

HASZNÁLATI UTASÍTÁS

TYPE TR-4805

“CHARACTERSCOPE-Z” FÉLVÉZETŐ
KARAKTERISZTIKA ÁBRÁZOLÓ

1575

ELEKTRONIKUS MÉRŐKEszüLÉKEK GYÁRA

TYPE TR-4805

**"CHARACTERSCOPE-Z" FÉLVEZETŐ
KARAKTERISZTIKA ÁBRÁZOLÓ**

1575

Gyártja:

ELEKTROMÉRŐI MÉRŐKÉSZÜLÉKEK GYÁRA
1163, Budapest, Cziráky u. 26-32.
Telefon: 837-770 Telex: 22-45-35

Forgalomba hozza:

MIGÉRT

MŰSZER- ÉS IRCDAGÉPÉRTÉKESITŐ VÁLLALAT
1065 Budapest, Bajcsy-Zsilinszky ut 37.

"15750- 700" pr. sz.

1981.

F.k. Kiss József

TARTALOMJEGYZÉK

	Oldal
1. A KÉSZÜLÉK RENDELTETELÉ ÉS ALKALMAZÁSI TERÜLETE	3
2. MŰSZAKI ADATOK	4
3. A MŰSZER ÖSSZEÁLLITÁSA	7
4. A MŰSZER ÉS PÓBB KÍSZELÉEK MŰköDÉSE ÉS FELEPÍTÉSE	9
4.1. Működési elv	9
4.2. A készülék működése	9
4.3. Részletes működési leírás	9
4.4. Mechanikai felépítés	15
5. ÁLTALÁNCOS Üzemeltetési UTASÍTÁSOK	16
5.1. A készülék ki- és visszacsomagolása	16
5.2. Összeállítási utasítás	16
6. BIZTONSAGTECHNIKI UTASÍTÁSOK	17
7. Üzembehelyezés előkészítése	18
7.1. Kezelőszervek és csatlakozók	18
7.2. Ovó rendszabályok	20
8. A KÉSZÜLÉK HASZNÁLATA	22
8.1. Üzembehelyezés	22
8.2. Üzemeltetés 60 Hz-es hálózatról	23
8.3. Nagyaramú mérési összeállítás	23
8.4. Mérések	23
9. JELLEGZETES MŰGHIBÁCSOK ÉS MEGEZDÜLETÉSÜK	26
9.1. Ovórendszerelvűek a javítás előtt, alatt és után	26
9.2. Funkcionális ellenőrzés, hibajavítás	26
10. MŰSZAKI KARBANTARTÁS	29
11. A MŰSZAKI ÁLLAPOT ELLENŐRZÉSE	30
11.1. A műszaki állapot ellenőrzésének gyakorisága és körűlményei	30
11.2. A vízszintes erősítő ellenőrzése	30
11.3. A függőleges erősítő ellenőrzése	31
11.4. A lépcsőgenerátor ellenőrzése	31
12. TÁROLÁSI SZABÁLYOK	35
MELLÉKLETÉK	36

1. A KÉSZÜLÉK RENDELTELÉSE ÉS ALKALMAZÁSI TERÜLETE

A TYPE 1575 CHARACTERISCOPE-Z /TR-4805/ általános használatú félvezető karakterisztika vizsgáló műszar.

A készülék elsősorban félvezető alkatrészak szemléletes vizsgálatára alkalmas; segítségével kis- és nagyteljesítményű tranzisztorok; FET-ek, diódák, Zener-diódák, tunnel-diódák, tirisztorok stb. vizsgálhatók.

Laboratóriumban és gyártásban egyaránt egyszerű és gyors alkatrészmérést biztosít. Az alapkészülékkel két alkatrész összehasonlító vizsgálata végezhető, kézi átkapcsolással, 0-1000 V ill. 5 nA- 2 A tartományban, max. 200 mA bázisárammal. Az 1576-3 /TR-4806-3/ tipusu Nagyáramú Betétegység és ez 1575-3 /TR-4805-3/ tipuau Nagyáramú Adapter, mint tartozerék felhasználásával a méréstartomány 200 A kollektor- és 20 A bázisáramig terjeszthető ki /impulzusüzemben/. A készülék passzív alkatrészek, pl. jelfogók, kapcsolók, csatlakozók kis- és nagyáramú mérésére is alkalmas, szintén 200 A csúcsáramig.

A karakterisztika ábrázoló teljesen félvezetős falépítésű, a korszerű integrált áramkörök alkalmazása a készülék megbizhatóságát növeli. A sokféle mérés elvégzését a készülék könnyű kezelhetősége biztosítja.

2. MŰSZAKI ADATOK

2.1. Általános adatok

2.1.1. Vizsgálható eszközök száma

2 /kézi átkapcsolással/

2.1.2. Alspálcás

földelt emitteres

2.2. Kollektor táplálás

2.2.1. Feszültség

0-1 kV /terhelhetetlenül, 10 átkapcsolható sávban, a sávon belül folyamatosan szabályozható/

+ és -

AC /egyenirányított szinuszfeszültség/

DC

2 A

0,1 - 0,5 - 2 - 10 W, automatikus kijelzéssel

0 - 1,7 M Ω 11 lépésoen
/0; 25; 10; 65; 250 Ω ,
1; 6,5; 25; 85; 500 κ Ω ,
1,7 M Ω /

a mérőbefogóba helyezett félvezető eszközökre csak a védőbura zárt állapotában adható feszültség

2.2.7. Életvédelem

2.3. Lépcsőgenerátor

2.3.1. Üzemmód

sgyes lépcső
ciklikusan ismétlődő lépcső sor

2-10

0,2 μ A - 20 mA /1-2-5 lépésekben/

2.3.2. Lépcsőszám

0,1 V - 2 V /1-2-5 lépésekben/

2.3.3. Áramlépcső értéke

2.3.4. Feszültséglépcső értéke

2.3.5. Polaritás	+ és -
2.3.6. Pontosság /0 eltolás esetén/	$\pm 5\%$
2.3.7. Eltolás /offset/	min. ± 1 lépcső
2.3.8. FET gate áram ellenőrzés	100 k Ω soros ellenállással

2.4. Visszintes erősítő

2.4.1. Üzemmód	U_{CE} vagy U_{BE} mérés
2.4.2. Érzékenység	0,1 V - 100 V/osztás /1-2-5 lépésekben/
2.4.3. Pontosság /10 osztásra vonatkoztatva/	$\pm 5\%$

2.5. Függőleges erősítő

2.5.1. Üzemmód	I_C mérés
2.5.2. Érzékenység	5 nA - 0,2 A/osztás /1-2-5 lépésekben/
2.5.3. Pontosság /10 osztásra vonatkoztatva/	$\pm 5\% \pm 10$ nA

2.6. Mérőelénítés

2.6.1. Képméret	80 x 80 mm /10 x 10 osztás/
2.6.2. Képhelyzet	konvencionális mind NPN, mind PNP eszköz mérése esetén

2.7. Hálózati adatok

2.7.1. Feszültség	110, 127, 220 V $\pm 10\%$ /átkapcsolható/
2.7.2. Frekvencia	50/60 Hz
2.7.3. Fogyasztás	kb. 50 VA /kisteljesítményű eszközök mérése esetén/ kb. 70 VA /nagy teljesítményű eszközök mérése esetén/

2.9. <u>Méretek</u>	252 mm magas 252 mm széles 343 mm mély
2.9. Tömeg	kör. 12,5 kg

2.10. Klima adatok

2.10.1. Normál és névleges üzemű feltételek	
2.10.1.1. Környezeti hőmérséklet	+10 ⁰ C ... +35 ⁰ C
2.10.1.2. Relativ légnedvesség	max. 85 %
2.10.1.3. Légnyomás	0,6-1,06 bar

2.10.2. Üzemeltetési határfeltételek

2.10.2.1. Környezeti hőmérséklet	+5 ⁰ C ... +40 ⁰ C
2.10.2.2. Relativ légnedvesség	max. 85 %
2.10.2.3. Légnyomás	0,6-1,06 bar

2.10.3. Szállítási és tárolási feltételek

2.10.3.1. Környezeti hőmérséklet	-25 ⁰ C ... +55 ⁰ C
2.10.3.2. Relativ légnedvesség	max. 98 %
2.10.3.3. Légnyomás	0,6-1,05 bar

2.11. Periodikus ütésvizsgálat

2.11.1. Az ütés időtartama	12 ms
2.11.2. A max. gyorsulás értéke	5 g
2.11.3. Az ütések száma	1000

2.12. A készülék alapvetően az alábbi szabványoknak tesz eleget:

- 2.12.1. MSZ 94-70
- 2.12.2. KÖST RSZ 2657-73, RSZ 3824-73, RSZ 3825-73, RSZ 4492-74.

3. A MŰSZER ÖSSZEÁLLITÁSA

3.1. Type 1575 /TR-4805/ "CHARACTERSCOPE-Z" félvezető karakterisztika ábrázoló

3.2. Tartozékok

3.2.1. "A" tartozékok /a készülék árában bennefoglalt/

1 db	Hálózati csatlakozó vezeték csatlakozó dugókkal	1004
1 db	Használati útásítás	

3.2.2. "B" tartozékok /a készülékekkel együtt szállított, az ár külön felszámítása mellett/

1 db	TR-4805-1 mérő befogó TO-5 & TO-18 foglalatokkal	1575-1
1 db	TR-4805-2 mérő befogó TO-3 & TO-66 foglalatokkal	1575-2

3.2.3. "C" tartozékok /külön rendelésre szállított, az ár külön felszámítása mellett/

1 db	TR-4805-3 Nagyáramú adapter /HIGH CURRENT ADAPTER/	1575-3
1 db	TR-4806-3 Nagyáramú betétegység /HIGH CURRENT FIXTURE/	1576-3

A két nagyáramú tartozék csak együtt rendelhető.

3.3. Csöves olvadóbiztosító betétek

3.3.1. "A" tartozék

Hálózati	220 V - 400 mA /Go 20/5,2 - 400 mA/	1 db
	110/127 V - 800 mA /Go 20/5,2 - 800 mA/	2 db
	315 mA /Go 20/5,2 - 315 mA/	3 db
	2,5 A /Go 20/5,2 - 2,5 A/	1 db

3.4. Nagyáramú mérési összeállítás műszaki adatai

A 3.2.3. pontban feltüntetett TR-4805-3 /1575-3/ típusú Nagyáramú Adapter és TR-4806-3 /1576-3/ típusú Nagyáramú Betétegység felhasználásával a méréstartomány 200 A kollektor- és 20 A bázisáramig ter-

jeszthető ki /impulzusüzemben/. A részletes műszaki adatokat fenti tartozékok használati utasítása tartalmazza.

