Procesos biotecnológicos

Control de sistemas biológicos

Repaso de modelos

$$q_x = \mu = \mu_{max} \cdot \frac{n}{n + K_n} \cdot \frac{s}{K_s + s + \frac{s^2}{K_i}}$$

Sistemas de cultivo

Sistemas de cultivo

Batch o por lotes:

$$F_{in} = F_{out} = 0$$
 $V = cte$

Fed-Batch o semi-continuo:

$$F_{in} \neq 0$$
 $F_{out} = 0$ $V \uparrow$

Continuo:

$$F_{in} = F_{out} \neq 0$$
 $V = cte$

Intermedio: modos de operación de biorreactores

	Facilidad de operar	Equipamiento necesario	Productividad	Otros
Batch $F_{in} = F_{out} = 0$ $V = cte$	☆☆☆☆☆	$^{\updownarrow} ^{\diamondsuit} ^{\diamondsuit} ^{\diamondsuit} ^{\diamondsuit}$	☆ ☆ ☆	Se complica si hay inhibiciónSe puede hacer secuencialNo hay control
Fed-Batch $F_{in} \neq 0$ $F_{out} = 0$ $V \uparrow$	☆	☆ ☆ ☆	$^{\overset{\wedge}{\wedge}} ^{\overset{\wedge}{\wedge}} ^{\overset{\wedge}{\wedge}} ^{\overset{\wedge}{\wedge}}$	Hay controlMayor aprovechamiento de sustratosAlta densidad celular
Continuo $F_{in} = F_{out} \neq 0$ $V = cte$	☆ ☆ ☆	☆ ☆	☆ ☆	 Hay control Pto. Operación cte. (metabolismo) Riesgo de contaminación Requiere línea continua (up, down)

Sistemas de cultivo

Ejemplo

$$k_S S \xrightarrow{\mu} X + k_P P$$

$$\dot{x} = \mu x - Dx$$

$$\dot{s} = -k_S \mu x + D (s_{in} - s)$$

$$\dot{p} = k_P \mu x - D p$$

$$\mu(s) = \mu_{max} \frac{s}{s + K_s}$$

$$\dot{\xi} = K r(\xi) - D\xi_{in} + F - Q$$

$$K = \begin{bmatrix} 1 \\ -k_S \\ k_P \end{bmatrix} \quad r = \mu(s)x \quad F = \begin{bmatrix} 0 \\ Ds_{in} \\ 0 \end{bmatrix} \qquad \xi = \begin{bmatrix} x \\ s \\ p \end{bmatrix} \qquad Q = 0_{3 \times 1}$$

$$\dot{\xi} = K r(\xi) + D (\xi_{in} - \xi) + F(\xi) - Q(\xi)$$

$$K = \begin{bmatrix} 1 \\ -k_S \\ k_P \end{bmatrix} \quad r = \mu(s)x \quad \xi_{in} = \begin{bmatrix} 0 \\ s_{in} \\ 0 \end{bmatrix} \qquad \xi = \begin{bmatrix} x \\ s \\ p \end{bmatrix} \qquad F = Q = 0_{3 \times 1}$$

$$F_{in} = F_{out} = 0$$
 $V = cte$

$$V = cte$$

$$\dot{c} = \pm k_c q x + D \left(c_{in} - c \right) + F - Q$$

En concentraciones:

$$\dot{x} = \mu x - Dx$$

$$\dot{s} = -k_S \mu x + D (s_{in} - s)$$

$$\dot{p} = k_P \mu x - D p$$

$$\dot{x} = \mu x = r_x$$

$$\dot{s} = -k_S \mu x = -r_S$$

$$\dot{p} = k_P \mu x = r_p$$

En masas:

$$\dot{X} = \mu x V = \mu X$$

$$\dot{x} = \mu x = r_x \qquad \qquad X = \mu x V = \mu X$$

$$\dot{s} = -k_S \mu x = -r_S \qquad \qquad \dot{S} = -k_S \mu x V = -k_S \mu X$$

$$\dot{P} = k_P \mu x V = k_P \mu X$$

$$\mu(s) = \mu_{max} \frac{s}{s + K_s}$$

$$\dot{x} = \mu x = r_x$$

$$\dot{s} = -k_S \mu x = -r_S$$

$$\dot{p} = k_P \mu x = r_p$$

$$\mu = \mu_{max} \frac{s}{s + K_s}$$

¿Qué pasa si todos los sustratos están en exceso? ($s \gg K_s$)

$$\dot{x} \cong \mu_{max} \cdot x$$

$$\Rightarrow$$

$$x(t) = x_0 e^{\mu_{max} t}$$

(fase lag y muerte no estamos modelando)

$$\dot{x} = \mu x = r_x \qquad \qquad \mu = \mu_{max} \frac{s}{s + K_s}$$

$$\dot{s} = -k_S \mu x = -r_s$$

$$\dot{p} = k_P \mu x = r_p$$

¿Qué pasa con s? ($s \gg K_s$)

$$x(t) = x_0 e^{\mu_{max}t}$$
 \Rightarrow $\dot{s} = -k_s \mu_{max} x(t) = -k_s \mu_{max} x_0 e^{\mu_{max}t}$

$$\Rightarrow \int_{s_0}^{s(t)} ds = \int_0^t -k_s \mu_{max} x_0 e^{\mu_{max} t} dt$$

$$\Rightarrow \qquad s(t) = s_0 - k_s x_0 (e^{\mu_{max} t} - 1)$$

Se pueden calcular rendimientos (globales) de forma simple:

$$s(t) = s_0 - k_s x_0 (e^{\mu_{max} t} - 1)$$

$$s_f = s_0 - k_s (x_f - x_0)$$

$$y_{X/S} = \frac{\Delta X}{\Delta S} = \frac{x_f - x_0}{s_0 - s_f} = 0.195 \frac{gX}{gS}$$

$$y_{X/S} = \frac{1}{k_S}$$

También podemos calcular μ_{max} a partir de la curva.

$$y_{P/S} = \frac{\Delta P}{\Delta S} = \frac{P_f}{S_0 - S_f}$$

$$y_{P/S} = \frac{1}{k_p}$$

También podemos calcular μ_{max} a partir de la curva.

$$x(t) = x_0 e^{\mu_{max}t}$$
 \Rightarrow $\ln(x(t)) = \ln(x_0) + \mu_{max}t$

Ventajas:

- Es el mas simple y rápido.
- Puede adaptarse a diferentes tipos de biorreactores.
- Permite el cálculo de rendimientos globales en forma rápida y sencilla.
- Permite determinar μ_{max} en forma sencilla.
- Es útil para comparar diferentes medios de cultivo

Desventajas:

- No es posible controlar μ
- Puede presentarse inhibición por sustrato
- Alta demanda de O_2
- Dificultad para estimar velocidades volumétricas
- Tiempos muertos entre procesos.

Cultivo fed batch

$$F_{in} \neq 0$$
 $F_{out} = 0$ $V = \int F_{in} dt$

Desde el punto de vista de las masas:

$$\frac{\partial (c \cdot V)}{\partial t} = \pm r \, V - F_{out} c + F_{in} \, c_{in}$$

Desde el punto de vista de la concentración:

$$\dot{c} = \pm k_c q x + \frac{F_{in}}{V} (c_{in} - c) + F - Q$$

Y no olvidar que

$$\dot{V} = F_{in}$$

Cultivo fed batch

$$\dot{x} = \mu x - Dx$$

$$\dot{s} = -k_s \mu x + D (s_{in} - s)$$

$$\dot{V} = F_{in}$$

$$\mu = \mu_{max} \frac{s}{s + K_s}$$

$$\dot{x} = \mu_{max} \frac{s}{s + K_s} x - Dx$$

$$\dot{x} = \mu_{max} \frac{s}{s + K_s} x - Dx$$

$$\dot{s} = -k_s \mu_{max} \frac{s}{s + K_s} x + D (s_{in} - s)$$

Sistema más complicado de analizar.

Sobre todo, depende de la F_{in} o D que usemos.

Producto entrada estado.

Productos y cocientes de estados.

Cultivo fed batch: alimentación constante

Analicemos un caso particular:

$$F_{in} = cte$$
 $D << \mu_{max}$
 $V = V_0 + F_{in} \cdot t$

$$\begin{cases} \dot{x} = \mu x - Dx \\ \dot{s} = -k_s \mu x + D (s_{in} - s) \end{cases} \begin{cases} \dot{X} = \mu X \\ \dot{S} = -k_s \mu X + F_{in} s_{in} \end{cases}$$

$$\mu = \mu_{max} \frac{s}{s + K_s}$$

En masas:

$$\begin{cases} \dot{X} = \mu X \\ \dot{S} = -k_S \mu X + F_{in} S_{in} \end{cases}$$

Solución aproximada

"Puntos de equilibrio":

$$0 = \mu x - Dx$$

$$0 = -k_s \mu x + D (s_{in} - s)$$

1) Washout

$$x = 0$$

$$s = s_{in}$$

2) Pto. Eq. de operación

$$x \neq 0$$
 $(\mu = D)$

 $s \approx 0$ en la mayoría de los casos y si $D \ll \mu_{max}$

$$k_s \mu x = D (s_{in} - s)$$

$$k_s \mu X = F_{in}(s_{in} - s) \approx F_{in} s_{in} = cte$$

(Todo lo que entra es consumido rápidamente)

$$\dot{X} = \mu X = \frac{F_{in}s_{in}}{k_s} = cte$$

Cultivo fed batch: alimentación constante

$$\dot{X} = \mu X = \frac{F_{in}s_{in}}{k_s} = cte$$

Esta es una herramienta de diseño utilizada en el campo.

Ojo! Que F_i no sea muy grande, ni X_0 muy chico!

Cultivo fed batch: alimentación constante

Cultivo fed batch: alimentación exponencial

$$\dot{x} = \mu x - Dx$$

$$\dot{s} = -k_s \mu x + D (s_{in} - s)$$

$$\dot{V} = F_{in}$$

Queremos operar a $\mu(s) = \mu_r$:

$$\dot{X} = \mu_r X$$

$$\Rightarrow X(t) = X_0 e^{\mu_r t}$$

Proponemos ley de alimentación proporcional a la biomasa (esperada):

$$F_i = \lambda X = \lambda x V$$

$$F_i = \lambda X_0 e^{\mu_r t}$$

Cuánto vale λ ? Sale de proponer s constante

$$0 = -k_s \mu x + D (s_{in} - s)$$

$$0 = -k_s \mu_r x + \frac{\lambda x V}{V} (s_{in} - s_r)$$

$$\lambda = \frac{k_s \mu_r}{s_{in} - s_r}$$

Cultivo fed batch: alimentación exponencial

Cultivo fed batch

Ventajas:

- Mayor productividad que el sistema batch.
- Menor inhibición por sustratos.
- No se limita por O_2 si el batch previo no se limitó (F cte).
- Evita metabolismos de sobreflujo.

Desventajas:

- Requiere de un reservorio estéril y una bomba.
- No es adaptable a cualquier configuración de biorreactor
- No se puede estimar fácilmente los q_i
- Está limitado por los volúmenes del biorreactor.
- Tiempos muertos entre procesos.

$$F_{in} = F_{out} \neq 0 \qquad \qquad \dot{V} = 0$$

Desde el punto de vista de la concentración:

$$\dot{c} = \pm k_c q x + \frac{F_{in}}{V} (c_{in} - c) + F - Q$$

Y no olvidar que

$$D = \frac{F_{in}}{V}$$

En este caso es posible alcanzar puntos de operación donde las concentraciones y tasas son constantes.

$$\begin{cases} \dot{x} = \mu x - Dx \\ \dot{s} = -k_s \mu x + D (s_{in} - s) \\ \dot{p} = k_p \mu x - D p \end{cases}$$

$$\mu = \mu_{max} \frac{s}{s + K_s}$$

$$\begin{cases}
0 = \mu x - Dx \\
0 = -k_s \mu x + D (s_{in} - s) \\
0 = k_p \mu x - D p
\end{cases}$$

1) Washout
$$x^{eq} = 0$$

$$s^{eq} = s_{in}$$

$$p^{eq} = 0$$

2) Pto. Op.
$$\mu(s) = D$$

$$\begin{cases} x^{eq} = \frac{(s_{in} - s^{eq})}{k_s} \\ s^{eq} = \frac{D \cdot K_s}{\mu_{max} - D} \\ p^{eq} = k_p x^{eq} \end{cases}$$

$$\dot{x} = \mu x - Dx$$

$$\dot{s} = -k_s \mu x + D (s_{in} - s)$$

$$\dot{p} = k_p \mu x - D p$$

$$\mu(s) = D \qquad x^{eq} = \frac{(s_{in} - s^{eq})}{k_s} \qquad q_s = D \frac{(s_{in} - s^{eq})}{x^{eq}}$$

$$s^{eq} = \frac{D \cdot K_s}{\mu_{max} - D} \qquad q_p = D \frac{p^{eq}}{x^{eq}}$$

$$p^{eq} = k_p x^{eq}$$

Ventajas:

- Puedo controlar externamente la µ en un valor deseado
- Se puede utilizar para estudiar el metabolismo microbiano.
- Permite estudiar el efecto de las condiciones de cultivo en la fisiología celular.
- Disminuye las paradas de planta.

Desventajas:

- Requiere de un reservorio estéril y una bomba.
- Todas las operaciones de upstream y downstream deben operar en continuo.
- Se puede contaminar con mayor facilidad.
- Requiere mucho tiempo alcanzar el E.E.