Statistics and Supervised Machine Learning: bridging the 'gap'

Kamran Javid

Arabesque

kamran.javid@arabesque.com

January 4, 2023

Kamran Javid Stats & SML January 4, 2023 1/13

Why is the link important?

- Supervised machine learning is crucial to the Al Engine
- In isolation, appears somewhat ad-hoc
- Today we will show it isn't!

Kamran Javid Stats & SML January 4, 2023 2 / 13

Agenda

- Preliminaries
 - Supervised machine learning
 - Theory
 - Example
 - Bayesian inference
 - Theory
 - Example
- Putting the two together
 - Maximum posterior estimation
 - Theory
 - Example

Kamran Javid Stats & SML January 4, 2023 3/13

Supervised machine learning

Definition (Supervised machine learning)

Given a feature matrix X, and output matrix Y, we want to learn a mapping f from X to Y Furthermore we can assert that our mapping is governed by some model \mathcal{M} , and depends explicitly on model parameters θ :

$$f: X, \theta \to Y | \mathcal{M}$$
 (1)

Definition (Objective function)

Given a model $f(\cdot; \theta)$ and training data (X, Y), one can form an **objective** function \mathcal{O} consisting of a **loss function** \mathcal{L} , and optionally a **weight** decay function \mathcal{R} :

$$\mathcal{O}(X,Y,\theta) = \tau_L \mathcal{L}(f(X;\theta),Y) + \tau_R \mathcal{R}(\theta), \tag{2}$$

Kamran Javid Stats & SML January 4, 2023 4/13

Supervised machine learning continued

where τ_L and τ_R dictate the relative weighting of \mathcal{L} and \mathcal{R} . The mapping is 'learned' by **minimising** \mathcal{O} with respect to the model parameters θ :

$$\min_{\theta} \tau_L \mathcal{L}(f(X;\theta), Y) + \tau_R \mathcal{R}(\theta)$$
 (3)

Roughly speaking, \mathcal{L} measures the *similarity* between the true target Y, and the model's approximation, $f(X; \theta)$.

Weight decay serves to balance this in the optimisation, by 'penalising' models which are deemed to be overly *complex*

Kamran Javid Stats & SML January 4, 2023 5 / 13

Supervised machine learning example

Illustrative example, predicting house prices:

- We have ten houses for which we know the true price (Y)
- We want to learn a mapping from two features (land area and average temperature, X) to true price
- We choose $\mathcal M$ such that our model of Y is a linear regression model, so $f(X;\theta)=X\theta$
- Where $X \in \mathbb{1}^{10 \times 1} \times \mathbb{R}^{+10 \times 2}$, $Y, f(X; \theta) \in \mathbb{R}^{+10 \times 1}$, $\theta \in \mathbb{R}^{3 \times 1}$
- Use squared error loss function $\mathcal{L} = (Y f(X; \theta))^{\top} (Y f(X; \theta))$
- ullet We also use an I2-norm squared weight decay $\mathcal{R}(heta)= heta^ op heta$

Kamran Javid Stats & SML January 4, 2023 6/13

Definition (Bayesian inference)

Taking our definitions of X, Y, f, \mathcal{M} and θ used for (1).

Say that we want to infer the model parameters θ conditional on the data (X,Y) and on our model assumptions. Unfortunately, nature has screwed us on this *inverse* problem. Thankfully, reverend *Bayes* saved the day:

$$\mathcal{P}(\theta|X,Y,f,\mathcal{M}) = \frac{\mathcal{P}(Y|\theta,X,f,\mathcal{M})\mathcal{P}(\theta|\mathcal{M})}{\mathcal{P}(Y|\mathcal{M})} = \alpha \mathcal{P}(Y|\theta,X,f,\mathcal{M})\mathcal{P}(\theta|\mathcal{M})$$
(4)

- $\mathcal{P}(\theta|\mathcal{M})$ expresses our **prior** beliefs of the quantity of interest, θ given our assumptions dictated by \mathcal{M}
- $\mathcal{P}(Y|\theta,X,f,\mathcal{M})$ is the quantity we can measure directly: given values for X, θ and our functional form, what is the **likelihood** of obtaining our observable data Y
- $\mathcal{P}(\theta|X,Y,f,\mathcal{M})$ is our quantity of interest. Known as the **posterior** distribution.

