I. kolo kategorie Z8

Z8-I-1

Tři kamarádky veverky spolu vyrazily na sběr lískových oříšků. Zrzečka jich našla dvakrát víc než Pizizubka a Ouška dokonce třikrát víc než Pizizubka. Cestou domů si povídaly a přitom louskaly a jedly své oříšky. Pizizubka snědla polovinu všech oříšků, které nasbírala, Zrzečka třetinu všech svých oříšků a Ouška čtvrtinu těch svých. Doma veverky zjistily, že jim dohromady zbylo 196 oříšků.

Kolik oříšků našla každá z veverek?

(M. Petrová)

Nápověda. Jakou část všech nalezených oříšků donesly veverky domů?

Možné řešení. Pokud množství oříšků, které našla Pizizubka, označíme x, potom Zrzečka našla 2x oříšků a Ouška 3x oříšků.

- Pizizubka snědla polovinu svých oříšků, zbylo jí $\frac{x}{2}$ oříšků.
- Zrzečka snědla třetinu svých oříšků, zbylo jí $\frac{2}{3}\cdot 2x = \frac{4}{3}x$ oříšků.
- Ouška snědla čtvrtinu svých oříšků, zbylo jí $\frac{3}{4} \cdot 3x = \frac{9}{4}x$ oříšků.

Všem veverkám dohromady zbylo

$$\left(\frac{1}{2} + \frac{4}{3} + \frac{9}{4}\right)x = \frac{49}{12}x$$

oříšků, což je podle zadání rovno 196. Tedy

$$\frac{49}{12}x = 196,$$

$$\frac{x}{12} = 4,$$

$$x = 48.$$

Pizizubka našla 48 oříšků, Zrzečka $2 \cdot 48 = 96$ oříšků a Ouška $3 \cdot 48 = 144$ oříšků.

Z8-I-2

Na každé stěně pravidelného osmistěnu je napsáno jedno z čísel 1, 2, 3, 4, 5, 6, 7 a 8, přičemž na různých stěnách jsou různá čísla. U každé stěny Jarda určil součet čísla na ní napsaného s čísly tří sousedních stěn. Takto dostal osm součtů, které také sečetl.

Jakých hodnot může tento výsledný součet nabývat?

(J. Zhouf)

Nápověda. Kolikrát je každé číslo započítáno do celkového součtu?

Možné řešení. Číslo na každé stěně je započítáno celkem ve čtyřech dílčích součtech (každá stěna se počítá jednou jako prostřední a třikrát jako sousední). Proto je také ve výsledném součtu každé z čísel započítáno čtyřikrát. Výsledný součet tedy nabývá hodnoty

$$4 \cdot (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8) = 4 \cdot 36 = 144$$

a to nezávisle na tom, jak byla čísla na stěnách osmistěnu napsána.

Z8-I-3

Při střelbě z luku se mimo jiné sleduje výkonnost střelce. Ta se počítá tak, že se ze všech pokusů odebere jeden nejlepší a jeden nejhorší a z hodnocení zbylých se spočítá aritmetický průměr.

Kamarádi Petr, Jirka, Michal a Zdeněk stříleli po jenom šípu ve čtyřech kolech. Každá střela byla hodnocena celým číslem od 0 do 10. V každém kole byl součet hodnocení všech chlapců 32 bodů, ale ani v jednom kole neměli žádní dva chlapci stejné hodnocení.

V následující tabulce jsou vyplněny jen některé údaje z popsaného utkání, doplňte ty chybějící. (M. Dillingerová)

	1. kolo	2. kolo	3. kolo	4. kolo	výkonnost
Petr				5	10
Jirka			9	10	7,5
Michal			5		8
Zdeněk					8,5
celkem	32	32	32	32	_

Nápověda. Začněte s Petrem.

Možné řešení. Protože výkonnost Petra byla 10, musel nastřílet v prvních třech kolech po 10 bodech. Protože součet hodnocení ve 3. kole byl 32 bodů, musel Zdeněk v tomto kole trefit 8 bodů. Protože součet hodnocení ve 4. kole byl 32 bodů, musel být součet hodnocení Michala a Zdeňka v tomto kole 17 bodů. Protože v žádném kole neměli žádní dva chlapci stejné hodnocení, mohli mít v tomto kole

- a) buď Michal 9 a Zdeněk 8 bodů,
- b) nebo Michal 8 a Zdeněk 9 bodů.

