Primeramente, observanos que la matrie PÍ es la matrie Identidad a la que homes permutado su filas i,j

Segun Je prode apreciar en el enunciado de la entrega, la notación o seguir es la que hace referencia a expresar en elemental de la matrie B como bre, y notación anólogo para describir una matriz i.e, B=(bne) ke=1.

Mustraremu unicamente que al multipliar la malite Bala requierda por Pisse intercambian Pas filas Ces cleur, es como si epilidramos el intercambo que quistramos hacer en B de filas pero a la lumitidad). ¿ Por que? Porque si mostramos que Pis B = B i (entondiendo por Bi el (crutado que que romas probor), entonce Βτ.ρ= Βτρώ [[PiB)] (Bi), Co que nos dana pi - [pi] Thiselades Routab gu vams

Ol revitado de intercambio de edumnas, ya que permutar y trasponer, no se ve afectado el resultado por el orden.

o lo has dicho, se supone que son los elementos de la matriz P^{ij}, ¿no?

Mastromas por tanto que PUB=Bis. Mustremus par tunto que i 0-0.

Sea Kzi, Kzi, l=1,..., n. En este casa prq =0 si Kzq, y prn=1 > PiB = prq bqe = bre

En el caso de la fila i-ésima, se tonc que un K=i, piq=0 si qzi y pg=1. > (PiB)ie = = piqbqe = bje Idem pura d caso de lo fila j-ésima (K=j). Es decir, las files i y j quedan intercombisdes y el resto permanecen inmutables.

Para ver que det(Pi)={15,12, bosta ver que si in Pi= 1d (con determinante trivialmente 1),

y en el caro izi, basta recordar las propriedades de les determinantes par las cuales intercomarat der de su linea investra el signo al determinante.

Finalmente, para comprobor que (Pi) = Pi, veamos que Pi. Pi = Id. En cfeto, puer la que estamos haciendo es intercambiar 2 filas para luego valvar a intercambiarlas (las mismas), dashacrendo el intercambio iniciae (furmimente es repetir 2 veces la demostración realizada antenormante donde trivialmente, aunque con engarcasa notación, se cotime la matriz (dontidad). 🗵

Para poder argumentar esta (gualdad, primero estudiemo) el aspeto que tendrá el segundo sumando del segundo miembro de la igualdad, licen, pues es esconcialmente la que nas dará respuesto a la pregunto. Voomes que aspecto 6 onen les clementes de este produte de matrices, c.e, (CRET) ij. Podemy expressor (lnent) ij = (ln:, ex] > ije 11-n1. Ahora, Consideremos:

No es un prod. escalar: son dos números

·Si j=K, cobe considerar 2 cossistical:

-> (= { 1,-, K1 = 0 + (lni, en] 7 = 0 + (lne] ii = 0

-> Ce{KH,_,n1 = (Che; T); = (Ck:, en) > (Che, t) = (Chi · 1 = (Chi

Una vez tonidas en cuenta estas consideraciones, adreitimos el aspecto de la matriz liner.

Resta ver que Ex es invessible y Ex-1= I-lxex. Mealmente, bassindonos en la definición de matriz invasible, bastaria con venticar que de hecho Ex-=I-lxex es su inversa, i.e, (I+lxex) (I-lxex)=I No distante, podemos decir de antemano que la matriz Ex es inversible porser una matriz finanguar wyo diagonal no tiene elementar nulas, y por tanto, det (En) \$0. Operando:

(I+ (nenT) (I-lnenT) = I-lxenT+CrenT-(nenT)2, por la que basto reinjuir que (CrenT)2=(0). Uamamen M= Crent (Notación). Vecamo que Vij se tione (M2) ij = 0. Cansiderando casos:

· Si i e { , , , h } => (M2) i = < (h e = Ti, \ k e = Ti > = < 0, \ k e = Ti > = 0

· Si iethy, ny, Cabe considerar 2 cassisticas:

->Si j = K =>(M²)ij = (lnen t; lnen t;) = < lnen t; o > = 0

ya que en viñad del primer vector del producto escalor poderno ver cómo Fodo será (cro (Bo que apoile al producto escalar) salvo la K-ésima coordenada a la suma (si se quiere puede verse aun més clara separando el produto escalar en 3 sumatories, cumo se sugiere con les amotociones, aunque la nutación sería farragas). No destante, esto K-ésima coordinada del primer vector también apartora o al produto escalar ya que la K-ésima coordanda del segundo vedor es nota. 🛮

También sabemas que A=rI+B > 1. A=I+ 1/B

Apleando a que hay un Teurama que vos ascenta que si IIIBIII(1, entince) I+B es invertible

Y III(I+B)-III = III III , podema privarelo a la matriz B.

Así, obtenemas que I+B=A es inversible y III(I+B)-III=IIIA-IIII = IIIAIII.

Ademái, como \(\frac{A}{2} \) es inversita, ou determinante es \(\frac{7}{2} \), y para sober si \(A \) er inversita, considerando el determinante de \(\frac{A}{2} \). \(\frac{1}{2} \), como sabernar que por propiedades del determinante sigue siendo dulinto de cera, tenemos que \(A \) también es inversible, que es una de los cosas que queríamos probar.

Par etro eado, subamus que & es inversible, y que su inversa sería r.A-1, ya que si multiplicames combas dotonemes la Identital, i.e. A. r.A-1 = f.AA-1=Id. Entances;

miembro de la designaldal por r, obtenemos IIIA-III \ \ \frac{111 \in 111 \in

Puesto que r>0, no cambia el sentido de la desigualdad