1. Introduction.

原在

Hat 1= 23 als the vest 上京中、丁野生v的战场 (9 (10° 5 **向来 c そい しか**

Kac = F3 Kac 代数 N芳原. 1960'S

78 W. . ?

1970is

Waronowicz 3

Drinfeld. Jimbo defunction 21/4 (98015. 1=アィス=) デンエン=アルリル

非可能的。高が里は、一角が野ない。

最上对称下系 subfoctor理局

op dy a Ith 113 quantum gr Etaliten.

新旬

种而非(一)

6: quisp. C(G) C C 28.

cpt gp. a quartur gp.

- · TBIIT BII CHA QUANTUM gp (E 3 N Z, このはりかりいれると
- 圏偏的な視点(=を3中D=をする.

Notation

- · Cx dy BI = 8 tansor 8 7" 17 minimal tensor product 3 28 ta 298.
- · v = ranging map & db.
- · cpx gp. (cl) cpx Hdt gp n= 2 693.

LL Definition and first examples.

非可模的学の考え方におり、unital Cをaly() "非可模"To()("量子化なれて" CPX SP上の cout) ftus の aly とみれるのでった。 これをうてsp にに 辞構造る入れたい。

Def I.I. (Warshowicz)

get quantum gp >10.

Azunital (* aly.

D: A -> A O A. unital *- how

の釉(A、d) があって、スをみたみものをいう。

- (i). (△⊗ L) △ = (∪⊗ △) △ Þ!!

 A → A⊗ A⊗ A. Þ!! Unital *- hom と(てなりたっ.
 (余結を則)
- (ii). (AO()) (A) = spay((aO()) (1b). (a,bEA). ((OA) O(A) = span ((Oa) O(b); a,bEA) (F AOA 7" danse 7" 及3. (簡納律).

Example

a= c(a) 298.

- AQA ~ ((G×G) 1= 氨37112 D:A -> 'c(G×G) る O(f) (g,h) = f(gh) (g,he G) と定めると、 O(す 系統名則を対する unital +-hom でなる。 (i) $\psi = A \times A \rightarrow C (G \times G)$? $\psi = A \times A \rightarrow C (G \times G)$? $\psi = A \times A \rightarrow C (G \times G)$? $\psi = A \times A \rightarrow C (G \times G)$? $\psi = A \times A \rightarrow C (G \times G)$? $\psi = A \otimes A \rightarrow C (G \times G)$. $\psi = A \otimes A \rightarrow C ($

(ii) ig h) to fice) fach) Eustely ofthe 13

C(C) x C) 2" duse Tax-subaly 7" \$2" or 2"

if 12 sur 2 2" to 3.

(前)、タ:かるまりやりの単年間は13時3もし、(前)、タ:かるまりを13単をで、ABA=c(の×の)である。

- · (AOI) △(A) (I g.h ∈ G.f., f>∈ A E 12 (9-4) (→ f(g) f2 (gh) n H4 a ftus 24 (E放至43 unital x-subaby 211五3. (9-4) ≠(g', h') ∈ G×G > a B.
 - · 9 = 9' 12=, 91-9'4' > PZ & h = 6' & T2392'
 gh # f'6' 7" 78.

· 9791 a 82, f2=1, f1 E A 3 f(13)=1, f(191)=0 8723 77841240K,

まって (AOI) O(A) (* Constをお、G×Gの 2.5、を21+173 *- subally To a Zil、 Store - Weders trass than チリ (AO() O(A) lose C(G×G) である。 (1日4) O(A) lose C(G×G) も同様。

\$, Z (A, A) (8 CQ G 79 78 8.

Def

- S: six. -: 5x5 ~ S a 程 (S,·) p() Va.b.ces. (ab) C = a(bc) (新婦) Zd(t=a z ± semi gp z11 あるといろ.

- A C S (= MZ. A ON S N (TABLE) (="7 T L Z" TA 3 def As(= fas: q ∈ A. s ∈ S), SA = A. Prop

(',

(9. h) $\in G \times G$ (=) $\neq G$ (q. h) $\in G \times G$) (=) $\neq G$

 $C(G) \Rightarrow f (\rightarrow \Delta(f)) (\rightarrow \Delta(f)(g-h)) \in C = \text{witch whom}$ $F', = f \in G = \Omega(C(G)) \uparrow (((G-h))) \rightarrow f \geq f \in G$ $\forall f \neq f \text{ tot } d \Rightarrow . = f (((G-h))) \rightarrow f \geq f \in G$ $\forall f \neq f \text{ tot } d \Rightarrow . = f (((G-h))) \rightarrow f \geq f \in G$ $\forall f \neq f \text{ tot } d \Rightarrow . = f (((G-h))) \rightarrow f ((G-h)) \rightarrow f ((G-h$

- 2. 6 10 seni gp 71 28.
 - (9h) $\neq = q(h \neq 0)$.

3. 610 concellation 3.77.

"). gh=g=k (g.h. REG) Ea383, 4 f., f2 e ((6)), f168) f2 (g4) = F((g) f2 (gt)) (A, &) a concellation & y.

(g', h) 1-> f, (g') f2 (g' h') a 716, a from 1) c (GxG) z duce Ty, v feccaxa). fig. 4)=f(q. 4) つまい (らい) - (9、た) まい い= 中を立る、 的有一条年 => 的一百千月群。

- @ Cancella-in 3 => crasenique 12 gp 7173.
- () (1) (1) (一意明る) いけをすつ
 - 1) LEG 3 tix C. H: hometh) 3 Ca closed subserior 213. H = commundatione 20 00 8.

T., Is, ... In CH. ideals 7987,

I, ... IN C II (... (II) ideals F').

THA closed iduks II TAPR BZITHE & F).

H: Cpt J', In = (closed ideal of H) #\$74 =4 t closed ideal (= 33 013.

PY PIN=IN Offetti PIN (In.

VCI=PEINZABZ, = REIN FIL Be= b.

dg & CI. Beg = pg & cancellation I)

eg = 9 2 2 8.

1777 1= GR = G 70 12" e= Go mit 3=3.

(ii)、ののほ恋の天MI 刁至であること。 エのギロニをリ、 モモ In: hIn 72のでり ラをFIn st. をいきわると よりか.

(jiii) . g f) g-1: conti Tz=2. G×G -> G×G, (g, h) f-> (g, gh) 375332 - 91 13 conti 21本11. (g, h) f-1/g, g-1h) 3 運貨傷(= キ > b) bection 21本3. G×G: cpx l fldf F1). 董塚像专 conti Tonti G > ((g,e) (-) (g, g-1) f-)g-1 + conti T1 17 17 11 (2" u 17 72".

Def

IN Prop 1年年1913 G=(A,A)=CQG1=対し (April commutative 7170CZキ) AをCCG7とり1C.

