Lecture 23, Nov. 2

23.1 Theorem (Intermediate Value Thm (IVT)). If f(x) is continuous on [a, b], f(a) < 0 and f(b) > 0, then there exists $c \in (a, b)$ with f(c) = 0.

Proof. Let $E = \{x \in [a,b] \mid f(x) \le 0\}$. Then $E \ne \emptyset$ since $a \in E$. Since E is bounded, it has a lub which we call c (Note: $c \in [a,b]$). We claim f(c) = 0 We can find $x_n \in E$ with $x_n \to c$. By the Sequential Characterization of Continuity $f(x_n) \to f(c)$. Since $f(x_n) \le 0$ for all n, $f(c) \le 0$. Observe that c < B for each $n \in \mathbb{N}$. We choose $y_n \in [a,b]$ so that $c < y_n \le b$ and $|c-y_n| < \frac{1}{n}$. Since $y_n \to c$, we have $f(y_n) \to f(c)$. But $f(y_n) > 0$ for all n, so $f(c) \ge 0$. Thus f(c) = 0.

Note. A similar statement holds if f(a) > 0 and f(b) < 0.

23.2 Corollary (Intermediate Value Theorem II). If f(x) is continuous on [a, b], and if $f(a) < \alpha < f(b)$ or $f(b) < \alpha < f(a)$, then there exists $c \in (a, b)$ with $f(c) = \alpha$.

Proof. Let $g(x) = f(x) - \alpha$ and apply the theorem 23.1.

- **23.3 Question.** Assume $f:[a,b] \to \mathbb{R}$ is 1-1. What can we say about f if f(x) is also continuous? Is f strictly monotonic?
- **23.4 Definition.** We say that f(x): [a, b] is non-decreasing on [a, b] if whenever $x, y \in [a, b]$ with x < y, we have $f(x) \le f(y)$. We say that f is strictly increasing if whenever $x, y \in [a, b]$ with x < y we have f(x) < f(y). Similarly we could define non-increasing and strictly decreasing.

f is monotonic on [a, b] if it is either non-decreasing or non-increasing. f is strictly monotonic if it is strictly increasing or strictly decreasing.

23.5 Corollary.

TO BE FINISHED