# International Rectifier

## IRLML6402

### HEXFET® Power MOSFET

- Ultra Low On-Resistance
- P-Channel MOSFET
- SOT-23 Footprint
- Low Profile (<1.1mm)
- Available in Tape and Reel
- Fast Switching





#### Description

These P-Channel MOSFETs from International Rectifier utilize advanced processing techniques to achieve extremely low onresistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET® power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in battery and load management.

A thermally enhanced large pad leadframe has been incorporated into the standard SOT-23 package to produce a HEXFET Power MOSFET with the industry's smallest footprint. This package, dubbed the Micro3™, is ideal for applications where printed circuit board space is at a premium. The low profile (<1.1mm) of the Micro3 allows it to fit easily into extremely thin application environments such as portable electronics and PCMCIA cards. The thermal resistance and power dissipation are the best available.



#### **Absolute Maximum Ratings**

|                                        | Parameter                                         | Max.         | Units |
|----------------------------------------|---------------------------------------------------|--------------|-------|
| $V_{DS}$                               | Drain- Source Voltage                             | -20          | V     |
| I <sub>D</sub> @ T <sub>A</sub> = 25°C | Continuous Drain Current, V <sub>GS</sub> @ -4.5V | -3.7         |       |
| I <sub>D</sub> @ T <sub>A</sub> = 70°C | Continuous Drain Current, V <sub>GS</sub> @ -4.5V | -2.2         | Α     |
| I <sub>DM</sub>                        | Pulsed Drain Current ①                            | -22          |       |
| P <sub>D</sub> @T <sub>A</sub> = 25°C  | Power Dissipation                                 | 1.3          | W     |
| P <sub>D</sub> @T <sub>A</sub> = 70°C  | Power Dissipation                                 | 0.8          | VV    |
|                                        | Linear Derating Factor                            | 0.01         | W/°C  |
| E <sub>AS</sub>                        | Single Pulse Avalanche Energy⊕                    | 11           | mJ    |
| $V_{GS}$                               | Gate-to-Source Voltage                            | ± 12         | V     |
| T <sub>J</sub> , T <sub>STG</sub>      | Junction and Storage Temperature Range            | -55 to + 150 | °C    |

#### **Thermal Resistance**

|                 | Parameter                    | Тур. | Max. | Units |
|-----------------|------------------------------|------|------|-------|
| $R_{\theta JA}$ | Maximum Junction-to-Ambient® | 75   | 100  | °C/W  |

### Electrical Characteristics @ T<sub>J</sub> = 25°C (unless otherwise specified)

|                                     | Donomoton                             | B.41: | T      | Mari  | I Imita | Conditions                                        |
|-------------------------------------|---------------------------------------|-------|--------|-------|---------|---------------------------------------------------|
|                                     | Parameter                             | Min.  | Typ.   | Max.  | Units   | Conditions                                        |
| $V_{(BR)DSS}$                       | Drain-to-Source Breakdown Voltage     | -20   |        | _     | V       | $V_{GS} = 0V, I_D = -250\mu A$                    |
| $\Delta V_{(BR)DSS}\!/\!\Delta T_J$ | Breakdown Voltage Temp. Coefficient   |       | -0.009 |       | V/°C    | Reference to 25°C, $I_D$ = -1mA @                 |
| R <sub>DS(on)</sub>                 | Static Drain-to-Source On-Resistance  |       | 0.050  | 0.065 | Ω       | $V_{GS} = -4.5V, I_D = -3.7A$ ②                   |
| US(on)                              | Statio Brain to Godree On Registerioe |       | 0.080  | 0.135 | 52      | V <sub>GS</sub> = -2.5V, I <sub>D</sub> = -3.1A ② |
| V <sub>GS(th)</sub>                 | Gate Threshold Voltage                | -0.40 | -0.55  | -0.95 | V       | $V_{DS} = V_{GS}$ , $I_D = -250\mu A$             |
| g <sub>fs</sub>                     | Forward Transconductance              | 6.0   |        |       | S       | V <sub>DS</sub> = -10V, I <sub>D</sub> = -3.7A ②  |
| 1                                   | Drain-to-Source Leakage Current       |       |        | -1.0  |         | $V_{DS} = -20V, V_{GS} = 0V$                      |
| I <sub>DSS</sub>                    | Dialii-to-Source Leakage Current      |       |        | -25   | μA      | $V_{DS} = -20V, V_{GS} = 0V, T_{J} = 70^{\circ}C$ |
| lasa                                | Gate-to-Source Forward Leakage        |       |        | -100  | nA      | V <sub>GS</sub> = -12V                            |
| I <sub>GSS</sub>                    | Gate-to-Source Reverse Leakage        |       |        | 100   | IIA     | V <sub>GS</sub> = 12V                             |
| Qg                                  | Total Gate Charge                     |       | 8.0    | 12    |         | I <sub>D</sub> = -3.7A                            |
| Q <sub>gs</sub>                     | Gate-to-Source Charge                 |       | 1.2    | 1.8   | nC      | $V_{DS} = -10V$                                   |
| $Q_{gd}$                            | Gate-to-Drain ("Miller") Charge       |       | 2.8    | 4.2   |         | V <sub>GS</sub> = -5.0V ②                         |
| t <sub>d(on)</sub>                  | Turn-On Delay Time                    |       | 350    |       |         | V <sub>DD</sub> = -10V                            |
| t <sub>r</sub>                      | Rise Time                             |       | 48     |       | ns      | $I_D = -3.7A$                                     |
| t <sub>d(off)</sub>                 | Turn-Off Delay Time                   |       | 588    |       | 115     | $R_G = 89\Omega$                                  |
| t <sub>f</sub>                      | Fall Time                             |       | 381    |       |         | $R_D = 2.7\Omega$                                 |
| C <sub>iss</sub>                    | Input Capacitance                     |       | 633    |       |         | $V_{GS} = 0V$                                     |
| Coss                                | Output Capacitance                    |       | 145    |       | pF      | $V_{DS} = -10V$                                   |
| C <sub>rss</sub>                    | Reverse Transfer Capacitance          |       | 110    |       |         | f = 1.0MHz                                        |

