fyfMIHICTEPCTBO ОСВІТИ І НАУКИ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ "ЛЬВІВСЬКА ПОЛІТЕХНІКА"

ЗАДАЧІ ПРО ПОТОКИ В МЕРЕЖАХ

МЕТОДИЧНІ ВКАЗІВКИ

до виконання лабораторних робіт №5 та №6 з дисципліни "Дослідження операцій" для студентів спеціальності 6. 050103 "Програмна інженерія"

Затверджено на засіданні кафедри програмного забезпечення Протокол № __ від _____р. **Задачі про потоки в мережах.** : Методичні вказівки до виконання лабораторних робіт №5 та №6 із дисципліни "Дослідження операцій" для студентів спеціальності "Програмна інженерія" / Укл.: Л.М. Журавчак, О.О. Нитребич — Львів: Видавництво Національного університету "Львівська політехніка", 2016. - 29 с.

Укладачі Л.М. Журавчак, д-р тех. наук, проф. О.О. Нитребич, канд. тех. наук, асист. кафедри ПЗ

Відповідальний за випуск Федасюк Д.В., д-р тех. наук, проф.

Зміст

Лабораторна робота №5	4
1. Поняття мережі	4
2. Алгоритм Дейкстри	5
3. Приклад пошуку найкоротшого маршруту в мережі модифік	ованим
алгоритмом Дейкстри	6
4. Алгоритм Флойда	9
5. Приклад знаходження найкоротшого ланцюга за допомогою алг	оритму
Флойда	10
Контрольні запитання до лабораторної роботи №5	13
Завдання до лабораторної роботи № 5	13
Вимоги до звіту	13
Вимоги до програми	14
Додаток 1	14
Лабораторна робота №6	18
6. Задача про максимальний потік	18
7. Алгоритм Гоморі-Ху	18
8. Приклад розв'язування потокової задачі методом Гоморі-Ху	19
Контрольні запитання до лабораторної роботи № 6	23
Завдання до лабораторної роботи № 6	23
Вимоги до звіту	23
Вимоги до програми	23
Додаток 2	
СПИСОК ЛІТЕРАТУРИ	29

Мета роботи: Ознайомитись на практиці із основними алгоритмами розв'язування потокових задач, навчитись знаходити оптимальні маршрути між вершинами мережі за допомогою алгоритмів Дейкстри та Флойда, а також розв'язувати задачі про максимальний потік з використанням алгоритму Гоморі-Ху.

Вступ

В рамках теорії дослідження операцій розглядається велика кількість практичних задач, які можна сформулювати як мережеві моделі і розв'язати їх спеціальними методами лінійного програмування. Приведемо декілька конкретних прикладів.

- **1.** Проектування газопроводу, що сполучає бурові свердловини морського базування з приймальною станцією, що знаходиться на березі. Цільова функція відповідної моделі повинна мінімізувати вартість будівництва газопроводу.
- 2. Пошук найкоротшого маршруту між двома містами в існуючій мережі доріг.
- **3.** Визначення максимальної пропускної спроможності трубопроводу для транспортування вугільної пульпи від вугільних шахт до електростанцій.
- **4.** Визначення схеми транспортування нафти від пунктів нафтовидобутку до нафтопереробних заводів з мінімальною вартістю транспортування.
- **5.** Складання тимчасового графіка будівельних робіт (визначення дат початку і завершення окремих етапів робіт).

Розв'язок описаних задач (як і багатьох аналогічних) вимагає застосування різних мережевих оптимізаційних алгоритмів. Задачі такого вигляду можна сформулювати і вирішувати як задачі лінійного програмування, але їхня специфічна структура дає можливість розробити спеціальні мережеві алгоритми, більш ефективні, ніж стандартний симплекс-метод.

Лабораторна робота №5

Розв'язування задач оптимізації на мережах: пошук найкоротшого маршруту в мережі модифікованим алгоритмом Дейкстри та багатополюсного найкоротшого ланцюга за допомогою алгоритму Флойда

1. Поняття мережі

Мережа складається з множини вузлів, зв'язаних дугами (або ребрами), тобто зображується графом. Отже, мережа описується парою множин (N,A), де N- множина вузлів (вершин), а A- множина дуг. Наприклад, на рис. 1.1 зображено

деяку мережу, у якої $N = \{1,2,3,4,5\}$, а множина $A = \{(1,2);(1,3);(2,3);(2,5);(3,4);(3,5);(4,2);(4,5)\}.$

Рис. 1.1. Приклад мережі

3 в'язна мережа — це мережа, у якої будь-які два вузли зв'язані принаймні одним шляхом (дугою). На рис. 1.1 показаний саме такий тип мережі. Якщо дуги є спрямованими, то мережу називають *орієнтованою*. Якщо кожній дузі приписано деяке дійсне число (вагу), то мережу називають *зваженою*. Під *довжиною шляху* у зваженій мережі розуміють суму ваг дуг, що утворюють цей шлях, у незваженій — кількість дуг.

