Science unit WCS Indonesia

Assumptions of linear regression & Linear regression

Science unit WCS Indonesia

5-9th of August 2019

Science unit WCS Indonesia

Quiz 1

- Pilihlah dari opsi berikut, distribusi mana yang bisa mengantisipasi kondisi over dispersion variance dari hasil permodelan?
 - Gaussian
 - Poisson
 - Negative binomial

Science unit WCS Indonesia

Jawaban quiz 1

- Pilihlah dari opsi berikut, distribusi mana yang bisa mengantisipasi kondisi over dispersion variance dari hasil permodelan?
 - Gaussian
 - Poisson
 - Negative binomial

Science unit WCS Indonesia

Quiz 2

- Pendekatan apa yang bisa mendeskripsikan berapa banyak variansi yang terjelaskan dari hasil permodelan?
 - AIC
 - multicollinearity
 - R-squared

Science unit WCS Indonesia

Jawaban quiz 2

- Pendekatan apa yang bisa mendeskripsikan berapa banyak variansi yang terjelaskan dari hasil permodelan?
 - AIC
 - multicollinearity
 - R-squared

Science unit WCS Indonesia

Quiz 3

- Manakah dari distribusi berikut yang bisa menggunakan data bernilai negatif?
 - Gaussian
 - Negative binomial
 - Gamma

Science unit WCS Indonesia

Jawaban quiz 3

- Manakah dari distribusi berikut yang bisa menggunakan data bernilai negatif?
 - Gaussian
 - Negative binomial
 - Gamma

Science unit WCS Indonesia

Overview alur permodelan

Figure 1: Overview alur permodelan

Science unit WCS Indonesia

Dataset yang digunakan

- Data hasil tangkapan Cephalopholis boenak di Maluku Utara pada tahun 2017-2018.
- Terdiri atas variabel:
 - Tahun (2017, 2018)
 - Bulan
 - Nama kapal (Boat)
 - Jumlah kru kapal (Crew)
 - Panjang kapal (L)
 - Jumlah hook (Hook)
 - Jumlah jam (Hour)
 - Jumlah hari melaut (Days at Sea)
 - Lokasi
 - Perempat tahun (Quarter)
 - Jumlah individu hasil tangkap (IND)
 - Berat hasil tangkap (KG)
 - Epinephelidae

Science unit WCS Indonesia

Data kontinyu dan metode analisisnya

- Distribusi Gaussian
- Asumsi distribusi Gaussian harus dipenuhi
- Simple linear regression atau additive model.
- ... atau mixed effects model (koreksi random part) (generalized least square)

Science unit WCS Indonesia

Asumsi yang harus dipenuhi dalam menggunakan distribusi Gaussian (normal)

- **1** Normality = tes formal/histogram
- $\mathbf{2}$ Homogeneity = residual data tidak berpola
- 4 Independence = tidak tergantung pada variabel lain/kondisi spasial atau temporal

Science unit WCS Indonesia

1. Uji normalitas

- Central limit theorem: bila sampel kita cukup besar (n>30), uji normal bisa diabaikan.
- Contoh menggunakan data *C. boenak*.
- Apakah yang mempengaruhi jumlah ikan C. boenak (kg) yang ditangkap nelayan?

Central limit theorem = variabel acak yang jumlahnya banyak akan menghasilkan distribusi normal

Science unit WCS Indonesia

Plot densitas & QQ-plot untuk berat ikan

Science unit WCS Indonesia

Contoh Q-Q plot dengan distribusi normal:

regression & Linear regression

Science unit WCS Indonesia

Assumptions of linear

Menggunakan Shapiro-Wilk normality test:

```
shapiro.test(db.data$KG)
```

```
##
## Shapiro-Wilk normality test
##
## data: db.data$KG
## W = 0.24532, p-value < 2.2e-16</pre>
```

p-value > 0.05 = distribusi data tidak berbeda secara signifikan dari distribusi normal (data berdistribusi normal).

