Akshay Hinduja

akshayh@cmu.edu, (412)-636-1255

akshavhinduia.github.io

Education:

• Ph.D. Mechanical Engineering, Carnegie Mellon University

Advisor: Dr. Michael Kaess

Sept 2018 - May 2024 (anticipated) | Pittsburgh, PA

• M.S. Mechanical Engineering, Carnegie Mellon University

Advisor: Dr. Kenji Shimada May 2017 | Pittsburgh, PA

B.Tech Production Engineering, VJTI

May 2014 | Mumbai, India

Research Interests and Expertise:

- Simultaneous Localization and Mapping (SLAM)
- Factor graph optimization
- Underwater robotics, acoustic localization and sonar perception
- Deep learning for vision
- 2D and 3D Perception
- Sensor fusion

Professional Experience and Research Projects:

Robot Perception Lab: Systems Engineer/Extern

June 2017 - August 2018 | Field Robotics Center, Pittsburgh

- Setup and maintenance of software stack for multi-sensor pack used for recording data
- Stereo vision-based dense reconstruction and damage detection. Using a combination of statistical feature descriptors and ML, a 3D classifier was developed to detect minor geometric anomalies.
- Developed a feature-based SLAM technique using imaging sonars. Used A-KAZE features to perform real-time SLAM on simulated and real-world datasets.
- Tsuneishi Shipbuilding Co Ltd.: Robotics Intern

May 2016 - June 2016 | Fukuyama, Japan

 Robot localization using Velodyne VLP 16. Implemented ICP and NDT-based localization using pose updates.

• Computational Engineering and Research Lab: Graduate Research Student

August 2015 - May 2017 | Pittsburgh, PA

- Designed and built a prototype for an autonomous robot to weld ship hulls for commercial merchant vessels and tested the suitability of the design for its movements across the environment.
- Developed a frame-to-frame,real-time odometry estimator using the Normal Distribution Transform and a Velodyne VLP-16

Pose-supervised Learning for Imaging Sonars

Ph.D. thesis research | Robot Perception Lab | 2023, Pittsburgh. PA

• Developed a pose supervised network to learn viewpoint invariant feature correspondence between imaging sonar images of the same scene.

• Using cGANs To Filter Imaging Sonar Data for Occupancy Mapping

Ph.D. research | Robot Perception Lab | 2022, Pittsburgh, PA

• Use cGANs to train a network to recognize speckle noise in sonar images and to filter the image to give clean and robust information for generating accurate occupancy maps.

Acoustic Localization and Communication Techniques for Multiple, Low Power, Low-Cost Soft Robots

Ph.D. thesis research | Robot Perception Lab | 2021, Pittsburgh, PA

• Develop acoustic techniques to localize and direct several soft robotic fish using a known network of speakers on the transmission side and a single MEMS Microphone on each robot agent.

Soft-Sensor Integration for Information Rich Mapping

Ph.D. thesis research | Robot Perception Lab | 2020, Pittsburgh, PA

Integrating custom "soft sensor" stickers onto existing underwater vehicles to obtain data pertaining
to chemical properties and other modalities to integrate into the existing pipeline of 3D Map
generation.

• Degeneracy Aware Mapping for Underwater Robots

Ph.D. thesis research | Robot Perception Lab | 2019, Pittsburgh, PA

• Developing SLAM optimization improvements for degenerate environments. Focus on methods to aid robots with low-quality sensors.

Development Of A Perception System For A Voice Controlled Husky

Robot Autonomy | Field Robotics Center | Spring 2017, Pittsburgh, PA

Development of a human detection and tracking package in ROS using an Adonis camera,
 Velodyne Lidar, and Hokoyu line scanner. Developed for the ClearPath Husky mobile robot platform.

• 3D Point Cloud NDT Odometry

Computer Vision | Fall 2016, Pittsburgh, PA

• Developed a visual odometry package in ROS using a Velodyne Lidar VLP16. The algorithm was based on the use of the Normal Distribution Transform for scan matching.

Teaching Experience:

- 24-370 Engineering Design I: Methods and Skills
- 24-787 Machine Learning and Artificial Intelligence for Engineers

Publications:

- "SONIC: Sonar Image Correspondence using Pose Supervised Learning for Imaging Sonars" S Gode*, A
 Hinduja*, M Kaess: To appear in 2024 IEEE International Conference on Robotics and Automation (ICRA)
- "Multi-Radar Inertial Odometry for 3D State Estimation using mmWave Imaging Radar" JT Huang, R Xu, A
 Hinduja, M Kaess: To appear in 2024 IEEE International Conference on Robotics and Automation (ICRA)
- "Conditional GANs for Sonar Image Filtering with Applications to Underwater Occupancy Mapping" T Lin,
 A Hinduja, M Qadri, M Kaess: 2023 IEEE International Conference on Robotics and Automation (ICRA)
- "Acoustic Localization and Communication Using a MEMS Microphone for Low-cost and Low-power Bio-inspired Underwater Robots" - A Hinduja, Y Ohm, J Liao, C Majidi, M Kaess: 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
- "Degeneracy-Aware Factors with Applications to Underwater SLAM" A Hinduja, BJ Ho, M Kaess: 2019
 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
- "Designing a Mobile Robot For Double Hull Welding" CF Goh, **A Hinduja**, L Zhang, D Ajmani, R Song, K Shimada: 2019 Journal of Mechanisms and Robotics 11 (4).
- "Feature-based SLAM for imaging Sonars" E Westman, **A Hinduja**, M Kaess: 2018 IEEE International Conference on Robotics and Automation (ICRA)

Skills:

- Programming: Python C++ MATLAB ROS OpenCV Point Cloud Library (PCL) ISAM/GTSAM PvTorch, Unreal Engine
- Design: SolidWorks Inventor ANSYS
- Rapid Prototyping: Metal Working CNC Machining 3D printing Laser Cutting

Relevant Coursework:

- Engineering Computation
- Linear Systems
- Computer Vision
- Mobile Robots
- Kinematics, Dynamics and Control
- Robot Autonomy
- Robot Localization and Mapping
- Algorithms and Advanced Data Structures
- Artificial Intelligence and Machine Learning
- Learning for 3D Vision