Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет Программной Инженерии и Компьютерной Техники

Лабораторная работа №6 «ЧИСЛЕННОЕ РЕШЕНИЕ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ»

по дисциплине «Вычислительная математика»

Вариант: 6

Преподаватель:

Выполнил:

Молодиченко Семен Андреевич

Группа: Р3213

Цель лабораторной работы: решить задачу Коши для обыкновенных дифференциальных уравнений численными методами.

Задачи:

Реализовать метод Эйлера

Реализовать метод Рунге-Кутты 4-го порядка

Реализовать многошаговый предиктор-корректорный метод Адамса

Сравнить с точным решением, оценить погрешности

Описание алгоритма:

Пошаговая схема работы программы:

Ввод задачи и параметров (начальные условия, отрезок, шаг, точность)

Выбор метода интегрирования

Расчёт сетки x0,x1,...,xnx 0, x 1, ..., x nx0,x1,...,xn

Итеративный перебор формул метода по шагам

Сбор результатов в таблицы

Оценка погрешности (правило Рунге или сравнение с точным решением)

Построение графиков и вывод отчёта

Рабочие формулы методов

Метод Эйлера:

$$y_{i+1} = y_i + h f(x_i, y_i)$$

Метод Рунге-Кутты 4-го порядка:

$$egin{aligned} k_1 &= f(x_i, y_i), \ k_2 &= fig(x_i + rac{h}{2}, \ y_i + rac{h}{2} \, k_1ig), \ k_3 &= fig(x_i + rac{h}{2}, \ y_i + rac{h}{2} \, k_2ig), \ k_4 &= f(x_i + h, \ y_i + h \, k_3), \ y_{i+1} &= y_i + rac{h}{6} \, (k_1 + 2k_2 + 2k_3 + k_4). \end{aligned}$$

- Метод Адамса (предиктор–корректор):
 - Предиктор (4-шаговый Адамс-Бэшфорд):

$$y_{i+1}^{(p)} = y_i + rac{h}{24} ig(55f_i - 59f_{i-1} + 37f_{i-2} - 9f_{i-3} ig)$$

Корректор (Адамс-Мултон):

$$y_{i+1} = y_i + rac{h}{24}ig(9f_{i+1}^{(p)} + 19f_i - 5f_{i-1} + f_{i-2}ig)$$

1.

Таб	Таблица решений:							
i	x Eul	er RK4 Ad	ams Exact					
Θ	0.0000	1.000000	1.000000	1.000000	1.000000			
1	0.1000	1.100000	1.105171	1.105171	1.105171			
2	0.2000	1.210000	1.221403	1.221403	1.221403			
3	0.3000	1.331000	1.349858	1.349858	1.349859			
4	0.4000	1.464100	1.491824	1.491825	1.491825			
5	0.5000	1.610510	1.648721	1.648721	1.648721			
6	0.6000	1.771561	1.822118	1.822119	1.822119			
7	0.7000	1.948717	2.013752	2.013753	2.013753			
8	0.8000	2.143589	2.225540	2.225542	2.225541			
9	0.9000	2.357948	2.459601	2.459604	2.459603			
10	1.0000	2.593742	2.718280	2.718284	2.718282			
Оце	Оценка погрешности Эйлера (Рунге): 5.96e-02							
Оце	нка погр	ешности RK4	(Рунге):	1.30e-07				
Мак	симальна	я погрешнос	ть Адамса:	1.79e-06				
	Charles							

для «быстрого» роста (экспоненциального) незамедлительно сказывается низкий порядок Эйлера, тогда как методы 4-го порядка остаются точными.

2.

Таблица решений:						
i	x Eul	er RK4 Ad	ams Exact			
0	0.0000	0.000000	0.000000	0.000000	0.000000	
1	0.2000	0.000000	0.020000	0.020000	0.020000	
2	0.4000	0.040000	0.080000	0.080000	0.080000	
3	0.6000	0.120000	0.180000	0.180000	0.180000	
4	0.8000	0.240000	0.320000	0.320000	0.320000	
5	1.0000	0.400000	0.500000	0.500000	0.500000	
6	1.2000	0.600000	0.720000	0.720000	0.720000	
7	1.4000	0.840000	0.980000	0.980000	0.980000	
8	1.6000	1.120000	1.280000	1.280000	1.280000	
9	1.8000	1.440000	1.620000	1.620000	1.620000	
10	2.0000	1.800000	2.000000	2.000000	2.000000	
Оценка погрешности Эйлера (Рунге): 1.00e-01						
Оценка погрешности RK4 (Рунге): 2.96e-17						
Максимальная погрешность Адамса: 2.22e-16						

даже при относительно «спокойных» производных (линейный рост) метод Эйлера уступает в точности, а RK4/Adams обеспечивают очень точную аппроксимацию.

	3.							
Таблица решений:								
	i	x Eul	er RK4 Ada	ams Exact				
	Θ	0.0000	1.000000	1.000000	1.000000	1.000000		
	1	0.0500	1.000000	1.001251	1.001251	1.001251		
	2	0.1000	1.002500	1.005013	1.005013	1.005013		
	3	0.1500	1.007513	1.011314	1.011314	1.011314		
		0.2000	1.015069	1.020201	1.020201	1.020201		
	5	0.2500	1.025220	1.031743	1.031743	1.031743		
		0.3000	1.038035	1.046028	1.046028	1.046028		
	7	0.3500	1.053605	1.063165	1.063165	1.063165		
	8	0.4000	1.072043	1.083287	1.083287	1.083287		
	9	0.4500	1.093484	1.106553	1.106553	1.106553		
	10	0.5000	1.118088	1.133148	1.133149	1.133148		
	11	0.5500	1.146040	1.163287	1.163288	1.163287		
	12	0.6000	1.177556	1.197217	1.197218	1.197217		
	13	0.6500	1.212883	1.235221	1.235222	1.235221		
	14	0.7000	1.252301	1.277621	1.277622	1.277621		
	15	0.7500	1.296132	1.324785	1.324786	1.324785		
	16	0.8000	1.344737	1.377128	1.377129	1.377128		
	17	0.8500	1.398526	1.435122	1.435123	1.435122		
	18	0.9000	1.457964	1.499302	1.499304	1.499303		
	19	0.9500	1.523572	1.570274	1.570275	1.570274		
	20	1.0000	1.595942	1.648721	1.648723	1.648721		
	21	1.0500	1.675739	1.735421	1.735423	1.735421		
	22	1.1000	1.763715	1.831252	1.831255	1.831252		
	23	1.1500	1.860719	1.937212	1.937216	1.937212		
	Оценка погрешности Эйлера (Рунге): 3.73e-02							
	Оценка погрешности RK4 (Рунге): 2.52e-09							
	Максимальная погрешность Адамса: 3.28e-06							

сокращение шага уменьшает ошибку Эйлера, но чтобы добиться сопоставимой с RK4 точности, надо брать очень маленькие h. Методы 4-го порядка (и многошаговый Adams) при том же h дают в разы более точный результат.

Программная реализация

https://github.com/semchik 200001/mathematics-

Вывод

Сравнение скорости сходимости и точности каждого метода

Влияние размера шага h и критичность выбора шага/точности

Когда лучше использовать одношаговые, а когда — многошаговые методы

Возможные улучшения (адаптивный шаг, другие методы предиктор-корректор и т. д.)