Package 'radar'

October 14, 2022

Type Package

Title Fundamental Formulas for Radar
Version 1.0.0
Encoding UTF-8
Description Fundamental formulas for Radar, for attenuation, range, velocity, effectiveness, power, scatter, doppler, geometry, radar equations, etc. Based on Nick Guy's Python package PyRadarMet
License GPL (>= 3)
Depends R (>= $2.7.0$)
Author Jose' Gama [aut, cre], Nick Guy [aut]
Maintainer Jose' Gama <rxprtgama@gmail.com></rxprtgama@gmail.com>
NeedsCompilation no
Repository CRAN
Date/Publication 2014-12-02 17:04:26
R topics documented:
ApertureWeightingFunctionsAntenna
AttenuationAbsCoeff
AttenuationExtCoeff
AttenuationScatCoeff
ConversiondBZ2Z
ConversionZ2dBZ6
DopplerDilemma
DopplerFmax
DopplerFreq
DopplerPulseDuration
DopplerPulseLength
DopplerRmax
DopplerVmax
DopplerVmaxDual

	DopplerVshift	14
	DopplerWavelength	15
	ElectronicWarfareFrequencyBands	15
	GeometryBeamBlockFrac	16
	GeometryHalfPowerRadius	17
	GeometryRangeCorrect	18
	GeometryRayHeight	19
	GeometryReffective	20
	GeometrySampleVolGauss	21
	GeometrySampleVolIdeal	22
	kConstantSpeedOfLight	
	SystemAntEffArea	23
	SystemFreq	24
	SystemGainPratio	25
	SystemNormXsecBscatterSphere	26
	SystemPowerReturnTarget	27
	SystemPowerTarget	
	SystemRadarConst	29
	SystemSizeParam	30
	SystemThermalNoise	31
	Systemwavelength	32
	SystemXsecBscatterSphere	32
	VariablesCDR	33
	VariablesHDR	34
	VariablesLDR	35
	VariablesRadVel	36
	VariablesReflectivity	37
	VariablesZDP	38
	VariablesZDR	39
Index		40

ApertureWeightingFunctionsAntenna

Antenna Characteristics for Aperture Weighting Functions

Description

ApertureWeightingFunctionsAntenna has Antenna Characteristics for Aperture Weighting Functions

Usage

 ${\tt Aperture Weighting Functions Antenna}$

Author(s)

Jose Gama

AttenuationAbsCoeff 3

Source

G. Richard Curry, 2011 SciTech Publishing Radar Essentials, A Concise Handbook for Radar Design and Performance Analysis

References

G. Richard Curry, 2011 SciTech Publishing Radar Essentials, A Concise Handbook for Radar Design and Performance Analysis

Examples

```
data(ApertureWeightingFunctionsAntenna)
str(ApertureWeightingFunctionsAntenna)
```

AttenuationAbsCoeff

Absorption coefficient of a spherical particle

Description

 $\label{lem:attenuationAbsCoeff} Absorption coefficient of a spherical particle. From Doviak and Zrnic (1993), Eqn 3.14a or Battan (1973), Eqn 6.6$

Usage

```
AttenuationAbsCoeff(D, lam, m)
```

Arguments

D Particle diameter (m)
lam Radar wavelength (m)

m Complex refractive index (unitless)

Value

Qa Absorption coefficient [unitless]

Author(s)

Jose Gama

Source

Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology $\frac{\text{https:}}{\text{github.com/nguy/PyRadarMet}}$

Doviak, R.J. and Zrnic, D.S., 1993 Doppler radar and weather observations, Academic Press Louis J. Battan, 1973 Radar Observation of the Atmosphere University of Chicago Press

4 AttenuationExtCoeff

References

Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet

Doviak, R.J. and Zrnić, D.S., 1993 Doppler radar and weather observations, Academic Press Louis J. Battan, 1973 Radar Observation of the Atmosphere University of Chicago Press

AttenuationExtCoeff Extinction coefficient of a spherical particle

Description

AttenuationExtCoeff Extinction coefficient of a spherical particle. From Doviak and Zrnic (1993), Eqn 3.14a or Battan (1973), Eqn 6.5

Usage

```
AttenuationExtCoeff(D, lam, m)
```

Arguments

D Particle diameter (m)
lam Radar wavelength (m)

m Complex refractive index (unitless)

