UFRGS – INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT01168 - Turma C - 2012/2 Primeira avaliação - Grupo 1

1	2	3	4	Total

Regras a observar:

- Seja sucinto porém completo.
- Justifique todo procedimento usado.
- Use notação matemática consistente.
- Ao usar sistemas de coordenadas curvilíneas (cilíndricas, esféricas etc), indique a correspondência para o sistema de coordenadas cartesianas (x,y,z).
- Trabalhe individualmente e sem uso de material de consulta além do fornecido.
- Devolva o caderno de questões preenchido ao final da prova.
- Não é permitido destacar folhas nem usar folhas adicionais.
- Não é permitido o uso de calculadoras.

Formulário:

1.
$$\cosh(x) = \frac{e^x + e^{-x}}{2}$$

2.
$$senh(x) = \frac{e^x - e^{-x}}{2}$$

$$3. \cos(t) = \frac{e^{it} + e^{-it}}{2}$$

4.
$$sen(t) = \frac{e^{it} - e^{-it}}{2i}$$

5.
$$\cos(2t) = \cos^2(t) - \sin^2(t)$$

6.
$$\operatorname{sen}(2t) = 2\operatorname{sen}(t)\cos(t)$$

7.
$$(a+b)^n = \sum_{j=0}^n \binom{j}{n} a^{n-j} b^j$$
, $\binom{j}{n} = \frac{n!}{(n-j)!j!}$

• Questão 1 (2.5 pontos): Considere o campo vetorial dado por

$$\vec{F} = z^2 \vec{k}$$

e a região V limitada superiormente por

$$z=2$$

e inferiormente por $x^2 + y^2 - z^2 = 0$. Calcule o fluxo de \vec{F} através da superfície S que limita V orientada para fora usando:

• Item a (1.25) O Teorema da Divergência.

Sendo S uma superfície fechada, podemos aplicar o Teorema da divergência:

$$\Phi = \iint_{S} \vec{F} \cdot \vec{n} dS = \iiint_{V} \vec{\nabla} \cdot \vec{F} dV = \iiint_{V} 2z dV$$

Parametrizamos o cone em coordenadas cilíndricas:

$$x = \rho \cos(\phi), \quad y = \rho \sin(\phi), \quad z = z$$

temos:

$$\Phi = \int_0^2 \int_0^{2\pi} \int_0^z 2z\rho d\rho d\phi dz = \int_0^2 \int_0^{2\pi} z^3 d\phi dz = 2\pi \int_0^2 z^3 dz = 2\pi \cdot \frac{2^4}{4} = 8\pi$$

• Item b (1.25) Uma integral direta sobre a superfície usando parametrizações adequadas. O fluxo total Φ pode ser calculado como a soma de dois fluxos: Φ_1 através a topo (com normal $\vec{n} = \vec{k}$) e Φ_2 através do tronco de cone (com normal $\vec{n} \cdot \vec{k} < 0$)

$$\Phi_1 = \int_A \vec{F} \cdot \vec{n} dA = \int_A z^2 dA = \int_A 4dA = 4 \underbrace{\pi 2^2}_{\text{área do círculo}} = 16\pi$$

$$\Phi_2 = \int_S \vec{F} \cdot \vec{n} dS = -\int_A \vec{F} \cdot \vec{\nabla} G dA$$

Onde $G(x, y, z) = z - \sqrt{x^2 + y^2}$ e

$$\vec{F} \cdot \vec{\nabla} G = z^2$$

Sendo A a área projetada, que é um círculo sobre o plano xy de raio 2. Usando coordenada polares:

$$x = \rho \cos(\phi), \quad y = \rho \sin(\phi)$$

$$\Phi_2 = -\int_0^{2\pi} \int_0^2 z^2 \rho d\rho d\phi = -\int_0^{2\pi} \int_0^2 (x^2 + y^2) \rho d\rho d\phi = -\int_0^{2\pi} \int_0^2 \rho^2 \rho d\rho d\phi$$
$$= -\int_0^{2\pi} \frac{2^4}{4} d\phi = -8\pi$$

