26. a. Describe the various types of handoff techniques with neat diagram. (OR) b.i. Explain the characteristics of cellular telephone systems. ii. Compare blocked cell cleared system and blocked cell delayed systems.	2		1
b.i. Explain the characteristics of cellular telephone systems. 5	2	1	
ii. Compare blocked cell cleared system and blocked cell delayed systems. 5			12
	3	1	4
27. a. Deduce an expression to show that path loss two ray model can be $P_L(dB) = 40 \log d - (10 \log G_t + 10 \log G_r + 20 \log h_t + 20 \log h_r)$	4	2	4
(OR) b. Explain in detail about three significant wave propagation mechanism that affect the propagation of EM waves.	4	2	4
28. a.i. Write the most important effects of small scale multipath propagation.	2	3	2
ii. Discuss about Ricean fading effect.	3	3	3
b. Explain the baseband impulse response model with relevant expression.	2	3	3
29. a. Explain the following with neat diagram (i) Selection combining (ii) Feedback combining (iii) Maximal ratio combining	2	4.	7
(OR) b. Explain the working principle of RAKE receiver in CDMA system with neat diagram.	3	4	7
30. a. Explain with necessary diagram of OFDM transceiver.	3	5	6
(OR) b. Elaborate in detail the GSM frame structure and its interfaces.	3	5	3

* * * * *

Page 4 of 4 21NF6&7-18ECC301T

		 			 		_		
75 37	- 1 1				1				
Reg No		1 1	1	II T	11				
Reg. No.						1 1		. 1	

B.Tech. DEGREE EXAMINATION, NOVEMBER 2022

Sixth and Seventh Semester

18ECC301T – WIRELESS COMMUNICATION

(For the c	andidates	admitted	from th	e academic	year	2018	-2019	to 2	2019	-20.	20
(- 0. 2.72 2.			,		2						

Note: (i) (ii)	Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet over to hall invigilator at the end of 40 th minute. Part - B should be answered in answer booklet.	shoul	d be	han	ded
Time: 2½	½ Hours	Max.	Mar	ks:	75
1.	$PART - A (25 \times 1 = 25 \text{ Marks})$ Answer ALL Questions During the handoff process in the cellular system, the margin (threshold) is given (A) $\Delta = Pr$ (Hand off) (B) $\Delta = Pr$ (Hand off) (C) $\Delta = Pr$ (SAR of the mobile) (D) $\Delta = Pr$ (cell) $-Pr$ (Base station) (D) $\Delta = Pr$ (min.usable)	Marks	BL 1	1	PO
2.	Erlang C system's probability depends up on the (A) Block calls (B) Blocked calls and delay (C) Only the delayed calls (D) Erlang B	1	1	1	4
3.	The original base station is surrounded bynew microcell. (A) 3 (B) 4 (C) 5 (D) 6	1	1	1	12
4.	In the case of cell splitting with radius if $\frac{R}{4}$, P_T is reduced bydB with newer cell. Assume 'n' is the path loss. (A) 3 n (B) 6 n (C) 4 n (D) 2 n		1	1	1
5.	In a Trunked Radio System (TRS) user is allocated a channel on a (A) Per frequency basis (B) Per channel basis (C) Per base station basis (D) Per call basis	1	1	1	4
6.	occurs when the radio path between the transmitter and receiver is obstructed by a surface that has sharp irregularities. (A) Diffraction (B) Scattering (C) Refraction (D) Reflection	1	2	2	4
7.	The Effective Isotropic Radiated Power ($EIRP$) is (A) P_tG_t (B) P_r/G_t (C) P_t/G_r (D) P_rG_t	1	1	2	4

