

주식자료를 이용한 Option Price 계산과 수익률 분석

2조. 강아미 고유정 이혜린 윤보인 홍지원

INDEX

Part 1. 연속시간 Stock Price Model

Part 2. No arbitrage 조건 이용한 Option Price 계산

Part 3. Asian option 가격계산 Application

NAVER

사용자료 : 2016년~2017년 네이버 주식시세 일별 종가

1년 만기 무위험 금리: 5%

만기: 1, 3, 6, 9, 12개월

행사가격: K=2016년 12월 30일 종가

현재주가 : S_0 = 2017년 1월 2일 시가

1) 2016년 한 해 동안 일별 종가 및 로그 종가 $(S_t, \ln S_t)$, t=0,1,...,n에 대한 시계열 도표

2) 일별수익률(daily return): $\mathbf{u_t} = \Delta S_t/S_t$, $\mathbf{t} = 0,1,...,(\mathbf{n}-1)$ 자료의 시계열도표 & 히스토그램

2) 일별수익률(daily return): $u_t = \Delta S_t/S_t$, t=0,1,...,(n-1) 자료의 Q-Q plot

2-a) u_t에 대한 가장 적절한 분포를 찾고 정규성가정이 적절한지 검토하기

 R^2 값이 가장 높은 Laplace 분포가 가장 적절하다.

정규성가정을 보기 위해 Normal 분포의 Q-Q plot을 그려본 결과 \mathbb{R}^2 값이 0.972로 높은 값이 나왔으므로 정규성가정이 적절하다.

2-b) \mathbf{u}_{t} 및 $\mathbf{u}_{t}^{*} = \Delta \ln S_{t}$, t = 0,1,...,n-1의 평균과 분산을 각각 구하여 이들이 Ito 변환공식을 만족하는지 검토하기 * hint: check $dS(t)/S(t) \sim \mathrm{N}\left(\mu dt,\sigma^{2}dt\right)$; $d\ln S(t) \sim \mathrm{N}\left(\left[\mu - \sigma^{2}/2\right]dt$, $\sigma^{2}dt$), $dt = 1/\mathrm{n}$)

데이터로 구한 u _t 의 평균과 분산		Ito 변환공식으로 구한 u _t *의 평균과 분산		
평균	분산	평균	분산	
0.0006652768	0.0003847484	0.000664525	0.0003853582	

데이터 및 Ito 변환공식으로 구한 u^{*}는의 평균과 분산이 비슷한 값이 나온다. 로그 수익률이 Ito 변환 공식을 만족한다.

2-c) 위에서 구한 분포를 이용하여 $p(u < u_{\alpha}) = \alpha$; $\alpha = 0.05$, 0.01 조건을 만족하는 일별 VaR 구하고, 정규분포를 이용해 구한 VaR 값과 비교하기

	Normal Dist	Laplace Dist
VaR , $\alpha = 0.05$	-0.03143216	-0.04434379
VaR, $\alpha = 0.01$	-0.04481026	-0.07593793

최대예상손실(Value at Risk)은 주어진 신뢰 수준에서 발생 가능한 최대 손실을 의미한다. 예를 들어, 위의 표에서 정규분포 가정 시 VaR(α = 0.05)은 1년간 발생할 수 있는 최대 일별손해율이 -0.0314이하일 가능성이 5%라는 의미이다.

2-c) 위에서 구한 분포를 이용하여 $p(u < u_{\alpha}) = \alpha$; $\alpha = 0.05$, 0.01 조건을 만족하는 일별 VaR 구하고, 정규분포를 이용해 구한 VaR 값과 비교하기

	Normal Dist	Laplace Dist
VaR , $\alpha = 0.05$	-0.03143216	-0.04434379
VaR, $\alpha = 0.01$	-0.04481026	-0.07593793

라플라스 분포를 이용하여 VaR을 구한 결과 정규분포를 사용했을 때보다 더 작은 값을 가졌다. 일별수익률의 경우 라플라스 분포가 더욱 적합했기 때문에 정규분포 이용 시 손실 위험을 과소평가하는 문제가 발생할 수 있다.

2-d) 주별수익률 $v_t = \Delta_5 S_t/S_t$, $t = 0, 5, 10, \cdots$, (n-5) 및 월별수익률 $\omega_t = \Delta_{21} S_t/S_t$, $t = 0, 21, 42, \cdots$, (n-21) 에 대해서 Q-Q plot을 이용하여 적절한 분포를 찾고 주별 및 월별 VaR 값을 구하여 u_α 와 서로 비교해 보기

주별수익률 Q-Q plot

주별수익률에 대한 Q-Q plot을 그려본 결과, 정규분포 가정 시 \mathbb{R}^2 값이 0.987로 가장 높았다. 정규성 가정이 적절하다.

