

三、运算器

本章主要内容

- 定点补码加/减法运算
- 定点乘法运算
- 定点除法运算
- 浮点运算
- ■运算器组织

C语言中的运算

- ■逻辑运算
 - □ 位运算 "&" "|" "~" "^"
 - □ 逻辑运算 "&&" "||" "!"
 - □ 移位运算 "<<" ">>"
 - □ 位扩展 位截断 用于类型转换
- 算术运算
 - □ 无符号/符号整数的加减乘除运算
 - □ 变量与常数间的乘除运算
 - □ 浮点数加减乘除运算
- 如何用电路实现?

3.1 定点补码加/减法运算

- 运算方法及实现
 - □运算公式
 - □ 溢出检测
 - □逻辑实现
- 快速加法器

|| 补码加减法的实现

- → 补码加法: [X + Y]_→ = [X]_→ + [Y]_→
 - □ 和的补码 = 补码的和
- 补码减法: $[X-Y]_{i} = [X]_{i} [Y]_{i} = [X]_{i} + [-Y]_{i}$
 - □ 差的补码 = 补码的差
 - □ 减法变加法,关键是求[-Y]_补
- 求补公式: [-Y]_补= -[Y]_补
 - □ [-Y]_补=对 [Y]_补逐位取反, 再在最低位加 1

|| 补码加法公式证明

- $[X + Y]_{\vec{k}} = [X]_{\vec{k}} + [Y]_{\vec{k}}$
 - 1. x>0 y>0 (无需证明)
 - 2. x>0 y<0
 - 3. x<0 y>0 (2/3证明相同)
 - 4. x<0 y<0
- 只需证明2/4两种情况即可

∥补码加法公式证明 x>0 y<0

[x]_补=x [y]_补=2+y(设x,y为定点小数,1>x>0,-1≤y<0)

∥补码加法公式证明 x<0 y<0

补码减法公式证明

$$[X-Y]_{\vec{k}} = [X]_{\vec{k}} - [Y]_{\vec{k}}$$
 ???

$$[X-Y]_{\stackrel{}{\mathcal{N}}} = [X]_{\stackrel{}{\mathcal{N}}} + [-Y]_{\stackrel{}{\mathcal{N}}} \quad (加法公式)$$

$$[-Y]_{\vec{k}} = -[Y]_{\vec{k}}$$
?

$$[-Y]_{\lambda} + [Y]_{\lambda} = [Y + (-Y)]_{\lambda} = [0]_{\lambda} = 0$$

故
$$[-Y]_{\stackrel{}{i}} = -[Y]_{\stackrel{}{i}}$$
 成立 $[X-Y]_{\stackrel{}{i}} = [X]_{\stackrel{}{i}} + [-Y]_{\stackrel{}{i}} = [X]_{\stackrel{}{i}} - [Y]_{\stackrel{}{i}}$

$$[-Y]_{\vec{k}} = -[-Y]_{\vec{k}}$$

|||补码加法的溢出讨论

计算机如何识别运算结果是否溢出?

单符号数溢出检测1

■ 溢出逻辑: 正正得负 负负得正

- \blacksquare 设两数符号位为 f_0f_1 ,和数符号位 f_s
- 溢出检测信号 Overflow (OF)

$$Overflow = \overline{f}_0 \overline{f}_1 f_s + f_0 f_1 \overline{f}_s$$

单符号溢出检测方法2

符号位进位位C_f,最高位进位位C_n

$$Overflow = C_f \oplus C_n$$

1:

双符号溢出检测方法

双符号位最高位永远是正确符号位

 $Overflow = f_1 \oplus f_2$

|| 有符号数溢出判断方法总结

- 判断方法:
- 根据加数和结果的符号位判断

$$Overflow = \bar{f}_0\bar{f}_1f_s + f_0f_1\bar{f}_s$$

根据次高位向最高位的进位/借位,最高位向进位位的进位/借位是否一致判断

 $Overflow = C_f \oplus C_n$

■ 根据结果双符号位是否一致判断

 $Overflow = f_1 \oplus f_2$

■ 哪种方案硬件实现更好?

││无符号数溢出检测 unsigned char

加法变大,减法变小

$$UOF = Sub \oplus C_{out}$$

|| 有符号数溢出的软件检测方法

```
int tadd_ok(int x,int y) {
   int sum=x+y;
   int neg_over=x<0&&y<0&&sum>=0;
   int pos_over=x>=0&&y>=0&&sum<0;
   return !neg_over&&!pos_over;
}</pre>
```

■ 软/硬件检测具有功能上的等效性和性能上的差异性!

