## Screenshots illustrating the regression analysis process carried out

The first stage of the development of each regression model was the data preprocessing, where I checked for duplicate records and missing values, encoded data numerically, located outliers and chose whether to impute or delete appropriately.

### Locating outliers:

```
Checking for outliers using modified Z-scores for column Mileage in km...

Outlier. Value: 420550 Modified Z-Score: 3.60758624075992 Row: 29

Outlier. Value: 719847 Modified Z-Score: 7.21212551333786 Row: 65

Outlier. Value: 433811 Modified Z-Score: 3.76729313823519 Row: 90

Outlier. Value: 777777 Modified Z-Score: 7.90979692354391 Row: 167

Outlier. Value: 573249 Modified Z-Score: 5.44659412384387 Row: 247
```

#### Data checks and modifications:

```
No null/missing values.
3512 Duplicate records removed.
Engine volume column has been split.
Mileage column has been modified.
Category column has been modified.
Color column has been modified.
Drive wheels column has been modified.
Fuel type column has been modified.
```

The next stage was feature selection and involved data visualisation and rankings of features based on their correlation coefficients.

### Continuous predictor ranking:

#### Binary predictor ranking:

```
Predictors ranked by their point biserial correlation coefficient:
1. Is jeep
                        Coeff: 0.254824307595062
2. Is diesel
                        Coeff: 0.210156459601851
3. Is leather interior Coeff: 0.193324998176985
4. Is engine turbo
                       Coeff: 0.182780027219332
5. Is tiptronic
                        Coeff: 0.181082901345874
                       Coeff: 0.162916124772152
6. Is wheel left
7. Is hatchback
                       Coeff: -0.153628933432364
8. Is manual
                        Coeff: -0.128743120441147
                       Coeff: -0.125248148990822
9. Is sedan
10. Is hybrid
                       Coeff: -0.104790302355864
```

## Scatter plot:



# Box plots:



The next part of the regression analysis process was the training of the regression model. After training, each model was validated in order to view how well the model performs; the model is validated many times with different features in order to determine the optimal combination of features. I have shown below the result of this process for some of the regression models.

## Multi linear regression model using gradient descent:

|              | 0                             | •              |                  |                 |               |        |
|--------------|-------------------------------|----------------|------------------|-----------------|---------------|--------|
| Table showin | g Multi Linear Gradient Desce | ent regression | model performand | ce for a number | of features:  |        |
| Feature no.  | Added feature                 | MAE            | RMSE             | R-Squared       | Adj R-Squared | Epochs |
| 1            | Prod. year scaled             | 11050.94936    | 19318.38471      | 0.102078        | 0.101754      | 50     |
| 2            | Mileage in km scaled          | 11123.19414    | 19154.361158     | 0.117876        | 0.117239      | 55     |
| 3            | Engine displacement scaled    | 10736.716655   | 18564.623044     | 0.171868        | 0.17097       | 70     |
| 4            | Is jeep                       | 10412.130881   | 18279.770501     | 0.198022        | 0.196862      | 250    |
| 5            | Is diesel                     | 10184.938905   | 18009.466295     | 0.22264         | 0.221234      | 430    |
| 6            | Is tiptronic                  | 10290.087654   | 17713.973004     | 0.248435        | 0.246803      | 442    |
| 7            | Is leather interior           | 10283.346624   | 17712.128003     | 0.248568        | 0.246664      | 484    |
| 8            | Is engine turbo               | 10297.577634   | 17534.330573     | 0.264077        | 0.261945      | 525    |
| 9            | Cylinders scaled              | 10297.430244   | 17537.042283     | 0, 263773       | 0.261374      | 519    |

Reduction in error decreased so 'ls Tiptronic' is the last useful feature as features after cause only small reductions in error, meaning they will likely hinder the model and lead to overfitting.

