Machine Learning Assignment: GridSearchCV

Shehzeen Shuaeb Khan J028, BTech Data Science, Sem 5

class **sklearn.model_selection.GridSearchCV** (estimator, param_grid, *, scoring=None, n_jobs=None, refit=True, cv=None, verbose=0, pre_dispatch='2*n_jobs', error_score=nan, return_train_score=False)

Parameters:

- estimator- to implement the scikit-learn estimator interface; either the estimator needs to provide a score function, or a form of scoring must be passed;
- param_grid- a dictionary with parameters names (str) as keys and lists of parameter settings to try as values;
- scoring- strategy to evaluate the performance of the cross-validated model on the test set;
- n_jobs- number of cores to use in parallel for the grid search;
- refit- refit an estimator using the best-found parameters on the whole dataset;
- cv- acronym, cross validation strategy;
- pre_dispatch- controls the number of jobs that get dispatched during parallel execution;
- return_train_score- Whether to return the training scores or not.

Attributes:

- cv_results_- a dictionary with keys as column headers and values as columns, that can be imported into a pandas dataframe;
- best_estimator_- an estimator that was chosen by the search, i.e., estimator which gave highest score (or smallest loss if specified) on the remaining data. Not available if refit=False;
- best_score_- mean cross-validated score of the best_estimator;
- best_params_- Parameter setting that gave the best results on the hold out data;
- scorer_- a scorer function used on the "held out" data to choose the best parameters for the model;
- refit_time_- records seconds used for refitting the best model on the whole dataset;
- multimetric_- whether or not the scorers compute several metrics.

Methods:

•	decision_function(X)	Call decision_function on the estimator with the best-
	_	found parameters.
•	fit(X[, y, groups])	Run fit with all sets of parameters.
•	get_params([deep])	Get parameters for this estimator.
•	inverse_transform(Xt)	Call inverse_transform on the estimator with the best
	` ,	found params.
•	predict(X)	Call predict on the estimator with the best-found
	•	parameters.

• **predict_log_proba(X)** Call predict_log_proba on the estimator with the best-

found parameters.

• predict_proba(X) Call predict_proba on the estimator with the best-found

parameters.

• score(X[, y]) Returns the score on the given data, if the estimator has

been refit.

• score_samples(X) Call score_samples on the estimator with the best-found

parameters.

• set_params(**params) Set the parameters of this estimator.

• transform(X) Call transform on the estimator with the best-found

parameters.

How does GridSearchCV work?

GridSearchCV is the process of performing hyperparameter tuning in order to determine
the optimal values for a given model that comes in Scikit-learn's(or SK-learn)
model_selection package.

- This function loops through predefined hyperparameters and fits your estimator (model) to your training set so one can select the best parameters from the listed hyperparameters.
- Predefined values for hyperparameters are passed to the GridSearchCV function.
- This is done by defining a dictionary in which a particular hyperparameter along with the values it can take exists.
- GridSearchCV tries all the combinations of the values passed in the dictionary and evaluates the model for each combination using the method of Cross-Validation.
- Therefore after using this function, we get accuracy/loss for every combination of hyperparameters and we can choose the one with the best performance.