A Brief Study and Analysis of Sequential and Interval Searching Algorithms

Arcena, Jodie Lance A. Aclo, Maricar B. Bation, John Michael L.

BSIT BSIT BSIT

Batangas State University Batangas State University Batangas State University

ABSTRACT

The two strategies for looking for particular data in a collection are sequential search and interval search. Sequential search is a simple and straightforward method that checks each element in a collection one at a time until it discovers the target value or reaches the collection's end. It has a worst-case time complexity of O(n) and is memory-efficient, although it may not be the most efficient technique for searching for patterns or approximate matches in data. Interval search, on the other hand, is a specialized algorithm that searches for overlapping intervals in a set of data. These methods have a temporal complexity of O(log n + k) and may be used on any form of interval data. Interval search algorithms are fast and scalable, and they may be used for a wide range of tasks such as scheduling, resource allocation, and database searches. Overall, the decision between sequential and interval search methods is influenced by the unique requirements and features of the data being searched. Sequential search is appropriate for small collections or unsorted data, but interval search methods are required for complicated searches in bigger or interval-based datasets. Researchers and data analysts may pick the optimal technique for their unique needs by studying the differences and benefits of each algorithm.

Keywords: Interval search, Interval data, Sequential search, Search, Data, Methods, Time, Technique, Collection

I. INTRODUCTION

[1] A searching algorithm is a computer technique meant to discover a certain value or group of values in a set of data. It's a fundamental notion in computer science that's employed in a applications includina databases, search engines, and artificial intelligence. When the amount of data is too enormous to search manually, search algorithms are utilized. These techniques can be used to find specific values in an array, linked list, tree structure, or other data structure. Depending on the type of data and the specific requirements of the search, numerous searching algorithms can be utilized. The time complexity of a searching algorithm is measured by the amount of time it takes to finish the search. The smaller the temporal complexity, the quicker the algorithm. Overall, searching algorithms important tools for tackling a wide range of issues in computer science, and they are widely employed in many disciplines.

In this case study, we will look at and analyze Sequential Search and

Interval Search. We shall investigate their parallels and differences, benefits and drawbacks, and application scenarios. We'll also look at their time and space complexity for various operations including searching, insertion, and deletion. I intend to give a thorough understanding of these two data structures so that readers may use this information to select the best data structure for their applications.

II. SEQUENTIAL SEARCH

^[2] Sequential search, also known as linear search, is a basic searching technique that evaluates each member of a collection consecutively until a match is discovered or the collection is exhausted. It operates by comparing each collection element to the search key until a match is discovered. The sequential search method begins at the beginning of the collection and iteratively checks each piece. ^[3] If the search key is discovered, the process is terminated, and the index of the matching element is returned. If the algorithm reaches the end of the collection without finding a match, it

produces a special number, such as -1, to indicate that the search key was not found. Any sort of collection, including arrays, linked lists, and other data structures, can benefit from sequential search. It is particularly beneficial for tiny collections or unsorted data since it does not require the data to be sorted first. Sequential search, on the other hand, has a temporal complexity of O(n), where n is the number of items in the collection. This means that the search time grows linearly with collection size, making it less efficient than alternative searching methods like binary search or hash tables.

III. INTERVAL SEARCH

[3] Interval search is a search technique that determines whether or not a given value occurs inside a set of intervals. It is sometimes referred to as an interval guery, an interval tree, or a segment tree. Interval search is widely used in computer science and data analysis, particularly in applications involving scheduling, resource allocation, and time series analysis. Interval search, for example, can be used in scheduling applications to assess resource availability during certain time periods. The search method walks the tree and compares the target value with the ranges of each node to find a value inside the intervals. If the target value is inside a node's range, the algorithm descends farther into the tree to look for it among the child nodes. If the target value is not inside a node's range, the algorithm searches in the relevant child node. A collection of intervals is grouped into a data structure such as a binary search tree or a segment tree in interval search. Each node in the data structure represents an interval range, and the tree is built so that each node's range overlaps the ranges of its sibling nodes. For average and worst-case circumstances, interval search is a moderately efficient searching algorithm with a time complexity of O(log n). The development of the interval search data structure, on the other hand, might be computationally costly, particularly for large collections of intervals.

IV. COMPARISON OF BOTH SEARCH ALGORITHMS

[9] This section compares and contrasts two searching algorithms: Sequential Search and Interval Search. The search algorithms are compared based on their characteristics, time complexity, space complexity, benefits, and downsides.

