Per-Circuit TCP-over-IPsec Transport for Anonymous Communication Overlay Networks

Manuel Schneider

Albert Ludwigs Universität - Institut für Informatik

24. Januar 2015

Tor - Architektur/Terminologie

Circuits

- Üblicherweise drei: Entry, Middle-, Exit Node
- Werden Hop-by-hop aufgebaut
 - Mit jedem Knoten wird ein Schlüssel ausgehandelt
- Werden nach einem Zeitintervall oder Fehler gewechselt
- Werden auf Vorrat angelegt (Performance)

Circuit construction TOR

Circuit Erweiterung

- OP öffnet eine Verbindung zu OR₁
 - Wenn schon eine Verbindung besteht wird diese genutzt
- OP sendet Create Control Cell an OR₁
- OR₁ bestätigt mit Created Control Cell
- Schlüsselaustausch: OP und OR₁ teilen Schlüssel K₁

Circuit construction TOR

OR₃

Relay Erweiterung

- OP sendet Extend Relay Cell an OR₁
- OR₁ öffnet eine Verbindung zu OR₂
 - Wenn schon eine Verbindung besteht wird diese genutzt
- OR₁ erweitert den Circuit zu OR₂ (Create)
- OR₁ leitet die Antwort in einer Extended Relay Cell an OP zurück
- OP und OR₂ teilen einen gemeinsamen Schlüssel K₂

Circuit construction TOR

Relay Erweiterung

- OP sendet Extend Relay Cell an OR₂
- OR₂ öffnet eine Verbindung zu OR₃
 - Wenn schon eine Verbindung besteht wird diese genutzt
- OR₂ erweitert den Circuit zu OR₃ (Create)
- OR₂ leitet die Antwort in einer Extended Relay Cell an OP zurück
- OP und OR₃ teilen einen gemeinsamen Schlüssel K₃

Cross Circuit Interference Problem TOR

- Tritt auf wenn sich verschiedene Circuits eine TCP Verbindung teilen
- Circuits teilen selben Buffer / TCP Mechanismus
 - In order delivery
 - Congestion control

Cross Circuit Interference Problem TOR

Head-On-Line Blocking

- Folge üblicher TCP Arbeitsweise
- TCP garantiert eine fehlerfreie und Ordnung erhaltende Datenübertragung
- Durch eine verlorene Cell werden bereits empfangene Nachfolgecells vom Kernel zurückgehalten
 - → Sind diese Cells von einem anderen Circuit, äußert sich diese Zeit als Verzögerung

Kernel-mode per-circuit TCP

Problem:

 Gemultiplexte Circuits unterliegen alle den selben TCP Mechanismen

Lösung in PCTCP:

 Jeder Circuit bekommt eine eigene TCP Verbindung (Ausnahme OP zu OR)

Recap - Circuit Construction PCTCP

OR₃

Relay Erweiterung

- OP sendet Extend Relay Cell an OR₁
- OR₁ öffnet eine Verbindung zu OR₂
 - Wenn schon eine Verbindung besteht wird diese genutzt
- OR₁ erweitert den Circuit zu OR₂ (Create)
- OR₁ leitet die Antwort in einer Extended Relay Cell an OP zurück
- OP und OR₂ teilen einen gemeinsamen Schlüssel K₂

IPSec in PCTCP

Warum IPSec?

- TLS verschlüsselt lediglich die Nutzlast/ TCP-Header bleibt Klartext
 - → Ein Angreifer kann Verbindungen unterscheiden
 - ightarrow Einschränkung der Anonymität

Exkurs - IPSec (Internet Protocol Security)

- Stellt Schutzziele sicher
 - Vertraulichkeit
 - Authentizität
 - Integrität
- Arbeitet auf Vermittlungsschicht
- Umfasst Protkolle für eine gesicherte Kommunikation
 - Authentication Header (AH)
 - Encapsulating Security Payload (ESP)
- Je zwei Betriebsmodi
 - Transport Modus
 - Tunnel Modus

IPSec in PCTCP

- Encapsulating Security Payload (ESP) im Transport Mode sorgt für die Vertraulichkeit der Verbindungsdaten
- Mit IPSec wird diese Angriffsfläche genommen
- TLS ist redundant und wird ausgelassen

PCTCP Überblick

PCTCP Überblick

- Bis zu 60% verringerte Latenzzeiten
- Bis zu 30% verbesserter Durchsatz

Socket Exhaustion Attacks

Sicherheit

- Sockets sind eine endliche Ressource
- Ziel ist den Onion Router außer Kraft zu setzen
 - Alle verfügbaren Sockets belegen
 - So viele Sockets öffen bis das System überlastet wird
- Bisher schwierig, wegen Multiplexing der Circuits über eine einzige TCP Verbindung

Socket Exhaustion Attacks

Sicherheit

Angriff auf Exit Nodes

- Jeder Stream öffnet einen Socket an der Exit Node
- Angreifer öffnet Streams über selbe Exit Node, bis diese weitere Streams ablehnt
- Funktioniert auch ohne PCTCP
- Angriff erreicht nicht das komplette Netzwerk

Socket Exhaustion Attacks

Sicherheit

Sniper Attack

- Angriff auf jede Node möglich
- Nutzt Tor selbst f
 ür den Angriff / Angreifer bleibt anonym
- Funktioniert auch ohne PCTCP, aber teuer (1 OP/Socket)
- Mit PCTCP mit einem Onion Proxy möglich

Socket Exhaustion Attacks Sicherheit

PCTCP Socket Exhaustion

- Basiert auf der Circuit Erweiterung
- Circuits werden über Zielknoten aufgebaut
- 7ielknoten soll Middle Node sein.
- Angreifer bleibt anonym
- Günstig, da nur ein Onion Proxy gebraucht wird

Fazit

- Einsatz erfordert manuelle Interaktion (IPsec)
 - → Hemmschwelle für Teilnahme steigt
 - → Gesamtanonymität sinkt
- Alternativ: IPSec im Userspace
 - Lizenzkompatible Implementierung existiert nicht, Eignung vergleichbar mit TCP-over-DLTS
- Sicherheitsprobleme sind nicht auf PCTCP bezogen
 - Kern des Problems liegt in der "Ein Circuit Pro TCP"-Verbindung

Referenzen

Vielen Dank für die Aufmerksamkeit!

M. AlSabah and I. Goldberg.

PCTCP: Per-Circuit TCP-over-IPSec Transport for Anonymous Communication Overlay Networks. Technical report, Centre for Applied Cryptographic Research (CACR) at the University of Waterloo, September 2013.

Roger Dingledine, Nick Mathewson, and Paul Syverson.

Tor: The second-generation onion router.

In Proceedings of the 13th Conference on USENIX Security Symposium - Volume 13, SSYM'04. USENIX Association, 2004.

John Geddes, Rob Jansen, and Nicholas Hopper.

IMUX: Managing Tor Connections from Two to Infinity, and Beyond.

Technical report, Centre for Applied Cryptographic Research (CACR) at the University of Waterloo, November 2014.

J. Reardon and I. Goldberg.

Improving Tor Using a TCP-over-DTLS Tunnel.

Technical report, Centre for Applied Cryptographic Research (CACR) at the University of Waterloo, September 2009.

R. Ringledine and S. Murdoch.

Performance Improvements on Tor or, Why Tor is slow and what we're going to do about it. März 2009.