Зазвичай розглядають транспортні мережі. Найбільш поширеними задачами ϵ визначення найкоротшої відстані від будь-якого пункту (вершини) до інших у заданій транспортній мережі.

Постановка задачі. Нехай задана зв'язна транспортна мережа, кожній дузі якої, що виходить із точки p_i та входить у точку p_j , поставлено у відповідність деяке дійсне **невід'ємне** число d_{ij} — її довжину. Треба визначити найкоротші шляхи в мережі від довільної вершини до всіх інших і вказати, через які вершини вони проходять.

Для розв'язування даної задачі розглянемо алгоритми Дейкстри та Флойда.

2. Алгоритм Дейкстри

Алгоритм Дейкстри винайдений нідерландським вченим Е. Дейкстрою в 1959 р. Його мета полягає в знаходженні найкоротшої відстані від однієї (початкової) вершини мережі до всіх інших.

Згідно алгоритму кожній вершині ставиться у відповідність мітка — мінімальна відома відстань від цієї вершини до початкової. Алгоритм працює покроково — на кожному кроці він «відвідує» одну вершину і намагається зменшувати мітки. Робота алгоритму завершується, коли всі вершини відвідані.

Ініціалізація. Мітка початкової вершини d(a)=0, мітки інших вершин — нескінченності $(d(x_i)=\infty)$. Це зображає те, що відстані від початкової до інших вершин невідомі. Мітка вершини a стає **постійною** (x^*) , мітки решти вершин — **тимчасовими**.

Крок 2. Якщо всі вершини мають постійну мітку, алгоритм завершений. Інакше, для всіх тимчасових міток, які суміжні з постійною вершиною (x^*) ,

обчислюємо $d(x_i) = \min\{d(x_i), d(x^*) + c(x^*, x_i)\}$, де $c(x^*, x_i)$ – відстань від вершини x^* до вершини x_i .

Крок 3. Серед усіх тимчасових міток визначаємо постійну за правилом $x^* = \min(d(x_i))$. Переходимо на крок 2.

3. Приклад пошуку найкоротшого маршруту в мережі модифікованим алгоритмом Дейкстри

<u>Приклад 3.1.</u> Знайти найкоротші маршрути з вершини a до решти вершин в мережі, зображеної на рис. 3.1, та вказатати вершини, через які вони проходять, за допомогою модифікованого алгоритму Дейкстри.

Рис.3.1. Приклад мережі

Крок 1. Розглянемо першу вершину a (з якої необхідно знайти маршрут до решти вершин) — тимчасова мітка. Випишемо таблицю (табл.3.1), у якій елементи першого рядка (d(x)) будуть містити відстані від початкової вершини до решти, які ми переглянули, а елементи другого рядка (x) — вершини, через які проходить маршрут з мінімальною довжиною. На першому кроці, відстань від вершини a до самої себе = 0, а до решти вершин $= \infty$, ці вершини ще не переглянуті. Другий рядок таблиці заповнюємо «-» (оскільки ще не обчислені мінімальні відстані до вершин, то і немає номерів чи назв самих вершин).

Таблиця 3.1

Вершини	a	b	C	d	e	f	g	h	i	j	Z
d(x)	0	∞									
X	-	-	-	-	-	-	-	-	-	-	-

Переглянемо усі суміжні вершини з вершиною a. Виконаємо обчислення:

$$d(b) = \min\{d(b), d(a) + c(a,b)\} = \min\{\infty, 0 + 6\} = 6,$$

$$d(c) = \min\{d(c), d(a) + c(a,c)\} = \min\{\infty, 0 + 3\} = 3,$$

$$d(d) = \min\{d(d), d(a) + c(a, d)\} = \min\{\infty, 0 + 2\} = 2,$$

$$d(e) = \min\{d(e), d(a) + c(a, e)\} = \min\{\infty, 0 + 8\} = 8.$$

Вершина а переглянута (постійна мітка).