### KNN regression model:

|           | 5                                     |                     |              |           |                        |
|-----------|---------------------------------------|---------------------|--------------|-----------|------------------------|
| Table she | owing KNN regression model performanc | e for a number of f | eatures:     |           |                        |
| No. of fe | eatures Added feature                 | MAE                 | RMSE         | R-Squared | Adj R-Squared          |
| 1         | Prod. year scaled                     | 11291.188479        | 19900.413586 | 0.06672   | 0.066381               |
| 2         | Mileage in km scaled                  | 11027.371609        | 19818.867862 | 0.072982  | 0.072308               |
| 3         | Engine displacement scaled            | 9519.128551         | 17700.831473 | 0.260826  | 0.26002                |
| 4         | Is jeep                               | 9180.313353         | 17415.780656 | 0.287678  | 0.286642               |
| 5         | Is diesel                             | 8765.921052         | 16986.519285 | 0.323428  | 0.322197               |
| 6         | Is tiptronic                          | 7953.922113         | 15288.401675 | 0.452728  | 0.451533               |
| 7         | Is leather interior                   | 7675.484665         | 15132.567964 | 0.46412   | 0 462754               |
| 8         | Is engine turbo                       | 7520.801537         | 15051.208001 | 0.470417  | 0.468873               |
| 9         | Cylinders scaled                      | 7387.435534         | 14912.702366 | 0.480845  | 0. <mark>479142</mark> |

Clearly shown by the Adjusted R-Squared, 'Is tiptronic' is the last feature to have a large positive impact on the model.

### Fast tree regression model:

|                                                                                  | r dot tree regression model. |                     |              |              |           |               |  |
|----------------------------------------------------------------------------------|------------------------------|---------------------|--------------|--------------|-----------|---------------|--|
| Table showing Fast tree regression trainer performance for a number of features: |                              |                     |              |              |           |               |  |
| Data                                                                             | No. of features              | Added feature       | MAE          | RMSE         | R-Sqaured | Adj R-squared |  |
| Validation                                                                       | 1                            | ProdYear            | 10710.35758  | 19032.027534 | 0.143991  | 0.143679      |  |
| Training                                                                         |                              |                     | 10676.724523 | 19794.381769 | 0.138913  | 0.138835      |  |
| Validation                                                                       | 2                            | MileageInKm         | 10586.797108 | 19245.991968 | 0.122687  | 0.122048      |  |
| Training                                                                         |                              |                     | 9966.637881  | 18363.671838 | 0.258891  | 0.258756      |  |
| Validation                                                                       | 3                            | EngineDisplacement  | 9362.174997  | 17730.215065 | 0.253692  | 0.252877      |  |
| Training                                                                         |                              |                     | 8283.922199  | 13345.75035  | 0.608575  | 0.608468      |  |
| Validation                                                                       | 4                            | ManufacturerEncoded | 8579.876617  | 16928.170038 | 0.322649  | 0.321662      |  |
| Training                                                                         |                              |                     | 7489.268075  | 12696.001506 | 0.645761  | 0.645632      |  |
| Validation                                                                       | 5                            | ModelEncoded        | 8027.426054  | 16362.578031 | 0.368759  | 0.367608      |  |
| Training                                                                         |                              |                     | 6966.739544  | 12391.616201 | 0.662543  | 0.662389      |  |
| Validation                                                                       | 6                            | IsJeep              | 8051.292038  | 16502.370522 | 0.35451   | 0.353098      |  |
| Training                                                                         |                              |                     | 6905.54894   | 12101.246457 | 0.678172  | 0.677997      |  |
| Validation                                                                       | 7                            | IsDiesel            | 8010.555561  | 16160.206998 | 0.383322  | 0.381748      |  |
| Training                                                                         |                              |                     | 6848.586545  | 11748.604591 | 0.696656  | 0.696463      |  |
| Validation                                                                       | 8                            | IsTiptronic         | 7182.979216  | 13957.617218 | 0.53971   | 0.538366      |  |
| Training                                                                         |                              |                     | 6238.188271  | 10508.572866 | 0.757311  | 0.757134      |  |
| Validation                                                                       | 9                            | IsLeatherInterior   | 7619.334852  | 13822.877299 | 0.548521  | 0.547038      |  |
| Training                                                                         |                              |                     | 6081.288689  | 10378.291527 | 0.763291  | 0.763097      |  |
| Validation                                                                       | 10                           | IsEngineTurbo /     | 6826.868134  | 13477.450167 | 0.571192  | 0.569626      |  |
| Training                                                                         |                              |                     | 5907.03789   | 9896.642544  | 0.784752  | 0.784556      |  |
| Validation                                                                       | 11                           | IsWheelLeft /       | 6800.120997  | 13507.815848 | 0.568699  | 0.566966      |  |
| Training                                                                         |                              |                     | 5956.52396   | 10129.057993 | 0.774524  | 0.774298      |  |
|                                                                                  |                              | /                   |              |              |           | /             |  |