2-d) 주별수익률 $v_t = \Delta_5 S_t/S_t$, $t = 0, 5, 10, \cdots$, (n-5) 및 월별수익률 $\omega_t = \Delta_{21} S_t/S_t$, $t = 0, 21, 42, \cdots$, (n-21) 에 대해서 Q-Q plot을 이용하여 적절한 분포를 찾고 주별 및 월별 VaR 값을 구하여 u_{α} 와 서로 비교해 보기

월별수익률 Q-Q plot

월별수익률에 대한 Q-Q plot을 그려본 결과, 로지스틱 분포 가정 시 \mathbb{R}^2 값이 0.985로 가장 높았다.

2-d) 주별수익률 $v_t = \Delta_5 S_t / S_t$, $t = 0, 5, 10, \cdots$, (n - 5) 및 월별수익률 $\omega_t = \Delta_{21} S_t / S_t$, $t = 0, 21, 42, \cdots$, (n - 21) 에 대해서 Q-Q plot을 이용하여 적절한 분포를 찾고 주별 및 월별 VaR 값을 구하여 u_{α} 와 서로 비교해 보기

	일별수익률 Laplace Dist	주별수익률 Normal Dist	월별수익률 Logistic Dist
VaR, $\alpha = 0.05$	-0.04434379	-0.05980844	-0.09491468
VaR, $\alpha = 0.01$	-0.07593793	-0.08614449	-0.1596704

동일한 신뢰수준에서 일별 > 주별 > 월별수익률 순으로 VaR 값이 컸다.

이는 수익률 계산 시 각 수익률 발생 시점 사이의 기간이 길수록 더 큰 위험이 존재할 수 있음을 의미한다.

2-e) $\{lnS(t)\}$ 의 random walk 가설에서 $\sigma^2_{d/n} = Var[\Delta_d lnS_t]; d = 1,5,10,15,20,25$ 를 각각 추정하여 $\sigma^2_{d/n} = d \cdot \sigma^2_{1/n}$, $\sigma_{d/n} = \sqrt{d} \cdot \sigma_{1/n}$ 관계가 성립하는지 $(d,\sigma^2_{d/n}), (d,\sigma_{d/n}), (lnd,ln\sigma^2_{d/n})$ 그래프를 그려서 확인해보기

모든 그림이 비선형적 모양을 보이므로 위와 같은 관계가 성립하지 않는다는 것을 알 수 있다.

3) 시계열 자료 $\{u_t\}$ 의 자기상관계수 도표 $\rho_k = Corr(u_t, u_{t-k}), k=1,2,\cdots$ (coefficients of autoregression)를 각각 그려보고 u_t 의 독립성가정이 정당한지 검토하기

 ρ_1 을 제외한 모든 값이 유의하지 않으므로 u_t 는 독립성가정을 만족한다.

4) 2016년 일별 주가자료에서 $u_i^* = \Delta lnS_i = lnS_{i+1} - lnS_i$ 일 때 $u_i^* \sim N(\mu^* dt, \sigma^2 dt)$, $i = 0, 1, \cdots$, (n-1), $\mu^* = \mu - \sigma^2/2$; dt = 1/n 가정을 이용하여 순간 무위험 이자율 r 및 μ , Volatility σ 추정하기

r	$\hat{\mu}$	$\hat{\sigma}$
0.049	0.2109821	0.3076493

5) S(t)가 Geometric Brownian Motion Process를 따른다고 가정할때, 4)에서 추정된 값과 2017년 1월 2일 시가 S_0 를 이용하여 2017년 주식가격 S(t)에 대한 예측값 $\hat{S}(t)$ 및 95% 예측구간 $\hat{S}_{\alpha}^{\pm}(t)$ 을 구하여 이들을 실제값 S(t)와 겹쳐서 시계열 도표를 그리고 위 가정이 적절한지 검토하기

2017년 실제 주식 가격이 추정값의 95% 예측 구간 안에 포함되므로 위 가정이 적절하다고 할 수 있다.

