Липецкий государственный технический университет

Кафедра прикладной математики

МЕТОДЫ ПРИКЛАДНОЙ СТАТИСТИКИ

Лекция 2

3. Случайные величины. Статистические распределения

Составитель - Сысоев А.С., к.т.н., доц.

Липецк - 2021

Outline

- 3.1. Случайные величины
- 3.2. Вариационные ряды
- 3.3. Выборочное среднее и выборочная дисперсия
- 3.4. Точечные оценки неизвестных параметров
- 3.5. Интервальные оценки неизвестных параметров
- 3.6. Основные статистические функции в R
- 3.7. Стандартизация данных
- 3.8. Статистические распределения
 - 3.8.1. Дискретные статистические распределения
 - 3.8.2. Непрерывные статистические распределения
 - 3.8.3. Воспроизводимость результатов при использовании ГПСЧ
- 3.9. Подгонка статистического распределения
- 3.10. Проверка распределения на нормальность

3.1. Случайные величины

Случайная величина – величина, принимающая одно из своих возможных значений, и принятие этого значения является случайным событием (число очков на игральной кости; оценка, полученная на экзамене; время ожидания автобуса на остановке).

Дискретные и непрерывные случайные величины.

Закон распределения – функция, устанавливающая соответствие между значениями случайной величины и вероятностями этих значений. Вероятность того, что случайная величина примет одно из своих возможных значений, равна единице.

3.2. Вариационные ряды

После получения (тем или иным способом) выборки все ее объекты обследуются по отношению к определенной случайной величине, т.е. обследуемому признаку объекта. В результате этого получают наблюдаемые данные, которые представляют собой множество чисел, расположенных в беспорядке.

Для изучения закономерностей полученные данные подвергаются определенной обработке.

Простейшая операция – **ранжирование** опытных данных, результатом которого являются значения, расположенные в порядке *неубывания*.

Пример: на телефонной станции проводились наблюдения над числом *X* неправильных соединений в минуту. Наблюдения в течение часа дали следующие 60 значений

Индекс	i	1, 2, 3, 4, 5, 6, 7
Вариант	$x^{(i)}$	0, 1, 2, 3, 4, 5, 7
Частота	n_i	8, 17, 16, 10, 6, 2, 1
Частность	ω_i	$\frac{8}{60}$, $\frac{17}{60}$, $\frac{16}{60}$, $\frac{10}{60}$, $\frac{6}{60}$, $\frac{2}{60}$, $\frac{1}{60}$

Если число возможных значений дискретной случайной величины достаточно велико или наблюдаемая случайная величина является непрерывной, то строят **интервальный вариационный ряд** — упорядоченную совокупность интервалов варьирования значений случайной величины с соответствующими частотами или частностями попаданий в каждый из них значений случайной величины.

3.2. Вариационные ряды

Ряд разбивают на *m* интервалов равной длины *h*

$$[z_i, z_i + h), i = 1,..., m,.$$

$$h = \frac{X_{\text{max}} - X_{\text{min}}}{1 + 3.222 \lg n}$$
.

Пример: при изменении диаметра валика после шлифовки была получена следующая выборка (объемом n=55): 20.3 15.4 17.2 19.2 23.3 18.1 21.9 15.3 16.8 13.2 20.4 16.5 19.7 20.5 14.3 20.1 16.8 14.7 20.8 19.5 15.3 19.3 17.8 16.2 15.7 23.8 21.9 13.5 10.1 21.1 18.3 14.7 14.5 18.1 18.4 13.9 19.8 18.5 20.2 23.8 16.7 20.4 19.5 17.2 19.6 17.8 21.3 17.5 19.4 17.8 13.5 17.8 11.8 18.6 19.1

Интервалы [10,12); [12,14); [14,16); [16,18); [18,20); [20,22); [22;24)

X	10-12	12-14	14-16	16-18	18-20	20-22	22-24
ω_i	<u>2</u>	<u>4</u>	<u>8</u>	12	15	11	<u>3</u>
	55	55	55	55	55	55	55

Одной из основных характеристик выборки является выборочная (эмпирическая) функция распределения

$$F_n^*(x) = \frac{n_x}{n}$$

 n_{x} – количество элементов выборки, меньших чем x.

