MESTRADOS INTEGRADOS EM ENG. MECÂNICA E EM ENG. INDUSTRIAL E GESTÃO | 2013-14

EM0005/EIG0048 | ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA | 1º ANO - 1º SEMESTRE

Prova sem consulta. Duração: 2h (20m de tolerância)

1ª Prova de Avaliação

- * Todas as folhas devem ser identificadas com o <u>nome completo</u>. Justifique adequadamente todos os cálculos que efetuar;
- * A desistência só é possível após 1 hora do início da prova;
- * Não se pode utilizar telemóveis, máquinas de calcular gráficas e microcomputadores;
- * Resolva cada um dos dois grupos utilizando folhas de capa distintas.

GRUPO I

- **1.** [8,0] Seja $T = \{\vec{a}, \vec{b}, \vec{c}\}$, em que $\vec{a} = (3,1,-1,3)$, $\vec{b} = (1,1,0,2)$ e $\vec{c} = (-1,1,2,2)$, um conjunto de elementos do espaço vetorial \mathbb{R}^4 . Considere, também, o subespaço de \mathbb{R}^4 , $W = \{(x, y, z, w) \in \mathbb{R}^4 : w = x y\}$.
 - a) Classifique, justificando, o conjunto T quanto à (in)dependência linear dos vetores que o constituem e conclua em relação à dimensão do subespaço gerado por T. Indique uma base, U, para este subespaço, formada unicamente por elementos de T.
 - b) Determine uma base, V, para o espaço \mathbb{R}^4 que contenha o maior número possível de elementos de T.
 - c) Obtenha uma base ortogonal, S, para o subespaço W.
 - d) Verifique, justificando, se é possível exprimir o vetor $\vec{r} = (1,3,-1,-2)$ como combinação linear dos elementos da base S; em caso afirmativo, obtenha a respetiva combinação linear.
- **2.** [1,8] Seja W = $\{\vec{w}_1, \vec{w}_2, \vec{w}_3, ..., \vec{w}_m\}$ um conjunto linearmente independente formado por m elementos do espaço vetorial \mathbb{R}^n . Prove, justificando devidamente, que o conjunto W₁ = $\{\vec{w}_1, \vec{w}_1 + \vec{w}_2, \vec{w}_1 + \vec{w}_2 + \vec{w}_3, ..., \vec{w}_1 + \vec{w}_2 + \vec{w}_3 + ... + \vec{w}_m\}$ é uma base para o subespaço gerado por W, L(W).

.....(continua no verso)

EM0005/EIG0048 | ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA | 1º ANO - 1º SEMESTRE

Prova sem consulta. Duração: 2h (20m de tolerância)

1ª Prova de Avaliação

GRUPO II

- **3.** [2,5] Sejam \vec{a} , \vec{b} , \vec{c} e \vec{d} elementos do espaço vetorial \mathbb{R}^3 , tais que $\|\vec{a}\| = \|\vec{b}\| = \sqrt{2}$, $\|\vec{c}\| = 2$, $\angle (\vec{a}, \vec{b}) = 45^\circ$, $\vec{d} = \vec{c} + \vec{a} + 4\vec{a} \times \vec{b}$, \vec{c} é paralelo a \vec{b} e $\vec{c} \cdot \vec{b} < 0$.
 - a) Determine a norma do vetor \vec{d} .
 - b) Calcule $\vec{b} \cdot \vec{d} \times \vec{a}$ e conclua em relação à (in)dependência linear de $\{\vec{a}, \vec{b}, \vec{d}\}$.
 - c) Obtenha a norma do vetor $\vec{c} \times (2\vec{a} + \vec{b})$.
- **4.** [0,7] Seja o elemento não nulo do espaço vetorial \mathbb{R}^3 , $\vec{a} = a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k}$. Mostre que $\vec{a} = \|\vec{a}\| \left(\cos \alpha \vec{i} + \cos \beta \vec{j} + \cos \gamma \vec{k}\right)$, em que α , β e γ são os ângulos diretores de \vec{a} , e que $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$.
- **5.** [7,0] Seja o plano M: x-z=-3, a reta $r: X(s) = P + s\vec{u}$, $s \in \mathbb{R}$, em que P = (1,1,0) e $\vec{u} = (0,1,1)$, e o ponto R = (0,3,1). Determine:
 - a) Os ângulos que o plano M faz com a reta r e com o plano coordenado xOy.
 - b) A equação cartesiana do plano, α , que contém a reta r e que passa no ponto, T, do plano M mais próximo de R.
 - c) A equação vetorial das retas que passam no ponto R, são concorrentes com a reta r e fazem, com esta reta, um ângulo de 60° .