Резонанс токов в параллельном контуре

Цель работы: исследование резонанса токов в параллельном колебательном контуре с изменяемой ёмкостью, включающее получение амплитудно-частотных и фазово-частотных характеристик, а также определение основных параметров контура.

В работе используются: генератор сигналов, источник тока, нагруженный на параллельный колебательный контур с переменной ёмкостью, двулучевой осциллограф, цифровые вольтметры.

Перед выполнением работы следует изучить основы теории электрических колебаний по литературе из списка, приведённого в конце данного описания. Необходимые дополнения будут приведены ниже.

Резонанс токов

Схема экспериментального стенда для изучения резонанса токов в параллельном колебательном контуре показана на рис. 1а. Синусоидальный сигнал от генератора GFG-8255A поступает на вход источника тока, собранного на операционном усилителе ОУ с полевым транзистором ПТ, питание которых осуществляется встроенным блоком-выпрямителем от сети переменного тока 220 вольт. Цепи питания на схеме не показаны, представлен только резистор R_1 , переменное напряжение на котором в используемой схеме равно напряжению на входе «+» операционного усилителя. Источник тока, обладающий по определению бесконечным внутренним сопротивлением, фактически обеспечивает постоянство амплитуды тока I на меняющейся по величине нагрузке — параллельном контуре, изображенном на рис. 1а в виде эквивалентной схемы. На рис. 16 контур представлен почти в натуральную величину. Источник тока, колебательный контур и блок питания заключены в отдельный корпус с названием «Резонанс токов» на верхней крышке, отмеченный на рисунке штриховой линией.

Рис. 1а. Схема экспериментального стенда.

Рис. 1б. Колебательный контур.

На корпусе имеются коаксиальные разъёмы «Вход», « U_1 » и « U_2 », а также переключатель магазина ёмкостей C_n с указателем номера $n=1,2,\ldots 7$. Величины ёмкостей C_n и сопротивления R_1 , указаны в табличке на крышке корпуса. Напряжение $E=E_0\cos(\omega t+\varphi_0)$ поступает на вход «+» операционного усилителя от генератора через согласующую RC-цепочку. Это же напряжение через разъём « U_1 » подаётся одновременно на канал 1 осциллографа GOS-620 и вход 1-го цифрового вольтметра GDM-8245. Переменное напряжение на резисторе R_1 , как отмечалось выше, при этом также равно E. Напряжение на контуре U, совпадающее с напряжением на конденсаторе, подаётся **со знаком** «—» через разъём « U_2 » на канал 2 осциллографа и вход 2-го цифрового вольтметра GDM-8245. Показанные на схеме установки ещё два конденсатора без наименований (помимо входящего в RC-цепочку) играют вспомогательную роль и не влияют на характеристики контура. Символ «—> +» отмечает наличие источника питания полевого транзистора. Ток затвора «З» полевого транзистора ничтожно мал, так что токи истока «u» и стока «u» практически совпадают и равны току u во внешней цепи контура. Как видно из схемы,

$$I = E/R_1 = I_0 \cos(\omega t + \varphi_0), \qquad I_0 = E_0/R_1.$$
 (1)

Колебательный контур нашей установки собран из стандартных элементов, используемых в современных радиоэлектронных цепях. Известно, что в реальных конденсаторах и, особенно, в катушках индуктивности происходят необратимые потери энергии, обусловленные различными причинами. К ним относятся: утечки и диэлектрические потери в конденсаторах, вихревые токи и потери на перемагничивание в сердечниках катушек индуктивности, омические потери в проводниках, растущие с частотой за счёт скин-эффекта, и некоторые другие. Рост потерь приводит к увеличению действительных частей комплексных сопротивлений элементов контура, и, значит, к изменению его резонансных свойств, в частности, к уменьшению добротности.

Потери в элементах контура зависят как от частоты, так и от амплитуды тока (напряжения), температуры и ряда других факторов, например, от вида диэлектрика конденсатора, сердечника катушки и т.д. От перечисленных факторов в общем случае зависят и основные параметры контура: индуктивность L, ёмкость C и суммарное активное сопротивление R_{Σ} .

