

Description

The μPD71084 is a clock pulse generator/driver for microprocessors including the V20® and V30® and their peripherals using NEC's high-speed CMOS technology.

Features

- CMOS technology
- Frequency source can be crystai or external clock input
- Reset signal with Schmitt-trigger circuit for CPU or peripherals
- Bus ready signal with two-bus system synchronization
- □ Clock synchronization with other µPD71084s
- □ Single +5 V ± 10% power supply
- □ Industrial temperature range: -40 to +85°C

Ordering Information

Part Number	CLK Out, Max	Package		
μPD71084C-8	8 MHZ	18-pin plastic DIP		
C-10	10 MHz	,		
G-8	8 MHz	20-pin plastic SOP		

V20 and V30 are registered trademarks of NEC Corporation.

Pin Configurations

18-Pin Plastic DIP

20-Pin Plastic SOP

Pin Identification

Symbol	Function
CKSYN	Clock synchronization input
PRCLK	Peripheral clock output
REN1	Bus ready enable input 1
RDY1	Bus ready input 1
READY	Ready output
RDY2	Bus ready input 2
REN2	Bus ready enable input 2
CLK	Processor clock output
V _{SS}	Ground potential
RESET	Reset output
RESIN	Reset input
OSC	Oscillator output
F/X	External frequency source/crystal select
EXFS	External frequency source input
RDYSYN	Ready synchronization select input
X2	Crystal input
X1	Crystal input
V _{DO}	+5 V power supply
NC	No connection

PIN FUNCTIONS

X1, X2 (Crystal)

When the F/X input is low, a crystal connected to X1 and X2 will be the frequency source to generate clocks for a CPU and its peripherals. The crystal frequency should be three times the frequency of CLK.

EXFS (External Frequency)

EXFS is the external frequency input in the external TTL frequency source mode (F/X high). A TTL-level clock signal three times the frequency of the CLK output should be used for the source.

F/X (Frequency/Crystal Select)

F/X input selects whether an external TTL-level input or an external crystal input is the frequency source of the CLK output. When F/X is low, CLK is generated from the crystal connected to X1 and X2. When F/X is high, CLK is generated from an external TTL-level frequency input on the EXFS pin. At the same time, the internal oscillator circuit will stop and the OSC output will be high.

CLK (Processor Clock)

CLK output supplies the CPU and its local bus peripherals. CLK is a 33% duty cycle clock, one-third the frequency of the frequency source. The CLK output is +0.4 V higher than the other outputs.

PRCLK (Peripheral Clock)

PRCLK output supplies a 50% duty cycle clock at onehalf the CLK frequency to drive peripheral devices.

OSC (Oscillator)

OSC outputs a signal at the same frequency as the crystal input. When EXFS is selected, the OSC output is powered down, and its output will be high.

CKSYN (Clock Synchronization)

CKSYN input synchronizes one μPD71084 to other μPD71084s. A high level at CKSYN resets the internal counter, and a low level enables it to count.

RESIN (Reset)

This Schmitt-trigger input generates the RESET output. It is used as a power-on reset.

RESET (Reset)

This output is a reset signal for the CPU. Reset timing is provided by the RESIN input to a Schmitt-trigger input gate and a flip-flop which will synchronize the reset timing to the falling edge of CLK. Power-on reset can be provided by a simple RC circuit on the RESIN input.

RDY1, RDY2 (Bus Ready)

A peripheral device drives the RDY1 or RDY2 inputs to signal that the data on the system bus has been received or is ready to be sent. REN1 and REN2 enable the RDY1 and RDY2 signals.

REN1, REN2 (Address Enable)

REN1 and REN2 inputs qualify their respective RDY inputs.

RDYSYN (Ready Synchronization Select)

RDYSYN input selects the mode of READY signal synchronization. A low-level signal makes the synchronization a two-step process. Two-step synchronization is used when RDY1 or RDY2 are not synchronized to the microprocessor clock and therefore cannot be guaranteed to meet the READY setup time. A high-level signal makes synchronization a one-step process. One-step

synchronization is used when RDY1 and RDY2 are synchronized to the processor clock. See Block Diagram.

READY (Ready)

The READY output signal to the processor is synchronized by the RDY inputs to the processor CLK. READY is cleared after RDY goes low and the guaranteed hold time of the processor has been met.

CRYSTAL

The oscillator circuit of the μ PD71084 works with a parallel-resonant, fundamental mode, "AT-cut" crystal connected to pins X1 and X2.

Figure 1 shows the recommended circuit configuration. Capacitors C1 and C2 are required for frequency stabil-

ity. The values of C1 and C2 (C1 = C2) can be calculated from the load capacitance (C_L) specified by the crystal manufacturer.

$$C_{L} = \frac{C1 \times C2}{C1 + C2} + C_{S}$$

 C_S is any stray capacitance in parallel with the crystal, such as the $\mu PD71084$ input capacitance C_I

Figure 1. Crystal Configuration Circuit

μPD71084 Block Diagram

ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings $T_A = 25^{\circ}C; V_{SS} = 0 V$

A - 10 0, 133				
Power supply voltage, V _{DD}	-0.5 to + 7.0 V			
Input voltage, V _I	-1.0 V to V _{DD} + 1.0 V			
Output voltage, V _O	-0.5 V to V _{DD} + 0.5 V			
Operating temperature, T _{OPT}	-40 to +85°C			
Storage temperature, T _{STG}	-65 to +150°C			
Power dissipation, P _D (DIP)	500 mW			
Power dissipation, P _D (SOP)	200 mW			

Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage.