Table 1.1 Comparison Table of Sequential Search and Interval Search in terms of features

in terms of features	
Searching	Features
Algorithm	
Sequential	Sequential search
Search	is a basic
	algorithm that is
	straightforward to
	implement,
	making it an
	excellent choice
	for novices or
	situations where
	simplicity is
	desired. It is most
	effective when
	dealing with
	limited amounts of
	data but can be
	sluggish and
	inefficient for
	bigger collections.
	It works well with
	unsorted data, but
	the temporal
	complexity of
	sequential search
	is O(n), which
	increases linearly
	with data size.
Interval Search	[6] Interval search
	is a simple data
	structure that can
	be dynamically
	changed, allowing
	intervals to be
	added or deleted
	without rebuilding
	the entire data
	structure. It can be
	used to a variety of
	data formats, such
	as numeric, dates,
	and texts, and has
	and toxts, and has

severa	
	tions, such
as	scheduling,
resourc	ce
allocati	on, time
series	analysis,
and	database
search	es.

Table 1.2 Comparison Table of Sequential Search and Interval Search in terms of Time Complexity

in terms of Time Complexity	
Searching	Time Complexity
Algorithm	
Sequential	[3][8]Sequential search,
Search	also known as linear
	search, has a
	temporal complexity of
	O(n), where n is the
	number of items in the
	collection being
	searched. [⁴]
	Sequential search
	may require verifying
	every element in the
	collection before
	finding a match or
	reaching the end of
	the collection in the
	worst-case scenario.
	This can occur when
	the search key is near
	the end of the
	collection or when the
	search key is not there
	at all. As a result, the
	time required for
	sequential search
	rises linearly with
	collection size. For
	example, if you have a
	collection of 1000
	pieces and use
	sequential search to
	discover a certain
	value, it may take up
	to 1000 comparisons in the worst-case
	scenario to find the
	match or conclude
	that the value is not
	present in the
	collection. It is crucial
	to note that the layout
	or order of the
	components in the
	components in the

collection has effect on the temporal complexity of sequential search. [4] Regardless of whether the items are sorted or unsorted, sequential search must examine each element one by one until a match is discovered or the collection exhausted, resulting in a temporal complexity of O(n).

Interval Search

^[11]The temporal complexity of an interval search algorithm is determined by the implementation and data structures ^[7] An employed. interval tree, on the other hand, can give an efficient interval search algorithm with a time complexity of $O(\log n + k)$, where n is the number of intervals in the tree and k is the number of intervals in the result set. Because interval tree is a binary balanced search tree, each node represents an interval and has information about the maximum endpoint of all intervals in its subtree, this time complexity is attained. When looking for intervals that overlap with a particular interval, the method can rapidly predict which nodes in the tree may contain overlapping intervals, allowing it to trim the search space and minimize time complexity.

Table 1.3 Comparison Table of Sequential Search and Interval Search in terms of Space Complexity.

Searching Searching	Space Space
Algorithm	Complexity
Sequential	[5] A sequential
Search	search algorithm's
Couron	space complexity
	is determined by
	the data structure
	used to store the
	search space. The
	space complexity
	of sequential
	search is O(n) if
	the search space
	is stored in an
	array, where n is
	the number of
	entries in the array.
	This is due to the
	fact that the
	complete array
	must be held in
	memory in order to
	execute the
	search. [7] The
	space complexity
	of sequential
	search is also O(n)
	if the search space
	is stored in a linked
	list, where n is the
	number of entries
	in the linked list.
	This is due to the
	fact that each node
	in the linked list
	includes data as
	well as a reference
	to the next node,
	and the full linked
	list must be held in
	memory in order to
	execute the
	search.
Interval Search	[10] The space
	complexity of an
	interval search
	algorithm is also
	affected by its
	implementation
	and data
	structures. The
	space complexity
	of an interval tree

is O(n), where n is
the number of
intervals in the
tree. This is due to
the fact that each
node in the tree
represents an
interval and
maintains data
such as its
endpoints and the
maximum
endpoint of all
intervals in its
subtree. Other
data structures,
such as segment
trees or range
trees, can be
utilized to build
interval search
algorithms in
addition to the
interval tree.
Depending on the
implementation
specifics, the
space complexity
of various data
structures might
vary.

Table 1.4 Comparison Table of Sequential Search and Interval Search in terms of Advantages.

