

Measure Densities

Definition

Suppose (X, \mathcal{F}) is a measurable space. A measure $\mu : \mathcal{F} \to \bar{\mathbf{R}}$ is said to have a density with respect to a measure $\nu : \mathcal{F} \to \bar{\mathbf{R}}$ if there exists a measurable function $f : X \to \mathbf{R}_+$

$$\mu(A) = \int_A f d\nu$$
 for all $A \in \mathcal{F}$

In this case f is called a density of μ with respect to ν .

Examples

Probability on finite sets. Suppose P is a probability measure for a finite set Ω . Define $p:\Omega\to[0,1]$ by

$$p(\omega) = P(\{\omega\})$$
 for all $\omega \in \Omega$

Then p is a probability distribution. Moreover, p is a density for P with respect to the counting measure $\#: \mathcal{P}(\Omega) \to \mathbf{R}$. Witness, for every $A \subset \Omega$,

$$\int_{A} pd\# = \sum_{a \in A} p(\omega)$$

We recognize the right hand side as P(A) by using the additivity of P.

