Ecole Nationale Supérieure de Techniques Avancées ParisTech PRB202 - Martingales et Algorithmes Stochastiques Corrigé PC2 - 7 décembre 2017

Exercice 1: 1. Pour tout $n \ge 1$, considérons la fonction f_n définie sur \mathbb{R}^n et à valeurs dans \mathbb{R}^n par :

$$f_n(x_1, x_2, \dots, x_n) = (x_1, x_1 + x_2, \dots, x_1 + x_2 + \dots + x_n), \quad (x_1, x_2, \dots, x_n) \in \mathbb{R}^n.$$

 $f_n: \mathbb{R}^n \to \mathbb{R}^n$ est continue sur \mathbb{R}^n donc $(\mathcal{B}(\mathbb{R}^n), \mathcal{B}(\mathbb{R}^n))$ -mesurable, où $\mathcal{B}(\mathbb{R}^n)$ désigne la tribu borélienne de \mathbb{R}^n .

On remarque par ailleurs que pour tout $n \geq 1$, $(S_1, S_2, \dots, S_n) = f_n(X_1, X_2, \dots, X_n)$. f_n^{-1} est bijective de \mathbb{R}^n sur \mathbb{R}^n et quel que soit $n \geq 1$:

$$f_n^{-1}(s_1, s_2, s_3, \dots, s_n) = (s_1, s_2 - s_1, s_3 - s_2, \dots, s_n - s_{n-1}), \quad (s_1, s_2, s_3, \dots, s_n) \in \mathbb{R}^n.$$

Comme $f_n^{-1}: \mathbb{R}^n \to \mathbb{R}^n$ est continue sur \mathbb{R}^n , elle est $(\mathcal{B}(\mathbb{R}^n), \mathcal{B}(\mathbb{R}^n))$ -mesurable.

Rappel : Tribu engendrée par une v.a. X et fonctions $\sigma(X)$ -mesurables.

• Soit (Ω, \mathcal{F}) et (E, \mathcal{E}) deux espaces mesurables. On appelle variable aléatoire (en abrégé v.a.) définie sur (Ω, \mathcal{F}) et à valeurs dans (E, \mathcal{E}) toute application mesurable X de (Ω, \mathcal{F}) dans (E, \mathcal{E}) , soit, on doit avoir :

$$\forall C \in \mathcal{E}, X^{-1}(C) = \{X \in C\} = \{\omega \in \Omega; X(\omega) \in C\} \in \mathcal{F}.$$

- Pour une telle v.a. X, la tribu engendrée par X, notée $\sigma(X)$, est la plus petite sous-tribu sur (Ω, \mathcal{F}) qui rend X mesurable. En fait, on a : $\sigma(X) = X^{-1}(\mathcal{E}) = \{\{X \in C\}; C \in \mathcal{E}\}$.
- Si \mathcal{G} et \mathcal{H} sont deux sous-tribus de \mathcal{F} , en général $\mathcal{G} \cup \mathcal{H}$ n'est pas une sous-tribu de \mathcal{F} . On note alors $\mathcal{G} \vee \mathcal{H}$ ou $\sigma(\mathcal{G}, \mathcal{H})$, la sous-tribu $\sigma(\mathcal{G} \cup \mathcal{H})$. $\mathcal{G} \vee \mathcal{H}$ est la plus petite sous-tribu sur (Ω, \mathcal{F}) qui contient \mathcal{G} et \mathcal{H} .
- Considérons n v.a. X_i , $1 \le i \le n$, définies sur (Ω, \mathcal{F}) et à valeurs dans les espaces mesurables (E_i, \mathcal{E}_i) . La tribu engendrée par X_1, \dots, X_n , notée $\sigma(X_1, \dots, X_n)$, est définie comme étant la plus petite soustribu sur (Ω, \mathcal{F}) qui rend chaque v.a. X_i , $1 \le i \le n$, mesurable, soit :

$$\sigma(X_1, \dots, X_n) = \sigma(\{\{X_1 \in C_1\} \cap \dots \cap \{X_n \in C_n\}; C_1 \in \mathcal{E}_1, \dots, C_n \in \mathcal{E}_n\}).$$

 $\sigma(X_1, \dots, X_n)$ est aussi la plus petite sous-tribu sur (Ω, \mathcal{F}) contenant toutes les $\sigma(X_i)$ pour $i \in \{1, \dots, n\}$, de sorte que :

$$\sigma(X_1, \dots, X_n) = \sigma\left(\bigcup_{i=1}^n \sigma(X_i)\right) = \sigma(X_1) \vee \dots \vee \sigma(X_n).$$

• Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires définies sur (Ω, \mathcal{F}) et à valeurs dans les espaces mesurables (E_n, \mathcal{E}_n) , $n \in \mathbb{N}$.

La tribu engendrée par $(X_n)_{n>1}$ est définie comme suit :

$$\begin{split} \sigma(X_1,\cdots,X_n,\cdots) &= \sigma\left(\cup_{n\geq 1}\sigma(X_n)\right) \\ &= \sigma\left(\cup_{n\geq 1}\sigma(X_1,\cdots,X_n)\right) \\ &= \sigma(\{\cap_{i=1}^n\{X_i\in C_i\}\,;n\geq 1\,,C_i\in\mathcal{E}_i\,,1\leq i\leq n\})\,. \end{split}$$

• Soit $X:(\Omega,\mathcal{F})\to(\mathbb{R}^d,\mathcal{B}(\mathbb{R}^d))$, une variable aléatoire. Une variable aléatoire $U:(\Omega,\mathcal{F})\to(\mathbb{R}^k,\mathcal{B}(\mathbb{R}^k))$ est $\sigma(X)$ -mesurable si et seulement si il existe une application $g:(\mathbb{R}^d,\mathcal{B}(\mathbb{R}^d))\to(\mathbb{R}^k,\mathcal{B}(\mathbb{R}^k))$ mesurable telle que : U=g(X).

Compte tenu du rappel précédent et puisque pour tout $n \geq 1$, $(S_1, S_2, \dots, S_n) = f_n(X_1, X_2, \dots, X_n)$, avec $f_n(\mathcal{B}(\mathbb{R}^n), \mathcal{B}(\mathbb{R}^n))$ -mesurable, on en déduit que (S_1, S_2, \dots, S_n) est $\sigma(X_1, X_2, \dots, X_n)$ -mesurable. Or, $\sigma(S_1, S_2, \dots, S_n)$ est la plus petite tribu sur (Ω, \mathcal{F}) qui rende (S_1, S_2, \dots, S_n) mesurable donc $\sigma(S_1, S_2, \dots, S_n) \subset \sigma(X_1, X_2, \dots, X_n)$, quel que soit $n \geq 1$.

Par le même argument et comme $(X_1,X_2,\cdots,X_n)=f_n^{-1}(S_1,S_2,\cdots,S_n)$, pour tout $n\geq 1$ avec f_n^{-1} qui est $(\mathcal{B}(\mathbb{R}^n),\mathcal{B}(\mathbb{R}^n))$ -mesurable, il vient : $\sigma(X_1,X_2,\cdots,X_n)\subset\sigma(S_1,S_2,\cdots,S_n)$. On conclut que $\mathcal{F}_n=\sigma(S_1,\cdots,S_n)$, quel que soit $n\geq 1$.

2. Pour tout $n \geq 1$, $\mathcal{F}_n = \sigma(S_1, \dots, S_n)$, d'après la question **1.** Or $\sigma(S_1, \dots, S_n)$, $n \geq 1$, est la plus petite sous-tribu sur (Ω, \mathcal{F}) qui rend les variables aléatoires (S_1, \dots, S_n) mesurables; en particulier, quel que soit $n \geq 1$, S_n est alors \mathcal{F}_n -mesurable. Comme $S_0 = 0$, S_n est \mathcal{F}_n -mesurable pour tout $n \in \mathbb{N}$. Par ailleurs, S_n , $n \geq 1$, est une variable aléatoire intégrable.

En effet, $\forall n \geq 1$, $\mathbb{E}[|S_n|] \leq \sum_{i=1}^n \mathbb{E}[|X_i|] = n \mathbb{E}[|X_1|] < +\infty$, puisque les v.a. X_1, \dots, X_n sont intégrables et identiquement distribuées.

Rappel: Indépendance d'évènements, de tribus et de variables aléatoires.

Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace de probabilité et I un ensemble d'indices.

• Une famille quelconque $(A_i)_{i\in I}$ d'évènements est dite (mutuellement) indépendante pour \mathbb{P} si, pour toute sous-famille $(A_i)_{i\in J}$, $J\subset I$, J fini, on a :

$$\mathbb{P}(\cap_{j\in J} A_j) = \prod_{j\in J} \mathbb{P}(A_j).$$

- Une famille quelconque $(\mathcal{F}_i)_{i\in I}$ de sous-tribus de \mathcal{F} est dite (mutuellement) indépendante pour \mathbb{P} si toute famille $(A_i)_{i\in I}$ d'évènements vérifiant, pour tout $i\in I$, $A_i\in \mathcal{F}_i$ est indépendante pour \mathbb{P} .
- Une famille quelconque $(X_i)_{i\in I}$ de variables aléatoires X_i à valeurs dans $\mathbb{R}^{d_i}, d_i \in \mathbb{N}^*, i \in I$, est (mutuellement) indépendante pour \mathbb{P} si la famille de sous-tribus $(\sigma(X_i))_{i\in I}$ est indépendante pour \mathbb{P} . On dit aussi plus simplement que les évènements $(A_i)_{i\in I}$, (resp. les sous-tribus $(\mathcal{F}_i)_{i\in I}$, les variables aléatoires $(X_i)_{i\in I}$) sont indépendants.
- Une variable aléatoire X à valeurs dans \mathbb{R}^d , $d \in \mathbb{N}^*$ est indépendante d'une sous-tribu \mathcal{G} de \mathcal{F} si et seulement si $\sigma(X)$ est indépendante de \mathcal{G} soit, si et seulement si : $\forall C \in \mathcal{B}(\mathbb{R}^d), \forall B \in \mathcal{G}, \mathbb{P}(\{X \in C\} \cap B) = \mathbb{P}(X \in C) \mathbb{P}(B)$.
- La famille d'évènements $(A_i)_{i\in I}$ est indépendante si et seulement si, la famille des sous-tribus $(\sigma(A_i))_{i\in I}$ est indépendante.
- La famille d'évènements $(A_i)_{i\in I}$ est indépendante si et seulement si, la famille des v.a. $(\mathbf{1}_{A_i})_{i\in I}$ est indépendante.
- Si \mathcal{G} et \mathcal{H} sont deux sous-tribus de \mathcal{F} indépendantes, X et Y deux variables aléatoires respectivement \mathcal{G} -mesurable et \mathcal{H} -mesurable, alors les v.a. X et Y sont indépendantes.
- Lemme de regroupement :
 - (Forme 1) Soit $(\mathcal{G}_i)_{i\in I}$ une famille indépendante de sous-tribus de \mathcal{F} . Si I_1, I_2, \dots, I_n sont des parties disjointes et non vides de I telle que $I = \bigcup_{i=1}^n I_i$ alors les tribus $\sigma(\bigcup_{i\in I_1}\mathcal{G}_i), \sigma(\bigcup_{i\in I_2}\mathcal{G}_i), \dots, \sigma(\bigcup_{i\in I_n}\mathcal{G}_i)$ sont indépendantes.
 - (Forme 2) Soit X_1, \cdots, X_n des variables aléatoires indépendantes à valeurs réelles. Alors, si $0 < n_1 < n_2 < \cdots < n_p = n$, les variables aléatoires $f_1(X_1, \cdots, X_{n_1})$, $f_2(X_{n_1+1}, \cdots, X_{n_2})$, \cdots , $f_p(X_{n_{p-1}+1}, \cdots, X_{n_p})$ sont indépendantes, pour toute application $f_1: \mathbb{R}^{n_1} \to \mathbb{R}$, \cdots , $f_p: \mathbb{R}^{n_p-n_{p-1}} \to \mathbb{R}$, mesurables.

