PATENT ABSTRACTS OF JAPAN

(11) Publication number: 63058149 A

(43) Date of publication of application: 12.03.88

(51) Int. CI

G01N 27/46 G01N 27/30

(21) Application number: 61202217

(22) Date of filing: 28.08.86

(71) Applicant:

MATSUSHITA ELECTRIC IND CO

LTD

(72) Inventor:

MORIGAKI KENICHI KOBAYASHI SHIGEO

(54) BIOSENSOR

(57) Abstract:

PURPOSE: To enable stable measurement, by providing a water absorbing high polymer layer on a measuring electrode and an counter electrode to form a stable liquid film layer.

CONSTITUTION: A conducting carbon paste is printed on an insulating substrate 8 consisting of polyethylene terephthalate by screen printing and then dried by heat to form an electrode system consisting of a measuring electrode 6 and a counter electrode 7 and a lead section. Then, an insulating paste is printed to obtain a fixed electrode area covering the electrode system partially and dried to form an insulation layer 5. A porous body 1 and a filter film 2 made of polycarbonate are held on holding frames 3 and 4. A water absorbing high polymer layer 9 is obtained by directly applying and drying an approx. 1% aqueous solution of carboxymethyl cellulose on an electrode, where the thickness after dry is about 2μ . This enables the formation of a stable gel liquid layer to wet an electrode surface sufficiently even with a small amount of a liquid, thereby assuring stable and accurate

measurement.

COPYRIGHT: (C)1988,JPO&Japio

è,

(19)日本国特許庁(JP)

(12)特 許 公 報(B2)

(11)特許出顯公告番号

特公平6-54304

(24) (44)公告日 平成6年(1994)7月20日

(51)Int.Cl. ³ G 0 1 N 27/327	識別配号	庁内整理番号	FI	-		技術表示箇所
4 7 2 2 7 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7		7235—2 J	G01N	27/ 30	353 1	P
	•	7235—2 J			353 1	₹
		7235—2 J			353]	3
					発明の数	1(全 4 頁)
(21)出願番号	特顧昭61—202217 ·		(71)出収人	9999999	999	
				松下電器產業株式会社		
(22)出願日	昭和61年(1986) 8月28日				門真市大字門真100	6番地
(AB) 4 000 M			(72)発明者	— •	_	
(65)公開番号	特開昭63-58149				門真市大字門真100	6番地 松下電器
(43)公開日	昭和63年(1988) 3	月12日	(70) 70 111 #4		式会社内 *****	
			(72)発明者			6来州 - 松下野里
					反府門真市大字門真1006番地 松下電器 整株式会社内	
			(74)代理人	,	小鍜治 明 (夕	\$2名)
			審査官	鸠矢 1	er er	
			(56)参考文的	扶 特開	昭60-211350(JP, A)
					昭60-24444(J	•
					昭60-173459(
					昭60-173458(、	•
				特開	昭59-166852()	JP, A)

(54)【発明の名称】 パイオセンサ

1

【特許請求の範囲】

【請求項1】少なくとも測定極と対極とからなる電極系を備え、酵素と電子受容体と試料液の反応に際しての物質濃度変化を電気化学的に前記電極系で検知し、前記試料液中の基質濃度を測定するバイオセンサであって、前記電極系上に安定なゲル液層を形成する吸水性高分子層を形成したことを特徴とするバイオセンサ。

【請求項2】吸水性高分子層の厚さが、0.1~100 μである特許請求の範囲第1項記載のバイオセンサ。

【請求項3】吸水性高分子が、デンプン系、カルボキシ 10 メチルセルロース系、ゼラチン系、アクリル酸塩系、ビ ニルアルコール系、ビニルピロリドン系、無水マレイン 酸系からなる群のいずれかもしくはそれらの混合物であ る特許請求の範囲第1項記載のバイオセンサ。

