины в модели	Как случайные, так и детерминированные	Все случайные
Метод вывода неизвестных величин	Максимальное правдоподобие:	Теорема Байеса: $p(\pmb{w} \pmb{\mathcal{D}}) = \frac{p(\pmb{\mathcal{D}} \pmb{w})p(\pmb{\mathcal{D}})}{\int p(\pmb{\mathcal{D}} \pmb{w})p(\pmb{x})}$
Оценки величин	Точечные: $oldsymbol{w}_{opt}$	Апостериорное распределение: $p(\pmb{w} \pmb{\mathcal{D}})$
Применимость моделей	При больших объёмах выборки: $n\gg d$ $n-$ количество объектов выборки, $d-$ количество весов модели.	При любых объёмах выборки: ∀n

Основная проблема байесовского подхода

• *Байесовский подход* к ML предполагает расчет следующих выражений:

$$p(\mathbf{w} \mid \mathbf{y}, \mathbf{X}) = \frac{p(\mathbf{y} \mid \mathbf{X}, \mathbf{w})p(\mathbf{w})}{\int p(\mathbf{y} \mid \mathbf{X}, \mathbf{w})p(\mathbf{w})d\mathbf{w}}$$
$$p(\mathbf{y}^{\text{pr}} \mid \mathbf{X}^{\text{pr}}, \mathbf{y}, \mathbf{X}) = \int p(\mathbf{y}^{\text{pr}} \mid \mathbf{X}^{\text{pr}}, \mathbf{w})p(\mathbf{w} \mid \mathbf{y}, \mathbf{X})d\mathbf{w}$$

- <u>Основную проблему</u> при выполнении инференса представляет собой вычисление значения *интеграла*.
- Данный интеграл считается «intractable»:
 - ✓ Аналитически данный интеграл можно рассчитать только в некоторых частных случаях.
 - ✓ Численно данный интеграл нельзя вычислить с разумными вычислительными затратами для большинства реальных моделей.
- Для вычисления или оценки значения данного интеграла приходится использовать <u>специальные методы</u>.

Аналитический расчет апостериорного распределения

- <u>Аналитическое</u> вычисление апостериорного распределения в теореме Байеса возможно только в очень ограниченном числе случаев, когда <u>правдоподобие</u> и <u>априорное распределение</u> имеют специальные формы: так называемых <u>сопряженных распределений</u>.
- Если априорное распределение $p(\mathbf{w})$ является **сопряженным** к функции правдоподобия $p(\mathbf{D} \mid \mathbf{w})$, то <u>апостериорное распределение</u> $p(\mathbf{w} \mid \mathbf{D})$ принадлежит <u>к тому же семейству распределений</u>, что и априорное распределение.
- Это означает, что <u>апостериорное</u> распределение может быть получено путем **обновления параметров** <u>априорного</u> распределения на основе наблюдаемых данных. Расчет сложного интеграла при этом <u>не требуется</u>.
- Однако, *сопряженные* априорные распределения доступны только для <u>ограниченного числа моделей</u>, что ограничивает их применение.

Таблица некоторых сопряжённых распределений

Априорное распределение	Функция правдоподобия	Апостериорное распределение
Бета: $Beta(x;\alpha,\beta)$	Бернулли: $\mathcal{B}(\mathbf{x};p) = \prod_{i=1}^n p^{x_i} \cdot (1-p)^{1-x_i}$	$lpha' = lpha + \sum_{i=1}^n x_i$, $eta' = eta + n - \sum_{i=1}^n x_i$. $lpha$ увеличивается на число успехов, eta увеличивается на число неудач.
Дирихле: $\mathcal{Dir}(\mathbf{x}; \pmb{lpha})$	Категориальное: $\mathcal{C}at(x;k,\pmb{p}) = \prod_{i=1}^n \prod_{j=1}^k p^{x_{ik}}$	${{lpha_j}'}={lpha_j}+n_k$ Параметры обновляются добавлением числа наблюдений для каждого j .
Гамма: $\mathcal{G}(x;k, heta)$	Пуассона: $\mathcal{P}ois(x;\lambda) = \prod_{i=1}^n \frac{\lambda^{x_i}}{x_i!} e^{-\lambda}$	$k' = k + \sum_{i=1}^{n} x_i$, $\theta' = \frac{\theta}{n\theta + 1}$.
Нормальное: $\mathcal{N}(x;\mu_0,\sigma_0^2)$	Нормальное с известной σ^2 : $\mathcal{N}(x;\mu,\sigma^2) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}\sigma} \cdot e^{-\frac{(x_i-\mu)^2}{2\sigma^2}}$	$\mu_0' = \frac{\frac{\mu_0}{\sigma_0^2} + \frac{\sum_{i=1}^n x_i}{\sigma^2}}{\frac{1}{\sigma_0^2} + \frac{n}{\sigma^2}}, \qquad \sigma_0^{2'} = \frac{1}{\frac{1}{\sigma_0^2} + \frac{n}{\sigma^2}}.$

