

Figure 1

Figure 2

Figure 3

Dataset 1 Da Figure 4

Figure 5

oligos with low hybridization intensity
oligos with intermediate hybridization intensity
oligos with high hybridization intensity

Figure 6

Figure 7

Selection of the oligo-probe candidate with minimal self-structure. Calculation of delta G duplex between this oligo-probe candidate and its target. Step 1	
Prediction of hybridization intensity value for this-oligo probe using the equation in Figure 7. This value will predict specific hybridization of oligo-probe with its target. Step 2	
Calculation of values of delta G duplex between this oligo-probe and every possible fragment of similar length in generale DNA. Selection of the set of duplexes with delta G < 10keal/mol.	The state of the s
Step 3.	
Calculation of intensity of hybridization using the equation from Figure.7 for all duplexes in the set produced in step 3 and calculation of the sum of these predicted intensities of hybridization. This sum will predict the non-specific hybridization intensity of oligo-probe with genomic DNA. Step 5	
Comparison of value of predicted specific hybridization intensity produced in step (2) and non specific hybridization intensity from step (4). Step 5	
If value of predicted specific hybridization is higher than value of predicted non-specific hybridization, the oligo-probe is a good candidate with poor cross-hybridization petential, otherwise the oligo-probe is a bad candidate. Step 6	
	J Figure 8

Thermodynamic evaluation of oligo - RNA duplex stability (\$\Delta G^{0}_{37}\$ kcal/mol)

Thermodynamic evaluation of intermolecular duplex stability (\$\Delta G^{\text{o}}_{37}\$ kcal/mol)

Thermodynamic evaluation of oligo intramolecular structure stability (\$\Delta G^{\text{o}}_{37}\$ kcal/mol)

Oligonucleotides with worst antisense efficacy
Oligonucleotides with poor antisense efficacy

Oligonucleotides with intermediate antisense efficacy

Oligonucleotides with high antisense efficacy

Figure 9

Figure 10

Figure 11

A) Published data

set 1: all oligos

set 2: oligos with stable duplexes and little self structure

B) Isis data

set 1: all oligos

set 2: oligos with stable duplexes and little self structure

Figure 13

Figure 14A

790	ATGGGTGCGA	GAGCGTCAGT	ATTAAGCGGG	GGAAATTAG	ATGCATGGGA	AAAAATTCGG	849
850	TT AAG GCCAG	GGGGAAGAA	26 26 27 27 28 AAATATAGA 28 29 29 30 31 30 29 30 30 32	28 27 29 29 29 30 31 32 32 32 GTAAACATO 30 31 32 32 32 32 33 33 34 35	32 33 33 33 35 35 35 35 34 34 TAGTATGGGC	34 32 33 31 31 32 33 33 35 33 AAGCAGGAG	909
910	TGGAAAGAT	TTGCACTTAA	CCCTGGCTT	TTAGAAACAT	CAGAAGGCTG	TAAACAAATA	969
970	ÄTGGGACAGC	TACAACCAGC	TCTTCAGACA	GGATCAGAAG	AACTTAGATC	ATTATATAAT	1029
1030	ACAGTAGCAA	CCCTCTATTG	TGTACATCAA	AGGATAGAGG	TAAAAGACAC	CAAGGAAGCT	1089
1090	TAGAGAAGA	TAGAGGAAGA	ACAAAACAAA	AGTAAGCAAA	AGACACAGCA	GGCAGCAGCT	1149
1150	GACACAGGAA	ACAGCAGCCA	GGTCAGCCAA	AATTACCCTA	TAGTGCAGAA	TCTACAAGGG	1209
1210	CAAATGGTAC	ACCAGGCCAT	ATCACCTAGA	ACTTTGAATG	CATGGGTAAA	AGTAATAGAA	1269
1270	GAAAAGGCTT	TCAGCCCAGA	AGTAATACCC	ATGTTTTCAG	CATTATCAGA 32 31 31 32 33 33 34 34 34 34 33	AGGAGCCACC 34 34 32 31 30 29 29 30 29 29	1329
1330	CCACAAGATIT 29 26 26 26 26 27 28 28 28 29	TAAACACCAT 30 30 29 29 28 29 29 30 32 32	GCTAAACAQA 32 31 32 33 34 33 33 34 34	GTGGGGGGAC		CATGCAAATG	1389
1390	TTAAAAGATA		GGAAGCTGCA 35 35 33 33 34 33 31 32	GAATGGGATA		AGTACATGCA	1449
1450	GGGCCTATTC	CACCAGGCCA	GATGAGAGAA		GTGACATAGC 26 26 27 27 28 29 30 31 30 29		1509
1510	AGTACCCTTC	AGGAACAAAT	AGGATGGAT	ACAACCAACC 31 31 32 32 32 32 33 33 31 31	CACC TATCCC	29 30 27 27 27 27 27 25 25 26 AGTGGGAGAA	1569
1570	ATCTATAAAA	GATGGATAAT		AATAAAATAG	TAAGAATGTA	TAGECCTGTC	1629
1630	AGCATTTTGG			GAACCCTTTA	GAGACTATGT	AGACAGGTTC	1689
1690	TTTAAAACTC	50 51 55	GCAAGCTACA	CAGGATGTAA	AAAATTGGAT	GACAGAAACC	1749
1750	TTGTTGGTCC	AAAATGCGAA	CCCAGATTGT	AAGACCATTT	TAAAAGCATT	AGGACCAGGG	1809
1810	GCTACACTAC	AAGAAATGAT 313130 30303132 3129 29	GACAGCATGT 30 30 30 30 29 28 28 29 30 30	CAGGGAGTGG	GAGGACCCAG	CCATAAAGCA	1869
1870	AGAGTTTTGG	CTGAGGCAAT		ACAAATGCAG	CCATAATGAT	GCAGAGAGGC	1929
1930	AATTTTAAGG	GCCAAAGAAG		TGTTTCAACT	GTGGCAAAGA	AGGACACATA	1989
1990	GCGAGAAATT	GCAGGGCCCC	TAGGAAAAAG	GGCTGTTGGA	AATGTGGAAA	GGAAGGACAC 28 27 27 27 26 26 27 27 28 27	2049
2050	CAAATGAAAG 27 28 27 27 28 29 29 29 29 28	ACTGUACTGA 28 28 28 29 28 29 28 29 29 30	AAGACAGGCT	AATTTTTTAG	GGAAAATTTG	GCCTTCCAAC	2109
2110	AAGGGGAGGC	CAGGGAATTT	TCTTCAG AGC	AGACCAGAGO 30 30 31 31 32 32 33 33 33 33		ACCAGCAGAG	2169
2170	AGGTTCGGGT	TCGGGGAGGA	GATAACCCCC		AGGAGCAGAA	AGACAAGGAA	2229
2230	CTGTATCCTC	CTTTAGCTTC	CCTCAAATCA	CTCTTTGGCA	ACGACCCCTI	GTCACAATAA	2289
2290					34 31 30 27 27 28 29 30	3 U	

Figure 14 B

Figure 15

