1. let x_1, x_2, \ldots, x_n are nonzero orhogonal vectors, show that they are linearly independent

假设 x_1, x_2, \ldots, x_3 线性相关: 由 x_1, x_2, \ldots, x_3 线性相关, 得

$$k_1x_1 + k_2x_2 + \cdots + k_nx_n = 0$$

其中 k_1, k_2, \ldots, k_n 不全为 0. 将上式左乘 x_1^T , 得

$$k_1 x_1^T x_1 + k_2 x_1^T x_2 + \dots + k_n x_1^T x_n = 0$$

由 x_1, x_2, \ldots, x_n 两两正交,得 $x_i^T x_j = 0, \forall i, j \in [1, n], i \neq j$,因此

$$k_1 x_1^T x_1 + k_2 x_1^T x_2 + \dots + k_n x_1^T x_n = k ||x_1||_2 = 0$$

由 x_1 非零,得 $||x_1||_2 \neq 0$,即 $k_1 = 0$.

同理可得 $k_i=0, \forall i\in[1,n]$,这与" k_1,k_2,\ldots,k_n 不全为 0"矛盾,假设不成立. 所以 x_1,x_2,\ldots,x_3 线性无关.

2 show $\det(\mathbf{I}+\mathbf{A}) = \det(\mathbf{I}+\mathbf{\Lambda})$ where $\mathbf{A} \triangleq \mathbf{P}\mathbf{\Lambda}\mathbf{P}^T$

由于

$$\mathbf{I} + \mathbf{A} = \mathbf{P} \mathbf{I} \mathbf{P}^T + \mathbf{P} \mathbf{\Lambda} \mathbf{P}^T = \mathbf{P} (\mathbf{I} + \mathbf{\Lambda}) \mathbf{P}^T$$

有

$$\det(\mathbf{I} + \mathbf{A}) = \det(\mathbf{P}(\mathbf{I} + \mathbf{\Lambda})\mathbf{P}^T) = \det(\mathbf{P})\det(\mathbf{I} + \mathbf{\Lambda})\det(\mathbf{P}^T)$$

又由 \mathbf{P}, \mathbf{P}^T 是单位正交矩阵, $\det(\mathbf{P}) = \det(\mathbf{P}^T) = 1$,得 $\det(\mathbf{I} + \mathbf{A}) = \det(\mathbf{I} + \mathbf{A})$.

3 prove
$$(\mathbf{A}+\mathbf{u}\mathbf{v}^T)^{-1}=\mathbf{A}^{-1}-rac{\mathbf{A}^{-1}\mathbf{u}\mathbf{v}^T\mathbf{A}^{-1}}{1+\mathbf{v}^T\mathbf{A}^{-1}\mathbf{u}}$$
 where $\mathbf{v}^T\mathbf{A}^{-1}\mathbf{u}
eq 0$

要证

$$(\mathbf{A} + \mathbf{u}\mathbf{v}^T)^{-1} = \mathbf{A}^{-1} - \frac{\mathbf{A}^{-1}\mathbf{u}\mathbf{v}^T\mathbf{A}^{-1}}{1 + \mathbf{v}^T\mathbf{A}^{-1}\mathbf{u}}$$

即证

$$(\mathbf{A} + \mathbf{u}\mathbf{v}^T)(\mathbf{A}^{-1} - \frac{\mathbf{A}^{-1}\mathbf{u}\mathbf{v}^T\mathbf{A}^{-1}}{1 + \mathbf{v}^T\mathbf{A}^{-1}\mathbf{u}}) = \mathbf{I}$$

$$(\mathbf{A} + \mathbf{u}\mathbf{v}^T)(\mathbf{A}^{-1} - \frac{\mathbf{A}^{-1}\mathbf{u}\mathbf{v}^T\mathbf{A}^{-1}}{1 + \mathbf{v}^T\mathbf{A}^{-1}\mathbf{u}}) = \mathbf{A}\mathbf{A}^{-1} + \mathbf{u}\mathbf{v}^T\mathbf{A}^{-1} - \frac{\mathbf{u}\mathbf{v}^T\mathbf{A}^{-1}}{1 + \mathbf{v}^T\mathbf{A}^{-1}\mathbf{u}} - \frac{\mathbf{u}\mathbf{v}^T\mathbf{A}^{-1}\mathbf{u}\mathbf{v}^T\mathbf{A}^{-1}}{1 + \mathbf{v}^T\mathbf{A}^{-1}\mathbf{u}} = \mathbf{I} + \frac{\mathbf{u}\mathbf{v}^T\mathbf{A}^{-1}\mathbf{u}\mathbf{v}^T\mathbf{A}^{-1}\mathbf{u}\mathbf{v}^T\mathbf{A}^{-1}\mathbf{u}}{1 + \mathbf{v}^T\mathbf{A}^{-1}\mathbf{u}} - \frac{\mathbf{u}\mathbf{v}^T\mathbf{A}^{-1}\mathbf{u}\mathbf{v}^T\mathbf{A}^{-1}\mathbf{u}\mathbf{v}^T\mathbf{A}^{-1}\mathbf{u}}{1 + \mathbf{v}^T\mathbf{A}^{-1}\mathbf{u}\mathbf{u}} - \frac{\mathbf{u}\mathbf{v}^T\mathbf{A}^{-1}\mathbf{u}\mathbf{v}^T\mathbf{A}^{-1}\mathbf{u}\mathbf{v}^T\mathbf{A}^{-1}\mathbf{u}\mathbf{v}^T\mathbf{A}^{-1}\mathbf{u}\mathbf{v}^T\mathbf{A}^{-1}\mathbf{u}\mathbf{v}^T\mathbf{A}^{-1}\mathbf{u}\mathbf{v}^T\mathbf{A}^{-1}\mathbf{u}\mathbf{v}^T\mathbf{A}^{-1}\mathbf{u}\mathbf{v}^T\mathbf{A}^{-1}\mathbf{v}^T\mathbf{A}^{-1}\mathbf{u}\mathbf{v}^T\mathbf{A}^{-1}\mathbf{v}^T\mathbf{A}^{-1}\mathbf{u}\mathbf{v}^T\mathbf{A}^{-1}\mathbf{v}^T\mathbf{A}^{-1}\mathbf{v}^T\mathbf{A}^{-1}\mathbf{v}^T\mathbf{A}^{-1}\mathbf{u}\mathbf{v}^T\mathbf{A}^{-1}\mathbf{v}^$$

