BO101

Topic: Biomolecules: part 1 (30-04-21)

Chemical basis of life

- Carbon, Hydrogen, Oxygen, Nitrogen, Phosphorus and Sulfur are the most abundant elements in living things (97%).
- Most biomolecule consists of atoms joined by covalent bonds
- Other important chemical bonds include ionic bonds, Hydrogen bonds and van der Waals interactions.

_	
OXYGEN	Required for cellular respiration; present in most organic compounds; component of water
G CARBON	Forms backbone of organic molecules; each carbon atom can form four bonds with other atoms
H HYDROGEN	Present in most organic compounds; component of water; hydrogen ion (H*) is involved in some energy transfers
NITROGEN	Component of proteins and nucleic acids; compo- nent of chlorophyll in plants
CALCIUM	Structural component of bones and teeth; calcium ion (Ca ²⁺) is important in muscle contraction, conduction of nerve impulses, and blood clotting; associated with plant cell wall
P Phosphorus	Component of nucleic acids and of phospholipids in membranes; important in energy transfer reactions; structural component of bone
K Potassium	Potassium ion (K*) is a principal positive ion (cation) in interstitial (tissue) fluid of animals; important in nerve function; affects muscle contraction; controls opening of stomata in plants
S SULFUR	Component of most proteins
Na SODIUM	Sodium ion (Na+) is a principal positive ion (cation) in interstitial (tissue) fluid of animals; important in fluid balance; essential for conduction of nerve impulses; important in photosynthesis in plants
Mg MAGNESIUM	Needed in blood and other tissues of animals; acti- vates many enzymes; component of chlorophyll in plants
CHLORINE	Chloride ion (Cl ⁻) is principal negative ion (anion) in interstitial (tissue) fluid of animals; important in water balance; essential for photosynthesis
RON	Component of hemoglobin in animals; activates certain enzymes

Biological experiments of the Viking Mars lander

Chemical basis of life

- Because the different isotopes of a given element have the same chemical characteristics, they are essentially interchangeable in molecules.
- Molecules containing radioisotopes are usually metabolized and localized in the organism in a similar way to their nonradioactive counterparts, and they can be substituted.
- Radioisotopes such as ³H (tritium), ¹⁴C, and ³²P are extremely valuable research tools used, for tracing biochemical pathways.

Why Carbon?

Carbon has unique properties that allow the formation of the backbones of the large, complex molecules essential to life

- 1. Carbon atom can form total of 4 covalent bonds; each bond can link it to another carbon atom or to an atom of Nitrogen, Hydrogen, Oxygen.
- 2. Carbon-to-carbon bonds are strong; yet, they are not so strong that it would be impossible to break them.
- 3. Carbon-to-carbon bonds can form single bond, double bond, triple bond, with <u>different shape</u>. The shape of a molecule is important in determining its biological properties and function. Carbon atoms can produce a wide variety of 3-D molecular shapes

The FOUR Classes of Large Biomolecules

All living things are made up of four classes of large biological molecules:

- 1. Carbohydrates
- 2. Lipids
- 3. Protein
- 4. Nucleic Acids (DNA & RNA)

Large Biomolecules are called Macromolecules

Made of large number of molecules composed of thousands of covalently bonded atoms

Organic compounds (biomolecules)

• Organic compounds can be monomers or polymers

 Carbon atoms directly join with one another or other atoms to form large molecules

Example: lipids

- Monomers can be joined by dehydration that are polymers
 - Example: Carbohydrates, Proteins, Nucleic acids

The synthesis and breakdown of polymers

- Condensation reaction joins two monomers together
- Condensation through the loss of a water molecule is dehydration

Dehydration reaction: synthesizing a polymer

 Hydrolysis reaction disassembles polymers to monomers by a reaction that is reverse of the dehydration reaction

Carbohydrates

- Carbohydrates are the polymers of sugars
- C, H, O
- The simplest monomer of carbohydrates are monosaccharides (single sugars)
- A disaccharide is formed form two monosaccharides
- Carbohydrate macromolecules are polysaccharides, polymers composed of many sugar building blocks

Monosaccharide: Glucose

All biological sugars are D
enantiomer
What does this suggest about
the evolution of sugars?

Glucose in solution typically exists as a ring of five carbons and one oxygen.

