线性代数

主要整理自颜文斌老师讲义

by Dait at THU

2021/12/28 - 2023/9/5

目录

1	向量和矩阵 1					
	1.1	向量	1			
	1.2	矩阵	3			
	1.3	矩阵的逆和转置	5			
	1.4	矩阵的迹	7			
2	线性方程组 9					
	2.1	消元法	9			
	2.2	矩阵的行变换	10			
	2.3	LU 分解	12			
3	线性空间 1					
	3.1	线性空间	14			
	3.2	线性独立、基和维度	15			
	3.3	矩阵 A 的四个子空间	16			
	3.4	矩阵的秩、线性代数基本定理	17			
4	正交性 2					
	4.1	正交性	20			
	4.2	投影	21			
	4.3	最小二乘法	22			
	4.4	正交基、Gram-Schmidt 法则、QR 分解	23			

5	行列	式	26		
	5.1	行列式	26		
	5.2	行列式的性质	27		
	5.3	行列式的运算	28		
	5.4	Cramer 法则、伴随矩阵	30		
6	特征	值和特征向量	33		
	6.1	特征值和特征向量	33		
	6.2	特征多项式	34		
	6.3	矩阵对角化	35		
	6.4*	Jordan 标准型	37		
	6.5	对称矩阵	41		
	6.6	正定矩阵	43		
7	奇异	值分解	45		
	7.1	奇异值分解	46		
	7.2	矩阵的模	47		
	7.3	伪逆	49		
	7.4	主成分分析	50		
8	线性	映射	52		
	8.1	线性映射和矩阵	53		
	8.2	线性映射的性质	55		
	8.3	基的变换	56		
	8.4	对偶空间	58		
	8.5	直和、直积	60		
	8.6	张量	61		
9	复线性空间 68				
	9.1	内积和内积空间	65		
	9.2	Hermite 矩阵和幺正矩阵	67		
10	群、		70		
	•		70		
		群与子群	70		

线性代数 by Dait

1 向量和矩阵

1.1 向量

定义 1.1.1: 向量

在数域 (number feild) $\mathbb{F}^{\mathbb{I}}$ 内,一个 n 维向量 (vector) v 由 n 个标量 (scalar) v_1,\ldots,v_n 组成,记作

$$v = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}, \quad v_i \in \mathbb{F}.$$

组成向量的标量 v_1, \ldots, v_n 称为向量的分量 (component).

定义 1.1.2: 零向量、反向量

零向量 (zero vector) 是所有分量均为 0 的向量,记作 0; v 的反向量 (reverse vector) 对应每个分量取相反数,记作 -v.

定义 1.1.3: 向量的加法

向量的加法 (addition) 即对应分量相加,

$$v + u = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} + \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix} = \begin{bmatrix} v_1 + u_1 \\ \vdots \\ v_n + u_n \end{bmatrix}.$$

因此只有分量数相同的向量之间才可以相加.

- 交換律: v + u = u + v;
- 结合律: v + (u + w) = (v + u) + w.
- 零向量: 0+v=v+0=v.
- 反向量: v + (-v) = 0.

 $^{^{\}mathrm{I}}$ 直到第9章复线性空间之前,均只考虑实数域 \mathbb{R} ,即 $\mathbb{F}=\mathbb{R}$.

定义 1.1.4: 向量的数乘

向量与标量的数乘 (scalar product) 即每个分量乘标量

$$cv = c \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} = \begin{bmatrix} cv_1 \\ \vdots \\ cv_n \end{bmatrix}.$$

- 1v = v, (-1)v = -v, 0v = 0.
- 结合律: $c(dv) = (cd)v \equiv cdv$;
- 对标量的分配律: (c+d)v = cv + dv;
- 对向量的分配律: c(v+u) = cv + cu.

定义 1.1.5: 线性组合

向量 v 和 u 的线性组合 (linear combination) 定义为

$$cv + du$$
, $c, d \in \mathbb{F}$.

以此类推,n个向量 v_1, v_2, \ldots, v_n 的线性组合形如

$$c_1v_1 + c_2v_2 + \cdots + c_nv_n, \quad c_i \in \mathbb{F}.$$

定义 1.1.6: 向量的内积

向量 v 和 u 的内积 (inner product) 结果是一个标量, 其值为

$$v \cdot u := \sum_{i=1}^{n} v_i u_i = v_1 u_1 + v_2 u_2 + \dots + v_n u_n.$$
 (1.1)

特别的, $v^2 := v \cdot v$.

- 交換律: $v \cdot u = u \cdot v$;
- 与数乘的结合律: $(cv) \cdot u = c(v \cdot u) \equiv cv \cdot u$;
- 分配律: $(v+u) \cdot w = v \cdot w + u \cdot w$;
- $v^2 \ge 0$,取等号当且仅当 v = 0.

定义 1.1.7: 向量的长度

通过内积我们可以定义向量的长度 (norm)

$$||v|| := \sqrt{v^2} = (v_1^2 + v_2^2 + \dots + v_n^2)^{1/2}.$$
 (1.2)

单位向量 (unit vector) 就是长度为 1 的向量.

显然,和 v 同向的单位向量是 $\hat{v} := v/\|v\|$.

1.2 矩阵

形式上看,标量 c 是 1×1 的,向量 v 是 $m \times 1$ 的^I,继而可定义 $m \times n$ 的矩阵 (matrix) 形如

$$A = \begin{bmatrix} A_{11} & \cdots & A_{1n} \\ \vdots & \ddots & \vdots \\ A_{m1} & \cdots & A_{mn} \end{bmatrix}, \quad A_{ij} \in \mathbb{F}.$$

 A_{ij} 是矩阵第 i 行第 j 列的元素.

矩阵的行数和列数分别为 row(A) = m, col(A) = n. 当 m = n 时,矩阵是 n 阶方阵 (square matrix).

矩阵的加法和数乘与向量的运算规律相同,是平凡的.

定义 1.2.1: 矩阵和向量的乘法

 $m \times n$ 矩阵 A 乘 n 维向量 x,结果是一个 m 维向量 b = Ax,其分量为:

$$b_i = \sum_{j=1}^n A_{ij} x_j, \quad i = 1, \dots, m.$$
 (1.3)

因此 Ax 是看成 A 所有列的线性组合,或者说 A 的各行与 x 分别内积.这样线性方程组就可以写成矩阵的形式:

$$Ax = b$$
.

这种思想有助于我们掌握线性代数的理念.

¹如无特别说明,向量均默认为列向量.

定义 1.2.2: 矩阵的乘法

 $m \times n$ 矩阵 A 乘 $n \times p$ 矩阵 B,结果是一个 $m \times p$ 的矩阵 C = AB,其分量为

$$C_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}. (1.4)$$

因此若 A, B 可以相乘,要求 col(A) = row(B).

• 一般不满足交换律, 即 $AB \neq BA$, 比如

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \quad \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}.$$

- 左分配律: (A+B)C = AC + BC;
- 右分配律: A(B+C) = AB + AC.

定理 1.2.1: 矩阵乘法的结合律

$$(AB)C = A(BC) \equiv ABC. \tag{1.5}$$

证明: 对于 $A_{m \times n}, B_{n \times p}, C_{p \times q}$

$$[A(BC)]_{ij} = \sum_{k=1}^{n} A_{ik}(BC)_{kj} = \sum_{k=1}^{n} A_{ik} \sum_{\ell=1}^{p} B_{k\ell} C_{\ell j}$$
$$= \sum_{\ell=1}^{p} \sum_{k=1}^{n} A_{ik} B_{k\ell} C_{\ell j} = \sum_{\ell=1}^{p} (AB)_{i\ell} C_{\ell j} = [(AB)C]_{ij}. \quad \Box$$

定义 1.2.3: 单位矩阵

n 阶单位矩阵 (unit matrix) 是 n 阶方阵,对角项均为 1,其余项均为 0:

$$I_n = \begin{bmatrix} 1 & & \\ & \ddots & \\ & & 1 \end{bmatrix}.$$

易证, $\forall m \times n$ 的矩阵 A, 均有

$$I_m A = AI_n = A.$$

定理 1.2.2: 交换性

若方阵 A 与任意方阵可交换 (commutable),则 A = cI, $c \in \mathbb{F}$

证明: 取 $B = e_{ij}$, 表示仅 i 行 j 列为 1, 其余项均为 0

$$(Ae_{ij})_{k\ell} = \sum_{p=1}^{n} A_{kp}(e_{ij})_{p\ell} = A_{ki}\delta_{j\ell};$$

$$(e_{ij}A)_{k\ell} = \sum_{p=1}^{n} (e_{ij})_{kp}A_{p\ell} = \delta_{ki}A_{j\ell},$$

当 $k \neq i = j = \ell$ 时, $A_{ki} = 0$;当 $k = i \neq j = \ell$ 时, $A_{ii} = A_{jj}$.

定义 1.2.4: 分块矩阵

可以将矩阵分块,每一块(block)是一个小矩阵,比如

$$\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ \hline 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} \equiv \begin{bmatrix} I & I \\ I & I \end{bmatrix}.$$

分块矩阵乘法:每个块当作矩阵的元素,块之间使用矩阵乘法.

1.3 矩阵的逆和转置

定义 1.3.1: 矩阵的逆

方阵 A 的逆矩阵 (inverse matrix) A^{-1} 满足

$$AA^{-1} = A^{-1}A = I$$
.

称奇异矩阵 (singular matrix) 是不可逆的矩阵.

若 A, B 均可逆,则 $(AB)^{-1} = B^{-1}A^{-1}$. 但 A + B 不一定可逆.

例 1.3.1: 二阶方阵的逆

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}. \tag{1.6}$$

例 1.3.2: 对角矩阵的逆

非对角项均为 0 的方阵称为对角矩阵 (diagonal matrix),若对角项为 a_1, \ldots, a_n ,可记作

$$\operatorname{diag}(a_1,\ldots,a_n).$$

对角矩阵有很多简单的性质, 比如对角矩阵的乘法很简单

$$\operatorname{diag}(a_1, \dots, a_n) \operatorname{diag}(b_1, \dots, b_n) = \operatorname{diag}(a_1 b_1, \dots, a_n b_n). \tag{1.7}$$

显然,对角矩阵的逆为

$$\operatorname{diag}(a_1, \dots, a_n)^{-1} = \operatorname{diag}(a_1^{-1}, \dots, a_n^{-1}). \tag{1.8}$$

定理 1.3.1: 左逆和右逆

若存在左逆 (left inverse),则其也是右逆 (right inverse).

证明: 设 $B \notin A$ 的左逆, 即 BA = I. 构造映射 f, g

$$f(X) := AXB, \quad g(X) := BXA,$$

则 $g \circ f(X) = BAXBA = X$, g 是双射. 又

$$g(AB) = BABA = I = g(I),$$

故 AB = I. □

例 1.3.3: 幂零矩阵

若 A 是幂零矩阵 (nilpotent matrix),即 $\exists n \in \mathbb{N}$ 使 $A^n = O$,则 I + A 可逆,且

$$(I+A)^{-1} = I - A + A^2 - \dots + (-A)^{n-1}.$$

因为

$$I = I^n + A^n = (I + A)[I^{n-1} - I^{n-2}A + \dots + (-A)^{n-1}].$$

定义 1.3.2: 矩阵的转置

 $m \times n$ 矩阵 A 的转置 (transpose) A^{\top} 是 $n \times m$ 矩阵, 且

$$(A^{\top})_{ij} = A_{ji}.$$

特别的,若 $S^{\top} = S$,则 S 是对称矩阵 (sysmmetric matrix).

- $(A+B)^{\top} = A^{\top} + B^{\top}, (cA)^{\top} = cA^{\top};$
- $(AB)^{\top} = B^{\top}A^{\top};$
- $(A^{-1})^{\top} = (A^{\top})^{-1}$.

1.4 矩阵的迹

定义 1.4.1: 矩阵的迹

n 阶方阵的迹 (trace) 是对角元的和

$$\operatorname{tr}(A) := \sum_{i=1}^{n} A_{ii}.$$
(1.9)

- $\operatorname{tr}(A+B) = \operatorname{tr}(A) + \operatorname{tr}(B), \ \operatorname{tr}(cA) = c \operatorname{tr}(A);$
- $\operatorname{tr}(A^{\top}) = \operatorname{tr}(A);$
- 两个 n 维列向量 u, v,有 $\operatorname{tr}(uv^{\top}) = v^{\top}u$

$$\operatorname{tr}(uv^{\top}) = \sum_{i=1}^{n} u_i v_i = u^{\top} v = v^{\top} u.$$

• $\operatorname{tr}(AB) \neq \operatorname{tr}(A)\operatorname{tr}(B)$.

定理 1.4.1: 交换矩阵乘法的迹

 $\forall m \times n$ 的矩阵 A 和 $n \times m$ 的矩阵 B, 都有

$$tr(AB) = tr(BA). (1.10)$$

证明:

$$tr(AB) = \sum_{i=1}^{m} (AB)_{ii} = \sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij}B_{ji}$$

$$= \sum_{j=1}^{n} \sum_{i=1}^{m} B_{ji} A_{ij} = \sum_{j=1}^{n} (BA)_{jj} = \text{tr}(BA).$$

除此之外, 迹还有一些重要性质, 将在后面讲.

线性代数 by Dait

2 线性方程组

线性方程 (linear equation) 是未知数最高次数为 1 的方程. 考虑 m 个 n 元线性方程构成的线性方程组 (linear equation set)

$$\sum_{j=1}^{n} A_{ij} x_j = b_i. \quad i = 1, 2, \dots, m.$$

可以把系数写成系数矩阵 A, 即 Ax = b.

2.1 消元法

定义 2.1.1: 消元法

消元法 (elimination) 就是通过对方程之间倍加消元,得到一个上三角方程组,比如

$$\begin{cases} x - 2y = 1 \\ 3x + 2y = 11 \end{cases} \Rightarrow \begin{cases} x - 2y = 1 \\ 8y = 8 \end{cases}$$

而主元 (pivot element) 就是每个方程第一个非 0 系数.

消元法失效: 主元数目 < 未知数

- 得到 0 ≠ 0, 无解;
- 得到 0 = 0,无穷多解.

因此消元法要求方程个数与未知数个数相同.

方法 2.1: 消元法算法

- 1. 找到第 1 个 x_1 系数不为 0 的方程并移到最上面.
- 2. 从第 2 个到第 n 个方程中消去 x_1 (方程 $i \ell_{i1} \times$ 方程 1).
- 3. 得到第 2 个到第 n 个方程构成 (n-1) 元的线性方程组,重复步骤 1.
- 4. 最后结果要么是一个上三角方程组,要么失效.
- 5. 上三角的情况,从最后一个方程开始解出全部未知数.

利用消元法,可以求矩阵的逆.

方法 2.2: Gauss-Jordan 消元法

对增广矩阵 (augmented matrix) (A, I) 做消元操作.

$$(A,I) \rightarrow (I,A^{-1}).$$

就可以得到 A 的逆 A^{-1} .

2.2 矩阵的行变换

方程中,置换、倍加、倍乘同时作用在系数矩阵 A 和 b 上,因此可以写成增广矩阵 (A,b) 并对其消元. 类似的,可以考虑对一般矩阵进行置换、倍加、倍乘的操作.