В нашем контуре катушка индуктивности L на ферритовом каркасе обладает малым сопротивлением по постоянному току и высокой собственной резонансной частотой $f_r \ge 1,3$ МГц. В общем случае каждая катушка, помимо индуктивности L, характеризуется также собственной (межвитковой) ёмкостью C_L и активным сопротивлением потерь R_L , распределёнными по её длине. Принимается, что эти величины сосредоточены в отдельных элементах схемы, образующих с индуктивностью L замкнутую колебательную цепь с собственной резонансной частотой $f_r = 1/2\pi\sqrt{LC_L}$. Вследствие влияния ёмкости C_L при измерении на частоте f определяется не истинная индуктивность L, а эффективное значение индуктивности $L_{eff} = L/(1-f^2/f_r^2)$, которое может заметно отличаться от истинной величины L. В рабочем диапазоне частот нашего

контура выполняется неравенство $f \ll f_r$, так что в эквивалентной схеме контура на рис. 1а индуктивность представлена своим истинным значением L и активным сопротивлением R_L .

Полипропиленовые конденсаторы, входящие в комплект магазина ёмкостей C_n (n=1, 2,...7), в рабочем диапазоне частот имеют пренебрежимо малые собственные индуктивности (менее 10^{-5} мГн/см общей длины обкладок и выводов) и относительно малые активные потери. Для оценки возможного вклада активных потерь в конденсаторах в общий импеданс контура воспользуемся представлением конденсатора с ёмкостью C последовательной эквивалентной схемой, показанной на рис. 2a.

Рис. 2. Последовательная эквивалентная схема конденсатора с потерями.

На этой схеме R_S — так называемое эквивалентное последовательное сопротивление (ЭПС), обусловленное, главным образом, электрическим сопротивлением материала обкладок и выводов конденсатора и контактов между ними, а также потерями в диэлектрике. Из эквивалентной схемы и векторной диаграммы к ней (рис. 26) видно, что активные потери в конденсаторе, пропорциональные, как известно, косинусу угла φ сдвига фаз между током и напряжением на ёмкости, убывают с ростом φ и, соответственно, с уменьшением угла $\delta = 90^{\circ} - \varphi$. Потери в конденсаторе принято характеризовать величиной $\operatorname{tg} \delta$, обычно приводимой в документации к изделию. Из рисунка 2 и закона Ома при этом получаем выражение для ЭПС на циклической частоте $\omega = 2\pi f$ в виде

$$R_S = \frac{U_{RS}}{I} = \frac{U_{RS}}{\omega C U_{CS}} = \frac{1}{\omega C} \operatorname{tg} \delta.$$
 (2)

Конденсаторы магазина ёмкостей C_n в интересующем нас диапазоне частот имеют $\operatorname{tg} \delta < 10^{-3}$, что является очень хорошим (низким!) показателем для конденсаторов с твёрдым диэлектриком.

В индуктивную ветвь параллельного колебательного контура нашей установки добавлен постоянный резистор R (см. рис. 1 и табличку на корпусе), несколько снижающий его добротность. Это сделано для упрощения процедур получения и обработки резонансных кривых. Таким образом, суммарное активное сопротивление контура при его последовательном обходе принимается равным

$$R_{\Sigma} = R_L + R + R_S. \tag{3}$$

Далее будем пользоваться методом комплексных амплитуд (см., например, [1], с. 37). Для импедансов ёмкостной Z_C и индуктивной Z_L ветвей контура с учётом (2), (3) получаем формулы:

$$Z_C = R_S - \frac{i}{\omega C}$$
, $Z_L = R + R_L + i\omega L$. (4)