1) No Arbitrage 조건 : $\mu = r$ 이라는 가정 하에 주가 $\{S(t)\}$ 가 확률미분방정식을 따를 때, Black-Scholes Call/Put option 가격을 Monte-Carlo Simulation 과 Black-Scholes-Merton 공식을 이용해서 각각 계산하고 서로 비교해 보기

Monte Carlo Simulation

t (년)	1/12	3/12	6/12	9/12	1년
С	69251.64	123457.44	178500.5	223948.4	262521.1
р	58263.77	97934.89	131467.4	155449.3	173392.9

1) No Arbitrage 조건 : $\mu = r$ 이라는 가정 하에 주가 $\{S(t)\}$ 가 확률미분방정식을 따를 때, Black-Scholes Call/Put option 가격을 Monte-Carlo Simulation 과 Black-Scholes-Merton 공식을 이용해서 각각 계산하고 서로 비교해 보기

Black Scholes Merton

t (년)	1/12	3/12	6/12	9/12	1년
С	68719.13	121905.1	177643.3	223048.9	262505.5
р	58407.35	97058.6	131215.2	155300.8	173696.0

Monte-Carlo Simulation 과 Black-Scholes-Merton 공식을 각각 사용한 결과는 큰 차이가 없고 (1000 이내), 비슷한 값을 가진다.

2) 2017년 옵션 만기일의 실제 주가자료(St)를 이용하여 2017년 1월 2일에 위(5) 에서 계산한 call/put 옵션 가격으로 각 만기별로 매입했을 때 각 Portfolio에 대해 만기별 실제 수익률을 계산하고 주식의 수익률 $100 \times (St - S0)/S0$ 과 비교하기

a) Call option 150주 및 Put option 50주

만기 t	$150 \times c_t$	$50 \times p_t$	$150 \times (S_t - K) +$	$50\times(K-S_t)+$	순수입	수익률(%)
1월 말	10387750	2913189	25200000	0	11899070	89.46037
3월 말	18518620	4896745	38250000	0	14834640	63.35431
6월 말	26775080	6573370	85800000	0	52451560	157.2834
9월 말	33592260	7772465	113850000	0	72485280	178.2345
12월 말	39378170	8669645	111450000	0	63402190	131.9565

2) 2017년 옵션 만기일의 실제 주가자료(St)를 이용하여 2017년 1월 2일에 위(5) 에서 계산한 call/put 옵션 가격으로 각 만기별로 매입했을 때 각 Portfolio에 대해 만기별 실제 수익률을 계산하고 주식의 수익률 $100 \times (St - S0)/S0$ 과 비교하기

b) Call option 100주 및 Put option 100주

만기 t	$150 \times c_t$	$50 \times p_t$	$100 \times (S_t - K) +$	$100\times(K-S_t)+$	순수입	수익률(%)
1월 말	6925164	5826377	16800000	0	4048459	31.74878
3월 말	12345740	9793489	25500000	0	3360767	15.18014
6월 말	17850050	13146740	57200000	0	26203210	84.53524
9월 말	22394840	15544930	75900000	0	37960230	100.0539
12월 말	26252110	17339290	74300000	0	30708600	70.44646

2) 2017년 옵션 만기일의 실제 주가자료(St)를 이용하여 2017년 1월 2일에 위(5) 에서 계산한 call/put 옵션 가격으로 각 만기별로 매입했을 때 각 Portfolio에 대해 만기별 실제 수익률을 계산하고 주식의 수익률 $100 \times (St - S0)/S0$ 과 비교하기

c) Call option 50주 및 Put option 150주

만기 t	$150 \times c_t$	$50 \times p_t$	$50 \times (S_t - K) +$	$150\times(K-S_t)+$	순수입	수익률(%)
1월 말	3462582	8739566	8400000	0	-3802148	-31.15966
3월 말	6172872	14690230	12750000	0	-8113106	-38.88733
6월 말	8925025	19720110	28600000	0	-45135	-15.75660
9월 말	11197420	23317400	37950000	0	3435185	9.952784
12월 말	13126050	26008940	37150000	0	-1984990	-5.072162

a, b, c 비교분석

- 1 계산 시점의 가격 (K) 보다, 각 만기 시점에서의 가격이 항상 높음
- → 현재 시점에서는 가격이 상승될 것으로 예상되기에 수익을 내려면 put option보다는 call option을 구매하는 것이 타당하다.
- 2 여러 케이스 중 put option을 call option보다 많이 구매했을 때 수익률이 마이너스 값이 나옴
- → a, b, c 케이스를 비교해본 결과 call option을 put option보다 많이 구입할수록 수익률을 낼 수 있음을 알 수 있다.
- → 현 상황에서 수익을 내려면 call option을 구매하는 것이 타당하다는 이론적 추측을 뒷받침하는 결과이다.
- 8 만기를 9월말로 잡는 경우가 모든 경우에서 수익률이 가장 높음
- → 만기가 가장 길다고 해서 무조건 수익률이 높은 것은 아니라는 것을 알 수 있다. (만기가 9월 말일 때 수익률 > 만기가 12월 말일 때 수익률)

감사합니다!