A MŰSZER ÉS FÖBB RÉSZEINEK MŰKÖDÉSE ÉS FELEPÍTÉSE

1. Működési elv

Készülék tömbvázlata az 1. ábrán látható.

Műszer villamos felépítés szempontjából három nagy funkcionális részre bontható.

1. Vezérlő áramkörök:

lépcső generátor
kollektor tápegyeség

2. Mérő áramkörök:

visszintes erősítő
függőleges erősítő

3. Kijelző egység:

Katódsgárcső és a tápegyeségek

2. A készülék működése

Működést célszerü egy földelt emitteres kapcsolású tranzisztor résével tárgyalni.

Ürrendő függvény az $I_C = f /U_{CE}/I_B$. Az I_C áramot az R_E ellenálláson ri a függőleges erősítő.

U_{CE} tápfeszültséget a kollektor tápegyeség szolgáltatja $/U_C/$, és a visszintes erősítő méri.

I_B vezérlő bázisáramot a lépcső generátor $U_g/$ szolgáltatja:
kétoldalasan egyenirányított hálózati feszültségből lépcenként 5 ms idővel feszültséget állít elő.

$I_C - U_C$ karakterisztika horizontális eltérítő feszültsége ugyancsak kétoldalasan egyenirányított hálózati feszültség. Ennek a két jelnek összessége - a helyes $I_C - U_C$ görbesereg ábrázolása érdekében - pontosan csakban kell lennie, ahogy azt a 10. ábra szemlélteti.

3. RÉSZLETES MŰKÖDÉSI LEÍRÁS /az áramkörök ismertetése a kapcsolási rajzok alapján/

4. j. 1. Lépcső generátor

Az áramkör kapcsolási rajza a 11. ábrán, nyomtatott áramköri rajza pedig a 17. ábrán látható.

Az áramkör feladata lépcsőfeszültség előállítása. A hálózattal szinkron működő vezérlőjeleket a TR107-110 tranzisztor állítja elő. A T1/15 ponthoz, mint 0-fázishoz képest a T1/19 ponton 180° -os, a P101-C102 csatlakozási pontján pedig 90° -os szinuszos feszültség van. Ezen három fázishelyzetek megfelelő négyzetöghullámot a T107-109 tranzisztor állítja elő, a negyediket a "90°-os" négyzetjel fázisfordításával nyerjük a TR110 kollektorára. A P101 potenciometrrel a 90° és fázistolást lehet beállítani, a P104 pedig a 0-átmenetnek megfelelő négyzetög-élek kismértékű szabályozására szolgál.

A négy 0° , 90° , 180° és 270° fázisu/négyzetjel negatív élét C-R tagokkal differenciálva, majd a négy differenciált jelet /oxygen impulzust/ VAGY-kapcsolatban összegezve, az IC102/1 ponton a hálózati feszültség nulla- és csúcsértékeivel fázisban levő 200 Hz-es impulzus-sorozat áll elő.

A hálózati szinuszfeszültség rájut a TR106 bázisára is, és az S03 csatlakozó a7 és c7 pontjait összekötve /ez az összekötés csak a nagyáramú mérések nél valósul meg/ az IC102a... bemeiben /1. pont/ 50 Hz-es jellet a 200 Hz-es impulzus-sorozatból a hálózati szinuszt egyik csúcsával fázisban levő 50 Hz-es jelet kapuz ki. Az impulzus-sorozat kétszeres invertálás után az IC102b kimenetére jut /IC102/6 pont/.

Ezen 200 Hz-es impulzus-sorozat vezérli az IC104 számlálót.

A BCD kódolt jeleket C-9 decimális értékre az IC105 áramkör alakítja át. R115-R124 referencia osztót decimálisan vezérli az IC105, és a 0-9 számok közül S101 kapcsolóval választható ki a kívánt lépcsőszám. Az S101-gel kiválasztott lépcsőszámhoz tartozó ellenálláson keletkező feszültségugrás vezérli a TR102 tranzisztor, mely nullázó /reset/ jelként kerül a számlálóba /IC104/, és a számlálási ciklus kezdődik előlről.

Egy diszkrét lépcsőfeszültség beállítása ugy történik, hogy az

S104 ONE CURVE kapcsoló benyomott állásban az S101 kapcsoló által beállított kódot kapcsoljuk az IC105 dekódolóra.

A referencia osztó kiemelő pontja az IC108 erősítőre, majd a TR104 emitterkövetőről a STEP AMPLITUDE /S103/ osztóra kerül. A lépcőfeszültség kalibrált értékét az erősítés beállításával lehet elérni, ezt a F102 potenciometter szabályozza. Az OFFSET feszültség eltolását a F103 potenciometter végezi. A + vagy - polaritásu feszültséget az S102 kapcsoló váltja. A lépcő generátor maz. 200 mA-es áramot szolgáltat, túlterhelés ellen az F101 biztosíték védi az áramkört.

Nagyáramú mérési összeküllítés esetén az S103 kapcsoló helyzetét /C,5 - 20 mA állásokban/ az S03 csatlakozón kerektől érzékelik a nagyáramú tűrőszerek áramkörei. A kapcsolási üzletből /3. ábra/ léthetően a lépcő generátor földfüggelékenél kapcsolódik a csatlakozó áramkörökönöz, erre a 11. ábra "föld" jelölése is felhívja a figyeimet. A tápfeszültségeket az IC107 és a TR101, TK104-ből álló tápegység állítja elő. Az eggyirányítást a D101-102, D103-104 diódák végzik. A lépcőgenerátor működése szemléltetéséből a 10. ábra segítségével.

4.3.2. Kollektor tápegység

A tápegység kapcsolási rajza a 12. ábrán, nyomtatott áramkori rajza a 18. ábrán látható.

A áramkör feladata, hogy a vizsgált tranzisztor számára kollektor-feszültséget állítson elő. Az S202 kapcsoló DC állásaiiban egyenfeszültséget, AC állásaiiban pedig kétféleirendezett eggyirányított hálózati feszültséget szolgáltat. Nivel az ábrázolt karakterisztika vizsgintas eltérítő feszültséget szolgáltatja az áramkör, DC állásban a feszültség nagyságának megfelelő helyen minden bázisípccöhöz egyetlen pontot rögzít a katódugárcsöre.

A tápfeszültség nagyamplitudóját folyamatosan a T2 termod tranzszformátorral lehet szabályozni, 1-2-5 feszültség-lépésenként pedig az S501 kapcsolóval. A T2 auto-tranzszformátor a T3 tranzszformátor táplálja, melynek szekunder leágazásait az S501 kapcsoló a D201-D204 diódákból álló káttutás eggyirányító cígségre kapcsolja. Az S202 kapcsolóval az eggyirányítás előjelét és a pufferkondenzátorokat lehet kapcsolni. A C201-C203 behúpcsoláskor egyenfeszültséget szolgáltat az aranyműr.

A kívánt nagyságú és előjelű AC vagy DC feszültség az R206-R220 soros ellenállásokon keresztül az S201 kapcsolóval adható egyrészt a vizsgálat tranzisztorra, másrészt sz U_C feszültséget mérő vizszintes erősítőre. A TEST ADAPTER-re a feszültség az S204 hárómállású kapcsoló valamely szélső állásába jut, a vizszintes erősítőre pedig az S203 kapcsoló V_{CE} állásában.

A soros ellenállások a kollektoráram korlátozását szolgálják, és a rajtuk eső feszültség értékével kevesebből jut a vizsgált tranzisztorra. Ezért a vizsgált tranzisztor kollektorfeszültségét nemcsak a f2 és az S301 kapcsoló szabályozza, hanem a kollektoráramtól függő mértékben a soros ellenállások értéke is az S201 kapcsolón keresztül.

Mivel a vizsgált alkatrészre jutó teljesítményt a soros ellenállások befolyásolják, a J201-J203 teljesítményhatárokat jelző lámpák vezérlését is az S201 kapcsoló végzi együtt az S301 kapcsolóval, mely a másik tényező, a kollektorfeszültség kapcsolását végzi.

Az alábbi táblázat tartalmazza az egyes teljesítményhatárokhoz tartozó soros ellenállások értékét a kollektorfeszültség függvényében.

HOR. VOLTS/DIV	10 W	2 W	SERIES RESISTOR / Ω /		
			0,5 W	< 0,1 W	
0,1	0	-	-	>	2,5
0,2	0	-	2,5	>	10
0,5	0	2,5	10	>	65
1	2,5	10	65	>	250
2	10	65	250	>	1 k
5	65	250	1	>	6,5 k
10	250	1 k	6,5	>	25 k
20	1 k	6,5 k	25 k	>	85 k
50	6,5 k	25 k	85 k	>	500 k
100	25 k	85 k	500 k		1,7 M

Ha $R_s = 0$ érték ven beállítva, a feszültségtől függetlenül a 10 W teljesítményhatár jelző izzó világít.

A $< 0,1$ W állapotban eggyik jelzőizzó sem világít.

A SERIES RESISTOR kapcsoló benyomott állapotában lehet teljesítményhatárt váltani. A beállított teljesítményhatárkból sem a HCR.VOLTS/DIV, sem a SERIES RESISTOR kezelőszervek kapcsolásával nem lép ki a kollektor tapegység.

A szort kapacitások hatását a P201 potenciométerrel lehet kompenzálni, a kompenzáció a 100 V/div állás kivételével mindenhol hatásos.

4.5.3. Vízszintes erősítő

A vízszintes erősítő kapcsolási rajza a 13. ábrán, nyomtatott áramköri rajza a ló. ábrán látható.

Az áramkör felsődata a képcso számára vízszintes eltérítő feszültséget szolgáltatni, mely arányos a vizsgált tranzisztor kollektor-emitter feszültségeivel. Ha a vizsgált bázis-emitter feszültségre vonatkozik, akkor S203 V_{BE} állásban van, és az IC301 erősítő az U_{CE} feszültséggel vezérli a katódsugárcsövet.

A kollektorfeszültséget az S203 kapcsoló az R317-R327 bemeneti osztóra kapcsolja. Az osztót az S301 kapcsolja az IC301 nem invertáló bemenetére. Az erősítő invertáló bemenetét – az R328-R339 osztón keresztül – a vizsgált tranzisztor emitterén lévő feszültség vezérli: a nagyobb áramú állásokban közvetlenül az emitterről az R401 ellenálláson keresztül, kis szakasponti áramú beállításban – 5 μ A – 5 mA tartományban – az IC401 kimenetéről leosztott feszültség kerül az R401 ellenálláson keresztül a vízszintes erősítőre. Igy az IC301 az U_{CE} feszültséget erősít. A műveleti erősítő erősítését a P304 potenciomátrrel lehet beállítani. A P303 potenciomátrrel az IC301 /741PC/ bemenő áramát kompenzáljuk, a P301/a potenciomáter a horizontális poziciót állítja be.