Ran

In propの 五元の存下で明かり

「から、 がり) = f(ター) でいるを簡が付え

用いての1分、 なてごめるように がの量を内なる

動いなり (かくなしないの面のの例で) 非存れに

ファフィファンスである。

Ren

G: loc cpx Fldf gp {q} {q} {q} & Eq} >= . GIZ

, I To 12 - To lieft MV complex negular meas in (Haar meas) 7 - 5. Hager wens 1: 8,7

Co((1) = { f= (1-) a , and, repr f : apr) こるをがますられるトロートコート 4 fig & Ce(9)

(f+9)(+) = So f(s)&(5-(T) apris). (+e-5).

- ~ 27 + + q & Ce (0) FILL (TO PILL).

(t+ g = comp (+ g) C 2 - D, v (= 10 + 1) de

・ まその(二)チャ まこまる物館 アタマツハスラフ(てこ Rgかはかしるりた不被判費ですので Haan wes n- 18 113

PqM= DG(g)M 4703 D= 9→18, 3 201 8. EAZ() I a modular function &u)

· Collasz.

f*(5) = F(r) 015-() 「そりなるまでから」

=431= JU (c((s))) + - dy 2 53.

· Cc (6) 171 1116 1= ~~? L1(6) 7 de se 2/ 82. (weeks, flowing n -ALDA)

- Cc (G) n

11fler = Sup & 11 Tit) 11; Tito (16) a au-degree 1x-vape) TI = (1(G) -) B (H) . x-hom s.t. T(L'(G)) 1- = +1

による気備付をgrown、c*(G)とりして、

· Cc (0) a

11 fl (1 = sur f 11 ftg 112: 11g 112=13. IIf II = = Solfied

1= 13 院備 (t Z reduced gpct dy zun. ct(G) > PIC.

fus.

p-discrete & 938= · | | π (f) | < | f| | < ∞ = 1 | C*(p) | = well-defored 2 n = 3.

· GL(b) 12 ds(b) I v celt med noted & (=2) (JEB H) (JI : EN H) ERR,)) spor Garage & To3.

Example

P: discourse ap 122+4

(C(G) = (x (b), Q(yx) = yx yx 1= x1 (QG \$ 3 E X3.

I = (\$, 16) @ (\$, 16) ~ (\$, 16) @ (\$, 16). + [6]. 15対意、900=0 =1563 QI=900 ことでいるをあれ、単下角なし

Rom

(がゆ)のかれりに (がの)を考っても同様にに (のらを)

(3意いの CQG で食可換できのについて、 ある discrete gr P かい存在 L3 CQG IT C*(p)と C*(p)の1前にとれることがでっているかい。 を別は葉性しいので、別かりに ((ず(p), △) かる すが復元生れることを対よう。

4 Tr: 8 EP3 = [a E (8 (P); O(a) = a O a, a = 03 7 8 3.

(1). $\alpha \in (7^{*}(P))$. $\alpha \neq 0$. $O(\alpha) = \alpha \otimes \alpha \neq \delta = 0$. $T = (7^{*}(P)) In (conordical frace <math>2932$). $T = (7^{*}(P)) In (conordical frace <math>2932$). $T = (7^{*}(P)) In (conordical frace <math>2932$).

T= faithful (i-e. be (*(p). $T(b^{\prime}b)=0 \Rightarrow b=0)$)*ソ. $\forall g: T(g_{\pi}a)=0$ fixity $a^{\prime}\in p=(g_{\pi})$ $a^{\prime}\in p=(g_{\pi})$

 $E = (f(p)) \rightarrow (f(p))$. る $E = (00 T) \Delta \tau^n p a 3 z^n$, $E(a) = \tau(a) a$. $E(\lambda s) = 0$ ($s \neq e$) がある。 A(T) = T s = f a combir $\tau^n = f s = f a$ combir $\tau^n = f s =$

 $\Delta(q) = \alpha \otimes \alpha \neq \forall, \quad \alpha = 1 = \lambda \in \mathbb{Z}^{2}$. Θ .

Prop

イニ wited C*-cly 29 り(Usy) iCAI mH 3 を3 といり) を対土(好王)

Δ = A → AΘA. Δ (uig) = \(\frac{1}{2} \), uze \(\text{U} \) up ; conital *-how
\(\text{\text{\$\left}} \) (A, \(\D \)) = (\(\O \) \(\Text{\text{\$\left}} \).

(j)

①. △《新語后則:

(DOU) D (USZ) = \(\frac{1}{2}\), (\frac{1}{2}\) Uze \(\text{D}\) Uze \(\text{D}\) Uze \(\text{D}\) Uze \(\text{D}\) Uze \(\text{D}\) Uze \(\text{D}\).

(2) carcellation:

Sc3 5米、のコードルタトの (1845) (1845) (1845) (1845) (1845) (1845) (1845) (1845) (1845) (1845) (1845) (1845) (1845) (1845) (1845) (1846

とするとき、

QP@9) (28 @1) (28) \$ = 1 @90

= = Q(1/2)(P@1)(1⊗8:) = = (3 Q(1/2))(1⊗8:95)

FII B=aly 71128.

V= (M28) -1 = (M28) >2 >2,

N (456) (18M3€) = 34 U=28 U28 M3€ = M6€8 |

EII NIZEB SUES. NIZEB = A DES

LT= h111,7 B CE A マラB. (A®1)の(A) でA 千月程、10

Def

COG zil I a Prop a B & 3 AT= 7 = 4 & compact met vix

Def

g = イフマンマモのランを成え、 R = gIの関係 引

> 生成元の個の付数的なコンク リヤリステ、ハスニ、スポ、ー、スポンルミリ 2小変みの投票係数为項コーニュ

てまで、ドロトックエのロをしてかけるものでり、生成でるといいし、アエのログでしてかいてきがにしまりになるとする。

- (9.Q) a near Eld. Hilb. of HIA bold oys g Ticie Rb z 11 favelation Z of T= a= (1 2 U)
 - · (q.R) a vepr (7 g = 43 free x-cyAnx-repr 3 = x 3.
 - · ||X|| = sup 4||T(1)||: T(は(な、R)のいとからまと、 サメモタ、||X||とかのときこれはAIのCをpenかいる 使める。

Summer O(=Ts3 +azinh, 2 元7 43 安備化 る (g, R) of winersal (taly tow, C*19, R) EPIC.

Den.

- を表のメータリーマキ(2、univ. CY シタかられるとは アルスナェハーと(二気をうけなう。
- : 今りまみていくないでは watrix dy a cuitary a 対ける 住成市にとることがる、(住所)市内になりとしと Tar) www. cx dy は well-defined がある。

Lon.

A = x - aby. a ∈ Mn(A) = witany

⇒ on(u) = (₹ N = ® u \$ €) ∈ Mn(A B A)

≠ unitary.

(u), $M = (u; \xi) = unitary \xi$). $(u^{\dagger}u)_{i,\xi} = \sum_{k=1}^{n} u_{k}^{\dagger} u_{k} = Si\delta.$ $(uux)_{i,\xi} = \sum_{k=1}^{n} u_{i,\xi} u_{k}^{\dagger} = Si\delta.$ $(uux)_{i,\xi} = \sum_{k=1}^{n} u_{i,\xi} u_{k}^{\dagger} = Si\delta.$ $(\Delta u(u)^{\dagger} \Delta u(u))_{i,\xi}$

= I wen & uen & uet and

= I Sem (180 Ust Und).

