Algebra booleana e Reti logiche

Reti combinatorie

Rete combinatoria

input =
$$\{x_1, x_2, ..., x_n\}$$

output = $\{z_1, z_2, ..., z_m\}$

L'uscita è esclusivamente funzione dell'ingresso

ANALISI SINTESI

COMPORTAMENTO della RETE

Analisi della rete

 Procedimento mediante il quale, dato lo schema logico della rete, se ne identifica il comportamento (per verificare se la rete è costruita in modo corretto o al fine di apportare modifiche)

Dal circuito
all'espressione
booleana

Esempio

$$Z = \overline{AB} + \overline{ACD} + BC + BC\overline{D}$$

Sintesi della rete

 Procedimento che conduce dalla specifica funzionale, ovvero dalla descrizione del funzionamento della rete, alla sua realizzazione circuitale:

sintesi dalle tabelle di verità

scomposizione in sotto-reti

м

Sintesi dalle tabelle di verità

- Si costruisce la tabella di verità che definisce la relazione tra le variabili di output e quelle di input (enumerando tutti i casi possibili).
- Per ogni variabile di output, si scrive la corrispondente espressione logica in forma canonica.
- Si semplificano le espressioni logiche (minimizzazione).
- A partire dalle espressioni logiche ottenute, si disegna lo schema circuitale.

Scomposizione in sotto-reti

- Una rete complessa può essere progettata attraverso la composizione di reti più semplici.
- In questo modo si rinuncia alla soluzione teoricamente ottima a favore di una maggiore comprensibilità e gestibilità del progetto.

Moduli combinatori di uso ricorrente

м

Decodificatore

Rete combinatoria con:

- √ n ingressi
- $\checkmark m = 2^n$ uscite

In corrispondenza a ogni ennupla di valori in input un solo terminale di uscita risulta attivato (assume cioè il valore 1)

м

Decodificatore

L'insieme degli ingressi può essere interpretato come la codifica binaria di un numero i:

la corrispondente uscita z_i è posta a 1, tutte le altre a 0

Decodificatore

■ Ciascuna uscita z_i (i = 0, ..., m-1) coincide con un prodotto fondamentale (*mintermine*):

$$z_{0} = \overline{x}_{n-1} \overline{x}_{n-2} \dots \overline{x}_{1} \overline{x}_{0}$$

$$z_{1} = \overline{x}_{n-1} \overline{x}_{n-2} \dots \overline{x}_{1} x_{0}$$

$$\vdots$$

$$\vdots$$

$$z_{m-1} = x_{n-1} x_{n-2} \dots x_{1} x_{0}$$

Esempio di decodificatore (n = 2, m = 4)

X	\mathbf{x}_0	\mathbf{Z}_3	\mathbf{z}_2	\mathbf{z}_1	z_0
0	0	0	0	0	1
0	1	0	0	1	0
1	0	0	1	0	0
1	1	1	0	0	0

$$z_0 = \overline{x}_1 \overline{x}_0 \qquad z_1 = \overline{x}_1 x_0$$
$$z_2 = x_1 \overline{x}_0 \qquad z_3 = x_1 x_0$$

М

Codificatore

Svolge la funzione inversa di un decodificatore e prevede quindi:

$$\checkmark$$
 $n = 2^m$ ingressi

√ m uscite

Il comportamento della rete è specificato soltanto per le configurazioni in ingresso che contengono un solo 1 (le altre danno luogo a condizioni di indifferenza).

M

Codificatore

Data la configurazione di ingresso

$$x_i = 1 e x_j = 0$$
 (per ogni $j \neq i$),

la corrispondente configurazione in uscita $z_0, z_1, \ldots, z_{m-1}$ corrisponde alla codifica binaria del numero i

Esempio di codificatore (n = 4, m = 2)

L	\mathbf{x}_3	\mathbf{x}_2	\mathbf{x}_1	\mathbf{x}_0	\mathbf{z}_1	\mathbf{z}_0
	0	0	0	1	0	0
	0	0	1	0	0	1
	0	1	0	0	1	0
	1	0	0	0	1	1
		oth	-	-		

$$z_0 = x_1 + x_3$$
 $z_1 = x_2 + x_3$

In generale, le funzioni di uscita si semplificano sfruttando le molte condizioni di indifferenza presenti nella tabella di verità.

