Information Retrieval 1 Text Analysis

Ilya Markov

i.markov@uva.nl

University of Amsterdam

Ilya Markov

Statistical properties of written text

i.markov@uva.nl

Recap IR0

Ilya Markov i.markov@uva.nl Information Retrieval 1

Recap IR0

Ilya Markov

i.markov@uva.nl

Information Retrieval 1

Statistical properties of written text

Ilya Markov

i.markov@uva.nl

Information Retrieval 1

- 1 Statistical properties of written text
- 2 Text analysis pipeline
- 3 Stemming
- 4 Phrases

Outline

- 1 Statistical properties of written text
 - Zipf's law
 - Heaps' law
- 2 Text analysis pipeline
- 3 Stemming
- 4 Phrases

Outline

Statistical properties of written text

- 1 Statistical properties of written text
 - Zipf's law
 - Heaps' law

Zipf's law

我们定义: 大概率出现的单 词=高频单词=rank靠前的 =rank接近于1

对于所有Language,都符合zipf's Law 即:如果我们对这个语言中的所有单词根据它们的出现频率 从高到低来排序,则 rank*frequency=constant rank*probability =another constant

if the chosen language is english, then constant=0.1

$$rank \cdot P_r = const'$$

For English, $const' \approx 0.1$

 $rank \cdot freg = const$

Croft et al., "Search Engines, Information Retrieval in Practice"

High-frequency words

最初的这些单词 r*P deviate from 0.1

Į	Vord	Freq.	r	$P_r(\%)$	$r.P_r$	Word	Freq	r	$P_r(\%)$	$r.P_r$
t	he	2,420,778	1	6.49	0.065	has	136,007	26	0.37	0.095
c	of	1,045,733	2	2.80	0.056	are	130,322	27	0.35	0.094
t	О	968,882	3	2.60	0.078	not	127,493	28	0.34	0.096
a		892,429	4	2.39	0.096	who	116,364	29	0.31	0.090
a	nd	865,644	5	2.32	0.120	they	111,024	30	0.30	0.089
i	n	847,825	6	2.27	0.140	its	111,021	31	0.30	0.092
s	aid	504,593	7	1.35	0.095	had	103,943	32	0.28	0.089
f	or	363,865	8	0.98	0.078	will	102,949	33	0.28	0.091
t	hat	347,072	9	0.93	0.084	would	99,503	34	0.27	0.091
v	vas	293,027	10	0.79	0.079	about	92,983	35	0.25	0.087
C	n	291,947	11	0.78	0.086	i	92,005	36	0.25	0.089
ŀ	ıe	250,919	12	0.67	0.081	been	88,786	37	0.24	0.088
i	s	245,843	13	0.65	0.086	this	87,286	38	0.23	0.089
v	vith	223,846	14	0.60	0.084	their	84,638	39	0.23	0.089
а	t	210,064	15	0.56	0.085	new	83,449	40	0.22	0.090
ŀ	y	209,586	16	0.56	0.090	or	81,796	41	0.22	0.090
i	t	195,621	17	0.52	0.089	which	80,385	42	0.22	0.091
f	rom	189,451	18	0.51	0.091	we	80,245	43	0.22	0.093
а	S	181,714	19	0.49	0.093	more	76,388	44	0.21	0.090
ŀ	e	157,300	20	0.42	0.084	after	75,165	45	0.20	0.091
v	vere	153,913	21	0.41	0.087	us	72,045	46	0.19	0.089
а	n	152,576	22	0.41	0.090	percent	71,956	47	0.19	0.091
ŀ	ave	149,749	23	0.40	0.092	up	71,082	48	0.19	0.092
ŀ	nis	142,285	24	0.38	0.092	one	70,266	49	0.19	0.092
b	ut	140,880	25	0.38	0.094	people	68,988	50	0.19	0.093
_										

稳定在 ≈0.1

Croft et al., "Search Engines, Information Retrieval in Practice"

大部分单词,constant约等 于0.1

Word	Freq.	r	$P_r(\%)$	$r.P_r$
assistant	5,095	1,021	.013	0.13
sewers	100	17,110	.000256	0.04
toothbrush	10	51,555	.000025	0.01
hazmat	1	166,945	.000002	0.04

for low freq words, their r*P is likely to be different from 0.1

Croft et al., "Search Engines, Information Retrieval in Practice"

Zipf's law vs. real data

Croft et al., "Search Engines, Information Retrieval in Practice"

Ilya Markov i.markov@uva.nl Information Retrieval 1 1

- 1 Statistical properties of written text

 - Heaps' law

Ilya Markov i.markov@uva.nl Information Retrieval 1

Heaps' law ←

we choose any language, eg. english.
of unique words is Not linear to # of words in a collection

当写的是一本书,全书的字数统计与所用的 total # of unique words 构成正相关,但是不是线性正相关。因为字数越多,重复使用的词也越多

of unique words 1个words出现10次,被记作

左图符合如下函数 即非线性的函数

 $vocab = const \cdot words^{eta}$

 $10 \le k \le 100, \beta \approx 0.5$

of total words 1个words出现10次,被记作 10

Outline

- 1 Statistical properties of written tex
- 2 Text analysis pipeline
- 3 Stemming
- 4 Phrases

