

FCC Part 1 Subpart I FCC Part 2 Subpart J

INDUSTRY CANADA RSS 102 ISSUE 4

RF EXPOSURE REPORT

FOR

802.11 a/b/g/n, BLE, and BT module

MODEL NUMBER: EDISON

FCC ID: 2AB8ZND1 IC: 1000X-ND1

REPORT NUMBER: 14U17976-E28

ISSUE DATE: AUGUST 25, 2014

Prepared for

INTEL CORPORATON 2200 MISSION COLLEGE BOULEVARD SANTA CLARA, CA 95052, U.S.A

Prepared by

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP®

NVLAP LAB CODE 200065-0

Revision History

Rev.	Issue Date	Revisions	Revised By
	08/25/14	Initial Issue	C.S.00I

TABLE OF CONTENTS

1.	AT	TESTATION OF TEST RESULTS	4
2.	I E S	ST METHODOLOGY	5
3.	RE	FERENCES	5
4.	FA	CILITIES AND ACCREDITATION	5
5.	MA	XIMUM PERMISSIBLE RF EXPOSURE	e
	5.1.	FCC RULES	6
	5.2.	IC RULES	7
	5.3.	EQUATIONS	8
	5.4.	LIMITS AND IC EXEMPTION	10
6.	RF	EXPOSURE RESULTS	11

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: INTEL CORPORATION

2200 MISSION COLLEGE BOULEVARD

SANTA CLARA, CA 95052, U.S.A

EUT DESCRIPTION: 802.11 a/b/g/n, BLE, and BT module

MODEL: EDISON

SERIAL NUMBER: SKU10 (For Conducted) and SKU9 (For Radiated)

DATE TESTED: JUNE 26, 2014 – AUGUST 1, 2014

APPLICABLE STANDARDS

STANDARD TEST RESULTS

FCC PART 1 SUBPART I & PART 2 SUBPART J Pass

INDUSTRY CANADA RSS 102 ISSUE 4 Pass

UL Verification Services Inc. calculated the RF Exposure of the above equipment in accordance with the requirements set forth in the above standards, using test results reported in the test report documents referenced below and/or documentation furnished by the applicant. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations of these calculations. The results show that the equipment is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For

UL Verification Services Inc. By: Calculated By:

CHOON SIAN OOI PROJECT LEAD

UL Verification Services Inc.

THANH PHAM EMC ENGINEER

Pellana

UL Verification Services Inc.

2. TEST METHODOLOGY

All calculations were made in accordance with FCC OET Bulletin 65 Edition 97-01 and IC Safety Code 6.

3. REFERENCES

Document 14U17976-E1 for operation in the 2.4 GHz band and UL Verification Services Inc. Document 14U17976-E3 for operation in the 5 GHz bands.

Output power, Duty cycle and Antenna gain data is excerpted from the applicable test reports.

4. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://ts.nist.gov/standards/scopes/2000650.htm.

5. MAXIMUM PERMISSIBLE RF EXPOSURE

5.1. **FCC RULES**

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range	Electric field Magnetic field strength strength (V/m) (A/m)		Power density	Averaging time	
(MHz)			(mW/cm²)	(minutes)	
(A) Lim	its for Occupational	I/Controlled Exposu	res		
0.3–3.0	614	1.63	*(100)	6	
3.0–30	1 <i>8</i> 42#	4.89/f	*(900/f²)	6	
30–300	61.4	0.163	1.0	6	
300–1500 1500–100,000			f/300 5	6 6	
(B) Limits	for General Populati	on/Uncontrolled Exp	posure		
0.3–1.34	614	1.63	*(100)	30	
1.34–30	824/f	2.19/f	*(180/f²)	30	

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)	
30–300	27.5	0.073	0.2	30	
300-1500 1500-100,000			f/1500 1.0	30 30	

f = frequency in MHz

exposure or can not exercise control over their exposure.

^{* =} Plane-wave equivalent power density
NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.
NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposure or one not exercise control over their exposure.

5.2. IC RULES

IC Safety Code 6, Section 2.2.1 (a) A person other than an RF and microwave exposed worker shall not be exposed to electromagnetic radiation in a frequency band listed in Column 1 of Table 5, if the field strength exceeds the value given in Column 2 or 3 of Table 5, when averaged spatially and over time, or if the power density exceeds the value given in Column 4 of Table 5, when averaged spatially and over time.

Table 5 Exposure Limits for Persons Not Classed As RF and Microwave Exposed Workers (Including the General Public)

1 Frequency (MHz)	2 Electric Field Strength; rms (V/m)	3 Magnetic Field Strength; rms (A/m)	4 Power Density (W/m ²)	5 Averaging Time (min)
0.003–1	280	2.19		6
1–10	280/f	2.19/ <i>f</i>		6
10–30	28	2.19/ <i>f</i>		6
30–300	28	0.073	2*	6
300–1 500	1.585 $f^{0.5}$	0.0042f ^{0.5}	f/150	6
1 500–15 000	61.4	0.163	10	6
15 000–150 000	61.4	0.163	10	616 000 /f ^{1.2}
150 000–300 000	0.158f ^{0.5}	4.21 x 10 ⁻⁴ f ^{0.5}	6.67 x 10 ⁻⁵ f	616 000 /f ^{1.2}

^{*} Power density limit is applicable at frequencies greater than 100 MHz.