Science unit WCS Indonesia

2. Heterogeneity of variances

- Pada linear regression = explanatory variables berasal dari populasi yang sama.
- Ketika kita mem-fit-kan model, residual data tidak menunjukkan pola apapun.
- Bila ada = teori linear regression model kita tidak valid

Science unit WCS Indonesia

Cara menguji pelanggaran homogeneity

- Diagnosa plot residual vs fitted values model yang kita uji.
- Variance dari variabel yang dimodelkan = konstan dan tidak mengikuti pola tertentu

Science unit WCS Indonesia

Contoh observasi visual homogeneity

- Plot kg ikan dengan variabel-variabel penjelas.
- Random parts (sumber error) diabaikan.

$$Y = fixed.parts$$

kg.ikan.ditangkap(Y) = jumlah.hook + jumlah.jam

Science unit WCS Indonesia

Hasil plot residual dan AIC

[1] 5055.287

Science unit WCS Indonesia

Contoh plot residual yang tidak berpola

Science unit WCS Indonesia

Contoh plot residual berpola

Science unit WCS Indonesia

3. Fixed X

- Asumsi yang mengimplikasikan = explanatory variables sudah diketahui nilainya (apriori)
- Contoh: memilih situs yang konsentrasi racunnya sudah kita ketahui
- Eror sampling bukan masalah besar apabila kecil dibanding variasi sampel/rentang data yang kita miliki. Eg., 20 sampel dengan variasi nilai 15-20 derajat Celcius, eror termometer kita adalah 0.1.

Science unit WCS Indonesia

4. Independence

- Masalah paling = bisa mem-disvalidasi tes-tes penting seperti F-test atau t-test.
- Muncul ketika = nilai Y pada Xi dipengaruhi oleh Xi lainnya.
 - Disebabkan oleh: pemilihan model yang tidak tepat dan kondisi alami data tersebut.
 - Plot garis lurus = ada pola non-linear antara Y dan X.
 - Plot residual terhadap X = ada pola yang teratur
- Gunakan model yang lebih baik/transformasi data = hubungan menjadi linear.
- Gunakan uji collinearity = identifikasi variabel-variabel yang berkorelasi

Science unit WCS Indonesia

Uji multicollinearity (visual)

Science unit WCS Indonesia

Uji multicollinearity (VIF)

- Gunakan Variance Inflation Factors (VIF).
 - VIF = 1: tidak ada korelasi antara variable
 - VIF = 1-5: korelasi 'medium'
 - VIF > 5: korelasi tinggi
- Akibat korelasi tinggi = estimasi koefisien buruk; nilai p-value dipertanyakan.

Science unit WCS Indonesia

Uji multicollinearity (VIF)

```
##
                GVIF Df GVIF^(1/(2*Df))
                               4.574592
## Bulan
           20.926889 1
## Quarter 21.017404
                               4.584474
## Boat 417.293630 338
                                1.008966
## Crew
            4.833682
                               2.198564
## T.
           21.061244
                               4.589253
## Hook
            2.390691
                                1.546186
```

Science unit WCS Indonesia

Pelanggaran Independence lainnya

- Karena kondisi data itu sendiri.
- Apa yang kita makan menit ini bergantung pada apa yang kita minum 5 menit yang lalu.
- Apabila hujan turun pada jarak 200 m dari tanah, maka sebetulnya hujan juga tengah terjadi pada 100 m dari tanah.
- Diatasi dengan memasukkan struktur dependesi temporal ataupun spasial pada model.

of linear regression & Linear regression Science unit WCS

Indonesia

Assumptions

Analisis lanjutan data continuous ikan *C. boenak*

Menambahkan interaction terms

$$kg(Y) = hook + jam + hook \times jam$$

2 Menambahkan fixed effect berupa variabel non-linear

$$kg(Y) = hook + hook^2$$

3 Menambahkan variabel penjelas lainnya

$$kg(Y) = hook + jam + bulan$$

- 4 Mentransformasi data
- Menguji apakah terdapat spatial autocorrelation (e.g., koordinat X-Y) atau temporal autocorrelation (e.g., bulan, tahun pemancingan) dan mengkoreksinya.

Science unit WCS Indonesia

Generalized least square models

• Linear regression model biasanya terdiri atas bagian:

$$Y = fixed.part + random.part$$

 $\alpha + \beta_1 + ... + \beta_a X_a$

Heterogeneity
Nested data
Temporal correlation
Spatial correlation
Random noise

Science unit WCS Indonesia

Generalized least square models

- Random part= real random term; linear regression/additive modelling.
- Random part= nested data; mixed effects model.
- Random part= heterogeneity; generalised least squares/weighted linear regression.
- Random part= violation of independence; spatial and or temporal autocorrelation.