3.2. Вариационные ряды

В качестве оценки плотности распределения вероятности непрерывной случайной величины используют **гистограмму относительных частот** — систему прямоугольников, каждый из которых основанием имеет *i*-й интервал интервального вариационного ряда; площадь, равную относительной частоте ω_i , а высота y_i определяется по формуле

$$y_i = \frac{\omega_i}{h_i}$$
.,

3.3. Выборочное среднее и выборочная дисперсия

Выборочное среднее $\bar{X}_e = \frac{X_1 + ... + X_n}{n}$ - аналог матожидания:

- \circ для дискретного вариационного ряда $\overline{x}_{_{\!\!\!arepsilon}}=\sum_{i=1}^m x^{(i)}\omega_i;$
- \circ для интервального вариационного ряда $\overline{\mathbf{x}}_{\mathbf{e}} = \sum_{i=1}^m \omega_i \mathbf{z}_i^*$.

Выборочная дисперсия $D_e = \sum_{i=1}^{n} \frac{(X_i - X_e)^2}{n}$ - мера рассеивания:

- \circ для дискретного вариационного ряда $d_e = \sum_{i=1}^m (x^{(i)} \overline{x}_e)^2 \omega_i;$
- \circ для интервального вариационного ряда $d_{\mathrm{e}} = \sum_{i=1}^m (z_i^* \overline{x}_{\mathrm{e}})^2 \omega_i$.

3.4. Точечные оценки неизвестных параметров

Выборочная характеристика, используемая в качестве приближенного значения неизвестного параметра генеральной совокупности, называется точечной оценкой этого параметра.

- θ некоторый неизвестный параметр генеральной совокупности, θ_n^* точечная оценка этого параметра.
 - 1. *Несмещенность*: Оценка параметра называется несмещенной, если для любого фиксированного объема выборки n математическое ожидание оценки равно оцениваемому параметру $M(\theta_n^*) = \theta$.
 - 2. Состоятельность: Оценка θ_n^* называется состоятельной, если

$$\theta_n^* \xrightarrow{p} \theta$$
, m.e. $P(|\theta_n^* - \theta| < \varepsilon) \to 1$.

ТОЧЕЧНАЯ ОЦЕНКА МАТЕМАТИЧЕСКОГО ОЖИДАНИЯ

Математическое ожидание M(X) генеральной совокупности X – генеральная средняя $\overline{\mathrm{x}}_{\scriptscriptstyle g}$

Выборочное среднее \overline{X}_{s} есть состоятельная и несмещенная оценка генеральной средней \overline{x}_{s} .

ТОЧЕЧНАЯ ОЦЕНКА ДИСПЕРСИИ

Дисперсия D(X) генеральной совокупности X – генеральная дисперсия D_{ε}

Исправленная дисперсия
$$S^2 = \frac{n}{n-1}D_e$$
.

3.5. Интервальные оценки неизвестных параметров

Интервальной оценкой для параметра θ называется такой интервал $(\underline{\theta}^*, \overline{\theta}^*)$ со случайными границами, что $P(\underline{\theta}^* < \theta < \overline{\theta}^*) = \gamma$ (γ - надежность интервальной оценки, доверительная вероятность).

Теорема: если генеральная совокупность X распределена по нормальному закону с параметрами a и σ , то:

- 1) случайная величина \bar{X}_s распределена нормально с параметрами $(a,\frac{\sigma}{\sqrt{n}});$
- 2) nD_{s} / σ^{2} имеет распределение χ_{n-1}^{2} ;
- 3) случайные величины \bar{X}_{e} и D_{e} независимы.

Таблица значений квантилей χ_k^2 -распределения, определяемых соотношением $P(\gamma_k^2 < \gamma^2(\gamma,k)) = \gamma$

k Y	0.02	0.05	0.1	0.9	0.95	0.98
1	0.006	0.0039	0.016	2.7	3.8	5.4
2	0.040	0.103	0.211	4.6	6.0	7.8
3	0.185	0.352	0.584	6.3	7.8	9.8
4	0.43	0.71	1.06	7.8	9.5	11.7
5	0.75	1.14	1.61	9.2	11.1	13.4
6	1.13	1.63	2.20	10.6	12.6	15.0
7	1.56	2.17	2.83	12.0	14.1	16.6

3.6. Основные статистические функции в R

Функция	Описание	
mean(x)	Среднее арифметическое mean(c(1,2,3,4)) равно 2.5	
median(x)	Медиана median(c(1,2,3,4)) равно 2.5	
sd(x)	Стандартное отклонение sd (c(1,2,3,4)) равно 1.29	
var(x)	Дисперсия var(c(1,2,3,4)) равно 1.67	
mad(x)	Абсолютное отклонение медианы mad(c(1,2,3,4)) равно 1.48	
quantile(x, probs)	Квантили, где x – числовой вектор, для которого нужно вычислить квантили, а probs – числовой вектор с указанием вероятностей в диапазоне [0; 1] # 30-й и 84-й процентили х y <- quantile(x, c(.3,.84))	

