# Analysis of Algorithms CS 477/677

Instructor: Monica Nicolescu Lecture 27

## Final Exam

- Tuesday, May 14, 12:45-2:45pm, in class
- Exam structure:
  - TRUE/FALSE questions
  - short questions on the topics discussed in class
  - homework-like problems
- Questions will be from the entire semester,
   with emphasis on material after midterms

# General Advice for Study

- Understand how the algorithms are working
  - Work through the examples we did in class
  - "Narrate" for yourselves the main steps of the algorithms in a few sentences
- Know when or for what problems the algorithms are applicable
- Do not memorize algorithms

## **Topics Covered after Midterms**

- Dynamic programming (recurrence only)
- Greedy algorithms (greedy choice + proof)
- Graph algorithms
  - Search (BFS, DFS)
  - Topological Sort
  - Minimum spanning trees
  - Shortest paths (single source)
- NP-completeness (general questions only)
- Definitions
  - Do not say "An X is when [story here]"
  - Do say: "An X is a/an [noun phrase here]"
- Material prior to midterms
  - True/false, short questions/mini-problems, extra-credit/grad

# **Dynamic Programming**

#### Used for optimization problems

- A set of choices must be made to get an optimal solution
- Find a solution with the optimal value (minimum or maximum)

#### Applicability:

- Subproblems are not independent, i.e., subproblems share subsubproblems
- A divide-and-conquer approach would repeatedly solve the common subproblems
- Dynamic programming solves every subproblem just once and stores the answer in a table

# Elements of Dynamic Programming

- Optimal Substructure
  - An optimal solution to a problem contains within it an optimal solution to subproblems
  - Optimal solution to the entire problem is build in a bottom-up manner from optimal solutions to subproblems
- Overlapping Subproblems
  - If a recursive algorithm revisits the same subproblems again and again ⇒ the problem has overlapping subproblems

## Exercise

Give an O(n<sup>2</sup>) algorithm to find the longest montonically increasing sequence in a sequence of n numbers.

- Take an example: (5, 2, 8, 7, 3, 1, 6, 4)
- Define: s<sub>i</sub> = the length of the longest sequence ending with the i-th character

$$s_0 = 0 \begin{vmatrix} 5 & 2 & 8 & 7 & 3 & 1 & 6 & 4 \\ 1 & 1 & 2 & 2 & 2 & 1 & 3 & 3 \end{vmatrix}$$

$$s_i = max {s_j} + 1$$
  
0

s<sub>i</sub> = 1 more than the greatest value for a previous number that is smaller than seq[i]

# **Greedy Algorithms**

- Similar to dynamic programming, but simpler approach
  - Also used for optimization problems

#### • Idea:

 When we have a choice to make, make the one that looks best right now in hope of getting a globally optimal solution

#### Problems:

- Greedy algorithms don't always yield an optimal solution
- When the problem has certain general characteristics, greedy algorithms give optimal solutions

# Correctness of Greedy Algorithms

- Greedy Choice Property
  - A globally optimal solution can be arrived at by making a locally optimal (greedy) choice
- Optimal Substructure Property
  - Optimal solution to subproblem + greedy choice
    - ⇒ optimal solution for the original problem

# Dynamic Programming vs. Greedy Algorithms

### Dynamic programming

- We make a choice at each step
- The choice depends on solutions to subproblems
- Bottom up solution, from smaller to larger subproblems

## Greedy algorithm

- Make the greedy choice and THEN
- Solve the subproblem arising after the choice is made
- The choice we make may depend on previous choices, but not on solutions to subproblems
- Top down solution, problems decrease in size

## **Huffman Codes**

- Technique for data compression
- Idea:
  - Represent each character as a binary string
  - Variable length code: assign short codewords to frequent characters
  - Represent the codes as full binary trees whose leaves are the given characters



$$B(T) = \sum_{c \in C} f(c)d_T(c)$$

- Constructing an optimal prefix code (Huffmann code)
  - Start with a set of |C| leaves
  - At each step, merge the two least frequent objects: the frequency of the new node = sum of two frequencies