Monosaccharide: Glucose

When dissolved in water, glucose undergoes a rearrangement of its atoms, forming one of three possible structures: 2 ring structure and and 1 open structure

- When glucose forms a ring, two isomeric forms are possible, α -glucose and β -glucose
- The differences between α -glucose and β -glucose: in α -glucose, the -OH group on the 1st carbon is present on the same side as that of the CH₂OH group

• When α -glucose molecules are joined chemically to form a polymer starch is formed.

• When β-glucose molecules are joined to form a polymer cellulose is formed.

Starch: branched polymer of α -glucose molecules

Cellulose: unbranched polymer of β-glucose molecules

- Glycogen is a storage polysaccharide in animals
- Polymer of α-glucose
- This covalent bond is called a glycosidic linkage
- Humans store glycogen in liver & muscle cells

In the human diet, carbohydrates constitute approximately half the total caloric intake, yet only 1% of body weight is carbohydrate.

- Most of the carbohydrates in the human diet are used as fuel to supply the energy requirements of the organism.
- The amount of energy: 4 calories in a gram of carbohydrate or protein.
 9 calories in a gram of fat.
- Thus, carbohydrate contributes relatively little to the weight of the body.

Lipids

- **Lipids** are the one class of large biological molecules that <u>do not form</u> <u>polymers</u>
- C, H, O (sometimes N, P)

• Lipids Are **Hydrophobic** (no affinity for water) because they consist mostly of **hydrocarbons**

Biologically important lipids are classified into:

- 1. Energy storage lipids: fat
- 2. structural lipids: phospholipid
- 3. sterols

Storage lipids

- Fats are made from two types of molecules: glycerol & fatty acids
- Glycerol has 3 hydroxyl groups

- Fatty acid consists of a carboxyl group attached to <u>long carbon chain</u>
- Three fatty acids joins the hydroxyl group of the glycerol via ester linkage (via dehydration)
- AKA triacylglycerol or triglyceride

Glycerol

Storage lipids: Fat

- Most animal fats are saturated (butter)
- Saturated fatty acids have the maximum number of hydrogen atoms possible and no double bonds
- Fully saturated fatty acids, molecules can pack together tightly in arrays, with atoms all along their lengths in van der Waals contact with the atoms of neighboring molecules.
- More thermal energy in needed to disorder these arrays of saturated fatty acids, they have higher melting points & solid in room temperature

Storage lipids: oil

- Oils are made from unsaturated fatty acids
- Liquid at room temperature
- Plant fats and fish fats are usually unsaturated
- Unsaturated fatty acids have one or more double bonds
- Because less thermal energy is needed to disorder these poorly ordered arrays of unsaturated fatty acids, they have lower melting points than saturated fatty acids of the same chain length

Structural lipid: cell membrane

Structural lipid: cell membrane

Structural lipid: cell membrane

embrane

Varies between the tissue → X PO4 Fatty acid

- The central feature of structural lipids are amphipathic
- one end of the molecule is hydrophobic, the other end is hydrophilic

 Phospholipids form all biological membranes

Basic characteristics of structural lipids

 Phospholipids spontaneously form 3 types of structures in water

 Shape of the Phospholipid molecules determine their packing and structure

Sterols

- Sterols are lipids characterized by a carbon skeleton consisting of four fused rings
- Cholesterol, an important sterol, is a component in animal cell membranes
- The overall length of the molecule is similar to a 16-carbon fatty acid chain.
- In addition to their roles as membrane constituents, sterols serve as precursors for a variety of biologically important molecules.
- Example: Steroid hormones, Vitamin D, Bile acids etc.

Proteins

- Proteins are polymers of amino acids
- C, H, O, N, S
- Amino acids, have an amino group (—NH₂) and a carboxyl group (—COOH) bonded to the same asymmetrical carbon atom.
- Amino acids in solution at neutral pH possess a positive charge at one end and a negative charge at the opposite end.

Amino acids

- Each amino acid could potentially exist as one of two possible enantiomers, known as the Dform and the L-form
- All biological amino acids are L-amino acids
- What does this suggest about the evolution of proteins?

