Деление многочленов с остатком

Через $\mathcal{K}[x]$ обозначается множество всех многочленов одной переменной с коэффициентами из \mathcal{K} . Для многочлена p(x) через $\deg p$ обозначается его степень. $\operatorname{Pasdenumb}\ p\in\mathcal{K}[x]$ на $q\in\mathcal{K}[x]$ с $\operatorname{ocmamkom}\ b$ $\mathcal{K}[x]$ означает следующее: найти многочлены $h,r\in\mathcal{K}[x]$ такие, что p(x)=h(x)q(x)+r(x) и неравенство $\deg r<\deg q$ или $r\equiv 0$.

- 1. Разделите с остатком $2x^5 + 5x^2$ на $2x^3 + 3x^2$ в $\mathbb{Q}[x]$.
- 2. Возможно ли такое деление в $\mathbb{Z}[x]$?

Теорема Безу

3. **Теорема Безу.** Пусть $p \in \mathcal{K}[x]$ и $a \in \mathcal{K}$. Докажите, что остаток от деления многочлена p(x) на многочлен x-a равен p(a).

В частности, a – корень p(x), если и только если p(x) делится на x-a. Наибольшее k такое, что $(x-a)^k \mid p(x)$ называется $\kappa pamhocmbo$ корня a.

- 4. **Теорема о рациональных корнях.** Докажите, что, если несократимая дробь $p/q \in \mathbb{Q}$ является корнем многочлена $a_n x^n + \ldots + a_0 \in \mathbb{Z}[x]$, то $p \mid a_0$ и $q \mid a_n$.
- 5. Решите уравнение $x^5 2x^4 4x^3 + 4x^2 5x + 6 = 0$.

Основная теорема арифметики для многочленов

Поскольку для многочленов из $\mathbb Q$ и $\mathbb R$ определено деление с остатком, то в нём работает алгоритм Евклида, вследствие чего верны все рассуждения, аналогичные используемым при доказательстве ОТА.

- 6. Докажите, что любой многочлен степени n из $\mathbb{Q}[x]$ или $\mathbb{R}[x]$ имеет не более n корней с учётом кратности.
- 7. Докажите, что, если значения двух многочленов степени не выше n из $\mathbb{Q}[x]$ или $\mathbb{R}[x]$ совпадают по крайней мере в n+1 различной точке, то эти два многочлена равны.
- 8. Задача об освобождении от иррациональности. Пусть многочлен $p \in \mathbb{Q}[x]$ неприводим над \mathbb{Q} , число $\alpha \in \mathbb{R}$ его корень, а многочлены $f,g \in \mathbb{Q}[x]$ удовлетворяют условию $g(\alpha) \neq 0$. Докажите, что существует многочлен многочлен $h \in \mathbb{Q}[x]$ такой, что $\frac{f(\alpha)}{g(\alpha)} = h(\alpha)$.

Вычеты

Для каждого натурального числа n>1 через \mathbb{Z}_n обозначим множество $\{0,1,\ldots,n-1\}$, в котором операции сложения и умножения проводятся по модулю n. Если p – простое число, то множество \mathbb{Z}_p чаще обозначается как \mathbb{F}_p .

- 9. Докажите, что в $\mathbb{F}_p[x]$ определено, причём однозначно, деление с остатком, вследствие чего верна основная теорема арифметики.
- 10. Докажите, что любой многочлен степени n из $\mathbb{F}_p[x]$ имеет не более n корней с учётом кратности.

Теорема Безу и ОТА

Упражнения

- 11. Найдите остаток от деления $p(x) = x^{2023} + 20x^{23} + 23x^{20} + x$ на $x^2 1$.
- 12. Докажите, что многочлен с целыми коэффициентами, имеющий больше трёх целых корней, не принимает простых значений ни в каких целых точках.
- 13. Решите уравнение $x^4 + x^3 x^2 2x 2 = 0$.
- 14. Найдите все многочлены $p \in \mathbb{R}[x]$, удовлетворяющие тождеству **a**) p(x+1) = p(x) + 2x + 1; **b**) $x \cdot p(x-1) = (x-26)p(x)$.
- 15. Найдите все натуральные n, при которых многочлен $1+x^2+\ldots+x^{2n}$ делится на многочлен $1+x+\ldots+x^n$?
- 16. Приведите пример многочленов $p,q\in\mathbb{F}_3$ таких, что $p\neq q$, однако p(x)=q(x) при всех $x\in\mathbb{F}_3$.
- 17. Докажите, что, если значения двух многочленов степени не выше n из $\mathbb{F}_p[x]$ совпадают по крайней мере в n+1 различной точке, то эти два многочлена равны.
- 18. Можно ли утверждать, что любой многочлен степени n из $\mathbb{Z}_k[x]$ имеет не более n корней с учётом кратности?