Supplementary Text:

Emergenet: Fast Scalable Pandemic Risk Estimation of Influenza A Strains Collected In Non-human Hosts

Kevin Wu¹, Jin Li¹, Timmy Li¹, Aaron Esser-Kahn^{2,3}, and Ishanu Chattopadhyay^{1,4,5}★

¹Department of Medicine, University of Chicago, IL, USA ²Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA ³Committee on Immunology, University of Chicago, Chicago, IL, USA ⁴Committee on Genetics, Genomics & Systems Biology, University of Chicago, IL, USA ⁵Committee on Quantitative Methods in Social, Behavioral, and Health Sciences, University of Chicago, IL, USA

*To whom correspondence should be addressed: e-mail: ishanu@uchicago.edu.

SUPPLEMENTARY METHODS: NOTES ON Q-DISTANCE & SUPPORTING RESULTS

The *q-distance* is a pseudo-metric since distinct sequences can induce the same distributions over each index, and thus evaluate to have a zero distance. This is actually desirable; we do not want our distance to be sensitive to changes that are not biologically relevant. The intuition is that not all sequence variations brought about by substitutions are equally important or likely. Even with no selection pressure, we might still see random variations at an index if such variations do not affect the replicative fitness. Under that scenario, the corresponding Φ_i will predict a flat distribution no matter what the input sequence is, thus contributing nothing to the overall distance. And even if two strains x, y have the same entry at some index i, the remaining residues might induce different distributions Φ_i based on the remote dependencies, i.e., the entries in x_{-i}, y_{-i} . Also, it matters if the sequences come from two different background populations P,Q,~i.e., if the induced Qnets Φ^P,Φ^Q are different. Thus, if we construct Qnets for H1N1 Influenza A separately for the collection years 2008 and 2009, then the same exact sequence collected in the respective years might have a non-zero distance between them, reflecting the fact that the background population the sequences arose from are different, inducing possibly different expected mutational tendencies (See SI-Table ??).

Next, we induce q-distance between a sequence and a population and between two populations.

Definition 1 (Pseudo-metric between populations). Using the notion of Hausdorff metric between sets:

$$orall x \in P, y \in Q,$$
 $heta(x,Q) = \min_{y \in Q} heta(x,y)$ (1)

$$\theta(x,Q) = \min_{y \in Q} \theta(x,y)$$

$$\theta(P,Q) = \max \left\{ \max_{x \in P} \theta(x,Q), \max_{y \in Q} \theta(y,P) \right\}$$
(2)

In-silico Corroboration of Qnet Constraints

We carry out in-silico experiments to corroborate that the constraints represented within an inferred Qnet are indeed reflective of the biology in play. We compare the results of simulated mutational perturbations to sequences from our databases (for which we have already constructed Qnets), and then use NCBI BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi) to identify if our perturbed sequences match with existing sequences in the databases (See SI-Fig. 1). We find that in contrast to random variations, which rapidly diverge the trajectories, the Qnet constraints tend to produce smaller variance in the trajectories, maintain a high degree of match as we extend our trajectories, and produces matches closer in time to the collection time of the initial sequence suggesting that the Qnet does indeed capture realistic constraints.

Multivariate Regression to Identify Factors in Strain Prediction

We investigate the key factors that contribute to our successful prediction of the dominant strain in the next season. We carry out a multivariate regression with data diversity, the complexity of inferred Qnet and the edit distance of the WHO recommendation from the dominant strain as independent variables. Here we define data diversity as the number of clusters we have in the input set of sequences, such that any two sequences five or

less mutations apart are in the same cluster. Qnet complexity is measured by the number of decision nodes in the component decision trees of the recursive forest.

We select several plausible structures of the regression equation, and in each case conclude that data diversity has the most important and statistically significant contribution (See SI-Tab. 12).

REFERENCES

SI Fig. 1. Q-distance validation in-silico using Influenza A sequences from NCBI database. Panel a illustrates that the Qnet induced modeling of evolutionary trajectories initiated from known haemagglutinnin (HA) sequences are distinct from random paths in the strain space. In particular, random trajectories have more variance, and more importantly, diverge to different regions of the landscape compared to Qnet predictions. Panels b-e show that unconstrained Q-sampling produces sequences maintain a higher degree of similarity to known sequences, as verified by blasting against known HA sequences, have a smaller rate of growth of variance, and produce matches in closer time frames to the initial sequence. Panel c shows that this is not due to simply restricting the mutational variations, which increases rapidly in both the Qnet and the classical metric.

SUPPLEMENTARY FIGURES & TABLES

SI Fig. 2. No. of mutations from the seasonal dominant strain over the years The quasispecies that circulates each season for each sub-type is tightly distributed around the dominant strain on average.

SI Tab. 1 H1N1 NA NORTHERN HEMISPHERE

Year	WHO Recommendation	Dominant Strain	Qnet Recommendation	WHO Error	Qnet Error
2001-02	A/New Caledonia/20/99	A/New York/447/2001	A/Memphis/15/2000	4	4
2002-03	A/New Caledonia/20/99	A/Paris/0833/2002	A/New York/341/2001	1	5
2003-04	A/New Caledonia/20/99	A/Memphis/5/2003	A/New York/291/2002	3	5
2004-05	A/New Caledonia/20/99	A/Singapore/14/2004	A/New York/223/2003	2	3
2005-06	A/New Caledonia/20/99	A/Taiwan/5524/2005	A/Florida/3e/2004	3	0
2006-07	A/New Caledonia/20/99	A/Massachusetts/08/2006	A/Sofia/361/2005	4	2
2007-08	A/Solomon Islands/3/2006	A/Tennessee/UR06-0106/2007	A/Sofia/490/2006	9	2
2008-09	A/Brisbane/59/2007	A/Sendai/TU66/2008	A/Maryland/04/2007	0	3
2009-10	A/Brisbane/59/2007	A/Thailand/SR08021/2009	A/Paris/910/2008	87	87
2010-11	A/California/7/2009	A/Finland/2460N/2010	A/Rome/709/2009	2	9
2011-12	A/California/7/2009	A/Tula/CRIE-GSYu/2011	A/Oman/SQUH-40/2010	4	2
2012-13	A/California/7/2009	A/Bangalore/697-32/2012	A/Nizhnii Novgorod/CRIE-ZCA/2011	4	0
2013-14	A/California/7/2009	A/Jiangsugusu/SWL1824/2013	A/LongYan/SWL33/2013	5	3
2014-15	A/California/7/2009	A/LongYan/SWL2457/2014	A/Utah/06/2013	9	3
2015-16	A/California/7/2009	A/Michigan/45/2015	A/Maryland/02/2014	14	4
2016-17	A/California/7/2009	A/Mexico/4436/2016	A/India/Pun151245/2015	14	0
2017-18	A/Michigan/45/2015	A/Illinois/37/2017	A/Utah/02/2016	3	3
2018-19	A/Michigan/45/2015	A/Kenya/47/2018	A/Maine/24/2017	4	0
2019-20	A/Brisbane/02/2018	A/Texas/7939/2019	A/Missouri/03/2018	1	0
2020-21	A/Hawaii/70/2019	A/Togo/897/2020	A/Texas/112/2019	0	5
2021-22	A/Victoria/2570/2019	A/Cote_d'Ivoire/3729/2021	A/Togo/0071/2021	1	5
2022-23	-1	-1	A/Lyon/820/2021	-1	-1

