Pattern Recognition and Machine Learning

Preface				vii
Mathematical notation				хi
Contents				xiii
1	Intr	oductio	o n	1
	1.1	Examp	ple: Polynomial Curve Fitting	4
	1.2	Probal	bility Theory	12
		1.2.1	Probability densities	17
		1.2.2	Expectations and covariances	19
		1.2.3	Bayesian probabilities	21
		1.2.4	The Gaussian distribution	24
		1.2.5	Curve fitting re-visited	28
		1.2.6	Bayesian curve fitting	30
	1.3	Model	Selection	32
	1.4	The Ci	urse of Dimensionality	33
	1.5	Decisi	on Theory	38
		1.5.1	Minimizing the misclassification rate	39
		1.5.2	Minimizing the expected loss	41
		1.5.3	The reject option	42
		1.5.4	Inference and decision	42
		1.5.5	Loss functions for regression	46
	1.6	Inform	nation Theory	48
		1.6.1	Relative entropy and mutual information	55
Exercises				

xiv CONTENTS

2	Prol	bability	Distributions	67
	2.1	•	Variables	68
		2.1.1	The beta distribution	71
	2.2	Multin	omial Variables	74
		2.2.1	The Dirichlet distribution	76
	2.3	The Ga	aussian Distribution	78
		2.3.1	Conditional Gaussian distributions	85
		2.3.2	Marginal Gaussian distributions	88
		2.3.3	Bayes' theorem for Gaussian variables	90
		2.3.4	Maximum likelihood for the Gaussian	93
		2.3.5	Sequential estimation	94
		2.3.6	Bayesian inference for the Gaussian	97
		2.3.7	Student's t-distribution	102
		2.3.8	Periodic variables	105
		2.3.9	Mixtures of Gaussians	110
	2.4		xponential Family	113
		2.4.1	Maximum likelihood and sufficient statistics	116
		2.4.2	Conjugate priors	117
		2.4.3	Noninformative priors	117
	2.5		arametric Methods	120
		2.5.1	Kernel density estimators	122
		2.5.2	Nearest-neighbour methods	124
	Exe	_		127
3	Tim	oon Mo	dels for Regression	137
3	3.1		r Basis Function Models	138
	5.1	3.1.1	Maximum likelihood and least squares	140
		3.1.2	Geometry of least squares	143
		3.1.2	Sequential learning	143
		3.1.4	Regularized least squares	144
		3.1.5	Multiple outputs	146
	3.2		Bias-Variance Decomposition	147
	3.3		sian Linear Regression	152
	٥.5	3.3.1	Parameter distribution	152
		3.3.2	Predictive distribution	156
		3.3.3	Faujvalent kernel	159
	3.4		Equivalent kernel	161
	3.5	The F		165
	٥.5	3.5.1	Evidence Approximation	166
		3.5.2	Maximizing the evidence function	168
		3.5.3	Effective number of parameters	170
	3.6		tations of Fixed Basis Functions	170
		ercises	autons of Fixed Dasis Functions	173

			CONTENTS	3	χV
4	Liı	near Me	odels for Classification		179
	4.1		riminant Functions		181
		4.1.1	Two classes		181
		4.1.2	Multiple classes		
		4.1.3	Least squares for classification		184
		4.1.4	Fisher's linear discriminant		186
		4.1.5	Relation to least squares		189
		4.1.6	Fisher's discriminant for multiple classes		191
		4.1.7	The perceptron algorithm		192
	4.2		abilistic Generative Models		196
		4.2.1	Continuous inputs		198
		4.2.2	Maximum likelihood solution		200
		4.2.3	Discrete features		202
		4.2.4	Exponential family		202
	4.3		abilistic Discriminative Models		202
	7.5	4.3.1	Fixed basis functions		203
		4.3.2	Logistic regression		204
		4.3.3	Iterative reweighted least squares		203
		4.3.4	Multiclass logistic regression		207
		4.3.5	Probit regression		210
		4.3.6	Canonical link functions		210
	4.4		Laplace Approximation		212
	4.4	4.4.1	Model comparison and BIC		216
	4.5		sian Logistic Regression		217
	4.5	4.5.1	Laplace approximation		217
		4.5.1	Predictive distribution		217
	Evo	rcises	Fredictive distribution		220
	Exe	icises			220
5	Nei	ıral Ne	tworks		225
	5.1	Feed-	-forward Network Functions		227
		5.1.1	Weight-space symmetries		231
	5.2	Netw	ork Training		232
		5.2.1	Parameter optimization		236
		5.2.2	Local quadratic approximation		237
		5.2.3	Use of gradient information		239
		5.2.4	Gradient descent optimization		240
	5.3	Error	Backpropagation		241
		5.3.1	Evaluation of error-function derivatives		242
		5.3.2	A simple example		245
		5.3.3	Efficiency of backpropagation		246
		5.3.4	The Jacobian matrix		247
	5.4	The F	Iessian Matrix		249
	•	5.4.1	Diagonal approximation		250
		5.4.2	Outer product approximation		251
		5.4.3	Inverse Hessian		252

