T319 - Introdução ao Aprendizado de Máquina: *Regressão Linear (Parte I)*

Felipe Augusto Pereira de Figueiredo felipe.figueiredo@inatel.br

Motivação

- Exemplo 1: Estimar o preço de casas.
- Exemplo 2: Estimar as vendas de sorvete.

- Podemos encontrar uma relação matemática, f(x), entre a área, localização, n° de quartos de uma casa e seu valor?
- Ou entre a temperatura e a quantidade de sorvetes vendidos?

Regressão Linear

- É um dos mais antigos e conhecidos algoritmos de aprendizado de máquina.
- Vai nos dar várias *intuições* importantes para o *entendimento* de outros *algoritmos mais complexos*, como, por exemplo, *classificadores* e *redes neurais*.
- Objetivo: encontrar uma função, h(x), que mapeie, de forma ótima, os atributos, x, em uma variável de saída $\hat{y} = h(x)$, de tal forma que h(x) seja uma boa aproximação da função verdadeira ou objetivo, f(x).
- f(x) é muitas vezes **desconhecida** e temos acessoapenas a **observações ruidosas**.
- Regressão também é conhecida como aproximação de funções ou ajuste de curvas.
- Como encontramos uma função, h(x), que *aproxime* f(x) de forma ótima a partir de dados ruidosos?

Temos x (atributos) e y (rótulos) e queremos encontrar $\hat{y} = h(x)$.

Que tipo de aprendizado?

Regressão Linear

- Qual forma deve ter a função h(x)? Os modelos mais simples são:
 - Com apenas um atributo, x_1 , h(x) é uma reta, $h(x) = a_0 + a_1 x_1$.
 - Com dois atributos, x_1 e x_2 , h(x) é uma superfície 2D (ou seja, um plano), $h(x) = a_0 + a_1x_1 + a_2x_2$.
 - E assim por diante.
- Modelo geral: equação de um hiperplano

$$h(\mathbf{x}) = a_0 + a_1 x_1 + \dots + a_K x_K = a_0 + \sum_{i=1}^K a_i x_i.$$

- Existem outros modelos, os quais veremos mais adiante.
- Na literatura, a função h(x), é chamada de **função hipótese**, pois é uma das **possíveis soluções** encontradas no **espaço de hipóteses**, H, para aproximar f(x).
- Espaço de hipóteses: é conjunto de todas as possíveis funções hipótese.
 - Superfície formada por todos os possíveis valores dos parâmetros, a_k , $\forall k$ quando substituídos em h(x).

$$h(x) = a_0 + a_1 x_1 + a_2 x_2$$

Regressão Linear

- Agora que temos uma forma para h(x), podemos refinar o objetivo da regressão um pouco mais.
- Objetivo: Encontrar os parâmetros, também chamados de pesos, a_0 , a_1 , ..., a_K de tal forma que h(x) seja uma aproximação ótima de f(x).
 - Ótima no sentido que minimiza uma métrica de erro que iremos definir a seguir.
- Aprendizado supervisionado: atributos, x, mais rótulos/objetivos, y.
- A regressão é chamada de linear porque a variável de saída, y, é modelada como sendo uma combinação linear dos atributos, x.
 - **OBS**.: *Linear*, nesse contexto, significa "*linear com relação aos pesos*" e não com relação aos *atributos*, i.e., *x*. Desta forma, os seguintes *modelos* também são lineares com relação aos pesos:

$$✓ h(x) = a_0 + a_1 \log x_1 + a_2 \cos x_2$$

$$✓ h(x) = a_0 + a_1 e^{x_1}$$

$$✓ h(x) = a_0 + a_1 x_1^2$$

• Exemplo de um modelo não-linear: $h(x) = \frac{a_0 x_1}{a_1 + x_1}$.

Não é possível expressar a equação como uma combinação linear dos atributos.

Definição formal do problema

Forma

vetorial.

sempre igual a 1.