Комплексные амплитуды токов в ёмкостной \vec{I}_C и индуктивной \vec{I}_L ветвях контура, а также напряжения \vec{U} на контуре при нулевой начальной фазе φ_0 внешнего тока $\vec{I} = I_0 e^{i\varphi_0}$ с учётом формул (2) — (4) удобно представить в виде:

$$\vec{I}_{C} = \vec{I} \frac{Z_{L}}{Z_{C} + Z_{L}} = iQI_{0} \frac{\omega}{\omega_{0}} \frac{1 - i\frac{R + R_{L}}{\rho} \frac{\omega_{0}}{\omega}}{1 + iQ\left(\frac{\omega}{\omega_{0}} - \frac{\omega_{0}}{\omega}\right)}, \qquad \vec{I}_{L} = \vec{I} \frac{Z_{C}}{Z_{C} + Z_{L}} = -iQI_{0} \frac{\omega_{0}}{\omega} \frac{1 + i\lg\delta}{1 + iQ\left(\frac{\omega}{\omega_{0}} - \frac{\omega_{0}}{\omega}\right)}, \qquad (5)$$

$$\vec{U} = \vec{I} \frac{Z_C Z_L}{Z_C + Z_L} = Q \rho I_0 \frac{\left(1 - i \frac{\omega_0}{\omega} \frac{R + R_L}{\rho}\right) (1 + i \operatorname{tg} \delta)}{1 + i Q \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)}.$$
 (6)

Здесь использованы стандартные обозначения для характеристик колебательного контура: $\omega_0 = 1/\sqrt{LC} - \text{собственная частота, определяемая из условия } \operatorname{Im}(Z_C + Z_L) = 0 \text{ , то есть из условия действительности импеданса контура при его последовательном обходе, } \rho = \sqrt{L/C} - \text{реактивное, или волновое, сопротивление, } Q - добротность колебательного контура, связанная с его параметрами соотношениями$

$$Q = \rho / R_{\Sigma} = \omega_0 L / R_{\Sigma} = 1 / \omega_0 C R_{\Sigma} \gg 1.$$
 (7)

Сильное неравенство в (7) означает, что о резонансе, как правило, говорят, если добротность колебательного контура достаточно велика. При этом частоту ω_0 обычно называют резонансной. Данное условие выполняется для всех контуров, используемых в нашей работе.

Из формул (5), (6) видно, что потерями в конденсаторах, явно представленных тангенсом угла потерь $tg \, \delta$, в нашем случае меньшим 10^{-3} , можно пренебречь. В то же время вклад потерь в конденсаторах в суммарное активное сопротивление контура R_{Σ} вблизи резонанса, примерно равный $\rho tg \, \delta$, можно будет оценить только по результатам эксперимента.

Наибольший практический интерес представляет случай, когда отклонение $\Delta \omega = \omega - \omega_0$ частоты внешней ЭДС от частоты ω_0 удовлетворяет сильному неравенству

$$|\Delta\omega| \ll \omega_0 \,. \tag{8}$$

При этом в первом порядке малости по безразмерному параметру $|\Delta\omega|/\omega_0$

$$\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega} = \frac{2\Delta\omega}{\omega_0},\tag{9}$$

что позволяет упростить выражения (5) и представить их в виде

$$\vec{I}_C = QI_0 \frac{\omega}{\omega_0} \frac{e^{i\varphi_C}}{\sqrt{1 + (\tau \Delta \omega)^2}}, \qquad \varphi_C = \frac{\pi}{2} - \frac{R + R_L}{\rho} - \arctan(\tau \Delta \omega), \qquad (10a)$$

$$\vec{I}_L = QI_0 \frac{\omega_0}{\omega} \frac{e^{i\varphi_L}}{\sqrt{1 + (\tau \Delta \omega)^2}}, \qquad \varphi_L = -\frac{\pi}{2} + \delta - \arctan(\tau \Delta \omega), \qquad (106)$$

$$\vec{U} = Q\rho I_0 \frac{e^{i\varphi_U}}{\sqrt{1 + (\tau \Delta \omega)^2}}, \qquad \varphi_U = -\frac{\omega_0}{\omega} \frac{R + R_L}{\rho} + \delta - \arctan(\tau \Delta \omega), \qquad (10B)$$

где $\tau = 2L/R_{\Sigma} = 2Q/\omega_0$ — время затухания, или «постоянная времени», контура. Величина $\gamma = 1/\tau$ называется коэффициентом затухания. В выражениях (10) мы сохранили в прежнем виде множители с отношениями частот в амплитудах и учли только линейные по малым параметрам $(R+R_L)/\rho$ и δ поправки, причём величину δ сохранили исключительно для общности, положив её, однако, константой.

