10. Random Variables (rv)

Functions of a Random Variable [Ross S4.4]

Say we have a random variable X. Let Y=g(X) for some function g(.). Then:

- X is a function of the outcome $s \in S$
- Y is a function of X
- $\Rightarrow Y$ is a function of the outcome $s \in S$
- $\Rightarrow Y$ is a random variable.

Y has a PMF $p_Y(y)$. We can find it from $p_X(x)$.

Example 10.1: Let X be a random variable such that

$$P[X = -1] = 0.1,$$
 $P[X = 0] = 0.3,$ $P[X = 1] = 0.6.$

Let $Y = X^2$. What are E[X] and E[Y]?

Solution:

So $E[g(X)] \neq g(E[X])$ in general.

Proposition 10.1 If X is a rv with possible values $\mathcal{X} = \{x_1, x_2, \ldots\}$ then

$$E[g(X)] = \sum_{i>1} g(x_i) p_X(x_i)$$

Why is this true? Let Y = g(X).

Let $\mathcal{Y} = \{y_1, y_2, \ldots\}$ be all possible values of Y.

$$\begin{split} \sum_{i \geq 1} g(x_i) p_X(x_i) &= \sum_{j \geq 1} \sum_{i: g(x_i) = y_j} g(x_i) p_X(x_i) \\ &= \sum_{j \geq 1} \sum_{i: g(x_i) = y_j} y_j p_X(x_i) \\ &= \sum_{j \geq 1} y_j \sum_{i: g(x_i) = y_j} p_X(x_i) \\ &= \sum_{j \geq 1} y_j P[g(X) = y_j] \\ &= \sum_{j \geq 1} y_j P[Y = y_j] \\ &= E[Y] \\ &= E[g(X)] \end{split}$$

Example 10.2: In Example 10.1,

$$E[X^{2}] = \sum_{i} x_{i}^{2} p_{X}(x_{i})$$

$$= (-1)^{2} \times p_{X}(-1) + 0^{2} \times p_{X}(0) + 1^{2} \times p_{X}(1)$$

$$= 1 \times 0.1 + 0 \times 0.3 + 1 \times 0.6$$

$$= 0.7$$

Corollary 10.1 If a and b are constants, then E[aX + b] = aE[X] + b.

Why?

$$E[aX + b] = \sum_{x \in \mathcal{X}} (ax + b) p_X(x)$$
$$= a \sum_{x \in \mathcal{X}} x p_X(x) + b \sum_{x \in \mathcal{X}} p_X(x)$$

$$= aE[X] + b$$

Example 10.3: Say E[X] = 3. Then $E[10X + 4] = 10 \times 3 + 4 = 34$.

Note: E[X] is called **mean** of X. $E[X^n]$ is called the n-th **moment** of X. Often write $\mu_X = E[X]$.

Variance [Ross S4.5]

Given X, it is useful to summarize some essential properties of X.

E[X] tells us about the "center" of how X is distributed.

Example 10.4: Let

$$P[W = 0] = 1$$

 $P[Y = 1] = P[Y = -1] = \frac{1}{2}$
 $P[Z = 100] = P[Z = -100] = \frac{1}{2}$

Then E[W] = 0 = E[Y] = E[Z], but these are not equally spread...

Definition 10.1: The **variance** of X is

$$Var[X] = E[(X - E[X])^{2}]$$

= $E[(X - \mu_{X})^{2}]$

We often write $\sigma_X^2 = Var[X]$.

Note: Since
$$(X - \mu_X)^2 \ge 0$$
, then $Var[X] \ge 0$. (*)

Also
$$Var[X] = E[(X - \mu_X)^2]$$

$$= \sum_{x \in \mathcal{X}} (x - \mu_X)^2 p_X(x)$$

$$= \sum_{x \in \mathcal{X}} (x^2 - 2\mu_X x + \mu_X^2) p_X(x)$$

$$= \sum_{x \in \mathcal{X}} x^2 p_X(x) - 2\mu_X \sum_{x \in \mathcal{X}} x p_X(x) + \mu_X^2 \sum_{x \in \mathcal{X}} p_X(x)$$

$$= E[X^2] - 2\mu_X^2 + \mu_X^2 \qquad (\mu_X = E[X])$$

$$= E[X^2] - (E[X])^2 \qquad (10.1)$$

Also, combinining (*) with (10.1), we get

$$E[X^2] \ge (E[X])^2 \tag{10.2}$$

and, if E[X] > 0, then

$$\frac{E[X^2]}{E[X]} \ge E[X] \tag{10.3}$$

Example 10.5: Let X be the outcome of a dice roll. What is Var[X]? *Solution:*

Example 10.6: The distance from Vancouver to Boston is 4200km. If the wind is good (with probability 0.7), the speed of a plane is V = 700 km/h. If the wind is not good (probability 0.3), the speed is V = 600 km/h. What is the average flight time? Solution: