Суффиксные деревья Дискретный анализ 2012/13

Андрей Калинин, Татьяна Романова

26 ноября 2012 г.

Суффиксные деревья

Определение Возможные приложения

Алгоритм Укконена

Общее описание

Ускорение до ${\cal O}(m^2)$

Ускорение до O(m)

Литература

- ▶ Дэн Гасфилд, «Строки деревья и последовательности в алгоритмах: Информатика и вычислительная биология», 2003. Главы 5-6, «Введение в суффиксные деревья» и «Построение суффиксных деревьев за линейное время», стр. 119–141.
- ► E. Ukkonen. (1995). On-line construction of suffix trees. http://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf

Раздел

Суффиксные деревья Определение

Возможные приложения

Алгоритм Укконена

Общее описание

Ускорение до $O(m^2)$

Ускорение до O(m)

Определение

Суффиксное дерево $\mathbb T$ для m-символьной строки S:

- 1. Ориентированное дерево, имеющее ровно m листьев, пронумерованных от $1\ {\rm дo}\ m.$
- 2. Каждая внутренняя вершина, отличная от корня, имеет не меньше двух детей.
- 3. Каждая дуга помечена непустой подстрокой строки S (дуговая метка).
- 4. Никакие две дуги, выходящие из одной вершины, не могут иметь меток, начинающихся с одинаковых символов.
- 5. Для каждого листа i конкатенация меток от корня составляет S[i..m].

Определение

Суффиксное дерево $\mathbb T$ для m-символьной строки S:

- 1. Ориентированное дерево, имеющее ровно m листьев, пронумерованных от 1 до m.
- 2. Каждая внутренняя вершина, отличная от корня, имеет не меньше двух детей.
- 3. Каждая дуга помечена непустой подстрокой строки S (дуговая метка).
- 4. Никакие две дуги, выходящие из одной вершины, не могут иметь меток, начинающихся с одинаковых символов.
- 5. Для каждого листа i конкатенация меток от корня составляет S[i..m].

Дерево для строки xabxac.

Терминальный символ

- Суффиксное дерево нельзя построить для любой строки: если существует суффикс, совпадающий с префиксом другого суффикса, то не будет выполнено условие о количестве листьев.
- ightharpoonup Добавляется терминальный символ, который больше нигде в строке S не содержится (будет обозначаться как \$).

Термины

- Путевая метка вершины: конкатенация подстрок от корня до этой вершины в порядке прохождения соответствующих рёбер.
- Строковая глубина вершины: количество символов в её путевой метке.
- Если некоторый путь заканчивается внутри дуги $\langle u,v \rangle$, то путевая метка этого пути путевая метка u с добавлением символов дуги $\langle u,v \rangle$ до места назначения.

Наивный алгоритм

- Начиная со всей строки, последовательно вносить каждый суффикс в дерево.
- ▶ Время работы: для строки S длиной $m O(m^2)$.
- Существуют алгоритмы построения суффиксного дерева за O(m) в предположении ограниченного алфавита.

Раздел

Суффиксные деревья

Определение

Возможные приложения

Алгоритм Укконена

Общее описание

Ускорение до $O(m^2)$

Ускорение до O(m)

Поиск образца в тексте

- Строится суффиксное дерево для текста.
- Ищется путь, совпадающий с образцом.
 Если такого пути нет, то образец в текст не входит.
- Если путь есть, то все листья поддерева вхождения.

Поиск aw в awyawxawxz:

Свойства

- Если суффиксное дерево строится за линейное время, то время поиска O(m+n), как и для ранее рассмотренных алгоритмов.
- Но: предварительная обработка O(m), время поиска O(n) (в других алгоритмах было наоборот).
- При обработке большого количества образцов (заранее неизвестного количества) можно выполнять поиск каждого из них в заранее известном тексте за время, зависящее только от длины образца!

Ещё приложения

- Нахождение общих подстрок для двух и более строк.
- Компрессия данных.
- Нечёткий поиск.
- Выделение повторяющихся фрагментов.

