UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO

Finančna matematika – 1. stopnja

Anej Rozman Sestavljeni Poissonov proces in njegova uporaba v financah

Delo diplomskega seminarja

Mentor: doc. dr. Martin Raič

Kazalo

1. Uvod	4
2. Sestavljeni Poissonov proces	5
2.1. Osnovne lastnosti	5
2.2. Rodovne funkcije	7
2.3. Porazdelitev CPP	8
2.4. CPP kot martingal	10
3. Cramér-Lundbergov model	11
3.1. Predpostavke in omejitve modela	11
3.2. Verjetnost propada	11
3.3. Aproksimacije	11
3.4. Uporaba modela na podatkih	11
Slovar strokovnih izrazov	11
Literatura	11

Sestavljeni Poissonov proces in njegova uporaba v financah Povzetek

Abstract

Prevod zgornjega povzetka v angleščino.

Math. Subj. Class. (2020): 60G07 60G20 60G51

Ključne besede: slučajni procesi, sestavljeni Poissonov proces, Cramér-Lundbergov model

 $\textbf{Keywords:} \ \operatorname{stochastic} \ \operatorname{processes}, \ \operatorname{compound} \ \operatorname{Poisson} \ \operatorname{process}, \ \operatorname{Cram\'er-Lundberg} \ \operatorname{model}$ del

Uvodni tekst in motivacija za študiranje procesa, nakaži da boš obravnaval Cramer-Ludenbergov model

Slika 1. Primer trajektorije sestavljenega Poissonovega procesa

Definicija 1.1. Naj bo $(\Omega, \mathcal{F}, \mathbb{P})$ verjetnostni prostor in naj bo $T \neq \emptyset$ neprazna indeksna množica ter (E, Σ) merljiv prostor. *Slučajni proces*, parametriziran s T, je družina slučajnih elementov $X_t : \Omega \to E$, ki so (\mathcal{F}, Σ) -merljivi za vsak $t \in T$.

Opomba 1.2. Držali se bomo konvencije, da T predstavlja čas, torej $T = [0, \infty)$ in da slučajne spremenljivke zavzemajo vrednosti v realnih števili, torej $(E, \Sigma) = (\mathbb{R}, \mathcal{B}_{\mathbb{R}})$, kjer $\mathcal{B}_{\mathbb{R}}$ predstavlja Borelovo σ -algebro na \mathbb{R} .

Definicija 1.3. Za fiksen $\omega \in \Omega$ je preslikava $[0, \infty) \to \mathbb{R}$; $t \mapsto X_t(\omega)$ trajektorija oziroma realizacija slučajnega procesa $(X_t)_{t\geq 0}$.

Opomba 1.4. Na slučajni proces lahko gledamo tudi kot na predpis, ki nam iz vorčnega prostora Ω priredi slučajno funkcijo $(X_t(\omega))_{t>0}: [0,\infty) \to \mathbb{R}$.

Definicija 1.5. Naj bo $(X_t)_{t\geq 0}$ slučajni proces. Potem za s < t definiramo prirastek $procesa <math>X_t - X_s$ na intervalu [s,t]. Proces $(X_t)_{t\geq 0}$ ima neodvisne prirastke, če so za vsak nabor realnih števil $0 \le t_1 < t_2 < \ldots < t_n < \infty$ prirastki

$$X_{t_2} - X_{t_1}, \ X_{t_3} - X_{t_2}, \ \dots, \ X_{t_n} - X_{t_{n-1}}$$

med seboj neodvisni.

Definicija 1.6. Naj bo $(X_t)_{t\geq 0}$ slučajni proces. Potem pravimo, da ima proces stacionarne prirastke, če za vsak s < t in vsak h > 0 velja, da ima $X_{t+h} - X_{s+h}$ enako porazdelitev kot $X_t - X_s$.