Az R301 ellenállás az erősítő nem invertáló bemenetén 600 kohm-os bemeneti ellenállást állít be. A katódsugárcsövet a TR301-TR302 végfokozat vezérli, melynek áramát a TR303 állítja elő a P305 segítségével. Ennek beállítása ugy történik, hogy a fénypontot a HOR.HOST /P301/a potenciomátrrel előzüleg középre állítva, a TR301-TR302 kollektorán a tápfeszültség fele jelenjen meg.

Ha az erősítő vezérlő feszültsége polaritást vált a PHP és MNN vízszállítóknak megfelelően, az S202 kapcsoló az erősítő kimenetén is

polosritást fordít, így elérhető, hogy a rajzolt nép minden személyes helyen és személyes /konvencionalis/ helyzetben mérni, függetlenül a vizsgált elemre adott feszültségek előjelétől.

A nagyáramú mérési összeállításban az erősítő az RY1 jelfogón keresztül az S03 csatlakozóról kapja a vezérlő feszültséget.

4.3.4. Függőleges erősítő

Az erősítő kapcsolási rajza a 14. ábrán, nyomtatott áramköri rajza a 16. ábrán látható.

Feladata a vizsgált eszközön átfolyó árammal arányos eltérítő feszültség előállítása. Az IC kollektoráram az R402-R425 ellenállásokon folyik át, melyeket az S401 kapcsol az F401 biztosítón keresztül az emitterre. A kollektorárammal arányos feszültség kis munkaponti áramra /5 mA - 5 µA/div/ beállításban közvetlenül, nagyobb /10 µA - 0,2 A/div/ áramoknál 1:100 osztás után sz IC401 /709 PC/ műveleti erősítő nem invertáló bemenetére jut.

A függőleges erősítő hasonló felépítésű, mint a vízszintes erősítő. Az erősítés a P404 potenciometerrel állított be, a P405-mal sz IC401 bemeneti áramát kompenzáljuk, a P301/b potenciometer a vertikális pozíciót állítja be, a P405-tel a TR401-TR402 kollektorán a tápfeszültség felét kell beállítani. A D401-C402, C403 szűrő a 40 kHz-es transzverter jelre van beugolva.

Az R426 ellenállás az erősítő bemenetén 1 Mohm bemeneti ellenállást állít be. Az R445 ellenállás az IC401 eltolási /offset/ feszültségét kompenzája, az adott áramkörtől függően vagy a +15 V-hoz, vagy a -15 V-hoz van kötve.

A nagyáramú mérési összeállításban sz erősítő az RY1 jelfogón keresztül az S03 csatlakozóról kapja a vezérlő feszültséget, ugyanakkor az S401 kapcsoló D tárca hátsó lapjáról /Dr/ pozíciójelzés vagy a nagyáramú tervezések áramköreihe /5 mA - 0,2 A/div állásokban/.

4.3.5. Tápegység

A tápegység kapcsolási rajza a 15. ábrán, nyomtatott áramköri rajza pedig a 16. ábrán látható.

Az áramkör feladata, hogy tápfeszültséget szolgáltasson az egyes fokozatoknak és a katódsugárcsönek. Az alacsony feszültségű tápegység felépítése, a szokásos. A nagyfeszültséget egy transzverter állítja elő.

szigillátor fő elemei a TR501 tranzisztor és a T501 transzformátor. A T501 áramkör végzi a C osztályú oszcillátor folyási-szög szabályozását. A rezgési frekvencia kb. 40 kHz. A transzformátor /T501/ E-alakú rendszeres. A P505 potenciometterrel állítható be a kimeneti feszültség. V a D508 katódján /min. 100 M²/ a bemenő ellenállású műszerrel. A TR503 tranzisztor csak a nagyáramú mérések nélkül lép működésbe, hiszen kivilágító impulzust ad a katódsugárcsőre, a T502 tranzisztoron érkező vezérlés hatására.

Mechanikai felépítés

Ülék mechanikai szilárdságát merevitő rudakkal összefogott alumínium keret biztosítja.

Műszervek az előlapon /2. ábra/ nyertek elhelyezést, a T1 és a transzformátor a hátlapon /3. ábra/ van felerősítve. A katódsugárcső, a T2 transzformátort és a nyomtatott áramkör lemezeket alumíniumtartórudak, illetve szegletek erősítik a kerethez.

Ábrán látható az előlapon felerősített kezelőszervek egy része és szükséges hosszúban mechanikusan kettéosztó nyomtatott áramkör melyet a 16. ábrán mutatunk be. Ezen a nyomtatott áramkör lemezeken helyezkedik el a vízszintes és a függőleges erősítő, a tápegyenitő és a katódsugárcső tápellennelását biztosító áramkör. Ugyancsak ábrán látható a T1 hálózati transzformátor hátlaphoz való erősítés.

Ülék fenéklapja közelében van felerősítve a 17. ábrán látható nyomtatott áramkori lemez, amelyen a lépcsőgenerátor áramkör helyezkedik el. A nyomtatott lemez elhelyezkedése a 6. ábrán látható. A szemlélteti a hátlapon felerősített T3 és a tartószegleten elhelyezett T2 transzformátort.

Ábrán látható nyomtatott áramkori lemez a középső merevitő rudarral erősítve. A katódsugárcső tartó szegletekkel van a hátlapra és ítéző rúdra szerelve. A katódsugárcsövet a hátlapon található a eltávolítása után lehet kiemelni a helyéről.

Ülék hordfogantyuja a középső merevitő rudra csatlakozik, betöltött pozíciójú. Szükség esetén a készülék alá hajtható és felszerelhető állványként szerepelhet.

5. ÁLTALÁNOS ÜZELÉLTEPESI UTASITÁSOK

5.1. A készülék ki- és visszacsomagolása

A többrétegű burkolatba csouagolt készülék külső burkolata a hullámpapír doboz, melyet a ragasztások mentén kell felbontani. A készülék-ről - a hullámpapír dobozból történt kiemelés után - a légmentesen zárt műanyag burkolat is eltávolítható és a készülék a belső papír borításból kibontható. A krómözött vagy nikkelezett alkatrészekről a parafinpapír védőborítást le kell góngyölni és a vékony vazelinréteget puha textilanyaggal vagy vattával letörölni. Mindezek elvégzése után a készülék üzembehozható. Amennyiben a készülék újbóli szállításra kerül, becsomagolása a fent ismertetett mód fordított sorrendjében történjék, lehetőleg minden csomagolási anyag felhasználásával, nehogy a készülék az újabb szállítás során kárcsodást szenvedjen.

5.2. Összeállítási utasítás

A vizsgálandó alkatrész tipusának megfelelő mérő befogót /TEST ADAPTER/ a rögzítő csavarok segítségével a készülékhez kell csatlakoztatni.

6. BIZTONSÁGTECHNIKAI UTASÍTÁSOK

A hálózati feszültség átkapcsolása és a biztosíték cseréje a készülék hálózatán /3. ábra/ könnyen elvégzhető, de ezek végre-hajtása előtt a hálózati csatlakozó dugót az aljzathoz ki kell húzni. A biztosítókat kiolvás esetén drótszállal, vagy atkötéssel helyettesíteni veszélyes és tilos! A biztosítók kicserélése a mérő által előírttal szonos villanás értékű és különböző biztosítókkal pótolhatók. A hálózati biztosíték cseréje csak feszültségmentes állapotban végezhető el, és utána a biztosító fejet szerszámmal / pl. csavarhuzó/ rögzíteni kell!

A készülék csak védőföldeléssel ellátott hálózati aljzathoz csatlakoztatható. A készüléket a hálózattal a tartozékként mellékelt hálózati csatlakozó vezetékkel kell összekötni.

Elvérő hálózati csatlakozó vezeték használata esetén csak földelő érrel /3. ábra/ kábel/ ellátott vezetéket szabad használni.

A hálózati csatlakozó vezetéket először a készülékhez kell csatlakoztatni és csak azután a hálózathoz. A csatlakozás megszüntetése esetén a vezetéket kell először a hálózati csatlakozó aljzatból kihúzni. A mérő befogó /TEST ADAPTER/ eltávolítása esetén a "C" jelű csatlakozó pontokra az OFF /S204/ kapcsolóval nagy feszültség kapcsolható, ezért fokosabb figyelemmel kell eljárni. TEST ADAPTER használata nélkül a készüléket TILLOS bekapcsolni!

7. ÜZEMBEHELYEZÉS ELŐKESZÍTÉSE

7.1. Kezelőszervek és csatlakozók

Az előlapon található kezelőszervek a 2. ábrán luthatók.

Felirat a készülékben	Pozíciós zám	Rendeltetés
MAINS OFF	S1	hálózati kapcsoló
SCALE ILLUM	P507	a hálózati kapcsolóval egybeépített kezelőszerv, mellyel a képernyő részter kivilágítása szabályozható
INTENSITY	P501	a katódsugárcsövön megjelenő kép fényerejét szabályozza
FOCUS	P502	a megjelenő kép élességét szabályozza
ASTIGM.	P503	a kép egyenletes élességét szabályozza
HOR.POS.	P301/a	a kép vízszintes helyzetét állítja be
VERT.POS.	P301/b	a kép függőleges helyzetét állítja be
VERT.CURRENT/DIV.	S401	a katódsugárcső függőleges eltérésének érzékenységét kapcsolja. NO BASE STEPS méréshatarokban a vizsgálandó eszközre nem kapcsol bázisjelet a STEP generátor felől egyszerűen a katódsugárcső vízszintes eltérítésének érzékenységét kapcsolja, másrészt a vizsgálandó alkatrész tápfeszültségét. Ugyanakkor a teljesítményhatárokot jelző PEAK WATTS jelzőlámpák vezérlését is biztosítja.
HOR.VOLTS/DIV	S301	a vizsgálandó alkatrész védelmét szolgáló soros ellenállások beállítására szolgál. A SERIES RESISTOR és a HCR. VOLTS/DIV kapcsolók a vizsgált alkatrész disszipációját
SERIES RESISTOR	S201	a vizsgálandó alkatrész védelmét szolgáló soros ellenállások beállítására szolgál. A SERIES RESISTOR és a HCR. VOLTS/DIV kapcsolók a vizsgált alkatrész disszipációját