定义 2.2.1: 矩阵的初等行变换

• 对换: 交换两行

• 倍加: 一行乘系数加到另一行

• 倍乘: 一行乘以一个非零系数

如果一个矩阵可以行变换成另一个矩阵,则它们行等价 (equivalence).

定义 2.2.2: 行阶梯矩阵

行阶梯矩阵 (row echelon matrix) M 满足以下性质

- 如果 M 的第 i 行是 0 行,则下面的所有行的都是 0 行;
- 如果 M 的第 i 行不全是 0,则从左数第一个非 0 元素叫做主元. 每个主元都在它上面行的主元的右边的列;
- 同一列中在主元下面的元素都是 0.

比如,形如(*表示非0项,任意)

$$\begin{bmatrix} 0 & * & \cdot & \cdot & \cdot & \cdot & \cdot \\ 0 & 0 & 0 & * & \cdot & \cdot & \cdot \\ 0 & 0 & 0 & 0 & * & \cdot & \cdot \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix},$$

就是一个行阶梯矩阵,其中*是主元.

若 A 与行阶梯矩阵 U 行等价,记作 $U \in ref(A)$. 消元法就是把增广矩阵变成行阶梯矩阵的过程. 显然,行阶梯矩阵并不唯一,还可以进一步化简.

定义 2.2.3: 约化行阶梯矩阵

约化行阶梯矩阵 (reduced row echelon matrix) 还满足以下额外性质

- 每个主元都是 1;
- 主元所在列只有主元非 0, 称为主列, 其他列称为自由列.

按上面的例子, 其约化行阶梯矩阵为

$$\begin{bmatrix} 0 & 1 & \cdot & 0 & 0 & \cdot & \cdot \\ 0 & 0 & 0 & 1 & 0 & \cdot & \cdot \\ 0 & 0 & 0 & 0 & 1 & \cdot & \cdot \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix},$$

第 2,4,5 列为主列,其余为自由列.

若 A 与约化行阶梯矩阵 U 行等价,记作 U = rref(A). 可以证明,约化行阶梯矩阵是唯一的. 唯一性证明见 Lay 书的附录 A. 借助约化行阶梯矩阵的概念,我们可归纳出解方程组 Ax = b 的方法:

- 将增广矩阵 (A,b) 约化为 (rref(A),b');
- 解的存在性: 若 rref(*A*) 有 0 行, 但 *b'* 对应行元素非 0,则无解; 反 之有解;
- 解的唯一性: 若 rref(A) 没有自由列,则解唯一.

定义 2.2.4: 初等矩阵

对 $m \times n$ 的矩阵 A 行变换,等价于用 $m \times m$ 初等矩阵 (ementary matrix) 左乘 A,初等矩阵有以下三种类型:

• 倍加: A 的第 i 行乘一个非 0 常数 a 再加到第 j 行

$$\begin{bmatrix} \ddots & & a \\ & \ddots & \\ & & \ddots \end{bmatrix} = I + ae_{ij},$$

• 置换: 置换 A 的第 i 行和第 j 行

$$\begin{bmatrix} \ddots & & & & & & \\ & 0 & & 1 & & & \\ & & \ddots & & & \\ & 1 & & 0 & & \\ & & & \ddots & \end{bmatrix} = I + e_{ij} + e_{ji} - e_{ii} - e_{jj},$$

• 倍乘: A 的第 i 行乘一个非 0 常数 c

$$\begin{bmatrix} \cdot & \cdot & \cdot \\ & c & \cdot \\ & & \cdot \cdot \end{bmatrix} = I + (c - 1)e_{ii}.$$

初等矩阵的性质是均可逆:

- 倍加矩阵: $E = I + ae_{ij}$, $E^{-1} = I ae_{ij}$;
- 置换矩阵与自己互逆;
- 倍乘矩阵: $E = I + (c-1)e_{ii}$, $E^{-1} = I + (c^{-1}-1)e_{ii}$.

消元法: 用一系列初等矩阵 $\{E_i\}$ 左乘 A,把 A 化简成行阶梯矩阵.

2.3 LU 分解

定义 2.3.1: 上/下三角矩阵

上三角矩阵 (upper triangular matrix) U 是主对角线以下元素都是 0 的方阵

$$U_{ij} = 0, \quad \forall i > j,$$

同理可定义下三角矩阵 (lower ...) L 满足 $L_{ij} = 0$, $\forall i < j$.

不难注意到,倍加矩阵和逆矩阵都同时是上/下三角矩阵. 这是 LU 分解的基础.

U 是和 A 等价的行阶梯矩阵, U 是上三角的

$$E_k \cdots E_2 E_1 A = U.$$

从 A 到 U 的过程中我们只需消去主元下面的元素, E_1,E_2,\ldots,E_k 及他们的逆 $E_1^{-1},E_2^{-1},\ldots,E_k^{-1}$ 都是下三角的,故

$$L = E_1^{-1} E_2^{-1} \cdots E_k^{-1}$$

也是下三角的. 进而

$$A = LU. (2.1)$$

如果 A 化成行阶梯矩阵 U 的过程中没有置换,则 A 有一个 LU 分解;反之,则存在一个置换矩阵 P,使得 PA 有一个 LU 分解.

线性代数 by Dait

3 线性空间

3.1 线性空间

定义 3.1.1: 线性空间

定义域 $\mathbb F$ 上的线性空间 (linear space) V 是具有加法 $+: V \times V \to V$ 和数乘 $: \mathbb F \times V \to V$ 运算且满足以下公理的集合.

1. 加法交換律 x+y=y+x;

2. 加法结合律 x + (y + z) = (x + y) + z;

3. 加法零元 x + 0 = x;

4. 加法逆元 x + (-x) = 0;

5. 数乘单位元 1x = x;

6. 数乘结合律 $(c_1c_2)x = c_1(c_2x);$

7. 数乘对向量的分配律 c(x+y) = cx + cy;

8. 数乘对标量的分配律 $(c_1 + c_2)x = c_1x + c_2x$.

比如 \mathbb{R}^n 和 \mathbb{C}^n 都是线性空间.

定义 3.1.2: 子空间

线性空间 V 的子空间 (subspace) $V_s \subset V$,且对于加法和数乘封闭: $\forall v, w \in V_s, \forall c \in \mathbb{F}$

$$v + w \in V_s, \quad cv \in V_s,$$

即子空间中元素的线性组合都在同一个子空间.

子空间必然包含零向量. 因为若 $v \in \mathbb{F}$, 则 $v + (-v) = 0 \in \mathbb{F}$.

一般来说,线性空间 V 的子集 S 不是子空间,但我们可以从 S 中构造出子空间.

定义 3.1.3: 线性扩张

S 的线性扩张 (linear span) span(S) 是 S 中向量的所有线性组合的集合. span(S) 是 V 的子空间.

3.2 线性独立、基和维度

定义 3.2.1: 线性独立

n 个向量 $\{v_i\}$ 是线性独立的 (linear independent), 当且仅当

$$\sum_{i=1}^{n} x_i v_i = 0,$$

只在 $x_i = 0$ 时成立,即只有零解. n 个向量 $\{v_i\}$ 不是线性独立,那么他们是线性相关的 (linear correlate).

等价描述:集合中每一个向量都不能写成其它向量的线性组合.

向量是否线性独立同数域的选择密切相关.

定义 3.2.2: 线性空间的基

线性空间 V 的基 (base) 是一组线性无关的向量 $\{v_i\}$,并且他们张成整个线性空间 V.

 $\{e_i\}$ 构成 \mathbb{R}^n 的一组基.

定义 3.2.3: 线性空间的维度

线性空间的维度 (dimension) $\dim(V)$ 等于任一组基中向量的个数.

定理 3.2.1: 维度的确定性

线性空间的维度和基的选取无关.

证明: 若线性空间 V 存在两组基 $\{v_1, \ldots, v_m\}, \{w_1, \ldots, w_n\}$ 元素个数不等,不妨设 n > m.

因为 $\{w_i\}$ 是基, $\{v_i\}$ 可以被表示为其线性组合

$$v_i = \sum_{j=1}^n w_j a_{ji}, \quad \forall i.$$

考虑线性组合

$$\sum_{i=1}^{m} x_i v_i = \sum_{i=1}^{m} \sum_{j=1}^{n} x_i w_j a_{ji} = 0.$$

因为 $\{w_i\}$ 线性无关,故

$$\sum_{i=1}^{m} a_{ji} x_i = 0, \quad \forall j,$$

但是其未知数的个数 m > 方程的个数 n,系数矩阵一定有自由列,所以有非零解.这与 $\{v_i\}$ 线性无关矛盾! 故 m = n.

若 $\forall v \in V_1$ 可以写成 V_2 中向量的线性组合,则 $\dim(V_1) \leq \dim(V_2)$. 这个定理是 trivial 的,证明留给读者.

不同基之间的变换相应的矩阵称为变换矩阵 (transfomation matrix).

3.3 矩阵 A 的四个子空间

对于 $m \times n$ 矩阵 A,可以由其得到四个子空间: 列空间 C(A)、行空间 $C(A^{\mathsf{T}})$ 、零空间 N(A) 和左零空间 $N(A^{\mathsf{T}})$.

定义 3.3.1: 列空间

矩阵 A 的列空间 (column space) C(A) 是 A 的所有列的线性组合的集合.

类似的,行空间 (row space) 是所有行的线性组合的集合,由于转置并不影响性质,行空间可以用 $C(A^{\top})$ 表示. 不难验证,C(A) 是 \mathbb{R}^n 的子空间, $C(A^{\top})$ 是 \mathbb{R}^m 的子空间.

线性方程组 Ax = b 有解等价于 $b \in C(A)$.

定义 3.3.2: 零空间

矩阵 A 的零空间 (null space) N(A) 是 Ax = 0 所有解 x 构成的线性空间.

类似的,左零空间 (left null space) 是 $x^{\top}A = 0$ 所有解 x 构成的线性空间,可用 $N(A^{\top})$ 表示. N(A) 是 \mathbb{R}^m 的子空间, $N(A^{\top})$ 是 \mathbb{R}^n 的子空间.

子空间的基 显然 N(A) = N(rref(A)), N(rref(A)) 中的基可以由这样给出:

• 每个自由列给出一个向量,因此 $\dim(N(A)) = \operatorname{rref}(A)$ 中自由列的数量;

• 自由列 j 对应向量 x 中, $x_j = 1$,x 对应其他自由列分量为 0,对应主列 i 分量 $x_i = -\operatorname{rref}(A)_{ij}$

rref(A) 所有主列构成 C(A) 一组基.

3.4 矩阵的秩、线性代数基本定理

定义 3.4.1: 矩阵的秩

矩阵 A 的秩 (rank) rank(A) 定义为行空间或列空间的维数^I:

$$rank(A) := \dim(C(A)) = \dim(C(A^{\top})).$$

进而可定义行满秩矩阵 (full row rank matrix) 满足

$$rank(A) = row(A)$$
.

列满秩矩阵 (full column rank matrix) 定义类似.

线性方程组 Ax = 0 的完整解 考虑线性方程组 Ax = b,通解

$$x = x_p + x_n,$$

其中 $x_n \in N(A)$,特解 x_p 可以从约化的增广矩阵 $(\operatorname{rref}(A), b')$ 中选取:自由列 i 对应 $x_{pi} = 0$,若主元列 i 中的 1 在第 j 行,则 $x_{pi} = b'_i$.

若 A 列满秩, $\operatorname{rref}(A)$ 没有自由列, $\operatorname{N}(A) = \{0\}$,有唯一解 $(b \in \operatorname{C}(A))$ 或无解;若 A 行满秩, $\operatorname{rref}(A)$ 没有零行, $\operatorname{C}(A) = \mathbb{R}^m$, $\forall b$ 都有解,有唯一解或无穷多解.

四个子空间的维度 已经知道,初等行变换就是用初等矩阵 E 左乘 A,相应的,列变换就是 E 右乘 A.

定理 3.4.1: 初等变换和子空间

• N(A) = N(EA), 因为

$$Ax = 0 \Leftrightarrow EAx = 0.$$

¹后面很快会证明行空间列空间维数相等.

- $\dim(C(A)) = \dim(C(EA))$,因为 $\{v_i\} \ \not\in \ C(A) \ -\text{组基} \ \Leftrightarrow \ \{Ev_i\} \ \not\in \ C(EA) \ -\text{组基}.$
- C(A) = C(AE),因为 $AE \ \mbox{的每一列} \in C(A) \ \mbox{且} \ A = (AE)E^{-1} \ \mbox{的每一列} \in C(AE)$
- $\dim(N(A)) = \dim(N(AE))$, 因为可由

$$Ax = 0 \Leftrightarrow AE(E^{-1}x) = 0,$$

推出

$$\{v_i\}$$
 是 $N(A)$ 一组基 \Leftrightarrow $\{E^{-1}v_i\}$ 是 $N(AE)$ 一组基

即,矩阵 A 在初等变换下, $\dim(C(A))$ 和 $\dim(N(A))$ 均不变,而行变换下 N(A) 不变,列变换下 C(A) 不变.

因此,可以将 A 先由行变换为 $\operatorname{rref}(A)$,再列变换为

$$\tilde{I} = \begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix}.$$

显然, \tilde{I} 的行秩 $\dim(C(\tilde{I}^{\top})) =$ 列秩 $\dim(C(\tilde{I})) = r$, 且

$$\dim(\mathbf{C}(\tilde{I}^{\top})) + \dim(\mathbf{N}(\tilde{I})) = n;$$

$$\dim(\mathbf{C}(\tilde{I})) + \dim(\mathbf{N}(\tilde{I}^{\top})) = m.$$

以上的这些量在初等变化下都不变,故

定理 3.4.2: 线性代数基本定理・一

- 1. 行秩 = 列秩: $\dim(C(A)) = \dim(C(A^{\top}));$
- 2. $\dim(C(A^{\top})) + \dim(N(A)) = n;$
- 3. $\dim(C(A)) + \dim(N(A^{\top})) = m$.

推论是方阵 A 可逆 \Leftrightarrow A 满秩.

图 1 A 的四个子空间

矩阵的秩的不等式 参考: https://zhuanlan.zhihu.com/p/55206421

定理 3.4.3

线性代数 by Dait

4 正交性

将列向量看做矩阵,则向量 v 和 w 的内积可以看做 $v \cdot w = v^{\mathsf{T}} w$.

定义 4.0.1: 向量的正交

若 $v^{\top}w = 0$,则称 v 和 w 正交 (orthogonal).

依定义, 0 和所有向量正交.

定理 4.0.1: 正交的模

若 v, w 正交,则

$$||v||^2 + ||w||^2 = ||v + w||^2$$
. (4.1)

4.1 正交性

定义 4.1.1: 子空间的正交

定义线性空间 L 的两个子空间 V,W 正交,若 V 中的每一个向量均和 W 中每一个向量正交.

显然, 若 L 的子空间 V, W 正交, 则

$$\dim(L) \geqslant \dim(V) + \dim(W). \tag{4.2}$$

定义 4.1.2: 正交补

子空间 V 的正交补 (orthogonal complement) V^{\perp} 由所有同 V 正交的向量组成.

只有 0 同时属于 V 和 V^{\perp} .

定理 4.1.1: 线性代数基本定理 · 二

在 \mathbb{R}^n 中, $N(A) = C(A^\top)^{\perp}$. 在 \mathbb{R}^m 中, $N(A^\top) = C(A)^{\perp}$.

