TEXT MINING

Klasifikasi Dokumen dengan Naïve Bayes

Team Teaching

FILKOM Fakultas Ilmu Komputer Universitas Brawijaya

Klasifkasi Teks dengan Naïve Bayes

- Merupakan metode klasifikasi yang sederhana ("naïve") berdasarkan aturan Bayes
- Umumnya menggunakan Bag of Words sebagai fitur

Klasifkasi Teks dengan Naïve Bayes

• Kategori dari dokumen uji d adalah kategori yang memiliki nilai probabilitas posterior P(c|d) terbesar

$$C(d) = \arg\max_{c} P(c|d)$$

• Untuk dokumen d dan kategori c, probabilitas posterior bisa dihitung:

$$P(c|d) = \frac{P(c) * P(d|c)}{P(d)}$$

- P(c/d) disebut **posterior** atau peluang kelas c diberikan dokumen d
- P(c) disebut **prior**, atau peluang awal munculnya kategori c
- P(d/c) disebut Likelihood atau conditional probability
- P(d) disebut evidence atau peluang munculnya dokumen d

- Masing-masing kategori akan dihitung nilai posteriornya
- Jika kita memiliki 3 kategori {c1, c2, dan c3}, maka akan dihitung

$$P(c1|d) = \frac{P(c1)*P(d|c1)}{P(d)}$$

$$P(c2|d) = \frac{P(c2)*P(d|c2)}{P(d)}$$

•
$$P(c2|d) = \frac{P(c2)*P(d|c2)}{P(d)}$$

• $P(c3|d) = \frac{P(c3)*P(d|c3)}{P(d)}$

 Selanjutnya, akan dipilih kategori yang memiliki nilai posterior terbesar sebagai kategori dari dokumen d

- Misal P(c1|d)=0.03, P(c2|d)=0.01 dan P(c3|d)=0.006, maka dokumen d akan masuk pada kategori c1
- Meskipun probabilitas posteriornya kecil, kategori c1 tetap dipilih karena nilainya paling besar dibandingkan probabilitas posterior kategori lain
- Kita hanya melihat mana kategori dengan peluang tersbesar tanpa peduli besar nilainya
- Oleh karena itu, P(d) bisa dihilangkan karena P(d) selalu bernilai sama untuk semua kategori

Contoh:

•
$$P(c1|d) = \frac{P(c1)*P(d|c1)}{P(d)} = \frac{0.006}{P(d)}$$

•
$$P(c2|d) = \frac{P(c2)*P(d|c2)}{P(d)} = \frac{0.002}{P(d)}$$

•
$$P(c1|d) = \frac{P(c1)*P(d|c1)}{P(d)} = \frac{0.006}{P(d)}$$

• $P(c2|d) = \frac{P(c2)*P(d|c2)}{P(d)} = \frac{0.002}{P(d)}$
• $P(c3|d) = \frac{P(c3)*P(d|c3)}{P(d)} = \frac{0.0012}{P(d)}$

- Karena nilai P(d) selalu sama untuk semua kategori, tanpa memperhitungkan P(d) kita sudah tahu bahwa P(c1|d) akan mempunyai nilai probabilitas terbesar.
- Oleh karena itu, kita sudah bisa memastikan bahwa dokumen d akan masuk kategori c1

Bukti: Misal P(d)=0.2, kita hitung posteriornya:

•
$$P(c1|d) = \frac{P(c1)*P(d|c1)}{P(d)} = \frac{0.006}{0.2} = 0.03$$

•
$$P(c2|d) = \frac{P(c2)*P(d|c2)}{P(d)} = \frac{0.002}{0.2} = 0.01$$

•
$$P(c2|d) = \frac{P(c2)*P(d|c2)}{P(d)} = \frac{0.002}{0.2} = 0.01$$

• $P(c3|d) = \frac{P(c3)*P(d|c3)}{P(d)} = \frac{0.0012}{P(d)} = 0.006$

- Terbukti, P(c1/d) memang mempunyai nilai probabilitas terbesar.
- Oleh karena itu, kita tidak perlu melibatkan P(d) ke dalam perhitungan untuk penentuan kategori

