

FIG._2

Targeting/NIR-Imaging Dyads

R₁ = -Ala - Gly - Cys - Lys - Asn - Phe - Phe - Trp - Lys - Thr - Phe - Thr - Ser - Cys - COO -

Somatostatin-14

$$R_2 = -dPhe - Cys - Phe - dTrp - Lys - Thr - Cys - Thr - COO -$$

Octreoate

(M²M⁷)Octreoate

IDC;
$$n = 2$$
 ITTC; $n = 3$

Dyad and Triad Structures Incorporating Targeting, Imaging and 2-Photon PDT Components

- For I, A = Somatostatin Analog or Other Molecular Targeting Agent
 B = 2-Photon Fluorescence Imaging (Low Laser Power) or 2-Photon
 PDT Chromophore (High Laser Power)
- For II, A = Somatostatin Analog or Other Molecular Targeting Agent B = 1-Photon Imaging.Chromophore C = 2-Photon PDT Chromophore

FIG._3

Typical Triad Components

Typical Triad Components:

$$B = \frac{O}{(N_{2})_{4}S O_{3}} O_{3} O_{3}$$

FIG._4

4/4

TPA PDTChromophores for Attachment to Dyad or Triad Structures

$$n = 1-5$$

R = H, Alkyl, Alkyloxy, -(OCH₂CH₂)_nOG;
G = H, Alkyl

$$n = 1-5$$

R = Alkyl, Phenyl, Alkyloxyphenyl,
Phenyl(OCH₂CH₂)_nOG; G = H, Alkyl

$$n = 1-5$$

 $R = H$, Alkyl, $(OCH_2CH_2)_nOG$; $G = H$, Alkyl
 $R' = Alkyl$

$$n = 1, 2, 3$$

 $R = H, Alkyl, (OCH2CH2)nOG; G = H, Alkyl$
 $R' = Alkyl$

= Point of Attachment to Porphyrin Moiety