

Centro de Investigación en Matemáticas, A.C.

El proceso de Dyson determinista

T E S I S

Que para obtener el grado de Maestro en Ciencias con Especialidad en Probabilidad y Estadística

Presenta

Juan Esaul Gonzalez Rangel

Director de Tesis: Dr. Octavio Arizmendi Echegaray

Co-director de Tesis: Dr. José Luis Ángel Pérez Garmendia

Autorización de la versión final

Dedicatoria ...

Abstract

Palabras clave:

Agradecimientos

A mis padres ...

Contents

Resumen				
Ą	grade	cimient	os	V
Lis	st of F	igures		ix
1	Prel	iminari	es	1
	1.1	Introd	uction to main concepts in Random Matrix Theory	2
		1.1.1	Matrix algebra	2
		1.1.2	Random matrix ensembles	2
		1.1.3	Asymptotic results for random matrices	2
	1.2	Stocha	astic Calculus	2
		1.2.1	Stochastic calculus for \mathbb{R}^n -valued processes	2
		1.2.2	Stochastic calculus for matrix-valued processes	2
	1.3	Non-c	commutative probability	2
		1.3.1	Non-commutative probability spaces	2
		1.3.2	Notions of independence	2
		1.3.3	Convolution	2
		1.3.4	Classical and non-commutative central limit theorems	2
		1.3.5	Asymptotic freeness for random matrices	2
2	Eige	nvalue	processes for matrix-valued processes	3
	2.1	Dysor	Brownian Motion	3
		2.1.1	Real case	3
		2.1.2	Complex case	3
		2.1.3	Non-collision of the eigenvalues	3
	2.2	Wisha	ort process	3
	2.3	Jacobi	i process	3
3	Fini	te Free	Probability	5
	3.1	Convo	olution of polynomials	5
		3.1.1	Symmetric additive convolution	5
		3.1.2	Symmetric multiplicative convolution	5
		3.1.3	Linearization of convolutions	5
	3.2	Finite	free probability and random matrices	5

viii CONTENTS

4	Dete	erministic eigenvalue processes for matrix valued processes	7		
	4.1	1.1 Deterministic Dyson Brownian motion			
		4.1.1 Symmetric matrix-valued Brownian motion with zeros on the			
		diagonal	7		
	4.2	Deterministic eigenvalue processes for matrix-valued diffusions	7		
	4.3	Connections with finite free probability	7		

List of Figures

Preliminaries

- 1.1 Introduction to main concepts in Random Matrix Theory
- 1.1.1 Matrix algebra
- 1.1.2 Random matrix ensembles
- 1.1.3 Asymptotic results for random matrices
- 1.2 Stochastic Calculus
- **1.2.1** Stochastic calculus for \mathbb{R}^n -valued processes
- 1.2.2 Stochastic calculus for matrix-valued processes
- 1.3 Non-commutative probability
- 1.3.1 Non-commutative probability spaces
- 1.3.2 Notions of independence
- 1.3.3 Convolution
- 1.3.4 Classical and non-commutative central limit theorems

Eigenvalue processes for matrix-valued processes

- 2.1 Dyson Brownian Motion
- 2.1.1 Real case
- 2.1.2 Complex case
- 2.1.3 Non-collision of the eigenvalues
- 2.2 Wishart process
- 2.3 Jacobi process

4 CHAPTER 2. EIGENVALUE PROCESSES FOR MATRIX-VALUED PROCESSES

Finite Free Probability

- 3.1 Convolution of polynomials
- 3.1.1 Symmetric additive convolution
- 3.1.2 Symmetric multiplicative convolution
- 3.1.3 Linearization of convolutions
- 3.2 Finite free probability and random matrices

Deterministic eigenvalue processes for matrix valued processes

- 4.1 Deterministic Dyson Brownian motion
- 4.1.1 Symmetric matrix-valued Brownian motion with zeros on the diagonal
- 4.2 Deterministic eigenvalue processes for matrix-valued diffusions
- 4.3 Connections with finite free probability

8 CHAPTER 4. DETERMINISTIC EIGENVALUE PROCESSES FOR MATRIX VALUED PROCESSES