

OPTIMIZING CEPH PERFORMANCE BY LEVERAGING INTEL® OPTANE™ AND 3D NAND TLC SSDS

Yuan Zhou, Software Engineer, yuan.zhou@intel.com

Jack Zhang, Storage Solution Architect, yuan.zhang@intel.com

Jun, 2017

Agenda

- Ceph* with Intel® Non-Volatile Memory Technologies
- Ceph* @ PRC
- 2.8M IOPS Ceph* cluster with Intel® Optane™ SSDs + Intel® 3D TLC SSDs
- Ceph* Performance analysis on Intel® Optane™ SSDs based all-flash array
- Summary

CEPH WITH INTEL® OPTANE™ AND INTEL® 3D TLC SSDS

INTEL® 3D NAND SSDS AND OPTANE SSD TRANSFORM STORAGE

Expand the reach of Intel® SSDs. Deliver disruptive value to the data center.

INNOVATION FOR CLOUD STORAGE: Intel® Optane™ + Intel® 3D NAND S

New Storage Infrastructure: enable high performance and cost effective storage:

Openstack/Ceph:

- Intel Optane[™] as Journal/Metadata/WAL (Best write performance, Lowest latency and Best QoS)
- Intel 3D NAND TLC SSD as data store (cost effective storage)
- Best IOPS/\$, IOPS/TB and TB/Rack

Suggested Configurations for Ceph* Storage Node

Standard/good (baseline):

Use cases/Applications: that need high capacity storage with high throughput performance

 NVMe*/PCIe* SSD for Journal + Caching, HDDs as OSD data drive

Better IOPS

Use cases/Applications: that need higher performance especially for throughput, IOPS and SLAs with medium storage capacity requirements

 NVMe/PCIe SSD as Journal, High capacity SATA SSD for data drive

Best Performance

Use cases/Applications: that need highest performance (throughput and IOPS) and low latency/QoS (Quality of Service).

All NVMe/PCIe SSDs

More information at Ceph.com (new RAs update soon!)
http://tracker.ceph.com/projects/ceph/wiki/Tuning_for_All_Flash_Deployments

	Ceph* storage nodeGood
CPU	Intel(R) Xeon(R) CPU E5-2650v4
Memory	64 GB
NIC	10GbE
Disks	1x 1.6TB P3700 + 12 x 4TB HDDs (1:12 ratio) P3700 as Journal and caching
Caching software	Intel(R) CAS 3.0, option: Intel(R) RSTe/MD4.3

	Ceph* Storage nodeBetter
CPU	Intel(R) Xeon(R) CPU E5-2690v4
Memory	128 GB
NIC	Duel 10GbE
Disks	1x Intel(R) DC P3700(800G) + 4x Intel(R) DC S3510 1.6TB Or 1xIntel P4800X (375GB) + 8x Intel® DC S3520 1.6TB

	Ceph* Storage nodeBest
CPU	Intel(R) Xeon(R) CPU E5-2699v4
Memory	>= 128 GB
NIC	2x 40GbE, 4x dual 10GbE
Disks	1xIntel P4800X (375GB) + 6x Intel® DC P4500 4TB

^{*}Other names and brands may be claimed as the property of others.

Who is using Ceph?

Telcom

CSP/IPDC

OEM/ODM

Enterprise, FSI, Healthcare, Retailers

Ceph* @ PRC

Ceph* is very hot in PRC

Redevelopment based on the upstream code

More and more companies move to OpenSource storage solutions

Intel/Redhat held Three Ceph days at Beijing and Shanghai

- 1000+ attendees from 500+ companies
- Self media-reports and re-clippings
- Next one: Ceph Day Beijing on June, 10th

More and more PRC code contributors

ZTE, XSKY, H3C, LETV, UnitedStack, AliYun, Ebay, EasyStack

Ceph* on all-flash array

Storage providers are struggling to achieve the required high performance

- There is a growing trend for cloud providers to adopt SSD
 - CSP who wants to build EBS alike service for their OpenStack* based public/private cloud

Strong demands to run enterprise applications

- OLTP workloads running on Ceph, tail latency is critical
- high performance multi-purpose Ceph cluster is a key advantage
- Performance is still an important factor

SSD price continue to decrease

CEPH BLUESTORE PERFORMANCE ON INTEL® OPTANE™ BASED ALL-FLASH ARRAY

Ceph* performance trend with SSD – 4K Random Write

38x performance improvement in Ceph all-flash array!