Searching	Advantages
Algorithms	Advantages
	[5]
Sequential	^[5] The algorithm is
Search	simple to
	comprehend and
	implement, since
	it just requires a
	basic loop
	structure and a
	comparison
	operation to
	compare each
	member in the
	collection to the
	goal value. Any
	sort of collection,
	including arrays,
	linked lists, and
	other data
	structures, may
	be searched

	1
	using sequential
	search. Because
	sequential search
	does not require
	any new data
	structures, it
	requires less
	memory and may
	be employed in
	memory-
	constrained
	contexts.
	Sequential search
	code is simple to
	comprehend and
	alter, making it
	simple to maintain
	and update as
	required.
	Sequential search
	can be a faster
	and more efficient
	choice than more
	sophisticated
	search algorithms
	for small datasets,
	especially if the
	data is already
1.4 10 1	sorted.
Interval Search	[12] Interval search
Interval Search	[12] Interval search techniques based
Interval Search	[12] Interval search techniques based on interval trees,
Interval Search	^[12] Interval search techniques based on interval trees, for example, can
Interval Search	techniques based on interval trees, for example, can yield search
Interval Search	techniques based on interval trees, for example, can yield search durations of O(log
Interval Search	techniques based on interval trees, for example, can yield search durations of O(log n + k), where n is
Interval Search	techniques based on interval trees, for example, can yield search durations of O(log n + k), where n is the number of
Interval Search	techniques based on interval trees, for example, can yield search durations of O(log n + k), where n is the number of intervals in the
Interval Search	techniques based on interval trees, for example, can yield search durations of O(log n + k), where n is the number of intervals in the search area and k
Interval Search	techniques based on interval trees, for example, can yield search durations of O(log n + k), where n is the number of intervals in the search area and k is the number of
Interval Search	techniques based on interval trees, for example, can yield search durations of O(log n + k), where n is the number of intervals in the search area and k is the number of overlapping
Interval Search	techniques based on interval trees, for example, can yield search durations of O(log n + k), where n is the number of intervals in the search area and k is the number of overlapping intervals returned.
Interval Search	techniques based on interval trees, for example, can yield search durations of O(log n + k), where n is the number of intervals in the search area and k is the number of overlapping intervals returned. Interval search
Interval Search	techniques based on interval trees, for example, can yield search durations of O(log n + k), where n is the number of intervals in the search area and k is the number of overlapping intervals returned. Interval search techniques scale
Interval Search	techniques based on interval trees, for example, can yield search durations of O(log n + k), where n is the number of intervals in the search area and k is the number of overlapping intervals returned. Interval search techniques scale well to big
Interval Search	techniques based on interval trees, for example, can yield search durations of O(log n + k), where n is the number of intervals in the search area and k is the number of overlapping intervals returned. Interval search techniques scale well to big datasets, making
Interval Search	techniques based on interval trees, for example, can yield search durations of O(log n + k), where n is the number of intervals in the search area and k is the number of overlapping intervals returned. Interval search techniques scale well to big datasets, making them valuable in
Interval Search	techniques based on interval trees, for example, can yield search durations of O(log n + k), where n is the number of intervals in the search area and k is the number of overlapping intervals returned. Interval search techniques scale well to big datasets, making them valuable in data-intensive
Interval Search	techniques based on interval trees, for example, can yield search durations of O(log n + k), where n is the number of intervals in the search area and k is the number of overlapping intervals returned. Interval search techniques scale well to big datasets, making them valuable in data-intensive applications.
Interval Search	techniques based on interval trees, for example, can yield search durations of O(log n + k), where n is the number of intervals in the search area and k is the number of overlapping intervals returned. Interval search techniques scale well to big datasets, making them valuable in data-intensive applications. Interval search
Interval Search	techniques based on interval trees, for example, can yield search durations of O(log n + k), where n is the number of intervals in the search area and k is the number of overlapping intervals returned. Interval search techniques scale well to big datasets, making them valuable in data-intensive applications. Interval search techniques may
Interval Search	techniques based on interval trees, for example, can yield search durations of O(log n + k), where n is the number of intervals in the search area and k is the number of overlapping intervals returned. Interval search techniques scale well to big datasets, making them valuable in data-intensive applications. Interval search techniques may be used to any
Interval Search	techniques based on interval trees, for example, can yield search durations of O(log n + k), where n is the number of intervals in the search area and k is the number of overlapping intervals returned. Interval search techniques scale well to big datasets, making them valuable in data-intensive applications. Interval search techniques may be used to any interval data type,
Interval Search	techniques based on interval trees, for example, can yield search durations of O(log n + k), where n is the number of intervals in the search area and k is the number of overlapping intervals returned. Interval search techniques scale well to big datasets, making them valuable in data-intensive applications. Interval search techniques may be used to any interval data type, including
Interval Search	techniques based on interval trees, for example, can yield search durations of O(log n + k), where n is the number of intervals in the search area and k is the number of overlapping intervals returned. Interval search techniques scale well to big datasets, making them valuable in data-intensive applications. Interval search techniques may be used to any interval data type,

intervals, and
geographic areas.
Interval search
algorithms have
several uses,
including
database
searches, data
analysis, and
scheduling
systems. Interval
search algorithms
usually consume
little memory,
making them
appropriate for
usage in memory-
constrained
contexts.