• Oleh karena itu, Formula Naïve Bayes untuk klasifikasi cukup:

$$P(c|d) = P(c) * P(d|c)$$

- P(c/d) disebut **posterior** atau peluang kelas c diberikan dokumen d
- P(c) disebut **prior**, atau peluang awal munculnya kategori c
- P(d/c) disebut Likelihood atau conditional probability

Prior probability

• Sekarang, mari fokus pada *Prior*:

$$P(c|d) = P(c) * P(d|c)$$

- Prior adalah probablitas awal dari kelas c
- Perhitungan Prior hanya berdasarkan pada data latih

$$P(c) = \frac{Nc}{N}$$

- Nc = Jumlah dokumen pada data latih yang masuk pada kategori c
- N = Jumlah dokumen pada data latih

Prior probability

- Misal, kita memiliki 10 dokumen training dan 3 kategori
- D1, D2, D3 masuk kategori C1
- D4, D5 masuk kategori C2
- D6, D7, D8, D9, D10 masuk kategori C3

$$P(c) = \frac{Nc}{N}$$

- Maka $P(c1) = \frac{3}{10}$ $P(c2) = \frac{2}{10} dan$ $P(c3) = \frac{5}{10}$

• Sekarang, mari fokus pada Conditional Probability:

$$P(c|d) = P(c) * P(d|c)$$

- Dokumen d yang akan diklasifkasi terdiri dari beberapa kata w
- Probabilitas masing-masing fitur atau kata P(w|c) diasumsikan independen (oleh karena itu disebut "Naïve")
- Misal dokumen d terdiri dari 4 kata {w1, w2, w3, w4}
- Conditional probability dokumen d merupakan hasil perkalian Conditional probability masing-masing fitur:

$$P(d|c) = P(w1, w2, w3, w4|c) = P(w1|c) * P(w2|c) * P(w3|c) * P(w4|c)$$

- Misal dokumen *d* terdiri dari *n* kata {*w*1, *w*2, ..., *wn*}
- Conditional probability dokumen d bisa kita hitung:

$$P(d|c) = P(w1, w2, ..., wn|c) = P(w1|c) * P(w2|c) * ... *P(wn|c)$$

atau

$$P(d|c) = P(w1, w2, ..., wn|c) = \prod_{w \in d} P(w|c)$$

• Oleh karena itu, Formula Naïve Bayes untuk klasifikasi dokumen menjadi:

$$P(c|d) = P(c) * \prod_{w \in d} P(w|c)$$

- P(c/d) disebut **posterior** atau peluang kelas c diberikan dokumen d
- P(c) disebut **prior**, atau peluang awal munculnya kategori c
- $\prod_{w \in d} P(w|c)$ adalah perkalian dari conditional probability masing-masing fitur atau kata yang terdapat pada dokumen d

• Sekarang, mari fokus pada Conditional Probability fitur:

$$P(c|d) = P(c) * \prod_{w \in d} P(w|c)$$

- Untuk menghitung Conditional Probability, kita bisa menggunakan salah satu dari 3 model:
 - Bernoulli
 - Multinomial
 - Gaussian

Bernoulli Model

- Disebut juga Multi-variate Bernoulli model
- Berdasarkan pada data biner: menggunakan Binary Term Frequency

$$P(w|c) = b_t * \frac{Nc(w)}{Nc} + (1 - b_t) * (1 - \frac{Nc(w)}{Nc})$$

- Jika kata w ada pada dokumen berkategori c, $b_t=1$
- ullet Jika kata w tidak ada pada dokumen berkategori c, $b_t=0$
- Nc(w) = jumlah dokumen berkategori c yang mengandung kata w
- Nc = jumlah dokumen berkategori c