Předpokládejme možnost a) a pokusme se doplnit tabulku

	1. kolo	2. kolo	3. kolo	4. kolo	výkonnost
Petr	10	10	10	5	10
Jirka			9	10	7,5
Michal			5	9	8
Zdeněk			8	8	8,5
celkem	32	32	32	32	_

Aby výkonnost Zdeňka byla 8.5 = 17:2, musel v prvních dvou kolech trefit po 9 bodech. Aby výkonnost Michala byla 8 = 16:2 a aby v žádném kole neměl stejné hodnocení jako Zdeněk, musel v prvních dvou kolech trefit po 8 bodech. Aby součet hodnocení v 1. i 2. kole byl 32 bodů, musel Jirka v těchto dvou kolech trefit po 5 bodech. V takovém případě by však jeho výkonnost nebyla 7.5 (ale jen 7). Možnost a) proto nemohla nastat.

Předpokládejme možnost b) a pokusme se doplnit tabulku

	1. kolo	2. kolo	3. kolo	4. kolo	výkonnost
Petr	10	10	10	5	10
Jirka			9	10	7,5
Michal			5	8	8
Zdeněk			8	9	8,5
celkem	32	32	32	32	_

Aby výkonnost Jirky byla 7.5 = 15 : 2, musel v jednom z prvních dvou kol trefit 6 a ve druhém 6 nebo méně bodů. Aby výkonnost Michala byla 8 = 16 : 2 a aby v žádném kole neměl stejné hodnocení jako Petr, musel v jednom z prvních dvou kol trefit 8 a ve druhém 8 nebo 9 bodů.

Kdyby Jirka trefil 6 bodů ve stejném kole jako Michal 8, potom by Zdeněk ve stejném kole musel trefit 8 bodů (aby byl součet hodnocení v tomto kole roven 32 bodů). To by však Michal a Zdeněk měli stejné hodnocení, proto tato možnost nastat nemohla.

Jirka tedy musel trefit 6 bodů v jiném kole než Michal 8. Předpokládejme, že tak učinil v 1. kole a pokusme se doplnit tabulku (z předchozího vyplývá, že Michal v tomtéž kole musel trefit 9 bodů)

	1. kolo	2. kolo	3. kolo	4. kolo	výkonnost
Petr	10	10	10	5	10
Jirka	6		9	10	7,5
Michal	9	8	5	8	8
Zdeněk			8	9	8,5
celkem	32	32	32	32	_

Aby součet hodnocení v 1. kole byl 32 bodů, musel Zdeněk v tomto kole trefit 7 bodů. Aby výkonnost Zdeňka byla 8,5=17:2, musel ve druhém kole trefit 9 bodů. Aby součet hodnocení ve 3. kole byl 32 bodů, musel Jirka v tomto kole trefit 5 bodů. Protože 5 je menší než 6, souhlasí výkonnost Jirky se zadáním. Našli jsme jedno vyhovující řešení úlohy:

	1. kolo	2. kolo	3. kolo	4. kolo	výkonnost
Petr	10	10	10	5	10
Jirka	6	5	9	10	7,5
Michal	9	8	5	8	8
Zdeněk	7	9	8	9	8,5
celkem	32	32	32	32	_

Jirka ovšem mohl trefit 6 bodů ve 2. kole. V takovém případě by výsledná tabulka měla prohozena hodnocení u 1. a 2. kola.

Z8-I-4

Lichoběžník ABCD je úsečkou CE rozdělen na trojúhelník a rovnoběžník, viz obrázek. Bod F je středem úsečky CE, přímka DF prochází středem úsečky BE a obsah trojúhelníku CDE je $3 \, \mathrm{cm}^2$.

Určete obsah lichoběžníku ABCD.

(E. Semerádová)

Nápověda. Porovnejte velikosti úseček AE a EB.

Možné řešení. Střed úsečky BE, kterým podle zadání prochází přímka DF, označíme G. Úsečka FG je střední příčkou trojúhelníku BCE, která je rovnoběžná se stranou BC. Zejména čtyřúhelník GBCD je také rovnoběžníkem, a proto platí, že úsečky EG, GB, DC a AE jsou navzájem shodné.

