## (19) 世界知的所有権機関 国際事務局



# 

## (43) 国際公開日 2003 年9 月25 日 (25.09.2003)

PCT

## (10) 国際公開番号 WO 03/078409 A1

(51) 国際特許分類<sup>7</sup>: C07D 265/36, A61K 31/538, A61P 1/04, 7/00, 9/10, 11/00, 17/00, 25/06, 25/20, 29/00, 37/08, 43/00

(21) 国際出願番号:

PCT/JP03/02635

(22) 国際出願日:

2003年3月6日(06.03.2003)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ: 特願2002-76456 2002年3月

2002年3月19日(19.03.2002)

(71) 出願人 (米国を除く全ての指定国について): 小野 薬品工業株式会社 (ONO PHARMACEUTICAL CO., LTD.) [JP/JP]; 〒541-8526 大阪府 大阪市 中央区道修 町 2 丁目 1番 5号 Osaka (JP).

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 岩橋 摩紀 (IWAHASHI,Maki) [JP/JP]; 〒618-8585 大阪府 三島郡 島本町桜井 3 丁目 1 番 1 号 小野薬品工業株式会社 水無瀬総合研究所内 Osaka (JP). 小林馨 (KOBAYASHI,Kaoru) [JP/JP]; 〒618-8585 大阪府三島郡 島本町桜井 3 丁目 1 番 1 号 小野薬品工業株式会社 水無瀬総合研究所内 Osaka (JP). 南部文男 (NAMBU,Fumio) [JP/JP]; 〒618-8585 大阪府三島郡

島本町桜井3丁目1番1号小野薬品工業株式会社水無瀬総合研究所内 Osaka (JP).

- (74) 代理人: 大家 邦久 (OHIE,Kunihisa); 〒103-0013 東京都 中央区 日本橋人形町2丁目2番6号 堀口第2ビル7階 大家特許事務所 Tokyo (JP).
- (81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) 指定国 (広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, SE, SI, SK, TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

— 国際調査報告書

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

(54) Title: CARBOXYOIC ACID COMPOUNDS AND DRUGS CONTAINING THE COMPOUNDS AS THE ACTIVE INGREDIENT

(54) 発明の名称: カルボン酸化合物およびその化合物を有効成分として含有する薬剤

$$(R^2)_m$$
 $R^4$ 
 $(R^3)_n$ 
 $(I)$ 
 $(R^5)_i$ 

(57) Abstract: Carboxylic acid compounds represented by the following general formula (I) (wherein each symbol is as defined in the description) and drugs containing these compounds: (I) Because of binding to DP receptor and antagonizing the same, the compounds represented by the general formula (I) are useful in preventing and/or treating allergic diseases (allergic nephritis, allergic conjunctivitis, atopic dermatitis. bronchial asthma, food allergy, etc.), systemic mast cell disease, systemic mast cell activation failure, anaphylactic shock, respiratory tract contraction, urticaria, eczema, diseases associated with itch (atopic dermatitis, urticaria, etc.), diseases (cataract, retinal detachment, inflammation, infection, sleep disorder, etc.) secondarily caused by behaviors associating itch (scratching, beating, etc.), inflammation, chronic obstructive pulmonary

disease, ischemic reperfusion injury, cerebrovascular disorder, rheumatoid arthritis, pleuritis, ulcerative colitis and so on.

(57) 要約:

# 一般式(I)

$$(R^2)_m$$
 $R^4$ 
 $(R^3)_n$ 
 $(R^5)_i$ 

(式中の記号は明細書記載通り。)で示されるカルボン酸化合物およびその 化合物を含有する薬剤。

一般式(I)で示される化合物は、DP受容体に結合し拮抗するため、アレルギー性疾患(アレルギー性鼻炎、アレルギー性結膜炎、アトピー性皮膚炎、気管支喘息、食物アレルギー等)、全身性肥満細胞症、全身性肥満細胞活性化障害、アナフィラキシーショック、気道収縮、蕁麻疹、湿疹、痒みを伴う疾患(アトピー性皮膚炎、蕁麻疹等)、痒みに伴う行動(引っかき行動、殴打など)により二次的に発生する疾患(白内障、網膜剥離、炎症、感染、睡眠障害等)、炎症、慢性閉塞性肺疾患、虚血再灌流障害、脳血管障害、慢性関節リウマチ、胸膜炎、潰瘍性大腸炎等の疾患の予防および/または治療に有用である。

#### 明細書

カルボン酸化合物およびその化合物を有効成分として含有する薬剤

# 5 技術分野

本発明はカルボン酸化合物に関する。さらに詳しく言えば、本発明は (1) 一般式 (I)

$$(R^2)_m$$
 $R^4$ 
 $(R^3)_n$ 
 $(I)$ 
 $R^5)_i$ 

(式中、すべての記号は後記と同じ意味を表わす。) で示されるカルボン酸 化合物、およびそれらの非毒性塩、

- (2) それらの製造方法、および
- (3) それらを有効成分として含有する薬剤に関する。

#### 背景技術

15 プロスタグランジンD<sub>2</sub> (PGD<sub>2</sub>と略記する。)は、アラキドン酸カスケードの中の代謝産物として知られており、アレルギー疾患、例えばアレルギー性鼻炎、気管支喘息、アレルギー性結膜炎などに関与する化学伝達物質のひとつと考えられている。PGD<sub>2</sub>は主として肥満細胞から産生・遊離され、遊離されたPGD<sub>2</sub>は気管支収縮、血管透過性亢進、血管拡張または収縮、粘20 液分泌促進、血小板凝集阻害作用を示すことが知られている。PGD<sub>2</sub>はイン

ビボ (in vivo) においても気道収縮や鼻閉症状を誘起することが報告されており、全身性マストサイトーシス (肥満細胞症) 患者、鼻アレルギー患者、気管支喘息患者、アトピー性皮膚炎患者、蕁麻疹患者などの病態局所でPGD<sub>2</sub>濃度の増加が認められている (N Engl J Med 1980; 303: 1400-4、Am Rev Respir Dis 1983; 128: 597-602、J Allergy Clin Immunol 1991; 88: 33-42、Arch Otolaryngol Head Neck Surg 1987; 113: 179-83、J Allergy Clin Immunol 1988; 82: 869-77、J Immunol 1991; 146: 671-6、J Allergy Clin Immunol 1989; 83: 905-12、N Engl J Med 1986; 315: 800-4、Am Rev Respir Dis 1990; 142: 126-32、J Allergy Clin Immunol 1991; 87: 540-8、J Allergy Clin Immunol 1986; 78: 458-61)。また、P G D 2 は神経活動、特に睡眠、ホルモン分泌、疼痛に関与しているとされている。さらに、血小板凝集、グリコーゲン代謝、眼圧調整などにも関与しているとの報告もある。

10

PGD。は、その受容体のひとつであるDP受容体に結合することにより、 その作用を発揮する。DP受容体拮抗薬は、その受容体に結合し、拮抗する ため、アレルギー性疾患(例えば、アレルギー性鼻炎、アレルギー性結膜炎、 15 アトピー性皮膚炎、気管支喘息、食物アレルギーなど)、全身性肥満細胞症、 全身性肥満細胞活性化障害、アナフィラキシーショック、気道収縮、蕁麻疹、 湿疹、にきび、アレルギー性気管支肺アスペルギルス症、副鼻腔炎、偏頭痛、 鼻茸、過敏性血管炎、好酸球増多症、接触性皮膚炎、痒みを伴う疾患(例え ばアトピー性皮膚炎、蕁麻疹、アレルギー性結膜炎、アレルギー性鼻炎、接 20 触性皮膚炎など)、痒みに伴う行動(引っかき行動、殴打など)により二次 的に発生する疾患(例えば白内障、網膜剥離、炎症、感染、睡眠障害など)、 炎症、慢性閉塞性肺疾患、虚血再灌流障害、脳血管障害、自己免疫疾患、脳 外傷、肝傷害、移植片拒絶、慢性関節リウマチ、胸膜炎、変形性関節症、ク ローン病、潰瘍性大腸炎、過敏性腸症候群等の疾患の予防および/または治 25 療に有用であると考えられている。また、睡眠、血小板凝集にも関わってお

り、これらの疾患にも有用であると考えられる。

例えば、WO86/05779 号明細書には、一般式 (T)

$$A^{T}-(CH_{2})_{nT}-O \xrightarrow{II} X^{1T} B^{T}-X^{2T}-D^{T} \qquad (T)$$

(式中、 $A^T$ は水素原子、フェニル基またはフェノキシ基を表わし、n Tは3から10の整数を表わし、 $R^{1T}$ は、水素原子または低級アルコキシ基を表わし、 $X^{1T}$ は $-CH_2-Y^{1T}-$  (基中、 $Y^{1T}$ は-O-、-S-または-NH-を表わす。)、 $-CO-Y^{2T}-$  (基中、 $Y^{2T}$ は-O-、-S-または-NH-を表わす。) 等を表わし、

10 ゲン原子、ニトロ基、水酸基、低級アルコキシ基、シアノ基、低級アルキル 基、低級アルコキシ低級アルキル基、ハロ低級アルキル基または-NR<sup>4T</sup>R<sup>5</sup> Tで示される基等を表わし、

 $X^{2T}$ は式 $-Y^{3T}-Y^{4T}-$ (基中、 $Y^{3T}$ は単結合、-O-、-S-または-N H-を表わし、 $Y^{4T}$ は途中硫黄原子で中断されていてもよい $C1\sim6$  アルキレン基を表わす。)等を表わし、

15

 $D^{T}$ はカルボキシ基、低級アルコキシカルボニル基等を表わす。)で示される 化合物が、SRS-A (Slow reacting substance of anaphylaxis) 拮抗薬として 有用であることが記載されている。

プロスタグランジン受容体には、サブタイプを含め多くの受容体が存在し 20 ており、それぞれ異なった薬理作用を有している。そこで、DP受容体に対 して特異的に結合し、他のプロスタグランジン受容体に対し結合が弱い新規 な化合物を見出すことができれば、他の作用を発現しないため、副作用の少 ない薬剤となる可能性があり、このような薬剤を見出すことが求められている。

#### 発明の開示

本発明者らは、DP受容体に特異的に結合し、拮抗する化合物を見出すべく、鋭意研究した結果、一般式(I)で示されるカルボン酸化合物がこの課題を達成することを見出し、本発明を完成した。

すなわち、本発明は、

# (1) 一般式(I)

$$(R^2)_m$$
 $R^4$ 
 $(R^3)_n$ 
 $(I)$ 
 $R^5)_i$ 

(式中、R<sup>1</sup>は、(1)水素原子、(2)C1~4アルキル基、(3)C2~4アルケニ 10 ル、または(4)ベンジル基を表わし、

Eは、-C (=O) -、-SO<sub>2</sub>-、または-CH<sub>2</sub>-を表わし、

 $R^2$ は、(1)ハロゲン原子、(2)C  $1\sim 6$  アルキル基、(3)C  $1\sim 6$  アルコキシ基、(4)水酸基、(5)トリハロメチル基、(6)シアノ基、(7)フェニル基、(8)ピリジル基、(9)ニトロ基、(10) $-NR^6R^7$ 基、または(11) $-OR^8$ で置換されたC  $1\sim$ 

15 4アルキル基を表わし、

 $R^3$ は、(1)ハロゲン原子、(2)C 1~6アルキル基、(3)C 1~6アルコキシ基、(4)水酸基、(5)トリハロメチル基、(6)シアノ基、(7)フェニル基、(8)ピリジル基、(9)ニトロ基、(10) $-NR^6R^7$ 基、または(11) $-OR^8$ で置換されたC 1~4アルキル基を表わし、

20 R<sup>6</sup>およびR<sup>7</sup>は、それぞれ独立して、水素原子またはC1~4アルキル基を

表わし、

 $R^8$ は、 $C1\sim 4$  アルキル基、フェニル基、またはピリジル基を表わし、  $R^4$ は、(1)水素原子、(2)  $C1\sim 6$  アルキル基、または(3)ベンジル基を表わし、  $R^5$ は、(1)  $C1\sim 6$  アルキル基、(2)  $C1\sim 1$  0 アルコキシ基、(3)  $C1\sim 6$  アルコキシ基で置換された $C1\sim 6$  アルキル基、(4) ハロゲン原子、(5) 水酸基、 (6) トリハロメチル基、(7) ニトロ基、(8)  $-NR^9R^{10}$  基、(9) フェニル基、(10) フェノキシ基、(11) オキソ基、(12)  $C2\sim 6$  アシル基、(13) シアノ基、または (14)  $-SO_2R^{11}$  基を表わし、

R  $^9$  およびR  $^{10}$  は、それぞれ独立して、水素原子またはC 1  $\sim$  4 P  $\nu$  上を 10 表わし、

R11は、C1~6アルキル基を表わし、

W は、C5~12の単環もしくは二環の炭素環、または5~12員の単環もしくは二環の複素環を表わし、

Gは、(1)窒素原子、酸素原子および硫黄原子から選ばれる0~2個のヘテロ 原子を含むC1~6アルキレン基、(2)窒素原子、酸素原子および硫黄原子か ら選ばれる0~2個のヘテロ原子を含むC2~6アルケニレン基、または(3) 窒素原子、酸素原子および硫黄原子から選ばれる0~2個のヘテロ原子を含 むC2~6アルキニレン基を表わし、

- J は、C 5~12の単環もしくは二環の炭素環、または5~12員の単
- 20 環もしくは二環の複素環を表わし、

mは、0または1~4の整数を表わし、

nは、0または1~4の整数を表わし、

iは、0または1~11の整数を表わす。

ただし、mが2以上を表わすとき、R<sup>2</sup>は同じでも異なってもよく、nが2以 25 上を表わすとき、R<sup>3</sup>は同じでも異なってもよく、iが2以上を表わすとき、 R<sup>5</sup>は同じでも異なってもよい。)で示されるカルボン酸化合物、またはそれ らの薬学的に許容される塩、

- (2) それらの製造方法、および
- (3) それらを有効成分として含有する薬剤に関する。

5

#### 発明の詳細な説明

本明細書中、C1~4アルキル基としては、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、secーブチル、tertーブチルのC1~4の直鎖状または分枝状アルキル基が挙げられる

10 本明細書中、C1~6アルキル基としては、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec-ブチル、tert-ブチル、ペンチル、イソペンチル、ネオペンチル、ヘキシル、イソヘキシル基のC1~6の直鎖状または分枝状アルキル基が挙げられる。

本明細書中、C1~6アルコキシ基としては、メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、イソブトキシ、secーブトキシ、tertーブトキシ、ペンチルオキシ、イソペンチルオキシ、ネオペンチルオキシ、ヘキシルオキシ、イソヘキシルオキシ基のC1~6の直鎖状または分枝状アルコキシ基が挙げられる。

本明細書中、C1~10アルコキシ基としては、メトキシ、エトキシ、プロポキシ、イソプロポキシ、プトキシ、イソプトキシ、secープトキシ、tert ープトキシ、ペンチルオキシ、イソペンチルオキシ、ネオペンチルオキシ、ヘキシルオキシ、イソヘキシルオキシ、ヘプチルオキシ、オクチルオキシ、ノニルオキシ、デシルオキシ基のC1~10の直鎖状または分枝状アルコキシ基が挙げられる。

25 本明細書中、C2~6アシル基としては、エタノイル、プロパノイル、ブタノイル、2-メチルプロパノイル、ペンタノイル、2-メチルブタノイル、

3-メチルプタノイル、ヘキサノイル、2-メチルペンタノイル、3-メチルペンタノイル、4-メチルペンタノイル、2-エチルプタノイル、2,3-ジメチルプタノイル基のC1~6の直鎖状または分枝状アシル基が挙げられる。

5 本明細書中、ハロゲン原子としては、フッ素、塩素、臭素、ヨウ素原子が 挙げられる。

本明細書中、トリハロメチル基としては、3個のハロゲン原子で置換されたメチル基が挙げられる。

本明細書中、C1~4アルキレン基としては、メチレン、エチレン、プロ 10 ピレン、イソプロピレン、ブチレン、イソブチレン基等のC1~4の直鎖 状または分枝状アルキレン基が挙げられる。

本明細書中、C2~4アルケニレン基としては、ビニレン、プロペニレン、 1-または2-プテニレン、プタジエニレン基等のC2~4の直鎖状また は分枝状アルケニレン基が挙げられる。

15 本明細書中、C2~4アルキニレン基としては、エチニレン、1-または 2-プロピニレン、1-または2-ブチニレン基等のC2~4の直鎖状ま たは分枝状アルキニレン基が挙げられる。

本明細書中、窒素原子、酸素原子、および硫黄原子から選ばれる0~2個のヘテロ原子を含むC1~6アルキレン基としては、メチレン、エチレン、

- 20 プロピレン、イソプロピレン、ブチレン、イソブチレン、ペンチレン、ヘキシレン基等のC1~6の直鎖状または分枝状アルキレン基、またはメチレン、エチレン、プロピレン、イソプロピレン、ブチレン、イソプチレン、ペンチレン、ヘキシレン基中の1もしくは2個の炭素原子が窒素原子、酸素原子、および硫黄原子から選ばれる1もしくは2個のヘテロ原子に置き換わってい
- 25 るC1~6アルキレン基、例えば、 $-(CH_2)_2-NH-$ 、 $-(CH_2)_2-N(CH_3)_2-$ 、 $-(CH_2)_2-O-$ 、 $-(CH_2)_2-S-$ 、 $-(CH_2)_3$

-NH-、 $-(CH_2)_3-N(CH_3)-$ 、 $-CH_2-CH(CH_3)-CH_2$  -NH-、 $-CH_2-CH(CH_3)-CH_2-N(CH_3)-$ 、 $-(CH_2)_3$  -O-、 $-(CH_2)_3-S-$ 基等の窒素原子、酸素原子、および硫黄原子から選ばれる  $1\sim 2$  個のヘテロ原子を含むC  $1\sim 6$  の直鎖状または分枝状アルキレン基が挙げられる。ただし、隣接する-O-基と結合するのはアルキレン基中の炭素原子である。

5

25

本明細書中、窒素原子、酸素原子、および硫黄原子から選ばれる0~2個 のヘテロ原子を含むC2~6アルケニレン基としては、ビニレン、プロペニ レン、1-または2-プテニレン、ブタジエニレン、ペンテニレン、ヘキセ 10 ニレン基等のC2~6の直鎖状または分枝状アルケニレン基、またはビニレ ン、プロペニレン、1-または2-ブテニレン、ブタジエニレン、ペンテニ レン、ヘキセニレン基中の1もしくは2個の炭素原子が窒素原子、酸素原子、 および硫黄原子から選ばれる1もしくは2個のヘテロ原子に置き換わってい るC2~6アルケニレン基、例えば、-CH=CH-NH-、-CH=CH  $-N (CH_2) - CH = CH - O - CH = CH - S - CH = CH$ 15  $-CH_2-NH_{-}$ ,  $-CH=CH-CH_2-N$  ( $CH_3$ ) -, -CH=CH-CH<sub>2</sub>-O-、-CH=CH-CH<sub>2</sub>-S-基の窒素原子、酸素原子、および硫 黄原子から選ばれる1~2個のヘテロ原子を含むC2~6の直鎖状または分 枝状アルケニレン基が挙げられる。ただし、隣接する一〇一基と結合するの はアルキレン基中の炭素原子である。 20

本明細書中、窒素原子、酸素原子、および硫黄原子から選ばれる0~2個のヘテロ原子を含むC2~6アルキニレン基としては、エチニレン、1ーまたは2ープロピニレン、1ーまたは2ープチニレン、ペンチニレン、ヘキシニレン基等のC2~6の直鎖状または分枝状アルキニレン基、またはエチニレン、1ーまたは2ープロピニレン、1ーまたは2ープチニレン、ペンチニレン、ヘキシニレン基へキセニレン基中の1もしくは2個の炭素原子が窒素

原子、酸素原子および硫黄原子から選ばれる1もしくは2個のヘテロ原子に置き換わっている $C2\sim6$  アルキニレン基、例えば、 $-C\equiv C-NH-$ 、 $-C\equiv C-N$  ( $CH_3$ ) -、 $-C\equiv C-O-$ 、 $-C\equiv C-S-$ 、 $-C\equiv C-CH_2-NH-$ 、 $-C\equiv C-CH_2-N$  ( $CH_3$ ) -、 $-C\equiv C-CH_2-O-$ 、 $-C\equiv C-CH_2-O-$  ( $CH_3$ ) - なよび硫黄原子から選ばれる1  $\sim 2$  個のヘテロ原子を含む $C2\sim6$  の直鎖状または分枝状アルキニレン基が挙げられる。ただし、隣接する-O-基と結合するのはアルキレン基中の炭素原子である。

本明細書中、C5~12の単環もしくは二環の炭素環としては、C5~12の単環もしくは二環の炭素環アリール、その一部または全部が飽和されている炭素環、例えば、シクロペンタン、シクロヘキサン、シクロペプタン、シクロペンテン、シクロヘキセン、シクロヘプテン、シクロペンタジエン、シクロヘキサジエン、シクロヘプタジエン、ベンゼン、ペンタレン、パーヒドロペンタレン、アズレン、パーヒドロアズレン、インデン、パーヒドロインデン、インダン、ナフタレン、ジヒドロナフタレン、テトラヒドロナフタレン、パーヒドロナフタレンが挙げられる。

本明細書中、5~12員の単環もしくは二環の複素環としては、1~4個の窒素原子、1~2個の酸素原子および/または1~2個の硫黄原子から選択されるヘテロ原子を含む5~12員の単環もしくは二環の複素環アリール、20 その一部または全部が飽和されている複素環が挙げられる。例えば、ピロール、イミダゾール、トリアゾール、テトラゾール、ピラゾール、ピリジン、ピラジン、ピリミジン、ピリダジン、アゼピン、ジアゼピン、フラン、ピラン、オキセピン、チオフェン、チオピラン、チエピン、オキサゾール、イソオキサゾール、イソチアゾール、オキサジン、チアジン、インドール、イソインドール、ベンゾフラン、イソベンブラン、ベンブチオフェン、イソベンブチオフェン、ジチアナフタレン、インダゾール、キノリン、

イソキノリン、キノリジン、フタラジン、ナフチリジン、キノキサリン、キ ナゾリン、シンノリン、ベンゾオキサゾール、ベンゾチアゾール、ベンゾイ ミダゾール、クロメン、ベンゾオキセピン、ベンゾオキサゼピン、ベンゾチ エピン、ベンゾチアゼピン、ベンゾアゼピン、ベンゾジアゼピン、ピロリン、 ピロリジン、イミダブリン、イミダブリジン、トリアブリン、トリアブリジ 5 ン、ピラゾリン、ピラゾリジン、ジヒドロピリジン、テトラヒドロピリジン、 ピペリジン、ジヒドロピラジン、テトラヒドロピラジン、ピペラジン、ジヒ ドロピリミジン、テトラヒドロピリミジン、パーヒドロピリミジン、ジヒド ロピリダジン、テトラヒドロピリダジン、パーヒドロピリダジン、ジヒドロ アゼピン、テトラヒドロアゼピン、パーヒドロアゼピン、ジヒドロジアゼピ 10 ン、テトラヒドロジアゼピン、パーヒドロジアゼピン、ジヒドロフラン、テ トラヒドロフラン、ジヒドロピラン、テトラヒドロピラン、ジヒドロオキセ ピン、テトラヒドロオキセピン、パーヒドロオキセピン、ジヒドロチオフェ ン、テトラヒドロチオフェン、ジヒドロチオピラン、テトラヒドロチオピラ ン、ジヒドロチエピン、テトラヒドロチエピン、パーヒドロチエピン、ジヒ 15 ドロオキサゾール、テトラヒドロオキサゾール (オキサゾリジン)、ジヒド ロイソオキサゾール、テトラヒドロイソオキサゾール (イソオキサゾリジン)、 ジヒドロチアゾール、テトラヒドロチアゾール (チアゾリジン)、ジヒドロ イソチアゾール、テトラヒドロイソチアゾール (イソチアゾリジン)、ジヒ ドロオキサジン、テトラヒドロオキサジン、ジヒドロオキサゼピン、テトラ 20 ヒドロオキサゼピン、パーヒドロオキサゼピン、ジヒドロチアジン、テトラ ヒドロチアジン、ジヒドロチアゼピン、テトラヒドロチアゼピン、パーヒド ロチアゼピン、モルホリン、チオモルホリン、オキサチアン、ジオキソラン、 ジオキサン、インドリン、イソインドリン、ジヒドロベンゾフラン、パーヒ ドロベンソフラン、ジヒドロイソベンゾフラン、パーヒドロイソベンゾフラ 25 ン、ジヒドロベンゾチオフェン、パーヒドロベンゾチオフェン、ジヒドロイ

ソベンゾチオフェン、パーヒドロイソベンゾチオフェン、ジヒドロインダゾ ール、パーヒドロインダゾール、ジヒドロキノリン、テトラヒドロキノリン、 パーヒドロキノリン、ジヒドロイソキノリン、テトラヒドロイソキノリン、 パーヒドロイソキノリン、ジヒドロフタラジン、テトラヒドロフタラジン、 パーヒドロフタラジン、ジヒドロナフチリジン、テトラヒドロナフチリジン、 5 パーヒドロナフチリジン、ジヒドロキノキサリン、テトラヒドロキノキサリ ン、パーヒドロキノキサリン、ジヒドロキナゾリン、テトラヒドロキナゾリ ン、パーヒドロキナゾリン、ジヒドロシンノリン、テトラヒドロシンノリン、 パーヒドロシンノリン、ベンゾオキサチアン、ジヒドロベンゾオキサジン、 ジヒドロベンゾチアジン、ジヒドロベンゾオキサゾール、パーヒドロベンゾ 10 オキサゾール、ジヒドロベンゾチアゾール、パーヒドロベンプチアゾール、 ジヒドロベンゾイミダゾール、パーヒドロベンゾイミダゾール、ジヒドロベ ンゾアゼピン、テトラヒドロベンゾアゼピン、ジヒドロベンゾジアゼピン、 テトラヒドロベンゾジアゼピン、ベンゾジオキセパン、ジヒドロベンゾオキ

本明細書中、C5~6の飽和炭素環としては、シクロペンタンおよびシクロヘキサン環が挙げられる。

サゼピン、テトラヒドロベンゾオキサゼピンが挙げられる。

15

本明細書中、1~2個の窒素原子、1~2個の酸素原子および/または1個の硫黄原子を含む5~6員の飽和複素環としては、例えば、ピロリジン、20 イミダゾリジン、ピラゾリジン、ピペリジン、ピペラジン、パーヒドロピリミジン、パーヒドロピリダジン、テトラヒドロフラン、テトラヒドロピラン、テトラヒドロチオフェン、テトラヒドロチオピラン、テトラヒドロオキサゾール (オキサゾリジン)、テトラヒドロチアゾール (チアゾリジン)、テトラヒドロチアゾール (チアゾリジン)、テトラヒドロチアグーン (チアゾリジン)、テトラヒドロチアグーン (ナアゾリジン、テトラヒドロチアグラン、ジオキソラン、ジオモルホリン、オキサチアン、ジオキソラン、ジオキ

サン環等が挙げられる。

本明細書中、C5~6の炭素環としては、シクロペンタン、シクロヘキサン、シクロペンテン、シクロヘキセン、シクロペンタジエン、シクロヘキサジエン、ベンゼン環等が挙げられる。

- 本明細書中、1~2個の窒素原子、1~2個の酸素原子および/または1個の硫黄原子を含む5~6員の複素環としては、例えば、ピロール、イミダゾール、ピラゾール、ピリジン、ピラジン、ピリミジン、ピリダジン、フラン、ピラン、チオフェン、チオピラン、オキサゾール、イソオキサゾール、チアゾール、イソチアゾール、オキサジン、チアジン、ピロリン、ピロリジ
- 10 ン、イミダゾリン、イミダゾリジン、ピラゾリン、ピラゾリジン、ジヒドロピリジン、テトラヒドロピリジン、ピペリジン、ジヒドロピラジン、テトラヒドロピリミジン、プレドロピリミジン、テトラヒドロピリミジン、パーヒドロピリミジン、ジヒドロピリダジン、テトラヒドロピリダジン、パーヒドロピリダジン、ジヒドロフラン、デトラヒドロフラン、ジヒドロピリグジン、アトラヒドロフラン、ジヒドロピリグジン、
- 15 ラン、テトラヒドロピラン、ジヒドロチオフェン、テトラヒドロチオフェン、 ジヒドロチオピラン、テトラヒドロチオピラン、ジヒドロオキサゾール、テ トラヒドロオキサゾール(オキサゾリジン)、ジヒドロイソオキサゾール、 テトラヒドロイソオキサゾール(イソオキサゾリジン)、ジヒドロチアゾー ル、テトラヒドロチアゾール(チアゾリジン)、ジヒドロイソチアゾール、
- 20 テトラヒドロイソチアゾール (イソチアゾリジン)、ジヒドロオキサジン、 テトラヒドロオキサジン、ジヒドロチアジン、テトラヒドロチアジン、モル ホリン、チオモルホリン、オキサチアン、ジオキソラン、ジオキサン環等が 挙げられる。

本発明においては、特に指示しない限り異性体はこれをすべて包含する。 25 例えば、アルキル基、アルコキシ基、およびアルキレン基には直鎖のものお よび分枝鎖のものが含まれる。さらに、二重結合、環、縮合環における異性

体(E、Z、シス、トランス体)、不斉炭素の存在等による異性体(R、S 体、 $\alpha$ 、 $\beta$  体、エナンチオマー、ジアステレオマー)、旋光性を有する光学活性体(D、L、d、l 体)、クロマトグラフ分離による極性体(高極性体、低極性体)、平衡化合物、回転異性体、これらの任意の割合の混合物、ラセミ混合物は、すべて本発明に含まれる。

5

本発明においては、特に断わらない限り、当業者にとって明らかなように記号 は紙面の向こう側(すなわち $\alpha$  一配置)に結合していることを表わし、 は紙面の手前側(すなわち $\beta$  一配置)に結合していることを表わし、 は、 $\alpha$  一配置と $\beta$  一配置の混合物であることを表わす。

10 本発明化合物は、公知の方法で薬学的に許容される塩に変換される。薬学 的に許容される塩は、毒性のない、水溶性のものが好ましい。適当な塩とし て、例えば、アルカリ金属(カリウム、ナトリウム、リチウム等)の塩、ア ルカリ土類金属(カルシウム、マグネシウム等)の塩、アンモニウム塩(テ トラメチルアンモニウム塩、テトラブチルアンモニウム塩等)、有機アミン (トリエチルアミン、メチルアミン、ジメチルアミン、シクロペンチルアミ 15 ン、ベンジルアミン、フェネチルアミン、ピペリジン、モノエタノールアミ ン、ジエタノールアミン、トリス (ヒドロキシメチル) メチルアミン、リジ ン、アルギニン、N-メチル-D-グルカミン等)の塩、酸付加物塩(無機 酸塩(塩酸塩、臭化水素酸塩、ヨウ化水素酸塩、硫酸塩、リン酸塩、硝酸塩 等)、有機酸塩(酢酸塩、トリフルオロ酢酸塩、乳酸塩、酒石酸塩、シュウ 20 酸塩、フマル酸塩、マレイン酸塩、安息香酸塩、クエン酸塩、メタンスルホ ン酸塩、エタンスルホン酸塩、ベンゼンスルホン酸塩、トルエンスルホン酸 塩、イセチオン酸塩、グルクロン酸塩、グルコン酸塩等)等)が挙げられる。

本発明化合物の塩には、溶媒和物、または上記本発明化合物のアルカリ(土 25 類)金属塩、アンモニウム塩、有機アミン塩、酸付加物塩の溶媒和物も含ま れる。

溶媒和物は非毒性かつ水溶性であることが好ましい。適当な溶媒和物としては、例えば水、アルコール系溶媒(エタノール等)等の溶媒和物が挙げられる。

- 一般式 (I) 中、R<sup>1</sup>として好ましくは水素原子、C1~4アルキル基また はベンジルであり、より好ましくは水素原子またはC1~4アルキル基である。
  - 一般式 (I) 中、 $R^2$ として好ましくはハロゲン原子、 $C1\sim6$ アルキル基、 $C1\sim6$ アルコキシ基、水酸基、トリハロメチル基、シアノ基、フェニル基、ピリジル基、ニトロ基、 $NR^6R^7$ 基であり、より好ましくはハロゲン原子、
- 10 C1~6アルキル基、C1~6アルコキシ基または水酸基である。
  - 一般式(I)中、R<sup>3</sup>として好ましくはハロゲン原子、C1~6アルキル基、C1~6アルコキシ基、水酸基、トリハロメチル基またはシアノ基であり、より好ましくはハロゲン原子、C1~6アルキル基、C1~6アルコキシ基または水酸基である。
- 一般式 (I) 中、 $R^8$ として好ましくは $C1\sim 4$ アルキル基またはフェニル 基である。
  - 一般式 (I) 中、R $^4$ として好ましくは水素原子、C $1\sim4$ アルキル基またはペンジルであり、より好ましくは水素原子またはC $1\sim4$ アルキル基である。
- -般式 (I) 中、 $R^5$ として好ましくは $C1\sim6$ アルキル基、 $C1\sim10$ アルコキシ基、ハロゲン原子、水酸基、トリハロメチル基、フェニル基、またはシアノ基であり、より好ましくは $C1\sim6$ アルキル基、 $C1\sim10$ アルコキシ基、またはハロゲン原子である。

一般式(I)中、

25 **(w)** として好ましい環は、C5~6の単環炭素環、または1~2個の窒素原子、1~2個の酸素原子および/または1個の硫黄原子を含む5~6員の

単環複素環である。具体的に好ましい環としては、シクロペンタン、シクロヘキサン、ベンゼン、ピロール、イミダゾール、ピラゾール、ピリジン、ピラジン、ピリミジン、ピリダジン、フラン、ピラン、チオフェン、チオピラン、オキサゾール、イソオキサゾール、チアゾール、イソチアゾール、ピロリジン、イミダゾリジン、ピペリジン、ピペラジン環であり、ベンゼン、またはピリジン環がより好ましい。特に好ましくはC5~6の単環炭素環であり、具体的には

である。

5

10 一般式(I)中、Gとして好ましくは、(1)窒素原子、酸素原子および硫黄原子から選ばれる0~2個のヘテロ原子を含むC1~6アルキレン基、(2)C2~6アルケニレン基、または(3)C2~6アルキニレン基であり、より好ましくは(1)窒素原子、酸素原子および硫黄原子から選ばれる0~2個のヘテロ原子を含むC1~6アルキレン基、(2)C2~4アルケニレン基、または(3)C2~4アルケニレン基、または(3)C2~4アルキニレン基である。

一般式(I)中、

(式中、

 

 20
 (A c d)
 は、C 5~6の飽和炭素環、または1~2個の窒素原子、1~2個の 酸素原子および/または1個の硫黄原子を含む5~6員の飽和複素環を表わ し、

- CB は、 $C5\sim6$ の炭素環、または $1\sim2$ 個の窒素原子、 $1\sim2$ 個の酸素原子および/または1個の硫黄原子を含む $5\sim6$ 員の複素環を表わす。)で表わされる環である。
- $oxed{A_{c}^{C}}$  として好ましい環は、 $1\sim 2$ 個の窒素原子、 $1\sim 2$ 個の酸素原子およ
- 5 び/または1個の硫黄原子を含む5~6員の飽和複素環であり、より好ましくは1~2個の窒素原子および/または1~2個の酸素原子を含む5~6員の飽和複素環である。例えば、モルホリン、ジオキサン、オキサチアン、テトラヒドロフラン、ピロリジン、テトラヒドロオキサゾール(オキサゾリジン)、イミダゾリジン環が好ましく、特にモルホリン、テトラヒドロフラン、ピロリジン環が好ましい。
  - CB として好ましい環は、C5~6の炭素環または1~2個の窒素原子および/または1~2個の酸素原子を含む5~6員の複素環であり、より好ましくはC5~6の炭素環または1~2個の窒素原子を含む5~6員の複素環である。例えば、シクロペンタン、シクロヘキサン、シクロペンタジエン、
- 15 ベンゼン、ピリジン、ピラジン、ピリミジン、ピリダジン、オキサジン、ピペリジン、ピペラジン環が好ましく、より好ましくはシクロヘキサン、ベンゼン、ピリジン、ピラジン、ピリミジン環であり、特にベンゼン環が好ましい。
  - よして好ましくは、ジヒドロベングオキサジン、ベンゾジオキサン、
- 20 ベンゾオキサチアン、ジヒドロベンゾフランまたはインドリン環であり、より好ましくはジヒドロベンゾオキサジン、ジヒドロベンゾフラン、またはインドリン環であり、特にジヒドロベンゾオキサジンが好ましい。

mとして好ましくは0、1または2である。

nとして好ましくは0、1または2である。

iとして好ましくは0または1~5の整数である。

一般式 (I) で示される化合物のうち、好ましい化合物としては、一般式 (I-a)

$$(R^2)_m$$
 $(R^3)_n$ 
 $(I-a)$ 
 $(R^5)_i$ 

5 (式中、すべての記号は前記と同じ意味を表わす。)で示される化合物、一般式 (I-b)

$$(R^{2})_{m} \xrightarrow{I} O R^{1}$$

$$O = S V (R^{3})_{n} (I-b)$$

$$O = S V (R^{5})_{n}$$

(式中、すべての記号は前記と同じ意味を表わす。) で示される化合物、または一般式 (I-c)

$$(R^2)_m$$
 $(R^3)_n$ 
 $(I-c)$ 
 $(R^5)_i$ 

(式中、すべての記号は前記と同じ意味を表わす。) で示される化合物が挙 げられる。

本発明の具体的な化合物としては、表1~表35に示す化合物、実施例中 5 に示す化合物、およびそれらの薬学的に許容される塩が挙げられる。

|      |                    | OH.                   |                   |                      | 麦                           | 1   |                   | o<br>Col            | 1                 |                             |                       |
|------|--------------------|-----------------------|-------------------|----------------------|-----------------------------|-----|-------------------|---------------------|-------------------|-----------------------------|-----------------------|
|      | $R^2 \frac{6}{5!}$ | NH                    |                   | (I-A                 | a)                          |     | $R^2 \frac{6}{5}$ | E N                 | Н                 | C                           | (-Ab)                 |
|      | 4                  | 2  <br>R <sup>3</sup> | ٥٠                | O 8<br>N 5<br>R 5a 5 | 7<br>7<br>6 R <sup>5b</sup> |     | または               | 4 È<br>2<br>R       | 3 3               | (O)<br>N<br>R <sup>54</sup> | 8 7 R <sup>5b</sup> . |
| No.  | R <sup>2</sup>     | E                     | $R^3$             | R <sup>5a</sup>      | R <sup>6b</sup>             | No. | R <sup>2</sup>    | E                   | R <sup>3</sup>    | R <sup>5a</sup>             | R <sup>5b</sup>       |
| 1    | Н                  | -co-                  | 2-CH <sub>3</sub> | CH <sub>3</sub>      | н                           | 37  | н                 | -co-                | 2-CH <sub>3</sub> | CH <sub>3</sub>             | 8-CH <sub>3</sub>     |
| 2    | н                  | -SO <sub>2</sub> -    | 2-CH <sub>3</sub> | CH <sub>3</sub>      | н                           | 38  | H                 | -SO <sub>2</sub> -  | 2-CH <sub>3</sub> | CH <sub>3</sub>             | 8-CH <sub>3</sub>     |
| 3 :  | Н                  | -CH <sub>2</sub> -    | 2-CH <sub>3</sub> | CH <sub>3</sub>      | н                           | 39  | Н                 | -CH <sub>2</sub> -  | 2-CH <sub>3</sub> | CH <sub>3</sub>             | 8-CH <sub>3</sub>     |
| 4    | 4-CH <sub>3</sub>  | -co-                  | 2-CH <sub>3</sub> | CH <sub>3</sub>      | н                           | 40  | 4-CH <sub>3</sub> | -co-                | 2-CH <sub>3</sub> | CH <sub>3</sub>             | 8-CH <sub>3</sub>     |
| 5    | 4-CH <sub>3</sub>  | -SO <sub>2</sub> -    | 2-CH <sub>3</sub> | CH <sub>3</sub>      | н ]                         | 41  | 4-CH <sub>3</sub> | -SO <sub>2</sub> -  | 2-CH <sub>3</sub> | CH <sub>3</sub>             | 8-CH <sub>3</sub>     |
| 6    | 4-CH <sub>3</sub>  | -CH <sub>2</sub> -    | 2-CH <sub>3</sub> | CH <sub>3</sub>      | н                           | 42  | 4-CH <sub>3</sub> | -CH <sub>2</sub> -  | 2-CH <sub>3</sub> | CH <sub>3</sub>             | 8-CH <sub>3</sub>     |
| 7    | 4-CI               | -co-                  | 2-CH <sub>3</sub> | CH <sub>3</sub>      | н                           | 43  | 4-CI              | -co-                | 2-CH <sub>3</sub> | CH <sub>3</sub>             | 8-CH <sub>3</sub>     |
| 8    | 4-CI               | -SO <sub>2</sub> -    | 2-CH <sub>3</sub> | CH <sub>3</sub>      | н                           | 44  | 4-CI              | -SO <sub>2</sub> -  | 2-CH <sub>3</sub> | CH <sub>3</sub>             | 8-CH <sub>3</sub>     |
| ၟၜၟႄ | 4-CI               | -CH <sub>2</sub> -    | 2-CH <sub>3</sub> | CH <sub>3</sub>      | н                           | 45  | 4-CI              | -CH <sub>2</sub> -  | 2-CH <sub>3</sub> | CH <sub>3</sub>             | 8-CH <sub>3</sub>     |
| (10) | 4-F                | -co-                  | 2-CH <sub>3</sub> | CH <sub>3</sub>      | н                           | 46  | 4-F               | -co-                | 2-CH <sub>3</sub> | CH <sub>3</sub>             | 8-CH <sub>3</sub>     |
| 11   | 4-F                | -SO <sub>2</sub> -    | 2-CH <sub>3</sub> | CH <sub>3</sub>      | H                           | 47  | 4-F               | -SO <sub>2</sub> -  | 2-CH <sub>3</sub> | CH3                         | 8-CH <sub>3</sub>     |
| 12   | 4-F                | -CH <sub>2</sub> -    | 2-CH <sub>3</sub> | CH <sub>3</sub>      | н                           | 48  | 4-F               | -CH <sub>2</sub> -  | 2-CH <sub>3</sub> | CH <sub>3</sub>             | 8-CH <sub>3</sub>     |
| 13   | Н                  | -co-                  | 2-CI              | CH <sub>3</sub>      | н                           | 49  | Н                 | -co-                | 2-CI              | CH <sub>3</sub>             | 8-CH <sub>3</sub>     |
| 14   | Н                  | -SO <sub>2</sub> -    | 2-C1              | CH <sub>3</sub>      | н                           | 50  | Н                 | -SO <sub>2</sub> -  | 2-CI              | CH <sub>3</sub>             | 8-CH <sub>3</sub>     |
| 15   | н                  | -CH <sub>2</sub> -    | 2-CI              | CH <sub>3</sub>      | н                           | 51  | Н                 | -CH <sub>2</sub> -  | 2-CI              | CH <sub>3</sub>             | 8-CH <sub>3</sub>     |
| 16   | 4-CH <sub>3</sub>  | -co-                  | 2-CI              | CH <sub>3</sub>      | н                           | 52  | 4-CH <sub>3</sub> | -co-                | 2-CI              | CH <sub>3</sub>             | 8-CH <sub>3</sub>     |
| 17   | 4-CH <sub>3</sub>  | -SO <sub>2</sub> -    | 2-CI              | CH <sub>3</sub>      | н                           | 53  | 4-CH <sub>3</sub> | -SO <sub>2</sub> -  | 2-CI              | CH <sub>3</sub>             | 8-CH <sub>3</sub>     |
| 18   | 4-CH <sub>3</sub>  | -CH <sub>Z</sub> -    | 2-CI              | CH <sub>3</sub>      | н                           | 54  | 4-CH <sub>3</sub> | -CH <sub>2</sub> -  | 2-CI              | CH <sub>3</sub>             | 8-CH <sub>3</sub>     |
| 19   | 4-CI               | -co-                  | 2-Ci              | CH <sub>3</sub>      | н                           | 55  | 4-CI              | -co-                | 2-CI              | CH <sub>3</sub>             | 8-CH <sub>3</sub>     |
| 20   | 4-CI               | -SO <sub>2</sub> -    | 2-CI              | CH <sub>3</sub>      | н                           | 56  | 4-CI              | -\$O <sub>2</sub> - | 2-CI              | CH <sub>3</sub>             | 8-CH <sub>3</sub>     |
| 21   | 4-CI               | -CH <sub>2</sub> -    | 2-Ci              | CH <sub>3</sub>      | н                           | 57  | 4-CI              | -CH <sub>2</sub> -  | 2-CI              | CH <sub>3</sub>             | 8-CH <sub>3</sub>     |
| 22   | 4-F                | -co-                  | 2-CI              | CH <sub>3</sub>      | н                           | 58  | 4-F               | -co-                | 2-CI              | CH <sub>3</sub>             | 8-CH <sub>3</sub>     |
| 23   | 4-F                | -SO <sub>2</sub> -    | 2-C1              | CH <sub>3</sub>      | н                           | 59  | 4-F               | -SO <sub>2</sub> -  | 2-CI              | CH <sub>3</sub>             | 8-CH <sub>3</sub>     |
| 24   | 4-F                | -CH <sub>2</sub> -    | 2-CI              | CH <sub>3</sub>      | н                           | 60  | 4-F               | -CH <sub>2</sub> -  | 2-Cl              | CH <sub>3</sub>             | 8-CH <sub>3</sub>     |
| 25   | Н                  | -CO-                  | 2 <b>-</b> F      | CH <sub>3</sub>      | н                           | 61  | Н                 | -CO-                | 2 <b>-F</b>       | CH <sub>3</sub>             | 8-CH <sub>3</sub>     |
| 26   | Н                  | -SO <sub>2</sub> -    | 2 <b>-F</b>       | CH <sub>3</sub>      | н                           | 62  | Н                 | -SO <sub>2</sub> -  | 2-F               | CH <sub>3</sub>             | 8-CH <sub>3</sub>     |
| 27   | Н                  | -CH <sub>2</sub> -    | 2-F               | CH <sub>3</sub>      | Н                           | 63  | Н                 | -CH <sub>2</sub> -  | 2-F               | CH <sub>3</sub>             | 8-CH <sub>3</sub>     |
| 28   | 4-CH <sub>3</sub>  | -co-                  | 2-F               | CH <sub>3</sub>      | H                           | 64  |                   | -co-                | 2 <b>-</b> F      | CH <sub>3</sub>             | 8-CH <sub>3</sub>     |
| 29   | 4-CH <sub>3</sub>  | -SO <sub>2</sub> -    | 2-F               | CH <sub>3</sub>      | н                           | 65  | 4-CH <sub>3</sub> | -SO <sub>2</sub> -  | 2-F               | CH <sub>3</sub>             | 8-CH <sub>3</sub>     |
| 30   | 4-CH <sub>3</sub>  | -CH <sub>2</sub> -    | 2-F               | CH <sub>3</sub>      | н                           | 66  | 4-CH <sub>3</sub> | -CH <sub>2</sub> -  | 2-F               | CH <sub>3</sub>             | 8-CH <sub>3</sub>     |
| 31   | 4-CI               | -co-                  | 2-F               | CH <sub>3</sub>      | н                           | 67  | 4-CI              | -co-                | 2 <b>-</b> F      | CH <sub>3</sub>             | 8-CH <sub>3</sub>     |
| 32   | 4-CI               | -SO <sub>2</sub> -    | 2-F               | CH <sub>3</sub>      | Н                           | 68  | 4-CI              | -SO <sub>2</sub> -  | 2-F               | CH <sub>3</sub>             | 8-CH <sub>3</sub>     |
| 33   | 4-CI               | -CH <sub>2</sub> -    | 2 <b>-F</b>       | CH <sub>3</sub>      | Н                           | 69  | 4-CI              | -CH <sub>2</sub> -  | 2 <b>-</b> F      | CH <sub>3</sub>             | 8-CH <sub>3</sub>     |
| 34   | 4-F                | -co-                  | 2-F               | CH <sub>3</sub>      | Н                           | 70  | 4-F               | -co-                | 2-F               | CH <sub>3</sub>             | 8-CH <sub>3</sub>     |
| 35   | 4-F                | -SO <sub>2</sub> -    | 2-F               | CH <sub>3</sub>      | Н                           | 71  | 4-F               | -\$0 <sub>2</sub> - | 2-F               | CH <sub>3</sub>             | 8-CH <sub>3</sub>     |
| 36   | 4-F                | -CH <sub>2</sub> -    | 2 <b>-</b> F      | CH <sub>3</sub>      | н                           | 72  | 4-F               | -CH <sub>2</sub> -  | 2-F               | CH <sub>3</sub>             | 8-CH <sub>3</sub>     |
|      | •                  |                       |                   |                      |                             |     |                   |                     |                   |                             |                       |

|          | ا ا                 | ОН                         |                                        |                                    | <u>表2</u><br>○<br>○OH |            |                   |                            |                                        |                                    |                                        |  |
|----------|---------------------|----------------------------|----------------------------------------|------------------------------------|-----------------------|------------|-------------------|----------------------------|----------------------------------------|------------------------------------|----------------------------------------|--|
|          | $R^2 = \frac{6}{5}$ | Г <sup>ын</sup>            |                                        | (I-A                               | a)                    | •          | $R^2 \frac{6}{5}$ | NH                         |                                        | . <b>(</b> I                       | –Ab)                                   |  |
|          | •                   | 2   R <sup>3</sup> 3       | ٢٠٠١                                   | 0 8<br>N 5<br>R 5                  | 7<br>7<br>6<br>6      | ¥          | たは                | z É<br>2                   | 30-                                    | , (0)<br>N<br>R <sup>6</sup> a     | 8 7 85b 5 6                            |  |
| No.      | R <sup>2</sup>      | E                          | R <sup>3</sup>                         | R <sup>5a</sup>                    | R <sup>5b</sup>       | No.        | R <sup>2</sup>    | E                          | $R^3$                                  | $R^{5a}$                           | R <sup>5b</sup>                        |  |
| 1        | н                   | -co-                       | 2-CH <sub>3</sub>                      | CH <sub>3</sub>                    | 8-F                   | 37         | Н                 | -co-                       | 2-CH <sub>3</sub>                      | CH <sub>3</sub>                    | 7-CH <sub>3</sub>                      |  |
| 2        | н                   | _                          | 2-CH <sub>3</sub>                      | CH <sub>3</sub>                    | 8-F                   | 38         | н                 | -SO <sub>2</sub> -         | 2-CH <sub>3</sub>                      | CH <sub>3</sub>                    | 7-CH <sub>3</sub>                      |  |
| 3        | Н                   | _                          | 2-CH <sub>3</sub>                      | CH <sub>3</sub>                    | 8 <b>-</b> F          | 39         | Н                 | _                          | 2-CH <sub>3</sub>                      | CH <sub>3</sub>                    | 7-CH <sub>3</sub>                      |  |
| 4        |                     |                            | 2-CH <sub>3</sub>                      | CH <sub>3</sub>                    | 8-F                   | 40         | 4-CH <sub>3</sub> |                            | 2-CH <sub>3</sub>                      | CH <sub>3</sub>                    | 7-CH <sub>3</sub>                      |  |
| 5        | •                   | _                          | 2-CH <sub>3</sub>                      | CH <sub>3</sub>                    | 8-F                   | 41         | 4-CH <sub>3</sub> | _                          | 2-CH <sub>3</sub>                      | CH <sub>3</sub>                    | 7-CH <sub>3</sub>                      |  |
| 6<br>7   | 4-CH <sub>3</sub>   | _                          | 2-CH <sub>3</sub><br>2-CH <sub>3</sub> | CH <sub>3</sub>                    | 8-F                   | 42         | 4-CH₃<br>4-CI     | _                          | 2-CH <sub>3</sub>                      | CH <sub>3</sub>                    | 7-CH <sub>3</sub>                      |  |
| 8        | 4-CI                |                            | 2-CH <sub>3</sub>                      | CH <sub>3</sub><br>CH <sub>3</sub> | 8-F<br>8-F            | 43<br>44   | 4-CI              | -CO-                       | 2-CH <sub>3</sub><br>2-CH <sub>3</sub> | CH₃                                | 7-CH <sub>3</sub>                      |  |
| 9        | 4-CI                | -                          | 2-CH <sub>3</sub>                      | CH <sub>3</sub>                    | 8-F                   | 45         | 4-CI              |                            | 2-CH <sub>3</sub>                      | CH <sub>3</sub><br>CH <sub>3</sub> | 7-CH <sub>3</sub><br>7-CH <sub>3</sub> |  |
| 10       | 4-F                 | _                          | 2-CH <sub>3</sub>                      | CH <sub>3</sub>                    | 8-F                   | 46         | 4-F               | -CO-                       | 2-CH <sub>3</sub>                      | CH <sub>3</sub>                    | 7-CH <sub>3</sub>                      |  |
| 11       | 4-F                 |                            | 2-CH <sub>3</sub>                      | CH <sub>3</sub>                    | 8-F                   | 47         | 4-F               | -SO <sub>2</sub> -         | •                                      | CH <sub>3</sub>                    | 7-CH <sub>3</sub>                      |  |
| 12       | 4-F                 | _                          | 2-CH <sub>3</sub>                      | CH <sub>3</sub>                    | 8-F                   | 48         | 4-F               | -CH <sub>2</sub> -         | -                                      | CH <sub>3</sub>                    | 7-CH <sub>3</sub>                      |  |
| 13       | н                   | -co-                       | 2-CI                                   | CH <sub>3</sub>                    | 8-F                   | 49         | Н                 | -co-                       | 2-CI                                   | CH <sub>3</sub>                    | 7-CH <sub>3</sub>                      |  |
| 14       | н                   | -SO <sub>2</sub> -         | 2-CI                                   | CH <sub>3</sub>                    | 8-F                   | 50         | н                 | -SO <sub>2</sub> -         | 2-CI                                   | CH <sub>3</sub>                    | 7-CH <sub>3</sub>                      |  |
| 15       | н                   | -CH <sub>2</sub> -         | 2-CI                                   | CH <sub>3</sub>                    | 8-F                   | 51         | H                 | -CH <sub>2</sub> -         | 2-CI                                   | CH <sub>3</sub>                    | 7-CH <sub>3</sub>                      |  |
| 16       | 4-CH <sub>3</sub>   | -CO-                       | 2-CI                                   | CH <sub>3</sub>                    | 8-F                   | 52         | 4-CH <sub>3</sub> | -co-                       | 2-CI                                   | CH <sub>3</sub>                    | 7-CH <sub>3</sub>                      |  |
| 17       | -                   | -SO <sub>2</sub> -         |                                        | CH <sub>3</sub>                    | 8-F                   | 53         | 4-CH <sub>3</sub> | -SO <sub>2</sub> -         | 2-CI                                   | CH <sub>3</sub>                    | 7-CH <sub>3</sub>                      |  |
| 18       |                     | -CH <sub>2</sub> -         |                                        | CH <sub>3</sub>                    | 8-F                   | 54         | 4-CH <sub>3</sub> | -CH <sub>2</sub> -         | 2-CI                                   | CH <sub>3</sub>                    | 7-CH <sub>3</sub>                      |  |
| 19       | 4-CI                | -co-                       | 2-Ci                                   | CH <sub>3</sub>                    | 8-F                   | 55         | 4-CI              | -co-                       | 2-C!                                   | CH <sub>3</sub>                    | 7-CH <sub>3</sub>                      |  |
| 20       | 4-CI                | -SO <sub>2</sub> -         | 2-CI                                   | CH <sub>3</sub>                    | 8-F                   | 56         | 4-CI              | -SO <sub>2</sub> -         | 2-CI                                   | CH <sub>3</sub>                    | 7-CH <sub>3</sub>                      |  |
| 21       | 4-CI                | -CH <sub>2</sub> -         | 2-Ci                                   | CH <sub>3</sub>                    | 8-F                   | 57         | 4-CI              | -CH <sub>2</sub> -         | 2-CI                                   | CH <sub>3</sub>                    | 7-CH <sub>3</sub>                      |  |
| 22<br>23 | 4-F<br>4-F          | -co-<br>-so <sub>2</sub> - | 2-Cl<br>2-Cl                           | CH <sub>3</sub>                    | 8-F                   | 58         | 4-F               | -co-                       | 2-C1                                   | CH <sub>3</sub>                    | 7-CH <sub>3</sub>                      |  |
| 23<br>24 | 4-F                 | -CH <sub>2</sub> -         | 2-Ci                                   | CH₃<br>CH₃                         | 8-F<br>8-F            | 59         | 4-F<br>4-F        | -SO <sub>2</sub> -         | 2-CI                                   | CH <sub>3</sub>                    | 7-CH <sub>3</sub>                      |  |
| 25       | H                   | -CO-                       | 2-F                                    | CH <sub>3</sub>                    | 8-F                   | 60<br>  61 | 4-F<br>H          | -CH <sub>2</sub> -<br>-CO- | 2-C1<br>2-F                            | CH <sub>3</sub>                    | 7-CH <sub>3</sub>                      |  |
| 26       | Н                   | -SO <sub>2</sub> -         | 2-F                                    | CH <sub>3</sub>                    | 8-F                   | 62         | H                 | -SO <sub>2</sub> -         | 2-F                                    | CH <sub>3</sub>                    | 7-CH <sub>3</sub><br>7-CH <sub>3</sub> |  |
| 27       | Н                   | -CH <sub>2</sub> -         | 2 <del>-</del> F                       | CH <sub>3</sub>                    | 8-F                   | 63         | Ĥ                 | -CH <sub>2</sub> -         | 2-F                                    | CH <sub>3</sub>                    | 7-CH <sub>3</sub>                      |  |
| 28       | 4-CH <sub>3</sub>   |                            | 2-F                                    | CH <sub>3</sub>                    | 8-F                   | 64         | 4-CH <sub>3</sub> |                            | 2-F                                    | CH <sub>3</sub>                    | 7-CH <sub>3</sub>                      |  |
| 29       |                     | -SO <sub>2</sub> -         |                                        | CH <sub>3</sub>                    | 8-F                   | 65         | 4-CH <sub>3</sub> |                            | 2-F                                    | CH <sub>3</sub>                    | 7-CH <sub>3</sub>                      |  |
| 30       |                     | -CH <sub>2</sub> -         |                                        | CH <sub>3</sub>                    | 8-F                   | 66         | 4-CH <sub>3</sub> | _                          | 2-F                                    | CH <sub>3</sub>                    | 7-CH <sub>3</sub>                      |  |
| 31       | 4-CI                | -co-                       | 2-F                                    | CH <sub>3</sub>                    | 8-F                   | 67         | 4-CI              | -co-                       | 2-F                                    | CH <sub>3</sub>                    | 7-CH <sub>3</sub>                      |  |
| 32       | 4-CI                | -SO <sub>2</sub> -         | 2-F                                    | CH <sub>3</sub>                    | 8-F                   | 68         | 4-CI              | -SO <sub>2</sub> -         | 2-F                                    | CH <sub>3</sub>                    | 7-CH <sub>3</sub>                      |  |
| 33       | 4-CI                | -CH <sub>2</sub> -         | 2-F                                    | CH <sub>3</sub>                    | 8-F                   | 69         | 4-CI              | -CH <sub>2</sub> -         | 2 <b>-F</b>                            | CH <sub>3</sub>                    | 7-CH <sub>3</sub>                      |  |
| 34       | 4-F                 | -co-                       | 2-F                                    | CH <sub>3</sub>                    | 8-F                   | 70         | 4-F               | -CO-                       | 2-F                                    | CH <sub>3</sub>                    | 7-CH <sub>3</sub>                      |  |
| 35       | 4-F                 | -SO <sub>2</sub> -         | 2-F                                    | CH <sub>3</sub>                    | 8-F                   | 71         | 4-F               | -SO <sub>2</sub> -         | 2-F                                    | CH <sub>3</sub>                    | 7-CH <sub>3</sub>                      |  |
| 36       | 4-F                 | -CH <sub>2"</sub>          | 2-F                                    | CH <sub>3</sub>                    | 8-F                   | 72         | 4-F               | -CH <sub>2</sub> -         | 2-F                                    | CH <sub>3</sub>                    | 7-CH <sub>3</sub>                      |  |