Как видно из выражений (10), вблизи частоты ω_0 , то есть при условии (8), зависимости модулей токов и напряжения на контуре имеют схожий вид. Это позволяет экспериментально исследовать резонанс токов именно по напряжению на контуре \vec{U} .

Отдельно обратим внимание на тот факт, что зависимость от частоты модуля напряжения \vec{U} (10в) на параллельном контуре вблизи резонанса в принятом приближении совпадает с аналогичной зависимостью модуля тока для последовательного контура (см., например, [1], с. 44).

При резонансе, когда $\omega = \omega_0$, $\Delta \omega = 0$, модули комплексных амплитуд (10), их фазы и производные фаз по циклической частоте ω принимают вид:

$$I_{C}(\omega_{0}) = QI_{0}, \qquad \varphi_{C}(\omega_{0}) = \frac{\pi}{2} - \frac{R + R_{L}}{\rho}, \qquad I_{L}(\omega_{0}) = QI_{0}, \qquad \varphi_{L}(\omega_{0}) = -\frac{\pi}{2} + \delta, \qquad (11a)$$

$$U(\omega_0) = Q\rho I_0 = Q^2 R_{\Sigma} I_0, \qquad \varphi_U(\omega_0) = -\frac{R + R_L}{\rho} + \delta, \qquad (116)$$

$$\varphi_C'(\omega_0) = \varphi_L'(\omega_0) = \varphi_U'(\omega_0) = -\tau . \tag{11a}$$

Из формул (11a) следует, что на собственной частоте ω_0 токи \vec{I}_C и \vec{I}_L в ёмкостной и индуктивной ветвях контура в Q раз превышают ток \vec{I} во внешней цепи. При этом ток \vec{I}_C опережает внешний ток \vec{I} по фазе почти на $\pi/2$, а ток \vec{I}_L — отстаёт почти на $\pi/2$. Между собой токи \vec{I}_C и \vec{I}_L сдвинуты по фазе на угол, близкий к π . Можно сказать, что токи \vec{I}_C и \vec{I}_L образуют контурный ток, последовательно обтекающий элементы контура и в Q раз превышающий внешний ток \vec{I} . Последнее обстоятельство послужило поводом назвать резонанс в параллельном контуре «резонансом токов».

Отметим, однако, что максимальные (резонансные) значения токов в контуре не строго равны QI_0 и достигаются не строго на частоте ω_0 . Соответствующие относительные поправки составляют доли малой величины Q^{-2} и связаны с входящим в выражения (10a), (10б) для токов \vec{I}_C , \vec{I}_L отношением ω/ω_0 .

Из формул (116) вытекает, что на частоте ω_0 импеданс контура $Z(\omega_0)=$ $= \vec{U}(\omega_0)/I_0=Z_{\rm pc3}\exp(\mathrm{i}\varphi_{\rm pc3})$ является почти чисто активным. В пренебрежении относительными поправками порядка Q^{-2} его модуль и фаза относительно внешнего тока соответственно равны:

$$Z_{\text{pe}_3} = Q\rho = Q^2 R_{\Sigma}, \qquad \varphi_{\text{pe}_3} = -\frac{R + R_L}{\rho} + \delta. \qquad (12)$$

Как видим, сопротивление контура в резонансе в Q^2 раз превышает его суммарное активное сопротивление. Это свойство параллельного контура широко используется в радиотехнике.

При отклонении $\Delta \omega$ частоты внешней ЭДС от резонансной частоты таком, что выполняется условие

$$\tau \Delta \omega = \pm 1, \tag{13}$$

амплитуда напряжения U, как видно из формул (10в), уменьшается в $\sqrt{2}$ раз относительно своей резонансной величины, а фаза φ_U изменяется на угол $\mp \pi/4$.

Величина $\delta\omega\equiv 2\left|\Delta\omega\right|=2/\tau$ представляет собой важную характеристику колебательного контура — ширину резонансной кривой $U_{C}\left(\omega\right)$ на уровне $U_{C}\left(\omega_{0}\right)/\sqrt{2}$, по которой можно определить время релаксации $\tau=2/\delta\omega$ и, зная резонансную частоту ω_{0} , найти добротность контура $Q=\omega_{0}/\delta\omega$.