### **Source-Drain Ratings and Characteristics**

|                 | Parameter                 | Min. | Тур. | Max. | Units | Conditions                                      |
|-----------------|---------------------------|------|------|------|-------|-------------------------------------------------|
| Is              | Continuous Source Current |      |      | -1.3 |       | MOSFET symbol                                   |
|                 | (Body Diode)              |      |      | -1.3 | Α     | showing the                                     |
| I <sub>SM</sub> | Pulsed Source Current     |      |      | 00   |       | integral reverse                                |
|                 | (Body Diode) ①            |      |      | -22  |       | p-n junction diode.                             |
| V <sub>SD</sub> | Diode Forward Voltage     |      |      | -1.2 | V     | $T_J = 25$ °C, $I_S = -1.0$ A, $V_{GS} = 0$ V ② |
| t <sub>rr</sub> | Reverse Recovery Time     |      | 29   | 43   | ns    | $T_J = 25^{\circ}C, I_F = -1.0A$                |
| Q <sub>rr</sub> | Reverse RecoveryCharge    |      | 11   | 17   | nC    | di/dt = -100A/µs ②                              |

#### Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Pulse width  $\leq$  400 $\mu$ s; duty cycle  $\leq$  2%.
- ③ Surface mounted on 1" square single layer 1oz. copper FR4 board, steady state.

<sup>\*\*</sup> For recommended footprint and soldering techniques refer to application note #AN-994.



Fig 1. Typical Output Characteristics



Fig 2. Typical Output Characteristics



Fig 3. Typical Transfer Characteristics



**Fig 4.** Normalized On-Resistance Vs. Temperature



**Fig 5.** Typical Capacitance Vs. Drain-to-Source Voltage



**Fig 6.** Typical Gate Charge Vs. Gate-to-Source Voltage



Fig 7. Typical Source-Drain Diode Forward Voltage



Fig 8. Maximum Safe Operating Area



**Fig 9.** Maximum Drain Current Vs. Case Temperature

**Fig 10.** Maximum Avalanche Energy Vs. Drain Current



Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient





**Fig 12.** Typical On-Resistance Vs. Gate Voltage

**Fig 13.** Typical On-Resistance Vs. Drain Current

International IOR Rectifier

### IRLML6402

### Package Outline

### Micro3™

Dimensions are shown in millimeters (inches)



| DIM | INC         | HES   | MILLIMETERS |      |  |
|-----|-------------|-------|-------------|------|--|
| DIM | MIN         | MAX   | MIN         | MAX  |  |
| Α   | .032        | .044  | 0.82        | 1.11 |  |
| A1  | .001        | .004  | 0.02        | 0.10 |  |
| В   | .015        | .021  | 0.38        | 0.54 |  |
| С   | .004        | .006  | 0.10        | 0.15 |  |
| D   | .105        | .120  | 2.67        | 3.05 |  |
| е   | .0750 BASIC |       | 1.90 BASIC  |      |  |
| e1  | .0375       | BASIC | 0.95 BASIC  |      |  |
| Е   | .047        | .055  | 1.20        | 1.40 |  |
| Н   | .083        | .098  | 2.10        | 2.50 |  |
| L   | .005        | .010  | 0.13        | 0.25 |  |
| θ   | 0°          | 8°    | 0°          | 8°   |  |
|     |             |       |             |      |  |



#### NOTES:

- 1. DIMENSIONING & TOLERANCING PER ANSI Y14.5M-1982.
  2. CONTROLLING DIMENSION: INCH.
  3 DIMENSIONS DO NOT INCLUDE MOLD FLASH.