^{*} Dominant strain is calculated as the one closest to the centroid in the strain space that year in the edit distance metric

SI Tab. 2 H1N1 NA SOUTHERN HEMISPHERE

Year	WHO Recommendation	Dominant Strain	Qnet Recommendation	WHO Error	Qnet Error
2001-02	A/New Caledonia/20/99	A/New York/447/2001	A/Canterbury/37/2000	4	6
2002-03	A/New Caledonia/20/99	A/Paris/0833/2002	A/New York/447/2001	1	5
2003-04	A/New Caledonia/20/99	A/Memphis/5/2003	A/New York/291/2002	3	5
2004-05	A/New Caledonia/20/99	A/Singapore/14/2004	A/Memphis/5/2003	2	3
2005-06	A/New Caledonia/20/99	A/Taiwan/5524/2005	A/Canterbury/106/2004	3	6
2006-07	A/New Caledonia/20/99	A/Massachusetts/08/2006	A/Sofia/361/2005	4	2
2007-08	A/New Caledonia/20/99	A/Tennessee/UR06-0106/2007	A/Thailand/RMSC-UDN-20/2006	4	8
2008-09	A/Solomon Islands/3/2006	A/Sendai/TU66/2008	A/Tennessee/UR06-0151/2007	15	13
2009-10	A/Brisbane/59/2007	A/Thailand/SR08021/2009	A/Nebraska/07/2008	87	87
2010-11	A/California/7/2009	A/Finland/2460N/2010	A/Rome/709/2009	2	9
2011-12	A/California/7/2009	A/Tula/CRIE-GSYu/2011	A/Finland/2460N/2010	4	2
2012-13	A/California/7/2009	A/Bangalore/697-32/2012	A/Tula/CRIE-GSYu/2011	4	0
2013-14	A/California/7/2009	A/Jiangsugusu/SWL1824/2013	A/Oman/SQUH-63/2012	5	4
2014-15	A/California/7/2009	A/LongYan/SWL2457/2014	A/NanPing/SWL1640/2013	9	6
2015-16	A/California/7/2009	A/Michigan/45/2015	A/LongYan/SWL2457/2014	14	5
2016-17	A/California/7/2009	A/Mexico/4436/2016	A/Michigan/45/2015	14	0
2017-18	A/Michigan/45/2015	A/Illinois/37/2017	A/Mexico/4436/2016	3	3
2018-19	A/Michigan/45/2015	A/Kenya/47/2018	A/Kentucky/26/2017	4	2
2019-20	A/Michigan/45/2015	A/Texas/7939/2019	A/Kenya/47/2018	4	0
2020-21	A/Brisbane/02/2018	A/Togo/897/2020	A/Texas/7939/2019	6	5
2021-22	A/Victoria/2570/2019	A/Cote_D'Ivoire/1496/2021	A/NAGASAKI/8/2020	1	6
2022-23	-1	-1	A/Dakar/35/2021	-1	-1

^{*} Dominant strain is calculated as the one closest to the centroid in the strain space that year in the edit distance metric

SI Tab. 3 H3N2 NA NORTHERN HEMISPHERE

Year	WHO Recommendation	Dominant Strain	Qnet Recommendation	WHO Error	Qnet Error
2003-04	A/Moscow/10/99	A/Denmark/107/2003	A/New York/100/2002	13	3
2004-05	A/Fujian/411/2002	A/Hyogo/36/2004	A/New York/20/2003	3	16
2005-06	A/California/7/2004	A/Denmark/203/2005	A/Hong Kong/HKU20/2004	4	0
2006-07	A/Wisconsin/67/2005	A/Berlin/32/2006	A/Mexico/InDRE2227/2005	1	1
2007-08	A/Wisconsin/67/2005	A/Brazil/80/2007	A/Baden-Wuerttemberg/17/2006	8	7
2008-09	A/Brisbane/10/2007	A/Missouri/05/2008	A/Washington/01/2007	3	2
2009-10	A/Brisbane/10/2007	A/Oklahoma/09/2009	A/Wisconsin/24/2008	3	1
2010-11	A/Perth/16/2009	A/California/17/2010	A/New York/70/2009	2	3
2011-12	A/Perth/16/2009	A/Texas/14/2011	A/California/14/2010	3	2
2012-13	A/Victoria/361/2011	A/New York/02/2012	A/Singapore/C2011.493/2011	4	1
2013-14	A/Victoria/361/2011	A/Michigan/02/2013	A/New York/01/2012	3	1
2014-15	A/Texas/50/2012	A/Tehran/69634/2014	A/Boston/DOA2-176/2013	3	1
2015-16	A/Switzerland/9715293/2013	A/Parma/471/2015	A/Thailand/CU-B10520/2014	3	0
2016-17	A/Hong Kong/4801/2014	A/North Carolina/62/2016	A/Delaware/02/2015	7	2
2017-18	A/Hong Kong/4801/2014	A/Texas/277/2017	A/New York/03/2016	8	0
2018-19	A/Singapore/INFIMH-16-0019/2016	A/Japan/NHRC_FDX70352/2018	A/Colorado/11/2017	4	3
2019-20	A/Kansas/14/2017	A/Washington/9757/2019	A/Guangxi-Fangcheng/54/2019	3	11
2020-21	A/Hong Kong/2671/2019	A/Bangladesh/1004005/2020	A/Maryland/02/2019	3	13
2021-22	A/Cambodia/e0826360/2020	A/Stockholm/10/2022	A/Bangladesh/1916/2020	2	2
2022-23	-1	-1	A/lowa/20/2022	-1	-1

