

Misiones espaciales basadas en CA

Resumen

- □ Dominios reales en P&S
- Dominios reales en Ejecución Inteligente
- Dominios reales en Protección a Fallos
- Conclusiones

- □ Planificadores históricos:
 - NONLIN+ (Tate y Whiter, 1984): arquitectura general de planificación, precursor de planificadores actuales
 - SIPE (Wilkins 1988): planificador independiente del dominio y el 1ero en manejar recursos consumibles y producibles y manejar conflictos. Utilizado en campañas aéreas y militares
 - DEVISER (Vere 1983): basado en NONLIN, fue utilizado en Voyager para fotografiar Júpiter, Saturno y sus satélites en 1979, 1980 y 1981

- Enfoques modernos:
 - HSTS (Muscettola 1994): integra P&S, aplicado al problema de planificar las observaciones en el Telescopio espacial Hubble
 - O-PLAN2 (Tate et al. 1994): basado en NONLIN y sistema de pizarras. Aplicaciones: coordinaciones de rescate, operaciones militares, misiones espaciales
 - NMRA (Muscettola y Smith, 1997): New Millennium Remote Agent fue la 1ª vez que un agente de lA controla durante 6 días un spacecraft: el Deep Space One (DS-1)

- Enfoques modernos:
 - ASPEN (Rabideau et al. 1999): Sist. de P&S del JPL
 - ☐ Earth Orbiting (EO-1): controlable por pequeño grupo
 - ☐ Citizen Explorer: misión pequeña (UV-B, docentes)
 - ☐ Misiones de Mapping de la Antártica
 - □ Rovers como Mars01 Marie Curie
 - EUROPA (Frank, Jónsson and Morris 2000): MSL or Phoenix

Sistema	Misión	Año	Uso	Técnicas
DEVISER	Voyager	1977	En tierra	POP
PLANIT-II	Galileo	1995	En tierra	Utilizados por expertos en
	Mars Pathfinder	1997	En tierra	AI que proporcionan alg.
	Spitzer Space Telescope	2003	En tierra	específicos de Scheduling
HSTS	DS-1	1998	A bordo	HTN & SAT & Refinement CS
ASPEN	AMM-2	2000	En tierra	Repair CS
PROBA	Proba	2001	A bordo	OR
ASPEN & CASPER	EO-1	2003	A bordo	Repair CS
MPS	Smart-1	2003	En tierra	OR
EUROPA/ MAPGEN	MER	2003	En tierra	Descendiente de HSTS
MEXAR-2	Mars Express	2005	En tierra	Refinement CS
EUROPA2/	Phoenix	2007	En tierra	Descendiente de HSTS
ENSEMBLE	MSL	2009	En tierra	6

Posibles Tendencias

- □ Colaboración "Mixed Initiative"
 - Forma gráfica/fácil de introducir/modificar/añadir/relajar restricciones y metas
 - Forma gráfica/fácil de modificar/relajar partes violadas del plan
- Ayudar a manejar y evaluar contingencias: "Si el plan se termina antes o falla en algún paso, realizar actividades útiles pero de bajo riesgo"
- □ Scheduling es la parte crítica versus planning
 - Para conseguir una meta, no hay tantas alternativas en la secuencias de acciones
 - Cuando hay metas independientes y fáciles de alcanzar individualmente, existen formas complejas en la asignación de limitaciones de recursos
- Manejar incertidumbre de forma más eficiente

Resumen

- Dominios reales en P&S
- □ Dominios reales en Ejecución Inteligente
- Dominios reales en Protección a Fallos
- Conclusiones

Ejecución Inteligente

Sist. de ejecución	Misión	Año	Tecnología	
SCL	Clementine	1994	Comandos basados en t.y eventos	
	FUSE	1999	Procedimientos se ejecutan basado en reglas	
	EO-1	2001	Integrado con la planificación científica a bordo	
MPF/MER/MSL	Mars Pathfinder Lander	1996	Similar a arquitecturas 3T	
Family	Mars Exploration Rovers	2003		
	Mars Science Lab Rover	2009		
Remote Agent Exec	DS-1	1998	Integrado con HSTS y Livingstone (sistema FDIR)	
VML	Mars Odyssey	2001	Lenguaje secuencial procedural	
	Spitzer Space Telescope	2003	Ha volado en numerosas misiones de	
	Phoenix Mars Lander	2007	2007 la NASA	
	otros			

Posibles Tendencias

Simplicidad frente a la complejidad

- Los sist. de ejecución se basan en scripts con simples sentencias iterativas como bucles o ramas. No existe estimación de recursos en la simulación
- Si el plan se ejecuta más deprisa de lo esperado, la misión tiene que esperar hasta que lleguen nuevas instrucciones (MER utiliza "bonus activities" (BA), si el plan se ejecuta más rápidamente se ejecutan BA hasta que expire la duración)
- Centrarse en monitorizar la ejecución más que realizar rescheduling u otras respuestas al problema de ejecución

□ Incertidumbre

 En la práctica, la incertidumbre de ejecución en tiempo-real a menudo se maneja de forma conservadora en recursos y márgenes de duración

Resumen

- Dominios reales en P&S
- Dominios reales en Ejecución Inteligente
- Dominios reales en Protección a Fallos
- Conclusiones

Protección a Fallos

Sistema	Misión	Año	Técnicas	
Livingstone/ Livingstone2			Utiliza un modelo para encontrar la combinación más probable a los fallos que predice	
	DS-1 EO-1	1998 2001	Valor observado de los sensores	
	X-34 vehicule X-37 vehicule	2002 2002	Simulación de la electrónica Simulación del sist. de propulsión	
Spacecraft Command Language	Clementine	1994	Protección a fallos basado en reglas y sist. de recuperación en las operaciones	
Cassini AACS	Cassini	1996	Protección a fallos basado en reglas y sist. de recuperación en las operaciones	
FDIR system	MER	2003	Incorpora protección a fallos a nivel de subsist. en el comportamiento de subsist. (ej brazo) y un conjunto de respuestas a fallos a nivel de sist. para cuando desactivar el comportamiento de un subsist. particular no es suficiente (ej. bateria)	

Misiones espaciales basadas en CA

Posibles Tendencias

- Sist. como Livingstone pretender incrementar los datos científicos durante operaciones rutinarias devolviendo automáticamente la misión a operaciones después de una anomalía:
 - En MER anomalías ocurrieron durante el 3% del tiempo de operaciones, y para muchas de ellas (ej. quedar atascado en la arena) no está claro si un sist. como Livingstone ayudaría
 - ¿Cuál es el coste y riesgo de añadir un modelo basado en proporcionar respuestas ante un "fallo operacional" y continuar ejecutando después de una anomalía?
- Durante períodos críticos tales como inserción en órbita, se tiene que continuar operando a pesar de las anomalías o afrontar la pérdida de la misión
 - Esto se ha visto como una oportunidad en los sist. MBDs para generar nuevas combinaciones de diagnósticos y respuestas
 - Para periodos donde un descuido puede resultar en la pérdida de la misión, hay que sopesar el beneficio de generar nuevas respuestas a fallos menos probables en contra a simplicidad y verificabilidad de respuestas de ingeniería a conjuntos más pequeños de escenarios con mayor probabilidad de fallos