|        | ٥                 | ОН                    |                                        |                                    | 麦                | 3        |                   | ОН                    |                                        |                                    |                                          |
|--------|-------------------|-----------------------|----------------------------------------|------------------------------------|------------------|----------|-------------------|-----------------------|----------------------------------------|------------------------------------|------------------------------------------|
| F      | R <sup>2</sup> 6  | ŅH                    |                                        | (I-Aa)                             | ı                |          | $R^2 \frac{6}{5}$ | )<br>Vih              | `                                      | (I-A                               | rp)                                      |
|        | •                 | 2<br>R <sup>3</sup> 3 | امرا                                   | 8 7<br>1 5 5                       | -R <sup>5b</sup> | また       | *<br>たは           | 2  <br>R <sup>3</sup> | o"                                     | 0 × 8                              | 7<br>6 R <sup>5b</sup>                   |
| N-     | R <sup>2</sup>    | E                     | R <sup>3</sup>                         | 1 <sub>5a</sub> 5                  | R <sup>5b</sup>  | No.      | R <sup>2</sup>    | E                     | R <sup>3</sup>                         | R <sup>5a</sup> 5                  | R <sup>5b</sup>                          |
| No.    |                   |                       |                                        |                                    |                  | 1        | :                 |                       |                                        |                                    |                                          |
| 1      | Н                 |                       | 2-CH <sub>3</sub>                      | CH <sub>3</sub>                    | 7-F              | 37       | Н                 | -00-                  | 2-CH <sub>3</sub>                      | CH₃                                | 7-0CH <sub>3</sub>                       |
| 2      | . н               |                       | 2-CH <sub>3</sub><br>2-CH <sub>3</sub> | CH <sub>3</sub><br>CH <sub>3</sub> | 7-F<br>7-F       | 38       | H                 |                       | 2-CH <sub>3</sub><br>2-CH <sub>3</sub> | CH <sub>3</sub><br>CH <sub>3</sub> | 7-0CH <sub>3</sub><br>7-0CH <sub>3</sub> |
| 3<br>4 |                   | _                     | 2-CH <sub>3</sub>                      | CH <sub>3</sub>                    | 7-F              | 39<br>40 | 4-CH <sub>3</sub> | _                     | -                                      | CH <sub>3</sub>                    | 7-00H <sub>3</sub>                       |
| 5      |                   |                       | 2-CH <sub>3</sub>                      | CH <sub>3</sub>                    | 7-F              | 41       | 4-CH <sub>3</sub> |                       | 2-CH <sub>3</sub>                      | CH <sub>3</sub>                    | 7-00H <sub>3</sub>                       |
| 6      | ,                 | _                     | 2-CH <sub>3</sub>                      | CH <sub>3</sub>                    | 7-F              | 42       | 4-CH <sub>3</sub> | _                     | 2-CH <sub>3</sub>                      | CH <sub>3</sub>                    | 7-00H <sub>3</sub>                       |
| 7      | 4-CI              | _                     | 2-CH <sub>3</sub>                      | CH <sub>3</sub>                    | 7-F              | 43       | 4-CI              | -CO-                  | _                                      | CH <sub>3</sub>                    | 7-00H <sub>3</sub>                       |
| 8      | 4-CI              |                       | 2-CH <sub>3</sub>                      | CH <sub>3</sub>                    | 7-F              | 44       | 4-CI              |                       | 2-CH <sub>3</sub>                      | CH <sub>3</sub>                    | 7-0CH <sub>3</sub>                       |
| 9      | 4-CI              | _                     | 2-CH <sub>3</sub>                      | CH <sub>3</sub>                    | 7-F              | 45       | 4-CI              | _                     | 2-CH <sub>3</sub>                      | CH <sub>3</sub>                    | 7-OCH <sub>3</sub>                       |
| 10     | 4-F               |                       | 2-CH <sub>3</sub>                      | CH <sub>3</sub>                    | 7-F              | 46       | 4-F               | -CO-                  |                                        | CH <sub>3</sub>                    | 7-OCH <sub>3</sub>                       |
| 11     | 4-F               |                       | 2-CH <sub>3</sub>                      | CH <sub>3</sub>                    | 7-F              | 47       | 4-F               |                       | 2-CH <sub>3</sub>                      | CH <sub>3</sub>                    | 7-OCH <sub>3</sub>                       |
| 12     | 4-F               |                       | 2-CH <sub>3</sub>                      | CH <sub>3</sub>                    | 7-F              | 48       | 4-F               | -                     | 2-CH <sub>3</sub>                      | CH <sub>3</sub>                    | 7-0CH <sub>3</sub>                       |
| 13     | н                 | -CO-                  | 2-CI                                   | CH <sub>3</sub>                    | 7-F              | 49       | Н                 | -co-                  | 2-CI                                   | CH <sub>3</sub>                    | 7-0CH <sub>3</sub>                       |
| 14     | н                 | -SO <sub>2</sub> -    |                                        | CH <sub>3</sub>                    | 7-F              | 50       | Н                 | -802-                 |                                        | CH <sub>3</sub>                    | 7-OCH <sub>3</sub>                       |
| 15     | н                 | -CH <sub>2</sub> -    | 2-CI                                   | CH <sub>3</sub>                    | 7-F              | 51       | Н                 | -CH <sub>2</sub> -    | 2-C1                                   | CH <sub>3</sub>                    | 7-0CH <sub>3</sub>                       |
| 16     | 4-CH <sub>3</sub> | _                     | 2-CI                                   | CH <sub>3</sub>                    | 7-F              | 52       | 4-CH <sub>3</sub> | -CO-                  | 2-CI                                   | CH <sub>3</sub>                    | 7-0CH <sub>3</sub>                       |
| 17     | 4-CH <sub>3</sub> |                       |                                        | CH <sub>3</sub>                    | 7-F              | 53       | 4-CH <sub>3</sub> | -SO <sub>2</sub> -    | 2-CI                                   | CH <sub>3</sub>                    | 7-OCH <sub>3</sub>                       |
| 18     | 4-CH <sub>3</sub> | _                     | 2-CI                                   | CH <sub>3</sub>                    | 7-F              | 54       | 4-CH <sub>3</sub> | -CH <sub>2</sub> -    | 2-CI                                   | CH <sub>3</sub>                    | 7-0CH <sub>3</sub>                       |
| 19     | 4-CI              | -co-                  | 2-CI                                   | CH <sub>3</sub>                    | 7-F              | 55       | 4-CI              | -co-                  | 2-CI                                   | CH <sub>3</sub>                    | 7-0CH <sub>3</sub>                       |
| 20     | 4-Ci              | -SO <sub>2</sub> -    | 2-CI                                   | CH <sub>3</sub>                    | 7-F              | 56       | 4-CI              | -SO <sub>2</sub> -    | 2-C1                                   | CH <sub>3</sub>                    | 7-0CH <sub>3</sub>                       |
| 21     | 4-CI              | -CH <sub>2</sub> -    | 2-CI                                   | CH <sub>3</sub>                    | 7-F              | 57       | 4-CI              | -CH <sub>2</sub> -    | 2-CI                                   | CH <sub>3</sub>                    | 7-OCH <sub>3</sub>                       |
| 22     | 4-F               | -co-                  | 2-CI                                   | CH <sub>3</sub>                    | 7-F              | 58       | 4-F               | -co-                  | 2-CI                                   | CH <sub>3</sub>                    | 7-OCH <sub>3</sub>                       |
| 23     | 4-F               | -SO <sub>2</sub> -    | 2-CI                                   | CH <sub>3</sub>                    | 7-F              | 59       | 4-F               | -SO <sub>2</sub> -    | 2-CI                                   | CH <sub>3</sub>                    | 7-0CH <sub>3</sub>                       |
| 24     | 4-F               | -CH <sub>2</sub> -    | 2-CI                                   | CH <sub>3</sub>                    | 7-F              | 60       | 4-F               | -CH <sub>2</sub> -    | 2-CI                                   | CH <sub>3</sub>                    | 7-OCH <sub>3</sub>                       |
| 25     | Н                 | -co-                  | 2-F                                    | CH <sub>3</sub>                    | 7-F              | 61       | Н                 | -co-                  | 2-F                                    | CH <sub>3</sub>                    | 7-0CH <sub>3</sub>                       |
| 26     | Н                 | -SO <sub>2</sub> -    | 2 <b>-</b> F                           | CH <sub>3</sub>                    | 7-F              | 62       | Н                 | -SO <sub>2</sub> -    | 2-F                                    | CH <sub>3</sub>                    | 7-0CH <sub>3</sub>                       |
| 27     | Н                 | -CH <sub>2</sub> -    | 2-F                                    | CH <sub>3</sub>                    | 7-F              | 63       | Н                 | -CH <sub>2</sub> -    | 2-F                                    | CH <sub>3</sub>                    | 7-0CH <sub>3</sub>                       |
| 28     | 4-CH <sub>3</sub> | -co-                  | 2 <b>-</b> F                           | CH <sub>3</sub>                    | 7-F              | 64       | 4-CH <sub>3</sub> | -co-                  | 2-F                                    | CH <sub>3</sub>                    | 7-OCH <sub>3</sub>                       |
| 29     | 4-CH <sub>3</sub> | -SO <sub>2</sub> -    | 2 <b>-</b> F                           | CH <sub>3</sub>                    | 7-F              | 65       | 4-CH <sub>3</sub> | -SO <sub>2</sub> -    | 2-F                                    | CH <sub>3</sub>                    | 7-OCH <sub>3</sub>                       |
| 30     | 4-CH <sub>3</sub> | -CH <sub>2</sub> -    | 2-F                                    | CH <sub>3</sub>                    | 7-F              | 66       | 4-CH <sub>3</sub> | -CH <sub>2</sub> -    | 2 <b>-F</b>                            | CH <sub>3</sub>                    | 7-OCH <sub>3</sub>                       |
| 31     | 4-CI              | -co-                  | 2-F                                    | CH <sub>3</sub>                    | 7-F              | 67       | 4-CI              | -co-                  | 2-F                                    | CH <sub>3</sub>                    | 7-0CH <sub>3</sub>                       |
| 32     | 4-CI              | -SO <sub>2</sub> -    | 2 <b>-</b> F                           | CH <sub>3</sub>                    | 7-F              | 68       | 4-CI              | -SO <sub>2</sub> -    | 2-F                                    | CH <sub>3</sub>                    | 7-0CH <sub>3</sub>                       |
| 33     | 4-CI              | -CH <sub>2</sub> -    | 2-F                                    | CH <sub>3</sub>                    | 7-F              | 69       | 4-CI              | -CH <sub>2</sub> -    | 2-F                                    | CH <sub>3</sub>                    | 7-0CH <sub>3</sub>                       |
| 34     | 4-F               | -co-                  | 2-F                                    | CH <sub>3</sub>                    | 7-F              | 70       | 4-F               | -CO-                  | 2-F                                    | CH <sub>3</sub>                    | 7-OCH <sub>3</sub>                       |
| 35     | 4-F               | -SO <sub>2</sub> -    | 2-F                                    | CH <sub>3</sub>                    | 7-F              | 71       | 4-F               | -SO <sub>2</sub> -    | 2-F                                    | CH <sub>3</sub>                    | 7-OCH <sub>3</sub>                       |
| 36     | 4-F               | -CH <sub>2</sub> -    | 2-F                                    | CH <sub>3</sub>                    | i                | 72       | 4-F               | -CH <sub>2</sub> -    | 2-F                                    | CH <sub>3</sub>                    | 7-0CH <sub>3</sub>                       |
|        |                   |                       |                                        |                                    |                  | -        |                   |                       |                                        |                                    |                                          |

|          | ٥                         | ` <b>о</b> н                             |                   |                                    | 表                         | 4        |                           | ОН                                       |                                        |                                    |                 |
|----------|---------------------------|------------------------------------------|-------------------|------------------------------------|---------------------------|----------|---------------------------|------------------------------------------|----------------------------------------|------------------------------------|-----------------|
|          | $R^2 \xrightarrow{6} 4$   | -ŅH                                      |                   | (I-A                               | a)                        |          | $R^2 \frac{6}{5}$         | ŅH                                       |                                        | (I-A                               | <b>/P)</b>      |
|          | ·                         | 2 / R <sup>3</sup> 3                     | <b>~</b>          | 0 8<br>N 5<br>R 5                  | 7<br>R <sup>5b</sup><br>6 | ŧ        | たは                        | 2 R3                                     | 30"                                    | 0 8<br>N 5<br>R 5                  |                 |
| No.      | R <sup>2</sup>            | E                                        | R <sup>3</sup>    | R <sup>5a</sup>                    | R <sup>5b</sup>           | No.      | R <sup>2</sup>            | E                                        | R <sup>3</sup>                         | R <sup>5a</sup>                    | R <sup>5b</sup> |
| 1        | Н                         | -co-                                     | 2-CH <sub>3</sub> | CH <sub>3</sub>                    | 6-CH <sub>3</sub>         | 37       | Н                         | -co-                                     | 2-CH <sub>3</sub>                      | CH3                                | 6-F             |
| 2        | н                         | _                                        | 2-CH <sub>3</sub> | CH <sub>3</sub>                    | 6-CH <sub>3</sub>         | 38       | Н                         | -SO <sub>2</sub> -                       | 2-CH <sub>3</sub>                      | CH <sub>3</sub>                    | 6-F             |
| 3        | H                         |                                          | 2-CH <sub>3</sub> | CH <sub>3</sub>                    | 6-CH <sub>3</sub>         | 39       | Н                         | -CH <sub>2</sub> -                       | 2-CH <sub>3</sub>                      | CH <sub>3</sub>                    | 6-F             |
| 4        | 4-CH <sub>3</sub>         |                                          | -                 | CH <sub>3</sub>                    | 6-CH <sub>3</sub>         | 40       | 4-CH <sub>3</sub>         | -co-                                     | 2-CH <sub>3</sub>                      | CH3                                | 6-F             |
| 5        | 4-CH₃                     |                                          | 2-CH <sub>3</sub> | CH <sub>3</sub>                    | 6-CH <sub>3</sub>         | 41       | 4-CH <sub>3</sub>         | -SO <sub>2</sub> -                       | 2-CH <sub>3</sub>                      | CH <sub>3</sub>                    | 6-F             |
| 6        | 4-CH <sub>3</sub><br>4-CI | -CH <sub>2</sub> -                       | 2-CH <sub>3</sub> | CH <sub>3</sub><br>CH <sub>3</sub> | 6-CH <sub>3</sub>         | 42       | 4-CH <sub>3</sub><br>4-CI | -CH <sub>2</sub> -                       | 2-CH <sub>3</sub><br>2-CH <sub>3</sub> | CH <sub>3</sub>                    | 6-F             |
| 7<br>8   | 4-CI                      |                                          | 2-CH <sub>3</sub> | CH <sub>3</sub>                    | 6-CH <sub>3</sub>         | 43<br>44 | 4-CI                      | -SO <sub>2</sub> -                       | 2-CH <sub>3</sub>                      | CH <sub>3</sub>                    | 6-F<br>6-F      |
| 9        | 4-CI                      | _                                        | 2-CH <sub>3</sub> | CH <sub>3</sub>                    | 6-CH <sub>3</sub>         | 45       | 4-CI                      | -CH <sub>2</sub> -                       | 2-CH <sub>3</sub>                      | CH <sub>3</sub>                    | 6-F             |
| 10       | 4-F                       | -CO-                                     | 2-CH <sub>3</sub> | CH <sub>3</sub>                    | 6-CH <sub>3</sub>         | 46       | 4-F                       | -CO-                                     | 2-CH <sub>3</sub>                      | CH <sub>3</sub>                    | 6-F             |
| 11       | 4-F                       |                                          | 2-CH <sub>3</sub> | CH <sub>3</sub>                    | 6-CH <sub>3</sub>         | 47       | 4-F                       | -SO <sub>2</sub> -                       | 2-CH <sub>3</sub>                      | CH <sub>3</sub>                    | 6-F             |
| 12       | 4-F                       | _                                        | 2-CH <sub>3</sub> | CH <sub>3</sub>                    | 6-CH <sub>3</sub>         | 48       | 4-F                       | -CH <sub>2</sub> -                       | 2-CH <sub>3</sub>                      | CH <sub>3</sub>                    | 6-F             |
| 13       | н                         | -co-                                     | 2-CI              | CH <sub>3</sub>                    | 6-CH <sub>3</sub>         | 49       | Н                         | -co-                                     | 2-CI                                   | CH <sub>3</sub>                    | 6-F             |
| 14       | Н                         | -SO <sub>2</sub> -                       | 2-CI              | CH <sub>3</sub>                    | 6-CH <sub>3</sub>         | 50       | Н                         | -SO <sub>2</sub> -                       | 2-CI                                   | CH <sub>3</sub>                    | 6-F             |
| 15       | Н                         | -CH <sub>2</sub> -                       | 2-CI              | CH <sub>3</sub>                    | 6-CH <sub>3</sub>         | 51       | H                         | -CH <sub>2</sub> -                       | 2-CI                                   | CH <sub>3</sub>                    | 6-F             |
| 16       | 4-CH <sub>3</sub>         | -co-                                     | 2-CI              | CH <sub>3</sub>                    | 6-CH <sub>3</sub>         | 52       | 4-CH <sub>3</sub>         | -co-                                     | 2-CI                                   | CH <sub>3</sub>                    | 6-F             |
| 17       | 4-CH <sub>3</sub>         | -SO <sub>2</sub> -                       | 2-C1              | CH <sub>3</sub>                    | 6-CH <sub>3</sub>         | 53       | 4-CH <sub>3</sub>         | -SO <sub>2</sub> -                       | 2-CI                                   | CH3                                | 6-F             |
| 18       | 4-CH <sub>3</sub>         | _                                        | 2-CI              | CH <sub>3</sub>                    | 6-CH <sub>3</sub>         | 54       | 4-CH <sub>3</sub>         | -CH <sub>2</sub> -                       | 2-CI                                   | CH <sub>3</sub>                    | 6-F             |
| 19       | 4-CI                      | -co-                                     | 2-CI              | CH <sub>3</sub>                    | 6-CH <sub>3</sub>         | 55       | 4-CI                      | -co-                                     | 2-CI                                   | CH <sub>3</sub>                    | 6-F             |
| 20       | 4-CI                      | -SO <sub>2</sub> -                       | 2-CI              | CH <sub>3</sub>                    | 6-CH <sub>3</sub>         | 56       | 4-CI                      | -SO <sub>2</sub> -                       | 2-CI                                   | CH <sub>3</sub>                    | 6-F             |
| 21       | 4-CI                      | -CH <sub>2</sub> -                       | 2-CI              | CH <sub>3</sub>                    | 6-CH <sub>3</sub>         | 57       | 4-CI                      | -CH <sub>2</sub> -                       | 2-CI                                   | CH <sub>3</sub>                    | 6-F             |
| 22       | 4-F                       | -co-                                     | 2-CI              | CH <sub>3</sub>                    | 6-CH <sub>3</sub>         | 58       | 4-F                       | -co-                                     | 2-CI                                   | CH <sub>3</sub>                    | 6-F             |
| 23       | 4-F                       | -SO <sub>2</sub> -                       | 2-CI              | CH <sub>3</sub>                    | 6-CH <sub>3</sub>         | 59       | 4-F                       | -SO <sub>2</sub> -                       | 2-CI                                   | CH <sub>3</sub>                    | 6-F             |
| 24       | 4-F                       | -CH <sub>2</sub> -                       | 2-CI              | CH <sub>3</sub>                    | 6-CH <sub>3</sub>         | 60       | 4-F                       | -CH <sub>2</sub> -                       | 2-CI                                   | CH <sub>3</sub>                    | 6-F             |
| 25       | H                         | -CO-                                     | 2-F<br>2-F        | CH3                                | 6-CH <sub>3</sub>         | 61       | H                         | -co-                                     | 2-F                                    | CH <sub>3</sub>                    | 6-F             |
| 26<br>27 | H<br>H                    | -SO <sub>2</sub> -<br>-CH <sub>2</sub> - | 2-F               | CH <sub>3</sub><br>CH <sub>3</sub> | 6-CH <sub>3</sub>         | 62       | H                         | -SO <sub>2</sub> -<br>-CH <sub>2</sub> - | 2-F<br>2-F                             | CH <sub>3</sub><br>CH <sub>3</sub> | 6-F<br>6-F      |
| 28       | 4-CH₃                     |                                          | 2-F               | CH <sub>3</sub>                    | 6-CH <sub>3</sub>         | 63<br>64 | 4-CH <sub>3</sub>         | _                                        | 2-F                                    | CH <sub>3</sub>                    | 6-F             |
| 29       | 4-CH <sub>3</sub>         |                                          | 2-F               | CH <sub>3</sub>                    | 6-CH <sub>3</sub>         | 65       | 4-CH <sub>3</sub>         | -SO <sub>2</sub> -                       | 2-F                                    | CH <sub>3</sub>                    | 6-F             |
| 30       | 4-CH <sub>3</sub>         | -CH <sub>2</sub> -                       | 2-F               | CH <sub>3</sub>                    | 6-CH <sub>3</sub>         | 66       | 4-CH <sub>3</sub>         | -GU <sub>2</sub> -                       | 2-F                                    | CH <sub>3</sub>                    | 6-F             |
| 31       | 4-CI                      | -CO-                                     | 2-F               | CH <sub>3</sub>                    | 6-CH <sub>3</sub>         | 67       | 4-CI                      | -CO-                                     | 2-F                                    | CH <sub>3</sub>                    | 6-F             |
| 32       | 4-CI                      | -SO <sub>2</sub> -                       | 2-F               | CH <sub>3</sub>                    | 6-CH <sub>3</sub>         | 68       | 4-CI                      | -SO <sub>2</sub> -                       | 2-F                                    | CH <sub>3</sub>                    | 6-F             |
| 33       | 4-CI                      | -CH <sub>2</sub> -                       | 2-F               | CH <sub>3</sub>                    | 6-CH <sub>3</sub>         | 69       | 4-CI                      | -CH <sub>2</sub> -                       | 2-F                                    | CH <sub>3</sub>                    | 6-F             |
| 34       | 4-F                       | -co-                                     | 2 <b>-</b> F      | CH <sub>3</sub>                    | 6-CH <sub>3</sub>         | 70       | 4-F                       | -CO-                                     | 2-F                                    | CH <sub>3</sub>                    | 6-F             |
| 35       | 4-F                       | -SO <sub>2</sub> -                       | 2 <b>-</b> F      | CH <sub>3</sub>                    | 6-CH <sub>3</sub>         | 71       | 4-F                       | -SO <sub>2</sub> -                       | 2-F                                    | CH <sub>3</sub>                    | 6-F             |
| 36       | 4-F                       | -CH <sub>2</sub> -                       | 2-F               | CH <sub>3</sub>                    | 6-CH <sub>3</sub>         |          | 4-F                       | -CH <sub>2</sub> -                       | 2 <b>-F</b>                            | CH <sub>3</sub>                    | 6-F             |
|          | =                         |                                          |                   |                                    |                           | •        |                           |                                          |                                        |                                    |                 |

|     | ٥                   | OH )                |                   |                    | 麦                          | 6   |                   | ОН                   |                   |                    |                      |
|-----|---------------------|---------------------|-------------------|--------------------|----------------------------|-----|-------------------|----------------------|-------------------|--------------------|----------------------|
| ı   | $R^2 = \frac{6}{5}$ | _ŃΗ                 |                   | (I-Aa              | )                          |     | $R^2 \frac{6}{5}$ | МH                   |                   | (I-A               | b)                   |
|     | •                   | 2 R3 3              | گهمر              | 0 8<br>N 5<br>R 5a | 7<br>—R <sup>5b</sup><br>6 | また  | H                 | 2 / R <sup>3</sup> 3 | o/"(              | 0 8<br>N 5<br>R 5a | 7<br>R <sup>5b</sup> |
| No. | R <sup>2</sup>      | E                   | R <sup>3</sup>    | R <sup>5a</sup>    | R <sup>5b</sup>            | No. | R <sup>2</sup>    | E                    | R <sup>3</sup>    | R <sup>5a</sup>    | R <sup>5b</sup>      |
| 1   | Н                   | -co-                | 2-CH <sub>3</sub> | CH <sub>3</sub>    | 5-CH <sub>3</sub>          | 37  | Н                 | -co-                 | 2-CH <sub>3</sub> | CH <sub>3</sub>    | 5-OCH <sub>3</sub>   |
| 2   | Н                   | -\$O <sub>2</sub> - | 2-CH <sub>3</sub> | CH <sub>3</sub>    | 5-CH <sub>3</sub>          | 38  | н                 | -SO <sub>2</sub> -   | 2-CH <sub>3</sub> | CH <sub>3</sub>    | 5-OCH <sub>3</sub>   |
| 3   | н                   | -CH <sub>2</sub> -  | 2-CH <sub>3</sub> | CH <sub>3</sub>    | 5-CH <sub>3</sub>          | 39  | Н                 | -CH <sub>2</sub> -   | 2-CH <sub>3</sub> | CH <sub>3</sub>    | 5-OCH <sub>3</sub>   |
| 4   | 4-CH₃               | -co-                | 2-CH <sub>3</sub> | CH <sub>3</sub>    | 5-CH <sub>3</sub>          | 40  | 4-CH <sub>3</sub> | -co-                 | 2-CH <sub>3</sub> | CH <sub>3</sub>    | 5-OCH <sub>3</sub>   |
| 5   | 4-CH <sub>3</sub>   | -SO <sub>2</sub> -  | 2-CH <sub>3</sub> | CH <sub>3</sub>    | 5-CH <sub>3</sub>          | 41  | 4-CH <sub>3</sub> | -SO <sub>2</sub> -   | 2-CH <sub>3</sub> | CH <sub>3</sub>    | 5-OCH <sub>3</sub>   |
| 6   | 4-CH₃               | -CH <sub>2</sub> -  | 2-CH <sub>3</sub> | CH <sub>3</sub>    | 5-CH <sub>3</sub>          | 42  | 4-CH <sub>3</sub> | -CH <sub>2</sub> -   | 2-CH <sub>3</sub> | CH <sub>3</sub>    | 5-OCH <sub>3</sub>   |
| 7   | 4-CI                | -CO-                | 2-CH <sub>3</sub> | CH <sub>3</sub>    | 5-CH <sub>3</sub>          | 43  | 4-CI              | -co-                 | 2-CH <sub>3</sub> | CH <sub>3</sub>    | 5-OCH <sub>3</sub>   |
| 8   | 4-CI                | -SO <sub>2</sub> -  | 2-CH <sub>3</sub> | CH <sub>3</sub>    | 5-CH <sub>3</sub>          | 44  | 4-CI              | -SO <sub>2</sub> -   | 2-CH <sub>3</sub> | CH <sub>3</sub>    | 5-0CH <sub>3</sub>   |
| 9   | 4-CI                | -CH <sub>2</sub> -  | 2-CH <sub>3</sub> | CH <sub>3</sub>    | 5-CH <sub>3</sub>          | 45  | 4-CI              | -CH <sub>2</sub> -   | 2-CH <sub>3</sub> | CH <sub>3</sub>    | 5-OCH <sub>3</sub>   |
| 10  | 4-F                 | -co-                | 2-CH <sub>3</sub> | CH <sub>3</sub>    | 5-CH <sub>3</sub>          | 46  | 4-F               | -co-                 | 2-CH <sub>3</sub> | CH <sub>3</sub>    | 5-OCH <sub>3</sub>   |
| 11  | 4-F                 | -SO <sub>2</sub> -  | 2-CH <sub>3</sub> | CH <sub>3</sub>    | 5-CH <sub>3</sub>          | 47  | 4-F               | -SO <sub>2</sub> -   | 2-CH <sub>3</sub> | CH <sub>3</sub>    | 5-OCH <sub>3</sub>   |
| 12  | 4-F                 | -CH <sub>2</sub> -  | 2-CH <sub>3</sub> | CH <sub>3</sub>    | 5-CH <sub>3</sub>          | 48  | 4-F               | -CH <sub>2</sub> -   | 2-CH <sub>3</sub> | CH <sub>3</sub>    | 5-OCH <sub>3</sub>   |
| 13  | Н                   | -CO-                | 2-CI              | CH <sub>3</sub>    | 5-CH <sub>3</sub>          | 49  | H                 | -CO-                 | 2-CI              | CH <sub>3</sub>    | 5-OCH <sub>3</sub>   |
| 14  | H                   | -SO <sub>2</sub> -  | 2-C1              | CH <sub>3</sub>    | 5-CH <sub>3</sub>          | 50  | H                 | -SO <sub>2</sub> -   | 2-CI              | CH <sub>3</sub>    | 5-OCH <sub>3</sub>   |
| 15  | Н                   | -CH <sub>2</sub> -  | 2-CI              | CH <sub>3</sub>    | 5-CH <sub>3</sub>          | 51  | H                 | -CH <sub>2</sub> -   | 2-CI              | CH <sub>3</sub>    | 5-OCH <sub>3</sub>   |
| 16  | 4-CH <sub>3</sub>   |                     | 2-CI              | CH <sub>3</sub>    | 5-CH <sub>3</sub>          | 52  | 4-CH <sub>3</sub> | -co-                 | 2-CI              | CH <sub>3</sub>    | 5-0CH <sub>3</sub>   |
| 17  | 4-CH <sub>3</sub>   | -SO <sub>2</sub> -  | 2-CI              | CH <sub>3</sub>    | 5-CH <sub>3</sub>          | 53  | 4-CH <sub>3</sub> | -SO <sub>2</sub> -   | 2-CI              | CH <sub>3</sub>    | 5-0CH <sub>3</sub>   |
| 18  | 4-CH <sub>3</sub>   | -CH <sub>2</sub> -  | 2-CI              | CH <sub>3</sub>    | 5-CH <sub>3</sub>          | 54  | 4-CH <sub>3</sub> | -CH <sub>2</sub> -   | 2-CI              | CH <sub>3</sub>    | 5-OCH <sub>3</sub>   |
| 19  | 4-CI                | -co-                | 2-CI              | CH <sub>3</sub>    | 5-CH <sub>3</sub>          | 55  | 4-CI              | -co-                 | 2-CI              | CH <sub>3</sub>    | 5-OCH <sub>3</sub>   |
| 20  | 4-CI                | -SO <sub>2</sub> -  | 2-CI              | CH <sub>3</sub>    | 5-CH <sub>3</sub>          | 56  | 4-CI              | -SO <sub>2</sub> -   | 2-CI              | CH <sub>3</sub>    | 5-OCH <sub>3</sub>   |
| 21  | 4-CI                | -CH <sub>2</sub> -  | 2-CI              | CH <sub>3</sub>    | 5-CH <sub>3</sub>          | 57  | 4-CI              | -CH <sub>2</sub> -   | 2-C1              | CH <sub>3</sub>    | 5-OCH <sub>3</sub>   |
| 22  | 4-F                 | -co-                | 2-CI              | CH <sub>3</sub>    | 5-CH <sub>3</sub>          | 58  | 4-F               | -co-                 | 2-CI              | CH <sub>3</sub>    | 5-OCH <sub>3</sub>   |
| 23  | 4-F                 | -SO <sub>2</sub> -  | 2-CI              | CH <sub>3</sub>    | 5-CH <sub>3</sub>          | 59  | 4-F               | -SO <sub>2</sub> -   | 2-CI              | CH <sub>3</sub>    | 5-OCH <sub>3</sub>   |
| 24  | 4-F                 | -CH <sub>2</sub> -  | 2-Ci              | CH <sub>3</sub>    | 5-CH <sub>3</sub>          | 60  | 4-F               | -CH <sub>2</sub> -   | 2-CI              | CH <sub>3</sub>    | 5-OCH <sub>3</sub>   |
| 25  | Н                   | -co-                | 2-F               | CH <sub>3</sub>    | 5-CH <sub>3</sub>          | 61  | Н                 | <b>-co-</b>          | 2-F               | CH <sub>3</sub>    | 5-OCH <sub>3</sub>   |
| 26  | Н                   | -SO <sub>2</sub> -  | 2-F               | CH <sub>3</sub>    | 5-CH <sub>3</sub>          | 62  | Н                 | -SO <sub>2</sub> -   | 2-F               | CH <sub>3</sub>    | 5-OCH <sub>3</sub>   |
| 27  | Н                   | -CH <sub>2</sub> -  | 2-F               | CH <sub>3</sub>    | 5-CH <sub>3</sub>          | 63  | Н                 | -CH <sub>2</sub> -   | 2-F               | CH <sub>3</sub>    | 5-OCH <sub>3</sub>   |
| 28  | 4-CH <sub>3</sub>   | -co-                | 2-F               | CH <sub>3</sub>    | 5-CH <sub>3</sub>          | 64  | 4-CH <sub>3</sub> | -co-                 | 2-F               | CH <sub>3</sub>    | 5-OCH <sub>3</sub>   |
| 29  | 4-CH <sub>3</sub>   | -SO <sub>2</sub> -  | 2-F               | CH <sub>3</sub>    | 5-CH <sub>3</sub>          | 65  | 4-CH <sub>3</sub> | -SO <sub>2</sub> -   | 2-F               | CH <sub>3</sub>    | 5-OCH <sub>3</sub>   |
| 30  | 4-CH <sub>3</sub>   | -CH <sub>2</sub> -  | 2-F               | CH <sub>3</sub>    | 5-CH <sub>3</sub>          | 66  | 4-CH <sub>3</sub> | -CH <sub>2</sub> -   | 2-F               | CH <sub>3</sub>    | 5-OCH <sub>3</sub>   |
| 31  | 4-CI                | -co-                | 2-F               | CH <sub>3</sub>    | 5-CH <sub>3</sub>          | 67  | 4-CI              | -CO-                 | 2-F               | CH <sub>3</sub>    | 5-OCH <sub>3</sub>   |
| 32  | 4-CI                | -SO <sub>2</sub> -  | 2-F               | CH <sub>3</sub>    | 5-CH <sub>3</sub>          | 68  | 4-CI              | -SO <sub>2</sub> -   | 2-F               | CH <sub>3</sub>    | 5-OCH <sub>3</sub>   |
| 33  | 4-CI                | -CH <sub>2</sub> -  | 2-F               | CH <sub>3</sub>    | 5-CH <sub>3</sub>          | 69  | 4-CI              | -CH <sub>2</sub> -   | 2-F               | CH <sub>3</sub>    | 5-OCH <sub>3</sub>   |
| 34  | 4-F                 | -co-                | 2-F               | CH <sub>3</sub>    | 5-CH <sub>3</sub>          | 70  | 4-F               | -co-                 | 2-F               | CH <sub>3</sub>    | 5-OCH <sub>3</sub>   |
| 35  | 4-F                 | -SO <sub>2</sub> -  | 2-F               | CH <sub>3</sub>    | 5-CH <sub>3</sub>          | 71  | 4-F               | -502-                | 2-F               | CH <sub>3</sub>    | 5-OCH <sub>3</sub>   |
| 36  | 4-F                 | -CH <sub>2</sub> -  | 2 <b>-</b> F      | CH <sub>3</sub>    | 5-CH <sub>3</sub>          | 72  | 4-F               | -CH <sub>2</sub> -   | 2-F               | CH <sub>3</sub>    | 5-OCH <sub>3</sub>   |

| ,        |                                        | D.                         |                   |                                    | 麦                          | <u>. 7</u> | (                                      | D<br>L                     |                   |                                    |                        |
|----------|----------------------------------------|----------------------------|-------------------|------------------------------------|----------------------------|------------|----------------------------------------|----------------------------|-------------------|------------------------------------|------------------------|
|          | $R^2 \xrightarrow{6}$                  | Г <sup>и́н</sup>           |                   | (I-Aa                              | )                          |            | $R^2 = 6$                              | ј<br>ј<br>Д                |                   | (I-A                               | <b>7</b> P)            |
|          | •                                      | 2 / R <sup>3</sup> 3       | <b>)</b> ~(       | 8<br>N 5<br>R 5                    | 7<br>—R <sup>5b</sup><br>6 | また         | は                                      | 2 R3 3                     | o"(               | O 8<br>N 5<br>R 5a                 | 7<br>6 R <sup>5b</sup> |
| No.      | R <sup>2</sup>                         | E                          | R <sup>3</sup>    | R <sup>5a</sup>                    | R <sup>5b</sup>            | No.        | R <sup>2</sup>                         | E                          | R <sup>3</sup>    | R <sup>5a</sup>                    | R <sup>5b</sup>        |
| 1        | 5-CH <sub>3</sub>                      | -co-                       | 2-CH <sub>3</sub> | CH <sub>3</sub>                    | Н                          | 37         | 5-CH <sub>3</sub>                      | -co-                       | 2-CH <sub>3</sub> | CH <sub>3</sub>                    | 7-CH <sub>3</sub> .    |
| 2        | 5-CH <sub>3</sub>                      | -                          | 2-CH <sub>3</sub> | CH <sub>3</sub>                    | H                          | 38         | 5-CH <sub>3</sub>                      | _                          | 2-CH <sub>3</sub> | CH <sub>3</sub>                    | 7-CH <sub>3</sub>      |
| 3        | 5-CH <sub>3</sub>                      | -                          | 2-CH <sub>3</sub> | CH <sub>3</sub>                    | Н                          | 39         | 5-CH <sub>3</sub>                      |                            | 2-CH <sub>3</sub> | CH <sub>3</sub>                    | 7-CH <sub>3</sub>      |
| 4        | 5-CI                                   | -co-                       | 2-CI              | CH <sub>3</sub>                    | Н                          | 40         | 5-CI                                   | -co-                       | 2-CI              | CH <sub>3</sub>                    | 7-CH <sub>3</sub>      |
| 5        | 5-CI                                   | _                          | 2-CI              | CH <sub>3</sub>                    | . Н                        | 41         | 5-CI                                   | -SO <sub>2</sub> -         |                   | CH <sub>3</sub>                    | 7-CH <sub>3</sub>      |
| 6        | 5-CI                                   | _                          | 2-CI              | CH <sub>3</sub>                    | H                          | 42         | 5-CI                                   | -CH <sub>2</sub> -         |                   | CH <sub>3</sub>                    | 7-CH <sub>3</sub>      |
| 7        | 5-CH <sub>3</sub>                      | -CO-                       | 2-CI              | CH <sub>3</sub>                    | H                          | 43         | 5-CH <sub>3</sub><br>5-CH <sub>3</sub> | -CO-<br>-SO <sub>2</sub> - | 2-Cl              | CH <sub>3</sub>                    | 7-CH₃<br>7-CH₃         |
| 8<br>9   | 5-CH <sub>3</sub><br>5-CH <sub>3</sub> | _                          | 2-CI<br>2-CI      | CH <sub>3</sub>                    | Н                          | 44<br>45   | 5-CH <sub>3</sub>                      | -30 <sub>2</sub> -         |                   | CH <sub>3</sub><br>CH <sub>3</sub> | 7-CH <sub>3</sub>      |
| 10       | 5-F                                    | -CO-                       | 2-CI              | CH <sub>3</sub>                    | н                          | 46         | 5-F                                    | -CO-                       |                   | CH <sub>3</sub>                    | 7-CH <sub>3</sub>      |
| 11       | 5-F                                    |                            | 2-CI              | CH <sub>3</sub>                    | н                          | 47         | 5-F                                    | -SO <sub>2</sub> -         |                   | CH <sub>3</sub>                    | 7-CH <sub>3</sub>      |
| 12       | 5-F                                    | -CH <sub>2</sub> -         |                   | CH <sub>3</sub>                    | н                          | 48         | 5-F                                    | -CH <sub>2</sub> -         |                   | CH <sub>3</sub>                    | 7-CH <sub>3</sub>      |
| 13       | 5-CH <sub>3</sub>                      | -co-                       | 2-CH <sub>3</sub> | CH <sub>3</sub>                    | 8-CH <sub>3</sub>          | 49         | 5-CH <sub>3</sub>                      | -co-                       |                   | CH <sub>3</sub>                    | 7-F                    |
| 14       | 5-CH₃                                  | -SO <sub>2</sub> -         | 2-CH <sub>3</sub> | CH <sub>3</sub>                    | 8-CH <sub>3</sub>          | 50         | 5-CH <sub>3</sub>                      | -SO <sub>2</sub> -         | 2-CH <sub>3</sub> | CH <sub>3</sub>                    | 7-F                    |
| 15       | 5-CH <sub>3</sub>                      | -CH <sub>2</sub> -         | 2-CH <sub>3</sub> | CH <sub>3</sub>                    | 8-CH <sub>3</sub>          | 51         | 5-CH <sub>3</sub>                      | -CH <sub>2</sub> -         | 2-CH <sub>3</sub> | CH <sub>3</sub>                    | 7-F                    |
| 16       | 5-CI                                   | -co-                       | 2-CI              | CH <sub>3</sub>                    | 8-CH <sub>3</sub>          | 52         | 5-CI                                   | -co-                       |                   | CH <sub>3</sub>                    | 7-F                    |
| 17       | 5-CI                                   | -SO <sub>2</sub> -         | 2-CI              | CH <sub>3</sub>                    | 8-CH <sub>3</sub>          | 53         | 5-CI                                   | -SO <sub>2</sub> -         |                   | CH3                                | 7-F                    |
| 18       | 5-CI                                   | -CH <sub>2</sub> -         |                   | CH <sub>3</sub>                    | 8-CH <sub>3</sub>          | 54         | 5-CI                                   | -CH <sub>2</sub> -         |                   | CH3                                | 7 <b>-</b> F           |
| 19       | 5-CH <sub>3</sub>                      | -co-                       | 2-CI              | CH <sub>3</sub>                    | 8-CH <sub>3</sub>          | 55         | 5-CH <sub>3</sub>                      | -co-                       |                   | CH <sub>3</sub>                    | 7-F                    |
| 20       | 5-CH <sub>3</sub>                      | -\$0 <sub>2</sub> -        |                   | CH <sub>3</sub>                    | 8-CH <sub>3</sub>          | 56         | 5-CH <sub>3</sub>                      | -SO <sub>2</sub> -         |                   | CH <sub>3</sub>                    | 7-F                    |
| 21       | 5-CH <sub>3</sub>                      | -CH <sub>2</sub> -         |                   | CH <sub>3</sub>                    | 8-CH <sub>3</sub>          | 57         | 5-CH₃                                  | -CH <sub>2</sub> -         |                   | CH <sub>3</sub>                    | 7-F                    |
| 22<br>23 | 5-F<br>5-F                             | -CO-<br>-SO <sub>2</sub> - | 2-CI              | CH <sub>3</sub><br>CH <sub>3</sub> | 8-CH <sub>3</sub>          | 58<br>59   | 5-F<br>5-F                             | -CO-<br>-SO <sub>2</sub> - |                   | CH <sub>3</sub>                    | 7-F<br>7-F             |
| 24       | 5-F                                    | -CH <sub>2</sub> -         |                   | CH <sub>3</sub>                    | 8-CH <sub>3</sub>          | 60         | 5-F                                    | -CH <sub>2</sub> -         |                   | CH <sub>3</sub>                    | 7-F                    |
| 25       | 5-CH <sub>3</sub>                      | -CO-                       | 2-CH <sub>3</sub> | CH <sub>3</sub>                    | 8-F                        | 61         | 5-CH <sub>3</sub>                      | -CO-                       |                   | CH <sub>3</sub>                    | 7-OCH <sub>3</sub>     |
| 26       | 5-CH <sub>3</sub>                      | -SO <sub>2</sub> -         | 2-CH <sub>3</sub> | CH <sub>3</sub>                    | 8-F                        | 62         | 5-CH <sub>3</sub>                      |                            | 2-CH <sub>3</sub> | CH <sub>3</sub>                    | 7-OCH <sub>3</sub>     |
| 27       | 5-CH <sub>3</sub>                      |                            | 2-CH <sub>3</sub> | CH <sub>3</sub>                    | 8-F                        | 63         | 5-CH <sub>3</sub>                      |                            | 2-CH <sub>3</sub> | CH <sub>3</sub>                    | 7-OCH <sub>3</sub>     |
| 28       | 5-CI                                   | -co-                       | 2-CI              | CH <sub>3</sub>                    | 8-F                        | 64         | 5-CI                                   | -co-                       | -                 |                                    | 7-OCH <sub>3</sub>     |
| 29       | 5-CI                                   | -SO <sub>2</sub>           | 2-C1              | CH <sub>3</sub>                    | 8-F                        | 65         | 5-CI                                   | -SO <sub>2</sub> -         | 2-CI              | CH <sub>3</sub>                    | 7-OCH <sub>3</sub>     |
| 30       | 5-CI                                   | -CH <sub>2</sub> -         | 2-CI              | CH <sub>3</sub>                    | 8-F                        | 66         | 5-CI                                   | -CH <sub>2</sub> -         | 2-C1              | CH <sub>3</sub>                    | 7-OCH <sub>3</sub>     |
| 31       | 5-CH <sub>3</sub>                      | -co-                       | 2-Ci              | CH <sub>3</sub>                    | 8-F                        | 67         | 5-CH <sub>3</sub>                      | -co-                       | 2-CI              | CH <sub>3</sub>                    | 7-OCH <sub>3</sub>     |
| 32       | 5-CH <sub>3</sub>                      | -SO <sub>2</sub> -         | 2-C1              | CH <sub>3</sub>                    | 8-F                        | 68         | 5-CH <sub>3</sub>                      | -SO <sub>2</sub> -         |                   | -                                  | 7-0CH <sub>3</sub>     |
| 33       | 5-CH <sub>3</sub>                      | -CH <sub>2</sub> -         | 2-CI              | CH <sub>3</sub>                    | 8-F                        | 69         | 5-CH <sub>3</sub>                      | -CH <sub>2</sub> -         |                   | _                                  | 7-0CH <sub>3</sub>     |
| 34       | 5-F                                    | -CO-                       | 2-CI              | CH <sub>3</sub>                    | 8-F                        | 70         | 5-F                                    | -co-                       |                   | _                                  | 7-0CH <sub>3</sub>     |
| 35       | 5-F                                    | -SO <sub>2</sub> -         | 2-CI              | CH <sub>3</sub>                    | 8-F                        | 71         | 5-F                                    | -SO <sub>2</sub> -         |                   | _                                  | 7-OCH <sub>3</sub>     |
| 36       | 5-F                                    | -CH <sub>2</sub> -         | 2-CI              | CH3                                | 8 <b>-F</b>                | 72         | - 5-F                                  | -CH <sub>2</sub> -         | 2-CI              | CH <sub>3</sub>                    | 7-0CH <sub>3</sub>     |

