等价关系

集合的划分

Lijie Wang

正义

等价划分

集合的划分

王丽杰

Email: ljwang@uestc.edu.cn

电子科技大学 计算机学院

2016-

集合的划分

Lijie Wang

正义

等价划分

3

在等价关系中我们已经发现,同一个等价类中的元素具有相同的属性,因而可将集合中的元素分成不同的类别,对应于集合的划分。

Definition

给定一个非空集合 A, 设有集合 $\pi = \{S_1, S_2, \dots, S_m\}$ 。如果满足:

则集合 π 称作集合 A 的一个划分 (partition) , 而 S_1, S_2, \dots, S_m 叫做这个划分的块 (block) 或类 (class)。

集合的划分

Lijie Wang

正义

等价划分

3

在等价关系中我们已经发现,同一个等价类中的元素具有相同的属性,因而可将集合中的元素分成不同的类别,对应于集合的划分。

Definition

给定一个非空集合 A, 设有集合 $\pi = \{S_1, S_2, \cdots, S_m\}$ 。如果满足:

• $S_i \subseteq A, S_i \neq \emptyset, i = 1, 2, \cdots, m$;

则集合 π 称作集合 A 的一个划分 (partition) , 而 S_1, S_2, \dots, S_m 叫做这个划分的块 (block) 或类 (class)。

集合的划分

Lijie Wang

正と

等价划分

3

在等价关系中我们已经发现,同一个等价类中的元素具有相同的属性,因而可将集合中的元素分成不同的类别,对应于集合的划分。

Definition

给定一个非空集合 A, 设有集合 $\pi = \{S_1, S_2, \cdots, S_m\}$ 。如果满足:

- $S_i \subseteq A, S_i \neq \emptyset, i = 1, 2, \cdots, m$;
- $S_i \cap S_j = \emptyset, i \neq j, i, j = 1, 2, \cdots, m$;

则集合 π 称作集合 A 的一个划分 (partition),而 S_1, S_2, \dots, S_m 叫做这个划分的块 (block) 或类 (class)。

集合的划分

Lijie Wang

正义

等价划分

38

在等价关系中我们已经发现,同一个等价类中的元素具有相同的属性,因而可将集合中的元素分成不同的类别,对应于集合的划分。

Definition

给定一个非空集合 A, 设有集合 $\pi = \{S_1, S_2, \cdots, S_m\}$ 。如果满足:

- $S_i \subseteq A, S_i \neq \emptyset, i = 1, 2, \cdots, m$;
- $S_i \cap S_j = \emptyset, i \neq j, i, j = 1, 2, \cdots, m$;
- $\bullet \bigcup_{i=1}^m S_i = A.$

则集合 π 称作集合 A 的一个划分 (partition),而 S_1, S_2, \cdots, S_m 叫做这个划分的块 (block) 或类 (class)。

集合的划分

Lijie Wang

定)

等价划分

等价关系导出

Theorem

设 R 是非空集合 A 上的等价关系,则 A 对 R 的商集 A/R 是 A 的一个划分,称为由 R 所导出的等价划分.

集合的划分

Lijie Wang

定〉

等价划分

i.X

Theorem

设 R 是非空集合 A 上的等价关系,则 A 对 R 的商集 A/R 是 A 的一个划分,称为由 R 所导出的等价划分。

Example

设集合 $A = \{0, 1, 2, 4, 5, 8, 9\}$, 则

集合的划分

Lijie Wang

定义

寺1000分

Theorem

设 R 是非空集合 A 上的等价关系,则 A 对 R 的商集 A/R 是 A 的一个划分,称为由 R 所导出的等价划分.

${\sf Example}$

设集合 $A = \{0, 1, 2, 4, 5, 8, 9\}$, 则

● A 上以 4 为模的同余关系 R 导出的划分为,

$$A/R = \{[0]_R, [1]_R, [2]_R\} = \{\{0, 4, 8\}, \{1, 5, 9\}, \{2\}\};$$

集合的划分

Lijie Wang

定义

等价划分

Theorem

设 R 是非空集合 A 上的等价关系,则 A 对 R 的商集 A/R 是 A 的一个划分,称为由 R 所导出的等价划分。

Example

设集合 $A = \{0, 1, 2, 4, 5, 8, 9\}$, 则

- ◆ A 上以 4 为模的同余关系 R 导出的划分为,
 A/R = {[0]_R, [1]_R, [2]_R} = {{0,4,8}, {1,5,9}, {2}};
- A 上以 3 为模的同余关系 S 导出的划分为,
 A/S = {[0]s, [1]s, [2]s} = {{0,9}, {1,4}, {2,5,8}}.

