Testspezifikation Hardware- und Umgebungskomponenten Sichere Eisenbahnsteuerung

Testspezifikation Hardware- und Umgebungskomponenten

Für das studentische Projekt Sichere Eisenbahnsteuerung

Datum 24.06.2010

Quelle Google Code \rightarrow Dokumente \rightarrow 04 Test \rightarrow

04.01_Testspezifikation

Autoren Norman Nieß

Kai Dziembala

Version 1.0

Status freigegeben

Historie

1 Historie

Version	Datum	Autor	Bemerkung	
0.0	03.06.2010	Kai Dziembala Norman Nieß	Initialisierung der Testspezifikation für die Hardware- und System-Komponenten	
0.1	09.06.2010	Kai Dziembala Norman Nieß	Vorbereitung Testfall 5 und 6, Layoutanpassung, Behebung von Rechtschreibfehlern	
0.2	10.06.2010	Kai Dziembala Norman Nieß	Arbeit an Testfall 5 und 6	
0.3	16.06.2010	Kai Dziembala Norman Nieß	Fertigstellung Testfall 5 und 6	
0.4	17.06.2010	Kai Dziembala Norman Nieß	Einfügen der ausformulierten Haupttestziele in Kapitel 3	
1.0	24.06.2010	Kai Dziembala Norman Nieß	Korrektur von Rechtschreibfehlern, Ergänzungen zur Verwendung des Logikanalysators in Kapitel 9.4, Korrektur von Referenzangaben auf Testskripte	

2 Inhaltsverzeichnis

1 Hi	storie	2
2 In	haltsverzeichnis	
3 Te	estziele	!
4 Te	estfall 1 "Schienennetz, Sensor- und Magnetpositionen"	(
	Identifikation der Testobjekte	
	Check-Liste	
	estfall 2 "Manuelle Verstellbarkeit der Weichen und Entkoppler"	
	Identifikation der Testobjekte	
5.2	Check-Liste	1
6 Te	estfall 3 "Ferngesteuerte Verstellbarkeit der Weichen und Entkoppler"	8
6.1	Identifikation der Testobjekte	8
6.2	Check-Liste	8
7 Te	estfall 4 "Ferngesteuertes Fahren der Lokomotiven"	9
7.1	Identifikation der Testobjekte	9
7.2	Check-Liste	9
8 Te	estfall 5 "Mikrocontroller gesteuerter Fahrbefehl "	10
	Identifikation der Testobjekte	
8.2	Test-Identifikation	10
8.3	Testfallbeschreibung	10
8.4	Testskript	10
8.5	Testreferenz	1
8.6	Test-Protokoll	1
9 Te	estfall 6 "Test des S88-Rückmeldemoduls und der Hall-Sensoren"	12
	Identifikation der Testobjekte	
	Test-Identifikation	
	Testfallbeschreibung	
	Testskript	
	Testreferenz	
9.6	Test-Protokoll	14

Inhaltsverzeichnis

10 Testfall 7 "Test der Not-Aus-Relais"	15
10.1 Identifikation der Testobjekte	15
10.2 Check-Liste	15
11 Testfall 8 "Position der Lokomotiven und Wagons"	16
11.1 Identifikation der Testobjekte	16
11.2 Check-Liste	16
12 Auswertung	17

Testziele

3 Testziele

Der Test der Hardware- und Systemumgebungs-Komponenten dient der Erfüllung des ersten Haupttestziels, sowie dem Hardware-Anteil des zweiten Haupttestziels, welche aus dem zehnten Kapitel des Testplans stammen.

Diese Haupttestziele lauten wie folgt:

- 1) Die Systemumgebung erfüllt die im Pflichtenheft spezifizierten Bedingungen (Kapitel 4.2).
- 2) Das Gesamtsystem erfüllt die Fahraufgabe gemäß der Vorgabe im Pflichtenheft (Kapitel 6).

