Algorithm 1

Require: A quantum algorithm A such that $Var(\nu(A)) \leq \sigma^2$ for some known σ , an accuracy ϵ such that $\epsilon < 4\sigma$.

Ensure: An estimate of $\mathbb{E}[\nu(A)]$.

- 1: Set $A' = A/\sigma$.
- 2: Run A' once and let \widetilde{m} be the output.
- 3: Let B be the algorithm produced by executing A' and subtracting \widetilde{m} .
- 4: Apply algorithm 2 to algorithms $-B_{<0}/4$ and $B_{\geq 0}/4$ with accuracy $\epsilon/(32\sigma)$ and failure probability 1/9, to produce estimates $\widetilde{\mu}^-$, $\widetilde{\mu}^+$ of $\mathbb{E}[\nu(-B_{<0}/4)]$ and $\mathbb{E}[\nu(B_{\geq 0}/4)]$, respectively. 5: Set $\widetilde{\mu} = \widetilde{m} - 4\widetilde{\mu}^- + 4\widetilde{\mu}^+$.
- 6: Output $\sigma \widetilde{\mu}$.