

Proposta de teste de avallação								
Matemática A								
10.º ANO DE ESCOLARIDADE								
Duração: 90 minutos Data:								

Grupo I

Na resposta aos itens deste grupo, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.

1. Considere, num referencial o.n. xOy, os pontos A(-5, 3), B(6, 3) e C(0, -17).

Atendendo à unidade do referencial, a área do triângulo [ABC] é igual a:

- (A) 220
- **(B)** 110
- **(C)** 14
- **(D)** 28
- 2. Na figura ao lado, estão assinalados segmentos de reta orientados que representam os vetores \vec{a} , \vec{b} e \vec{c} .

Tomando como unidade a medida do lado de cada quadrícula, em qual das opções seguintes está representada a norma do vetor $\vec{a} + \vec{b} + \vec{c}$?

- **(A)** 1
- **(B)** 2
- **(C)** 4
- **(D)** 6
- 3. Num referencial o.n. xOy, as retas $r \in s$, definidas pelas condições r: y = (m-1)x + 2 e $s:(x,y)=(0,3)+k(2,m), k \in \mathbb{R}$, são paralelas, para um certo número real k, diferente de zero.

Qual é o valor de *m*?

- (A) -3
- **(B)** -1
- **(C)** 2
- **(D)** 3
- **4.** Em qual das seguintes opções se tem um par de vetores colineares?
 - **(A)** $(\sqrt{6}, -2); (\sqrt{3}, -1)$
- **(B)** $(\sqrt{3}, -2); (-6, 4\sqrt{3})$

(C) (5,0); (0,5)

- **(D)** (1,-2);(-1,1)
- 5. Considere, num referencial o.n. Oxy, a circunferência de equação $(x-1)^2 + (y+2)^2 = 9$ e a circunferência de centro no ponto de coordenadas (4, 3) e raio 2.

A interseção das duas circunferências é:

(A) o conjunto vazio;

(B) uma circunferência;

(C) um ponto;

(D) um par de pontos.

Grupo II

Na resposta aos itens deste grupo apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias.

- **6.** Considere, num referencial ortonormado $(O, \vec{e_1}, \vec{e_2})$, os pontos A(0, 4), B(-6, 2) e C(8, 10).
 - **6.1.** Prove que os três pontos definem um triângulo.
 - **6.2.** O triângulo [ABC] está inscrito numa circunferência. Determine as coordenadas do centro dessa circunferência.
 - **6.3.** Determine a equação reduzida da reta r, paralela à reta AB e que contém o ponto C.
 - **6.4.** Calcule $\|\overrightarrow{AB} \overrightarrow{u}\|$, sendo $\overrightarrow{u} = -2\overrightarrow{e}_1 + \overrightarrow{e}_2$.
- 7. Considere, fixado um plano munido de um referencial cartesiano, o paralelogramo [RITA].

A figura não está desenhada à escala.

Sabe-se que:

- o ponto R tem coordenadas (-5, 3);
- o ponto I tem coordenadas (-2, 1);
- o ponto T tem coordenadas (-4, 4).

Determine:

- **7.1.** as coordenadas do ponto A;
- **7.2.** um vetor \vec{w} de norma 1 colinear com o vetor $\vec{v}(1, -2)$;
- **7.3.** a mediatriz do segmento [RI].

Proposta de teste de avaliação

8. Considere, num plano munido de um referencial o.n. xOy a circunferência de equação $x^2 + y^2 = 2$.

Sabe-se também que:

- a reta *r* interseta a circunferência nos eixos coordenados nos pontos *A* e *B*;
- a reta s é paralela ao eixo Ox e tangente à circunferência no ponto D;
- as retas r e s intersetam-se no ponto C.
- **8.1.** Considere o ponto P de coordenadas (-1,1).

Mostre que o ponto P pertence à circunferência.

8.2. Seja $\vec{u} = -2\overrightarrow{OP}$ e seja $Q = P + \vec{u}$.

Determine as coordenadas do ponto Q e refira, no contexto do problema, o significado de $\lceil PQ \rceil$.

- **8.3.** Determine as coordenadas dos pontos A, B e C.
- **8.4.** Justifique que a reta r é paralela à bissetriz dos quadrantes ímpares.
- **8.5.** Escreva uma equação vetorial da reta r.
- **8.6.** Defina por uma condição a região sombreada da figura.