Science unit WCS Indonesia

Generalized least square models

Figure 2: Generalized least square vs simple linear regression

Science unit WCS Indonesia

Bagaimana bila masih ada pola residual?

Bila kita tidak ingin melakukan transformasi = gunakan distribusi lain (distribusi gamma) atau gunakan smoothing models.

Science unit WCS Indonesia

Distribusi Gamma

- Distribusi normal (Gaussian) = total luas permukaan di bawah Normal density curve : 1.
- Probabilitas mengukur burung gagak 20 gr = 0.21
- Probabilitas mengukur berat gagak 5 gr = sangat kecil, walau masih terukur dalam distribusi normal.

Fig. 8.1 A: Histogram of weight of 1281 sparrows. B: As panel A, but now scaled so that the total area in the histogram is equal to 1. C: Histogram of simulated data from a Normal distribution with mean and variance taken from the 1281 sparrows. D: Normal probability curve with values for the mean and the variance taken from the sample of 1281 sparrows. The surface under the Normal density curve adds up to 1

Science unit WCS Indonesia

PDF distribusi normal

$$f(y_i; \mu, \alpha) = \frac{1}{\alpha \sqrt{2\pi}}$$

 $\mathsf{Mean} = E(Y) = \mu \; \mathsf{dan} \; \mathsf{Variance} = \mathit{var}(Y) = \sigma^2$

Maka, variabel y bisa bernilai $-\infty$ dan ∞ .

Science unit WCS Indonesia

Penggunaan distribusi Gamma

- Bila data continuous kita masih memiliki residual berpola
 gunakan distribusi gamma
- Persyaratan Y bernilai positif.

Mean =
$$E(Y) = \mu$$
 dan Variance = $var(Y) = \frac{\sigma^2}{v}$

- Distribusi Gamma memungkinkan overdispersion
- Dispersion ditentukan oleh nilai v^{-1} . Nilai v yang kecil menunjukkan persebaran data cukup besar. Sebaliknya, dengan nilai v yang besar, maka persebaran data menjadi kecil dan bentuk distribusi Gamma akan mendekati distribusi Normal (Gaussian).

Science unit WCS Indonesia

PDF distribusi Gamma

Fig. 8.4 Gamma distributions for different values of μ and ν . The R function dgamma was applied, which uses a slightly different parameterisation: $E(Y) = a \times s$ and $var(Y) = a \times s^2$, where a is called the shape and s the scale. In our parameterisation, v = a and $\mu = a \times s$

Science unit WCS Indonesia

Additive model

10

db.data\$L

Smoothing models memungkinkan adanya hubungan non-linear antara response variable dan explanatory variables (additive models).

Science unit WCS Indonesia

Plot residual dan AIC additive model

[1] 4931.96

Science unit WCS Indonesia

Alur permodelan

Science unit WCS Indonesia

Data count

- Generalised linear modelling (GLM) dan generalised additive modelling (GAM) merupakan model perpanjangan dari regresi linear dan additive model.
- GLM dan GAM memiliki distribusi non-Gaussian = hubungan (relationship atau link) antara response variable dan explanatory variable berbeda.
- Distribusi Bernoulli atau binomial: data presence-absence, proportional data (0-100%).
- Distribusi Poisson atau negative binomial: count data.

Science unit WCS Indonesia

Tahapan dalam menggunakan GLM/GAM

- memilih distribusi response variable
- 2 mendefinisikan/menentukan kovariat (systematic part)
- menspesifikasikan relationship/link antara expected value (response variable) dengan systematic part (kovariat penjelas)

Science unit WCS Indonesia

Distribusi Poisson

$$f(y;\mu) = \frac{\mu^y}{\times} e^{-\mu} y!$$

Dimana y nilainya harus ≥ 0 dan berupa bilangan bulat/integer. Persamaan ini mendeskripsikan mengenai probability Y dengan nilai mean μ .

Science unit WCS Indonesia

Distribusi Poisson

 μ kecil, kurva densitas = skewed μ besar, kurvanya menjadi simetris, menyerupai distribusi normal.