COLLECTOR SUPPLY VARIABLE	T2	együttesen állítják be, ezért mechatikus négyzetkapcsolatban állnak egymással, és együttesen vezérlik a HEAT WATT jelzőlámpákat
COLLECTOR SUPPLY		a vizsgált alkatrész tápfeszültségét szabályozza folyamatosan 0 értékről
\pm DC \pm AC	S102	a vizsgált alkatrész tápfeszültségek polaritását és a mérés üzemmódját kapcsolja. A mérés történhet elegendő feszültséggel vagy kétutasan egyenirányított hálózati tápfeszültséggel.
$V_{CE} - V_{BE}$	S103	a vizsgált alkatrész kollektor-emitter, vagy bázis-emitter pontjai között levő feszültséget kapcsolja a katódsugárca sziszintes elterítő áramkörére
STEP AMPLITUDE	S103	a vizsgált alkatrész bázisfeszültség, ill. bázisáram vezérlőjel egy lépcsőjének amplitudóját állítja be
STEP FOL.	S102	a bázis vezérlőjelek polaritását kapcsolja
BASE STEPS	S101	a vizsgált alkatrész bázis vezérlőjeinek számát /lépcsőszám/ állítja be
OFFSET	P103	a vizsgált alkatrész karakteristikájának nulla bázisáramú vagy nulla bázisfeszültségű munkapontba való eltolását teszi lehetővé
ONE CURVE	S104	üzemmódon kapcsoló: görbe sereg, vagy egyetlen kiválasztott görbe megjelenítését teszi lehetővé
GATE CHECK	S105	kapcsoló, a FET tranzisztorok vezérlő elektróda /gate/ áramának ellenőrzésére szolgál

Felirat a készüléken Pozíciószám

Rendeltetés

LOOPING	P201	a potenciometterrel az esetleges szórt kapacitációk hatása kompenzáálható a kis munkaponti árammal táplált alkatrész karakterisztikáján
OFF	S204	háromállású kapcsoló, a mérő befogóban elhelyezett vizsgálandó alkatrészekre kapcsolja a beállított paramétereiket. Ugyanakkor felépítésénél fogva megakadályozza a feszültség alatt lévő mérő befogó kinyitását, ezáltal védelmet nyújt a kezelő személynek.
B E C = B	S02	a mérő befogó csatlakozója

A hátlapon található kezelőszervek a 3. ábrán láthatók.

FUSE	F1	hálózati biztosító
	S2	feszültségválasztó
	S01	hálózati csatlakozó
	S03	26 pólusú csatlakozó a oagyáramú mérésekkel biztosító tartozékok csatlakoztatására

7.2. Óvó rendszabályok

7.2.1. A hálózati feszültségválasztó átkapcsolása

A készülék üzembehozása előtt ellenőrizni kell a hálózati feszültségválasztó állását. A gyár a készüléket 220 V feszültségre állítva szállítja. 110 vagy 127 V-re való átkapcsolás a készülék hátlapján lévő feszültségválasztó /S2/ átdugaszolásával lehetséges. Átkapcsolás után a készülékhez mellékelt 110/127 V-hoz tartozó olvadó biztosító betétet kell a FUSE feliratu biztosíték-tartóba helyezni.

7.2.2. A készülék és a vizsgált alkatrész védelme

Először is hangsúlyozni kell, hogy a készüléket rendeltetésétől eltérő

on használai, pl. atütésvizsgálatra, vagy hosszúidejű alkatrészszelére /"égetésre"/ szigoruan tilos, mivel az ilyen üzem jelensége növeli a meghibásodás valószínűségét, ill. nagy áram, vagy a disszipáció esetén termikus károsodást is eredményezhet. A kétük tartós és megbízható működése megköveteli, hogy - különben - áram, feszültség vagy disszipáció esetén - a kezelőszervek beállása, a kollektorfeszültség kivánt értékhez való növelése után - ajánl megtürténjük a karakterisztika kiértékelése, majd a kollektorfeszültség 0-re való csökkenése.

COLLECTOR SUPPLY kezelőszervet /T2/ csak a mérés alkalmából lezserű felcsavart, a kapcsolók kiemelése érdekében. A HOR. VOLTS/DIV. /S301/ és a COLLECTOR SUPPLY + AC ± DC /S302/ kapcsolókat COLLECTOR SUPPLY VARIABLE /T2/ kez lászerv lecsavart állapotában kell összekapcsolni.

Nál negyedik kollektoráramot nem szabad beállítani a készüléken! Ezután a készülék és a vizsgált alkatrész védelme érdekében célnak megjegyezni, hogy a munkaponti feszültséget a következő kezelőkkel változtatják meg: COLLECTOR SUPPLY VARIABLE és HOR.VOLTS/DIV; munkaponti áramot pedig: STEP AMPLITUDE, BASE STEPS, SERIES RESISTOR. Minél ügyelni kell a két polaritáskapcsoló állására /COLLECTOR V. ± AC ± DC és STP- POL./, mivel helytelen polaritás a vizsgált áram törzsmenedezetét okozhatja.

STEP AMPLITUDE /S103/ kapcsoló feszültség-kalibrált állásában ajánlottak FET tranzisztorokat vizsgálni. A 2 V-os állásban a forrásellenes sugyon kis értékű, ez árumot csök az FIG1 olvadóbiztosító többsé.

8. A KÉSZÜLÉK HASZNÁLATA

8.1. Üzembe helyezés

A készülék hálózati kapcsoló segítségével történő bekapcsolásával egyidejűleg maximális fényerővel bekapcsolódik a képernyő részter kivilágítása is, jelezve a készülék bekapcsolt állapotát.

A részter kivilágítás csökkenése a hálózati kapcsolóval egybeépített potenciometter jobbraforgatásával történik..

A készülék a bekapcsolás után 2-3 percig üzemképes, de érzékenyebb vagy pontosabb mérések nélkül ajánlott kivárni a 30 perc bemutatási időt. A készülék általánosságban az $I_C = f(U_{CE})$ függvény kapcsolat megjelenítésére alkalmas. A vizsgálható alkatrészek: ellenállások, diodák, Zenerdiódák, thyristorok, kis- és nagy teljesítményű tranzisztorok. A mérések a leggyakrabban használatos földelt emitteres kapcsolásban történnek:

$$I_C = f(U_{CE})/I_B$$

Az üzembe helyezéssel kapcsolatos kezelőszervek a készülék előlapján /2. ábra/ találhatók.

A készülék bekapcsolását a MAINS OFF kapcsolóval kell elvégzni.

A COLLECTOR SUPPLY VARIABLE /T2/ teljesen lecsavart állásban legyen, az OFF kapcsoló pedig középállásban.

A képernyőn megjelenő fénypontot az INTENSITY, a FOCUS, az ASTIGM., a HCR.POS. és a VERT.POS. kezelőszervekkel kell beállítani.

Első vagy hosszabb tárolás utáni újbóli üzembe helyezésnél célszerű a következő beállításokat elvégzni.

A V_{CE} - V_{BE} kapcsoló V_{BE} állásában a STEP AMPLITUDE kapcsolóval 2 V-cs jelet lehet a vízszintes erősítőre kapcsolni. A BASE STEPS kapcsolót célszerű 10 lépcső állásba kapcsolni, a HCR. VOLTS/DIV kapcsoló 2 V/DIV. állásban legyen. Ekkor a képernyőn vízszintesen 10 fénypont rajzolódik ki. Ha ez megjelenik, akkor minden a lépcső generátor, minden a vízszintes erősítő működik. A STEP AMPLITUDE /S103/, HCR.VOLTS/DIV /S301/, BASE STEPS /S101/, STEP POL /S102/, OFFSET /P103/, ONE CURVE /S104/ kezelőszervek működtetésével azok funkciója szerint változnia kell az ábrának. A ONE CURVE kezelőszerv csak 2-nél nagyobb lépcsőszámok beállítása mellett hatásos.

A kollektor tápegység működése ellenőrizhető, ha az S203 kapcsolót V_{CE} állásba kapcsolva a T2 toroiddal feszültséget adunk a vízszintes erősítőre. Ekkor a képernyőn vízszintes vonal látható, ha az S202 + AC állásban van, míg ± DC állásban fénypont tolható el a T2-vel.

8.2. Üzemeltetés 60 Hz-es hálózatról

A készülék 60 Hz-es hálózatról is üzemel, de mivel 50 Hz-es hálózatra lett beállítva, esetleg szükség lehet a P101 és P104 potenciometerek állítására /lásd a 4.3.1. pontot/.

8.3. Nagyáramú mérési összeállítás

A külön tartozékkal rendelhető TR-4805-3 /Type 1575-3/ Nagyáramú Adapter és TR-4806-3 /Type 1576-3/ Nagyáramú Betétgyűrű segítségével megvalósuló nagyáramú mérési összeállítás teljes leírása a fenti tartozékok használati utasításában található.

8.4. Mérések

A TEST ADAPTER-be helyezett tranzisztor típusától függően kell beállítani a COLLECTOR SUPPLY \pm AC \pm DC és STEP POL. kapcsolókat. Az S203 kapcsoló V_{CE} állásban legyen. A STEP AMPLITUDE kapcsolót célszerű a legkisebb bázisáramú értékre beállítani.

A vizsgált tranzisztorról függően kell beállítani a VERT. CURRENT/DIV. és H.R. VOLTS/DIV. kapcsolókat, valamint a SERIES RESISTOR értékét. A vízszintes eltávító feszültség és a soros korlátozó ellenállás együttesen meghatározzák a maximális disszipációt, amit a PEAK WATTS jelzőlámpák mutatnak. /0,1 W max. disszipáció esetén egyik jelzőlámpa sem világít./ Valamely beállított maximális disszipáció értékhez összetartozó feszültség és ellenállás értékek tartoznak, ezért a H.R. VOLTS/DIV és a SERIES RESISTOR kapcsoló 10 W, 2 W és 0,5 W max. disszipáció értéknél együtt fut.

Egy másik független beállítás - más disszipáció értékre vonatkozó lepés - a SERIES RESISTOR kapcsoló benyomott állapotában lehetséges. /0,1 W max. disszipáció esetén nincs együttfutás. /

Letörési feszültség alatti mérés esetén célszerű a SERIES RESISTOR értékét mindenkorral megegyezően által megengedhető legkisebb értékre állítani, hogy a kollektor tápfeszültség károsodástól védőkörök nem következzenek be. Letörési feszültség mérése esetén a vizsgált eszköz védelmét a SERIES RESISTOR látja el, így értékét a vizsgált eszközre megengedett maximális áram szabja meg.

Az S204 CFF kapcsolóval a visszaláncban tranzisztor feszültség alá helyezhető. A COLLECTOR SUPPLY VAKUUMELÉ gombból a H.C.R. VOLTS/DIV. állásnak megfelelően 0-tól növelhető feszültséget lehet a tranzisztor kollektorára kapcsolni. A tranzisztor kollektora arányát a STEP AMPLITUDE kapcsolóval lehet változtatni, és a kollektora arányt a VERT.CURRENT/DIV. mérőszárváltóval kell a képernyón a kívánt léptékben megjeleníteni. A BASE STEPS kapcsolóval az ábrázolt karakterisztika görbüleinek száma állítható be. A CWL CURVE görbe benyomott állapotban a görbesereg helyett a BASE STEPS kapcsolóval beállított egyetlen görbe rajzolódik fel. Az ONE CURVE kezelőszerv csak 2-nél több lépcső beállítása esetén működik, két lépcső beállításánál minden két görbe látható. A görbesereg legalsó görbüje az OFFSET potenciométer nélküli beállításakor az alapvonulat jelzi. A zérus bázisáramhoz tartozó görbe úgy állítható be, hogy az OFFSET potenciométerrel az első görbét addig kell lefelé szabályozni, amíg a görbe követi a szabályozást.