Пример: 1) вычислить среднее арифметическое для всех элементов объекта x = y < -mean(x)

2) вычислить усеченное среднее, исключив 5% наибольших и 5% наименьших значений в выборке, не принимая при этом во внимание пропущенные значения.

$$z \leftarrow mean(x, trim = 0.05, na.rm=TRUE)$$

3.6. Основные статистические функции в R

Функция	Описание
range(x)	Размах значений x <- c(1,2,3,4)
sum(x)	Сумма sum(c(1,2,3,4)) равно 10
<pre>diff(x, lag=n)</pre>	Разность значений в выборке, взятых с заданным интервалом (lag). По умолчанию интервал равен 1. х <- с(1,5,23,29) diff(x) равно с(4, 18, 6)
min(x)	Минимум min(c(1,2,3,4)) равно 1
max(x)	Максимум max(c(1,2,3,4)) равно 4
<pre>scale(x, center=TRUE, scale=TRUE)</pre>	Значения объекта x, центрованные (center=TRUE) или стандартизованные (center=TRUE, scale=TRUE) по столбцам.

3.6. Основные статистические функции в R

В системе R имеется возможность быстрого расчета основных параметров описательной статистики.

Функция общего назначения summary():

Функция describe() пакета Hmisc:

3.7. Стандартизация данных

СТАНДАРТИЗАЦИЯ (НОРМАЛИЗАЦИЯ) ДАННЫХ

По умолчанию функция scale() стандартизирует заданный столбец матрицы или таблицы данных так, чтобы его среднее арифметическое было равно нулю, а стандартное отклонение – единице.

Для преобразования каждого столбца так, чтобы его среднее арифметическое и стандартное отклонение приобрели заданные значения:

newdata <- scale(mydata)*SD + M</pre>

где M — это нужное значение среднего арифметического, а SD — стандартного отклонения.

Чтобы стандартизировать определенный столбец, а не всю матрицу или таблицу данных целиком:

newdata <- transform(mydata, myvar = scale(myvar)*10+50).</pre>

В базовой установке R (пакет stats) реализованы следующие вероятностные распределения:

дискретные:

- биномиальное;
- пуассоновское;
- геометрическое;
- гипергеометрическое;
- отрицательно биномиальное;
- полиномиальное;

непрерывные:

- бета-распределение;
- распределение Коши;
- экспоненциальное;
- х²-распределение;
- распределение Фишера (f-распределение);
- гамма-распределение;
- логнормальное;
- логистическое;
- нормальное;
- распределение Стьюдента (t-распр.);
- равномерное;
- распределение
 Вейбулла.

ранговые распределения Вилкоксона

Для каждого из распределений в R имеются четыре функции:

- плотность распределения (для непрерывных случайных величин) и вероятность принятия случайной величиной конкретного значения (дискретные с.в.) префикс d перед названием распределения;
- функция распределения (ФР) с.в. префикс р перед названием распределения;
- **квантили распределения префикс q** перед названием распределения;
- случайная выборка по заданному распределению префикс r перед названием распределения.

3.8.1. Дискретные статистические распределения

БИНОМИАЛЬНОЕ РАСПРЕДЕЛЕНИЕ

Случайная величина ξ , описывающее число «успехов» в ряде испытаний Бернулли, принадлежит биномиальному распределению B(n, p) с параметрами p — вероятность «успеха» в испытании и n — число испытаний Бернулли.

Вероятность $P\{\xi = k\}$ имеет вид

$$P\{\xi = k\} = C_n^k p^k (1 - p)^{n - k}.$$

В R для биномиального распределения реализованы функции:

```
dbinom(x, size, prob, log = FALSE)
pbinom(q, size, prob, lower.tail = TRUE, log.p = FALSE)
qbinom(p, size, prob, lower.tail = TRUE, log.p = FALSE)
rbinom(n, size, prob)
```

3.8.1. Дискретные статистические распределения

БИНОМИАЛЬНОЕ РАСПРЕДЕЛЕНИЕ (ПРОДОЛЖЕНИЕ) **Аргументы функций:**

- x целочисленный неотрицательный вектор вектор значений случайной величины ξ ;
- *q* неотрицательный вектор вектор квантилей;
- р вектор вероятностей;
- *n* –длина создаваемого вектора;
- *size* число испытаний Бернулли;
- prob вероятность «успеха» в одном испытании Бернулли;
- *log* логарифмический аргумент (по умолчанию FALSE). Нужно ли вычислять логарифм вероятности;
- log.p аналогично;
- *lower.tail* логический аргумент. Если установлен в TRUE, то используется $P\{\xi \le k\}$, в противном случае $P\{\xi > k\}$.