Эти же параметры можно определить по фазово-частотной характеристике: тангенс угла наклона $\varphi_U(\omega)$ в точке резонанса согласно (11в) определяет время релаксации τ со знаком « – », а расстояние по оси ω между точками, в которых фаза $\varphi_U(\omega)$ меняется от $\pi/4$ до $-\pi/4$, равно $2/\tau$ с относительной погрешностью порядка Q^{-2} .

Следует отметить, что в соотношении $\tau \cdot \delta \omega \sim 1$, которому подчиняется произведение времени релаксации и ширины резонансной кривой колебательного контура, проявляется фундаментальное *соотношение неопределённости*, связывающее, в частности, «время жизни» τ квантового осциллятора с шириной спектральной линии $\delta \omega$ его излучения (см., например, [2], с.255; [3], с.345).

Выполнение эксперимента

Символом «*» отмечены дополнительные задачи эксперимента и, соответственно, обработки и представления результатов, а также контрольные вопросы повышенной сложности. 1. Перед включением приборов проверьте правильность их соединения, которое должно соответствовать схеме на рис. 1а и рис. 3.

Рис. 3. Общий вид установки.

- 2. Поверните ручку AMPL на генераторе GFG-8255A в вытянутом состоянии в крайнее левое положение, включите генератор, нажмите кнопку "~" (синус) в нижнем ряду и кнопку "10k" (пятый частотный поддиапазон) в верхнем ряду, выставьте частоту ручкой FRE-QUENCY около 24 кГц, если переключатель ёмкостей стоит в положении 3, как на рис. 3. Погрешность установки частоты генератора GFG-8255A в пятом поддиапазоне составляет ± 1 Гц.
- 3. Включите питание блока «Резонанс токов» тумблером ВКЛ.
- 4. Включите вольтметры и переведите их в режим измерения переменного напряжения с автоматическим выбором предела измерения, нажав кнопки ACV и AUTO/MAN. При этом на табло вольтметров должны появиться крупные цифры, а на нижней строке мелким шрифтом надписи AUTO и AC. Погрешность вольтметров GDM-8245 в интересующем нас диапазоне частот ≤ 3%.
- 5. Вращая ручку AMPL на генераторе GFG-8255A, выставьте <u>с максимальной точностью</u> на входе контура среднеквадратичное значение напряжения E, заданное преподавателем (в пределах $100 \div 400$ мВ), контролируя его по показанию 1-го вольтметра (см. рис. 3).
- 6. Включите осциллограф GOS-620, краткое описание которого находится на рабочем столе, в следующем режиме.
 - <u>Развёртка</u> (панель HORIZONTAL): ручка плавной развёртки SWP.VAR в крайнем правом положении, ручка TIME/DIV в положении " $10~\mu$ ", если переключатель ёмкостей стоит в положении 3, как на рис. 3.
 - <u>Синхронизация</u> (панель TRIGGER): кнопка TRIG.ALT отжата, мода NORM, источник
 - CH 1, кнопка SLOPE (полярность) нажата, ручка уровня LEVEL в положении "0".
 - Вертикальное отклонение (панель VERTICAL): вход каналов AC, кнопка ALT/CHOP отжата, мода DUAL, кнопка CH2 INV нажата (для изменения полярности \vec{U}).

Отцентрируйте по оси Y положение осей X обоих каналов. Для этого, не меняя источника синхронизации (CH1), заземлите CH2, поставив переключатель вида сигнала в положение GND, и ручкой VERTICAL POSITION приведите луч CH2 к середине экрана. Верните переключатель вида сигнала CH2 в положение AC. Проделайте ту же процедуру для CH1, выбрав CH2 в качестве источника синхронизации. После настройки снова сделайте источником синхронизации CH1, не забыв вернуть его в положение AC.

При правильно выставленном режиме на экране осциллографа должны появиться две синусоиды. Подберите удобные для измерений частоты развёрток ручкой ТІМЕ/DIV и усиления каналов ручками VOLTS/DIV. Картина на экране осциллографа должна выглядеть примерно так, как на рис. 3. Начало развёртки лучей специально сдвинуто ручкой HORI-ZONTAL POSITION на видимую часть экрана, чтобы проверить настройку синхронизации: луч СН1 должен выходить из начала координат с отрицательным наклоном и быть симметричным относительно оси X. Для устранения возможной асимметрии воспользуйтесь ручкой уровня LEVEL на панели TRIGGER.