Bernoulli Model

 Untuk menghindari adanya probabilitas nol, biasanya dilakukan add-one atau laplace smoothing. Ada penambahan +1 pada pembilang, dan +2 pada penyebut

$$P(w|c) = b_t * \frac{Nc(w) + 1}{Nc + 2} + (1 - b_t) * (1 - \frac{Nc(w) + 1}{Nc + 2})$$

- ullet Jika kata w ada pada dokumen berkategori c, $b_t=1$
- Jika kata \boldsymbol{w} tidak ada pada dokumen berkategori c, $\boldsymbol{b}_t = 0$
- Nc(w) = jumlah dokumen berkategori c yang mengandung kata w
- Nc = jumlah dokumen berkategori c

Multinomial Model

Berdasarkan pada data diskrit: menggunakan Raw Term Frequency

$$P(w|c) = \frac{count(w,c)}{count(c)}$$

- count(w, c) = jumlah kemunculan kata w pada kategori c
- count(c) = jumlah total kemunculan semua kata pada kategori c

Multinomial Model

 Untuk menghindari adanya probabilitas nol, biasanya dilakukan add-one atau laplace smoothing. Ada penambahan +1 pada pembilang, dan |V| pada penyebut

$$P(w|c) = \frac{count(w,c) + 1}{count(c) + |V|}$$

- count(w, c) = jumlah kemunculan kata w pada kategori c
- count(c) = jumlah total kemunculan semua kata pada kategori c
- |V| = jumlah term unik atau fitur

Gaussian Model

• Berdasarkan pada data kontinyu: menggunakan TF-IDF

$$P(w|c) = \frac{1}{\sqrt{2\pi\sigma_c^2}} e^{\left(\frac{-(w-\mu_c)^2}{2\sigma_c^2}\right)}$$

- π = nilai pi 3.14...
- σ_c^2 = varians nilai fitur w pada kelas c
- w = nilai fitur w (nilai TF-IDF) pada data uji
- μ_c = rata-rata nilai fitur w pada kelas c

- Dari ketiga model tersebut, yang paling popular dalam klasifikasi teks adalah multinomial
- Multinomial model terbukti secara umum lebih akurat dalam klasifikasi teks dibandingkan dengan model lain

Langkah-langkah Klasifikasi Teks dengan Naïve Bayes

Training

- Inputnya adalah data latih
- Menghitung prior masing-masing kategori
- Menentukan fitur berdasarkan term unik pada data latih
- Menghitung Raw TF untuk semua fitur pada semua dokumen di data latih
- Menghitung conditional probability per fitur per kategori
- Outputnya adalah model (nilai prior dan conditional probability)

Testing

- Inputnya adalah model dan data uji
- Menghitung posterior untuk masing-masing kategori dan menentukan kategori dengan nilai posterior terbesar
- Outputnya adalah kategori untuk masing-masing data uji

Studi kasus klasifikasi dokumen

d1

Sekarang saya sedang suka memasak. Masakan kesukaan saya sekarang adalah nasi goreng. Cara memasak nasi goreng adalah nasi digoreng

Kelas A

d2

Ukuran nasi sangatlah kecil, namun saya selalu makan nasi

Kelas A

d4

Mobil dan bus dapat mengangkut banyak penumpang. Namun, bus berukuran jauh lebih besar dari mobil, apalagi mobil-mobilan

Kelas B

d3

Nasi berasal dari beras yang ditanam di sawah. Sawah berukuran kecil hanya bisa ditanami sedikit beras

Kelas B

d5

Bus pada umumnya berukuran besar dan berpenumpang banyak, sehingga bus tidak bisa melewati persawahan

Kelas C

Dokumen baru d6

Nasi Goreng Pedas

Kelas = ???