 $\mathit{Крок}\ 2$. У нову таблицю (табл.3.2) записуємо обчислені значення елементів у перший рядок. У відповідних елементах другого рядка таблиці записуємо вершину a.

Таблиця 3.2

Вершини	a	b	c	d	e	f	g	h	i	j	z
d(x)	0	6	3	2	8	∞	∞	∞	∞	∞	∞
X	-	a	a	a	а	-	-	-	-	-	-

Обираємо серед *непереглянутих* вершин у табл.3.2 ту, яка має $\min(d(x))$. Це вершина d (*тимчасова* мітка).

Переглянемо усі суміжні вершини з вершиною d. Виконаємо обчислення:

$$d(c) = \min\{d(c), d(d) + c(d,c)\} = \min\{3, 2 + \infty\} = 3,$$

$$d(i) = \min\{d(i), d(d) + c(d,i)\} = \min\{\infty, 2+3\} = 5,$$

$$d(e) = \min\{d(e), d(d) + c(d, e)\} = \min\{8, 2 + 2\} = 4,$$

$$d(b) = \min\{d(b), d(d) + c(d, b)\} = \min\{6, 2 + \infty\} = 6.$$

Вершина d переглянута (nocmiйна мітка).

Крок 3. Записуємо нову таблицю 3.3.

Таблиця 3.3

Вершини	a	b	C	d	e	f	g	h	i	j	Z
d(x)	0	6	3	2	4	∞	∞	∞	5	∞	∞
X	-	a	a	a	d	-	-	-	d	-	-

Обираємо серед непереглянутих вершин у табл.3.3 ту, яка має $\min(d(x))$. Це вершина c (тимчасова мітка).

Переглянемо усі суміжні вершини з вершиною c. Виконаємо обчислення:

$$d(f) = \min\{d(f), d(c) + c(c, f)\} = \min\{\infty, 3 + 6\} = 9,$$

$$d(i) = \min\{d(i), d(c) + c(c, i)\} = \min\{5, 3 + \infty\} = 5,$$

$$d(e) = \min\{d(e), d(c) + c(c, e)\} = \min\{4, 3 + \infty\} = 4,$$

$$d(b) = \min\{d(b), d(c) + c(c, b)\} = \min\{6, 3 + \infty\} = 6.$$

Вершина c переглянута (постійна мітка).

Крок 4. Записуємо нову таблицю 3.4.

Таблиця 3.4

Вершини	a	b	c	d	e	f	g	h	i	j	Z
d(x)	0	6	3	2	4	9	∞	∞	5	∞	∞
X	-	a	a	a	d	c	-	-	d	-	-

Обираємо серед непереглянутих вершин у табл.3.4 ту, яка має $\min(d(x))$. Це вершина e (тимчасова мітка).

Переглянемо усі суміжні вершини з вершиною e. Виконаємо обчислення:

$$d(b) = \min\{d(b), d(e) + c(e, b)\} = \min\{6, 4 + \infty\} = 6,$$

$$d(f) = \min\{d(f), d(e) + c(e, f)\} = \min\{9, 4 + 14\} = 9,$$

$$d(i) = \min\{d(i), d(e) + c(e, i)\} = \min\{5, 4 + 5\} = 5.$$

Вершина е переглянута (постійна мітка).

Так продовжуємо далі, допоки всі вершини таблиці не будуть переглянуті (табл. 3.5-3.11).

Таблиця 3.5

Вершини	a	b	c	d	e	f	g	h	i	j	Z
d(x)	0	6	3	2	4	9	∞	∞	5	∞	∞
X	-	a	a	a	d	c	-	-	d	-	-

Таблиця 3.6

Вершини	a	b	c	d	e	f	g	h	i	j	z
d(x)	0	6	3	2	4	9	9	8	5	7	∞
X	-	a	a	a	d	c	i	-	d	i	-

Таблиця 3.7

Вершини	a	b	c	d	e	f	g	h	i	j	z
d(x)	0	6	3	2	4	9	9	14	5	7	∞
X	-	a	a	a	d	c	i	b	d	i	-

Таблиця 3.8

Вершини	a	b	c	d	e	f	g	h	i	j	Z
d(x)	0	6	3	2	4	9	9	14	5	7	12
X	-	a	a	a	d	c	i	b	d	i	j