Value

Qe Extinction coefficient [unitless]

Author(s)

Jose Gama

Source

Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet

Doviak, R.J. and Zrnic, D.S., 1993 Doppler radar and weather observations, Academic Press Louis J. Battan, 1973 Radar Observation of the Atmosphere University of Chicago Press

References

Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet

Doviak, R.J. and Zrnić, D.S., 1993 Doppler radar and weather observations, Academic Press Louis J. Battan, 1973 Radar Observation of the Atmosphere University of Chicago Press

AttenuationScatCoeff 5

AttenuationScatCoeff Scattering coefficient of a spherical particle

Description

AttenuationScatCoeff Scattering coefficient of a spherical particle. From Doviak and Zrnic (1993), Eqn 3.14a or Battan (1973), Eqn 6.5

Usage

```
AttenuationScatCoeff(D, lam, m)
```

Arguments

D Particle diameter (m)
lam Radar wavelength (m)

m Complex refractive index (unitless)

Value

Qs Scattering coefficient [unitless]

Author(s)

Jose Gama

Source

Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet

Doviak, R.J. and Zrnic, D.S., 1993 Doppler radar and weather observations, Academic Press

Louis J. Battan, 1973 Radar Observation of the Atmosphere University of Chicago Press

References

Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet

Doviak, R.J. and Zrnić, D.S., 1993 Doppler radar and weather observations, Academic Press

Louis J. Battan, 1973 Radar Observation of the Atmosphere University of Chicago Press

6 ConversionZ2dBZ

ConversiondBZ2Z

Conversion from dBZ (log) units to linear Z units

Description

ConversiondBZ2Z Converts from dBZ (log) units to linear Z units

Usage

ConversiondBZ2Z(dBZ)

Arguments

dBZ logarithmic reflectivity value

Value

Z linear reflectivity units

Author(s)

Jose Gama

Source

Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet

References

Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet

ConversionZ2dBZ

Conversion from linear Z units to dBZ (log) units

Description

ConversionZ2dBZ Converts from linear Z units to dBZ (log) units

Usage

ConversionZ2dBZ(Zlin)

Arguments

Zlin

linear reflectivity units

DopplerDilemma 7

Value

dBZ logarithmic reflectivity value

Author(s)

Jose Gama

Source

Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet

References

Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet

DopplerDilemma

Doppler dilemma

Description

DopplerDilemma returns the Doppler dilemma From Rinehart (1997), Eqn 6.12

Usage

```
DopplerDilemma(inFloat, lam, speedOfLight)
```

Arguments

inFloat Nyquist Velocity [m/s] or Maximum unambiguous range [m]

lam Radar wavelength [m]

speedOfLight speed of light

Value

Rmax Maximum unambiguous range [m]

Author(s)

Jose Gama

Source

Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet

8 DopplerFmax

References

Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet

R. E. Rinehart, 1997 Radar for Meteorologists Rinehart Publishing

DopplerFmax

Maximum frequency given PRF

Description

DopplerFmax returns the PRF for a maximum frequency From Rinehart (1997), Eqn 6.8

Usage

DopplerFmax(PRF)

Arguments

PRF

Pulse repetition frequency [Hz]

Value

f

Maximum frequency [Hz]

Author(s)

Jose Gama

Source

Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet

R. E. Rinehart, 1997 Radar for Meteorologists Rinehart Publishing

References

Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet

DopplerFreq 9

DopplerFreq

Frequency given wavelength

Description

DopplerFreq Converts from wavelength to frequency

Usage

```
DopplerFreq(lam, speedOfLight)
```

Arguments

Wavelength [m] lam speedOfLight speed of light

Value

Frequency [Hz] f

Author(s)

Jose Gama

Source

Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https: //github.com/nguy/PyRadarMet

References

Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https: //github.com/nguy/PyRadarMet

DopplerPulseDuration Pulse duration from pulse length

Description

DopplerPulseDuration Converts from pulse length to pulse duration

Usage

DopplerPulseDuration(tau, speedOfLight)

10 DopplerPulseLength

Arguments

tau Pulse length [m] speedOfLight speed of light

Value

pDur Pulse duration [s]

Author(s)

