Bernstein-Bézier Polynomial Basis Presentation

April 24, 2018

Pierre Jacquet pierre.jacquet@inria.fr

First year PhD Student Inria - Magique 3D - DIP Pau, FRANCE

Outline

Bézier Curves

Historical Aspect Applications Construction

Bernstein Polynomials

Historical Aspect Polynomial Forumulation Basis Function Properties

Application on DGs

Useful DGs Properties
Discontinuous Galerkin formulation
Operator Evaluation
Conclusion

Bézier Curves Historical Aspect

Pierre Bézier 1

Dates: 1910-1999 Nationality: French

Institution: Arts et Métiers

Renault

Describes the Curves in 1962

¹https://macquebec.com/courbes-bezier/

²http://rocbor.net/Product/surf/PaulDeFagetDeCasteljau.html

Bézier Curves Historical Aspect

Pierre Bézier 1

Dates: 1910-1999

Nationality: French

Institution: Arts et Métiers

Renault

Describes the Curves in 1962

Dates: 1930 - ——

Nationality: French

Institution: Ecole Normale Supérieure

Citroën

Describes the Curves in 1958

Paul de Faget de Casteljau ²

¹https://macquebec.com/courbes-bezier/

²http://rocbor.net/Product/surf/PaulDeFagetDeCasteljau.html

Figure: Quadratic Bézier-Curve¹

¹ https://fr.wikipedia.org/wiki/Courbe_de_Bézier

► Computer-Aided Design (CAD)

Figure: Car model on SolidWorks²

²https://www.quora.com/What-are-the-best-cad-softwares-for-automobile-designing

- ► Computer-Aided Design (CAD)
- Typeface

Figure: Exemple of typeface ³

³https://4design.xyz/courbes-de-bezier-regulieres-illustrator

- Computer-Aided Design (CAD)
- Typeface
- Medical Imaging

Figure: Medical Imaging 4

⁴https://www.siemens.com/innovation/en/home/pictures-of-the-future/health-and-well-being/medical-imaging-dossier.html

Bézier Curves Applications

Multiple Applications:

- Computer-Aided Design (CAD)
- Typeface
- Medical Imaging
- Easing Functions (cognitive science)

Figure: Easing Functions 5

⁵http://easings.net/fr

- ► Computer-Aided Design (CAD)
- Typeface
- Medical Imaging
- Easing Functions (cognitive science)
- Data Interpolations

Figure: Data Interpolations ⁶

⁶ Range restricted scattered data interpolation using convex combination of cubic Bézier triangles, E.S.Chan B.H.Ong

- ► Computer-Aided Design (CAD)
- Typeface
- Medical Imaging
- Easing Functions (cognitive science)
- Data Interpolations
- "Photoshop"...

Figure: Wonderfull Photoshop¹

¹Elvira's Photoshop

Bézier Curves Construction

Figure: Quadratic Bézier Curve

(See construction on Geogebra)

Bézier Curves Conclusion

Why the Bézier Curves are so popular?

- ► Intuitive barycentric formulation
- ► Flexible Behaviour
- Easy extension to 2D or 3D
- Low Memory cost
- Various applications

Bézier Curves Conclusion

Why the Bézier Curves are so popular?

- ► Intuitive barycentric formulation
- ► Flexible Behaviour
- Easy extension to 2D or 3D
- Low Memory cost
- Various applications

and ...

Why the Bézier Curves are so popular?

- ► Intuitive barycentric formulation
- Flexible Behaviour
- Easy extension to 2D or 3D
- Low Memory cost
- Various applications

and ...