- 7. Меняя частоту f генератора, убедитесь по осциллографу и вольтметрам, что у синусоиды U(t) меняется амплитуда и фаза относительно начала координат, тогда как синусоида E(t) «привязана» к началу отсчёта, а её амплитуда остаётся неизменной с относительной погрешностью не более 1%. Теперь можно приступить к измерениям.
- 8. Для контуров с семью различными ёмкостями, меняя их с помощью переключателя на блоке, измерьте резонансные частоты f_{0n} и напряжения $U(f_{0n})$. Регистрируйте также напряжения $E(f_{0n})$, игнорируя отклонения в пределах относительной погрешности 1%. Состояние резонанса определяйте по максимуму напряжения U(f), измеряемого вольтметром и наблюдаемого на экране осциллографа. Приближение к резонансу удобно наблюдать по фигуре Лиссажу на экране осциллографа в режиме X-Y, который включается поворотом ручки TIME/DIV в крайнее левое положение. При этом фигура Лиссажу представляет собой эллипс, вырождающийся почти в резонансе в прямую линию с положительным наклоном.
- 8.* <u>Дополнительное упражнение.</u> Проделайте измерения п.8 для напряжения <math>E, в $2 \div 3$ раза отличающегося от заданного в п.5 и использованного в п.8.
- 9. Для контуров с двумя разными ёмкостями (по указанию преподавателя) снимите амплитудно-частотные характеристики U(f) для значений $U(f) \ge 0, 6U(f_{0n})$ (16-17 точек в сумме по обе стороны от резонанса) при том же напряжении E, что и в п.8.
- 10. Для тех же двух контуров снимите фазово-частотные характеристики $\varphi_U(f)$ для значений $U(f) \ge 0, 3U(f_{0n})$ (16-17 точек в сумме по обе стороны от резонанса) при том же напряжении E, что и в п.8.

Перед выполнением этой части работы измените с помощью ручек POSITION и TIME/DIV горизонтальной развёртки настройки осциллографа таким образом, чтобы картинка на экране имела вид, подобный представленным на рис. 4. Из осциллограмм рис. 4 видно, что синхронизующий сигнал E(t) «привязан» к общему началу отсчёта времени и напряжений на экране, лежащему на оси X координатной сетки экрана, и оба сигнала симметричны относительно этой оси.

Рис. 4. Осциллограммы сигналов E(t) и U(t).

Если это не так, то следует повторить процедуру центрировки горизонтальных осей каналов, как описано в п.6.

Расстояние x от начала отсчёта до точки первого обращения в нуль напряжения U(t) на участке спада характеризует разность фаз $\Delta \varphi$ сигналов. Эта величина, выраженная в радианах, очевидно, даётся формулой $\Delta \varphi = (x/x_0)\pi$, где x_0 — расстояние от начала отсчёта до точки первого обращения в нуль напряжения E(t) на участке подъёма, соответствующее полупериоду этого сигнала. Так, на осциллограммах рис. 4 $\Delta \varphi/\pi \simeq -0.76$ (слева) и $\Delta \varphi/\pi \simeq -0.52$ (справа).

Обработка и представление результатов

Настоятельно рекомендуется для обработки и представления результатов измерений использовать электронные таблицы (например, Microsoft Excel) или Mathcad.

11. Результаты измерений п.8 внесите в табл. 1 (ЗАГЛАВНЫМИ БУКВАМИ в круглых скобках в таблице записаны названия соответствующих функций в Microsoft Excel).

