

NumPy Array vs Python List

☆ Comparison: Memory Usage & Speed Performance

1. Memory Usage

NumPy arrays use less memory than Python lists because they store data more efficiently using fixed-size data types.

Example Code (Memory Size):

import numpy as np

import sys

```
py list = list(range(1000))
np array = np.arange(1000)
```

```
print("Python List size:", sys.getsizeof(py_list))
                                                      # Size of list container only
```

print("NumPy Array size:", np array.nbytes) # Total size in bytes

Output (approximate):

Python List size: 9000+ bytes

NumPy Array size: 8000 bytes

★ Why?

- Python lists store references (pointers) to each element.
- NumPy arrays store data in **contiguous memory blocks** of a fixed type (int32, float64, etc.).

2. Speed (Performance)

NumPy arrays are much faster than Python lists for numerical operations due to internal implementation in C and use of vectorization.

Example Code (Execution Time):

```
import time
import numpy as np
size = 1000000
# Python list
py list1 = list(range(size))
py_list2 = list(range(size))
start = time.time()
result = [x + y for x, y in zip(py_list1, py_list2)]
print("Python List Time:", time.time() - start)
# NumPy array
np_array1 = np.arange(size)
np_array2 = np.arange(size)
start = time.time()
result = np_array1 + np_array2
print("NumPy Array Time:", time.time() - start)
Output (approximate):
Python List Time: 0.25 seconds
NumPy Array Time: 0.01 seconds
```

♦ Why?

- NumPy uses vectorized operations and precompiled C code.
- Python lists use a loop in Python, which is slower.

summary Table:

Feature Python List NumPy Array

Memory Usage More (dynamic & pointers) Less (fixed-type, efficient)

Speed Slower (loops) Faster (vectorized ops)

Data Type Mixed types allowed Same data type required

Functionality General-purpose Scientific & numeric

NumPy Advanced Indexing

NumPy provides two powerful techniques for advanced data selection:

- **✓** Fancy Indexing
- Boolean Indexing

1. Fancy Indexing

Fancy indexing allows you to pass a list or array of indices to access multiple elements at once.

Example 1: 1D Array

arr = np.array([10, 20, 30, 40, 50])

indices = [0, 2, 4]

result = arr[indices]

Output:

[10, 30, 50]

You can also use a NumPy array of indices:

arr[np.array([1, 3])]

 \rightarrow [20, 40]

Example 2: 2D Array (Rows and Columns)

arr = np.array([[10, 11], [20, 21], [30, 31]])

```
rows = [0, 1, 2]
cols = [1, 0, 1]
```

result = arr[rows, cols]

Output:

[11, 20, 31]

It selects:

- $(0,1) \to 11$
- (1,0) → 20
- $(2,1) \to 31$

2. Boolean Indexing

Use a **Boolean array** (same shape) to filter values based on a condition.

Example: 1D Array

arr = np.array([5, 10, 15, 20])

mask = arr > 10

result = arr[mask]

Output:

[15, 20]

Can also be written in one line:

 $arr[arr > 10] \rightarrow [15, 20]$

Example: 2D Array

arr = np.array([[1, 2, 3], [4, 5, 6]])

result = arr[arr > 3]

Output:

[4, 5, 6]

Returns a **flattened 1D array** of all elements greater than 3.

✓ Combine Conditions with Boolean Operators:

$$arr[(arr > 3) \& (arr < 6)] \rightarrow [4, 5]$$

$$arr[(arr == 2) | (arr == 6)] \rightarrow [2, 6]$$

Use & (and), | (or), ~ (not) with parentheses.

summary:

Feature Fancy Indexing Boolean Indexing

Type of index List/array of integers Boolean array or condition result

Output shape Depends on indices 1D array of matching elements

Usage Select specific positions Filter based on condition

What is Broadcasting?

Broadcasting is a feature in NumPy that allows **arithmetic operations** between arrays of **different shapes** without explicitly reshaping or replicating data.

It automatically **expands smaller arrays** so they match the shape of larger arrays, **without copying data**.

Why Use Broadcasting?

- Avoids explicit looping or reshaping
- Saves memory and improves performance
- ✓ Makes code cleaner and shorter

Broadcasting Example:

$$a = np.array([1, 2, 3])$$
 # Shape (3,)

Output:

```
[[11, 12, 13],
[21, 22, 23]]
```

Here:

- a becomes shape (1, 3)
- b becomes shape (2, 1)
- Result shape \rightarrow (2, 3)

Broadcasting Rules

To apply broadcasting, NumPy compares the shapes of the arrays from right to left (trailing dimensions).

Rule 1:

If the two dimensions are **equal**, they're compatible.

Rule 2:

If one of the dimensions is 1, it's stretched to match the other.

Rule 3:

If the dimensions are **not equal and neither is 1**, broadcasting **fails**.