Testfall 1 "Schienennetz, Sensor- und Magnetpositionen"

4 Testfall 1 "Schienennetz, Sensor- und Magnetpositionen"

4.1 Identifikation der Testobjekte

Es werden folgende Komponenten getestet:

- Schienennetz
- Sensoren
- Lokomotiven, Wagons, Magnete

Was	Prüfhäufigkeit	Zustand	Bemerkung bei 'niO'
Schienennetz laut Abbildung 3 im Kapitel 5.1 des Pflichtenhefts aufgebaut	1 mal	□ iO □ niO	
Position der Sensoren laut Abbildung 3 im Kapitel 5.1 des Pflichtenhefts	1 mal	□ iO □ niO	
Ausstattung der Lokomotiven und Wagons mit Magneten entsprechend dem Kapitel 5.2.1 und 5.2.2 des Pflichtenhefts	1 mal	□ iO □ niO	

Testfall 2 "Manuelle Verstellbarkeit der Weichen und Entkoppler"

5 Testfall 2 "Manuelle Verstellbarkeit der Weichen und Entkoppler"

5.1 Identifikation der Testobjekte

Es werden folgende Komponenten getestet:

- Weichen
- Entkoppler

Was	Prüfhäufigkeit	Zustand	Bemerkung bei 'niO'
Weiche 'a' lässt sich manuell hin und her verstellen	2 mal	iO niO	
Weiche 'b' lässt sich manuell hin und her verstellen	2 mal	iO niO	
Weiche 'c' lässt sich manuell hin und her verstellen	2 mal	iO niO	
Entkoppler 'E1' lässt sich manuell verstellen	1 mal	iO niO	
Entkoppler 'E2' lässt sich manuell verstellen	1 mal	iO niO	

Testfall 3 "Ferngesteuerte Verstellbarkeit der Weichen und Entkoppler"

6 Testfall 3 "Ferngesteuerte Verstellbarkeit der Weichen und Entkoppler"

6.1 Identifikation der Testobjekte

Es werden folgende Komponenten getestet:

- Weichen
- Entkoppler
- Multi-Maus (nicht alle Funktionalitäten)
- DCC-Verstärker + Transformator

Was	Prüfhäufigkeit	Zustand	Bemerkung bei 'niO'
Weiche 'a' lässt sich mittels Multi-Maus verstellen	4 mal	iO niO	
Weiche 'b' lässt sich mittels Multi-Maus verstellen	4 mal	iO niO	
Weiche 'c' lässt sich mittels Multi- Maus verstellen	4 mal	iO niO	
Entkoppler 'E1' lässt sich mittels Multi-Maus verstellen	2 mal	iO niO	
Entkoppler 'E2' lässt sich mittels Multi-Maus verstellen	2 mal	iO niO	

7 Testfall 4 "Ferngesteuertes Fahren der Lokomotiven"

7.1 Identifikation der Testobjekte

Es werden folgende Komponenten getestet:

- Lokomotive 1 + 2
- Multi-Maus (nicht alle Funktionalitäten)
- DCC-Verstärker + Transformator

Was	Prüfhäufigkeit	Zustand	Bemerkung bei 'niO'
Fährt Lokomotive 1 vorwärts	Gesamtes Streckennetz 1 mal abfahren(auch Abstell- und Nebengleis)	☐ iO ☐ niO	
Fährt Lokomotive 1 rückwärts	Gesamtes Streckennetz 1 mal abfahren(auch Abstell- und Nebengleis)	iO niO	
Fährt Lokomotive 2 vorwärts	Gesamtes Streckennetz 1 mal abfahren(auch Abstell- und Nebengleis)	☐ iO ☐ niO	
Fährt Lokomotive 2 rückwärts	Gesamtes Streckennetz 1 mal abfahren(auch Abstell- und Nebengleis)	☐ iO ☐ niO	

8 Testfall 5 "Mikrocontroller gesteuerter Fahrbefehl"

8.1 Identifikation der Testobjekte

- Mikrocontroller C515C
- Arduino
- XPressNet-Adapter
- Multi-Maus
- DCC-Verstärker + Transformator
- Lokomotive 1

