Multiple Choice Section: (10 marks, 1 mark each)

Consider the following reaction:

$$2\mathrm{NO}_{(g)} + \mathrm{O}_{2(g)} \rightarrow 2\mathrm{NO}_{2(g)} \qquad \Delta \mathrm{H} = -114\,\mathrm{kJ}$$

How could the rate of this reaction be increased?

- A. Reduce the pressure.
- B. Increase the volume.
- C. Remove some $NO_{2(g)}$.
- D. Increase the temperature.

Consider the following PE diagram:

Which of the following describes the energy value indicated by I?

- A. heat of reaction
- B. activation energy for the reverse reaction
- C. activation energy for the forward reaction
- D. potential energy of the reaction intermediate

Consider the following equilibrium:

$$CO_{(g)} + 2H_{2(g)} \rightleftharpoons CH_3OH_{(g)}$$
 $\Delta H = -91 \text{ kJ}$

Which of the following factors will increase the yield of methanol, CH₃OH?

- A. Removing CH₃OH from the system
- B. Increasing the temperature
- C. Increasing the volume
- D. Decreasing the partial pressure of hydrogen

Consider the following equilibrium:

$$PCl_{3(g)} + Cl_{2(g)} \rightleftharpoons PCl_{5(g)}$$

If the volume of the system is decreased, how will the reaction rates in the new equilibrium compare with the rates in the original equilibrium?

	Forward Rate	Reverse Rate
A.	increases	increases
B.	increases	decreases
C.	decreases	decreases
D.	decreases	increases

Consider the following equilibrium:

$$H_{2(g)}$$
 + $I_{2(g)}$ \rightleftarrows $2HI_{(g)}$ $\Delta H = -71.9 \, kJ$ colourless purple colourless

Which of the following would allow you to conclude that the system has reached equilibrium?

- The pressure remains constant.
- B. The reaction rates become zero.
- The colour intensity remains constant.
- The system shifts completely to the right.

$$\operatorname{Fe_2O_{3(s)}} + 3\operatorname{CO}_{(g)} \ \rightleftarrows \ 2\operatorname{Fe}_{(s)} + 3\operatorname{CO}_{2(g)}$$

Identify the equilibrium constant expression.

A.
$$K_{eq} = \frac{\left[CO_2\right]^3}{\left[CO\right]^3}$$

B.
$$K_{eq} = \frac{[CO_2]}{[CO]}$$

$$\text{C.} \quad \mathbf{K}_{eq} = \frac{\left[\text{CO}_2\right]^3 \left[\text{Fe}\right]^2}{\left[\text{Fe}_2\text{O}_3\right] \left[\text{CO}\right]^3}$$

D.
$$K_{eq} = \frac{[Fe_2O_3][CO]^3}{[CO_2]^3[Fe]^2}$$

Consider the following equilibrium system:

$$2NO_{(g)} + Cl_{2(g)} \rightleftharpoons 2NOCl_{(g)}$$
 $\Delta H = -77 \text{ kJ}$

In which direction will the equilibrium shift and what happens to the value of K_{eq} when the temperature of the system is increased?

	Shift	K_{eq}
A.	right	increases
B.	right	decreases
C.	left	increases
D.	left	decreases

Consider the following equilibrium:

$$CO_{(g)} + 2H_{2(g)} \rightleftharpoons CH_3OH_{(g)}$$

At equilibrium it was found that $[CO] = 0.105 \, \text{mol/L}$, $[H_2] = 0.250 \, \text{mol/L}$ and $[CH_3OH] = 0.00261 \, \text{mol/L}$. Which of the following is the equilibrium constant value?

- A. 9.94×10^{-2}
- B. 0.398
- C. 2.51
- D. 10.0
- Consider the following equilibrium:

$$Cu^{2+}_{(aq)}$$
 + $4Br^{-}_{(aq)}$ + energy \rightleftharpoons $CuBr_{4}^{2-}_{(aq)}$
blue colourless green

Which of the following will cause this equilibrium to change from blue to green?

- A. adding NaBr_(s)
- B. adding NaNO_{3(s)}
- C. adding a catalyst
- D. decreasing the temperature
- Consider the following equilibrium:

$$CO_{(g)} + H_2O_{(g)} \rightleftharpoons CO_{2(g)} + H_{2(g)}$$
 $K_{eq} = 5.0$

١

At equilibrium, the [CO] = $0.20 \, \text{mol/L}$, $\left[H_2O\right] = 0.30 \, \text{mol/L}$, and $\left[H_2\right] = 0.90 \, \text{mol/L}$. Calculate the equilibrium $\left[CO_2\right]$.

