

I SANMACS

- 309 & 313 PRATAP CHAMBERS, GURUDWARA ROAD, KAROL BAGH, DELHI - 110005 PH.: 28757911, 28757630, 32917966
- SAI SANMACS PLAZA, PLOT NO. 6A, COMMUNITY CENTER, DDA, SECTOR - 8, ROHINI, DELHI - 110085 PH.: 32458354, 32522575

e-mail: info@sanmacs.com

website: www.sanmacs.com

TEST CODE: MTIP-I

HINTS AND SOLUTIONS

1. (b) $\frac{x^2}{16} + \frac{y^2}{16} = 1$ Here $a^2 = 16$ Foci are $(\pm ae, 0)$ (1)

Now, $\frac{x^2}{\left(\frac{12}{5}\right)^2} - \frac{y^2}{\left(\frac{9}{5}\right)^2} = 1$

Then $b^2 = a^2 (e^2 - 1)$ $\Rightarrow \frac{81}{25} = \frac{144}{5} (e^2 - 1)$ $\Rightarrow e^2 = \frac{25}{16} \Rightarrow e = \frac{5}{4}$

 \therefore Its foci are $(\pm ae, 0)$ or $(\pm \frac{12}{5} \times \frac{5}{4}, 0)$ or $(\pm 3, 0)$

Since foci of ellipse and hyperbola coincide

∴ From (1), ae = 3 ∴ $b^2 = a^2(1 - e^2)$ ⇒ $b^2 = 16 - 9$ ⇒ $b^2 = 7$.

2. (d) Apply $C1 \rightarrow C1 + C2 + C3$ $1 + \omega^n + \omega^{2n}$ is a factor of Δ For $n \neq 3$, $1 + \omega + \omega^{2n} = 0 \Rightarrow \Delta = 0$ For n = 3, $\Delta = 0$

3. (c) Let $\hat{n} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$ $\therefore \overline{u} \cdot \hat{n} = 0 \Rightarrow a_1 + a_2 = 0$ $\overline{v} \cdot \hat{n} = 0 \Rightarrow a_1 - a_2 = 0$ $\Rightarrow a_1 = 0, a_2 = 0$ $\Rightarrow a_3 = 1 \qquad (\because \hat{n} \text{ is a unit vector})$ $\therefore |\overline{w} \cdot \hat{n}| = 3$

4. (b) Given lines are y = x - 1(1)

ABCD is a rectangle with area $=\sqrt{2} \times 2\sqrt{2} = 4 \text{ sq.units.}$

5. (a)
$$\frac{dx}{dy} + \frac{1}{1+y^2}x = \frac{1}{1+y^2}e^{\tan^{-1}y}$$

 $I.F. = e^{\int \frac{1}{1+y^2}dy} = e^{\tan^{-1}y}$
 \therefore Solution is

$$x.e^{\tan^{-1}y} = \int e^{\tan^{-1}y} \cdot \frac{1}{1+y^2} e^{\tan^{-1}y} dy + k$$

Put $tan^{-1}y = z$

6. (b) Let
$$f'(x) = f(x) \Rightarrow f(x) = e^x$$
.

$$\therefore g(x) = x^2 - f(x) = x^2 - e^x$$

$$\Rightarrow \int_0^1 f(x)g(x)dx = \int_0^1 (x^2 e^x - e^{2x})$$

$$= \left[x^2 e^x\right]_0^1 - \int_0^1 2x e^x dx - \left[\frac{e^{2x}}{2}\right]_0^1$$

7. (a)
$$f(-x) = \log(-x + \sqrt{x^2 + 1}) = \log(\sqrt{x^2 + 1} - x)$$

 $= \log\left(\frac{(x^2 + 1) - x^2}{\sqrt{x^2 + 1} + x}\right) \log 1 - \log(\sqrt{x^2 + 1} + x)$
 $= -\log(\sqrt{x^2 + 1} + x) = -f(x) \Rightarrow f(x) \text{ is odd}$