| No.   R <sup>2</sup>   E   R <sup>3</sup>   R <sup>5b</sup>   R <sup>5b</sup>   R <sup>5b</sup>   R <sup>5b</sup>   R <sup>5c</sup>   R <sup>5c</sup> |     | ر                 | )                  | ٠                 |                     | 麦                      | 8   | (                   | D<br>D             |                   |                 |                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------------|--------------------|-------------------|---------------------|------------------------|-----|---------------------|--------------------|-------------------|-----------------|------------------------|
| No. R² E R³ R⁵s R⁵s No. R² E R³ R⁵s R⁵s R⁵s No. R² E R³ R⁵s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     | R <sup>2</sup> 6  | ŃH                 |                   | (I-A                | a)                     |     | $R^2 = \frac{6}{5}$ | )<br>NH            |                   | (I-A            | <b>7P)</b>             |
| No. R <sup>2</sup> E R <sup>3</sup> R <sup>5a</sup> R <sup>5b</sup> No. R <sup>2</sup> E R <sup>3</sup> R <sup>5a</sup> R <sup>5b</sup> R <sup>5b</sup> 1 5-CH <sub>3</sub> -CO- 2-CH <sub>3</sub> CH <sub>3</sub> 6-CH <sub>3</sub> 2 5-CH <sub>3</sub> -SO <sub>2</sub> 2-CH <sub>5</sub> CH <sub>3</sub> 6-CH <sub>3</sub> 3 5-CH <sub>3</sub> -CO- 2-CH <sub>3</sub> CH <sub>3</sub> 5-CH <sub>3</sub> 4 5-CI -CO- 2-CI CH <sub>3</sub> 6-CH <sub>3</sub> 6 5-CI -SO <sub>2</sub> 2-CI CH <sub>3</sub> 6-CH <sub>3</sub> 6 5-CI -CH <sub>2</sub> 2-CI CH <sub>3</sub> 6-CH <sub>3</sub> 6 5-CI -CH <sub>2</sub> 2-CI CH <sub>3</sub> 6-CH <sub>3</sub> 8 5-CH <sub>3</sub> -SO <sub>2</sub> 2-CI CH <sub>3</sub> 6-CH <sub>3</sub> 8 5-CH <sub>3</sub> -CO- 2-CI CH <sub>3</sub> 6-CH <sub>3</sub> 8 5-CH <sub>3</sub> -CO- 2-CI CH <sub>3</sub> 6-CH <sub>3</sub> 9 5-CH <sub>3</sub> -CO- 2-CI CH <sub>3</sub> 6-CH <sub>3</sub> 9 5-CH <sub>3</sub> -CO- 2-CI CH <sub>3</sub> 6-CH <sub>3</sub> 10 5-F -CO- 2-CI CH <sub>3</sub> 6-CH <sub>3</sub> 11 5-F -SO <sub>2</sub> 2-CI CH <sub>3</sub> 6-CH <sub>3</sub> 12 5-F -CH <sub>2</sub> 2-CI CH <sub>3</sub> 6-CH <sub>3</sub> 13 5-CH <sub>3</sub> -CO- 2-CI CH <sub>3</sub> 6-CH <sub>3</sub> 14 5-CH <sub>3</sub> -CO- 2-CI CH <sub>3</sub> 6-CH <sub>3</sub> 15 5-CH <sub>3</sub> -CO- 2-CI CH <sub>3</sub> 6-CH <sub>3</sub> 16 5-CI -CH <sub>2</sub> 2-CI CH <sub>3</sub> 6-CH <sub>3</sub> 17 5-CH <sub>3</sub> -CO- 2-CI CH <sub>3</sub> 6-CH <sub>3</sub> 18 5-CH <sub>3</sub> -CO- 2-CI CH <sub>3</sub> 6-CH <sub>3</sub> 19 5-CH <sub>3</sub> -CO- 2-CI CH <sub>3</sub> 6-CH <sub>3</sub> 10 5-F -CO- 2-CI CH <sub>3</sub> 6-CH <sub>3</sub> 11 5-F -SO <sub>2</sub> 2-CI CH <sub>3</sub> 6-CH <sub>3</sub> 12 5-F -CH <sub>2</sub> 2-CI CH <sub>3</sub> 6-CH <sub>3</sub> 13 5-CH <sub>3</sub> -CO- 2-CH <sub>3</sub> CH <sub>3</sub> 6-F 14 5-CH <sub>3</sub> -CO- 2-CH <sub>3</sub> CH <sub>3</sub> 6-F 15 5-CH <sub>3</sub> -CO- 2-CH <sub>3</sub> CH <sub>3</sub> 6-F 16 5-CI -CO- 2-CI CH <sub>3</sub> 6-F 17 5-CI -SO <sub>2</sub> 2-CH <sub>3</sub> CH <sub>3</sub> 6-F 18 5-CI -CH <sub>2</sub> 2-CH <sub>3</sub> CH <sub>3</sub> 6-F 19 5-CH <sub>3</sub> -CO- 2-CI CH <sub>3</sub> 6-F 2 5-CH <sub>3</sub> -CO- 2-CI CH <sub>3</sub> 6-F 3 5-CH <sub>3</sub> -CO- 2-CI CH <sub>3</sub> 6-CH <sub>3</sub> 3 5-CH <sub>3</sub> -CO- 2-CI CH <sub>3</sub> 6-COH <sub>3</sub> 3 5-CH <sub>3</sub> -CO- 2-CI CH <sub>3</sub> 6-COH <sub>3</sub> 3 5-CH <sub>3</sub> -CO- 2-CI CH <sub>3</sub> 6-COH <sub>3</sub> 3 5-CH <sub>3</sub> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     | •                 | 21/2               | ا،~ر              | 0 8<br>N 5<br>P5a 5 | 7<br>6 R <sup>5b</sup> | また  | .tt                 | 2//                | o"(               | O 8<br>N 5      | 7<br>6 R <sup>5b</sup> |
| 1 5-CH <sub>3</sub> -CO- 2-CH <sub>3</sub> CH <sub>3</sub> 6-CH <sub>3</sub> 37 5-CH <sub>3</sub> -CO- 2-CH <sub>3</sub> CH <sub>3</sub> 5-F 2-CH <sub>3</sub> -CO- 2-CH <sub>3</sub> CH <sub>3</sub> 6-CH <sub>3</sub> 38 5-CH <sub>3</sub> -SO <sub>2</sub> 2-CH <sub>3</sub> CH <sub>3</sub> 5-F 5-CH <sub>3</sub> -CO- 2-CI CH <sub>3</sub> 6-CH <sub>3</sub> 39 5-CH <sub>3</sub> -CH <sub>2</sub> 2-CI CH <sub>3</sub> 6-CH <sub>3</sub> 40 5-CI -CO- 2-CI CH <sub>3</sub> 6-CH <sub>3</sub> 41 5-CI -SO <sub>2</sub> 2-CI CH <sub>3</sub> 5-F 6-CH <sub>3</sub> -CO- 2-CI CH <sub>3</sub> 6-CH <sub>3</sub> 42 5-CI -CO- 2-CI CH <sub>3</sub> 5-F 7 5-CH <sub>3</sub> -CO- 2-CI CH <sub>3</sub> 6-CH <sub>3</sub> 43 5-CH <sub>3</sub> -CO- 2-CI CH <sub>3</sub> 6-CH <sub>3</sub> 44 5-CH <sub>3</sub> -CO- 2-CI CH <sub>3</sub> 6-CH <sub>3</sub> 44 5-CH <sub>3</sub> -CO- 2-CI CH <sub>3</sub> 6-CH <sub>3</sub> 44 5-CH <sub>3</sub> -CO- 2-CI CH <sub>3</sub> 6-CH <sub>3</sub> 44 5-CH <sub>3</sub> -CO- 2-CI CH <sub>3</sub> 6-CH <sub>3</sub> 45 5-CH <sub>3</sub> -CO- 2-CI CH <sub>3</sub> 6-CH <sub>3</sub> 46 5-F -CO- 2-CI CH <sub>3</sub> 6-CH <sub>3</sub> 47 5-F -SO <sub>2</sub> 2-CI CH <sub>3</sub> 6-CH <sub>3</sub> 12 5-F -CH <sub>2</sub> 2-CI CH <sub>3</sub> 6-CH <sub>3</sub> 48 5-F -CO- 2-CI CH <sub>3</sub> 5-F 11 5-CH <sub>3</sub> -CO- 2-CH <sub>3</sub> CH <sub>3</sub> 6-F 49 5-CH <sub>3</sub> -CO- 2-CH <sub>3</sub> CH <sub>3</sub> 5-CH <sub>3</sub> 13 5-CH <sub>3</sub> -CO- 2-CH <sub>3</sub> CH <sub>3</sub> 6-F 50 5-CH <sub>3</sub> -CO- 2-CI CH <sub>3</sub> 6-F 51 5-CH <sub>3</sub> -CO- 2-CI CH <sub>3</sub> 6-F 52 5-CH <sub>3</sub> -CO- 2-CI CH <sub>3</sub> 5-CO- 2-CI CH <sub>3</sub> 6-F 52 5-CH <sub>3</sub> -CO- 2-CI CH <sub>3</sub> 5-CO- 2-CI CH <sub>3</sub> 6-F 52 5-CH <sub>3</sub> -CO- 2-CI CH <sub>3</sub> 5-CO- 2-CI CH <sub>3</sub> 6-F 52 5-CH <sub>3</sub> -CO- 2-CI CH <sub>3</sub> 5-CO- 2-CI CH <sub>3</sub> 6-F 52 5-CH <sub>3</sub> -CO- 2-CI CH <sub>3</sub> 5-CH <sub>3</sub> 25-CH <sub>3</sub> 5-CH <sub>3</sub> -CO- 2-CI CH <sub>3</sub> 5-CH <sub>3</sub> 25-CH <sub>3</sub> 5-CH <sub>3</sub> -CO- 2-CI CH <sub>3</sub> 6-CO-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | No. | R <sup>2</sup>    | E                  | . R <sup>3</sup>  |                     | R <sup>5b</sup>        | No. | R <sup>2</sup>      | E                  | R <sup>3</sup>    | ••              | R <sup>5b</sup>        |
| 2 5-CH <sub>3</sub> -SO <sub>2</sub> - 2-CH <sub>3</sub> CH <sub>3</sub> 6-CH <sub>3</sub> 38 5-CH <sub>3</sub> -SO <sub>2</sub> - 2-CH <sub>3</sub> CH <sub>3</sub> 5-F 3 5-CH <sub>3</sub> -CH <sub>2</sub> - 2-CH <sub>3</sub> CH <sub>3</sub> 6-CH <sub>3</sub> 40 5-CH -CO- 2-CI CH <sub>3</sub> 6-CH <sub>3</sub>                   |     |                   |                    |                   | CH <sub>3</sub>     | 6-CH₃                  | _   |                     | -co-               | 2-CH <sub>3</sub> | CH <sub>3</sub> |                        |
| 4 5-Ci -CO- 2-Ci CH <sub>3</sub> 6-CH <sub>3</sub> 5 5-Ci -SO <sub>2</sub> - 2-Ci CH <sub>3</sub> 6-CH <sub>3</sub> 6 5-Ci -CH <sub>2</sub> - 2-Ci CH <sub>3</sub> 6-CH <sub>3</sub> 8 5-CH <sub>3</sub> -CO- 2-Ci CH <sub>3</sub> 6-CH <sub>3</sub> 8 5-CH <sub>3</sub> -SO <sub>2</sub> - 2-Ci CH <sub>3</sub> 6-CH <sub>3</sub> 9 5-CH <sub>3</sub> -CO- 2-Ci CH <sub>3</sub> 6-CH <sub>3</sub> 11 5-F -CO- 2-Ci CH <sub>3</sub> 6-CH <sub>3</sub> 12 5-F -CH <sub>2</sub> - 2-Ci CH <sub>3</sub> 6-CH <sub>3</sub> 13 5-CH <sub>3</sub> -CO- 2-Ci CH <sub>3</sub> 6-CH <sub>3</sub> 14 5-CH <sub>3</sub> -CO- 2-Ci CH <sub>3</sub> 5-CH <sub>3</sub> 15 5-CH <sub>3</sub> -CO- 2-Ci CH <sub>3</sub> 6-CH <sub>3</sub> 16 5-F -CO- 2-Ci CH <sub>3</sub> 6-CH <sub>3</sub> 17 5-F -CH <sub>2</sub> - 2-Ci CH <sub>3</sub> 6-CH <sub>3</sub> 18 5-CH <sub>3</sub> -CO- 2-Ci CH <sub>3</sub> 6-CH <sub>3</sub> 19 5-CH <sub>3</sub> -CO- 2-Ci CH <sub>3</sub> 6-CH <sub>3</sub> 10 5-F -CH <sub>2</sub> - 2-Ci CH <sub>3</sub> 6-F 11 5-F -CH <sub>2</sub> - 2-Ci CH <sub>3</sub> 6-F 12 5-F -CH <sub>2</sub> - 2-Ci CH <sub>3</sub> 6-F 13 5-CH <sub>3</sub> -CO- 2-CH <sub>3</sub> CH <sub>3</sub> 6-F 14 5-CH <sub>3</sub> -CO- 2-CH <sub>3</sub> CH <sub>3</sub> 6-F 15 5-CH <sub>3</sub> -CO- 2-Ci CH <sub>3</sub> 6-F 16 5-Ci -CO- 2-Ci CH <sub>3</sub> 6-F 17 5-Ci -SO <sub>2</sub> - 2-Ci CH <sub>3</sub> 6-F 18 5-Ci -CH <sub>2</sub> - 2-Ci CH <sub>3</sub> 6-F 19 5-CH <sub>3</sub> -CO- 2-Ci CH <sub>3</sub> 6-F 10 5-CH <sub>3</sub> -CO- 2-Ci CH <sub>3</sub> 6-F 11 5-CH <sub>3</sub> -CO- 2-Ci CH <sub>3</sub> 6-F 12 5-CH <sub>3</sub> -CO- 2-Ci CH <sub>3</sub> 6-F 13 5-CH <sub>3</sub> -CO- 2-Ci CH <sub>3</sub> 6-F 14 5-CH <sub>2</sub> -CO- 2-Ci CH <sub>3</sub> 6-F 15 5-CH <sub>3</sub> -CO- 2-Ci CH <sub>3</sub> 6-F 16 5-CH <sub>3</sub> -CO- 2-Ci CH <sub>3</sub> 6-F 17 5-CH <sub>3</sub> -CO- 2-Ci CH <sub>3</sub> 6-F 18 5-CH <sub>3</sub> -CO- 2-Ci CH <sub>3</sub> 6-F 19 5-CH <sub>3</sub> -CO- 2-Ci CH <sub>3</sub> 6-F 10 5-CH <sub>3</sub> -CO- 2-Ci CH <sub>3</sub> 6-F 10 5-CH <sub>3</sub> -CO- 2-Ci CH <sub>3</sub> 6-F 11 5-CH <sub>3</sub> -CO- 2-Ci CH <sub>3</sub> 6-F 12 5-CH <sub>3</sub> -CO- 2-Ci CH <sub>3</sub> 6-F 13 5-CH <sub>3</sub> -CO- 2-Ci CH <sub>3</sub> 6-F 14 5-Ci -CO- 2-Ci CH <sub>3</sub> 6-Ci -Ci -Ci CH <sub>3</sub> 5-Ci -Ci -Ci -Ci -Ci CH <sub>3</sub> 5-Ci -Ci -Ci -Ci -Ci -Ci -Ci -Ci -Ci -Ci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | i   | •                 | -SO <sub>2</sub> - | 2-CH <sub>3</sub> | _                   | -                      | 38  | 5-CH <sub>3</sub>   |                    | -                 | _               | 5-F                    |
| 5 5-Cl -SO <sub>2</sub> 2-Cl -CH <sub>3</sub> 6-CH <sub>3</sub> 6 5-Cl -CH <sub>2</sub> 2-Cl -CH <sub>3</sub> 6-CH <sub>3</sub> 7 5-CH <sub>3</sub> -CO- 2-Cl -CH <sub>3</sub> 6-CH <sub>3</sub> 8 5-CH <sub>3</sub> -SO <sub>2</sub> 2-Cl -CH <sub>3</sub> 6-CH <sub>3</sub> 9 5-CH <sub>3</sub> -CH <sub>2</sub> 2-Cl -CH <sub>3</sub> 6-CH <sub>3</sub> 10 5-F -CO- 2-Cl -CH <sub>3</sub> 6-CH <sub>3</sub> 11 5-F -SO <sub>2</sub> 2-Cl -CH <sub>3</sub> 6-CH <sub>3</sub> 11 5-F -SO <sub>2</sub> 2-Cl -CH <sub>3</sub> 6-CH <sub>3</sub> 12 5-F -CH <sub>2</sub> 2-Cl -CH <sub>3</sub> 6-CH <sub>3</sub> 13 5-CH <sub>3</sub> -SO <sub>2</sub> 2-Cl -CH <sub>3</sub> 6-CH <sub>3</sub> 14 5-CH <sub>3</sub> -SO <sub>2</sub> 2-Cl -CH <sub>3</sub> 5-CH <sub>3</sub> 15 5-CH <sub>3</sub> -SO <sub>2</sub> 2-Cl -CH <sub>3</sub> 6-CH <sub>3</sub> 16 5-Cl -CO- 2-Cl -CH <sub>3</sub> 6-F 17 5-Cl -SO <sub>2</sub> 2-Cl -CH <sub>3</sub> 6-F 18 5-Cl -CO- 2-Cl -CH <sub>3</sub> 6-F 19 5-CH <sub>3</sub> -CH <sub>2</sub> 2-Cl -CH <sub>3</sub> 6-F 19 5-CH <sub>3</sub> -CO- 2-Cl -CH <sub>3</sub> 6-F 10 5-F -CO- 2-Cl -CH <sub>3</sub> 6-F 11 5-F -CH <sub>2</sub> 2-Cl -CH <sub>3</sub> 6-F 12 5-F -CH <sub>2</sub> 2-Cl -CH <sub>3</sub> 6-F 13 5-CH <sub>3</sub> -CO- 2-CH <sub>3</sub> CH <sub>3</sub> 6-F 14 5-CH <sub>3</sub> -SO <sub>2</sub> 2-CH <sub>3</sub> CH <sub>3</sub> 6-F 15 5-CH <sub>3</sub> -CO- 2-Cl -CH <sub>3</sub> 6-F 16 5-Cl -CO- 2-Cl -CH <sub>3</sub> 6-F 17 5-Cl -SO <sub>2</sub> 2-Cl -CH <sub>3</sub> 6-F 18 5-Cl -CO- 2-Cl -CH <sub>3</sub> 6-F 19 5-CH <sub>3</sub> -CO- 2-Cl -CH <sub>3</sub> 6-F 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .3  | 5-CH <sub>3</sub> | -CH <sub>2</sub> - | 2-CH <sub>3</sub> | CH <sub>3</sub>     | 6-CH <sub>3</sub>      | 39  | 5-CH <sub>3</sub>   | -CH <sub>2</sub> - | 2-CH <sub>3</sub> | •               | 5-F                    |
| 6 5-Ci -CH <sub>2</sub> 2-Ci CH <sub>3</sub> 6-CH <sub>3</sub> 42 5-Ci -CH <sub>2</sub> 2-Ci CH <sub>3</sub> 5-F 7 5-CH <sub>3</sub> -CO- 2-Ci CH <sub>3</sub> 6-CH <sub>3</sub> 43 5-CH <sub>3</sub> -CO- 2-Ci CH <sub>3</sub> 5-F 8 5-CH <sub>3</sub> -SO <sub>2</sub> 2-Ci CH <sub>3</sub> 6-CH <sub>3</sub> 44 5-CH <sub>3</sub> -SO <sub>2</sub> 2-Ci CH <sub>3</sub> 5-F 9 5-CH <sub>3</sub> -CH <sub>2</sub> 2-Ci CH <sub>3</sub> 6-CH <sub>3</sub> 45 5-CH <sub>3</sub> -CO- 2-Ci CH <sub>3</sub> 5-F 10 5-F -CO- 2-Ci CH <sub>3</sub> 6-CH <sub>3</sub> 46 5-F -CO- 2-Ci CH <sub>3</sub> 5-F 11 5-F -SO <sub>2</sub> 2-Ci CH <sub>3</sub> 6-CH <sub>3</sub> 47 5-F -SO <sub>2</sub> 2-Ci CH <sub>3</sub> 5-F 12 5-F -CH <sub>2</sub> 2-Ci CH <sub>3</sub> 6-CH <sub>3</sub> 47 5-F -SO <sub>2</sub> 2-Ci CH <sub>3</sub> 5-F 13 5-CH <sub>3</sub> -CO- 2-CH <sub>3</sub> CH <sub>3</sub> 6-F 14 5-CH <sub>3</sub> -SO <sub>2</sub> 2-CH <sub>3</sub> CH <sub>3</sub> 6-F 15 5-CH <sub>3</sub> -CO- 2-Ci CH <sub>3</sub> 6-F 16 5-Ci -CO- 2-Ci CH <sub>3</sub> 6-F 17 5-Ci -SO <sub>2</sub> 2-Ci CH <sub>3</sub> 6-F 18 5-Ci -CH <sub>2</sub> 2-Ci CH <sub>3</sub> 6-F 19 5-CH <sub>3</sub> -CO- 2-Ci CH <sub>3</sub> 6-F 10 5-CH <sub>3</sub> -CO- 2-Ci CH <sub>3</sub> 6-F 11 5-CH <sub>3</sub> -CO- 2-Ci CH <sub>3</sub> 6-F 12 5-CH <sub>3</sub> -CO- 2-Ci CH <sub>3</sub> 6-F 13 5-CH <sub>3</sub> -CO- 2-Ci CH <sub>3</sub> 6-F 14 5-CH <sub>3</sub> -CO- 2-Ci CH <sub>3</sub> 6-F 15 5-CH <sub>3</sub> -CO- 2-Ci CH <sub>3</sub> 5-OCH <sub>3</sub> 16 5-CH <sub>3</sub> -CO- 2-Ci CH <sub>3</sub> 6-F 17 5-CH <sub>3</sub> -CO- 2-Ci CH <sub>3</sub> 5-OCH <sub>3</sub> 18 5-CH <sub>3</sub> -CO- 2-Ci CH <sub>3</sub> 6-F 19 5-CH <sub>3</sub> -CO- 2-Ci CH <sub>3</sub> 5-OCH <sub>3</sub> 19 5-CH <sub>3</sub> -CO- 2-Ci CH <sub>3</sub> 6-F 10 5-CH <sub>3</sub> -CO- 2-Ci CH <sub>3</sub> 5-OCH <sub>3</sub> 10 5-CH <sub>3</sub> -CO- 2-Ci CH <sub>3</sub> 6-F 11 5-CH <sub>3</sub> -CO- 2-Ci CH <sub>3</sub> 6-F 12 5-CH <sub>3</sub> -CO- 2-Ci CH <sub>3</sub> 6-F 13 5-CH <sub>3</sub> -CO- 2-Ci CH <sub>3</sub> 5-OCH <sub>3</sub> 14 5-CH <sub>2</sub> 2-Ci CH <sub>3</sub> 6-OCH <sub>3</sub> 15 5-CH <sub>3</sub> -CO- 2-Ci CH <sub>3</sub> 6-OCH <sub>3</sub> 16 5-CH <sub>3</sub> -CO- 2-Ci CH <sub>3</sub> 5-CH <sub>3</sub> 17 5-CH <sub>3</sub> -CO- 2-Ci CH <sub>3</sub> 6-OCH <sub>3</sub> 18 5-Ci -CO- 2-Ci CH <sub>3</sub> 6-OCH <sub>3</sub> 19 5-Ci -CO- 2-Ci CH <sub>3</sub> 6-OCH <sub>3</sub> 10 5-Ci -CO- 2-Ci CH <sub>3</sub> 6-OCH <sub>3</sub> 10 5-Ci -CO- 2-Ci CH <sub>3</sub> 6-OCH <sub>3</sub> 11 5-CH <sub>3</sub> -CO- 2-Ci CH <sub>3</sub> 5-CH <sub>3</sub> 12 5-CH <sub>3</sub> -CO- 2-Ci CH <sub>3</sub> 6-OCH <sub>3</sub> 13 5-CH <sub>3</sub> -CO- 2-Ci CH <sub>3</sub> 6-OCH <sub>3</sub> 14 5-F 15 5-CH <sub>3</sub> -CO- 2-Ci CH <sub>3</sub> 6-OCH <sub>3</sub> 15 5-CH <sub>3</sub> -CO- 2-Ci CH <sub>3</sub> 5-CH <sub>3</sub> 16 5-CH <sub>3</sub> 5-CH <sub>2</sub> 2-Ci CH <sub>3</sub> 6-OCH <sub>3</sub> 17 5-CH <sub>3</sub> 5-CH <sub>2</sub> 2-Ci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4   | 1                 | -co-               | 2-CI              | _                   | -                      | 40  | 5-CI                |                    |                   | -               | 5-F                    |
| 7 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-CH <sub>3</sub> 8 5-CH <sub>3</sub> -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-CH <sub>3</sub> 9 5-CH <sub>3</sub> -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-CH <sub>3</sub> 10 5-F -CO- 2-Cl CH <sub>3</sub> 6-CH <sub>3</sub> 11 5-F -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-CH <sub>3</sub> 12 5-F -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-CH <sub>3</sub> 13 5-CH <sub>3</sub> -CO- 2-CH <sub>3</sub> CH <sub>3</sub> 6-F 14 5-CH <sub>3</sub> -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-F 15 5-CH <sub>3</sub> -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-F 16 5-CH <sub>3</sub> -CO- 2-CH <sub>3</sub> CH <sub>3</sub> 6-F 17 5-CH <sub>3</sub> -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-F 18 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-F 19 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub> 2-Cl CH <sub>2</sub> 2-Cl CH <sub>3</sub> 6-CH <sub>3</sub> 2-C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5   | •                 | -                  |                   | -                   | -                      |     | 1                   | _                  |                   | _               |                        |
| 8 5-CH <sub>3</sub> -SO <sub>2</sub> - 2-Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     | 1                 | _                  |                   | •                   | - 1                    |     | 1                   | _                  | ,                 | •               |                        |
| 9 5-CH <sub>3</sub> -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-CH <sub>3</sub> 45 5-CH <sub>3</sub> -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 5-F 10 5-F -CO- 2-Cl CH <sub>3</sub> 6-CH <sub>3</sub> 46 5-F -CO- 2-Cl CH <sub>3</sub> 5-F 11 5-F -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-CH <sub>3</sub> 47 5-F -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 5-F 12 5-F -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-CH <sub>3</sub> 48 5-F -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 5-F 13 5-CH <sub>3</sub> -CO- 2-CH <sub>3</sub> CH <sub>3</sub> 6-F 14 5-CH <sub>3</sub> -CO- 2-CH <sub>3</sub> CH <sub>3</sub> 6-F 15 5-CH <sub>3</sub> -CO- 2-CH <sub>3</sub> CH <sub>3</sub> 6-F 15 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-F 15 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-F 16 5-Cl -CO- 2-Cl CH <sub>3</sub> 6-F 17 5-Cl -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-F 18 5-Cl -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-F 18 5-Cl -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-F 18 5-Cl -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-F 18 5-Cl -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-F 15 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 5-CCH <sub>3</sub> 19 5-CH <sub>3</sub> -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-F 15 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-F 16 5-CH <sub>3</sub> -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-F 17 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-F 18 5-CH <sub>3</sub> -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-F 18 5-CH <sub>3</sub> -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-F 18 5-CH <sub>3</sub> -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-F 18 5-CH <sub>3</sub> -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-F 16 5-CH <sub>3</sub> -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 5-OCH <sub>3</sub> 19 5-CH <sub>3</sub> -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-F 17 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-F 18 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 5-OCH <sub>3</sub> 18 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-F 18 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 5-OCH <sub>3</sub> 18 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 6-F 18 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 5-OCH <sub>3</sub> 18 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 6-F 18 5-Cl -CO- 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub> 6-OCH <sub>3</sub> 6-F 18 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub> 6-OCH <sub>3</sub> 6-F 18 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub> 6-OCH <sub>3</sub> 6-F 18 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub> 6-OCH <sub>3</sub> 6-F 18 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub> 6-OCH <sub>3</sub> 6-F 18 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub> 6-OCH <sub>3</sub> 6-F 18 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub> 6-OCH <sub>3</sub> 6-F 18 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub> 6-OCH <sub>3</sub> 6-F 18 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub> 6-OCH <sub>3</sub> 6-F 18 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub> 6-OCH <sub>3</sub> 6-F 18 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub> 6-OCH <sub>3</sub> 6-F 18 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub> 6-OCH <sub>3</sub> 6-F 18 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub> 6-OCH <sub>3</sub> 6-F 18 5-CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |                   |                    |                   | _                   | - 1                    |     | , -                 |                    |                   | •               |                        |
| 10 5-F -CO- 2-Cl CH <sub>3</sub> 6-CH <sub>3</sub> 46 5-F -CO- 2-Cl CH <sub>3</sub> 5-F 11 5-F -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-CH <sub>3</sub> 47 5-F -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 5-F 12 5-F -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-CH <sub>3</sub> 48 5-F -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub> 6-F 50 5-CH <sub>3</sub> -CO- 2-CH <sub>3</sub> CH <sub>3</sub> 5-CCH <sub>3</sub> 15 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-F 51 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 5-CCH <sub>3</sub> 16 5-Cl -CO- 2-Cl CH <sub>3</sub> 6-F 52 5-Cl -CO- 2-Cl CH <sub>3</sub> 5-CCH <sub>3</sub> 18 5-Cl -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-F 54 5-Cl -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 5-CCH <sub>3</sub> 18 5-Cl -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-F 55 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 5-CCH <sub>3</sub> 19 5-CH <sub>3</sub> -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-F 55 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 5-CCH <sub>3</sub> 2-Cl CH <sub>3</sub> 6-F 55 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 5-CCH <sub>3</sub> 2-Cl CH <sub>3</sub> 6-F 55 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 5-CCH <sub>3</sub> 2-Cl CH <sub>3</sub> 6-F 56 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 5-CCH <sub>3</sub> 2-Cl CH <sub>3</sub> 6-F 56 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 5-CCH <sub>3</sub> 2-Cl CH <sub>3</sub> 6-F 56 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 5-CCH <sub>3</sub> 2-Cl CH <sub>3</sub> 6-F 56 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 5-CCH <sub>3</sub> 2-Cl CH <sub>3</sub> 6-F 57 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 5-CCH <sub>3</sub> 2-Cl CH <sub>3</sub> 6-F 56 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 5-CCH <sub>3</sub> 2-Cl CH <sub>3</sub> 6-F 57 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 5-CCH <sub>3</sub> 2-Cl CH <sub>3</sub> 6-F 60 5-F -CH <sub>2</sub> 2-Cl CH <sub>3</sub> 5-CCH <sub>3</sub> 2-Cl CH <sub>3</sub> 5-CCH <sub>3</sub> 2-Cl CH <sub>3</sub> 5-CCH <sub>3</sub> 2-Cl CH <sub>3</sub> 6-CCH <sub>3</sub> 6-CH <sub>3</sub> 3-Cl CH <sub>2</sub> 2-Cl CH <sub>3</sub> 6-CCH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |                   | _                  |                   | •                   | •                      |     | _                   |                    |                   | •               |                        |
| 11 5-F -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-CH <sub>3</sub> 47 5-F -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 5-F 12 5-F -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-CH <sub>3</sub> 48 5-F -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 5-F 13 5-CH <sub>3</sub> -CO- 2-CH <sub>3</sub> CH <sub>3</sub> 6-F 14 5-CH <sub>3</sub> -SO <sub>2</sub> - 2-CH <sub>3</sub> CH <sub>3</sub> 6-F 15 5-CH <sub>3</sub> -CO- 2-CH <sub>3</sub> CH <sub>3</sub> 6-F 15 5-CH <sub>3</sub> -CH <sub>2</sub> - 2-CH <sub>3</sub> CH <sub>3</sub> 5-OCH <sub>3</sub> 15 5-CH <sub>3</sub> -CH <sub>2</sub> - 2-CH <sub>3</sub> CH <sub>3</sub> 6-F 15 5-CH <sub>3</sub> -CH <sub>2</sub> - 2-CH <sub>3</sub> CH <sub>3</sub> 5-OCH <sub>3</sub> 16 5-Cl -CO- 2-Cl CH <sub>3</sub> 6-F 16 5-Cl -CO- 2-Cl CH <sub>3</sub> 6-F 17 5-Cl -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-F 18 5-Cl -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-F 18 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-F 19 5-F -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 5-OCH <sub>3</sub> 19 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-F 19 5-F -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 5-OCH <sub>3</sub> 19 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-F 19 5-F -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 5-OCH <sub>3</sub> 19 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-F 19 5-F -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 5-OCH <sub>3</sub> 19 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-F 19 5-F -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 5-OCH <sub>3</sub> 19 5-CH <sub>3</sub> -CO- 2-CH <sub>3</sub> CH <sub>3</sub> 6-OCH <sub>3</sub> 6-F 19 5-F -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 5-OCH <sub>3</sub> 19 5-CH <sub>3</sub> 5-CH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |                   | _                  |                   |                     | • •                    | 1   | _                   |                    |                   | _               |                        |
| 12 5-F -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-CH <sub>3</sub> 48 5-F -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub> 5-CH <sub>3</sub> 5-CH <sub>3</sub> -CO- 2-CH <sub>3</sub> CH <sub>3</sub> 6-F 50 5-CH <sub>3</sub> -CO- 2-CH <sub>3</sub> CH <sub>3</sub> 5-OCH <sub>3</sub> 15 5-CH <sub>3</sub> -CO <sub>2</sub> 2-CH <sub>3</sub> CH <sub>3</sub> 6-F 50 5-CH <sub>3</sub> -CH <sub>2</sub> - 2-CH <sub>3</sub> CH <sub>3</sub> 5-OCH <sub>3</sub> 16 5-CH <sub>3</sub> -CO <sub>2</sub> 2-CH <sub>3</sub> CH <sub>3</sub> 6-F 51 5-CH <sub>3</sub> -CH <sub>2</sub> - 2-CH <sub>3</sub> CH <sub>3</sub> 5-OCH <sub>3</sub> 17 5-Cl -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-F 52 5-Cl -CO- 2-Cl CH <sub>3</sub> 5-OCH <sub>3</sub> 18 5-Cl -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-F 54 5-Cl -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 5-OCH <sub>3</sub> 19 5-CH <sub>3</sub> -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-F 55 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-F 56 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-F 56 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 5-OCH <sub>3</sub> 20 5-CH <sub>3</sub> -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-F 56 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-F 57 5-CH <sub>3</sub> -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 5-OCH <sub>3</sub> 22 5-F -CO- 2-Cl CH <sub>3</sub> 6-F 58 5-F -CO- 2-Cl CH <sub>3</sub> 5-OCH <sub>3</sub> 23 5-F -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-F 59 5-F -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 5-OCH <sub>3</sub> 25 5-CH <sub>3</sub> -SO <sub>2</sub> - 2-CH <sub>3</sub> CH <sub>3</sub> 6-OCH <sub>3</sub> 6-F 60 5-CH <sub>3</sub> -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 5-OCH <sub>3</sub> 26 5-CH <sub>3</sub> -SO <sub>2</sub> - 2-CH <sub>3</sub> CH <sub>3</sub> 6-OCH <sub>3</sub> 6-F 60 5-CH <sub>3</sub> -SO <sub>2</sub> - 2-CH <sub>3</sub> CH <sub>3</sub> 5-CH <sub>3</sub> 20 5-CH <sub>3</sub> -CO- 2-CH <sub>3</sub> CH <sub>3</sub> 6-OCH <sub>3</sub> 6-F 60 5-CH <sub>3</sub> -SO <sub>2</sub> - 2-CH <sub>3</sub> CH <sub>3</sub> 5-CH <sub>3</sub> 30 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 6-OCH <sub>3</sub> 6-CH <sub>3</sub> 5-CH <sub>3</sub> 6-OCH <sub>3</sub> 30 5-Cl -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 6-OCH <sub>3</sub> 6-OCH <sub>3</sub> 30 5-Cl -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 6-OCH <sub>3</sub> 6-OCH <sub>3</sub> 31 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 6-OCH <sub>3</sub> 31 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 6-OCH <sub>3</sub> 31 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 6-OCH <sub>3</sub> 32 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 6-OCH <sub>3</sub> 33 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 6-O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |                   |                    |                   | -                   | •                      |     | 1                   |                    |                   | _               |                        |
| 13         5-CH <sub>3</sub> -CO-         2-CH <sub>3</sub> CH <sub>3</sub> 6-F         49         5-CH <sub>3</sub> -CO-         2-CH <sub>3</sub> 5-OCH <sub>3</sub> 14         5-CH <sub>3</sub> -SO <sub>2</sub> -         2-CH <sub>3</sub> CH <sub>3</sub> 6-F         50         5-CH <sub>3</sub> -CO-         2-CH <sub>3</sub> CH <sub>3</sub> 5-OCH <sub>3</sub> 15         5-CH <sub>3</sub> -CH <sub>2</sub> -         2-CH <sub>3</sub> CH <sub>2</sub> -         3-CH <sub>3</sub> 5-CH <sub>3</sub> 5-CH <sub>3</sub> 3-OCH <sub>3</sub> 5-OCH <sub>3</sub> 16         5-CI         -CO-         2-CI         CH <sub>3</sub> 6-F         52         5-CI         -CO-         2-CI         CH <sub>3</sub> 5-CH <sub>3</sub> 5-CI         -SO <sub>2</sub> -         2-CI         CH <sub>3</sub> 5-CI         -SO <sub>2</sub> -         2-CI         CH <sub>3</sub> 6-F         54         5-CI         -CH <sub>2</sub> -         2-CI         CH <sub>3</sub> 5-CI         -SO <sub>2</sub> -         2-CI         CH <sub>3</sub> 5-CI         5-CI         -CH <sub>2</sub> -         2-CI         CH <sub>3</sub> 5-CI         5-CH <sub>3</sub> -         -CO-         2-CI         CH <sub>3</sub> 5-CH         5-CH <sub>3</sub> -         -CO-         2-CI         CH <sub>3</sub> -         5-CH <sub>3</sub> -         5-CI         CH <sub>2</sub> -         2-CI         CH <sub>3</sub> -         5-OCH <sub>3</sub> 21 <td></td> <td>1</td> <td>_</td> <td></td> <td>-</td> <td></td> <td></td> <td>1</td> <td>_</td> <td>2-CI</td> <td>•</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     | 1                 | _                  |                   | -                   |                        |     | 1                   | _                  | 2-CI              | •               |                        |
| 15 5-CH <sub>3</sub> -CH <sub>2</sub> 2-CH <sub>3</sub> CH <sub>3</sub> 6-F 51 5-CH <sub>3</sub> -CH <sub>2</sub> 2-CH <sub>3</sub> CH <sub>3</sub> 5-OCH <sub>3</sub> 16 5-CI -CO- 2-CI CH <sub>3</sub> 6-F 52 5-CI -CO- 2-CI CH <sub>3</sub> 5-OCH <sub>3</sub> 17 5-CI -SO <sub>2</sub> 2-CI CH <sub>3</sub> 6-F 53 5-CI -SO <sub>2</sub> 2-CI CH <sub>3</sub> 5-OCH <sub>3</sub> 18 5-CI -CH <sub>2</sub> 2-CI CH <sub>3</sub> 6-F 54 5-CI -CH <sub>2</sub> 2-CI CH <sub>3</sub> 5-OCH <sub>3</sub> 19 5-CH <sub>3</sub> -CO- 2-CI CH <sub>3</sub> 6-F 55 5-CH <sub>3</sub> -CO- 2-CI CH <sub>3</sub> 6-F 56 5-CH <sub>3</sub> -CO- 2-CI CH <sub>3</sub> 6-F 56 5-CH <sub>3</sub> -CO <sub>2</sub> 2-CI CH <sub>3</sub> 5-OCH <sub>3</sub> 21 5-CH <sub>3</sub> -CH <sub>2</sub> 2-CI CH <sub>3</sub> 6-F 56 5-CH <sub>3</sub> -CO <sub>2</sub> 2-CI CH <sub>3</sub> 5-OCH <sub>3</sub> 22 5-F -CO- 2-CI CH <sub>3</sub> 6-F 58 5-F -CO- 2-CI CH <sub>3</sub> 5-OCH <sub>3</sub> 23 5-F -SO <sub>2</sub> 2-CI CH <sub>3</sub> 6-F 59 5-F -SO <sub>2</sub> 2-CI CH <sub>3</sub> 5-OCH <sub>3</sub> 24 5-F -CH <sub>2</sub> 2-CI CH <sub>3</sub> 6-F 60 5-F -CH <sub>2</sub> 2-CI CH <sub>3</sub> 5-OCH <sub>3</sub> 25 5-CH <sub>3</sub> -CO- 2-CH <sub>3</sub> CH <sub>3</sub> 6-OCH <sub>3</sub> 6-F 60 5-F -CH <sub>2</sub> 2-CI CH <sub>3</sub> 5-OCH <sub>3</sub> 25 5-CH <sub>3</sub> -SO <sub>2</sub> 2-CH <sub>3</sub> CH <sub>3</sub> 6-OCH <sub>3</sub> 62 5-CH <sub>3</sub> -SO <sub>2</sub> 2-CH <sub>3</sub> CH <sub>3</sub> 5-CH <sub>3</sub> 27 5-CH <sub>3</sub> -CH <sub>2</sub> 2-CH <sub>3</sub> CH <sub>3</sub> 6-OCH <sub>3</sub> 62 5-CH <sub>3</sub> -CO- 2-CH <sub>3</sub> CH <sub>3</sub> 5-CH <sub>3</sub> 28 5-CI -CO- 2-CI CH <sub>3</sub> 6-OCH <sub>3</sub> 63 5-CH <sub>3</sub> -CO- 2-CI CH <sub>3</sub> 6-OCH <sub>3</sub> 29 5-CI -SO <sub>2</sub> 2-CI CH <sub>3</sub> 6-OCH <sub>3</sub> 65 5-CI -CO- 2-CI CH <sub>3</sub> 6-OCH <sub>3</sub> 31 5-CH <sub>3</sub> -CO- 2-CI CH <sub>3</sub> 6-OCH <sub>3</sub> 66 5-CI -CO- 2-CI CH <sub>3</sub> 5-CH <sub>3</sub> 31 5-CH <sub>3</sub> -CO- 2-CI CH <sub>3</sub> 6-OCH <sub>3</sub> 66 5-CI -CH <sub>2</sub> 2-CI CH <sub>3</sub> 5-CH <sub>3</sub> 31 5-CH <sub>3</sub> -CO- 2-CI CH <sub>3</sub> 6-OCH <sub>3</sub> 66 5-CI -CH <sub>2</sub> 2-CI CH <sub>3</sub> 5-CH <sub>3</sub> 31 5-CH <sub>3</sub> -CO- 2-CI CH <sub>3</sub> 6-OCH <sub>3</sub> 69 5-CH <sub>3</sub> -CO- 2-CI CH <sub>3</sub> 5-CH <sub>3</sub> 32 5-CH <sub>3</sub> -CO- 2-CI CH <sub>3</sub> 6-OCH <sub>3</sub> 69 5-CH <sub>3</sub> -CO- 2-CI CH <sub>3</sub> 5-CH <sub>3</sub> 31 5-CH <sub>3</sub> -CO- 2-CI CH <sub>3</sub> 6-OCH <sub>3</sub> 69 5-CH <sub>3</sub> -CO- 2-CI CH <sub>3</sub> 5-CH <sub>3</sub> 32 5-CH <sub>3</sub> -CO- 2-CI CH <sub>3</sub> 6-OCH <sub>3</sub> 69 5-CH <sub>3</sub> -CO- 2-CI CH <sub>3</sub> 5-CH <sub>3</sub> 34 5-F -CO- 2-CI CH <sub>3</sub> 6-OCH <sub>3</sub> 69 5-CH <sub>3</sub> -CO- 2-CI CH <sub>3</sub> 5-CH <sub>3</sub> 35 5-CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | 5-CH₃             | _                  |                   | _                   | 6-F                    | 49  | 5-CH₃               | -co-               | 2-CH <sub>3</sub> | CH <sub>3</sub> | 5-OCH <sub>3</sub>     |
| 16         5-CI         -CO-         2-CI         CH3         6-F         52         5-CI         -CO-         2-CI         CH3         5-OCH3           17         5-CI         -SO2-         2-CI         CH3         6-F         53         5-CI         -SO2-         2-CI         CH3         5-OCH3            18         5-CI         -CH2-         2-CI         CH3         6-F         54         5-CI         -CH2-         2-CI         CH3         5-OCH3           19         5-CH3         -CO-         2-CI         CH3         6-F         55         5-CH3         -CO-         2-CI         CH3         5-OCH3           20         5-CH3         -SO2-         2-CI         CH3         6-F         56         5-CH3         -CO-         2-CI         CH3         5-OCH3           21         5-CH3         -CH2-         2-CI         CH3         6-F         57         5-CH3         -CO-         2-CI         CH3         5-OCH3           22         5-F         -CO-         2-CI         CH3         6-F         58         5-F         -CO-         2-CI         CH3         5-OCH3           23         5-F         -CH2-         2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14  | 5-CH <sub>3</sub> | -SO <sub>2</sub> - | 2-CH <sub>3</sub> | CH <sub>3</sub>     | 6-F                    | 50  | 5-CH <sub>3</sub>   | -SO <sub>2</sub> - | 2-CH <sub>3</sub> | CH <sub>3</sub> | 5-OCH <sub>3</sub>     |
| 17 5-Cl -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-F 53 5-Cl -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 5-OCH <sub>3</sub> 18 5-Cl -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-F 54 5-Cl -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 5-OCH <sub>3</sub> 19 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-F 55 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 5-OCH <sub>3</sub> 20 5-CH <sub>3</sub> -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-F 56 5-CH <sub>3</sub> -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 5-OCH <sub>3</sub> 21 5-CH <sub>3</sub> -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-F 57 5-CH <sub>3</sub> -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 5-OCH <sub>3</sub> 22 5-F -CO- 2-Cl CH <sub>3</sub> 6-F 58 5-F -CO- 2-Cl CH <sub>3</sub> 5-OCH <sub>3</sub> 23 5-F -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-F 59 5-F -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 5-OCH <sub>3</sub> 24 5-F -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-F 60 5-F -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 5-OCH <sub>3</sub> 25 5-CH <sub>3</sub> -CO- 2-CH <sub>3</sub> CH <sub>3</sub> 6-OCH <sub>3</sub> 26 5-CH <sub>3</sub> -SO <sub>2</sub> - 2-CH <sub>3</sub> CH <sub>3</sub> 6-OCH <sub>3</sub> 27 5-CH <sub>3</sub> -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 28 5-Cl -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 29 5-Cl -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 30 5-Cl -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 31 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 32 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 33 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 34 5-F -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 35 5-F -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 36 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 37 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 38 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 39 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 30 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 30 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 31 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 32 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 33 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 34 5-F -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 35 5-F -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 36 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub> 37 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 38 5-CH <sub>3</sub> -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 39 5-CH <sub>3</sub> -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 30 5-CH <sub>3</sub> -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 30 5-CH <sub>3</sub> -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 30 5-CH <sub>3</sub> -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 31 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 32 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 33 5-CH <sub>3</sub> -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 34 5-F -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 35 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 36 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 37 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 38 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 39 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 30 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 30 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 30 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 30 5-CH <sub>3</sub> -CO- 2-Cl C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15  | 5-CH <sub>3</sub> | -CH <sub>2</sub> - | 2-CH <sub>3</sub> | CH <sub>3</sub>     | 6-F                    | 51  | 5-CH <sub>3</sub>   | -CH <sub>2</sub> - | 2-CH <sub>3</sub> | CH <sub>3</sub> | 5-OCH <sub>3</sub>     |
| 18 5-Cl -CH <sub>2</sub> 2-Cl CH <sub>3</sub> 6-F 54 5-Cl -CH <sub>2</sub> 2-Cl CH <sub>3</sub> 5-OCH <sub>3</sub> 19 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-F 55 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 5-OCH <sub>3</sub> 20 5-CH <sub>3</sub> -SO <sub>2</sub> 2-Cl CH <sub>3</sub> 6-F 56 5-CH <sub>3</sub> -SO <sub>2</sub> 2-Cl CH <sub>3</sub> 5-OCH <sub>3</sub> 21 5-CH <sub>3</sub> -CH <sub>2</sub> 2-Cl CH <sub>3</sub> 6-F 57 5-CH <sub>3</sub> -CH <sub>2</sub> 2-Cl CH <sub>3</sub> 5-OCH <sub>3</sub> 22 5-F -CO- 2-Cl CH <sub>3</sub> 6-F 58 5-F -CO- 2-Cl CH <sub>3</sub> 5-OCH <sub>3</sub> 23 5-F -SO <sub>2</sub> 2-Cl CH <sub>3</sub> 6-F 59 5-F -SO <sub>2</sub> 2-Cl CH <sub>3</sub> 5-OCH <sub>3</sub> 24 5-F -CH <sub>2</sub> 2-Cl CH <sub>3</sub> 6-F 60 5-F -CH <sub>2</sub> 2-Cl CH <sub>3</sub> 5-OCH <sub>3</sub> 25 5-CH <sub>3</sub> -SO <sub>2</sub> 2-CH <sub>3</sub> CH <sub>3</sub> 6-OCH <sub>3</sub> 26 5-CH <sub>3</sub> -SO <sub>2</sub> 2-CH <sub>3</sub> CH <sub>3</sub> 6-OCH <sub>3</sub> 27 5-CH <sub>3</sub> -CH <sub>2</sub> 2-CH <sub>3</sub> CH <sub>3</sub> 6-OCH <sub>3</sub> 28 5-Cl -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 29 5-Cl -SO <sub>2</sub> 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 30 5-Cl -CH <sub>2</sub> 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 31 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 32 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 33 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 34 5-F -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 35 5-F -SO <sub>2</sub> 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 36 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 37 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 38 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 39 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 30 5-Cl -CH <sub>2</sub> 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 31 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 32 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 33 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 34 5-F -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 35 5-F -SO <sub>2</sub> 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 36 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub> 37 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 38 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 39 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 30 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 30 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 30 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 30 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 30 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 30 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 30 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 30 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 31 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 32 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 33 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 34 5-F -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 35 5-F -SO <sub>2</sub> 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 36 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 37 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 38 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 39 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 30 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 30 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 30 5-CH <sub>3</sub> -C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16  | •                 |                    |                   | •                   | 6-F                    | 52  |                     |                    |                   | •               | •                      |
| 19 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-F 55 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 5-OCH <sub>3</sub> 20 5-CH <sub>3</sub> -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-F 56 5-CH <sub>3</sub> -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 5-OCH <sub>3</sub> 21 5-CH <sub>3</sub> -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-F 57 5-CH <sub>3</sub> -CO <sub>2</sub> 2-Cl CH <sub>3</sub> 5-OCH <sub>3</sub> 22 5-F -CO- 2-Cl CH <sub>3</sub> 6-F 58 5-F -CO- 2-Cl CH <sub>3</sub> 5-OCH <sub>3</sub> 23 5-F -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-F 59 5-F -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 5-OCH <sub>3</sub> 24 5-F -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-F 60 5-F -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 5-OCH <sub>3</sub> 25 5-CH <sub>3</sub> -CO- 2-CH <sub>3</sub> CH <sub>3</sub> 6-OCH <sub>3</sub> 61 5-CH <sub>3</sub> -CO- 2-CH <sub>3</sub> CH <sub>3</sub> 5-OCH <sub>3</sub> 26 5-CH <sub>3</sub> -SO <sub>2</sub> - 2-CH <sub>3</sub> CH <sub>3</sub> 6-OCH <sub>3</sub> 62 5-CH <sub>3</sub> -SO <sub>2</sub> - 2-CH <sub>3</sub> CH <sub>3</sub> 5-CH <sub>3</sub> 27 5-CH <sub>3</sub> -CH <sub>2</sub> - 2-CH <sub>3</sub> CH <sub>3</sub> 6-OCH <sub>3</sub> 63 5-CH <sub>3</sub> -CH <sub>2</sub> - 2-CH <sub>3</sub> CH <sub>3</sub> 5-CH <sub>3</sub> 28 5-Cl -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 64 5-Cl -CO- 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub> 29 5-Cl -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 65 5-Cl -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub> 30 5-Cl -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 65 5-Cl -CO- 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub> 31 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 66 5-Cl -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub> 32 5-CH <sub>3</sub> -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 69 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub> 33 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 69 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub> 34 5-F -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 70 5-F -CO- 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub> 35 5-F -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 71 5-F -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |                   | _                  |                   | _                   |                        | 1 3 |                     | _                  |                   | -               | •                      |
| 20 5-CH <sub>3</sub> -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-F 56 5-CH <sub>3</sub> -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 5-OCH <sub>3</sub> 21 5-CH <sub>3</sub> -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-F 57 5-CH <sub>3</sub> -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 5-OCH <sub>3</sub> 22 5-F -CO- 2-Cl CH <sub>3</sub> 6-F 58 5-F -CO- 2-Cl CH <sub>3</sub> 5-OCH <sub>3</sub> 23 5-F -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-F 59 5-F -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 5-OCH <sub>3</sub> 24 5-F -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-F 60 5-F -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 5-OCH <sub>3</sub> 25 5-CH <sub>3</sub> -CO- 2-CH <sub>3</sub> CH <sub>3</sub> 6-OCH <sub>3</sub> 26 5-CH <sub>3</sub> -SO <sub>2</sub> - 2-CH <sub>3</sub> CH <sub>3</sub> 6-OCH <sub>3</sub> 27 5-CH <sub>3</sub> -CH <sub>2</sub> - 2-CH <sub>3</sub> CH <sub>3</sub> 6-OCH <sub>3</sub> 28 5-Cl -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 29 5-Cl -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 30 5-Cl -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 31 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 32 5-CH <sub>3</sub> -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 33 5-CH <sub>3</sub> -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 34 5-F -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 35 5-F -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 36 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 37 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 38 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 39 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 30 5-CH <sub>3</sub> -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 30 5-CH <sub>3</sub> -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 31 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 32 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 33 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 34 5-F -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 35 5-F -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 36 5-CH <sub>3</sub> 5-CH <sub>3</sub> 37 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 38 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 39 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 30 5-CH <sub>3</sub> 5-CH <sub>3</sub> 5-CH <sub>3</sub> 31 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 32 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 33 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 34 5-F -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 35 5-F -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 36 5-CH <sub>3</sub> 5-CH <sub>3</sub> 37 5-CH <sub>3</sub> 5-CH <sub>3</sub> 38 5-CH <sub>3</sub> 5-CH <sub>3</sub> 5-CH <sub>3</sub> 39 5-CH <sub>3</sub> 5-CH <sub>3</sub> 5-CH <sub>3</sub> 30 5-CH <sub>3</sub> 5-CH <sub>3</sub> 5-CH <sub>3</sub> 30 5-CH <sub>3</sub> 5-CH <sub>3</sub> 5-CH <sub>3</sub> 30 5-CH <sub>3</sub> 5-CH <sub>3</sub> 5-CH <sub>3</sub> 5-CH <sub>3</sub> 30 5-CH <sub>3</sub> 5-CH <sub>3</sub> 5-CH <sub>3</sub> 5-CH <sub>3</sub> 30 5-CH <sub>3</sub> 5-CH <sub>3</sub> 5-CH <sub>3</sub> 5-CH <sub>3</sub> 31 5-CH <sub>3</sub> 5-CH <sub>3</sub> 5-CH <sub>3</sub> 5-CH <sub>3</sub> 32 5-CH <sub>3</sub> 5-CH <sub>3</sub> 5-CC- C-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |                   | -                  |                   | _                   |                        |     |                     | _                  |                   | _               | •                      |
| 21 5-CH <sub>3</sub> -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-F 57 5-CH <sub>3</sub> -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 5-OCH <sub>3</sub> 22 5-F -CO- 2-Cl CH <sub>3</sub> 6-F 58 5-F -CO- 2-Cl CH <sub>3</sub> 5-OCH <sub>3</sub> 23 5-F -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-F 59 5-F -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 5-OCH <sub>3</sub> 24 5-F -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-F 60 5-F -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 5-OCH <sub>3</sub> 25 5-CH <sub>3</sub> -CO- 2-CH <sub>3</sub> CH <sub>3</sub> 6-OCH <sub>3</sub> 61 5-CH <sub>3</sub> -CO- 2-CH <sub>3</sub> CH <sub>3</sub> 5-OCH <sub>3</sub> 26 5-CH <sub>3</sub> -SO <sub>2</sub> - 2-CH <sub>3</sub> CH <sub>3</sub> 6-OCH <sub>3</sub> 62 5-CH <sub>3</sub> -SO <sub>2</sub> - 2-CH <sub>3</sub> CH <sub>3</sub> 5-CH <sub>3</sub> 27 5-CH <sub>3</sub> -CH <sub>2</sub> - 2-CH <sub>3</sub> CH <sub>3</sub> 6-OCH <sub>3</sub> 63 5-CH <sub>3</sub> -CH <sub>2</sub> - 2-CH <sub>3</sub> CH <sub>3</sub> 5-CH <sub>3</sub> 28 5-Cl -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 64 5-Cl -CO- 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub> 29 5-Cl -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 65 5-Cl -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub> 30 5-Cl -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 66 5-Cl -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub> 31 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 66 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub> 32 5-CH <sub>3</sub> -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 69 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub> 33 5-CH <sub>3</sub> -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 69 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub> 34 5-F -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 70 5-F -CO- 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub> 35 5-F -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 71 5-F -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |                   |                    |                   | _                   |                        | 1 : | •                   |                    |                   | -               | •                      |
| 22 5-F -CO- 2-Cl CH <sub>3</sub> 6-F 58 5-F -CO- 2-Cl CH <sub>3</sub> 5-OCH <sub>3</sub> 23 5-F -SO <sub>2</sub> 2-Cl CH <sub>3</sub> 6-F 59 5-F -SO <sub>2</sub> 2-Cl CH <sub>3</sub> 5-OCH <sub>3</sub> 24 5-F -CH <sub>2</sub> 2-Cl CH <sub>3</sub> 6-F 60 5-F -CH <sub>2</sub> 2-Cl CH <sub>3</sub> 5-OCH <sub>3</sub> 25 5-CH <sub>3</sub> -CO- 2-CH <sub>3</sub> CH <sub>3</sub> 6-OCH <sub>3</sub> 26 5-CH <sub>3</sub> -SO <sub>2</sub> 2-CH <sub>3</sub> CH <sub>3</sub> 6-OCH <sub>3</sub> 27 5-CH <sub>3</sub> -CH <sub>2</sub> 2-CH <sub>3</sub> CH <sub>3</sub> 6-OCH <sub>3</sub> 28 5-Cl -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 29 5-Cl -SO <sub>2</sub> 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 30 5-Cl -CH <sub>2</sub> 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 31 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 32 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 33 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 34 5-F -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 35 5-F -SO <sub>2</sub> 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 36 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 37 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 38 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 39 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 30 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 30 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 30 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 30 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 31 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 32 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 33 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 34 5-F -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 35 5-F -SO <sub>2</sub> 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 36 5-CH <sub>3</sub> 5-CH <sub>2</sub> 37 5-CH <sub>3</sub> 5-CH <sub>3</sub> 38 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 39 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub> 30 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 30 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub> 30 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 30 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub> 31 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 32 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 33 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 34 5-F -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 35 5-F -SO <sub>2</sub> 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 36 5-CH <sub>3</sub> 5-CH <sub>3</sub> 37 5-CH <sub>3</sub> 5-CH <sub>3</sub> 38 5-CH <sub>3</sub> 5-CH <sub>3</sub> 5-CH <sub>3</sub> 39 5-CH <sub>3</sub> 5-CH <sub>3</sub> 5-CH <sub>3</sub> 30 5-CH <sub>3</sub> 5-CH <sub>3</sub> 5-CH <sub>3</sub> 5-CH <sub>3</sub> 30 5-CH <sub>3</sub> 5-CH <sub>3</sub> 5-CH <sub>3</sub> 5-CH <sub>3</sub> 30 5-CH <sub>3</sub> 5-CH <sub>3</sub> 6-OCH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |                   | _                  |                   | _                   |                        | 1   | •                   | -                  |                   | _               | _                      |
| 23 5-F -SO <sub>2</sub> 2-Cl CH <sub>3</sub> 6-F 59 5-F -SO <sub>2</sub> 2-Cl CH <sub>3</sub> 5-OCH <sub>3</sub> 24 5-F -CH <sub>2</sub> 2-Cl CH <sub>3</sub> 6-F 60 5-F -CH <sub>2</sub> 2-Cl CH <sub>3</sub> 5-OCH <sub>3</sub> 25 5-CH <sub>3</sub> -CO- 2-CH <sub>3</sub> CH <sub>3</sub> 6-OCH <sub>3</sub> 61 5-CH <sub>3</sub> -CO- 2-CH <sub>3</sub> CH <sub>3</sub> 5-CH <sub>3</sub> 26 5-CH <sub>3</sub> -SO <sub>2</sub> 2-CH <sub>3</sub> CH <sub>3</sub> 6-OCH <sub>3</sub> 62 5-CH <sub>3</sub> -SO <sub>2</sub> 2-CH <sub>3</sub> CH <sub>3</sub> 5-CH <sub>3</sub> 27 5-CH <sub>3</sub> -CH <sub>2</sub> 2-CH <sub>3</sub> CH <sub>3</sub> 6-OCH <sub>3</sub> 63 5-CH <sub>3</sub> -CH <sub>2</sub> 2-CH <sub>3</sub> CH <sub>3</sub> 5-CH <sub>3</sub> 28 5-Cl -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 64 5-Cl -CO- 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub> 29 5-Cl -SO <sub>2</sub> 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 65 5-Cl -SO <sub>2</sub> 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub> 30 5-Cl -CH <sub>2</sub> 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 66 5-Cl -CH <sub>2</sub> 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub> 31 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 66 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub> 32 5-CH <sub>3</sub> -SO <sub>2</sub> 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 68 5-CH <sub>3</sub> -SO <sub>2</sub> 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub> 33 5-CH <sub>3</sub> -CH <sub>2</sub> 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 69 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub> 34 5-F -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 70 5-F -CO- 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub> 35 5-F -SO <sub>2</sub> 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 71 5-F -SO <sub>2</sub> 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |                   | _                  |                   | _                   |                        | 1 : | •                   | -                  |                   | _               | •                      |
| 24 5-F -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-F 60 5-F -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 5-OCH <sub>3</sub> 25 5-CH <sub>3</sub> -CO- 2-CH <sub>3</sub> CH <sub>3</sub> 6-OCH <sub>3</sub> 26 5-CH <sub>3</sub> -SO <sub>2</sub> - 2-CH <sub>3</sub> CH <sub>3</sub> 6-OCH <sub>3</sub> 27 5-CH <sub>3</sub> -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 28 5-Cl -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 29 5-Cl -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 30 5-Cl -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 31 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 32 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 33 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 34 5-F -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 35 5-F -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 36 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 37 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 38 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 39 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 30 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 30 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 30 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 30 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 30 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 30 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 30 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 30 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 31 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 32 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 33 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 34 5-F -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 35 5-F -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 36 5-CH <sub>3</sub> 5-CH <sub>3</sub> 37 5-CH <sub>3</sub> 5-CH <sub>3</sub> 38 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 39 5-CH <sub>3</sub> 5-CH <sub>3</sub> 30 5-CH <sub>3</sub> 5-CH <sub>3</sub> 5-CH <sub>3</sub> 5-CH <sub>3</sub> 30 5-CH <sub>3</sub> 5-CH <sub>3</sub> 5-CH <sub>3</sub> 5-CH <sub>3</sub> 30 5-CH <sub>3</sub> 5-CH <sub>3</sub> 5-CH <sub>3</sub> 5-CH <sub>3</sub> 30 5-CH <sub>3</sub> 5-CH <sub>3</sub> 5-CH <sub>3</sub> 5-CH <sub>3</sub> 30 5-CH <sub>3</sub> 5-CH <sub>3</sub> 5-CH <sub>3</sub> 5-CH <sub>3</sub> 5-CH <sub>3</sub> 30 5-CH <sub>3</sub> 5-CH <sub>3</sub> 5-CH <sub>3</sub> 5-CH <sub>3</sub> 5-CH <sub>3</sub> 30 5-CH <sub>3</sub> 5-CH <sub>3</sub> 5-CH <sub>3</sub> 5-CH <sub>3</sub> 5-CH <sub>3</sub> 30 5-CH <sub>3</sub> 5-CH <sub>3</sub> 5-CH <sub>3</sub> 5-CH <sub>3</sub> 5-CH <sub>3</sub> 30 5-CH <sub>3</sub> 5-CH <sub>3</sub> 5-CH <sub>3</sub> 5-CH <sub>3</sub> 5-CH <sub>3</sub> 30 5-CH <sub>3</sub> 5-CH <sub>3</sub> 5-CH <sub>3</sub> 5-CH <sub>3</sub> 5-CH <sub>3</sub> 30 5-CH <sub>3</sub> 5-CH <sub>3</sub> 5-CH <sub>3</sub> 5-CH <sub>3</sub> 5-CH <sub>3</sub> 5-CH <sub>3</sub> 30 5-CH <sub>3</sub> 5-CH <sub>3</sub> 6-OCH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |                   |                    |                   | _                   |                        | 1   |                     |                    |                   | _               | _                      |
| 25 5-CH <sub>3</sub> -CO- 2-CH <sub>3</sub> CH <sub>3</sub> 6-OCH <sub>3</sub> 61 5-CH <sub>3</sub> -CO- 2-CH <sub>3</sub> CH <sub>3</sub> 5-CH <sub>3</sub> 26 5-CH <sub>3</sub> -SO <sub>2</sub> - 2-CH <sub>3</sub> CH <sub>3</sub> 6-OCH <sub>3</sub> 62 5-CH <sub>3</sub> -SO <sub>2</sub> - 2-CH <sub>3</sub> CH <sub>3</sub> 5-CH <sub>3</sub> 27 5-CH <sub>3</sub> -CH <sub>2</sub> - 2-CH <sub>3</sub> CH <sub>3</sub> 6-OCH <sub>3</sub> 63 5-CH <sub>3</sub> -CH <sub>2</sub> - 2-CH <sub>3</sub> CH <sub>3</sub> 5-CH <sub>3</sub> 28 5-CI -CO- 2-CI CH <sub>3</sub> 6-OCH <sub>3</sub> 64 5-CI -CO- 2-CI CH <sub>3</sub> 5-CH <sub>3</sub> 29 5-CI -SO <sub>2</sub> - 2-CI CH <sub>3</sub> 6-OCH <sub>3</sub> 65 5-CI -SO <sub>2</sub> - 2-CI CH <sub>3</sub> 5-CH <sub>3</sub> 30 5-CI -CH <sub>2</sub> - 2-CI CH <sub>3</sub> 6-OCH <sub>3</sub> 66 5-CI -CH <sub>2</sub> - 2-CI CH <sub>3</sub> 5-CH <sub>3</sub> 31 5-CH <sub>3</sub> -CO- 2-CI CH <sub>3</sub> 6-OCH <sub>3</sub> 67 5-CH <sub>3</sub> -CO- 2-CI CH <sub>3</sub> 5-CH <sub>3</sub> 32 5-CH <sub>3</sub> -SO <sub>2</sub> - 2-CI CH <sub>3</sub> 6-OCH <sub>3</sub> 68 5-CH <sub>3</sub> -SO <sub>2</sub> - 2-CI CH <sub>3</sub> 5-CH <sub>3</sub> 33 5-CH <sub>3</sub> -CH <sub>2</sub> - 2-CI CH <sub>3</sub> 6-OCH <sub>3</sub> 69 5-CH <sub>3</sub> -CH <sub>2</sub> - 2-CI CH <sub>3</sub> 5-CH <sub>3</sub> 34 5-F -CO- 2-CI CH <sub>3</sub> 6-OCH <sub>3</sub> 70 5-F -CO- 2-CI CH <sub>3</sub> 5-CH <sub>3</sub> 35 5-F -SO <sub>2</sub> - 2-CI CH <sub>3</sub> 6-OCH <sub>3</sub> 71 5-F -SO <sub>2</sub> - 2-CI CH <sub>3</sub> 5-CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |                   |                    |                   | -                   | i i                    |     |                     | _                  |                   | _               | _                      |
| 26 5-CH <sub>3</sub> -SO <sub>2</sub> - 2-CH <sub>3</sub> CH <sub>3</sub> 6-OCH <sub>3</sub> 62 5-CH <sub>3</sub> -SO <sub>2</sub> - 2-CH <sub>3</sub> CH <sub>3</sub> 5-CH <sub>3</sub> 27 5-CH <sub>3</sub> -CH <sub>2</sub> - 2-CH <sub>3</sub> CH <sub>3</sub> 6-OCH <sub>3</sub> 63 5-CH <sub>3</sub> -CH <sub>2</sub> - 2-CH <sub>3</sub> CH <sub>3</sub> 5-CH <sub>3</sub> 28 5-Cl -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 64 5-Cl -CO- 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub> 29 5-Cl -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 65 5-Cl -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub> 30 5-Cl -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 66 5-Cl -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub> 31 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 67 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub> 32 5-CH <sub>3</sub> -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 68 5-CH <sub>3</sub> -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub> 33 5-CH <sub>3</sub> -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 69 5-CH <sub>3</sub> -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub> 34 5-F -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 70 5-F -CO- 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub> 35 5-F -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 71 5-F -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |                   | _                  |                   | _                   |                        | 61  | 5-CH <sub>3</sub>   | -co-               | 2-CH <sub>3</sub> | -               | _                      |
| 28 5-Cl -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 64 5-Cl -CO- 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub> 29 5-Cl -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 65 5-Cl -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub> 30 5-Cl -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 66 5-Cl -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub> 31 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 67 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub> 32 5-CH <sub>3</sub> -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 68 5-CH <sub>3</sub> -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub> 33 5-CH <sub>3</sub> -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 69 5-CH <sub>3</sub> -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub> 34 5-F -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 70 5-F -CO- 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub> 35 5-F -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 71 5-F -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     | 5-CH <sub>3</sub> | -SO <sub>2</sub> - | 2-CH <sub>3</sub> | CH <sub>3</sub>     | 6-OCH <sub>3</sub>     | 62  | 5-CH <sub>3</sub>   | -SO <sub>2</sub> - | 2-CH <sub>3</sub> | CH <sub>3</sub> | 5-CH <sub>3</sub>      |
| 29 5-Cl -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 65 5-Cl -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub> 30 5-Cl -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 66 5-Cl -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub> 31 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 67 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub> 32 5-CH <sub>3</sub> -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 68 5-CH <sub>3</sub> -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub> 33 5-CH <sub>3</sub> -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 69 5-CH <sub>3</sub> -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub> 34 5-F -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 70 5-F -CO- 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub> 35 5-F -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 71 5-F -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 27  | 5-CH <sub>3</sub> | -CH <sub>2</sub> - | 2-CH <sub>3</sub> | CH <sub>3</sub>     | 6-OCH <sub>3</sub>     | 63  | 5-CH <sub>3</sub>   | -CH <sub>2</sub> - | 2-CH <sub>3</sub> | CH <sub>3</sub> | 5-CH <sub>3</sub>      |
| 30 5-Cl -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 66 5-Cl -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub> 31 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 67 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub> 32 5-CH <sub>3</sub> -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 68 5-CH <sub>3</sub> -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub> 33 5-CH <sub>3</sub> -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 69 5-CH <sub>3</sub> -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub> 34 5-F -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 70 5-F -CO- 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub> 35 5-F -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 71 5-F -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 28  | 5-CI              | -co-               | 2-CI              | -                   | 6-OCH <sub>3</sub>     | 64  | 5-CI                |                    | 2-CI              | CH <sub>3</sub> | 5-CH <sub>3</sub>      |
| 31 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 67 5-CH <sub>3</sub> -CO- 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub> 32 5-CH <sub>3</sub> -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 68 5-CH <sub>3</sub> -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub> 33 5-CH <sub>3</sub> -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 69 5-CH <sub>3</sub> -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub> 34 5-F -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 70 5-F -CO- 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub> 35 5-F -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 71 5-F -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |                   | -                  |                   | _                   |                        |     | )                   | _                  |                   | _               | •                      |
| 32 5-CH <sub>3</sub> -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 68 5-CH <sub>3</sub> -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub> 33 5-CH <sub>3</sub> -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 69 5-CH <sub>3</sub> -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub> 34 5-F -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 70 5-F -CO- 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub> 35 5-F -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 71 5-F -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | •                 | _                  |                   |                     | ~ [                    |     |                     |                    |                   | •               | -                      |
| 33 5-CH <sub>3</sub> -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 69 5-CH <sub>3</sub> -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub> 34 5-F -CO- 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 70 5-F -CO- 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub> 35 5-F -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 71 5-F -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |                   |                    |                   | -                   | - 1                    |     |                     |                    |                   | _               | _                      |
| 34 5-F -CO- 2-CI CH <sub>3</sub> 6-OCH <sub>3</sub> 70 5-F -CO- 2-CI CH <sub>3</sub> 5-CH <sub>3</sub> 35 5-F -SO <sub>2</sub> - 2-CI CH <sub>3</sub> 6-OCH <sub>3</sub> 71 5-F -SO <sub>2</sub> - 2-CI CH <sub>3</sub> 5-CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | -                 | _                  |                   | -                   | 1                      | 1 1 |                     |                    |                   | _               | _                      |
| 35 5-F -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub> 71 5-F -SO <sub>2</sub> - 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     | •                 | _                  |                   | _                   | _                      |     |                     | _                  |                   | _               | _                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |                   |                    |                   | -                   | - 1                    |     |                     |                    |                   | _               | _                      |
| 36 ; 5-F -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 6-OCH <sub>3</sub>   72 ; 5-F -CH <sub>2</sub> - 2-Cl CH <sub>3</sub> 5-CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 36  | 5-F               | _                  |                   | CH <sub>3</sub>     | 6-OCH <sub>3</sub>     |     | 5-F                 | -CH <sub>2</sub> - |                   | CH <sub>3</sub> | 5-CH <sub>3</sub>      |

|                      | 9                         | р<br>С                                   |                           |                                    | · 麦                                    | 9        | _                   | ОН                         |                           |                   |                                        |
|----------------------|---------------------------|------------------------------------------|---------------------------|------------------------------------|----------------------------------------|----------|---------------------|----------------------------|---------------------------|-------------------|----------------------------------------|
|                      | $R^2 \frac{6}{5}$         | Г <sup>ин</sup>                          |                           | (I–Aa                              | a)                                     |          | $R^2 = \frac{6}{5}$ | )<br>NH                    |                           | (I-A              | ( <b>b)</b>                            |
|                      | •                         | 2 / R <sup>3</sup> 3                     | ) <u> </u>                | 0 8<br>N 5<br>R 5                  | 7<br>R <sup>5b</sup><br>6              | また       | .ti                 | È 2 1/2 R <sup>3</sup>     | <b>, o</b> "(             | O 8<br>N 5<br>R 5 | 7<br>6 R <sup>5b</sup>                 |
| No.                  | R <sup>2</sup>            | E                                        | R <sup>3</sup>            | R <sup>5a</sup>                    | R <sup>5b</sup>                        | No.      | R <sup>2</sup>      | Ė                          | R <sup>3</sup>            | R <sup>5a</sup>   | R <sup>5b</sup>                        |
| 1                    | 4-CH <sub>3</sub>         | -co-                                     | 3-CH <sub>3</sub>         | CH <sub>3</sub>                    | н                                      | 37       | 4-CH <sub>3</sub>   | -co-                       | 3-CH <sub>3</sub>         | CH <sub>3</sub>   | 7-CH <sub>3</sub>                      |
| 2                    | 4-CH <sub>3</sub>         | _                                        | 3-CH <sub>3</sub>         | CH3                                | н                                      | 38       | 4-CH <sub>3</sub>   | -SO <sub>2</sub> -         | 3-CH <sub>3</sub>         | CH <sub>3</sub>   | 7-CH <sub>3</sub>                      |
| 3                    | 4-CH <sub>3</sub>         |                                          | 3-CH <sub>3</sub>         | CH <sub>3</sub>                    | Н                                      | 39       | 4-CH <sub>3</sub>   | -CH <sub>2</sub> -         | 3-CH <sub>3</sub>         | CH <sub>3</sub>   | 7-CH <sub>3</sub>                      |
| 4                    | 4-CI                      | -co-                                     | 3-CH <sub>3</sub>         | CH <sub>3</sub>                    | Н                                      | .40      | 4-CI                | -co-                       | 3-CH <sub>3</sub>         | CH <sub>3</sub>   | 7-CH <sub>3</sub>                      |
| 5                    | : 4-CI                    |                                          | 3-CH <sub>3</sub>         | CH <sub>3</sub>                    | H                                      | 41       | 4-CI<br>4-CI        | -SO <sub>2</sub> -         | 3-CH <sub>3</sub>         | CH <sub>3</sub>   | 7-CH <sub>3</sub>                      |
| 6<br>7               | 4-CI<br>4-CI              | -СП <sub>2</sub> -                       | 3-CH <sub>3</sub><br>3-Ci | CH <sub>3</sub>                    | Н                                      | 42<br>43 | 4-CI                | -CH <sub>2</sub> -<br>-CO- | 3-CH <sub>3</sub><br>3-Cl | CH <sub>3</sub>   | 7-CH <sub>3</sub><br>7-CH <sub>3</sub> |
| 8                    | 4-CI                      | -SO <sub>2</sub> -                       |                           | CH <sub>3</sub>                    | н                                      | 44       | 4-CI                | -SO <sub>2</sub> -         | 3-C1                      | CH <sub>3</sub>   | 7-CH <sub>3</sub>                      |
| 9                    | 4-CI                      | -CH <sub>2</sub> -                       |                           | CH <sub>3</sub>                    | н                                      | 45       | 4-CI                | -CH <sub>2</sub> -         | 3-CI                      | CH <sub>3</sub>   | 7-CH <sub>3</sub>                      |
| 10                   | 4-CH <sub>3</sub>         | -co-                                     | 3-CI                      | CH <sub>3</sub>                    | Н                                      | 46       | 4-CH <sub>3</sub>   | -co-                       | 3-C1                      | CH <sub>3</sub>   | 7-CH <sub>3</sub>                      |
| 11                   | 4-CH₃                     | -SO <sub>2</sub> -                       | 3-CI                      | CH <sub>3</sub>                    | н                                      | 47       | 4-CH <sub>3</sub>   | -SO <sub>2</sub> -         | 3-CI                      | CH <sub>3</sub>   | 7-CH <sub>3</sub>                      |
| 12                   | 4-CH₃                     | -CH <sub>2</sub> -                       | 3-CI                      | CH <sub>3</sub>                    | Н                                      | 48       | 4-CH <sub>3</sub>   | -CH <sub>2</sub> -         | 3-CI                      | CH <sub>3</sub>   | 7-CH <sub>3</sub>                      |
| 13                   | 4-CH₃                     | -co-                                     | 3-CH <sub>3</sub>         | CH <sub>3</sub>                    | 8-CH <sub>3</sub>                      | 49       | 4-CH <sub>3</sub>   | -co-                       | 3-CH <sub>3</sub>         | CH <sub>3</sub>   | 7-F                                    |
| 14                   | 4-CH₃                     | _                                        | 3-CH <sub>3</sub>         | CH <sub>3</sub>                    | 8-CH <sub>3</sub>                      | 50       | 4-CH <sub>3</sub>   | -\$O <sub>2</sub> -        | 3-CH <sub>3</sub>         | CH <sub>3</sub>   | 7-F                                    |
| 15                   | 4-CH <sub>3</sub>         |                                          | 3-CH <sub>3</sub>         | CH <sub>3</sub>                    | 8-CH <sub>3</sub>                      | 51       | 4-CH <sub>3</sub>   | -CH <sub>2</sub> -         | •                         | CH <sub>3</sub>   | 7-F                                    |
| 16                   | 4-CI                      | -co-                                     | 3-CH <sub>3</sub>         | CH <sub>3</sub>                    | 8-CH <sub>3</sub>                      | 52       | 4-CI                | -co-                       | 3-CH <sub>3</sub>         | CH <sub>3</sub>   | 7-F                                    |
| 17                   | 4-CI                      | _                                        | 3-CH <sub>3</sub>         | CH <sub>3</sub>                    | 8-CH <sub>3</sub>                      | 53       | 4-CI                |                            | 3-CH <sub>3</sub>         | CH <sub>3</sub>   | 7-F                                    |
| 18                   | 4-CI                      | _                                        | 3-CH <sub>3</sub>         | CH <sub>3</sub>                    | 8-CH <sub>3</sub>                      | 54       | 4-CI                | -CH <sub>2</sub> -         |                           | CH <sub>3</sub>   | 7-F                                    |
| 19<br>20             | 4-CI<br>4-CI              | -co-<br>-so <sub>z</sub> -               | 3-CI                      | CH <sub>3</sub>                    | 8-CH <sub>3</sub><br>8-CH <sub>3</sub> | 55<br>56 | 4-CI<br>4-CI        | -co-<br>-so <sub>2</sub> - | 3-CI<br>3-CI              | CH <sub>3</sub>   | 7-F                                    |
| 21                   | 4-CI                      | -50 <sub>2</sub> -                       |                           | CH <sub>3</sub>                    | 8-CH <sub>3</sub>                      | 57       | 4-CI                | -CH <sub>2</sub> -         |                           | CH <sub>3</sub>   | 7-F                                    |
| 22                   | 4-CH <sub>3</sub>         | -co-                                     | 3-CI                      | CH <sub>3</sub>                    | 8-CH <sub>3</sub>                      | 58       | 4-CH <sub>3</sub>   | -CO-                       | 3-CI                      | CH <sub>3</sub>   | 7-F                                    |
| 23                   | 4-CH <sub>3</sub>         | -SO <sub>2</sub> -                       |                           | CH <sub>3</sub>                    | 8-CH <sub>3</sub>                      | 59       | 4-CH <sub>3</sub>   | -SO <sub>2</sub> -         | 3-CI                      | CH <sub>3</sub>   | 7-F                                    |
| 24                   | 4-CH <sub>3</sub>         | -CH <sub>2</sub> -                       |                           | CH <sub>3</sub>                    | 8-CH <sub>3</sub>                      | 60       | 4-CH <sub>3</sub>   | -CH <sub>2</sub> -         | 3-CI                      | CH <sub>3</sub>   | 7-F                                    |
| 25                   | 4-CH₃                     | -co-                                     | 3-CH <sub>3</sub>         | CH <sub>3</sub>                    | 8-F                                    | 61       | 4-CH <sub>3</sub>   | -CO-                       | 3-CH <sub>3</sub>         | CH <sub>3</sub>   | 7-OCH <sub>3</sub>                     |
| 26                   | 4-CH₃                     | _                                        | 3-CH <sub>3</sub>         | CH <sub>3</sub>                    | 8-F                                    | 62       | 4-CH <sub>3</sub>   | -SO <sub>2</sub> -         | 3-CH <sub>3</sub>         | CH <sub>3</sub>   | 7-OCH <sub>3</sub>                     |
| 27                   | 4-CH <sub>3</sub>         | -CH <sub>2</sub> -                       | 3-CH <sub>3</sub>         | CH <sub>3</sub>                    | 8-F                                    | 63       | 4-CH <sub>3</sub>   | -CH <sub>2</sub> -         | 3-CH <sub>3</sub>         | CH <sub>3</sub>   | 7-OCH <sub>3</sub>                     |
| 28                   | 4-CI                      | -co-                                     | _                         | CH <sub>3</sub>                    | 8-F                                    | 64       | 4-Ci                | -co-                       | 3-CH <sub>3</sub>         |                   | 7-0CH <sub>3</sub>                     |
| 29                   | 4-CI                      | -                                        | 3-CH <sub>3</sub>         | CH <sub>3</sub>                    | 8-F                                    | 65       | 4-CI                | -SO <sub>2</sub> -         | 3-CH <sub>3</sub>         | -                 | 7-OCH <sub>3</sub>                     |
| 30                   | 4-CI                      | _                                        | 3-CH <sub>3</sub>         | CH <sub>3</sub>                    | 8-F                                    | 66       | 4-CI                | -CH <sub>2</sub> -         | 3-CH <sub>3</sub>         | _                 | 7-0CH <sub>3</sub>                     |
| 31                   | 4-CI                      | -CO-                                     | 3-CI                      | CH <sub>3</sub>                    | 8-F                                    | 67       | 4-CI                | -CO-                       | 3-CI                      | -                 | 7-0CH <sub>3</sub>                     |
| 32                   | 4-CI                      | -SO <sub>2</sub> -<br>-CH <sub>2</sub> - | 3-CI                      | CH₃                                | 8-F<br>8-F                             | 68       | 4-CI                | -SO <sub>2</sub> -         | 3-CI                      | •                 | 7-0CH <sub>3</sub>                     |
| 33<br>34             | 4-CI<br>4-CH <sub>3</sub> | -CH <sub>2</sub> -                       | 3-CI                      | CH <sub>3</sub><br>CH <sub>3</sub> | 8-F                                    | 69<br>70 | 4-CI<br>4-CH₃       | -CH <sub>2</sub> -         | 3-CI<br>3-CI              | _                 | 7-0CH₃<br>7-0CH₃                       |
| 3 <del>4</del><br>35 | 4-CH <sub>3</sub>         | -\$0 <sub>2</sub> -                      |                           | CH <sub>3</sub>                    | 8-F                                    | 71       | 4-CH <sub>3</sub>   | -SO <sub>2</sub> -         | 3-CI                      | _                 | 7-0CH₃                                 |
| 36                   | 4-CH <sub>3</sub>         | -CH <sub>2</sub> -                       |                           | CH <sub>3</sub>                    | 8-F                                    | 72       | 4-CH <sub>3</sub>   | -CH <sub>2</sub> -         | 3-CI                      |                   | 7-00H <sub>3</sub>                     |
|                      |                           |                                          |                           | . •                                | - 1                                    | :        |                     | -                          | ~-                        | 3                 | 3                                      |