集合的划分

Lijie Wang

定义

等价划分

体人それに

Theorem

给定集合 A 的一个划分 $\pi = \{S_1, S_2, \cdots, S_m\}$, 则由该划分确定的关系

 $R = (S_1 \times S_1) \cup (S_2 \times S_2) \cup \cdots \cup (S_m \times S_m)$ 是 A 上的等价关系。我们称该关系 R 为由划分 π 所导出的等价关系。

集合的划分

Lijie Wang

正义

等价划分

等价关系导出

Theorem

给定集合 A 的一个划分 $\pi = \{S_1, S_2, \cdots, S_m\}$, 则由该划分确定的关系

 $R = (S_1 \times S_1) \cup (S_2 \times S_2) \cup \cdots \cup (S_m \times S_m)$ 是 A 上的等价关系。我们称该关系 R 为由划分 π 所导出的等价关系。

Proof.

集合的划分

Lijie Wang

定义

等价划分

等价关系导出

Theorem

给定集合 A 的一个划分 $\pi = \{S_1, S_2, \cdots, S_m\}$, 则由该划分确定的关系

 $R = (S_1 \times S_1) \cup (S_2 \times S_2) \cup \cdots \cup (S_m \times S_m)$ 是 A 上的等价关系。我们称该关系 R 为由划分 π 所导出的等价关系。

Proof.

对 ∀x ∈ A, 必 ∃i > 0, 使得 x ∈ S_i, 所以 < x,x > ∈ S_i × S_i, 即 < x,x > ∈ R, 因此 R 是自反的.

集合的划分

Lijie Wang

定义

等价划分

等价关系导出

Theorem

给定集合 A 的一个划分 $\pi=\{S_1,S_2,\cdots,S_m\}$, 则由该划分确定的关系 $R=(S_1\times S_1)\cup(S_2\times S_2)\cup\cdots\cup(S_m\times S_m)$ 是 A 上的等价关系。我们称该关系 R 为由划分 π 所导出的等价关系。

Proof.

- 对 $\forall x \in A$, 必 $\exists i > 0$, 使得 $x \in S_i$, 所以 $\langle x, x \rangle \in S_i \times S_i$, 即 $\langle x, x \rangle \in R$, 因此 R 是自反的.
- 对 $\forall x, y \in A$, 如果 $< x, y > \in R$, 必 $\exists j > 0$, 使得 $< x, y > \in S_j \times S_j$, 从而 $< y, x > \in S_j \times S_j$, 即 $< y, x > \in R$, 因此 R 是对称的。

集合的划分

Lijie Wang

定义

等价划分

等价关系导出

Theorem

给定集合 A 的一个划分 $\pi=\{S_1,S_2,\cdots,S_m\}$, 则由该划分确定的关系 $R=(S_1\times S_1)\cup(S_2\times S_2)\cup\cdots\cup(S_m\times S_m)$ 是 A 上的等价关系。我们称该关系 R 为由划分 π 所导出的等价关系。

Proof.

- 对 ∀x ∈ A, 必 ∃i > 0, 使得 x ∈ S_i, 所以 < x,x > ∈ S_i × S_i, 即 < x,x > ∈ R, 因此 R 是自反的.
- 对 $\forall x, y \in A$, 如果 $\langle x, y \rangle \in R$, 必 $\exists j > 0$, 使得 $\langle x, y \rangle \in S_j \times S_j$, 从而 $\langle y, x \rangle \in S_j \times S_j$, 即 $\langle y, x \rangle \in R$, 因此 R 是对称的。
- 对 $\forall x, y, z \in A$, 如果 $< x, y > \in R$, $< y, z > \in R$, 必 $\exists i, j > 0$, 使得 $< x, y > \in S_i \times S_i$, $< y, z > \in S_j \times S_j$, 即 $x, y \in S_i$ 且 $y, z \in S_j$, 从而 $y \in S_i \cap S_j$, 由集合划分定义, 必有 $S_i = S_j$, 因此 x 和 z 同属于集合 A 的一个划分块 S_i , 从而 $< x, z > \in R$, 所以 R 是传递的.

