Exercises in Marine Ecological Genetics

09. DNA barcoding

- Extract barcodes from Sanger reads
- Match sequence to BOLD database
- Evaluate id quality using genetic distances

Martin Helmkampf

https://github.com/mhelmkampf/meg25

Updated, but may be subject to change

Class	Date	Topics	Script
01	Apr 11	Introduction, setup	01_intro.R
_	Apr 18	Good Friday	
02	Apr 25	Hardy-Weinberg equilibrium	02_hwe.R
03	May 02	Population structure I	03_popst.R
04	May 09	Genome sequencing and assembly	04_asm.sh
05	May 16	Variant calling and SNPs	05_vcal.sh
06	May 23	Population genomics and genetic diversity	06_gdiv.sh
_	May 30	Himmelfahrt break	
07	Jun 06	Population structure II	07_clust.sh
_	Jun 13	Selection	08_sel.R
08	Jun 20	Student presentations – no exercises	
09	Jun 27	DNA barcoding	09_barcode.sh
10	Jul 04	Metabarcoding / eDNA	
11	Jul 11	Introduction to phylogenetics	

DNA barcoding

- Method of species identification using short, standardized gene region (COI, cytb, 16S ...)
- Barcode is compared to reference sequence database to find closest match

Applications

- Identify species from parts or life stages (detect food fraud, wildlife trafficking)
- Determine species boundaries (complement traditional taxonomy)
- Analyze whole communities (biodiversity surveys, microbial ecology: metabarcoding)

COI barcode

Approx. 650 bp in 5' region of cytochrome c oxidase subunit I (COI)

>MN604318.1 Oncorhynchus keta cytochrome c oxidase subunit I gene, complete cds; mitochondrial GTGGCAATCACACGATGATTCTTCTCAACCAACCACAAAGACATTGGCACCCTCTATTTAGTATTTGGTGCCTGAGCCGGGATAGTAGGCACCGCCCTG AGCCTACTAATTCGGGCAGAACTAAGCCAGCCAGGCGCTCTTCTAGGGGATGACCAGATCTACAATGTAATCGTTACAGCCCATGCCTTCGTTATAATT ATAAGCTTCTGACTCCTACCTCCGTCCTTCCTCCTCCTTCTTCATCTGGAGTTGAAGCCGGCGCTGGTACCGGGTGGACAGTTTATCCCCCCTCTA ACGACCATTATCAACATAAAACCCCCAGCTATTTCTCAGTACCAAACCCCGCTTTTTGTCTGAGCTGTACTAATCACTGCTGTACTTCTACTATTATCA CAACACCTCTTTTGATTCTTCGGTCACCCAGAGGTCTATATTCTGATCCTCCCAGGCTTTGGTATAATTTCACATATCGTTGCATATTACTCTGGTAAG AAAGAACCTTTCGGGTACATAGGAATAGTGTGAGCTATAATAGCCATCGGCTTGTTAGGATTTATCGTTTGAGCCCACCACATATTTACTGTCGGGATG GACGTGGACACTCGTGCCTACTTTACATCTGCCACCATAATTATCGCTATCCCCACAGGAGTAAAAGTATTTAGCTGACTAGCTACACTGCACGGAGGC TCGATCAAATGAGAGACACCACTTCTCTGAGCCCTAGGATTTATCTTCCTATTTACAGTGGGCGGATTAACGGGCATCGTCCTTGCTAACTCCTCATTA GACATTGTTTTACATGACACTTATTACGTAGTCGCCCATTTCCACTACGTACTCTCAATAGGAGCTGTATTTGCCATTATGGGCGCTTTCGTACACTGA TTCCCCCTATTCACAGGGTACACCCTTCACAGCACATGAACCAAAATCCATTTTGGAATTATATTTATCGGTGTAAATTTAACCTTTTTCCCACAGCAT TTCCTAGGCCTCGCAGGGATACCACGACGGTACTCTGACTACCCGGACGCCTACACGCTATGAAACACTGTATCCTCAATCGGATCCCTTGTCTCCTTA GTAGCTGTAATTATGTTCCTATTTATTCTTTGAGAGGCTTTTGCTGCCAAACGAGAAGTAGCATCAATCGAAATAACTTCAACAAACGTAGAATGACTA CACGGATGCCCCCCCCCCCCCCACCACACATTCGAGGAACCAGCATTTGTCCAAGTACGAACGTACTAA

Sanger sequencing

Estevezj, CC BY-SA 3.0

#fischdetektive

Where does our seafood come from, and is it labeled correctly?

Citizen science project
at GEOMAR in 2017 with over
700 participants (10–14 years)

Thorsten Reusch, GEOMAR

G A T G T T C G A A
G A T C - - - G A A
G A C C - T C G - T

Arranges nucleotide or amino acid sequences so that the number of mismatches are minimized

- Accomplished by introducing gaps (–), which represent insertions or deletions (indels) /
 account for sequence length differences due to mutations over time
- Reveals evolutionary or functional relationships between sequences (e.g. homology)
- Key to variant calling, sequence assembly, species identification and phylogenetics
- Computationally complex, often requires heuristic solutions

Barcode Index Number (BIN)

- Clusters of similar COI barcodes
- Clustering is based on genetic similarity, independent of formal taxonomy
- Represent operational taxonomic units (OTUs) that often correspond to species
- Enable species identification and biodiversity assessments

Uncorrected or *p*-distance:

Proportion of nucleotides at which two sequences differ

$$p = 13 / 50 = 0.26$$

Does not correct for multiple substitutions (repeated mutations of the same site) or transition / transversion bias (as K2P distance, Kimura 1980)

Barcode gap

Comparing genetic distances within BIN and to nearest neighbor (NN) BIN

100	Within-BIN NN-Oncorhynchus g
80	
60	
40	
20	
0	
(0.2 0.8 1.4 2 2.6 3.2 3.8 4.4 5 5.6 6.2 6.8 1.4 8 8.6 Pairwise Distance (%)

Large barcode gap

Oncorhynchus keta

Comparison	Typical p-distance (COI)
Within species	< 2 %
Between species	> 2–3 %
Between genera	10–20 %

Small barcode gap *Gadus chalcogrammus*

#fischdetektive results

Mislabeling seems to be only a moderate problem in Germany in frozen and fresh fish (but may be higher in Sushi-grade fish and processed fish products)

Portable 3rd gen sequencing

PhD project: Build database of the fish fauna in the Western Indian Ocean to enable biodiversity surveys / fisheries monitoring using eDNA

Oxford Nanotechnologies MinION

whatech.com

Cretus Joseph Mtonga

blogs.nature.com


```
seqkit subseq -r start:end input.fas > output.fas  # trim sequence

seqkit seq -r -p input.fas > output.fas  # reverse complement

merger -asequence forward.fas -bsequence reverse.fas ... -outseq consensus.fas
```

- Accurate barcodes like COI can be obtained from high-quality Sanger reads after careful processing, including trimming and consensus formation
- Matching to a reference database like BOLD allows to assign samples to species,
 but results depend on sequence quality, database completeness, and species
- Identification reliability may be assessed using sequence similarity and genetic distance to nearest-neighbor ("barcode gap")

Course evaluation — please participate!

https://elearning.uni-oldenburg.de/plugins.php/unizensusplugin/show?cid=3660d16e8eb3daf479389cf8233c12fb