|      | ر                 | ОН                 |                   |                   | 麦                  | <u>1 0</u> | خ                 | о<br>С             |                   |                   |                    |
|------|-------------------|--------------------|-------------------|-------------------|--------------------|------------|-------------------|--------------------|-------------------|-------------------|--------------------|
|      | $R^2 \frac{6}{5}$ | Г <sup>йн</sup>    |                   | (I-A:             | a)                 |            | $R^2 \frac{6}{5}$ | )<br>NH            |                   | (I-A              | ь)                 |
|      | 4                 | Ė                  | ì.~               | 0<br>%            | 7                  |            | 4                 | ال<br>عال          |                   | .O. &             | 7                  |
|      |                   | $R^3$ 3            | ο [               | N 5               | R <sup>5b</sup>    | また         | は                 | $R^{3}$            | 0(                | N 5               | R <sup>5b</sup>    |
|      |                   |                    |                   | R <sup>5a</sup> 5 |                    |            |                   |                    |                   | R <sup>5a</sup> 5 |                    |
| No.  | R <sup>2</sup>    | E                  | R <sup>3</sup>    | R <sup>5a</sup>   | R <sup>5b</sup>    | No.        | R <sup>2</sup>    | E                  | R <sup>3</sup>    | R <sup>5a</sup>   | R <sup>5b</sup>    |
| 1    | 4-CH <sub>3</sub> | -co-               | 3-CH <sub>3</sub> | CH <sub>3</sub>   | 6-CH <sub>3</sub>  | 37         | 4-CH <sub>3</sub> | -co-               | 3-CH <sub>3</sub> | CH <sub>3</sub>   | 5-F                |
| 2    | 4-CH <sub>3</sub> | -502-              | 3-CH <sub>3</sub> | CH <sub>3</sub>   | 6-CH <sub>3</sub>  | 38         | 4-CH <sub>3</sub> | -SO <sub>2</sub> - | 3-CH <sub>3</sub> | CH <sub>3</sub>   | 5-F                |
| 3    | 4-CH <sub>3</sub> | -CH <sub>2</sub> - | 3-CH <sub>3</sub> | CH <sub>3</sub>   | 6-CH <sub>3</sub>  | 39         | 4-CH <sub>3</sub> | -CH <sub>2</sub> - | 3-CH <sub>3</sub> | CH <sub>3</sub>   | 5-F                |
| 4    | 4-CI              | -co-               | 3-CH <sub>3</sub> | CH <sub>3</sub>   | 6-CH <sub>3</sub>  | 40         | 4-CI              | -co-               | 3-CH <sub>3</sub> | CH <sub>3</sub>   | 5-F                |
| 5    | 4-CI              | -SO <sub>2</sub> - | 3-CH <sub>3</sub> | CH <sub>3</sub>   | 6-CH <sub>3</sub>  | 41         | 4-CI              | -SO <sub>2</sub> - | 3-CH <sub>3</sub> | CH <sub>3</sub>   | 5-F                |
| 6    | 4-CI              | -CH <sub>2</sub> - | 3-CH <sub>3</sub> | CH <sub>3</sub>   | 6-CH <sub>3</sub>  | 42         | 4-CI              | -CH <sub>2</sub> - | 3-CH <sub>3</sub> | CH <sub>3</sub>   | 5-F                |
| 7    | 4-CI              | -co-               | 3-CI              | CH <sub>3</sub>   | 6-CH₃              | 43         | 4-CI              | -co-               | 3-CI              | CH <sub>3</sub>   | 5-F                |
| 8    | 4-CI              | -SO <sub>2</sub> - |                   | CH <sub>3</sub>   | 6-CH <sub>3</sub>  | 44         | 4-CI              | -SO <sub>2</sub> - | 3-CI              | CH <sub>3</sub>   | 5-F                |
| 9    | 4-CI              | -CH <sub>2</sub> - | 3-CI              | CH <sub>3</sub>   | 6-CH <sub>3</sub>  | 45         | 4-CI              | -CH <sub>2</sub> - | 3-CI              | CH <sub>3</sub>   | 5-F                |
| 10   | 4-CH <sub>3</sub> | -co-               | 3-CI              | CH <sub>3</sub>   | 6-CH <sub>3</sub>  | 46         | 4-CH <sub>3</sub> | -co-               | 3-CI              | CH <sub>3</sub>   | 5-F                |
| 11   | 4-CH <sub>3</sub> | -SO <sub>2</sub> - | 3-CI              | CH <sub>3</sub>   | 6-CH <sub>3</sub>  | 47         | 4-CH₃             | -SO <sub>2</sub> - | 3-CI              | CH <sub>3</sub>   | 5-F                |
| 12   | 4-CH <sub>3</sub> | -CH <sub>2</sub> - | 3-CI              | CH <sub>3</sub>   | 6-CH <sub>3</sub>  | 48         | 4-CH <sub>3</sub> | -CH <sub>2</sub> - | 3-CI              | CH <sub>3</sub>   | 5-F                |
| 13   | 4-CH <sub>3</sub> | -co-               | 3-CH <sub>3</sub> | CH <sub>3</sub>   | 6-F                | 49         | 4-CH <sub>3</sub> | -co-               | 3-CH <sub>3</sub> | CH <sub>3</sub>   | 5-OCH <sub>3</sub> |
| 14   | 4-CH <sub>3</sub> | -SO <sub>2</sub> - | 3-CH <sub>3</sub> | CH <sub>3</sub>   | 6-F                | 50         | 4-CH <sub>3</sub> | -SO <sub>2</sub> - | 3-CH <sub>3</sub> | CH <sub>3</sub>   | 5-OCH <sub>3</sub> |
| 15   | 4-CH <sub>3</sub> | -CH <sub>2</sub> - | 3-CH <sub>3</sub> | CH <sub>3</sub>   | 6-F                | 51         | 4-CH <sub>3</sub> | -CH <sub>2</sub> - | 3-CH <sub>3</sub> | CH <sub>3</sub>   | 5-OCH <sub>3</sub> |
| 16   | 4-CI              | -co-               | 3-CH <sub>3</sub> | CH <sub>3</sub>   | 6-F                | 52         | 4-CI              | -co-               | 3-CH <sub>3</sub> | CH <sub>3</sub>   | 5-OCH <sub>3</sub> |
| 17   | 4-CI              | -so <sub>2</sub> - | 3-CH <sub>3</sub> | CH <sub>3</sub>   | 6-F                | 53         | 4-CI              | -SO <sub>2</sub> - | 3-CH <sub>3</sub> | CH <sub>3</sub>   | 5-OCH <sub>3</sub> |
| 18   | 4-CI              | -CH <sub>2</sub> - | 3-CH <sub>3</sub> | CH <sub>3</sub>   | 6-F                | 54         | 4-CI              | -CH <sub>2</sub> - | 3-CH <sub>3</sub> | CH <sub>3</sub>   | 5-OCH <sub>3</sub> |
| 19   | 4-CI              | -co-               | 3-CI              | CH <sub>3</sub>   | 6-F.               | 55         | 4-CI              | -co-               | 3-CI              | CH <sub>3</sub>   | 5-OCH <sub>3</sub> |
| 20   | 4-CI              | -SO <sub>2</sub> - |                   | CH <sub>3</sub>   | 6-F                | 56         | 4-CI              | -SO <sub>2</sub> - | .3-CI             | CH <sub>3</sub>   | 5-OCH <sub>3</sub> |
| 21   | 4-CI              | -CH <sub>2</sub> - | 3-CI              | CH <sub>3</sub>   | 6-F                | 57         | 4-CI              | -CH <sub>2</sub> - | 3-CI              | CH <sub>3</sub>   | 5-OCH <sub>3</sub> |
| 22   | 4-CH <sub>3</sub> | -co-               | 3-CI              | CH <sub>3</sub>   | 6-F                | 58         | 4-CH <sub>3</sub> | -co-               | 3-CI              | CH <sub>3</sub>   | 5-OCH <sub>3</sub> |
| 23   | 4-CH <sub>3</sub> | _                  | 3-CI              | CH <sub>3</sub>   | 6-F                | 59         | 4-CH <sub>3</sub> | -SO <sub>2</sub> - | 3-CI              | CH <sub>3</sub>   | 5-OCH <sub>3</sub> |
| 24   | 4-CH <sub>3</sub> | -CH <sub>2</sub> - | 3-CI              | CH <sub>3</sub>   | 6-F                | 60         | 4-CH <sub>3</sub> | -CH <sub>2</sub> - | 3-CI              | CH <sub>3</sub>   |                    |
| . 25 | 4-CH <sub>3</sub> | -co-               | 3-CH <sub>3</sub> | CH <sub>3</sub>   | 6-OCH <sub>3</sub> | 61         | 4-CH <sub>3</sub> | -co-               | 3-CH <sub>3</sub> | CH <sub>3</sub>   | 5-CH <sub>3</sub>  |
| 26   | 4-CH <sub>3</sub> | -SO <sub>2</sub> - | 3-CH <sub>3</sub> | CH <sub>3</sub>   | 6-OCH <sub>3</sub> | 62         | 4-CH <sub>3</sub> | -SO <sub>2</sub> - | 3-CH <sub>3</sub> | CH₃               | 5-CH <sub>3</sub>  |
| 27   | 4-CH <sub>3</sub> | -CH <sub>2</sub> - | 3-CH <sub>3</sub> | CH <sub>3</sub>   | 6-OCH <sub>3</sub> | 63         | 4-CH <sub>3</sub> | -CH <sub>2</sub>   | 3-CH <sub>3</sub> | CH3               | 5-CH <sub>3</sub>  |
| 28   | 4-CI              | -co-               | 3-CH <sub>3</sub> | _                 | 6-OCH <sub>3</sub> | 64         | 4-CI              | -co-               | 3-CH <sub>3</sub> | CH <sub>3</sub>   | 5-CH <sub>3</sub>  |
| 29   | 4-CI              | -SO <sub>2</sub> - | 3-CH <sub>3</sub> | CH <sub>3</sub>   | 6-OCH <sub>3</sub> | 65         | 4-CI              | -SO <sub>2</sub> - | 3-CH <sub>3</sub> | CH <sub>3</sub>   | 5-CH <sub>3</sub>  |
| 30   | 4-CI              | -CH <sub>2</sub> - | 3-CH <sub>3</sub> | CH <sub>3</sub>   | 6-OCH <sub>3</sub> | 66         | 4-CI              | -CH <sub>2</sub> - | 3-CH <sub>3</sub> | CH <sub>3</sub>   | 5-CH <sub>3</sub>  |
| 31   | 4-CI              | -co-               | 3-CI              | CH <sub>3</sub>   | 6-OCH <sub>3</sub> | 67         | 4-CI              | -CO-               | 3-CI              | CH <sub>3</sub>   | 5-CH <sub>3</sub>  |
| 32   | 4-Ci              | -SO <sub>2</sub> - | 3-CI              | CH <sub>3</sub>   | 6-OCH <sub>3</sub> | 68         | 4-CI              | -SO <sub>2</sub> - | 3-CI              | CH <sub>3</sub>   | 5-CH <sub>3</sub>  |
| 33   | 4-CI              | -CH <sub>2</sub> - | 3-CI              | CH <sub>3</sub>   | 6-OCH <sub>3</sub> | 69         | 4-CI              | -CH <sub>2</sub> - | 3-CI              | CH <sub>3</sub>   | 5-CH <sub>3</sub>  |
| 34   | 4-CH <sub>3</sub> | -co-               | 3-CI              | CH <sub>3</sub>   | 6-OCH <sub>3</sub> | 70         | 4-CH <sub>3</sub> | -CO-               | 3-CI              | CH <sub>3</sub>   | 5-CH <sub>3</sub>  |
| 35   | 4-CH <sub>3</sub> | -802-              | 3-CI              | CH <sub>3</sub>   | 6-OCH <sub>3</sub> | 71         | 4-CH <sub>3</sub> | -SO <sub>2</sub> - | 3-CI              | CH <sub>3</sub>   | 5-CH <sub>3</sub>  |
| 36   | 4-CH <sub>3</sub> | -CH <sub>2</sub> - | 3-CI              | CH <sub>3</sub>   | 6-OCH <sub>3</sub> | 72         | 4-CH <sub>3</sub> | -CH <sub>2</sub> - | 3-CI              | CH <sub>3</sub>   | 5-CH <sub>3</sub>  |

表13

表14

| No. | R <sup>2</sup>    | E                  | R <sup>3</sup>    | R <sup>5</sup> | No. | R <sup>2</sup>    | E                  | R <sup>3</sup>    | R <sup>5</sup> |
|-----|-------------------|--------------------|-------------------|----------------|-----|-------------------|--------------------|-------------------|----------------|
| 1   | 4-CH <sub>3</sub> | -co-               | 3-CH <sub>3</sub> | Н              | 25  | 4-CH <sub>3</sub> | -co-               | 3-CH <sub>3</sub> | 5-F            |
| 2   | 4-CH <sub>3</sub> | -SO <sub>2</sub> - | -                 | Н              | 26  | 4-CH <sub>3</sub> | -SO <sub>2</sub> - | 3-CH <sub>3</sub> | 5-F            |
| 3   | 4-CH <sub>3</sub> | -CH <sub>2</sub> - | _                 | Н              | 27  | 4-CH <sub>3</sub> | -CH <sub>2</sub> - | _                 | 5-F            |
| 4   | 4-CI              | -co-               | 3-CH <sub>3</sub> | H              | 28  | 4-CI              | -co-               | 3-CH <sub>3</sub> | 5-F            |
| 5   | 4-CI              | -SO <sub>2</sub> - | 3-CH <sub>3</sub> | Н              | 29  | 4-CI              | -SO <sub>2</sub> - | 3-CH <sub>3</sub> | 5-F            |
| 6   | 4-CI              | -CH <sub>2</sub> - | 3-CH <sub>3</sub> | Н              | 30  | 4-CI              | -CH <sub>2</sub> - | 3-CH <sub>3</sub> | 5-F            |
| 7   | 4-CI              | -co-               | 3-CI              | Н              | 31  | 4-CI              | -co-               | 3-CI              | 5-F            |
| 8   | 4-CI              | -SO <sub>2</sub> - | 3-CI              | Н              | 32  | 4-CI              | -SO <sub>2</sub> - | 3-C1              | 5-F            |
| 9   | 4-CI              | -CH <sub>2</sub> - | 3-CI              | H              | 33  | 4-CI              | -CH <sub>2</sub> - | 3-Ci              | 5-F            |
| 10  | 4-CH <sub>3</sub> | -co-               | 3-CI              | Н              | 34  | 4-CH <sub>3</sub> | -co-               | 3-C1              | 5-F            |
| 11  | 4-CH₃             | -SO <sub>2</sub> - | 3-CI              | H              | 35  | 4-CH <sub>3</sub> | -SO <sub>2</sub> - | 3-CI              | 5-F            |
| 12  | 4-CH <sub>3</sub> | -CH <sub>2</sub> - | 3-CI              | Н              | 36  | 4-CH <sub>3</sub> | -CH <sub>2</sub> - | 3-CI              | 5-F            |
| 13  | 4-CH <sub>3</sub> | -co-               | 3-CH <sub>3</sub> | 8-F            | 37  | 4-CH₃             | -co-               | 3-CH <sub>3</sub> | 7-F            |
| 14  | 4-CH <sub>3</sub> | -SO <sub>2</sub> - | 3-CH <sub>3</sub> | 8-F            | 38  | 4-CH <sub>3</sub> | -SO <sub>2</sub> - | 3-CH <sub>3</sub> | 7-F            |
| 15  | 4-CH <sub>3</sub> | -CH <sub>2</sub> - | 3-CH <sub>3</sub> | 8-F            | 39  | 4-CH <sub>3</sub> | -CH <sub>2</sub> - | 3-CH <sub>3</sub> | 7-F            |
| 16  | 4-CI              | -co-               | 3-CH <sub>3</sub> | 8-F            | 40  | 4-CI              | -co-               | 3-CH <sub>3</sub> | 7-F            |
| 17  | 4-CI              | -SO <sub>2</sub> - | 3-CH <sub>3</sub> | 8-F            | 41  | 4-CI              | -SO <sub>2</sub> - | 3-CH <sub>3</sub> | 7-F            |
| 18  | 4-CI              | -CH <sub>2</sub> - | 3-CH <sub>3</sub> | 8-F            | 42  | 4-CI              | -CH <sub>2</sub> - | 3-CH <sub>3</sub> | 7 <b>-</b> F   |
| 19  | 4-CI              | -co-               | 3-CI              | 8-F            | 43  | 4-CI              | -co-               | 3-CI              | 7-F            |
| 20  | 4-CI              | -SO <sub>2</sub> - | 3-CI              | 8-F            | 44  | 4-CI              | -SO <sub>2</sub> - | 3-CI              | 7 <b>-</b> F   |
| 21  | 4-CI              | -CH <sub>2</sub> - | 3-CI              | 8-F            | 45  | 4-CI              | -CH <sub>2</sub> - |                   | 7 <b>-</b> F   |
| 22  | 4-CH₃             | -co-               | 3-CI              | 8-F            | 46  | 4-CH₃             | -co-               | 3-CI              | 7 <b>-</b> F   |
| 23  | 4-CH <sub>3</sub> | -SO <sub>2</sub> - | 3-C1              | 8-F            | 47  | 4-CH <sub>3</sub> | -SO <sub>2</sub> - | 3-CI              | 7-F            |
| 24  | 4-CH <sub>3</sub> | -CH <sub>2</sub> - | 3-CI              | 8-F            | 48  | 4-CH <sub>3</sub> | -CH <sub>2</sub> - | 3-CI              | <b>7-</b> F    |

| 表15                |                                        |                    |                   |                |                |                           |                             |                   |                |  |  |
|--------------------|----------------------------------------|--------------------|-------------------|----------------|----------------|---------------------------|-----------------------------|-------------------|----------------|--|--|
|                    | ٨                                      |                    |                   |                |                | Ĭ,                        | NLI                         |                   |                |  |  |
| 6                  | Į On                                   |                    | (1_(              | 7-)            |                | . 6 🛴                     | 717                         |                   | /T 01\         |  |  |
| R <sup>2</sup> − € | · ]                                    |                    | (I-(              | <i>.</i> а)    | R <sup>2</sup> | 之是人                       |                             |                   | (I-Cb)         |  |  |
| 3                  | 4 H                                    | _                  | _                 |                |                | 3 4                       | NH<br>Ė. 🔈                  |                   |                |  |  |
|                    | 2                                      |                    | .0.               | 7              | または            | '                         |                             | 0                 | 8<br><b>7</b>  |  |  |
|                    | $\mathbb{R}^3$                         | <b>~</b> ~0~       |                   | —R⁵            |                |                           | 2 % / (<br>R <sup>3</sup> 3 | o^"(`)            | R <sup>5</sup> |  |  |
|                    | K,                                     |                    | 5 5               | 6              |                |                           | K J                         | `S´               | <b>6</b>       |  |  |
| No.                | R <sup>2</sup>                         | E                  | R <sup>3</sup>    | R <sup>5</sup> | No.            | R <sup>2</sup>            | E                           | R <sup>3</sup>    | R <sup>5</sup> |  |  |
| 1                  | Н                                      | -co-               | 2-CH <sub>3</sub> | H              | 37             | н                         | -co-                        | 2-CH <sub>3</sub> | 8-F            |  |  |
| 2                  | Н                                      | -SO <sub>2</sub> - | 2-CH <sub>3</sub> | Н              | 38             | Н                         | -SO <sub>2</sub> -          | 2-CH <sub>3</sub> | 8-F            |  |  |
| 3                  | Н                                      | -CH <sub>2</sub> - | 2-CH <sub>3</sub> | Н              | 39             | Н                         | -CH <sub>2</sub> -          | 2-CH <sub>3</sub> | 8-F            |  |  |
| 4                  | 4-CH <sub>3</sub>                      | -co-               | 2-CH <sub>3</sub> | Н              | 40             | 4-CH <sub>3</sub>         |                             | 2-CH <sub>3</sub> | 8-F            |  |  |
| 5                  | 4-CH <sub>3</sub>                      | -SO <sub>2</sub> - | 2-CH <sub>3</sub> | Н              | 41             | 4-CH <sub>3</sub>         | _                           | 2-CH <sub>3</sub> | 8-F            |  |  |
| 6                  | 4-CH <sub>3</sub>                      | -CH <sub>2</sub> - | 2-CH <sub>3</sub> | Н              | 42             | 4-CH <sub>3</sub>         | -CH <sub>2</sub> -          | 2-CH <sub>3</sub> | 8-F            |  |  |
| 7                  | 4-CI                                   | -co-               | 2-CH <sub>3</sub> | Н              | 43             | 4-CI                      | -co-                        | 2-CH <sub>3</sub> | 8-F            |  |  |
| 8                  | 4-CI                                   | -SO <sub>2</sub> - | 2-CH <sub>3</sub> | H              | 44             | 4-CI                      | -SO <sub>2</sub> -          | 2-CH <sub>3</sub> | 8-F            |  |  |
| 9                  | 4-CI                                   | -CH <sub>2</sub> - | 2-CH <sub>3</sub> | Н              | 45             | 4-CI                      | -CH <sub>2</sub> -          | 2-CH <sub>3</sub> | 8-F            |  |  |
| 10                 | 4-F                                    | -co-               | 2-CH <sub>3</sub> | Н              | 46             | 4-F                       | -co-                        | 2-CH <sub>3</sub> | 8-F            |  |  |
| 11                 | 4-F                                    | -SO <sub>2</sub> - | 2-CH <sub>3</sub> | Н              | 47             | 4-F                       | -SO <sub>2</sub> -          | 2-CH <sub>3</sub> | 8-F            |  |  |
| 12                 | 4-F                                    | -CH <sub>2</sub> - | 2-CH <sub>3</sub> | Н              | 48             | 4-F                       | -CH <sub>2</sub> -          | 2-CH <sub>3</sub> | 8-F            |  |  |
| 13                 | H                                      | -co-               | 2-CI              | н              | 49             | Н                         | -CO-                        | 2-CI              | 8-F            |  |  |
| 14                 | Н                                      | -SO <sub>2</sub> - | 2-CI              | Н              | 50             | Н                         | -SO <sub>2</sub> -          | 2-CI              | 8-F            |  |  |
| 15                 | H                                      | -CH <sub>2</sub> - | 2-CI              | Н              | 51             | Н                         | -CH <sub>2</sub> -          | 2-CI              | 8-F            |  |  |
| 16                 | 4-CH <sub>3</sub>                      | -co-               | 2-CI              | Н              | 52             | 4-CH <sub>3</sub>         |                             | 2-CI              | 8-F            |  |  |
| 17                 | 4-CH <sub>3</sub>                      | -SO <sub>2</sub> - | 2-CI              | Н              | 53             | 4-CH <sub>3</sub>         | _                           | 2-CI              | 8-F            |  |  |
| 18                 | 4-CH₃                                  | -CH <sub>2</sub> - | 2-CI              | Н              | 54             | 4-CH <sub>3</sub>         | -CH <sub>2</sub> -          | 2-CI              | 8-F            |  |  |
| 19                 | 4-CI                                   | -co-               | 2-CI              | H              | 55             | 4-CI                      | -co-                        | 2-CI              | 8-F            |  |  |
| 20                 | 4-CI                                   | -SO <sub>2</sub> - | 2-CI              | Н              | 56             | 4-CI                      | -SO <sub>2</sub> -          | 2-CI              | 8-F            |  |  |
| 21                 | 4-CI                                   | -CH <sub>2</sub> - | 2-CI              | Н              | 57             | 4-CI                      | -CH <sub>2</sub> -          | 2-CI              | 8-F            |  |  |
| 22                 | 4-F                                    | -co-               | 2-CI              | н              | 58             | 4-F                       | -co-                        | 2-CI              | 8-F            |  |  |
| 23                 | 4-F                                    | -SO <sub>2</sub> - | 2-Cl              | Н              | 59             | 4-F                       | -SO <sub>2</sub> -          | 2-CI              | 8 <b>-</b> F   |  |  |
| 24                 | 4-F<br>H                               | -CH <sub>2</sub> - | 2-CI              | Н              | 60             | 4-F                       | -CH <sub>2</sub> -          | 2-CI              | 8-F            |  |  |
| 25                 | Н                                      | -co-               | 2-F               | H              | 61             | H                         | -co-                        | 2-F               | 8-F            |  |  |
| 26                 | Н                                      | -SO <sub>2</sub> - | 2-F<br>2-F        | H              | 62             | H                         | -SO <sub>2</sub> -          | 2-F               | 8-F            |  |  |
| 27<br>28           |                                        | -CH <sub>2</sub> - |                   |                | 63             | H                         | -CH <sub>2</sub> -          | 2-F               | 8-F            |  |  |
| 29                 | 4-CH <sub>3</sub><br>4-CH <sub>3</sub> |                    | 2-F               | Н              | 64             | 4-CH <sub>3</sub>         |                             | 2-F               | 8-F            |  |  |
|                    |                                        | -SO <sub>2</sub> - | 2-F               | H              | 65             | 4-CH <sub>3</sub>         | -                           | 2-F               | 8-F            |  |  |
| 30 ;<br>31 ;       | 4-CH <sub>3</sub><br>4-CI              | -CH <sub>2</sub> - | 2-F<br>2-F        | H              | 66             | 4-CH <sub>3</sub><br>4-CI | _                           | 2-F               | 8-F            |  |  |
| 32                 | 4-Ci<br>4-Ci                           | -CO-               | 2-F               | 1              | 67             | 4-CI                      | -CO-                        | 2-F               | 8-F            |  |  |
| 33                 | 4-CI                                   | -SO <sub>2</sub> - | 2-F               | Н              | 68             | 4-CI<br>4-CI              | -SO <sub>2</sub> -          | 2-F               | 8-F            |  |  |
| 33 ;<br>34 ;       |                                        | -CH <sub>2</sub> - |                   | H              | 69             |                           | -CH <sub>2</sub> -          | 2-F               | 8-F            |  |  |
|                    | 4-F                                    | -co-               | 2-F               | H              | 70             | 4-F                       | -CO-                        | 2-F               | 8-F            |  |  |
| 35                 | 4-F                                    | -SO <sub>2</sub> - | 2-F               | Н              | 71             | 4-F                       | -SO <sub>2</sub> -          | 2-F               | 8-F            |  |  |
| 36                 | 4-F                                    | -CH <sub>2</sub> - | 2-F               | H              | 72             | 4-F                       | -CH <sub>2</sub> -          | 2-F .             | 8 <b>-</b> F   |  |  |

|   | ٠            | 0                 |                                          |                                        | 麦              | 1           | <u>6</u> | _                 |                                          |                   |                     |
|---|--------------|-------------------|------------------------------------------|----------------------------------------|----------------|-------------|----------|-------------------|------------------------------------------|-------------------|---------------------|
|   | 6            | <b>Т</b> он       |                                          |                                        |                |             |          | آر ۽              | он                                       |                   |                     |
| R | 2 6 (<br>5 ( | , NH              |                                          | (1-                                    | -Ca)           |             | i        | $R^2 \frac{6}{5}$ | `NH                                      |                   | (I-Cb)              |
|   |              | 4 É               | <b>1</b>                                 | 0 8                                    | 7              |             | またに      | , 4<br>t          | Ė                                        | . n               | 8 7                 |
|   |              | R <sup>3</sup>    | 3                                        | (s)                                    | R <sup>5</sup> |             |          |                   | R <sup>3</sup> 3                         | `o`".(`s          | $R^5$               |
|   | No.          | R <sup>2</sup>    | E                                        | R <sup>3</sup>                         | R <sup>5</sup> | П           | No.      | R <sup>2</sup>    | E                                        | R <sup>3</sup>    | อ<br>R <sup>5</sup> |
|   | 1            | н                 | -co-                                     | 2-CH <sub>3</sub>                      | 5-F            | $\prod$     | 37       | Н                 | -co-                                     | 2-CH <sub>3</sub> | 7-F                 |
|   | 2            | Н                 | -SO <sub>2</sub> -                       | 2-CH <sub>3</sub>                      | 5-F            | $\parallel$ | 38       | Н                 | -SO <sub>2</sub> -                       | 2-CH <sub>3</sub> | 7-F                 |
|   | 3            | H                 | -CH <sub>2</sub> -                       | 2-CH <sub>3</sub>                      | 5-F            | Ш           | 39       | н                 | -CH <sub>2</sub> -                       | 2-CH <sub>3</sub> | 7-F                 |
|   | 4            | 4-CH <sub>3</sub> |                                          | 2-CH <sub>3</sub>                      | 5-F            | Ш           | 40       | 4-CH <sub>3</sub> | -co-                                     | 2-CH <sub>3</sub> | 7-F                 |
|   | 5            | 4-CH <sub>3</sub> | _                                        | 2-CH <sub>3</sub>                      | 5-F            | Ш           | 41       | 4-CH <sub>3</sub> | -SO <sub>2</sub> -                       | _                 | 7-F                 |
|   | 6            | 4-CH <sub>3</sub> | _                                        | 2-CH <sub>3</sub>                      | 5-F            | Ш           | 42       | 4-CH <sub>3</sub> | -CH <sub>2</sub> -                       | _                 | 7-F                 |
|   | 7            | 4-CI              | -co-                                     | 2-CH <sub>3</sub>                      | 5-F            | Ш           | 43       | 4-CI              | -co-                                     | 2-CH <sub>3</sub> | 7-F                 |
|   | 8            | 4-CI              | -SO <sub>2</sub> -                       | 2-CH <sub>3</sub>                      | 5-F            | П           | 44       | 4-CI              | -SO <sub>2</sub> -                       |                   | 7-F                 |
|   | 9            | 4-CI              | -CH <sub>2</sub> -                       | 2-CH <sub>3</sub>                      | 5-F            | Ш           | 45       | 4-CI              | -CH <sub>2</sub> -                       |                   | 7-F                 |
|   | 10  <br>11   | 4-F<br>4-F        | -co-<br>-so <sub>2</sub> -               | 2-CH <sub>3</sub><br>2-CH <sub>3</sub> | 5-F            | $\Pi$       | 46       | 4-F               | -co-                                     | 2-CH <sub>3</sub> | 7-F                 |
|   | 12           | 4-F               | -30 <sub>2</sub> -                       | 2-CH <sub>3</sub>                      | 5-F<br>5-F     | Ш           | 47       | 4-F<br>4-F        | -SO <sub>2</sub> -<br>-CH <sub>2</sub> - | 2-CH <sub>3</sub> | 7-F                 |
|   | 13           | Н                 | -CO-                                     | 2-Cl                                   | 5-F            |             | 48<br>49 | 4-r<br>H          | -CH <sub>2</sub> -                       | 2-CH₃<br>2-CI     | 7-F<br>7-F          |
|   | 14           | н                 | -SO <sub>2</sub> -                       | 2-CI                                   | 5-F            | Ш           | 50       | Н                 | -SO <sub>2</sub> -                       | 2-C1              | 7-F<br>7-F          |
|   | 15           | Н                 | -CH <sub>2</sub> -                       | 2-CI                                   | 5-F            | Ш           | 51       | Н                 | -CH <sub>2</sub> -                       | 2-CI              | 7-F                 |
|   | 16           | 4-CH <sub>3</sub> | _                                        | 2-Ci                                   | 5-F            | Ш           | 52       | 4-CH <sub>3</sub> | -co-                                     | 2-CI              | 7-F                 |
|   | 17           | 4-CH <sub>3</sub> |                                          | 2-CI                                   | 5-F            | Ш           | 53       | 4-CH <sub>3</sub> | -\$02-                                   | 2-CI              | 7-F                 |
| 1 | 18           | 4-CH <sub>3</sub> |                                          | 2-CI                                   | 5-F            | Ш           | 54       | 4-CH <sub>3</sub> | -CH <sub>2</sub> -                       | 2-CI              | 7-F                 |
| 1 | 19           | 4-CI              | -co-                                     | 2-C1                                   | 5-F            | Ш           | 55       | 4-CI              | -co-                                     | 2-CI              | 7-F                 |
| 2 | 20           | 4-CI              | -\$02-                                   | 2-CI                                   | 5-F            | lí          | 56       | 4-CI              | -SO <sub>2</sub> -                       | 2-CI              | 7-F                 |
| 2 | H            | 4-CI              | -CH <sub>2</sub> -                       | 2-C1                                   | 5-F            | Ш           | 57       | 4-CI              | -CH <sub>2</sub> -                       | 2-CI              | 7 <b>-</b> F        |
|   | 2            | 4-F               | -co-                                     | 2-CI                                   | 5-F            | Ш           | 58       | 4-F               | -co-                                     | 2-Ci              | 7-F                 |
|   | 13           | 4-F               | -SO <sub>2</sub> -                       | 2-CI                                   | 5-F            | Ш           | 59       | 4-F               | -SO <sub>2</sub> -                       | 2-CI              | 7-F                 |
|   | 4            | 4-F               | -CH <sub>2</sub> -                       | 2-CI                                   | 5-F            | 11          | 60       | 4-F               | -CH <sub>2</sub> -                       | 2-CI              | 7-F                 |
|   | 25           | Н                 | -co-                                     | 2-F                                    | 5-F            | Ш           | 61       | Н                 | -co-                                     | 2-F               | 7-F                 |
|   | 6 ;          | H                 | -SO <sub>2</sub> -                       | 2-F                                    | 5-F            | Ш           | 62       | Н                 | -SO <sub>2</sub> -                       | 2-F               | 7 <b>-F</b>         |
|   | 7            | H                 | -CH <sub>2</sub> -                       | 2-F                                    | 5-F            |             | 63       | H                 | -CH <sub>2</sub> -                       | 2-F               | 7-F                 |
|   | 8            | _                 | -00-                                     | 2-F                                    | 5-F            | Ш           | 64       | 4-CH <sub>3</sub> |                                          | 2-F               | 7-F                 |
|   | 9 :          |                   | -SO <sub>2</sub> -<br>-CH <sub>2</sub> - | 2-F                                    | 5-F            | II          | 65       | 4-CH <sub>3</sub> | _                                        | 2-F               | 7-F                 |
|   | 11           | 4-CH <sub>3</sub> | -CO-                                     | 2-F<br>2-F                             | 5-F<br>5-F     | Ш           | 66       | 4-CH₃<br>4-CI     | -СН <sub>2</sub> -<br>-СО-               | 2-F               | 7-F                 |
|   | 2            | 4-CI              | -SO <sub>2</sub> -                       | 2-F                                    | 5-F            |             | 67       | 4-CI              | -50 <sub>2</sub> -                       | 2-F               | 7-F                 |
|   | 3 :          | 4-CI              | -SU <sub>2</sub> -                       | 2-F                                    | 5-F            |             | 68<br>69 | 4-CI<br>4-CI      | -50 <sub>2</sub> -                       | 2-F<br>2-F        | 7-F<br>7-F          |
|   | 4            | 4-F               | -CO-                                     | 2 <del>-</del> F                       | 5-F            |             | 70       | 4-51<br>4-F       | -CO-                                     | 2-F               | 7-г<br>7-F          |
|   | 5            | 4-F               | -SO <sub>2</sub> -                       | 2-F                                    | 5-F            |             | 71       | 4-F               | -so <sub>2</sub> -                       | 2-F               | 7-F                 |
|   | 6            | 4-F               | -CH <sub>2</sub> -                       | 2-F                                    | 5-F            |             | 72       | 4-F               | -CH <sub>2</sub> -                       | 2-F               | 7-F                 |
|   |              |                   | -                                        |                                        | - '            |             |          |                   | -                                        |                   | · -                 |

表17

No. 
$$R^2$$
 E  $R^3$   $R^5$  No.  $R^2$  E  $R^3$   $R^5$ 

1 5-CH<sub>3</sub> -CO- 2-CH<sub>3</sub> H 25 5-CH<sub>3</sub> -CO- 2-CH<sub>3</sub> 5-F

2 5-CH<sub>3</sub> -SO<sub>2</sub> 2-CH<sub>3</sub> H 26 5-CH<sub>2</sub> -2-CH<sub>3</sub> 5-F

4 5-CI -CO- 2-CI H 29 5-CI -CO- 2-CI 5-F

5 5-CI -CH<sub>2</sub> 2-CI H 30 5-CI -CO- 2-CI 5-F

7 5-CH<sub>3</sub> -CO- 2-CI H 31 5-CH<sub>3</sub> -CO- 2-CI 5-F

8 5-CH<sub>3</sub> -SO<sub>2</sub> 2-CI H 32 5-CH<sub>3</sub> -CO- 2-CI 5-F

9 5-CH<sub>3</sub> -CO- 2-CI H 31 5-CH<sub>3</sub> -CO- 2-CI 5-F

10 5-F -CO- 2-CI H 32 5-CH<sub>3</sub> -CO- 2-CI 5-F

11 5-F -SO<sub>2</sub> 2-CI H 33 5-CH<sub>3</sub> -CO- 2-CI 5-F

10 5-F -CO- 2-CI H 34 5-F -CO- 2-CI 5-F

11 5-F -CO- 2-CI H 35 5-F -CO- 2-CI 5-F

12 5-F -CH<sub>2</sub> 2-CI H 36 5-F -CO- 2-CI 5-F

13 5-CH<sub>3</sub> -CO- 2-CI H 36 5-F -CO- 2-CI 5-F

14 5-CH<sub>3</sub> -CO- 2-CI H 36 5-F -CO- 2-CI 5-F

15 5-CH<sub>3</sub> -CO- 2-CI H 36 5-F -CO- 2-CI 5-F

15 5-CH<sub>3</sub> -CO- 2-CI H 36 5-F -CH<sub>2</sub> 2-CI 5-F

15 5-CH<sub>3</sub> -CO- 2-CH<sub>3</sub> 8-F 37 5-CH<sub>3</sub> -CO- 2-CH<sub>3</sub> 7-F

15 5-CH<sub>3</sub> -CO- 2-CI 8-F 39 5-CH<sub>3</sub> -CO- 2-CH<sub>3</sub> 7-F

16 5-CI -CO- 2-CI 8-F 39 5-CH<sub>3</sub> -CO- 2-CH<sub>3</sub> 7-F

16 5-CI -CO- 2-CI 8-F 40 5-CI -CO- 2-CI 7-F

-SO<sub>2</sub>-

-CH<sub>2</sub>-

-co-

-SO<sub>2</sub>-

-CH<sub>2</sub>-

-cò-

-SO<sub>2</sub>-

-CH<sub>2</sub>-

2-CI

2-CI

2-CI

2-CI

2-CI

2-CI

2-CI

2-CI

8-F

8-F

8-F

8-F

8-F

8-F

8-F

8-F

41

42

43

44

45

46

47

48

5-CI

5-CI

5-CH<sub>3</sub>

5-CH<sub>3</sub>

5-CH<sub>3</sub>

5-F

5-F

5-F

-SO2- 2-CI

-CH<sub>2</sub>- 2-CI

-CO- 2-CI

-SO2- 2-CI

-CH2- 2-CI

-CO- 2-Ci

-SO2- 2-CI

-CH<sub>2</sub>- 2-CI

7-F

7-F

7-F

7-F

7-F

7-F

7-F

7-F

5-CI

5-CI

5-CH<sub>3</sub>

5-CH<sub>3</sub>

5-CH<sub>3</sub>

5-F

5-F

17

18

19

20

21

22

23

24

表18

| 表 <u>19</u>          |                   |                                          |                                        |                     |          |                     |                                          |                                        |                                       |  |  |  |
|----------------------|-------------------|------------------------------------------|----------------------------------------|---------------------|----------|---------------------|------------------------------------------|----------------------------------------|---------------------------------------|--|--|--|
|                      | <b>ДОН</b>        |                                          |                                        |                     |          | آم                  |                                          |                                        |                                       |  |  |  |
| $R^2 = \frac{6}{5!}$ | - NH              |                                          | (I-Da                                  | <del>-</del> 1)     |          | $R^2 = \frac{6}{5}$ | `NH                                      |                                        | (I-Db-1)                              |  |  |  |
| -                    | 4 E               |                                          | 8                                      | _                   |          | 4                   | Ę~                                       |                                        | R                                     |  |  |  |
|                      | 2  / <sub>2</sub> | <b>/</b> 0^                              |                                        | /<br>R <sup>5</sup> | または      |                     | 071.1                                    | 7 p5                                   |                                       |  |  |  |
|                      | R <sup>3</sup> 3  |                                          | 0~5                                    | 5                   |          |                     | R <sup>3</sup> 3                         | Ó.                                     | 56                                    |  |  |  |
| No.                  | R <sup>2</sup>    | E                                        | R <sup>3</sup>                         | R <sup>5</sup>      | No.      | R <sup>2</sup>      | E                                        | R <sup>3</sup>                         | R <sup>5</sup>                        |  |  |  |
| 1                    | Н                 | -co-                                     | 2-CH <sub>3</sub>                      | Н                   | 37       | Н                   | -co-                                     | 2-CH <sub>3</sub>                      | 7-F                                   |  |  |  |
| 2                    | Н                 | -SO <sub>2</sub> -                       | 2-CH <sub>3</sub>                      | Н                   | 38       | Н                   | -so <sub>2</sub> -                       | 2-CH <sub>3</sub>                      | 7-F                                   |  |  |  |
| 3                    | Н                 | -CH <sub>2</sub> -                       | 2-CH <sub>3</sub>                      | Н                   | 39       | Н                   | -CH <sub>2</sub> -                       | _                                      | 7-F                                   |  |  |  |
| 4                    | 4-CH <sub>3</sub> | -CO-                                     | 2-CH <sub>3</sub>                      | H                   | 40       | 4-CH₃               | -co-                                     | 2-CH <sub>3</sub>                      | 7 <b>-</b> F                          |  |  |  |
| 5<br>6               | 4-CH <sub>3</sub> | -SO <sub>2</sub> -<br>-CH <sub>2</sub> - | 2-CH <sub>3</sub><br>2-CH <sub>3</sub> | н<br>Н              | 41       | 4-CH <sub>3</sub>   | -SO <sub>2</sub> -                       | _                                      | 7-F                                   |  |  |  |
| 7                    | 4-CI              | -CO-                                     | 2-CH <sub>3</sub>                      | н                   | 42       | 4-CH₃<br>4-CI       | -CH₂-<br>-CO-                            | •                                      | 7-F                                   |  |  |  |
| 8                    | 4-CI              | -502-                                    | 2-CH <sub>3</sub>                      | H                   | 44       | 4-CI                | -50 <sub>2</sub> -                       | 2-CH <sub>3</sub><br>2-CH <sub>3</sub> | 7 <del>.</del> F<br>7 <del>.F</del> . |  |  |  |
| 9                    | 4-CI              | -CH <sub>2</sub> -                       | 2-CH <sub>3</sub>                      | Н                   | 45       | 4-CI                | -CH <sub>2</sub> -                       | _                                      | 7-F                                   |  |  |  |
| 10                   | 4-F               | -co-                                     | 2-CH <sub>3</sub>                      | Н                   | 46       | 4-F                 | -CO-                                     | 2-CH <sub>3</sub>                      | 7-F                                   |  |  |  |
| 11                   | 4-F               | -SO <sub>2</sub> -                       | 2-CH <sub>3</sub>                      | н                   | 47       | 4-F                 | -SO <sub>2</sub> -                       | •                                      | 7-F                                   |  |  |  |
| 12                   | 4-F               | -CH <sub>2</sub> -                       | 2-CH <sub>3</sub>                      | Н                   | 48       | 4-F                 | -CH <sub>2</sub> -                       |                                        | 7 <del>-F</del>                       |  |  |  |
| 13                   | н                 | -co-                                     | 2-CI                                   | н                   | 49       | Н                   | -co-                                     | 2-CI                                   | 7-F                                   |  |  |  |
| 14                   | H                 | -SO <sub>2"</sub>                        | 2-CI                                   | Н                   | 50       | н                   | -SO <sub>2</sub> -                       | 2-CI                                   | 7 <b>-</b> F                          |  |  |  |
| 15                   | Н                 | -CH <sub>2</sub> -                       | 2-CI                                   | Н                   | 51       | Н                   | -CH <sub>2</sub> -                       | 2-CI                                   | 7 <b>-F</b>                           |  |  |  |
| 16                   | 4-CH <sub>3</sub> | -co-                                     | 2-CI                                   | Н                   | 52       | 4-CH <sub>3</sub>   | -co-                                     | 2-CI                                   | 7-F                                   |  |  |  |
| 17                   | 4-CH <sub>3</sub> | -SO <sub>2</sub> -                       | 2-CI                                   | H                   | 53       | 4-CH <sub>3</sub>   | -SO <sub>2</sub> -                       | 2-CI                                   | 7-F                                   |  |  |  |
| 18<br>19             | 4-CH₃<br>4-CI     | -CH <sub>2</sub> -<br>-CO-               | 2-CI<br>2-CI                           | H                   | 54       | 4-CH <sub>3</sub>   | -CH <sub>2</sub> -                       | 2-CI                                   | 7 <b>-</b> F                          |  |  |  |
| 20                   | 4-CI              | -SO <sub>2</sub> -                       | 2-CI                                   | H                   | 55       | 4-CI                | -CO-                                     | 2-CI                                   | 7-F                                   |  |  |  |
| 21                   | 4-CI              | -CH <sub>2</sub> -                       | 2-CI                                   | H                   | 56       | 4-CI<br>4-CI        | -SO <sub>2</sub> -                       | 2-CI                                   | 7-F                                   |  |  |  |
| 22                   | 4-F               | -CO-                                     | 2-CI                                   | H                   | 57<br>58 | 4-F                 | -CO-                                     | 2-CI<br>2-CI                           | 7-F<br>7-F                            |  |  |  |
| 23                   | 4-F               | -SO <sub>2</sub> -                       | 2-CI                                   | н                   | 59       | 4-F                 | -SO <sub>2</sub> -                       | 2-CI                                   | 7 <del>-F</del><br>7 <del>-F</del>    |  |  |  |
| 24                   | 4-F               | -CH <sub>2</sub> -                       | 2-CI                                   | н                   | 60       | 4-F                 | -CH <sub>2</sub> -                       | 2-CI                                   | 7-F                                   |  |  |  |
| 25                   | H                 | -co-                                     | 2-F                                    | н                   | 61       | Н                   | -co-                                     | 2-F                                    | 7-F                                   |  |  |  |
| 26                   | Н                 | -SO <sub>2</sub> -                       | 2-F                                    | н                   | 62       | Н                   | -\$O <sub>2</sub> -                      | 2 <b>-</b> F                           | 7-F                                   |  |  |  |
| 27                   | H                 | -CH <sub>2</sub> -                       | 2-F                                    | н                   | 63       | Н                   | -CH <sub>2</sub> -                       | 2-F                                    | 7-F                                   |  |  |  |
| 28                   | 4-CH <sub>3</sub> | -CO-                                     | 2-F                                    | н                   | 64       | 4-CH <sub>3</sub>   | -CO-                                     | 2-F                                    | 7 <b>-</b> F                          |  |  |  |
| 29                   | 4-CH <sub>3</sub> | -SO <sub>2</sub> -                       | 2-F                                    | н                   | 65       | 4-CH <sub>3</sub>   | -SO <sub>2</sub> -                       | 2 <b>-F</b>                            | 7-F                                   |  |  |  |
| 30                   | 4-CH <sub>3</sub> | -CH <sub>2</sub> -                       | 2-F                                    | Н                   | 66       | 4-CH <sub>3</sub>   | -CH <sub>2</sub> -                       | 2 <b>-</b> F                           | 7-F                                   |  |  |  |
| 31                   | 4-CI              | -CO-                                     | 2-F                                    | Н                   | 67       | 4-CI                | -co-                                     | 2-F                                    | 7-F                                   |  |  |  |
| 32 :<br>33 :         | 4-CI<br>4-CI      | -SO <sub>2</sub> -<br>-CH <sub>2</sub> - | 2-F                                    | H                   | 68       | 4-CI                | -SO <sub>2</sub> -                       | 2 <del>-</del> F                       | 7 <b>-</b> F                          |  |  |  |
| 34                   | 4-CI<br>4-F       | -CH <sub>2</sub> -                       | 2-F                                    | H                   | 69       | 4-Cl                | -CH <sub>2</sub> -                       | 2-F                                    | 7-F                                   |  |  |  |
| 35                   | 4-F               | -50 <sub>2</sub> -                       | 2-F<br>2-F                             | H                   | 70       | 4-F                 | -CO-                                     | 2-F                                    | 7-F                                   |  |  |  |
| 36                   | 4-F               | -50 <sub>2</sub> -                       | 2-F                                    | H                   | 71<br>72 | 4-F<br>4-F          | -SO <sub>2</sub> -<br>-CH <sub>2</sub> - | 2-F                                    | 7-F                                   |  |  |  |
| -                    | • •               | 2                                        |                                        | ., ,                | 12       | -4-3                | -0112-                                   | 2-F                                    | 7 <b>-</b> F                          |  |  |  |

|                     | o<br>O                                 |                            |                   | ā              | 20 |          |                     |                                          |                   |                |  |
|---------------------|----------------------------------------|----------------------------|-------------------|----------------|----|----------|---------------------|------------------------------------------|-------------------|----------------|--|
|                     | _\_Он                                  |                            |                   |                |    |          | <sup>Д</sup> он     |                                          |                   |                |  |
| $R^2 = \frac{6}{5}$ | ÉУЙН                                   |                            | (I-D              | a-1)           |    |          | R <sup>2</sup> 5 NH |                                          |                   | (I-Db-1)       |  |
|                     | * Ė                                    |                            | . 8               | 7              |    |          | 4                   | Ė                                        | s) 8_             |                |  |
|                     | $\frac{2}{R^3}$                        |                            |                   |                |    | またに      | 7 R5                |                                          |                   |                |  |
|                     | R <sup>3</sup>                         | 3                          | 0~5               | 6              |    |          |                     | R <sup>3</sup> 3                         | Č                 | 5 6 "          |  |
| No.                 | R <sup>2</sup>                         | E                          | R <sup>3</sup>    | R <sup>5</sup> |    | No.      | R <sup>2</sup>      | E                                        | R <sup>3</sup>    | R <sup>5</sup> |  |
| 1                   | н                                      | -co-                       | 2-CH <sub>3</sub> | 6-F            |    | 37       | н                   | -co-                                     | 2-CH <sub>3</sub> | 5-F            |  |
| 2                   | Н                                      | -SO <sub>2</sub> -         |                   | 6 <b>-</b> F   |    | 38       | Н                   | -so <sub>2</sub> -                       | 2-CH <sub>3</sub> | 5-F            |  |
| 3                   | H                                      | -CH <sub>2</sub> -         | •                 | 6 <b>-F</b>    |    | 39       | н                   | -CH <sub>2</sub> -                       | 2-CH <sub>3</sub> | 5-F            |  |
| 4                   | 4-CH <sub>3</sub>                      | -co-                       | 2-CH <sub>3</sub> | 6-F            |    | 40       | 4-CH <sub>3</sub>   | -co-                                     | 2-CH <sub>3</sub> | 5-F            |  |
| 5                   | 4-CH <sub>3</sub>                      | _                          | 2-CH <sub>3</sub> | 6-F            |    | 41       | 4-CH <sub>3</sub>   | -SO <sub>2</sub> -                       | 2-CH <sub>3</sub> | 5-F            |  |
| 6                   | 4-CH <sub>3</sub>                      | -CH <sub>2</sub> -         | -                 | 6-F            | Į  | 42       | 4-CH <sub>3</sub>   | -CH <sub>2</sub> -                       | 2-CH <sub>3</sub> | 5-F            |  |
| 7                   | 4-CI                                   | -co-                       | 2-CH <sub>3</sub> | 6-F            | ĺ  | 43       | 4-CI                | -co-                                     | 2-CH <sub>3</sub> | 5-F            |  |
| 8                   | 4-CI                                   | -SO <sub>2</sub> -         |                   | 6-F            | -  | 44       | 4-CI                | -SO <sub>2</sub> -                       | 2-CH <sub>3</sub> | 5-F            |  |
| 9                   | 4-CI                                   | -CH <sub>2</sub> -         | 2-CH <sub>3</sub> | 6-F            | ı  | 45       | 4-CI                | -CH <sub>2</sub> -                       | 2-CH <sub>3</sub> | 5-F            |  |
| 10                  | 4-F                                    | -co-                       | 2-CH <sub>3</sub> | 6-F            | ı  | 46       | 4-F                 | -CO-                                     | 2-CH <sub>3</sub> | 5-F            |  |
| 11                  | 4-F                                    | -SO <sub>2</sub> -         |                   | 6-F            | ١  | 47       | 4-F                 | -SO <sub>2</sub> -                       | 2-CH <sub>3</sub> | 5-F            |  |
| 12                  | 4-F                                    | -CH <sub>2</sub> -         | -                 | 6-F            | ١  | 48       | 4-F                 | -CH <sub>2</sub> -                       | 2-CH <sub>3</sub> | 5-F            |  |
| 13                  | Н                                      | -co-                       | 2-Ci              | 6-F            | ı  | 49       | Н                   | -co-                                     | 2-C1              | 5-F            |  |
| 14                  | H                                      | -SO <sub>2</sub> -         | 2-CI              | 6-F            | 1  | 50       | Н                   | -SO <sub>2</sub> -                       | 2-Cl              | 5-F            |  |
| 15                  | H                                      | -CH <sub>2</sub> -         | 2-CI              | 6-F            | 1  | 51       | Н                   | -CH <sub>2</sub> -                       | 2-CI              | 5-F            |  |
| 16<br>17            | 4-CH <sub>3</sub><br>4-CH <sub>3</sub> | -co-<br>-so <sub>2</sub> - | 2-CI<br>2-CI      | 6-F            | -  | 52       | 4-CH₃               | -CO-                                     | 2-CI              | 5-F            |  |
| 18                  | 4-CH <sub>3</sub>                      | -302-<br>-CH2-             | 2-CI              | 6-F            | 1  | 53       | 4-CH <sub>3</sub>   | -SO <sub>2</sub> -                       | 2-CI              | 5-F            |  |
| 19                  | 4-Cl                                   | -CO-                       | 2-CI              | 6-F<br>6-F     | ı  | 54       | 4-CH <sub>3</sub>   | -CH <sub>2</sub> -                       | 2-CI              | 5-F            |  |
| 20                  | 4-CI                                   | -\$0 <sub>2</sub> -        | 2-Ci              | 6-F            | ١  | 55<br>50 | 4-CI<br>4-CI        | -CO-<br>-SO <sub>2</sub> -               | 2-CI<br>2-CI      | 5-F            |  |
| 21                  | 4-CI                                   | -CH <sub>2</sub> -         | 2-CI              | 6-F            |    | 56       | 4-CI                | -30 <sub>2</sub> -<br>-CH <sub>2</sub> - | 2-C1              | 5-F            |  |
| 22                  | 4-F                                    | -CO-                       | 2-CI              | 6-F            | 1  | 57<br>58 | 4-C)                | -CO-                                     | 2-Ci              | 5-F<br>5-F     |  |
| 23                  | 4-F                                    | -SO <sub>2</sub> -         | 2-CI              | 6-F            |    | 59       | 4-F                 | -SO <sub>2</sub> -                       | 2-CI              | 5-F            |  |
| 24                  | 4-F                                    | -CH <sub>2</sub> -         | 2-CI              | 6-F            | 1  | 60       | 4-F                 | -CH <sub>2</sub> -                       | 2-CI              | 5-F            |  |
| 25                  | н                                      | -CO-                       | 2-F               | 6-F            |    | 61       | Н                   | -CO-                                     | 2-F               | 5-F            |  |
| 26                  | н                                      | -802-                      | 2-F               | 6-F            |    | 62       | H                   | -SO <sub>2</sub> -                       | 2-F               | 5-F            |  |
| 27                  | н                                      | -CH <sub>2</sub> -         | 2-F               | 6-F            |    | 63       | Н                   | -CH <sub>2</sub> -                       | 2-F               | 5-F            |  |
| 28                  | 4-CH <sub>3</sub>                      |                            | 2-F               | 6-F            |    | 64       | 4-CH <sub>3</sub>   | _                                        | 2-F               | 5-F            |  |
| 29                  | 4-CH <sub>3</sub>                      |                            | 2-F               | 6-F            |    | 65       | 4-CH <sub>3</sub>   |                                          | 2-F               | 5-F            |  |
| 30                  |                                        | -CH <sub>2</sub> -         |                   | 6-F            | Ш  | 66       | 4-CH <sub>3</sub>   |                                          | 2-F               | 5-F            |  |
| 31                  | 4-CI                                   | -co-                       | 2-F               | 6-F            | II | 67       | 4-CI                | -co-                                     | 2-F               | 5-F            |  |
| 32                  | 4-CI                                   | -SO <sub>2</sub> -         | 2-F               | 6-F            |    | 68       | 4-CI                | -SO <sub>2</sub> -                       | 2-F               | 5-F            |  |
| 33                  | 4-CI                                   | -CH <sub>2</sub> -         | 2-F               | 6-F            |    | 69       | 4-CI                | -CH <sub>2</sub> -                       | 2-F               | 5-F            |  |
| 34                  | 4-F                                    | -co-                       | 2-F               | 6-F            |    | 70       | 4-F                 | -co-                                     | 2-F               | 5-F            |  |
| 35                  | 4-F                                    | -SO <sub>2</sub> -         | 2-F               | 6 <b>-F</b>    |    | 71       | 4-F                 | -SO <sub>2</sub> -                       | 2-F               | 5-F            |  |
| 36                  | 4-F                                    | -CH <sub>2</sub> -         | 2-F               | 6-F            |    | 72       | 4-F                 | -CH <sub>2</sub> -                       | 2-F               | 5 <b>-F</b>    |  |