^{*} Dominant strain is calculated as the one closest to the centroid in the strain space that year in the edit distance metric

SI Tab. 4 H3N2 NA SOUTHERN HEMISPHERE

Year	WHO Recommendation	Dominant Strain	Qnet Recommendation	WHO Error	Qnet Error
2003-04	A/Moscow/10/99	A/Denmark/107/2003	A/New York/101/2002	13	3
2004-05	A/Fujian/411/2002	A/Hyogo/36/2004	A/New York/20/2003	3	16
2005-06	A/Wellington/1/2004	A/Denmark/203/2005	A/Wellington/1/2004	2	2
2006-07	A/California/7/2004	A/Berlin/32/2006	A/Mexico/InDRE2227/2005	3	1
2007-08	A/Wisconsin/67/2005	A/Brazil/80/2007	A/Ohio/06/2006	8	10
2008-09	A/Brisbane/10/2007	A/Missouri/05/2008	A/Brazil/80/2007	3	2
2009-10	A/Brisbane/10/2007	A/Oklahoma/09/2009	A/Wisconsin/24/2008	3	1
2010-11	A/Perth/16/2009	A/California/17/2010	A/New York/70/2009	2	3
2011-12	A/Perth/16/2009	A/Texas/14/2011	A/Virginia/05/2010	3	2
2012-13	A/Perth/16/2009	A/New York/02/2012	A/Texas/14/2011	4	1
2013-14	A/Victoria/361/2011	A/Michigan/02/2013	A/New York/02/2012	3	3
2014-15	A/Texas/50/2012	A/Tehran/69634/2014	A/Michigan/02/2013	3	1
2015-16	A/Switzerland/9715293/2013	A/Parma/471/2015	A/Tehran/69634/2014	3	2
2016-17	A/Hong Kong/4801/2014	A/North Carolina/62/2016	A/Parma/471/2015	7	2
2017-18	A/Hong Kong/4801/2014	A/Texas/277/2017	A/Guangdong/264/2016	8	0
2018-19	A/Singapore/INFIMH-16-0019/2016	A/Japan/NHRC_FDX70352/2018	A/Texas/277/2017	4	3
2019-20	A/Switzerland/8060/2017	A/Washington/9757/2019	A/Pennsylvania/317/2018	10	10
2020-21	A/South Australia/34/2019	A/Bangladesh/1004005/2020	A/Washington/9757/2019	1	13
2021-22	A/Hong Kong/2671/2019	A/India/PUN-NIV301718/2021	A/India/PUN-NIV301132/2021	6	4
2022-23	-1	-1	A/Michigan/UOM10045036720/2022	-1	-1

^{*} Dominant strain is calculated as the one closest to the centroid in the strain space that year in the edit distance metric

SI Tab. 5 H1N1 NA NORTHERN HEMISPHERE (MULTI-CLUSTER)

Year	WHO Recommendation	WHO Error	Qnet Error 1	Qnet Error 2	Qnet Recommendation 1	Qnet Recommendation 2
2001-02	A/New Caledonia/20/99	4	1	6	A/New South Wales/26/2000	A/Canterbury/37/2000
2002-03	A/New Caledonia/20/99	1	0	5	A/Wellington/1/2001	A/New York/447/2001
2003-04	A/New Caledonia/20/99	3	2	8	A/Paris/0833/2002	A/Taiwan/141/2002
2004-05	A/New Caledonia/20/99	2	3	4	A/Memphis/5/2003	A/Hanoi/1004/2003
2005-06	A/New Caledonia/20/99	3	0	1	A/Denmark/130/2004	A/Paris/650/2004
2006-07	A/New Caledonia/20/99	4	2	8	A/Sofia/361/2005	A/Wellington/11/2005
2007-08	A/Solomon Islands/3/2006	9	4	8	A/Sofia/246/2006	A/New York/8/2006
2008-09	A/Brisbane/59/2007	0	13	19	A/Tennessee/UR06-0151/2007	A/Ohio/UR06-0178/2007
2009-10	A/Brisbane/59/2007	87	88	90	A/Sendai/TU66/2008	A/Japan/618/2008
2010-11	A/California/7/2009	2	1	6	A/South Carolina/WRAIR1645P/2009	A/Wisconsin/629-D00809/2009
2011-12	A/California/7/2009	4	1	3	A/England/21680633/2010	A/Hangzhou/178/2010
2012-13	A/California/7/2009	4	1	22	A/Joshkar-Ola/CRIE-BLP/2011	A/Rio Grande do Sul/578/2011
2013-14	A/California/7/2009	5	4	13	A/Thailand/MR10580/2012	A/Mexico/INMEGEN-INER 15/2012
2014-15	A/California/7/2009	9	3	7	A/Minnesota/02/2013	A/Helsinki/430/2013
2015-16	A/California/7/2009	14	4	7	A/Helsinki/808M/2014	A/Virginia/NHRC430739/2014
2016-17	A/California/7/2009	14	0	3	A/Michigan/45/2015	A/Colorado/30/2015
2017-18	A/Michigan/45/2015	3	3	8	A/Mexico/4436/2016	A/Arizona/03/2016
2018-19	A/Michigan/45/2015	4	0	4	A/California/NHRC_QV11073/2017	A/Minnesota/35/2017
2019-20	A/Brisbane/02/2018	1	0	2	A/Kenya/47/2018	A/Colorado/7682/2018
2020-21	A/Hawaii/70/2019	0	3	8	A/California/NHRC-OID_BOX-ILI- 0012/2019	A/Indiana/30/2019
2021-22	A/Victoria/2570/2019	1	5	51	A/Togo/0071/2021	A/Yunnan-Mengzi/1462/2020
2022-23	-1	-1	-1	-1	A/Netherlands/10646/2022	A/Sydney/234/2022