Par exemple, si X_1, \dots, X_4 sont des v.a. réelles indépendantes, les variables aléatoires $X_1 + X_2$ et X_3X_4 sont indépendantes.

• Soit X_1, X_2, \dots, X_n des variables aléatoires telles que $X_i, 1 \leq i \leq n$, soit à valeurs dans \mathbb{R}^{d_i} . X_1, X_2, \dots, X_n sont indépendantes si et seulement si, pour toutes applications $f_i, 1 \leq i \leq n$ boréliennes bornées (ou à valeurs positives) de \mathbb{R}^{d_i} dans \mathbb{R} , on a :

$$\mathbb{E}[f_1(X_1)f_2(X_2)\cdots f_n(X_n)] = \mathbb{E}[f_1(X_1)]\mathbb{E}[f_2(X_2)]\cdots \mathbb{E}[f_n(X_n)].$$

On notera que si X_1, X_2, \dots, X_n sont des variables aléatoires réelles indépendantes et intégrables, la relation suivante est valide :

$$\mathbb{E}[X_1 X_2 \cdots X_n] = \mathbb{E}[X_1] \mathbb{E}[X_2] \cdots \mathbb{E}[X_n].$$

Cependant, la réciproque est fausse.

Comme la famille ou suite de variables aléatoires $(X_n)_{n\in\mathbb{N}}$ est indépendante, la famille des sous-tribus $(\sigma(X_n))_{n\in\mathbb{N}}$ est indépendante.

Ainsi, pour tout $m \in \mathbb{N}$, les sous-tribus $\sigma(X_1), \dots, \sigma(X_m)$ sont indépendantes.

En prenant $I = \{1, \dots, n+1\}$, $I_1 = \{1, \dots, n\}$, $I_2 = \{n+1\}$, $\mathcal{G}_i = \sigma(X_i)$, $i \in I$, dans la forme 1 du lemme de regroupement, on obtient que les sous-tribus $\mathcal{F}_n = \sigma(X_1, \dots, X_n) = \sigma\left(\bigcup_{i=1}^n \sigma(X_i)\right) = \sigma(X_1) \vee \dots \vee \sigma(X_n)$ et $\sigma(X_{n+1})$ sont indépendantes, soit que la variable aléatoire X_{n+1} est indépendante de \mathcal{F}_n , $n \geq 1$.

De plus, quel que soit $n \in \mathbb{N}$, $S_{n+1} = S_n + X_{n+1}$ et :

$$\begin{split} \mathbb{E}[S_{n+1}|\mathcal{F}_n] &= \mathbb{E}[S_n|\mathcal{F}_n] + \mathbb{E}[X_{n+1}|\mathcal{F}_n] \,, \text{ en utilisant la linéarité de l'espérance conditionnelle,} \\ &= S_n + \mathbb{E}[X_{n+1}|\mathcal{F}_n] \,, \text{ car } S_n \text{ est } \mathcal{F}_n \text{ -mesurable,} \\ &= S_n + \mathbb{E}[X_{n+1}] \,, \text{ vu que } X_{n+1} \text{ est indépendante de } \mathcal{F}_n \,, \\ &= S_n \,, \end{split}$$

puisque $\mathbb{E}[X_{n+1}] = \mathbb{E}[X_1] = 0$.

On en déduit que $(S_n)_{n\in\mathbb{N}}$ est une $(\mathcal{F}_n)_{n\in\mathbb{N}}$ -martingale.

3. Pour tout $n \geq 1$, S_n est $(\mathcal{F}_n, \mathcal{B}(\mathbb{R}))$ -mesurable et la fonction $x \mapsto x^2$ étant continue sur \mathbb{R} , elle est $(\mathcal{B}(\mathbb{R}), \mathcal{B}(\mathbb{R}^+))$ -mesurable. On en déduit que S_n^2 est une variable aléatoire $(\mathcal{F}_n, \mathcal{B}(\mathbb{R}^+))$ -mesurable comme étant la composée de deux fonctions $(\mathcal{F}_n, \mathcal{B}(\mathbb{R}))$ - et $(\mathcal{B}(\mathbb{R}), \mathcal{B}(\mathbb{R}^+))$ -mesurables.

Ainsi, le processus $(S_n^2 - n \sigma^2)_{n \in \mathbb{N}}$ est $(\mathcal{F}_n)_{n \in \mathbb{N}}$ - adapté.

Par ailleurs, en utilisant l'inégalité vectorielle :

$$|x_1 + \ldots + x_l|^2 \le l^2(|x_1|^2 + \ldots + |x_l|^2)$$
,

valide quel que soit $l \ge 1$ et $(x_1, \ldots, x_l) \in \mathbb{R}^l$, on obtient, pour tout $n \ge 1$:

$$\mathbb{E}[S_n^2] \le n^2 \sum_{k=1}^n \mathbb{E}[X_k^2] < +\infty \,,$$

puisque quel que soit $k \in \{1, ..., n\}$, $\mathbb{E}[X_k^2] = \mathbb{E}[X_1^2] = \sigma^2$.

Le processus $(S_n^2 - n \sigma^2)_{n \in \mathbb{N}}$ est alors intégrable.

De plus, pour tout $n \ge 1$,

$$\mathbb{E}[S_{n+1}^2 - (n+1)\sigma^2 | \mathcal{F}_n] = \mathbb{E}[(S_n + X_{n+1})^2 - (n+1)\sigma^2 | \mathcal{F}_n],$$

$$= \mathbb{E}[S_n^2 | \mathcal{F}_n] + \mathbb{E}[X_{n+1}^2 | \mathcal{F}_n] + 2\mathbb{E}[S_n X_{n+1} | \mathcal{F}_n] - (n+1)\sigma^2, \tag{1}$$

en utilisant la linéarité de l'espérance conditionnelle.

Or, S_n^2 étant \mathcal{F}_n -mesurable, on a, quel que soit $n \geq 1$

$$\mathbb{E}[S_n^2|\mathcal{F}_n] = S_n^2, \text{ p.s.}, \tag{2}$$

Comme X_{n+1} est indépendante de \mathcal{F}_n , X_{n+1}^2 est encore une variable aléatoire indépendante de \mathcal{F}_n et :

$$\mathbb{E}[X_{n+1}^2 | \mathcal{F}_n] = \mathbb{E}[X_{n+1}^2] = \mathbb{E}[X_1^2] = \sigma^2,$$
(3)

pour tout $n \ge 1$.

Puisque S_n est \mathcal{F}_n -mesurable et de carré intégrable, il vient, pour tout $n \geq 1$,

$$\mathbb{E}[S_n X_{n+1} | \mathcal{F}_n] = S_n \mathbb{E}[X_{n+1} | \mathcal{F}_n],$$

$$= S_n \mathbb{E}[X_{n+1}], \text{ car } X_{n+1} \text{ est indépendante de } \mathcal{F}_n,$$

$$= S_n \mathbb{E}[X_1],$$

$$= 0$$
(4)

Ainsi combinant les résultats obtenus dans (2), (3) et (4) pour terminer le calcul dans (1), on obtient que, pour tout $n \ge 1$,

$$\mathbb{E}[S_{n+1}^2 - (n+1)\sigma^2 | \mathcal{F}_n] = S_n^2 + \sigma^2 - (n+1)\sigma^2, = S_n^2 - n\sigma^2.$$

Ainsi, $(S_n^2 - n \sigma^2)_{n \in \mathbb{N}}$ est une $(\mathcal{F}_n)_{n \in \mathbb{N}}$ - martingale.

4. On a pour tout $n \in \mathbb{N}$, $Y_n = g_n(S_n)$, où g_n est une fonction définie sur \mathbb{R} à valeurs dans \mathbb{R}^+ telle que $g_n(x) = \exp(\alpha x - n \log(\mathbb{E}[e^{\alpha X_1}])$.

 $g_n: \mathbb{R} \to \mathbb{R}^+$ est continue sur \mathbb{R} donc $(\mathcal{B}(\mathbb{R}), \mathcal{B}(\mathbb{R}^+))$ -mesurable et S_n est $(\mathcal{F}_n, \mathcal{B}(\mathbb{R}))$ -mesurable, quel que soit $n \in \mathbb{N}$, où $\mathcal{B}(\mathbb{R})$ (respectivement, $\mathcal{B}(\mathbb{R}^+)$) désigne la tribu borélienne de \mathbb{R} (respectivement, la tribu borélienne de \mathbb{R}^+). Y_n est alors $(\mathcal{F}_n, \mathcal{B}(\mathbb{R}^+))$ -mesurable, pour tout $n \in \mathbb{N}$ comme étant la composée de deux fonctions $(\mathcal{F}_n, \mathcal{B}(\mathbb{R}))$ et $(\mathcal{B}(\mathbb{R}), \mathcal{B}(\mathbb{R}^+))$ -mesurables.

Rappel : Soit X une variable aléatoire définie sur un espace de probabilité $(\Omega, \mathcal{F}, \mathbb{P})$ à valeurs dans \mathbb{R} telle que la fonction

$$\phi_X(u) = \mathbb{E}[\exp(uX)]$$

de la variable réelle u soit définie dans un voisinage ouvert de l'origine. ϕ_X est appelée la transformée de Laplace de (la loi de) X.

Si (X,Y) est un couple de variables aléatoires indépendantes dont chacune admet une transformée de Laplace, alors la somme X+Y admet une transformée de Laplace et l'on a :

$$\phi_{X+Y} = \phi_X \phi_Y$$
.

Le résultat précédent se généralise au cas de n variables aléatoires indépendantes X_1, \ldots, X_n .

