BMED318 Hands-on: Image Compression

I.DCT

- (a). 값이 1부터 100까지 차례대로 있는 행렬 a를 만드시오.
- (b). 행렬 a를 Fourier Transform 한 후 51번째부터 100번째 값을 0으로 만드시오.
- (c). Inverse Fourier Transform 한 후 절대값을 구하시오.
- (d). 행렬 a에 DCT를 적용한 후 51번째부터 100번째 값을 0으로 만드시오.
- (e). Inverse DCT를 적용한 값을 구하시오.
- (f). 두 결과의 그래프를 확인한 후 차이를 서술하시오.

II. JPEG Decoding

1. JPEG으로 encoding 된 어떤 8x8 block의 bitstream 이 아래와 같을 때 다음 물음에 답하시오.

111001110111101001010

- 1) DC coefficient 값을 decode 하시오.
- 2) 첫번째 AC coefficient 값을 decode 하여 run-length code로 표현하시오.
- 3) 그 다음 coefficient값을 decode 하시오.
- 4) 1)에서 구한 DC coefficient 값은 바로 앞에서 encoding된 block의 DC coefficient 값과의 차이 (현재 block의 DC coefficient 값 이전 block의 DC coefficient 값) 만을 나타낸다. 이전 block의 DC coefficient 값이 14 이라고 할 때 현재의 DC coefficient 값을 구하시오.
- 5) 4), 2), 3) 의 결과를 순서대로 배열해 놓은 후 run-length decoding을 수행하시오.
- 6) 5)의 결과는 JPEG encoding 시 zigzag scan 으로 DCT coefficient들을 재 배열한 결과가 된다. 아래의 zigzag scan의 순서를 역이용하여 원래의 8x8 block의

Quantized DCT coefficient 들을 구하시오.

Matlab coding is required beyond this line.

- 7) Luminance Quantization Table을 이용하여 inverse quantization 을 수행하시오.
- 8) Matlab 을 이용하여 IDCT를 수행하시오.
- 9) 128을 더하여 level shift를 수행하시오
- 10) 원본영상이 아래와 같을때 decode된 영상과의 RMSE를 구하시오.

86	89	88	92	92	92	93	93
89	88	86	92	90	89	94	91
88	89	88	89	89	89	92	91
92	88	88	89	90	90	90	91
89	92	89	90	87	91	90	91
90	92	89	93	88	87	87	86
91	92	91	90	92	86	89	90
91	93	89	89	92	87	86	89