Таблиця 3.9

Вершини	a	b	c	d	e	f	g	h	i	j	z
d(x)	0	6	3	2	4	9	9	14	5	7	12
X	-	a	a	a	d	c	i	b	d	i	j

Таблиця 3.10

Вершини	a	b	c	d	e	f	g	h	i	j	z
d(x)	0	6	3	2	4	9	9	14	5	7	12
X	-	a	a	a	d	c	i	b	d	i	j

Таблиця 3.11

Вершини	a	b	c	d	e	f	g	h	i	j	z
d(x)	0	6	3	2	4	9	9	14	5	7	12
X	-	a	a	a	d	c	i	b	d	i	j

Отже, всі вершини позначено, отримано остаточний результат:

Таблиия 3.12

Маршрут	ХялШ	Довжина
a-a	-	0
a-b	$a \rightarrow b$	6
а-с	$a \rightarrow c$	3
a-d	$a \rightarrow d$	2
а-е	$a \rightarrow d \rightarrow e$	4
a-f	$a \rightarrow c \rightarrow f$	9
a-g	$a \rightarrow d \rightarrow i \rightarrow g$	9
a-h	$a \rightarrow b \rightarrow h$	14
a-i	$a \rightarrow d \rightarrow i$	5
a-j	$a \rightarrow d \rightarrow i \rightarrow j$	7
a-z	$a \rightarrow d \rightarrow i \rightarrow j \rightarrow z$	12

4. Алгоритм Флойда

Алгоритм Флойда – алгоритм динамічного програмування для знаходження найкоротших відстаней між усіма вершинами зваженого орієнтованого графа. Розроблений в 1962 році Робертом Флойдом і Стівеном Воршеллом.

Суть алгоритму Флойда полягає у перевірці того, чи не виявиться шлях з вершини i у вершину j коротшим, якщо він буде проходити через деяку проміжну вершину. Алгоритм Флойда реалізується з використанням двох матриць: матриці найкоротших довжин D та матриці шляхів S. Зауважимо, що в цьому алгоритмі довжини дуг можуть бути bid'ємними, однак довжина кожного циклу має бути bid'ємною.

Спочатку потрібно ініціалізувати початкову матрицю відстаней D_1 (матрицю, кожен елемент якої d[i,j] дорівнює відстані від вершини i до вершини j, якщо існує ребро (i,j), і дорівнює нескінченності в іншому випадку) і матрицю маршрутів (послідовностей вершин) S_1 (кожен елемент матриці дорівнює номеру відповідного стовпця). Діагональні елементи обох матриць позначають знаком "-", оскільки їх в обчисленнях не враховують.

$$D_{1} = \begin{bmatrix} - & d_{12} & d_{13} \dots & d_{1n} \\ d_{21} & - & d_{23} \dots & d_{2n} \\ \dots & \dots & \dots & \dots \\ d_{n1} & d_{n2} & d_{n3} \dots & d_{nn} \end{bmatrix} \qquad S_{1} = \begin{bmatrix} - & 2 & 3 & \dots & n \\ 1 & - & 3 & \dots & n \\ \dots & \dots & \dots & \dots & \dots \\ 1 & 2 & 3 & \dots & n \end{bmatrix}$$

Далі на кожному кроці потрібно виділити **базовий вузол** (провідні рядок та стовпець). На першому кроці (k=1) це буде перший рядок та стовпець, на другому кроці — другий рядок та стовпець і т.д.

Для утворення нової матриці D_{k+1} необхідно переписати провідні рядки і стовпці без змін, а решта елементів перерахувати за таким правилом: якщо $d_{ik} + d_{kj}$ $< d_{ij}$, то у матриці D_{k+1} змінюємо елемент $d_{ij} = d_{ik} + d_{kj}$, в іншому випадку значення елементу залишаємо попереднім.

Якщо змінився деякий елемент d_{ij} матриці відстаней на кроці k, то в матриці S_{k+1} на місці відповідного елементу записуємо номер кроку k.

Алгоритм Флойда завершується через n кроків (n- кількість вершин мережі).

5. Приклад знаходження найкоротшого ланцюга за допомогою алгоритму Флойда

<u>Приклад 5.1.</u> Знайти мінімальні ланцюги між вершинами мережі, зображеної на рис.5.1, за допомогою алгоритму Флойда.

