Support Vector Data Description (SVDD) of Roller Bearing time series

Detection of Outliers in Rolling Element Bearing Datasets using Support Vector Data Description

Contents

- SVDD sample
- Preprocessing
- Feature Extraction
- Training and test set generation
- SVDD Training
- Error evaluation
- References

SVDD sample

Creates a banana-shaped one-class dataset and calculates three different SVDD mappings with Radial Basis Functions with different Sigma values (1)

```
a = gendatb([30 30]);
% Setting of the second class as target class
a = oc_set(a,'1');
a = target_class(a);
% Generation of test data
b = oc_set(gendatb(200),'1');
V = axis; axis(1.5*V);
% Training of three SVDDs
H=[0;0];
fracrej = 0.2;
figure(1); clf; hold on;
s=scatterd(a);
w1 = svdd(a,fracrej,2);
h=plotc(w1, 'k--');
H(1)=s;
H(2) = h;
legend(H,'Target Data','SVDD with RBF, Sigma=2');
hold off;
figure(2); clf; hold on;
s=scatterd(a);
w2 = svdd(a,fracrej,3);
h=plotc(w2,'k--');
H(1)=s;
H(2) = h;
legend(H, 'Target Data', 'SVDD with RBF, Sigma=3');
hold off;
figure(3); clf; hold on;
s=scatterd(a);
w3 = svdd(a,fracrej,5);
h=plotc(w3, 'k--');
H(1)=s;
H(2) = h;
legend(H,'Target Data','SVDD with RBF, Sigma=5');
axis equal;
axis image;
Warning: Divide by zero.
Warning: Divide by zero.
Warning: Divide by zero.
```


Preprocessing

Partitions Roller Bearing time signals into segments of 5 revolutions (2,3)

```
numberOfRevolutionsPerSegment=5;
rpm=1796;
sampleFrequency=48000;
normalSegments=SegmentRotationTimeSignal(...
    normalRawData1797rpm48k,...
    rpm,...
    sampleFrequency,...
    numberOfRevolutionsPerSegment);
ballFaultSegments=SegmentRotationTimeSignal(...
    ballFaultRawData1797rpm48k,...
    sampleFrequency,...
    numberOfRevolutionsPerSegment);
innerRacewayFaultSegments=SegmentRotationTimeSignal(...
    innerRacewayFaultRawData1797rpm48k,...
     rpm, ...
     sampleFrequency,...
     numberOfRevolutionsPerSegment);
 outerRacewayFaultSegments=SegmentRotationTimeSignal(...
    outerRacewayRawData1797rpm48k,...
     rpm,...
     sampleFrequency,...
     numberOfRevolutionsPerSegment);
 numberOfDataPoints = size(normalSegments,1);
 deltaX = numberOfRevolutionsPerSegment/numberOfDataPoints;
 xScale = (0+deltaX):deltaX:numberOfRevolutionsPerSegment;
%Plots the first segment of each dataset
figure(1); clf;
subplot(4,1,1),
    plot(xScale,normalSegments(:,1)),
    title('First five revolutions of Rolling Element Bearing Data')
    ylabel('Normal');
subplot(4,1,2),
    plot(xScale,ballFaultSegments(:,1)),
```

```
ylabel('Ball fault');
subplot(4,1,3),
   plot(xScale,innerRacewayFaultSegments(:,1)),
   ylabel('IR fault');
subplot(4,1,4),
   plot(xScale,outerRacewayFaultSegments(:,1));
   ylabel('OR fault');
```


Feature Extraction

Extracts Kurtosis (k), Mel Frequency Cepstrum Coefficients (c) and Multifractal Dimensions (m) as 27-tupels in the format (c1...c13, m1..., m13, k) (3)

```
normalFeatures = ...
        ExtractRollerBearingFeatures(normalSegments, sampleFrequency);
    %First normal features vector:
    normalFeatures(1,:)
    ballFaultFeatures =...
        ExtractRollerBearingFeatures(ballFaultSegments,sampleFrequency);
    %First ball fault features vector
    ballFaultFeatures(1,:)
    innerRacewayFaultFeatures = ...
        ExtractRollerBearingFeatures(innerRacewayFaultSegments,sampleFrequency);
    %First inner raceway fault features
    innerRacewayFaultFeatures(1,:)
    outerRacewayFaultFeatures=...
        ExtractRollerBearingFeatures( outerRacewayFaultSegments,sampleFrequency);
    %First outer raceway fault features
    outerRacewayFaultFeatures(1,:)
    %ToDo: PCA to remove redundancies in dataset
ans =
 Columns 1 through 5
   93.2835
             -4.5085
                       -0.4379
                                 -8.3268
                                             1.6988
```

