I-07 (ANSYS)

Формулировка задачи:

Дано: Консольный стержень внецентренно нагружен двумя осевыми силами.

Puc. 1.

2-a

3-a

4-F

4-F

A

E — модуль упругости материала/

Найти:

- 1) Главные осевые моменты инерции поперечного сечения I_X и I_Y ;
- 2) Внутренние изгибающие моменты M_X и M_Y в сечениях бруса;
- 3) Эпюру распределения нормальных напряжений σ в сечениях бруса.

Аналитический расчёт (см. <u>I-07</u>) даёт следующие решения:

Задача данного примера: при помощи ANSYS Multyphisics получить эти же результаты методом конечных элементов.

http://www.tychina.pro/библиотека-задач-1/

Предварительные настройки:

Для решения задачи используется ANSYS Multiphysics 14.0:

С меню М_М и U_М работают мышью, выбирая нужные опции.

В окно С_Р вручную вводят текстовые команды, потом Enter.

Меняем чёрный цвет фона на белый следующими действиями:

U M > PlotCtrls > Style > Colors > Reverse Video

Оставить в меню пункты, относящиеся только к прочностным расчётам:

 ${\tt M_M}$ > Preferences > Отметить "Structural" > OK

Нумеровать ключевые точки, линии, поверхности твердотельной модели:

```
U_M > PlotCtrls > Numbering > Отметить KP, LINE, AREA > OK
```

Будем работать с локальными системами координат. Прорисовывать их:

```
U_M > PlotCtrls > Symbols >
CS устанавливаем в положение"on"
> OK
```

Для большей наглядности увеличим размер шрифта:

```
U_M > PlotCtrls > Font Controls > Legend Font > «Размер» на «22» > OK
U_M > PlotCtrls > Font Controls > Entity Font > «Размер» на «22» > OK
```

Предварительные настройки выполнены, можно приступать к решению задачи.

http://www.tychina.pro/библиотека-задач-1/

Решение задачи:

Приравняв F и a к единице, результаты получим в виде чисел, обозначенных на puc. 1. синим цветом.

Длина стержня l на результат не влияет; из эстетических соображений зададим её, как 20a. Задача статически определима, то есть, модуль упругости первого рода E материала стержня на результат так же не влияет; зададим его единицей, а коэффициент Пуассона v во избежание наличия поперечных деформаций приравняем к нулю (как у пробки).

Для создания плоского поперечного сечения понадобятся элементы из жёсткого материала. Для него модуль упругости первого рода $\it Erigid$ выберем на несколько порядков больше, чем $\it E$.

№		Действие	Результат
	_	етры расчёта— базовые величины задачи: neters > Scalar Parameters >	Scalar Parameters Items
	F=1	> Accept >	ERIGID = 100000 F = 1
	a=1	> Accept >	L = 20 NU = 0
1	1=20*a	> Accept >	
	E=1	> Accept >	Selection
	Erigid=1e5	> Accept >	
	nu=0	> Accept >	
	> Close		Accept Delete Close Help

№	Действие	Результат	
	Поперечное сечение		
4	Координаты точек поперечного сечения: Построить поверхность, размерами и формой повторяющюю заданное поперечное сечение, можно различными способами. Проще всего построить два прямоугольника и произвести логическую операцию их наложения, чтобы поверхности не располагались в несколько слоёв. Для того, чтобы построить прямоугольник нужно знать координаты двух его противоположных углов в декартовой системе координат ХҮZ. Как именно по отношению к началу координат будет располагаться поверхность, не важно. Например, так, как показано на рис. 1. Тогда координаты углов прямоугольников будут следующими:	Puc. 2. $(a, 8 \cdot a)$ $(-a, 0)$ $(3 \cdot a, 0)$	

No	Действие	Результат	
	Создаём на конце стержня жёсткое плоское сечение: Выделяем узлы торца: U_M > Select > Entities > В Select Entities установить "Nodes" и "By Location" Верхний селектор установить на "Z coordinates" В окошке Min, Max пишем l Нижний селектор установить на "From Full" > ОК	NODES MAT NUM	
	Прорисовываем выделенные узлы: U_M > Plot > Nodes	1 E-N	
	Элементы, которые касаются выделенных узлов:		
17	U_M > Select > Entities > B Select Entities установить "Nodes" и "Attached to" Верхний селектор установить на "Nodes" Нижний селектор установить на "From Full" > OK		
	Прорисовываем выделенные узлы и элементы: U_M > Plot > Multi-Plots		
	— Меняем выделенным элементам материал с №1 (податливый) на №2 (жёсткий): M_M > Preprocessor > Modeling > Move/Modify > Elements > > Modify Attrib > Pick All > STLOC установить "Material MAT" В окошке I1 пишем 2 > ОК Обновляем изображение: U_M > Plot > Replot	1 E-N	