3.8.1. Дискретные статистические распределения

ПУАССОНОВСКОЕ РАСПРЕДЕЛЕНИЕ

Моделирует случайную величину, представляющую собой число событий, произошедших за фиксированное время, при условии, что данные события происходят с некоторой фиксированной средней интенсивностью и независимо друг от друга.

Дискретная случайная величина ξ имеет распределение Пуассона с параметром λ , если

$$P\{\xi = i\} = \frac{\lambda^i}{i!}e^{-\lambda}.$$

В R для пуассоновского распределения реализованы функции:

```
dpois(x, lambda, log = FALSE)
ppois(q, lambda, lower.tail = TRUE, log.p = FALSE)
qpois(p, lambda, lower.tail = TRUE, log.p = FALSE)
rpois(n, lambda)
```

3.8.1. Дискретные статистические распределения

ГИПЕРГЕОМЕТРИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ

В урне имеется m белых и n черных шаров. Из урны без возвращения вынимают k шаров (0 < k < n + m). Случайная величина ξ , описывающая число I (0 \leq I \leq min(k,m)) вытянутых белых шаров, подчиняется гипергеометрическому распределению. (Пример: описывает вероятность того, что в выборке из n различных объектов, вытянутых из поставки, ровно k объектов являются бракованными.)

$$P\{\xi = i\} = \frac{C_m^i C_n^{k-i}}{C_{n+m}^k}, \quad 0 \le i \le \min(k, m).$$

В R для гипергеометрического распределения реализованы функции:

```
dhyper(x, m, n, k, log = FALSE)
phyper(q, m, n, k, lower.tail = TRUE, log.p = FALSE)
qhyper(p, m, n, k, lower.tail = TRUE, log.p = FALSE)
rhyper(nn, m, n, k)
```

3.8.1. Дискретные статистические распределения

ПОЛИНОМИАЛЬНОЕ РАСПРЕДЕЛЕНИЕ

Пусть имеется n предметов, каждый из которых может обладать только одним из k свойств с вероятностью p_i , i=1,...,k. Вероятность того, что предмет n_1 обладает свойством 1, n_2 - свойством 2, ..., n_k - свойством k, определяется формулой

$$P(n_1, n_2, \dots, n_k) = \frac{n!}{n_1! \cdot \dots \cdot n_k!} p_1^{n_1} \cdot \dots \cdot p_k^{n_k}.$$

В R представлено всего двумя функциями:

```
dmultinom(x, size = NULL, prob, log = FALSE)
rmultinom(n, size, prob)
```

3.8.2. Непрерывные статистические распределения

ЭКСПОНЕНЦИАЛЬНОЕ РАСПРЕДЕЛЕНИЕ

Моделирует время между двумя последовательными свершениями одного и того же события.

Случайная величина X имеет экспоненциальное распределение с параметром λ , если её плотность имеет вид

$$p(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0, \\ 0, & x < 0. \end{cases}$$

В R для экспоненциального распределения реализованы функции:

```
dexp(x, rate = 1, log = FALSE)
pexp(q, rate = 1, lower.tail = TRUE, log.p = FALSE)
qexp(p, rate = 1, lower.tail = TRUE, log.p = FALSE)
rexp(n, rate = 1)
```

-

3.8.2. Непрерывные статистические распределения

РАСПРЕДЕЛЕНИЕ ВЕЙБУЛЛА

Относится к двухпараметрическим распределениям, используется в демографических исследованиях, анализе дожития (исследовании смертности). Частным случаем распределения Вейбулла является экспоненциальное распределение.

Плотность распределения

$$p(x) = \begin{cases} 0, & x < 0, \\ \alpha \lambda x^{\alpha - 1} e^{-\lambda x^{\alpha}}, & x \ge 0. \end{cases}$$

```
dweibull(x, shape, scale = 1, log = FALSE)
pweibull(q, shape, scale = 1, lower.tail = TRUE, log.p = FALSE)
qweibull(p, shape, scale = 1, lower.tail = TRUE, log.p = FALSE)
rweibull(n, shape, scale = 1)
```

Аргумент shape – параметр формы α , аргумент scale – параметр $1/\lambda$. Оба аргумента – положительные числа.

