٠	<u> </u>	/ 🗆	٠-
诚	= 1	ഥ	¬ ı ⊢
MIX.		ᇄ	ш

本人知晓我校考场规则和违纪处分条例的有关规定,保证遵守考场规则	,诚实
做人。 本人签字:	

编号:	
細写:	

西北工业大学考试试题(卷)

2013-2014 学年第 二 学期

2013-2014 子牛另 一 子别												
开.	课学院 <u></u>	航海学	<u>完</u> 礼	果程	自动控	制原理	<u> </u>			学时_	64	
考试日期2014.6.30					考试时	间 2	小时		考试形式	学时 <u>64</u> 考试形式 (闭) (<i>A</i>) 卷		
	题号		1	\equiv	四	五					总分	
	得分											
Ź	考生班级				学 号				姓名			
	一、(42分)单项选择题(在每小题的四个备选答案中,选出一个正确答案,将其答案写在题目右侧的括号内,每小题3分)											
1.	1. 某 0 型单位反馈系统的开环增益为 K,则在 $r(t) = \frac{1}{2}t^2$ 输入下,系统的稳态误差为											
() A. 0; B. ∞ ; C. $1/K$; D. A/K^* 。 2. 在二阶系统传递函数 $\Phi(s) = \frac{\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2}$ 中再串入一个闭环零点,则()												
2.									下闭坏零	点,则()	
A. 对系统动态性能没有影响; B. 超调量减小;												
C. 超调量增大; D. 峰值时间增大。												
3. 典型欠阻尼二阶系统的超调量 σ %>5%,则其阻尼比的范围为()												
	A. $\xi > 1$; B. $0 < \xi < 1$;											
	C. $0.707 < \xi < 1$; D. $0 < \xi < 0.707$ o											
4.	4. 稳态速度误差的正确含义为(A为常值): ()											
A. $r(t) = A \cdot 1(t)$ 时,输出速度与输入速度之间的稳态误差;												
B. $r(t) = A \cdot 1(t)$ 时,输出位置与输入位置之间的稳态误差;												
C. $r(t) = A \cdot t$ 时,输出位置与输入位置之间的稳态误差;												
D. $r(t) = A \cdot t$ 时,输出速度与输入速度之间的稳态误差。												
5.	若单位	反馈系	统的开3	不传递的	函数为G	$G(s) = \frac{1}{3}$	$\frac{2}{s^2 + 5s + 1}$,贝 - 4]其开环;	曾益 K ,	阻尼比	ξ

和无阻尼自然频率 ω_n 分别为: (A. 2, $\frac{5}{6}$, $\frac{4}{3}$; B. $\frac{1}{2}$, $\frac{5\sqrt{3}}{12}$, $\frac{2}{\sqrt{3}}$; C. $\frac{1}{2}$, $\frac{5\sqrt{3}}{12}$, $\sqrt{2}$; D. $\frac{1}{2}$, $\frac{5}{6}$, $\frac{2}{\sqrt{3}}$. 6. 为了能同时减少输入和干扰引起的稳态误差,其措施是(A. 在反馈通道中增加积分环节; B. 增加干扰作用点前的前向通道的积分环节的个数; C. 增大干扰作用点到输出的前向通道增益; D. 增大干扰作用点至输出的前向通道的积分环节个数; 7. 给出单位负反馈系统的开环传递函数,当 $K=0 \rightarrow \infty$ 变化时,应绘制 0° 根轨迹的 是() A. $\frac{K^*(s-1)}{(2+s)(3+s)}$; B. $\frac{K^*(1-s)}{(2-s)(3+s)}$; C. $\frac{K^*(s-1)}{(2+s)(3-s)}$; D. $\frac{K^*(1-s)}{(s+2)(3-s)}$ 8. 关于 PI 控制器作用, 下列观点正确的是(A. 可使系统开环传函的型别提高,消除或减小稳态误差; B. 积分部分主要是用来改善系统动态性能的: C. 比例项的系数无论正负、大小如何变化,都不会影响系统稳定性; D. 只要应用 PI 控制规律,系统的稳态误差就为零。 9 开环对数频率特性沿 α 轴向左平移时有() A. ω_c 減小, γ 增加; B. ω_c 減小, γ 不变; C. ω_c 增加, γ 不变; D. ω_c 不变, γ 也不变。 10. 某系统的传递函数为 $\frac{1}{c^2}$, 在输入信号 $r(t) = 2\sin 3t$ 作用下,其稳态响应的幅值 为() A. $\frac{1}{2}$; B. $\frac{1}{3}$; C. $\frac{2}{9}$; D. $\frac{1}{9}$ 11. 若某串联校正装置的传递函数为 $\frac{10s+1}{100s+1}$,则该校正装置属于()。 B、滞后校正 C、滞后-超前校正 D、不能判断 A、超前校正 12. 设计离散系统时,应尽可能使闭环极点处于(A. Z 平面单位圆外, 右半实轴上; B. Z 平面单位圆内, 左半实轴上;

