Test: Term 2 Test 2 (2019)

Name and chemistry	/ block:

There is a total of 40 points, and is to be completed within 60 min. Calculators and Data Booklets are allowed.

[1] 1. Which element gives the following successive ionization energy graph?

- A. B
- B. Al
- C. Sc
- D. Ga

[1] 2. Which has the most **unpaired** electrons?

- A. N^{2-}
- B. N
- C. Cu²⁺
- D. Cu

- [1] 3. Which species do not satisfy the "octet rule"?
 - A. BF₄
 - B. NF₃
 - C. PF₄⁺
 - D. CF₂
- [1] 4. Which pair of chemicals can react with one another?
 - A. $F_2 + Br_2$
 - B. F_2 + NaBr
 - C. NaF + Br₂
 - D. NaF + NaBr
- [1] 5. Which molecule has a V-shaped/bent molecular geometry?
 - A. NO
 - B. NO₂+
 - C. NO₂
 - D. N₂O
- [1] 6. Which pair of chemicals react the most vigorously?
 - A. $Li_{(S)} + LiCl_{(S)}$
 - B. Na(s) + NaCl(s)
 - C. Li(s) + HCI(aq)
 - D. Na(s) + HCl(aq)
- [1] 7. An alloy is
 - A. A homogenous mixture of two or more metals.
 - B. A heterogenous mixture of two or more metals.
 - C. A homogenous mixture of a metal with other metals or non-metals.
 - D. A heterogenous mixture of a metal with other metals or non-metals.

- [1] 8. Which functional groups contain a C=O bond?
 - I Ketone
 - II Ether
 - III Amine
 - A. I only
 - B. | & ||
 - C. | & |||
 - D. I, II, and III
 - 9. The hydrogen absorption spectra in the visible range is shown in Figure 1.

Figure 1 Hydrogen absorption spectra in visible range.

- [1] (a) Which is a suitable label for the axis?
 - A. $E(\frac{kJ}{mol})$
 - B. λ (nm)
 - C. ν (Hz)
 - D. $f(s^{-1})$
- [1] (b) The line labeled with * represents the transition:
 - A. $n=2 \rightarrow n=4$
 - B. n=2 → n=3
 - C. n=1 → n=3
 - D. $n=1 \rightarrow n=2$

- 10. The half-life of ⁶³Ni is 100 years.
- (a) How many neutrons is in an atom of $^{63}\mathrm{Ni?}$ [1]

(a)

(b) Starting with 1,000,000 atoms of ⁶³Ni in 2020, estimate the number remaining in 3020. [1]

()

11.	Hydı	razi	ne $\mathrm{N_2H_4}$ is a highly toxic, dangerously unstable compound used in s	ome rocket fuels.
	(a)	i.	Draw a Lewis structure for hydrazine $N_2H_4(\mathbf{I})$. Annotate the diagram	with bond dipoles.
		ii.	α) Identify the electron domain geometry of the nitrogen atoms.	
				α)
			β) Identify the molecular geometry of the nitrogen atoms.	
				β)
		iii.	Estimate the bond angle around a nitrogen atom.	
				iii
		iv.	Explain whether hydrazine is expected to be a polar molecule.	
	11.		(a) i.	 11. Hydrazine N₂H₄ is a highly toxic, dangerously unstable compound used in s (a) i. Draw a Lewis structure for hydrazine N₂H₄(1). Annotate the diagram ii. α) Identify the electron domain geometry of the nitrogen atoms. β) Identify the molecular geometry of the nitrogen atoms. iii. Estimate¹ the bond angle around a nitrogen atom. iv. Explain whether hydrazine is expected to be a polar molecule.

 $^{^1 \}text{Give}$ an educated guess of a single value. Do not give a range like $<360^\circ$

(b) Hydrazine decomposes to give nitrogen gas $N_{2}(g)$ and hydrogen gas $H_{2}(g)$ via the reaction

$$N_2H_4_{(I)} \longrightarrow N_2_{(g)} + 2H_2_{(g)}$$

The enthalpy of reaction ΔH_{rxn}^{\bullet} is -50.6 kJ/mol.

At SATP, 100.0 g of hydrazine is decomposed in a calorimeter surrounded by 500.0 cm³ chamber filled with water.

i. Calculate the number of moles in 100.0 g of hydrazine. [2]

.....

ii. Calculate the heat released when 100.0 g of hydrazine decomposes. (If you were unable [1] to completed the last question² you may use a value of 5.00 mol although this is not the correct answer.)

.....

iii. Deduce the temperature of the water after the hydrazine completely decomposes. (If you [2] were unable to complete the last question, you may use a value of 1.00×10^2 kJ although that is not the correct answer.)

²In other words, if you completed the last question, use that value.

[1]	iv.	State one assumption in the previous calculation, other than "no heat loss to surroundings	›".
12.	ion batt		ก-
	(a) Lith	nium exists as two stable isotopes, ⁶ Li (5%) and ⁷ Li (95% abundance).	
[1]	i.	Sketch a mass spectra for naturally occurring lithium. Label both axes.	
[1]	ii.	Calculate the relative atomic mass of lithium.	
		ii	

	p) Formulate an equation for the second ionization energy of lithium.
(0	c) Sketch a graph for the successive ionization energies of lithium. Use a logarithmic scale for energy. Label the axes.
	_
(0	Explain, giving two reasons, why lithium has lower density (0.534 g/cm ³) than beryllium (1.85 g/cm ³).
(0	Explain, giving two reasons, why lithium has lower density (0.534 g/cm ³) than beryllium (1.85 g/cm ³).
(0	Explain, giving two reasons, why lithium has lower density (0.534 g/cm ³) than beryllium (1.85 g/cm ³).
((Explain, giving two reasons, why lithium has lower density (0.534 g/cm ³) than beryllium (1.85 g/cm ³).
	Explain, giving two reasons, why lithium has lower density (0.534 g/cm³) than beryllium (1.85 g/cm³). Explain, giving two reasons, why lithium has lower density (0.534 g/cm³) than beryllium (1.85 g/cm³). Explain, using a chemical equation, why water-based fire extinguishers cannot be used to purout a lithium fire.
	g/cm³). Explain, using a chemical equation, why water-based fire extinguishers cannot be used to pu

13. Aspirin and ibuprofen are medications used to treat pain and inflammation. Aspirin's 3D structure is shown in Figure 2.

Figure 2 3D structure of aspirin.

[1] (a) Draw a **skeletal** (simplified) structural formula of aspirin.

[2] (b) State two functional groups present in aspirin. Do not include "alkane" as one of your answers.

[1] (c) Figure 3 shows the 3D structure and skeletal structure of ibuprofen.

Figure 3 Structures of ibuprofen.

Using appropriate bonds to represent the 3D shape, complete the structure at the starred * carbon.

14. Figure 4 shows the first ionization energy and electron affinity for the element sodium to potassium.

- 10 -

Figure 4 Periodic trends

By referring to their electron configurations, explain:

[1] (a) Why I.E. decreases from Mg to Al.

[1] (b) Why I.E. decreases from P to S.

[1] (c) Why I.E. increases from S to Ar.

[1] (d) Why no E.A. is available for Ar.

