Corona-Vis: Covid-19 around the world

Expansion of COVID-19

New York Times, covid-19 China.

Expansion of COVID-19

New York Times, covid-19 EEUU.

Prediction basic reproductive ratio (R) through time

Source: https://ncase.me/covid-19/

Prediction basic reproductive ratio (R) through time

Source: https://ncase.me/covid-19/

Estimate real-time Rt using a Bayesian approach with Gaussian noise.

$$\frac{dS}{dt} = -\beta \frac{S}{N} I \quad \frac{dI}{dt} = \beta \frac{S}{N} I - \gamma I,$$

Where I is the average number of infectious (rate), S is average number of susceptibles at time t (k)

So we have the bayes rule having seen new cases, we believe the distribution Rt of is equal to:

$$P(R_t|k) = rac{P(k|R_t) \cdot P(R_t)}{P(k)}$$

- The likelihood of seeing k new cases given Rt times ...
- The **prior** beliefs of the value of without the data ...
- divided by the probability of seeing this many cases in general

Source: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0002185

Estimate real-time Rt using a Bayesian approach with Gaussian noise.

$$\frac{dS}{dt} = -\beta \frac{S}{N} I \quad \frac{dI}{dt} = \beta \frac{S}{N} I - \gamma I,$$

So, to estimate today's prior P(Rt) we use yesterday's prior P(Rt-1) assuming that Rt is a gaussian distribution with center in Rt-1.

$$P(R_t|R_{t-1}) = N(R_{t-1},\sigma)$$

$$P(R_1|k_1) \propto P(R_1) \cdot \mathcal{L}(R_1|k_1)$$

On day two:

$$P(R_2|k_1,k_2) \propto P(R_2) \cdot \mathcal{L}(R_2|k_2) = \sum_{R_1} P(R_1|k_1) \cdot P(R_2|R_1) \cdot \mathcal{L}(R_2|k_2)$$

Each new arrival will modeled by continuous distribution poisson like:

$$P(k|\lambda) = \frac{\lambda^k e^{-\lambda}}{k!}$$

Given an average arrival rate of λ new cases per day, the probability of seeing k new cases

Finding relationship between Rt and λ , so We have $P(\lambda_t|k_t)$ which is parameterized by λ but we were looking for $P(k_t|R_t)$

So, calculating the derivation we have $\lambda=k_{t-1}e^{\gamma(R_t-1)}$, where γ is the reciprocal of the serial interval (with value of 7 for Covid-19*).

Source: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0002185

Since we know every new case count on the previous day, we can now reformulate the likelihood function as a Poisson parameterized by fixing k and varying Rt, we have:

$$\lambda = k_{t-1} e^{\gamma(R_t-1)}$$
 $P\left(k|R_t
ight) = rac{\lambda^k e^{-\lambda}}{k!}$

So we calculate the likelihood to get the best $m{\sigma}$, tha maximizes k: $P(k|\sigma)$, that is maximizes P(k).

$$P(k) = P(k_0, k_1, \dots, k_t) = P(k_0)P(k_1)\dots P(k_t)$$

Using Bayes to calculate P(kt), we have:

$$P(R_t|k_t) = \frac{P(k_t|R_t)P(R_t)}{P(k_t)} \quad P(k_t, R_t) = P(k_t|R_t)P(R_t) \quad P(k_t) = \sum_{R_t} P(k_t|R_t)P(R_t)$$

Since we know every new case count on the previous day, we can now reformulate the likelihood function as a Poisson parameterized by fixing k and varying Rt, we have:

$$\lambda = k_{t-1} e^{\gamma(R_t-1)}$$
 $P\left(k|R_t
ight) = rac{\lambda^k e^{-\lambda}}{k!}$

Likelihood:

$$L(P(k)) = \prod P(k_0)P(k_1)\dots P(k_t)$$

Maximizes the likelihood is the same as minimizing "negative log likelihood":

$$log(L(P(k))) = \sum_{i=0}^{t} log(P(k_i))$$

Since we know every new case count on the previous day, we can now reformulate the likelihood function as a Poisson parameterized by fixing k and varying Rt, we have:

$$\lambda = k_{t-1} e^{\gamma(R_t-1)}$$
 $P\left(k|R_t
ight) = rac{\lambda^k e^{-\lambda}}{k!}$

Maximizes the likelihood is the same as minimizing "negative log likelihood":

$$log(L(P(k))) = \sum_{i=0}^{t} log(P(k_i))$$

We obtain the best σ , derivating the log of the likelihood:

$$\sigma = \sqrt{rac{1}{n}\sum(k_i - \mu)}$$

Where μ :

$$\mu = \frac{1}{n} \sum k_i$$

Source: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0002185

Confidence Interval:

$$P(Z \leq z) = 1 - lpha/2$$
 $P(Z \leq z) = 0.9$ $\phi(z) = 0.9$ $P(-z \leq rac{X - \mu}{\sigma/\sqrt{n}} \leq z) = 0.9$