8.2 Test-Identifikation

Testname: Test Hardware

Verzeichnisse

Testskripts: Google Code → Dokumente → 04_Tests → 04.02_Testskript →

04.02.11_Hardware+Umgebung

Testprotokolle: Google Code \rightarrow Dokumente \rightarrow 04 Tests \rightarrow 04.03 Testprotokolle \rightarrow

04.03.11_Hardware+Umgebung

8.3 Testfallbeschreibung

Mit einem Mikrocontroller-Programm wird die Lokomotive 1 dauerhaft auf dem Hauptgleis vorwärts bewegt. Gleichzeitig werden über den Arduino Debug-Ausgaben getätigt. Somit kann sichergestellt werden, dass der Mikrocontroller, die Multimaus, der XpressNet-Adapter, der DCC-Verstärker, die entsprechenden Transformatoren, die Lokomotive 1, der Arduino und die jeweilige Verkabelung funktionstüchtig sind.

Dieser Test muss sowohl mit dem Mikrocontroller eins und zwei durchgeführt werden.

8.4 Testskript

Es wird getestet, ob die Lokomotive 1 mindestens drei Runden auf dem Hauptgleis bewegt werden kann. Dazu werden zuerst die Funktionalitäten und somit die Methoden der Software-Module 'RS232-Treiber' und 'Auditing-System' (entsprechend den jeweiligen Moduldesigns) nachgebildet. Anschließend wird Shared-Memory-Variable der 'EV_RS232_streckenbefehl.weiche' der Wert '0x6' zugewiesen und die Funktion workRS232() aufgerufen. Dann die Variable 'EV RS232 streckenbefehl.weiche' auf den Wert '0x9' gesetzt **Funktion** workRS232() aufgerufen. Dann 'EV RS232 streckenbefehl.weiche' auf den Wert '0xB' gesetzt und die Funktion workRS232() aufgerufen. Die Weichen sind nun so gestellt, dass die Lokomotive das Hauptgleis befährt.

Testfall 5 "Mikrocontroller gesteuerter Fahrbefehl "

Danach muss die Shared-Memory-Variable 'EV_RS232_streckenbefehl.lok' auf den Wert '0xE' gesetzt und anschließend die Funktion workRS232() aufgerufen werden, um die Lokomotive 1 mit Fahrgeschwindigkeit vorwärts fahren zu lassen.

In einer endlosen while-Schleife wird nun die Funktion 'sendMsg(byte module_id, const byte* msg)' mit den Übergabewerten '0x0' und 'nachricht' aufgerufen. Eine Nachricht ist ein Byte-Array mit folgenden Inhalten: nachricht = [0xFF, 0x0, 0x0, 0xFF, 0xFF, 0x0]. Außerdem wird innerhalb der while-Schleife noch die Funktion 'workAS()' aufgerufen. Danach ist ein Wartezeit zu implementieren, die eine Pause von ca. 5s bewirkt. Somit werden alle 5 Sekunden Nachrichten über den Arduino ausgegeben.

Dies wird mit folgendem Test-Skript realisiert:

siehe 'Google Code \rightarrow 04_Test \rightarrow 04.02_Testskripts \rightarrow 04.02.11_Hardware+Umgebung \rightarrow Test Hardware

Nachdem die Lokomotive drei komplette Rundfahrten absolviert hat, kann der Testfall manuell abgebrochen werden.

8.5 Testreferenz

Die Lokomotive 1 fährt mindestens drei Runden auf dem Hauptgleis. Zeitgleich wird auf einem angeschlossenen Rechner im fünf Sekunden-Takt folgende Nachricht ausgegeben:

"Unbekannte Fehlermeldung, Fahrend, Fahrend, Unbekannte Fehlermeldung, Unbekannte Fehlermeldung, Fahrbefehl"

8.6 Test-Protokoll

Was	Prüfhäufigkeit	Ergebnis	Bemerkung bei 'niO'
Mikrocontroller1 gesteuerter Fahrbefehl	1 mal	□ iO □ niO	
Mikrocontroller2 gesteuerter Fahrbefehl	1 mal	□ iO □ niO	

