AVLST

75

	1	ì	ι.	1	
_ a	7	c	9	109	_
0	e	o	0	٨	m 0
0	6	O	١	X	m 1
٥	C	1	0	1	m L
٥	0	1	T	1	m 3
٥	١	0	0	×	m 4
S	1	0	1	4 .	m S
0	1	1	0	1	m 6
0	·i	1	7		
1	0	0	ပ		
1	O	0	1		
Y	0	1	0	1	pr. 10
1	0	1	1	4	11
1	1	0	0		
	1	Ö	١	X	m 13
	i	i	0	1	m 14
1	١	1	1		

1 mol(m1)	000-
(mo)(m4)	0 - 00
(m1) m3	00-1
(m 1) m 5	0-01
ml m3	001-
ml mb	0-10
m3 m1)	- 011
(m4) m5	010-
(m4) m6	01-0
m5 (m13)	-101
m6 m14	-110
m10 - 11	101-
m10 m19	1-10

(m0)(m1) m2 m3	00	ā
[mollm1) (m4) pm5	0-0-	ā
(mo) (m4) m2 m6	00	āō
m 2 m3 m10 m11	-01-	- ام د
m L m 6 m 10 m 14	(0	cd
m 5 (m/3)	-101	bz

	2	3	4	4	10	11	18	
īŠ	V	1			,			_
ič			V					
غر غرق	٧			1				
٠, د	1	1			V	1		-
cā	V			1	1		1	
ويو			1					
	•							-

1 1 Escatal pime

- · (our that maininger #letraly: beted + ac
- · (our that minimizes # variable : be + cd + bed

 $\begin{cases} x = ad + bc + be + ab + ae \\ y = ad + cd + ce + ef + h \end{cases}$

- · K(x) = { (bd+bg+e), (adrete + ag), (b+a), (abd+be+be+abg+ae)}
- · (ok(x)= { a, b, e, 1}
- · K(y) = { (d+e), (ae+c), (ad+c+f), (ale +cd+ce+of+h)}
- · (okly) = { c, d, e, 1 }

Best multicula dinior = {ad+c+e+as} / {ad+c+} = {ad+c} = w

Now mode: w = adtc

(x = wb + be + abs + ae (y = w (e+d) + ce + ef + h 1,5

· f = a,b, + a,b, + a,b, + a,b,

Area = 7 NAND-2 + 2 ±NV = 14 + 2 = 16 unts Delay = 14 units of time

. We can optimize in terms of delay with a new distribution

Area = 16 units Delay = 13 units

Incorrect mapping

Incorrect mapping

(wrong polarity)

Every path should have an even number of bubbles 4) . Best variable order to minimize BDD myo?

and characteristics control of the control of the

- He size is O(24) where n

1, He smorp size of a, b.

This does not look like a BDD

Best variable order to maximize BDD size?

a o < b o < a 1 < b 1 < ... < a ... < b 1 -1

- the size is 2(n-1)+2n=O(4n-2)where n is the binary representation of a, b

Worst case is exponential as 66, 69, 66, ---

- . He wheel yeth: h > c > g > h
- · I min fla returning?

- the wheal path gla returning is $c \rightarrow d \rightarrow b$ with a period of 3.

- = to the mon. number of regritor R min activable after retiring?

 Each feedback loop has to be broken by at least one regular
 and there are 2 loops in the continuational circuit.

 the R min = 2 and it is achieved with the perious retired requestral circuit.
- . He previous retimed crusit actueres both Pmin and Rmin.