8. (d)
$$\left(\frac{1+i}{1-i}\right)^x = 1 \Rightarrow \left(\frac{\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i}{\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}i}\right)^x = 1$$

$$\Rightarrow \left(\frac{e^{i\frac{\pi}{4}}}{e^{-i\frac{\pi}{4}}}\right)^{x} = 1 \Rightarrow \left(e^{i\frac{\pi}{2}}\right)^{x} = 1 \Rightarrow e^{i\frac{x\pi}{2}} = 1$$

Which is satisfied for x = 4n, where n is any positive integer.

9. (c)
$$\left(1 - \frac{1}{2}\right) - \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) \dots$$

$$= \left(1 - \frac{1}{2} + \frac{1}{3} - \dots\right) + \left(-\frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots\right)$$

$$= \log_e 2 + \log_e 2 - 1$$

$$= 2\log_e 2 - 1 = \log_e 4 - 1 = \log_e \left(\frac{4}{e}\right)$$

10. (b) Given limit is
$$\frac{0}{0}$$

$$\lim_{x \to 0} \frac{\frac{1}{3+x} + \frac{1}{3-x}}{1} = k$$

$$\Rightarrow \lim_{x \to 0} \frac{6}{9-x^2} = k \Rightarrow k = \frac{2}{3}$$

11. (d) 6 men can be seated is 5!. Out of 6 places, 5 women can be seated in ${}^{6}P_{5}$ ways.

:. Required number of ways =
$$5! * {}^{6}P_{5}$$

= $5! * 6 * 5 * 4 * 3 * 2 = $6! * 5!$$

12. (d)
$$np = 4, npq = 2 \Rightarrow q = \frac{1}{2}, p = \frac{1}{2}, n = 8$$

$$P(X = 1) = {}^{8} c_{1}pq^{7} = 8\left(\frac{1}{2}\right)^{8} = \frac{1}{32}.$$

13. (c) Let
$$z = e^{i\theta}$$
 and $\omega = e^{i\phi}$

$$z\omega = e^{i(\theta + \phi)} \quad \text{and } |z\omega| = 1$$

$$Arg z - Arg\omega = \frac{\pi}{2} \Rightarrow \theta - \phi = \frac{\pi}{2}$$

$$\Rightarrow \theta = \frac{\pi}{2} + \phi$$

Now,
$$\overline{z} = e^{-i\theta} = e^{-i\left(\frac{\pi}{2} + \phi\right)} = e^{-i\frac{\pi}{2}} e^{-i\phi}$$

and $\overline{z}\omega = e^{-i\frac{\pi}{2}} e^{-i\phi} e^{i\phi} = e^{-i\frac{\pi}{2}}$
$$= \cos\frac{\pi}{2} - i\sin\frac{\pi}{2} = -i$$

14. (a)
$$T_{r+1} = {}^{256} c_r \left(3^{1/2}\right)^{256-r} \left(5^{1/8}\right)^r$$

 T_{r+1} is integer if $\frac{256-r}{2}$ and $\frac{r}{8}$ are positive integers

$$\therefore 256 - r \ge 0 \text{ or } 0 \le r \le 256$$

∴r can be 0, 8, 16, 24,,8 x 32 These are 33

15. (a) Given det. = (1+abc)
$$\begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix} = 0$$

$$\Rightarrow 1 + abc = 0 \Rightarrow abc = -1 \left(\because \begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix} \neq 0 \right)$$

16. (a)
$$f(x) = \begin{cases} xe^{-\left(-\frac{1}{x} + \frac{1}{x}\right)}, & x < 0 \\ xe^{-\left(\frac{1}{x} + \frac{1}{x}\right)}, & x > 0 \\ 0, & x = 0 \end{cases}$$

|x| is not differentiable at x = 0|x| is continuous at x = 0

17. (a) Two quadratic equations $x^2 - 3x + 2 = 0$ and $x^2 + 3x + 2 = 0$ which have 4 solutions.

