Alberi Minimi Ricoprenti Albero ricoprente

Dato un grafo **non orientato connesso**, definiamo l'**albero ricoprente** come un **sottografo** che:

- è aciclico
- è connesso
- contiene tutti i nodi

Evidenziato in celeste l'albero ricoprente del grafo.

Peso di un grafo

Dato un grafo G=(V,E) non orientato pesato con funzione peso W, definiamo il peso del grafo come

$$\sum_{e \in E} W(e)$$

ovvero sommando i pesi di tutti gli archi che costituiscono il grafo.

W(G) = 70

Esempio del peso di un grafo

Minimo Albero Ricoprente

Dato un albero ricoprente, definiamo il **minimo albero ricoprente** se è l'albero ricoprente con il peso minore tra tutti quelli possibili.

Gli alberi minimi ricoprenti non sono unici.

In inglese si chiamano MST, Minimum Spanning

Tree.

Algoritmo per trovare il minimo albero ricoprente

```
MINIMO_ALBERO_RICOPRENTE(G)
A \leftarrow \emptyset
while A non è un albero ricoprente do
trova un arco (u, v) che sia "sicuro" per A
A \leftarrow A \cup (u, v)
```

A all'inizio è un albero vuoto.

Finchè A non è un albero ricoprente (ovvero finchè non contiene tutti i nodi), trovo un arco (u,v) che sia sicuro per A e glie lo aggiungo.

Alla fine dell'algoritmo, il grafo T=(V,A) è un albero minimo ricoprente.

Tuttavia bisogna prima capire come trovare gli archi **sicuri.**

Taglio di un grafo

Il taglio di un grafo G è una partizione di V in due insiemi: X e V-X.

Un arco (u,v) attraversa il taglio se $u\in X$ e $v\in V-X$, ovvero l'arco *inizia* da una partizione e finisce nell'altra.

Esempio:

$$X = \{A, C, E\}, V - X = \{B, D, F\}$$

l'arco (A, F) parte da X e arriva in $V - X$.

Inoltre un taglio **rispetta** un insieme di archi A se nessuno di questi archi attraversa il taglio.

Definiamo infine un **arco leggero** l'arco con peso **minimo** tra quelli che attraversa il taglio.

Esempio 2:

$$X = \{A, C, E\}, V - X = \{B, D, F\}$$

Il taglio rispetta l'insieme di archi $\{(C,E),(B,D)\}$ ma non l'insieme $\{(A,F),(B,C)\}$.

Inoltre notiamo che tra tutti gli archi che non rispettano il taglio, l'arco (A,F) è quello con peso minimo.

Teorema degli archi sicuri

Dato G=(V,E) non orientato, connesso e aciclico. Definiamo A un sottoinsieme di E contenuto in qualche $\operatorname{\mathbf{MST}}$.

Definiamo inoltre un taglio (X, V - X) che rispetta A.

Se l'arco (u,v) è un **arco leggero** che attraversa (X,V-X) allora è **sicuro** per A

Dimostrazione del teorema

Sia T un **MST** che contiene A.

Se T contiene (u,v) allora l'arco è sicuro per A Assumiamo allora che T non contenga (u,v).

Se T è un **MST**, allora deve esistere un cammino da u a v contenente almeno un arco (x,y) con $x\in X$ e $y\in V-X$.

Consideriamo ora T' con archi

Il peso di T' W(T') dunque è dato dal peso di T sostituendo il peso di (x,y) con (u,v):

$$W(T') = W(T) - W(x,y) + W(u,v)$$

(u,v) è un arco leggero che attraversa il taglio ma anche l'arco (x,y) attraversa il taglio. dunque $W(T') \leq W(T)$ ma dal momento che T è un **MST** allora W(T') = W(T). Dunque $T' = (V,A \cup (u,v) \subseteq E(T'))$ è un **MST** $\rightarrow (u,v)$ arco sicuro.

Corollario

corollario I:

- ightharpoonup sia G = (V, E) un grafo non orientato, connesso e pesato
- sia A un sottoinsieme di E contenuto in un albero di copertura minimo
- isia C una componente connessa (un albero) nella foresta G(A) = (V, A)
- sia (u, v) è un arco leggero che connette C a una qualche altra componente connessa di G(A)
- ▶ allora l'arco (u, v) è sicuro per A

Algoritmo Kruskal