Prior probability

- d1, d2 masuk kategori A
- d3, d4 masuk kategori B
- d5 masuk kategori C
- Jumlah dokumen pada data latih (N) = 5

$$P(c) = \frac{Nc}{N}$$

- Maka $P(A) = \frac{2}{5}$ $P(B) = \frac{2}{5}$ $P(C) = \frac{1}{5}$

Fase Training

Menentukan Fitur

• Term Unik sebagai Fitur. Ada 13 fitur pada kasus ini

No	TERM/FITUR
1	suka
2	masak
3	nasi
4	goreng
5	ukur
6	makan
7	beras
8	tanam
9	sawah
10	mobil
11	bus
12	angkut
13	tumpang

• Menghtung Raw TF masing-masing fitur pada masing-masing dokumen di data latih

No	TERM	D1(A)	D2(A)	D3(B)	D4(B)	D5(C)
1	suka	2	0	0	0	0
2	masak	3	0	0	0	0
3	nasi	3	2	1	0	0
4	goreng	3	0	0	0	0
5	ukur	0	1	0	1	1
6	makan	0	1	0	0	0
7	beras	0	0	2	0	0
8	tanam	0	0	2	0	0
9	sawah	0	0	2	0	1
10	mobil	0	0	0	4	0
11	bus	0	0	0	2	2
12	angkut	0	0	0	1	0
13	tumpang	0	0	0	1	1

- Menghtung conditional probability dengan Mutinomial Model masing-masing fitur pada masing-masing kategori
- Misal, conditional probability fitur "ukur" pada kategori A

$$P(ukur|A) = \frac{count(ukur, A) + 1}{count(A) + |V|}$$

- count(ukur, A) = jumlah kemunculan kata ukur pada kategori A
- count(A) = jumlah total kemunculan semua kata pada kategori A
- |V| = jumlah term unik atau fitur

• Conditional probability fitur ukur pada kategori A

No	TERM	D1(A)	D2(A)	D3(B)	D4(B)	D5(C)
1	suka	2	0	0	0	0
2	masak	3	0	0	0	0
3	nasi	3	2	1	0	0
4	goreng	3	0	0	0	0
5	ukur	0	1	0	1	1
6	makan	0	1	0	0	0
7	beras	0	0	2	0	0
8	tanam	0	0	2	0	0
9	sawah	0	0	2	0	1
10	mobil	0	0	0	4	0
11	bus	0	0	0	2	2
12	angkut	0	0	0	1	0
13	tumpang	0	0	0	1	1

Conditional probability fitur ukur pada kategori A

No	TERM	D1(A)	D2(A)	D3(B)	D4(B)	D5(C)
1	suka	2	0	0	0	0
2	masak	3	0	0	0	0
3	nasi	3	2	1	0	0
4	goreng	3	0	0	0	0
5	ukur	0	1	0	1	1
6	makan	0	1	0	0	0
7	beras	0	0	2	0	0
8	tanam	0	0	2	0	0
9	sawah	0	0	2	0	1
10	mobil	0	0	0	4	0
11	bus	0	0	0	2	2
12	angkut	0	0	0	1	0
13	tumpang	0	0	0	1	1
	Total	11	4	7	9	5

$$P(ukur|A) = \frac{count(ukur, A) + 1}{count(A) + |V|}$$

Fakultas Ilmu Komputer Universitas Brawijaya

• Conditional probability fitur ukur pada kategori A

No	TERM	D1(A)	D2(A)	D3(B)	D4(B)	D5(C)
1	suka	2	0	0	0	0
2	masak	3	0	0	0	0
3	nasi	3	2	1	0	0
4	goreng	3	0	0	0	0
5	ukur	0	1	0	1	1
6	makan	0	1	0	0	0
7	beras	0	0	2	0	0
8	tanam	0	0	2	0	0
9	sawah	0	0	2	0	1
10	mobil	0	0	0	4	0
11	bus	0	0	0	2	2
12	angkut	0	0	0	1	0
13	tumpang	0	0	0	1	1
	Total	11	4	7	9	5