Text analysis pipeline

Statistical properties of written text

- Remove white-spaces and punctuation
- 2 Convert terms to lower-case
- 3 Remove stop-words
- 4 Convert terms to their stems
- Deal with phrases
- 6 Apply language-specific processing rules

Example

- To prepare a text for indexing, one needs to split it into tokens, remove stop-words and perform stemming.
- 2 to prepare a text for indexing one needs to split it into tokens remove stop words and perform stemming
- 3 prepare indexing needs split tokens remove stop perform stemming
- 4 prepar index need split token remov stop perform stem

Stop-word removal

- Frequency-based
 - Set a frequency threshold f
 - Remove words with the frequency higher than f
- Dictionary-based
 - Create a dictionary of stop-words
 - Remove words that occur in this dictionary

Outline

- 1 Statistical properties of written tex
- 2 Text analysis pipeline
- 3 Stemming
- 4 Phrases

Stemming

- 4 Algorithmic
- 2 Dictionary-based
- 3 Hybrid

Algorithmic stemming (Porter stemmer)

Step 1a:

- Replace sses by ss (e.g., stresses \rightarrow stress).
- Delete s if the preceding word part contains a vowel not immediately before the s (e.g., gaps \to gap but gas \to gas).
- Replace ied or ies by i if preceded by more than one letter, otherwise by ie (e.g., ties \rightarrow tie, cries \rightarrow cri).
- If suffix is us or ss do nothing (e.g., stress \rightarrow stress).

Step 1b:

- Replace eed, eedly by ee if it is in the part of the word after the first non-vowel following a vowel (e.g., agreed → agree, feed → feed).
- Delete *ed*, *edly*, *ing*, *ingly* if the preceding word part contains a vowel, and then if the word ends in *at*, *bl*, or *iz* add *e* (e.g., fished \rightarrow fish, pirating \rightarrow pirate), or if the word ends with a double letter that is not *ll*, *ss* or *zz*, remove the last letter (e.g., falling \rightarrow fall, dripping \rightarrow drip), or if the word is short, add *e* (e.g., hoping \rightarrow hope).
- Whew!

Croft et al., "Search Engines, Information Retrieval in Practice"

http://snowball.tartarus.org/algorithms/porter/stemmer.html

Algorithmic stemming (Porter stemmer)

False positives	$False\ negatives$
organization/organ	european/europe
generalization/generic	cylinder/cylindrical
numerical/numerous	matrices/matrix
policy/police	urgency/urgent
university/universe	create/creation
addition/additive	analysis/analyses
negligible/negligent	useful/usefully
execute/executive	noise/noisy
past/paste	decompose/decomposition
ignore/ignorant	sparse/sparsity
special/specialized	resolve/resolution
head/heading	triangle/triangular

Croft et al., "Search Engines, Information Retrieval in Practice"

Dictionary-based stemming

Statistical properties of written text

- Large dictionary of related words
- Semi-automatic: run \rightarrow running, runs, runned, runly
- New-words problem

- Approach
 - 1 Check the word in a dictionary
 - 2 If found, leave it as is
 - If not found, apply algorithmic stemming (remove suffixes)
 - 4 Check the dictionary again
 - 5 If not found, apply rules to modify the ending
- Produces words not stems
- Comparable effectiveness with the Porter stemmer

Original text:

Document will describe marketing strategies carried out by U.S. companies for their agricultural chemicals, report predictions for market share of such chemicals, or report market statistics for agrochemicals, pesticide, herbicide, fungicide, insecticide, fertilizer, predicted sales, market share, stimulate demand, price cut, volume of sales.

Porter stemmer:

document describ market strategi carri compani agricultur chemic report predict market share chemic report market statist agrochem pesticid herbicid fungicid insecticid fertil predict sale market share stimul demand price cut volum sale

Krovetz stemmer:

document describe marketing strategy carry company agriculture chemical report prediction market share chemical report market statistic agrochemic pesticide herbicide fungicide insecticide fertilizer predict sale stimulate demand price cut volume sale

Croft et al., "Search Engines, Information Retrieval in Practice"

Ilya Markov i.markov@uva.nl Information Retrieval 1 24

Outline

- Phrases

To be or not to be...

Detect noun phrases using a part-of-speech tagger

- sequences of nouns
- adjectives followed by nouns
- ② Detect phrases at the query processing time
 - Use an index with word positions
- Use frequent n-grams, e.g., bigrams and trigrams

Summary

Statistical properties of written text

- Statistical properties of written text
 - Zipf's law
 - Heaps' law
- Text processing pipeline
 - Lexical analysis
 - Stop-word removal
 - Stemming
 - Phrases

Materials

- Croft et al., Chapters 4.1–4.3, 6.2.1–6.2.2
- Manning et al., Chapters 2.1–2.2, 3.3–3.4, 5.1
- Serrano et al.
 Modeling Statistical Properties of Written Text PLoS ONE, 2009