Exercise Book 3

Covering the materials of Chapters 9-10.

Topics: tabular data, plotting and diagram visualization

Open and read the attached data/airports.csv file, containing information about (larger) airports all over the world:

- 1. IATA code (International Air Transport Association code, e.g. BUD for the Budapest Airport)
- 2. ICAO code (International Civil Aviation Organization code, e.g. *LHBP* for the Budapest Airport)
- 3. Name
- 4. Number of runways
- 5. Longest runway length (in foots)
- 6. Elevation (in foots)
- 7. Country
- 8. Country region
- 9. City
- 10. Latitude
- 11. Longitude

The columns in each row are delimited with ; characters (instead of the default ,).

In [1]:

```
import pandas as pd
airports = pd.read_csv('../data/airports.csv', delimiter=';')
display(airports)
```

	iata	icao	name	runways	longest	elevation	country	region	city	
0	ATL	KATL	Hartsfield - Jackson Atlanta International Air	5	12390	1026	US	US- GA	Atlanta	33
1	ANC	PANC	Anchorage Ted Stevens	3	12400	151	US	US-AK	Anchorage	61
2	AUS	KAUS	Austin Bergstrom International Airport	2	12250	542	US	US-TX	Austin	30
3	BNA	KBNA	Nashville International Airport	4	11030	599	US	US-TN	Nashville	36
4	BOS	KBOS	Boston Logan	6	10083	19	US	US- MA	Boston	42
3459	LNL	ZLLN	Cheng Xian Airport	1	9186	3707	CN	CN-62	Longnan	33
3460	XAI	ZHXY	Xinyang Minggang Airport	1	8858	4528	CN	CN-41	Xinyang	32
3461	YYA	ZGYY	Sanhe Airport	1	8530	230	CN	CN-43	Yueyang	29
3462	BQJ	UEBB	Batagay Airport	2	6562	699	RU	RU- SA	Batagay	67
3463	DPT	UEBD	Deputatskij Airport	1	7021	920	RU	RU- SA	Deputatskij	69
3464 r	3464 rows × 11 columns									>

Task 1

Write a program that calculates and prints for each country the number of airports in that country. Sort the list by the number of airports.

In [2]:

```
display(airports.groupby('country').count()['iata'].sort_values(ascending=False
))
country
      583
US
CN
      217
CA
      205
      130
ΑU
      126
RU
GM
        1
NR
        1
GN
GP
        1
ΚW
Name: iata, Length: 231, dtype: int64
```

Task 2

Write a program that calculates and prints which city has the highest elevation. If a city has multiple airports, calculate the average (mean) elevation of the airports in that city.

```
In [3]:
```

```
display(airports.groupby('city').mean()['elevation'].idxmax())
```

Task 3

Write a program that displays the city names which has at least 5 runways accumulated. Sort the city list by the number of runways decreasing and also display the number of runway in each city.

Note: keep in mind that a city might have multiple airports!

^{&#}x27;Daocheng'

In [4]:

```
airports_city = airports.groupby('city').sum()
display(airports_city[airports_city['runways'] >= 5].sort_values(by='runways', a
scending=False)['runways'])
```

city				
Chicago	12			
Dallas	10			
Houston	9			
London	9			
Denver	9			
Hamilton	8			
Carlsbad	5			
Barcelona	5			
Atlanta	5			
Alexandria	5			
Wilmington	5			
Name: runways,	dtype:	int64		

Task 4

Create a *bar plot*, displaying length of the longest runway for each airport. The aiports shall be sorted by the longest runway length (ascending). Visualize only the top 100 aiports, so the diagram will be readable. Set an appropriate figure size, so all bars and labels are readable.

In [5]:

```
import matplotlib.pyplot as plt
%matplotlib inline
airports.sort_values(by='longest').tail(100).plot(kind='bar', x='iata', y='longe
st', figsize=[20,4], width=0.7, label='longest runway')
plt.show()
```


Task 5

Create a *bar plot*, displaying length of the longest runway for each **city**. The cities shall be sorted by the longest runway length (ascending). Visualize only the top 100 cities, so the diagram will be readable. Set an appropriate figure size, so all bars and labels are readable.

In [6]:

```
airports.groupby('city').max()['longest'].sort_values().tail(100).plot(kind='ba
r', figsize=[20,4], width=0.7, label='longest runway')
plt.show()
```