FIM

COTAÇÕES

Grupo I

1.	2.	3.	4.	5.	Total
8	8	8	8	8	40

Grupo II

6.1.	6.2.	6.3.	6.4.	7.1.	7.2.	7.3.	8.1.	8.2.	8.3.	8.4.	8.5.	8.6.	Total
14	16	10	12	12	16	12	10	10	16	10	10	12	160

Proposta de resolução

Grupo I

1.
$$A_{[ABC]} = \frac{b \times a}{2}$$
, com:

$$b = |abcissa de A - abcissa de B| = |6 - (-5)| = |11| = 11$$

$$a = |\text{ordenada de } A| - \text{ordenada de } C| = |3 - (-17)| = |20| = 20$$

Então,
$$A = \frac{11 \times 20}{2} = 110$$
.

Resposta: (B)

2.

Resposta: (A)

3. Declive reta
$$r: m-1$$

Declive reta
$$s: \frac{m}{2}$$

$$m-1=\frac{m}{2} \Leftrightarrow 2m-2=m \Leftrightarrow m=2$$

Resposta: (C)

4.
$$\frac{\sqrt{3}}{-6} = \frac{-2}{4\sqrt{3}} \Leftrightarrow -\frac{\sqrt{3}}{6} = -\frac{1}{2\sqrt{3}} \Leftrightarrow -\frac{\sqrt{3}}{6} = -\frac{\sqrt{3}}{2\times 3} \Leftrightarrow -\frac{\sqrt{3}}{6} = -\frac{\sqrt{3}}{6}$$

Resposta: (B)

5.
$$C_1(1,-2)$$
; $r_1 = 3$ $d(C_1, C_2) = \sqrt{(1-4)^2 + (-2-3)^2} = \sqrt{34}$

$$C_2(4,3)$$
; $r_2 = 2$ $d(C_1, C_2) > r_1 + r_2$

Resposta: (A)

Grupo II

6.1.
$$\overrightarrow{AB} = B - A = (-6, 2) - (0, 4) = (-6, -2)$$

$$\overrightarrow{BC} = C - B = (8, 10) - (-6, 2) = (14, 8)$$

Como os vetores \overrightarrow{AB} e \overrightarrow{BC} não são colineares $\left(\frac{14}{-6} \neq \frac{8}{-2}\right)$, os pontos A, B e C não pertencem a uma mesma reta pelo que definem um triângulo.

Proposta de teste de avaliação

- **6.2.** A interseção das mediatrizes dos lados do triângulo é o centro da circunferência (circuncentro).
 - Mediatriz de [AB]:

$$\sqrt{(x-0)^2 + (y-4)^2} = \sqrt{(x+6)^2 + (y-2)^2} \Leftrightarrow$$

$$\Leftrightarrow x^2 + y^2 - 8y + 16 = x^2 + 12x + 36 + y^2 - 4y + 4$$

$$\Leftrightarrow$$
 $-4y = 12x + 24$

$$\Leftrightarrow y = -3x - 6$$

• Mediatriz de [AC]:

$$\sqrt{(x-0)^2 + (y-4)^2} = \sqrt{(x-8)^2 + (y-10)^2} \Leftrightarrow$$

$$\Leftrightarrow x^2 + y^2 - 8y + 16 = x^2 - 16x + 64 + y^2 - 20y + 100$$

$$\Leftrightarrow$$
 12 y = -16x+148

$$\Leftrightarrow y = -\frac{4}{3}x + \frac{37}{3}$$

$$\begin{cases} y = -3x - 6 \\ y = -\frac{4}{3}x + \frac{37}{3} \Leftrightarrow \begin{cases} -3x - 6 = -\frac{4}{3}x + \frac{37}{3} \end{cases} \Leftrightarrow$$

$$\Leftrightarrow \left\{ \frac{1}{-5x = 55} \Leftrightarrow \begin{cases} y = -3 \times (-11) - 6 \\ x = -11 \end{cases} \Leftrightarrow \begin{cases} y = 27 \\ x = -11 \end{cases}$$

O centro da circunferência tem coordenadas (-11, 27).

