The unequal economic consequences of carbon pricing

Känzig (2023), WP

Environmental Reading Group session 27

Apr 11, 2024

Research Question

- How does carbon pricing shock affect the economic outcomes?
- How are the costs distributed across society?

Model

Figure 1: The EU Carbon Price

Instrument of Shock

- Shocks: regulatory news regarding the supply of emission allowances. 126 events during 2005-2019.
- Carbon Price: the future price of emission allowances.
- High-frequency identification: daily data on carbon price.
- Construct a series of carbon policy surprises: how carbon prices change around regulatory events in the carbon market.

Surprise series I

$$CPSurprise_{t,d} = \frac{F_{t,d}^{carbon} - F_{t,d-1}^{carbon}}{P_{t,d-1}^{elec}}$$
(1)

$$CPSurprise_{t} = \sum_{d} CPSurprise_{t,d}$$
 (2)

 $CPSurprise_t = 0$ if no event on month t. Not a precise measure of the surprise, but a good proxy and used as an intrument. $z_t = CPSurprise_t$.

Surprise series II

Figure 2: The Carbon Policy Surprise Series

Econometric model 1 l

VAR model:

$$y_t = b + B1y_{t-1} + B2y_{t-2} + \dots + Bpy_{t-p} + u_t$$
 (3)

where the structural shocks $u_t = S\varepsilon_t$, and $Var(\varepsilon_t) = \Omega$, so that $Var(u_t) = S\Omega S'$. Main assumption: $E[z_t\varepsilon_{1,t}] \neq 0$ and $E[z_t\varepsilon_{2:n,t}] = 0$. First stage F: 17.43.

Econometric model 1 II

Econometric model 2 l

LP-IV model:

$$y_{i,t+h} = \beta_{h,0}^{i} + \phi_{h}^{i} CPShock_{t} + \sum_{i=1}^{p} \beta_{h,p}^{i} y_{i,t-p} + \xi_{i,t,h}$$
 (4)

Econometric model 2 II

Figure 5: Effect on GDP, Consumption, Investment and Wages

Household Survey Data

- 1999-2019, 20 waves.
- 6000 households each wave. 120,000 observations in total.

This is not panel-data, but a repeated cross-section. Hence, the paper constructs a pseudo-panel, and group the households into three pseudo-cohorts: low (<25%), medium (25%-75%), and high income (>75%).

Household Response

Household Response

Figure 7: Energy, Non-durables and Durables Expenditure Responses by Income Group

Mechanism: Heterogenieity in Labor Income I

Table 3: Sectoral Distribution of Employment

Sectors	Overall	By income group		
		Low-income	Middle-income	High-income
Energy-intensity				
High	21.6	9.8	25.6	25.8
Lower	78.4	90.2	74.4	74.2
Demand-sensitivity				
High	30.5	49.0	27.2	18.1
Lower	69.5	51.0	72.8	81.9

Mechanism: Heterogenieity in Labor Income II

Figure 8: Income Response by Sector of Employment

Redisributing Effects I

A heterogenou-agent climate-economy model with a carbon tax. The Euler Equation with intertemporal consumption for savers (S type) is:

$$\frac{U_{x}(x_{S,t},h_{S,t})}{p_{S,t}} = \beta E_{t} \left[s \frac{U_{x}(x_{S,t+1},h_{S,t+1})}{p_{S,t+1}} + (1-s) \frac{U_{x}(x_{H,t+1},h_{H,t+1})}{p_{H,t+1}} \right]$$
(5)

H: hand-to-mouth households, S: savers households. x: consumption, h: labor supply, p: price level, 1-s: transition probability. $y_{S,t} = w_{S,t} + r_{S,t} + \omega_{S,t}$ H type consumes all of their income,

$$p_{H,t} x_{H,t} = y_{H,t} = w_{H,t} + \omega_{H,t}$$
 (6)

Redisributing Effects II

Government runs a balanced budget every period and the transfer policy is:

$$egin{aligned} \lambda \, \omega_{H,t} &= \mu \, au_t
ho_{e,t} e_t \ (1-\lambda) \, \omega_{S,t} &= (1-\mu) \, au_t
ho_{e,t} e_t \end{aligned}$$

baseline: $\mu = 0$, all revenue accrue to savers.

counterfactual: $\mu=\lambda$, equal distribution between savers and hand-to-mouth households

Redisributing Effects III

Figure 9: Model Responses for Consumption and Income

Attitude Towards Climate Change

Figure 10: Effect on Attitude Towards Climate Policy

Conclusion

- Carbon pricing has unequal economic consequences. Poor households suffer more.
- The heterogeneity in labor income is the main mechanism. Poor households earn less and are more financially constrained.
- To accrue the revenue to the poor households can mitigate the inequality.

Reference

Känzig, D. R. (2023). The unequal economic consequences of carbon pricing (No. w31221). National Bureau of Economic Research.

