Identifying Whales From Aerial Images

Niall Williams and Harry Zhou

Davidson College Departments of Mathematics and Computer Science

What and Why

- Train a model that can identify the individual whales in pictures taken from a helicopter
- Right Whales are endangered: less than 500 remain
- Tracking makes researchers' lives easier

Distinguishing Features

Right whales are prone to whale lice, which create unique white patches on the whale head

Model Selection

- Convolutional Neural Network (CNN)
 - Dataset is all images, so a CNN is best fit
 - Multiple filters that each learns specific features of the image
 - Pool the results to extract the most important features
 - Repeat as necessary, predict output based on selected important features

<u>Acknowledgements</u>

We thank Dr. Ramanujan for his advice and insight throughout our experiments.

We thank Arthur Chen for proposing the project idea.

Experiments

- Part 1 Process The Images
 - Use the whale's bonnet and blowhole to locate the head
 - For each image, rotate the image to align the points uniformly
 - Crop new aligned image
- Part 2 Train A Whale Classifier
 - Use "passport photos" of whales as training data
 - Augment dataset via controlled image distortions and transformations
 - Run the aligner on the testing data
 - Test trained model on the processed testing data

Sources

- Whale dataset: https://www.kaggle.com/c/noaa-right-whale-recognition
- CNN Image: http://www.vaetas.cz/posts/intro-convolutional-neural-networks/

