第十八章 隐函数定理及其应用

第一节 隐函数

隐函数的概念

隐函数的定义:设 $X \subset \mathbb{R}, Y \subset \mathbb{R}$,函数 F 为定义在 $X \times Y$ 上的二元函 数. 若存在集合 $I \subset X$, $J \subset Y$, 使得对任何 $x \in I$. 恒有**惟**—确定的 $u \in J$. 满足

$$F(x,y) = 0.$$

则称方程 F(x,y)=0 确定一个定义在 I 上, 值域含于 J 的**隐函数**. 若 把它记为

$$y = f(x), \quad x \in I, \quad y \in J,$$

则恒成立等式

$$F(x, f(x)) \equiv 0, \quad x \in I.$$

隐函数存在惟一性定理1: 如果函数 F(x,y) 满足如下条件:

则方程 F(x,y)=0 在点 $P_0(x_0,y_0)$ 的某一邻域 $U(P_0)$ 内能**唯一**确定一个 定义在某区间 $(x_0 - \alpha, x_0 + \alpha)$ 内的**连续函数** y = f(x), 使得

$$y_0=f(x_0)$$
, 且在区间 $(x_0-\alpha,x_0+\alpha)$ 内, $F(x,f(x))\equiv 0$.

隐函数存在惟一性定理1: 如果函数 F(x,y) 满足如下条件:

• $F(x_0, y_0) = 0$;

则方程 F(x,y)=0 在点 $P_0(x_0,y_0)$ 的某一邻域 $U(P_0)$ 内能**唯一**确定一个 定义在某区间 $(x_0-\alpha,x_0+\alpha)$ 内的**连续函数** y=f(x), 使得

 $y_0 = f(x_0)$, 且在区间 $(x_0 - \alpha, x_0 + \alpha)$ 内, $F(x, f(x)) \equiv 0$.

隐函数存在惟一性定理1: 如果函数 F(x,y) 满足如下条件:

- $F(x_0, y_0) = 0$;
- F(x,y), $F_y(x,y)$ 在点 $P_0(x_0,y_0)$ 的某一邻域内连续;

则方程 F(x,y)=0 在点 $P_0(x_0,y_0)$ 的某一邻域 $U(P_0)$ 内能**唯一**确定一个定义在某区间 $(x_0-\alpha,x_0+\alpha)$ 内的**连续函数** y=f(x), 使得

$$y_0 = f(x_0)$$
, 且在区间 $(x_0 - \alpha, x_0 + \alpha)$ 内, $F(x, f(x)) \equiv 0$.

隐函数存在惟一性定理1: 如果函数 F(x,y) 满足如下条件:

- $F(x_0, y_0) = 0$;
- F(x,y), $F_y(x,y)$ 在点 $P_0(x_0,y_0)$ 的某一邻域内连续;
- $F_y(x_0, y_0) \neq 0$.

则方程 F(x,y) = 0 在点 $P_0(x_0,y_0)$ 的某一邻域 $U(P_0)$ 内能**唯一**确定一个 定义在某区间 $(x_0 - \alpha, x_0 + \alpha)$ 内的**连续函数** y = f(x), 使得

$$y_0 = f(x_0)$$
, 且在区间 $(x_0 - \alpha, x_0 + \alpha)$ 内, $F(x, f(x)) \equiv 0$.

隐函数存在惟一性定理1: 如果函数 F(x,y) 满足如下条件:

- $F(x_0, y_0) = 0$;
- F(x,y), $F_n(x,y)$ 在点 $P_0(x_0,y_0)$ 的某一邻域内连续;
- $F_u(x_0, y_0) \neq 0$.

则方程 F(x,y) = 0 在点 $P_0(x_0,y_0)$ 的某一邻域 $U(P_0)$ 内能**唯一**确定一个 定义在某区间 $(x_0 - \alpha, x_0 + \alpha)$ 内的**连续函数** y = f(x), 使得

$$y_0=f(x_0)$$
, 且在区间 $(x_0-\alpha,x_0+\alpha)$ 内, $F(x,f(x))\equiv 0$.

进一步假设 $F_x(x,y)$ 连续, 则函数 y=f(x) 有连续导数, 且

$$f'(x) = \frac{dy}{dx} = -\frac{F_x(x,y)}{F_y(x,y)}.$$

隐函数存在惟一性定理2: 如果函数 $F(x_1, x_2, \dots, x_n, y)$ 满足如下条件:

- $F(x_1^0, x_2^0, \cdots, x_n^0, y^0) = 0;$
- $F(x_1, x_2, \dots, x_n, y)$, $F_y(x_1, x_2, \dots, x_n, y)$ 在点 $P_0(x_1^0, x_2^0, \dots, x_n^0, y^0)$ 的某一邻域内连续:
- $F_y(x_1^0, x_2^0, \cdots, x_n^0, y^0) \neq 0.$

