

COURS #6

L3 Network, partie 2

Introduction aux réseaux 2023 (Bloc 2) Corentin Badot-Bertrand PARTIE #1

Résumé des concepts de la couche L3

Quelques rappels des bases de la couche OSI L3 Network

La couche Network

Troisième couche du modèle OSI en charge du parcours à travers le réseau

- Ne gère pas les réseaux locaux (L2 Data Link)
- Ne gère pas l'aspect physique (L1 Physical)
- Couche possédant peu de protocoles

Je souhaite envoyer une information via la couche L2 et L3. De quoi ai-je besoin?

Trame Ethernet

L'adresse MAC source, l'adresse MAC de destination et le EtherType

	Header Ethernet (14 bytes)					
7 bytes	1 byte	6 bytes	6 bytes	2 bytes	46 – 1500 bytes	4 bytes
Préambule	Délimiteur	MAC destination	MAC source	EtherType	Données	CRC

Paquet IPv4

Les champs IPv4 dont l'adresse IP source et l'adresse IP de destination

Est-ce que ma machine peut communiquer hors du réseau local avec une adresse MAC?

Une adresse MAC fait partie de la couche OSI 2

Exercice 1Dimensionnez un réseau

PARTIE #2

Routeurs & protocoles de routage

Echanger des informations de façon efficace entre réseaux

Routeur (L3 Network)

Equipement réseau qui fait transiter les paquets (OSI L3)

- Transit = acheminer les données (paquets)
- ... d'une source vers une destination
- Sur base d'une logique (mécanisme de routage) il transfère les paquets
- ... d'une interface vers une autre interface réseau

Les routeurs sont omniprésents dans les réseaux modernes

Rappel, adresses IP privées

Certaines ranges d'IP sont assignées à des réseaux privés

- Réseaux locaux d'entreprise & domestiques
- 10.0.0.0 10.255.255.255
- 172.16.0.0 172.31.255.255
- 192.168.0.0 192.168.255.255

Les adresses non-assignables

Certaines IP ne peuvent pas être assignées à une machine

- 127.0.0.1 : adresse locale, la machine elle-même (localhost)
- 0.0.0.0 : destination inconnue (route par défaut)
- X.X.0.0 : adresse qui identifie le réseau (bits host à 0)
- X.X.255.255 : broadcast, toutes les machines (bits host à 1)

Exercice 2 Dimensionnez un réseau, la façon réaliste

Est-ce que toutes les connexions entre routeurs sont identiques ?

Métriques de distance

Permet de quantifier la qualité d'une route pour décider du routage

- Longueur du lien (10m, 5km, 700km, ...)
- Nombre de sauts (1 saut, 2 sauts, ...)
- Bande passante (50 Mbs, 2 Gbs, ...)
- Charge (lien peu utilisé, lien très chargé, ...)
- Délais
- Fiabilité

• ...

Est-ce qu'un routeur a besoin d'une adresse IP sur toutes ses interfaces ?

Table de routage (routing table)

Base de données contenant les informations pour router des paquets

- Présent sur les routeurs
- Présent également sur vos machines ou tout équipement L3
- Contient à minima le réseau à atteindre, une métrique de distance et next hop
- Le « next hop » est le prochain nœud à contacter ~ gateway

Réseau	Masque réseau	Next hop (gateway)	Métrique	Interface
40.0.3.0	255.255.255.0	50.0.0.5	10	Eth2

Table de routage, exemple routeur A

Réseau	Masque réseau	Next hop (gateway)	Métrique	Interface
40.0.1.0	255.255.255.0	Directly connected	10	Eth0
40.0.2.0	255.255.255.0	50.0.0.2	<mark>5</mark>	Eth1
40.0.3.0	255.255.255.0	50.0.0.5	10	Eth2

Exercice 3 Construisez la table de routage du routeur B

Concrètement, sous Linux

Commande 'ip route list' remplace anciennes commandes 'netsat' et 'route'

\$ sudo route -n							
Kernel IP routing table							
Destination	Gateway	Genmask	Flags	Metric	Ref	Use	Iface
192.168.0.0	0.0.0.0	255.255.255.0	U	0	0	0	eth0
0.0.0.0	192.168.0.1	0.0.0.0	UG	0	3	0	eth0

Concept: les Autonomous System (AS)

Un Autonomous System est un réseau géré par une entité et identifié par ASN

- Chaque numéro d'AS est unique (ASN)
- Chaque AS possède des réseaux (IP ranges) qui lui appartiennent
- Un AS est géré par une entité ou organisation (pays, société, ...)
- L'Internet est composé une multitude d'AS

Exemple d'AS: Harvard

Exemple d'AS: Harvard

Exemple d'AS: Harvard

Exemple d'AS: Proximus

Familles de protocoles

Les grandes familles des protocoles de routage

- Statique
- Dynamique (catégories distance vector ou link state)
 - Distance vector / Link state
 - IGP: OSPF et RIP
 - EGP: BGP

Routage statique

Déclaration d'une table de routage manuellement dans chaque routeur

- N'est pas exclusif avec du routage dynamique
- Par exemple : un routeur dynamique peut avoir une default route statique
- Adapté aux petits réseaux
- Avantages: peu d'impact CPU, pas complexe
- Désavantages : aucune adaptation (taille, échecs, ...) et probabilité d'erreurs

Routage dynamique

Routeur transmet des données vers d'autres routeurs et s'adapte au réseau

- Les routeurs échangent des informations sur l'état du réseau (tables)
- Protocoles distance/path vector : les routeurs n'ont pas de vision complète
 - RIP
 - BGP
- Protocoles link state: les routeurs connaissent la topologie réseau
 - Via l'algorithme de Dijkstra
 - OSPF

RIP

Routing Internet Protocol

- Interior Gateway Protocol (IGP), utilisé dans un AS
- Chaque routeur communique avec ses voisins
- Métrique de routage est le nombre de « hops »

Concept: pour chaque réseau

- 1. Un routeur retient seulement le meilleur voisin (métrique plus petite)
- 2. Il diffuse ses meilleures routes toutes les 30 secondes
- 3. Il reçoit des mises à jour et s'adapte en fonction

OSPF

Open Shortest Path First

- Interior Gateway Protocol (IGP), utilisé dans un AS
- Remplaçant du RIP
- Plus complexe (notion d'aires, ...)
- Peut aller au delà de 15 sauts (hops)
- Prends en compte les liaisons et l'état de la bande passante

BGP

Border Gateway Protocol

- Exterior Gateway Protocol (EGP), utilisé entre les AS
- Le protocole qui porte Internet
- Echange des information de routage entre AS

PARTIE #3

Résolution d'adresses avec ARP

Passage de l'adresse IP à l'adresse physique

Est-ce que je possède toutes les informations pour construire mon paquet réseau?

Paquet IPv4

Oui, j'ai l'adresse IP source (192.168.1.1) et destination (40.25.100.3)

Trame Ethernet

J'ai l'adresse MAC source, mais pas la destination MAC

		Header Ethernet (14 bytes)				
7 bytes	1 byte	6 bytes	6 bytes	2 bytes	46 – 1500 bytes	4 bytes
Préambule	Délimiteur	MAC destination	MAC source	EtherType	Données	CRC

Protocole ARP

Address Resolution Protocol

- Permet d'associer une adresse IPv4 à une adresse MAC
- Indispensable dans les réseaux locaux
- Le protocole se situe à la couche OSI L3, mais travaille avec OSI L2
- Chaque machine possède un cache ARP (base de données IPv4 MAC)
- Aucune sécurité, très vulnérable aux attaques

