Home Price Factors in King County

Matthew Onstott

Table of Contents

Project Overview

<u>Process</u>

Time Dependency

<u>Location Dependency</u>

Construction Dependency

Iterative Modeling

Price Factors

Future Work

Project Overview

Goal

- Determine if and how features affect prices
- Predict future housing prices

Dataset

- House sales in King County, Washington, from May 2014 to May 2015
- 21,597 records with date, price and feature information

Method

Multivariate Linear Regression

Features

Count

- Bedrooms
- Bathrooms
- > Floors
- Views

Square Footage

- o Home
 - Lot
 - Nearest 15 Neighbors' Homes
 - Nearest 15 neighbors' Lots

Binary

- Basement
- Waterfront

Scale

- Overall Condition
- King County Grade

Date

- Year Built
- Year Renovated

Location

- ZIP Code
- Latitude
- Longitude

Process

MethodologyOSEMN Framework

- Obtain
 - Gather data from sources
- Scrub
 - Clean and pre-process
- Explore
 - Find patterns and trends
- Model
 - Predict and forecast
- Interpret
 - Review results and next steps

Questions

- 1. How does time affect price?
- 2. How does location affect price?
- 3. How does construction date affect price?
- 4. What factors best predict price?

Time Dependency

Recommendation:

- Buy in winter
- Sell in summer

Year

There is not enough data to comment reliably on year-long patterns

Month

- Winter months have the fewest sales (avg. 1,250)
- Late spring and early summer months have the most sales (APR thru JUL above 2,000)

Week

Certain weeks have very large or small sales
 (start of May above 800 vs start of January at 200)

Location Dependency

Recommendation:

Invest above lat 47.5

ZIP Code

- sales vary greatly by ZIP Code
- The largest has an average sales price is nearly
 \$2.25 million
- For comparison, the second highest ZIP Code has a mean sale price of just over \$1.25 million
- Beyond this, price are well below **\$1 million**

Latitude

 There is a clear separation of high and low priced homes at 47.5 (expensive homes at higher latitudes)

Longitude

• The most expensive homes are at central latitude values (-122.2) while cheaper homes are found at the edges (±0.2)

Recommendation:

Construction Dependency

Stick to new units

Year Built

- There is a very strong relationship with price
- The later a house is built, the more expensive it is to purchase (2015 above \$500k, 1971 at \$100k)

Number of Years Built in Dataset: 116

Year Built Statistics:

	Darre Ocacroc.
count	21534
mean	1971
std	29
min	1900
25%	1951
50%	1975
75%	1997
max	2015

Iterative Modeling

Lessons Learned

- Reducing the number of predictors increases quality of fit for a small cost in explained variance
- Log transformation of price satisfies normality (skew, kurtosis)
- Overfitting is not an issue ir the final model (Accuracy, RMSE)

	#	Model	R ²	Adjusted R ²	F Statistic	Predictors
	1	Baseline	0.699	0.698	1426	33
У	2	Only Significant Predictors	0.699	0.698	2137	22
ة	3	High t-Statistics	0.621	0.621	4758	7
n	4	Log Price	0.718	0.718	7385	7
	5	Final Model Training Set	0.720	0.719	5952	7

Final Model	Accuracy	RMSE	% of Data
Training Set	72.0%	0.279	80%
Testing Set	71.2%	0.281	20%

Price Factors

Influencers

 The final model has 7 coefficients built from 5 predictors that impact housing sales price

Grade

Expensive homes are given higher ratings by King County

Latitude

 Location is critical to determining the final price

View

 The number of views for a house is related to its perceived value

Waterfront

Homes on the water are highly coveted

Year Built

 Newer homes are more costly and must be sold at higher prices

Final Model

```
[log_price] = 11.45 + 0.62[lat75] + 2.66[grade_s] + 0.44[lat100] + 0.30[lat50] + 0.35[waterfront] - 0.06[yrbuilt_75] + 0.43[view_s]
```

Definitions

- log_price = log(price)
- lat75 = 1 for lat > 47.57 and lat <= 47.68, 0 otherwise
- grade_s = (grade(i) min(grade)) / (max(grade) min(grade)) where min(grade) = 3
 and max(grade) = 13
- lat100 = 1 for lat >= 47.68, 0 otherwise
- lat50 = 1 for lat > 47.47 and lat <= 47.57, 0 otherwise
- waterfront = 1 for houses with waterfront view, 0 otherwise
- **yrbuilt_75** = 1 for **yr_built** > 1975 and **yr_built** <= 1997, 0 otherwise
- view_s = (view(i) min(view)) / (max(view) min(view)) where min(view) = 0 and max(view) = 4

Future Work

- Inspect price models by the number of views
- Inspect sales of low valued houses in expensive neighborhoods
- Analyze how remodeling affects the resale value of flipped houses
- Include other factors that may affect housing prices
 - o demographics, education, crime, jobs, entertainment