Notes: 1. Frequency, f, is in MHz.

2. A power density of 10 W/m² is equivalent to 1 mW/cm².

 A magnetic field strength of 1 A/m corresponds to 1.257 microtesla (μT) or 12.57 milligauss (mG).

5.3. EQUATIONS

POWER DENSITY

Power density is given by:

 $S = EIRP / (4 * Pi * D^2)$

Where

S = Power density in mW/cm^2 EIRP = Equivalent Isotropic Radiated Power in mW D = Separation distance in cm

Power density in units of mW/cm² is converted to units of W/m² by multiplying by 10.

DISTANCE

Distance is given by:

D = SQRT (EIRP / (4 * Pi * S))

Where

D = Separation distance in cm EIRP = Equivalent Isotropic Radiated Power in mW S = Power density in mW/cm²

SOURCE-BASED DUTY CYCLE

Where applicable (for example, multi-slot cell phone applications) a duty cycle factor may be applied.

Source-based time-averaged EIRP = (DC / 100) * EIRP

Where

DC = Duty Cycle in %, as applicable EIRP = Equivalent Isotropic Radiated Power in W

MIMO AND COLOCATED TRANSMITTERS (IDENTICAL LIMIT FOR ALL TRANSMITTERS)

For multiple chain devices, and colocated transmitters operating simultaneously in frequency bands where the limit is identical, the total power density is calculated using the total EIRP obtained by summing the EIRP (in linear units) of each transmitter.

Total EIRP = (EIRP1) + (EIRP2) + ... + (EIRPn)

where

EIRPx = Source-based time-averaged EIRP of chain x or transmitter x

The total EIRP is then used to calculate the Power Density or the Distance as applicable.

MIMO AND COLOCATED TRANSMITTERS

For multiple colocated transmitters operating simultaneously in frequency bands where different limits apply:

The Power Density at the specified separation distance is calculated for each transmitter chain or transmitter.

The fraction of the exposure limit is calculated for each chain or transmitter as (Power Density of chain or transmitter) / (Limit applicable to that chain or transmitter).

The fractions are summed.

Compliance is established if the sum of the fractions is less than or equal to one.

5.4. LIMITS AND IC EXEMPTION

VARIABLE LIMITS

For mobile radio equipment operating in the cellular phone band, the lowest power density limit is calculated using the lowest frequency:

824 MHz / 1500 = 0.55 mW/cm² (FCC) 824 MHz / 150 = 5.5 W/m² (IC).

FIXED LIMITS

For operation in the PCS band, the 2.4 GHz band and the 5 GHz bands:

From FCC §1.1310 Table 1 (B), the maximum value of $S = 1.0 \text{ mW/cm}^2$ From IC Safety Code 6, Section 2.2 Table 5 Column 4, $S = 10 \text{ W/m}^2$

INDUSTRY CANADA EXEMPTION

RSS-102 Clause 2.5.2 RF exposure evaluation is required if the separation distance between the user and the device's radiating element is greater than 20 cm, except when the device operates as follows:

•below 1.5 GHz and the maximum e.i.r.p. of the device is equal to or less than 2.5 W;

•at or above 1.5 GHz and the maximum e.i.r.p. of the device is equal to or less than 5 W.

6. RF EXPOSURE RESULTS

In the table(s) below, Power and Gain are entered in units of dBm and dBi respectively and conversions to linear forms are used for the calculations.

Single Chain and non-colocated transmitters										
Band	Mode	Separatio	Output	Antenna	Duty	EIRP	FCC Power	IC		
		Distance	AVG	Gain	Cycle		Density	Density		
		Powe								
		(cm)	(dBm)	(dBi)	(%)	(mW)	(mW/cm^2)	(W/m^2)		
2.4 GHz	Bluetooth	20	5.70	3.20	100.0	7.8	0.002	0.02		
2.4 GHz	WLAN	20	17.12	3.20	100.0	107.6	0.021	0.21		

colocated transmitters										
Band	Mode	Chain	Separatio	Output	Antenna	Duty	EIRP	FCC Power	IC	
		for	Distance	Power	Gain	Cycle		Density	Density	
		MIMO	(cm)	(dBm)	(dBi)	(%)	(mW)	(mW/cm^2)	(W/m^2)	
2.4 GHz	Bluetooth	0		5.70	3.20	100.0	7.8			
5 GHz	WLAN	0		14.20	4.20	100.0	69.2			
Combined		20				76.9	0.015	0.15		

Notes:

- 1) The manufacturer configures output power so that the maximum power, after accounting for manufacturing tolerances, will never exceed the maximum power level measured.
- 2) The output power in the tables above is the maximum power per chain among various channels and various modes within the specific band.
- 3) The antenna gain in the tables above is the maximum antenna gain among various channels within the specified band.

END OF REPORT