Рис. 5.1. Приклад мережі

Крок 1. Визначимо початкові матриці:

	1													
		a	b	c	e	h	f							
	a	0	6	3	8	∞	∞		a	b	С	e	h	f
	b	∞	0	2	∞	8	∞		a	b	С	e	h	f
D_1 =	c	∞	∞	0	∞	∞	6	$S_1 =$	a	b	С	e	h	f
	e	∞	∞	∞	0	∞	14		a	b	С	e	h	f
	h	∞	∞	12	∞	0	6		a	b	С	e	h	f
	\overline{f}	∞	∞	∞	∞	∞	0		a	b	c	e	h	f

На першому кроці виділяємо *перші* рядок та стовпець матриці D_1 . Для зменшення кількості обчислень користуємось **правилом**: якщо у виділеному рядку (стовпці) є елементи рівні ∞ , то викреслюємо і всі стовпці (рядки), які їм відповідають, тобто їх **не перераховуємо**. Оскільки у матриці D_1 у першому стовпчику всі елементи рівні ∞ , то жоден її елемент не змінюємо (так само і в матриці S_1).

Крок 2. Виділяємо у матриці D_2 другі рядок та стовпець.

						_		1.0						
		a	b	С	e	h	f							
	a	0	6	3	8	∞	∞		a	b	С	e	h	f
	b	∞	0	2	∞	8	∞		a	b	С	e	h	f
$D_2 =$	С	∞	∞	0	∞	8	6	$S_2=$	a	b	С	e	h	f
	e	∞	∞	∞	0	∞	14		a	b	С	e	h	f
	h	∞	8	12	∞	0	6		a	b	c	e	h	f
	f	∞	∞	∞	∞	∞	0		a	b	c	e	h	f

У матриці D_2 необхідно перерахувати лише d_{13}^3 та d_{15}^3 .

$$d_{13}^3 = \min\{d_{13}^2; d_{12}^2 + d_{23}^2\} = \min\{3; 6+2\} = 3;$$

$$d_{15}^3 = \min\{d_{15}^2; d_{12}^2 + d_{25}^2\} = \min\{\infty; 6+8\} = 14.$$

Отже, змінився елемент d_{15}^3 , тому значення відповідного елемента s_{15}^3 буде дорівнювати b (номер кроку = 2).

Kрок 3. Виділяємо у матриці D_3 третій рядок та стовпець.

		a	b	c	e	h	f	
	a	0	6	3	8	14	∞	
	b	∞	0	2	∞	8	∞	
$D_3=$	c	∞	∞	0	∞	∞	6	S_3 =
	e	∞	∞	∞	0	∞	14	
	h	∞	∞	12	∞	0	6	
	f	∞	∞	∞	∞	∞	0	

Обчислимо нові елементи: $d_{16}^4 = \min\{d_{16}^3; d_{13}^3 + d_{36}^3\} = \min\{\infty; 6+3\} = 9;$

$$d_{26}^4 = \min\{d_{26}^3; d_{23}^3 + d_{36}^3\} = \min\{\infty; 6+2\} = 8;$$

$$d_{56}^4 = \min\{d_{56}^3; d_{53}^3 + d_{36}^3\} = \min\{6; 6+12\} = 6.$$

Відповідні елементи матриці S_4 замінюємо на c.

Крок 4. Виділяємо у матриці D_4 четвертий рядок та стовпець.

		a	b	c	e	h	f
	a	0	6	3	8	14	9
	b	∞	0	2	∞	8	8
$D_4=$	С	∞	∞	0	∞	∞	6
	e	∞	∞	∞	0	∞	14
	h	∞	∞	12	∞	0	6
	f	∞	∞	∞	∞	∞	0

 $d_{16}^5 = \min\{d_{16}^4; d_{14}^4 + d_{46}^4\} = \min\{9; 8+14\} = 9.$

Крок 5. Виділяємо у матриці D_5 п'ятий рядок та стовпець.

		a	b	c	e	h	f
	a	0	6	3	8	14	9
	b	∞	0	2	∞	8	8
$D_5=$	С	∞	∞	0	∞	∞	6
	e	∞	∞	∞	0	∞	14
	h	∞	∞	12	∞	0	6
	f	∞	∞	∞	∞	∞	0
				_	_		

