Laboratório de Sistemas Digitais Aula Teórico-Prática 2

Ano Letivo 2023/24

Introdução à linguagem VHDL

Modelação de

componentes combinatórios

Conteúdo

- Aspetos básicos de VHDL
 - Finalidade, funcionalidades e tipos de construções
 - Tipos de dados
 - Comentários
 - Identificadores
 - Exemplo simples de um multiplexador 2→1
- Componentes combinatórios
 - Diferentes abordagens de modelação em VHDL

VHDL – Aspetos Básicos

- <u>Very high speed integrated circuits</u> <u>Hardware</u> <u>Description</u> <u>Language</u> (IEEE std 1076)
- Hardware Description Language (HDL)
 - Não é uma linguagem de programação de software!!! Diferente paradigma!!!
 - Modelação, simulação e síntese de sistemas digitais
- Permite descrever o comportamento e a estrutura de hardware digital
 - Utilizando construções típicas das linguagens de programação
- Utilizada com ferramentas de projeto assistido por computador para simulação, síntese e implementação
 - Permite ganhos de produtividade apreciáveis sobre métodos de projeto baseados em captura de diagramas lógicos (embora este também possua algumas vantagens!)

VHDL – Aspetos Básicos

- Disponibiliza abstrações para as construções típicas do hardware
 - Entities (interface de um módulo)
 - Arquitectures (implementação de um módulo)
 - Signals (sinais internos de um módulo)
 - Ports (sinais da interface de um módulo)
 - Tipos de dados orientados para o hardware (para representar níveis lógicos, vetores de bits de diversos tamanhos, noção de tempo, etc.)
 - Concorrência (para modelar o paralelismo do hardware)

— ...

Tipos de Dados em VHDL

- Tipo de dados mais utilizado (para representar valores lógicos em sistemas digitais)
 - std logic (1 bit) / std logic vector (vários bits barramentos)

(tipos definidos na biblioteca IEEE.STD LOGIC 1164)

'0' - Nível baixo

'1' - Nível Alto

'L' – Nível baixo passivo

'H' – Nível alto passivo

'Z' – Tri-state (alta impedância) '-' – Don't care

'X' – Conflito (entre '0' e '1') 'W' – Conflito (entre 'L' e 'H')

- 'U' Não inicializado
- Outros (a abordar mais tarde)
 - unsigned, signed
 - integer
 - enumerated
 - boolean
 - character
 - time

Exemplo Simples em VHDL (Mux 2->1)

```
library IEEE;
use IEEE.STD_LOGIC_1164.all;

entity Mux2_1 is
   port(sel : in std_logic;
        input0 : in std_logic; Entidade - definição da
        input1 : in std_logic; interface do módulo
        muxOut : out std_logic);
end Mux2_1;
```



```
architecture Equations of Mux2_1 is

signal s_and0Out, s_and1Out : std_logic;

begin
    s_and0Out <= not sel and input0;
    s_and1Out <= sel and input1;
    muxOut <= s_and0Out or s_and1Out;

end Equations;</pre>
Declaração de sinais internos da arquitetura

Arquitetura - definição da implementação do módulo
```

Arquitetura Alternativa p/o Mux 2->1

```
library IEEE;
use IEEE.STD_LOGIC_1164.all; Inclusão de bibliotecas

entity Mux2_1 is
  port(sel : in std_logic;
      input0 : in std_logic; Entidade - definição da
      input1 : in std_logic; interface do módulo
      muxOut : out std_logic);
end Mux2_1;
```



```
architecture Behavioral of Mux2_1 is
begin
  process(sel, input0, input1)
  begin
  if (sel = '0') then
     muxOut <= input0;
  else
     muxOut <= input1;
  end if;
  end process;
end Behavioral;</pre>
```

Arquitetura – definição da implementação do módulo

Mux 2->1 de Barramentos de 8 bits

```
library IEEE;
use IEEE.STD_LOGIC_1164.all;

entity Mux2_1 is

port(sel : in std_logic;
    input0 : in std_logic_vector(7 downto 0);
    input1 : in std_logic_vector(7 downto 0);
    muxOut : out std_logic_vector(7 downto 0));

end Mux2_1;

Inclusão de bibliotecas

Entidade - definição da
interface do módulo
(entradas e saídas de
dados passam a
ser vetores)
```

```
architecture Behavioral of Mux2_1 is
begin
  process(sel, input0, input1)
  begin
  if (sel = '0') then
    muxOut <= input0;
  else
    muxOut <= input1;
  end if;
  end process;
end Behavioral;</pre>
```