## Part Marking Information

Micro3™

Notes: This part marking information applies to devices produced before 02/26/2001

WW = (1-26) IF PRECEDED BY LAST DIGIT OF CALENDAR YEAR EXAMPLE: THIS IS AN IRLML6302



| PART NUMBER — |          | <u> </u> |   |              |
|---------------|----------|----------|---|--------------|
| Ì             | 1C<br>11 | YW       | _ | DATE<br>CODE |





PART NUMBER CODE REFERENCE:

1A = IRLML2402 1B = IRLML2803 1C = IRLML6302 1D = IRLML5103 1E = IRLML6402

| IF = IRLIVIL64UI   |
|--------------------|
| 1G= IRLML2502      |
| 1H = IRLML5203     |
|                    |
|                    |
| ATE CODE EXAMPLES: |

YWW = 9503 = 5C YWW = 9532 = EF

| YEAR | Υ | WORK<br>WEEK | W |
|------|---|--------------|---|
| 2001 | 1 | 01           | Α |
| 2002 | 2 | 02           | В |
| 2003 | 3 | 03           | С |
| 1994 | 4 | 04           | D |
| 1995 | 5 |              |   |
| 1996 | 6 |              |   |
| 1997 | 7 |              |   |
| 1998 | 8 | 1            | 1 |
| 1999 | 9 | 7            | 7 |
| 2000 | 0 | 24           | Χ |
|      |   | 25           | Υ |
|      |   | 26           | Z |

International IOR Rectifier

WW = (27-52) IF PRECEDED BY A LETTER

| YEAR | Υ | WORK<br>WEEK | W |
|------|---|--------------|---|
| 2001 | Α | 27           | Α |
| 2002 | В | 28           | В |
| 2003 | С | 29           | С |
| 1994 | D | 30           | D |
| 1995 | E |              |   |
| 1996 | F |              |   |
| 1997 | G |              |   |
| 1998 | Н | 1            | 1 |
| 1999 | J | 7            | 7 |
| 2000 | K | 50           | X |
|      |   | 51           | Υ |
|      |   | 52           | Z |

Notes: This part marking information applies to devices produced after 02/26/2001

W = (1-26) IF PRECEDED BY LAST DIGIT OF CALENDAR YEAR



#### PART NUMBER CODE REFERENCE:

A = IRLML2402 B = IRLML2803C = IRLML6302 D = IRLML5103E = IRLML6402F = IRLML6401G= IRLML2502 H = IRLML5203

| YEAR | Υ | WORK<br>WEEK | W |  |
|------|---|--------------|---|--|
| 2001 | 1 | 01           | Α |  |
| 2002 | 2 | 02           | В |  |
| 2003 | 3 | 03           | С |  |
| 1994 | 4 | 04           | D |  |
| 1995 | 5 |              |   |  |
| 1996 | 6 |              |   |  |
| 1997 | 7 |              |   |  |
| 1998 | 8 | 1            | 1 |  |
| 1999 | 9 | 7            | 7 |  |
| 2000 | 0 | 24           | Χ |  |
|      |   | 25           | Υ |  |
|      |   | 26           | Z |  |
|      |   |              |   |  |

W = (27-52) IF PRECEDED BY A LETTER

| YEAR | Υ | WORK<br>WEEK | W |
|------|---|--------------|---|
| 2001 | Α | 27           | Α |
| 2002 | В | 28           | В |
| 2003 | С | 29           | С |
| 1994 | D | 30           | D |
| 1995 | Е |              |   |
| 1996 | F |              |   |
| 1997 | G |              |   |
| 1998 | Н |              |   |
| 1999 | J | 7            | 1 |
| 2000 | K | 50           | X |
|      |   | 51           | Υ |
|      |   | 52           | Z |

### Tape & Reel Information

#### Micro3™

Dimensions are shown in millimeters (inches)



#### NOTES:

- 1. CONTROLLING DIMENSION: MILLIMETER.
- 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.

Data and specifications subject to change without notice.

8.40 (.331)



**IR WORLD HEADQUARTERS:** 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information. 04/03