Easily represented in Bernstein Polynomial Basis

Bernstein Polynomials Historical Aspect

Sergei Natanowitsch Bernstein ¹

Dates: 1880-1968 Nationality: Russian

Institution: Sorbonne / Supéléc

Kharkov University

Introduce his polynomial basis in 1912

⇒ prove the Weierstrass approximation theorem

⁰¹ https://fr.wikipedia.org/wiki/Serge%C3%AF_Natanovitch_Bernstein

Polynomial Formulation

Bernstein formulation:

$$B_{ijkl}^N = C_{ijkl}^N \lambda_0^i \lambda_1^j \lambda_2^k \lambda_3^l$$
 with: $C_{ijkl}^N = \frac{N!}{i!j!k!l!}$

and : i + j + k + l = N

Polynomial Formulation

Bernstein formulation:

$$B_{ijkl}^N = C_{ijkl}^N \lambda_0^i \lambda_1^j \lambda_2^k \lambda_3^l$$
 with: $C_{ijkl}^N = \frac{N!}{i!j!k!l!}$

and : i + j + k + l = N

In 1D it gives:

$$B_i^N(t) = C_i^N(1-t)^{N-i}t^i$$

Polynomial Formulation

Bernstein formulation:

$$B^N_{ijkl} = C^N_{ijkl} \lambda^i_0 \lambda^j_1 \lambda^k_2 \lambda^l_3$$
 with: $C^N_{ijkl} = \frac{N!}{i!j!k!l!}$

and:
$$i + j + k + l = N$$

In 1D it gives:

$$B_i^N(t) = C_i^N(1-t)^{N-i}t^i$$

NB: Which is equal to the probability of i successes in trials of N random process with individual probability of t success in each trial.

Basis Function Properties

Bernstein Basis Properties:

- Highly correlated to probabilities
- ▶ Partition of unity : $\sum_{k=0}^{n} B_k^N(t) = 1$
- ▶ Positivity : $\forall t \in [0, 1], B_k^n(t) \leq 0$
- Symmetry : $B_k^N(t) = B_{N-k}^N(1-t)$
- Describes Bézier curves (See construction on Geogebra)
- De Casteljau Algorithm

Figure: $P[X^6]$ Bersntein basis

Basis Function Properties

Bernstein Basis Properties:

- Highly correlated to probabilities
- ▶ Partition of unity : $\sum_{k=0}^{n} B_k^N(t) = 1$
- ▶ Positivity : $\forall t \in [0, 1], B_k^n(t) \leq 0$
- Symmetry : $B_k^N(t) = B_{N-k}^N(1-t)$
- Describes Bézier curves (See construction on Geogebra)
- ► De Casteljau Algorithm

and...

Figure: $P[X^6]$ Bersntein basis

Basis Function Properties

Bernstein Basis Properties:

- Highly correlated to probabilities
- ▶ Partition of unity : $\sum_{k=0}^{n} B_k^N(t) = 1$
- ▶ Positivity : $\forall t \in [0, 1], B_k^n(t) \leq 0$
- Symmetry : $B_k^N(t) = B_{N-k}^N(1-t)$
- Describes Bézier curves (See construction on Geogebra)
- ► De Casteljau Algorithm

and...

 Other interessant proprieties for DGM formulations

Figure: $P[X^6]$ Bersntein basis

Application on DGs

Useful DGs Properties

Bernstein formulation:

$$B_{ijkl}^N = C_{ijkl}^N \lambda_0^i \lambda_1^j \lambda_2^k \lambda_3^l$$
 with: $C_{ijkl}^N = \frac{N!}{i!j!k!l!}$

 $P[X^6]$ Bernstein basis

Application on DGs

Useful DGs Properties

Bernstein formulation:

$$B_{ijkl}^N = C_{ijkl}^N \lambda_0^i \lambda_1^j \lambda_2^k \lambda_3^l$$
 with: $C_{ijkl}^N = \frac{N!}{i!j!k!l!}$

Easy Derivative expression:

$$\frac{\partial B_{\alpha}^{N}}{\partial \lambda_{p}} = NB_{\alpha-e_{p}}^{N-1}$$
 with: $\alpha = (i, j, k, l)$

 $P[X^6]$ Bernstein basis

Application on DGs Useful DGs Properties

Ínria 9

Bernstein formulation:

$$B_{ijkl}^N = C_{ijkl}^N \lambda_0^i \lambda_1^j \lambda_2^k \lambda_3^l$$
 with: $C_{ijkl}^N = \frac{N!}{i!j!k!l!}$

