A Book of Abstract Algebra (2nd Edition)

O I	Λ Λ	D I. I	400
Chapter	AA,	Problem	16E

Bookmark

Show all steps: ON

Problem

If *S* is a set, and *A* is a subset of *S*, then the *complement* of *A* in *S* is the set of all the elements of *S* which are not in *A*. The complement of *A* is denoted by *A*':

$$A' = \{x \in S : x \not\in A\}$$

Prove the following'.

$$(A \cap B)' = A' \cap B'.$$

Step-by-step solution

Step 1 of 2

Objective:-

The objective is to prove $(A \cap B)' = A' \cup B'$.

Comment

Step 2 of 2

Proof:-

Let A and B are two sets.

If S is a set and A is a subset of S, then complementary of set A is defined as:-

$$A' = \{ x \in S : x \notin A \}$$

Let S is a set and A and B are subset of S. Let $x \in (A \cup B)'$. $x \in (A \cap B)'$ $\Rightarrow x \notin (A \cap B)$ $\Rightarrow x \notin A \text{ or } x \notin B$ $\Rightarrow x \in A' \text{ or } x \in B'$ $\Rightarrow x \in A' \cup B'$ So, $\big(A\cap B\big)'\subseteq A'\cup B'$(1) Let $x \in A' \cup B'$ $x \in A' \cup B'$ $\Rightarrow x \in A' \text{ or } x \in B'$ $\Rightarrow x \notin A \text{ or } x \notin B$ $\Rightarrow x \notin (A \cap B)$ $x \in (A \cup B)'$ So, $A' \cup B' \subseteq (A \cap B)'$(2) Let us consider the equation (1) and (2).

$$(A \cap B)' = A' \cup B'$$

Proved

Comment