原命题得证.

4 compute the first and second derivative of $g(t) \triangleq f(\mathbf{x} + t(\mathbf{y} - \mathbf{x}))$

令
$$\mathbf{z} \triangleq \mathbf{x} + t(\mathbf{y} - \mathbf{x})$$
,则

$$g'(t) = \sum_{i} \frac{\partial f(z)}{\partial z_{i}} \frac{\partial z_{i}}{\partial t} = \nabla f(\mathbf{x} + \mathbf{t}(\mathbf{y} - \mathbf{x}))^{T} \cdot (\mathbf{y} - \mathbf{x})$$

$$g''(t) = \frac{d}{dt} (\nabla f(\mathbf{z})) \cdot (\mathbf{y} - \mathbf{x}) + \nabla f(\mathbf{z}) \cdot \frac{d}{dt} (\mathbf{y} - \mathbf{x}) = diag(\nabla^{2} f(\mathbf{x} + \mathbf{t}(\mathbf{y} - \mathbf{x})))^{T} \cdot (\mathbf{y} - \mathbf{x})$$

5 compute the gradient and Hessian of $f(x,y) riangleq rac{y^2}{x}$ where x>0

$$egin{aligned}
abla f(x,y) &= \left(rac{\partial f(x,y)}{\partial x}, rac{\partial f(x,y)}{\partial y}
ight)^T = \left(-rac{y^2}{x^2}, rac{2y}{x}
ight)^T \
abla^2 f(x,y) &= \left(rac{2y^2}{x^3} - rac{2y}{x^2}
ight) \
onumber - \left(rac{2y}{x^2} - rac{2y}{x^2}
ight) \end{aligned}$$

6 compute the gradient and Hessian of $f(\mathbf{x}) riangleq \log \sum_{k=1}^n \exp(x_k)$

$$\nabla f(\mathbf{x}) = \left(\frac{\exp(x_1)}{\sum_{k=1}^n \exp(x_k)}, \frac{\exp(x_2)}{\sum_{k=1}^n \exp(x_k)}, \dots, \frac{\exp(x_n)}{\sum_{k=1}^n \exp(x_k)}\right)^T$$

$$\nabla^2 f(\mathbf{x}) = \begin{pmatrix} \frac{\exp(x_1)(\sum_{k=1}^n \exp(x_k)) - \exp(x_1)^2}{(\sum_{k=1}^n \exp(x_k))^2} & \frac{-\exp(x_1) \exp(x_2)}{(\sum_{k=1}^n \exp(x_k))^2} & \dots & \frac{-\exp(x_1) \exp(x_n)}{(\sum_{k=1}^n \exp(x_k))^2} \\ \frac{-\exp(x_2) \exp(x_1)}{(\sum_{k=1}^n \exp(x_k))^2} & \frac{\exp(x_2)(\sum_{k=1}^n \exp(x_k)) - \exp(x_2)^2}{(\sum_{k=1}^n \exp(x_k))^2} & \dots & \frac{-\exp(x_2) \exp(x_n)}{(\sum_{k=1}^n \exp(x_k))^2} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \frac{-\exp(x_n) \exp(x_1)}{(\sum_{k=1}^n \exp(x_k))^2} & \frac{-\exp(x_n) \exp(x_2)}{(\sum_{k=1}^n \exp(x_k))^2} & \dots & \frac{\exp(x_n)(\sum_{k=1}^n \exp(x_k))^2}{(\sum_{k=1}^n \exp(x_k))^2} \end{pmatrix}$$

7 Assume that one makes m measurements for each of n objects, and collect these data in columns $b_1,b_2,\ldots,b_n\in\mathbb{R}^m.$ For example, m=3,n=8

	P1	P2	Р3	P4	P5	P6	P7	Р8
age	22	30	23	23	22	21	22	21
weight	10.4	12.2	10.5	10.9	9	12.5	11.5	10.2
shoe size	7	8	7	7	8	8	9	7

If one want to distinguish these 8 people by a linear combination of the 3 measurements, what would be a best possible combination?