Ainsi, pour tout $n \geq 1$, $\phi_{S_n}(\alpha) = (\phi_{X_1}(\alpha))^n = (\phi(\alpha))^n$, puisque $S_n = X_1 + \dots + X_n$, et les variables aléatoires X_1, \dots, X_n sont indépendantes et identiquement distribuées. Il vient alors :

$$\forall n \ge 1, \, \mathbb{E}[Y_n] = \phi(\alpha)^{-n} \mathbb{E}[\exp(\alpha S_n)],$$

$$= \phi(\alpha)^{-n} \phi_{S_n}(\alpha),$$

$$= \phi(\alpha)^{-n} \phi(\alpha)^n,$$

$$= 1 < +\infty.$$

 $Y_0=1$ et Y_n est donc une variable aléatoire intégrable, pour tout $n\in\mathbb{N}$. De plus, quel que soit $n\in\mathbb{N}$,

$$\mathbb{E}[Y_{n+1}|\mathcal{F}_n] = \phi(\alpha)^{-(n+1)}\mathbb{E}[\exp(\alpha(S_n + X_{n+1}))|\mathcal{F}_n],$$

$$= \phi(\alpha)^{-(n+1)}\exp(\alpha S_n)\mathbb{E}[\exp(\alpha X_{n+1})|\mathcal{F}_n], \text{ car } S_n \text{ donc } \exp(\alpha S_n) \text{ est } \mathcal{F}_n \text{ -mesurable et de carr\'e int\'egrable,}$$

$$= Y_n \phi(\alpha)^{-1}\mathbb{E}[\exp(\alpha X_{n+1})], \text{ puisque } X_{n+1} \text{ donc } \exp(\alpha X_{n+1}) \text{ est ind\'ependante de } \mathcal{F}_n,$$

$$= Y_n \phi(\alpha)^{-1}\mathbb{E}[\exp(\alpha X_1)],$$

$$= Y_n \phi(\alpha)^{-1}\phi(\alpha),$$

$$= Y_n.$$

On en déduit que $(Y_n)_{n\in\mathbb{N}}$ est une $(\mathcal{F}_n)_{n\in\mathbb{N}}$ -martingale. Lorsque X_1 suit une loi normale centrée réduite,

$$\begin{split} \phi(\alpha) &= \mathbb{E}[e^{\alpha X_1}] \,, \\ &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{\alpha x} e^{-\frac{x^2}{2}} \, dx \,, \\ &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-\frac{x^2 - 2\alpha x}{2}} \, dx \,, \\ &= \frac{e^{\frac{\alpha^2}{2}}}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-\frac{(x - \alpha)^2}{2}} \, dx \,, \\ &= e^{\frac{\alpha^2}{2}} \,. \end{split}$$

Ainsi, $\phi(\alpha)$ est définie pour tout $\alpha \in \mathbb{R}$ et $(e^{\alpha S_n - n\frac{\alpha^2}{2}})_{n \in \mathbb{N}}$ est une $(\mathcal{F}_n)_{n \in \mathbb{N}}$ - martingale pour tout $\alpha \in \mathbb{R}$.

Exercice 2: Le processus $(X_n)_{n\in\mathbb{N}}$ est naturellement adapté par rapport à sa filtration naturelle $(\mathcal{G}_n)_{n\in\mathbb{N}}$ et par ailleurs, pour tout $n\in\mathbb{N}, X_n$ est une variable aléatoire intégrable puisque, par hypothèse, $(X_n)_{n\in\mathbb{N}}$ est une martingale, donc un processus intégrable.

De plus, remarquons que pour tout $n \in \mathbb{N}$, $\mathcal{G}_n \subset \mathcal{F}_n$. En effet, fixons un entier naturel $n \in \mathbb{N}$; comme $(X_m)_{m \in \mathbb{N}}$ est adapté à $(\mathcal{F}_m)_{m \in \mathbb{N}}$, toute variable aléatoire X_p , pour $0 \le p \le n$, est \mathcal{F}_p - mesurable donc \mathcal{F}_n - mesurable puisque $\mathcal{F}_p \subset \mathcal{F}_n$ lorsque $0 \le p \le n$. Mais, par définition, $\mathcal{G}_n = \sigma(X_p, 0 \le p \le n)$ est la plus petite tribu sur (Ω, \mathcal{F}) (au sens de l'inclusion) qui rend mesurable toutes les variables aléatoires X_p , pour $0 \le p \le n$; on en déduit que $\mathcal{G}_n \subset \mathcal{F}_n$.

Ainsi, pour tout $n \in \mathbb{N}$, $\mathbb{E}[X_{n+1}|\mathcal{G}_n] = \mathbb{E}[\mathbb{E}[X_{n+1}|\mathcal{F}_n]|\mathcal{G}_n]$, d'après la propriété d'emboîtement des espérances conditionnelles. Par ailleurs, puisque $(X_n)_{n \in \mathbb{N}}$ est une $(\mathcal{F}_n)_{n \in \mathbb{N}}$ -sur-martingale, $\mathbb{E}[X_{n+1}|\mathcal{F}_n] \leq X_n$, quel que

П

soit $n \in \mathbb{N}$, de sorte que $\mathbb{E}[X_{n+1}|\mathcal{G}_n] \leq \mathbb{E}[X_n|\mathcal{G}_n]$, pour tout $n \in \mathbb{N}$, en utilisant la propriété de croissance de l'espérance conditionnelle.

Enfin, comme X_n est \mathcal{G}_n - mesurable pour tout $n \in \mathbb{N}$, $\mathbb{E}[X_n|\mathcal{G}_n] = X_n$.

En conclusion, on a bien que $\mathbb{E}[X_{n+1}|\mathcal{G}_n] \leq X_n$, quel que soit $n \in \mathbb{N}$.

Exercice 3 : Comme $(X_n)_{n\in\mathbb{N}}$ est une $(\mathcal{F}_n)_{n\in\mathbb{N}}$ - sur-martingale, $(X_n)_{n\in\mathbb{N}}$ est un processus intégrable et adapté à $(\mathcal{F}_n)_{n\in\mathbb{N}}$.

Par ailleurs, pour tout $n \in \mathbb{N}$, $\mathbb{E}[X_{n+1}|\mathcal{F}_n] \leq X_n$, p.s..

Introduisons la variable aléatoire U_n , définie pour tout $n \in \mathbb{N}$, par : $U_n = X_n - \mathbb{E}[X_{n+1}|\mathcal{F}_n]$. Alors, $U_n \ge 0$, p.s., quel que soit $n \in \mathbb{N}$.

Or, $\mathbb{E}[U_n] = \mathbb{E}[X_n] - \mathbb{E}[\mathbb{E}[X_{n+1}|\mathcal{F}_n]] = \mathbb{E}[X_n] - \mathbb{E}[X_{n+1}] = 0$, puisque pour tout $n \in \mathbb{N}$, $\mathbb{E}[X_n]$ est constante d'après l'énoncé.

Ainsi U_n est une variable aléatoire positive \mathbb{P} – presque-sûrement telle que $\mathbb{E}[U_n]=0$, quel que soit $n\in\mathbb{N}$; on en déduit que : $U_n=0$, p.s., pour tout $n\in\mathbb{N}$, soit : $\mathbb{E}[X_{n+1}|\mathcal{F}_n]=X_n$, p.s..

 $(X_n)_{n\in\mathbb{N}}$ est alors une $(\mathcal{F}_n)_{n\in\mathbb{N}}$ - martingale.

Exercice 4: 1. $(X_n)_{n\in\mathbb{N}}$ étant une $(\mathcal{F}_n)_{n\in\mathbb{N}}$ -martingale de carré intégrable, X_m est une variable aléatoire \mathcal{F}_m -mesurable, de carré intégrable, pour tout $m\in\mathbb{N}$.

Ainsi, quel que soit $(m, n) \in \mathbb{N}^2$ tels que $m \le n$,

$$\mathbb{E}[X_m Y_n | \mathcal{F}_m] = X_m \mathbb{E}[Y_n | \mathcal{F}_m], \text{p.s.},$$

= $X_m Y_m, \text{p.s.},$ (5)

puisque $(Y_n)_{n\in\mathbb{N}}$ est une $(\mathcal{F}_n)_{n\in\mathbb{N}}$ -martingale.

On montre, de la même façon, que pour tout $(m,n) \in \mathbb{N}^2$ tels que $m \leq n$,

$$\mathbb{E}[Y_m X_n | \mathcal{F}_m] = Y_m X_m \text{ p.s.}.$$

2. En prenant l'espérance dans l'égalité (5), il vient pour tout $(m,n) \in \mathbb{N}^2$ tels que $m \leq n$:

$$\mathbb{E}[\mathbb{E}[X_m Y_n | \mathcal{F}_m]] = \mathbb{E}[X_m Y_m],$$

soit:

$$\mathbb{E}[X_m Y_n] = \mathbb{E}[X_m Y_m].$$

Choisissant m = k - 1, n = k, quel que soit $k \ge 1$, on obtient :

$$E[X_{k-1}Y_k] = \mathbb{E}[X_{k-1}Y_{k-1}]. \tag{6}$$

pour tout $k \geq 1$.

A la question 1., nous avons obtenu que pour tout $(m,n) \in \mathbb{N}^2$ tels que $m \leq n$,

$$\mathbb{E}[Y_m X_n | \mathcal{F}_m] = Y_m X_m \text{ p.s.}.$$

En utilisant alors une démarche analogue à celle suivie précédemment, on a alors quel que soit $k \ge 1$,

$$E[Y_{k-1}X_k] = \mathbb{E}[Y_{k-1}X_{k-1}]. \tag{7}$$

Or, pour tout $k \geq 1$,

$$\mathbb{E}[(X_k - X_{k-1})(Y_k - Y_{k-1})] = \mathbb{E}[X_k Y_k] - E[X_k Y_{k-1}] - E[X_{k-1} Y_k] + \mathbb{E}[X_{k-1} Y_{k-1}],$$

$$= \mathbb{E}[X_k Y_k] - \mathbb{E}[X_{k-1} Y_{k-1}],$$
(8)

d'après (6) et (7).

En sommant alors pour k allant de 1 à n dans l'égalité (8), il vient pour tout entier naturel $n \ge 1$,

$$\mathbb{E}[X_n Y_n] - \mathbb{E}[X_0 Y_0] = \sum_{k=1}^n \mathbb{E}[(X_k - X_{k-1})(Y_k - Y_{k-1})]. \tag{9}$$

3. En prenant $X_n = Y_n$, pour tout $n \in \mathbb{N}$, dans (9), on obtient :

$$\mathbb{E}[X_n^2] = \mathbb{E}[X_0^2] + \sum_{k=1}^n \mathbb{E}[(X_k - X_{k-1})^2], \qquad (10)$$

quel que soit $n \ge 1$.

Or, $(X_n)_{n\in\mathbb{N}}$ étant une $(\mathcal{F}_n)_{n\in\mathbb{N}}$ -martingale, $\mathbb{E}[X_k|\mathcal{F}_{k-1}]=X_{k-1}$, p.s., pour tout $k\geq 1$, de sorte que $\mathbb{E}[X_k]=\mathbb{E}[X_{k-1}]$, quel que soit $k\geq 1$.

On en déduit que les variables aléatoires $X_k - X_{k-1}$, $1 \le k \le n$ sont centrées et :

$$Var(X_k - X_{k-1}) = \mathbb{E}[(X_k - X_{k-1})^2], \tag{11}$$

pour tout $k \geq 1$.

Par ailleurs, quel que soit $n \in \mathbb{N}$,

$$\operatorname{Var}(X_n) = \mathbb{E}[X_n^2] - (\mathbb{E}[X_n])^2,$$

= $\mathbb{E}[X_n^2] - (\mathbb{E}[X_0])^2,$ (12)

puisque $\mathbb{E}[X_n] = \mathbb{E}[X_0]$, pour tout $n \in \mathbb{N}$.

Finalement, combinant (10), (11) et (12), on en déduit la relation recherchée :

$$Var(X_n) = Var(X_0) + \sum_{k=1}^{n} Var(X_k - X_{k-1}),$$

quel que soit $n \in \mathbb{N}$.

