

CENTRAL ASIAN JOURNAL OF THEORETICAL AND APPLIED SCIENCES

Volume: 04 Issue: 01 | Jan 2023 ISSN: 2660-5317
<https://cajotas.centralasianstudies.org>

Анализ Процесса Вельцевания Цинковых Кеков Цинкового Завода АО «Алмалыкский ГМК»

Самадов Алишер Усманович

Профессор, Доктор Технических Наук Dsc, Директор Алмалыкского Филиала Ташкентского Государственного Технического Университета

Тошкодирова Раъно Эркинжоновна

Доктор Философии по техническим наукам PhD, зав.кафедрой "Металлургия" Алмалыкского филиала Ташкентского государственного технического университета

Жалолов Бахтиёржон Адхамжон ўғли

Ассистент Кафедры "Металлургия" Алмалыкского филиала, Ташкентского государственного технического университета

Музафарова Нафиса Мадрахимовна

Магистр Кафедры "Металлургия" Алмалыкского филиала Ташкентского государственного технического университета

Received 4th Nov 2022, Accepted 6th Dec 2022, Online 27th Jan 2023

Аннотация: В данном тезисе рассмотрены пути снижения расхода нефте-кокса и коксовой мелочи добавляемых в шихту в качестве восстановителя в процессе вельцевания.

Ключевые слова: Цинковый кек, нефтяной кокс, коксовая мелочь, шихта, брикетирование, вельцевания, фракционный состав, минералогический состав, химический состав, снижения расхода.

Цинковые кеки цинкового завода Алмалыкского ГМК перерабатываются путем вельцевания.

В качестве восстановителя к цинковым кекам добавляется нефте-кокс и коксовая мелочь. Это требует больших экономических расходов в процессе вельцевания.

В настоящее время к 1 тонне цинкового кека добавляется 462 кг нефте-кокса и коксовой мелочи.

Был изучен фракционный, минералогический и химический состав цинковых кеков с целью повышения перевода цинка в возгон и снижения применения нефте-кокса и коксовой мелочи, а также снижения экономических затрат.

Цинковый кек бывает различной формы, зернистый с относительно крупными кусками до 50 мм. Фракционный состав исходного кека представлен в таблице 1 [1, с.43].

Таблица 1 - Фракционный состав исходного кека

№	Классификация по крупности, мм	Выход фракции	
		Г	%
1.	+40	38,5	1,925
2.	-40+20	227	11,35
3.	-20+10	607	30,35
4.	-10+5	645	32,25
5.	-5+2	416	20,8
6.	-2+1	14	0,7
7.	-1+0,315	15	0,75
8.	-0,315+0,140	10	0,5
9.	-0,140	27,5	1,375
	Всего	2000	100

Результаты показывают, что в основном кеки имеют крупность от -20+10 до -5+2 около 83%, материал имеет довольно не крупный размер, следовательно дополнительное измельчение не требуется.

Результаты минералогического анализа показали, что в кеке содержится 23% цинка, в том числе ZnO (0,8 %), ZnSO₄ (1,2 %), 2ZnO·SiO₂ (3,9 %), ZnO·Fe₂O₃ (5,6 %), ZnS (11,5 %), железо 17,3% в том числе FeS (2,5%), FeO (4,3%), Fe₂O₃ (8,7%), свинец 6,43% в том числе PbO (4,4%), в виде PbS (1,9%), медь 3,72%, встречается в виде CuS (1,6%), в том числе CuSO₄ (1,9%) [1, с.44].

Золото и серебро, а также другие благородные металлы в основном встречаются в свободной форме.

Результаты химического состава цинкового кека приведены в таблице 2 [2, с.159].

Таблица 2 – Химический состав цинкового кека

№	Компонент	Содержание, %	№	Компонент	Содержание, %
1.	Mg	0.626	14.	Sr	0.0106
2.	Al	1.16	15.	I	(0.0117)
3.	Si	6.1	16.	Zr	0.341
4.	S	11.2	17.	Ag	0.036
5.	K	0.219	18.	Cd	0.435
6.	Ca	3	19.	In	0.0083
7.	V	0.017	20.	Sn	0.013
8.	Cr	0.0064	21.	Te	(0.0042)
9.	Mn	1.72	22.	Ba	0.394
10.	Fe	9.92	23.	Ta	(0.136)
11.	Cu	2.75	24.	Ir	0.252
12.	Zn	28	25.	Pb	8.95
13.	As	0.228	26.	Th	(0.0479)

Рисунок 1 - Содержание основных элементов в составе цинкового кека

Основными цветными металлами в составе кека являются медь, цинк и свинец.

