05-ARMA-and-ARIMA

October 19, 2022

Copyright Pierian Data

For more information, visit us at www.pieriandata.com

1 ARMA(p,q) and ARIMA(p,d,q)

2 Autoregressive Moving Averages

This section covers Autoregressive Moving Averages (ARMA) and Autoregressive Integrated Moving Averages (ARIMA).

Recall that an AR(1) model follows the formula

$$y_t = c + \phi_1 y_{t-1} + \varepsilon_t$$

while an MA(1) model follows the formula

$$y_t = \mu + \theta_1 \varepsilon_{t-1} + \varepsilon_t$$

where c is a constant, μ is the expectation of y_t (often assumed to be zero), ϕ_1 (phi-sub-one) is the AR lag coefficient, θ_1 (theta-sub-one) is the MA lag coefficient, and ε (epsilon) is white noise.

An ARMA(1,1) model therefore follows

$$y_t = c + \phi_1 y_{t-1} + \theta_1 \varepsilon_{t-1} + \varepsilon_t$$

ARMA models can be used on stationary datasets.

For non-stationary datasets with a trend component, ARIMA models apply a differencing coefficient as well.

Related Functions:

arima_model.ARMA(endog, order[, exog, ...]) Autoregressive Moving Average ARMA(p,q) model arima_model.ARMAResults(model, params[, ...]) Class to hold results from fitting an ARMA model arima_model.ARIMA(endog, order[, exog, ...]) Autoregressive Integrated Moving Average ARIMA(p,d,q) model arima_model.ARIMAResults(model, params[, ...]) Class to hold results from fitting an ARIMA model

kalmanf.kalmanfilter.KalmanFilter model

Kalman Filter code intended for use with the ARMA

For Further Reading:

Wikipedia Autoregressive—moving-average model Forecasting: Principles and Practice Non-seasonal ARIMA models

2.1 Perform standard imports and load datasets

```
[1]: import pandas as pd
    import numpy as np
    %matplotlib inline
    # Load specific forecasting tools
    from statsmodels.tsa.arima_model import ARMA, ARMAResults, ARIMA, ARIMAResults
    from statsmodels.graphics.tsaplots import plot acf, plot pacf # for determining
     \hookrightarrow (p,q) orders
    from pmdarima import auto_arima # for determining ARIMA orders
    # Ignore harmless warnings
    import warnings
    warnings.filterwarnings("ignore")
    # Load datasets
    df1 = pd.read_csv('../Data/DailyTotalFemaleBirths.
     df1.index.freq = 'D'
    df1 = df1[:120] # we only want the first four months
    df2 = pd.read_csv('../Data/TradeInventories.
     →csv',index_col='Date',parse_dates=True)
    df2.index.freq='MS'
```

2.2 Automate the augmented Dickey-Fuller Test

Since we'll be using it a lot to determine if an incoming time series is stationary, let's write a function that performs the augmented Dickey-Fuller Test.

```
[2]: from statsmodels.tsa.stattools import adfuller

def adf_test(series,title=''):
    """

    Pass in a time series and an optional title, returns an ADF report
    """

    print(f'Augmented Dickey-Fuller Test: {title}')
    result = adfuller(series.dropna(),autolag='AIC') # .dropna() handles

    differenced data
```

```
labels = ['ADF test statistic','p-value','# lags used','# observations']
out = pd.Series(result[0:4],index=labels)

for key,val in result[4].items():
    out[f'critical value ({key})']=val

print(out.to_string())  # .to_string() removes the line "dtype:___

if result[1] <= 0.05:
    print("Strong evidence against the null hypothesis")
    print("Reject the null hypothesis")
    print("Data has no unit root and is stationary")
else:
    print("Weak evidence against the null hypothesis")
    print("Fail to reject the null hypothesis")
    print("Data has a unit root and is non-stationary")</pre>
```

