

Manual de Instruções

Sauron IOT - Protótipo Atech

Controle do Documento

Histórico de revisões

Data	Autor	Versão	Resumo da atividade
18/11/22	Alysson Cordeiro	1.0	 Descrição da solução[1.1]. implementação da arquitetura da solução[1.2]. Implementação dos componentes e recursos[2.1, 2 e 3]

Índice

1. Introdução	3	
1.1. Solução	3	
1.2. Arquitetura da Solução	3	
2. Componentes e Recursos	4	
2.1. Componentes de hardware	4	
2.2. Componentes externos	4	
2.3. Requisitos de conectividade	4	
3. Guia de Montagem	5	
4. Guia de Instalação	6	
5. Guia de Configuração	7	
6. Guia de Operação	8	
7. Troubleshooting	9	
8. Créditos		

1. Introdução

1.1. Solução (sprint 3)

Trata-se de uma solução baseada em IOT responsável por encontrar objetos em um ambiente controlado, com o apoio de sensores e tags. Por meio de uma aplicação web com interface gráfica capaz de se comunicar com o hardware utilizando um software embarcado (*firmware*) será possível a visualização da posição de um objeto ou de uma classe de objetos em relação ao espaço da instalação. Além do mais, a identificação é para objetos em ambientes fechados, por meio de técnicas de triangulação; e, também, utiliza a rede interna para transmitir informações para um aplicativo de tela grande pelo qual será possível configurar algumas especificações do dispositivo e acompanhar sua localização.

Vale ressaltar que, na utilização da solução, o produto funciona através de controle de sensores por radiofrequência que identificam e rastreiam de modo automático as tags em ambientes como galpões. Para mais, a comunicação dos beacons com a tag será realizada por meio de sinais wi-fi.

Em suma, o protótipo aumenta a capacidade de encontrar objetos nas instalações da Atech, economizando tempo e melhorando a organização dos ativos físicos da empresa.

1.2. Arquitetura da Solução (sprint 3)

Recebe e envia dados para o servidor. Sendo eles informações das Tags ou até mesmo uma ação do usuário na interface.

2. Componentes e Recursos

(sprint 3)

2.1. Componentes de hardware

Não se esqueça também dos consumíveis, como pilhas e baterias.

- 1. MICROCONTROLADOR: componente responsável por propagar os sinais do Wi-Fi de modo a fazer a trilateração da posição do objeto. O microcontrolador responsável pela atuação é o ESP32-S3-WROOM-1-N8 DEV BRD do tipo Transceptor; 802.11 b/g/n (Wi-Fi, WiFi, WLAN), Bluetooth® 5, cuja frequência é de 2,4 GHz da fabricante Espressif Systems.
- 2. TAGS: as informações são armazenadas em um chip denominado de etiqueta, mais conhecido como Tag. Para que haja uma conexão entre a antena e a etiqueta, é necessário apenas que ambas estejam posicionadas dentro de uma certa distância e com um alinhamento adequado aos padrões para que foram projetados. No projeto, também será utilizado um ESP32-S3 como Taq.
- **3. ROTEADOR Wi-Fi:** transmissor com alcance suficiente para criar a ligação entre todos os transmissores e a tag. Será usado o ESP32-S3.
- 4. ACELERÔMETRO: mede a aceleração (ou taxa de mudança

- de velocidade em relação ao tempo) de um corpo em seu próprio quadro de repouso instantâneo, não é o mesmo que aceleração de coordenadas, sendo a aceleração em um sistema de coordenadas fixas.
- 5. BUZZER: emissor de som de baixo custo, utilizado para reproduzir tanto efeitos sonoros simples, como também a capacidade de emitir sons mais complexos como músicas. Funciona com tensão entre 3,5 e 5V.
- **6. LED:** após ser acionado por meio da interface, o LED ficará piscando para ajudar na visualização do objeto desejado em meio aos outros objetos.
- 7. PROTOBOARD: a matriz de contato será usada como suporte principal para as execuções dos circuitos elétricos do protótipo, como na montagem do Roteador Wi-Fi, do acelerômetro, do LED e do Buzzer, por exemplo. O Protoboard usado na solução é da Minipa; modelo MP-1680A, cuja tensão máxima é de 300V RMS e corrente de 3A RMS.
- **8. RESISTOR:** componente que irá limitar o fluxo da corrente elétrica do circuito. Por meio do chamado efeito joule (w/s), ele é capaz de transformar a energia elétrica em energia térmica. Em suma, o dispositivo faz oposição à passagem da corrente elétrica, oferecendo resistência. Vale lembrar que o resistor usado para a montagem foi de 10kΩ (Ohms) filme de Carbono CR25 1/4W.
- **9. JUMPER:** componente para a passagem de corrente elétrica do protoboard para outros materiais que estão no próprio protoboard. Foram usadas fiações (jumpers) dos três tipos: macho-macho: macho-fêmea e fêmea-fêmea.
- **10. CABO USB:** usado cabo de Universal Serial Bus (USB) tipo C para conectar o Microcontrolador ao computador.