В процессе вельцевания осуществляется следующие операции:

- 1) фильтрация на дисковых вакуум-фильтрах;
- 2) сушка в сушильных барабанах;
- 3) шихтоподготовка (цинковый кек + нефтяной кокс + коксовая мелочь);
- 4) вельцевания в вельц печах (длина 50 м и диаметр 3,6 м);
- 5) обжиг в многоподовых печах типа BX3-45А.

Процесс вельцевания производится в трубчатых вращающихся печах длиной 50 м и диаметром 3,6 м.

Рисунок 2 - Схема процесса вельцевания цинковых кеков в вельцпечи

Температура в нижней части печи 1000-1100 °С. Для повышения температуры на выгрузке клинкера из печи подается сжатый воздух с объемным расходом: 3000÷5000 м³/h.

Шихта занимает 15-20 % объема печи. При вращении печи шихта хорошо перемешивается. Скорость вращения печи от 0,65 до 1,31 г/min.

Вельцокислы обжигаются в многоподовых печах типа BX3-45A с целью удаления из окиси хлора, фтора, перевода мышьяка и сурьмы из трехвалентного состояния в пятивалентное, снижения восстановительной способности окиси, повышения ее растворимости и насыпного веса.

Рисунок 3 - Схема цепи аппаратов для брикетирования цинковых кеков с нефте-коксом и косовой мелочью:

1-дисковый фильтр; 2-бункер для пастообразного цинкового кека; 3-бункер для тугоплавкого кальций-магнийсодержащего материала; 4-бункер для твердого углеродистого восстановителя

фракции минус 3 мм; 5-бункер для пылей суики и вельцевания фракции минус 3 мм; 6-лопастной смеситель; 7-чашевый гранулятор; 8-печь для сушики брикетов; 9-грохот; 10-вельц-печь.

Для снижения расхода коксовой мелочи и нефте-кокса предлагается брикетирование шихты (цинковый кек + коксовая мелочь + нефте-кокс). Предлагаемая схема аппаратов биркетирования и дальнейшего вельцевания представлена на рисунке 3.

Заключение

Применение предлагаемой схемы брикетирования и подготовки шихты вельцевания приводит к снижению расхода коксовой мелочи на 10-15%. В Узбекистане цена 1 тонны нефте-кокса 240 у.е., а коксовой мелочи 210 у.е. Следовательно применение данной технологии приводит в снижению расходов на 22,5-33,75 у.е. за каждую тонну.

Список литературы:

1. Ахтамов Ф.Э. "Рух кекларини қайта ишлашнинг паст ҳароратли технологиясини ишлаб чиқиши", Техника фанлари бўйича фалсафа доктори (PhD) илмий даражасини олиш учун ёзилган диссертация, Навоий, 2020 й. 115 бет.
2. Ra'no Toshqodirova, Baxtiyorjon Jalolov, & Nilufar Abdukarimova. (2022). RUX KEKI VA UNI VELSLASH USULI BILAN QAYTA ISHLASHDA HOSIL BO'LUVCHI MAHSULOTLAR TAHLILI. *Uzbek Scholar Journal*, 4, 157–164. Retrieved from <https://www.uzbekscholar.com/index.php/uzs/article/view/81>.
3. П.А.Козлов "Вельц-процесс", Москва, Издательский дом "Руда и металлы", 2002. — 176 с.
4. Хайдаралиев Х.Р., Шамсиддинов А.Х. "Олмалиқ КМК" Рух заводи шароитида рух кекини вельцлаш жараёнини такомиллаштириш", "Проблемы перспективы и инновационный подход эффективной переработки минерального сырья и техногенных отходов"//27.05.2021. 164-165. Международная научно-практическая конференция. г. Алматы. Узбекистан.