Science unit WCS Indonesia

Distribusi Poisson

- P(Y < 0) = 0 (tidak bernilai < 0)
- Mean = $E(Y) = \mu$
- Variance = $var(Y) = \mu$

Science unit WCS Indonesia

Sepintas mengenai variabel offset

- Ketika kita mengumpulkan data count, observasi memiliki tingkatan upaya (effort) yang mmungkin berbeda.
- e.g., pengamatan jumlah semut yang sampai pada sumber makanan tertentu.
- Idealnya, setiap sumber makanan akan diobservasi dengan jumlah 'effort' yang sama (misalnya: lama pengamatan sama).
- Bisa jadi effort pengamatannya berbeda, sehingga analisisnya harus mencakup nilai effort ini.

Science unit WCS Indonesia

Variabel offset

- Distribusi Poisson dan negative binomial bisa mencakup nilai offset.
- Persamaan Poisson misalnya bisa ditulis sebagai:

$$log(\mu) = \beta_0 + \beta_1 x_1 + \beta_p x_p$$

Science unit WCS Indonesia

Variabel offset

- Variabel offset = beta coefficientnya 1.
- Ketika dimasukkan dalam model Poisson atau negative binomial, yang dimodelkan adalah nilai offset sebagai 'rate' (faktor pengali) dan bukan nilai 'count'nya sendiri.
- Contoh semut = variabel offset: nilai log waktu yang dipakai untuk mengamati sumber makanan.
- Persamaan dengan nilai offset atau logged effort variable (A):

$$log(\mu) = 1.log(A) + \beta_0 + \beta_1 x_1 + \beta_p x_p$$

Beta coefficient atau standardized regression coefficient, merupakan estimasi dari sebuah analisis regresi yang telah distandardisasi sehingga variance dari variabel dependent dan explanatorynya totalnya bernilai 1.

Science unit WCS Indonesia

Variabel Offset

Yang equivalen dengan:

$$\log(\frac{\mu}{A}) = \beta_0 + \beta_1 x_1 + \beta_p x_p$$

- Fungsi offset menjadi faktor "pengali".
- Ketika mem-fitkan model dengan offset, nilai exponensial dari beta coefficient sebuah predictor variable menjelaskan seberapa banyak perubahan 'rate' akan terjadi apabila dikalikan penambahan satu unit dari predictor variable.
- Dengan offset = dua kali effort menyebabkan penambahan sebanyak dua kali dari nilai count.
- Apabila asumsi ini tidak sesuai = variabel sebagai covariate, daripada sebagai offset.

Science unit WCS Indonesia

Distribusi Negative Binomial

- Distribution function dari negative binomial terdiri atas 2 parameter: μ dan k.
- Nilai mean dan variance Y adalah:
- Mean = $E(Y) = \mu$ dan Variance = $var(Y) = \mu + \frac{\mu^2}{k}$
- Bila variance > mean, maka model kita memiliki overdispersion.
- Ditentukan oleh nilai k (parameter dispersion).
- Bila nilai k sangat besar (relatif terhadap μ^2) = maka $\frac{\mu^2}{k}$ mendekati 0, atau variance-nya = μ .
- Dalam kondisi ini, negative binomial = distribusi Poisson.
- Semakin kecil nilai k, maka akan semakin besar juga overdispersionnya.

Science unit WCS Indonesia

Distribusi Negative Binomial

 $\mu \& k = \text{nilai mean dan dispersion parameter}$

Science unit WCS Indonesia

Distribusi Bernoulli dan binomial

- Biasanya dicontohkan dari distribusi yang muncul dari melontarkan koin.
- Didefinisikan sebagai N percobaan melontar yang identik dan independen
- Dengan probabilitas sukses $P(Y_i = 1) = \pi$
- Dan probabilitas gagal $P(Y_i = 1) = 1 \pi$.
- Sukses dan gagal adalah nilai 1 dan 0.
- Independen = setiap lontaran tidak berkaitan dengan lontaran sebelum atau sesudahnya.
- Identikal = setiap lontaran memiliki probabilitas sukses yang sama besarnya.

Science unit WCS Indonesia

PDF distribusi Binomial

$$f(y;\pi) = \binom{N}{y} \times \pi^y \times (1-\pi)^{N-y}$$

- Mean = $E(Y) = N \times \pi$
- Variance = $var(Y) = N \times \pi \times (1 \pi)$

Science unit WCS Indonesia

Distribusi Binomial

Science unit WCS Indonesia

Distribusi Binomial dan Bernoulli

- Studi presence absence dari suatu spesies, e.g., presence absence suatu spesies ikan tertentu dalam 62 situs estuari (Zuur et al 2001).
- Distribusi Bernoulli diperoleh bila ${\it N}=1=$ melontarkan koin sekali dan mencatat probabilitasnya.
- Biasanya distribusi Bernoulli tidak dibedakan dengan distribusi Binomial.