18. (b) given limit =
$$\lim_{x \to 0} \frac{\int_0^{x^2} \sec^2 t \, dt}{x \sin x} = \lim_{x \to 0} \frac{\left[\tan t\right]_0^{x^2}}{x \sin x}$$

$$\lim_{x \to 0} \frac{\tan x^2}{x \sin x} = \lim_{x \to 0} \frac{\tan x^2}{x^2 \frac{\sin x}{x}}$$

$$= \lim_{x \to 0} \frac{\tan x^2}{x^2} \lim_{x \to 0} \frac{1}{\frac{\sin x}{x}} = 1$$

19. (c)
$$4 - x^2 \neq 0$$
 $\Rightarrow x \neq \pm 2$

$$x^{3} - x > 0 \Rightarrow x(x^{2} - 1) > 0$$

\Rightarrow x < 0, x^{2} - 1 < 0 \text{ or } x > 0, x^{2} - 1 > 0
\Rightarrow -1 < x < 0 \text{ and } x > 1

$$\therefore \text{ Domain is } (-1,0) \cup (1, 2) \cup (2,\alpha)$$

20. (c) Let
$$\frac{d}{dx}F(x) = \frac{e^{\sin x}}{x} \Rightarrow \int \frac{e^{\sin x}}{x} dx = F(x) \dots (1)$$
Now, $I = \int_{1}^{4} \frac{3}{x} e^{\sin x^{3}} dx = \int_{1}^{4} \frac{e^{\sin x^{3}}}{x^{3}} 3x^{2} dx$
Put $x^{3} = t \Rightarrow 3x^{2} dx = dt$
 $x = 1, t = 1, x = 4, t = 64$

$$\therefore I = \int_{1}^{64} \frac{e^{\sin t}}{t} dt = [F(t)]_{1}^{64} = F(64) - F(1)$$
Clearly, $x = 64$.

21. (a)
$$f(x) = \sin^{-1}\left(\log_3\left(\frac{x}{3}\right)\right)$$
 exists if $-1 \le \log_3\left(\frac{x}{3}\right) \le 1$
 $\Leftrightarrow 3^{-1} \le \frac{x}{3} \le 3^1 \Leftrightarrow 1 \le x \le 9 \Leftrightarrow [1, 9].$

22. (b) Since
$$\alpha^2 = 5\alpha - 3$$
, $\beta^2 = 5\beta - 3$
 $\therefore \alpha, \beta$ are roots of the equation $x^2 - 5x + 3 = 0$
 $\Rightarrow \alpha + \beta = 5, \alpha\beta = 3$ (1)
 $\therefore \frac{\alpha}{\beta}, \frac{\beta}{\alpha}$ are roots of $x^2 - \left(\frac{\alpha}{\beta} + \frac{\beta}{\alpha}\right)x + \frac{\alpha}{\beta}.\frac{\beta}{\alpha} = 0$
or $x^2 - \left(\frac{(\alpha + \beta)^2 - 2\alpha\beta}{\alpha\beta}\right)x + 1 = 0$
or $x^2 - \frac{25 - 6}{3}x + 1 = 0$ [By (1)]
 $\Rightarrow 3x^2 - 19x + 3 = 0$

23. (d)
$$\sin y = x \sin (a + y)$$
 or $x = \frac{\sin y}{\sin(a + y)}$

$$\Rightarrow \frac{dx}{dy} = \frac{\sin(a + y)\cos y - \sin y\cos(a + y)}{\sin^2(a + y)}$$

$$\frac{dx}{dy} = \frac{\sin(a + y - y)}{\sin^2(a + y)} \Rightarrow \frac{dy}{dx} = \frac{\sin^2(a + y)}{\sin a}$$

24. (c)
$$f(x) = \cot^{-1} x + x \Rightarrow f'(x) = -\frac{1}{1+x^2} + 1$$

$$= \frac{x^2}{1+x^2},$$
clearly, f'(x)>0 for all x So, f(x) increases in $(-\infty, \infty)$

