Version: 1.0

Design Turing machines $M = (Q, \Sigma, \Gamma, \delta, \mathsf{start}, \mathsf{accept}, \mathsf{reject})$ for each of the following tasks, either by listing the states Q, the tape alphabet Γ , and the transition function δ (in a table), or by drawing the corresponding labeled graph.

Each of these machines uses the input alphabet $\Sigma = \{1, \#\}$; the tape alphabet Γ can be any superset of $\{1, \#, \square, \triangleright\}$ where \square is the blank symbol and \triangleright is a special symbol marking the left end of the tape. Each machine should reject any input not in the form specified below.

The solutions below describe single-tape, single-head Turing machines. There are arguably simpler Turing machines that multiple tapes and/or multiple heads.

1 On input 1^n , for any non-negative integer n, write $1^n \# 1^n$ on the tape and accept.

Solution:

Our Turing machine M_1 uses the tape alphabet $\Gamma = \{0, 1, \#, \square, \triangleright\}$ and the following states, in addition to accept and reject:

- start Initialize the tape by replacing every 1 with 0. When we find a blank, write # and start
- scanL Scan left for the rightmost 0. If we find it, replace it with 1 and start scanning right. If we find \triangleright instead, we are done; halt and accept.
- scan A Scan right for the left mos Plank When we indicate write 1 Indicates canning left again. Here is the transition graph of the machine. To simplify the drawing, we omit all transitions into the

hidden reject state.

Here is the transition function; again, all unspecified transitions lead to the reject state.

```
\frac{\delta(\ p\ ,\ a)\ =\ (\ q\ ,\ b\ ,\ \Delta)\ }{\delta(\ \mathsf{start}\ ,\ 1\ )\ =\ (\ \mathsf{start}\ ,\ 0\ ,\ +1)\ } \qquad \qquad \underbrace{\text{explanation}}_{\text{init phase: replace 1s with 0s}}
\delta(\text{ start }, \square) = (\text{ scanL}, \#, -1) finished init phase; write \# and start scanning left
\delta(\mathsf{scanL}, 1) = (\mathsf{scanL}, 1, -1)
                                                                              scan left to rightmost 0
\delta(\operatorname{scanL}, \#) = (\operatorname{scanL}, \#, -1)
\delta(\text{scanL}, 0) = (\text{scanR}, 1, +1)
                                                                found it; write 1 and start scanning right
\delta(\text{scanL}, \triangleright) = (\text{accept}, \triangleright, +1)
                                                                found start of tape instead; we are done!
\delta(\operatorname{scanR}, 1) = (\operatorname{scanR}, 1, +1)
                                                                     main loop: scan right to leftmost □
\delta(\mathsf{scanR},\ \#)\ =\ (\mathsf{scanR},\ \#,\ +1)
\delta(\operatorname{scanR}, \square) = (\operatorname{scanL}, 1, -1)
                                                                 found it; write 1 and start scanning left
```

On input $\#^n 1^m$, for any non-negative integers m and n, write 1^m on the tape and accept. In other words, delete all the #s, thereby shifting the 1s to the start of the tape.

Solution:

Our machine M_2 repeatedly scans for the last # and replaces it with 1, then scans for the rightmost 1 and replaces it with a blank, until the search for the last # fails. We use the minimal tape alphabet $\Gamma = \{1, \#, \square, \triangleright\}$ and the following states, in addition to accept and reject:

- start Scan right past all #s
- scanL Scan left to the rightmost # or \triangleright . If we find #, replace it with 1; if we find \triangleright , we are done!
- scanR Scan right to the leftmost □ (just after the rightmost 1, if any).
- erase1 Replace the rightmost 1 with □

Here is the transition graph of the machine. To simplify the drawing, we omit all transitions into the hidden reject state.

3 On input $\#1^n$, for any non-negative integer n, write $\#1^{2n}$ on the tape and accept. (Hint: Modify the Turing machine from problem 1.)

Solution:

Our machine M_3 mirrors M_1 with a few minor changes. First, we won't both writing a second # between the first and second copies of the input string; second, we treat the initial # as the de-facto beginning of the tape. Here are the states:

- start Scan right for first blank, replacing 1s with 0s
- scanL Scan left for rightmost 0, replace with 1
- scanR Scan right for leftmost blank, replace with 1
- done Found the initial #; reset the head to the start position and accept

And here is the transition graph, as usual omitting transitions to reject.

4 On input 1^n , for any non-negative integer n, write 1^{2^n} on the tape and accept. (Hint: Use the three previous Turing machines as subroutines.)

Solution:

Our machine M_4 works in several phases:

- Write #1 at the end of the input string
- Repeatedly transform $1^a \#^b 1^c$ into $P = 1^b \#^b 1^c$ using a small modification of M_3 (which uses M_1 as a subrouting
- When the initial string of 1s is empty, remove all #s using M_2 .

So here are the statestimes://tutorcs.com

- start: Scan right for a blank, and write #
- write1: Write 1 after # and start main loop
- three states from Machoniatte nonsetutore Cast of #s
- scanL1: scan left for rightmost 1 left of #s, replace with # and repeat main loop
- four states from M_2 to delete the #s

Assignment Project Exam Help

https://tutorcs.com

WeChat: cstutorcs