Nome e cognome:	Classe:	Data:	Griglia
	<u> </u>		

Risposte (variante 63)

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20

- Cosa postula il modello di Bohr riguardo all'emissione di radiazione da parte di un atomo?
 - (a) Un atomo emette radiazione solo se si trova in uno stato eccitato stazionario.
 - (b) Un atomo emette radiazione continuamente mentre l'elettrone orbita attorno al nucleo.
 - (c) Un atomo emette radiazione (un fotone) solo quando un elettrone salta da un'orbita permessa a un'altra orbita permessa di energia inferiore.
 - (d) Un atomo emette radiazione solo quando viene ionizzato.
- Una radiazione di frequenza $f=1.0\times 10^{15}\,\mathrm{Hz}$ colpisce un metallo con lavoro di estrazione $W=2.0\,\mathrm{eV}$. Sapendo che $h \approx 6.63 \times 10^{-34} \text{ J} \cdot \text{s e 1 eV} \approx 1.6 \times 10^{-19} \text{ J}$, qual è circa l'energia cinetica massima K_{max} degli elettroni emessi? (Suggerimento: calcola prima hf in eV, $hf \approx 4.14 \,\text{eV}$)
- (a) $K_{max} \approx 2.0 \,\text{eV}$ (b) $K_{max} \approx 4.14 \,\text{eV}$ (c) $K_{max} \approx 6.14 \,\text{eV}$ (d) $K_{max} \approx 2.14 \,\text{eV}$
- Cosa dimostra in modo sorprendente l'esperimento della doppia fenditura con elettroni singoli?
 - (a) Che anche le singole particelle (elettroni) esibiscono un comportamento ondulatorio (interferenza), suggerendo che ogni elettrone "passa attraverso entrambe le fenditure" in senso quantistico.
 - (b) Che il principio di indeterminazione non è valido.
 - (c) Che la luce è composta da particelle (fotoni).
 - (d) Che gli elettroni sono particelle classiche che seguono traiettorie ben definite.
- Identificare il prodotto mancante nel decadimento alfa dell'Uranio-238: $^{238}_{29}$ U $\rightarrow X + \alpha$

- (a) $X = {}^{234}_{88}$ Ra (Radio- (b) $X = {}^{234}_{90}$ Th (Torio- (c) $X = {}^{238}_{90}$ Th (Torio- (d) $X = {}^{234}_{92}$ U (Uranio- 234) 234) 234)
- Il principio di indeterminazione è una conseguenza fondamentale:
 - (a) Del modello atomico di Bohr.
 - (b) Degli errori sperimentali inevitabili negli strumenti di misura.
 - (c) Della natura ondulatoria della materia (dualismo onda-corpuscolo) e dei limiti intrinseci alla misurazione nel mondo quantistico.
 - (d) Della teoria della relatività di Einstein.
- Nel paradosso del gatto di Schrödinger, cosa rappresenta lo stato del gatto PRIMA che la scatola venga aperta, secondo un'interpretazione strettamente quantistica?
 - (a) Lo stato "gatto morto".
 - (b) Uno stato indeterminato che non è né vivo né morto.
 - (c) Lo stato "gatto vivo".
 - (d) Una sovrapposizione quantistica degli stati "gatto vivo" e "gatto morto".
- Secondo la spiegazione di Einstein dell'effetto fotoelettrico, perché esiste una "frequenza di soglia" al di sotto della quale non vengono emessi elettroni, indipendentemente dall'intensità della luce?
 - (a) Perché l'energia del singolo fotone (hf) deve essere almeno pari al lavoro di estrazione (W) per liberare un elettrone.
 - (b) Perché l'interazione tra luce e materia richiede un tempo minimo che dipende dalla frequenza.
 - (c) Perché l'intensità della luce non è sufficiente a "scaldare" abbastanza gli elettroni.
 - (d) Perché a basse frequenze la luce si comporta solo come un'onda.
- Nel range di energie tipico della radiodiagnostica (es. $30-150 \,\mathrm{keV}$), quale interazione tra fotoni X e tessuti biologici (a basso Z) è generalmente dominante e più rilevante per la formazione dell'immagine?

