The History of Amazon's Recommendation Algorithm amazon By: Team 1

Problem Statement

Recommendation systems are an important application of AI and machine learning in the e-commerce industry, and understanding how they work can provide insights into how AI is being used to improve customer experience and drive business success.

AMAZON.COM RECOMMENDATIONS: ITEM-TO-ITEM COLLABORATIVE FILTERING

Linden et al.

Traditional Recommendation Systems

Traditional CF

Uses Cosine Similarity
to compare customers,
recommends items that
one customer bought to
the customer that hasn't
bought it

Cluster Models

Assigns customers to a cluster, then uses purchases and ratings from customers in the cluster to generate recommendations

Search-based

Uses the customer's purchases and ratings to search for items by the same author, manufacturer, artist, etc.

Item-to-Item Collaborative Filtering

Uses cosine similarity to compare items as opposed to customers

Advantages

VS. Traditional CF VS. Cluster Models VS. Search-based

- Computed offline rather than online
- More personalized recommendations
- Perform much better with limited data

- Higher quality recommendations
- Less computationally expensive

- Better scaling with limited data
- More personalized recommendations

THE EFFECTIVENESS OF A TWO-LAYER NEURAL NETWORK FOR RECOMMENDATIONS

Rybakov et al.

Time Decay to improve timing of recommendations

- Autoencoder based model
- Regular autoencoder performed worse than the item-item cf model and a simple ranked list
- The base model was updated to be a combination of a predictor model (short term recommendations) and an autoencoder (long term recommendations)
- Time decay function added to capture recent activity
- The final 2-layer NN model outperformed item-item CF by a factor of 2

Coding Demo

Item-to-Item Collaborative Filtering Recommender

An example of Amazon recommender system.

Ethical Concerns

Bias/Discrimination

- Societal biases
- Advantage/disadvantage certain groups
- Could increase social inequalities

"Amazon Effect"

- Market power/dominance of certain brands
- Advantage to some brands over others
- May disadvantage
 smaller/lesser-known
 brands

Future Developments

- Improving customer experience
 - diverse data sets(include social background)
 - Integrate customer feedback/preferences into algorithm

- New Recommendation Techniques
 - o graph neural networks
 - item-based recommendation algorithms that incorporate additional factors beyond purchase history

Concerns

- Reinforcing existing Bias and inequality
 - Relies too heavily on historical data

- Potential Limit customer selection
 - Algorithm becomes "too strong"

- Maintaining Data Transparency
 - Aids customer relationship