

National Computing Education Accreditation Council NCEAC

NCEAC.FORM.001-D

COURSE DESCRIPTION FORM

INSTITUTION National University of Computer and Emerging Sciences (NUCES-FAST)

PROGRAM (S) TO B	F
EVALUATED	

DC	$(\alpha \alpha)$
DO	CO

A. Course Description

(Fill out the following table for each course in your computer science curriculum. A filled out form should not be more than 2-3 pages.)

Course Code	EE227
Course Title	Digital Logic Design (DLD)
Credit Hours	3+1
Prerequisites by Course(s) and Topics	(EE117) Applied Physics
Assessment Instruments with Weights (homework, quizzes, midterms, final, programming assignments, lab work, etc.)	Mid-I: 15 Mid-II: 15 Assignments: 10 Project + Presentation: 10 Final: 50
Course Coordinator	Rabia Tabassum
URL (if any)	
Current Catalog Description	The goal of this course is to introduce concepts & tools for the design of digital electronic circuits using sequential and combinational logic to the freshmen computer science students.
Textbook (or Laboratory Manual for Laboratory Courses)	Digital Fundamentals , 11th Edition, Floyd and Jain
Reference Material	 Digital Systems Principles and Applications 8th Ed, Tocci, Widmer and Moss Digital Design by Moris Mano
Course Goals	 A. Course Learning Outcomes (CLOs) Identify and explain fundamental concepts of digital logic design including basic and universal gates, number systems, binary coded system, basic components of combinational and sequence circuits. Demonstrate the acquired knowledge to apply techniques related to the design and analysis of digital electronics circuits, including Boolean Algebra and Multi-variable Karnaugh

National Computing Education Accreditation Council NCEAC

NCEAC.FORM.001-D

map methods

- 3. Analyze small –scale combinational digital circuits.
- 4. Design small-scale combinational and synchronous sequential digital circuit using Boolean Algebra and K-map.
- 5. Familiarize with building blocks of a computer hardware design.

5. Familiarize with bu	uilding blocks of a computer hardware design.	
n n	0.4	
B. Program Learnin	ng Outcomes	
	below, indicate whether this attribute is covered in this course nk if the enablement is little or non-existent.	or not.
1. Academic Education:	To prepare graduates as computing professionals	•
2. Knowledge for Solving Computing Problems:	Apply knowledge of computing fundamentals, knowledge of a computing specialization, and mathematics, science, and domain knowledge appropriate for the computing specialization to the abstraction and conceptualization of computing models from defined problems and requirements.	•
3. Problem Analysis:	Identify, formulate, research literature, and solve complex computing problems reaching substantiated conclusions using fundamental principles of mathematics, computing sciences, and relevant domain disciplines.	
4. Design/ Development of Solutions:	Design and evaluate solutions for complex computing problems, and design and evaluate systems, components, or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations.	•
5. Modern Tool Usage:	Create, select, adapt and apply appropriate techniques, resources, and modern computing tools to complex computing activities, with an understanding of the limitations.	
6. Individual and Team Work:	Function effectively as an individual and as a member or leader in diverse teams and in multi-disciplinary settings.	•
7. Communication:	Communicate effectively with the computing community and with society at large about complex	

		1	2	3	4	5	6	7	8	9	10
		•	•				•				
		•	,		•		•				
	5	•	•		.		,				
	5		•		•		•				
Topics Covered in the Course, with Number of Lectures on Each Topic (assume 15-week instruction and one-hour lectures)	1. Topics to be List Chapter-1: Intro Electronics. Digital. Basi	st of Topi oduction.	ics Digital iples. Ar	nalog		o. of eeks	Conta Hou		CLO		

National Computing Education Accreditation Council NCEAC

NCEAC.FORM.001-D

Conversion, Binary Arithmetic, Complements of Binary Numbers, Signed Numbers, Arithmetic Operations with Signed Numbers, Hexadecimal Numbers, Octal Numbers, Binary Coded Decimal (BCD), Error Codes The Byte, Nibble and Word.	2	6	1	
Chapter-3: Logic Gates, AND OR & NOT Gates, NOR NAND XOR Gates. Chapter-4: Boolean Algebra and logic simplification. DeMorgan's Theorems. Boolean analysis of Logic circuits. Truth Tables. The Karnaugh Map. Chapter-5:	2	6	2	
Basic Combinational circuits. Implementing Combinational Logic. Using NAND and NOR Gates.	1	3	3	
====== <i>MID</i>	1 =====	====		
Chapter -6: Basic Adders. Parallel Binary Adders. Comparators. Decoders. Encoders. Multiplexers. Demultiplexers.	2	6	3	
Chapter-7: Latches. Edge-Triggered Flip-Flops. Flip-Flop Operating Characteristics. Flip-Flop applications.	2	6	4	
========MID	2 =====	====		
Chapter-9: Asynchronous Counters. Synchronous Counters. Cascaded Counters. Counter Decoding.	2	6	4	
Chapter -8: Basic Shift Register Operations. Serial In/Serial Out Shift Registers. Serial In/Parallel Out and Parallel In/Parallel Out Shift Registers. Bidirectional Shift Registers. Chapter -11 Memory Basics, the Random-Access Memory. The Read-only Memory. Programmable ROM. The Flash Memory. Memory Expansion. Special Types of Memories. Magnetic & Optical Storage.	2	6	4,5	
Review	1	3	2,3,4	

	Project Presentat	ions	1	3	1,2,3,4,5
	Total		15	45	
Laboratory					
Projects/Experiments Done in the Course					
Programming Assignments Done in the Course					
Class Time Spent on (in	Theory	Problem Analysis	Solution I	Design	Social and Ethical Issues
credit hours)	30	10	5		0
Oral and Written Communications	Every student is required to submit at least1_ written report of typically _2_ pages and to make _1_ oral presentations of typically10_ minute's duration. Include only material that is graded for grammar, spelling, style, and so forth, as well as for technical content, completeness, and accuracy.				

Instructor Name	Rabia Tabassum
Instructor Signature	
Date _	_4 th February, 2021