PERTEMUAN 13

MATERI:

- 1. TURUNAN DAN INTEGRAL FUNGSI TRIGONOMETRI
- 2. FUNGSI INVERS TRIGONOMETRI DAN TURUNANNYA

Turunan dan Integral fungsi Trigonometri

Berikut adalah turunan dan integral dari fungsi trigonometri:

Turunan	Integral
1) $y = \sin x \rightarrow y' = \cos x$ 2) $y = \cos x \rightarrow y' = -\sin x$ 3) $y = \tan x \rightarrow y' = \sec^2 x$ 4) $y = \sec x \rightarrow y' = \sec x \tan x$ 5) $y = \csc x \rightarrow y' = -(\sec x \cot x)$ 6) $y = \cot x \rightarrow y' = -(\csc^2 x)$	1) \(\cos \times \dx = \sin \times + \cap \) 2) \(\sin \times \dx = -\cos \times + \cap \) 3) \(\sin \times \dx = \times + \cap \) 4) \(\sin \times \dx = \times \times + \cap \) 4) \(\sin \times \times \dx = \sin \times + \cap \) 5) \(\sin \times \dx = \times \dx = -\times \times \times \) 6) \(\sin \times \dx = -\times \dx = -

Contoh:

- $\begin{array}{ccc}
 & & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$
- 2) $3ika y = x^2 tan 3x maka$ $\frac{dy}{dx} = 2x \cdot tan 3x + x^2 \cdot (sec^2 3x \cdot 3) = 2x tan 3x + 3x^2 sec^2 3x$
- 3 $\int \sin(5-2x) dx = \int \sin u \frac{du}{du} = -\frac{1}{2} \int \sin u du = -\frac{1}{2} (-\cos u + C)$ $\int_{0}^{1/2} \frac{1}{2} \int \frac{1}{2} \cos(5-2x) + C$ $\int_{0}^{1/2} 4x \sec^{2}(x^{2} + \frac{\pi}{4}) dx = \int_{0}^{2+\pi} 4x \sec^{2}u \frac{du}{2x} = \int_{0}^{2} 2 \sec^{2}u du = 2 \tan u$ $\int_{0}^{1/2} 4x \sec^{2}(x^{2} + \frac{\pi}{4}) dx = \int_{0}^{2+\pi} 4x \sec^{2}u \frac{du}{2x} = \int_{0}^{2} 2 \sec^{2}u du = 2 \tan u$ $\int_{0}^{1/2} 4x \sec^{2}(x^{2} + \frac{\pi}{4}) dx = \int_{0}^{2+\pi} 4x \sec^{2}u du = 2 \tan u$ $\int_{0}^{1/2} 4x \sec^{2}(x^{2} + \frac{\pi}{4}) dx = \int_{0}^{1/2} 4x \sec^{2}(x^{2} + \frac{\pi}{4}$

INVERS FUNGSI TRIGONOMETRI

Berdasarkan yang kita kenali, fungsi trigonometri adalah fungsi yang menghubungkan sudut dengan bilangan real atau dengan kata lain, "mengubah" sudut menjadi bilangan real, contohnya Sin (30°) = 1

$$Sin(30°) = \frac{1}{2}$$

 $Cos(120°) = -\frac{1}{2}$

Sobalitanya, invers dari fungsi trigonometri adalah fungsi yang "mengubah" bilangan real menjadi sudut (terdapat syarat yang akan dibahas berikutnya). Notasi untuk invers tungsi trigonometri adalah Sin'x, cos'x, dst atau arcsin, arccos, dst.

Contoh :

(1) misaltan $f(x) = \sin x$ pada interval $[0,360^{\circ}]$ mata $f^{-1}(x)$ tidat ada, sebab

$$f(0) = 0 \longrightarrow \left(\frac{180^{\circ}}{180^{\circ}} \right) = 0$$
 in very ny q

butan fingsi

2 misalkan $f(x) = \sin x$ pada interval [0,90] (transa beroadan)

maka $f^{-1}(x)$ ada (tidak ada yang memiliki nilai sama)

yaitu $f^{-1}(x) = \sin^{-1}x$ atau $f^{-1}(x) = \arcsin x$ fungsi invers ini mengubah bil real menjadi sudut, Contoh:

$$f^{-1}(\frac{1}{2}) = \sin^{-1}(\frac{1}{2}) = 30^{\circ} \text{ (tarena } \sin(30^{\circ}) = \frac{1}{2})$$

3 Misalkan
$$f(x) = \sin x$$
 pada $[\frac{\pi}{2}, \pi]$

Aan $g(x) = \cos x$ pada $[3\mathbb{I}, 2\pi]$

Akan dicari $(f^{-1} \circ g)(\frac{11}{6}\pi)$ dan $(g \circ f^{-1})(\frac{1}{2}\pi)$

Perhatikan $(f \circ g)(\frac{11}{6}\pi) = f'(g(\frac{11}{6}(160^\circ)) = f^{-1}g(330^\circ))$
 $= \sin^{-1}(\cos(330^\circ)) = \sin^{-1}(\cos(360^\circ - 30^\circ))$
 $= \sin^{-1}(\cos(30^\circ)) = \sin^{-1}(\frac{1}{2}\pi) = |20^\circ = \frac{2}{3}\pi$

(tarena $\sin 120^\circ = \frac{1}{2}\pi$, mengapa butan 30° ?

butantan $\sin 30^\circ$?

butantan $\sin 30^\circ$?