定理 4.1.2: 分解

 $\forall x \in \mathbb{R}^n$ 均可以分解成

$$x = x_r + x_n$$

其中 $x_r \in C(A^\top)$, $x_n \in N(A)$, 且这种分解是唯一的.

证明: 由

$$Ax = A(x_r + x_n) = Ax_r \in C(A^\top)$$

知, 只需证明: $\forall b \in C(A^{\top})$, 存在唯一的 $x_r \in C(A^{\top})$ 使得 $Ax_r = b$.

若存在 $x_r, x_r' \in \mathrm{C}(A^\top)$ 满足 $Ax_r = Ax_r'$,则 $x_r - x_r'$ 同时在 $\mathrm{C}(A^\top)$ 和 N(A) 中,故 $x_r - x_r' = 0$.

矩阵的可逆部分 对于矩阵 A, 把 N(A) 和 $N(A^{\top})$ 对应的行和列去掉之后 总是一个 r 阶可逆矩阵.

图 2 big picture 升级版

4.2 投影

考虑向量 b 在向量 a 上的投影 p

$$p = (\hat{a} \cdot b)\hat{a} = \frac{a^{\top}b}{a^{\top}a}a = \frac{aa^{\top}}{a^{\top}a}b.$$

考虑 \mathbb{R}^m 中线性无关的 n 个向量 $(a_1,\ldots,a_n)=:A$ 张成的子空间,找到向量 p 在上面的投影

$$p = Ax = x_1a_1 + \dots + x_na_n \in C(A).$$

考虑投影的性质: p 的终点在子空间中距离 b 的端点最近,则 (b-p) 同子空间垂直:

$$A^{\top}(b - Ax) = 0$$

相当于求解线性方程组

$$A^{\top}Ax = A^{\top}b.$$

若 $A^{T}A$ 可逆,则 $x = (A^{T}A)^{-1}A^{T}b$,由 p = Ax 可定义投影矩阵 (project matrix)

$$P = A(A^{\top}A)^{-1}A^{\top}. (4.3)$$

投影矩阵有性质: $P^2 = P$, 这也是符合投影性质的.

定理 **4.2.1**: $A^{T}A$ 的可逆性

 $A^{T}A$ 可逆 \Leftrightarrow A 的列之间线性无关.

证明: 只需证明 $N(A^{T}A) = N(A)$ 即可.

 $\forall x \in N(A), \ Ax = 0, \ 左乘 A^{\top}$ 得: $A^{\top}Ax = 0, \ x \in N(A^{\top}A);$ $\forall x \in N(A^{\top}A), \ A^{\top}Ax = 0, \ 左乘 x^{\top}$ 得: $x^{\top}A^{\top}Ax = \|Ax\|^2 = 0$, 即

 $Ax = 0, x \in N(A).$

推论:

$$\operatorname{rank}(A) = \operatorname{rank}(A^{\top}) = \operatorname{rank}(A^{\top}A) = \operatorname{rank}(AA^{\top}).$$

4.3 最小二乘法

考虑线性方程组 Ax = b, A 的行列 m > n 甚至 $m \gg n$, 一般来说无解. 但仍可找到 x 使得 $\|b - Ax\|$ 最短.

由投影的性质, 若 Ax 是 b 在 C(A) 上的投影, 则 $\|b-Ax\|$ 最短, 此时

$$x = (A^{\top}A)^{-1}A^{\top}b.$$

方法 4.1: 直线拟合 (最小二乘法)

m 组数据 (x_i, y_i) , 确定线性关系 y = a + bx 中的系数 a, b, 即

$$\begin{bmatrix} 1 & x_1 \\ \vdots & \vdots \\ 1 & x_m \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix}, \quad \to \quad Ax = b.$$

rank(A) = 2, 故 $A^{T}A$ 可逆,

$$A^{\top}A = \begin{bmatrix} n & (x_i) \\ (x_i) & (x_i^2) \end{bmatrix}, \quad (A^{\top}A)^{-1} = \frac{1}{m(x_i^2) - (x_i)^2} \begin{bmatrix} (x_i^2) & -(x_i) \\ -(x_i) & m \end{bmatrix}.$$

在此处 (x_i) 特指对 x_i 求和,得到

$$\begin{cases}
 a = \frac{(x_i^2)(y_i) - (x_i)(x_iy_i)}{m(x_i^2) - (x_i)^2} \\
 b = \frac{-(x_i)(y_i) - m(x_iy_i)}{m(x_i^2) - (x_i)^2}
\end{cases}$$

方法 4.2: 多项式拟合

m 组数据 (x_i, y_i) , 确定多项式关系

$$y = a_0 + a_1 x + \dots + a_n x^n$$

中的系数 a_0,\ldots,a_n ,即

$$\begin{bmatrix} 1 & x_1 & \cdots & x_1^n \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_m & \cdots & x_m^n \end{bmatrix} \begin{bmatrix} a_0 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix}, \quad \to \quad Ax = b.$$

从而 $x = (A^{\mathsf{T}}A)^{-1}A^{\mathsf{T}}b$.

一般最小二乘拟合: ……

两组数据相关不一定代表有因果.

4.4 正交基、Gram-Schmidt 法则、QR 分解

基是一组线性无关的向量并且张成整个线性空间,我们对基之间的夹角和长度并没有要求.为了方便,我们可以要求基具备一些额外的性质.

定义 4.4.1: 正交归一基

基 $\{q_1,\ldots,q_n\}$ 是正交归一的 (orthonomal) 的,若

$$q_i \cdot q_j = \delta_{ij}$$

将一组正交归一基 $\{q_1,\ldots,q_n\}$ 按列排成矩阵 Q,则 $Q^\top Q=I$,称为正交矩阵 (orthogonal matrix). 特别的,若 Q 是方阵,则

$$Q^{\top} = Q^{-1},$$

则 $Q^{\mathsf{T}}Q = QQ^{\mathsf{T}} = I$,便得到正交归一基的完备性 (complete)

$$\sum_{i=1}^{n} q_i q_i^{\top} = I.$$

例 4.4.1: Fourier 级数

定义函数 f,g 在 $[-\pi,\pi]$ 上的内积

$$\langle f, g \rangle := \int_{-\pi}^{\pi} f(x)g(x) \, \mathrm{d}x$$

则三角函数系列

$$\left\{\frac{1}{\sqrt{2\pi}}, \frac{\sin \theta}{\sqrt{\pi}}, \frac{\cos \theta}{\sqrt{\pi}}, \frac{\sin 2\theta}{\sqrt{\pi}}, \frac{\cos 2\theta}{\sqrt{\pi}}, \dots\right\}$$

构成一组正交归一基,任意 $[-\pi,\pi]$ 上平方可积的函数均可被展开为 Fourier 级数 (Fourier series):

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx).$$

Fourier 系数

$$\begin{cases} a_n := \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx \\ b_n := \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx \end{cases}$$

给定一组基 $\{a_1,\ldots,a_n\}$,如何构造一组正交归一基 $\{q_1,\ldots,q_n\}$?

方法 4.3: Gram-Schmidt 法则

- 1. 选取 $b_1 := a_1$;
- 2. 从 a_2 减去沿着 b_1 方向的分量,作为 b_2

$$b_2 := a_2 - \frac{b_1^{\top} a_2}{b_1^{\top} b_1} b_1;$$

3. 从 a_i 减去沿着 b_1,\ldots,b_{i-1} 方向的分量,作为 b_i

$$b_i := a_i - \sum_{j=1}^{i-1} \frac{b_j^{\top} a_i}{b_j^{\top} b_j} b_j.$$

再归一化 $\{b_1,\ldots,b_n\}$

$$q_i := \frac{b_i}{\|b_i\|}.$$

若 $m \times n$ 矩阵 $A = (a_1, \ldots, a_n)$ 的列之间线性无关,可用 Gram-Schmidt 法则构造一组正交归一基 $\{q_1, \ldots, q_n\}$, q_i 同 a_1, \ldots, a_{i-1} 正交,定义

$$R := Q^{\top} A = \begin{bmatrix} q_1^{\top} a_1 & q_1^{\top} a_2 & \cdots & q_1^{\top} a_n \\ 0 & q_2^{\top} a_2 & \cdots & q_2^{\top} a_n \\ 0 & 0 & \ddots & \vdots \\ 0 & 0 & 0 & q_n^{\top} a_n \end{bmatrix}$$

R 是个上三角矩阵,故 A 可以写成正交矩阵和上三角矩阵的乘积:

$$A = QR. (4.4)$$

在最小二乘法等应用中, $A^{T}A = R^{T}R$

$$x = (A^{\top}A)^{-1}A^{\top}b = R^{-1}Q^{\top}b.$$

效率更高.

线性代数 by Dait

5 行列式

在例 1.3.1 中, 2 阶方阵的逆为

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$

定义 2 阶方阵的行列式 (determinant)

$$\det(A) \equiv |A| \equiv \begin{vmatrix} a & b \\ c & d \end{vmatrix} := ad - bc. \tag{5.1}$$

特别的,给出3阶方阵的行列式

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

$$= a_{11} a_{22} a_{33} + a_{12} a_{23} a_{31} + a_{13} a_{21} a_{32}$$

$$- (a_{13} a_{22} a_{31} + a_{11} a_{23} a_{32} + a_{12} a_{21} a_{33}).$$

$$(5.2)$$

5.1 行列式

下面我们用递归的方式给出行列式的定义,首先引入代数余子式,

定义 5.1.1: 代数余子式

对于 n 阶方阵 A, 记 $A_{\neq ij}$ 为去掉第 i 行第 j 列得到的 (n-1) 阶方阵. 则 A 的余子式 (minor) 定义为

$$M_{ij} := \det(A_{\neq ij}); \tag{5.3}$$

代数余子式 (cofactor) 定义为

$$C_{ij} := (-)^{i+j} M_{ij}. (5.4)$$

代数余子式前的正负号与矩阵中元素所在位置的关系:

$$\begin{bmatrix} + & - & + & \cdots \\ - & + & - & \cdots \\ + & - & + & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$
 (5.5)

定义 5.1.2: 行列式

A 的行列式定义为:

- 1. n = 1 时, $det(A) = a_{11}$;
- 2. n > 1 时,行展开或列展开 (Laplace 展开)

$$\det(A) = \sum_{i=1}^{n} a_{ij} C_{ij} = \sum_{\ell=1}^{n} a_{k\ell} C_{k\ell}.$$
 (5.6)

易得,单位矩阵行列式 $\det I = 1$,对角矩阵行列式

$$\det(\operatorname{diag}(a_1,\ldots,a_n)) = a_1\cdots a_n. \tag{5.7}$$

定理 5.1.1: 三角矩阵的行列式

三角矩阵的行列式等于对角元的乘积.

按行列式的定义进行计算即证.

5.2 行列式的性质

行列式可看做 $n \uparrow n$ 维向量到数域 \mathbb{F} 的映射:

$$\det(A) = T(a_1, \dots, a_n),$$

由定义,行列式是线性的:

- 1. $T(a_1, \ldots, ka_i, \ldots, a_n) = kT(a_1, \ldots, a_i, \ldots, a_n);$
- 2. $T(\ldots, a_i + b_i, \ldots) = T(\ldots, a_i, \ldots) + T(\ldots, b_i, \ldots)$.

除了线性, 行列式还满足初等变换相关的性质:

- 3. 交换 A 任意两行或两列得到 B,则 det(B) = -det(A); 其推论是,若 A 中有任意两行或两列相同,则 det(A) = 0.
- 4. 将 A 的第 i 行乘一个常数加到第 j 行得到 B,则 $\det(A) = \det(B)$. 其推论是,若 A 的行/列之间线性相关,或者说秩小于阶,则 $\det(A) = 0$.

因此 A 可逆 \Leftrightarrow $\det(A) \neq 0$.

定义 5.2.1: 全反对称张量

定义全反对称张量 (Levi-Civita symbol) $\epsilon_{i_1...i_n}$,其中 $i_1,...,i_n$ 取值 范围 1,...,n,满足

- $\epsilon_{1...n} = 1$;
- $\epsilon ... i_p ... i_q ... = -\epsilon ... i_q ... i_p ...;$
- 任两个指标相同则 $\epsilon ... i_p ... i_p ... = 0$.

如果 i_1, \ldots, i_n 是 $1, \ldots, n$ 的一个全排列,其从 $1, \ldots, n$ 变换而来需要两两交换的次数为 p,则

$$\epsilon_{i_1\cdots i_n}=(-1)^p.$$

利用全反对称张量,行列式也可以定义为

$$\det(A) = \sum_{i_1,\dots,i_n=1}^n \epsilon_{i_1\cdots i_n} a_{1i_i} \cdots a_{ni_n}.$$
 (5.8)

或者进行一个抽象的定义: 行列式 $\det(A) = T(a_1, \ldots, a_n)$ 是 $n \uparrow n$ 维向量到数域 \mathbb{F} 的映射,且满足以下三个性质:

- 1. $\det I = 1$;
- 2. 任意交换两列, 行列式反号;
- 3. 线性 ...

5.3 行列式的运算

行列式与矩阵运算 行列式在矩阵转置下不变

$$\det(A^{\top}) = \det(A),$$

定理 5.3.1: 行列式与矩阵乘法

$$\det(AB) = \det(A)\det(B). \tag{5.9}$$

证明: 若 A 不可逆,则 AB 不可逆,等式成立:

$$\det(AB) = \det(A)\det(B) = 0.$$

若 A 可逆,则可表示为一系列初等矩阵的乘积 $A=E_k\cdots E_1$,从而 $\det(AB)=\det(E_k\cdots E_1B)=\det(E_k)\det(E_{k-1}\cdots E_1B)$ $=\det(E_k)\cdots\det(E_1)\det(B)=\det(E_k\cdots E_1)\det(B)=\det(A)\det(B)$. \square 其一个推论是

$$\det(A^{-1}) = \det(A)^{-1}. (5.10)$$

但是行列式与矩阵加法之间并无必然联系:

$$\det(A+B) \neq \det(A) + \det(B). \tag{5.11}$$

但是当 A, B 满足特殊的条件时,det(A+B) 可以化简,见后文的定理 5.3.4.