Jose Gama

Source

Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet

References

Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet

DopplerPulseLength

Pulse length from pulse duration

Description

DopplerPulseLength Converts from pulse duration to pulse length

Usage

```
DopplerPulseLength(pDur, speedOfLight)
```

Arguments

pDur Pulse duration [s] speedOfLight speed of light

Value

tau Pulse length [m]

Author(s)

Jose Gama

DopplerRmax 11

Source

Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet

References

Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet

 ${\tt DopplerRmax}$

Maximum unamiguous range

Description

DopplerRmax returns the maximum unamiguous range From Rinehart (1997), Eqn 6.11

Usage

```
DopplerRmax(PRF, speedOfLight)
```

Arguments

PRF Pulse repetition frequency [Hz]

speedOfLight speed of light

Value

Rmax Maximum unambiguous range [m]

Author(s)

Jose Gama

Source

Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet

R. E. Rinehart, 1997 Radar for Meteorologists Rinehart Publishing

References

Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet

DopplerVmax

DopplerVmax

Nyquist velocity, or maximum unambiguous Doppler velocity (+ or -)

Description

DopplerVmax returns the Nyquist velocity, or maximum unambiguous Doppler velocity (+ or -). From Rinehart (1997), Eqn 6.8

Usage

```
DopplerVmax(PRF, lam)
```

Arguments

PRF Pulse repetition frequency [Hz]

lam Radar wavelength [m]

Value

Vmax Nyquist velocity [m/s], +/-

Author(s)

Jose Gama

Source

Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet

R. E. Rinehart, 1997 Radar for Meteorologists Rinehart Publishing

References

Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet

DopplerVmaxDual 13

DopplerVmaxDual	Doppler velocity from dual PRF scheme radar (+ or -)

Description

DopplerVmaxDual returns Doppler velocity [m/s] from a mobile platform. From Jorgensen (1983), Eqn 2

Usage

```
DopplerVmaxDual(lam, PRF1, PRF2)
```

Arguments

lam	Radar wavelength	[m]
-----	------------------	-----

PRF1 First Pulse repetition frequency [Hz]
PRF2 Second Pulse repetition frequency [Hz]

Value

Vmax Doppler velocity [m/s]

Author(s)

Jose Gama

Source

Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet

Jorgensen, D., Hildebrand, P.H., and Frush, C., 1983 Feasibility test of an airborne pulse-Doppler meteorological Radar J. Clim. Appl. Meteorol

References

Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet

Jorgensen, D., Hildebrand, P.H., and Frush, C., 1983 Feasibility test of an airborne pulse-Doppler meteorological Radar J. Clim. Appl. Meteorol

DopplerVshift

DopplerVshift

Adjusted Doppler velocity from a mobile platform

Description

Doppler V
shift returns Adjusted Doppler velocity from a mobile platform. From Jorgensen (1983), Eqn
 $2\,$

Usage

```
DopplerVshift(GS, psi)
```

Arguments

GS Gound speed [m/s]

psi Angle between actual azimuth and fore/aft angle [deg]

Value

Vshift Shift in Doppler velocity from mobile aspect [m/s]

Author(s)

Jose Gama

Source

Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet

Jorgensen, D., Hildebrand, P.H., and Frush, C., 1983 Feasibility test of an airborne pulse-Doppler meteorological Radar J. Clim. Appl. Meteorol

References

Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet

Jorgensen, D., Hildebrand, P.H., and Frush, C., 1983 Feasibility test of an airborne pulse-Doppler meteorological Radar J. Clim. Appl. Meteorol

DopplerWavelength 15

DopplerWavelength Wavelength given frequency

Description

DopplerWavelength Converts from frequency to wavelength

Usage

DopplerWavelength(freq, speedOfLight)

Arguments

freq Frequency [Hz] speedOfLight speed of light

Value

lam Wavelength [m]

Author(s)

Jose Gama

Source

Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet

References

Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet

ElectronicWarfareFrequencyBands

Electronic Warfare Frequency Bands

Description

ElectronicWarfareFrequencyBands has Electronic Warfare Frequency Bands

Usage

ElectronicWarfareFrequencyBands

Author(s)

Jose Gama

Source

G. Richard Curry, 2011 SciTech Publishing Radar Essentials, A Concise Handbook for Radar Design and Performance Analysis

References

G. Richard Curry, 2011 SciTech Publishing Radar Essentials, A Concise Handbook for Radar Design and Performance Analysis

Examples

```
data(ElectronicWarfareFrequencyBands)
str(ElectronicWarfareFrequencyBands)
```

