Lecture 6

Xiaoping Shi
Department of Statistics, University of Toronto
xpshi@utstat.toronto.edu

July 27, 2013

$$H_0: \theta \in \omega_0$$
 v.s. $\theta \in \omega_1$

where ω_0 is a subset of the set of all possible values of θ , ω_1 is disjoint from ω_0 . Let $\Omega = \omega_0 \cup \omega_1$.

The generalized likelihood ratio is

$$\Lambda = \frac{\max_{\theta \in \omega_0} L(\theta)}{\max_{\theta \in \Omega} L(\theta)}$$

Theorem Under smoothness conditions on pdf, the null distribution of $-2\log\Lambda$ tends to χ_d^2 as the sample size tends to infinity, where d is $\dim\Omega$ - $\dim\omega_0$.

Example 1 Let X_1, X_2, \dots, X_n denote a random sample from $N(\mu, \sigma^2)$, where σ^2 is known. We wish to test

$$H_0: \mu = \mu_0$$
 v.s. $H_1: \mu \neq \mu_0$

where μ_0 is a prescribed number.

The role of θ is played by μ . $\omega_0 = \{\mu_0\}$; there are no free parameters under ω_0 , so $\dim \omega_0 = 0$. $\omega_1 = \{\mu | \mu \neq \mu_0\}$. $\Omega = \{-\infty < \mu < \infty\}$; under Ω , μ is free, so $\dim \Omega = 1$. The generalized likelihood ratio is

$$\Lambda = \frac{\max_{\mu = \mu_0} L(\mu)}{\max_{-\infty < \mu < \infty} L(\mu)} = \frac{(1/\sqrt{2\pi})^n \exp[-\sum_{i=1}^n (X_i - \mu_0)^2/(2\sigma^2)]}{(1/\sqrt{2\pi})^n \exp[-\sum_{i=1}^n (X_i - \bar{X})^2/(2\sigma^2)]} -2\log \Lambda = \frac{n}{\sigma^2} (\bar{X} - \mu_0)^2$$

By the Theorem, $-2\log\Lambda\sim\chi_1$, which is also shown by the fact that $\sqrt{n}(-\mu_0)/\sigma\sim N(0,1)$.

The rejection region is $\frac{n}{\sigma^2}(\bar{X} - \mu_0)^2 \ge \chi_1^2(\alpha)$.