 $\tan 30^\circ = \sin 30^\circ = \sin 30^\circ$
 $\tan 30^\circ = \sin 30^\circ = \sin 30^\circ$

Perhatikan pula

 $(g \circ f^{-1})(\frac{1}{2}\pi) = g(f^{-1}(\frac{1}{2}\pi))$
 $= \cos(\sin^{-1}(\frac{1}{2}\pi))$
 $= \cos(\sin^{-1}(\frac{1}{2}\pi))$
 $= \cos(\sin^{-1}(\frac{1}{2}\pi))$

tidak terdefinisi, Sebab pada $\sin 135^\circ = \frac{1}{2}\pi$
 $\tan 135^\circ = \frac{1}{2}\pi$
 $\tan 135^\circ = \frac{1}{2}\pi$

SIFAT KESAMAAN INVERS TRIGONOMETRI

1) Sim (cos-1 x) =
$$\sqrt{1-x^2}$$

2)
$$cos(sin^{-1}x) = \sqrt{1-x^2}$$

4)
$$\tan(\sec^{-1}x) = \pm (x^2 - 1)$$

Contoh: Misaltan $f(x) = \sin x$ dan $g(x) = \cos x$ dengan $D_f = D_g = [0, T_2]$, maka

$$J = D_8 = [0, 1/2], \text{ maka}$$

1) $Sin(CoS^{-1}(\frac{1}{2}IZ)) = \sqrt{1 - (\frac{1}{2}IZ)^2} = \sqrt{1 - \frac{1}{2}} = \sqrt{\frac{1}{2}} = \sqrt{\frac{1}{2}}$

2) 65 (
$$\sin^{-1}(1)$$
) = $\sqrt{1-1^2} = 0$

TURUNAN FUNGSI INVERS TRIGONOMETRI

Misalkan X E [0,1], maka

1)
$$D_X \sin^{-1} x = \frac{1}{\sqrt{1-x^2}}$$

2)
$$D_X \cos^{-1} X = \frac{-1}{\sqrt{1-X^2}}$$

3)
$$D_X \tan^{-1} x = \frac{1}{1+x^2}$$

4)
$$D_X \sec^{-1} x = \frac{1}{|x|\sqrt{x^2-1}}$$
, $|x| > 1$

Contoh:

Conton.

(1) misalkan
$$y = \sin^{-1}(5-x^2)$$
 do $x \in [-15, 15]$, maka

 $\frac{dy}{dx} = \frac{1}{\sqrt{1-(5-x^2)}} \cdot \frac{(-2x)}{2} = -\frac{2x}{\sqrt{x^2-4}}$

$$\frac{1}{\sqrt{4-x^2}} dx = \int \frac{1}{\sqrt{4(1-\frac{x^2}{4})}} dx \quad u = \frac{x}{2}$$

$$= \int \frac{1}{\sqrt{1-u^2}} du = \int \frac{1}{2(1-(\frac{x}{2})^2)} dx \quad u = \frac{x}{2}$$

$$= \int \frac{1}{\sqrt{1-u^2}} du = \int \frac{1}{\sqrt{1-u^2}} dx \quad u = \frac{x}{2}$$

$$= \int \frac{1}{\sqrt{1-u^2}} du = \int \frac{1}{\sqrt{1-u^2}} dx \quad u = \frac{x}{2}$$

$$= \int \frac{1}{\sqrt{1-u^2}} du = \int \frac{1}{\sqrt{1-u^2}} dx \quad u = \frac{x}{2}$$

$$= \int \frac{1}{\sqrt{1-u^2}} du = \int \frac{1}{\sqrt{1-u^2}} dx \quad u = \frac{x}{2}$$

$$= \int \frac{1}{\sqrt{1-u^2}} du = \int \frac{1}{\sqrt{1-u^2}} dx \quad u = \frac{x}{2}$$

$$= \int \frac{1}{\sqrt{1-u^2}} du = \int \frac{1}{\sqrt{1-u^2}} dx \quad u = \frac{x}{2}$$

$$= \int \frac{1}{\sqrt{1-u^2}} du = \int \frac{1}{\sqrt{1-u^2}} dx \quad u = \frac{x}{2}$$

$$= \int \frac{1}{\sqrt{1-u^2}} du = \int \frac{1}{\sqrt{1-u^2}} dx \quad u = \frac{x}{2}$$

$$= \int \frac{1}{\sqrt{1-u^2}} du = \int \frac{1}{\sqrt{1-u^2}} dx \quad u = \frac{x}{2}$$

$$= \int \frac{1}{\sqrt{1-u^2}} du = \int \frac{1}{\sqrt{1-u^2}} dx \quad u = \frac{x}{2}$$