表21

表22

|                   | <u>o</u>          |                                          |                                        | 麦                         | 23       | <u>2 3</u>          |                            |                   |                     |  |  |
|-------------------|-------------------|------------------------------------------|----------------------------------------|---------------------------|----------|---------------------|----------------------------|-------------------|---------------------|--|--|
| •                 | ∤ЧОН              |                                          |                                        |                           |          | آم ،                | `ОН                        |                   |                     |  |  |
| $R^2 \frac{6}{5}$ | É ŅH              | l .                                      | (I-Da-                                 | -2)                       | , F      | $r^2 = \frac{6}{5}$ | ŅH                         | (1                | -Db-2)              |  |  |
|                   | Ë                 |                                          | Ω                                      |                           | またに      | <b>4</b><br>İ       | Ė                          |                   | •                   |  |  |
|                   | R <sup>3</sup>    | 3                                        |                                        | 7<br>—R <sup>5</sup><br>6 |          |                     | R <sup>3</sup> 3           | 0                 | $\frac{8}{6}$       |  |  |
| No.               | R <sup>2</sup>    | E                                        | R <sup>3</sup>                         | R <sup>5</sup>            | No.      | R <sup>2</sup>      | E                          | $R^3$             | 5<br>R <sup>5</sup> |  |  |
| 1                 | Н                 | -co-                                     | 2-CH <sub>3</sub>                      | Н                         | 37       | Н                   | -co-                       | 2-CH <sub>3</sub> | 7-F                 |  |  |
| 2                 | н                 | -SO <sub>2</sub> -                       | 2-CH <sub>3</sub>                      | H                         | 38       | Н                   | -SO <sub>2</sub> -         | -                 | 7-F                 |  |  |
| 3                 | Н                 | -CH <sub>2</sub> -                       | 2-CH <sub>3</sub>                      | н                         | 39       | Н                   | -CH <sub>2</sub> -         | 2-CH <sub>3</sub> | 7-F                 |  |  |
| 4                 | 4-CH <sub>3</sub> |                                          | 2-CH <sub>3</sub>                      | Н                         | 40       | 4-CH <sub>3</sub>   |                            | 2-CH <sub>3</sub> | 7-F                 |  |  |
| 5                 | 4-CH <sub>3</sub> |                                          | 2-CH <sub>3</sub>                      | Н                         | 41       | 4-CH <sub>3</sub>   |                            | 2-CH <sub>3</sub> | 7-F                 |  |  |
| 6                 | 4-CH <sub>3</sub> |                                          | 2-CH <sub>3</sub>                      | Н                         | 42       | 4-CH <sub>3</sub>   | -CH <sub>2</sub> -         | 2-CH <sub>3</sub> | 7-F                 |  |  |
| 7                 | 4-CI              | -co-                                     | 2-CH <sub>3</sub>                      | Н                         | 43       | 4-CI                | -co-                       | 2-CH <sub>3</sub> | 7-F                 |  |  |
| 8                 | 4-CI              | -SO <sub>2</sub> -                       | 2-CH <sub>3</sub>                      | H                         | 44       | 4-CI                | -so <sub>2</sub> -         | 2-CH <sub>3</sub> | 7-F                 |  |  |
| . 9               | 4-CI              | -CH <sub>2</sub> -                       | 2-CH <sub>3</sub>                      | H                         | 45       | 4-CI                | -CH <sub>2</sub> -         | 2-CH <sub>3</sub> | 7 <b>-</b> F        |  |  |
| 10<br>11          | 4-F               | -CO-                                     | 2-CH <sub>3</sub>                      | Н                         | 46       | 4-F                 | -co-                       | 2-CH <sub>3</sub> | 7 <b>-</b> F        |  |  |
| 12                | 4-F<br>4-F        | -SO <sub>2</sub> -<br>-CH <sub>2</sub> - | 2-CH <sub>3</sub><br>2-CH <sub>3</sub> | H                         | 47       | 4-F                 | -SO <sub>2</sub> -         | 2-CH <sub>3</sub> | 7-F                 |  |  |
| 13                | 4-r<br>H          | -сп <sub>2</sub> -                       | 2-Cn <sub>3</sub>                      | H<br>H                    | 48       | 4-F                 | -CH <sub>2</sub> -         | •                 | 7-F                 |  |  |
| 14                | Н                 | -SO <sub>2</sub> -                       | 2-CI                                   | Н                         | 49       | Н                   | -co-                       | 2-CI              | 7-F                 |  |  |
| 15                | Н                 | -CH <sub>2</sub> -                       | 2-CI                                   | H                         | 50<br>51 | H                   | -SO <sub>2</sub> -         | 2-CI              | 7-F                 |  |  |
| 16                | 4-CH <sub>3</sub> | -CO-                                     | 2-CI                                   | Η                         | 51       | 4-CH <sub>3</sub>   | -CH <sub>2</sub> -<br>-CO- | 2-CI              | 7-F                 |  |  |
| 17                | 4-CH <sub>3</sub> | -SO <sub>2</sub> -                       | 2-CI                                   | н                         | 53       | 4-CH <sub>3</sub>   | -SO <sub>2</sub> -         | 2-CI<br>2-CI      | 7-F                 |  |  |
| 18                | 4-CH <sub>3</sub> | -CH <sub>2</sub> -                       | 2-CI                                   | Н                         | 54       | 4-CH <sub>3</sub>   | -CH <sub>2</sub> -         | 2-CI              | 7-F<br>7-F          |  |  |
| 19                | 4-CI              | -co-                                     | 2-CI                                   | н                         | 55       | 4-CI                | -CO-                       | 2-CI              | 7 <del>-F</del>     |  |  |
| 20                | 4-CI              | -SO <sub>2</sub> -                       | 2-CI                                   | н                         | 56       | 4-CI                | -SO <sub>2</sub> -         | 2-Cl              | 7-F                 |  |  |
| 21                | 4-CI              | -CH <sub>2</sub> -                       | 2-CI                                   | Н                         | 57       | 4-CI                | -CH <sub>2</sub> -         | 2-C1              | 7-F                 |  |  |
| 22                | 4-F               | -co-                                     | 2-CI                                   | н                         | 58       | 4-F                 | -co-                       | 2-C1              | 7-F                 |  |  |
| 23                | 4-F               | -SO <sub>2</sub> -                       | 2-CI                                   | н                         | 59       | 4-F                 | -SO <sub>2</sub> -         | 2-CI              | 7-F                 |  |  |
| 24                | 4-F               | -CH <sub>2</sub> -                       | 2-CI                                   | н                         | 60       | 4-F                 | -CH <sub>2</sub> -         | 2-CI              | 7 <b>-</b> F        |  |  |
| 25                | Н                 | -co-                                     | 2-F                                    | н                         | 61       | Н                   | -co-                       | 2-F               | 7-F                 |  |  |
| 26                | H                 | -SO <sub>2</sub> -                       | 2-F                                    | н                         | 62       | H                   | -SO <sub>2</sub> -         | 2-F               | 7 <b>-</b> F        |  |  |
| 27                | H                 | -CH <sub>2</sub> -                       | 2-F                                    | н                         | 63       | Н                   | -CH <sub>2</sub> -         | 2-F               | 7-F                 |  |  |
| 28                | 4-CH <sub>3</sub> | -co-                                     | 2-F                                    | н                         | 64       | 4-CH <sub>3</sub>   | -co-                       | 2-F               | 7 <b>-</b> F        |  |  |
| 29                | 4-CH <sub>3</sub> |                                          | 2-F                                    | H                         | 65       | 4-CH <sub>3</sub>   | -SO <sub>2</sub> -         | 2-F               | 7 <b>-</b> F        |  |  |
| 30                | _                 |                                          | 2-F                                    | H                         | 66       | 4-CH <sub>3</sub>   | -CH <sub>2</sub> -         | 2-F               | 7 <b>-</b> F        |  |  |
| 31                | 4-CI              | -CO-                                     | 2-F                                    | H                         | 67       | 4-CI                | -co-                       | 2-F               | 7-F                 |  |  |
| 32<br>33          | 4-CI              | -SO <sub>2</sub> -                       | 2-F<br>2-E                             | H                         | 68       | 4-CI                | -SO <sub>2</sub> -         | 2-F               | 7 <b>-</b> F        |  |  |
| 34                | 4-CI<br>4-F       | -CH <sub>2</sub> -<br>-CO-               | 2-F<br>2-F                             | H                         | 69       | 4-CI                | -CH <sub>2</sub> -         | 2-F               | 7 <b>-</b> F        |  |  |
| 35                | 4-F               | -50 <sub>2</sub> -                       | 2-F                                    | H                         | 70       | 4-F                 | -co-                       | 2-F               | 7-F                 |  |  |
| 36                | 4- <del>F</del>   | -30 <sub>2</sub> -                       | 2-F                                    | Н                         | 71       | 4-F                 | -SO <sub>2</sub> -         | 2-F               | 7 <b>-F</b>         |  |  |
| <b>50</b> ;       | ***               | -0.12                                    |                                        | 11 J                      | 72       | 4-F                 | -CH <sub>2</sub> -         | 2-F               | 7 <b>-</b> F        |  |  |

|                  | o.                |                    |                                        | 麦                   | 24       |                       |                           |                   |                   |
|------------------|-------------------|--------------------|----------------------------------------|---------------------|----------|-----------------------|---------------------------|-------------------|-------------------|
|                  | _ СОН             | 1                  |                                        |                     |          |                       | ОН                        |                   |                   |
| R <sup>2</sup> - |                   |                    | (I-Da                                  | a-2)                |          | $R^2 \xrightarrow{6}$ | ì                         | ,                 | I-Db-2)           |
|                  | 5 4 NI            | ł                  | (1 2)                                  | ,                   |          | 5 4                   | ŅΗ                        | •                 | 1-00-2)           |
|                  | ` E,              |                    | . 8                                    |                     | また       | は                     | E                         | 1                 | R                 |
|                  | R <sup>3</sup>    | %∕~oʻ              |                                        | 7<br>R <sup>5</sup> |          |                       | 2 1//<br>R <sup>3</sup> 3 | ~o~~;~            | √ <sup>7</sup> _5 |
|                  | · ·               |                    | <i>γ</i> ⁄~                            | 6                   |          |                       | K. 2                      | 6-                | R°                |
| No.              | R <sup>2</sup>    | E                  | R <sup>3</sup>                         | R <sup>5</sup>      | No.      | R <sup>2</sup>        | E                         | R <sup>3</sup>    | 5                 |
| 1                | Н                 | -co-               | 2-CH <sub>3</sub>                      | 6-F                 | 37       | Н                     | -co-                      | 2-CH <sub>3</sub> | 5-F               |
| 2                | Н                 | _                  | 2-CH <sub>3</sub>                      | 6-F                 | 38       | н                     | -SO <sub>2</sub> -        |                   | 5-F               |
| . 3              | н                 | _                  | 2-CH <sub>3</sub>                      | 6 <b>-</b> F        | 39       | н                     | -CH <sub>2</sub> -        | 2-CH <sub>3</sub> | 5-F               |
| 4                | 4-CH <sub>3</sub> |                    | 2-CH <sub>3</sub>                      | 6 <b>-</b> F        | 40       | 4-CH                  | -CO-                      | 2-CH <sub>3</sub> | 5-F               |
| 5                | 4-CH <sub>3</sub> | _                  | 2-CH <sub>3</sub>                      | 6 <b>-</b> F        | 41       | •                     | -SO <sub>2</sub> -        | 2-CH <sub>3</sub> | 5-F               |
| 6                | 4-CH <sub>3</sub> |                    | 2-CH <sub>3</sub>                      | 6 <b>-</b> F        | 42       | ,                     | -CH <sub>2</sub> -        | 2-CH <sub>3</sub> | 5-F               |
| 7                | 4-CI              | -co-               | 2-CH <sub>3</sub>                      | 6-F                 | 43       | 4-CI                  | -co-                      | 2-CH <sub>3</sub> | 5-F               |
| 8                | 4-C1              | _                  | 2-CH <sub>3</sub>                      | 6-F                 | 44       | 4-CI                  | -SO <sub>2</sub> -        | 2-CH <sub>3</sub> | 5-F .             |
| 9                | 4-CI<br>4-F       |                    | 2-CH <sub>3</sub>                      | 6-F                 | 45       | 4-CI                  | -CH <sub>2</sub> -        | 2-CH <sub>3</sub> | 5-F               |
| 10<br>11         | 4-F               |                    | ·2-CH <sub>3</sub>                     | 6-F                 | 46       | 4-F                   | -co-                      | 2-CH <sub>3</sub> | 5-F               |
| 12               | 4-F               |                    | 2-CH <sub>3</sub><br>2-CH <sub>3</sub> | 6-F                 | 47       | 4-F                   | -SO <sub>2</sub> -        | 2-CH <sub>3</sub> | 5-F               |
| 13               | Н                 | -СП <sub>2</sub> - | 2-CI                                   | 6-F                 | 48       | 4-F                   | -CH <sub>2</sub> -        |                   | 5-F               |
| 14               | н                 | -SO <sub>2</sub> - | 2-CI                                   | 6-F<br>6-F          | 49       | Н                     | -co-                      | 2-CI              | 5-F               |
| 15               | Н.                | -CH <sub>2</sub> - | 2-CI                                   | 6-F                 | 50<br>51 | H                     | -SO₂-<br>-CH₂-            | 2-CI              | 5-F               |
| 16               | 4-CH <sub>3</sub> | -CO-               | 2-CI                                   | 6-F                 | 52       | •                     | -сп <sub>2</sub> -        | 2-Ci<br>2-Ci      | 5-F               |
| 17               | 4-CH <sub>3</sub> | -SO <sub>2</sub> - | 2-CI                                   | 6-F                 | 53       |                       | -SO <sub>2</sub> -        | 2-CI<br>2-CI      | 5-F<br>5-F        |
| 18               | 4-CH <sub>3</sub> | -CH <sub>2</sub> - | 2-CI                                   | 6-F                 | 54       |                       | -CH <sub>2</sub> -        | 2-CI              | 5-F               |
| 19               | 4-CI              | -co-               | 2-CI                                   | 6-F                 | 55       | 4-CI                  | -CO-                      | 2-CI              | 5-F               |
| 20               | 4-CI              | -SO <sub>2</sub> - | 2-CI                                   | 6-F                 | 56       | 4-CI                  | -SO <sub>2</sub> -        | 2-C1              | 5-F               |
| 21               | 4-CI              | -CH <sub>2</sub> - | 2-C1                                   | 6-F                 | 57       | 4-CI                  | -CH <sub>2</sub> -        | 2-C1              | 5-F               |
| 22               | 4-F               | -co-               | 2-CI                                   | 6-F                 | 58       | 4-F                   | -co-                      | 2-CI              | 5-F               |
| 23               | 4-F               | -SO <sub>2</sub> - | 2-C1                                   | 6-F                 | 59       | 4-F                   | -SO <sub>2</sub> -        | 2-CI              | 5-F               |
| 24               | 4-F               | -CH <sub>2</sub> - | 2-C1                                   | 6-F                 | 60       | 4-F                   | -CH <sub>2</sub> -        | 2-CI              | 5-F               |
| 25               | H                 | -co-               | 2-F                                    | 6-F                 | 61       | Н                     | -co-                      | 2-F               | 5~F               |
| 26               | Н                 | -SO <sub>2</sub> - | 2 <del>-F</del>                        | 6-F                 | 62       | H                     | -SO <sub>2</sub> -        | 2-F               | 5-F               |
| 27               | Н                 | -CH <sub>2</sub> - | 2 <b>-</b> F                           | 6-F                 | 63       | Н                     | -CH <sub>2</sub> -        | 2-F               | 5-F               |
| 28 ;             | 4-CH <sub>3</sub> | -co-               | 2-F                                    | 6-F                 | 64       | 4-CH <sub>3</sub>     |                           | 2-F               | 5-F               |
| 29 ;             | 4-CH <sub>3</sub> | -SO <sub>2</sub> - | 2-F                                    | 6-F                 | 65       | 4-CH <sub>3</sub>     |                           | 2-F               | 5-F               |
| 30               | 4-CH₃             | -CH <sub>2</sub> - | 2-F                                    | 6-F                 | 66       | 4-CH <sub>3</sub>     |                           | 2-F               | 5-F               |
| 31               | 4-CI              | -CO-               | 2-F                                    | 6-F                 | 67       | 4-CI                  | -CO-                      | 2-F               | 5-F               |
| 32               | 4-CI              | -SO <sub>2</sub> - | 2-F                                    | 6-F                 | 68       | 4-CI                  | -SO <sub>2</sub> -        | 2-F               | 5-F               |
| 33   34          | 4-Ci<br>4-F       | -CH <sub>2</sub> - | 2-F                                    | 6-F                 | 69       | 4-CI                  | -CH <sub>2</sub> -        | 2-F               | 5-F               |
| 35 :             | 4-F               | -CO-               | 2-F                                    | 6-F                 | 70       | 4-F                   | -co-                      | 2-F               | 5-F               |
| 36               | 4-F               | -SO <sub>2</sub> - | 2-F                                    | 6-F                 | 71       | 4-F                   | -SO <sub>2</sub> -        | 2-F               | 5-F               |
| 30               | 4-1               | -CH <sub>2</sub> - | 2 <b>-</b> F                           | 6-F j               | 72       | 4-F                   | -CH <sub>2</sub> -        | 2-F               | 5-F               |

24

5-F

-CH<sub>2</sub>- 2-CI

7-F

-CH<sub>2</sub>-

2-CI

表26

| •        |     |   |     |
|----------|-----|---|-----|
| •        |     |   |     |
|          |     | 8 |     |
|          |     |   |     |
|          | 4   |   |     |
| <i>t</i> |     |   |     |
|          |     |   |     |
|          |     |   |     |
|          |     |   |     |
|          |     |   |     |
| •        |     |   |     |
|          |     |   |     |
|          |     |   |     |
|          |     |   |     |
|          |     |   |     |
|          |     |   |     |
|          |     |   |     |
|          |     |   |     |
|          | * 4 |   |     |
|          |     |   | * + |
|          |     |   |     |
| •        |     |   |     |
|          | *   |   |     |
|          |     |   |     |
|          |     |   |     |

|          | O<br>H            |                                          |                   | 麦               | 2           | 27       |                            | O <sub>H</sub>             | o<br>O            |                                                                    |  |  |
|----------|-------------------|------------------------------------------|-------------------|-----------------|-------------|----------|----------------------------|----------------------------|-------------------|--------------------------------------------------------------------|--|--|
| F        | 2 <sup>2</sup> ←  | ЮН                                       |                   |                 |             |          | <sub>P<sup>2</sup></sub> 6 | ∕^он<br>≶                  | ^он<br>Э          |                                                                    |  |  |
|          | 5 4               | NH<br>Ė                                  |                   | (I-Ea)          |             |          | 5 4                        | NH<br>E                    |                   | . (I–Eb)                                                           |  |  |
|          | 2 // O ~ (        |                                          |                   |                 |             | また       | は                          | 2 /<br>R <sup>3</sup> 3    | 2 //              |                                                                    |  |  |
|          |                   | K •                                      | R <sup>5</sup>    |                 |             |          |                            | R <sup>5</sup>             |                   |                                                                    |  |  |
| No.      | R <sup>2</sup>    | Ε                                        | R <sup>3</sup>    | R <sup>5</sup>  | Ш           | No.      | R <sup>2</sup>             | E                          | R <sup>3</sup>    | R <sup>5</sup>                                                     |  |  |
| 1        | н                 | -co-                                     | 2-CH <sub>3</sub> | CH <sub>3</sub> | 71          | 37       | Н                          | -co-                       | 2-CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub>                                    |  |  |
| 2        | н                 | -SO <sub>2</sub> -                       | 2-CH <sub>3</sub> | CH <sub>3</sub> | Ш           | 38       | Н                          | -SO <sub>2</sub> -         | 2-CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub>                                    |  |  |
| 3        | н                 | -CH <sub>2</sub> -                       | 2-CH <sub>3</sub> | CH <sub>3</sub> | Ш           | 39       | н                          | -CH <sub>2</sub> -         | 2-CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub>                                    |  |  |
| 4        | 4-CH₃             | -co-                                     | 2-CH <sub>3</sub> | CH <sub>3</sub> | Ш           | 40       | 4-CH <sub>3</sub>          | _                          | 2-CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub>                                    |  |  |
| 5        | 4-CH <sub>3</sub> | -so <sub>2</sub> -                       | 2-CH <sub>3</sub> | CH <sub>3</sub> | Ш           | 41       | 4-CH <sub>3</sub>          | -SO <sub>2</sub> -         | 2-CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub>                                    |  |  |
| 6        | 4-CH <sub>3</sub> | -CH <sub>2</sub> -                       | 2-CH <sub>3</sub> | CH <sub>3</sub> | Ш           | 42       | 4-CH <sub>3</sub>          | -CH <sub>2</sub> -         | 2-CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub>                                    |  |  |
| 7        | 4-CI              | -co-                                     | 2-CH <sub>3</sub> | CH <sub>3</sub> | Ш           | 43       | 4-CI                       | -co-                       | 2-CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub>                                    |  |  |
| 8        | 4-CI              | -SO <sub>2</sub> -                       | 2-CH <sub>3</sub> | CH <sub>3</sub> | П           | 44`      | 4-CI                       | -SO <sub>2</sub> -         | 2-CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub>                                    |  |  |
| 9        | 4-CI              | -CH <sub>2</sub> -                       | 2-CH <sub>3</sub> | CH <sub>3</sub> | $\parallel$ | 45       | 4-CI                       | -CH <sub>2</sub> -         | 2-CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub>                                    |  |  |
| 10       | 4-F               | -co-                                     | 2-CH <sub>3</sub> | CH <sub>3</sub> | Ш           | 46       | 4-F                        | -co-                       | 2-CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub>                                    |  |  |
| 11       | 4-F               | -SO <sub>2</sub> -                       | 2-CH <sub>3</sub> | CH <sub>3</sub> | 11          | 47       | 4-F                        | -SO <sub>2</sub> -         | 2-CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub>                                    |  |  |
| 12<br>13 | 4-F<br>H          | -CH <sub>2</sub> -<br>-CO-               | 2-CH <sub>3</sub> | CH3             | Ш           | 48       | 4-F                        | -CH <sub>2</sub> -         | 2-CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub>                                    |  |  |
| 14       | Н                 |                                          | 2-Ci              | CH <sub>3</sub> | Ш           | 49       | Н                          | -co-                       | 2-CI              | CH <sub>2</sub> CH <sub>3</sub>                                    |  |  |
| 15       | Н                 | -SO <sub>2</sub> -<br>-CH <sub>2</sub> - | 2-CI<br>2-CI      | CH <sub>3</sub> | Ш           | 50       | Н                          | -SO <sub>2</sub> -         | 2-CI              | CH <sub>2</sub> CH <sub>3</sub>                                    |  |  |
| 16       | 4-CH <sub>3</sub> | -CO-                                     | 2-CI              | CH <sub>3</sub> | Ш           | 51       | H                          | -CH <sub>2</sub> -         | 2-CI              | CH <sub>2</sub> CH <sub>3</sub>                                    |  |  |
| 17       | 4-CH <sub>3</sub> | -SO <sub>2</sub> -                       | 2-C1              | CH <sub>3</sub> | Ш           | 52       | 4-CH <sub>3</sub>          | -CO-                       | 2-CI              | CH <sub>2</sub> CH <sub>3</sub>                                    |  |  |
| 18       | 4-CH <sub>3</sub> | -CH <sub>2</sub> -                       | 2-Ci              | CH₃<br>CH₃      | Ш           | 53       | 4-CH <sub>3</sub>          | -SO <sub>2</sub> -         | 2-CI              | CH <sub>2</sub> CH <sub>3</sub>                                    |  |  |
| 19       | 4-Cl              | -CO-                                     | 2-CI              | CH <sub>3</sub> | Ш           | 54<br>55 | 4-CH <sub>3</sub><br>4-Cl  | -CH <sub>2</sub> -         | 2-CI              | CH <sub>2</sub> CH <sub>3</sub>                                    |  |  |
| 20       | 4-CI              | -SO <sub>2</sub> -                       | 2-CI              | CH <sub>3</sub> | Ш           | 55<br>56 | 4-C!                       | -00-                       | 2-CI              | CH <sub>2</sub> CH <sub>3</sub>                                    |  |  |
| 21       | 4-CI              | -CH <sub>2</sub> -                       | 2-CI              | CH <sub>3</sub> | П           | 56       | 4-CI                       | -SO <sub>2</sub> -         | 2-CI              | CH <sub>2</sub> CH <sub>3</sub>                                    |  |  |
| 22       | 4-F               | -CO-                                     | 2-CI              | CH <sub>3</sub> |             | 57<br>58 | 4-Ci                       | -CH <sub>2</sub> -<br>-CO- | 2-CI<br>2-CI      | CH <sub>2</sub> CH <sub>3</sub>                                    |  |  |
| 23       | 4-F               | -SO <sub>2</sub> -                       | 2-CI              | CH <sub>3</sub> | Ш           | 59       | 4-F                        | -SO <sub>2</sub> -         | 2-CI              | CH <sub>2</sub> CH <sub>3</sub><br>CH <sub>2</sub> CH <sub>3</sub> |  |  |
| 24       | 4-F               | -CH <sub>2</sub> -                       | 2-C1              | CH <sub>3</sub> | Ш           | 60       | 4-F                        | -CH <sub>2</sub> -         | 2-Ci              | CH <sub>2</sub> CH <sub>3</sub>                                    |  |  |
| 25       | н                 | -co-                                     | 2-F               | CH <sub>3</sub> |             | 61       | н                          | -CO-                       | 2-F               | CH <sub>2</sub> CH <sub>3</sub>                                    |  |  |
| 26       | Н                 | -\$O <sub>2</sub> -                      | 2-F               | CH <sub>3</sub> |             | 62       | Н                          | -\$0 <sub>2</sub> -        | 2-F               | CH <sub>2</sub> CH <sub>3</sub>                                    |  |  |
| 27       | Н                 | -CH <sub>2</sub> -                       | 2-F               | CH <sub>3</sub> | Ш           | 63       | Н                          | -CH <sub>2</sub> -         | 2-F               | CH <sub>2</sub> CH <sub>3</sub>                                    |  |  |
| 28       | 4-CH <sub>3</sub> | -co-                                     | 2-F               | CH <sub>3</sub> | Ш           | 64       | 4-CH <sub>3</sub>          | -co-                       | 2-F               | CH <sub>2</sub> CH <sub>3</sub>                                    |  |  |
| 29       | 4-CH <sub>3</sub> | -SO <sub>2</sub> -                       | 2-F               | СН₃             |             | 65       | 4-CH <sub>3</sub>          | -SO <sub>2</sub> -         | 2-F               | CH <sub>2</sub> CH <sub>3</sub>                                    |  |  |
| 30       | 4-CH <sub>3</sub> |                                          | 2-F               | CH₃             |             | 66       | 4-CH <sub>3</sub>          | -CH <sub>2</sub> -         | 2-F               | CH <sub>2</sub> CH <sub>3</sub>                                    |  |  |
| 31       | 4-CI              | -co-                                     | 2-F               | CH <sub>3</sub> |             | 67       | 4-CI                       | -co-                       | 2-F               | CH <sub>2</sub> CH <sub>3</sub>                                    |  |  |
| 32       | 4-Ci              | -SO <sub>2</sub> -                       | 2-F               | CH <sub>3</sub> |             | 68       | 4-CI                       | -SO <sub>2</sub> -         | 2-F               | CH <sub>2</sub> CH <sub>3</sub>                                    |  |  |
| 33       |                   | -CH <sub>2</sub> -                       | 2-F               | CH <sub>3</sub> |             | 69       | 4-CI                       | -CH <sub>2</sub> -         | 2-F               | CH <sub>2</sub> CH <sub>3</sub>                                    |  |  |
| 34       |                   | -CO-                                     | 2-F               | CH <sub>3</sub> |             | 70       | 4-F                        | -CO-                       | 2-F               | CH <sub>2</sub> CH <sub>3</sub>                                    |  |  |
| 35       |                   | -SO <sub>2</sub> -                       | 2-F               | CH <sub>3</sub> | ı           | 71       | 4-F                        | -so <sub>2</sub> -         | 2-F ·             | CH <sub>2</sub> CH <sub>3</sub>                                    |  |  |
| 36 ;     | 4-F               | -CH <sub>2</sub> -                       | 2-F               | CH3             | ı           | 72       | 4-F                        | -CH <sub>2</sub> -         | 2 <b>-F</b>       | CH₂CH₃                                                             |  |  |

表28

|          | 6                                      | ОН                                       |                   |                | :                                      | 表 2 9                                    | آ ۾                                    | ОН          |                   |                            |                                          |  |
|----------|----------------------------------------|------------------------------------------|-------------------|----------------|----------------------------------------|------------------------------------------|----------------------------------------|-------------|-------------------|----------------------------|------------------------------------------|--|
|          | R <sup>2</sup> 5 4                     | ŅH                                       |                   | (I-Aa          | -1)                                    |                                          | $R^2 \frac{6}{5}$                      | NH (I-Ab-1) |                   |                            |                                          |  |
|          |                                        |                                          | لمحرد             | ) <del>8</del> | 7                                      |                                          |                                        | E           |                   |                            |                                          |  |
|          |                                        |                                          |                   |                | −R³b<br>6                              | また                                       | .は                                     |             | 0                 | $\mathbb{Q}$               | —R <sup>5b</sup><br>6                    |  |
|          |                                        |                                          |                   | ` 5 '<br>CH₃   |                                        |                                          |                                        |             |                   | γ 5<br>CH <sub>3</sub>     | ų                                        |  |
| No.      | R <sup>2</sup>                         | E                                        | R <sup>5b</sup>   | No.            | R <sup>2</sup>                         | E                                        | R <sup>5b</sup>                        | No.         | R <sup>2</sup>    | E                          | R <sup>5b</sup>                          |  |
| 1        | H                                      | -co-                                     | Н                 | 43             | Н                                      | -co-                                     | 8-F                                    | 85          | Н                 | -co-                       | 7-F                                      |  |
| 2        | : H<br>: H                             | -SO <sub>2</sub> -                       | H                 | 44             | H                                      | -SO <sub>2</sub> -                       |                                        | 86          | H                 | -SO <sub>2</sub> -         | 7-F                                      |  |
| 4        | 4-CH <sub>3</sub>                      | -CH <sub>2</sub> -                       | H<br>H            | 45             | H                                      | -CH <sub>2</sub> -                       |                                        | 87          | н                 | -CH <sub>2</sub> -         | 7-F                                      |  |
| 5        | 4-CH <sub>3</sub>                      |                                          | H                 | 46<br>47       | 4-CH                                   | -                                        | 8-F                                    | 88          | 4-CH <sub>3</sub> |                            | 7-F                                      |  |
| 6        | 4-CH <sub>3</sub>                      | -CH <sub>2</sub> -                       | н                 | 48             | 4-CH                                   |                                          |                                        | 89          | 4-CH <sub>3</sub> |                            | 7-F                                      |  |
| 7        | 4-CI                                   | -CO-                                     | н                 | 49             | 4-CI                                   | -CO-                                     | 8-F                                    | 90          | 4-CH <sub>3</sub> | _                          | 7-F                                      |  |
| 8        | 4-CI                                   | -802-                                    | H                 | 50             | 4-CI                                   | -802-                                    |                                        | 92          | 4-CI<br>4-CI      | -CO-<br>-SO <sub>2</sub> - | 7-F<br>7-F                               |  |
| 9        | 4-Ci                                   | -CH <sub>2</sub> -                       | Н                 | 51             | 4-CI                                   | -CH <sub>2</sub> -                       |                                        | 93          | 4-CI              | -CH <sub>2</sub> -         | 7-F                                      |  |
| 10       | 4-F                                    | -co-                                     | Н                 | 52             | 4-F                                    | -co-                                     | 8-F                                    | 94          | 4-F               | -co-                       | 7-F                                      |  |
| 11       | 4-F                                    | -SO <sub>2</sub> -                       | H                 | 53             | 4-F                                    | -SO <sub>2</sub> -                       | 8-F                                    | 95          | 4-F               | -SO <sub>2</sub> -         | 7-F                                      |  |
| 12<br>13 | 4-F                                    | -CH <sub>2</sub> -                       | н                 | 54             | 4-F                                    | -CH <sub>2</sub> -                       |                                        | 96          | 4-F               | -CH <sub>2</sub> -         | 7-F                                      |  |
| 14       | 5-CH <sub>3</sub><br>5-CH <sub>3</sub> | -CO-<br>-SO <sub>2</sub> -               | H                 | 55<br>50       | 5-CH <sub>3</sub>                      |                                          | 8-F                                    | 97          | 5-CH₃             | -co-                       | 7-F                                      |  |
| 15       | 5-CH <sub>3</sub>                      | -SU <sub>2</sub> -                       | H                 | 56             | 5-CH <sub>3</sub>                      |                                          | 8-F                                    | 98          | 5-CH <sub>3</sub> | -SO <sub>2</sub> -         | 7-F                                      |  |
| 16       | 5-CI                                   | -CO-                                     | H                 | 57<br>58       | 5-CH₃<br>5-CI                          | -                                        | 8-F                                    | 99          | 5-CH <sub>3</sub> | -CH <sub>2</sub> -         | 7-F                                      |  |
| 17       | 5-CI                                   | -SO <sub>2</sub> -                       | н                 | 59             | 5-CI                                   | -CO-<br>-SO <sub>2</sub> -               | 8-F                                    | 100         | 5-CI              | -co-                       | 7-F                                      |  |
| 18       | 5-CI                                   | -CH <sub>2</sub> -                       | н                 | 60             | 5-CI                                   | -CH <sub>2</sub> -                       | 8-F<br>8-F                             | 101         | 5-CI              | -SO <sub>2</sub> -         | 7-F                                      |  |
| 19       | 5-F                                    | -CO-                                     | H                 | 61             | 5-F                                    | -CO-                                     | 8-F                                    | 102<br>103  | 5-CI<br>5-F       | -CH <sub>2</sub> -<br>-CO- | 7-F<br>7-F                               |  |
| 20       | 5-F                                    | -SO <sub>2</sub> -                       | н                 | 62             | 5-F                                    | -SO <sub>2</sub> -                       | 8-F                                    | 104         | 5-F               | -SO <sub>2</sub> -         | 7-F                                      |  |
| 21       | 5-F                                    | -CH <sub>2</sub> -                       | н                 | 63             | 5-F                                    | -CH <sub>2</sub> -                       | 8-F                                    | 105         | 5-F               | -CH <sub>2</sub> -         | 7-F                                      |  |
| 22       | Н                                      | -co-                                     | 8-CH <sub>3</sub> | 64             | Н                                      | -co-                                     | 7-CH <sub>3</sub>                      | 106         | H                 | -co-                       | 7-OCH <sub>3</sub>                       |  |
| 23       | Н                                      | -SO <sub>2</sub> -                       | 8-CH <sub>3</sub> | 65             | Н                                      | -SO <sub>2</sub> -                       | 7-CH <sub>3</sub>                      | 107         | Н                 | -SO <sub>2</sub> -         | 7-0CH <sub>3</sub>                       |  |
| 24<br>25 | H<br>4-CH <sub>3</sub>                 | -CH <sub>2</sub> -                       | 8-CH <sub>3</sub> | 66             | H                                      | -CH <sub>2</sub> -                       | 7-CH <sub>3</sub>                      | 108         | Н                 | -CH <sub>2</sub> -         | 7-0CH <sub>3</sub>                       |  |
| 26       | 4-CH <sub>3</sub>                      | -SO <sub>2</sub> -                       | 8-CH <sub>3</sub> | 67<br>68       | 4-CH <sub>3</sub><br>4-CH <sub>3</sub> |                                          | 7-CH <sub>3</sub>                      | 109         | 4-CH <sub>3</sub> | -co-                       | 7-0CH <sub>3</sub>                       |  |
| 27       | 4-CH <sub>3</sub>                      | -CH <sub>2</sub> -                       | 8-CH <sub>3</sub> | 69             | 4-CH <sub>3</sub>                      | -SO <sub>2</sub> -<br>-CH <sub>2</sub> - | 7-CH <sub>3</sub>                      | 110         | 4-CH <sub>3</sub> | -SO <sub>2</sub> -         | 7-0CH <sub>3</sub>                       |  |
| 28       | 4-CI                                   | -CO-                                     | 8-CH              | 70             | 4-CI                                   | -CO-                                     | 7-CH <sub>3</sub><br>7-CH <sub>3</sub> | 111 ;       | 4-CH <sub>3</sub> | -CH <sub>2</sub> -         | 7-OCH <sub>3</sub>                       |  |
| 29       | 4-CI                                   | -SO <sub>2</sub> -                       | 8-CH              | 71             | 4-CI                                   | -SO <sub>2</sub> -                       | 7-CH <sub>3</sub>                      | 112<br>113  | 4-CI<br>4-CI      | -co-<br>-so <sub>z</sub> - | 7-0CH <sub>3</sub><br>7-0CH <sub>3</sub> |  |
| 30       | 4-CI                                   | -CH <sub>2</sub> -                       | 8-CH <sub>3</sub> | 72             | 4-C1                                   | -CH <sub>2</sub> -                       | 7-CH <sub>3</sub>                      | 114         | 4-CI              |                            | 7-00H <sub>3</sub>                       |  |
| 31       | 4-F                                    | -co-                                     | 8-CH <sub>3</sub> | 73             | 4-F                                    | -co-                                     | 7-CH <sub>3</sub>                      | 115         | 4-F               | -CO-                       | 7-00H <sub>3</sub>                       |  |
| 32       | 4-F                                    | -SO <sub>2</sub> -                       | 8-CH3             | 74             | 4-F                                    | -SO <sub>2</sub> -                       | 7-CH <sub>3</sub>                      | 116         |                   | -SO <sub>2</sub> -         | 7-OCH <sub>2</sub>                       |  |
| 33 :     | 4-F                                    | -CH <sub>2</sub> -                       | 8-CH <sub>3</sub> | 75             | 4-F                                    | -CH <sub>2</sub> -                       |                                        | 117         | 4-F               | -CH <sub>2</sub> -         |                                          |  |
| 34       | 5-CH₃                                  | -co-                                     | 8-CH <sub>3</sub> | 76             | 5-CH <sub>3</sub>                      |                                          | 7-CH <sub>3</sub>                      | 118         | 5-CH <sub>3</sub> | -co-                       | 7-OCH <sub>3</sub>                       |  |
| 35<br>36 | 5-CH <sub>3</sub><br>5-CH <sub>3</sub> | -80 <sub>2</sub> -<br>-CH <sub>2</sub> - | 8-CH <sub>3</sub> | 77 ;           | 5-CH <sub>3</sub>                      |                                          | 7-CH <sub>3</sub>                      | 119         | 5-CH <sub>3</sub> | -SO <sub>2</sub> -         | 7-OCH <sub>3</sub>                       |  |
| 37       | 5-CI                                   | -CO-                                     | 8-CH-             | 78             |                                        | -CH <sub>2</sub> -                       |                                        | 120         | 5-CH <sub>3</sub> | -CH <sub>2</sub> -         | 7-OCH <sub>3</sub>                       |  |
| 38       | 5-CI                                   | -SO <sub>2</sub> -                       | 8-CH <sub>3</sub> | 79 :<br>80 :   | 5-CI<br>5-CI                           |                                          | 7-CH <sub>3</sub>                      | 121 ;       | 5-CI              | -co-                       | 7-OCH <sub>3</sub>                       |  |
| 39       | 5-CI                                   | -CH <sub>2</sub> -                       | 8-CH <sub>3</sub> | 81             | 5-CI                                   | -SO <sub>2</sub> -<br>-CH <sub>2</sub> - |                                        | 122         | 5-CI              | -SO <sub>2</sub> - 7       | 7-OCH <sub>3</sub>                       |  |
| 40       | 5-F                                    | -co-                                     | 8-CH <sub>3</sub> | 82             | 5-F                                    |                                          | 7-CH <sub>3</sub>                      | 123 :       |                   | -CH <sub>2</sub> -         |                                          |  |
| 41       | 5-F                                    | -SO <sub>2</sub> -                       | 8-CH <sub>3</sub> | 83             | 5-F                                    | -SO <sub>2</sub> -                       | 7-CH <sub>2</sub>                      | 124<br>125  | 5-F<br>5-F        | -CO- 7                     |                                          |  |
| 42       | 5-F                                    | -CH <sub>2</sub> -                       | 8-СН₃             | 84             | 5-F                                    | -CH <sub>2</sub> -                       | 7-CH <sub>3</sub>                      | 126         | 5-F               | -SU <sub>2</sub> - 7       | -OCH <sub>3</sub>                        |  |

|          |                       | 0                                        |                                        |                     | 3                         | 表30                        |                                            | _          |                        |                            | *                                        |
|----------|-----------------------|------------------------------------------|----------------------------------------|---------------------|---------------------------|----------------------------|--------------------------------------------|------------|------------------------|----------------------------|------------------------------------------|
|          | (                     | <sup>Д</sup> он                          |                                        |                     |                           |                            |                                            | Дон.       |                        |                            |                                          |
|          | $R^2 \xrightarrow{6}$ | ۹                                        |                                        |                     |                           |                            | لم 6 ج                                     | N O⊓       |                        |                            |                                          |
|          | 5 4                   | <sup>^</sup> NH<br>È√∾                   |                                        | (I-A                | \a−1)                     |                            | R- 5                                       | Ϋ́ЙΗ       |                        | (I-A                       | b-1)                                     |
|          |                       | E 1                                      |                                        | 8                   | 7                         |                            | 7                                          | Ė          |                        | 8                          | _                                        |
|          |                       | $\checkmark$                             | $\sim$                                 | R <sup>5b</sup> stt |                           |                            |                                            |            | ✓\o/" <sub> </sub>     | $^{\circ}\gamma^{\circ}$   | 7<br>5b                                  |
|          |                       |                                          | 7                                      | N 5                 | 6                         | <i>ま</i> /6                | -14                                        |            |                        | N. Z                       | — K = 6                                  |
|          | 2                     |                                          |                                        | ĊH <sub>3</sub>     |                           |                            |                                            |            |                        | ĊH3 э                      |                                          |
| No       | R <sup>2</sup>        | E                                        | R <sup>5b</sup>                        | No                  | R <sup>2</sup>            | E                          | R <sup>5b</sup>                            | No         | R <sup>2</sup>         | E                          | R <sup>5b</sup>                          |
| 1        | H                     | -co-                                     | 6-CH <sub>3</sub>                      | 43                  | Н                         | -co-                       | 6-OCH <sub>3</sub>                         | 85         | Н                      | -co-                       | 5-CH <sub>3</sub>                        |
| 2<br>3   | ; H                   | -SO <sub>2</sub> -<br>-CH <sub>2</sub> - | 6-CH <sub>3</sub><br>6-CH <sub>3</sub> | 44                  | ; H                       | -SO <sub>2</sub>           | - 6-OCH <sub>3</sub>                       | 11         | Н                      | -SO <sub>2</sub> -         | 5-CH <sub>3</sub>                        |
| 4        | 4-CH                  | 3 -CO-                                   | 6-CH <sub>3</sub>                      | 45<br>46            | H                         | -CH <sub>2</sub>           | - 6-OCH <sub>3</sub>                       | 87         | H                      | -CH <sub>2</sub> -         | 5-CH <sub>3</sub>                        |
| 5        | 4-CH                  |                                          | 6-CH <sub>3</sub>                      | 47                  | 4-CH                      | 3 -CO-                     | 6-OCH <sub>3</sub><br>- 6-OCH <sub>3</sub> | 88         | 4-CH <sub>3</sub>      |                            | 5-CH <sub>3</sub>                        |
| 6        | 4-CH                  | 3 -CH2-                                  | 6-CH <sub>3</sub>                      | 48                  | 4-CH                      | -CH                        | - 6-OCH <sub>3</sub>                       | 89         | 4-CH₃<br>4-CH₃         |                            | 5-CH <sub>3</sub>                        |
| 7        | 4-CI                  | -CO-                                     | 6-CH <sub>3</sub>                      | 49                  | 4-CI                      |                            | 6-OCH <sub>3</sub>                         | 91         | 4-CI                   | -CH <sub>2</sub> -         | 5-CH <sub>3</sub><br>5-CH <sub>3</sub>   |
| 8        | ; 4-CI                | -SO <sub>2</sub> -                       | 6-CH <sub>3</sub>                      | 50                  | 4-CI                      |                            | 6-OCH <sub>3</sub>                         | 92         | 4-CI                   | -SO <sub>2</sub> -         | 5-CH <sub>3</sub>                        |
| 9        | 4-CI                  | -CH <sub>2</sub> -                       | 6-CH <sub>3</sub>                      | 51                  | 4-CI                      | -CH <sub>2</sub>           | - 6-OCH <sub>3</sub>                       | 93         | 4-CI                   | -CH <sub>2</sub> -         | 5-CH <sub>3</sub>                        |
| 10       | : 4-F                 | -co-                                     | 6-CH <sub>3</sub>                      | 52                  | 4-F                       | -co-                       | 6-OCH <sub>3</sub>                         | 94         | 4-F                    | -CO-                       | 5-CH <sub>3</sub>                        |
| 11<br>12 | 4-F<br>4-F            | -SO <sub>2</sub> -<br>-CH <sub>2</sub> - | 6-CH <sub>3</sub>                      | 53                  | 4-F                       | -SO <sub>2</sub> -         | 6-OCH <sub>3</sub>                         | 95         | 4-F                    | -SO <sub>2</sub> -         | 5-CH <sub>3</sub>                        |
| 13       | 5-CH                  | -CO-                                     | 6-CH <sub>3</sub><br>6-CH <sub>3</sub> | 54<br>55            | : 4-F                     | -CH <sub>2</sub> -         | 6-OCH <sub>3</sub>                         | 96         | 4-F                    | -CH <sub>2</sub> -         | 5-CH <sub>3</sub>                        |
| 14       | 5-CH                  |                                          | 6-CH <sub>3</sub>                      | 56                  | 5-CH                      | 3 -60-                     | 6-OCH <sub>3</sub>                         | 97         | 5-CH <sub>3</sub>      | -co-                       | 5-CH <sub>3</sub>                        |
| 15       | 5-CH                  | -CH <sub>2</sub> -                       | 6-CH <sub>3</sub>                      | 57                  | 5-CH                      | 3 -3U2-                    | 6-OCH <sub>3</sub>                         | 98         | 5-CH <sub>3</sub>      | -SO <sub>2</sub> -         | 5-CH <sub>3</sub>                        |
| 16       | 5-CI                  | -co-                                     | 6-CH <sub>3</sub>                      | 58                  | 5-CI                      | -CO-                       | 6-OCH <sub>3</sub>                         | 99         | 5-CH <sub>3</sub>      | -CH <sub>2</sub> -         | 5-CH <sub>3</sub>                        |
| 17       | 5-CI                  | -SO <sub>2</sub> -                       | 6-CH <sub>3</sub>                      | 59                  | 5-CI                      | -SO <sub>2</sub> -         | 6-OCH <sub>3</sub>                         | 101        | 5-CI<br>5-CI           | -CO-<br>-SO <sub>2</sub> - | 5-CH <sub>3</sub><br>5-CH <sub>3</sub>   |
| 18       | 5-CI                  | -CH <sub>2</sub> -                       | 6-CH <sub>3</sub>                      | 60                  | 5-CI                      | -CH <sub>2</sub> -         | 6-OCH <sub>3</sub>                         | 102        | 5-CI                   | -CH <sub>2</sub> -         | 5-CH <sub>3</sub>                        |
| 19       | 5-F                   | -co-                                     | 6-CH <sub>3</sub>                      | 61                  | 5-F                       | -CO-                       | 6-OCH <sub>3</sub>                         | 103        | 5-F                    | -CO-                       | 5-CH <sub>3</sub>                        |
| 20<br>21 | 5-F<br>5-F            | -SO <sub>2</sub> -<br>-CH <sub>2</sub> - | 6-CH <sub>3</sub>                      | 62                  | 5-F                       | -SO <sub>2</sub> -         | 6-OCH <sub>3</sub>                         | 104        | 5-F                    | -SO <sub>2</sub> -         | 5-CH <sub>3</sub>                        |
| 22       | Н                     | -CO-                                     | 6-CH <sub>3</sub><br>6-F               | 63<br>64            | : 5 <del>-</del> F<br>: н | -CH <sub>2</sub> -         | 6-OCH <sub>3</sub>                         | 105        | 5-F                    | -CH <sub>2</sub> -         | 5-CH <sub>3</sub>                        |
| 23       | Н                     | -SO <sub>2</sub> -                       | 6-F                                    | 65                  | H                         | -CO-<br>-SO <sub>2</sub> - | 5-F<br>5-F                                 | 106        | Н                      |                            | 5-OCH <sub>3</sub>                       |
| 24       | н                     | -CH <sub>2</sub> -                       | 6-F                                    | 66                  | Н                         | -CH <sub>2</sub> -         | 5-F                                        | 107        | ; H                    |                            | 5-OCH <sub>3</sub>                       |
| 25       | 4-CH <sub>3</sub>     | -co-                                     | 6-F                                    | 67                  | 4-CH <sub>3</sub>         | -CO-                       | 5-F                                        | 108        | H<br>4-CH <sub>3</sub> |                            | 5-0CH <sub>3</sub><br>5-0CH <sub>3</sub> |
| 26       | 4-CH <sub>3</sub>     |                                          | 6-F                                    | 68                  | 4-CH <sub>3</sub>         | -SO <sub>2"</sub>          | 5-F                                        | 110        | 4-CH <sub>3</sub>      |                            | 5-0CH₃<br>5-0CH₃                         |
| 27       | 4-CH <sub>3</sub>     | -                                        | 6-F                                    | 69                  | 4-CH <sub>3</sub>         | -CH <sub>2</sub> -         | 5-F                                        | 111        | 4-CH <sub>3</sub>      | -CH <sub>2</sub> -         |                                          |
| 28<br>29 | 4-CI<br>4-CI          | -CO-                                     | 6-F                                    | 70                  | 4-CI                      | -co-                       | 5-F                                        | 112        | 4-CI                   |                            | 5-OCH <sub>3</sub>                       |
| 30       | 4-CI                  | -SO <sub>2</sub> -<br>-CH <sub>2</sub> - | 6-F                                    | 71                  | 4-CI                      | -SO <sub>2</sub> -         | 5-F                                        | 113        | 4-CI                   | -SO <sub>2</sub> -         |                                          |
| 31       | 4-F                   | -CO-                                     | 6-F                                    | 72<br>73            | 4-CI<br>4-F               | -CH <sub>2</sub> -         | 5-F                                        | 114        |                        | -CH <sub>2</sub> -         | 5-OCH <sub>3</sub>                       |
| 32       | 4-F                   | -SO <sub>2</sub> -                       | 6-F                                    | 74                  | A_F                       | -CO-<br>-SO <sub>2</sub> - | 5-F                                        | 115        |                        | -co-                       | 5-OCH <sub>3</sub>                       |
| 33       | 4-F                   | -CH <sub>2</sub> -                       | 6-F                                    | 75                  | 4-F                       | -CH <sub>2</sub> -         | 5-F<br>5-F                                 | 116<br>117 |                        | -SO <sub>2</sub> - !       | 5-OCH <sub>3</sub>                       |
| 34       | 5-CH <sub>3</sub>     |                                          | 6-F                                    | 76                  |                           | -CO-                       | 5-F                                        | 118        | 5-CH <sub>3</sub>      | -CH <sub>2</sub> 5         |                                          |
| 35       | 5-CH <sub>3</sub>     | ~                                        | 6-F                                    | 77                  | 5-CH <sub>3</sub>         | -SO <sub>2</sub> -         | 5-F                                        | 119        |                        | -SO <sub>2</sub> - 5       |                                          |
| 36       | 5-CH <sub>3</sub>     | _                                        | 6-F                                    | 78                  | 5-CH <sub>3</sub>         | -CH <sub>2</sub> -         | 5-F                                        | 120        | 5-CH <sub>3</sub>      | -CH <sub>2</sub> - 5       | 5-OCH <sub>2</sub>                       |
| 37       | 5-CI                  | -CO-                                     | 6-F                                    | 79 ;                | 5-CI                      | -CO-                       | 5-F                                        | 121        | 5-CI                   | -CO- 5                     | F-OCH <sub>3</sub>                       |
| 38<br>39 | 5-CI<br>5-CI          | -SO <sub>2</sub> -<br>-CH <sub>2</sub> - | 6-F                                    | 80                  | 5-CI                      | -SO <sub>2</sub> -         | 5-F                                        | 122        | 5-CI                   | -SO <sub>2</sub> - 5       |                                          |
| 40       | 5-C1<br>5-F           | -CO-                                     | 6-F                                    | 81<br>82            | 5-CI<br>5-F               | -CH <sub>2</sub> -         | 5-F                                        | 123        | 5-CI                   | -CH <sub>2</sub> - 5       | -OCH <sub>3</sub>                        |
| 41       | 5-F                   | -502-                                    | 6-F                                    | 83                  | 5-F                       | -CO-<br>-SO <sub>2</sub> - | 5-F<br>5-F                                 | 124        | 5-F                    | -CO- 5                     |                                          |
| 42       | 5 <b>-</b> F          | -CH <sub>2</sub> -                       | 6-F                                    | 84                  | 5-F                       | -CH <sub>2</sub> -         | 5-F                                        | 125<br>126 | 5-F                    | -SO <sub>2</sub> - 5       |                                          |
| •        |                       |                                          |                                        |                     |                           | 2                          | "                                          | 120;       | 5-F                    | -CH <sub>2</sub> - 5       | <del>~</del> ∪∪П3                        |

表32

|                |           |                                        |                                | 麦                   | <u>32</u> |                                        |                                          |                |                |  |  |
|----------------|-----------|----------------------------------------|--------------------------------|---------------------|-----------|----------------------------------------|------------------------------------------|----------------|----------------|--|--|
|                |           |                                        |                                |                     |           | 0                                      |                                          |                |                |  |  |
| 6              | ( OH      | l.                                     |                                |                     | e ( OH    |                                        |                                          |                |                |  |  |
| R <sup>2</sup> |           |                                        | (1                             | [-Ca-1)             | R         | 2 4                                    | •                                        |                | (T (I) 1)      |  |  |
| 5              | NH<br>4 E | 1                                      | ()                             | ( 0a 1)             |           | 5                                      | ЙH                                       |                | (I-Cb-1)       |  |  |
|                | Ė,        | <b>(</b>                               | . 8                            | _                   |           | <b>"</b> i                             | NH (1-CB-1)                              |                |                |  |  |
|                |           | <b>└</b> ╱\₀ <b>^</b>                  | <sub>Ү</sub> ० <sub>Ү</sub> ∕∾ | 7<br>R <sup>5</sup> | または       |                                        |                                          | ۵۱۰۰۰۰         | <sup>7</sup> . |  |  |
|                |           | •                                      | ليكي                           | —R°                 |           |                                        |                                          | ' لي           | Į R⁵           |  |  |
|                |           |                                        | 5                              | 0                   |           |                                        |                                          | 3              | 5 6            |  |  |
|                | No.       | R <sup>2</sup>                         | E                              | R <sup>5</sup>      | No.       | R <sup>2</sup>                         | E                                        | R <sup>5</sup> |                |  |  |
|                | 1         | H                                      | <b>-co-</b>                    | Н                   | 43        | Н                                      | -CO-                                     | 5-F            |                |  |  |
|                | 2         | Н                                      | -SO <sub>2</sub> -             |                     | 44        | H                                      | -SO <sub>2</sub> -                       | 5-F            |                |  |  |
|                | 3         | H                                      | -CH <sub>2</sub> -             | Н                   | 45        | Н                                      | -CH <sub>2</sub> -                       | 5-F            |                |  |  |
|                | 4         | 4-CH <sub>3</sub>                      | -CO-                           | H                   | 46        | 4-CH <sub>3</sub>                      | -co-                                     | 5-F            |                |  |  |
|                | 5         | 4-CH <sub>3</sub>                      | -SO <sub>2</sub> -             | H                   | 47        | 4-CH <sub>3</sub>                      | -SO <sub>2</sub> -                       | 5-F            |                |  |  |
|                | 6<br>7    | 4-CH <sub>3</sub>                      | -CH <sub>2</sub> -<br>-CO-     | H                   | 48        | 4-CH <sub>3</sub>                      | -CH <sub>2</sub> -                       | 5-F            |                |  |  |
|                | 8         | 4-CI                                   | -SO <sub>2</sub> -             | Н                   | 49<br>50  | 4-CI<br>4-CI                           | -CO-<br>-SO <sub>2</sub>                 | 5-F<br>5-F     |                |  |  |
|                | 9         | 4-CI                                   | -CH <sub>2</sub> -             | н                   | 51        | 4-CI                                   | -SU <sub>2</sub> -<br>-CH <sub>2</sub> - | 5-F            |                |  |  |
|                | 10        | 4-F                                    | -co-                           | н                   | 52        | 4-F                                    | -CO-                                     | 5-F            |                |  |  |
|                | 11        | 4-F                                    | -SO <sub>2</sub> -             | H                   | 53        | 4-F                                    | -SO <sub>2</sub> -                       | 5-F            |                |  |  |
|                | 12        | 4-F                                    | -CH <sub>2</sub> -             | H                   | 54        | 4-F                                    | -CH <sub>2</sub> -                       | 5-F            |                |  |  |
|                | 13        | 5-CH <sub>3</sub>                      | -co-                           | н                   | 55        | 5-CH <sub>3</sub>                      | -co-                                     | 5-F            |                |  |  |
|                | 14        | 5-CH <sub>3</sub>                      | -SO <sub>2</sub> -             | Н                   | 56        | 5-CH <sub>3</sub>                      | -SO <sub>2</sub> -                       | 5-F            |                |  |  |
|                | 15        | 5-CH <sub>3</sub>                      | -CH <sub>2</sub> -             | Н                   | 57        | 5-CH <sub>3</sub>                      | -CH <sub>2</sub> -                       | 5-F            |                |  |  |
|                | 16        | 5-CI                                   | -co-                           | Н                   | 58        | 5-CI                                   | -co-                                     | 5-F            |                |  |  |
|                | 17        | 5-CI                                   | -SO <sub>2</sub> -             | Н                   | 59        | 5-CI                                   | -SO <sub>2</sub> -                       | 5-F            |                |  |  |
|                | 18<br>19  | 5-CI<br>5-F                            | -CH <sub>2</sub> -             | Н                   | 60        | 5-CI                                   | -CH <sub>2</sub> -                       | 5-F            |                |  |  |
|                | 20        | 5-F                                    | -CO-<br>-SO <sub>2</sub> -     | H                   | 61        | 5-F                                    | -co-                                     | 5-F            |                |  |  |
|                | 21        | 5-F                                    | -302-<br>-CH2-                 | H<br>H              | 62<br>63  | 5-F                                    | -SO <sub>2</sub> -                       | 5-F            | •              |  |  |
|                | 22        | H                                      | -CO-                           | 8-F                 | 64        | 5-F<br>H                               | -CH <sub>2</sub> -                       | 5-F            |                |  |  |
|                | 23        | н                                      | -SO <sub>2</sub> -             | 8-F                 | 65        | H                                      | -CO-<br>-SO <sub>2</sub> -               | 7-F<br>7-F     |                |  |  |
|                | 24        | н                                      | -CH <sub>2</sub> -             | 8-F                 | 66        | H                                      | -30 <sub>2</sub> -                       | 7-F            |                |  |  |
|                | 25        | 4-CH <sub>3</sub>                      | -co-                           | 8-F                 | 67        | 4-CH <sub>3</sub>                      | -CO-                                     | 7-F            | ,              |  |  |
|                | 26        | 4-CH <sub>3</sub>                      | -SO <sub>2</sub> -             | 8-F                 | 68        | 4-CH <sub>3</sub>                      | -SO <sub>2</sub> -                       | 7-F            |                |  |  |
|                | 27        | 4-CH <sub>3</sub>                      | -CH <sub>2</sub> -             | 8-F                 | 69        | 4-CH <sub>3</sub>                      | -CH <sub>2</sub> -                       | 7-F            |                |  |  |
|                | 28        | 4-CI                                   | -co-                           | 8-F                 | 70        | 4-CI                                   | -co-                                     | 7-F            |                |  |  |
|                | 29        | 4-CI                                   | -SO <sub>2</sub> -             | 8-F                 | 71        | 4-CI                                   | -SO <sub>2</sub> -                       | 7-F            |                |  |  |
|                | 30        | 4-CI                                   | -CH <sub>2</sub> -             | 8-F                 | 72        | 4-CI                                   | -CH <sub>2</sub> -                       | 7-F            |                |  |  |
|                | 31        | 4-F                                    | -co-                           | 8-F                 | 73        | 4-F                                    | -co-                                     | 7-F            |                |  |  |
| •              | 32<br>33  | 4-F                                    | -SO <sub>2</sub> -             | 8-F                 | 74        | 4-F                                    | -SO <sub>2</sub> -                       | 7-F            |                |  |  |
|                | 34        | 4-F                                    | -CH <sub>2</sub> -             | 8-F                 | 75        | 4-F                                    | -CH <sub>2</sub> -                       | 7-F            |                |  |  |
|                | 35        | 5-CH <sub>3</sub><br>5-CH <sub>3</sub> | -CO-<br>-SO <sub>2</sub> -     | 8-F<br>8-F          | 76        | 5-CH <sub>3</sub>                      | -co-                                     | 7-F            |                |  |  |
|                | 36        | 5-CH <sub>3</sub>                      | -SO <sub>2</sub> -             | 8-F                 | 77 :      | 5-CH <sub>3</sub><br>5-CH <sub>3</sub> | -SO <sub>2</sub> -                       | 7-F            |                |  |  |
|                | 37        | 5-CI                                   | -CO-                           | 8-F                 | 79        | 5-Сп <sub>3</sub><br>5-СI              | -CH <sub>2</sub> -<br>-CO-               | 7-F            |                |  |  |
|                | 38        | 5-CI                                   | -SO <sub>2</sub> -             | 8-F                 | 80        | 5-CI                                   | -50 <sub>2</sub> -                       | 7-F<br>7-F     |                |  |  |
|                | 39        | 5-CI                                   | -CH <sub>2</sub> -             | 8-F                 | 81        | 5-CI                                   | -CH <sub>2</sub> -                       | 7-F            |                |  |  |
|                | 40        | 5-F                                    | -co-                           | 8-F                 | 82        | 5-F                                    | -CO-                                     | 7-F            |                |  |  |
|                | 41        | 5-F                                    | -SO <sub>2</sub> -             | 8-F                 | 83        | 5-F                                    | -SO <sub>2</sub> -                       | 7-F            |                |  |  |
|                | 42        | 5_F                                    | -CH                            | Q.F                 | 84        | 6 5                                    | CU                                       | 7 5            |                |  |  |

