Memory

in neural networks (TensorFlow)

Why memory

- Peak efficiency is achieved for large batches on GPU:
 - 11 T ops/s for 8k-by-8k matrix multiply on TitanX
 - 1.1 T ops/sec for 8k-by-8k matrix multiply on Xeon V3
 - 0.1 G ops/s for 256-by-256 matrix multiply on TitanX/Xeon
 - Small batch runtime dominated by once-per-batch overhead (ie, var reads)
- Money doesn't buy more GPU memory
 - \$800 1080TI: 12GB
 - \$6k P100: 16GB
 - \$??? V100: 16GB

https://github.com/yaroslavvb/stuff/blob/master/matmul_benchmark.py

Fprop efficiency

Universe starter agent: 400 fps...too slow

Fprop efficiency

Fprop efficiency

Calculating memory requirements

•
$$f(x) + g(x)$$

• 2 memory units

Calculating memory requirements

• f(x) + g(x) + h(x)

• either 2 or 3 memory units

Pebble game

- Rules:
- 1. can only put pebble on node if all parents have pebbles
- 2. goal to put pebble on final node

- Rules:
- 1. can only put pebble on node if all parents have pebbles or no parents
- 2. goal to put pebble on final node

Example

Best case: 3 units

Worst case: N units

TensorFlow case: ???

Pebble game

- Number of pebbles needed = peak requirement
- Different schedules produce different requirements
- How to find the optimal schedule?
 - No solution for general computation graphs

"Inapproximability of treewidth, one-shot pebbling, and related layout problems" http://dl.acm.org/citation.cfm?id=2655729

But good heuristics exist

Pebble game

- One-shot pebbling = do not touch nodes already visited = no recompilations
- Multi-shot pebbling = can revisit old nodes = recompilations allowed
- TensorFlow = no recomputations

Neural networks

Inference

Memory requirement determined by most expensive layer (typically the first fully connected layer)

Training

$$c = f(g(h(x)))$$

$$\frac{dc}{dx} = f'(g(h(x)))g'(h(x))h'(x)$$

$$\frac{ds}{dx} = f'(g(h(x)))g'(h(x))h'(x)$$
a3 a2 a1

$$\frac{dc}{dx} = f'(g(h(x)))g'(h(x))h'(x)$$
b1
b2
b3

Training

```
3]: tf.reset_default_graph()
   node_mbs = 1
   length = 4

   dtype = np.float32
   n = node_mbs * 250000|
   a0_ = tf.ones((n,), dtype=dtype)
   a0 = tf.Variable(a0_, name="a0")
   a = a0
   for i in range(1, length):
        name = "a"+str(i)
        a = tf.tanh(a, name=name)

   grad = tf.gradients([a], [a0])[0]
   sess = create_session()
4]: show_graph(ungroup_gradients=True)
```

Main Graph

https://github.com/yaroslavvb/stuff/blob/master/node-merge.ipynb

TensorFlow memory

Which order does it pick? (look in <u>executor.cc</u>)

TensorFlow memory

result = tf.random_uniform((size, size))

for i in range(n):

result = result @ tf.random_uniform((size, size))

TensorFlow memory

8k matmul takes 100ms 8k-by-8k random_uniform takes 4ms

How to monitor memory

- TensorFlow manages it's own memory, so nvidia-smi is useless
- 1. parse LOG_MEMORY allocation/deallocation messages (https://github.com/yaroslavvb/memory_util)
- 2. Extract it from Timeline
- 3. Write custom TensorFlow op that queries allocator on demand

https://github.com/yaroslavvb/memory_probe_ops

memory_util example

- https://github.com/yaroslavvb/notebooks/blob/master/ mnist-memory.ipynb
- https://github.com/yaroslavvb/memory_util

timeline

run_metadata = tf.RunMetadata()
run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
sess.run(model.train_op, options=run_options, run_metadata=run_metadata)

```
node_name: "a02_add"
all start micros: 1505768360742529
op start rel micros: 32
op end rel micros: 80
all end rel micros: 137
memory (
 allocator_name: "GPU_0_bfc"
 allocator bytes in use: 171016448
  tensor description {
   dtype: DT FLOAT
   shape {
     dim {
       size: 250000
    allocation description (
     requested bytes: 1000000
      allocated bytes: 1000192
     allocator name: "GPU 0 bfc"
      allocation id: 3735
      ptr: 1108455317760
timeline_label: "a02_add = Add(a01_add, a02_tanh)"
scheduled_micros: 1505768360742492
memory stats {
```

https://github.com/yaroslavvb/stuff/blob/master/memory%20tracking.ipynb

Improving memory usage

- Pick better execution order
- Forget/recompute intermediate Tensors
- Use TensorFlow functions
- Offload to main memory

Better execution order

Add enough control dependencies so that execution order is deterministic.

Pick execution order where nodes that are needed later, are also computed later

https://github.com/yaroslavvb/stuff/tree/master/linearize

Rewire the graph for recompilation

https://github.com/yaroslavvb/stuff/blob/master/simple_rewiring.ipynb

sqrt(n) saving

Training Deep Nets with Sublinear Memory Cost

Tianqi Chen, Bing Xu, Chiyuan Zhang, Carlos Guestrin

Functions to recompute intermediate results

```
@function.Defun(tf.float32, func_name="tanh3")
def tanh3(a):
    return tf.tanh(tf.tanh(tf.tanh(a)))
```

intermediate results are forgotten similar to graph rewiring, but requires modifying model construction code technique used by Google Translation and LM models

https://github.com/yaroslavvb/stuff/blob/master/saving%20memory%20by%20using%20functions.ipynb

Offload to main RAM

- Instead of forgetting/recomputing, save to main memory (rewriting graph, using swap_memory=True, or grappler)
- makes sense for O(n^3) ops (conv2d, matmul)
- doesn't make sense for O(n^2) ops (everything else)
- 7x faster to recompute tf.mul on GPU than load from memory (10x faster for tf.concat)
- https://github.com/yaroslavvb/stuff/blob/master/gpumemory-transfer.ipynb