Пример аналитического расчета апостериорного распределения

- Пусть нам дана некоторая монета, и нам требуется определить, является ли она симметричной.
- Для этого её подбросили <u>10 раз</u> и зафиксировали результаты. Они приведены в таблице.
- Построим байесовскую модель эксперимента:

- √ у вектор результатов всех экспериментов (из таблицы);

$\alpha=2, \beta=2$ – гиперпараметры.		$p(y_i \mid x) = \mathcal{B}(y_i; x);$
$p(x, \mathbf{y}) = p(\mathbf{y} \mid x) \cdot p(x); p(\mathbf{y} \mid x) = \prod_{i=1}^{n} p(x_i, \mathbf{y}) = \prod_{i=1}^{n} p(x_i, \mathbf{y})$	$\int p(y_i \mid x);$	$p(x) = Beta(x; \alpha = 2, \beta = 2).$

• И <u>байесовский вывод</u>: $p(x \mid \mathbf{y}) \propto \mathcal{B}(y_i; \mathbf{x}) \cdot \mathcal{B}eta(x; \alpha, \beta) \Rightarrow p(x \mid \mathbf{y}) = \mathcal{B}eta(x; \alpha', \beta')$.

$$\alpha' = \alpha + \sum_{i=1}^{n} [y_i = \text{"Орёл"}] = 2 + 3 = 5;$$
 $\beta' = \beta + \sum_{i=1}^{n} [y_i = \text{"Решка"}] = 2 + 7 = 9;$

№ броска	Результат
1	Орёл
2	Решка
3	Орёл
4	Решка
5	Решка
6	Решка
7	Решка
8	Орёл
9	Решка
10	Решка

 $p(x \mid \mathbf{y}) = \mathcal{B}eta(x; 5, 9).$

Пример аналитического расчета апостериорного распределения

• Итак, функция правдоподобия, априорное и апостериорное распределения приняли вид: $_n$

$$p(x) = \mathcal{B}eta(x; 1, 1); \qquad p(x \mid \mathbf{y}) = \mathcal{B}eta(x; 4, 8). \qquad p(\mathbf{y} \mid x) = \prod_{i=1}^{n} \mathcal{B}(y_i; x).$$

• Видно, что *априорное распределение* <u>сместилось влево</u>.

№ броска	Результат
1	Орёл
2	Решка
3	Орёл
4	Решка
5	Решка
6	Решка
7	Решка
8	Орёл
9	Решка
10	Решка

Численный расчет интеграла для апостериорного распределения

 Численное интегрирование (например, метод трапеций, метод Симпсона) может быть использовано для аппроксимации интеграла.

- Если в одномерном случае область интегрирования разделяется на 10 областей, то в двумерном та же точность дискретизации достигается при 100 областях. Если размерность равна D, то потребуется 10^D областей.
- <u>Сложность численного интегрирования экспоненциально возрастает</u> с увеличением размерности пространства параметров (проклятие размерности). Даже для умеренных размерностей, требуемая вычислительная мощность может быть <u>огромной</u>.