GeometryBeamBlockFrac Partial beam blockage fraction

Description

 ${\tt GeometryBeamBlockFrac\ returns\ the\ partial\ beam\ blockage\ fraction\ From\ Bech\ et\ al.\ (2003),\ Eqn\ 2\ and\ Appendix}$

Usage

```
GeometryBeamBlockFrac(Th, Bh, a)
```

Arguments

Th	Terrain height [m]
Bh	Beam height [m]

a Half power beam radius [m]

Value

PBB Partial beam blockage fraction [unitless]

Author(s)

Jose Gama

Source

Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet

Bech et al, 2003 The Sensitivity of Single Polarization Weather Radar Beam Blockage Correction to Variability in the Vertical Refractivity Gradient American Meteorological Society, AMS journals Volume 20 Issue 6

References

Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet

Bech et al, 2003 The Sensitivity of Single Polarization Weather Radar Beam Blockage Correction to Variability in the Vertical Refractivity Gradient American Meteorological Society, AMS journals Volume 20 Issue 6

GeometryHalfPowerRadius

Half-power radius

Description

GeometryHalfPowerRadius returns the half-power radius Battan (1973)

Usage

GeometryHalfPowerRadius(r, bwhalf)

Arguments

r Range [m]

bwhalf Half-power beam width [degrees]

Value

Rhalf Half-power radius [m]

Author(s)

Jose Gama

Source

Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet

Louis J. Battan, 1973 Radar Observation of the Atmosphere University of Chicago Press

References

Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet

Louis J. Battan, 1973 Radar Observation of the Atmosphere University of Chicago Press

GeometryRangeCorrect Half-power radius

Description

GeometryRangeCorrect returns the half-power radius From CSU Radar Meteorology AT 741 Notes

Usage

```
GeometryRangeCorrect(r, h, E)
```

Arguments

r Distance to sample volume from radar [m]
h Height of the center of radar volume [m]

E Elevation angle [deg]

Value

rnew Adjusted range to sample volume [m]

Author(s)

Jose Gama

Source

Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology $\label{eq:com/nguy/PyRadarMet} \parbox{$^{\prime}$ lithub.com/nguy/PyRadarMet}$

CSU Radar Meteorology AT 741 Notes

References

Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet

CSU Radar Meteorology AT 741 Notes

GeometryRayHeight 19

GeometryRayHeight

Center of radar beam height calculation

Description

GeometryRayHeight returns the center of radar beam height From Rinehart (1997), Eqn 3.12, Bech et al. (2003) Eqn 3

Usage

```
GeometryRayHeight(r, elev, H0, R1=kConstantR43)
```

Arguments

r Range from radar to point of interest [m]

elev Elevation angle of radar beam [deg]

H0 Height of radar antenna [m]

R1 Effective radius [m]

Value

h Radar beam height [m]

Author(s)

Jose Gama

Source

Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet

R. E. Rinehart, 1997 Radar for Meteorologists Rinehart Publishing

References

Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet

20 GeometryReffective

GeometryReffective Effective radius calculation

Description

GeometryReffective returns the effective radius From Rinehart (1997), Eqn 3.9, solved for R'

Usage

GeometryReffective(dNdH=-39e-6, earthRadius)

Arguments

dNdH Refraction [N x10^-6/km]

earthRadius earth radius [m]

Value

R Effective radius [m]

Author(s)

Jose Gama

Source

Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet

R. E. Rinehart, 1997 Radar for Meteorologists Rinehart Publishing

References

Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet

GeometrySampleVolGauss

Sample volume assuming transmitted energy in Gaussian beam shape

Description

GeometrySampleVolGauss returns the sample volume assuming transmitted energy in Gaussian beam shape. From Rinehart (1997), Eqn 5.4

Usage

```
GeometrySampleVolGauss(r, bwH, bwV, pLength)
```

Arguments

r Range from radar to point of interest [m]

bwV Horizontal beamwidth [deg]
bwV Vertical beamwidth deg]

pLength Pulse length [m]

Value

sVol Sample Volume [m^3]

Author(s)

