Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

САНКТ-ПЕТЕРБУРГСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Кафедра Систем Управления и Информатики Группа <u>Р3340</u>

Лабораторная работа №9 "Экспериментальное построение частотных характеристик типовых динамических звеньев" Вариант - 5

Выполнил		(подпись
	(фамилия, и.о.)	
Проверил	(фамилия, и.о.)	(подпись)
"" 20г.	Санкт-Петербург,	20 <u></u> г.
Работа выполнена с оценкой		
Дата защиты ""	20 <u></u> Γ.	

Цель работы. Изучение частотных характеристик типовых динамических звеньев и способов их построения.

Исходные данные: Типы звеньев представлены в таблице 1. Исследования производятся при следующих коэффициентах: $k=15,\ T=0.2$ и $\xi=0.2$. И при гармоническом входном воздействии с единичной амплитудой и переменной частотой.

Таблица 1 – Исходные данные

Тип звена	Передаточная функция
Апериодическое 1го порядка	$W(s) = \frac{k}{Ts+1}$
Интегрирующее с замедлением	$W(s) = \frac{k}{s \cdot (1 + Ts)}$
Изодромное	$W(s) = \frac{k \cdot (1 + Ts)}{s}$

1 Временная диаграмма

Получение данных моделирования по полученной временной диаграмме, представленной на рисунке 1, на примере апериодического звена 1го порядка при входном сигнале g(t)=1sin(wt) и w=2, k=15, T=0.2

Рисунок 1 – Временная диаграмма

По рисунку видно, что амплитуда выходного сигнала y(t) равна 13.93, а амплитуда входного сигнала равна $1\Rightarrow A(w)=\frac{13.93}{1}=13.93$ Также видно, что входной сигнал пересекает ось времени при $t_g=1.57$, а выходной - при $t_y=1.76$, значит, g(t) опережает y(t) по фазе на угол $\phi=w\cdot\Delta t$, где $\Delta t=t_y-t_g$. Получается, фаза выходного сигнала отстает от входного $\Rightarrow \psi=-\phi$. По расчетам получается: $\Delta t=1.76-1.57=0.19\Rightarrow \phi=2\cdot0.19=0.38\Rightarrow \psi=-0.38$

2 Исследование апериодического звена 1го порядка

Данные моделирования представлены в таблице 2

Таблица 2 – Данные моделирования

ω	lgw	$A(\omega)$	$L(w) = 20 \lg A(\omega)$	$\psi(w)$
0.5	-0.3	14.8	23.4	-0.11
2	0.3	13.93	22.88	-0.38
3.5	0.54	12.29	21.79	-0.61
5	0.7	10.61	20.51	-0.79
7.5	0.88	8.32	18.4	-0.98
10	1	6.71	16.53	-1.1
15	1.18	4.74	13.52	-1.25
30	1.48	2.47	7.84	-1.38
40	1.6	1.86	5.39	-1.44
50	1.7	1.49	3.48	-1.45

Частотные характеристики представлены на рисунке 2

Рисунок 2 - Частотные характеристики апериодического звена

3 Исследование интегрирующего с замедлением звена

Данные моделирования представлены в таблице 3

Таблица 3 – Данные моделирования

ω	lgw	$A(\omega)$	$L(w) = 20 \lg A(\omega)$	$\psi(w)$
0.5	-0.3	29.85	29.5	-1.67
2	0.3	6.96	16.86	-1.95
3.5	0.54	3.51	10.91	-2.18
5	0.7	2.12	6.53	-2.36
7.5	0.88	1.11	0.9	-2.55
10	1	0.67	-3.47	-2.67
15	1.18	0.32	-10	-2.82
30	1.48	$8.2 \cdot 10^{-2}$	-21.7	-2.97
40	1.6	$4.7 \cdot 10^{-2}$	-26.65	-3
50	1.7	$3\cdot 10^{-2}$	-30.5	-3

Частотные характеристики представлены на рисунке 3

Рисунок 3 - Частотные характеристики интегрирующего с замедлением звена

4 Исследование изодромного звена

Данные моделирования представлены в таблице 4

Таблица 4 – Данные моделирования

ω	lgw	$A(\omega)$	$L(w) = 20 \lg A(\omega)$	$\psi(w)$
0.5	-0.3	30.15	29.59	-1.47
2	0.3	8.08	18.15	-1.19
3.5	0.54	5.23	14.37	-0.96
5	0.7	4.24	12.55	-0.79
7.5	0.88	3.61	11.14	-0.59
10	1	3.35	10.51	-0.46
15	1.18	3.16	10	-0.32
30	1.48	3.04	9.66	-0.15
40	1.6	3.02	9.61	-0.12
50	1.7	3.02	9.59	-0.1

Частотные характеристики представлены на рисунке 4

Рисунок 4 – Частотные характеристики изодромного звена

5 Асимптотические ЛАЧХ исследуемых звеньев

На рисунках 5, 6 и 7 представлены асимптотические и полученные моделированием ЛАЧХ для апериодического, интегрирующего с замедлением и изодромного звена соответственно.

Рисунок 5 - ЛАЧХ апериодического звена 1го порядка

Рисунок 6 - ЛАЧХ интегрирующего с замедлением звена

Рисунок 7 – ЛАЧХ изодромного звена

Вывод

В данной работе были исследованы три динамических звена: апериодическое 1го порядка, интегрирующее с замедлением и изодромное. В результате были получены частотные характеристики, по которым можно судить о значениях амплитуды и фазы выходного сигнала звена в зависимости от параметров входного сигнала.

Так, с увеличением частоты входного сигнала, апериодическое звено 1го порядка ослабляет амплитуду выходного сигнала, т.е начинает хуже пропускать сигнал, а сдвиг по фазе стремится от 0° к -90° . Интегрирующее звено также с увеличением частоты начинает хуже "пропускает"сигнал, но делает это резче и при меньших частотах, чем апериодическое, и фазовый сдвиг лежит в диапазоне от -90° до -180° . Изодромное звено ослабляет сигнал при увеличении частоты, но в отличии от двух предыдущих, значение A(w) при частоте, стремящейся к бесконечности, не нулевое, а равно $k \cdot T$, в данном случае получилось A(w) = 3 и L(w) = 9.54. А фаза меняется от -90° до 0° .

Также были построены теоретические асимптотические ЛАЧХ, которые подтвердили данные, полученные моделированием, а значит, их можно использовать для быстрой оценки пропускной способности звена.