Science unit WCS Indonesia

Bagaimana cara memilih distribusi yang tepat untuk data kita?

- Data count = distribusi Poisson.
 - High overdispersion = gunakan distribusi negative binomial.
 - Distribusi Normal juga bisa dipakai, tapi ingat: tidak meng-exclude nilai negatif.
- Continuous data= distribusi Normal
 - High overdispersion = distribusi gamma
 - Additive modelling.
- Perlu diingat: distribusi-distribusi ini berlaku untuk response variable, bukan explanatory variable.
- Bila ragu, plot terlebih dahulu nilai mean terhadap variance dari response variable untuk melihat hubungan mean-variancenya

Science unit WCS Indonesia

Zero truncated dan zero inflated

- Zero truncated dan zero inflated distribution bisa diaplikasikan untuk data count
- Berlaku untuk distribusi Poisson, negative binomial dan geometric.
- Zero truncated = data yang tidak bisa mengambil nilai 0, e.g., studi kedokteran: seperti berapa lama pasien tinggal di rumah sakit; transek tanaman, tidak mungkin kita menemukan transek yang tidak ada abundancenya (akibat experimental design).
- Variabel-variabel ini tidak mungkin memiliki nilai 0, tapi karena 0 pasti masuk dalam probabilitas distribusi untuk data count, ini bisa membuat nilai μ menjadi bermasalah kalau nilai meannya kecil.

Science unit WCS Indonesia

Zero truncated dan zero inflated

- Solusinya = modifikasi distribusi dan meng-exclude kemungkinan observasi nilai 0 = zero truncated distribution.
- Prinsip yang sama diaplikasikan pada kasus-kasus dimana terdapat banyak nilai 0 (zero inflated Poisson).

Science unit WCS Indonesia

Distribusi Zero Truncated

Science unit WCS Indonesia

Distribusi Zero Inflated

db.data\$IND

Science unit WCS Indonesia

Bagaimana cara memilih distribusi terbaik?

- Membandingkan nilai AIC = semakin kecil AIC, semakin baik
- Inspeksi visual data residual
- Perbandingan nilai R-squared = semakin besar, semakin banyak informasi yang terjelaskan oleh model yang kita pakai (hati-hati dengan overfitting!).

Science unit WCS Indonesia

Bagaimana menentukan best fit model?

- Gunakan fungsi drop1 atau dredge
- Gunakan intuisi atau background information tentang subyek yang kita coba analisis

WCS Indonesia

Seleksi model

- Lihat kembali data hasil tangkapan ikan *Cephalopholis* boenak di Maluku Utara pada tahun 2017-2018.
- Apakah yang mempengaruhi jumlah tangkapan ikan C. boenak?
- Persamaan yang diuji:

IND = Bulan + Quarter + Boat + Crew + Hook + offset(DaS)

Dimana:

- IND = jumlah individu tertangkap per trip
- Tahun = tahun penangkapan
- ullet Quarter =1/4 bulan pertama, kedua, ketiga dan keempat
- Boat = nama pemilik kapal
- Crew = jumlah awak kapal
- Offset (DaS) = Days at Sea

Science unit WCS Indonesia

Seleksi model

Pengetahuan tentang bidang studi sangat penting (tidak semua variabel non-signifikan harus dibuang)

Science unit WCS Indonesia

Seleksi model

Kita coba merunut permodelan yang akan kita pakai, sesuai tahap-tahap yang sudah kita pelajari tadi. Tahapannya adalah sebagai berikut:

```
library (MASS)
library (nlme)
library (newIn)
library (readxl)
library (med)
library (gam)
library (AER)
library (AICcmodavg)
library (AFC)
library (AFC)
library (pasc)
library (pasc)
library (pasc)
```