【請求項4】吸水性高分子層の上に親水性の多孔体から

2

なる保液層を設けた特許請求の範囲第1項記載のバイオセンサ。

【発明の詳細な説明】

産業上の利用分野

本発明は、種々の微量の生体試料中の特定成分について、試料液を希釈することなく迅速かつ簡易に定量することのできるバイオセンサに関するものである。

従来の技術

従来、血液などの生体試料中の特定成分について、試料 液の希釈や撹拌などの操作を行なうことなく高精度に定 量する方式としては、第3図に示すようなバイオセンサ が提案されている。このバイオセンサは、絶縁基板15 に白金などからなる測定極11と対極12およびそれぞ れのリード13、14を埋設し、これらの電極系の露出 部を酸化還元酵素および電子受容体を含有する多孔体1 6と測定妨害物質を沪別するための严過膜10で覆ったものである。試料液を多孔体16上へ滴下すると、試料液に多孔体中の電子受容体が溶解して試料液中の基質との間で酵素反応が進行し、電子受容体が還元される。反応が終了した試料液のうち、血液中の赤血球、白血球のような測定を妨害するような巨大タンパク等を沪過膜10で沪過し、電子受容体、塩類などの低分子量のもののみを含む試料反応液を電極11、12上へ降下させる。電極上では前記の還元された電子受容体を電気化学的に酸化し、このとき得られた酸化電流値から、試料液中の10基質濃度が求められるものであった。

発明が解決しようとする問題点

しかしこのような従来の構成では、センサとして一応使用できるが、電極上への試料反応液の降下が不均一になり、電極面が十分に濡れないため、気泡が残留したり、電極面積が減少するという現象が生じ、測定値が不安定で、再現性が悪かった。

本発明はこのような問題点を解決するもので、測定極及 対極上に吸水性高分子層を設けることにより、安定な液 膜層を形成し、安定した測定を可能とすることを目的と 20 するものである。

問題点を解決するための手段

この問題点を解決するために、本発明は少なくとも測定極と対極とからなる電極系上に電極面を十分に覆う安定なゲル液層を形成する吸水性高分子層を設けたものである。これにより、酵素と電子受容体と試料液の反応が終了した反応液を、前記吸水性高分子層が吸収し、電極上にゲル化した均一な反応液液膜層が形成され、安定な測定を行なうものである。

水を吸収してゲル化する高分子として、天然高分子類で 30 は、デンプン系、セルロース系、アルギン酸系、ガム 類、タンパク質系などがあり、合成高分子類では、ビニル系、アクリル酸系、無水マレイン酸系、水性ウレタン 系、ポリ電解質系など種々あるが、特に、デンプン系、カルボキシメチルセルロース系、ゼラチン系、アクリル酸塩系、ビニルアルコール系、ビニルピロリドン系、無水マレイン酸系のものが好ましい。これらは、単独または混合物、共重合体であっても良い。これらの高分子は容易に水溶液とすることができるので、適当な濃度の水溶液を塗布、乾燥することにより、必要な厚さの薄膜を 40 電極上に直接形成することができるという利点がある。作 用

この構成により、酸素と電子受容体と試料液とが反応した反応液が電極上へ降下し、電極上の吸水性高分子層に吸収されて、電極上に密接し、電極面を十分に覆ったゲル層が安定に形成されるため、電極の濡れの不均一性や気泡の残留等は解消でき、安定な電気化学的測定ができる。さらには、センサへの振動に起因する応答電流の変動をも抑制できるなど、信頼性の高い測定ができるものである。

実施例

以下、本発明の一実施例について説明する。

バイオセンサの一例として、グルコースセンサについ説 明する。第1図は、グルコースセンサの一実施例を示し たもので、センサの構造の断面図である。ポリエチレン テレフタレートからなる絶縁性基板8にスクリーン印刷 により、導電性カーボンペーストを印刷し、加熱乾燥す ることにより、測定極6、対極7からなる電極系と、図 面では図示していないがリード部とを形成する。次に電 極を部分的に覆い、一定の質極面積が得られるように、 絶縁性ペーストを前記同様に印刷、乾燥して絶縁層5を 形成する。多孔体1とポリカーボネイト製で孔径1μの 沪過膜2は、保持枠3、4に保持されている。前記多孔 体1は、酸化還元酵素であるグルコースオキシターゼ1 00mgと電子受容体としてフェリシアン化カリウム15 Ompをリン酸緩衝液 (pH 5. 6) 1m7に溶解した液をセ ルロース紙に含浸、乾燥して作製したものである。9は 本発明による吸水性高分子層であり、カルボキシメチル セルロースの1%水溶液を電極上に直接塗布、乾燥して 得たもので、乾燥後の膜厚は2μである。