84

-CH<sub>2</sub>-

5-F

表35

本発明の化合物は、DP受容体に対して特異的に結合し、他のプロスタグランジン受容体に対する結合が弱い化合物である。また本発明化合物は溶解性に優れた化合物である。このような性質は医薬品として開発するにあたり重要であり、本発明化合物は大変すぐれた医薬品となる条件を持ち合わせていると考えられる [The Merck Manual of Diagnosis and Therapy (17th Ed), Merck&Co.出版]。

## [本発明化合物の製造方法]

一般式(I)で示される本発明化合物は、例えば以下に示す方法に従って 製造することができる。

10 [I] 一般式 (I) で示される化合物のうち、 $R^1$ が $C1\sim 4$  アルキル基、C  $2\sim 4$  アルケニルまたはベンジル基を表わす化合物、すなわち、一般式 (IA)

$$(R^2)_m$$
 $(R^3)_m$ 
 $(IA)$ 
 $(R^5)_i$ 

(式中、 $R^{1A}$ は $C1\sim4$  アルキル基、 $C2\sim4$  アルケニルまたはベンジル基を表わし、その他の記号は前記と同じ意味を表わす。)で示される化合物は、以下に示す方法によって製造することができる。

(a) 一般式 (IA) 中、Eが-C(=O) -または-S(O) $_2$  -を表わす化 合物、すなわち-般式 (IA-1)

$$(R^2)_m$$
 $(R^3)_n$ 
 $(IA-1)$ 
 $(R^5)_i$ 

(式中、 $E^A$ は-C(=O) -または-S(O) $_2$  -を表わし、その他の記号は前記と同じ意味を表わす。)で示される化合物は、-般式(II-1)

$$(R^{2-1})_{m}$$
 $R^{4-1}$ 
 $(III-1)$ 

5 (式中、R<sup>2-1</sup>はR<sup>2</sup>と同じ意味を表わすが、R<sup>2-1</sup>によって表わされる基に含まれる水酸基、またはアミノ基は保護が必要な場合には保護されているものとし、R<sup>4-1</sup>は水素原子を表わし、その他の記号は前記と同じ意味を表わす。)で示される化合物、または一般式 (II-2)

$$(R^{2-1})_{m}$$
 $R^{4-2}$ 
 $(II-2)$ 

10 (式中、R⁴-²はC1~6アルキル基またはベンジル基を表わし、その他の記号は前記と同じ意味を表わす。)で示される化合物と、
 一般式 (III)

$$E^{1}$$
 $W$ 
 $O^{-G}$ 
 $(III)$ 
 $(III)$ 

(式中、E¹は一COOHまたは一SO₃Hを表わし、R³-1およびR⁵-1は、それぞれR³およびR⁵と同じ意味を表わすが、R³-1およびR⁵-1によって表わされる基に含まれる水酸基、またはアミノ基は保護が必要な場合には保護されているものとし、その他の記号は前記と同じ意味を表わす。)で示される化合物をアミド化反応に付し、さらに必要に応じて脱保護反応に付すことにより製造することができる。

アミド化反応は公知であり、例えば、

- (1)酸ハライドを用いる方法、
- 10 (2) 混合酸無水物を用いる方法、
  - (3) 縮合剤を用いる方法等が挙げられる。 これらの方法を具体的に説明すると、
- (1)酸ハライドを用いる方法は、例えば、カルボン酸を有機溶媒(クロロホルム、ジクロロメタン、ジエチルエーテル、テトラヒドロフラン、ジメトキシエタン、トルエン等)中または無溶媒で、酸ハライド化剤(オキザリルクロライド、チオニルクロライド等)と-20℃~還流温度で反応させ、得られた酸ハライドを塩基(ピリジン、トリエチルアミン、ジメチルアニリン、ジメチルアミノピリジン、ジイソプロピルエチルアミン等)の存在下、アミンと不活性有機溶媒(クロロホルム、ジクロロメタン、ジエチルエーテル、テトラヒドロフラン等)中、0~40℃の温度で反応させることにより行なわれる。また、有機溶媒(ジオキサン、テトラヒドロフラン、ジクロロメタン、トルエン等)中、相間移動触媒(テトラブチルアンモニウムクロライド、トリエチルベンジルアンモニウムクロリド、トリローオクチルメチ

ルアンモニウムクロリド、トリメチルデシルアンモニウムクロリド、テトラメチルアンモニウムプロミド等の四級アンモニウム塩等)の存在下または非存在下、アルカリ水溶液(重曹水または水酸化ナトリウム水溶液等)を用いて酸ハライドと0~40℃で反応させることにより行なうこともできる。

- (2)混合酸無水物を用いる方法は、例えば、カルボン酸を有機溶媒(クロロホルム、ジクロロメタン、ジエチルエーテル、テトラヒドロフラン等)中または無溶媒で、塩基(ピリジン、トリエチルアミン、ジメチルアニリン、ジメチルアミノピリジン、ジイソプロピルエチルアミン等)の存在下、酸ハライド(ピバロイルクロライド、トシルクロライド、メシルクロライド等)、または酸誘導体(クロロギ酸エチル、クロロギ酸イソブチル等)と、0~40℃で反応させ、得られた混合酸無水物を有機溶媒(クロロホルム、ジクロロメタン、ジエチルエーテル、テトラヒドロフラン等)中、アミンと0~40℃で反応させることにより行なわれる。
- (3) 縮合剤を用いる方法は、例えば、カルボン酸とアミンを、有機溶媒 (クロロホルム、ジクロロメタン、ジメチルホルムアミド、ジエチルエーテル、テトラヒドロフラン等)中、または無溶媒で、塩基(ピリジン、トリエチルアミン、ジメチルアニリン、ジメチルアミノピリジン等)の存在下または非存在下、縮合剤(1,3-ジシクロヘキシルカルボジイミド(DCC)、1-エチルー3-[3-(ジメチルアミノ)プロピル]カルボジイミド(E DC)、1,1'-カルボニルジイミダゾール(CDI)、2-クロロー1ーメチルピリジニウムヨウ素、1-プロピルホスホン酸環状無水物(1-propanephosphonic acid cyclic anhydride、PPA)等)を用い、1-ヒドロキシベンズトリアゾール(HOBt)を用いるか用いないで、0~40℃で反応させることにより行なわれる。
- 25 これら(1)、(2)および(3)の反応は、いずれも不活性ガス(アルゴン、窒素等)雰囲気下、無水条件で行なうことが望ましい。

水酸基またはアミノ基の保護基の脱保護反応は公知であり、例えば

- (1) アルカリ加水分解、
- (2)酸性条件下における脱保護反応、
- (3) 加水素分解による脱保護反応、
- 5 (4)シリル基の脱保護反応、
  - (5) 金属を用いる脱保護反応、
  - (6) 有機金属を用いる脱保護反応等が挙げられる。 これらの方法を具体的に説明すると、
- (1) アルカリ加水分解による脱保護反応は、例えば、有機溶媒(メタノ 10 ール、テトラヒドロフラン、ジオキサン等)中、アルカリ金属の水酸化物(水酸化ナトリウム、水酸化カリウム、水酸化リチウム等)、アルカリ土類金属の水酸化物(水酸化パリウム、水酸化カルシウム等)または炭酸塩(炭酸ナトリウム、炭酸カリウム等)あるいはその水溶液もしくはこれらの混合物を用いて、0~40℃の温度で行なわれる。
- 15 (2) 酸条件下での脱保護反応は、例えば、有機溶媒 (ジクロロメタン、クロロホルム、ジオキサン、酢酸エチル、アニソール等) 中、有機酸 (酢酸、トリフルオロ酢酸、メタンスルホン酸、pートシル酸等)、または無機酸 (塩酸、硫酸等) もしくはこれらの混合物 (臭化水素/酢酸等) 中、0~100℃の温度で行なわれる。
- 20 (3) 加水素分解による脱保護反応は、例えば、溶媒 (エーテル系 (テトラヒドロフラン、ジオキサン、ジメトキシエタン、ジエチルエーテル等)、アルコール系 (メタノール、エタノール等)、ベンゼン系 (ベンゼン、トルエン等)、ケトン系 (アセトン、メチルエチルケトン等)、ニトリル系 (アセトニトリル等)、アミド系 (ジメチルホルムアミド等)、水、酢酸エチル、
- 25 酢酸またはそれらの2以上の混合溶媒等)中、触媒(パラジウムー炭素、パラジウム黒、水酸化パラジウム、酸化白金、ラネーニッケル等)の存在下、

常圧または加圧下の水素雰囲気下またはギ酸アンモニウム存在下、0~20 0℃の温度で行なわれる。

- (4)シリル基の脱保護反応は、例えば、水と混和しうる有機溶媒(テトラヒドロフラン、アセトニトリル等)中、テトラブチルアンモニウムフルオライドを用いて、0~40℃の温度で行なわれる。
- (5) 金属を用いる脱保護反応は、例えば、酸性溶媒(酢酸、pH4.2~7.2 の緩衝液またはそれらの溶液とテトラヒドロフラン等の有機溶媒との混合液)中、粉末亜鉛の存在下、超音波をかけるかまたは超音波をかけないで、0~40℃の温度で行なわれる。
- (6)金属錯体を用いる脱保護反応は、例えば、有機溶媒(ジクロロメタン、ジメチルホルムアミド、テトラヒドロフラン、酢酸エチル、アセトニトリル、ジオキサン、エタノール等)、水またはそれらの混合溶媒中、トラップ試薬(水素化トリブチルスズ、トリエチルシラン、ジメドン、モルホリン、ジエチルアミン、ピロリジン等)、有機酸(酢酸、ギ酸、2ーエチルへキサン酸等)および/または有機酸塩(2ーエチルへキサン酸ナトリウム、2ーエチルへキサン酸カリウム等)の存在下、ホスフィン系試薬(トリフェニルホスフィン等)の存在下または非存在下、金属錯体(テトラキストリフェニルホスフィンパラジウム(0)、二塩化ビス(トリフェニルホスフィン)パラジウム(II)、酢酸パラジウム(II)、塩化トリス(トリフェニルホスフィン)
   20 ン)ロジウム(I)等)を用いて、0~40℃の温度で行なわれる。

水酸基の保護基としては、例えば、メチル基、トリチル基、メトキシメチル (MOM) 基、1-エトキシエチル (EE) 基、メトキシエトキシメチル (MEM) 基、2-テトラヒドロピラニル (THP) 基、トリメチルシリル (TMS) 基、トリエチルシリル (TES) 基、tープチルジメチルシリル (TBDMS) 基、tープチルジフェニルシリル (TBDPS) 基、アセチル (Ac) 基、ピバロイル基、ベンゾイル基、ベンジル (Bn) 基、pーメ

25

トキシベンジル基、アリルオキシカルボニル (Alloc) 基、2,2,2 ートリクロロエトキシカルボニル (Troc) 基等が挙げられる。

アミノ基の保護基としては、例えばベンジルオキシカルボニル基、tーブトキシカルボニル基、アリルオキシカルボニル (Alloc) 基、1-メチルー1- (4-ピフェニル) エトキシカルボニル (Bpoc) 基、トリフルオロアセチル基、9-フルオレニルメトキシカルボニル基、ベンジル (Bn) 基、p-メトキシベンジル基、ベンジルオキシメチル (BOM) 基、2-(トリメチルシリル) エトキシメチル (SEM) 基等が挙げられる。

水酸基およびアミノ基の保護基としては、上記した以外にも容易にかつ選 10 択的に脱離できる基であれば特に限定されない。例えば、T. W. Greene, Protective Groups in Organic Synthesis, Wiley, New York, 1999 に記載された方法 によって、脱保護反応を行なうことができる。

当業者には容易に理解できることではあるが、これらの脱保護反応を使い分けることにより、目的とする本発明化合物を容易に製造することができる。

15 (b) 一般式 (IA) 中、Eが-CH<sub>2</sub>-を表わす化合物、すなわち一般式 (IA-2)

$$(R^2)_m$$
 $(R^3)_n$ 
 $(IA-2)$ 
 $(R^5)_i$ 

(式中、すべての記号は前記と同じ意味を表わす。)で示される化合物は、一般式 (II-1) または一般式 (II-2) で示される化合物と、一般式 (IV)

OHC 
$$(R^{3-1})_n$$
 (IV)

(式中、すべての記号は前記と同じ意味を表わす。)で示される化合物を、 還元的アミノ化反応に付すことによって製造することができる。

還元的アミノ化反応は公知であり、例えば、有機溶媒(ジクロロエタン、 ジクロロメタン、ジメチルホルムアミド、酢酸およびこれらの混合物等)中、 還元剤(水素化トリアセトキシホウ素ナトリウム、シアノ水素化ホウ素ナト リウム、水素化ホウ素ナトリウム等)の存在下、0~40℃の温度で行なわ れる。

(c) さらに、一般式 (IA) で示される化合物は、一般式 (V)

$$(R^{2-1})_{m}$$
 $R^{4}$ 
 $(V)$ 
 $E$ 
 $W$ 
 $OH$ 

10

(式中、すべての記号は前記と同じ意味を表わす。) で示される化合物と、 一般式 (VI)

$$Z \longrightarrow G$$
 $J \longrightarrow (R^{5-1})_i$  (VI)

(式中、Zは脱離基または水素原子を表わし、その他の記号は前記と同じ意 15 味を表わす。)で示される化合物をエーテル化反応に付すことによっても製 造することができる。

エーテル化反応は公知であり、乙が脱離基である一般式 (VI) で示される 化合物を用いる場合は、例えば、有機溶媒 (ジメチルホルムアミド、ジメチルスルホキシド、クロロホルム、ジクロロメタン、ジエチルエーテル、テトラヒドロフラン、メチル tーブチル エーテル等)中、アルカリ金属の水 酸化物 (水酸化ナトリウム、水酸化カリウム、水酸化リチウム等)、アルカリ土類金属の水酸化物 (水酸化バリウム、水酸化カルシウム等)、炭酸塩 (炭酸セシウム、炭酸ナトリウム、炭酸カリウム等) もしくはアルカリ金属の水素化物 (水素化ナトリウム、水素化カリウム等) またはその水溶液あるいはこれらの混合物存在下、0℃~還流温度で反応させることにより行われる。

- Zが水素原子である一般式(VI)で示される化合物を用いる場合は、例えば、有機溶媒(ジクロロメタン、ジエチルエーテル、テトラヒドロフラン、アセトニトリル、ベンゼン、トルエン等)中、アゾ化合物(アゾジカルボン酸ジエチル、アゾジカルボン酸ジイソプロピル、1,1'ー(アゾジカルボニル)ジピペリジン、1,1'ーアゾビス(N,Nージメチルホルムアミド)等)およびホスフィン化合物(トリフェニルホスフィン、トリブチルホスフィン、トリメチルホスフィン、ポリマーサポートトリフェニルホスフィン等)の存在下、0~60℃で行われる。
  - (d) また、R<sup>4</sup>がR<sup>4-2</sup>を表わす化合物、すなわち一般式 (IA-3)

$$(R^2)_m$$
 $(R^3)_m$ 
 $(IA-3)$ 
 $(R^5)_i$ 

20 (式中、すべての記号は前記と同じ意味を表わす。)で示される化合物は、

一般式 (IA-4)

$$(R^2)_m$$
 $(R^3)_n$ 
 $(IA-4)$ 
 $(R^5)_i$ 

(式中、すべての記号は前記と同じ意味を表わす。) で示される化合物を、N-アルキル化反応に付すことによっても製造することができる。

5 Nーアルキル化反応は公知であり、例えば有機溶媒(ジメチルホルムアミド、ジメチルスルホキシド、クロロホルム、ジクロロメタン、ジエチルエーテル、テトラヒドロフラン等)中、炭酸塩(例えば、炭酸セシウム、炭酸ナトリウム、炭酸カリウム等)存在下、ハロゲン化(C1~6)アルキルまたはハロゲン化ベンジルを用いて、0~40℃で反応させることによって行われる。

また、一般式 (IA-4) 中、Eが-SO<sub>2</sub>-である化合物の場合は、例えば、 有機溶媒 (ジクロロメタン、ジエチルエーテル、テトラヒドロフラン、アセトニトリル、ベンゼン、トルエン等) 中、アゾ化合物 (アゾジカルボン酸ジエチル、アゾジカルボン酸ジイソプロピル、1, 1'- (アゾジカルボニル) ジピペリジン、1, 1'-アゾピス (N, N-ジメチルホルムアミド) 等) およびホスフィン化合物 (トリフェニルホスフィン、トリブチルホスフィン、トリメチルホスフィン、ポリマーサポートトリフェニルホスフィン等) の存在下、(C1~6) アルキルアルコールまたはベンジルアルコールを用いて、0~60℃でも行われる。

20 [II] 一般式 (I) で示される化合物のうち、 $R^1$ が水素原子を表わす化合物、

すなわち、一般式 (IB)

OH
$$(R^{2})_{m} \xrightarrow{I} \qquad (R^{3})_{n} \qquad (IB)$$

$$E \qquad W \qquad O^{G} \qquad J \qquad (R^{5})_{i}$$

(式中、すべての記号は前記と同じ意味を表わす。)で示される化合物は、一般式 (IA)で示される化合物をカルボキシル基の保護基の脱保護反応に付し、さらに必要に応じて水酸基またはアミノ基の保護基の脱保護反応に付すことにより製造することができる。

カルボキシル基の保護基の脱保護反応はよく知られており、例えば、

- (1) アルカリ加水分解、
- (2) 酸性条件下における脱保護反応、
- 10 (3)加水素分解による脱保護反応、
  - (4) 金属を用いる脱保護反応等が挙げられる。

これらの方法を具体的に説明すると、

- (1)アルカリ加水分解による脱保護反応は、例えば、有機溶媒(メタノール、テトラヒドロフラン、ジオキサン等)中、アルカリ金属の水酸化物(水 15 酸化ナトリウム、水酸化カリウム、水酸化リチウム等)、アルカリ土類金属の水酸化物(水酸化バリウム、水酸化カルシウム等)または炭酸塩(炭酸ナトリウム、炭酸カリウム等)あるいはその水溶液もしくはこれらの混合物を用いて、0~40℃の温度で行なわれる。
- (2)酸条件下での脱保護反応は、例えば、有機溶媒(ジクロロメタン、 20 クロロホルム、ジオキサン、酢酸エチル、アニソール等)中、有機酸(酢酸、

トリフルオロ酢酸、メタンスルホン酸、pートシル酸等)、または無機酸 (塩酸、硫酸等) もしくはこれらの混合物 (臭化水素/酢酸等) 中、0~100℃の温度で行なわれる。

- (3) 加水素分解による脱保護反応は、例えば、溶媒(エーテル系(テトラヒドロフラン、ジオキサン、ジメトキシエタン、ジエチルエーテル等)、アルコール系(メタノール、エタノール等)、ベンゼン系(ベンゼン、トルエン等)、ケトン系(アセトン、メチルエチルケトン等)、ニトリル系(アセトニトリル等)、アミド系(ジメチルホルムアミド等)、水、酢酸エチル、酢酸またはそれらの2以上の混合溶媒等)中、触媒(パラジウムー炭素、パラジウム黒、水酸化パラジウム、酸化白金、ラネーニッケル等)の存在下、常圧または加圧下の水素雰囲気下またはギ酸アンモニウム存在下、0~200℃の温度で行なわれる。
- (4)金属を用いる脱保護反応は、例えば、酸性溶媒(酢酸、pH4.2~7.2 の緩衝液またはそれらの溶液とテトラヒドロフラン等の有機溶媒との混合
   液)中、粉末亜鉛の存在下、超音波をかけるかまたは超音波をかけないで、0~40℃の温度で行なわれる

当業者には容易に理解できることではあるが、これらの脱保護反応を使い分けることにより、目的とする本発明化合物を容易に製造することができる。

水酸基またはアミノ基の保護基の脱保護反応は前記と同様の方法により行 20 うことができる

一般式 (II-1) 、 (II-2) 、 (III) 、 (IV) 、 (V) および (VI) で示される化合物は、それ自体公知であるか、あるいは公知の方法により容易に製造することができる。

例えば、一般式 (II-1) および (II-2) で示される化合物は、以下の反応工 25 程式1で示される方法により製造することができる。

反応工程式中、Xは $\Lambda$ 口ゲン原子を表わし、 $R^{4-3}$ は水素原子、C1~5ア

ルキル基またはフェニル基を表わし、その他の記号は前記と同じ意味を表わす。

## 反応工程式1

反応工程式1中、出発原料として用いる一般式(VII)および(XII)で示

される化合物は公知であるか、あるいは公知の方法により容易に製造することができる。

本明細書中の各反応において、反応生成物は通常の精製手段、例えば、常 圧下または減圧下における蒸留、シリカゲルまたはケイ酸マグネシウムを用 いた高速液体クロマトグラフィー、薄層クロマトグラフィー、あるいはカラ ムクロマトグラフィーまたは洗浄、再結晶等の方法により精製することがで きる。精製は各反応ごとに行なってもよいし、いくつかの反応終了後に行な ってもよい。

## [本発明化合物の薬理活性]

- 10 以下にDP受容体に対する本発明化合物の作用を評価した実験例について 説明する。測定方法については、例えば、WO96/23066 号明細書に記載されて いるが、本発明者らは簡便で精度良くDP受容体に対する被検物質の作用を 測定するため、種々の改良を加えた。具体的には、以下の実験例に示すよう に、ヒトDP受容体を安定的に発現させたチャイニーズハムスター卵巣(C 15 HO)細胞を用いて行った。
  - (i) プロスタノイドDP受容体発現細胞を用いたリガンド結合実験 ヒトDP受容体を発現させたチャイニーズハムスター卵巣 (CHO) 細胞 を培養し、一般的な方法にしたがって膜画分を調製した。

ポリエチレン製チューブに調製した膜画分50μL (膜蛋白質量:40~20 150μg), アッセイ緩衝液 (1mmol/L EDTA, 5mmol/L Mg²+および10 mmol/L Mn²+を含む25mmol/L HEPES -NaOH, pH 7.4) 100μL, 媒体 (dimethylsulfoxide、DMSO) または本発明化合物1μL (DMSOの終濃度:0.5%) および10nmol/L [³H]-PGD₂を50μL (終濃度:2.5nmol/L) を入れ室温でイン キュベーションした。非特異的結合群では媒体の代わりに2mmol/LのPGD₂を添加した (PGD₂の終濃度:10μmol/L)。20分後,チ

WO 03/078409

5

10

25

ューブに1mLの氷冷した洗浄用緩衝液 (0.01% ウシ血清アルブミン (BSA) および100mmol/L NaClを含む10mmol/L Tris-HC 1緩衝液, pH7.4) を添加して反応を停止させた. 直ちに減圧下吸引ろ過して膜画分をガラス繊維ろ紙 (GF/B) 上にトラップした。ガラス繊維ろ紙上の膜画分を洗浄用緩衝液約2mLで1回洗浄後、ガラス繊維ろ紙を乾燥させた. 乾燥させたガラス繊維ろ紙をガラスバイアルに入れ、液体シンチレーションカクテルを添加後、放射活性を液体シンチレーションカウンターで測定した。

[³H]-PGD2のDP受容体への特異的結合量は、非特異的結合群以外の 群の放射活性から非特異的結合群の放射活性を差し引いて算出した。媒体群 および本発明化合物群における[³H]-PGD2の特異的結合量から本発明化 合物による阻害率を算出し、推定されたIC50値(媒体群における特異的結 合量を50%阻害するのに要する本発明化合物の濃度)から下式に従いK1 値(本発明化合物の解離定数)を算出した。

15  $K_i = I C_{50} / (1 + ([L] * / K_d))$ 

[L]\*: [3H]-PGD<sub>2</sub>の濃度 (2.5nmol/L)、

K<sub>d</sub>: [³H]-PGD。の解離定数

なお、 $[^3H]$ -PGD $_2$ の $K_d$ 値は、前記の方法に準じて、種々濃度の $[^3H]$ -PGD $_2$ 添加時の特異的結合量を算出し、非線形回帰分析より推定した。

- 20 上記の測定結果から、本発明化合物は $10 \mu m o 1 / L$ 以下の $K_i$ 値で、D P受容体に対して強く結合することがわかった。
  - (ii) プロスタノイドDP受容体発現細胞を用いたDP受容体拮抗活性の測定 ヒトDP受容体を安定的に発現させたCHO細胞を調製し、24ウェル培 養プレートに1×10<sup>5</sup>cells/ウェルの細胞密度で播種し、5%CO<sub>2</sub>、37℃ で2日間培養した。各ウェルをMEM (minimum essential medium) 500 μ Lで洗浄後、2μmol/Lのジクロフェナックを含むMEMを500μL

添加し37℃で10分間インキュベーションした。上清を吸引して除去した 後、1 mm o l / L 3 - イソプチル - 1 - メチルキサンチン (3-isobutyl-lmethylxanthine) 2 μ m o 1 / Lジクロフェナックおよび1%BSAを含むM EM (アッセイメディウム) 450 μ Lを加え、37℃で10分間インキュ ベーションした。 $PGD_2$ と媒体を含むアッセイメディウム、または $PGD_2$ 5 と本発明化合物を含むアッセイメディウム 5 0 μ L (PGD 2の終濃度: 1 0 nmol/L)を添加して反応を開始し、37℃でインキュベーションした。 10分後, 氷冷したトリクロロ酢酸 (TCA) (10%w/v) 500 µL を添加して反応を停止させた。この反応液を1回凍結 (-80℃)、融解を 行なった後、スクレイパーで細胞をはがし、13,000 r p mで3分間遠心した. 10 上清を採取し、上清中の c AMP 濃度を c AMP アッセイ・キット (c AM P assay kit) (Amersham 社製) を用いてラジオイムノアッセイ (radioimmunoassay) 法で測定した。すなわち、上記で得られた上清125 μ Lに [125 I] c AMPアッセイ・キットの緩衝液を加え500 μ Lとし、これ を 0.5m o 1 / L トリーn ーオクチルアミン (tri-n-octylamine) のクロロホル 15 ム溶液1mLと混和し、クロロホルム層にTCAを抽出したのち、水層をサ ンプルとして [125 I] c AMPアッセイ・キットに記載されている方法に順じ てサンプル中の c AMP 量を定量した。

本発明化合物のDP受容体拮抗作用の強度は、PGD<sub>2</sub>がサブマキシマム
20 (submaximum)なcAMP産生作用を示す10nmol/LにおけるcAMP産生量に対する抑制率からIC<sub>50</sub>値(本発明化合物非存在下におけるcAMP産生量を50%阻害するのに要する本発明化合物の濃度)として算出した。

上記の測定結果から、本発明化合物は $10\mu m o 1/L$ 以下の $IC_{50}$ 値で、DP受容体に対して強く拮抗することがわかった。

## [毒性]

25

一般式 (I) で示される本発明化合物の毒性は十分に低いものであり、医薬品として使用するために十分安全であることが確認された。

### 産業上の利用可能性

### 5 [医薬品への適用]

一般式(I)で示される本発明化合物は、DP受容体に結合し、拮抗する ため、DP受容体活性化による疾患、例えばアレルギー性疾患(例えば、ア レルギー性鼻炎、アレルギー性結膜炎、アトピー性皮膚炎、気管支喘息、食 物アレルギーなど)、全身性肥満細胞症、全身性肥満細胞活性化障害、アナ フィラキシーショック、気道収縮、蕁麻疹、湿疹、にきび、アレルギー性気 10 管支肺アスペルギルス症、副鼻腔炎、偏頭痛、鼻茸、過敏性血管炎、好酸球 増多症、接触性皮膚炎、痒みを伴う疾患(例えばアトピー性皮膚炎、蕁麻疹、 アレルギー性結膜炎、アレルギー性鼻炎、接触性皮膚炎など)、痒みに伴う 行動(引っかき行動、殴打など)により二次的に発生する疾患(例えば白内 障、網膜剥離、炎症、感染、睡眠障害など)、炎症、慢性閉塞性肺疾患、虚 15 血再灌流障害、脳血管障害、自己免疫疾患、脳外傷、肝傷害、移植片拒絶、 慢性関節リウマチ、胸膜炎、変形性関節症、クローン病、潰瘍性大腸炎、過 敏性腸症候群等の疾患の予防および/または治療に有用であると考えられる。 また、睡眠、血小板凝集にも関わっており、これらの疾患にも有用であると考 20 えられる。

一般式(I)で示される本発明化合物のうち、DP受容体以外に対する結合が弱いものは、他の作用を発現しないため、副作用の少ない薬剤となる可能性がある。

一般式(I)で示される本発明化合物は、

- 25 1) その化合物の予防および/または治療効果の補完および/または増強、
  - 2) その化合物の動態・吸収改善、投与量の低減、および/または

3) その化合物の副作用の軽減のために他の薬剤と組み合わせて、併用剤として投与してもよい。

一般式(I)で示される本発明化合物と他の薬剤の併用剤は、1つの製剤中に両成分を配合した配合剤の形態で投与してもよく、また別々の製剤にして投与する場合には、同時投与および時間差による投与が含まれる。また、時間差による投与は、一般式(I)で示される本発明化合物を先に投与し、他の薬剤を後に投与してもよいし、他の薬剤を先に投与し、一般式(I)で示される本発明化合物を後に投与してもよい。それぞれの投与方法は同じでも異なっていてもよい。

5

10 上記併用剤により、予防および/または治療効果を奏する疾患は特に限定されず、一般式(I)で示される本発明化合物の予防および/または治療効果を補完および/または増強する疾患であればよい。

一般式(I)で示される本発明化合物のアレルギー性鼻炎に対する予防および/または治療効果の補完および/または増強のための他の薬剤としては、例えば、抗ヒスタミン剤、メディエーター遊離抑制薬、トロンボキサン合成酵素阻害剤、トロンボキサンA2受容体拮抗剤、ロイコトリエン受容体拮抗剤、ステロイド剤、αアドレナリン受容体刺激薬、キサンチン誘導体、抗コリン薬、一酸化窒素合成酵素阻害剤等が挙げられる。

一般式(I)で示される本発明化合物のアレルギー性結膜炎に対する予防 および/または治療効果の補完および/または増強のための他の薬剤として は、例えば、ロイコトリエン受容体拮抗剤、抗ヒスタミン剤、メディエーター 遊離抑制薬、非ステロイド系抗炎症薬、プロスタグランジン類、ステロイド剤、一酸化窒素合成酵素阻害剤等が挙げられる。

抗ヒスタミン剤としては、例えば、フマル酸ケトチフェン、メキタジン、 25 塩酸アゼラスチン、オキサトミド、テルフェナジン、フマル酸エメダスチン、 塩酸エピナスチン、アステミゾール、エバスチン、塩酸セチリジン、ベポタ

スチン、フェキソフェナジン、ロラタジン、デスロラタジン、塩酸オロパタジン、TAK-427、ZCR-2060、NIP-530、モメタゾンフロエート、ミゾラスチン、BP-294、アンドラスト、オーラノフィン、アクリバスチン等が挙げられる。

5 メディエーター遊離抑制薬としては、例えば、トラニラスト、クロモグリーク酸ナトリウム、アンレキサノクス、レピリナスト、イプジラスト、ダザノラスト、ペミロラストカリウム等が挙げられる。

トロンボキサン合成酵素阻害剤としては、例えば、塩酸オザグレル、イミ トロダストナトリウム等が挙げられる。

10 トロンボキサンA₂受容体拮抗剤としては、例えば、セラトロダスト、ラマトロバン、ドミトロバンカルシウム水和物、KT-2-962等が挙げられる。

ロイコトリエン受容体拮抗剤としては、例えば、プランルカスト水和物、 モンテルカスト、ザフィルルカスト、MCC-847、KCA-757、C S-615、YM-158、L-740515、CP-195494、LM -1484、RS-635、A-93178、S-36496、BIIL-284、ONO-4057等が挙げられる。

ステロイド剤としては、例えば、外用薬としては、プロピオン酸クロベタ

15

ゾール、酢酸ジフロラゾン、フルオシノニド、フランカルボン酸モメタゾン、 20 ジプロピオン酸ベタメタゾン、酪酸プロピオン酸ベタメタゾン、吉草酸ベタ メタゾン、ジフルプレドナート、プデソニド、吉草酸ジフルコルトロン、ア ムシノニド、ハルシノニド、デキサメタゾン、プロピオン酸デキサメタゾン、 吉草酸デキサメタゾン、酢酸デキサメタゾン、酢酸ヒドロコルチゾン、酪酸 ヒドロコルチゾン、酪酸プロピオン酸ヒドロコルチゾン、プロピオン酸デプ

25 ロドン、吉草酸酢酸プレドニゾロン、フルオシノロンアセトニド、プロピオン酸ベクロメタゾン、トリアムシノロンアセトニド、ピバル酸フルメタゾン、

10

15

プロピオン酸アルクロメタゾン、酪酸クロベタゾン、プレドニゾロン、プロピオン酸ペクロメタゾン、フルドロキシコルチド等が挙げられる。

内服薬、注射剤としては、酢酸コルチゾン、ヒドロコルチゾン、リン酸ヒドロコルチゾンナトリウム、酢酸フルドロコルチゾン、プレドニゾロン、酢酸プレドニゾロン、コハク酸プレドニゾロン、コハク酸プレドニゾロントリウム、酢酸プレドニゾロン、リン酸プレドニゾロンナトリウム、酢酸ハロプレドン、メチルプレドニゾロン、酢酸メチルプレドニゾロン、カリアムシノロン、酢酸トリアムシノロン、トリアムシノロンアセトニド、デキサメサゾン、酢酸デキサメタゾン、リン酸デキサメタゾンサトリウム、パルミチン酸デキサメタゾン、酢酸パラメサゾン、ベタメタゾン等が挙げられる。

吸入剤としては、プロピオン酸ベクロメタゾン、プロピオン酸フルチカゾン、ブデソニド、フルニソリド、トリアムシノロン、ST-126P、シクレソニド、デキサメタゾンパロミチオネート、モメタゾンフランカルボネート、プラステロンスルホネート、デフラザコート、メチルプレドニゾロンスレプタネート、メチルプレドニゾロンナトリウムスクシネート等が挙げられる。

キサンチン誘導体としては、例えば、アミノフィリン、テオフィリン、ド キソフィリン、シパムフィリン、ジプロフィリン等が挙げられる。

20 抗コリン剤としては、例えば、臭化イプラトロピウム、臭化オキシトロピウム、臭化フルトロピウム、臭化シメトロピウム、テミベリン、臭化チオトロピウム、レバトロペート (UK-112166) 等が挙げられる。

非ステロイド系抗炎症薬としては、例えば、サザピリン、サリチル酸ナト リウム、アスピリン、アスピリン・ダイアルミネート配合、ジフルニサル、

25 インドメタシン、スプロフェン、ウフェナマート、ジメチルイソプロピルア ズレン、ブフェキサマク、フェルビナク、ジクロフェナク、トルメチンナト リウム、クリノリル、フェンブフェン、ナプメトン、プログルメタシン、インドメタシンファルネシル、アセメタシン、マレイン酸プログルメタシン、アンフェナクナトリウム、モフェゾラク、エトドラク、イブプロフェン、イブプロフェンピコノール、ナプロキセン、フルルビプロフェン、フルルビプロフェンアキセチル、ケトプロフェン、フェノプロフェンカルシウム、チアプロフェン、オキサプロジン、プラノプロフェン、ロキソプロフェンナトリウム、アルミノプロフェン、ザルトプロフェン、メフェナム酸、メフェナム酸アルミニウム、トルフェナム酸、フロクタフェニン、ケトフェニルブタゾン、オキシフェンブタゾン、ピロキシカム、テノキシカム、アンピロキシカム、ナパゲルン軟膏、エピリゾール、塩酸チアラミド、塩酸チノリジン、エモルファゾン、スルピリン、ミグレニン、サリドン、セデスG、アミピローN、ソルボン、ピリン系感冒薬、アセトアミノフェン、フェナセチン、メシル酸ジメトチアジン、シメトリド配合剤、非ピリン系感冒薬等が挙げられる。

プロスタグランジン類(以下、PGと略記する。) としては、PG受容体 15 アゴニスト、PG受容体アンタゴニスト等が挙げられる。

PG受容体としては、PGE受容体(EP1、EP2、EP3、EP4)、PGD受容体(DP、CRTH2)、PGF受容体(FP)、PGI受容体(IP)、TX受容体(TP)等が挙げられる。

一般式(I)で示される化合物と他の薬剤の重量比は特に限定されない。

20 他の薬剤は、任意の2種以上を組み合わせて投与してもよい。

また、一般式(I)で示される化合物の予防および/または治療効果を補 完および/または増強する他の薬剤には、上記したメカニズムに基づいて、 現在までに見出されているものだけでなく今後見出されるものも含まれる。

本発明で用いる一般式(I)で示される化合物またはそれらの非毒性塩、

25 または一般式 (I) で示される化合物と他の薬剤の併用剤を上記の目的で用いるには、通常、全身的または局所的に、経口または非経口の形で投与され

る。

投与量は、年齢、体重、症状、治療効果、投与方法、処理時間等により異なるが、通常、成人一人あたり、1回につき、1mgから1000mgの範囲で、1日1回から数回経口投与されるか、または成人一人あたり、1回につき、

5 1mgから100mgの範囲で、1日1回から数回非経口投与(好ましくは、 点鼻剤、点眼剤または軟膏剤)されるか、または1日1時間から24時間の 範囲で静脈内に持続投与される。

もちろん前記したように、投与量は、種々の条件によって変動するので、 上記投与量より少ない量で十分な場合もあるし、また範囲を越えて必要な場 10 合もある。

一般式(I)で示される化合物またはそれらの非毒性塩、または一般式(I)で示される化合物と他の薬剤の併用剤を投与する際には、経口投与のための固体組成物、液体組成物およびその他の組成物および非経口投与のための注射剤、外用剤、坐剤等として用いられる。

15 経口投与のための固体組成物には、錠剤、丸剤、カプセル剤、散剤、顆粒 剤等が含まれる。

カプセル剤には、ハードカプセルおよびソフトカプセルが含まれる。
このような固体組成物においては、ひとつまたはそれ以上の活性物質が、
少なくともひとつの不活性な希釈剤、例えばラクトース、マンニトール、グ
20 ルコース、ヒドロキシプロピルセルロース、微結晶セルロース、デンプン、
ポリビニルピロリドン、メタケイ酸アルミン酸マグネシウムと混合される。
組成物は、常法に従って、不活性な希釈剤以外の添加剤、例えばステアリン
酸マグネシウムのような潤滑剤、繊維素グリコール酸カルシウムのような崩壊剤、ラクトースのような安定化剤、グルタミン酸またはアスパラギン酸の
25 ような溶解補助剤を含有していてもよい。錠剤または丸剤は必要により白糖、
ゼラチン、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセル

ロースフタレートなどの胃溶性あるいは腸溶性物質のフィルムで被覆していてもよいし、また2以上の層で被覆していてもよい。さらにゼラチンのような吸収されうる物質のカプセルも包含される。

経口投与のための液体組成物は、薬剤的に許容される乳濁剤、溶液剤、シ 5 ロップ剤、エリキシル剤等を含む。このような液体組成物においては、ひと つまたはそれ以上の活性物質が、一般的に用いられる不活性な希釈剤(例え ば、精製水、エタノール)に含有される。この組成物は、不活性な希釈剤以 外に湿潤剤、懸濁剤のような補助剤、甘味剤、風味剤、芳香剤、防腐剤を含 有していてもよい。

経口投与のためのその他の組成物としては、ひとつまたはそれ以上の活性物質を含み、それ自体公知の方法により処方されるスプレー剤が含まれる。この組成物は不活性な希釈剤以外に亜硫酸水素ナトリウムのような安定剤と等張性を与えるような緩衝剤、例えば塩化ナトリウム、クエン酸ナトリウムあるいはクエン酸のような等張剤を含有していてもよい。スプレー剤の製造方法は、例えば米国特許第 2,868,691 号および同第 3,095,355 号に詳しく記載されている。

本発明による非経口投与のための注射剤としては、無菌の水性および/または非水性の溶液剤、懸濁剤、乳濁剤を包含する。水性の溶液剤、懸濁剤としては、例えば注射用蒸留水および生理食塩水が含まれる。非水溶性の溶液剤、懸濁剤としては、例えばプロピレングリコール、ポリエチレングリコール、オリーブ油のような植物油、エタノールのようなアルコール類、ポリソルベート80(登録商標)等がある。また、無菌の水性と非水性の溶液剤、懸濁剤および乳濁剤を混合して使用してもよい。このような組成物は、さらに防腐剤、湿潤剤、乳化剤、分散剤、安定化剤(例えば、ラクトース)、溶解補助剤(例えば、グルタミン酸、アスパラギン酸)のような補助剤を含んでいてもよい。これらはバクテリア保留フィルターを通する過、殺菌剤の配

10

20

合または照射によって無菌化される。これらはまた無菌の固体組成物を製造し、例えば凍結乾燥品の使用前に、無菌化または無菌の注射用蒸留水または他の溶媒に溶解して使用することもできる。

非経口投与のための点眼剤の剤形としては、点眼液、懸濁型点眼液、乳濁型点眼液、用時溶解型点眼液および眼軟膏が含まれる。

これらの点眼剤は公知の方法に準じて製造される。例えば、点眼液の場合には、等張化剤(塩化ナトリウム、濃グリセリン等)、緩衝化剤(リン酸ナトリウム、酢酸ナトリウム等)、界面活性剤(ポリソルベート80(商品名)、ステアリン酸ポリオキシル40、ポリオキシエチレン硬化ヒマシ油等)、安定化剤(クエン酸ナトリウム、エデト酸ナトリウム等)、防腐剤(塩化ベンザルコニウム、パラベン等)などを必要に応じて適宜選択して調製される。これらは最終工程において減菌するか無菌操作法によって調製される。

非経口投与のための吸入剤としては、エアロゾル剤、吸入用粉末剤又は吸入用液剤が含まれ、当該吸入用液剤は用時に水又は他の適当な媒体に溶解又は懸濁させて使用する形態であってもよい。

これらの吸入剤は公知の方法に準じて調製される。

例えば、吸入用液剤の場合には、防腐剤(塩化ベンザルコニウム、パラベン等)、着色剤、緩衝化剤(リン酸ナトリウム、酢酸ナトリウム等)、等張 化剤(塩化ナトリウム、濃グリセリン等)、増粘剤(カリボキシビニルポリマー等)、吸収促進剤などを必要に応じて適宜選択して調製される。

吸入用粉末剤の場合には、滑沢剤(ステアリン酸およびその塩等)、結合剤(デンプン、デキストリン等)、賦形剤(乳糖、セルロース等)、着色剤、防腐剤(塩化ベンザルコニウム、パラベン等)、吸収促進剤などを必要に応じて適宜選択して調製される。

25 吸入用液剤を投与する際には通常噴霧器(アトマイザー、ネブライザー) が使用され、吸入用粉末剤を投与する際には通常粉末薬剤用吸入投与器が使 用される。

非経口投与のためのその他の組成物としては、ひとつまたはそれ以上の活性物質を含み、常法により処方される外溶液剤、軟膏剤、塗布剤、直腸内投与のための坐剤および膣内投与のためのペッサリー等が含まれる。

5

### 発明を実施するための最良の形態

以下、参考例および実施例によって本発明を詳述するが、本発明はこれらに限定されるものではない。

クロマトグラフィーによる分離の箇所、TLCに示されているカッコ内の 10 溶媒は、使用した溶出溶媒または展開溶媒を示し、割合は体積比を表わす。 NMRの箇所に示されているカッコ内の溶媒は、測定に使用した溶媒を示し ている。

## 参考例1:N-ホルミル-2-フルオロアニリン

アルゴンガス雰囲気下、0℃で無水酢酸(15.5mL)にギ酸(6.1mL)を 滴下し、50℃で2時間撹拌した。反応混合物を室温に冷却後、テトラヒド ロフラン(THF;10mL)で希釈した。希釈液に2ーフルオロアニリン (5.56g)のTHF(20mL)溶液を室温で加え、室温で1時間撹拌した。 反応混合物を濃縮することにより、以下の物性値を有する標題化合物を得た。

20 得られた標題化合物は、精製することなく次の反応に用いた。

TLC: Rf 0.70 (ヘキサン: 酢酸エチル=2:1)。

# 参考例2:Nーメチルー2ーフルオロアニリン

アルゴンガス雰囲気下、参考例1で製造した化合物の無水THF (25m 25 L)溶液に0℃でボラン・テトラヒドロフラン錯体 (1M THF溶液;12 5mL)を加え、50℃で2時間撹拌した。反応混合物を室温に冷却後、氷 浴中、メタノール(30mL)および4N塩化水素ジオキサン溶液(10mL)を加え、60℃で1時間撹拌した。反応混合物を濃縮し、2N水酸化ナトリウム水溶液に加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。溶液をセライト(商品名)でろ過し、

5 ろ液を濃縮した。残渣に混合溶媒(ヘキサン:酢酸エチル=10:1)を加え、シリカゲル上ろ過した。溶出液を濃縮することにより、以下の物性値を有する標題化合物(6.45g)を得た。

TLC: Rf 0.85 (ヘキサン: 酢酸エチル=5:1);

NMR (CDCl<sub>3</sub>):  $\delta$  7.00-6.91 (m, 2H), 6.80-6.55 (m, 2H), 3.90 (br.s, 1H), 2.82 (s, 3H)<sub>o</sub>

参考例3: (2S) - 3 - (N - (2 - 7) - N - 7) - N - 7 ミノ) -1, 2 - 7 ロパンジオール

アルゴンガス雰囲気下、参考例2で製造した化合物(1.24g)、(R)-(+)
5 ーグリシドール(1.11g、アルドリッチ社製、98%ee)およびエタノール
(1mL)の混合物を50℃で12時間撹拌した。反応混合物を濃縮することにより、以下の物性値を有する標題化合物を得た。得られた標題化合物は、精製することなく次の反応に用いた。

TLC: Rf 0.40 (ヘキサン: 酢酸エチル=1:1)。

20

25

参考例4: (2S) -2-ヒドロキシメチル-4-メチル-3, 4-ジヒドロ-2H-1, 4-ベングオキサジン

参考例3で製造した化合物の無水ジメチルホルムアミド (DMF;10m L) 溶液に、水浴中、カリウム t ーブトキシド (1.68g) を加え、80℃で3時間撹拌した。反応混合物を水に加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。溶液をセライト (商品

名)でろ過し、ろ液を濃縮した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=3:1)で精製し、以下の物性値を有する標題化合物(1.55g,97.6%ee)を得た。

TLC: Rf 0.35 (ヘキサン: 酢酸エチル=2:1);

5 NMR (CDCl<sub>3</sub>):  $\delta$  7.90-6.79 (m, 2H), 6.70-6.60 (m, 2H), 4.33 (m, 1H), 3.82 (dd, J = 13.0, 4.2 Hz, 1H), 3.79 (dd, J = 13.0, 4.2 Hz, 1H), 3.19 (dd, J = 10.2, 2.1 Hz, 1H), 3.17 (dd, J = 11.4, 5.4 Hz, 1H), 2.86 (s, 3H)<sub>o</sub>

本標題化合物の光学純度は、高速液体クロマトグラフィー(HPLC)を 10 用いて決定した。

使用したカラム: CHIRALCEL OD(ダイセル化学工業(株))、 $0.46~\mathrm{cm}~\phi$  x 25 cm、

使用した流速:1mL/分、

使用した溶媒: ヘキサン: 2-プロパノール=93:7、

15 使用した検出波長:254nm、

保持時間:30.70分、

使用した温度:24℃。

参考例5: (2S) -2-メシルオキシメチル-4-メチル-3, 4-ジヒ 20 ドロ-2H-1, 4-ベンゾオキサジン

参考例4で製造した化合物(20g)のトルエン(80mL)溶液に、トリエチルアミン(23mL)を加え、5℃に冷却後、メタンスルホニルクロライド(9.5mL)を摘下し、5℃で30分間撹拌した。反応混合物を水に加え、酢酸エチルで抽出した。有機層を水および飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。溶液をセライト(商品名)でろ過した。ろ液を濃縮し、以下の物性値を有する標題化合物を得た。得られた標題化合物は、

精製することなく次の反応に用いた。

TLC: Rf 0.55 (ヘキサン: 酢酸エチル=1:1);

NMR (CDCl<sub>3</sub>):  $\delta$  6.88 (m, 1H), 6.81 (dd, J = 8.4, 1.5 Hz, 1H), 6.75-6.65 (m, 2H), 4.54 (m, 1H), 4.40 (d, J = 5.4 Hz, 2H), 3.27 (dd, J = 11.7, 2.7 Hz, 1H), 3.17 (dd, J = 11.7, 6.3 Hz, 1H), 3.07 (s, 3H), 2.88 (s, 3H)<sub>o</sub>

参考例6:4-((2S)-4-メチル-3,4-ジヒドロ-2H-1,4 -ベンプオキサジン-2-イルメトキシ)安息香酸メチルエステル

参考例5で製造した化合物および4ーヒドロキシ安息香酸メチルエステル (23.2g) DMF (200mL) 溶液に、室温で炭酸カリウム (38.3g) を加え、80℃で15時間撹拌した。反応混合物を水に加え、混合溶媒(酢酸エチル:ヘキサン=1:2) で抽出した。有機層を1N水酸化ナトリウム水溶液、水および飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。溶液をセライト(商品名)でろ過した。ろ液を濃縮し、以下の物性値を有する 標題化合物を得た。得られた標題化合物は、精製することなく次の反応に用いた。

TLC: Rf 0.62 (ヘキサン: 酢酸エチル=2:1);

NMR (CDCl<sub>3</sub>):  $\delta$  7.99(d, J = 9.0 Hz, 2H), 6.96 (d, J = 9.0 Hz, 2H), 6.94-6.79 (m, 2H), 6.70 (d, J = 7.5 Hz, 1H), 6.68 (t, J = 7.5 Hz, 1H), 4.65 (m, 1H), 4.27 (dd, J = 9.9, 4.8 Hz, 1H), 4.17 (dd, J = 9.9, 6.6 Hz, 1H), 3.89 (s, 3H), 3.39 (dd, J = 11.7, 2.7 Hz, 1H), 3.25 (dd, J = 11.7, 6.6 Hz, 1H), 2.90 (s, 3H)<sub>o</sub>

参考例7:4-((2S)-4-メチル-3,4-ジヒドロ-2H-1,4 -ベンゾオキサジン-2-イルメトキシ)安息香酸

25 参考例6で製造した化合物をメタノール(150mL)およびTHF(150mL)に溶解し、室温で5N水酸化ナトリウム水溶液(100mL)を

加え、室温で15時間撹拌した。反応混合物を水に加え、混合溶媒(酢酸エチル:ヘキサン=1:2)で洗浄した。水層を2N塩酸(260mL)で酸性にし、生じた結晶をろ取した。ろ取物を水で洗浄した後、減圧下2日間乾燥することにより、以下の物性値を有する標題化合物(39g)を得た。

5 TLC: Rf 0.13 (ヘキサン: 酢酸エチル=2:1)。

参考例8:4-((2S)-4-メチル-3, 4-ジヒドロ-2H-1, 4 -ベンゾオキサジン-2-イルメトキシ) ベンゾイルクロライド

アルゴンガス雰囲気下、参考例7で製造した化合物 (5 g) のジメトキシ 10 エタン (2 1 m L) 溶液にオギザリルクロライド (2.75 m L) を加え、40℃ で1時間撹拌した。反応混合物を濃縮し、以下の物性値を有する標題化合物 (4.7 g) を得た。

NMR (CDCl<sub>3</sub>):  $\delta$  8.12 (d, J = 8.7 Hz, 2H), 7.50 (dd, J = 8.1, 1.5 Hz, 1H), 7.35 (dt, J = 1.5, 8.1 Hz, 1H), 7.16-6.95 (m, 4H), 5.07-4.96 (m, 1H), 4.52-4.40 (m, 2H), 3.87 (dd, J = 12.9, 2.1 Hz, 1H), 3.68 (dd, J = 12.9, 10.5 Hz, 1H), 3.29 (s, 3H)<sub>o</sub>

参考例9:3-アミノフェニル酢酸メチルエステル

アルゴン雰囲気下、メタノール(20mL)を一10℃に冷却し、塩化チオニル(4.31mL)および3-アミノフェニル酢酸(3.00g)のメタノール溶 液(25mL)を滴下し、-10~0℃にて1時間撹拌した。反応混合物に飽和炭酸水素ナトリウム水溶液を加え、酢酸エチルにて抽出した。有機層を飽和食塩水にて洗浄し、無水硫酸ナトリウムにて乾燥した。溶媒を留去して得られた残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル: ヘキサン=1:1)にて精製して、以下の物性値を有する標題化合物(3.90g)を得 た。

TLC: Rf 0.43 (ヘキサン: 酢酸エチル=1:1);

NMR (CDCl<sub>3</sub>):  $\delta$  7.10 (t, J = 7.8 Hz, 1H), 6.69-6.57 (m, 3H), 3.69 (s, 3H), 3.53 (s, 2H),

実施例1:3-(4-((2S)-4-メチル-3, 4-ジェドロ-2H 1,4-ベンプオキサジン-2-イルメトキシ)ベンゾイルアミノ)フェニル酢酸メチルエステル

アルゴン雰囲気下、参考例9で製造した化合物(165mg)の塩化メチレン溶液(2mL)にピリジン(161μl)を加え、氷冷下参考例8で製造した化合物(350mg)の塩化メチレン溶液(2.5mL)を滴下して0℃にて15分間撹拌した。反応混合物にメタノールと水を加え、酢酸エチルにて抽出した。有機層を飽和塩化アンモニウム水溶液と飽和食塩水にて洗浄し、無水硫酸ナトリウムにて乾燥した。溶媒を留去して、以下の物性値を有する標題化合物(447mg)を得た。

15 TLC: Rf 0.23 (ヘキサン: 酢酸エチル=2:1)。

### 実施例1 (1) ~1 (15)

参考例9で製造した化合物の代わりに相当するアミンを用いて、実施例1 と同様の操作をして以下の化合物を得た。 実施例1(1): 3-(4-((2S)-4- ) チルー3 , 4- ジヒドロー2H-1 , 4- ベンゾオキサジンー2- イルメトキシ) ベンゾイルアミノ) -4- クロロフェニル酢酸メチルエステル

5 TLC: Rf 0.27 (酢酸エチル: ヘキサン=3:7);
NMR (CDCl<sub>3</sub>): δ 8.51 (s, 1H), 8.36 (s, 1H), 7.88 (d, J = 6.9 Hz, 2H), 7.37 (d, J = 8.1 Hz, 1H), 7.10-6.98 (m, 3H), 6.94-6.80 (m, 2H), 6.78-6.66 (m, 2H), 4.73-4.63 (m, 1H), 4.30 (dd, J = 9.6, 4.8 Hz, 1H), 4.21 (dd, J = 9.6, 6.3 Hz, 1H), 3.71 (s, 3H), 3.66 (s, 2H), 3.40 (dd, J = 12.0, 3.0 Hz, 1H), 3.27 (dd, J = 12.0, 6.6 Hz, 1H), 2.91 (s, 3H)<sub>o</sub>

10

実施例1(2): 3-(4-((2S)-4-メチル-3, 4-ジヒドロ-2H-1, 4-ベンゾオキサジン-2-イルメトキシ) ベンゾイルアミノ) <math>-2-メチルフェニル酢酸メチルエステル

TLC: Rf 0.15 (酢酸エチル: ヘキサン=3:7);

NMR (CDCl<sub>3</sub>):  $\delta$  7.86 (d, J = 8.7 Hz, 2H), 7.72 (d, J = 8.4 Hz, 1H), 7.59 (s, 1H), 7.22 (t, J=7.8 Hz, 1H), 7.10 (d, J = 7.8 Hz, 1H), 7.06-6.96 (m, 2H), 6.93-6.81 (m, 2H), 6.76-6.66 (m, 2H), 4.72-4.62 (m, 1H), 4.30 (dd, J = 9.9, 4.8 Hz, 1H), 4.19 (dd, J = 9.9, 6.3 Hz, 1H), 3.71 (s, 2H), 3.70 (s, 3H), 3.40 (dd, J = 11.4, 2.7 Hz, 1H), 3.27 (dd, J = 11.4, 6.6 Hz, 1H), 2.92 (s, 3H), 2.26 (s, 3H)<sub>0</sub>

20

実施例1(3): 3-(4-((2S)-4-)) チャルー3, 4-ジヒドロー2H-1, 4-ベンゾオキサジンー2-イルメトキシ) ベンゾイルアミノ) -4-メチルフェニル酢酸メチルエステル

TLC: Rf 0.17 (酢酸エチル: ヘキサン=3:7);

25 NMR (CDCl<sub>3</sub>):  $\delta$  7.89 (brs, 1H), 7.85 (d, J = 8.7 Hz, 2H), 7.58 (s, 1H), 7.19 (d, J = 7.8 Hz, 1H), 7.07-6.96 (m, 3H), 6.92-6.80 (m, 2H), 6.75-6.66 (m, 2H), 4.72-4.62 (m,

1H), 4.30 (dd, J = 9.6, 4.8 Hz, 1H), 4.19 (dd, J = 9.6, 6.3 Hz, 1H), 3.69 (s, 3H), 3.64 (s, 2H), 3.40 (dd, J = 11.7, 3.0 Hz, 1H), 3.27 (dd, J = 11.7, 6.6 Hz, 1H), 2.91 (s, 3H), 2.31 (s, 3H)<sub>o</sub>

5 実施例1(4):3-(4-((2S)-4-メチル-3, 4-ジヒドロ-2H-1, 4-ベンゾオキサジン-2-イルメトキシ)ベンゾイルアミノ)-5-メチルフェニル酢酸メチルエステル

TLC: Rf 0.68 (酢酸エチル: ヘキサン=1:1):

NMR (CDCl<sub>3</sub>): δ 7.83 (d, J = 8.7 Hz, 2H), 7.69 (s, 1H), 7.44 (s, 1H), 7.33 (s, 1H), 7.06-6.94 (m, 2H), 6.92-6.80 (m, 3H), 6.75-6.66 (m, 2H), 4.70-4.60 (m, 1H), 4.29 (dd, J = 9.0, 4.2 Hz, 1H), 4.18 (dd, J = 9.0, 6.6 Hz, 1H), 3.70 (s, 3H), 3.62 (s, 2H), 3.40 (dd, J = 12.0, 2.7 Hz, 1H), 3.27 (dd, J = 12.0, 6.3 Hz, 1H), 2.91 (s, 3H), 2.35 (s, 3H)<sub>o</sub>

15 実施例1 (5): 3-(4-((2S)-4-メチル-3, 4-ジヒドロ-2H-1, 4-ベンゾオキサジン-2-イルメトキシ) ベンゾイルアミノ) <math display="block">-2-クロロフェニル酢酸メチルエステル

TLC: Rf 0.29 (酢酸エチル: トルエン=1:9);

NMR (CDCl<sub>3</sub>): δ 8.50 (dd, J = 8.7, 1.8 Hz, 1H), 8.42 (s, 1H), 7.89 (d, J = 9.0 Hz, 2H), 7.31 (t, J = 8.1 Hz, 1H), 7.10-7.00 (m, 3H), 6.92-6.81 (m, 2H), 6.76-6.66 (m, 2H), 4.72-4.62 (m, 1H), 4.30 (dd, J = 9.9, 4.8 Hz, 1H), 4.20 (dd, J = 9.9, 6.3 Hz, 1H), 3.82 (s, 2H), 3.72 (s, 3H), 3.40 (dd, J = 11.4, 2.7 Hz, 1H), 3.27 (dd, J = 11.4, 6.6 Hz, 1H), 2.91 (s, 3H)<sub>0</sub>

25 実施例1(6):3-(4-((2S)-4-メチル-3, 4-ジヒドロ-2H-1, 4-ベンゾオキサジン-2-イルメトキシ) ベンゾイルアミノ)

15

-4-ヒドロキシフェニル酢酸メチルエステル

TLC: Rf 0.56 (酢酸エチル: ヘキサン=1:1);

NMR (CDCl<sub>3</sub>):  $\delta$  8.05 (s, 1H), 7.88 (d, J = 8.7 Hz, 2H), 7.13 (d, J = 1.8 Hz, 1H), 7.08-7.00 (m, 4H), 6.96-6.80 (m, 2H), 6.75-6.66 (m, 2H), 4.72-4.62 (m, 1H), 4.30 (dd, J = 9.6, 4.8 Hz, 1H), 4.20 (dd, J = 9.6, 6.3Hz, 1H), 3.70 (s, 3H), 3.56 (s, 2H), 3.40 (dd, J = 11.7, 2.7 Hz, 1H), 3.27 (dd, J = 11.7, 6.3 Hz, 1H), 2.92 (s, 3H)<sub>0</sub>

実施例1 (7): 3-(4-((2S)-4-)3+3) (4-ジェドロー 2H-1, 4-ベンゾオキサジン-2-イルメトキシ) ベンゾイルアミノ)