Definicija 1.7. Naj bo $\lambda > 0$. Slučajnemu procesu $(N_t)_{t\geq 0}$ definiranem na verjetnostnem prostoru $(\Omega, \mathcal{F}, \mathbb{P})$ z vrednostmi v \mathbb{N}_0 pravimo *Poissonov proces* z intenzivnostjo λ , če zadošča naslednjim pogojem:

- (1) $N_0 = 0$ P-skoraj gotovo.
- (2) $(N_t)_{t\geq 0}$ ima neodvisne in stacionarne prirastke,
- (3) Za $0 \le s < t$ velja $N_t N_s \sim \text{Pois}(\lambda(t-s))$,

Opomba 1.8. Vidimo, da v definiciji ne zahtevamo, da so skoki procesa le +1. To sledi iz...

Definicija 1.9. Naj bo $(N_t)_{t\geq 0}$ Poissonov proces z intenzivnostjo λ . Naj bo $(X_i)_{i\geq 1}$ zaporedje neodvisnih (med sabo in N_t) in enako porazdeljenih slučajnih spremenljivk z vrednostmi v \mathbb{R} . Potem je sestavljen Poissonov proces $(S_t)_{t\geq 0}$ definiran kot

$$S_t = \sum_{i=1}^{N_t} X_i.$$

Opomba 1.10. Vidimo, da je sestavljeni Poissonov proces posplošitev homogenega Poissonovega procesa, saj če za X_i vzamemo konstantno funkcijo $X_i = 1$ za vsak i, dobimo ravno HPP. Bolj v splošnem, če za X_i postavimo $X_i = \alpha$, potem velja $S_t = \alpha N_t$.

V nadaljevanju bomo homogen Poissonov proces z intenzivnostjo $\lambda > 0$ označevali s $HPP(\lambda)$ ali naborom slučajnih spremenljivk $(N_t)_{t\geq 0}$ (angl. Homogeneous Poisson Process), sestavljeni Poissonov proces pa s CPP ali naborom slučajnih spremenljivk $(S_t)_{t\geq 0}$ (angl. Compound Poisson Process), kjer bo vsota sledila $HPP(\lambda)$.

2. Sestavljeni Poissonov proces

Povzetek poglavja/krajsi uvod

2.1. Osnovne lastnosti.

Trditev 2.1. CPP ima neodvisne in stacionarne prirastke.

Dokaz. Za nabor realnih števil $0 \le t_1 < t_2 < \ldots < t_n < \infty$ lahko slučajne spremeljivke $S_{t_i} - S_{t_{i-1}}$ zapišemo kot

$$S_{t_i} - S_{t_{i-1}} = \sum_{j=N_{t_{i-1}}+1}^{N_{t_i}} X_j.$$

Neodvisnost prirastkov sledi po neodvisnosti X_i od X_j za $i \neq j$ in N_t . Naj bo h > 0 in s < t. Potem velja

$$S_{t+h} - S_{s+h} = \sum_{j=N_{s+h}+1}^{N_{t+h}} X_j$$

Vsota ima $N_{t+h}-N_{s+h}$ členov. Ker za HPP velja $N_{t+h}-N_{s+h}\sim N_t-N_s$, je

$$\sum_{j=N_{s+h}+1}^{N_{t+h}} X_j = \sum_{j=N_s+1}^{N_t} X_j = S_t - S_s.$$

Trditev 2.2. Naj bo $(S_t)_{t\geq 0}$ CPP in naj bosta $\mu = \mathbb{E}[X_i] < \infty$ pričakovana vrednost in $\sigma^2 = Var[X_i] < \infty$ varianca slučajnih spremenljivk X_i za vsak i. Potem sta za $t \geq 0$ pričakovana vrednost in varianca S_t enaki

$$\mathbb{E}[S_t] = \mu \lambda t$$
 in $Var[S_t] = \lambda t \left(\sigma^2 + \mu^2\right)$.

Dokaz. Po formuli za popolno pričakovano vrednost velja $\mathbb{E}[S_t \mid N_t]$. Torej

$$\mathbb{E}[S_t] = \sum_{k=0}^{\infty} \mathbb{E}[S_t | N_t = k] \mathbb{P}(N_t = k)$$

$$= \sum_{k=0}^{\infty} \mathbb{E}\left[\sum_{i=1}^{k} X_i\right] \mathbb{P}(N_t = k)$$

$$= \sum_{k=0}^{\infty} k \mathbb{E}[X_i] \frac{(\lambda t)^k}{k!} e^{-\lambda t}$$

$$= \mu \lambda t e^{-\lambda t} \sum_{k=1}^{\infty} \frac{(\lambda t)^{k-1}}{(k-1)!}$$

$$= \mu \lambda t$$

Po standardni formuli za varianco $\operatorname{Var}[S_t] = \mathbb{E}[S_t^2] - \mathbb{E}[S_t]^2$ potrebujemo izračunati le še drugi moment. Ponovno uporabimo formulo za popolno pričakovano vrednost.

$$\mathbb{E}\left[S_t^2\right] = \sum_{k=0}^{\infty} \mathbb{E}\left[S_t^2 \mid N_t = k\right] \mathbb{P}\left(N_t = k\right)$$

$$= \sum_{k=0}^{\infty} \mathbb{E}\left[\left(\sum_{i=1}^k X_i\right)^2\right] \mathbb{P}\left(N_t = k\right)$$

$$= \sum_{k=0}^{\infty} \mathbb{E}\left[\sum_{i=1}^k X_i^2 + \sum_{i \neq j} X_i X_j\right] \mathbb{P}\left(N_t = k\right)$$

$$= \sum_{k=0}^{\infty} \left(kE\left[X_i^2\right] + k(k-1)\mathbb{E}\left[X_i\right] \mathbb{E}\left[X_j\right] \right) \mathbb{P}\left(N_t = k\right)$$

Prek formule $\operatorname{Var}\left[X_{i}\right]=\mathbb{E}\left[X_{i}^{2}\right]-\mathbb{E}\left[X_{i}\right]^{2}$ dobimo

$$\mathbb{E}\left[X_i^2\right] = \sigma^2 + \mu^2.$$

Izraz $kE[X_i^2] + k(k-1)\mathbb{E}[X_i]\mathbb{E}[X_j]$ se tako poenostavi v $k\sigma^2 + k^2\mu^2$, torej

$$\mathbb{E}\left[S_t^2\right] = \sum_{k=0}^{\infty} \left(k\sigma^2 + k^2\mu^2\right) \mathbb{P}\left(N_t = k\right)$$
$$= \sigma^2 \mathbb{E}\left[N_t\right] + \mu^2 \mathbb{E}\left[N_t^2\right]$$
$$= \sigma^2 \lambda t + \mu^2 (\lambda t + \lambda^2 t^2),$$

kjer upoštevamo, da $N_t \sim \operatorname{Pois}(\lambda t)$. Tako dobimo

$$Var [S_t] = \sigma^2 \lambda t + \mu^2 (\lambda t + \lambda^2 t^2) - (\mu \lambda t)^2$$
$$= \sigma^2 \lambda t + \mu^2 \lambda t + \mu^2 \lambda^2 t^2 - \mu^2 \lambda^2 t^2$$
$$= \lambda t (\sigma^2 + \mu^2).$$

2.2. Rodovne funkcije.

Trditev 2.3. Naj bo $(S_t)_{t\geq 0}$ CPP. Naj bodo slučajne spremenljivke X_i , ki jih seštevamo v CPP enako porazdeljene kot X. Potem ima za $t\geq 0$ momentno rodovna funkcija M_{S_t} obliko

$$M_{S_t}(u) = e^{\lambda t(M_X(u)-1)}$$

kjer M_X označuje momentno rodovno funkcijo X.

Dokaz.

 $M_{S_{t}}(u) = \mathbb{E}\left[\exp\left[uS_{t}\right]\right] = \mathbb{E}\left[\exp\left[u\sum_{i=1}^{N_{t}}X_{i}\right]\right]$ $= \sum_{k=0}^{\infty} \mathbb{E}\left[\exp\left[u\sum_{i=1}^{N_{t}}X_{i} \mid N_{t} = k\right]\right] \mathbb{P}\left(N_{t} = k\right)$ $= \sum_{k=0}^{\infty} \mathbb{E}\left[\exp\left[u\sum_{i=1}^{k}X_{i}\right]\right] \mathbb{P}\left(N_{t} = k\right)$ $= \sum_{k=0}^{\infty} \mathbb{E}\left[e^{uX}\right]^{n} \frac{(\lambda t)^{k}}{k!} e^{-\lambda t}$ $= e^{-\lambda t} + e^{-\lambda t} \sum_{k=1}^{\infty} \frac{(M_{X}(u)\lambda t)^{k}}{k!}$ $= e^{\lambda t(M_{X}(u)-1)}$ (1)