	а
	a
;=	a
	a
	a

 $d_{13}^6 = \min\{d_{13}^5; d_{15}^5 + d_{53}^5\} = \min\{3; 12 + 14\} = 3;$

$$d_{23}^6 = \min\{d_{23}^5; d_{25}^5 + d_{53}^5\} = \min\{2; 12 + 8\} = 2;$$

$$d_{16}^6 = \min\{d_{16}^5; d_{15}^5 + d_{56}^5\} = \min\{9; 14+6\} = 9;$$

$$d_{26}^6 = \min\{d_{26}^5; d_{25}^5 + d_{56}^5\} = \min\{8; 8+6\} = 8.$$

Крок 6. Виділяємо у матриці D_6 шостий рядок та стовпець.

		a	b	С	e	h	f
	a	0	6	3	8	14	9
	b	∞	0	2	∞	8	8
$D_6=$	С	∞	∞	0	∞	∞	6
	e	8	8	8	0	8	14
	h	8	∞	12	∞	0	6
	f	∞	∞	∞	∞	∞	0

$$S_6 =$$

a	b	С	e	b	С
a	b	С	e	h	С
a	b	С	e	h	f
a	b	С	e	h	f
a	b	С	e	h	f
a	b	С	e	h	\overline{f}

У матриці D_6 немає елементів, які необхідно обчислити.

Отже, всі кроки алгоритму Флойда виконані, отримані кінцеві матриці D_6 та S_6 . На основі цих двох матриць можна обчислити всі можливі маршрути між вершинами мережі. Наприклад: найкоротша відстань між вершинами a та f $d_{16}^6 = 9$. Для того, щоб знайти вершини мережі, через які проходить даний маршрут, необхідно проаналізувати матрицю S_6 . Елемент $s_{16}^6 = c$, а це означає, що проміжною точкою даного маршруту є вершина c. Далі потрібно переглянути чи є проміжні точки в маршруті $a \rightarrow c$, елемент $s_{13}^6 = c$, тобто проміжних вершин нема. Тобто маршрут від вершини a до вершини f проходить через такі вершини: $a \rightarrow c \rightarrow f$.

Контрольні запитання до лабораторної роботи №5

- 1. Що таке мережа?
- 2. Що таке зв'язана мережа?
- 3. Поясніть процедуру знаходження найкоротшого маршруту в мережі.
- 4. Наведіть приклади практичного застосування мережевих задач.
- 5. На якій ідеї ґрунтується алгоритм Дейкстри та які задачі можна розв'язувати за його допомогою?
- 6. Вкажіть, за допомогою якої модифікації можна, окрім довжини найкоротшого шляху, знайти і сам шлях.
- 7. Опишіть послідовність кроків алгоритму Флойда.
- 8. Назвіть переваги алгоритму Флойда стосовно алгоритму Дейкстри.

Завдання до лабораторної роботи № 5

- 1. Отримати індивідуальний варіант завдання.
- 2. Написати програму розв'язування потокових задач методами Дейкстри та Флойда з Додатку 1.
- 3. Оформити звіт про виконану роботу.
- 4. Продемонструвати викладачеві результати, відповісти на запитання стосовно виконання роботи.

Вимоги до звіту

- 1. Титульний аркуш.
- 2. Тема звіту.

- 3. Мета звіту.
- 4. Теоретичні відомості.
 - і. Дати відповідь на контрольне запитання у відповідності із номером журналу.
- 5. Текст програми з коментарями (алгоритм Дейкстри, Флойда).
- 6. Вигляд реалізованої програми.
- 7. Висновки.

Вимоги до програми

Програма має передбачати наступні можливості:

- 1. Автоматичне знаходження найкоротшого маршруту в мережі модифікованим алгоритмом Дейкстри.
- 2. Автоматичне знаходження найкоротшого маршруту в мережі алгоритмом Флойда.
 - 3. Ввід вхідних даних вручну (матриці суміжності).
 - 4. Передбачити можливість некоректного введення даних.
- 5. Передбачити можливість покрокового відображення проміжних таблиць.
 - 6. Підпис усіх таблиць.
 - 7. Вивід необхідного повідомлення у випадку неіснування розв'язку.

Додаток 1

Лабораторна робота №6 Розв'язування задачі про багатополюсний максимальний потік за допомогою алгоритму Гоморі-Ху

6. Задача про максимальний потік

Під час опису багатьох реальних ситуацій, які можна моделювати за допомогою мережі, наприклад, рух транспорту вулицями міста, використовують поняття «потік». Існує багато технічних і економічних задач, в яких системи можуть бути наближено описані у вигляді потокових моделей. Прикладами таких систем є транспортні мережі, де автостради зображують дугами з пропускними спроможності, що відповідають максимально допустимій інтенсивності руху; телефонні мережі, де телефонні лінії описують дугами, а пропускні здатності відповідають максимальному числу викликів, які можуть обслуговуватися в кожен момент часу і т.д. У всіх цих задачах передбачається існування декількох джерел деякого продукту. Передбачається також, що величина продукту, який може до пропускними декількох витоків, обмежена тільки транспортуватися здатностями дуг.

