Example 8-7 and Figures 8-2 & 8-3

September 11, 2020

```
[]: # install the following packages and libraries
install.packages("pder")
install.packages("plm")
install.packages("texreg")
install.packages("msm")

library("plm")
library("texreg")
library("msm")
library("ggplot2")

# import the data
data("RDSpillovers", package = "pder")

# create the following formula
fm.rds <- lny ~ lnl + lnk + lnrd</pre>
```

	Estimate	Nonparam.	vcovNW	vcovHC
lnl	0.562	0.088	0.031	0.045
lnk	0.289	0.161	0.045	0.077
lnrd	0.084	0.068	0.020	0.033


```
##-----Block 3-----
# the following code is for the purpose of illustrating spurios regression.
# a simulation of data is preformed by drawing two AR series independently
# and regress one on the another. the t-stat is then calculated

autoreg <- function(rho = 0.1, T = 100){
    e <- rnorm(T)
    for (t in 2:(T)) e[t] <- e[t] + rho *e[t-1]
    e
}
tstat <- function(rho = 0.1, T = 100){
    y <- autoreg(rho, T)</pre>
```

```
x <- autoreg(rho, T)
      z \leftarrow lm(y \sim x)
      coef(z)[2] / sqrt(diag(vcov(z))[2])
    result <- c()
    R <- 1000
    for (i in 1:R) result <- c(result, tstat(rho = 0.2, T = 40))</pre>
    quantile(result, c(0.025, 0.975))
    prop.table(table(abs(result) > 2))
    2.5\
                  -2.11402406977969 97.5\%
                                             1.99003122343967
    FALSE TRUE
    0.943 0.057
[7]: | ##------Block 4------
    # now includes a unit root
    result <- c()
    R <- 1000
    for (i in 1:R) result <- c(result, tstat(rho = 1, T = 40))</pre>
    quantile(result, c(0.025, 0.975))
    prop.table(table(abs(result) > 2))
    2.5\
                  -9.15844814463279 97.5\%
                                             8.22705902068572
    FALSE TRUE
    0.379 0.621
[8]: | ##-----Block 5-----
    # unit root test
    R <- 1000
    T <- 100
    result <- c()
    for (i in 1:R){
      y <- autoreg(rho=1, T=100)
     Dy \leftarrow y[2:T] - y[1:(T-1)]
     Ly <- y[1:(T-1)]
     z \leftarrow lm(Dy \sim Ly)
      result <- c(result, coef(z)[2] / sqrt(diag(vcov(z))[2]))</pre>
    }
    prop.table(table(result < -1.64))</pre>
    FALSE TRUE
    0.542 0.458
```