Hitro lahko vidimo, da sta karakteristična in rodovna funkcija CPP enaki

$$\varphi_{S_t}(u) = e^{\lambda t(\varphi_X(u)-1)}$$
 in $G_{S_t}(u) = e^{\lambda t(G_X(u)-1)}$

saj v splošnem velja, da je karakteristična funkcija neke slučajne spremenljivke Y enaka njeni momentno rodovni funkciji izvrednoteni v iu, torej $\varphi_Y(u) = G_Y(iu)$. Rodovna pa izverdnotena v $\ln(u)$, torej $G_Y(u) = M_Y(\ln(u))$, če obstajata. V nadaljevanju bomo uporabljali predvsem karakteristično funkcijo CPP, saj je ta vedno definirana za vsak $u \in \mathbb{R}$. Prav nam bo prišla tudi naslednja povezava med karakteristično funkcijo CPP in rodovno funkcijo $HPP(\lambda)$.

Trditev 2.4. Naj bosta $(S_t)_{t\geq 0}$ CPP in $(N_t)_{t\geq 0}$ HPP (λ) neodvisna. Naj bodo slučajne spremenljivke X_i , ki jih seštevamo v CPP enako porazdeljene kot X. Potem za fiksen $t\geq 0$ velja

$$\varphi_{S_t}(u) = G_{N_t}(\varphi_X(u)).$$

Dokaz. Po enačbi (1) iz trditve 2.3 velja, da je $\varphi_{S_*}(u)$ enaka

$$\varphi_{S_t}(u) = \sum_{k=0}^{\infty} \varphi_X(u)^n \frac{(\lambda t)^k}{k!} e^{-\lambda t}$$
$$= G_{N_t}(\varphi_X(u)).$$

2.3. **Porazdelitev CPP.** Sedaj se posvetimo vprašanju, kako je porazdeljena slučajna spremenljivka S_t za $t \geq 0$? Iz definicije HPP vemo, da je N_t za $t \geq 0$ porazdeljena kot Poissonova slučajna spremenljivka s parametrom λt . Fiksiramo $t \geq 0$ in dobimo

$$F_{S_t}(x) = \mathbb{P}(S_t \le x) = \sum_{k=0}^{\infty} \mathbb{P}(S_t \le x \mid N_t = k) \mathbb{P}(N_t = k)$$

$$= \sum_{k=0}^{\infty} \mathbb{P}(\sum_{i=1}^k X_i \le x) \frac{(\lambda t)^k}{k!} e^{-\lambda t}$$

$$= \sum_{k=0}^{\infty} F_X^{*k}(x) \frac{(\lambda t)^k}{k!} e^{-\lambda t},$$

kjer je $F_X^{*k}(x)$ porazdelitev k-te konvolucije slučajne spremenljivke X. Razen za posebne primere, je zgornji izraz za praktične namene ne-izračunljiv in nam v praksi ne pomaga veliko.

Zgled 2.5. Če pogledamo primer, ko so X_1, X_2, \ldots neodvisne enako porazdeljene slučajne spremenljivke, porazdeljene kot X

$$X \sim \text{Gamma}(a)$$

$$f_X(x) = \frac{1}{\Gamma(a)} x^{a-1} e^{-x}$$

s parametrom a > 0, lahko deloma eksplicitno zapišemo porazdelitev CPP. Gostota k-te konvolucije $X_1 + \cdots + X_k$ ima formulo

$$f_{X_1 + \dots + X_k}(x) = \frac{1}{\Gamma(na)} x^{na-1} e^{-x}.$$

Za $t \ge 0$ in $x \ge 0$ torej velja

$$F_{S_t}(x) = \mathbb{P}(S_t \le x) = \sum_{k=0}^{\infty} F_X^{*k}(x) \frac{(\lambda t)^k}{k!} e^{-\lambda t}$$
$$= \sum_{k=0}^{\infty} \dots$$