O problema da *regressão linear* pode ser definido da seguinte forma:

- Dados disponíveis:
 - Conjunto de N observações (conjunto de pares de treinamento) : $\{x(i), y(i)\}, i = 0, ..., N-1$, onde

 Atributo de bias,
 - o $x(i) \in \mathbb{R}^{K+1\times 1}$: *i*-ésimo vetor de atributos de entrada com dimensão $K+1\times 1$, ou sejam K+1 atributos.
 - $y(i) \in \mathbb{R}$: *i*-ésimo valor esperado de saída referente ao vetor de entrada x(i).
- Modelo:

$$\hat{y}(i) = h(\mathbf{x}(i)) = a_0 + a_1 x_1(i) + \dots + a_K x_K(i) = \mathbf{a}^T \mathbf{x}(i),$$

onde $\mathbf{a} = [a_0, ..., a_K]^T$ e $\mathbf{x}(i) = [1, x_1(i), ..., x_K(i)]^T$.

- a é um vetor **coluna** com dimensão $(K+1\times 1)$ contendo os **pesos** da **função hipótese** e x(i) é um vetor coluna com dimensão $(K+1\times 1)$ contendo os **i**-ésimos valores dos **atributos**.
- a_0 é o **coeficiente linear**, ou seja, é o valor de h(x) que intercepta o eixo das ordenadas, y, a_0 é conhecido também como **intercept** ou **bias**.
- Como a_0 não tem um **atributo** relacionado a ele, para facilitar o modelamento matemático, criamos um atributo falso, x_0 , com valor constante sempre igual a 1, i.e., $x_0 = 1$.
- Objetivo: encontrar um vetor de pesos a que minimize o erro, dado por uma função de erro, $J_e(a)$, entre a aproximação $\hat{y}(i)$ e o valor esperado y(i) para todos os exemplos do conjunto.
- Ou seja, o treinamento do modelo envolve a minimização de uma função de erro. $\min_a J_e(a)$
- Portanto, precisamos definir uma função de erro.

Função de Erro

 Função de erro: existem várias possibilidades para se definir a função de erro a ser minimizada, porém, geralmente, utiliza-se o erro quadrático médio

$$J_e(\mathbf{a}) = \frac{1}{N} \sum_{i=0}^{N-1} (y(i) - \hat{y}(i))^2 = \frac{1}{N} \sum_{i=0}^{N-1} (y(i) - h(\mathbf{x}(i), \mathbf{a}))^2,$$

que nada mais é do que a *média aritmética do quadrado do erros*.

- Nós veremos mais adiante a razão pela qual o *erro quadrático médio* é utilizado.
- A função de erro pode ser reescrita em forma matricial como

$$J_e(\boldsymbol{a}) = \frac{1}{N} \|\boldsymbol{y} - \boldsymbol{\Phi} \boldsymbol{a}\|^2,$$

onde $\mathbf{y} = [y(0), ..., y(N-1)]^T$ é um vetor $(N \times 1)$, $\mathbf{\Phi} = [\mathbf{x}(0), ..., \mathbf{x}(N-1)]^T$ é uma matriz $(N \times K + 1)$ e N é o número de exemplos ou observações.

• Então, para encontrarmos o *vetor de pesos*, a, devemos minimizar a função de erro:

$$\min_{\boldsymbol{a}\in\mathbb{R}^{K+1\times 1}}\|\boldsymbol{y}-\boldsymbol{\Phi}\boldsymbol{a}\|^2.$$

OBS.: Por ser constante, 1/N não influencia na minimização e, portanto, pode ser omitido.

Erro entre a saída da função hipótese

e a saída esperada.

Minimizando a Função de Erro

Como encontramos o mínimo da função de erro em relação aos pesos?