- C. Z 平面单位圆上, 右半实轴上:
- D. Z 平面单位圆内, 右半圆内, 且靠近原点。
- 13. 开环系统Bode图如图1所示,对应的开环传递函数G(s)应该是()

图 1 开环系统 Bode 图

14. 已知开环幅相特性如图 1 所示,则图中不稳定的系统是()。

图 2 开环幅相特性

A、系统①:

- B、系统②: C、系统③:
- D、都不稳定。
- 二、 $(12 \, \%)$ 系统方框图如图 3 所示,若系统单位阶跃响应的超调量 σ % = 16.3%,在 单位斜坡输入时 $e_{ss}=0.25$, 试求:
 - (1) ξ, ω_n, K, T 的值;
 - 单位阶跃响应的调节时间 t_s , 峰值时间 t_n 。 (2)

三、(共 15 分)已知某单位反馈系统的开环传递函数为 $G(s) = \frac{K_r}{s(s+3)^2}$:

- (1) (9分)绘制该系统以根轨迹增益 Kr 为变量的根轨迹(求出:渐近线、分离点、与虚轴的交点等);
- (2) (6分)确定使系统满足 $0<\xi<1$ 的开环增益K的取值范围。

四、 $(15 \, \%)$ 已知一单位闭环系统的开环传递函数为 $G(s) = \frac{20}{s(0.1s+1)}$,现加入串联校

正装置: $G_c(s) = \frac{s+1}{10s+1}$, 试:

- (1) (3分)判断此校正装置属于引前校正还是滞后校正,说明原因。
- (2) (6分)计算校正前、后系统的相位裕量。
- (3) (6分)绘制校正后系统的对数幅频特性曲线。

五、(16 分) 采样系统结构图如图 4 所示,采样周期 T 及时间常数 T_0 均为大于 0 的常数,且 $e^{-T/T_0}=0.2$ 。

$$\begin{array}{c|c}
 & e \\
\hline
 & G_D(z)
\end{array}$$

$$\begin{array}{c|c}
 & \underline{C} \\
\hline
 & \underline{C} \\
\hline$$

图 4 采样系统结构图

- (1) (8分) 当 $G_n(z)=1$ 时,求使系统稳定的K值范围;
- (2) $(8 \, \mathcal{G}) \, \stackrel{bz+c}{=} \, \mathcal{D} \, K = 1 \, \text{时}$,采样系统有三重根 $a \, (a \, \mathcal{J}) \, \mathcal{G}_{D}(z)$,求 $G_{D}(z)$ 中的系数 $b \, \mathcal{L}_{D}(z)$ 中的系数b

注:
$$Z\left[\frac{1}{s+a}\right] = \frac{z}{z-e^{-aT}}$$
 $Z\left[\frac{1}{s}\right] = \frac{z}{z-1}$ $Z\left[\frac{1}{s^2}\right] = \frac{Tz}{(z-1)^2}$