9 Testfall 6 "Test des S88-Rückmeldemoduls und der Hall-Sensoren"

9.1 Identifikation der Testobjekte

Es werden folgende Komponenten getestet:

- Mikrocontroller C515C
- S88-Rückmeldemodul 1 + 2
- Hall-Sensoren
- Multi-Maus
- DCC-Verstärker + Transformator
- Lokomotive 1 + 2
- Wagons
- Magneten

9.2 Test-Identifikation

Testname: Test Sensoren

Verzeichnisse

Testskripts: Google Code → Dokumente → 04 Tests → 04.02 Testskript →

04.02.11_Hardware+Umgebung

Testprotokolle: Google Code \rightarrow Dokumente \rightarrow 04_Tests \rightarrow 04.03_Testprotokolle \rightarrow

04.03.11_Hardware+Umgebung

9.3 Testfallbeschreibung

Die beiden Lokomotiven werden mit angekoppelten Wagons nacheinander Multi-Mausferngesteuert, jeweils mit langsamer, mittlerer und maximaler Geschwindigkeit über das Streckennetz bewegt. Bei diesem manuellen Fahren muss sichergestellt sein, das jeder Lokomotiven- und Wagon- Magnet alle Hall-Sensoren mindestens einmal passiert und somit schaltet. Zeitgleich läuft auf dem Mikrocontroller dauerhaft ein Steuerprogramm für das S88-Rückmeldemodul, wodurch die jeweiligen Sensordaten kontinuierlich eingelesen werden. Ein Abgriff dieser jeweils vom S88-Rückmeldemodul gelieferten Sensorzustände erfolgt über einen angeschlossenen Logikanalysator "Agilent Logic Wave". Dessen Binärmesswerte sind mittels Rechnerkopplung und entsprechender Software einsehbar. Somit kann überprüft werden, ob jeder Magnet bei den drei verschiedenen Fahrgeschwindigkeiten ein Sensorsignal für jeden Hall-Sensor erzeugt und somit die hardwareseitige Sensordatenerfassung funktioniert. Dieser Test muss jeweils für das Rückmeldemodul 1 und 2 durchgeführt werden, wodurch auch beide Sensorsätze auf Funktion überprüft werden.

Version 1.0 vom 24.06.2010

Testfall 6 "Test des S88-Rückmeldemoduls und der Hall-Sensoren"

9.4 Testskript

Die Steuerung der S88-Rückmeldemodule muss entsprechend dem Moduldesign 'S88-Treiber' nachgebildet werden. Dazu müssen die Signale 'PS', 'Reset' und 'Clock' in vorgegebener zeitlicher Abfolge erzeugt werden. Die folgende Tabelle zeigt die dabei zu verwendende Pinbelegung:

Signal	Pin
PS	P5^0
Reset	P5^1
Clock	P5^2

Zur kontinuierlichen Sensordatenerfassung muss die Signalgenerierung wiederholend in einer Endlosschleife ablaufen.

Dies wird mit folgendem Test-Skript realisiert:

siehe 'Google Code \to 04_Test \to 04.02_Testskripts \to 04.02.11_Hardware+Umgebung \to Test Sensoren

An den in obiger Tabelle benannten Pins, sowie an der 'Data'-Signalleitung des S88-Rückmeldemoduls werden nun die Messleitungen von Pad1 des Logikanalysators "Agilent Logic Wave" angeschlossen.

Messleitung Pad1	Signal
Agilent Logic Wave	
0	PS
1	Reset
2	Clock
3	Data

Dieser ist des weiteren mit dem PC zu verbinden und die Analyse-Software 'Agilent LogicWave' mit dem Projekt 'Test_Sensoren_Agilent.lwc' (Google Code \rightarrow 04_Test \rightarrow 04.02_Testskripts \rightarrow 04.02.11_Hardware+Umgebung) zu starten. Ein bereits beschriebenes manuelles Fahren der Lokomotiven incl. Wagons führt nun zu auswertbaren Messsignalen auf dem PC.