- Современный подход к оценке рассмотренных интегралов предполагает использование методов Монте-Карло.
- Методами Монте-Карло считается группа численных методов, использующих *случайные величины* для оценки характеристик модели.
- Методы получили своё *название* от административной территории княжества Монако, которая славится своими *казино*.
- Можно показать, что <u>ошибка</u> метода Монте-Карло при интегрировании равна $\mathcal{O}\left(\frac{1}{\sqrt{N}}\right)$ при <u>любой размерности</u> величин, в то время как ошибка численных методов равна $\mathcal{O}\left(\frac{1}{D\sqrt{N}}\right)$ при размерности D.
- Это делает методы Монте-Карло привлекательными для решения задач высокой размерности.

Идея расчета интегралов методом Монте-Карло

• Пусть требуется рассчитать интеграл вида (площадь под кривой f(x)):

$$F = \int_{a}^{b} f(x) dx$$

• Выберем <u>равномерно случайно</u> некоторые $x_i \in [a,b]$, рассчитаем значения функции f в них и <u>усредним</u> полученные значения:

- Если <u>непосредственное</u> вычисление некоторой величины <u>затруднено</u> <u>или невозможно</u>, для её оценки можно воспользоваться <u>эстиматором</u>.
- **Эстиматором** называется функция от выборки, которая используется для оценки неизвестной величины, связанной с генеральной совокупностью.
- Если эстиматор использует случайные числа, он называется <u>эстиматором</u> Монте-Карло.
- Если <u>математическое ожидание</u> эстиматора равно <u>истинному значению</u> оцениваемой величины, эстиматор называется **несмещённым**, иначе смещённым. Смещение показывает <u>систематическую ошибку</u> эстиматора.
- **Мерой точности** эстиматора является его <u>дисперсия</u>. Чем меньше дисперсия, тем точнее (в смысле разброса) эстиматор.

• Пусть требуется рассчитать интеграл вида:

$$F = \int_{a}^{b} f(x)dx.$$

- Будем рассматривать величину X как случайную: $X \sim p(x)$
- Тогда несмещенная оценка значения интеграла методом Монте-Карло:

$$\widehat{F}_N = \frac{1}{N} \sum_{i=1}^N \frac{f(x_i)}{p(x_i)}.$$

$$\mathbb{E}[\hat{F}_N] = \mathbb{E}\left[\frac{1}{N}\sum_{i=1}^N \frac{f(x_i)}{p(x_i)}\right] = \frac{1}{N}\sum_{i=1}^N \mathbb{E}\left[\frac{f(x_i)}{p(x_i)}\right] = \frac{1}{N}\sum_{i=1}^N \int_a^b \frac{f(x)}{p(x)}p(x)dx = \frac{1}{N}\sum_{i=1}^N \int_a^b f(x)dx = \int_a^b f(x)dx = F.$$

Эстиматор Монте-Карло для оценки среднего значения

• Чаще всего в данном курсе потребуется вычислять <u>интегралы вида</u>:

$$\mathbb{E}_{p(x)}[f(x)] = \int_{a}^{b} f(x)p(x)dx.$$

• В таком случае, <u>эстиматор Монте-Карло</u> \hat{E}_N для подобного интеграла:

$$\mathbb{E}_{p(x)}[f(x)] \approx \widehat{E}_N = \frac{1}{N} \sum_{i=1}^N \frac{f(x_i)p(x_i)}{p(x_i)} = \frac{1}{N} \sum_{i=1}^N f(x_i), \qquad X \sim p(x), \qquad x_i \in [a, b].$$

 Данный способ оценки матожидания по области Ω хорошо обобщается на многомерный случай:

$$\hat{E}_N = \frac{1}{N} \sum_{i=1}^N f(\mathbf{x}_i), \qquad \mathbf{X} \sim p(\mathbf{x}), \qquad \mathbf{x}_i \in \Omega.$$

• Для вычисления данного эстиматора нужно уметь <u>семплировать</u> из $p(\mathbf{x})$.