Portanto $\Phi = \Phi_1 + \Phi_2 = 16\pi - 8\pi = 8\pi$

 \bullet Questão 2 (2.5 pontos): Use o Teorema de Stokes para calcular o trabalho realizado pelo campo de força

$$\vec{F} = xz^2 \cos(y)\vec{i} + \cos(y)\vec{j} + \sin(yz)\vec{k}$$

ao delocar uma partícula ao longo do triângulo de vértices:

$$V_1 = (0,0,0), \quad V_2 = (0,0,1) \quad e \quad V_3 = (1,0,0)$$

orientado no sentido $V_1 \to V_2 \to V_3 \to V_1$.

O triângulo está no plano xz, orientado de forma que $\vec{n} = \vec{j}$. Aplicando o teorema de Stokes, temos:

$$W = \oint_C \vec{f} \cdot d\vec{r} = \iint_S \nabla \times \vec{F} \cdot \vec{n} dS = -\iint_S \nabla \times \vec{F} \cdot \vec{j} dS$$

Calculamos

$$\vec{\nabla} \times \vec{F} \cdot \vec{j} = \frac{\partial}{\partial z} F_1 - \frac{\partial}{\partial x} F_3 = 2xz \cos(y) = 2xz$$

onde usamos $\cos y = 1$ pois todo o caminho está no plano y = 0.

Parametrizando a região triangular, temos:

$$W = \int_0^1 \int_0^{1-z} 2xz dx dz = -\int_0^1 x^2 \Big|_0^{1-z} z dz = -\int_0^1 (1-z)^2 z dz$$
$$= \int_0^1 (z - 2z^2 + z^3) dz = \left(\frac{1}{2}z^2 - \frac{2}{3}z^3 + \frac{z^4}{4}\right) \Big|_0^1 = \frac{1}{2} - \frac{2}{3} + \frac{1}{4} = \frac{6-8+3}{12} = \frac{1}{12}$$

• Questão 3 (3.0 pontos): Uma partícula se move com velocidade escalar constante igual a 3 m/s ao longo de uma trajetória sobre o plano xy descrita por $y = e^{2x}$ no sentido de x crescente. Encontre o ponto onde a curvatura da trajetória é máxima e calcule a aceleração tangencial e normal neste ponto.

Consideramos a curva parametrizada em t como

$$\vec{r}(t) = t\vec{i} + e^{\lambda t}\vec{j}$$

onde $\lambda = 2$.

De forma que

$$\vec{r}'(t) = \vec{i} + \lambda e^{\lambda t} \vec{j}$$

$$\vec{r}''(t) = \lambda^2 e^{\lambda t} \vec{j}$$

$$\vec{r}'(t) \times \vec{r}''(t) = (\vec{i} + \lambda e^{\lambda t} \vec{j}) \times \lambda^2 e^{\lambda t} \vec{j} = \lambda^2 e^{\lambda t} \vec{k}$$

Onde usamos $\vec{i} \times \vec{i} = \vec{0}$ e $\vec{i} \times \vec{j} = \vec{k}$.

Pela fórmula alternativa da curvatura, temos:

$$k(t) = \frac{\|\vec{r}'(t) \times \vec{r}''(t)\|}{\|\vec{r}'(t)\|^3} = \frac{\lambda^2 e^{\lambda t}}{(1 + \lambda^2 e^{2\lambda t})^{3/2}} = \lambda^2 e^{\lambda t} \left(1 + \lambda^2 e^{2\lambda t}\right)^{-3/2}$$

A curvatura máxima acontece quando $\frac{d}{dt}k(t) = 0$, ou seja:

$$\lambda^3 e^{\lambda t} \left(1 + \lambda^2 e^{2\lambda t} \right)^{-3/2} - \lambda^2 e^{\lambda t} \frac{3}{2} \left(1 + \lambda^2 e^{2\lambda t} \right)^{-5/2} (2\lambda^3 e^{2\lambda t}) = 0$$

