ECE 65: Components & Circuits Lab

Lecture 20

Transistor Amplifier Biasing

Reference notes: sections 5.3

Sedra & Smith (7th Ed): sections 7.4

Saharnaz Baghdadchi

Course map

6. Transistor Amplifiers - Bias and small signal

How to establish a Bias point

- O Stable and robust bias point should be predictable and insensitive to variations in temperature and to the manufacturing variability in the transistor parameter values such as V_t , μ_n , C_{ox} , (W/L) and β .
- Bias point details impact the small signal response (e.g., gain of the amplifier).

BJT Fixed Bias

BE KVL:
$$V_{BB} = I_B R_B + V_{BE}$$

$$I_B = rac{V_{BB} - V_{BE}}{R_B}$$
 , $I_C = \beta I_B = \beta rac{V_{BB} - V_{BE}}{R_B}$

CE KVL:
$$V_{CC} = I_C R_C + V_{CE}$$

Why biasing with base voltage (fixed bias) does not work?

Changes in BJT β or V_{BE} values, changes the bias point drastically.

BJT can end up in saturation or in cut-off easily.

To operate a BJT in the active region, $I_{C}\!>0$, $V_{CE}\!>V_{D0}$

Biasing with Emitter Degeneration

Requires a resistor in the emitter circuit!

BE KVL:
$$V_{BB} = I_B R_B + V_{BE} + I_E R_E$$

$$V_{BB} - V_{BE} = I_E \left(\frac{R_B}{\beta + 1} + R_E \right)$$

If
$$R_B \ll (\beta + 1)R_E$$

$$V_{BB} - V_{BE} \approx I_E R_E$$

Emitter resistor provides negative feedback!

$$\begin{cases} V_{BB} - V_{BE} \approx I_E R_E \\ I_C \propto e^{V_{BE}/V_T} \end{cases}$$

Negative Feedback:

$$\circ$$
 If $I_C \approx I_E \uparrow$ (because $\beta \uparrow$), $\xrightarrow{\mathsf{BE-KVL}} V_{BE} \downarrow \xrightarrow{\mathsf{BE}} \mathsf{Junction}$ $I_C \approx I_E \downarrow$

$$\circ$$
 If $I_C \approx I_E \downarrow$ (because $\beta \downarrow$), $\xrightarrow{\mathsf{BE}}$ -KVL $\longrightarrow V_{BE} \uparrow \xrightarrow{\mathsf{BE}}$ junction $I_C \approx I_E \uparrow$

Emitter-degeneration bias circuits

Basic Arrangement

$$V_{BB} = I_B R_B + V_{BE} + I_E R_E$$

Bias with <u>one</u> power supply (voltage divider)

$$V_{BB} = I_B R_B + V_{BE} + I_E R_E$$

Bias with <u>two</u> power supplies

$$V_{EE} = I_B R_B + V_{BE} + I_E R_E$$

MOS Fixed Bias

$$I_D = \frac{1}{2} \mu_n C_{ox} \left(\frac{W}{L}\right) (V_{GS} - V_t)^2$$

$$V_{DS} = V_{DD} - I_D R_D$$

This method is NOT desirable as $\mu_n C_{ox}$ (W/L) and V_t vary widely among devises of the same manufacturer's part number.

Bias point (i.e., I_D and V_{DS}) can change drastically due to temperature and/or manufacturing variability.

MOS bias with Source Degeneration (Resistor R_s provides negative feedback!)

$$\begin{cases} V_{GS} = V_G - I_D R_S \\ I_D = \frac{1}{2} \mu_n C_{ox} \left(\frac{W}{L}\right) (V_{GS} - V_t)^2 \end{cases}$$

Negative Feedback:

$$\circ \text{ If } I_D \uparrow \text{ (because } \mu_n C_{ox} (W/L) \uparrow \text{ or } V_t \downarrow \text{)} \xrightarrow{\text{GS KVL}} V_{GS} \downarrow \xrightarrow{I_D \text{ Eq.}} I_D \downarrow$$

$$\circ \text{ If } I_D \downarrow \text{ (because } \mu_n C_{ox} (W/L) \downarrow \text{ or } V_t \uparrow \text{)} \xrightarrow{\text{GS KVL}} V_{GS} \uparrow \xrightarrow{I_D \text{ Eq.}} I_D \uparrow$$

Source-degeneration bias circuits

Basic Arrangement

$$V_G = V_{GS} + I_D R_S$$

Bias with <u>one</u> power supply (voltage divider)

$$V_G = V_{GS} + I_D R_S$$

Bias with <u>two</u> power supplies

$$V_{SS} = V_{GS} + I_D R_S$$

Biasing circuit examples

Lecture 20 reading quiz.

Find R_C and R_B such that BJT would be in active with V_{CE} = 5V and I_C = 25 mA. (V_{CC} = 15 V, Si BJT with β = 100 and V_A = ∞).

Discussion question 1.

Consider the circuit designed in the reading quiz (R_C =? , R_B =?, V_{CC} = 15 V). Find the operating point of BJT if β = 200. (V_A = ∞).

Discussion question 2.

Find the bias point of the BJT (Si BJT with $\beta=200$ and $V_A=\infty$). Compare your results for both beta values.

Example of finding the Bias point/Thevenin equivalent circuit

$$\beta = 100$$
 $V_T = 25 \, mV$ $V_A = \infty$

Bias circuit:

Example cont.

Example cont. 10 V $\ge 5 k$ 82 k**-**100 *k* ≸ ightharpoonup 9.5 k10 V -10 V -10 V R_{Th} 82 k**-**100 kSecond Second 10 V V_{Th} circuit circuit -10 V(

Example cont.

$$\longrightarrow i_1 = \frac{20 \, \text{V}}{182 \, \text{k}} \qquad \longrightarrow V_{\text{Th}} = 100 \, \text{k} \, \text{k} \, i_1 - 10 \, \text{V} \qquad \longrightarrow V_{\text{Th}} = 0.989 \, \text{V}$$

RTh: Zero the independent Voltage Sources.

$$R_{Th} = 100 \, \text{k} \, \text{ll} \, 82 \, \text{k} \simeq 45.05 \, \text{k} \, \text{m}$$

Clicker question 1.

Which one of the options is correct for the following bias circuit?

$$V_t$$
 = 1 V and k_n = 1.0 mA/V 2 , λ = 0.

$$A. \quad V_G = V_{GS} + I_D R_S = 7 V$$

B.
$$5V_{OV}^2 + V_{OV}^2 - 6 = 0$$

C.
$$V_S = 5 V$$

D.
$$I_D = 0.5 \, mA$$

E. All of the above.

Required equations:

$$I_D = 0.5 k_n V_{OV}^2$$

$$V_{OV} = V_{GS} - V_t$$

Discussion question 3.

Design the below circuit so that the transistor operates in saturation with V_{SD} biased 1-V from the edge of the saturation, with $I_D=1~mA$ and $V_D=3~V$. Use a $10~\mu A$ current in the voltage divider. $|V_t|=1~V$, $k_p=0.5~mA/V^2$