- Под **семплированием** понимают процесс генерации <u>независимых и одинаково распределенных</u> (i.i.d.) случайных величин из заданного вероятностного распределения. Эти сгенерированные значения образуют случайную выборку: $X \sim p(x)$.
- Обычно семплирование из равномерного распределения получают с использованием генератора псевдослучайных чисел (например, Mersenne twister), реализованного в виде вычисления рекуррентного соотношения: $x_{n+1} = g(x_n), x_0 = \text{const } (seed),$ чтобы $\{x_1, x_2, ..., x_n\}$ было выборкой из $\mathcal{U}(0,1)$ с достаточной точностью.
- Семплирование из других распределений часто реализуется на основе стандартизированного равномерного распределения $\mathcal{U}(0,1)$.

Функция распределения случайной величины

- Функция распределения $F_X(x)$ (Cumulative Distribution Function (CDF)) функция, характеризующая распределение случайной величины X, равная <u>вероятности</u> того, что случайная величина примет значение < x: $F_X(x) = P(X \le x)$.
- Свойства функции распределения:
 - $\checkmark D[F_X(x)] \in (-\infty; +\infty);$
 - ✓ $E[F_X(x)] \in [0;1];$
 - $\checkmark \quad \lim_{x \to \infty} F_X(x) = 1;$
 - $\checkmark \quad \lim_{x \to -\infty} F_X(x) = 0;$
 - ✓ $F_X(x)$ неубывающая на $(-\infty; +\infty)$.

Функция равномерного распределения случайной величины

• Из курса теории вероятностей известно, что:

$$F_X(x) = \int_{-\infty}^x p(x) dx.$$

• Для равномерной случайной величины:

$$p(x) = \begin{cases} 0, & \text{if } x > b; \\ C, & \text{if } a < x \le b; \\ 0, & \text{if } x \le a. \end{cases}$$

- Согласно условию нормировки: $\int p(x) = 1 \implies C = \frac{1}{b-a}$.
- Тогда функция равномерного распределения:

$$F_X(x) = \frac{1}{b-a} \int_{-\infty}^x p(x) dx = \frac{x-a}{b-a}, \qquad \boxed{F_{X \sim \mathcal{U}(0,1)}(x) = x}$$
 при $0 \le x \le 1$.

Теорема об обратной функции распределения

• Пусть $y = F_X(x)$, где $F_X(x) - \phi$ ункция распределения некоторой случайной величины X, и $F_X^{-1}(y)$ – обратная функция распределения:

$$F_X^{-1}(y) = \inf \{ x \in \mathbb{R} : F_X(x) \ge y \}, \quad (0 \le y \le 1).$$

- Теорема. Если случайная величина Ү ~ U(0,1), то <u>случайная величина</u> $X = F_X^{-1}(Y)$, имеет функцию распределения F_X , т.е., $P(X \le x) = F_X(x) \ \forall x \in \mathbb{R}.$
- Условие $Y \sim \mathcal{U}(0,1)$ и преобразование $X = F_X^{-1}(Y)$ – это метод генерации X с заданным распределением F_X .

Доказательство теоремы об обратной функции распределения

 $F_X(x)$

• Доказательство. Пусть $Y \sim \mathcal{U}(0,1)$. Рассмотрим функцию распределения случайной величины $X = F^{-1}(Y)$:

$$F_X(x) = P(X \le x) = P(F_X^{-1}(Y) \le x).$$

• Покажем, что:

$$F_X^{-1}(Y) \le x \quad \Leftrightarrow \quad Y \le F_X(x).$$

1. Пусть $F^{-1}(Y) \le x$. По определению <u>обратной функции распределения</u>:

$$F_X^{-1}(Y) = \inf \left\{ \xi \in \mathbb{R} : F_X(\xi) \ge Y \right\} \quad \Rightarrow \quad x \ge \inf \left\{ \xi \in \mathbb{R} : F_X(\xi) \ge Y \right\}.$$

Так как $F_X(x)$ – неубывающая и непрерывная справа, то:

$$F_X(\xi_1) \ge F_X(\xi_2) \quad \forall \xi_1, \xi_2 : \xi_1 > \xi_2.$$

Предположим, что $Y > F_X(x)$. Тогда:

 $\{\xi \in \mathbb{R} : F_X(\xi) \ge Y\} \subset \{\xi \in \mathbb{R} : F_X(\xi) \ge F_X(x)\} \Rightarrow \inf\{\xi \in \mathbb{R} : F_X(\xi) \ge Y\} > x \Rightarrow F_X^{-1}(Y) > x.$ Получили противоречие. Значит, $F_X^{-1}(Y) \le x \Rightarrow Y \le F_X(x)$.