定理 5.3.2: 分块矩阵的行列式 · 一

若 $A \in m$ 阶方阵, $D \in n$ 阶方阵, $B \in m \times n$ 矩阵, 则

$$\begin{vmatrix} A & B \\ 0 & D \end{vmatrix} = |A| |D|. \tag{5.12}$$

证明: 对 A,D 进行 LU 分解, $A = L_A U_A, D = L_D U_D$,则

$$\begin{bmatrix} A & B \\ 0 & D \end{bmatrix} = \begin{bmatrix} L_A & \\ & L_D \end{bmatrix} \begin{bmatrix} U_A & L_A^{-1}B \\ & U_D \end{bmatrix}$$

前者为下三角矩阵,后者为上三角矩阵,故

$$\begin{vmatrix} A & B \\ 0 & D \end{vmatrix} = |L_A| |L_D| |U_A| |U_D| = |A| |D|.$$

定理 5.3.3: 分块矩阵的行列式・二

若 $A \not\in m$ 阶方阵, $D \not\in n$ 阶方阵,且 A,D 至少一个可逆, $B \not\in m \times n$ 矩阵, $C \not\in n \times m$ 矩阵,则

$$\begin{vmatrix} A & B \\ C & D \end{vmatrix} = |A| \left| D - CA^{-1}B \right| = |D| \left| A - BD^{-1}C \right|$$
 (5.13)

证明: 注意到

$$\begin{bmatrix} I & 0 \\ -CA^{-1} & I \end{bmatrix} \begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} A & B \\ 0 & -CA^{-1}B + D \end{bmatrix};$$
$$\begin{bmatrix} I & -BD^{-1} \\ 0 & I \end{bmatrix} \begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} A - BD^{-1}D & 0 \\ C & D \end{bmatrix}.$$

定理 5.3.4: 矩阵行列式引理

若 A 可逆且 u,v 均为 n 维列向量,则

$$\det(A + uv^{\top}) = (1 + v^{\top}A^{-1}u)\det(A). \tag{5.14}$$

证明: 先证明命题对于 A = I 成立, 事实上

$$\begin{bmatrix} I \\ v^\top & 1 \end{bmatrix} \begin{bmatrix} I + uv^\top & u \\ & 1 \end{bmatrix} \begin{bmatrix} I \\ -v^\top & 1 \end{bmatrix} = \begin{bmatrix} I & u \\ & 1 + v^\top u \end{bmatrix}.$$

故

$$\det(I + uv^{\top}) = 1 + v^{\top}u \tag{5.15}$$

进而

 $\det(A+uv^{\top}) = \det(A)\det(I+A^{-1}uv^{\top}) = (1+v^{\top}A^{-1}u)\det(A). \quad \Box$ 行列式的运算技巧不宜写得过多,因为这远非线性代数的精髓.

5.4 Cramer 法则、伴随矩阵

定理 5.4.1: Cramer 法则

考虑线性方程组

$$Ax = b$$
,

 Ae_i 是 A 的第 i 列,定义矩阵 B_i 为把 A 中第 i 列换为 b 的矩阵

$$B_i := A[e_1, \dots, e_{i-1}, x, e_{i+1}, \dots, e_n],$$

左右取行列式,则

$$x_i = \frac{\det(B_i)}{\det(A)}. (5.16)$$

Cramer 法则的应用之一是矩阵求逆,利用 $AA^{-1}=I$,把 A^{-1} 的元素 看做未知数,解线性方程组

$$(A^{-1})_{ij} = \frac{C_{ji}}{\det(A)}.$$

定义 5.4.1: 伴随矩阵

n 阶方阵 A 的伴随矩阵 (adjoint matrix) adj(A)

$$(\operatorname{adj}(A))_{ij} := C_{ji}. \tag{5.17}$$

根据 Cramer 法则,

$$A^{-1} = \frac{\operatorname{adj}(A)}{\det(A)}. (5.18)$$

特别注意,即使 A 不可逆, adj A 依然存在.

定理 5.4.2: 伴随矩阵的性质

伴随矩阵与原矩阵可交换, 其乘积为

$$A\operatorname{adj}(A) = \operatorname{adj}(A)A = \det(A)I. \tag{5.19}$$

证明: 根据 Laplace 展开

$$[A \operatorname{adj}(A)]_{ij} = \sum_{k} A_{ik} [\operatorname{adj}(A)]_{kj} = \sum_{k} (-)^{j+k} A_{ik} M_{jk} = \delta_{ij} \operatorname{det}(A);$$
$$[\operatorname{adj}(A)A]_{ij} = \sum_{k} [\operatorname{adj}(A)]_{ik} A_{kj} = \sum_{k} (-)^{i+k} M_{ki} A_{kj} = \delta_{ij} \operatorname{det}(A).$$

进而有

$$\det(A)\det(\operatorname{adj}(A)) = \det(\det(A)I) = (\det(A))^n.$$

故伴随矩阵的行列式

$$\det(\operatorname{adj}(A)) = \det(A)^{n-1}.$$
(5.20)

上面的性质并不要求 A 可逆. 特别的, 若 A 可逆,则伴随矩阵也可逆

$$\operatorname{adj}(A)^{-1} = \left(\det(A)A^{-1}\right)^{-1} = \frac{A}{\det(A)},$$
 (5.21)

伴随矩阵的伴随矩阵

$$\operatorname{adj}(\operatorname{adj}(A)) = (\operatorname{adj}(A))^{-1} \det(\operatorname{adj}(A)) = (\det(A))^{n-2} A. \tag{5.22}$$

最后评价一句 Cramer 法则: 计算机运用 Cramer 法则解 n 元线性方程组的时间复杂度是 $\mathcal{O}(n \cdot n!)$,且在数值上不稳定^{II},这是不可接受的. 与其在计算方面的作用相比,其理论价值更为重大,即: 研究了方程组的系数与方程组解的存在性与唯一性关系.

^{II}Cramer, Gabriel (1750). "Introduction à l'Analyse des lignes Courbes algébriques" (in French). Geneva: Europeana. pp. 656-659. Retrieved 2012-05-18.

线性代数 by Dait

6 特征值和特征向量

6.1 特征值和特征向量

定义 6.1.1: 特征值和特征向量

方阵 A 的特征向量 (eigenvector) $x \neq 0$ 满足:

$$Ax = \lambda x, \quad \lambda \in \mathbb{F}.$$

其中 λ 称为 A 的特征值 (eigenvalue).

定理 6.1.1: 特征值的性质

- 1. A 的特征向量 x 也是 A^n 的特征向量,特征值是 λ^n ;
- 2. 若 A 可逆,则 x 也是 A^{-1} 的特征向量,特征值是 λ^{-1} ;
- 3. 三角矩阵的特征值就是对角元;
- 4. A 可逆 \Leftrightarrow A 所有特征值非 0. 只需注意到 A 可逆时 Ax = 0 只有零解即可.

定义 6.1.2: 特征子空间

A 的所有特征值为 λ 的特征向量再加上 0 构成 \mathbb{R}^n 的一个线性子空间,这个子空间就是 $N(A - \lambda I)$.

定理 6.1.2: 特征值

假设 n 阶矩阵 A 有特征向量 x_1, \ldots, x_r ,对应特征值为 $\lambda_1, \ldots, \lambda_r$,且 这些特征值两两不等,则 x_1, \ldots, x_r 线性无关.

证明: 运用数学归纳法证明. r=1 时,定理自动成立; 假设 r=m-1 定理成立,若定理在 r=m 时不成立,则

$$x_m = c_1 x_1 + \dots + c_{m-1} x_{m-1}, \tag{*}$$

两边同时左乘 A 得

$$\lambda_m x_m = c_1 \lambda_1 x_1 + \dots + c_{m-1} \lambda_{m-1} x_{m-1}, \tag{**}$$

 $\lambda_m(*) - (**)$ 得,

$$0 = c_1(\lambda_m - \lambda_1)x_1 + \dots + c_{m-1}(\lambda_m - \lambda_{m-1})x_{m-1},$$

由 x_1, \ldots, x_{m-1} 线性无关可得所有的 $c_i = 0$,矛盾!

6.2 特征多项式

求特征值 λ 需要解如下的特征方程 (eigenfunction)

$$\det(\lambda I - A) = \lambda^n + a_1 \lambda^{n-1} + \dots + a_n = 0,$$

特别的,特征多项式 (eigen-polynomial) 的系数有如下性质:

$$a_1 = -\operatorname{tr}(A), \quad a_n = (-)^n \det(A)$$
 (6.1)

由 Vieta 定理,在考虑重根的情况下,

$$\operatorname{tr}(A) = \sum_{i=1}^{n} \lambda_{i}, \quad \det(A) = \prod_{i=1}^{n} \lambda_{i}. \tag{6.2}$$

更一般的,Cayley-Hamilton 定理给出了其他项的系数表达式,比如

$$a_2 = \frac{1}{2} (\operatorname{tr}^2(A) - \operatorname{tr}(A^2)).$$

定理 6.2.1: 相似变换的特征多项式

A 的相似变换 $B^{-1}AB$ 和 A 有相同的特征多项式.

证明: 对下式两边取行列式即证

$$\lambda I - B^{-1}AB = B^{-1}(\lambda I - A)B.$$

直接推论是:相似变换与原矩阵的迹相同

$$\operatorname{tr}(B^{-1}AB) = \operatorname{tr}(A). \tag{6.3}$$

6.3 矩阵对角化

定理 6.3.1: 可对角化判定

n 阶矩阵 A 可对角化 \Leftrightarrow A 有 n 个线性无关的特征向量 x_1, \ldots, x_n ,此时 $A = X\Lambda X^{-1}$,且

$$X = (x_1, \dots, x_n), \quad \Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_n).$$
 (6.4)

证明: 假设 A 有 n 个线性无关的特征向量 x_1, \ldots, x_n ,

$$AX = (Ax_1, \dots, Ax_n) = (\lambda_1 x_1, \dots, \lambda_n x_n) = X\Lambda,$$

故 A 可对角化; 反过来说, 若 A 可对角化为 $X\Lambda X^{-1}$, 则 $AX = X\Lambda$, 即

$$(Ax_1,\ldots,Ax_n)=(\lambda_1x_1,\ldots,\lambda_nx_n),$$

故 x_1, \ldots, x_n 是 A 的特征向量,又 X 可逆,故 x_1, \ldots, x_n 线性无关. 口推论:有 n 个互不相同特征值的 n 阶矩阵 A 可对角化. 当特征值重复时,引入两个概念

定义 6.3.1: 几何重数和代数重数

几何重数 (geometric multiplicity, GM): 特征值 λ 对应的最大线性无关的特征向量的个数,即 $\dim(N(\lambda I - A))$.

代数重数 (algebraic multiplicity, AM): 特征值 λ 作为特征方程 $\det(\lambda I - A) = 0$ 的根的重复次数.

特征方程可以写成

$$\prod_{i=1}^{r} (\lambda - \lambda_i)^{m_i} = 0,$$

其中 λ_i 是互不相同的根, m_i 是 λ_i 的代数重数.

定理 6.3.2

 $GM \leq AM$.

证明: 考虑 n 阶矩阵 A,假设特征值 λ_1 的 GM = dim($\lambda_1 I - A$) = m,取 $\{x_1, \ldots, x_m\}$ 为 $C(\lambda_1 I - A)$ 的一组正交归一基.取 $\{b_1, \ldots, b_{n-m}\}$ 为 $N(\lambda_1 I - A)^{\perp}$ 的一组正交归一基.

设 $n \times n$ 矩阵

$$P = (x_1, \dots, x_m, b_1, \dots, b_{n-m}) = (X, B),$$

P 是可逆的且 $P^{-1} = P^{\mathsf{T}}$,且 $X^{\mathsf{T}}B = 0$,则

$$P^{-1}AP = \begin{bmatrix} \lambda_1 I_m & X^\top AB \\ 0 & B^\top AB \end{bmatrix},$$

分块三角矩阵

$$\det(\lambda I - P^{-1}AP) = (\lambda - \lambda_1)^m \det(\lambda I - B^{\top}AB),$$

A 和 $P^{-1}AP$ 有相同的特征方程,故 λ_1 必然是 A 的特征方程的根,且其 $AM \geqslant GM$.

推论: n 阶矩阵 A 的全部特征值为 $\{\lambda_1,\ldots,\lambda_r\}$, A 可对角化当且仅当

$$\sum_{i=1}^{r} \dim(\lambda_i I - A) = n,$$

即所有特征值的 AM = GM.

定理 6.3.3: 同时对角化

若 A, B 可对角化,则他们可以同时对角化当且仅当 AB = BA.

$$A = X\Lambda_A X^{-1}, \quad B = X\Lambda_B X^{-1},$$

故

$$AB - BA = X(\Lambda_A \Lambda_B - \Lambda_B \Lambda_A)X^{-1} = 0;$$

若 AB = BA, 下证 A, B 可同时对角化.

设 A 的特征值为 $\{\lambda_1, \ldots, \lambda_s\}$, λ_i 对应特征子空间为 V_i ,几何重数 $m_i = \dim(V_i)$,记 $n_i := m_1 + \cdots + m_{i-1}$,取 $\{v_{n_i+1}, \ldots, v_{n_i+m_i}\}$ 表示 V_i 的一组基,记 $X = (v_1, \ldots, v_n)$,则 X 可对角化 A

$$X^{-1}AX = \begin{bmatrix} \lambda_1 I_{m_1} & & \\ & \ddots & \\ & & \lambda_s I_{m_s} \end{bmatrix},$$

 $\forall x \in V_i$,

$$(AB - BA)x = (A - \lambda_i I)Bx = 0,$$

故 $Bx \in V_i$, 从而 $X^{-1}BX$ 和 $X^{-1}AX$ 一样是分块对角的:

$$X^{-1}BX = \begin{bmatrix} B_1 & & \\ & \ddots & \\ & & B_s \end{bmatrix},$$

其中 B_i 是 $m_i \times m_i$ 的. 给定 B 的特征值 ξ_j ,其必是 B_1, \ldots, B_s 其中至少一个的特征值,不妨考虑 ξ_j 是 B_i 的特征值^{III},若 ξ_j 的 AM $> B_i$ 的 GM,则 ξ_j 的 AM > B 的 GM,B 便不能被对角化,与前提矛盾! 故 B_i 均可被特定的 Y_i 对角化,即 $Y_i^{-1}B_iY_i = \Lambda_i$,构造

$$Y = \begin{bmatrix} Y_1 & & \\ & \ddots & \\ & & Y_s \end{bmatrix}$$

则 $Y^{-1}X^{-1}BXY$ 是对角化的,同时 $Y^{-1}X^{-1}AXY$ 也是对角化的,取 Z=XY,便可同时对角化 A,B.

6.4* Jordan 标准型

不是所有方阵都可以对角化,如果 n 阶矩阵 A 有 r < n 个线性独立的特征向量,怎么把 A 变成最接近对角矩阵的形式?

定理 6.4.1: Jordan 标准型

n 阶矩阵 A 有 r 个特征值,则存在 B,使得

$$B^{-1}AB = \begin{bmatrix} J_1 & & \\ & \ddots & \\ & & J_r \end{bmatrix}, \quad J_i = \begin{bmatrix} \lambda_i & 1 & & \\ & \lambda_i & \ddots & \\ & & \ddots & 1 \\ & & & \lambda_i \end{bmatrix}$$

其中 J_i 称为 Jordan 块, λ_i 是 A 的第 i 个特征值.

证明: 其证明是线性代数的核心. 其中一些概念需要等到第8章线性映射才会提及. 先给出几个概念证明引理.

 $^{^{\}rm III}$ 无需考虑 ${\rm N}(B_i)$

定义 6.4.1: 广义特征向量

线性映射 $T:V\to V$ 的广义特征向量 (general eigenvector) $v\in V$ 且 $v\neq 0$,使得 $(T-\lambda I)^k v=0$ 对某个正整数 k 成立.这里 $I:V\to V$ 是恒等映射.

使得 $(T-\lambda I)^d v = 0$ 成立的最小正整数 d 称为 v 的幂指数 (exponent).

定理 6.4.2

给定正整数 k,广义特征方程 $(T-\lambda I)^k v=0$ 有解当且仅当 λ 是 T 的特征值.

证明: 若 λ 是 T 的特征值,则 $(T - \lambda I)v = 0$,左乘 $(T - \lambda I)^{k-1}$ 即可. 若 $(T - \lambda I)^k v = 0$ 有解,则 $w = (T - \lambda I)^{k-1}v$ 满足 $(T - \lambda I)w = 0$, λ 是 T 的特征值.