Ceph* All Flash Optane configuration

Ceph* Optane Performance overview

	Throughput	Latency (avg.)	99.99% latency
4K Random Read	2876K IOPS	0.9 ms	2.25
4K Random Write	610K IOPS	4.0 ms	25.435
64K Sequential Read	27.5 GB/s	7.6 ms	13.744
64K Sequential Write	13.2 GB/s	11.9 ms	215

- Excellent performance on Optane cluster
 - random read & write hit CPU bottleneck

Ceph* Optane Performance – Tunings

- Good Node Scalability, poor disk scalability for 4K block workloads (CPU throttled!)
- NUMA & HT helps a lot on the Performance
- Fine tune the # of OSD per node and Drive per Node.

Ceph* Optane Performance – Performance improvement

- The breakthrough high performance of Optane eliminated the WAL & rocksdb bottleneck
 - 1 P4800X or P3700 covers up to 8x P4500 data drivers as both WAL and rocksdb

Ceph* Optane Performance – Rocksdb improvement

- Eliminate rocksdb write stall with Optane drive
 - Added event listener in rocksdb to provide real-time compaction&&flush information
 - Write stalls when flush or compaction can't keep up with the incoming write rate
 - rocksdb_compaction matches submit_transaction latency increase points

Ceph* Optane Performance – latency improvement

- Significant tail latency improvement with Optane
 - 20x latency reduction for 99.99% latency

CEPH PERFORMANCE ANALYSIS ON INTEL® OPTANE™ SSDS BASED ALL-FLASH ARRAY

- CPU utilizations

- Random Read & Write performance are throttled by CPU
 - Unbalanced CPU utilization caused by HT efficiency for random workloads
 - Limiting # of drive scalability for small block random workloads
- Need to optimize CPU utilization

- CPU profiling for 4K RR

- Perf record for 30 second
- Ceph-osd: 34.1%, tp_osd_tp: 65.6%
- Heavy network messenger overhead

- CPU profiling for 4K RR

- CPU profiling for 4K RR

- The top three consumers of tp_osd_tp thread are
- KernelDevice::read,
- OSD::ShardedOpWQ::_
 process
- PrimaryLogPG::do_op.
- · Perf record 30s.

- CPU profiling for 4K RW

- CPU profiling for 4K RW

- WAL tunings and optimizations

Tunings	4K RW IOPS	comments
Default: Baseline(NVMe as DB&& WAL drive)	340000	Separated DB&&WAL device
Tuning1: DB on NVMe && WAL on Ramdisk	360000	Move WAL to Ramdisk
Tuning2: Tuning1+disable rocksdb WAL	360000	RocksDB tuning
Tuning3: Tuning2+omit WAL in deferred write mode	410000	Don't write WAL in deferred write mode
Tuning4: Tuning1+write WAL but don't remove WAL from rocksdb	240000	Write WAL before write metadata into rocksdb, but will not clean WAL after write data to data device in deferred write mode
Tuning5: Tuning1+external WAL	380000	Write WAL to an external WAL device, and write its metadata to rocksdb

Key takeaways:

- rocksdb memTable overhead lead to 50000 IOPS difference. (tuning2 vs. tuning3)
- If we don't clean bluestore WAL data in rocksdb, rocksdb overhead increase dramatically with the # of metadata increase:
- Use an external WAL device to store WAL data, and just write WAL metadata into rocksdb!

(intel)

- Direct I/O vs Buffered I/O

- Key takeaways:
 - On P3700 setup, with bulefs_buffered_io, the performance improved 9%, 99.99% latency improved ~8x
 - However on Optane setup, we find bluefs_direct_io could improve the 10% performance, 99.99% latency also got improved ~1x

- Metadata plane I/O pattern

		DB	
259,0	42	64	0.072669752 177116 A WS 387830816 + 1032 <- (259,104) 1111072
259,0		134	0.075719488 177116 A WS 387831840 + 1032 <- (259,104) 1112096
259,0			0.078582446 177116 A WS 387832864 + 1040 <- (259,104) 1113120
259,0		64	0.081442440 177116 A WS 387833896 + 1032 <- (259,104) 1114152
259,0			0.084122333 177116 A WS 387834920 + 1032 <- (259,104) 1115176
259,0			0.086525275 177116 A WS 387835944 + 1032 <- (259,104) 1116200
259,0			0.088835143 177116 A WS 387836968 + 1040 <- (259,104) 1117224
259,0		147	0.089564736 177116 A WS 387838000 + 432 <- (259,104) 1118256
259,0			0.092532258 177116 A R 387838424 + 8 <- (259,104) 1118680
259,0		164	0.092561072 177116 A R 387838128 + 8 <- (259,104) 1118384
259,0		170	0.092587360 177116 A R 387838128 + 8 <- (259,104) 1118384
259,0		176	0.092693010 177116 A R 387838128 + 304 <- (259,104) 1118384
259,0			0.093169176 177116 A WS 387336240 + 8 <- (259,104) 616496
259,0			0.164727068 178265 A R 387800744 + 16 <- (259,104) 1081000
259,0			2.859572562 177118 A WS 386732032 + 1032 <- (259,104) 12288
259,0			2.864742636 177118 A WS 386733056 + 1024 <- (259,104) 13312
259,0		3057	2.864780468 177118 A WS 386736128 + 8 <- (259,104) 16384
259,0		3150	2.870420543 177118 A WS 386736128 + 1032 <- (259,104) 16384
259,0		4688	2.876454314 177118 A WS 386737152 + 1024 <- (259,104) 17408
259,0		4706	2.876482077 177118 A WS 386740224 + 8 <- (259,104) 20480
259,0			2.880833028 177118 A WS 386740224 + 1032 <- (259,104) 20480
259,0			2.885224128 177118 A WS 386741248 + 1032 <- (259,104) 21504
259,0			2.890598237 177118 A WS 386742272 + 1032 <- (259,104) 22528

- Key takeaways:
 - Sync writes!
 - Large sequential write w/ offset-overlapping on WAL/DB device
 - Small disk reads on DB device due to metadata lookup missing on writes
 - BlueFS will save tail part of previous unaligned writes and merge with current writes
 - Medium-sized requests due to db transaction batch in BlueStore

SUMMARY

Summary & Next

Summary

- Ceph* is awesome!
- Strong demands for all-flash array Ceph* solutions
- Optane based all-flash array Ceph* cluster is capable of delivering over 2.8M IOPS with very low latency!
- Let's work together to make Ceph* more efficient with all-flash array!

Next

Client side cache on Optane with SQL workloads!

Acknowledgements

This is a joint team work.

Thanks for the contributions of Haodong, Tang, Jianpeng Ma.