Доказательство теоремы об обратной функции распределения

2. Пусть $Y \le F_X(x)$. Значит, $F_X(x) \ge Y$, и в таком случае:

$$x \in \{\xi \in \mathbb{R} : F_X(\xi) \ge Y\}.$$

Тогда:

$$\inf \{ \xi \in \mathbb{R} : F_X(\xi) \ge Y \} \le x.$$

И в соответствии с определением обратной функции распределения:

$$F_X^{-1}(Y) = \inf\{\xi \in \mathbb{R} : F_X(\xi) \ge Y\} \quad \Rightarrow \quad x \ge F_X^{-1}(Y).$$

Получили, что $Y \le F_X(x) \Rightarrow F_X^{-1}(Y) \le x$.

- Таким образом: $\begin{cases} F_X^{-1}(Y) \leq x & \Rightarrow & Y \leq F_X(x) \\ Y \leq F_X(x) & \Rightarrow & F_X^{-1}(Y) \leq x \end{cases} \Leftrightarrow \left(F_X^{-1}(Y) \leq x & \Leftrightarrow & Y \leq F_X(x) \right).$
- Тогда: $P(X \le x) = P(F_X^{-1}(Y) \le x) = P(Y \le F_X(x)) = F_{Y \sim \mathcal{U}(0,1)}(F_X(x)) = F_X(x)$ для $F_X(x) \in [0,1]$ и $\forall x \in \mathbb{R}$. Теорема доказана.

Семплирование с использованием теоремы об обратной функции распределения

- Теорема говорит о том, что если у нас есть случайная величина X, и задано преобразование $f: X \to Y$, имеющее все свойства функции распределения, то для того, чтобы величина Y была равномерно распределена на (0,1), величина X должна быть распределена по закону, задаваемому функцией распределения $F_X = f$.
- Значит, если $Y \sim \mathcal{U}(0,1)$, то $X = F_X^{-1}(Y) \sim F_X$.
- Поэтому, чтобы получить семплы из распределения F_X , нужно:
 - 1. Получить семплы $y_i \sim \mathcal{U}(0,1)$. Это можно сделать с помощью функции генерации псевдослучайных чисел (rand() или random()).
 - 2. Выполнить преобразование $x_i = F_X^{-1}(y_i)$. Получим $x_i \sim F_X(x)$.
- Для того, чтобы воспользоваться алгоритмом, нужно знать F_X и F_X^{-1} !

Пример с использованием теоремы об обратной функции распределения

- Рассмотрим <u>экспоненциальное распределение</u>: $F_X(x) = 1 e^{-x}, x \ge 0$.
- Тогда $F_X^{-1}(y) = -\ln(1-y), y \in [0,1).$
- Действительно, $F_X^{-1}(F_X(x)) = -\ln(1 (1 e^{-x})) = -\ln(e^{-x}) = x$.
- Следовательно, если $Y \sim \mathcal{U}(0,1)$, то: $X = F_X^{-1}(Y) = -\ln(1-Y)$.
- Проверим:

$$P(X \le x) = P(-\ln(1 - Y) \le x) =$$

$$= P(1 - Y \ge e^{-x}) = P(Y \le 1 - e^{-x}) =$$

$$= F_{Y \sim U(0,1)}(1 - e^{-x}) = 1 - e^{-x} = F_X(x).$$

• Видно, что случайная величина X имеет распределение F_X .