Раздел

Суффиксные деревья

Определение Возможные приложения

Алгоритм Укконена

Общее описание

Ускорение до ${\cal O}(m^2)$

Ускорение до ${\cal O}(m)$

Неявные суффиксные деревья

Неявное суффиксное дерево может быть получено из суффиксного дерева строки S:

- 1. удалением всех вхождений терминального символа;
- 2. затем удалением всех дуг без меток;
- 3. затем удалением всех вершин, имеющих меньше двух детей (кроме корня).
- \mathbb{T}_i неявное суффиксное дерево для строки S[1..i].

Неявное суффиксное дерево

Суффиксное дерево для xabxa:

Неявное суффиксное дерево для xabxa:

Алгоритм Укконена

- ightharpoonup Последовательно строит неявные деревья \mathbb{T}_i для каждого префикса S[1..i].
- Настоящее суффиксное дерево \mathbb{T} можно получить из \mathbb{T}_m построив следующее неявное дерево для строки с терминальным символом.
- Сначала рассмотрим метод построения дерева за $O(m^3)$, потом улучшим.

Общий вид алгоритма

 $\beta = S[j..i]$ — суффикс S[1..i]. Алгоритм находит конец пути β и продолжает его так, чтобы $\beta S(i+1)$ так же входил в дерево.

- $\beta=S[j..i]$ суффикс S[1..i]. Алгоритм находит конец пути β и продолжает его так, чтобы $\beta S(i+1)$ так же входил в дерево.
 - 1. Путь β кончается в листе: нужно добавить S(i+1) в хвост листовой дуги этого пути.

- $\beta=S[j..i]$ суффикс S[1..i]. Алгоритм находит конец пути β и продолжает его так, чтобы $\beta S(i+1)$ так же входил в дерево.
 - 1. Путь β кончается в листе: нужно добавить S(i+1) в хвост листовой дуги этого пути.
 - 2. Ни один путь из конца строки β не начинается символом S(i+1), но хотя бы один путь оттуда имеется: нужно создать новую листовую дугу, помеченную S(i+1) и указать новому листу номер j.

- $\beta=S[j..i]$ суффикс S[1..i]. Алгоритм находит конец пути β и продолжает его так, чтобы $\beta S(i+1)$ так же входил в дерево.
 - 1. Путь β кончается в листе: нужно добавить S(i+1) в хвост листовой дуги этого пути.
 - 2. Ни один путь из конца строки β не начинается символом S(i+1), но хотя бы один путь оттуда имеется: нужно создать новую листовую дугу, помеченную S(i+1) и указать новому листу номер j.
 - 3. Есть некоторый путь от конца строки β , начинающийся символом S(i+1): ничего делать не надо, строка $\beta S(i+1)$ уже есть в дереве.

Суффикс ахархъ

Суффикс хархъ

Суффикс abxb

Суффикс bxb

Суффикс хъ

Правило №2, путь β продолжается символами, отличными от S(i+1): создаём новую вершину.

Суффикс ъ

Правило №3, путь $\beta S(i+1)$ уже существует: ничего не делаем.

Время работы

- **▶** *m* фаз.
- ▶ В каждой i-й фазе i+1 продолжение.
- ▶ Каждое продолжение поиск от корня окончания пути β , максимум $|\beta|$ операций.
- ▶ Само продолжение константное время.
- ▶ Следовательно, время работы $O(m^3)$.

Время работы

- **▶** *m* фаз.
- ▶ В каждой i-й фазе i+1 продолжение.
- ▶ Каждое продолжение поиск от корня окончания пути β , максимум $|\beta|$ операций.
- Само продолжение константное время.
- ▶ Следовательно, время работы $O(m^3)$.
- Нужно найти более быстрый метод определения места следующего продолжения (переход от S[j..i+1] к S[j+1..i+1]).

