Lösungshinweise zu Präsenzaufgabenblatt – Zusatztutorium 1 Aufgaben z.3.(c) und z.4.(b)

Präsenzaufgabe z.3.(c):

Voraussetzung: $(\mathcal{G}, *)$ eine beliebige Gruppe, und $(U_1, *), (U_2, *)$ zwei Untergruppen davon.

Behauptung: $(U_1 \cap U_2, *)$ ist ebenfalls eine Untergruppe von $(\mathcal{G}, *)$.

Beweis. Nach Definition ist $U_1 \cap U_2 = \{g \in \mathcal{G} \mid g \in U_1 \text{ und } g \in U_2\}.$

Wir wenden das Untergruppenkriterium an.

(U0). Zu zeigen: $U_1 \cap U_2 \neq \emptyset$.

Sei $e \in \mathcal{G}$ das neutrale Element der Gruppe $(\mathcal{G}, *)$. Da U_1 und U_2 Untergruppen gilt $e \in U_1$ und $e \in U_2$. $\implies e \in U_1 \cap U_2$. Insbesondere ist $U_1 \cap U_2 \neq \emptyset$.

(U1). Zu zeigen: $\forall g, h \in U_1 \cap U_2 : g * h^{-1} \in U_1 \cap U_2$. Da $g, h \in U_1$ und U_1 eine Untergruppe ist, gilt $g * h^{-1} \in U_1$.

Analog impliziert $g, h \in U_2$ und U_2 eine Untergruppe, dass $g * h^{-1} \in U_2$.

$$\implies g * h^{-1} \in U_1 \cap U_2.$$

Präsenzaufgabe z.4.(b):

Voraussetzung: $b \in R \setminus \{0_R\}$ ist eine m-te Einheitswurzel für ein $m \in \mathbb{N}$.

Behauptung: b ist eine Einheit in R.

Beweis. Da b eine m-te Einheitswurzel ist, gilt

$$b^m = 1_R.$$

Setzen wir $d := b^{m-1}$, so gilt:

$$b * d = b * b^{m-1} = b^m = 1_R = b^m = b^{m-1} * b = d * b.$$

Somit ist d das inverse Element zu b bezüglich * und b ist eine Einheit.