= I 10 U & Wer = 528.

(人のいろへいか))

(Jun Outon J (& Du O sin F)

= In Was With & use unk

= I (NER NIW & 1) SEM

= ₹ U3 850 x5N 5 = 1 8 \$ 5N x5N 5

Example (Quantum SU(2) gp) RET-1, 17, #0 893.

C(S)102)3

U = 14:3) = (x - 684) Mu auntary 2738 Foto x, x 711 正成 工机3 Univ. C* cly 203. つまり、α、なは次の5、の角係到 axa + 3x7=1. aa+1 \$2 8*8=1. TY = TT . Q r = fro. xx = f ta ZAT=a 293.

D: A -> A @ A = x-how 3

 $\Delta(u;z) = \sum_{p} u:p \oplus Up; \quad z''\not \in As.$ $|well - defined uess = \\ \Delta(\alpha x) = \Delta(\alpha)^*, \quad \Delta(-fs^*) = -f \Delta(s)^* \not \in Al,$ $|\alpha' = \Delta(\alpha) \cdot \sigma' = \Delta(s) > \pi c > f$ $|\Delta(\alpha x) = \Delta(\alpha) \cdot \sigma' = \Delta(s) > \pi c > f$ $|\Delta(\alpha x) = \Delta(\alpha) \cdot \sigma' = \Delta(s) > \pi c > f$ $|\Delta(\alpha x) = \Delta(\alpha) \cdot \sigma' = \Delta(s) > \pi c > f$ $|\Delta(\alpha x) = \Delta(\alpha) \cdot \sigma' = \Delta(s) > \pi c > f$ $|\Delta(\alpha x) = \Delta(\alpha) \cdot \sigma' = \Delta(s) > \pi c > f$ $|\Delta(\alpha x) = \Delta(\alpha) \cdot \sigma' = \Delta(s) > \pi c > f$ $|\Delta(\alpha x) = \Delta(\alpha) \cdot \sigma' = \Delta(s) > \pi c > f$ $|\Delta(\alpha x) = \Delta(\alpha) \cdot \sigma' = \Delta(s) > \pi c > f$ $|\Delta(\alpha x) = \Delta(\alpha) \cdot \sigma' = \Delta(s) > \pi c > f$ $|\Delta(\alpha x) = \Delta(\alpha) \cdot \sigma' = \Delta(s) > \pi c > f$ $|\Delta(\alpha x) = \Delta(\alpha) \cdot \sigma' = \Delta(s) > \pi c > f$ $|\Delta(\alpha x) = \Delta(\alpha) \cdot \sigma' = \Delta(s) > \pi c > f$ $|\Delta(\alpha x) = \Delta(\alpha) \cdot \sigma' = \Delta(s) > \pi c > f$ $|\Delta(\alpha x) = \Delta(\alpha) \cdot \sigma' = \Delta(s) > \pi c > f$ $|\Delta(\alpha x) = \Delta(\alpha) \cdot \sigma' = \Delta(s) > \pi c > f$ $|\Delta(\alpha x) = \Delta(\alpha) \cdot \sigma' = \Delta(s) > \pi c > f$ $|\Delta(\alpha x) = \Delta(\alpha) \cdot \sigma' = \Delta(s) > \pi c > f$ $|\Delta(\alpha x) = \Delta(\alpha) \cdot \sigma' = \Delta(s) > \pi c > f$ $|\Delta(\alpha x) = \Delta(\alpha) \cdot \sigma' = \Delta(s) > \pi c > f$ $|\Delta(\alpha x) = \Delta(\alpha) \cdot \sigma' = \Delta(s) > \pi c > f$ $|\Delta(\alpha x) = \Delta(\alpha) \cdot \sigma' = \Delta(s) > \pi c > f$ $|\Delta(\alpha x) = \Delta(\alpha) \cdot \sigma' = \Delta(s) > \pi c > f$ $|\Delta(\alpha x) = \Delta(\alpha) \cdot \sigma' = \Delta(\alpha) > f$ $|\Delta(\alpha x) = \Delta(\alpha) \cdot \sigma' = \Delta(\alpha) > f$ $|\Delta(\alpha x) = \Delta(\alpha) \cdot \sigma' = \Delta(\alpha) > f$ $|\Delta(\alpha x) = \Delta(\alpha) \cdot \sigma' = \Delta(\alpha) > f$ $|\Delta(\alpha x) = \Delta(\alpha) \cdot \sigma' = \Delta(\alpha) > f$ $|\Delta(\alpha x) = \Delta(\alpha) \cdot \sigma' = \Delta(\alpha) > f$ $|\Delta(\alpha x) = \Delta(\alpha) \cdot \sigma' = \Delta(\alpha) > f$ $|\Delta(\alpha x) = \Delta(\alpha) \cdot \sigma' = \Delta(\alpha) > f$ $|\Delta(\alpha x) = \Delta(\alpha) \cdot \sigma' = \Delta(\alpha) > f$ $|\Delta(\alpha x) = \Delta(\alpha) \cdot \sigma' = \Delta(\alpha) > f$ $|\Delta(\alpha x) = \Delta(\alpha) \cdot \sigma' = \Delta(\alpha) > f$ $|\Delta(\alpha x) = \Delta(\alpha) \cdot \sigma' = \Delta(\alpha) > f$ $|\Delta(\alpha x) = \Delta(\alpha) \cdot \sigma' = \Delta(\alpha) > f$ $|\Delta(\alpha x) = \Delta(\alpha) \cdot \sigma' = \Delta(\alpha) > f$ $|\Delta(\alpha x) = \Delta(\alpha) \cdot \sigma' = \Delta(\alpha) > f$ $|\Delta(\alpha x) = \Delta(\alpha) \cdot \sigma' = \Delta(\alpha) > f$ $|\Delta(\alpha x) = \Delta(\alpha) \cdot \sigma' = \Delta(\alpha) > f$ $|\Delta(\alpha x) = \Delta(\alpha) \cdot \sigma' = \Delta(\alpha) > f$ $|\Delta(\alpha x) = \Delta(\alpha) \cdot \sigma' = \Delta(\alpha) > f$ $|\Delta(\alpha x) = \Delta(\alpha) \cdot \sigma' = \Delta(\alpha) > f$ $|\Delta(\alpha x) = \Delta(\alpha) \cdot \sigma' = \Delta(\alpha) > f$ $|\Delta(\alpha x) = \Delta(\alpha) \cdot \sigma' = \Delta(\alpha) > f$ $|\Delta(\alpha x) = \Delta(\alpha) \cdot \sigma' = \Delta(\alpha) > f$ $|\Delta(\alpha x) = \Delta(\alpha) \cdot \sigma' = \Delta(\alpha) > f$ $|\Delta(\alpha x) = \Delta(\alpha) \cdot \sigma' = \Delta(\alpha) > f$ $|\Delta(\alpha x) = \Delta(\alpha) \cdot \sigma' = \Delta(\alpha) > f$ $|\Delta(\alpha x) = \Delta(\alpha) \cdot \sigma' = \Delta(\alpha) > f$ $|\Delta(\alpha x) = \Delta(\alpha) \cdot \sigma' = \Delta(\alpha) > f$ $|\Delta(\alpha x) = \Delta(\alpha) \cdot \sigma' = \Delta(\alpha) > f$ $|\Delta(\alpha x) = \Delta(\alpha) \cdot \sigma' = \Delta(\alpha) > f$ $|\Delta(\alpha x) = \Delta(\alpha) \cdot \sigma' = \Delta(\alpha) > f$ $|\Delta(\alpha x) = \Delta(\alpha$

