1. előadás

Bevezető

Absztrakció, absztrakt adatszerkezetek, ábrázolási módok

Adatszerkezetek és algoritmusok előadás 2011. február 9.

Kósa Márk Pánovics János

Általános tudnivalók

Rendszerelmélet Absztrakció.

modellalkotás

Absztrakt adatszerkezetek Ábrázolási módok

Folytonos (vektorszerű) tárolás

Szétszórt (láncolt) tárolás

Kósa Márk és Pánovics János Debreceni Egyetem Informatikai Kar

Előfeltételek

Bevezető

Kósa Márk Pánovics János

Előfeltételek

Szak	Tárgykód	Előfeltétel
PTI	INDK421	Bevezetés az informatikába (INDK201)
PM, PTM, IT	l1202	Az informatika alapjai (I1201)

Italános tudnivalók

Rendszerelmélet Absztrakció,

modellalkotás Absztrakt

adatszerkezetek Ábrázolási módok

Folytonos (vektorszerű) tárolás Szétszórt (láncolt) tárolás

Időpontok és termek

Bevezető

Kósa Márk Pánovics János

Előadás

INDK421E I1202E Pánovics János	I	Sz 10–12	kivéve: III. 30.
-----------------------------------	---	----------	------------------

Gyakorlatok

Dr. Kósa Márk	M114	H 10–12
Dr. Kósa Márk	M418	Sz 16–18
Dr. Kósa Márk	M418	Sz 18–20
Pánovics János	M125	Sz 14–16
Pánovics János	M125	Sz 18–20

Altalanos tudniv

Rendszerelmélet

Absztrakció, modellalkotás

Absztrakt adatszerkezetek

Ábrázolási módok Folytonos (vektorszerű) tárolás Szétszórt (láncolt) tárolás

Követelmények

Gyakorlat

A szorgalmi időszakban két 50 perces (40 és 60 pontos) zárthelyi dolgozat megírására kerül sor. Ezek időpontjai és helyszínei:

- 1 2011. március 24., csütörtök 18 és 20 óra között
- 2 2011. május 12., csütörtök 18 és 20 óra között

A gyakorlati aláírás megszerzéséhez a két zárthelyi dolgozatot (külön-külön) legalább 40%-os eredménnyel kell teljesíteni, és összesen legalább 50 pontot kell összegyűjteni.

Előadás

A vizsgaidőszakban minden héten várható egy vizsgaalkalom. A kollokvium írásban, az elméleti anyag, a fogalmak, az absztrakt adatszerkezetek és algoritmusok számonkérésével történik.

Revezető

Kósa Márk Pánovics János

Altaianos tudniv

Rendszerelmélet

Absztrakció, modellalkotás

Absztrakt adatszerkezetek

Ábrázolási módok Folytonos (vektorszerű) tárolás Szétszórt (láncolt) tárolás

Ajánlott irodalom

- Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest: Algoritmusok, Műszaki Könyvkiadó, Budapest, 1997.
- Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein: *Új algoritmusok*, Scolar Informatika, Budapest, 2003.
- Donald E. Knuth: A számítógépprogramozás művészete 1. (Alapvető algoritmusok), Műszaki Könyvkiadó, Budapest, 1994.
- Donald E. Knuth: A számítógépprogramozás művészete 3. (Keresés és rendezés), Műszaki Könyvkiadó, Budapest, 1994.
- Seymour Lipschutz: *Adatszerkezetek*, Panem–McGraw-Hill, Budapest, 1993.
- Morvay János, dr. Sebők Ferenc: Számítógépes adatkezelés, Központi Statisztikai Hivatal, Nemzetközi Számítástechnikai Oktató és Tájékoztató Központ, Budapest, 1981

Bevezető

Kósa Márk Pánovics János

Altalános tudnivalók

Rendszerelmélet

Absztrakció, modellalkotás

Absztrakt adatszerkezetek

Ábrázolási módok Folytonos (vektorszerű) tárolás Szétszórt (láncolt) tárolás

Rendszer

Bevezető Kósa Márk Pánovics János

Általános tudnivalók

Absztrakció. modellalkotás

Absztrakt adatszerkezetek

Ábrázolási módok

Folytonos (vektorszerű) tárolás

- Elemek: egyedek
- Tulajdonságok (statikus rész)
- Viselkedés (dinamikus rész)
- Kölcsönhatás
- Komplex rendszer
- Nyílt rendszer
- Dinamikus rendszer

Absztrakció, modellezés

Revezető Pánovics János

Általános tudnivalók

Rendszerelmélet

Ahsztrakt adatszerkezetek

Ábrázolási módok Folytonos (vektorszerű)

Szétszórt (láncolt) tárolás

- Modellalkotás, absztrakció
- Adatmodell, eljárásmodell
- Adat, információ

Az adatelemek lehetnek egyszerűek (atomiak) és összetettek. Minden adatelem rendelkezik valamilyen értékkel.