^{*} Dominant strain is calculated as the one closest to the centroid in the strain space that year in the edit distance metric

SI Tab. 6 H1N1 NA SOUTHERN HEMISPHERE (MULTI-CLUSTER)

Year	WHO Recommendation	WHO Error	Qnet Error 1	Qnet Error 2	Qnet Recommendation 1	Qnet Recommendation 2
2001-02	A/New Caledonia/20/99	4	1	6	A/New South Wales/26/2000	A/Canterbury/37/2000
2002-03	A/New Caledonia/20/99	1	0	5	A/Wellington/1/2001	A/New York/447/2001
2003-04	A/New Caledonia/20/99	3	2	8	A/Paris/0833/2002	A/Taiwan/141/2002
2004-05	A/New Caledonia/20/99	2	3	4	A/Memphis/5/2003	A/Hanoi/1004/2003
2005-06	A/New Caledonia/20/99	3	0	1	A/Denmark/130/2004	A/Paris/650/2004
2006-07	A/New Caledonia/20/99	4	2	8	A/Sofia/361/2005	A/Wellington/11/2005
2007-08	A/New Caledonia/20/99	4	4	8	A/Sofia/246/2006	A/New York/8/2006
2008-09	A/Solomon Islands/3/2006	15	13	19	A/Tennessee/UR06-0151/2007	A/Ohio/UR06-0178/2007
2009-10	A/Brisbane/59/2007	87	88	90	A/Sendai/TU66/2008	A/Japan/618/2008
2010-11	A/California/7/2009	2	1	6	A/South Carolina/WRAIR1645P/2009	A/Wisconsin/629-D00809/2009
2011-12	A/California/7/2009	4	1	3	A/England/21680633/2010	A/Hangzhou/178/2010
2012-13	A/California/7/2009	4	1	22	A/Joshkar-Ola/CRIE-BLP/2011	A/Rio Grande do Sul/578/2011
2013-14	A/California/7/2009	5	4	13	A/Thailand/MR10580/2012	A/Mexico/INMEGEN-INER 15/2012
2014-15	A/California/7/2009	9	3	7	A/Minnesota/02/2013	A/Helsinki/430/2013
2015-16	A/California/7/2009	14	4	7	A/Helsinki/808M/2014	A/Virginia/NHRC430739/2014
2016-17	A/California/7/2009	14	0	3	A/Michigan/45/2015	A/Colorado/30/2015
2017-18	A/Michigan/45/2015	3	3	8	A/Mexico/4436/2016	A/Arizona/03/2016
2018-19	A/Michigan/45/2015	4	0	4	A/California/NHRC_QV11073/2017	A/Minnesota/35/2017
2019-20	A/Michigan/45/2015	4	0	2	A/Kenya/47/2018	A/Colorado/7682/2018
2020-21	A/Brisbane/02/2018	5	2	7	A/California/NHRC-OID_BOX-ILI- 0012/2019	A/Indiana/30/2019
2021-22	A/Victoria/2570/2019	1	7	58	A/Togo/0155/2021	A/Shandong/00204/2021
2022-23	-1	-1	-1	-1	A/Switzerland/86136/2022	A/Wisconsin/04/2021

^{*} Dominant strain is calculated as the one closest to the centroid in the strain space that year in the edit distance metric

SI Tab. 7 H3N2 NA NORTHERN HEMISPHERE (MULTI-CLUSTER)

Year	WHO Recommendation	WHO Error	Qnet Error 1	Qnet Error 2	Qnet Recommendation 1	Qnet Recommendation 2
2003-04	A/Moscow/10/99	13	4	5	A/Auckland/612/2002	A/New York/87/2002
2004-05	A/Fujian/411/2002	3	16	18	A/New York/20/2003	A/New York/12/2003
2005-06	A/California/7/2004	4	1	7	A/New York/358/2004	A/Singapore/36/2004
2006-07	A/Wisconsin/67/2005	1	3	8	A/Macau/557/2005	A/Hong Kong/HKU53/2005
2007-08	A/Wisconsin/67/2005	8	0	10	A/Wisconsin/42/2006	A/Wisconsin/44/2006
2008-09	A/Brisbane/10/2007	3	4	10	A/Missouri/06/2007	A/Japan/72/2007
2009-10	A/Brisbane/10/2007	3	1	7	A/Wisconsin/24/2008	A/Mississippi/UR07-0042/2008
2010-11	A/Perth/16/2009	2	3	8	A/New York/70/2009	A/Japan/883/2009
2011-12	A/Perth/16/2009	3	2	2	A/California/19/2010	A/Virginia/05/2010
2012-13	A/Victoria/361/2011	4	1	12	A/Texas/14/2011	A/Singapore/GP1684/2011
2013-14	A/Victoria/361/2011	3	1	5	A/Idaho/38/2012	A/Pavia/135/2012
2014-15	A/Texas/50/2012	3	1	1	A/Nevada/05/2013	A/Michigan/02/2013
2015-16	A/Switzerland/9715293/2013	3	0	4	A/Nicaragua/6866_14/2014	A/Iran/91244/2014
2016-17	A/Hong Kong/4801/2014	7	1	25	A/New Jersey/13/2015	A/California/NHRC_BRD41056N/2015
2017-18	A/Hong Kong/4801/2014	9	1	4	A/Guangdong/264/2016	A/Victoria/668/2016
2018-19	A/Singapore/INFIMH-16- 0019/2016	3	2	4	A/Netherlands/3530/2017	A/Washington/17/2017
2019-20	A/Kansas/14/2017	3	4	10	A/England/538/2018	A/California/BRD12490N/2018
2020-21	A/Hong Kong/2671/2019	3	1	13	A/England/9738/2019	A/Washington/9757/2019
2021-22	A/Cambodia/e0826360/2020	2	3	7	A/Laos/527/2021	A/Michigan/UOM10045655748/2020
2022-23	-1	-1	-1	-1	A/Maine/02/2022	A/Michigan/UOM10042819294/2021

^{*} Dominant strain is calculated as the one closest to the centroid in the strain space that year in the edit distance metric

SI Tab. 8 H3N2 NA SOUTHERN HEMISPHERE (MULTI-CLUSTER)

