PROBLEMAS DE VALORACIONES

- A) Ácido Fuerte + Base Fuerte
- B) Ácido Débil + Base Fuerte
- C) Ácido Fuerte + Base Débil D) Ácido Débil + Base Débil

A- Ácido Fuerte con Base Fuerte:

A-1) Calcular el pH de la disolución formada al mezclar 50 ml. de HCl 0.1 M. con 50.ml. 0.01M. de NaOH

 1° Calculamos cuantos H^+ tenemos y cuantos OH^- añadimos: 50 ml.de HCl * (0.1 mol de HCl)/(1000 ml HCl) = 0.0050 mols de HCl.

$$HCI = H^+ + CI^-$$
; $NaOH = Na^+ + OH^-$
0.005 ---- 0.0005 ---- 0.0005 0.005

2º La concentración de H⁺ vendrá dada por:

 $(0.0045 \text{ moles de H}^+)/(0.100 \text{ l.}) = 0.045 \text{ M}.$

$$pH = -log | H^+ | \Rightarrow pH = 1.34$$

A-2) Calcular el pH de la siguiente disolución: 50ml HCl 0.1M.con 5.10⁻³ moles de NaOH

50ml HCl (0.1 mol de HCl)/(1000 ml de dis.)=0.005 mol de HCl

$$HCI$$
 + NaOH = NaCl + H_2O
0.005 ----- 0.005 0.005

Por ser tanto el ácido como base fuertes, sus conjugados son respectivamente bases y ácidos débiles. El pH resultante es siempre 7, ya que no tienen suficiente fuerza para producir la Hidrólisis del agua.

A-3) Calcular el pH de la disolución:
 50 ml. HCl 0.1M. con 55.10⁻⁴ moles de NaOH

(r. I.)

$$HCI$$
 + NaOH = NaCl + H_2O
 50.10^{-4} 55.10⁻⁴ 50.10⁻⁴ 50.10⁻⁴

50 ml. $(0.1 \text{ mol HCI})/(1000 \text{ mI}) = 50.10^{-4} \text{ moles de HCI}$ $(5.10^{-4} \text{ moles de OH}^-)/(0,050 \text{ I.}) = 1.10^{-2} \text{ M de OH}^-$

$$|H^{+}| = Kw / [OH^{-}] = (1.10^{-14})/(1.10^{-2}) = 1.10^{-12}$$

 $pH = -log 1.10^{-12} = 12$
 $pOH = -log 1.10^{-2} = 2$; $pH = 14-2 \Rightarrow pH = 12$

B- Ácido Débil con Base Fuerte:

B-1) Calcular el pH de la siguiente disolución. 50 ml de CH₃COOH 0,1 M. con 50ml. 0.01 M.de NaOH

50 mol HOAc $.(0.1 \text{ mol})/(1000 \text{ ml}) = 50.10^{-4} \text{ moles}$

$$(r. l.)$$
 CH_3COOH + NaOH = NaOAc + H_2O
 50.10^{-4} 5.10^{-4} $---- 5.10^{-4}$ 5.10^{-4}

Las nuevas concentraciones tras la reacción son: $(45.10^{-4} \text{ moles HOAc})/(50.10^{-3} \text{ l.}) = 0.09 \text{ M. de HOAc}$

$$NaOAc$$
 = Na^+ + OAc^-
 5.10^{-4} ----
 5.10^{-4} 5.10⁻⁴

 $(5.10^{-4} \,\mathrm{moles} \,\mathrm{de} \,\mathrm{OAc}^{-})/(5.10^{-3}\,\mathrm{I.}) = 0.01\,\mathrm{M}.\,\mathrm{de} \,\mathrm{OAc}^{-}$

 $1,85.10^{-5} = \{X (0.01+X)\}/(0.09-X) => X=1.64.10^{-4} = |H^+|$ Por lo tanto el pH =-log $1.64.10^{-4} \Rightarrow pH = 3,78$ **B-2)** Calcular el pH de: 30 ml de CH $_3$ COOH 0,1M.con 30.10 $^{-4}$ moles de NaOH 30 mol de HOAc (0,1mol HOAc)/ (1000 ml)=30.10 $^{-4}$ mol CH $_3$ COOH

Las nuevas concentraciones son: $(30.10^{-4} \text{mol CH}_3 \text{COONa})/(0.030 \text{L.}) = 0.1 \text{ M. de NaOAc}$

NaOAc = Na⁺ + OAc⁻ Como el HOAc es un ácido 0,1 ---- débil, su base conjugada es ----- 0,1 0, 1 fuerte y produce la hidrólisis