定理 6.4.3

令 $u_i := (T - \lambda I)^i v$,则 $B = \{u_0, \dots, u_{d-1}\}$ 是一组线性无关的向量.

证明: 设

$$\sum_{i=0}^{d-1} a_i u_i = \sum_{i=0}^{d-1} a_i (T - \lambda I)^i v = 0,$$

左乘 $(T - \lambda I)^{d-1}$, 左边只剩 $a_0(T - \lambda I)^{d-1}v$, 故 $a_0 = 0$;

递推地左乘 $(T-\lambda I)^{d-2}, (T-\lambda I)^{d-3}, \dots$ 可得到所有系数为 0,从而 u_0, \dots, u_{d-1} 线性无关.

定理 6.4.4

$$Tu_{j} = \begin{cases} \lambda u_{j} + u_{j+1}, & 1 \leq j < d - 1 \\ \lambda u_{j}, & j = d - 1 \\ 0, & j > d - 1 \end{cases}$$

证明: $1 \le j < d-1$ 时, $(T-\lambda I)u_j = u_{j+1}$,即 $Tu_j = \lambda u_j + u_{j+1}$. j = d-1 时, $(T-\lambda I)u_j = 0$,即 $Tu_j = \lambda u_j$; j > d-1 时, $u_j = 0$.

定理 6.4.5

 $X = \operatorname{span}(B)$ 是 T 的不变子空间,即 $T(X) \subset X$

证明: 由上式, $\forall u = a_0 u_0 + \cdots + a_{d-1} u_{d-1} \in X$

$$Tu = \sum_{i=0}^{d-2} a_i (\lambda u_i + u_{i+1}) + a_{d-1} \lambda u_{d-1} \in X.$$

因为 X 是 T 的不变子空间,我们可以把 T 看成是 $X \to X$ 的线性映射. 取 B 作为 X 的一组基,则 T 在 B 下的表示矩阵为

$$T = \begin{bmatrix} \lambda & & & \\ 1 & \lambda & & \\ & \ddots & \ddots & \\ & & 1 & \lambda \end{bmatrix}$$

这与 Jordan 块在定理 6.4.1 中的定义仅仅是转置的差别.

接下来我们将证明 V 中存在一组基,T 在这组基上的表示矩阵是分块对角的,而且每一块都是 Jordan 块的形式.

定理 6.4.6

若 v_1, \ldots, v_r 是 T 的广义特征向量,且相应的幂指数是 d_i ,设

$$u_{ij} := (T - \lambda_i I)^j v_i, \quad V_i := \operatorname{span}(u_{i0}, \dots, u_{id-1}).$$

之前证明了 V_i 是 T 的不变子空间,且 T 在 V_i 上的表示矩阵是 Jordan 块. 故 T 在 $V_1 \oplus \cdots \oplus V_r$ 上的表示矩阵是分块对角的,且每一块都是 Jordan 块的形式.

所以我们只要证明存在这样一组广义特征向量 v_1, \ldots, v_r 使得 $V = V_1 \oplus \cdots \oplus V_r$ 就可以证明 Jordan 标准型的定理.

假设 λ 是 T 的某个特征值. 如果 $T-\lambda I$ 可以写成 Jordan 块的形式,则 T 也可以写成 Jordan 块的形式. 所以以下我们用 $T-\lambda I$ 代替 T,或者说,考虑有一个特征值是 0 的线性映射 T.

定理 6.4.7

设
$$K_i = \ker(T^i), U_i = \operatorname{Im}(T^i)$$
,则

$$K_1 \subset K_2 \subset \cdots, \quad U_1 \supset U_2 \supset \cdots$$

证明:

6.5 对称矩阵

定理 6.5.1: 对称矩阵的性质 · 一

若 S 是一个 n 阶实对称矩阵,则 S 至少有一个实特征值 λ

证明: 由代数基本定理,对任何矩阵,S 的特征方程至少会得到一个复特征值 λ ,其对应的特征向量为 z (一般也是复的),则 $\bar{z}^{\mathsf{T}}z > 0$.

$$Sz = \lambda z, \quad S\bar{z} = \bar{S}\bar{z} = \overline{Sz} = \bar{\lambda}\bar{z},$$

由 S 的对称的性质,注意到

$$\bar{z}^{\mathsf{T}}Sz = \lambda \bar{z}^{\mathsf{T}}z = \lambda (\bar{z}^{\mathsf{T}}z)^{\mathsf{T}} = \lambda z^{\mathsf{T}}\bar{z} = (Sz)^{\mathsf{T}}\bar{z} = z^{\mathsf{T}}S\bar{z} = \bar{\lambda}z^{\mathsf{T}}\bar{z}.$$

故 $\lambda = \bar{\lambda}$.

由代数基本定理的递归性,可推知 S 的所有特征值都是实数.

定理 6.5.2: 对称矩阵的性质 · 二

v 是 S 的特征向量, 若 $w \perp v$, 则 $Sw \perp v$.

证明:

$$(Sw)^{\top}v = w^{\top}S^{\top}v = w^{\top}Sv = \lambda w^{\top}v = 0.$$

定理 6.5.3: 对称矩阵的性质•三

若 $W \in \mathbb{R}^n$ 的一个线性子空间且在 S 的作用下稳定:

$$\forall w \in W, Sw \in W,$$

则 W^{\perp} 在 S 的作用下稳定:

$$\forall u \in W^{\perp}, \ Su \in W^{\perp}.$$

证明: $\forall w \in W, u \in W^{\perp}$

$$(Su)^{\top}w = u^{\top}S^{\top}w = u^{\top}(Sw) = 0.$$

定理 6.5.4: 谱定理

对称矩阵 S 总可以被一个正交矩阵 Q 对角化.

证明: 由定理 6.5.1 和推论可知 S 至少有一个实特征值 λ_1 和实特征向量 q_1 且 $q_1^{\mathsf{T}}q_1=1$,S 在 q_1 张成的一维线性空间上是稳定的.

由定理 6.5.3 可知 S 作用在 $C(q_1)^{\perp}$ 上也是稳定的,假设 $C(q_1)^{\perp}$ 上有一组正交归一基为 $\{a_1,\ldots,a_{n-1}\}$,构造矩阵 $X_1=[q_1,a_1,\ldots,a_{n-1}]$,且 X是正交的 $X_1^{\top}X_1=I$,

$$X_1^{\top} S X_1 = X_1^{\top} [\lambda q_1, S a_1, \dots, S a_{n-1}] = \begin{bmatrix} \lambda_1 & & \\ & S_1 \end{bmatrix}.$$

 S_1 是一个 (n-1) 阶方阵,且 $(S_1)_{ij} = a_i^{\top} S a_j$ 的,显然它也是对称的. 重复上述步骤,直到用 S 的特征向量构造出 \mathbb{R}^n 的一组正交归一基: 对 S_1 可构造 (n-1) 阶的正交矩阵 X_2 ,使得

$$X_2^\top S_1 X_2 = \begin{bmatrix} \lambda_2 & \\ & S_2 \end{bmatrix},$$

其中 S_2 是一个 (n-2) 阶对称方阵. 从而

$$\begin{bmatrix} 1 & \\ & X_2^\top \end{bmatrix} X_1^\top S X_1 \begin{bmatrix} 1 & \\ & X_2 \end{bmatrix} = \begin{bmatrix} \lambda_1 & \\ & \lambda_2 & \\ & & S_2 \end{bmatrix}.$$

 $Q_2 := X_1 \operatorname{diag}(1, X_2)$ 也是正交的······最终有

$$Q_n^{\top} S Q_n = \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix}.$$

 Q_n 也是正交的.

对角化对称矩阵 S 的正交矩阵 Q 可被构造:

- 若 S 的特征值互不相同,对应的归一特征向量 q_i 两两正交,可选 $Q = [q_1, \ldots, q_n]$;

6.6 正定矩阵

定义 6.6.1: 二次型

二次型 (quadratic form) 是形如 $x^{\top}Sx$ 的二次多项式,其中 S 是实对称矩阵.

定义 6.6.2: 正定矩阵

给定对称矩阵 S,如果 $\forall x \neq 0$,二次型 $x^{\top}Sx > 0$,则称 S 是正定的 (positive definite).

定理 6.6.1: 正定矩阵的判定

对于对称矩阵 S,下述命题是等价的:

- $1. \forall x \neq 0$,二次型 $x^{\top}Sx > 0$;
- 2. S 的所有 n 个特征值都是正的;
- 3. S 可以只通过换行和倍加后得到 n 个正的主元:
- 4. S 的所有左上行列式 (前 i 行 i 列子矩阵的行列式) 均 > 0;
- 5. 存在 A 列之间线性无关,使得 $S = A^{T}A$.

证明: $1 \Rightarrow 2$: S 对称,则 $\Lambda = Q^{\top}SQ$

$$\lambda_i = e_i^{\mathsf{T}} \Lambda e_i = e_i^{\mathsf{T}} Q^{\mathsf{T}} S Q e_i = (Q e_i)^{\mathsf{T}} S (Q e_i) > 0.$$

 $2 \Rightarrow 1$: S 的所有 n 个特征值都是正的, 故

$$x^{\top} S x = x^{\top} Q \Lambda Q^{\top} x = \sum_{i=1}^{n} \lambda_i (Q^{\top} x)_i^2 > 0.$$

 $5 \Rightarrow 1$: A 列之间线性无关,故 $\forall x \neq 0, Ax \neq 0$

$$x^{\top} S x = x^{\top} A^{\top} A x = (Ax)^{\top} (Ax) > 0.$$

 $1 \Rightarrow 5$: S 正定,故

$$S = Q\Lambda Q^{\top} = Q \begin{bmatrix} \sqrt{\lambda_1} & & \\ & \ddots & \\ & & \sqrt{\lambda_n} \end{bmatrix} \begin{bmatrix} \sqrt{\lambda_1} & & \\ & \ddots & \\ & & \sqrt{\lambda_n} \end{bmatrix} Q^{\top} =: A^{\top} A.$$

 $3 \Rightarrow 4$: 行倍加不改变所有左上行列式,S 做行倍加得到上三角矩阵 U,其 $i \times i$ 的左上行列式就是前 i 个主元的乘积,所以 > 0.

 $4 \Rightarrow 3$: U 的左上行列式都 > 0,所以前 i 个主元乘积都 > 0,所以主元全正.

 $3 \Rightarrow 5$: S = LDU, 由 S 对称且 LDU 分解唯一可知 $L = U^{\top}$,又主元全正,故

$$S = U^{\top}DU = U^{\top} \begin{bmatrix} \sqrt{a_1} & & \\ & \ddots & \\ & & \sqrt{a_n} \end{bmatrix} \begin{bmatrix} \sqrt{a_1} & & \\ & \ddots & \\ & & \sqrt{a_n} \end{bmatrix} U =: A^{\top}A.$$

 $5 \Rightarrow 3$: A 列之间线性无关,故 A = QR

$$A^{\top}A = R^{\top}Q^{\top}QR = R^{\top}R = LDU. \qquad \Box$$

定义 6.6.3: 半正定矩阵

如果 $\forall x \neq 0$,二次型 $x^{\top}Sx \geq 0$,则称 S 是半正定的 (positive semi-definite).

定理 6.6.2: 半正定但非正定矩阵的判定

- 1. S 的最小特征值是 0;
- 2. 存在 A 列之间线性相关,使得 $S = A^{T}A$.

半正定但非正定矩阵的行列式为 0.

线性代数 by Dait

7 奇异值分解

特征值和特征向量只适用于方阵,对于一般的 $m \times n$ 矩阵 A,有没有类似的操作?

考虑 $A^{\mathsf{T}}A$ 和 AA^{T} , 他们都是半正定的, 因为 $\forall x$

$$x^{\top} A^{\top} A x = \|Ax\|^2 \geqslant 0,$$

 AA^{T} 同理,因此 $A^{\mathsf{T}}A$ 和 AA^{T} 都可以对角化.

定义 7.0.1: 奇异值

 $A^{\top}A$ 是半正定的,因此所有特征值 $\lambda_i \geq 0$,矩阵 A 的奇异值 (singular value) 便定义为 $A^{\top}A$ 特征值的平方根: $\sigma_i := \sqrt{\lambda_i}$.

为了后续方便,我们将所有奇异值从大到小排列:

$$\sigma_1 \geqslant \sigma_2 \geqslant \cdots \geqslant \sigma_n \geqslant 0.$$

由定理 4.2.1, $\operatorname{rank}(A^{\top}A) = \operatorname{rank}(A)$

定理 7.0.1: 非零奇异值的数量

A 的非零奇异值的数量 r = rank(A).

证明: 设 $\{v_1, \ldots, v_n\}$ 为 \mathbb{R}^n 中可以把 $A^{\top}A$ 对角化的一组正交归一基, $\{\lambda_1, \ldots, \lambda_n\}$ 为对应的特征值,则 $\{Av_1, \ldots, Av_n\}$ 是一个正交向量集合,即 $\forall i \neq j$,

$$(Av_i)^\top Av_j = v_i^\top A^\top Av_j = v_i^\top (\lambda_j v_j) = 0.$$

假设 $\lambda_1 \ge \cdots \ge \lambda_r > 0$ 是所有的正特征值,则 $Av_{r+1}, \ldots, Av_n = 0$.

 $\forall x \in \mathbb{R}^n$, x 可以写成 $x = c_1v_1 + \cdots + c_nv_n$, 从而 $\forall y \in C(A)$, y 可以 被写为 $\{Av_1, \ldots, Av_r\}$ 的线性组合:

$$y = Ax = c_1 A v_1 + \dots + c_r A v_r + 0 + \dots + 0,$$

故 $\{Av_1,\ldots,Av_r\}$ 是 C(A) 的一组正交基, $r=\operatorname{rank}(A)$.

7.1 奇异值分解

定理 7.1.1: 奇异值分解

 $m \times n$ 矩阵 A 秩为 r, 则存在一个 $m \times n$ 的矩阵 Σ

$$\Sigma = \begin{bmatrix} D & 0 \\ 0 & 0 \end{bmatrix}, \quad D = \operatorname{diag}(\sigma_1, \dots, \sigma_r).$$

 $m \times m$ 的正交矩阵 U 和 $n \times n$ 的正交矩阵 V, 且

$$A = U\Sigma V^{\top}$$
.

证明: 直接构造出 U, Σ, V .

 $A^{\top}A$ 是对称矩阵,存在一组 \mathbb{R}^n 中的正交归一基 $\{v_1,\ldots,v_n\}$ 可将 $A^{\top}A$ 对角化, $\{\lambda_1,\ldots,\lambda_n\}$ 为对应的特征值,且 $\lambda_1,\ldots,\lambda_r>0,\ \lambda_{r+1},\ldots,\lambda_n=0.$ 因为 $\{v_1,\ldots,v_n\}$ 之间是正交的,则 $\forall i\neq j$,

$$(Av_i)^{\top}(Av_j) = v_i^{\top} A^{\top} A v_j = \lambda_j v_i^{\top} v_j = 0.$$

所以 $\{Av_1,\ldots,Av_r\}$ 之间也是正交的, $Av_{r+1},\ldots,Av_n=0$. 令

$$u_i = \frac{Av_i}{\|Av_i\|} = \frac{Av_i}{\sqrt{\lambda_i}} = \frac{Av_i}{\sigma_i}, \quad i = 1, \dots, r.$$

则 $\{u_1,\ldots,u_r\}$ 是 C(A) 的一组正交归一基.

