Computer Vision and Machine Learning

(Neural Network-3)

Bhabatosh Chanda bchanda57@gmail.com

CNN or ConvNet: function

- ConvNet has two parts:
 - feature learning (Conv, ReLU and Pool) and
 - · Classification (Fully-connected network and softmax).
- · ConvNet architectures for images:
 - The explicit assumption that the inputs are images
 - · Allows us to extract certain features
 - · Large images do not fit into fully-connected structure
 - Pooling vastly reduces the number of parameters

4/24/2024

CNN or ConvNet: function

- ConvNet has two parts:
 - feature learning (Conv, ReLU and Pool) and
 - Classification (Fully-connected network and softmax).
- ConvNet architectures for images:
 - The explicit assumption that the inputs are images
 - Allows us to extract certain features
 - Large images do not fit into fully-connected structure
 - Pooling vastly reduces the number of parameters

4/24/2024

Structure of CNN

- Input is passed through a series of
 - Convolutional layer(s),
 - Non-linear (squashing) operation,
 - · Pooling (downsampling), and
 - Fully connected layers (optional)

to obtain output.

4/24/2024

Terms and standard variations

- Convolutional layer
 - Filter ≡ Neuron ≡ Kernel
 - Weights ≡ Parameters
 - Receptive field = size of the kernel
 - Output: Activation map ≡ Feature map
- Non-linear
 - · Sigmoid OR tanh OR ReLU
- Pooling layer
 - Max OR Mean OR Median

4/24/2024

Convolutional neural network (CNN)

Biological Connection -

- Hubel and Wiesel (1962) showed that some neuronal cells in the brain fired only in the presence of edges of a certain orientation.
 - Some neurons fire when exposed to vertical edges and some to horizontal or diagonal edges.
 - They are organized in a columnar architecture and produce visual perception.
- Convolutional operation (filter) can extract various features.
- Existence of feature may be confirmed by firing the neuron.

4/24/2024

Convolution and Neural network

Convolution

- 1D continuous convolution: $f * g(x) = \int_{\alpha = -\infty}^{\infty} f(\alpha)g(x \alpha)d\alpha$
- 1D discrete convolution: $f * g(x) = \sum_{j=0}^{M-1} f(j)g(x-j)$
- 2D continuous convolution: $f * g(x,y) = \int\limits_{\beta=-\infty}^{\infty} \int\limits_{\alpha=-\infty}^{\infty} f(\alpha,\beta)g(x-\alpha,y-\beta)d\alpha d\beta$
- 2D discrete convolution: $f * g(x,y) = \sum_{k=0}^{N-1} \sum_{j=0}^{M-1} f(j,k)g(x-j,y-k)$

4/24/2024

8

Properties of Convolution

• Commutative: f * g = g * f

• Associative: (f * g) * h = f * (g * h)

• Homogeneous: $f * (\tau g) = \tau f * g$

• Distributive (over addition): f * (g + h) = f * g + f * h

• Shift-Invariant: $f * g(x - x_0, y - y_0) = (f * g)(x - x_0, y - y_0)$

4/24/2024

Training

- Network training can be separated into 4 distinct steps
 - the forward pass,
 - the loss function,
 - the backward pass, and
 - the weight update.
- Training strategy and methods are same as neural network.

4/24/2024

25

Autoencoder

- Autoencoder is an unsupervised learning technique.
 - Neural network (CNN) is exploited for **representation learning**.
- A neural network (CNN) architecture includes *a bottleneck* in the network that forces a **compressed** representation of input.
- It has two parts:
 - Encoder (from the input to bottleneck)
 - Decoder (beyond bottleneck to the output)

24-04-2024

ndian Statistical Institute

Training the AE

- We can train Autoencoder simply by using **Gradient descent** method like any other fully connected neural network (FC-NN).
- Loss or error function may be defined as

$$E(x) = ||x - \hat{x}||^2 = ||x - h(x)||^2 = ||x - g(f(x))||^2$$

• So, still it needs to define a loss – this is an implicit supervision.

24-04-2024 Indian Statistical In:

Autoencoder and PCA

- Traditionally an autoencoder is used for dimensionality reduction and feature learning.
- Unlike the PCA now we can use activation functions to achieve non-linearity.
- It has been shown that an AE without activation functions achieves the PCA capacity.

24-04-2024 Indian Statistical Institute

AE vs. PCA: Representation visualization

Linear vs nonlinear dimensionality reduction

PCA attempts to discover a lower dimensional hyperplane which describes the original data, autoencoders learn nonlinear manifold.

4-2024 Indian Statistical Institute

Properties of Autoencoders

- Data-specific: Autoencoders are only able to compress data similar to what they have been trained on.
- Lossy: The decompressed outputs will be degraded compared to the original inputs.
- Learned automatically from examples: It is easy to train specialized instances of the algorithm that will perform well on a specific type of input.

04-2024

Indian Statistical Institute https://www.edureka.co/blog/autoencoders-tutorial/

Structure of CNN for classification

- Input is passed through a series of
 - Convolutional layer(s),
 - · nonlinear (squashing) operation,
 - pooling (downsampling), and
 - fully connected layers (optional)

to obtain the output.

24-04-2024

Indian Statistical Institute

Problem with standard autoencoders

- Standard autoencoders learn to generate compact representations and reconstruct their inputs well,
 - but asides from a few tasks like feature extraction and denoising, their applications are fairly limited.
- The fundamental problem with autoencoders, for generation, is
 - the latent space they convert their inputs into, where their encoded vectors lie, may not allow easy interpretation.

24-04-2024

Indian Statistical Institute

Denoising autoencoders

- Basic autoencoder trains to minimize the loss between x and the reconstruction q(f(x)).
- Denoising autoencoders train to minimize the loss between x and g(f(x+w)), where w is random noise.
- Same possible architectures, different training data.

• Kaggle has a dataset on damaged documents.

24-04-2024

Indian Statistical Institute https://blog.keras.io/building-autoencoders-in-keras.html

Denoising autoencoders

- Denoising autoencoders can't simply memorize the input output relationship.
- Intuitively, a denoising autoencoder learns a projection from a neighborhood of training data back onto the training data.

24-04-2024

ndian Statistical Institute

Sparse autoencoder

- Sparse autoencoders provides an alternative method for creating a bottleneck.
 - It does not require a reduction in the number of nodes in hidden layers apriori.
 - Encoder and decoder rely on activating a small number of neurons in the hidden layer.
 - Individual nodes of a trained model that are activated are data-dependent.
 - · Different inputs result in activation of different nodes.
- Undercomplete autoencoder use the entire network for every observation, while a sparse autoencoder use only a selective portion of the network.

2024 Indian Statistical Institute

Sparse autoencoder: architecture Input layer encoder Hidden layers output layer ou

Sparse autoencoder: sparsity

- Loss function is constructed to penalize activation of hidden neurons within a layer.
 - In other words, only a subset of neurons are activated for an input.
 - Set of neurons to be activated in a hidden layer depends on the input.
 - A neuron is said to be active if its output is close to 1.
- Such sparsity may be imposed in two different ways.
 - L1 regularization
 - KL-divergence

04-2024 Indian Statistical Institute 50

Sparsity: L1 regularization

• By adding a term to the loss function $L(x, \hat{x})$ to penalize the absolute value of the activation vector \boldsymbol{a} in the layer \boldsymbol{h} for \boldsymbol{i} -th observation

$$L(x,\hat{x}) + \gamma \sum_{i} |a_i^{(h)}|$$

where γ is the controlling parameter.

Thank you!

Any question?

2 ML

24-04-2024

Indian Statistical Institute