Alexandria University
Faculty of Engineering
Computer and Communications Program



Due: Sunday 26/3/2018

Assigned:

**CCE**: Pattern Recognition

## Sheet#5 Ensemble+SVM+NeuralNets+ Linear Regression (MARKED OUT OF 20 POINTS)

## A. Given the data below



- 1. How many SVM binary classifiers are needed to find the label of any new example?[No python]
- 2. Sketch the (non-linear) boundary of the classes based on your understanding of RBF kernel. Assume Hard-Margin.[No python]
- 3. We want to build a binary classifier that classifies all samples of class C3 as positive and all other samples into a negative class.
  - a. Assume Hard-Margin. Which samples will be on the margin. find the size of the margin. [No python]
  - b. What weights would you give to the support vectors to account for class balance.[No python]
  - c. Use Scikit-learn package for finding the support vectors, with different values of C=[0.1,0.3,1,3,10]. Sketch the lines you learned using the different values of C.
  - d. Use the ensemble of the 5 classifiers you learned in 3.c to give labels to the following samples **[No python]** 
    - $\blacksquare$  p1=(6,6)
    - p2=(9,4)
    - = p3=(8,4)
  - e. Draw a diagram of input layer and hidden layer and output layer to illustrate the ensemble in 3.d. How many parameter you would learn in this case.

Dr.Marwan Torki Eng.Dina Samak

## B. Given the data below

| x1 | 1  | 2  | 2  | 2  | 3  | 3  | 4  | 4  | 4  | 5  |
|----|----|----|----|----|----|----|----|----|----|----|
| x2 | 5  | 6  | 10 | 12 | 17 | 12 | 6  | 5  | 7  | 10 |
| у  | 10 | 40 | 50 | 60 | 70 | 50 | 30 | 20 | 40 | 70 |

- 1. How many parameter to find to solve a linear regression problem on the data? [No python]
- 2. Use Normal equations to find the equation of the line produced using linear regression algorithm. Specify the dimensionality of each matrix carefully. Assume no regularization[No python]

Use Scikit-learn package for

- a. Finding the linear regression solution.Then compare to the normal solution in 2 [No python]
- b. We want to add L-2 regularization to the obtained solution. We use Ridge regression from Scikit-learn to do so. Set alpha to [0.1,1,10,100].
   [python]
- 3. Use the 5 regressor coefficients and intercepts you learned in 3.a,3.b to predict **y** for the following samples **[No python]** 
  - p1=(3,16)
  - p2=(2,4)
  - p3=(5,4)

## C. Design a neural net to produce the majority function of three binary inputs. [No python]