85 5 07 5 6 5 7 3 = 5 R & D 38

$$\begin{pmatrix} 0 & -\lambda \\ 0 & -\lambda \end{pmatrix} \begin{pmatrix} \lambda_{\lambda} & \lambda_{\lambda} \\ \lambda_{\lambda} & \lambda_{\lambda} \end{pmatrix} \begin{pmatrix} -\lambda_{\lambda} & \lambda_{\lambda} \\ 0 & \lambda_{\lambda} \end{pmatrix}$$

$$= \begin{pmatrix} 3 - (0) & -3 & 0 \\ -3 & 1 & -3 & 0 \end{pmatrix} \begin{pmatrix} -3 - (3) & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix}$$

てょのとり (いな)にすこ 可遠 である.

8,2.(C(50(12)). D) IF CQG 7111X1. -43 SU(12) 2 t1 C.

· b= (>= (>= C(20, (5)) > C (20(5)) Subs. (1) (1) (1) (1) (1) 35N) (1) 35N) = (1) 35N) = (1) 南叔 (Vg = 5U(2) → で 3秀33と, YSD 自画大多に新聞い同るない II gin TI (UIF) = VEJ TEZ Wital * L-NOW T: E(SU((2)) -> C(SU(2)) 3 2 28. Ya & W + & V → To E = W + V . (U U ? > W , V TT(5U(12)) 13 SU(2)の2(気を対り付まので Stone - Weber HUSS than BY = 4 17 AB TI AB. (ii). X E Q (C (SU, (2))) Z A & Z. M(n) = (M(n") W(nE)) E 21(5) LEUSA 7 = (C(su(2)) In char, Ffo f(x(u)))OTT こりはるかりる g € C (SU,(2)), T(g)=0 & 43 €, 4 g∈ D(c(su(2)). x(g)=0 71811. C(5U,(2)) -abelian F1) g= normal Tan? 11911 = REP (1719)11 =0 :. 9=0. (たかいってでこれる ではある. ずってではあるが、そのに発意である。

(流) - T 1 T C (SU(2)) (=すいで (でな) = 子 の味の、いかり 10千年17月)、 (=フハス条種3保ス.

· LA意味で、「キリでのSUs(2)(2)(2)かでからとりくる。

FEBUU(E) (NSS)

- Au(干) る いる ((とう、まとい) でまりる い= (いま) と いと= (いま) (=>いる い、下い(干ー: いいけんか とてるもので) は似まれる いい、そのは とな と きる。
 - · O=Au(F) → Au(F) ® Au(F) = hom 3. A (Ui))= こいののは、アカルの をまい ここのになる。

Well-defined mess:

(D(U:8)), F(D(U:b)C)F-1 = Universe 3

(D(U:8)), F(D(U:b)C)F-1 = Universe 3

(D(F) (D(U:8)), (D(F) (F)C) = universe 3

(D(F) (F) (F) (D(E) (D) = universe 3

(D(E) (F) (F) (D(E) (D) = universe 3

(D(E) (D(E) (D) = universe 3

(D(U:8)), F(E) (D(U:8)) = universe 3

(D(U:8)), (D(U:8)), (D(U:8)) = universe 3

(D(U:8)), (D(U:8)), (D(U:8)) = universe 3

(D(U:8)), (D(U

- · Uをこ可量 811、 (Au(F), d) は CQG である。 Au(F) が = a CQG えのもののこともあることに引き
 - · F= (a> = , Au (F) 3 Au (n) 8 tlc.
 - · C(U(N)) は Au(N) A 局係対(ナス神性)を みてつので、 Au(平) は C(U(N))の一部なたと みることができる。

Example (Free orthogonal quartur gp) FF GLa(G) (M22) 3 F= (Fra) 89363 FF = = 1 2 St = A 7 A 2 T 8.

- AO (7) 3. UZZ (152. & SN) 2" U= (U:2), U= FUCF-1 = unitary 8703701= 73 miv. c7- ely 293.
 - $\Delta = Ao(F) \rightarrow Ao(F) \otimes Ao(F) = x how 3$ D(Uis) = Z Uip @ UBj ?"定的3.

Lan I ([([(UEF)) , (O (FUCF-1))=anitary 21)

Au (F) n & \forall \(\beta \) [A Fr = FO(UC) F-1 \(\text{constant} \) To n 21, universality II \(\D \) well-defined.

- UC: 214 =11 (Ao(F), D): CQG 21, (QC) 3 a t. a t Ao (T) Y NC > Y (= 9 8.
 - · SUG(2) 10 F = (0, -7) (2= 5) EIT= AO (F) 21/28 8.
 - T= 1 a = = A0 (F) Z A0 (a) SNC.
 - c (O (u: R)) は (天) の条件(千可強性) そ 2(T=907", Ao (7) 12 C(0 (4=18)) O 一般代といえる。

Example (Quantum permutation gp)

VEMZJB.

- · U(uit)= るいいののはなるにより As(い) -> As(い)の As(い)、*-homを管める。

Well-defined wers:

Lew Fil (D (Wid)) = unitary 12 ok.

J-(-, Wig: prof 5). DIVIS = Eprof 2/138.

\[\frac{1}{2}, \left(D (Wid)) = \frac{1}{2}, \frac{1}{2}, \text{Units DUts} \]

= \frac{1}{2}, \left(D (Wid)) = \frac{1}{2}, \text{Units DUts} \]

= \frac{1}{2}, \left(D (Wid)) = \frac{1}{2}, \text{Units DUts} \]

= \frac{1}{2}, \left(D (Wid)) = \frac{1}{2}, \text{Units DUts} \]

= \frac{1}{2}, \text{Units D (\frac{1}{2}, \text{Units}) = \frac{1}{2}, \text{Units} D (\frac{1}{2}, \text{U

- · Uc = U = M (A, (W), B) 17 CQG 2 38.
- · Su:対形元章 と自己とき、 C(Ar(N)) -> C(Su), 麻糬を保> Cuntal x-how. いは ト × y exesu: e(ひきる) できる。 (well-Aufwedness は ×466に: G()をようしい。 いる の 関係 刻 る 対 て う こと きり かけるかし。)

余種で保ァニと:

D (7 (66 m; 612)=33) (61, 611) = 7 (812)=33 (6611) (= x 4612)= = 3 (5(, 5")) (5', 5") = I X (e(s)=b) (e) X (e(B)=b) (e|1) 7110k = X(815)=11 (8181)

· N=[12,3 a 2 = (N) = ((M) 75/1) N24 内でき Asin) 二非可模、無防次元で! As(u) + C(su) STaZ. As(h) 12 C(sh) n-AD 1= TO >7 (18> 2/48.