Jose Gama

Source

Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet

R. E. Rinehart, 1997 Radar for Meteorologists Rinehart Publishing

References

Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet

GeometrySampleVolIdeal

Sample volume (idealized) assuming all power in half-power beamwidths

Description

GeometrySampleVolIdeal returns the sample volume (idealized) From Rinehart (1997), Eqn 5.2

Usage

```
GeometrySampleVolIdeal(r, bwH, bwV, pLength)
```

Arguments

r Range from radar to point of interest [m]

bw Horizontal beamwidth [deg]
bw Vertical beamwidth deg]

pLength Pulse length [m]

Value

sVol Sample Volume [m^3]

Author(s)

Jose Gama

Source

Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet

R. E. Rinehart, 1997 Radar for Meteorologists Rinehart Publishing

References

Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet

kConstantSpeedOfLight Constant speed of light

Description

kConstantSpeedOfLight is "c" the constant speed of light [m/s].

kConstantSLP Sea-level Pressure [hPa].

kConstantP0 Reference pressure [hPa].

kConstantRe Earth's radius [m].

kConstantR43 4/3 Approximation effective radius for standard atmosphere [m].

kConstantBoltz Boltzmann's constant [$m^2 kg s^-2 K^-1$].

Usage

kConstantSpeedOfLight

Author(s)

Jose Gama

Examples

print(kConstantSpeedOfLight)

 ${\tt SystemAntEffArea}$

Antenna effective area

Description

SystemAntEffArea returns the antenna effective area From Rinehart (1997), Eqn 4.5

Usage

```
SystemAntEffArea(G, lam)
```

Arguments

G Antenna Gain [dB]
lam Radar wavelength [m]

Value

Ae Antenna effective area [unitless]

24 SystemFreq

Author(s)

Jose Gama

Source

Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet

R. E. Rinehart, 1997 Radar for Meteorologists Rinehart Publishing

References

Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet

R. E. Rinehart, 1997 Radar for Meteorologists Rinehart Publishing

SystemFreq

Frequency given wavelength

Description

SystemFreq Converts from wavelength to frequency

Usage

```
SystemFreq(lam, speedOfLight)
```

Arguments

 $\begin{array}{ll} \text{lam} & \text{Wavelength [m]} \\ \text{speedOfLight} & \text{speed of light} \end{array}$

Value

f Frequency [Hz]

Author(s)

Jose Gama

Source

Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet

References

Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet

SystemGainPratio 25

 ${\tt SystemGainPratio}$

Antenna gain via power ratio

Description

SystemGainPratio returns the antenna gain via power ratio From Rinehart (1997), Eqn 2.1

Usage

```
SystemGainPratio(P1, P2)
```

Arguments

P1 Power on the beam axis [W]

P2 Power from an isotropic antenna [W]

Value

G Gain [dB]

Author(s)

Jose Gama

Source

Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet

R. E. Rinehart, 1997 Radar for Meteorologists Rinehart Publishing

References

Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet

 ${\tt SystemNormXsecBscatterSphere}$

Normalized Backscatter cross-sectional area of a sphere using the Rayleigh approximation

Description

SystemNormXsecBscatterSphere returns the normalized Backscatter cross-sectional area of a sphere using the Rayleigh approximation From Rinehart (1997), Eqn 4.9 and 5.7 and Battan Ch. 4.5

Usage

SystemNormXsecBscatterSphere(D, lam, K=0.93)

Arguments

D Diameter of target [m]
lam Radar wavelength [m]
K Dielectric factor [unitless]

Value

sigNorm Normalized backscatter cross-section [unitless]

Author(s)

Jose Gama

Source

Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet

- R. E. Rinehart, 1997 Radar for Meteorologists Rinehart Publishing
- L. J. Battan, 1973 Radar observation of the atmosphere The University of Chicago Press

References

Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet

- R. E. Rinehart, 1997 Radar for Meteorologists Rinehart Publishing
- L. J. Battan, 1973 Radar observation of the atmosphere The University of Chicago Press

SystemPowerReturnTarget

Power returned by target located at the center of the antenna beam pattern

Description

SystemPowerReturnTarget returns Power returned by target located at the center of the antenna beam pattern From Rinehart (1997), Eqn 4.7

Usage

```
SystemPowerReturnTarget(Pt, G, lam, sig, r)
```

Arguments

Pt	Transmitted power [W]
G	Antenna gain [dB]
lam	Radar wavelength [m]
sig	Backscattering cross-sectional area of target [m^2]
r	Distance to sample volume from radar [m]