再设 $\{u_{r+1},...,u_m\}$ 是 $N(A^{\top})$ 中的一组正交归一基,因为 $N(A^{\top})$ = $C(A)^{\perp}$,则 $\{u_1,...,u_m\}$ 是 \mathbb{R}^m 的一组正交归一基.

设矩阵 $U = (u_1, ..., u_m)$, $V = (v_1, ..., v_n)$, U 和 V 都是正交矩阵, 且

$$AV = (Av_1, \dots, Av_n) = (\sigma_1 u_1, \dots, \sigma_r u_r, 0, \dots, 0) = U\Sigma.$$

定理 7.1.2

 $A^{\top}A$ 和 AA^{\top} 的非零特征值相同.

证明: 假设 x_i 是 $A^{T}A$ 的特征值为 $\lambda_i \neq 0$ 的特征向量,

$$(\lambda_i I - A^{\top} A) x_i = 0,$$

左乘 A,

$$A(\lambda_i I - A^{\top} A) x_i = (\lambda_i I - A A^{\top}) (A x_i) = 0,$$

又 $x_i^{\top} A^{\top} A x_i = \lambda_i x_i^{\top} x_i > 0$,所以 $A x_i \neq 0$,所以 $A x_i$ 是 $A A^{\top}$ 的特征值为 λ_i 的特征向量.

同理,如果 x_i 是 AA^{\top} 的特征值为 $\lambda_i \neq 0$ 的特征向量, $A^{\top}x_i$ 是 $A^{\top}A$ 的特征值为 λ_i 的特征向量.

从而 $A^{\mathsf{T}}A$ 和 AA^{T} 非零特征值对应的特征向量一一对应.

例 7.1.1: 四个子空间的正交归一基

$$\{v_1, \ldots, v_r\}$$
 是 $C(A^{\top})$ 的正交归一基, $V_r = (v_1, \ldots, v_r)$ $\{v_{r+1}, \ldots, v_n\}$ 是 $N(A)$ 的正交归一基, $V_{n-r} = (v_{r+1}, \ldots, v_n)$ $\{u_1, \ldots, u_r\}$ 是 $C(A)$ 的正交归一基, $U_r = (u_1, \ldots, u_r)$ $\{v_{r+1}, \ldots, v_n\}$ 是 $N(A^{\top})$ 的正交归一基, $U_{n-r} = (u_{r+1}, \ldots, v_m)$

例 7.1.2: 数据压缩

假设 rank(A) < min(m, n),则

$$A = \begin{bmatrix} U_r, U_{m-r} \end{bmatrix} \begin{bmatrix} D & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} V_r^\top \\ V_{n-r}^\top \end{bmatrix} = U_r D V_r^\top = \sum_{i=1}^r \sigma_i u_i v_i^\top.$$

可以用 U_r, D, V_r 这三个矩阵的 r(m+1+n) 个分量完全决定 A 原来的 mn 个分量. (无损)

甚至可以把很小的奇异值当成 0,进一步压缩图片. (有损) 由此带来的误差

$$\delta A = \sum_{\ell=k+1}^{r} \sigma_{\ell} u_{\ell} v_{\ell}^{\top}.$$

分量误差的绝对值

$$|\delta A_{ij}| = \left| \sum_{\ell=k+1}^r \sigma_{\ell}(u_{\ell})_i(v_{\ell})_j \right| \leqslant \sum_{\ell=k+1}^r \sigma_{\ell}.$$

因此误差由忽略的奇异值控制, 忽略的越少误差越小

7.2 矩阵的模

我们用内积定义了向量的模(即长度)

$$||x|| := \sqrt{x^{\top}x}.$$

定理 7.2.1

$$||Ax|| \leqslant \sigma_1 ||x||. \tag{7.1}$$

证明:

$$\begin{split} \|Ax\|^2 &= x^\top A^\top A x = x^\top V \Sigma^\top \Sigma V^\top x \\ &= \sum_{k=1}^r x^\top v_k \sigma_k^2 v_k^\top x \leqslant \sigma_1^2 \sum_{k=1}^n x^\top v_k v_k^\top x \\ &= \sigma_1^2 x^\top V V^\top x = \sigma_1^2 x^\top x, \end{split}$$

等号可在 $x = cv_1$ 时成立.

定义 7.2.1: 矩阵的模

矩阵的模 (norm) 定义为

$$||A|| := \max_{x \neq 0} \frac{||Ax||}{||x||} = \sigma_1. \tag{7.2}$$

由矩阵模的定义可直接导出 $\forall x \neq 0$,

$$||Ax|| \leqslant ||A|| \, ||x|| \, .$$

定理 7.2.2: 三角不等式

$$||A + B|| \le ||A|| + ||B||. \tag{7.3}$$

证明:

$$||(A+B)x|| = ||Ax+Bx|| \le ||Ax|| + ||Bx|| \le ||A|| \, ||x|| + ||B|| \, ||x||.$$

故

$$||A + B|| = \max_{x \neq 0} \frac{||(A + B)x||}{||x||} \le ||A|| + ||B||.$$

定理 7.2.3: Eckart-Young-Mirsky 定理

同矩阵 A 最接近的秩为 k 的矩阵为

$$A_k = \sum_{i=1}^k \sigma_i u_i v_i^{\top}. \tag{7.4}$$

证明: 只需证 $\forall B$ 秩为 k,都有

$$||A - B|| \ge ||A - A_k|| = \sigma_{k+1}.$$

设 $w = c_1v_1 + \cdots + c_{k+1}v_{k+1}$,因为 rank(B) = k,故 Bv_1, \ldots, Bv_{k+1} 必然 线性相关,继而存在非零的 c_1, \ldots, c_{k+1} 使得 Bw = 0,在此基础上再归一化 w,从而

$$||A - B||^2 \ge ||(A - B)w||^2 = ||Aw||^2$$
$$= \sigma_1^2 c_1^2 + \dots + \sigma_{k+1}^2 c_{k+1}^2 \ge \sigma_{k+1}^2 (c_1^2 + \dots + c_{k+1}^2) = \sigma_{k+1}^2. \quad \Box$$

7.3 伪逆

定义 7.3.1: 伪逆

 $m \times n$ 矩阵 $A = U \Sigma V^{\top}$,定义伪逆 (pseudoinverse) 是一个 $n \times m$ 的矩阵

$$A^+ := V\Sigma^+ U^\top. \tag{7.5}$$

其中 Σ^+ 是一个 $n \times m$ 的矩阵

$$\Sigma^+ := \begin{bmatrix} D^{-1} & 0 \\ 0 & 0 \end{bmatrix}, \quad D^{-1} = \text{diag}(\sigma_1^{-1}, \dots, \sigma_r^{-1}).$$

伪逆与原矩阵的乘积并不是单位矩阵:

$$A^{+}A = V \begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix} V^{\top},$$

是投影到 $C(A^{\top})$ 的矩阵;

$$AA^{+} = U \begin{bmatrix} I_{r} & 0 \\ 0 & 0 \end{bmatrix} U^{\top},$$

是投影到 C(A) 的矩阵.

但额外的满足:

$$AA^{+}A = A$$
, $A^{+}AA^{+} = A^{+}$.

定理 7.3.1: 伪逆与最小二乘法

最小二乘法

$$A^{\top}Ax = A^{\top}b,$$

的解为 $x^{+} = A^{+}b$.

证明:

$$A^{\top}Ax^{+} = V\Sigma^{\top}U^{\top}U\Sigma V^{\top}V\Sigma^{+}U^{\top}b = V\Sigma^{\top}U^{\top}b = A^{\top}b.$$

7.4 主成分分析

一组数据 $\mu = (\mu_1, \dots, \mu_n)$ 来源于 n 个样本,其平均值 (mean) 和方差 (variance) 分别为

$$\bar{\mu} = \frac{1}{n} \sum_{i=1}^{n} \mu_i, \quad \sigma^2 = \frac{1}{n-1} \sum_{i=1}^{n} (\mu_i - \bar{\mu})^2.$$

将数据存在一个 $m \times n$ 的矩阵 A 中,每一行对应一种数据,每一列代表一个样本.将每个元素减去其所在行的平均值

$$A_{ij} := (A_0)_{ij} - \frac{1}{n} \sum_{k=1}^{n} (A_0)_{ik}.$$

由此得到矩阵 A,每一行都是以 0 为中心的分布.

定义 7.4.1: 协方差矩阵

定义协方差矩阵 (covariance matrix)

$$S := \frac{AA^{\top}}{n-1}.\tag{7.6}$$

对角线上 S_{ii} 是样本方差; S_{ij} 是样本协方差.

方法 7.1: 主成分分析

主成分分析 (principal component analysis, PCA): 找到原有数据的 一系列线性组合作为新的数据,新数据之间的协方差为 0.

利用 $A = U\Sigma V^{\top}$,定义新的数据矩阵 $B := U^{\top}A = \Sigma V$,B 的协方差矩阵

$$\frac{BB^\top}{n-1} = \frac{\Sigma \Sigma^\top}{n-1}$$

是对角的,故B之间协方差为0.

这种变换总方差是不变的:

$$\operatorname{tr} \left(\frac{BB^\top}{n-1} \right) = \frac{\operatorname{tr} (U^\top AA^\top U)}{n-1} = \frac{\operatorname{tr} (UU^\top AA^\top)}{n-1} = \operatorname{tr} \left(\frac{AA^\top}{n-1} \right).$$

所有数据点分布在 $\{u_1, \ldots, u_r\}$ 张成的 C(A) 上, u_1 是所有数据变化最大的方向 (方差最大)、 u_2 次之…… $\{u_1, \ldots, u_r\}$ 称作主成分 (principal component).

线性代数 by Dait

8 线性映射

定义 8.0.1: 映射

S, S' 是两个集合,如果 $\forall x \in S$,均有一个 $f(x) = x' \in S'$ 与之对应,这种对应关系 $f: S \to S'$ 便叫映射 (mapping).

S 为定义域 (domain of definition), S' 为陪域 (codomain). f(x) 叫做 x 在映射 f 下的像 (image), f(S) 为值域 (domain of function).

定义 8.0.2: 映射的复合

 $f: U \to V, \ g: V \to W$,则 f, g 的复合 (composition) 构成一个新的映射 $g \circ f: U \to W$,

$$g \circ f(x) = g(f(x)).$$

映射的复合满足结合律

$$(h \circ g) \circ f = h \circ (g \circ f) \equiv h \circ g \circ f.$$

定义 8.0.3: 映射有关的概念

映射 $f: S \to S'$, y 的原像 (preimage)

$$f^{-1}(y) = \{x \in S \mid f(x) = y\}.$$

单射 (injection): $\forall x, y \in S$, $x \neq y$ 均有 $f(x) \neq f(y)$.

满射 (surjection): f(S) = S'.

双射 (bijection): 既是单射又是满射

恒等映射 (identity map): id: $S \to S$, $\forall x \in S$, id(x) = x.

逆映射 (inverse map): 若存在 $g: S' \to S$ 使得

$$g \circ f = \mathrm{id}_S, \quad f \circ g = \mathrm{id}_{S'},$$

则称映射 $f: S \to S'$ 可逆, $g = f^{-1}$ 为 f 的逆.

定理 8.0.1: 可逆映射

映射 $f: S \to S'$ 可逆 \Leftrightarrow f 是双射.

证明: 若 f 可逆, $g: S' \to S$ 为 f 的逆. 若 $x, y \in S$,满足 f(x) = f(y),则

$$x = g(f(x)) = g(f(y)) = y.$$

故 f 为单射; 又 $\forall z \in S'$, 取 $x = g(z) \in S$, 可得 f(x) = f(g(z)) = z, 故 f 为满射.

若 f 为双射,因为 f 为满射, $\forall z \in S'$,有 $x \in S$ 使得 f(x) = z,又 因 f 为单射,因此 x 是唯一的,我们可以定义 g(z) = x,故 g 是 f 的逆映射.

8.1 线性映射和矩阵

定义 8.1.1: 线性映射

V,W 是两个线性空间, 映射 $T:V\to W$ 是线性映射 (linear mapping) 若 T 满足:

- 1. $\forall u, v \in V, \ T(u+v) = T(u) + T(v);$
- 2. $\forall c \in \mathbb{F}, \ T(cu) = cT(u).$

线性映射也被称为线性变换;特别的, $V \to \mathbb{R}$ 的称为线性函数.

推论: T(0) = 0.

定理 8.1.1: 线性映射与基

V,W 是线性空间, $\{v_1,\ldots,v_n\}$ 是 V 中的一组基, $\{w_1,\ldots,w_n\}$ 是 W 中任意 n 个元素,则存在唯一的线性映射 $T:V\to W$ 使得

$$T(v_1) = w_1, \ldots, T(v_n) = w_n.$$

证明: (存在性) $\forall v \in V$ 均可唯一写成基的线性组合 $v = c_1v_1 + \cdots + c_nv_n$,定义映射 $T: V \to W$

$$T(v) = c_1 w_1 + \dots + c_n w_n,$$

下面证明 T 是线性映射,再任取 $u = d_1v_1 + \cdots + d_nv_n \in V$

$$T(v+u) = T((c_1+d_1)v_1 + \dots + (c_n+d_n)v_n)$$

= $(c_1+d_1)w_1 + \dots + (c_n+d_n)w_n = T(v) + T(u);$

$$T(cv) = T(cc_1v_1 + \dots + cc_nv_n) = cc_1w_1 + \dots + cc_nw_n = cT(v).$$

(唯一性) 假设存在另一个线性映射 $F: V \to W$ 满足

$$F(v_1) = w_1, \ldots, F(v_n) = w_n,$$

则

$$F(v) = c_1 F(v_1) + \dots + c_n F(v_n) = c_1 w_1 + \dots + c_n w_n = T(v).$$

因此只要知道一个线性映射在基上的值,就唯一决定了整个线性映射.

例 8.1.1: 矩阵定义线性映射

 $m \times n$ 的矩阵 A 可定义一个线性映射 $L_A: \mathbb{R}^n \to \mathbb{R}^m$,

$$\forall x \in \mathbb{R}^n, \ L_A(x) = Ax.$$

定理 8.1.2: 线性映射和矩阵

设 $L: \mathbb{R}^n \to \mathbb{R}^m$ 是线性映射,则存在唯一的矩阵 A 使得 $L=L_A$.

证明: 设 $\{e_1,\ldots,e_n\}$ 是 \mathbb{R}^n 的标准基, $\{f_1,\ldots,f_m\}$ 是 \mathbb{R}^m 的标准基, $\forall x \in \mathbb{R}^n$,有 $x = x_1e_1 + \cdots + x_ne_n$,则

$$L(x) = x_1 L(e_1) + \dots + x_n L(e_n).$$

 $L(e_i) \in \mathbb{R}^m$, 故可写成基的线性组合

$$L(e_i) = a_{1i}f_1 + \dots + a_{mi}f_m.$$

故

$$L(x) = x_1(a_{11}f_1 + \dots + a_{m1}f_m) + \dots + x_n(a_{n1}f_1 + \dots + a_{nm}f_m)$$

$$= (a_{11}x_1 + \dots + a_{1n}x_n)f_1 + \dots + (a_{m1}x_1 + \dots + a_{mn}x_n)f_m$$

$$= \begin{bmatrix} a_{11}x_1 + \dots + a_{1n}x_n \\ \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n \end{bmatrix} = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} =: Ax.$$

便唯一确定了一个矩阵 A.