3.8.2. Непрерывные статистические распределения

НОРМАЛЬНОЕ РАСПРЕДЕЛЕНИЕ

Плотность нормального распределения

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-m)^2}{2\sigma^2}},$$

где m – математическое ожидание, σ – среднее квадратическое отклонение.

В R за нормальное распределение отвечают функции

```
dnorm(x, mean = 0, sd = 1, log = FALSE)
pnorm(q, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)
qnorm(p, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)
rnorm(n, mean = 0, sd = 1)
```

Замечания: 1) заданный порядок аргументов функций является обязательным;

2) для функции dnorm() обязательным параметром является только x, для pnorm() – q, для qnorm() – p и для rnorm() – n. В этом случае используется стандартное нормальное распределение.

3.8.2. Непрерывные статистические распределения

НОРМАЛЬНОЕ РАСПРЕДЕЛЕНИЕ (ПРОДОЛЖЕНИЕ)

HOI MAJIBHOL I AOTH EALJILHME (III OAOJIMEHME)				
ЗАДАЧА	РЕШЕНИЕ			
Как изобразить кривую стандартного нормаль-	x <- pretty(c(-3,3), 30)			
ного распределения в диапазоне	y <- dnorm(x)			
значений [–3, 3]?	plot(x, y,			
	+ type = "1",			
8 -	+ xlab = "Normal Deviate",			
8 -	+ ylab = "Density",			
5 -	+ yaxs = "i"			
3 .2 .1 0 1 2 3)			
Какова площадь под кривой стандартного	pnorm(1.96)			
нормального распределения слева от z=1.96?	[1] 0.9750021			
Каково значение 90-го процентиля нормально-	<pre>qnorm(.9, mean=500, sd=100)</pre>			
го распределения со средним значением 500 и	[1] 628.1552			
стандартным отклонением 100?				
Как создать 50 случайных чисел, принадлежа-	rnorm(50, mean=50, sd=10)			
щих нормальному распределению со средним				
значением 50 и стандартным отклонением 10?				

3.8.3. Воспроизводимость результатов при использовании ГПСЧ

Генератор псевдослучайных чисел (ГПСЧ) начинает свою работу с определенной точки в пространстве возможных чисел. Эта точка называется **начальным числом**.

<u>Пример</u>: создадим таблицу example с двумя столбцами. В первом столбце будут храниться коды уровней гипотетического фактора Factor (три уровня: A, B, и C). Для каждого из этих уровней сгенерируем (псевдо-)случайным образом по 300 нормально распределенных значений с разными средними и стандартными отклонениями.

```
example = data.frame(Factor = rep(c("A", "B", "C"), each = 300),
+ Variable = c(rnorm(300, 5, 2), rnorm(300, 4, 3), rnorm(300, 2, 1)))
```


Можно выделить 4 шага при подборе распределений:

- 1) Выбор модели: выдвигается гипотеза о принадлежности выборки некоторому семейству распределений;
- 2) Оценка параметров теоретического распределения;
- 3) Оценка качества приближения;
- 4) Проверка согласия между наблюдаемыми и ожидаемыми значениями с использованием статистических тестов.

ПРИНЦИП МАКСИМАЛЬНОГО ПРАВДОПОДОБИЯ

Принцип максимального правдоподобия состоит в том, что в качестве «наиболее правдоподобного» значения параметра берут значение Θ , максимизирующее вероятность получить при n опытах имеющуюся выборку $X = (x_1, ... x_n)$.

При оценке параметров в R могут использоваться функции fitdistr() из пакета MASS и fitdist() из пакета fitdistrplus.

<u>Пример (непрерывное распределение):</u> рассмотрим имитацию случайной выборки из распределения Вейбулла

```
set.seed(1946)
x = sort(rweibull( 100, 2, (1 + 1.21*rbinom(100, 1, 0.05)) ))
```

График выборочной гистограммы и ядерной функции плотности распределения

```
hist(x, freq = FALSE, breaks=8,
+ col="grey88", main = "Гистограмма и
+ ядерная плотность")
lines(density(x), lwd = 2, col="blue")
```


Рассмотрим в качестве моделей-претендентов три закона распределения: нормальное, лог-нормальное и распределение Вейбулла. Процедура подгонки эмпирического распределения состоит из трех шагов:

- оценка параметров распределения на основе метода максимального правдоподобия;
- проверка гипотезы о согласии эмпирического и теоретического распределений с использованием критерия Колмогорова-Смирнова;
- вывод графика (для удобства сопоставления показаны на одном рисунке).