Selettori

 Selettore di ingresso o multiplexer:
 permette di selezionare uno degli N ingressi e presentarlo sull'unica uscita

Selettore di uscita o demultiplexer : permette di dirottare l'unico ingresso su una delle possibili N uscite

Linee di comando per la selezione

M

Selettori

Per la selezione dell'ingresso (uscita) è richiesto un numero n di linee di comando pari all'intero uguale o superiore a log_2N :

la configurazione delle n variabili di comando, interpretata secondo la codifica binaria, determina l'indice i dell'ingresso x_i (o dell'uscita z_i) da selezionare

Di fatto, le variabili di comando possono essere considerate come ingressi aggiuntivi della rete.

Selettore di ingresso a due vie

$$z = x_0 \overline{s} + x_1 s$$

Il valore assunto dalla variabile di comando s determina quale tra gli ingressi, x_0 e x_1 , deve essere trasferito sull'uscita z.

Selettore di uscita a due vie

$$z_0 = x\overline{s}$$
 $z_1 = xs$

Il valore assunto dalla variabile di comando s determina su quale uscita, z_0 o z_1 , deve essere dirottato l'ingresso x (l'altra uscita è posta a 0).

7

Costruzione di funzioni logiche tramite selettori

- Una qualunque funzione logica di n variabili può essere realizzata attraverso un selettore d'ingresso a $N = 2^n$ vie.
- In generale, infatti, una funzione è esprimibile come somma di mintermini:

$$z = \sum_{i} (c_i \cdot C_i)$$

dove i coefficienti c_i valgono:

- ✓ 1 in corrispondenza dei mintermini C_i per i quali la funzione vale 1
- 0 altrimenti

Esempio

\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	Z
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

$$z = f(x_{1}, x_{2}, x_{3})$$

$$= 1 \cdot \overline{x}_{1} \cdot \overline{x}_{2} \cdot \overline{x}_{3}$$

$$+ 0 \cdot \overline{x}_{1} \cdot \overline{x}_{2} \cdot \overline{x}_{3}$$

$$+ 0 \cdot \overline{x}_{1} \cdot x_{2} \cdot \overline{x}_{3}$$

$$+ 1 \cdot \overline{x}_{1} \cdot x_{2} \cdot x_{3}$$

$$+ 0 \cdot x_{1} \cdot \overline{x}_{2} \cdot \overline{x}_{3}$$

$$+ 0 \cdot x_{1} \cdot \overline{x}_{2} \cdot \overline{x}_{3}$$

$$+ 1 \cdot x_{1} \cdot x_{2} \cdot \overline{x}_{3}$$

$$+ 1 \cdot x_{1} \cdot x_{2} \cdot x_{3}$$

$$z = \sum_{i} (c_i \cdot C_i)$$

$$z = \sum (0,3,6,7)$$

La funzione può essere realizzata con un selettore a otto vie

Esempio

$$z = \sum_{i} (c_i \cdot C_i)$$

$$z = \sum (0,3,6,7)$$

- Le variabili x_1 , x_2 e x_3 sono impiegate come linee di selezione
- Le otto linee di ingresso sono poste a 0 o a 1 a seconda del corrispondente c_i

Unità aritmetiche e logiche

Aritmetica binaria:

le tabelline delle operazioni contengono i due simboli 0 e 1

possono essere interpretate come le tabelle di verità delle funzioni logiche corrispondenti alle operazioni aritmetiche

Somma di due bit

■ Tabellina aritmetica della somma (S) e del relativo riporto (R):