Equivalente a

$$\frac{\lambda^3 e^{\lambda t} \left(1 + \lambda^2 e^{2\lambda t}\right) - 3\lambda^5 e^{3\lambda t}}{\left(1 + \lambda^2 e^{2\lambda t}\right)^{5/2}} = 0$$

Como $1 + \lambda^2 e^{2\lambda t} \neq 0$, temos

$$\lambda^{3} e^{\lambda t} \left(1 + \lambda^{2} e^{2\lambda t} \right) = 3\lambda^{5} e^{3\lambda t}$$
$$\left(1 + \lambda^{2} e^{2\lambda t} \right) = 3\lambda^{2} e^{2\lambda t}$$
$$2\lambda^{2} e^{2\lambda t} = 1$$

portanto a curvatura máxima acontece quando $t=-\frac{1}{2\lambda}\ln(2\lambda^2)$, ou seja, quando $e^{\lambda t}=\frac{1}{\sqrt{2\lambda}}$ e, portanto:

$$k_{max} = \lambda^2 \frac{1}{\sqrt{2}\lambda} \left(1 + \lambda^2 \frac{1}{2\lambda^2} \right)^{-3/2} = \frac{2}{3} \left(\frac{2}{6} \right)^{1/2} \lambda = \frac{2}{9} \sqrt{3}\lambda = \frac{4}{9} \sqrt{3}$$

no ponto $x = -\frac{1}{2\lambda} \ln(2\lambda^2) = -\frac{3\ln(2)}{4} = e$ $y = \frac{1}{\sqrt{2\lambda}} = \frac{1}{2\sqrt{2}}$ Como a velocidade escalar é constante, temos $a_t = \frac{d}{dt} |\vec{v}| = 0$. A aceleração normal é dada por

$$a_n = k_{max}v^2 = \frac{2}{9}\sqrt{3}\lambda v^2 = 4\sqrt{3}$$

• Questão 4 (2.0 pontos) Mostre que se \vec{u} é um vetor constante e \vec{r} é o vetor posição, então

a) (0.50)
$$\vec{\nabla} (\vec{r} \cdot \vec{r}) = 2\vec{r}$$

$$\vec{\nabla} (\vec{r} \cdot \vec{r}) = \vec{\nabla} (r^2) = \vec{\nabla} (x^2 + y^2 + z^2) = 2x\vec{i} + 2y\vec{j} + 2z\vec{k} = 2\vec{r}$$

b) $(0.75) \vec{\nabla} \cdot (\vec{u} \times \vec{r}) = 0$

Por tab(11), temos:

$$\vec{\nabla} \cdot (\vec{u} \times \vec{r}) = \vec{r} \cdot (\vec{\nabla} \times \vec{u}) - \vec{u} \cdot (\vec{\nabla} \times \vec{r}) = \vec{0}$$

pois $\nabla \times \vec{r} = 0$ e \vec{u} é constante, sendo todas suas derivadas nulas.

c) $(0.75) \ \vec{\nabla} \times (\vec{u} \times \vec{r}) = 2\vec{u}$

Por tab(12), temos:

$$\vec{\nabla} \times (\vec{u} \times \vec{r}) = \left(\vec{r} \cdot \vec{\nabla}\right) \vec{u} - \vec{r} \left(\vec{\nabla} \cdot \vec{u}\right) - \left(\vec{u} \cdot \vec{\nabla}\right) \vec{r} + \vec{u} \left(\vec{\nabla} \cdot \vec{u}\right)$$

onde

$$\left(\vec{u} \cdot \vec{\nabla} \right) \vec{r} = \left(u_1 \frac{\partial}{\partial x} + u_2 \frac{\partial}{\partial y} + u_3 \frac{\partial}{\partial z} \right) \left(x\vec{i} + y\vec{j} + z\vec{k} \right) = u_1 \vec{i} + u_2 \vec{j} + u_3 \vec{k} = \vec{u}$$

como $\vec{\nabla} \cdot \vec{r} = 3$ e as derivadas de \vec{u} são constantes, temos:

$$\vec{\nabla} \times (\vec{r} \times \vec{u}) = -\vec{u} + 3\vec{u} = 2\vec{u}$$