# Adj. List - Adj. Matrix Comparison

Graph representation: adjacency list, adjacency matrix

| Comparison                       | Better                         |
|----------------------------------|--------------------------------|
| Faster to test if (x, y) exists? | matrices                       |
| Faster to find vertex degree?    | lists                          |
| Less memory on sparse graphs?    | lists (m+n) vs. n <sup>2</sup> |
| Faster to traverse the graph?    | lists (m+n) vs. n <sup>2</sup> |

Adjacency list representation is better for most applications

## BFS vs. DFS

**BFS** 

**DFS** 

#### Input:

- A graph G = (V, E) (directed or undirected)
- − A **source** vertex  $s \in V$

#### • Idea:

 Explore the edges of G to "discover" every vertex reachable from s, taking the ones closest to s first

#### Output:

- d[v] = distance (smallest # of edges, or shortest path)
   from s to v, for all v ∈ V
- BFS tree

#### ' Input:

- A Graph G = (V, E) (directed or undirected)
- No source vertex given!

#### • Idea:

- Explore the edges of G to "discover" every vertex in V starting at the most recently visited node
- Search may be repeated from multiple sources

#### Output:

- 2 timestamps on each vertex: d[v], f[d]
- DFS forest

## Example - Question

• G = (V, E). True or false?

All DFS forests (for traversal starting at different vertices) will have the same number of trees.









{2, 5}, {1}, {4}, {3}

## Exercise

- Show how you can detect whether a graph is bipartite.
- Idea:
  - Nodes in the same set will never be adjacent to each other



While doing a BFS, color nodes in two colors (red, blue), always alternating from a parent to a child

The graph is bipartite if all adjacent nodes have different colors

## Exercise

 Give an O(n) algorithm to test if an undirected graph has a cycle (n = # of vertices)



#### • Idea:

- The graph has a cycle if ithas more than n 1 edges
- Checking this takes O(n)

# Sample Problem

- Give an Θ(n+m) algorithm that tests whether an undirected graph is connected. The graph is given in adjacency list representation and has n vertices and m edges.
  - Run DFS using any vertex as a start vertex and then check whether all nodes were visited.
  - The graph is connected if and only if all nodes were visited, that is, if and only if all nodes are reachable from the start vertex.

# Properties of DFS

- Descendant ancestor relationships
  - Relations on discovery finish times for descendant, parent (ancestor) nodes

Parenthesis Theorem

Review these properties!

White Path Theorem

# **Topological Sort**

**Topological sort** of a directed acyclic graph G = (V, E): a linear order of vertices such that if there exists an edge (u, v), then u appears before v in the ordering.

#### TOPOLOGICAL-SORT(V, E)

- 1. Call DFS(V, E) to compute finishing times f[v] for each vertex v
- 2. When each vertex is finished, insert it onto the front of a linked list
- 3. Return the linked list of vertices

# Sample Problem

• In the following graph, boxes represent tasks that must be performed in the assembly of a computer, and arrows represent constraints that one task must be performed before another (for instance, the disk drive must be attached before the chassis can be covered). Write down a sequence in which all of these tasks can be performed, satisfying all



# Minimum Spanning Trees

#### Given:

A connected, undirected, weighted graph G = (V, E)

A minimum spanning tree:

- 1. T connects all vertices
- 2.  $w(T) = \sum_{(u,v) \in T} w(u, v)$  is minimized



## Exercise

- True or False?
  - If all the weights of a connected, weighted graph are distinct, then distinct spanning trees of G have distinct weights







Cost 12

Cost 12

# Minimum Spanning Trees

## Kruskal's algorithm

- Start with each vertex being its own component
- Repeatedly merge two components into one by choosing the light edge (minimum cost) that connects them
- During the algorithm the MST is a forest of trees

### Prim's algorithm

- The edges added to the MST always form a single tree
- Repeatedly add light edges that connect vertices
   from outside the MST to vertices in the MST

## Variants of Shortest Paths

## Single-source shortest path

- G = (V, E) ⇒ find a shortest path from a given source vertex s to each vertex  $v \in V$
- Belmann-Ford algorithm
- Single-source shortest paths in acyclic graphs
- Dijkstra's algorithm
- Know when the algorithms are applicable and how they work

## Relaxation

 Relaxing an edge (u, v) = testing whether we can improve the shortest path to v found so far by going through u

