CISC 3220 Homework Chapter 3

Rachel Friedman

February 16, 2020

Problem 3-4

Let f(n) and g(n) be asymptotically positive functions. Prove or disprove each of the following conjectures.

Question a

$$f(n) = \mathcal{O}(g(n))$$
 implies $g(n) = \mathcal{O}(f(n))$.

False. Counterexample:

Let f(n) be n.

Let
$$g(n) = n^2$$
.

There exists a constant c, $\forall n \geq n_0$ such that $n \leq cn^2$ but there does not exist a constant c, $\forall n \geq n_0$ such that $n^2 \leq cn$.

Thus,
$$n = \mathcal{O}(n^2)$$
 but $n^2 \neq \mathcal{O}(n)$.

Question b

$$f(n) + g(n) = \Theta(\min(f(n), g(n))).$$

 $f(n) + g(n) = \Theta(min(f(n), g(n)))$ implies that there exists a constant c_1 and a constant c_2 , for all $n \ge n_0$ such that:

$$c_1 \le (min(f(n), g(n)) \le f(n) + g(n) \le c_2 \cdot min((f(n), g(n)))$$

False. Counterexample:

Let
$$f(n) = n$$
 and $g(n) = 1$

There is no c_2 such that $n+1 \le c_2 \cdot min(n,1)$

So,
$$f(n) + g(n) \neq \Theta(min(f(n), g(n)))$$

Question c

 $f(n) = \mathcal{O}(g(n))$ implies $lg(f(n)) = \mathcal{O}(lg(g(n)))$, where $lg(g(n)) \ge 1$ and $f(n) \ge 1$ for all sufficiently large n.

True:

We need to prove that $lg(f(n) = \mathcal{O}(lg(g(n))))$, or in other words $lg(f(n)) \le d \cdot lg(g(n))$.

The first equation, as given:

$$f(n) = \mathcal{O}(g(n))$$
 implies that $f(n) \le cg(n)$.

Taking the log of both sides, we get: $lg(f(n) \le lg(c) + lg(g(n))$

Now, set
$$d \cdot lg(g(n)) = lg(c) + lg(g(n))$$

Divide both sides by lg(g(n)), we have $d = \frac{lg(c)}{lg(g)} + 1$

Plugging this value of d into the equation, we have: $lg(f(n)) \le \left(\frac{lg(c)}{lg(g(n))} + 1\right) \cdot lg(g(n))$

Since
$$lg(g(n)) \ge 1$$
, $lg(c) \ge \frac{lg(c)}{lg(g(n))}$, so clearly $lg(f(n)) \le (lg(c) + 1) \cdot lg(g(n))$

And so, $lg(f(n)) \le d \cdot lg(g(n))$, thus proving that $lg(f(n)) = \mathcal{O}(lg(g(n)))$.

Question d

$$f(n) = \mathcal{O}(g(n))$$
 implies $2^{f(n)} = \mathcal{O}(2^{g(n)})$.

False. Counterexample:

Let
$$f(n) = 2n$$
 and $g(n) = n$.

So
$$2^{2n} = \mathcal{O}(2^n)$$
 implies that $2^{2n} \le c \cdot 2^n$

$$2^{2n} \le c \cdot 2^n = (2^2)^n \le c \cdot 2^n = 4^n \le c \cdot 2^n$$

The value of c is dependent on n, so there is no value of c such that $c \ge 2n$ for all $n \ge n_0$. Hence, this statement is false.

Question e

$$f(n) = \mathcal{O}((f(n))^2).$$

False.

$$f(n) = \mathcal{O}((f(n))^2)$$
 implies that $f(n) \le c(f(n))^2$.

But when $0 \le f(n) \le 1$, then there is no value of c such that $f(n) \le c \cdot (f(n))^2$, $\forall n \ge n_0$. Hence, this statement is false.

Question f

$$f(n) = \mathcal{O}(g(n))$$
 implies $g(n) = \Omega(f(n))$.

True.

 $f(n) = \mathcal{O}(g(n))$ implies that there exists a constant c such that $f(n) \leq cg(n), \forall n \geq n_0$.

Divide both sides by $c: \frac{1}{c}f(n) \leq g(n)$

Thus, $g(n) \ge \frac{1}{c}f(n)$, which means that $g(n) = \Omega(f(n))$.

Question g

$$f(n) = \Theta(f(n/2)).$$

 $f(n) = \Theta(f(n/2))$ implies that there exists two constants such that:

$$c_1 \cdot f(n/2) \le f(n) \le c_2 \cdot f(n/2)$$

False. Counterexample:

Let
$$f(n) = 2^n$$

There is no c such that: $2^n \le c_2 \cdot 2^{n/2}$, for all of $n \ge n_0$. So this statement is false.

Question h

$$f(n) + o(f(n)) = \Theta(f(n))$$

True:

Let
$$g(n) = o(f(n))$$

This implies that g(n) < f(n)

 $f(n)+g(n)=\Theta(f(n))$ implies that there exists a constant c_1 and a constant c_2 such that $c_1f(n) \le f(n)+g(n) \le c_2f(n)$, for all $n \ge n_0$

Let $c_1 = 1$ and let $c_2 = 2$

It is true that $f(n) \le f(n) + g(n) \le 2(f(n))$

Thus, it is true that $f(n) + o(f(n)) = \Theta(f(n))$.

Class Exercise

Prove $f(n) = \mathcal{O}(n^2)$, when f(n) = an + b, for a > 0.

 $f(n) = \mathcal{O}(n^2)$ implies that there is a constant $c, \forall n \geq n_0$ such that $f(n) \leq cn^2$.

We need to prove that $an + b \le cn^2$.

Let n = 1 and $c = a + b^2$.

So we have: $\forall n \ge 1$, $an + b \le (a + b^2) \cdot n^2$

$$= an + b \le an^2 + b^2n^2$$

Thus proving that $f(n) = \mathcal{O}(n^2)$, when f(n) = an + b.