DC Characteristics

 $T_A = -40 \text{ to } +85^{\circ}\text{C}; V_{DD} = 5 \text{ V} \pm 10\%$

^					
Parameter	Symbol	Min	Max	Unit	Conditions
Input voltage, high	ViH	2.2		٧	
		2.6		٧	RESIN input
Input voltage, low	V _{IL}		0.8	٧	
Output voltage, high	V _{ОН}	V _{DD} - 0.4		٧	CLK output, I _{OH} = -4 mA
		V _{DD} - 0.8		٧	$I_{OH} = -4 \text{ mA}$
Output voltage, low	V _{OL}		0.45	٧	$I_{OL} = 4 \text{mA}$
Input leakage current	I _{IN}	-1.0	1.0	μΑ	
		-400	1.0	μА	RDYSYN input
RESIN hysteresis		0.25		٧	
Power supply current (static)	l _{DD}		200	μА	
Power supply current (dynamic)	DDdyn		30	mA	f _{in} = 24 MHz

Capacitance T_A = 25°C; V_{DD} = +5 V

Parameter		Min	Max	Unit	Conditions
Input capacitance	C _{in}		12	pF	f = 1 MHz

AC Characteristics

 $T_A = -40 \text{ to } +85^{\circ}\text{C}; V_{DD} 5 \text{ V} \pm 10\%$

Parameter	Symbol	Min	Max	Unit	Conditions
EXFS high	t _{EHEL}	16		ns	At 2.2 V
EXFS low	t _{ELEH}	16		ns	At 0.8 V
EXFS period	teler	40		ns	
XTAL frequency		12	25	MHz	
RDY1, 2 setup to CLK↓	t _{R1} VCL, t _{R1} VCH	35		ns	
RDY1, 2 hold to CLK↓	t _{CLR1} X	0		ns	
RDYSYN setup to CLK↓	†RSYVCL	50		ns	
RDYSYN hold to CLK	t _{CLRSYX}	0		ns	
REN1, 2 setup to RDY1, 2	t _{A1R1} V	15		ns	
REN1, 2 hold to CLK↓	t _{CLA1} X	0		ns	
CKSYN setup to EXFS	t _{YHEH}	20,		ns	
CKSYN hold to EXFS	^t EHYL	20		ns	
CKSYN width	tyhyL	2t _{ELEL}		ns	
RESIN setup to CLK	t _{I1HCL}	65		ns	
RESIN hold to CLK	t _{CLI1H}	20		ns	
CLK cycle period	†CLCL	125		ns	
CLK high	^t CHCL	41		ns	3 V, f _{OSC} = 24 MHz (Note 1)
		1/3 (t _{CLCL}) +2		ns	1.5 V, f _{OSC} ≤ 24 MHz (Note 2)
CLK low	^t CLCH	68		ns	1.5 V, f _{OSC} = 24 MHz (Note 1)
		2/3 (t _{CLCL}) -15		ns	1.5 V, f _{OSC} ≤ 24 MHz (Note 2)
CLK rise and fall time	t _{CLH} , t _{CHL}		10	ns	1.5 to 3.5 V 3.5 to 1.5 V
PRCLK high	t _{PHPL}	t _{CLCL} - 20		ns	(Note 3)
PRCLK low	t _{PLPH}	t _{CLCL} - 20		ns	(Note 3)
READY inactive to CLK↓	tRYLCL		8	ns	
READY active to CLK ↑	t _{RYHCH}		8	ns	

Parameter	Symbol	Min	Max	Unit	Conditions
CLK to RESET delay	t _{CLIL}		40	ns	
CLK to PRCLK † delay	^t CLPH		22	ns	
CLK to PRCLK ↓ delay	tCLPL		22	ns	
OSC CLK↑ delay	tolch	-5	22	ns	
OSC CLK↓ delay	tolcl	2	35	ns	
Signal rise time (except CLK)	t _{LH}		20	ns	0.8 to 2.0 V
Signal fall time (except CLK)	t _{HL}		12	ns	2.0 to 0.8 V

Notes:

- Test points are specified in accordance with V-Series CMOS peripherals.
- (2) Test points are specified in accordance with the $\mu\text{PD8284}.$
- (3) t_{PHPL} + t_{PLPH} total must meet a minimum of 250 ns.

Timing Waveforms

AC Test Input (Except RESIN)

AC Test Output (Except CLK)

CLK Output

CLK, RESET Signals

READY Pin (RDSYN = High)

READY Pin (RDSYN = Low)

Test Circuit for CLK High or Low Time (Crystal Oscillation Mode)

Test Circuit for CLK to READY (Crystal Oscillation Mode)

Test Circuit for CLK High or Low Time (EXFS Oscillation Mode)

Test Circuit for CLK to READY (EXFS Oscillation Mode)

Loading Circuits

