Logaritmos e Função Logarítmica

1. Use as propriedades de logaritmos para desenvolver o logaritmo
$$\log_2 \left(\sqrt[3]{\frac{a^4 \cdot \sqrt{a+b}}{b^2 \cdot \sqrt[3]{bc}}} \right)^2$$
 onde

$$a,b,c > 0$$
.

R.:
$$\frac{2}{3} \left[4 \log_2 a + \frac{1}{2} \log_2 (a+b) - \frac{7}{3} \log_2 b - \frac{1}{3} \log_2 c \right]$$

2. Determinar o domínio, a imagem e construir o gráfico de cada função abaixo. Determine a inversa de cada função:

a)
$$f(x) = \ln(1+x)$$
 R.: $f^{-1}(x) = e^x - 1$; $D(f) = (-1, +\infty)$; $Im(f) = \Re$

b)
$$g(x) = e^{2x} - 1$$
 R.: $f^{-1}(x) = \frac{\ln(x+1)}{2}$; $D(f) = \Re$; $Im(f) = (-1, +\infty)$

c)
$$h(x) = \log_3(1-3x)$$
 R.: $h^{-1}(x) = \frac{1-3^x}{3}$; $D(f) = (-\infty, \frac{1}{3})$; $Im(h) = \Re$

3. Um estudo com um grupo de vestibulandos indica que a função $f(t) = 9e^{-\frac{t}{3}} + 1$, com t > 0, é a quantidade do conteúdo de Geometria que um aluno consegue relembrar decorridas t semanas após o estudo. A função g, que expressa o tempo t em função da quantidade de conteúdo que o aluno consegue relembrar, é a inversa da função f. Determine g.

R.:
$$g(t) = -3 \ln \left(\frac{t-1}{9} \right)$$

4. Determine o domínio das funções:

a)
$$f(x) = \sqrt{\log_2 \left(\log_{\frac{1}{2}} x\right)}$$
 R.: (0,1/2]

b)
$$f(x) = e^{\sqrt{1-x^2} \ln(x^2 - 3x + 4))}$$
 R.: (-1,1)

c)
$$g(x) = \frac{1}{\sqrt{\ln(1+x^2)}}$$
 R.: \Re^*

d)
$$h(x) = \frac{\ln(x^2 - 3x + 2)}{\sqrt{e^x - 1}}$$
 R.: $(0,1) \cup (2,+\infty)$

5. Resolva o sistema
$$\begin{cases} \log_2 x + \log_4 y = 1 \\ \log_9 x + \log_3 y = 1 \end{cases}$$

6. Resolva o sistema
$$\begin{cases} 3^{\log_3(x+y)} = 2^{\log_{\frac{1}{2}}(x-y)} \\ \log_{\frac{1}{2}} x + \log_{\frac{1}{2}} y = -\frac{1}{2} \end{cases}$$

R.:
$$\{(\sqrt{2},1);(-\sqrt{2},-1)\}$$

7. Classifique as funções abaixo como pares, ímpares, ou nenhum dos dois casos:

a)
$$f(x) = \ln(x + \sqrt{x^2 + 1})$$

b)
$$g(x) = \ln\left(\frac{1+u}{1-u}\right)$$

c)
$$h(x) = \frac{e^x - e^{-x}}{2}$$

R.: apenas c) é ímpar, a) e b) nenhum dos casos

- 8. Determine o valor do produto $(\log_2 3) \cdot (\log_3 4) \cdot (\log_4 5) \cdots (\log_{63} 64)$. R.: 6
- 9. Considere a função $f(x) = 1 3\log_{\frac{1}{2}}(1 2x)$. Determine a expressão de f^{-1} e a seguir construir num mesmo sistema de eixos os gráficos de f e f^{-1} .

R.:
$$f^{-1}(x) = \frac{1}{2} - \left(\frac{1}{2}\right)^{\frac{4-x}{3}}$$

- 10. Analise se as afirmativas abaixo são verdadeiras ou falsas e justifique sua resposta:
 - () A função $f(x) = \log_{\frac{1}{2}}(x-5)$ é decrescente e seu gráfico intercepta o eixo das abscissas no ponto P(6,0).
 - () A função $g(x) = \left(\frac{1}{2}\right)^{x-5}$ é a inversa da função $f(x) = \log_{\frac{1}{2}}(x-5)$.
 - () A imagem da inversa da função $f(x) = \ln(2x 1)$ é \Re .
 - () O domínio da função $h(x) = \log_{x-2} (8-2^x)$ é $(-\infty,3)$.

R.: V, F, F, F