二进制加法运算的电路实现

- 相同权值的各位逐位相加,进位从低位向高位传递
- 首先要考虑**一位加**法,然后考虑**进位链**

$$X_{n-1}$$
 X_2 X_1 X_0
 Y_{n-1} Y_2 Y_1 Y_0
 Y_{n-1} Y_2 Y_1 Y_0

一位加法逻辑电路实现

- 0 + 1 = 1 1 + 0 = 1
- -1+1=0 0 + 0 = 0
- 一个异或门即可实现两个1bit数相加
- 算术运算变成逻辑电路

$$S_i = X_i \oplus Y_i$$

半加器HA

||全加器

$$S_i = X_i \oplus Y_i \oplus C_i$$

$$C_{i+1} = X_i Y_i + (X_i \oplus Y_i) C_i$$

加数X _i	加数Yi	低位进位C _i	和数Si	进位C _{i+1}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

||全加器逻辑实现之一

$$S_i = X_i \oplus Y_i \oplus C_i$$

$$C_{i+1} = X_i Y_i + (X_i \oplus Y_i)C_i$$

和:6级门电路延迟 6T

进位:5级门电路延迟

全加器逻辑实现之二

$$C_{i+1} = X_i Y_i + (X_i \oplus Y_i)C_i$$

$$C_{i+1} = X_i Y_i + X_i C_i + Y_i C_i$$

n位加法器

- ■n位加法器包含n个全加器
- ■将n个一位全加器串联
- 低位进位输出连接到高位进位输入

||| 单符号位补码串行进位加法器电路(ripple carry adder)

无符号,有符号数加法器有无区别?

运算规则相同,溢出判断不同

||| 双符号位补码加法器电路

资源开销增加,延时增加,故硬件上不会采用双符号补码运算电路

补码减法电路实现

补码减法可以变加法

$$[X]_{i} - [Y]_{i} = [X]_{i} + [-Y]_{i}$$

关键是求[-Y]_补

方法:将Y_补连同符号位一起逐位取反末位加一

$$[-Y]_{\stackrel{?}{\not=}} = [-[Y]_{\stackrel{?}{\not=}}]_{\stackrel{?}{\not=}}$$

Ⅲ加法器的改造---对Y的输入进行选择

- ■引入运算控制位 Sub
 - □ Sub=0 时作加法,送入加法器的是Y_补
 - □ Sub=1 时作减法,送入加法器的是[-Y]*
 - ◆ 对 Y_科 逐位取反 , 末位加一

$$Input = Y_i \oplus Sub$$

$$C_0 = Sub$$

Yi	Sub	Input
Yi	0	Y _i
Yi	1	\overline{Y}_{i}

可控加减法电路

上述电路可实现有符号/无符号的加法/减法运算

控制信号Sub如何产生?

加法器的必要功能---产生运算标志位

- 存放运算标志的寄存器称为程序/状态字或标志寄存器
 - □ 每个标志对应标志寄存器中的一个标志位。
 - □ IA-32中的EFLAGS寄存器 (MIPS 无标志寄存器)
 - ◆ZF(结果为零) SF(结果为负数)
 - ◆CF(进位/借位) OF(有符号溢出) OF=C_{n-1}⊕C_{out}

加法器的输入输出位数相同

多位加法器之串行加法器计算延时

n个全加器延迟? 关键路径在哪里?

||快速加法器

■ 如何缩短加法器的关键路径?

■ 思路之一:能否提前产生各位的进位输入

■ 先行进位加法器

进位依赖关系分析

$$S_i = X_i \oplus Y_i \oplus C_i$$

$$C_{i+1} = \underline{X_i Y_i} + (\underline{X_i \oplus Y_i}) C_i$$

$$G_i = X_i Y_i$$
 进位生成函数 Generate

$$P_i = X_i \oplus Y_i$$
 进位传递函数 Propagate

A	В	$C_{\boldsymbol{i}}$	S	C_{o}	Carry status
0	0	0	0	0	delete
0	0	1	1	0	delete
0	1	0	1	0	propagate
0	1	1	0	1	propagate
1	0	0	1	0	propagate
1	0	1	0	1	propagate
1	1	0	0	1	generate
1	1	1	1	1	generate

$$C_{i+1} = G_i + P_iC_i$$

如何打破进位依赖? 进位旁路、进位选择和超前进位(先行进位)