Science unit WCS Indonesia

Science unit WCS Indonesia

```
#lain-lain sebagai data faktorial
db.data$Tahun = as.factor(db.data$Tahun)
db.data$Boat = as.factor(db.data$Boat)
db.data$Location = as.factor(db.data$Location)
#menetapkan beberapa data sebagai data numerik
db.data$Crew = as.numeric(db.data$Crew)
db.data$C = as.numeric(db.data$L)
db.data$L = as.numeric(db.data$Hook)
db.data$Bos = as.numeric(db.data$Hook)
db.data$Dos = as.numeric(db.data$ND)
```

Science unit WCS Indonesia

```
Assumptions of linear regression & Linear regression
```

Science unit WCS Indonesia


```
Assumptions of linear regression & Linear regression
```

WCS

Indonesia

regression arispersions (glim

```
dispersiontest(glm.2)
```

```
## Overdispersion test
##
## data: glm.2
## z = 4.1659, p-value = 1.551e-05
## alternative hypothesis: true dispersion is greater than 1
## sample estimates:
## dispersion
## 2.789862
glm.2b = glm(IND ~ Tahun + Quarter + Boat + Crew + L + Hook + offset(DaS),
            data = db.data.Count, family = quasipoisson)
summary(glm.2b)
##
## Call:
## glm(formula = IND ~ Tahun + Quarter + Boat + Crew + L + Hook +
##
      offset(DaS), family = quasipoisson, data = db.data.Count)
```

```
##
## Deviance Residuals:
      Min
              10 Median
                               30
                                      Max
## -5.8112 -0.9431 0.0000 0.7139 8.0912
##
## Coefficients:
                        Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                       1.195510 2.661089 0.449 0.65361
## Tahun2018
                      0.936651 0.281687 3.325 0.00101 **
                      -0.317435 0.127156 -2.496 0.01315 *
## Quarter.L
## Quarter.Q
                     -0.717416 0.121148 -5.922 9.73e-09 ***
## Quarter.C
                     -0.157938 0.110561 -1.429 0.15431
## Doo+ ADDIT HADTO
                      0.070/15
                                  2 400000 0 112 0 01060
```

```
Assumptions of linear regression & Linear regression
```

Science unit WCS Indonesia

Science unit WCS Indonesia

Seleksi model

```
AIC(glm.1,glm.2,glm.3)
```

```
## df AIC
## glm.1 107 2515.123
## glm.2 106 2386.796
## glm.3 107 2056.490
```

 $\#Bandingkan\ nilai\ AIC\ dan\ residual\ dari\ ketiga\ uji\ model\ di\ atas$

Science unit WCS Indonesia

```
par(mfrow=c(1,3))
plot(resid1, main="Gaussian, AIC = 2515.123")
plot(resid2, main="Poisson, AIC = 2386.796, over dispersion = 2.8")
plot(resid3, main="Negative binomial, AIC = 2056.490")
```


Science unit WCS Indonesia

Science unit WCS Indonesia

Mengkalkulasi nilai R2

- %R2 bisa membantu dalam memilih distribusi model terbaik.
- %R2 menjelaskan seberapa banyak variansi yang terjelaskan melalui model.
- R2 merupakan hasil output dari summary pada function
 lm untuk distribusi Gaussian.
- Bisa juga dihitung secara manual dari output summary model GLM.

```
## Call:
## Im(formula = IND - Tahun + Quarter + Boat + Crew + L + Hook +
## offset(DaS), data = db.data.Count)
##
## Residuals:
## Min 1Q Median 3Q Max
## -15.060 -2.664 0.000 1.575 27.459
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -6.8926 12.9214 -0.533 0.594179
```

```
Assumptions
of linear
regression &
Linear
regression
```

Science unit WCS Indonesia

Mengkalkulasi nilai R2

- Multiple R2 = 0.55, atau 55%.
- Adjusted R-squarenya = 0.38 atau 38%.
- Bandingkan dengan fungsi glm.
- Adjusted R-square biasanya nilainya < multiple R2 karena memberikan penalti terhadap jumlah kovariat.

```
data = db.data.Count, family = gaussian)
summary(glm.1)
## Call:
## glm(formula = IND ~ Tahun + Quarter + Boat + Crew + L + Hook +
##
      offset(DaS), family = gaussian, data = db.data.Count)
## Deviance Residuals:
      Min
                1Q
                     Median
                                  3Q
                                          Max
## -15.060 -2.664
                      0.000
                               1.575
                                       27,459
##
## Coefficients:
                         Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                          -6.8926
                                     12.9214 -0.533 0.594179
                           3.4953 1.4779 2.365 0.018738 *
## Tahun2018
## Quarter.L
                          -1.4920 1.0850 -1.375 0.170237
## Quarter.Q
                          -5.9059
                                      1.1257 -5.247 3.15e-07 ***
## Quarter.C
                                      1.0982 -0.830 0.407162
                          -0.9118
                                      7.8523 0.137 0.891047
## BoatABDUL HARTS
                          1.0766
## BoatABDULLAH
                          16.0238
                                      7 3086
                                               2.192 0.029205 *
```