Year	WHO Recommendation	WHO Error	Qnet Error 1	Qnet Error 2	Qnet Recommendation 1	Qnet Recommendation 2
2003-04	A/Moscow/10/99	13	4	5	A/Auckland/612/2002	A/New York/87/2002
2004-05	A/Fujian/411/2002	3	16	18	A/New York/20/2003	A/New York/12/2003
2005-06	A/Wellington/1/2004	2	1	7	A/New York/358/2004	A/Singapore/36/2004
2006-07	A/California/7/2004	3	3	8	A/Macau/557/2005	A/Hong Kong/HKU53/2005
2007-08	A/Wisconsin/67/2005	8	0	10	A/Wisconsin/42/2006	A/Wisconsin/44/2006
2008-09	A/Brisbane/10/2007	3	4	10	A/Missouri/06/2007	A/Japan/72/2007
2009-10	A/Brisbane/10/2007	3	1	7	A/Wisconsin/24/2008	A/Mississippi/UR07-0042/2008
2010-11	A/Perth/16/2009	2	3	8	A/New York/70/2009	A/Japan/883/2009
2011-12	A/Perth/16/2009	3	2	2	A/California/19/2010	A/Virginia/05/2010
2012-13	A/Perth/16/2009	4	1	12	A/Texas/14/2011	A/Singapore/GP1684/2011
2013-14	A/Victoria/361/2011	3	1	5	A/Idaho/38/2012	A/Pavia/135/2012
2014-15	A/Texas/50/2012	3	1	1	A/Nevada/05/2013	A/Michigan/02/2013
2015-16	A/Switzerland/9715293/2013	3	0	4	A/Nicaragua/6866_14/2014	A/Iran/91244/2014
2016-17	A/Hong Kong/4801/2014	7	1	25	A/New Jersey/13/2015	A/California/NHRC_BRD41056N/2015
2017-18	A/Hong Kong/4801/2014	9	1	4	A/Guangdong/264/2016	A/Victoria/668/2016
2018-19	A/Singapore/INFIMH-16- 0019/2016	3	2	4	A/Netherlands/3530/2017	A/Washington/17/2017
2019-20	A/Switzerland/8060/2017	10	4	10	A/England/538/2018	A/California/BRD12490N/2018
2020-21	A/South Australia/34/2019	1	1	13	A/England/9738/2019	A/Washington/9757/2019
2021-22	A/Hong Kong/2671/2019	6	1	49	A/Darwin/11/2021	A/Hawaii/28/2020
2022-23	-1	-1	-1	-1	A/Congo/313/2021	A/Texas/12723/2022

^{*} Dominant strain is calculated as the one closest to the centroid in the strain space that year in the edit distance metric

SI Fig. 3. **IRAT vs. Q-distance relationship for H1- and H3- sub-types, using past year data vs. using all data.** On the result when computing average q-distance between the target strain and the circulating human strains from the past year, and on the right is the result when using all available human strains of that sub-type. Evidently, the former has a much higher correlation, since a strain being "close" to humans at some point does not necessarily mean being close now.

SI Tab. 9
INFLUENZA A STRAINS EVALUATED BY IRAT AND CORRESPONDING QNET COMPUTED RISK SCORES

Influenza Virus	Subype	IRAT Date	IRAT Emer- gence Score	IRAT Impact Score	HA Qnet Sample	NA Qnet Sample	HA Avg. Q-dist.	NA Avg. Q-dist.	Geom. Mean	Qnet Emer- gence Score	Qnet Impact Score
A/swine/Shandong/1207/2016	H1N1	Jul 2020	7.5	6.9	1000	1000	0.0941	0.0205	0.0440	6.0	6.2
A/Ohio/13/2017	H3N2	Jul 2019	6.6	5.8	1000	1000	0.0184	0.0306	0.0238	6.3	6.2
A/Hong Kong/125/2017	H7N9	May 2017	6.5	7.5	437	437	0.0296	0.0058	0.0131	6.6	6.5
A/Shanghai/02/2013	H7N9	Apr 2016	6.4	7.2	178	178	0.0055	0.0036	0.0044	6.7	6.6
A/Anhui-Lujiang/39/2018	H9N2	Jul 2019	6.2	5.9	31	30	0.0290	0.1681	0.0698	5.2	5.0
A/Indiana/08/2011	H3N2	Dec 2012	6.0	4.5	1000	1000	0.0523	0.0091	0.0218	6.4	6.5
A/California/62/2018	H1N2	Jul 2019	5.8	5.7	55	55	0.1089	0.0610	0.0815	5.4	5.5
A/Bangladesh/0994/2011***	H9N2	Feb 2014	5.6	5.4	-1	-1	0.2078	0.1823	0.1947	4.3	4.9
A/Sichuan/06681/2021	H5N6	Oct 2021	5.3	6.3	45	45	0.3616	0.0518	0.1369	5.2	6.4
A/Vietnam/1203/2004	H5N1	Nov 2011	5.2	6.6	258	246	0.1673	0.0111	0.0430	6.2	6.7
A/Yunnan/14564/2015**	H5N6	Apr 2016	5.0	6.6	344	331	0.3482	0.2987	0.3225	4.9	6.5
A/Astrakhan/3212/2020**	H5N8	Mar 2021	4.6	5.2	381	365	0.1603	0.3472	0.2359	3.9	4.4
A/Netherlands/219/2003	H7N7	Jun 2012	4.6	5.8	46	46	0.2757	0.3521	0.3115	4.6	5.8
A/American wigeon/South Carolina/AH0195145/2021	H5N1	Mar 2022	4.4	5.1	335	323	0.1722	0.5114	0.2967	4.0	4.7
A/Jiangxi- Donghu/346/2013***	H10N8	Feb 2014	4.3	6.0	-1	-1	0.2088	0.2101	0.2094	4.3	4.8
A/gyrfalcon/Washington/ 41088/2014**	H5N8	Mar 2015	4.2	4.6	341	328	0.1532	0.3424	0.2290	3.9	4.3
A/Northern pintail/ Washington/40964/2014**	H5N2	Mar 2015	3.8	4.1	341	328	0.1529	0.3799	0.2410	3.9	4.3
A/canine/Illinois/12191/2015	H3N2	Jun 2016	3.7	3.7	1000	1000	0.0607	0.1509	0.0957	4.9	4.8
A/American green-winged teal /Washington/1957050/2014	H5N1	Mar 2015	3.6	4.1	326	314	0.1911	0.4482	0.2927	4.1	4.9
A/turkey/Indiana/1573- 2/2016**	H7N8	Jul 2017	3.4	3.9	495	494	0.1130	0.7738	0.2957	3.4	3.9
A/chicken/Tennessee/17- 007431-3/2017	H7N9	Oct 2017	3.1	3.5	496	495	0.1027	0.2569	0.1624	4.1	4.2
A/chicken/Tennessee/17- 007147-2/2017	H7N9	Oct 2017	2.8	3.5	496	495	0.2095	0.2541	0.2307	4.2	4.8
A/duck/New York/1996 *	H1N1	Nov 2011	2.3	2.4	1000	1000	-1	-1	-1	-1	-1

