1. Overview

Based on the descriptive and exploratory analysis done in notebook 00_data_understanding, this Python Script will work on preprocessing the data, preparing it so that we can then work on the model training in the future.

2. Data Understanding

2.1 Data Description

This file will use the df_train_transform excel sheet created in the previous notebook: 00_data_understanding

2.2 Import Necessary Libraries

```
In [1]: # pip install category_encoders

In [2]: import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    %matplotlib inline
    import seaborn as sns
    from sklearn.preprocessing import OneHotEncoder
    from category_encoders import TargetEncoder
    from sklearn.preprocessing import StandardScaler
    from sklearn.model_selection import train_test_split

import pickle
    import warnings
    warnings.filterwarnings('ignore')
```

3. Code

3.1 Import the database

```
In [3]: df = pd.read_excel('df_train_transform.xlsx')
    df.head()
```

Out[3]:

	amount_tsh	gps_height	population	basin	region	public_meeting	permit	extraction_typ
0	6000.0	1390	109	lake nyasa	iringa	1.0	0.0	
1	0.0	1399	280	lake victoria	mara	NaN	1.0	
2	25.0	686	250	pangani	manyara	1.0	1.0	
3	0.0	263	58	ruvuma southern coast	mtwara	1.0	1.0	sub
4	0.0	0	0	lake victoria	kagera	1.0	1.0	

3.2 Class Imbalance checking

```
In [4]: # Check class distribution in y_train
    print("Class distribution of status_group:")
    print(df['status_group'].value_counts(normalize=True))
```

Class distribution of status_group: functional 0.543081 non functional 0.384242 functional needs repair 0.072677 Name: status_group, dtype: float64

We decide to group together into a same class functional needs repair and functional. In this way, we have a binary classification problem

```
In [5]: # Replace 'functional needs repair' with 'functional'
df['status_group'] = df['status_group'].replace('functional needs repair', 'fu

# Verify changes by checking the class distribution again in y_train and y_tes
print("Class distribution in y_train after replacement:")
print(df['status_group'].value_counts(normalize=True))
```

Class distribution in y_train after replacement:

functional 0.615758 non functional 0.384242

Name: status_group, dtype: float64

To have further insight, let's do a bar graph representation of the distribution of the target variable

```
In [6]: class_distribution = df['status_group'].value_counts(normalize=True)

# Plotting the bar plot
plt.figure(figsize=(10, 6))
sns.barplot(x=class_distribution.index, y=class_distribution.values, palette='
plt.xlabel('Status Group')
plt.ylabel('Proportion')
plt.title('Distribution of Functional and Non-Functional Pumps')
plt.ylim(0, 1)
plt.show()
```


3.3 Define predictor and target variables

```
In [7]: y = df['status_group']
X = df.drop('status_group', axis=1)
```

3.4 Do a train test split

```
In [8]: # Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, rando
```

3.5 Dealing with null values

```
In [9]: # For train data
        (X_train.isna().sum()/len(df))*100
Out[9]: amount tsh
                                      0.000000
        gps_height
                                      0.000000
        population
                                      0.000000
        basin
                                      0.000000
        region
                                      0.000000
        public_meeting
                                      4.526936
        permit
                                      4.106061
        extraction_type_class
                                      0.000000
        management_group
                                      0.000000
        payment_type
                                      0.000000
        quality_group
                                      0.000000
                                      0.000000
        quantity_group
        source_type
                                      0.000000
        waterpoint_type
                                      0.000000
        funder_type
                                      0.000000
        installer_type
                                      0.000000
        scheme_management_grouped
                                      0.000000
        dtype: float64
```

