

b)

index	returns	risk	weights			
0	0	0.25879	[2.550458	72 -0.4495	4128 -1.10	091743]
1	0.0001	0.258581	[2.549027	52 -0.4489	7248 -1.10	005505]
2	0.0002	0.258372	[2.547596	33 -0.4484	0367 -1.09	919266]
3	0.0003	0.258163	[2.546165	14 -0.4478	3486 -1.09	833028]
4	0.0004	0.257954	[2.544733	94 -0.4472	6606 -1.09	746789]
5	0.0005	0.257745	[2.543302	75 -0.4466	9725 -1.09	66055]
6	0.0006	0.257536	[2.541871	.56 -0.4461	2844 -1.09	574312]
7	0.0007	0.257326	[2.540440	37 -0.4455	5963 -1.09	488073]
8	0.0008	0.257117	[2.539009	17 -0.4449	9083 -1.09	401835]
9	0.0009	0.256908	[2.537577	98 -0.4444	2202 -1.09	315596]

c)two returns are possible:0.0524 and 0.1896 d)

-0.02568807 0.45137615]

market portfolio:[0.0508,0.1367]

f)

```
For 10%
riskfree:(the first weight is that of riskfree)
return[0.17226494] weights: [array([-0.96806658]), array([1.16853953, 0.64577185, 0.1537552 ])]
```

```
For 25%
riskfree:(the first weight is that of riskfree)
return[0.28066236] weights: [array([-3.92016644]), array([2.92134883, 1.61442961, 0.384388 ])]
```

2)

The equations are: w2=-0.40*w1+0.56 w3=1.52*w2-0.42 w3=-0.60*w1+0.44

3)a)c)the green line is the CAPM line

the blue line is min variance portfolio curve(it almost seems like a line because the small covariance values of the data extracted)

I had to take risk free return rate(μ_{rf}) to be -0.8 in the whole duration.

b)

Market portfolio: [[0.01324613],[-0.4320321]]

d)
$$\mu = (\mu_M - \mu_{rf})\beta + \mu_{rf}$$
 Here
$$\mu_M = -0.432$$

$$\sigma_M = 0.0132$$