Del H₂O Como | H⁻|. | OH⁻| = Kw ; y Kh = $\frac{Kw}{Ka}$

 $OAC^{-} + H_{2}O = HOAc + OH^{-};; k_{a} = 1,85.10^{-5}$ 0,1-x

Kh = $\frac{Kw}{Ka}$ = 5,4.10⁻¹⁰ \Rightarrow 5,4.10⁻¹⁰ = $\frac{X^2}{0,1-X}$ \Rightarrow 5,4.10⁻¹¹ = X^2

por lo tanto; $X = 7,4.10^{-6} = |OH^-| pOH = -log |OH^-| = -log 7,4.10^{-6} = 5,13; pH = 14-pOH = 14-5,13 <math>\Rightarrow$ **pH = 8,85**

B-3) Buscar el pH de la disolución siguiente: 30 ml de CH₃COOH 0,1 M. con 35.10⁻⁴ moles de NaOH

(r. I.)

$$HOAC$$
 + NaOH = NaOAC + H_2O
 30.10^{-4} 35.10^{-4} 30.10^{-4} 30.10^{-4}

 $|OH^{-}| = (5.10^{-4} \text{ mol de } OH^{-})/(0,030 \text{ l.}) = 1.67.10^{-2} \text{ M}.$

 $|NaOAc| = 30.10^{-4}/30.10^{-3} = 0.1M.; |H^{+}| = kw /|OH^{-}|$

Kh =
$$\frac{Kw}{Ka}$$
 = $\frac{1.10^{-14}}{1,85.10^{-5}}$ = 5,4.10⁻¹⁰ \Rightarrow 5,4.10⁻¹⁰ = $\frac{X^2}{0,1-X}$ \Rightarrow

$$\Rightarrow$$
 5,4.10⁻¹⁰ = $\frac{X^2}{0.1}$ \Rightarrow **X** = 7,35.10⁻⁶

 $1.67.10^{-2}$ es >> $7.35.10^{-6}$ podemos despreciar la hidrólisis producida por la sal y tomar el OH $^-$ del NaOH excedente.

 $|H^{+}| = Kw/1.67.10^{-2}$; $|H^{+}| = 1.10^{-14}$ / $1.67.10^{-2} = 5,99.10^{-13}$ pH = $-\log 5,99.10^{-13} = 12,3$

También: como $\left[OH^{-}\right]$ = 1,67.10 $^{-2}$, \Rightarrow pOH = 1,78 \Rightarrow

 \Rightarrow pH = 14 - pOH \Rightarrow pH = 12,22

C- Acido Fuerte con Base Débil

C-1) Calcular el pH de la disolución formado por: 50 ml HCl 0,12 M. con 5 ml de NH $_3$ 0,12 M.

50 ml HCl(0,12 mol)/(1000 ml.)= 6.10^{-3} mol HCl 05 ml NH₃(0,12 mol)/(1000 ml)= $0,6.10^{-3}$ mol de NH₃

(r. l.)
HCl + NH₃ = NH₄⁺ + Cl⁻

$$6.10^{-3}$$
 0,6.10⁻³ ----- 0,6.10⁻³ 0,6.10⁻³

El NH₄⁺ no se disocia por quedar en exceso HCl

$$HCI$$
 = H^+ + CI^-
5,4.10⁻³ 5,4.10⁻³ 5,4.10⁻³

El volumen total será:50 ml.+ 5 ml = 55 ml. |HCl|= $(5,4.10^{-3})/(55 \text{ ml})=0.098 \text{ M.}$ pH = -log 0,098 \Rightarrow **pH = 1,01**

C-2) Determinar el valor del pH de la disolución: 50 ml. HCl 0,10 M. con 50 ml. NH $_3$ 0,10 M. Siendo K=1,85.10 $^{-5}$ para NH $_3$ +H $_2$ O = NH $_4$ $^+$ +OH $^-$

Moles: 50 ml $(0,10 \text{ mol})/(1000 \text{ ml}) = 0,005 \text{mol} \text{ H}^+$ 50 ml $(0,10 \text{ mol})/(1000 \text{ ml}) = 0,005 \text{mol} \text{ NH}_3$

$$HCI$$
 + NH_3 = NH_4 + CI 5.10⁻³ 5.10⁻³ 5.10⁻³ 5.10⁻³

 $|NH_4| = (5.10^{-3} \text{ mols})/(100 \text{ ml}) = 0.05 \text{ M}.$

```
a) Kw = Ka. Kb
```

 $Ka = Kw / Kb; Ka = (1.10^{-14})/(1.85.10^{-5}) = 5,76.10^{-10}$ 5,76.10⁻¹⁰ = $x^2 / (0,05-x);; x = 5,36.10^{-6};; pH = 5,27$

b) $|OH^{-}| = Kw / |H^{-}| = 1.10^{-14} / x$

 $NH_3 + H_2O = NH_4^+ + OH^- \text{ con una } K = 1,85.10^{-5}$ $K = \{(0,05-x)(1.10^{-14} / x)\} / x = 1,85.10^{-5}$ $x = 5,36.10^{-6}$;; pH = $-\log 5,36.10^{-6} \Rightarrow pH = 5,27$