(') C(Su) IF As (u) n要件+N种度多时下的OY C(5n) = As(u) / Lab = 64)

にようないるニャイン屋ろンける

ESAL=N. As(n) = c(su) = @ F11 0k.

· N=2a≥=,

magic matrices 12 p=prod 212 U= ((-p p) A7K1=703074 As12):可稱 30本3. 8,72 A,12) = c(52) 238.

=3 A Z =

いない = いい いい といい、いっといっといい いなる = とかい いたい = いまい、いっと は 可様 でのする = とかいり

して=かりって、いい、いここ かい 可様なシンとろられらがける

WII M2> = WII M2> (WII +W13 +W13)

E N (1 U2> W (1 U (1 U) > V (3

= M11 M22 M11 + M11 (1-M21 -M23)M13

MIN 022 = 422 MI 3/1 & 2 2 30 24

· キタのタニリ.

C*(なし)、歴代ガスとが至る。

· N2302\$.

飏.

Def

G=CQG, Wi, WZ E C CGD (= 274 convolution * 3 い、その3 = (い、のいこ) を食の子: これは ((の)*の元となる.

G= Gpor gpp or E. I TIRAT= convolution 18 GIO mens =>wzo convolutions - 34 & 3.

i.e. M(G) = 9, U= G = a complex reg Bruel nees }

(i.e. U∈ M(G) (i.e. U∈ M(G) (i.e. U∈ M(G) (i.e. U(U)) = M(G) = M(U(U)) = A < U. of and (i.e. U(U)) = M(G) = M(U(U)) = A < U. of and (i.e. U(U)) = M(G) = M(U(U)) = A < U. of and (i.e. U(U)) = M(U) = M(U(U)) = A < U. of and (i.e. U(U)) = M(U) = M(U(U)) = A < U. of and (i.e. U(U)) = M(U) = M(U(U)) = A < U. of and (i.e. U(U)) = M(U) = M(U(U)) = A < U. of and (i.e. U(U)) = M(U(U)) = M(U(U)) = A < U. of and (i.e. U(U)) = M(U) = M(U(U)) = M(U(U)) = A < U. of and (i.e. U(U)) = M(U(U)) = M(U(U)) = M(U(U)) = A < U. of and (i.e. U(U)) = M(U(U)) =

とするとき、 M(の) プの convolution M"

(V*V)(=(xb))((+x7) V) = (A)((v*M) ではまるのでいった。

まE、Riesz-Markovの定理におり

 $W(Q) \xrightarrow{f_{r,l}} B(C(Q))$

m es (tho why) = 2c +(2) qh (2))

かけなりてこつ のでりって=.

- α×=, fe cco) ε d3 ≥

Whan (t) - 2 t q (h*n) = 22+(129) L (q2) N(q2)

 $= 55 + (28) \cup (dy) \times (dx) = (4x \otimes 4v) \otimes (f)$

(= =1) M(G) 21 a convolution & ± 240 x (2)

- 34 a 3.

TCI= U: Ga Haar wens EABE=1 M*U=V*M=1(G)V. *MEM(G) 至升下月月下二·

沢の定理は現格で生れた Haan neasの存在と 一意雅z quantum q >主にtter できることを 主張している.

Thm 1,2.1

4 6 = cpor quantur gp. = h= (G) Instate 5+ W*h= L*W=W(1) h. *WECO3 -- +.

''). の - 参 性

4 + 7 2 HEIT= 243 2, 1 h * h = WANT = - K(1) W = K(1) & FI h= W.

② 存在.

(D. + WES(CCG)), 2 hè S(CCG)). 5,t, W*h= h*w= h.

Sノチを二(の)コノマチ、リ、ナンイプ (+4 = (684) = b+4) (**(1) = (F) (** E S(CCG)). Isz. Za convex (in conb) a hy (= >4? = hn € 5(((G)) 711 to 3. (2. Cw-wx...xw) = hu + - (wx...xw-w) = 1₹ | (1+1) = |

S(((c)) = connex mex cops : Tanzu (hu) 12 KE as share 375 304x \$ th 24 2 4 · 6-5/45 4 = 1 * W = W * N

```
(") OEVEW. WXY = LXW = W11)h.
    → V * 4 = 6*V = V(1) 6.
 "). W(1) = 1 & ( 2 & v.
       a & c (a) 3 fix u b = (00 h) 0(a) 5 x1< 6.
      ((D) 2(NOV) ) (NOVO) (NOVO) = (d) A (NOV)
     = ( v ⊗ W B ) ( J ⊗ W B ) =
      (D) O(00). (LOONO)] =
      = (UO((WOG))) d(a)
       = (UO WX4)&(a) = (UO4X(a) = b.
      J-2. (cow)((b*01) a(b))
          = (6*81) ( NOW 2(6)) = 6 6 His.
      ((100)-(90) x (100)-(PO))
    ((d)D(1004))(WOU) - (d*d)D(WO)) =
          - (1804×d)(か)(か)(か)(か)(か)
     = (vow) d (bx 6) - bx b.
      TIM3 (NO1.) 3 TE 12.
         (how)((a(b)-601)*(a(b)-(601))=0 823.
     IJZ. Com chy - Schwar & req I').
        (h@v)((∞1)(△(b)-b@l))=0. 4c∈(G))
     これる.用いるとり
       (h⊗v*h)((c⊗1) △(a)).
     = ( ho ((vol)a) (·(col)a(9)).
     = ( KB UB K ) ( LB & ) ( (CB 1) O (Q)).
     = (h@ v @ h) (c @ (0) ) ( l @ \ 0) ≤ ( a))
      = ( h@P&h) ((c@181) (000)0)...
      = (400) (c01) (D00 L) (L004) 019)
      = (NOU) (CODI) (O(6))
```

= (hのひ)(cbの1)=h(cb)(l) = U11)(hのh)((co1))(a)) (c(G)@1)d(c(G)) こで(G)め(CG)をり U*h - U11) h を下る。 h*v = U(1) h 专同標。

Det.

IN them 21 ZT= h z Haer state & 43. h x 12 = 3 GNS neper 20 = 21 4 3 Hillish & 12(G) & 11 <.

Ray

Na det と(2. (Lのい)か(a)=(hのし)か(a)= h(c) 1 *cecco) で用いるものはである。

1,3. REPRESENTATION THEORY.

以 cQ G の 有限次元 M N L L ではこa Negar で振う.

