## Introduction to Algorithms

Meng-Tsung Tsai

11/19/2019

## Data Structures for Disjoint Sets

#### What is a data structure for disjoint sets?

It is a data structure that maintains a collection of disjoint dynamic sets  $C = \{S_1, S_2, ..., S_t\}$ .

- (1) disjoint:  $S_i \cap S_j = \emptyset$  for every  $i \neq j$
- (2) dynamic: Si changes over time for every i

We need the data structure to support the following operations:

- (1) Make-Set(x)
- (2) Union(x, y)
- (3) Find-Set(x)

### Make-Set(x) operation

Make-Set(x) operation creates a singleton set  $\{x\}$ .

#### Example.

Let 
$$C = \{S_1 = \{a, b\}, S_2 = \{c, d, e\}\}.$$

After Make-Set(f), we have

$$C = \{S_1 = \{a, b\}, S_2 = \{c, d, e\}, S_3 = \{f\}\}.$$

### Union(x, y) operation

Union(x, y) unites the sets that contain x and y, say  $S_x$  and  $S_y$ , into a new set that is a union of these two sets.

#### Example.

Let 
$$C = \{S_1 = \{a, b\}, S_2 = \{c, d, e\}, S_3 = \{f\}\}.$$

After Union(b, d), we have

$$C = \{S_1 = \{a, b, c, d, e\}, S_2 = \{f\}\}.$$

## Find-Set(x) operation

Find-Set(x) returns the representative element of the set that contains x.

#### Example.

Let  $C = \{S_1 = \{a, b\}, S_2 = \{c, d, e\}, S_3 = \{f\}\}$ . Our algorithm picks an arbitrary element as the representative for each set  $S_i$ .

Find-Set(a) returns b.

Find-Set(b) returns b.

Find-Set(e) returns d.

Find-Set(f) returns f.

## Find-Set(x) operation

Find-Set(x) returns the representative element of the set that contains x.

#### Example.

Let  $C = \{S_1 = \{a, b\}, S_2 = \{c, d, e\}, S_3 = \{f\}\}$ . Our algorithm picks an arbitrary element as the representative for each set  $S_i$ .

Find-Set(a) returns b.

Find-Set(b) returns b.

Find-Set(e) returns d.

Find-Set(f) returns f.

If S<sub>i</sub> doesn't change, the representative element of S<sub>i</sub> should be fixed.

# Applications of Disjoint-Set Data Structures

Let G = (V, E) be an undirected graph.

```
Connected-Component(G) {
  foreach node x in V {
    Make-Set(x);
  foreach edge (u, v) in E{
    if(Find-Set(u) \neq Find-Set(v))
      Union(u, v);
```

#### Example.

$$G = (V = \{1, 2, 3, 4, 5, 6, 7\}, E = \{\{1, 2\}, \{1, 3\}, \{2, 3\}, \{5, 6\}\}).$$

Initially,  $C = \{\{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{6\}, \{7\}\}.$ 

If  $(Find-Set(1) \neq Find-Set(2))$  Union(1, 2);

After which,  $C = \{\{1, 2\}, \{3\}, \{4\}, \{5\}, \{6\}, \{7\}\}\}.$ 

#### Example.

$$G = (V = \{1, 2, 3, 4, 5, 6, 7\}, E = \{\{1, 2\}, \{1, 3\}, \{2, 3\}, \{5, 6\}\}).$$

$$C = \{\{1, 2\}, \{3\}, \{4\}, \{5\}, \{6\}, \{7\}\}.$$

If  $(Find-Set(1) \neq Find-Set(3))$  Union(1, 3);

After which,  $C = \{\{1, 2, 3\}, \{4\}, \{5\}, \{6\}, \{7\}\}.$ 

#### Example.

$$G = (V = \{1, 2, 3, 4, 5, 6, 7\}, E = \{\{1, 2\}, \{1, 3\}, \{2, 3\}, \{5, 6\}\}).$$

$$C = \{\{1, 2, 3\}, \{4\}, \{5\}, \{6\}, \{7\}\}.$$

If (Find-Set(2) = Find-Set(3)) do nothing;

After which,  $C = \{\{1, 2, 3\}, \{4\}, \{5\}, \{6\}, \{7\}\}.$ 

#### Example.

$$G = (V = \{1, 2, 3, 4, 5, 6, 7\}, E = \{\{1, 2\}, \{1, 3\}, \{2, 3\}, \{5, 6\}\}).$$

$$C = \{\{1, 2, 3\}, \{4\}, \{5\}, \{6\}, \{7\}\}.$$

If (Find-Set(5)  $\neq$  Find-Set(6)) Union(5, 6);

After which,  $C = \{\{1, 2, 3\}, \{4\}, \{5, 6\}, \{7\}\}.$ 



4 connected components.