2.3 Autoregressive Moving Average - ARMA(p,q)

In this first section we'll look at a stationary dataset, determine (p,q) orders, and run a forecasting ARMA model fit to the data. In practice it's rare to find stationary data with no trend or seasonal component, but the first four months of the Daily Total Female Births dataset should work for our purposes. ### Plot the source data

```
[3]: df1['Births'].plot(figsize=(12,5));
```


2.3.1 Run the augmented Dickey-Fuller Test to confirm stationarity

[4]: adf_test(df1['Births'])

Augmented Dickey-Fuller Test: None ADF test statistic -9.855384e+00 4.373545e-17 p-value 0.000000e+00 # lags used # observations 1.190000e+02 critical value (1%) -3.486535e+00 critical value (5%) -2.886151e+00 critical value (10%) -2.579896e+00 Strong evidence against the null hypothesis Reject the null hypothesis Data has no unit root and is stationary

2.3.2 Determine the (p,q) ARMA Orders using pmdarima.auto_arima

This tool should give just p and q value recommendations for this dataset.

```
[5]: auto_arima(df1['Births'], seasonal=False).summary()
```

[5]: <class 'statsmodels.iolib.summary.Summary'>

ARMA Model Results

Dep. Variable:	у	No. Observations:	120
Model:	ARMA(2, 2)	Log Likelihood	-405.370
Method:	css-mle	S.D. of innovations	6.991
Date:	Sat, 23 Mar 2019	AIC	822.741
Time:	12:02:45	BIC	839.466
Sample:	0	HQIC	829.533

	coef	std err	z	P> z	[0.025	0.975]				
const	39.8162	0.108	368.841	0.000	39.605	40.028				
ar.L1.y	1.8568	0.081	22.933	0.000	1.698	2.016				
ar.L2.y	-0.8814	0.073	-12.030	0.000	-1.025	-0.738				
ma.L1.y	-1.8634	0.109	-17.126	0.000	-2.077	-1.650				
$\mathtt{ma.L2.y}$	0.8634	0.108	8.020	0.000	0.652	1.074				
			Roots							

	Real	Imaginary	Modulus	Frequency
AR.1	1.0533	-0.1582j	1.0652	-0.0237
AR.2	1.0533	+0.1582j	1.0652	0.0237

MA.2	1.1583 	+0.0000j 	1.1583	0.0000
MA.1	1.0000	+0.0000j	1.0000	0.0000
N/ A 4	1 0000	10 0000÷	1 0000	0 0000

2.3.3 Split the data into train/test sets

As a general rule you should set the length of your test set equal to your intended forecast size. For this dataset we'll attempt a 1-month forecast.

```
[6]: # Set one month for testing
     train = df1.iloc[:90]
     test = df1.iloc[90:]
```

2.3.4 Fit an ARMA(p,q) Model

If you want you can run help(ARMA) to learn what incoming arguments are available/expected, and what's being returned.

```
[7]: model = ARMA(train['Births'], order=(2,2))
     results = model.fit()
     results.summary()
```

[7]: <class 'statsmodels.iolib.summary.Summary'>

		ARMA Mod	el Results	5 		
Dep. Variable:		Births	No. Obse	ervations:		90
Model:		ARMA(2, 2)	Log Like	elihood		-307.905
Method:		css-mle	S.D. of	innovations		7.405
Date:	Sat,	23 Mar 2019	AIC			627.809
Time:		12:08:30	BIC			642.808
Sample:		01-01-1959	HQIC			633.858
		- 03-31-1959				
=========	coef	std err	z	P> z	[0.025	0.975]
const	39.7549	0.912	43.607	0.000	37.968	41.542
ar.L1.Births	-0.1850	1.087	-0.170	0.865	-2.315	1.945
ar.L2.Births	0.4352	0.644	0.675	0.501	-0.828	1.698

2 5 ma.L1.Births 0.2777 1.097 0.253 0.801 -1.872 2.427 0.557 0.930 ma.L2.Births -0.39990.679 -1.730-0.589