Notation

P.g), N= 2, M=4 d&±, (a@b)31 = 6.00 (00 a0) (,

ZNIZ A, D (1) WAN W B, D - (BOR) = Ai)

mt jt Im & 700 BJ1=17388MIJXMEZ 300 Thz leg-numbering notation zus.

Racell

€c1=.

(1 U5 U6 = Ust (45,665) (B) (COO) (U) = U12 U13 5 MITS.

U). U=T®+ €B(H)® C(Q) & M(13 83.) (NOD)(100+)(2,4)(3) = f(st) # B) = 0'50 (B) (U12 U13) (5, t) (32) = ((70)(31)(3))== ((70)(31)(3) = f(s) f(+) T(T(3)) = Us Ux (3). (\ TEB(H). \ FECCG). \ 3 \ H. \ \ + s. T \ \ G) /

これるキャド、CQGaverr る次かまうに定める。 Def

G=(QG: H: Mc &p. de Hc 00 &937=, GaHIZ" a vepr 2 ld

U ∈ B(H)⊗C(G), 可強

Aことえいう. H=Hilb. =p. U= witary a> = . representing

でいるをあり

(11/111/ repr U 1= xt tim of of nec op 3 Hu > blc

Rem

31-13~: H a baris. Miz ∈ B (H) sit, Miz 3k = Sz+3: 293 5±, (UØD)(U) = U12 U13 MM U= I, miz ® Miz ∈ B (H)(BCCa) MIZ-11T=2T=201=12

D(N:1)= \$ WER BUDD SWEETH 13 WITTEN.

 $(1) \cdot (1 \otimes \Delta)(0) = \sum_{i,j} w_{ij} \otimes \Delta(u_{ij}).$ $U_{i2}U_{i3} = \left(\sum_{i,j} w_{ij} \otimes u_{ij} \otimes 1\right) \left(\sum_{k,l} w_{kl} \otimes 1 \otimes U_{kl}\right).$

= \frac{\interpoleman}{\text{mag mag}} \text{ arg mag} \text{ arg mag} \text{ arg.}
= \frac{\text{mag}}{0} \text{ (\$z=\frac{\pi}{2}\$)}
\text{ o (\$\frac{\pi}{2}\$ \\ \pi)

1. Ednowin O Jim 2 = 94 NO4: N Q DIM. P. F. I

Ex. 16.5-8 1/9 U=(US) is i unitary 1527 find 3 CO 6 211 unitary repr z 12 x 2113 = EPI 6 18.

-43 2 fundamental hepr EUS.

· 用すれに neprの直和サマンソル積をとることかでかる

Def

U. V = fruite & report 1= 対いそのテニソル素を HU&HU I No wer U×V = U13 V23 が良める。 これる UDV 7年別(. · repor a 直和·干>ソル種のwell-defored ess. G= CQG. U.V= Ga finite-du verr. 293. D 首和 NON € (B(H°)OCCU)) (B(Hr)OCCU)) =: (B(Hu)@B(Hv)) @ c(G); 3 B (Hu●H1) @ CCG) A元をみる座内る. (10の1)-1 = 0-1のリー1 まりニナロチョン! (UOV)13 (UOV)23 = (U13 @ V13) (U22 @ V23). = U13 U23 @ V13 V23. = ((v@d) ((v)) @ ((v)) = (c0) (D (v)) 0x1 := 013173 EB(HO) @B(HA) @ C(0) 〇.マンソルで CB(HUBHI) @CCO) EXS. と応めまと、 (DxV)-1 = Vz3 U,3 をリニルは引売 B(HOB HO) = B(HO) B(HO) EASON leg-numbering notation 711 to 3 = 21= 黄をかけるとり ((⊗ △) (U × V) = (U⊗ △) (UB V23). U13 U14. V23 V24 = U13 V23 U14 V24. = (U13 V23) [23. (U13 V23) [24. 5,2. =43 17 well -defined zil to 3. (Z)

とこと リメノラリカリをかくことするる。

· Cpt matrix pseudogp α $V=(u_{ij})$ (7 unitary very $\frac{1}{2}$ $\frac{1}{2}$

U* = I mz = O N'z. 71.

= 1 m22 = 1 (1-R)

= 1 (1-R)

= 2 m22 = 1

(142)

= \(\frac{1}{4=3} \)
= \(\frac{1}{4=3} \)
= \(\frac{1}{4=3} \)
= \(\frac{1}{4=3} \)

BII O Bunitary 628.

U. V: finite - on hope 273.

· T: Hu -> Hv. op on U, Vz intertwine 73 E(t, (TØ1) V = V (TØ1)

. でルチェ 崇角引起撃を丁、でルショニにゴルモルト

- · Mor (U.V) ? n tertwiners 全年 2 毫 9.
- · U.V: unitarily equiv & = anitary & Mar (U.V).
- · Fud (U) = Mor (U.U).
 - · U: imedurible des End(U) = C.
- :) A a well-defined vers:
 - · U~U : T= >d +1 = ok.
 - U~V => V~U.

(181) 1= (187) 1= (187)

(1017) (101) (1017)

1-e. U(7-1⊗1)=(7-1⊗1)V.

- レヘノ、ノヘム シレール.

 $(1\otimes T)W = V(1\otimes T)$ (1\omega T) $V = V(1\otimes T)$ (TOI) = (1071) /

U: unitary veper a & 5. End (U): Ct of 1/1/2. - AD 1= , TE MOR IV. V) , U. V- autany a & 3 Tr E Mar (1,0) 20 23.

<;)

(D. U. V: unitary, TETON (U.V) 29323.

(TOI)U= V(TOI) #13 V4 (181) OUX = DXV (1821) UX あ型のすると、こ (で*の1) V= Uに*の1) まいか、

②. OBII Endiu) to * zni南いるいる.

END(U) = 92 TP (FAA3D) T, T' END(U) EASES. (7'TOI) U= (7'OI) (TOI). (ta (1007) = (1007) (1007) U =

End(U) = 7- aly 20 28.

TWIE END(U). TO TEB(HU) 8938=1 (T@1) U = 22 (TWØ1) U

(1007)U = (1007)U and End(U) Closed B(HU) TOO 211 24/2 CX of 21/28 /

pro (solaris lem)

U. V: in. unitary vapor 2932. 11). U.V: withing equiv & on Mur (U.V)=1

12). Mw (U1V) = 0 14 3 4 PI BUTZ 1 T= 2

TRA Prop (= T), finite-du vapor 0 = 23 (703 (= 12)
unitary 3 (3 1/4 12) & (1 = 2 p) 4 to 18.

Pry.

G=CQG. U= B a finite - don veger => = V = B a finite - don unitary veger s.t. V. V 17 equiv. 'n). U: finite du nem ZLI HU に位息の Hills, rp & 17n構型了入山方。

> Q - (100 L)(V* U) e B(H1) を第三3. C(G) a Hear thate. EB(H) De c(G) 15の4T 1350 *U オス OC3 = 1 15の4T Q251 21 \$ 3.