25. (a)
$$y = (x + \sqrt{1 + x^2})^n$$

$$\frac{dy}{dx} = n(x + \sqrt{1 + x^2})^{n-1} \left(1 + \frac{1}{2}(1 + x^2)^{-1/2}.2x\right)$$

$$\frac{dy}{dx} = n(x + \sqrt{1 + x^2})^{n-1} \frac{(\sqrt{1 + x^2} + x)}{\sqrt{1 + x^2}}$$

$$\Rightarrow \sqrt{1+x^2} y_1 = ny$$
, where $y_1 = \frac{dy}{dx}$

$$\Rightarrow (1+x^2)y_1^2 = n^2y^2$$

$$\Rightarrow (1+x^2)2y_1y_2 + y_1^2.2x = n^22yy_1$$

$$\Rightarrow (1+x^2)y_2 + xy_1 = n^2y$$
, where $y_2 = \frac{d^2y}{dx^2}$.

26. (a)
$$\tan^{-1} \left(\frac{1}{\sqrt{\cos \alpha}} \right) - \tan^{-1} (\sqrt{\cos \alpha}) = x$$

$$\frac{1}{\sqrt{\cos \alpha}} - \sqrt{\cos \alpha}$$

$$\Rightarrow \tan^{-1} \frac{\frac{1}{\sqrt{\cos \alpha}} - \sqrt{\cos \alpha}}{1 + \frac{1}{\sqrt{\cos \alpha}} \cdot \sqrt{\cos \alpha}} = x$$

$$\Rightarrow \tan^{-1} \frac{1 - \cos \alpha}{2\sqrt{\cos \alpha}} = x \Rightarrow \tan x = \frac{1 - \cos \alpha}{2\sqrt{\cos \alpha}}$$

$$\cot x = \frac{2\sqrt{\cos \alpha}}{1 - \cos \alpha}$$
But $\cos ecx = \sqrt{1 + \cot^2 x}$

$$\Rightarrow \cos ecx = \frac{1 + \cos \alpha}{1 - \cos \alpha}$$

$$\Rightarrow \sin x = \frac{1 - \cos \alpha}{1 + \cos \alpha} = \frac{2\sin^2 \frac{\alpha}{2}}{2\cos^2 \frac{\alpha}{2}} \Rightarrow \sin x = \tan^2 \frac{\alpha}{2}.$$

27. (a)
$$\int_0^{10\pi} |\sin x| dx = 10 \int_0^{\pi} |\sin x| dx$$
$$= 10 \left(\int_0^{\pi/2} \sin x \, dx + \int_{\pi/2}^{\pi} \sin x \, dx \right)$$

28. (b)
$$2^{1/4} \cdot 4^{1/8} \cdot 8^{1/16} \dots \infty = 2^{\frac{1}{4} + \frac{2}{8} + \frac{3}{16} + \dots + \infty}$$

 $S = \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots \Rightarrow \frac{1}{2} S = \frac{1}{8} + \frac{2}{16} + \dots$

Subtracting,
$$\frac{1}{2}S = \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots = \frac{1}{2}$$
 (G. P.)

 \Rightarrow S = 1. Hence value is $2^1 = 2$

29. (d)
$$x^y = e^{x-y}$$

Taking the log on both sides

$$y \log x = x - y$$
 or $y(\log x + 1) = x$

$$\Rightarrow y = \frac{x}{1 + \log x}$$

$$\frac{dy}{dx} = \frac{(1 + \log x) - x\left(\frac{1}{x}\right)}{(1 + \log x)^2} = \frac{\log x}{(1 + \log x)^2}$$

30. (b) $a \times ar \times ar^2 \times ar^3 \times ar^4 \times ar^5 \times ar^6 \times ar^7 \times ar^8 = a^9 r^{36} = (ar^4)^9 = 2^9 = 512.$

