Section 1.3: Quantifiers (part 1)

Goal

In this section, we will introduce the existential quantifier \exists and the universal quantifier \forall .

Notation and Terminology

Important Note 1. We will be mostly dealing with propositions in a formal manner (i.e., symbolic) and we will transition to a more informal (i.e., complete sentences) without really pointing out the transition. The idea is that we want to be able to seamlessly go back and forth.

ransition. The idea is that we want to be able to seamlessly go back and forth.
Recall that sentences like
$x^2 - 9 = 0$
are not This is an example of an open sentence (or predicate).
Definition 2. An <i>open sentence</i> is a sentence with one or more variables such that when the variables are replaced with particular objects, it becomes a
f P is an open sentence with variables x_1, \ldots, x_n , we write
$P(x_1,\ldots,x_n)$.

Example 3.

(a) Let P(x) be the open sentence $x^2 - 9 = 0$. Explain what P(2) and P(-3) are.

(b) Let Q(x, y) denote the open sentence "x is prime and y is a multiple of 2." Find two different ordered pairs that make Q(x, y) into a true statement. How about a false statement?

Definition 4. Given an open sentence, the *universe of discourse* is the set of objects available to substitute for variables. The set of objects from the universe that turn the open sentence into a true proposition is called the *truth set*.

Example 5. Again, let $P(x): x^2 - 9 = 0$. The truth set depends on the universe. Determine the truth set for each of the following universes.

(a)
$$U = \mathbb{N} = \{1, 2, 3, 4, \ldots\}$$

(b)
$$U = \mathbb{Z} = \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\}$$

Example 7. Let $P(x): x^2 - 9 = 0$ and R(x): x = 3. For each of the following universes, determine whether P(x) and R(x) are equivalent.

(a)
$$U = \mathbb{N} = \{1, 2, 3, 4, \ldots\}$$

(b)
$$U = \mathbb{Z} = \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\}$$

The existential quantifier

Definition 8. For an open sentence P(x), the sentence $(\exists x)P(x)$ is read "there exists x such that P(x)" (or, "for some x, P(x)") and is true iff the truth set of P(x) is _____. The symbol \exists is called the *existential quantifier*.

It should be pointed out that while P(x) is an open sentence, $(\exists x)P(x)$ is actually a ______

Example 9.

(a) Take $U = \{cars\}$. Translate $(\exists x)(x \text{ is red})$ and determine its truth value.

(b) Take $U = \mathbb{R}$ = set of real numbers. Translate $(\exists x)(x^2 - 9 = 0)$ and $(\exists x)(x^2 + 1 = 0)$ and determine their truth values.

The universal quantifier

Definition 10. For an open sentence P(x), the sentence $(\forall x)P(x)$ is read "For all x, P(x)" (or, "For each/every x, P(x)") and is true iff the truth set of P(x) is ______. The symbol \forall is called the *universal quantifier*.

Example 11.

(a) Take $U = \{cars\}$. Translate $(\forall x)(x \text{ is red})$ and determine its truth value.

(b) Take $U = \mathbb{R} = \text{ set of real numbers.}$ Translate $(\forall x)(x^2 - 9 = 0)$ and $(\forall x)(x^2 + 1 = 0)$ and determine their truth values.

(c) Take $U = \mathbb{R}$ = set of real numbers. Translate $(\forall x)(x > x - 1)$ and determine its truth value.

More examples

Example 12. Let $U_1 = \{\text{mini cars}\}\$ and $U_2 = \{\text{cars}\}\$. For each universe, write a symbolic translations for the given sentences.

(a) "All minis have stripes."

(b) "Some minis have stripes."

Note 13. In general, we have:

"All
$$P(x)$$
 are $Q(x)$ ": $(\forall x)(P(x) \implies Q(x))$

"Some
$$P(x)$$
 are $Q(x)$ ": $(\exists x)(P(x) \land Q(x))$

Hidden quantifiers and abbreviations

Example 14.

- (a) "Dogs have 4 legs" really means "_____dogs have 4 legs."
- (b) "Professors wear jackets or sweaters with leather elbow pads" probably means "______ professors"

Note 15. We use the following abbreviations:

- (a) "If $x \in A$, then x has property P" can be written symbolically as $(\forall x)[(x \in A) \implies P(x)]$, but we can just abbreviate this as ______.
- (b) Similarly, "Some $x \in A$ has property P" can be written symbolically as $(\exists x)[(x \in A) \land P(x)]$, but we can abbreviate this as ______.