Раздел

Суффиксные деревья

Определение

Возможные приложения

Алгоритм Укконена

Общее описание

Ускорение до $O(m^2)$

Ускорение до O(m)

Создание суффиксных связей

Теорема

Если в продолжении j фазы i+1 добавляется новая внутренняя вершина v с путевой меткой $x\alpha$, то путь с меткой α либо уже заканчивается в какой-то внутренней вершине дерева, либо новая вершина в конце α будет создана в продолжении j+1 той же фазы i+1.

Доказательство.

- ▶ Выполняется правило 2, следовательно существует путь $x\alpha c$, где $c \neq S(i+1)$.
- ightharpoonup Следовательно, уже существует путь αc .
- Если существует путь $\alpha d, d \neq c$, то нужная вершина в дереве уже есть. Иначе она создастся при добавлении $\alpha S(i+1)$, т.е. на следующем продолжении.

Следствия

- 1. В алгоритме Укконена любая вновь созданная вершина получит суффиксную связь при выполнении следующего продолжения.
- 2. В любом неявном суффиксном дереве \mathbb{T}_i если внутренняя вершина v имеет путевую метку $x\alpha$, то найдётся вершина s(v) дерева \mathbb{T}_i с путевой меткой α .

Переходы по суффиксным связям при построении \mathbb{T}_{i+1}

- При последовательном выполнении алгоритма в конце S[j..i] выполняем продолжение и затем нужно попасть в конец S[j+1..i].
- Конец полной строки S[1..i] можно всегда хранить (это лист, соответствующий самому длинному пути).
- ▶ Допустим, $S[1..i] = x\alpha$ и $\langle v, 1 \rangle$ дуга дерева, входящая в лист 1; нужно найти конец $S[2..i] = \alpha$.
- ightharpoonup Если v корень, то нужно выполнить поиск прямым способом.
- ▶ Если же v внутренняя вершина, и путь $\langle v,1 \rangle$ помечен γ , то нужно пройти к s(v) и оттуда проследовать вдоль γ , конец этого пути будет концом и α .

j-ое продолжение

- 1. Поднимаемся вверх не более чем на одну дугу (с меткой γ) к вершине v.
- 2. Переходим по суффиксной связи в s(v).
- 3. Опускаемся по пути, определяемому подстрокой γ .

Алгоритм отдельного продолжения

Продолжение $j \ge 2$ фазы i + 1:

- 1. Найти в конце строки S[j-1..i] или выше первую вершину v, которая либо имеет суффиксную связь, либо является корнем. γ строка между v и концом S[j-1..i], возможно, пустая.
- 2. Если v не корень, пройти в s(v) и спуститься оттуда по пути γ . Если v корень, пройти по пути S[j..i].
- 3. Выполнить правила продолжения (обеспечить вхождение S[j..i+1]).
- 4. Если в продолжении j-1 была создана вершина w для $x \alpha$, то связать её суффиксной связью с концом строки α , найденном в текущем продолжении.

Первое продолжение всегда начинается с сохранённого окончания S[1..i].

Что дало использование суффиксных связей?

- Явное практическое улучшение.
- ▶ Однако, оценка худшего случая не изменилась одна фаза за $O(m^2)$, полное выполнение $O(m^3)$.
- Продолжаем дальше: избавляемся от ненужных сравнений символов, для поиска пути можно перейти от времени пропроциональному $|\gamma|$ к времени, пропорциональному количеству вершин на пути.

Прыжок по счётчику

- ▶ Пусть $g = |\gamma|$ и g' количество символов на дуге выходящей из s(v) и помеченной первым символом γ .
- ▶ Если g' < g, то остальные символы дуги просматривать не надо, можно сразу перейти к следующей вершине.

Вершинная глубина

- ▶ Полное время прохода по пути пропрционально числу вершин, а не символов.
- ▶ Вершинная глубина узла v число вершин на пути до неё от корня, h(v).
- ▶ Текущая вершинная глубина глубина последней по времени вершины, посещённой алгоритмом.

