Name: Kevin Huertas

Homework 1

Exercise 1

Let n be a positive integer. A Latin square of order n is an $n \times n$ array L of the integers $1, \ldots, n$ such that every one of the n integers occurs exactly once in each row and each column of L. An example of a Latin square of order 3 is as follows:

	C1	C2	C3
R1	1	2	3
R2	3	1	2
R3	2	3	1

Given any Latin square L of order n, we can define a related Latin Square Cryptosystem. Let the sets $P=C=K=1,\ldots,n$, be the sets representing the space for the plaintext, ciphertext and keys. For $1\leq i\leq n$, the encryption rule e_i is defined to be $e_i(j)=L(i,j)$. Here, i would be the key, j the plaintext, and $e_i(j)$ the ciphertext.

Give a complete proof that this Latin Square Cryptosystem achieves perfect secrecy provided that every key is used with equal probability.

Exercise 2

Consider a cryptosystem in which the sets representing the plaintext, ciphertext and keys are: P = a, b, c, K = K1, K2, K3 and C = 1, 2, 3, 4. Suppose the encryption matrix is as follows:

Given that keys are chosen equiprobably, and the plaintext probability distribution is Pr[a] = 1/2, Pr[b] = 1/3, Pr[c] = 1/6, compute H(P), H(C), H(K), H(K|C), and H(P|C).

Exercise 3

Compute H(K|C) and H(K|P,C) for the Affine Cipher, assuming that keys are used equiprobably and the plaintexts are equiprobable.

3) H(KIC)

H(KIP, C)

Keys = equipaboldy

plainle A = equipabolde

26 alphabet

Affire Cipher 2 mys (a, b)

P=C= 226

4(KIC)=loge312 14(KIP,C)=loge12

Exercise 4

Show that the unicity distance of the Hill Cipher (with an $m \times m$ encryption matrix) is less than $\frac{m}{R_L}$. (Note that the number of alphabetic characters ina plaintext of this length is $\frac{m^2}{R_L}$.)

4) 4il Cipher	
m xm or crypten matrix	< 1/2
Motila ou cutuados 528 3	son 26 m2 No todor
· K < 26 m2 P = 2	6m -7
Logz IKI	m² (log 2 26) m
RL Logz (P)	
	m² (log 2 26) = m