(1080)(U*U) = Ui\$ Ui\$ U12 U12 013 31/283. (8) NO (2 700 L, (NO C) (() = h(-) 1 138NA5

(UBLOU)(UDA)(U*U)

= (v@(h@ v) d) U*U = (v@h)U*U=Q (UOLOC) (Ui UI UI UI UI O = 0* (0@1>0

Q⊗1= U* (Q⊗1) U ZZ3.

(7=1) V = (Q = 0) U (Q - 1) (D) > 71 () N* N = (@_701) NA(0701) (0701) N (0701) $= (0^{-\frac{1}{2}} \otimes 1) (0 \otimes 1) (0^{-\frac{1}{2}} \otimes 1) = 1.$

 $1/1 = (0 = 0.) \cap (0 = 0.00) \cap (0 = 0.00) \cap (0 = 0.00)$ = (0=01)(0-1001)(0=01)=1.

\$1) V= unitamy 2012 11, Q= EMON 10-V) -1123.

Ron

11)、 T=(00N)(V*(501)ひ)eB(Hu, Hv) と良水るこ、V*(T01)ひ=T01 である. と(= ひ、V: mitangのとき TeMm い、V)である。

(2) 同様 ト 丁= (100 ん)(11501)ひ*ファイまと、 V(丁の1)ひ*= 丁の1 かいなりたっこ

(2) (LOO) (V (SOI) U*) = V(2V(3 (SOI) V) (SOI) (

Low

A= finite-de (x aly.

=> = e en : movimel profs sit. I e = 1. liez=0

(2). A = Mn, (C) @ --- @ Mup (C) & of 1/8.

5,2 (3(1/4)13 A = fru(C) & (2 & V.

D. a A b ≠ 107. Y a - b + o ∈ A.

1:). AAA = 9 5 x= adz = x=. dz EAJ : An ideal =1 (19 = AaA= A TEnzy aAb= 404 EAZE AAAb = Ab=107 FIAM TEA INTE.

Q. B = An wax, ab. s.a. subely 293.

:) S= 9 B; Anab. ra. whely 5 848. Cによる川東京 多入れる.

V : 2 & chair 5 3 35 =

B' = UB EAZZ,

b.66 B1 1= 742, 9 B: +15+ SIT. BIBEB FY btb. bb, ba岸部住店。

チッフ 月 はなの 上界なので そからし チリ maximal zeyr 8.

ABCOST. P: Baspecterum い有でものさ p= fric-, ruy Eplit 8.

e; 3 8x2 1= ₹7/m 93 Baper 3 93 ≥.

4िरा कि है। = बिरे प हैं, ez = (रा ,

B= ce, 0 --- 6 ce, 7123.

ezAez la /主記のとると可様で、BIBにらか圧め上れる Max, ab FY TO ARE CB THEN.

e, Ae, = ¢e, >1 & 3.

Thu

G=CQG. V=fuite du ver of G、とみまとい UII ineps の 直和 ではませる。

()

Q. U= witary & 13 & W.

(1). UP & & V = comitary [= equiv Tan2",

2). UP & & V = comitary [= equiv Tan2",

3) = B [Hu. Hu] =] = V [T@ [].

5.f. (T@ 1) U = V [T@ [].

V=inr =) U = inr & T=(h) & &.

TI & End(U) & & 3 & &.

(T'@ 1) (T-(@ 1) V (T@ 1).

= (T'8) V (TB1) (TB1) = " (TB1) (TB1) (TB1) = C'HV (TB1) (TB1) = C'HV, i.e. End(V) = C'HV/

(4201) U n = 100 U 70 A & .

1). TE END ((e201)U) Yd321 (REDI)U = UezH J). (REDI)U = UezH J). T' = (T on ezH. End(U) Z). T' = (O on (ezH). T(z ezT'ez E Tez = C(ezH (= 27) Mod 2. J-2. (REDI)U = mep zil & 2. 次仁、存储意理(contragradien worm)多定義引き、

Dem

. G= WP. g D Ug : Ga HI Novem Ed3 E3, H*: duck of I no UC = contragradient very 3 (Ug f) (3) = f (Ug 13) [f f F1, 3 f F1) ではなる.

H: Hilb. SP $0 \times \ge$. H* (** complex conf Hilb. SP FT \ge FT $z^{-1} \ge 3$ $x^{-1} \ge 3$

Nota tion

it = fate-de nec sp. 848.

H*: dral sp 1= m2.

3; B(H) >> B(H+) SI OB 3 qual op (= *Icgnape)3.

== 21 7 M 2 N 12/A 1= 07 (2 A C1 32 3 & 3 A M3 - 2 20)

32 = Well-defound & Ci, & = id & 24 in 3 & 3 1= 9 3.

H= H:10.56 V 5= H= H 5914 3050

\$(T) 3 = TF3 8781, (TEB(H). 3 PFT).

す: *- auxi han とてまること(二気を)11(よう

 $\left(\frac{3(77)^{\frac{3}{2}}}{2-710} = \frac{777}{(7.3)} = \frac{777}{(7.3)} = \frac{3(7)^{\frac{3}{2}}(7)^{\frac{3}{2}}}{(7.3)} = \frac{3(7)^{\frac{3}{2}}(7)^$

Def

Dan

 $G = qp - U = G = \Lambda \text{ funite-du vep.}$ $H = FW. \quad f \in H^{K}. \quad 3 \in H \quad 2422^{2k}.$ $(U_{g}^{c}(f))(3) = f(U_{g}^{c}(3)) \quad (f \in H^{K}, 3 \in H^{2})$ $I = F \ni U^{c} \mid I = U^{c} = (F \oplus U)(U^{-1}) \in B(H^{2}) \otimes c(G)$ $2 \neq F = 7.$

(2). $(U_{q}^{c}(f)(3)) = f(U_{q}^{c}(3)) = ((U_{q}^{c})^{*}(f))(3)$. $f(1) \cdot U_{q}^{c} = (U_{q}^{c})^{*} \times \nabla^{(1)} \times 3$. $f(1) \cdot U_{q}^{c} = (U_{q}^{c})^{*} \times \nabla^{(1)} \times 3$. $(T = h)^{n} \cdot 2 \cdot U' = \sum_{i=1}^{n} (Q_{i} \otimes Q_{i}) \times \nabla^{(1)} \times 3$. $(U_{q}^{-1})^{*} = I \otimes U \otimes U' = \sum_{i=1}^{n} (Q_{i} \otimes Q_{i}) \times \nabla^{(1)} \times 3$. $U^{c} = (I_{q} \otimes U) \otimes U' = \sum_{i=1}^{n} (I_{q} \otimes Q_{i}) \otimes U' = \sum_{i=1}^{n} ($

~!

Note

U M" 本3 Hの禁をにきたし (いる) という き現るものとすると、 ひらは H パの以外事をについて (いば) というでかられるで でいかける。

(i). $U = \sum_{i,j} m_{ij} \otimes U_{ij} \in M_{ij} \otimes \Delta_{ij}$ $U^{-1} = U^{*} = \sum_{i,j} m_{ij} \otimes u_{ij}^{*} \quad T_{ij} n_{ij}^{*}$ $U^{c} = (700) (U^{-1}) = \sum_{i,j} m_{ij} \otimes u_{ij}^{*}$ 3 = 3.