График выборочной гистограммы и ядерной функции плотности распределения

```
оценка параметров нормального распределения
(dof = fitdistr(x, "normal"))
ep1=dof$estimate[1]; ep2=dof$estimate[2]
                        sd
       mean
  0.89502201 0.53760487
 (0.05376049) (0.03801440)
ks.test(x,pnorm, mean=ep1,sd=ep2)
         One-sample Kolmogorov-Smirnov test
data: x
D = 0.1342, p-value = 0.05463
alternative hypothesis: two-sided
         Эмпирическая КФР и
                                       Эмпирическая ФПР и
       нормального распределения
                                     нормального распределения
                             Density
 0.4
                               0.2
 0.2
      0.5
          1.0
              1.5
                 2.0
                     2.5
                                       N = 100 Bandwidth = 0,1324
```

Пример (дискретное распределение): из реки было сделано 60 проб и подсчитывалось число обнаруженных видов донных организмов. Это число варьирует от 2 до 30 при среднем x = 11.3. Какое распределение является лучшим с формально-статистической точки зрения: Пуассона с $\lambda = 11.2$ или нормальное?

```
x \leftarrow c(12,20,19,19,18,10,19,30,16,10,8,11,10,11,16,3,7,6,5,11,
8,14,9,8,10,11,14,17,2,7,17,19,9,15,9,8,4,8,11,8,5,3,10,
14, 22, 11, 8, 7, 3, 5, 8, 11, 14, 2, 13, 9, 12, 6, 19, 21)
# Оценка параметров распределений нормального и Пуассона
n = length(x); p1 = mean(x); p2 = sqrt(var(x)*(n-1)/n)
# Создание векторов эмпирических и теоретических частот
pr obs <- as.vector(table(x)/n) ; nr <- length(pr obs)</pre>
pr norm <- dnorm(1:nr, p1, p2) # Частоты нормального распр.
pr pois <- dpois(1:nr, p1) # Частоты распр. Пуассона
plot(pr obs, type="b", ylab ="Частоты")
  lines(1:nr, pr pois , col="red", lwd=2)
  lines(1:nr, pr norm, col="blue", lwd=2)
  legend ("topright", legend = c("Нормальное", "Пуассона"),
         lwd=2, col=c("red", "blue"))
# Сравнение качества подгонки распределений
# Среднее абсолютное отклонение
c(sum(abs(pr obs-pr norm))/nr, sum(abs(pr obs-pr pois))/nr)
[1] 0.02314994 0.03176255
# Средняя квадратичная ошибка
c(sum((pr obs-pr norm)^2)/nr, sum((pr obs-pr pois)^2)/nr)
[1] 0.0009595203 0.0017446052
# Критерий согласия Колмогорова-Смирнова
c(ks.test(pr obs, pr norm) $statistic,
       ks.test(pr obs, pr pois)$statistic)
[1] 0.2272727 0.4090909
```


3.10. Проверка распределения на нормальность

СПОСОБЫ:

- 1. Графический (с помощью гистограмм, графиков квантилей и т.п.)
- 2. Формальные тесты (тест Шапиро-Уилка, тест Андерсона-Дарлинга, тест Крамера фон Мизеса, тест Колмогорова-Смирнова в модификации Лиллиефорса, тест Шапиро-Франсия)

```
# Тесты на нормальность
shapiro.test(x)
        Shapiro-Wilk normality test
data: x
W = 0.8986, p-value = 1.219e-06
library (nortest)
ad.test(x)
        Anderson-Darling normality test
data: x
A = 2.0895, p-value = 2.382e-05
cvm.test(x)
        Cramer-von Mises normality test
data: x
W = 0.3369, p-value = 0.0001219
lillie.test(x)
       Lilliefors (Kolmogorov-Smirnov) normality test
data: x
D = 0.1348, p-value = 0.0001225
sf.test(x)
        Shapiro-Francia normality test
data: x
W = 0.8936, p-value = 3.617e-06
```

Список литературы

Мастицкий С. Э., Шитиков В. К. (2014) Статистический анализ и визуализация данных с помощью R. - Электронная книга, 400 с

Кабаков Р. К. (2014) R в действии. Анализ и визуализация данных на языке R Издательство: ДМК Пресс, 580 с.

Зарядов И. С. (2010) Статистический пакет R: теория вероятностей и математическая статистика. Москва: Изд-во РУДНБ, 141 с.