The model clearly performs better on the training data than the validation data which indicates there is some overfitting (which is to be Clearly, adding features after 'IsEngineTurbo' is detrimental to the model's performance.

After determining the optimal feature combination for the model, the model can be fine-tuned by adjusting significant hyperparameters. I have shown two examples of this below.

Gradient descent algorithm: (Multi linear regression model)



### KNN regression model:

| Fine-tuning the k value hyperparameter: |             |                       |           |               |  |
|-----------------------------------------|-------------|-----------------------|-----------|---------------|--|
| K value                                 | MAE         | RMSE                  | R-Squared | Adj R-Squared |  |
| 5                                       | 8056.071924 | 15336.452826          | 0.447814  | 0.446003      |  |
| 10                                      | 7953.922113 | 15288.401675          | 0.452728  | 0.450933      |  |
| 20                                      | 7994.922738 | 15632.817457          | 0.429304  | 0.427432      |  |
| 30                                      | 8058.8553   | 15846.168037          | 0.413382  | 0.411458      |  |
| 40                                      | 8121.079134 | 16014.779 <b></b> 898 | 0.400899  | 0.398934      |  |
| 50                                      | 8181.749344 | 16114.332668          | 0.39349   | 0.391501      |  |

When k=10, the model performs best with least error.

After all the models had been fine-tuned, the summaries of each were written to the regression-analysis-conclusion.txt file at run-time, in order to help conclude which model is the best and the one to be integrated into the final system.

#### Here is the contents:

```
Mean template model:
Errors: MAE = 14258.16907, RMSE = 105403.00715, R-Squared = -0.007762
Hyperparameters: None
Features: None
Simple linear regression model:
Errors: MAE = 11021.46628, RMSE = 19091.115517, R-Squared = 0.11079
Hyperparameters: Z-score threshold for Prod. Year outliers = 4
Features: Prod. year scaled
Multi linear regression model using gradient descent:
Errors: MAE = 10290.016309, RMSE = 17713.968782, R-Squared = 0.248435, Adjusted R-Squared = 0.246804
Hyperparameters: Learning rate = 0.5, Max no. of epochs = 1000, Convergence threshold = 0.1
Features: Prod. year scaled, Mileage in km scaled, Engine displacement scaled, Is jeep, Is diesel, Is
tiptronic
K-nearest neighbours regression model:
Errors: MAE = 7953.922113, RMSE = 15288.401675, R-Squared = 0.452728, Adjusted R-Squared = 0.450933
Hyperparameters: K = 10
Features: Prod. year scaled, Mileage in km scaled, Engine displacement scaled, Is jeep, Is diesel, Is
tiptronic
Microsft.ML Fast tree regression trainer:
Errors: MAE = 6803.006273, RMSE = 13244.066399, R-Squared = 0.586265, Adjusted R-Squared = 0.584755
Hyperparameters: Minimum sample count per leaf = 8 ***Inconclusive value - check with holdout data***
Features: ProdYear, MileageInKm, EngineDisplacement, ManufacturerEncoded, ModelEncoded, IsJeep, IsDiesel,
IsTiptronic, IsLeatherInterior, IsEngineTurbo
```

Lastly, the models are tested with holdout data to gauge whether the model is able to generalise and predict new, unseen data. Below is a table that shows the model performance with the holdout data.

Clearly, the fast tree regression model performs the best, so this was the model I integrated into the final car price estimator system.