Arquitetura – definição da implementação do módulo (a descrição comportamental é a mesma, i.e. o comportamento é semelhante)

VHDL – comentários

-- comentário de uma linha

/* comentário em bloco (de várias linhas)

or_gate: entity work.OR2Gate(Behavioral)

port map (inPort0 => inPort0, inPort1 => inPort1, outPort => s_orOut);

not_gate: entity work.NOTGate(Behavioral)

port map (inPort => s_orOut, outPort => outPort);

Comentários em bloco só são suportados a partir de VHDL 2008 (pode ser especificado nas opções de síntese – menu "Assignments—>Settings

->Compiler Settings—>VHDL Input" no Quartus Prime)

VHDL – identificadores

- VHDL é uma linguagem que não faz distinção entre letras minúsculas e maiúsculas (not case-sensitive)
- Identificadores:
 - servem para nomear itens num modelo VHDL
 - podem ser de comprimento arbitrário
 - só podem incluir letras ('A'-'Z', 'a'- 'z'), dígitos ('0'-'9'),
 e '_'
 - devem começar com uma letra
 - não podem conter '_' no fim
 - não podem incluir dois '_' seguidos
 - não podem usar palavras reservadas de VHDL

VHDL – palavras reservadas (2008)

abs	default	label	package	sla
access	disconnect	library	parameter	s11
after	downto	linkage	port	sra
alias		literal	postponed	srl
all	else	100р	procedure	strong
and	elsif		process	subtype
architecture	end	map	property	
array	entity	mod	protected	then
assert	exit		pure	to
assume		nand		transport
assume_guarantee	fairness	new	range	type
attribute	file	next	record	
	for	nor	register	unaffected
begin	force	not	reject	units
block	function	null	release	until
body			rem	use
buffer	generate	of	report	
bus	generic	on	restrict	variable
	group	open	restrict_guarantee	vmode
case	guarded	or	return	vprop
component		others	rol	vunit
configuration	if	out	ror	
constant	impure			wait
context	in		select	when
cover	inertial		sequence	while
	inout		severity	with
	is		shared	
Além destas, não usar	os nomes "input"	e "output", nem	signal	xnor
quaisquer outras p	alavras reservadas	em Verilog!		xor

Componentes Combinatórios

- O que é um componente combinatório?
 - Circuito cujas saídas só dependem do valor das entradas em cada momento
- Exemplos
 - Portas lógicas elementares
 - Descodificadores / codificadores
 - Multiplexadores
 - Comparadores
 - Somadores / subtratores
 - Etc...

Exemplo de um Componente Combinatório

Descodificador Binário

 $2\rightarrow 4$ com entrada de ativação (enable)

enable	inputs<1>	inputs<0>	outputs<3>	outputs<2>	outputs<1>	outputs<0>
0	-	-	0	0	0	0
1	0	0	0	0	0	1
1	0	1	0	0	1	0
1	1	0	0	1	0	0
1	1	1	1	0	0	0

Modelo VHDL do Descodificador $2\rightarrow 4$

Entity

```
library IEEE;
use IEEE.STD_LOGIC_1164.all;
```

```
2 A Bin Decoder
with Enable
inputs<1:0>
outputs<3:0>
enable
```

```
entity Dec2_4En is
  port(enable : in std_logic;
      inputs : in std_logic_vector (1 downto 0);
      outputs : out std_logic_vector (3 downto 0));
end Dec2_4En;
```

Para que serve a biblioteca **IEEE.STD LOGIC 1164**?

Modelo VHDL do Descodificador $2\rightarrow 4$

- Architecture
 - Diversas abordagens de modelação possíveis em VHDL
 - Instanciar e interligar as portas lógicas necessárias (estrutural)
 - Escrever as equações lógicas para cada saída
 - Descrever o comportamento usando
 - Atribuições condicionais concorrentes
 - Um processo com construções "if...then...else"
 - Um processo com construções "case... when"

Vamos apresentar e analisar as diversas abordagens...