Задача про максимальний потік. Нехай G = (N, A) — орієнтована мережа з одним джерелом $s \in N$ і одним витоком $t \in N$, і нехай дуги $(i, j) \in A$ мають обмежену пропускну здатність. Задача про максимальний потік полягає в пошуку таких потоків по дугах, що належать множині A, щоб результуючий потік, який витікає із s в t, був максимальним.

Для знаходження розв'язку даної задачі використовують алгоритм, розроблений американськими математиками Гоморі і Ху.

7. Алгоритм Гоморі-Ху

Ідея алгоритму Гоморі-Ху полягає в ітеративній побудові дерева розрізів.

- *Крок 1.* Множина гілок дерева розрізів пуста. Всі вузли об'єднані в одну групу. Обираємо довільну пару вузлів s та t. Покладемо l=1.
- $\mathit{Kpo\kappa}\ 2$. Вибираємо один або два конденсовані вузли, в один з яких входить s, в інший t.
- $Kpok\ 3$. Знаходимо мінімальний розріз, що відділяє s від t. Зображуємо цей розріз гілкою в дереві розрізів, вага якої рівна пропускній здатності цього розрізу. Ця гілка повинна сполучати вузли чи групи вузлів, які розташовані по різні боки від знайденого мінімального розрізу.
- *Крок 4.* Якщо l=n-1, то кінець: дерево розрізів побудоване; інакше переходимо до наступного кроку.

Крок 5. Обираємо будь-яку пару вузлів i та j, які ще не відділені один від одного в дереві розрізів. Покладаємо s=i, t=j.

Крок 6. Сконденсовуємо в один вузол кожну зв'язну підмережу, що з'єднана з групою, в якій знаходяться вузли i та j. Покладаємо l=l+1. Переходимо до кроку 3.

8. Приклад розв'язування потокової задачі методом Гоморі-Ху

<u>Приклад 8.1.</u> Для кожної пари вузлів мережі, зображеної на рис. 8.1, визначити величину максимального потоку між ними.

Рис. 8.1. Приклад мережі в задачі про багатополюсний максимальний потік

Дана задача розв'язується за n-1=7-1=6 ітерацій алгоритму Гоморі-Ху. *Крок 1*. Об'єднуємо, наприклад, всі вузли, окрім 7-го (до нього йде ребро з найбільшою пропускною здатністю, тому його краще зразу поставити у кінець ланцюжка), у конденсований вузол, тобто покладаємо t=7. Величина максимального потоку між цими вузлами дорівнює 21 (бо такою є сума ваг всіх ребер, що входять у 7: 2+8+11=21). Побудова дерева розрізів починається з гілки, яка з'єднує вузол 7 і конденсований вузол 1,2,3,4,5,6 (рис. 8.2). Вага даного ребра дорівнює 21.

Рис. 8.2. Задача про максимальний потік (крок 1)

Крок 2. З конденсованого 1,2,3,4,5,6 вузла виділяємо вузол 6 (до нього з вершини 7 йде ребро з найбільшою пропускною здатністю), тобто покладаємо t=6. Розглядаємо два розрізи: в першому відтинаємо лише вузол 6 (пропускна здатність такого розрізу 9+6+11=26), в другому – 6 та 7 (його пропускна здатність 9+6+8+2=25). За теоремою Форда-Фалкерсона (теоремою про максимальний потік в мережі) величина максимального потоку дорівнює пропускній здатності мінімального розрізу, тому вибираємо другий. Вузли 6 і 7 лежать по одну сторону розрізу, а решта – по іншу (рис. 8.3).

Рис. 8.3. Задача про максимальний потік (крок 2)

Крок 3. З конденсованого вузла 1,2,3,4,5 виділяємо вузол 3 (до нього з вершини 6 йде ребро з найбільшою пропускною здатністю), тобто покладаємо t=3. Пропускна здатність мінімального розрізу (і відповідно величина максимального потоку) 9+4+9=22. Вузол 3 лежить по один бік від конденсованого вузла 1,2,4,5, а вузли 6,7- по інший (рис. 8.4).