• Da disciplina de cálculo, sabemos que derivando a *função de erro*, $\|y - \Phi a\|^2$, com relação ao vetor a e igualando a 0, nós encontramos o *ponto* onde a *inclinação* de uma *reta tangente* à *função de erro* é nula:

$$\frac{\partial \|\mathbf{y} - \mathbf{\Phi}\mathbf{a}\|^2}{\partial \mathbf{a}} = 0 : 2\mathbf{a}^T \mathbf{\Phi}^T \mathbf{\Phi} - 2\mathbf{y}^T \mathbf{\Phi} = 0,$$

porém, esse *ponto* pode ser tanto um *mínimo* quanto um *máximo* da *função de erro*, pois em ambos os pontos a *inclinação* da reta tangente é *nula*.

Então, como sabemos se o ponto encontrado é um mínimo ou um máximo?

 Se a inclinação da tangente é nula e a derivada de segunda ordem da função for positiva, então o ponto nos dá o mínimo da função,

$$\frac{\partial^2 ||\mathbf{y} - \mathbf{\Phi} \mathbf{a}||^2}{\partial^2 \mathbf{a}} = 2\mathbf{\Phi}^T \mathbf{\Phi}.$$

- Se a matriz Φ tiver **posto** igual a K+1, então a matriz $\Phi^T\Phi$ é **positiva semi-definida** e, portanto, o ponto encontrado acima é realmente o ponto de mínimo da **função de erro**.
 - Posto de uma matriz: é o número de linhas ou colunas linearmente independentes da matriz.
 - Uma matriz quadrada $\Phi^T \Phi$ é **positiva semi-definida** se $x^T \Phi^T \Phi x = \|\Phi x\|^2 \ge 0, \forall x \ne 0$.

Minimizando a Função de Erro

- Portanto, voltando à equação da derivada parcial de primeira ordem igual a 0, temos ${m a}^T{m \Phi}^T{m \Phi}={m y}^T{m \Phi}.$
- Após aplicarmos o transposto a ambos os lados e isolar $m{a}$ temos

$$\boldsymbol{a} = (\boldsymbol{\Phi}^T \boldsymbol{\Phi})^{-1} \, \boldsymbol{\Phi}^T \mathbf{y}.$$

• Essa equação é conhecida como *equação normal* e nos dá a *solução ótima* em relação a minimização do *erro quadrático médio* para esse *sistema de equações lineares*.

Observações:

- 1. O método encontra uma *solução única* se e somente se a matriz, $\Phi^T \Phi$, for *invertível* (i.e., se ela for *não-singular*), ou seja, com *posto* igual a K+1.
- 2. O método só funciona para sistemas *determinados* ou *sobredeterminados*, ou seja, quando o número de equações (i.e., pares $x \in y$) é *igual ou maior* do que o número de incógnitas (i.e., pesos), ou seja, $N \ge K + 1$.
- 3. Para sistemas **subdeterminados**, ou seja, que têm menos equações do que incógnitas, a matriz $\Phi^T\Phi$ tem **posto** menor do que K+1 e, portanto, é **singular** (ou seja, a matriz $\Phi^T\Phi$ não tem uma inversa). Neste caso, não existe solução ou ela não é única.

Exemplo: normal_equation_example1.ipynb

Superfície de Erro

• E se plotarmos a função de erro,
$$J_e(a)$$
, em função dos pesos, a ?
$$J_e(a) = \frac{1}{N} \sum_{i=0}^{N-1} (y(i) - \hat{y}(i))^2 = \frac{1}{N} \sum_{i=0}^{N-1} \left(y(i) - h(x(i), a) \right)^2.$$

- Que forma vocês acham que ela terá?
- $J_e(a)$ faz o mapeamento entre o vetor de pesos e o erro correspondente:
 - $I_{\rho}(a)$: $\mathbb{R}^{K+1\times 1}\to\mathbb{R}$. Esse mapeamento define o que conhecemos como superfície de erro.
- Se expandirmos $I_{\rho}(a)$ notamos que ela possui forma quadrática com respeito ao **vetor de pesos**, **a**.