^{*} HA strain is not available for A/duck/New York/1996, so this strain is omitted.

** Could not construct a Qnet of human sequence data available for that virus sub-type (less than 30 strains), so we constructed a Qnet using all human strains that match the HA sub-type, i.e. H5NX for H5N6.

*** These strains did not have enough human sequence data to generate a Qnet, even when only considering the HA sub-type. Thus, we estimated the risk score using every Qnet from the other IRAT strains, and took the average among NA and HA. Finally, we took the geometric mean of the resulting NA and HA averages.

SI Tab. 10
INFLUENZA A STRAINS EVALUATED BY IRAT AND CORRESPONDING QNET COMPUTED CURRENT RISK SCORES

Influenza Virus	Subype	IRAT Date	IRAT Emer- gence Score	IRAT Impact Score	HA Qnet Sample	NA Qnet Sample	HA Avg. Q-dist.	NA Avg. Q-dist.	Geom. Mean	Qnet Emer- gence Score	Qnet Impact Score
A/swine/Shandong/1207/2016	H1N1	Jul 2020	7.5	6.9	1000	1000	0.0599	0.0417	0.0500	5.8	5.8
A/Ohio/13/2017	H3N2	Jul 2019	6.6	5.8	1000	1000	0.0091	0.0692	0.0251	6.2	6.0
A/Hong Kong/125/2017	H7N9	May 2017	6.5	7.5	1000	1000	0.0092	0.0046	0.0065	6.7	6.6
A/Shanghai/02/2013	H7N9	Apr 2016	6.4	7.2	1000	1000	0.0031	0.0044	0.0037	6.8	6.6
A/Anhui-Lujiang/39/2018	H9N2	Jul 2019	6.2	5.9	58	58	0.0157	0.0467	0.0271	6.2	6.0
A/Indiana/08/2011	H3N2	Dec 2012	6.0	4.5	1000	1000	0.0176	0.0184	0.0180	6.4	6.3
A/California/62/2018	H1N2	Jul 2019	5.8	5.7	37	37	0.2038	0.0477	0.0986	5.3	5.9
A/Bangladesh/0994/2011	H9N2	Feb 2014	5.6	5.4	58	58	0.0473	0.4654	0.1484	3.8	3.6
A/Sichuan/06681/2021	H5N6	Oct 2021	5.3	6.3	46	46	0.3443	0.0600	0.1437	5.1	6.2
A/Vietnam/1203/2004	H5N1	Nov 2011	5.2	6.6	48	45	0.1323	0.0411	0.0738	5.6	5.8
A/Yunnan/14564/2015	H5N6	Apr 2016	5.0	6.6	46	46	0.2187	0.0415	0.0953	5.4	6.0
A/Astrakhan/3212/2020	H5N8	Mar 2021	4.6	5.2	95	92	0.2366	0.5451	0.3591	4.8	6.1
A/Netherlands/219/2003	H7N7	Jun 2012	4.6	5.8	1000	1000	0.1658	0.4596	0.2760	3.9	4.5
A/American wigeon/South Carolina/AH0195145/2021	H5N1	Mar 2022	4.4	5.1	48	45	0.2355	0.3135	0.2717	4.3	5.2
A/Jiangxi-Donghu/346/2013**	H10N8	Feb 2014	4.3	6.0	-1	-1	0.2097	0.2299	0.2196	4.2	4.8
A/gyrfalcon/Washington/ 41088/2014	H5N8	Mar 2015	4.2	4.6	95	92	0.2387	0.5438	0.3603	4.8	6.1
A/Northern pintail /Washington/40964/2014	H5N2	Mar 2015	3.8	4.1	95	92	0.2327	0.5099	0.3445	4.6	5.8
A/canine/Illinois/12191/2015	H3N2	Jun 2016	3.7	3.7	1000	1000	0.0179	0.0374	0.0259	6.2	6.1
A/American green-winged teal /Washington/1957050/2014	H5N1	Mar 2015	3.6	4.1	48	45	0.2352	0.3067	0.2686	4.3	5.1
A/turkey/Indiana/1573-2/2016	H7N8	Jul 2017	3.4	3.9	1000	1000	0.0438	0.4165	0.1351	4.0	3.8
A/chicken/Tennessee/17- 007431-3/2017	H7N9	Oct 2017	3.1	3.5	1000	1000	0.0335	0.5127	0.1310	3.8	3.6
A/chicken/Tennessee/17- 007147-2/2017	H7N9	Oct 2017	2.8	3.5	1000	1000	0.0839	0.5127	0.2075	3.5	3.6
A/duck/New York/1996*	H1N1	Nov 2011	2.3	2.4	1000	1000	-1	-1	-1	-1	-1

^{*}This table contains Onet scores for IRAT computed using current sequence data, thereby computing the current risk of these strains. -1 indicates missing data, either from lack of human sequence data available for that virus sub-type (less than 30 strains) or missing IRAT sequence data (in the case of A/duck/New York/1996)

SI Tab. 11
GENERAL LINEAR MODEL FOR EVALUATING EFFECT OF DATA DIVERSITY ON QNET PERFORMANCE

Variable Name	Description
qnet_complexity	Cumulative number of nodes in all predictors in the corresponding Qnet
data_diversity	Number of clusters in set of input sequence where each sequence in a specific cluster is separated by at least 5 mutations from sequences not in the cluster
ldistance_WHO	Deviation of WHO predicted strain from the dominant strain