Kamran Javid Stats & SML January 4, 2023 7/13

Bayesian inference example

'Interesting' example, Estimating the physical quantities of galaxy clusters:

- Observables (X, Y) are associated with the 'boring' signals measured by a telescope
- Parameters of 'interest' θ are physical properties of clusters associated with these signals: mass, temperature, etc.
- We use a theory-based generative model f to map from observable X, and unobservable θ to our observable for Y
- ullet n-body simulations tell us the *prior* on heta e.g. $\mathcal{P}(heta|\mathcal{M}) = \mathcal{N}(\mu, \Sigma_P)$
- ullet We perform a new experiment with our telescope to measure (X,Y)
- Due to thermal, CMB spectrum etc. noise, we assume our data have Gaussian errors: $\mathcal{P}(Y|\theta,X,f,\mathcal{M}) = \mathcal{N}(f(X;\theta),\Sigma_L)$

Kamran Javid Stats & SML January 4, 2023 7/13

Maximum posterior estimation

- Sampling $\mathcal{P}(\theta|X,Y,f,\mathcal{M})$ is computationally expensive
- The "poor man's" attempt at Bayesian inference is to find the **maximum** of $\mathcal{P}(\theta|X,Y,f,\mathcal{M})$

Definition (Maximum posterior estimation)

This is unsurprisingly known as **maximum posterior estimation** (MAP, c.f. maximum likelihood estimation, MLE):

$$\max_{\theta} \mathcal{P}(\theta|X, Y, f, \mathcal{M}) \tag{5}$$

Note that:

$$\max_{\theta} \mathcal{P}(\theta|X, Y, f, \mathcal{M}) = \min_{\theta} \left[-\log(\mathcal{P}(Y|\theta, X, f, \mathcal{M})) - \log(\mathcal{P}(\theta|\mathcal{M})) \right]$$
(6)

The bridge

Let's compare our **optimisation** equations from the supervised machine learning and Bayesian inference cases:

$$egin{aligned} \min_{ heta} au_L \mathcal{L}(f(X; heta), Y) + au_R \mathcal{R}(heta) \ \min_{ heta} - \log(\mathcal{P}(Y | heta, X, f, \mathcal{M})) - \log(\mathcal{P}(heta | \mathcal{M})) \end{aligned}$$

Thus by solving a supervised learning problem, we are in fact obtaining a MAP estimate where:

$$\tau_{L}\mathcal{L}(f(X;\theta),Y) = -\log(\mathcal{P}(Y|\theta,X,f,\mathcal{M}))$$
 (7)

$$\tau_R \mathcal{R}(\theta) = -\log(\mathcal{P}(\theta|\mathcal{M})) \tag{8}$$

Phew... we are doing statistics afterall!

◆ロト ◆部ト ◆恵ト ◆恵ト ・恵 ・ 釣り○

Kamran Javid Stats & SML January 4, 2023 9/13

MAP estimate example

Going back to our house prediction example in the supervised learning case. We find that this is *equivalent* to obtaining a MAP estimate with:

ullet A three-dimensional Gaussian prior on heta with $\mu=0$ and $\Sigma_P=rac{1}{2 au_R} imes\mathbb{I}$

$$\mathcal{P}(\theta|\mathcal{M}) \propto \exp\left(-\frac{2\tau_R}{2}\theta^{\top}\mathbb{I}^{-1}\theta\right) \Rightarrow -\log\left(\mathcal{P}(\theta|\mathcal{M})\right) \propto \tau_R \theta^{\top}\theta = \tau_R R(\theta)$$
(9)

• A ten-dimensional Gaussian likelihood on Y with $\mu = f(X; \theta)$ and $\Sigma_L = \frac{1}{2\tau_L} \times \mathbb{I}$:

$$\mathcal{P}(Y|\theta, X, f, \mathcal{M}) \propto \exp\left(-\frac{2\tau_L}{2}(Y - f(X;\theta))^{\top} \mathbb{I}^{-1}(Y - f(X;\theta))\right)$$

$$\Rightarrow -\log\left(\mathcal{P}(Y|\theta, X, f, \mathcal{M})\right) \propto \tau_L(Y - f(X;\theta))^{\top}(Y - f(X;\theta))$$

$$= \tau_L \mathcal{L}(f(X;\theta), Y)$$
(10)

Kamran Javid Stats & SML January 4, 2023 10 / 13

MAP estimate example conclusions

- Note we have 'absorbed' the normalisation constants associated with the prior and likelihood functions into the normalisation constant α introduced in (4)
- In our supervised learning example, we are solving a MAP problem with a Gaussian likelihood with variance $\propto 1/\tau_L$, and a Gaussian prior with zero mean and variance $\propto 1/\tau_R$
- ullet The functional forms of ${\cal L}$ and ${\cal R}$ aren't picked out of thin air
- The regularisation constants are intricately linked to the variances of said probability distributions. Ignore them at your own peril...!
- In Bayesian inference τ_L , τ_R can be treated as random variables using hierarchical Bayesian inference

Summary

- We first introduced a simple theory underlying supervised machine learning (SML)
- Second we introduced the theory underpinning Bayesian inference
- Next we defined what maximum posterior estimation (MAP) is
- We then showed the SML and MAP theoretical equivalence
- Finally, for the SML example presented we considered the MAP equivalent, and showed their equivalence

Cheers for listening

Kamran Javid Stats & SML January 4, 2023 13 / 13