$$P(ukur|A) = \frac{count(ukur, A) + 1}{count(A) + |V|}$$

$$P(ukur|A) = \frac{1+1}{15+13} = \frac{2}{28} = 0.071$$

Conditional probability fitur ukur pada kategori B

No	TERM	D1(A)	D2(A)	D3(B)	D4(B)	D5(C)
1	suka	2	0	0	0	0
2	masak	3	0	0	0	0
3	nasi	3	2	1	0	0
4	goreng	3	0	0	0	0
5	ukur	0	1	0	1	1
6	makan	0	1	0	0	0
7	beras	0	0	2	0	0
8	tanam	0	0	2	0	0
9	sawah	0	0	2	0	1
10	mobil	0	0	0	4	0
11	bus	0	0	0	2	2
12	angkut	0	0	0	1	0
13	tumpang	0	0	0	1	1

$$P(ukur|B) = \frac{count(ukur, B) + 1}{count(B) + |V|}$$

• Conditional probability fitur *ukur* pada kategori *B*

No	TERM	D1(A)	D2(A)	D3(B)	D4(B)	D5(C)
1	suka	2	0	0	0	0
2	masak	3	0	0	0	0
3	nasi	3	2	1	0	0
4	goreng	3	0	0	0	0
5	ukur	0	1	0	1	1
6	makan	0	1	0	0	0
7	beras	0	0	2	0	0
8	tanam	0	0	2	0	0
9	sawah	0	0	2	0	1
10	mobil	0	0	0	4	0
11	bus	0	0	0	2	2 /
12	angkut	0	0	0	1	0
13	tumpang	0	0	0	1	/1
WORK .	Total	11	4	7	9	5

$$P(ukur|B) = \frac{count(ukur, B) + 1}{count(B) + |V|}$$

Conditional probability fitur ukur pada kategori B

No	TERM	D1(A)	D2(A)	D3(B)	D4(B)	D5(C)
1	suka	2	0	0	0	0
2	masak	3	0	0	0	0
3	nasi	3	2	1	0	0
4	goreng	3	0	0	0	0
5	ukur	0	1	0	1	1
6	makan	0	1	0	0	0
7	beras	0	0	2	0	0
8	tanam	0	0	2	0	0
9	sawah	0	0	2	0	1
10	mobil	0	0	0	4	0
11	bus	0	0	0	2	2
12	angkut	0	0	0	1	0
13	tumpang	0	0	0	1	1
	Total	11	4	7	9	5

$$P(ukur|B) = \frac{count(ukur, B) + 1}{count(B) + |V|}$$

$$P(ukur|B) = \frac{1+1}{16+13} = \frac{2}{29} = 0.069$$

• Conditional probability fitur *ukur* pada kategori *C*

No	TERM	D1(A)	D2(A)	D3(B)	D4(B)	D5(C)	$count(ukur C) \perp$
1	suka	2	0	0	0	0	$P(ukur C) = \frac{count(ukur,C) + count(C) + V }{count(C) + V }$
2	masak	3	0	0	0	0	count(c) + v
3	nasi	3	2	1	0	0	
4	goreng	3	0	0	0	0	V = 13
5	ukur	0	1	0	1	1	count(ukur,C) = 1
6	makan	0	1	0	0	0	
7	beras	0	0	2	0	0	
8	tanam	0	0	2	0	0	
9	sawah	0	0	2	0	1	
10	mobil	0	0	0	4	0	
11	bus	0	0	0	2	2	
12	angkut	0	0	0	1	0	
13	tumpang	0	0	0	1	1	

• Conditional probability fitur *ukur* pada kategori *C*

No	TERM	D1(A)	D2(A)	D3(B)	D4(B)	D5(C)
1	suka	2	0	0	0	0
2	masak	3	0	0	0	0
3	nasi	3	2	1	0	0
4	goreng	3	0	0	0	0
5	ukur	0	1	0	1	1
6	makan	0	1	0	0	0
7	beras	0	0	2	0	0
8	tanam	0	0	2	0	0
9	sawah	0	0	2	0	1
10	mobil	0	0	0	4	0
11	bus	0	0	0	2	2
12	angkut	0	0	0	1	0
13	tumpang	0	0	0	1	1 /
	Total	11	4	7	9	5