Roots ______

Imaginary Modulus Frequency Real

AR.1	-1.3181	+0.0000j	1.3181	0.5000
AR.2	1.7434	+0.0000j	1.7434	0.0000
MA.1	-1.2718	+0.0000j	1.2718	0.5000
MA.2	1.9662	+0.0000j	1.9662	0.0000
11 11 11				

2.3.5 Obtain a month's worth of predicted values

2.3.6 Plot predictions against known values

```
[11]: title = 'Daily Total Female Births'
   ylabel='Births'
   xlabel='' # we don't really need a label here

ax = test['Births'].plot(legend=True,figsize=(12,6),title=title)
   predictions.plot(legend=True)
   ax.autoscale(axis='x',tight=True)
   ax.set(xlabel=xlabel, ylabel=ylabel);
```


Since our starting dataset exhibited no trend or seasonal component, this prediction makes sense. In the next section we'll take additional steps to evaluate the performance of our predictions, and forecast into the future.

2.4 Autoregressive Integrated Moving Average - ARIMA(p,d,q)

The steps are the same as for ARMA(p,q), except that we'll apply a differencing component to make the dataset stationary. First let's take a look at the Real Manufacturing and Trade Inventories dataset. ### Plot the Source Data

```
[12]: # HERE'S A TRICK TO ADD COMMAS TO Y-AXIS TICK VALUES
  import matplotlib.ticker as ticker
  formatter = ticker.StrMethodFormatter('{x:,.0f}')

title = 'Real Manufacturing and Trade Inventories'
  ylabel='Chained 2012 Dollars'
  xlabel='' # we don't really need a label here

ax = df2['Inventories'].plot(figsize=(12,5),title=title)
  ax.autoscale(axis='x',tight=True)
  ax.set(xlabel=xlabel, ylabel=ylabel)
  ax.yaxis.set_major_formatter(formatter);
```


2.4.1 Run an ETS Decomposition (optional)

We probably won't learn a lot from it, but it never hurts to run an ETS Decomposition plot.

```
[13]: from statsmodels.tsa.seasonal import seasonal_decompose

result = seasonal_decompose(df2['Inventories'], model='additive') #__

--model='add' also works

result.plot();
```


Here we see that the seasonal component does not contribute significantly to the behavior of the series. ### Use pmdarima.auto_arima to determine ARIMA Orders

```
[14]: auto_arima(df2['Inventories'], seasonal=False).summary()
```

[14]: <class 'statsmodels.iolib.summary.Summary'>

ARIMA Model Results

=======================================						
Dep. Variable:		D.y	No. Obs	servations:		263
Model:	ARIMA	(1, 1, 1)	Log Lik	celihood		-2610.252
Method:		css-mle	S.D. of	innovation	3	4938.258
Date:	Sat, 23	8 Mar 2019	AIC			5228.505
Time:		12:18:53	BIC			5242.794
Sample:		1	HQIC			5234.247
===========		.======				
	coef sto	l err	z	P> z	[0.025	0.975]

const	3472.9857	1313.669	2.644	0.009	898.241	6047.731
ar.L1.D.y	0.9037	0.039	23.414	0.000	0.828	0.979
ma.L1.D.y	-0.5732	0.076	-7.545	0.000	-0.722	-0.424
			Roots			

	======================================	Imaginary	Modulus	Frequency
AR.1	1.1065	+0.0000j	1.1065	0.0000
MA.1	1.7446	+0.0000j	1.7446	0.0000

This suggests that we should fit an ARIMA(1,1,1) model to best forecast future values of the series. Before we train the model, let's look at augmented Dickey-Fuller Test, and the ACF/PACF plots to see if they agree. These steps are optional, and we would likely skip them in practice.