A	В	S	R
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Tabella di verità delle funzioni logiche:

$$S_i(A_i, B_i)$$

$$R_i(A_i, B_i)$$

Semisommatore (Half-Adder)

$$R_i = A_i B_i$$

$$S_i = \overline{A}_i B_i + A_i \overline{B}_i = A_i \oplus B_i$$

Somma di due numeri interi

Consideriamo due numeri interi rappresentati in forma binaria attraverso due parole di n bit:

$$A = [A_{n-1}....A_0]$$

$$B = [B_{n-1}....B_0]$$

Somma:

$$S = [S_{n-1}.....S_0]$$

M

Sommatore di parole di n bit

La somma è effettuata a partire dai bit meno significativi procedendo verso sinistra e tenendo conto del riporto.

La cella elementare della rete è detta Full Adder (FA).

Sommatore completo (Full Adder)

A_i	B_i	R_{i-1}	S_i	R_i
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Sommatore completo (Full Adder)

La somma S_i dei tre bit A_i , B_i e R_{i-1} dà risultato 1 solo se è dispari il numero di bit a 1.

$$S_{i} = A_{i} \oplus B_{i} \oplus R_{i-1}$$
$$= (A_{i} \oplus B_{i}) \oplus R_{i-1}$$

ĸ.

Sommatore completo (Full Adder)

- Il riporto R_i vale 1 quando:
 - □ la somma di A_i e B_i dà direttamente riporto oppure
 - □ la somma di A_i e B_i vale 1, e si ha un riporto in ingresso di 1

$$R_i = A_i B_i + (A_i \oplus B_i) R_{i-1}$$

Sommatore completo (Full Adder)

$$S_i = (A_i \oplus B_i) \oplus R_{i-1}$$

$$R_i = A_i B_i + (A_i \oplus B_i) R_{i-1}$$

м

Sommatore completo (Full Adder)

Come abbiamo visto in precedenza, a partire dal *Full Adder (FA)* è possibile realizzare un circuito sommatore:

•

Costruzione di un'unità aritmetica: esempio

- Al sommatore possiamo aggiungere ulteriori elementi di logica in modo da realizzare un'unità aritmetica in grado di effettuare anche altre operazioni.
- In particolare, la sottrazione è riconducibile alla somma:

$$A - B = A + (-B)$$

Notazione in complemento a 2 per i numeri negativi: si complementano tutti i bit di B e si aggiunge 1

.

Costruzione di un'unità aritmetica: esempio

Schema della rete che effettua la sottrazione usando un sommatore:

Prevedendo delle linee di controllo è possibile usare la stessa rete sia per le somme che per le sottrazioni

Costruzione di un'unità aritmetica: esempio

La linea c_0 seleziona B oppure il suo complemento, mentre la linea c_1 seleziona come secondo ingresso A oppure 0. In più, c'è la logica per il controllo del trabocco (T).

Costruzione di un'unità aritmetica: esempio

■ Comportamento della rete per ogni combinazione dei valori assunti dalle linee di controllo (c_1, c_0, R_{-1}) :

c ₁	c ₀	R ₋₁	Risultato	Commento
0	0	0	S=0+B=B	Selezione di B
0	0	1	S = 0 + B + 1 = B + 1	Incremento di B
0	1	0	$S = 0 + \overline{B} = \overline{B}$	Complementazione di B
0	1	1	$S=0+\overline{B}+1=-B$	Cambio segno di B
1	0	0	S = A + B	Somma A + B
1	0	1	S = A + B + 1	
1	1	0	$S = A + \overline{B} = A - B - 1$	
1	1	1	$S = A + \overline{B} + 1 = A - B$	Differenza $A - B$

M

Costruzione di un'unità aritmetica: esempio

Per quanto semplice, la rete precedente è un esempio di *Unità Aritmetica e Logica* (ALU):

(Figure parzialmente tratte da *G. Bucci. Calcolatori elettronici. Architettura e organizzazione. Copyright* © 2009 - *The McGraw-Hill Companies*)