COMP 335: Assignment 3 Fall 2021

Submission through Moodle is due by Sunday November 14th at 23:55

Part A (Graded): Submit your solution to each of the following questions.

- 1. (15 pts) Apply the Pumping Lemma to prove that the following languages are not regular.
 - (a) $L_1 = \{a^k b^n : n = 2^k\}$
 - (b) $L_2 = \{ww : w \in \{a^ib^j : i, j \ge 0\}\}$
 - (c) $L_3 = \{vw : v \in \{a, b\}^*, w \in \{c, d\}^*, |v| = |w|\}$
- 2. (10 pts) Give context-free grammars for each of the following languages.
 - (a) $\{a^h b^k a^m b^n : h + k = m + n\}$
 - (b) $\{a^i b^j a^k : (i = j \text{ and } k \ge 0) \text{ or } (i \ge 0 \text{ and } j > k)\}$
- 3. Let the CFG G be defined by productions $S \to aS \mid Sb \mid a \mid b$.
 - (a) (10 pts) Prove by an induction of number of derivations steps that no string $w \in L(G)$ has ba as substring.
 - (b) (5 pts) Describe L(G) formally.
- 4. (10 pts) Design a PDA to accept each of the following languages. You may design your PDA to accept either by final state or empty stack, whichever is more convenient.
 - (a) $\{a^hb^ka^mb^n:h+k=m+n\}$
 - (b) $\{a^nb: n \ge 0\} \cup \{ab^n: n \ge 0\} \cup \{a^nb^n: n \ge 0\}$
- 5. (10 pts) Convert the following grammars into Chomsky Normal Form
 - (a) $S \to ASB \mid \epsilon, A \to aAS \mid a, B \to SbS \mid A \mid bb$.
 - (b) $S \rightarrow 0A0 \mid 1B1 \mid BB$, $A \rightarrow C$, $B \rightarrow S \mid A$, $C \rightarrow S \mid \epsilon$.

Total grade: 60 pts.

Part B (Not graded): Questions in this part are for your extra practice. Do NOT submit your solutions to questions in this part.

- 6. In each case, what language is generated by CFG's below. Justify your claim (prove it!)
 - (a) G with productions $S \to aSa|bSb|aAb|bAa$, $A \to aAa|bAb|a|b|\epsilon$
 - (b) G with productions $S \to aS|bS|a$
 - (c) $S \to SS|bS|a$
 - (d) G with productions $S \to SaS|b, S \to aT|bT|\epsilon, T \to aS|bS$.
- 7. Find a CFG for each of the languages below.
 - (a) $L = \{a^n b^m : n \neq m 1\}$
 - (b) $L = \{a^n b^m c^k : n = m \text{ or } m \neq k\}$
 - (c) $L = \{w \in \{a, b\}^* : n_a(w) \neq n_b(w)\}$
 - (d) \overline{L} , where $L = \{ w \in \{a, b\}^* : w = a^n b^n, n \ge 0 \}$
- 8. (10 pts) In each case below, show that the grammar is ambiguous, and find an equivalent unambiguous grammar.
 - (a) $S \to SS |ab| a$
 - (b) $S \to ABA$, $A \to aA \mid \epsilon$, $B \to bB \mid \epsilon$
- 9. Design a PDA to accept each of the following languages. You may design your PDA to accept either by final state or empty stack, whichever is more convenient.
 - (a) The set of strings over $\{0,1\}$ such that no prefix has more 1's than 0's.
 - (b) The set of strings with twice as many 0's as 1's.
 - (c) The set of strings over $\{a, b\}$ that are *not* of the form ww, that is, not equal to any string repeated.