1

Assignment 1

AI1110: Probability and Random Variables

Pallala Rishitha BT22BTECH11011

Problem:12.13.5.12: .

Find the probability of throwing at most 2 sixes in 6 throws of a single die.

Solution:

Let \underline{X} be the random variable, which denotes the <u>Number of sixes</u> in 6 throws of a single die.

$Pr_X(0) =$	Probability that 0 sixes are thrown after 6 throws =	$5^6/6^6 =$	15625 46656
$Pr_X(1) =$	Probability that 1 sixes are thrown after 6 throws =	$(C_1^6.5^5)/6^6 =$	18750 46656
$Pr_X(2) =$	Probability that 1 sixes are thrown after 6 throws =	$(C_2^6.5^4)/6^6 =$	9375 46656

So, from the given equations;

 $Pr_X(\le 2)$ = Probability that at most 2 sixes are thrown after 6 throws

$$Pr_X(\le 2) = Pr_X(0) + Pr_X(1) + Pr_X(2) = \frac{21875}{23328}$$

Hence, The probability of throwing at most 2 sixes in 6 throws of a single die = $\frac{21875}{23328}$.