Clustering of spatial scRNA-seq data

Edward Zhao

January 3, 2020

1 Ising model

1.1 Description

Let the expression y of cell i be determined by $y_i = \mu I(z_i = 1) + \epsilon_i$ with priors

$$\mu | \mu_0, \lambda_0 \sim \mathcal{N} \left(\mu_0, \lambda_0^{-1} \right)$$

$$\epsilon_i | \lambda \sim \mathcal{N} \left(0, \lambda^{-1} \right)$$

$$\lambda | \alpha, \beta \sim \text{Gamma} \left(\alpha, \beta \right),$$

and known hyperparameters

$$\mu_0 = \bar{y}$$

$$\lambda_0 = \frac{1}{100}$$

$$\alpha = 1$$

$$\beta = 0.01.$$

Then

$$y_i|z_i, \mu, \lambda \sim \mathcal{N}\left(\mu I(z_i=1), \lambda^{-1}\right).$$

The conditional posterior distributions are given by

$$\mu|\boldsymbol{y},\boldsymbol{z},\lambda \sim \mathcal{N}\left(\frac{\lambda_0\mu_0 + \lambda\sum_{i=1}^n y_i I(z_i=1)}{\lambda_0 + \lambda\sum_{i=1}^n I(z_i=1)}, \left(\lambda_0 + \lambda\sum_{i=1}^n I(z_i=1)\right)^{-1}\right)$$
(1)

$$\lambda | \boldsymbol{y}, \boldsymbol{z}, \mu \sim \text{Gamma}\left(\alpha + \frac{n}{2}, \beta + \frac{\sum_{i=1}^{n} [y_i - \mu I(z_i = 1)]^2}{2}\right).$$
 (2)

Let n be the total number of cells, arranged on a lattice. For every cell $i \in \{1, ..., n\}$, the cell has state $z_i \in \{-1, 1\}$. Using the Ising model, the energy of the lattice system is given by

$$H(z) = \frac{\gamma}{|\langle i \ j \rangle|} \sum_{\langle i \ j \rangle} z_i z_j,$$

and the probability of the system is given by

$$p(\boldsymbol{z}|\boldsymbol{y}) \propto \exp(H(\boldsymbol{z})) p(\boldsymbol{y}|\boldsymbol{z})$$

where $\langle i j \rangle$ denotes nearest neighbors on the lattice and γ controls the magnitude of the dependence between neighbors.

The Metropolis-Hastings algorithm can be used to explore the lattice space, updating the state for one cell at a time. For each new proposal z', the acceptance probability α is given by

$$\alpha(z', z) = \min \left\{ \frac{\exp(H(z')) p(y|z')}{\exp(H(z)) p(y|z)}, 1 \right\}.$$
(3)

The hyperparameters can be estimated using the following procedure:

- 1. Initialize $\mu = \bar{y}$, $\lambda = \frac{\alpha}{\beta} = 100$, $z_i = -1 \ \forall \ i \in \{1, ..., n\}$.
- 2. Given y, z, λ , sample μ from the conditional distribution given in (1).
- 3. Given y, z, μ , sample λ from the conditional distribution given in (2).
- 4. Given \mathbf{y} , $\{z_2, ..., z_n\}$, μ , λ , sample z_1 (transition from -1 to 1 or 1 to -1) with acceptance probability given by (3).
- 5. Repeat step 4 for all other indices of z.
- 6. Repeat steps 2-5 for N iterations.

1.2 Simulation

All cells on a 100 by 100 lattice are set to have state -1, except for a radius 10 circle and side length 10 square that have state 1. For this simulation $\mu = 5$ and $\lambda = 0.5$.

Figure 1: The ground truth (A) and simulated data (B).

One chain is generated for each of three values of γ : 2, 4, 6. 1000 iterations are generated, including a burn-in period of 100 iterations.

Figure 2: The left, middle, and right columns show the results for $\gamma=2, \gamma=4$, and $\gamma=6$ respectively. A-C show the average state of each cell over 900 iterations. D-F are the trace plots for μ , with the horizontal red line denoting $\mu=5$. G-I are the trace plots for λ , with the horizontal red line denoting $\lambda=0.5$