Value

Pr Power returned by target [m]

Author(s)

Jose Gama

Source

Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet

R. E. Rinehart, 1997 Radar for Meteorologists Rinehart Publishing

References

Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet

28 SystemPowerTarget

SystemPowerTarget

Power intercepted by target

Description

SystemPowerTarget returns the power intercepted by target From Rinehart (1997), Eqn 4.3

Usage

```
SystemPowerTarget(Pt, G, Asig, r)
```

Arguments

Pt Transmitted power [W]

G Antenna gain [dB]

Asig Area of target [m^2]

r Distance to sample volume from radar [m]

Value

Psig Power intecepted by target [m]

Author(s)

Jose Gama

Source

Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet

R. E. Rinehart, 1997 Radar for Meteorologists Rinehart Publishing

References

Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet

SystemRadarConst 29

SystemRadarConst Rada	r constant
-----------------------	------------

Description

SystemRadarConst returns radar constant From CSU Radar Meteorology notes, AT 741

Usage

```
SystemRadarConst(Pt, G, Tau, lam, bwH, bwV, Lm, Lr)
```

Arguments

Pt	Transmitted power [W]
G	Antenna gain [dB]
Tau	Pulse Width [s]
lam	Radar wavelength [m]
bwH	Horizontalntenna beamwidth [degrees]
bwV	Vertical antenna beamwidth [degrees]
Lm	Antenna/waveguide/coupler loss [dB]
Lr	Receiver loss [dB]

Value

C Radar constant [unitless]

Author(s)

Jose Gama

Source

```
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology \verb|https:|/github.com/nguy/PyRadarMet||
```

CSU Radar Meteorology notes, AT 741

References

```
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology {\tt https:} //{\tt github.com/nguy/PyRadarMet}
```

CSU Radar Meteorology notes, AT 741

30 SystemSizeParam

SystemSizeParam

Size parameter calculation

Description

SystemSizeParam returns the size parameter calculation From Rinehart (1997), Eqn 4.9 and 5.7 and Battan Ch. 4.5

Usage

```
SystemSizeParam(D, lam)
```

Arguments

D Diameter of target [m]
lam Radar wavelength [m]

Value

alpha Size parameter [unitless]

Author(s)

Jose Gama

Source

Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet

- R. E. Rinehart, 1997 Radar for Meteorologists Rinehart Publishing
- L. J. Battan, 1973 Radar observation of the atmosphere The University of Chicago Press

References

Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet

- R. E. Rinehart, 1997 Radar for Meteorologists Rinehart Publishing
- L. J. Battan, 1973 Radar observation of the atmosphere The University of Chicago Press

SystemThermalNoise 31

Description

SystemThermalNoise returns the thermal noise power From CSU Radar Meteorology notes, AT741

Usage

```
SystemThermalNoise(Bn, Units, Ts=290, k=kConstantBoltz)
```

Arguments

Bn Receiver bandwidth [Hz]

Units String of nits desired, can be 'W' or 'dBm'

Ts Reciever noise temperature [K]

k Boltzmann's constant

Value

nt Thermal noise power [W or 'dBm']

Author(s)

Jose Gama

Source

```
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology \label{eq:com/nguy/PyRadarMet}  \parbox{$https:} \\ \parbox{$htt
```

CSU Radar Meteorology notes, AT741

References

```
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology \frac{\text{https:}}{\text{github.com/nguy/PyRadarMet}}
```

CSU Radar Meteorology notes, AT741

Systemwavelength

Wavelength given frequency

Description

Systemwavelength Converts from frequency to wavelength

Usage

```
Systemwavelength(freq, speedOfLight)
```

Arguments

freq Frequency [Hz] speedOfLight speed of light

Value

lam Wavelength [m]

Author(s)

Jose Gama

Source

Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet

References

Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet

 ${\tt SystemXsecBscatterSphere}$

Backscatter cross-sectional area of a sphere using the Rayleigh approximation

Description

SystemXsecBscatterSphere returns Backscatter cross-sectional area of a sphere using the Rayleigh approximation From Rinehart (1997), Eqn 4.9 and 5.7

VariablesCDR 33

Usage

SystemXsecBscatterSphere(D, lam, K=0.93)