$$J_e(\boldsymbol{a}) = \|\boldsymbol{y} - \boldsymbol{\Phi}\boldsymbol{a}\|^2 = \boldsymbol{y}^T \, \boldsymbol{y} - \boldsymbol{y}^T \boldsymbol{\Phi}\boldsymbol{a}^T - \boldsymbol{a}^T \boldsymbol{\Phi}^T \, \boldsymbol{y} + \boldsymbol{a}^T \boldsymbol{\Phi}^T \boldsymbol{\Phi}\boldsymbol{a}^T. \quad \text{quadrático}$$

- Consequentemente, a superfície é *convexa* (i.e., tem forma de *tigela*) e, portanto, possui um único *mínimo* (*global*), que é encontrado, por exemplo, pela *equação normal*.
- Este é o motivo de usarmos o *erro quadrático médio* como *função de erro*.

Superfície de Erro: Exemplo

Vamos supor a seguinte função observável

$$y_{\text{noisy}}(n) = y(n) + w(n),$$

onde $w(n) \sim N(0,1)$ e y(n) é a função objetivo (ou modelo gerador) dada por

$$y(n) = a_1 x_1(n) + a_2 x_2(n),$$

onde
$$x_1(n)$$
 e $x_2(n) \sim U(-1, 1)$ e $a_1 = a_2 = 1$.

 Agora, suponhamos que nós quiséssemos aproximar a função objetivo a partir, apenas, de suas amostras ruidosas com a seguinte função hipótese

$$h(\mathbf{x},n) = \widehat{y}(n) = \widehat{a_1}x_1(n) + \widehat{a_2}x_2(n).$$

• Como encontraríamos os valores de $\widehat{a_1}$ e $\widehat{a_2}$?

Comparação da *função objetivo* com sua **versão ruidosa**.

OBS.: Se tivéssemos mais de dois atributos, já não seria possível plotar uma figura.

Exemplo: error_surface_example2.ipynb

Superfície de Erro: Exemplo

 Até o momento, conseguiríamos encontrar com a equação normal ou visualmente, plotando a superfície de erro a partir da função do erro quadrático médio (EQM):

$$J_{e}(a_{1}, a_{2}) = \frac{1}{N} \sum_{n=0}^{N-1} \left(y_{\text{noisy}}(n) - \hat{y}(n) \right)^{2}$$

$$= \frac{1}{N} \sum_{n=0}^{N-1} \left(y_{\text{noisy}}(n) - (\widehat{a_{1}} x_{1}(n) + \widehat{a_{2}} x_{2}(n)) \right)^{2}.$$

- Os valores de erro, $J_e(a_1, a_2)$, para plotarmos a **superfície de** erro são obtidos variando-se $\widehat{a_1}$ e $\widehat{a_2}$ na equação do EQM.
- A *superfície de erro* é representada por uma figura em 3 dimensões, onde cada par de valores $\widehat{a_1}$ e $\widehat{a_2}$ corresponde a um erro, $J_e(a_1,a_2)$.
- Percebam que devido a superfície ser *convexa*, temos apenas *um ponto de mínimo*, o *mínimo global*.

Exemplo: error surface example2.ipynb

Superfície de Erro: Exemplo

- Outra figura importante que podemos plotar a partir dos resultados obtidos para plotarmos a superfície de erro é chamada de superfície de contorno.
- Uma linha de contorno é uma curva ao longo da qual a função tem um valor constante.
- No da superfície de erro, cada uma das linhas indica uma curva ao longo da qual o erro é constante.
- Ou seja, qualquer par de valores $\widehat{a_1}$ e $\widehat{a_2}$ ao longo de uma curva terá o mesmo valor de erro.

Exemplo: error_surface_example2.ipynb

Superfícies de erro com diferentes formatos

• Na sequência, veremos que *nem toda superfície de erro tem formato de tigela*, para demonstrar isso vamos supor a seguinte *função observável*

$$y_{\text{noisy}}(n) = y(n) + w(n),$$

onde a *função objetivo* é dada por

$$y(n) = a_1 x_1(n) + a_2 x_2(n),$$

com $a_1 = a_2 = 1$ e $w(n) \sim N(0, 1)$.