- Семплирование с помощью *теоремы об обратной функции* возможно только для относительно *простых распределений*.
- Рассмотрим следующий пример. Вы играете в игру: бросаете дротики в мишень. Но мишень особая участки, соответствующие наибольшему числу очков, сложные и выделены цветом. Попасть в них очень тяжело.
- Чтобы облегчить себе задачу, Вы изготавливаете <u>специальный трафарет</u> и <u>накладываете</u> его на мишень. Трафарет сделан таким образом, что его толщина разная: на участках, соответствующих ярким областям мишени, она <u>очень тонкая</u>, а на бледных наоборот, <u>толстая</u>.
- Чем толще участок трафарета, тем <u>меньше шансов</u> у дротика *пробить его*.

Семплирование с отклонением (Rejection Sampling)

- Пусть дана *случайная величина X* с плотностью вероятности p(x), для которой требуется получить семплы.
- Выберем <u>вспомогательную случайную</u> <u>величину</u> Q (из которой <u>легко семплировать</u>) с плотностью вероятности q(x), $\sup_{x} p(x) \subseteq \sup_{x} q(x)$, и <u>число</u> $M \in \mathbb{R} : M \ge \sup_{x} \frac{p(x)}{q(x)}$.
- For k = 1..K:
 - ightharpoonup Получим семпл $y \sim q(x)$;
 - ightharpoonup Получим семпл $u \sim \mathcal{U}(0,1);$
 - ightharpoonup Если $u < rac{p(y)}{Mq(y)}$, то принимаем y как семплиз X.

Смысл и корректность работы Rejection Sampling

- Таким образом, <u>идея метода семплирования с отклонением</u> заключается в том, что вместо того, чтобы генерировать семпл непосредственно из X, можно его получать из вспомогательного (<u>proposal</u>) распределения Y и принимать с вероятностью $\frac{p(x)}{Mq(x)}$, повторяя семплирование до тех пор, пока значение не будет принято.
- Покажем корректность метода. Нужно доказать, что распределение принятых семплов x соответствует целевому распределению p(x).
 - 1. Рассмотрим вероятность того, что на некотором шаге алгоритма семпл $x \sim q(x)$ будет принят.
 - Условие принятия: $u \leq \frac{p(x)}{M \cdot q(x)}$, где $u \sim \mathcal{U}(0,1)$.

Смысл и корректность работы Rejection Sampling

Тогда $\underline{вероятность принятия}$ для некоторого фиксированного x:

$$P(accept \mid x) = P\left(u \le \frac{p(x)}{M \cdot q(x)}\right) = F_{U \sim U(0,1)}\left(\frac{p(x)}{M \cdot q(x)}\right) = \frac{p(x)}{M \cdot q(x)},$$

причём $0 \le \frac{p(x)}{M \cdot q(x)} \le 1$ по условию алгоритма.

В этом случае, <u>общая вероятность принятия семпла</u> (усреднённая по всем $x \sim q(x)$) равна:

$$P(accept) = \int_{-\infty}^{+\infty} P(accept \mid x) \cdot q(x) dx = \int_{-\infty}^{+\infty} \frac{p(x)}{M \cdot q(x)} \cdot q(x) dx = \frac{1}{M} \int_{-\infty}^{+\infty} p(x) dx = \frac{1}{M}.$$

2. Найдём распределение принятых семплов $p_{acc}(x)$. По <u>теореме Байеса</u>:

$$P(x \mid accept) = \frac{P(accept \mid x) \cdot q(x)}{P(accept)} = \frac{p(x)/M}{1/M} = p(x) \Rightarrow p_{acc}(x) = p(x).$$

• Следует обратить внимание, что:

- ✓ Возможно семплирование <u>из широкого класса распределений</u> p(x), если найти подходящее вспомогательное распределение q(x). Однако, в <u>многомерных пространствах</u> вероятность принятия семплов может быть крайне <u>низкой</u>.
- ✓ Метод подходит для случаев, когда целевое распределение известно с точностью до *нормирующей константы*.
- ✓ Эффективность метода сильно зависит от выбора <u>вспомогательного</u> <u>распределения</u> q(x) и <u>константы</u> M. Если M выбрана <u>неудачно</u>, то число отклонений будет <u>большим</u>, а сам метод <u>вычислительно затратным</u>.
- ✓ Для удачного подбора M нужно <u>иметь представление о форме</u> p(x).
- ✓ Метод часто используется в качестве вспомогательного.