Arquitetura 1 (Estrutural)

```
architecture Structural of Dec2 4En is
    signal s nInput0, s nInput1 : std logic;
begin
                                                                     outputs<3>
    s nInput0 <= not inputs(0);</pre>
    s nInput1 <= not inputs(1);</pre>
    and 0 : entity work.AND3(ArchName)
                                                                     outputs<2>
                port map(input0 => enable,
                           input1 => s nInput0,
                                                                     outputs<1>
                           input2 => s nInput1,
                           andout => outputs(0));
                                                 inputs<1>
                                                 inputs<0>
                                                                     outputs<0>
    and 3 : entity work.AND3(ArchName)
                                                 enable
                port map(input0 => enable,
                           input1 => inputs(0),
                           input2 => inputs(1),
                           andout => outputs(3));
end Structural;
```

Arquitetura 2 (Equações Lógicas)

```
architecture BehavEquations of Dec2_4En is
begin
   outputs(0) <= enable and (not inputs(1)) and (not inputs(0));
   outputs(1) <= enable and (not inputs(1)) and ( inputs(0));
   outputs(2) <= enable and ( inputs(1)) and (not inputs(0));
   outputs(3) <= enable and ( inputs(1)) and ( inputs(0));
end BehavEquations;</pre>
```

Estas atribuições são concorrentes. O que significa isto? Porquê?

Arquitetura 3 (Atribuições Condicionais)

```
architecture BehavAssign of Dec2 4En is
                                                             1 bit (std_logic)
begin
                                                              String de bits
    outputs <= "0000" when (enable = '0')
                                                else
                                                            (std logic vector)
                "0001" when (inputs = "00")
                                               else
                "0010" when (inputs = "01") else
                "0100" when (inputs = "10") else
                "1000";
```

No "Quartus Prime" este tipo de atribuições condicionais só pode ser usado diretamente no corpo da arquitetura (fora de processos)!!!

enable	inputs<1>	inputs<0>	outputs<3>	outputs<2>	outputs<1>	outputs<0>
0	-	-	0	0	0	0
1	0	0	0	0	0	1
1	0	1	0	0	1	0
1	1	0	0	1	0	0
1	1	1	1	0	0	0

end BehavAssign;

Arquitetura 4 (processo com if...then...else)

```
architecture BehavProc1 of Dec2 4En is
begin
    process(enable, inputs)
    begin
        if (enable = '0') then
            outputs <= "0000";
        else
            if (inputs = "00") then
                outputs <= "0001";
            elsif (inputs = "01") then
                outputs <= "0010";
            elsif (inputs = "10") then
                outputs <= "0100";
            else
                outputs <= "1000";
```

(enable, inputs) é a lista de sensibilidade do processo O que significa?

Lista dos sinais/portos dos quais depende o processo (i.e. lista dos sinais/portos cujos eventos afetam os valores calculados pelo processo)

end if; [end if: end process; end BehavProc1;

enable	inputs<1>	inputs<0>	outputs<3>	outputs<2>	outputs<1>	outputs<0>
0	1	-	0	0	0	0
1	0	0	0	0	0	1
1	0	1	0	0	1	0
1	1	0	0	1	0	0
1	1	1	1	0	0	0

Arquitetura 5 (processo com case...when)

```
architecture BehavProc2 of Dec2 4En is
begin
    process(enable, inputs)
    begin
        if (enable = '0') then
            outputs <= "0000";
        else
            case inputs is
            when "00" =>
                outputs <= "0001";
            when "01" =>
                outputs <= "0010";
            when "10" =>
                outputs <= "0100";
            when others =>
                outputs <= "1000";
            end case;
        end if;
    end process;
end BehavProc2;
```

Porquê usar **others** em vez de "11" neste caso?

enable	inputs<1>	inputs<0>	outputs<3>	outputs<2>	outputs<1>	outputs<0>
0	-	-	0	0	0	0
1	0	0	0	0	0	1
1	0	1	0	0	1	0
1	1	0	0	1	0	0
1	1	1	1	0	0	0

Aspetos Fundamentais

- Corpo da arquitetura pode conter:
 - Instanciação e interligação de componentes
 - Atribuições concorrentes (funções lógicas)
 - Atribuições concorrentes condicionais
 - Processos
- Num processo relativo a um componente combinatório
 - A lista de sensibilidade deve incluir todos os sinais aos quais o processo é sensível (entradas que influenciam as saídas)
 - As saídas devem estar especificadas para todos as combinações das entradas
 - Todos os "if ... then" (ou "elsif") devem possuir um "else" (ou "elsif") ou seja, deve existir um "else" para cada "if ... then"

Comentários Finais

- No final desta aula e dos trabalhos práticos 1 e 2 de LSD, deverá ser capaz de:
 - Compreender e utilizar as construções mais elementares da linguagem VHDL
 - Criar projetos simples baseados em VHDL e diagramas esquemáticos, sintetizá-los, implementá-los e testá-los em FPGA
 - Descrever qualquer componente combinatório em VHDL usando a abordagem mais adequada
 - Selecionar os sinais que devem ser incluídos na lista de sensibilidade de um processo
- ... bons trabalhos práticos 1 e 2, disponíveis no site da UC ☺
 - elearning.ua.pt