Twenty amino acids

With Aliphatic Side Chains				
Glycine	Gly [G]			
Alanine	Ala [A]			
Valine	Val [V]			
Leucine	Leu [L]			
Isoleucine	lle [I]			

Methionine

Met [M]

With Side Chains Containing Hydroxylic (OH) Groups Serine Ser [S] CH2 - CH - COO NH₃⁺ ОН Threonine Thr [T] CH3 - CH - CH - COO OH NH₃⁺ Tyrosine See below. Tyr [Y] With Side Chains Containing Sulfur Atoms Cysteine Cys [C] CH₂ - CH - COO

CH2 - CH2 - CH - COO

Twenty amino acids

With Side Chains Containing Basic Groups Arginine Arg [R] $H - N - CH_2 - CH_2 - CH_2 - CH - COO$ NH₂ Lysine Lys [K] Histidine His [H] **Containing Aromatic Rings** Histidine His [H] See above. Phenylalanine Phe [F] Tyrosine Tyr [Y] Tryptophan Trp [W] Imino Acid Proline Pro [P]

COO

Abbreviations of twenty amino acids

AMINO ACID

Aspartic acid	Asp	D
Glutamic acid	Glu	Е
Arginine	Arg	R
Lysine	Lys	K
Histidine	His	Н
Asparagine	Asn	Ν
Asparagine Glutamine	Asn Gln	N Q
Glutamine	Gln	Q

AMINO ACID

Alanine	Ala	Α
Glycine	Gly	G
Valine	Val	٧
Leucine	Leu	L
Isoleucine	lle	1
Proline	Pro	P
Phenylalanine	Phe	F
Methionine	Met	M
Tryptophan	Trp	W
Cysteine	Cys	С

Need to memorize

Peptide bonds

Two amino acids are joined by peptide bond

Multiple amino acids join together to form proteins

N-terminus C-terminus

Linear orders of amino acids can make a huge number of proteins

Consider a peptide with two amino acids

 $20 \times 20 \times 20 = 8000$ different molecules

For 100 amino acid protein the # of possibilities are: $20^{100} = 1.27 \times 10^{130}$

The actual number of proteins is much low; Why?

Ramachandran Plot

Primary structure of proteins

- The order or sequence of amino acids in a protein chain are important in determining its **structure and function**.
- Arranging amino acids in a different order creates different protein
- For example, angiotensin II (blood pressure regulating protein) sequence:

 Any other order of amino acids in this peptide would result in a peptide that would not function as angiotensin II. $edit \neq diet \neq tide \neq tied$

Secondary structure of proteins

- α helix or β sheet or random coil
- Based on the sequence of amino acids (primary structure) protein might fold like a helix or sheet
- Stabilized by Hydrogen bond between the N-H of a peptide bond to the C=O of another peptide bond (R groups are not involved)

<u>Tertiary</u> structure of proteins:

Non-covalent bonds between side-chains guide the overall conformation

<u>Tertiary</u> structure of proteins:

Chemical bonds that hold the parts of the protein molecule in the designated shape:

- Hydrogen bonds
- ionic bonds,
- hydrophobic interactions,
- disulfide bonds

Three levels of protein structure

3-dimensional structure of proteins

- Proteins are classified into groups based on their threedimensional shape.
- Globular proteins are spherical structures that are soluble in an aqueous environment. Example: Hemoglobin in blood
- Fibrous proteins are long, thread-like structures that have high helical content. Keratins, in hair, nails
- Membrane proteins are part of Biological membrane

Globular proteins

Fibrous proteins

α-keratins

Fibrous proteins

β -keratins stack of beta sheets fibroin microfibril structure a fibroin microfibril a fibril fibroin filaments sericin protein a silk fiber

Membrane proteins

- Membrane proteins extend through the membrane
- They form membrane channel and pump across the membrane bilayer
- Example: aquaporins

 Aquaporin facilitate the transport of water molecules in and out of cells.

Questions

- 1. All proteins contain the
- (A) Same 20 amino acids
- (B) Different amino acids
- (C) 300 Amino acids occurring in nature
- (D) Only a few amino acids
- 2. Which of the following statement(s) are CORRECT about primary structure of proteins?
- A. It refers to alpha-helix
- B. It refers to amino acid sequence
- C. It refers to hydrogen bonding between proteins

Questions

- 3. What is the <u>single letter</u> abbreviation of this tetrapeptide "Aspartic acid-Glutamic acid-Alanine-Aspartic acid"
- A. REAR
- B. DEAD
- C. AGAG

- 4. How many tetra-peptides can be made with 20 amino acids?
- A. 400
- B. 8000
- $C. 10^9$
- D. None of the above

Questions

- 5. The synthetic process by which monomers are covalently linked is
- (a) hydrolysis
- (b) isomerization
- (c) condensation
- (d) glycosidic linkage
- (e) ester linkage
- 6. Saturated fatty acids are so named because they are saturated with
- (a) hydrogen
- (b) water
- (c) hydroxyl groups
- (d) glycerol
- (e) double bonds