xvi CONTENTS

		5.4.4	Finite differences
		5.4.5	Exact evaluation of the Hessian
		5.4.6	Fast multiplication by the Hessian
	5.5	Regul	arization in Neural Networks
		5.5.1	Consistent Gaussian priors
		5.5.2	Early stopping
		5.5.3	Invariances
		5.5.4	Tangent propagation
		5.5.5	Training with transformed data
		5.5.6	Convolutional networks
		5.5.7	Soft weight sharing
	5.6	Mixtu	re Density Networks
	5.7	Baves	sian Neural Networks
		5.7.1	Posterior parameter distribution
		5.7.2	Hyperparameter optimization
		5.7.3	Bayesian neural networks for classification
	Exer	cises	
			201
6	Ker	nel Me	thods 291
	6.1	Dual	Representations
	6.2	Const	ructing Kernels
	6.3	Radia	ll Basis Function Networks
		6.3.1	Nadaraya-Watson model
	6.4	Gauss	sian Processes
		6.4.1	Linear regression revisited
		6.4.2	Gaussian processes for regression
		6.4.3	Learning the hyperparameters
		6.4.4	Automatic relevance determination
		6.4.5	Gaussian processes for classification
		6.4.6	Laplace approximation
		6.4.7	Connection to neural networks
	Exe	rcises	
_	~		
7	_		rnel Machines 325
	7.1	Maxi	mum Margin Classifiers
		7.1.1	Overlapping class distributions
		7.1.2	Relation to logistic regression
		7.1.3	Multiclass SVMs
		7.1.4	SVMs for regression
	70	7.1.5	Computational learning theory 344
	7.2	Kelev	ance vector Machines
		7.2.1	RVM for regression
		7.2.2	Analysis of sparsity
	r	7.2.3	RVIVI for classification
	Exe	rcises	357

				CONTENTS		xvii
8	Gra	nhical	Models			359
Ü	8.1	_	ian Networks			360
	0.1	8.1.1	Example: Polynomial regression			362
		8.1.2				365
			Generative models		• •	
		8.1.3	Discrete variables		• •	366
	0.0	8.1.4	Linear-Gaussian models		• •	370
	8.2		tional Independence		• •	372
		8.2.1	Three example graphs		• •	373
		8.2.2	D-separation		• •	378
	8.3		ov Random Fields		• •	383
		8.3.1	Conditional independence properties .			383
		8.3.2	Factorization properties			384
		8.3.3	Illustration: Image de-noising			387
		8.3.4	Relation to directed graphs			390
	8.4	Infere	nce in Graphical Models			393
		8.4.1	Inference on a chain			394
		8.4.2	Trees			398
		8.4.3	Factor graphs			399
		8.4.4	The sum-product algorithm			402
		8.4.5	The max-sum algorithm			411
		8.4.6	Exact inference in general graphs			416
		8.4.7	Loopy belief propagation			417
		8.4.8	Learning the graph structure			418
	Exer	cises .				418
9	Mix	ture M	odels and EM			423
	9.1		ans Clustering			424
	7. x	9.1.1	Image segmentation and compression			428
	9.2		res of Gaussians			430
	7.2	9.2.1	Maximum likelihood			432
		9.2.2	EM for Gaussian mixtures		• •	435
	9.3				• •	439
	9.5	9.3.1			• •	441
		9.3.1	Relation to <i>K</i> -means		• •	443
		9.3.2	Mixtures of Bernoulli distributions			444
		9.3.4				448
	0.4		EM for Bayesian linear regression			450
	9.4		M Algorithm in General			
	Exer	cises .			• •	455
10			te Inference			461
	10.1		ional Inference			462
			Factorized distributions			464
		10.1.2	Properties of factorized approximations			466
		10.1.3				470
			Model comparison			473
	10.2	Illustra	ation: Variational Mixture of Gaussians			474