- ----

glm.1 = glm(IND ~ Tahun + Quarter + Boat + Crew + L + Hook + offset(DaS).

Science unit WCS Indonesia

Mengkalkulasi nilai R2

Hasilnya, kita memperoleh nilai Null deviance = 23119.2 dan Residual deviance = 8795.4. Maka R2 nya adalah=

$$R^2 = \frac{\textit{Null.deviance} - \textit{Residual.deviance}}{\textit{Null.deviance}}$$

[1] 0.5548289

Hasil ini mirip dengan nilai multiple R-squared dengan function 1m. Metode penghitungan ini bisa diaplikasikan pada distribusi Poisson dan Negative Binomial.

Science unit WCS Indonesia

Seleksi model

Selanjutnya, untuk menggunakan fungsi drop1 dan dredge, maka berikut tahapan teknis penggunaannya:

```
#membandingkan model yang salah satu variabelnya
#di-drop terhadap model drop dan full model lainnya
drp1<-drop1(glm.3,test="Chi")
drp1
```

```
## Single term deletions
##
## Model:
## IND ~ Tahun + Quarter + Boat + Crew + L + Hook + offset(DaS)
                       ATC LRT Pr(>Chi)
          Df Deviance
             330.42 2054.5
## <none>
## Tahun 1 348.30 2070.4 17.88 2.357e-05 ***
## Quarter 3 393.06 2111.1 62.64 1.607e-13 ***
## Boat
          98 658.17 2186.2 327.75 < 2.2e-16 ***
## Crew 1 335.63 2057.7 5.21 0.022483 *
## L 1 337.04 2059.1 6.62 0.010094 *
## Hook 1 338.07 2060.1 7.64 0.005698 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
#variabel yang bila didrop AIC-nya jadi terendah
#dan tidak signifikan terhadap model bisa di-drop
#drop dilanjutkan sampai tidak ada lagi variabel
#uana tidak sianifikan
```

Science unit WCS Indonesia

```
## Single term deletions
## Model:
## IND ~ Tahun + Quarter + Boat + Crew + L + offset(DaS)
         Df Deviance
                       ATC
                           LRT Pr(>Chi)
## <none>
             330 97 2060 0
## Tahun 1 345.63 2072.7 14.657 0.0001289 ***
## Quarter 3 386.50 2109.6 55.526 5.304e-12 ***
## Boat 98 644.08 2177.2 313.105 < 2.2e-16 ***
## Crew 1 336.38 2063.4 5.408 0.0200455 *
      1 340.42 2067.5 9.445 0.0021167 **
## I.
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

```
Assumptions of linear regression & Linear regression
```

Science unit WCS Indonesia

Seleksi model

Kita coba run model yang berbeda untuk bisa mempelajari metode drop variabel/kovariat.

```
## Single term deletions
##
## Model:
## IND ~ Bulan + Quarter + Boat + Crew + L + Hook + offset(DaS)
         Df Deviance
                      ATC
                              LRT Pr(>Chi)
##
             329.44 2034.0
## <none>
## Bulan
          8 386.20 2074.8 56.762 2.003e-09 ***
## Quarter 0 329.44 2034.0 0.000
## Boat
         98 619.98 2128.6 290.536 < 2.2e-16 ***
## Crew 1 332.61 2035.2 3.170 0.074982 .
## T.
    1 336.44 2039.0 6.996 0.008168 **
## Hook 1 330.17 2032.8 0.727 0.393974
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Science unit WCS Indonesia

```
## Single term deletions
##
Model:
## IND - Bulan + Quarter + Boat + Crew + L + offset(DaS)
## Df Deviance AIC LRT Pr(>Chi)
## Single Bulan 8 390.99 2078.2 61.396 2.48e-10 ***
## Quarter 0 329.59 2032.8 0.000
## Boat 98 618.92 2126.1 289.330 < 2.2e-16 ***
## Crew 1 332.77 2034.0 3.175 0.074768 .
## L 1 337.80 2039.0 8.207 0.004172 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Science unit WCS Indonesia

Seleksi model

Atau gunakan dredge