A VERT. CURRENT/DIV. mérőszárváltó NO BASE STEPS állásiban a visszgált elem nem kap bázis vezérlő feszültséget. Ezen mérőszámturek díobiák záróirányú áramának vizsgálatára, egyéb kis szivargázi, zárdirányú áramok mérésére szolgálnak. Kis kollektora arány esetén a LOOPING /P201/ potenciométerrel szükség esetén kompenzálni lehet a szört jelek hatását.

PNP és NPN tranzisztorok mérise között a különbség csupán a COLLECTOR SUPPLY kapcsolóval beállítható kollektorfeszültség előjelsége és a GATE POL. kapcsolóval beállítható bázis vezérlőjel előjelle között van. FET mérése hasonlóan történik, csupán a STEP AMPLITUDE kapcsolóval feszültség lépcsokeket kell a gate elektrodára kapcsolni. A gate áram ellenörzésére szolgál a GATE CHECK nyomógomb. Jó minőségű FET esetén nagyon kicsi a gate áram, illyenkor a nyomógomb benyomásával a rajzolt karakterisztika nem változik. Nagy gate áram esetén a görbe benyomásákor a rajzolt karakterisztika függöléges méreteiben csökken.

Tranzisztorok, FET-ek visszaláncakor a STEP AMPLITUDE kapcsolóval beállítható a bázis-emitter ill. gate-source rövidrezárt állapot az S.C. állásban, az O.C. állásban pedig szabadon marad a bázis ill. gate elektroda. Párválogatás esetén az OFF kapcsolóval a TEST ADAPTER-be helyezett két tranzisztor karakteristikája összehasonlítható.

A COLLECTOR SUPPLY kapcsolót + DC vagy - DC állásba kapcsolva /a visszgált tranzisztorról függően/ a mérősek kollektor egyenfeszültséggel történnek. Ez esetben a rajzolt görbesereg csak a karakteristikának

. VOLTS/DIV. és a COLLECTOR SUPPLY VARIABLE vezelőszervekkel be-
ott U_C kollektorfeszültséghoz tartozó pontjaiból áll /7. ábra/.
Üzemmod különösen kis áramok esetén ajánlott.

Elépvetőbb mérés a tranzisztor áramerősítési tényező mérése.

Ökteriszttikaseregről könnyen leolvasható, hogy az adott U_C és I_C pontok környezetében a STEP AMPLITUDE által beállított I_B lépcső-
lés hatására mekkora ΔI_C változás lép fel. I_C értékét a VIRT.
M/DIV. mérésbetrávtólval lehet könnyen beállítani és a képernyő
ről leolvasni /8. ábra/.

Ezt /kiértékelést/ zavarhatja az ábra vibrálása. Ennek egyik elő-
je a hálózati szinuszos feszültség tarzitása.

Vibrálás lecsökken vagy megszűnik, ha párosszámú, de leginkább, ha
8 görbet /lépcőszámot/ állítunk ne.

8 lépcőszámával /S-10/ a képernyő véges utávvilágítása miatt
mentő bizonys vibrálás. Kis áramoknál /tranzisztorok esetében pl.
/0,1/ osztás érzékenységnél/ a műszaki adatak által megengedett ér-
zelüli, de mégis zavaró hálózati frekvenciájú szorás jelentkezik
rán. Ilyenkor, pl. áramerősítési tényező mérésnél, célszerű két
többszörösekétszeres ΔI_C változás leolvasásával kiszámítani a
rémerősítési tényezőt.

80 feszültség ráadásakor a vizsgált eszközre a felrajzolt ábra
szeli /kisfeszültségü/ részének megváltozása észlelhető. Az ábra
ilyenkor a kiértékelésnél nem kell figyelenbe venni, míg ha sz
1 -> 5 V-os szakaszra vagyunk kíváncsiak, megfelelő /0,1 - 0,5 V/csz-
terzékenységre kell állítani a vizszintes erősítőt.

Lépcőváltáskor a katodsgárcső árama változatlan, /nincs sugár-
tás/ az ábra jobb oldalán az egyes vonalszakaszok vége egymással
szemben kötve, ami fölleg nagyobb fényerőnél látható. Ezt a ki-
elécnél természetesen figyelmen kívül kell hagyni, mivel nem a
ált eszköz tulajdonsága.

9. JELLEGZETES MEGHIBASODÁSOK ÉS MEGSZÜNTETÉSÜK

9.1. Ovórendszer szabályok a javítás előtt, alatt és után

A 6. és 7. pontban leírtak maradéktalanul érvényesek. Amennyiben a készülék bekapcsolása szükséges mérő befogó nélkül, külön figyelmet kell fordítani a "C" pontokon megjelenő feszültségre, melynek nagyságát S301 /HOR. VOLTS/DIV./ és T2 /COLL., SUPPLY VARIABLE/ szabályozza.

A készülék kidobozolása esetén bekapcsolt állapotban a következő alkatrészekben van minden veszélyes feszültség: T1, T2, T3 transzformátor, S301 kapcsoló és a hozzá tartozó áramköri elemek, C5C1, 516, 507, 508, TR301, 302, 401, 402 és a hozzá tartozó egyéb áramköri elemek, valamint a katód sugárcső és annak feszültségét előállító elemek /T501, T502, TR503, D507, 508, 511, 512, P501, 5C2, 5C3, 504 stb./

Egyes alkatrészeken csak akkor van veszélyes feszültség, ha az S301 kapcsolóval és a T2 toroid transzformátorral nagy feszültséget állítunk be /S201, 202, 203, 204, P201, stb./. Természetesen figyelembe kell venni, hogy a meghibásodás révén egyébként vesszélytelen ponton is veszélyes feszültség jelenhet meg.

9.2. Funkcionális ellenőrzés, hibajavítás

Célszerű egy gyors méréssel ellenőrizni, hogy a készülék minden irányába működik-e, és a megfelelő kapcsolatban vannak-e egymással. Ezért egy ábra beállításával lehet a legkönnyebben és legszorszabón elvégezni a kapcsolók következő beállításában:

S301	2 V/div
S201	65 Ω
S203	V _{CE}
S202	+AC
S204	ON
S101	10 lépcsőszám
S1C3	1 mA
S401	1 mA/div

erő befogót eltávolítva és a föld - B pontok közé rövidzárat nevezve a T2-vel vízszintes elterítő feszültséget kell beállítani. Ezután minden előszervet működtetni kell és az ábra alapján kiártékelhető a működés helyessége.

jelem! Az S103-at 2 V állásba kapcsolni nem szabad! /Az F101 biztosíték kiéghet./

utolszerű vizsgálattal könnyen és gyorsan behatárolható a hibás helye:

Öld- B rövidzárat meg kell szüntetni, majd az S203 /V_{CE}-V_{BE}/ kapcsoló V_{BE} állásában az S103 /STEP AMPLITUDE/ kapcsolóval 2 V-os jelet ad a vízszintes erősítőre kapcsolni. Az S101 /BASE STEPS/ kapcsoló cél szerű 10 lépcsőállásba kapcsolni, az S301 /HOR. VOLTS/DIV. kapcsoló 2 V/DIV. állásban legyen. Ekkor a képernyön vízszintesen fénypont rajzolódik ki. Ha ez rendben van, akkor minden a lépcső generátor, minden a vízszintes erősítő működik. Az S103, S301, S101, S102, S3, S104 /STEP AMPLITUDE, HOR.VOLTS/DIV, BASE STEPS, STEP POL, PSET, CNE CURVE/kezelőszervek működtetésével további részletesebb átvilágosítást lehet kapni a kérdezés áramkörökről, a kezelőszervek működését a képernyón ellenőrizve.

Függöleges erősítő is hasonlóan ellenőrizhető, ha a TEST ADAPTER távolítása után a B és ↓ /föld/ jelű csatlakozási pontoka összekötésével az S204 /OFF/ kapcsolóval az előzőekhez hasonlóan 10 lépcsőjelet adunk a függöleges erősítőre. Az S401 /VERT.CURRENT/DIV./ kapcsoló törlése a képernyön ellenőrizhető.

Kollektor tápegység működése ellenőrizhető, ha az S203 /V_{CE}-V_{BE}/ kapcsolót V_{CE} állásba kapcsolva a T2 /COLLECTOR SUPPLY VARIABLE/ többletközös feszültséget adunk a vízszintes erősítőre. Ekkor a képernyön zsinór vonal látható, ha az S202 /COLLECTOR SUPPLY ± DC ± AC/ AC állásban van, ± DC állásban fénypont talható el a T2-vel. A TEST ADAPTER eltávolítása után, a föld-C csatlakozási pontok között oszcilloszkóppal kívülről is megmérhető a kollektorfeszültség, éspedig DC állásban egyenfeszültség, ± AC állásban a kétoldalon egyenirányított hálózati feszültség.

Vel az aramkörök legfontosabb pontjai egy-egy kezelőszervvel az előzőekben elérhetők, a hiba behatárolása minden külső műszer nélkül meggyonyomható.

Jól behatárolt hiba a működés ismeretében egyszerűen és könnyen megírható.

Az emellett minden melyik biztosító betét égett ki, cseréje előtt meg kell vizsgálni, mi okozta a kiégést, és meg kell szüntetni az okot. Az F101, F4C1 kiégését legtöbbször helytelen mérési beállítás okozza, míg a többi biztosító betét kiégése valószínűleg belső meghibásodás eredménye.

10. MŰSZAKI KARBANTARTÁS

Rendeltetésszerű használat esetén a készülék külön karbantartást nem igényel.

Javitás illetve egyes elemek cseréje után esetleg szükséges beállítások leírása a 11. fejezetben található.

II. A MŰSZAKI ÁLLAPOT ellenőrzése

II.1. A műszaki állapot ellenőrzésének gyakorisága és körülmenetei

A műszaki állapot ellenőrzésére évente egyszerinél gyakrabban nincs szükség. Cíyan javítások után, amelyek a műszaki állapot megvilágítását okozhatták /pl. amelyek az egyes szabályozó elemek új beállítását igényeltek/ szintén szükséges az adott részleggyésg műszaki állapotnak ellenőrzése.

