LEAD SCORE CASE STUDY

LOGISTIC_REGRESSION

Problem Statement:

▶ An X Education need help to select the most promising leads, i.e. the leads that are most likely to convert into paying customers. The company requires us to build a model wherein you need to assign a lead score to each of the leads such that the customers with higher lead score have a higher conversion chance and the customers with lower lead score have a lower conversion chance. The CEO, in particular, has given a ballpark of the target lead conversion rate to be around 80%.

Goals and Objectives

Build a logistic regression model to assign a lead score between 0 and 100 to each of the leads which can be used by the company to target potential leads. A higher score would mean that the lead is hot, i.e. is most likely to convert whereas a lower score would mean that the lead is cold and will mostly not get converted.

STEPS PERFORMED FOR ANALYSIS:

- Importing the required libraries and the dataset
- Inspecting the Data Frame
- Checking for missing values
- Analyzing columns individually and handling missing values
- Outlier treatment
- Dropping redundant columns
- Converting some binary variables (Yes/No) to 0/1
- Grouping column features
- Dummy creation
- Train Test Split
- Model Building
- Plotting the ROC Curve
- Finding Optimal Cut-Off Points
- Precision and Recall
- Making Predictions on the Test Set

LEAD SCORE

LEAD ORIGIN

DO NOT CALL

DO NOT EMAIL

LAST ACTIVITY

SPECIALIZATION

COUNTRY

CURRENT OCCUPATION

WHAT MATTERS THE MOST IN CHOOSING A COURSE ?

LAST NOTABLE ACTIVITY

TAGS

Total_views vs converted

Total_Time_spent on website vs Converted

Total Visits vs Converted

DATA CONVERSION:

- Numerical variables are normalised.
- Dummy variables are created for objective type variables.
- ► Total Rows for Analysis = 9240
- ► Total columns for Analysis = 37

MODEL BUILDING

- Splitting the Data into Training and Testing Sets.
- ► The first basic step for regression is performing a train-test split, we have chosen 70:30 ratio.
- Use RFE for feature selection.
- Running RFE with 20 variables as output.
- Building Model by removing the variables whose p-value is greater than 0.05 and vif value is greater than 5.
- Predictions on test data set.
- Overall accuracy is 91%.

ROC CURVE

- Finding Optimal Cut off point.
- Optimal cut off probability is that where we get balanced sensitivity and specificity.
- From the first graph it is visible that the optimal cut off is at 0.35.

Conclusion:

- ▶ It was found that the variables that mattered the most in the potential buyers are (In descending order):
- 1. What_matters_most_to_you_in_choosing_a_course
- Tags_Will revert after reading the email
- Last_Notable_Activity_Modified
- 4. a.Tags_Other Tags b.Tags_Ringing
- 5. a. Last_Activity_SMS Sent b. Last_Activity_Olark Chat Conversation
- 6. Occupation_Working Professional
- 7. Lead_Origin_Lead Import
- Keeping these in mind the X Education can flourish as they have a very high chance to get almost all the potential buyers to change their mind and buy their courses.