Grafi Planari Università degli studi di Trento

Martino Papa

Day Month Year

Indice

0.1	Teoria dei grafi
	Topologia
	Grafi planari
Al n	nomento il documento potrebbe contenere anche definizioni o teoremi "d
troppo".	. Ho scritto tutto ciò che mi sembrava utile al fine di apprendere fino ir
fondo l'a	argomento.

0.1 Teoria dei grafi

Definizione 0.1 (Grafo). Un grafo è una coppia G = (V, E) dove:

- V è un insieme di vertici (**vertex**);
- E è un insieme di coppie di nodi (u, v), $u, v \in V$ dette archi o lati (edge);

Nei grafi **orientati** le coppie in E sono ordinate in quelli non orientati no.

Definizione 0.2 (Adiacenza). Un vertice v si dice adiacente a u se esiste $(u, v) \in E$. NB: nei grafi non orientati l'adiacenza è una relazione simmetrica.

Definizione 0.3 (Incidente). Un arco (u, v) si dice incidente da u a v.

Definizione 0.4 (Grado). Nel caso di grafi orientati definiamo:

- grado entrante di un nodo come il numero di archi incidenti su esso;
- grado uscente di un nodo come il numero di archi incidenti da esso.

Per i grafi non orientati avremo invece un'unica definizione:

• il **grado** di un nodo è il numero di archi incidenti su di esso.

Definizione 0.5 (Cammino). Sia G = (V, E) un grafo. Un cammino C di lunghezza k è una sequenza di nodi $u_0, u_1 \dots, u_k$ t.c.

$$(u_i, u_{i+1}) \in E \text{ per } 0 < i < k-1$$
 (1)

Definizione 0.6 (Grafi isomorfi). Siano G = (V(G), E(G)), H = (V(H), E(H)) due grafi. Diremo G isomorfo a H se $\exists \theta : V(G) \to V(H)$ t.c. θ è un isomorfismo e

$$\theta(E(G)) \doteq \{\theta(uv) \ t.c. \ uv \in E(G)\} = E(H) \tag{2}$$

Definizione 0.7 (Grafo completo). Un grafo G = (V, E) si dice completo se

$$\forall u, v \in V \ \exists (u, v) \in E \tag{3}$$

Definiamo K_n un grafo completo con n vertici.

Definizione 0.8 (Grafo bipartito). Un grafo non orientato G = (V, E) si dice bipartito se V può essere diviso in due sottoinsiemi X, Y t.c.

$$\forall (u, v) \in E \text{ vale } u \in X, \ v \in Y \text{ oppure } u \in Y, \ v \in X$$
 (4)

Un grafo bipartito può avere al più $|X| \cdot |Y|$ archi. Definaiamo inoltre $K_{m,n}$ il grafo bipartito completo che soddisfa

$$|X| = m, |Y| = n, \varepsilon \doteq |E| = mn \tag{5}$$

Definizione 0.9 (Connessione). Un grafo non orientato G = (V, E) è detto **connesso** se

$$\forall u, v \in V \ \exists (u, v) \in E \tag{6}$$

Un sottografo connesso massimale di un grafo non orientato è detto **componente connessa**.

Definizione 0.10 (Vertex-connectivity). Sia G = (V, E) un grafo non orientato. Definiamo **vertex-connectivity** κ il minimo numero di vertici da eliminare per sconnective G.

Definizione 0.11 (Grafo k-connesso). Sia G = (V, E) un grafo non orientato. Diremo G k-connesso se |V| > k e $\kappa \ge k$ dove κ corrisponde alla vertex-connectivity. Informalmente un grafo è detto k-connesso se rimane connesso rimuovendo k' < k vertici qualsiasi.

Teorema 0.1 (Grafo 2-connesso). Un grafo non orientato $G = (V, E), |V| \ge 3$ è 2-connesso \Leftrightarrow ogni coppia di vertici (u, v) è connessa da almeno 2 cammini internamente disgiunti.

Definizione 0.12 (Cammini internamente disgiunti). Sia G = (V, E) un grafo non orientato, siano $a, b \in V$ due cammini da a a b $a, v_1, \ldots, v_n, b, a, u_1, \ldots, u_n, b$. Essi si dicono internamente disgiunti se

$$v_i \neq u_j \ \forall i, j \tag{7}$$

Definizione 0.13 (Ciclo di Hamilton). Sia G = (V, E) un grafo non orientato. Definiamo ciclo di Hamilton un ciclo che contiene tutti i vertici del grafo una sola volta.

Definiamo G hamiltoniano se G contiene un ciclo di hamilton.

Definizione 0.14 (Suddivisione). Dato un grafo G definiamo suddivisione (subdivision) di G i grafi ottenuti da G rimpiazzando uno o più archi con cammini di lunghezza 2 o più. In altre parole una suddivisione di G è un grafo ottenuto da esso inserendo dei vertici "all'interno dei lati".