Easy Derivative expression:

$$\frac{\partial B_{\alpha}^{N}}{\partial \lambda_{n}} = NB_{\alpha-e_{p}}^{N-1}$$
 with: $\alpha = (i, j, k, l)$

Sparse Degree Elevation operator:

$$B_{\alpha}^{N-1} = \sum_{p=0}^{d} \frac{\alpha_p + 1}{N} B_{\alpha + e_p}^{N}$$

 $P[X^6]$ Bernstein basis

Application on DGs Useful DGs Properties

Unique boundary condition values :

⇒ Same Flux Management

First order Acoustic Wave equation discretisation:

Continuous Problem:

$$\begin{cases} \frac{\partial p}{\partial t} + \kappa_0 \operatorname{div}(\overrightarrow{u}) = 0\\ \rho_0 \frac{\partial \overrightarrow{u}}{\partial t} + \overrightarrow{\operatorname{grad}}(p) = 0 \end{cases}$$

Discrete Problem:

$$\begin{cases} M \frac{\partial P}{\partial t} + \sum_{d} S_{d} U_{d} = M^{F} F_{p} \\ M \frac{\partial U_{d}}{\partial t} + S_{d} P = M^{F} F_{u} \end{cases}$$

First order Acoustic Wave equation discretisation:

Continuous Problem:

Discrete Problem:

$$\begin{cases} \frac{\partial p}{\partial t} + \kappa_0 \operatorname{div}(\overrightarrow{u}) = 0\\ \rho_0 \frac{\partial \overrightarrow{u}}{\partial t} + \overrightarrow{\operatorname{grad}}(p) = 0 \end{cases}$$

$$\begin{cases} \frac{\partial p}{\partial_t} + \kappa_0 \operatorname{div}(\overrightarrow{u}) = 0 \\ \rho_0 \frac{\partial \overrightarrow{u}}{\partial_t} + \overrightarrow{\operatorname{grad}}(p) = 0 \end{cases} \qquad \begin{cases} M \frac{\partial P}{\partial_t} + \sum_d S_d U_d = M^F F_p \\ M \frac{\partial U_d}{\partial_t} + S_d P = M^F F_u \end{cases}$$

With $Sd = MD_d$ and $Lift = M^{-1}M^F$:

$$\begin{cases} \frac{\partial P}{\partial t} + \sum_{d} D_{d}U_{d} = LiftF_{p} \\ \frac{\partial U_{d}}{\partial t} + D_{d}P = LiftF_{u} \end{cases}$$

Application on DGs Operator Evaluation

(c) 3D Lagrange D matrix

(d) 3D Bernstein D matrix

Chan Jesse and Warburton T. GPU-Accelerated Bernstein Bézier Discontinuous Galerkin Methods for Wave Problems SIAM Journal on Scientific Computing 2017

Application on DGs Operator Evaluation

Bernstein Lift matrix operator decomposition

With
$$Lift = E_1 * L_0$$

 Chan Jesse and Warburton T. GPU-Accelerated Bernstein Bézier Discontinuous Galerkin Methods for Wave Problems SIAM Journal on Scientific Computing 2017

Application on DGs

Few Personal Results

$$\begin{cases} P^{n+\frac{1}{2}} = P^{n-\frac{1}{2}} + A_p U^n + RHS_p \\ U^{n+1} = U^n + A_u P^{n+\frac{1}{2}} + RHS_u \end{cases}$$

Figure: First 1D DG Simulation

Application on DGs Few Personal Results

 $\ensuremath{\textit{A}_{\textit{p}}}/\ensuremath{\textit{A}_{\textit{u}}}$ NZVs as a function of the order

Ap/Au NZVs Ratio (NZVs/Size)

Application on DGs Conclusion

Main results about Bernstein-Bézier polynomial basis :

- ▶ Plenty of utilization of Bézier curves
- Plenty of numerical properties of Bernstein polynomial basis
- Recently used in numerical simulation
- Create very Sparse Matrices
- Same Flux management as a nodal polynomial basis
- Easy elevation/reduction degree (useful for p-adaptivity)
- Easy Derivative