Dep. Variable: dev Model: GLM Model Family: Gaussian Link Function: identity Method: IRLS Date: Thu, 11 Jun 2020 Time: 16:45:46 No. Iterations: 3	No. Observations: 235 Df Residuals: 230 Df Model: 4 Scale: 23.214 Log-Likelihood: -700.43 Deviance: 5339.2 Pearson chi2: 5.34e+03 Covariance Type: nonrobust
---	--

	coef	std err	Z	P> z	[0.025	0.975]
Intercept qnet_complexity data_diversity qnet_complexity:data_diversity ldistance_WHO	-0.1116	1.090	-0.102	0.918	-2.248	2.025
	0.0005	0.000	1.075	0.282	-0.000	0.001
	0.3197	0.126	2.531	0.011	0.072	0.567
	-6.932e-05	5.01e-05	-1.383	0.167	-0.000	2.89e-05
	-0.0348	0.035	-1.007	0.314	-0.102	0.033

		========		
Dep. Variable:		dev	No. Observations:	235
Model:		GLM	Df Residuals:	231
Model Family:		Gaussian	Df Model:	3
Link Function:		identity	Scale:	23.306
Method:		IRLS	Log-Likelihood:	-701.41
Date:	Thu, 1	1 Jun 2020	Deviance:	5383.6
Time:		16:45:47	Pearson chi2:	5.38e+03
No. Iterations:		3	Covariance Type:	nonrobust

	coef	std err	Z	P> z	[0.025	0.975]
Intercept qnet_complexity data_diversity ldistance_WHO	1.0841 -4.12e-05 0.1788 -0.0695	0.665 0.000 0.075 0.024	1.630 -0.156 2.392 -2.930	0.103 0.876 0.017 0.003	-0.219 -0.001 0.032 -0.116	2.387 0.000 0.325 -0.023
		========			=========	

 $$\operatorname{Si}$ Tab. 12 General linear model evaluating QNET emergence risk predictions against IRAT estimates

Dep. Variable: Model: Model Family: Link Function: Method: Date: Time: No. Iterations: Covariance Type:	IRAT_Eme Tue,	3	Df Resid Df Model Scale: Log-Like Deviance Pearson	l: elihood: e: chi2:		22 20 1 0.86853 -28.618 17.371 17.4 0.5919	
	coef	std err	Z	P> z	[0.025	0.975]	
Intercept Geometric_Mean	6.2467 -8.1063	0.356 1.830	17.529 -4.429	0.000	5.548 -11.693	6.945 -4.519	
Model· IRAT Fmero	ence Score	~ Geometric	Mean + HA	Ava Odist*NA	Ava Odiet		
Model: IRAT_Emergement	IRAT_Eme	rgence_Score GLM Gaussian identity IRLS 25 Oct 2022	No. Obse Df Resic Df Model Scale: Log-Like Deviance	ervations: duals: l: elihood:	=======	22 17 4 0.69369 -24.357 11.793 11.8 0.7797	:======
Dep. Variable: Model: Model Family: Link Function: Method: Date: Time:	IRAT_Eme	rgence_Score GLM Gaussian identity IRLS 25 Oct 2022 00:58:59 3 nonrobust	No. Obse Df Resic Df Model Scale: Log-Like Deviance Pearson Pseudo F	ervations: duals: l: elihood: e: chi2: R-squ. (CS):	P> z	22 17 4 0.69369 -24.357 11.793 11.8 0.7797	

SI Tab. 13 Numbering Conversion to PDM09 and H3 Schemes

Query	H1N1pdm	Н3
1	-	<u> </u>
2	-	-
3	-	-
4	-	<u> </u>
5	-	-
6 7	-	-
8	-	-
9	-	-
10	-	-
11	-	-
12	-	-
13	-	-
14	-	-
15	-	-
16	-	-
17	-	-
	-	1
	-	3
-	-	4
-	-	5
	-	6
	-	7
-	-	8
	-	9
	-	10
18	1	11
19	2	12
20	3	13
21	4	14
22	5	15
23	6	16
24	7	17
25	8	18
26	9	19
27	10	20
28	11	21 22
30	13	23
31	14	24
32	15	25
33	16	26
34	17	27
35	18	28
36	19	29
37	20	30
38	21	31
39	22	32
40	23	33
41	24	34
42	25	35
43	26 27	36 37
45	28	38
46	29	39
47	30	40
48	31	41
49	32	42
50	33	43
51	34	44
52	35	45
53	36	46
54	37	47
55	38	48
56	39	49
57	40	50
58	41	51
	42	52 53
61	44	54
62	45	-
63	46	55
64	47	56
65	48	57
66	49	58
67	50	59
68	51	60
-	-	-
	-	-
-	-	-
	-	-
-	-	-
69	52	61
70	53	62
71	54	63
72	55	64
73 74	56	65
75	57 58	66
	, 55	

Query	H1N1pdm	НЗ
77	60	69
78 79	61	70
30	62 63	72
31	64	73
32	65	74
33	66	75
34	67	76
35 36	68	77 78
37	70	79
38	71	80
39	72	81
90	73	82
91	74 75	83
93	76	84
94	77	85
95	78	86
96	79	87
97	80	88
98	81	89
99	82	90
00	83	91
101	84 85	92
103	86	93
04	87	94
05	88	95
106	89	96
07	90	97
108	91	98
109	92	99
10	93	100
11	94 95	101
	-	- 102
	-	-
13	96	103
14	97	104
15	98	105
16	99	106
17	100	107
18	101	108
119	102	109
20	103	111
22	105	112
23	106	113
24	107	114
25	108	115
26	109	116
27	110	117
28	111 112	118
29 30	112	119
31	114	121
32	115	122
33	116	123
	-	-
	-	-
34	117	124
35	118	125
36 37	119 120	-
38	120	-
39	122	126
40	123	127
41	124	128
	-	-
	-	-
	-	-
	-	-
40	-	
42 43	125 126	129 130
143	126	130
45	128	132
46	129	133
47	130	-
	131	134
148		4.44
49	132	135
49 50	133	136
49 50 51	133 134	136 137
49 50 51 52	133 134 135	136 137 138
49 50 51	133 134	136 137