4. $\mathbb{L}^2(\Omega, \mathcal{F}, \mathbb{P})$ est un espace de Hilbert muni du produit scalaire <.,.> défini par $:< X,Y> = \mathbb{E}[XY]$, pour tout $(X,Y) \in \mathbb{L}^2(\Omega, \mathcal{F}, \mathbb{P}) \times \mathbb{L}^2(\Omega, \mathcal{F}, \mathbb{P})$.

Or, pour toute variable aléatoire Z, \mathcal{F}_{n-1} - mesurable, $n \geq 1$, et de carré intégrable, il vient :

$$\begin{split} \mathbb{E}[Z(X_n - X_{n-1})] &= \mathbb{E}[\mathbb{E}[Z(X_n - X_{n-1}) | \mathcal{F}_{n-1}]], \\ &= \mathbb{E}[Z\mathbb{E}[(X_n - X_{n-1}) | \mathcal{F}_{n-1}]], \\ &= 0. \end{split}$$

puisque $(X_n)_{n\in\mathbb{N}}$ est une $(\mathcal{F}_n)_{n\in\mathbb{N}}$ -martingale.

Ainsi, pour tout $n \ge 1$, $X_n - X_{n-1}$ est orthogonale à toute variable aléatoire Z, \mathcal{F}_{n-1} -mesurable, de carré intégrable.

C'est ainsi que $X_n - X_{n-1}, n \ge 1$, est orthogonale à X_0 .

Aussi, pour tout $(j,k) \in (\mathbb{N}^*)^2$ tel que $j < k, X_k - X_{k-1}$ est orthogonale à $X_j - X_{j-1}$, car $X_j - X_{j-1}$ est une variable aléatoire de carré intégrable, \mathcal{F}_j donc \mathcal{F}_{k-1} -mesurable.

Exercice 5: 1. $(X_n)_{n\in\mathbb{N}}$ étant une $(\mathcal{F}_n)_{n\in\mathbb{N}}$ - sous-martingale, pour tout $k\in\mathbb{N}$, X_k est \mathcal{F}_k - mesurable, en fait X_k est $(\mathcal{F}_k,\mathcal{B}(\mathbb{R}_+^*))$ -mesurable puisque $X_k>0$, quel que soit $k\in\mathbb{N}$; ainsi la fonction $x\to\frac{1}{x}$ étant continue sur \mathbb{R}_+^* , $\frac{1}{X_k}$ est $(\mathcal{F}_k,\mathcal{B}(\mathbb{R}_+^*))$ -mesurable comme étant la composée de deux fonctions $(\mathcal{F}_k,\mathcal{B}(\mathbb{R}_+^*))$ -mesurable et $(\mathcal{B}(\mathbb{R}_+^*),\mathcal{B}(\mathbb{R}_+^*))$ -mesurable.

Par ailleurs, $\mathbb{E}[X_{k+1}|\mathcal{F}_k]$ est, par définition, une variable aléatoire \mathcal{F}_k - mesurable, pour tout $k \in \mathbb{N}$; comme $\forall k \in \mathbb{N}, X_k > 0$, il résulte de la positivité de l'opérateur espérance conditionnelle que $\mathbb{E}[X_{k+1}|\mathcal{F}_k]$ est $(\mathcal{F}_k, \mathcal{B}(\mathbb{R}^*_+))$ -mesurable.

Ainsi, quel que soit $k \in \mathbb{N}$, $\frac{\mathbb{E}[X_{k+1}|\mathcal{F}_k]}{X_k}$ est $(\mathcal{F}_k, \mathcal{B}(\mathbb{R}_+^*))$ -mesurable comme étant le produit de deux fonctions $(\mathcal{F}_k, \mathcal{B}(\mathbb{R}_+^*))$ -mesurables.

Comme $0 \le k \le n-1$, $\mathcal{F}_k \subset \mathcal{F}_{n-1}$ et $\frac{\mathbb{E}[X_{k+1}|\mathcal{F}_k]}{X_k}$ est $(\mathcal{F}_{n-1}, \mathcal{B}(\mathbb{R}_+^*))$ -mesurable; enfin, pour tout $n \ge 1$,

 $C_n = \prod_{k=0}^{n-1} \frac{\mathbb{E}[X_{k+1}|\mathcal{F}_k]}{X_k}$ est $(\mathcal{F}_{n-1}, \mathcal{B}(\mathbb{R}_+^*))$ -mesurable comme étant le produit de n fonctions $(\mathcal{F}_{n-1}, \mathcal{B}(\mathbb{R}_+^*))$ -mesurables.

 $C_0 = 1$ et $(C_n)_{n \in \mathbb{N}}$ est bien un processus $(\mathcal{F}_n)_{n \in \mathbb{N}}$ - prévisible.

La propriété de sous-martingale pour $(X_n)_{n\in\mathbb{N}}$ permet d'écrire que pour tout $n\in\mathbb{N}$, $\mathbb{E}[X_{n+1}|\mathcal{F}_n]\geq X_n$, p.s., soit : $\frac{\mathbb{E}[X_{n+1}|\mathcal{F}_n]}{X_n}\geq 1$, p.s..

Ainsi, pour tout $n \ge 1$, $C_{n+1} = \prod_{k=0}^n \frac{\mathbb{E}[X_{k+1}|\mathcal{F}_k]}{X_k} = \frac{\mathbb{E}[X_{n+1}|\mathcal{F}_n]}{X_n}$ $C_n \ge C_n$ et $(C_n)_{n \in \mathbb{N}}$ est alors une suite croissante.

On a donc, pour tout $n \in \mathbb{N}$, $C_n \ge C_0$ et $\frac{1}{C_n} \le \frac{1}{C_0} = 1$. $(X_n)_{n \in \mathbb{N}}$ étant une $(\mathcal{F}_n)_{n \in \mathbb{N}}$ - sous-martingale, $(X_n)_{n \in \mathbb{N}}$ est un processus intégrable et quel que soit $n \in \mathbb{N}$, $\mathbb{E}\left[\frac{X_n}{C_n}\right] \leq \mathbb{E}[X_n] < +\infty$.

Par ailleurs, pour tout $n \in \mathbb{N}$, $\frac{X_n}{C_n}$ est $(\mathcal{F}_n, \mathcal{B}(\mathbb{R}_+^*))$ -mesurable puisque C_n est $(\mathcal{F}_{n-1}, \mathcal{B}(\mathbb{R}_+^*))$ -mesurable donc $(\mathcal{F}_n, \mathcal{B}(\mathbb{R}_+^*))$ -mesurable. Enfin,

$$\begin{split} \mathbb{E}\left[\frac{X_{n+1}}{C_{n+1}}\Big|\mathcal{F}_n\right] &= \frac{1}{C_{n+1}}\mathbb{E}[X_{n+1}|\mathcal{F}_n]\,, \text{ car } C_{n+1} \text{ donc } \frac{1}{C_{n+1}} \text{ est } \mathcal{F}_n \text{ - mesurable}\,, \\ &= \frac{1}{C_n} \frac{X_n}{\mathbb{E}[X_{n+1}|\mathcal{F}_n]} \,\mathbb{E}[X_{n+1}|\mathcal{F}_n]\,, \\ &= \frac{X_n}{C_n}\,, \end{split}$$

pour tout $n \in \mathbb{N}$.

 $\left(\frac{X_n}{C_n}\right)_{n\in\mathbb{N}}$ est bien alors une $(\mathcal{F}_n)_{n\in\mathbb{N}}$ -martingale.

Soit $(D_n)_{n\in\mathbb{N}}$ un processus croissant prévisible avec $D_0=1$ tel que $\left(\frac{X_n}{D_n}\right)_{n\in\mathbb{N}}$ soit une $(\mathcal{F}_n)_{n\in\mathbb{N}}$ - martingale.

On aurait alors nécessairement : $\forall k \in \mathbb{N}$, $\mathbb{E}\left[\frac{X_{k+1}}{D_{k+1}}\Big|\mathcal{F}_k\right] = \frac{X_k}{D_k}$, soit, comme D_{k+1} , $k \in \mathbb{N}$ est \mathcal{F}_k -mesurable, $\frac{D_{k+1}}{D_k} = \frac{\mathbb{E}[X_{k+1}|\mathcal{F}_k]}{X_k} .$

Il vient alors, pour tout $n \in \mathbb{N}$, $\frac{D_n}{D_0} = \prod_{k=0}^{n-1} \frac{D_{k+1}}{D_k} = \prod_{k=0}^{n-1} \frac{\mathbb{E}[X_{k+1}|\mathcal{F}_k]}{X_k}$ et $\forall n \geq 1$, $D_n = C_n$.

2. Considérons le processus $(X_n)_{n\in\mathbb{N}}$ défini pour tout $n\in\mathbb{N}$ par $X_n=e^{M_n}$.

Comme $(M_n)_{n\in\mathbb{N}}$ est une $(\mathcal{F}_n)_{n\in\mathbb{N}}$ -martingale, M_n est \mathcal{F}_n -mesurable, pour tout $n\in\mathbb{N}$. De plus, la fonction $x \mapsto e^x$ est continue sur \mathbb{R} , donc $(\mathcal{B}(\mathbb{R}), \mathcal{B}(\mathbb{R}_+^*))$ -mesurable. Ainsi, quel que soit $n \in \mathbb{N}, X_n$ est $(\mathcal{F}_n, \mathcal{B}(\mathbb{R}_+^*))$ - mesurable comme étant la composée de deux fonctions $(\mathcal{F}_n, \mathcal{B}(\mathbb{R}))$ - et $(\mathcal{B}(\mathbb{R}), \mathcal{B}(\mathbb{R}_+^*))$ mesurables.

De plus $(X_n)_{n\in\mathbb{N}}$ est un processus intégrable puisque $\forall n\in\mathbb{N}$, $\mathbb{E}[e^{M_n}]<+\infty$, d'après l'énoncé.

Par ailleurs, $X_n > 0$, pour tout $n \in \mathbb{N}$.

La fonction $x \mapsto e^x$ étant convexe et $(M_n)_{n \in \mathbb{N}}$ étant une $(\mathcal{F}_n)_{n \in \mathbb{N}}$ -martingale, $(X_n)_{n \in \mathbb{N}}$ est alors une $(\mathcal{F}_n)_{n\in\mathbb{N}}$ - sous-martingale, d'après l'inégalité de Jensen conditionnelle.

D'après la question 1., il existe alors un unique processus croissant prévisible $(C_n)_{n\in\mathbb{N}}$ tel que $\left(\frac{X_n}{C_n}\right)_{n\in\mathbb{N}}$ soit une $(\mathcal{F}_n)_{n\in\mathbb{N}}$ - martingale.

 $C_0 = 1$ et pour tout $n \ge 1$, C_n est donné par : $C_n = \prod_{k=0}^{n-1} \frac{\mathbb{E}[X_{k+1}|\mathcal{F}_k]}{X_k}$

Introduisons le processus $(C_n)_{n\in\mathbb{N}}$ défini par : $C_n' = \ln(C_n)$, quel que soit $n\in\mathbb{N}$.

Comme la fonction $x \mapsto \ln(x)$ est croissante sur \mathbb{R}_+^* , $(C_n)_{n \in \mathbb{N}}$ est une suite croissante.