```
glm.3 = glm.nb(IND ~ Tahun + Quarter + Boat + Crew + L +
                Hook + offset(DaS).
              data = db.data.Count, link=log, na.action = na.fail)
dd<-dredge(glm.3)
dd1<-subset(dd. delta < 4) #prinsipnya menjelaskan sekitar >80%
dd1
## Global model call: glm.nb(formula = IND ~ Tahun + Quarter + Boat + Crew + L + Hook +
      offset(DaS), data = db.data.Count, na.action = na.fail, link = log,
##
      init.theta = 3.656269462)
## Model selection table
     (Int) Crw Hok
                             L Ort Thn df logLik AICc delta weight
                         -0.2238 + + 8 -1018.493 2053.4 0.00 0.723
## 59 3.036 -0.9765
## 63 2.902 -0.9733 0.00824 -0.2177 + + 9 -1018.403 2055.3 1.92 0.277
## Models ranked by AICc(x)
dd2<-model.avg(dd. subset = cumsum(weight) <= 0.99.fit=TRUE)
emmeans(dd2,~c(Quarter), type = "links",
                        weights = "proportional",
                        at = list(L = 7. DaS = 1. Crew = 1. Hook = 9))
```

Quarter emmean SE df lower.CL upper.CL

Science unit WCS Indonesia

Seleksi model

Terdapat banyak nilai 0 pada hasil tangkapan ikan. Maka, salah satu pendekatan yang bisa kita lakukan antara lain dengan menggunakan distribusi Zero Inflated sebagai berikut:

Science unit WCS Indonesia

```
#Cek residual
res.zip1<-resid(Zip1)
res.zip2<-resid(Nb1A)
#Uji likelihood test
lrtest(Zip1,Nb1A)</pre>
```

```
## Likelihood ratio test
##
## Model 1: IND - Quarter + Crew + L + Hook + DaS | Quarter + Crew + L +
## Hook + offset(DaS)
## Model 2: IND - Quarter + Crew + L + Hook + DaS | Quarter + Crew + L +
## Hook + offset(DaS)
## #Df LogLik Df Chisq Pr(>Chisq)
## 1 15 -2453.5
## 2 16 -1922.5 1 1062.1 < 2.2e-16 ***
## ---
## "---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1</pre>
```

Science unit WCS Indonesia

Seleksi model

#Hitung nilai AIC AIC(Zip1,Nb1A)

```
## df AIC
## Zip1 15 4937.065
## Nb1A 16 3876.979
```

Science unit WCS Indonesia

Seleksi model

Index

Zero Inflated Negative Binomial, AIC=3876.979

Science unit WCS Indonesia

QUIZ!

Tentukan distribusi apa yang bisa kita gunakan ketika menemukan kasus berikut ini:

- Menguji apakah yang menyebabkan lampu jalanan menyala atau tidak setelah matahari tenggelam.
- 2 Menguji apakah yang menyebabkan suhu di negara tropis berubah dari nilai -4 ke \pm 4 derajat Celcius.
- Menguji apakah yang menyebabkan berat badan anak bayi meningkat di 3 tahun pertama umurnya.
- Menguji apakah jumlah halaman buku fiksi dipengaruhi oleh genre buku tersebut.

Science unit WCS Indonesia

References:

- Gambar 2. By KendallVarent Own work, Public Domain, https:
- //commons.wikimedia.org/w/index.php?curid=10349551
- Q Gambar 3. https://en.wikipedia.org/wiki/Q%E2%80%93Q_plot
- 3 Gambar 4. https://stats.idre.ucla.edu/spss/seminars/introduction-to-regression-with-spss/introreg-lesson2/
- 4 Gambar 5. https://uc-r.github.io/assumptions_homogeneity
- Penjelasan mengenai variabel offset https: //www.cscu.cornell.edu/news/statnews/stnews94.pdf
- 6 Zuur, et al. 2009. Sumber utama konten modul ini.