Query	H1N1pdm	НЗ
157	140	143
158	141	144
159	142	145
160	143	146
161	144	147
163	145 146	148 149
164	147	150
165	148	151
166	149	152
167	150	153
168	151	154
169	152	155
170	153	156
171	154	157
172	155	158
-	_	-
	-	-
-	-	-
173	156	159
174	157	160
175	158	161
176	159	162
177	160	163
178	161	164
180	162 163	165 166
181	164	167
182	165	168
183	166	169
184	167	170
	-	-
185	168	171
186	169	172
187	170	173
-	-	174
188	171	174
189	172 173	176
191	174	177
192	175	178
193	176	179
194	177	180
195	178	181
196	179	182
197	180	183
198	181	184
199	182	185
200	183 184	186 187
202	185	188
203	186	189
204	187	190
205	188	191
206	189	192
207	190	193
208	191	194
209	192	195
210	193	196
211	194	197
213	195	198
-	-	-
214	197	200
215	198	201
216	199	202
217	200	203
218	201	204
219	202	205
220	203	206
222	204	207
223	206	209
224	207	210
225	208	211
226	209	212
227	210	213
228	211	214
229	212	215
230	213	216
231	214	217
232	215	218
233	216 217	219
235	217	220
236	219	222
237	220	223
	-	-
-	-	-

	•	-
-	-	-
-	-	-
238	221	224
239	222	225
240	223	226
241	224	227
242	225	228
243	226	229
244	227	230
245	228	231
246		
	229	232
247	230	233
248	231	234
249	232	235
250	233	236
251	234	237
252	235	238
253	236	239
254	237	240
255	238	241
256	239	242
257	240	243
258	241	244
259	242	245
260	243	246
261	244	247
262	245	248
263	246	249
264	247	250
265	248	251
266	249	252
	250	253
267		
268	251	254
269	252	255
270	253	256
271	254	257
272	255	258
273	256	259
274	257	260
275	258	261
276	259	262
	200	202
	-	-
	-	-
-	-	-
		_
-	-	
	-	-
	-	-
-	-	-
	-	-
	-	- - -
	-	
- - -	- - - - - 260	-
- - - - - 277	- - - - - - 260	- - -
- - - - - - 277 278	261	- - - - 263
- - - - - 277 278 279	261 262	- - - - 263 264
- - - - - - 277 278	261	- - - - 263
- - - - - 277 278 279 280 281	261 262 263 264	- - - 263 264 265 266
- - - - - 277 278 279 280	261 262 263	- - - 263 264 265
- - - - 277 278 279 280 281 282	261 262 263 264 265	- - - 263 264 265 266 267
- - - - 277 278 279 280 281 282 283	261 262 263 264 265 266	- - - 263 264 265 266 267 268
- - - - 277 278 279 280 281 282 283 284	261 262 263 264 265 266 267	- - - 263 264 265 266 267 268 269
- - - 277 278 279 280 281 282 283 284 285	261 262 263 264 265 266 267 268	- - - 263 264 265 266 267 268 269 270
- - - - 277 278 279 280 281 282 283 284	261 262 263 264 265 266 267	- - 263 264 265 266 267 268 269 270 271
- - - 277 278 279 280 281 282 283 284 285	261 262 263 264 265 266 267 268	- - - 263 264 265 266 267 268 269 270
277 278 279 280 281 282 283 284 285 286	261 262 263 264 265 266 267 268 269 270	- 263 264 265 266 267 268 269 270 271 272
	261 262 263 264 265 266 267 268 269 270 271	263 264 265 266 267 268 269 270 271 272 273
	261 262 263 264 265 266 267 268 269 270 271 272	- 263 264 265 266 267 268 269 270 271 272 273 274
	261 262 263 264 265 266 267 268 269 270 271 272 273	263 264 265 266 267 268 269 270 271 272 273 274 275
	261 262 263 264 265 266 267 268 269 270 271 272 273 274	263 264 265 266 267 268 269 270 271 272 273 274 275 276
	261 262 263 264 265 266 267 268 269 270 271 272 273	263 264 265 266 267 268 269 270 271 272 273 274 275
	261 262 263 264 265 266 267 268 269 270 271 272 273 274	263 264 265 266 267 268 269 270 271 272 273 274 275 276
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292	261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276	263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
	261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 276	263 264 265 266 266 267 268 269 270 271 272 273 274 275 276 277 278 279
	261 262 263 264 265 266 266 267 268 269 270 271 272 273 274 275 276 277 278	263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
	261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279	263 264 265 266 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
	261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280	263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
	261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279	263 264 265 266 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
	261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280	263 264 265 266 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
	261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281	263 264 265 266 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 282
	261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 277 278 279 280 281	263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
	261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283	263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
	261 262 263 264 265 266 266 267 268 269 270 271 272 273 274 275 276 277 278 279 281 282 283	263 264 265 266 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 286
	261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283	263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
	261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 280 281 282 283 - 284 285	263 264 265 266 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
	261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283	263 264 265 266 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
	261 262 263 264 265 266 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 - 284 285 286 287	
	261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 280 281 282 283 - 284 285 286 287 288	263 264 265 266 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
	261 262 263 264 265 266 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 - 284 285 286 287	
	261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 280 281 282 283 - 284 285 286 287 288	263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
	261 262 263 264 265 266 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 2- 284 285 286 287 288 289 290	263 264 265 266 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
	261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 280 281 282 283 - 284 285 286 287 288 289 290 291	263 264 265 266 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
	261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 288 289 280 281 282 283 - 284 285 286 287 288 289 290 291	
	261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 278 279 280 281 282 283	263 264 265 266 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
	261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 288 289 280 281 282 283 - 284 285 286 287 288 289 290 291	
	261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 278 279 280 281 282 283	263 264 265 266 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 - 286 287 288 289 290 291 292 293 294 295
	261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 278 279 280 281 282 283 - 284 285 286 287 288 289 290 291 292 293 294	263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 - 286 287 288 289 290 291 292 293
	261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294	
	261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 278 279 280 281 282 283 - 284 285 286 287 288 289 290 291 292 293 294	263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 - 286 287 288 289 290 291 292 293
	261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294	263 264 265 266 266 267 268 269 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 - 286 287 288 289 290 291 292 293 294 295 297

Query H1N1pdm H3