International Rectifier

MBR0520

SCHOTTKY DIODE

0.5 Amp

Major Ratings and Characteristics

Characteristics	Value	Units
I _{F(AV)} DC	0.5	Α
V _{RRM}	20	V
I _{FSM} @t _p =10 ms sine	6.5	А
V _F @0.5Apk,T _J =100°C	0.36	V
T _J range	- 65 to 150	°C

Description/Features

This Schottky diode is ideally suited for low voltage, high frequency operation, as freewheeling and polarity protection. Small size of the package allows proper use in application where compact size is critical, fitting also the GSM and PCMCIA requirement.

- Surface mountable
- Very low forward voltage drop
- Extremely fast switching
- Negligible switching losses
- Guard ring for enhanced ruggedness and long term reliability

MBR0520

Preliminary Data Sheet PD-20226 01/02

Voltage Ratings

Partnumber	Value
V _R Max. DC Reverse Voltage (V)	20
V _{RWM} Max. Working Peak Reverse Voltage (V)	20

Absolute Maximum Ratings

	Parameters	Value	Units	Conditions	
I _F	Max. Average Forward Current	0.5	Α	DC,T _L =129°C	
I _{FSM}	Max.PeakOneCycleNon-Repetitive	55	Α	5μs Sine or 3μs Rect. pulse	Following any rated load condition and
	SurgeCurrent,@25°C	6.5	Α	10ms Sine or 6ms Rect. pulse	with rated V _{RRM} applied

Electrical Specifications

	<u> </u>				
	Parameters	Value	Units	Conditions	
V _{FM}	Max. Forward Voltage Drop (1)	0.375	V	@ 0.1A	T _J =25°C
		0.440	V	@ 0.5A	
V _{FM}	Max. Forward Voltage Drop (1)	0.260	V	@ 0.1A	T _J = 100°C
		0.360	V	@ 0.5A	
I _{RM}	Max. Reverse Leakage (1)	40	μA	T _J = 25°C	V _R = 10V
	Current	3	mA	T _J = 100°C	
		150	μA	T _J = 25°C	V _R = 20V
		7	mA	T _J = 100°C	
C _T	Max. Junction Capacitance	110	pF	$V_R = 5V_{DC}$ (test signal range 100KHz to 1Mhz), $T_J = 25^{\circ}C$	
dv/dt	Max. Voltage Rate of Change	10000	V/μs		
	(Rated V _R)				

⁽¹⁾ Pulse Width < 300μs, Duty Cycle < 2%

Thermal-Mechanical Specifications

	Parameters	Value	Units	Conditions
T _J	Max.Junction Temperature Range(*)	-65 to 150	°C	
T _{stg}	Max. Storage Temperature Range	-65 to 150	°C	
R _{thJL}	Max. Thermal Resistance Junction to Lead	150	°C/W	Mounted on PC board FR4 with minimum pad size
R _{thJA}	Max.ThermalResistanceJunction	200	°C/W	1inchsquarepadsize(1x0.5inchforeachlead)on
	toAmbient			FR4 board
Wt	ApproximateWeight	0.012	gr	
	Case Style	SOD123		
	Device Marking	IR520)	

 $\frac{\binom{*}{d}Ptot}{dTj} < \frac{1}{Rth(j-a)}$ thermal runaway condition for a diode on its own heatsink

Fig. 1-Maximum Forward Voltage Drop Characteristics

Fig. 2-Typical Values of Reverse Current Vs. Reverse Voltage

Fig. 3-Typical Junction Capacitance Vs. Reverse Voltage

Fig. 5-Maximum Allowable Case Temperature Vs. Average Forward Current

Fig. 6-Forward Power Loss Characteristics

Fig. 7-Maximum Non-Repetitive Surge Current

(2) Formula used: $T_C = T_J - (Pd + Pd_{REV}) \times R_{thJC}$; Pd = Forward Power Loss = $I_{F(AV)} \times V_{FM} @ (I_{F(AV)} / D)$ (see Fig. 6); Pd_{REV} = Inverse Power Loss = $V_{R1} \times I_{R} (1 - D)$

Tape & Reel Information

Ordering Information Table

Device	Package	Marking	Base qty	Delivery mode
MBR0520	SOD-123	IR520	3000	Tape & Reel

Data and specifications subject to change without notice.

This product has been designed for Industrial Level.

Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7309 Visit us at www.irf.com for sales contact information. 01/02