

Report
On
EE4483/IM4483
Artificial Intelligence and Data Mining
Continuous Assessment
BY FP growth

Xiong ChenYu U1521516C EEE

Oct. 20, 2017

Contents

1	1 Abstract	2	2	
2	2 Question 1 (How many frequent itemsets have the minimum su 20%, 10%, 5%, and 3% respectively?)		3	
3	Question 2 (What are the respective percentages of frequent 3-itemsets, and 2-itemsets, with respect to all possible itemsets, which have a minimum support of 3%?)		4	
4	Question 3 (How many association rules have a minimum confidence of 50% and a minimum support of 5% and 10% , respectively? Briefly explain how the minimum support affects the strong rules generated.)		5	
5	Question 4 (List three association rules that have the highest support with 100% confidence?)			
6	Question 5 (Do you find any "interesting" rules? What are they? Briefly explain why.)			
Re	References	:	5	
7	7 APPENDIX A	•	6	
L	List of Tables			
	1 System Specification		2	
	2 Frequent itemsets counts		3	
	3 3% minsupport itemsets distribution		4	
	4 respective percentages		4	
	5 Rules counts on 50% minimum confidence		5	
	6 Rules(X itemsets => Y itemsets)		5	

List of Figures

1 Abstract

This report answer questions of the research and study on the continues assessment. The algorithms used to do this project is the FP growth.

Table 1: System Specification

Usage	Application
System	Mac Sierra
Algorithm	FP growth
Language	Scala
Package	Spark
Algorithm Language	FP growth Scala

2 Question 1 (How many frequent itemsets have the minimum support of 20%, 10%, 5%, and 3% respectively?)

Table 2: Frequent itemsets counts

Minimum support (Unit: %)	Itemsets size counts
20	20
10	68
5	268
3	659

Table 3: 3% minsupport itemsets distribution

Itemsets size	Itemsets size count (Total: 659)
1	20
2	190
3	424
4	25
5	0

Question 2 (What are the respective percentages of frequent 3-itemsets, and 2-itemsets, with respect to all possible itemsets, which have a minimum support of 3%?)

Itemsets size verse Itemsets size count (Total: 659)

Table 4: respective percentages

Itemsets size	Itemsets size count (Total: 659)
1	$\frac{20}{659} = 0.03$
2	$\frac{190}{659} = 0.288$
3	$\frac{424}{659} = 0.643$
4	$\frac{25}{659} = 0.038$
5	$\frac{60}{659} = 0$

4 Question 3 (How many association rules have a minimum confidence of 50% and a minimum support of 5% and 10%, respectively? Briefly explain how the minimum support affects the strong rules generated.

Table 5: Rules counts on 50% minimum confidence

Minimum Support(Unit: %) Rules counts

10 0

5 117

5 Question 4 (List three association rules that have the highest support with 100% confidence?)

Table 6: Rules(X itemsets => Y itemsets)

X itemsets Y itemsets support

Salad,Ham,Banana Apple 0.33

IceCream,Olive,Tea Banana 0.33

Ham,Coffee,Diaper IceCream 0.27

6 Question 5 (Do you find any "interesting" rules? What are they? Briefly explain why.)

References

- [1] EN.WIKIPEDIA.ORG (2017). Data Mining Algorithms In R/Frequent Pattern Mining/The FP-Growth Algorithm Wikibooks, open books for an open world. [online] Available at: https://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Frequent_Pattern_Mining/The_FP-Growth_Algorithm[Accessed7Nov.2017].
- [2] EN.WIKIPEDIA.ORG (2017). Data Mining Algorithms In R/Frequent Pattern Mining/The FP-Growth Algorithm - Wikibooks, open books for an open world. [online] Available at: https://en.wikibooks.org/wiki/Data_mining_Algorithms_In_R/Frequent_Pattern_mining/The_FP-Growth_Algorithm[Accessed7Nov.2017].

7 APPENDIX A

```
package example
import org.apache.spark.{SparkContext, SparkConf}
import org.apache.spark.rdd.RDD
import org.apache.spark.mllib.fpm.FPGrowth
object Hello extends Greeting with App {
 println(greeting)
 val conf = new SparkConf().setAppName("Ex1_SimpleRDD").setMaster("local[4]")
 val sc = new SparkContext(conf)
  sc.setLogLevel("ERROR")
 val data = sc.textFile("data.csv")
 val transactions: RDD[Array[String]] = data.map(s => s.trim.split(", "))
  val fpg = new FPGrowth().setMinSupport(0.0276).setNumPartitions(10)
 val model = fpg.run(transactions)
 model.freqItemsets.collect().foreach { itemset =>
   println(itemset.items.mkString("[", ",", "]")
              + ", "
              + itemset.freq) }
  val minConfidence = 1
 model.generateAssociationRules(minConfidence).collect().foreach { rule =>
   println(rule.antecedent.mkString("[", ",", "]")
              + " => "
              + rule.consequent .mkString("[", ",", "]")
              + ", "
              + rule.confidence) }
 println(model.generateAssociationRules(minConfidence).collect().size)
 sc.stop()
}
trait Greeting {
 lazy val greeting: String = "hello"
```