Семплирование по важности (Importance sampling)

• Рассмотрим способ <u>оценки матожидания</u>, не требующий семплов из целевого распределения. Введем <u>вспомогательное распределение</u> q(x), $supp(p(x)) \subseteq supp(q(x))$, и запишем <u>эстиматор</u> как функцию семплов из него:

$$\mathbb{E}[f(x)] = \int f(x)p(x)dx = \int \frac{f(x)p(x)}{q(x)}q(x)dx \approx \frac{1}{N}\sum_{i=1}^{N}f(x_i)\frac{p(x_i)}{q(x_i)}, \qquad x_i \sim q(x).$$

- Таким образом, $\mathbb{E}[f(x)]$ рассчитывается как матожидание по q(x) от функции, домноженной на отношение $\frac{p(x_i)}{q(x_i)}$, называемое likelihood ratio.
- Для успешного семплирования также нужно правильно подобрать плотность распределения q(x).
- Данный метод характеризуется <u>высокой дисперсией</u> за счет наличия областей, в которых $p(x) \gg q(x)$ (если q(x) плохо приближает p(x)).

Иллюстрация Importance sampling

- Рассмотрим <u>совместное распределение</u> случайных величин: $p(x_1, x_2, ..., x_n)$ представленное в виде графической модели.
- Как семплировать из такого распределения?
- Выполняем семплирование величин, находящихся в корневых вершинах.
- Затем продвигаемся по дереву до <u>листовых вершин</u>, выполняя семплирование для всех случайных величин <u>с учетом полученных ранее</u> <u>семплов</u> в выражениях условной вероятности.
- Например: $p(x, y, z, u, v) = p(x)p(y \mid x)p(z \mid x)p(u \mid y, z)p(v \mid z)$;

$$x^* \sim \mathcal{U}(0,1);$$

 $y^* \sim \mathcal{N}(x^*,1);$
 $z^* \sim \mathcal{N}(0,2x^*);$
 $u^* \sim \mathcal{U}(y^*,z^*);$
 $v^* \sim \mathcal{N}(z^*,10).$

Руго: фреймворк для вероятностного программирования

• Для выполнения байесовского моделирования используются фреймворки вероятностного программирования (PPL), позволяющие объединить возможности современных языков программирования с эффективным расчётом параметров случайных величин.

• Одним из таких языков является **Pyro**, построенный на основе <u>Python</u> и

PyTorch.

Определение модели в Руго. Основные примитивы

- <u>Вероятностная модель</u> в Руго определяется <u>функциями-примитивами</u>, поведение которых может изменяться *в зависимости от контекста*.
- <u>Модель</u> создается как *функция*, в которой определяются функциипримитивы и зависимости между ними.

Элементы вероятностной модели	Функции-примитивы
Латентная случайная переменная	<pre>sample(name: str, fn: TorchDistributionMixin, *args, obs: Optional[torch.Tensor] = None,)</pre>
Наблюдаемая случайная переменная	<pre>sample(name: str, fn: TorchDistributionMixin, *args, obs: Optional[torch.Tensor] = torch.tensor([]),)</pre>
Обучаемые параметры	<pre>param(name: str, init_tensor: Optional[Union[torch.Tensor,</pre>
«Планки»	<pre>plate(name: str, size: Optional[int] = None,)</pre>

- *Функции* в Руго выполняют свою основную функцию и дополнительно реализуют <u>сторонние эффекты</u>, причем поведение этих эффектов и основной функции может меняться <u>в зависимости от контекста выполнения</u>.
- Данный контекст в Руго формируется с помощью «**трасс**» (traces).
- Трассы являются некоторой реализацией <u>логов</u>, в которых можно найти всю интересующую информацию <u>о состоянии обрабатываемых объектов</u> в Руго и <u>изменениях</u>, которые произошли с ними <u>после вызова функций</u>, а также о том, как <u>контекст выполнения</u> повлиял на эти изменения.
- Для записи трассы функцию необходимо обернуть в:

traced_fn = poutine.trace(fn)

• Вызов traced_fn.**get_trace**(*args, **kwargs) позволяет *выполнить функцию* **fn**, *сформировать трассу* и *вернуть объект*, её представляющий.