Column 'public_meeting'

```
In [10]: X_train["public_meeting"].value_counts(normalize=True)
Out[10]: 1.0
                0.908813
         0.0
                0.091187
         Name: public_meeting, dtype: float64
In [11]: # Given that the null values are only 6%, lets replace them with the mode
         # Calculate the mode of the 'public meeting' column
         public_meeting_mode = X_train['public_meeting'].mode()[0]
         # Fill missing values in 'public meeting' of X train with the mode from X trai
         X_train['public_meeting'].fillna(public_meeting_mode, inplace=True)
         # Fill missing values in 'public meeting' of X test with the mode from X train
         X_test['public_meeting'].fillna(public_meeting_mode, inplace=True)
         # Convert the 'public meeting' column to type object in both X train and X tes
         X_train['public_meeting'] = X_train['public_meeting'].astype(object)
         X_test['public_meeting'] = X_test['public_meeting'].astype(object)
         # Verify if all NA values are filled
         print(df['public_meeting'].value_counts(normalize=True))
         1.0
                0.909838
                0.090162
         0.0
         Name: public_meeting, dtype: float64
```

Out[12]: 1.0

Out[15]: 1.0

In [12]: public_meeting_mode

```
Column 'permit'
In [13]: |df["permit"].value_counts(normalize=True)
Out[13]: 1.0
                0.68955
         0.0
                0.31045
         Name: permit, dtype: float64
In [14]: # Given that the null values are only 5%, lets replace them with the mode
         # Calculate the mode of the 'permit' column
         permit_mode = X_train['permit'].mode()[0]
         # Fill missing values in 'permit' of X_train with the mode of X_train
         X train['permit'].fillna(permit mode, inplace=True)
         # Fill missing values in 'permit' of X_test with the mode of X_train
         X_test['permit'].fillna(permit_mode, inplace=True)
         # Convert the 'permit' column to type object in both X_train and X_test
         X_train['permit'] = X_train['permit'].astype(object)
         X_test['permit'] = X_test['permit'].astype(object)
         # Verify if all NA values are filled
         print(X_train['permit'].value_counts(normalize=True))
         1.0
                0.704272
                0.295728
         0.0
         Name: permit, dtype: float64
In [15]: | permit_mode
```

3.6 Doing target enconder on the categorical columns

Let's perform a one hot enconder on the categorical columns that have less than 6 categories

X_train

Let's do a code to apply one hot enconder on the columns that have less than 6 variables and a target enconder on the columns that have more than 6 variables. The reason why we decide to not apply target encoding to all the columns directly is to avoid overfitting

```
In [17]: # Check if 'y_train' and 'y_test' need to be converted to a numeric type
         if y_train.dtype == 'object':
             y_train = y_train.astype('category').cat.codes
         if y_test.dtype == 'object':
             y_test = y_test.astype('category').cat.codes
         # Capture categorical columns from X_train for encoding
         categorical_columns = X_train.select_dtypes(include=['object', 'category']).co
         # Initialize encoders
         target_encoder = TargetEncoder()
         # Encoding the categorical columns in X_train and X_test
         for col in categorical_columns:
             if X_train[col].nunique() <= 6:</pre>
                 # Apply OneHotEncoder for columns with 6 or fewer unique values
                 X_train = pd.get_dummies(X_train, columns=[col], drop_first=True)
                 X_test = pd.get_dummies(X_test, columns=[col], drop_first=True)
             else:
                 # Apply TargetEncoder for columns with more than 6 unique values
                 X_train[col] = target_encoder.fit_transform(X_train[col], y_train)
                 X_test[col] = target_encoder.transform(X_test[col])
                 pickle.dump(target_encoder, open(f"model_objects/{col}_target_encoder.
         # Display the DataFrame to check the results
         X_train.head()
```

Out[17]:

	amount_tsh	gps_height	population	basin	region	extraction_type_class	payment_1
3607	50.0	2092	160	0.346722	0.315956	0.300187	0.277
50870	0.0	0	0	0.346722	0.443875	0.309484	0.475
20413	0.0	0	0	0.485901	0.398196	0.805243	0.475
52806	0.0	0	0	0.311216	0.398196	0.300187	0.22€
50091	300.0	1023	120	0.432348	0.398697	0.805243	0.308