 $C_0' = \ln(C_0) = \ln(1) = 0$ et pour tout $n \ge 1$,

$$C'_{n} = \ln(C_{n}) = \ln\left(\prod_{k=0}^{n-1} \frac{\mathbb{E}[X_{k+1}|\mathcal{F}_{k}]}{X_{k}}\right) = \sum_{k=0}^{n-1} \ln\left(\frac{\mathbb{E}[X_{k+1}|\mathcal{F}_{k}]}{X_{k}}\right),$$
$$= \sum_{k=0}^{n-1} \ln(\mathbb{E}[e^{M_{k+1}-M_{k}}|\mathcal{F}_{k}]),$$

car $X_k = e^{M_k}$ est \mathcal{F}_k - mesurable.

On déduit alors du développement précédent qu'il existe un unique processus croissant prévisible $(C'_n)_{n\in\mathbb{N}}$ tel que $(e^{M_n - C'_n})_{n \in \mathbb{N}}$ soit une $(\mathcal{F}_n)_{n \in \mathbb{N}}$ - martingale avec $C'_0 = 0$ et $C'_n = \sum_{k=0}^{n-1} \ln(\mathbb{E}[e^{M_{k+1} - M_k} | \mathcal{F}_k])$, pour tout $n \ge 1$.

1. Soit \mathcal{G} et \mathcal{H} , deux sous-tribus de \mathcal{F} .

On consultera à nouveau avec profit le rappel de cours apparaissant dans le corrigé de la question 1. de l'Exercice 1 de cette même PC.

Montrons tout d'abord que $\sigma(\mathcal{G}, \mathcal{H}) = \sigma(\mathcal{G} \cup \mathcal{H}) = \sigma(\mathcal{G}) \vee \sigma(\mathcal{H}) = \sigma(\mathcal{J})$, où $\mathcal{J} = \{G \cap H : G \in \mathcal{G}, H \in \mathcal{H}\}$.

 $\sigma(\mathcal{G}, \mathcal{H})$, $\sigma(\mathcal{G} \cup \mathcal{H})$ et $\sigma(\mathcal{G}) \vee \sigma(\mathcal{H})$ ne sont que trois notations distinctes mais usuelles pour désigner la plus petite sous-tribu sur (Ω, \mathcal{F}) contenant $\mathcal{G} \cup \mathcal{H}$.

Soit $J \in \mathcal{J}$ quelconque; il existe $G \in \mathcal{G}$ et $H \in \mathcal{H}$ tels que $J = G \cap H$. Ainsi, $J^c = (G \cap H)^c = G^c \cup H^c$. Comme une tribu est stable par passage au complémentaire, $G^c \in \mathcal{G}$ et $H^c \in \mathcal{H}$, de sorte que $J^c \in \mathcal{G} \cup \mathcal{H}$. Naturellement, $\mathcal{G} \cup \mathcal{H} \subset \sigma(\mathcal{G} \cup \mathcal{H})$, ainsi si $J \in \mathcal{J}$, $J^c \in \sigma(\mathcal{G} \cup \mathcal{H})$, soit $J \in \sigma(\mathcal{G} \cup \mathcal{H})$, car $\sigma(\mathcal{G} \cup \mathcal{H})$ étant une sous-tribu sur (Ω, \mathcal{F}) , elle est stable par complémentation.

Mais, $\sigma(\mathcal{J})$ est, par définition, la plus petite sous-tribu de \mathcal{F} contenant la famille d'évènements \mathcal{J} ; on en déduit que $\sigma(\mathcal{J}) \subset \sigma(\mathcal{G} \cup \mathcal{H})$. L'inclusion réciproque se prouve en utilisant un argument analogue.

On a ainsi l'égalité : $\sigma(\mathcal{G} \cup \mathcal{H}) = \sigma(\{G \cap H ; G \in \mathcal{G}, H \in \mathcal{H}\})$.

Remarquons tout de suite que \mathcal{J} est stable par intersection finie et contient Ω .

En effet, comme \mathcal{G} et \mathcal{H} sont deux sous-tribus de \mathcal{F} , $\Omega \in \mathcal{G}$ et $\Omega \in \mathcal{H}$, de sorte que $\Omega \cap \Omega = \Omega \in \mathcal{J}$.

Par ailleurs, soit $(J_i)_{1 \leq i \leq n}$, $n \geq 1$, une famille finie d'évènements de $\mathcal J$.

Il existe $G_i \in \mathcal{G}$ et $H_i \in \mathcal{H}$ tels que $\forall i \in \{1, \dots, n\}, J_i = G_i \cap H_i$; ainsi, $\bigcap_{i=1}^n J_i = (\bigcap_{i=1}^n G_i) \cap (\bigcap_{i=1}^n H_i)$.

Une tribu étant stable par intersection dénombrable donc finie, $\bigcap_{i=1}^n G_i \in \mathcal{G}$ et $\bigcap_{i=1}^n H_i \in \mathcal{H}$.

On en déduit que $\cap_{i=1}^n J_i \in \mathcal{J}$, pour tout $n \geq 1$.

Rappel : Caractérisation de l'espérance conditionnelle.

Etant donné un espace de probabilité $(\Omega, \mathcal{F}, \mathbb{P}), \mathcal{G}$ une sous-tribu de \mathcal{F} et $X \in \mathbb{L}^1(\Omega, \mathcal{F}, \mathbb{P})$.

L'espérance conditionnelle de X sachant \mathcal{G} , notée $\mathbb{E}[X|\mathcal{G}]$, est l'unique (à une égalité presque-sûre près) variable aléatoire Y, \mathcal{G} —mesurable et intégrable telle que :

$$\forall A \in \mathcal{G}, \mathbb{E}[\mathbf{1}_A Y] = \mathbb{E}[\mathbf{1}_A X].$$

Posons $Y = \mathbb{E}[X|\mathcal{G}]$ et montrons que $Y = \mathbb{E}[X|\sigma(\mathcal{G},\mathcal{H})]$.

Y est \mathcal{G} -mesurable donc $\sigma(\mathcal{G},\mathcal{H})$ -mesurable, puisque $\mathcal{G}\subset\sigma(\mathcal{G},\mathcal{H})$. Par ailleurs, Y est une variable aléatoire intégrable.

Soit $G \in \mathcal{G}$ et $H \in \mathcal{H}$ quelconques. On a toujours : $\mathbf{1}_{G \cap H} = \mathbf{1}_G \mathbf{1}_H$.

 $\mathbf{1}_H$ est \mathcal{H} -mesurable et $\mathbf{1}_G\mathbb{E}[X|\mathcal{G}]$ est \mathcal{G} -mesurable donc $\sigma(\sigma(X),\mathcal{G})$ -mesurable. Comme les tribus \mathcal{H} et $\sigma(\sigma(X),\mathcal{G})$ sont indépendantes d'après l'énoncé, on en déduit que les variables aléatoires $\mathbf{1}_H$ et $\mathbf{1}_G\mathbb{E}[X|\mathcal{G}]$ sont indépendantes.

Il vient alors:

$$\begin{split} \mathbb{E}[\mathbf{1}_{G\cap H}Y] &= \mathbb{E}[\mathbf{1}_{H}\,\mathbf{1}_{G}\mathbb{E}[X|\mathcal{G}]]\,,\\ &= \mathbb{E}[\mathbf{1}_{H}]\mathbb{E}[\mathbf{1}_{G}\mathbb{E}[X|\mathcal{G}]]\,,\\ &= \mathbb{E}[\mathbf{1}_{H}]\mathbb{E}[\mathbf{1}_{G}X]\,, \text{d'après la caractérisation de l'espérance conditionnelle }\mathbb{E}[X|\mathcal{G}]\,,\\ &= \mathbb{E}[\mathbf{1}_{H}\mathbf{1}_{G}X]\,,\\ &= \mathbb{E}[\mathbf{1}_{H}\mathbf{1}_{G}X]\,,\\ &\text{car les v.a. }\mathbf{1}_{H} \text{ et }\mathbf{1}_{G}X \text{ sont respectivement }\mathcal{H}\text{- et }\sigma(\sigma(X),\mathcal{G})\text{-mesurables donc indépendantes,}\\ &= \mathbb{E}[\mathbf{1}_{G\cap H}X]\,. \end{split}$$

Complément : Théorème d'unicité des mesures.

Soit μ_1 et μ_2 deux mesures positives sur un espace mesurable (Ω, \mathcal{A}) et \mathcal{C} une famille de parties de Ω vérifiant :

- (i) C est stable par intersection finie,
- (ii) $\Omega \in \mathcal{C}$,
- (iii) $\sigma(\mathcal{C}) = \mathcal{A}$,
- (iv) Pour tout $C \in \mathcal{C}$, $\mu_1(C) = \mu_2(C) < +\infty$.

Alors les mesures μ_1 et μ_2 sont égales sur \mathcal{A} .

Les mesures $A \mapsto \mathbb{E}[\mathbf{1}_A X]$ et $B \mapsto \mathbb{E}[\mathbf{1}_B Y]$ définies sur (Ω, \mathcal{F}) vérifient :

$$\forall (G, H) \in \mathcal{G} \times \mathcal{H}, \mathbb{E}[\mathbf{1}_{G \cap H} Y] = \mathbb{E}[\mathbf{1}_{G \cap H} X],$$

soit:

$$\forall J \in \mathcal{J}, \mathbb{E}[\mathbf{1}_J Y] = \mathbb{E}[\mathbf{1}_J X] < +\infty,$$

puisque X et Y sont intégrables.

 \mathcal{J} contient Ω , est stable par intersection finie et $\sigma(\mathcal{J}) = \sigma(\mathcal{G}, \mathcal{H})$.

D'après le lemme d'unicité des mesures, on a alors :

$$\forall A \in \sigma(\mathcal{G}, \mathcal{H}), \mathbb{E}[\mathbf{1}_A Y] = \mathbb{E}[\mathbf{1}_A X].$$

Mais $Z = \mathbb{E}[X|\sigma(\mathcal{G},\mathcal{H})]$ est l'unique variable aléatoire $\sigma(\mathcal{G},\mathcal{H})$ -mesurable et intégrable vérifiant :

$$\forall A \in \sigma(\mathcal{G}, \mathcal{H}), \mathbb{E}[\mathbf{1}_A Z] = \mathbb{E}[\mathbf{1}_A X].$$

On conclut que : $\mathbb{E}[X|\sigma(\mathcal{G},\mathcal{H})] = \mathbb{E}[X|\mathcal{G}]$, p.s..

- 2. Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires réelles, indépendantes, de même loi et intégrables.
 - (a) Rappel:
 - Soit un vecteur aléatoire $X=(X_1,\cdots,X_d)$ défini sur un espace de probabilité $(\Omega,\mathcal{F},\mathbb{P})$ et à valeurs dans \mathbb{R}^d , $d\geq 1$.