Figura 1: esempio suddivisione

Definizione 0.15 (Contrazione). Operazione inversa della suddivisione, consiste nell'contrarre un arco avente un endpoint di grado 2.

Definizione 0.16 (Grafi omeomorfi). Due grafi G_1, G_2 si dicono topologicamente equivalenti o omeomorfi se possono essere trasformati l'uno nell'altro attraverso operazioni di suddivisione o contrazione degli archi.

Denotiamo l'insieme dei grafi omeomorfi a G con TG.

Definizione 0.17 (Minore). Sia H un grafo ottenuto da G tramite una sequenza di operazioni di rimozione di archi o vertici o contrazione di archi. H è detto minore di G.

Definizione 0.18 (Facial walk). Sia G grafo, G^{ψ} una sua immersione nel piano. Un cammino chiuso C frontiera di una faccia F di G^{ψ} è detto facial walk di F.

Definizione 0.19 (Grado di una faccia). Definaiamo deg(F) grado di una faccia F come la lunghezza del suo facial walk.

0.2 Topologia

Definizione 0.20 (n-cella chiusa). Spazio topologico omeomorfo ad una palla chiusa n-dimensionale.

Definizione 0.21 (Complesso cellulare (CW-complesso)). Spazio topologico ottenuto incollando tra loro un insieme di celle chiuse.

Definizione 0.22 (Caratteristica di eulero). Sia $\tau \subset \mathbb{R}^n$ un complesso cellulare composto da k_i i-celle i = 0, ..., n. Definiamo caratteristica di eulero

$$\chi(\tau) = k_0 - k_1 + k_2 - \dots k_n = \sum_{i=0}^{n} (-1)^i k_i$$
 (8)

Definizione 0.23 (Cammini omotopi). Siano $f, g \in \mathcal{C}^0(X; Y)$. Diciamo $f \in g$ omotope $f \sim g$ se esiste $H: X \times [0, 1] \to Y$ t.c.

$$\forall x \in X \begin{cases} H(x,0) = f(x) \\ H(x,1) = g(x) \end{cases}$$

$$(9)$$

Informalmente questo vale se una mappa può essere "deformata con continutià" nell'altra.

Definizione 0.24 (Spazi omotopicamente equivalenti). X, Y si dicono omotopicamente equivalenti $(X \sim Y)$ se $\exists f: X \to Y, g: Y \to X$ t.c.

- $g \circ f \sim id_X$
- $f \circ g \sim id_Y$

Informalmente X, Y saraano omotopicamente equivalenti se possono essere trasformati l'uno nell'altro con operazioni di deformazione.

Lemma 0.1 (Omotopicamente invariante). La caratteristica di eulero è un omotopicamente invariante, ovvero

$$X \sim Y \Rightarrow \chi(X) = \chi(Y) \tag{10}$$

Proposizione 0.1 (Invarianza topologica). La caratteristica di eulero è un invariante topologico, ovvero

$$X \simeq Y \Rightarrow \chi(X) = \chi(Y)$$
 (11)

diciamo che $X \simeq Y$ se X e Y sono omeomorfi.

Lemma 0.2. Ogni poliedro semplice può essere identificato come un grafo planare usando i vertici del poliedro come vertici del grafo e gli spigoli del poliedro come archi del grafo.

Proposizione 0.2. Sia τ un poliedro semplice allora $\chi(\tau) = 2$

Dimostrazione. Questo risultato segue direttamente dal lemma precedente e dal teorema 0.1.

0.3 Grafi planari

Definizione 0.25 (Grafo planare). Un grafo non orientato G si dice planare se può essere rappresentato nel piano evitando che gli archi si intersechino (se non negli endpoint).

Teorema 0.2. Sia G un grafo planare avente k componenti connesse. Sia G^{φ} una immersione di G nel piano, allora

$$\chi(G) = V + f - \epsilon = k + 1 \tag{12}$$

dove V è il numero di vertici (k_0) , ϵ il numero di archi (k_1) e f il numero di facce (k_2) .

Dimostrazione. Procediamo per induzione sul numero di archi ϵ : caso base $\epsilon = 0$, V = k vertici, f = 1 quindi è soddisfatta $V - \epsilon + f = k + 1$ passo induttivo $\epsilon \to \epsilon + 1$, aggiungiamo un arco al grafo

1. il nuovo arco è un loop, in questo caso $V \to V$, $\epsilon \to \epsilon + 1$, $f \to f + 1$, $k \to k$ e quindi

$$V - (\epsilon + 1) + (f + 1) = V - \epsilon + f = k + 1 \tag{13}$$

2. il nuovo arco è tra due vertici appartenenti alla stessa componente connessa, anche in questo caso $V \to V$, $\epsilon \to \epsilon + 1$, $f \to f + 1$, $k \to k$ e quindi

$$V - (\epsilon + 1) + (f + 1) = V - \epsilon + f = k + 1 \tag{14}$$

3. il nuovo arco connette due componenti che erano sconnesse, in questo caso $V \to V, \; \epsilon \to \epsilon + 1, \; f \to f, \; k \to k - 1$ e quindi

$$V - (\epsilon + 1) + f = (k - 1) + 1 = k' + 1 \tag{15}$$

dove k'=k-1 è il numero di componenti connesse dopo l'aggiunta dell'arco.