Testfall 6 "Test des S88-Rückmeldemoduls und der Hall-Sensoren"

9.5 Testreferenz

Jeder Magnet erzeugt für jede der drei verschiedenen Fahrgeschwindigkeiten ein Sensorsignal bei wiederum jedem einzelnen Hall-Sensor.

9.6 Test-Protokoll

Was	Prüfhäufigkeit	Ergebnis	Bemerkung bei 'niO'
Alle Lokomotiven- und Wagon- Magnete erzeugen bei langsamer Fahrgeschwindigkeit Signale am Sensorsatz des Rückmeldemoduls 1	1 mal	☐ iO ☐ niO	
Alle Lokomotiven- und Wagon- Magnete erzeugen bei mittlerer Fahrgeschwindigkeit Signale am Sensorsatz des Rückmeldemoduls 1	1 mal	☐ iO ☐ niO	
Alle Lokomotiven- und Wagon- Magnete erzeugen bei schneller Fahrgeschwindigkeit Signale am Sensorsatz des Rückmeldemoduls 1	1 mal	□ iO □ niO	
Alle Lokomotiven- und Wagon- Magnete erzeugen bei langsamer Fahrgeschwindigkeit Signale am Sensorsatz des Rückmeldemoduls 2	1 mal	□ iO □ niO	
Alle Lokomotiven- und Wagon- Magnete erzeugen bei mittlerer Fahrgeschwindigkeit Signale am Sensorsatz des Rückmeldemoduls 2	1 mal	□ iO □ niO	
Alle Lokomotiven- und Wagon- Magnete erzeugen bei schneller Fahrgeschwindigkeit Signale am Sensorsatz des Rückmeldemoduls 2	1 mal	□ iO □ niO	

Testfall 7 "Test der Not-Aus-Relais"

10 Testfall 7 "Test der Not-Aus-Relais"

10.1 Identifikation der Testobjekte

Es werden folgende Komponenten getestet:

Not-Aus-Relais

Was	Prüfhäufigkeit	Zustand	Bemerkung bei 'niO'
Not-Aus-Relais 1 schließt bei angelegter Spannung von 5V	3 mal	iO niO	
Not-Aus-Relais 1 öffnet bei Wegnahme der Spannung	3 mal	iO niO	
Not-Aus-Relais 2 schließt bei angelegter Spannung von 5V	3 mal	iO niO	
Not-Aus-Relais 2 öffnet bei Wegnahme der Spannung	3 mal	iO niO	

Testfall 8 "Position der Lokomotiven und Wagons"

11 Testfall 8 "Position der Lokomotiven und Wagons"

Es ist zu beachten, dass dieser Test vor jedem mikrocontrollergesteuertem Fahrbetrieb durchzuführen ist.

11.1 Identifikation der Testobjekte

Es werden folgende Komponenten getestet:

- Lokomotiven
- Wagons

Was	Prüfhäufigkeit	Zustand	Bemerkung bei 'niO'
Position Lokomotive 1 ist auf Gleisabschnitt 7, Fahrtrichtung entgegen dem Uhrzeigersinn	1 mal	io 🗆	niO
Position Lokomotive 2 ist auf Gleisabschnitt 8, Fahrtrichtung entgegen dem Uhrzeigersinn	1 mal	io 🗆	niO
Personenwagon 1 fest an Lokomotive 1 gekoppelt	1 mal	io 🗆	niO
Personenwagon 2 fest an Personenwagon 1 gekoppelt	1 mal	io 🗆	niO
Position Güterwagon 'schwarz' ist auf Gleisabschnitt 2	1 mal	io 🗆	niO
Position Güterwagon 'rot' ist auf Gleisabschnitt 2 und fest an Güterwagon 'schwarz' gekoppelt	1 mal	io 🗆	niO
Position Güterwagon 'braun' ist auf Gleisabschnitt 2 und fest an Güterwagon 'rot' gekoppelt	1 mal	□io □	niO

Auswertung

1	2	Αι	JS'	W	er	tu	n	a
-			. –		•			. 7

wird nach Testdurchführung erstellt