A műszaki állapot ellenőrzése során a készüléket 220 V $\pm 1\%$, 50 Hz $\pm 1\%$, kisforgatású /max. 5 %/ hálózatról $23 \pm 2^{\circ}\text{C}$ hőmérsékleten kell üzemeltetni.

II.2. A vízszintes erősítő ellenőrzése

II.2.1. Szükséges műszerek

M-1 Digitális voltmérő 0,2 V-1000 V méréshatárral, 10 W-os beállítással, $\pm 0,2\%$ pontossággal pl. TR-1657 /Type 1464/

II.2.2. A mérés menete

10 W-os méréshatárokban az S301 összes állásában a fénypontos lecsavart T2 mellett IP301/a-vel /HCR.POS./ a katódusugárca ű középvonalában az 1. részterre /0-ra/ kell állítani, majd T2-vel végkiterésre. A C-E pontok között M-el kell mérni a feszültséget. S202 +DC, S401 0,2 A állásban legyen. A leolvasható feszültség feleljen meg az S301 kapasitív állásából adódónak /pl. 0,5 V/osztás állásban 5 V/. Megengedett eltérés $\pm 5\%$.

II.2.3. Esetleges beállítások

Ha 2 V vagy 1 V/osztás állásban a pontosság nem megfelelő, beállítása P304-el történik. Ha ezek után 0,1 V/osztás állásban nem megfelelő a pontosság, R301 ellenállás cseréje szükséges.

3. A függőleges erősítő ellenőrzése

3.1. Szükséges műszerek:

/lásd a II.2.1. pontot/

/0,1; 1; 10; 100. 1000 Ω ± 0,5 % sűrtők, pl. M-i sűrtjei/
10, 101, 1111 k Ω ± 0,5 % ellenállások, mint sűrtők L-1-hez
Folyamatosan szabalyozható egysínuszáltról törzsgázosztók 2 A
terhelhetőséggel, pl. M-9162/B

Száranaiem vagy akkumulátor /1 cella/, ellenállás, kondenzátor, potenciometter, kapcsoló a 22. ábra szerint.

3.2. A mérés menete

1. ábra szerinti összekötést kell megvalósítani. S202 +AC, S301
/osztás, T2 lecsavort állapotban legyen. Az S4C1 összes állásában
2 A/osztás-sal kezdve/ M4/M5 O kimenő feszültség értékénél "0"-ra
kötődugárost középvonalában a legalsó részterre/ kell állítani
1/B-vel /VIRE.PCS/ a fénypontot, majd M4/M5-tel végkitérésre.
M1-höz a megfelelő R_S sűrtellenálláson mért áramérték feleljen
a kapcsoló állásából adódónak /pl. 5 mA/osztás állásban 50 mA/.
Engedett eltérés ± 5 % ± 10 mA.
1 A - 0,5 mA/osztás állásban az M4, 0,2 mA-10 μA/osztás állásban
M5 "1" kapcsoló helyzetben, 5 μA- 5 mA/osztás állásban az M5
kapcsoló helyzetben alkalmazandó.

3.3. Esetleges beállítások

10 μA vagy 20 μA/osztás állásban a pontosság nem megfelelő,
állítás R4C4-gyel történik. Ha ezek után 5 mA/osztás állásban
megfelelő a pontosság, R426 ellenállás cseréje szükséges.

4. A lépcsőgenerátor ellenőrzése

4.1. Szükséges műszerek

1 /lásd a II.2.1. pontot/

2 /lásd a II.5.1. pontot/

3/a /10 k Ω ± 0,5 % ellenállás/

M-6 Oszcilloszkóp, DC csatolású, 50 mV/cm érzékenységű,
pl. TR-4653 /Type 1555/

11.4.2. A rögzítés menete

11.4.2.1. Nullázás /M-1, M-6/

A kezelőszervek az alábbi állásban legyenek:

S101	2
S102	" "
S103	2 V
S104	ONE CURVE
S203	V_{BE}
S301	0,1 V

M-1 és M-6 a B-E pontokra kapcsolandó /E a "hideg" pont/. P103-mal /OFFSET/ addig a határhelyzetig kell szabályozni, amíg a készülék képernyőjén a két fénypont eggyé olyan össze, az oszcilloszkópon pedig a négyzet amplitudoja közel 0-re csökken /egyenes vonallá válik/.

11.4.2.2. Lépcsőfeszültség-linearitás ellenőrzése /M-1/

Helyes nullázás után /11.4.2.1. pont/ az S101 különböző állásaiban a következő értékeket kell mérni M-1-vel; annak 20 V állásában:

S101	M-1 /V/
3	02,00
4	04,00
5	06,00
6	08,00
7	10,00
8	12,00
9	14,00
10	16,00

A megengedett eltérés $\pm 2\%$ ± 4 digit.

II.4.2.3. A feszültségszámító ellenőrzése /M-1/

S101-et "3" állásba kapcsolva P103-mal /OFFSET/

2,000 V-ot kell beállítani M-1-en.

S103 különösen feszültség-állásiban a következő értékeket kell mérni M-1-gyel:

S103	M-1 /..	Megengedett eltérés /digit/
2 V	2,000	-
1 V	1,000	±15
0,5 V	0,500	±7
0,2 V	0,2000	±30
0,1 V	0,1000	±15

II.4.2.3. Az áramlámpás amplitúda pontosságának mérése /M-1,M-2,M-3/a/

S101-et "10" állásba kapcsolva P103-mal 20,00 V-ot kell beállítani M-1-en, S103 20 mA állásiban.

S103 különösen áram-állásiban a következő értékeket kell mérni M-1-gyel, az M-2 ill. M-3/a sörtsellenállásokon:

S103	M-2, M3/a / Ω /	M-1	Megengedett eltérés /digit/
------	-----------------	-----	-----------------------------

20 mA		198,0 mA	± 30
10 mA	1	099,5 mA	± 15
5 mA		050,0 mA	± 7

2 mA		19,80 mA	± 30
1 mA	10	09,95 mA	± 15
0,5 mA		05,00 mA	± 7

0,2 mA		1,980 mA	± 30
0,1 mA	100	0,995 mA	± 15
50 mA		0,500 mA	± 7

20 μA		198,0 μA	± 30
10 μA	1 k	099,5 μA	± 15
5 μA		050,0 μA	± 7

2 μA		19,80 μA	± 30
1 μA	10 k	09,95 μA	± 15
0,5 μA		0,500 μA	± 7
0,2 μA		02,00 μA	± 4

11.4.3. Esetleges beállítások

Amennyiben a lépcsőfeszültség linesritása nem megfelelő /11.4.2.2. pont/, P102 potenciométerrel állítható be az S101 "10" állásában a 16,00 V érték /nullázás után/. Ha a linearitás így sem kielégítő, meg kell mérni a +24 V tápfeszültséget. Ha annak értéke a névlegesnél kisebb, a D105 pozícióba sziliciumdiódát helyezve kb. 0,4 V feszültségnövekedést érhetünk el. Ha nagyobb a feszültség, D105 diódát rövidzárral helyettesítve kb. 0,3 V-tal csökken a kimenő feszültség. Ezután P102-val újra be kell állítani /nullázás után/ a 16,00 V értéket.

12. TÁROLÁSI SZABÁLYOK

A készüléket az 5.1. pontnak megfelelően becsomagolt és leragasztott állapotban olyan raktárhelyiségekben, ill. olyan külső körülmények között kell raktározni és szállítani, melyek az alanti előirásoktól nem térnek el:

Környezeti hőmérséklet: $-25^{\circ}\text{C} \dots +55^{\circ}\text{C}$

Relatív légnedvesség: max. 98 %

Légnyomástartomány: 0,6-1,06 bar

A készülék hosszú idejű raktározása különleges óvintézkedést nem tesz szükséges.

Raktározás után a készülék kicsomagolva és hálózatra csatlakoztatva üzemi körülmények között azonnal üzemképes.

0°C alatti hőmérsékleten történt raktározás után, használatba vétel előtt a készüléket célszerű állandósító légtérbe helyezni és ott tartani, mindaddig, míg hőmérséklet-egyensúlyba jut, és csak ezután üzembehelyezni.

MELLEKETEK

Tömbvázlat	/1. ábra/
Előlap a kezelőszervekkel	/2. ábra/
Hátlap a kezelőszervekkel	/3. ábra/
Belső elrendezés	/4., 5., 6. ábra/
Karakterisztika kiértékelés	/7. ábra/
Funkcionális tömbvázlat	/9. ábra/
Idődiagram	/10. ábra/
Lépcsőgenerátor kapcsolási rajza	/11. ábra/
Kollektor tápegyseg kapcsolási rajza	/12. ábra/
Vízszintes erősítő kapcsolási rajza	/13. ábra/
Függőleges erősítő kapcsolási rajza	/14. ábra/
Tápegyseg kapcsolási rajza	/15. ábra/
Vízszintes erősítő, függőleges erősítő és a tápegyseg nyomtatott áramköri rajza	/16. ábra/
Lépcsőgenerátor nyomtatott áramköri rajza	/17. ábra/
Kollektor tápegyseg nyomtatott áramköri rajza	/18. ábra/
1575-1 nyomtatott áramköri rajza	/19. ábra/
1575-2 nyomtatott áramköri rajza	/20. ábra/
Mérési összeállítás	/21, 22. ábra/
Tekercselési adatok /T1, T3, T501, T5021, L401/	

ÉTEK

telési adatok

előzetes transzformátor

Szétes	Huzal Ø /mm/	Menetszám	Üresjárási fesz. /V/
1-2	0,45	270	55
1-21	0,45	63	13
1-3	0,45	207	42
1-5	0,45	540	110
1-6	0,6	84	17
1-7	fólia 0,05	1	-
1-9	0,12	1100	220
1-11	0,45	110	22
1-13	0,15	100	20
14	fólia 0,05	1	-
1-16	0,35	90	18
1-17	0,45	40	8
1-18	0,45	40	8
1-19	0,35	90	18
20	fólia 0,05	1	-

lok szigetelése zománc

transzformátor

Szétes	Huzal Ø /mm/	Menetszám	Üresjárási fesz. /V/
1-2	0,5	175	42
2-17	0,5	55	13
3	fólia 0,05	1	-
4-5	0,14	768	183
4-6	0,1	1100	267
4-8	0,1	1100	267
5-9	0,14	384	91,5
5-10	0,2	192	45,7
5-11	0,3	96	22,9
1-12	0,6	48	11,4
2-13	0,3	24	5,7
3-14	0,6	12	2,85
4-15	0,6	12	2,85
16	fólia 0,05	1	-

lok szigetelése zománc

3/ T501 Transzformátor /40 kVz/

Kivezetés	Huzal Ø /mm/	Menetszám	Üresjárású fesz. /V/	Légsugárzás
1-2	0,2	4,5	11	
3-4	0,2	2	4,7	
5-6	0,1	400	950	keresztkeréssel
7-8	sodrat 0,5 mm	3,5	8,2	

A huzalok szigetelése zománc és 2 x selyem, kivéve a sodratét, amelynek Ø 1 mm polietilén szigetelése van.