## Deciding whether two nodes are in the same connected component

```
Same-Component(u, v){
  if(Find-Set(u) = Find-Set(v)){
    return True;
  }else{
    return False;
  }
}
```



## Deciding whether two nodes are in the same connected component

```
Same-Component(u, v){
  if(Find-Set(u) = Find-Set(v)){
    return True;
  }else{
    return False;
  }
}
```



Same-Component(1, 2) returns True because Find-Set(1) = 3 and Find-Set(2) = 3.

# Linked-list Representation of Disjoint Sets

Make-Set(1): // O(1) time











Find-Set(2): // O(1) time. Let the first element on the linked list be the representative.



Find-Set(2) returns 1. It takes O(1) steps.

Union(2, 4): // O(length of one list)



Union(2, 4): // O(length of one list)



If(Find-Set(2)  $\neq$  Find-Set(4)) Link(Find-Set(2), Find-Set(4));

Union(2, 4): // O(length of one list)



It needs to modify all the head-pointers of one list to the new head.

Union(2, 4): // O(length of one list)



Union(2, 4): // O(length of one list)



Alternatively, we could append the shorter list to the longer one, which we call weighted-union heuristic.

## Running time of using linked-list representation and weighted-union heuristic

<u>Claim</u>. It takes  $O(n \log n + m)$  running time to perform any sequence of m Make-Set(x), Find-Set(x), Union(x, y) operations, in which there are n Make-Set(x) operations.

Proof. Every operation runs in O(1) time, except that a Union(x, y) operation may update  $\omega(1)$  head-pointers.

For each element x, every time we link its head-pointer to the new head, the length of x's list is doubled (because x is on the shorter list). Hence, in all (n-1) Union operations, x's head-pointer is updated at most O(log n) times.

In total, the head-pointers of the n elements are updated at most O(n log n) times. We thus get the O(m+n log n) bound.

# Forest Representation of Disjoint Sets

Make-Set(1): // O(1) time



```
Make-Set(x){
    x.parent = x;
    x.rank = 0; // x.rank is an
    inaccurate upper bound of
    the height of x (# edges in
    the longest simple path
    between x and any
    descendant leaf)
}
```

Union(2, 4): // O(1)







Similarly, we could append the shorter tree to the taller one, which we call union by rank.

```
Union(x, y){
   if(Find-Set(x) \neq Find-Set(y))
      Link(Find-Set(x), Find-Set(y));
Link(x, y)
  if(x.rank > y.rank){
      y.parent = x;
   }else{
      x.parent = y;
      if(x.rank equals y.rank)
         y.rank \leftarrow y.rank + 1;
```

Find-Set(2): // O(height of the tree) time



```
Find-Set(x){
    while(x.parent ≠ x){
        x = x.parent;
    }
    return x; // the representative
}
```

Find-Set(2): // O(height of the tree) time



```
Find-Set(x){
    while(x.parent ≠ x){
        x = x.parent;
    }
    return x; // the representative
}
```

Using forest representation and union by rank, the height of tree is at most O(log n).

#### Exercise

Prove that the height of trees is O(log n) in the forest representation that uses union by rank to merge two trees.

### Running time of using forest representation and union by rank heuristic

<u>Claim</u>. It takes O(m log n) running time to perform any sequence of m Make-Set(x), Find-Set(x), Union(x, y) operations, in which there are n Make-Set(x) operations.

Proof. Make-Set(x) and Union(x, y) operations need O(1) time each. Find-Set(x) can be done in  $O(\log n)$  time. We thus get the  $O(m \log n)$  bound.

## Running time of using forest representation and union by rank heuristic

<u>Claim</u>. It takes O(m log n) running time to perform any sequence of m Make-Set(x), Find-Set(x), Union(x, y) operations, in which there are n Make-Set(x) operations.

Proof. Make-Set(x) and Union(x, y) operations need O(1) time each. Find-Set(x) can be done in  $O(\log n)$  time. We thus get the  $O(m \log n)$  bound.

Note that n must be  $\leq$  m. Hence, O(m log n) is slower than O(n log n + m).

