# CSCI 181 / E-181 Spring 2014 Practical 2

David Wihl davidwihl@gmail.com

Zack Hendlin zgh@mit.edu

February 24, 2014

### Warm-Up

### **Maximum Likelihood Estimation**



Figure 1: Warmup: Gradient Descent

As a baseline, we first a simple gradient descent. We also did a clearly overfit polynomial (using up to  $n^12$ ).



Figure 2: Warmup: Polynomial Fit  $n^{12}$ 

### **Bayesian Linear Regression**

Using Moore Penrose, we solved for w.

$$\mathbf{w}_{\mathrm{ML}} = \left(\mathbf{\Phi}^{\mathrm{T}}\mathbf{\Phi}\right)^{-1}\mathbf{\Phi}^{\mathrm{T}}\mathbf{t}$$

Figure 3: Warmup: Moore Penrose (closed form)

#### Locally Weighted Linear Regression

Locally weighted Linear Regression<sup>1</sup> provided the lowest cost overall and a smooth fit to the data without overfitting given the profile of this dataset. A variety of K values were attempted. 0.001 never converged. Values from 0.5, 1.0, 5.0 and 10.0 did converge with 1.0 seemingly providing the best balance between fit and smoothness.

<sup>&</sup>lt;sup>1</sup>Machine Learning in Action by Peter Harrington. © 2012 ISBN 978-1617290183



Figure 4: Warmup: Gaussian (closed form)

| Method           | Lowest Error |
|------------------|--------------|
| Gradient Descent | 1293.0       |
| Gaussian         | 1187.7       |
| Polynomial       | 211.9        |
| LWLR             | 185.6        |

## Predicting Movie Opening Weekend Revenues

Subsection 1

Subsection 2

Conclusion



Figure 5: Warmup: Locally Weighted Linear Regression