4/ T502 Transzformátor /impulzus/

Kivezetés	Huzal Ø /mm/	Menetszám	Induktivitás /mH/	
1-2	0,12	170	110	$\pm 30\%$
3-4	0,12	170	110	$\pm 20\%$

5/ L401 Tekercs

Kivezetés	Huzal Ø /mm/	Menetszám	Induktivitás /mH/	
3-4	0,08	600	150	$\pm 10\%$

A T502 és L401 huzal-szigetelése zománc.

MELLÉKLETEK

APPENDICES

ANHANG

ПРИЛОЖЕНИЯ

**ALKATRÉSZJEGYZÉK
PARTS LIST
SCHALTTEILLISTE
LISTE DU MATERIEL
СПЕЦИФИКАЦИЯ ДЕТАЛЕЙ**

RF	fémrétegellenállás	metal-film resistor	Metallachichtwiderstand
RK	szénrétegellenállás	crystal-carbon resistor	Kohlenachichtwiderstand
RT	tárcsellenállás	disc resistor	Scheibenwiderstand
RH	huzalellenállás	wire-wound resistor	Drahtwiderstand
RPH	precíziós huzalellenállás	precision wire-wound resistor	Präzisions-Drahtwiderstand
RZ	zománccbevonatú huzalellenállás	wire-wound resistor (enamelled)	Drahtwiderstand
PH	huzalpotenciometer	wire-wound potentiometer	Drahtpotentiometer
PR	réteg potenciometer	film-type potentiometer	Schichtpotentiometer
CP	papirkondenzátor	paper capacitor	Papierkondensator
CC	csillámkondenzátor	mica capacitor	Glimmerkondensator
CK	kerámia kondenzátor	ceramic capacitor	Keramikkondensator
CE	elektrolit kondenzátor	electrolytic capacitor	Elektrolytkondensator
CS	styroflex kondenzátor	styroflex capacitor	Styroflexkondensator
CMP	fémmezett papirkondenzátor	metallized paper capacitor	Metallpapierkondensator
CMF	fémmezett műanyagfoliás kondenzátor	metallized plastic foil capacitor	Metallkunststoff-Folienkondensator
CML	fémmezett lakkfilm kondenzátor	metallized lacquered capacitor	Metallisierte-Kunststoffkondensator mit Lackfolien
CMS	fémmezett styroflex kondenzátor	metallized styroflex capacitor	Metallstyroflexkondensator
CT	trimmer kondenzátor	trimmer capacitor	Trimmerkondensator
CME	fémmezett poliszter kondenzátor	metallized polyester capacitor	Metallpolyesterkondensator
CET	tantal elektrolit kondenzátor	tantel electrolytic capacitor	Tantalelektrolytkondensator
CFE	poliszter kondenzátor	polyester capacitor	Polyesterfolienkondensator
V	elektroncső	tube	Röhren
NJ	számjelző eszközök	numerical indicators	Ziffernanzeigen
D	dióda	diode	Dioden
Se	szelén egyenirányító	selenium rectifier	Selen
TR	tranzisztor	transistor	Transistoren
Th	termiaztor	thermistor	Termistor
IC	integrált áramkör	integrated circuit	Integrierte Stromkreise
XL	kristály	crystal	Schwingquarz
So	csatlakozó aljzat	socket	Buchse
Pl	csatlakozó dugó	plug connector	Stecker
T	transzformátor	transformer	Transformatoren/Übertreger
L	induktivitás	inductivity, coil	Spulen
A	akkumulátor	rechargeable battery	Batterie
REG	regisztráló	recorder	Schreiber
F	biztosító betét	fuse	Sicherungseinsetz
H	hellgató	headphone	Kopfhörer/Ohrhörer
Hx	hangszóró	loudspeaker	Lautsprecher
RY	jelfogó	relay	Relais
J	jelzőlámpa	pilot lamp	Signallampe
G	parázsfénylámpa	glow discharge lamp	Glimmlampe
S	kapcsoló	switch	Schalter
MOT	motor	motor	Motor
B	telep	battery	Batterie
M	műzser	meter	Anzeigegerät

résistance à couche métallique	резистор металлизированный	RF
résistance à couche de carbone	резистор углеродистый поверхностный	RK
résistance à disque	резистор дисковый	RT
résistance bobinée	резистор проволочный	RH
résistance bobinée de précision	резистор прецизионный проволочный	RPH
résistance émissée	резистор проволочный с эмалью покрытием	RZ
potentiomètre bobiné	резистор переменный проволочный	PH
potentiomètre à couche	резистор переменный углеродистый	PR
condensateur au papier	конденсатор бумажный	CP
condensateur au mica	конденсатор слюдяной	CC
condensateur céramique	конденсатор керамический	CK
condensateur électrolytique	конденсатор электролитический	CE
condensateur au styrollex	конденсатор полистирольный	CS
condensateur au papier métallisé	конденсатор металлизированный бумажный	CMP
condensateur à feuille en matière synthétique métallisé	конденсатор металлизированный с пластмассовой фольгой	CMF
condensateur au film de vernis métallisé	металлизированный конденсатор на лакированной основе	CML
condensateur au styroflex métallisé	конденсатор полистирольный, металлизированный	CMS
condensateur trimmer	конденсатор подстроечный	CT
condensateur au polyester métallisé	металлизированный полизифирный конденсатор	CME
condensateur électrolytique au tantalum	электролитический tantalоевый конденсатор	CET
condensateur au polyester	полизифирный конденсатор	CFE
lampe électronique	электронная лампа	V
indicateur numérique	цифровой индикатор	NJ
diode	диод	D
adresseur au sélénium	выпрямитель селеновый	Se
transistor	транзистор	TR
termistor	термистор	Th
circuit intégré	интегральная схема	IC
ristal	кариеевый резонатор	XL
ouille	разъем	So
che	штекерь	PI
transformateur	трансформатор	T
obine	катушка индуктивности	L
accumulateur	аккумуляторная батарея	A
registreur	регистратор	REG
visible à tube en verre	предохранительная вставка	F
couter	наушник	H
aut-parleur	громкоговоритель	Hx
elais	реле	RY
ompe-témoin	сигнальная лампа	J
ompe à effluves	лампа тлеющего разряда	G
interupteur, selecteur, commutateur	выключатель	S
rotateur	мотор	MOT
atterie	батарея	B
indicateur	стрелочный прибор	M

Minden mérőkészülék - a megbízhatóság és a műszaki adatokban előírt határértéken belüli nagyobb pontosság érdekében - gondos egyedi méréssel és beszabályozással készül. Ennek következtében előfordulhat, hogy a készülékek a mellékelt alkatrészjegyzéktől eltérő értékű alkatelemeket is tartalmaznak.

With a view to reliability and increased accuracy within the specifications, each unit has been subjected to careful individual control measurement and alignment. Therefore, it may occur that an instrument includes components with ratings slightly different from those given in the Parts List below.

Jedes Gerät wird im Interesse einer höchstmöglichen Genauigkeit und Verlässlichkeit einer sorgfältigen individuellen Messung und Eichung unterzogen. Demzufolge kann es vorkommen, dass die Geräte auch Teile enthalten, deren Werte von den in der vorliegenden Schaltteilliste angeführten Werten abweichen.

Chaque appareil de mesure a été fabriqué avec des mesures et des réglages individuels soignés dans l'intérêt de la fiabilité et d'une plus grande précision, en-dedans des valeurs limites prescrites dans les caractéristiques techniques. En raison de ceci il peut arriver que l'appareil contienne des éléments dont la valeur est autre que celle spécifiée dans la Liste du matériel ci-jointe.

Каждый прибор - в интересах достижения более высокой точности в пределах величин, приведенных в технических данных, а также с целью повышения надежности - подвергается тщательной индивидуальной настройке и наладке. В результате этого может случиться, что приборы содержат и детали, величина которых отличается от величин, приведенной в спецификации деталей прибора.

R

No		Ω	%	W	No		Ω	%	W
R101	RF	33 k	5	0,25	R141	RF	100 k	1	0,25
R102	RF	36 k	5	0,25	R142	RF	60,4 k	1	0,25
R103	RF	8,2 k	5	0,25	R143	RF	20 k	1	0,25
R104	RF	27 k	5	0,25	R144	RF	10 k	1	0,25
R105	RF	10k	5	1	R145	RF	6,04 k	1	0,25
R106	RF	100 k	5	0,25	R146	RF	2 k	1	0,25
R107	RF	100 k	5	0,25	R147	RF	1 k	1	0,25
R108	RF	33 k	5	0,25	R148	RF	604	1	0,25
R109	RF	100 k	5	0,25	R149	RF	100 k	5	0,25
R110	RF	470	5	0,25	R150	RF	100 k	5	0,25
R111	RF	4,7 k	5	0,25	R151	RF	220 k	5	0,25
R112	RF	470	5	0,25	R152	RF	220 k	5	0,25
R113	RF	33 k	5	0,25	R153	RF	220	5	0,25
R114	RF	6,8k	5	0,25	R154	RF	6,8 k	5	0,25
R115	RF	24 k	5	0,25	R155	RF	1 k	5	0,5
R116	RF	2,15 k	5	0,25	R156	RF	10 k	5	0,25
R117	RF	4,75 k	5	0,25	R157	RF	10 k	5	0,25
R118	RF	8,06 k	5	0,25	R158	RF	10 k	5	0,25
R119	RF	12,3 k	5	0,25	R159	RF	10 k	5	0,25
R120	RF	17,8 k	5	0,25	R160	RF	220 k	5	0,25
R121	RF	25,5 k	5	0,25	R161	RF	3,3 k	5	0,25
R122	RF	36,5k	5	0,25	R162	RF	3,3 k	5	0,25
R123	RF	53,6 k	5	0,25	R164	RF	680	5	0,25
R124	RF	65,8 k	5	0,25					
R125	RF	3,9 k	5	0,25	R201	RF	1 M	5	1
R126	RF	3,9 k	5	0,25	R202	RF	1 M	5	1
R127	RF	1,5 M	5	0,5	R203	RF	1,5 k	5	0,25
R128	RF	1,43 M	5	0,5	R204	RF	100 k	5	0,5
R129	RF	2,7 k	5	0,5	R205	RF	2,7 M	5	1
R130	RF	100	5	2	R206	RF	1,2 M	5	1
R131	RF	100	5	0,5	R207	RF	470 k	5	1
R132	RF	100	5	0,25	R208	RF	68 k	5	2
R133	RF	60,4	5	0,25	R209	RZ	18 k	5	16
R134	RF	20	5	0,25	R210	RZ	5,6 k	5	8
R135	RF	20	5	0,25	R211	RZ	750	5	8
R136	RF	6,04 M	5	1	R212	RZ	180	5	8
R137	RF	2 M	5	0,5	R213	RZ	56	5	8
R138	RF	1 M	5	0,5	R214	RF	22	5	2
R139	RF	604 k	5	0,25	R215	RF	22	5	2
R140	RF	200 k	5	0,25	R216	RF	22	5	2

