

Recruitment rate stochasticity at the design stage of a clinical trial

Supervision by Malgorzata Roos

Pilar Pastor

Why recruitment rates?

- Timely recruitment vital to the success of a clinical trial
- Inadequate number of subjects → lack of power
- Recruitment period too long → competing treatments
- Recruitment of patients varies at each stage
- Accrual = Cumulative Recruitment
- Carter (2004)

Target Population

Target Population

Eligibility

Enrollment

Randomization

Statistical Analysis

Patient Attrition

Uncertainty

- Aleatory: randomness inherent and unpredictable
- Epistemic: arises from limited knowledge about parameters

Figure: Visualization of two types of uncertainty (Yang and Li, 2023)

Models for Counts

Methods	Counts	Expectation	Variance	Aleatory	Epistemic
Expectation	$C(t) = \lambda t$	λt	0	No	No
Poisson	$C(t) \sim \text{Po}(\lambda t)$	λt	λt	Yes	No
Negative Binomial	$C(t) \sim Po(\Lambda t); \Lambda \sim G(\alpha, \beta)$	$\frac{\alpha}{\beta}$	$\frac{\alpha(\beta+1)}{\beta^2}$	Yes	Yes

Table: Aleatory and epistemic uncertainty in accrual shown by different models for counts.

- Time t = 550 days
- Recruitment Rate $\lambda = \frac{Counts}{Time} = 0.591$

- Time t = 550 days
- Recruitment Rate $\lambda = \frac{Counts}{Time} = 0.591$
- Models for Counts:
 - − Expectation: $EC(t) = \lambda t = 0.591 \cdot 550 = 325$
 - Poisson: $C(t) \sim Po(\lambda t)$
 - Negative Binomial: $C(t) \sim Po(\Lambda t)$; $\Lambda \sim G(\alpha, \beta)$

- Time t = 550 days
- Recruitment Rate $\lambda = \frac{Counts}{Time} = 0.591$
- Models for Counts:
 - **Expectation**: $EC(t) = \lambda t = 0.591 \cdot 550 = 325$
 - Poisson: $C(t) \sim Po(\lambda t)$
 - Negative Binomial: $C(t) \sim Po(\Lambda t)$; $\Lambda \sim G(\alpha, \beta)$

Accrual at time point t

- Expectation:
$$EC(t) = \underbrace{EC + ... + C}_{t \text{ times}} = tEC = \lambda t$$

- **Poisson**:
$$\underbrace{\operatorname{Po}(\lambda) + \ldots + \operatorname{Po}(\lambda)}_{t \text{ times}} = \operatorname{Po}(\lambda t)$$

Accrual of 1 study

Master Thesis Biostatistics

Accrual of 1 study

Accrual of 2 studies

Master Thesis Biostatistics

Accrual of 2 studies

Accrual of 100 studies

Theoretical PMF

Theoretical CDF

Cummulative Distribution Function

Uncertainty bands

Negative binomial derived from Poisson-Gamma model (t=1)

Let
$$C|\Lambda \sim Po(\Lambda)$$
 and $\Lambda \sim G(\alpha, \beta)$

$$p(c) = \int_0^\infty p(c|\lambda)p(\lambda)d\lambda$$

$$= \int_0^\infty \frac{\lambda^c \exp(-\lambda)}{c!} \left[\lambda^{\alpha-1} \exp(-\beta\lambda) \frac{\beta^{\alpha}}{\Gamma(\alpha)} \right] d\lambda$$

$$= \frac{\beta^{\alpha}}{c!\Gamma(\alpha)} \int_0^\infty \lambda^{\alpha+c-1} \exp(-\lambda) \exp(-\lambda\beta) d\lambda$$

$$= \frac{\beta^{\alpha}\Gamma(\alpha+c)}{c!\Gamma(\alpha)(\beta+1)^{\alpha+c}} \underbrace{\int_0^\infty \frac{(\beta+1)^{\alpha+c}}{\Gamma(\alpha+c)} \lambda^{\alpha+c-1} \exp(-(\beta+1)\lambda) d\lambda}_{=1}$$

$$= \beta^{\alpha} \binom{\alpha+c-1}{\alpha-1} \left(\frac{1}{\beta+1} \right)^{\alpha+c}$$

$$= \binom{\alpha+c-1}{\alpha-1} \left(\frac{1}{\beta+1} \right)^c \left(\frac{\beta}{\beta+1} \right)^{\alpha}, C|\Lambda \sim NBin \left(\alpha, \frac{\beta}{\beta+1} \right)$$

March 5, 2025 Recruitment rate stochasticity at the design stage of a clinical trial

- Time t = 550 days
- Recruitment Rate $\lambda = \frac{\textit{Counts}}{\textit{Time}} = 0.591$
- Models for Counts:
 - Expectation: $EC(t) = \lambda t = 0.591 \cdot 550 = 325$
 - − **Poisson**: $C(t) \sim Po(\lambda t)$
 - Negative Binomial: $C(t) \sim Po(\Lambda t)$; $\Lambda \sim G(\alpha, \beta)$
 - $\alpha = 325$
 - $-\beta = 1.5 \cdot 365$
 - $E\Lambda = \frac{\alpha}{\beta} = 0.591 = \lambda$

Comparison between Poisson and Negative Binomial

Comparison between Poisson and Negative Binomial

Summary

- Theoretical models for counts
- Extended Carter's simulation to exact distributions

Next steps

- Application to simulation on Carter (2004)
- Theoretical models for time
 - Theoretical
 - Application on Carter (2004)
- Shiny App
- Predictions using theoretical models developed on Daniore Nittas dataset of rates (cite?)

References

- Carter, R. E. (2004). Application of stochastic processes to participant recruitment in clinical trials. *Controlled clinical trials*, 25(5):429–436.
- Liu, J., Jiang, Y., Wu, C., Simon, S., Mayo, M. S., Raghavan, R., and Gajewski, B. J. (2023). *accrual: Bayesian Accrual Prediction*. R package version 1.4.
- Spiegelhalter, D., Pearson, M., and Short, I. (2011). Visualizing uncertainty about the future. *Science*, 333(6048):1393–1400.
- Yang, C.-I. and Li, Y.-P. (2023). Explainable uncertainty quantifications for deep learning-based molecular property prediction. *Journal of Cheminformatics*, 15(1):13.