C-3) Calcular el pH de la siguiente disolución: 50 ml de HCl con 30 ml de NH 3 ambas 0,10 M. Conociendo K=1,85.10 $^{-5}$ para NH $_3$ +H $_2$ O=NH $_4$ ⁺+OH $^{-5}$

 $0,05 \text{ I.}(0,10 \text{ mol})/(1 \text{ I.}) = 0,005 \text{ mol de H}^+ 0,03 \text{ I.}(0,10 \text{ mol})/(1 \text{ I.}) = 0,003 \text{ mol de NH}_3$

$$(r.l.)$$
 HCl + NH_3 = NH_4^+ + $Cl^ 0,005$ $0,003$ ---- $0,002$ $0,003$ $0,003$ $V.total=80$ ml.

 $|NH_4^+| = (0,003)/(80 \text{ ml}) = 0,0375 \text{ M}.$ $|NH_3| = (0,0029)/(80.10^{-3}) = 0,025 \text{ M}.$

 $1,85.10^{-5} = \{(0,0375+x)x\}/(0,025-x) ; ; x = |OH^-| = 2,13.10^{-5} pH = 14 - 4.76 \Rightarrow pH = 9,33$

También: $x = |OH^-| = 2,13.10^{-5}$; $|H^+| = Kw / 2,13.10^{-5} = 4,69.10^{-10}$ pH = -log 4,69.10 $^{-10}$ \Rightarrow pH = 9.33

D- Acido Débil con Base Débil

D-1) Calcular el pH de la disolución formada por: $30 \text{ ml HOAc } 0.1 \text{ M. con } 10 \text{ ml NH}_3 \text{ } 0.1 \text{ M.}$

Al poner NH₃:

 $0.030\ \text{l}\ (0.1\ \text{mol})/\ \text{l}\ = 0.0030\ \text{mol}\ \text{de}\ \text{HOAc}\ 0.010\ \text{l}\ (0,1\ \text{mol})/\ \text{l}\ = 0.0010\ \text{mol}\ \text{de}\ \text{NH}_3$ Volumen total $0.030\ \text{l}\ .$

$$(r. l.)$$
 $HOAC + NH_3 = NH_4^+ + OAC^ 0.0030 0.0010 ----- 0.0020 ----- 0.0010 0.0010$

|HOAc| = 0.0020/0.040 = 0.050 M. $|OAc^{-}| = 0.0010/0.040 = 0.025 M.$

 $1,8.10^{-5} = \{x(0,025+x)\}/(0,05-x); x = | H^+| = 35,92.10^{-6}$ **pH = 4,44**

D-2) Calcular el pH de: 50 ml. HOAc 0.1M. con 50 ml. NH₃ 0.1M.; Kc = 3,2.10⁻⁴

HOAC + NH₃ = NH₄⁺ + OAC⁻

$$0,005$$
 0.005 ----
 $0,05$ M. $0,05$ M. $0,05$ -x x x

$$K = x^2 / \{(0,05-x)(0,05-x)\};;3,2.10^{-4} = x^2 / \{(0,05-x)(0,05-X)\}$$

 $x = 0,049$

$$|NH_3| = 0.05 - 0,049; | HOAc | = 0,05-0,049, |NH_4^+| = |OAc^-| = 0,049$$

$$K_{dis} = 1,8.10^{-5} = \{ |H^+|(0,049) \}/0,0001,, |H^+| = 1.10^{-7}$$

pH = **7**

Modo de obtener la K_H

$$HOAc + NH_3 = NH_4^+ + OAc^-$$

$$Kh = (1,85.10^{-5}).(1,8.10^{-5}).(1/1.10^{-14}) = 3,2.10^{-4}$$

D-3) Calcular el pH de la disolución siguiente: 20 ml. de HOAc 0,1M con 30 ml. de NH $_3$ 0,1M. La Kb para la reacción:NH $_3$ +H $_2$ O = NH $_4$ ⁺+OH $^-$ es 1.81.10 $^{-5}$

(r. I.)

$$HOAC$$
 + NH_3 = NH_4 + OAC
0,0020 0.0030 ---- 0.0025
0.0005 0.0025

Volumen total 20+30=50 ml.

$$|NH_4^+| = 0,0020/0,050 = 0,0400 M.$$

 $|NH_3^-| = 0,0010/0,050 = 0,0200 M.$

$$| \mathbf{O} \mathbf{H}^{-} | = \frac{| \mathbf{N} \mathbf{H}_{3} |}{| \mathbf{N} \mathbf{H}_{4}^{+} |} = \frac{0.002}{0.004} *1,81.10^{-5} = 9.05.10^{-6}$$

$$pH = -log 11.10^{-9} \Rightarrow pH = 8,95$$