上記構成のグルコースセンサの多孔体1へ試料液としてグルコース水溶液を滴下し、2分後に測定極6の電位をアノード方向へ、2V/秒の速度で掃引した。滴下されたグルコースは、多孔体1に担持されたグルコースオキシダーゼの作用で、フェリシアン化カリウムと反応してフェロシアン化カリウムを生成する。この反応の終了した試料反応液が沪過膜2を透過し、吸水性高分子層9に吸収されて、電極上に密接しかつ電極面積を完全に覆ったフェロシアン化カリウムを含む吸水性高分子による水溶性ゲル層9が形成される。上記のアノード方向への掃引により、生成したフェロシアン化カリウムがフェリシアン化カリウムに電気化学的に酸化され、酸化電流のピークが得られる。この酸化ピーク電流値は試料中のグルコース濃度に対応している。

第2図に、この酸化ピーク電流値とグルコース濃度との 関係を示した。図中Aは、本発明のカルボキシメチルセ ルロース薄膜層を設けた場合で、Bは従来例の薄膜層を 設けない場合である。各グルコース濃度でそれぞれ5回 測定した平均値とバラツキの幅を示している。Aは良い 直線性を示し、各グルコース濃度でのバラツキも小さい が、従来例のBではパラツキが非常に大きく、一部で異 常に小さい電流値を示した。このように電流値が小さい 場合に電極上の状態を調べると、電極上の濡れが悪く、 電極の一部分しか濡れていない場合か、または電極上及 び電極間に気泡が残留している場合であることが分っ た。一方、吸水性髙分子によるゲル届9を形成させた場 合には、沪過され液量が少量であっても、電極上に安定 で流動しにくい液層ができ、気泡の残留も見られず、電 極面が完全に濡れていることが分った。また、測定中に 50 センサを振動させたところ従来例のBでは振動に対応し た応答電流の大きな変動が観測されたが、本発明のAではほとんど認められないなど信頼性の高い測定が可能であった。

本発明の吸水性高分子層は、乾燥状態のもとである一定の膜厚の範囲で有効に作用することが分り、高分子材料によってその範囲は少し異なる。例えば、上記カルボキシメチルセルロースの場合、0.5~50μの膜厚が適当であるが、アクリル酸塩系高分子のアクアキーブ10SH(製鉄化学工業(株)製)の場合には、0.1~20μの範囲が適当である。種々検討した結果、安定なゲル層を形成するには、0.1~100μの範囲が好ましいことが分った。0.1μ以下の膜厚では、液層が流動しやすく安定なゲル層が得られず、また逆に100μよりも厚い膜厚では、試料液が数μℓ~数+μℓの微量の場合、試料液の拡散が不十分でゲル化しない部分が生ずるために不適当であることが分った。

さらに、血液を試料液として前記グルコースセンサで測定した場合にも、安定した値が得られた。そして図面では図示していないが、炉過膜2と吸水性高分子層9の間に、セルロース、レーヨン等の親水性多孔体の薄片を保液層として介在させた方が、試料液の炉過速度がより早くなり、炉液の吸水性高分子層への吸収も迅速、均一に行なうことができた。

上記実施例では、測定極と対極のみの二極電極系について述べたが、参照極を加えた三電極方式にすれば、より*

* 正確な測定が可能である。また、濾過膜、保持枠、多孔 体などの形状あるいはその有無についても上配実施例に 制限されることはない。さらには、酵素や電子受容体の 担持状態についても同様である。

6

また、電子受容体としては、上記実施例に用いたフェリシアン化カリウム以外にも、pーベンソキノン、フェナジンメトサルフェートなども使用できる。さらに、上記実施例のセンサは酵素として、上記実施例のグルコースオキシダーゼ以外のアルコールオキシダーゼ、コレステロールオキシダーゼ等を用いれば、アルコールサンサ、コレステロールセンサなどにも用いることができる。発明の効果

以上のように本発明のバイオセンサは、電極系上に安定なゲル液層を形成する吸水性高分子層を設けることにより、少量の液量でも十分に電極面を滯らす安定なゲル液層を形成し、安定な正確な測定を可能にするという効果が得られる。

【図面の簡単な説明】

は図示していないが、沪過膜2と吸水性高分子層9の間 第1図は本発明の一実施例であるバイオセンサの断面 に、セルロース、レーヨン等の親水性多孔体の薄片を保 20 図、第2図はバイオセンサの応答特性図、第3図は従来 液層として介在させた方が、試料液の沪過速度がより早 のバイオセンサの断面図である。

1……多孔体、2……沪過膜、5……絶縁層、6……測定極、7……対極、8……絶縁性基板、9……吸水性高分子層。

【第1図】

【第3図】

