2024 鐵人賽 – 我數學就爛要怎麼來 學 DNN 模型安全 Day 24 – CW Attack

大綱

- CW 攻擊
 - 攻擊手法原理
 - 程式實作

- 結論

CW攻擊手法原理

- Towards Evaluating the Robustness of Neural Networks (2017)
- 有別於 FGSM 使用梯度作為攻擊原理, CW 偏向去解一個最佳化的問題來產生對抗式攻擊樣本,並且實現指哪打哪的攻擊方式

minimize $\mathcal{D}(x,x+\delta)$ such that $C(x+\delta)=t$ $x+\delta\in[0,1]^n$ where x is fixed, and the goal is to find δ that minimizes $\mathcal{D}(x,x+\delta)$. That is, we want to find some small change δ that we can make to an image x that will change its classification, but so that the result is still a valid image. Here \mathcal{D} is some distance metric; for us, it will be either L_0 , L_2 , or L_∞ as discussed earlier.

CW 攻擊手法原理

■ 從這邊開始數學就很多了,我也未必每個地方都看得懂

A. Objective Function

The above formulation is difficult for existing algorithms to solve directly, as the constraint $C(x + \delta) = t$ is highly non-linear. Therefore, we express it in a different form that is better suited for optimization. We define an objective function f such that $C(x + \delta) = t$ if and only if $f(x + \delta) \leq 0$. There are many possible choices for f:

$$f_{1}(x') = -\log_{F,t}(x') + 1$$

$$f_{2}(x') = (\max_{i \neq t} (F(x')_{i}) - F(x')_{t})^{+}$$

$$f_{3}(x') = \operatorname{softplus}(\max_{i \neq t} (F(x')_{i}) - F(x')_{t}) - \log(2)$$

$$f_{4}(x') = (0.5 - F(x')_{t})^{+}$$

$$f_{5}(x') = -\log(2F(x')_{t} - 2)$$

$$f_{6}(x') = (\max_{i \neq t} (Z(x')_{i}) - Z(x')_{t})^{+}$$

$$f_{7}(x') = \operatorname{softplus}(\max_{i \neq t} (Z(x')_{i}) - Z(x')_{t}) - \log(2)$$

where s is the correct classification, $(e)^+$ is short-hand for $\max(e,0)$, softplus $(x) = \log(1 + \exp(x))$, and $\log_{F,s}(x)$ is the cross entropy loss for x.

CW 攻擊手法原理

Now, instead of formulating the problem as

minimize
$$\mathcal{D}(x, x + \delta)$$

such that $f(x + \delta) \leq 0$
 $x + \delta \in [0, 1]^n$

we use the alternative formulation:

minimize
$$\mathcal{D}(x, x + \delta) + c \cdot f(x + \delta)$$

such that $x + \delta \in [0, 1]^n$

$$\delta_i = \frac{1}{2}(\tanh(w_i) + 1) - x_i.$$

Since $-1 \le \tanh(w_i) \le 1$, it follows that $0 \le x_i + \delta_i \le 1$, so the solution will automatically be valid. 8
We can think of this approach as a smoothing of clipped gradient descent that eliminates the problem of getting stuck in extreme regions.

CW攻擊手法原理

- 最後參考 https://github.com/Harry24k/CW-pytorch 整理的式子比較簡潔乾淨
- 稍微分析一下,可以知道 K 在這邊就是個拘束器的腳色

$$\delta_i = rac{1}{2}(tanh(w_i)+1)-x_i$$

$$minmize \lVert rac{1}{2}(tanh(w)+1) - x
Vert_2^2 + c \cdot f(rac{1}{2}(tanh(w)+1))$$

$$f(x') = max(max\{Z(x')_i: i
eq t\} - Z(x')_t, -\kappa)$$

• Notation - w : modifier, t : class that x' will be classified, κ : confidence, Z : classifier without last softmax

- 只可惜這個專案是用 pytorch 完成的,但你也可以考慮 人工翻成 tensorflow

結論

• CW 是一個蠻優秀的演算法,跟 FGSM 相比可以指定攻擊對象,增加了其攻擊的威脅程度

只是缺點在於定義出最佳化的問題時用到很多無法解釋的 數學