<u>Auteur</u> : Abdoulage DABO

Diplômé de la licence de Mathématiques (Université Cheikh Anta Diop de Dakar - F.S.T)

Sommaire

1	Fonction cosinus	2
2	Fonction sinus	2
3	Fonction tangente	3
4	Propriétés	4
5	Formules de Trigonométrie	4
6	Valeurs usuelles	5
7	Résolution d'équations trigonométriques	5

1 Fonction cosinus

• La fonction cosinus est dérivable sur $\mathbb R$ est pour tout réel $x, \cos'(x) = -\sin(x)$.

• Parité :

La fonction cosinus est paire : $\forall x \in \mathbb{R} \cos(-x) = \cos(x)$.

• Périodicité :

La fonction cosinus est 2π périodique : $\forall x \in \mathbb{R} \cos(x + 2\pi) = \cos(x)$.

Figure 1 – cosinus

2 Fonction sinus

• La fonction sinus est dérivable sur $\mathbb R$ et pour tout réel $x, \sin'(x) = \cos(x)$.

• Parité :

La fonction sinus est impaire : $\forall x \in \mathbb{R} \sin(-x) = -\sin(x)$.

• Périodicité :

La fonction sinus est 2π périodique : $\forall x \in \mathbb{R} \sin(x + 2\pi) = \sin(x)$.

Figure 2 - sinus

3 Fonction tangente

- La fonction tangente note tan est la fonction qui a x associe $\frac{\sin(x)}{\cos(x)}$. Elle est definie sur $D = \mathbb{R} - \{\frac{\pi}{2} + 2k\pi\}$ avec $k \in \mathbb{Z}$.
- La fonction tangente est dérivable sur D et pour tout réel $x \in D$, $\tan'(x) = 1 + \tan^2(x) = \frac{1}{\cos^2(x)}$.
- Parité :

La fonction tangente est impaire : $\forall x \in D \tan(-x) = -\tan(x)$.

• Périodicité :

La fonction tangente est π périodique : \forall x D $\tan(x + \pi) = \tan(x)$.

Figure 3 - tangente

4 Propriétés

Pour tout reel x on a :

$$-1 \le \cos x \le 1$$

•
$$-1 < \sin x < 1$$

$$\cos^2 x + \sin^2 x = 1$$

•
$$\sin(x + \frac{\pi}{2}) = \cos x$$

•
$$\sin(\frac{\pi}{2} - x) = \cos x$$

•
$$\sin(x+\pi) = -\sin x$$

•
$$\sin(\pi - x) = \sin x$$

$$\bullet \cos(x + \frac{\pi}{2}) = -\sin x$$

$$\bullet \ \cos(\frac{\pi}{2} - x) = \sin x$$

•
$$\sin(x+\pi) = -\cos x$$

•
$$\sin(\pi - x) = -\cos x$$

5 Formules de Trigonométrie

Formules d'addition:

Pour tous réels a et b

•
$$cos(a+b) = cos(a)cos(b) - sin(a)sin(b)$$

•
$$cos(a - b) = cos(a) cos(b) + sin(a) sin(b)$$

•
$$\sin(a+b) = \sin(a)\cos(b) + \cos(a)\sin(b)$$

•
$$\sin(a-b) = \sin(a)\cos(b) - \cos(a)\sin(b)$$

•
$$\tan(a+b) = \frac{\tan(a) + \tan(b)}{1 - \tan(a)\tan(b)}$$

•
$$\tan(a-b) = \frac{\tan(a) - \tan(b)}{1 + \tan(a)\tan(b)}$$

Formules de duplication :

Pour tous réel a

•
$$\cos(2a) = \cos^2(a) - \sin^2(a) = 2\cos^2(a) - 1 = 1 - 2\sin^2(a)$$

•
$$\sin(2a) = 2\sin(a)\cos(a)$$

•
$$tan(2a) = \frac{2\tan(a)}{1-\tan^2(a)}$$

Formules de linearisation :

Pour tous réels a et b

•
$$\cos(a) \cdot \cos(b) = \frac{1}{2}(\cos(a-b) + \cos(a+b))$$

•
$$\cos^2(x) = \frac{1}{2}(1 + \cos(2x))$$

•
$$\sin(a) \cdot \sin(b) = \frac{1}{2}(\cos(a-b) - \cos(a+b))$$

•
$$\sin^2(x) = \frac{1}{2}(1 - \cos(2x))$$

•
$$\sin(a) \cdot \cos(b) = \frac{1}{2}(\sin(a+b) + \sin(a-b))$$

•
$$\sin(x) \cdot \cos(x) = \frac{1}{2}\sin(2x)$$

•
$$\sin(b) \cdot \cos(a) = \frac{1}{2}(\sin(a+b) - \sin(a-b))$$

6 Valeurs usuelles

On doit connaître les valeurs suivantes des fonctions sinus et cosinus :

x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\sin(x)$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
$\cos(x)$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0

7 Résolution d'équations trigonométriques

Pour tout reel a et b, on a:

$$cos(a) = cos(b) \iff b = a + 2k\pi \text{ ou } b = -a + 2k\pi \text{ avec } k \in \mathbb{Z}$$

$$\sin(a) = \sin(b) \iff b = a + 2k\pi \text{ ou } b = \pi - a + 2k\pi \text{ avec } k \in \mathbb{Z}$$

$$tan(a) = tan(b) \iff b = a + k\pi \text{ avec } k \in \mathbb{Z}$$

Merci de signaler toutes erreurs via WhatsApp : +221777426690