2.4.2 Run the augmented Dickey-Fuller Test on the First Difference

```
[15]: from statsmodels.tsa.statespace.tools import diff
df2['d1'] = diff(df2['Inventories'],k_diff=1)

# Equivalent to:
# df1['d1'] = df1['Inventories'] - df1['Inventories'].shift(1)

adf_test(df2['d1'],'Real Manufacturing and Trade Inventories')
```

Augmented Dickey-Fuller Test: Real Manufacturing and Trade Inventories ADF test statistic -3.412249p-value 0.010548 # lags used 4.000000 # observations 258.000000 critical value (1%) -3.455953 critical value (5%) -2.872809 critical value (10%) -2.572775 Strong evidence against the null hypothesis Reject the null hypothesis

Data has no unit root and is stationary

This confirms that we reached stationarity after the first difference. ### Run the ACF and PACF plots A PACF Plot can reveal recommended AR(p) orders, and an ACF Plot can do the same for MA(q) orders. Alternatively, we can compare the stepwise Akaike Information Criterion (AIC) values across a set of different (p,q) combinations to choose the best combination.

```
[16]: title = 'Autocorrelation: Real Manufacturing and Trade Inventories'
lags = 40
plot_acf(df2['Inventories'],title=title,lags=lags);
```



```
[17]: title = 'Partial Autocorrelation: Real Manufacturing and Trade Inventories'
lags = 40
plot_pacf(df2['Inventories'],title=title,lags=lags);
```


This tells us that the AR component should be more important than MA. From the Duke University Statistical Forecasting site: > If the PACF displays a sharp cutoff while the ACF decays more slowly (i.e., has significant spikes at higher lags), we say that the stationarized series displays an "AR signature," meaning that the autocorrelation pattern can be explained more easily by adding AR terms than by adding MA terms.

Let's take a look at pmdarima.auto_arima done stepwise to see if having p and q terms the same still makes sense:

```
Fit ARIMA: order=(0, 1, 0); AIC=5348.037, BIC=5355.181, Fit time=0.004 seconds Fit ARIMA: order=(1, 1, 0); AIC=5250.883, BIC=5261.599, Fit time=0.050 seconds Fit ARIMA: order=(0, 1, 1); AIC=5283.095, BIC=5293.811, Fit time=0.020 seconds Fit ARIMA: order=(2, 1, 0); AIC=5240.553, BIC=5254.842, Fit time=0.100 seconds Fit ARIMA: order=(2, 1, 1); AIC=5229.528, BIC=5247.389, Fit time=0.104 seconds Fit ARIMA: order=(1, 1, 1); AIC=5228.505, BIC=5242.794, Fit time=0.109 seconds Fit ARIMA: order=(1, 1, 2); AIC=5229.289, BIC=5247.150, Fit time=0.157 seconds Fit ARIMA: order=(2, 1, 2); AIC=nan, BIC=nan, Fit time=nan seconds Total fit time: 0.563 seconds
```

[18]: <class 'statsmodels.iolib.summary.Summary'>

ARIMA Model Results

========			=====	=====	=======		=======
Dep. Variab	le:		D.y	No.	Observations	: :	263
Model:		ARIMA(1, 1	, 1)	Log 1	Likelihood		-2610.252
Method:		css	-mle	S.D.	of innovati	ons	4938.258
Date:	Ç	Sat, 23 Mar	2019	AIC			5228.505
Time:		12:1	9:52	BIC			5242.794
Sample:			1	HQIC			5234.247
========	coef	std err	=====	z	P> z	[0.025	0.975]
const ar.L1.D.y	3472.9857 0.9037	1313.669		2.644 3.414	0.009	898.241 0.828	6047.731

ma.L1.D.y	-0.5732	0.076	-7.545 Roots	0.000	-0.722	-0.424
	Real	Im:	aginary	Modulu	s 	Frequency
AR.1	1.1065	+(0.0000j	1.106	5	0.0000
MA.1	1.7446	+(0.0000j	1.744	6	0.0000
"""						