La fonction caractéristique de X est donnée pour tout $u = (u_1, \dots, u_d) \in \mathbb{R}^d$ par :

$$\psi_X(u) = \mathbb{E}[\exp(i < u, X >)] = \mathbb{E}\left[\exp\left(i \sum_{i=1}^d u_i X_i\right)\right].$$

- Si $X=(X_1,\cdots,X_d)$ et $Y=(Y_1,\cdots,Y_d)$ sont deux vecteurs aléatoires à valeurs dans \mathbb{R}^d , $d\geq 1$, X et Y ont même loi si et seulement si pour tout $u=(u_1,\cdots,u_d)\in\mathbb{R}^d$, $\psi_X(u)=\psi_Y(u)$.
- Si $X_1, \dots, X_d, d \geq 1$ sont des variables aléatoires indépendantes, alors pour tout $u \in \mathbb{R}$:

$$\psi_{\sum_{i=1}^{d} X_i}(u) = \prod_{i=1}^{d} \psi_{X_i}(u).$$

• $X_1, \cdots, X_d, d \ge 1$ sont des variables aléatoires indépendantes si et seulement si :

$$\forall t = (t_1, \dots, t_d) \in \mathbb{R}^d, \psi_{(X_1, \dots, X_d)}(t) = \prod_{i=1}^d \psi_{X_i}(t_i),$$

Pour tout $u = (u_1, u_2) \in \mathbb{R}^2$, on a:

$$\begin{split} \psi_{(X_1,X_1+X_2)}(u) &= \mathbb{E}[\exp(i < (u_1,u_2), (X_1,X_1+X_2) >)]\,, \\ &= \mathbb{E}[\exp(i((u_1+u_2)X_1+u_2X_2))]\,, \\ &= \psi_{(X_1,X_2)}(u_1+u_2,u_2)\,, \\ &= \psi_{X_1}(u_1+u_2)\,\psi_{X_2}(u_2)\,, \text{ car } X_1 \text{ et } X_2 \text{ sont indépendantes,} \\ &= \psi_{X_2}(u_1+u_2)\,\psi_{X_1}(u_2)\,, \text{ puisque } X_1 \text{ et } X_2 \text{ ont même loi,} \\ &= \psi_{(X_2,X_1)}(u_1+u_2,u_2)\,, \text{ car } X_1 \text{ et } X_2 \text{ sont indépendantes,} \\ &= \mathbb{E}[\exp(i((u_1+u_2)X_2+u_2X_1))]\,, \\ &= \mathbb{E}[\exp(i < (u_1,u_2), (X_2,X_1+X_2) >)]\,, \\ &= \psi_{(X_2,X_1+X_2)}(u)\,. \end{split}$$

On en déduit que les couples $(X_1, X_1 + X_2)$ et $(X_2, X_1 + X_2)$ suivent la même loi.

- (b) Rappel : Etant donné un espace de probabilité $(\Omega, \mathcal{F}, \mathbb{P}), \mathcal{G}$ une sous-tribu de \mathcal{F} et X une variable aléatoire intégrable.
 - Il existe une unique (à une égalité presque-sûre près) variable aléatoire Y, \mathcal{G} —mesurable et intégrable telle que :

Pour toute variable aléatoire Z, \mathcal{G} – mesurable et bornée, $\mathbb{E}[ZY] = \mathbb{E}[ZX]$.

 $Y = \mathbb{E}[X|\mathcal{G}]$ est appelée l'espérance conditionnelle de X sachant \mathcal{G} .

• Si T est une variable aléatoire à valeurs réelles, on note $\mathbb{E}[X|T] = \mathbb{E}[X|\sigma(T)]$.

Soit Z une variable aléatoire quelconque $\sigma(X_1 + X_2)$ -mesurable et bornée; Z s'écrit sous la forme $f(X_1 + X_2)$, où $f: \mathbb{R} \to \mathbb{R}$ est une fonction $(\mathcal{B}(\mathbb{R}), \mathcal{B}(\mathbb{R}))$ -mesurable et bornée.

Ainsi, $Y_1 = \mathbb{E}[X_1|X_1 + X_2]$ vérifie $\mathbb{E}[f(X_1 + X_2)Y_1] = \mathbb{E}[f(X_1 + X_2)X_1]$. Or, les couples $(X_1, X_1 + X_2)$ et $(X_2, X_1 + X_2)$ suivent la même loi, donc pour toute fonction $g: \mathbb{R}^2 \to \mathbb{R}$, $(\mathcal{B}(\mathbb{R}^2), \mathcal{B}(\mathbb{R}))$ - mesurable à valeurs positives ou bornée,

$$\mathbb{E}[g(X_1, X_1 + X_2)] = \mathbb{E}[g(X_2, X_1 + X_2)].$$

En prenant $g:(x,y)\mapsto f(y)\,x$, on en déduit que $\mathbb{E}[f(X_1+X_2)X_1]=\mathbb{E}[f(X_1+X_2)X_2]$. (Ci-dessus, f étant bornée et les v.a. $X_1\,,X_2$ intégrables, les quantités $\mathbb{E}[f(X_1+X_2)X_1]$ et $\mathbb{E}[f(X_1+X_2)X_2]$ sont bien définies)

Il apparaît alors que Y_1 est une variable aléatoire $\sigma(X_1 + X_2)$ - mesurable et intégrable telle que :

$$\mathbb{E}[f(X_1 + X_2)Y_1] = \mathbb{E}[f(X_1 + X_2)X_2].$$

Mais, $Y_2 = \mathbb{E}[X_2|X_1 + X_2]$ est, par définition, l'unique variable aléatoire $\sigma(X_1 + X_2)$ -mesurable et intégrable vérifiant :

$$\mathbb{E}[f(X_1 + X_2)Y_2] = \mathbb{E}[f(X_1 + X_2)X_2].$$

On en conclut que:

$$\mathbb{E}[X_1|X_1 + X_2] = \mathbb{E}[X_2|X_1 + X_2], \text{p.s.}.$$
(13)

Or, d'après la linéarité de l'espérance conditionnelle, il vient :

$$\mathbb{E}[X_1 + X_2 | X_1 + X_2] = \mathbb{E}[X_1 | X_1 + X_2] + \mathbb{E}[X_2 | X_1 + X_2], \tag{14}$$

et $X_1 + X_2$ étant $\sigma(X_1 + X_2)$ - mesurable,

$$\mathbb{E}[X_1 + X_2 | X_1 + X_2] = X_1 + X_2, \tag{15}$$

de sorte que, combinant (13), (14) et (15), on obtient :

$$\mathbb{E}[X_1|X_1 + X_2] = \mathbb{E}[X_2|X_1 + X_2] = \frac{X_1 + X_2}{2}, \text{p.s.}.$$
 (16)

(c) On pose $S_0 = 0$, $S_n = X_1 + \dots + X_n$, $T_n = \frac{S_n}{n}$, $\mathcal{F}_n = \sigma(S_n, S_{n+1}, S_{n+2}, \dots)$, quel que soit $n \ge 1$. Montrons tout d'abord que pour tout $k \in \{1, \dots, n\}$, les couples (X_1, S_n) et (X_k, S_n) suivent la même loi

L'argument est identique à celui de la question 2. (a).

Pour tout $(u, v) \in \mathbb{R}^2$, on a:

$$\begin{split} \psi_{(X_1,S_n)}((u,v)) &= \mathbb{E}[\exp(i < (u,v),(X_1,S_n) >)]\,, \\ &= \mathbb{E}[\exp(i((u+v)X_1+v(X_2+\cdots+X_n))]\,, \\ &= \psi_{(X_1,X_2+\cdots+X_n)}(u+v,v)\,, \\ &= \psi_{X_1}(u+v)\,\psi_{X_2+\cdots+X_n}(v)\,, \text{ car } X_1 \text{ et } X_2+\cdots+X_n \text{ sont indépendantes,} \\ &= \psi_{X_1}(u+v)\,\prod_{i=2}^n \psi_{X_i}(v)\,, \text{ puisque } X_2,\cdots,X_n \text{ sont indépendantes,} \\ &= \psi_{X_k}(u+v)\,\prod_{i=1,i\neq k}^n \psi_{X_i}(v)\,, \text{ car } X_1 \text{ et } X_k \text{ ont même loi,} \\ &= \psi_{X_k}(u+v)\,\psi_{\sum_{i=1,i\neq k}^n X_i}(v)\,, \text{ puisque les } X_i,1\leq i\leq n,i\neq k \text{ sont indépendantes,} \\ &= \psi_{(X_k,\sum_{i=1,i\neq k}^n X_i)}(u+v,v)\,, \text{ car } X_k \text{ et } \sum_{i=1,i\neq k}^n X_i \text{ sont indépendantes,} \\ &= \mathbb{E}[\exp(i((u+v)X_k+v\sum_{i=1,i\neq k}^n X_i))]\,, \\ &= \mathbb{E}[\exp(i<(u,v),(X_k,S_n)>)]\,, \\ &= \psi_{(X_k,S_n)}((u,v))\,. \end{split}$$

On en déduit que les couples (X_1,S_n) et (X_k,S_n) suivent la même loi, quel que soit $k\in\{1,\cdots,n\}$. Soit alors Z une variable aléatoire quelconque $\sigma(S_n)$ - mesurable et bornée; il existe une fonction $h:\mathbb{R}\to\mathbb{R}$ qui est $(\mathcal{B}(\mathbb{R}),\mathcal{B}(\mathbb{R}))$ - mesurable et bornée telle que $Z=h(S_n)$, $n\geq 1$. Ainsi, $U_1=\mathbb{E}[X_1|S_n]$ est une variable aléatoire $\sigma(S_n)$ - mesurable et intégrable vérifiant :

$$\mathbb{E}[h(S_n)U_1] = \mathbb{E}[h(S_n)X_1] = \mathbb{E}[h(S_n)X_k], 1 \le k \le n,$$

puisque les couples (X_1, S_n) et (X_k, S_n) suivent la même loi, quel que soit $k \in \{1, \dots, n\}$. Par unicité (à une classe d'équivalence p.s. près) de l'espérance conditionnelle $\mathbb{E}[X_k|S_n]$, $1 \le k \le n$, on conclut que pour tout $k \in \{1, \dots, n\}$:

$$\mathbb{E}[X_k|S_n] = \mathbb{E}[X_1|S_n], \text{ p.s.}. \tag{17}$$

(d) Comme S_n est $\sigma(S_n)$ -mesurable, il vient, pour tout $n \geq 1$:

$$\mathbb{E}[S_n|S_n] = S_n \,. \tag{18}$$

Par ailleurs, quel que soit $n \ge 1$, on a :

$$\mathbb{E}[S_n|S_n] = \mathbb{E}[X_1 + \dots + X_n|S_n],$$

$$= \sum_{k=1}^n \mathbb{E}[X_k|S_n], \text{ d'après la linéarité de l'espérance conditionnelle,}$$

$$= n \, \mathbb{E}[X_1|S_n], \text{ d'après l'égalité trouvée en (17).}$$
(19)

Combinant (18) et (19), on obtient alors, pour tout $n \ge 1$:

$$\mathbb{E}[X_1|S_n] = T_n \text{, p.s.}. \tag{20}$$

(e) Pour tout $m \in \mathbb{N}$, on montre d'abord que : $\sigma(S_n, S_{n+1}, S_{n+2}, \cdots, S_{n+m}) = \sigma(S_n, X_{n+1}, X_{n+2}, \cdots, X_{n+m})$. Il suffit de reprendre une démarche analogue à celle proposée à la question 1. de l'Exercice 1 de cette même PC, soit d'identifier une bijection $f_m: \mathbb{R}^{m+1} \to \mathbb{R}^{m+1}$ telle que :

$$f_m(S_n, S_{n+1}, S_{n+2}, \cdots, S_{n+m}) = (S_n, X_{n+1}, X_{n+2}, \cdots, X_{n+m}),$$

avec f_m et f_m^{-1} , $(\mathcal{B}(\mathbb{R}^{m+1}), \mathcal{B}(\mathbb{R}^{m+1}))$ -mesurables. Ainsi, quel que soit $n \in \mathbb{N}$,

$$\mathcal{F}_{n} = \sigma(S_{n}, S_{n+1}, S_{n+2}, \cdots) = \sigma(S_{n}, X_{n+1}, X_{n+2}, \cdots)$$
$$= \sigma(S_{n}) \vee \sigma(X_{n+1}, X_{n+2}, \cdots).$$

Or, pour tout $n \in \mathbb{N}$, $\sigma(X_{n+1}, X_{n+2}, \cdots)$ est indépendante de $\sigma(X_1, S_n) = \sigma(\sigma(X_1) \cup \sigma(S_n)) = \sigma(X_1) \vee \sigma(S_n)$.

