KATHMANDU UNIVERSITY

DHULIKHEL KAVRE

COEG-304: Instrumentation and Control

Lab Sheet No. 1

SUBMITTED BY

Name: Ayush Kumar Shah

Roll no: 44

Group: CE 3rd year 1st sem

Level: UNG

SUBMITTED TO:

Bibek Mahaseth Sir

Date of Submission:

..../2018

KATHMANDU UNIVERSITY

School of Engineering Department of Electrical and Electronics Engineering

Instrumentation and Control Lab I

Introduction to MATLAB

1.1 Matrix operation

Example-1

For the matrix equation below, AX = B, determine the vector X.

$$\begin{bmatrix} 4 & -2 & -10 \\ 2 & 10 & -12 \\ -4 & -6 & 16 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -10 \\ 32 \\ -16 \end{bmatrix}$$

Ans:

$$>> X=A\backslash B$$

$$X =$$

2.0000

4.0000

1.0000

1.2 Inverse of a matrix

Example-2

Use the **inv** function to determine the inverse of matrix A in Example 1.1 and then determine X. The following statements

$$>> Y=inv(A)$$

$$Y =$$

$$>> X=Y*B$$

 $\mathbf{X} =$

2 4 1

1.3 Roots of polynomial

Example-3

Find the roots of the following polynomial.

$$s^6 + 9s^5 + 31.25s^4 + 61.25s^3 + 67.75s^2 + 14.75s + 15$$

Ans:

P=[1 9 31.25 61.25 67.75 14.75 15]

P =

1.0000 9.0000 31.2500 61.2500 67.7500 14.7500 15.0000

>> r = roots(P)

r =

-4.0000 + 0.0000i

-3.0000 + 0.0000i

-1.0000 + 2.0000i

-1.0000 - 2.0000i

-0.0000 + 0.5000i

-0.0000 - 0.5000i

Example-4

The roots of a polynomial are -1, -2, $-3 \pm j4$. Determine the polynomial equation.

Ans:

$$>> Q=[-1 -2 -3+j*4 -3-j*4]$$

Q =

-1.0000 + 0.0000i -2.0000 + 0.0000i -3.0000 + 4.0000i -3.0000 - 4.0000i

>> p = poly(Q)

p =

1 9 45 87 50

1.4 X-Y Plot

Example-5

Create a linear X-Y plot for the following variables.

\boldsymbol{x}	0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0
\boldsymbol{y}	10	10	16	24	30	38	52	68	82	96	5.0 123

Ans:

$$>> X=[0:0.5:5]$$

X =

>> Y=[10 10 16 24 30 38 52 68 82 96 123]

Y =

10 10 16 24 30 38 52 68 82 96 123

>> plot(X,Y), grid, xlabel('X'), ylabel('Y'), title('X vs Y')

Example-6

Plot function $y=1+e^{-2t}\sin(8t-\pi/2)$ from 0 to 3 seconds. Find the time corresponding to the peak value of the function and the peak value. The graph is to be labeled, titled, and have grid lines displayed.

Remember to use .* for the element-by-element multiplication of the two terms in the given equation. The command [cp, k] = max(c) returns the peak value and the index k corresponding to the peak time. We use the following commands.

```
Ans:
```

```
>> t=0:0.005:3;

>> c=1+exp(-2*t).*sin(8*t-pi/2);

>> [cp,k]=max(c)

cp =

1.4702

k =

73

>> tp=t(k)

tp =

0.3600

>> plot(t,c), xlabel('t-sec'),ylabel('c'),grid;

title('Damped sime curve');

text(0.6,1.4,['cp=', num2str(cptext(0.6,1.3,['tp=', num2str(tp)]);
```


1.5 Three-Dimensional Plots

Example-7

```
Plot of a parametric space curve x(t) = e^{-0.03t} \cos t, y(t) = e^{-0.03t} \sin t, z(t) = t

t = 0.0.1:16*pi; x = \exp(-0.03*t).*\cos(t); y = \exp(-0.03*t).*\sin(t); z = t; z = t; z = t
```



```
t=0:01:16*pi;
x=exp(-0.03*t).*cos(t);
y=exp(-0.03*t).*sin(t);
z=t;
plot3(x,y,z),axis off
```


Plot of function z=sinx cosy e^{-(x²+y²)^{0.5} using mesh}

t = -4:0.3:4; [x,y] = meshgrid(t,t); $z = sin(x).*cos(y).*exp(-(x.^2+y.^2).^0.5);$ mesh(x,y,z), axis off