6.3. Declive de AB:
$$m = \frac{2-4}{-6-0} = \frac{1}{3}$$

$$10 = \frac{1}{3} \times 8 + b \Leftrightarrow b = \frac{22}{3}$$

Equação reduzida da reta $r: y = \frac{1}{3}x + \frac{22}{3}$

6.4.
$$\vec{u} = (-2, 1)$$

$$\overrightarrow{AB} = B - A = (-6, 2) - (0, 4) = (-6, -2)$$

$$\overrightarrow{AB} - \overrightarrow{u} = (-6, -2) - (-2, 1) = (-4, -3)$$

$$\|\overrightarrow{AB} - \overrightarrow{u}\| = \sqrt{(-4)^2 + (-3)^2} = \sqrt{25} = 5$$

7.1.
$$A = R + \overrightarrow{IT}$$

$$\overrightarrow{IT} = T - I = (-4, 4) - (-2, 1) = (-2, 3)$$

$$A = (-5, 3) + (-2, 3) = (-7, 6)$$

Assim, A(-7, 6).

7.2.
$$\vec{w} = k\vec{v}$$

$$\vec{w} = k(1, -2) = (k, -2k)$$

$$\|\vec{w}\| = \sqrt{k^2 + (-2k)^2} = \sqrt{k^2 + 4k^2} = \sqrt{5k^2}$$

Proposta de teste de avaliação

Como $\|\vec{w}\| = 1$, tem-se que:

$$\sqrt{5k^2} = 1 \Leftrightarrow 5k^2 = 1 \Leftrightarrow k^2 = \frac{1}{5} \Leftrightarrow k = \pm \frac{\sqrt{5}}{5}$$

Então,
$$\overrightarrow{w} = -\frac{\sqrt{5}}{5} \overrightarrow{v}$$
 ou $\overrightarrow{w} = \frac{\sqrt{5}}{5} \overrightarrow{v}$.

Assim,
$$\overrightarrow{w}\left(-\frac{\sqrt{5}}{5}, \frac{2\sqrt{5}}{5}\right)$$
 ou $\overrightarrow{w}\left(\frac{\sqrt{5}}{5}, \frac{-2\sqrt{5}}{5}\right)$.

7.3.
$$\sqrt{(x+5)^2 + (y-3)^2} = \sqrt{(x+2)^2 + (y-1)^2} \Leftrightarrow$$

 $\Leftrightarrow x^2 + 10x + 25 + y^2 - 6y + 9 = x^2 + 4x + 4 + y^2 - 2y + 1$
 $\Leftrightarrow -4y = -6x - 29$
 $\Leftrightarrow y = \frac{3}{2}x + \frac{29}{4}$

8.1. $(-1)^2 + 1^2 = 2 \Leftrightarrow 1 + 1 = 2 \Leftrightarrow 2 = 2$ Proposição verdadeira Assim, *P* pertence à circunferência.

8.2.
$$\overrightarrow{OP} = P - O = (-1, 1)$$

 $\overrightarrow{u} = -2(-1, 1) = (2, -2)$
 $Q = (-1, 1) + (2, -2) = (1, -1)$
 $[PQ]$ é um diâmetro da circunferência.

8.3.
$$A(0, -\sqrt{2})$$
, $B(\sqrt{2}, 0)$
Equação reduzida da reta AB e que contém o ponto C :

$$y = x - \sqrt{2}$$
 c.a. $m = \frac{0 - (-\sqrt{2})}{\sqrt{2} - 0} = 1; b = -\sqrt{2}$

O ponto C é o ponto de interseção das retas $y = \sqrt{2}$ e $y = x - \sqrt{2}$.

$$\begin{cases} y = x - \sqrt{2} \\ y = \sqrt{2} \end{cases} \Leftrightarrow \begin{cases} \sqrt{2} = x - \sqrt{2} \\ y = \sqrt{2} \end{cases} \Leftrightarrow \begin{cases} x = 2\sqrt{2} \\ y = \sqrt{2} \end{cases}$$

Assim,
$$C(2\sqrt{2}, \sqrt{2})$$
.

- **8.4.** A reta r tem declive 1, tal como a reta y = x (bissetriz dos quadrantes ímpares). Assim, a reta r é paralela à bissetriz dos quadrantes ímpares.
- **8.5.** Por exemplo,

$$(x, y) = (0, -\sqrt{2}) + k(1, 1), k \in \mathbb{R}$$

8.6.
$$x^2 + y^2 \ge 2 \land y \le \sqrt{2} \land y > x - \sqrt{2} \land y \ge 0 \land x \ge 0$$