R

	Ω	%	W	No		Ω	%	W
	10	5	2	R337	RF	3,22 k	1	0,25
	10	5	2	R338	RF	69,5	1	0,25
	10	5	2	R339	RF	3,3 k	1	0,25
	10	5	2	R401	RF	46,4 k	1	0,25
	620 k	5	0,5	R402	RF	56,4 k	1	0,25
	10 M	5	1	R403	RF	32,4 k	1	0,25
	220 k	5	0,25	R404	RF	10,2 k	1	0,25
	9,1 k	1	0,125	R405	RF	5,1 k	1	0,25
	2,2 M	5	0,5	R406	RF	3 k	1	0,25
	100 k	5	0,25	R407	RF	1 k	1	0,25
	470 k	1	0,5	R408	RF	499	1	0,25
				R409	RF	300	1	0,25
	51 k	5	1	R410	RF	200	1	0,25
	51 k	5	1	R411	RF	7,5 k	1	0,25
	1 k	5	0,25	R412	RF	1,4 k	1	0,25
	1 k	5	0,25	R413	RF	590	1	0,25
	1,5 k	5	0,25	R414	RF	324	1	0,25
	2,7 k	5	0,25	R415	RF	102	1	0,25
	3,3 k	5	0,25	R416	RF	51	1	0,25
	42,2 k	1	0,25	R417	RF	30	1	0,25
	23,2 k	1	0,25	R418	RF	10	0,1 Ohm	0,5
	7,32 k	1	0,25	R419	RF	4,99	1	0,5
	3,57 k	1	0,25	R420	RF	3	1	1
	2,15 k	1	0,25	R421	RF	1	1	2
	715	1	0,25	R422	RH	0,5	1	
	715	1	0,25	R423	RH	0,5	1	
	931 k	1	0,5	R424	RF	13 k	1	0,25
	1 M	1	0,5	R425	RF	130	1	0,25
	3 M	1	0,5	R426	RF	2,2 M	5	0,5
	4,99 M	1	1	R427	RF	10 M	5	1
	1,75 k	1	0,25	R428	RF	220 k	5	0,25
	1,6 k	1	0,25	R429	RF	1,5 k	5	0,25
	1,04 k	1	0,25	R430	RF	1 k	1	0,25
	2,61 k	1	0,25	R431	RF	1,2 M	5	0,5
	348	1	0,25	R432	RF	1,5 k	1	0,25
	2,93 k	1	0,25	R433	RF	100 k	1	0,25
	175	1	0,25	R434	RF	51 k	5	1
	3,1 k	1	0,25	R435	RF	51 k	5	1
	104	1	0,25	R436	RF	1 k	5	0,25

R

No		Ω	%	W	No		Ω	%	W
R437	RF	1,5 k	5	0,25	R513	RF	6,2 k	5	0,25
R438	RF	16 k	5	0,25	R514	RF	100	5	0,25
R439	RF	100	5	0,25	R515	RF	300	5	0,25
R440	RF	139 k	1	0,25	R516	RZ	2,2	20	1
R441	RF	1 k	5	0,25	R517	RF	10 k	5	0,25
R442	RF	2,7 k	5	0,25	R518	RF	10 k	5	0,25
R443	RF	3,3 k	5	0,25	R519	RF	3,3 M	5	1
R444	RF	1 k	5	0,25	R520	RF	3,3 M	5	1
R445	RF	6,8 M	5	1	R521	RF	3,3 M	5	1
R446	RF	47	5	0,25	R522	RF	3,3 M	5	1
R501	RF	390	5	1	R523	RF	3,3 M	5	1
R502	RF	2,7 k	5	0,25	R524	RF	5,1 M	5	2
R503	RF	2,7 k	5	0,25	R525	RF	1,2 M	5	0,5
R504	RF	2,7 k	5	0,25	R526	RF	200 k	5	0,25
R505	RF	240 k	5	0,25	R527	RF	100 k	5	0,25
R506	RF	100 k	5	0,25	R528	RF	100 k	5	0,25
R507	RF	240 k	5	0,25	R529	RF	150 k	5	0,25
R509	RF	15 k	5	0,25	R530	RF	150 k	5	0,25
R510	RF	20 k	5	0,25	R531	RF	2,2 k	5	0,25
R512	RF	560	5	0,25	R532	RF	47	5	0,25

P

No		Ω	%	W	No		Ω	%	W
P101	PR	1 k	10	0,5	P403	PR	100 k	10	0,5
P102	PR	100 k	10	0,5	P404	PR	1 k	10	0,5
P103	PR	2,2 k	20	2	P405	PR	1 k	10	0,5
P104	PR	10 k	10	0,5					
P201	PR	1 M	30	2	P501	PR	1 M	30	2
P301	PR	10k+10k	20	0,25	P502	PR	1 M	30	2
P303	PR	100 k	10	0,5	P503	PR	220 k	20	2
P304	PR	100 k	10	0,5	P504	PR	220 k	20	0,5
P305	PR	1 k	10	0,5	P505	PR	10 k	10	0,5
					P507	PR	10 k	20	0,25

C +									
Nº		P	%	V	Nº		P	%	V
C101	CK	100 n	+80-20	40	C404	CK	3 p	0,5 p	500
C102	CME	220/u	10	63	C405	CFE	470 p	20	400
C103	CFE	22 n	10	100	C501	CE	22+22/u	+50-10	450
C104	CFE	22 n	10	100	C502	CE	4700 /u	+100-10	25
C105	CFE	22 n	10	100	C503	CE	220 /u	+100-10	25
C106	CFE	6,8 n	20	100	C504	CE	100 /u	+100-10	16
					C505	CE	100 /u	+100-10	16
					C506	CE	10 /u	+50-10	350
C110	CFE	1 n	20	400	C507	CE	10 /u	+50-10	350
C111	CFE	4,7 n	20	250	C508	CE	10 /u	+50-10	350
C112	CK	10 n	20	50	C509	CE	220 /u	+100-10	25
C113	CE	2200 /u	+100-10	40	C510	CME	470 n	10	63
C114	CE	4,7 /u	+100-10	40	C511	CME	100 n	10	160
C115	CE	470 /u	+100-10	6,3	C514	CFE	47 n	+10	100
C117	CK	150 p	5	500	C515	CE	22 /u	+100-10	25
					C516	CK	10 n	+50-20	3 KV
C118	CE	1000 /u	+100-10	16	C517	CK	10 n	+50-20	3 KV
C119	CK	5 p	0,5 p	500	C518	CK	10 n	+50-20	3 KV
C201	CMP	1 /u	10	1600	C519	CK	10 n	+50-20	3 KV
C202	CE	22 /u	+50-10	250	C520	CK	10 n	+50-20	3 KV
C203	CE	2200 /u	+100-10	25					
C204	CK	100 p	5	500	C521	CFE	47 n	10	400
					C522	CFE	100 n	10	400
C301	CK	100 p	5	500	C523	CME	470 n	10	63
C302	CK	100 p	5	500	C512	CME	1 /u	10	63
					C513	CK	220 p	5	500
C401	CE	270 p	5	500	C524	CI	220 p	5	500
C402	CE	100 p	5	630	C525	CK	390 p	5	500
C403	CK	10 p	0,5 p	500	C512	CME	1 /u	10	63
					C513	CK	220 p	5	500

	V	—○—	D	←	TR	—○—
D101	D	SY32C/2				
D102	D	SY320/2				
D103	D	SY320/2	D204		D	LN4007
D104	D	SY320/2				
D105	D	OA1182	D401		D	LN4148
D106	D	LN4148	D402		D	LN4148
D107	D	LN4148				
D108	D	LN4148	D501		D	BY133
D109	D	LN4148	D505		D	SY32C/2
D110	D	LN4148	D506		D	OA1182
D111	D	LN4148	D507		D	BY409
			D508		D	BY409
D201	D	LN4007	D509		D	LN4148
D202	D	LN4007	D510		D	LN4148
D203	D	LN4007	D511		D	ZPY68
			D512		D	LN4148
TR101	TR	BC303				
TR102	TR	BC109C	TR301		TR	BF259
TR103	TR	BC109C	TR302		TR	BF259
TR104	TR	BC109A	TR303		TR	BC109C
TR105	TR	BC109C				
TR106	TR	BC107A	TR401		TR	BF259
TR107	TR	BC107A	TR402		TR	BF259
TR108	TR	BC107A	TR403		TR	BC109C
TR109	TR	BC107A				
TR110	TR	BC107A	TR501		TR	BD241A
TR111	TR	BD242A	TR502		TR	BD242A
TR112	TR	BC107A	TR503		TR	BF259

...	3	3E	Ø	—	—	...
IC1C2	IC	SN7400N	J201	J	12V-50mA	
IC104	IC	SN7493AN	J202	J	12V-50mA	
IC105	IC	SN74141N	J203	J	12V-50mA	
IC1C7	IC	/uA7824JC	J501	J	24V-1,2W	
IC108	IC	/uA741PC	J502	J	24V-1,2W	
IC301	IC	/uA741PC	F1	F	FST250mA	
IC401	IC	/uA709PC	F1C1	F	Ge20/5,2 315mA	
IC501	IC	/uA741PC	F2C1	F	Ge20/5,2 315mA	
IC502	IC	/uA7815JC	F401	F	Ge20/5,2 2,5A	
IC503	IC	/uA7815JC	F501	F	Ge20/5,2 315mA	
S201	S		V501	V	D13-27GH	
S202	S		T1	T		
S203	S	Xbm-26	T2	T	SST 42/1,6E	
S204	S	8821/K5	T3	T		
S301	S		T5C1	T		
S401	S		T502	T		
RY1	RY	E111S110GDC12V	Th5C1	T	4NTK,015	
L101	L		S1	S		
L401	L		S2	S	4143-18	
			S101	S		
			S102	S	5om-26	
S01	So	4143-303	S103	S		
S02	So	4143-119	S104	S		
S03	So	DS2112-126.1	S105	S		

1
1575

2
1575

3
1575

4
1575

5
1575

6
1575

7

8

1575

1575

10
1575

A|B

A|B

A | B

11
1575

A | B

13
1575

14
1575

15
1575

A|B

A|B

A|B

16
1575

A|B

C 202
R 203 R 204
C 203 R 201
R 202

1575
 4350004539 A/H

18 (A-B)

1575

19

20

1575

21

22

1575