xviii CONTENTS

			Variational distribution	
		10.2.2	Variational lower bound	-
		10.2.3	Troublive delibity	82
		10.2.4	Determining the number of components 48	83
			Induced factorizations	85
	10.3	Variati	ional Linear Regression	86
				86
		10.3.2	Predictive distribution	88
		10.3.3	Lower bound	89
	10.4			90
			Variational message passing	91
	10.5			93
	10.6	Variati	ional Logistic Regression	98
				98
				00
				02
	10.7			05
				11
				13
	Exer			17
11	San	pling N	Methods 5	23
	11.1	Basic	Sampling Algorithms	26
		11.1.1	Standard distributions	26
			Rejection sampling	28
		11.1.3	Adaptive rejection sampling	30
		11.1.4	Importance sampling	32
		11.1.5	Sampling-importance-resampling	34
		11.1.6	Sampling and the EM algorithm	36
	11.2	Mark	ov Chain Monte Carlo	37
		11.2.1		539
		11.2.2		541
	11.3	Gibbs	s Sampling	542
	11.4	Slice	Sampling	546
	11.5	The F	Hybrid Monte Carlo Algorithm	548
		11.5.1	Dynamical systems	548
				552
	11.6	Estin	nating the Partition Function	554
	Exe	rcises		556
_				
12	Co			559
	12.1	Princ	cipal Component Analysis	561
		12.1.	Maximum variance formulation	561
		12.1.2	2 Minimum-error formulation	563
		12.1.3	3 Applications of PCA	565
		12.1.4	4 PCA for high-dimensional data	569

CONTENTS	xix			
12.2 Probabilistic PCA	570			
12.2 Probabilistic PCA				
12.2.1 Maximum likelihood PCA				
12.2.3 Bayesian PCA				
12.2.4 Factor analysis				
12.3 Kernel PCA	586			
12.4 Nonlinear Latent Variable Models	591			
12.4.1 Independent component analysis				
12.4.2 Autoassociative neural networks				
12.4.3 Modelling nonlinear manifolds				
Exercises				
13 Sequential Data	605			
13.1 Markov Models				
13.2 Hidden Markov Models				
13.2.1 Maximum likelihood for the HMM				
13.2.2 The forward-backward algorithm				
13.2.3 The sum-product algorithm for the HMM				
13.2.4 Scaling factors				
13.2.5 The Viterbi algorithm				
13.2.6 Extensions of the hidden Markov model				
13.3 Linear Dynamical Systems	635			
13.3.1 Inference in LDS	638			
13.3.2 Learning in LDS				
13.3.3 Extensions of LDS				
13.3.4 Particle filters				
Exercises	646			
14 Combining Models	653			
14.1 Bayesian Model Averaging				
14.2 Committees				
14.3 Boosting				
14.3.1 Minimizing exponential error				
14.3.2 Error functions for boosting				
14.4 Tree-based Models				
14.5 Conditional Mixture Models				
14.5.1 Mixtures of linear regression models				
14.5.2 Mixtures of logistic models				
14.5.3 Mixtures of experts				
	677			
Appendix A Data Sets				
Appendix B Probability Distributions	685			
Appendix C Properties of Matrices 69				

XX CONTENTS

Appendix D	Calculus of Variations	703
Appendix E	Lagrange Multipliers	707
References		711
Index		729