31. (a)
$$\lim_{x\to 0} \left(\frac{x^2+5x+3}{x^2+x+2}\right)^x$$
 or $\lim_{x\to \infty} \left(1+\frac{4x+1}{x^2+x+2}\right)^x$

$$= \lim_{x \to \infty} \left[\left(1 + \frac{4x+1}{x^2 + x + 2} \right)^{\frac{x^2 + x + 1}{4x + 1}} \right]^{\frac{x(4x+1)}{x^2 + x + 1}}$$

$$= e^{\lim_{x \to \infty} \frac{x(4x+1)}{x^2 + x + 2}} = e^4.$$

32. (d)
$$x + iy = \begin{vmatrix} 6i & -3i & 1 \\ 4 & 3i & -1 \\ 20 & 3 & i \end{vmatrix} = -3i \begin{vmatrix} 6i & 1 & 1 \\ 4 & -1 & -1 \\ 20 & i & i \end{vmatrix} = 0$$

33. (c)
$$\lim_{x \to 2} \frac{xf(2) - 2f(x)}{x - 2}$$

$$= \lim_{x \to 2} \frac{xf(2) - 2f(2) + 2f(2) - 2f(x)}{x - 2}$$

$$= \lim_{x \to 2} \frac{(x - 2)f(2)}{x - 2} - 2 \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2}$$

$$= f(2) - 2f'(2) = 4 - 2 \times 4 = -4.$$

34. (a) Let q = 1 - p. Since, head appears first time in even throws 2 or 4 or 6

$$\therefore \frac{2}{5} = qp + q^3p + q^5p + \dots$$

$$\therefore \frac{2}{5} = \frac{qp}{1 - q^2} \Rightarrow \frac{2}{5} = \frac{(1 - p)p}{1 - (1 - p)^2} = \frac{(1 - p)p}{(2 - p)p}$$

$$\Rightarrow \frac{2}{5} = \frac{1-p}{2-p} \Rightarrow p = \frac{1}{3}.$$

35. (d)

$$\tan^{-1}\frac{1}{4} + \tan^{-1}\frac{2}{9} = \tan^{-1}\left(\frac{\frac{1}{4} + \frac{2}{9}}{1 - \frac{1}{4} \times \frac{2}{9}}\right) = \tan^{-1}\left(\frac{1}{2}\right).$$

36. (d) We have, $(1 + 2x + 3x^2 + ...)^{-3/2}$ = $[(1 - x)^{-2}]^{-3/2} = (1 - x)^3$ coefficient of $x^5 = 0$

37. (a) Applying $R_1 + R_2 + R_3$ we obtain

$$\begin{vmatrix} 1-i & \omega^2 + \omega & \omega^2 - 1 \\ 1-i & -1 & \omega^2 - 1 \\ -i & -1 + \omega & -1 \end{vmatrix} = 0$$

 $(:.\omega^2 + \omega = -1]$: R_1 and R_2 become identical)

38. (b) Let the ellipse be $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

It is given that $e = \frac{1}{2}$ and ae = 2

Therefore,
$$a = 4$$

Now, $b^2 = a^2(1 - e^2) \implies b^2 = 12$

Thus the required ellipse is $\frac{x^2}{16} + \frac{y^2}{12} = 1$

39. (b) We have $\vec{a} + \vec{b} + \vec{c} = 0$

$$\vec{a} + \vec{b} = -\vec{c}$$
 \Rightarrow $\vec{a} \times \vec{c} + \vec{b} \times \vec{c} = 0$
 \Rightarrow $\vec{b} \times \vec{c} = \vec{c} \times \vec{a}$

40. (b) We have $3^{2x^2-7x+7} = 3^2 \Rightarrow 2x^2 - 7x + 7 = 2$ $\Rightarrow 2x^2 - 7x + 5 = 0$

The discriminant of this equation is positive. Hence, it has two real roots.