Arguments

D Diameter of target [m]

lam Radar wavelength [m]

K Dielectric factor [unitless]

Value

sig Backscattering cross-section [m*2]

Author(s)

Jose Gama

Source

Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet

R. E. Rinehart, 1997 Radar for Meteorologists Rinehart Publishing

References

Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet

R. E. Rinehart, 1997 Radar for Meteorologists Rinehart Publishing

VariablesCDR	Circular depolarization ratio

Description

VariablesCDR returns the circular depolarization ratio From Rinehart (1997), Eqn 10.2

Usage

```
VariablesCDR(Zpar, Zorth)
```

Arguments

Zpar	Reflectivity in the parallel channel [mm^6/m^3]
Zorth	Reflectivity in the orthogonal channel [mm^6/m^3]

34 VariablesHDR

Value

CDR Circular depolarization ratio [dB]

Author(s)

Jose Gama

Source

Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet

R. E. Rinehart, 1997 Radar for Meteorologists Rinehart Publishing

References

Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet

R. E. Rinehart, 1997 Radar for Meteorologists Rinehart Publishing

VariablesHDR

Differential reflectivity hail signature

Description

VariablesHDR returns the differential reflectivity hail signature From Aydin et al. (1986), Eqns 4-5

Usage

VariablesHDR(dBZh, ZDR)

Arguments

dBZh Horizontal reflectivity [dBZ]
ZDR Differential reflectivity [dBZ]

Value

ZDP Reflectivity difference [dB]

Author(s)

Jose Gama

Source

```
Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet
```

Aydin et al., 1986

VariablesLDR 35

References

Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet

VariablesLDR

Linear depolarization ratio

Description

VariablesLDR returns the linear depolarization ratio From Rinehart (1997), Eqn 10.3

Usage

```
VariablesLDR(Zh, Zv)
```

Arguments

Zh Horizontal reflectivity [mm^6/m^3]
Zv Vertical reflectivity [mm^6/m^3]

Value

LDR linear depolarization ratio

Author(s)

Jose Gama

Source

Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology $\frac{\text{https:}}{\text{/github.com/nguy/PyRadarMet}}$

R. E. Rinehart, 1997 Radar for Meteorologists Rinehart Publishing

References

Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet

36 VariablesRadVel

VariablesRadVel

Radial velocity

Description

VariablesRadVel returns the radial velocity From Rinehart (1993), Eqn 6.6

Usage

```
VariablesRadVel(f,lam)
```

Arguments

f Frequency shift [Hz]

lam Radar wavelength [m]

Value

Vr Radial velocity [m/s]

Author(s)

Jose Gama

Source

Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet

R. E. Rinehart, 1997 Radar for Meteorologists Rinehart Publishing

References

Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet

VariablesReflectivity 37

VariablesReflectivity Radar reflectivity

Description

VariablesReflectivity returns the radar reflectivity From Rinehart (1993), Eqn 5.17 (See Eqn 5.14-5.16 also)

Usage

```
VariablesReflectivity(Pt, G, Tau, lam, bwH, bwV, Lm, Lr, Pr, r, K=0.93)
```

Arguments

Pt	Transmitted power [W]
G	Antenna gain [dB]
Tau	Pulse Width [s]
lam	Radar wavelength [m]
bwH	Horizontalntenna beamwidth [degrees]
bwV	Vertical antenna beamwidth [degrees]
Lm	Antenna/waveguide/coupler loss [dB]
Lr	Receiver loss [dB]
Pr	Returned power [W]
r	Range to target [m]
K	Dielectric factor [unitless]

Value

Ze Radar reflectivity [unitless]

Author(s)

Jose Gama

Source

Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet

R. E. Rinehart, 1997 Radar for Meteorologists Rinehart Publishing

References

Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet

38 VariablesZDP

VariablesZDP

Reflectivity difference

Description

VariablesZDP returns the reflectivity difference From Rinehart (1997), Eqn 10.2

Usage

```
VariablesZDP(Zh, Zv)
```

Arguments

Zh Horizontal reflectivity [mm^6/m^3]

Zv Vertical reflectivity [mm^6/m^3]

Value

ZDP Reflectivity difference [dB]

Author(s)

