TD

Exercices *

Fabrice SINCERE

Savoirs et compétences :

MCC à excitation indépendante

Une machine d'extraction est entraînée par un moteur à courant continu à excitation indépendante. L'inducteur est alimenté par une tension $u=600\,\mathrm{V}$ et parcouru par un courant d'excitation d'intensité constante : $i=30\,\mathrm{A}$. L'induit de résistance $R=12\,\mathrm{m}\Omega$ est alimenté par une source fournissant une tension U réglable de $0\,\mathrm{V}$ à sa valeur nominale : $U_N=600\,\mathrm{V}$. L'intensité I du courant dans l'induit a une valeur nominale : $I_N=1.50\,\mathrm{k}$. La fréquence de rotation nominale est $n_N=30\,\mathrm{tr/min}$.

Démarrage

Question 1 En notant Ω la vitesse angulaire du rotor, la fem du moteur a pour expression : $E = K\Omega$ avec Ω en rad/s. Quelle est la valeur de E à l'arrêt (n = 0)?

Question 2 Dessiner le modèle équivalent de l'induit de ce moteur en indiquant sur le schéma les flèches associées à U et I.

Question 3 Ecrire la relation entre U, E et I aux bornes de l'induit, en déduire la tension U_d à appliquer au démarrage pour que $I_d = 1, 2I_N$.

Question 4 Citer un système de commande de la vitesse de ce moteur.

Fonctionnement nominal au cours d'une remontée en charge

Question 5 Exprimer la puissance absorbée par l'induit du moteur et calculer sa valeur numérique.

Question 6 Exprimer la puissance totale absorbée par le moteur et calculer sa valeur numérique.

Question 7 Exprimer la puissance totale perdue par effet Joule et calculer sa valeur numérique.

Question 8 Sachant que les autres pertes valent 27 kW, exprimer et calculer la puissance utile et le rendement du moteur.

Question 9 Exprimer et calculer le couple utile T_u et le couple électromagnétique T_{em} .

1

Fonctionnement au cours d'une remontée à vide

Question 10 Montrer que le couple électromagnétique T_{em} de ce moteur est proportionnel à l'intensité I du courant dans l'induit : $T_{em} = KI$.

On admet que dans le fonctionnement au cours d'une remontée à vide, le couple électromagnétique a une valeur T_{em}^\prime égale à 10% de sa valeur nominale et garde cette valeur pendant toute la remontée.

Question 11 Calculer l'intensité I' du courant dans l'induit pendant la remontée.

Question 12 La tension U restant égale à U_N , exprimer puis calculer la fem E' du moteur.

Question 13 Exprimer, en fonction de E', I' et T'_{em} , la nouvelle fréquence de rotation n'. Calculer sa valeur numérique.

Moteur à courant continu à aimants permanents (moteur de rétroviseur électrique)

Un moteur de rétroviseur électrique d'automobile a les caractéristiques suivantes :

- moteur à courant continu à aimants permanents;
- 62 grammes, Φ 28 mm longueur 38 mm;
- tension nominale $U_N = 12 \text{ V}$;
- fem (E en V) = 10^{-3} × vitesse de rotation (n en tr/min):
- résistance de l'induit $R = 3.5 \,\mathrm{W}$;
- pertes collectives 1.6 W.

Le moteur est alimenté par une batterie de fem 12 V, de résistance interne négligeable (voir figure).

Question 1 À vide, le moteur consomme 0.20 A. Calculer sa fem et en déduire sa vitesse de rotation.

Question 2 *Que se passe-t-il si on inverse le branchement du moteur?*

En charge, au rendement maximal, le moteur consomme 0,83 A.

Question 3 Calculer:

- la puissance absorbée;
- les pertes Joule;
- la puissance utile;
- le rendement maximal;
- la vitesse de rotation;
- la puissance électromagnétique;
- le couple électromagnétique;
- le couple utile;
- le couple des pertes collectives.

Question 4 Justifier que le couple électromagnétique est proportionnel au courant d'induit. Vérifier que : $T_{em}(e\,nN\,m) = 9,55 \times 10^{-3} \times I \ (en\,A)$.

Question 5 Calculer le courant au démarrage. En déduire le couple électromagnétique de démarrage.

Que se passe-t-il si un problème mécanique provoque le blocage du rotor?