$$P(ukur|C) = \frac{count(ukur, C) + 1}{count(C) + |V|}$$

Fakultas Ilmu Komputer Universitas Brawijaya

• Conditional probability fitur *ukur* pada kategori *C*

No	TERM	D1(A)	D2(A)	D3(B)	D4(B)	D5(C)
1	suka	2	0	0	0	0
2	masak	3	0	0	0	0
3	nasi	3	2	1	0	0
4	goreng	3	0	0	0	0
5	ukur	0	1	0	1	1
6	makan	0	1	0	0	0
7	beras	0	0	2	0	0
8	tanam	0	0	2	0	0
9	sawah	0	0	2	0	1
10	mobil	0	0	0	4	0
11	bus	0	0	0	2	2
12	angkut	0	0	0	1	0
13	tumpang	0	0	0	1	1
	Total	11	4	7	9	5

$$P(ukur|C) = \frac{count(ukur, C) + 1}{count(C) + |V|}$$

$$|V| = 13$$

count(ukur,C) = 1
Count(C) = 5

$$P(ukur|C) = \frac{1+1}{5+13} = \frac{2}{18} = 0.111$$

• Conditional probability fitur *ukur* pada kategori *C*

No	TERM	D1(A)	D2(A)	D3(B)	D4(B)	D5(C)	P(w A)	P(w B)	P(w C)
1	suka	2	0	0	0	0			
2	masak	3	0	0	0	0			
3	nasi	3	2	1	0	0			
4	goreng	3	0	0	0	0			
5	ukur	0	1	0	1	1	0.071	0.069	0.111
6	makan	0	1	0	0	0			
7	beras	0	0	2	0	0			
8	tanam	0	0	2	0	0			
9	sawah	0	0	2	0	1		P(ukur A)) = 0.071
10	mobil	0	0	0	4	0			
11	bus	0	0	0	2	2		P(ukur B)) = 0.069
12	angkut	0	0	0	1	0		$\mathbf{p}(A, A, A, C)$	0 111
13	tumpang	0	0	0	1	1		P(ukur C)) = 0.111
	Total	11	4	7	9	5			

Conditional probability masing-masing fitur pada masing-masing kategori

No	TERM	D1(A)	D2(A)	D3(B)	D4(B)	D5(C)	P(w A)	P(w B)	P(w C)
1	suka	2	0	0	0	0	0.107	0.034	0.056
2	masak	3	0	0	0	0	0.143	0.034	0.056
3	nasi	3	2	1	0	0	0.214	0.069	0.056
4	goreng	3	0	0	0	0	0.143	0.034	0.056
5	ukur	0	1	0	1	1	0.071	0.069	0.111
6	makan	0	1	0	0	0	0.071	0.034	0.056
7	beras	0	0	2	0	0	0.036	0.103	0.056
8	tanam	0	0	2	0	0	0.036	0.103	0.056
9	sawah	0	0	2	0	1	0.036	0.103	0.111
10	mobil	0	0	0	4	0	0.036	0.172	0.056
11	bus	0	0	0	2	2	0.036	0.103	0.167
12	angkut	0	0	0	1	0	0.036	0.069	0.056
13	tumpang	0	0	0	1	1	0.036	0.069	0.111
	Total	11	4	7	9	5			

Fase Testing

Menghitung Posterior masing-masing kategori

No	TERM	P(w A)	P(w B)	P(w C)
1	suka	0.107	0.034	0.056
2	masak	0.143	0.034	0.056
3	nasi	0.214	0.069	0.056
4	goreng	0.143	0.034	0.056
5	ukur	0.071	0.069	0.111
6	makan	0.071	0.034	0.056
7	beras	0.036	0.103	0.056
8	tanam	0.036	0.103	0.056
9	sawah	0.036	0.103	0.111
10	mobil	0.036	0.172	0.056
11	bus	0.036	0.103	0.167
12	angkut	0.036	0.069	0.056
13	tumpang	0.036	0.069	0.111
Column Eakulta	Total			