Agora, suponhamos que nós quiséssemos aproximar a função objetivo com a seguinte função hipótese

$$\widehat{y}(n) = h(\mathbf{x}(n)) = \widehat{a_1}x_1(n) + \widehat{a_2}x_2(n).$$

• A *função de erro* é dada por

$$J_e(\mathbf{a}) = \frac{1}{N} \sum_{n=0}^{N-1} \left[y_{\text{noisy}}(n) - \left(\widehat{a_1} x_1(n) + \widehat{a_2} x_2(n) \right) \right]^2.$$

• Caso $x_1(n) \gg x_2(n)$, $\forall n$, então $x_1(n)$ terá uma *influência maior no erro resultante*, o que pode ser expresso de forma aproximada como

$$J_e(a) \approx \frac{1}{N} \sum_{n=0}^{N-1} [y_{\text{noisy}}(n) - \widehat{a_1} x_1(n)]^2.$$

• Portanto, o erro entre y_{noisy} e h(x(n)) será **dominado pelo atributo** $x_1(n)$ e, portanto, pequenas variações de $\widehat{a_1}$ farão com que o erro varie rapidamente.

Superfícies de erro com diferentes formatos

- Coluna 1: x_1 tem intervalo de variação maior do que x_2 . Portanto, o **peso** da variação de $\widehat{a_1}$ no **erro** é maior, ou seja, o erro varia mais rapidamente com variações de $\widehat{a_1}$, resultando num **vale**.
- Coluna 2: x_2 tem intervalo de variação maior do que x_1 . Então, o **peso** da variação de $\widehat{a_2}$ no erro é maior, resultando em um vale.
- Coluna 3: x_1 e x_2 têm intervalos semelhantes, então, a variação tanto de $\widehat{a_1}$ quanto de $\widehat{a_2}$ tem **pesos** semelhante na variação do erro (tigela).

Desvantagens da forma fechada (Eq. Normal)

- Alta complexidade computacional: a solução da *equação normal* envolve o cálculo da inversa de $\Phi^T\Phi$, o qual tem complexidade computacional que varia de $O(K^{2.4})$ a $O(K^3)$, onde K é o número de atributos.
 - **Exemplo**: Se o número de *atributos*, K, dobrar, o tempo para cálculo aumenta de $2^{2.4} = 5.3$ a $2^3 = 8$ vezes.
- Dependendo do número de *exemplos*, N, e de *atributos*, x, a matriz Φ pode consumir muita memória.
- Portanto, essa abordagem não é escalonável!
- Adicionalmente, para irmos além dos modelos lineares (i.e., modelos nãolineares como classificadores e redes neurais) precisamos lidar com o fato de que não existem formas fechadas como a equação normal.
- Solução: abordagens iterativas.
 - São métodos que "procuram" de forma iterativa os pesos ótimos no espaço de soluções.
 - o *Espaço de soluções* é um outro nome para a *superfície de erro*.
 - Por exemplo, o algoritmo do *gradiente descendente*, o qual veremos a seguir.
 - O algoritmo busca pelo ponto mais baixo da superfície de erro.

Tarefas

- Quiz: "T319 Quiz Regressão: Parte I" que se encontra no MS Teams.
- Exercício Prático: Laboratório #2.
 - Pode ser acessado através do link acima (Google Colab) ou no GitHub.
 - Vídeo explicando o laboratório #2: Arquivos -> Material de Aula -> Laboratório #2
 - Se atentem aos prazos de entrega.
 - Instruções para resolução e entrega dos laboratórios.
 - Laboratórios podem ser resolvidos em grupo, mas as entregas devem ser individuais.

Obrigado!

TO PROVE YOU'RE A HUMAN, CLICK ON ALL THE PHOTOS THAT SHOW PLACES YOU WOULD RUN FOR SHELTER DURING A ROBOT UPRISING.

Albert Einstein: Insanity Is Doing the Same Thing Over and Over Again and Expecting Different Results

Machine learning:

