Комплексные импедансы - 1

16.04.2017

Внимание! В данной подборке мнимая единица обозначается буквой j во избежание путаницы с токами i.

1. Найдите координаты постоянного по модулю и непрерывного по времени вектора $\vec{U}(t)$ на плоскости xOy, проекция которого на ось Ox зависит от времени по закону $U_x(t) = U_0 \cos \omega t$ (у данной задачи 2 ответа, выберите вращающийся против часовой стрелки). Параметризуйте плоскость xOyмножеством комплексных чисел. Чему равняется соответствующее вектору $\vec{U}(t)$ комплексное число $\tilde{U}(t)$?

- К задаче 1
- 2. Пусть ток и напряжение в некоторой схеме изменяются по гармоническому закону с частотой ω . Выберем начало отсчета времени так, чтобы напряжение изменялось по закону $u(t) = u_0 \cos \omega t$. При этом ток будет задаваться формулой $i(t) = i_0 \cos(\omega t + \varphi)$, где φ — разность фаз между током и напряжением.
- а) Найдите постоянные по модулю комплексные величины $\tilde{u}(t)$ и $\tilde{i}(t)$ (см. задачу 1), соответствующие величинам u(t) и i(t) (т.е. такие, что $u(t) = \operatorname{Re} \tilde{u}(t)$ и $i(t) = \operatorname{Re} \tilde{i}(t)$).
- б) Определите среднюю мощность, потребляемую схемой.
- в) Покажите, что предыдущий ответ не изменится, если $\tilde{u}(t)$ и $\tilde{\imath}(t)$ одновременно домножить на $e^{j\theta(t)}$ (поворот на угол $\theta(t)$), где $\theta(t)$ — произвольная функция времени.

Если функции $\tilde{u}(t)$ и $\tilde{i}(t)$ брать непосредственно из ответа задачи 2а, то соответствующие им векторы будут вращаться вместе как единое целое с угловой скоростью ω (рис). Между тем мы выяснили, что домножение на $e^{j\theta(t)}$ не изменяет физику задачи. Поэтому в реальных расчетах схем обычно умножают на $e^{-j\omega t}$, убирая вращение, т.е. фазы всех токов и напряжений отсчитывают от фазы входного напряжения. При этом величины \tilde{u} и \tilde{i} на элементах цепи также пере-

стают зависеть от времени (т.к. разность фаз между ними и входным напряжением постоянна и задается лишь параметрами схемы), и их называют соответственно комплексными напряжениями и токами на них. Также, обычно при подсчете комплексных токов и напряжений амплитуду делят на нормировочный множитель $\sqrt{2}$, чтобы в 26 мощность получалась без численного коэффициента. Таким образом, комплексное напряжение $\tilde{u}(t) = u_0 e^{j\varphi}$ соответствует истинному напряжению $u(t) = u_0 \sqrt{2} \cos(\omega t + \varphi)$, а u_0 называют действущим (эффективным) значением напряжения. Отметим, что по-прежнему домножение комплексных напряжений и токов на $e^{j\delta}$ ничего не изменяет (физически это соответствует изменению фазы на δ , или, что то же самое, сдвижкой по времени на δ/ω). Далее под напряжением источника переменного тока будем всегда понимать именно действующее значение.

- 3. Пусть напряжение на резисторе с сопротивлением R изменяется по закону u(t), а ток по закону i(t).
- а) Найдите связь между этими величинами (закон Ома).
- б) Пусть ток в резисторе изменяется по закону $i(t) = i_0 \sqrt{2} \cos \omega t$. Найдите зависимость напряжения на резисторе u(t) от времени.
- в) Найдите соответствующие значения комплексного напряжения и тока \tilde{u} и \tilde{i} в резисторе. Покажите, что связь между ними можно записать в виде $\tilde{u} = \tilde{\imath} R$.

- 4. Пусть напряжение на катушке с индуктивностью L изменяется по закону u(t), а ток по закону i(t).
- а) Найдите связь между этими величинами.
- б) Пусть ток в катушке изменяется по закону $i(t) = i_0 \sqrt{2} \cos \omega t$. Найдите зависимость напряжения на катушке u(t) от времени.
- в) Найдите соответствующие значения комплексного напряжения и тока \tilde{u} и $\tilde{\imath}$ в катушке. Покажите, что связь между ними можно записать в виде $\tilde{u}=\tilde{\imath}X_L$. Найдите X_L .
- 5. Пусть напряжение на конденсаторе с емкостью C изменяется по закону u(t), а ток по закону i(t).
- а) Найдите связь между этими величинами.
- б) Пусть напряжение на конденсаторе изменяется по закону $u(t) = u_0 \sqrt{2} \cos \omega t$. Найдите зависимость тока через конденсатор i(t) от времени.
- в) Найдите соответствующие значения комплексного напряжения и тока \tilde{u} и $\tilde{\imath}$ в конденсаторе. Покажите, что связь между ними можно записать в виде $\tilde{u}=\tilde{\imath}X_C$. Найдите X_C .

Таким образом, мы получили, что у конденсаторов и катушек комплексные напряжения и токи связаны таким же соотношением, как и у резистора. Роль сопротивления играют величины X_L и X_C — их называют комплексными импедансами. Таким образом, для конденсаторов и катушек можно записывать обычный закон Ома, если в качестве напряжений и токов брать комплексные величины. Так, при последовательном включении катушки и конденсатора суммарный импеданс $Z = X_L + X_C$, а при параллельном включении конденсатора и резистора $1/Z = 1/R + 1/X_C$. Такой метод расчета называется методом комплексных импедансов, и он резко упрощает вычисления, связанные с цепями переменного тока.

6. Подключим последовательно резистор R, конденсатор C и катушку L к источнику переменного тока с действующим напряжением U_0 . Найдите при помощи метода комплексных импедансов действующие напряжения и силы тока элементов цепи, а также их среднюю мощность.