2.2. Componentes externos

- 1. **COMPUTADOR:** será usado um computador para exploração dos dados que saíra pela interface, a qual foi desenvolvida usando React, HTML, CSS, Bootstrap e bibliotecas diversas.
- **2. ROTEADOR WI-FI:** transmissor com alcance suficiente para criar a ligação entre todos os transmissores e a tag.
- **3. SERVIDOR:** servidor em Node.js funcional no localhost e configurável para nuvem.
- **4. BANCO DE DADOS:** usado o Schema noSQL com MongoDB, recomendado para aplicações escaláveis.
- 5. ARDUINO IDE: é usado para escrever e fazer upload de programas em placas compatíveis com Arduino, mas também, com a ajuda de núcleos de terceiros, outras placas de desenvolvimento de fornecedores.

2.3. Requisitos de conectividade

Um Roteador Wi-Fi padrão conectado à rede de internet, para a conexão entre as tags e o servidor. Já a conexão das tags com os beacons é realizada através de uma conexão direta (initiator - receiver). Os protocolos utilizados para a conexão com o servidor através da rede é o TCP/IP, assim como HTTP para os requests da aplicação e do sistema embarcado.

ESP32-S3 e o fêmea no pino ground do acelerômetro. (figura 3)

3. Guia de Montagem

- 1. Será necessário um led. Para instalá-lo colocaremos um lado do jumper macho-macho na porta 9 do ESP32-S3 e o outro em um resistor de 220K ohms que será conectado no polo positivo ("perna" maior) do led. Já o polo negativo ("perna menor") será conectado no ground. (figura 1)
- 2. Será necessário um buzzer. Para instalá-lo colocaremos um lado do jumper macho-macho na porta 7 do ESP32-S3 e o outro que será conectado no polo positivo (representado por um símbolo de "+") do buzzer. Já o polo negativo (lado oposto do "+") será conectado no ground. (figura 2)
- 3. Será necessário um acelerômetro. Para instalá-lo colocaremos um lado do macho do jumper macho-fêmea na porta 3V3 do ESP32-S3 e o Fêmea no pino VCC do acelerômetro, depois conectamos outro jumper macho-fêmea, colocando o macho na porta 5 e o fêmea no pino SCL do acelerômetro, após, conectamos mais um jumper macho-fêmea, sendo que o macho irá na porta 4 e o fêmea no pino SDA, por fim usaremos um último jumper macho-fêmea, será conectado o macho no ground do

Figura 1: LED

Figura 2: Buzzer

Figura 3: Acelerômetro

Figura 4: Circuíto completo

4. Guia de Instalação

(sprint 4)

Descreva passo-a-passo como instalar os dispositivos loT no espaço físico adequado, conectando-os à rede, de acordo com o que foi levantado com seu parceiro de negócios.

Não deixe de especificar propriedades, limites e alcances dos dispositivos em relação ao espaço destinado.

Especifique também como instalar softwares nos dispositivos.

Utilize fotografias, prints de tela e/ou desenhos técnicos para ilustrar o processo de instalação.

5. Guia de Configuração

(sprint 4)

Descreva passo-a-passo como configurar os dispositivos IoT utilizando os equipamentos devidos (ex. smartphone/computador acessando o servidor embarcado ou a página na nuvem).

Utilize fotografias, prints de tela e/ou desenhos técnicos para ilustrar o processo de configuração.

6. Guia de Operação

(sprint 5)

Descreva os fluxos de operação entre interface e dispositivos IoT. Indique o funcionamento das telas, como fazer leituras dos dados dos sensores, como disparar ações através dos atuadores, como reconhecer estados do sistema.

Indique também informações relacionadas à imprecisão das eventuais localizações, e como o usuário deve contornar tais situações.

Utilize fotografias, prints de tela e/ou desenhos técnicos para ilustrar os processos de operação.

7. Troubleshooting

(sprint 5)

Liste as situações de falha mais comuns da sua solução (tais como falta de conectividade, falta de bateria, componente inoperante etc.) e indique ações para solução desses problemas.

#	Problema	Possível solução
1		
2		
3		
4		
5		

8. Créditos

(sprint 5)

Seção livre para você atribuir créditos à sua equipe e respectivas responsabilidades