Looks good from here! Now let's train & test the ARIMA(1,1,1) model, evaluate it, then produce a forecast of future values. ### Split the data into train/test sets

```
[19]: len(df2)
```

[19]: 264

```
[20]: # Set one year for testing
train = df2.iloc[:252]
test = df2.iloc[252:]
```

2.4.3 Fit an ARIMA(1,1,1) Model

```
[21]: model = ARIMA(train['Inventories'], order=(1,1,1))
    results = model.fit()
    results.summary()
```

[21]: <class 'statsmodels.iolib.summary.Summary'>

ARIMA Model Results

Dep. Variable:	D.Invent	cories	No. Ob	servations	3:	251
Model:	ARIMA(1,	1, 1)	Log Li	kelihood		-2486.395
Method:	CS	ss-mle	S.D. d	of innovat:	ions	4845.028
Date:	Sat, 23 Mar	2019	AIC			4980.790
Time:	12:	20:09	BIC			4994.892
Sample:	02-01	-1997	HQIC			4986.465
	- 12-01	-2017				
=======================================	========					
======						
	coef	std e	err	z	P> z	[0.025
0.975]						
const 5833.468	3197.5697	1344.8	371	2.378	0.018	561.671

```
ar.L1.D.Inventories 0.9026 0.039 23.010 0.000 0.826 0.979
ma.L1.D.Inventories -0.5581 0.079 -7.048 0.000 -0.713 -0.403
```

Roots

	Real	Imaginary	Modulus	Frequency
AR.1	1.1080	+0.0000j	1.1080	0.0000
MA.1	1.7918	+0.0000j	1.7918	0.0000
11 11 11				

Passing dynamic=False means that forecasts at each point are generated using the full history up to that point (all lagged values).

Passing typ='levels' predicts the levels of the original endogenous variables. If we'd used the default typ='linear' we would have seen linear predictions in terms of the differenced endogenous variables.

For more information on these arguments visit https://www.statsmodels.org/stable/generated/statsmodels.tsa.arin

```
[23]: # Compare predictions to expected values

for i in range(len(predictions)):

    print(f"predicted={predictions[i]:<11.10},

    →expected={test['Inventories'][i]}")
```

```
predicted=2107148.333, expected=2110158 predicted=2110526.201, expected=2118199 predicted=2113886.499, expected=2112427 predicted=2120561.071, expected=2111835 predicted=2123878.284, expected=2109298 predicted=2130478.871, expected=2119618 predicted=2133764.405, expected=2134172 predicted=2137041.369, expected=2144639 predicted=2140310.596, expected=2143001 predicted=2143572.84, expected=2158115
```

```
[24]: # Plot predictions against known values
title = 'Real Manufacturing and Trade Inventories'
ylabel='Chained 2012 Dollars'
```

```
xlabel='' # we don't really need a label here

ax = test['Inventories'].plot(legend=True,figsize=(12,6),title=title)
predictions.plot(legend=True)
ax.autoscale(axis='x',tight=True)
ax.set(xlabel=xlabel, ylabel=ylabel)
ax.yaxis.set_major_formatter(formatter);
```


2.4.4 Evaluate the Model

```
[25]: from sklearn.metrics import mean_squared_error
    error = mean_squared_error(test['Inventories'], predictions)
    print(f'ARIMA(1,1,1) MSE Error: {error:11.10}')

ARIMA(1,1,1) MSE Error: 60677824.72

[26]: from statsmodels.tools.eval_measures import rmse
    error = rmse(test['Inventories'], predictions)
    print(f'ARIMA(1,1,1) RMSE Error: {error:11.10}')
```

ARIMA(1,1,1) RMSE Error: 7789.597212

2.4.5 Retrain the model on the full data, and forecast the future

2.5 Great job!

ax.autoscale(axis='x',tight=True)
ax.set(xlabel=xlabel, ylabel=ylabel)
ax.yaxis.set_major_formatter(formatter);