Lab 8 Solutions - The Case of Taidoor Espionage

Lab 8 - The Case of Taidoor Espionage

Your security device alerts on a malware callback connection from 192.168.1.60 to 200.2.126.61 on port 443. you suspect the host 192.168.1.60 to be infected. you collect the memory image from the host (taidoor.vmem). Analyze the memory image and answer the below questions

- Can you confirm if the host made the connection to the C2 server?
- What is the process id of the malicious process?
- Can you determine the full path of the malicious process and based on the path do you think its a legitimate operating system process?
- If this is a legitimate process, is there is anything that makes it different from the legitimate process?
- Dump the process onto disk, can you recognize any interesting strings?
- Based on your observation, what code injection technique malware is using?

Answers

01. Can you confirm if the host made the connection to the C2 server?

Running the **netscan** plugin shows a closed connection to the C2 server on port **443**, this confirms that the host had established a network connection with the C2 server and associated process is **svchost.exe** (**pid 1412**)

02. What is the process id of the malicious process?

The process id of the malicious process is 1412 and it is associated with svchost.exe as shown in the screenshot.

Systom					
System 0xf327ac0	TCPv6	:::2869	:::Θ	LISTENING	4
System 0xf38d2a8 wmpnetwk.exe	TCPv4	0.0.0.0:554	0.0.0.0:0	LISTENING	3088
0xf2ae898 svchost.exe	TCPv4	192.168.1.60:49161	200.2.126.61:443	CLOSED	1412

03. Can you determine the full path of the malicious process and based on the path do you think its a legitimate operating system process?

The full path of the process is **C:\Windows\system32\svchost.exe**. Based on the path it looks like a legitimate process but this process does not have any command line parameters, normally the **svchost.exe** processes running on a clean system has command line parameters.

root@kratos:~/Volatility# python vol.py -f taidoor.vmem --profile=Win7SP0x86 dlllist -p 1412
Volatility Foundation Volatility Framework 2.5

svchost.exe pid: 1412
Command line : svchost.exe

Base	Size	LoadCount	Path
0x00400000	0x5000	θxffff	C:\Windows\system32\svchost.exe
0x76f60000	0x13c000	Θxffff	C:\Windows\SYSTEM32\ntdll.dll
0x75530000	0xd4000	θxffff	<pre>C:\Windows\system32\kernel32.dll</pre>
0x75160000	0x4a000	Θxffff	C:\Windows\system32\KERNELBASE.dl

04. If this is a legitimate process, is there is anything that makes it different from the legitimate process?

Process listing shows a suspicious svchost.exe process (pid 1412) which was not started by services.exe but this process was started by some process with process id 2504 (which is terminated), whereas other legitimate svchost.exe processes were started by services.exe (pid 448)

	:~/Volatility# python Foundation Volatility			r.vmem -	-profile=	Win7SP0>	x86	pslist	grep -i sv	chost
	svchost.exe	616	448	10	348	0	Θ	2017-03-04	09:44:57	UTC+0000
0x861d2968	svchost.exe	724	448	7	298	Θ	Θ	2017-03-04	09:44:58	UTC+0000
0x889e7d40	svchost.exe	812	448	20	442	0	0	2017-03-04	09:44:58	UTC+0000
0x86203030	svchost.exe	848	448	19	419	0	Θ	2017-03-04	09:44:58	UTC+0000
0x86213030	svchost.exe	880	448	43	976	0	Θ	2017-03-04	09:44:58	UTC+0000
0x8622d990	svchost.exe	1012	448	12	545	Θ	Θ	2017-03-04	09:44:59	UTC+0000
0x862ed908	svchost.exe	1120	448	16	371	0	Θ	2017-03-04	09:44:59	UTC+0000
0x864b8180	svchost.exe	1284	448	18	315	Θ	Θ	2017-03-04	09:45:00	UTC+0000
0x8597f370	svchost.exe	3040	448	11	300	0	Θ	2017-03-04	14:36:15	UTC+0000
0x85a53418	svchost.exe	3128	448	12	226	Θ	Θ	2017-03-04	14:36:16	UTC+0000
0x85ada458	svchost.exe	1412 2	2504	9	214	1	0	2017-03-04	14:38:48	UTC+0000

root@kratos:~/Volatility# python vol.py -f taidoor.vmem --profile=Win7SP0x86 pslist -p 2504
Volatility Foundation Volatility Framework 2.5
ERROR : volatility.debug : Cannot find PID 2504. If its terminated or unlinked, use psscan and then supply --offset=OFFSET
root@kratos:~/Volatility#

<pre>root@kratos:~/Volatility# python vol.py -f taidoor.vmemprofile=Win7SP0x86 pslist -p 448 Volatility Foundation Volatility Framework 2.5</pre>										
Offset(V) Name Exit			Thds	Hnds	Sess	Wow64	Start			
0x88980d40 services.exe	448	396	9	221	θ	θ	2017-03-04	09:44:57	UTC+0000	

Running the malfind plugin shows that the address **Ox400000** where **svchost.exe** is loaded has suspicious memory protection "**PAGE_EXECUTE_READWRITE**" if an executable is normally loaded it should have a memory protection of "**PAGE_EXECUTE_WRITECOPY**".

05. Dump the process onto disk, can you recognize any interesting strings?

Dumping the process from memory to disk and extracting the strings show references to the additional C2 domains which can be used as network indicator, apart from that strings also contain references to some of the http patterns used by the malware and references to the file name.

```
iphlpapi.dll
211.232.98.9
128.91.197.123
200.2.126.61
/%s.php?id=%06d%s&ext=%s
http://%s:%d/%s.php?id=%06d%s&ext=%s
%temp%\
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/
http://%s:%d/%s.php?id=%06d%s
%C%C%C%C%C
%systemroot%\system32\sprxx.dll
/%s.php?id=%06d%s
%%temp%%\%u
Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)
Content-Type: application/x-www-form-urlencoded
POST
HTTP/1.1
%02X-%02X-%02X-%02X-%02X
```

```
root@kratos:~/Volatility# python vol.py -f taidoor.vmem --profile=Win7SP0x86 procdump -p 1412 -D dum p/
Volatility Foundation Volatility Framework 2.5
Process(V) ImageBase Name Result
0x85ada458 0x00400000 svchost.exe OK: executable.1412.exe
```

Submitting the dumped executable to VirusTotal confirms it to be malicious as shown in the screenshot.

06. Based on your observation, what code injection technique malware is using?

Looking at the parent-child relationship and the anomaly in the memory protection of executable section of **svchost.exe** suggests that this svchost.exe was started by another process (not **services.exe**) and then the executable section was replaced with malicious executable. This suggests the use of hollow process injection (also called as process hollowing)