If d[v] > d[u] + w(u, v)

we can improve the shortest path to v

 $\Rightarrow$  update d[v] and  $\pi$ [v]

After relaxation:

$$d[v] \le d[u] + w(u, v)$$





# Single Source Shortest Paths

#### Bellman-Ford Algorithm

- Allows negative edge weights
- TRUE if no negative-weight cycles are reachable from the source s and FALSE otherwise
- Traverse all the edges |V 1| times, every time performing a relaxation step of each edge

#### Single-Source Shortest Paths in DAGs

- Topologically sort the vertices of the graph
- Relax the edges according to the order given by the topological sort

#### Dijkstra's Algorithm

- No negative-weight edges
- Repeatedly select a vertex with the minimum shortest-path estimate d[v] – uses a queue, in which keys are d[v]

# Sample Problem

(a) Write down lengths for the edges of the following graph, so that Dijkstra's algorithm would not find the correct shortest path from *s* to *t*.



Dijkstra's algorithm will visit the vertices in the order s - A - t d[t] = 3 and d[B] = 5

However, the path s-A-B-t is the shortest.

# Sample Problem

- (b) Which of the shortest path algorithms described in class would be most appropriate for finding paths in the graph of part (a) with the weights you gave? Explain your answer.
  - Bellman-Ford, because it can handle graphs with negative edge weights and cycles.
  - We can't use the DAG algorithm because this graph is not a DAG.

## (a) TrueFalse

 Merge sort, Quicksort and Insertion sort are comparison-based sorting algorithms.

## (b) True False

 In a red-black tree, if a node is black than both its children are red.

### (c) True Palse

 A reverse-sorted array (i.e., decreasing order) is always a max-heap.

## (d) True False

 In a directed graph with positive edge weights, the edge with minimum weight belongs to the shortest paths tree for any source vertex.

## (e) True False

 Given any weighted directed graph with all distinct edge weights and any specified source vertex, the shortest paths tree is unique.

#### (f) True False

After running DFS in a graph G = (V, E), a vertex v (∈ V) is a proper descendant of another vertex u (∈ V)
 ⇔ d[v] < d[u] < f[u] < f[v]</li>

### (g) True False

 The problem of determining an optimal order for multiplying a chain of matrices can be solved by a greedy algorithm, since it displays the optimal substructure and overlapping subproblems properties.

#### (h) True False

 Kruskal's algorithm for finding a minimum spanning tree of a weighted, undirected graph is an example of a dynamic programming algorithm.

(i) TRUE FALSE

The depths of nodes in a red-black tree can be efficiently maintained as fields in the nodes of the tree.

- No, because the depth of a node depends on the depth of its parent
- When the depth of a node changes, the depths of all nodes below it in the tree must be updated
- Updating the root node causes n 1 other nodes to be updated

# Sample Questions

# What do we mean by the running time of an algorithm?

 The running time of an algorithm is the number of (primitive) operations it performs before coming to a halt. The running time is expressed as a function of the input size n.

List at least three methods for solving recurrences.

Masters method, iteration, substitution

# Sample Questions

Describe the characteristic feature of randomized algorithms. What is the main advantage of using such algorithms?

- The behavior is determined in part by values produced by a random-number generator: the algorithm generates its own randomness.
- Advantage: No particular input can consistently elicit worst case behavior.

# Sample Questions

What does dynamic programming have in common with divide-and-conquer, and what is the principal difference between the two techniques?

- Common: Both divide the initial problem into subproblems.
- Difference: Dynamic programming is used when the subproblems are not independent.

## Exercise

• In an OS-tree, the size field can be used to compute the rank' of a node x, in the subtree for which x is the root. If we want to store this rank in each of the nodes, show how can we maintain this information during insertion and deletion.

#### Insertion

- add 1 to rank'[x] if z is inserted within x's left subtree
- leave rank'[x] unchanged if z is inserted within x's right subtree

#### Deletion

 subtract 1 from rank'[x] whenever the deleted node y had been in x's left subtree.



$$rank'[x] = size[left] + 1$$

## Exercise (cont.)

 We also need to handle the rotations that occur during insertion and deletion



 $rank'(y) = r_y + rank'(x)$ 

$$rank'(x) = r_x$$

# Readings



All topics covered during the semester