Assignment 4: Canonical correlation analysis

Group 12

Dávid Hrabovszki (davhr856), Laura Julia Melis (lauju103), Spyridon Dimitriadis (spydi472), Vasileia Kampouraki (vaska979)

14/12/2019

Question: Canonical correlation analysis

 (ρ_k^{*2}, e_k) and (ρ_k^{*2}, f_k) are the eigenvalue-eigenvectors pairs of the matrices:

$$\Sigma_{11}^{-1/2}\Sigma_{12}\Sigma_{22}^{-1/2}\Sigma_{21}\Sigma_{11}^{-1/2} \text{ and } \Sigma_{22}^{-1/2}\Sigma_{21}\Sigma_{11}^{-1/2}\Sigma_{12}\Sigma_{22}^{-1/2} \text{ respectively.}$$

The kth pair of canonical variables is given by $U_k = e_k^T \Sigma_{11}^{-1/2} X^{(1)}$ and $V_k = f_k^T \Sigma_{22}^{-1/2} X^{(2)}$.

• The first two canonical correlations are: $\rho_1^* = 0.51734$ and $\rho_2^* = 0.12551$. (There are only two canonical correlations, $k=\min(p,q)=\min(3,2)=2$.)

a) Test at the 5% level if there is any association between the groups of variables.

Test for the significance of the canonical relations with $\alpha = 0.05$ Observed test statistic (Barlett correction).

$$H_0: \Sigma_{12}=0,$$

 $H_1:\Sigma_{12}\neq 0$

$$-(n-1-\frac{1}{2}(p+q+1))\ln\prod_{i=1}^{k}(1-\hat{\rho}_{i}^{*2})>\chi_{pq}^{2}(\alpha)$$

13.74948 > 12.59159

where k is the number of canonical correlations we take into consideration

We reject the H_0 with significance level $\alpha = 0.05$. There is some association between the groups of variables because not all canonical correlations are zero. Therefore the use of canonical correlation analysis is justified.

b) How many pairs of canonical variates are significant?

$$H_0: \rho_1^* \neq 0, \, \hat{\rho}_2^* = 0$$

$$-(n-1-\frac{1}{2}(p+q+1))\ln\prod_{i=2}^{k}(1-\hat{\rho}_{i}^{*2}) > \chi_{(p-1)(q-1)}^{2}(\alpha)$$

0.6668632 < 5.991465

we cannot reject the H_0 with significance level $\alpha = 0.05$.

From the above tests we get that only the first pair of canonical variables is significant.

c) Interpret the "significant" squared canonical correlations.

The canonical correlation ρ_k^* generalizes the correlation between two sets of variables, $X^{(1)}$ and $X^{(2)}$.

The canonical correlations are also the multiple correlation coefficients of U_k with $X^{(2)}$ or the multiple correlation coefficients of V_k with $X^{(1)}$. Because of its multiple correlation coefficient interpretation, the kth squared canonical correlation ρ_k^{*2} is the proportion of the variance of canonical variate U_k 'explained' by the set $X^{(2)}$. It is also the proportion of the variance of canonical variate V_k 'explained' by the set $X^{(1)}$. Therefore, ρ_k^{*2} is often called the shared variance between the two sets $X^{(1)}$ and $X^{(2)}$. The largest value, ρ_1^{*2} , is sometimes regarded as a measure of set 'overlap'. (book p548)

The 26.76% is the percentage of the variance of canonical variate U_1 and V_1 'explained' by the set $X^{(2)}$ and $X^{(1)}$ respectively.

d)Interpret the canonical variates by using the coefficients and suitable correlations.

• Raw Canonical Coefficients for $X^{(1)}$

```
## glucose intolerance insulin response insulin resistance ## 0.01310 -0.01444 0.02340
```

Using the raw canonical variables it is not clear to interprate the outcome, thus we will use the standardized canonical variables.

- Standardized Canonical Coefficients for $X^{(1)}$

```
## glucose intolerance insulin response insulin resistance
## 0.43568 -0.70467 1.08146
```

- Standardized Canonical Coefficients for $X^{(2)}$

```
## relative weight fasting plasma glucose
## -1.02022 0.16094
```

• Correlation between $X^{(1)}$ and their Canonical Variable U_1

```
## glucose intolerance insulin response insulin resistance
## 0.33973 -0.05018 0.75511
```

• Correlation between $X^{(2)}$ and their Canonical Variable V_1

```
## relative weight fasting plasma glucose
## -0.98751 -0.04646
```

The first pair of canonical variables, or first canonical variate pair, is the pair of linear combinations U_1, V_1 which maximize the correlation.

According to the coefficients of U_1 the variables that contribute the most are $X_3^{(1)}$ and $X_2^{(1)}$, i.e. U_1 is primarily a insuline response to oral glucose and an insuline resistance variable. The indicators of medical problems are the primary variables $X^{(1)}$. While V_1 represents the relative weight variable. From the correlation between $X^{(1)}$ and their Canonical Variable U_1 we notice that insuline resistance is the most correlated variable with U_1 . So we can interpret it as an indicator of insuline resistance problems. On the other hand, from the correlation between $X^{(2)}$ and their Canonical Variable V_1 we notice that is most correlated with the relative weight variable.

e) Are the "significant" canonical variates good summary measures of the respective data sets?