10 -4-メトキシフェニル酢酸メチルエステル・

TLC: Rf 0.55 (酢酸エチル: ヘキサン=1:1);

NMR (CDCl<sub>3</sub>):  $\delta$  8.50-8.42 (m, 2H), 7.86 (d, J = 8.7 Hz, 2H), 7.06-6.96 (m, 3H), 6.92-6.81 (m, 3H), 6.76-6.68 (m, 2H), 4.72-4.62 (m, 1H), 4.30 (dd, J = 9.9, 5.4 Hz, 1H), 4.19 (dd, J = 9.9, 6.3 Hz, 1H), 3.92 (s, 3H), 3.70 (s, 3H), 3.63 (s, 2H), 3.40 (dd, J = 11.4, 2.7 Hz, 1H), 3.27 (dd, J = 11.4, 6.6 Hz, 1H), 2.91 (s, 3H)<sub>0</sub>

実施例1(8):5-(4-((2S)-4-)チルー3,4-ジヒドロー2H-1,4-ベンゾオキサジンー2-イルメトキシ)ベンゾイルアミノ)-2-クロロフェニル酢酸メチルエステル

TLC: Rf 0.61 (酢酸エチル: ヘキサン=1:1);
NMR (CDCl<sub>3</sub>): δ 7.83 (d, J = 9.0 Hz, 2H), 7.75 (s, 1H), 7.62 (d, J = 2.7 Hz, 1H), 7.54 (dd, J = 9.0, 2.4 Hz, 1H), 7.37 (d, J = 9.0 Hz, 1H), 7.02 (d, J = 9.0 Hz, 2H), 6.93-6.80 (m, 2H), 6.75-6.66 (m, 2H), 4.72-4.62 (m, 1H), 4.29 (dd J= 9.9, 5.1 Hz, 1H), 4.19 (dd, J = 9.9, 6.3 Hz, 1H), 3.79 (s, 2H), 3.73 (s, 3H), 3.40 (dd, J = 11.7, 6.3 Hz, 1H), 3.27 (dd, J = 11.7, 6.6 Hz, 1H), 2.91 (s, 3H)<sub>0</sub>

実施例1 (9) : 5- (4- ((2S) -4-メチル-3, 4-ジヒドロー 2H-1, 4-ベンゾオキサジン-2-イルメトキシ) ベンゾイルアミノ) -2-メトキシー3-メチルフェニル酢酸メチルエステル

TLC: Rf 0.50 (酢酸エチル: ヘキサン=1:1);

NMR (CDCl<sub>3</sub>):  $\delta$  7.82 (d, J = 8.7 Hz, 2H), 7.65 (s, 1H), 7.45 (d, J = 2.7 Hz, 1H), 7.30 (d, J = 2.7 Hz, 1H), 7.01 (d, J = 9.0 Hz, 2H), 6.92-6.81 (m, 2H), 6.75-6.66 (m, 2H), 4.72-4.62 (m, 1H), 4.29 (dd, J = 9.6, 4.8 Hz, 1H), 4.18 (dd, J = 9.6, 6.3 Hz, 1H), 3.72 (s, 3H), 3.71 (s, 3H), 3.70 (s, 2H), 3.40 (dd, J = 11.7, 2.7 Hz, 1H), 3.27 (dd, J = 11.7, 6.6 Hz, 1H), 2.91 (s, 3H), 2.32 (s, 3H),

10

実施例1 (10) : 5 - (4 - ((2S) - 4 - メチル- 3, 4 - ジヒドロ -2H-1, 4-ベンゾオキサジン-2-イルメトキシ) ベンゾイルアミノ) ー2ーヒドロキシー3ーメチルフェニル酢酸メチルエステル

TLC: Rf 0.21 (酢酸エチル: ヘキサン=1:1);

NMR (CDCl<sub>3</sub>):  $\delta$  8.66-8.58 (m, 1H), 7.81 (d, J = 9.0 Hz, 2H), 7.58 (s, 1H), 7.38 (d, 15 J = 2.4 Hz, 1H), 7.21 (d, J = 2.4 Hz, 1H), 7.07-6.96 (m, 2H), 6.93-6.80 (m, 2H), 6.76-6.66 (m, 2H), 4.72-4.62 (m, 1H), 4.29 (dd, J = 9.9, 5.4 Hz, 1H), 4.18 (dd, J = 9.9, 6.3 Hz, 1H), 3.75 (s, 3H), 3.68 (s, 2H), 3.40 (dd, J = 11.4, 2.7 Hz, 1H), 3.27 (dd,  $J = 11.4, 6.3 \text{ Hz}, 1\text{H}), 2.91 \text{ (s, 3H)}, 2.29 \text{ (s, 3H)}_{\circ}$ 

20

実施例1 (11):3-(4-((25)-4-メチル-3, 4-ジヒドロ -2H-1, 4-ベンゾオキサジン-2-イルメトキシ) ベンゾイルアミノ) - 5 - フェノキシメチルフェニル酢酸メチルエステル

TLC: Rf 0.59 (酢酸エチル: ヘキサン=1:1);

25

実施例1(12):5-(4-((25)-4-メチル-3, 4-ジヒドロ

-2H-1, 4-ベンゾオキサジン-2-イルメトキシ) ベンゾイルアミノ) -4-クロロ-2-フルオロフェニル酢酸メチルエステル

TLC: Rf 0.71 (酢酸エチル: ヘキサン=1:1);

NMR (CDCl<sub>3</sub>):  $\delta$  8.50 (d, J = 7.2 Hz, 1H), 8.21 (s, 1H), 7.87 (d, J = 9.0 Hz, 2H), 7.18 (d, J = 9.0 Hz, 1H), 7.08-6.98 (m, 2H), 6.92-6.80 (m, 2H), 6.76-6.64 (m, 2H), 4.72-4.62 (m, 1H), 4.31 (dd, J = 9.9, 5.1 Hz, 1H), 4.21 (dd, J = 9.9, 6.6 Hz, 1H), 3.73 (s, 2H), 3.40 (dd, J = 11.7, 3.0 Hz, 1H), 3.27 (dd, J = 11.7, 6.6 Hz, 1H), 2.91 (s, 3H)<sub>o</sub>

実施例1 (13):5-(4-((2S)-4-メチル-3, 4-ジヒドロ 10 -2H-1, 4-ベンゾオキサジン-2-イルメトキシ) ベンゾイルアミノ) -2-フルオロフェニル酢酸メチルエステル

TLC: Rf 0.47 (酢酸エチル: ヘキサン=1:1);

NMR (CDCl<sub>3</sub>):  $\delta$  7.83 (d, J = 8.4 Hz, 2H), 7.70 (s, 1H), 7.60-7.48 (m, 2H), 7.10-6.98 (m, 3H), 6.92-6.80 (m, 2H), 6.75-6.65 (m, 2H), 4.72-4.62 (m, 1H), 4.29 (dd, J = 9.6, 5.4 Hz, 1H), 4.19 (dd, J = 9.6, 6.3 Hz, 1H), 3.72 (s, 3H), 3.69 (s, 2H), 3.40 (dd, J = 12.0, 2.7 Hz, 1H), 3.27 (dd, J = 12.0, 6.6 Hz, 1H), 2.91 (s, 3H)<sub>o</sub>

実施例1(14):3-(4-((2S)-4-メチル-3,4-ジヒドロ-2H-1,4-ベングオキサジン-2-イルメトキシ)ベングイルアミノ)

20 - 5 - フルオロフェニル酢酸メチルエステル

25

TLC: Rf 0.21 (酢酸エチル: ヘキサン=3:7);

NMR (CDCl<sub>3</sub>):  $\delta$  7.83 (d, J = 8.4 Hz, 2H), 7.76 (s, 1H), 7.60-7.52 (m, 1H), 7.20 (s, 1H), 7.02 (d, J = 8.4 Hz, 2H), 6.92-6.75 (m, 3H), 6.75-6.66 (m, 2H), 4.72-4.62 (m, 1H), 4.29 (dd, J = 9.6, 4.8 Hz, 1H), 4.19 (dd, J = 9.6, 6.6 Hz, 1H), 3.72 (s, 3H), 3.62 (s, 2H), 3.40 (dd, J = 11.4, 2.7 Hz, 1H), 3.27 (dd, J = 11.4, 6.6 Hz, 1H), 2.91 (s, 3H)<sub>o</sub>

実施例1(15):3-(4-((2S) -4-メチル-3, 4-ジヒドロ-2H-1, 4-ベンゾオキサジン-2-イルメトキシ) ベンゾイルアミノ) -5-メトキシメチルフェニル酢酸メチルエステル

TLC: Rf 0.26 (酢酸エチル: ヘキサン=1:1);

- 5 NMR (CDCl<sub>3</sub>): δ 7.83 (d, J = 8.7 Hz, 2H), 7.74 (s, 1H), 7.54 (s, 2H), 7.08-6.97 (m, 3H), 6.93-6.80 (m, 2H), 6.75-6.66 (m, 2H), 4.72-4.62 (m, 1H), 4.46 (s, 2H), 4.29 (dd, J = 9.9, 5.1 Hz, 1H), 4.19 (dd, J = 9.9, 6.3 Hz, 1H), 3.70 (s, 3H), 3.64 (s, 2H), 3.44-3.33 (m, 4H), 3.27 (dd, J = 11.7, 6.3 Hz, 1H), 2.91 (s, 3H)<sub>o</sub>
- 10 実施例2:3-(4-((2S)-4-メチル-3, 4-ジヒドロ-2H-1, 4-ベンゾオキサジン-2-イルメトキシ)ベンゾイルアミノ)フェニル酢酸

実施例1で製造した化合物(224mg)をテトラヒドロフラン(2.5mL) とメタノール(2.5mL)の混合溶媒に溶解し、2N水酸化ナトリウム水溶液(2mL)を加え、室温にて30分間撹拌した。反応液を減圧下濃縮し、tープチルメチルエーテルにて洗浄した。水層に1N塩酸水溶液を加えて酸性とし、酢酸エチルにて抽出した。有機層を飽和食塩水にて洗浄し、無水硫酸ナトリウムにて乾燥した。溶媒を留去して得られた残渣をシリカゲルカラム

クロマトグラフィー(酢酸エチル: ヘキサン=1:1~酢酸エチル: メタノール=10:1)にて精製して、以下の物性値を有する標題化合物(123 mg)を得た。

TLC: Rf 0.52 (酢酸エチル: メタノール=19:1);

5 NMR (CDCl<sub>3</sub>): δ 7.90-7.78 (m, 3H), 7.57 (s, 1H), 7.54 (d, J = 8.1 Hz, 1H), 7.29 (m, 1H), 7.06-6.95 (m, 3H), 6.91-6.82 (m, 2H), 6.75-6.66 (m, 2H), 4.65 (m, 1H), 4.27 (dd, J = 9.6, 4.8 Hz, 1H), 4.16 (dd, J = 9.6, 6.6 Hz, 1H), 3.63 (s, 2H), 3.38 (dd, J = 11.4, 2.7 Hz, 1H), 3.25 (dd, J = 11.4, 6.6 Hz, 1H), 2.90 (s, 3H)<sub>o</sub>

#### 10 実施例2(1)~2(15)

20

実施例1(1)~1(15)で製造した化合物を用いて、実施例2と同様の操作をして、以下の化合物を得た。

実施例2(1):3-(4-((2S)-4-メチル-3, 4-ジヒドロー
 15 2H-1, 4-ベンゾオキサジン-2-イルメトキシ)ベンゾイルアミノ)
 -4-クロロフェニル酢酸

NMR (CDCl<sub>3</sub>):  $\delta$  8.53 (d, J = 1.8 Hz, 1H), 8.36 (s, 1H), 7.88 (d, J = 8.7 Hz, 2H), 7.37 (d, J = 8.1 Hz, 1H), 7.08-6.98 (m, 3H), 6.92-6.82 (m, 2H), 6.76-6.66 (m, 2H), 4.72-4.62 (m, 1H), 4.30 (dd, J = 9.6, 4.8 Hz, 1H), 4.19 (dd, J = 9.6, 6.3 Hz, 1H), 3.69 (s, 2H), 3.40 (dd, J = 12.0, 3.0 Hz, 1H), 3.27 (dd, J = 12.0, 6.9 Hz, 1H), 2.91 (s, 3H),

実施例2(2):3-(4-((2S)-4-メチル-3, 4-ジヒドロー 25 2H-1, 4-ベンゾオキサジン-2-イルメトキシ)ベンゾイルアミノ) -2-メチルフェニル酢酸

TLC: Rf 0.37 (クロロホルム:メタノール=9:1);

NMR (CDCl<sub>3</sub>):  $\delta$  7.85 (d, J = 8.7 Hz, 2H), 7.71 (d, J = 8.4 Hz, 1H), 7.61 (s, 1H), 7.28-7.19 (m, 1H), 7.11 (d, J = 7.5 Hz, 1H), 7.02 (d, J = 8.7 Hz, 2H), 6.92-6.80 (m, 2H), 6.76-6.66 (m, 2H), 4.72-4.62 (m, 1H), 4. 30 (dd, J = 9.6, 5.1 Hz, 1H), 4.19 (dd, J = 9.6, 6.3 Hz, 1H), 3.74 (s, 2H), 3.40 (dd, J = 11.4, 3.3 Hz, 1H), 3.27 (dd, J = 11.4, 6.6 Hz, 1H), 2.91 (s, 3H), 2.26 (s, 3H)<sub>o</sub>

実施例 2(3):3-(4-((2S)-4-メチル-3,4-ジヒドロ-2H-1,4-ベンゾオキサジン-2-イルメトキシ)ベンゾイルアミノ)

10 -4-メチルフェニル酢酸

TLC: Rf 0.34 (クロロホルム: メタノール=9:1);

NMR (CDCl<sub>3</sub>):  $\delta$  7.89 (s, 1H), 7.84 (d, J = 8.7 Hz, 2H), 7.61 (s, 1H), 7.20 (d, J = 7.8 Hz, 1H), 7.07-6.99 (m, 3H), 6.92-6.81 (m, 2H), 6.75-6.66 (m, 2H), 4.72-4.62 (m, 1H), 4.30 (dd, J = 9.9, 5.1 Hz, 1H), 4.19 (dd, J = 9.9, 6.6 Hz, 1H), 3.66 (s, 2H),

3.40 (dd, J = 11.4, 2.7 Hz, 1H), 3.27 (dd, J = 11.4, 6.6 Hz, 1H), 2.91 (s, 3H), 2.26 (s, 3H),

実施例 2 (4) : 3- (4- ((2S) -4-メチル-3, 4-ジヒドロ-2H-1, 4-ベンゾオキサジン-2-イルメトキシ) ベンゾイルアミノ)

20 - 5 - メチルフェニル酢酸

TLC: Rf 0.39 (クロロホルム: メタノール=9:1);

NMR (CDCl<sub>3</sub>):  $\delta$  7.82 (d, J = 9.0 Hz, 2H), 7.74 (s, 1H), 7.41 (s, 1H), 7.37 (s, 1H), 7.00 (d, J = 9.0 Hz, 2H), 6.92-6.81 (m, 3H), 6.76-6.66 (m, 2H), 4.70-4.60 (m, 1H), 4.28 (dd, J = 9.9, 5.4 Hz, 1H), 4.18 (dd, J = 9.9, 6.6 Hz, 1H), 3.62 (s, 2H), 3.39 (dd, J

25 = 11.7, 3.3 Hz, 1H), 3.26 (dd, J = 11.7, 6.6 Hz, 1H), 2.91 (s, 3H), 2.34 (s, 3H),

実施例2(5):3-(4-((2S)-4-メチル-3, 4-ジヒドロ-2H-1, 4-ベンゾオキサジン-2-イルメトキシ)ベンゾイルアミノ) -2-クロロフェニル酢酸

TLC: Rf 0.46 (クロロホルム: メタノール=9:1);

5 NMR (CDCl<sub>3</sub>): δ 8.52 (d, J = 8.4 Hz, 1H), 8.42 (s, 1H), 7.89 (d, J = 9.0 Hz, 2H), 7.32 (t, J = 8.4 Hz, 1H), 7.12-7.00 (m, 3H), 6.93-6.82 (m, 2H), 6.75-6.66 (m, 2H), 4.72-4.62 (m, 1H), 4.30 (dd, J = 9.9, 5.4 Hz, 1H), 4.20 (dd, J = 9.9, 6.3 Hz, 1H), 3.87 (s, 2H), 3.40 (dd, J = 11.4, 2.7 Hz, 1H), 3.27 (dd, J = 11.4, 6.6 Hz, 1H), 2.91 (s, 3H)<sub>6</sub>

10

実施例2(6):3-(4-((2S)-4-メチル-3, 4-ジヒドロ-2H-1, 4-ベンゾオキサジン-2-イルメトキシ) ベンゾイルアミノ) -4-ヒドロキシフェニル酢酸

- 15 NMR (CDCl<sub>3</sub>): δ 8.10 (s, 1H), 7.86 (d, J = 9.0 Hz, 2H), 7.14 (d, J = 1.8 Hz, 1H), 7.08-6.97 (m, 4H), 6.92-6.82 (m, 2H), 6.76-6.66 (m, 2H), 4.72-4.62 (m, 1H), 4.29 (dd, J = 9.6, 5.1 Hz, 1H), 4.19 (dd, J = 9.6, 6.3 Hz, 1H), 3.58 (s, 2H), 3.40 (dd, J = 11.7, 3.0 Hz, 1H), 3.27 (dd, J = 11.7, 6.6 Hz, 1H), 2.91 (s, 3H)<sub>0</sub>
- 20 実施例2(7):3-(4-((2S)-4-メチル-3, 4-ジヒドロー2H-1, 4-ベングオキサジン-2-イルメトキシ)ベングイルアミノ)
   -4-メトキシフェニル酢酸

TLC: Rf 0.45 (クロロホルム: メタノール=9:1);

NMR (CDCl<sub>3</sub>):  $\delta$  8.51-8.44 (m, 2H), 7.85 (d, J = 9.0 Hz, 2H), 7.06-6.97 (m, 3H),

25 6.92-6.82 (m, 3H), 6.76-6.66 (m, 2H), 4.72-4.62 (m, 1H), 4.30 (dd, J = 9.9, 5.1 Hz, 1H), 4.18 (dd, J = 9.9, 6.6 Hz, 1H), 3.92 (s, 3H), 3.66 (s, 2H), 3.40 (dd, J = 11.7, 2.7

Hz, 1H), 3.27 (dd, J = 11.7, 6.6 Hz, 1H), 2.91 (s, 3H).

5 - 2 - クロロフェニル酢酸

10

20

NMR (CDCl<sub>3</sub>):  $\delta$  7.86-7.76 (m, 3H), 7.66 (d, J = 2.4 Hz, 1H), 7.52 (dd, J = 8.4, 2.4 Hz, 1H), 7.36 (d, J = 8.4 Hz, 1H), 7.00 (d, J = 9.0 Hz, 2H), 6.94-6.80 (m, 2H), 6.76-6.66 (m, 2H), 4.72-4.62 (m, 1H), 4.28 (dd J = 9.9, 5.1 Hz, 1H), 4.18 (dd, J = 9.9, 6.3 Hz, 1H), 3.81 (s, 2H), 3.39 (dd, J = 11.4, 2.7 Hz, 1H), 3.26 (dd, J = 11.4, 6.6 Hz, 1H), 2.91 (s, 3H)<sub>o</sub>

実施例2(9):5-(4-((2S)-4-メチル-3, 4-ジヒドロ-2H-1, 4-ベンプオキサジン-2-イルメトキシ) ベンブイルアミノ)

15 -2-メトキシ-3-メチルフェニル酢酸

TLC: Rf 0.70 (クロロホルム: メタノール=4:1);

NMR (CDCl<sub>3</sub>):  $\delta$  7.82 (d, J = 8.7 Hz, 2H), 7.65 (s, 1H), 7.45 (d, J = 2.7 Hz, 1H), 7.34 (d, J = 2.7 Hz, 1H), 7.01 (d, J = 8.7 Hz, 2H), 6.94-6.82 (m, 2H), 6.76-6.66 (m, 2H), 4.72-4.62 (m, 1H), 4.29 (dd, J = 9.9, 5.1 Hz, 1H), 4.18 (dd, J = 9.9, 6.3 Hz, 1H), 3.76 (s, 3H), 3.71 (s, 2H), 3.40 (dd, J = 11.7, 3.0 Hz, 1H), 3.27 (dd, J = 11.7, 6.3 Hz, 1H), 2.91 (s, 3H), 2.33 (s, 3H)<sub>o</sub>

実施例2 (10):5-(4-((2S)-4-メチル-3, 4-ジヒドロ-2H-1, 4-ベンプオキサジン-2-イルメトキシ) ベンブイルアミノ)

25 - 2-ヒドロキシー3-メチルフェニル酢酸

NMR (CDCl<sub>3</sub>):  $\delta$  7.81 (d, J = 9.0 Hz, 2H), 7.74-7.64 (m, 1H), 7.36-7.26 (m, 1H), 7.20-7.14 (m, 1H), 6.99 (d, J = 9.0 Hz, 2H), 6.93-6.82 (m, 2H), 6.76-6.66 (m, 2H), 4.71-4.61 (m, 1H), 4.28 (dd, J = 9.9, 5.4 Hz, 1H), 4.17 (dd, J = 9.9, 6.3 Hz, 1H), 3.65 (s, 2H), 3.40 (dd, J = 11.4, 2.4 Hz, 1H), 3.26 (dd, J = 11.4, 6.9 Hz, 1H), 2.91 (s, 3H), 2.28 (s, 3H)<sub>o</sub>

10 TLC: Rf 0.47 (クロロホルム:メタノール=9:1);
NMR (CDCl<sub>3</sub>): δ 7.83 (d, J = 9.3 Hz, 2H), 7.78 (s, 1H), 7.66-7.60 (m, 2H), 7.34-7.20 (m, 2H), 7.15 (s, 1H), 7.05-6.92 (m, 5H), 6.92-6.80 (m, 2H), 6.74-6.66 (m, 2H), 5.07 (s, 2H), 4.72-4.62 (m, 1H), 4.29 (dd, J = 9.9, 5.4 Hz, 1H), 4.18 (dd, J = 9.9, 6.6 Hz, 1H), 3.70 (s, 2H), 3.40 (dd, J = 11.7, 2.7 Hz, 1H), 3.27 (dd, J = 11.7, 6.9 Hz, 1H), 2.91 (s, 3H)<sub>o</sub>

実施例2 (12):5-(4-((2S)-4-メチル-3, 4-ジヒドロ-2H-1, 4-ベングオキサジン-2-イルメトキシ) ベングイルアミノ) -4-クロロ-2-フルオロフェニル酢酸

20 TLC: Rf 0.37 (クロロホルム:メタノール=9:1);
NMR (CDCl<sub>3</sub>): δ 8.52 (d, J = 7.8 Hz, 1H), 8.22 (s, 1H), 7.86 (d, J = 8.7 Hz, 2H), 7.19 (d, J = 9.0 Hz, 1H), 7.04 (d, J = 8.7 Hz, 2H), 6.92-6.80 (m, 2H), 6.75-6.66 (m, 2H), 4.72-4.62 (m, 1H), 4.30 (dd, J = 9.6, 5.1 Hz, 1H), 4.20 (dd, J = 9.6, 6.6 Hz, 1H), 3.75 (s, 2H), 3.40 (dd, J = 11.7, 3.0 Hz, 1H), 3.27 (dd, J = 11.7, 6.6 Hz, 1H), 2.91 (s, 3H)。

実施例2(13): 5-(4-((2S)-4-x+v-3, 4-v)+v-3)-2H-1, 4-(x-v)+v-v-2-(x-v)+v-v-2-(x-v)-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)+v-2-(x-v)

TLC: Rf 0.50 (クロロホルム: メタノール=9:1);

5 NMR (CDCl<sub>3</sub>): δ 7.82 (d, J = 8.7 Hz, 2H), 7.76 (s, 1H), 7.63-7.56 (m, 1H), 7.54-7.46 (m, 1H), 7.06 (t, J = 8.7 Hz, 1H), 7.01 (d, J = 8.7 Hz, 2H), 6.93-6.81 (m, 2H), 6.75-6.66 (m, 2H), 4.71-4.61 (m, 1H), 4.29 (dd, J = 9.6, 5.4 Hz, 1H), 4.18 (dd, J = 9.6, 6.3 Hz, 1H), 3.72 (s, 2H), 3.40 (dd, J = 12.0, 2.7 Hz, 1H), 3.27 (dd, J = 12.0, 6.6 Hz, 1H), 2.91 (s, 3H)<sub>0</sub>

10

実施例 2(14):3-(4-((2S)-4-メチル-3,4-ジェドロ-2H-1,4-ベングオキサジン-2-イルメトキシ)ベングイルアミノ) -5-フルオロフェニル酢酸

TLC: Rf 0.28 (クロロホルム: メタノール=9:1);

- NMR (CDCl<sub>3</sub>):  $\delta$  7.86-7.77 (m, 3H), 7.57-7.50 (m, 1H), 7.28-7.22 (m, 1H), 7.01 (d, J = 9.0 Hz, 2H), 6.92-6.76 (m, 3H), 6.74-6.66 (m, 2H), 4.72-4.62 (m, 1H), 4.29 (dd, J = 9.9, 4.8 Hz, 1H), 4.18 (dd, J = 9.9, 6.3 H z, 1H), 3.65 (s, 2H), 3.40 (dd, J = 11.7, 2.7 Hz, 1H), 3.27 (dd, J = 11.7, 6.6 Hz, 1H), 2.91 (s, 3H)<sub>o</sub>
- 20 実施例2(15):3-(4-((2S)-4-メチル-3, 4-ジヒドロー2H-1, 4-ベンゾオキサジン-2-イルメトキシ)ベンゾイルアミノ)
   -5-メトキシメチルフェニル酢酸

TLC: Rf 0.33 (クロロホルム:メタノール=9:1);

NMR (CDCl<sub>3</sub>):  $\delta$  7.83 (d, J = 8.7 Hz, 2H), 7.78 (s, 1H), 7.58 (s, 1H), 7.53 (s, 1H),

25 7.07-6.97 (m, 3H), 6.92-6.82 (m, 2H), 6.75-6.66 (m, 2H), 4.72-4.62 (m, 1H), 4.46 (s, 2H), 4.29 (dd, J = 9.9, 4.8 Hz, 1H), 4.18 (dd, J = 9.9, 6.3 Hz, 1H), 3.67 (s, 2H), 3.44-

3.36 (m, 4H), 3.27 (dd, J = 11.7, 6.6 Hz, 1H), 2.91 (s, 3H),

参考例10:3-(N-エチルアミノ)フェニル酢酸メチルエステルアルゴン雰囲気下、参考例9で製造した化合物(820mg)の塩化メチレン溶液(5mL)にピリジン(802μ1)と無水酢酸(517μ1)を加え、室温にて30分間撹拌した。反応混合物に水を加え、酢酸エチルにて抽出した。有機層を塩酸および飽和食塩水にて洗浄し、無水硫酸ナトリウムにて乾燥した。溶媒を留去して、粗アセチル体を得た。

アルゴン雰囲気下、粗アセチル体の無水THF溶液(3 m L)を氷冷し、 ボラン・ジメチルスルフィド錯体(2 M THF溶液; 4.97m L)を滴下し、 室温にて1時間、60℃にて15時間撹拌した。反応混合物を氷冷し、メタ ノールと塩化水素/ジオキサンを加え、60℃にて30分間撹拌した。反応 混合物を飽和炭酸水素ナトリウム水溶液にて中和し、酢酸エチルにて抽出し た。有機層を飽和食塩水にて洗浄し、無水硫酸ナトリウムにて乾燥した。溶 15 媒を留去し、得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサ ン:酢酸エチル=8:1)にて精製して、以下の物性値を有する標題化合物 (320mg)を得た。

TLC: Rf 0.49 (ヘキサン: 酢酸エチル=2:1);

NMR (CDCl<sub>3</sub>):  $\delta$  7.12 (t, J = 7.5 Hz, 1H), 6.59 (d, J = 7.5 Hz, 1H), 6.55-6.48 (m, 2H), 3.68 (s, 3H), 3.54 (s, 2H), 3.15 (q, J = 7.2 Hz, 2H), 1.25 (t, J = 7.2 Hz, 3H)<sub>o</sub>

実施例3:3-(N-(4-((2S)-4-メチル-3,4-ジヒドロ-2H-1,4-ベンゾオキサジン-2-イルメトキシ)ベンゾイル)-N-エチルアミノ)フェニル酢酸メチルエステル

25 参考例9で製造した化合物の代わりに参考例10で製造した化合物を用いて、実施例1と同様の操作をして、以下の物性値を有する標題化合物を得た。

TLC: Rf 0.20 (ヘキサン: 酢酸エチル=2:1)。

実施例3(1):3-(N-(4-((2S)-4-メチル-3, 4-ジャ ドロ-2H-1, 4-ベンゾオキサジン-2-イルメトキシ) ベンゾイル)

5 - N-メチルアミノ) フェニル酢酸メチルエステル

参考例9で製造した化合物の代わりに3-(N-メチルアミノ)フェニル 酢酸メチルエステルを用いて、実施例1と同様の操作をして、以下の物性値 を有する標題化合物を得た。

TLC: Rf 0.33 (ヘキサン: 酢酸エチル=1:1)。

10

実施例4:3-(N-(4-((2S)-4-メチル-3, 4-ジヒドロ-2H-1, 4-ベンプオキサジン-2-イルメトキシ) ベンブイル) -N-エチルアミノ) フェニル酢酸

実施例1で製造した化合物の代わりに実施例3で製造した化合物を用いて、

15 実施例2と同様の操作をして、以下の物性値を有する標題化合物を得た。

TLC: Rf 0.63 (酢酸エチル: メタノール=19:1);

NMR (CDCl<sub>3</sub>):  $\delta$  7.30-7.18 (m, 3H), 7.12-7.02 (m, 2H), 6.92-6.66 (m, 7H), 4.54 (m, 1H), 4.30 (dd, J = 10.8, 4.8 Hz, 1H), 4.03 (dd, J = 10.8, 7.5 Hz, 1H), 3.99 (dq, J = 2.4, 7.2 Hz, 2H), 3.41 (s, 2H), 3.39 (dd, J = 11.7, 2.4 Hz, 1H), 3.07 (dd, J = 11.7, 7.8 Hz,

20 1H), 2.86 (s, 3H), 1.22 (t, J = 7.2 Hz, 3H).

実施例4(1): 3-(N-(4-((2S)-4-メチル-3, 4-ジェ))ドロー2H-1, 4-ベンゾオキサジン-2-イルメトキシ) ベンゾイル) -N-メチルアミノ) フェニル酢酸

25 実施例1で製造した化合物の代わりに実施例3(1)で製造した化合物を 用いて、実施例2と同様の操作をして、以下の物性値を有する標題化合物を

得た。

TLC: Rf 0.49 (酢酸エチル: メタノール=19:1);

NMR (CDCl<sub>3</sub>):  $\delta$  7.29-7.20 (m, 4H), 7.10-7.02 (m, 2H), 6.91-6.69 (m, 6H), 4.55 (m, 1H), 4.28 (dd, J = 10.8, 4.8 Hz, 1H), 4.04 (dd, J = 10.8, 7.2 Hz, 1H), 3.49 (s, 3H), 3.43 (s, 2H), 3.38 (dd, J = 11.4, 2.4 Hz, 1H), 3.09 (dd, J = 11.4, 7.2 Hz, 1H), 2.86 (s, 3H),

実施例5:3-(2-メチル-4-((2S)-4-メチル-3,4-ジェドロ-2H-1,4-ベンゾオキサジン-2-イルメトキシ)ベンゾイルアミノ)フェニル酢酸メチルエステル

参考例8で製造した化合物の代わりに2-メチル-4-((2S)-4-メチル-3,4-ジヒドロ-2H-1,4-ベンゾオキサジン-2-イルメトキシ)ベンゾイルクロライドを用いて、実施例1と同様の操作をして、以下の物性値を有する標題化合物を得た。

TLC: Rf 0.14 (酢酸エチル: ヘキサン=3:7);

NMR (CDCl<sub>3</sub>): δ 7.60-7.38 (m, 4H), 7.32 (t, J = 7.8 Hz, 1H), 7.06 (d, J = 7.5 Hz, 1H), 6.92-6.77 (m, 4H), 6.74-6.66 (m, 2H), 4.70-4.60 (m, 1H), 4.26 (dd, J = 9.6, 5.4 Hz, 1H), 4.14 (dd, J = 9.6, 6.6 Hz, 1H), 3.71 (s, 3H), 3.65 (s, 2H), 3.39 (dd, J = 11.4, 3.0 Hz, 1H), 3.26 (dd, J = 11.4, 7.8 Hz, 1H), 2.91 (s, 3H), 2.51 (s, 3H)。

20

10

実施例5(1)~5(14)

参考例8で製造した化合物の代わりにそれに相当する化合物、および参考例9で製造した化合物またはそれに相当する化合物を用いて、実施例5と同様の操作をして、以下に示す化合物を得た。

25

実施例5 (1) : 3- (2-クロロー4- ((2S) -4-メチルー3, 4

ージヒドロー2H-1, 4ーベンゾオキサジン-2-イルメトキシ) ベンゾ イルアミノ) フェニル酢酸メチルエステル

TLC: Rf 0.45 (ヘキサン: 酢酸エチル=1:1);

NMR (CDCl<sub>3</sub>):  $\delta$  8.04 (s, 1H), 7.83 (d, J = 8.4 Hz, 1H), 7.62-7.52 (m, 2H), 7.33 (t, J = 7.8 Hz, 1H), 7.09 (d, J = 7.8 Hz, 1H), 7.02 (d, J = 2.4 Hz, 1H), 6.99-6.81 (m, 3H), 6.76-6.66 (m, 2H), 4.71-4.61 (m, 1H), 4.27 (dd, J = 9.9, 5.1 Hz, 1H), 4.17 (dd, J = 9.9, 6.0 Hz, 1H), 3.71 (s, 3H), 3.65 (s, 2H), 3.38 (dd, J = 11.4, 2.7 Hz, 1H), 3.25 (dd, J = 11.4, 6.3 Hz, 1H), 2.91 (s, 3H)<sub>o</sub>

実施例 5 (2): 3-(2-メチル-4-((2S)-4-メチル-3, 4-ジヒドロ-2H-1, 4-ベンゾオキサジン-2-イルメトキシ)ベンゾイルアミノ)-2-メチルフェニル酢酸メチルエステルTLC: Rf 0.46 (ヘキサン: 酢酸エチル=1:1);
 NMR (CDCl<sub>3</sub>): δ 7.80-7.70 (m, 1H), 7.50 (d, J=7.8 Hz, 1H), 7.30-7.18 (m, 2H),
 7.09 (d, J=7.8 Hz, 1H), 6.92-6.78 (m, 4H), 6.75-6.66 (m, 2H), 4.70-4.60 (m, 1H),
 4.26 (dd, J=9.6, 5.1 Hz, 1H), 4.14 (dd, J=9.6, 6.6 Hz, 1H), 3.71 (s, 2H), 3.69 (s,

3H), 3.39 (dd, J = 11.4, 2.7 Hz, 1H), 3.26 (dd, J = 11.4, 6.6 Hz, 1H), 2.91 (s, 3H),

2.53 (s, 3H), 2.24 (s, 3H).

- 20 実施例 5 (3): 3-(2-メチル-4-((2S)-4-メチル-3, 4 -ジヒドロ-2H-1, 4-ベンゾオキサジン-2-イルメトキシ) ベンゾ イルアミノ) -4-クロロフェニル酢酸メチルエステル TLC: Rf 0.68 (ヘキサン: 酢酸エチル=1:1); NMR (CDCl<sub>3</sub>): δ 8.49 (s, 1H), 7.99 (s, 1H), 7.54 (d, J=8.1 Hz, 1H), 7.36 (d, J=
- 25 8.1 Hz, 1H), 7.04-6.98 (m, 1H), 6.92-6.80 (m, 4H), 6.74-6.66 (m, 2H), 4.70-4.60 (m, 1H), 4.27 (dd, J = 9.6, 5.1 Hz, 1H), 4.15 (dd, J = 9.6, 6.9 Hz, 1H), 3.72 (s, 3H), 3.67

(s, 2H), 3.40 (dd, J = 11.7, 2.1 Hz, 1H), 3.26 (dd, J = 11.7, 6.6 Hz, 1H), 2.91 (s, 3H), 2.56 (s, 3H)<sub>o</sub>

実施例 5 (4): 3-(2-メチルー4-((2S)-4-メチルー3, 4 -ジヒドロー2H-1, 4-ベンゾオキサジンー2-イルメトキシ) ベンゾ イルアミノ) -5-フルオロフェニル酢酸メチルエステル TLC: Rf 0.54 (ヘキサン: 酢酸エチル=1:1); NMR (CDCl<sub>3</sub>): δ 7.56-7.42 (m, 3H), 7.17 (s, 1H), 6.92-6.76 (m, 5H), 6.75-6.66 (m, 2H), 4.70-4.60 (m, 1H), 4.26 (dd, J=9.6, 4.8 Hz, 1H), 4.15 (dd, J=9.6, 5.4 Hz, 1H), 3.71 (s, 3H), 3.61 (s, 2H), 3.39 (dd, J=11.7, 2.7 Hz, 1H), 3.26 (dd, J=11.7, 6.3 Hz, 1H), 2.91 (s, 3H), 2.51 (s, 3H)。

実施例 5 (5): 5-(2-メチルー4-((2S)-4-メチルー3, 4 ージヒドロー2H-1, 4ーベンゾオキサジンー2ーイルメトキシ)ベンゾ 15 イルアミノ)-2ーフルオロフェニル酢酸メチルエステル TLC: Rf 0.47 (ヘキサン: 酢酸エチル=1:1); NMR (300 MHz, CDCl<sub>3</sub>): δ 7.60-7.35 (m, 4H), 7.06 (t, J=9.0 Hz, 1H), 6.93-6.75 (m, 4H), 6.75-6.66 (m, 2H), 4.70-4.60 (m, 1H), 4.26 (dd, J=9.6, 4.8 Hz, 1H), 4.14 (dd, J=9.6, 6.3 Hz, 1H), 3.72 (s, 3H), 3.69 (s, 2H), 3.39 (dd, J=11.4, 2.7 Hz, 1H), 20 3.25 (dd, J=11.4, 6.6 Hz, 1H), 2.91 (s, 3H), 2.51 (s, 3H)。

実施例5(6):5-(2-メチル-4-((2S)-4-メチル-3,4-ジヒドロ-2H-1,4-ベンゾオキサジン-2-イルメトキシ)ベンゾイルアミノ)<math>-2-メトキシフェニル酢酸メチルエステル

25 TLC: Rf 0.38 (ヘキサン: 酢酸エチル=1:1);
NMR (300 MHz, CDCl<sub>3</sub>): δ 7.57-7.48 (m, 1H), 7.48-7.36 (m, 3H), 7.31 (s, 1H),

6.93-6.76 (m, 5H), 6.74-6.66 (m, 2H), 4.70-4.60 (m, 1H), 4.25 (dd, J = 9.9, 4.8 Hz, 1H), 4.14 (dd, J = 9.9, 6.6 Hz, 1H), 3.82 (s, 3H), 3.70 (s, 3H), 3.65 (s, 2H), 3.39 (dd, J = 11.1, 2.4 Hz, 1H), 3.25 (dd, J = 11.1, 6.6 Hz, 1H), 2.91 (s, 3H), 2.50 (s, 3H).

5 実施例 5 (7): 3-(2-クロロ-4-((2S)-4-メチル-3, 4 ージヒドロ-2H-1, 4ーベンプオキサジン-2ーイルメトキシ) ベンブ イルアミノ) -4-クロロフェニル酢酸メチルエステル TLC: Rf 0.53 (ヘキサン: 酢酸エチル=1:1); NMR (300 MHz, CDCl<sub>3</sub>): δ 8.68 (brs, 1H), 8.54 (brs, 1H), 7.87 (d, J=8.4 Hz, 1H), 7.36 (d, J=8.4 Hz, 1H), 7.10-6.80 (m, 5H), 6.76-6.66 (m, 2H), 4.72-4.62 (m, 1H), 4.27 (dd, J=9.6, 5.4 Hz, 1H), 4.18 (dd, J=9.6, 6.0 Hz, 1H), 3.71 (s, 3H), 3.66 (s,

実施例5 (8):5-(2-クロロ-4-((2S)-4-メチル-3,4 15 ージヒドロ-2H-1,4-ベンゾオキサジン-2-イルメトキシ)ベンゾ イルアミノ)-2-フルオロフェニル酢酸メチルエステル

2H), 3.39 (dd, J = 12.0, 2.7 Hz, 1H), 3.25 (dd, J = 12.0, 6.6 Hz, 1H), 2.91 (s, 3H).

TLC: Rf 0.44 (ヘキサン: 酢酸エチル=1:1); NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  8.03 (s, 1H), 7.83 (d, J = 8.4 Hz, 1H), 7.62-7.56 (m, 1H), 7.56-7.48 (m, 1H), 7.07 (t, J = 9.3 Hz, 1H), 7.02 (d, J = 2.4 Hz, 1H), 6.98-6.80 (m, 3H), 6.76-6.66 (m, 2H), 4.71-4.61 (m, 1H), 4.27 (dd, J = 9.6, 4.8 Hz, 1H), 4.17 (dd, J = 9.6, 6.0 Hz, 1H), 3.73 (s, 3H), 3.70 (s, 2H), 3.38 (dd, J = 11.4, 2.7 Hz, 1H), 3.25 (dd, J = 11.4, 6.3 Hz, 1H), 2.91 (s, 3H)<sub>o</sub>

20

実施例5 (9):5-(2-クロロ-4-((2S)-4-メチル-3, 4 25 ージヒドロ-2H-1, 4-ベンプオキサジン-2-イルメトキシ)ベンブ イルアミノ)-2-メトキシフェニル酢酸メチルエステル

TLC: Rf 0.30 (ヘキサン: 酢酸エチル=1:1);

NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.93 (s, 1H), 7.82 (d, J = 8.7 Hz, 1H), 7.57 (dd, J = 8.7, 2.7 Hz, 1H), 7.43 (d, J = 2.7 Hz, 1H), 7.01 (d, J = 2.7 Hz. 1H), 6.98-6.81 (m, 4H), 6.76-6.66 (m, 2H), 4.70-4.60 (m, 1H), 4.26 (dd, J = 9.6, 5.1 Hz, 1H), 4.16 (dd, J = 9.6, 6.3 Hz, 1H), 3.82 (s, 3H), 3.70 (s, 3H), 3.65 (s, 2H), 3.38 (dd, J = 11.4, 2.7 Hz, 1H), 3.25 (dd, J = 11.4, 6.3 Hz, 1H), 2.91 (s, 3H)<sub>o</sub>

実施例5(1 0): 3-(2-メチル-4-((2 S) -4-メチル-3, 4-ジヒドロ-2 H-1, 4-ベンゾオキサジン-2-イルメトキシ) ベン ゾイルアミノ) -4-メチルフェニル酢酸メチルエステル

TLC: Rf 0.38 (ヘキサン: 酢酸エチル=1:1);

10

NMR (300 MHz, CDCl<sub>3</sub>): δ 7.93 (brs, 1H), 7.49 (d, J = 8.1 Hz, 1H), 7.28-7.22 (m, 1H), 7.18 (d, J = 8.1 Hz, 1H), 7.06-7.01 (m, 1H), 6.92-6.78 (m, 4H), 6.74-6.66 (m, 2H), 4.70-4.60 (m, 1H), 4.26 (dd, J = 9.6, 4.8 Hz, 1H), 4.15 (dd, J = 9.6, 6.6 Hz, 1H), 3.70 (s, 3H), 3.64 (s, 2H), 3.40 (dd, J = 11.7, 2.7 Hz, 1H), 3.26 (dd, J = 11.7, 6.3 Hz, 1H), 2.91 (s, 3H), 2.54 (s, 3H), 2.27 (s, 3H)<sub>0</sub>

実施例5(11):5-(2-メチル-4-((2S)-4-メチル-3)4-ジヒドロ-2H-1,4-ベンゾオキサジン-2-イルメトキシ)ベン

20 ゾイルアミノ) -4-クロロ-2-フルオロフェニル酢酸メチルエステルTLC: Rf 0.70 (ヘキサン: 酢酸エチル=1:1);

NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  8.48 (d, J = 7.5 Hz, 1H), 7.85 (s, 1H), 7.53 (d, J = 8.1 Hz, 1H), 7.17 (d, J = 9.0 Hz, 1H), 6.92-6.80 (m, 4H), 6.75-6.66 (m, 2H), 4.70-4.60 (m, 1H), 4.27 (dd, J = 9.6, 4.8 Hz, 1H), 4.15 (dd, J = 9.6, 6.6 Hz, 1H), 3.73 (s, 3H),

25 3.71 (s, 2H), 3.39 (dd, J = 11.7, 2.7 Hz, 1H), 3.26 (dd, J = 11.7, 6.6 Hz, 1H), 2.91 (s, 3H), 2.55 (s, 3H).

実施例 5 (1 2) : 3-(2-メチル-4-((2S)-4-メチル-3, 4-ジヒドロ-2H-1, 4-ベンゾオキサジン-2-イルメトキシ) ベン ゾイルアミノ) <math>-5-メチルフェニル酢酸メチルエステル

5 TLC: Rf 0.51 (ヘキサン: 酢酸エチル=1:1);
NMR (300 MHz, CDCl<sub>3</sub>): δ 7.44 (d, J=8.4 Hz, 1H), 7.41 (brs, 1H), 7.36 (brs, 1H),
7.30 (brs, 1H),6.92-6.76 (m, 5H), 6.74-6.66 (m, 2H), 4.70-4.60 (m, 1H), 4.26 (dd, J=9.6, 4.8 Hz, 1H), 4.14 (dd, J=9.6, 6.6 Hz, 1H), 3. 70 (s, 3H), 3.60 (s, 2H), 3.39 (dd, J=11.4, 2.7 Hz, 1H), 3.26 (dd, J=11.4, 6.6 Hz, 1H), 2.91 (s, 3H), 2.51 (s, 3H), 2.35
10 (s, 3H)。

実施例 5 (13):  $3-(2-\rho pp-4-(2S)-4-)$  チルー3, 4-ジヒドpp-2H-1, 4-ベンプオキサジンpp-2 ーイルメトキシ) ベン ブイルアミノ) pp-4 ーメチルフェニル酢酸メチルエステル

TLC: Rf 0.40 (ヘキサン: 酢酸エチル=1:1);

NMR (300 MHz, CDCl<sub>3</sub>): δ 8.00 (s, 2H), 7.90 (d, J=8.4 Hz, 1H), 7.19 (d, J=7.5 Hz, 1H), 7.07-7.01 (m, 2H), 7.00-6.93 (m, 1H), 6.93-6.81 (m, 2H), 6.75-6.67 (m, 2H), 4.71-4.61 (m, 1H), 4.27 (dd, J=9.9, 5.7 Hz, 1H), 4.18 (dd, J=9.9, 6.3 Hz, 1H), 3.70 (s, 3H), 3.65 (s, 2H), 3.39 (dd, J=11.7, 2.7 Hz, 1H), 3.25 (dd, J=11.7, 6.3 Hz, 1H), 2.91 (s, 3H), 2.32 (s, 3H)₀

25 TLC: Rf 0.49 (ヘキサン: 酢酸エチル=1:1);
NMR (300 MHz, CDCl<sub>3</sub>): δ 7.98 (s, 1H), 7.81 (d, J=9.0 Hz, 1H), 7.41 (s, 1H),

7.36 (s, 1H), 7.02 (d, J = 2.4 Hz, 1H), 6.99-6.81 (m, 4H), 6.76-6.67 (m, 2H), 4.71-4.61 (m, 1H), 4.26 (dd, J = 9.9, 5.4 Hz, 1H), 4.17 (dd, J = 9.9, 6.3 Hz, 1H), 3.70 (s, 3H), 3.60 (s, 2H), 3.38 (dd, J = 11.4, 2.4 Hz, 1H), 3.25 (dd, J = 11.4, 6.3 Hz, 1H), 2.91 (s, 3H), 2.36 (s, 3H).

5

実施例6:3-(2-メチル-4-((2S)-4-メチル-3,4-ジェドロ-2H-1,4-ベンプオキサジン-2-イルメトキシ)ベンプイルアミノ)フェニル酢酸

実施例5で製造した化合物を用いて、実施例2と同様の操作をして、以下 10 の物性値を有する標題化合物を得た。

TLC: Rf 0.40 (クロロホルム: メタノール=9:1);

NMR (CDCl<sub>3</sub>):  $\delta$  7.62-7.40 (m, 4H), 7.33 (t, J = 8.1 Hz, 1H), 7.10-7.04 (m, 1H), 6.92-6.76 (m, 4H), 6.74-6.66 (m, 2H), 4.70-4.60 (m, 1H), 4.26 (dd, J = 9.6, 4.8 Hz, 1H), 4.14 (dd, J = 9.6, 6.6 Hz, 1H), 3.68 (s, 2H), 3.39 (dd, J = 11.4, 2.7 Hz, 1H), 3.25 (dd, J = 11.4, 6.6 Hz, 1H), 2.91 (s, 3H), 2.50 (s, 3H)<sub>o</sub>

実施例6(1)~6(14)

実施例5 (1) ~5 (14) で製造した化合物を用いて、実施例6と同様の操作をして以下の化合物を得た。

20

実施例6 (1):  $3-(2-\rho pp-4-((2S)-4-) チルー3, 4$ -ジヒド pp-2H-1, 4-ベンゾオキサジン-2-イルメトキシ) ベンゾイルアミノ) フェニル酢酸

TLC: Rf 0.29 (クロロホルム: メタノール=9:1);

25 NMR (CDCl<sub>3</sub>):  $\delta$  8.06 (s, 1H), 7.82 (d, J = 8.4 Hz, 1H), 7.62 (s, 1H), 7.55 (d, J = 8.4 Hz, 1H), 7.34 (t, J = 7.5 Hz, 1H), 7.09 (d, J = 7.5 Hz, 1H), 7.01 (d, J = 1.8 Hz,

1H), 6.98-6.80 (m, 3H), 6.76-6.67 (m, 2H), 4.71-4.61 (m, 1H), 4.26 (dd, J = 9.9, 5.1 Hz, 1H), 4.17 (dd, J = 9.9, 6.0 Hz, 1H), 3.68 (s, 2H), 3.38 (dd, J = 11.7, 3.0 Hz, 1H), 3.25 (dd, J = 11.7, 6.0 Hz, 1H), 2.91 (s, 3H).

5 実施例6(2):3-(2-メチル-4-((2S)-4-メチル-3,4 -ジヒドロ-2H-1,4-ベンゾオキサジン-2-イルメトキシ)ベンゾイルアミノ)-2-メチルフェニル酢酸

TLC: Rf 0.38 (クロロホルム: メタノール=9:1);

NMR (CDCl<sub>3</sub>):  $\delta$  7.82-7.68 (m, 1H), 7.54-7.44 (m, 1H), 7.38-7.18 (m, 2H), 7.10 (d, 10 J = 8.1 Hz, 1H), 6.92-6.77 (m, 4H), 6.75-6.66 (m, 2H), 4.70-4.60 (m, 1H), 4.26 (dd, J = 9.9, 5.4 Hz, 1H), 4.14 (dd, J = 9.9, 6.3 Hz, 1H), 3.73 (s, 2H), 3.39 (dd, J = 11.4, 2.7 Hz, 1H), 3.25 (dd, J = 11.4, 6.6 Hz, 1H), 2.91 (s, 3H), 2.52 (s, 3H), 2.24 (s, 3H)<sub>o</sub>

実施例6(3):3-(2-メチル-4-((2S)-4-メチル-3,4 15 -ジヒドロ-2H-1,4-ベンゾオキサジン-2-イルメトキシ)ベンゾ イルアミノ)-4-クロロフェニル酢酸

TLC: Rf 0.41 (p = p = 1);

20

NMR (CDCl<sub>3</sub>):  $\delta$  8.49 (brs, 1H), 7.99 (s, 1H), 7.53 (d, J = 7.8 Hz, 1H), 7.37 (d, J = 7.8 Hz, 1H), 7.01 (dd, J = 7.8, 1.8 Hz, 1H), 6.93-6.78 (m, 4H), 6.76-6.66 (m, 2H), 4.70-4.60 (m, 1H), 4.27 (dd, J = 9.9, 4.8 Hz, 1H), 4.16 (dd, J = 9.9, 6.6 Hz, 1H), 3.70 (s, 2H), 3.40 (dd, J = 11.7, 2.7 Hz, 1H), 3.25 (dd, J = 11.7, 6.6 Hz, 1H), 2.91 (s, 3H), 2.55 (s, 3H)<sub>o</sub>

実施例6 (4):3-(2-メチル-4-((2S)-4-メチル-3, 4 25 ージヒドロ-2H-1, 4-ベンゾオキサジン-2-イルメトキシ)ベンゾ イルアミノ)-5-フルオロフェニル酢酸

TLC: Rf 0.41 (クロロホルム: メタノール=9:1);

NMR (CDCl<sub>3</sub>):  $\delta$  7.56-7.40 (m, 3H), 7.20 (brs, 1H), 6.93-6.75 (m, 5H), 6.76-6.66 (m, 2H), 4.70-4.60 (m, 1H), 4.26 (dd, J = 9.6, 5.1 Hz, 1H), 4.14 (dd, J = 9.6, 6.6 Hz, 1H), 3.64 (s, 2H), 3.39 (dd, J = 11.7, 2.4 Hz, 1H), 3.25 (dd, J = 11.7, 6.6 Hz, 1H), 2.91 (s, 3H), 2.49 (s, 3H)<sub>o</sub>

実施例 6 (5): 5-(2-メチル-4-((2S)-4-𝒴 チル-3, 4 -ジヒドロ-2H-1, 4-ベンゾオキサジン-2-イルメトキシ) ベンゾイルアミノ) <math>-2-フルオロフェニル酢酸

10 TLC: Rf 0.31 (クロロホルム:メタノール=9:1);
NMR (300 MHz, CDCl<sub>3</sub>): δ 7.61 (brs, 1H), 7.52-7.38 (m, 3H), 7.07 (t, J = 8.7 Hz, 1H), 6.92-6.76 (m, 4H), 6.76-6.66 (m, 2H), 4.70-4.60 (m, 1H), 4.26 (dd, J = 9.3, 5.1 Hz, 1H), 4.14 (dd, J = 9.3, 6.3 Hz, 1H), 3.73 (s, 2H), 3 .39 (dd, J = 11.7, 2.7 Hz, 1H), 3.25 (dd, J = 11.7, 6.6 Hz, 1H), 2.91 (s, 3H), 2.50 (s, 3H)<sub>o</sub>

実施例6(6):5-(2-メチル-4-((2S)-4-メチル-3,4 -ジヒドロ-2H-1,4-ベンゾオキサジン-2-イルメトキシ)ベンゾ イルアミノ)-2-メトキシフェニル酢酸

TLC: Rf 0.36 (クロロホルム: メタノール=9:1);

15

- NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.58-7.39 (m, 3H), 7.34 (brs, 1H), 6.93-6.76 (m, 5H), 6.74-6.66 (m, 2H), 4.70-4.60 (m, 1H), 4.26 (dd, J = 9.3, 4.8 Hz, 1H), 4.14 (dd, J = 9.3, 6.3 Hz, 1H), 3.85 (s, 3H), 3.69 (s, 2H), 3.39 (dd, J = 11.4, 2.7 Hz, 1H), 3.25 (dd, J = 11.4, 6.6 Hz, 1H), 2.91 (s, 3H), 2.50 (s, 3H)<sub>o</sub>
- 25 実施例 6 (7): 3-(2-クロロ-4-((2S)-4-メチル-3, 4 -ジヒドロ-2H-1, 4-ベンゾオキサジン-2-イルメトキシ) ベンゾ

イルアミノ) - 4 - クロロフェニル酢酸

TLC: Rf 0.41 (クロロホルム: メタノール=9:1);

NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  8.70 (brs, 1H), 8.56 (brs, 1H), 7.87 (d, J = 8.4 Hz, 1H), 7.38 (d, J = 8.4 Hz, 1H), 7.07-7.00 (m, 2H), 6.96 (dd, J = 9.0, 2.4 Hz, 1H), 6.93-6.80 (m, 2H), 6.76-6.66 (m, 2H), 4.70-4.60 (m, 1H), 4.28 (dd, J = 9.9, 5.4 Hz, 1H), 4.18 (dd, J = 9.9, 6.3 Hz, 1H), 3.71 (s, 2H), 3.39 (dd, J = 11.7, 2.7 Hz, 1H), 3.25 (dd, J = 11.7, 6.3 Hz, 1H), 2.91 (s, 3H)<sub>o</sub>

実施例6 (8):5-(2-クロロ-4-((2S)-4-メチル-3, 4 10 -ジヒドロ-2H-1, 4-ベングオキサジン-2-イルメトキシ) ベング イルアミノ) -2-フルオロフェニル酢酸

TLC: Rf 0.41 (クロロホルム: メタノール=9:1);

15

25

NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  8.06 (s, 1H), 7.82 (d, J = 8.7 Hz, 1H), 7.67-7.60 (m, 1H), 7.56-7.47 (m, 1H), 7.08 (t, J = 9.0 Hz, 1H), 7.02 (d, J = 2.1 Hz, 1H), 6.99-6.81 (m, 3H), 6.76-6.67 (m, 2H), 4.70-4.60 (m, 1H), 4.26 (dd, J = 9.9, 5.4 Hz, 1H), 4.17 (dd, J = 9.9, 6.0 Hz, 1H), 3.74 (s, 2H), 3.38 (dd, J = 11.7, 2.7 Hz, 1H), 3.25 (dd, J = 11.7, 6.3 Hz, 1H), 2.91 (s, 3H)<sub>o</sub>

実施例6 (9):5-(2-クロロ-4-((2S)-4-メチル-3,4 20 -ジヒドロ-2H-1,4-ベングオキサジン-2-イルメトキシ)ベング イルアミノ)-2-メトキシフェニル酢酸

TLC: Rf 0.41 (クロロホルム: メタノール=9:1);

NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.96 (s, 1H), 7.82 (d, J = 8.4 Hz, 1H), 7.57 (dd, J = 8.4, 2.7 Hz, 1H), 7.48 (d, J = 2.7 Hz, 1H), 7.01 (d, J = 2.7 Hz, 1H), 6.97-6.81 (m, 4H), 6.75-6.66 (m, 2H), 4.70-4.60 (m, 1H), 4.26 (dd, J = 9.9, 5.4 Hz, 1H), 4.16 (dd, J = 9.9, 6.3 Hz, 1H), 3.86 (s, 3H), 3.70 (s, 2H), 3.38 (dd, J = 11.7, 3.0 Hz, 1H), 3.25 (dd,

 $J = 11.7, 6.6 \text{ Hz}, 1H), 2.91 (s, 3H)_{\circ}$ 

実施例6 (10): 3-(2-メチル-4-((2S)-4-メチル-3,4-ジヒドロ-2H-1,4-ベングオキサジン-2-イルメトキシ)ベン グイルアミノ) -4-メチルフェニル酢酸
TLC: Rf 0.35 (クロロホルム:メタノール=9:1);
NMR (300 MHz, CDCl<sub>3</sub>): δ 8.04-7.86 (br, 1H), 7.53-7.42 (m, 1H), 7.34-7.22 (m, 1H), 7.19 (d, J=7.8 Hz, 1H), 7.07-6.99 (m, 1H), 6.92-6.76 (m, 4H), 6.75-6.66 (m, 2H), 4.70-4.60 (m, 1H), 4.27 (dd, J=9.9, 4.8 Hz, 1H), 4.15 (dd, J=9.9, 6.6 Hz, 1H), 3.66 (s, 2H), 3.39 (dd, J=11.7, 2.7 Hz, 1H), 3.25 (dd, J=11.7, 6.6 Hz, 1H), 2.91 (s, 3H), 2.52 (s, 3H), 2.28 (s, 3H)。

実施例6 (11):5-(2-メチル-4-((2S)-4-メチル-3, 4-ジヒドロ-2H-1, 4-ベンゾオキサジン-2-イルメトキシ)ベン 15 ゾイルアミノ)-4-クロロ-2-フルオロフェニル酢酸 TLC:Rf 0.35 (クロロホルム:メタノール=9:1); NMR (300 MHz, CDCl<sub>3</sub>):δ 8.54-8.43 (m, 1H), 7.86 (s, 1H), 7.52 (d, J=8.4 Hz, 1H), 7.18 (d, J=9.0 Hz, 1H), 6.92-6.80 (m, 4H), 6.75-6.66 (m, 2H), 4.70-4.60 (m, 1H), 4.27 (dd, J=9.9, 4.8 Hz, 1H), 4.15 (dd, J=9.9, 6.6 Hz, 1H), 3.75 (s, 2H), 3.38 20 (dd, J=11.7, 3.0 Hz, 1H), 3.25 (dd, J=11.7, 6.6 Hz, 1H), 2.91 (s, 3H), 2.54 (s, 3H)。

実施例 6 (12): 3-(2-)メチルー4-((2S)-4-)メチルー3, 4-ジヒドロー2H-1, 4-ベンゾオキサジンー2-イルメトキシ) ベン ゾイルアミノ) -5-メチルフェニル酢酸

25 TLC: Rf 0.35 (クロロホルム: メタノール=9:1);
NMR (300 MHz, CDCl<sub>3</sub>): δ 7.48-7.28 (m, 4H), 6.92-6.76 (m, 5H), 6.74-6.66 (m,

2H), 4.70-4.60 (m, 1H), 4.26 (dd, J = 9.9, 5.1 Hz, 1H), 4.14 (dd, J = 9.9, 6.6 Hz, 1H), 3.63 (s, 2H), 3.39 (dd, J = 11.4, 2.7 Hz, 1H), 3.25 (dd, J = 11.4, 6.6 Hz, 1H), 2.91 (s, 3H), 2.50 (s, 3H), 2.35 (s, 3H),

- 実施例6 (13): 3-(2-クロロー4-((2S) -4-メチルー3, 4-ジヒドロー2H-1, 4-ベングオキサジンー2ーイルメトキシ)ベン グイルアミノ) -4ーメチルフェニル酢酸
   TLC: Rf 0.42 (クロロホルム: メタノール=9:1);
   NMR (300 MHz, CDCl<sub>3</sub>): δ 8.02 (s, 2H), 7.90 (d, J=8.7 Hz, 1H), 7.19 (d, J=8.1 Hz, 1H), 7.09-7.00 (m, 2H), 7.00-6.93 (m, 1H), 6.93-6.81 (m, 2H), 6.76-6.66 (m, 2H), 4.70-4.60 (m, 1H), 4.27 (dd, J=9.6, 5.1 Hz, 1H), 4.18 (dd, J=9.6, 6.3 Hz, 1H), 3.68 (s, 2H), 3.39 (dd, J=11.7, 2.7 Hz, 1H), 3.25 (dd, J=11.7, 6.3 Hz, 1H), 2.91 (s, 3H), 2.32 (s, 3H)。
- 実施例6 (14): 3- (2-クロロ-4-((2S)-4-メチル-3, 4-ジヒドロ-2H-1, 4-ベングオキサジン-2-イルメトキシ)ベン ゾイルアミノ)-5-メチルフェニル酢酸 TLC: Rf 0.39 (クロロホルム: メタノール=9:1); NMR (300 MHz, CDCl<sub>3</sub>): δ 8.00 (s, 1H), 7.81 (d, J = 8.7 Hz, 1H), 7.41 (s, 2H), 7.01 (d, J = 2.4 Hz, 1H), 6.98-6.81 (m, 4H), 6.75-6.67 (m, 2H), 4.70-4.60 (m, 1H), 4.26 (dd, J = 9.9, 5.1 Hz, 1H), 4.17 (dd, J = 9.9, 6.3 Hz, 1 H), 3.64 (s, 2H), 3.38 (dd, J = 11.4, 2.7 Hz, 1H), 3.25 (dd, J = 11.4, 6.3 Hz, 1H), 2.91 (s, 3H), 2.36 (s, 3H)。

参考例11:2-メトキシ-5-ニトロフェニルアセトニトリル
 2-メトキシ-5-ニトロベンジルプロミド(984mg)のジメチルスルホキシド溶液(5mL)にシアン化ナトリウム(216mg)を加え、8

0℃にて10分間撹拌した。反応混合物に水を加え、酢酸エチルにて抽出した。有機層を水、飽和食塩水にて順次洗浄し、無水硫酸ナトリウムにて乾燥した。溶媒を留去して、以下の物性値を有する標題化合物を得た。得られた標題化合物は、精製することなく次の反応に用いた。

5 TLC: Rf 0.30 (酢酸エチル: ヘキサン=3:7)。

参考例12:2-メトキシー5-ニトロフェニル酢酸エチルエステル 参考例11で製造した化合物に濃硫酸(10mL)、水(10mL)、エタノール(10mL)およびジメトキシエタン(10mL)を加え、一晩還 10 流した。反応混合物を水と酢酸エチルにて希釈し、酢酸エチルにて抽出した。 有機層を1N水酸化ナトリウム水溶液、水、飽和食塩水にて順次洗浄し、無水硫酸ナトリウムにて乾燥した。溶媒を留去して、以下の物性値を有する標 題化合物(500mg)を得た。

TLC: Rf 0.44 (酢酸エチル: ヘキサン=3:7);

15 NMR (CDCl<sub>3</sub>):  $\delta$  8.21 (dd, J = 9.0, 2.7 Hz, 1H), 8.12 (d, J = 2.7 Hz, 1H), 6.93 (d, J = 9.0 Hz, 1H), 4.18 (q, J = 7.2 Hz, 2H), 3.93 (s, 3H), 3.67 (s, 2H), 1.26 (t, J = 7.2 Hz, 3H),

参考例13:2-メトキシー5-アミノフェニル酢酸エチルエステル

20 アルゴン雰囲気下、参考例12で製造した化合物(250mg)を酢酸エチル(3mL)、メタノール(3mL)およびTHF(3mL)の混合溶媒に溶解し、10%パラジウム炭素(65mg)を加え、水素雰囲気下室温にて1時間撹拌した。反応混合物をセライト(商品名)を通してろ過した。ろ液を濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=7:3)にて精製して、以下の物性値を有する標題化合物(90mg)を得た。

TLC: Rf 0.55 (酢酸エチル: ヘキサン=1:1)。

参考例14:2-ヒドロキシー5-ニトロフェニル酢酸エチルエステル 参考例12で製造した化合物(250mg)の塩化メチレン溶液(4mL)

 た、-15℃にて三臭化ホウ素 (1 M塩化メチレン溶液; 3.1m L) を加え、 室温にて一晩撹拌した。反応混合物に氷水を加え、酢酸エチルにて抽出した。 有機層を水、飽和食塩水にて順次洗浄し、無水硫酸ナトリウムにて乾燥した。 溶媒を留去し、得られた残渣をシリカゲルカラムクロマトグラフィー (ヘキ サン:酢酸エチル=7:3) にて精製して、以下の物性値を有する標題化合
 物 (100mg) を得た。

TLC: Rf 0.49 (酢酸エチル: ヘキサン=1:1):

NMR (CDCl<sub>3</sub>):  $\delta$  8.88 (s, 1H), 8.12 (dd, J = 8.7, 2.7 Hz, 1H), 8.06 (d, J = 2.7 Hz, 1H), 7.02 (d, J = 8.7 Hz, 1H), 4.25 (q, J = 7.2 Hz, 2H), 3.76 (s, 2H), 1.33 (t, J = 7.2 Hz, 3H)<sub>o</sub>

15

参考例15:2-ヒドロキシー5-アミノフェニル酢酸エチルエステル 参考例12で製造した化合物の代わりに参考例14で製造した化合物を用いて、参考例13と同様の操作をし、以下の物性値を有する標題化合物を得た。

20 TLC: Rf 0.29 (酢酸エチル: ヘキサン= 1:1);
NMR (CDCl<sub>3</sub>): δ 6.79 (d, J = 8.4 Hz, 1H), 6.56 (dd, J = 8.4, 3.0 Hz, 1H), 6.48 (d, J = 3.0 Hz, 1H), 4.19 (q, J = 7.2 Hz, 2H), 3.58 (s, 2H), 1.29 (t, J = 7.2 Hz, 3H)<sub>o</sub>

実施例7:5-(4-((2S)-4-メチル-3, 4-ジヒドロ-2H 1, 4-ベンゾオキサジン-2-イルメトキシ)ベンゾイルアミノ)-2-メトキシフェニル酢酸エチルエステル

参考例9で製造した化合物の代わりに参考例13で製造した化合物を用いて、実施例1と同様の操作をして、以下の物性値を有する標題化合物を得た。

NMR (CDCl<sub>3</sub>):  $\delta$  7.82 (d, J = 8.7 Hz, 2H), 7.63 (s, 1H), 7.30-7.24 (m, 1H), 7.08-6.80 (m, 5H), 6.75-6.65 (m, 2H), 4.70-4.60 (m, 1H), 4.36-4.05 (m, 4H), 3.83 (s, 3H), 3.69 (s, 2H), 3.40 (dd, J = 11.7, 2.7 Hz, 1H), 3.27 (dd, J = 11.7, 6.9 Hz, 1H), 2.91 (s, 3H), 1.30 (t, J = 7.2 Hz, 3H)<sub>0</sub>

TLC: Rf 0.51 (酢酸エチル: ヘキサン=1:1):

実施例7(1):5-(4-((2S)-4-メチル-3, 4-ジヒドロ 2H-1, 4-ベンゾオキサジン-2-イルメトキシ)ベンゾイルアミノ)
 -2-ヒドロキシフェニル酢酸エチルエステル

参考例9で製造した化合物の代わりに参考例15で製造した化合物を用いて、実施例1と同様の操作をして、以下の物性値を有する標題化合物を得た。 TLC: Rf 0.68 (酢酸エチル: ヘキサン=1:1)。

15

20

実施例8:5-(4-((2S)-4-メチル-3,4-ジヒドロ-2H-1,4-ベンプオキサジン-2-イルメトキシ)ベンブイルアミノ)-2-メトキシフェニル酢酸

実施例1で製造した化合物の代わりに実施例7で製造した化合物を用いて、 実施例2と同様の操作をして、以下の物性値を有する標題化合物を得た。

TLC: Rf 0.38 (クロロホルム: メタノール=9:1);

NMR (CDCl<sub>3</sub>):  $\delta$  7.82 (d, J = 8.7 Hz, 2H), 7.71 (s, 1H), 7.55 (dd, J = 8.7, 2.7 Hz, 1H), 7.44 (d, J = 2.7 Hz, 1H), 6.99 (d, J = 8.7 Hz, 2H), 6.94-6.80 (m, 3H), 6.75-6.66 (m, 2H), 4.72-4.62 (m, 1H), 4.28 (dd, J = 9.9, 5.1 Hz, 1H), 4.17 (dd, J = 9.9, 6.3 Hz, 1H), 3.83 (s, 3H), 3.67 (s, 2H), 3.39 (dd, J = 11.4, 2.7 Hz, 1H), 3.26 (dd, J = 11.4, 6.6

25 1H), 3.83 (s, 3H), 3.67 (s, 2H), 3.39 (dd, J = 11.4, 2.7 Hz, 1H), 3.26 (dd, J = 11.4, 6.6 Hz, 1H), 2.91 (s, 3H).

