Math 199 –

Thesis Presentation

Thu Nguyen

Advisor: Professor Ery Arias-Castro

RECOVERING THE FIRST VERTICES INA PREFERENTIAL ATTACHMENT MODEL

CONTENTS

- 1. Introduction
- 2. Problem Statements
- 3. Recovering Vertex 1
 - Algorithms + Simulation results
- 4. Recovering the First L Vertices
 - Algorithms + Simulation results

1. INTRODUCTION

Graph Theory Probability

Preferential Attachment Model:

- Seeks to describe the "the rich get richer" phenomena
 - Early advantages will compound, leading to bigger gaps
- Dynamic graph model: grows over time
- Offers great flexibility in twisting the growth rules, potential to adapting to real-life situations

1. INTRODUCTION

- PA model on Tree, $T^{(\alpha)}(n)$, specification:
 - Parameters: $(T^{(0)}, \alpha)$
 - where lpha controls the weights of favoritism, and $T^{(0)}$ is the starting seed graph
 - We define $T^{(\alpha)}(n)$ iteratively as follows:
 - Suppose at time n, we have the tree graph $T^{(\alpha)}(n)$, at the next iteration n+1:
 - Add new vertex, labeled n+1
 - Choose an existing vertex from $T^{(lpha)}(n)$, say u, with probability

$$P(u \text{ is selected at step } n+1) \propto (d_n(u))^{\alpha}$$

- Where $ig(d_n(u)ig)$ is the degree of vertex u in the tree graph $T^{(lpha)}(n)$
- When $\alpha=0$, we have a Uniform Attachment Model, when $\alpha=1$, we have the original Preferential Attachment Model suggested by Price in the 70s and later by Barabasi and Albert in the 90s
- Here, we assume that $T^{(0)}$ is a singleton.

2. PROBLEM STATEMENTS

Preferential Attachment Model on Tree

- Given a tree graph T(n), we would like to recover the seed graphs:
 - The very first vertex, vertex 1
 - The first *L* vertices

- Objectives:
 - Algorithms
 - Accuracy & Precision
 - Complexity

- Main paper, from which the algorithm and methodology took inspiration:
 - Sebastien Bubeck, Luc Devroye, and Gabor Lugosi. **Finding Adam in random growing trees.** *Random Structures Algorithms*, 50(2):158{172, Nov 2016.

Algorithm:

Look at the largest connected component after removing each vertex

```
Input: an unlabeled tree graph T^0(n)
For each u \in V(T^0(n)) do:
   For each v \in N(u) do:
   Compute |(T,u)_{v,\downarrow}|
   End for
   Return \varphi(u) = \max_{v \in N(u)} |(T,u)_{v\downarrow}|
End for
Output: K vertices with the smallest \varphi values
```


THEORETICAL RESULT

- (Bubeck et. al.) **Theorem 6**:
- Let $T^0(n)$ be a tree graph grown under the PA mdel. Let $\varepsilon>0$ be given, let $K\geq c$ $\frac{\log^2(1/\varepsilon)}{\varepsilon^4}$ for some positive constant c, then

$$\lim_{n \to \infty} \inf P(1 \in H_{\psi}(T^{0}(n))) \ge 1 - \varepsilon$$

(Asymptotically, we are guaranteed of the accuracy)

SIMULATION RESULT

• K vertices returned:

$$K \in [10] \cup \{5k, k \in [20]\}$$

• Graph sizes:

$$n \in \{5,000k, k \in [15]\}$$

• For each graph size, create **1000** Monte Carlo simulations

- Remark:
 - due to computational time, only compute $oldsymbol{arphi}$ values of the first 5,000 vertices:

SIMULATION RESULT: FIXING GRAPH SIZE

SIMULATION RESULT: FIXING K (NUMBER OF VERTICES RETURNED)

Pref. Attm. Model on Tree - Metric: Minimum Maximum Subgraph

SIMULATION RESULT: DIFFERENT GRAPH SIZES & K

Pref. Attm. Model on Tree - Metric: Minimum Maximum Subgraph

K5 🌑 K25 🔵 K50 🌑 K100

SIMULATION RESULT

• Although highly accurate, computing ϕ was also highly expensive.

- Naïve approach:
 - Returning vertices with the largest vertex degree.

PROPOSED ALGORITHM

- Algorithm φ + vertex degree:
 - Narrow down the most probable vertices before computing $oldsymbol{arphi}$

Input: an unlabeled tree graph $T^0(n)$

Step 1: Return M vertices with the maximum degrees

Step 2: Compute $oldsymbol{arphi}$ values among those $oldsymbol{\mathit{M}}$ vertices

Output: K vertices with the smallest $oldsymbol{arphi}$ values

- Goal:
 - Reduce complexity while giving up little (to no) loss in accuracy

SIMULATION RESULT: PROPOSED ALGORITHM

Pref. Attm. Model on Tree - Metric: Minimum Maximum Subgraph conditioned on Vertices of Maximum Degrees