Pokažimo, da je CPP v resnici porazdeljen, kot limita linearne kombinacije neodvisnih Poissonovih slučajnih spremenljivk. Naj bodo Y_1, Y_2, \ldots, Y_n neodvisne s.s. porazdeljene $\operatorname{Pois}(\lambda_1), \ \operatorname{Pois}(\lambda_2), \ldots \operatorname{Pois}(\lambda_n)$ za poljubne $\lambda_1, \lambda_2, \ldots, \lambda_n \in \mathbb{R}^+$. Označimo s $\varphi_{Z_n}(u)$ karakteristično funkcijo slučajne spremenljivke $Z_n := a_1Y_1 + a_2Y_2 + \cdots + a_nY_n$ za poljubne $a_1, a_2, \ldots, a_n \in \mathbb{R}$. Po neodvisnosti velja

$$\varphi_{Z_n}(u) = \prod_{j=1}^n \varphi_{Y_j}(a_j u)$$

$$= \prod_{j=1}^n \exp\left[\lambda_j \left(e^{a_j i u} - 1\right)\right]$$

$$= \exp\left[\sum_{j=1}^n \lambda_j \left(e^{a_j i u} - 1\right)\right].$$

Naj bo sedaj $N \sim \text{Pois}(\lambda)$ za $\lambda > 0$ in $X_1, X_2, \dots X_n$ neodvisne s.s. (neodvisne med sabo in od N) enako porazdeljene kot

$$X \sim \begin{pmatrix} a_1 & a_2 & \dots & a_n \\ \frac{\lambda_1}{\lambda} & \frac{\lambda_2}{\lambda} & \dots & \frac{\lambda_n}{\lambda} \end{pmatrix}.$$

Definiramo $Z_n':=\sum_{j=1}^N X_j$. Pokažimo, da sta Z_n in Z_n' enako porazdeljeni. Po trditvi 2.4 velja

$$\varphi_{Z'_n}(u) = G_N(\varphi_X(u))$$

$$= \exp\left[\lambda\left(\varphi_X(u) - 1\right)\right]$$

$$= \exp\left[\lambda\left(\sum_{j=1}^n \frac{\lambda_j}{\lambda}e^{iua_j} - 1\right)\right]$$

$$= \exp\left[\sum_{j=1}^n \lambda_j\left(e^{a_jiu} - 1\right)\right] = \varphi_{Z_n}(u).$$

Ker se karakteristični funkciji φ_{Z_n} in $\varphi_{Z'_n}$ ujemata za vsak $u \in \mathbb{R}$, po Lévijevem izreku o zveznosti sledi, da sta Z_n in Z'_n enako porazdeljeni. Tako smo pokazali, da je za ustrezno izbiro zaporedij $(a_n)_{n\geq 1}$ in $(\lambda_n)_{n\geq 1}$ Z'_n enako porazdeljena kot linearna kombinacija neodvisnih poissonovih s.s. Ker za uporabo Lévijevega izreka potrebujemo le konvergenco po točkah iz tega sledi, da če seštevamo diskretne n.e.p. s.s. X_i prav tako velja naša trditev. Kaj pa v primeru, ko so X_i zvezno porazdeljene?

Tedaj se problema lotimo na sledeč način. Definiramo $F_n(x) := F(\frac{m}{n})$ kjer je F(x) porazdelitvena funkcija slučajne spremenljivke Z'_n in $m = \min\{k \in \mathbb{Z} \mid \frac{k}{n} > F_n(x)\}$.

Slika 2. Aproksimacija F s F_n

Kot je razvidno iz slike 2, je $F_n(x)$ stopničasta funkcija, ki aproksimira porazdelitveno funkcijo F(x). Velja $F_n \xrightarrow{n \to \infty} F$ povsod kjer je F zvezna.

2.4. CPP kot martingal.

Definicija 2.6. Slučajni proces X_t prilagojen glede na filtracijo $(\mathcal{F}_t)_{t\geq 0}$ martingal, če velja

$$\mathbb{E}\left[X_t \mid \mathcal{F}_s\right] = X_s$$

za vsak $0 \le s \le t$.

Pokažimo, da v splošnem *CPP* ni martingal.