Corollario 0.1 (Formula di Eulero). Sia G un grafo planare connesso, allora

$$\chi(G) = V + f - \epsilon = 2 \tag{16}$$

Dimostrazione. Direttamente dal teorema 0.2 con k = 1.

Proposizione 0.3. Ogni suddivisione di un grafo non planare è non planare, questo implica anche che i vertici di grado 2 non influenzano la planarità del grafo.

Dimostrazione. Sia G grafo non planare, a, b due archi che si intersecano nell'immersione G^{φ} , è evidente che suddividere a o b non andrebbe ad influire sulla non planarità del grafo.

Lemma 0.3. Sia G un grafo planare, G^{ψ} una sua immersione nel piano, F_1, \ldots, F_f le facce di G^{ψ} allora

$$\sum_{i=1}^{f} \deg(F_i) = 2\epsilon \tag{17}$$

Dimostrazione. Segue direttamente dal fatto che ogni arco (u, v) è incedente esattamente su due facce di G^{ψ} .

Proposizione 0.4. Sia G planare, ϵ il numero di archi, V il numero di vertici. Vale allora

$$\epsilon \le 3V - 3 \tag{18}$$

Inoltre se supponiamo $V \geq 3$ vale

$$\epsilon \le 3V - 6 \tag{19}$$

Dimostrazione. Sia V < 3. In questo caso il lemma è una diretta conseguenza della formula di Eulero (Teorema 0.1).

Sia $V \geq 3$. G planare \Rightarrow ogni faccia ha almeno 3 lati ovvero $\deg(F_i) \geq 3 \ \forall i$. Per il lemma 0.3 vale quindi

$$2\epsilon = \sum_{i=1}^{f} \deg(F_i) \ge \sum_{i=1}^{f} 3 = 3f \tag{20}$$

Per la formula di eulero segue inoltre $V + f - \epsilon = 2$ da cui abbiamo, moltiplicando per 3 e riarrangiando i termini

$$3\epsilon = 3V + 3f - 6 \tag{21}$$

applicando ora $3f \leq 2\epsilon$ otteniamo la tesi.

Lemma 0.4. K_5 e $K_{3,3}$ sono grafi non planari.

Dimostrazione. $\underline{K_5}$: il grafo completo K_n ha $\epsilon = \frac{n(n-1)}{2}$ archi. Supponendo per assurdo K_5 planare dovrebbe valere la proposizione 0.4 ovvero, essendo $V = 5 \ge 3$

$$10 = \frac{n(n-1)}{2} = \epsilon \le 3V - 6 = 9 \to 4 \tag{22}$$

 $K_{3,3}$: Supponendo per assurdo $K_{3,3}$ planare, sapendo $\epsilon = 3 * 3 = 9$, V = 6 dalla formula di eulero 0.1 otterremmo $f = 2 - V + \epsilon = 5$. Siccome $K_{3,3}$ è bipartito non contiene cicli composti da 3 archi \rightarrow ogni faccia ha almeno 4 lati, ovvero $\deg(F) \ge 4 \forall F$ vale $\sum_{i=1}^{f} \deg(F_i) \ge 4 * f = 20$. Per il lemma 0.3 dovrebbe valere però

$$20 \le \sum_{i=1}^{f} \deg(F_i) = 2\epsilon = 18 \to \mathbf{f} \tag{23}$$

Figura 2: immersione nel piano di K_5 e $K_{3,3}$

Teorema 0.3 (Teorema di Kuratowski). Un grafo G è planare se e solo se non contiene sottografi $TK_{3,3}$ o TK_5 .

Dimostrazione. " \Rightarrow ": è evidente che se un grafo G è planare non contiene sottografi omeomorfi a $K_{3,3}$ o K_5 .

<u>"</u>\(\subsete^{\pi}\): per provare questo lato dell'implicazione dimostramo la tesi equivalente "G non planare \(\Rightarrow\) contiene $TK_{3,3}$ o TK_5 " \(\Delta\)

Si può riformulare il teorema precedente in termine di minori.

Teorema 0.4 (Teorema di Wagner). Un grafo G è planare se e solo se non ha $K_{3,3}$ o K_5 come minori.