- A. 0.013 mol/L
- $B.\quad 0.066\,mol/L$
- $C. \quad 0.33\, mol/L$
- D. 1.0 mol/L

1. The potential energy diagram below refers to the reaction: $I_2(s) \rightleftharpoons I_2(aq)$

Circle which of the following statement(s) is/are FALSE?

[2 marks]

- (a) 'A' is the activation energy for the reaction: $I_2(s) \rightarrow I_2(aq)$
- (b) ΔH for the reaction is positive and has the value 'B'
- (c) At equilibrium the rate of reaction, $I_2(aq)\to I_2(s),$ is faster than that of $I_2(s)\to I_2(aq)$
- (d) An increase in temperature will alter the equilibrium position and increase the solubility of I₂
- 2. Consider the system shown in the diagram, where a solute solution equilibrium has been established in a beaker. Briefly explain the following:

a) What is happening on a macroscopic level?[2 marks]

b) What is happening on a microscopic level?

[2 marks]

c) St	ate two ways by which the eq	[2 marks]			
3. Th	ne following equilibrium is be	ing investigated.		[6 ma	nrks]
CH ₄ ($(g) + H_2O(g) \rightleftharpoons CO(g) + 3$	$H_2(g)$ $\Delta H = -$	+ 200 kJ		
F	our identical sealed boxes are	set up at 300°C and	d 1.00 atmosphere e	each containing the equ	ilibrium
mixtu	ire. Each of the boxes is treate	ed as described belo	ow, and timeallowed	d for a new equilibrium	to be
estab	lished. Write what happens in	each case as a resu	lt of changes.	_	_
		What happens to the total pressure?	What happens to the partial pressure of CO?	What happens to the equilibrium position?	
		Write 'increase', 'decrease' or	Write 'increase', 'decrease' or	Write 'move to the right', move to the left' or 'no change'.	
		'no change'	'no change'	icit of no change.	
	The system is heated above 300°C				
	More CH ₄ (g) at 300°C is injected into the box				
	Ne (g) at 300°C is injected into the box.				
	The volume of the box is halved.				

Consider the following equilibrium system:

$$H_{2(g)} + Br_{2(g)} \rightleftharpoons 2HBr_{(g)}$$
 $K_{eq} = 14.8$

A closed container was initially filled with equal moles of $\,H_2$ and $\,Br_2$. When equilibrium is reached, the [HBr] is $\,0.329\,mol/L$.

What is the equilibrium concentration of H₂ gas?

[4 marks]

Consider the following:

$$CO_{2(g)} + CF_{4(g)} \rightleftharpoons 2COF_{2(g)}$$
 $K_{eq} = 0.50$

In a reaction container the initial concentrations are:

$$\left[\mathrm{CO_2}\right] = 0.50 \ \mathrm{mol/L} \,, \\ \left[\mathrm{CF_4}\right] = 0.50 \ \mathrm{mol/L} \,, \\ \left[\mathrm{COF_2}\right] = 0.30 \ \mathrm{mol/L}$$

Calculate Q and state which way the reaction will shift (left toward the reactants or right toward the products or will not shift since it is at equilibrium) as a result of your calculation of Q.

[2 marks]

6. Refer to the diagram below then answer the questions below.

- a) Draw on the above diagram what you would expect would happen to the concentration of the reactants and products if the temperature of the closed system was significantly decreased at time t₁. [2 marks]
- b) Describe the changes you just drew on the graph above and why they occurred.

[3 marks]

c) Using the above concentration versus time graph draw a rate versus time graph that would correspond to this

concentration versus time graph, including the changes at t₁. [3 marks]

7. One s	tep in the s	vnthesis of	f nitric acid	involves the	following	reversible reaction.
----------	--------------	-------------	---------------	--------------	-----------	----------------------

2 NO (g) +
$$O_2$$
 (g) \longrightarrow 2 NO₂ (g) Δ H = - 114 kJ

Assume this reaction has reached equilibrium in a closed container at constant temperature and pressure.

(a) What happens (increase, decrease, no change) to the equilibrium yield of NO_2 (g) if the following occur? (3 marks)

Change	Effect
The volume of the container is increased	
More oxygen is added to the container	
A suitable catalyst is added.	

(b) What happens initially (increase, decrease, no change) to the rate of forward reaction if the following changes are made. (3 marks)

Change	Effect
The temperature of the container is increased	
More NO ₂ (g) is added to the container	
A suitable catalyst is added.	