Table 1.5 Comparison Table of Sequential Search and Interval Search in terms of Disadvantages.

iii teriiis oi Disauv	
Search	Disadvantages
Algorithm	
Sequential	[14] Sequential
Search	search can be
	wasteful in some
	circumstances,
	especially for huge
	datasets. If the
	target value is at
	the end of the
	collection, the
	method may have
	to compare every
	element in the
	collection,
	resulting in a
	worst-case time
	complexity of O(n),
	where n is the
	collection's size.
	Sequential search
	can only locate
	precise matches
	and cannot be
	used to look for
	patterns or
	approximate
	matches in data.
	Because the full
	collection must be
	saved in memory, it
	may consume a
	substantial amount

of RAM if the data being searched is vast. Binary search or other search methods may be more efficient than sequential search if the collection is sorted.

Interval Search

[13] Implementing an interval search technique, such as an interval tree. may be difficult and necessitates thorough grasp of structures data algorithms. and When compared to simpler search algorithms, the interval search technique may have more overhead. especially for tiny datasets or when just a few intervals are predicted to overlap with the search interval. Maintaining an interval search data structure. such as an interval tree. can he difficult and timeconsuming. particularly if the information is often updated or altered. Interval search methods are designed to find intervals that overlap with another interval and may not be appropriate for other of sorts search queries or processes.

V. CONCLUSION

In conclusion, both sequential search and interval search algorithms are suitable for searching for specific data in a collection. Sequential search is a basic and easy-to-implement technique that may be used to search tiny collections or unsorted data. It is also memory-efficient and has a low overhead. However, it may not be the most efficient technique for looking for patterns or approximate matches in huge datasets.

Interval search algorithms, on other hand. are specialized the algorithms created for looking for overlapping intervals in a collection. They are practical for many applications since they are effective, scalable, and work with any kind of interval data. The implementation of an interval search method, however, can be difficult and time-consuming, particularly dataset is often updated or modified. For limited datasets or when just a few numbers of intervals are anticipated to coincide with the search interval, interval search may also incur more overhead than simpler search techniques.

Finally, the decision between sequential and interval search algorithms is dictated by the unique requirements and features of the data being searched. Sequential search may be sufficient for simple searches in small datasets. Interval search techniques may be required to obtain efficient and accurate results in more complicated searches in bigger or interval-based datasets.

REFERENCES:

Margaret Rouse (2017) https://www.techopedia.com/definition/21975/se arch-algorithm

^[2] Igor Deshko and Victor Tsvetkov (2022) https://iopscience.iop.org/article/10.1088/1742-6596/2373/5/052021/pdf

[3] Sudhiksha Malla (2023) https://www.programming9.com/tutorials/competitive-programming/433-search-algorithms-sequential-search-vs-interval-search

[4] Rohit Sharma (2022) https://www.upgrad.com/blog/linear-search-vs-

https://www.upgrad.com/biog/iiriear-search-vs binary-

search/#:~:text=The%20time%20complexity%20 of%20the,search%2C%20jump%20search%2C %20etc.

[5] (2019)

https://ozaner.github.io/sequential-search/

[6] Kale Casey (2020)

https://codersera.com/blog/let-us-understandsearching-

algorithms/#:~:text=Interval%20Search%3A%20 These%20algorithms%20are,For%20Example% 3A%20Binary%20Search.

[7] Ashutosh Krishna (2022)

https://www.freecodecamp.org/news/search-algorithms-linear-and-binary-search-explained/

[8] Sohail Khan

https://www.quora.com/What-is-the-time-complexity-of-a-sequential-search

[9] Kamlesh Kumar Pandey, Narendra Pradhan (2014)

https://www.researchgate.net/publication/308119 139 A Comparison and Selection on Basic T ype of Searching Algorithm in Data Structure

[10] Admin AfterAcademy (2019)

https://afteracademy.com/blog/time-and-space-complexity-analysis-of-algorithm/

[11] Prashant Sharma (2021)

https://www.analyticsvidhya.com/blog/2021/09/searching-in-data-structure-different-searchmethods-

explained/#:~:text=Since%20linear%20search%20uses%20no,element%20in%20the%20search%20array.

[12] Arnold S. Korkhin (2017)

https://www.researchgate.net/post/What-is-the-advantages-of-Interval-

Analysis#:~:text=The%20interval%20analysis%2 0allows%20to%20take%20into%20account,stati stical%20methods%20are%20applicable%20not %20in%20all%20cases. [13] Pritha Bhandari (2020)

https://www.scribbr.com/statistics/interval-data/

[14] Kamlesh Kumar Pandey (2014)

https://www.researchgate.net/figure/ADVANTAG E-DISADVANTAGE-OF-SEARCHING-TECHNIQUES tbl2 308119139