Jose Gama

Source

Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet

R. E. Rinehart, 1997 Radar for Meteorologists Rinehart Publishing

References

Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet

VariablesZDR 39

VariablesZDR	Differential reflectivity
--------------	---------------------------

Description

VariablesZDR returns the differential reflectivity From Rinehart (1997), Eqn 10.3 and Seliga and Bringi (1976)

Usage

```
VariablesZDR(Zh, Zv)
```

Arguments

Zh Horizontal reflectivity [mm^6/m^3]
Zv Vertical reflectivity [mm^6/m^3]

Value

ZDR Differential reflectivity [dB]

Author(s)

Jose Gama

Source

Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet

R. E. Rinehart, 1997 Radar for Meteorologists Rinehart Publishing

References

Nick Guy, 2014 PyRadarMet - Python Fundamental Calculations in Radar Meteorology https://github.com/nguy/PyRadarMet

Index

k datasets	SystemXsecBscatterSphere, 32
ApertureWeightingFunctionsAntenna,	VariablesCDR, 33
2	VariablesHDR, 34
ElectronicWarfareFrequencyBands,	VariablesLDR, 35
15	VariablesRadVel, 36
kConstantSpeedOfLight, 23	VariablesReflectivity, 37
programming	VariablesZDP,38
AttenuationAbsCoeff, 3	VariablesZDR, 39
AttenuationExtCoeff, 4	
AttenuationScatCoeff, 5	ApertureWeightingFunctionsAntenna, 2
ConversiondBZ2Z, 6	AttenuationAbsCoeff, 3
ConversionZ2dBZ, 6	AttenuationExtCoeff, 4
DopplerDilemma, 7	AttenuationScatCoeff, 5
DopplerFmax, 8	ConversiondBZ2Z,6
DopplerFreq, 9	ConversionZ2dBZ, 6
DopplerPulseDuration, 9	Conversionizzabz, 0
DopplerPulseLength, 10	DopplerDilemma, 7
DopplerRmax, 11	DopplerFmax, 8
DopplerVmax, 12	DopplerFreq, 9
DopplerVmaxDual, 13	DopplerPulseDuration, 9
DopplerVshift, 14	DopplerPulseLength, 10
DopplerWavelength, 15	DopplerRmax, 11
GeometryBeamBlockFrac, 16	DopplerVmax, 12
GeometryHalfPowerRadius, 17	DopplerVmaxDual, 13
GeometryRangeCorrect, 18	DopplerVshift, 14
GeometryRayHeight, 19	DopplerWavelength, 15
GeometryReffective, 20	
GeometrySampleVolGauss, 21	ElectronicWarfareFrequencyBands, 15
GeometrySampleVolIdeal, 22	Coomat my Doom Dlack Enga 16
SystemAntEffArea, 23	GeometryBeamBlockFrac, 16
SystemFreq, 24	GeometryHalfPowerRadius, 17 GeometryRangeCorrect, 18
SystemGainPratio, 25	GeometryRayHeight, 19
SystemNormXsecBscatterSphere, 26	GeometryReffective, 20
SystemPowerReturnTarget, 27	GeometrySampleVolGauss, 21
SystemPowerTarget, 28	GeometrySampleVolIdeal, 22
SystemRadarConst, 29	Geometry Sample vollueal, 22
SystemSizeParam, 30	kConstantBoltz(kConstantSpeedOfLight)
SystemThermalNoise, 31	23
Systemwavelength, 32	kConstantP0 (kConstantSpeedOfLight), 23

INDEX 41

```
kConstantR43 (kConstantSpeedOfLight), 23
kConstantRe (kConstantSpeedOfLight), 23
kConstantSLP (kConstantSpeedOfLight), 23
kConstantSpeedOfLight, 23
SystemAntEffArea, 23
SystemFreq, 24
{\tt SystemGainPratio}, {\tt 25}
{\tt SystemNormXsecBscatterSphere, 26}
SystemPowerReturnTarget, 27
{\tt SystemPowerTarget}, 28
SystemRadarConst, 29
SystemSizeParam, 30
SystemThermalNoise, 31
Systemwavelength, 32
{\tt SystemXsecBscatterSphere, 32}
VariablesCDR, 33
VariablesHDR, 34
VariablesLDR, 35
VariablesRadVel, 36
VariablesReflectivity, 37
VariablesZDP, 38
VariablesZDR, 39
```