On est alors très exactement dans le champ d'application de la question 1. avec quel que soit $n \in \mathbb{N}$, $\mathcal{G} = \sigma(S_n)$, $\mathcal{H} = \sigma(X_{n+1}, X_{n+2}, \cdots)$, $\mathcal{F}_n = \sigma(\mathcal{G} \cup \mathcal{H}) = \mathcal{G} \vee \mathcal{H}$. On en déduit que, pour tout $n \geq 1$, $\mathbb{E}[X_1|\mathcal{F}_n] = \mathbb{E}[X_1|S_n]$, soit, d'après (20):

$$\mathbb{E}[X_1|\mathcal{F}_n] = T_n \,, \text{p.s.} \,. \tag{21}$$

(f) Quel que soit $n \in \mathbb{N}$, il vient alors :

$$T_{n+1} = \mathbb{E}[X_1|\mathcal{F}_{n+1}],$$

 $= \mathbb{E}[\mathbb{E}[X_1|\mathcal{F}_n]|\mathcal{F}_{n+1}], \text{ car } \mathcal{F}_{n+1} \subset \mathcal{F}_n \text{ et d'après la règle des espérances conditionnelles emboîtées,}$
 $= \mathbb{E}[T_n|\mathcal{F}_{n+1}], \text{ en utilisant (21).}$

 $(T_n)_{n\geq 1}$ est appelée une martingale inverse ou rétrograde.

Exercice 7: Soit G une variable aléatoire géométrique définie sur un espace de probabilité $(\Omega, \mathcal{F}, \mathbb{P})$. G est alors à valeurs dans \mathbb{N} et $\mathbb{P}(G = k) = p(1-p)^k$, $k \in \mathbb{N}$, où $p \in]0,1[$. Désignons par \mathcal{F}_n , la plus petite sous-tribu sur (Ω, \mathcal{F}) qui rend mesurable la variable aléatoire $G \wedge n$, $n \in \mathbb{N}$.

1. Rappel:

- Une variable aléatoire réelle X définie sur un espace de probabilité $(\Omega, \mathcal{F}, \mathbb{P})$ est dite **discrète** s'il existe un ensemble dénombrable \mathcal{E} tel que $\mathbb{P}(X \in \mathcal{E}) = 1$. Comme \mathcal{E} est dénombrable, on peut en fait écrire \mathcal{E} comme suit : $\mathcal{E} = \{(x_n)_{n \in \mathbb{N}}\}$, où $(x_n)_{n \in \mathbb{N}}$ est une famille de nombres réels distincts. La famille d'évènements $(A_n = X^{-1}(x_n) = \{\omega \in \Omega; X(\omega) = x_n\})_{n \in \mathbb{N}}$ forme une partition de l'ensemble Ω et on a : $X = \sum_{n \in \mathbb{N}} x_n \mathbf{1}_{A_n}$.
- La tribu engendrée par X, $\sigma(X)$, est la plus petite sous-tribu \mathcal{G} sur (Ω, \mathcal{F}) telle que X soit \mathcal{G} -mesurable. Ainsi, $\sigma(X) = \sigma((A_n)_{n \in \mathbb{N}})$.

П

Pour tout $n \ge 1$, $G \land n = 0$. $\mathbf{1}_{\{G=0\}} + 1$. $\mathbf{1}_{\{G=1\}} + \dots + (n-1)$. $\mathbf{1}_{\{G=n-1\}} + n$. $\mathbf{1}_{\{G\ge n\}}$. Or, $(\{G=0\}, \{G=1\}, \cdots, \{G=n-1\}, \{G\geq n\}), n\geq 1$ fixé, constitue une partition sur l'espace Ω . On en déduit que, pour tout $n \ge 1$, $\mathcal{F}_n = \sigma(\{G = 0\}, \{G = 1\}, \dots, \{G = n - 1\}, \{G \ge n\})$.

2. Rappel : Une filtration $(\mathcal{F}_n)_{n\in\mathbb{N}}$ sur un espace de probabilité $(\Omega,\mathcal{F},\mathbb{P})$ est une famille de sous-tribus $\overline{\mathcal{F}_n, n} \in \mathbb{N}$, de \mathcal{F} telle que pour tout $n \in \mathbb{N}$, $\mathcal{F}_n \subset \mathcal{F}_{n+1}$.

Quel que soit $n \in \mathbb{N}$, \mathcal{F}_n a été définie comme la plus petite sous-tribu sur (Ω, \mathcal{F}) qui rend mesurable la variable aléatoire $G \wedge n, n \in \mathbb{N}$. A l'évidence, pour chaque $n \in \mathbb{N}, \mathcal{F}_n$ est une sous-tribu de \mathcal{F} .

Aussi, $\mathcal{F}_0 = \sigma(G \wedge 0)$ et vu que $G \wedge 0 = 0$, p.s., $\mathcal{F}_0 = \{\emptyset, \Omega\}$, et $\mathcal{F}_0 \subset \mathcal{F}_n$, quel que soit $n \geq 1$.

Par ailleurs, on a, par définition, pour tout $n \ge 1$, que :

$$\{\{G=0\}, \{G=1\}, \cdots, \{G=n-1\}, \{G=n\}, \{G\geq n+1\}\}\}$$

$$\subset \sigma(\{\{G=0\}, \{G=1\}, \cdots, \{G=n-1\}, \{G=n\}, \{G\geq n+1\}\}) = \mathcal{F}_{n+1}.$$

Comme $\{G \ge n\} = \{G = n\} \cup \{G \ge n + 1\}$, quel que soit $n \ge 1$, il vient :

 $\{\{G=0\}, \{G=1\}, \cdots, \{G=n-1\}, \{G\geq n\}\} \subset \mathcal{F}_{n+1}$. Mais $\mathcal{F}_n, n\geq 1$, est la plus petite sous-tribu sur (Ω, \mathcal{F}) contenant $\{\{G=0\}, \{G=1\}, \cdots, \{G=n-1\}, \{G\geq n\}\}$, ainsi $\mathcal{F}_n \subset \mathcal{F}_{n+1}$ et la famille de sous-tribus $(\mathcal{F}_n)_{n\in\mathbb{N}}$ est alors une filtration sur (Ω, \mathcal{F}) .

3. Rappel (cf corrigé Exercice 1 de la PC1) Soit Y une variable aléatoire définie sur un espace de probabilité $(\Omega, \mathcal{F}, \mathbb{P})$ et à valeurs réelles.

Considérons une sous-tribu \mathcal{G} de \mathcal{F} telle que $\mathcal{G} = \sigma((B_n)_{n \in \mathbb{N}})$, où $(B_n)_{n \in \mathbb{N}}$ forme une partition de l'ensemble

$$\text{Alors}: \ \mathbb{E}[Y|\mathcal{G}] = \sum_{j \in J^*} \frac{\mathbb{E}[Y \, \mathbf{1}_{B_j}]}{\mathbb{P}(B_j)} \mathbf{1}_{B_j} \,, \text{p.s.} \,, \, \text{avec} \ J^* = \left\{j \in J; \mathbb{P}(B_j) > 0\right\}.$$

En appliquant la formule précédente, il vient pour tout $n \geq 1$,

$$\mathbb{E}[\mathbf{1}_{\{G \geq n+1\}} | \mathcal{F}_n] = \sum_{j=0}^{n-1} \frac{\mathbb{E}[\mathbf{1}_{\{G \geq n+1\}} \, \mathbf{1}_{\{G = j\}}]}{\mathbb{P}(G = j)} \mathbf{1}_{\{G = j\}} + \frac{\mathbb{E}[\mathbf{1}_{\{G \geq n+1\}} \, \mathbf{1}_{\{G \geq n\}}]}{\mathbb{P}(G \geq n)} \mathbf{1}_{\{G \geq n\}}.$$

 $\text{Or, pour tout } j \in \left\{0, \cdots, n-1\right\}, n \geq 1, \mathbf{1}_{\{G \geq n+1\}} \, \mathbf{1}_{\{G = j\}} = 0 \text{ et } \mathbb{E}[\mathbf{1}_{\{G \geq n+1\}} \, \mathbf{1}_{\{G \geq n\}}] = \mathbb{P}(G \geq n+1),$ ainsi, pour tout $n \ge 1$:

$$\mathbb{E}[\mathbf{1}_{\{G \ge n+1\}} | \mathcal{F}_n] = \frac{\mathbb{P}(G \ge n+1)}{\mathbb{P}(G \ge n)} \mathbf{1}_{\{G \ge n\}}.$$
 (22)

Par ailleurs, pour tout $m \geq 1$,

$$\begin{split} \mathbb{P}(G < m) &= \mathbb{P}(\cup_{k=0}^{m-1} \{G = k\}), \\ &= \sum_{k=0}^{m-1} \mathbb{P}(G = k), \\ &= \sum_{k=0}^{m-1} p (1-p)^k, \\ &= p \frac{1 - (1-p)^m}{1 - (1-p)}, \\ &= 1 - (1-p)^m. \end{split}$$

et $\mathbb{P}(G \geq m) = 1 - \mathbb{P}(G < m) = (1 - p)^m$, quel que soit $m \geq 1$. (la formule est aussi valide pour m = 0) Reprenant le calcul effectué dans l'égalité (22), on conclut que, pour tout $n \geq 1$,

$$\mathbb{E}[\mathbf{1}_{\{G \ge n+1\}} | \mathcal{F}_n] = \frac{(1-p)^{n+1}}{(1-p)^n} \mathbf{1}_{\{G \ge n\}},$$

$$= (1-p)\mathbf{1}_{\{G \ge n\}}.$$
(23)

4. Quel que soit $n \ge 1$, on remarque :

$$G \wedge (n+1) = (G \wedge (n+1)) \mathbf{1}_{\{G \le n\}} + (G \wedge (n+1)) \mathbf{1}_{\{G > n\}},$$

= $(G \wedge n) \mathbf{1}_{\{G \le n\}} + (n+1) \mathbf{1}_{\{G \ge n+1\}},$

puisque sur l'évènement $\{G \leq n\}$, G ne dépassera jamais la valeur n donc $G \wedge (n+1) = G \wedge n$, p.s., et, pour tout $n \geq 1$, on a alors :

$$G \wedge (n+1) = (G \wedge n)(1 - \mathbf{1}_{\{G \geq n+1\}}) + (n+1)\mathbf{1}_{\{G \geq n+1\}},$$

$$= G \wedge n + ((n+1) - G \wedge n)\mathbf{1}_{\{G \geq n+1\}},$$

$$= G \wedge n + ((n+1) - n)\mathbf{1}_{\{G \geq n+1\}},$$

$$= G \wedge n + \mathbf{1}_{\{G > n+1\}},$$

car sur l'évènement $\{G \ge n+1\}$, $G \land n = n$, p.s..