Moteur à courant continu à excitation série

Un moteur à courant continu à excitation série est alimenté par une source de tension continue et constante $U=220\,\mathrm{V}$. Pour simplifier l'étude, nous négligerons les résistances de l'inducteur et de l'induit, ainsi que les pertes collectives.

Question 1 Montrer que le couple du moteur est proportionnel au carré du courant qu'il consomme.

Question 2 Montrer que le couple est inversement proportionnel au carré de la vitesse de rotation.

Question 3 En déduire que le moteur s'emballe à vide. On peut écrire que : $T_u = \frac{a}{n^2}$ avec

- T_u : couple utile du moteur (en Nm);
- *n* : vitesse de rotation (en tr/min);
- *a* : constante.

La plaque signalétique d'un moteur indique : $220\,\mathrm{V}$ et $1200\,\mathrm{tr/min}$ et $6.8\,\mathrm{A}$.

Question 4 En déduire la valeur numérique de la constante a.

Par la suite, on prendra : $a = 20 \times 10^6 \,\mathrm{Nm(tr/min)}^2$.

Question 5 Tracer l'allure de la caractéristique mécanique Tu(n).

Question 6 Le moteur entraîne un compresseur de couple résistant constant 10 Nm. En déduire la vitesse de rotation de l'ensemble.

Question 7 Le moteur entraîne un ventilateur dont le couple résistant est proportionnel au carré de la vitesse de rotation (15 Nm à 1000 tr/min). En déduire la vitesse de rotation de l'ensemble.

Hacheur série

On alimente un moteur à courant continu dont le schéma équivalent est donné ci-dessous, à l'aide d'un hacheur. L'interrupteur électronique K et la diode sont supposés parfaits. La période de hachage est T, le rapport cyclique α . L'inductance L du bobinage de l'induit du moteur a une valeur suffisante pour que la forme du courant dans l'induit soit pratiquement continue. Le hacheur est alimenté par une tension continue E=220 V. La f.e.m. E' du moteur est liée à sa vitesse de rotation n par la relation : E'=0, 20n avec E' en V et n en tr/min. L'induit a pour résistance R=2.0 Ω .

Etude de la tension u pour $\alpha = 0.80$

Question 1 Représenter, en la justifiant, l'allure de la tension u. On prendra comme instant origine celui où l'interrupteur K se ferme.

Question 2 Déterminer l'expression littérale de la valeur moyenne < u > de la tension u, en fonction de E et du rapport cyclique α . Calculer sa valeur numérique.

Fonctionnement du moteur pour $\alpha = 0,80$

Question 3 Le moteur fonctionne en charge, la valeur moyenne du courant d'induit est < I >= 10A. Déterminer E' et en déduire n.

Le dispositif de commande du hacheur est tel que le rapport cyclique a est proportionnel à une tension de commande u_C : $\alpha = 100\%$ pour $u_C = 5$ V.

Question 4 Tracer la caractéristique < u > en fonction de u_C .

Hacheur série

Un moteur à courant continu travaillant à couple constant est inclus dans le montage ci-dessous.

Le hacheur fonctionne à une fréquence $f=500\,\mathrm{Hz}$. L'interrupteur K est fermé lorsque $0 < t < \alpha T$ et ouvert entre αT et T. La diode est supposée parfaite. L'inductance de la bobine de lissage L est de valeur suffisante pour que le courant dans le moteur soit considéré comme constant : i=I= cte. La résistance de l'induit du moteur est : $R=1\,\Omega$.

Question 1 Représenter les allures de u et u_K en fonction du temps.

Question 2 Exprimer la valeur moyenne de u en fonction de V et α .

Question 3 Représenter les allures de i_K et i_D en fonction du temps.

Question 4 Exprimer les valeurs moyennes des courants i_K et i_D en fonction de I et α .

Question 5 Déterminer l'intensité I du courant dans le moteur en fonction de V, E, R et α .

Question 6 Application numérique : calculer < u >, I et $< i_D > pour V = 220 \text{V}$, E = 145 V et $\alpha = 0,7$.

Question 7 Établir la relation liant la vitesse n du moteur (en tr/min) à α pour E = 0, 153n, sachant que R = 1 W, V = 220 V et I = 9A.

Question 8 *Tracer n en fonction de* α .

Hacheur parallèle

Les deux interrupteurs électroniques sont supposés parfaits.

Question 1 On donne les séquences de conduction de K_1 et K_2 . Compléter les chronogrammes.

Question 2 *Donner la relation entre* < u >, α *et* E.