Miscellaneous notes on JIE R&R of SOP_Repeated

Legislative constraint as a function of \boldsymbol{e}

- I thought it would be positive at e=0 and turn negative as e increases
- What does it mean that for some values it's negative at 0, becomes positive, and then goes negative again?
 - For sure I have to be careful in numerical examples

Numerical examples

$$\delta_L = \delta_{ML} = .95$$
 E=.35 E=.4 E=.41 E=.42 E=.45 au^{tw} .074 .0654 e^{tw} .00123 T=2 .07500 .057407 T=3 .074716 .070243 .066284 .0570802 T=4 .074708 .070233 .066275 .0570806 T=5 .074795 .07033 .06638 .057185 T=6 .1080 .07492 T=7 .1081 .057

I have another sheet of notes that conflicts with the first column. It just says " $\delta = .95$ ":

$$\begin{array}{ccc} & & \text{E=.35} \\ \tau^{tw} & .1213 \\ e^{tw} & .006003 \\ \text{T} = 3 & .1023044 \\ \text{T} = 4 & .1022411 \\ \text{T} = 5 & .1022427 \\ \text{T} = 6 & .10227 \\ \text{T} = 7 & .102305 \end{array}$$

This one just says " $\delta = .99$ ":

This has the note, "This at least works in the direction I thought it would" with " $\delta_L = .94$, $\delta_{ML} = .95$ ":

$$\begin{array}{c} & \text{E=.4} \\ \tau^{tw} \\ e^{tw} \\ \text{T} = 4 & .07464 \\ \text{T} = 5 & .07421 \\ \text{T} = 6 & .07481 \\ \text{T} = 7 & .07492 \end{array}$$

("Really want to know if reducing δ_L — making future term less important — will give me the σ result I've been after; really, no result at all; depends on other parameters.)

Some summaries

- $E = .4, \, \delta_L = .99, \, \delta_{ML} = .95, \, e_{tw} = .00232, \, \tau^{tw} = .08185.$ Optimal $\tau^a = .07494$ at T = 3.
- E=.5, assume I kept $\delta_L=.99$, $\delta_{ML}=.95$. Optimal $\tau^a=.04864$ at T=3.
- E = .4, $\delta_L = \delta_{ML} = .99$, $e_{tw} = .00232$, $\tau^{tw} = .08185$. Optimal $\tau^a = .07470$ at T = 3.
- E = .4, $\delta_L = .99$, $\delta_{ML} = .5$, $e_{tw} = .00232$, $\tau^{tw} = .08185$. Optimal $\tau^a = .07802$ at T = 2.
- E = .4, $\delta_L = .99$, $\delta_{ML} = .75$, $e_{tw} = .00232$, $\tau^{tw} = .08185$. Optimal $\tau^a = .07629$ at T = 3.

Trying to understand what is really going on with constraint in terms of T

Write constraint:

$$\overline{e}(\tau^a) - \pi(\tau^b(\overline{e}(\tau^a))) + \pi(\tau^a) - e_a - \frac{\delta_{\mathcal{L}} + \delta_{\mathcal{L}}^{T+1}}{1 - \delta_{\mathcal{L}}} \left[\pi(\tau^{tw}) - e_{tw} - \pi(\tau^a) + e_a \right] = 0$$

For now, assume this has an interior solution so calculus works.

First, what does T do to $\overline{e}(\tau^a)$? By the Implicit Function Theorem:

$$\frac{\mathrm{d}\overline{e}}{\mathrm{d}\tau^{a}} = -\frac{\frac{\partial\Omega}{\partial T}}{\frac{\partial\Omega}{\partial\overline{e}}} = \frac{-\frac{\delta_{\mathrm{ML}}^{T+1}\ln\delta_{\mathrm{ML}}}{1-\delta_{\mathrm{ML}}} \left[W_{\mathrm{ML}}(\gamma(\overline{e}), \boldsymbol{\tau^{a}}) - W_{\mathrm{ML}}(\gamma(\overline{e}), \boldsymbol{\tau^{tw}}) \right]}{\frac{\delta_{\mathrm{ML}} - \delta_{\mathrm{ML}}^{T+1}}{1-\delta_{\mathrm{ML}}} \frac{\partial\gamma}{\partial\overline{e}} \left[\pi(\tau^{a}) - \pi(\tau^{tw}) \right] - \frac{\partial\gamma}{\partial\overline{e}} \left[\pi(\tau^{b}(\overline{e})) - \pi(\tau^{a}) \right]} > 0$$
(1)

So if $T \uparrow$ then $\overline{e} \uparrow$.