Plot of function $z=-0.1/(x^2+y^2+1)$ using meshz x=-3:0.3:3; y=x; [x, y]=meshgrid(x,y); $z=-0.1./(x.^2+y.^2+.1)$; meshz(z), axis off view(-35, 60)

Ans:

t=-4:0.3:4; [x,y]=meshgrid(t,t); z=sin(x).*cos(y).*exp(-(x.^2+y.^2).^0.5); mesh(x,y,z), axis off

Ans:

```
x=-3:0.3:3;
y=x;
[x,y]=meshgrid(x,y);
z=-0.1./(x.^2+y.^2+.1);
meshz(z), axis off, view(-35,60)
```


Discrete plot of x=t, $y=t \cos t$, $z=e^{0.1t}$ using stem3 t=0:.2:20; x=t; $y=t.*\cos(t)$; $z=\exp(0.1*t)$; stem3(x,y,z), axis off

Ans:

t=0:0.2:20; x=t; y=t.*cos(t); z=exp(0.1*t); stem3(x,y,z), axis off

Cylindrical surface created by $p=3+\sin t$

using cylinder function t=0:pi/5:6*pi; p=3+sin(t); cylinder(p), axis off

Ans:

t=0:pi/5:6*pi; p=3+sin(t); cylinder(p), axis off

Plot of a unit sphere and a scaled sphere using sphere function [x,y,z]=sphere(24); subplot(2,2,2), surf(x-2, y-2, z-1); hold on surf(2*x, 2*y,2*z); axis off

Ans:

[x,y,z]=sphere(24); subplot(2,2,2),surf(x-2,y-2,z-1); hold on surf(2*x,2*y,2*z); axis off

Cartezian plot of Bessel function

$$J_0[x^2+y^2]^{1/2}$$
 -12

[x,y]=meshgrid(-12:.7:12, -12:.7:12); r=sqrt(x.²+y.²);z= bessel(0,r); m=[-45 60]; mesh(z,m), axis off

Contour lines and directional vectors using contour and quiver functions [x,y,z]=peaks(20); [nx, ny]=gradient(z,1,1); contour(x,y,z,10) hold on quiver(x,y,nx,ny)


```
[x,y]=meshgrid(-12:.7:12,-12:.7:12);
r=sqrt(x.^2+y.^2);
z=bessel(0,r);
z=besselj(0,r);
m=[-45 60];
mesh(z,m), axis off
```


Ans:

```
[x,y,z]=peaks(20);

[nx,ny]=gradient(z,1,1);

contour(x,y,z,10)

hold on

quiver(x,y,nx,ny)
```


1.6 Transfer Function

Example-8

Write a matlab code to obtain the following transfer function.

Transfer function:

Ans:

$$sys =$$

$$s + 4$$

 $s^2 + 2 s + 10$

Continuous-time transfer function.

Example-9

Find the poles and zeros of the following transfer function:

$$H(s) = \frac{s^3 + 11s^2 + 30s}{s^4 + 9s^3 + 45s^2 + 87s + 50}$$

Ans:

```
>> num=[1 11 30 0];
den=[1 9 45 87 50];
[z,p,k]=tf2zp(num,den) %transfer function to zero and pole, k-gain. here k =1
z = 0
-6.0000
-5.0000
```

p =

 $\begin{array}{c} -3.0000 + 4.0000i \\ -3.0000 - 4.0000i \\ -2.0000 + 0.0000i \\ -1.0000 + 0.0000i \end{array}$

k =

1

Example-10

A system has zeros at -6, -5, 0, poles at $-3 \pm j4$, -2, -1, and a gain of 1. Determine the system transfer function.

```
>> z=[-6; -5; 0];
k=1;
i=sqrt(-1);
p=[-3+4*i;-3-4*i;-2;-1];
[num,den]=zp2tf(z,p,k)
num =
```

den =

1 9 45 87 50

Example-11 Find the Laplace transform.

$$te^{-4t}$$

Ans:

>> syms t s; laplace(t*exp(-4*t),t,s)

ans =

 $1/(s + 4)^2$

Example-12

Find the inverse Laplace transform.

$$F(s) = \frac{s(s+6)}{(s+3)(s^2+6s+18)}$$

Ans:

>> syms s t;

ilaplace($s*(s+6)/((s+3)*(s^2+6*s+18))$)

ans =

 $2*\cos(3*t)*\exp(-3*t) - \exp(-3*t)$