50Ω to 25Ω Microstrip Lines Design and Simulation

JIAWEI ZHANG, ELENA CHONG, LINGTONGYUE JIN

Overview

Design

Quarter Wave Transformer

 50Ω to 25Ω

Simulation

CST Modeling Animation

Measurement

Circuit soldering
Calibration

Comparison

Quarter Wave Transformer

Impedance of Quarter-wave

$$Z_{\rm in} = \frac{Z_c^2}{R_L}$$
, $Z_c = \sqrt{Z_{\rm in} R_L}$ (2.62)

Length of Quarter-wave

$$v = \frac{1}{\sqrt{\varepsilon \cdot \mu}} = \frac{3 \cdot 10^8}{\sqrt{\varepsilon_r}} \frac{m}{s}$$
Effective permittivity

$$\lambda/4 = \frac{1}{4} \frac{v}{f}$$

$$Z_{\rm in} = Z_0$$
, $\Gamma = 0$

Microstrip Lines Width Calculation

Equations from Pozar

$$\epsilon_e = \frac{\epsilon_r + 1}{2} + \frac{\epsilon_r - 1}{2} \frac{1}{\sqrt{(1 + 12d/W)}}$$
 (3.195)

$$Z_0 = \frac{120 \,\pi}{\sqrt{\epsilon_e \left[\frac{W}{d} + 1.393 + 0.667 \ln\left(\frac{W}{d} + 1.444\right)\right]}} \text{ for } W/d \ge 1 \quad \textbf{(3.196)}$$

Lines	Width (mm)
25Ω Line	8.375
$\lambda/4$ Transformer	5.360
50Ω Line	3.277

$$d = 1.160mm$$

$$\epsilon_r = 2.55$$

Verification from http://www1.sphere.ne.jp/i-lab/ilab/tool/ms_line_e.htm

Design Modeling & Building

d = 1.160mm $\epsilon_r = 2.55$

Preparing for measurement

Calibrating the Vector Network Analyzer

Short-Open-Load Calibration

3.5mm Calibration Kit

CST Simulation

Animations in Frequency Domain

Results Comparison

Measurement & Simulation

Citations

- [1] David M. Pozar, Microwave Engineering. Hoboken: John Wiley & Sons, Inc, 2011.
- [2] Stuart M. Wentworth, *Applied Electromagnetics: Early Transmission Lines Approach*. Hoboken: John Wiley & Sons, Inc, 2006.
- [3] "Microstrip Line Calculator." *InfoSphere*. [Online]. Available: http://www1.sphere.ne.jp/i-lab/ilab/tool/ms_line_e.htm

Questions?