- **58. (b)** Verb should be "is" because "twenty miles" is used collectively.
- **59. (c)** Replace "be" by "is".
- 60. (c) Replace "did he" by "him".
- 61. (a) 62. (b) 63. (b)
- 64. (c)
- **65. (b)** When she heard about the death of her father, she collapsed in a dead faint.
- **66.** (c) Let us *hold over* the discussion of this problem until the next meeting.
- 67. (d) Take this medicine and you will feel better in no time.
- **68.** (c) I found Ram in high feather yesterday.
- **69.** (a) Our economic policy is in line with the interests of all the sections of the society.

70. (b)	71. (a)	72. (d)
73. (a)	74. (b)	75. (b)
76. (a)	77. (b)	78. (b)
79. (b)	80. (d)	81. (a)
82. (c)		

- 83. (c) All other are output devices
- **84.** (d) All other are optical scanner devices
- 85. (d)

93. (c)

86. (d) SSI has 1-11 gates, MSI has 12 to 99 gates, LSI has 100 to 10,000 gates, VLSI has more than 10,000 gates

87. (a)	88. (d)	89. (d)
90. (a)	91. (a)	92. (c)

94. (b)

95. (b) All others are input devices

97. (a) 98. (a) 96. (b)

- 103. (d) All others are components of a computer
- 106. (a)

101. (a)

107. (d) All others are impact printers

108. (d)	109. (c)	110. (a)
111. (b)	112. (b)	113. (d)
114. (b)	115. (b))

- 116. (d) The statement only says that opening a library in Rambli would be a wastage. But doesn't say why? May be opening a library in Rambli is a wastage since there is already a library there.
- 117. (b) Films have become indispensable but it does not imply that they are the only medium of entertainment, but it is certain that people enjoy films.
- 118. (b) Detergents are being recommended to clean clothes. i.e. They have ability to clean, or ability to dislodge grease and dirt, but doesn't mean the ability to form more lather.
- 119. (b) If state is secular, it means it is against religious bias but not against religion as such.
- 120. (d)
- **121.** (c) Either increase of pollution at upper level is favourable or at the ground level

100.0010010 01 000	0110 B10 011101 10 1 011	
122. (b)	123. (d)	124. (a)
125. (a)	126. (b)	127. (c)
128. (d)	129. (c)	130. (b)
131. (a)	132. (b)	

- 133. (c) change order of statements. Now A+A=A. This thief is a man can be changed to some men are thieves.
- 134. (a) change order of statements. Now A+A=A=(All)saints are sinners.

135. (a)

136. (b)

MCA ENTRANCE website: www.sanmacs.com

137. (d) I + E = O. Hence, 'Some copies are not pens'. Again, 'Some pens are not desks' follows from 'No desks are pens'.

138. (b)

Directions (Q. 139 - 143): V Indicates corresponding condition is fulfilled by the candidate X indicates corresponding condition is not fulfilled by the candidate

	I	II	III	IV	V
139. (a)	\	\	V V		\
140. (d)	X	Χ	\	\vee	X
141. (d)	V	X (ii)	X (iii)	\	\
142. (c)	V	V	X (iii)	\vee	\vee
143. (b)	(i)	V	V	V	V

В C Α D Е Historical Χ X Χ Χ Industrial Χ Χ Hill-Χ Station

144. (b) 147. (a) 145. (c) 148. (d) 146. (c) 149. (a)

150. (d)

Directions (Q. 144 - 148):

	A	В	C	D	Е	F
Historical	Χ	X		X	X	
Industrial				X		
Hill- Station	X					

A is neither historical nor hill-station, so it must be an industrial city. D is neither historical nor industrial, so must be hill-station. A&B are not alike, so B must be hill-station. Lastly since informations given are all negative, a lack of negative information about a city means that the city does have qualities whose absence is not mentioned. E.g. there is no negative information about C. Hence, we assume that C is a hill-station as well as historical, & industrial. Final table is: