WEEK 3: BASICS OF DATA ANALYTICS

Dr. Kai Li School of Information Sciences University of Tennessee, Knoxville Spring 2025

Review of Week 2

- Data science
- Data scientists

- Reading?
- Assignment?
- R exercise?

Overview of this week

- In this week, we will discuss the categories of data, questions, and statistical methods and their alignment.
 - Data value types
 - Research questions
 - Types of statistical analysis
 - We will come back to this topic from Week 6
 - Demonstration:
 - Project organization

Data type	Mathematical operations	Measures of central tendency	Measures of variability	
Nominal	• Equality (=, ≠)	• Mode	• None	
Ordinal	Equality (=, ≠)Comparison (>, <)	ModeMedian	RangeInterquartile range	
Interval	 Equality (=, ≠) Comparison (>, <) Addition, subtraction (+,-) 	 Mode Median Arithmetic mean	RangeInterquartile rangeStandard deviationVariance	
Ratio	 Equality (=, ≠) Comparison (>, <) Addition, subtraction (+,-) Multiplication, division (×, ÷) 	 Mode Median Arithmetic mean *Geometric mean	 Range Interquartile range Standard deviation Variance **Relative standard deviation 	

Nominal:

- They are names and cannot be calculated as themselves.
- It is always a categorical / discrete variable.

Ordinal:

- Ranking data, such as 1st, 2nd, et al.
- Interval/Ratio:
 - They are continuous variables and can be calculated.

- How would you classify these variables into nominal, ordinal, interval, and ratio data?
 - Color (red, yellow, blue...)
 - Ranking (1st, 7th...)
 - Temperature (75 degree Celsius...)
 - Time (1975/1/1)
 - Count of people

- How would you classify these variables into nominal, ordinal, interval, and ratio data?
 - Color (red, yellow, blue...) Nominal
 - Ranking (1st, 7th...) Ordinal
 - Temperature (75 degree Celsius...) Interval
 - Time (1975/1/1) Interval (but not the difference of time, like 2 hours!)
 - Count of people Ratio

Likert scales

- Likert scale is believed to be ordinal data, but not interval.
- However, it can be treated as interval data in statistical analyses (by calculating the mean value).

How satisfied are you with our services?

- Very Unsatisfied 1
- Unsatisfied 2
- Neutral 3
- Satisfied 4
- Very Satisfied 5

No	Item	Mean	Std. Deviation	Rank	Level of influence
1	I feel valued in my role	2.36	1.47	1	Moderate
2	I'm clear about what is expected of me at work	2.35	1.34	2	Moderate
3	My skills are well-used	2.35	1.40	3	Moderate
	Overall		0.07		Moderate

Transformation of Data value types

- We can transform one type of data value into another:
 - Grouping interval/ratio data and then get the ranking of values
 - Instead of getting 75 points, I am in the first quarter of the class in an exam.
 - In many statistical models, we may want to consider time as a categorical data point (nominal).

Statistical methods

- A set of methods to describe, interpret, and analyze data.
- There are two major categories of statistical methods:
 - Descriptive methods: focusing on describing a variable
 - Inferential methods: focusing on making inferences and predictions

Types of Questions

- Descriptive questions:
 - How old are the students?
 - Where are the students from?
- Inferential questions:
 - Is the student's gender related to one's academic performance?
 - How much the performance will be improved if the university is only using small classes?

One more comment

- No one type of questions can "rule them all."
 - Each type of question is just one perspective we can take on a topic.
- In a research paper and report, we may want to use multiple questions to tell a more comprehensive story.
- We need to make sure that our analysis is corresponding to the type of questions we ask.

Stock Market as an Indicator of Economy

- S&P 500 overall growth (1948-2019) – by Spencer Baucke
- https://public.tableau.co m/profile/spencer.bauck e#!/vizhome/IstheTrump StockMarkettheBestinUS History_157101912936 10/Analysis

FROM RAW DATA TO PERCENTAGE GROWTH

What different patterns do you think are displayed in these two figures?

A COMPARISON

- The raw number view:
 - A historical trend of growth
 - Larger numbers tend to be exaggerated and vice versa
- The percentage view:
 - Changes under each presidency
- These are two different perspectives of the same data from which we can get different stories.

What is a research question?

- A research question is a clear and concise question serving as the focal point of a research project.
 - It is generally phrased as a question.
- It is different from a research problem statement.
 - Research problem statement is focused on the bigger problem/issue/gap, whereas research questions are focused on more specific angles in the research problem.

For example

https://asistdl.onlinelibrary.wiley.com/doi/full/10.1002/asi.24986?s
aml referrer

What is a good research question?

- The FINER criteria (Cummings et al., 2013):
 - Feasible: a question should be researchable
 - Interesting: a question should have significance to something else (practice, policy, methods...)
 - Novel: a question should lead to new information and a gap in existing literature
 - Ethical:
 - Relevant: a question should be relevant to some broader communities

Cummings, S.R., Browner, W.S., & Hulley, S.B. (2013). <u>Conceiving the research</u> <u>question and developing the study plan.</u> In: Designing clinical research (Hulley, S. R. Cummings, W. S. Browner, D. Grady, & T. B. Newman, Eds.; Fourth edition.). Wolters Kluwer/Lippincott Williams & Wilkins. Pp. 14-22.

How to?

- There could be many recipes of getting good research questions.
 - A question before doing the research, based on which we collect data and design and apply the methods
 - A question that emerges during the research design
- But in any case, we want our questions to be concise and clear, so that readers can understand the RQs without any difficulty.
 - All concepts used in RQs should be explained before the questions.
 - Use plain language.

Descriptive methods

- Central tendency:
 - Mean: average of all numbers
 - Median: the middle number for all sorted values
- Dispersion:
 - Variation: the difference between minimum and maximum values
 - Range (Min, Max, Quartiles)
 - Standard deviation: how disperse the sample is

Descriptive methods

Reporting descriptive statistics

- It probably depends on the nature of research design.
- But a general guideline is here:
 https://about.illinoisstate.edu/mshesso-test2/reporting-statistics-in-apa-style/.
 - Mean and standard deviation are the two central measurements.
- But we should also try to understand:
 - If there is any outlier (i.e., very different max or min values and very large range)
 - If mean and median are very different from each other.

Mean vs. Median

- We should consider using median if mean is not able to represent the whole sample:
 - For example, when there are extreme values in the dataset
 - We can also calculate median for ordinal data.

Descriptive methods

- All these descriptive statistical methods are very standardized and are implemented in nearly every statistical software.
- We cannot apply most of these techniques on categorical variables. So instead, we primarily reply on frequencies and percentage of values to offer description.

The use of descriptive analysis

- Doing descriptive analysis is generally the first and the most basic step of using the data.
 - Establish basic understanding of the data
 - Identify outliers
 - Determine the usability of inferential methods
 - Many inferential methods can only be applied to certain type of data, which we will discuss in the weeks of statistical methods.
- We can also include some descriptive results to the report as the first part of results.

Visualization of distribution

- Visualizing the distribution can also help us see many descriptive statistical measurements.
- Two methods of visualizing the distribution:
 - Histogram or shape chart (<u>it is</u> technically NOT a line chart)
 - Box and violin charts

Types of distribution

- In histogram or shape chart, the y axis represents the no. of observations corresponding to the value.
- Many types of distribution
- Normal distribution
 - Requirement for many statistical methods

Histogram vs. Bar chart

Box and violin charts

- Box plot can show key descriptive facts of one distribution.
 - We can also use it to compare different distributions! (But the question is beyond descriptive analysis.)
- Violin chart uses the shape to show the number of observations across data values.
 - Box and violin charts can be used together.

Demonstration

- 1. Data values in R
- 2. Core descriptive analysis functions in R
- 3. R files and GitHub
 - There is a strong need for project organization (i.e., the management of your folders) in data analysis projects.
 See the next slide
- 4. GitHub:
 - We may need to talk about it in the next week. But I will share a tutorial if you want to learn to use it.
- 5. Class activity: descriptive analysis of the Boston dataset and RQs

Project organization

- Some general principles:
 - One project has one main folder.
 - Separate code, data and outputs into separate sub-folders.
 - We may want to further separate raw data and processed data, depending on the scope of the project.
 - Choose a reasonable and consistent naming convention for your files and folders.
 - Example: https://datamanagement.hms.harvard.edu/plan-design/file-naming-conventions
 - Also consider how to manage different versions of the code, data, outputs...
 - Write the ReadMe file.