~ (1= Prop 1.1.4 a 13/2 12= 013 < 8.

Ran

、を及か事以が新拳(ゴギモ)ニ)を示を垂下:OUUM

```
() E BUH) @ C (G). - fairle - du witang vapor
B = 9 (UOh) (U(1804)) : a E C(6) 3 CB(H)
UEBOCCG) MAB. ECT-closed.
1) accas 1= x7 4
     L(a)= [LOh)(U(100))E B(H) E原 以多.
      ((PQI) ()(LQQ) *U
    = U,2 ((000))((000)(100))
      = U(3 ( ( ( B D ( a ) ) ) 74 $ 8.
     西当 = (しのしのん)を使して、
       (c Ø C Ø h) U2 (U Ø D) (U ((Ø a)).
      = U.* (LOCOL) (LOS) (U (189))
              = LO((10h))).
       = V (L(0)01) 84
       U*(L(a)&1) = (L&L&L)(U3(180(a)))-*
      323
      (16t) = (10h) (10k) ot) =1.
      前の到る(10012)をはこいのりを強って、
       L(b) × ((9) = ((Ob) (100) 0* (49) 001)
     = (108/180)(180 6/20)(08/1804)(013(180/210)).
      = (WONOH)(U13(100(100))
      = ((0 (0h) (V3 ((i0ho())(10(10))))
```

 ϵ c ϵ c ϵ c)

(「(の) ®1) O (C(の)) というし(の) (日) では ((の) ®(の) すり、 (C(の) ®1) O (C(の)) といて(の) ®(の) すり、 日は し(り)* (の) の刊れの元 が 進放土れる。 まって ほこく、であり、 BIF ((し) * の刊れの元でり 生放土れる * ー のり がある。

- (10 (BIH) (CCG)) = B(H) (CCG) F) RECCG) TEB(H) E(R) (10 h) (U (180)) (T(D)) = (10 h) (U (T(D))) AAMARIE

 B(H) z" deuse To as"; B(H) = B(H).

 1-e. B(H) (H). non-degen B= 5-closed Fillds(H) eB.
 - (3) \$ =1). L(a) = id g(h) & -6,3 a ? & 3 e U* E B Ø C C(1) & 7 2 3 . [2]

(T= h)()? End(U) = B1 かB(H) である。 してであり、これなる。

Or. () ∈ B.(H) (0 C(G)): m fritardu untemp capr ⇒ × ((∈ B(H)/10), (×01) U(Y(Ø1) ≠0.

 Prope.

AV: finite du repron H. UC ∈ B(H*) & C(9) 17 33.

(i,

O. 4#773 miturise U, ineps (= 1 papa = = 21) U: conitary map 213 IM. Qx = (voh)(vov), EB(F1)+ 323.

Rem & Y

AA. (Qe@ 1 = U° (Qe@ 1) U°*
Qr@ 1 > U°* (Qr@ 1) U° いいころをそれなには、Qx、Qr: 引きからまればり

②. Qe ±0 211 €3.

- (1). TriBR) = (TIBK)(UCUC*) = (TrOh) ((JOU) (U)) $\left(\operatorname{Tr} \left(\frac{1}{7} (X) \cdot \overline{F}(Y) \right) = \operatorname{Tr} \left(\overline{F}(Y \times Y) \right) \right)$ = (078 h) (U*U) = dim H.
 - p & B(Fi) ker (Qe) Ina prof & d ?. AX FII. (P&1) U c (Q201) Ucx(P01)=0 (T= +1") > (Qx2) DUC+ (po) =0 333. TO H3 (0 0 2 01) (10 0) (U) (1001) =0 2-5 (9(6)01) O (10,60)2) 2-5 FIN3 (30 ()3 7 7 7 7 3 = 2 21(2 8. Qe +0 4 (or 1.3, 10 711, p=0 3 = 3 ・手下、そのをおすりをよいる単づかないろうが、20でし Or 1= 7~7大局棒.

12

(前). (下の1) $U = U(T \otimes 1)$. $2 \otimes 2 \otimes 1$. $U = (T - 1 \otimes 1) \vee (T \otimes 1)$. $U = (T - 1 \otimes 1) \vee (T \otimes 1)$. $U = (T \otimes 1) \vee (T \otimes 1)$. $U = (T \otimes 1) \vee (T \otimes 1)$. $U = (T \otimes 1) \vee (T \otimes 1)$. $U = (T \otimes 1) \vee (T \otimes 1)$. $U = (T \otimes 1) \vee (T \otimes 1)$. $U = (T \otimes 1) \vee (T \otimes 1)$. $U = (T \otimes 1) \vee (T \otimes 1)$.

(Qr 1=>~>).

1. or 40

(1). Tr (Qr) = (Tr@h) (U*U^2). = (Tr@h) (1300)(U^2) (300)(U^3). = (Tr@h) (U(U*) = dmH.

(3)' PEB(H) = (Cor) In a prof = 18.

(601) ncx (0201) nc (601) -0.

ine- (02/201)(200)(0*)(10)-0.

(3のし)を下れる市にこ (子(5)の1) U*(子(Q+)の1)=0. (子(5)の1) U*(子(Q+)の1)=0. (子(5)の1) U*(子(Q+)の1)=0. (子(5)の1) U*(子(Q+)の1)=0. 本. UEB(H) @ CCG): im furtee-die unitary vept を33.

前のprf zリ定水で O2. Or EB(H)

Q1 = (v図h) (UcUC*)

Qr = (v図h) (Uct Uc)

A性管(=747湖から).

Lan.

(i). 7(0e) & Mor (Ucc, U), 7(0r) & Mor (U, Ucc)

(ii). Qe Qr = scalar

(iii) Tr(Qe) = Tr(Qr) = din Hu.

1). (i) Ron (.3,6 F).

まして)といいい(のの) もりは、 1つ目の到え(いい)、1をいる(すのい)ではのい)(ののりになるい)(ののい)(でののい)(でののい) = (すのと)(ののの)になると) (すのい)((のにのい)が) = (すのと)(ののの)になるいが) (すのい)((のにのい)が) = (すのと)(のにのい) される。 (すのい)(のにのい) をうない。

(11). U= rup, \$102) \$ (0,) = End (U) by (i) }!)

= (02) \$10,) = scalar.

(m) \$ pup & 1 ot.

(Z)

Ran

Lan n (i) n put & 1).

U= Foriee - I will early com. Q & B (Hu) [=======

Q & Flor (U°C, U) & U°(3 @)@1) U° = 3 (@)@1

Q & Flor (U, U°C) & U°' (3 (@) @1) U° = 3 (@)@1

n" 73" 17=>.

11/17. I: Ho OHN -> HO HO TO TO Equit (= 73.