<u>Табл. 1</u>

C_n , нФ	f_{0n} , кГц	<i>U</i> , B	<i>E</i> , B	L, мкГн	ho, Ом	$Z_{ m pes},$ Om	Q	$R_{\scriptscriptstyle \Sigma},$ Ом	$R_{S\mathrm{max}}$, Ом	$R_{\!\scriptscriptstyle L}$, Ом
C ₁										
C ₇										
Среднее значение: СРЗНАЧ(:)										
Среднеквадратичная погрешность среднего значения: КОРЕНЬ((КВАДРОТКЛ(:))/(n*(n-1)))										
Коэффициент Стьюдента $I_{n\alpha}$ для n=7, α =0,95										
Случайная погрешность										

В первый столбец этой таблицы запишите значения ёмкостей C_n , приведённые в табличке на корпусе блока «Резонанс токов». Для каждого значения C_n по формулам вводной части и данным эксперимента проведите последовательно расчёт $L, \rho, Z_{\text{pc3}}, Q, R_{\Sigma}, R_{S\,\text{max}} = 10^{-3}\,\rho, R_L$. Затем определите $\langle L \rangle \pm \Delta L$ и $\langle R_L \rangle \pm \Delta R_L$, где угловыми скобками

- отмечено среднее значение, а символом " Δ " случайная погрешность величин L и R_L , полученных в результате косвенных измерений, проделанных в работе. Оцените вклад активных потерь в конденсаторах, представленных в табл. 1 сопротивлением $R_{S\,{
 m max}}$, рассчитанным для максимального значения ${
 m tg}\,\delta=10^{-3}$, в суммарное активное сопротивление контура. Оцените влияние погрешностей приборов на результаты измерений.
- 11.* Дополнительное упражнение. Выполните задание п.11 для данных, полученных в п.8*. Сравните с результатами п.11. Объясните причины расхождения результатов, если они обнаружатся.
- 12. По данным измерений п.9 постройте на одном графике амплитудно-частотные характеристики в координатах f, U(f) для выбранных контуров. Проведите сравнительный анализ характеристик.
- 13. По данным измерений п.9 также постройте на одном графике амплитудно-частотные характеристики в безразмерных координатах $x = f/f_{0n}$, y = U(x)/U(1). По ширине резонансных кривых на уровне 0,707 определите добротности Q соответствующих контуров. Оцените погрешности. Сравните эти величины с данными табл. 1 из п.11.
- 14. По данным измерений п.10 постройте на одном графике фазово-частотные характеристики в координатах $x = f/f_{0n}$, $y = \varphi_U/\pi$ для выбранных контуров. По этим характеристикам определите добротности контуров одним из двух способов: по формуле $Q = 0.5 \, d\varphi_U(x)/dx$ при x = 0 или по расстоянию между точками по оси x, в которых y меняется от $\pi/4$ до $-\pi/4$, равному 1/Q. Оцените погрешности. Сравните с результатами пп.11, 13.
- 15. По данным табл. 1 постройте зависимость $R_L(f_{0n})$ в системе координат с началом в точке $(0,6f_{0n};0)$; нанесите на график прямую $\langle R_L \rangle$. Назовите возможные причины изменения R_L с частотой.
- 16. По данным табл. 1 из п.11 постройте векторную диаграмму (см., например, [1], с. 41) токов и напряжений для контура с наименьшей добротностью в резонансном состоянии. Ось абсцисс направьте по вектору \vec{I} . Масштаб по этой оси сделайте в 2 раза более крупным, чем по оси ординат.

Контрольные вопросы

- 1. Приведите определение добротности колебательного контура в «энергетических» терминах.
- 2. Получите выражение для напряжения на катушке индуктивности \vec{U}_{I} в резонансе.
- 3. Дайте обоснование способам определения добротности по фазово-частотной характеристике
- 4. По каким причинам потери в контуре зависят от частоты?
- 5*. Зависят ли потери в контуре от амплитуды сигнала и, если зависят, то по каким причинам?
- 6*. Оцените, на какой частоте ω_m эллипс на экране осциллографа в п.8 вырождается в прямую линию с положительным наклоном.

СПИСОК ЛИТЕРАТУРЫ

- 1. Лабораторный практикум по обще физике. Т. 2. Электричество и магнетизм. М.: МФТИ, 2007. С.30-51.
- 2. *Сивухин Д.В.* Общий курс физики. Т. III. Электричество. М.: ФИЗМАТЛИТ, 2006. §§126, 127.
- 3. *Кириченко Н.А.* Электричество и магнетизм. М.: МФТИ, 2011. §§17.1-17.3.