- Edges are significant local changes in the image and are important features for analyzing images.
- Edge detection is frequently the first step in recovering information from images.
- Edge detection: An image processing task that aims to find edges and contours in images.

Image Value vs X-Position

- An edge point is a point in an image with coordinates [i,j] at the location of a significant local intensity change in the image.
- An edge detector is an algorithm that produces a set of edges {edgepoints or edge fragments} from an image.
- A contour is a list of edges or the mathematical curve that models the list of edges.

Step edge: the image intensity abruptly changes from one value on one side of the discontinuity to a different value on the opposite side.

Ramp edge: a step edge where the intensity change is not instantaneous but occur over a finite distance.

Ridge edge: the image intensity abruptly changes value but then returns to the starting value within some short distance (i.e., usually generated by lines).

Roof edge: a ridge edge where the intensity change is not instantaneous but occur over a finite distance (i.e., usually generated by the intersection of two surfaces).

- 1-D edges
- Realistically, edges is a smooth (blurred) step function
- Edges can be characterized by high value first derivative $f'(x) = \frac{df}{dx}(x)$

$$f'(x) = \frac{df}{dx}(x)$$

Edge Detection Using First Derivative

1D functions

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \approx f(x+1) - f(x) \ (h=1)$$

Forward Difference

$$\Delta_+ f(x) = f(x+1) - f(x)$$

Backward Difference

$$\Delta_{-}f(x) = f(x) - f(x-1)$$

Central Difference

$$\Delta f(x) = \frac{1}{2} (f(x+1) - f(x-1))$$

Finite Differences as Convolutions

Forward Difference

$$\Delta_+ f(x) = f(x+1) - f(x)$$

Take a convolution kernel: $H = \begin{bmatrix} 1 & -1 & 0 \end{bmatrix}$

$$\Delta_+ f = f * H$$

(Remember that the kernel H is flipped in convolution)

Finite Differences as Convolutions

Central Difference

$$\Delta f(x) = \frac{1}{2} (f(x+1) - f(x-1))$$

Convolution kernel here is: $H = \left[\frac{1}{2} \ 0 \ -\frac{1}{2} \right]$

$$\Delta f(x) = f * H$$

Notice: Derivative kernels sum to zero!

The gradient is the two-dimensional equivalent of the first derivative and is defined as the *vector*

$$\mathbf{G}[f(x,y)] = \begin{bmatrix} G_x \\ G_y \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}. \tag{5.1}$$

- ▶ Images have two parameters: I(x, y)
- \triangleright We can take derivatives with respect to x or y
- Central differences:

$$\Delta_x I = I * H_x$$
, and $\Delta_y I = I * H_y$,

where
$$H_x = \begin{bmatrix} 0.5 & 0 & -0.5 \end{bmatrix}$$
 and $H_y = \begin{bmatrix} -0.5 \\ 0 \\ 0.5 \end{bmatrix}$

x-derivative using central difference:

$$* \left[\frac{1}{2} \ 0 \ -\frac{1}{2} \right] =$$

y-derivative using central difference:

$$*$$

$$\begin{vmatrix}
0.5 \\
0 \\
-0.5
\end{vmatrix} =$$

$$G[f(x,y)] = \sqrt{G_x^2 + G_y^2},$$

$$G[f(x,y)] \approx |G_x| + |G_y|$$

$$G[f(x,y)] \approx \max(|G_x|, |G_y|).$$

$$\alpha(x,y) = \tan^{-1}\left(\frac{G_y}{G_x}\right)$$

The Roberts cross operator provides a simple approximation to the gradient magnitude:

$$G[f[i,j]] = |f[i,j] - f[i+1,j+1]| + |f[i+1,j] - f[i,j+1]|.$$
 (5.10)

Using convolution masks, this becomes

$$G[f[i,j]] = |G_x| + |G_y|$$
(5.11)

where G_x and G_y are calculated using the following masks:

$$G_x = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \qquad G_y = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
 (5.12)

good approximation (x+1/2,y+1/2)

Another Approximation

Consider the arrangement of pixels about the pixel (i, j):

$$a_0$$
 a_1 a_2
 a_7 $[i,j]$ a_3
 a_6 a_5 a_4

• The partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial v}$ can be computed by:

$$M_x = (a_2 + ca_3 + a_4) - (a_0 + ca_7 + a_6)$$

 $M_y = (a_6 + ca_5 + a_4) - (a_0 + ca_1 + a_2)$

• The constant c implies the emphasis given to pixels closer to the center of the mask.

Prewitt Operator

• Setting c = 1, we get the Prewitt operator:

$$M_x = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix} \qquad M_y = \begin{bmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

 M_x and M_y are approximations at (i, j)

Sobel Operator

• Setting c = 2, we get the Sobel operator:

$$M_x = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} \qquad M_y = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

 M_x and M_y are approximations at (i, j)

Edge Detection Steps Using Gradient

(1) Smooth the input image $(\hat{f}(x, y) = f(x, y) * G(x, y))$

(2)
$$\hat{f}_x = \hat{f}(x, y) * M_x(x, y) \longrightarrow \frac{\partial f}{\partial x}$$

(3)
$$\hat{f}_y = \hat{f}(x, y) * M_y(x, y)$$
 $\frac{\partial x}{\partial y}$

(4)
$$magn(x, y) = |\hat{f}_x| + |\hat{f}_y|$$
 (i.e., sqrt is costly!)

(5)
$$dir(x, y) = \tan^{-1}(\hat{f}_y/\hat{f}_x)$$

(6) If magn(x, y) > T, then possible edge point

$$\nabla = \sqrt{\left(\frac{d}{dx}I\right)^2 + \left(\frac{d}{dy}I\right)^2}$$