Вершинная глубина суффиксной связи

Теорема

Пусть $\langle v, s(v) \rangle$ — суффиксная связь, проходимая при выполнении алгоритма. В этот момент $h(v) \leq h(s(v)) + 1$.

Время выполнения одной фазы

Теорема

При использовании прыжков по счётчику любая фаза алгоритма Укконена занимает время O(m).

Доказательство.

- 1. Подъём по дуге может уменьшить текущую вершиную глубину на 1, проход по суффиксной связи так же может уменьшить её не более чем на 1, а каждая дуга при спуске увеличивает вершинную глубину.
- 2. Тем самым, за всю фазу текущая глубина уменьшается не более 2m раз.
- 3. Отсюда, т.к. глубина любой вершины меньше m, приращение текущей глубины не превосходит 3m.

Время выполнения алгоритма

- Суффиксные связи в алгоритме Укконена обеспечивают время работы $O(m^2)$.
- Если хранить строки на дугах, то требуется объём памяти $\Theta(m^2).$
- Для перехода к линейному алгоритму требуется иное представление данных в дереве.

Раздел

Суффиксные деревья

Определение

Возможные приложения

Алгоритм Укконена

Общее описание

Ускорение до $O(m^2)$

Ускорение до O(m)

Сжатие дуговых меток

Вместо выписывания подстрок достаточно хранить пару индексов, определяющую начальную и конечную позиции этой подстроки в S, откуда, имея доступ к S, всегда можно получить нужные символы.

 $\mathsf{Hanpumep},\ S = abcdefabcuvw$

Третье правило завершает фазу

- ▶ Правило №3: если уже существует путь S[j..i+1], то ничего делать не надо.
- lacktriangle Однако, если есть путь S[j..i+1], то есть S[j+1..i+1] и т.п.
- ▶ Следовательно, для всех следующих продолжений будет выполняться третье правило.
- Таким образом, фазу можно заканчивать при первом выполнении третьего правила.

Листья остаются листьями

- ightharpoonup Если был создан лист с меткой j, то он останется листом вплоть до окончания алгоритма.
- То есть, во всех следующих фазах для этого продолжения будет применяться первое правило (дописать символ в конец листовой дуги).
- Тем самым, можно помечать все листовые дуги не конкретным индексом, а глобальным индексом «текущего окончания строки» е, который увеличивать в начале фазы, выполняя неявно все продолжения по первому правилу.

Общая идея линейного алгоритма

- ▶ Запоминается число l последний лист, созданный на i-й фазе.
- ▶ Выполнение всех первых правил происходит неявно, увеличивая e.
- Каждая фаза: последовательное применение второго правила (увеличивающее l) до первого срабатывания третьего правила.
- Тем самым алгоритм превращается в последовательное выполнение правил № 2.

Алгоритм одной фазы i+1

- 1. $e \leftarrow i + 1$
- 2. Вычислить все последовательные продолжения от l до r, где применяется третье правило или до конца фазы.
- 3. $l \leftarrow r$

Линейность алгоритма

Теорема

Используя суффиксные связи и все улучшения, алгоритм Укконена строит неявные суффиксные деревья от \mathbb{T}_1 до \mathbb{T}_m за полное время O(m).

Доказательство.

- 1. j' продолжение, явно выполняемое алгоритмом. j' не убывает и не изменяется при переходе от фазы к фазе, фаз m и $j' \leq m$, следовательно количество продолжений не более 2m.
- 2. При этом текущая вершинная глубина не изменяется при переходе от фазы к фазе, то и максимальное количество прыжков для всех фаз имеет порядок O(m).

Создание настоящего суффиксного дерева

- Нужно добавить терминальный символ (выполнить ещё одну фазу).
- ▶ Заменить глобальный индекс e числом m.
- ▶ Тем самым, алгоритм Укконена строит настоящее суффиксное дерево для S и всего его суффиксные связи за время O(m).