#### Implementation by forests (faster)

Find-Set(2): // O(height of the tree) time. In the meanwhile, we flatten the tree so that Find-Set(x) runs

faster next time.



```
Find-Set(x){
    if(x.parent ≠ x){
        x.parent = Find-Set(x.parent);
    }
    return x.parent; // the representative
}
```

#### Implementation by forests (faster)

Find-Set(2): // O(height of the tree) time. In the meanwhile, we flatten the tree so that Find-Set(x) runs

faster next time.



```
Find-Set(x){
    if(x.parent ≠ x){
        x.parent = Find-Set(x.parent);
    }
    return x.parent; // the representative
}
```

This technique is called path compression.

#### Implementation by forests

Find-Set(2): // O(height of the tree) time. In the meanwhile, we flatten the tree so that Find-Set(x) runs faster next time.



```
Find-Set(x){
   if(x.parent ≠ x){
      x.parent = Find-Set(x.parent);
   }
  return x.parent; // the representative
}
```

This technique is called path compression.

Claim. It takes  $O(m \alpha(n))$  running time to perform any sequence of m Make-Set(x), Find-Set(x), Union(x, y) operations, in which there are n Make-Set(x) operations.

Proof. The proof can be found in Chap 21.4.

Claim. It takes  $O(m \alpha(n))$  running time to perform any sequence of m Make-Set(x), Find-Set(x), Union(x, y) operations, in which there are n Make-Set(x) operations.

Proof. The proof can be found in Chap 21.4.

Note that  $\alpha(n)$  is a very slowly growing function that  $\alpha(n) \le 4$  for any  $n \le 10^{80}$ . Hence,  $O(m \alpha(n))$  is virtually linear in practice.

#### A very quickly growing function A<sub>k</sub>(j)

$$A_k(j) = \begin{cases} j+1 & \text{if } k = 0\\ A_{k-1}^{(j+1)}(j+1) & \text{if } k > 1 \end{cases}$$

where 
$$A_{k-1}^{(0)}(j) = j$$
 and  $A_{k-1}^{(i)}(j) = A_{k-1}(A_{k-1}^{(i-1)}(j))$ 

#### A very quickly growing function A<sub>k</sub>(j)

$$A_k(j) = \begin{cases} j+1 & \text{if } k = 0\\ A_{k-1}^{(j+1)}(j+1) & \text{if } k > 1 \end{cases}$$

where 
$$A_{k-1}^{(0)}(j) = j$$
 and  $A_{k-1}^{(i)}(j) = A_{k-1}(A_{k-1}^{(i-1)}(j))$ 

By simple calculations, we have:

- (1)  $A_1(j) = 2j+1$  and  $A_1(1) = 3$
- (2)  $A_2(j) = 2^{j+1}(j+1) 1$  and  $A_2(1) = 7$
- $(3) A_3(1) = 2047$
- $(4) A_4(1) \gg 10^{80}$
- $(5) A_1(1) < A_2(1) < A_3(1) < ...$

#### A very slowly growing function $\alpha(n)$

Let  $\alpha(n) = \min\{k : A_k(1) \ge n\}$ , the inverse of  $A_k$ .

#### A very slowly growing function $\alpha(n)$

Let  $\alpha(n) = \min\{k : A_k(1) \ge n\}$ , the inverse of  $A_k$ .

For every  $n \le 10^{80}$ ,  $\alpha(n) \le 4$ .

### In practice

<u>Claim</u>. It takes  $O(n + f(1+\log_{2+f/n} n))$  running time to perform any sequence of n Make-Set(x), f Find-Set(x), and <n Union(x, y) operations.

Claim. It takes  $O(n + f(1+\log_{2+f/n} n))$  running time to perform any sequence of n Make-Set(x), f Find-Set(x), and <n Union(x, y) operations.

Path compression is already efficient enough for the practical use. You may ignore union by rank.

### Pseudocode of using forest representation and union by rank and path compression

```
int rep[1..n];
for(int i=1; i \le n; ++i)
 rep[i] = i; // set i to be the representive of the i-th tree
Find-Set(x, rep)
  if(rep[x] equals x) return x;
  return rep[x] = Find-Set(rep[x], rep); // path compression
Union(x, y, rep){
  if(Find-Set(x, rep) \neq Find-Set(y, rep))
     rep[rep[x]] = rep[y]; // unite arbitrarily
```