线性映射给出了矩阵和向量乘法的自然定义.

8.2 线性映射的性质

利用线性映射和矩阵的对应,线性映射的加法和数乘等价于矩阵的加法 和数乘,零映射对应零矩阵,这些都是平凡的.

给出加法、数乘、零映射的定义后,所有 $V \to W$ 的线性映射的集合 $\{T\}$ 便构成一个线性空间,可验证满足 8 条公理.

定义 8.2.1: 线性映射的核

线性映射 $F: V \to W$ 的核 (kernel) 是所有满足 F(v) = 0 的向量 v 的集合

$$\ker(F) := \{ v \in V \mid F(v) = 0 \}.$$

 $\ker(F)$ 是 V 的线性子空间. $\ker(L_A) = N(A)$.

定理 8.2.1: 核和单射

$$\ker(F) = \{0\} \Leftrightarrow F$$
 是单射.

证明: (矩阵版本) 对应矩阵零空间为 $\{0\}$, Av = b 若有解则解必唯一. (抽象版本) 若 $u, v \in V$ 满足 F(u) = F(v), 则 F(u-v) = F(u) - F(v) = 0, 从而 u-v=0.

定理 8.2.2: 核的性质

线性映射 $F: V \to W$ 的核 $\ker(F) = \{0\}$,若 $v_1, \ldots, v_n \in V$ 线性无关,则 $F(v_1), \ldots, F(v_n)$ 线性无关.

证明: (矩阵版本) 对应矩阵零空间为 $\{0\}$,则列满秩,列之间线性无关. (抽象版本) 假设 $x_1F(v_1) + \cdots + x_nF(v_n) = 0$,则

$$F(x_1v_1 + \dots + x_nv_n) = 0, \quad \Rightarrow \quad x_1v_1 + \dots + x_nv_n = 0.$$

 v_1, \ldots, v_n 线性无关, 故只有零解.

定义 8.2.2: 线性映射的像

线性映射 $F: V \to W$ 的像 (image) 是所有 F(v) 的集合

$$\operatorname{Im}(F) := \{ F(v) \in W \mid \forall v \in V \} .$$

Im(F) 是 W 的线性子空间. $Im(L_A) = C(A)$.

定理 8.2.3: 核和像的关系

V 是线性空间, $L:V\to W$ 是线性映射

$$\dim(V) = \dim(\ker(L)) + \dim(\operatorname{Im}(L)). \tag{8.1}$$

证明: (矩阵版本)

$$\dim(V) = \dim\big(\mathrm{N}(A)\big) + \dim\big(\mathrm{C}(A^\top)\big) = \dim\big(\mathrm{N}(A)\big) + \dim\big(\mathrm{C}(A)\big).$$
 (抽象版本) 略

定理 8.2.4: 核、像和双射

线性映射 $L: V \to W$,且 $\dim(V) = \dim(W)$,则

$$\ker(F) = \{0\} \Leftrightarrow \operatorname{Im}(F) = W \Leftrightarrow L$$
是双射.

证明: 略

8.3 基的变换

设 $B=\{v_1,\ldots,v_n\}$ 是线性空间 V 上的一组基, $\forall v\in V$ 均可唯一写成 $v=x_1v_1+\cdots+x_nv_n$

定义 8.3.1: 坐标向量

向量 v 在基 B 下的坐标向量 (coordinate vector) 为

$$x_B(v) = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}.$$

显然 $x_B: V \to \mathbb{R}^n$ 是线性映射,且是一个双射.

我们可以选取 V 上的另一组基 $B' = \{u_1, \ldots, u_n\}$, 基变换矩阵:

$$(u_1, \dots, u_n) = (v_1, \dots, v_n)M, \tag{*}$$

v 也可以写成 $v = y_1u_1 + \cdots + y_nu_n$, 由于向量在基的变换下保持不变, 故

$$v = (v_1, \dots, v_n)(x_1, \dots, x_n)^{\top} = (u_1, \dots, u_n)(y_1, \dots, y_n)^{\top}.$$

可以推出

$$\begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} = M^{-1} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}. \tag{*}$$

定理 8.3.1: 换基矩阵

 $L: V \to W$ 是一个线性映射, $B = \{v_1, \ldots, v_n\}$ 是 V 上的一组基, $B' = \{w_1, \ldots, w_m\}$ 是 W 上的一组基.则存在唯一的 $m \times n$ 矩阵 $M_{B'}^B(L)$,使得 $\forall v \in V$,

$$x_{B'}(L(v)) = M_{B'}^B(L)x_B(v).$$

证明: $\forall v \in V$,有

$$v = x_1v_1 + \dots + x_nv_n$$
, $L(v) = x_1L(v_1) + \dots + x_nL(v_n)$.

 $L(v_i) \in W$, 所以

$$L(v_i) = m_{1i}w_1 + \dots + m_{mi}w_m.$$

写成矩阵的形式即 $(L(v_1),\ldots,L(v_n))=(w_1,\ldots,w_m)M$,从而

$$L(v) = (L(v_1), \dots, L(v_n))(x_1, \dots, x_n)^{\top} = (w_1, \dots, w_m)M(x_1, \dots, x_n)^{\top}.$$

故 L(v) 在 B' 上的坐标为 $M(x_1,\ldots,x_n)^{\top}$.

 $M_{B'}^B(L)$ 是所有线性变换 $L:V\to W$ 到 $\dim(W)\times\dim(V)$ 矩阵的线性映射,并且是一个双射.

特别的, 当 $L \equiv id: V \rightarrow V$ 时,

$$x_{B'}(v) = M_{B'}^B(\mathrm{id})x_B(v).$$

定理 8.3.2: 线性变换的复合与矩阵乘法

线性映射 $L_1: U \to V$, $L_2: V \to W$, B, B', B'' 分别是 U, V, W 上的一组基,则

$$M_{B''}^B(L_2 \circ L_1) = M_{B''}^{B'}(L_2)M_{B'}^B(L_1).$$

线性映射的复合等价于对应矩阵的乘法,由此可自然得到矩阵乘法的规则.

定理 8.3.3: $M_{B'}^B(id)$ 可逆

$$M_{B'}^B(id) = M_B^{B'}(id)^{-1}.$$

定理 8.3.4

线性映射 $L:V\to W$, B,B' 是 V 上的两组基, C,C' 是 W 上的两组基,则

$$M_{C'}^{B'}(L) = M_{C'}^{C}(\mathrm{id})M_{C}^{B}(L)M_{B}^{B'}(\mathrm{id}) = M_{C}^{C'}(\mathrm{id})^{-1}M_{C}^{B}(L)M_{B}^{B'}(\mathrm{id})$$

证明: 利用 $L = id_W \circ L \circ id_V$.

推论: $L:V\to V$, B,B' 是 V 上的两组基,则

$$M_{B'}^{B'}(L) = M_B^{B'}(\mathrm{id})^{-1} M_B^B(L) M_B^{B'}(\mathrm{id}).$$

因此相似变换就是换基,矩阵对角化就是找到描述线性变换的最好的基.

8.4 对偶空间

如何从已知的线性空间构造新的线性空间?

定义 8.4.1: 对偶空间

线性空间 V 的对偶空间 (dual space) V^* 是所有线性映射 $L:V\to\mathbb{R}$ 构成的线性空间.

定理 8.4.1: 对偶空间的基

通过 V 的一组基 $\{v_1,\ldots,v_n\}$ 可构造 V^* 的基 $\{v^{*1},\ldots,v^{*n}\}$,满足

$$v^{*i}(v_j) = \delta^i{}_j = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$
 (8.2)

证明: (完备性) $\forall L \in V^*$, 由定理 8.1.1, L 可由 $\{L(v_1), \ldots, L(v_n)\}$ 唯一决定,又 $L(v_1)v^{*1} + \cdots + L(v_n)v^{*n}$ 和 L 在 v_1, \ldots, v_n 上取到了相同的值,故二者相等,即 L 可被写成 $\{v^{*1}, \ldots, v^{*n}\}$ 的线性组合:

$$L = L(v_1)v^{*1} + \dots + L(v_n)v^{*n}$$
.

(线性无关) 若基的线性组合是零映射 $x_1v^{*1} + \cdots + x_nv^{*n} = O$,则 $O(v_i) = x_i = 0$,即只有零解.

例 8.4.1: Fourier 变换

Fourier 变换

$$\hat{f}(k) = \int f(x) e^{ik \cdot x} d^3x,$$

就是将 \mathbb{R}^3 的函数变成 $(\mathbb{R}^3)^*$ 的函数.

例 8.4.2: 对偶的对偶

依定义,对偶空间 V^* 的对偶空间 V^{**} 是所有线性映射 $F:V^*\to\mathbb{R}$ 构成的线性空间. $\forall v\in V$,可定义映射 $u^{**}\in V^{**}$,使得 $\forall L\in V^*$

$$u^{**}(L) = L(u).$$

因此 V^{**} 和 V 是自然同构的 (natural isomorphism). 这是范畴论 (category theory) 的概念,粗糙地说就是这种同构关系不依赖于基的 选取,而 V 和 V^* 的同构是依赖于基的. 由此我们可以将 V^{**} 和 V 视为同一个线性空间. 从而 V^{**}, V^{***}, \dots 也就再没有研究价值了.

给定线性空间 V 及其中的两组基 $\{v_1, \ldots, v_n\}$ 和 $\{u_1, \ldots, u_n\}$,我们可以给出对偶空间 V^* 的基 $\{v^{*1}, \ldots, v^{*n}\}$ 和 $\{u^{*1}, \ldots, u^{*n}\}$,满足

$$v^{*i}(v_j) = \delta^i{}_j \quad u^{*i}(u_j) = \delta^i{}_j$$

若 $(v_1,\ldots,v_n)=(u_1,\ldots,u_n)A, (v^{*1},\ldots,v^{*n})^\top=B(u^{*1},\ldots,u^{*n})^\top$, 即

$$v_i = \sum_{j=1}^n u_j A^j{}_i, \quad v^{*i} = \sum_{j=1}^n B^i{}_j u^{*j}.$$

则 $B = A^{-1}$:

$$v^{*i}(v_j) = \sum_{k=1}^n B^i{}_k u^{*k} \left(\sum_{\ell=1}^n u_\ell A^\ell{}_j \right) = \sum_{k,\ell} B^i{}_k A^\ell{}_j u^{*k} (u_\ell)$$
$$= \sum_{k,\ell} B^i{}_k A^\ell{}_j \, \delta^k{}_\ell = \sum_{k=1}^n B^i{}_k A^k{}_j = \delta^i{}_j.$$

8.5 直和、直积

定义 8.5.1: 线性空间的和

线性空间 U 的两个子空间 V,W 的和 (sum) V+W 定义为所有 $v+w,v\in V,w\in W$ 的集合:

$$V + W := \{v + w \mid v \in V, w \in W\}.$$

显然, V+W 也是 U 的子空间.

定义 8.5.2: 线性空间的直和

线性空间 U 是 V 和 W 的直和 (direct sum) $U=V\oplus W$,若 $\forall u\in U$,存在唯一的 $v\in V, w\in W$ 使得 u=v+w.

定理 8.5.1: 和与直和

若 U = V + W 且 $V \cap W = \{0\}$,则 $U = V \oplus W$.

证明: 假设 $u \in U$ 可以写成 u = v + w = v' + w',则 v - v' = w - w',又 $v - v' \in V$, $w - w' \in W$ 且 $V \cap W = \{0\}$,所以 v - v' = w - w' = 0. 故分解是唯一的.

定理 8.5.2: 直和的存在

U 是一个有限维线性空间,V 是 U 的子空间,则存在 U 的子空间 W 使得 $U=V\oplus W$.

证明: 取 V 的一组基 $\{v_1, \ldots, v_r\}$,可将其扩张成 U 的一组基 $\{v_1, \ldots, v_r, w_1, \ldots, w_m\}$,取 $W = \mathrm{span}(w_1, \ldots, w_m)$ 即可. \square 推论:

$$\dim(V \oplus W) = \dim(V) + \dim(W).$$

定义 8.5.3: 线性空间的直积

给定两个线性空间 V, W,其直积 (direct product) $V \times W$ 是所有形如 (v, w) $v \in V, w \in W$ 的元素的集合:

$$V \times W := \{(v, w) | v \in V, w \in W\}.$$

 $V \times W$ 是一个线性空间. 且

$$\dim(V \times W) = \dim(V) + \dim(W).$$

8.6 张量

定义 8.6.1: 多重线性映射

映射 $L: V_1 \times \cdots \times V_r \to W$ 是一个多重线性映射 (multiple linear mapping), 若其对于每一个变量都是线性的:

$$L(\ldots, au + bw, \ldots) = aL(\ldots, u, \ldots) + bL(\ldots, w, \ldots).$$

定义 8.6.2: 张量空间 $V^* \otimes V^*$

考虑所有多重线性函数 $L: V \times V \to \mathbb{R}$ 的集合,我们可以在这个集合上定义加法和数乘:

- 加法: $(L_1 + L_2)(u, v) = L_1(u, v) + L_2(u, v)$;
- 数乘: (cL)(u,v) = cL(u,v);
- 零元: $O(u,v) \equiv 0$.

因此所有多重线性函数 $L: V \times V \to \mathbb{R}$ 的集合构成一个线性空间,我们把这个空间叫做张量空间 (tensor space) $V^* \otimes V^*$. $V^* \otimes V^*$ 中的每一个元素 L 是二阶协变张量 (covariant tensor),即 (0,2) 张量.

若 V 的一组基为 $\{v_1,\ldots,v_n\}$,则 $\forall L \in V^* \otimes V^*$

$$L(u, v) = L\left(\sum_{i=1}^{n} a_i v_i, \sum_{j=1}^{n} b_j v_j\right) = \sum_{i,j} a_i b_j L(v_i, v_j).$$

 n^2 个函数值 $L(v_i, v_j)$ 便可唯一确定函数 L.

例 8.6.1: $V^* \otimes V^*$ 的基

对偶空间 V^* 的基 $\{v^{*1}, \dots, v^{*n}\}$ 满足 $v^{*i}(v_j) = \delta^i{}_j$. 继而定义张量 (tensor) $v^{*i} \otimes v^{*j}$ 满足

$$v^{*i} \otimes v^{*j}(u, v) = v^{*i}(u)v^{*j}(v).$$

从而

$$v^{*i} \otimes v^{*j}(v_k, v_\ell) = v^{*i}(v_k)v^{*j}(v_\ell) = \delta^i_{\ k} \, \delta^j_{\ \ell}.$$

 n^2 个张量 $v^{*i} \otimes v^{*j}$ 构成 $V^* \otimes V^*$ 的一组基.