Broadcasting Examples

✓ Example 1: Compatible Shapes

```
a = np.array([1, 2, 3]) # Shape (3,)
b = np.array([[10], [20]]) # Shape (2, 1)
```

 \rightarrow Result shape: (2, 3)

Example 2: Scalar and Array

```
a = np.array([[1, 2], [3, 4]]) # Shape (2, 2)
b = 5 # Shape () – scalar
```

 \rightarrow b is broadcast to shape (2, 2)

 \rightarrow Result = a + b = [[6, 7], [8, 9]]

✓ Example 3: Fails (Incompatible Shapes)

a = np.array([1, 2, 3]) # Shape (3,)

b = np.array([[1, 2], [3, 4]]) # Shape (2, 2)

→ Broadcasting fails because (3,) and (2, 2) are not compatible

Broadcasting Table (Shape Comparison Right to Left)

Operand A Shape Operand B Shape Broadcasted Shape Valid?

- (4, 3)
- (3,)
- (4, 3)
- Yes

- (2, 1)
- (2, 3)
- (2, 3)
- Yes

- (1, 5)
- (4, 1)
- (4, 5)
- Yes

- (3, 4)
- (2, 4)
- **X** -
- X No

- (1, 1, 3)
- (2, 3)
- (1, 2, 3)
- Yes

s Summary

- Broadcasting lets you work with arrays of different shapes.
- Follows specific shape compatibility rules.
- Saves memory and improves code readability.
- If broadcasting fails, use reshape() or expand_dims() to manually align shapes.

NumPy: Mathematical Functions

These functions are commonly used in **machine learning** and **deep learning**, especially for **activation**, **loss calculation**, and **model evaluation**.

• 1. Sigmoid Function

The **sigmoid function** is an activation function that maps any real value to the range (0, 1).

Formula:

```
sigmoid(x) = 1 / (1 + exp(-x))
```

Example:

import numpy as np

def sigmoid(x):

```
return 1/(1 + np.exp(-x))
```

```
x = np.array([-1, 0, 1, 2])
```

result = sigmoid(x)

Output:

[0.268, 0.5, 0.731, 0.881]

2. Mean Squared Error (MSE)

MSE is a **loss function** used for **regression problems**. It calculates the average of the squared differences between actual and predicted values.

Formula:

```
MSE = mean((y_true - y_pred)^2)
```

Example:

```
y_{true} = np.array([3, -0.5, 2, 7])
```

 $y_pred = np.array([2.5, 0.0, 2, 8])$

mse = np.mean((y_true - y_pred) ** 2)

Output:

0.375

3. Binary Cross Entropy (BCE)

BCE is a loss function used for binary classification problems. It measures the difference between predicted probabilities and actual binary labels.

Formula:

 $BCE = -mean(y_true * log(y_pred) + (1 - y_true) * log(1 - y_pred))$

- y true = true labels (0 or 1)
- y_pred = predicted probabilities (between 0 and 1)

Example:

```
y_true = np.array([1, 0, 1, 0])
y_pred = np.array([0.9, 0.1, 0.8, 0.2])
```

bce = -np.mean(y_true * np.log(y_pred) + (1 - y_true) * np.log(1 - y_pred))

Output:

≈ 0.164

to avoid log(0) errors in real applications.

summary Table:

Function	Used For	Output Range	Notes
Sigmoid	Activation (binary)	(0, 1)	Smooth, differentiable
Mean Squared Error	Loss (regression)	≥ 0	Punishes larger errors more
Binary Cross Entropy	Loss (binary classification)	≥ 0	Probabilistic output, more accurate for binary outcomes

NumPy: Handling Missing Values (NaN)

Use np.isnan() to check for NaN (Not a Number) values.

Example:

import numpy as np

```
a = np.array([1, 2, np.nan, 4])
np.isnan(a)
```

Output:

[False, False, True, False]

Removing Missing Values

To remove NaN values from the array:

Use Boolean Masking:

cleaned = $a[^np.isnan(a)]$

Output:

[1. 2. 4.]

- np.isnan(a) → returns True where NaN is present
- ~ → logical NOT, so it selects only non-NaN values

Summary:

- np.isnan(array) → detects NaNs
- array[~np.isnan(array)] → removes NaNs from array

Plotting Graphs with NumPy & Matplotlib

NumPy is used to generate data

Matplotlib is used to plot the data visually

Step 1: Import Libraries

import numpy as np

import matplotlib.pyplot as plt

Step 2: Generate Data with NumPy

```
Example:
```

```
x = np.linspace(0, 10, 100) # 100 points from 0 to 10

y = np.sin(x) # Sine values of x
```

Step 3: Plot Graph using plt.plot()

```
plt.plot(x, y)
plt.title("Sine Wave")
plt.xlabel("X-axis")
plt.ylabel("Y = sin(x)")
plt.grid(True)
plt.show()
```

Other Examples:

✓ Line Plot:

```
x = np.arange(0, 5, 0.5)

y = x ** 2

plt.plot(x, y)
```

Scatter Plot:

plt.scatter(x, y)

✓ Multiple Lines:

```
plt.plot(x, y, label="x^2")
plt.plot(x, np.sqrt(x), label="sqrt(x)")
plt.legend()
```

Summary:

Step Action

- 1 Import NumPy & Matplotlib
- 2 Generate x and y using NumPy
- 3 Use plt.plot() or plt.scatter()
- 4 Customize with title, labels, grid
- 5 Use plt.show() to display