Backup

Ceph All Flash Tunings

[global]
pid path = /var/run/ceph
auth_service_required = none
auth cluster required = none
auth client required = none
mon_data = /var/lib/ceph/ceph.\$id
osd pool default pg num = 2048
osd_pool_default_pgp_num = 2048
osd objectstore = bluestore
public network = 172.16.0.0/16
cluster_network = 172.18.0.0/16
enable experimental unrecoverable data
corrupting features = *
bluestore_bluefs = true
bluestore_block_create = false
bluestore_block_db_create = false
bluestore_block_wal_create = false
mon_allow_pool_delete = true
bluestore_block_wal_separate = false
debug objectcacher = 0/0
debug paxos = 0/0
debug journal = 0/0
mutex_perf_counter = True
rbd_op_threads = 4
debug ms = 0/0
debug mds = 0/0
mon_pg_warn_max_per_osd = 10000
debug lockdep = 0/0
debug auth = 0/0
ms_crc_data = False
debug mon = 0/0
debug perfcounter = 0/0
perf = True
debug monc = 0/0
debug throttle = 0/0
debug mds_migrator = 0/0

```
debug rgw = 0/0
 debug finisher = 0/0
 debug osd = 0/0
 debug mds balancer = 0/0
 rocksdb collect extended stats = True
 debug hadoop = 0/0
 debug client = 0/0
 debug zs = 0/0
 debug mds log = 0/0
 debug context = 0/0
 rocksdb perf = True
 debug bluestore = 0/0
 debug bluefs = 0/0
 debug objclass = 0/0
 debug objecter = 0/0
 debug log = 0
 ms crc header = False
 debug filer = 0/0
 debug rocksdb = 0/0
 rocksdb collect memory stats = True
 debug mds log expire = 0/0
 debug crush = 0/0
 debug optracker = 0/0
 osd pool default size = 2
 debug tp = 0/0
 cephx require signatures = False
 cephx sign messages = False
 debug rados = 0/0
 debug journaler = 0/0
 debug heartbeatmap = 0/0
 debug buffer = 0/0
 debug asok = 0/0
 debug rbd = 0/0
 rocksdb collect compaction stats = False
 debug filestore = 0/0
 debug timer = 0/0
```

```
(lib/ceph/mon.$id
```

```
[mon]
 mon data = /var/lib/ceph/mon.$id
 mon max pool pg num = 166496
 mon osd max split count = 10000
 mon pg warn max per osd = 10000
[osd]
  osd data = /var/lib/ceph/mnt/osd-device-$id-data
 osd mkfs type = xfs
 osd mount options xfs = rw,noatime,inode64,logbsize=256k
 bluestore_extent_map_shard_min_size = 50
 bluefs buffered io = true
 mon osd full ratio = 0.97
 mon osd nearfull ratio = 0.95
 bluestore rocksdb options =
compression=kNoCompression,max write buffer number=32,min write buffer number to merge
=2,recycle log file num=32,compaction style=kCompactionStyleLevel,write buffer size=6710886
4,target file size base=67108864,max background compactions=31,level0 file num compaction
trigger=8,level0 slowdown writes trigger=32,level0 stop writes trigger=64,num levels=7,max b
ytes for level base=536870912,max bytes for level multiplier=8,compaction threads=32,flusher
threads=8
 bluestore min alloc size = 65536
```

```
bluestore_min_alloc_size = 65536
osd_op_num_threads_per_shard = 2
osd_op_num_shards = 8
bluestore_extent_map_shard_max_size = 200
bluestore_extent_map_shard_target_size = 100
bluestore_csum_type = none
bluestore_max_bytes = 1073741824
bluestore_max_loytes = 2147483648
bluestore_max_ops = 8192
bluestore_wal_max_ops = 8192
```


LEGAL NOTICES

Copyright © 2016 Intel Corporation.

All rights reserved. Intel, the Intel logo, Xeon, Intel Inside, and 3D XPoint are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

FTC Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice revision #20110804

The cost reduction scenarios described in this document are intended to enable you to get a better understanding of how the purchase of a given Intel product, combined with a number of situation-specific variables, might affect your future cost and savings. Nothing in this document should be interpreted as either a promise of or contract for a given level of costs.

Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance. Consult other sources of information to evaluate performance as you consider your purchase. For more complete information about performance and benchmark results, visit http://www.intel.com/performance.

