12-Day Embedded Firmware Development Training Program

Day 1: Embedded Systems Foundations

- 1. Introduction to Embedded Systems
 - Overview of Embedded Systems in IoT, Automotive, and Consumer Electronics
 - Key Components: Microcontrollers, Sensors, Actuators
 - Real-Time Constraints and Requirements
- 2. Development Tools for Embedded Systems
 - IDEs: STM32CubeIDE, Keil, VS Code
 - Debuggers: JTAG, SWD
 - Simulators and Emulators
- 3. ARM Cortex-M Architecture
 - Features: Low-Power Design, Interrupts, Exceptions
 - System Control Block (SCB) and Fault Handling
- 4. Introduction to Bare-Metal Programming
 - Setting Up Toolchains (GCC, Keil, STM32Cube)
 - Writing and Debugging Bare-Metal Applications

Day 2: Bare-Metal Programming Fundamentals

- 1. GPIO and Timer Basics
 - GPIO Pin Configuration and Blinking LEDs
 - Timer Configuration for Delays

2. Interrupt Programming

- NVIC (Nested Vectored Interrupt Controller) Overview
- Writing ISRs (Interrupt Service Routines)
- 3. Communication Protocols Part 1
 - UART: Configuration and Data Transmission
 - Hands-On: UART Loopback
- 4. Communication Protocols Part 2
 - SPI and I2C Overview
 - Multi-Device Communication

Day 3: Advanced Bare-Metal Programming

- 1. Power Management
 - Low-Power Modes: Sleep, Stop, Standby
 - Power-Saving Techniques
- 2. Advanced Interrupt Management
 - Nested Interrupts and Priorities
- 3. Memory Management
 - Flash, Stack, Heap, and Optimization Techniques
- 4. Debugging Techniques
 - Using SWD, Serial Debugging Tools

Day 4: RTOS Foundations

- 1. RTOS Introduction
 - Why Use an RTOS? Benefits Over Bare-Metal Programming
 - Key Concepts: Tasks, Scheduling, Context Switching
- 2. FreeRTOS Basics
 - Setting Up FreeRTOS
 - Task Creation and Management
- 3. Inter-Task Communication in FreeRTOS
 - Queues, Semaphores, Mutexes
- 4. Hands-On Debugging with FreeRTOS
 - Using Trace Tools for Debugging

Day 5: Advanced FreeRTOS Programming

- 1. Task Management
 - o Task Priorities, Delays, Yielding
- 2. Real-Time Scheduling
 - Static vs Dynamic Priority Scheduling
- 3. Advanced Peripheral Management in FreeRTOS
 - Managing UART, SPI, I2C in RTOS
- 4. Low-Power Techniques in FreeRTOS
 - Building a Power-Efficient System

Day 6: Firmware Verification and Project Allocation

- 1. Secure Firmware Development
 - Implementing Secure Bootloaders
 - Basics of OTA Updates
- 2. Firmware Verification Techniques
 - Unit Testing, Integration Testing, System Testing
 - Tools: Ceedling, Unity, CMock
- 3. Code Quality and Static Analysis
 - MISRA-C Guidelines
 - Using Tools like SonarQube, PC-lint
- 4. Project Allocation
 - Explanation of Project Topics (e.g., RTOS-based device, memory optimization)
 - Forming Teams or Individual Work Plans

Day 7: Advanced RTOS Concepts

- 1. Advanced Task Synchronization
 - Using Event Groups and Notifications
- 2. Dynamic Memory Allocation in FreeRTOS
 - Understanding Heap Management
- 3. Advanced Communication Techniques
 - Stream Buffers, Message Buffers
- 4. RTOS Security
 - Implementing Secure Task Management

Day 8: Boot Process and Board Bring-Up

- 1. Microprocessor and Microcontroller Boot Process
 - How the Boot Process Works in Embedded Systems
 - Bootloaders and System Initialization
- 2. Board Bring-Up
 - Initializing GPIOs, Clocks, Peripherals
 - Debugging a New Board
- 3. Memory Subsystems
 - SRAM, ROM, Flash Organization and Usage
- 4. Hands-On: Initializing Hardware Components
 - SD Card Integration
 - Interfacing EEPROM

Day 9: Profiling, Optimization, and Hybrid Programming

- 1. Debugging Multithreaded Applications
 - Advanced Debugging Techniques in FreeRTOS
- 2. Performance Profiling
 - Using Tracealyzer, Segger SystemView
- 3. Hybrid Programming Models
 - Bare-Metal and FreeRTOS Co-Existence
- 4. Practical Project Progress Checkpoint
 - Teams/Individuals to Demonstrate Progress

Day 10: Advanced Firmware Techniques

- 1. Real-Time Data Monitoring and Logging
 - Efficient Data Logging in RTOS
- 2. System Integration and Testing
 - End-to-End System Testing and Validation
- 3. Hands-On: Debugging Complex Systems
 - Logic Analyzers and Oscilloscopes
- 4. Case Studies in Firmware Development
 - Automotive, IoT, and Industrial Applications

Day 11: Extended Advanced Topics

- 1. Advanced Memory Debugging
 - Memory Leaks Detection and Prevention
 - Debugging Heap Fragmentation Issues
- 2. Security in Embedded Systems
 - Encryption/Decryption Techniques
 - Secure Communication Protocols
- 3. Complex Peripheral Integration
 - Interfacing Advanced Sensors and Actuators
 - Using PWM and ADC for Motor Control
- 4. Project Fine-Tuning and Final Testing
 - Teams/Individuals to Prepare for Presentation

Day 12: Capstone Project Presentation and Wrap-Up

- 1. Capstone Project Presentation
 - **o** Teams or Individuals Present Their Completed Projects
- 2. Feedback and Discussion
 - Peer and Instructor Feedback
- 3. Future Directions in Embedded Firmware Development
 - Emerging Trends in Embedded Systems and RTOS
- 4. Program Conclusion
 - o Wrap-up