TETA PROPOSTO 5 - SOLUTIONE

PROBLEMA P1

Dato il circuito riportato nella figura sottostante, supponendo che funzioni a T=300K, determinare:

- 1) il valore della resistenza R_4 in modo che la corrente di drain del transistor M_1 sia $I_{D1} = 2.0$ mA;
- 2) il punto di lavoro dei transistor M₁ e M₂;
- 3) la resistenza di ingresso ai piccoli segnali ac R_i;
- 4) la resistenza di uscita ai piccoli segnali ac R_o;
- 5) il guadagno di tensione ai piccoli segnali ac A_v=v_{out}/v_{in};

ESERCIZIO Q1

Il circuito di figura impiega un amplificatore operazionale ideale. Determinare la corrente erogata dal generatore di tensione V_{IN} e la corrente erogata dall'amplificatore operazionale. Calcolare

PROBLEMA Q2

Dato il circuito digitale di figura:

- 1) Determinare l'espressione Booleana dell'uscita F;
- 2) Ricavare la mappa di Karnaugh corrispondente;
- 3) Trovare una F minimizzata (utilizzando algebra booleana o la Mappa di Karnaugh);
- 4) Disegnare il circuito digitale minimizzato;

Forma ridotta

$$\bar{B} \cdot \bar{C} + \bar{A} \cdot B \cdot C + A \cdot \bar{B}
= \bar{B} + \bar{C} + \bar{A} \cdot B \cdot C + A \cdot \bar{B}$$

Forma non ridotta

$$F = \overline{A} \cdot \overline{B} \cdot \overline{C} + \overline{A} \cdot B \cdot C + A \cdot \overline{B} \cdot \overline{C} + A \cdot \overline{B} \cdot C$$