Trditev 2.7. Naj bo $(S_t)_{t\geq 0}$ CPP z intenzivnostjo $\lambda > 0$ in naj bodo X_i neodvisne in enako porazdeljene slučajne spremenljivke z $\mathbb{E}[X_i] = \mu$ za vsak i. Potem je S_t martingal natanko tedaj, ko je $\mu = 0$.

Dokaz. Naj bo $0 \le s \le t$. Potem velja

$$\mathbb{E}\left[S_t \mid \mathcal{F}_s\right] = \mathbb{E}\left[S_t - S_s + S_s \mid \mathcal{F}_s\right]$$
$$= \mathbb{E}\left[S_t - S_s\right] + \mathbb{E}\left[S_s \mid \mathcal{F}_s\right]$$
$$= \mu\lambda(t - s) + S_s$$

Enakost $\mu\lambda(t-s) + S_s = S_s$ velja $\iff \mu\lambda(t-s) = 0 \iff \mu = 0.$

Opomba 2.8. Seveda, če velja $\mu \geq 0$, potem je S_t submartingal, če pa $\mu \leq 0$, je S_t supermartingal.

Trditev 2.9. Naj bo $(S_t)_{t\geq 0}$ CPP z intenzivnostjo $\lambda > 0$ in naj bodo X_i neodvisne in enako porazdeljene slučajne spremenljivke $z \mathbb{E}[X_i] = \mu$ za vsak i, Potem je proces

$$S_t - \mu \lambda t$$

martingal.

Dokaz. Naj bosta $0 \le s < t$. Prirastek $S_t - S_s$ je neodvisen od \mathcal{F}_s in ima pričakovano vrednost $\mu \lambda(t-s)$. Torej

$$\mathbb{E}\left[S_t - \mu \lambda t \mid \mathcal{F}_s\right] = \mathbb{E}\left[S_t - S_s\right] + S_s - \mu \lambda t$$

$$= \mu \lambda (t - s) + S_s - \mu \lambda t$$

= $S_s - \mu \lambda s$.

3. Cramér-Lundbergov model

zgodovinski uvod in uporaba

3.1. Predpostavke in omejitve modela.

Definicija 3.1. Naj bo $(S_t)_{t\geq 0}$ CPP in naj bodo X_i n.e.p. s.s. z enako porazdelitvijo kot X in $\mathbb{E}[X] = \mu$ ter $\text{Var}[X] = \sigma^2$. Potem proces tveganja v Cramér-Lundbergovem modelu definiramo kot

$$U_t = u + ct - S_t$$

kjer je $u \ge 0$ začetni kapital zavarovalnice in c > 0 stopnja prihodkov iz premij.

3.2. **Verjetnost propada.** Propad bomo definirali kot dogodek, ko bo vrednost procesa tveganja postala negativna.

Definicija 3.2. Za 0 < $T \leq \infty$ je Verjetnost propadav Cramér-Lundbergovem modelu definirana kot

$$\psi(u,T) = \mathbb{P}(U_t < 0 \text{ za nek } T > t > 0),$$

če gledamo proces na končnem intervalu in kot

$$\psi(u) = \mathbb{P}(U_t < 0 \text{ za nek } t > 0),$$

če gledamo proces na neskončnem intervalu. Označimo še

$$\tau(T) = \inf\{t \mid T \ge t \ge U_t < 00\},\$$

kot *čas propada*, kjer se držimo konvencije, da je inf $\emptyset = \infty$ in pišemo $\tau = \tau(\infty)$ za čas propada na neskončnem intervalu.

Seveda takoj lahko opazimo, da je $\mathbb{E}[U_t] = u + ct - \mathbb{E}[S_t] = u + ct - \mu \lambda t$. Kar nam da prvo intuicijo o stopnji prihodkov premij c.

3.3. Aproksimacije.

3.4. Uporaba modela na podatkih...

SLOVAR STROKOVNIH IZRAZOV

LITERATURA

- [1] S.E. Shreve, Stochastic Calculus for Finance II: Continuous-Time Models, Springer, (2004).
- [2] S.M. Ross, Stochatic Processes: Second Edition, Wiley, (1996).
- [3] P. Embrechts, C. Klüppelberg, T. Mikosch, Modelling Extremal Events: For Insurance and Finance, Springer, (1997).