Az adatelemek között jól meghatározott kapcsolatrendszer van. Az adatelemek és a közöttük lévő kapcsolatok definiálják a logikai (absztrakt) adatszerkezetet. Független hardvertől, szoftvertől.

Fizikai adatszerkezet (társzerkezet): adatszerkezet az operatív tárban vagy periférián (háttértáron).

Absztrakt adatszerkezetek osztályozása

Lehetséges csoportosítási szempontok:

- 1 Változhat-e az adatszerkezet elemeinek száma?
 - statikus
 - dinamikus
- 2 Milyen az adatszerkezet elemeinek a típusa?
 - homogén
 - heterogén
- Milyen kapcsolatban állnak egymással az adatelemek az adatszerkezetben?

Egy homogén adatszerkezet lehet

- struktúra nélküli
- asszociatív
- szekvenciális
- hierarchikus
- hálós

A heterogén adatszerkezeteket nem csoportosítjuk ilyen szempont alapján.

Bevezető

Kósa Márk Pánovics János

Általános tudnivalók

Rendszerelmélet

Absztrakció, modellalkotás

bsztrakt

Ábrázolási módok Folytonos (vektorszerű)

Szétszórt (láncolt) tárolás

1.8

Absztrakt adatszerkezetekkel végezhető műveletek

- 1 Létrehozás
- 2 Módosítás
 - bővítés
 - törlés (fizikai, logikai)
 - csere
- 3 Rendezés
- 4 Keresés
- 5 Elérés
- 6 Bejárás
- 7 Feldolgozás

Bevezető

Kósa Márk Pánovics János

Általános tudnivalók

Rendszerelmélet

Absztrakció, modellalkotás

> osztrakt datszerkezetek

Ábrázolási módok

Folytonos (vektorszerű) tárolás

Ábrázolási (tárolási) módok

Bevezető

Kósa Márk Pánovics János

Abrázolás alatt az adatszerkezet memóriában való megjelenési formáját értjük. Ez minden adatszerkezet esetén lehet

- folytonos (vektorszerű)
- szétszórt (láncolt)

Az adatelemek számára tárhelyeket foglalunk a memóriában. Egy tárhely mindig egy bájtcsoportot jelent, amely egy adatelem értékét tárolja, illetve szerkezetleíró információkat is hordozhat. Általános tudnivalók

Rendszerelmélet

Absztrakció, modellalkotás

Absztrakt adatszerkezetek

rázolási módok

Folytonos (vektorszerű) tárolás

Folytonos (vektorszerű) tárolás

Egy tárhelyen egy adatelem értékét tároljuk. A tárhelyek a memóriában folytonos, összefüggő tárterületet alkotnak, a tárhelyek mérete azonos.

Előnye:

- közvetlen elérés, a kezdőcím és az egy adatelemhez tartozó tárhely méretének ismeretében
- a csere művelete könnyen megvalósítható
- hatékony rendező algoritmusok (pl. gyorsrendezés)
- hatékony kereső algoritmusok (pl. bináris keresés)

Hátránya:

 nem segíti a bővítés és a fizikai törlés műveletének végrehajtását Bevezető

Kósa Márk Pánovics János

Általános tudnivalók

Rendszerelmélet

Absztrakció, modellalkotás

Ahsztrakt

adatszerkezetek

Ábrázolási módok

Folytonos (vektorszerű) tárolás

Szétszórt (láncolt) tárolás

Egy tárhelyen egy adatelem értékét (adatrész) és legalább egy mutató értékét (mutatórész) tároljuk. A mutatók értékei memóriacímek lehetnek, amelyek megmondják az adatelem rákövetkezőinek tárbeli helyét. A tárhelyek mérete nem szükségképpen azonos, elhelyezkedésük a memóriában tetszőleges.

