

Homework#8, Due Thursday (6/10)

- Sort the list [64, 13, 29, 32, 21, 46, 60] using
 - Exchange sort; show each pass
 - Bubble sort; show each pass
 - Merge sort; show each sublist
 - For each case, give the number of 2-number comparisons required.
- Use Newton's method to find the square root of 27 up to 2 decimal places. Use 7 as your initial guess.
- Page 204, Problem 52
- Page 216, Problem 2, 8, and 14
- Page 217, 34(a)

4

Page 218, 74(a), and 74(b)

Sorting Given a list of *n* elements, we want to sort it in "decreasing" order Element 1 2 3 4 5 6 7 8 Data 27 63 1 72 64 58 14 9

Sorting Methods

 Exchange Sort: Finds the "next" minimum by comparing and exchanging, if need be, the element in that position with the rest.

Element	1	2	3	4	5	6	7	8
Data	27	63	1	72	64	58	14	9
1st Pass	1	63	27	72	64	58	14	9
2 nd Pass	1	9	63	72	64	58	27	14
3rd Pass	1	9	14	72	64	63	58	27

403

Sorting Methods...

 Bubble Sort: The "next" maximum "bubbles" up by adjacent comparison and exchange if need be.

Element	1	2	3	4	5	6	7	8
Data	27	63	1	72	64	58	14	9
1st Pass	27	1	63	64	58	14	9	72
2 nd Pass	1	27	63	58	14	9	64	72
3 rd Pass	1	27	58	14	9	63	64	72

5

Sorting Methods...

 Merge Sort: Recursively, find two sorted sublists and merge them

Data	24	13	26	1	12	27	38	15							ı
Divide in 2	24	13	26	1		12	27	38	15						
Divide in 4	24	13		26	1		12	27		38	15				
Divide in 8	24		13		26		1		12		27		38		1
Merge 2	13	24			1	26			12	27			15	38	
Merge 4	1	13	24	26					12	15	27	38			
Merge 8	1	12	13	15	24	26	27	38							

5

Procedure to compute SQRT(*n*)

■ Given input *n* > 0 and precision *p*, computing square root of *n* amounts to finding *A* such that

$$A \times \frac{n}{A} = n$$

such that

$$\left| A - \frac{n}{A} \right| \le p$$

Example: Finding SQRT(3)

End of Iteration 1: A = 2, B = 1.5

End of Iteration 2: A = 1.75, B = 1.71

Initial: A = 1, B = 3

Procedure to compute SQRT(n)...

- Newton's Method:
 - If you have a "guess" for A, we can find a better guess as follows:

new guess =
$$\frac{1}{2} \left(\text{old guess} + \frac{n}{\text{old guess}} \right)$$

5

Procedure to compute SQRT(*n*)

Input: nOutput: \sqrt{n} $A \leftarrow 1.0$ $B \leftarrow \frac{n}{A}$ While $(A \neq B)$ $A \leftarrow \frac{A+}{2}$

End of Iteration 3: A = 1.73, B = 1.73 $A \leftarrow \frac{A+B}{2}$ $B \leftarrow \frac{n}{A}$

EndW hile Output B

5

408

SQRT(n,p) in Python

def sqrt(n,p):

Finding square root of n with precision p A = 1.0 B = n/Awhile (abs(A-B) >= p): A = (A+B)/2 B = n/A

return B

5

Finding the nth root

The principal nth root $\sqrt[n]{A}$ of a positive real number A, is the positive real solution of the equation

$$x^n = A$$

Having guess x_k the next better guess is:

$$x_{k+1} = \frac{1}{n} \left[(n-1)x_k + \frac{A}{x_k^{n-1}} \right]$$

5

Example: The GCD Function

- Given two integers *m* and *n*, not both zero, find their greatest common divisor (gcd), that is, the largest *positive integer* which evenly divides both *m* and *n*.
- Questions:
 - □ What is gcd(m,m)?
 - m
 - □ What is gcd(m,1)?
 - 1
 - □ What is gcd(m,0)?
 - \Box What is gcd(m,n) where m is evenly divisible by n?
 - n
- □ What is gcd(119,544)?

Euclid's Algorithm for GCD

- 1. Input: Positive integers m and n
- 2. Divide m by n and let r be the remainder
- 3. If *r* = 0, the algorithm terminates with *n* as the answer.
- 4. Set $m \leftarrow n$, followed by set $n \leftarrow r$, and then go to step 2.
- Is the above actually an algorithm?

Let's try m = 119 and n = 544

- 1. Divide *m* by *n* and let *r* be the remainder
- 2. If r = 0, the algorithm terminates with n as answer.
- 3. Set $m \leftarrow n$, and then set $n \leftarrow r$, and then go to step 1.
- $m = 119, n = 544, \Rightarrow r = 119$
- $m = 544, n = 119, \Rightarrow r = 68$
- $m = 119, n = 68, \Rightarrow r = 51$
- m = 68, n = 51, $\Rightarrow r = 17$
- $m = 51, n = 17, \Rightarrow r = 0$

If gcd(m,n) = 1 then m and n are said to be relatively prime.

=

Idea behind Euclid's GCD

 $m = d \times n + r$

Let gcd(m, n) = g

Then $m = a \times g$ and $n = b \times g$

 $a \times g = d \times b \times g + r$

 $r = g(a - d \times b)$

Thus g also evenly divides r.

5

Euler's Phi-Function

- Definition: For $n \ge 1$, let $\varphi(n)$ denote the number of positive integers not exceeding n that are relatively prime to n, where 1 is counted as being relatively prime to all numbers
- $\varphi(n)$ is also known as the *totient* or *indicator* function, and a number \leq and relatively prime to a given number is called a totative.
- Example
 - ϕ φ (24) = 8, and its totatives are 1, 5, 7, 11, 13, 17, 19, and 23.

5

Is the following an Algorithm?

- 1. Input: Positive integer x > 1
- 2. If x = 1 stop.
- 3. If x is even set $x \leftarrow x/2$, output x and then go to step 2.
- 4. If x is odd set $x \leftarrow 3x + 1$, output x and then go to step 2.

Input x = 7

Output: 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1.

5

© 2016 by A-H. Esfahanian. All Rights Reserved.