- Sequential Local Search Algorithm:
 - Sequentially Search and Update over stages

```
Input: an unlabeled tree graph T^0(n)
Initialize a list M = \emptyset by default
For each l \in 1: L do
     If M = \emptyset then
          Return K vertices with the smallest oldsymbol{arphi} values
     Else
          Initialize X containing neighbors of all vertices in M
          Return from X K vertices with the smallest oldsymbol{arphi} values
     Fnd if
     Update M with those K vertices returned
Output: list M
```

CONJECTURES

- Conjecture 1:
 - In a tree graph T(n), let t>1 be any vertex, then

$$\forall v \in N(t)$$
:

$$\lim_{n\to\infty} E[\left| (T,t)_{\{1\}} \right|] \ge \lim_{n\to\infty} E[\left| (T,t)_{\{\nu\}} \right|]$$

 $(T,t)_{\{1\}}$ is the subtree starting at a child of t that contains vertex 1

- Conjecture 2:
 - In a tree graph T(n), let L = [l] where l is given, let u = l + 1 be the vertex appearing after the first l vertices, then

$$\forall v \in N(L):$$

$$\lim_{n \to \infty} E\left[\left| \left(T^{(u)}\right)_{\backslash L}\right|\right] \ge \lim_{n \to \infty} E\left[\left| \left(T^{(v)}\right)_{\backslash L}\right|\right]$$

 $ig(T^{(u)}ig)_{ackslash L}$ is the subtree starting at u that does not contain L

CONJECTURES

- Implications in this context: suppose that we know the first l vertices, we want to recover vertex $\mathbf{u} = l + 1$ among N(L), where L is the set of those l vertices.
- Conjecture 1:
 - As $n \to \infty$, computing $\varphi(u)$ reduces to computing the size of the connected component containing L.
- Conjecture 2:
 - As $n \to \infty$, for all $v \in N(L)$, $\left| \left(T^{(u)} \right)_{\backslash L} \right| > \left| \left(T^{(v)} \right)_{\backslash L} \right| \text{ which implies}$ that $\varphi(u) < \varphi(v)$.

SIMULATION RESULT: FIXING GRAPH SIZE

Graph size: 50,000; Over different K vertices returned at each of the L vertices to be recovered; Also labeled are the total number of vertices returned at the end of recovering those L vertices. 0.9 0.8 0.7 Proportion 0.6 50 45 20 100 0.3 0.2 0.1 10 K (per step)

First L vertices to recover First 1 First 5 First 5

SIMULATION RESULT: DIFFERENT GRAPH SIZES

SIMULATION RESULT: COMPARISON: SEQUENTIAL VS. SIMPLE SEARCHES

A SECOND LOOK

- The problem becomes much harder quickly.
- Even with perfect knowledge (knowing exactly all the first *l* vertices), recovering vertex *l* + 1 is much harder for even very small *l*.

Math 199 — Thesis Presentation

Thu Nguyen

Advisor: Professor Ery Arias-Castro

THANKYOU FOR YOUR ATTENTION!

Recovering the First Vertices in a preferential attachment model

APPENDIX

- 1. Accuracy & Precision
- 2. Algorithm complexity
 - Vertex degree & $oldsymbol{arphi}$ value
- 3. Problem difficulty
- 4. Works in progress

1. ACCURACY & PRECISION

$$Accuracy = \frac{\#(sim:all\ l\ recovered)}{\#(simulations)}$$

$$Precision = \frac{l}{K}$$

Recovering	Accuracy	Precision
Vertex 1	.35	1
First 5	.25	1/3
First 10	.25	1/10
Vertex 1	.75	.5
First 5	.38	.5
First 10	.1	.5

2. ALGORITHM COMPLEXITY

Vertex degree

• Incidence list: O(n) (in linear time or less)

• Vertex φ value

- Incidence list: $O(n^2)$
 - For each vertex, do Depth First Search O(2n)
- Iteratively counting from leaves
 - Might be able to get to linear time if the tree graphs satisfy certain structures
 - Currently working on Necessary Conditions if complexity is O(n) on entire graph

3. PROBLEM DIFFICULTY

• (Lugosi & Pereira) Theorem: Uniform Attachment Model on Tree, $G^{(0)}$ is a Path

Let
$$\varepsilon \in (0, e^{-e^2})$$
. Let T_n be a UA tree with seed $S_l = P_l$ (path of length l) for $\log(1/\varepsilon)$

$$l \le \frac{\log(1/\varepsilon)}{\log\log(1/\varepsilon)}$$

Then for any $n \geq 2l$ (n is the tree graph size), any seed-finding algorithm that outputs a vertex set H_n of size l has

$$P\left(|H_n \cap P_l| \le \frac{l}{2}\right) \ge \varepsilon$$

• That is, we are going to miss at least half of the first l vertices with probability at least arepsilon

4. WORKS IN PROGRESS

- 1. The trade-off between Accuracy & Precision
- 2. In recovering the first $m{l}$ vertices:
 - Sequential Local Search Algorithm:
 - treat K (the number of vertices returned per stage) as a parameter
- 3. The complexity of computing $oldsymbol{arphi}$ values
 - Alternative approaches besides traditional approaches
- 4. Conclusively proving the 2 conjectures