Source: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0002185

Data Source

- Plataforma Nacional de Datos Abiertos, Minsa, Peru.
- Data positivo por COVID-19 -[Ministerio de Salud]

Open data from "Ministerio de Salud"

Data Source

Structure

- UUID
- Departamento
- Provincia
- Distrito
- Método
- Edad
- Sexo
- Fecha Resultado

	UUID	DEPARTAMENTO	PROVINCIA	DISTRITO	METODODX	EDAD	SEX0	FECHA_RESULTADO
0	7320cabdc1aaca6c59014cae76a134e6	LIMA	LIMA	LIMA	PCR	32.0	MASCULINO	23/05/2020
1	e81602051997ace8340bb8c18fe24c65	LIMA	LIMA	MIRAFLORES	PCR	63.0	MASCULINO	23/05/2020
2	cecdbf10074dbc011ae05b3cbd320a6f	LIMA	LIMA	LA VICTORIA	PCR	45.0	MASCULINO	23/05/2020
3	71ecb6bccb248b0bb2ac72ed51b5e979	LIMA	LIMA	CHORRILLOS	PCR	37.0	MASCULINO	23/05/2020
4	566af4276cbe9359abe93f9aa86396c3	LIMA	LIMA	LIMA	PCR	25.0	MASCULINO	23/05/2020
	**	0	122		222	222	***	11.7
123974	2549a57f71a380ee34b55354268e6c86	UCAYALI	CORONEL PORTILLO	CALLERIA	PR	30.0	FEMENINO	11/05/2020
123975	f3b32bee298af92986485f48867e163c	UCAYALI	CORONEL PORTILLO	CALLERIA	PR	46.0	MASCULINO	9/05/2020
123976	fbbaf38dee89edd2257c0c6e8f5b9123	UCAYALI	CORONEL PORTILLO	MANANTAY	PR	65.0	MASCULINO	23/05/2020
123977	be8057931a6e88bd760a101c0d2c6151	UCAYALI	CORONEL PORTILLO	CALLERIA	PR	37.0	MASCULINO	22/05/2020
123978	cdd2d9cb9abeaf9f12f82265918ededd	UCAYALI	CORONEL PORTILLO	YARINACOCHA	PR	25.0	MASCULINO	9/05/2020

Open data from "Ministerio de Salud"

Data Source

Errors:

- 11443 / 123979 wrong values.
- 0 or 1 value per district.

	UUID	DEPARTAMENTO	PROVINCIA	DISTRITO	METODODX	EDAD	SEX0	FECHA_RESULTADO
0	7320cabdc1aaca6c59014cae76a134e6	LIMA	LIMA	LIMA	PCR	32.0	MASCULINO	23/05/2020
1	e81602051997ace8340bb8c18fe24c65	LIMA	LIMA	MIRAFLORES	PCR	63.0	MASCULINO	23/05/2020
2	cecdbf10074dbc011ae05b3cbd320a6f	LIMA	LIMA	LA VICTORIA	PCR	45.0	MASCULINO	23/05/2020
3	71ecb6bccb248b0bb2ac72ed51b5e979	LIMA	LIMA	CHORRILLOS	PCR	37.0	MASCULINO	23/05/2020
4	566af4276cbe9359abe93f9aa86396c3	LIMA	LIMA	LIMA	PCR	25.0	MASCULINO	23/05/2020
	117	0	-		222	222	***	1117
123974	2549a57f71a380ee34b55354268e6c86	UCAYALI	CORONEL PORTILLO	CALLERIA	PR	30.0	FEMENINO	11/05/2020
123975	f3b32bee298af92986485f48867e163c	UCAYALI	CORONEL PORTILLO	CALLERIA	PR	46.0	MASCULINO	9/05/2020
123976	fbbaf38dee89edd2257c0c6e8f5b9123	UCAYALI	CORONEL PORTILLO	MANANTAY	PR	65.0	MASCULINO	23/05/2020
123977	be8057931a6e88bd760a101c0d2c6151	UCAYALI	CORONEL PORTILLO	CALLERIA	PR	37.0	MASCULINO	22/05/2020
123978	cdd2d9cb9abeaf9f12f82265918ededd	UCAYALI	CORONEL PORTILLO	YARINACOCHA	PR	25.0	MASCULINO	9/05/2020

Open data from "Ministerio de Salud"

CoronaVis 2.0

Case Example: Perú - Deparments

Case Example: Perú - Deparments

Case Example: Perú - Deparments

Case Example: Perú - Deparmento

Case Example: Perú - Distritos

Case Example: Perú - Districts

Case Example: Perú - Districts

Case Example: Perú - Districts

Thank you!

page.

Data Source CNN

rsna-pneumonia-detection-challenge*

Sample of simple output of our expected classifier

Source:

- * https://www.kaggle.com/c/rsna-pneumonia-detection-challenge
- https://arxiv.org/pdf/2004.04582.pdf

Visualization Problems

Visualization Problems

Visualization Problems

Show data

Show data

