

Mathematics 1A ITMTA1-B44

Limits and Derivatives

With

Amakan Elisha Agoni Amakan.agoni@EDUVOS.com

Lecture 5 Week 2

Continuation of...

2.2 The Limit of a Function

4 Intuitive Definition of an Infinite Limit

Let f be a function defined on both sides of **a**, except possibly at **a** itself. Then

$$\lim_{x \to a} f(x) = \infty$$

means that the values of f(x) can be made arbitrarily large (as large as we please) by taking x sufficiently close to a, but not equal to a.

Again, the symbol ∞ is not a number, but the expression

$$\lim_{x \to a} f(x) = \infty$$

is often read as

"the limit of f(x), as x approaches a, is infinity" or "f(x) becomes infinite as x approaches a" or "f(x) increases without bound as x approaches a"

This definition is illustrated graphically in Figure 10.

Figure 10

A similar sort of limit, for functions that become large negative as *x* gets close to *a*, is defined in Definition 5 and is illustrated in Figure 11.

$$\lim_{x \to a} f(x) = -\infty$$

Figure 11

5 Definition

Let **f** be a function defined on both sides of **a**, except possibly at **a** itself. Then

$$\lim_{x \to a} f(x) = -\infty$$

means that the values of f(x) can be made arbitrarily large negative by taking x sufficiently close to a, but not equal to a.

The symbol $\lim_{x\to a} f(x) = -\infty$ can be read as "the limit of f(x), as x approaches a, is negative infinity" or "f(x) decreases without bound as x approaches a."

As an example we have

$$\lim_{x \to 0} \left(-\frac{1}{x^2} \right) = -\infty$$

Infinite Limits; Vertical Asymptotes (6 of 8)

Similar definitions can be given for the one-sided infinite limits

$$\lim_{x \to a^{-}} f(x) = \infty \qquad \lim_{x \to a^{+}} f(x) = \infty$$
$$\lim_{x \to a^{-}} f(x) = -\infty \qquad \lim_{x \to a^{+}} f(x) = -\infty$$

Illustrations of these four cases are given in Figure 12.

Figure 12

Infinite Limits; Vertical Asymptotes (8 of 8)

6 Definition

The vertical line x = a is called a **vertical asymptote** of the curve y = f(x) if at least one of the following statements is true:

$$\lim_{x \to a} f(x) = \infty \qquad \lim_{x \to a^{-}} f(x) = \infty \qquad \lim_{x \to a^{+}} f(x) = \infty$$

$$\lim_{x \to a} f(x) = -\infty \qquad \lim_{x \to a^{-}} f(x) = -\infty \qquad \lim_{x \to a^{+}} f(x) = -\infty$$

Example 8

Find the vertical asymptotes of $f(x) = \tan x$.

Solution:

Because

$$\tan x = \frac{\sin x}{\cos x}$$

there are potential vertical asymptotes where $\cos x = 0$.

In fact, since $\cos x \to 0^+$ as $x \to (\pi/2)^-$ and $\cos x \to 0^-$ as $x \to (\pi/2)^+$, whereas sin x is positive (near 1) when x is near $\pi/2$, we have

$$\lim_{x \to (\pi/2)^{-}} \tan x = \infty \quad \text{and} \quad \lim_{x \to (\pi/2)^{+}} \tan x = -\infty$$

Example 8 – Solution

This shows that the line $x = \pi/2$ is a vertical asymptote. Similar reasoning shows that the lines $x = \pi/2 + n\pi$, where n is an integer, are all vertical asymptotes of $f(x) = \tan x$.

The graph in Figure 14 confirms this.

Figure 14

Exercise

Find the vertical asymptotes of the following:

1.
$$f(x) = \frac{x^2 - 25}{x^2 + 5x + 6}$$

Answer: at $x = -2$ and -3

2.
$$f(x) = \frac{x-2}{x^2-7x+10}$$
Answer: at $x = 5$

3.
$$f(x) = \frac{x-3}{x^2-9}$$

Answer: at $x = -3$