	(b)						
	(c)	,					
	` /	(d) Un'intensità energetica infinita per lunghezze d'onda molto piccole (alte frequenze).					
10.	Quale ti	e tipo di decadimento radioattivo consiste nell'emissione di un nucleo di Elio $({}^4_2\text{He})$?					
	(a)	Decadimento Beta più (β	+)	(c)	Decadimento Beta meno	(β^-)	
	(b)	Emissione Gamma (γ)		(d)	Decadimento Alfa (α)		
11.	-	. 0	missione di luce a frequenze di		(1 0 / 1	9	
	(a)	L'elettrone emette un foto a una a energia inferiore.	one di energia definita ($E = hf$) qua	ndo salta da un'orbita per	rmessa a energia superiore	
	` '		ntinuamente mentre orbita, ma	a solo	a certe frequenze.		
	(c) (d)	Il nucleo atomico vibra er Gli urti tra atomi eccitati					
10	` /				maio del metto de uno eteto	di garmannagigiana a una	
12.		inito (vivo o morto)?	Schrödinger, cosa determina il 1	passa	ggio dei gatto da uno state	o di sovrapposizione a uno	
	` /		radioattivo all'interno della so	atola			
	` /	Il tempo trascorso dall'ini La volontà del gatto.	zio dell'esperimento.				
	` '		nisurazione (apertura della scat	ola).			
13.		Un isotopo radioattivo ha un tempo di dimezzamento di $T_{1/2} = 5$ giorni. Se inizialmente abbiamo 16 mg di questo isotopo, nanti milligrammi rimarranno dopo 20 giorni?					
	(a)	$2\mathrm{mg}$	(b) 8 mg	(c)	$1\mathrm{mg}$	(d) 4 mg	
14.			to da 1 protone ($m_p \approx 1.0073\mathrm{u}$ ivamente il difetto di massa Δ		neutrone $(m_n \approx 1.0087 \mathrm{u})$.	. La sua massa misurata è	
	` ′	$\Delta m \approx (1.0073 + 1.0087) -$	$-2.0141 = 0.0019 \mathrm{u}$. ,	$\Delta m \approx 2.0141 - (1.0073 + 1.0007)$,	
	(b)	$\Delta m \approx 2.0141 \mathrm{u}$		(d)	$\Delta m \approx 1.0073 + 1.0087 +$	$2.0141 \approx 4.0301 \mathrm{u}$	
15.	5. Nell'effetto Compton, un fotone X interagisce con un elettrone libero (o debolmente legato). Cosa succede al fotone?						
	(a) Passa attraverso l'elettrone senza interagire.						
	(b) Viene diffuso con una frequenza maggiore (lunghezza d'onda minore).(c) Viene diffuso (scatterato) con una frequenza minore (lunghezza d'onda maggiore).						
	(c) (d)	Viene assorbito completar		ignezz	ta d'onda maggiore).		
16.	()	_	vo $N(t) = N_0 e^{-\lambda t}$ descrive:				
	(a)	Il tempo di dimezzamento	del campione.				
	(b)	Il numero di nuclei decad					
	(c)	L'attività del campione al				N 1: 1, 0	
1 7	(d)		adioattivi non ancora decaduti				
17.	In un esperimento Compton, un fotone X incide su un elettrone a riposo. La variazione della lunghezza d'onda $(\Delta \lambda = \lambda' - \lambda)$ del fotone diffuso dipende dall'angolo di diffusione θ . Quando è massima questa variazione?						
	(a)	La variazione è indipende					
	(b) Quando l'angolo di diffusione è $\theta = 90^{\circ}$. (c) Quando l'angolo di diffusione è $\theta = 0^{\circ}$ (nessuna diffusione).						
	(d) Quando l'angolo di diffusione è $\theta = 0$ (diffusione all'indietro).						
18.	` '		i decadimento beta meno (β^-)		•		
	•	\sim	(1)	0			

La "catastrofe ultravioletta" è un problema sorto nello studio della radiazione di corpo nero perché la fisica classica prevedeva:

(c) Effetto Compton.

(d) Produzione di coppie (e^+/e^-) .

(a) Scattering di Rayleigh (coerente).

(a) Un'intensità energetica nulla per lunghezze d'onda molto piccole.

(b) Effetto fotoelettrico.

(2)	14 NI	(b) 13 <i>C</i>	(a) 14C
(a)	$_{7}^{14}N$	(b) $^{13}_{6}$ C	(c) ${}_{6}^{14}C$

19. Completare la seguente reazione di decadimento beta più (β^+) o cattura elettronica (EC), sapendo che il Fluoro-18 $(^{18}_{9}F)$ può decadere β^+ : $^{18}_{9}F \rightarrow ? + e^+ + \nu_e$

(d) ${}_{5}^{14}B$

(a) $^{18}_{10}\text{Ne}$ (b) $^{18}_{8}\text{O}$ (c) $^{19}_{9}\text{F}$ (d) $^{17}_{9}\text{F}$

20. Come si calcola l'energia di legame (E_B) di un nucleo, noto il difetto di massa Δm ?

(a) $E_B = (\Delta m)/c^2$. (b) $E_B = m_{nucleo}c^2$. (c) $E_B = (\Delta m)c^2$. (d) $E_B = (\Delta m)c^2$. $(\sum m_{costituenti})c^2$.