则存在点 $P_0(x_1^0, x_2^0, \cdots, x_n^0)$ 的一个邻域 U, 以及惟一定义于 U 上的**连续**

函数 $y = f(x_1, x_2, \dots, x_n)$, 使得 $y^0 = f(x_1^0, x_2^0, \dots, x_n^0)$, 且在区间 U 内,

 $F(x_1, x_2, \cdots, x_n, f(x_1, x_2, \cdots, x_n)) \equiv 0.$

如果再假设, F_{x_1} , F_{x_2} , ..., F_{x_n} 也连续, 则函数 $y = f(x_1, x_2, \dots, x_n)$ 在 P_0 的一个邻域内存在连续可微的偏导数, 且

$$\frac{\partial y}{\partial x_1} = -\frac{F_{x_1}}{F_y}, \quad \frac{\partial y}{\partial x_2} = -\frac{F_{x_2}}{F_y}, \quad \cdots, \frac{\partial y}{\partial x_n} = -\frac{F_{x_n}}{F_y}.$$

例题1: 证明由方程

$$y - x - \frac{1}{2}\sin y = 0$$

可以在原点附近确定隐函数 y = f(x), 并求其一阶导数和二阶导数.

例题2: 讨论笛卡尔叶形线

$$x^3 + y^3 - 3axy = 0$$

所确定的隐函数 y=f(x) 的一阶与二阶导数, 并求隐函数的极值.

例题3: 试讨论方程

$$xyz^3 + x^2 + y^3 - z = 0,$$

- 在原点附近是否可以确定一个二元隐函数 z=z(x,y)??
- 如果存在隐函数, 求其偏导数及其在原点处的二阶偏导数 $\frac{\partial^2 z}{\partial x^2}$.

例题4: 设 F(u,v) 具有连续的一阶偏导数, $a\frac{\partial F}{\partial u} + b\frac{\partial F}{\partial v} \neq 0$. 证明由函数

$$F(x^2 - az, y^2 - bz) = 0$$

所确定的函数 z = z(x,y) 满足方程

$$ay\frac{\partial z}{\partial x} + bx\frac{\partial z}{\partial y} = 2xy.$$

例题4: 设 F(u,v) 具有连续的一阶偏导数, $a\frac{\partial F}{\partial u} + b\frac{\partial F}{\partial v} \neq 0$. 证明由函数

$$F(x^2 - az, y^2 - bz) = 0$$

所确定的函数 z = z(x,y) 满足方程

$$ay\frac{\partial z}{\partial x} + bx\frac{\partial z}{\partial y} = 2xy.$$

解:代入如下偏导数.

例题4: 设 F(u,v) 具有连续的一阶偏导数, $a\frac{\partial F}{\partial u} + b\frac{\partial F}{\partial v} \neq 0$. 证明由函数

$$F(x^2 - az, y^2 - bz) = 0$$

所确定的函数 z = z(x, y) 满足方程

$$ay\frac{\partial z}{\partial x} + bx\frac{\partial z}{\partial y} = 2xy.$$

解:代入如下偏导数.

$$\frac{\partial z}{\partial x} = -\frac{F_x'}{F_z'} = \frac{F_1'2x}{F_1' \cdot a + F_2' \cdot b};$$

例题4: 设 F(u,v) 具有连续的一阶偏导数, $a\frac{\partial F}{\partial u} + b\frac{\partial F}{\partial v} \neq 0$. 证明由函数

$$F(x^2 - az, y^2 - bz) = 0$$

所确定的函数 z = z(x, y) 满足方程

$$ay\frac{\partial z}{\partial x} + bx\frac{\partial z}{\partial y} = 2xy.$$

解:代入如下偏导数.

$$\frac{\partial z}{\partial x} = -\frac{F_x'}{F_z'} = \frac{F_1'2x}{F_1' \cdot a + F_2' \cdot b};$$
$$\frac{\partial z}{\partial y} = -\frac{F_y'}{F_z'} = \frac{F_2'2y}{F_1' \cdot a + F_2' \cdot b}.$$

例题5: 已知函数 y = f(x) 在点 x_0 的某邻域内有连续的导函数 f'(x), 且 $f(x_0) = y_0$, 试讨论在 y_0 的某邻域内存在反函数 x = x(y) 的**充分条件**.

例题6: 设函数 z=z(x,y) 由方程 F(x-z,y-z) 确定, 其中 F 具有二阶连续偏导数, 且对任意的 (x,y), $F_1+F_2\neq 0$. 试证

$$z_{xx} + 2z_{xy} + z_{yy} = 0.$$

本节作业

作业:

第 142 页: 第1题、第2题.

第 143 页: 第3题(1)、(6)只求 $\frac{\partial z}{\partial x}$.

第 143 页: 第4题、第5题.