Dokumen baru (d6
Nasi Goreng Pedas	

Kelas = ???

$$P(c|d) = P(c) * \prod_{w \in d} P(w|c)$$

$$P(c|d) = P(c) * P(nasi|c) * P(goreng|c)$$

Kata **pedas** tidak diperhitungkan karena **tidak termasuk fitur** (Tidak pernah muncul pada data latih)

Ingat-ingat lagi

- d1, d2 masuk kategori A
- d3, d4 masuk kategori B
- d5 masuk kategori C
- Jumlah dokumen pada data latih (N) = 5

$$P(c) = \frac{Nc}{N}$$

- Maka $P(A) = \frac{2}{5} = 0.4$
- $P(B) = \frac{2}{5} = 0.4$
- $P(C) = \frac{1}{5} = 0.2$

Menghitung Posterior masing-masing kategori

No	TERM	P(w A)	P(w B)	P(w C)
1	suka	0.107	0.034	0.056
2	masak	0.143	0.034	0.056
3	nasi	0.214	0.069	0.056
4	goreng	0.143	0.034	0.056
5	ukur	0.071	0.069	0.111
6	makan	0.071	0.034	0.056
7	beras	0.036	0.103	0.056
8	tanam	0.036	0.103	0.056
9	sawah	0.036	0.103	0.111
10	mobil	0.036	0.172	0.056
11	bus	0.036	0.103	0.167
12	angkut	0.036	0.069	0.056
13	tumpang	0.036	0.069	0.111

Dokumen baru d6

Nasi Goreng Pedas

Kelas = ???

$$P(A|d6) = P(A) * P(nasi|A) * P(goreng|A)$$

 $P(A|d6) = 0.4 * 0.214 * 0.143 = 0.0122$

$$P(B|d6) = P(B) * P(nasi|B) * P(goreng|B)$$

 $P(B|d6) = 0.4 * 0.069 * 0.034 = 0.0009$

$$P(C|d6) = P(C) * P(nasi|C) * P(goreng|C)$$

 $P(C|d6) = 0.2 * 0.056 * 0.056 = 0.0006$

Menghitung Posterior masing-masing kategori

No	TERM	P(w A)	P(w B)	P(w C)
1	suka	0.107	0.034	0.056
2	masak	0.143	0.034	0.056
3	nasi	0.214	0.069	0.056
4	goreng	0.143	0.034	0.056
5	ukur	0.071	0.069	0.111
6	makan	0.071	0.034	0.056
7	beras	0.036	0.103	0.056
8	tanam	0.036	0.103	0.056
9	sawah	0.036	0.103	0.111
10	mobil	0.036	0.172	0.056
11	bus	0.036	0.103	0.167
12	angkut	0.036	0.069	0.056
13	tumpang	0.036	0.069	0.111

Karena posterior kategori *A* **terbesar**, maka *d6* masuk ke **kategori** *A*

$$P(A|d6) = P(A) * P(nasi|A) * P(goreng|A)$$

 $P(A|d6) = 0.4 * 0.214 * 0.143 = 0.0122$

$$P(B|d6) = P(B) * P(nasi|B) * P(goreng|B)$$

 $P(B|d6) = 0.4 * 0.069 * 0.034 = 0.0009$

$$P(C|d6) = P(C) * P(nasi|C) * P(goreng|C)$$

 $P(C|d6) = 0.2 * 0.056 * 0.056 = 0.0006$

Latihan

Tentukan kelas dari dokumen uji

D=Burung terbang

Data Training:

D1: Layang-layang terbang diangkasa (Kelas A)

D2: Burung-burung terbang diangkasa (Kelas B)

D3: Banyak layang-Layang berbentuk burung (Kelas A)

D4: Burung-burung di angkasa pulang di sore hari (Kelas B)

D5: Burung terbang untuk pulang ke sarang (Kelas B)