Пример вызова трассы	Пример трассы
<pre>def sample_fn():</pre>	{
<pre>return pyro.sample(</pre>	' х': { # Имя узла
"x",	' type': ' sample ', # Тип узла (семпл)
<pre>pyro.distributions.Normal(0, 1))</pre>	' name': ' x', # Имя семпла
	'is_observed': False, # Не наблюдаемая
# Обернем функцию в трассу	'fn': Normal(loc: 0.0, scale: 1.0),
<pre>traced_fn = poutine.trace(sample_fn)</pre>	'value': tensor(0.1234),
	'scale': 1.0,
# Выполнение функции и получение трассы	'log_prob': tensor(-0.9189),
<pre>trace = traced_fn.get_trace()</pre>	'args': (), # Аргументы вызова
	' kwargs': {} # Аргументы вызова
# Вывод информации о событиях в трассе	}
<pre>print(trace.nodes)</pre>	}

Изменение стандартного поведения функций в Руго

- Poutine это библиотека компонуемых обработчиков (handlers) сторонних эффектов для определения и изменения поведения программ.
- Её использование <u>упрощает реализацию</u> новых алгоритмов байесовского инференса.
- Обработчики могут использоваться как <u>функции</u>, <u>декораторы</u>, <u>менеджеры контекста</u> для изменения поведения функций или блоков кода.
- Примерами обработчиков являются:
 - √ block
 - √ condition
 - ✓ trace
- Пример реализации *функциональности* Pyro: <u>Minipyro</u>.


```
def model(x, y=None): \# x \in \mathbb{R}^{n \times m}, y \in \mathbb{R}^n
    sigma = 1.0
                                         Априорное
    sigma 0 = 3.0
                                       распределение
    bias = pyro.sample("bias",
                          dist.Normal(0.0, sigma 0))
Plate
    with pyro.plate("features", x.shape[1]):
         weights = pyro.sample(
              "weights", dist.Normal(0.0, sigma 0))
                                       Априорное
    mean = x @ weights + bias
                                      распределение
Plate
    with pyro.plate("data", x.shape[0]):
         return pyro.sample(
                                               Функция
              "obs",
                                           правдоподобия
              dist.Normal(mean, sigma),
              obs=y)
```

Пример реализации модели линейной регрессии в Руго

Внутри pyro.sample("name", distribution) происходит следующее:

- ✓ Если это первый вызов pyro.sample с <u>данным</u> именем, генерируется случайная величина из указанного распределения (distribution).
- ✓ Значение данной случайной величины <u>сохраняется</u> в трассе Pyro (trace).
- ✓ Последующие вызовы pyro.sample <u>с тем же именем</u> не создают новое значение, а <u>возвращают сохраненное</u>. Это обеспечивает *согласованность* значений величин в рамках прохода модели.
- ✓ При вызове trace.compute_log_prob() будут рассчитаны log_prob всех величин в трассе, а также общая сумма log_prob.
- ✓ Если указан аргумент "obs", то вычисляется log_prob наблюдаемых данных, а не семплированных.
- ✓ Суммарный log_prob представляет собой логарифм совместной вероятности всех величин и данных.

Демонстрация практических примеров

Заключение

- 1. Вспомнили основные понятия классического машинного обучения.
- 2. Рассмотрели и сравнили классический и байесовский подходы к ML.
- 3. Определили МАЕ и МАР как частный случай байесовского подхода.
- 4. Сравнили частотный и байесовский подходы к описанию событий в ML.
- 5. Определили основную проблему байесовского подхода и выяснили способы её решения.
- 6. Разобрались, как применять методы Монте-Карло для оценки интегралов.
- 7. Дали понятие семплированию случайной величины, рассмотрели способы семплирования и их особенности применения.
- 8. Рассмотрели фреймворк Руго и принципы его работы, на примерах разобрались с основными правилами работы с ним.

Спасибо за внимание!

Волгоград 2025