Рис. 8.4. Задача про максимальний потік (крок 3)

Крок 4. З конденсованого вузла 1,2,4,5 виділяємо вузол 1, тобто покладаємо t=1. Величина максимального потоку дорівнює 8+7+9=24. Він розташований зліва від конденсованого вузла 2,4,5, вузол 3 — внизу, а вузли 6 і 7 — справа (рис. 8.5).

Рис. 8.5. Задача про максимальний потік (крок 4)

Крок 5. З конденсованого вузла 2,4,5 виділяємо вузол 4. Величина максимального потоку дорівнює 8+9+2=19. Вгору від нього розташовуємо конденсований вузол 2,5 (рис. 8.6).

Рис. 8.6. Задача про максимальний потік (крок 5)

Крок 6. 3 конденсованого вузла 2,5 виділяємо вузол 5. Величина максимального потоку дорівнює 7+4+2=13. Його розташовуємо вгору від вузла 2 (рис.

Рис. 8.7. Задача про максимальний потік (крок 6)

У результаті одержано повне дерево розрізів. Величини максимальних потоків записуються у вигляді такої матриці (елемент матриці v_{ij} дорівнює найменшій вазі ребра серед тих, що сполучають вузли i та j):

$$V = \begin{bmatrix} - & 19 & 22 & 24 & 13 & 24 & 21 \\ 19 & - & 19 & 19 & 13 & 19 & 19 \\ 22 & 19 & - & 22 & 13 & 22 & 21 \\ 24 & 19 & 22 & - & 13 & 25 & 21 \\ 13 & 13 & 13 & 13 & - & 13 & 13 \\ 24 & 19 & 22 & 25 & 13 & - & 21 \\ 21 & 19 & 21 & 21 & 13 & 21 & - \end{bmatrix}$$

Контрольні запитання до лабораторної роботи №6

- 1. Що таке потік?
- 2. Сформуйте задачу про максимальний потік.
- 3. Наведіть приклади задач про максимальний потік.
- 4. Що таке дерево розрізів?
- 5. Яка основна ідея алгоритму Гоморі-Ху?
- 6. Які основні кроки алгоритму Гоморі-Ху?

Завдання до лабораторної роботи № 6

- 1. Отримати індивідуальний варіант завдання.
- 2. Написати програму розв'язування задачі про максимальний потік методом Гоморі-Ху.
- 3. Оформити звіт про виконану роботу.
- 4. Продемонструвати викладачеві результати, відповісти на запитання стосовно виконання роботи.

Вимоги до звіту

- 1. Титульний аркуш.
- 2. Тема звіту.
- 3. Мета звіту.
- 4. Теоретичні відомості.
 - і. Дати відповідь на контрольне запитання у відповідності із номером журналу.
- 5. Текст програми з коментарями (алгоритм Гоморі-Ху).
- 6. Вигляд реалізованої програми.
- 7. Висновки.

Вимоги до програми

Програма має передбачати наступні можливості:

- 1. Автоматичне знаходження максимального потоку з використанням алгоритму Гоморі-Ху.
- 2. Ввід вхідних даних вручну (матриці суміжності).
- 3. Передбачити можливість некоректного введення даних.
- 4. Передбачити можливість покрокового відображення проміжних дерев розрізів.
- 5. Підпис усіх кроків.

Додаток 2

СПИСОК ЛІТЕРАТУРИ

- 1. Зайченко Ю.П. Дослідження операцій. Київ: ЗАТ ВІПОЛ, 2000. 688 с.
- 2. Давыдов Э.Г. Исследование операций. М.: Высшая школа, 1990. 383с.
- 3. Вентцель Е.С. Исследование операций. Задачи, принципы, методология. М.: Наука, 1988. 208 с.
- 4. Грешилов А.А. Математические методы принятия решений: учебное пособие для вузов / Грешилов А.А. М.: Изд-во МГТУ им. Н.Э. Баумана, 2014. 647 с.

НАВЧАЛЬНЕ ВИДАННЯ

ЗАДАЧІ ПРО ПОТОКИ В МЕРЕЖАХ

МЕТОДИЧНІ ВКАЗІВКИ

до виконання лабораторних робіт №5 та №6 з дисципліни "Дослідження операцій" для студентів спеціальності "Програмна інженерія"

Укладачі

Журавчак Любов Михайлівна Нитребич Оксана Олександрівна

Редактор

Комп'ютерне верстання