Ainsi, pour tout $n \ge 1$, il vient, d'après la linéarité de l'espérance conditionnelle et l'égalité démontrée en (23):

$$\mathbb{E}[G \wedge (n+1)|\mathcal{F}_n] = \mathbb{E}[(G \wedge n)|\mathcal{F}_n] + \mathbb{E}[\mathbf{1}_{\{G \geq n+1\}}|\mathcal{F}_n],$$

$$= (G \wedge n) + (1-p)\mathbf{1}_{\{G > n\}},$$
(24)

car $\mathcal{F}_n = \sigma(G \wedge n), n \geq 1$ et $G \wedge n$ est \mathcal{F}_n -mesurable.

5. Posons, pour tout $n \ge 1$, $X_n = \alpha(G \land n) + \mathbf{1}_{\{G \ge n\}}$, où α est un réel à déterminer.

Quel que soit $n \geq 1$, $G \wedge n$ est \mathcal{F}_n -mesurable de sorte que $\alpha(G \wedge n)$ est encore \mathcal{F}_n -mesurable.

Comme $\{G \geq n\} \in \mathcal{F}_n$, $\mathbf{1}_{\{G > n\}}$ est également \mathcal{F}_n -mesurable.

On en déduit que X_n , $n \ge 1$ est alors \mathcal{F}_n -mesurable comme étant la somme de deux fonctions \mathcal{F}_n -mesurables.

Par ailleurs, pour tout $n \ge 1$,

$$|X_n| \le |\alpha|(G \land n) + \mathbf{1}_{\{G > n\}} \le |\alpha| \, n + 1 \,.$$
 (25)

On en déduit que X_n , $n \ge 1$, est une variable aléatoire intégrable.

De plus, quel que soit $n \ge 1$, il vient:

$$\begin{split} \mathbb{E}[X_{n+1}|\mathcal{F}_n] &= \mathbb{E}[\alpha(G \wedge (n+1))|\mathcal{F}_n] + \mathbb{E}[\mathbf{1}_{\{G \geq n+1\}}|\mathcal{F}_n] \text{, d'après la linéarité de l'espérance conditionnelle ,} \\ &= \alpha((G \wedge n) + (1-p)\mathbf{1}_{\{G \geq n\}}) + (1-p)\mathbf{1}_{\{G \geq n\}} \text{, d'après les égalités (23) et (24) ,} \\ &= \alpha(G \wedge n) + (1-p)(1+\alpha)\mathbf{1}_{\{G \geq n\}} \text{.} \end{split}$$

Ainsi, $(X_n)_{n\geq 1}$ sera une $(\mathcal{F}_n)_{n\geq 1}$ - martingale si et seulement $(1-p)(1+\alpha)=1$, soit : $\alpha=\frac{p}{1-p}$.

6. Pour tout $n \ge 1$, on a: $X_{n+1} - X_n = \alpha((G \land (n+1)) - (G \land n)) + \mathbf{1}_{\{G \ge n+1\}} - \mathbf{1}_{\{G \ge n\}}$. Or, $(G \land (n+1)) - (G \land n) = (G \land (n+1)) - (G \land n)\mathbf{1}_{\{G \le n\}} + (G \land (n+1)) - (G \land n)\mathbf{1}_{\{G \ge n+1\}}$ et quel que soit $n \ge 1$,

$$G \wedge (n+1) - G \wedge n = \left\{ \begin{array}{ll} G \wedge n - G \wedge n = 0 \,, & \text{sur l'évènement } \{G \leq n\} \\ (n+1) - n = 1 \,, & \text{sur } \{G \geq n+1\} \end{array} \right.$$

Par ailleurs, comme $\{G \ge n\} = \{G = n\} \cup \{G \ge n+1\}$, il vient, pour tout $n \ge 1$:

$$\mathbf{1}_{\{G \geq n\}} = \mathbf{1}_{\{G = n\}} + \mathbf{1}_{\{G \geq n+1\}} \,,$$

soit:

$$\mathbf{1}_{\{G>n+1\}} - \mathbf{1}_{\{G>n\}} = -\mathbf{1}_{\{G=n\}}, \tag{26}$$

de sorte que :

$$X_{n+1} - X_n = \alpha \mathbf{1}_{\{G > n+1\}} - \mathbf{1}_{\{G = n\}},$$

et:

$$\begin{split} (X_{n+1} - X_n)^2 &= (\alpha \mathbf{1}_{\{G \ge n+1\}} - \mathbf{1}_{\{G = n\}})^2 \,, \\ &= \alpha^2 \mathbf{1}_{\{G \ge n+1\}} - 2\alpha \mathbf{1}_{\{G \ge n+1\}} \mathbf{1}_{\{G = n\}} + \mathbf{1}_{\{G = n\}} \,, \\ &= \alpha^2 \mathbf{1}_{\{G \ge n+1\}} + \mathbf{1}_{\{G = n\}} \,, \\ &= \alpha^2 \mathbf{1}_{\{G \ge n+1\}} + \mathbf{1}_{\{G \ge n\}} - \mathbf{1}_{\{G \ge n+1\}} \,, \text{en reprenant l'égalité trouvée en (26)} \,, \\ &= (\alpha^2 - 1) \mathbf{1}_{\{G \ge n+1\}} + \mathbf{1}_{\{G \ge n\}} \,. \end{split}$$

Ainsi, pour tout $n \ge 1$, on obtient :

$$\mathbb{E}[(X_{n+1} - X_n)^2 | \mathcal{F}_n] = (\alpha^2 - 1)\mathbb{E}[\mathbf{1}_{\{G \ge n+1\}} | \mathcal{F}_n] + \mathbb{E}[\mathbf{1}_{\{G \ge n\}} | \mathcal{F}_n],$$

$$= (\alpha^2 - 1)(1 - p)\mathbf{1}_{\{G \ge n\}} + \mathbf{1}_{\{G \ge n\}}, \text{ d'après (23) et le fait que } \mathbf{1}_{\{G \ge n\}} \text{ soit } \mathcal{F}_n \text{ - mesurable},$$

$$= ((\alpha^2 - 1)(1 - p) + 1)\mathbf{1}_{\{G \ge n\}}.$$

Avec $\alpha = \frac{p}{1-p}$, on trouve $(\alpha^2 - 1)(1-p) + 1 = \alpha$ et il vient alors :

$$\mathbb{E}[(X_{n+1} - X_n)^2 | \mathcal{F}_n] = \alpha \mathbf{1}_{\{G \ge n\}},$$
(27)

quel que soit $n \ge 1$.

7. Posons, pour tout $n \ge 1$, $M_n = X_n^2 - \alpha(G \land (n-1))$.

Quel que soit $n \geq 1$, X_n est $(\mathcal{F}_n, \mathcal{B}(\mathbb{R}))$ - mesurable et comme la fonction $x \mapsto x^2$ est continue sur \mathbb{R} donc $(\mathcal{B}(\mathbb{R}), \mathcal{B}(\mathbb{R}))$ - mesurable, X_n^2 , $n \geq 1$ est alors $(\mathcal{F}_n, \mathcal{B}(\mathbb{R}))$ - mesurable comme étant la composée de deux fonctions $(\mathcal{F}_n, \mathcal{B}(\mathbb{R}))$ - mesurable et $(\mathcal{B}(\mathbb{R}), \mathcal{B}(\mathbb{R}))$ - mesurable.

De plus, comme $\mathcal{F}_{n-1} = \sigma((G \wedge (n-1)), \text{ pour tout } n \geq 1, (G \wedge (n-1)) \text{ est } (\mathcal{F}_{n-1}, \mathcal{B}(\mathbb{R}))$ - mesurable donc $(\mathcal{F}_n, \mathcal{B}(\mathbb{R}))$ - mesurable puisque $\mathcal{F}_{n-1} \subset \mathcal{F}_n$.

Ainsi, M_n , $n \ge 1$ est \mathcal{F}_n - mesurable comme étant la combinaison linéaire de deux variables aléatoires réelles \mathcal{F}_n - mesurable.

Par ailleurs, quel que soit $n \ge 1$,

$$|M_n| \le X_n^2 + |\alpha| (G \wedge (n-1))$$

 $\le (|\alpha| n+1)^2 + |\alpha| (n-1), \text{ d'après } (25),$

de sorte que M_n , $n \ge 1$ est une variable aléatoire intégrable.

De plus, pour tout $n \ge 1$,

$$\begin{split} \mathbb{E}[(X_{n+1}-X_n)^2|\mathcal{F}_n] &= \mathbb{E}[X_{n+1}^2-2X_{n+1}X_n+X_n^2|\mathcal{F}_n]\,,\\ &= \mathbb{E}[X_{n+1}^2|\mathcal{F}_n] - 2X_n\,\mathbb{E}[X_{n+1}|\mathcal{F}_n] + X_n^2\,, \text{ car } X_n^2 \text{ est intégrable et } \mathcal{F}_n \text{ -mesurable},\\ &= \mathbb{E}[X_{n+1}^2|\mathcal{F}_n] - 2X_n^2 + X_n^2\,, \text{ car } (X_n)_{n\geq 1} \text{ est une } (\mathcal{F}_n)_{n\geq 1} \text{ -martingale pour } \alpha = \frac{p}{1-p}\,,\\ &= \mathbb{E}[X_{n+1}^2|\mathcal{F}_n] - X_n^2\,. \end{split}$$

Il a été démontré en (27) que $\mathbb{E}[(X_{n+1}-X_n)^2|\mathcal{F}_n]=\alpha\mathbf{1}_{\{G>n\}}\,,n\geq 1\,,$ ainsi :

$$\mathbb{E}[X_{n+1}^2 | \mathcal{F}_n] = X_n^2 + \alpha \mathbf{1}_{\{G > n\}}, \qquad (28)$$

quel que soit $n \ge 1$.

On obtient alors, pour tout $n \ge 1$,

$$\mathbb{E}[M_{n+1}|\mathcal{F}_n] = \mathbb{E}[X_{n+1}^2 - \alpha(G \wedge n)|\mathcal{F}_n],$$

$$= \mathbb{E}[X_{n+1}^2|\mathcal{F}_n] - \alpha(G \wedge n), \text{ car } G \wedge n \text{ est } \mathcal{F}_n \text{ -mesurable},$$

$$= X_n^2 + \alpha \mathbf{1}_{\{G > n\}} - \alpha(G \wedge n), \text{ d'après } (28).$$

Or, $\alpha(G \wedge n) - \alpha(G \wedge (n-1)) = \alpha \mathbf{1}_{\{G > n\}}$, quel que soit $n \geq 1$, puisque :

$$G \wedge n - G \wedge (n-1) = \begin{cases} G \wedge (n-1) - G \wedge (n-1) = 0, & \text{sur l'évènement } \{G \leq n-1\} \\ n - (n-1) = 1, & \text{sur } \{G \geq n\} \end{cases}.$$

On conclut alors que pour tout $n \geq 1$, $\mathbb{E}[M_{n+1}|\mathcal{F}_n] = M_n$, soit que $(X_n^2 - \alpha(G \wedge (n-1)))_{n \geq 1}$ est une $(\mathcal{F}_n)_{n \geq 1}$ -martingale.