A szétszórt ábrázolási mód fajtái:

- egyirányban láncolt lista
- cirkuláris lista
- kétirányban láncolt lista
- multilista

Revezető

Kósa Márk Pánovics János

Általános tudnivalók

Rendszerelmélet

Absztrakció, modellalkotás

Absztrakt adatszerkezetek

Ábrázolási módok Folytonos (vektorszerű)

Egyirányban láncolt lista

A tárhely (listaelem) az adatelem értékén kívül egy mutatót tartalmaz, amely a következő listaelem címét tartalmazza.

A láncolt lista első elemének tárbeli címét egy mutató, a fejmutató tárolja.

A láncolt lista végét egy speciális érték, a NIL érték jelzi. Amennyiben a fejmutató tartalmazza ezt az értéket, akkor az egyirányban láncolt lista üres.

Revezető

Kósa Márk Pánovics János

Általános tudnivalók

Rendszerelmélet

Absztrakció, modellalkotás

Absztrakt adatszerkezetek

Ábrázolási módok Folytonos (vektorszerű) tárolás

Cirkuláris lista

Hasonló az egyirányban láncolt listához, ám itt egyik listaelem mutatórésze sem tartalmazhatja a NIL értéket: az "utolsó" listaelem mutatórészébe az "első" listaelem címe kerül.

A cirkuláris lista "első" elemének tárbeli címét most is egy mutató, a fejmutató tárolja. Amennyiben a fejmutató a NIL értéket tartalmazza, akkor a cirkuláris lista üres.

Revezető

Kósa Márk Pánovics János

Általános tudnivalók

Rendszerelmélet

Absztrakció, modellalkotás

Absztrakt adatszerkezetek

Ábrázolási módok Folytonos (vektorszerű) tárolás

Kétirányban láncolt lista

Hasonló az egyirányban láncolt listához, ám itt minden listaelem mutatórésze két részből áll: az egyik mutató az adott listaelemet megelőző, a másik az adott listaelemet követő listaelemre mutat.

Két lánc alakul ki, két fejmutatóval. A fejmutatók a kétirányban láncolt lista első és utolsó elemére mutatnak. Ha mindkét fejmutató értéke NIL, akkor a kétirányban láncolt listának nincs egyetlen eleme sem, azaz üres.

Revezető

Kósa Márk Pánovics János

Általános tudnivalók

Rendszerelmélet

Absztrakció, modellalkotás

Ahsztrakt

adatszerkezetek Ábrázolási módok

Folytonos (vektorszerű) tárolás

Multilista (1)

Ebben a változatban a listaelemek adatrésze összetett. Az adatrész minden komponensére fölépíthető egy egyirányban láncolt lista.

Annyi lánc alakítható ki, ahány komponensből áll az adatrész. Minden lista külön fejmutatóval rendelkezik, és minden listaelem mindegyik láncban előfordul egyszer.

Bevezető

Kósa Márk Pánovics János

Általános tudnivalók

Rendszerelmélet

Absztrakció, modellalkotás

Absztrakt adatszerkezetek

Ábrázolási módok Folytonos (vektorszerű) tárolás

Multilista (2)

Ebben a változatban a listaelemek adatrésze általában összetett. Az adatrész valamely komponensének értékeit figyelembe véve építjük föl az egyirányban láncolt listákat.

Annyi lánc alakul ki, ahány különböző értéket az adatrész adott komponense felvesz. Minden lista külön fejmutatóval rendelkezik, és minden listaelem csak egy láncban szerepel, pontosan egyszer.

Bevezető

Kósa Márk Pánovics János

Általános tudnivalók

Rendszerelmélet

Absztrakció, modellalkotás

Absztrakt adatszerkezetek

Ábrázolási módok Folytonos (vektorszerű) tárolás

Multilista (3)

Ebben a változatban a listaelemek adatrészében tárolt információt vagy feldolgozandó értékként, vagy mutatóként értelmezzük. Hogy pontosan miként, azt az adatrészben egy bit jelzi. A mutatóként értelmezett információ egy egyirányban láncolt lista fejmutatójának tekinthető.

Az ábrán ha a bit értéke 0, akkor az adatrészben tárolt információt mutatónak, ha 1, akkor feldolgozandó értéknek tekintjük.

Bevezető

Kósa Márk Pánovics János

Általános tudnivalók

Rendszerelmélet

Absztrakció, modellalkotás

Absztrakt adatszerkezetek

Ábrázolási módok
Folytonos (vektorszerű)