The proportions of total (standardized) sample variances 'explained' by the first canonical variates U_1 and V_1 .

$$R_{z^{(1)}|\hat{U_1}}^2 = \frac{1}{3} \sum_{k=1}^3 r_{\hat{U_1}, z_k^{(1)}}^2$$

[1] 0.2293766

$$R^2_{z^{(2)}|\hat{V_1}} = \frac{1}{2} \Sigma_{k=1}^2 r^2_{\hat{V_1},z_k^{(1)}}$$

[1] 0.4886645

The first sample canonical variate of the $X^{(1)}$ set accounts for 22.93% of the set's total sample variance. The first sample canonical variate of the $X^{(2)}$ set explains 48.86% of the set's total sample variance. We might thus infer that V_1 is a 'better' representative of its set than U_1 is of its set.

f) Give your opinion on the success of this canonical correlation analysis.

[1] 0.26765

The proportion of the variance of canonical variate U_1 , V_1 "explained" by the set $X^{(2)}$ and $X^{(1)}$ respectively is 26.76%.

This canonical correlation analysis was not particularly successful.

Appendix

```
knitr::opts_chunk$set(echo = TRUE, message = F, warning = F, error = F)
S = as.matrix(read.table("P10-16.dat"))
n = 46
p = 2
q = 3
S11 = as.matrix(S[1:3, 1:3])
S12 = as.matrix(S[1:3, 4:5])
S21 = t(S12)
S22 = as.matrix(S[4:5, 4:5])
# sample canonical variets
eig11 <- eigen(S11)
S11inv <- solve(S11)
S11invsqtr <- eig11$vectors %*% diag(sqrt(eig11$values)^(-1)) %*% t(eig11$vectors)
eig22 <- eigen(S22)
S22inv <- solve(S22)
S22invsqtr <- eig22$vectors %*% diag(sqrt(eig22$values)^(-1)) %*% t(eig22$vectors)
\# NOTE: invsqtr=inverse square root
# the canonical correlations
rho <- sqrt(eigen(S11invsqtr ** S12 ** S22inv ** S21 ** S11invsqtr)$values)
# rho
# columns contain the eigenvectors
ei <- eigen(S11invsqtr %*% S12 %*% S22inv %*% S21 %*% S11invsqtr)$vectors
fi <- eigen(S22invsqtr %*% S21 %*% S11inv %*% S12 %*% S22invsqtr)$vectors
sdS11 = sqrt(diag(S11))
sdS22 = sqrt(diag(S22))
# sample canonical varietes
rawU = t(ei) %*% S11invsqtr
rawV = t(fi) %*% S22invsqtr
U = t(ei) %*% S11invsqtr %*% diag(sdS11) # *sd to standardized
V = t(fi) %*% S22invsqtr %*% diag(sdS22) # p542
# the first pair of canonical variables
# U[1,]
# V[1,]
# p 566
# Test between the first and second
cat(-(n-1-(1/2)*(p+q+1))*log((1-rho[1]^2)*(1-rho[2]^2)),">",
    qchisq(0.05,df=p*q,lower.tail = F))
p1 = p - 1
q1 = q - 1
# for the secondary
cat(-(n-1-(1/2)*(p+q+1))*log((1-rho[2]^2)),"<",
qchisq(0.05,df=p1*q1,lower.tail = F))
# the proportion of the variance of canonical variates
# round(rho[1]^2,5)
```

```
# the first raw canonical variable
rawwU = round(t(rawU)[,1:2], 5)
rownames(rawwU) = c("glucose intolerance", "insulin response", "insulin resistance")
colnames(rawwU) = c("rawU1","U2")
rawwU[,1]
# the first pair of canonical variables
stdU = round(t(U[1:2,]), 5)
rownames(stdU) = c("glucose intolerance", "insulin response", "insulin resistance")
colnames(stdU) = c("U1", "U2")
stdU[,1]
stdV = round(t(V), 5) # p544, 546, 547
rownames(stdV) = c("relative weight", "fasting plasma glucose")
colnames(stdV) = c("V1", "V2")
stdV[,1]
corU = t(rawU %*% S11 %*% solve(diag(sdS11)))[,1:2]
rownames(corU) = c("glucose intolerance", "insulin response", "insulin resistance")
colnames(corU) = c("U1", "U2")
round(corU[,1],5)
corV = t(rawV %*% S22 %*% solve(diag(sdS22)))
rownames(corV) = c("relative weight", "fasting plasma glucose")
colnames(corV) = c("V1", "V2")
round(corV[,1],5)
mean(corU[,1]^2)
mean(corV[,1]^2)
# the proportion of the variance of canonical variates
round(rho[1]^2,5)
```