张量 $\forall w \in V^* \otimes V^*$,

$$w = \sum_{i,j} w_{ij} v^{*i} \otimes v^{*j}, \quad w_{ij} = w(v_i, v_j).$$

给出 V, V^* 的另一组基 $\{u_1, \ldots, u_n\}, \{u^{*1}, \ldots, u^{*n}\}$, 有变换

$$(u_1, \dots, u_n) = (v_1, \dots, v_n)A,$$

 $(u^{*1}, \dots, u^{*n})^\top = (v^{*1}, \dots, v^{*n})^\top A^{-1}.$

张量 w 在基 $\{u^{*i} \otimes u^{*j}\}$ 下的分量

$$w'_{ij} = w(u_i, u_j) = w\left(\sum_{k=1}^n v_k A^k_i, \sum_{\ell=1}^n v_\ell A^\ell_j\right) = \sum_{k,\ell} w_{k\ell} A^k_i A^\ell_j.$$

因此这也是协变 (covariant) 的含义:分量同基的变换规律一致.

定义 8.6.3: 张量积

U,V 是两个线性空间,定义 $u \in U, v \in V$ 的张量积 (tensor product) 是一个新的元素 $u \otimes v$,且满足以下性质:

- 结合律: $(u \otimes v) \otimes w = u \otimes (v \otimes w) \equiv u \otimes v \otimes w$;
- 左分配律: $(u_1 + u_2) \otimes v = u_1 \otimes v + u_2 \otimes v$;
- 右分配律: $u \otimes (v_1 + v_2) = u \otimes v_1 + u \otimes v_2$;
- 数乘: $(au) \otimes v = u \otimes (av) = a(u \otimes v)$.

张量积并不满足交换律,即 $u \otimes v \neq v \otimes u$ 是两个不同的张量.

定义 8.6.4: 线性空间的张量积

U,V 是两个线性空间,各自有一组基 $\{u_1,\ldots,u_m\},\{v_1,\ldots,v_n\}$,定义新的基 $\{u_i\otimes v_j\,|\,1\leqslant i\leqslant m,1\leqslant j\leqslant n\}$ 张成的线性空间为 U,V 的

张量积,记为 $U \otimes V$.

由定义

$$\dim(U \otimes V) = \dim(U)\dim(V).$$

例 8.6.2

 $\forall u \in U, v \in V, \ u = x_1 u_1 + \dots + x_m u_m, \ v = y_1 v_1 + \dots + y_n v_n, \ \square$

$$u \otimes v = \sum_{i=1}^{m} \sum_{j=1}^{n} x_i y_j u_i \otimes v_j \in U \otimes V.$$

但并不是所有 $U \otimes V$ 的元素都能写成 $u \otimes v$ 的形式.

例 8.6.3: 张量空间 $V \otimes V$

 $V\otimes V$ 是所有 $V^*\times V^*\to\mathbb{R}$ 的双线性函数构成的线性空间,但我们也可以用张量积定义. $V\otimes V$ 中的元素

$$v = \sum_{i,j} v^{ij} v_i \otimes v_j.$$

称作二阶逆变张量 (contravariant tensor), 即 (2,0) 张量.

换基时,

$$v^{k\ell} = \sum_{i,j} A^k{}_i A^\ell{}_j v'^{ij}, \quad v'^{ij} = \sum_{k,\ell} (A^{-1})^i{}_k (A^{-1})^j{}_\ell v^{k\ell}.$$

逆变 (contravariant) 的含义: 换基时分量每个指标对应的变换矩阵是基的变换矩阵的逆矩阵.

例 8.6.4: 混合张量 $V \otimes V^*$

 $V \otimes V^*$ 中的元素是 (1,1) 张量

$$v = \sum_{i,j} v^i{}_j v_i \otimes v^{*j}.$$

例 8.6.5: $V \otimes \cdots \otimes V \otimes V^* \otimes \cdots \otimes V^* = V^{\otimes k} \otimes V^{*\otimes \ell}$

$$V \otimes \cdots \otimes V \otimes V^* \otimes \cdots \otimes V^* = V^{\otimes k} \otimes V^{* \otimes \ell}$$
 的基

$$\{v_{i_1} \otimes \cdots \otimes v_{i_k} \otimes v^{*j_1} \otimes \cdots \otimes v^{*j_\ell} \mid 1 \leqslant i_1, \dots, i_k, j_1, \dots, j_\ell \leqslant n\}$$

 $V^{\otimes k} \otimes V^{*\otimes \ell}$ 的元素

$$v = \sum_{\substack{i_1, \dots, i_k \\ j_1, \dots, j_\ell}} (v^{i_1 \cdots i_k}_{j_1 \cdots j_\ell}) v_{i_1} \otimes \cdots \otimes v_{i_k} \otimes v^{*j_1} \otimes \cdots \otimes v^{*j_\ell}.$$

是 (k,ℓ) 阶张量. 基变换

线性代数 by Dait

9 复线性空间

这一章我们将数域由实数域 ℝ 扩展至复数域 C, 复数的定义和运算高中已经讲过,也可参见复变函数的笔记. 在此略.

复数构成的向量 z 的共轭即将其中所有元素取共轭,记作 \bar{z} . 共轭转置记作 $z^{\dagger}:=\bar{z}^{\top}$.

所有实线性空间的知识都可以推广到复线性空间,只需要把原来是实数的地方换成复数.

9.1 内积和内积空间

定义 9.1.1: \mathbb{C}^n 标准内积

复向量 u,v 的内积

$$u^{\dagger}v = \sum_{i=1}^{n} \bar{u}_{i}v_{i} = \bar{u}_{1}v_{1} + \dots + \bar{u}_{n}v_{n}.$$

- 一般复线性空间 V 的内积 $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{C}$:
- 交换共轭: $\langle u, v \rangle = \overline{\langle v, u \rangle}$;
- 对第二个变量线性: $\langle u, cv \rangle = c \langle u, v \rangle$, $\langle u, v + w \rangle = \langle u, v \rangle + \langle v, w \rangle$;
- 正定: $\langle u, u \rangle \geqslant 0$ 当且仅当 u = 0 时取等号.

注意:对第一个变量不是简单的线性,而是多一个复共轭:

$$\langle cu, v \rangle = \bar{c} \langle u, v \rangle, \quad \langle u + v, w \rangle = \langle u, v \rangle + \langle u, w \rangle.$$

定义了内积的空间叫做内积空间 (inner product space).

定理 9.1.1

只需要知道基之间的内积就可以算出任意向量之间的内积.

证明:
$$v_1, \ldots, v_n$$
 是 V 上的一组基, $g_{ij} := \langle v_i, v_j \rangle$,则 $g_{ji} = \bar{g}_{ij}$.
$$\forall u, w \in V, \quad u = u^1 v_1 + \cdots + u^n v_n, \quad w = w^1 v_1 + \cdots + w^n v_n$$

$$\langle u, w \rangle = \langle u^1 v_1 + \cdots + u^n v_n, w^1 v_1 + \cdots + w^n v_n \rangle = \sum_{i,j} \bar{u}^i w^j g_{ij}.$$

例 9.1.1: 内积与对偶空间

V 的对偶空间 V^* 是所有 $V \to \mathbb{C}$ 的线性函数的集合. 通过内积可以建立 V,V^* 的一一映射

$$\forall v \in V, g_v \in V^*, \ g_v(w) := \langle v, w \rangle.$$

例 9.1.2: Legendre 多项式

所有不高于 n 的实系数多项式

$$f(x) = a_0 + a_1 x + \dots + a_n x^n,$$

构成线性空间 $\mathscr{P}^n(\mathbb{R})$,显然 $\{1,x,x^2,\ldots,x^n\}$ 构成 $\mathscr{P}^n(\mathbb{R})$ 的一组基. 定义内积

$$\langle f, g \rangle := \int_{-1}^{1} f(x)g(x) \, \mathrm{d}x,$$

用 Gram-Schmidt 法则将 $\{1, x, x^2, \dots, x^n\}$ 变成一组正交基

$$\begin{split} P_0 &= 1, \\ P_1 &= x - \frac{\langle P_0, x \rangle}{\langle P_0, P_0 \rangle} P_0 = x, \\ P_2 &= x^2 - \frac{\langle P_1, x^2 \rangle}{\langle P_1, P_1 \rangle} P_1 - \frac{\langle P_0, x^2 \rangle}{\langle P_0, P_0 \rangle} P_0 = x^2 - \frac{2}{3}, \\ P_3 &= x^3 - \frac{\langle P_2, x^3 \rangle}{\langle P_2, P_2 \rangle} P_2 - \frac{\langle P_1, x^3 \rangle}{\langle P_1, P_1 \rangle} P_1 - \frac{\langle P_0, x^3 \rangle}{\langle P_0, P_0 \rangle} P_0 = x^3 - \frac{3}{5}x, \end{split}$$

这与实际 Legendre 多项式的定义只是系数的差别.

例 9.1.3: Hermite 多项式

在 $\mathcal{P}^n(\mathbb{R})$ 内定义内积

$$\langle f, g \rangle := \int_{-\infty}^{+\infty} f(x)g(x) e^{-x^2/2} dx,$$

用 Gram-Schmidt 法则将 $\{1, x, x^2, \dots, x^n\}$ 变成一组正交基

$$H_{0} = 1,$$

$$H_{1} = x - \frac{\langle H_{0}, x \rangle}{\langle H_{0}, H_{0} \rangle} H_{0} = x,$$

$$H_{2} = x^{2} - \frac{\langle H_{1}, x^{2} \rangle}{\langle H_{1}, H_{1} \rangle} H_{1} - \frac{\langle H_{0}, x^{2} \rangle}{\langle H_{0}, H_{0} \rangle} H_{0} = x^{2} - 1,$$

$$H_{3} = x^{3} - \frac{\langle H_{2}, x^{3} \rangle}{\langle H_{2}, H_{2} \rangle} H_{2} - \frac{\langle H_{1}, x^{3} \rangle}{\langle H_{1}, H_{1} \rangle} H_{1} - \frac{\langle H_{0}, x^{3} \rangle}{\langle H_{0}, H_{0} \rangle} H_{0} = x^{3} - 3x,$$

这与实际 Hermite 多项式的定义也只是系数的差别.

9.2 Hermite 矩阵和幺正矩阵

所有实矩阵相关的内容可以复制到复矩阵.

定义 9.2.1: Hermite 矩阵

方阵 H 是厄米 (Hermite) 矩阵若 $H^{\dagger} = H$.

Hermite 矩阵其实是对称矩阵在复空间的推广.

例 9.2.1: Pauli 矩阵

给出三个 Pauli 矩阵

$$\sigma_1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \ \sigma_2 = \begin{bmatrix} 0 & -\mathrm{i} \\ \mathrm{i} & 0 \end{bmatrix}, \ \sigma_3 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.$$

 $\sigma_1, \sigma_2, \sigma_3$ 都是 Hermite 的,且

$$\sigma_i \sigma_j = i\sigma_k, \quad (ijk) = (123).$$

定理 9.2.1: Hermite 矩阵的二次型

证明:
$$(z^{\dagger}Hz)^{\dagger} = z^{\dagger}H^{\dagger}z = z^{\dagger}Hz$$
.

定理 9.2.2: Hermite 矩阵的特征值

Hermite 矩阵 H 的特征值都是实数.

证明: $Hz = \lambda z$,左乘 z^{\dagger} 得 $z^{\dagger}Hz = \lambda z^{\dagger}z$,由 $z^{\dagger}Hz$, $z^{\dagger}z$ 均是实数知, λ 也是实数.

定理 9.2.3: Hermite 矩阵的特征向量

Hermite 矩阵 H 不同特征值对应的特征向量正交.

证明: $Hz_1 = \lambda_1 z_1, Hz_2 = \lambda_2 z_2, \lambda_1 \neq \lambda_2$

$$\lambda_1 z_2^{\dagger} z_1 = z_2^{\dagger} H z_1 = (z_1^{\dagger} H z_2)^{\dagger} = (\lambda_2 z_1^{\dagger} z_2)^{\dagger} = \lambda_2 z_2^{\dagger} z_1.$$

故 $z_2^{\dagger}z_1=0$.

定理 9.2.4: 谱定理

Hermite 矩阵的特征向量构构成 \mathbb{C}^n 中的一组幺正基.

$$H = Q\Lambda Q^{\dagger}.$$

证明: 略.

定义 9.2.2: 幺正矩阵

矩阵 U 是幺正的 (unitary) 若 $U^{\dagger}U = I$.

幺正矩阵也是正交矩阵在复空间的推广.

定理 9.2.5: 幺正变换

幺正变换保持复向量的模不变.

证明:

$$||Uz||^2 = z^{\dagger}U^{\dagger}Uz = z^{\dagger}z = ||z||^2.$$

定理 9.2.6: 幺正矩阵的行列式

 $|\det(U)| = 1.$

证明:

$$1 = \det(U^{\dagger}U) = \det(U^{\dagger})\det(U) = \overline{\det(U)}\det(U) = |\det(U)|^{2}. \qquad \Box$$

线性代数 by Dait

10 群、环、域

10.1 二元运算

定义 10.1.1: 二元运算

集合 S 上的一个二元运算 (binary operation) 是映射 $\circ: S \times S \to S$. 其中 $S \times S \equiv S^2$ 是笛卡尔积 (Cartesian product),

$$A \times B := \{(a, b) \mid a \in A, b \in B\}.$$

二元运算在 S 上是封闭的 (property of closure).

定义 10.1.2: 恒等元

 $e \in S$ 是恒等元 (identity element),若 $\forall a \in S, e \circ a = a \circ e = a$.

定义 10.1.3: 可逆

 $a \in S$ 是可逆的 (inversible),若 $\exists a^{-1} \in S$, $a \circ a^{-1} = a^{-1} \circ a = e$.

特别的, 简记

$$a^m := a \circ \cdots \circ a, \quad a^{-m} = a^{-1} \circ \cdots \circ a^{-1}.$$

10.2 群与子群

定义 10.2.1: 群

群 (group) 是有二元运算 \circ 和集合 G 并满足下列性质的组合 (G, \circ) :

- 结合律: $(a \circ b) \circ c = a \circ (b \circ c) \equiv a \circ b \circ c$;
- 单位元: $e \circ a = a \circ e = a$;

若还满足交换律,则称为交换群或 Abel 群.

群的阶 (order) ord(G) 表示其元素的个数. 群可分为有限群和无限群.

定理 10.2.1: 单位元和逆元的唯一性

在群中只能有一个单位元,而群中的每个元素都正好有一个逆元素.

证明: 若一个群存在两个单位元 e, f, y

$$e = e \circ f = f$$
;

若一个元素 a 存在两个逆 b,c,则

$$b = b \circ e = b \circ (a \circ c) = (b \circ a) \circ c = e \circ c = c.$$

例 10.2.1: 群的例子

- 整数加群 (ℤ,+);
- 非零实数乘法群 (ℝ\{0},×);
- 一般线性 (general linear) 群 GL(n): 所有 n 阶可逆矩阵集合.

定理 10.2.2: 消去律

- $a \circ b = a \circ c$, \Rightarrow b = c;
- $b \circ a = c \circ a$, $\Rightarrow b = c$;

证明: 左乘/右乘 a^{-1} .

逆 a^{-1} 的存在很关键,如果 G 上的运算只是结合的,则 (G, \circ) 是一个半群 (semigroup),有单位元的半群又叫幺半群 (monoid).

定义 10.2.2: 对称群

给定有限集合 T,所有 $f: T \to T$ 的双射在映射的复合下构成一个群 $\operatorname{sym}(T)$,称做对称群 (symmetric group).

例 10.2.2: 群的例子 (续)

置换群: T