Page 1 of 4 21NF6&7-18ECC301T

8.		a wave impinging on ground having	1	2	2	2		17.	Mutual informa	tion can also be	writte	n interms of the entropy in the	1	1	4	2
permittivity of $\varepsilon_r = 5$								channel output "	Y' and the condition	onal ou	$\frac{Y}{}$ as					
	(A) 21.09	(B) 22.09										Λ				
	(C) 23.09	(D) 24.09							(A) $I(X:Y) =$	$H(X)-H\left(\frac{Y}{Y}\right)$	(B)	$I(X:Y) = H(Y) - H\left(\frac{X}{Y}\right)$ $I(X:Y) = H(Y) + H\left(\frac{Y}{X}\right)$				
9.	model uses diffraction	to predict average signal strength at	1	1	2	2			(0)	(X)	(D)	(1)				
	street level.	1							I(X:Y) =	$H(Y)-H(\frac{Y}{T})$	(D)	$I(X \cdot Y) = H(Y) + H\left(\frac{Y}{Y}\right)$				
	(A) Okumura	(B) Walfish and Bertoni							- ()	(X)		(X,Y)				
	(C) Hata	(D) Durkin's														
	(5)	(B) Durkin b						18.		is defined as the	point a	t which the receiver power value	1	1	4	2
10	The effective aperture is related for	the physical size of the following	1	2	2	4						er value relates to minimum SNR		•		
10.	(A) Antenna	(B) Mobile							within a cellular		r					
	(C) System	(D) Mobile user								pacity	(B)	Ergodic capacity				
	(C) System	(D) Woone user								pacity		Outage probability				
11	The envelope of sum of two quadra	tuma Canagian maiaa falla	1	1	3	3			(c) Chamier ou	paorty		outing producting				
11.	-		•	•	-	5		10	Which of these is	s necessary condit	ion for	optical power allocation?	1	1	4	2
	(A) Nakagami	(B) Rayleigh						17.				Channel state information				
	(C) Inverse Gaussian	(D) Gamma							constant	ransmit power	15 (D)	known at the transmitter				
10	The		1	1	2	2				stata informatio	m (D)	Increased transmit power				
12.	The power delay profile helps deter	•	1	1	٥	3			known at th		лі (D)	increased transmit power				
	(A) Small scale delay	(B) RMS delay spread							KHOWH at II	ie receiver						
	(C) Minimum delay spread	(D) Excess Doppler spread						20	DAVE receiver	Mana comomoto		to amorpide the time chifted	1	1	4	2
10			1	1	2	2		20.				to provide the time shifted	•	•	•	_
13.		s and scatters in the channel create a	1	1	3	3			version of the sig		(D)	E1:				
		that dissipated the signal energy in							(A) IF receiver		` '	Equalizer				
	amplitude, phase and time is known								(C) Correlation	receiver	(D)	Channel				
	(A) Multipath propagation	(B) Doppler effect						21			C4:		1	1	5	3
	(C) Line of sight	(D) Doppler shift						21.		ages the switching			•	•	,	5
1.4	71								(A) ESS		` ,	OSS				
14.		to determine the power delay profile	1	1	3	2			(C) MSC		(D)	NSS				
	directly							22	1	401-00 -000 -£41- 1-	1 - CC		1	1	5	3
	(A) Direct RF pulse system							22.		takes care of the ha		N. 6-1-11-	•	-	5	2
	(C) Spectrum sliding	(D) Spread spectrum sliding	•						(A) BSC			Mobile				
		correlator							(C) BS		(D)	BTS				
1.5	Dandan framen and 1-1-4	t	1	1	2	2		23.	incres	ages required trons	mission	n bandwidth operation of OFDM.	1	1	5	3
13.	Random frequency modulation oc	curs due to varyingon	1	1	3	3		43.	(A) Cyclic prefi			QAM			-	_
	different multipath signals.	(D) F 1							(C) ISI	IX.	. ,					
	(A) Doppler shift	(B) Echoes							(C) 131		(D)	CDMA				
	(C) Time interval	(D) Doppler spread						24	In anodroture me	dulation have man	ur ahan	male are used for transmission?	1	1	5	6.
1.6	TT 1 1 CATE 1		1	1	4	7		2 1 .		dulation flow man	·	nels are used for transmission?	•	•	v	Ů
16.	The channel SNR, the power x	(i) divided by the power in $n(i)$, is	920	1	4	1			(A) 2		(B)					
	constant given by								(C) 6		(D)	0				
	(A) P	(B) P						25	O 4h f	.1 1:1. 41	1.4-	-t	1	1	5	6
	$\gamma = \frac{P}{N_0 B}$	(B) $\gamma = \frac{P}{2N_0B}$						25.			uata	stream is encoded using rate	*	,	5	J
	(C) PN_0	(D) $2P$								nvolutional code.	(D)	3				
	$\gamma = \frac{PN_0}{2B}$	(D) $\gamma = \frac{2P}{N_0 B}$					40		(A) $\frac{1}{4}$		(B)	3				
	2D	1V 0 B							4		<i>~</i> .	4				
									(C) 1		(D)	i				