実施例8(1): 5-(4-((2S)-4-)3+) (4-ジェドロー 2H-1, 4-(4-)3+) (4-バンプオキサジン-4-(4-)3+) (4-バンプオオナサジン-4-(4-)3+) (4-バンプオカナラン-4-(4-)3+) (4-バンプオカナラン-4-(

5 実施例1で製造した化合物の代わりに実施例7(1)で製造した化合物を 用いて、実施例2と同様の操作をし、以下の物性値を有する標題化合物を得 た。

TLC: Rf 0.29 (クロロホルム: メタノール=5:1):

NMR (CDCl<sub>3</sub>): δ 7.86-7.72 (m, 3H), 7.43-7.35 (m, 1H), 7.24-7.16 (m, 1H), 7.04-0 6.92 (m, 2H), 6.92-6.78 (m, 3H), 6.74-6.64 (m, 2H), 4.70-4.56 (m, 1H), 4.30-4.20 (m, 1H), 4.20-4.10 (m, 1H), 3.63 (s, 2H), 3.42-3.32 (m, 1H), 3.30-3.20 (m, 1H), 2.89 (s, 3H)<sub>o</sub>

参考例16:2-メチルー5-ニトロフェニル酢酸ベンジルエステル

15 アルゴン雰囲気下、2ーメチルー5ーニトロ安息香酸(2.45g)のトルエン溶液(10mL)にオキサリルクロリド(1.88mL)を加え、室温にて5時間撹拌した。溶媒を留去して得られた残渣をTHF(25mL)とアセトニトリル(25mL)の混合溶媒に溶解し、氷冷下トリメチルシリルジアゾメタン(2Mヘキサン溶液;12.5mL)を加え、0℃にて1時間撹拌した。溶媒を20 留去し、得られた残渣にベンジルアルコール(15mL)と2,4,6ーコリジン(15mL)を加え、180℃にて2時間撹拌した。反応混合物を室温まで放冷し、1N塩酸を加え、酢酸エチルにて抽出した。有機層を水、飽和食塩水にて順次洗浄し、無水硫酸マグネシウムにて乾燥した。溶媒を留去し、得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸 エチル=9:1)にて精製して、以下の物性値を有する標題化合物(1.4g)を得た。

TLC: Rf 0.60 (酢酸エチル: ヘキサン=3:7)。

参考例17:2-メチルー5-アミノフェニル酢酸ベンジルエステル 参考例16で製造した化合物(1.4g)を酢酸(100mL)と水(10m L)の混合溶媒に溶解し、鉄粉(3.77g)を加え、60℃にて1時間撹拌した。 反応混合物を酢酸エチルにて希釈し、セライト(商品名)を通してろ過した。 ろ液を濃縮した。得られた残渣を酢酸エチルにて希釈し、飽和炭酸水素ナトリウム水溶液、水、飽和食塩水にて順次洗浄し、無水硫酸ナトリウムにて乾燥した。溶媒を留去して得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=9:1)にて精製して、以下の物性値を有する 標題化合物(1.1g)を得た。

TLC:Rf 0.31 (酢酸エチル:ヘキサン=3:7);

NMR (CDCl<sub>3</sub>):  $\delta$  7.40-7.24 (m, 5H), 6.95 (d, J = 7.8 Hz, 1H), 6.60-6.50 (m, 2H), 5.13 (s, 2H), 4.00-3.60 (br, 2H), 3.58 (s, 2H), 2.17 (s, 3H)<sub>o</sub>

15

実施例9:5-(4-((2S)-4-メチル-3, 4-ジヒドロ-2H-1, 4-ベンゾオキサジン-2-イルメトキシ) ベンゾイルアミノ) -2-メチルフェニル酢酸ベンジルエステル

参考例 9 で製造した化合物の代わりに参考例 1 7 で製造した化合物を用いて、実施例 1 と同様の操作をして、以下の物性値を有する標題化合物を得た。 TLC: Rf 0.19 (酢酸エチル: ヘキサン= 3:7); NMR (CDCl<sub>3</sub>): δ 7.82 (d, J = 9.0 Hz, 2H), 7.66 (s, 1H), 7.52 (d, J = 8.1, 2.4 Hz, 1H), 7.41 (d, J = 2.1 Hz, 1H), 7.40-7.24 (m, 5H), 7.17 (d, J = 8.1 Hz, 1H), 7.01 (d, J = 9.0 Hz, 2H), 6.92-6.81 (m, 2H), 6.74-6.66 (m, 2H), 5.15 (s, 2H), 4.72-4.62 (m, 1H), 4.29 (dd, J = 9.6, 5.1 Hz, 1H), 4.18 (dd, J = 9.6, 6.6 Hz, 1H), 3.68 (s, 2H), 3.40 (dd, J = 11.7, 2.7 Hz, 1H), 3.27 (dd, J = 11.7, 6.3 Hz, 1H), 2.91 (s, 3H), 2.26 (s, 3H)。 実施例9(1)~9(5)

相当する化合物を用いて、実施例9と同様の操作をして、以下の化合物を 得た。

5

実施例9(1): 3-(4-((2S)-4-)3+3) (4-ジヒドロー 2H-1, 4-(3+3) (2 S) -4-(3+3) (4 S) -4-(3+3) (5 S) -4-(3+3) (7 S) -4-(3+3) (7 S) -4-(3+3) (8 S) -4-(3+3) (9 S) -4-(3+3) (9 S) -4-(3+3) (9 S) -4-(3+3) (1 S) -4-(3+3

TLC: Rf 0.28 (酢酸エチル: ヘキサン=3:7);

10 NMR (CDCl<sub>3</sub>): δ 8.43 (dd, J = 7.2, 2.1 Hz, 1H), 8.00-7.94 (m, 1H), 7.85 (d, J = 9.0 Hz, 2H), 7.50-7.20 (m, 5H), 7.14-6.92 (m, 4H), 6.92-6.80 (m, 2H), 6.76-6.64 (m, 2H), 5.15 (s, 2H), 4.72-4.62 (m, 1H), 4.30 (dd, J = 9.6, 4.8 Hz, 1H), 4.19 (dd, J = 9.6, 6.6 Hz, 1H), 3.69 (s, 2H), 3.40 (dd, J = 12.0, 3.3 Hz, 1H), 3.27 (dd, J = 12.0, 6.6 Hz, 1H), 2.91 (s, 3H)<sub>0</sub>

15

実施例9(2): 5-(2-メチル-4-((2S)-4-メチル-3,4 -ジヒドロ-2H-1,4-ベンゾオキサジン-2-イルメトキシ)ベンゾ イルアミノ)-2-メチルフェニル酢酸ベンジルエステル

TLC: Rf 0.63 (酢酸エチル: ヘキサン=1:1);

- NMR (CDCl<sub>3</sub>): δ 7.50-7.24 (m, 9H), 7.16 (d, J = 8.4 Hz, 1H), 6.92-6.76 (m, 4H), 6.75-6.66 (m, 2H), 5.15 (s, 2H), 4.70-4.60 (m, 1H), 4.26 (dd, J = 9.9, 5.1 Hz, 1H), 4.15 (dd, J = 9.9, 6.6 Hz, 1H), 3.68 (s, 2H), 3.39 (dd, J = 11.4, 2.7 Hz, 1H), 3.26 (dd, J = 11.4, 6.3 Hz, 1H), 2.91 (s, 3H), 2.50 (s, 3H), 2.26 (s, 3H)<sub>o</sub>
- 25 実施例9(3):3-(2-メチル-4-((2S)-4-メチル-3, 4 -ジヒドロ-2H-1, 4-ベンゾオキサジン-2-イルメトキシ) ベンゾ

イルアミノ) -4-フルオロフェニル酢酸ベンジルエステル

TLC: Rf 0.66 (ヘキサン: 酢酸エチル=1:1);

5

15

NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.68-7.60 (m, 1H), 7.50 (d, J = 8.4 Hz, 1H), 7.40-7.28 (m, 6H), 7.10-6.76 (m, 6H), 6.76-6.64 (m, 2H), 5.15 (s, 2H), 4.70-4.60 (m, 1H), 4.26 (dd, J = 9.9, 5.1 Hz, 1H), 4.15 (dd, J = 9.9, 6.6 Hz, 1H), 3.70 (s, 2H), 3.39 (dd, J = 11.1, 2.4 Hz, 1H), 3.26 (dd, J = 11.1, 6.6 Hz, 1H), 2.91 (s, 3H), 2.53 (s, 3H)<sub>o</sub>

実施例9(4):3-(2-クロロ-4-((2S)-4-メチル-3, 4 -ジヒドロ-2H-1, 4-ベンプオキサジン-2-イルメトキシ) ベンブ

10 イルアミノ) -4-フルオロフェニル酢酸ベンジルエステル

TLC: Rf 0.61 (ヘキサン: 酢酸エチル=1:1);

NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  8.50-8.40 (m, 1H), 7.87 (d, J = 8.7 Hz, 1H), 7.44-7.24 (m, 6H), 7.13-6.80 (m, 6H), 6.76-6.66 (m, 2H), 5.15 (s, 2H), 4.70-4.60 (m, 1H), 4.27 (dd, J = 9.6, 5.4 Hz, 1H), 4.19 (dd, J = 9.6, 6.0 Hz, 1H), 3.69 (s, 2H), 3.38 (dd, J = 12.0, 2.7 Hz, 1H), 3.25 (dd, J = 12.0, 6.6 Hz, 1H), 2.91 (s, 3H)<sub>0</sub>

実施例9(5):5-(2-クロロー4-((2S)-4-メチルー3, 4 ージヒドロー2H-1, 4ーベンプオキサジン-2-イルメトキシ) ベンブ イルアミノ) -2-メチルフェニル酢酸ベンジルエステル

TLC: Rf 0.58 (ヘキサン:酢酸エチル=1:1);
NMR (300 MHz, CDCl<sub>3</sub>): δ 7.94 (s, 1H), 7.81 (d, J = 8.7 Hz, 1H), 7.54-7.47 (m, 1H), 7.46-7.42 (m, 1H), 7.40-7.28 (m, 5H), 7.17 (d, J = 8.7 Hz, 1H), 7.02 (d, J = 2.1 Hz, 1H), 6.98-6.80 (m, 3H), 6.75-6.67 (m, 2H), 5.15 (s, 2H), 4.71-4.61 (m, 1H), 4.26 (dd, J = 9.9, 5.1 Hz, 1H), 4.17 (dd, J = 9.9, 6.3 Hz, 1H), 3.69 (s, 2H), 3.38 (dd, J = 11.4, 2.7 Hz, 1H), 3.25 (dd, J = 11.4, 6.3 Hz, 1H), 2.91 (s, 3H), 2.26 (s, 3H)<sub>0</sub>

実施例1で製造した化合物の代わりに実施例9で製造した化合物を用いて、

5 実施例2と同様の操作をして、以下の物性値を有する標題化合物を得た。

TLC: Rf 0.37 (クロロホルム: メタノール=9:1);

NMR (CDCl<sub>3</sub>):  $\delta$  7.81 (d, J = 8.7 Hz, 2H), 7.78 (s, 1H), 7.52-7.41 (m, 2H), 7.15 (d, J = 8.4 Hz, 1H), 6.98 (d, J = 8.7 Hz, 2H), 6.92-6.81 (m, 2H), 6.75-6.66 (m, 2H), 4.70-4.60 (m, 1H), 4.27 (dd, J = 9.6, 4.8 Hz, 1H), 4.16 (dd, J = 9.6, 6.3 Hz, 1H), 3.65 (s, 2H), 3.39 (dd, J = 12.0, 3.0 Hz, 1H), 3.26 (dd, J = 12.0, 6.3 Hz, 1H), 2.91 (s,

実施例10(1)~10(5)

3H), 2.28 (s, 3H),

実施例9 (1) ~9 (5) で製造した化合物を用いて、実施例10と同様 15 の操作をして、以下の化合物を得た。

実施例10(1):3-(4-((2S)-4-メチル-3,4-ジヒドロ-2H-1,4-ベンプオキサジン-2-イルメトキシ)ベンブイルアミノ)-4-フルオロフェニル酢酸

20 TLC: Rf 0.29 (クロロホルム:メタノール=9:1);
NMR (CDCl<sub>3</sub>): δ 8.45 (dd, J=7.5, 2.1 Hz, 1H), 7.98 (d, J=2.1 Hz, 1H), 7.85 (d, J=9.0 Hz, 2H), 7.16-6.93 (m, 4H), 6.93-6.80 (m, 2H), 6.76-6.66 (m, 2H), 4.72-4.62 (m, 1H), 4.30 (dd, J=9.6, 4.8 Hz, 1H), 4.19 (dd, J=9.6, 6.6 Hz, 1H), 3.69 (s, 2H), 3.40 (dd, J=12.0, 3.3 Hz, 1H), 3.27 (dd, J=12.0, 6.6 Hz, 1H), 2.91 (s, 3H)<sub>0</sub>

25

10

実施例10(2):5-(2-メチル-4-((2S)-4-メチル-3,

4-ジヒドロ-2H-1, 4-ベンゾオキサジン-2-イルメトキシ) ベン ゾイルアミノ) -2-メチルフェニル酢酸

TLC: Rf 0.32 (クロロホルム:メタノール=9:1);

NMR (CDCl<sub>3</sub>): δ 7.56-7.34 (m, 4H), 7.18 (d, J = 8.4 Hz, 1H), 6.92-6.76 (m, 4H), 6.75-6.66 (m, 2H), 4.70-4.60 (m, 1H), 4.26 (dd, J = 9.6, 4.5 Hz, 1H), 4.14 (dd, J = 9.6, 6.3 Hz, 1H), 3.69 (s, 2H), 3.39 (dd, J = 11.4, 2.1 Hz, 1H), 3.25 (dd, J = 11.4, 6.6 Hz, 1H), 2.91 (s, 3H), 2.50 (s, 3H), 2.30 (s, 3H)<sub>o</sub>

実施例10(3):3-(2-メチル-4-((2S)-4-メチル-3, 10 4-ジヒドロ-2H-1, 4-ベンプオキサジン-2-イルメトキシ)ベン ブイルアミノ)-4-フルオロフェニル酢酸

TLC: Rf 0.31 (クロロホルム: メタノール=9:1);

15

20

25

NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.67 (d, J = 2.7 Hz, 1H), 7.50 (d, J = 8.4 Hz, 1H), 7.37 (s, 1H), 7.14-6.76 (m, 6H), 6.76-6.68 (m, 2H), 4.70-4.60 (m, 1H), 4.27 (dd, J = 9.3, 5.1 Hz, 1H), 4.15 (dd, J = 9.3, 6.6 Hz, 1H), 3.69 (s, 2 H), 3.40 (dd, J = 11.7, 2.7 Hz, 1H), 3.26 (dd, J = 11.7, 6.9 Hz, 1H), 2.92 (s, 3H), 2.53 (s, 3H)<sub>0</sub>

実施例10(4):3-(2-クロロ-4-((2S)-4-メチル-3, 4-ジヒドロ-2H-1, 4-ベンゾオキサジン-2-イルメトキシ)ベン

TLC: Rf 0.43 (クロロホルム: メタノール=9:1);

ゾイルアミノ)ー4ーフルオロフェニル酢酸

NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  8.51-8.42 (m, 1H), 7.88 (d, J = 9.6 Hz, 1H), 7.15-6.80 (m, 7H), 6.76-6.66 (m, 2H), 4.71-4.61 (m, 1H), 4.26 (dd, J = 9.6, 5.4 Hz, 1H), 4.18 (dd, J = 9.6, 6.3 Hz, 1H), 3.70 (s, 2H), 3.40 (dd, J = 12.0, 3.3 Hz, 1H), 3.25 (dd, J = 12.0, 6.6 Hz, 1H), 2.91 (s, 3H)<sub>0</sub>

実施例10(5):5-(2-2)ロロー4-((2S)-4-3)チルー3、4-ジヒドロー2H-1, 4-ベンプオキサジンー2-1ルメトキシ)ベンプイルアミノ)-2-3チルフェニル酢酸

TLC: Rf 0.47 (クロロホルム: メタノール=9:1);

NMR (300 MHz, CDCl<sub>3</sub>): δ 8.00 (s, 1H), 7.81 (d, J = 9.0 Hz, 1H), 7.57-7.52 (m, 1H), 7.49-7.42 (m, 1H), 7.19 (d, J = 8.4 Hz, 1H), 7.01 (d, J = 2.4 Hz, 1H), 6.98-6.81 (m, 3H), 6.76-6.66 (m, 2H), 4.70-4.60 (m, 1H), 4.26 (dd, J = 9.9, 5.1 Hz, 1H), 4.17 (dd, J = 9.9, 6.3 Hz, 1H), 3.69 (s, 2H), 3.38 (dd, J = 11.4, 2.7 Hz, 1H), 3.25 (dd, J = 11.4, 6.6 Hz, 1H), 2.91 (s, 3H), 2.31 (s, 3H)<sub>6</sub>

10

15

参考例18:4-(アセチルオキシ)ベンゼンスルホン酸 ピリジン塩 4-(ヒドロキシ)ベンゼンスルホン酸(3g)のピリジン(10mL)および無水酢酸(10mL)溶液を、室温で3時間撹拌した。得られた結晶をろ過し、ヘキサンで洗浄して以下の物性値を有する標題化合物(4g)を得た。

NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  8.95 (d, J = 6.0 Hz, 2H), 8.42 (t J = 7.5 Hz, 1H), 8.02-7.89 (m, 4H), 7.12 (d, J = 8.7 Hz, 2H)<sub>o</sub>

参考例19:4- (クロロスルホニル) フェニル アセテート

- 20 参考例18で製造した化合物(4g)のジメトキシエタン(20mL)溶液に、アルゴン雰囲気下、0℃でチオニルクロリド(2.5mL)を加え、0℃で1時間撹拌した。反応溶液に水を注ぎ、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥後、濃縮した。残渣をシリカゲルカラムクロマトグラフィーで精製し、以下の物性値を有する25 標題化合物(2.76g)を得た。
  - TLC: Rf 0.50 (ヘキサン: 酢酸エチル=7:3)。

参考例20:3-((((4-アセチルオキシ) フェニル) スルホニル) アミノ) フェニル酢酸メチルエステル

参考例9で製造した化合物(300mg)および参考例19で製造した化 5 合物(426mg)を用いて実施例1と同様の操作を行うことによって、以 下の物性値を有する標題化合物を得た。

TLC: Rf 0.11 (ヘキサン: 酢酸エチル=7:3)。

参考例21:3-((((4-ヒドロキシ) フェニル) スルホニル) アミノ) 10 フェニル酢酸メチルエステル

参考例20で製造した化合物のメタノール(10mL)およびジメトキシエタン(5mL)溶液に、室温で炭酸カリウム(354mg)を加え、30分間撹拌した。反応溶液をセライト(商品名)ろ過し、ろ液を濃縮した。残渣をシリカゲルカラムクロマトグラフィーで精製して、以下の物性値を有する標題化合物(370mg)を得た。

TLC: Rf 0.22 (ヘキサン: 酢酸エチル=1:1)。

15

20

25

実施例11:3-(((4-((2S)-4-メチル-3, 4-ジヒドロ-2H-1, 4-ベンゾオキサジン-2-イルメトキシ)フェニル)スルホニル)アミノ)フェニル酢酸メチルエステル

参考例21で製造した化合物(370mg)のDMF(15mL)に、室温で炭酸セシウム(750mg)存在下、相当する化合物を用いて参考例1→参考例2→参考例3→参考例4→参考例5と同様の操作を行うことによって製造した(2S)-2-トシルオキシメチル-4-メチル-3,4-ジヒドロ-2H-1,4-ベンゾオキサジン(384mg)を加えた。混合物を60℃で2時間撹拌した。反応溶液に水を注ぎ、酢酸エチルで抽出した。有

機層を水および飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、濃縮した。残渣をシリカゲルカラムクロマトグラフィーで精製して、以下の物性値を有する標題化合物 (282mg) を得た。

TLC: Rf 0.46 (ヘキサン: 酢酸エチル=1:1);

- NMR (300 MHz, CDCl<sub>3</sub>): δ 7.74-7.66 (m, 2H), 7.19 (t, J = 8.1 Hz, 1H), 7.06-6.78 (m, 7H), 6.75-6.65 (m, 2H), 6.41 (s, 1H), 4.68-4.58 (m, 1H), 4.23 (dd, J = 9.6, 4.8 Hz, 1H), 4.13 (dd, J = 9.6, 6.0 Hz, 1H), 3.67 (s, 3H), 3.55 (s, 2H), 3.36 (dd, J = 11.7, 2.7 Hz, 1H), 3.23 (dd, J = 11.7, 6.6 Hz, 1H), 2.89 (s, 3H)<sub>6</sub>
- 10 実施例12:3-(((4-((2S)-4-メチル-3, 4-ジェドロー2H-1, 4-ベングオキサジン-2-イルメトキシ)フェニル)スルホニル)アミノ)フェニル酢酸

実施例1.1で製造した化合物(1.11mg)を用いて実施例2と同様の操 15 作を行うことによって以下の物性値を有する標題化合物(9.0mg)を得た。 TLC: Rf 0.33(クロロホルム:メタノール=9:1);

NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.63 (d, J = 9.3 Hz, 2H), 7.24-7.17 (m, 1H), 7.13-7.06 (m, 1H), 7.04-6.97 (m, 1H), 6.94-6.70 (m, 8H), 4.67-4.57 (m, 1H), 4.27 (dd, J = 10.2, 5.1 Hz, 1H), 4.14 (dd, J = 10.2, 5.7 Hz, 1H), 3.53 (s, 2H), 3.37 (dd, J = 11.4, 2.4 Hz,

1H), 3.17 (dd, J = 11.4, 7.2 Hz, 1H), 2.88 (s, 3H).

実施例12(1)~12(6)

相当する化合物を用いて参考例18→参考例19→参考例20→参考例2 5 1→実施例11→実施例12と同様の操作をして、以下の化合物を得た。

実施例12(1):3-(N-((4-((2S)-4-メチル-3,4-ジヒドロ-2H-1,4-ベンゾオキサジン-2-イルメトキシ)フェニル)スルホニル)-N-メチルアミノ)フェニル酢酸

10 TLC: Rf 0.47 (クロロホルム:メタノール=9:1);
NMR (300 MHz, CDCl<sub>3</sub>): δ 7.46-7.39 (m, 2H), 7.28 (t, J=7.5 Hz, 1H), 7.21-7.12 (m, 2H), 6.96-6.72 (m, 7H), 4.72-4.62 (m, 1H), 4.31 (dd, J=10.5, 5.4 Hz, 1H), 4.20 (dd, J=10.5, 6.0 Hz, 1H), 3.54 (s, 2H), 3.41 (dd, J=11.7, 2.4 Hz, 1H), 3.19 (dd, J=11.7, 7.2 Hz, 1H), 3.15 (s, 3H), 2.90 (s, 3H)<sub>6</sub>

15

実施例12(2):3-(N-((4-((2S)-4-メチル-3,4-ジェドロ-2H-1,4-ベングオキサジン-2-イルメトキシ)フェニル)スルホニル)-N-エチルアミノ)フェニル酢酸

TLC: Rf 0.56 (クロロホルム: メタノール=9:1);

- NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.52-7.44 (m, 2H), 7.30 (t, J = 7.8 Hz, 1H), 7.21-7.10 (m, 2H), 6.96-6.80 (m, 4H), 6.80-6.71 (m, 3H), 4.74-4.64 (m, 1H), 4.32 (dd, J = 10.8, 5.4 Hz, 1H), 4.20 (dd, J = 10.8, 6.0 Hz, 1H), 3.70-3.50 (m, 4H), 3.41 (dd, J = 11.7, 2.4 Hz, 1H), 3.20 (dd, J = 11.7, 7.2 Hz, 1H), 2.90 (s, 3H), 1.07 (t, J = 7.2 Hz, 3H)<sub>o</sub>
- 25 実施例12(3):3-(N-((4-((2S)-4-メチル-3, 4-ジヒドロ-2H-1, 4-ベンゾオキサジン-2-イルメトキシ) フェニル)

スルホニル) -N-プロピルアミノ) フェニル酢酸

TLC: Rf 0.56 (クロロホルム:メタノール=9:1);

NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.47 (d, J = 8.7 Hz, 2H), 7.32-7.26 (m, 1H), 7.20-7.09 (m, 2H), 6.97-6.71 (m, 7H), 4.73-4.63 (m, 1H), 4.31 (dd, J = 10.5, 5.7 Hz, 1H), 4.20 (dd, J = 10.5, 6.0 Hz, 1H), 3.55 (s, 2H), 3.54-3.44 (m, 2H), 3.41 (dd, J = 11.7, 2.7 Hz, 1H), 3.20 (dd, J = 11.7, 6.9 Hz, 1H), 2.90 (s, 3H), 1.50-1.36 (m, 2H), 0.89 (t. J = 7.5 Hz, 3H)<sub>0</sub>

実施例12(4):3-(N-((4-((2S)-4-メチル-3, 4-10 ジヒドロ-2H-1, 4-ベンゾオキサジン-2-イルメトキシ)フェニル)スルホニル)-N-プチルアミノ)フェニル酢酸

TLC: Rf 0.56 (クロロホルム: メタノール=9:1);

NMR (300 MHz, CDCl<sub>3</sub>): δ 7.47 (d, J = 9.0 Hz, 2H), 7.34-7.27 (m, 1H), 7.22-7.09 (m, 2H), 7.00-6.70 (m, 7H), 4.73-4.60 (m, 1H), 4.32 (dd, J = 10.2, 5.1 Hz, 1H), 4.20 (dd, J = 10.2, 6.3 Hz, 1H), 3.60-3.45 (m, 4H), 3.42 (dd, J = 11.4, 2.4 Hz, 1H), 3.20 (dd, J = 11.4, 7.5 Hz, 1H), 2.90 (s, 3H), 1.45-1.20 (m, 4H), 0.85 (t. J = 6.9 Hz, 3H)<sub>0</sub>

実施例12(5):3-(N-((4-((2S)-4-メチル-3,4-ジヒドロ-2H-1,4-ベンゾオキサジン-2-イルメトキシ)フェニル)

20 スルホニル) -N-イソプロピルアミノ) フェニル酢酸

TLC: Rf 0.50 (クロロホルム:メタノール=9:1);

NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.63 (d, J = 9.0 Hz, 2H), 7.35-7.22 (m, 2H), 7.11-7.05 (m, 1H), 7.00-6.81 (m, 5H), 6.79-6.69 (m, 2H), 4.72-4.52 (m, 2H), 4.31 (dd, J = 10.2, 5.4 Hz, 1H), 4.18 (dd, J = 10.2, 6.3 Hz, 1H), 3.57 (s, 2H), 3.41 (dd, J = 11.4, 2.4 Hz,

25 1H), 3.23 (dd, J = 11.4, 6.9 Hz, 1H), 2.90 (s, 3H), 1.05 (d, J = 6.9 Hz, 6H).

実施例12(6):3-(N-((4-((2S)-4-メチル-3,4-ジヒドロ-2H-1,4-ベンゾオキサジン-2-イルメトキシ) フェニル) スルホニル) <math>-N-イソプチルアミノ) フェニル酢酸

TLC: Rf 0.51 (クロロホルム: メタノール=9:1);

NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.45 (d, J = 9.0 Hz, 2H), 7.29 (t, J = 7.2 Hz, 1H), 7.20-7.11 (m, 2H), 6.96-6.80 (m, 4H), 6.80-6.71 (m, 3H), 4.73-4.63 (m, 1H), 4.32 (dd, J = 10.8, 5.4 Hz, 1H), 4.20 (dd, J = 10.8, 6.0 Hz, 1H), 3.5 4 (s, 2H), 3.42 (dd, J = 12.0, 2.4 Hz, 1H), 3.38-3.24 (m, 2H), 3.19 (dd, J = 12.0, 7.5 Hz, 1H), 2.90 (s, 3H), 1.63-1.50 (m, 1H), 0.90 (d, J = 6.6 Hz, 3H), 0.89 (d, J = 6.6 Hz, 3H),

10

15

25

参考例22:4-((2S)-4-メチル-3,4-ジヒドロ-2H-1,4-ベンプオキサジン-2-イルメトキシ)ベンズアルデヒド

4-ヒドロキシベンズアルデヒド(150mg)を用いて実施例11と同様の作用を行うことによって、以下の物性値を有する標題化合物(270mg)を得た。

TLC: Rf 0.43 (ヘキサン: 酢酸エチル=7:3)。

実施例13:3-((4-((2S)-4- imes 
20 ェニル酢酸メチルエステル

参考例22で製造した化合物(270mg)および参考例9で製造した化合物(180mg)のジクロロエタン(5mL)溶液に、室温で酢酸(0.097mL)および水素化トリアセトキシホウ素ナトリウム(462mg)を加え、1時間撹拌した。反応溶液に水を注ぎ、酢酸エチルで抽出した。有機層を水および飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、濃縮して、以下の物性値を有する標題化合物(330mg)を得た。

TLC: Rf 0.46 (トルエン: 酢酸エチル=1:9);

10

NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.32-7.24 (m, 2H), 7.12 (t, J = 7.8 Hz, 1H), 6.91 (d, J = 9.0 Hz, 2H), 6.88-6.80 (m, 2H), 6.72-6.60 (m, 3H), 6.58-6.50 (m, 2H), 4.68-4.58 (m, 1H), 4.25 (s, 2H), 4.26-4.17 (m, 1H), 4.15-4.05 (m, 1H), 4.00-3.92 (m, 1H), 3.67 (s, 3H), 3.53 (s, 2H), 3.39 (dd, J = 11.7, 2.7 Hz, 1H), 3.25 (dd, J = 11.7, 6.6 Hz, 1H), 2.90 (s, 3H)<sub>0</sub>

実施例14:3-((4-((2S)-4-メチル-3, 4-ジヒドロ-2 H-1, 4-ベンゾオキサジン-2-イルメトキシ) ベンジル) アミノ) フェニル酢酸

実施例13で製造した化合物(110mg)を用いて実施例2と同様の操作を行うことによって、以下の物性値を有する標題化合物(48mg)を得た。

15 TLC: Rf 0.47 (クロロホルム:メタノール=9:1);
NMR (300 MHz, CDCl<sub>3</sub>): δ 7.32-7.24 (m, 2H), 7.12 (t, J = 7.8 Hz, 1H), 6.94-6.80 (m, 4H), 6.70 (d, J = 7.8 Hz, 2H), 6.64 (t, J = 7.2 Hz, 1H), 6.57-6.51 (m, 2H), 4.67-4.57 (m, 1H), 4.30-4.19 (m, 3H), 4.17-4.05 (m, 1H), 3.55 (s, 2H), 3.38 (dd, J = 11.4, 2.7 Hz, 1H), 3.23 (dd, J = 11.4, 6.9 Hz, 1H), 2.89 (s, 3H)<sub>0</sub>

#### 実施例14(1)~14(2)

相当する化合物を用いて参考例22→実施例13→実施例14と同様の操作をして、以下の化合物を得た。

5

実施例14(1):3-(N-(4-((2S)-4-メチル-3,4-ジヒドロ-<math>2H-1,4-ベンゾオキサジン-2-イルメトキシ)ベンジル) -N-メチルアミノ)フェニル酢酸

TLC: Rf 0.50 (クロロホルム: メタノール=9:1);

- 10 NMR (300 MHz, CDCl<sub>3</sub>): δ 7.22-7.10 (m, 3H), 6.94-6.79 (m, 4H), 6.75-6.60 (m, 5H), 4.66-4.56 (m, 1H), 4.46 (s, 2H), 4.22 (dd, J = 9.6, 5.1 Hz, 1H), 4.08 (dd, J = 9.6, 6.6 Hz, 1H), 3.57 (s, 2H), 3.38 (dd, J = 11.4, 2.4 Hz, 1H), 3.22 (dd, J = 11.4, 6.9 Hz, 1H), 2.98 (s, 3H), 2.89 (s, 3H)<sub>ο</sub>
- 15 実施例14(2):3-(N-(4-((2S)-4-メチル-3, 4-ジ ヒドロ-2H-1, 4-ベングオキサジン-2-イルメトキシ)ベンジル) -N-エチルアミノ)フェニル酢酸

TLC: Rf 0.49 (クロロホルム: メタノール=9:1);

NMR (300 MHz, CDCl<sub>3</sub>): δ 7.19-7.09 (m, 3H), 6.92-6.79 (m, 4H), 6.74-6.64 (m, 2H), 6.64-6.55 (m, 3H), 4.65-4.55 (m, 1H), 4.44 (s, 2H), 4.22 (dd, J = 9.6, 4.8 Hz, 1H), 4.08 (dd, J = 9.6, 6.6 Hz, 1H), 3.54 (s, 2H), 3.44 (q, J = 7.2 Hz, 2H), 3.38 (dd, J = 11.7, 2.7 Hz, 1H), 3.21 (dd, J = 11.7, 6.9 Hz, 1H), 2.88 (s, 3H), 1.18 (t, J = 7.2 Hz, 3H)<sub>o</sub>

#### 25 製剤例1

以下の各成分を常法により混合した後打錠して、一錠中に50mgの活性

成分を含有する錠剤100錠を得た。

・微結晶セルロース ····・4.7 g

## 製剤例2

10 以下の各成分を常法により混合した後、溶液を常法により滅菌し、5mL ずつアンプルに充填し、常法により凍結乾燥し、1アンプル中20mgの活 性成分を含有するアンプル100本を得た。

・3-(4-((2S) -4-メチル-3, 4-ジヒドロ-2H-1, 4-ベンゾオキサジン-2-イルメトキシ) ベンゾイルアミノ) フェニル酢

15 酸 ·····2.0 g

・マンニトール ・・・・・20 g

• 蒸留水 ·····1000m L

#### 請求の範囲

### 1. 一般式(I)

$$(R^2)_m$$
 $R^4$ 
 $(R^3)_n$ 
 $(I)$ 
 $(R^5)_i$ 

5 (式中、R<sup>1</sup>は、(1)水素原子、(2)C1~4アルキル基、(3)C2~4アルケニル、または(4)ベンジル基を表わし、

Eは、-C (=0) -、 $-SO_2$ -、または $-CH_2$ -を表わし、

 $R^2$ は、(1)ハロゲン原子、(2)C  $1\sim 6$  アルキル基、(3)C  $1\sim 6$  アルコキシ基、(4)水酸基、(5)トリハロメチル基、(6)シアノ基、(7)フェニル基、(8)ピリジル

10 基、(9)ニトロ基、(10)-NR<sup>6</sup>R<sup>7</sup>基、または(11)-OR<sup>8</sup>で置換されたC1~ 4アルキル基を表わし、

 $R^3$ は、(1)ハロゲン原子、(2)C  $1 \sim 6$  Tルキル基、(3)C  $1 \sim 6$  Tルコキシ基、(4)水酸基、(5)トリハロメチル基、(6)シアノ基、(7)フェニル基、(8)ピリジル基、(9)ニトロ基、(10)-N $R^8$  $R^7$ 基、または(11)-O $R^8$ で置換されたC  $1 \sim$ 

15 4アルキル基を表わし、

 $R^6$ および $R^7$ は、それぞれ独立して、水素原子または $C1\sim4$ アルキル基を表わし、

R®は、C1~4アルキル基、フェニル基、またはピリジル基を表わし、

 $R^4$ は、(1)水素原子、(2)C  $1\sim6$  アルキル基、または(3)ベンジル基を表わし、

20 R<sup>5</sup>は、(1)C1~6アルキル基、(2)C1~10アルコキシ基、(3)C1~6ア

ルコキシ基で置換されたC 1~6Tルキル基、(4)ハロゲン原子、(5)水酸基、(6)トリハロメチル基、(7)ニトロ基、(8)-NR $^9$ R $^{10}$ 基、(9)フェニル基、(10)フェノキシ基、(11)オキソ基、(12)C 2~6Tシル基、(13)シアノ基、または(14)-SO<sub>2</sub>R $^{11}$ 基を表わし、

5  $R^9$ および $R^{10}$ は、それぞれ独立して、水素原子または $C1\sim4$ アルキル基を表わし、

R11は、C1~6アルキル基を表わし、

- (W) は、C5~12の単環もしくは二環の炭素環、または5~12員の単環もしくは二環の複素環を表わし、
- 10 Gは、(1)窒素原子、酸素原子および硫黄原子から選ばれる0~2個のヘテロ原子を含むC1~6アルキレン基、(2)窒素原子、酸素原子および硫黄原子から選ばれる0~2個のヘテロ原子を含むC2~6アルケニレン基、または(3) 窒素原子、酸素原子および硫黄原子から選ばれる0~2個のヘテロ原子を含むC2~6アルキニレン基を表わし、

nは、0または1~4の整数を表わし、

iは、0または1~11の整数を表わす。

- 20 ただし、mが2以上を表わすとき、R<sup>2</sup>は同じでも異なってもよく、nが2以上を表わすとき、R<sup>3</sup>は同じでも異なってもよく、iが2以上を表わすとき、R<sup>5</sup>は同じでも異なってもよい。)で示されるカルボン酸化合物またはそれらの薬学的に許容される塩。
- 25 2. (W) がC5~6の単環炭素環である請求の範囲1記載の化合物。

3. C5~6の単環炭素環がベンゼン環である請求の範囲2記載の化合物。

10

- 5. 請求の範囲1に記載の化合物またはそれらの薬学的に許容される塩を含有する医薬組成物。
- 6. 請求の範囲1に記載の化合物またはそれらの薬学的に許容される塩を含 15 有するDP受容体活性化による疾患の予防および/または治療剤。
- 7. 請求の範囲1に記載の化合物またはそれらの薬学的に許容される塩を含有するアレルギー性疾患、全身性肥満細胞症、全身性肥満細胞活性化障害、アナフィラキシーショック、気道収縮、蕁麻疹、湿疹、にきび、アレルギー20 性気管支肺アスペルギルス症、副鼻腔炎、偏頭痛、鼻茸、過敏性血管炎、好酸球増多症、接触性皮膚炎、痒みを伴う疾患、痒みに伴う行動により二次的に発生する疾患、炎症、慢性閉塞性肺疾患、虚血再灌流障害、脳血管障害、自己免疫疾患、脳外傷、肝傷害、移植片拒絶、慢性関節リウマチ、胸膜炎、変形性関節症、クローン病、潰瘍性大腸炎、過敏性腸症候群、睡眠障害、または血小板凝集に関する疾患の予防および/または治療剤。

8. アレルギー性疾患が、アレルギー性鼻炎、アレルギー性結膜炎、アトピー性皮膚炎、気管支喘息、または食物アレルギーである請求の範囲7記載の予防および/または治療剤。

5

- 9. 医薬品の製造における請求の範囲1記載の化合物の使用。
- 10. DP受容体活性化による疾患の予防および/または治療のための医薬の製造における請求の範囲9記載の使用。

10

- 11. アレルギー性疾患、全身性肥満細胞症、全身性肥満細胞活性化障害、アナフィラキシーショック、気管収縮、蕁麻疹、湿疹、アレルギー性気管支肺アスペルギルス症、副鼻腔炎、偏頭痛、鼻茸、過敏性血管炎、好酸球増多症、接触性皮膚炎、痒みを伴う疾患、痒みに伴う行動により二次的に発生する疾患、炎症、慢性閉塞性肺疾患、虚血再灌流障害、脳血管障害、慢性関節リウマチに合併した胸膜炎、潰瘍性大腸炎、睡眠障害、または血小板凝集に関する疾患の予防および/または治療のための医薬の製造における請求の範囲9記載の使用。
- 20 12. アレルギー性疾患が、アレルギー性鼻炎、アレルギー性結膜炎、アトピー性皮膚炎、気管支喘息、または食物アレルギーである請求の範囲11の使用。

WO 03/078409

- 14. 請求の範囲1に記載の化合物の有効量を哺乳動物に投与することを特徴とするアレルギー性疾患、全身性肥満細胞症、全身性肥満細胞活性化障害、アナフィラキシーショック、気管収縮、蕁麻疹、湿疹、アレルギー性気管支肺アスペルギルス症、副鼻腔炎、偏頭痛、鼻茸、過敏性血管炎、好酸球増多症、接触性皮膚炎、痒みを伴う疾患、痒みに伴う行動により二次的に発生する疾患、炎症、慢性閉塞性肺疾患、虚血再灌流障害、脳血管障害、慢性関節リウマチに合併した胸膜炎、潰瘍性大腸炎、睡眠障害、または血小板凝集に関する疾患の予防および/または治療方法。
- 10 15. アレルギー性疾患が、アレルギー性鼻炎、アレルギー性結膜炎、アトピー性皮膚炎、気管支喘息、または食物アレルギーである請求の範囲14記載の予防および/または治療方法。

## INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP03/02635

| A CTAS                                                                                                                        | SSIFICATION OF SUBJECT MATTER                                                                                           |                                                                                              |                            |  |
|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------|--|
| Int                                                                                                                           | .C1 <sup>7</sup> C07D265/36, A61K31/538,                                                                                | 76171/04 7/00 0/10 11                                                                        | 100                        |  |
| 1                                                                                                                             | 11/02, 17/00, 25/06, 25/                                                                                                | AGIPI/U4, //UU, 9/IU, I]                                                                     | ./00,                      |  |
| l                                                                                                                             | 11,02, 1,,00, 23,00, 23,                                                                                                | 20, 29,00, 37,08, 43,00                                                                      |                            |  |
| According to International Patent Classification (IPC) or to both national classification and IPC                             |                                                                                                                         |                                                                                              |                            |  |
| B. FIELDS SEARCHED                                                                                                            |                                                                                                                         |                                                                                              |                            |  |
| Minimum (                                                                                                                     | documentation searched (classification system followe                                                                   | ed by classification symbols)                                                                |                            |  |
| Int                                                                                                                           | .Cl' C07D265/36, A61K31/538, 1                                                                                          | A61P1/04, 7/00, 9/10, 11                                                                     | /00,                       |  |
|                                                                                                                               | 11/02, 17/00, 25/06, 25/3                                                                                               | 20, 29/00, 37/08, 43/00                                                                      |                            |  |
|                                                                                                                               |                                                                                                                         |                                                                                              |                            |  |
| Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched |                                                                                                                         |                                                                                              |                            |  |
| Jits                                                                                                                          | Jitsuyo Shinan Koho 1922-1996 Jitsuyo Shinan Toroku Koho 1996-2002                                                      |                                                                                              |                            |  |
| Koka                                                                                                                          | Kokai Jitsuyo Shinan Koho 1971-2002 Toroku Jitsuyo Shinan Koho 1994-2002                                                |                                                                                              |                            |  |
| Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)  |                                                                                                                         |                                                                                              |                            |  |
| BECTONIC                                                                                                                      | Gata base consulted during the international search (na                                                                 | me of data base and, where practicable, see                                                  | arch terms used)           |  |
| REGISTRY (STN), CAPLUS (STN)                                                                                                  |                                                                                                                         |                                                                                              |                            |  |
|                                                                                                                               |                                                                                                                         |                                                                                              |                            |  |
|                                                                                                                               |                                                                                                                         |                                                                                              |                            |  |
| C. DOCU                                                                                                                       | MENTS CONSIDERED TO BE RELEVANT                                                                                         |                                                                                              |                            |  |
| Cotacomit                                                                                                                     | Citation of January 1, 121, 121, 121, 121, 121, 121, 121,                                                               |                                                                                              | _                          |  |
| Category*                                                                                                                     | Citation of document, with indication, where a                                                                          |                                                                                              | Relevant to claim No.      |  |
| Х                                                                                                                             | WO 86/05779 Al (Yamanouchi                                                                                              | Pharmaceutical Co.,                                                                          | 1-12                       |  |
|                                                                                                                               | Ltd.),                                                                                                                  |                                                                                              |                            |  |
|                                                                                                                               | 09 October, 1986 (09.10.86),                                                                                            |                                                                                              |                            |  |
|                                                                                                                               | Claims; reference example 33                                                                                            |                                                                                              |                            |  |
|                                                                                                                               |                                                                                                                         | P 63-159342 A                                                                                |                            |  |
|                                                                                                                               | & US 5116853 A                                                                                                          |                                                                                              |                            |  |
| À                                                                                                                             | WO 01/66520 Al (Ono Pharmac                                                                                             | oution! Co. Than                                                                             |                            |  |
|                                                                                                                               | 13 September, 2001 (13.09.01                                                                                            | eutical co., Ltd.),                                                                          | 6                          |  |
|                                                                                                                               | & EP 1262475 A1                                                                                                         | '''                                                                                          |                            |  |
|                                                                                                                               | •                                                                                                                       | i                                                                                            |                            |  |
| A                                                                                                                             | WO 98/25919 Al (Shionogi & )                                                                                            | Co., Ltd.),                                                                                  | 6                          |  |
|                                                                                                                               | 18 June, 1998 (18.06.98),                                                                                               |                                                                                              | •                          |  |
|                                                                                                                               | & EP 944614 A1 & JI                                                                                                     | 2000-514824 A                                                                                |                            |  |
|                                                                                                                               | & US 6083974 A                                                                                                          | · .                                                                                          |                            |  |
|                                                                                                                               |                                                                                                                         |                                                                                              |                            |  |
|                                                                                                                               |                                                                                                                         |                                                                                              |                            |  |
|                                                                                                                               |                                                                                                                         | <b>!</b>                                                                                     |                            |  |
|                                                                                                                               |                                                                                                                         | <b>i</b>                                                                                     | ·                          |  |
| Furthe                                                                                                                        | er documents are listed in the continuation of Box C.                                                                   | See patent family annex.                                                                     |                            |  |
| * Special categories of cited documents: "T" later document published after the international filing date or                  |                                                                                                                         |                                                                                              | national filing data an    |  |
| "A" document defining the general state of the art which is not                                                               |                                                                                                                         | priority date and not in conflict with the                                                   | application but cited to   |  |
| "E" carlier                                                                                                                   | red to be of particular relevance<br>document but published on or after the international filing                        | "X" understand the principle or theory under<br>"X" document of particular relevance; the ci | rlying the invention       |  |
| date                                                                                                                          | date considered novel or cannot be consi                                                                                |                                                                                              | ed to involve an inventive |  |
| "L" docume<br>cited to                                                                                                        | ent which may throw doubts on priority claim(s) or which is establish the publication date of another citation or other | step when the document is taken alone                                                        |                            |  |
| special                                                                                                                       | reason (as specified)                                                                                                   | considered to involve an inventive step                                                      | when the document is       |  |
| "O" docume<br>means                                                                                                           | ant referring to an oral disclosure, use, exhibition or other                                                           | combined with one or more other such                                                         | focuments, such            |  |
| "P" document published prior to the international filing date but later                                                       |                                                                                                                         | combination being obvious to a person : "&" document member of the same patent fit           |                            |  |
| than the                                                                                                                      | priority date claimed                                                                                                   |                                                                                              | amy                        |  |
| Date of the a                                                                                                                 | ctual completion of the international search                                                                            | Date of mailing of the international search                                                  | report                     |  |
| 11 April, 2003 (11.04.03)                                                                                                     |                                                                                                                         | 30 April, 2003 (30.0                                                                         | 04.03)                     |  |
|                                                                                                                               | ·                                                                                                                       |                                                                                              |                            |  |
|                                                                                                                               | ailing address of the ISA/                                                                                              | Authorized officer                                                                           |                            |  |
| Japanèse Patent Office                                                                                                        |                                                                                                                         |                                                                                              | i                          |  |
|                                                                                                                               |                                                                                                                         | m                                                                                            |                            |  |
| Facsimile No.                                                                                                                 |                                                                                                                         | Telephone No.                                                                                | ŀ                          |  |

# INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP03/02635

| Box I Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)                                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:                                                                            |
| 1. X Claims Nos.: 13-15                                                                                                                                                                                             |
| because they relate to subject matter not required to be searched by this Authority, namely:  The inventions as set forth in claims 13 to 15 pertain to methods for treatment of the human body by therapy.         |
| (Article 17(2)(a)(i) of the PCT and Rule 39.1(iv) of the Regulations)                                                                                                                                               |
| 2. Claims Nos.:                                                                                                                                                                                                     |
| because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:       |
|                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                     |
| 3. Claims Nos.:                                                                                                                                                                                                     |
| because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).                                                                                             |
| Box II Observations where unity of invention is lacking (Continuation of item 3 of first sheet)                                                                                                                     |
| This International Searching Anthority found multiple inventions in this international application, as follows:                                                                                                     |
| ·                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                     |
| 1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.                                                                         |
| 2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment                                                                                    |
| of any additional fee.                                                                                                                                                                                              |
| 3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers                                                                                   |
| only those claims for which fees were paid, specifically claims Nos.:                                                                                                                                               |
| ·                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                     |
| A [ No provided additional count 6 country to the state of                                                                                                                                                          |
| 4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: |
|                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                     |
| Remark on Protest                                                                                                                                                                                                   |
| No protest accompanied the payment of additional search fees.                                                                                                                                                       |
| ·                                                                                                                                                                                                                   |

国際調査報告 国際出願番号 PCT/JP03/02635 発明の属する分野の分類(国際特許分類(IPC)) Int. C1' C07D265/36, A61K31/538, A61P1/04, 7/00, 9/10, 11/0 0, 11/02, 17/00, 25/06, 25/20, 29/00, 37/08, 43/00 B. 調査を行った分野 調査を行った最小限資料(国際特許分類(IPC)) Int. C1' C07D265/36, A61K31/538, A61P1/04, 7/00, 9/10, 11/0 0, 11/02, 17/00, 25/06, 25/20, 29/00, 37/08, 43/00 最小限資料以外の資料で調査を行った分野に含まれるもの 日本国実用新案公報 1992-1996年 日本国公開実用新案公報 1971-2002年 日本国実用新案登録公報 1996-2002年 日本国登録実用新案公報 1994-2002年 国際調査で使用した電子データベース (データベースの名称、調査に使用した用語) REGISTRY (STN), CAPLUS (STN) C. 関連すると認められる文献 引用文献の 関連する カテゴリー\* 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 請求の範囲の番号 X. WO 86/05779 A1 (YAMANOUCHI PHARMACEUTICAL CO., LTD.) 1-12 1986.10.09, CLAIMS, Reference Example 33, Example 60, & EP 218728 A1 & JP 63-159342 A & US 5116853 A WO 01/66520 A1 (ONO PHARMACEUTICAL CO., LTD.) 2001.09.13 A & EP 1262475 A1 WO 98/25919 A1 (SHIONOGI & CO., LTD.) 1998.06.18 6 & EP 944614 A1 & JP 2000-514824 A & US 6083974 A C欄の続きにも文献が列挙されている。 「 パテントファミリーに関する別紙を参照。 \* 引用文献のカテゴリー の日の後に公表された文献 「A」特に関連のある文献ではなく、一般的技術水準を示す 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 「E」国際出願日前の出願または特許であるが、国際出願日 の理解のために引用するもの 以後に公表されたもの 「X」特に関連のある文献であって、当該文献のみで発明 「L」優先権主張に疑義を提起する文献又は他の文献の発行 の新規性又は進歩性がないと考えられるもの 日若しくは他の特別な理由を確立するために引用する 「Y」特に関連のある文献であって、当該文献と他の1以 文献 (理由を付す) 上の文献との、当業者にとって自明である組合せに 「O」口頭による開示、使用、展示等に言及する文献 よって進歩性がないと考えられるもの 「P」国際出願日前で、かつ優先権の主張の基礎となる出願 「&」同一パテントファミリー文献 国際調査を完了した日 国際調査報告の発送日 30.04.03 11.04.03 国際調査機関の名称及びあて先 特許庁審査官(権限のある職員) 4C 3127 日本国特許庁(ISA/JP)

伊藤 幸司

電話番号 03-3581-1101 内線 3451

郵便番号100-8915 東京都千代田区霞が関三丁目4番3号

| 位下 Y JIII                                                                           |
|-------------------------------------------------------------------------------------|
| 第1欄 請求の範囲の一部の調査ができないときの意見 (第1ページの2の続き)                                              |
| 法第8条第3項 (PCT17条(2)(a)) の規定により、この国際調査報告は次の理由により請求の範囲の一部について作成しなかった。                  |
| 1. 図 請求の範囲 <u>13-15</u> は、この国際調査機関が調査をすることを要しない対象に係るものである。<br>つまり、                  |
| 請求の範囲13-15に係る発明は治療による人体の処置方法に関するものである。<br>(PCT17条(2)(a)(i)及びPCT規則39.1(iv))          |
| 2. □ 請求の範囲 は、有意義な国際調査をすることができる程度まで所定の要件を満たしていない国際出願の部分に係るものである。つまり、                 |
| 3. □ 請求の範囲                                                                          |
| 第Ⅱ欄 発明の単一性が欠如しているときの意見 (第1ページの3の続き)                                                 |
|                                                                                     |
| 次に述べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。                                              |
|                                                                                     |
|                                                                                     |
|                                                                                     |
|                                                                                     |
|                                                                                     |
| ·                                                                                   |
| ·                                                                                   |
|                                                                                     |
|                                                                                     |
| 1. 出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求<br>の範囲について作成した。               |
| 2. <b>□</b> 追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追<br>加調査手数料の射付を求めなかった。 |
| 3. 出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納付のあった次の請求の範囲のみについて作成した。        |
|                                                                                     |
| 4.                                                                                  |
| 追加調査手数料の異議の申立てに関する注意                                                                |
| 追加調査手数料の納付と共に出願人から異議申立てがあった。                                                        |
| □ 追加調査手数料の納付と共に出願人から異築由立てがわかった。                                                     |