5 rows × 34 columns

3.7 Dealing with numerical columns

X_train

```
In [18]: # Capture numerical columns
   numerical_columns = X_train.select_dtypes(include=['int64', 'float64']).column

# Initialize the StandardScaler
   scaler = StandardScaler()

# Fit and transform the numerical columns
   scaler.fit(X_train[numerical_columns])

X_train[numerical_columns] = scaler.transform(X_train[numerical_columns])

# Save the fitted variables
   pickle.dump(scaler, open(f"model_objects/numerical_columns_scaler.pickle", 'wb

# Display the DataFrame to check the results
   X_train.head()
```

Out[18]:

	amount_tsh	gps_height	population	basin	region	extraction_type_class	payment
3607	-0.084999	2.053863	-0.041306	-0.540016	-0.633090	-0.521411	-0.89
50870	-0.100621	-0.965049	-0.379739	-0.540016	0.555492	-0.463637	0.77
20413	-0.100621	-0.965049	-0.379739	1.471270	0.131062	2.617222	0.77
52806	-0.100621	-0.965049	-0.379739	-1.053126	0.131062	-0.521411	-1.30
50091	-0.006889	0.511216	-0.125914	0.697368	0.135714	2.617222	-0.64

5 rows × 34 columns

```
In [19]: numerical_columns
print(len(numerical_columns))
```

10

X_test

```
In [20]: X_test[numerical_columns] = scaler.transform(X_test[numerical_columns])
# Display the DataFrame to check the results
X_test.head()
```

Out[20]:

	amount_tsh	gps_height	population	basin	region	extraction_type_class	payment _.
2980	-0.100621	-0.965049	-0.379739	0.205860	-0.699807	2.617222	1.09
5246	-0.100621	-0.965049	-0.379739	0.205860	1.453840	-0.463637	0.77
22659	-0.097497	1.452101	-0.066689	-0.540016	-0.633090	-0.521411	-0.89
39888	-0.100621	-0.965049	-0.379739	1.471270	0.131062	-0.463637	0.77
13361	-0.084999	0.635320	0.117334	-0.540016	0.663779	1.165688	-0.89

5 rows × 34 columns

3.8 Concatenate train on one side and test on the other

```
In [21]: # Concatenate all train
df_train = pd.concat([X_train, y_train], axis=1)

# Concatenate all test
df_test = pd.concat([X_test, y_test], axis=1)

# Create a label column
df_train['is_test'] = 0
df_test['is_test'] = 1
```

3.9 Concatenate everything in one dataframe

```
In [22]: data_processed = pd.concat([df_train,df_test], axis=0)

# Reset index
data_processed = data_processed.reset_index(drop=True)

# Rename column 0 to status_group
data_processed = data_processed.rename(columns={0: 'status_group'})

data_processed
```

Out[22]:

		amount_tsh	gps_height	population	basin	region	extraction_type_class	payment
_	0	-0.084999	2.053863	-0.041306	-0.540016	-0.633090	-0.521411	-0.89
	1	-0.100621	-0.965049	-0.379739	-0.540016	0.555492	-0.463637	0.77
	2	-0.100621	-0.965049	-0.379739	1.471270	0.131062	2.617222	0.77
	3	-0.100621	-0.965049	-0.379739	-1.053126	0.131062	-0.521411	-1.30
	4	-0.006889	0.511216	-0.125914	0.697368	0.135714	2.617222	-0.64
!	59395	-0.038133	1.596408	0.741319	-1.230325	-1.769052	-0.521411	-1.30
!	59396	0.055600	1.704639	-0.062458	-0.569630	-1.180350	-0.521411	-0.64
!	59397	-0.100621	-0.965049	-0.379739	0.335579	0.103144	-0.521411	0.77
!	59398	-0.100621	-0.038596	-0.377623	0.697368	0.135714	-0.521411	0.77
!	59399	-0.100621	1.098547	-0.377623	-0.569630	0.234762	-0.521411	0.77

59400 rows × 36 columns

4. Export the data

```
In [23]: data_processed.to_excel('df_data_processed.xlsx', index=False)
```