Columns 6 through 10		
-7.0603 -9.3236 7.2506	1.0004	2.6586
Columns 11 through 15		
7.8623 -4.8782 -2.4223	1.2117	1.2668
Columns 16 through 20		
1.3252 1.3862 1.4548	1.5351	1.6284
Columns 21 through 25		
1.7247 1.7949 1.8255	1.8279	1.8174
Columns 26 through 27		
1.8034 2.8706		
ans =		
Columns 1 through 5		
110.4900 -11.2485 3.4535	-4 2647	1 8583
Columns 6 through 10	1.2017	1.0303
9.1920 -13.9305 13.3238	-3.7039	3.7564
Columns 11 through 15		
9.4294 3.2273 2.1557	1.0654	1.0873
Columns 16 through 20		
1.1120 1.1404 1.1719	1.2073	1.2458
Columns 21 through 25		
1.2880 1.3342 1.3846	1.4401	1.5013
Columns 26 through 27		
1.5676 3.2507		
ans =		
Columns 1 through 5	7 1706	20 4652
116.9204 -16.0576 2.6369	-7.1706	-20.4653
Columns 6 through 10 -4.5033 -13.7211 7.0555	7 6276	15 0025
-4.5033 -13.7211 7.0555 Columns 11 through 15	-7.6276	15.8025
4.1259 1.8448 -2.5223	1 0527	1 0726
Columns 16 through 20	1.0327	1.0720
1.0967 1.1235 1.1541	1 1884	1 2270
Columns 21 through 25	1.1001	1.2270
1.2699 1.3183 1.3725	1.4342	1.5051
Columns 26 through 27	_,,	
1.5871 3.9930		

```
ans =
 Columns 1 through 5
 113.5618 -13.7492
                       4.9438
                               -7.4862 -4.8346
  Columns 6 through 10
  -14.2957 -15.5283
                      20.2440
                                -0.5760
                                           9.8308
  Columns 11 through 15
    0.8089
            -1.9020
                      10.2831
                                 1.0773
                                           1.1036
 Columns 16 through 20
   1.1325
             1.1653
                       1.2015
                                 1.2425
                                           1.2877
  Columns 21 through 25
   1.3385
             1.3962
                     1.4615
                               1.5357
                                           1.6177
  Columns 26 through 27
           19.1720
   1.6972
```

Training and test set generation

Creates a target dataset with normal features for training and a dataset with target and outlier samples for testing a Support Vector Data Description (1)

```
normalFeaturesDataSet=dataset(normalFeatures);
 ballFaultFeaturesDataSet=dataset(ballFaultFeatures);
 innerRacewayFaultFeaturesDataset=dataset( innerRacewayFaultFeatures );
 outerRacewayFaultFeaturesDataset=dataset( outerRacewayFaultFeatures);
 %Creates a target data training set with normal features
 targetData = ...
     gendatoc(normalFeaturesDataSet);
 %Creates an outlier dataset with ball fault features
 ballFaultOutliers = ...
     gendatoc([], ballFaultFeaturesDataSet);
 %Creates an outlier dataset with inner raceway fault features
 innerRacewayFaultOutliers=...
     gendatoc([], innerRacewayFaultFeaturesDataset);
 %Creates an outlier dataset with outer raceway fault features
 outerRacewayFaultOutliers=...
     gendatoc([], outerRacewayFaultFeaturesDataset);
%Creates a test dataset with 50 random samples drawn from each dataset
numberOfTestSamples=50;
[targetTestData,targetTrainingData]=...
    gendat(targetData, numberOfTestSamples);
[ballFaultTestData,]=...
    gendat(ballFaultOutliers, numberOfTestSamples);
[innerRacewayFaultTestData,]=...
    gendat(innerRacewayFaultOutliers,numberOfTestSamples);
[outerRacewayFaultTestData,]=..
    qendat(outerRacewayFaultOutliers,numberOfTestSamples);
testData=[targetTestData;...
          ballFaultTestData;...
          innerRacewayFaultTestData;...
          outerRacewayFaultTestData];
```

SVDD Training

Uses the target data to calculate an SVD mapping with a rejection rate of 0.2 and an RBF-Kernel with Sigma=5 (4)

```
w = svdd( targetData,0.2,5);
Warning: Divide by zero.
Warning: Your Hessian is not symmetric. Resetting
H=(H+H')/2.
```

Error evaluation

Calculates false negative (rejected targets) and false positive (accepted outliers) rates and plots a ROC curve (1)

```
e = dd_error(testData,w);
%False Negatives:
e(1)
%False Positives:
e(2)
%Roc
figure(2); clf;
plotroc(dd_roc(testData*w),'r');

ans =
    0.2000

ans =
    0
```


References

- 1. PRTools4, A Matlab Toolbox for Pattern Recognition Version 4.1 (R.P.W. Duin,D.M.J. Tax et al.)
- 2. http://csegroups.case.edu/bearingdatacenter/pages/welcome-case-western-reserve-university-bearing-data-center-website
- 3. "Early Classification Of Bearing Faults Using Hidden Markov Models, Gaussian Mixture Models,

Mel-Frequency Cepstral Coefficients and Fractals" (Marwala et al)

4. "Support Vector Data Description" (Tax,Duin)
http://mediamatica.ewi.tudelft.nl/sites/default/files/ML_SVDD_04.pdf

Published with MATLAB® 7.8