№	Действие	Результат
18	Рассматриваем, что получилось — податливая балка с жёским поперечным сечением на торце: U_M > Select > Everything U_M > Plot > Multi-Plots Автоформат —	
19	Bнешние cocpedomoченные силы: M_M > Preprocessor > Loads > Define Loads > Apply > Structural > Force/Moment > On Nodes > Левой кнопкой мыши кликнуть на узел в точке A (рис.1.) > OK > Lab установить "FZ" VALUE установить "4*F" > Apply > Левой кнопкой мыши кликнуть на узел в точке B (рис.1.) > OK > Lab установить "FZ" VALUE установить "FZ" VALUE установить "FZ" VALUE установить "FZ" VALUE установить "-2*F" > OK Прорисовываем всё, что есть: U_M > Plot > Multi-Plots	1 E-N U F

Форма упругой оси нагруженной балки:

 ${\rm M_M}$ > General Postproc > Plot Results > Deformed Shape > KUND установить Def + undeformed > OK

Некоторые символы пропадают. Восстановим их:

U_M > PlotCtrls > Symbols >
Boundary condition устанавливаем "All Applied BCs"
> OK

Форма стержня до нагружения (недеформированная) изображена сеткой чёрным цветом, форма после нагружения (деформированная) изображена цветными брусочками/элементами. Прогибается вверх и ввлево, всё правильно.

21

№	Действие	Результат
22	Результаты пропечатывать в системе координат №11 главных центральных осей: м_м > General Postproc > Options for Outp > [RSYS] Results for Output установить "Local system" В окошке Local system reference no. указать 11 > OK	Options for Output Options for Output [RSYS] Results coord system Local system III [AVPRIN] Principal stress calcs [AVRES] Avg rslts (pwr grph) for Use interior data [VEFACET] Facets/element edge [SHELL] Shell results are from [LAYER] Layer results are from C Max failure crit Specified layer number [FORCE] Force results are OK Cancel Help
23	Из всех узлов модели выделяем те, которые в заделке (то есть, имеют координату z=0): Выделяем узел с координатой z=0: U_M > Select > Entities > В Select Entities установить "Nodes" и "By Location" Верхний селектор установить на «Z coordinates» В окошке Min, Max пишем 0,0 Нижний селектор установить на «From Full» > ОК Прорисовываем, что получилось: U_M > Plot > Nodes	1 NODES DEC 18 2015 MAT NUM

№	Действие	Результат	
25	Выделяем все податливые (из материала №1) конечные элементы и их узлы: Элементы: U_M > Select > Entities > В Select Entities установить "Elements" и "By Attributes" Верхний селектор установить на "Material num" В окошке Min, Max, Inc пишем 1 Нижний селектор установить на "From Full" > ОК	E-N	
	Их узлы: U_M > Select > Everything Below > Selected Elements Прорисовываем, что получилось: U_M > Plot > Multi-Plots Автоформат —		
26	Цветовая шкала будет состоять из десяти цветов: U_M > PlotCtrls > Style > Contours > Uniform Contours > NCONT пишем 10 > OK	Doublem Contours	
27	Напряжения будем смотреть на недеформированной форме: U_M > PlotCtrls > Style > Displacement Scaling > DMULT устанавливаем "0.0 (off)" > OK	DOCALI Scaling of Deplacement Deplays	

Настройка нелинейной цветовой шкалы:

U_M > PlotCtrls > Style > Contours > Non-niform Contours...

V1 пишем -1e6

V2 пишем 0

V3 пишем 1e6

> OK

30

Растянутая зона поперечного сечения окрасится в красный цвет, сжатая — в зелёный. Изменим палитру: голубой и жёлтый.

U_M > PlotCtrls > Style > Colors > Contour Colors... >

Contour Number 2 устанавливаем "голубой"

Contour Number 3 устанавливаем "жёлтый"

> OK

Видим нейтральную линию (н.л.), отделяющую растянутые зоны друг от друга. Линия НЕ проходит через центр тяжести сечения. Качественно, по сетке элементов с размерами ячеек $a \times a$, можно отметить совпадение положения нейтральной линии здесь и на $puc.\ 2$.

Сохраняем проделанную работу:

U M > File > Save as Jobname.db

Закройте ANSYS:

U M > File > Exit > Quit - No Save! > OK

После выполнения указанных действий в рабочем каталоге остаются файлы с расширениями ".BCS", ".db", ".emat", ".err", ".esav", ".full", ".log", ".mntr", ".rst", ".stat" и "SECT".

Интерес представляют ".db" (файлы модели), ".rst" (файл результатов расчёта) и файл ".SECT" (поперечное сечение), остальные файлы промежуточные, их можно удалить.