集合的划分

Lijie Wang

定义

等价划分

等价关系导出

Example

设 $A = \{a, b, c, d, e, f\}, \pi = \{\{a, b\}, \{c, e, f\}, \{d\}\}$ 是 A 的一个划分,则 π 对应的等价关系 R 为:

$$R = (\{a, b\} \times \{a, b\}) \cup (\{c, e, f\} \times \{c, e, f\}) \cup (\{d\} \times \{d\})$$

$$= \{\langle a, a \rangle, \langle b, b \rangle, \langle a, b \rangle, \langle b, a \rangle\}$$

$$\cup \{\langle c, c \rangle, \langle e, e \rangle, \langle f, f \rangle, \langle c, e \rangle, \langle e, c \rangle, \langle c, f \rangle, \langle f, c \rangle,$$

$$\langle e, f \rangle, \langle f, e \rangle\} \cup \{\langle d, d \rangle\}$$

$$= \{\langle a, a \rangle, \langle b, b \rangle, \langle a, b \rangle, \langle b, a \rangle, \langle c, c \rangle, \langle e, e \rangle, \langle f, f \rangle,$$

$$\langle c, e \rangle, \langle e, c \rangle, \langle c, f \rangle, \langle f, c \rangle, \langle e, f \rangle, \langle f, e \rangle, \langle d, d \rangle\}$$

集合的划分

Lijie Wang

正义

等价划分

等价关系导出

Example

设 $A = \{1, 2, 3\}$, 求 A 上所有的等价关系及其对应的商集.

集合的划分

Lijie Wang

定义

等价划分

等价关系导出

Example

设 $A = \{1, 2, 3\}$, 求 A 上所有的等价关系及其对应的商集.

• $R_1 = S_1 \times S_1 = \{ \langle 1, 1 \rangle, \langle 1, 2 \rangle, \langle 1, 3 \rangle, \langle 2, 1 \rangle, \langle 2, 2 \rangle, \langle 2, 3 \rangle, \langle 3, 1 \rangle, \langle 3, 2 \rangle \}$ $\langle \langle 3, 3 \rangle \} = A \times A, A/R_1 = \{ \{1, 2, 3\} \};$

集合的划分

Lijie Wang

正义

等价划分 等价关系导出

Example

设 $A = \{1, 2, 3\}$, 求 A 上所有的等价关系及其对应的商集.

- $R_1 = S_1 \times S_1 = \{ \langle 1, 1 \rangle, \langle 1, 2 \rangle, \langle 1, 3 \rangle, \langle 2, 1 \rangle, \langle 2, 2 \rangle, \langle 2, 3 \rangle, \langle 3, 1 \rangle, \langle 3, 2 \rangle, \langle 3, 3 \rangle \} = A \times A, A/R_1 = \{ \{1, 2, 3\} \};$
- $R_2 = (\{1,2\} \times \{1,2\}) \cup (\{3\} \times \{3\}) = \{<1,1>,<1,2>,<2,1>,<2,2>,<3,3>\},$ $A/R_2 = \{\{1,2\},\{3\}\};$

集合的划分

Lijie Wang

ÆΧ

专们划万

等价关系导出

• $R_3 = (\{1,3\} \times \{1,3\}) \cup (\{2\} \times \{2\}) = \{<1,1>,<1,3>,<2,2>,<3,1>,<3,3>\},$ $A/R_3 = \{\{1,3\},\{2\}\};$

集合的划分

Lijie Wang

ルニス

ਚਾਮਘੁਨ

等价关系导出

- $R_3 = (\{1,3\} \times \{1,3\}) \cup (\{2\} \times \{2\}) = \{<1,1>,<1,3>,<2,2>,<3,1>,<3,3>\},$ $A/R_3 = \{\{1,3\},\{2\}\};$
- $R_4 = (\{2,3\} \times \{2,3\}) \cup (\{1\} \times \{1\}) = \{<1,1>,<2,2>,<2,3>,<3,2>,<3,3>\},$ $A/R_4 = \{\{1\},\{2,3\}\};$

集合的划约

Lijie Wang

压义

等10700万

等价关系导出

- $R_3 = (\{1,3\} \times \{1,3\}) \cup (\{2\} \times \{2\}) = \{<1,1>,<1,3>,<2,2>,<3,1>,<3,3>\},$ $A/R_3 = \{\{1,3\},\{2\}\};$
- $R_4 = (\{2,3\} \times \{2,3\}) \cup (\{1\} \times \{1\}) = \{<1,1>,<2,2>,<2,3>,<3,2>,<3,3>\},$ $A/R_4 = \{\{1\},\{2,3\}\};$
- $R_5 = (\{1\} \times \{1\}) \cup (\{2\} \times \{2\}) \cup (\{3\} \times \{3\}) = \{<1, 1>, <2, 2>, <3, 3>\} = I_A;$ $A/R_5 = \{\{1\}, \{2\}, \{3\}\}.$

Lijie Wang

定义

等价划分

等价关系导出

THE END, THANKS!