DM 9 : Intervalle de confiance

Exercice 1 (Modèle de Poisson). Soit (X_1, \dots, X_n) un échantillon i.i.d. de la loi de Poisson $\mathcal{P}(\lambda)$ de paramètre $\lambda > 0$ inconnu. Notons $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ et $\hat{\sigma}_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$.

- 1. Montrer que \bar{X}_n est un estimateur sans biais de λ , qu'il est consistant et asymptotiquement normal
- 2. Montrer que $\hat{\sigma}_n^2$ est un estimateur sans biais de λ et qu'il est consistant.
- 3. En utilisant le lemme de Slutsky, montrer que $\hat{\sigma}_n^2$ est asymptotiquement normal. (On utilisera, sans le démontrer, que $\mathbb{E}_{\lambda}[(X_1 \lambda)^4] = \lambda + 3\lambda^2$).
- 4. Quel estimateur de λ est à privilégier, \bar{X}_n ou $\hat{\sigma}_n^2$?
- 5. En partant de $\sqrt{n} \frac{\bar{X}_{n} \lambda}{\sqrt{\lambda}} \xrightarrow{\mathcal{L}} \mathcal{N}(0,1)$, montrer qu'on peut obtenir les résultats de convergence suivants

(i)
$$\sqrt{n} \frac{\bar{X}_n - \lambda}{\sqrt{\bar{X}_n}} \xrightarrow{\mathcal{L}} \mathcal{N}(0, 1)$$

(ii)
$$\sqrt{n} \frac{\bar{X}_n - \lambda}{\sigma_n} \xrightarrow{\mathcal{L}} \mathcal{N}(0, 1)$$

- (iii) $\sqrt{n} \left(g(\bar{X}_n) g(\lambda) \right) \xrightarrow{\mathcal{L}} \mathcal{N}(0,1)$ pour un choix approprié de la fonction g à préciser.
- 6. Déterminer les intervalles de confiances de niveau asymptotique $1-\alpha$ correspondants. Lequel est le meilleur?