Lichoběžník ABCD tak můžeme rozdělit na čtyři trojúhelníky AED, DCE, EGC a GBC se stejným obsahem (první tři trojúhelníky jsou dokonce navzájem shodné). Obsah lichoběžníku je proto roven čtyřnásobku obsahu trojúhelníku CDE, tj.

$$4 \cdot 3 = 12 \,\mathrm{cm}^2.$$

Poznámka. Trojúhelníky DFC a GFE jsou shodné, proto má rovnoběžník AECD stejný obsah jako trojúhelník AGD, a ten je shodný s trojúhelníkem EBC. (V obou případech lze shodnost trojúhelníků zdůvodnit několika způsoby, např. podle věty usu.) Obsah lichoběžníku ABCD je proto roven dvojnásobku obsahu rovnoběžníku AECD, a ten je roven dvojnásobku obsahu trojúhelníku CDE.

Z uvedeného také vyplývá, že obsah trojúhelníku EBC je čtyřnásobkem obsahu trojúhelníku DFC, a ten je roven polovině obsahu trojúhelníku CDE.

Z8-I-5

Maminka donesla 10 zákusků tří druhů: kokosek bylo méně než laskonek a nejvíc bylo karamelových kostek. Josef si vybral dva zákusky různých druhů, Jakub udělal totéž a na Jana zbyly pouze zákusky stejného druhu.

Kolik kokosek, laskonek a karamelových kostek maminka donesla? (V. Hucíková)

Nápověda. Jaký druh zákusků zbyl na Jana?

Možné řešení. Když se k zákuskům dostal Jan, bylo jich 6 stejného druhu, a to karamelových kostek — kdyby to byly kokosky nebo laskonky, muselo by kostek být víc než 6 a zákusků celkem by pak bylo víc než 10. Proto karamelových kostek původně bylo alespoň 6 a maminka přinesla

- buď 1 kokosku, 3 laskonky a 6 kostek,
- nebo 1 kokosku, 2 laskonky a 7 kostek.

První možnost není vyhovující — aby Josef i Jakub měli každý dva zákusky různých druhů, musel by alespoň jeden z nich vybrat také kostku, a to by jich pak na Jana nezbylo 6.

Druhá možnost je vyhovující — jeden z prvních dvou chlapců si vybral kokosku a laskonku, druhý laskonku a kostku, na Jana zbylo 6 kostek.

Maminka přinesla 1 kokosku, 2 laskonky a 7 karamelových kostek.

Z8-I-6

Každá cihlička následující pyramidy obsahuje jedno číslo. Kdykoli to je možné, je číslo v každé cihličce nejmenším společným násobkem čísel ze dvou cihliček ležících přímo na ní. Které číslo může být v nejspodnější cihličce? Určete všechny možnosti.

(A. Bohiniková)

Nápověda. Jaký je nejmenší společný násobek tří čísel, z nichž jedno je dělitelem jiného? **Možné řešení.** Číslo 30 má celkem 8 dělitelů, jež mohou být dosazeny za A a B.

Číslo C je nejmenším společným násobkem 13 a A, číslo E je nejmenším společným násobkem C a 30, tedy E je nejmenším společným násobkem čísel 13, A a 30. Protože A je dělitelem čísla 30, je E nejmenším společným násobkem čísel 13 a 30, tj. $390 = 13 \cdot 30$.

Podobně lze zdůvodnit, že bez ohledu na hodnotu B, je F nejmenším společným násobkem čísel $14=2\cdot 7$ a $30=2\cdot 3\cdot 5$, tj. $210=7\cdot 30$.

Číslo G v nejspodnější cihličce proto může být jedině nejmenším společným násobkem čísel 390 a 210, tj. $2\,730 = 7\cdot13\cdot30$.

Poznámka. Pokud bychom uvažovali všechny možné dvojice čísel, jejichž nejmenší společný násobek je 30, potom dostaneme celkem 27 možností. Doplňováním jednotlivých případů za A a B si každý dřív nebo později všimne, že čísla E, F, a tedy i G jsou stále stejná.